Correction TD 5.3 - Suites récurrentes $u_{n+1} = f(u_n)$

Entraînements

Exercice 1. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et $\forall n\geq 1,\ u_{n+1}=\frac{(1+u_n)^2}{4}$.

Correction 1. C'est une suite de type $u_{n+1} = f(u_n)$, on donne les idées de l'étude. Ainsi la rédaction dans une copie doit être beaucoup plus détaillée qu'ici.

1. Étude de la fonction f associée : $x \mapsto \frac{(1+x)^2}{4}$ La fonction f est définie, continue et dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{1+x}{2}.$$

On obtient ainsi le tableau de variation suivant :

2. Calcul des limites éventuelles :

La fonction f est continue sur \mathbb{R} , ainsi, si la suite $(u_n)_{n\in\mathbb{N}}$ converge, elle ne peut converger que vers l vérifiant

$$l = f(l) \Leftrightarrow l = 1.$$

Ainsi, 1 est la seule limite éventuelle de la suite.

3. La suite est bien définie et elle appartient à I intervalle stable par f:
On remarque que [0,1] est un intervalle stable par f et que $u_0 = 0 \in [0,1]$. Un raisonnement par récurrence permet alors de vérifier que la suite est bien définie et que :

$$\forall n \in \mathbb{N}, \quad u_n \in [0, 1].$$

4. Étude de la monotonie de la suite :

La fonction f est croissante sur [0,1] et la suite $(u_n)_{n\in\mathbb{N}}$ est bien à valeurs dans [0,1], ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est monotone. Il suffit alors de comparer u_1 et u_0 et on obtient

$$u_1 = \frac{1}{4} > u_0.$$

Ainsi, un raisonnement par récurrence permet de montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante (voir les exemples du cours, le raisonnement par récurrence est obligatoire).

5. Étude de la convergence de la suite :

La suite $(u_n)_{n\in\mathbb{N}}$ est ainsi croissante et majorée par 1, elle converge donc vers une limite finie $l\in\mathbb{R}$ d'après le théorème sur les suites monotones. De plus, comme la seule limite éventuelle est 1, on sait que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 1.

Exercice 2. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=\frac{1}{2}$ et $\forall n\geq 1,\, u_{n+1}=\sqrt{1+u_n^2}$.

Correction 2. C'est une suite de type $u_{n+1} = f(u_n)$, on donne les idées de l'étude. Ainsi la rédaction dans une copie doit être beaucoup plus détaillée qu'ici.

1. Étude de la fonction f associée : $x \mapsto \sqrt{1+x^2}$ La fonction f est définie, continue et dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{x}{\sqrt{1+x^2}}.$$

On obtient ainsi le tableau de variation suivant :

x	$-\infty$	0		$+\infty$
f'(x)	-	0	+	
f(x)	+∞	1		$+\infty$

2. Calcul des limites éventuelles :

La fonction f est continue sur \mathbb{R} , ainsi, si la suite $(u_n)_{n\in\mathbb{N}}$ converge, elle ne peut converger que vers l vérifiant l=f(l). Un calcul rapide montre qu'il n'y a pas de limite éventuelle.

3. La suite est bien définie et elle appartient à I intervalle stable par f:

On remarque que $[0, +\infty[$ est un intervalle stable par f et que $u_0 = \frac{1}{2} \in [0, +\infty[$. Un raisonnement par récurrence permet alors de vérifier que la suite est bien définie et que :

$$\forall n \in \mathbb{N}, \quad u_n \geq 0.$$

4. Étude de la monotonie de la suite :

La fonction f est croissante sur $[0, +\infty[$ et la suite $(u_n)_{n\in\mathbb{N}}$ est bien à valeurs dans $[0, +\infty[$, ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est monotone. Il suffit alors de comparer u_1 et u_0 et on obtient

$$u_1 = \frac{\sqrt{5}}{2} > u_0.$$

Ainsi, un raisonnemnt par récurrence permet de montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante (voir les exemples du cours, le raisonnement par récurrence est obligatoire).

