UK Patent Application (19) GB (17) 2 148 920 A

(43) Application published 5 Jun 1985

- (21) Application No 8328584
- (22) Date of filing 26 Oct 1983
- (71) Applicant Kodak Limited (United Kingdom), Kodak House, Station Road, Hemel Hempstead, Hertfordshire
- (72) Inventor Paul William Law
- (74) Agent and/or Address for Service J Н Реррег, P O box 114, 190 High Holborn, London WC1V 7EA

- (51) INT CL4 C09B 29/44 D06P 1/18 1/39
- (52) Domestic classification C4P 126 1A3A 1A3B 1C3 1D3 1F1 1F2 1F4 1F5 1F6 1H1Y 1H2 1H3 2G2AY 2H10 2H3 2H4 C2C 1534 213 246 247 250 251 25Y 305 30Y 776 AA ZH U1S 1565 C2C C4P
- (56) Documents cited GB 1425205 GB 0327394 "Colour Index" third edition 1971 Society of Dyers and Colourists Volume 4 pages 4041 4042 and 4135 (C.I. No's 12790 12795 19360)
- (58) Field of search C4P
- (54) Disperse and acid azo dyes from phenylamines and 1,2-dihydroquinoline couplers
- (57) New disperse and acid azo dyes giving bright, green to blue shades having good fastness and nonred flaring on polyamide fibres, have the formula

wherein: ring A is unsubstituted or substituted and C1 is a 1,2-dihydroquinoline coupler which may be substituted.

2 148 920

10

50

55

60

SPECIFICATION

Disperse and acid azo dyes from phenylamines and 1,2-Dihydroquinoline couplers

5 This invention concerns disperse and acid dyes particularly suited for the dyeing of polyamide fibres, and having the general formula

 $D-N=N-C^{\tau}$

wherein D is phenyl, which may be substituted and C1 is a 1,2-dihydroquinoline coupler which may be substituted preferably in any of the 1, 2, 4 and 7 positions. Preferably the dyes correspond to the formula 10

wherein: ring A is unsubstituted for substituted with 1-3 substituents independently selected from alkyl, alkoxy, halogen, trifluoromethyl, thiocyano, cyano, phenylazo, formyl, alkanoyl, alkanoylamino, aroyl, arylsulfonyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, sulfamoyl, 20 alkylsulfamoyl, dialkyl-sulfamoyl, alkylsulfonyl, alkylthio, arylthio, alkyl-SO₃M, aryloxy, alkoxycar-20 bonyl, alkoxy-carbonyloxy, acylamido, aryloxycarbonyl,

alkyl;

R, is H, alkyl, aryl or cyclohexyl, wherein said alkyl, aryl and cyclohexyl groups are 30 unsubstituted or substituted with 1-3 substituents different from the parent group and 30 independently selected from hydroxy, alkyl, alkoxy, aryl, aryloxy, cyclohexyl, cyclohexoxy, furyl (C₄H₃O), aroyloxy, alkoxycarbonyl, alkanoyloxy, SO₂NH₂, SO₂NHaryl, SO₂NHalkyl, SO₂N-(alkyl)₂, NHCOOalkyl, NHCONHalkyl, acylamido, alkylsulfonamido, succinimido (C₄H₄O₂N), glutarimido (C₅H₅O₂N), phthalimido (C₈H₄O₂N), 1-(2-pyrrolidono) (C₄H₆ON), alkyl-SO₃M, cyano, CONH₂,

35 CONHalkyl, CON(alkyl)2, alkoxyalkoxy, alkylthio, halogen, arylthio, alkylsulfonyl and arylsulfonyl; 35

R₂ - R₃ are each independently selected from H and alkyl;

R₄ is H, alkyl or alkyl-SO₃M; and Rs is selected from H, alkyl, alkoxy, alkenyl of 2-8 carbons, halogen, acylamido, alkylthio and formamido, wherein the alkyl moieties thereof may be substituted with 1-3 substituents 40 independently selected from hydroxy, halogen, cyano, alkoxy, alkyl-SO₃M, alkylthio, alkanoyl, 40 alkanoyloxy, and alkoxycarbonyl;

M is selected from H, Na, K, NH,

and the colorless cations of salts of primary, secondary and tertiary aliphatic and aryl amines; all of the alkyl and cyclic moities in the defined A ring substitients may bear 1-3 substituents 50 different from the parent moiety and independently selected from hydroxy, alkyl, alkoxy, aryl, aryloxy, cyclohexyl, furyl (C₄H₃O), aroyloxy, alkoxycarbonyl, alkoxycarbonyloxy, alkanoyloxy, SO, NH, SO, NHaryl, SO, NHalkyl, SO, N(alkyl), NHCOOalkyl, NHCONHalkyl, acylamido, alkylsutfonamido, succinimido (C₄H₄O₄N), glutarimido (C₅H₆O₂N), phthalimido (C₆H₄O₂N), alkyl-SO₃M, 1-(2-pyrrolidono) (C₄H₆ON), cyano, CONH₂, CONHalkyl, CON(alkyl)₂, alkoxyalkoxy, alkyl-55 thio, halogen, arylthio, alkylsulfonyl and arylsulfonyl.

The various alkyl and alkylene moieties in, for example, alkoxy, alkanoyl and the like within the above definitions of $R_1 - R_{\scriptscriptstyle B}$, and the A ring substituents have 1-6 carbons, and they and

the alkenyl groups are straight or branched chain.

Preferred of the above dyes are where ring A is unsubstituted or substituted with 1-3 60 substituents independently selected from acyl, alkylsulfonyl, alkyl-SO₃M, acylamido, alkyl, carboalkoxy, halogen and cyano, R1 is hydrogen, alkyl, aryl, cyclohexyl, or said alkyl or cyclohexyl substituted with 1-3 substituents independently selected from halogen, cyano, hydroxy and aryl, and R_s is hydrogen, alkyl or acylamido.

