Ling575 Summarization System

D5: Final System

Team 🐈 consonants 🐈

Rachel Hantz, Yi-Chien Lin, Yian Wang, Chenxi Li, Tashi Tsering

Overview

System Architecture

Content Realization

- Name Resolution
- Results & Error Analysis

Best System on Devtest

Systems on Evaltest

Ablation Study

WorkSplit

- Content Realization Rachel & Chenxi
- Updated Pipeline Yi-Chien
- Evaluation on Evaltest Yi-Chien, Yian & Tashi
- Ablation Study Yian
- Report & Slides Everyone

System Architecture

Components and/or methods not utilized within the best systems are shown greyed-out.

Inputs and outputs are shown as rounded rectangles, while system components are shown as circles.

Content Realization

Part 1 - build Find_People module

- Retrieve people entities
- Retrieve people with modifiers

Part 2 - resolve names in the summary

- Extract names
- Find longest name
- Rules of replacement

Results

- ROUGE score
- Error analysis

Find_People Module

1. Retrieve People Entities

```
people = [entity.text for entity in doc.ents if entity.label_ == 'PERSON']
```

Operates on a single sentence; uses spaCy NER pipeline component

e.g.

"Beagle dog Snoopy loves to dance."

```
people = ["Snoopy"]
```

Find_People Module

2. Retrieve People with Modifiers

```
people_tokens = " ".join(people).split() # all tokens for people

only_people_with_modifiers = [] # list for only people with modifiers

for noun_phrase in doc.noun_chunks:
    noun_head = noun_phrase.root

# checks that the head of this noun phrase was found in people tokens
    if noun_head.text not in set(people_tokens):
        continue

# only stores noun phrases that are people with modifiers
    if noun_phrase.text not in people: # Since, people list does not include modifiers
        only_people_with_modifiers.append(noun_phrase.text)
```

- Uses spaCy dependency parser to get noun phrases
- Checks that noun phrases are headed by people nouns
- And that they are modified in some way

"Beagle dog Snoopy loves to dance."

only_people_with_modifiers = ["Beagle dog Snoopy"]

Find_People Module

2. Retrieve People with Modifiers

```
# selects all modified versions of that person
modified_person = [
    modified_person for modified_person in only_people_with_modifiers if person in modified_person
]

if modified_person:
    # appends first modified person
    people_with_modifiers.append(modified_person[0])
    # removes that modified person so that it is not appended again
    only_people_with_modifiers.remove(modified_person[0])
else:
    # if there was never a modifier for that person, just appends un-modified person
    people_with_modifiers.append(person)
```

- For each person, gets a modified_person list
- Stores first modified_person
- Removes that modified_person from only_people_with_modifiers

```
return {
    "people": people,
    "people_with_modifiers": people_with_modifiers
}
```

```
{ "people": ["Snoopy"],
"people_with_modifiers": ["Beagle dog Snoopy"] }
```

Content Realization

Part 1 - build find_people module

- Retrieve people entities
- Retrieve people with modifiers

Part 2 - resolve names in the summary

- Extract co-indexed name lists
- Find longest name
- Rules of replacement

Results

- ROUGE score
- Error analysis

Name Resolution - Step 1

- Snoopy is a cute dog.
- Beagle dog Snoopy loves to dance.
- Charlie Brown's best friend Snoopy, is always ready for an adventure.

List of Names		List of Modified Names
['Snoopy,'		['Snoopy',
'Snoopy', -	co-indexed	'Beagle dog Snoopy',
'Snoopy']		'Charlie Brown's best friend Snoopy']

Name Resolution - Step 2 & 3

- 2. Find Snoopy with longest modifier
 - Eg. 'Charlie Brown's loyal companion Snoopy'
 - 3 at each position unmodified/modified/longest

3 versions of Snoopy in sentence 'Beagle dog Snoopy loves to dance.'

[Snoopy, Beagle dog Snoopy, Charlie Brown's loyal companion Snoopy]

- 3. Rules of replacement
 - o 1st time appearing replaced with longest name
 - Later occurrences replaced with unmodified name

Name Resolution - Example

- Snoopy is a cute dog.
- Beagle dog Snoopy loves to dance.
- Charlie Brown's best friend Snoopy, is always ready for an adventure.

- Charlie Brown's loyal companion Snoopy, is a cute dog.
- Snoopy loves to dance.
- Snoopy is always ready for an adventure.

Content Realization

Part 1 - build find_people module

- Retrieve people entities
- Retrieve people with modifiers

Part 2 - resolve names in the summary

- Extract co-indexed name lists
- Find longest name
- Rules of replacement

Results

- ROUGE score
- Error analysis

ROUGE Score Results

TF-IDF	Metric	CS + IO	CS + IO + CR
	Recall	0.31028	0.31293
Rouge-1			
	Precision	0.37183	0.36833
	F1-score	0.33793	0.33796
D	Recall	0.07246	0.07350
Rouge-2	Precision	0.08654	0.08591
	F1-score	0.0788	0.07913

ILP	Metric	CS + IO	CS + IO + CR
Rouge-1	Recall	0.34492	0.34691
	Precision	0.38148	0.37779
	F1-score	0.36202	0.36143
Rouge-2	Recall	0.09455	0.09514
	Precision	0.10488	0.10353
	F1-score	0.09936	0.09908

Analysis

Some produce good re-written results

- Bush → President Bush
- Hunter → Boulder district attorney Alex Hunter

Undesirable results attributed to:

- Over/under-recognition
- Co-referencing issue
- Inaccurate extracting
- Unwanted clipping

Best System on Devtest

TFIDF and ILP was tested on Devtest both with & without CR; baseline was tested on Devtest without CR

- ILP outperforms TF-IDF in terms of overall performance
- slight reduction in precision and F-1 scores after CR for ILP
- slight reduction in precision after CR for TFIDF

Best System on Devtest

N		CS + IO		CS + IO + CR		Baseline
		TF-IDF	ILP	TF-IDF	ILP	
1	Recall	0.31028	0.34492	0.31293	0.34691	0.23824
	Precision	0.37183	0.38148	0.36833	0.37779	0.33036
	F1-Score	0.33793	0.36202	0.33796	0.36143	0.27436
2	Recall	0.07246	0.09454	0.07350	0.09514	0.05136
	Precision	0.08654	0.10488	0.08591	0.10353	0.07092
	F1-Score	0.07880	0.09936	0.07913	0.09908	0.05906

System on Evaltest

TFIDF and ILP was tested on Evaltest with CR, baseline was: tested on Evaltest without CR

- ILP method remained the optimal choice for our system
- baseline approach yielded an impressive rouge-score

System on Evaltest

N	Metric	CS + IO + CR		Baseline
		TF-IDF	ILP	
	Recall	0.32825	0.36769	0.29203
1	Precision	0.38140	0.39139	0.39313
	F1-Score	0.35214	0.37873	0.33294
	Recall	0.08051	0.11572	0.07610
2	Precision	0.09366	0.12296	0.10465
	F1-Score	0.08641	0.11909	0.08748

Ablation Study

The purpose is to understand the contribution of different. components to the overall system by removing each component at a time.

N	Metric	No CS	No IO	No CR	Complete System
	Recall	0.23906	0.34732	0.34492	0.34725
1	Precision	0.32811	0.37744	0.38148	0.37796
	F1-score	0.27400	0.36139	0.36202	0.36164
2	Recall	0.05162	0.09520	0.09454	0.09530
	Precision	0.07043	0.10334	0.10488	0.10368
	F1-score	0.05904	0.09899	0.09936	0.09922