Selected Topics in Data Analysis

Raim, Ostrouchov, Neerchal

UMBC

Introduction

- 1. Linear Regression
- 2. ANOVA
- 3. Logistic Regression

What is Regression?

- A way of predicting the value of one variable (dependent) from another variable (independent)
- It is a hypothetical relationship, an approximation at best
- A model for this relationship is assumed, usually linear
- That is, $Y \approx \beta_0 + \beta_1 X$

Method of Least Squares

$$\mathsf{Min}\sum_{i=1}^n \left(Y_i - \beta_0 - \beta_1 X_i\right)^2$$

Slope
$$\hat{eta}_1 = rac{\displaystyle\sum_{i=1}^n \left(Y_i - ar{Y}\right) \left(X_i - ar{X}\right)}{\displaystyle\sum_{i=1}^n \left(X_i - ar{X}\right)^2}$$

4/78

Intercept
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

Assumptions Underlying LR

- The model is correct: $E(Y \mid X) = \beta_0 + \beta_1 X$
- Variability is constant: $V(Y \mid X) = \sigma^2$
- Data are uncorrelated: $Cov(Y_i, Y_j) = 0$ for $i \neq j$
- Data are Gaussian: $Y_i \mid X \sim \text{Normal}(\beta_0 + \beta_1 X_i, \sigma^2)$

Under the LR Assumptions..

$$\left(\begin{array}{c} \hat{\beta_0} \\ \hat{\beta_1} \end{array} \right) \sim \left(\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right), \quad \sigma^2 \left(\begin{array}{cc} \frac{1}{n} + \frac{\bar{X}^2}{S_{XX}} & -\frac{\bar{X}}{S_{XX}} \\ \\ -\frac{\bar{X}}{S_{XX}} & \frac{1}{S_{XX}} \end{array} \right)$$

where
$$S_{XX} = \sum_{i=1}^{n} (X_i - \bar{X})^2$$
.

• The usual inference procedures are carried out:

$$H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$$

t-statistic:
$$t = \frac{\hat{\beta}_1}{SE_{\hat{\beta}_1}} = \frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{S_{XX}}}$$
 where $\hat{\sigma^2} = \text{Residual SS} = \sum_{i=1}^n (Y_i - \hat{Y})^2$

Test: Reject H_0 if $\mid t \mid > t_{\alpha/2,n-2}$

• The ANOVA table, F-test, R-squared statistic, are obtained.

Album Sales Example

- From Field, Miles and Field (2012).
- Y: Album sales (CDs and downloads) in the week after release
- X: The amount (in units of £1000) spent promoting the record before release
- Data consists of 200 different music album releases.
- Objectives:
 - ▶ to assess the impact of promotion expediture on album sales
 - ▶ to predict album sales from promotion expenditure

Album Sales Example: Simple Linear Regression

... Demonstration ...

(See AlbumSalesLinearReg.Rmd)

R,O,N (UMBC) Regression Linear Regression::Introduction 8/78

Prediction and Confidence Intervals

• Predicting Y corresponding to a given value of the predictor X = x

Point Prediction:
$$\hat{Y} = \hat{\beta_0} + \hat{\beta_1}x$$

Prediction Interval:
$$\hat{\beta}_0 + \hat{\beta}_1 x \pm t_{\alpha/2,n-2} \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{X})^2}{S_{XX}}}$$

• Estimating conditional mean $E(Y \mid X = x)$

Point Estimate:
$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Interval Estimate:
$$\hat{\beta}_0 + \hat{\beta}_1 x \pm t_{\alpha/2, n-2} \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{X})^2}{S_{XX}}}$$

R,O,N (UMBC) Regression Linear Regression::Introduction 9/78

Prediction and Confidence Intervals

R,O,N (UMBC) Regression Linear Regression::Introduction 10/78

Album Sales Example: Simple Linear Regression

... Demonstration ...

