

Healthy lives: Health dynamics, mortality change, or structural change?

Tim Riffe, Neil Mehta, Daniel Schneider, Mikko Myrskylä

Objective

How much of the change in life expectancy at age 50e(50) is due to changes in mortality, disability transitions, or population structure?

Data & Methods

- HRS RAND version P.
- Transition probabilities: mlogit with age and time splines (3 knots).
- Controls for race/eth (4) and education (3).
- Age 50 population structure: education and disability status.
- ▶ 3-state Markov matrix models centered on years 1996, 2006, and 2014.
- Trend decomposition using Horiuchi et. al. (2007) method.

Males 1996 to 2006

	DFLE	DLE	LE
Disablement	0.31	-0.18	0.13
DF Mortality	1.00	0.12	1.12
Recovery	-0.04	0.03	-0.01
Dis. Mortality	0.12	0.03	0.14
Age 50 Disab.	-0.03	0.01	-0.02
Age 50 Educ.	0.13	-0.03	0.09
Total	1.49	-0.03	1.46

Males 2006 to 2014

	DFLE	DLE	LE
Disablement	0.15	-0.09	0.06
DF Mortality	0.52	0.06	0.58
Recovery	-0.26	0.13	-0.13
Dis. Mortality	0.09	0.03	0.12
Age 50 Disab.	-0.05	0.02	-0.04
Age 50 Educ.	0.09	-0.02	0.07
Total	0.54	0.12	0.67

	DFLE	DLE	LE	
Disablement	0.59	-0.34	0.26	
DF Mortality	0.76	0.09	0.85	
Recovery	0.07	-0.01	0.06	
Dis. Mortality	-0.39	-0.08	-0.47	
Age 50 Disab.	-0.14	0.05	-0.09	
Age 50 Educ.	0.09	-0.01	0.08	
Total	0.99	-0.30	0.69	

	DFLE	DLE	LE
Disablement	-0.00	-0.01	-0.02
DF Mortality	1.21	0.15	1.36
Recovery	-1.04	0.62	-0.42
Dis. Mortality	0.38	0.08	0.45
Age 50 Disab.	-0.29	0.10	-0.19
Age 50 Educ.	-0.14	0.05	-0.09
Total	0.12	0.98	1.10

▶ most LE ↑ due to DFLE ↑.

- most LE ↑ due to **DFLE** ↑.
- mortality improvement 1996-2014 added 1.5 years to DFLE.

- most LE ↑ due to DFLE ↑.
- mortality improvement 1996-2014 added 1.5 years to DFLE.
- changes in transitions between disability and disability free largely offset one another.

- ▶ most LE ↑ due to DFLE ↑.
- mortality improvement 1996-2014 added 1.5 years to DFLE.
- changes in transitions between disability and disability free largely offset one another.
- DF mortality change always a positive driver.

• early LE ↑ due to DFLE ↑, but reduced due to lower DLE.

- early LE ↑ due to DFLE ↑, but reduced due to lower DLE.
- most early DFLE ↑ due to ↓ transitions to disability and ↑ recovery.

- early LE ↑ due to DFLE ↑, but reduced due to lower DLE.
- ▶ most early DFLE ↑ due to ↓ transitions to disability and ↑ recovery.
- **▶ late** LE ↑ mostly due to ↑ **in DLE**.

- early LE ↑ due to DFLE ↑, but reduced due to lower DLE.
- most early DFLE ↑ due to ↓ transitions to disability and ↑ recovery.
- late LE ↑ mostly due to ↑ in DLE.
- itself mostly due to ↓ mortality and ↓ recovery.

- early LE ↑ due to DFLE ↑, but reduced due to lower DLE.
- most early DFLE ↑ due to ↓ transitions to disability and ↑ recovery.
- late LE ↑ mostly due to ↑ in DLE.
- itself mostly due to ↓ mortality and ↓ recovery.
- ▶ early ↓ in transitions to disability offset by later ↓ in recovery.

- early LE ↑ due to DFLE ↑, but reduced due to lower DLE.
- most early DFLE ↑ due to ↓ transitions to disability and ↑ recovery.
- late LE ↑ mostly due to ↑ in DLE.
- itself mostly due to ↓ mortality and ↓ recovery.
- ▶ early ↓ in transitions to disability offset by later ↓ in recovery.
- DF mortality change always a positive driver.

Still some kinks with transition probability estimation.

- Still some kinks with transition probability estimation.
- Horiuchi decomposition works well with multistate models, other virtues.

- Still some kinks with transition probability estimation.
- Horiuchi decomposition works well with multistate models, other virtues.
- So far only time decomps, other comparisons to come.

- Still some kinks with transition probability estimation.
- Horiuchi decomposition works well with multistate models, other virtues.
- So far only time decomps, other comparisons to come.
- Mortality change major driver over time, but all transitions important.

- Still some kinks with transition probability estimation.
- Horiuchi decomposition works well with multistate models, other virtues.
- So far only time decomps, other comparisons to come.
- Mortality change major driver over time, but all transitions important.

- Still some kinks with transition probability estimation.
- Horiuchi decomposition works well with multistate models, other virtues.
- So far only time decomps, other comparisons to come.
- Mortality change major driver over time, but all transitions important.

Thanks! riffe@demogr.mpg.de