Modal and Temporal Logics

Colin Stirling
School of Informatics
University of Edinburgh

July 24, 2003

Introduced transition systems

- ullet a set of states S
- ullet a set of labels A
- ullet a set of transitions: $s \xrightarrow{a} s'$ where $s, s' \in S$, $a \in A$

Or Kripke structure where labels appear at states ("colours")

$$\Phi ::= \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [K]\Phi \mid \langle K \rangle \Phi$$

Semantics $E \models \Phi$

$$E \models \Phi$$

$$\begin{array}{lll} E \models \mathtt{tt} \\ E \not\models \mathtt{ff} \\ E \models \Phi \wedge \Psi & \mathrm{iff} & E \models \Phi \ \mathrm{and} \ E \models \Psi \\ E \models \Phi \vee \Psi & \mathrm{iff} & E \models \Phi \ \mathrm{or} \ E \models \Psi \\ E \models [K]\Phi & \mathrm{iff} & \forall F \in \{E': E \xrightarrow{a} E' \ \mathrm{and} \ a \in K\}. \ F \models \Phi \\ E \models \langle K \rangle \Phi & \mathrm{iff} & \exists F \in \{E': E \xrightarrow{a} E' \ \mathrm{and} \ a \in K\}. \ F \models \Phi \end{array}$$

 $\mathsf{Kripke} \ \mathsf{model} = \mathsf{Kripke} \ \mathsf{structure} + L : \mathsf{Colours} \to S.$

Modal Logic: Syntax

$$\Phi ::= p \mid \neg p \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [-]\Phi \mid \langle - \rangle \Phi$$

Semantics

```
\begin{array}{lll} E \models p & \text{iff} & E \in L(p) \\ E \models \neg p & \text{iff} & E \not\in L(p) \\ E \models \Phi \land \Psi & \text{iff} & E \models \Phi \text{ and } E \models \Psi \\ E \models \Phi \lor \Psi & \text{iff} & E \models \Phi \text{ or } E \models \Psi \\ E \models [-]\Phi & \text{iff} & \forall F \in \{E' : E \longrightarrow E'\}. \ F \models \Phi \\ E \models \langle - \rangle \Phi & \text{iff} & \exists F \in \{E' : E \stackrel{a}{\longrightarrow} E'\}. \ F \models \Phi \end{array}
```


Summary: Bisimulation on Transition Systems

A binary relation B between states of a transition system is a bisimulation provided that, whenever $(E,F)\in B$ and $a\in A$,

- if $E \xrightarrow{a} E'$ then $F \xrightarrow{a} F'$ for some F' such that $(E', F') \in B$, and
- if $F \xrightarrow{a} F'$ then $E \xrightarrow{a} E'$ for some E' such that $(E', F') \in B$

Two states E and F are bisimulation equivalent, $E \sim F$, if there is a bisimulation relation B such that $(E,F) \in B$.

Summary: Bisimulation on Kripke Models

A binary relation B between states of a Kripke model is a distinulation provided that, whenever $(E,F)\in B$

- for all colours $p, E \in L(p)$ iff $F \in L(p)$
- if $E \longrightarrow E'$ then $F \longrightarrow F'$ for some F' such that $(E', F') \in B$, and
- if $F \longrightarrow F'$ then $E \longrightarrow E'$ for some E' such that $(E', F') \in B$

Two states E and F are bisimulation equivalent, $E \sim F$, if there is a bisimulation relation B such that $(E,F) \in B$.

Summary: Invariance

- $E \equiv F$ if for all modal Φ , $E \models \Phi$ iff $F \models \Phi$. (E and F have the same modal properties.)
- ullet Proposition if $E \sim F$ then $E \equiv F$

• Proposition if E and F belongs to a finitely branching transition system/Kripke model and $E \equiv F$ then $E \sim F$.