(See AlbumSalesLinearRegPred.Rmd)

R,O,N (UMBC) Regression Linear Regression::Introduction 11/78

Multiple Linear Regression

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon$$

- The model is correct: $E(Y \mid X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k$
- Variability is constant: $V(Y \mid X) = \sigma^2$
- Data are uncorrelated: $Cov(Y_i, Y_i) = 0$ for $i \neq j$
- Data are Gaussian: $Y_i \mid X \sim \text{Normal}$

Multiple Linear Regression

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + \epsilon$$

 Explaining or predicting a dependent variable as a quadratic or higher degree polynomial of an explanatory variable E(Y | X) = β₀ + β₁X + β₂X² + β₃X³

- Using other transformations of explanatory variables in the model $E(Y \mid X) = \beta_0 + \beta_1 X + \beta_2 log(X) + \beta_3 X^2$
- Capturing interaction between explanatory variables using cross-products in the regression model $E(Y \mid X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$
- Using categorical independent variables $E(Y \mid X) = \beta_0 + \beta_1 \text{ IND(Gender?)} + \beta_2 \text{ IND(Surgery?)} + \beta_3 \text{Age}$

MLR: First things first..

- Obtain summary of the data
 - ► Examine univariate graphics
 - ► Examine pairwise relationships
- Obtain multivariate summary of data
 - ▶ Correlations
 - Partial correlations
- Examine multivariate graphics
 - ► Pairwise scatterplots
 - ► Scatterplot matrix
 - Contour plots

Album Sales Example

- From Field, Miles and Field (2012).
- Y: Album sales (CDs and downloads) in the week after release
- X1: Advert (same as before)
- X2: Airplay (amount of time the songs from the CD were played on air)
- X3: Attract (A score fore the attractiveness of the cover design)
- Data consists of 200 different music album releases.
- Objectives:
 - ▶ to assess the impact of promotion expediture on album sales
 - ▶ to predict album sales from promotion expenditure

- A package called Rcmdr is useful for playing around with small size data set
- Author: John Fox, MacMaster University, Canada
- Textbook: Using the R Commander: A Point-and-Click Interface for R, Chapman and Hall-CRC Press, 2017.
- Rcmdr is installed like any other package
- Warning: Rcmdr will open its own window and will require some care when it is launched from within RStudio

R,O,N (UMBC) Regression Linear Regression::Introduction 17/78

R,O,N (UMBC)

Graphs > 3D Scatterplot

Choose one response variable and two explanatory variables

R,O,N (UMBC) Regression Linear Regression::Introduction 20/78

You can rotate the graph to examine the scatter-cloud....

R,O,N (UMBC) Regression Linear Regression::Introduction 21/78

Method of Least Squares

Minimze
$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_{i1} - \beta_2 X_{i2} - \dots - \beta_k X_{ik})^2$$

Solutions are obtained from the Normal Equations:

$$\begin{pmatrix} n & \sum X_1 & \dots & \sum X_k \\ \sum X_1 & \sum X_1^2 & \dots & \sum X_1 X_k \\ \dots & \dots & \dots & \dots \\ \sum X_k & \sum X_k X_1 & \dots & \sum X_k^2 \end{pmatrix} \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_0 \\ \dots \\ \hat{\beta}_0 \end{pmatrix} = \begin{pmatrix} \sum Y \\ \sum X_1 Y \\ \dots \\ \sum X_k Y \end{pmatrix}$$

R,O,N (UMBC) Regression Linear Regression::Introduction 22/78

MLR for the Album Sales Data

album2 <- read_csv("AlbumSales2.csv")
album2.out <- lm(sales~adverts+airplay+attract,data=album2)

```
call:
lm(formula = sales ~ adverts + airplay + attract, data = album2)
Residuals:
    Min 10 Median
                              30
                                     Max
-121.324 -28.336 -0.451 28.967 144.132
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -26.612958 17.350001 -1.534 0.127
adverts 0.084885 0.006923 12.261 < 2e-16 ***
airplay 3.367425 0.277771 12.123 < 2e-16 ***
attract 11.086335 2.437849 4.548 9.49e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 47.09 on 196 degrees of freedom
Multiple R-squared: 0.6647, Adjusted R-squared: 0.6595
F-statistic: 129.5 on 3 and 196 DF, p-value: < 2.2e-16
```

R,O,N (UMBC) Regression Linear Regression::Introduction 23/78

MLR for the Album Sales Data

```
summary (album2.out)
anova(album2.out)
> summarv(album2.out)
Call:
lm(formula = sales ~ adverts + airplay + attract, data = album2)
Residuals:
    Min
         1Q Median 3Q Max
-121.324 -28.336 -0.451 28.967 144.132
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -26.612958 17.350001 -1.534 0.127
            adverts
airplay 3.367425 0.277771 12.123 < 2e-16 ***
attract 11.086335 2.437849 4.548 9.49e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 47.09 on 196 degrees of freedom
Multiple R-squared: 0.6647, Adjusted R-squared: 0.6595
F-statistic: 129.5 on 3 and 196 DF, p-value: < 2.2e-16
```

