QUÍMICA

AS QUESTÕES NUMÉRICAS DEVEM SER DESENVOLVIDAS SEQUENCIALMENTE ATÉ O FINAL.

Constantes

Constante de Avogadro $(N_A) = 6.02 \times 10^{23} \text{ mol}^{-1}$

Constante de Faraday (F) = $9,65 \times 10^4 \text{ C mol}^{-1} = 9,65 \times 10^4 \text{ A s mol}^{-1} = 9,65 \times 10^4 \text{ J V}^{-1} \text{ mol}^{-1}$

Volume molar de gás ideal = 22,4 L (CNTP)Carga elementar = $1,60 \times 10^{-19} \text{ C}$

Constante dos gases (R) = $8.21 \times 10^{-2} \text{ atm L K}^{-1} \text{ mol}^{-1} = 8.31 \text{ J K}^{-1} \text{ mol}^{-1} = 1.98 \text{ cal K}^{-1} \text{ mol}^{-1}$

Constante gravitacional (g) = 9.81 m s^{-2}

Constante de Planck (h) = $6.63 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$

Velocidade da luz no vácuo = 3,0 x 10^8 m s⁻¹

Número de Euler (e) = 2,72

Definições

Pressão:1 atm = $760 \text{ mmHg} = 1,01325 \text{ x } 10^5 \text{ N m}^{-2} = 1,01325 \text{ bar}$

Energia: $1 J = 1 N m = 1 \text{ kg m}^2 \text{ s}^{-2} = 6.24 \text{ x } 10^{18} \text{ eV}$

Condições normais de temperatura e pressão (CNTP): 0° C e 760 mmHg

Condições ambientes: 25° C e 1 atm

Condições padrão: 1 bar; concentração das soluções $= 1 \text{ mol L}^{-1}$ (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias. u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol L⁻¹ ln X = 2,3 log X

Massas Molares

Elemento	Número	Massa Molar	Elemento	Número	Massa Molar
Químico	Atômico	$(g \text{ mol}^{-1})$	Químico	Atômico	$(g \text{ mol}^{-1})$
Н	1	1,01	S	16	32,06
$^{\mathrm{C}}$	6	12,01	K	19	39,10
N	7	14,01	Cr	24	52,00
O	8	16,00	Fe	26	55,85
Na	11	22,99	Zn	30	$65,\!38$
Cl	17	35,45	I	53	126,90

Questão 1. Para uma reação reversível de uma etapa $2A+B\rightleftharpoons C+D$, a constante de velocidade para a reação direta, k_1 , é de $406 \text{ L mol}^{-1} \text{ min}^{-1}$, e a constante de velocidade para a reação inversa, k_{-1} , é de $244 \text{ L mol}^{-1} \text{ min}^{-1}$. A energia de ativação para a reação direta é de $26,2 \text{ kJ mol}^{-1} \text{ (E}_{a,direta})$, e para a reação inversa é de $42,4 \text{ kJ mol}^{-1} \text{ (E}_{a,inversa})$.

- a) Desenhe um diagrama de energia para essa reação, apresentando os valores de (i) ΔE , (ii) $E_{a,d}$, e (iii) $E_{a,i}$.
- **b)** Discuta o efeito de elevação da temperatura na constante de velocidade direta (k_1) e inversa (k_1) .
- c) Calcule a constante de equilíbrio (K) e descreva o efeito de elevação de temperatura.

Questão 2. Os biodigestores possibilitam o reaproveitamento de detritos convertendo material orgânico em metano, que é utilizado como combustível em sistemas de geração de energia. Um laticínio utiliza a queima do metano para aquecer 1 m³/h de água, de 25 °C a 100 °C em uma caldeira que opera a 1 atm. Sabendo-se que 25 % do calor produzido no processo é perdido e que, nessas condições, a combustão completa do metano produz água líquida, determine

- a) a entalpia molar da combustão do metano;
- b) a taxa de calor necessária para aquecer a água;
- c) a vazão de metano, em kg/h, que deve alimentar a caldeira.

$$\begin{split} \text{Dados: } \Delta H_f^{\, O}(\text{CH}_4(g)) &= -17.9 \text{ kcal mol}^{-1}; \ \Delta H_f^{\, O}(\text{CO}_2(g)) = -94.1 \text{ kcal mol}^{-1}; \ \Delta H_f^{\, O}(\text{H}_2\text{O}(g)) = -57.9 \text{ kcal mol}^{-1}; \\ \Delta H_{eb}^{\, O}(\text{H}_2\text{O}(l)) &= -10.5 \text{ kcal mol}^{-1}; \ c_p^{\, O}(\text{H}_2\text{O}(l)) = 1 \text{ cal } g^{-1} \ {}^{\, O}\text{C}^{-1}; \ \rho(\text{H}_2\text{O}(l)) = 1 \text{ g cm}^{-3} \end{split}$$

Questão 3. A obtenção de biodiesel a partir de óleos vegetais (triacilgliceróis) é uma alternativa para a produção de combustíveis menos poluentes, sendo possível catalisar a reação com um ácido ou uma base. Escreva a equação química balanceada que representa a reação

- a) de obtenção de triacilglicerol a partir de glicerol e ácido graxo com cadeia alquílica representada por R₁.
- b) de obtenção de biodiesel a partir do triacilglicerol obtido em (a) e etanol.
- c) paralela e indesejada que poderia ocorrer se, na reação descrita em (b), fosse utilizado hidróxido de sódio como catalisador, tendo também a presença de água na reação.

