2. Proprietà degli insiemi in \mathbb{R}^2

Distanza

Chiamiamo **distanza** (*distanza euclidea*)dei due punti $A(x_1; y_1)$ e $B(x_2; y_2)$ il numero *non negativo* definito da

$$\overline{AB} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

La distanza gode delle seguenti proprietà:

- $\overline{AB} = 0$ se e solo se $A \equiv B$
- $-\overline{AB} = \overline{BA}$
- presi tre punti A, B, C risulta

$$\overline{AB} \leq \overline{AC} + \overline{CB}$$

valendo il segno di uguaglianza solo se C appartiene al segmento AB.

Intervalli – Intorni

Intorni

Sia $P_0 \in \mathbb{R}^2$.

Definizione

Si dice **intorno aperto** di raggio r (r>0) del punto P_0 l'insieme dei punti P di \mathbb{R}^2 che hanno da P_0 distanza minore di r

$$I_r(P_0) = \{ P \operatorname{di} \mathbb{R}^2, \quad \overline{PP_0} < r \}$$

rappresentato graficamente dai punti interni alla circonferenza di centro P_0 e raggio r(fig. 1 a).

Si dice **intorno chiuso** di raggio r (r>0) del punto P_0 l'insieme dei punti P di \mathbb{R}^2 che hanno da P_0 distanza minore o uguale a r

$$\overline{I_r}(P_0) = \{ P \text{ di } \mathbb{R}^2, \qquad \overline{PP_0} \le r \}$$

rappresentato graficamente dai punti interni alla circonferenza di centro P_0 e raggio r e dai punti della circonferenza stessa(fig. 1 b).

Dati in \mathbb{R}^2 i due punti $A(x_1;\ y_1)$ e $B(x_2;\ y_2)$, si dice **intervallo chiuso** (o *dominio rettangolare*) di estremi A e B , l'insieme di tutti i punti (x;y) tali che

$$x_1 \le x \le x_2$$
 e $y_1 \le x \le y_2$.

Un intervallo chiuso è quindi un rettangolo con i lati paralleli agli assi cartesiani. (fig. 1 c)

Fig. 1c

Un insieme si dice **limitato** se esiste un intorno dell'origine che lo contiene oppure se esiste un dominio rettangolare che lo contiene.

In \mathbb{R}^2 valgono per i punti e gli insiemi proprietà analoghe a quelle viste in \mathbb{R} .

Punti interni, esterni, di frontiera -

Sia E un insieme di punti di \mathbb{R}^2 .

Definizioni

Un punto $P \in \mathbb{R}^2$ si dice **interno** all'insieme E se esiste un intorno $I_r(P)$ tutto costituito da punti di E.

Un punto interno a E ovviamente appartiene a E.

Un punto $P \in \mathbb{R}^2$ si dice **esterno** all'insieme E se esiste un intorno $I_r(P)$ tutto costituito da punti non appartenenti ad E, cioè interni al $\mathcal{C}E$ in \mathbb{R}^2 .

Un punto $P \in \mathbb{R}^2$ si dice **di frontiera** per l'insieme E se non è né interno né esterno, cioè in ogni suo intorno cadono sia punti di E che punti del CE.

Un punto di frontiera per E può appartenere o no ad E.

Indichiamo con ∂E l'insieme dei punti di frontiera di E.

Si dice **chiusura** di E l'insieme $\overline{E} = E \cup \partial E$.

Insiemi chiusi – Insiemi aperti

Definizioni

Un insieme si dice **chiuso** quando contiene tutti i suoi punti di frontiera, si dice **aperto** quando non contiene alcun punto della sua frontiera cioè quando tutti i suoi punti sono punti interni.

Il complementare di un insieme chiuso (o aperto) è un insieme aperto (o chiuso).