5. Étude de la convergence de la suite :

La suite $(u_n)_{n\in\mathbb{N}}$ est croissante donc d'après le théorème sur les suites monotones, elle tend vers une limite finie ou $+\infty$. Comme il n'y a pas de limite éventuelle possible, on montre par un raisonnement rapide par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$

Exercice 3. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et $\forall n\geq 1,\ u_{n+1}=e^{u_n}$.

Correction 3. C'est une suite de type $u_{n+1} = f(u_n)$, on donne les idées de l'étude.

1. Étude de la fonction f associée : $x \mapsto e^x$ La fonction f est définie, continue et dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ f'(x) = e^x.$$

On obtient ainsi le tableau de variation suivant :

x	$-\infty$	0	$+\infty$
f(x)	0		$+\infty$

2. Calcul des limites éventuelles :

La fonction f est continue sur \mathbb{R} , ainsi, si la suite $(u_n)_{n\in\mathbb{N}}$ converge, elle ne peut converger que vers l vérifiant l=f(l). Étudions alors la fonction $g: x\mapsto g(x)=f(x)-x$. L'étude d'une telle fonction donne que :

$$\forall x \in \mathbb{R}, \quad g(x) \ge 1.$$

En particulier, il n'y a pas de valeur d'annulation de g et donc il n'y a pas de limite éventuelle pour la suite $(u_n)_{n\in\mathbb{N}}$.

- 3. La suite est bien définie et elle appartient à I intervalle stable par f: \mathbb{R}^+ est un intervalle stable par f et $u_1 > 0$. Ainsi, on montre par récurrence que la suite est bien définie et que : $\forall n \in \mathbb{N}^+$, $u_n \geq 0$. (On ne commence pas au rang 0 car $u_0 \in \mathbb{R}$).
- 4. Étude de la monotonie de la suite : Soit $n \in \mathbb{N}$, on a : $u_{n+1} - u_n = g(u_n) \ge 1 > 0$. Donc la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
- 5. Étude de la convergence de la suite : La suite $(u_n)_{n\in\mathbb{N}}$ est croissante donc d'après le théorème sur les suites monotones, elle tend vers une limite finie ou $+\infty$. Comme il n'y a pas de limite éventuelle possible, par un raisonnement par l'absurde, on obtient que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$

Type DS

Exercice 4. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}$ et $\forall n\geq 1, u_{n+1}=\frac{3}{4}u_n^2-2u_n+3$.

- 1. Étudier la fonction f associée.
- 2. Étudier le signe de $g: x \mapsto f(x) x$.
- 3. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.
- 4. On suppose que $u_0 > 2$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n > 2$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 5. On suppose que $u_0 \in \left] \frac{2}{3}, 2\right[$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N}$: $u_n \in \left[\frac{2}{3}, 2\right[$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.

Correction 4.

- 1. Étudier les variations de la fonction $f: x \mapsto \frac{3}{4}x^2 2x + 3$ associée :
 - La fonction f est bien définie sur $\mathbb R$ comme fonction polynomiale.
 - La fonction f est dérivable sur \mathbb{R} comme fonction polynomiale et pour tout $x \in \mathbb{R}$: $f'(x) = \frac{3}{2}x 2$.
 - On obtient ainsi les variations suivantes :

x	$-\infty$ $\frac{4}{3}$ 2 $+\infty$
f'(x)	- 0 +
f	$+\infty$ $+\infty$ $\frac{5}{3}$ -2

- Les limites en $\pm \infty$ s'obtiennent avec le théorème du monôme de plus haut degré.
- 2. Étudier le signe de la fonction $g: x \mapsto f(x) x = \frac{3}{4}x^2 3x + 3$:

Le discriminant vaut $\Delta = 0$ et l'unique racine est 2. Ainsi

la fonction g est positive sur \mathbb{R} et ne s'annule qu'en 2.

3. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$:

On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel $l\in\mathcal{D}_f=\mathbb{R}$.

- * On a donc:
 - \circ La suite converge vers l.
 - \circ La fonction f est continue sur \mathbb{R} comme fonction polynomiale donc elle est en particulier continue en l.

