6.4. RAISONI	COLLEGE	OF	ENGINEERING
--------------	---------	----	-------------

	2020	-2021	ENEN.	TERM
--	------	-------	-------	------

CAE -1 EXAMINATION SUMMER - 2021 (ONLINE MODE) DEPARTMENT: ARTIFICIAL INTELLIGENCE

SEMESTER SECTION: 4th 1A

DATE : 12/02/2021

SUBJECT: MACHINE LEARNING ALGORITHMS

ROLL NO: A-58

31.8

35.7

10

11

NAME: SHIVAM TAWARI

REG. NO. : 2019AAIE 1117028

CO1.				
Obs.	Temp(x)°c	Humidity (7)%	Rain Condition	Dist
1	27.8	76	Hes	2,69
2	28.2	76	Jes	2.44
3	28.7	80	NO	2.19
4	28.6	81.6	Jes	3.73
5	27.7	89.4	Yeo	11.55
G	30.5	89.9	NO	11.93
7	26.87	81.4	Yes	4.46
8	25.9	85	No	7.91
9	36	90	No	13.60

88

70

400

Paino D

10.24

10.66

Distance metric: Fouledin Distance Observation - 1: $d = \int (29.6 - 27.8)^2 + (78-76)^2 = 2.69$ Observation 2: d= (28.2-29.6)7(78-76)2=2.44 Obseration 3: $d = \int (29.6 - 28.7)^2 + (78 - 86)^2 = 2.19$ Observation 4! d = (29.6-28.6) + (78-81.6) = 3.73 Observation 5: $d = \int (29.6 - 27.7)^{2} + (78 - 89.4)^{2} = 11.59$ Observation 6: $0 = 1(29.6 - 30.5)^2 + (78 - 89.9)^2 = 11 - 93$ Observation 7: d = J(29.6-26.7) + (78-81.4) = 4.46 Objevenotion 8: $d = \sqrt{(29.6 - 25.9)^2 + (78 - 85)^2} = 7.91$ Howard Bno. 2

Observation 9: $d = \int (29.6 - 36)^2 + (78 - 90)^2 = 13.60$ optornation 10: d = J(31.8-29.6)2+ (88-78)2 = 10.24 Observation 11: $d = \int (29.6 - 35.7)^2 + (78 - 76)^2 = 10.06$ Min. 3 distances are 2.19, 2.44, 2.69, and their conditions are No, yes, yes respectively. Majority is yes. Therefore when temp: 29.6°C and humidity: 78% other it'll probably Toin.

Hanow Pg.no. 3

CO1.	
Ь.	
	Over-fitting:
->	Over-fitting refers to a model
	that models the training data
	too well.
\rightarrow	Over-fitting model refers to having
	a high variance.
\rightarrow	Over-fitting models are more
	nonparametric.
\rightarrow	Over-fitting are non-linear
	models.
EX.	Decision trees are a nonparametric
	machine learning algorithm that is very flexible and subject
	is very flexible and subject
	to oversitting.

R.no. a

Under - fitting: -> Under-fitting refers to a model that can neither model the training data now generalize to new data. -> Has a very low variance. - under-fitting model has high bicu. -) Underfit model does not gives a good metric performance. Ex Roos Undersitting happens when we are trying to fit nonlinear data in to the linear regression.

Garan B. no. 6

(02.		
b.	Surposvised Learning	Undsupervised Learning
0	Uses known and labeled doute as input.	Uses Unknown Clater as input
<u></u>	Very complex computation.	Less computational
3	Uses off-line analysis	Uses real time analysis of data.
<u>4</u>	Number of classes Croe Known.	Number of classes erre not known.
3	Accurate and reliable results.	Moderate accurate and reliable results.

Opino. 6