1 Sabiranje i oduzimanje brojeva zapisanih u binary32 formatu

1.1 Zadaci

1. Izračunati zbir: 1 10000110 1011110101 $\underbrace{00...00}_{12}$ +1 10000101 101111001 $\underbrace{00...00}_{12}$

prema pravilima za sabiranje brojeva u binary32 formatu i rezultat prevesti u dekadni sistem.

Rešenje:

brojevi su istog znaka pa je to i znak rezultata

bit za znak: 1

eksponent rezultata odgovara većem od zadatih eksponenata

eksponent: $(10000110)_2$

frakcija:

1. brojeve svodimo na isti eksponent (manji eksponent se uvećava)

razlika eksponenata je 1 pa se bitovi frakcije drugog sabirka pomeraju udesno za jedno mesto, tj. decimalna tačka se pomera ulevo i frakcija postaje: $1.1011111001 \rightarrow 0.1101111001$

2. pošto su brojevi istog znaka, frakcija rezultata je zbir zadatih frakcija:

1.1011110101 + 0.11011111001 = 10.10011011110

potrebno je izvršiti normalizaciju:

 $(10.1001101110)_2 = (1.01001101110)_2 \cdot 2^1$ pa frakcija postaje $(1.01001101110)_2$, a vrednost eksponenta uvećavamo za 1: $(10000110)_2 + 1 = (10000111)_2$

konačan zapis: 1 10000111 01001101110 $\underbrace{00...00}_{12}$

dekadna vrednost: $-(1.01001101110)_2 \cdot 2^8 = -(101001101.11)_2 = -333.75$

2. Izračunati razliku: 0 10000010 10011 $\underbrace{00\ldots00}_{18} - 1$ 10000001 1011 $\underbrace{00\ldots00}_{19}$

prema pravilima za oduzimanje brojeva u binary32 formatu i rezultat prevesti u dekadni sistem.

Rešenje:

brojevi su različitog znaka pa se oduzimanje svodi na sabiranje umanjenika sa umanjiocem kome je promenjen znak, tj. na sabiranje dva pozitivna broja

bit za znak: 0

eksponent rezultata odgovara većem od zadatih eksponenata

eksponent: $(10000010)_2$

frakcija:

1. brojeve svodimo na isti eksponent (manji eksponent se uvećava)

eksponent umanjioca je za jedan manji od eksponenta umanjenika, pa se njegova frakcija pomera udesno za jedno mesto i dobija se: $(0.11011)_2$

2. frakcija rezultata je zbir zadatih frakcija:

1.10011 + 0.11011 = 10.0111

potrebno je izvršiti normalizaciju:

 $(10.0111)_2 = (1.00111)_2 \cdot 2^1$ pa frakcija postaje $(1.00111)_2,$ a vrednost eksponenta uvećavamo za 1: $(10000010)_2 + 1 = (10000011)_2$

konačan zapis: 0 10000011 00111 $\underbrace{00\dots00}_{18}$

dekadna vrednost: $+(1.00111)_2 \cdot 2^4 = (10011.1)_2 = 19.5$

3. Zapisati brojeve 36.3125 i -214.25 u binary32 formatu, a zatim izračunati njihov zbir prema pravilima za sabiranje brojeva i rezultat prevesti u dekadni sistem.

Rešenie

 $36.3125 = 32 + 4 + 0.25 + 0.0625 = (100100.0101)_2 = (1.001000101)_2 \cdot 2^5$ zapis broja: bit za znak: 0 eksponent: $5 + 127 = 132 = (10000100)_2$ frakcija: $001000101 \underbrace{00 \dots 00}$

