Problem 1 (1.6.2).

Proof. Let $\varphi: G \to H$ be an isomorphism and let $x \in G$ where |x| = n. Since $\varphi(x^n) = \varphi(x)^n$ it follows that $|x| \geq |\varphi(x)|$. However φ is an isomorphism which implies that φ^{-1} is also an isomorphism. Via the same reasoning this implies that $|\varphi(x)| \geq |\varphi^{-1} \circ \varphi(x)| = x$. Therefore

If φ is an isomorphism and G_n is the set of elements of order n in G then $\varphi|_{G_n}$ is a bijection and since φ preserves orders it follows that we have the same number of elements of order n in G and H for any n.

It does not hold if φ is not an isomorphism. Consider $\varphi: \mathbb{Z}/6\mathbb{Z} \to \{e\}$. Then the order of for any $\varphi(x)$ is 1.

Problem 2 (1.6.3).

Proof. Let $\varphi: G \to H$ be an isomorphism and suppose that H is Abelian. Then for $x, y \in G$ we

$$xy = \varphi^{-1} \circ \varphi(xy) = \varphi^{-1}(\varphi(x)\varphi(y)) = \varphi^{-1}(\varphi(y)\varphi(x)) = yx$$

which implies that G is Abelian. If G is Abelian swap φ for φ^{-1} and the reasoning will be identical to above.

Therefore if $\varphi: G \to H$ is an isomorphism then G is Abelian if and only if H is Abelian.

If $\varphi:G\to H$ is a homomorphism and H is Abelian then we can show that G is Abelian if φ is injective via the proof above as there will be a well defined inverse on $\varphi(G)$.

Otherwise if G is Abelian we can show that H is Abelian if φ is surjective.

Proof. Let $x, y \in H$. Since φ is surjective there exist $a, b \in G$ such that $\varphi(a) = x$ and $\varphi(b) = y$. Then

$$xy = \varphi(a)\varphi(b) = \varphi(ab) = \varphi(ba) = \varphi(b)\varphi(a) = yx$$

which implies that H is Abelian.

Problem 3 (1.6.4).

Proof. Suppose that $\varphi: \mathbb{C}^* \to \mathbb{R}^*$. Then $\phi(z) = -1$ for some $z \in \mathbb{C}^*$. However there is a $w \in \mathbb{C}^*$ such that $w^2 = z$ which implies that there exists a $x \in \mathbb{R}^*$ such that $\varphi(w) = x$ and that $x^2 = -1$ which is impossible.

Therefore \mathbb{C}^* and \mathbb{R}^* are not isomorphic.

Problem 4 (1.6.7).

Proof. In Q_8 the identity has order 1, |-1| = 2, and |i| = |j| = |k| = |-i| = |-j| = |-k| = 4. However in D_8 the elements r and ρ^2 are both of order two. Since D_8 has more elements of order two than Q_8 they cannot be isomorphic.

Problem 5 (1.6.17).

Proof. Let G be Abelian. Consider the inverse map $\varphi(g) = g^{-1}$. Then

$$\varphi(g)\varphi(h) = g^{-1}h^{-1} = h^{-1}g^{-1} = \varphi(gh)$$

and since $e = e^{-1}$ it follows that φ is a homomorphism.

Otherwise suppose that G is not Abelian. This implies that exist $g,h\in G$ such that $gh\neq hg$. Then

$$\varphi(g^{-1})\varphi(h^{-1}) = gh \neq hg = \varphi(g^{-1}h^{-1})$$

which implies that φ cannot be a homomorphism.

Problem 6 (1.6.25).

Proof. a) Let $\begin{pmatrix} x \\ y \end{pmatrix}$ be a point in \mathbb{R}^2 . Then rewrite $\begin{pmatrix} x \\ y \end{pmatrix}$ in polar coordinates as $\begin{pmatrix} r\cos\phi \\ r\sin\phi \end{pmatrix}$. Then if we multiply by the rotation matrix we get

$$\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \left(\begin{array}{c} r\cos\phi \\ r\sin\phi \end{array} \right) = \left(\begin{array}{c} r\cos\theta\cos\phi - r\sin\theta\sin\phi \\ r\sin\theta\cos\phi + r\sin\phi\cos\theta \end{array} \right) = \left(\begin{array}{c} r\cos(\theta+\phi) \\ r\sin(\theta+\phi) \end{array} \right)$$

which corresponds to a rotation of $\begin{pmatrix} x \\ y \end{pmatrix}$ counter-clockwise by θ as the new angle is $\theta + \phi$.

b) We will denote $\varphi(s)$ as S and $\varphi(r)$ as R. We know that r maps to a counter clockwise rotation of $\frac{2\pi}{n}$. If we assume that r^m corresponds to R^m which is a counter clockwise rotation of $\frac{2m\pi}{n}$. Then r^{m+1} can be defined as mapping to R^{m+1} corresponding to a rotation of $\frac{2(m+1)\pi}{n}$.

