Assignment 2 MATH271

Connor Braun

July 23, 2021

Problem 1

a) Prove that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all integers $n \ge 0$ by induction on n.

Proof (by induction).

Basis (n = 0). Suppose n is an integer but specifically n = 0. Then we have the following

$$5^{2n+1} + 2^{2n+1} = 5^{2(0)+1} + 2^{2(0)+1}$$
 Substituting $n = 0$
= $5^1 + 2^1$
= 7
= $7(1)$

Where since both 7 and 1 are integers with $7 \neq 0$ we have that $7|5^{2n+1} + 2^{2n+1}$ in the case of n = 0. Inductive step. Now, suppose that $\forall_k \in \mathbb{Z}$ where $k \geq 0$ we have that 7 divides $5^{2k+1} + 2^{2k+1}$. That is:

$$5^{2k+1} + 2^{2k+1} = 7a$$
 (Inductive hypothesis)

for some integer a. Let the acronym IH henceforth stand for 'Inductive Hypothesis'. We want to show that

$$5^{2(k+1)+1} + 2^{2(k+1)+1} = 5^{2k+3} + 2^{2k+3}$$
$$= 7b$$

for some integer b. Starting with $5^{2k+3} + 2^{2k+3}$ we can derive the desired equality as follows:

$$\begin{split} 5^{2k+3} + 2^{2k+3} &= 5^2 \cdot 5^{2k+1} + 2^2 \cdot 2^{2k+1} \\ &= 5^2 (5^{2k+1} + 2^{2k+1}) - 21 \cdot 2^{2k+1} \\ &= 5^2 (7a) - 21 \cdot 2^{2k+1} & \text{by the IH} \\ &= 7(25a - 3 \cdot 2^{2k+1}) & \text{factoring out 7} \\ &= 7b. & \text{setting } b = 25a - 3 \cdot 2^{2k+1} \end{split}$$

Now since $b = 25a - 3 \cdot 2^{2k+1}$ is an integer, we've shown that $7|5^{2k+3} + 2^{2k+3}$ given the IH. Furthermore, by the base case of n = 0, the inductive step and the principle of mathematical induction, we have that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all integers $n \ge 0$.

b) Prove that $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > 2(\sqrt{n+1}-1)$ for all integers $n \ge 1$ by induction on n.

Proof (by induction).

Basis (n = 0). Suppose n is an integer but specifically n = 1. Then we have that

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} = \sum_{i=1}^{1} \frac{1}{\sqrt{i}}$$
 Substituting $n = 1$

$$= \frac{1}{\sqrt{1}}$$

$$= \frac{1}{1}$$

$$= 1$$

$$> \sqrt{8} - 2$$

It is worth pausing to explain why $1 > \sqrt{8} - 2$. To see why this strict inequality holds, consider the following

$$4 < 8 < 9$$

$$\sqrt{4} < \sqrt{8} < \sqrt{9}$$

$$2 < \sqrt{8} < 3$$

$$0 < \sqrt{8} - 2 < 1$$

With this fact, we return to where we left off in establishing the base case for n = 1:

$$\sum_{i=1}^{1} \frac{1}{\sqrt{i}} > \sqrt{8} - 2$$

$$= \sqrt{4 \cdot 2} - 2$$

$$= 2\sqrt{2} - 2$$

$$= 2(\sqrt{2} - 1)$$

$$= 2(\sqrt{n+1} - 1)$$

So we have that $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > 2(\sqrt{n+1}-1)$ holds for the base case of n=1. **Inductive step.** Now, suppose that $\forall_k \in \mathbb{Z}$ where $k \geq 1$ we have that

$$\sum_{i=1}^{k} \frac{1}{\sqrt{i}} > 2(\sqrt{k+1} - 1) \quad \text{(Inductive hypothesis)}$$

