

Plano da Aula

Introdução:

Reologia das rochas, resistência.

Elasticidade Linear:

- Esforço uniaxial, módulos de elasticidade, deformação uniaxial, sedimentação e erosão.
- Esforço plano, esforços na litosfera, módulo de cisalhamento, deformação plana.

Esforço 3D isotrópico

Introdução

Os materiais elásticos são deformados quando uma força é aplicada e retornam à sua forma original quando a força é removida.

Reologia das rochas

É definida pela resposta da rocha a um esforço aplicado. Depende de:

- Composição da rocha
- Pressão de poro
- Pressão confinante
- Taxa de deformação
- Temperatura

Os resultados podem ser diferentes para compressão, tensão ou cisalhamento.

Testes de compressão tri-axial

As amostras são submetidas a um esforço vertical variável, enquanto confinadas com pressão uniforme lateral.

Reologia das rochas (sem poros)

Para amostras de rocha sem poros os resultados experimentais mostram que:

- Para esforços pequenos o regime é linear.
- Depois se torna frágil ou dúctil.

Esforço-deformação (sem poros)

Os resultados experientais mostram que há até 4 possibilidades:

- (a) Plástico ideal O material não é deformado, até $\sigma_y(a)$. Mantendo esse esforço o material deforma continuamente.
- (b) Elasto-plástico ideal O material é elástico para $\sigma < \sigma_v(b)$.
- (c) Work softening O material se torna mais fácil de deformar para $\sigma > \sigma_{\rm D}$.
- (d) Work hardening O material se torna mais difícil de deformar.

Placas tectônicas e elasticidade

A tectônica de placas assume que as placas não são deformadas em escalas de tempo geológico:

- Zonas de fractura permanecem lineares e equidistantes (~10⁸ yr).
- As faixa magnéticas são lineares.
- A gravidade não removeu estruturas crustais antigas (10⁹ anos).

Placas tectônicas e elasticidade

A tectônica de placas assume que as placas não são deformadas em escalas de tempo geológico:

- Zonas de fractura permanecem lineares e equidistantes (~10⁸ yr).
- As faixa magnéticas são lineares.
- A gravidade não removeu estruturas crustais antigas (10⁹ anos).

Placas tectônicas e elasticidade

A tectônica de placas assume que as placas não são deformadas em escalas de tempo geológico:

- Zonas de fractura permanecem lineares e equidistantes (~10⁸ yr).
- As faixa magnéticas são lineares.
- A gravidade não removeu estruturas crustais antigas (10⁹ anos).

Resistência (strength) da litosfera

A resistência da litosfera muda com a profundidade.

Elasticidade Linear

Um sólido elástico linear é aquele em que o esforço é proporcional à deformação. Usando os esforços e deformações principais:

$$\sigma_1 = (\lambda + 2G)\epsilon_1 + \lambda \epsilon_2 + \lambda \epsilon_3$$

$$\sigma_2 = \lambda \epsilon_1 + (\lambda + 2G)\epsilon_2 + \lambda \epsilon_3$$

$$\sigma_3 = \lambda \epsilon_1 + \lambda \epsilon_2 + (\lambda + 2G)\epsilon_3$$

λ e G são os parâmetros de Lamé e o G é chamado também de módulo de rigidez.

Módulo de Rigidez (ou Cisalhamento)

É uma medida da resistência do material ao cisalhamento (alteração da forma e não do volume). Para fluidos G=0.

É dado pela metade do quociente entre o esforço de cisalhamento e a deformação.

Elasticidade Linear

A relação inversa é

$$\varepsilon_{1} = (1/E)\sigma_{1} - (v/E)\sigma_{2} - (v/E)\sigma_{3}$$

$$\varepsilon_{2} = -(v/E)\sigma_{1} + (1/E)\sigma_{2} - (v/E)\sigma_{3}$$

$$\varepsilon_{3} = -(v/E)\sigma_{1} - (v/E)\sigma_{2} + (1/E)\sigma_{3}$$

onde v e E são a razão de Poisson e o módulo de Young, respectivamente.

O comportamento elástico de um material pode ser caracterizado por ambos λ e G ou E e ν .

Módulo de Young

Descreve o comportamento de um cilindro de comprimento L, que é puxado em ambas as extremidades.

