

Report No.: FG8N2001-1 Page: 51 of 87

Report No.: FG8N2001-1 Page: 52 of 87

Report No.: FG8N2001-1 Page: 53 of 87

Report No.: FG8N2001-1 Page: 54 of 87

Report No.: FG8N2001-1 Page: 55 of 87

Report No.: FG8N2001-1 Page: 56 of 87

Report No.: FG8N2001-1 Page: 57 of 87

Report No.: FG8N2001-1 Page: 58 of 87

Report No.: FG8N2001-1 Page: 59 of 87

Report No.: FG8N2001-1 Page: 60 of 87

Report No.: FG8N2001-1 Page: 61 of 87

Report No.: FG8N2001-1 Report Version: Rev. 01

3.4 Occupied Bandwidth

3.4.1 Test Procedures

- 1. Set resolution bandwidth (RBW) = 30 kHz, Video bandwidth= 100 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Using occupied bandwidth measurement function of spectrum analyzer to measure occupied bandwidth.

3.4.2 Test Setup

Report No.: FG8N2001-1 Page: 63 of 87

3.4.3 Test Result of Occupied Bandwidth

Summary of LTE Band 12

Mode	Max-OBW	ITU-Code	Min-OBW
	(Hz)		(Hz)
Band 12_LTE-M1_1.4MHz_Nss1_1TX_RB 6	1.098M	1M10	1.092M
Band 12_LTE-M1_3MHz_Nss1_1TX_RB 6	1.113M	1M11	1.101M
Band 12_LTE-M1_5MHz_Nss1_1TX_RB 6	1.115M	1M12	1.097M
Band 12_LTE-M1_10MHz_Nss1_1TX_RB 6	1.128M	1M13	1.108M

 $\label{eq:max-NdB} \mbox{\bf Max-N dB} = \mbox{Maximum 26dB down bandwidth;} \\ \mbox{\bf Max-OBW} = \mbox{Maximum 99\% occupied bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-OBW} = \mbox{Minimum 99\% occupied bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-OBW} = \mbox{Minimum 99\% occupied bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Min-N dB} = \mbox{Minimum 26dB down bandwidth;} \\ \mbox{\bf Minimum 26dB} = \mbox{Minimum 26dB} \\ \mbox{\bf Minimum 26dB} = \mbox{Minimum 26dB$

Result

Mode	Result	Limit	Port 1-NdB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
LTE-M1_1.4MHz_Nss1_1TX	-	-	-	-
699.7MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.301M	1.092M
707.5MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.294M	1.098M
715.3MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.274M	1.097M
699.7MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.293M	1.094M
707.5MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.282M	1.096M
715.3MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.275M	1.098M
LTE-M1_3MHz_Nss1_1TX	-	-	-	-
700.5MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.395M	1.104M
707.5MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.438M	1.113M
714.5MHz_QPSK_RB 6,#RB 0,NB 1	Pass	Inf	1.433M	1.101M
700.5MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.391M	1.104M
707.5MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.42M	1.111M
714.5MHz_16QAM_RB 6,#RB 0,NB 1	Pass	Inf	1.42M	1.107M
LTE-M1_5MHz_Nss1_1TX	-	-	-	-
701.5MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.339M	1.098M
707.5MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.335M	1.097M
713.5MHz_QPSK_RB 6,#RB 0,NB 3	Pass	Inf	1.391M	1.102M
701.5MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.459M	1.115M
707.5MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.395M	1.115M
713.5MHz_16QAM_RB 6,#RB 0,NB 3	Pass	Inf	1.538M	1.114M
LTE-M1_10MHz_Nss1_1TX	-	-	-	-
704MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.65M	1.128M
707.5MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.485M	1.108M
711MHz_QPSK_RB 6,#RB 0,NB 7	Pass	Inf	1.785M	1.117M
704MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.5M	1.12M
707.5MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.575M	1.124M
711MHz_16QAM_RB 6,#RB 0,NB 7	Pass	Inf	1.59M	1.115M

