### UDDA FUNKTIONER OCH DUBBELINTEGRALER.

Från en variabelanalys vet viatt integral "over ett symetrisk intervall [-a,a] av en udda funktion f(x) är lika med 0.

$$\int_{-a}^{a} f(x)dx = 0 \text{ om } f(x) \text{ är udda.}$$

$$T ex \int_{-4}^4 x^5 dx = 0$$



Här upprepar vi def. av udda ( och jämna ) funktioner

Låt f vara en reell funktion av en reell variabel med definitionsmängden  $D_f$  som är symmetrisk i origo.

DEFINITION 1: Vi säger att funktionen y = f(x) är **jämn** om

$$f(-x) = f(x)$$
 för varje  $x \in D_f$ 

DEFINITION 2: Vi säger att funktionen y = f(x) är **udda** om

$$f(-x) = -f(x)$$
 för varje  $x \in D_f$ 



Grafen till en udda funktion är symmetrisk i origo



Grafen till en jämn funktion är symmetrisk kring y-axeln

**Exempel 1.** Följande funktioner är jämna:

a)  $y = x^2 + 1$  b)  $y = x^4$  c) y = cos(x) d) y = |x|

e)  $y = x^2 - 4$  f)  $y = x^4 - 3x^2 + 3$  g)  $y = x^8 + cos(x) + 5$ 

Exempel 2. Några udda funktioner:

a)  $y = x^3 + x$  b)  $y = x^{23}$  c) y = sin(x) d) y = tan(x) e) y = cot(x)

**Exempel 3.** Följande funktioner är varken jämna eller udda:

a)  $y = x^3 + x^4$  b)  $y = x^5 + x^2 - 5$  c) y = sin(x) + cos(x)

d) y = ln(x) e)  $y = e^x$ 

Anmärkning: Följande regler kommer direkt från definitionen

UDDA + UDDA = UDDA (funktion) (Ex:  $x^7 + arctan(x)$  är en udda funktion)

TAL\*UDDA=UDDA

(Ex:  $23 * x^7$ är en udda funktion)

UDDA\*JÄMN= UDDA

(Ex:  $x^{23} * cos(x)$  är en udda funktion)

UDDA\* UDDA = JÄMN

(Ex:  $x^3 * sin(x)$  är en jämnfunktion)

JÄMN \* JÄMN = JÄMN (Ex:  $x^4 * cos(x)$  är en jämnfunktion)

När vi beräknar integral över ett **symetriskt** intervall [-a, a] förenklar vi beräkning om det finns **udda** termer i integranden, som i nedanstående exempel:

Uppgift 1. Beräkna integralen

 $\int_{-3/2}^{3/2} [x^7 + 3x^5 + 8x + 5\sin(x) + \arctan(x) + 5] dx$ 

b)  $\int_{-10}^{10} [x^7 + 3x^2 + 8x + 5tan(x) + arctan(x) + sin(x)]dx$ 

c)  $\int_{-4}^{4} [3t^2 tan(t) + sin(t) + 5t] dt$ 

d)  $\int_{-5}^{5} [3y^3 + arctan(y) - 23sin(5y)] dy$ 

Lösning a)

Vi har ett symmetriskt intervall [-1/2, 1/2] och därför blir integralen av varje udda term lika med 0 ( vi har kvar endast integralen av icke-udda termen 5:

**b)** 
$$\int_{-10}^{10} [x^7 + 3x^2 + 8x + 5tan(x) + arctan(x) + sin(x)] dx = \int_{-10}^{10} 3x^2 dx = 2000$$

**c)** 0 **d)** 0

#### UDDA FUNKTIONER OCH DUBBELINTEGRAL

Ovanstående förenkling vid beräkning av en enkelintegral av udda funktioner över ett symmetrisk interval [-a, a] kan vi också använda vid beräkning av en dubbelintegral om integrationsområde är symmetriskt i en av axlarna.

### FALL 1. Om

i) integrationsområde D i xy-planet definieras av

$$a \le x \le b$$
,  $-u(x) \le y \le +u(x)$ 

( alltså området är symetrisk i x-axeln ) och

ii) f(x, y) är en udda funktion med avseende på y

( dvs 
$$f(x, -y) = -f(x, y)$$
 för alla  $(x, y) \in D$  )

då gäller

$$\iint_D f(x,y)dxdy = 0.$$



### **Bevis:**

Enligt regler för enkelintegraler med udda integranden över symmetriskt intervall gäller

$$\int_{-u(x)}^{u(x)} f(x,y) \, dy \text{ för varje ( fixt ) x.}$$

Därför

$$\iint_{D} f(x,y) dx dy = \int_{a}^{b} dx \int_{-u(x)}^{u(x)} f(x,y) dy = \int_{a}^{b} 0 dx = 0$$

