Types and λ -calculus

Problem Sheet 4

* 1.	Put in all the implicit p	parentheses required	by the	official	syntax	of types	for
tl	ne following examples:						

- (a) $a \rightarrow b \rightarrow a$
- (b) $\forall bc. (b \rightarrow c) \rightarrow c$
- (c) $\forall ab. (c \rightarrow c \rightarrow d) \rightarrow a \rightarrow b$
- (d) $\forall a. (a \rightarrow b) \rightarrow a \rightarrow b$

Solution -

- (a) $(a \rightarrow (b \rightarrow a))$
- (b) $\forall bc. ((b \rightarrow c) \rightarrow c)$
- (c) $\forall ab. ((c \rightarrow (c \rightarrow d)) \rightarrow (a \rightarrow b))$
- (d) $\forall a. ((a \rightarrow b) \rightarrow (a \rightarrow b))$

The following is the induction principle for the set \mathbb{T} of monotypes.

Suppose $\boldsymbol{\Phi}$ is a property of monotypes. Then if the following can both be proven:

- For all type variables a, $\Phi(a)$.
- For all monotypes B and C, if $\Phi(B)$ and $\Phi(C)$ then $\Phi(B \to C)$.

It follows that $\forall A \in \mathbb{T}$. $\Phi(A)$.

** 2. Prove, by induction on *A*, that $A(\sigma_1 \sigma_2) = (A\sigma_1)\sigma_2$.

Solution

The proof is by induction on *A*:

- **(TyVar)** In this case, *A* is a type variable *a*. The goal is to show $a(\sigma_1\sigma_2) = (a\sigma_1)\sigma_2$. By definition $a(\sigma_1\sigma_2) = (\sigma_1(a))\sigma_2$. Also by definition, $\sigma_1(a) = a\sigma_1$, so we have $(\sigma_1(a))\sigma_2 = (a\sigma_1)\sigma_2$ as required.
- **(Arrow)** In this case, *A* is an arrow type $B \to C$. Assume the induction hypotheses:

(IH1)
$$B(\sigma_1\sigma_2) = (B\sigma_1)\sigma_2$$

(IH2)
$$C(\sigma_1\sigma_2) = (C\sigma_1)\sigma_2$$

Then the goal is to show $(B \to C)(\sigma_1 \sigma_2) = ((B \to C)\sigma_1)\sigma_2$. We reason equationally:

$$(B \to C)(\sigma_1 \sigma_2) \tag{1}$$

$$= B(\sigma_1 \sigma_2) \to C(\sigma_1 \sigma_2) \tag{2}$$

$$= (B\sigma_1)\sigma_2 \to (C\sigma_1)\sigma_2 \tag{3}$$

$$= (B\sigma_1 \to C\sigma_1)\sigma_2 \tag{4}$$

$$= ((B \to C)\sigma_1)\sigma_2 \tag{5}$$

Where lines (2), (4) and (5) follow from the definition of type substitution application and line (3) follows from the two induction hypotheses.

** 3. Prove, by induction on *M*, that:

if
$$x \in FV(M)$$
 then $FV(M[N/x]) = (FV(M) \setminus \{x\}) \cup FV(N)$.

Hint: You will want to use Lemma 6.1 of the notes.

Hint: In the application case, consider splitting on whether x is free in the operator only, the operand only, or both.

Solution -

By induction on M.

- **(Var)** In this case, M is a variable y. Assume $x \in FV(M)$. The goal is to show $FV(y[N/x]) = (FV(y) \setminus \{x\}) \cup FV(N)$. By the assumption, it must be that x = y so, by definition, the left-hand side of the goal is FV(N) and the right-hand side is $\emptyset \cup FV(N)$. So they are equal.
- (App) In this case, M is an application PQ. Assume the induction hypotheses:

```
(IH1) if x \in FV(P) then FV(P[N/x]) = (FV(P) \setminus \{x\}) \cup FV(N)
```

(IH2) if
$$x \in FV(Q)$$
 then $FV(Q[N/x]) = (FV(Q) \setminus \{x\}) \cup FV(N)$

The goal is to show: if xinFV(PQ) then $FV((PQ)[N/x]) = (FV(PQ) \setminus \{x\}) \cup FV(N)$, so assume $x \in FV(PQ)$. By definition of substitution and FV, $FV((PQ)[N/x]) = FV(P[N/x]) \cup FV(Q[N/x])$ and by definition of FV, $FV(PQ) = FV(P) \cup FV(Q)$ (*). Therefore, the goal is to prove:

$$FV(P[N/x]) \cup FV(Q[N/x]) = ((FV(P) \cup FV(Q)) \setminus \{x\}) \cup FV(N)$$

Now, from (*), we know that either $x \in FV(P)$ or $x \in FV(Q)$. We split by three cases:

• If $x \in FV(P)$ and $x \in FV(Q)$, then (IH1) and (IH2) are both applicable, and we obtain $FV(P[N/x]) = (FV(P) \setminus \{x\}) \cup FV(N)$ and $FV(Q[N/x]) = (FV(Q) \setminus \{x\}) \cup FV(N)$. We note that, by simple set theory, $(FV(P) \cup FV(Q)) \setminus \{x\}$ in the goal is the same thing as $(FV(P) \setminus \{x\}) \cup (FV(Q) \setminus \{x\})$. So, in summary, we have:

```
FV(P[N/x]) \cup FV(Q[N/x])
= ((FV(P) \setminus \{x\}) \cup FV(N)) \cup ((FV(Q) \setminus \{x\}) \cup FV(N))
= (FV(P) \setminus \{x\}) \cup (FV(Q) \setminus \{x\}) \cup FV(N)
= (FV(P) \cup FV(Q)) \setminus \{x\}
```

as required, with the penultimate line following by simple set theory.

