A Comparative Genomic Investigation of Fungal Genome Evolution

Jason Stajich

Duke University

University Program in Genetics & Genomics

Evolutionary genomics

Evolutionary & Organismal Biology

Phylogeny
Population genetics
and structure
Phenotype
Ecological adaptations

Comparative Genomics

Molecular evolution
Gene order
Gene families
Gene and genome
structure
Gene content

Conserved elements
Rates of molecular
evolution
Gene function
inference

Model Systems

Genetic tools
Gene function &
expression
Regulatory networks
Pathways
Molecular & cellular
biology
Disease models

Power of the comparative approach

Industrial uses of fungi

- Bread, beer, wine Saccharomyces cerevisiae
- Sake and soy sauce Aspergillus oryzae
- Dairy Penicillium roqueforti, Kluyveromyces lactis
- Citric acid Aspergillus niger
- Riboflavin Ashbya gossypii
- Stonewashed jeans Trichoderma reesei
- Penicillin antibiotic Penicillium notatum
- Button Mushrooms Agaricus bisporus

Agricultural impact of fungi

Impact of fungi on human health

- Mostly immunocompromised individuals are at risk of life-threatening infections
- Primary pathogens
 - Histoplasma, Coccidioides, Cryptococcus gattii
- Opportunistic pathogens
 - Candida albicans, Aspergillus fumigatus,
 Cryptococcus neoformans, Rhizopus oryzae

Fungi as genetic models

- Beadle and Tatum (1941) one gene, one enzyme hypothesis in Neurospora crassa
- Cell cycle, cell model Saccharomyces cerevisiae and Schizosaccharomyces pombe
- Molecular biology tools to investigate phenotype-genotype
- Evolutionary models

Fungal genomes

- Smaller than most vertebrate and plant genomes
 - A. gossypii 8.5 Mb; S. cerevisiae 12 Mb
 - N. crassa 40 Mb
 - Animals: 100 Mb worm; 3000 Mb Human
- Vary in protein coding gene content
 - 4,700 in A. gossypii; 5,800 in S. cerevisiae
 - 16,000 in R. oryzae or S. nodorum
 - 19,000 in Fruitfly; 25,000 in worm

Fungal comparative genomics

Central dogma of eukaryotic biology

Orthologs and Paralogs

Genome annotation

- Available fungal genomes were only assembled genomic sequence.
- Need systematic and consistent gene predictions for genome comparisons
- Automated annotation pipeline for gene prediction.

http://fungal.genome.duke.edu

Fungal comparative genomics

Gene family evolution

- Gene families are the crucible of new genes and thus new functions
- Signature of adaptive evolution often confounded in multi-gene families
- Can we identify families that are have unexpectedly large changes in size across a phylogeny?
 - Follow up these families with more focused studies

Identifying gene family expansions

- Previous work only considered pairwise
- Ad hoc comparison of gene family sizes
 - C.elegans-C.briggsae GPCR family expansions (Stein et al, PLOS Biology 2004)
 - A. gambiae-D. melanogaster Mosquito specific family expansions related to symbiotic bacteria (Holt et el, Science 2002).

Gene family sizes follow power law distribution

Phylogenetic evaluation of gene family size change

- Previous methods only used ad hoc statistics
- Explicit model for gene family size change according to a Birth-Death (BD) models
- Apply BD to family size along phylogeny using probabilistic graph models
- CAFE Computational Analysis of gene Family Evolution

 Habo et al Geno

Hahn et al, Genome Res 2005 De Bie, et al Bioinformatics 2006 Demuth et al, submitted

Fully sequenced fungal genomes

Families with significant expansions

Transporters
Kinases
P450
Oxidation

Vitamin & Cofactor transport
Lactose & sugar transport
Amine transport
Myo-instol, quinate, and glucose transport
Oligopeptide transport
ABC transporter
MFS, drug pump, & sugar transport
Transport
Monocarboxylate & sugar transport
ABC transport
Amino acid permease

Methytransferase Cytochrome P450: CYP64 Cytochrome P450: CYP53,57A Cytochrome P450 Kinase Subtilase family NADH flavin oxidoreductase Aldehyde dehydrogenase Aldo/kedo reductase Multicopper oxidase AMP-binding enzyme

Transporters

- Of 45 significant families, 22 were related to transport
- Vitamin and amino acid transport
- Sugar and sugar-like transporters
- Multidrug and efflux pumps
- ABC transporters (ATP Binding Cassette)

Branches with transporter expansions

 Sugar related, Drug pump, and Major Facilitator Superfamily

Aspergillus spp, Fusarium spp, S. nodorum

Euascomycota

Vitamin transport

C. neoformans, Fusarium

• A. nidulans (Biotin)

Sugar transporter use in phytopathogens

- Sugar transporters are used to extract nutrients from host
 - Haustorium: specialized structure for plant parasitism
 - Many sugar transporters highly and specifically expressed in haustoria

Cryptococcus sugar transporters

- 3x as many sugar transporters in C.
 neoformans (~50) than other basidiomycetes
- "sugar coated killer"
- Capsule is a mixture of glucose, xylose, and mannose.
- Transporters could be important in capsule synthesis

Zerpa et al, 1996

Analysis of sugar transporter sub-family

GTHI is a Glucose Sensor

- Melanin production pathway is starvation induced
- GTH1 KO is hypermelanized (always glucose starved)
- GTHI overexpression is hypomelanized

P450 CYP64

P450 enzymes involved in synthesis and cleavage of chemical bonds. Drug metabolism in animals.

