Física Quântica II

Exercícios

Exercício 1: Relações de comutação entre as coordenadas ou o momento e o momento angular

Antes de começarmos este exercício, vamos introduzir alguma notação nova.

Começamos pela convenção de soma de Einstein (a que ele chamava ironicamente uma grande descoberta matemática). Considerem-se dois vetores expressos na base cartesiana, $\mathbf{A} = \sum_i A_i \mathbf{e}_i$, $\mathbf{B} = \sum_i B_i \mathbf{e}_i$. O seu produto escalar é dado por $\mathbf{A} \cdot \mathbf{B} = \sum_i A_i B_i$. Note-se que não apenas o índice i é somado de 1 a 3, correspondente a x, y e z, como aparece repetido na soma.

Assim, de acordo com esta convenção, a presença de um índice repetido implica que estamos a somar sobre ele (diz-se que é um índice mudo, porque pode ser substituido por outro que não esteja já presente na expressão sem alterar o significado da mesma). Podemos pois escrever, $\mathbf{A} \cdot \mathbf{B} = A_i \, B_i = A_j \, B_j$.

Introduzimos agora o símbolo de permutação ε_{jlm} que é nulo se dois ou três dos índices forem iguais (p.e. $\varepsilon_{112}=0$), e é de resto dado por $\varepsilon_{123}=\varepsilon_{312}=\varepsilon_{231}=1,$ $\varepsilon_{213}=\varepsilon_{321}=\varepsilon_{132}=-1,$ ou seja ele é 1 se jlm for uma permutação circular de 123 e -1 se a permutação envolver uma troca de quaisquer dois elementos relativamente a uma das três permutações circulares escritas acima. Note que é anti-simétrico na troca de dois dos índices, p.e. $\varepsilon_{jlm}=-\varepsilon_{mlj}$.

Qualquer componente do operador momento angular orbital pode ser escrita como

$$\hat{L}_j = \varepsilon_{jlm} \hat{x}_l \hat{p}_m \,, \tag{1}$$

onde se assume que se está a somar sobre os índices l e m dado que aparecem repetidos. Tomese, por exemplo j=3, ou seja a componente \hat{L}_z . Nesse caso, $\varepsilon_{3lm}=1$, quando l=1 e m=2 e $\varepsilon_{3lm}=-1$ quando l=2 e m=1. Obtemos pois $\hat{L}_3=\hat{x}_1\hat{p}_2-\hat{x}_2\hat{p}_1=\hat{x}\hat{p}_y-\hat{y}\hat{p}_x$, que é a expressão correta.

a) Sejam \hat{A} , \hat{B} , \hat{C} e \hat{D} operadores. Mostre que

$$[\hat{A}, \hat{C}\hat{D}] = [\hat{A}, \hat{C}]\hat{D} + \hat{C}[\hat{A}, \hat{D}],$$
 (2)

onde $[\hat{A}, \hat{C}] = \hat{A}\hat{C} - \hat{C}\hat{A}$ é o comutador entre os operadores \hat{A} e \hat{C} .

Pista: Experimente adicionar e subtrair $\hat{C}\hat{A}\hat{D}$ à expressão para o comutador $[\hat{A},\hat{C}\hat{D}]$.

b) Mostre que

$$[\hat{A}\hat{B}, \hat{C}] = [\hat{A}, \hat{C}]\hat{B} + \hat{A}[\hat{B}, \hat{C}],$$
 (3)

Pista: Experimente utilizar o resultado da alínea anterior e o facto de que o comutador é antisimétrico.

c) Mostre que

$$[\hat{x}_i, \hat{L}_j] = i\hbar \varepsilon_{ijk} \hat{x}_k \,, \tag{4}$$

onde a convenção de soma de Einstein é assumida.

Pista: Substitua a expressão para \hat{L}_j , dada pela equação (1) em (4) e utilize (2). Utilize ainda a relação de comutação entre a coordenada e o momento $[\hat{x}_i, \hat{p}_m] = i\hbar\delta_{im}$.

d) Mostre que

$$[\hat{p}_i, \hat{L}_j] = i\hbar \varepsilon_{ijk} \hat{p}_k \,, \tag{5}$$

onde a convenção de soma de Einstein é assumida.

Pista: Ver acima.

e) Seja $\hat{p}^2 = \hat{p}_i \hat{p}_i$, o operador quadrado do momento linear, que aparece na expressão para a energia cinética. Mostre que

$$[\hat{p}^2, \hat{L}_i] = 0, \tag{6}$$

Pista: Utilize o resultado (5).

f) Seja $\hat{r}^2 = \hat{x}_i \hat{x}_i$, o operador quadrado da coordenada, que aparece na expressão para a energia potencial de um oscilador harmónico em 3d. Mostre que

$$[\hat{r}^2, \hat{L}_i] = 0,$$
 (7)

Pista: Ver acima.

g) Mostre que se n é um inteiro positivo, se tem

$$[\hat{r}^{2n}, \hat{L}_i] = 0, \quad n > 0$$
 (8)

Conclua que se o potencial $V(\hat{r}) = \sum_{n=0}^{\infty} C_n \, \hat{r}^{2n}$ é uma função analítica de \hat{r}^2 , o Hamiltoniano comuta com qualquer das componentes do momento angular. Note que não pode utilizar esta demonstração para o potencial de Coulomb (porquê?).

