

Roadmap

- 1. Basic concepts (alternatives, preferences, ...)
- 2. Representing ordinal preferences (ordinal utility)
- 3. Beyond ordinal preferences (cardinal utility, VNM utility, ...)
- 4. Attitude towards risk
- 5. Applications and introduction to decision making

Basic Concepts: Alternatives

An agent chooses between a set *X* of alternatives

Alternatives are

- ► Mutually exclusive
- ▶ Exhaustive

Basic Concepts: Alternatives

Example:

```
Options = {Deep Learning, Algorithmic Game Theory}
```

```
X = \{
     DL = Deep Learning,
     AGT = Algorithmic Game Theory,
     DLAGT = Deep Learning and Algorithmic Game Theory,
     N = None
```

■ Basic Concepts: Preferences

Preferences are a relation \geq on X, which is a subset of $X \times X$.

 \geqslant is complete iff $\forall x,y \in X$, $x \geqslant y$ or $y \geqslant x$

 \geq is transitive iff $\forall x,y,z \in X$, $[x \geq y \text{ and } y \geq z] \Rightarrow x \geq z$

Basic Concepts: Preference Relation

A preference is a preference relation iff it is complete and transitive.

► Strict preference:

$$x > y \Leftrightarrow [x \ge y \text{ and } y \ge x]$$

➤ Indifference:

$$x \sim y \Leftrightarrow [x \geqslant y \text{ and } y \geqslant x]$$

Representing preferences as utilities

A preference relation can be represented by a utility function $u: X \rightarrow \mathbb{R}$ in the following sense:

$$x \geqslant y \Leftrightarrow u(x) \ge u(y) \quad \forall x, y \in X$$

If a player finds x at least as good as y then u(x) must be at least as high as u(y).

In this sense, a player acts as if they are trying to maximise the value of $u(\cdot)$.

Theorem: Ordinal Representation

Theorem 1: Let X be finite. A preference can be represented by a utility function if and only if it is complete and transitive. Moreover, if $u: X \rightarrow \mathbb{R}$ represents \geq , and if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing function, then $f \circ u$ also represents \geq .

By the last statement of the theorem, such utilities are called ordinal, i.e. only the order information is relevant.

Transitivity is a necessary condition

Let $X = \{a, b, c\}$, suppose $a > b > c > a \Rightarrow u(a) > u(b) > u(c) > u(a)$. This is absurd.

Completeness is a necessary condition

If we have incomplete preferences, at most we can construct an order for a subset of X.

Proof of Theorem 1

Transitivity and completeness are necessary and sufficient

Let $X = \{X_1, ..., X_n\}$, we can partition the elements of X into k indifference classes $C_1, ..., C_k$ such that $C_1 > C_2 > ... > C_k$.

Thus, we can define u so that:

$$u(x) = k$$
 $\forall x \in C_1$,
 $u(x) = k-1$ $\forall x \in C_2$,
...,
 $u(x) = 1$ $\forall x \in C_k$

Ordinal utilities: examples

$$X = \{a, b, c\}$$

Preferences: $a \ge b \ge c$

Ordinal utilities: examples

 $X = \{a, b, c\}$

Preferences: $a \ge b \ge c$

X deve essere finito perché (me lo spiega alex)

$$u(a) = -1$$

$$u(a) = 30$$

$$u(a) = 90$$

$$u(b) = -2$$

$$u(b) = 20$$

$$u(b) = 2$$

$$u(c) = -3$$

$$u(c) = 10$$

$$u(b) = 1$$

The numerical value of ordinal utility is not interpretable: ordinal utility does not tell us the magnitude with which a player prefers a to b.

