

4. CAH – Classification Ascendante Hiérarchique

Plan

- 1. Exemples, problématique
- 2. Complémentarité analyse factorielle / classification
- 3. Comment réaliser une classification?
- 4. Ressemblances entre individus et classes d'individus
- 5. Agrégation selon l'indice de Ward
- 6. Le choix du nombre de classes
- 7. Classification de données qualitatives
- 8. Classification sur facteurs
- 9. Interprétation des classes d'une partition

4.1 – Problématique, exemples

Classifier un ensemble d'objets : répartir en classes un ensemble d'objets décrits par différentes variables ou caractéristiques

L'objectif est d'obtenir :

Des classes homogènes: les individus d'une même classe partagent

de nombreuses caractéristiques (se ressemblent)

Des classes séparées : les individus de classes différentes ont peu

de caractéristiques en commun

Exemples...

Exemples

Crédit à la consommation

Quels sont les différents types de « comportement bancaire » parmi les 66 consommateurs de l'agence ?

Enquête Ouest France

Identifier les différentes « façons » pour les lecteurs de lire le quotidien Ouest France ?

Températures mensuelles

Existe-t-il des villes présentant des profils de températures similaires tout au long de l'année ?

Exemple traité

- 52 emmentals décrits par 17 descripteurs sensoriels
- Trois types de descripteurs liés au goût, à la texture et au parfum
- Une variable de conformité (binaire)

	pa	rfu	ım			te	ktu	re					go	ût				
Emmental	intensité du parfum	parfum propionique	parfum butyrique	texture ferme	texture souple	texture granuleuse	texture collante	texture fondante	texture caractéristique	intensité du gout	gout acide	gout salé	gout sucré	gout piquant	gout fruité	gout amer	gout caractéristique	Conformité
1	5,1	4	3,7	3,8	4,8	3,7	3,3	3	3,9	5,6	4,8	4,3	3,9	4,1	3,4	3,2	3,6	non
2	4,7	3,9	3,4	5,2	3	4	3,3	4	3,6	5,8	4,3	4,9	4	4,3	4,8	3,2	3,7	oui
3	4,7	4,2	2,9	3,7	3,3	2,8	3,4	4,7	3,9	5,7	4,3	4,7	3,9	4,2	4,9	3	4	oui
4	5,3	4,6	3,9	3	3,6	2,4	3,4	5,4	4,2	5,6	4,2	4,6	4	4,2	4,9	4,1	4	oui
5	4,3	4	2,6	3,9	4,1	3,3	2,9	4,2	3,7	5,1	4	4,3	3,9	4	4,3	3,8	4	oui
6	4,7	4	3,5	4,5	4,6	3,3	3,5	4,2	4,4	4,9	3,6	4,2	3,2	3,5	4	3,2	3,9	oui
7	3,6	3,7	2,6	4,1	4,4	3,1	3,4	4,5	4,1	4,5	3,4	3,5	3,2	3	4,2	2,6	4,3	oui
8	5,4	3,9	4	4,1	3,9	2,5	3,9	4,9	4	5	4,2	4,2	3,1	4,1	3,8	2,9	3,6	oui
9	4	3,8	2,6	4,5	4	4,1	3,3	3,3	4,1	4,5	3,1	3,9	3,3	3,1	3,8	3,2	3,5	oui
10	5	4,2	3,3	4,7	4,3	3,8	3,7	3,5	3,8	4,8	3,6	4	3	3,3	3,3	3,1	3,7	oui
:																		
52	3,7	4,1	3	3,7	4,2	4,4	2,7	2,6	3,2	3,8	2,9	3,1	2,9	3	3,4	3,5	3,2	non

Le tableau de données étudié en classification

- Un tableau « classique » individus x variables
- En général : des variables de même nature (quantitatives ou qualitatives)

variables

	v	`
	Ξ	:
	_	3
	ᠸ	7
•	=	
	\geq	>
•	-	-
	て	2
	2	
	≥	-
		-

	1	•••	j	•••	p
1					
:					
i			x_{ij}		
:					
n					

 x_{ij} : valeur prise par l'individu (i) pour la variable (j)

4.2 – Complémentarité analyse factorielle - classification

Ce que permettent d'obtenir les analyses factorielles

- Mise en évidence des principaux facteurs de variabilités entre individus
- Des proximités, regroupements ou oppositions entre individus dans un espace géométrique

Limites des représentations factorielles

- Souvent : difficultés d'établir des regroupements d'individus (pas de bien nette, lisibilité, graphique surchargé)
- Les projections peuvent conduire à des proximités trompeuses
- Peut-on se limiter aux proximités observées sur le premier plan ?
 Comment faire la synthèse de plusieurs axes simultanément ?
- Comment caractériser un regroupement d'individus par quelques variables importantes ?

Intérêt des méthodes de classification

- Réalisent des regroupements d'individus en tenant compte de proximités établies sur plusieurs dimensions
- Fournissent une description synthétique des classes à partir des variables les plus importantes

Complémentarité entre analyse factorielle et classification

- Caractère synthétique de la classification
- Richesse de la représentation géométrique issue des méthodes factorielles

4.3 – Comment réaliser une classification ?

Les différentes formes de classification

Recouvrement

 Classification ascendante hiérarchique (CAH)

Partition

 Partitionnement direct (ex. k – means)

Classification floue

Peut-on rechercher la partition optimale?

