DiffGeo

Luka Ilić, Johannnes Mader, Jakob Deutsch, Fabian Schuh 7. Juni 2018

Inhaltsverzeichnis

1	Curves on surfaces	3
	1.1 Natural ribbon & special lines on surfaces	3
	1.2 Geodesic and exponential map	6
	1.3 Geodesic polar coordinates and Minding's Theorem	10
2	Manifolds	12
3	Submanifolds of \mathcal{E}^n	12

1 Curves on surfaces

1.1 Natural ribbon & special lines on surfaces

Definition. 1.1. Let $X : \mathbb{R}^2 \supset M \to \mathcal{E}^3$ a surface and $I \ni t \mapsto X(u(t), v(t))$ with a map $(u, v) : I \to M$ defines a curve on the surface X as soon as $X \circ (u, v)$ is regular:

$$\forall t \in I : (X_u u' + X_v v')(t) \neq 0 \iff \begin{pmatrix} u' \\ v' \end{pmatrix}(t) \neq 0$$

since $d_{(u,v)}X:\mathbb{R}^2\to\mathbb{R}^3$ injects.

Beispiel. The parameter lines of a surface are the curves

$$t \mapsto X(u, v + t), t \mapsto X(u + t, v).$$

Bemerkung und Definition. 1.2. If $t \mapsto X(u(t), v(t))$ is a curve on a surface $X : M \to \mathcal{E}^3$ than $T_t(X \circ (u, v)) \subset T_{(u(t), v(t))}X$ or equivalently, the unit tangent field is always tangential to the surface

$$T = \frac{X_u u' + X_v v'}{\sqrt{Eu'^2 + 2Fu'v' + Gv'^2}}.$$

Thus the Gauss map N of X yields a unit normal vectorfield for $X_0(u, v)$

$$I \ni t \mapsto N(u(t), v(t)).$$

Hence this defines the *natural ribbon* of the curve. The corresponding frame is called the *Darboux frame*.

Definition. 1.3. A curve $t \mapsto X(u(t), v(t))$ on a surface $X: M \to \mathcal{E}^3$ is called

- a curvature line if its natural ribbon is a curvature ribbon, i.e., $\tau = 0$,
- an asymptotic line if its natural ribbon is an asymptotic ribbon, i.e., $\kappa_n = 0$.
- an per-geodesic line if its natural ribbon is an geodesic ribbon, i.e., $\kappa_q = 0$.

Bemerkung. A curve is a curvature line iff the Gauss map of X is parallel along the curve.

Satz 1.4 (Joachimsthal's theorem). Suppose two surfaces intersect along a curve that is a curvature line for one of the two surfaces. Then it is a curvature line for the other surface iff the two surfaces intersect at a constant angle.

Beweis. Exercise. \Box

Definition. 1.5. Rodriges' equation: The curve $t \mapsto X(u(t), v(t))$ is a curvature line iff

$$0 = (dN + \kappa dX) \begin{pmatrix} u' \\ v' \end{pmatrix}$$

where κ is a principle curvature of X at (u,v)=(u(t),v(t)) and $dX\begin{pmatrix} u'\\v' \end{pmatrix}$ is the corresponding curve direction.

Beweis. The structure equation of the natural ribbon yield

$$\nabla^{\perp}(N \circ (u, v)) = (N \circ (u, v))' - \langle N \circ (u, v)', T \rangle T = N_u u' + N_v v' + \kappa_n \circ (u, v)(X_u u' + X_v v')$$
$$= (dN + \kappa_n dX) \begin{pmatrix} u' \\ v' \end{pmatrix}.$$

Therefore $t \mapsto (X, N)(u(t), v(t))$ is a curvature ribbon iff $(dN + \kappa_n dX) \begin{pmatrix} u' \\ v' \end{pmatrix} = 0$. On the other hand $dN = -\mathcal{S} \circ dX$. Therefore

$$(dN + \kappa_n dX) \begin{pmatrix} u' \\ v' \end{pmatrix} = (-\mathcal{S} + \kappa_n id) \circ dX \begin{pmatrix} u' \\ v' \end{pmatrix} = 0$$

iff κ_n is a principle curvature and $dX\begin{pmatrix} u'\\v'\end{pmatrix}$ is the corresponding curve direction.

Beispiel. Let X be a surface of revolution with Gauss map N (sec 2.2)

$$X(u, v) = O + e_1 r(u) \cos v + e_2 r(u) \sin v + e_3 h(u).$$

and

$$N(u, v) = -e_1 h'(u) \cos v - e_2 h'(u) \sin v + e_3 r'(u)$$

we deduce

$$N_u||X_u|$$
 and $N_v||X_v|$

Hence the parameter line of X are curvature lines.