CYP64: Step in Aspergillus spp aflatoxin pathway *P. chrysosporium* implicated in lignin and hydrocarbon degradation.

CYP64 was from independent duplication

C. cinereus expansion

P. chrysosporium expansion

Local duplications created CYP64 expansion

Family size contractions

- Histoplasma, Coccidioides many families
- Hemiascomycetes P450
- C. neoformans P450
- U. maydis Lactose transport

Basidiomycetes

fam	U.maydis	C.cinereus	P.chrysosporium	Н99	JEC21	R265	WM276	Cryptococcus & GO Notes	Protein domains
0	I	420	68	140	4	14	70	transposon	Integrase core domain(57);
ı	74	108	119	78	81	84	82	kinases. homobasidio	Protein kinase domain(306);
2	44	67	87	48	50	49	52	G-protein coupled receptor protein	WD domain, G- beta repeat(193)
3	42	113	53	27	4	23	106	transposon	Reverse transcriptase
4	18	141	163	5	5	5	5	metal ion binding; cation binding	Cytochrome P450 (39)
5	32	26	76	44	47	46	45	drug transport	Major Facilitator Superfamily(157);
6	17	36	44	47	55	40	39	"hexose transporter	dicarboxylate symporter
7	19	20	23	59	57	47	50	sugar transporter related	Sugar (and other) transporter(167);
8	30	33	64	32	33	31	35	"siderophore biosynthesis?	- dihydroxybenzoat
9	35	39	35	33	40	34	36	transmembrane receptor activity;	Ras family(130); ADP-ribosylation
10	32	44	45	29	27	31	30	localization hydrolase	ABC transporter (112); RecF/RecN/
11	5	125	61	П	П	11	13	hydrolyzing O- glycosyl	WSC domain (24); Glycosyl
18	4	2	5	46	43	22	30	oxidoreductase activity;RNA	Oxidoreductase family, NAD-
20	0	109	36	0	0	0	0	kinase activity; phosphotransferas	

Conclusions

- Sugar transporters are highly expanded in independent lineages
 - Saprophytic and phytopathogenic lifestyles
- P450 CYP64 independent expansions in Homobasidiomycetes
 - Lignin degradation and saprophytic lifestyles
- Family size contractions among lineages containing primary pathogens
 - Genome streamlining?

Fungal comparative genomics

Evolution of gene structure

- Present day introns
 - Recent insertions?
 - Introns late hypothesis
 - Present in eukaryotic ancestor?
 - Introns early hypothesis / exon theory of genes
 - Mixture of two?

Previous work on intron evolution

- Rogozin et al. 2003
 - 7 genomes
 - 684 genes, 7236 positions
 - Parsimony analysis
- Analysis methods
 - Roy and Gilbert. 2005
 - Csũrös. 2005
 - Nguyen et al. 2006

Calculating intron densities across a phylogeny

Intron frequency varies among the fungi

Analysis of whole genomes

- 25 entire genomes
 - 21 fungi, 3 vertebrates, 1 plant
- Largest dataset ever assembled for intron analysis
- I 160 orthologous genes
- 7533 intron positions
- 4.15 Mb conserved coding sequence per genome

Analysis methods

Intron phase

Conserved intron positions

Patterns of conservation

Introns late

Introns early(ier)

Intron positions shared with animals or plants

Intron position reconstruction

- 3 Methods
 - Roy and Gilbert. 2005
 - Csũrös. 2005
 - Nguyen et al. 2006
- Methods agree for all but 2 nodes in tree

Reconstruction of ancestral intron densities

Exon
length of
214 bp

Conclusions

- Early eukaryotic crown genes were complex!
 - Ancestor had 70% of the introns in vertebrates - many more than previously reported
- Intron loss has dominated among the fungi
 - Hemiascomycota experienced loss
- No significant evidence for intron sliding or double insertions
- Sampling can bias interpretations all fungi are not equal.

Fungal comparative genomics

Mechanism of intron loss in fungi

- S. cerevisiae and Hemiascomycota have undergone intron loss.
- How are introns lost from the genome?
 - Are they lost independently?
 - Are they lost many at a time?
- What is the molecular mechanism of loss?

Models of intron loss

- All introns in *S. cerevisiae* are in 5' end of gene.
- G. Fink proposed transcripts recombine with genome 3' -> 5' explaining 5' retention bias.
- Most lost events in S. cerevisiae occurred too long ago to find evidence of mechanism with a comparative approach.

Sequenced Cryptococcus genomes

Screen for intron changes

- Annotate 3 Cryptococcus genomes (var. grubii and 2 var. gattii genomes)
- Identify and align 4-way orthologous genes
 - 5298 orthologous genes (out of ~6500)
- Identify intron position changes

Intron loss in var. grubii

CNI01550 - putative RNA helicase

Intron loss was a precise excision

Other examples of loss

Conclusions

- Intron loss via homologous recombination with spliced transcript.
 - Multiple adjacent introns are lost.
 - Precise deletions of introns.
- Loss biased towards the middle of gene not 3'.

Overall conclusions

- Multiple genome sequences have helped resolve several outstanding questions in evolution introns
 - Origin of introns still mystery, but early eukaryotic genes were complex
 - Suggested intron function in splicing
- Gene family expansions can be important in identifying molecular basis for adaptation