KINEMATICS

Particle Rectilinear Motion

$$\frac{Variable \ a :}{v = \frac{ds}{24}} \quad a = \frac{dv}{24} \quad ads = vdv$$

$$\underbrace{Constant\ a = \overset{\text{dt}}{a_c}:}$$

$$v = v_0 + a_c t$$

 $s = s_0 + v_0 t + \frac{1}{2} a_c t^2$

$$v^2 = v_0^2 + 2a_c(s - s_0)$$

Particle Curvilinear Motion x, y, z Coordinates:

$$\overline{v_x = \dot{x} \quad v_y = \dot{y} \quad v_z = \dot{z}}$$

$$a_x = \ddot{x} \quad a_y = \ddot{y} \quad a_z = \ddot{z}$$

$r, z, \theta \ Coordinates$:

$$v_r = \dot{r}$$
 $v_\theta = r\dot{\theta}$ $v_z = \dot{z}$
 $a_r = \ddot{r} - r\dot{\theta}^2$ $a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$

$$a_r = \ddot{r} - r\theta^2$$
 $a_\theta = r\theta + 2\dot{r}$
 $a_z = \ddot{z}$

n, t, b Coordinates:

$$a_t = \dot{v} = v \frac{\mathrm{d}v}{\mathrm{d}s}$$

$$a_n = \frac{v^2}{\rho}$$
 $\rho = \frac{[1 + (dy/dx)^2]^{3/2}}{|\frac{d^2y}{1 + 2}|}$

$$a = \sqrt{(a_n)^2 + (a_t)^2}$$

Relative Motion

$$v_A = v_B + v_{A/B}$$
$$a_A = a_B + a_{A/B}$$

Rigid Body Motion About

a Fixed Axis $Variable \alpha$: $\omega = \frac{d\theta}{dt}$ $\alpha = \frac{d\omega}{dt}$ $\alpha d\theta = \omega d\omega$

$$\frac{Constant \ \alpha = \alpha_c :}{\omega = \omega_0 + \alpha_c t}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha_c t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha_c (\theta - \theta_0)$$

$For\ Point\ P$:

 $s = \theta r \ v = \omega r \ a_t = \alpha r \ a_n = \omega^2 r$

Relative General Plane Motion: Translating Axes $\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A(pin)}$

 $\mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A(pin)}$

Relative General Plane Motion: Trans. and Rot. Axes

 $\mathbf{v}_B = \mathbf{v}_A + \Omega \times \mathbf{r}_{B/A} + (\mathbf{v}_{B/A})_{xyz}$ $\mathbf{a}_B = \mathbf{a}_A + \dot{\Omega} \times \mathbf{r}_{B/A} + \Omega \times$ $(\Omega \times \mathbf{r}_B/A) + 2\Omega \times (\mathbf{v}_{B/A})_{xyz} +$ $(\mathbf{a}_{B/A})_{xyz}$

KINETICS

Mass Moment of Inertia $I = \int r^2 dm$

Parallel Axis Theorem:

 $I = I_G + md^2$ Rad. of Gyration: $k = \sqrt{\frac{I}{m}}$

		la
Equations of Motion	<u>Spring</u> : $U_S = -(\frac{1}{2}ks_2^2 - \frac{1}{2}ks_1^2)$	Conservation of Linear
$\underline{Particle:} \mathbf{F} = m\mathbf{a}$	Couple $Moment: U_M = M\Delta\theta$	Momentum
$Rigid\ Body\ (Plane\ Motion):$		$\Sigma(syst.\ m\mathbf{v})_1 = \Sigma(syst.\ m\mathbf{v})_2$
$\overline{\Sigma F_x = m(a_G)_x} \Sigma F_y = m(a_G)_y$		
$\Sigma M = I_G \alpha$	Power and Efficiency	Coefficient of Restitution:
$ZM = IG\alpha$	$P = \frac{dU}{dt} = \mathbf{F} \cdot \mathbf{v}$	
	1 at	$e = \frac{(v_B)_2 - (v_A)_2}{(v_A)_1 - (v_B)_1}$
Principle of Work and	$\epsilon = \frac{P_{out}}{P_{in}} = \frac{U_{out}}{U_{in}}$	(A)I (B)I
Energy		Principle of Angular
OU .		
$T_1 + \Sigma U_{1-2} = T_2$	Conservation of Energy	Impulse and Momentum
	$T_1 + V_1 = T_2 + V_2$	Particle:
Kinetic Energy		$(\mathbf{H}_O)_1 + \Sigma \int \mathbf{M}_O dt = (\mathbf{H}_O)_2$
	$Potential\ Energy:$	where $H_O \stackrel{\circ}{=} (d)(mv)$
$\underline{Particle:} T = \frac{1}{2}mv^2$		Rigid Body (Plane Motion):
Rigid Body:	$\overline{V} = V_g + V_e$, where $V_g = \pm Wy$,	
$T = \frac{1}{2} m v_G^2 + \frac{1}{2} I_G \omega^2$	$V_e = \frac{1}{2}ks^2$	$(\mathbf{H}_G)_1 + \Sigma \int \mathbf{M}_G dt = (\mathbf{H}_G)_2$
2 0 2		where $H_G \stackrel{\circ}{=} I_G \omega$
Work	Principle of Linear Impulse	$(\mathbf{H}_O)_1 + \Sigma \int \mathbf{M}_O dt = (\mathbf{H}_O)_2$
$Variable\ Force:$	and Momentum	where $H_O = I_O \omega$
$U_F = \int F \cos \theta \mathrm{d}s$	Particle:	where 110 = 10 w
$Constant\ Force:$	$\overline{m\mathbf{v}_1 + \Sigma} \int F dt = m\mathbf{v}_2$	
	ı J	Conservation of Angular
$U_F = (F_c \cos \theta) \Delta s$	$\underline{Rigid\ Body}$:	Momentum
$\underline{Weight:}\ U_W = -W\Delta y$	$m(\mathbf{v}_G)_1 + \Sigma F dt = m(\mathbf{v}_G)_2$	$\Sigma(syst. \mathbf{H})_1 = \Sigma(syst. \mathbf{H})_2$