The dyes of this invention impart blue to green shades on fibers, particularly polyamides, 65 exhibiting improvements in one or more properties such as fastness to light, ozone, perspiration, 65

SDOCID: <GB 2148920A L >

10

15

20

25

30

35

40

45

50

55

60

oxides of nitrogen, washing, sublimation or crocking, leveling, transfer, pH stability, exhaustion, build and diminished red flaring.

The diazo components used in this invention are prepared according to procedures well known to the art. The present disperse dyes may be applied to polyamide fibers by conventional dyeing procedures, e.g., dispersed in a lignin sulfonate and dyed at 98°C. on nylon fabric for one hour from an aqueous bath. The following examples illustrate procedures which are generally applicable for preparation of the present couplers and dyes.

The acid dyes of the invention may be applied to polyamide fiber by the following method:
The test dye, as a mixture with a sulphate such as ammonium sulfate, is pasted with boiling
water and then made up to a known volume with water to give a weight ratio of water to dye of 30:1. Four percent on weight of fiber (owf) of a lignin sulphonate leveling agent is added, followed by ammonium acetate (about 3.0% owf) to adjust the pH to 6. The initial dyeing temperature is 40°C, which is raised to the final dyeing temperature of 98°C, over 30 minutes.
The dye bath is held at 98°C, for 60 minutes, then cooled, and the test fabric given a warm

15 water rinse and air drying.

EXAMPLE 1

(a) – Procedure For the Preparation of 1,2-Dihydro-2,2,4,7-Tetramethylquinoline Meta-toluidine (535 g.) and iodine (6 g.) are charged to a 2 liter, 3 neck, round bottom flask. The reaction is heated to 155°C. and about 3,500 g. of acetone is added at 155–160°C.
20 beneath the surface over a 12 hour period. A mixture of acetone and water distills off during the addition. The reaction mixture is heated one-half hour at 160°C. and then distilled to about 690 g. of 1,2-dihydro-2,2,4,7-tetramethylquinoline boiling at 107–111°C. at 0.55 mm., a 74% yield. The product is then ethylated with triethylphosphate in the presence of ethyl iodide in known manner.

25 (b) Sodium nitrite (0.72 g.) is added portionwise to 5 ml. of concentrated sulfuric acid. The solution is cooled and 10 ml. of 1:5 acid is added below 15°C. The mixture is cooled further and 2.5 g. 2,4-bis-(methylsulfonyl)aniline is added followed by 10 ml. of 1:5 acid, all below 5°C. After stirring for 2 hours at 0-5°C., the diazonium solution is added to a chilled solution of 3.16 g. of N-ethyl-1,2-dihydro-2,2,4,7-tetramethylquinoline in 50 ml. of 1:5 acid below 5°C.

30 The reaction is kept cold and ammonium acetate added until the coupling mixture is neutral to Congo red test paper. After allowing to couple for 1 hour at about 5°C., the reaction mixture is drowned in water and the product collected by filtration, washed with water, and dried in air. The azo compound obtained gives dyeings having excellent fastness properties on polyamide fibers and has the structure:

The preparation of the sulfonated 1,2-hydroquinoline is given in German Offen. 3,0005,874 (C.A. 94, 15593K, 1981) and H_2SO_4 , CISO₃H, and/or SO_3 and converting, if desired, the acid group to its salt in known manner.

45 EXAMPLE 2

40

2,6-Dichloroaniline (0.01 mole) is added to 60% aqueous acetic acid (25.0 cc), with stirring, followed by concentrated sulphuric acid (2.0 cc.). The mixture is cooled to 0°C. Sodium nitrite (0.72 g.), 0.0104 mole) is added to concentrated sulphuric acid (9.2 cc.) and the solution heated to 70°C., for 5 minutes. On cooling to 0°C, the solution is added slowly to the above amine mixture, at 0–5°C. After stirring at 0–5°C. for a further one hour, the diazo solution is added to the potassium salt of 1-ethyl-2,2,7-trimethyl-1,2-dihydroquinolin-4-yl-methyl sulphonic acid (3.33 g., 0.01 mole), in water (11.0 cc.) at <5°C. After stirring at 0–5°C, for one hour the dye is warmed to room temperature and precipitated by adding to saturated potassium chloride solution. The product is filtered and washed with diethyl ether to give the final dye

The following table further shows specific dyes of the present invention which are prepared as above.

		된	' <u>s</u>	$c_2^{\mathrm{H}_{\Sigma}}$	C ₂ H ₅	$c_{2}^{H_{5}}$	C ₂ H ₅	C ₂ H ₅	en en	c ₆ H ₅	C ₆ H ₁₁	C2H5	CH ₂ CH ₂ OH
		⊭ Ĩ	Ħ	CH ₃	CH ₃	CH ₃	GH3	CH3	CH2SO3K	æ	æ	CH ₃	CH ₃
₽		' £1	=	CH ₃	CH ₃	CH ₃	CH(CH ₃) ₂	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃
TABLE 1	R. S.	ᆈ	×	æ	CH ₃	CH ₃	æ	Ħ	æ	æ	æ	æ	==
	A A	^z í	н	#	CH ₃	сн2сн2он	CH ₂ C1	OCH2C1	осн ₃	осн ₃	CH2CH2CN	C1	C1
		Substituents on Ring A	None	4-CH ₂ SO ₃ K	4-c1	2,5-d1-c1	2,4-41-61	2-cH ₃ -5-c1	2,5-d1-CH ₃	2-cH ₃	4-CH ₃	3,4-d1-CH ₃	2-c1-4-s0 ₂ cH ₃