Satz und Definition. 1.6. $X: M \to \mathcal{E}^3$ is a *curvature line parametrisation* if all parameter lines are curvature lines. Any surface admits locally away form umbilics, a curvature line (re-)parametrisation.

Bemerkung. Suppose X is a curvature line parametrisation then (X_u, X_v) diagonalizes the shape operator, cause these are the Eigenvalues,

$$SX_u||X_u SX_v||X_v$$
.

Hence, as S is symmetric, $X_u \perp X_v$ and $N_u = -SX_u \perp X_v$, or equivalently, F = f = 0 where

$$I = Edu^2 + 2Fdudv + Gdv^2$$

and

$$II = edu^2 + 2fdudv + gdv^2.$$

Conversely, if f = F = 0, then X is a curvature line parametrisation. Look at the matrix representation of S.

Lemma. 1.7. The normal curvature of a curve $t \mapsto X(u(t), v(t))$ on a surface is given by

$$\kappa_n = \frac{II(\begin{pmatrix} u' \\ v' \end{pmatrix}, \begin{pmatrix} u' \\ v' \end{pmatrix})}{I(\begin{pmatrix} u' \\ v' \end{pmatrix}, \begin{pmatrix} u' \\ v' \end{pmatrix})}.$$

Beweis. The normal curvature of a ribbon (X, N) is given by

$$\kappa_n = \frac{1}{|X'|} \langle T', N \rangle = \frac{1}{|X'|^2} \langle X'', N \rangle = -\frac{1}{|X'|^2} \langle X', N' \rangle.$$

Applying the chain rule yields the result

$$X' = X_u u' + X_v v', \quad N' = N_u u' + N_v v'.$$

Bemerkung und Definition. 1.8. The normal curvature κ_n for a curve on a surface depends only on the tangent direction (and not on u'', v''). Thus we also call it the "normal curvature κ_n of a tangent direction".

Satz 1.9 (Euler's theorem). The normal curvatures κ_n at a point on a surface satisfy

$$\min\{\kappa^+, \kappa^-\} \le \kappa_n(\theta) = \kappa^+ \cos^2 \theta + \kappa^- \sin^2 \theta \le \max\{\kappa^+, \kappa^-\},$$

where κ^{\pm} are the principle curvatures and θ is the angle between the tangent direction of $\kappa_n(\theta)$ and the curvature direction of κ^+ .

Beweis. Exercise. \Box

Korollar. 1.10. The principle curvatures can be characterised as the extremal values of the normal curvature at a point on a surface.

Korollar. 1.11. If
$$t \mapsto \begin{pmatrix} u' \\ v' \end{pmatrix}, \begin{pmatrix} u' \\ v' \end{pmatrix}$$
 is an asymptotic line, i.e. $\kappa_n = 0$, of X iff

$$eu'^2 + 2fu'v' + av'^2 = 0.$$

Beispiel. The helicoid

$$X(u,v) = O + e_1 \sinh u \cos v + e_2 \sinh u \sin v + e_3 v.$$

Then

$$II = -2dudv$$
.

Hence the parameter lines of X are asymptotic lines

$$(II(\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix})) = II(\begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}) = 0$$

$$t \mapsto X(u,t) = O + e_1 r \cos t + e_2 r \sin t + e_3 t,$$

where $r = \sinh u$.

Lemma. 1.12. Fix a point X(u, v) on a parametrised surface that an asymptotic line passes through X(u, v) in two, one or no directions, depending on the sign of the Gauss curvature K(u, v)

1.2 Geodesic and exponential map

Definition. 1.13. The *covariant derivative* of a tangent field $Y:I\to R^3$ along a curve $t\mapsto X(u(t),v(t))$ on a surface $X:M\to\mathcal{E}^3$ is the tangential part of its derivative

$$\frac{D}{dt}Y := Y' - N \langle Y', N \rangle.$$

A geodesic is an acceleration free curve $t \mapsto C(t) = X(u(t), v(t))$ on a surface i.e,

$$\frac{D}{dt}C' = 0$$

Beispiel. Circular helices as geodesies a circular cylinders

$$t \mapsto C(t) = O + e_1 r \cos t + e_2 r \sin t + e_3 h t = X(ht, t)$$

is a geodesic on the cylinder of radius r > 0, $h \in \mathbb{R}$ constant.

