

非线性方程的数值解法

温丹苹

邮箱: dpwen@nju.edu.cn

办公室:工管院协鑫楼306

第二章非线性方程的数值解法

- 2.3 牛顿法
- 2.4 弦截法
- 2.5 小结

2.3 牛顿法

2.3.1 牛顿法基本思想与迭代格式

$$f(x) = 0$$

基本思想:线性化

将f(x)在 x_k 处Taylor展开可得

$$Ex_k$$
处Taylor展开可得
$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(\varepsilon)}{2!}(x - x_k)^2$$

忽略二次项,可得 $f(x) \approx P(x)$,其中

$$P(x) \triangleq f(x_k) + f'(x_k)(x - x_k).$$

用P(x)的零点来近似f(x)的零点,并将其记为 x_{k+1} 。

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

2.3.2 牛顿法几何意义

◆牛顿法又称为切线法

- 方程f(x) = 0的根 x_* 解释为y = f(x)与x轴的交点的横坐标。
- 设 x_k 是根 x_* 的某个近似值,过曲线y = f(x)上的横坐标为 x_k 的点 P_k 引切线,并将该切线与x轴的交点的横坐标 x_{k+1} 作为 x_* 新的近似值。
- 切线方程为 $y = f(x_k) + f'(x_k)(x x_k)$ 。求得

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

2.3.3 牛顿法伪代码

算法 Newton 法

- 1: 给定迭代初值 x_0 , 精度要求 ε 和最大迭代步数 IterMax
- 2: **if** $|f(x_0)| < \varepsilon$, **then**
- 3: 输出近似解 x₀, 停止迭代
- 4: end if
- 5: **for** k = 1 to IterMax **do**

6: 计算
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

- 7: **if** $|x_1 x_0| < \varepsilon$ 或 $|f(x_1)| < \varepsilon$, **then**
- 8: 输出近似解 x1, 停止迭代 % 算法收敛
- 9: end if
- 10: $x_0 = x_1$
- 11: end for

2.3.4 牛顿法收敛性

◆迭代过程的**收敛速度**:指在接近收敛的过程中迭代 误差的下降速度。

定理 对于迭代过程 $x_{k+1} = \varphi(xk)$,如果 $\varphi^{(p)}(x)$ 在所求根 x_* 邻近连续,且

$$\begin{cases} \varphi'(x_*) = \varphi''(x_*) = \cdots = \varphi^{(p-1)}(x_*) = 0, \\ \varphi^{(p)}(x_*) \neq 0, \end{cases}$$

则该迭代过程在点 x_* 邻近是p阶收敛的。

* 当 $x \in [a,b]$ 时, $\varphi'(x) \neq 0$,则该迭代过程只可能是线性的。

定理 设 x_* 是 f(x) 的零点, 且 $f'(x_*) \neq 0$, 则 Newton 法 至少二阶局部收敛:

$$\lim_{k \to \infty} \frac{x_{k+1} - x_*}{(x_k - x_*)^2} = \frac{\varphi''(x_*)}{2} = \frac{f''(x_*)}{2f'(x_*)}.$$

2.3.4 牛顿法收敛性

牛顿法迭代公式:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

迭代函数:
$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

计算可得:
$$\varphi'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}$$
 $\varphi''(x) = \frac{f''(x)}{f'(x)}$

- 假设 x_* 是f(x)的一个单根,则 $f(x_*) = 0$, $f'(x_*) \neq 0$,则 $\varphi'(x_*) = 0$,因此, $\varphi''(x_*) \neq 0$,即牛顿法在根 x_* 的邻近是平方收敛的。
- * 一般来说 Newton 法只是局部收敛, 如果初值离真解太远可能就不收敛, 因此 初值的选取很重要但也比较困难. 但是, 对于计算平方根, Newton 法是全局收敛的, 因此是安全的.

2.3 牛顿法

例 编写程序, 用 Newton 法求 $f(x) = xe^x - 1$ 的零点. Demo_3_1_NLS_Newton.m

解. 迭代格式为

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k e^{x_k} - 1}{e^{x_k}(x_k + 1)}.$$

取初值 $x_0 = 0.5$, 迭代结果见下表.

k	x	f(x)
	0.50000000	1.76e-01
1	0.57102044	1.07e-02
2	0.56715557	3.39e-05
3	0.56714329	3.41e-10
4	0.56714329	2.22e-16

从表中数据可以看出, Newton 法迭代 4 步就达到机器精度了, 收敛速度非常快. □

2.3.6 牛顿法

作业:

用Newton法求方程 $f(x) = x^2 - 115 = 0$ 的解。

2.3 牛顿法

上机作业:

用Newton法求方程

$$f(x) = e^{(2x-1)}(2-x) + 1 = 0$$
的解。

2.3.6 牛顿法

例 用牛顿法求方程 $x^3 - x - 1 = 0$,在x = 1.5处附近的一个根 x_x 。

解 1. 若初始迭代值 $x_0 = 1.5$,用牛顿公式

$$x_{k+1} = x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

计算得: $x_1 = 1.34783$, $x_2 = 1.32520$, $x_3 = 1.32470$ 。

2. 若初始迭代值 $x_0 = 0.6$,用牛顿公式,计算得

$$x_1 = 17.9$$
°

2.3.5 牛顿法优缺点

优点:

(对于单根)收敛速度快(至少二阶局部收敛),是目前求解非线性方程组的主要方法。

缺点:

- 1. 对重根收敛速度较慢, 只有线性收敛;
- 2. 对初值的选取很敏感,要求初值相当接近真解;
- 3. 每一次迭代都需要**计算导数**, 难度和工作量都可能会比较大。

2.3.6 牛顿下山法

下山法基本思想:

为保证全局收敛,要求每一步迭代满足下降条件:

$$|f(x_{k+1})| < |f(x_k)|$$

即保持函数的绝对值是下降的。

具体做法: 加入一个下山因子 λ ,与前一步近似值 x_k 的适当加权平均作为新的改进值 $x_{k+1} = \lambda \bar{x}_{k+1} + (1-\lambda) x_k$:

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

下山因子λ的取法:

从 $\lambda = 1$ 开始,逐次减半,直到满足下降条件为止。

2.3.7 牛顿法重根情形

◆解决重根问题

- 牛顿法具有平方收敛速度是指单根时的情况,当不是单根时,就没有 平方收敛速度,为了得到平方收敛速度,可对牛顿法进行修正。
- 设 x^* 为方程 f(x) = 0 的 m 重根 ($m \ge 2$),则有 $f(x) = (x x^*)^m g(x)$,其中 $g(x^*) \ne 0$,此时有

$$f(x^*) = f'^{(x^*)} = \dots = f^{m-1}(x^*) = 0, f^m(x^*) \neq 0$$

2.3.7 牛顿法重根情形

◆ 解决重根问题

• 当m已知时,由于x*是方程 $f(x)^{1/m} = 0$ 的单根,对此方程应用牛顿迭代公式,有

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, k = 0,1,2,...$$

• 当 m 未知时,令u(x) = f(x)/f'(x),则 x^* 是方程u(x) = 0的单根。对 u(x)用牛顿法进行求解,其迭代公式如下

$$x_{k+1} = x_k - \frac{f'(x_k)f(x_k)}{f'(x_k)^2 - f(x_k)f''(x_k)}, k = 0,1,2,...$$

2.3.7 牛顿法重根情形

◆ 解决重根问题-例子

例 已知 $\sqrt{2}$ 是方程 $x^4 - 4x^2 + 4 = 0$ 的多重根,分别用牛顿法和求重根的牛顿法求其近似根。

作业(以1.5作为初值,采用三种方法,包括牛顿法、已知其是二重根的牛顿法、不知道其是二重根的牛顿法;每个方法迭代5次,记录每一次迭代得到的近似值,并说明三种方法的表现)。

* 编写程序,分别用以上三种方法计算。

Demo_3_2_NLS_Newton.m

2.4 弦截法与抛物线法

2.4.1 弦截法基本思想

目的: 避免计算导数, 并且尽可能地保持较高的收敛性(即超线性收敛).

弦截法 也称割线法, 主要思想是用差商代替微商, 即

$$f'(x_k) \approx f[x_{k-1}, x_k] = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

代入牛顿法即可得弦截法迭代格式:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)_{, k = 1, 2, \dots}$$

* 割线法需要提供两个迭代初始值。

2.4 弦截法与抛物线法

定理 设 x_* 是 f(x) 的零点,f(x) 在 x_* 的某邻域 $U(x_*,\delta)$ 内二阶连续可导,且 $f'(x) \neq 0$. 若初值 $x_0, x_1 \in U(x_*,\delta)$,则当 δ 充分小时,割线法具有 p 阶收敛性,其中 $p = \frac{1+\sqrt{5}}{2} \approx 1.618,$

即 $p \neq p^2 - p - 1 = 0$ 的一个根.

2.4.2 弦截法几何意义

◆曲线y = f(x)上横坐标为 x_k, x_{k-1} 的点分别记作 P_k, P_{k-1} ,弦线 $P_k P_{k-1}$ 的斜率

等于差商值 $\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}$, 其方程为:

- $♠x_{k+1}$ 实际是弦线 P_kP_{k-1} 与x轴的交点。
- ◆ 因此,成为弦截法。

2.4.3 弦截法优缺点

弦截法: 常用于函数的导数较复杂或函数仅在区间上连续的情形。

优点:

不需要求函数的导数;两个初值容易给出。

缺点: 收敛阶只有1.618, 比牛顿法的收敛阶低。

2.5 小结

- ◆理解方程有根的判别定理;
- ◆掌握二分法基本原理和算法流程;
- ◆掌握理解迭代法的基本思想和收敛条件;
- ◆掌握牛顿法的建立及几何意义,了解牛顿法的收敛性;

第二章非线性方程的数值解法

- ◆ Q & A
- ◆ 谢谢