Peut-on construire toutes les partitions possibles des *n* individus en 1, 2, ..., *k* classes puis retenir la « meilleure » ?

Nombre *n* d'individus

Nombres de Bell

Nombre total de partitions possibles de *n* objets en *k* classes

[d'après Saporta, 1990]

asses
<u></u>
C
<u> </u>
Ф
7
<u>.</u>
×
bre
\equiv
<u></u>

	1	2	3	4	5	6	7	8	9	10	11	12]
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2		1	3	7	15	31	63	127	255	511	1023	4095	
3			1	6	25	90	301	966	3025	9330	28501	86526	
4				1	10	65	350	1701	7770	34105	145750	611501	
5					1	15	140	1050	6951	42525	246730	1379400	
6						1	21	266	2646	22827	179487	1323652	
7							1	28	462	5880	63987	627393	
- 8								1	36	750	11880	159027	
9									1	45	1155	2275	
10										1	55	1705	
11											1	66	
12												1	
TOTAL	1	2	5	15	52	203	877	4140	21147	115975	678570	4213597]

Calcul du nombre total de partitions

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

Conclusion

Il faut se contenter en général de recherche une partition « sous-optimale » Deux principales familles de méthodes de classification

- ✓ les méthodes produisant des arbres hiérarchiques (ex. CAH)
- ✓ les méthodes de **partitionnement direct** (ex. nuées dynamiques, k means)

L'algorithme de la CAH

La CAH consiste à agréger de proche en proche des individus entre eux, puis des classes d'individus entre elles, jusqu'à obtenir une classe englobant l'ensemble de la population

Illustration 6 points décrits par leurs coordonnées dans le plan

Étape 0 : chaque individu = une classe

Étape 1 : agrégation de E et F

Étape 2 : agrégation de A et B

Étape 3: agrégation de C et {A, B}

Étape 4 : agrégation de {A,B,C} et {E,F}

Étape 5: agrégation de {A,B,C,E,F} et D

Le dendrogramme

Il représente le résultat du processus d'agrégation sous la forme d'un arbre hiérarchique (binaire) ou hiérarchie

Hauteur d'agrégation Traduit le niveau de dissemblance entre les éléments agrégés

« plus le palier est haut, moins les éléments réunis se ressemblent »

Hiérarchie et partitions emboîtées

- Chaque « coupure » de la hiérarchie définit un niveau de partition des objets
- Les partitions successives sont emboîtées les unes dans les autres

Attention aux « proximités » trompeuses!

4.4 – Ressemblance entre individus et classes d'individus

Classification de données quantitatives

- Un tableau de données individus x variables quantitatives
- Centrage- réduction des données si besoin (mêmes arguments que pour l'ACP)

variables

individus

	1	•••	j	•••	p
1					
:					
i			x_{ij}		
:					
n					
m			\bar{x}_j		
S			\bar{x}_j s_j		

Ressemblance entre individus

On utilise un indice de distance

- distance euclidienne usuelle
- distance du Chi2
- distance de Manhattan

Ressemblance entre classes d'individus

On utilise un indice d'agrégation

- indice du lien minimum
- indice du lien maximum
- distance moyenne
- distance entre centres de gravité
- indice de Ward

Quelques indices d'agrégation

Distance entre centres de gravité

$$\delta_{\rm CG}(C_1,C_2) = d(g_1,g_2)$$

• Indice du lien minimum (single linkage)

$$\delta_{\min}(C_1, C_2) = \min_{\substack{i \in C_1 \\ j \in C_2}} \{d(i, j)\}$$

• Indice du lien maximum (complete linkage)

$$\delta_{\max}(C_1, C_2) = \max_{\substack{i \in C_1 \\ j \in C_2}} \{d(i, j)\}$$

Distance moyenne

$$\delta_{\text{moy}}(C_1, C_2) = \frac{1}{card(C_1) \times card(C_2)} \sum_{i \in C_1, j \in C_2} d(i, j)$$

Indice de Ward

Deux classes sont d'autant plus proches que leur agrégation conduit à une faible augmentation d'inertie (intra classe)

$$\delta_{\text{Ward}}(C_1, C_2) = I(C_1 \cup C_2) - [I(C_1) + I(C_2)]$$

$$\delta_{\text{Ward}}(C_1, C_2) = \frac{m_1 m_2}{m_1 + m_2} d^2(g_1, g_2)$$

Application

Cinq individus 1, 2, 3, 4 et 5 sont décrits par leurs coordonnées (x, y) dans le plan

Réaliser la CAH de ces cinq individus sur la base des choix suivants :

- Indice de distance : distance du city block
- Indice d'agrégation : lien minimum

4.5 – Agrégation selon l'indice de Ward

Notations

- x_i : description de l'individu (i)
- *g* : centre de gravité des *n* individus
- g_k : centre de gravité des n_k individus de la classe C_k

Qualité d'une partition en termes d'inertie

Une partition est de « bonne qualité » si

- les classes sont homogènes : l'inertie intra classes est faible
- les classes sont bien séparées : l'inertie inter classes est élevée

Inerties Intra et Inter Illustration pour une partition en trois classes

• Inertie intra (Within)

$$I_W =$$

• Inertie inter (Between)

$$I_B =$$

Le théorème de Huygens

En présence d'une partition en K classes, l'inertie totale se décompose en la somme des inerties Inter et Intra

