INSTITUTO TECNOLOGICO DE COSTA RICA ESCUELA DE QUIMICA QU-1103 QUIMICA BASICA II II EXAMEN PARCIAL (B) II SEMESTRE 2006

PUNTOS CORRECTOS	NOTA

Lunes 23 de Octubre del 2006	12:30 p.m.	
NOMBRE		CARNÉ
PROFESOR DEL CURSO		GRUPO

INSTRUCCIONES ACERCA DEL EXAMEN:

- 1. El propósito de este examen es evaluar el dominio del estudiante en los siguientes temas del curso: Equilibrio Químico, parte de Equilibrio Ácido- Base y Nomenclatura Inorgánica.
- 2. Tiene 6 páginas numeradas, sin contar esta portada. NO las despegue.
- 3. Consta de 30 puntos, distribuidos en:

PARTE I: ESCOGENCIA (14 PUNTOS)
PARTE II: DESARROLLO (3 PUNTOS)
PARTE III: PROBLEMAS (13 PUNTOS)

- 4. Detrás de esta portada encontrará: equivalencias, fórmulas matemáticas, Tabla de constantes de acidez y la Tabla Periódica de los Elementos.
- 5. Debe usar bolígrafo <u>con tinta permanente</u> en sus respuestas. Si usa bolígrafo con tinta no permanente, lápiz o corrector no podrá reclamar la calificación.
- 6. Material adicional que puede usar durante el examen: SOLAMENTE calculadora y ésta NO PUEDE SER CON PROGRAMACIÓN ALFANUMÉRICA, NI AGENDA ELECTRÓNICA.
- 7. Es totalmente prohibido el préstamo de materiales y el uso de teléfonos celulares durante el examen.
- 8. Lea con cuidado cada pregunta y asegúrese que su examen esté completo.
- 9. Tiene 2 horas para resolverlo.
- 10 La nota del examen se calculará: Número de puntos correctos/0,30.
- 11. El valor de este examen es de un 26.5 % del porcentaje correspondiente a exámenes parciales.

I PARTE ESCOGENCIA

Marque con una V, si la opción es verdadera o F si es falsa. Todas las opciones deben aparecer marcadas. Cada pregunta vale dos puntos (puntaje de la pregunta: 5 opciones correctas = 2 ptos; 4 = 1,50 ptos; 3 = 1 pto; $\leq 2 = 0$ pto). Valor total 14 puntos.