R,O,N (UMBC) Regression Linear Regression::Introduction 24/78

MLR for the Album Sales Data

```
> anova(album2.out)

Analysis of Variance Table

Response: sales

Df Sum Sq Mean Sq F value Pr(>F)

adverts 1 433688 433688 195.600 < 2.2e-16 ***
airplay 1 381836 381836 172.214 < 2.2e-16 ***
attract 1 45853 45853 20.681 9.492e-06 ***

Residuals 196 434575 2217

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

R,O,N (UMBC) Regression Linear Regression::Introduction 25/78

Goodness-of-fit Measures

- Residual Sum of Squares
 - ► Predicted Value: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2} + \cdots + \hat{\beta}_k X_{ik}$
 - ► Residual: $r_i = Y_i \hat{Y}_i$
 - ► Residual Standard Error: $\sqrt{\frac{\sum_{i}(Y_i \hat{Y}_i)_i^2}{n (k+1)}}$
- Coefficient of Determination
 - $R^2 = \frac{SSTotal RSS}{SSTotal}$ $0 < R^2 < 1$

 - $ightharpoonup R^2$ is the square of the correlation coefficient between Y and its best predictor based on all X's
 - ► Stein's formula for adjusted $R^2 = 1 \left(\frac{n-1}{n-k-1}\right)\left(\frac{n-2}{n-k-2}\right)\left(\frac{n+1}{n}\right)(1-R^2)$
 - ► R uses $R^2 = 1 (\frac{n-1}{n-k})(1 R^2)$

Testing for Significance of the Regression

Source	Degrees of freedom	Sum of Squares	Mean Squares	F, df,p-value
Model	k	SS_M	MS _M	
Residuals/Error	n-k-1	SS _R	MS_R	
Total	n-1			

• Testing for all coefficents

- \vdash $H_0: \beta_1 = 0, \beta_2 = 0, \dots, \beta_k = 0, H_1: \text{ not } H_0$
- ▶ Under H_0 , $F \sim F_{k,n-k-1}$; Reject H_0 if $F > F_{\alpha,(k,n-k-1)}$
- F = 129.5, on (3, 196). p value = 2.2E 16
- ► Conclusion: Regression is significant
- ► Tests for individual coefficients can be read from the output also

R,O,N (UMBC) Regression Linear Regression::Introduction 27/78

Testing for Significance of Individual β 's

```
call:
lm(formula = sales ~ adverts + airplay + attract, data = album2)
Residuals:
    Min
              10
                   Median
                                30
                                        Max
-121.324 <del>-28.3</del>36
                   -0.451
                            28.967
                                    144, 132
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -26.612958 17.350001 -1.534
adverts
             0.084885 0.006923 12.261 < 2e-16 ***
            3.367425  0.277771  12.123  < 2e-16 ***
airplav
            11.086335 2.437849 4.548 9.49e-06 ***
attract
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '
Residual standard error: 47.09 on 196 degrees of freedom
Multiple R-squared: 0.6647, Adjusted R-squared: 0.6595
F-statistic: 129.5 on 3 and 196 DF. p-value: < 2.2e-16
```

R,O,N (UMBC) Regression Linear Regression::Introduction 28/78

Comparing Nested Models

Full Model:
$$Y \approx \beta_0 + \beta_1 X_1 + \dots + \beta_g X_g + \dots + \beta_k X_k$$

$$H_0 \quad \beta_{g+1} = \beta_{g+2} = \dots = \beta_k = 0$$

Reduced Model: $Y \approx \beta_0 + \beta_1 X_1 + \cdots + \beta_g X_g$

```
> albumSales.3 <- lm(sales ~adverts+airplay+attract,data=album2)
> albumSales.1 <- lm(sales ~adverts,data=album2)
> anova(albumSales.1,albumSales.3)
Analysis of Variance Table

Model 1: sales ~ adverts
Model 2: sales ~ adverts + airplay + attract
   Res.Df   RSS Df Sum of Sq   F   Pr(>F)
1   198 862264
2   196 434575   2   427690 96.447 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

