FLASH-SAR HYBRID ADC

NIPUN KAUSHIK

DESIGN PARAMETERS

- Resolution = 8-bit (2-bit Flash, 6-bit SAR)
- Cu (Unit capacitor) = 20f
- Vref = IV
- Switching scheme = Charge recycling (Ginsberg et al., 2005 & 2006)
- CDAC arrangement = Split Capacitor DAC MSB split into lower sub-DAC
- System Clock = 100 MHz

SCHEMATIC TOP

Fig 1:Top view of the hybrid ADC

2-BIT FLASH ADC

Fig 2: Flash ADC symbol and control signals

FLASH SCHEMATIC TOP

Fig 3: Flash schematic with bubble correction and encoder

BUBBLE CORRECTION AND 2-BIT ENCODER

Fig 4: Symbol and controls for bubble correction and encoder

BUBBLE CORRECTION

Fig 5: Schematic for bubble correction

THERMOMETER TO BINARY ENCODER

Fig 6: Schematic for Thermometer to Binary encoder

CDAC

Fig 7: Symbol and control for CDAC

CDAC ARRANGEMENT

Fig 8: Schematic of Flash-SAR CDAC

SAMPLING SPREAD BY CLK_DAC

Fig 9: Soft start CDAC with delay to avoid current spike on VREF node

REFERENCE SWITCH SCHEMATIC

Fig 10: Reference switch schematic

SAR LOGIC

Fig 11: SAR Logic and control signals

SAR LOGIC AND CONTROL

Fig 12: Sequencer, DAC control and code register

DAC CONTROL

Fig 13: DAC control for thermometer bits

SIMULATION RESULTS

RAMP

Fig 14: Digital code from 0 to 255 with input range of 2Vpp

SINGLE CYCLE

Fig 15: Single conversion cycle operation

SOFT START CDAC

Fig 16: Soft start with CLK DAC

FFT PERFORMANCE

- --- ADC Performance ---
- Fundamental bin k: I
- Peak frequency (Hz): 2712.673611
- Fundamental (RMS): 0.350971 V (-0.06 dBFS)
- Signal Power: 0.123181
- Noise Power: 1.339636e-06
- Harmonic Power: 9.894036e-08
- THD: 0.000896, -60.95 dB
- SNR: 49.64 dB
- SINAD: 49.33 dB
- ENOB: 7.901 bits
- SFDR: 60.98 dB
- Harmonic bins used: [2, 3, 4, 5]

DNL AND INL

DNL (LSB) min: -0.6281,

max: 0.6115

Raw INL (LSB) min: -

0.7186, max: 0.5913

Norm INL (LSB) min: -

0.7457, max: 0.5057

Fig 15: DNL and INL for Flash-SAR ADC

SAR ONLY DNL AND INL

DNL (LSB) min: -0.0083, max: 0.1157 Raw INL (LSB) min: -0.0744, max: 0.0661 Norm INL (LSB) min: -0.1072, max: 0.0399

Fig 15: DNL and INL for SAR only portion

COMPARISON TABLE

TABLE II SECURE ADC COMPARISON

Publication	TCAS-II'20 [1]		JSSC'21 [6]		CICC'22 [2]		VLSI'22 [3]		CICC'23 [4]		HOST'24 [5]		This Work	
Process (nm)	180		65		65		65		65		65 ^a		65ª	
Supply (V)	N/A ^b		1.2		1.2		1.2		1.2		1		1	
Resolution (bits)	10		12		8		12		12		8		8	
Topology	Single-Ended		Differential		Differential		Differential		Differential		Differential		Differential	
Protected	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
Power (µW)	63.5	65	83.2	158.5	43.4	50.2	539.8	539.8	722	698	145	150.7	138.96	373.45
Sample Rate (MS/s)	1.07	1	1.25	1.25	3.33	2	25	25	45	40	20	20	9.09	11.11
Area (mm ²)	0.07	0.075	0.34	0.5	0.064	0.073	0.072	0.072	0.075	0.075	0.015	0.017	0.356	0.384
ENOB (bit)	8.8	8.7	11.2 ^c	11.2 ^c	7.2	7.7	10.9	10.9	10.9 ^c	10.8 ^c	7.86	7.8	7.52	7.91
FoM _W (fJ/cs.)	130.8	151.5	27.9	54.3	88.6	120.7	11.3	11.3	8.5	9.8	31	33.8	7.49	124.30
INL	-1.2	-1.2	-0.87	-1.01	N/A ^b	-0.46	-0.76	-0.76	-0.67	-0.73	-0.53	-0.56	-0.16	-0.74
	+1.2	+1.2	+0.80	+0.86		+0.44	+0.67	+0.67	+0.72	+0.69	+0.53	+0.58	0.11	0.59
DNL	-0.6	-0.6	-0.53	-0.72	N/A ^b	-0.31	-0.49	-0.49	-0.62	-0.68	-0.5	-0.6	-0.13	-0.62
	+0.6	+0.6	+0.79	+0.77		+0.37	+0.35	+0.35	+0.37	+0.31	+0.45	+0.52	0.14	0.61
SFDR (dB)	64.5	64.3	86	89.6	53.7	54.6	86.6	86.6	80.5	80.2	N/A ^b	N/A ^b	60.26	60.05
Leakage RMSE			117.74/	384.04/	0.7/	58/	14.21/	1625.39/	52.76/	1985.25/	24.5/	103/	30.29/	112.28/
(LSBs)	_d	_d	4096	4096	256	256	4096	4096	4096	4096	256	256	256	256
NRMSE	_d	_d	0.0287	0.0938	0.0027	0.2266	0.0035	0.3968	0.0129	0.4847	0.095	0.42	0.1183	0.4386
Random Bits (Mb/s)	NA	1	NA	0	NA	360 ^e	NA	275	NA	4080 ^e	NA	200	NA	0
a Cimulation only														

^aSimulation only

Table I: Comparison with other works

^bValue not disclosed

^cCalculated from FoM_W, Power, and Sample Rate

dReported an unprotected leakage ENOB of 4.6 bits and a protected leakage ENOB of 0.8, RMSE was not reported A variable amount of random bits are required, the reported value is the average per conversion

THANK YOU