Respecto a los conceptos básicos de equilibrio químico, se afirma correctamente que:
Para la reacción $Ti_{(s)} + 2Cl_{2(g)} \stackrel{\leftarrow}{\Rightarrow} TiCl_{4(l)}$, las constantes K y K_p tienen la misma expresión, pero
diferente valor.
Un sistema en equilibrio químico tiene iguales cantidades de reactivos y productos, es cerrado y
reversible.
La expresión de la constante de equilibrio depende de la estequiometría de la reacción, pero no de la
temperatura.
En la reacción $Co_{(s)} + 2H^+_{(ac)} = Co^{2+}_{(ac)} + H_{2(g)}$, si Q>K indica que la reacción se desplaza de reactantes
a productos.
La constante de equilibrio para la reacción 2 $SO_{2 (g)} + O_{2 (g)} \leftrightarrows 2 SO_{3 (g)}$ es K , por lo que para la reacción 4 $SO_{3 (g)} \leftrightarrows 4 SO_{2 (g)} + 2 O_2$ la constante es $(1/K^2)$.
Teaccion 4 $SO_{3(g)} \rightarrow 4 SO_{2(g)} + 2 O_2$ la constante es (1/K).
Respecto al efecto de variables sobre el equilibrio, considere los siguientes enunciados.
La reacción $N_{2(g)} + 3H_{2(g)} \leftrightarrows 2NH_{3(g)}$ describe la producción de amoniaco a nivel industrial, se puede
afirmar que para obtener más amoniaco debe eliminarse el mismo continuamente del sistema.
En la reacción $N_{2(g)} + O_{2(g)} \leftrightarrows 2NO_{(g)}$ a 25°C, un incremento de presión con cambio de volumen no
cambia las concentraciones de reactivos y productos.
Un catalítico acelerador aumenta la velocidad a la que se alcanza el equilibrio incrementando la
concentración final de los productos.
Sea la reacción $2CO_{2(g)} \leftrightarrows 2CO_{(g)} + O_{2(g)}$, $\Delta H = -514$ kJ. Al disminuir la temperatura se aumenta la
presión parcial del CO _(g) y cambia el valor de la constante de equilibrio.
Toda variación de concentración o presión, mantiene constante la relación [productos]/[reactantes], sólo cambia la posición del equilibrio.
solo camola la posicion del equinollo.
Se colocan 0,5 moles de cada uno de los compuestos H2, S y H2S en un recipiente de 1,0 L a 90 °C, hasta que
se establece el equilibrio siguiente: $H_2(g) + S(s) \Rightarrow H_2S(g)$. En este momento se determina que la mezcla
contiene 0,675 moles de H ₂ S. Se afirma correctamente que:
Para el sistema en equilibrio se cumple que $Kp = K$.
Al inicio para el sistema se cumple Q < K.
En el equilibrio las presiones parciales de H ₂ y H ₂ S son iguales.
En la expresión que define K, se considera que [S] es constante.
En el equilibrio se cumple $[H_2] = [H_2S]$
Sobre equilibrios de solubilidad, se afirma correctamente que:
Si para BaF ₂ K_{ps} =1.84x10 ⁻⁷ y para MgF ₂ K_{ps} =7.42x10 ⁻¹¹ , la solubilidad molar del MgF ₂ es mayor que la del
BaF ₂ .
Si PI>K _{ps} para una disolución, se puede afirmar que se formará un precipitado.
El valor de Kps del Ce(OH) ₃ en agua pura es igual que en una disolución acuosa de NaOH.
Si el proceso de disolución de una sal es endotérmico, al aumentar la temperatura y concentración de la sal
aumenta la concentración de los iones disueltos.
Para incrementar la solubilidad del PbSO ₄ se puede utilizar una solución de Pb(NO ₃) ₂ 0,1 molar.

	sidere las sigui	entes especies:					
Br ¹⁻	PO_4^{3-}	$[Mn (\hat{H}_2O)_6]^{2+}$	$H_2PO_4^{1-}$	NH_3	NO_{2}^{1-}		
A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}		
Se dice correctamente que:							
	A es solamente	e una base Bronst	ed-Lowry				
	E es una espec	cie anfotérica					
	C es un ácido	de Lewis					
	F es una base	de Arrhenius					
	B y D son pare	es conjugados					
Res	El valor numé	stantes de acidez rico de la K _a da i conjugado a 25°C	nformación	sobre la	fuerza del	ácido.	
	Un aumento en	n la concentración	n de iones h	idroxilo	(OH ¹⁻) en 1	la disolución, a	umenta el valor de la K _b
	A 25 °C e igu	al concentración,	una disolu	ción de I	$H_2PO_4^{1-}$ es	más ácida que	otra de HSO ₃ ¹⁻
	Para el agua s numérico.	e cumple que a cu	ıalquier ten	nperatura	la constar	nte K_a , K_b y K_w	tienen el mismo valor
Dad	a la informació	n para los siguien	tes ácidos:				
			ombre	Fá	rmula	Ka	
		Acético		CH ₃ C	ООН	1,8x10 ⁻⁵	
		Cloracé	tico	CH ₂ C	СООН	1,4x10 ⁻³	
		Dicloroa	acético	CHCl ₂	СООН	$3,3x10^{-2}$	
		Tricloro	acético	CCl ₃ C	OOH	$2,0x10^{-1}$	
		Agua		H ₂ O		$1,82 \times 10^{-16}$	
Se a	firma correctan						
			do cloroace	ético es n	nás ácida q	ue una disoluci	ión 0,1 mol/L de ácido
	dicloroacético.						. 1
		i 0,2 molar de ácio molar de ácido cl		tiene una	mayor cor	centración de i	iones OH ¹⁻ que una
	Una disolución	0,01 mol/L de áo	cido dicloro	acético e	s más ácid	la que el agua.	
La Kb de la base conjugada del ácido cloroacético es mayor que la Kb del ácido dicloroacético. Una disolución 0,2 mol/L de ácido dicloroacético tiene una mayor concentración de iones H ₃ O ⁺ que una disolución 0.05 mol/L de ácido acético.							