Summary: Unfolding

A transition system/Kripke model can be unfolded into a (bisimulation equivalent) possibly infinite tree

becomes

Computational Properties

- Satisfiability Problem "Given a modal formula Φ , is Φ satisfiable (realisable)?" is **NP**-complete.
- Finite Tree Property If Φ is satisfiable then Φ is satisfiable in a transition system/Kripke model that is a finite tree. (Hence, also **Finite Model Property**: if Φ is satisfiable then Φ is satisfiable in a finite transition system/Kripke model.)
- Model Checking Problem "Given a finite transition system/Kripke model, a state E of it, and a modal formula, does $E \models \Phi$?" is **P**-complete.

Mutual Exclusion: Crucial Properties

- Mutual exclusion
- Absence of deadlock
- Absence of starvation

PROBLEM: None of these properties is expressible in modal logic!

Summary: Runs

- A run from state E_0 is a finite or infinite length sequence of transitions $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} E_n \xrightarrow{a_{n+1}} \dots$ with "maximal" length.
- Similarly, for a Kripke model.
- A run is a branch in the unfolded transition system/Kripke model .

Beyond Modal Logic

Runs provide a means for expressing long term features

- **Mutual exclusion**: no run has the property that two components are in their critical section at the same time.
- Absence of deadlock: every run has infinite length
- **Absence of starvation**: in every run if a component requests entry into critical section then eventually that component will be in its critical section

Summary: Temporal Operators on Runs

• Next: $(K)\Phi$

$$E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \dots E_i \xrightarrow{a_{i+1}} \dots$$

$$a_1 \in K \models \dots$$

$$\Phi$$

• Until: $\Phi \cup \Psi$. Note: the index i can be 0

Summary: Temporal Operators on Runs II

• Eventually: $F\Psi = tt U \Psi$. The index i can be 0

• Always: $G\Psi = \neg F \neg \Psi$

Summary: Linear Time Temporal Logic (LTL)

$$\Phi ::= p \mid \neg \Phi \mid \Phi_1 \wedge \Phi_2 \mid (-)\Phi \mid \Phi \cup \Psi$$

Semantics

A state E of a Kripke model satisfies an LTL formula Φ , written $E \models \Phi$, if for any run π from E, the run $\pi \models \Phi$.

Summary: Invariance

 $E \equiv F$ if for all LTL Φ , $E \models \Phi$ iff $F \models \Phi$.

Proposition If $E \sim F$ then $E \equiv F$.

Proof Sketch Bisimulation equivalence preserves runs.

Summary: Computational Properties I

- Satisfiability Problem "Given an LTL formula Φ , is Φ satisfiable (realisable)?" is **PSPACE**-complete.
- "Tree" Model Property If Φ is satisfiable then Φ is satisfiable in a transition system/Kripke model that is a (regular) infinite tree whose branching degree is one.

Summary: Computational Properties II

• Finite Model Property If Φ is satisfiable then Φ is satisfiable in a finite transition system/Kripke model (that is eventually cyclic).

• Model Checking Problem "Given a finite transition system/Kripke model, a state E of it, and an LTL formula, does $E \models \Phi$?" is **PSPACE**-complete.

Branching Time Logics

For each temporal operator such as F, create two variants

- A F "for all runs eventually" (strong)
- EF "for some run eventually" (weak)

Modal operators are also branching time temporal operators

- $[K] = A \neg (K) \neg$
- $\bullet \langle K \rangle = \mathrm{E}(K)$

Therefore, we can extend modal logic with branching time temporal operators.

Computation Tree Logic (CTL)

$$\Phi ::= \mathsf{tt} \mid \neg \Phi \mid \Phi_1 \wedge \Phi_2 \mid \langle K \rangle \Phi \mid \mathsf{A}(\Phi_1 \cup \Phi_2) \mid \mathsf{E}(\Phi_1 \cup \Phi_2)$$

Semantics

Define when a state of a transition system satisfies a CTL formula.

