Package 'iAdapt'

October 13, 2022

Type Package						
Fitle Two-Stage Adaptive Dose-Finding Clinical Trial Design						
Version 2.0.1						
Maintainer Alyssa Vanderbeek <vanderbeekam@gmail.com></vanderbeekam@gmail.com>						
Description Simulate and implement early phase two-stage adaptive dose-finding design for binary and quasi-continuous toxicity endpoints. See Chiuzan et al. (2018) for further reading DOI:10.1080/19466315.2018.1462727 .						
Depends R (>= 3.5.0), shiny, shinydashboard						
Imports Matrix, grDevices, utils						
License LGPL-3						
Encoding UTF-8						
LazyData true						
RoxygenNote 7.1.1						
Suggests knitr, rmarkdown						
VignetteBuilder knitr						
NeedsCompilation no						
Author Alyssa Vanderbeek [aut, cre], Laura Cosgrove [ctb], Elizabeth Garrett-Mayer [ctb], Cody Chiuzan [ctb]						
Repository CRAN						
Date/Publication 2021-08-06 04:50:09 UTC						
R topics documented:						
dlt.prob eff.stg1 eff.stg1.nTTP get.thresh LRtox						

2 dlt.prob

dlt.	orob	Calcular dose	te DLT j	probabilit	y correspondii	ng to average nTTP	for each
Index							32
	tox.profile.nTTP						29
	tox.profile						28
	TOX						27
	sim.trials.nTTP						24
	sim.trials						22
	sim.summary						21
	sim.plot						20
	safe.dose.nTTP						18
	safe.dose						17
	rand.stg2.nTTP						14
	rand.stg2						12
	rand.prob						12
	nTTP.indiv.sim						11
	LRtox.nTTP						10

Description

Calculate DLT probability corresponding to average nTTP for each dose

Usage

```
dlt.prob(dose, ntox, TOX, grade.thresh)
```

Arguments

dose	number of doses to be tested (scalar)
ntox	number (integer) of different toxicity types (e.g, hematological, neurological, GI)
ТОХ	matrix array of toxicity probabilities. There should be ntox matrices. Each matrix represents one toxicity type, where probabilities of each toxicity grade are specified across each dose. Each matrix has the same dimensions: n rows, representing number of doses, and 5 columns (for grades 0-4, since the probability of a grade 0 event may not be 0). Probabilities across each dose (rows) must sum to 1. See Ezzalfani et al. (2013) for details.
grade.thresh	grade (0-4) at which each toxicity type qualifies as a DLT

Value

ptox - Vector of DLT probabilities per dose.

eff.stg1 3

Examples

```
# Number of test doses
dose = 6
# Number of toxicity types
ntox <- 3
# Array of toxicity event probabilities
TOX = array(NA, c(dose, 5, ntox))
TOX[, , 1] = matrix(c(0.823, 0.152, 0.022, 0.002, 0.001, \#prob of tox for dose 1 and tox type 1)
                 0.791, 0.172, 0.032, 0.004, 0.001, #prob of tox for dose 2 and tox type 1
                 0.758, 0.180, 0.043, 0.010, 0.009, #prob of tox for dose 3 and tox type 1
                 0.685, 0.190, 0.068, 0.044, 0.013, #prob of tox for dose 4 and tox type 1
                 0.662, 0.200, 0.078, 0.046, 0.014, #prob of tox for dose 5 and tox type 1
                 0.605, 0.223, 0.082, 0.070, 0.020), #prob of tox for dose 6 and tox type 1
                     nrow = 6, byrow = TRUE)
TOX[,,2] = matrix(c(0.970,0.027,0.002,0.001,0.000, #prob of tox for dose 1 and tox type 2
                 0.813, 0.172, 0.006, 0.009, 0.000, #prob of tox for dose 3 and tox type 2
                 0.762, 0.183, 0.041, 0.010, 0.004, #prob of tox for dose 4 and tox type 2
                 0.671, 0.205, 0.108, 0.011, 0.005, #prob of tox for dose 5 and tox type 2
                 0.397, 0.258, 0.277, 0.060, 0.008), #prob of tox for dose 6 and tox type 2
                      nrow = 6, byrow = TRUE)
TOX[, , 3] = matrix(c(0.930, 0.060, 0.005, 0.001, 0.004, #prob of tox for dose 1 and tox type 3)
                 0.917, 0.070, 0.007, 0.001, 0.005, #prob of tox for dose 2 and tox type 3
                 0.652, 0.280, 0.010, 0.021, 0.037, \mbox{\sc #prob of tox for dose 3 and tox type 3}
                 0.536, 0.209, 0.031, 0.090, 0.134, #prob of tox for dose 4 and tox type 3
                 0.015, 0.134, 0.240, 0.335, 0.276, #prob of tox for dose 5 and tox type 3
                 0.005, 0.052, 0.224, 0.372, 0.347), #prob of tox for dose 6 and tox type 3
                      nrow = 6, byrow = TRUE)
# Grades at which each tox type qualifies as DLT
grade.thresh = c(3, 3, 4)
dlt.prob(dose = dose, ntox = ntox, TOX = TOX, grade.thresh = grade.thresh)
```

eff.stg1

Generates efficacy outcomes for stage 1 when using binary toxicity

Description

Function eff.stg1() uses a beta-binomial distribution to generate outcomes (Ys) corresponding to acceptable dose assignments from stage 1.

Usage

```
eff.stg1(dose, dose.tox, p1, p2, K, coh.size, m, v, nbb = 100)
```

eff.stg1

Arguments

dose	number of doses to be tested (scalar)
dose.tox	vector of true toxicities for each dose. Values range from 0 - 1.
p1	toxicity under null (unsafe DLT rate). Values range from 0 - 1.
p2	toxicity under alternative (safe DLT rate). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)
m	vector of mean efficacies per dose. Values range from 0 - 100. (e.g, T cell persistence - values b/w 5 and 80 per cent)
V	vector of efficacy variances per dose. Values range from 0 - 1. (e.g., 0.01)
nbb	binomial parameter (default = 100 cells per patient)

Value

List of efficacy outcomes for subjects enrolled during stage 1 (dose-escalation)