Now suppose that we have sr^m . Then $\varphi(sr^m)$ should correspond to a clockwise rotation of $\frac{2m\pi}{n}$ with a reflection at the end Then we can define $\varphi(sr^m) = SR^m$ and in a similar way let $\varphi(r^ms) = R^mS$.

Let $\rho, \eta \in D_{2n}$. We can write them as $\rho = s^i r^a$ and $\eta = r^b s^j$. Then

$$\varphi(\rho\eta)=\varphi(s^ir^{a+b}s^j)=S^iR^{a+b}S^j=S^iR^aR^bS^j=\varphi(\rho)\varphi(\eta)$$

Since φ preserves the group operation it is indeed a homomorphism.

c) Let $\rho, \eta \in D_{2n}$ and suppose that $\varphi(\rho) = \varphi(\eta)$ which we can write in the form SR^m . As we defined above this is mapped to by sr^m or $r^{n-m}s$ which are equivalent in D_{2n} . This implies that ρ and η are both elements equivalent to sr^m .

Therefore the function φ is injective.

Problem 7 (1.6.26).

Proof. Since \mathcal{Q}_8 is finite we can show that $\varphi: \mathcal{Q}_8 \to \mathrm{GL}_2(\mathbb{C})$ by calculating the value of $\varphi(q)$ for each $q \in \mathcal{Q}_8$.

2

$$\varphi(1) = \varphi(i^{4}) \qquad = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\varphi(-1) = \varphi(i^{2}) \qquad = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\varphi(i) = \varphi(i) \qquad = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}$$

$$\varphi(-i) = \varphi(i^{3}) \qquad = \begin{pmatrix} -\sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{pmatrix}$$

$$\varphi(j) = \varphi(j) \qquad = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\varphi(-j) = \varphi(j^{3}) \qquad = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\varphi(k) = \varphi(ij) \qquad = \begin{pmatrix} 0 & -\sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix}$$

$$\varphi(-k) = \varphi(ji) \qquad = \begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix}$$

Since each element of \mathcal{Q}_8 maps to a distinct element of $\mathrm{GL}_2(\mathbb{C})$ the homomorphism φ is injective.

Problem 8 (2.1.3).

Proof.

Problem 9 (2.1.10(a)).

Proof. Let $H, K \leq G$. Then we will show that $H \cap K \leq G$.

- Since $H, K \leq G$ it follows that $e \in H$ and $e \in K$ which implies that $e \in H \cap K$
- Let $g \in H \cap K$. Then $g \in H$ and $g \in K$ which implies that $g^{-1} \in H$ and $g^{-1} \in K$. It then follows that $g^{-1} \in H \cap K$.
- Now let $g, h \in H \cap K$. Then $g, h \in H$ and $g, h \in K$ which implies that $gh \in H$ and $gh \in K$. It then follows that $gh \in H \cap K$.

Therefore if $H, K \leq G$ then $H \cap K \leq G$.

Problem 10 (2.3.1).

The subgroups of the form $\langle x \rangle$ of \mathbb{Z}_{45} are $\langle 0 \rangle$, $\langle 1 \rangle$, $\langle 3 \rangle$, $\langle 5 \rangle$, $\langle 9 \rangle$, and $\langle 15 \rangle$. **Containment drawn below**.

Problem 11 (2.3.3).

The generators will be the elements of order 48 which will consist of the elements that are relatively prime to 48. These are

$$1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47$$

Problem 12 (2.3.12(a)).

Proof. A group is cyclic if it can be generated by a single element. There are a total of four elements in $Z_2 \times Z_2$. These are (0,0),(0,1),(1,0), and (1,1). The order of (0,0) is 1, and the order of the rest of the elements is 2. However since the size of the group is 4 it follows that none of the elements could generate the group as the size of the group generated is at most two.

Therefore the group $Z_2 \times Z_2$ is not cyclic.