Où
$$I_T =$$

Indicateur de qualité d'une partition

inertie **inter** – classes

inertie totale

Propriété de l'indice de Ward

Minimiser l'augmentation d'inertie INTRA

Minimiser la perte d'inertie INTER

- Partition en K classes : $I_T(K) = I_W(K) + I_B(K)$
- Partition en K-1 classes : $I_T(K-1) = I_W(K-1) + I_B(K-1)$

Evolution des inerties et de l'indice au cours de l'algorithme

Nombre de classes	Inertie TOTALE	Inertie INTER	Inertie INTRA	Indice de Ward
n				
n – 1				
2				
1				

- L'augmentation d'inertie INTRA :
- La somme des indices de Ward :
- Seconde expression de l'indice de Ward : $\delta_{Ward}(C_1, C_2) = \frac{m_1 m_2}{m_1 + m_2} \times d^2(g_1, g_2)$

4.6 – Le choix du nombre de classes

Dendrogramme

produit par *FactoMineR* pour l'exemple « Emmental »

Questions

- Combien de classes choisir ?
- Existe-t-il un nombre de classes « naturel » ?

La première étape de l'algorithme...

Matrice de distances entre les 52 emmentals

Une partition = coupure des branches de l'arbre

Une bonne partition:

Les branches coupées sont « longues »

Les classes sont autant que possible distantes les unes des autres

Choix d'une partition à partir du diagramme des indices de niveaux

Le critère de choix d'un nombre de classes dans FactoMineR

- Il est basé sur l'accroissement de l'inertie (intra classe)
- On note W(k), l'inertie intra de la partition en (k) classes
- Le nombre de classes optimal est celui qui minimise le ratio

$$\frac{W(k)}{W(k-1)}$$

Interprétation : lorsque le passage de (k) à (k-1) classes conduit à un accroissement d'inertie (une perte d'homogénéité des classes) le plus important

Valeurs du critère dans R

```
> res.hcpc$call$t$quot
[1] 0.8989093 0.9019041 0.8916397 0.8839594 0.9154951
[6] 0.9322995 0.9385777 0.9417622
```

Recherche de la coupure optimale entre 3 et 10 classes

Identifier les meilleures coupures

```
> res.hcpc$call$t$quot
[1] 0.8989093 0.9019041 0.8916397 0.8839594 0.9154951
[6] 0.9322995 0.9385777 0.9417622

> order(res.hcpc$call$t$quot)+2
[1] 6 5 3 4 7 8 9 10
```

Un graphique pour visualiser les meilleures coupures

```
> crit.tri = sort(res.hcpc$call$t$quot)
> coup = order(res.hcpc$call$t$quot)+2
> barplot(crit.tri, names.arg=coup,
col="olivedrab4", border="white",
ylab = "Critère FactoMineR",
main="Qualité d'une partition selon le
nombre de classes")
```

Qualité d'une partition selon le nombre de classes

Représentation de la partition sur un plan factoriel

La partition en *K* classes obtenue définit une nouvelle variable qualitative à *K* modalités

Emmental	intensité du parfum	parfum propionique	parfum butyrique	texture ferme	texture souple	texture granuleuse	texture collante	texture fondante	texture caractéristique	intensité du gout	gout acide	gout salé	gout sucré	gout piquant	gout fruité	gout amer	gout caractéristique	Conformité	Partition 6 classes
1	5,1	4	3,7	3,8	4,8	3,7	3,3	3	3,9	5,6	4,8	4,3	3,9	4,1	3,4	3,2	3,6	non	C4
2	4,7	3,9	3,4	5,2	3	4	3,3	4	3,6	5,8	4,3	4,9	4	4,3	4,8	3,2	3,7	oui	C5
3	4,7	4,2	2,9	3,7	3,3	2,8	3,4	4,7	3,9	5,7	4,3	4,7	3,9	4,2	4,9	3	4	oui	C5
4	5,3	4,6	3,9	3	3,6	2,4	3,4	5,4	4,2	5,6	4,2	4,6	4	4,2	4,9	4,1	4	oui	C5
5	4,3	4	2,6	3,9	4,1	3,3	2,9	4,2	3,7	5,1	4	4,3	3,9	4	4,3	3,8	4	oui	C5
6	4,7	4	3,5	4,5	4,6	3,3	3,5	4,2	4,4	4,9	3,6	4,2	3,2	3,5	4	3,2	3,9	oui	C6
7	3,6	3,7	2,6	4,1	4,4	3,1	3,4	4,5	4,1	4,5	3,4	3,5	3,2	3	4,2	2,6	4,3	oui	C6
8	5,4	3,9	4	4,1	3,9	2,5	3,9	4,9	4	5	4,2	4,2	3,1	4,1	3,8	2,9	3,6	oui	C4
9	4	3,8	2,6	4,5	4	4,1	3,3	3,3	4,1	4,5	3,1	3,9	3,3	3,1	3,8	3,2	3,5	oui	C6
10	5	4,2	3,3	4,7	4,3	3,8	3,7	3,5	3,8	4,8	3,6	4	3	3,3	3,3	3,1	3,7	oui	C6
:																			:
52	3,7	4,1	3	3,7	4,2	4,4	2,7	2,6	3,2	3,8	2,9	3,1	2,9	3	3,4	3,5	3,2	non	C1

Identification des 6 classes sur le plan (1,2) de l'ACP

La variable de partition peut être projetée en tant que **variable supplémentaire** dans l'ACP du tableau des données sensorielles

Représentation simultanée du plan factoriel et du dendrogramme

Combine les avantages

- d'une vision géométrique des proximités entre individus et entre classes d'individus
- de l'aspect synthétique de la classification

Question: comment caractériser chacune des classes obtenues à l'aide des variables?

