

Today's Lecture

- 1. Degree centrality
- 2. Closeness centrality
- 3. Betweenness centrality
- 4. NetworkX examples.
- 5. Linear Algebra tools for centrality
- 6. Eigenvector Centrality

Recall: Degree centrality

Definition

The degree centrality of a node v is its degree:

$$C_{\text{deg}}(v) = \deg(v).$$

Interpretation:

- High degree node can directly influence/reach many others.
- In undirected networks: count of adjacent edges.
- In directed networks: sometimes split into in-degree and out-degree centrality, e.g. on Twitter in-degree centrality is more relevant.

Closeness centrality

Closeness Centrality

Given $v \in V$, its average distance to other nodes in the graph is

$$\overline{d}(v) := \frac{1}{N-1} \sum_{u \neq v} d(u, v).$$

Definition

The closeness centrality of $v \in V$ is

$$C_{\mathrm{close}}(v) = \frac{1}{\overline{d}(v)},$$

where d(u, v) is the distance between u and v.

- Large if v is on average close to everyone else.
- Small if many nodes are far from v.

Distance matrix

Definition

The distance matrix D_G has entries $D_G(i,j) = d(i,j)$.

Example:

$$D_G = \begin{pmatrix} 0 & 2 & 2 & 1 & 2 \\ 2 & 0 & 2 & 1 & 2 \\ 2 & 2 & 0 & 1 & 2 \\ 1 & 1 & 1 & 0 & 1 \\ 2 & 2 & 2 & 1 & 0 \end{pmatrix}.$$

Average distances from each node are computed as $\frac{1}{N-1}D_G\mathbf{1}$.

Closeness Centrality

$$\frac{1}{N-1}D_G \cdot \mathbf{1} = \frac{1}{4} \begin{pmatrix} 0 & 2 & 2 & 1 & 2 \\ 2 & 0 & 2 & 1 & 2 \\ 2 & 2 & 0 & 1 & 2 \\ 1 & 1 & 1 & 0 & 1 \\ 2 & 2 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 7 \\ 7 \\ 7 \\ 4 \\ 7 \end{pmatrix} \rightarrow c = \begin{pmatrix} 4/7 \\ 4/7 \\ 4/7 \\ 1 \\ 4/7 \end{pmatrix}$$

Note that D is the most central also under degree centrality.

Eccentricity centrality

Recall: the **eccentricity** of a node v is

$$\operatorname{ecc}(v) = \max_{u \in V} d(u, v).$$

Definition

The **eccentricity centrality** of v is inversely proportional to its eccentricity:

$$C_{\mathrm{ecc}}(v) = \frac{1}{\mathrm{ecc}(v)}.$$

Note

To see how this differs from closeness centrality, imagine a dense "core" graph with a long chain of nodes attached at one end.

Betweenness centrality

Betweenness Centrality

Definition

The betweenness centrality of a node u measures how often u lies on shortest paths between other pairs of nodes:

$$C_{\text{betw}}(u) = \sum_{v \neq u \neq w} \frac{\sigma_{vw}(u)}{\sigma_{vw}},$$

where σ_{vw} is the number of shortest paths from v to w, and $\sigma_{vw}(u)$ is the number of those paths that pass through u.

- $\frac{\sigma_{vw}(u)}{\sigma_{vw}}$ is the proportion of path containing u in the set of all shortest paths between v and w.
- Nodes on many shortest paths act as bridges.
- Captures the potential of u to control information flow.

Betweenness Centrality: Example

• Determine σ_{vw} and $\sigma_{vw}(u)$ in the following graph.

- $\sigma_{vw} = 2$
- $\sigma_{vw}(u) = 1$

Betweenness Centrality: Example

• Determine σ_{vw} and $\sigma_{vw}(u)$ in the following graph.

- σ_{vw} = 4
 σ_{vw}(u) = 3

Betweenness Centrality: Computing It Efficiently

Challenge: Directly counting all pairs of shortest paths costs $O(n^3)$.