Beyond ordinal utilities: lotteries

A simple lottery is a tuple $L = (p_1, x_1; p_2, x_2; ...; p_n, x_n)$

- ► Monetary prizes $x_1, x_2, ..., x_n \in X \subseteq \mathbb{R}$
- ightharpoonup Probability distribution $(p_1, p_2, ..., p_n)$

Let £ denote the set of simple lotteries

Beyond ordinal utilities: lotteries

A simple lottery is a tuple $L = (p_1, x_1; p_2, x_2; ...; p_n, x_n)$

- ► Monetary prizes $x_1, x_2, ..., x_n \in X \subseteq \mathbb{R}$
- ightharpoonup Probability distribution $(p_1, p_2, ..., p_n)$

Let £ denote the set of simple lotteries

Example L = (0.3, 10; 0.2, 5; 0.1, 0; 0.4, -5)

Expected value

Consider the lottery L = (0.3, 10; 0.2, 5; 0.1, 0; 0.4, -5) we can compute the expected value to know its worth, as follows:

$$\mathbb{E}(L) = \sum_{i=1}^n p_i x_i$$

Expected value

Consider the lottery L = (0.3, 10; 0.2, 5; 0.1, 0; 0.4, -5) we can compute the expected value to know its worth, as follows:

$$\mathbb{E}(L) = \sum_{i=1}^n p_i x_i$$
 non giocare al lotto gioca alle slot!

In our case we have:

$$\mathbb{E}(L)=0.3 imes10+0.2 imes5-0.4 imes5=2$$

The expected value of L is 2. This means that, each time we play such a lottery, we expect to win a value of 2.

Expected utility

Given a preference relation \geq on \mathcal{L} , a utility function $U: \mathcal{L} \rightarrow \mathbb{R}$ is an expected utility function if it can written as:

$$U(L) = \sum_{i=1}^n p_i u(x_i)$$

for some function $u : \mathbb{R} \rightarrow \mathbb{R}$.

The function u is called a Bernoulli utility function.

■ Von Neumann and Morgenstern Utility

Von Neumann and Morgenstern (VNM) provided the conditions by which a preference relation \geq on \mathcal{L} can be represented by a utility function.

Axiom 1: (Preference order)

≥ is complete and transitive

Axiom 2: (Continuity)

if L > M > N, there exists $p \in [0,1]$ such that $pL + (1-p)N \sim M$

Axiom 3: (Independence)

for any lottery N and $p \in [0,1], L \ge M \Leftrightarrow pL + (1-p)N \ge pM + (1-p)N$

VNM Theorem

Theorem 2: (VNM) A binary relation > over \mathcal{L} has an expected utility representation if and only if it satisfies axioms 1–3. Moreover, if U and V are expected utility representations of >, then there exist constants a, $b \in \mathbb{R}$, a > 0, such that $U(\cdot) = aV(\cdot) + b$.

The last statement tells us that the VNM utility representation is unique up to a affine transformations.

Proof of VNM Theorem

We divide the proof in two parts:

$$lacksquare$$
 Part 1: we show that $U(L) = \sum_{i=1}^n p_i u(x_i)$

▶ Part 2: we show that $L > M \Leftrightarrow U(L) > U(M)$, $L,M \in \mathcal{L}$

Suppose we have n outcomes $o_1, ..., o_n$

Suppose we have *n* outcomes $o_1, ..., o_n$

By completeness and transitivity we can order the outcomes from worse to best: $o_1 \le ... \le o_n$. Let $u(o_1) = 0$ and $u(o_n) = 1$.

Suppose we have *n* outcomes $o_1, ..., o_n$

By completeness and transitivity we can order the outcomes from worse to best: $o_1 \le ... \le o_n$. Let $u(o_1) = 0$ and $u(o_n) = 1$.

For every probability $p \in [0, 1]$, let us define a lottery $L(p) = p \cdot o_n + (1 - p) \cdot o_1$

Suppose we have *n* outcomes $o_1, ..., o_n$

By completeness and transitivity we can order the outcomes from worse to best: $o_1 \le ... \le o_n$. Let $u(o_1) = 0$ and $u(o_n) = 1$.