Le cercle des corrélations – Axes 1 et 2

Variables factor map (PCA)

Exemple « Températures »

Factor map

Hierarchical clustering on the factor map

cluster 1 cluster 2 cluster 3

4.7 – Classification de données qualitatives

Mesures de ressemblance entre individus

- Variables binaires de type présence/absence
 Utilisation de coefficients d'association ou indices de similarité
- Variables qualitatives quelconques
 Utilisation de la distance du khi2
 (cohérent avec les choix de l'ACM)

- Jaccard (1908):
$$\frac{n_{JK}}{n_{JK} + n_{jK} + n_{Jk}}$$
- Sokal et Michener (1958):
$$\frac{n_{JK} + n_{jk}}{n}$$
- Dice (1915):
$$\frac{2n_{JK}}{2n_{JK} + n_{jK} + n_{Jk}}$$
- Ochiai (1957):
$$\frac{n_{JK}}{\sqrt{(n_{JK} + n_{Jk})(n_{JK} + n_{jK})}}$$
- Russel et Rao (1940):
$$\frac{n_{JK}}{n}$$

– Kulczynski (1927): $\frac{n_{JK}}{n_{jK} + n_{Jk}}$

Indices d'agrégation

- Plusieurs choix possibles
- Indice de Ward compatible avec distances quadratiques

4.8 – Classification sur facteurs

Principe

 On remplace les données des variables initiales par les coordonnées des individus sur les différentes dimensions (axes, facteurs) de l'analyse factorielle

On parle aussi de classification sur composantes principales

- C'est la stratégie programmée dans FactoMineR (initialement : SPAD)
- Applicable aux coordonnées issues de n'importe quelle analyse factorielle (ACP, AFC, ACM)

Etape (1): analyse factorielle

Illustration : données « Crédit »

> res\$ind\$coord

```
Dim 1
             Dim 2
   -0.4079
           0.0958
  -1.0737
            0.1815
   0.5780
           0.3464
   -1.3023
            0.4902
   1.2388
           0.0722
   -0.8545 0.7146
   -0.9888 0.7172
   -0.7601 0.4085
   -0.2855 -0.2845
10 -0.9888
           0.7172
    0.4869 - 0.1902
12 -0.0726 -0.0187
   0.8116 0.0899
14 -0.0726 -0.0187
15 -1.1212 -0.0258
```


Etape (2): Construction du tableau des coordonnées

Client	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6	Dim 7	Dim 8	Dim 9	Dim 10	Dim 11	Dim 12	Dim 13
1	-0.41	0.10	-0.32	-0.18	-0.46	0.23	-0.72	0.40	-0.13	-0.36	-0.15	-0.29	-0.34
2	-1.07	0.18	0.02	0.39	-0.24	0.56	0.10	-0.44	0.50	0.05	-0.26	-0.46	-0.05
3	0.58	0.35	-0.44	0.17	0.24	-0.49	-0.15	-0.57	-0.11	-0.43	0.24	-0.11	-0.04
4	-1.30	0.49	0.59	0.04	-0.14	-0.22	0.06	-0.01	-0.39	-0.19	-0.23	-0.15	0.22
5	1.24	0.07	0.60	-0.14	-1.29	0.05	0.66	0.18	0.13	0.03	-0.23	0.17	0.21
6	-0.85	0.71	0.16	-0.33	0.07	-0.40	-0.38	-0.07	0.00	-0.50	-0.30	0.49	0.46
7	-0.99	0.72	0.49	0.46	-0.11	-0.47	0.35	0.01	-0.47	-0.02	-0.18	0.15	-0.21
8	-0.76	0.41	-0.08	0.81	-0.21	0.31	0.40	-0.42	0.41	0.22	-0.20	-0.16	-0.49
9	-0.29	-0.28	-1.00	0.44	-0.20	0.01	0.09	0.24	0.34	0.79	0.16	0.25	-0.07
10	-0.99	0.72	0.49	0.46	-0.11	-0.47	0.35	0.01	-0.47	-0.02	-0.18	0.15	-0.21
						:							÷

La même information!

Cient	Marche	Apport	Impaye	Assurance	Endettement
1	Renovation	pas_Apport	lmp_0	AID	End_1
2	Renovation	pas_Apport	lmp_0	Sans Assur	End_2
3	Voiture	Apport	lmp_0	AID	End_3
4	Renovation	pas_Apport	lmp_0	Senior	End_2
5	Scooter	Apport	Imp_3 et +	AID	End_4
6	Renovation	pas_Apport	lmp_0	Senior	End_3
7	Renovation	Apport	lmp_0	Senior	End_2
8	Renovation	Apport	lmp_0	Sans Assur	End_2
9	Mobil Ameub	Apport	lmp_0	Sans Assur	End_1
10	Renovation	Apport	lmp_0	Senior	End_2
:	:				

Les variables **qualitatives** initiales sont remplacées par de nouvelles variables **quantitatives** : les Facteurs de l'ACM