$$C'(t) = -e_1 r \sin t + e_2 r \cos t + e_3 h$$

$$C''(t) = -e_1 r \cos t - e_2 r \sin t \perp X_u(ht, t), X_v(ht, t)$$

Therefore

$$\frac{D}{dt}C' = 0$$

Satz 1.14. Geodesics are the constant speed pre-geodesic lines $(\kappa_g \equiv 0)$

Beweis. Firstly, every geodesic has constant speed by the Leibniz' rule.

$$\langle C', C' \rangle' = 2 \langle C'', C' \rangle = 2 \left\langle \frac{D}{dt} C', C' \right\rangle \equiv 0.$$

Secondly, assume |C'| = const., then

$$\frac{C''}{|C'|^2} = \frac{T'}{|C'|} = \frac{1}{|C'|} (|C'|\kappa_n N - |C'|\kappa_g B) ||N \Leftrightarrow \kappa_g = 0 \Leftrightarrow C \text{ is pre-geodesic line}.$$

Satz 1.15 (Clairaut's theorem). For a geodesic on a surface of revolution the quantity $r \sin(\theta) \equiv \text{const.}$ where r = r(s) is the distance from the axis and $\theta(s)$ is the angle the geodesic makes with the profile curves.

Beweis. Consider the surface of revolution:

$$X(u,v) = O + e_1 r(u) \cos(v) + e_2 r(u) \sin(v) + e_3 h(u);$$

$$N(u,v) = -e_1 g'(u) \cos(v) - e_2 h'(u) \sin(v) + e_3 r'(u)$$

C(s) = X(u(s), v(s)) be a geodesic on a surface of revolution , w.l.o.g., arc length parametrized. Set $C_t(s) = O + A(t)(C(s) - O) = X(u(s), v(s) + t)$ where A(t) is given in matrix form by

$$A(t) = \begin{pmatrix} \cos(t) & -\sin(t) & 0\\ \sin(t) & \cos(t) & 0\\ 0 & 0 & 1 \end{pmatrix} \in SO(3).$$

Note that $\forall t \in \mathbb{R}, C_t$ is an arclength parametrized geodesic and

$$\frac{\partial}{\partial t}C_t(s) = \frac{\partial}{\partial t}X(u(s), v(s) + t) = X_v(u(s), v(s) + t)$$

and the normal of the normal ribbon for C_t is $s \mapsto N(u(s), v(s) + t$. Set $Y(s) := \frac{\partial}{\partial t}|_{t=0} C_t(s) = X_v(u(s), v(s))$.

$$|Y(s)| = \widetilde{r}(u(s)) = r(s).$$

Therefore the angle $\theta = \theta(s)$ between C and the profile curve satisfies

$$r\sin(\phi) = r\cos(\frac{\pi}{2} - \theta) = r\frac{\langle C', Y \rangle}{|C'||Y|} = \langle C', Y \rangle = \left\langle \frac{\partial}{\partial s} C_t, \frac{\partial}{\partial t} C_t \right\rangle \Big|_{t=0}.$$

We want to show $\frac{\partial}{\partial s} \left\langle \frac{\partial}{\partial s} C_t, \frac{\partial}{\partial t} C_t \right\rangle = 0$:

$$\frac{\partial}{\partial s} \left\langle \frac{\partial}{\partial s} C_t, \frac{\partial}{\partial t} C_t \right\rangle = \left\langle \frac{\partial^2}{\partial^2 s} C_t, \frac{\partial}{\partial t} C_t \right\rangle + \left\langle \frac{\partial}{\partial s} C_t, \frac{\partial}{\partial s} \frac{\partial}{\partial t} C_t \right\rangle$$

 C_t is geodesic and thus $\frac{\partial^2}{\partial^2 s} C_t ||N(u(s), v(s) + t)|$ and $\frac{\partial}{\partial t} C_t(s) = X_v(u(s), v(s) + t)$. Hence

$$\left\langle \frac{\partial^2}{\partial^2 s} C_t, \frac{\partial}{\partial t} C_t \right\rangle = 0$$

and furthermore

$$\frac{\partial}{\partial s} \left\langle \frac{\partial}{\partial s} C_t, \frac{\partial}{\partial t} C_t \right\rangle = 0 \text{ fot all } t \in \mathbb{R}$$

and

$$\frac{\partial}{\partial s}(r\sin(\theta)) = 0.$$

Bemerkung. The proof can be generalized for surfaces invariant with respect to 1-parameter families of isometries.

