

CSMC 0.11um e-FLASH_2P8M_Salicide Process 1.5V 6T STD Library (including PMK)

Version 0.2 Sep. 2019 CSMC Corp.

Notice

Copyright 2008-2019 CSMC Corporation and CSMC subsidiary. All rights reserved. Unpublished—rights reserved under the copyright laws of the United States.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from CSMC Corporation

Use of copyright notices is precautionary and does not imply publication or disclosure.

Disclaimer

CSMC CORPORATION RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS DESCRIBED HEREIN. CSMC CORPORATION MAKES NO WARRANTY, REPRESENTATION, OR GUARANTEE REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES CSMC CORPORATION ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY. INCLUDING WITHOUT LIMITATION. CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Proprietary Rights Notice

This document contains information of a proprietary nature. No part of this manual may be copied or distributed without the prior written consent of CSMC corporation. This document and the software described herein is only provided under a written license agreement or a type of written non-disclosure agreement with CSMC corporation or its subsidiaries.

ALL INFORMATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE AND USED STRICTLY IN ACCORDANCE WITH THE TERMS OF THE WRITTEN NON-DISCLOSURE AGREEMENT OR WRITTEN LICENSE AGREEMENT WITH CSMC CORPORATION OR ITS SUBSIDIARIES.

Trademark/Service-Mark Notice

Planet, Planet-PL, Planet-RTL, Solar, Star-Sim, Star-Hspice, HSPICE, Star-HspiceLink, HSPICE-LINK, AvanWaves, Sirius, Star-DC, Star-RC, Star-Power, Star-MTB, MASTER Toolbox, Hercules, LTL, Passport, V- Formal, Lynx-VHDL, laybool, Lynx-LB, Datapath Compiler, Chip Compiler, PathFinder, ChipPlanner, DesignVP, Optimum Silicone, QTV, Polaris, Polaris-CBS, Polaris-MT, Device Model Builder (DMB), Avan Test-chip, ArcCell, ArcChip, ArcUtil, ADM, ATEM, Evaccess, Explorer, Pure Speed, CycleLink, BaseLine, SimLine, DriveLine, Dynamic Model Switcher, Base Line Software Accelerator, Smart Extraction, VeriView, VeriCheck, Chips

Crunch, and Time are trademarks of CSMC Corporation and its subsidiaries.

CSMC Corporation, CSMC logo, and AvanLabs are trademarks and service-marks of CSMC Corporation.

All other trademarks are the property of their respective owners.

Revision History

Document Version Number	Library Version Number	Date	Notes
0.0	0.0	Sep 2018	Initial Production Release
0.1	0.1	Jan 2019	Improve pmk description
0.2	0.2	Sep.2019	1.2v corner not provided

Table of content

Revision History	2
Table of content	3
ntroduction	9
Product Description	
Contents of This Manual	11
Recommended Operating Conditions	12
AC Characteristics	13
Cells	16
Buffers and Gates	16
Multiplexers	16
Flip-Flops	17
Scan Flip-Flops	17
Latches	
Adders/Subtractors	
PMK	
Reading the Datasheet	20
Arithmetic Gates	23
AD01	23
ADFH	24
AH01	
BUFFS	26
CKBUF	26
CKINV	27
INV0	28
INVTL	29
DL01	30
DI 02	31

COMPLEX Gates	
AOI21	32
AOI21M	33
AOI2M1	34
AOI22	35
AOI31	36
AOI32	37
AOI33	38
AOI211	39
AOI221	40
AOI222	41
AOIM21	42
AOIM22	43
AOR21	44
AOR22	45
AOR211	46
AOR221	47
AOR222	
AOR31	
OAI21M	50
OAI2M1	51
OAI21	
OAI22	
OAI31	54
OAI32	55
OAI33	
OAI211	
OAI221	
OAI222	
OAIM21	
OAIM22	
ORA211	
ORA221	
ORA222	
ORA21	
ORA22	
ORA31	

Gates	68
AN02	68
AN03	69
AN04	70
CKAND	71
CKOR02	72
CKND02	73
CKNR02	74
CKXN02	75
CKXR02	76
ND02	77
ND03	78
ND04	79
ND12	80
ND13	81
ND14	82
ND24	83
NR02	84
NR03	85
NR04	86
NR12	87
NR13	88
NR14	89
NR24	90
OR02	91
OR03	92
OR04	93
XN02	94
XN03	95
XR02	96
XR03	97
MULTIPLEXERS	98
CKMX02	
MX02	
MI02	
MX03	
MX04	102

FLIP-FLOPS	103	
DENRQ		103
DFANRQ		104
DFBFB		105
DFBRB		106
DFBRQ		107
DFCFB		108
DFCRB		109
DFCRQ		110
DFNFB		111
DFNFQ		112
DFNRB		113
DFNRQ		114
DFPRB		115
DFPRQ		116
DFSCRQ		117
DMNRQ		118
	119	
SENRQ		135
LATCHES	136	

49%	DA.
	그드라

	0 4900 0
LABHB	136
LABLB	137
LANHB	138
LANLB	139
LACHB	140
LACLB	141
LAPHB	142
LAPLB	143
Clock Gating	
TLATNCA	
TLATNFCA	145
TLATNTSCA	
TLATNFTSCA	
MISCELLANEOUS FUNCTIONS	
ANTENNA	
BH01	
TIEHI	
TIELO	
INVOD8	
ND02OD	
ND03OD	
OR02OD	
PULLU	
PULLD	
FILLCAP	
FILLER	
PMK	160
Retention DFF	161
DRFCRB	161
DRFNRB	
DRFPRB	
Always On	164
GPGBUFF	164
GPGINV	165
Power Gating	166

49%	RSC
$\neg -u - u$	ヒラケィ

HEAD	166
Isolation cell	167
ISOHD	
ISOLD	168
Retention DFF with Scan	
SDRCRB	169
SDRNRB	170
SDRPRB	171

PMK Power Rail Information172

Introduction

This manual addresses the design engineer who is doing a preliminary feasibility evaluation and wishes to make comparisons among the available technologies. Additionally, you can use this library manual while designing a chip, to see which cells are available, and to check the power consumption, critical timing values, propagation delay equations, and functions of a cell.

The datasheets only show individual pin-to-pin timings for the storage elements. For other cells, the delays in the datasheets are combined as typical-case delays for the purpose of readability.

Product Description

The Synthesis Standard Cell Library is a new set of standard cells that replaces the current high-density and high-performance standard cell sets. The cell set functionality and drive strengths are optimized for industry standard synthesis design entry using Verilog or VHDL driving Synopsys or the ASIC Synthesizer. The cell layout is optimized for industry-leading, area-based routers.

The CSMC011 Library is a high-performance, standard cell library in CSMC 0.11- micron Eflash 2P8M process.

Contents of This Manual

This introduction contains the following sections:

- The General Information section of this book gives basic information on the conditions
 under which this library was characterized and offers assistance in using derating factors
 and estimating propagation delay.
- The *Cells* section describes the contents of the datasheets and how to interpret them. It also explains how to decode the cell names.
- The tables in the *Cell Matrices* section give a quick reference to the features of storage elements in the library.

Following this introduction, there are three sections:

- Simple Logic Gates AND, AND-OR-Invert, NAND, NOR, OR, OR-AND- Invert, exclusive-OR, and exclusive-NOR gates; buffers, clock buffers and 3- state buffers with both active-high and active-low enables.
- Storage Elements D flip-flops, JK flip-flops, latches, multiplexed flip-flops, latches, scan latches, and scan flip-flops.
- Special Functions Adders, adder/subtractors, carry generators, multiplexers, and symbolic cells.

Within these divisions, the library cells are listed in alphabetical order where possible. Cells of a similar type have been combined. For example, the information for all the 2-input NAND gates - ND02D0, ND02D1, ND02D2, and ND02D4 - has been combined into one datasheet.

For storage elements, there is a cover page listing the common information for all cells of that type, then the following pages give information specific to individual cells in the grouping. For example, there is a cover page for D flip-flops with set and clear, then a page each on DFBRB1 and DFBRB2.

Buffers have been grouped together by type with different drive capabilities. For example, INV0D0, INV0D1, INV0D2, IN0VD4 and IN0VD8 have been combined on a single datasheet.

General Information

Recommended Operating Conditions

Table 1 shows the physical design specifications of this library.

Drawn Gate Length (um)	0.13
Layers of Metal	4,5,6, 7 or 8
Layout Grid (um)	0.001
Vertical Pin Grid (um)	0.366
Horizontal Pin Grid (um)	0.37
Cell height (um)	2.196
Cell Power and Ground Rail Width (um)	0.26

Table 1. Physical Specifications

In this library, all pins are located on the vertical and horizontal pin grids. Most place-and-route tools work more efficiently with all pins on grids, and some tools even require it.

The library supports designs with four, five, six, seven or eight layers of metal. You may need to change the design rules in the technology file, because the top-level metal has a greater minimum width and greater minimum spacing requirement.

Table 2 describes the electrical specifications for this library.

Conner	Minimum (0 ℃)	Minimum (125 ℃)	Minimum (-40 ℃)	TYPICAL	Maximum	Maximum
DC Supply Voltage (Vdd)	1.65	1.65v	1.65v	1.5v	1.35v	1.35v
Junction Temperature	0℃	125 ℃	-40 ℃	25℃	125 ℃	85 ℃

Table 2. 1.5V Electrical Specifications

AC Characteristics

Timing Measurement Conditions

Unless otherwise specified:

VDD = 1.5 volts

Junction Temperature = 25 degrees C

Process = typical case

AC Timing Definitions

Propagation Delay and Transition Time

The propagation delay through a cell is the sum of the intrinsic delay, theload dependent delay, and the input-slew dependent delay. Delays are defined as the time interval between the input stimulus crossing 50% of Vdd and the output rossing 50% of Vdd. Figure 1 illustrates the propagation delay.

Figure 1. Propagation Delay

The transition times (slews) on input and output pins are defined as the timeinterval between the signal crossing 10% of Vdd and 90% of Vdd. Figure 2 Ilustrates transition time measurements for rising and falling signals.