Questão 4. Uma barra de zinco foi soldada a um tubo de ferro fundido para protegê-lo contra a corrosão, estando ambos enterrados no solo. Sabendo que uma corrente constante de 0,02 A escoa entre os dois, responda:

- a) Qual é a semirreação que ocorre na superfície da barra de zinco?
- b) Como a reação descrita em (a) atua para proteger o ferro contra corrosão?
- c) Como se chama este sistema de proteção contra a corrosão?
- d) Qual deve ser a massa do metal consumida em 10 anos?

Questão 5. A partir do isótopo x_yA ocorrem três processos sucessivos de decaimento radioativo que levam à formação do isótopo final D. A partir de x_yA há emissão de uma partícula beta, produzindo o nuclídeo B. Este, por sua vez, libera uma partícula beta formando o nuclídeo C. O nuclídeo D é produzido a partir de C por meio de emissão de uma partícula alfa. Escreva as equações nucleares dessas três etapas, fornecendo os números de massa e atômico dos nuclídeos B, C e D em função de x e y. Esboce um gráfico da quantidade de cada nuclídeo em função do tempo até a produção de D e o consumo de todos os demais nuclídeos. Considere que a constante de velocidade é a mesma em todas as etapas.

Questão 6. A reação de isomerização do cis-2-buteno para formar o isômero trans-2-buteno, que é mais estável por 4 kJ mol⁻¹, ocorre em fase gasosa em uma única etapa com energia de ativação de 264 kJ mol⁻¹. Essa reação ocorre de forma muito mais rápida quando assistida por iodo molecular em fase gasosa como catalisador. A lei de velocidade da reação catalisada é dada por

velocidade =
$$k[cis - 2 - buteno][I_2]^{\frac{1}{2}}$$

O mecanismo proposto para a reação catalisada é baseado em cinco etapas:

- I. As moléculas de iodo se dissociam para formar átomos de iodo com energia de dissociação igual a 75 kJ mol⁻¹;
- II. Um dos átomos de iodo é adicionado a um dos átomos de carbono que tem ligação dupla, quebrando essa ligação para formar uma ligação simples C-C. O sistema molecular formado encontra-se a 118 kJ mol⁻¹ acima dos reagentes;
- III. Uma das extremidades da molécula sofre torção livre em relação à outra extremidade. A energia do sistema molecular após a torção continua a 118 kJ mol⁻¹ acima dos reagentes;
- IV. O átomo de iodo ligado ao carbono dissocia-se do sistema molecular intermediário e a ligação dupla é formada novamente no isômero trans. Esse processo libera 47 kJ mol⁻¹ de energia;
- V. Os átomos de iodo se recombinam para formar o iodo molecular, liberando 75 kJ mol⁻¹ de energia.

Baseado nessas informações:

- a) esboce em uma mesma figura os perfis de energia para a reação de isomerização do cis-2-buteno com e sem a presença de catalisador. Deixe claro, usando diferentes notações, os dois perfis e os valores das energias envolvidas;
- b) escreva as reações químicas que ocorrem em cada etapa da reação catalisada para formar a reação global.

Questão 7. Considere a conformação estrutural das moléculas 1,3-dietilcicloexano, 1,4-dietilcicloexano e 2,3 diclorobutano. Pedem-se:

- a) Desenhe todas as estruturas conformacionais;
- b) Determine o número de centros quirais em cada molécula;
- c) Identifique todos os pares enantioméricos e os compostos meso, se presentes.

Questão 8. Dicromato de potássio, enxofre e água reagem produzindo hidróxido de potássio, óxido de cromo III e dióxido de enxofre. Para oxidar 96 g de enxofre, são utilizados 50% de dicromato de potássio em excesso. Sabendo que o rendimento da reação é de 80%, determine:

- a) a equação balanceada da reação química;
- b) a massa de dicromato de potássio utilizada;
- c) a massa de dióxido de enxofre produzida.

Questão 9. A produção de borrachas e espumas é comumente realizada pela síntese de poliuretanos. Para tal produção, a polimerização ocorre a partir de um poliol e um isocianato.

- a) Apresente a(s) reação(ões) químicas da polimerização e formação de poliuretano a partir de um diol e um diisocianato.
- b) A água, quando presente no meio, gera reação(ões) paralela(s) e é determinante na produção de espumas. Apresente essa(s) reação(ões).

Questão 10. Considere a titulação de um ácido por meio da adição de uma base. Calcule o pH inicial e o pH no ponto de equivalência e construa a curva de titulação, ou seja, o gráfico do pH em função da porcentagem de ácido neutralizado. Apresente os cálculos realizados para os três casos. Dados eventualmente necessários: $\log 2 = 0.3$; $\sqrt{2}=1.4$; $\log 1.4=0.14$.

- a) Ácido forte (HCl, 0,1 mol L⁻¹) com uma base forte (NaOH, 0,1 mol L⁻¹);
- **b)** Ácido forte (HCl, 0,2 mol L^{-1}) com uma base fraca hipotética (XOH, 0,2 mol L^{-1} ; $K_b(XOH)=1,0 \times 10^{-5}$);
- c) Ácido fraco hipotético (HZ, 0.2 mol L^{-1} ; $K_a(HZ) = 1.0$ x 10^{-5}) com uma base forte (NaOH, 0.2 mol L^{-1}).