Geometryczna Teoria Grup

Weronika Jakimowicz

Zima 2024/25

Spis treści

1	Wstępy		1
	02.10.2024	Grafy Cayleya	1
	1.	Metryka słów	1
	2.	Graf Cayleya	1
	3.	Quasi-izometrie	3
	09.10.2024	Lemat Milnora-Švarca	6
2	Niezmienni	ki izometrii	11
	16.10.2024	Końce (w nieskończoności) grup przestrzeni	11
	1.	Podejście przez granice	11
	2.	Toopologia granicy odwrotnej	12

1. Wstępy

02.10.2024 Grafy Cayleya

1. Metryka słów

Definicja 1.1: metryka słów

Niech G będzie grupą, a S dowolnym układem jej generatorów. Wówczas dla dowolnych $g_1, g_2 \in G$ odległość między nimi w metryce słów definiujemy jako

$$ds(g_1,g_2) = min\{n \ : \ g_2 = g_1s_1,...,s_n, \ s_i \in S \cup S^{-1}\},$$

$$\mathsf{gdzie}\,\mathsf{S}^{-1}=\{\mathsf{g}^{-1}\ :\ \mathsf{g}\in\mathsf{S}\}.$$

Metryka słów jest

- 1. skończona
- 2. symetryczna (z definicji generatorów)
- 3. lewo-niezmiennicza, czyli $(\forall \gamma \in G) ds(\gamma g_1, \gamma g_2) = ds(g_1, g_2)$

Ostatnia własność oznacza, że G działa na sobie jako na przestrzeni metrycznej przez izometrie.

Gromov chce patrzeć na dyskretne przestrzenie metryczne, jakimi są grupy z metryką słów, jako na przestrzenie ciągłe (z dużej odległości).

2. Graf Cayleya

Definicja 1.2: graf Cayleya

Niech G będzie grupą, a S zbiorem jej generatorów. C(G,S) to graf Cayleya o wierz-chołkach będących elementami G i skierowanych krawędziach etykietowanych generatorami:

$$g \xrightarrow{s} gs$$

 $gdzie\ g\in G\ i\ s\in S.$

Przykłady

1. Dla $G = \mathbb{Z}^2$ oraz $S = \{(1,0), (0,1)\}$ graf Cayleya to nieskończona "kratka"

2. Dla grupy cyklicznej rzędu p z generatorem s graf Cayleya to p-kąt

3. TO DO parkietarz kwadratami

Innym wariantem grafu Cayleya niż zdefiniowany wcześniej jest graf w którym wierzchołki są elementami grupy V=G, ale krawędzie są niezorientowane: $E=\{\{g_1,g_2\}: ds(g_1,g_2)=1\}$. W przykładzie z parkietarzem zamiast podwójnych krawędzi w obie strony będzie on miał pojedyńczą, nieskierowaną krawędź

Każdy graf Cayleya jest **spójny**, bo jego krawędzie to mnożenie przez generatory. Dodatkowo, grupa G działa na nim przez automorfizmy zachowując krawędzie oraz ich etykiety. To znaczy, że krawędż z wierzchołkami

$$g \stackrel{s}{-\!\!\!-\!\!\!\!-\!\!\!\!-} gs$$

pod działaniem elementu $\gamma \in G$ staje się

$$\gamma g \stackrel{\mathsf{s}}{\longrightarrow} \gamma g \mathsf{s}.$$

Jeśli każdą krawędź w grafie Cayleya potraktujemy jako odcinek długości 1, to możemy na nim zdefiniować metrykę która jako odległość dwóch punktów przyjmuje długość najkrótszej ścieżki między nimi. Ta metryka na wierzchołkach pokrywa się z **metryką słów** na grupie G o generatorach S, której graf rozpatrujemy. Przy takiej metryce działanie grupy G jest więc działaniem nie tylko przez automorfizmy, ale przez izometrie (lewa-niezmienniczość).

