9. Linking Data and Linear Modelling

An Energy Case Study

Transmission System (2017)

Figure 1: Electricity Transmission System

Generation Information

Figure 2: Generation Information

Sample Data

Figure 3: Generation Information

Accessing Data

\$ EWIC

\$ Moyle

\$ NetImports <dbl> -145, -200, -294, -419, -503, -598, -

<dbl> -33, -108, -183, -258, -333, -379, -3

<dbl> -112, -92, -111, -161, -170, -219, -:

Processing Dates - Iubridate

Date component	Accessor
Year	year()
Month	month()
Week	week()
Day of year	yday()
Day of month	mday()
Day of week	wday()
Hour	hour()
Minute	minute()
Second	second()
Time zone	tz()

Extracting information

```
ener$DateTime[1]

## [1] "2017-01-29 UTC"

year(ener$DateTime[1])

## [1] 2017

wday(ener$DateTime[1])

## [1] 1
```

Adding New Columns

\$ Moyle

```
ener <- ener %>% mutate(Date=ymd(DateTime),
                        HourOfDay=hour(DateTime),
                        MinuteOfDay=minute(DateTime),
                        DayOfWeek=wday(DateTime,label=T))
```

Warning: All formats failed to parse. No formats found. glimpse(ener)

```
## Observations: 2,784
```

Variables: 12 ## \$ DateTime <dttm> 2017-01-29 00:00:00, 2017-01-29 00

```
## $ Demand
                <dbl> 3834, 3785, 3708, 3634, 3581, 3552,
## $ Generation <dbl> 4041, 4041, 4130, 4181, 4211, 4278,
## $ Wind
                <dbl> 449, 505, 521, 492, 538, 561, 484, 4
```

\$ CO2 <dbl> 552, 548, 544, 543, 555, 531, 545, 9

\$ NetImports <dbl> -145, -200, -294, -419, -503, -598, ## \$ EWIC <dbl> -33, -108, -183, -258, -333, -379, -

<dbl> -112, -92, -111, -161, -170, -219, -

```
Split out date and time (need for join later)
   ener <- ener %>% separate(DateTime,c("Date","Time"),
                             sep=" ", remove=F) %>%
           mutate(Date=ymd(Date))
   glimpse(ener)
   ## Observations: 2,784
   ## Variables: 13
   ## $ DateTime
                    <dttm> 2017-01-29 00:00:00, 2017-01-29 00
   ## $ Date
                    <date> 2017-01-29, 2017-01-29, 2017-01-29
   ## $ Time
                    <chr> "00:00:00", "00:15:00", "00:30:00",
   ## $ Demand
                    <dbl> 3834, 3785, 3708, 3634, 3581, 3552,
   ## $ Generation
                    <dbl> 4041, 4041, 4130, 4181, 4211, 4278,
```

<dbl> 449, 505, 521, 492, 538, 561, 484, 4

<dbl> 552, 548, 544, 543, 555, 531, 545, 9

<dbl> -145, -200, -294, -419, -503, -598,

<dbl> -33, -108, -183, -258, -333, -379, -

<dbl> -112, -92, -111, -161, -170, -219, -

<int> 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,

\$ Wind

\$ CO2

\$ EWIC

\$ Moyle

\$ NetImports

\$ HourOfDay

Plot time series

```
ggplot(data = ener,aes(x=DateTime, y=Generation)) +
  geom_line() + xlab("Date") + ylab("Generation") +
  ggtitle("Monthly Generation Data")
```

Monthly Generation Data

Value for 1/2/2017

Generation Data for Feb 1st 2017

Wind Generation v CO2 Emissions

```
ggplot(data = ener) +
geom_point(aes(x=Wind,y=CO2,colour=DayOfWeek))+
xlab("Wind Generation") + ylab("CO2 Emissions")
```


Linking weather to wind generation

Monthly Data

Please choose a monthly data report from any station by clicking one of the links below:

- 1 Athenry
- 2 Ballyhaise
- 3 Belmullet
- 4 Carlow Oakpark
- 5 <u>Baldonnel Casement</u> Aerodrome
- 6 Claremorris
- 7 Cork Airport
- 8 Dublin Airport
- 9 Dunsany
- 10 Fermoy Moorepark
- 11 Finner
- 12 Gurteen Agri College
- 13 Johnstown

- 14 Knock Airport
- 15 Mace Head
- 16 Malin Head
- 17 Markree
- 18 Mount Dillon
- 19 Mullingar
- 20 Newport
- 21 Phoenix Park
- 22 Roches Point
- 23 Shannon Airport
- 24 Sherkin Island
- 25 Valentia Observatory

Sample Data

http://www.met.ie

Mace Head Daily Data

Date	Rainfall	MaxTemp	MinTemp	GrassMinTemp	AVRWind	MaxWindGust
27/01/17	7.9	8.7	4.3	-0.7	11.6	
28/01/17	3.5	8	4.5	2.9	12.6	
29/01/17	4.7	9	4.9	3.7	9.8	
30/01/17	7.8	11.2	7.1	5.8	14.3	
31/01/17	0	10.3	7.3	5.8	10	
01/02/17	0.6	10.2	6.1	5.2	20	38
02/02/17	4.9	11.2	7.4	6.4	20.8	45
03/02/17	2.2	8.5	3.6	2.1	19.5	46
04/02/17	5.3	6.5	1.8	-1.3	10.7	