なりしつごひ・ ~ひち

21480204 |

но"но"но	СН"СН"ОН	CH,CH,OC,H,	CH2CN	CH,CONH,	CH, CONHCH,	CH,CON(C,HE),	CH_NHCOCH_	CH_NHCOOCH_	сн _о оосн _о	CH ₂ (C ₂ H ₂ ON)	[°] НЭООЭ ТЭ ТНЭ	CH, CH, COOCH	2 2 3 H	_น_ถ	2 5 C,H,	< 7 > 0 H U
CHJ	C,H ₅	CHJ	CH ³	CH ₂ SO ₃ Na		CH2SO3K		æ	æ	Ħ	CH, SO, N H (Et),	CH,	ີ ຮ້	CH ₂	CH.	X"OS"HD"HD
CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃	C3H7-n	CH ₃	C4H9-n	CH ₃		CH3	æ	CH.	CH,	, E	GH3	, =
ĸ	$c_{2}^{\mathrm{H}_{5}}$	CH ₃	CH ₃	CH ₃	C3H7-n	CH ₃	C4H9-n	CH ₃		=	踂	Ħ	Ħ	Ŧ	æ	æ
$c_{\rm H_2} s_{\rm 0_3} \kappa$	och ₃	NHCHO	NHCOCH ₂ OCCH ₃	NHCOCH ₂ CH ₃	NHCOC ₂ H ₅	NHCOC ₆ H ₅	NHCOC ₂ H ₅	NHCOC ₆ H ₁₁		сн2 scн3	CH ₂ CH≖CH ₂	Br	ı	<u>Ce</u> q	SCH3	сн, оосси
$2-Br-4-SO_2CH_3$	2-I-4-SO ₃ CH ₃	$2-c1-4-so_2$ CH ₃	$^{4-c_{0}}_{2}c_{2}^{c}_{4}$ -0H	$4-c_{0_{2}}c_{2}H_{4}-c_{1}$	$^{4-C0}_{2}^{C}_{2}^{H}_{4}^{-C}_{6}^{H}_{11}$	4-20 ₂ c ₂ H ₄ -0CH ₃	$^{4-c_{0}}c_{2}H_{4}^{-0}c_{6}H_{5}$	4-c0 ₂ c ₂ H ₄ -cn	$^{4-60}_{2}^{6}_{2}^{14}_{4}^{-06}_{2}^{21}_{4}^{06}_{2}^{11}_{5}$	4-со ₂ с ₂ н ₄ -ососн ₃	4-conec244-sc6H5	4 -conhc $_2$ H $_4$ -c1	$^{4-\text{CONHC}_2\text{H}_4-\text{C}_6\text{H}_5}$	$4-conhc_2H_4-c_6H_{11}$	$^{4-\text{CONHC}_{2}\text{H}_{4}-\text{OOCCH}_{3}}$	4-CONHC2H4-SCH3

NICOCOCIO- ACE CHARGOO

CH ₃ C ₃ H ₅		· H3		CH ₂ SO ₃ (Ca/2)	, сн ₃ с ₂ н ₅	сн ₂ so ₃ (zn/2) сн ₂ сн ₂ он	сиз сн2сн2он	CH ₃	CH ³	CH	3 ₃ K	сн3 сн2сомисн3	CH, CH, CH, CON(C, H,)	
CH.	E.	GH,	$c_{2}^{H_{5}}$	c_2H_5	$c_2^{\rm H_5}$	CH ₃	CH	CH ₃	CH ₃	СНЗ	CH3	CH3	CH ₃	
Ħ	:::	=	C_2H_5	C2H5	$c_2 H_5$	Ħ	CH ³	CH ³	сн3	CH ₃	c _H 3	CH3	CH ₃	
0сн ³	CH ₃	CH ₃	CH2CH2COOCH3	сн ₂ сн(он)сн ₂ он	CF ₃	cr ₃	×	Ħ	$\mathrm{ch_2ch(c1)ch_2c1}$	сн2сн(осн3)сн2осн3	сн ₃	CH ₃	CH ₃	
4-conec ₂ H ₄ -nhcoch ₃	4-conhc ₂ H ₄ -cn	4-conhc ₂ H ₄ -oc ₂ H ₄ oc ₂ H ₅	4-CONHC ₂ H ₄ -OCOCH ₃	4-connc ₂ H ₄ -n coch ₂	4 -conhc $_2$ 4 -nhs $_2$ c $_2$ 4 5	$4-\text{CONHC}_2 H_4 - N \text{CH}_2 \text{CH}_2$	$5-\cos(c_2 H_5)-c_2 H_4-so_3 K$	4-con(c ₂ H ₅)-c ₂ H ₄ -oh	4 -con($c_{2}H_{5}$)- $c_{2}H_{4}$ -s $c_{6}H_{5}$	4 -con($c_{2}H_{5}$)- $c_{2}H_{4}$ -c1	4-con(c ₂ H ₅)-c ₂ H ₄ -c ₆ H ₅	4 -con(c_{2} H_{5})- c_{2} H_{4} -00cc H_{3}	$^{4-\text{CON}(C_{2}H_{5})-C_{2}H_{4}-C_{6}H_{10}-p-\text{SO}_{3}K}$	