Dla surjekcji $\pi: F_S \to G$, gdzie $G = \langle S \mid R \rangle = F_S/N$ możemy mieć dwie tak samo zorientowane strzałki między dwoma wierzchołkami (gdy np. $g_1\pi(s_1) = g_1\pi(s_2) = g_2$

Definicja 1.3: suma drzewiasta

Mając dwie grupy (G_1, S_1) i (G_2, S_2) graf Cayleya ich sumy wolnej, czyli graf $(G_1 \star G_2, S_1 \cup S_2)$ to graf pierwszej grupy, który w każdym wierzchołku ma kopię grafu drugiej grupy, która w każdym wierzchołku ma kopię pierwszej grupy...

3. Quasi-izometrie

Definicja 1.4: quasi-izometria

Dla dwóch przestrzeni metrycznych (X_i, d_i) , i=1,2, mówimy, że przekształcenie $f: X_1 \to X_2$ (niekoniecznie ciągłe) jest **quasi-izometryczne zanurzenie**, gdy istnieje $C \ge 1$ oraz $L \ge 0$ takie, że $\forall x,y \in X_1$ zachodzi

$$\frac{1}{\mathsf{C}}\mathsf{d}_1(\mathsf{x},\mathsf{y}) - \mathsf{L} \leq \mathsf{d}_2(\mathsf{f}(\mathsf{x}),\mathsf{f}(\mathsf{y})) \leq \mathsf{C} \cdot \mathsf{d}_1(\mathsf{x},\mathsf{y}) + \mathsf{L}.$$

Ponadto, jeśli istnieje D ≥ 0 takie, że $f(X_1)$ jest D-gęsty (D-siecią) w X_2 , tzn.

$$(\forall \ y \in \mathsf{X}_2)(\exists \ x \in \mathsf{X}_1) \ \mathsf{d}_2(\mathsf{y},\mathsf{f}(\mathsf{x})) \leq \mathsf{D}$$

to wtedy f jest quasi-izometria.

Zwykle przyjmujemy L = D (większe z dwóch) i mówimy o tzw. (C, L)-quasi-izometrii.

Fakt 1.5: własności q.i.

- 1. złożenie q.i. jest q.i
- 2. dla dowolnej q.i. f : $X_1 \to X_2$ istnieje $g: X_2 \to X_1$ takie, że istnieje $D \ge 0$ takie, że

$$(\forall x_2 \in X_2) d_2(f \circ g(x_2), x_2) \leq D$$

$$(\forall \ x_1 \in X_1) \ d_1(g \circ f(x_1), x_1) \leq D$$

to wówczas g też jest q.i.

Definicja 1.6: quasi-izometryczne rozmaitości

Mówimy, że (X_1, d_1) jest quasi-izometryczna z (X_2, d_2) jeśli istnieje q.i. $f: X_1 \to X_2$. Jest to relacja równoważności.

Przykłady

- 1. (X, d) jest q.i. z punktem \iff X jest ograniczone.
- 2. X jest q.i. z dowolną swoją D-siecią Y \subseteq X przez inkluzję.
- 3. Dla dowolnego B ograniczonego $X \times B \cong X$ są q.i.
- 4. Dowolne dwa drzewa regularne T_k stopnia $k \geq 3$ są ze sobą q.i.
- 5. Graf Farey'a, nieskończony konstruowany jak niżej, z metryką kombinatoryczną (każda krawędź ma długość 1) jest q.i. z drzewem przeliczalnego stopnia $T_{\omega}=T_{\aleph_0}$.

Fakt 1.7

Niech G będzie grupą skończenie generowalną i niech S_1 , S_2 jej skończonymi zbiorami generatorów. Wówczas odwzorowanie tej grupy jako dwóch przestrzeni metrycznych $(G,S_1) \to (G,S_2)$ gdzie zmieniamy metrykę słów jest q.i.