Figure 2. Transition Time

Timing Constraints

Timing constraints define minimum time intervals during which specific signals must be held steady in order to ensure the correct functioning of any given cell. Timing constraints include: setup time, hold time, recovery time, and minimum pulse width.

The sequential-cell timing models provided with this library include the effects of input-transition time and data-signal and clock-signal polarity on timing constraints. Timing constraints can affect propagation delays. The intrinsic delays given in the datasheets are measured with relaxed timing constraints (longer than necessary setup times, hold times, recovery times, and pulse widths). The use of shorter timing constraint intervals may increase delay. Each cell is considered functional as long as the actual delay does not exceed the delay given in the datasheets by more than 10%.

Setup Time

The setup time for a sequential cell is the minimum length of time the data-input signal must

remain stable before the active edge of the clock (or other specified signal) to ensure correct functioning of the cell. The cell is considered functional as long as the delay for the output reaching its expected value does not exceed the reference delay (measured with a large setup time) by more than 10%.

Setup constraint values are measured as the interval between the data signal crossing 50% of Vdd and the clock signal crossing 50% of Vdd. For the measurement of setup time, the data input signal is kept stable after the active clock edge for an infinite hold time. Figure 3 illustrates setup time for a positive-edge-triggered sequential cell.

Figure 3. Setup Time

Hold Time

The hold time for a sequential cell is the minimum length of time the data-input signal must remain stable after the active edge of the clock (or other specified signal) to ensure correct functioning of the cell. The cell is considered functional as long as the delay for the output reaching its expected value does not exceed the reference delay (measured with a large hold time) by more than 10%.

Hold-constraint values are measured as the interval between the data signal crossing 50% of Vdd and the clock signal crossing 50% of Vdd. For the measurement of hold time, the data input signal is held stable before the active clock edge for an infinite setup time. Figure 4 illustrates hold time for a positive-edge-triggered sequential cell.

Figure 4. Hold Time

Recovery Time

Recovery time for sequential cells is the minimum length of time that the active low set or reset signal must remain high before the active edge of the clock to ensure correct functioning of the cell. The cell is considered functional as long as the delay for the output reaching its expected value does not exceed the reference delay (measured with a large recovery time) by more than 10%.

Recovery constraint values are measured as the interval between the set or reset signal crossing 50% of Vdd and the clock signal crossing 50% of Vdd. For the measurement of recovery time, the set or reset signal is held stable after the active clock edge for an infinite hold time. Figure 5 illustrates recovery time.

Figure 5. Recovery Time

Minimum Pulse Width

Minimum pulse width is the minimum length of time between the leading and trailing edges of a pulse waveform. Minimum pulse width high (minpwh) is measured as the interval between the rising edge of the signal crossing 50% of Vdd and the falling edge of the signal crossing 50% of Vdd. Minimum pulse width low (minpwl) is measured as the interval between the falling edge of the signal crossing 50% of Vdd and the rising edge of the signal crossing 50% of Vdd. Figure 6 illustrates minimum pulse width.

Figure 6. Minimum Pulse Width

The value in this datasheet is just for customer reference.

经和原经

Cells

Buffers and Gates

Name Decoding Scheme: aaaaDn

aaaa = Name of the cell:

AN = AND Gate

AOI = AND-OR-Invert Gate

AOR = AND-OR Gate BH = Bus Holder

BUFF = Non-Inverting Buffer

BUFT = Non-Inverting 3-State Buffer

CLK2 = 2-Phase Non-Overlapping Clocks

CKAND = CLOCK AND Gate

CKBUF = CLOCK Non-Inverting Buffer

CKINV = CLOCK Inverter

CKXR = CLOCK Exclusive OR Gate
DL = Non Inverting Delay Buffer

INV0 = Inverter

INVT = Inverting 3-State Buffer

ND = NAND Gate NR = NOR Gate

OAI = OR-AND-Invert Gate

OR = OR Gate

ORA = OR-AND Gate

XN = Exclusive NOR Gate XR = Exclusive OR Gate

n = Drive Strength

0 = Minimum drive

M = Between 0 and 1 1 = Basic drive speed

2 = 2 times basic drive speed

3 = 3 times basic drive speed

4 = 4 times basic drive speed

Multiplexers

Name Decoding Scheme: aabcDn

aa = Name of the Cell:

MX = Multiplexer

MI = Inverting Multiplexer CKMX = CLOCK Multiplexer

b = Number of Inversions in the Input

c = Number of Inputs

學乳鼠學

n = Drive Strength

Flip-Flops

Name Decoding Scheme: aabcdn

aa = Name of the Cell

DF = D Flip-Flop

DE = D Flip-Flop with D Enable

JK = JK Flip-Flop

b = Preset and Clear Notation

B = Both Preset and Clear

C = Clear P = Preset N = None

c = Clock Edge

R = Positive Rising Edge F = Negative Falling Edge

d = Number of Output Pins:

B = Both Q and QN

Q = Q OnlyN = QN Only

n = Drive Strength

Scan Flip-Flops

Name Decoding Scheme: aabcdn

aa = Name of the Cell:

SD = Multiplexed Scan D Flip-Flop

SE = Multiplexed Scan D Flip-Flop with D Enable

b = Preset and Clear Notation:

B = Both Preset and Clear

C = Clear P = Preset N = None

c = Enable:

H = Active High EnableL = Active Low Enable

d = Number of Output Pins:

B = Both Q and QN

Q = Q OnlyN = QN Only

n = Drive Strength

Latches

Name Decoding Scheme: aabcdn

aa = Name of the Cell:

LA = D Latch

b = Preset and Clear Notation:

B = Both Preset and Clear

C = Clear P = Preset N = None

c = Enable:

H = Active High EnableL = Active Low Enable

d = Number of Output Pins:

 $B = Both \dot{Q} and QN$

Q = Q Only N = QN OnlyT = Z Only

n = Drive Strength

Adders/Subtractors

Name Decoding Scheme: aabcDn

aa = Name of the Cell

AD = Adder

AH = Half Adder

b = Number of Inversions in the Input

c =Number of Bits

n = Drive Strength

Decoding the Cell Name

This section describes the naming conventions for the cells in the CSMC011. Each cell name begins with either a two-, three-,four- or five-letters code that defines the type of cell. These codes are listed in the following table; the sections that follow give the detailed naming conventions for each cell type.

STD

Code	Description
AD	Adder
AH	Half Adder
AN	AND Gate
AOI	AND-OR-Invert Gate
AOR	AND-OR Gate
BH	Bus Holder
BUFF	Non-Inverting Buffer
BUFT	Non-Inverting 3-State Buffer
CKAND	Clock AND Gate
CKBUF	Clock Non-Inverting Buffer
CKINV	Clock Inverter
CKMX	Clock Multiplexer
CKXR	Clock Exclusive OR Gate
DE	D-Enabled Flip-Flop
DF	D Flip-Flop
INV0	Inverter
INVT	Inverting 3-State Buffer
LA	D Latch
MI	Inverting Multiplexer
MX	Multiplexer
ND	NAND Gate
NR	NOR Gate
OAI	OR-AND-Invert Gate
OR	OR Gate
ORA	OR-AND Gate
SD	Multiplexed Scan D Flip-Flop
SE	Multiplexed Scan Enable D Flip-Flop
XN	Exclusive NOR Gate
XR	Exclusive OR Gate

PMK

Code	Description
GPG	Always On
Head	Power Gating
ISO	Isolation Cell
DRF	Retention DFF

SRD Retention DFF With Scan	
-----------------------------	--

Reading the Datasheet

The first sheet of a standard datasheet contains the following elements:

Header and cell Description

The cell header in the large font describes the cell type, such as Clock Buffer with Positive Clock Input. Under the header is a list of the cells included in the category, in a smaller font. The text block following the headers gives a brief description of the cells included in this datasheet.

Icon

The icon pictured on the datasheet is the one you will see in the DC_vision Tools when you place a schematic element.

Truth Table

The Truth Table gives all the possible combinations of input and output signals for this cell type. The following symbols are used in the Truth Tables on the datasheets

1	=	High level	Qn	=	Current QN, also complement of Q
R	=	Low to High transition	Q0	=	Previous level of Q
F	=	High to Low transition	QN0		Previous level of QN, also complement of Q0
X	=	Any level (Don't Care)	HiZ	=	High impedance state
U	=	Unknown	Zrl	=	3-state output with resistive pull down
Rh	=	Resistive High	Zrh	=	3-state output with resistive pullup
RI	=	Resistive Low	Z	=	3-state output

Cell Information and Cell Area

More details please refer to doc/DATASHEET/*

Pin linformation and Pin capcacitance

The a details on standard datasheet contains the following information:

Propagation Delays for Sample Loads

The Propagation Cell Delays e Loads table are extrapolated from the characterized look-up table values using the max, middle, min load and skew input. The value can be used for reference.

Pin Power Table

The pin power table gives for each pin of the table a dissipated power from the Synopsys look-up table models. This power is given for a standard load and a standard input transition. The power data provided are the internal power for input pin when outputs doesn't switch, and the internal power for output pins.

Note:

Conditions that all of these data is gotten under are Ctyp_tt_1p5v_25c, 25.0°C,VDD 1.5V, GND 0V. The RISE and FALL times represent the total delay time from the change of the input pin to the corresponding response on the output pin. Actual interconnect length and load cannot be determined until a design has completed placement and routing. When using these tables, you must estimate the interconnect load in units of standard loads and add that to the fanout. A rough rule of thumb is that, for every input load, there is a corresponding interconnect load approximately equal to it. For example, to estimate the delay of a NAND gate driving a fanout of two, use the column in the datasheet specifying four standard loads: two for fanout and two for the interconnect loading.