SDOCIÐ: ZGB

21489204 1 %

$^{4-\text{CON}(c_2^{H_5})-c_2^{H_4}-\text{SCH}_3}$	CH ₃	CH3	CH ₃	сн ₃	CH, NHCOOCH,
$^{4-\text{CON}(C_2H_5)-C_2H_4-0C_6H_5}$	CH ₃	CH ₃	СН3	CH ₃	CH,000CH,
4 -con($^{2}_{2}$ H ₅)- $^{2}_{2}$ H ₄ -nhcoch ₃	Ħ	£	CH ₃	CH ₃	CH, (C, H, ON)
$^{4-con(c_{2}H_{5})-c_{2}H_{4}-cn}$	H	CH ₃	c B S	· ±	сн, сн, сооси,
$^{4-\text{CON}(c_2^{}\text{H}_5^{})-c_2^{}\text{H}_4^{}-0c_2^{}\text{H}_4^{}\text{OCH}_3^{}}$	сн3	СН ₃	CH ₃	æ	сн, соосн,
$^{4-\text{con}(c_2^{H_5})-c_2^{H_4}-\text{ococh}_3}$	сн ₂ сн ₂ он	Ħ	×	C3H7-n	C 7 7 H
4-con(c ₂ H ₅)-c ₂ H ₄ -n coch ₂	сн ₂ с1	. CH	CH ₃	C ₃ H ₇ -n	$c_2^{\mathrm{H}_5}$
$^{4-\text{CON}(c_{2}^{H_{5}})-c_{2}^{H_{4}-\text{NHSO}_{2}^{}c_{2}^{H_{5}}}$	och ₂ c1	СНЗ	CH ³	c ₂ H ₅	$c_2^{H_5}$
$^{4-\cos(c_{2}H_{5})-c_{2}H_{4-N}}$ $^{60-cH_{2}}$, OCH ₃	æ	сн(сн ₃) ₂	$c_2^{H_5}$	$c_2^{\rm H_5}$
4-SO ₂ NHC ₂ H ₅	OCH ₃	=	СĦ	, E	, H
$^{4-50_{2}}^{NH-C_{2}}^{H_{4}-5C_{6}}^{H_{4}-p-CH_{2}}^{SO_{3}}^{K}$	CH ₂ CH ₂ CN	æ	E	c z	2"5 C ₂ H ₅
4-s0 ₂ nh-c ₂ H ₄ -c1	C1	æ	ce.	(HO'HO'HO)H N'C	· " " " " " " " " " " " " " " " " " " "
$^{4-50}_{2}$ NHC $_{2}$ H $_{4}$ -C $_{6}$ H $_{11}$	C1	×	CH2		ר א. מ'א.
$^{4-50}_{2}^{NH-C}_{2}^{H}_{4}^{-00}^{ccH}_{3}^{3}$	æ	5 23	CH ₃		е 3 С ₆ Н.1
$4-SO_2NH-C_2H_4-OCH_3$.	е посн	æ	CH ₃	CH ₃	C ₂ H ₅

$^{4-50}_{2}^{MH-C_{2}H_{4}-SC_{2}H_{5}}$	NHCHO	Ŧ	CH ₃	CH ₃	сн,сн,он
$4-50_2$ NH $-c_2$ H $_4$ -NHCOCH $_3$	NHCOCH ₂ OCCH ₃	$c_2^{H_5}$	C2H5	сн	сн, сн, он
4-so ₂ nhc ₂ h ₄ -cn	NHCOCH ₂ CH ₃	cH.	CH.	CH,	но тругон
4-502NH-C2H4-0C2H40CH3	NHCOC ₂ H ₅	CH.	CHJ	CH ₃	CH_CH_OC_H_
$^{4-50}_{2}$ MH- $^{2}_{1}$ H $^{4-0}$ COCH $^{3}_{3}$	NHCOC ₆ H ₅	CH3	CH ₃	СН	CH, CN
4-502NH-C2H4-N COCH2	NHCOC ₂ H ₅	C3H2-n	C3H7-n	CH ₃	ch ₂ conh ₂
4-502NH-C2H4-NHSO2C2H5	×	Æ	æ	CH ₂ SO ₃ Na	æ
4-SO ₂ NH-C ₂ H ₄ -N CO-CH ₂		æ	c _H 3	CH ₂ SO ₃ NH ₄	c ₂ H ₅
$^{4-50}_{2}^{N(C_{2}^{H_{5}})C_{2}^{H_{5}}}$	CH ³	GH ₃	СĦ	CH ₃	C ₂ H ₅
$^{4-50_{2}}N(c_{2}H_{5})-c_{2}H_{4}-0H$	сн2 сн2 он	CH ₃	CH ₃	CH2CH2SO3H	C, H ₅
$^{4}-50_{2}N(c_{2}H_{5})-c_{2}H_{4}-5c_{6}H_{5}$	CH ₂ C1	Ħ	сн(сн ₃) ₂	_	$c_{2}^{H_{5}}$
$^{4-50_{2}}^{10}^{10}^{10}^{10}^{10}^{10}^{10}^{1$	осн2с1	Œ	СН ₃		C ₂ H ₅
$^{4-50_{2}}^{N(C_{2}H_{5})-C_{2}H_{4}-00CCH_{3}}$	осн3	Ħ	CH ₃	Ħ	CH.
4 - $^{50}_{2}$ N($^{2}_{2}$ H $_{5}$)- $^{2}_{2}$ H $_{4}$ - $^{6}_{6}$ H $_{11}$	осн3	Ħ	CH ₃	æ	C ₆ H ₅
$^{4-80}_{2}^{N}(c_{2}^{H_{5}})-c_{2}^{H_{4}}-c_{6}^{H_{5}}$	CH ₂ CH ₂ CN	=	сн ³	Ħ	C ₆ H ₁₁