Exempel. Beräkna

$$\iint_D x^2 y^{33} \, dx dy$$

där 
$$D = \{ (x, y), 2 \le x \le 5, -e^{3x} \le y \le +e^{3x} \}.$$

Lösning

$$\iint\limits_{D} x^2 y^{33} \, dx dy = 0$$

eftersom D är symmetrisk i x-axeln och  $x^2y^{33}$  är en udda funktion på D med avseende på y ( uppenbart f(x,-y)=-f(x,y) )

**Uppgift 2.** Låt 
$$D = \{ (x, y), 1 \le x \le 3, -e^{2x} \le y \le +e^{2x} \}.$$

Beräkna

a) 
$$\iint_D [x^4y^3 - 8x^3y^{25} + \sin y + 8x^4 \tan(y) + x^3 \tan(y)] dxdy$$

b) 
$$\iint_D \left[ x^4 y^{25} + x^3 tan(y) + \frac{xy}{\sqrt{1+y^2}} + 5 \right] dxdy$$

c) 
$$\iint_D \left[ x^4 y^{25} + y^3 \cos(y) + \frac{xy}{\sqrt{1+y^2}} \right] dxdy$$

### Lösning b)

Första tre termer i integranden  $x^4y^{25}$ ,  $x^3tan(y)$  och  $\frac{xy}{\sqrt{1+y^2}}$  är

är udda med avseende på y (för, tillfälligt, fixt x). T ex för tredje term gäller

$$f_3(x, -y) = \frac{x(-y)}{\sqrt{1 + (-y)^2}} = -\frac{xy}{\sqrt{1 + y^2}} = -f_3(x, y)$$

Kontrollera själv för första två termer.

Om vi integrerar termviss får vi

$$\iint\limits_{D} \left[ x^4 y^{25} + x^3 tan(y) \right] + \frac{xy}{\sqrt{1+y^2}} + 5 \right] dx dy = 0 + 0 + 0 + \iint\limits_{D} 5 dx dy$$

$$= \int_{1}^{3} dx \int_{-e^{2x}}^{e^{2x}} 5 dy = \int_{1}^{3} 10e^{2x} dx = \left[10\frac{e^{2x}}{2}\right]_{1}^{3} = 5(e^{6} - e^{2})$$

**Svar:** a) 0, b)  $5(e^6 - e^2)$  c) 0

#### FALL 2. Om

i) integrationsområde D i xy-planet definieras av

$$c \le y \le d$$
,  $-v(y) \le x \le +v(y)$ 

(alltså området är symetrisk i y-axeln) och

ii) f(x, y) är en udda funktion med avseende på x

( dvs 
$$f(-x,y) = -f(x,y)$$
 för alla  $(x,y) \in D$  )

då gäller

$$\iint_D f(x,y)dxdy = 0.$$

( Detta bevisas på samma sätt som i FALL 1)



## Exempel. Beräkna

$$\iint_D y^3 \sin(5x) \, dx dy$$

där 
$$D = \{ (x, y), 2 \le y \le 4, -y^2 \le x \le +y^2 \}.$$

### Lösning

$$\iint\limits_{D} y^3 \sin(5x) \, dx dy = 0$$

eftersom D är symmetrisk i y-axeln och  $sin(5x)y^3$  är en udda funktion på D med avseende på x.

**Uppgift 3.** Låt  $D = \{ (x, y), 1 \le y \le 3, |x| \le 2 \}$ . Beräkna

a) 
$$\iint_D [x^3y^3 - 4x^5y^{25} + \sin x + y^4 \tan(x)] dxdy$$

b) 
$$\iint_D x^3 \sin(y) + \frac{3xy}{\sqrt{1+x^4}} + 10$$
]  $dxdy$ 

c) 
$$\iint_D [x^3y^{25}cosy + x^2] dxdy$$

### Svar:

{ Området  $D = \{ (x, y), 1 \le y \le 3, -2 \le x \le 2 \}$  är symmetriskt i y axeln. }

a) 0

**b)** 
$$\iint_D x^3 sin(y) + \frac{3xy}{\sqrt{1+x^4}} + 10$$
]  $dxdy = 0 + 0 + \iint_D 10 \ dxdy = 10 \cdot arean(D) = 80$ 

c) 
$$\iint_D [x^3 y^{25} cosy + x^2] dxdy = 0 + \iint_D x^2 dxdy = \int_1^3 dy \int_{-2}^2 x^2 dx = \frac{32}{3}$$

\_\_\_\_\_\_

I nedanstående uppgift är integrationsområdet symmetriskt i både x- och y- axeln som vi utnyttjar för att förenkla beräkningen.

