PROPOSAL SKRIPSI

SISTEM PENDETEKSIAN KECEMASAN MELALUI DETAK JANTUNG DENGAN SENSOR *PHOTOPLETHYSMOGRAPHY* (PPG) BERBASIS *NODE MCU*

MUHAMMAD FAUZAN ALWA

PROGRAM STUDI S1 TEKNIK BIOMEDIS DEPARTEMEN FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS AIRLANGGA 2023

LEMBAR PENGESAHAN NASKAH PROPOSAL

Judul : Sistem Pendeteksian Kecemasan Melalui Detak Jantung

Dengan Sensor Photoplethysmography (PPG) Berbasis

Node MCU

Penyusun : Muhammad Fauzan Alwa

NIM : 081811733023

Pembimbing I : <u>Dr. Riries Rulaningtyas, S.T., M.T.</u>

Pembimbing II : Franky Chandra Sstria Arisgraha, S.T., M.T.

Tanggal Seminar : 24 Agustus 2023

Disetujui oleh,

Pembimbing I Pembimbing II,

<u>Dr. Riries Rulaningtyas, S.T., M.T.</u> NIP. 197903152003122002 Franky Chandra Sstria Arisgraha,S.T., M.T. NIP. 198109122015041001

Mengetahui,

Koordinator Program Studi S1 Teknik Biomedis Fakultas Sains dan Teknologi Universitas Airlangga

> <u>Dr. Riries Rulaningtyas, S.T., M.T.</u> NIP. 197903152003122002

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Allah SWT berkat rahmat, hidayah dan karunia-Nya proposal skripsi dengan judul dapat terselesaikan. Proposal skripsi ini disusun sebagai dasar dan syarat pengerjaan serta penulisan skripsi yang merupakan salah satu syarat akademik dalam memperoleh gelar Sarjana Teknik pada program studi Teknik Biomedis, Fakultas Sains dan Teknologi, Universitas Airlangga.

Dalam penulisan proposal skripsi ini, penulis telah mendapatkan banyak bantuan, arahan, serta bimbingan dari berbagai pihak. Oleh karena ini penulis berkenan menyampaikan banyak terima kasih kepada berbagai pihak yang telah menyediakan waktu dan tenaganya dalam membantu, mengarahkan, serta membimbing penulis, terutama kepada:

- Bapak Herri Trilaksana, S.Si, M.Si, Ph.D. selaku Kepala Departemen Fisika Fakultas Sains dan Teknologi Universitas Airlangga
- 2. Ibu Dr. Riries Rulaningtyas, S.T., M.T. skripsi.
- 3. Bapak Franky Chandra Sstria Arisgraha, S.T., M.T.
- 4. Bapak Danny Sanjaya Arfensia M. Psi, Psikolog
- Tim pengajar S1 Teknik Biomedis yang telah membimbing dan memberikan wawasan, ilmu, dan pengalaman selama perkuliahan di Universitas Airlangga.

Penulis berharap proposal skripsi ini sedikit banyaknya dapat memberi manfaat baik kepada penyusun sendiri dan juga kalangan lain.

Surabaya, 20 Januari 2023

Penulis

Muhammad Fauzan Alwa

DAFTAR ISI

LEMBAR PENGESAHAN NASKAH PROPOSAL	ii
KATA PENGANTAR	iii
DAFTAR ISI	iv
DAFTAR GAMBAR	v
DAFTAR TABEL	v
BAB I PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Rumusan Masalah	6
1.3. Batasan Masalah	6
1.4. Tujuan Penelitian	6
1.5. Manfaat Penelitian	7
BAB II STUDI PUSTAKA	8
2.1. Anxiety	8
2.1.1. Jenis – Jenis <i>Anexity</i>	8
2.1.2. Faktor Penyebab <i>Anexity</i>	8
2.1.3. Keterkaitan Anexity Dengan Anatomis Tubuh	9
2.2. Depression Anxiety Stres Scales 42 (DASS-42)	9
2.3. Photoplethysmograph (PPG)	10
2.3.1. PPG <i>Waveform</i>	10
2.3.2. Fisiologi PPG	11
2.4. Microcontroller	12
2.4.1. Node MCU	13
2.4.2. ESP32	14
BAB III METODE PENELITIAN	15
3.1. Tempat dan Waktu penelitian	15
3.2. Alat dan Bahan Penelitian	15
3.3. Prosedur penelitian	15
3.3.1. Pengumpulan Data	16
3.3.2. Preprocessing	17
3.3.3. Ekstraksi Fitur	18
3.3.4. Tahap Klasifikasi	19
a. Tahap Training	19
b. Tahap Testing	20

DAFTAR PUSTAKA	
DAFTAR GAMBAR	
Keterangan Halaman	
Gambar 2.1 Komponen pulsatil (AC) dari sinyal PPG dan elektrokardiogram (EKG) terkait (Allen, 2014)	
Gambar 2.2 Skema bentuk gelombang PPG yang dihasilkan karena absorbansi cahaya dalam jaringan, sebagai fungsi waktu (Tamura et al., 2014)12	
Gambar 2.3 NodeMCU Devkit v1.0 (Arifaldy Satriadi, Wahyudi, dan Yuli Christiyono, Departemen Teknik Elektro, Universitas Diponegoro, 2019)13	
Gambar 2.4 Pin mapping ESP32 (Tedy Tri Saputro, 2014)14	
Gambar 3.1 Fitur skewness	
Gambar 3.2 Fitur peak analysis	
DAFTAR TABEL	
Keterangan Halaman	
Tabel 3. 1. Parameter formulir DASS	

Tahap Pengujian dan Analisis Data......20

3.3.5.