Esempi

- 1. Sia E l'insieme di tutti i punti (x; y) del piano a coordinate razionali. I suoi punti non sono né interni né esterni. Tutti i punti del piano sono di frontiera per E, quelli a coordinate razionali appartengono a E, gli altri (gli irrazionali) al complementare di E.
- 2. Per l'insieme $E=\{(x;y)\in\mathbb{R}^2, |x-y|\leq 1\}$ l'insieme dei punti interni sono quelli appartenenti alla striscia |x-y|<1, quelli di frontiera sono i punti delle rette $x-y=\pm 1$, i punti esterni appartengono al $\mathcal{C}E=\{(x;y)\in\mathbb{R}^2, |x-y|>1\}$, cioè esterni alla striscia.
- **3.** I punti di frontiera di un intorno sono in punti della circonferenza che delimita l'intorno stesso sia che esso sia aperto o chiuso.
- **4.** Un segmento del piano non ha punti interni. La frontiera di un segmento del piano è il segmento stesso compresi gli estremi .

Punti di accumulazione

Definizione

Il punto $x_0 \in \mathbb{R}^2$ si dice di **accumulazione** di E se in ogni suo intorno cade almeno un punto $x \in E$ distinto da x_0 .

Un punto di accumulazione per E può appartenere o no a E.

Un punto $x_0 \in E$ si dice **isolato** se non è punto di accumulazione.

Un punto isolato di E appartiene alla frontiera di E.

Un punto interno a E è punto di accumulazione di E.

L'insieme dei punti di accumulazione di E si chiama derivato di E e si indica con $\mathfrak{D}E$.

Un insieme di dice **chiuso** anche se o non ha punti di accumulazione oppure contiene tutti i suoi punti di accumulazione, cioè $\mathfrak{D}E \subseteq E$. Se $\mathfrak{D}E = E$ l'insieme E si dice **perfetto.**

Teorema di Bolzano - Weierstrass

Un insieme limitato, contenente infiniti punti, ammette almeno un punto di accumulazione.

Esempi

- Lo spazio \mathbb{R}^2 è contemporaneamente chiuso e aperto. E' chiuso perché tutti i suoi punti sono punti di accumulazione , è aperto perché tutti i suoi punti sono punti interni.
- L'insieme \emptyset è contemporaneamente chiuso e aperto perché $\emptyset = \mathcal{C}\mathbb{R}^2$.
- Un segmento in \mathbb{R}^2 non è un insieme aperto , perché i suoi punti sono tutti di frontiera, essendo né interni né esterni. E' un insieme chiuso se e solo se il segmento contiene i suoi estremi

Definizione

Un insieme chiuso e limitato si dice compatto.

Esempi

- Un rettangolo compreso il contorno è un insieme compatto.
- Una corona circolare chiusa è un insieme compatto.
- Un semipiano compresa la retta origine è un insieme chiuso ma non è compatto non essendo limitato.

Definizione

Dato l'insieme E si dice **chiusura** di E, e si indica con \bar{E} , l'unione di E e dell'insieme dei suoi punti di accumulazione, oppure l'unione di E e dell'insieme dei suoi punti di frontiera :

$$\bar{E} = E \cup \mathfrak{D}E = E \cup \partial E$$
.

La chiusura di E è il più piccolo insieme chiuso che contiene E.

Definizione

Si chiama **dominio** la chiusura di un insieme aperto. Quindi un dominio è un insieme chiuso ed è l'unione di un insieme aperto e della sua frontiera.

Evidentemente se E è chiuso, allora E= \bar{E}

Esempi

- Un cerchio chiuso è un dominio.
- L'insieme costituito da un cerchio chiuso e da uno o più punti isolati non è un dominio.
- La striscia $\mathsf{E} = \{(x;y) \in \mathbb{R}^2, |x-y| \le 1\}$ è un dominio (vedi fig. 2)

Fig. 2

L'insieme E costituito dall'unione dei punti del rettangolo chiuso e del segmento (vedi fig. 3)
non è un dominio perché i punti del segmento , come il punto A, sono punti di frontiera ma non sono punti di accumulazione di punti interni .