Wniosek 1.8

Skończenie generowana grupa G determinuje jednoznacznie klasę quasi-izometrii. Innymi słowy, skończenie generowana grupa jest jednoznacznym obiektem quasi-metrycznym.

09.10.2024 Lemat Milnora-Švarca

Lemat 1.9: Milnora-Švarca

Niech X będzie właściwą przestrzenią geodezyjną a Γ grupą działającą na X przez izometrie właściwie i kozwarcie. Wówczas Γ jest skończenie generowalna i quasiizometryczna z X. Dokładniej, $\forall \ x_0 \in X$ odwzorowanie $\Gamma \to X$ określone przez $\gamma \mapsto \gamma \cdot x_0$ jest quasi-izometrią.

Dowód

Wybierzmy $x_0 \in X$. Z kozwartości tego działania, istnieje promień R > 0 taki, że dla kuli $B = B_R(x_0)$ o środku w x_0 taki, że rodzina przesunięć kuli $\{g \cdot B : g \in \Gamma\}$ jest pokryciem X. Rozważmy zbiór $S = \{s \in \Gamma : s \neq 1, s \cdot B \cap B \neq \emptyset\}$ niewielkich przesunięć kuli B. Z właściwości działania oraz z właściwości przestrzeni X, zbiór S jest skończony. Ponadto, zbiór jest ten jest symetryczny $S = S^{-1}$ ($s \in S \implies s^{-1} \in S$), bo jeśli $s \cdot B \cap S \neq \emptyset$ to również $s^{-1} \cdot (s \cdot B \cap B) \neq \emptyset$.

Określamy $v:=\inf\{d(B,g\cdot B):g\in\Gamma-S-\{1\}\}$ czyli najmniejsza odległość kuli od jej rozłącznych z nią przesunięć.

Clam 1: v > 0

Dla każdego $g \in \Gamma - S - \{1\}$ wiemy, że $d(B,g \cdot B) > 0$. Gdyby to infimum v = 0, to mielibyśmy ciąg parami różnych elementów $g_n \in \Gamma$ takich, że $d(B,g_n \cdot B) \searrow 0$ maleją do 0. Stąd mielibyśmy punkty $z_n \in B$ takie, że $d(z_n,g_n \cdot B) \searrow 0$ (jako punkty prawie realizujące odległość między zbiorami). Istnieje podciąg n_k taki, że $z_{n_k} \in z_0 \in B$, a stąd $d(z_0,g_n \cdot B) \searrow 0$. To oznacza, że $B_{2R}(x_0)$ przecina niepusto nieskończenie wiele spośród przesunięc $g_n \cdot B_{2R}(x_0)$, a to jest sprzeczne z właściwością działania.

Clam 2: S generuje Γ oraz dla każdego $\gamma \in \Gamma$

$$\frac{1}{\lambda} \mathsf{d}_{\mathsf{X}}(\mathsf{x}_0, \gamma \cdot \mathsf{x}_0) \leq \mathsf{d}_{\mathsf{S}}(1, \gamma) \leq \frac{1}{\mathsf{r}} \mathsf{d}_{\mathsf{X}}(\mathsf{x}_0, \gamma \cdot \mathsf{x}_0) + 1\text{,}$$

 $gdzie \lambda := max_{s \in S} d_X(x_0, s \cdot x_0).$

I scenariusz:

II scenariusz

Niech y_0 będzie punktem na geodezyjnej $[x_0, \gamma \cdot x_0] = \eta$ z kuli B najdalszy od x_0 na tej geodezyjnej. W odległości r od y_0 obierzmy punkt x_1 . Wtedy odcinek $(y_0, x_1) \subseteq \eta \subseteq \bigcup_{s \in S} s \cdot B$, ale to jest zbiór domknięty, z czego wynika, że $x_1 \in \bigcup_{s \in S} s \cdot B$, czyli $x_1 \in s_1 \cdot B$. Iterujemy się tak aż kulą $B_k = s_k s_{k-1} ... s_1 \cdot B$ trafimy w $\gamma \cdot x_0$.