Pista: Aplique indução e utilize a equação (3) para demonstrar o resultado.

h*) Deve tentar resolver este exercício apenas se se sentir com muita vontade de manipular índices ;-)...

Introduzimos a seguinte fórmula, sem demonstração

$$\varepsilon_{ilm}\varepsilon_{jnm} = \delta_{ij}\delta_{ln} - \delta_{in}\delta_{lj}, \qquad (9)$$

onde, de acordo com a convenção, a soma se efetua sobre o índice m (para a demonstrar, basta considerar os diferentes valores possíveis para i, j, l, n).

Mostre que

$$[\hat{L}_i, \hat{L}_j] = i\hbar \varepsilon_{ijk} \hat{L}_k \,, \tag{10}$$

Pista: Substitua a expressão para \hat{L}_j dada por (1) em (10) e utilize os resultados (4) e (5). Tenha cuidado com a manipulação dos índices.

Exercício 2: Operador momento angular em coordenadas esféricas

As coordenadas cartesianas (x, y, z) estão relacionadas com as coordenadas esféricas (r, θ, φ) , através das fórmulas

$$x = r \sin \theta \cos \varphi, \quad y = r \sin \theta \sin \varphi, \quad z = r \cos \theta.$$
 (11)

a) Mostre, reproduzindo a demonstração apresentada na aula teórica para coordenadas cilíndricas, que o gradiente de uma função pode ser escrito em coordenadas esféricas, como

$$\nabla \psi = \sum_{\mu} \frac{1}{h_{\mu}} \frac{\partial \psi}{\partial q_{\mu}} e_{\mu}$$

$$= \frac{\partial \psi}{\partial r} e_{r} + \frac{1}{r} \frac{\partial \psi}{\partial \theta} e_{\theta} + \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi} e_{\varphi}, \qquad (12)$$

onde
$$(q_1, q_2.q_3) = (r, \theta, \varphi)$$
 e $h_{\mu} = \left\| \frac{\partial r}{\partial q_{\mu}} \right\|$.

b) Mostre igualmente, seguindo os mesmos passos dados na aula teórica para coordenadas cilíndricas, que em coordenadas esféricas, as operadores do momento angular se escrevem como

$$\hat{L}_{x} = i\hbar \left(\sin \varphi \frac{\partial}{\partial \theta} + \cot \theta \cos \varphi \frac{\partial}{\partial \varphi} \right) ,$$

$$\hat{L}_{y} = -i\hbar \left(\cos \varphi \frac{\partial}{\partial \theta} - \cot \theta \sin \varphi \frac{\partial}{\partial \varphi} \right) ,$$

$$\hat{L}_{z} = -i\hbar \frac{\partial}{\partial \varphi} . \tag{13}$$

Note que $r = re_r$, $e_r \times e_\theta = e_\varphi$, $e_\theta \times e_\varphi = e_r$, $e_\varphi \times e_r = e_\theta$, e que o produto vectorial é anticomutativo.

c) Mostre da última alínea que $\hat{L}_{\pm}=\hat{L}_x\pm i\hat{L}_y$

$$\hat{L}_{\pm} = \pm \hbar e^{\pm i\varphi} \left(\frac{\partial}{\partial \theta} \pm i \cot \theta \frac{\partial}{\partial \varphi} \right). \tag{14}$$

d) Os harmónicos esféricos $Y_{lm}(\theta,\varphi)$ são autofunções do operador de momento angular orbital \hat{L}_z , isto é $\hat{L}_z Y_{lm}(\theta,\varphi) = \hbar m Y_{lm}(\theta,\varphi)$, onde m é um inteiro, como demonstrado na aula teórica. Também são autofunções do operador de momento angular total $\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$, como será igualmente demonstrado, de valor próprio $\hbar^2 l(l+1)$ em que l é um inteiro $l \geq 0$ e $-l \leq m \leq l$, ou seja, o valor próprio de \hat{L}_z está compreendido entre -l e l.

Sabemos ainda que para m=l, temos que $\hat{L}_+Y_{ll}(\theta,\varphi)=0$ (resp. $\hat{L}_-Y_{l-l}(\theta,\varphi)=0$). Usando a expressão para \hat{L}_+ em coordenadas esféricas dada acima, mostre que

$$Y_{ll}(\theta,\varphi) = c_l(\sin\theta)^l e^{il\varphi}, \qquad (15)$$

onde c_l é uma constante de normalização.

Pista: Substitua simplesmente a fórmula dada na equação relevante e verifique que se trata de facto de uma solução da mesma.

e) Mostre, integrando o módulo quadrado de $Y_{ll}(\theta,\varphi)$ sobre o ângulo sólido da esfera, que c_l é dada por

$$c_l = \frac{(-1)^l}{2^l l!} \sqrt{\frac{(2l+1)!}{4\pi}},$$
(16)

Pista: Utilize substituição de variáveis no integral, uma tabela de integrais ou o Mathematica. Note que há uma fase que é uma mera convenção.

Responsável: Jaime Santos, DFUM e CFUM

E-Mail: jaime.santos@fisica.uminho.pt