konačan zapis: 0 10000100 001000101 $\underbrace{00\dots00}_{14}$

```
-214.25 = -(11010110.01)_2 = -(1.101011001)_2 \cdot 2^7
   zapis broja:
   bit za znak: 1
   eksponent: 7 + 127 = 134 = (10000110)_2
   frakcija: 101011001 \underline{00...00}
   konačan zapis: 1 10000110 10101100100...00
   zbir:
   brojevi su različitog znaka pa znak rezultata odgovara znaku broja sa većim eksponentom
   bit znaka: 1
   eksponent rezultata odgovara većem od zadatih eksponenata
   eksponent: (10000110)_2
   frakcija:
   1. brojeve svodimo na isti eksponent (manji eksponent se uvećava)
   razlika eksponenata je (10000110)_2 - (10000100)_2 = 2 pa se bitovi frakcije prvog sabirka pomeraju udesno za dva
   mesta (decimalna tačka se pomera ulevo) i frakcija postaje: (0.01001000101)<sub>2</sub>
   2. pošto su brojevi različitog znaka, frakcija rezultata je razlika veće i manje frakcije:
   1.101011001 - 0.01001000101 = 1.01100011111
   Kako je frakcija rezultata normalizovana, konačan zapis je:
   1\ 10000110\ 011000111111 \ \underline{00\ldots 00}
   dekadna vrednost:
   -(1.01100011111)_2 \cdot 2^7 = -(10110001.1111)_2 = -177.9375
4. Sabrati brojeve: 1 10000011 1011011\underbrace{00\dots00}_{16} i 0 10000100 1101011\underbrace{00\dots00}_{16}
   prema pravilima za sabiranje brojeva u binary32 formatu i rezultat prevesti u dekadni sistem.
   Rešenje:
   brojevi su različitog znaka pa znak rezultata odgovara znaku broja sa većim eksponentom
   bit za znak je 0
   eksponent rezultata odgovara većem od zadatih eksponenata
   eksponent je (10000100)_2
   frakcija:
   1. brojeve svodimo na iste eksponente
   frakcija prvog broja se pomera udesno za jedno mesto pa se dobija: (0.11011011)<sub>2</sub>
   2. pošto su brojevi različitog znaka, frakcija rezultata je razlika veće i manje frakcije:
   1.1101011 - 0.11011011 = 0.11111011
   potrebno je izvršiti normalizaciju:
   (0.11111011)_2 = (1.1111011)_2 \cdot 2^{-1} pa frakcija postaje (1.1111011)_2, a vrednost eksponenta umanjujemo za 1:
   (10000100)_2 - 1 = (10000011)_2
   konačan zapis: 0 10000011 111101100...00
```

dekadna vrednost:

 $+(1.1111011)_2 \cdot 2^4 = (11111.011)_2 = 31.375$

1.2 Napomene

- 1. ako pri svođenju na isti eksponent pomeranjem udesno značajni deo jednog sabirka postane nula, tada vrednost drugog sabirka predstavlja vrednost rezultata
- 2. ukoliko je rezultat sabiranja (oduzimanja) frakcija nula, ukupan zbir (razlika) je nula
- 3. normalizacija:
 - ako se eksponent uvećava za 1, može da dođe do prekoračenja vrednosti eksponenta, u kom slučaju je konačan rezultat $+\infty$ ili $-\infty$ u zavisnosti od znaka
 - ako se eksponent smanjuje za 1, može da dođe do potkoračenja vrednosti eksponenta, u kom slučaju je konačan rezultat +0 ili -0 u zavisnosti od znaka

Zadatak:

Izračunati zbir: 0 11111110 101 $\underbrace{0\ldots0}_{20}$ + 0 111111100 110101 $\underbrace{0\ldots0}_{17}$ prema pravilima za sabiranje brojeva u binary32 formatu i rezultat prevesti u dekadni sistem.

Rešenje:

brojevi su istog znaka pa je bit za znak rezultata: 0

eksponent rezultata odgovara većem od zadatih eksponenata: (11111110)₂ (primetiti da je ovo najveća dozvoljena vrednost eksponenta za format binary32)

frakcija:

1. brojeve svodimo na iste eksponente

frakcija drugog sabirka se pomera udesno za dva mesta pa se dobija: (0.01110101)2

2. frakcija rezultata je zbir zadatih frakcija:

1.10100000 + 0.01110101 = 10.00010101

potrebno je izvršiti normalizaciju:

 $(10.00010101)_2 = (1.000010101)_2 \cdot 2^1$ pa frakcija postaje $(1.000010101)_2$, a vrednost eksponenta uvećavamo za 1: $(111111110)_2 + 1$, što dovodi do prekoračenja vrednosti eksponenta

Specijalne vrednosti 1.3

Neka je x konačan broj (normalan ili subnormalan).