Port X-N dB = Port X 26dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

Report No.: FG8N2001-1 Page: 64 of 87

Report No.: FG8N2001-1 Page: 65 of 87

Report No.: FG8N2001-1 Page: 66 of 87

Report No.: FG8N2001-1 Page: 67 of 87

Report No.: FG8N2001-1 Page: 68 of 87

Report No.: FG8N2001-1 Page: 69 of 87

Report No.: FG8N2001-1 Page: 70 of 87

Report No.: FG8N2001-1 Page: 71 of 87

Report No.: FG8N2001-1 Page: 72 of 87

Summary of LTE Band 13

Mode	Max-OBW	ITU-Code	Min-OBW
	(Hz)		(Hz)
Band 13_LTE-M1_5MHz_Nss1_1TX_RB 6	1.11M	1M11	1.087M
Band 13_LTE-M1_10MHz_Nss1_1TX_RB 6	1.127M	1M13	1.118M

Min-N dB = Minimum 26dB down bandwidth; **Min-OBW** = Minimum 99% occupied bandwidth;

Result

Mode	Result	Limit	Port 1-NdB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
LTE-M1_5MHz_Nss1_1TX	-	-	-	-
779.5MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.343M	1.104M
782MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.444M	1.094M
784.5MHz_QPSK_RB 6,#RB 0,NB 3	Pass	Inf	1.436M	1.087M
779.5MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.53M	1.109M
782MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.339M	1.11M
784.5MHz_16QAM_RB 6,#RB 0,NB 3	Pass	Inf	1.436M	1.108M
LTE-M1_10MHz_Nss1_1TX	-	-	-	-
782MHz_QPSK_RB 6,#RB 0,NB 0	Pass	Inf	1.635M	1.118M
782MHz_16QAM_RB 6,#RB 0,NB 0	Pass	Inf	1.478M	1.127M

Port X-N dB = Port X 26dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

Report No.: FG8N2001-1 Page: 73 of 87

Report No.: FG8N2001-1 Page: 74 of 87

Report No.: FG8N2001-1 Page: 75 of 87

Report No.: FG8N2001-1 Page: 76 of 87

3.5 Frequency Stability

3.5.1 Limit of Frequency Stability

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

3.5.2 Test Procedures

- 1. EUT was placed at temperature chamber and connected to an external power supply.
- 2. Temperature and voltage condition shall be tested to confirm frequency stability.
- 3. The test shall be performed under normal and extreme condition for temperature and voltage.
- 4. Tem Link up EUT and simulator. Confirm frequency drift value of simulator and record it.

3.5.3 Test Setup

Report No.: FG8N2001-1 Page: 77 of 87

3.5.4 Test Result of Frequency Stability

LTE Band: 12	Frequency Drift (ppm)				
Temperature (°C)	CB: 1.4MHz	CB: 3MHz	CB: 5MHz	CB: 10MHz	
T20°CVmax	-0.014	-0.013	-0.013	-0.013	
T20°CVmin	-0.013	-0.013	-0.013	-0.13	
T75°CVnom	-0.046	-0.043	-0.045	-0.044	
T70°CVnom	-0.041	-0.042	-0.044	-0.043	
T60°CVnom	-0.038	-0.037	-0.039	-0.036	
T50°CVnom	-0.033	-0.034	-0.036	-0.031	
T40°CVnom	-0.027	-0.025	-0.028	-0.025	
T30°CVnom	-0.015	-0.016	-0.016	-0.014	
T20°CVnom	-0.014	-0.013	-0.012	-0.012	
T10°CVnom	-0.013	-0.012	-0.012	-0.012	
T0°CVnom	-0.013	-0.012	-0.012	-0.012	
T-10°CVnom	-0.012	-0.011	-0.011	-0.011	
T-20°CVnom	-0.011	-0.01	-0.01	-0.011	
T-30°CVnom	-0.011	-0.01	-0.01	-0.011	
T-35°CVnom	-0.009	-0.01	-0.01	-0.01	
Vnom [V]: 3.6	Vma	ax [V]: 3.7	Vmin [V]: 2.	45	
Tnom [°C]: 20	Tma	ıx [°C]: 75	Tmin [°C]: -3	35	

Report No.: FG8N2001-1 Page: 78 of 87

LTE Band: 13	Frequenc	y Drift (ppm)
Temperature (°C)	CB: 5MHz	CB: 10MHz
T20°CVmax	-0.013	-0.012
T20°CVmin	-0.013	-0.013
T75°CVnom	-0.043	-0.041
T70°CVnom	-0.04	-0.038
T60°CVnom	-0.037	-0.035
T50°CVnom	-0.031	-0.028
T40°CVnom	-0.025	-0.027
T30°CVnom	-0.011	-0.016
T20°CVnom	-0.013	-0.013
T10°CVnom	-0.012	-0.013
T0°CVnom	-0.012	-0.012
T-10°CVnom	-0.012	-0.012
T-20°CVnom	-0.009	-0.011
T-30°CVnom	-0.008	-0.009
T-35°CVnom	-0.008	-0.008
Vnom [V]: 3.6	Vmax [V]: 3.7	Vmin [V]: 2.45
Tnom [°C]: 20	Tmax [°C]: 75	Tmin [°C]: -35

