第六周作业

董仕强

Sunday 30^{th} March, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明		0
1	Problem Set for 24 March 2025		
	1.1	Exercise	1
	1.2	Exercise	1
	1.3	Exercise	1
	1.4	Exercise	2
	1.5	Exercise	2
2 Problem Set for 24 March 2025		blem Set for 24 March 2025	2
	2.1	Exercise 0	2
	2.2	Exercise 1	3
	2.3	Exercise 2	3
	2.4	Exercise 3	3
	2.5	Evanoigo 4	1

1 Problem Set for 24 March 2025

1.1 Exercise

Prove Isomoprphism Theorem A

解答

- 1. Let $\phi: U/\ker \varphi \to \operatorname{im} \varphi$.
- 2. $\phi(u + \ker \varphi + v + \ker \varphi) = \phi(u + v + \ker \varphi) = \varphi(u + v) = \varphi(u) + \varphi(v) = \phi(u + \ker \varphi) + \phi(v + \ker \varphi)$ $\phi(\lambda(u + \ker \varphi)) = \phi(\lambda u + \ker \varphi) = \varphi(\lambda u) = \lambda \varphi(u) = \lambda \phi(u + \ker \varphi)$
- 3. If $\phi(u + \ker \varphi) = 0$, then $\varphi(u) = 0$ and $u + \ker \varphi = \ker \varphi$. then [u] = [0]
- 4. For any $y \in \operatorname{im} \varphi$, $\exists u$ such that $\varphi(u) = y$, then $\varphi(u + \ker \varphi) = \varphi(u) = y$, so φ is surjective.

1.2 Exercise

Use Isomoprphism Theorem A to Prove Isomoprphism Theorem C.

解答 Define the map:

$$f: W/U \to W/V, \quad w+U \mapsto w+V$$

the map is surjective, since any $y \in W/V$ is of the form w+V, hence y=(w+V) has a preimage w. The kernel of f consists of elements for which f(w+U)=0, i.e. $w \in V$. Thus, $\ker f=V \in U$. By Isomorphism Theorem A, we obtain:

$$\frac{W}{V} \simeq \frac{W/U}{V/U}$$

1.3 Exercise

Let $U_i \subset V_i$ be subspace, prove the isomorphism,

$$\frac{V_1 \times V_2}{U_1 \times U_2} \simeq \frac{V_1}{U_1} \times \frac{V_2}{U_2}$$

解答 Define the map

$$f: V_1 \times V_2 \to \frac{V_1}{U_1} \times \frac{V_2}{U_2}, quad(v_1, v_2) \mapsto (v_1 + U_1, v_2 + U_2)$$

The map is surjective, since any $y \in \frac{V_1}{U_1} \times \frac{V_2}{U_2}$ is of the form $(v_1 + U_1, v_2 + U_2)$, hence $y = (v_1 + U_1, v_2 + U_2)$ has a preimage (v_1, v_2) .

The kernel of f consists of elements for which $f(v_1 + U_1, v_2 + U_2) = 0$, i.e. $v_1 \in U_1$ and $v_2 \in U_2$. Thus , $\ker f = U_1 \times U_2$.

By Isomoprphism Theorem A, we obtain:

$$\frac{V_1 \times V_2}{U_1 \times U_2} \simeq \frac{V_1}{U_1} \times \frac{V_2}{U_2}$$

1.4 Exercise

Let $f: V \to V$ be a liunear map. Use the Isomoprphism Theorem A to show that

$$\frac{\operatorname{im} f}{\operatorname{im} f \cap \ker f} = \operatorname{im} f \circ f = \frac{\operatorname{im} f + \ker f}{\ker f}$$

解答 Define the map

$$f: V/\ker f \to \operatorname{im} f$$

The map is surjective, since any $y \in \operatorname{im} f$ is of the form f(v), hence y = f(v) has a preimage v. The kernel of f consists of elements for which $f(v+\ker f)=0$, i.e. $v\in\ker f$. Thus, $\ker f=\operatorname{im} f\cap\ker f$. By Isomorphism Theorem A, we obtain:

$$\frac{\operatorname{im} f}{\operatorname{im} f \cap \ker f} = \operatorname{im} f \circ f = \frac{\operatorname{im} f + \ker f}{\ker f}$$

1.5 Exercise

Let be $X \to Y \to Z$ linear maps with no additional assumptions. Prove that

- 1. $g^{-1}(g(f(X))) = \operatorname{im} f + \ker g$
- 2. $f(f^{-1}g^{-1}(0)) = \operatorname{im} f \cap \ker g$
- 3. $\frac{g^*(0)}{f_*f^*g_{*0}} \simeq \frac{f_*X}{g^*g_*f_*X}$

解答

- 1. $g^{-1}(g(f(X))) = g^{-1}(g(\operatorname{im} f + 0)) = g^{-1}g(\operatorname{im} f) + g^{-1}(0) = \operatorname{im} f + \ker g$
- 2. $g^{-1}(0) = \ker g$ and $g^{-1}(0) \in \operatorname{im} f$
- 3. 带入上述两问就是 isomorphism 定理 B 的应用.