II PARTE: DESARROLLO

Escriba en forma legible. SOLO se calificará lo que está dentro del espacio asignado. Valor total 3 puntos.

Complete correctamente el siguiente cuadro escribiendo el nombre Stock o fórmula química según corresponda. (3 ptos)0

NOMBRE	FÓRMULA
	Ca(CN) ₂
	H_2SO_4
	Al(OH) ₃
	CuI ₂
	PtO ₂
Sulfuro de amonio	
Oxido de hierro (V)	
Fluoruro de potasio	
Acido clórico	
Fosfato de calcio	

III PARTE PROBLEMAS

Debe aparecer todo el procedimiento que le permitió obtener el resultado. SOLO se calificará lo que aparezca en el espacio asignado. No olvide escribir el planteo del problema. Valor total 13 puntos.

Una muestra de bromuro de nitrosilo (NOBr) se descompone de acuerdo con el equilibrio expresado mediante la siguiente ecuación:

$$2 \text{ NOBr}_{(g)} \rightleftharpoons 2 \text{ NO}_{(g)} + Br_{2(g)}$$

En un recipiente de 5,0 L a 100 °C se colocan 0,50 moles de bromuro de nitrosilo. Luego de alcanzar el equilibrio se detectan 0,453 moles de compuesto. Calcule la constante de equilibrio K correspondiente a la descomposición del bromuro de nitrosilo a 100 °C.

	(2 ptos)		
I			
I			

Se tiene un sistema cerrado donde se colocan 0,76 molar de $SO_{3(g)}$; 0,6 molar de $SO_{2(g)}$ y 0,48 molar de $O_{2(g)}$ a
350 °C. Cuando el sistema alcanza el equilibrio K= 6,6x10 ⁻² donde R= 0,0821 L atm / (mol K)

La reacción del sistema es: $2 SO_{3(g)} \rightleftharpoons 2 SO_{2(g)} + O_{2(g)} 0$

a) Hacia dónde se desplaza el sistema para alcanzar el equilibrio?	(1,25 ptos)
b) Determine el valor de la constante de equilibrio en término de presiones parciales (Kp)	(0,75 pto)
La solubilidad del PbCl $_2$ en agua a 25°C es 4,51 x 10^{-3} g/ml . MM PbCl $_2$ = 278,1 g/mol Calcule:	
a) el valor de la Kps	(0,75 pto)
b) la solubilidad molar del PbCl ₂ en una disolución acuosa de AlCl ₃ 0,025 molar	(1,25 ptos)

Se desea eliminar iones calcio (Ca ²⁺) del agua potable de una ciudad. Se decide realizar en siguiente prueba: se mezclan 500 mL de muestra de agua potable, la cual tiene una concer	ntración de calcio
(Ca^{2+}) 0,05 molar, con 100 mL de Na ₂ CO ₃ 0,07 molar. ¿Se formará o no precipitado Considere un volumen final de 600 mL. K_{ps} CaCO ₃ =6,2x10 ⁻¹² a 25°C.	en esta prueba? (2 pts)
U	1
Un jugo de tomate tiene una concentración de iones OH^{1-} de 1,6 x 10^{-10} molar a 20°C. Calcule de iones H_3O^+ e indique si la disolución es ácida, básica o neutra.	e la concentración (1 pto)
	(2.5)
Calcule el pOH de una disolución de ácido bórico (H ₃ BO ₃) 0,038 molar a 10°C.	(2,5 ptos)

En una disolución acuosa a 25°C de ión ClO¹ el pH es de 10,74. Calcule para dicha disolución la	
concentración de dicho ión?	(1,5 ptos)

COORDINACION QU 1103 Octubre 2006