Graphical Presentation

MD. MAHFUZUR RAHMAN LECTURER, STATISTICS

Contents

For qualitative data

- Bar chart
- Column chart
- Pie chart

For quantitative data

- Histogram
- Frequency polygon
- Cumulative frequency curve (Ogive)
- Line diagram
- Scatter diagram

Bar Chart

- A Bar Chart is drawn on an x-y graph and it has labelled horizontal or vertical bars that show different values.
- The size, length and color of the bars represent different values.
- Bar graph is very useful for non continuous data and it helps in comparing or contrasting the size of the different categories of the data provided.
- The widths of these bars have no significance but are taken to make the chart look attractive.

Bar Chart

Simple bar chart

Clustered/ Multiple Bar chart

Stacked/ Component bar chart

Pie Chart

- Pie chart is also known as pie diagram, is an effective way of presenting percentage parts when the whole quantity is taken as 100. This is a useful device for presenting categorical data.
- It consists of a circle sub-divided into sectors, whose areas are proportional to the various parts into which the whole quantity is divided.

Limitations:

It is less effective than bar diagram for accurate reading and interpretation, particularly when series are divided into a large number of components or the differences among the components are very small. It is generally inadvisable to attempt to portray a series having more than five or six categories.

Pie Chart

Example

The following is the frequency distribution table of highest education level of 145 randomly selected respondents-

Education level	No of respondents (frequency)
No education	40
Primary	30
Secondary	25
Higher	50

Represent this in a bar and a pie chart

Example

The following is the frequency distribution table of highest education level of 145 randomly selected respondents-

Education leve	el No. of resp (freque		es Angle (°)
No education	40	27.6	=(40/145)*360=99.3
Primary	30	20.7	=(30/145)*360=74.5
Secondary	25	17.2	=(25/145)*360=62.1
Higher	50	34.5	=(50/145)*360=124.1
Total	145	100	360

Represent this in a bar and a pie chart

Bar Chart

Pie Chart

No. of respondents (frequency)

No education
Primary
Secondary
Higher

Example

The following is the Cross-tabulation of **Highest education level** by **Gender** of 145 randomly selected respondents-

Education level		Gender	Total
Education level	Male	Female	Total
No education	25	15	40
Primary	12	18	30
Secondary	10	15	25
Higher	26	24	50
Total	73	72	145

Represent this in a multiple bar chart and a component bar chart

Multiple Bar Chart

Education level by Gender 30 26 25 25 20 18 Frequency 15 15 12 10 10 5 Primary Secondary No education Higher ■ Male ■ Female

Component Bar Chart

Multiple Bar Chart

Gender by Education level

Component Bar Chart

Multiple bar chart taking percentages for each x-axis category-

Education level	Ge	Gender				
Education level	Male	Female				
No education	=25/73*100%= 34.2%	=15/72*100%= 20.8%				
Primary	=12/73*100%= 16.4%	=18/72*100%= 25.0%				
Secondary	=10/73*100%= 13.7%	=15/72*100%= 20.8%				
Higher	=26/73*100%= 35.6%	=24/72*100%= 33.3%				
Total	73	72				

Multiple Bar Chart

Percentage distribution for educational level (Percentages calculated for each x-axis category)

Graphs (Plots)

Example

Below given a frequency distribution table of monthly family income of the respondent-

Monthly family income	No. of respondents
05-30	7
30-55	10
55-80	6
80-105	4
105-130	3

Show this in a histogram, a frequency polygon and an Ogive

Histogram

- Histogram is the most accurate graph that represents a frequency distribution. In the histogram the scores are spread uniformly over the entire class interval. The class intervals are plotted on the x-axis and the frequencies on the y-axis. Each interval is represented by a separate rectangle.
- The area of each rectangle is proportional to the number of measures within the class- interval. The entire histogram is proportional to the statistical data set.