$0 + \infty = \infty$	$0-\infty=-\infty$
$x + \infty = \infty$	$x - \infty = -\infty$
$\infty + x = \infty$	$\infty - x = \infty$
$\infty + \infty = \infty$	$-\infty - \infty = -\infty$
$\infty - \infty = qNaN$	$-\infty + \infty = qNaN$
x + qNaN = qNaN	x + sNaN = qNaN
	$\infty + sNaN = qNaN$

1. Izračunati 0 11111111 $\underbrace{00\dots00}_{23} \ + \ 1 \ 111111111 \ \underbrace{00\dots00}_{23} \ i \ rezultat \ prevesti u \ dekadni sistem.$

Rešenje:

Prvi sabirak je $+\infty$, drugi sabirak je $-\infty$, konačan rezultat je qNaN (0 11111111 1010...0).

2. Izračunati 0 11001101 001 $\underbrace{00\ldots00}_{20}$ + 1 11111111 11 $\underbrace{00\ldots00}_{21}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Prvi sabirak je konačan pozitivan broj, drugi sabirak je qNaN, konačan rezultat je qNaN (1 11111111 110...0)

3. Izračunati 0 11111111 101 $\underbrace{00\ldots00}_{20}$ + 0 11111111 001101 $\underbrace{00\ldots00}_{17}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Prvi sabirak je qNaN, drugi sabirak je sNaN, konačan rezultat je qNaN (0 11111111 1010...0).

4. Izračunati 0 11111111 $\underbrace{00\ldots00}_{23} \ + \ 1\ 11000111\ 1001\underbrace{00\ldots00}_{19} \ i\ rezultat\ prevesti u\ dekadni sistem.$

Rešenje:

Prvi sabirak je $+\infty$, drugi sabirak je konačan negativan broj, konačan rezultat je $+\infty$ (0 11111111 00...00).

5. Izračunati razliku: 0 00000000 101 $\underbrace{0...0}_{20}$ –1 00001000 0000011 $\underbrace{0...0}_{16}$

prema pravilima za oduzimanje brojeva u binary32 formatu i rezultat prevesti u dekadni sistem.

Rešenje:

Umanjenik je subnormalan, a umanjilac normalan broj. Pošto su različitog znaka, oduzimanje se svodi na sabiranje dva pozitivna broja, pa je bit za znak rezultata 0

eksponent rezultata odgovara eksponentu umanjioca (normalnog broja): 00001000

frakcija:

1. brojeve svodimo na iste eksponente

kako je eksponent normalnog broja uvećan za 127, a subnormalnog za 126, razlika eksponenata je $(00001000)_2 - 1 = 7$

frakcija subnormalnog broja (umanjenika) se pomera za 7 mesta udesno pa se dobija: $0.101 \rightarrow 0.0000000101$

2. frakcija rezultata je zbir zadatih frakcija:

1.0000011000 + 0.0000000101 = 1.0000011101

frakcija je normalizovana pa je konačan zapis:

dekadna vrednost:

eksponent: $(00001000)_2 - 127 = -119$ $(1.0000011101)_2 \cdot 2^{-119} = (10000011.101)_2 \cdot 2^{-126} = 131.625 \cdot 2^{-126}$

6. Izračunati razliku: 1 00011011 101 $\underbrace{0\ldots0}_{20}$ –1 00000000 11 $\underbrace{0\ldots0}_{21}$ prema pravilima za oduzimanje brojeva u binary32 formatu i rezultat prevesti u dekadni sistem.

Rešenje:

Umanjenik je normalan, a umanjilac subnormalan broj. Pošto su istog znaka, oduzimanje se svodi na sabiranje brojeva različitog znaka pri čemu negativan broj (umanjenik) ima veći eksponent bit za znak rezultata je 1

eksponent rezultata odgovara eksponentu umanjenika (normalnog broja): 00011011

frakcija:

1. brojeve svodimo na iste eksponente

kako je eksponent normalnog broja uvećan za 127, a subnormalnog za 126, razlika eksponenata je $(00011011)_2 - 1 = 26$

kako je 26 > 22, pomeranjem cifara frakcije subnormalnog broja udesno za 26 mesta frakcija subnormalnog broja će postati 0 (sve cifre će biti odbačene), pa će subnormalan broj imati vrednost +0.

