

必須濱ノ業大学 远程教育学院

第9章 MCS-51存储器的扩展

课程主要内容

- ◆ 外部扩展的基本知识
- ◆ 存储器的扩展方法
- ◆ 程序存储器的外扩
- ◆ 数据存储器的外扩
- ◆ E²PROM芯片的外扩
- ◆ 编程举例

9.1 概述

片内的资源如不满足需要,需外扩存储器和I/0功能 部件。

系统扩展主要内容有:

- (1) 外部存储器的扩展(外部RAM、ROM)
- (2) 1/0接口部件的扩展。

本章介绍如何扩展外部存储器,

1/0接口部件的扩展下一章介绍。

最小应用系统

8051/8751最小应用系统

8031最小应用系统

MCS-51单片机外部存储器结构:哈佛结构。 MCS-51 RAM和ROM的最大扩展空间各为64KB。 系统扩展首先要构造系统总线。

按功能把系统总线分为三组:

- 1. 地址总线 (Adress Bus, 简写AB)
- 2. 数据总线(Data Bus,简写DB)
- 3. 控制总线(Control Bus,简写CB)

与总线有关的基本概念

- 72.70
- 系统总线:是连接计算机各部件的一组公共信号线, MCS51的系统总线可分为地址总线、数据总线和控制总 线。
- 地址总线:它用来传输单片机所发出的地址信号,以便进行存储单元和I/O端口的选择。地址总线的数目决定着可直接访问的存储单元及I/O端口的数目。
- 数据总线: 单片机与存储单元及I/O口之间传输数据信号
- 控制总线:是一组控制信号线,包括单片机发出的也包括从外部存储单元或者I/O端口发送给单片机的。
- 优点: 总线结构大大减小了单片机系统中传输线的数目,增加了系统的可靠性。

系统扩展的三总线结构

构造系统总线

地址锁存器74LS373

77.70

- 1. 以PO口作为数据总线(8位)。
- 2. 以P0口经8位锁存器锁存后的信号作为地址总线的低8位。
- 3. 以P2口作为地址总线高8位。
- 4. 控制信号线。
 - *ALE —— 低8位地址锁存信号。
 - *PSEN*—— 扩展程序存储器读选通信号。
 - *EA* 内外程序存储器选择信号。
 - *RD*和WR* —— 扩展RAM和I/0口的读选通、 写选通信号。

单片机系统的串行扩展技术

72.00

优点:串行接口器件体积小,与单片机接口时需要的I/0口线少,可靠性提高。

缺点:串行接口器件速度较慢

在多数应用场合,还是并行扩展占主导地位。

*串行总线是当前发展很迅速的一个领域

存储器扩展的读写控制

RAM芯片:读写控制引脚OE*和WE* ,与MCS51的RD*和WR*引脚相连。

EPROM芯片:只有读出引脚OE*,与MCS51的PSEN*引脚相连。

9.2 存储器分类介绍

只读存储器

- ROM
- PROM
- EPROM

可读写存储器

- SRAM
- DRAM

不挥发性读写存储器

- E²PROM
- NOVRAM:不挥发随机访问存储器,如背装锂电池的SRAM

特殊存储器

- 加密型ROM; 双端口RAM; 先进先出RAM;
- 快擦写型存储器

9.2.1 程序存储器扩展所使用的芯片

采用只读存储器,非易失性。

(1) 掩膜ROM

在制造过程中编程,只适合于大批量生产。

- (2) 可编程ROM(PROM) 用独立的编程器写入,只能写入一次。
- (3) EPROM

电信号编程,紫外线擦除的只读存储器芯片。

(4) E²PROM (EEPROM)

电信号编程,电擦除。读写操作与RAM相似,写入速度稍慢。断电后能够保存信息。

(5) Flash ROM

又称闪烁存储器,简称闪存。电改写,电擦除,读写速度快 (70ns),读写次数多(1万次)。

9.2.2 常用EPROM芯片介绍

72.50

典型芯片是27系列产品,例如,

 $2764 \quad (8KB \times 8)$

 $27128 (16KB \times 8)$

27256 (32KB×8)

 $27512 (64KB \times 8)$

"27"后面的数字表示其位存储容量。

扩展程序存储器时,应尽量用大容量的芯片。

1. 常用的EPROM芯片

37.73

引脚功能如下:

A0~A15: 地址线引脚。数目决定存储容量。

 $D7\sim D0:$ 数据线引脚

CE*: 片选输入端

OE*: 输出允许控制端

PGM*: 编程时,加编程脉冲的输入端

Vpp: 编程时,编程电压(+12V或+25V)输入端

Vcc: +5V,芯片的工作电压。

GND: 数字地。

NC: 无用端

2. EPROM芯片的工作方式

(1) 读出方式

片选控制线CE为低,输出允许OE为低,Vpp为+5V, 指定地址单元的内容从D7~D0上读出。

- (2) 未选中方式 片选控制线为高电平。
- (3) 编程方式

Vpp端加规定高压,CE*和OE*端加合适电平,就能将数据线上的数据写入到指定的地址单元。

- (4) 编程校验方式
- (5) 编程禁止方式 输出呈高阻状态,不写入程序。

3. EPROM使用的一点注意事项

- 72.40
- ■工作电压为5V,但不同厂家的芯片编程电 压会有所不同
- 通过专门编程器将程序代码写入程序存储 器中
- ■在用专门的编程器进行程序固化的时候, 对芯片型号及制造厂家的选择一定要准确

典型的EPROM接口电路

1. 使用单片EPROM的扩展电路

2716、2732 EPROM价格贵,容量小,且难以买到。 仅介绍2764、27128、27256、27512芯片的接口电路。 下面介绍外扩2764及27128的设计方法。

9.3 存储器扩展方法

- 扩展存储器即分配地址空间给每个芯片,注意要避免地址和数据的冲突
- 芯片的片选端口为避免数据的冲突提供了方便,如何通过 MCS51的地址线产生片选信号是避免地址冲突的有效途 径。

片选控制

- 线选法
 - 适用于系统芯片数目较少
 - 利用高端地址线(未用到的地址线)直接作为外扩芯片的片选线,线路简单
 - 地址空间有重叠,即同一存储空间可能对应多个地址
- 译码选通法
 - 适用于多片存储器扩展
 - 高端地址线经<u>译码器</u>译码后作为存储器片选线,线路需增加<u>译码器</u>芯片
 - 地址空间连续,存储芯片空间对应地址唯一

芯片译码选通法的分类

全译码方式:所有片选地址线(高端地址 线)全部参加译码;

部分译码方式: 片选地址线(高端地址线)部分参加译码,剩下部分悬空;

强调: MCS51外扩存储器应注意的问题

- 72.40
- ●程序存储器与数据存储器空间独立,各拥有64k寻址空间
- ●数据存储器扩展与I/O口扩展占用数据64k空间,统一编址
- 数据总线与低8位地址总线复用,必须运用 地址锁存器实现低8位地址总线的分离。

9.4 常用的锁存器芯片

地址锁存芯片

74LS273,74LS373,8282等

74LS373功能表

OE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q保持
Н	Х	Х	高阻态

74LS273功能表

CLR	CLK	D	Q
L	Х	X	L
Н	†	Н	Н
Н	†	L	L
Н	L	Х	Q保持

3 4 7 8 13 14 17 18	D0 D1 D2 D3 D4 D5 D6 D7	Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7	2 5 6 9 12 15 16
	74LS373		

3 4 7 8 13 14	D1 D2 D3 D4 D5 D6 D7	Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8	2 5 6 9 12 15
11	D8 CLK CLR 74LS273	Q8	

锁存器8282

功能及内部结构与74LS373完全一样,只是其引脚的排列与74LS373不同

\overline{OE} —	1		20	$V_{\rm CC}$
Q0—	2		19	— <i>Q</i> 7
D0	3	7	18	— <i>D</i> 7
D1 —	4	4	17	D6
<i>Q</i> 1	5	L S	16	<i>Q</i> 6
<i>Q</i> 2—	6	3	15	$-Q_5$
D2 —	7	7	14	— <i>D</i> 5
D3 —	8	3	13	— <i>D</i> 4
<i>Q</i> 3	9		12	—Q4
GND -	10		11	G

