

Why Are Taxi Drivers in New York Killing Themselves?

Three taxi owners and five other professional drivers have died by suicide over the last year. It has prompted a flurry of legislation to improve working conditions for drivers.

IDEAS

Taxi-Driver Suicides Are a Warning

Technology has pushed a vulnerable, largely immigrant, population into an economically precarious situation even as its prospects of upward mobility dwindle.

NYC Yellow Cab Drivers' Earnings Have Fallen 44 Percent Since 2013

BY RUSCHELL BOONE | NEW YORK CITY

PUBLISHED 10:43 PM ET MAY, 30, 2019

Problem Statement

Solution

Standard Metered Fare

- \$2.50 initial charge.
- Plus 50 cents per 1/5 mile when traveling above 12mph or per 60 seconds in slow traffic or when the vehicle is stopped.
- Plus 50 cents MTA State Surcharge for all trips that end in New York City or Nassau, Suffolk, Westchester, Rockland, Dutchess, Orange or Putnam Counties.
- Plus 30 cents Improvement Surcharge.
- Plus 50 cents overnight surcharge 8pm to 6am.
- Plus \$1.00 rush hour surcharge from 4pm to 8pm on weekdays, excluding holidays.
- Plus New York State Congestion Surcharge of \$2.50 (Yellow Taxi) or \$2.75 (Green Taxi and FHV) or 75 cents (any shared ride) for all trips that begin, end or pass through Manhattan south of 96th Street.

A first Look - Uber Vs. Taxis

Raw Data

Outliers!

- Example 1:

 99.9th percentile
 value of speed is
 45.31miles/hr.
 100th percentile
 value of a speed
 is 192 Million
 miles/hr.
- Example 2: ->

Data Cleaning (Speed)

Data Cleaning (location)

Data Features

[Goal: Predict Speed at Given Pickup Location]

- Previous Pickups
- Day of the week
- Location of the Pickup cluster (Lat, Long)
- Fourier Frequency & Amplitude?

SV-Regression

Similar to SVC.

Differs from other regression models as it is non-parametric [relies on Kernel functions]

XGBoost

- Extreme Gradient Boosting
- Boosting -> new models added to correct the errors made by existing models. Models added sequentially.
- Gradient boosting -> gradient
 descent algorithm to minimize the
 loss when adding new models.

Ensemble Learning

Weak Learners

- In an Ensemble method, one combines multiple weak learners to make a strong learning model.
- A weak learner is any model that has an accuracy of better than random, even if it is just slightly better (e.g., 0.51).

XGBoost

XGBoost Regressor

```
def xgboost reg(train data, train true, test data, test true):
   #hyper-parameter tuning
 hyper parameter = {"max depth":[1, 2, 3, 4], "n estimators":[40, 80, 150, 600]
   clf = xqb.XGBRegressor()
   best parameter = GridSearchCV(clf, hyper parameter, scoring = "neg mean absolute error", cv = 3)
   best parameter.fit(train data, train true)
   estimators = best parameter.best params ["n estimators"]
   depth = best parameter.best params ["max depth"]
   #applying xgboost regressor with best hyper-parameter
   clf = xqb.XGBReqressor(max depth = depth, n estimators = estimators)
   clf.fit(train data, train true)
   train pred = clf.predict(train data)
   train MAPE = mean absolute error(train true, train pred)/ (sum(train true)/len(train true))
   train MSE = mean squared error(train true, train pred)
   test pred = clf.predict(test data)
   test MAPE = mean absolute error(test true, test pred)/ (sum(test true)/len(test true))
   test MSE = mean squared error(test true, test pred)
   return train MAPE, train MSE, test MAPE, test MSE
```

Results

ev	Model	TrainMAPE(%)	TrainMSE	TestMAPE(%)	TestMSE
0	Linear Regression	11.772115	9.662512	19.533328	10.811107
1	SVM Classifier	10.475732	8.884453	18.694722	10.301545
2	XGBoost Regressor	10.801919	8.556740	12.195017	7.416899

	Model	Mean_Absolute_Per_Error(%)
0	Linear Regression	19.5333
1	SVM Regressor	18.6947
2	XGBoost Regressor	12.195

Resources

- https://blog.goodaudience.com/taxi-demand-prediction-new-york-city-5e7
 b12305475
- https://towardsdatascience.com/https-medium-com-vishalmorde-xgboostalgorithm-long-she-may-rein-edd9f99be63d
- https://www.datacamp.com/community/tutorials/xgboost-in-python