BABI

PENDAHULUAN

1.1. Latar Belakang

Kondisi kesehatan jiwa di Indonesia masih menjadi salah satu isu yang belum mendapatkan perhatian yang optimal. Padahal jumlah penderita gangguan jiwa terus meningkat. Menurut *World Health Organization* (WHO) (2016), jumlah penderita gangguan jiwa di Indonesia saat ini adalah 236 juta orang, dengan kategori gangguan jiwa ringan 6% dari populasi dan 0,17% menderita gangguan jiwa berat, 14,3% diantaranya mengalami pasung. Tercatat sebanyak 6% penduduk berusia 15-24 tahun mengalami gangguan jiwa. Data Riskesdas 2018 oleh Badan Penelitian dan Pengembangan Kementerian Kesehatan yang dilakukan pada 1.2 juta jiwa di 34 provinsi. Dari sejumlah data dan informasi kesehatan, poin tentang gangguan jiwa mengalami peningkatan proporsi cukup signifikan. Sebab, jika dibandingkan dengan Riskesdas 2013 naik dari 1.7% menjadi 7%. Artinya diperkirakan terdapat sekitar 450 ribu ODGJ (Orang Dengan Gangguan Jiwa) berat.

Gangguan jiwa dipicu oleh berbagai faktor antara lain faktor biologis, faktor psikologis, dan faktor sosial. Berbagai gejala psikologis dapat terjadi pada sebagian orang. Gejala awal yang terjadi adalah khawatir, gelisah, panik, takut mati, takut kehilangan kontrol, takut tertular, dan mudah tersinggung. Ketika emosi negatif muncul karena kekhawatiran akan bahaya yang tidak terduga yang mungkin terjadi di masa depan maka akan mengakibatkan munculnya kecemasan (Annisa & Ifdil, 2017). Kecemasan sebenarnya adalah perasaan yang normal dimiliki oleh manusia, karena saat cemas manusia disadarkan dan diingatkan tentang bahaya yang mengancam (Suwandi & Malinti, 2020).

Selain kecemasan, gangguan jiwa juga dapat menyebabkan depresi dan stres. Depresi merupakan penyakit mental serius yang biasanya ditandai dengan perasaan sedih atau cemas (Kamble, 2018). Depresi merupakan gangguan yang sangat sering terjadi di sebagian besar masyarakat, terutama di kalangan mahasiswa. Sebagian besar mahasiswa terkadang merasa sedih atau cemas, tetapi emosi ini biasanya berlalu dengan cepat dalam beberapa hari. Sebagai reaksi

terhadap depresi yang dialami, mahasiswa dengan depresi dapat memiliki gangguan yang signifikan dalam banyak hal, termasuk sosial, akademik, dan pekerjaan (Hasanah et al., n.d; Karmakar & Behera, 2017). Bukti lain menunjukkan bahwa timbulnya kondisi kejiwaan yang parah dan merusak dapat disebabkan oleh stres kronis, termasuk gangguan depresi mayor, gangguan bipolar, dan gangguan stres pascatrauma. Stres kronis diakui sebagai sumber utama kecacatan dan kematian di seluruh dunia. (Davis et al., 2017). Stres sendiri tergantungg bentuknya bermacam-macam ciri-ciri dari individu bersangkutan, kemampuan dalam menghadapi atau coping skills dan sifat stresor yang dihadapi. Penelitian terdahulu menunjukkan bahwa stres memberikan kontribusi 50-70% terhadap timbulnya sebagian besar penyakit yaitu hipertensi, kanker, kardiovaskuler, penyakit kulit, penyakit metabolic, infeksi, dan hormon, serta lain sebagainya. Individu yang mengalami stres berat akan memperlihatkan tanda-tanda seperti mudah lelah, sakit kepala, hilang nafsu, mudah lupa, bingung, gugup, kehilangan gairah seksual, kelainan pencernaan dan tekanan darah tinggi. (Yardley & Moss-Morris, 2009).

Penelitian terdahulu menunjukkan bahwa stres memberikan kontribusi 50-70% terhadap timbulnya sebagian besar penyakit yaitu hipertensi, kanker, kardiovaskuler, penyakit kulit, penyakit metabolic, infeksi, dan hormon, serta lain sebagainya. Individu yang mengalami stres berat akan memperlihatkan tandatanda seperti mudah lelah, sakit kepala, hilang nafsu, mudah lupa, bingung, gugup, kehilangan gairah seksual, kelainan pencernaan dan tekanan darah tinggi. Setiap individu tidak mungkin dapat menghindari stres untuk untuk seseorang disarankan untuk menyikapi dan mengelola stres dengan baik sehingga kualitas hidup dapat menjadi lebih baik (Yardley and Moss-Morris, 2009).

Dengan melihat seriusnya masalah psikologi terkait depresi, stress, dan kecemasan ini pakar psikologi mencoba menemukan berbagai cara untuk mendeteksi gangguan mental terkait salah satunya *Depression Anxiety Stres Scales* 42. *Depression Anxiety Stres Scales* 42 (DASS-42) merupakan instrumen laporan diri yang mengukur kecemasan, depresi, dan stres. DASS-42 merupakan bentuk singkat dari ukuran 42 item Lovibond dan Lovibond (1995) yang dikembangkan untuk mencakup berbagai gejala kecemasan dan depresi dengan

memberikan perbedaan antara tiga konstruk tersebut. Masing-masing item dari tiga skala DASS-42 diambil tujuh item yang dipilih untuk menjadi representatif sehingga mengurangi hampir setengah dari skala awal yaitu DASS-42 (Tran, Tran and Fisher, 2013). Skala depresi menilai gejala seperti disforia, putus asa, tidak kurangnya minat; skala kecemasan terdiri dari item yang mengevaluasi gejala somatik, kecemasan situasional dan pengalaman subjektif dari perasaan cemas; sedangkan skala stres mengukur suatu kondisi dari gairah dan ketegangan persisten yang terdiri dari gejala seperti kesulitan bersantai, agitasi, kemarahan dan ketidaksabaran (Tran, Tran and Fisher, 2013). Depression Anxiety and Stres Scale 42 (DASS 42) terdiri dari 42 item, yang mengukur tiga keadaan emosional: depresi (misalnya, "saya tidak bisa merasakan perasaan positif sama sekali"), kecemasan (misalnya, "saya menemukan diri saya dalam situasi yang membuat saya sangat cemas sehingga saya merasa sangat lega ketika semuanya berakhir") dan stres (misalnya, "saya merasa sulit untuk rileks"). Setiap item memiliki bobot dari 1 (tidak berlaku untuk saya sama sekali) hingga 4 (sangat banyak atau sebagian besar waktu) (Lee et al., 2019).