R,O,N (UMBC) Regression Linear Regression::Introduction 29/78

Comparing Nested Models in Rcmdr

Comparing nested models in Rcmdr

Testing for subsets of coefficients

R,O,N (UMBC) Regression Linear Regression::Introduction 30/78

Model Selection Criteria

- Akaike information criteria (AIC)
- Adjusted R-squared
- Cross-validation
- Leave-one-out (LOO)

Akaike information criteria (AIC)

$$AIC = n \ln \left(\frac{RSS}{n} \right) + 2k$$

where RSS is the sum of squared residuals in a model with k parameters.

- As we include more predictors (k), SSE decreases and therefore the first term decreases
- As we include more predictors (k), the second term increases
- AIC is trying to strike a trade off between goodness of fit (SSE) and parsimony (k)
- Related quanties are Schwarz information criteria, Bayesian information criteria etc
- Prefer models which give smaller AIC values

Cross-Validation

- Data Splitting
 - ► Training dataset: a subset of the original data set used for estimating the model to be evaluated
 - ► Test dataset: a subset of the original data set, set aside for evaluating the goodness of fit of the model
- Appropriate for examining how well does the model generalize from sample to population
- In principle, any reasonable goodness of fir criteria may be used. Typically, either SSE, or R2, or adjusted R2 or similar prediction evaluation criteria is used.
- Typically, test data set may be based on a scientifically meaningful criteria (such as use data before a certain date for training, and data after that date for testing)

Cross-Validation

- Test data set may also be chosen at random. In this case, one may repeat the training-test exercise for a variety of choices of test data. [k-fold]
- Rules of thumb
 - ► At least 10 observations per parameter (Field: 50+8k)
 - ► Test dataset size is approximately 20% of the original dataset
 - ► In R.

```
# K-fold cross-validation
        library(DAAG)
        cv.lm(df=mydata, fit, m=3) # 3 fold cross-
validation
```

▶ LOO is the extreme cas: Use $LOOR_i = Y_i - \hat{Y}_{i,-i}$, where $\hat{Y}_{i,-i}$ is the prediction of Y_i based on all other observations

```
cv.lm(df=mydata, fit, m=n) # Leave-One-Out (LOO)
```

R,O,N (UMBC) Regression Linear Regression::Introduction 34/78

Variable Selection

Forward

- Start with a model containing one predictor with the corresponding the highest
- Sequentially add predictors providing the largest increase in Variable once entered stays in R²

Backward

- ► Start with the model including all predictors
- ightharpoonup Sequentially drop predictors providing the least decrease in R^2
- ► Dropped variables stay out

Stepwise

- ► Start the forward method
- ightharpoonup Sequentially add predictors providing the largest increase in R^2
- At each step evaluate all variables in the model for dropping as in the backward method
- stepAIC() in the MASS package; leaps package for all-subsets
- These are traditional methods, more sophisticated methods will be discussed later

Residual Diagnostics

Outliers

- ► An observation with large residual
- ► An observation whose dependent-variable value is unusual given its values on the predictor variables
- ► An outlier may indicate a sample peculiarity or may indicate a data entry error or other problem

Leverage

- ► An observation with an extreme value on a predictor variable
- Leverage is a measure of how far an independent variable deviates from its mean
- ► These leverage points can have an effect on the estimate of regression coefficients

Influence

- Influence can be thought of as the confluence of leverage and outlier property
- Removing the observation substantially changes the estimate of coefficients

Checking Assumptions

- Linearity of the model
- Distributional assumptions on the errors
 - ► mean zero?
 - constant variance?
 - ► Gaussian?
- Independence of errors

Checking normality

- First save the residuals to a dataframe:
 - album2\$resid <- resid(albumSales.3)
- Now use the Rcmdr graphics and statistics

38/78

R,O,N (UMBC) Regression Linear Regression::Introduction

- Histogram
- •Q-Q plot
- •Shapiro-Wilk statistic

Rcmdr> wi th(al bum2, shapi ro. test(resy))

Shapiro-Wilk normality test

data: resy

W = 0.99483, p-value = 0.7253

Further diagnostics

• Load the "model object" to Rcmdr

R,O,N (UMBC) Regression Linear Regression::Introduction 40/78

Checking constancy of variance

Cone-shaped scatter plots would indicate violations of homoscadasticity

R,O,N (UMBC) Regression Linear Regression::Introduction 41/78

Checking constancy of variance

QQ plot

st(resy))

R,O,N (UMBC) Regression Linear Regression::Introduction 42/78

Checking for nonlinearity

R,O,N (UMBC) Regression Linear Regression::Introduction 43/78

 High leverage observations show in added variable plots as points horizontally distant from the rest of the data.