### Uppgift 4. Beräkna

$$\iint_{D} (y^{5} \cos(5x) + x^{5} \cos(y) + 4) dxdy$$

$$d\ddot{a}r = \{ (x, y), x^{2} + y^{2} \le 9 \}.$$

( D är cirkeln som har radien=3 och centrum i origo)



### Lösning

$$\iint_{D} (y^{5} \cos(5x) + x^{5} \cos(y) + 4) dxdy$$

$$= \iint_{D} y^{5} \cos(5x) dxdy + \iint_{D} x^{5} \cos(y) dxdy + \iint_{D} 4 dxdy$$
(\*)
$$= 0 + 0 + 4 \cdot \operatorname{arean}(D) = 4 \cdot 9 \pi = 36 \pi$$

**Anmärkning**: 1. Den första integralen i (\*) är 0 eftersom integranden  $y^5 cos(5x)$  är en udda funktion på y och D är symmetrisk i x-axeln.

**2.** Den andra integralen i (\*) är 0 eftersom integranden  $x^5 cos(y)$  är en udda funktion på x och D är symmetrisk även i y-axeln.

# JÄMNA INTEGRANDER

Vi kan ( lite) förenkla beräkning av dubbelintegralen för funktioner som är jämna

i en variabel (t ex y) om området är symmetrisk kring en axel (t ex x-axeln):

### FALL 3. Om

i) integrationsområde D i xy-planet definieras av

$$a \le x \le b$$
,  $-u(x) \le y \le +u(x)$ 

( alltså området är **symetrisk i x-axeln** ) och

ii) f(x, y) är en jämn funktion med avseende på y

(dvs 
$$f(x,-y) = f(x,y)$$
 för alla  $(x,y) \in D$ )

då gäller

$$\iint_{D1} f(x, y) dx dy = \iint_{D2} f(x, y) dx dy$$

och därför

$$\iint_{D} f(x,y)dxdy = \iint_{D1} f(x,y)dxdy + \iint_{D2} f(x,y)dxdy$$
$$= 2 \iint_{D1} f(x,y)dxdy.$$



### FALL 4. Om

i) integrationsområde D i xy-planet definieras av

$$c \le y \le d$$
,  $-v(y) \le x \le +v(y)$ 

(alltså området är symetrisk i y-axeln) och

ii) f(x,y) är en jämn funktion med avseende på x

( dvs 
$$f(-x,y) = f(x,y)$$
 för alla  $(x,y) \in D$  )

då gäller

$$\iint_D f(x,y)dxdy = 2\iint_{D1} f(x,y)dxdy.$$



### FALL 5.

Alla fall F1-F4 kan generaliseras och användes på allmänna symmetriska område:

Låt D vara ett integrationsområde i xy planet symmetriskt kring linjen L som är delad i två symmetriska områden  $D_1$  och  $D_2$ . Låt (x', y') beteckna den punkt i D2 som är symmetrisk till (x, y).

# A) Om

$$f(x',y')=f(x,y)$$
 (för alla  $(x,y)\in D1$ ) då är  $\iint_{D1}f(x,y)dxdy=\iint_{D2}f(x,y)dxdy$  och därför

$$\iint_D f(x,y)dxdy = 2\iint_{D1} f(x,y)dxdy.$$



### B) Om

$$f(x', y') = -f(x, y)$$
 (för alla  $(x, y) \in D1$ )

då är 
$$\iint_{D1} f(x,y) dx dy = -\iint_{D2} f(x,y) dx dy$$
 och därför

$$\iint_{\mathbf{D}} f(x,y) dx dy = \mathbf{0} .$$

**Anmärkning:** A, B kan enkel bevisas med hjälp av dubbelintegralens definition ( Riemannsummor ).

**Uppgift 5**. Låt 
$$f(x, y) = x^2 + y^2$$
.

Beräkna 
$$\iint_D f(x,y)dxdy$$
 om

- a) D är triangeln med hörn i (0,0), (1,0) och (0,1).
- b) D är triangeln med hörn i (1,0), (0,1) och (-1,0)

Tipps: Använd a).

c) D är rektangeln med hörn i (1,0), (0,1), (-1,0) och (0,-1)

Tipps: Använd a) eller b) .