Etape (3): CAH sur coordonnées factorielles

- Le tableau des coordonnées factorielles est soumis à une CAH avec les choix Distance euclidienne + Indice d'agrégation de Ward
- Possibilité de réaliser la CAH sur un sous-ensemble des coordonnées factorielles

Client	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6	Dim 7	Dim 8	Dim 9	Dim 10	Dim 11	Dim 12	Dim 13
1	-0.41	0.10	-0.32	-0.18	-0.46	0.23	-0.72	0.40	-0.13	-0.36	-0.15	-0.29	-0.34
2	-1.07	0.18	0.02	0.39	-0.24	0.56	0.10	-0.44	0.50	0.05	-0.26	-0.46	-0.05
3	0.58	0.35	-0.44	0.17	0.24	-0.49	-0.15	-0.57	-0.11	-0.43	0.24	-0.11	-0.04
4	-1.30	0.49	0.59	0.04	-0.14	-0.22	0.06	-0.01	-0.39	-0.19	-0.23	-0.15	0.22
5	1.24	0.07	0.60	-0.14	-1.29	0.05	0.66	0.18	0.13	0.03	-0.23	0.17	0.21
6	-0.85	0.71	0.16	-0.33	0.07	-0.40	-0.38	-0.07	0.00	-0.50	-0.30	0.49	0.46
7	-0.99	0.72	0.49	0.46	-0.11	-0.47	0.35	0.01	-0.47	-0.02	-0.18	0.15	-0.21
8	-0.76	0.41	-0.08	0.81	-0.21	0.31	0.40	-0.42	0.41	0.22	-0.20	-0.16	-0.49
9	-0.29	-0.28	-1.00	0.44	-0.20	0.01	0.09	0.24	0.34	0.79	0.16	0.25	-0.07
10	-0.99	0.72	0.49	0.46	-0.11	-0.47	0.35	0.01	-0.47	-0.02	-0.18	0.15	-0.21
:						E							÷

Intérêt de la classification sur facteurs

- On élimine les derniers axes, souvent porteurs de « bruit », de fluctuations aléatoires
- La classification est « lissée », les classes souvent plus homogènes
- Peut être mise en œuvre également pour des variables quantitatives

Difficulté parfois de choisir le nombre d'axes à conserver...

Client	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6	Dim 7	Dim 8	Dim 9	Dim 10	Dim 11	Dim 12	Dim 13
1	-0.41	0.10	-0.32	-0.18	-0.46	0.23	-0.72	0.40	-0.13	-0.36	-0.15	-0.29	-0.34
2	-1.07	0.18	0.02	0.39	-0.24	0.56	0.10	-0.44	0.50	0.05	-0.26	-0.46	-0.05
3	0.58	0.35	-0.44	0.17	0.24	-0.49	-0.15	-0.57	-0.11	-0.43	0.24	-0.11	-0.04
4	-1.30	0.49	0.59	0.04	-0.14	-0.22	0.06	-0.01	-0.39	-0.19	-0.23	-0.15	0.22
5	1.24	0.07	0.60	-0.14	-1.29	0.05	0.66	0.18	0.13	0.03	-0.23	0.17	0.21
6	-0.85	0.71	0.16	-0.33	0.07	-0.40	-0.38	-0.07	0.00	-0.50	-0.30	0.49	0.46
7	-0.99	0.72	0.49	0.46	-0.11	-0.47	0.35	0.01	-0.47	-0.02	-0.18	0.15	-0.21
8	-0.76	0.41	-0.08	0.81	-0.21	0.31	0.40	-0.42	0.41	0.22	-0.20	-0.16	-0.49
9	-0.29	-0.28	-1.00	0.44	-0.20	0.01	0.09	0.24	0.34	0.79	0.16	0.25	-0.07
10	-0.99	0.72	0.49	0.46	-0.11	-0.47	0.35	0.01	-0.47	-0.02	-0.18	0.15	-0.21
:						:							:

classification sur 13 facteurs

Client	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6	Dim 7	Dim 8	Dim 9	Dim 10	Dim 11	Dim 12	Dim 13	
1	-0.41	0.10	-0.32	-0.18	-0.46	0.23	-0.72	0.40	-0.13	-0.36	-0.15	-0.29	-0.34	
2	-1.07	0.18	0.02	0.39	-0.24	0.56	0.10	-0.44	0.50	0.05	-0.26	-0.46	-0.05	
3	0.58	0.35	-0.44	0.17	0.24	-0.49	-0.15	-0.57	-0.11	-0.43	0.24	-0.11	-0.04	
4	-1.30	0.49	0.59	0.04	-0.14	-0.22	0.06	-0.01	-0.39	-0.19	-0.23	-0.15	0.22	
5	1.24	0.07	0.60	-0.14	-1.29	0.05	0.66	0.18	0.13	0.03	-0.23	0.17	0.21	
6	-0.85	0.71	0.16	-0.33	0.07	-0.40	-0.38	-0.07	0.00	-0.50	-0.30	0.49	0.46	
7	-0.99	0.72	0.49	0.46	-0.11	-0.47	0.35	0.01	-0.47	-0.02	-0.18	0.15	-0.21	
8	-0.76	0.41	-0.08	0.81	-0.21	0.31	0.40	-0.42	0.41	0.22	-0.20	-0.16	-0.49	
9	-0.29	-0.28	-1.00	0.44	-0.20	0.01	0.09	0.24	0.34	0.79	0.16	0.25	-0.07	
10	-0.99	0.72	0.49	0.46	-0.11	-0.47	0.35	0.01	-0.47	-0.02	-0.18	0.15	-0.21	
						:							:	