R,O,N (UMBC) Regression Linear Regression::Introduction 44/78

Influence plot

- Circle size proportional to Cook's D
- Hat value average here 4/200
- Looking for the combination of large Hatvalues to go with large Cook's D

R,O,N (UMBC) Regression Linear Regression::Introduction 45/78

Variance-inflation factors -multicollinearity

Numerical diagnostics

R,O,N (UMBC) Regression Linear Regression::Introduction 46/78


```
Rcmdr> bptest(sales ~ adverts + airplay + attract, varformula = ~ Rcmdr+ fitted.values(albumSales.3), studentize=TRUE, data=album2) studentized Breusch-Pagan test data: sales ~ adverts + airplay + attract BP = 0.28272, df = 1, p-value = 0.5949
```

R,O,N (UMBC) Regression Linear Regression::Introduction 47/78

Outlier test for the largest residual

R,O,N (UMBC) Regression Linear Regression::Introduction 48/78

Summary of Regression Module

- A gentle introduction to using R to obatin basic regression computations
- A few useful graphical tools used in the context of regression
- Some commonly used inference methods illustrated
- A brief overview of residual diagnostics

Introduction

- 1. One-way ANOVA
- 2. Multiple Comparison Procedures
- 3. Family wise Error Rates
- 4. False Discovery Rate

When and Why do we do ANOVA?

- We can use a t-test to compare means. But:
 - ▶ You can compare only 2 means, with just one grouping variable
 - ▶ Often we would like to compare means from 3 or more groups
- ANOVA
 - ► Compares several means
 - ► Can be used when there more than one grouping variable
 - ► It can be thought of as a multiple linear regression

Data Structure

- The data has to be in the long format. That is, data for different groups have to stacked.
- The data has to contain a group indicator
- The group indicator has to be read as a factor in R

Data Structure

Data Structure

Long (not wide)
Column indicating the group
(this column has to be a factor)

R,O,N (UMBC) Regression Analysis of Variance::Introduction 53/78

ANOVA Notations

Notation

 y_{ij} : the j^{th} sample observation selected from population i

 n_i : the number of sample observations selected from population i

 n_T : the total sample size; $n_T = \sum n_i$

 \bar{y}_i : the average of the n_i sample observations from population i

 $\bar{y}_{..}$: the average of all sample observations; $\bar{y}_{..} = \sum_{i} \sum_{j} \frac{y_{ij}}{n_T}$

t: number of populations in the study

ANOVA model

Let μ_i denote the mean of the ith population. i=1,2,...,T.

Let Y_{ij} denote the j^{th} measurement from the i^{th} population, $j=1,2,...,n_i$.

Then the ANOVA model is: $Y_{ij} = \mu_i + \epsilon_{ij}$, where $\epsilon_{ij} \sim \text{IID N}(0, \sigma^2)$ Objectives of ANOVA:

- (1) Test $H_0: \mu_1 = \mu_2 = \dots = \mu_T$ vs $H_0: \text{not } H_0$
- (2) If H_0 is rejected, then order the population means $(\mu_i$'s)

The ANOVA F-test is used for (1). In order to accomplish (2), we need to test the hypotheses H_{0i} ; $\mu_i = \mu_i$ simultaneously.

Or obtain simultaneous confidence intervals for $\{\mu_i - \mu_j : i < j\}$

What Does ANOVA Tell Us?

- Null hyothesis:
 - Like a t-test, ANOVA tests the null hypothesis that the means are the same.
- Experimental hypothesis:
 - The means differ.
- ANOVA is an omnibus test
 - It test for an overall difference between groups.
 - It tells us that the group means are different.
 - It doesn't tell us exactly which means differ.