Idea (Brandes, 2001): Each BFS from one source can capture *all shortest-path contributions* involving that source.

Key insight: Instead of computing all pairs (v, w), one BFS per node v is enough to accumulate betweenness scores for every other node.

Complexity: O(nm) for unweighted graphs. Practical for graphs with up to $\sim 10^5$ edges.

Appendix: BFS Bookkeeping for Shortest Paths

Goal (unweighted graphs, source s): compute

- d[v] = distance from s to v (in edges),
- $\sigma[v] = \text{number of shortest } s \rightarrow v \text{ paths,}$
- $\operatorname{Pred}[v] = \operatorname{predecessors} \text{ of } v \text{ on shortest } s \rightarrow v \text{ paths.}$

Initialization:

- For all v: $d[v] = \infty$, $\sigma[v] = 0$, $\text{Pred}[v] = \emptyset$.
- Set d[s] = 0, $\sigma[s] = 1$, push s in a queue Q.

BFS loop (standard queue):

- While *Q* not empty:
 - ightharpoonup Pop v from Q.
 - For each neighbor w of v:
 - If $d[w] = \infty$ then d[w] = d[v] + 1; $\sigma[w] = \sigma[v]$; Pred $[w] = \{v\}$; push w.
 - ► Else if d[w] = d[v] + 1 then $\sigma[w] \leftarrow \sigma[w] + \sigma[v]$; add v to Pred[w].

NetworkX examples

NetworkX quick start (Karate Club)

```
import networkx as nx
G = nx.karate_club_graph()
N, L = G.number_of_nodes(), G.number_of_edges()
print(f"N={N}, L={L}")
```

In NetworkX:

- ullet nx.degree_centrality returns $\deg(v)/(N-1)$
- nx.closeness_centrality(G, wf_improved=False)
- nx.betweenness_centrality(G)

When plotting the network centrality measures can be used to color the nodes.

Real network #1: Florentine families (Renaissance credit/marriage)

```
F = nx.florentine_families_graph()
                                     # N=16, classic network
print("Nodes:", F.nodes())
degF = dict(F.degree())
cloF = nx.closeness_centrality(F, wf_improved=False)
betF = nx.betweenness_centrality(F, normalized=True)
def top5(name, d):
    print(name, sorted(d.items(), key=lambda x: x[1], reverse=True)
top5("Degree:", degF)
top5("Closeness:", cloF)
top5("Betweenness:", betF)
```

Story: Medici emerge as top "brokers" by betweenness—consistent with their historical role in finance and politics.

Real network #2: Karate Club (community split)

```
G = nx.karate_club_graph()
deg = nx.degree_centrality(G)
clo
    = nx.closeness_centrality(G, wf_improved=False)
    = nx.betweenness_centrality(G, normalized=True)
bet
def tab(name, d):
    rows = sorted(d.items(), key=lambda x: x[1], reverse=True)[:5]
    print(name, [(v, round(val,3)) for v,val in rows])
tab("Degree cent:", deg)
tab("Closeness cent:", clo)
tab("Betweenness cent:", bet)
```

Story: The two leaders (nodes usually labeled 0 and 33) rank highly; the broker between factions has high betweenness.

Basic spectral theory

Why Linear Algebra for Networks?

- Adjacency matrix A_G : encodes all links of G.
- Degree vector: $A_G \mathbf{1} = (\deg(v_1), \dots, \deg(v_N)).$
- Laplacian $L = D A_G$: central in diffusion, clustering, spanning trees.
- Many network measures (centrality, random walks, PageRank) reduce to eigenvalue/eigenvector problems.

Note

Eigenvalues of A_G reveal secrets of G.

- Google built its empire on one eigenvector (PageRank).
- Spotify/Youtube recommenders use eigenvector-like ideas.
- In social networks, eigenvector centrality captures being "friends with important people."