W scenariuszu I mamy $\gamma \cdot \mathsf{B} \cap \mathsf{s}_{\mathsf{k}}...\mathsf{s}_1 \cdot \mathsf{B} \neq \emptyset$, bo $\gamma \mathsf{x}_0 \in \gamma \cdot \mathsf{B}$ oraz $\gamma \mathsf{x}_0 \in \mathsf{s}_{\mathsf{k}}...\mathsf{s}_1 \cdot \mathsf{B}$. W takim razie $\mathsf{s}_1^{-1}...\mathsf{s}_{\mathsf{k}}^{-1}\gamma \cdot \mathsf{B} \cap \mathsf{B} \neq \emptyset$. Czyli zachodzi jedna z równości

1.
$$s1^{-1}...s_k^{-1}\gamma = 1 \implies \gamma = s_k...s_1$$

2.
$$s_1^{-1}...s_k^{-1} \gamma = s_{k+1} \in S \implies \gamma = s_k...s_1s_{k+1}$$

W scenariuszu II d $(\gamma x_0, s_k...s_1 \cdot B) < v \implies d(x_0, \gamma^{-1}s_k...s_1 \cdot B) < r \implies d(B, \gamma^{-1}s_k...s_1 \cdot B) < r$. W takim razie znowu zachodzi jedna z równości

1.
$$s1^{-1}...s_k^{-1}\gamma = 1 \implies \gamma = s_k...s_1$$

$$\mathbf{2.}\ \mathbf{s}_{1}^{-1}...\mathbf{s}_{k}^{-1}\boldsymbol{\gamma}=\mathbf{s}_{k+1}\in\mathbf{S}\implies\boldsymbol{\gamma}=\mathbf{s}_{k}...\mathbf{s}_{1}\mathbf{s}_{k+1}$$

Dla uzyskania prawej nierówności, zauważamy, że w obu scenariuszach $d_S(1,\gamma) \leq k+1 \leq \frac{1}{r} d_X(x_0,\gamma \cdot x_0) + 1$, bo $d(x_0,\gamma \cdot x_0) \geq k \cdot r$ bo tyle razy udało nam się odłożyć r na geodezyjnej.

Jeśli d $_{\mathsf{S}}(1,\gamma)=\mathsf{m}$, a $\gamma=\mathsf{s}_1...\mathsf{s}_{\mathsf{m}}$, to wówczas

$$\label{eq:def_def} \mathsf{d}_\mathsf{X}(\mathsf{s}_1,...,\mathsf{s}_k\cdot\mathsf{x}_0,\mathsf{s}_1...\mathsf{s}_{k-1}\cdot\mathsf{x}_0) = \mathsf{d}_\mathsf{X}(\mathsf{s}_k\cdot\mathsf{x}_0,\mathsf{x}_0) \leq \lambda.$$

Z nierówności trójkąta

$$\mathsf{d}(\gamma \cdot \mathsf{x}_0, \mathsf{x}_0) = \mathsf{d}(\mathsf{s}_1...\mathsf{s}_k \cdot \mathsf{x}_0, \mathsf{x}_0) \leq \mathsf{m} \cdot \lambda = \mathsf{d}_\mathsf{S}(1, \gamma) \cdot \lambda$$

co właściwie kończy dowód Claim 2.

Pozostaje nam udowodnienie quasi-izometryczności $f(\gamma) \to \gamma \cdot x_0$, które staje się **Claim 3**.