• If $x \in FV(P)$ but $x \notin FV(Q)$, then (IH1) is applicable and we obtain $FV(P[N/x]) = (FV(P) \setminus \{x\}) \cup FV(N)$. Since $x \notin FV(Q)$, by Lemma 6.1, FV(Q[N/x]) = FV(Q). Thus we have:

```
FV(P[N/x]) \cup FV(Q[N/x])
= (FV(P) \setminus \{x\}) \cup FV(N) \cup FV(Q)

= ((FV(P) \cup FV(Q)) \setminus \{x\}) \cup FV(N)
```

following by simple set theory.

- Otherwise $x \notin FV(P)$ but $x \in FV(Q)$, and the proof is analogous to the above.
- (**Abs**) In this case, M is an abstraction λy . P and we may assume by the variable convention that y does not occur anywhere else (and in particular is not x and does not occur in N). Assume the induction hypothesis:

(IH) if
$$x \in FV(P)$$
 then $FV(P[N/x]) = (FV(P) \setminus \{x\}) \cup FV(N)$

Then our goal is to show: if $x \in FV(\lambda y. P)$ then $FV(((\lambda y. P)[N/x]) = (FV(\lambda y. P) \setminus \{x\}) \cup FV(N)$, so assume $x \in FV(\lambda y. P)$. By definition, we therefore have $x \in FV(P)$. Hence, the induction hypothesis is applicable

and we obtain $FV(P[N/x]) = (FV(P) \setminus \{x\}) \cup FV(N)$ (*). Since $x \neq y$ and y does not occur in N, by definition, the left-hand side of the goal is $FV(\lambda y. P[N/x])$ and, by definition again, this is just $FV(P[N/x]) \setminus \{y\}$. From (*), this is the same as $((FV(P) \setminus \{x\}) \cup FV(N)) \setminus \{y\}$. By simple set theory and since $y \notin FV(N)$, we can rearrange this expression as $((FV(P) \setminus \{y\}) \setminus \{x\}) \cup FV(N)$. By definition, this is just $(FV(\lambda y. P) \setminus \{x\}) \cup FV(N)$ as required.

The following is the induction principle for the set \rightarrow_{β} of pairs of terms (a binary relation on terms).

Suppose $\Phi(M,N)$ is a property of pairs of terms. Then if the following can all be proven:

- For all terms P and Q, $\Phi((\lambda x. P)Q, P[Q/x])$.
- For all terms P, Q and Q', if $\Phi(Q, Q')$ then $\Phi(PQ, PQ')$.
- For all terms P, Q and P', if $\Phi(P, P')$ then $\Phi(PQ, P'Q)$.
- For all terms *P* and *P'*, if $\Phi(P, P')$ then $\Phi(\lambda x. P, \lambda x. P')$.

It follows that $\forall (M,N) \in \rightarrow_{\beta} . \Phi(M,N)$.

** 4. Prove, by induction on $M \to_{\beta} N$, that: $M \to_{\beta} N$ implies $FV(N) \subseteq FV(M)$.

Solution

The proof is by induction on $M \to_{\beta} N$, so we are proving $\Phi(M, N)$ the statement: $FV(N) \subseteq FV(M)$.

(Redex) In this case, M is of shape $(\lambda x. P)Q$ and N is of shape P[Q/x]. The goal is to prove $FV(P[Q/x]) \subseteq FV((\lambda x. P)Q)$. We can consider two subcases depending on whether or not x occurs in P:

- If x ∉ FV(P) then the left-hand side P[Q/x] is just P and hence we know that, by Lemma 6.1 of the notes, FV(P[Q/x]) = FV(P) = FV(P) \ {x}. The right hand side is, by definition, (FV(P) \ {x}) ∪ FV(Q). Clearly this contains the left-hand side since it adds FV(Q).
- If $x \in FV(P)$ then, by the previous question, the left hand side FV(P[Q/x]) is exactly $(FV(P) \setminus \{x\}) \cup FV(Q)$. However, this is exactly the definition of $FV((\lambda x. P)Q)$, the right-hand side.

(AppL) In this case, M is of shape PQ and N is of shape P'Q. We assume the induction hypothesis:

(IH)
$$FV(P') \subseteq FV(P)$$

Then our goal is to prove $FV(P'Q) \subseteq FV(PQ)$. By definition $FV(P'Q) = FV(P') \cup FV(Q)$ and by the induction hypothesis and basic set theory, this is contained in $FV(P) \cup FV(Q)$. But, this latter expression is exactly the definition of FV(PQ), so we have $FV(P'Q) \subseteq FV(PQ)$, as required.

- **(AppR)** This case is analogous to the above, but with the components of the application swapped.
- **(Abs)** In this case, M is of shape $\lambda x.P$ and N is of shape $\lambda x.P'$. We assume the induction hypothesis:

(IH)
$$FV(P') \subseteq FV(P)$$

Then our goal is to prove $FV(\lambda x. P') \subseteq FV(\lambda x. P)$. By definition of FV, this amounts to proving:

$$FV(P') \setminus \{x\} \subseteq FV(P) \setminus \{x\}$$

Then this follows immediately from the induction hypothesis and simple set theory.