Chapitre 4 : L'atome - Projet de fin de chapitre - CORRECTION

N. Bancel

Septembre 2024

Méthode

Dans ce genre de problème, il faut se créer ses questions intermédiaires soi-même, **en commençant par la fin**. Puis reprendre le sujet en entier et répondre aux questions une par une.

On groupe tous les atomes de l'univers dans des petits cubes qui contiennent 8 atomes. Il faut déterminer le volume de tous ces petits cubes (cela correspond à la place que prennent tous les atomes de l'univers) et comparer ce volume au volume d'un dé à coudre

Pour déterminer $V_{\rm cubes}$, il faut calculer le volume d'un cube, puis le multiplier par le nombre total de cubes.

On sait que dans un petit cube, on peut placer 8 atomes.

Le nombre total d'atomes dans l'univers est calculé comme le nombre d'atomes dans un être humain multiplié par le nombre d'êtres humains sur Terre.

Réponse

0.1 Combien y a-t-il d'atomes dans le corps humain?

Raisonnement

On procède par type d'atome (Carbone, Oxygène, Hydrogène, Azote)

$$N_{
m atomes\ de\ carbone} = rac{m_{
m carbone\ dans\ le\ corps}}{m_{
m atome\ de\ carbone}}$$

 $m_{
m atome\ de\ carbone}$ nous est donné dans l'énoncé : $m_{
m atome\ de\ carbone} = 20 imes 10^{-27}\,{
m kg}$

Il faut donc trouver la masse de carbone que nous avons dans le corps. On connaît la masse du corps d'un humain (on la note m_{humain} , et elle vaut 50kg en moyenne d'après l'énoncé) et on sait aussi que 20% de cette masse est composée de carbone (d'après l'énoncé aussi : on note cette variable $perc_massique_{carbone}$). On en déduit que

 $m_{\text{carbone dans le corps}} = m_{humain} \times perc_massique_{carbone}$

$$N_{
m atomes \; de \; carbone} = rac{m_{
m carbone \; dans \; le \; corps}}{m_{
m atome \; de \; carbone}} \ = rac{m_{
m humain} imes perc_massique_{
m carbone}}{m_{
m atome \; de \; carbone}}$$

On fait la même chose avec les autres types d'atomes

$$N_{
m atomes\ d'oxygène} = rac{m_{
m oxygène\ dans\ le\ corps}}{m_{
m atome\ d'oxygène}} \ = rac{m_{
m humain} imes perc_massique_{
m oxygène}}{m_{
m atome\ d'oxygène}} \ N_{
m atomes\ d'hydrogène} = rac{m_{
m hydrogène\ dans\ le\ corps}}{m_{
m atome\ de\ hydrogène}} \ = rac{m_{
m humain} imes perc_massique_{
m hydrogène}}{m_{
m atome\ d'hydrogène}} \ N_{
m atome\ d'azote} = rac{m_{
m azote\ dans\ le\ corps}}{m_{
m atome\ de\ azote}} \ = rac{m_{
m humain} imes perc_massique_{
m azote}}{m_{
m atome\ d'azote}} \$$

Le nombre total d'atomes dans le corps humain s'exprime par

$$N_{\rm total_atome_par_humain} = N_{\rm atomes\ de\ carbone} + N_{\rm atomes\ d'oxyg\`{e}ne} + N_{\rm atomes\ d'azote} + N_{\rm atomes\ d'azote}$$

Application numérique

$$\begin{split} N_{\rm atomes~de~carbone} &= \frac{50 \times 0.2}{20 \times 10^{-27}} = \frac{10}{20 \times 10^{-27}} = 5.0 \times 10^{26} \\ N_{\rm atomes~d'oxygène} &= \frac{50 \times 0.67}{27 \times 10^{-27}} = \frac{33.5}{27 \times 10^{-27}} = 1.24 \times 10^{27} \end{split}$$

$$\begin{split} N_{\rm atomes~d'hydrog\`ene} &= \frac{50 \times 0.1}{1.7 \times 10^{-27}} = \frac{5.0}{1.7 \times 10^{-27}} = 2.94 \times 10^{27} \\ N_{\rm atomes~d'azote} &= \frac{50 \times 0.03}{23 \times 10^{-27}} = \frac{1.5}{23 \times 10^{-27}} = 6.5 \times 10^{25} \end{split}$$

$$\begin{split} N_{\rm total_atome_par_humain} &= N_{\rm atomes~de~carbone} + N_{\rm atomes~d'oxygène} + N_{\rm atomes~d'hydrogène} + N_{\rm atomes~d'azote} \\ &= 5.0 \times 10^{26} + 1.24 \times 10^{27} + 2.94 \times 10^{27} + 6.5 \times 10^{25} \\ N_{\rm total_atome_par_humain} &= 4.73 \times 10^{27} \end{split}$$

Conclusion / Interprétation

Il y a donc en moyenne 4.73×10^{27} atome dans le corps humain.

