#Exercise 2-1\

##Cartesian Product\

(a) Cartesian Product of A{a,b,c} X Z{1,2,3,4}:\

 $A \times Z = \{(a,1), (a,2), (a,3), (a,4), (b,1), (b,2), (b,3), (b,4), (c,1), (c,2), (c,3), (c,4)\}\$

CartesianProduct.py

	1	2	3	4
а	(a,1)	(a,2)	(a,3)	(a,4)
b	(b,1)	(b,2)	(b,3)	(b,4)
С	(c,1)	(c,2)	(c,3)	(c,4)

##Binary Relation\

(b) The binary relation over A and Z is a subset of the cartesian product of AxZ. \ If for example A w as linked to all odd numbers, b w as linked to even numbers, and c w as linked to even and odd numbers, w e w ould have a binary relation that looked like this: \ L = $\{(a,1), (a,3), (b,2), (b,4), (c,1), (c,2), (c,3), (c,4)\}$ Which clearly is a subset of Cartesian product AxZ.

##Non-total function A->Z\

Non-total functions or partial functions, does not have a result for every possible outcome.\

It generalizes the concept of a function $f: X \to Y$ by not forcing f to map every element of X to an element of Y (only some subset X' of X). If X' = X, then f is called a total function for emphasizing that its domain is not a proper subset of X. $A(b) \to z(2)$ $A(c) \to z(1)$

##Total Function \

$$A(a) \rightarrow Z(1) A(b) \rightarrow Z(2) A(c) \rightarrow Z(1)$$

AssociationRules.py

#Exercise 2-2\

 $(a) \\ supp(\{Milk\} -> \{Diapers\}) = 40\%, \\ conf(\{Milk\} -> \{Diapers\}) = \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (a) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (b) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Diapers\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 40\%/50\% = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 80\%. \\ (c) \\ supp(\{Milk\} -> \{Milk\}/supp(\{Milk\}) = 80\%. \\ (c) \\ supp$

 $(b) \sup(\{Diapers\} -> \{Milk\}) = 40\%, \operatorname{conf}(\{Diapers\} -> \{Milk\}) = \sup(\{Diapers\} -> \{Milk\} / \sup(\{Diapers\}) = 40\% / 70\% = 57\% \setminus \{Milk\} / \sup(\{Diapers\} -> \{Milk\} / \sup(\{Diapers\}) = 40\% / 70\% = 57\% \setminus \{Milk\} / \sup(\{Diapers\} -> \{Milk\} / \bigcup(\{Diapers\} -> \{Milk\} /$

- (c) $\forall x \in T : \sigma(x) = 6$, given that $\sigma(x) = \max \text{ support of size } 3 \setminus$
- (d) 6 unique items, $3^6-2^6(6+1)+1 = 3-2+1 = 602$ possible rules\
- (e) itemset {Milk, Diapers, Bread, Butter} has the biggest size with 4 items and is frequent\

(sup({Milk, Diapers, Bread, Butter})

- (f) {Diapers, Milk}. Find de individuelle frequencies først, og gå efter det.\
- (g) {Bread, butter}\