$^{4-50_{2}}^{0}^{0}(c_{2}^{15})-c_{2}^{14}-0c_{3}^{1}$	C1	×	CH3	CH ₃	C, H _E
$^{4-50}_{2}$ N($^{2}_{2}$ H $^{5}_{5}$)- $^{2}_{2}$ H 4 -SCH $^{3}_{3}$	C1	Ħ	CH ³	CH ₃	HO'HO'HO
$^{4-50}_{2}^{N(C_{2}H_{5})-C_{2}H_{4}-NHCOCH_{3}}$	Ħ	æ	' ස ි	, к	HO CHO CHO
$^{4}-50_{2}N(c_{2}H_{4})-c_{2}H_{4}-c_{N}$	осн3	$c_2 H_5$	C,H _s	C, H,	CH. GH. OH
$^{4-50_{2}}^{M(C_{2}H_{5})-C_{2}H_{4}-0C_{2}H_{4}}^{OCH_{3}}$	NHCHO	. H3	. E	CH,	CH, CH, OC, H.
$^{4-So_{2}N(C_{2}H_{5})-C_{2}H_{4}-OCOCH_{3}}$	NHCOCH ₂ OCCH ₃	CH ³	, fi	CH ₃	CH2CN
$^{4-50_{2}}N(c_{2}H_{5})-c_{2}H_{4}-N(c_{2}GH_{2})$	NHCOCH ₂ CH ₃	сн	CH ₃	œ	CH ₂ CONH ₂
$^{4-50}_{2}^{N(c_{2}H_{5})-c_{2}H_{4}-0c_{6}H_{5}}$	NHCOC ₂ H ₅	C3H,-n	_{C3} Ա,-ո _{C3} Ա,-ո	×	сн, сомнсн,
$^{4-50_{2}}^{\text{N}}(c_{2}^{\text{H}_{5}})-c_{2}^{\text{H}_{4}}-^{\text{NHSO}_{2}}^{\text{C}_{2}^{\text{H}_{5}}}$	NHCOC ₆ H ₅	CH ₃	CH ₃	æ	CH,CON(C,HE),
$^{6-SO_2N(C_2H_5)-C_2H_4-N}$	NHCOC ₂ H ₅	C ₄ Hց – ո	C4 H9-n	CH ₂ SO ₃ H	CH ₂ NHCOCH ₃
4-50 ₂ c ₂ H ₄	NHCOC ₆ H ₁₁	CH ₃	CH ₃	=	CH, NHCOOCH,
$^{4-50}_{2}$ $^{-6}_{2}$ $^{4}_{4}$ $^{-0H}$	æ	CH ³	CH ³	æ	CH,000CH,
4-502C2H4-SCH5	ch ₂ sch ₃	Ħ	.	æ	CH, (C, H, ON)
$^{4}-50_{2}-c_{2}H_{4}-c_{1}$	сн2сн=сн2	Ħ	. ==	×	CH, CH, COOCH.
4 - 80 2- 2 1 4 - 6 1 11	81	Ħ	СНЭ	СНЗ	CH, CH, COOCH ₃

æ	C, H _E	2 J G2H≤	C 7 C'HE	C, T	2 3 6	CH ³	C ₆ H ₅	C ₆ H ₁₁	$c_2^{H_5}$	CH ₂ CH ₂ OH	CH ₂ CH ₂ OH	CH2 CH2 OH	CH, CH, OC, HE	CH, CN
ch,	CH,	CH ₃	, =	cH³	cH ₃	cH ₃	CH ₃	cH ₃	CH ₃	CH ₃	снз	CH ₃	CH ₃	CH ³ .
CH ₃	E	CH ₃	æ	CH3	CH ₃	CH ₃	c ₂ H ₅	$c_2^{\rm H_5}$	C2H5	CH ₃	CH ₃	cH ₃	CH ₃	CH.
×	#	==	=	Ħ	=	ᆓ	$c_2^{\rm H_5}$	$c_2^{\rm H_5}$	$c_2 H_5$		CH ₃	CH ₃	CH ₃	CH ₃
н	, Eu	SCH3	CH2 DOCCH3	оснз	c _H ₃	CH ₃	ch2ch2cooch3	сн2сн(он)сн2он	CF3	CF ₃	æ	æ	ch_2 ch(c1)ch $_2$ c1	CH2CH(OCH3)CH2OCH3
4-502-C2H4-SCH3	$^{4-50}_{2}$ $^{-6}_{2}$ $^{+4}_{4}$ $^{-06}$ $^{+5}_{5}$	$^{4-50}_{2}^{-c_{2}}$ H $_{4}^{-NHCOCH_{3}}$	4-SO2-C2H4-CN	$^{4-50}_{2}$ $^{+6}_{2}$ $^{+4}_{4}$ $^{+0}$ $^{2}_{2}$ $^{4}_{4}$ 0 $^{2}_{1}$	4-502-C2H4-0COCH3	4-S02-C2H4-N COCH2	4-SO2-C2H4-NHSO2C2H5	$4-SO_2-C_2H_4-N$ $CO-CH_2$	2-CN-4-SO ₂ CH ₃	2-cn-4-c1.	2-cn-4-cocH ₃	2-CN-4-C00C2H5	2,4-d1-CN	4-502C6H5

SDOCID: <GB_____2148920A__I_>

$4-50_2$ NH ₂	CH ₃	CH ₃	GH,	cH ₃	CH, CONH,
$4-50_2N(c_2H_5)_2$	CH ₃	CH ₃	CH ₃	сн ₃	CH, CONHCH
$2-c1-5-so_2$ nh c_2 h $_4$ oh	CH ₃	CH ₃	сн³	CH ₃	CH ₂ CON(G ₂ H ₅) ₂
$2-c1-5-so_2cH_3$	сн3	CH ₃	CH3	сн ₃	CH ₂ NHCOCH ₃
2,5-d1-C1-4-SO ₂ N	снэ	CH3	H ₃ CH ₃	снз	CH ₂ NHCOOCH ₃
$^{2,6-d1-c1-4-50}_{2}$ ch	CH ₃	CH ₃	CH ₃	CH ₃	CH ₂ OOCCH ₃
$2,6-d1-CN-4-SO_2CH_3$	H	CH ₃	CH ₃	сн3	CH ₂ (C ₄ H ₆ ON)
2,6-d1-CN-4-CHO	H	CH3	CH ₃	. =	сн, сн, соосн,
2,6-d1-CN-4-C1	CH ₃	CH ₃	CH ₃	Ħ	[*] нооо'но'но
2,6-di-cn-4-coch ₃	CH2CH20H	æ	=	C3H7-n	n * *
$2,6-d1-CN-4-CONHC_2H_5$	$c_{\rm H_2}c_{\rm 1}$	CH ₃	EH3	C ₃ H ₇ -n	C,H,
2 ,6-d1-cn-4-cooc $_2$ H $_5$	OCH2C1	CH ₃	CH ₃	c ₂ H ₅	C, H,
2~CF ₃ -4-Br	осн ³	Œ	CH(CH ₃) ₂	C ₂ H ₅	c ₂ H ₅
$^{2,5-d1-G1-4-50}_{2}N$	ерсн ³	×	cH ₃	c ₂ H ₅	G_{2H_5}
2-cooch ₃ -4-scn	CH2 CH2 CN	×		сн	$c_2^{H_5}$