2. frakcija rezultata je zato jednaka frakciji umanjenika (normalnog broja): 1.101

pa je ceo rezultat jednak umanjeniku: 1 00011011 101 $\underbrace{0\ldots0}_{20}$

dekadna vrednost:

eksponent: $(00011011)_2 - 127 = -100$ $-(1.101)_2 \cdot 2^{-100} = -(1101)_2 \cdot 2^{-103} = 13 \cdot 2^{-103}$

1.4 Ispitni zadaci

- 1. Izvršiti sledeće operacije ako su brojevi predstavljeni u IEEE 754 zapisu sa binarnom osnovom u 32 bita i rezultate (ako je moguće) prevesti u dekadni sistem (januar 2 2017, zadatak 6, grupa A):

```
(a) -\infty - (-\infty) = -\infty + \infty = qNaN
```

(b) oduzimanje se svodi na sabiranje dva broja različitog znaka (umanjenika sa umanjiocem kome je promenjen znak)

eksponent umanjenika je veći pa je znak rezultata znak umanjenika: 0

eksponent rezultata odgovara eksponentu umanjenika: (10000110)₂

frakcija:

1. brojeve svodimo na iste eksponente

eksponent umanjenika je za $(10000110)_2 - (10000010)_2 = 4$ veći od eksponenta umanjioca, pa pri oduzimanju frakcija decimalnu tačku u zapisu frakcije umanjioca treba pomeriti za 4 mesta ulevo: $(1.0111)_2 \rightarrow (0.00010111)_2$

2. frakcija rezultata: 1.10101100 - 0.00010111 = 1.10010101

kako je frakcija normalizovana, konačan zapis je:

 $0\ 10000110\ 1001010100000000000000000$

dekadna vrednost: $(1.10010101)_2 \cdot 2^7 = (11001010.1)_2 = 202.5$

(c) sabiraju se dva negativna broja pa je i rezultat negativan

bit za znak rezultata: 1

sabirci imaju isti eksponent, pa je to ujedno i eksponent rezultata: 01110100

frakcija:

1. frakcija rezultata je zbir zadatih frakcija:

1.110010 + 1.010111 = 11.001001

potrebno je izvršiti normalizaciju:

 $(11.001001)_2 = (1.1001001)_2 \cdot 2^1$ pa frakcija postaje $(1.1001001)_2$, a vrednost eksponenta uvećavamo za 1: $(01110100)_2 + 1 = (01110101)_2$

konačan zapis je:

1 01110101 1001001000000000000000000

dekadna vrednost:

```
eksponent: (01110101) - 127 = -10

-(1.1001001)_2 \cdot 2^{-10} = -(11001.001)_2 \cdot 2^{-14} = -25.125 \cdot 2^{-14}

ili: -(11001001)_2 \cdot 2^{-17} = -201 \cdot 2^{-17}
```

2. Izvršiti sledeće operacije ako su brojevi predstavljeni u IEEE 754 zapisu sa binarnom osnovom u 32 bita i rezultate (ako je moguće) prevesti u dekadni sistem

(januar 2 2017, 6. zadatak, grupa B - za samostalni rad):

- 3. Izračunati: 0 10000010 10111 $\underline{0...0} + 0$ 10000101 1001 $\underline{0...0}$

ako su brojevi predstavljeni u IEEE 754 zapisu sa binarnom osnovom u 32 bita i rezultat prevesti u dekadni sistem (januar 1 2016, zadatak 6a, grupa A - za samostalni rad)

4. Izračunati: 1 01101111 101101 $\underbrace{0\ldots0}_{12}$ – 1 01110100 01011101 $\underbrace{0\ldots0}_{12}$

ako su brojevi predstavljeni u IEEE 754 zapisu sa binarnom osnovom u 32 bita i rezultat prevesti u dekadni sistem $(za \ samostalni \ rad)$

2 Množenje brojeva zapisanih u binary32 formatu

1. Izvršiti množenje 0 10111000 10101 $\underbrace{00\ldots00}_{18}$ · 1 10111100 001 $\underbrace{00\ldots00}_{20}$ i rezultat prevesti u dekadni sistem.

Rešenje:

```
znak rezultata: 0 \oplus 1 = 1
eksponent: (10111000)_2 + (10111100)_2 - (0111111)_2 = (101110100)_2 - (001111111)_2 = (11110101)_2
1.10101\underbrace{00...00}_{19} \cdot 1.001\underbrace{00...00}_{20} = 1.10101 \cdot 1.001 = 1.11011101
```

rezultat: 1 11110101 11011101 $\underbrace{00\ldots00}_{14}$

dekadna vrednost rezultata:

eksponent: $(11110101)_2 - 127 = 245 - 127 = 118$

frakcija: 1.1101110100...00

konačno: $-(1.11011101)_2 \cdot 2^{118} = -(111011101)_2 \cdot 2^{110} = -477 \cdot 2^{110}$

2. Izvršiti množenje 0 10000011 11 $\underbrace{00\ldots00}_{21}$ · 0 10000001 001 $\underbrace{00\ldots00}_{20}$ i rezultat prevesti u dekadni sistem.

