Geometria Diferencial Tarea 3

Antonio Barragán Romero

Del libro Differential Geometry of Curves and Surfaces .

A menos que se diga lo contrario, $\alpha: I \to \mathbb{R}^3$ es una curva parametrizada por longitud de arco s, con curvatura $k(s) \neq 0$, para todo $s \in I$.

Problemas

Problema 1

Dada la curva parametrizada (helix)

$$\alpha(s) = \left(a\cos\left(\frac{s}{c}\right), a\sin\left(\frac{s}{c}\right), b\left(\frac{s}{c}\right)\right), \quad s \in \mathbb{R},\tag{1}$$

donde $c^2 = a^2 + b^2$,

- a) Muestra que el parametro s es la longitud de arco.
- b) Determina la curvatura y la torsión de α .
- c) Determina el plano oscilatorio de α .
- d) Muestra que las lineas que contienen n(s) y pasan por $\alpha(s)$ intersectan el eje z bajo un angulo constante igual a $\frac{\pi}{2}$.
- e) Muestra que las lineas tangentes a α hacen un angulo constante con el eje z.

Solución:

a) Para ello basta ver que $|\alpha'(s)| = 1$. Notemos que

$$\alpha'(s) = \left(-\frac{a}{c}\sin\left(\frac{s}{c}\right), \frac{a}{c}\cos\left(\frac{s}{c}\right), \frac{b}{c}\right),\tag{2}$$

luego, dado que $c^2 = a^2 + b^2$, se cumple que

$$\|\alpha'(s)\|^2 = \left(-\frac{a}{c}\right)^2 \sin^2\left(\frac{s}{c}\right) + \left(\frac{a}{c}\right)^2 \cos^2\left(\frac{s}{c}\right) + \left(\frac{b}{c}\right)^2$$

$$= \frac{a^2}{c^2} \left(\sin^2\left(\frac{s}{c}\right) + \cos^2\left(\frac{s}{c}\right)\right) + \frac{b^2}{c^2}$$

$$= \frac{a^2 + b^2}{c^2}$$

$$= 1,$$
(3)

lo anterior implica que α esta parametrizada por longitud de arco.

b) Como α esta parametrizada por longitud de arco tenemos que $k_{\alpha}(s) = |\alpha''(s)|$, notemos que

$$\alpha''(s) = \left(-\frac{a}{c^2}\cos\left(\frac{s}{c}\right), -\frac{a}{c^2}\sin\left(\frac{s}{c}\right), 0\right),\tag{4}$$

por lo cual

$$k_{\alpha}(s) = |\alpha''(s)| = \sqrt{\frac{a^2}{c^4}\cos^2\left(\frac{s}{c}\right) + \frac{a^2}{c^4}\sin^2\left(\frac{s}{c}\right)} = \frac{|a|}{c^2}$$
 (5)

Problema 2

Una curva parametrizada regular α tiene la propiedad que todas sus lineas tangentes pasan por un punto fijo:

- a) Prueba que la traza de α es un (segmento de una) linea recta.
- b) ¿La conclusión de la parte \mathbf{a} se sigue si α no es regular?

Solución:

Problema 3

Dada una función diferenciable $k(s), s \in I$, muestra que la curva plana parametrizada teniendo k(s) = k como curvatura esta dada por

$$\alpha(s) = \left(\int \cos(\theta(s))ds + a, \int \sin(\theta(s))ds + b \right), \tag{6}$$

donde

$$\theta(s) = \int k(s)ds + \varphi,\tag{7}$$

y que la curva es es determinada hasta una traslación del vector (a,b) y una rotación del angulo φ .

Demostración: Para ver que la curvatura de α es k primero calculemos su primera derivada. Por el Teorema Fundamental del Calculo tenemos que

$$\alpha'(s) = (\cos(\theta(s)), \sin(\theta(s))), \tag{8}$$

de donde se puede ver que α esta parametrizada por longitud de arco, luego, aplicando la regla de la cadena obtenemos

$$\alpha''(s) = \left(\left(\cos(\theta(s))\right)', \left(\sin(\theta(s))\right)'\right) = \left(-\sin(\theta(s)) \cdot \theta'(s), \cos(\theta(s)) \cdot \theta'(s)\right). \tag{9}$$

El Teorema Fundamental del Calculo nos dice que $\theta'(s) = k(s)$, por lo cual

$$\alpha''(s) = (-k(s)\sin(\theta(s)), k(s)\cos(\theta(s))), \tag{10}$$

lo cual implica que

$$k_{\alpha} = \|\alpha''(s)\| = \sqrt{k(s)^2 \sin^2(\theta(s)) + k(s)^2 \cos^2(\theta(s))} = \sqrt{k(s)^2} = |k(s)| = k(s), (11)$$

como queremos¹.

 $^{^{1}}$ En este caso supones que k es no negativa.