Bemerkung und Beispiel. Clairaut's theorem only provides a necessary condition for a geodesic, not a sufficient one. For example: one sheeted hyperboloid

$$(u, v) \mapsto O + e_1 \cosh(u) \cos(v) + e_2 \cosh(u) \sin(v) + e_3 \sinh(u)$$

Straight line $C(t) = O + e_1 + (e_2 + e_3)t$ is a geodesic in X

$$r\sin(\theta) = \left\langle \frac{C'}{|C'|}, Y \right\rangle = \frac{\cosh(u)\cos(v)}{\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

 $Y(s) = (-e_1 \sin(v(s)) + e_2 \cos(v(s))) \cosh(u)$ On the other hand, every circle of latitude in X satisfies $r \sin(\theta) \equiv \cosh(u) \equiv \cosh(u)$ but in general these are not geodesic.

Differential equations of a geodesic:

Let $Y(t) = X_u(u(t), v(t))x(t) + X_v(u(t), v(t))y(t)$ be a tangent field along a curve $t \mapsto C(t) = X(u(t), v(t))$. Compute the covariant derivative

$$\begin{split} \frac{D}{\partial t} &= X_{u}x' + (\nabla_{\frac{\partial}{\partial u}}X_{u}u' + \nabla_{\frac{\partial}{\partial v}}X_{u}v')x + X_{v}y' + (\nabla_{\frac{\partial}{\partial u}}X_{v}u' + \nabla_{\frac{\partial}{\partial v}}X_{v}v')y \\ &= X_{u}x' + (X_{u}\Gamma_{11}^{1}u' + X_{v}\Gamma_{11}^{2}u' + X_{u}\Gamma_{21}^{1}v' + X_{v}\Gamma_{21}^{2}v')x \\ &+ X_{v}y' + (X_{u}\Gamma_{12}^{1}u' + X_{v}\Gamma_{12}^{2}u' + X_{u}\Gamma_{22}^{1}v' + X_{v}\Gamma_{22}^{1}v')y \\ &= X_{u}(x' + (\Gamma_{11}^{1}u' + \Gamma_{21}^{1}v')x + (\Gamma_{12}^{1}u' + \Gamma_{22}^{2}v')y) + X_{v}(y' + (\Gamma_{11}^{2}u' + \Gamma_{21}^{2}v')x + (\Gamma_{12}^{2}u' + \Gamma_{22}^{2}v')y) \end{split}$$

Now, let $Y = C' = X_u u' + X_v v'$, we get

$$\frac{D}{\partial t}C' = X_u(u'' + \Gamma_{11}^1 u'^2 + 2\Gamma_{12}^1 u'v' + \Gamma_{22}^1 v'^2) + X_v(v'' + \Gamma_{11}^2 u'^2 + 2\Gamma_{12}^2 u'v' + \Gamma_{22}^2 v'^2).$$

Then we learn that:

Definition. 1.16. Geodesic Equation: $t \mapsto C(t) = X(u(t), v(t))$ is a geodesic if and only if

$$0 = u'' + \Gamma_{11}^1 u'^2 + 2\Gamma_{12}^1 u'v' + \Gamma_{22}^1 v'^2$$

and

q: geodesic

$$0 = v'' + \Gamma_{11}^2 u'^2 + 2\Gamma_{12}^2 u'v' + \Gamma_{22}^2 v'^2.$$

We can also write as

$$0 = u'' + (u', v')\Gamma^{1} \begin{pmatrix} u' \\ v' \end{pmatrix}$$

$$0 = v'' + (u', v')\Gamma^2 \begin{pmatrix} u' \\ v' \end{pmatrix}$$

with

$$\Gamma^i = \begin{pmatrix} \Gamma^i_{11} & \Gamma^i_{12} \\ \Gamma^i_{21} & \Gamma^i_{22} \end{pmatrix}.$$

Bemerkung. For a geodesic curve $t \mapsto C(t) = X(u(t), v(t))$ we can compute the geodesic curvature of the Darboux frame

$$\frac{d}{\partial t} \frac{C'}{|C'|} = -B|C'|\kappa_g.$$

Take the cross product of this with $T = \frac{C'}{|C'|}$

$$-N|C'|\kappa_g = \frac{D}{\partial t}(\frac{C'}{|C'|}) \times \frac{C'}{|C'|} = \frac{1}{|C'|^2} \frac{D}{\partial t}C' \times C'$$

and thus

$$N\kappa_g = -\frac{1}{|C'|^3} \frac{D}{\partial t} C' \times C'.$$

Comparing $X_u \times X_v$ terms

$$\kappa_g = \frac{\sqrt{EG - F^2}}{\sqrt{Eu'^2 + 2Fu'v' + Gv'^2}} \det \begin{pmatrix} u' & u'' + \Gamma_{11}^1 u'^2 + 2\Gamma_{12}^1 u'v' + \Gamma_{22}^1 v'^2 \\ v' & v'' + \Gamma_{11}^2 u'^2 + 2\Gamma_{12}^2 u'v' + \Gamma_{22}^2 v'^2 \end{pmatrix}.$$

Korollar. 1.17. Geodesics can be determined by the induced metric I alone.