Melihat pengaruh kecemasan terhadap detak jantung yang cukup tinggi, dipakailah sensor Photoplethysmography sebagai alat untuk mengetahui keadaan kardiovaskular seseorang. Photoplethysmography (PPG) merupakan suatu metode non-invasive untuk mengetahui detak jantung manusia dengan cara mengukur perubahan volume darah pada suatu organ menggunakan LED (Light Emitting Diode) yang dipancarkan pada kulit pengguna secara transmisi dan reflektansi, kemudian diterima oleh photodetector (Lee et al., 2019). Perkembangan teknologi portable yang sangat pesat dan para peneliti juga sudah mengembangkan teknik baru untuk mengukur HR (heart rate) tanpa harus menggunakan sinyal ECG.Metode yang dipakai untuk mendapatkan data denyut jantung adalah dengan menggunakan data optik yang diperoleh melalui teknik pengukuran Photoplethysmograph (PPG). Sensor optik pada kamera bertugas untuk menangkap perubahan warna kulit yang disebabkan oleh perubahan volume pembuluh darah yang disebabkan oleh aktivitas jantung yang memompa darah ke seluruh tubuh (Anderson and Parrish, 1937). Agar perubahan warna kulit bisa

ditangkap oleh sensor maka harus diberikan iluminasi cahaya LED (*Light Emitting Diode*) pada sebagian area kulit.

Dengan menggunakan prinsip pada teknik PPG maka terdapat kemungkinan bahwa kamera juga dapat digunakan sebagai sensor untuk menangkap perubahan warna akibat perubahan volume pada pembuluh darah. Dengan melakukan ekstraksi terhadap data video yang memuat informasi aktivitas denyut nadi maka dapat diperoleh sinyal PPG. Beat-to-beat data dari sinyal PPG memberikan informasi tentang nilai HR yang dihitung berdasarkan rata-rata jumlah denyut (pulse) dalam satu satuan waktu. Jika nilai HR dapat diketahui melalui data video yang diperoleh oleh kamera maka terdapat kemungkinan bahwa kamera dapat digunakan sebagai alat monitoring kondisi kesehatan yang mudah dan dapat digunakan oleh setiap orang.

Sensor PPG yang digunakan dipasangkan pada Microcontroller untuk menangkap, memproses dan membaca kondisi kardiovaskular seseorang. Microcontroller merupakan sebuah komputer berwujud kecil dan dikemas dalam bentuk chip IC (Integrated Circuit) dan dirancang untuk melakukan tugas atau operasi tertentu. IC microcontroller biasanya terdiri dari integrasi antara satu atau lebih inti prosesor (CPU), memori (ROM dan RAM) serta perangkat *OUTPUT* dan INPUT yang dapat diprogram. Microcontroller biasanya diaplikasikan pada produk atau perangkat yang dikendalikan secara otomatis, salah satunya adalah sistem kontrol perangkat medis. Arduino Nano termasuk ke dalam sebuah mikrokontroler Atmega328 sebagai komponen utamanya yang bersifat open source. Arduino Nano adalah sebuah papan elektronik yang memiliki ukuran lebih kecil dari arduino jenis lainnya, namun mempunyai keunggulan fungsional yang sama dengan lainnya. Bagian hardware arduino ini mempunyai prosesor Atmel AVR dan juga software menggunakan bahasa pemrograman C yang dituangkan dalam software Arduino IDE (integrated Development Environment) dengan bantuan libraries yang terdapat pada Arduino. Pada port arduino Nano, tidak disertakan port DC power namun dihubungkan dengan komputer menggunakan kabel Mini-B USB (Yulian and Suprianto, 2017).

Pada penelitian sebelumnya, kebanyakan alat pengukur saturasi oksigen dalam darah menggunakan metode PPG transmisi dan masih sedikit yang berbasis IoT. Seperti pada penelitian Umi Salamah., yang membuat modul manual menggunakan LED merah serta infrared sebagai sumber cahaya dan juga menggunakan photodiode sebagai sensor cahaya. Dalam penelitian tersebut, peneliti harus menggunakan modul amplifier agar sinyal yang dihasilkan sesuai dengan hasilnya (U. Salamah and K. Oksigen, 2016).Pada penelitian milik Septia Khairunnisa dan kawan-kawan dari Poltekkes Surabaya, oximeter berbasis arduino dibuat dengan menggunakan modul LED merah dan infrared yang diolah menggunakan rangkaian demultiplexer serta di interfacekan menuju PC menggunakan modul wifi ESP 8232. Namun, penelitian ini memiliki kekurangan yaitu banyaknya perangkat yang digunakan serta mahalnya biaya yang dibutuhkan (Septia Khairunnisa, 2016). Pada penelitian milik Candra Rizki Nugroho dari Uin Syarif Hidayatullah Jakarta peneliti sudah malakukan pengukuran sensor PPG berbasis IoT serta sudah melakukan visualisasi data menggunakan aplikasi tetapi masih belum ada penyimpanan data (Candra Rizki Nugroho, 2019)

Tujuan dari penelitian ini adalah untuk mengetahui seberapa tinggi akurasi dari pembacaan sensor PPG serta melakukan penyempurnaan dari penelitian - penelitian sebelumnya dalam penyimpanan data sensor sehingga pasien memiliki riwayat rekam sensor rutin untuk membantu diagnosis dokter.

Jeffrey B. Bolkhovsky dan Christopher G. Schully (2012) melakukan penelitian tentang korelasi antara nilai HR yang diperoleh dari dua smartphone yang berbeda (Droid dan iPhone 4s) dengan nilai HR yang diperoleh dari sinyal ECG. Analisis dilakukan menggunakan metode Pearson Correlation. Hasil penelitian menunjukkan bahwa terdapat hubungan linier antara pengukuran HR berbasis sinyal PPG smartphone dengan pengukuran HR berbasis sinyal ECG. Hasil penelitian menyatakan bahwa smartphone dapat digunakan sebagai alat pengukuran HR secara real-time. (Aldaffan Sheva Ghifari Wydiandhika, 2022)

Rong-Chao Peng, dkk (2014) melakukan penelitian tentang ekstraksi Heart Rate Variability (HRV) dari sinyal berbasis PPG pada smartphone. Penelitian tersebut mengeksplorasi 16 parameter HRV yang mencakup domain waktu, domain frekuensi, dan non-linier parameter. Dari 30 sampel yang diuji diperoleh hasil bahwa 14 parameter HRV dari sinyal PPG memiliki nilai korelasi yang tinggi (r > 0.7, P < 0.001) terhadap data yang diperoleh dari sinyal ECG.