Rešenje:

```
znak rezultata: 0 \oplus 0 = 0
eksponent: (10000011)_2 + (10000001)_2 - (011111111)_2 = (100000100)_2 - (001111111)_2 = (10000101)_2
frakcija: 1.11 \cdot 1.001 = 1.11111
```

rezultat: 0 10000101 11111 00 . . . 00

dekadna vrednost rezultata:

eksponent: $(10000101)_2 - 127 = 133 - 127 = 6$

frakcija: 1.1111100...00

konačno: $+(1.11111)_2 \cdot 2^6 = (11111110)_2 = 126$

3. Izračunati 1 10000101 010101 $\underbrace{00\ldots00}_{17}$ · 0 10000011 1011 $\underbrace{00\ldots00}_{19}$ i rezultat prevesti u dekadni sistem.

Rešenje:

znak rezultata: $1 \oplus 0 = 1$

eksponent: $(10000101)_2 + (10000011)_2 - (011111111)_2 = (100001000)_2 - (0011111111)_2 = (10001001)_2$

frakcija: $1.010101 \cdot 1.1011 = 10.0011110111$

potrebno je izvršiti normalizaciju: $(10.0011110111)_2 = (1.00011110111)_2 \cdot 2^1$ pa frakcija postaje $(1.00011110111)_2$, a vrednost eksponenta uvećavamo za 1: $(10001001)_2 + 1 = (10001010)_2$

rezultat: 1 10001010 00011110111 $\underbrace{00\ldots00}_{12}$

dekadna vrednost rezultata:

eksponent: $(10001010)_2 - 127 = 138 - 127 = 11$

frakcija: 1.0001111011100...00

konačno: $-(1.00011110111)_2^{12} \cdot 2^{11} = -(100011110111)_2 = -2295$

4. Izračunati 1 10000011 0001011 $\underbrace{00\ldots00}_{16}$ ·0 10000001 011 $\underbrace{00\ldots00}_{20}$ i rezultat prevesti u dekadni sistem.

Rešenje:

znak rezultata:
$$1 \oplus 0 = 1$$
 eksponent: $(10000011)_2 + (10000001)_2 - (01111111)_2 = (100000100)_2 - (001111111)_2 = (10000101)_2$ frakcija: $1.0001011\underbrace{00\ldots00}_{16} \cdot 1.011\underbrace{00\ldots00}_{20} = (1.0001011)_2 \cdot (1.011)_2 = (1.01111111001)_2$

rezultat: 1 10000101 0111111001 $\underbrace{00\ldots00}_{13}$

dekadna vrednost rezultata:

eksponent: $(10000101)_2 - 127 = 133 - 127 = 6$

frakcija: 1.0111111001 $\underbrace{00\dots00}_{13}$ konačno: $-(1.01111111001)_2 \cdot 2^6 = -(1011111.1001)_2 = -95.5625$

Specijalne vrednosti 2.1

Neka je x konačan broj (normalan ili subnormalan).

$0 \cdot x = 0$ ako je x pozitivan broj	$0 \cdot x = -0$ ako je x negativan broj
$0 \cdot \infty = qNaN$	$\infty\cdot\infty=\infty$
$x \cdot \infty = \infty$ ako je x pozitivan broj	$x \cdot \infty = -\infty$ ako je x negativan broj
$0 \cdot qNaN = qNaN$	$0 \cdot sNaN = qNaN$
$\infty \cdot qNaN = qNaN$	$\infty \cdot sNaN = qNaN$

1. Izvršiti množenje 1 11111111 1 $\underbrace{00\ldots00}_{22}$ · 0 11001100 10011 $\underbrace{00\ldots00}_{18}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Množenik je q
NaN vrednost, množilac je konačan pozitivan broj, rezultat je q NaN (1
 11111111 1 $\underbrace{00\ldots00}_{22}$).