For every probability $p \in [0, 1]$, let us define a lottery $L(p) = p \cdot o_n + (1 - p) \cdot o_1$

By the continuity axiom, there is a probability $q_i \in [0, 1]$, for every outcome, such that $L(q_i) = o_i$ and $u(o_i) = q_i$.

Suppose we have *n* outcomes $o_1, ..., o_n$

By completeness and transitivity we can order the outcomes from worse to best: $o_1 \le ... \le o_n$. Let $u(o_1) = 0$ and $u(o_n) = 1$.

For every probability $p \in [0, 1]$, let us define a lottery $L(p) = p \cdot o_n + (1 - p) \cdot o_1$

By the continuity axiom, there is a probability $q_i \in [0, 1]$, for every outcome, such that $L(q_i) = o_i$ and $u(o_i) = q_i$.

It follows that, the utility of a lottery $M = \sum_i p_i o_i$ is the expectation of u

$$u(M) = u\left(\sum_i p_i o_i
ight) = \sum_i p_i u(o_i) = \sum_i p_i q_i$$

By the independence axiom, a player is indifferent between o_i and the lottery $q_i \cdot o_n + (1 - q_i) \cdot o_1$.

By the independence axiom, a player is indifferent between o_i and the lottery $q_i \cdot o_n + (1-q_i) \cdot o_1$.

As such, a player is indifferent between the following two lotteries:

$$M = \sum_i p_i o_i$$

$$M' = \sum_i p_i \left[q_i \cdot o_n + (1 - q_i) \cdot o_1 \right]$$

By the independence axiom, a player is indifferent between o_i and the lottery $q_i \cdot o_n + (1-q_i) \cdot o_1$.

As such, a player is indifferent between the following two lotteries:

$$M = \sum_i p_i o_i$$
 $M' = \sum_i p_i \left[q_i \cdot o_n + (1 - q_i) \cdot o_1 \right]$

However,

$$M' = \left(\sum_i p_i q_i
ight) \cdot o_n + \left(\sum_i p_i (1-q_i)
ight) \cdot o_1 = U(M) \cdot o_n + (1-U(M)) \cdot o_1$$

Suppose L > M, we can define L' and M' as follows

$$L' = U(L) \cdot o_n + (1-U(L)) \cdot o_1 \ M' = U(M) \cdot o_n + (1-U(M)) \cdot o_1$$

Suppose L > M, we can define L' and M' as follows

$$L' = U(L) \cdot o_n + (1-U(L)) \cdot o_1 \ M' = U(M) \cdot o_n + (1-U(M)) \cdot o_1$$

We have the following order $L' \sim L > M \sim M'$.

Suppose L > M, we can define L' and M' as follows

$$L' = U(L) \cdot o_n + (1-U(L)) \cdot o_1 \ M' = U(M) \cdot o_n + (1-U(M)) \cdot o_1$$

We have the following order $L' \sim L > M \sim M'$.

Since $L' > M' \Rightarrow U(L) > U(M)$. Hence, $L > M \Leftrightarrow U(L) > U(M)$.

Let's consider a fair lottery $L = p \cdot x + (1-p) \cdot y = 0$

lotteria fair significa che il valore atteso è 0

Let's consider a fair lottery $L = p \cdot x + (1-p) \cdot y = 0$

- ► A player is risk neutral iff their utility function is linear; i.e. u(x) = ax + b
 - ► A risk neutral player is neutral towards fair lotteries

Let's consider a fair lottery $L = p \cdot x + (1-p) \cdot y = 0$

- ► A player is risk neutral iff their utility function is linear; i.e. u(x) = ax + b
 - ► A risk neutral player is neutral towards fair lotteries

- ► A player is risk averse iff their utility function is concave
 - A strictly risk averse player does not play any fair lottery

Let's consider a fair lottery $L = p \cdot x + (1-p) \cdot y = 0$

- ► A player is risk neutral iff their utility function is linear; i.e. u(x) = ax + b
 - ► A risk neutral player is neutral towards fair lotteries

- ► A player is risk averse iff their utility function is concave
 - ► A strictly risk averse player does not play any fair lottery

- ► A player is risk seeking iff their utility function is convex
 - ► A strictly risk seeking player plays all the fair lotteries

Suppose we have two risk averse players with $u(x) = \sqrt{x}$ and two risky assets A_1 , $A_2 = (0.5, 100; 0.5, 0)$. Suppose A_1 and A_2 are independent.