Z lewo niezmienniczości metryki słów d $_S$ wiemy, że d $_S(\gamma_1,\gamma_2)=d_S(1,\gamma_1^{-1}\gamma_2)$, czyli wszystkie dystanse wyrażają się jako dystanse od 1. Z kolei z lewo- Γ -niezmienniczości metryki d $_X$ na X mamy

$$\mathsf{d}_{\mathsf{X}}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) = \mathsf{d}_{\mathsf{X}}(\gamma_1 \cdot \mathsf{x}_0,\gamma_2 \cdot \mathsf{x}_0) = \mathsf{d}_{\mathsf{X}}(\mathsf{x}_0,\gamma_1^{-1}\gamma_2 \cdot \mathsf{x}_0).$$

Nierówności z Claim 2 otrzymujemy następujący wariant nierówności

$$\frac{1}{\lambda}\mathsf{d}_{\mathsf{X}}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) \leq \mathsf{d}_{\mathsf{S}}(\gamma_1,\gamma_2) \leq \frac{1}{\mathsf{r}} \cdot \mathsf{d}_{\mathsf{X}}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) + 1$$

Stąd wynika, że

$$\mathsf{rd}_\mathsf{S}(\gamma_1, \gamma_2) - \mathsf{r} \le \mathsf{d}_\mathsf{X}(\mathsf{f}(\gamma_1), \mathsf{g}(\gamma_2) \le \lambda \mathsf{d}_\mathsf{S}(\gamma_1, \gamma_2)$$

i f jest quasi-izometrycznym włożeniem dla C = $\max(\lambda, \frac{1}{r})$ i L = r.

Ponadto, obraz $f(\Gamma)$ jest R-gęsty (dla R promienia z początku dowodu) w X, bo dla każdego $x \in X$ istnieje $\gamma \in \Gamma$ takie, że $x \in \gamma \cdot B_R(x_0) = B_R(\gamma \cdot x_0)$. Czyli $d_X(x, \gamma \cdot x_0) \leq R$, ale $\gamma \cdot x = f(x)$. Stąd f jest quasi-izometrią.

Niewszystkie guasi-izometryczne grupy są współmierne.

Przykłady

1. Grupy podstawowe $\pi_1(M_1)$, $\pi_1(M_2)$ zamkniętych 3-wymiarowych rozmaitości hiperbolicznych M_1 , M_2 o niewspółmiernych (jedna nie jest iloczynem drugiej przez liczbę wymierną) objętościach vol (M_i) .

Wiadomo, że istnieje wiele klas niewspółmierności wśród objętości takich rozmaitości.

Twierdzenie 1.10: Mostowa o sztywności [1968]

Dwie zamknięte hiperboliczne rozmaitości o izomorficznych grupach podstawowych są izometryczne. W szczególności, mają jednakowe objętości.

Załóżmy nie wprost, że $\pi_1(\mathsf{M}_1)$ i $\pi_1(\mathsf{M}_2)$ są współmierne, to wówczas mielibyśmy wspólną podgrupę skończonego indeksu H < $\pi_1(\mathsf{M}_1)$, H < $\pi_1(\mathsf{M}_2)$. Niech $\overline{\mathsf{M}}_1$ i $\overline{\mathsf{M}}_2$ będą nakryciami M_1 , M_2 wyznaczone przez H. Skoro indeks grupy jest skończony, to nakrycia też takie są, a więc $\overline{\mathsf{M}}_i$ są zwarte i z podniesionymi metrykami

Riemanna, a więc są w dalszym ciągu hiperboliczne.

Z teorii nakryć wiemy, że $\pi_1(\overline{\mathsf{M}}_1) \cong \mathsf{H} \cong \pi_1(\overline{\mathsf{M}}_2)$. Stąd wynika, że $\overline{\mathsf{M}}_1$ jest izometryczna z $\overline{\mathsf{M}}_2$, a więc ich objętości są równe sobie. Ale

$$vol(\overline{M}_i) = (\underbrace{krotność \, nakrycia}_{=[\pi_1(M_i):H]}) \cdot vol(M_i)$$

stąd

$$\frac{\text{vol}(\mathsf{M}_1)}{\text{vol}(\mathsf{M}_2)} = \frac{[\pi_1(\mathsf{M}_1) : \mathsf{H}]}{[\pi_1(\mathsf{M}_2) : \mathsf{H}]}$$

daje sprzeczność z niewspółmiernością.