Penelitian menggunakan red-channel video untuk memperoleh sinyal PPG. Hasil pengamatan menyatakan bahwa nilai pixel pada G-channel dan B-channel cenderung nol dan perubahan warna pada R-channel terlihat jelas dibandingkan dengan channel G dan B. (Adha Nur Qahar, 2018)

Penelitian ini difokuskan untuk membandingkan hasil pembacaan sinyal dari beberapa jenis sensor sehingga didapatkan hasil akurasi tertinggi dalam pencatatan sensor PPG, serta sistem yang paling baik dalam visualisasi data untuk proses rekam medis

1.2. Rumusan Masalah

- Bagaimana rancang bangun system untuk mendeteksi kecemasan melalui detak jantung?
- 2. Bagaimana akurasi dari keterkaitan kecemasan terhadap detak jantung?

1.3.Batasan Masalah

- 1. Sistem rekam data hanya mengambil informasi tentang tingkat detak jantung per menit dengan sensor ppg.
- 2. Sampel penelitian dibatasi berdasarkan usia 20 25 tahun.
- Kondisi sampel saat pengambilan data digolongkan berdasarkan hasil tes DASS.
- 4. Sampel penelitian dipastikan hanya memiliki gangguan mental terkait tanpa ada gangguan mental lain.
- 5. Sampel yang diambil sebanyak 25 sampel setiap klasifikasi DASS.

1.4. Tujuan Penelitian

- mengetahui rancang bangun system untuk mendeteksi kecemasan melalui detak jantung.
- 2. Mengetahui akurasi dari keterkaitan kecemasan terhadap detak jantung

.

1.5. Manfaat Penelitian

Penelitian ini diharapkan memiliki beberapa manfaat sebagai berikut

- 1. Sebagai media penunjang bagi peneliti dalam mengembangkan perangkat pembacaan sensor medis secara.
- 2. Sebagai dasar penelitian selanjutnya untuk dapat dikembangkan sebagai sensor medis.
- 3. Sebagai media untuk membantu masyarakat dalam merekam riwayat kesehatan sehingga dapat mengurangi resiko kesalahan diagnosis yang ditimbulkan akibat tidak adanya rekaman riwayat kesehatan yang valid.

BAB II

STUDI PUSTAKA

2.1. Anxiety

Psikologi memandang kecemasan sendiri beranekaragam, banyak teori dan Teknik diteliti serta dikembangkan untuk mengatasi permasalahan kecemasan ini. Kecemasan adalah reaksi yang tepat terhadap suatu hal yang dianggap mengancam, namun cemas menjadi tidak wajar apabila reaksi dan kemunculannya tidak tepat, baik intensitas maupun tingkatan gejalanya (Ruskandi, 2021).

2.1.1. Jenis – Jenis *Anexity*

Psikologi memandang kecemasan sendiri beranekaragam, banyak teori dan Teknik diteliti serta dikembangkan untuk mengatasi permasalahan kecemasan ini. Kecemasan adalah reaksi yang tepat terhadap suatu hal yang dianggap mengancam, namun cemas menjadi tidak wajar apabila reaksi dan kemunculannya tidak tepat, baik intensitas maupun tingkatan gejalanya (Ruskandi, 2021).

Jenis – Jenis Kecemasan ada tiga menurut Freud (Dedy Nugraha and Sunan Kalijaga Yogyakarta, 2020) yaitu :

- 1. Kecemasan Realitas atau Objektif (*Reality of Objective anxiety*)
- 2. Kecemasan Neorosis (*Neurotic Anxiety*)
- 3. Kecemasan Moral.

2.1.2. Faktor Penyebab *Anexity*

Penyebab utama kecemasan yang berbeda-beda itu menurut beberapa ahli Psikologi, dikarenakan adanya perbedaan sudut pandang dalam menganalisa apa yang melatarbelakangi individu bisa mengalami kecemasan. Kecemasan dalam kacamata psikologi sosial, hal ini diakibatkan karena individu takut mengalami penolakan atau ketakutan akan tidak diterima oleh kelompok atau masyarakat (Ihdaniyati and Arifah, 2013).

Pendapat ahli lain mengenai faktor yang dapat menyebabkan kecemasan ada 3 faktor seperti dikemukakan Carnrgie dalam (Dedy Nugraha and Sunan Kalijaga Yogyakarta, 2020); Penyebab pertama adalah:

- a) **Faktor Kognitif individu**; Kecemasan muncul karena adanya keadaan yang membuat individu merasa takut atau tidak nyaman, sehingga jika pengalaman itu muncul kembali, maka reaksi cemas akan kembali hadir sebagai bentuk manifestasi dari keadaan bahaya yang pernah dirasakan.
- b) **Faktor Lingkungan**; penyebab selanjutnya kecemasan bisa muncul karena bersentuhan langsung dengan adat istiadat atau nilai yang dipegang di suatu daerah.

2.1.3. Keterkaitan Anexity Dengan Anatomis Tubuh

Kecemasan yang terjadi pada kebanyakan pasien gagal jantung dikarenakan mereka mengalami kesulitan mempertahankan oksigenasi yang adekuat sehingga mereka cenderung sesak nafas dan gelisah (Smeltzer,2001). Kecemasan yang dialami ketika terjadi serangan adalah kecemasan berat sehingga memerlukan bantuan untuk oksigenasi dan konseling.