Arithmetic Gates

AD01

Cell Description

The AD01 cell provides the arithmetic sum (S) and carry out (CO) of two operands (A, B) with carry in (CI). The two outputs (S, CO) are represented by the logic equations: $S = (A \oplus B \oplus CI)$

$$CO = (A \oplus B) \cdot CI + (A \cdot B)$$

Logic Symbol

Truth Table

CI	Α	В	s	со
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

ADFH

Cell Description

The ADFH01 cell is a high-speed cell providing the arithmetic sum (S) and carry out (CO) of two operands (A, B) with carry in (CI). The two outputs (S, CO) are represented by the logic equations:

S =
$$(A \oplus B \oplus CI)$$

CO = $(A \oplus B) \cdot CI + (A \cdot B)$

Logic Symbol

Truth Table

INPUT			OUTF	PUT
Α	В	CI	СО	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

AH01

Cell Description

The AH01 cell provides the arithmetic sum (S) and carry out (CO) of two operands (A, B). The two outputs (S, CO) are represented by the logic equations:

Logic Symbol

Truth Table

INPUT		OUTP	UT
Α	В	СО	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

BUFFS

CKBUF

Cell Description

The CKBUF cell provides the logical buffer of a single input (A), with balanced delays for clock signals. The output (Y) is represented by the logic equation:

LogicSymbol

Truth Table

Α	Y
0	0
1	1

CKINV

Cell description:

The CLKINV cell provides the logical inversion of a single input (A), with balanced delays for clock signals. The output (Y) is represented by the logic equation: Y = !A

$$Y = !A$$

Logic Symbol

Truth Table

INPUT	OUTPUT
Α	Y
0	1
1	0

INV0

Cell Description

The INVO cell provides the logical inversion of a single input (A). The output (Y) is represented by the logic equation:

$$Y = !A$$

Logic Symbol

Truth Table

INPUT	OUTPUT
Α	Υ
0	1
1	0

INVTL

Cell Description

The INVTL cell provides the 3-state inverter of a singleinput (A) , a single high enable input (OE) and the output (Y)

LogicSymbol

Truth Table

INPUT		OUTPUT
Α	OE	Y
х	0	HiZ
0	1	1
1	1	0

DL01

Cell Description

The DL01 cell provides the logical delay of a single input (A). The output (Y) is represented by the logic equation:

$$Y = A$$

Logic Symbol

Truth Table

INPUT	OUTPUT
Α	Υ
0	0
1	1

DL02

Cell Description

The DL02 cell provides the logical delay of a single input (A). The output (Y) is represented by the logic equation:

$$Y = A$$

Logic Symbol

Truth Table

INPUT	OUTPUT
Α	Υ
0	0
1	1

COMPLEX Gates

AOI21

Cell Description

The AOI21 cell provides the logical inverted OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$Y = ! ((A \cdot B) + C)$$

Logic Symbol

Truth Table

INPUT			OUTPUT
Α	В	O	Y
0	x	0	1
X	x	1	0
1	0	0	1
1	1	x	0

Cell Description

The AOI21M cell provides the logical inverted OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$Y = (!((A \cdot B) + (!CN)))$$

Logic Symbol

Truth Table

INPUT			OUTPUT
Α	В	CN	Υ
X	x	0	0
0	X	1	1
1	0	1	1
1	1	1	0

AOI2M1

Cell Description

The AOI2M1 cell provides the logical inverted OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$Y = (!((A \cdot (!BN)) + C))$$

Logic Symbol

Truth Table

II	NPU	Т	OUTPUT
Α	BN	С	Y
0	x	0	1
0	x	1	0
1	0	X	0
1	1	0	1
1	1	1	0

AOI22

Cell Description

The AOI22 cell provides the logical inverted OR of two AND groups. The output (Y) is represented by the logic equation:

$$Y = ! ((A \cdot B) + (C \cdot D))$$

Logic Symbol

Truth Table

INPUT				OUTPUT
Α	В	С	D	Υ
0	x	0	x	1
0	x	1	0	1
х	x	1	1	0
1	0	0	x	1
1	0	1	0	1
1	1	x	x	0

Cell Description

The AOI31 cell provides the logical inverted OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$Y = ! ((A \cdot B \cdot C) + D)$$

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	С	D	Y
0	x	x	0	1
x	x	x	1	0
1	0	x	0	1
1	1	0	0	1
1	1	1	x	0

The AOI32 cell provides the logical inverted OR of two AND groups. The output (Y) is represented by the logic equation:

$$Y = ! ((A \cdot B \cdot C) + (D \cdot E))$$

Logic Symbol

Truth Table

	IN	IPU	OUTPUT		
Α	В	С	D	Е	Υ
0	x	x	0	x	1
0	x	x	1	0	1
x	x	x	1	1	0
1	0	x	0	x	1
1	0	X	1	0	1
1	1	0	0	x	1
1	1	0	1	0	1
1	1	1	x	x	0

Cell Description

The AOI33 cell provides the logical inverted OR of two AND groups. The output (Y) is represented by the logic equation:

$$Y = ! ((A \cdot B \cdot C) + (D \cdot E \cdot F))$$

Logic Symbol

Truth Table

	I	NP	OUTPUT			
Α	В	С	D	Ε	F	Υ
0	x	x	0	х	x	1
0	x	x	1	0	x	1
0	x	x	1	1	0	1
x	x	x	1	1	1	0
1	0	x	0	х	x	1
1	0	x	1	0	х	1
1	0	x	1	1	0	1
1	1	0	0	x	x	1
1	1	0	1	0	x	1
1	1	0	1	1	0	1
1	1	1	x	x	x	0

Cell Description

The AOI211 cell provides the logical inverted OR of one AND groups and two addition inputs. The output (Y) is represented by the logic equation:

$$Y = (!(D|C|(A\&B)))$$

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	С	D	Y
0	x	0	0	1
0	x	x	1	0
X	x	1	x	0
1	0	0	0	1
1	0	x	1	0
1	1	x	x	0

Cell Description

The AOI221 cell provides the logical inverted OR of two AND groups and a third input. The output (Y) is represented by the logic equation:

$$Y = ! ((A \cdot B) + (C \cdot D) + E)$$

Logic Symbol

Truth Table

	IN	IPU	OUTPUT		
Α	В	С	D	Е	Y
0	x	0	x	0	1
0	x	x	x	1	0
0	x	1	0	0	1
X	x	1	1	x	0
1	0	0	x	0	1
1	0	x	x	1	0
1	0	1	0	0	1
1	1	x	X	x	0

Cell Description

The AOI222 cell provides the logical inverted OR of three AND groups. The output (Y) is represented by the logic equation:

$$Y = ! ((A \cdot B) + (C \cdot D) + (E \cdot F))$$

Logic Symbol

Truth Table

		NP	OUTPUT			
Α	В	С	D	Е	F	Υ
0	x	0	x	0	x	1
0	x	0	x	1	0	1
0	x	x	x	1	1	0
0	x	1	0	0	x	1
0	x	1	0	1	0	1
x	x	1	1	X	x	0
1	0	0	x	0	x	1
1	0	0	x	1	0	1
1	0	x	x	1	1	0
1	0	1	0	0	x	1
1	0	1	0	1	0	1
1	1	x	x	x	x	0

AOIM21

Cell Description

The AOIM21 cell provides the logical inverted OR of one AND group of two inverted inputs (A0N, A1N) and an additional non-inverted input (B0). The output (Y) is represented by the logic equation: Y = ((!C)&(AN|BN))

Logic Symbol

IN	IPUT	OUTPUT	
AN	BN	C	Υ
0	0	x	0
х	1	0	1
х	1	1	0
1	х	0	1
1	х	1	0

Truth Table

AOIM22

Cell Description

The AOIM22 cell provides the logical inverted OR of one AND group of two inverted inputs (A0N, A1N)and one AND group of two non-inverted inputs (B0,B1). The output (Y) is represented by the logic equation: Y = (!(((!AN)&(!BN))))(C&D)))

Logic Symbol

Truth Table

	INPU	OUTPUT		
AN	BN	С	D	Y
0	0	x	x	0
х	1	0	x	1
X	1	1	0	1
X	1	1	1	0
1	x	0	x	1
1	x	1	0	1
1	x	1	1	0

Cell Description

The AOR21 cell provides the logical OR of one AND group of two inputs (A0, A1) and an additional inputs (B0). The output (Y) is represented by the logic equation: Y = ((A & B) | C)

Logic Symbol

Truth Table

IN	IPU	IT	OUTPUT
Α	В	O	Y
0	x	0	0
x	x	1	1
1	0	0	0
1	1	x	1

Cell Description

The AOR22 cell provides the logical OR of two AND group of two inputs. The output (Y) is represented by the logic equation:

Y = ((A&B)|(C&D))

Logic Symbol

Truth Table

	INF	UT	OUTPUT	
Α	В	C	D	Y
0	x	0	x	0
0	x	1	0	0
х	x	1	1	1
1	0	0	x	0
1	0	1	0	0
1	1	x	x	1

Cell Description

The AOR211 cell provides the logical OR of one AND group of two inputs (A0,A1) and two addition inputs(B0 C0). The output (Y) is represented by the logic equation:

$$Y = (D|C|(A&B))$$

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	С	D	Y
0	x	0	0	0
0	x	x	1	1
x	X	1	X	1
1	0	0	0	0
1	0	x	1	1
1	1	x	x	1

Cell Description

The AOR221 cell provides the logical OR of two AND group of two inputs and an addition input .The output (Y) is represented by the logic equation:

Y = ((A&B)|(C&D)|E)

Logic Symbol

Truth Table

	IN	IPU	OUTPUT		
Α	В	С	D	Е	Υ
0	x	0	x	0	0
0	x	x	x	1	1
0	x	1	0	0	0
x	x	1	1	x	1
1	0	0	x	0	0
1	0	x	X	1	1
1	0	1	0	0	0
1	1	x	x	x	1

Cell Description

The AOR221 cell provides the logical OR of two AND group of two inputs and an addition input .The output (Y) is represented by the logic equation:

Y = ! ((A&B)|(C&D)|(E&F))