2. Niech G_A będzie produktem półprostym $\mathbb{Z} \ltimes_A \mathbb{Z}^2$, gdzie $A: \mathbb{Z}^2 \to \mathbb{Z}^2$ jest zadane macierzą $A \in Sl_2\mathbb{Z}$. Chcemy, żeby A było macierzą hiperboliczną (tzn. |tr(A)| > 2) posiadającą dwie różne rzeczywiste wartości własne, odwrotne do siebie. Wówczas grupa G_A jest kratą (podgrupą dyskretną i kozwartą) w pewnej grupie Liego $Sol = (\mathbb{R}^3, \cdot)$, gdzie mnożenie jest zadane jako

$$(x,y,z)\cdot(a,b,c)=(e^Z\cdot a,e^{-Z}\cdot b,c+z)$$

2. Niezmienniki izometrii

16.10.2024 Końce (w nieskończoności) grup przestrzeni

Zanim zaczniemy, zróbmy szybką motywację, czyli graf Cayleya grupy $\mathbb Z$ z jednym generatorem:

który ma "dwa końce". Natomiast grupa wolna F_2 o dwóch generatorach ma "nieskończenie wiele końców".

NARYSOWAC F2

Z drugiej strony, grupa \mathbb{Z}^2 ma jeden koniec: jeśli weźmiemy dwa bardzo odległe od siebie obszary, to one są ze sobą połączone, chociaż jest to połączenie "bardzo odległe".

NARYSOWAC krate i dwa placki poolaczone

Z kolei każda przestrzeń skończona, np. graf Cayleya grupy skończonej, ma 0 końców.

1. Podejście przez granice

Definicja 2.1: zbiór skierowany –

Zbór z częściowym proządkiem (Λ, \leq) jest **skierowany**, gdy dla dowolnych $\lambda_1, \lambda_2 \in \Lambda$ istnieje $\lambda \in \Lambda$ takie, że $\lambda \geq \lambda_1$ oraz $\lambda \geq \lambda_2$.

ciągi odwrotne

Definicja 2.2: system odwrotny —

System odwrotny nad zbiorem skierowanym Λ to rodzina zbiorów

$$\mathfrak{X}:=\{\mathsf{X}_{\lambda}\ :\ \lambda\in\Lambda\}$$

oraz rodzina odwzorowań

$$\mathcal{F}:=\{\mathsf{f}_{\lambda\mu}:\mathsf{X}_{\mu}\to\mathsf{X}_{\lambda}\ :\ \lambda\leq\mu\}$$

takich, że

- 1. dla dowolnego λ mamy funkcję identycznościową: $\mathsf{f}_{\lambda\lambda} = \mathsf{id}_{\mathsf{X}_\lambda}$
- 2. dla dowolnych $\lambda \leq \mu \leq \nu$ złożenia zachowują się dobrze: $f_{\lambda\nu} = f_{\lambda\mu} \circ f_{\mu\nu}$.

Będziemy oznaczać: $\underline{X} := (\Lambda, \mathfrak{X}, \mathcal{F})$

Definicja 2.3: granica odwrotna

Granicą odwrotną systemu X nazywamy zbiór

$$\lim_{\leftarrow} = \{ \xi \in \prod_{\lambda \in \Lambda} \mathsf{X}_{\lambda} \ : \ (\forall \ \lambda' \leq \lambda) \ \xi_{\lambda'} = \mathsf{f}_{\lambda' \lambda}(\xi_{\lambda}) \}.$$

Elementy ξ jak wyżej nazywamy niciami (threads) w \underline{X} .

Definicja 2.4: odwzorowania graniczne

Odwzorowania

$$f_{\lambda}: \underline{\lim}\,\underline{X} \to X_{\lambda}$$

takie, że $f_{\lambda}(\xi) = \xi_{\lambda}$ nazywamy odwzorowaniami granicznymi.

