COM5180 Assignment #1 due May 8th 23:59

Answer 7 of the following questions. You may type your answer as a pdf file or scan your hand-written solutions. Submit on iLMS by the deadline.

- 1. Let $\{x_n\}$ be a zero-mean, complex random WSS process. Prove that the correlation matrix \mathbf{R}_x is PSD.
- 2. Given $\mathbf{A} \in M_{m \times n}(\mathbb{F})$. Prove that $(L_{\mathbf{A}})^{\dagger} = L_{\mathbf{A}^{\dagger}}$.
- 3. Define the function $f: \mathbb{R}^n \to \mathbb{R}$ as follows. $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2 \mathbf{b}^T \mathbf{x} + c$, for some $\mathbf{A} \in M_{n \times n}(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^n$, $c \in \mathbb{R}$. Prove the followings: (1) $\nabla f(\mathbf{x}) = 2\mathbf{A}\mathbf{x} + 2\mathbf{b}$. (2) $\nabla^2 f(\mathbf{x}) = 2\mathbf{A}$. (3) f is convex if and only if \mathbf{A} is PSD.
- 4. Prove that a matrix $\mathbf{A} \in M_{n \times n}(\mathbb{R})$ has an LU decomposition if every principal submatrix $\mathbf{A}_{\{1,\dots,k\}}$ has nonzero determinant.
- 5. Let $A, M \in M_{n \times n}(\mathbb{R})$ be two symmetric matrices. Moreover, M is PD. Prove that there exists a non-singular matrix C such that $C^TMC = I_n$, and C^TAC is diagonal.
- 6. Prove or disprove the following statement. $T: \mathbb{C} \to \mathbb{C}$ is normal if and only if $T = T_1 + iT_2$ for some self-adjoint operators $T_1, T_2: \mathbb{C} \to \mathbb{C}$ such that $T_1T_2 = T_2T_1$.
- 7. Let $\mathcal{V} = M_{n \times n}(\mathbb{F})$ be the space of $n \times n$ matrices over \mathbb{F} . Let $A \in \mathcal{V}$ be a fixed matrix. Let $T : \mathcal{V} \to \mathcal{V}$ be a linear operator defined by T(B) = AB. Prove or disprove the following statement. If A is diagonalizable, then T is diagonalizable.
- 8. Continued from above. Let $U: \mathcal{V} \to \mathcal{V}$ be a linear operator defined by U(B) = AB BA. Prove or disprove the following statement. If A is diagonalizable, then U is diagonalizable.