Client	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5
1	-0.41	0.10	-0.32	-0.18	-0.46
2	-1.07	0.18	0.02	0.39	-0.24
3	0.58	0.35	-0.44	0.17	0.24
4	-1.30	0.49	0.59	0.04	-0.14
5	1.24	0.07	0.60	-0.14	-1.29
6	-0.85	0.71	0.16	-0.33	0.07
7	-0.99	0.72	0.49	0.46	-0.11
8	-0.76	0.41	-0.08	0.81	-0.21
9	-0.29	-0.28	-1.00	0.44	-0.20
10	-0.99	0.72	0.49	0.46	-0.11

classification sur 5 facteurs

Mise en œuvre dans FactoMineR

4.9 – La description des classes

- Quelles sont les variables les plus importantes pour caractériser la partition en général ?
- Peut-on décrire les individus de chaque classe par quelques variables caractéristiques ?
- Existe-t-il des individus caractéristiques ou typiques au sein d'une classe ?

Exemple 1: « Emmental » Variables quantitatives

La CAH a permis de mettre en évidence 6 classes d'emmentals

Exemple 2: « OGM »

Variables qualitatives

							Classe
Concerné	Position Culture	Position Al H	Position Al A	Manif	Media Actif	Info Active	
Pas du Tout	Plutôt Défavorable	Pas Favorable du Tout	Pas Favorable du Tout	Non	Oui	Non	2
Moyen	Favorable	Plutôt Défavorable	Favorable	Non	Oui	Non	2
Un Peu	Favorable	Plutôt Défavorable	Plutôt Défavorable	Non	Non	Non	2
Un Peu	Favorable	Favorable	Très Favorable	Non	Oui	Non	1
Moyen	Plutôt Défavorable	Favorable	Favorable	Non	Non	Non	3
Beaucoup	Favorable	Favorable	Très Favorable	Non	Non	Oui	2
Moyen	Favorable	Favorable	Très Favorable	Non	Non	Non	3
Pas du Tout	Favorable	Favorable	Favorable	Non	Oui	Non	
Moyen	Plutôt Défavorable	Plutôt Défavorable	Plutôt Défavorable	Non	Non	Oui	
Moyen	Pas Favorable du Tout	Pas Favorable du Tout	Pas Favorable du Tout	Non	Non	Oui	3
Un Peu	Favorable	Favorable	Très Favorable	Non	Oui	Non	1
Moyen	Favorable	Favorable	Favorable	Non	Oui	Non	2
Moyen	Favorable	Favorable	Favorable	Non	Non	Oui	3
Moyen	Plutôt Défavorable	Plutôt Défavorable	Plutôt Défavorable	Non	Oui	Non	3
Un Peu	Plutôt Défavorable	Plutôt Défavorable	Plutôt Défavorable	Non	Non	Non	
Moyen	Plutôt Défavorable	Plutôt Défavorable	Plutôt Défavorable	Non	Non	Oui	1
Moyen	Favorable	Plutôt Défavorable	Favorable	Non	Non	Non	1

La CAH a permis de mettre en évidence 3 classes d'enquêtés

4.9.1 Caractérisation de la partition par les variables

Question

Quelles sont les variables qui ont « contribué » le plus à la création des classes de la partition ?

Méthodologie statistique

Étude de la liaison entre la variable de partition (qualitative) et chaque variable (qualitative ou quantitative) :

- Si <u>qualitative</u>: liaison entre deux variables qualitatives
 Tableau de contingence, test du Chi2
- Si <u>quantitative</u>: liaison entre une variable qualitative et une quantitative Analyse de la variance à un facteur

Description de la partition par les variables qualitatives

Méthodologie statistique : le test du khi2

Pour chaque variable, on teste l'hypothèse

 H_0 : Indépendance entre la partition et la variable

Exemple

Lien entre la partition et la question

« Quelle est votre position face à la culture des OGM ? »

Classe	PC_Favorable	PC_Pas Favorable du Tout	PC_Plutôt Défavorable
1	42	0	4
2	4	1	47
3	2	32	3

p - value = 4,46 e-41

Tableau de synthèse

\$test.chi2		
	p.value	df
Position.Culture	4.464795e-41	4
Position.Al.A	4.943024e-36	6
Position.Al.H	1.202362e-33	4
Danger	9.559578e-12	2
Manif	2.314111e-07	2
Grds.Parents	4.492277e-07	2
Menace	3.346178e-06	2
Famine	3.937522e-06	2
Procédé.Inutile	2.553569e-05	2
Concerné	2.870236e-05	6
Parti.Politique	4.777906e-04	8
Risque.Eco	1.788315e-03	2
Produits.Phytosanitaires	4.014243e-03	2
Info.Active	7.627213e-03	2
CSP	8.994752e-03	18
Relation	1.325999e-02	2
Futur.Progrès	1.504807e-02	2

Sortie FactoMineR

Description de la partition par les variables quantitatives

• Méthodologie statistique : le test de Fisher

Pour chaque variable, on teste l'hypothèse

 H_0 : égalité des moyennes de la variable dans les K classes : $\mu_1 = \mu_2 = \cdots = \mu_K$ Test de Fisher de l'analyse de la variance à un facteur