Data Structure

ANOVA Table

Source	Sum of Squares	Degrees of Freedom	Mean Square	F Test
Between Samples	SSB	t-1	$s_B^2 = \frac{SSB}{t-1}$	$\frac{s_B^2}{s_W^2}$
Within Samples	SSW	$n_T - t$	$s_W^2 = \frac{SSW}{n_T - t}$	⁵ W
Totals	SST	$n_T - 1$	_	

R,O,N (UMBC) Regression Analysis of Variance::Introduction 57/78

ANOVA

 The null hypothesis of the equality of t population means is rejected if

$$F = \frac{s_B^2}{s_W^2} > F_{\alpha, t-1, n_T - t}$$

• Summarize the results in an ANOVA table. . .

ANOVA

Total Sum of Squares (SST)

$$SST = \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$

• Within-sample Sum of Squares (SSW)

$$SSW = \sum_{i=1}^{t} \sum_{i=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

= $(n_1 - 1) s_1^2 + (n_2 - 1) s_2^2 + \dots + (n_t - 1) s_t^2$

Between-sample Sum of Squares (SSB)

$$SSB = \sum_{i=1}^{t} n_i \left(\bar{y}_{i.} - \bar{y}_{..} \right)^2$$

Motor Data Set

- Five brands of motors were compared for noise
- Six units were tested in each group
- Data is in motor.xls, can be loaded easily for any of the packages
- Dataframe is also named motor

Why Use Follow-Up Tests?

- The F-ratio tells us only that the experiment was successful
 - i.e. group means were different
- It does not tell us specifically which group means differ from which.
- We need additional tests to find out where the group differences lie.

Pairwise Comparisons of Means

95% family-wise confidence level

R,O,N (UMBC) Regression Analysis of Variance::Introduction 62/78

Pairwise Comparisons of Means: Fisher's Least Significant Difference

Fit: aov(formula = vibration..microns. ~ Brand.fac, data = motor)

Linear Hypotheses:

```
Estimate Std. Error t value Pr(>|t|)
2 - 1 == 0 2.26667 0.55183 4.108 0.00313 **
3 - 1 == 0 -0.01667 0.55183 -0.030 1.00000
4 - 1 == 0 1.05000 0.55183 1.903 0.34183
5 - 1 == 0 -0.60000 0.55183 -1.087 0.81132
3 - 2 == 0 -2.28333 0.55183 -4.138 0.00291 **
4 - 2 == 0 -1.21667 0.55183 -2.205 0.21070
5 - 2 == 0 -2.86667 0.55183 -5.195 < 0.001 ***
4 - 3 == 0 1.06667 0.55183 1.933 0.32684
5 - 3 == 0 -0.58333 0.55183 -1.057 0.82620
5 - 4 == 0 -1.65000 0.55183 -2.990 0.04449 *
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 (Adjusted p values reported -- single-step method)

R,O,N (UMBC) Regression Analysis of Variance::Introduction 63/78

What do we mean by "simultaneous coverage"?

Let $A_i = \text{event that } \theta_i \in [L_i, U_i]$. Coverage probability (Confidence Level)

for each interval is $P(A_i)$. Simultaneous coverage probability= $P\left(\bigcap_{i=1}^{m} A_i\right)$.

$$\min_{i=1,\dots,m} \left. \left\{ P(A_i^{}) \right\} \geq P\!\left(\bigcap_{i=1}^m A_i^{} \right) = 1 - P\!\left[\left(\bigcap_{i=1}^m A_i^{} \right)^{\!\!\!\!\!\!\!^{\mathrm{c}}} \right] = 1 - P\!\left[\bigcup_{i=1}^m A_i^{} \right] \geq 1 - \sum_{i=1}^m P\!\left[A_i^{} \right]$$

If $P(A_i) = 1 - \alpha$, for each i,

$$1 - \alpha \ge P \left(\bigcap_{i=1}^{m} A_{i} \right) \ge 1 - \sum_{i=1}^{m} P \left[A_{i}^{c} \right] = 1 - m\alpha$$

Simultaneous cofidence is [usually] LESS THAN individual confidence !!

R,O,N (UMBC) Regression Analysis of Variance::Introduction 64/78

What do we mean by "family-wise error rate"?

Consider simultaneous testing of several hypotheses:

$$H_{0i}:\theta_i=0 \text{ vs } H_{1i}:\theta_i\neq 0. \text{ Let } R_i=\{ \text{ Reject } H_{0i} \}, \text{ the rejection region.}$$

Experimentwise Error Rate= $P\left(\bigcup_{i=1}^{m} R_{i}\right)$, when all H_{0i} are true.

$$\text{In general, } \max_{\underline{i}=1,\dots,m} \ \left\{ P(R_{\underline{i}} \) \right\} \leq \ P\bigg(\bigcup_{\underline{i}=1}^m R_{\underline{i}} \ \bigg) \leq \sum_{\underline{i}=1}^m P\big[R_{\underline{i}} \].$$

Suppose, H_{0i} : $\theta_i = 0$ for all i and $P(R_i) = \alpha$. Then,

$$\alpha \leq P\left(\bigcup_{i=1}^{m} R_{i}\right) \leq m\alpha$$
, but in practice it can be much larger than α .

R,O,N (UMBC) Regression Analysis of Variance::Introduction 65/78

One popular solution: Bonferroni

• Perform each test at level α/m so that

$$P\left(\bigcup_{i=1}^{m} R_{i}\right) \leq \sum_{i=1}^{m} P[R_{i}] = m \frac{\alpha}{m} = \alpha.$$

- Works, but tests become too conservative
- Construct each confidence interval with confidence level $1 \frac{\alpha}{m}$
 - · Works, but intervals are too wide

R,O,N (UMBC) Regression Analysis of Variance::Introduction 66/78

Family-wise Error Rates

- Bonferroni method
- Fisher's LSD
- Tukey's W Procedure
- Student-Newman-Keuls Procedure
- Dunnett's Procedure
- Scheffe's S method
- Since testing procedure is a "dual" of computing confidence intervals, each method above applies to control simultaneous coverage also.

Tukey's W Procedure

- 1. Rank the t sample means
- 2. Two population means are different if

$$|\bar{y}_{i.} - \bar{y}_{j.}| \ge W$$
, where $W = q_{\alpha}(t, \nu) \sqrt{\frac{s_W^2}{n}}$

note that sample sizes must be the same!

Tukey's procedure in R