- Y.safe vector of efficacy outcomes for each subject assigned to an acceptable safe dose
- d.safe vector of dose allocation for each subject assigned to an acceptable safe dose
- tox.safe number of dose-limiting toxicities for each safe dose level
- Y.alloc vector of efficacy outcomes for all subjects from stage 1 (acceptable and unsafe doses)
- d.alloc vector of dose allocation for all subjects from stage 1 (acceptable and unsafe doses)

```
# Number of pre-specified dose levels
dose <- 5
# Vector of true toxicities associated with each dose
dose.tox <- c(0.05, 0.10, 0.20, 0.35, 0.45)
# Acceptable (p2) and unacceptable (p1) DLT rates used for establishing safety
p1 < -0.40
p2 <- 0.15
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Vector of true mean efficacies per dose (here mean percent persistence per dose)
m \leftarrow c(5, 15, 40, 65, 80) # MUST BE THE SAME LENGTH AS dose.tox
# Efficacy (equal) variance per dose
v \leftarrow rep(0.01, 5)
# Total sample size (stages 1&2)
N <- 25
```

eff.stg1.nTTP 5

```
# Stopping rule: if dose 1 is the only safe dose, allocate up to 9 pts.
stop.rule <- 9

eff.stg1(dose = dose, dose.tox = dose.tox, p1 = p1, p2 = p2, K = K,
coh.size = coh.size, m, v, nbb = 100)</pre>
```

eff.stg1.nTTP

Generates efficacy outcomes for stage 1 when using nTTP to measure toxicity

Description

Function eff.stg1.nTTP() uses a beta-binomial distribution to generate outcomes (Ys) corresponding to acceptable dose assignments from stage 1.

Usage

```
eff.stg1.nTTP(
    dose,
    p1,
    p2,
    K,
    coh.size,
    m,
    v,
    nbb = 100,
    W,
    TOX,
    ntox,
    std.nTTP
)
```

Arguments

dose	number of doses to be tested (scalar)
p1	toxicity under null (unsafe nTTP). Values range from 0 - 1.
p2	toxicity under alternative (safe nTTP). Values range from $0 - 1$; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)
m	vector of mean efficacies per dose. Values range from 0 - 100. (e.g, T cell persistence - values b/w 5 and 80 per cent)
V	vector of efficacy variances per dose. Values range from 0 - 1. (e.g., 0.01)
nbb	binomial parameter (default = 100 cells per patient)

eff.stg1.nTTP

W	matrix defining burden weight of each grade level for all toxicity types. The dimensions are ntox rows by 4 columns (for grades 0-4). See Ezzalfani et al. (2013) for details.
тох	matrix array of toxicity probabilities. There should be ntox matrices. Each matrix represents one toxicity type, where probabilities of each toxicity grade are specified across each dose. Each matrix has the same dimensions: n rows, representing number of doses, and 5 columns (for grades 0-4). Probabilities across each dose (rows) must sum to 1. See Ezzalfani et al. (2013) for details.
ntox	number (integer) of different toxicity types
std.nTTP	the standard deviation of nTTP scores at each dose level (assumed constant across doses)

Value

List of efficacy outcomes for subjects enrolled during stage 1 (dose-escalation)

- Y.safe vector of efficacy outcomes for each subject assigned to an acceptable safe dose
- d.safe vector of dose allocation for each subject assigned to an acceptable safe dose
- tox.safe number of dose-limiting toxicities for each safe dose level
- Y.alloc vector of efficacy outcomes for all subjects from stage 1 (acceptable and unsafe doses)
- d.alloc vector of dose allocation for all subjects from stage 1 (acceptable and unsafe doses)
- all_nttp all observed nTTP values

```
# Number of pre-specified dose levels
dose <- 6
# Acceptable (p2) and unacceptable nTTP values
p1 <- 0.35
p2 <- 0.10
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Efficacy (equal) variance per dose
v \leftarrow rep(0.01, 6)
# Dose-efficacy curve
m = c(10, 20, 30, 40, 70, 90)
# Number of toxicity types
ntox <- 3
# Toxicity burden weight matrix
```

get.thresh 7

```
W = matrix(c(0, 0.5, 0.75, 1.0, 1.5, \# Burden weight for grades 0-4 for toxicity 1
             0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 2
             0, 0.00, 0.00, 0.5, 1), # Burden weight for grades 0-4 for toxicity 3
           nrow = ntox, byrow = TRUE)
# standard deviation of nTTP values
std.nTTP = 0.15
# Array of toxicity event probabilities
TOX <- array(NA, c(dose, 5, ntox))
TOX[, , 1] = matrix(c(0.823, 0.152, 0.022, 0.002, 0.001,
                      0.791, 0.172, 0.032, 0.004, 0.001,
                      0.758, 0.180, 0.043, 0.010, 0.009,
                      0.685, 0.190, 0.068, 0.044, 0.013,
                      0.662, 0.200, 0.078, 0.046, 0.014,
                      0.605, 0.223, 0.082, 0.070, 0.020),
                    nrow = 6, byrow = TRUE)
TOX[, , 2] = matrix(c(0.970, 0.027, 0.002, 0.001, 0.000,
                      0.968, 0.029, 0.002, 0.001, 0.000,
                      0.813, 0.172, 0.006, 0.009, 0.000,
                      0.762, 0.183, 0.041, 0.010, 0.004,
                      0.671, 0.205, 0.108, 0.011, 0.005,
                      0.397, 0.258, 0.277, 0.060, 0.008),
                    nrow = 6, byrow = TRUE)
TOX[, , 3] = matrix(c(0.930, 0.060, 0.005, 0.001, 0.004,
                      0.917, 0.070, 0.007, 0.001, 0.005,
                      0.652, 0.280, 0.010, 0.021, 0.037,
                      0.536, 0.209, 0.031, 0.090, 0.134,
                      0.015, 0.134, 0.240, 0.335, 0.276,
                      0.005, 0.052, 0.224, 0.372, 0.347),
                    nrow = 6, byrow = TRUE)
eff.stg1.nTTP(dose = dose, p1 = p1, p2 = p2, K = K, coh.size = coh.size,
m = m, v = v, nbb = 100, W = W, TOX = TOX, ntox = ntox, std.nTTP = std.nTTP)
```

get.thresh

Obtain average nTTP at each dose level

Description

Obtain average nTTP at each dose level

Usage

```
get.thresh(dose, ntox, W, TOX)
```

8 get.thresh

Arguments

number of doses to be tested (scalar)

number (integer) of different toxicity types (e.g, hematological, neurological, GI)

W matrix defines burden weight of each grade level for all toxicity types. The dimensions are ntox rows by 4 columns (for grades 0-4). See Ezzalfani et al. (2013) for details.

