Quantum Mechanics (Draft 2010 Nov.)

1. For a 1-dimensional simple harmonic quantum oscillator, $V(x) = \frac{1}{2}m\omega^2x^2$, it is more convenient to describe the dynamics by dimensionless position parameter $\rho = x/a$ ($a = \sqrt{\frac{\hbar}{m\omega}}$) and dimensionless energy $\epsilon = E/(\frac{1}{2}\hbar\omega)$.

Write down the time-independent Schrödinger equation in terms of ρ derivatives on the eigenfunction $u(\rho)$. Directly show that $u_0(\rho) \sim e^{-\frac{1}{2}\rho^2}$ satisfies your Schrödinger equation. Explain why it is the ground state and give its energy ϵ_0 in the dimensionless unit.

Directly show that $u_1(\rho) \sim \rho e^{-\frac{1}{2}\rho^2}$ satisfies the Schrodinger equation as the first excited state. Also give its energy ϵ_1 .

The initial wave function $u(\rho,0)$ is described by $u(\rho,0)=N(3\sqrt{2}\rho-4)\exp(-\frac{1}{2}\rho^2)$, with N as the normalization constant.

- (i) Find the average energy.
- (ii) The momentum operator in the reduced unit is $\wp = -id/d\rho$. Find its mean value $\langle \wp \rangle$ initially.
- (iii) We use a dimensionless time parameter $\tau = \frac{1}{2}\omega t$ to study how the wave evolves. Write down the explicit τ dependence of the wave function.
- (iv) Find $\langle \wp \rangle$ as a function of time τ .

$$-\frac{d^2}{d\rho^2}u(\rho) + \rho^2 u(\rho) = \epsilon u(\rho) .$$

We can pretend that $\omega = 2$, 2m = 1, $\hbar = 1$. $\frac{d}{d\rho}u_0(\rho) = -\rho u(\rho)$, $\frac{d^2}{d\rho^2}u_0(\rho) = (\rho^2 - 1)u(\rho)$, so u_0 is a solution with $\epsilon_0 = 1$. u_0 has no node, thus it is a ground state. Similarly u_1 , with one node, is the first excited solution for $\epsilon_1 = 3$.

$$u(\rho,0) = N(3\frac{2\rho}{\sqrt{2}} - 4)e^{-\frac{\rho^2}{2}} = N\pi^{\frac{1}{4}}(3u_1(\rho) - 4u_0(\rho)) , \quad 1 = N^2\sqrt{\pi}(3^2 + 4^2) , \quad N = \frac{1}{5\pi^{\frac{1}{4}}}$$

$$u(\rho,0) = \frac{1}{5}(3u_1(\rho) - 4u_0(\rho))$$
, $u(\rho,\tau) = \frac{1}{5}(3u_1(\rho)e^{-3i\tau} - 4u_0(\rho)e^{-i\tau})$

The average energy is $\langle \epsilon \rangle = \frac{9}{25} \times 3 + \frac{16}{25} \times 1 = \frac{43}{25}$.

$$u(\rho,\tau) = \frac{1}{5\pi^{\frac{1}{4}}} (3\sqrt{2}\rho e^{-3i\tau} - 4e^{-i\tau}) e^{-\frac{\rho^2}{2}} , \quad u^*(\rho,\tau) = \frac{1}{5\pi^{\frac{1}{4}}} (3\sqrt{2}\rho e^{3i\tau} - 4e^{i\tau}) e^{-\frac{\rho^2}{2}}$$
$$-i(d/d\rho)u(\rho,\tau) = -\frac{i}{5\pi^{\frac{1}{4}}} (3\sqrt{2}(1-\rho^2)e^{-3i\tau} + 4\rho e^{-i\tau}) e^{-\frac{\rho^2}{2}}$$
$$\langle \wp \rangle_{\tau} = -\frac{i}{25\pi^{\frac{1}{2}}} \int_{-\infty}^{\infty} 12\sqrt{2} \left(\rho^2 e^{+2i\tau} - e^{-2i\tau} + \rho^2 e^{-2i\tau}\right) e^{-\rho^2} d\rho = \frac{12\sqrt{2}}{25} \sin 2\tau$$

The initial $\langle \wp \rangle_{\tau}$ is zero, but it changes as a sine function.

2. In the beginning, a non-relativistic particle of mass $m = \frac{1}{2}$ propagates freely as a wave packet with a mean wave number $q = \frac{4}{27}$. We choose a unit system such that $\hbar = 1$. Find the group velocity and the phase velocity.

Let this wave propagates from the remote left toward a repulsive potential $V(x) = 9(x - \frac{1}{3})^2$ in the region $[-\frac{1}{3}, \frac{1}{3}]$. The potential vanishes otherwise. We can treat the potential as a delta-function potential. Give quantitative reasons why.

