The models K(F)

Remark 1. Assume that \mathcal{M} is a model of T_{ALL} satisfying the properties (1) and (2) and Ω , \mathcal{A} , \mathcal{B} and \mathcal{I} are as we defined them in earlier sheets. Moreover, assume that $L \subseteq L_{all}$ is some fixed language.

Definition 2. We say that a non-empty set of functions F is an L-closed family of random variables if

- 1. $F \subseteq \mathcal{M}$,
- 2. every $\alpha \in F$ is a function $\alpha : \Omega \to \mathcal{M}$,
- 3. F contains all L-constants and for every k-ary L-function f and every $\alpha_1, \ldots, \alpha_k$ the function

$$f(\alpha_1, \dots, \alpha_n)(\omega) = f(\alpha_1(\omega), \dots, \alpha_k(\omega))$$

is in F.

Note that F itself may not be \mathcal{M} -definable.

Definition 3 (The structures K(F)). Assume that F is an L-closed family. The structure K(F) is a Boolean-valued structure, whose universe is F. The Boolean valuation of L-sentences with parameters from F has values in \mathcal{B} and is given by the following inductive conditions:

- $\llbracket \alpha = \beta \rrbracket = \{ \omega \in \Omega; \alpha(\omega) = \beta(\omega) \} / \mathcal{I}$
- $[R(\alpha_1, \ldots, \alpha_k)] = {\{\omega \in \Omega; R(\alpha_1(\omega), \ldots, \alpha_k(\omega))\}}/\mathcal{I}, R \in L,$
- $[\![]\!]$ commutes with \neg , \lor and \land .
- $[(\forall x)(A(x))] = \bigwedge_{\alpha \in F} [A(\alpha)]$
- $\llbracket (\exists x)(A(x)) \rrbracket = \bigvee_{\alpha \in F} \llbracket A(\alpha) \rrbracket$.

We say an L-sentence A is valid in K(F) if $[A] = 1_{\mathcal{B}}$.

Remark 4. An implication $B \to A$ is valid in K(F) if and only if $[B] \le [A]$.

Fact 5. Let T be a set of L-sentences and A an L-sentence. If $T \vdash A$, then there is a finite $T_0 \subseteq T$ such that

$$\bigwedge_{B \in T_0} [\![B]\!] \le [\![A]\!].$$

Definition 6. Let $n \in \mathcal{M} \setminus \mathbb{N}$ be even, and $\Omega = \{m < n; m \in \mathcal{M}\}$. We let $F_{bit} = \{0, 1, \alpha, \beta\}$, where α is the function $\omega \mapsto \omega \mod 2$ and β is $\omega + 1 \mapsto \omega \mod 2$. Also, let $L_{bit} \subseteq L_{all}$ be the language consisting of the constants 0, 1, all relations and all functions with range contained in $\{0, 1\}$.

Exercise 7. Show that F_{bit} is L_{bit} -closed.

Exercise 8. Show that in $K(F_{bit})$ we have $[0 \le \alpha \land \alpha \le 1] = 1_{\mathcal{B}}$.

Exercise 9. Show that in $K(F_{bit})$ we have

- $\llbracket \alpha = 0 \rrbracket \neq 1_{\mathcal{B}}$
- $[\alpha = 1] \neq 1_{\mathcal{B}}$
- $\llbracket (\alpha = 0) \lor (\alpha = 1) \rrbracket = 1_{\mathcal{B}}$
- $\bullet \ \llbracket \alpha = \beta \rrbracket = 0_{\mathcal{B}}.$

Compute the values of $\mu(\llbracket \alpha = 0 \rrbracket)$ and $\mu(\llbracket \alpha = 1 \rrbracket)$.

Exercise 10 (*). Show that in $K(F_{bit})$ for any L_{bit} -sentence A we have

$$\mu(\llbracket A \rrbracket) \in \{0, 1/2, 1\}.$$

Definition 11. We say K(F) witnesses existential sentences if: For every quantifier free L-sentence A, potentially with F-parameters, we have that there is $\gamma \in F$ such that

$$[\![(\exists x)A(x)]\!] = [\![A(\gamma)]\!].$$

Definition 12. Let $n \in \mathcal{M} \setminus \mathbb{N}$ be even and $\Omega = \{m < n; m \in \mathcal{M}\}$. We let $F'_{bit} = \{\alpha, \beta\}$, where α is the function $\omega \mapsto \omega \mod 2$ and β is $\omega + 1 \mapsto \omega \mod 2$. And let $L'_{bit} \subseteq L_{all}$ be the language consisting of the constants 0, 1 and all relations.

Exercise 13. Show that F'_{bit} is L'_{bit} -closed but not L_{bit} -closed.

Exercise 14. Show that $K(F'_{bit})$ does not witness existential sentences.

Exercise 15 (*). Show that $K(F_{bit})$ does witness existential sentences.

Exercise 16 (*). Prove or disprove: Every family of random variables F which has exactly one non-constant function does witness existential quantifiers.

Definition 17. For a prefix class of formulas Γ and a theory T, let $\Gamma(T)$ be the set of all formulas from T which are in the prefix class Γ . E.g. $\forall (T)$ denotes the set of universal formulas from T.

Theorem 18. Let F be an L-closed family. Then, $\forall (\operatorname{Th}(\mathbb{N}))$ is valid in K(F). Moreover, if F contains all elements of \mathbb{N} as constant functions, then $\exists \forall (\operatorname{Th}(\mathbb{N}))$ is valid in K(F).