CH,	, H,2	C, H, 1	C ₂ H ₅	CH2 CH2 OH	сн2сн2он	CH ₂ CH ₂ OH	CH2CH2OC2H5	CH ₂ CN	CH2 CONH2	· #	$c_2^{H_5}$	c ₂ _{H5}	$c_2^{H_5}$	$c_2^{H_5}$	C ₂ H.
					cH ₃										
CH ₃	CH _J	CH ²	ਛਿੰ	CHJ	$c_2^{\rm H_S}$	сн _з	CH ₃	CH ₃	C3H7-11	, at	CH ₃	CH ₃	CH ₃	сн(сн ₃) ₂	сн
Ħ	Ħ	æ	×	Ħ		cH ₃									
13	CI	×	OCH3	NHCHO	NHCOCH ₂ OCCH ₃	NHCOCH ₂ CH ₃	NHCOC ₂ H ₅	NHCOC ₆ H ₅	NHCOC ₂ H ₅	æ	×	cH ₃	сн2 сн2 он	сн2с1	OCH ₂ C1
2-50 ₂ CH ₃ -4-SCN	2-coch ₃ -4-scn	2-Br-4-CONH ₂	2-CN-4-CONH ₂	2-cn-4-conh ₂	-N=N	4-coc, H ₅	2-50 ₂ C ₆ H ₅	4-50 ³ C ₆ H ₅	2-0CH ₃ -4,6-d1-C1	2-och ₃ -5-ch ₃	4-NHCOCH ₃	4-NHCOH	2-CN-4-SCN	2,4-d1-Br-6-COOCH ₃	2-Br-4-SCN-6-COOCH ₃

HJ CH	£ 2	S: 9.				C ₂ H ₅ CH ₂ CH ₂ OH				H CH_CONHCH_	H CH.CON(C.H.)	H CH_NHCOCH_	H CH_NRCOOCH	Н СН. ООССИ	H CH. (C. H. ON)	2, 4_6
r ¤	СН,	`	ි සි	ີ ສ	CH,	$c_{2}^{H_5}$	CH.		່ ຮ້	ո_դ _H , ո	່	u_bH^2	GH,	H	. H	,
8	×	Ħ	æ	æ	H			CH ₃							· =	
н з	осн	CH2 CH2 CN	c1	C1	æ	0СН3	NHCHO	NHCOCH ₂ OCCH ₃	NHCOCH ₂ CH ₃	NHCOC ₂ H ₅	NHCOC H 5	NHCOC ₂ H ₅	NHCOC ₆ H ₁₁	×	CH ₂ SCH ₃	מת המי
$^{4-\mathrm{NHSO}_2}\mathrm{c_2}_{\mathrm{H_5}}$	2-CN-4-SCN-6-COOCH ₃	2-CN-4,6-d1-C1	2,5-d1-CN	2 -cn-4- 50_2 c $_2$ H $_5$	3,5-d1-COOCH ₃	3,4-d1-cN	3,4-d1-C1-2,6-d1-CN	$^2,6-d1-Br-4-S0_2CH_3$	$^{2,6-d1-Br-4-S0_2N(CH_3)_2}$	2,6-d1-Br-4-CHO	2,6-d1-Br-4-COCH ₃	2-CN-4-CH0	2-cn-4-cooch(ch ₃) ₂	$2-50_2$ CH $_3-4-c1$	$^{2-50}_{2}$ CH $_{3}$ -4-CN	2-COOCH,-4-SO.CH.

2-conec ₂ H ₄ OH-4-c1	Br	Ħ	CH.	CH,	CH.,COOCH
2-c1-4-s0 ₂ cH ₃	I	Ŧ	. #5	CH,	н
2-C1-4-S0 ₂ C ₄ H ₉ -n	<u>įs</u> ų	Ŧ	CH,	ch,	ж : с
$2-Br-4-C00C_4H_9-n$	scH ₃	Ħ	CH T	CB,	2"5 C.H.
2,6-d1-Br-4-CHO	сн ₂ ооссн ₃	=	י ≖	î H	25 C.H.
2,6-d1-C1-4-SO ₂ CH ₃	och ₃	æ	CH ₃	CH ₃	ر ع دیلادی
2-1-4-50 ₂ CH ₃	CH ₃	32 1	CH ₃	CH ₃	ั้นเว
4-CN-2-SC ₂ H ₄ OH	CH ₃	æ	CH ₃	СН	CH,
4-CN-2,6-d1-SCH2CH3	ch2ch2coch3	c_2H_5	C ₂ H ₅	CH ₃	c, H,
$^{4-\text{CN}-2-\text{OC}_6\text{H}_5}$	CH ₂ CH(OH)CH ₂ OH	C2H5	C2H5	, HJ	c, H, s
4-c0 ₂ c ₆ H ₅	CF3	$c_{2}^{H_{5}}$	C ₂ H ₅	CH,SO,K	TT 0
4-conhc ² h ⁴ oh	$^{\mathrm{CF}_3}$	· =	CH ₁	r z	CH,CH,OH
4~conhc3h6och3	æ	сн ₃	CH3	CH ³	HO"HO"HO
4-соосн ₂ сн ₂ с ₆ н ₅	×	CH ₃	. CH ₃	CH ₂ SO ₃ NH ₂	H0"H2"H2
4-so ₂ nhc ₂ h ₄ c1	сн ₂ сн(с1)сн ₂ с1		CH ₃	CH ³	*H':00'H2'H2
4-so ₂ nhch ₂ c ₆ H ₁₁	CH ₂ CH(OCH ₃)CH ₂ OCH ₃		CH ₃	CH ₂ SO ₄ K	CH ₂ CN
4-conhc ₂ H ₄ oc ₂ H ₄ cn	сн ₃	CH ₃	CH ₃	c - c	CH ₂ CONH,

