Day 3: Control flow Practicals

Let's get down to business and start typing some real code. In order to solve the proposed exercises you are required to use the provided examples.

In [1]: from data import cytb, translations, acidAA, IUPAC_codes

In this module you will find 3 things:

- examples.sequences
- · examples.translations
- examples.acid-aa

Just print() any one to see what's inside each of them.

Problem 1

Verify that there are no illegal characters in any of the sequences in cytb.

Tip:

Use the IUPAC_codes list that was imported from the data module to check if the sequence's nucleotides are legal.

```
In [ ]:
```

Problem 2:

Translate the sequences in cytb from nucleotides into aminoacids.

Tips:

Use the translations dictionary from the data module (translations);

Use a for loop to iterate through the sequences in cytb;

Translating the sequences into a list of aminoacids rather than a string will save you work later on.

In []:

Problem 3:

Reverse and complement the sequences in cytb.

Tip

Use slicing to reverse the sequence.

```
In [ ]:
```

Problem 4:

a) Find the aminoacids in acidAA in the sequences from cytb. Return the positions of both the amino acid (in the protein sequence) and the codon position (in the nucleotide sequence).

Tip

Remember that an acid aminoacid may be present more than once.

In []:	
---------	--

b) How frequent are the acid amino acids? Are they more or less frequent than what you would expect under a random distribution pattern (i.e., where every amino acid has the same probability of occurring)?

In []:	
TII [] .	

c) Return the sequence's nucleotides from each sequence in cytb until any of the acid amino acids from acidAA is found; Return "Target

aminoacids not found" if neither of them is present in the sequence.

A while loop is the simplest choice here, but feel free to use any other way

In []:	
---------	--

Problem 5:

Find all the equal sequences in *cytb* and "collapse" them into a single sequence (with the name of all the collapsed sequences).