Logic Symbol

Truth Table

		INI	OUTPUT			
Α	В	С	D	Ε	F	Y
0	х	0	х	0	х	0
0	х	0	х	1	0	0
0	х	х	х	1	1	1
0	х	1	0	0	х	0
0	х	1	0	1	0	0
х	x	1	1	x	х	1
1	0	0	x	0	х	0
1	0	0	x	1	0	0
1	0	x	x	1	1	1
1	0	1	0	0	х	0
1	0	1	0	1	0	0
1	1	х	х	x	x	1

Cell Description

The AOR31 cell provides the logical OR of one AND group of three inputs and an addition input .The output (Y) is represented by the logic equation:

$$Y = ((A\&B\&C)D)$$

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	O	D	Υ
0	x	x	0	0
X	X	X	1	1
1	0	x	0	0
1	1	0	0	0
1	1	1	x	1

OAI21M

Cell Description

The OAI21Mcell provides the logical inverted AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

Y = (!((!CN)&(A|B)))

Logic Symbol

Truth Table

II	NPI	JT	OUTPUT
Α	В	CN	Υ
0	0	x	1
x	1	0	0
x	1	1	1
1	x	0	0
1	x	1	1

OAI2M1

Cell Description

The OAI2M1 cell provides the logical inverted AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

Y = (!(C&(A|(!BN))))

Logic Symbol

Truth Table

II	NPU	Γ	OUTPUT
Α	BN	C	Y
х	x	0	1
x	0	1	0
0	1	1	1
1	1	1	0

Cell Description

The OAI21 cell provides the logical inverted AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

$$Y = (!(C&(A|B)))$$

Logic Symbol

Truth Table

IN	IPU	IT	OUTPUT
Α	В	ပ	Y
0	0	x	1
x	1	0	1
x	1	1	0
1	x	0	1
1	x	1	0

Cell Description

The OAI21 cell provides the logical inverted AND of two OR groups. The output (Y) is represented by the logic equation:

$$Y = (!((C|D)&(A|B)))$$

Logic Symbol

Truth Table

IN	IPU	T		OUTPUT
Α	В	С	D	Y
0	0	x	x	1
x	1	0	0	1
X	1	x	1	0
х	1	1	x	0
1	x	0	0	1
1	x	x	1	0
1	x	1	x	0

Cell Description

The OAI31 cell provides the logical inverted AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

Y = (!(D&(A|B|C)))

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	С	D	Υ
0	0	0	x	1
0	x	1	0	1
0	x	1	1	0
x	1	x	0	1
x	1	x	1	0
1	x	x	0	1
1	x	x	1	0

Cell Description

The OAl32 cell provides the logical inverted AND of twoORgroups. The output (Y) is represented by the logic equation:

Y = (!((D|E)&(A|B|C)))

Logic Symbol

Truth Table

	IN	IPU	ОИТРИТ		
Α	В	С	D	Е	Υ
0	0	0	x	x	1
0	x	1	0	0	1
0	x	1	x	1	0
0	x	1	1	x	0
x	1	x	0	0	1
x	1	x	x	1	0
x	1	x	1	x	0
1	x	x	0	0	1
1	x	x	x	1	0
1	x	x	1	x	0

Cell Description

The OAl33 cell provides the logical inverted AND of twoORgroups. The output (Y) is represented by the logic equation

Y = (!((A&B&C)|(D&E&F)))

Logic Symbol

Truth Table

		INP	OUTPUT			
Α	В	С	D	Ε	F	Y
0	0	0	x	х	x	1
0	x	1	0	0	0	1
0	x	1	0	x	1	0
0	x	1	x	1	x	0
0	x	1	1	x	x	0
x	1	x	0	0	0	1
x	1	x	0	x	1	0
х	1	x	x	1	x	0
x	1	x	1	x	x	0
1	x	x	0	0	0	1
1	x	x	0	x	1	0
1	x	x	x	1	X	0
1	x	x	1	х	x	0

Cell description

The OAI211 cell provides the logical inverted OR of one OR group and two additional inputs. The output (Y) is represented by the logic equation:

Y = (!(D|C|(A&B)))

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	ပ	D	Y
0	0	x	x	1
X	1	0	x	1
X	1	1	0	1
X	1	1	1	0
1	x	0	X	1
1	x	1	0	1
1	x	1	1	0

Cell Description

The OAI221 cell provides the logical inverted AND of twoORgroups and an additional input. The output (Y) is represented by the logic equation:

Y = (!(E&(B|A)&(C|D)))

Logic Symbol

Truth Table

	IN	IPU	OUTPUT		
Α	В	С	D	Е	Y
0	0	x	x	x	1
X	1	0	0	x	1
X	1	x	1	0	1
X	1	x	1	1	0
X	1	1	X	0	1
X	1	1	x	1	0
1	x	0	0	x	1
1	x	x	1	0	1
1	x	x	1	1	0
1	x	1	x	0	1
1	x	1	x	1	0

Cell Description

The OAI222 cell provides the logical inverted AND of three OR groups. The output (Y) is represented by the logic equation:

Y = !((F|E)&(A|B)&(C|D))

Logic Symbol

Truth Table

	I	NP	OUTPUT			
Α	В	С	D	Е	F	Υ
0	0	x	x	x	X	1
x	1	0	0	x	X	1
x	1	x	1	0	0	1
x	1	x	1	X	1	0
x	1	x	1	1	X	0
x	1	1	x	0	0	1
x	1	1	x	X	1	0
X	1	1	x	1	x	0
1	x	0	0	x	X	1
1	x	x	1	0	0	1
1	x	x	1	x	1	0
1	x	x	1	1	X	0
1	x	1	x	0	0	1
1	x	1	x	x	1	0
1	x	1	x	1	X	0

OAIM21

Cell Description

The OAIM21 cell provides the logical inverted AND of one OR group of two inverted inputs (A0N, A1N) and an additional non-inverted input (B0). The output (Y) is represented by the logic equation:

Y = ((!C)|(AN&BN))

Logic Symbol

Truth Table

IN	IPUT	OUTPUT	
AN	BN	С	Y
X	х	0	1
0	x	1	0
1	0	1	0
1	1	1	1

OAIM22

Cell Description

The OAIM22 cell provides the logical inverted AND of one OR group of two inverted inputs (AN,BN) and two additional non-inverted input (C, D). The output (Y) is represented by the logic equation: Y=(!D)&(!C)|(AN&BN)

Logic Symbol

Truth Table

	INPU	OUTPUT		
AN	BN	C	D	Υ
x	x	0	0	1
0	x	x	1	0
0	x	1	x	0
1	0	X	1	0
1	0	1	x	0
1	1	x	1	1
1	1	1	x	1

Cell Description

The ORA211 cell provides the logical AND of one OR group of two inputs (A,B) and two addition inputs(C, D). The output (Y) is represented by the logic equation Y = (D&C&(A|B))

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	С	D	Y
0	0	x	x	0
x	1	0	x	0
x	1	1	0	0
x	1	1	1	1
1	X	0	x	0
1	x	1	0	0
1	x	1	1	1

Cell Description

The ORA221 cell provides the logical AND of two OR groups and an additional inputs (D). The output (Y) is represented by the logic equation:

Y = (E&(A|B)&(C|D)))

Logic Symbol

Truth Table

	I	OUTPUT			
A	В	C	D	E	Y
0	0	x	X	X	0
х	1	0	0	X	0
x	1	x	1	0	0
x	1	x	1	1	1
x	1	1	X	0	0
x	1	1	X	1	1
1	X	0	0	X	0
1	X	x	1	0	0
1	x	x	1	1	1
1	x	1	x	0	0
1	X	1	x	1	1

Cell Description

The ORA222 cell provides the logical AND of two OR groups and an additional inputs (D). The output (Y) is represented by the logic equation:

Y = ((E|F)&(A|B)&(C|D))

Logic Symbol

Truth Table

		IN	OUTPUT			
A	В	C	D	E	F	Y
0	0	x	X	X	х	0
х	1	0	0	X	х	0
X	1	x	1	0	0	0
X	1	x	1	X	1	1
X	1	x	1	1	X	1
X	1	1	x	0	0	0
X	1	1	X	X	1	1
x	1	1	x	1	x	1
1	x	0	0	X	X	0
1	X	X	1	0	0	0
1	X	x	1	X	1	1
1	X	X	1	1	X	1
1	X	1	x	0	0	0
1	X	1	X	x	1	1
1	X	1	X	1	X	1

Cell Description

The ORA21 cell provides the logical AND of one OR group of two inputs (A, B) and an additional inputs (C). The output (Y) is represented by the logic equation: Y = (C&(A|B))

Logic Symbol

Truth Table

IN	IPU	IT	OUTPUT
Α	В	C	Y
0	0	x	0
x	1	0	0
x	1	1	1
1	x	0	0
1	x	1	1

Cell Description

The $\overline{\text{ORA22}}$ cell provides the logical AND of two OR groups. The output (Y) is represented by the logic equation

$$Y = ((A|B)\&(C|D))$$

Logic Symbol

Truth Table

	INF	OUTPUT		
A	В	C	D	Y
0	0	X	X	0
х	1	0	0	0
x	1	X	1	1
x	1	1	X	1
1	X	0	0	0
1	x	x	1	1
1	X	1	X	1

Cell Description

The ORA31 cell provides the logical AND of one OR group of three inputs (A,B,C) and an addition inputs (D). The output (Y) is represented by the logic equation

Y = (D&(A|B|C))

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	C	D	Y
0	0	0	x	0
0	x	1	0	0
0	x	1	1	1
X	1	x	0	0
X	1	x	1	1
1	x	x	0	0
1	x	x	1	1

Gates

AN02

Cell Description

The ANO2 cell provides the logical AND of two inputs (A, B). The output (Y) is represented by the logic equation:

Logic Symbol

Truth Table

INPUT		OUTPUT
Α	В	Υ
0	х	0
1	0	0
1	1	1

AN03

Cell Description

The AN03 cell provides the logical AND of three inputs (A, B, C). The output (Y) is represented by the logic equation:

Y = (C&B&A)