Une variable fortement liée à la partition

« Texture souple »

```
Df Sum Sq Mean Sq F value Pr(>F)
clust 5 6.135 1.2270 12.29 1.36e-07 ***
Residuals 46 4.592 0.0998
```


Tableau de synthèse

\$quanti.var		
	Eta2	P-value
intensité.du.gout	0.7701139	1.276654e-13
gout.salé	0.7186823	1.203066e-11
gout.fruité	0.6506794	1.520774e-09
texture.granuleuse	0.6440460	2.310547e-09
texture.souple	0.5719232	1.363082e-07
texture.fondante	0.5703218	1.479529e-07
gout.sucré	0.5301961	1.042116e-06
gout.caractéristique	0.4972990	4.524208e-06
texture.caractéristique	0.4822602	8.543592e-06
gout.acide	0.4774031	1.044420e-05
gout.piquant	0.4752752	1.139734e-05
texture.collante	0.3703465	5.380891e-04
parfum.propionique	0.3577279	8.108694e-04
intensité.du.parfum	0.3320218	1.811232e-03
texture.ferme	0.3309750	1.869837e-03
parfum.butyrique	0.2758158	9.117640e-03

Sortie FactoMineR

4.9.2 Caractérisation d'une classe par les variables

Méthodologie

L'intérêt de chaque variable, active ou supplémentaire, quantitative ou qualitative, est testé à tour de rôle pour chacune des classes

Critère d'intérêt d'une variable

- Une variable est jugée caractéristique d'une classe si les individus de cette classe possèdent des valeurs remarquables pour cette variable par rapport aux individus de la population en général
- Valeur remarquable ?
 - variable quantitative : valeur extrême
 - modalité d'une variable qualitative : sa fréquence est faible ou élevée

Description d'une classe par les variables quantitatives

Goût fruité

est caractéristique des emmentals de la classe 5 Sa moyenne dans la classe est significativement supérieure à la moyenne générale

Texture souple

est caractéristique des emmentals des classes 3 et 5 Sa moyenne dans la classe est significativement inférieure à la moyenne générale

Méthodologie statistique

Pour chaque variable X, on teste l'hypothèse :

 H_0 : les individus de la classe k ont été tirés au hasard dans la population

Statistique de test

Sous H_0 , la moyenne de X dans la classe (\bar{X}_k) est peu différente de la moyenne de X dans la population (\bar{X})

Plus précisément : sous l'hypothèse de normalité de X,

$$ar{X}_k pprox \mathcal{N}\left(ar{X}, rac{s}{\sqrt{n_k}} \sqrt{rac{n-n_k}{n-1}}
ight) \quad ext{ou} \qquad V - ext{Test} = rac{ar{X}_k - ar{X}}{s_{ar{X}_k}} pprox \mathcal{N}(0,1)$$

$$|V. Test| > 1,96 \Leftrightarrow p - value < 5\%$$

Description des classes 2 et 5

```
$quanti$`2`
                       v.test Mean in category Overall mean sd in category Overall sd
                                                                                             p.value
                                       3.066667
                                                    3,448077
                                                                   0.3299832
                                                                              0.4777714 0.039495306
                    -2.058989
gout.amer
parfum.butyrique
                                      2.700000
                                                    3.176923
                                                                   0.4396969
                                                                              0.5756653 0.032615779
                   -2.136781
gout.acide
                   -2.148858
                                      3.083333
                                                    3.571154
                                                                   0.2967416
                                                                              0.5855098 0.031645675
intensité.du.gout
                   -2.408617
                                      4.150000
                                                    4.659615
                                                                   0.2565801
                                                                               0.5457034 0.016013105
gout.salé
                   -2.470901
                                      3.416667
                                                    3.873077
                                                                   0.2477678
                                                                               0.4764110 0.013477301
                                                    3,663462
parfum.propionique -2.644705
                                      3.183333
                                                                   0.2192158
                                                                               0.4682327 0.008176211
gout.fruité
                   -2.849798
                                                    3.609615
                                                                   0.2134375
                                                                               0.5215582 0.004374695
                                       3.033333
                   -3.084028
                                      2.516667
                                                    3.075000
                                                                   0.2671870
                                                                               0.4669356 0.002042181
gout.sucré
texture.granuleuse -3.187580
                                      2.383333
                                                    3.430769
                                                                   0.2733537
                                                                               0.8475164 0.001434686
$quanti$`5`
                       v.test Mean in category Overall mean sd in category Overall sd
                                                                                              p.value
                     4.258905
                                      4.866667
                                                    3.609615
                                                                  0.04714045
                                                                              0.5215582 2.054311e-05
gout.fruité
gout.sucré
                     3.374374
                                      3.966667
                                                    3.075000
                                                                  0.04714045
                                                                              0.4669356 7.398375e-04
intensité.du.gout
                     3.368876
                                       5.700000
                                                    4.659615
                                                                  0.08164966
                                                                               0.5457034 7.547550e-04
                     3.190757
                                                    3.873077
                                                                  0.12472191
                                                                               0.4764110 1.419003e-03
gout.salé
                                       4.733333
texture.fondante
                     2.473516
                                      4.700000
                                                    3.776923
                                                                  0.57154761
                                                                               0.6594331 1.337907e-02
parfum.propionique
                     2.150617
                                      4.233333
                                                    3.663462
                                                                  0.28674418
                                                                               0.4682327 3.150643e-02
gout.acide
                     2.099030
                                      4.266667
                                                    3.571154
                                                                  0.04714045
                                                                               0.5855098 3.581426e-02
                                                                               0.4541842 2.444142e-03
texture.souple
                    -3.030172
                                      3.300000
                                                    4.078846
                                                                  0.24494897
```