TOX matrix array of toxicity probabilities. There should be ntox matrices. Each matrix represents one toxicity type, where probabilities of each toxicity grade are specified across each dose. Each matrix has the same dimensions: n rows, representing number of doses, and 5 columns (for grades 0-4). Probabilities across each dose (rows) must sum to 1. See Ezzalfani et al. (2013) for details.

Value

Vector of average nTTP for each dose level.

Number of test doses

```
dose = 6
# Number of toxicity types
ntox <- 3
# Toxicity burden weight matrix
W = matrix(c(0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 1
             0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 2
             0, 0.00, 0.00, 0.5, 1), \# Burden weight for grades 0-4 for toxicity 3
           nrow = ntox, byrow = TRUE)
# Array of toxicity event probabilities
TOX = array(NA, c(dose, 5, ntox))
TOX[, , 1] = matrix(c(0.823, 0.152, 0.022, 0.002, 0.001, #prob of tox for dose 1 and tox type 1
                  0.791, 0.172, 0.032, 0.004, 0.001, #prob of tox for dose 2 and tox type 1
                  0.758, 0.180, 0.043, 0.010, 0.009, #prob of tox for dose 3 and tox type 1
                  0.685, 0.190, 0.068, 0.044, 0.013, #prob of tox for dose 4 and tox type 1
                  0.662, 0.200, 0.078, 0.046, 0.014, #prob of tox for dose 5 and tox type 1
                  0.605, 0.223, 0.082, 0.070, 0.020), #prob of tox for dose 6 and tox type 1
                       nrow = 6, byrow = TRUE)
TOX[,,2] = matrix(c(0.970, 0.027, 0.002, 0.001, 0.000, #prob of tox for dose 1 and tox type 2
                  0.968, 0.029, 0.002, 0.001, 0.000, #prob of tox for dose 2 and tox type 2
                  0.813, 0.172, 0.006, 0.009, 0.000, #prob of tox for dose 3 and tox type 2
                  0.762, 0.183, 0.041, 0.010, 0.004, #prob of tox for dose 4 and tox type 2
                  0.671, 0.205, 0.108, 0.011, 0.005, #prob of tox for dose 5 and tox type 2
                  0.397, \ 0.258, \ 0.277, \ 0.060, \ 0.008), \ \#prob \ of \ tox \ for \ dose \ 6 \ and \ tox \ type \ 2
                       nrow = 6, byrow = TRUE)
TOX[, , 3] = matrix(c(0.930, 0.060, 0.005, 0.001, 0.004, \#prob of tox for dose 1 and tox type 3)
```

LRtox 9

```
0.917, 0.070, 0.007, 0.001, 0.005, #prob of tox for dose 2 and tox type 3
0.652, 0.280, 0.010, 0.021, 0.037, #prob of tox for dose 3 and tox type 3
0.536, 0.209, 0.031, 0.090, 0.134, #prob of tox for dose 4 and tox type 3
0.015, 0.134, 0.240, 0.335, 0.276, #prob of tox for dose 5 and tox type 3
0.005, 0.052, 0.224, 0.372, 0.347), #prob of tox for dose 6 and tox type 3
nrow = 6, byrow = TRUE)
```

```
get.thresh(dose = dose, ntox = ntox, W = W, TOX = TOX)
```

LRtox

Calculates likelihood of safety for single dose

Description

Function LRtox() calculates the likelihood of safety for a single dose and designates whether to escalate to the next dose (safe) or stop dose escalation and move onto stage 2 (unsafe).

Usage

```
LRtox(coh.size, ndlt, p1, p2, K = 2)
```

Arguments

coh.size	cohort size (number of patients) per dose (Stage 1)
ndlt	number of observed DLTs
p1	toxicity under null (unsafe DLT rate). Values range from 0 - 1.
p2	toxicity under alternative (safe DLT rate). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1.2(recommended K=2)

Value

List object that gives the likelihood ratio of safety and indicates whether to escalate to the next highest dose level, or stop dose escalation and move onto stage 2.

```
LRtox(coh.size = 3, ndlt = 2, p1 = 0.40, p2 = 0.15, K = 2)
LRtox(coh.size = 3, ndlt = 1, p1 = 0.40, p2 = 0.15, K = 2)
```

10 LRtox.nTTP

LRtox.nTTP	Calculates	likalihaad	of safety	for single	losa usina nTTP
LK LOX.III IF	Caiculates	икентооа	oj sajety	Joi singie a	lose, using nTTP

Description

(nTTP) Function LRtox.nTTP() calculates the likelihood of safety for a single dose and designates whether to escalate to the next dose (safe) or stop dose escalation and move onto stage 2 (unsafe).

Usage

```
LRtox.nTTP(tox_grades, ntox, coh.size, W, p1, p2, K = 2, std.nTTP = 0.15)
```

Arguments

tox_grades	data frame of observed AE grades for each patient (rows) across all toxicity types (columns). e.g. for one patient, grades for 3 toxicity types might be c(3, 2, 4), where they experienced a grade 3 AE for tox type 1, grade 2 AE for tox type 2, etc.
ntox	number (integer) of different toxicity types
coh.size	cohort size (number of patients) per dose (Stage 1)
W	matrix defining burden weight of each grade level for all toxicity types. The dimensions are ntox rows by 5 columns (for grades 0-4). See Ezzalfani et al. (2013) for details.
p1	toxicity under null (unsafe DLT rate). Values range from 0 - 1.
p2	toxicity under alternative (safe DLT rate). Values range from $0 - 1$; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
std.nTTP	the standard deviation of nTTP scores at each dose level (constant across doses)

Value

List object that gives the likelihood ratio of safety and indicates whether to escalate to the next highest dose level, or stop dose escalation and move onto stage 2.

nTTP.indiv.sim

```
0, 0.00, 0.00, 0.5, 1), # Burden weight for grades 0-4 for toxicity 3
nrow = ntox, byrow = TRUE)

# Acceptable (p2) and unacceptable nTTP values
p1 <- 0.35
p2 <- 0.10

LRtox.nTTP(obs, ntox, coh.size, W, p1, p2, K = 2, std.nTTP = 0.15)</pre>
```

nTTP.indiv.sim

Simulate full trial (both stages) x times when using nTTP to measure toxicity

Description

Results are displayed in a matrix format, where each row represents one trial simulation