Logic Symbol

Truth Table

IN	IPU	IT	OUTPUT
Α	В	С	Y
0	x	x	0
1	0	x	0
1	1	0	0
1	1	1	1

AN04

Cell Description

The AN04cell provides the logical AND of four inputs (A, B, C, D). The output (Y) is represented by the logic equation:

$$Y = (D\&C\&B\&A)$$

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	ပ	D	Υ
0	x	x	x	0
1	0	x	x	0
1	1	0	x	0
1	1	1	0	0
1	1	1	1	1

CKAND

Cell Description

The CKAND cell provides the logical AND of two inputs (A, B). The output (Y) is represented by the logic equation:

$$Y= A \& B$$

Logic Symbol

Truth Table

INPUT		OUTPUT
Α	В	Υ
0	х	0
1	0	0
1	1	1

CKOR02

Cell Description

The CKOR2 cell provides the logical OR of two inputs (A, B). The output (Y) is represented by the logic equation:

$$Y = (B|A)$$

Logic Symbol

Truth Table

INF	PUT	OUTPUT	
Α	В	Y	
0	0	0	
x	1	1	
1	x	1	

The ND02 cell provides the logical NAND of two inputs (A, B). The output (Y) is represented by the logic equation:

Y = (!(B&A))

Logic Symbol

Truth Table

INPUT		OUTPUT	
Α	В	Υ	
0	х	0	
1	0	1	
1	1	0	

The CKNR02 cell provides a logical NOR of two inputs (A, B). The output (Y) is represented by the logic equation:

$$Y = (!(B|A))$$

Logic Symbol

Truth Table

INPUT		OUTPUT	
Α	В	Y	
0	0	1	
x	1	1	
1	х	0	

The CKXN02 cell provides a logical EXCLUSIVE NOR of two inputs (A, B). The output (Y) is represented by the logic equation:

$$Y = (!(B^A))$$

Logic Symbol

Truth Table

INPUT		OUTPUT
Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

The CKXR02 cell provides a logical EXCLUSIVE OR of two inputs (A, B) with balanced delays for clock signals. The output (Y) is represented by the logic equation: $Y = (B^A)$

$$Y = (B^A)$$

Truth Table

INPUT		OUTPUT	
Α	В	Υ	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Cell Description

The ND02 cell provides the logical NAND of two inputs (A, B). The output (Y) is represented by the logic equation:

Y = (!(B&A))

Logic Symbol

Truth Table

INPUT		OUTPUT
Α	В	Y
0	x	1
1	0	1
1	1	0

Cell DescriptionThe ND03 cell provides the logical NAND of three inputs (A, B, C). The output (Y) is represented by the logic equation:

Y = (!(C&B&A))

Logic Symbol

Truth Table

IN	IPU	T	OUTPUT
Α	В	ပ	Y
0	x	x	1
1	0	x	1
1	1	0	1
1	1	1	0

Cell Description

The ND04 cell provides a logical NAND of four inputs (A, B, C, D). The output (Y) is represented by the logic equation:

Y = (!(D&C&B&A))

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	ပ	D	Y
0	x	x	x	1
1	0	x	x	1
1	1	0	x	1
1	1	1	0	1
1	1	1	1	0

Cell Description

The ND12 cell provides the logical NAND of one inverted input (AN) and one non-inverted input (B). The output (Y) is represented by the logic equation:

Y = ((!B)|AN)

Logic Symbol

Truth Table

INP	JT	OUTPUT	
AN	В	Y	
X	0	1	
0	1	0	
1	1	1	

Cell Description

The ND13 cell provides the logical NAISE of the output (Y) is represented by the logic equation: Y = ((!C)|(!B)|AN)The ND13 cell provides the logical NAND of one inverted input (AN) and two non-inverted inputs (B,C). The

Logic Symbol

Truth Table

INI	PU	Γ	OUTPUT
AN	В	С	Υ
X	0	x	1
X	1	0	1
0	1	1	0
1	1	1	1

Cell Description

The ND14 cell provides a logical many of the output (Y) is represented by the logic equation: Y = ((!D)|(!C)|(!B)|AN)The ND14 cell provides a logical NAND of one inverted input (AN) and three non-inverted inputs (B,C, D). The

Logic Symbol

Truth Table

II	NP	UT	OUTPUT	
AN	В	С	D	Υ
X	0	x	x	1
X	1	0	x	1
X	1	1	0	1
0	1	1	1	0
1	1	1	1	1

Cell Description

The ND24 cell provides a logical NAND of two inverted input (AN , BN) and two non-inverted inputs (C, D). The output (Y) is represented by the logic equation: Y = ((!D)|(!C)|BN|AN)

Logic Symbol

Truth Table

	INPU	OUTPUT		
AN	BN	С	D	Y
0	x	0	x	1
0	x	1	0	1
0	0	1	1	0
х	1	1	1	1
1	х	х	x	1

Cell Description

The NR02 cell provides a logical NOR of two inputs (A, B). The output (Y) is represented by the logic equation:

$$Y = (!(B|A))$$

Logic Symbol

Truth Table

INPUT		OUTPUT
Α	В	Υ
0	0	1
x	1	0
1	х	0

Cell Description

The NR03 cell provides a logical NOR of three inputs (A, B, C). The output (Y) is represented by the logic equation:

$$Y = (!(C|B|A))$$

Logic Symbol

Truth Table

IN	IPU	IT	OUTPUT
Α	В	С	Y
0	0	0	1
0	x	1	0
x	1	x	0
1	x	x	0

Cell Description

The NR04 cell provides a logical NOR of four inputs (A, B, C, D). The output (Y) is represented by the logic equation:

Y = (!(D&C&B&A))

Logic Symbol

Truth Table

	INP	UT	OUTPUT	
Α	В	С	D	Y
0	0	0	0	1
0	0	x	1	0
0	x	1	x	0
х	1	x	x	0
1	x	x	x	0

Cell Description

The NR12 cell provides a logical NOR of one inverted input (AN) and one non-inverted input (B). The output (Y) is represented by the logic equation: Y = ((!B)&AN)

$$\dot{Y} = ((!B)\&AN)$$

Logic Symbol

Truth Table

INP	JT	OUTPUT
AN	В	Υ
0	x	0
1	0	1
1	1	0

Cell Description

The NR13 cell provides a logical NOR of one inverted input (AN) and two non-inverted inputs (B, C). The The NR13 cell provides a logical NS13 cell p

Logic Symbol

Truth Table

IN	PU	Γ	OUTPUT
AN	В	ပ	Υ
0	x	x	0
1	0	0	1
1	x	1	0
1	1	x	0

Cell Description

The NR14 cell provides a logical NOR of one inverted input (AN) and three non-inverted inputs (B, C, D). The output (Y) is represented by the logic equation: Y = ((!D)&(!E)&AN)

Logic Symbol

Truth Table

II	NP	JT	OUTPUT	
AN	В	ပ	D	Υ
0	x	x	x	0
1	0	0	0	1
1	0	x	1	0
1	x	1	x	0
1	1	x	x	0

Cell Description

The NR24 cell provides a logical NOR of two inverted inputs (AN,BN) and two non-inverted inputs (C, D). The output (Y) is represented by the logic equation: Y = ((!D)&(!C)&BN&AN)

Logic Symbol

Truth Table

	INPU	OUTPUT		
AN	BN	С	D	Y
0	x	x	x	0
1	0	x	x	0
1	1	0	0	1
1	1	x	1	0
1	1	1	x	0

OR02

Cell Description

The OR2 cell provides the logical OR of two inputs (A, B). The output (Y) is represented by the logic equation:

$$Y = (B|A)$$

Logic Symbol

Truth Table

INF	TU	OUTPUT
Α	В	Υ
0	0	0
x	1	1
1	х	1

OR03

Cell Description

The OR3 cell provides the logical OR of three inputs (A, B, C). The output (Y) is represented by the logic equation:

$$Y = (C|B|A)$$

Logic Symbol

Truth Table

IN	IPU	IT	OUTPUT
Α	В	ပ	Υ
0	0	0	0
0	x	1	1
x	1	x	1
1	x	x	1

OR04

Cell Description

The OR4 cell provides the logical OR of four inputs (A, B, C, D). The output (Y) is represented by the logic equation:

$$Y = (D|C|B|A)$$

Logic Symbol

Truth Table

	INF	UT	OUTPUT	
Α	В	С	D	Y
0	0	0	0	0
0	0	x	1	1
0	x	1	x	1
х	1	x	x	1
1	x	x	x	1

XN02

Cell Description

The XN02 cell provides a logical EXCLUSIVE NOR of two inputs (A, B). The output (Y) is represented by the logic equation:

$$Y = (!(B^A))$$

Logic Symbol

Truth Table

INF	UT	OUTPUT
Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

XN03

Cell Description

The XN03 cell provides a logical EXCLUSIVE NOR of three inputs (A, B, C). The output (Y) is represented by the logic equation:

$$Y = (!(C^B^A))$$

Logic Symbol

Truth Table

INPUT			OUTPUT
Α	В	ပ	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

XR02

Cell Description

The XR02 cell provides a logical EXCLUSIVE OR of two inputs (A, B). The output (Y) is represented by the logic equation:

$$Y = (B^A)$$

Logic Symbol

Truth Table

INPUT		OUTPUT
Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

XR03

Cell Description

The XR03 cell provides a logical EXCLUSIVE OR of three inputs (A, B, C). The output (Y) is represented by the logic equation:

$$Y = (C^B^A)$$

Logic Symbol

Truth Table

INPUT			OUTPUT
Α	В	ပ	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

MULTIPLEXERS

CKMX02

Cell Description

The MX02 cell is a 2-to-1 multiplexer with balanced delays for clock signals. The state of the select input (S0) determines which data input (A, B) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$Y = ((A&(!S0))|(B&S0))$$

Logic Symbol

Truth Table

II	ΝPl	JT	OUTPUT
Α	В	S0	Y
0	0	x	0
0	1	0	0
x	1	1	1
1	x	0	1
1	0	1	0

MX02

Cell Description

The MX02 cell is a 2-to-1 multiplexer. The state of the select input (S0) determines which data input (A, B) is presented to the output (Y). The output (Y) is represented by the logic equation:

Y = ((A&(!S0))|(B&S0))

Logic Symbol

Truth Table

11	ΝPl	JT	OUTPUT
Α	В	S0	Y
0	0	x	0
0	1	0	0
X	1	1	1
1	x	0	1
1	0	1	0

MI02

Cell Description

The MI02 cell is a 2-to-1 multiplexer with inverted output. The state of the select input (S0) determines which data input (A, B) is presented to the output (Y). The output (Y) is represented by the logic equation: Y = (!((A&(!SO)))|(B&SO)))

Logic Symbol

Truth Table

11	ΝPl	JT	OUTPUT
Α	В	S0	Υ
0	0	x	1
0	1	0	1
X	1	1	0
1	x	0	0
1	0	1	1

MX03

Cell Description

The MX03 cell is a 3-to-1 multiplexer. The state of the select inputs (S1, S0) determines which data input (A, B, C) is presented to the output (Y). The output (Y) is represented by the logic equation:

Y = ((S1 & C)/((!S1) & ((S0 & B)/((!S0) & A))))

Logic Symbol

Truth Table

	ı	NP	OUTPUT				
Α	В	С	S0	S1	Y		
0	0	0	x	х	0		
0	0	1	x	0	0		
0	x	1	x	1	1		
0	1	0	0	X	0		
0	1	x	1	0	1		
х	1	0	1	1	0		
0	1	1	0	0	0		
1	0	x	0	0	1		
1	x	0	x	1	0		
1	0	0	1	x	0		
1	0	1	x	1	1		
1	0	1	1	0	0		
1	1	0	x	0	1		
1	1	1	x	x	1		

MX04

Cell Description

The MX04 cell is a 4-to-1 multiplexer. The state of the select inputs (S1, S0) determines which data input (A, B, C, D) is presented to the output (Y). The output (Y) is represented by the logic equation: Y = ((A&(!S1)&(!S0)))(B&(!S1)&S0))(D&S1&S0))(C&S1&(!S0)))

Logic Symbol

Truth Table

		IN	OUTPUT			
Α	В	С	D	S0	S 1	Υ
0	0	0	0	х	х	0
0	x	0	1	0	х	0
x	0	x	1	1	0	0
x	x	x	1	1	1	1
0	0	1	x	x	0	0
0	x	1	x	0	1	1
0	x	1	0	1	1	0
0	1	0	x	0	x	0
0	1	x	x	1	0	1
0	1	X	0	1	1	0
0	1	1	x	0	0	0
1	0	0	x	0	0	1
1	x	0	0	x	1	0
1	0	x	0	1	x	0
1	x	0	1	0	1	0
1	x	1	x	0	x	1
1	1	0	x	x	0	1
1	1	1	x	1	0	1
1	1	1	0	1	1	0

DENRQ

Cell DescriptionThe DENRQ cell is a positive-edge triggered, active-high enable (E), with a single output Q, static D-type flip-flop.

Logic Symbol

Truth Table

INPUT			OUTPUT
D	Е	СК	Q
x	0	R	IQ
0	1	R	0
1	1	R	1
x	X	х	IQ

DFANRQ

Cell DescriptionThe DFANRQ cell is a positive-edge triggered, static NAND2 D-type D0,D2 flip-flop.

Logic Symbol

Truth Table

II	NPU	OUTPUT	
D0	D1	СК	Q
0	x	R	0
1	0	R	0
1	1	R	1
x	x	X	IQ

DFBFB

Cell DescriptionThe DFBFB cell is a negative-edge triggered, asynchronous active-low reset (RN) and set (SN), static D-type flip-flop.

Logic Symbol

Truth Table

	IN	OU.	TPUT		
D	RN	SN	CKN	q	QN
0	1	1	F	0	1
1	1	1	F	1	0
x	x	0	х	1	0
x	0	1	х	0	1
x	1	1	х	IQ	IQN

DFBRB

Cell DescriptionThe DFBRB cell is a positive-edge triggered, asynchronous active-low reset (RN) and set (SN), static D-type flip-flop.

Logic Symbol

Truth Table

	IN	OU.	TPUT		
D	RN	SN	СК	q	QN
0	1	1	R	0	1
1	1	1	R	1	0
x	x	0	x	1	0
x	0	1	x	0	1
x	1	1	x	IQ	IQN

DFBRQ

Cell DescriptionThe DFBRQ cell is a positive-edge triggered, asynchronous active-low reset (RN) and set (SN), static D-type flip-flop.

Logic Symbol

Truth Table

	IN	OUTPUT		
D	RN	SN	СК	Q
0	1	1	R	0
1	1	1	R	1
x	x	0	x	1
x	0	1	x	0
x	1	1	x	IQ

DFCFB

Cell DescriptionThe DFCFB cell is a negative-edge triggered, asynchronous active-low reset (RN) and, static D-type flip-flop.

Logic Symbol

Truth Table

INPUT			OUTPUT	
D	RN	CKN	Q	QN
0	1	F	0	1
1	1	F	1	0
x	0	х	0	1
X	1	x	IQ	IQN

DFCRB

Cell Description

The DFCRB cell is a positive-edge triggered, asynchronous active-low reset (RN), static D-type flip-flop.

Logic Symbol

Truth Table

INPUT			OU.	TPUT
D	RN	СК	Q	QN
0	1	R	0	1
1	1	R	1	0
X	0	X	0	1
X	1	x	IQ	IQN

DFCRQ

Cell DescriptionThe DFCRQ cell is a positive-edge triggered, asynchronous active-low reset (RN) with a single output Q, static D-type flip-flop.

Logic Symbol

Truth Table

INPUT		IT	OUTPUT
D	RN	СК	Q
0	1	R	0
1	1	R	1
x	0	X	0
x	1	х	IQ

DFNFB

Cell DescriptionThe DFNFB cell is a negative-edge triggered, static D-type flip-flop.

Logic Symbol

Truth Table

INPUT		OUTPUT	
D	CKN	Q	QN
0	F	0	1
1	F	1	0
x	х	Q	IQN

DFNFQ

Cell DescriptionThe DFNFB cell is a negative-edge triggered, static D-type flip-flop,with output Q only.

Logic Symbol

Truth Table

INPUT		OUTPUT
D	CKN	Q
0	F	0
1	F	1
x	X	IQ

DFNRB

Cell DescriptionThe DFNRB cell is a positive-edge triggered, static D-type flip-flop.

Logic Symbol

Truth Table

INPUT		OU.	TPUT
D	СК	Q	QN
0	R	0	1
1	R	1	0
х	х	IQ	IQN

DFNRQ

Cell DescriptionThe DFNRQ cell is a positive-edge triggered, with a single output Q, static D-type flip-flop.

Logic Symbol

Truth Table

INPUT		OUTPUT
D	СК	Q
0	R	0
1	R	1
x	х	IQ

DFPRB

Cell DescriptionThe DFPRB cell is a positive-edge triggered, asynchronous active-low set (SN) static D-type flip-flop.

Logic Symbol

Truth Table

INPUT			OUTPUT	
D	SN	СК	Ø	QN
0	1	R	0	1
1	1	R	1	0
x	0	х	1	0
x	1	х	IQ	IQN

DFPRQ

Cell DescriptionThe DFPRQ cell is a positive-edge triggered, asynchronous active-low set (SN) with a single output Q, static D-type flip-flop.

Logic Symbol

Truth Table

INPUT			OUTPUT
D	SN	СК	Q
0	1	R	0
1	1	R	1
x	0	х	1
x	1	х	IQ

DFSCRQ

Cell DescriptionThe DFSCRB cell is a positive-edge triggered, synchronous active-low reset (RN), static D-type flip-flop,only with output ${\sf Q}$.

Logic Symbol

Truth Table

INPUT			OUTPUT
D	RN	СК	Q
0	x	R	0
1	0	R	0
1	1	R	1
X	x	х	IQ

DMNRQ

Cell Description

The DMNRQ cell is a positive-edge triggered, static D-type (D0,D1) controlled by S0 flip-flop,only with output ${\sf Q}$.

Logic Symbol

Truth Table

	INF	OUTPUT		
D0	D1	S0	СК	Q
0	0	x	R	0
0	1	0	R	0
x	1	1	R	1
1	x	0	R	1
1	0	1	R	0
х	x	X	х	IQ

SCAN FLIP - FLOPS

SDANRQ

Cell Description

The SDANRQ cell is a positive-edge triggered, static D-type (NAND2 D0,D1)flip-flop with scan input (SI),

Logic Symbol

Truth Table

	II	OUTPUT			
D0	D1	SE	SI	CK	Q
0	х	0	X	R	0
х	х	1	0	R	0
х	x	1	1	R	1
1	0	0	X	R	0
1	1	0	x	R	1
х	x	X	x	X	IQ

SDBRB

Cell Description

The SDBRB cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN) and set (SN). Set (SN) dominates reset (RN).

Logic Symbol

Truth Table

			OU.	TPUT			
D	SE	SI	RN	SN	СК	Ø	QN
0	0	X	1	1	R	0	1
X	1	0	1	1	R	0	1
X	1	1	1	1	R	1	0
1	0	X	1	1	R	1	0
X	x	X	x	0	x	1	0
X	x	X	0	1	X	0	1
X	x	x	1	1	X	IQ	IQN

SDBFB

Cell Description

The SDBFB cell is a negative-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN) and set (SN). Set (SN) dominates reset (RN).

Logic Symbol

Truth Table

		OU.	TPUT				
D	SE	SI	RN	SN	CKN	Q	QN
0	0	X	1	1	F	0	1
х	1	0	1	1	F	0	1
х	1	1	1	1	F	1	0
1	0	X	1	1	F	1	0
X	x	X	x	0	X	1	0
х	x	X	0	1	X	0	1
х	x	X	1	1	x	IQ	IQN

SDBRQ

Cell Description

The SDBRQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN) and set (SN), and set dominating reset. The cell has a single output (Q)

Logic Symbol

Truth Table

			OUTPUT			
D	SE	SI	RN	SN	СК	Q
0	0	X	1	1	R	0
X	1	0	1	1	R	0
x	1	1	1	1	R	1
1	0	X	1	1	R	1
x	x	x	x	0	X	1 1
x	x	X	0	1	X	0
х	x	X	1	1	X	IQ

SDCFB

Cell Description

The SDCFB cell is a negative-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN).

