

Descrierea soluției - perioada

Variante de rezolvare

1.Complexitate O(N)

Se știe că prin împărțirea numerelor 10^1 , 10^2 , 10^3 ,... la N se obțin zecimalele fracției 1/N.

Acest procedeu continuă până când restul acestor împărțiri este 1. Din acest moment cifrele zecimale se repetă.

Așadar când se obține restul 1 se încheie c perioadă a fracției 1/N.

Se calculează restul împărțirii lui 10^k cu k = 1,2,3,... folosind restul anterior. Când acest rezultat este 1, k reprezintă lungimea perioadei căutate.

2. Complexitate O(sqrt(N)+ sqrt($\varphi(N)$)*log($\varphi(N)$)), unde $\varphi(N)$ reprezintă indicatorul lui Euler.

O variantă optimizată ține cont de următorul rezultat matematic:

Se știe că $10^{\varphi(N)}\equiv 1\pmod{N}$, conform teoremei lui Euler.

Rezultatul căutat nu este însă $\varphi(N)$ ci un divizor al său.

Așadar se calculează $\varphi(N)$ și apoi se caută care este cel mai mic divizor al acestui număr ce verifică cerința. Pentru calculul lui 10^k se folosește algoritmul de ridicare la putere în timp logaritmic.

Soluția obține punctaj maxim.