Report No.: FG8N2001-1 Page: 79 of 87

3.6 Peak to Average Ratio

3.6.1 Limit of Peak to Average Ratio

The Peakto-average ratio (PAR) of the transmiss ion may not exceed 13 dB.

3.6.2 Test Procedures

- 1. Set the number of counts to a value that stabilizes the measured CCDF curve.
- 2. Set the measurement interval to 1 ms.
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

3.6.3 Test Setup

Report No.: FG8N2001-1 Page: 80 of 87

3.6.4 Test Result of Peak to Average Ratio

Mode	Channel Bandwidth (MHz)	Modulation	Channel	Frequency (MHz)	Peak to Average Ratio (dB)
LTE Band 12	1.4	QPSK	23017	699.7	5.38
LTE Band 12	1.4	QPSK	23095	707.5	5.48
LTE Band 12	1.4	QPSK	23173	715.3	5.52
LTE Band 12	1.4	16QAM	23017	699.7	5.88
LTE Band 12	1.4	16QAM	23095	707.5	5.88
LTE Band 12	1.4	16QAM	23173	715.3	5.89

Report No.: FG8N2001-1 Page: 81 of 87

Mode	Channel Bandwidth (MHz)	Modulation	Channel	Frequency (MHz)	Peak to Average Ratio (dB)
LTE Band 12	3	QPSK	23025	700.5	5.07
LTE Band 12	3	QPSK	23095	707.5	5.18
LTE Band 12	3	QPSK	23165	714.5	5.21
LTE Band 12	3	16QAM	23025	700.5	5.65
LTE Band 12	3	16QAM	23095	707.5	5.68
LTE Band 12	3	16QAM	23165	714.5	5.73

Report No.: FG8N2001-1 Page: 82 of 87

Mode	Channel Bandwidth (MHz)	Modulation	Channel	Frequency (MHz)	Peak to Average Ratio (dB)
LTE Band 12	5	QPSK	23035	701.5	5.05
LTE Band 12	5	QPSK	23095	707.5	4.99
LTE Band 12	5	QPSK	23155	713.5	5.20
LTE Band 12	5	16QAM	23035	701.5	5.64
LTE Band 12	5	16QAM	23095	707.5	5.51
LTE Band 12	5	16QAM	23155	713.5	5.61

Report No.: FG8N2001-1 Page: 83 of 87

Mode	Channel Bandwidth (MHz)	Modulation	Channel	Frequency (MHz)	Peak to Average Ratio (dB)
LTE Band 12	10	QPSK	23060	704.0	4.97
LTE Band 12	10	QPSK	23095	707.5	4.87
LTE Band 12	10	QPSK	23130	711.0	4.99
LTE Band 12	10	16QAM	23060	704.0	5.52
LTE Band 12	10	16QAM	23095	707.5	5.52
LTE Band 12	10	16QAM	23130	711.0	5.61

Report No.: FG8N2001-1 Page: 84 of 87

Mode	Channel Bandwidth (MHz)	Modulation	Channel	Frequency (MHz)	Peak to Average Ratio (dB)
LTE Band 13	5	QPSK	23205	779.5	4.62
LTE Band 13	5	QPSK	23230	782.0	4.47
LTE Band 13	5	QPSK	23255	784.5	4.57
LTE Band 13	5	16QAM	23205	779.5	5.04
LTE Band 13	5	16QAM	23230	782.0	4.93
LTE Band 13	5	16QAM	23255	784.5	5.07

Report No.: FG8N2001-1 Page: 85 of 87

Mode	Channel Bandwidth (MHz)	Modulation	Channel	Frequency (MHz)	Peak to Average Ratio (dB)
LTE Band 13	10	QPSK	23230	782.0	4.43
LTE Band 13	10	16QAM	23230	782.0	4.90

Report No.: FG8N2001-1 Page: 86 of 87

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City,

Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

<u>==END</u>==

Report No.: FG8N2001-1 Page: 87 of 87