Semantics of CTL

The new clauses

$$E \models \neg \Phi$$
 iff $E \not\models \Phi$

$$E_0 \models A(\Phi \cup \Psi)$$
 iff for all runs $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \dots$
there is $i \geq 0$ with $E_i \models \Psi$ and
for all $j: 0 \leq j < i, E_j \models \Phi$

$$E_0 \models E(\Phi \cup \Psi)$$
 iff for some run $E_0 \xrightarrow{a_1} E_1 \xrightarrow{a_2} \dots$
there is $i \geq 0$ with $E_i \models \Psi$ and
for all $j : 0 \leq j < i, E_j \models \Phi$

wssa 03 today

Derived Operators

$$AF\Phi = A(ttU\Phi)$$
 $EF\Phi = E(ttU\Phi)$
 $AG\Phi = \neg EF \neg \Phi$
 $EG\Phi = \neg AF \neg \Phi$

- Safety "nothing bad ever happens": in every run bad is never true. A G good
- Liveness "something good eventually happens": in every run good is eventually true. A F good
- Weak Safety in some run bad is never true. E G good
- Weak Liveness in some run good is eventually true. EF good

Example: Crossing

It is never the case that a train and a car can cross at the same time

$$AG([\overline{tcross}]ff \vee [\overline{ccross}]ff)$$

Example: Mutual Exclusion

- Mutual exclusion: AG ([exit1]ff \(\text{ [exit2] ff} \)
- Absence of deadlock: AG $\langle \rangle$ tt
- Absence of starvation (for one component): AG [req1] AF \(\left(\text{exit1} \right) \) tt

Exercise

Which of the following are true?

$$E \models A(p \cup q)$$
 $E \models A F r$
 $E \models E F r$ $E \models E G p$
 $E \models A F(E G r \vee E G p)$

Exercise: Which are Valid, Unsatisfiable, Neither?

	V	U	N
$A G \Phi \rightarrow A F \Phi$			
$EG\Phi \rightarrow AF\Phi$			
$A F(\Phi \lor \Psi) \rightarrow A F \Phi \lor A F \Psi$			
$A G \Phi \rightarrow (\Phi \wedge [-]A G\Phi$			
$AGAF\Phi \rightarrow EFEG\Phi$			
$A F A G \Phi \rightarrow A G A F \Phi$			
$AG(\neg \Phi \lor \langle - \rangle \Phi) \land \Phi \land AF \neg \Phi$			
$A G(\Phi \to \Psi) \to (A G \Phi \to A G \Psi)$			

Exercise

Let $E \equiv F$ if for all CTL Φ , $E \models \Phi$ iff $F \models \Phi$.

Prove the following:

Proposition If $E \sim F$ then $E \equiv F$.

Computational Properties

- Satisfiability Problem "Given an CTL formula Φ , is Φ satisfiable ?" is **EXPTIME**-complete.
- Tree Model Property If Φ is satisfiable then Φ is satisfiable in a transition system/Kripke model that is a (regular) infinite tree.
- Finite Model Property If Φ is satisfiable then Φ is satisfiable in a finite transition system/Kripke model.
- Model Checking Problem "Given a finite transition system/Kripke model, a state E of it, and a CTL formula, does $E \models \Phi$?" is **P**-complete.

Incomparability of LTL and CTL

A formula of Φ of LTL is equivalent to a formula Ψ of CTL if for every model and state E, $E \models \Phi$ iff $E \models \Psi$.

- CTL and LTL are expressively incomparable
- EFAGp is not expressible in LTL and FGp is not expressible in CTL

• Open Question: which formulas of LTL are in CTL? (Known: which formulas of CTL are in LTL.)