Donc d'après le théorème sur les suite et fonction, on obtient que : $\lim_{n\to+\infty} f(u_n) = f(l)$.

- * De plus on a : $\lim_{n \to +\infty} u_{n+1} = l$.
- \star On peut donc passer à la limite dans l'égalité : $u_{n+1} = f(u_n)$ et on obtient que : l = f(l)/2
- $\star \ \, \text{On a donc} : l = f(l) \Leftrightarrow g(l) = 0 \Leftrightarrow l = 2. \\ \, \text{La seule limite éventuelle est 2.}$
- 4. On suppose que $u_0 > 2$:
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n > 2$:

On peut commencer par montrer que l'intervalle $]2, +\infty[$ est stable par f. On a f strictement croissante sur $[2, +\infty[$, et f(2) = 2. Donc pour tout $x \in [2, +\infty[$, f(x) > 2 et l'intervalle $]2, +\infty[$ est stable par f.

On montre par récurrence sur $n \in \mathbb{N}$ la propriété : $\mathcal{P}(n)$: u_n existe et $u_n > 2$.

- * Initialisation : pour n = 0 : par définition de la suite, u_0 existe et $u_0 > 2$. Donc $\mathcal{P}(0)$ est vraie.
- * Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose que la propriété vraie à l'ordre n, montrons que $\mathcal{P}(n+1)$ est vraie. Par hypothèse de récurrence, on sait que u_n existe et que $u_n > 2$. Donc $f(u_n)$ existe c'est-à-dire u_{n+1} existe. De plus, l'intervalle $]2, +\infty[$ est stable par f. Donc $f(u_n) > 2$ c'est-à-dire $u_{n+1} > 2$. Donc $\mathcal{P}(n+1)$ est vraie.
- * Conclusion : il résulte du principe de récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\in\mathbb{N},\ u_n>2$.
- (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$:

Soit $n \in \mathbb{N}$, on a : $u_{n+1} - u_n = f(u_n) - u_n = g(u_n)$. Ainsi comme le signe de g est positif sur \mathbb{R} , on obtient que pour tout $n \in \mathbb{N}$: $u_{n+1} - u_n \ge 0$. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

- (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$:
 - ★ La suite $(u_n)_{n\in\mathbb{N}}$ est croissante donc d'après le théorème sur les suites monotones, elle converge ou elle diverge vers $+\infty$.
 - \star On suppose par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel l. On a alors :
 - \circ La suite $(u_n)_{n\in\mathbb{N}}$ converge vers l.
 - \circ Comme la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, on a pour tout $n\in\mathbb{N}:u_n\geq u_0$.

D'après le théorème de passage à la limite, on obtient donc que : $l \geq u_0$. Or par hypothèse, on sait que $u_0 > 2$. Ainsi on obtient que : l > 2. Absurde car la seule limite éventuelle de la suite $(u_n)_{n \in \mathbb{N}}$ est 2. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$.

- 5. On suppose que $u_0 \in \left[\frac{2}{3}, 2\right[$:
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N}$: $u_n = \frac{2}{3}$, $2 = \frac{2}{3}$

On peut commencer par montrer que l'intervalle $\left[\frac{2}{3}, 2\right[$ est stable par f. Attention, ici f

n'est pas monotone sur $\left[\frac{2}{3}, 2\right[$, il faut donc traiter les deux intervalles $\left[\frac{2}{3}, \frac{4}{3}\right]$ et $\left[\frac{4}{3}, 2\right]$ séparemment.