4-conec24oc645	CH ₃	CH ₃	СН3	CH ₃	CH,CONHCH,
4-sc ₆ H ₅	CH ₃	CH3	CH ₃	CH ₃	CH ₂ CON(C ₂ H ₅),
4-cooch ₂ ch ₂ N coch ₂	CH ³	cH ₃	CH ₃	cH ₃	сн ₂ инсосн ₃
$^{4-\text{COOC}_2}$ H $_4$ NHCOCH $_3$	c _H ³	E	cH ₃	cH ₃	сн, инсоосн,
4-cooc ₂ H ₄ nhso ₂ ch ₃	cH ₃	CH3	CH ₃	сн ₃	сн ₂ ооссн ₃
$^{6-cH_{2}}_{4-cooc_{2}H_{4}N}$	æ	CH ₃	cH ₃	CH ₃	сн ₂ (с _{4 н6} ои)
4-cooc H s-ch ₃	Ŧ	CH ₃		CH ₂ SO ₃ Na	сн, сн, соосн,
4-c00c ₂ H ₄ S-c ₆ H ₅	CH ₃	CH ₃		CH ₂ SO ₃ K	CH, CH, COOCH,
4-so ₂ nнсн ₂ сн(он)сн ₂ он	сн2 сн2 он	#		C3H7-n	, ,
$^{4}-s_{0}$ N(CH ₃)C ₂ H ₄ OH	CH ₂ C1	CH ₃	CH ₃	C ₃ H ₇ -n	c, Hs
$^{4-SO_{2}N(C_{2}H_{5})_{2}}$	och ₂ c1	CH ₃		c ₂ H ₅	C ₂ H ₅
4 - 2 0 $_{2}$ N(2 CH $_{3}$)CH $_{2}$ CH $_{2}$ OH	осн ³	Ħ	3)2	$c_2 H_5$	c ₂ H ₅
4-s02cH2cH20cocH3	осн ₃	æ		C ₂ H ₅	C ₂ H ₅
4-so ₂ ch ₂ ch ₂ oc ₂ h ₅	CH ₂ CH ₂ CN	=	CH ₃	CH ₃	c ₂ H ₅
4-so ₂ сн ₂ сн ₂ он	C1	#		CH ₃	CH ₃

CH,	, E	CH,	CH, CH.	C, H, CH,	CH, CH,	CH ₃	์ เม	C ₃ H ₇ -n CH ₃	. =	CH ₃ CH ₃	CH ³ CH ³	์ เหว	CH(CH ₃) ₂ CH ₃	CH, CH,	CH, CH, SO, K	
æ	æ	æ	=	C, H,	GH 7	CH ₃	CH ³	C3H2	¥	æ	cH ₃	GH,	=	æ	æ	
C1	Ħ	och ₃	NHCHO	NHCOCH ₂ OCCH ₃	NHCOCH ₂ CH ₃	NHCOC ₂ H ₅	NHCOC ₆ H ₅	NHCOC ₂ H ₅	×	×	CH ₃	CH2 CH2 OH	CH2C1	och ₂ c1	осн ₃	
2,4-d1-s0 ₂ CH ₃	2-Br-4,6-d1-SO2CH3	2-CN-4,6-d1-SO2CH3	4-0000CH ₃	4-0c00CH2 CH20C0CH3	$^{4-c_{2}H_{4}-(c_{4}H_{3}0)}$	^{4−с} , н ₄ −р−сн ₃	4-ch ₂ ch ₂ -00cc ₆ h ₅	4-CH ₂ CH ₂ -SO ₂ NH ₂	4-ch ₂ ch ₂ -so ₂ nhph	$^{4-CH_{2}CH_{2}-SO_{2}NHCH_{3}}$	$^{4-CH}_{2}^{CH}_{2}^{-SO}_{2}^{N}(C_{2}^{H}_{5})_{2}^{2}$	4-ch ₂ ch ₂ -nhcooch ₃	4-ch ₂ ch ₂ -nhconnch ₃	$^{4-CH_{2}CH_{2}-(C_{5}H_{6}O_{2}N)}$	$^{4-CH_{2}CH_{2}-(C_{8}H_{4}O_{2}N)}$	

4-ch ₂ ch ₂ -conhch ₃	CH2CH2CN	æ		$cH_2 so_3 K$	$c_{6^{\mathbf{H}_{11}}}$
$^{4-\text{CH}_2\text{CH}_2-\text{CON(CH}_3)_2}$	C1	×		сн3	C ₂ H ₅
4-ch2ch2-so2ch3	c1	н		CH ₃	си2си2он
4-cH ₂ cH ₂ -so ₂ Ph	æ	F		CH ₃	сн, сн, он
4-coch ₃	$_{ m CH}_{ m 3}$	CH ₃		Н	C ₂ H _E
3-01	CH ₃ CONH	CH ₃		H	$c_{ m 2H_{E}}$
4-C1,2,6-di-CN	CH ₃	· H		н	C, H _E
2-CH ₃ ,4-CH ₃ SO ₂	н) H		H	C 2 C ₂ H _E
H	ш	H		H	C _A H _E
4-coch ₃	$^{ m CH}_3$	CH ₃	CH.	CH ₂ SO ₃ K	c 2 C ₂ H _E
3-01	CH ₃ CONH	CH ₃		CH ₂ SO ₂ Na	$c_{ m oH_E}$
4-C1, 2, 6-di-CN	CH ₃ .	CH ₃		CH ₂ SO ₃ K	$c_{2}H_{5}$
2,4-di-CH ₃ SO ₂	$_{ m cH}_{ m 3}$	CH ₃		SO K	$c_{ m oH_E}$
2,CH3,4-CH3SO2	H	Ħ		CH ₂ SO ₂ (Ca/2)	C ₂ H _E
ш	н	Ħ		$^{\mathrm{CH}_2\mathrm{SO}}_3^{\mathrm{MH}_4}$	$c_{2}^{\mathrm{H}_{5}}$