Beispiel. Geodesics on a circular cylinder are the straight lines after developing onto a plane: circular helices. I.e. 1.16 holds for exactly those curves.

Korollar. 1.18. Given a point $(u_0, v_0) \in M$ and a direction $Y = d_{(u_0, v_0)} X(\begin{pmatrix} x_0 \\ y_0 \end{pmatrix})$ There exists a unique (maximal) geodesic $t \mapsto C_Y(t) = X(u(t), v(t))$ on $X : M \to \mathcal{E}^3$ such that

$$(u(0), v(0)) = (u_0, v_0)$$
 and $(u'(0), v'(0)) = (x_0, y_0)$.

Bemerkung. The initial conditions 1.18 say that an initial point and a tangential direction are given on the surface, if $X(u_0, v_0)$ is a double point 1.18 also specifies which leaf of the surface $C_Y(t)$ lives on.

Beweis. We are going to use Picard-Lindelöf. Let $(w_1, w_2, w_3, w_4) = (u, v, u', v')$. Thus we have the system

$$w_1' = w_3$$

$$w_2' = w_4$$

And because of 1.16

$$w_3' = -\Gamma_{11}^1 w_3^2 - 2\Gamma_{12}^1 w_3 w_4 - \Gamma_{22}^1 w_4^2$$

$$w_4' = -\Gamma_{11}^2 w_3^2 - 2\Gamma_{12}^2 w_3 w_4 - \Gamma_{22}^2 w_4^2$$

So, the initial conditions 1.18 imply that $(w_1, w_2, w_3, w_4)(0) = (u_0, v_0, x_0, y_0)$ and we can use Picard-Lindelöf theorem by which the result follows.

lemma:I

Lemma. 1.19. $C_{Ys}(t) = C_Y(st)$ for $s \in (0,1)$

Beweis. Suppose $C_Y: I \to \mathcal{E}^3$ is the geodesic satisfying 1.18, then (for an interval around 0)

$$\frac{D}{\partial t}(C_Y(st)' = \frac{D}{\partial t}C_Y'(st)s = (\frac{D}{\partial t}C')(st)s^2 = 0$$

and also

$$(C_Y(st))'(0) = C_Y'(s0)s = Ys$$

while

$$C_Y(S0) = C_Y(0).$$

By the uniqueness, $C_{Ys}(t) = C_Y(st)$ for $t \in I$

Bemerkung. By the smooth dependence of solutions C_Y of the initial value problem, we obtain a smooth map

$$R \times T_{(u_0,v_0)}X \ni (t,Y) \mapsto C_Y(t) \in \mathcal{E}^3,$$

which is defined on an open neighbourhood $I \times U$ of $(0,0) \in R \times T_{(u_0,v_0)}X$ with star shaped U and , w.l.o.g., $I \supset [0,1]$.

Consider all unit tangent vectors $Y \in T_{(u_0,v_0)}X$. Then by Picard-Lindelöf theorem there exists a $\varepsilon_Y > 0$ such that C_Y is defined on $(-\varepsilon_Y, \varepsilon_Y)$. Let Y_{min} be the direction for witch $\varepsilon_{Y_{min}}$ is the smallest possible ε_Y .

If $\varepsilon_{Y_{min}} < 1$, then $C_{Y^{\frac{\varepsilon_{min}}{2}}} = C_{Y}(\frac{\varepsilon_{min}}{2}t)$ is defined on [0,1], for all Y. let $U \subset B_{\frac{\varepsilon_{min}}{2}}(0)$.

Lemma und Definition. 1.20. Given a point $X(u_0, v_0)$ on a surface $X: M \to \mathcal{E}^3$

$$Y \mapsto \exp(Y) := C_Y(1)$$

defines a smooth map on an open neighbourhood U of $O \in T_{(u_0,v_0)}X$ with

$$d_0 \exp = i d_{T_{(u_0,v_0)}X},$$

with $d_0 = \frac{d}{dt}|_{t=0}$ exp is called the exponential map of X at $X(u_0, v_0)$.