2. Izvršiti množenje 0 11111111 $\underbrace{00\ldots00}_{23} \cdot 1 \ 10100100 \ 10 \underbrace{00\ldots00}_{21} \ i \ rezultat \ prevesti u dekadni sistem.$

Rešenje:

Množenik je $+\infty$, množilac je konačan negativan broj, rezultat je $-\infty$ (1 11111111 $\underbrace{00...00}_{23}$).

3. Izvršiti množenje 1 00101101 01011 $\underbrace{00\ldots00}_{18}$ · 1 00000000 $\underbrace{00\ldots00}_{23}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Množenik je konačan negativan broj, množilac je -0, rezultat je +0 (0 00000000 $\underbrace{00...00}_{23}$).

4. Izvršiti množenje 0 11111111 01 $\underbrace{00\dots00}_{21}$ · 0 11111111 $\underbrace{00\dots00}_{23}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Resenje: Množenik je s Na
N vrednost, množilac je $+\infty$, rezultat je q Na
N (1 11111111 1 $\underbrace{00\ldots00}_{22}$).

3 Deljenje brojeva zapisanih u binary32 formatu

1. Izvršiti deljenje 0 10000100 1110111 $\underbrace{00\ldots00}_{16}/1$ 10000001 101 $\underbrace{00\ldots00}_{20}$ i rezultat prevesti u dekadni sistem.

Rešenje:

znak rezultata: $0 \oplus 1 = 1$ eksponent: $(10000100)_2 - (10000001)_2 + (011111111)_2 = (00000011)_2 + (01111111)_2 = (10000010)_2$ 1.1110111: 1.101 = 1111.0111: 1101 = 1.0011rezultat: 0 10000010 0011 $\underbrace{00\ldots00}_{19}$ dekadna vrednost rezultata: eksponent: $(10000010)_2 - 127 = 130 - 127 = 3$ frakcija: 1.0011 00 . . . 00

konačno: $-(1.0011)_2 \cdot 2^3 = -(1001.1)_2 = -9.5$ 2. Izvršiti deljenje 1 10010010 011111 $\underbrace{00\ldots00}_{17}/1$ 00100110 01 $\underbrace{00\ldots00}_{21}$ i rezultat prevesti u dekadni sistem.

Rešenje:

znak rezultata: $1 \oplus 1 = 0$ eksponent: $(10010010)_2 - (00100110)_2 + (011111111)_2 = (01101100)_2 + (011111111)_2 = (11101011)_2$ frakcija: 1.0111111: 1.01 = 101.11111: 101 = 1.0011rezultat: 0 11101011 0011 $\underbrace{00\dots00}_{19}$ dekadna vrednost rezultata: eksponent: $(11101011)_2 - 127 = 235 - 127 = 108$ frakcija: 1.0011 $\underbrace{00\dots00}_{19}$ konačno: $+(1.0011)_2\cdot 2^{108}=(10011)_2\cdot 2^{104}=19\cdot 2^{104}$

3. Izvršiti deljenje 0 11010011 00001001 $\underbrace{00\ldots00}_{15}/1$ 10101111 01 $\underbrace{00\ldots00}_{21}$ i rezultat prevesti u dekadni sistem.

Rešenje:

znak rezultata: $0 \oplus 1 = 1$ eksponent: $(11010011)_2 - (10101111)_2 + (011111111)_2 = (00100100)_2 + (01111111)_2 = (10100011)_2$ frakcija: 1.00001001:1.01 = 100.001001:101 = 0.110101potrebno je izvršiti normalizaciju: $(0.110101)_2 = (1.10101)_2 \cdot 2^{-1}$ pa frakcija postaje $(1.10101)_2$, a vrednost eksponenta umanjujemo za 1: $(10100011)_2 - (1.10101)_2 1 = (10100010)_2$ rezultat: 1 10100010 10101 $\underbrace{00...00}_{18}$

dekadna vrednost rezultata: eksponent: $(10100010)_2 - 127 = 162 - 127 = 35$ frakcija: 1.10101 $\underbrace{00\dots00}_{18}$ konačno: $-(1.10101)_2\cdot 2^{35}=-(110101)_2\cdot 2^{30}=-53\cdot 2^{30}$

4. Izvršiti deljenje 0 00000001 0101 $\underbrace{00\ldots00}_{19}/0$ 00000000 11 $\underbrace{00\ldots00}_{21}$ i rezultat prevesti u dekadni sistem.