2 Problem Set for 24 March 2025

2.1 Exercise 0

解答

- $2 \operatorname{im} g / \operatorname{im} f \to \operatorname{im} f g, \quad v + \operatorname{im} f \mapsto w$
- 4 $\operatorname{Hom}(U, W) \to \operatorname{Hom}(\operatorname{Hom}(V, W), \operatorname{HGm}(U, V)), \quad f \mapsto g$
- 5 as above.
- 6 $\operatorname{Hom}_{\operatorname{Set}}(S,V) \to V^n$, $f \mapsto v$
- 7 $\operatorname{Hom}_{\mathbb{F}}(\mathbb{F}[[x]], \mathbb{F}) \to \mathbb{F}[x].$

2.2 Exercise 1

Show that $U \simeq \operatorname{Hom}_{\mathbb{F}}(\mathbb{F}, U)$ for any \mathbb{F} -linear space U.

解答

1. Define the map

$$f: U \to \operatorname{Hom}_{\mathbb{F}}(\mathbb{F}, U), \quad u \mapsto f_u$$

- 2. $f(\lambda u) = f_u(\lambda) = \lambda f_u(1) = \lambda f(u)$ $f(u+v) = f_{u+v}(1) = f_u(1) + f_v(1) = f(u) + f(v)$
- 3. Let f(u) = 0, then $f_u(1) = 0$. So $f_u(\lambda) = 0$ for all $\lambda \in \mathbb{F}$. So u = 0
- 4. For all $f_u \in \operatorname{Hom}_{\mathbb{F}}(\mathbb{F}, U)$, there has $u = f_u(1)$ in U sucj that $f(u) = f_u$
- 5. Thus, f is bijective.

2.3 Exercise 2

Show that $U \simeq \operatorname{Hom}_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(U, F), F)$ if dim $U < \infty$.

解答

- 1. Define $\Phi: U \simeq \operatorname{Hom}_{\mathbb{F}}(\operatorname{Hom}_{\mathbb{F}}(U,F),F), \quad u \mapsto [f \mapsto f(u)]$
- 2. $\Phi(\lambda u) = \lambda \Phi(u)$ $\Phi(u+v) = \Phi(u) + \Phi(v)$
- 3. Let $\Phi(u) = 0$, then f(u) = 0 for all $f \in \operatorname{Hom}_{\mathbb{F}}(U, F)$. So u = 0
- 4. For all $f \in \operatorname{Hom}_{\mathbb{F}}(U,F)$, there has u = f(u) in U such that $\Phi(u) = f$
- 5. Thus, Φ is linear Isomoprphism.

2.4 Exercise 3

Let V be a linear space and $S \subset V$ is linearly independent (S is not necessary finite). Show that

$$\operatorname{Hom}_{\mathbb{F}}(\operatorname{span}(S), \mathbb{F}) \simeq \operatorname{Hom}_{\operatorname{Sets} 9S.\mathbb{F}}$$

解答

1. Define the map

$$\Phi: \operatorname{Hom}_{\mathbb{F}}(\operatorname{span}(S), \mathbb{F}) \to \operatorname{Hom}_{\operatorname{Sets}}(S, \mathbb{F}), \quad f \mapsto (f(s))_{s \in S}$$

- 2. $\Phi(f+g) = ((f+g)(s))_{s \in S} = (f(s)+g(s))_{s \in S} = \Phi(f) + \Phi(g)$ $\Phi(\lambda f) = ((\lambda f)(s))_{s \in S} = (\lambda f(s))_{s \in S} = \lambda \Phi(f)$
- 3. Let $\Phi(f) = 0$, then f(s) = 0 for all $s \in S$. So f = 0
- 4. For all $g \in \text{Hom}_{\text{Sets}}(S, \mathbb{F})$, there has f(s) = g(s) in span(S) such that $\Phi(f) = g$
- 5. Thus, Φ is linear Isomoprphism.

2.5 Exercise 4

Recall that \mathbb{C} -linear spaces are \mathbb{R} -linear spaces. Show that $\operatorname{Hom}_{\mathbb{R}}(U,V) \simeq (\operatorname{Hom}_{\mathbb{C}}(U,V))^2$.

解答

- 0. Let $f, g \in \operatorname{Hom}_{\mathbb{C}}(U, V), \lambda \in \mathbb{R}$, then $f + g \in \operatorname{Hom}_{\mathbb{C}}(U, V)$ and $\lambda f \in \operatorname{Hom}_{\mathbb{C}}(U, V)$
- 1. Define the map

$$\Phi: \operatorname{Hom}_{\mathbb{R}}(U,V) \to (\operatorname{Hom}_{\mathbb{C}}(U,V))^2, \quad f \mapsto (f_1,f_2)$$

$$f_1(u) := f(u) - if(iu)$$
, then
 $(f_1 + g_1)(u) = (f + g)u - i(f + g)(iu) = f(u) + if(iu) + g(u) + ig(iu) = f_1(u) + g_1(u)$
 $(\lambda f_1)u = (\lambda f)u - i(\lambda f)(iu) = \lambda (f(u) - if(iu)) = \lambda f_1(u)$.

2.
$$\Phi(f+g) = (f_1+g_1, f_2+g_2) = (f_1, f_2) + (g_1, g_2) = \Phi(f) + \Phi(g)$$

 $\Phi(\lambda f) = (\lambda f_1, \lambda f_2) = (\lambda f_1, \lambda f_2) = \lambda \Phi(f)$

- 3. Let $\Phi(f) = 0$, then $f_1(u) = 0$ and $f_2(u) = 0$ for all $u \in U$. So f = 0
- 4. For all $(f_1, f_2) \in (\operatorname{Hom}_{\mathbb{C}}(U, V))^2$, there has $f(u) = f_1(u) + if_2(u)$ in V such that $\Phi(f) = (f_1, f_2)$
- 1. Thus, Φ is linear Isomoprphism.