COL751 - Lecture 10

Definition 1 A matching in an undirected graph G refers to a set of edges \mathcal{E} where no two edges in \mathcal{E} share a common vertex.

Definition 2 A vertex cover in an undirected graph G is a set of vertices V_C such that every edge in G is connected to at least one vertex in V_C .

The lemma below implies that in any graph G size of maximum matching is at most the size of minimum vertex cover.

Lemma 3 For any matching \mathcal{E} and any vertex cover V_C , we have $|\mathcal{E}| \leq |V_C|$.

Proof: Each edge within the matching \mathcal{E} corresponds to a distinct vertex in the vertex cover V_C implying $|\mathcal{E}| \leq |V_C|$.

1 König-Egervary Theorem

Theorem 4 (König-Egervary Theorem) In a bipartite graph the maximum matching size is same as the size of minimum vertex cover.

Let G = (X, Y, E) be a bipartite graph satisfying |X| = n and |Y| = k. We compute a directed graph $H = (V_H, E_H, c)$ on n + k + 2 vertices where $V_H = X \cup Y \cup \{s, t\}$.

Figure 1 – A digraph H computed from bipartite graph G = (X, Y, E)

The edges in H, and corresponding capacities are as follows.

- For i = 1 to n: add edge (s, x_i) of capacity 1.
- For j = 1 to k: add edge (y_j, t) of capacity 1.

• For $1 \le i \le n$, $1 \le j \le k$ satisfying $(x_i, y_j) \in E$: add directed edge (x_i, y_j) of capacity ∞ .

Lemma 5 The size of maximum matching in G is same as the value of (s,t)-max-flow.

Proof: Take any integral maximum (s,t) flow f. The edges (x_i, y_j) in G carrying non-zero flow in H corresponds to a matching as at most one outgoing edge of x_j (resp. incoming edge of y_j) can carry a flow of value one or more.

Next let M be a matching in G. We can find a flow of value |M| in graph H as follows: (1) for each matched x_i pass a unit flow along (s, x_i) ; (2) for each matched y_j pass a unit flow along (y_j, t) ; (3) for each $(x_i, y_j) \in M$ pass a unit flow along (x_i, y_j) in H. This corresponds to a valid flow of value |M|. This 1-1 correspondence proves our claim. \square

Figure 2 – Depiction of sets $A_1 = X \cap T$ and $A_2 = Y \cap S$.

Lemma 6 Let (S,T) be an (s,t)-min-cut in H, and let $A_1 = X \cap T$ and $A_2 = Y \cap S$. Then $A_1 \cup A_2$ is a vertex cover of G. Moreover, capacity of (S,T)-cut is $|A_1| + |A_2|$.

Proof: Observe that for each edge $(x,y) \in E \cap (X \times Y)$ at least one of following holds:

- $x \in A_1$, or
- $y \in A_2$.

This is because otherwise the (S, T)-cut contains an edge of capacity ∞ , which is not possible. Thus $A_1 \cup A_2$ is a vertex cover of G.

The capacity of (S, T)-cut is $|A_1| + |A_2|$ as edges in H going from S to T lie in either $\{s\} \times A_1$ or $A_2 \times \{t\}$.

On combining Lemma 5 and Lemma 6, and using Max-Flow Min-Cut theorem, we get that $|A_1| + |A_2|$ is both the size of maximum matching as well as size of minimum vertex cover in G. This proves König-Egervary theorem.

2 Hall's Theorem

Theorem 7 (Hall's Theorem) In a bipartite graph G = (X, Y, E) satisfying that for every $W \subseteq X$ the size of W is at most the size of neighbor-set N(W), there exists a matching in which every vertex of X is matched.

Proof: The stated condition is clearly necessary. To prove it is sufficient, assume that $|N(W)| \ge |W|$, for all $W \subseteq X$. Consider the graph H constructed in the proof of König-Egervary theorem. By Lemma 5, it suffices to show that the value of (s, t)-max-flow (or, the size of (s, t)-min-cut) in H is |X|.

Assume on contrary there is an (s,t)-min-cut, say (S,T), of capacity strictly less than |X|. Let $A_1 = X \cap T$ and $A_2 = Y \cap S$. Then by Lemma 6, we have capacity of (S,T)-cut is $|A_1| + |A_2|$, which by our assumption is less than |X|. This implies $|A_2| < |X| - |A_1|$.

Let $W = X \cap S$. The set N(W) is contained in A_2 , as otherwise there would be an infinite-capacity edge crossing from S to T. Thus, $|N(W)| \leq |A_2| < |X| - |A_1| = |W|$, and we get a violation to Hall's criterion.

d-regular bipartite graph

As an application of Hall's Theorem we prove that every d-regular bipartite graph with equal partitions has a perfect matching.

Lemma 8 For $d \ge 1$, every d-regular bipartite graph G = (X, Y, E) has a perfect matching.

Proof: Consider a set $W \subseteq X$. We will argue that $|N(W)| \geqslant |W|$. Observe that $\sum_{w \in W} |N(w)| = d|W|$. Now each vertex $y \in N(W)$ can have at most d neighbors, so by Pigeon hole principle, |N(W)| is at least d|W|/d = |W|. This proves that Hall's criterion is satisfied, and thus G contains a matching in which each vertex of X (and similarly, each vertex of Y) is matched.

Latin matrix

A matrix M of size $(k \times n)$ with entries in the range [1, n] satisfying $k \leq n$ is said to be Latin matrix if each row/column has distinct entries.

Lemma 9 For every k < n, a latin matrix of size $k \times n$ can be extended to obtain a latin matrix of size $(k + 1) \times n$.

Proof: Let M be a latin matrix of size $k \times n$. Create a bipartite graph G = (X, Y, E) where $X = (x_1, \ldots, x_n)$ corresponds to columns of M, and $Y = (y_1, y_2, \ldots, y_n)$ corresponds to possible deficient values. For $i, j \in [1, n]$, the edge (x_i, y_j) is added to G if and only if column C_i doesn't contain j. Now observe that G is (n - k)-regular (why?). Thus G contains a perfect matching. Given a perfect matching M, we append j to column C_i iff y_j is matched to x_i to obtain the latin matrix of size $(k + 1) \times n$.