锁存器的应用

锁存器74LS573

\overline{OE} ——	1		20	$V_{\rm CC}$
D0—	2		19	Q_0
<i>D</i> 1	3	7	18	Q1
D2	4	4	17	<i>Q</i> 2
D3	5	L	16	<i>Q</i> 3
<i>D</i> 4	6	S 5	15	<i>Q</i> 4
D5	7	7	14	<i>Q</i> 5
D6	8	3	13	<i>Q</i> 6
<i>D</i> 7	9		12	<i>Q</i> 7
GND —	10		11	G

9.5 常用的译码器芯片

192. PS

地址译码芯片74LS138

74LS138功能表

	输	入端			输出端							
	午)	选择				制计	占编				
E3	Е	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

74LS138管脚图

注: E=E1+E2

常用的译码器芯片

地址译码芯片74LS139

74LS139功能表

输入端			松山連			
允许	选	择	输出端			
E	В	Α	Y0	Y1	Y2	Y3
Н	Х	Х	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	L	Н	Н	L	Н	Н
L	Н	L	Н	Н	L	Н
L	Н	Н	Н	Н	Η	L

74LS139管脚图

9.6 程序存储器的扩展

EPROM2764的相关总线介绍

控制总线

- 存储器读选通OE
- 存储器片选控制CE
- 存储器编程脉冲PGM
- 编程电压输入Vpp

数据总线

- 数据接口D0~D7。

地址总线

- 地址总线接口A0~A12

10 A0	D0 11
O	D1 12
8 A1	113
7 A2	D2 15
6 A3	D3 16
5 A4	D4 17
4 A5	D5 18
3 A6	D6 19
25 A7	D7 - 12
24 A8	
21 A9	
23 A10	
All	
A12	
20	
CE CE	
27 OE	
1 PGM	
VPP	
2764	

程序存储器EPROM的扩展

2764为8K字节EPROM存储器,一般有五种工作方式:

- 读方式
- 未选中方式
- 编程方式
- 编程校核方式
- 编程禁止方式

10	- A0	D0 -	11 12
8 7 6	A1 A2 A3 A4	D1 - D2 - D3 - D4 -	13 15 16
3	A5 A6 A7	D5 - D6 - D7 -	17 18 19
25 24 21 23	A8 A9 A10		
20	A11 A12 <u>CE</u>		
22 27 1	OE PGM VPP		
	2764		

程序存储器EPROM的扩展

线选法扩展

芯片2764占用系统地址空间

(0000~1FFFH)or(2000~3FFFH)or(4000H~5FFFH)or(6000H~7FFFH)

EPROM读时序

外部程序存储器的操作时序图(不执行MOVX类指令)

EPROM读时序

外部程序存储器的操作时序图(执行MOVX类指令)

程序存储器EPROM的扩展

译码法扩展

芯片2764占用系统地址空间(2000H~3FFFH)

使用多片EPROM的扩展电路

扩展4片27128,每片16K字节

9.7 静态数据存储器的扩展

常用的静态RAM (SRAM) 芯片

典型型号有:6116(2K)、6264(8K)、62128(16K)、62256(32K)。+5V电源供电,双列直插,6116为24引脚封装,6264、62128、62256为28引脚封装。

各引脚功能如下:

 $A0\sim A14$: 地址输入线。

 $D0\sim D7$: 双向三态数据线。

CE*: 片选信号输入。对于6264芯片,当CS为高电平,且CE*

为低电平时才选中该片。

OE*: 读选通信号输入线。

WE*: 写允许信号输入线,低电平有效。

Vcc: 工作电源+5V

GND: 地

有读出、写入、维持三种工作方式。

RAM芯片6264的相关总线介绍

控制总线

- 存储器读选通OE
- 存储器写选通WE
- 存储器片选控制CS1 (CE) CS2 (CS)

