EXAMEN PARCIAL TEORÍA DE LA COMPUTACIÓN -04.06.2021

PARTE B Duración: 40 min.

Apellidos y Nombres:....

3. (4 Puntos)Convertir la siguiente máquina de Mealy a la máquina de Moore. Las funciones f y g están dadas por:

 $f(s_0, 1) = s_3$ $f(s_0,0) = s_1$ $g(s_0,0) = 0$ $g(s_0,1)=0$

 $f(s_1,0) = s_3$ $f(s_1, 1) = s_2$ $g(s_1, 0) = 1$ $g(s_1,1) = 0$

 $f(s_2, 1) = s_0 \qquad g(s_2, 0) = 1$ $f(s_2,0) = s_4$ $g(s_2,1) = 0$

 $f(s_3, 1) = s_4$ $g(s_3, 0) = 0$ $f(s_4, 1) = s_1$ $g(s_4, 0) = 0$ $f(s_3,0) = s_0$ $g(s_3,1)=1$

 $q(s_4, 1) = 1$ $f(s_4,0) = s_2$

Halle la cadena de salida (realizando la evaluación correspondiente) para las cadenas de entrada siguientes:

$$u = 1010$$
 $v = 110101$

Considere que $s^* = s_0$.

- 4. Sea G = M(2, R) el conjunto de las matrices de 2×2 con entradas en el conjunto de los números reales R y determinante $\neq 0$. Además, se define $A * B = A \cdot B$ donde $A, B \in G$.
 - a) Sea $f: G*G \to G$. Demuestre que f es una operación binaria, realizando los cálculos correspondientes.(1 punto)
 - b) Demuestre que (G, *) es un grupo. (2 puntos)
 - c) Determine si (G,*) es o no abeliano. (1 punto)