1 (неравенство Фано). Пусть случайные величины принимают значения в n элементном множестве. Обозначим за $\varepsilon = \Pr[\alpha \neq \beta]$. Докажите, что $H(\alpha \mid \beta) \leq \varepsilon \log(n-1) + h(\varepsilon)$, где $h(\varepsilon)$ обозначает функцию Шеннона — энтропию случайной величины с двумя значениями, имеющими вероятности ε и $1-\varepsilon$.

2 (обобщенное неравенство Фано). Пусть случайная величина α принимает значения в некотором n элементном множестве A. Пусть значение случайной величины β принадлежит A с вероятностью p, причём условная вероятность события $\alpha \neq \beta$ при условии $\beta \in A$ равна ε . Докажите, что выполняется неравенство:

$$H(\alpha \mid \beta) \le (1-p)\log n + p\varepsilon\log(n-1) + ph(\varepsilon).$$

Р 3.1. Пусть α , α' две независимые одинаково распределенные величины. Докажите, что $\Pr[\alpha = \alpha'] \geq 2^{-H(\alpha)}$.

Р 3.26. Докажите неравенство или предъявите контрпример к нему:

$$H(\gamma) \le I(\alpha : \gamma) + I(\beta : \gamma) + H(\gamma \mid \beta, \alpha).$$

Р 3.4. Пусть G = (V, E) неориентированный граф, t — число треугольников и ℓ — число ребер. Докажите, что $(6t)^2 \le (2\ell)^3$.

Р 1.7. Даны две группы камешков, причем камешки в каждой группе упорядочены по весу. В первой группе n камешков, а во второй — m. Требуется упорядочить все камешки по весу. Придумайте способ, решающий эту задачу за менее чем $m \log n$ взвешиваний при больших n.

