Photogrammetry using Stereo Image Pairs

Anfängerpraktikum • Justin Sostmann • Manuel Trageser

Photogrammetrie

Definition:

"Photogrammetrie [...] ist eine Gruppe von berührungslosen Messmethoden und Auswerteverfahren, um aus Fotografien eines Objektes durch Bildmessung seine Lage und Form indirekt zu bestimmen [...]."

2

Photogrammetrie

Definition:

"Photogrammetrie [...] ist eine Gruppe von berührungslosen Messmethoden und Auswerteverfahren, um aus Fotografien eines Objektes durch Bildmessung seine Lage und Form indirekt zu bestimmen [...]."

Generell:

Tiefen-Rekonstruktion aus (Stereo) Bildern.

3

Anwendung

- Landvermessung
 - Google Earth
- Film- und Spielindustrie
 - High-Poly Meshes
- Autonomes Fahren

ttps://earth.google.com

https://www.ea.com/frostbite/news/photogrammetry-and-star-wars-battlefront

Arten der Photogrammetrie

- Shape from shading
 - Licht und Schatten
- Structure from motion
 - Überlappung zeitversetzter Bilder

Arten der Photogrammetrie

- Shape from shading
 - Licht und Schatten
- Structure from motion
 - Überlappung zeitversetzter Bilder
- Stereophotogrammetry
 - Keypoint Triangulation

Ziel des Praktikums

- Methoden zur Bildverarbeitung in Python
- Mesh Generation in Python
- Pinhole Camera Model

→ 3D Modelle aus Bildern

Theorie

Pinhole Camera

Intrinsic/Extrinsic Matrix

		focal length				rotation		translation	Γ_{Y}
S	$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	 $\begin{bmatrix} f \\ 0 \\ 0 \end{bmatrix}$	0 f 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} r1 \\ r4 \\ r7 \end{bmatrix}$	$r2 \\ r5 \\ r8$	r3 $r6$ $r9$	$\begin{bmatrix} t1 \\ t2 \\ t3 \end{bmatrix}$	$egin{array}{c c} X \\ Y \\ Z \\ 1 \end{array}$
				_	_			_	T

Stereo Vision

1

Ideal Case

$$s \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u0 \\ 0 & f & v0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -B \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$Z = f * (x - x')/B$$
Disparity

Example

Example

Example

Playground

https://ksimek.github.io/perspective_camera_toy.html

Praxis

Image Processing

- Python
- OpenCV
 - o Bilder einlesen (BGR)
- Plotly
 - o Bilder anzeigen (RGB)

- Vordergrund vom Hintergrund trennen
- Shadow Reduction
- Grayscale
- Threshold Value
- Largest Contour

Reduced Shadows

Grayscaled

Mask

Largest Contour

Meshes

- open3d Modul in Python
- Point Clouds
- STL
- Andere Datentypen

Lithophane

- Licht durch Platte
- Tiefe über Farbwerte

Stereo Bildpaare

- horizontal verschoben (Baseline)
- Rectification, um nicht perfekte Verschiebung zu korrigieren

Keypoints

SIFT keypoints

Keypoint Matching

Keypoint Matches

Epipolar Lines

Epipolar lines

Rectification

Rectified images

Disparity Map

- cv2::StereoSBGM
 - Pixel/Blocks werden zwischen beiden Bildern gematched
 - Verschiebungsvektor zu selbem Pixel/Block im anderen Bild wird berechnet

Stereo Bildpaar Handykamera

Disparity Map?

Keypoints?

- keine eindeutigen Muster
 - schwieriges keypoint matching
 - schwierig Pixel/Block Similarity zu vergleichen für Disparity
- keine Tiefeninformation
 - keine Parallaxe

keine eindeutigen Muster

schwieriges keypoint matching

schwierig Pixel/Block Similarity zu vergleichen für Disparity

Tiefenschärfe/unschärfe

- Tiefenschärfe
- Muster
- Parallaxe

Stereo Point Cloud

ullet Tiefe aus Disparity Map über Z=fst(x-x')/B

Stereo Point Cloud

3D Modell / Mesh

- 4 Stereo Image Pairs
 - Vorne, Links, Hinten, Rechts
- Generiere 4 unabhängige Point Clouds
- Problem: Wie fügt man alle 4 Point Clouds in ein zusammenhängendes Modell zusammen?

Ergebnisse

Ergebnisse

https://github.com/PPBP-2021/photogrammetry

Fazit

- Bildverarbeitung in Python generell über OpenCV einfach möglich
 - o Fine-Tuning / Anpassung an konkrete Probleme teilweise schwierig
- Stereo Bilder am Handy schwer machbar
 - o Tiefenschärfe, Color Correction
- Photogrammetrie ist ein m\u00e4chtiges Tool
- Einzelne Algorithmen sind leicht anwendbar und verständlich
 - Generalisierung der Algorithmen ist schwer

- Gute 3D Point Clouds
- Rekonstruieren der 3D Szene

Quellen

https://ksimek.github.io/2013/08/13/intrinsic/

https://towardsdatascience.com/3-d-reconstruction-with-vision-ef0f80cbb299

https://docs.opencv.org/4.x/dd/d53/tutorial_py_depthmap.html

https://learnopencv.com/depth-perception-using-stereo-camera-python-c/

https://learnopencv.com/introduction-to-epipolar-geometry-and-stereo-vision/

https://en.wikipedia.org/wiki/HSL and HSV

https://en.wikipedia.org/wiki/Binocular disparity