Devoir surveillé nº 2

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

EXERCICE 1.

Soit $\theta \in \mathbb{R}$ tel que $\theta \not\equiv \pi[2\pi]$. Montrer que

$$\cos\theta = \frac{1-\tan^2\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}} \qquad \mathrm{et} \qquad \sin\theta = \frac{2\tan\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}}$$

EXERCICE 2.

- 1. Déterminer les racines carrées complexes de 1 + i sous forme exponentielle.
- 2. Déterminer les racines carrées complexes de 1 + i sous forme algébrique.
- 3. En déduire que $\cos \frac{\pi}{8} = \frac{1}{2}\sqrt{2+\sqrt{2}}$ et $\sin \frac{\pi}{8} = \frac{1}{2}\sqrt{2-\sqrt{2}}$.
- 4. Montrer que $\tan \frac{\pi}{8} = \sqrt{2} 1$.
- 5. Déterminer les valeurs de

$$\cos\frac{3\pi}{8}$$
 $\sin\frac{3\pi}{8}$ $\tan\frac{3\pi}{8}$ $\cos\frac{5\pi}{8}$ $\sin\frac{5\pi}{8}$ $\tan\frac{5\pi}{8}$ $\cos\frac{7\pi}{8}$ $\sin\frac{7\pi}{8}$ $\tan\frac{7\pi}{8}$

EXERCICE 3.

Soit $\alpha \in \mathbb{R}$ tel que $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$. On considère l'équation d'inconnue $z \in \mathbb{C}$

(E)
$$(1+iz)^3(1-i\tan\alpha) = (1-iz)^3(1+i\tan\alpha)$$

- 1. Montrer que si z est solution de (E), alors $|1+\mathrm{i}z|=|1-\mathrm{i}z|$. En déduire que $z\in\mathbb{R}$.
- 2. Exprimer $\frac{1+i\tan\alpha}{1-i\tan\alpha}$ en fonction de $e^{i\alpha}$.
- 3. Soit $z \in \mathbb{R}$. On pose $z = \tan \phi$ avec $-\frac{\pi}{2} < \phi < \frac{\pi}{2}$. Ecrire une équation d'inconnue ϕ équivalente à (E) et la résoudre.
- 4. Résoudre alors l'équation (E).

EXERCICE 4.

Soit n un entier naturel non nul. On pose $\omega = e^{\frac{i\pi}{n}}$

- 1. Justifier que $\omega \neq 1$.
- 2. On pose $A_n = \sum_{k=0}^{n-1} \omega^k$. Montrer que $A_n = \frac{2}{1-\omega}$.

3. On pose
$$C_n = \sum_{k=0}^{n-1} \cos \frac{k\pi}{n}$$
 et $S_n = \sum_{k=0}^{n-1} \sin \frac{k\pi}{n}$. Montrer que $C_n = 1$ et $S_n = \frac{\cos \frac{\pi}{2n}}{\sin \frac{\pi}{2n}}$.

4. Calculer
$$B_n = \sum_{k=0}^{n-1} |\omega^{2k} - 1|$$
.

EXERCICE 5.

Soit z un nombre complexe. On note A, B, C, D les points d'affixes respectifs $1, z, z^2, z^3$ dans un repère orthonormé du plan.

- 1. Pour quelles valeurs de z les points A, B, C, D sont-il deux à deux distincts? On suppose cette cette condition remplie dans la suite de l'énoncé.
- ${\bf 2}$. Déterminer les valeurs de z tels que ABCD soit un parallélogramme. Préciser la nature de ce parallélogramme.
- 3. Déterminer les valeurs de z tels que le triangle ABC soit rectangle isocèle en A.
- 4. Déterminer les valeurs de z tels que ABD soit rectangle isocèle en A.

EXERCICE 6.

Soient $n \geqslant 1$ et $\omega = e^{\frac{2i\pi}{n}}$.

- 1. Soit $\mathfrak{m} \in \mathbb{N}$. Calculer $\sum_{k=0}^{\mathfrak{n}-1} \omega^{k\mathfrak{m}}$. On distinguera suivant que \mathfrak{m} est ou non multiple de \mathfrak{n} .
- **2.** Pour $z \in \mathbb{C}$, on pose

$$S(z) = \sum_{k=0}^{n-1} (z + \omega^k)^n$$

Montrer que pour tout $z \in \mathbb{C}$, $S(z) = n(z^n + 1)$.

3. Calculer $S\left(e^{\frac{i\pi}{n}}\right)$. En déduire que

$$\sum_{k=0}^{n-1} (-1)^k \cos^n \left(\frac{(2k-1)\pi}{2n} \right) = 0$$