CTL*

Syntax

Allow the facility to have branching time formulas with arbitrary embeddings of linear time and boolean operators.

$$\Phi ::= p \mid \neg \Phi \mid \Phi_1 \wedge \Phi_2 \mid (-)\Phi \mid \Phi \cup \Psi \mid A \Phi$$

Example formula: $A(FG\Phi \land GF\Psi)$

Semantics of CTL*

A state E of a Kripke model satisfies an CTL* formula Φ , written $E \models \Phi$, if for any run π from E, the run $\pi \models \Phi$.

 $\pi(0)$ is initial state of π

$$\pi \models A\Phi$$
 iff for any run π' if $\pi'(0) = \pi(0)$
then $\pi' \models \Phi$

CTL* contains both LTL and CTL.

Let $E \equiv F$ if for all $\Phi \in \mathrm{CTL}^*$, $E \models \Phi$ iff $F \models \Phi$.

Proposition If $E \sim F$ then $E \equiv F$.

Computational Properties

- Satisfiability Problem "Given a CTL* formula Φ , is Φ satisfiable ?" is **2EXPTIME**-complete.
- Tree Model Property If Φ is satisfiable then Φ is satisfiable in a transition system/Kripke model that is a (regular) infinite tree.
- Finite Model Property If Φ is satisfiable then Φ is satisfiable in a finite transition system/Kripke model.
- Model Checking Problem "Given a finite transition system/Kripke model, a state E of it, and a CTL* formula, does $E \models \Phi$?" is **PSPACE**-complete.

Model Checking CTL Formulas

 $\|\Phi\| = \{E : E \models \Phi\}$ in a fixed model.

Model checking is "bottom up" by computing $\|\Psi\|$ for any subformula of Φ and then computing $\|\Phi\|$.

- $\|\neg \Phi_1\| = -\|\Phi_1\|$,
- $\| \Phi_1 \wedge \Phi_2 \| = \| \Phi_1 \| \cap \| \Phi_2 \|$
- $\bullet \parallel \langle K \rangle \Phi \parallel = \{ F : \exists F' \in \parallel \Phi \parallel, \, a \in K. \, F \xrightarrow{a} F' \}$

Model Checking CTL

- $\| \operatorname{E}(\Phi \operatorname{U} \Psi) \| = \bigcup S_i$ where $S_1 = \| \Psi \|$ and $S_{i+1} = S_i \cup \{ F \in \| \Phi \| : \exists a, F' \in S_i. F \stackrel{a}{\longrightarrow} F' \}$
- $\| A(\Phi \cup \Psi) \| = \bigcup S_i$ where $S_1 = \| \Psi \|$ and $S_{i+1} = S_i \cup \{ F \in \| \Phi \| : \exists a, F'. F \xrightarrow{a} F' \text{ and } \forall a, F'. \text{ if } F \xrightarrow{a} F' \text{ then } F' \in S_i \}$

Direct backwards reachability computation for EU in transition graph. For AU it is forward reachability which can be implemented efficiently using depth first search.

Both are fixed point computations: essence of model checking

Temporal Operators as Fixed points

1.
$$E(\Phi \cup \Psi) \equiv \Psi \vee (\Phi \wedge \langle -\rangle E(\Phi \cup \Psi))$$

2.
$$A(\Phi \cup \Psi) \equiv \Psi \vee (\Phi \wedge \langle -\rangle tt \wedge [-]A(\Phi \cup \Psi))$$

Syntactically: property X such that

1.
$$X \equiv \Psi \vee (\Phi \wedge \langle - \rangle X)$$

2.
$$X \equiv \Psi \vee (\Phi \wedge \langle - \rangle \mathsf{tt} \wedge [-]X)$$

Temporal Operators as Fixed points

Semantically: set of states S = f(S) where f is

- 1. $\lambda x. \| \Psi \vee (\Phi \wedge \langle \rangle x) \|$
- 2. $\lambda x. \| \Psi \vee (\Phi \wedge \langle \rangle \mathsf{tt} \wedge [-]x) \|$

If S = f(S) then S is a fixed point of f.