Logic Symbol

Truth Table

	INPUT					TPUT
D	SE	SI	RN	CKN	Ø	QN
0	0	X	1	F	0	1
X	1	0	1	F	0	1
x	1	1	1	F	1	0
1	0	X	1	F	1	0
X	X	X	0	x	0	1
x	X	X	1	x	IQ	IQN

SDCRB

Cell Description

The SDCRB cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN)

Logic Symbol

Truth Table

	INPUT					TPUT
D	SE	SI	RN	СК	Q	QN
0	0	X	1	R	0	1
X	1	0	1	R	0	1
X	1	1	1	R	1	0
1	0	X	1	R	1	0
x	x	X	0	x	0	1
x	x	X	1	x	IQ	IQN

SDCRQ

Cell Description

The SDCRQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN) a single output (Q)

Logic Symbol

Truth Table

	I	NP	OUTPUT		
D	SE	SI	RN	СК	Q
0	0	X	1	R	0
X	1	0	1	R	0
X	1	1	1	R	1
1	0	X	1	R	1
X	x	X	0	x	0
X	X	X	1	X	IQ

SDMNRQ

Cell Description

The SDMNRQ cell is a Positive-edge triggered, static D-type (D0, D1)flip-flop, The state of the select input (S0) determines which data input (D0, D1),with scan input (SI),output Q only

Logic Symbol

Truth Table

		OUTPUT				
D0	D1	S0	SE	SI	СК	Q
0	0	x	0	X	R	1
x	x	x	1	0	R	1
X	X	X	1	1	R	0
0	1	0	0	X	R	0
x	1	1	0	X	R	1
1	x	0	0	X	R	1
1	0	1	0	X	R	0
x	X	x	x	X	X	IQ

SDNFB

Cell DescriptionThe SDNFB cell is a negative-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE)

Logic Symbol

Truth Table

	IN	OUTPUT			
D	SE	SI	CKN	Ø	QN
0	0	X	F	0	1
X	1	0	F	0	1
X	1	1	F	1	0
1	0	X	F	1	0
х	x	X	х	IQ	IQN

Cell Description

The SDNFB cell is a negative-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), with only Q output pin

Logic Symbol

Truth Table

	IN	OUTPUT		
D	SE	SI	CKN	Q
0	0	X	F	0
X	1	0	F	0
X	1	1	F	1
1	0	X	F	1
x	х	x	х	IQ

SDNRB

Cell Description

The SDNRB cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE)

Logic Symbol

Truth Table

	INF	PUT	OUTPUT		
D	SE	SI	СК	Q	QN
0	0	х	R	0	1
x	1	0	R	0	1
X	1	1	R	1	0
1	0	x	R	1	0
x	х	x	х	IQ	IQN

SDNRQ

Cell Description

The SDNRQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), a single output (Q)

Logic Symbol

Truth Table

	INF	OUTPUT		
D	SE	SI	СК	Q
0	0	X	R	0
x	1	0	R	0
x	1	1	R	1
1	0	X	R	1
x	х	x	х	IQ

SDPFB

Cell Description

The SDPFB cell is a Negtive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-high set (SN)

Logic Symbol

Truth Table

		OU.	TPUT			
D	SE	SI	SN	CKN	Q	QN
0	0	X	1	F	0	1
x	1	0	1	F	0	1
x	1	1	1	F	1	0
1	0	X	1	F	1	0
x	x	x	0	х	1	0
x	x	x	1	x	IQ	IQN

SDPRB

Cell Description

The SDPRB cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-high set (SN)

Logic Symbol

Truth Table

	INPUT					TPUT
D	SE	SI	SN	СК	Q	QN
0	0	X	1	R	0	1
х	1	0	1	R	0	1
х	1	1	1	R	1	0
1	0	X	1	R	1	0
х	x	X	0	x	1	0
x	x	X	1	x	IQ	IQN

SDPRQ

Cell Description

The SDPRQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low set (SN) a single output (Q)

Logic Symbol

Truth Table

	I	OUTPUT			
D	SE	SI	SN	СК	Q
0	0	X	1	R	0
х	1	0	1	R	0
x	1	1	1	R	1
1	0	X	1	R	1
х	x	X	0	x	1
x	x	X	1	x	IQ

SDSCRQ

Cell Description

The SDSCRQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), with output pin Q ,active-high scan enable (SE), and synchronous active-low reset (RN) ,with output pin Q only .

Logic Symbol

Truth Table

	I	OUTPUT			
D	RN	SE	SI	СК	Q
0	x	0	x	R	0
х	x	1	0	R	0
х	x	1	x	R	1
1	0	0	X	R	0
1	1	0	X	R	1
х	X	X		х	IQ

SENRQ

Cell Description

The SENRQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and synchronous active-high enable (E). a single output (Q)

Logic Symbol

Truth Table

INPUT					OUTPUT
D	Е	SE	SI	СК	Q
x	0	0	X	R	IQ
x	x	1	0	R	0
x	x	1	1	R	1
0	1	0	X	R	0
1	1	0	X	R	1
x	x	x	X	x	IQ

LABHB

Cell Description

The LABHB cell is an active-high D-type transparent latch with asynchronous active-low set (SN)and reset (RN), and set dominating reset. When the enable (G) is high, data is transferred to the outputs (Q, QN).

Logic Symbol

Truth Table

	INPUT				TPUT
D	RN	SN	G	q	QN
x	x	0	x	1	0
x	0	1	x	0	1
x	1	1	0	IQ	IQN
0	1	1	1	0	1
1	1	1	1	1	0

Cell Description

The LABLB cell is an active-high D-type transparent latch with asynchronous active-low set (SN)and reset (RN), and set dominating reset. When the enable (GN) is low, data is transferred to the outputs (Q, QN).

Logic Symbol

Truth Table

	IN	OU.	TPUT		
D	RN	SN	GN	Ø	QN
x	x	0	x	1	0
x	0	1	X	0	1
0	1	1	0	0	1
x	1	1	1	IQ	IQN
1	1	1	0	1	0

LANHB

Cell Description

The LANHB cell is an active-high D-type transparent latch When the enable (G) is high, data is transferred to the outputs (Q, QN).

Logic Symbol Truth Table

INF	TU	OUTPUT		
D	G	q	QN	
x	0	IQ	IQN	
0	1	0	1	
1	1	1	0	

LANLB

Cell Description

The LANLB cell is an active-low D-type transparent latch , When the enable (GN) is low, data is transferred to the outputs (Q, QN)

Logic Symbol

Truth Table

INPUT		OUTPUT		
D	GN	Ø	QN	
0	0	0	1	
x	1	Q	IQN	
1	0	1	0	

Cell Description

The LACHB cell is an active-high D-type transparent latch with asynchronous active-low reset (RN) and When the enable (G) is high, data is transferred to the outputs (Q, QN)

Logic Symbol

Truth Table

INPUT			OUTPUT		
D	RN	G	q	QN	
x	0	x	0	1	
x	1	0	IQ	IQN	
0	1	1	0	1	
1	1	1	1	0	

LACLB

Cell Description

The LACLB cell is an active- low D-type transparent latch with asynchronous active-low reset (RN) and When the enable (GN) is low, data is transferred to the outputs (Q, QN)

Logic Symbol

Truth Table

INPUT			OUTPUT		
D	RN	GN	Q	QN	
x	0	х	0	1	
0	1	0	0	1	
x	1	1	IQ	IQN	
1	1	0	1	0	

Cell Description

The LAPHB cell is an active-high D-type transparent latch with asynchronous active-low set (RN) and When the enable (G) is high, data is transferred to the outputs (Q, QN)

Logic Symbol

Truth Table

INPUT			OUTPUT		
D	SN	G	Q	QN	
x	0	x	1	0	
x	1	0	Q	IQN	
0	1	1	0	1	
1	1	1	1	0	

LAPLB

Cell Description

The LAPLB cell is an active-low D-type transparent latch with asynchronous active-low set (SN) and When the enable (GN) is low, data is transferred to the outputs (Q, QN)

Logic Symbol

Truth Table

INPUT			OU.	TPUT
D	SN	GN	Q	QN
x	0	х	1	0
0	1	0	0	1
x	1	1	IQ	IQN
1	1	0	1	0

TLATNCA

Cell Description

The TLATNCAD cell is clock gating cells with enable pin (E).

Logic Symbol

Truth Table

INPUT		Internal pin	OUTPUT	
Ε	СК	QN(n+1)	ECK	
0	0	0	0	
1	0	1	0	
x	1	QN(n)	QN(n)	

Cell Description

The TLATNFCA cell is a Negative edge-triggered clock-gating latch.

Logic Symbol

Truth Table

INPUT		INTERNAL PIN	OUTPUT	
Ε	CKN	QN(n+1)	ECK	
x	0	QN(n)	QN(n)	
0	1	1	1	
1	1	0	1	

TLATNTSCA

Cell Description

The TLATNTSCAD cell is clock gating cells with enable pin (E) and test enable pin (SE)

Logic Symbol

Function Table

	INPUT		Internal Pin	OUTPUT	
Е	SE	СК	QN(n+1)	ECK	
0	0	0	1	0	
0	1	0	0	0	
1	0	0	0	0	
1	1	0	0	0	
x	х	1	QN(n)	QN(n)	

Cell Description

The TLATNFTSCA cell is a Negative edge-triggered clock-gating latch.