From this, we aim to establish that

$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} > 2(\sqrt{k+2} - 1).$$

We can derive the desired inequality by starting with the trivial fact that 9 > 8 as follows:

$$9>8$$

$$4k^2+12k+9>4k^2+12k+8$$
 adding $4k^2+12k$ to both sides
$$4(k^2+3k+\frac{9}{4})>4(k^2+3k+2)$$
 factoring 4 from both sides
$$4(k+\frac{3}{2})^2>4(k+2)(k+1)$$
 factoring each quadratic separately
$$(2k+3)^2>4(k+2)(k+1)$$
 distributing the 4 on the left hand side
$$2k+3>2\sqrt{k+2}\sqrt{k+1}$$
 taking the square root of both sides
$$\frac{2k+3}{\sqrt{k+1}}>2\sqrt{k+2}$$
 dividing both sides by $\sqrt{k+1}$ subtracting 2 from both sides
$$\frac{2k+3}{\sqrt{k+1}}-2>2\sqrt{k+2}-2$$
 subtracting 2 from both sides
$$\frac{2k+3}{\sqrt{k+1}}-2>2(\sqrt{k+2}-1)$$
 expanding the numerator on the left hand side

$$\frac{2(k+1)}{\sqrt{k+1}} - 2 + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - 1)$$
 splitting the fraction on the left hand side and then factoring a 2

For the next step we simply multiply the first term on the left hand side by $\frac{\sqrt{k+1}}{\sqrt{k+1}}$, yielding

$$\frac{2(k+1)\sqrt{k+1}}{(k+1)} - 2 + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - 1)$$

$$2\sqrt{k+1} - 2 + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - 1)$$

$$2(\sqrt{k+1} - 1) + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - 1)$$
canceling $k+1$ in the first term on the left hand side
$$2(\sqrt{k+1} - 1) + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - 1)$$
factoring a 2 from the first two terms on the left hand side
$$\sum_{i=1}^{k} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - 1)$$
by the IH
$$\sum_{i=1}^{k+1} \frac{1}{\sqrt{i}} > 2(\sqrt{k+2} - 1)$$
including the second term on the left hand side in the sum

Now, by the base case of n=1, the inductive step and the principle of mathematical induction, we have that $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > 2(\sqrt{n+1}-1)$ for all integers $n \ge 1$.

Problem 2

a) Let $b_n = \sum_{i=1}^n \frac{2i-1}{2^i}$. Compute b_1, b_2, b_3 and b_4 .

$$b_1 = \sum_{i=1}^{1} \frac{2i-1}{2^i} = \frac{2(1)-1}{2^1} = \frac{1}{2}$$

$$b_2 = \sum_{i=1}^{2} \frac{2i-1}{2^i} = b_1 + \frac{2(2)-1}{2^2} = b_1 + \frac{3}{4} = \frac{1}{2} + \frac{3}{4} = \frac{5}{4}$$

$$b_3 = \sum_{i=1}^{3} \frac{2i-1}{2^i} = b_2 + \frac{2(3)-1}{2^3} = b_2 + \frac{5}{8} = \frac{5}{4} + \frac{5}{8} = \frac{15}{8}$$

$$b_4 = \sum_{i=1}^{4} \frac{2i-1}{2^i} = b_3 + \frac{2(4)-1}{2^4} = b_3 + \frac{7}{16} = \frac{15}{8} + \frac{7}{16} = \frac{37}{16}$$

b) Guess a simple formula for b_n .

$$b_n = 3 - \frac{2n+3}{2^n}$$

c) Let $b_1, b_2, ..., b_n$ be the sequence with terms defined by $b_n = \sum_{i=1}^n \frac{2i-1}{2^i}$. Prove that $b_n = 3 - \frac{2n+3}{2^n}$ for all integers $n \ge 1$ by induction on n.

Proof (by induction).

Basis (n = 1). Suppose that n is an integer but specifically that n = 1. Then we have that

$$b_n = \sum_{i=1}^n \frac{2i-1}{2^i} = \sum_{i=1}^n \frac{2i-1}{2^i} = \frac{2(1)-1}{2^1}$$

$$= \frac{1}{2}$$

$$= \frac{6}{2} - \frac{5}{2}$$

$$= 3 - \frac{2+3}{2}$$

$$= 3 - \frac{2(1)+3}{2^1}$$

$$= 3 - \frac{2n+3}{2^n}$$
 substituting $n = 1$.

