- **27.** $v_t = 1630 \text{ m/s}; T = 5.78 \times 10^5 \text{ s}$
- **29.** Jupiter $(m = 1.9 \times 10^{27} \text{ kg})$
- 33. F₂
- **37.** 26 N m
- **39.** 12 m/s
- **41.** 220 N
- **43.** 1800 N•m
- **45.** $2.0 \times 10^2 \text{ N}$
- **47.** 72%
- **49. a.** 2.25 days
 - **b.** 1.60×10^4 m/s
- **51. a.** 6300 N•m
 - **b.** 550 N
- **53.** 6620 N; no $(F_c = 7880 \text{ N})$

CHAPTER 8

Practice A, p. 279

- 1. **a.** $3.57 \times 10^3 \text{ kg/m}^3$ **b.** $6.4 \times 10^2 \text{ kg/m}^3$
- 3. $9.4 \times 10^3 \text{ N}$

Practice B, p. 282

- 1. a. 1.48×10^3 N
 - **b.** $1.88 \times 10^5 \text{ Pa}$
- **3. a.** 1.2×10^3 Pa
 - **b.** $6.0 \times 10^{-2} \text{ N}$

8 Review, pp. 288-291

- **9.** $2.1 \times 10^3 \text{ kg/m}^3$
- **15.** 6.28 N
- **21.** $1.01 \times 10^{11} \text{ N}$
- **23.** $6.11 \times 10^{-1} \text{ kg}$
- **25.** 17 N, 31 N
- **27. a.** $1.0 \times 10^3 \text{ kg/m}^3$ **b.** $3.5 \times 10^2 \text{ Pa}$
 - **b.** $3.5 \times 10^{2} \text{ Pa}$ **c.** $2.1 \times 10^{3} \text{ Pa}$
 - c. $2.1 \times 10^{3} \text{ Pa}$
- **29.** 1.7×10^{-2} m
- **31.** 0.605 m
- **33.** 6.3 m
- **35. a.** 0.48 m/s² **b.** 4.0 s
- **37.** 1.7×10^{-3} m

CHAPTER 9

Practice A, p. 303

- **1.** −89.22°C, 183.93 K
- 3. 37.0°C, 39°C
- **5.** −195.81°C, −320.5°F

Practice B, p. 311

- **1.** 755 J
- **3.** 0.96 J

Practice C, p. 316

- **1.** 47°C
- **3.** 390 J/kg•°C

9 Review, pp. 322-325

- **9.** 57.8°C, 331.0 K
- **25. a.** 2.9 J
 - **b.** It goes into the air, the ground, and the hammer.
- **31.** 25.0°C
- **33. a.** $T_R = T_F + 459.7$, or $T_F = T_B 459.7$
 - $T_F = T_R 459.7$ **b.** $T = \frac{5}{9} T_R$, or $T_R = \frac{9}{5} T$
- **35.** a. $T_{TH} = \frac{3}{2}T_C + 50$, or $T_C = \frac{2}{3}(T_{TH} 50)$
 - **b.** −360° TH
- **37.** 330 g
- **39.** 5.7×10^3 J/min = 95 J/s

CHAPTER 10

Practice A, p. 338

- 1. **a.** 6.4×10^{5} J
 - **b.** -4.8×10^{5} J
- 3. $3.3 \times 10^2 \text{ J}$

Practice B, p. 346

- **1.** 33 J
- 3. $1.00 \times 10^4 \text{ J}$
- 5. $1.74 \times 10^8 \text{ J}$

Practice C, p. 355

- **1.** 0.1504
- **3. a.** 0.247
 - **b.** 4.9×10^4 J
- **5.** 755 J

10 Review, pp. 360-363

- **3.** b, c, d, e
- 9. 1.08×10^3 J; done by the gas
- **15.** a. none (Q, W, and $\Delta U > 0$)
 - **b.** $\Delta U < 0$, Q < 0 for refrigerator interior (W = 0)
 - **c.** $\Delta U < 0 \ (Q = 0, W > 0)$
- **17. a.** 1.7×10^6 J, to the rod
 - **b.** 3.3×10^2 J; by the rod
 - c. 1.7×10^6 J; it increases
- **27.** 0.32
- **29. a.** 188 J
 - **b.** 1.400×10^3 J

CHAPTER 11

Practice A, p. 371

- **1. a.** 15 N/m
 - **b.** less stiff
- 3. $2.7 \times 10^3 \text{ N/m}$

Practice B, p. 379

- 1. 1.4×10^2 m
- **3.** 3.6 m

Practice C, p. 381

- 1. $2.1 \times 10^2 \text{ N/m}$
- **3.** 39.7 N/m
- **5. a.** 1.7 s, 0.59 Hz
 - **b.** 0.14 s, 7.1 Hz
 - c. 1.6 s, 0.62 Hz

Practice D, p. 387

- 1. $0.081 \text{ m} \le \lambda \le 12 \text{ m}$
- 3. $4.74 \times 10^{14} \text{ Hz}$