Sur $\left[\frac{2}{3}, \frac{4}{3}\right]$, f est strictement décroissante et $f\left(\frac{2}{3}\right) = 2$, $f\left(\frac{4}{3}\right) = \frac{5}{3}$. Donc pour tout $x \in \left[\frac{2}{3}, \frac{4}{3}\right], f(x) \in \left[\frac{5}{3}, 2\right], \text{ donc } f(x) \in \left[\frac{2}{3}, 2\right].$ Sur $\left[\frac{4}{3}, 2\right]$, f est strictement croissante et f(2) = 2, $f\left(\frac{4}{3}\right) = \frac{5}{3}$. Donc pour tout $x \in \left[\frac{4}{3}, 2\right]$,

 $f(x) \in \left[\frac{5}{3}, 2\right], \text{ donc } f(x) \in \left[\frac{2}{3}, 2\right].$

En en déduit que pour tout $x \in \left[\frac{2}{3}, 2\right[$, on a bien $f(x) \in \left[\frac{2}{3}, 2\right[$: l'intervalle $\left[\frac{2}{3}, 2\right[$ est stable par f.

On montre par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: u_n existe et $u_n \in \left| \frac{2}{3}, 2 \right|$.

- * Initialisation : pour n=0 : par définition de la suite, u_0 existe et $u_0 \in \left|\frac{2}{3}, 2\right|$. Donc $\mathcal{P}(0)$ est vraie.
- \star Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose que la propriété vraie à l'ordre n, montrons que $\mathcal{P}(n+1)$ est vraie. Par hypothèse de récurrence, on sait que u_n existe et que $u_n \in \left[\frac{2}{3}, 2\right]$. Donc $f(u_n)$ existe c'est-à-dire u_{n+1} existe. De plus, $u_n \in \left[\frac{2}{3}, 2\right[$. Or l'intervalle $\left[\frac{2}{3}, 2\right[$ est stable par f. Donc $f(u_n) \in \left[\frac{2}{3}, 2\right[$ c'est-à-dire $u_{n+1} \in \left[\frac{2}{3}, 2\right]$. Donc $\mathcal{P}(n+1)$ est vraie.
- \star Conclusion : il résulte du principe de récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\in\mathbb{N},\ u_n\in\left]\frac{2}{3},2\right[$.

(b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$:

Soit $n \in \mathbb{N}$, on a : $u_{n+1} - u_n = f(u_n) - u_n = g(u_n)$. Ainsi comme le signe de g est positif sur \mathbb{R} , on obtient que pour tout $n \in \mathbb{N}$: $u_{n+1} - u_n \ge 0$. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

- (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$:
 - \star La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par 2 donc d'après le théorème sur les suites monotones, elle converge.
 - \star Comme la seule limite éventuelle est 2, la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 2.

Exercice 5. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = \frac{1}{3}u_n^2 - u_n + 3 \end{cases}$

- 1. Étudier la fonction f associée.
- 2. Étudier le signe de $g: x \mapsto f(x) x$.
- 3. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.
- 4. Que peut-on dire de la suite $(u_n)_{n\in\mathbb{N}}$ lorsque $u_0=3$ ou $u_0=0$?
- 5. On suppose que $u_0 \in]0,3[$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n \in]0,3[$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 6. On suppose que $u_0 > 3$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n > 3$.

- (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
- (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 7. On suppose que $u_0 < 0$.
 - (a) Montrer que $u_1 > 3$.
 - (b) En déduire le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.

Correction 5.

- 1. Étudier les variations de la fonction $f: x \mapsto \frac{1}{3}x^2 x + 3$ associée :
 - La fonction f est bien définie sur \mathbb{R} comme fonction polynomiale.
 - La fonction f est dérivable sur \mathbb{R} comme fonction polynomiale et pour tout $x \in \mathbb{R}$: $f'(x) = \frac{2}{3}x 1$.
 - On obtient ainsi les variations suivantes :

- Les limites en $\pm \infty$ s'obtiennent avec le théorème du monôme de plus haut degré.
- 2. Étudier le signe de la fonction $g: x \mapsto f(x) x = \frac{1}{3}x^2 2x + 3$:

Le discriminant vaut $\Delta = 0$ et l'unique racine est 3. Ainsi

la fonction g est positive sur \mathbb{R} et ne s'annule qu'en 3.

3. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$:

On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel $l\in\mathcal{D}_f=\mathbb{R}$.

- ★ On a donc:
 - \circ La suite converge vers l.
 - La fonction f est continue sur \mathbb{R} comme fonction polynomiale donc elle est en particulier continue en l.