Usage

```
nTTP.indiv.sim(W, TOX, ntox, dose)
```

Arguments

W	matrix defining burden weight of each grade level for all toxicity types. The dimensions are ntox rows by 5 columns (for grades 0-4). See Ezzalfani et al. (2013) for details.
ТОХ	matrix array of toxicity probabilities. There should be ntox matrices. Each matrix represents one toxicity type, where probabilities of each toxicity grade are specified across each dose. Each matrix has the same dimensions: n rows, representing number of doses, and 5 columns (for grades 0-4). Probabilities across each dose (rows) must sum to 1. See Ezzalfani et al. (2013) for details.
ntox	number (integer) of different toxicity types
dose	number of doses to be tested (scalar)

Value

List of the following objects:

- sim.Y estimated efficacy per each dose assignment
- sim.d dose assignment for each patient in the trial

rand.stg2

rand.prob	Calculates randomization probabilities and dose allocation for next
	patient

Description

Function rand.prob() calculates the updated randomization probabilities based on observed efficacies up to that point. It also gives the dose allocation for the next enrolled patient based on these probabilities.

Usage

```
rand.prob(y.eff, d.safe)
```

Arguments

```
y.eff vector of all efficacy outcomes for each dose allocationd.safe vector of dose assignment
```

Value

List object giving

- Rand.Prob randomization probability for each safe dose (from stage 1)
- Next.Dose the dose to enroll the next patient on

Examples

```
y.eff \leftarrow c(9, 1, 0, 34, 10, 27, 38, 42, 60, 75, 48, 62) d.safe \leftarrow c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4) rand.prob(y.eff, d.safe)
```

rand.stg2

Stage 2 Adaptive Randomization

Description

Function rand.stg2() fits a linear regression for the continuous efficacy outcomes, computes the randomization probabilities/dose and allocates the next patient to a dose that is considered acceptably safe and has the most promising efficacy. Dose safety is still monitored using LR and doses that become unacceptable are discarded (never re-visited).

rand.stg2

Usage

```
rand.stg2(
   dose,
   dose.tox,
   p1,
   p2,
   K,
   coh.size,
   m,
   v,
   N,
   stop.rule = 9,
   cohort = 1,
   samedose = TRUE,
   nbb = 100
)
```

Arguments

dose	number of doses to be tested (scalar)
dose.tox	vector of true toxicities for each dose. Values range from 0 - 1.
p1	toxicity under null (unsafe DLT rate). Values range from 0 - 1.
p2	toxicity under alternative (safe DLT rate). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)
m	vector of mean efficacies per dose. Values range from 0 - 100 . (e.g, T cell persistence - values b/w 5 and 80 per cent)
V	vector of efficacy variances per dose. Values range from 0 - 1. (e.g., 0.01)
N	total sample size for stages 1&2
stop.rule	if only dose 1 safe, allocate up to 9 (default) patients at dose 1 to collect more info
cohort	cohort size (number of patients) per dose (Stage 2). Default is 1.
samedose	designates whether the next patient is allocated to the same dose as the previous patient. Default is TRUE. Function adjusts accordingly.
nbb	binomial parameter (default = 100 cells per patient)

Value

List of the following objects:

- Y.final vector of all efficacy outcomes (Ys) corresponding to dose assignments (Stages 1&2)
- d.final vector of all dose assignments(Stages 1&2)

If dose allocation stops early, put NAs in d.final and y.final until it reaches the total sample size.

14 rand.stg2.nTTP

Examples

```
# Number of pre-specified dose levels
dose <- 5
# Vector of true toxicities associated with each dose
dose.tox <- c(0.05, 0.10, 0.20, 0.35, 0.45)
# Acceptable (p_yes) and unacceptable (p_no) DLT rates used for establishing safety
p_no <- 0.40
p_yes <- 0.15
# Likelihood-ratio (LR) threshold
# Cohort size used in stage 1
coh.size <- 3
# Vector of true mean efficacies per dose (here mean percent persistence per dose)
m \leftarrow c(5, 15, 40, 65, 80) # MUST BE THE SAME LENGTH AS dose.tox
# Efficacy(equal) variance per dose
v < - rep(0.01, 5)
# Total sample size (stages 1&2)
N <- 25
# Stopping rule: if dose 1 is the only safe dose, allocate up to 9 pts.
stop.rule <- 9
rand.stg2(dose, dose.tox, p_no, p_yes, K, coh.size, m, v, N, stop.rule = stop.rule,
cohort = 1, samedose = TRUE, nbb = 100)
```

rand.stg2.nTTP

Stage 2 Adaptive Randomization with nTTP to monitor toxicity

Description

Function rand.stg2.nTTP() fits a linear regression for the continuous efficacy outcomes, computes the randomization probabilities/dose and allocates the next patient to a dose that is considered acceptably safe and has the highest efficacy. Dose safety (with nTTP) is still monitored using LR and doses that become unacceptable are discarded (never re-visited).

Usage

```
rand.stg2.nTTP(
  dose,
  p1,
  p2,
  K,
  coh.size,
```

rand.stg2.nTTP

```
m,
v,
N,
stop.rule = 9,
cohort = 1,
samedose = TRUE,
nbb = 100,
W,
TOX,
ntox,
std.nTTP = 0.15
)
```

Arguments

dose	number of doses to be tested (scalar)
p1	toxicity under null (unsafe nTTP). Values range from 0 - 1.
p2	toxicity under alternative (safe nTTP). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)
m	vector of mean efficacies per dose. Values range from 0 - 100. (e.g, T cell persistence - values b/w 5 and 80 per cent)
V	vector of efficacy variances per dose. Values range from 0 - 1. (e.g., 0.01)
N	total sample size for stages 1&2
stop.rule	if only dose 1 safe, allocate up to 9 (default) patients at dose 1 to collect more info
cohort	cohort size (number of patients) per dose (Stage 2). Default is 1.
samedose	designates whether the next patient is allocated to the same dose as the previous patient. Default is TRUE. Function adjusts accordingly.
nbb	binomial parameter (default = 100 cells per patient)
W	matrix defining burden weight of each grade level for all toxicity types. The dimensions are ntox rows by 4 columns (for grades 0-4). See Ezzalfani et al. (2013) for details.
ТОХ	matrix array of toxicity probabilities. There should be ntox matrices. Each matrix represents one toxicity type, where probabilities of each toxicity grade are specified across each dose. Each matrix has the same dimensions: n rows, representing number of doses, and 5 columns (for grades 0-4). Probabilities across each dose (rows) must sum to 1. See Ezzalfani et al. (2013) for details.
ntox	number (integer) of different toxicity types
std.nTTP	the standard deviation of nTTP scores at each dose level (constant across doses)

rand.stg2.nTTP

Value

List of the following objects:

- Y.final vector of all efficacy outcomes (Ys) corresponding to dose assignments (Stages 1&2)
- d.final vector of all dose assignments(Stage 1&2)
- n1 Stage 1 sample size

If dose allocation stops early, put NAs in d.final and y.final until it reaches the total sample size.

```
# Number of pre-specified dose levels
dose <- 6
# Acceptable (p2) and unacceptable nTTP values
p1 < -0.35
p2 <- 0.10
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Total sample size (stages 1&2)
N <- 25
# Efficacy (equal) variance per dose
v < - rep(0.01, 6)
# Dose-efficacy curve
m = c(10, 20, 30, 40, 70, 90)
# Number of toxicity types
ntox <- 3
# Toxicity burden weight matrix
W = matrix(c(0, 0.5, 0.75, 1.0, 1.5, \# Burden weight for grades 0-4 for toxicity 1
             0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 2
             0, 0.00, 0.00, 0.5, 1), # Burden weight for grades 0-4 for toxicity 3
           nrow = ntox, byrow = TRUE)
# Standard deviation of nTTP value
std.nTTP = 0.15
# Array of toxicity event probabilities
TOX <- array(NA, c(dose, 5, ntox))
TOX[, , 1] = matrix(c(0.823, 0.152, 0.022, 0.002, 0.001,
                      0.791, 0.172, 0.032, 0.004, 0.001,
                      0.758, 0.180, 0.043, 0.010, 0.009,
                      0.685, 0.190, 0.068, 0.044, 0.013,
```

safe.dose 17

```
0.662, 0.200, 0.078, 0.046, 0.014,
                      0.605, 0.223, 0.082, 0.070, 0.020),
                      nrow = 6, byrow = TRUE)
TOX[, , 2] = matrix(c(0.970, 0.027, 0.002, 0.001, 0.000,
                      0.968, 0.029, 0.002, 0.001, 0.000,
                      0.813, 0.172, 0.006, 0.009, 0.000,
                      0.762, 0.183, 0.041, 0.010, 0.004,
                      0.671, 0.205, 0.108, 0.011, 0.005,
                      0.397, 0.258, 0.277, 0.060, 0.008),
                      nrow = 6, byrow = TRUE)
TOX[, , 3] = matrix(c(0.930, 0.060, 0.005, 0.001, 0.004,
                      0.917, 0.070, 0.007, 0.001, 0.005,
                      0.652, 0.280, 0.010, 0.021, 0.037,
                      0.536, 0.209, 0.031, 0.090, 0.134,
                      0.015, 0.134, 0.240, 0.335, 0.276,
                      0.005, 0.052, 0.224, 0.372, 0.347),
                      nrow = 6, byrow = TRUE)
rand.stg2.nTTP(dose = dose, p1 = p1, p2 = p2, K = K, coh.size = coh.size,
m = m, v = v, N = N, stop.rule = 9,
cohort = 1, samedose = TRUE, nbb = 100, W = W, TOX = TOX, ntox = ntox, std.nTTP = std.nTTP)
```

safe.dose

Identify safe/acceptable doses from stage 1 based on observed binary toxicity

Description

Function safe.dose() distinguishes acceptable from unacceptable doses

Usage

```
safe.dose(dose, dose.tox, p1, p2, K, coh.size)
```

Arguments

dose	number of doses to be tested (scalar)
dose.tox	vector of true toxicities for each dose. Values range from 0 - 1.
p1	toxicity under null (unsafe DLT rate). Values range from 0 - 1.
p2	toxicity under alternative (safe DLT rate). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)

18 safe.dose.nTTP

Value

List of the following objects:

- alloc.safe matrix of assignments only for acceptable doses (to be used in stage 2) and their corresponding toxicities
- alloc.total vector of all dose assignments from stage 1
- n1 total number of subjects allocated in stage 1

Examples

safe.dose.nTTP

Identify safe/acceptable doses from stage 1 based on nTTP scores.

Description

Function safe.dose.nTTP() distinguishes acceptable from unacceptable doses

Usage

```
safe.dose.nTTP(dose, p1, p2, K, coh.size, W, TOX, ntox, std.nTTP = 0.15)
```

Arguments

dose	number of doses to be tested (scalar)
p1	toxicity under null (unsafe nTTP). Values range from 0 - 1.
p2	toxicity under alternative (safe nTTP). Values range from $0 - 1$; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)
W	matrix defining burden weight of each grade level for all toxicity types. The dimensions are ntox rows by 4 columns (for grades 0-4). See Ezzalfani et al. (2013) for details.
ТОХ	matrix array of toxicity probabilities. There should be ntox matrices. Each matrix represents one toxicity type, where probabilities of each toxicity grade are specified across each dose. Each matrix has the same dimensions: n rows, representing number of doses, and 5 columns (for grades 0-4). Probabilities across each dose (rows) must sum to 1. See Ezzalfani et al. (2013) for details.
ntox	number (integer) of different toxicity types
std.nTTP	the standard deviation of nTTP scores at each dose level (constant across doses)

safe.dose.nTTP

Value

List of the following objects:

- alloc.safe matrix of assignments only for acceptable doses (to be used in stage 2) and their corresponding toxicities
- alloc.total vector of all dose assignments from stage 1
- n1 total number of subjects allocated in stage 1
- all_nttp all observed nTTP values

```
# Number of pre-specified dose levels
dose <- 6
# Acceptable (p2) and unacceptable nTTP values
p1 <- 0.35
p2 <- 0.10
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Number of toxicity types
ntox <- 3
# Standard deviation of nTTP values
std.nTTP = 0.15
# Toxicity burden weight matrix
W = matrix(c(0, 0.5, 0.75, 1.0, 1.5, \# Burden weight for grades 0-4 for toxicity 1
             0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 2
             0, 0.00, 0.00, 0.5, 1), # Burden weight for grades 0-4 for toxicity 3
           nrow = ntox, byrow = TRUE)
# Array of toxicity event probabilities
TOX <- array(NA, c(dose, 5, ntox))
TOX[, , 1] = matrix(c(0.823, 0.152, 0.022, 0.002, 0.001,
                      0.791, 0.172, 0.032, 0.004, 0.001,
                      0.758, 0.180, 0.043, 0.010, 0.009,
                      0.685, 0.190, 0.068, 0.044, 0.013,
                      0.662, 0.200, 0.078, 0.046, 0.014,
                      0.605, 0.223, 0.082, 0.070, 0.020),
                      nrow = 6, byrow = TRUE)
TOX[, , 2] = matrix(c(0.970, 0.027, 0.002, 0.001, 0.000,
                      0.968, 0.029, 0.002, 0.001, 0.000,
                      0.813, 0.172, 0.006, 0.009, 0.000,
                      0.762, 0.183, 0.041, 0.010, 0.004,
                      0.671, 0.205, 0.108, 0.011, 0.005,
```

20 sim.plot

sim.plot

Generate plots for estimated percent allocation and response per dose.

Description

Generate plots for estimated percent allocation and response per dose.

Usage

```
sim.plot(sims)
```

Arguments

sims

output from sim.trials

Value

Error plots of estimated (1) percent allocation per dose, and (2) estimated response per dose.

```
# Number of pre-specified dose levels
dose <- 5

# Vector of true toxicities associated with each dose
dose.tox <- c(0.05, 0.10, 0.20, 0.35, 0.45)

# Acceptable (p_yes) and unacceptable (p_no) DLT rates used for establishing safety
p_no <- 0.40
p_yes <- 0.15

# Likelihood-ratio (LR) threshold
K <- 2

# Cohort size used in stage 1</pre>
```

sim.summary 21

sim.summary

Visualize simulation results (Stages 1&2)

Description

Results from simulated trials (using sim.trials() function) displayed in tabular and/or graphical format

Usage

```
sim.summary(sims, print = TRUE)
```

Arguments

sims output from sim.trials

print logical specifying whether to print tables in console

Value

Printed tables and a list of the following objects:

- pct.treated IQR (25th percentile, median, 75th percentile) of percent of subjects treated at each dose level
- efficacy IQR of efficacy observed at each dose level

22 sim.trials

Examples

```
# Number of pre-specified dose levels
dose <- 5
# Vector of true toxicities associated with each dose
dose.tox <- c(0.05, 0.10, 0.20, 0.35, 0.45)
# Acceptable (p_yes) and unacceptable (p_no) DLT rates used for establishing safety
p_no <- 0.40
p_{yes} < -0.15
# Likelihood-ratio (LR) threshold
# Cohort size used in stage 1
coh.size <- 3
# Vector of true mean efficacies per dose (here mean percent persistence per dose)
m <- c(5, 15, 40, 65, 80) # MUST BE THE SAME LENGTH AS dose.tox
# Efficacy(equal) variance per dose
v \leftarrow rep(0.01, 5)
# Total sample size (stages 1&2)
N <- 25
# Stopping rule: if dose 1 is the only safe dose, allocate up to 9 pts.
stop.rule <- 9
simulations = sim.trials(numsims = 100, dose, dose.tox, p1 = p_no, p2 = p_yes, K,
coh.size, m, v, N, stop.rule = stop.rule, cohort = 1, samedose = TRUE, nbb = 100)
summary = sim.summary(simulations)
```

sim.trials

Simulate full trial (both stages) x times

Description

Results are displayed in a matrix format, where each row represents one trial simulation.

Usage

```
sim.trials(
  numsims,
  dose,
  dose.tox,
  p1,
```

sim.trials 23

```
p2,
K,
coh.size,
m,
v,
N,
stop.rule = 9,
cohort = 1,
samedose = TRUE,
nbb = 100
)
```

Arguments

numsims	number of simulated trials
dose	number of doses to be tested (scalar)
dose.tox	vector of true toxicities for each dose. Values range from 0 - 1.
p1	toxicity under null (unsafe DLT rate). Values range from 0 - 1.
p2	toxicity under alternative (safe DLT rate). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)
m	vector of mean efficacies per dose. Values range from 0 - 100. (e.g, T cell persistence - values b/w 5 and 80 per cent)
v	vector of efficacy variances per dose. Values range from 0 - 1. (e.g., 0.01)
N	total sample size for stages 1&2
stop.rule	if only dose 1 safe, allocate up to 9 (default) patients at dose 1 to collect more info.
cohort	cohort size (number of patients) per dose (Stage 2). Default is 1.
samedose	designates whether the next patient is allocated to the same dose as the previous patient. Default is TRUE. Function adjusts accordingly.
nbb	binomial parameter (default = 100 cells per patient)

Value

List of the following objects:

- sim.Y estimated efficacy per each dose assignment
- sim.d dose assignment for each patient in the trial
- safe.d indicator of whether dose was declared safe

24 sim.trials.nTTP

Examples

```
# Number of pre-specified dose levels
dose <- 5
# Vector of true toxicities associated with each dose
dose.tox <- c(0.05, 0.10, 0.20, 0.35, 0.45)
# Acceptable (p_yes) and unacceptable (p_no) DLT rates used for establishing safety
p_no <- 0.40
p_yes <- 0.15
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Vector of true mean efficacies per dose (here mean percent persistence per dose)
m <- c(5, 15, 40, 65, 80) # MUST BE THE SAME LENGTH AS dose.tox
# Efficacy(equal) variance per dose
v \leftarrow rep(0.01, 5)
# Total sample size (stages 1&2)
# Stopping rule: if dose 1 is the only safe dose, allocate up to 9 pts.
stop.rule <- 9
sim.trials(numsims = 10, dose, dose.tox, p1 = p_no, p2 = p_yes, K,
coh.size, m, v, N, stop.rule = stop.rule, cohort = 1, samedose = TRUE, nbb = 100)
```

sim.trials.nTTP

Simulate full trial (both stages) x times when using nTTP to measure toxicity

Description

Results are displayed in a matrix format, where each row represents one trial simulation

Usage

```
sim.trials.nTTP(
  numsims,
  dose,
  p1,
  p2,
  K,
```

sim.trials.nTTP 25

```
coh.size,
m,
v,
N,
stop.rule = 9,
cohort = 1,
samedose = TRUE,
nbb = 100,
W,
TOX,
ntox,
std.nTTP = 0.15
)
```