Recall: Eigenvalues and Eigenvectors

Definition

Let $A \in \mathbb{R}^{n \times n}$ then $\mathbf{v} \neq \mathbf{0}$ is called an eigenvector of A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

for some λ , called eigenvalue. Assume $\|\mathbf{v}\| = \sqrt{\mathbf{v}^{\top}\mathbf{v}} = 1$.

If A has only real eigenvalues then it can be diagonalized: \exists invertible P s.t.

$$A = P\Lambda P^{-1}$$
 with $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

The columns of P are the eigenvectors of A.

Note

If A is diagnosable then $A^k = P\Lambda^k P^{-1}$, $\Lambda^k = \operatorname{diag}(\lambda_1^k, \dots, \lambda_n^k)$.

Spectral theorem

Theorem

If A is symmetric (i.e. $A = A^{T}$), all eigenvalues are real, and eigenvectors form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. $U^{\top}U = I_n$):

$$A = U\Lambda U^{\top}.$$

Spectral theorem

Theorem

If A is symmetric (i.e. $A = A^{\top}$), all eigenvalues are real, and eigenvectors form an orthogonal basis.

A is diagonalizable and for some orthogonal matrix U (i.e. $U^{\top}U = I_n$):

$$A = U \Lambda U^{\top}$$
.

Note (Variational characterization of eigenvectors)

The eigenvectors are the saddle points of $\mathbf{x}^{\top}A\mathbf{x}$ subject to $\|\mathbf{x}\| = 1$:

By KKT condition each optimum is a stationary point of

Lagrangian =
$$\mathbf{x}^{\top} A \mathbf{x} - \lambda (\mathbf{x}^{\top} \mathbf{x} - 1)$$
.

• This gives $A\mathbf{x} = \lambda \mathbf{x}$. And for every such unit \mathbf{x} , $\mathbf{x}^{\top} A \mathbf{x} = \lambda$.

In particular, the maximal eigenvalue is $\lambda_{\max} = \max_{\|\mathbf{x}\|=1} \mathbf{x}^{\top} A \mathbf{x}$.

Eigenvalue centrality

Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

• We try to define an importance measure x_v for $v \in V$ s.t.

$$x_{v} \propto \sum_{u \sim v} x_{u}.$$

In matrix form: there exists $\lambda > 0$ and a positive \boldsymbol{x} s.t.

$$A_{G}\mathbf{x}=\lambda\mathbf{x}.$$

Motivation

In degree centrality all neighbours are treated equally.

Now: a node is important if connected to other important nodes.

• We try to define an importance measure x_v for $v \in V$ s.t.

$$x_{\nu} \propto \sum_{u \sim \nu} x_{u}.$$

In matrix form: there exists $\lambda > 0$ and a positive \boldsymbol{x} s.t.

$$A_{G}\mathbf{x}=\lambda\mathbf{x}.$$

So centrality is given by an eigenvector of A_G with a positive eigenvalue.

Theorem (special case of Perron-Frobenius)

As A_G has nonnegative entries, maximal eigenvalue is positive.

Since
$$\mathbf{1}^{\top} A_G \mathbf{1} = 2L > 0$$
 then $\lambda_{\text{max}} > 0$.

The principal eigenvector has positive entries.

Eigenvector Centrality – Core–Periphery Example

Adjacency matrix (A):

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Setup. A small core (A,B,C) connected as a triangle; three peripheral nodes (D,E,F) each attach to the core.

Why sizes differ.

- A connects to two central nodes (B,C) and two peripherals (D,E) — very central.
- B beats C because it also connects to F.
- D, E, F are peripheral and get low scores.

Note (Potential problems)

- What if *G* is disconnected?
- What if λ_{\max} has multiplicity ≥ 2 ?

Normalized ratios:

 $x_A: x_B: x_C: x_D: x_E: x_F \approx 1.00: 0.87: 0.76: 0.41: 0.41: 0.35.$ 21 / 21