2.2. Depression Anxiety Stres Scales 42 (DASS-42)

Depression Anxiety Stres Scales 42 (DASS-42) adalah instrumen laporan diri yang mengukur kecemasan, depresi, serta stres. DASS-42 merupakan bentuk panjang dari ukuran 21 item Lovibond dan Lovibond (1995) yang dikembangkan untuk mencakup berbagai gejala kecemasan dan depresi dengan memberikan perbedaan antara tiga konstruk tersebut. Masing-masing item dari tiga skala DASS-42 diambil tujuh item yang dipilih untuk menjadi representatif sehingga mengurangi hampir setengah dari skala awal yaitu DASS-42 (Lee et al., 2019). Skala depresi menilai gejala seperti disforia, putus asa, tidak berharga, dan kurangnya minat; skala kecemasan terdiri dari item yang mengevaluasi gejala somatik, kecemasan situasional dan pengalaman subjektif dari perasaan cemas. sedangkan skala stres mengukur suatu kondisi dari gairah dan ketegangan persisten yang terdiri dari gejala seperti kesulitan bersantai, agitasi, kemarahan dan ketidaksabaran (Tran, Tran and Fisher, 2013). Depression Anxiety and Stres Scale 42 (DASS 42) terdiri dari 42 item, yang mengukur tiga keadaan emosional: depresi (misalnya, "saya tidak bisa merasakan perasaan positif sama sekali"), kecemasan (misalnya, "saya menemukan diri saya dalam situasi yang membuat saya sangat cemas sehingga saya merasa sangat lega ketika semuanya berakhir")

dan stres (misalnya, "saya merasa sulit untuk rileks"). Setiap item memiliki bobot dari 1 (tidak berlaku untuk saya sama sekali) hingga 4 (sangat banyak atau sebagian besar waktu) (Patrick, Dyck and Bramston, 2010).

2.3. Photoplethysmograph (PPG)

Photoplethysmography (PPG) adalah Salah satu metode yang saat ini sedang populer untuk mengetahui informasi yang terkait dengan jantung atau sistem kardiovaskular. PPG merupakan teknik optik sederhana dan murah yang dapat digunakan untuk mendeteksi perubahan volume darah pada lapisan mikrovaskuler jaringan. Photoplethysmography juga merupakan metode non- invasif yang mudah diaplikasikan dan simpel.beberapa komponen optoelektronik dibutuhkan untuk memunculkan sinyal PPG, yaitu photodetector dan light emitting diode (LED). Photodetector adalah alat untuk mendeteksi perubahan perfusi kecil pada pembuluh darah yang diterangi oleh LED sebagai sumber cahaya. Perfusi diukur sebagai kecepatan pengiriman darah ke jaringan (Tjahjadi, Ramli and Murfi, 2020). Prinsip dasar PPG adalah mendeteksi perbedaan laju absorpsi cahaya yang disebabkan oleh perubahan aliran darah di pembuluh mikrovaskuler yang (PD) ditangkap oleh photodioda (ALDAFFAN **SHEVA GHIFARI** WYDIANDHIKA, 2022).

2.3.1. PPG Waveform

Bentuk gelombang PPG sering disebut dengan komponen 'AC' dan biasanya memiliki frekuensi dasar yang biasanya bernilai sekitar 1 Hz, tergantung pada detak jantung seperti pada gambar 2.1. Komponen AC ini bersifat *superimposed* pada komponen quasi yang besar yang berhubungan dengan jaringan dan volume darah. Sedangkan komponen DC bervariasi secara perlahan karena respirasi, aktivitas vasomotor, dan gelombang vasokonstriktor (Allen, 2014).

Gambar 2.1 Komponen pulsatil (AC) dari sinyal PPG dan elektrokardiogram (EKG) terkait (Allen, 2014)

2.3.2. Fisiologi PPG

Photoplethysmography menggunakan absorptivitas cahaya yang dihasilkan dari variasi fisiologis jaringan selama siklus jantung berjalan. Siklus jantung ini terdiri dari kondisi sistolik dan diastolik. Dalam keadaan sistolik, darah akan dipompa ke seluruh tubuh termasuk ke dalam jaringan perifer, sehingga tekanan darah sistolik akan meningkat dan menghasilkan absorbansi cahaya dalam jaringan dibandingkan dengan keadaan diastolik. Secara umum, perubahan relatif dalam absorbansi cahaya ini menimbulkan bentuk gelombang pulsatile PPG yang sinkron dengan setiap detak jantung (Zhang et al., 2020).

Intensitas PPG yang direkam (I) memiliki hubungan yang terbalik dengan absorbansi cahaya (A). Berdasarkan efek absorbansi cahaya, intensitas PPG dapat dibagi menjadi komponen DC dan AC. Komponen DC nonpulsatile dihasilkan karena adanya penyerapan cahaya di bagian jaringan nonpulsatile seperti otot, tulang, dan sebagainya. Sedangkan komponen AC pulsatile didapat dari penyerapan cahaya dalam arteri yang berdenyut dan bervariasi bersamaan dengan detak jantung. Dalam komponen AC terdapat dua fase dimana, fase tepi naik (anacrotic) yang berhubungan dengan kondisi sistolik dan fase tepi jatuh (catacrotic) yang berhubungan dengan kondisi diastolik. Dalam sinyal PPG didapati pula dicrotic notch yang merupakan penanda akhir dari fase sistolik dan awal dari diastolik (Anderson and Parrish, 1937).

Absorbansi cahaya pada komponen jaringan pulsatile menghasilkan bagian AC dalam bentuk gelombang PPG. Absorbansi dalam komponen jaringan nonpulsatile berkontribusi pada bagian DC yang bervariasi secara perlahan dari bentuk gelombang PPG. Absorbansi di bagian sistolik dan diastolik dilambangkan sebagai As dan Ad, sedangkan intensitas cahaya yang sesuai dilambangkan sebagai Is dan I. Korespondensi kualitatif antara A dan I yang ditunjukkan dalam gambar 2.2 (Anderson and Parrish, 1937).

Gambar 2. 2 Skema bentuk gelombang PPG yang dihasilkan karena absorbansi cahaya dalam jaringan, sebagai fungsi waktu (Tamura et al., 2014).