Arguments

numsims	number of simulated trials
dose	number of doses to be tested (scalar)
p1	toxicity under null (unsafe nTTP). Values range from 0 - 1.
p2	toxicity under alternative (safe nTTP). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)
m	vector of mean efficacies per dose. Values range from 0 - 100. (e.g, T cell persistence - values b/w 5 and 80 per cent)
V	vector of efficacy variances per dose. Values range from 0 - 1. (e.g., 0.01)
N	total sample size for stages 1&2
stop.rule	if only dose 1 safe, allocate up to 9 (default) patients at dose 1 to collect more info
cohort	cohort size (number of patients) per dose (Stage 2). Default is 1.
samedose	designates whether the next patient is allocated to the same dose as the previous patient. Default is TRUE. Function adjusts accordingly.
nbb	binomial parameter (default = 100 cells per patient)
W	matrix defining burden weight of each grade level for all toxicity types. The dimensions are ntox rows by 4 columns (for grades 0-4). See Ezzalfani et al. (2013) for details.
TOX	matrix array of toxicity probabilities. There should be ntox matrices. Each matrix represents one toxicity type, where probabilities of each toxicity grade are specified across each dose. Each matrix has the same dimensions: n rows, representing number of doses, and 5 columns (for grades 0-4). Probabilities across each dose (rows) must sum to 1. See Ezzalfani et al. (2013) for details.
ntox	number (integer) of different toxicity types
std.nTTP	the standard deviation of nTTP scores at each dose level (constant across doses)

26 sim.trials.nTTP

Value

List of the following objects:

- sim.Y estimated efficacy per each dose assignment
- sim.d dose assignment for each patient in the trial
- safe.d indicator of whether dose was declared safe

```
# Number of pre-specified dose levels
dose <- 6
# Acceptable (p2) and unacceptable nTTP values
p1 <- 0.35
p2 <- 0.10
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Total sample size (stages 1&2)
N <- 25
# Efficacy (equal) variance per dose
v < - rep(0.01, 6)
# Dose-efficacy curve
m = c(10, 20, 30, 40, 70, 90)
# Number of toxicity types
ntox = 3
# Toxicity burden weight matrix
W = matrix(c(0, 0.5, 0.75, 1.0, 1.5, \# Burden weight for grades 0-4 for toxicity 1
             0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 2
             0, 0.00, 0.00, 0.5, 1), \# Burden weight for grades 0-4 for toxicity 3
           nrow = ntox, byrow = TRUE)
# Standard deviation of nTTP values
std.nTTP = 0.15
# Array of toxicity event probabilities
TOX = array(NA, c(dose, 5, ntox))
TOX[, , 1] = matrix(c(0.823, 0.152, 0.022, 0.002, 0.001,
                      0.791, 0.172, 0.032, 0.004, 0.001,
                      0.758, 0.180, 0.043, 0.010, 0.009,
                      0.685, 0.190, 0.068, 0.044, 0.013,
```

TOX 27

```
0.662, 0.200, 0.078, 0.046, 0.014,
                      0.605, 0.223, 0.082, 0.070, 0.020),
                    nrow = 6, byrow = TRUE)
TOX[, , 2] = matrix(c(0.970, 0.027, 0.002, 0.001, 0.000,
                      0.968, 0.029, 0.002, 0.001, 0.000,
                      0.813, 0.172, 0.006, 0.009, 0.000,
                      0.762, 0.183, 0.041, 0.010, 0.004,
                      0.671, 0.205, 0.108, 0.011, 0.005,
                      0.397, 0.258, 0.277, 0.060, 0.008),
                    nrow = 6, byrow = TRUE)
TOX[, , 3] = matrix(c(0.930, 0.060, 0.005, 0.001, 0.004,
                      0.917, 0.070, 0.007, 0.001, 0.005,
                      0.652, 0.280, 0.010, 0.021, 0.037,
                      0.536, 0.209, 0.031, 0.090, 0.134,
                      0.015, 0.134, 0.240, 0.335, 0.276,
                      0.005, 0.052, 0.224, 0.372, 0.347),
                    nrow = 6, byrow = TRUE)
sim.trials.nTTP(numsims = 10, dose = dose, p1 = p1, p2 = p2, K = K,
coh.size = coh.size, m = m, v = v, N = N, stop.rule = 9, cohort = 1,
samedose = TRUE, nbb = 100, W = W, TOX = TOX, ntox = ntox, std.nTTP = std.nTTP)
```

TOX

Sample array of toxicity probabilities for 6 doses. Taken from Du et al.

Description

This is a sample array of toxicity probabilities to be used for trial simulations with nTTP as the toxicity endpoint. In this example, we have 3 toxicity types, 6 test doses, and 5 AE grades (0-4). See the nTTP_simulation_example vignette for more details.

Usage

```
data("TOX")
```

Format

The format is: num [1:6, 1:5, 1:3] 0.791 0.738 0.685 0.662 0.605 0.39 0.172 0.195 0.19 0.2 ...

Source

https://pubmed.ncbi.nlm.nih.gov/30403559/

```
data(TOX)
TOX
```

28 tox.profile

tox.profile

Generates DLTs and calculates the likelihood-ratio (LR) for each dose

Description

Gives toxicity profile (number of dose-limiting toxicities) and likelihood ratio per dose based on binary toxicity.

Usage

```
tox.profile(dose, dose.tox, p1, p2, K, coh.size)
```

Arguments

dose	number of doses to be tested (scalar)
dose.tox	vector of true toxicities for each dose. Values range from 0 - 1.
p1	toxicity under null (unsafe DLT rate). Values range from 0 - 1.
p2	toxicity under alternative (safe DLT rate). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)

Value

4-column matrix containing dose assignment, dose-limiting toxicities at each dose, cohort number, and likelihood ratio.

```
# Number of pre-specified dose levels
dose <- 5
# Vector of true toxicities associated with each dose
dose.tox <- c(0.05, 0.10, 0.20, 0.35, 0.45)
# Acceptable (p2) and unacceptable (p1) DLT rates used for establishing safety
p1 <- 0.40
p2 <- 0.15
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Stopping rule: if dose 1 is the only safe dose, allocate up to 9 pts.
stop.rule <- 9

tox.profile(dose = dose, dose.tox = dose.tox, p1 = p1, p2 = p2, K = K, coh.size = coh.size)</pre>
```

tox.profile.nTTP 29

tox.profile.nTTP Generate nTTPs toxicity scores and the likelihhood-ratio (LR) per dose	tox.profile.nTTP	Generate nTTPs toxicity scores and the likelihhood-ratio (LR) per dose
---	------------------	--

Description

The normalized total toxicity profiles (nTTP) are calculated by combining multiple toxicity grades and their weights. The nTTPs are considered a quasi-continuous toxicity measure that follows a normal distribution truncated to [0, 1]. The likelihood ratio per dose are based on nTTP toxicity.

