

REDES NEURONALES 2024

Clase 14 parte 1 Lunes 30 de septiembre 2024

FAMAF, UNIVERSIDAD NACIONAL DE CÓRDOBA

INSTITUTO DE FÍSICA ENRIQUE GAVIOLA (UNC-CONICET)

El cerebro

- Es el órgano más complejo del universo que conocemos.
- Pesa alrededor de 1,3 kg.
- Contiene aproximadamente 1 000 000 000 000 (10¹²) neuronas
- Cada neurona se conecta, en promedio, con otras 10.000 neuronas (10⁴). Por lo tanto tiene aproximadamente 10¹⁶ conexiones sinápticas.
- Consume muy poca energía.
- Almacena a través de asociaciones (memoria se direcciona por contenido).
- Trabaja en forma masivamente paralelo. Posee millones de redes neuronales.
- Es flexible y plástico, lo cual le permite adaptarse y adaptar a los organismos que lo poseen.
- Es un sistema auto-organizado, no programado y multi-tareas.
- Es robusto y tolerante a fallas.

La neurona

La sinapsis

El paradigma neuronal o conexionista

El secreto de la inteligencia artificial no está en la complejidad de las neuronas, si no en la complejidad de la arquitectura de conexiones entre neuronas, llamadas sinapsis.

LA NEURONA BINARIA O UNIDAD DE UMBRAL

$$y_{i}(t) = \begin{cases} 0 & \text{si la neurona está en reposo en tiempo } t \\ 1 & \text{si la neurona dispara en tiempo } t \end{cases}$$

$$\begin{aligned} \mathcal{J}_{i}(t+\Delta t) &= \Theta\left(h_{i}(t) - \mu_{i}\right) \\ &= \Theta\left(\omega_{i}, y_{i}(t) + \omega_{i}, y_{i}(t) + \omega_{i}, y_{i}(t) - \mu_{i}\right) \\ &= \Theta\left(\sum_{k=1}^{3} \omega_{i}, y_{k}(t) - \mu_{i}\right) \\ \text{donde} &= \Theta\left(\overline{\omega}_{i}.\overline{y} - \mu_{i}\right) \end{aligned}$$

$$\Theta = \begin{cases} 1 & \text{si} & \chi \ge 0 \\ 0 & \text{si} & \chi \angle 0. \end{cases}$$

LAS POSIBLES FUNCIONES DE ACTIVACIÓN

$$y_i \in \{0, 1\}$$

Ising