Calculate the probabilities of transmission and reflection in the delta potential approximation.

The momentum is $\frac{4}{27}$, the particle velocity (i.e. the group velocity) $v_g = \frac{p}{m} = \frac{8}{27}$. $K = \frac{p^2}{2m} = \frac{16}{729}$. $\omega = \frac{K}{\hbar} = \frac{16}{729}$, the phase velocity is $v_{\text{phase}} = \frac{\omega}{k} = \frac{4}{27}$.

The wavelength of the particle is $2\pi/q = 54\pi/4$, which is much greater than the potential width of a size only 2/3. The height of the potential is also much greater than K. Therefore we can treat the potential as delta function $V(x) = G\delta(x)$. The strength G is given by the integral

$$G = \int_{-\frac{1}{2}}^{\frac{1}{3}} 9(x - \frac{1}{3}) dx = \frac{2}{9}$$

We integrate both sides of Schrodinger equation over a small interval around the origin.

$$\varphi_k(x) = \begin{cases} Ae^{ikx} + B^{-ikx}, & \text{for } x < 0, \\ Ce^{ikx} + D^{-ikx}, & \text{for } x > 0, \end{cases}$$

The B component represents the reflection and the C piece is the transmission. Although for an incoming wave from the left, we do not need the D component, we keep it for other future purpose temporarily. Continuity of the wave function and its kink in derivatives around the origin gives

$$A + B = C + D$$

$$\frac{\hbar^2}{2m} ik[(A - B) - (C - D)] + G(C + D) = 0$$

We can solve A and B in terms of C and D,

$$\begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 + \frac{miG}{\hbar^2 k} & + \frac{miG}{\hbar^2 k} \\ -\frac{miG}{\hbar^2 k} & 1 - \frac{miG}{\hbar^2 k} \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix}$$

Now, we require D=0 for the property of an incoming particle from the left. So

$$T(k) \equiv C/A = \hbar^2 k/(\hbar^2 k + miG) \ , \qquad R(k) \equiv B/A = -miG/(\hbar^2 k + miG) \ . \label{eq:resolvent}$$

$$|T|^2 = \left| \frac{\frac{4}{27}}{\frac{4}{27} + i\frac{3}{27}} \right|^2 = \frac{16}{25} = 64\%$$

Transmission probability is 64%, and the rest 36% is reflected.

3. For matrices A, B, C, show that [AB, C] = A[B, C] + [A, C]B. Let S_1 (or S_x) be the x-component of the spin vector operator, etc. Using the algebra of angular momentum, $[S_x, S_y] = i\hbar S_z$, and cyclic permutations for a general spin $(S = \frac{1}{2}, 1, \frac{3}{2}, \cdots)$, simplify $[S_x^2, S_z]$ and $[S_y^2, S_z]$ in terms of $S_x S_y$ or $S_y S_x$. Then calculate $[S^2, S_z]$. The trace of a

matrix A is defined as Tr $A = \sum_{m} \langle m|A|m \rangle$ summing over the basis vectors m. Show that Tr (AB) = Tr (BA). Based of some earlier steps, show that Tr $(S_x S_y) = 0$

A dark matter (DM) particle of spin S and mass $M_{\rm DM}$ couples to the fixed target nucleus of spin I by a weak spin-dependent contact interaction

$$\mathcal{V} = g\delta^3(\boldsymbol{r})\boldsymbol{S}\cdot\boldsymbol{I}$$

What are possible numbers of $S \cdot I$ in general? Show all these possibilities for the special case $S = \frac{1}{2}$, $I = \frac{9}{2}$.

Justify the following trace relations,

$$\operatorname{Tr}(S_i S_j) = C_S \delta_{ij}$$
, similarly $\operatorname{Tr}(I_i I_j) = C_I \delta_{ij}$,

Determine coefficients C_S and C_I in terms of general S and I respectively.

Calculate the transition probability

$$\sum |\langle \boldsymbol{k}k, m_S', m_I' | \mathcal{V} | \boldsymbol{k}, m_S, m_I \rangle|^2$$

from an incoming DM plane wave described by $e^{i\mathbf{k}\cdot\mathbf{r}}$ to the outgoing DM wave $e^{i\mathbf{k}'\cdot\mathbf{r}}$. The sum adds up all spin states m_S and m_S' of the initial and final spin states of the DM particle, as well as m_I and m'_I of nucleus.