Logic Symbol

Truth Table

	INP	UT	Internal Pin	OUTPUT	
Ε	SE	CKN	QN(n+1)	ECK	
0	0	1	0	1	
0	1	1	1	1	
1	0	1	1	1	
1	1	1	1	1	
х	x	0	QN(n)	QN(n)	

ANTENNA

MISCELLANEOUS FUNCTIONS

ANTENNA

Cell Description

The library contains an antenna-fix cell which must be inserted manually. However, most place and route tools will indicate which nets require the antenna cell. The CSMC antenna effect prevention guideline, "CSMC 0.11µm eFlash 2P8M Salicide process," specifies a maximum wire length. During place and route, the router may connect wires to the input gates of cells that are longer than the maximum length allowable by the guideline. The antenna cell can be used in this case to add an optional diode on the net close to the input gates which do not meet the guideline. Pin A on the antenna cell connects to a diode, reverse biased to ground.

Logic	Symbol	
	Y	

BH01

Cell DescriptionThe BH01 cell holds data at a known value. This cell is often used for holding data on a tri-state bus.

Logic Symbol

TIEHI

Cell Description

The TIEHI cell drives the output (Y) to a logic high. The output is driven through diffusion and not tied directly to the power rail to provide some ESD protection. The output (Y) is represented by the logic equation:

$$Y = 1$$

Logic Symbol

TIELO

Cell Description

The TIELO cell drives the output (Y) to a logic low. The output is driven through diffusion and not tied directly to the power rail to provide some ESD protection. The output (Y) is represented by the logic equation:

$$Y = 0$$

Logic Symbol

INVOD8

Cell DescriptionThe INVOD8 cell invertor with eight open drain pin

Logic Symbol

Function table

INPUT	OUTPUT							
Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
0	0	0	0	0	0	0	0	0
1	Hiz	Hiz	Hiz	Hiz	Hiz	Hiz	Hiz	Hiz

ND02OD

Cell DescriptionThe ND02OD cell with open drain

Logic Symbol

Truth Table

INF	TU	OUTPUT
Α	В	Y
0	Х	Hiz
1	0	Hiz
1	1	-

ND03OD

Cell DescriptionThe ND03OD cell with open drain

Logic Symbol

Truth Table

11	NPU	T	OUTPUT
Α	В	С	Y
0	X	X	Hiz
1	0	X	Hiz
1	1	0	Hiz
1	1	1	0

OR02OD

Cell DescriptionThe OR02OD cell with open drain

Logic Symbol

Truth Table

INF	TU	OUTPUT	
Α	В	Υ	
0	0	0	
1	X	Hiz	
X	1	Hiz	

PULLU

Cell DescriptionThe PULLU cell is internal pull up with Enable pin (E)

Logic Symbol

Truth Table

INPUT	OUTPUT
E	Y
0	Hiz
1	1

PULLD

Cell Description

The PULLU cell is internal pull down with Enable pin (EN)

Truth Table

INPUT	OUTPUT
EN	Y
0	0
1	Hiz

Logic Symbol:

FILLCAP

Cell DescriptionThe FILLCAP cell is a filler cell that contains decoupling capacitors between VDD and GND rails to reduce ground bounce in the power grids.

Logic Symbol

FILLER

Cell Description

The library contains several FILLER cells:filler1, 2, 3,4,6,8,16,32,64. The number appended to "FILLER" in the cell name denotes the width of the cell in tracks.

During place and route, the FILLER cells are used to connect power and ground rails across an area containing no cells. The FILLER cells are also used to ensure gaps do not occur between well or implant layers which could cause design rule violations. Using wider cells where appropriate reduces the size of the layout database.

LEVELSHIFTERS

Library Description

CSMC 0.11um Power Management Kit Library is for CSMC 0.11um Eflash 2P8M process ,based on its 6-track layout .the library is a supplement of power switch cells and commonly used supporting features, such as always-on logic, isolation interface and levelshifters cells.

General Information

The pmk cells can be placed together with the cells in normal standard library .Please refer to PMK Power Rail Information on page 172.

Retention DFF

DRFCRB

Cell description:

The DRFCRB cell is a positive edge-triggered ,static D Flip flop with asynchronous active-low reset RN.It will retain its stored state when VDD are powered down using power from VDDG.

Function Table

	INP	OU.	TPUT		
D	RETN	RN	CK	Q	QN
0	Х	1	R	0	1
1	0	1	R	0	1
1	1	1	R	1	0
Х	Х	0	Χ	0	1
Х	Х	1	Х	IQ	IQN

Logic symbol

RETENTION CELL

DRFNRB

Cell description:

The DRFNRB cell is a positive edge-triggered ,static D Flip flop .It will retain its stored state when VDD are switch off. Power for this retention function comes from VDDG

Function Table

	INP	OUTPUT		
CK	D	RETN	Q	QN
R	0	X	0	1
R	1	0	0	1
R	1	1	1	0
X	X	X	IQ	IQN

Logic symbol

RETENTION CELL

Cell description:

The DRFPRB cell is a positive edge-triggered ,static D Flip flop . with asynchronous active-low set SN . It will retain its stored state when VDD and/or GND are powered down using power from VDDG

Function Table

	INP	OU	TPUT		
D	RETN	SN	CK	Q	QN
0	Х	1	R	0	1
1	0	1	R	0	1
1	1	1	R	1	0
Х	Х	0	Х	0	1
Х	Х	1	Х	IQ	IQN

Logic symbol

ALWAYS ON

Always On GPGBUFF

Cell description:

The GPGBUF cell is a non-inverting cell powered by VDDG pin rather than the VDD rails. Since it is powered by unswitched VDDG, the output Y can remain valid even when VDD are switched off . The output Y is represented by the logic equation:

Y = A

Function table

Α	VDDG	Υ
0	1	0
1	1	1

Logic symbol

Cell description:

The GPGINV cell is an inverting cell powered by VDDG pin rather than the VDD rails. Since it is powered by unswitched VDDG, the output Y can remain valid even when VDD are switched off . The output Y is represented by the logic equation:

Y = ! A

Function table

Α	VDDG	Υ
0	1	1
1	1	0

Logic symbol

POWER GATING

HEAD

Cell description:

The HEAD cell is a power gating cell that connects local power (VDD) to global power (VDDG) when SLEEP is low .A buffer is included for SLEEP that is powered by VDDG so it will not power down if VDD is powered down.

Function table

SLEEP	VDDG	VDD	SLEEPOUT
0	1	1	0
1	1	Hi-z	1

Logic symbol

Isolation cell

ISOHD

Cell description:

The ISOHD cell is a isolation cell. This cell is placed in a power domain (the sink domain) that receives input from a different power domain, which may be powered down while the sink domain is still powered up.

. Y= A + EN

Function table

Α	EN	Υ
0	0	0
Х	1	1
1	Χ	1

Logic symbol

ISOLATION CELL

ISOLD

Cell description:

The ISOHD cell is a isolation cell. This cell is placed in a power domain (the sink domain) that receives input from a different power domain, which may be powered down while the sink domain is still powered up.

Y= A & E

Function table

Α	Е	Υ
0	Χ	0
1	0	0
1	1	1

Logic symbol

Retention DFF with Scan

SDRCRB

Cell description:

The SDRCRB cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN) .it can retain its state when power are switched off .Power for this retention function comes from VDDG.

Function Table

INPUT						OU'	TPUT
D	SE	SI	RETN	RN	CK	Q	QN
0	0	X	X	1	R	0	1
X	1	0	X	1	R	0	1
X	1	1	0	1	R	0	1
X	1	1	1	1	R	1	0
1	0	X	0	1	R	0	1
1	0	X	1	1	R	1	0
X	X	X	X	0	X	0	1
X	X	X	X	1	X	IQ	IQN

Logic symbol

Cell description:

The SDRNRB cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous reset (RN) .it can retain its state when power are switched off .Power for this retention function comes from VDDG.

Function Table

	IN	OU.	TPUT			
D	RETN	SE	SI	CK	Q	QN
Х	0	Х	Х	R	0	1
0	1	0	Х	R	0	1
Х	1	1	0	R	0	1
Х	1	1	1	R	1	0
1	1	0	Х	R	1	0
Х	Х	Х	Х	Х	IQ	IQN

Logic symbol

Cell description:

The SDRPRB cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous set (SN) .it can retain its state when power are switched off .Power for this retention function comes from VDDG.

Function Table

INPUT						Ö	TPUT
D	SE	SI	RETN	SN	CK	Q	QN
0	0	Х	Х	1	R	0	1
Х	1	0	Х	1	R	0	1
Х	1	1	0	1	R	0	1
Х	1	1	1	1	R	1	0
1	0	Х	0	1	R	0	1
1	0	Х	1	1	R	1	0
Х	Χ	Х	Х	0	Χ	1	0
Х	Χ	Х	Χ	1	Χ	Q	IQN

Logic symbol

PMK Power Rail Information

HEAD CELL power supply:

The cell layout is double height . The figure below shows there are 2 power pins in the cell.VDD should be connected to the primary power of the power-switchable block; VDDG should be connected to the global power rail which remains when the block is power-off.

Always on cells' power supply:

The Figure below shows the PG is in always-on cell. The cell is double height, which have 2 power pins .VDD should be connected to the power of the power-switchable block which is usually gated by the power-switching header; VDDG should be connected to the global power rail which remains valid when the block is powered off .

Retention DFF power supply:

The cell layout is double height. It has two power pins ,one is VDD which should be connected to the power of the power-switchable block, which is usually gated by the power-switching header; the other is VDDG ,which should be connected to the global power rail which remains valid when the block is powered off.

Intergrating the Power Gating Function:

The figure below shows how the PMK cells work together in a design where one of its blocks has power-gating feature. And the followings are some guidelines for the intergration.

Head cells get their power from the global power rail (as the green line in the figure below) and gate out the switchable VDD rail (as the red line) to power the part of the block.

The head cells should be connected one after another by SLEEP and SLEEPOUT pins to form a power-switch-chain ,to ensure the gated VDD rail turns on and off gradually when switched .

A secondary supply grid for global power is needed within the power switchable domain to power the always-on cells and the always on domain of the retention flip flop cells.

Whenever signals flow from the power-switchable domain to the power-on domain, isolation cells are needed as the interface to ensure the validation of data in case the power-switchable domain is off ,isolation cells are required to get their power from the global power supply ,which is always on.