O odwzorowaniach granicznych można myśleć jako o odwzorowaniach, które pytają "kim byłem w czasie λ ".

Dla $\lambda \leq \mu$ diagram

zawsze komutuje.

2. Toopologia granicy odwrotnej

Kiedy zbiory X_{λ} są przestrzeniami topologicznymi, zaś $f_{\lambda\mu}$ są ciągłe, to na granicy odwrotnej $\varprojlim \underline{X}$ rozważamy również topologię graniczną. Jest to topologia dziedziczona z topologii produktowej na $\prod_{\lambda \in \Lambda} X_{\lambda}$. Bazą tej topologii są zbiory postaci $f_{\lambda}^{-1}(U)$ dla $\lambda \in \Lambda$ i otwartych

 $U \subseteq X$.

Fakt 2.5

Gdy przestrzenie X_{λ} są Hausdorffa, to $\varprojlim X$ jest domkniętym podzbiorem w $\prod_{\lambda \in \Lambda} X_{\lambda}$.

Gdy przestrzenie X_{λ} są zwarte i metryczne, to wówczas $\varprojlim \underline{X}$ też jest zwarta i metryczna. W szczególności, gdy X_{λ} są skończone (z topologią dyskretną), zaś Λ jest przeliczalny, to wówczas $\varprojlim \underline{X}$ jest przestrzenią zwartą i metryczną. Na ogół nie jest też przestrzenią dyskretną, mimo że wszystkie zbiory po których bierzemy granicę takie były (bazą topologii są przeciwobrazy punktów $\{\xi \in \varprojlim \underline{X}: \xi_{\lambda} = x\} = f_{\lambda}^{-1}(x)$).

Przykład

Niech $\Lambda=(\mathbb{N},\leq)$ i niech X_{k} będzie zbiorem wszystkich ciągów 0 – 1 długości k. Dla k \leq m rozważamy

$$f_{km}: X_m \rightarrow X_k$$

będące obcięciem ciągu długości m do początkowego ciągu długości k. Dostajemy wówczas system odwrotny $\underline{X}=(\mathbb{N},\{X_k\},\{f_{km}\})$ zbiorów skończonych. Wówczas $\varprojlim \underline{X}$ jest homeomorficzny ze zbiorem Cantora.

Będziemy zajmować się X które są przestrzeniami metrycznymi, geodezyjnymi właściwymi, np. grafami Cayleya grup skończenie generowanych. \mathcal{K} to będzie rodzina wszystkich zwartych podzbiorów K \subset X z porządkiem inkluzji.

Definicja 2.6: podzbiór współkońcowy

Podzbiór M $\subseteq \Lambda$ zbioru skierowanego Λ nazywamy **współkońcowym**, jeśli

$$(\forall \ \lambda \in \Lambda)(\exists \ \mu \in \mathsf{M}) \ \lambda \leq,$$

wtedy (M, \leq) też jest zbiorem skierowanym. Dla $\underline{X} = (\Lambda, \mathfrak{X}, \mathcal{F})$ niech

$$\mathsf{X}_{\mathsf{IM}} = (\mathsf{M}, \{\mathsf{X}_{\lambda} \ : \ \lambda \in \mathsf{M}\}, \{\mathsf{f}_{\mu\mu'} \in \mathcal{F} \ : \ \mu, \mu' \in \mathsf{M}\})$$

będzie obcięciem \underline{X} do M. Wtedy $\underline{X}_{|\mathsf{M}}$ jest systemem odwrotnym nad M.

Fakt 2.7

$$\varprojlim \underline{X} = \varprojlim \underline{X}_{IM}$$

Przez bijekcją polegającą na obcinaniu nici do M. Jest ona jednocześnie homomorfizmem.

Wniosek

Jeśli X_λ są zwarte i metryczne, zaś Λ posiada przeliczalny podzbiór współkońcowy, to $\varprojlim X$ jest zwarta i metryczna.

