Thermal Interaction & 3D Data Visualization

Justin Brennen YaDeau

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

5 December 2015

Overview

Thermal Interaction & 3D Data Visualization

What would thermal interaction & 3D data visualization look like?

Outline

Background

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization

Outline

Background
Virtual Reality
Augmented Reality
Spatial Augmented Reality
6DOF

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization

Virtual Reality

- Completely Virtual
- ► The Matrix
- ▶ Oculus Rift

Background

LAugmented Reality

Augmented Reality

-Background

Spatial Augmented Reality

Spatial Augmented Reality

6DOF

Outline

Background

Thermal interaction with mobile devices
Interacting with Objects
Hardware
Thermal Detection
Object Tracking
Applications

Using spatial augmented reality for 3D data visualization

Interacting with Objects

Interactions with Objects

- Interactions leave thermal impressions on the object
- Using these impressions to interact with a device in a new way

Mobile Thermal Interaction

Hardware

Hardware

L Thermal Detection

Thermal Detection

- Assumes a controlled environment
- Object-only, hand-only, obstruction-by-hand, and touch-by-hand
- Using the OpenCV SimpleBlobDetector

☐ Thermal Detection

OpenCV SimpleBlobDetector

$$t_1 = (1 - \frac{1}{16})t_{min} + \frac{1}{16}t_{max}$$
 $t_2 = (1 - \frac{3}{8})t_{min} + \frac{3}{8}t_{max}$

- ▶ t₁ and t₂ is the expected temperature range of the interaction
- ▶ With a fixed size range of 0.32cm² and 1.54cm²

Object Tracking

Object Tracking

□ Applications

Applications

Some applications that use thermal imaging with mobile technology

- "Spray on" graphical user interfaces (GUI)
- Augmented floor plans

Applications

"Spray on" GUIs

- The screen displays a dial pad, but there is no dial pad on the surface
- Looking at the screen to interact with dial pad
- Devices without touch screens

- Applications

Augmented Floor Plans

- Similar interaction, different interface
- Using number sections as buttons

Outline

Background

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization Visualizing Data Applications Limitations

└Visualizing Data

Visualizing Data

- Representing data with images
- Examples: weather maps, pie and bar charts, etc
- The importance of visualizing data

□ Applications

Applications

Some applications that use spatial augmented reality for 3D data visualization

- Table-Top
- ▶ CAVE

□ Applications

Table-Top

- Physical object represents the 3D space
- ▶ The display is a 2D representation of the 3D space

- Applications

Table-Top

- Using a hand held pointing device a user can zoom in or out of the visualization
- Interactions happen inside the virtual volume

☐ Applications

CAVE

- CAVE Cave Automatic Virtual Environment
- Larger area than the table-top method

☐ Applications

CAVE

- Similar interactions as the table-top method
- Increase in collaborators/viewers

Limitations

Limitations

- Strength of the projectors
- Need for a controlled environment for projectors and 6DOF trackers
- Solution

Outline

Background

Thermal interaction with mobile devices

Using spatial augmented reality for 3D data visualization

- Utilizing both thermal interaction and 3D data visualization new applications are possible
- Examples: education and transportation

Thanks!

Thank you for your time and attention!

Contact:

yadea003@morris.umn.edu

Any Questions?