0.2 Combien y a-t-il d'atomes dans l'humanité?

Raisonnement

Pour connaître le nombre d'atomes dans l'humanité, il suffit de multiplier le nombre d'atomes dans le corps humain par le nombre d'humains sur terre. D'après la question précédente, il y a $N_{\rm total_atome_par_humain} = 4.73 \times 10^{27}$. Et une recherche sur Google nous dit que la terre compte 8.2 milliards (8.2×10⁹) d'être humains en 2024 (source : INED).

$$N_{\rm atomes_humanit\'e} = N_{\rm total_atome_par_humain} \times N_{\rm humains_sur_terre}$$

Application numérique

$$\begin{split} N_{\rm atomes_humanit\'e} &= 4.73 \times 10^{27} \times 8.2 \times 10^{9} \\ N_{\rm atomes_humanit\'e} &= 3.88 \times 10^{37} \end{split}$$

Conclusion / Interprétation

Il y a donc 3.88×10^{37} atomes dans l'humanité.

0.3 Combien y a-t-il de petits cubes?

Raisonnement

On peut placer 8 atomes par petit cube, donc

$$N_{cubes} = \frac{N_{\text{atomes_humanit\'e}}}{8}$$

Application numérique

$$N_{cubes} = rac{3.88 \times 10^{37}}{8}$$
 $N_{cubes} = 4.85 \times 10^{36}$

Conclusion / Interprétation

Tous les atomes de l'humanité peuvent donc être groupés dans 4.85×10^{36} petits cubes comme ceux du schéma de l'énoncé.

0.4 Quel volume tous ces cubes prend-il?

Raisonnement

On connaît le nombre de petits cubes qui permettent de regrouper tous les atomes de l'humanité (N_{cubes}). Il faut donc déterminer le volume de chacun des cubes (V_{1_cube}) pour déterminer le volume total occupé par les atomes de l'humanité ($V_{total_atomes_humanité}$)

$$V_{\text{total atomes humanit\'e}} = N_{cubes} \times V_{1 \text{ cube}}$$

On peut exprimer le volume d'un cube en fonction du rayon de l'atome (qui est une donnée qui est connue dans la littérature scientifique). Un côté du cube fait tenir 2 atomes, donc correspond à 2 diamètres de l'atome. L'arrête du cube fait donc $2\times d_{\rm noyau_atome}$ où $d_{\rm noyau_atome}$ est le diamètre du noyau de l'atome. On peut donc dire que :

$$V_{1_{
m cube}} = (2 \times d_{
m noyau_atome})^3$$

= $2^3 \times d_{
m noyau_atome}^3$
 $V_{1_{
m cube}} = 8 \times d_{
m noyau_atome}^3$

On peut donc dire que

$$V_{\text{total_atomes_humanit\'e}} = 8 \times N_{cubes} \times d_{\text{novau atome}}^{3}$$

Application numérique

On sait que $d_{\text{noyau_atome}} = 10^{-15} m$, donc

$$\begin{split} V_{total_atomes_humanit\'e} &= 8 \times 4.85 \times 10^{36} \times \left(10^{-15}\right)^3 \\ &= 8 \times 4.85 \times 10^{36} \times 10^{-45} \\ &= 3.88 \times 10^{-8} \, \text{m}^3 \end{split}$$

4

0.5 Tous ces petits cubes rentrent-t-il dans un dé à coudre?

Raisonnement

Autrement dit, le volume occupé par tous les petits cubes qui enferment tous les noyaux d'atomes de l'humanité est-il inférieur au volume d'un dé à coudre ? Pour cela, on a simplement à déterminer si l'inéquation suivante est correcte :

$$V_{\text{total atomes humanité}} \leq V_{\text{dé à coudre}}$$

Application numérique

En cherchant sur Internet, on trouve que le volume d'un dé à coudre est d'environ $25\,\text{mL}$. En convertissant en m^3 , cela correspond à $2.5\times 10^{-5}\,\text{m}^3$.

$$V_{\mathrm{total_atomes_humanit\acute{e}}} = 3.88 \times 10^{-8} \, \mathrm{m}^3 V_{\mathrm{d\acute{e}_\grave{a}_coudre}} \qquad = 2.5 \times 10^{-5} m^3$$

donc

$$V_{total_atomes_humanit\acute{e}} \le V_{d\acute{e}_\grave{a}_coudre}$$

Conclusion / Interprétation

On en conclut que tous les noyaux d'atome de l'humanité peuvent bien rentrer dans le volume d'un dé à coudre