Donc d'après le théorème sur les suite et fonction, on obtient que : $\lim_{n\to+\infty} f(u_n) = f(l)$.

- * De plus on a : $\lim_{n \to +\infty} u_{n+1} = l$.
- \star On peut donc passer à la limite dans l'égalité : $u_{n+1} = f(u_n)$ et on obtient que : l = f(l)/l
- * On a donc : $l = f(l) \Leftrightarrow g(l) = 0 \Leftrightarrow l = 3$. La seule limite éventuelle est 3.
- 4. Que peut-on dire de la suite $(u_n)_{n\in\mathbb{N}}$ lorsque $u_0=3$ ou $u_0=0$?:
 - Cas 1 : si $u_0 = 3$:

Comme 3 est le point fixe de f, on a : $u_1 = f(u_0) = f(3) = 3$ puis $u_2 = f(u_1) = f(3) = 3$... On montre alors par récurrence que

la suite $(u_n)_{n\in\mathbb{N}}$ est constante égale à 3 et donc qu'elle converge vers 3.

• Cas 2 : si $u_0 = 0$:

On a par définition de la suite : $u_1 = f(u_0) = f(0) = 3$. Mais comme 3 est le point fixe de la fonction f, on a alors $u_2 = f(u_1) = f(3) = 3$ puis $u_3 = f(u_2) = f(3) = 3$... On montre alors par récurrence sur $n \ge 1$ que

la suite $(u_n)_{n\in\mathbb{N}}$ est stationnaire égale à 3 et donc qu'elle converge vers 3.

5. On suppose que $u_0 \in]0,3[$.

(a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N}$: $u_n \in]0,3[$:

On peut commencer par montrer que l'intervalle]0,3[est stable par f. On traite ici les intervalles $]0,\frac{3}{2}[$ et $[\frac{3}{2},3[$ séparemment.

La fonction f est strictement décroissante sur $\left]0, \frac{3}{2}\right]$, et f(0) = 3, $f\left(\frac{3}{2}\right) = \frac{9}{4}$. Donc pour tout $x \in \left[0, \frac{3}{2}\right]$, $f(x) \in \left[\frac{9}{4}, \frac{3}{2}\right]$, donc $f(x) \in \left]0, 3\right[$.

La fonction f est strictement croissante sur $\left[\frac{3}{2}, 3\right[$, et f(3) = 3, $f\left(\frac{3}{2}\right) = \frac{9}{4}$. Donc pour tout $x \in \left[\frac{3}{2}, 3\right[$, $f(x) \in \left[\frac{9}{4}, 3\right]$, donc $f(x) \in \left[0, 3\right[$.

Ainsi, pour tout $x \in]0,3[,f(\bar{x}) \in]0,3[$, et donc l'intervalle]0,3[est stable par f. On montre par récurrence sur $n \in \mathbb{N}$ la propriété : $\mathcal{P}(n)$: u_n existe et $u_n \in]0,3[$.

- ★ Initialisation : pour n = 0 : Par définition de la suite, on a bien que u_0 existe et $u_0 \in]0,3[$. Donc $\mathcal{P}(0)$ est vraie.
- * Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose que la propriété vraie à l'ordre n, montrons que $\mathcal{P}(n+1)$ est vraie.
 - o Par hypothèse de récurrence, on sait que u_n existe et que $u_n \in]0,3[$. En particulier u_n existe et $u_n \in \mathcal{D}_f$. Donc $f(u_n)$ existe c'est-à-dire u_{n+1} existe.
 - o Par hypothèse de récurrence, on sait que u_n existe et que $u_n \in]0,3[$. Or l'intervalle]0,3[est stable par f. Donc $f(u_n) \in]0,3[$ c'est-à-dire $u_{n+1} \in]0,3[$.

Donc $\mathcal{P}(n+1)$ est vraie.