Beweis. exp is a smooth dependence of solutions of IVPs. Now we compute d_0 exp using directional derivatives. Let $Y \in T_{(u_0,v_0)}X$

$$d_0 \exp(Y) = \frac{d}{dt}|_{t=0} \exp(tY) = \frac{d}{dt}|_{t=0} C_{Yt}(1) = \frac{d}{dt}|_{t=0} C_Y(t) = Y.$$

Therefore $d_0 \exp = i d_{T(u_0,v_0)} X$.

Bemerkung. Thus exp : $T_{(u_0,v_0)}X \supset U \to X(M)$ yields a local diffeomorphism and in particular a reparametrisation of X around $X(u_0,v_0)$.

1.3 Geodesic polar coordinates and Minding's Theorem

Definition. 1.21. A reparametrisation of a surface by geodesic polar coordinates (r, θ) around a point X(0,0) of a surface is given by the map

$$(r,\theta) \mapsto \exp(e_1 r \cos \theta + e_2 r \sin \theta) = C_{e_1 r \cos \theta + e_2 r \sin \theta}(1),$$

where (e_1, e_2) form an orthonormal basis of $T_{(0,0)}X$.

For fixed θ , $r \mapsto X(r,\theta) = C_{e_1 r \cos \theta + e_2 r \sin \theta}(1) = C_{e_1 \cos \theta + e_2 \sin \theta}(r)$ and $r \leq 1$. So parameter lines $\theta = const$ are geodesic.

We let $r \leq 1$ in contrast to the Lemma 1.19 cause we expect $[0,1] \subset I$.

Bemerkung. This parametrisation is regular at r = 0, however it is regular on $(0, \varepsilon) \times \mathbb{R}$ for some $\varepsilon > 0$.

Lemma. 1.22. In geodesic polar coordinates (r, θ) the induced metric is given by

$$I = dr^2 + Gd\theta^2$$

where

$$\sqrt{G}\big|_{r=0}=0 \ and \ \frac{\partial \sqrt{G}}{\partial r}\big|_{r=0}=1.$$

Beweis. This proof is technical, see the notes.

Beispiel. In geodesic polar coordinates (r, θ) the Gauss curvature is

$$K = -\frac{(\sqrt{G})_{rr}}{\sqrt{G}}.$$

Korollar. 1.23. Geodesics are locally the shortest distance between two points.

Beweis. Let $X: M \to \mathcal{E}^3$ parametrised by geodesic polar coordinates around X(0,0). Let $c(t) = X(r(t), \theta(t))$ be a curve between X(0,0) and $X(r(0), \theta(1))$. Then

$$\int_0^1 |C'(\tilde{t})| \ d\tilde{t} = \int_0^1 \sqrt{r'^2 + G(r,\theta)\theta'^2} \ d\tilde{t} \ge \int_0^1 r' \ d\tilde{t} = r(1).$$

Equality holds iff $\theta' = 0$ or $\theta = const$.

Therefore C is a parameter line of geodesic polar coordinates and thus geodesic (up to reparametrisation of the function r).

Bemerkung. The surface $\mathbb{R}^2 \setminus \{(0,0)\}$ is an example of why we need locality in the corollary above. Cause there is no shortest distance on that surface between (1,0) and (-1,0).

Satz 1.24 (Minding's theorem). Any two surfaces with the same constant Gauss curvature are locally isometric, i.e., there exists local parametrisations X_1 and X_2 such that $I_1 = I_2$.

Beweis. For surface $X: M \to \mathcal{E}^3$ parametrised by geodesic polar coordinates around X(0,0) we have

$$I = dr^2 + Gd\theta^2$$
 with $\sqrt{G}|_{r=0}$ and $\frac{\partial \sqrt{G}}{\partial r}|_{r=0} = 1$

and $K=-\frac{(\sqrt{G})_{rr}}{\sqrt{G}}$. Therefore $\sqrt{G}_{rr}+K\sqrt{G}=0$ and K is constant. Hence we have an initial value problem (for fixed θ)

$$(\sqrt{G})_{rr} + K\sqrt{G} = 0, \quad \sqrt{G}|_{r=0} = 0, \quad \frac{\partial\sqrt{G}}{\partial r}|_{r=0} = 1.$$

The unique solution is

$$\sqrt{G} = \begin{cases} \frac{1}{\sqrt{K}} \sin(\sqrt{K}r), & K > 0\\ r, & K = 0\\ \frac{1}{\sqrt{-K}} \sinh(\sqrt{-K}r), & K < 0. \end{cases}$$

Thus G is determined by K and thus so is I. Thus any two surfaces with the same constant Gauss curvature have the same induced metric.

2 Manifolds

Motivation: Some problems occur with our definition of curves and surfaces:

- The sphere is not a surface because no regular parametrisation (harry (Potter? WTF Jojo?) ball theorem)
- The hyperbola is no a surface, because it has two components thus it can not be parametrised by a single regular map on an open interval.