Description d'une classe par les variables qualitatives

La fréquence d'une modalité au sein d'une classe est-elle sur ou sous représentée par rapport à sa fréquence dans la population ?

```
$category$`1`
                                                           Cla/Mod
                                                                     Mod/Cla
                                                                                 Global
                                                                                             p.value
                                                                                                        v.test
Position.Culture=Position.Culture Favorable
                                                         87.500000
                                                                   91.304348 35.555556 1.856756e-23
                                                                                                      9.980422
Position.Al.H=Position.Al.H Favorable
                                                                   80.434783 28.148148 3.676870e-23
                                                         97.368421
                                                                                                      9.912405
Position.Al.A=Position.Al.A Favorable
                                                         84.090909 80.434783 32.592593 2.069184e-17
                                                                                                      8.489842
Danger=Danger Non
                                                         79.487179
                                                                   67.391304 28.888889 5.692246e-12
                                                                                                      6.887147
Grds.Parents=Grds.Parents Non
                                                         63.265306
                                                                                                      5.206903
                                                                  67.391304 36.296296 1.920186e-07
Menace=Menace Non
                                                         58.333333 60.869565 35.555556 2.626576e-05
                                                                                                     4.203639
Famine=Famine Oui
                                                         50.000000
                                                                   73.913043 50.370370 1.441665e-04
                                                                                                     3.800909
Parti.Politique=UMP
                                                         55.000000
                                                                   47.826087 29.629630 1.996694e-03
                                                                                                      3.090724
Position.Al.A=Position.Al.A Très Favorable
                                                                   15.217391 5.925926 4.537076e-03
                                                                                                      2.838186
                                                         87.500000
Manif=Manif Non
                                                         37.704918 100.000000 90.370370 6.427002e-03
                                                                                                      2.725162
Manif=Manif Oui
                                                          0.000000
                                                                     0.000000 9.629630 6.427002e-03 -2.725162
Famine=Famine Non
                                                         17.910448
                                                                   26.086957 49.629630 1.441665e-04 -3.800909
Menace=Menace Oui
                                                         20.689655
                                                                    39.130435 64.444444 2.626576e-05 -4.203639
Grds.Parents=Grds.Parents Oui
                                                         17.441860
                                                                   32.608696 63.703704 1.920186e-07 -5.206903
Position.Culture=Position.Culture Pas Favorable du Tout
                                                          0.000000
                                                                     0.000000 24.444444 1.659400e-07 -5.233934
Position.Al.A=Position.Al.A Plutôt Défavorable
                                                          2.564103
                                                                     2.173913 28.888889 1.447494e-07 -5.259116
Position.Culture=Position.Culture Plutôt Défavorable
                                                          7.407407
                                                                     8.695652 40.000000 4.642692e-08 -5.464479
Position.Al.A=Position.Al.A Pas Favorable du Tout
                                                          2.272727
                                                                     2.173913 32.592593 6.241264e-09 -5.810161
Danger=Danger Oui
                                                        15,625000
                                                                    32.608696 71.111111 5.692246e-12 -6.887147
Position.Al.H=Position.Al.H Pas Favorable du Tout
                                                          0.000000
                                                                     0.000000 37.037037 1.694777e-12 -7.057539
```


Caractérisation d'une classe par les individus

Individus moyens ou parangons

```
cluster: 1
    23 24 52 36 13
2.061208 2.478712 2.576674 3.146382 3.223483
cluster: 2
 30 40 27 16 29
1.750817 2.157566 2.729179 2.740139 2.943888
cluster: 3
    41 33 47 49
1.717848 1.896040 2.415650 2.784670 2.969118
cluster: 4
    39 34 19 43 25
2.103091 2.409888 2.481580 2.659681 2.813457
cluster: 5
1.423763 2.657145 2.872238
cluster: 6
   6 15 9 21
1.746877 1.993348 2.223134 2.296515 2.429671
```

Pour chaque classe, on indique les cinq individus les plus proches du centre de gravité de la classe

Individus spécifiques (éloignés des autres centres de gravité)

```
cluster: 1
       36 13 52 23
6.325038 6.313429 5.907366 4.799391 4.603200
cluster: 2
    29 27 28 16 30
5.948479 5.025242 4.034969 3.688640 3.537056
cluster: 3
    47 20 38 41
5.349783 5.104888 4.352613 3.948951 3.555841
cluster: 4
5.297346 4.955671 4.633673 4.626562 4.448787
cluster: 5
5.687283 5.098952 4.579356
cluster: 6
    11 17 12 15
4.876756 4.777940 4.373645 4.264669 4.104429
```

Pour chaque classe, on indique les cinq individus les plus éloignés des centre de gravité de toutes les classes

Élément « caricatural » de la classe Il présente les caractéristique de la classe « à l'extrême »

Paramétrage de la classification sur facteurs (fonction HCPC de R)