d) D definieras av  $|x| + |y| \le 1$ 

### Lösning a)

$$\iint_D f(x,y) dx dy =$$



$$\int_0^1 dx \int_0^{1-x} (x^2 + y^2) dy = \dots = \int_0^1 (\frac{1}{3} - x + 2x^2 - \frac{4}{3}x^3) dx = \frac{1}{6}$$

**b)** Punkten (x', y') = (-x, y) är symmetrisk till (x, y).



Eftersom  $f(x', y') = f(-x, y) = (-x)^2 + y^2 = x^2 + y^2 = f(x, y)$  (för alla  $(x, y) \in D1$ ) har vi  $\iint_{D1} f(x, y) dx dy = \iint_{D2} f(x, y) dx dy$ 

och därför

$$\iint_{D} f(x,y) dx dy = 2 \iint_{D_{1}} f(x,y) dx dy = (\text{enligt a}) = 2 \cdot \frac{1}{6} = \frac{1}{3}$$

c) På grund av symmetri, eftersom

$$f(-x,y) = f(-x,-x) = f(x,-y) = x^2 + y^2 = f(x,y)$$

gäller att

$$\iint_{D} f(x,y) dx dy = 2 * (resultat \ b) = 4 * (resultat \ a) = 4 \cdot \frac{1}{6} = \frac{2}{3}$$



d)

Lägg märke till att randlinjen består av fyra delar

$$|x| + |y| = 1 \Leftrightarrow \begin{cases} x + y = 1 & om (x, y) \ ligger \ i \ f\"{o}rsta \ kvadranten \\ -x + y = 1 & om (x, y) \ ligger \ i \ andra \ kvadranten \\ -x - y = 1 & om (x, y) \ ligger \ i \ tredje \ kvadranten \\ x - y = 1 & om (x, y) \ ligger \ i \ fj\"{a}rde \ kvadranten \end{cases}$$

Därför är definitionsområde,  $|x| + |y| \le 1$ , samma som i frågan c.

Integranden i d är också samma som i c frågan, och därmed har integralen i d samma värde som den i frågan c dvs  $\frac{2}{3}$ .

Svar: a) 1/6, b) 1/3, c) 2/3, d 2/3

1

Uppgift6. Låt  $f(x,y) = 2xy\sqrt{x^2 + y^2}$ .

- a) Beräkna  $\iint_D f(x,y) dx dy$  om D är triangeln med hörn i (0,0), (1,0) och (1,1).
- b) Använd resultat i a) för att beräkna  $\iint_D f(x,y)dxdy$  om D är rektangeln med hörn i (0.0), (1,0), (1,1) och (0,1).

# Lösning:

$$\iint_{D} f(x,y) dx dy = \int_{0}^{1} dx \int_{0}^{x} 2xy \sqrt{x^{2} + y^{2}} dy \quad (*)$$

Först beräknar vi integralen

$$\int 2xy\sqrt{x^2+y^2}\,dy$$

med hjälp av substitutionen

$$x^2 + y^2 = t; \quad 2y \, dy = dt$$





Från (\*) har vi

$$\int_0^1 dx \int_0^x 2xy \sqrt{x^2 + y^2} dy = \int_0^1 \left[ \frac{2}{3} x(x^2 + y^2)^{3/2} \right]_y^y = \frac{x}{y} dx =$$

$$= \int_0^1 \left[ \frac{2^{5/2}}{3} x^4 - \frac{2}{3} x^4 \right] dx = \int_0^1 \left[ \frac{2^{5/2}}{3} - \frac{2}{3} \right] x^4 dx = \left[ \frac{2^{5/2}}{3} - \frac{2}{3} \right] \frac{x^5}{5} \Big|_{x=0}^{x=5} = \frac{4\sqrt{2}}{15} - \frac{2}{15}$$

b) Området är symmetrisk kring linjen y=x. Om (x',y') är symmetrisk punkt till (x,y) kring linjen y=xdå är (x',y')=(y,x) [alltså y och x byter plats]. Därför



$$f(x',y') = f(y,x) = 2yx\sqrt{y^2 + x^2} = 2xy\sqrt{x^2 + y^2} = f(x,y)$$
.

Därför  $\iint_{D1} f(x,y) dx dy = \iint_{D2} f(x,y) dx dy$  och därmed

$$\iint_{D} f(x,y)dxdy = 2 \iint_{D1} f(x,y)dxdy = (\text{enligt a}) = \frac{8\sqrt{2}}{15} - \frac{8}{15}$$

Svar: a) 
$$\frac{4\sqrt{2}}{15} - \frac{2}{15}$$

b) 
$$\frac{8\sqrt{2}}{15} - \frac{8}{15}$$