Correction exercice nº3

Partie A

1. g est dérivable sur \mathbb{R} et pour tout réel x:

$$g'(x) = -e^x + (1-x)e^x$$
$$= -xe^x$$

On étudie le signe de g'(x) sur \mathbb{R} .

$$g'(x) = 0 \iff x = 0.$$

On en déduit le tableau de signes de g'(x) sur \mathbb{R} :

x	$-\infty$			0		+∞
signe de $g'(x)$		+	-	0	_	
variations de	/			<i>y</i> \		

La fonction g est donc strictement croissante sur $]-\infty;0]$ et strictement décroissante sur $|0;+\infty[$.

- 2. Sur [1,27; 1,28]:
 - la fonction g est continue car dérivable;
 - la fonction g est strictement décroissante;
 - $0 ∈ [1 + (1 0.28)e^{0.28}; 1 + (1 0.27)e^{0.27}]$ intervalle image de l'intervalle [1,27; 1,28] par la fonction g, d'après le corollaire du théorème des valeurs intermédiaires, l'équation g(x) = 0 admet une solution unique α dans l'intervalle [1,27; 1,28].
- 3. On a $g(x) = e^x xe^x + 1$.

Or $\lim_{x\to -\infty} x e^x = 0$ (limite de cours) et $\lim_{x\to -\infty} e^x = 0$ d'où $\lim_{x\to -\infty} g(x) = 1$. La fonction g est strictement croissante sur $]-\infty;0]$ on en déduit que g(x)>1 sur $]-\infty;0]$. La fonction g est donc strictement positive sur $]-\infty 0]$.

D'après la question précédente g(x) > 0 sur $[0; \alpha[$ et g(x) < 0 sur $]\alpha; +\infty[$.

La fonction g est continue et est strictement décroissante sur $[0; +\infty[$. De plus, $g(\alpha) = 0$, on peut en déduire le tableau de signes de g sur $[0; +\infty[$:

x	$-\infty$		α		+∞
signe de $g(x)$		+	0	-	

Partie B

1.
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
 d'après le cours.

Pour la fonction f, on a une forme indéterminée du type « $\frac{\infty}{\infty}$ » donc on change d'écriture. Pour tout réel x > 0,

$$f(x) = \frac{x}{e^x + 1} + 2$$
$$= \frac{1}{\frac{e^x}{x} + \frac{1}{x}} + 2$$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x} + \frac{1}{x} = +\infty.$$

Et donc par inverse des limites puis par somme :

$$\lim_{x \to +\infty} f(x) = 2.$$

On en déduit que la droite d'équation y=2 est asymptote horizontale à $\mathscr C$ au voisinage de $+\infty$.

2. (a) On a:

$$\lim_{\substack{x \to \infty \\ x \to +\infty}} x = -\infty$$

$$\lim_{\substack{x \to +\infty \\ \text{D'où :}}} e^x + 1 = 1$$

$$\lim_{\substack{x \to +\infty \\ \text{par quotient des limites}}} \lim_{\substack{x \to +\infty \\ \text{par quotient des limites}}} \frac{x}{e^x + 1} = -\infty.$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

(b) On pose d(x) = f(x) - (x+2) et on étudie le signe de d(x) sur \mathbb{R} .

$$d(x) = f(x) - (x+2)$$

$$= \frac{x}{e^x + 1} + 2 - x - 2$$

$$= \frac{x}{e^x + 1} - x$$

$$= \frac{-xe^x}{e^x + 1}$$

Pour tout réel x on a $e^x > 0$ et $e^x + 1 > 0$ donc d(x) a le même signe que -x sur \mathbb{R} .

- Si x < 0 on a d(x) > 0 donc \mathscr{C} est située au dessus de \mathscr{D} .
- Si x = 0 on a d(x) = 0: \mathscr{C} et \mathscr{D} sont sécantes.
- Si x > 0 on a d(x) < 0 donc \mathscr{C} est située en dessous de \mathscr{D} .
- 3. (a) f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = \frac{1 \times (e^{x} + 1) - x \times e^{x}}{(e^{x} + 1)^{2}}$$

$$= \frac{e^{x} + 1 - xe^{x}}{(e^{x} + 1)^{2}}$$

$$= \frac{1 + (1 - x)e^{x}}{(e^{x} + 1)^{2}}$$

$$= \frac{g(x)}{(e^{x} + 1)^{2}}$$

Pour tout $x \in \mathbb{R}$, on a $(e^x + 1)^2 > 0$ ce qui prouve que f'(x) est du signe de g(x) sur \mathbb{R} .

(b)
$$f(\alpha) = \frac{\alpha}{e^{\alpha} + 1} + 2$$
.

Or on sait que $g(\alpha) = 0$ d'après la partie A donc $e^{\alpha} = \frac{1}{\alpha - 1}$ vu que $\alpha \neq 1$. Ainsi

$$f(\alpha) = \frac{\alpha}{\frac{1}{\alpha - 1} + 1} + 2$$

$$= \frac{\alpha}{\frac{1}{\alpha - 1} + \frac{\alpha - 1}{\alpha - 1}} + 2$$

$$= \frac{\alpha}{\frac{\alpha}{\alpha - 1}} + 2$$

$$= \alpha - 1 + 2$$

$$= \alpha + 1$$

On en déduit que p = 1 et q = 1.

(c) On peut donc dresser la tableau de variation complet de f sur $\mathbb R$:

x	$-\infty$		α	+∞
signe de $f'(x)$		+	0	_
variations de f	$-\infty$		$\alpha+1$	2