CLAIMS

1. A dye of the general formula:

$$D - N = N - C^1$$

wherein D is a phenyl or substituted phenyl group and C1 is a 1,2-dihydroquinoline coupler 5 which may be substituted.

2. A dye according to Claim 1 of the formula

5

10

wherein ring A is unsubstituted or substituted with 1-3 substituents independently selected from alkyl, alkoxy, halogen, trifluoromethyl, thiocyano, cyano, phenylazo, formyl, alkanoyl, 15 alkanoylamino, aroyl, arylsulfonyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, sulfamoyl, alkyl-SO₃M, alkylsulfamoyl, dialkylsulfamoyl, alkylsulfonyl, alkylthio, arylthio, aryloxy, alkoxycarbonyl, alkoxycarbonyloxy, acylamido, aryloxycarbonyl,

20 so₂n(___).

20

SO₂O-aryl, and NHSO₂-alkyl, wherein M is selected from H, Na, K, NH₄,

25

25

30

35

30 and the colorless cations of salts of primary, secondary and tertiary aliphatic and aryl amines and wherein all of the alkyl and cyclic mojeties in the defined A ring substituents may bear 1-3 substituents different from the parent moiety and independently selected from hydroxy, alkyl, aikoxy, aryl, aryloxy, cyclohexyl, furyl (C4H3O), aroyloxy, alkoxycarbonyl, alkoxycarbonyloxy, alkanoyloxy, SO₂NH₂, SO₂NHaryl, SO₂NHalkyl, SO₂N(alkyl)₂, alkyl-SO₃M, NHCOOalkyl, NHCON-35 Halkyl, acylamido, alkyl-sulfonamido, succinimido (C₄H₄O₂N), glutarimido (C₅H₆O₂N), phthalim-

ido (C₈H₄O₂N), 1-(2-pyrrolidono) (C₄H₆ON), cyano, CONH₂, CONHalkyl, CON(alkyl)₂, alkoxyalkoxy, alkylthio, and C1 is a 1,2-dihydroquinoline coupler which is unsubstituted or substituted in any of the 1, 2, 4 and 7 positions.

3. A dye according to Claim 1 or 2 wherein C1 has the formula

40

40

45

45

wherein R₁ is H, alkyl, aryl or cyclohexyl, wherein said alkyl, aryl and cyclohexyl groups are unsubstituted or substituted with 1-3 substituents different from the parent group and independently selected from hydroxy, alkyl, alkoxy, aryl, aryloxy, cyclohexyl, cyclohexoxy, furyl 50 (C₄H₃O), aroyloxy, alkoxycarbonyl, alkanoyloxy, SO₂NH₂, SO₂NHaryl, SO₂NHalkyl, alkyl-SO₃M, SO₂N(alkyl)₂, NHCOOalkyl, NHCONH-alkyl, acylamido, alkylsulfonamido, succinimido (C₄H₄O₂N), glutarimido (C₅H₆O₂N), phthalimido (C₈H₄O₂N), 1-(2-pyrrolidono) (C₄H₆ON), cyano, CONH₂, CONHalkyl, CON(alkyl)2, alkoxyalkoxy, alkylthio, halogen, arylthio, alkylsulfonyl and arylsulfonyl;

50

55

 $R_2 - R_3$ are each inependently selected from H and alkyl; R_4 is H, alkyl or alkyl - SO₃M; and R_5 is selected from H, alkyl, alkoxy, alkenyl of 2–8 carbons, halogen, acylamido, alkylthio and formamido, wherein the alkyl moieties thereof may be substituted with 1-3 substituents independently selected from hydroxy, halogen, cyano, alkoxy, alkylthio, alkanoyl, alkyl-SO3M, alkanovloxy, and alkoxycarbonyl.

A dye according to Claim 2 wherein ring A is unsubstituted or substituted with 1-3 substituents independently selected from acyl, alkylsulfonyl, alkyl-SO₃M, acylamido, alkyl, carboalkoxy, halogen and cyano, R₁ is hydrogen, alkyl, aryl, cyclohexyl, or said alkyl or cyclohexyl substituted with 1-3 substituents independently selected from halogen, cyano, hydroxy and aryl, and R_s is hydrogen, alkyl or acylamido.

60

5. The dye according to Claim 1 of the formula

65

6. The dye according to Claim 1 of the formula

7. The dye according to Claim 1 of the formula

8. The dye according to Claim 1 of the formula

9. The dye according to Claim 1 of the formula

10. The dye according to Claim 1 of the formula

11. The dye according to Claim 1 of the formula

12. The dye according to Claim 1 of the formula

13. The dye according to Claim 1 of the formula

VSDOCID: <GB___ _2148920A__t_>

10

14. The dye according to Claim 1 of the formula

15. The dye according to Claim 1 of the formula

16. The dye according to Claim 1 of the formula

17. The dye according to claim 1 of the formula

Printed in the United Kingdom for Her Majesty's Stationery Office, Dd 8818935, 1985, 4235.
Published at The Patent Office, 26 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.