Section 2.3

Characterization of Invertible Matrices

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^n$ is **invertible** if there exists another transformation $U \colon \mathbf{R}^n \to \mathbf{R}^n$ such that

$$T \circ U(x) = x$$
 and $U \circ T(x) = x$

for all x in \mathbb{R}^n .

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^n$ is **invertible** if there exists another transformation $U \colon \mathbf{R}^n \to \mathbf{R}^n$ such that

$$T \circ U(x) = x$$
 and $U \circ T(x) = x$

for all x in \mathbf{R}^n . In this case we say U is the **inverse** of T, and we write $U = T^{-1}$.

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^n$ is **invertible** if there exists another transformation $U \colon \mathbf{R}^n \to \mathbf{R}^n$ such that

$$T \circ U(x) = x$$
 and $U \circ T(x) = x$

for all x in \mathbf{R}^n . In this case we say U is the **inverse** of T, and we write $U=T^{-1}$.

In other words, T(U(x)) = x, so T "undoes" U, and likewise U "undoes" T.

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^n$ is **invertible** if there exists another transformation $U \colon \mathbf{R}^n \to \mathbf{R}^n$ such that

$$T \circ U(x) = x$$
 and $U \circ T(x) = x$

for all x in \mathbf{R}^n . In this case we say U is the **inverse** of T, and we write $U=T^{-1}$.

In other words, T(U(x)) = x, so T "undoes" U, and likewise U "undoes" T.

Fact

A transformation $\ensuremath{\mathcal{T}}$ is invertible if and only if it is both one-to-one and onto.

Let $T = \text{counterclockwise rotation in the plane by } 45^{\circ}$. What is T^{-1} ?

Let $T = \text{counterclockwise rotation in the plane by } 45^{\circ}$. What is T^{-1} ?

 T^{-1} is *clockwise* rotation by 45°.

Let $T = \text{counterclockwise rotation in the plane by } 45^{\circ}$. What is T^{-1} ?

 T^{-1} is *clockwise* rotation by 45°.

Let T= shrinking by a factor of 2/3 in the plane. What is T^{-1} ?

Let $T = \text{counterclockwise rotation in the plane by } 45^{\circ}$. What is T^{-1} ?

 T^{-1} is *clockwise* rotation by 45°.

Let $T = \text{shrinking by a factor of } 2/3 \text{ in the plane. What is } T^{-1}$?

 T^{-1} is stretching by 3/2.

Let $T = \text{counterclockwise rotation in the plane by } 45^{\circ}$. What is T^{-1} ?

 T^{-1} is *clockwise* rotation by 45°.

Let $T = \text{shrinking by a factor of } 2/3 \text{ in the plane. What is } T^{-1}$?

 T^{-1} is stretching by 3/2.

Let T = projection onto the x-axis. What is T^{-1} ?

Let $T = \text{counterclockwise rotation in the plane by } 45^{\circ}$. What is T^{-1} ?

 T^{-1} is *clockwise* rotation by 45°.

Let $T = \text{shrinking by a factor of } 2/3 \text{ in the plane. What is } T^{-1}$?

 T^{-1} is stretching by 3/2.

Let T = projection onto the x-axis. What is T^{-1} ? It is not invertible: you can't undo it.

Invertible Linear Transformations

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is an invertible *linear* transformation with matrix A, then what is the matrix for T^{-1} ?

Invertible Linear Transformations

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is an invertible *linear* transformation with matrix A, then what is the matrix for T^{-1} ?

Fact

If T is an invertible linear transformation with matrix A, then T^{-1} is an invertible linear transformation with matrix A^{-1} .

Invertible Linear Transformations Examples

Let $T = \text{counterclockwise rotation in the plane by } 45^{\circ}$. Its matrix is

Then $T^{-1} = \text{counterclockwise rotation by } -45^{\circ}$. Its matrix is

Check:

Let T = counterclockwise rotation in the plane by 45° . Its matrix is

Then $T^{-1} = \text{counterclockwise rotation by } -45^{\circ}$. Its matrix is

Check:

Let T = shrinking by a factor of 2/3 in the plane. Its matrix is

Then $T^{-1} = \text{stretching by } 3/2$. Its matrix is

Check:

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T \colon \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. *T* is invertible.
- 3. A is row equivalent to I_n .

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .

The Invertible Matrix Theorem

- 1. A is invertible.
- T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- **10**. *T* is onto.

The Invertible Matrix Theorem

- 1. A is invertible.
- T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- **10**. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- **10**. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).

The Invertible Matrix Theorem

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- **10**. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T \colon \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

- 1. A is invertible.
- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- **10**. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

you really have to know these

There are two kinds of *square* matrices:

There are two kinds of *square* matrices:

1. invertible (non-singular), and

There are two kinds of *square* matrices:

- 1. invertible (non-singular), and
- 2. non-invertible (singular).

There are two kinds of square matrices:

- 1. invertible (non-singular), and
- 2. non-invertible (singular).

For invertible matrices, all statements of the Invertible Matrix Theorem are true.

There are two kinds of square matrices:

- 1. invertible (non-singular), and
- 2. non-invertible (singular).

For invertible matrices, all statements of the Invertible Matrix Theorem are true.

For non-invertible matrices, all statements of the Invertible Matrix Theorem are false.

There are two kinds of *square* matrices:

- 1. invertible (non-singular), and
- 2. non-invertible (singular).

For invertible matrices, all statements of the Invertible Matrix Theorem are true.

For non-invertible matrices, all statements of the Invertible Matrix Theorem are false.

Strong recommendation: If you want to understand invertible matrices, go through all of the conditions of the IMT and try to figure out on your own (or at least with help from the book) why they're all equivalent.

There are two kinds of square matrices:

- 1. invertible (non-singular), and
- 2. non-invertible (singular).

For invertible matrices, all statements of the Invertible Matrix Theorem are true.

For non-invertible matrices, all statements of the Invertible Matrix Theorem are false.

Strong recommendation: If you want to understand invertible matrices, go through all of the conditions of the IMT and try to figure out on your own (or at least with help from the book) why they're all equivalent.

You know enough at this point to be able to reduce all of the statements to assertions about the pivots of a square matrix.