Suppose we have two risk averse players with $u(x) = \sqrt{x}$ and two risky assets A_1 , $A_2 = (0.5, 100; 0.5, 0)$. Suppose A_1 and A_2 are independent.

The utility of A₁ and A₂ is $u(A_1) = u(A_2) = 0.5 \times \sqrt{100} = 5$

Suppose we have two risk averse players with $u(x) = \sqrt{x}$ and two risky assets A_1 , $A_2 = (0.5, 100; 0.5, 0)$. Suppose A_1 and A_2 are independent.

The utility of
$$A_1$$
 and A_2 is $u(A_1) = u(A_2) = 0.5 \times \sqrt{100} = 5$

If the two players form a mutual fund where each player owns half of it, each player has the asset $A_m = (0.25, 100; 0.5, 50; 0.25, 0)$. The utility of a player is

Suppose we have two risk averse players with $u(x) = \sqrt{x}$ and two risky assets A_1 , $A_2 = (0.5, 100; 0.5, 0)$. Suppose A_1 and A_2 are independent.

The utility of A₁ and A₂ is $u(A_1) = u(A_2) = 0.5 \times \sqrt{100} = 5$

If the two players form a mutual fund where each player owns half of it, each player has the asset $A_m = (0.25, 100; 0.5, 50; 0.25, 0)$. The utility of a player is

$$u(A_m) = 0.25 imes \sqrt{100} + 0.5 imes \sqrt{50} pprox 6$$

Applications: Insurance

We have a risk averse player with $u(x) = \sqrt{x}$ and an asset A = (0.5, 100; 0.5, 0). We have a risk neutral insurance company with lots of money.

What premium P would the player pay to insure their asset?

Applications: Insurance

We have a risk averse player with $u(x) = \sqrt{x}$ and an asset A = (0.5, 100; 0.5, 0). We have a risk neutral insurance company with lots of money.

What premium P would the player pay to insure their asset?

$$u(100-P) \geq 0.5 \times u(100) + 0.5 \times u(0) \Rightarrow \sqrt{100-P} \geq 5 \Rightarrow 100-P \geq 25 \Rightarrow -P \geq -100+25 \Rightarrow P \leq 75$$

Applications: Insurance

What premium would the insurance company require to ensure the player's asset?

$$P \geq 0.5 \times 100 + 0.5 \times 0 \Rightarrow P \geq 50$$

Hence, both parties would gain if the company insures the player's asset for a premium $P \in [50, 75]$.

Recap on VNM utility theory

- ► VNM utility theory provides a way to construct cardinal utility functions
 - ► Numerical values are interpretable on an interval scale
 - ► In certain situations it can be interpreted as a ratio scale

Recap on VNM utility theory

- ► VNM utility theory provides a way to construct cardinal utility functions
 - ► Numerical values are interpretable on an interval scale
 - ► In certain situations it can be interpreted as a ratio scale

- ► VNM utility theory provides a normative theory of decision making
 - ► Expected utility maximisation
 - Highly used in financial and economic applications

Recap on VNM utility theory

- ► VNM utility theory provides a way to construct cardinal utility functions
 - ► Numerical values are interpretable on an interval scale
 - In certain situations it can be interpreted as a ratio scale

- VNM utility theory provides a normative theory of decision making
 - Expected utility maximisation
 - Highly used in financial and economic applications

- VNM utility theory does not describe human behaviour
 - ► An alternative is not preferred because it is associated with a higher utility. Rather, it is associated with a higher utility because it is the preferred alternative.