```
aov(formula = vibration.microns. ~ Brandfac, data = motor)
  > TukevHSD(AnovaModel.2)
  Tukev multiple comparisons of means
  95% family-wise confidence level
  Fit: aov(formula = vibration.microns. ~ Brandfac, data = motor)
$Brandfac
         diff
                  lwr
                          upr
                                     p adi
2-1 2 26666667 0 6460270 3 8873064 0 0031588
```

3-1 -0.01666667 -1.6373064 1.6039730 0.9999998

4-1 1 05000000 -0 5706397 2 6706397 0 3418272

5-1 -0.60000000 -2.2206397 1.0206397 0.8112981

3-2 -2.28333333 -3.9039730 -0.6626936 0.0029299

4-2 -1 21666667 -2 8373064 0 4039730 0 2106883

5-2 -2.86666667 -4.4873064 -1.2460270 0.0002024

4-3 1.06666667 -0.5539730 2.6873064 0.3268245

5-3 -0 58333333 -2 2039730 1 0373064 0 8262091

5-4 -1.65000000 -3.2706397 -0.0293603 0.0445279

60/78 R.O.N (UMBC) Regression Analysis of Variance: Introduction

Simint in R

R Documentation

simint {multcomp}

Description

Computes simultaneous intervals for several multiple procedures.

Usage

```
## Default S3 method:
simint(y, x=NULL, type=c("Dunnett", "Tukey",
    "Sequen", "AVE", "Changepoint", "Williams", "Marcus",
    "McDermott", "Tetrade"), cmatrix=NULL, conf.level=0.95,
    alternative=c("two.sided", "less", "greater"),
    asympt=FALSE, eps=0.001, maxpts=1e+06, nlevel=NULL,
    nzerocol=c(0,0),...)
```

Family-wise Error Rate (FWER)

· Suppose we have performed m hypotheses tests:

```
H_{01}vs H_{a1} P-value=p_1
H_{02}vs H_{a2} P-value=p_2
\vdots
H_{0m}vs H_{am} P-value=p_m
```

- We reject H_{0j} if $p_j \le \alpha_{_T}$. Thus the j^{th} test has Type I Error $\alpha_{_T}$. That is, the probability of falsely rejecting H_{0i} is $\alpha_{_T}$
- α_{τ} is the individual comparisons type I error rate.
- The family-wise error rate (FWER) is the probability of at least one false rejection. Let us denote this by α_ν
- If A_i = the event that H_{0i} is falsely rejected, then

$$\alpha_{\text{r}} = P(A_{j})$$
 and $\alpha_{\text{F}} = P\left(\bigcup_{j=1}^{m} A_{j}\right)$

• Generally, $\alpha_{\scriptscriptstyle F} >>> \alpha_{\scriptscriptstyle T}$ for large m

Family-wise Error Rate (FWER)

- · Suppose we have performed m hypotheses tests:
- And, suppose the statistics used for testing these hypotheses are mutually independent.
- Then the events A_i's are mutually independent.
- Therefore, $\alpha_{\rm F} = 1 (1 \alpha_{\rm I})^{\rm m}$ $\alpha_{\rm I}$ $0.100 \quad 0.050 \quad 0.010$ $1 \quad 0.100 \quad 0.050 \quad 0.010$ $\{\text{m 5} \quad 0.410 \quad 0.226 \quad 0.049$ $10 \quad 0.651 \quad 0.401 \quad 0.096$

R,O,N (UMBC) Regression Analysis of Variance::Introduction 72/78

Bonferroni method of controlling FWER

Note

$$\boldsymbol{\alpha}_{_{\mathrm{P}}} = \mathbf{P}\!\!\left(\bigcup_{_{j=1}^{^{m}}}^{^{m}}\!\boldsymbol{A}_{_{j}}\right) \! \leq \sum_{_{j=1}^{^{m}}}^{^{m}}\!\mathbf{P}\!\left(\boldsymbol{A}_{_{j}}\right) = \mathbf{m}\boldsymbol{\alpha}_{_{\mathtt{I}}}$$

• Thus, by taking $\alpha_{\rm I} = \frac{\alpha}{m}$ (α being the desired level)

$$\alpha_{_{\rm F}} \le m\alpha_{_{\rm I}} \le m\frac{\alpha}{m} \le \alpha.$$

- This is used when m is relatively small, as mentioned in the pairwise testing (and simultaneous interval estimation) problems as earlier.
- This is known to be too conservative (for large m), that is calls too few tests as signficant.

Bioinformatics example

- 12625 genes from a microarray study of radiation sensitivity
- 44 samples in the normal group and 14 in the radiation sensitivity group
- Goal: identify informative genes.
- · Data structure:

Gene_#	Normal Group	Radiation Group	T-stat	P-value
Gene_1	X1,,x44	Y1,Y14	T_1	p_1
Gene_2	X1,,x44	Y1,Y14	T_2	p_2
Gene_m	X1,,x44	Y1,Y14	T_m	p_m

Bioinformatics example

- Suppose we perform a two sample t-test for each gene.
- Desired level is $0.05 (=\alpha)$
- One t-test per gene. That is, m=12,625.
- That is each test has to be conducted at level $\alpha_1 \le 0.05/(12625) = 3.9 \times 10^{-6}$
- This level is too small and likely to not reject practically all genes!

False Discovery Rate (FDR) Approach

- Different apporach DOES NOT control FWER, instead controls FDR.
- Instead looking at the proportion of falsely rejected hypotheses
- Possible outcomes for the m testing problems

	Accepted Null	Rejected Null	
Null is true	U	V	m ₀
Null is false	Т	S	m_1
	m-R	R	М

Note that

FWER=P(V
$$\geq$$
 1) and FDR=E $\left(\frac{V}{R}\right)$

Benjamini-Hochberg Procedure

- Fix the desired FDR rate α.
- Order the p-values obtained from the m individual tests: p₍₁₎ ≤ p₍₂₎ ≤ ≤ p_(m)
- Define $L = Max \left\{ j: p_{(j)} < \alpha . \frac{j}{m} \right\}$
- Reject all hypotheses H_{0i} for $j \le L$.
- L is called the Benjamini-Hochberg rejection threshold. Graph the $p_{(1)}$ vs $\alpha(j/m)$ to see what is happening.

Bioinformatics example (Contd.)

- We have gene expression data on four groups of patients
- Each group represents a dosage level of the treatment
- Measurements of 12,625 genes are available for each group
- The scientist has performed 12,625 t-tests of comparing each group to a control group.
- Data are given in GeneTesting.xls