```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

df=pd.read_csv('/content/advertising.csv')
df.head(10)

→ *		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9
	5	8.7	48.9	75.0	7.2
	6	57.5	32.8	23.5	11.8
	7	120.2	19.6	11.6	13.2
	8	8.6	2.1	1.0	4.8
	9	199.8	2.6	21.2	15.6
	4				

df.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 4 columns): # Column Non-Null Count Dtype ----------TV 0 200 non-null float64 Radio 1 200 non-null float64 float64

2 Newspaper 200 non-null 3 Sales 200 non-null dtypes: float64(4) memory usage: 6.4 KB

df.describe()

₹		TV	Radio	Newspaper	Sales
	count	200.000000	200.000000	200.000000	200.000000
	mean	147.042500	23.264000	30.554000	15.130500
	std	85.854236	14.846809	21.778621	5.283892
	min	0.700000	0.000000	0.300000	1.600000
	25%	74.375000	9.975000	12.750000	11.000000
	50%	149.750000	22.900000	25.750000	16.000000
	75%	218.825000	36.525000	45.100000	19.050000
	max	296.400000	49.600000	114.000000	27.000000

float64

```
print(df.shape)
print(df.columns)
```

```
(200, 4)
Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
```

```
fig,axs=plt.subplots(3,figsize=(5,5))
plt1=sns.boxplot(df['TV'],ax=axs[0])
plt2=sns.boxplot(df['Radio'],ax=axs[1])
plt3=sns.boxplot(df['Newspaper'],ax=axs[2])
plt.tight_layout()
#
```


x=df[['TV']]
y=df['Sales']

```
plt.scatter(x,y,color='red',label='Scatter Plot')
plt.title('relationship between Tv and Sales')
plt.xlabel('TV')
plt.ylabel('Sales')
```

→ Text(0, 0.5, 'Sales')

25

20

Sales Sales

10

5

200

250

300

relationship between Tv and Sales

100

150

TV

50

(200, 1)
(200,)

```
from sklearn.model_selection import train_test_split
\label{eq:continuous_continuous} $$X_{\text{train}}$, $X_{\text{test}}$, $y_{\text{train}}$, $y_{\text{test}}$ = $\text{train\_test\_split}(X, y, $\text{test\_size=0.2}$, $\text{random\_state=42}$)$
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
(160, 1)
(40, 1)
      (160,)
       (40,)
from \ sklearn.linear\_model \ import \ LinearRegression
lm=LinearRegression()
lm.fit(X_train,y_train)
\overline{z}
       ▼ LinearRegression
       LinearRegression()
y_pred=lm.predict(X_test)
```

plt.scatter(X_train,y_train,color='red')
plt.plot(X_train,lm.predict(X_train),color='blue')

[<matplotlib.lines.Line2D at 0x7b9338e91db0>]

slope=lm.coef_
intercept=lm.intercept_
print("Estimated model slope:",slope)
print("Estimated model intercept:",intercept)

Estimated model slope: [0.05548294]
Estimated model intercept: 7.007108428241848

X_new=[[200]]
lm.predict(X_new)

→ array([18.10369721])