The notion of a submanifold resolves these problems at the expense of imposing other restrictions

3 Submanifolds of \mathcal{E}^n

There are several equivalent characterisations of submanifolds in \mathcal{E}^n .

Definition. 3.1 (1. A submanifols can be locally flattened). $M \subset \mathcal{E}^n$ is called a k-dimensional submanifold of \mathcal{E}^n if for all $p \in M$ there exists a diffeomorphism $\phi: U \to \tilde{U}$, where $U \subset \mathcal{E}^n$ is an open neighbourhood of p and $\tilde{U} \subset \mathbb{R}^n$ is an open neighbourhood of 0 such that

$$\phi(M \cap U) = \tilde{U} \cap (\mathbb{R}^k \times \{0\}),$$

where $\mathbb{R}^n = \mathbb{R}^k \oplus \mathbb{R}^{n-k}$.

Definition. 3.2 (2. A submanifold is locally a level set). $M \subset \mathcal{E}^n$ is a k-dimensional submanifold of \mathcal{E}^n if for all $p \in M$ there exist open neighbourhood $U \subset \mathcal{E}^n$ of p and a submersion $F.U \to \mathbb{R}^{n-k}$ such that

$$M \cap U = F^{-1}\{0\}.$$

Where $dpF: \mathbb{R}^n \to \mathbb{R}^{n-k}$ surjects for all $p \in U$.

Bemerkung. In the definition above th is sufficient to require that $dpF : \mathbb{R}^n \to \mathbb{R}^{n-k}$ surjects: if dpF surjects then since $p \mapsto dpF$ is continuous, dpF surjects by the inertia principle on some open neighbourhood $\tilde{U} \subset U$ of p.

Definition. 3.3 (3. A submanifold can be locally parametrised). $M \subset \mathcal{E}^n$ is a k-dimensional submanifold of \mathcal{E}^n if for all $p \in M$ there exists an immersion $X : V \to U$ from an open neighbourhood $V \subset \mathbb{R}^k$ of 0 to an open neighbourhood $U \subset \mathcal{E}^n$ of p such that

$$M \cap U = X(V)$$

and $X: V \to M \cap U$ is a homeomorphism (with respect to the induced topology on $M \cap U$).

A homeomorphism is continuous and bijective.

Bemerkung. \bullet X being an immersion excludes "kinks" such as the singularity of the nilparabola.

- X being injective excludes self intersections.
- Continuity of X^{-1} excludes "T-junctions".

Beweis. Proof of equivalence of these definitions:

For $\mathbb{R}^n = \mathbb{R}^k \oplus \mathbb{R}^{n-k}$ we define the submersions

$$\pi_1: \mathbb{R}^k \oplus \mathbb{R}^{n-k} \to \mathbb{R}^k, (x,y) \mapsto x,$$

$$\pi_2: \mathbb{R}^k \oplus \mathbb{R}^{n-k} \to \mathbb{R}^k, (x,y) \mapsto y.$$

First we proof 1. implies 2.:

Let $F := \pi_2 \circ \phi : U \to \mathbb{R}^{n-k}$. F is a submersion.

Secondly we proof 1. implies 3.:

With $V = \pi_1(\tilde{U}) \subset \mathbb{R}^k$ we can have

$$X := \phi^{-1}|_v : V \to U$$

is the necessary map. If you are bored, you can check that this is an homeomorphism.

Now we proof 3. implies 1.:

Let $X: \mathbb{R}^k \supset V \to \mathcal{E}^n$ parametrisation of $M \cap U = X(V)$. Assume that X(0) = p. Let (t_1, \ldots, t_{n-k}) be an orthonormal basis of $d_0 X(\mathbb{R}^k)^{\perp} \subset \mathbb{R}^n$. Define

$$C \times \mathbb{R}^{n-k} : (x,y) \mapsto \psi(x,y) = X(x) + \sum_{i=1}^{n-k} t_i y_i, \quad y = (y_1, \dots, y_{n-k}).$$

Then

$$d_0\psi(v,w) = \underbrace{d_0X(v)}_{\in d_0X(\mathbb{R}^k)} + \underbrace{\sum_{i=1}^{n-k} t_i w_i}_{\in (d_0X(\mathbb{R}^k))^{\perp}} = 0$$

iff $w_i = 0$ for all i and v = 0 or (v, w) = 0.