- * Conclusion : il résulte du principe de récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\in\mathbb{N},\ u_n\in]0,3[$.
- (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$:

Soit $n \in \mathbb{N}$, on a : $u_{n+1} - u_n = f(u_n) - u_n = g(u_n)$. Ainsi comme le signe de g est positif sur \mathbb{R} , on obtient que pour tout $n \in \mathbb{N}$: $u_{n+1} - u_n \ge 0$. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

- (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$:
 - ★ La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par 3 donc d'après le théorème sur les suites monotones, elle converge.
 - * Comme la seule limite éventuelle est 3, la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 3.
- 6. On suppose que $u_0 > 3$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n > 3$:

On peut commencer par montrer que l'intervalle $]3, +\infty[$ est stable par f. On a f strictement croissante sur $]3, +\infty[$, et f(3)=3, donc pour tout $x\in]3, +\infty[$, f(x)>3 et l'intervalle $]3, +\infty[$ est stable par f.

 \star On montre par récurrence sur $n \in \mathbb{N}$ la propriété

$$\mathcal{P}(n)$$
: u_n existe et $u_n > 3$.

 \star Initialisation : pour n=0 :

Par définition de la suite, on a bien que u_0 existe et $u_0 > 3$. Donc $\mathcal{P}(0)$ est vraie.

- * Hérédité : soit $n \in \mathbb{N}$ fixé, on suppose que la propriété vraie à l'ordre n, montrons que $\mathcal{P}(n+1)$ est vraie.
 - o Par hypothèse de récurrence, on sait que u_n existe et que $u_n > 3$. En particulier u_n existe et $u_n \in \mathcal{D}_f$. Donc $f(u_n)$ existe c'est-à-dire u_{n+1} existe.
 - o Par hypothèse de récurrence, on sait que u_n existe et que $u_n > 3$. Or l'intervalle $]3, +\infty[$ est stable par f. Donc $f(u_n) > 3$ c'est-à-dire $u_{n+1} > 3$.

Donc $\mathcal{P}(n+1)$ est vraie.

- * Conclusion : il résulte du principe de récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\in\mathbb{N},\ u_n>3$.
- (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$:

Soit $n \in \mathbb{N}$, on a : $u_{n+1} - u_n = f(u_n) - u_n = g(u_n)$. Ainsi comme le signe de g est positif sur \mathbb{R} , on obtient que pour tout $n \in \mathbb{N}$: $u_{n+1} - u_n \ge 0$. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

- (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$:
 - ★ La suite $(u_n)_{n\in\mathbb{N}}$ est croissante donc d'après le théorème sur les suites monotones, elle converge ou elle diverge vers $+\infty$.
 - \star On suppose par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel l. On a alors :
 - \circ La suite $(u_n)_{n\in\mathbb{N}}$ converge vers l.
 - Comme la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, on a pour tout $n\in\mathbb{N}: u_n\geq u_0$.

D'après le théorème de passage à la limite, on obtient donc que : $l \geq u_0$. Or par hypothèse, on sait que $u_0 > 3$. Ainsi on obtient que : l > 3. Absurde car la seule limite éventuelle de la suite $(u_n)_{n \in \mathbb{N}}$ est 3. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$.

- 7. On suppose que $u_0 < 0$.
 - (a) Montrer que $u_1 > 3$:

On a:

- \star La fonction f est continue sur $]-\infty,0[$ comme fonction polynomiale.
- * La fonction f est strictement décroissante sur $]-\infty,0[$.
- $\star \lim_{x \to -\infty} f(x) = +\infty \text{ et } f(0) = 3$

Ainsi d'après le théorème de la bijection, on a en particulier que $f(]-\infty,0[)=]3,+\infty[$. Or on a supposé que $u_0 \in]-\infty,0[$ donc $f(u_0) \in]3,+\infty[$, à savoir $u_1 \in]3,+\infty[$. Donc on a bien $u_1 > 3$.

(b) En déduire le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$:

La suite $(u_n)_{n\geq 1}$ a donc un terme initial $u_1 > 3$. Ainsi la suite $(u_n)_{n\geq 1}$ se comporte comme la suite de la question 5 et en particulier elle diverge vers $+\infty$. Mais le comportement à l'infini d'une suite ne dépend pas de ses premiers termes donc la suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.