2.4. Microcontroller

Mikrokontroler memiliki pengertian sebagai sebuah Integrated Circuit (IC) yang dapat diprogram berulang kali baik ditulis ataupun dihapus, (Gridling and Weiss, 2007). mikrokontroler merupakan sebuah prosesor dengan memori dan banyak komponen lain yang terintegrasi menjadi satu chip. Ukuran microcontroller yang kecil menggambarkan mengapa mikrokontroler menjadi sangat berguna. Pengurangan ukuran PCB dapat menghemat waktu, ruang, dan uang. Mikrokontroler telah berisi semua komponen yang memungkinkan mikrokontroler beroperasi secara mandiri, serta telah dirancang secara khusus untuk tugas pemantauan dan atau pengendalian. Karena itu, selain prosesor itu termasuk memori, berbagai pengontrol antarmuka, satu atau lebih banyak pengatur waktu, pengontrol interupsi, dan pin I/O tujuan umum yang terakhir tapi

pasti tidak kalah pentingnya yang memungkinkannya untuk langsung berinteraksi dengan lingkungannya. Mikrokontroler juga termasuk operasi bit yang memungkinkan Anda mengubah satu bit dalam satu byte tanpa menyentuh bit lainnya(Gridling and Weiss, 2007).

2.4.1. Node MCU

NodeMCU merupakan sebuah platform IoT yang bersifat open source. Terdiri dari perangkat keras berupa System On Chip (SoC) ESP8266-12 buatan Espressif System, juga firmware yang digunakan yang menggunakan bahasa pemrograman scripting Lua (NodeMCU DataSheet, 2020) Istilah NodeMCU sebenarnya mengacu pada firmware yang digunakan daripada perangkat keras development kit. NodeMCU bisa dianalogikan sebagai board Arduino-nya ESP8266. NodeMCU sudah menggabungkan ESP8266 ke dalam sebuah board yang kompak dengan berbagai fungsi layaknya mikrokontroler ditambah juga dengan kemampuan akses terhadap Wifi juga chip komunikasi USB to Serial sehingga untuk memprogramnya hanya diperlukan ekstensi kabel data micro USB. Secara umum ada tiga produsen NodeMCU yang produknya kini beredar di pasaran: Amica, DOIT, dan Lolin/WeMos. Dengan beberapa varian board yang diproduksi yakni V1, V2 dan V3. Generasi kedua atau V2 adalah pengembangan dari versi sebelumnya (V1), dengan chip yang ditingkatkan dari sebelumnya ESP-12 menjadi ESP-12E dan IC USB to Serial diubah dari CHG 340 menjadi CP2102. Berikut ini adalah tampilan NodeMCU v1.0 yang dapat dilihat pada Gambar 2.3.

Gambar 2. 3 NodeMCU Devkit v1.0 (Arifaldy Satriadi, Wahyudi, dan Yuli Christiyono, Departemen Teknik Elektro, Universitas Diponegoro, 2019)

2.4.2. ESP32

Pada tahun 2016, perusahaan semikonduktor dibalik produksi ESP8266 yang bernama Espressif meluncurkan produk terbarunya yaitu ESP32. ESP32 memberikan perbaikan di semua lini dari ESP8266. Pada mikrokontroler ini sudah tersedia modul WiFi dan ditambah dengan BLE (Bluetooth Low Energy) dalam chip sehingga sangat mendukung dan dapat menjadi pilihan bagus untuk membuat sistem aplikasi Internet of Things. CPU yang dimilikinya mirip dengan yang dimiliki ESP8266 yaitu Xtensa® LX6 32-bit, namun dengan inti ganda. ESP 32 memiliki ROM 128KB serta RAM 416 KB dan juga Flash Memory (untuk menyimpan program dan data) sebesar 64MB. Berikut adalah *pin mapping* dari ESP32(espressif, 2023).

Gambar 2. 4 pin mapping ESP32 (Tedy Tri Saputro, 2014).

BAB III

METODE PENELITIAN

3.1. Tempat dan Waktu penelitian

Penelitian ini dilaksanakan selama kurang lebih tiga bulan di Laboratorium Instrumentasi Medis dan Laboratorium Komputer, Teknik Biomedis, Departemen Fisika, Fakultas Sains dan Teknologi, Universitas Airlangga.

3.2. Alat dan Bahan Penelitian

Untuk menunjang pelaksanaan penelitian yang akan dilakukan, dibutuhkan alat dan bahan antara lain:

- 1. Laptop Asus X550Z dengan sistem operasi windows 10 dan RAM 4 GB.
- 2. Sensor Photoplethysmography (PPG) Pulse Sensor dan max 30102.
- 3. Arduino Uno R3 Compatible Atmega328P & Wifi ESP8266 NodeMCU Wemos dan ESP32.
- 4. Arduino IDE.
- 5. Software putty.
- 6. Software GitBash.
- 7. Software Visual Studio Code.
- 8. Software brave browser.

3.3. Prosedur penelitian

Penelitian ini dilaksanakan dengan beberapa tahap, berikut merupakan tahapan yang akan dilakukan:

- Tahap Studi Literatur
- Tahap Analisis Data
- Tahap Penulisan Laporan Akhir

Tahapan tersebut dapat direpresentasikan dengan diagram prosedur pada gambar 3.1.

Gambar 3.1 Diagram Prosedur Penelitian

3.3.1. Pengumpulan Data

Data yang digunakan pada penelitian ini adalah data primer yang didapatkan dari penyebaran formulir DASS dan diisi oleh mahasiswa dengan rentang usia 20 – 25 tahun lalu diukur data jantungnya menggunakan sensor PPG.

Pada data formulir DASS terdapat 3 jenis jawaban yang mengindikasikan tingkat depresi, kecemasan, serta stres dengan 5 klasifikasi (normal, ringan, sedang, parah, dan sangat parah).

Tabel 3. 1. Parameter formulir DASS

Sampel yang sudah mengisi formulir DASS akan diobservasi dan diwawancarai untuk mengetahui apakah sampel terkonfirmasi mengalami gangguan kecemasan.

Pada data jantung dengan sensor PPG dan menggunakan software putty untuk diambil data IR dan data detik berdasarkan millis Arduino untuk membatasi waktu pengambilan data dan mempermudah perhitungan. Selanjutnya data disimpan dalam format csv dan diletakkan pada software github.

3.3.2. Preprocessing

Data kuisioner DASS dikategorikan ke dalam 5 tingkatan,

Data sensor PPG yang tersimpan dalam format .csv akan dipisah kolom menjadi kolom IR dan kolom waktu. Detrend digunakan untuk menghilangkan trend yang muncul terhadap sinyal output dan input, sedangkan pemfilteran dilakukan untuk menghilangkan riak/ noise yang ada pada sinyal. Filter yang digunakan untuk menghilangkan noise adalah Band Pass Filter (BPF) metode Hamming dengan rentang frekuensi 0.6-15 Hz. Dari hasil tersebut, nantinya sinyal yang bersih dari riak dan juga telah bersih dari gangguan sinyal DC akan dilakukan proses normalisasi untuk mengubah skala data dalam rentang 0 hingga 1.