Hence we have the equality $b_n = \sum_{i=1}^n \frac{2i-1}{2^i} = 3 - \frac{2n+3}{2^n}$ in the base case of n=1. **Inductive step.** Now suppose that $\forall_k \in \mathbb{Z}$ where $k \geq 1$ we have that

$$b_k = \sum_{i=1}^k \frac{2i-1}{2^i} = 3 - \frac{2k+3}{2^k} \quad \text{(Inductive hypothesis)}$$

We want to show that

$$\sum_{i=1}^{k+1} \frac{2i-1}{2^i} = 3 - \frac{2(k+1)+3}{2^{k+1}} = 3 - \frac{2k+5}{2^{k+1}}.$$

Beginning with $\sum_{i=1}^{k+1} \frac{2i-1}{2^i}$ we can derive the desired equality as follows

$$\sum_{i=1}^{k+1} \frac{2i-1}{2^i} = \sum_{i=1}^k \frac{2i-1}{2^i} + \frac{2(k+1)-1}{2^{k+1}}$$
 removing the last term from the sum
$$= 3 - \frac{2k+3}{2^k} + \frac{2(k+1)-1}{2^{k+1}}$$
 by the IH
$$= 3 - \frac{4k+6}{2^{k+1}} + \frac{2(k+1)-1}{2^{k+1}}$$
 multiplying the second term by $\frac{2}{2}$ adding the two fractions
$$= 3 - \frac{2k+5}{2^{k+1}}$$

Now, by the base case of n=1, the inductive step and the principle of mathematical induction, we have the equality $b_n = \sum_{i=1}^n \frac{2i-1}{2^i} = 3 - \frac{2n+3}{2^n}$ for all integers $n \ge 1$.

Problem 3

a) Prove or disprove. For all sets A, B and C, if $A \cup B \subseteq A \cup C$ then $B \subseteq C$.

Solution: the statement is false.

Negation: There exists sets A, B and C such that $A \cup B \subseteq A \cup C$ but $B \nsubseteq C$.

Proof.

Suppose that A,B and C are sets with $A=\{1\},B=\{1\}$ and $C=\varnothing.$ From this, we see that

$$\begin{array}{ll} A \cup B \subseteq A \cup C \\ \{1\} \cup \{1\} \subseteq \{1\} \cup \varnothing & \text{substituting the sets supposed for } A, B \text{ and } C \\ \{1\} \subseteq \{1\} \cup \varnothing & \text{since 1 is the only element which is in } \{1\} \text{ or } \{1\} \\ \{1\} \subseteq \{1\} & \text{since 1 is the only element which is in } \{1\} \text{ or } \varnothing \end{array}$$

Which is true since all elements contained in $\{1\}$ are also in $\{1\}$. In fact, these two sets are quite obviously equivalent, implying that each is a subset of the other. Hence, for $A = \{1\}$, $B = \{1\}$ and $C = \emptyset$ we have that $A \cup B \subseteq A \cup C$. In addition, we have $B \nsubseteq C$ since

$$\{1\} \nsubseteq \varnothing$$
 since 1 is an element of the left hand side, but not the right $B \nsubseteq C$ substituting $B = \{1\}$ and $C = \varnothing$.

Therefore, for the case of $A = \{1\}$, $B = \{1\}$ and $C = \emptyset$, we have that $A \cup B \subseteq A \cup C$ but $B \nsubseteq C$. Hence the negation of the original statement has been shown true.

b) Prove or disprove. For all sets A, B and C, if $A \cup B \subseteq A \cup C$ and $A \cap B \subseteq A \cap C$ then $B \subseteq C$.

Solution: the statement is true.

Proof.

Suppose that A, B and C are sets. Now suppose that both $A \cup B \subseteq A \cup C$ and $A \cap B \subseteq A \cap C$. Finally, to show that $B \subseteq C$, suppose that x is an element of B. We aim to show that $x \in C$. Since we have $x \in B$, we have that $x \in A$ or $x \in B$. This means that $x \in A \cup B$. Now, since we supposed that $A \cup B \subseteq A \cup C$, $x \in A \cup B$ implies that $x \in A \cup C$. Furthermore, we have two cases: either $x \in A$ or $x \in C$.

Case 1: $x \in C$

Then, having started originally with $x \in B$, we've shown that $x \in C$.