Weather Data

```
wd <- read_excel("../../datasets/energy/Mac Head Wind Data
wd <- mutate(wd,Date=ymd(Date))
slice(wd,1:7)</pre>
```

```
## # A tibble: 7 x 7
##
     Date
                Rainfall MaxTemp MinTemp GrassMinTemp AVRW
##
     <date>
                   <dbl>
                            <dbl>
                                    <dbl>
                                                  dbl>
                                                          <dl
## 1 2017-01-27
                     7.9
                              8.7
                                      4.3
                                                   -0.7
                                                           1:
## 2 2017-01-28
                     3.5
                              8
                                      4.5
                                                    2.9
                                                           1:
## 3 2017-01-29
                     4.7
                              9
                                                    3.7
                                      4.9
## 4 2017-01-30
                     7.8
                             11.2
                                      7.1
                                                    5.8
                                                           1
## 5 2017-01-31
                             10.3
                                      7.3
                                                    5.8
                                                           1
                             10.2
## 6 2017-02-01
                     0.6
                                      6.1
                                                    5.2
                                                           20
## 7 2017-02-02
                     4.9
                             11.2
                                      7.4
                                                    6.4
                                                           20
```

Select Required Columns - Generation

```
gd <- select(ener,DateTime,Date,Wind) %>%
      arrange(DateTime)
slice(gd,1:7)
## # A tibble: 7 x 3
##
     DateTime
                          Date
                                       Wind
##
     \langle dt.tm \rangle
                          <date>
                                      <dbl>
   1 2017-01-29 00:00:00 2017-01-29
                                        449
   2 2017-01-29 00:15:00 2017-01-29
                                        505
   3 2017-01-29 00:30:00 2017-01-29
                                        521
   4 2017-01-29 00:45:00 2017-01-29
                                        492
## 5 2017-01-29 01:00:00 2017-01-29
                                        538
```

561

484

6 2017-01-29 01:15:00 2017-01-29

7 2017-01-29 01:30:00 2017-01-29

Select Required Columns - Weather

```
## # A tibble: 7 \times 2
              AVRWind
##
    Date
##
    <date>
             <dbl>
## 1 2017-01-27
                 11.6
## 2 2017-01-28
                  12.6
## 3 2017-01-29
                  9.8
## 4 2017-01-30
                 14.3
## 5 2017-01-31
                  10
## 6 2017-02-01
                  20
## 7 2017-02-02
                  20.8
```

Approach

Need to find the average generation by wind from grid data

```
avr_wd1 <- gd %>% group_by(Date) %>%
  summarise(AvrWindGeneration=mean(Wind))
slice(avr wd1,1:7)
## # A tibble: 7 x 2
    Date AvrWindGeneration
##
## <date>
                            <dbl>
## 1 2017-01-29
                             431.
## 2 2017-01-30
                            1726.
## 3 2017-01-31
                             330.
                            2047.
## 4 2017-02-01
## 5 2017-02-02
                            2647
## 6 2017-02-03
                            1050.
## 7 2017-02-04
                             591.
```

Join the tables

2 2017-01-30

3 2017-01-31 ## 4 2017-02-01

5 2017-02-02 ## 6 2017-02-03

7 2017-02-04

1726. 14.3 330. 10

1050. 19.5

591. 10.7

2047. 20 2647 20.8

Plot Avr Wind Speed v Avr Wind Generation

```
ggplot(data = join_t) +
geom_point(aes(x=AVRWind,y=AvrWindGeneration))+
xlab("Average Wind Speed") + ylab("Average Generation")
```


Visualise Linear Model

Generate Model

```
mod <- lm(data=join_t,AvrWindGeneration~AVRWind)
mod

##
## Call:
## lm(formula = AvrWindGeneration ~ AVRWind, data = join_t)
##
## Coefficients:
## (Intercept) AVRWind
## -280.8 106.7</pre>
```

Predicting Values

ggplot(data = join_t,

```
aes(x=AVRWind,y=AvrWindGeneration)) +
  geom_point()+xlab("Average Wind Speed") + ylab("Average ()
  geom smooth(method="lm")
Generatic
   3000 -
   2000 -
Average
   1000 -
                  15
                        20
                              25
                                     30
              Average Wind Speed
predict(mod, newdata = data.frame(AVRWind=25))
##
   2386.727
```

Challenge

Generate linear models with the advertising data

```
adv <- read_excel("../../datasets/Advertising/AdvertisingDatasets(adv,1:8)</pre>
```

```
## # A tibble: 8 x 4
##
       TV Radio Newspaper Sales
##
    <dbl> <dbl>
                  <dbl> <dbl>
## 1 230. 37.8
                   69.2 22.1
                   45.1 10.4
## 2 44.5 39.3
## 3 17.2 45.9
                   69.3 12
## 4 152. 41.3
                 58.5 16.5
## 5 181. 10.8
                   58.4 17.9
                   75 7.2
    8.7 48.9
## 6
## 7 57.5 32.8
                   23.5 11.8
## 8 120.
          19.6
                   11.6 13.2
```

Visualise Relationship

Test Slide with Plot