Then we use the inverse mapping theorem, ψ has a smooth local inverse

$$\phi = (\psi|_{\tilde{U}})^{-1} : \psi(\tilde{U}) \to \tilde{U}$$

where $\tilde{U} \subset V \times \mathbb{R}^k$ open neighbourhood of 0. Without loss of generality, assume that $\psi(\tilde{U}) \subset U$ (otherwise take the intersection with U). Now, $q \in M \cap \psi(\tilde{U})$ implies there exists a $x \in V$ such that $q = X(x) = \psi(x, 0) \in \psi(\tilde{U})$. On the other hand

$$(x,0) \in \tilde{U} \Rightarrow \psi(x,0) = X(x) \in M$$

with means that $q = X(x) \in M \cap \psi(\tilde{U})$.

After replacing $\psi(\tilde{U})$ with U, then $\phi(U \cap M) = \tilde{U} \cap (\mathbb{R}^k \times \{0\})$.

 $2. \Rightarrow 1. \ F: U \to \mathbb{R}^{n-k}$ submersion. Let t_1, \ldots, t_n be an orthonormal basis of \mathbb{R}^n such that t_1, \ldots, t_k is an orthonormal basis of $\ker d_p F$. Write $\mathbb{R}^n = \langle e_1, \ldots, e_k \rangle \oplus \mathbb{R}^{n-k}$ then $q \in U \Rightarrow q = p + \sum_{i=1}^n t_i q_i$ and

$$\phi: U \to \mathbb{R}^n$$
 , $\phi(q) = \sum_{i=1}^k e_i q_i + F(q)$

$$d_p \phi(v) = \sum_{i=1}^k e_i v_i + d_p F(v) = 0 \text{ for } v = \sum_{i=1}^k t_i v_i$$

is equivalent to $d_pF(v)=0$ and thus $v\in \ker d_pF$ and also to

$$\sum_{i=1}^{k} e_i v_i = 0 \text{ thus } \forall i v_i = 0 \Leftrightarrow v = 0$$

Thus $d_p \phi$ is invertable and by the Inverse Mapping Theorem

 $\phi: U \to \phi(U)$ is a diffeomorphism (maybe after shrinking U).

Now, $q \in M \cap U \Leftrightarrow F(q) = 0 \Leftrightarrow \phi(q) \in \phi(U) \cap (\mathbb{R}^k \times \{0\})$. Thus $\phi(M \cap U) = \phi(U) \cap (\mathbb{R}^k \times \{0\})$

Beispiel. The following are manifolds:

- 1. Plane: $\pi = \{p \in \mathcal{E}^3 : \langle p O, n \rangle = d\}$ $F : \mathcal{E}^3 \to \mathbb{R}, F(q) = \langle p O, n \rangle d$ then $\pi = f^{-1}(\{0\})$. Also, $d_pF(v) = \langle v, n \rangle$ and hence $d_pF \not\equiv 0$. Thus d_pF surjects and F is a submersion.
- 2. Sphere: $S = \{p \in \mathcal{E}^3 \mid \langle p O, p O \rangle = r^2\}$ and S is implicitly given by the function $F: \mathcal{E}^3 \to \mathbb{R}, F(p) = \langle p O, p O \rangle r^2$. Here $d_p F(v) = 2 \langle v, p O \rangle$ and $d_p F$ surjects as long as $p \not\equiv 0$ which does not happen in S. $F|_{\mathcal{E}^3 \setminus \{0\}}$ is a submersion.
- 3. Hyperboloids: $O + e_1 x + e_2 y + e_3 z$ such that $F_{\pm}(O + e_1 x + e_2 y + e_3 z) = 0$ where $F_{\pm}(O + e_1 x + e_2 y + e_3 z) = (\frac{x}{a})^2 + (\frac{y}{b})^2 + (\frac{z}{c})^2 \pm 1 \ \nabla F = 2(e_1 \frac{x}{a^2} + e_2 \frac{y}{b^2} + e_3 \frac{z}{c^2})$ Then $\nabla F = 0 \Leftrightarrow (x, y, z) = 0$. Therefore $F|_{\mathcal{E}^3 \setminus \{0\}}$ is a submersion. $\langle \nabla F, v \rangle = dF(v)$.

Beispiel. A counterexample is the following Lemniscate. $O + e_1x + e_2y$, where $x^4 - x^2 + y^2 = 0$. A regular parametrization is given by $t \mapsto O + e_1x(t) + e_2y(t) = O + e_1\sin(t) + e_2\sin(t)\cos(t)$. The curve has a self-intersection at (x(t), y(t)) = (0, 0) which is equivalent to $\forall k \in \mathbb{Z}t = k\pi$. Hence this is not a 1-Dimensional submanifold.