Normalisasi data dalam penelitian ini akan menggunakan prinsip normalisasi min – max. Normalisasi ini dilakukan dengan cara mengurangi nilai pada tiap data dengan nilai minimum dari data tersebut yang kemudian dibagi dengan selisih antara nilai maksimum dan nilai minimum data tersebut. Model matematika dari normalisasi dapat dilihat pada persamaan 3.1

$$x = \frac{xold - xmin}{xmax - xmin} \tag{3.1}$$

Di di mana x adalah nilai data hasil normalisasi, xold adalah nilai data, xmin adalah nilai minimum data, dan xmax adalah nilai maksimum data. Setelah data dilakukan normalisasi, data akan dipotong menjadi tiap segmen. Dalam penelitian ini, segmentasi dilakukan berdasarkan pemotongan siklus titik puncak yang mengindikasikan titik sistol dan diastol dari sinyal PPG sehingga hasil segmentasi akan menunjukkan adanya satu siklus sistol dan diastol pada masing – masing segmen. Pemotongan siklus ini dilakukan dengan cara mendeteksi adanya *valley* pada sebelum sinyal sistol dan *valley* sesudah sinyal diastol.

3.3.3. Ekstraksi Fitur

Ekstraksi fitur dilakukan untuk mendapatkan ciri dari hasil *pre-processing* sinyal sebagai nilai input untuk klasifikasi hipertensi. Setelah didapatkan sinyal PPG yang terbebas dari *noise*, langkah selanjutnya adalah melakukan segmentasi secara otomatis untuk mendapatkan satu segmen PPG. Segmen PPG ditandai dengan nilai minimal suatu sinyal. Sinyal PPG hasil segmentasi kemudian dipastikan apakah sudah termasuk sebagai *unfitted signal* atau bukan.

Selanjutnya akan dicari fitur berdasarkan domain waktu. Fitur pada domain waktu diantaranya adalah Ts(*systolic upstroke time*), Td (*diastolic time*) serta mean untuk menentukan kesimetrisan satu segmen (*skewness signal quality*). Apabila distribusi nilainya simetris maka *skewness* akan bernilai mendekati nol. Visualisasi fitur yang digunakan dalam domain waktu terlihat pada Gambar 3.1.

Fitur – fitur ini akan digunakan sebagai fitur untuk AI untuk mengklasifikasikan normal dan hipertensi. Model matematika dari fitur ini dapat dituliskan seperti yang tertulis pada persamaan 3.2.

$$S_{SQI} = \frac{\sum_{i=1}^{N} (Ai - \bar{A})^3}{(N-1)\sigma^3}$$
 (3.2)

Dimana SSQI adalah indeks kualitas sinyal *skewness*, N adalah jumlah variable dalam distribusi, σ adalah standar distribusi, Ai adalah variable acak, dan \tilde{A} adalah rata – rata distribusi

Gambar 3.2. Fitur skewness

Fitur selanjutnya yang digunakan dalam penelitian ini adalah fitur *peak* analysis. Dalam peak analysis akan dicari dimana letak puncak yang

mengindikasikan sistolik dan diastolik, width dari puncak sistolik dan diastolik, serta prominence dari puncak sistolik dan diastolik. Fitur ini nantinya dapat digunakan untuk mengetahui nilai peak yang mengindikasikan systolic peak dan diastolic peak. Prominence sendiri nantinya dapat membantu untuk mengetahui nilai RPTT (Gambar 3.2)

Gambar 3.3. Fitur peak analysis

3.3.4. Tahap Klasifikasi

Setelah melakukan ekstraksi fitur, tahap selanjutnya adalah tahap klasifikasi. Metode yang digunakan untuk *Classifier* pada penelitian ini adalah ELM karena metode ini memiliki kelebihan dalam meningkatkan hasil akurasi dan waktu pelatihan yang cepat (Aldaffan Sheva Ghifari Wydiandhika, 2022). Metode ini memiliki dua proses didalamnya, yaitu proses *training* dan proses *testing*.

a. Tahap Training

- Data pelatihan dari hasil ekstraksi fitur diinputkan. Data tersebut berupa nilai detak jantung dan standar deviasi detak jantung.
- Data pelatihan dinormalisasi pada rentang 0 sampai 1.
- Menghitung jarak eclidean distance dengan menggunakan persamaan

$$dis = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2 + (y_{1i} - y_{2i})^2 + \cdots}$$

• Menghitung jumlah tetangga terdekat terbaik dengan menggunakan loop

b. Tahap Testing

- Menginput data pengujian
- Menginput data hasil normalisasi
- Menghitung nilai dari output target

3.3.5. Tahap Pengujian dan Analisis Data

Tahap pengujian dilakukan dengan mengambil 10 sampel baru untuk tes DASS dan tes PPG. Data DASS digunakan sebagai y_train dan data PPG digunakan sebagai data x_test.

Hasil tes dari x_test (data DASS baru) akan dilakukan uji kepresisian dan keakuratannya dengan confusion_matrix dari library sklearn.

Confusion Matrix adalah pengukuran performa untuk masalah klasifikasi machine learning dimana keluaran dapat berupa dua kelas atau lebih. Confusion Matrix adalah tabel dengan 4 kombinasi berbeda dari nilai prediksi dan nilai aktual. Ada empat istilah yang merupakan representasi hasil proses klasifikasi pada confusion matrix yaitu True Positif, True Negatif, False Positif, dan False Negatif.

DAFTAR PUSTAKA

Adha Nur Qahar (2018) Desain Alat Ukur Denyut Jantung Dan Saturasi Oksigen Pada.

Aldaffan Sheva Ghifari Wydiandhika (2022) Skripsi Deteksi Tekanan Darah Berdasarkan Sinyal Ppg Dengan Metode Statistical Analysis Dan Extreme Learning Machine.

Anderson, R.R. And Parrish, J.A. (1937) *Skin Photoplethysmography-A Review, Comput. Methods Programs Biomed.*

Aries Dirgayunita (2020) 'Depresi Ciri Penyebab Dan'.