Fig. 3

Un insieme E si dice **convesso** se comunque presi due punti di E il segmento che li unisce è tutto contenuto in E.

Insiemi connessi – Semplicemente connessi

Definizione

Un sottoinsieme E di \mathbb{R}^2 si dice **connesso** se presi comunque due suoi punti A e B è sempre possibile congiungerli con una poligonale tutta contenuta in E.

Intuitivamente un insieme è connesso se è fatto di un solo pezzo.

Tutti gli insiemi convessi sono connessi.

Premettiamo le seguenti definizioni.

Definizione

Si chiama curva il luogo geometrico del piano di equazioni parametriche

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

descritto dal punto P , $\forall t \in [a; b]$.

Definizione

Si dice che γ è una curva **semplice** e **regolare** se sono verificate le seguenti condizioni :

- 1) le funzioni x(t) e y(t) sono derivabili con derivate continue in [a;b];
- 2) le derivate x'(t) e y'(t) non sono mai simultaneamente nulle , ciò si verifica imponendo che $\forall t \in [a;b]$ risulti $(x'(t))^2 + (y'(t))^2 \neq 0$;
- 3) per ogni coppia di valori $t_1 \neq t_2$, diversi dagli estremi, risulta $x(t_1) \neq x(t_2)$ o $y(t_1) \neq y(t_2)$, cioè lo stesso punto $P \in \gamma$ non si deve ottenere per due valori diversi del parametro.

Questa condizione implica che la curva non sia intrecciata.

Una curva si dice **chiusa** i punti estremi coincidono , cioè se $P(x(a); y(a)) \equiv Q(x(b); y(b))$.

La circonferenza è una curva chiusa.

Una curva si dice **regolare a tratti** se è continua e si può dividere l'intervallo [a; b] in un numero finito di intervalli in ognuno dei quali la curva è regolare.

Definizione

Un insieme E di \mathbb{R}^2 si dice **semplicemente connesso** se:

- è connesso
- ogni insieme limitato, avente per frontiera una curva regolare semplice chiusa tutta contenuta in E, è tutto contenuto in E.

Intuitivamente un insieme è semplicemente connesso se è fatto di un solo pezzo (connesso) e non ha buchi.

Esempi

- **1.** Un sottoinsieme E dell'asse reale \mathbb{R} è connesso se e solo se è un intervallo.
- **2.** Per esempio in \mathbb{R}^2 sono insiemi semplicemente connessi:
 - tutti gli aperti convessi;
 - il piano privato di una semiretta.
- 3. Non è semplicemente connesso il piano privato di un segmento .
- **4.** L'insieme E = $\{x^2 + y^2 < 4\} \cup \{x^2 + (y 4)^2 < 4\}$ (vedi fig. 4) non è connesso . L'insieme E = $\{x^2 + y^2 \le 4\} \cup \{x^2 + (y 4)^2 \le 4\}$ (vedi fig. 5) è semplicemente connesso.

Fig. 4 Entrambi i cerchi sono privi della frontiera

Fig. 5

- 3. Un dominio rettangolare è semplicemente connesso.
- 4. Un intorno circolare è semplicemente connesso.
- **5.** L'insieme colorato in fig. 6 è semplicemente connesso, mente l'insieme unione delle due lunule è connesso ma non semplicemente.

Fig. 6

Esercizi

Riconoscere le proprietà dei seguenti insiemi :

1.
$$E = \{(x; y) \in \mathbb{R}^2, 1 \le x^2 + y^2 < 4\}$$
 (vedi fig. es. 1)

2.
$$E = \{(x; y) \in \mathbb{R}^2, y \ge x^2 + 2x\}$$
 (vedi fig. es. 2)