数据总线

- 数据接口D0~D7。

地址总线

- 地址总线接口A0~A12

10 A0 D0 D1 12				
8 A1 D1 12 8 A2 D2 13 7 A3 D3 15 6 A4 D4 17 5 A5 D5 18 3 A6 D6 19 25 A8 A9 21 A10 23 A11 A12 22 OE WF		A0	D0 -	
7 A3 D2 15 6 A4 D4 17 5 A5 D5 18 3 A7 D7 25 A8 A9 A10 21 A10 A11 A12 22 OE 27 WF		A1	D1 -	
6 A4 D4 D5 D5 D5 D6 D7 A8 A9 A10 A11 A12 DE DE WE		A2	D2 -	
5 A4 A5 D5 D7 A8 A6 A7 D7 A8 A9 A10 A11 A12 OE 22 OE 27 OE A4 A5 D5 D6 D7				
4 A6 D6 D6 D7 A8 A9 A10 A11 A12 OE OE WE				
25 A8 A9 A10 A11 A12 OE OE WE				
25 24 A8 A9 A10 A11 A12 22 OE WE				19
24 A9 A10 A11 A12 22 OE WE			Δ,	
23 A10 A11 A12 OE OE WE				
2 A11 A12 22 OE 27 WF		A10		
22 <u>OE</u> <u>WF</u>		A11		
27 <u>OE</u> <u>WF</u>		A12		
WF	22	OT:		
o c VV L				
20 CS2	26			
20 <u>CS2</u> CS1	20			
6264		6264		

数据存储器RAM的扩展

线选法扩展

芯片6264占用系统地址空间

(0000~1FFFH)or(2000~3FFFH)or(4000H~5FFFH)or(6000H~7FFFH)

数据存储器读/写时序

用线选法扩展多片外部数据存储器6264的电路

地址线为A0~A12,故剩余地址线为三根。用线选 法可扩展3片6264。3片6264对应的地址空间如下。

P2.7	P2 .6	P2.5	建中芯片	地址范围	存储容量
1	1	0	IC1	CO 00H~DFFFH	8K
1	0	1	IC2	A000H~BFFFH	8K
0	1	1	IC3	6000H~7FFFH	8K

数据存储器RAM的扩展

译码法扩展

数据存储器扩展

0000H~3FFFH 4000H~7FFFH

8000H~BFFFH C000H~FFFFH

上图中各片62128地址分配

P2. 7	P2. 6	译码输出	选中芯片	地址范围	存储容量
0	0	Y0*	IC1	0000H-3FFFH	16K
0	1	Y1*	IC2	4000H-7FFFH	16K
1	0	Y2*	IC3	8000H-BFFFH	16K
1	1	Y3*	IC4	COOOH-FFFFH	16K

单片62256与8031的接口电路,地址范围为0000H~7FFFH

例1 编写程序将片外RAM中5000H~50FFH单元全部清零。

方法1:

用DPTR作为数据区地址指针,同时使用字节计数器。

MOV DPTR, #5000H; 设置数据块指针的初值

MOV R7, #00H : 设置块长度计数器初值

CLR A

LOOP: MOVX @DPTR, A ; 把某一单元清零

INC DPTR ; 地址指针加1

DJNZ R7, LOOP ; 数据块长度减1, 若不为

0则继续清零

HERE: SJMP HERE ; 执行完毕,原地踏步

方法2:

用DPTR作为数据区地址指针,但不使用字节计数器,而是比较特征地址。

MOV DPTR, #5000H

CLR A

LOOP: MOVX @DPTR, A

INC DPTR

MOV R7, DPL

CJNE R7, #0, LOOP ; 与末地址+1比较

HERE: SJMP HERE

51

9.8 EPROM和RAM的综合扩展

采用线选法扩展2片8KB的RAM和2片8KB的EPROMRAM选6264,EPROM选2764。

72.40

IC2和IC4占用地址空间为A000H~BFFFH (P2.7=1、P2.6=0、P2.5=1)。 同理IC1、IC3地址范围C000H~DFFFH (P2.7=1、P2.6=1、P2.5=0)。

- 在这里只讨论关于地址分配的问题,这个电路图需要进一步改进才是真正的扩展硬件图。
- 数据存储器与程序存储器地址虽然重叠,但是控制线的接法不一样

采用译码器法扩展2片8KB EPROM, 2片8KB RAM。 EPROM选用2764, RAM选用6264。共扩展4片芯片。

芯片	地址范围
IC4	6000H~7FFFH
IC3	4000H~5FFFH
IC2	2000H~3FFFH
IC1	0000H~1FFFH

外扩存储器的软件设计

- 1. 单片机片外程序区读指令过程(MOVC指令)
- 2. 单片机片外数据区读写数据过程 (MOVX指令)

例如,把片外程序存储器1000H单元的数送到片内RAM 50H单元,程序如下:

MOV A, #00H

MOV DPTR, #1000H

MOVC A, @A+DPTR

MOV 50H, A

例如,把片内50H单元的数据送到片外数据存储器1000H单元中,程序如下:

MOV A, 50H

MOV DPTR, #1000H

MOVX @DPTR, A

MCS-51单片机读写片外数据存储器中的内容,除用MOVX A, @DPTR和MOVX @DPTR, A外,还可使用MOVX A, @Ri和MOVX @Ri, A。这时通过P0口输出Ri中的内容(低8位地址),而把P2口

原有的内容作为高8位地址输出。

以下程序只作为演示初学阶段不建议使用

例 将程序存储器中以TAB为首址的32个单元的内容依次传送到外部RAM以7000H为首地址的区域去。

DPTR指向标号TAB的首地址。RO既指示外部RAM的地址,又表示数据标号TAB的位移量。本程序的循环次数为32,RO的值:0~31,RO值达到32就结束循环。

MOV DPTR, #TAB

MOV RO, #0

LOOP: MOV A, RO

MOVC A, @A+DPTR

MOV P2, #70H

MOVX @RO, A

INC RO

CJNE R0, #32, L00P

HERE: SJMP HERE

TAB: DB ······

9.9 提高: E²PROM的扩展

保留信息长达20年,不存在日光下信息缓慢丢失的问题。

常用的E²PROM芯片

在芯片的引脚设计上,

2KB的E²PROM 2816与EPROM 2716和RAM 6116兼容 8KB的E²PROM 2864A与EPROM 2764和RAM 6264兼容 2816、2817(2KB)和2864A(8KB)的读出时间均为 250ns,写入时间10ms。

E²PROM存储器2817A的扩展

E²PROM芯片2817A

- 2K×8存储空间
- 写入时间10ms
- 写入电压5V
- 读取时间200ns
- 可一万次改写,不存在类似EPROM 信息丢失问题,数据可保存20年
- DIP28封装
- 写操作状态指示输出Ready/Busy

2817A工作方式

	1	1	1	1	_	_
操作	CE	OE	W	R/B	10	
17/4/11	-	-	E			
			<u> </u>			
读	L	L	Н	高阻	0	
维持	Н	Х	Х	高阻	高阻	
字节写入	L	Н	L	L	I	
字节擦除	字节写入前自动擦除					

2817A管脚图

E²PROM存储器扩展

2817A与8031接口电路

- 如何判断E2PROM写操作完成?
- 如何用一个芯片既作为程序存储器,又作为数据存储器?

E²PROM存储器扩展

数据写入子程序的设计

软件任务:编写8031对2817A的写操作子程序,完成10个字节的写入操作

设子程序入口参数为:

R0=写入的字节数

R1=2817A的低8位地址

R2= 2817A的高8位地址

R3=源数据区的低8位地址

R4=源数据区的高8位地址

ORG 0000H

MOV	R0,#10
MOV	R1,#01H
MOV	R2,#05H
MOV	R3,#01H
MOV	R4,#04H
LCALL	WR1
END	

•	写入数据	居子程序	
; WR1:	MOV	DPL,R3	
	MOV	DPH,R4	
	MOVX	A,@DPTR	
	INC	DPTR	
	MOV	R3,DPL	
	MOV	R4,DPH	
	MOV	DPL,R1	
	MOV	DPH,R2	
	MOVX	@DPTR,A	
W2:	JNB	P1.0,W2	
	INC	DPTR	
	MOV	R1,DPL	
	MOV	R2,DPH	
	DJNZ	R0,WR1	
	RET		

提高: MCS-51外扩2864A

2864A可作为RAM使用,但掉电后数据不丢失。

片选端与P2. 7连接,P2. 7=0才选中2864A,线选法决定了2864A对应多组地址空间,即:

 $0000H\sim1FFFH$

 $2000H\sim3FFFH$

 $4000H\sim5FFFH$

 $6000H\sim7FFFH$

提高:

7.4

- 设计包括程序存储器和数据存储器的51扩展系统,其中要求程序存储器选用2片2764,数据存储器选用2片6264。绘出设计原理图,并指出各芯片所在地址。
- 注意 程序存储器与数据存储器的地址是可以 重叠的,通过不同的控制线和不同的指令加以 区分

答案

2764地址: U2(0000h~1fffh) U3(2000h~3fffh)

6264地址: U4(0000h~1fffh) U5(2000h~3fffh)

地址虽然是重叠的,但是能够正常工作

END