In both cases f is monotonic : $S \subseteq S' \to f(S) \subseteq f(S')$

f is essentially modal (using $\langle - \rangle$ and [-]).

Fixed points

$$S$$
 is a prefixed point of f , if $f(S) \subseteq S$

$$S$$
 is a postfixed point of f , if $S \subseteq f(S)$

Proposition If f is monotonic (w.r.t \subseteq) then f

- 1. has a least fixed point, $\bigcap \{S: f(S) \subseteq S\}$
- 2. has a greatest fixed point, $\bigcup \{S: S \subseteq f(S)\}$

Exercise: Prove this.

Example

- S = f(S) when $f = \lambda x . \| \Psi \vee (\Phi \wedge \langle \rangle x) \|$
- There can be many different fixed points of f.
- The one wanted that expresses $E(\Phi \cup \Psi)$ is the **least** fixed point.
- Exercise: what does the greatest fixed point of f express?

wssa 03 today cps

Example

- $AG\Phi \equiv \Phi \wedge [-]AG\Phi$. Computing $||AG\Phi||$: Simple depth first search, that stops when reach a state in $||\neg\Phi||$.
- $\| A G \Phi \| = \bigcap S_i$ where $S_1 = \| \Phi \|$ and $S_{i+1} = S_i \cap \{ F \in S_i : \forall a, F'.F \xrightarrow{a} F' \text{ implies } F' \in S_i \}$
- Syntactically: Property X such that $X \equiv \Phi \wedge [-]X$ Semantically: fixed point of $f = \lambda x. \|\Phi \wedge [-]x\|$
- Required property, A G Φ , is **greatest** fixed point of f
- Exercise: What does the least fixed point of f express?

Exercise

What property is defined by the following fixed points?

1.
$$X \equiv \Phi \lor \langle - \rangle X$$
 least

2.
$$X \equiv \Phi \wedge \langle - \rangle X$$
 greatest

3.
$$X \equiv \Phi \wedge [-][-]X$$
 greatest

A Scheduler

Problem: assume n tasks when n > 1.

 a_i initiates the *i*th task and b_i signals its completion

The scheduler plans the order of task initiation, ensuring

- 1. actions $a_1 \dots a_n$ carried out cyclically and tasks may terminate in any order
- 2. but a task can not be restarted until its previous operation has finished. $(a_i \text{ and } b_i \text{ happen alternately for each } i.)$

More complex temporal properties. Not expressible in CTL* ("not first order" but are "regular").

Expressible using fixed points

Modal Logic+

Z ranges over propositional variables

$$\Phi ::= Z \mid \mathtt{tt} \mid \mathtt{ff} \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid [K] \Phi \mid \langle K \rangle \Phi$$

• \models refined to \models_{V} where V is a **valuation** that assigns a set of states $\mathsf{V}(X)$ to each variable X

$$E \models_{\mathsf{V}} X \text{ iff } E \in \mathsf{V}(X)$$

- $\|\Phi\|$ refined too: $\|\Phi\|_{\mathsf{V}} = \{E : E \models_{\mathsf{V}} \Phi\}$
- V[S/X] is valuation V' like V except V'(X) = S.

Modal Logic+ II

Proposition The function $\lambda x. \|\Phi\|_{V[x/X]}$ is monotonic for any modal Φ .

• If \neg explicitly in logic then above not true: $\neg X$: $\lambda x. - x$ not monotonic.

However, define when Φ is **positive** in X: if X occurs within an even number of negations in Φ

Proposition If Φ is positive in X then $\lambda x. \| \Phi \|_{\mathsf{V}[x/X]}$ is monotonic

- 1. Property given by **least** fixed point of $\lambda x. \|\Phi\|_{V[x/X]}$ is written $\mu X. \Phi$.
- 2. Property given by **greatest** fixed point of $\lambda x. \|\Phi\|_{V[x/X]}$ is written $\nu X. \Phi$.

Alternative basis for temporal logic: modal logic + fixed points