PH 712 Probability and Statistical Inference

Part VII: Evaluating Estimators II

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/10/26 17:12:24

Consistency (or consistence, CB Sec 10.1.1)

- A statistic T_n is consistent for $g(\theta)$ if and only if $T_n \approx g(\theta)$ as $n \to \infty$
 - The " \approx " notation is abused here and, rigorously speaking, is supposed to be " $\stackrel{p}{\rightarrow}$ " (convergence in probability);
 - $-T_n \xrightarrow{p} g(\theta) \Leftrightarrow \text{for each } \varepsilon > 0, \lim_{n \to \infty} \Pr(|T_n g(\theta)| > \varepsilon) = 0;$
 - A sufficient condition for $T_n \stackrel{p}{\to} g(\theta)$: as $n \to \infty$, $\lim_{n \to \infty} E(T_n) = g(\theta)$ and $\lim_{n \to \infty} var(T_n) = 0$.
- (CB Example 5.5.3) Suppose that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Then $-S^2 = (n-1)^{-1} \sum_i (X_i \bar{X})^2$ is consistent for σ^2 ;

 - $-\widehat{\sigma}_{\mathrm{ML}}^2 = n^{-1} \sum_i (X_i \bar{X})^2$ is consistent for σ^2 too.

Asymptotic efficiency

- (CB Def 10.1.11) T_n is asymptotically efficient for $g(\theta)$ if and only if $\sqrt{n}\{T_n g(\theta)\} \approx$ $\mathcal{N}(0, \{g'(\theta)\}^2/I_1(\theta))$
 - Where $I_1(\theta)$ is the Fisher information with n=1
 - * For an iid sample, $I_1(\theta) = n^{-1}I_n(\theta)$, no longer a function of n
 - The " \approx " notation is abused here and, rigorously speaking, is supposed to be " $\stackrel{d}{\rightarrow}$ " (convergence in distribution);
 - $-\sqrt{n}\{T_n-g(\theta)\}\xrightarrow{d}\mathcal{N}(0,I_1^{-1}(\theta)\{g'(\theta)\}^2)$ means that the limiting distribution of $\sqrt{n}\{T_n-g(\theta)\}$ is $\mathcal{N}(0, I_1^{-1}(\theta) \{ g'(\theta) \}^2)$
- (CB Def 10.1.16 & HMC Def 6.2.3(c)) Denote by T_n and W_n two estimators for $g(\theta)$. Suppose that $\sqrt{n}\{T_n - g(\theta)\} \approx \mathcal{N}(0, \sigma_T^2)$ and $\sqrt{n}\{W_n - g(\theta)\} \approx \mathcal{N}(0, \sigma_W^2)$. The asymptotic relative efficiency (ARE) of T_n with respect to W_n is defined as

$$ARE(T_n, W_n) = \sigma_W^2 / \sigma_T^2.$$

- T_n is asymptotically more efficient than W_n if and only if $ARE(T_n, W_n) > 1$