Przykłady

- 1. W przykładzie wyżej zbiór $\mathcal K$ posiada współkońcowy podciąg $K_i:=B_{i\cdot R}(x_0)$ dla R>0 i pewnego $x_0\in X$.
- 2. Dalej używając oznaczeń z poprzedniego przykładu, dla dowolnego K $\in \mathcal{K}$ niech Π_K^X będzie zbiorem nieograniczonych komponent spójności w dopełnieniu X K.

Przestrzeń geodezyjna jest lokalnie drogowo spójna. Każda jej otwarta podprzestrzeń również jest lokalnie drogowo spójna. Czyli każde X – K też jest lokalnie drogowo spójnych przestrzeniach komponenty spójności to to samo co komponenty drogowej spójności.

Każda nieograniczona komponenta $C'\subseteq X-K'$ zawiera się w dokładnie jednej nieograniczonej komponencie $C\subseteq X-K$. Dostajemy odwzorowanie $f_{KK'}:\Pi^X_{K'}\to\Pi^X_K$ takie, że $f_{KK'}(C')=C$.

Trójka $(\mathcal{K}, \{\Pi_K^X : K \in \mathcal{K}\}, \{f_{KK'} : K \subseteq K'\})$ tworzy system odwrotny nad zbiorem skierowanym \mathcal{K} .

$$\Pi^{\mathsf{X}}_{\mathsf{K}} \xleftarrow{}_{\mathsf{f}_{\mathsf{K}\mathsf{K}'}} \Pi^{\mathsf{X}}_{\mathsf{K}'} \xleftarrow{}_{\mathsf{f}_{\mathsf{K}'\mathsf{K}''}} \Pi^{\mathsf{X}}_{\mathsf{K}''}$$

Fakt 2.8

Dla każdego K $\in \mathcal{K}$ zbiór $\Pi_{\mathbf{K}}^{\mathbf{X}}$ jest skończony.

Dowód

Weźmy K \subseteq B_r(x₀), niech R > r i rozważmy kulę B_R(x₀), która jest zwarta. Każda nieograniczona komponenta C spójności w X – K przecina niepusto sferę S_R(x₀), bo X jest geodezyjna.

Zatem przekrój $C \cap B_R(x_0)$ jest niepusty. Wtedy rodzina

 $\{\mathsf{C}\cap\mathsf{B}_\mathsf{R}(\mathsf{x}_0)\ :\ \mathsf{C}\ \mathsf{dowolna}\ \mathsf{komponenta}\ \mathsf{dope}\\ \mathsf{fnienia}\ \mathsf{X}-\mathsf{K}\}\cup\{\overline{\mathsf{B}_\mathsf{R}}(\mathsf{x}_0)=\mathsf{B}_\mathsf{R}(\mathsf{x}_0)-\mathsf{S}_\mathsf{R}(\mathsf{x}_0)\}$

pokrywa $B_R(x_0)$. Dodatkowo, jest to otwarte pokrycie, bo komponenty spójności lokalnie spójnej przestrzeni są otwartymi podzbiorami w tej przestrzeni. Ze zwartości X to pokrycie posiada skończone podpokrycie, ale z drugiej strony każdy zbiór postaci $C \cap B_R(x_0)$ dla nieograniczonych komponent musi przetrwać w każdym podpokryciu, bo zawiera punkty które należą tylko do niego. Stąd nieograniczonych komponent jest skończenie wiele.

Definicja 2.9

Zbiorem (przestrzenią) końców, Ends(X), właściwej geodezyjnej przestrzeni metrycznej X nazywamy granicę odwrotną

$$\text{Ends}(X) = \underline{\varprojlim}(\Pi^X) = \underline{\varprojlim}(\mathcal{X}, \{\Pi^X_K\}, \{f_{KK'}\}).$$

Jest to zwarta przestrzeń metryczna.