Rešenje:

znak rezultata: $0 \oplus 0 = 0$

eksponent:

eksponent deljenika (normalnog broja) je sa uvećanjem 127, a delioca (subnormalnog broja) sa uvećanjem 126, pa nakon oduzimanja ostaje 1 u višku i zato treba dodati 126 (kako bi eksponent rezultata bio sa uvećanjem 127). $(00000001)_2 - (00000000)_2 + (01111110)_2 = (00000001)_2 + (01111110)_2 = (01111111)_2$

frakcija:

1.0101:0.11 = 101.01:11 = 1.11

rezultat: 0 01111111 11 $\underbrace{00...00}_{21}$

dekadna vrednost rezultata:

eksponent: $(011111111)_2 - 127 = 127 - 127 = 0$

frakcija: 1.11 00...00

konačno: $+(1.11)_2 \cdot 2^0 = 1.75$

3.1Specijalne vrednosti

Neka je x konačan broj (normalan ili subnormalan).

$x/0 = +\infty$ ako je x pozitivan broj	$x/0 = -\infty$ ako je x negativan broj
$x/\infty = +0$ ako je x pozitivan broj	$x/\infty = -0$ ako je x negativan broj
0/0 = qNaN	$\infty/\infty = qNaN$
qNaN/x = qNaN	$qNaN/\infty = qNaN$
sNaN/x = qNaN	$sNaN/\infty = qNaN$

1. Izvršiti deljenje 0 10000001 01 $\underbrace{00\dots00}_{21}$: 1 00000000 $\underbrace{00\dots00}_{23}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Deljenik je konačan pozitivan broj, delilac je -0, rezultat je $-\infty$ (1 11111111 $\underbrace{0\ldots0}$).

2. Izvršiti deljenje 0 11111111 $\underbrace{00\dots00}_{23}:1$ 11111111 $\underbrace{00\dots00}_{23}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Resenje: Deljenik je $+\infty$, delilac je $-\infty$, rezultat je qNaN (1 11111111 111 $\underbrace{0\ldots0}_{20}$).

3. Izvršiti deljenje 0 10010000 1101 $\underbrace{00\ldots00}_{19}:1$ 11111111 001 $\underbrace{00\ldots00}_{20}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Deljenik je konačan pozitivan broj, delilac je s
NaN, rezultat je q NaN (0 11111111 1 $\underbrace{0\ldots0}_{22}$

4. Izvršiti deljenje 1 11111111 $\underbrace{00\dots00}_{23}:1\ 00000000\ \underbrace{00\dots00}_{23} \text{i rezultat prevesti u dekadni sistem}.$

Rešenje:

Deljenik je $-\infty$, delilac je -0, rezultat je $+\infty$ (1 11111111 $\underbrace{00...00}_{22}$).

5. Izvršiti deljenje 1 00000000 $\underbrace{00\dots00}_{23}$: 0 11111111 $\underbrace{00\dots00}_{23}$ i rezultat prevesti u dekadni sistem.

Rešenje:

Deljenik je -0, delilac je $+\infty$, rezultat je -0 (1 00000000 $\underbrace{00\dots00}_{23}$).

3.2Ispitni zadaci

operacije $x \cdot y$, x/y i x/z.

Rezultate, gde god je to moguće, prevesti u dekadni sistem (jun 1 2017, 7. zadatak).

(a) $x \cdot y$

eksponent: 10000010 + 01111010 - 011111111 = 111111100 - 011111111 = 011111101

```
frakcija: 1.001011 \cdot 1.01 = 1.01110111
dekadna vrednost:
eksponent: (011111101)_2 - 127 = -2
-(1.01110111)_2 \cdot 2^{-2} = -(1011101.11)_2 \cdot 2^{-8} = -109.75 \cdot 2^{-8}
(b) x/y
znak: 1
eksponent: 10000010 - 01111010 + 011111111 = 00001000 + 011111111 = 100001111
frakcija: 1.001011:1.01 = 100.1011:101 = 0.1111
normalizacija: (0.1111)_2 = (1.111)_2 \cdot 2^{-1} pa frakcija postaje 1.111, a eksponent smanjujemo za 1:
(10000111)_2 - 1 = (10000110)_2
dekadna vrednost:
eksponent: (10000111)_2 - 127 = 7
-(1.111)_2 \cdot 2^7 = -(11110000)_2 = -240
(c) x/z
```