O seu valor é dado pela razão entre o esforço e a deformação extensionais.

$$\sigma_{11} = F/S = E \Delta L/L = E \epsilon_{11}$$

Razão de Poisson

É a razão entre a contração lateral (mudança relativa de largura W) de um cilindro que está sendo puxado sobre as suas extremidades e sua extensão longitudinal L.

$$v = (\Delta W/W)/(\Delta L/L)$$

Propriedades elásticas das rochas

	Density	E	G		k	α
	${ m kg~m}^{-3}$	$10^{11}\mathrm{Pa}$	$10^{11} \mathrm{Pa}$	ν	$\mathrm{W}\mathrm{m}^{-1}\mathrm{K}$	K-10−5 K-1
Sedimentary						
Shale	2100-2700	0.1 - 0.7	0.1 - 0.3	0.1 - 0.2	1.2-3	
Sandstone	1900-2500	0.1 - 0.6	0.04 - 0.2	0.1 - 0.3	1.5 - 4.2	3
Limestone	1600-2700	0.5 - 0.8	0.2 - 0.3	0.15 - 0.3	2-3.4	2.4
Dolomite	2700-2850	0.5 - 0.9	0.2 - 6.4	0.1 - 0.4	3.2-5	
Metamorphic						
Gneiss	2600-2850	0.4 - 0.6	0.2 - 0.3	0.15 - 0.25	2.1 - 4.2	
Amphibole	2800-3150		0.5 - 1.0	0.4	2.1 - 3.8	
Marble	2670-2750	0.3 - 0.8	0.2 - 0.35	0.2 - 0.3	2.5-3	
Igneous						
Basalt	2950	0.6 - 0.8	0.25 - 0.35	0.2 - 0.25	1.3 - 2.9	
Granite	2650	0.4 - 0.7	0.2 - 0.3	0.2 - 0.25	2.4 - 3.8	2.4
Diabase	2900	0.8 - 1.1	0.3 - 0.45	0.25	2-4	
Gabbro	2950	0.6 - 1.0	0.2 - 0.35	0.15 - 0.2	1.9 - 4.0	1.6
Diorite	2800	0.6 - 0.8	0.3 - 0.35	0.25 - 0.3	2.8 - 3.6	
Pyroxenite	3250	1.0	0.4		4.1-5	
Anorthosite	2640-2920	0.83	0.35	0.25	1.7 - 2.1	
Granodiorite	2700	0.7	0.3	0.25	2.0 - 3.5	
Mantle						
Peridotite	3250				3-4.5	2.4
Dunite	3000-3700	1.4 - 1.6	0.6-0.7		3.7 - 4.6	
Miscellaneous						
Ice	917		0.092	0.31 - 0.36	2.2	5

Esforço uniaxial

Caso em que apenas um dos esforços principais é diferente de zero.

Para
$$\sigma_1 \neq 0$$
, $\sigma_2 = \sigma_3 = 0$ \Longrightarrow $\varepsilon_2 = \varepsilon_3 = -v\varepsilon_1$

Esforço uniaxial

E também $\varepsilon_2 = \varepsilon_3 = -\lambda/2(\lambda + G) \varepsilon_1$. Comparando

$$\gamma = \lambda/2(\lambda + G)$$

Substituindo em $\sigma_1 = (\lambda + 2G)\epsilon_1 + \lambda\epsilon_2 + \lambda\epsilon_3$

$$\sigma_1 = G(3\lambda + 2G)/(\lambda + G) \epsilon_1$$

de onde

$$E = G(3\lambda + 2G)/(\lambda + G)$$

E invertindo o sistema de equações

G=E/2(1+
$$\nu$$
); $\lambda = E\nu/(1+\nu)(1-2\nu)$

Medição das constantes elásticas

Testes de compressão uniaxial são um dos métodos mais simples.

Deformação uniaxial

Caso em que apenas uma das deformações principais é diferente de zero.

Para
$$\varepsilon_1 \neq 0$$
, $\varepsilon_2 = \varepsilon_3 = 0 \longrightarrow \sigma_2 = \sigma_3 = v/(1-v)\sigma_1$

Deformação uniaxial e sedimentação

Vamos calcular alterações no esforço devidas à sedimentação

$$p=1/3(\sigma_1+\sigma_2+\sigma_3)=\frac{1+v}{3(1-v)}\rho gh$$

$$\sigma'_{1} = \sigma_{1} - p = \frac{2(1-2v)}{3(1-v)} \rho gh$$

$$\sigma'_{2} = \sigma'_{3} = \frac{-(1-2v)}{3(1-v)} \rho gh$$

$$\sigma_2 = \sigma_3 = v/(1-v)\rho gh$$

Para v=0.25,
$$\rho$$
=3g/cm³, h=2km σ_2 '= σ_3 '=-13.3 MPa

Deformação uniaxial e erosão

Partimos do estado litostático ($\sigma_1 = \sigma_2 = \sigma_3 = \rho gh$). A alteração no esforço vertical após da erosão é:

$$\Delta \sigma_1 = -\rho gh \longrightarrow \sigma_1^* = 0$$

Então,

$$\Delta \sigma_2 = \Delta \sigma_3 = \frac{v}{1 - v} \Delta \sigma_1$$

e os esforços após a erosão,

$$\sigma *_{2} = \sigma *_{3} = \sigma_{2} + \Delta \sigma_{2} = \rho g h - \frac{v}{1 - v} \rho g h = \frac{1 - 2v}{1 - v} \rho g h$$

