

Problem Statement:

To Develop a DBMS for a College Management System

- A typical medium to large sized college consists of thousands of students, along with hundreds of faculty members and courses in multiple programmes and semesters.
- Some of India's oldest colleges and their enrolments are shown here.
- This massive scale of entities can pose a challenge from the point of view of scheduling classes, events and avoiding clashes.
- Through this project we plan to design an efficient and easy to use database system with a user-friendly front end that can effectively solve this problem for colleges and universities.

Rank	University	Founded	State	Enrollment
1	Indira Gandhi National Open University	1985	Delhi	4,000,000+
2	University of Mumbai	1857	Maharashtra	549,432+
3	University of Pune	1948	Maharashtra	500,000+
4	Dr. B. R. Ambedkar Open University	1982	Telangana	450,000+
5	University of Delhi	1922	Delhi	400,000+
6	Yashwantrao Chavan Maharashtra Open University	1989	Maharashtra	400,000+
7	Sikkim Manipal University	1995	Sikkim	390,000+
8	Osmania University	1918	Telangana	300,000+
9	Uttar Pradesh Technical University	2000	Uttar Pradesh	150,000+
10	Madhya Pradesh Bhoj Open University	1991	Madhya Pradesh	150,000+

Goals of the project

- Create a database management system to keep track of students and faculty in a college, along with their necessary details.
- Achieving this objective is difficult using a manual system as the information is scattered, can be redundant and collecting relevant information may be very time consuming. This project aims to solve these issues.
- Details of all students and faculty must be stored in a logical and efficient manner.
- Details must be easy to view or modify, as required.

Tools Used

- Back End: Microsoft Access 2016
 - Several tables have been used to store data.

- Front End: Microsoft Access 2016
 - Forms have been used to make the database more user-friendly.

Microsoft Windows or Linux is required to run this software.

Frontend

- We have used Microsoft Access 2016 for the Frontend.
- We have used macros and forms to design the frontend part in MS Access.
- We created a total of 6 forms.
- They are extremely easy to edit and read the data compared to the tables.
- o All the forms are listed in the image.

Backend: ER Diagram and Schema

STAFF_MEMBER: NATIONAL ID STAFF ID (PK) FNAME MNAME LNAME DEPARTMENT NUMBER (FK) STUDENT: STUDENT ID ADDRESS NATIONAL ID FNAME MNAME LNAME DEPARTMENT DEPARTMENT NUMBER DEPARTMENT CODE STAFF_ID (FK) (FOR MANAGER) COURSE: COURSE ID (PK) NAME DEPARTMENT NUMBER (FK) PROFESSOR: STAFF ID (PK)(FK) TEACHING_ASSISTANT: STAFF ID (PK)(FK) ENROLLMENT: COURSE_ID (FK) STUDENT_ID (FK) YEARLY_PERFORMANCE_GRADE FINAL EXAM GRADE *primary key of this table is the combination of the first 2 cells TEACHING: STAFF_ID (FK) COURSE ID (FK) GRADING SYSTEM RECOMMENDED MATERIAL [FROM TEACHING ASSISTANT RELATION] RELATION] *primary key of this table is the combination of the first 3 cells

ER MODEL

Backend: Tables

4	Staff_ID	▼ national_id ▼	fname •	Iname •	mname •	Department_number	*†
	4CS	123000000619	Sukumesh	Kumar			1
	9CS	123000000561	Atharv	Narayan			1
	2CS	123000000611	Rishikesh	Sharma			1
	6IT	123000000591	Swarna	Ganguly			2
	1IT	123000000529	Shyam	Chand	Kaushal		2
	5IT	123000000401	Suraj	Nigam			2
	9IT	12300000153	Arjun	Bhorkar	Ram		2
	2EC	123000000369	Shreya	Soman			3
	5EC	123000000625	Rajendra	Bhat	Naveen		3
	7EC	123000000751	Jai	Mukhi			3
	6EE	123000000824	Chandan	Khatri			4
	3EE	123000000493	Riya	Chaudry			4
	2EE	123000000409	Tejas	Dhaliwal	Singh		4
	8ME	12300000109	Vipul	Ghosh			5
	1ME	123000000740	Kailash	Sunder	Pradeep		5
	3ME	123000000191	Lal	Arora	Madhu		5