Arista Rizki, N. And Fidia Deny Tisna Amijaya, Ms. (2019) *Lecture Notes Database System (Sistem Basis Data) Disusun Oleh*. Available At: Http://Math.Fmipa.Unmul.Ac.Id.

C. Mohan (2018) Advances In Database Technology -- Edbt 2013: 16th International Conference On Extending Database Technology, Genoa, Italy, March 18-22, 2013: Proceedings.

Candra Rizki Nugroho (2019) Alat Pengukur Saturasi Oksigen Dalam Darah.

Cattell, R. (2010) 'Scalable Sql And Nosql Data Stores', *Sigmod Record*, 39(4), Pp. 12–27. Available At: Https://Doi.Org/10.1145/1978915.1978919.

Dave, M. (2012) 'Sql And Nosql Databases', *International Journal Of Advanced Research In Computer Science And Software Engineering* [Preprint].

Dedy Nugraha, A. And Sunan Kalijaga Yogyakarta, U. (2020) 'Memahami Kecemasan: Perspektif Psikologi Islam', *Indonesian Journal Of Islamic Psychology*, 2(1).

Dianovinina, K. And Psikologi, F. (2018) Depresi Pada Remaja: Gejala Dan Permasalahannya Depression In Adolescent: Symptoms And The Problems, Jurnal Psikogenesis.

Espressif (2023) *Esp32 Series Datasheet 2.4 Ghz Wi-Fi* + *Bluetooth* ® + *Bluetooth Le Soc Including*. Available At: Www.Espressif.Com.

Global Initiative For Asthma (2016) Bab Ii Tinjauan Pustaka.

Gridling, G. And Weiss, B. (2007) Introduction To Microcontrollers.

Ihdaniyati, A.I. And Arifah, S. (2013) Hubungan Tingkat Kecemasan Dengan ... (Atina Inayah Ihdaniyati) Hubungan Tingkat Kecemasan Dengan Mekanisme Koping Pada Pasien Gagal Jantung Kongestif Di Rsu Pandan Arang Boyolali.

Inayah Ulfah (2019) Skrining Masalah Kesehatan Jiwa Dengan Kuesioner Dass-42 Pada Civitas Uin Syarif Hidayatullah Jakarta Yang Memiliki Riwayat Hipertensi.

Lawrence, R. (2014) 'Integration And Virtualization Of Relational Sql And Nosql Systems Including Mysql And Mongodb', *Proceedings - 2014 International Conference On Computational Science And Computational Intelligence, Csci* 2014, 1(July), Pp. 285–290. Available At: Https://Doi.Org/10.1109/Csci.2014.56.

Lee, E.H. *Et Al.* (2019) 'The 21-Item And 12-Item Versions Of The Depression Anxiety Stress Scales: Psychometric Evaluation In A Korean Population', *Asian Nursing Research*, 13(1), Pp. 30–37. Available At: Https://Doi.Org/10.1016/J.Anr.2018.11.006.

Made Adnyani Praktisi Yoga Dan Guru Sma Negeri, N. (2018) Kerja Anatomi Tubuh Dalam Yoga Asana Oleh, Yoga Dan Kesehatan.

Mohan, C. (2013) 'History Repeats Itself: Sensible And Nonsensql Aspects Of The Nosql Hoopla', *Acm International Conference Proceeding Series*, Pp. 11–16. Available At: https://Doi.Org/10.1145/2452376.2452378.

Nodemcu Datasheet (2020) 'Nodemcu'.

Patrick, J., Dyck, M. And Bramston, P. (2010) 'Depression Anxiety Stress Scale: Is It Valid For Children And Adolescents?', *Journal Of Clinical Psychology*, 66(9), Pp. 996–1007. Available At: Https://Doi.Org/10.1002/Jclp.20696.

Picking, R. Et Al. (2017) 2017 Internet Technologies And Applications (Ita): Proceedings Of The Seventh International Conference: Tuesday 12th - Friday 15th September 2017, Wrexham GlyndŵR University, Wales, Uk.

Radityo, W.E. (2020) Depresi Dan Gangguan Tidur.

Ruskandi, J.H. (2021) *Kecemasan Remaja Pada Masa Pandemi Covid-19*. Available At: Http://Jurnal.Globalhealthsciencegroup.Com/Index.Php/Jppp.

Suliyanti, W.N. (2019a) 'Studi Literatur Basis Data Sql Dan Nosql', 8(1). Suliyanti, W.N. (2019b) 'Studi Literatur Basis Data Sql Dan Nosql', *Kilat*, 8(1), Pp. 48–51. Available At: Https://Doi.Org/10.33322/Kilat.V8i1.460.

Tran, T.D., Tran, T. And Fisher, J. (2013) 'Validation Of The Depression Anxiety Stress Scales (Dass) 21 As A Screening Instrument For Depression And Anxiety In A Rural Community-Based Cohort Of Northern Vietnamese Women', *Bmc Psychiatry*, 13. Available At: Https://Doi.Org/10.1186/1471-244x-13-24.

Wang, R. And Yang, Z. (2020) *Sql Vs Nosql: A Performance Comparison*. Available At: Https://En.Wikipedia.Org/Wiki/Cap_Theorem.

Yardley, L. And Moss-Morris, R. (2009) 'Current Issues And New Directions In Psychology And Health: Increasing The Quantity And Quality Of Health Psychology Research', *Psychology And Health*, Pp. 1–4. Available At: Https://Doi.Org/10.1080/08870440802618825.

Yulian, R. And Suprianto, B. (2017) Rancang Bangun Photoplethysmography (Ppg) Tipe Gelang Tangan Untuk Menghitung Detak Jantung Berbasis Arduino.

Zenny Nurhandinie Putri (2017) 2.2. Faktor-Faktor Yang Mempengaruhi Viskositas Darah.

Zhang, G. *Et Al.* (2020) 'A Noninvasive Blood Glucose Monitoring System Based On Smartphone Ppg Signal Processing And Machine Learning', *Ieee Transactions On Industrial Informatics*, 16(11), Pp. 7209–7218. Available At: Https://Doi.Org/10.1109/Tii.2020.2975222.