Para v=0.25, $\rho=3g/cm^3$, $h=5km \sigma_2^*=\sigma_3^*=100 MPa$

Esforço plano

Caso em que apenas um dos esforços principais é igual a zero (σ_3 =0).

Para
$$\sigma_1 \neq 0$$
, $\sigma_2 \neq 0$, $\sigma_3 = 0$ $\delta x(1-\epsilon_1)$

$$\epsilon_1 = (\sigma_1 - v\sigma_2)/E$$

$$\epsilon_2 = (\sigma_2 - v\sigma_1)/E$$

$$\epsilon_3 = -v(\sigma_1 + \sigma_2)/E$$

$$\delta z(1-\epsilon_2)$$

Esforços na litosfera

Vamos supor que, além dos esforços litostáticos, há esforços tectônicos horizontais na litosfera ($\Delta \sigma_1 = \Delta \sigma_2$). Assim,

$$\varepsilon_1 = \varepsilon_2 = \Delta \sigma_1 (1-v)/E;$$
 $\varepsilon_3 = -\Delta \sigma_1 2v/E$

A litosfera vai engrossar e a área vai diminuir, mas a massa é conservada.

$$\delta(\rho Ah_L) = 0$$

Vamos calcular a mudança do esforço vertical normal na base da litosfera ($\Delta \sigma_3$)

Esforços na litosfera

$$\Delta \sigma_3 = \delta(\rho g h_L) = \delta(\rho g h_L A/A) = (1/A) \delta(\rho g h_L A) + \rho g h_L A \delta(1/A) = \rho g h_L (-\delta A/A)$$

Como

$$-\delta A/A = \varepsilon_1 + \varepsilon_2 = 2(1-v)/E \Delta \sigma_1$$

Temos que

$$\Delta \sigma_3 = 2(1-v)/E \rho gh_L \Delta \sigma_1$$

A mudança no esforço vertical é pequena em comparação ao horizontal.

Para v=0.25, ρ =3.0 g/cm³, E= 100 Mpa, h_L=100 km $\Delta\sigma_3/\Delta\sigma_1$ = 0.045

Deformação plana

Caso em que apenas uma das deformações principais é igual a zero (ε_3 =0).

Para
$$\varepsilon_1 \neq 0$$
, $\varepsilon_2 \neq 0$, $\varepsilon_3 = 0$

$$\sigma_1 = (\lambda + 2G)\epsilon_1 + \lambda \epsilon_2$$

$$\sigma_2 = \lambda \epsilon_1 + (\lambda + 2G)\epsilon_2$$

$$\sigma_3 = \lambda(\epsilon_1 + \epsilon_2)$$

$$\varepsilon_1 = v(\sigma_1 + \sigma_2)$$

Esforço 3D isotrópico

Caso em que todos os esforços principais são iguais.

$$\Delta \sigma_1 = \Delta \sigma_2 = \Delta \sigma_3 = \delta p$$
 $\epsilon_1 = \epsilon_2 = \epsilon_3 = \Delta/3$

A pressão litostática é

$$\delta p = (3\lambda + 2G)(\Delta/3) = K\Delta = (1/\beta)\Delta$$

onde K é o módulo de incompressibilidade β é a compressibilidade.

Assim,

$$\beta = 3/(3\lambda + 2G)$$

Dilatação

A dilatação é definida como

$$\Delta = -\delta V/V = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$

Para Δ =0 o material é incompressível.

Módulo de Incompressibilidade (Bulk Modulus)

E definido como a razão entre a mudança da pressão hidrostática (P) e a variação relativa do volume.

$$K = \Delta P / (\Delta V / V)$$

Esforço 3D isotrópico

Como a massa é conservada

$$\delta(\rho V) = 0 \quad \rho \delta V + V \delta \rho = 0$$

assim

$$\delta \rho / \rho = -\delta V / V = \Delta$$

combinando com a equação anterior

$$\delta \rho = \rho \beta \delta p$$

A equação é usada para determinar o aumento da densidade com a profundidade na Terra (δp =- ρ g δ r)