After average the initial spins of the DM particle and the nucleus, find the total cross section in the Born approximation. (Hints: The usual potential scattering in the Born approximation is

$$\frac{d\sigma}{d\Omega} = \frac{M^2}{4\pi^2\hbar^4} \left| \int d^3r V(r) e^{i(\mathbf{k}_f - \mathbf{k}_i) \cdot \mathbf{r}} \right|^2.$$

The above formula has to be generalized to incorporate the spins of S and I.)

$$[AB, C] = ABC - CAB = ABC - ACB + ACB - CAB = A[B, C] + [A, C]B.$$

$$[S_y^2, S_z] = S_y[S_y, S_z] + [S_y, S_z]S_y = iS_yS_x + iS_xS_y.$$

$$[S_x^2, S_z] = S_x[S_x, S_z] + [S_x, S_z]S_y = -iS_xS_y - iS_xS_y.$$

$$[S_x^2, S_z] = S_x[S_x, S_z] + [S_x, S_z]S_y = -iS_xS_y - iS_xS_y.$$

As
$$[S_z^2, S_z] = 0$$
, we have $[S_x^2 + S_y^2 + S_z^2, S_z] = 0$, so $[S_z^2, S_z] = 0$.

Tr
$$(AB) = \sum_{i,j} A_{ij} B_{ji} = \sum_{i,j} B_{ji} A_{ij} = \text{Tr } (BA)$$
, and Tr $[A, B] = 0$. So $\text{Tr}(S_x S_y) = 0$.

Let J denote the magnitude number of the sum J = S + I.

$$S \cdot I = \frac{1}{2}[(S + I)^2 - S^2 - I^2] = \frac{\hbar^2}{2}[J(J+1) - S(S+1) - I(I+1)]$$

for discrete choices of $J = S + J, S + J - 1, \dots, |J - S|$.

For the special case $S = \frac{1}{2}$ and $I = \frac{9}{2}$, we have two possibilities,

(a)
$$J = 5$$
, $\vec{S} \cdot \vec{I} = \frac{9}{4}$,

(b)
$$J = 4$$
, $S \cdot I = -\frac{11}{4}$.

The overall tracelessness is checked.

About Tr $(S_i S_j) = C_S \delta_{ij}$, we have verified the case i = x, j = y. Other unequal $i \neq j$ cases are also true if we permute indices.

Symmetry also implies
$$\operatorname{Tr}(S_x S_x) = \operatorname{Tr}(S_y S_y) = \operatorname{Tr}(S_z S_z) = C_S$$
.

Tr
$$(S_x S_x) = \frac{1}{3}$$
 Tr $\mathbf{S}^2 = \frac{\hbar^2}{3} (2S+1)S(S+1)$.

We note that Tr
$$(\mathbf{S} \cdot \mathbf{I})^2 = \sum_{i,j} = \text{Tr } [(S_i I_i)(S_j I_j)] = \frac{\hbar^4}{9} (2S+1)S(S+1)(2I+1)I(I+1).$$

$$\sum_{i} |\langle \mathbf{k}k, m_S', m_I'| \mathcal{V} |\mathbf{k}, m_S, m_I \rangle|^2 = \frac{g^2 \hbar^4}{9} (2S+1)S(S+1)(2I+1)I(I+1).$$

Dividing it by $\frac{1}{2S+1}\frac{1}{2I+1}$ for the average of initial spins, we obtain the unpolarized cross section as

$$\frac{d\sigma}{d\Omega} = \frac{M_{DM}^2}{36\pi^2} g^2 S(S+1) I(I+1) \ .$$

4. Variation principle.

A quantum particle in a two dimensional potential $V(r) = -V_0 \exp(-r/a)$. Let the trial wave function be $\varphi(r;\beta) = Ce^{-\beta r}$. Determine the normalization C in terms of the attenuation parameter β .

Find the average position and average momentum $\bar{x}=\langle x\rangle, \ \bar{y}=\langle y\rangle, \ \bar{p}_x=\langle p_x\rangle, \ \bar{p}_y=\langle p_y\rangle.$

Determine $\langle \mathbf{r}^2 \rangle$ and $\langle \mathbf{p}^2 \rangle$. (Hints: $\int d^2 \mathbf{r} \psi^*(\mathbf{r}) \nabla^2 \psi(\mathbf{r}) = - \int d^2 \mathbf{r} |\nabla \psi(\mathbf{r})|^2$.)

What are $\langle x^2 \rangle$ and $\langle p_x^2 \rangle$?

Calculate the product $\langle (x-\bar{x})^2 \rangle \langle (p_x-\bar{p}_x)^2 \rangle$, and simplify the result in comparison with the Heisenberg uncertainty.

Find the average kinetic energy and average potential energy.