Assistant (BCNF)

Professor (BCNF)

Staff Member (BCNF)

Student ID * yearly perfo * final exam grad C\$251 191CS052 CS251 191CS101 0 CS251 191CS111 C\$251 191CS123 C\$251 191CS190 C\$251 191CS191 C\$251 191CS836 C\$251 191CS958 CS254 191CS052 C\$254 191CS101 0 CS254 191C\$111 CS254 191CS123 CS254 191CS190 CS254 191CS191 C\$254 191CS836 CS254 191CS958 CS255 191CS052 C\$255 191CS101 CS255 191CS111 C\$255 191CS123 CS255 191CS190 C\$255 191CS191 C\$255 191CS836 CS255 191CS958

Enrollment(BCNF)

Student (BCNF)

TABLES (Continued)

Course_ID •	Name -	Credits •	Department_ •
CS251	Database Systems	4	
CS254	Database Systems Lab	2	
CS255	Operating Systems Lab	2	
CS300	Operating Systems	4	:
EC341	Computer Arithmetic	4	
EC342	Embedded System Design	4	
EC344	Analog Integrated Circuits	4	
EE359	Energy Auditing	4	
EE360	Microprocessors	4	
EE361	Power System Communications	4	
EE362	Operation and control of Power Systems	4	
IT110	Digital System Design	4	
IT150	Object Oriented Programming	4	
IT200	Computer Communication and Networking		
IT202	Data Structures and Algorithms-I	3	
ME201	Basic Engineering Thermodynamics	4	
ME202	Fluid Mechanics and Machinery	4	
ME203	Mechanics of Machinery	4	
ME204	Basic Manufacturing Processes	4	
ME251	Applied Thermodynamics	3	
ME252	Analysis and Design of Machine Components	4	
ME253	Computer Aided Engineering	3	

Courses (1NF)

Teaching(BCNF)

Department_ •	Department_number	1.0	Name		Staff_ID(manager)	
22		1 COMPUT	ER SCIENCE	20	5	
IT		2 INFORMATION TECHNOLOGY		1/7	1IT	
ECE		3 ELECTRONICS AND COMMUNICATION		2E(0	
EEE		4 ELECTRONICS AND ELECTRICAL		3E	3EE	
ME		5 MECHANICAL		1M	E	

Department(BCNF)

Backend: Normalisation

Normalization of data can be considered a process of analysing the given relation schemas to achieve the desirable properties of

- (1) minimizing redundancy and latency
- (2) minimizing the insertion, deletion, and update anomalies

First Normal Form (1NF):

Test: Relation should have no multivalued attributes or nested relations.

Example: COURSE relation

Second Normal Form (2NF):

Test: For relations where, primary key contains multiple attributes, no non-key attribute should be functionally dependent on a part of the primary key.

Third Normal Form (3NF):

Test: There should be no transitive dependency of a non-key attribute on the primary key.

Boyce-Codd Normal Form (BCNF):

Test: A relation schema R is in BCNF if whenever a nontrivial functional dependency $X \rightarrow A$ holds in R, then X is a superkey of R.

Example: All the relations in our schema except COURSE relation

CRUD

- o The full form of CRUD is Create, Read, Update and Delete.
- o They are the most basic operations in SQL.
- o The queries corresponding to create and read are attached below.

CRUD

- o All the operations are performed on Courses Relation.
- The queries corresponding to update and delete are attached below.

Conclusion

- Using Microsoft Access, we can easily create highly scalable and user-friendly database management systems
- Using proprietary software like Access we can also get a high level of security.
- Normalisation was used to increase speed and computational efficiency and minimize the latency while accessing the data.
- Normalisation also minimized redundancy and duplication of data significantly.
- CRUD operations can be used to manipulate the database while protecting the integrity of the data through application of inbuilt policies in Access.
- Using these tools and techniques we can enable colleges and universities to organize and manage classes and events successfully in a scalable manner.

Any Questions?

THANK YOU