Histogram

Frequency Polygon

Monthly family income	Class Midpoints	No. of respondents
05-30	17.5	7
30-55	42.5	10
55-80	67.5	6
80-105	92.5	4
105-130	117.5	3

Frequency Polygon

Cumulative Frequency Curve (Ogive)

Monthly family	No. of	Cumulative Frequency			
income	respondents	Less than type	Greater than type		
05-30	7	7	30		
30-55	10	17	23		
55-80	6	23	13		
80-105	4	27	7		
105-130	3	30	3		

Cumulative Frequency Curve (Ogive)

Less Than Type Ogive

Less than type Ogive for monthly family income

Greater Than type Ogive

Greater than type Ogive for monthly family income

How does a histogram differ from a bar diagram?

- A histogram is basically a set of adjacent rectangles whose areas represent the frequencies, while in a bar diagram the spacing of bars are quite arbitrary and the heights of the rectangles represent the frequencies.
- A bar diagram is an one-dimensional figure while a histogram is a two dimensional figure.
- Histogram is constructed for numerical data of continuous frequency distribution while the bar diagram is usually constructed for categorical data.

The Stem and Leaf Display

Stem and leaf plot is a graphical technique of representing quantitative data that can be used to examine the shape of a frequency distribution. Here "stem" represent the tens (leading digits) and the "leaf" represent the units (trailing digits). Compared to other techniques it is an easy and quick way of displaying data.

Tukey (1977) first proposed the technique. It allows us to use the information contained in a frequency distribution to show

- The range of score
- Concentration of scores
- The shape of the distribution
- Presence of any specific values or scores not represented in the entire data set
- Whether there are any stray or extreme values in the distribution.

The Stem and Leaf Display

The following data represented the marks obtained by 20 students in a statistics test.

							54		
66	65	55	54	51	33	39	19	54	72

Use the stem leaf plot to display the data.

Solution: Here the highest score is 84 and lowest score is 17. The stem and leaf diagram is given below-

Stem	Le	ea.	f			
1	7	9				
2	2					
3	2 3	9				
4 5	5					
5	3	4	5	4	1	4
6	6	5				
7	8	6	5	2		
8	4				1)	

Stem	Leaf
1	7,9
2	2
3	3, 9
4	5,7
5	1,3,4,4,4,5
6	5,6
7	2,5,6,8
8	4

The Stem and Leaf Display

Example:

The following data represent the amount of insurance (in units of thousand taka) purchased by 30 people from an insurance company in a given week:

31	44	51	35	76	84 110	50	56	61
40	48	61	85	90	84 110 92 40 120 75	65	120	125
100	105	115	70	77	120 75	80	92	115

Construct a stem and leaf plot to display the data.

Let us consider the following data:

		15.9 15.2						
14.6	15.8	15.3 16.4	13.7	16.2	16.4	16.1	17.0	15.9

Construct a stem and leaf plot to display the data.

Cross Tabulations

The study of patterns that may exist between two or more categorical variables is common in practice. Often by cross-tabulating the data, these patterns can be explained. One can present cross tabulations in tabular form (contingency tables) or graphical from (side by side charts).

The Contingency table

A contingency table presents the results of two categorical variables. The joint responses are classified so that the categories of one variable are located in the rows and the categories of the other variable are located in the columns. The values located at the intersections of the rows and columns are called **cells**. Depending on the type of contingency table constructed, the cells for each row-column combination contain the frequency, the percentage of the overall total, the percentage of the row total, or the percentage of the column total.

Table: Frequency distribution of students by religion and sex				
Religion	Sex		T-4-1	
	Male	Female	Total	
Muslim	25	20	45	
Hindu	12	12	24	
Christian	8	6	14	
Buddha	5	3	8	
Others	2	2	4	
Total	52	43	95	

Scatter Diagram

- It is used to display two quantitative variables which are believed to be inter-related.
- For example height and weight, age and height, income and expenditure.

Height and weight of 10 students at their 20th birthday		
Height (in cm)	Weight (in kg)	
176	80	
172	78	
155	60	
160	64	
145	48	
158	55	
180	88	
166	68	
175	72	
140	45	

SCATTER DIAGRAM OF HEIGHT AND WEIGHT OF 10 STUDENTS AT THEIR 20TH BIRTHDAY