Now we set $\frac{\hbar}{2m} = 1$, $V_0 = 8$, $a = \frac{1}{2}$. Using the variation principle, estimate the ground state energy. The optimized β turns out to be a simple number.

Normalization is given by

$$C^{2} \int (2\pi r)e^{-2\beta r}dr = 2\pi C^{2} \frac{1!}{(2\beta)^{2}} = \frac{\pi C^{2}}{2\beta^{2}} = 1$$

 $C = \beta \sqrt{\frac{2}{\pi}}$. By symmetry $\bar{x} = 0$, $\bar{y} = 0$, $\bar{p}_x = 0$, $\bar{p}_y = 0$.

$$\langle \mathbf{r}^2 \rangle = C^2 \int (2\pi r^3) e^{-2\beta r} dr = 2\pi C^2 \frac{3!}{(2\beta)^4} = \frac{3}{2\beta^2}$$

$$\langle \boldsymbol{p}^2 \rangle = \hbar^2 C^2 \int (2\pi r) \beta^2 e^{-2\beta r} dr = \hbar^2 \beta^2 .$$

By symmetry, $\langle p_x^2 \rangle = \langle p_y^2 \rangle = \frac{1}{2} \langle \boldsymbol{p}^2 \rangle = \frac{1}{2} \hbar^2 \beta^2$. Similarly, $\langle x^2 \rangle = \frac{1}{2} \langle \boldsymbol{r}^2 \rangle = \frac{3}{4\beta^2}$. Therefore $\langle (x - \bar{x})^2 \rangle \langle (p_x - \bar{p}_x)^2 \rangle = \frac{3}{8} \hbar^2$, well above the lowest bound $\frac{\hbar^2}{4}$ by Heisenberg's uncertainty principle.

Therefore, the average kinetic energy $\langle K \rangle = \frac{\hbar^2 \beta^2}{2m}$, and

$$\langle V \rangle = -C^2 \int (2\pi r) V_0 e^{-(2\beta + 1/a)r} dr = -V_0 \beta^2 / (\beta + \frac{1}{2a})^2$$
.

For the given parameters,

$$\langle E \rangle = \beta^2 - 8\beta^2/(\beta^2 + 1)^2 ,$$

which is minimized at $\beta = 1$ with $(\langle E \rangle)_{\min} = -1$, as a good estimate of the ground state energy.

5. Matrix diagonalization.

The dynamic of a three-state system of configurations $|1\rangle, |2\rangle, |3\rangle$, is governed by the Hamiltonian $\mathcal{H}_0 = -\sum_{i,j} |i\rangle\langle j|$, which is

$$-|1\rangle\langle 1| - |1\rangle\langle 2| - |1\rangle\langle 3|$$
$$-|2\rangle\langle 1| - |2\rangle\langle 2| - |2\rangle\langle 3|$$
$$-|3\rangle\langle 1| - |3\rangle\langle 2| - |3\rangle\langle 3|.$$

Work out the Hamiltonian matrix elements $\langle i|\mathcal{H}_0|j\rangle$, and present the corresponding 3×3 matrix.

Find eigen energies as well as the corresponding eigenstates.

A small perturbation $gV = g|1\rangle\langle 1|$ is applied $(g \ll 1)$. Find the 1st order and 2nd order corrections of the ground state energy .

The matrix of Hamiltonian of \mathcal{H}_0 is

$$-\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

. It is easy to see the eigen-column-vectors and eigen-values are

$$N_a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, E_a = -3 ; \quad N_b \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}, E_b = 0 ; \quad N_c \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, E_c = 0 .$$

The normalizations are $N_a = \frac{1}{\sqrt{3}}, N_b = \frac{1}{\sqrt{6}}, N_c = \frac{1}{\sqrt{2}}$. As b and c are degenerate in energy, their other superpositions are also acceptable. The ground state and the two excited states are

$$|a\rangle_0 = \frac{1}{\sqrt{3}}(|1\rangle + |2\rangle + |3\rangle)$$
$$|b\rangle_0 = \frac{1}{\sqrt{6}}(-2|1\rangle + |2\rangle + |3\rangle)$$
$$|c\rangle_0 = \frac{1}{\sqrt{3}}(+|2\rangle - |3\rangle)$$

We find the following matrix elements of the perturbed interaction,

$${}_{0}\langle a|gV|a\rangle_{0} = \frac{1}{3}g$$
$${}_{0}\langle b|gV|a\rangle_{0} = \frac{1}{\sqrt{18}}(-2g)$$
$${}_{0}\langle c|gV|a\rangle_{0} = 0g$$

The ground energy is corrected by perturbation as

$$E_a = -3 + \frac{1}{3}g - \frac{2}{27}g^2 + \cdots$$