3.
$$E = \{x \in \mathbb{R}, \sqrt{x-1} \le 2\}$$

4.
$$E = \{x \in \mathbb{R}, \ x^2 - x < 2 \land \sqrt{x} < 2\}$$

5. E:
$$\begin{cases} y \le \sqrt{4 - x^2} \\ y \ge -\frac{x^2}{4} + 1 \end{cases} \quad (x; y) \in \mathbb{R}^2 \quad \text{(vedi fig. es. 5)}$$

6.
$$E = \{(x; y) \in \mathbb{R}^2, x^2 - 4y^2 > 0 \}$$
, (vedi fig. es. 6)

7. E=
$$\{(x;y) \in \mathbb{R}^2, \ 0 < (x-1)^2 + 4(y-1)^2 \le 9\}$$
, (vedifig. es. 7)

8.
$$E = \{(x; y) \in \mathbb{R}^2, x^2 + y^2 \le 4 \land xy \ge 0\}$$
, (vedi fig. es. 8)

9.
$$E = \{(x; y) \in \mathbb{R}^2, x^2 - y^2 \le 1\}$$
, (vedifig. es. 9)

10. $E = \{(x; y) \in \mathbb{R}^2, \text{ con } x \in y \text{ coordinate irrazionali}\}$

Soluzioni

1. S. $IntE = \{(x;y) \in \mathbb{R}^2, \ 1 < x^2 + y^2 < 4\};$ $\partial E = \{(x;y) \in \mathbb{R}^2, \ x^2 + y^2 = 1 \cup x^2 + y^2 = 4\}, \ E \ n\'e \ aperto \ n\'e \ chiuso,$ $\bar{E} = \{(x;y) \in \mathbb{R}^2, \ 1 \le x^2 + y^2 \le 4\}, \ E \ limitato \ e \ connesso \ , \ non \ compatto;$

Fig. es. 1

2. S. $IntE=\{(x;y)\in\mathbb{R}^2,\ y>x^2+2x\},\ \partial E=\{(x;y)\in\mathbb{R}^2,\ y=x^2+2x\},\ \bar{E}=E,$ E chiuso, illimitato non compatto , E semplicemente connesso , E convesso;

Fig. es. 2

- **3. S.** E=[1;5], IntE=(1;5), $\partial E=\{1;5\}$, $\overline{E}=E$, E chiuso e limitato quindi compatto, connesso;
- **4. S.** $E=[0;2), IntE=(0;2), \partial E=\{0;2\}, \overline{E}=[0;2],$ E limitato e né aperto né chiuso, E non compatto, E connesso ;
- **5. S.** $\bar{E}=E$, E chiuso e limitato quindi compatto, E semplicemente connesso, E non convesso;

Fig. es. 5

6. S. E illimitato, aperto, non connesso (vedi fig. es. 6),

$$\partial E = \{(x; y) \in \mathbb{R}^2, \ x^2 - 4y^2 = 0 \}$$
, non compatto;

Fig. es. 6

7. S.
$$IntE = \{(x; y) \in \mathbb{R}^2, \ 0 < (x-1)^2 + 4(y-1)^2 < 9\}, \ (vedifig. es. 7),$$

$$\partial E = \{(x; y) \in \mathbb{R}^2, (x-1)^2 + 4(y-1)^2 = 9\} - (1; 1),$$

E è costituito dai punti dell'ellisse $(x-1)^2+4(y-1)^2\leq 9$ escluso il centro (1;1) ,

E limitato non compatto, E connesso ma non semplicemente connesso;

Fig. es. 7

8. S. E chiuso e limitato quindi compatto, E è perfetto, E semplicemente connesso , E non è convesso;

Fig.es. 8

9. S. E illimitato, chiuso, non compatto, connesso, (vedi fig. es. 9), $IntE = x^2 - y^2 \le 1$, $\partial E = \{(x;y) \in \mathbb{R}^2, \ x^2 - y^2 = 1\}$, E è un dominio , E è perfetto poiché $\mathcal{D}E = E$;

1 16. 63. 3

10. S. E illimitato, non ha né punti interni né punti esterni, $\partial E = \mathbb{R}^2$;