Case 2: $x \in A$

Then we have that $x \in A$ and $x \in B$, with the latter being one of the original suppositions. This means that $x \in A \cap B$. Since we also have supposed that $A \cap B \subseteq A \cap C$, we have that $x \in A \cap C$, which means that $x \in A$ and $x \in C$. Therefore, in the case that $x \in A$, we necessarily have that $x \in C$ as well.

Therefore, for any three sets A, B and C, if $A \cup B \subseteq A \cup C$ and $A \cap B \subseteq A \cap C$ then any $x \in B$ must also be an element of C – in other words, $B \subseteq C$.

c) Prove or disprove. For all sets A, B and C, if $A \setminus B = A \setminus C$, then $(A \cap B) \setminus C = \emptyset$.

Solution: the statement is true.

Proof.

Suppose that A, B and C are sets such that $A \setminus B = A \setminus C$. This means two things. First, if we have some $x \in A$ with the same $x \notin B$, then $x \in A$ and $x \notin C$. Second, if we have some $x \in A$ with the same $x \notin C$, then we have that $x \in A$ with the same $x \notin B$. We want to establish two things. First, that $\emptyset \subseteq (A \cap B) \setminus C$. This is vacuously true, since \emptyset has no elements. Hence, any element of \emptyset is an element of any set. This makes \emptyset a subset of all sets, including $(A \cap B) \setminus C$. Second, we seek to establish is that $(A \cap B) \setminus C \subseteq \emptyset$. Importantly, the only subset of \emptyset is \emptyset itself, so we next try to show that $(A \cap B) \setminus C$ is the empty set. Assume for the purpose of deriving a contradiction that $(A \cap B) \setminus C$ is not empty, such that there is some $x \in (A \cap B) \setminus C$. This means we have some $x \in A \cap B$ but $x \notin C$. Furthermore, we have both $x \in A$ and $x \in B$. Since we have both $x \in A$ and $x \notin C$, we have $x \in A$ and $x \notin B$. This gives rise to the contradiction $x \in B$, $x \notin B$. To resolve the contradiction, we conclude that $(A \cap B) \setminus C$ must be empty. This means we've shown $(A \cap B) \setminus C \subseteq \emptyset$, since $\emptyset \subseteq \emptyset$. Finally, we've shown that both $\emptyset \subseteq (A \cap B) \setminus C$ and $(A \cap B) \setminus C \subseteq \emptyset$. This means we have that $(A \cap B) \setminus C \subseteq \emptyset$. Therefore, for all sets A, B and C, if $A \setminus B = A \setminus C$, then $(A \cap B) \setminus C = \emptyset$.

d) Prove or disprove. For all sets A, B and C, if $(A \cap B) \setminus C = \emptyset$, then $A \setminus B = A \setminus C$.

Solution: the statement is false.

Negation: There exists sets A, B and C such that $(A \cap B) \setminus C = \emptyset$ but $A \setminus B \neq A \setminus C$.

Proof. Suppose A, B and C are sets with $A = \{1\}, B = \emptyset$ and $C = \{1\}$. Then we have that

$$(A \cap B) \setminus C = (\{1\} \cap \varnothing) \setminus \{1\}$$

= $(\varnothing) \setminus \{1\}$ since there are no elements which are in both $\{1\}$ and \varnothing
= \varnothing since there are no elements which are both in \varnothing and not in $\{1\}$

So we have that $(A \cap B) \setminus C = \emptyset$ in this case. Next we show that $A \setminus B \neq A \setminus C$.

$$\begin{array}{ll} A \setminus B = \{1\} \setminus \varnothing \\ &= \{1\} \\ &\neq \varnothing \\ &= \{1\} \setminus \{1\} \\ &= A \setminus C \end{array} \qquad \begin{array}{ll} \text{since only the element 1 is in } \{1\} \text{ while not being in } \varnothing \\ &\neq \varnothing \\ &= \{1\} \setminus \{1\} \\ &= A \setminus C \end{array}$$

So we also have that $A \setminus B \neq A \setminus C$ in this case. Therefore, since in the case of $A = \{1\}$, $B = \emptyset$ and $C = \{1\}$ we have both that $(A \cap B) \setminus C = \emptyset$ and $A \setminus B \neq A \setminus C$, the negation of the original statement has been shown true.