Usage

```
tox.profile.nTTP(dose, p1, p2, K, coh.size, ntox, W, TOX, std.nTTP = 0.15)
```

Arguments

dose	number of doses to be tested (scalar)
p1	toxicity under null (unsafe nTTP). Values range from 0 - 1.
p2	toxicity under alternative (safe nTTP). Values range from 0 - 1; $p1 > p2$
K	threshold for LR. Takes integer values: 1,2,(recommended K=2)
coh.size	cohort size (number of patients) per dose (Stage 1)
ntox	number (integer) of different toxicity types (e.g, hematological, neurological, GI)
W	matrix defines burden weight of each grade level for all toxicity types. The dimensions are ntox rows by 5 columns (for grades 0-4). See Ezzalfani et al. (2013) for details.
TOX	matrix array of toxicity probabilities. There should be ntox matrices. Each matrix represents one toxicity type, where probabilities of each toxicity grade are specified across each dose. Each matrix has the same dimensions: n rows, representing number of doses, and 5 columns (for grades 0-4). Probabilities across each dose (rows) must sum to 1. See Ezzalfani et al. (2013) for details.
std.nTTP	the standard deviation of nTTP scores at each dose level (constant across doses)

Value

- mnTTP 4-column matrix containing dose assignment, mean nTTP at each dose, cohort number, and likelihood ratio.
- all_nttp all observed nTTP values

```
# Number of pre-specified dose levels
dose <- 6
# Acceptable (p2) and unacceptable nTTP values</pre>
```

30 tox.profile.nTTP

```
p1 <- 0.35
p2 <- 0.10
# Likelihood-ratio (LR) threshold
K <- 2
# Cohort size used in stage 1
coh.size <- 3
# Number of toxicity types
ntox <- 3
# Standard deviation of nTTP values
std.nTTP = 0.15
# Toxicity burden weight matrix
W = matrix(c(0, 0.5, 0.75, 1.0, 1.5, \# Burden weight for grades 0-4 for toxicity 1
             0, 0.5, 0.75, 1.0, 1.5, \# Burden weight for grades 0-4 for toxicity 2
             0, 0.00, 0.00, 0.5, 1), # Burden weight for grades 0-4 for toxicity 3
             nrow = ntox, byrow = TRUE)
# Array of toxicity event probabilities
TOX = array(NA, c(dose, 5, ntox))
TOX[, , 1] = matrix(c(0.823, 0.152, 0.022, 0.002, 0.001, \#prob of tox for dose 1 and tox type 1)
                  0.791, 0.172, 0.032, 0.004, 0.001, #prob of tox for dose 2 and tox type 1
                  0.758,\ 0.180,\ 0.043,\ 0.010,\ 0.009,\ \ \mbox{\#prob of tox for dose 3 and tox type 1}
                  0.685, 0.190, 0.068, 0.044, 0.013, \mbox{\sc #prob of tox for dose 4 and tox type 1}
                  0.662,\ 0.200,\ 0.078,\ 0.046,\ 0.014,\ \ \mbox{\#prob of tox for dose 5 and tox type 1}
                  0.605, 0.223, 0.082, 0.070, 0.020), #prob of tox for dose 6 and tox type 1
                       nrow = 6, byrow = TRUE)
TOX[, , 2] = matrix(c(0.970, 0.027, 0.002, 0.001, 0.000, #prob of tox for dose 1 and tox type 2
                  0.968, 0.029, 0.002, 0.001, 0.000, #prob of tox for dose 2 and tox type 2
                  0.813, 0.172, 0.006, 0.009, 0.000, #prob of tox for dose 3 and tox type 2
                  0.762, 0.183, 0.041, 0.010, 0.004, #prob of tox for dose 4 and tox type 2
                  0.671, 0.205, 0.108, 0.011, 0.005, #prob of tox for dose 5 and tox type 2
                  0.397, 0.258, 0.277, 0.060, 0.008), #prob of tox for dose 6 and tox type 2
                       nrow = 6, byrow = TRUE)
TOX[,,3] = matrix(c(0.930,0.060,0.005,0.001,0.004, #prob of tox for dose 1 and tox type 3)
                  0.917, 0.070, 0.007, 0.001, 0.005, #prob of tox for dose 2 and tox type 3
                  0.652, 0.280, 0.010, 0.021, 0.037, \mbox{ \#prob of tox for dose 3 and tox type 3}
                  0.536, 0.209, 0.031, 0.090, 0.134, #prob of tox for dose 4 and tox type 3
                  0.015, 0.134, 0.240, 0.335, 0.276, #prob of tox for dose 5 and tox type 3
                  0.005, 0.052, 0.224, 0.372, 0.347), #prob of tox for dose 6 and tox type 3
                       nrow = 6, byrow = TRUE)
tox.profile.nTTP(dose = dose,
p1 = p1,
p2 = p2,
K = K
coh.size = coh.size,
ntox = ntox,
```

tox.profile.nTTP 31

```
W = W,
TOX = TOX,
std.nTTP = std.nTTP)
```

Index

```
* datasets
     TOX, 27
{\tt dlt.prob, \color{red} 2}
eff.stg1, 3
{\tt eff.stg1.nTTP}, {\tt 5}
get.thresh, 7
LRtox, 9
LRtox.nTTP, 10
nTTP.indiv.sim, 11
rand.prob, 12
rand.stg2, 12
rand.stg2.nTTP, 14
safe.dose, 17
safe.dose.nTTP, 18
\verb|sim.plot|, \frac{20}{}
sim.summary, 21
\verb|sim.trials|, 22|
sim.trials.nTTP, 24
TOX, 27
tox.profile, 28
{\tt tox.profile.nTTP}, {\tt 29}
```