同济大学课程考核试卷(A卷) 2022 — 2023 学年第 — 学期

命题教师签名:

审核教师签名:

课名: 计算机科学导论 考试考查: 考试 此卷选为: 期中考试()、期终考试(√)、重考()试卷

年级_专业__学号__姓名__得分_____

注: 所有的回答请用英文,填写在题目对应 Answer 处。

General Format Questions (1-12)

1. The following table is from Appendix C of the textbook for the following questions. (8 points)

Op- code Operand

Description

- 1 RXY LOAD the register R with the bit pattern found in the memory cell whose address is XY.
- 2 RXY LOAD the register R with the bit pattern XY.
- 3 RXY STORE the bit pattern found in register R in the memory cell whose address is XY.
- 4 ORS COPY the bit pattern found in register R to register S.

Encode each of the following commands in terms of the machine language described in the language description table.

A. 27A5_____ LOAD register 7 with the value A5.

B. ___17A5_____ LOAD register 7 with the contents of the memory cell at address A5.

C. 2A00 places 00000000 in register A

Decode each of the following instructions that were encoded using the language description table.

D. 4034 __ COPY the bit pattern found in register 3 to register 4.

ANSWERS:

2.a. What is the output of the circuit below? (1 point)

Input Pattern

ANSWER: 0

b. Translate each of the following binary representations into its equivalent base ten representation.

(2points)
1) 110012 2) 10.0112.375
<u>ANSWER:</u>c. Rewrite each of the following values (represented in base ten notation) in binary notation. (2points)
3) $23_{\underline{}}10111_{\underline{}}$ 4) $2\frac{1}{4}_{\underline{}}10.01_{\underline{}}$
ANSWER: d. Based on the 8-bit representation, write the two's complement representation of 5 and -5. (2points)
ANSWER:
■ 5 的补码表示是 00000101。
● -5 的补码表示是 11111011。
3. What conditions are necessary for deadlock to occur? (9 points)
ANSWER:
THOW DAY
1 资源县按票分配的
2. 一旦分配,资源不能被强制回收
3. 存在对不可共享资源的竞争
Till in the blanks haloss with the next on the constitution of the
4. Fill in the blanks below with the part on the operating system (file
manager, memory manager, device drivers, window manager, scheduler,
dispatcher) that performs the activity described. (10 points)
A dispatcher 分派器 Executes each time a time slice terminates
dispatcher Performs the switching from one process to another
B memory manager Creates virtual memory
C scheduler 调度器 Places new entries in the process table
cohodular Pomovos entrios from the process table
scheduler Removes entries from the process table D. device drivers Performs the actual communication with I/O units
E. file manager Protects files from unauthorized access
file manager Maintains a record of available mass storage space
(维护可用大容量存储空间的记录)

F. _____Window manager ____ Maintains a record of what is displayed on the computer's screen

ANSWERS:

- A. Dispatcher (分派器)
 - 分派器负责在时间片结束时将 CPU 从一个进程切换到另一个进程。
- B. Memory Manager (内存管理器)
 - 内存管理器负责创建虚拟内存以支持多任务和大内存需求。
- C. Scheduler (调度器)
 - 调度器负责将新进程的信息放入进程表中以准备调度。
- D. Device Drivers(设备驱动程序)
 - 设备驱动程序负责与 I/O 设备进行实际的低级通信。
- E. File Manager (文件管理器)
 - 文件管理器负责控制对文件的访问,防止未经授权的访问或修改。
- 5. Describe and explain each step of a machine cycle for an instruction execution.

 Which layer of the four-layer(application, transport, network, link) network model actually transmits a message? (8 points)

ANSWER:

1. 题目翻译

描述并解释<mark>指令执行</mark>中<mark>机器周期</mark>的每一步。 四层网络模型中,哪一层实际传输消息?

2. 答案

机器周期的步骤:

Fetch an instruction and increment the program counter,

decode the instruction,

execute the instruction.

取指令并递增程序计数器,解码指令,并执行指令。

四层网络模型中实际传输消息的层:

在四层网络模型(通常指 TCP/IP 模型)中,(link Layer)负责实际传输消息。

6. Describe the respective functions of repeater, bridge, hub, switch and router. (10 points)

ANSWER:

• 题目翻译

描述以下设备的各自功能:中继器(repeater)、网桥(bridge)、集线器(hub)、交换机(switch)和路由器(router)。

答案

中继器和网桥都用于连接两条总线,

但中继器传输所有消息,而网桥只转发那些目标是另一侧的消息

集线器只是一条中央(短)总线,计算机连接到该总线以形成总线网络。 交换机连接多个总线网络以形成更大的网络。

路由器连接两个网络,形成一个 Internet,其中原来的两个网络继续作为独立的网络运行。

7. What are two protocols for implementing the transport level in the four-layer network model (6
points)
A B
Which one is a reliable protocol in that the origin and destination work together to confirm that the
entire message was successfully transferred.
C
● 题目翻译
在四层网络模型中,实施传输层的两种协议是什么?(6分)
A
B
哪一个协议是可靠的协议,即源和目标之间相互配合,确认整个消息已成功传输?
C

答案

A. TCP (传输控制协议)

• **解释:** TCP 是一种面向连接的可靠传输协议,确保数据的可靠传输,并能处理丢包、错误检查、数据顺序、流量控制等问题。

B. UDP (用户数据报协议)

• **解释**: UDP 是一种无连接、不可靠的传输协议,速度较快,但不保证数据的完整性和顺序。适用于对时延要求高、能容忍丢包的应用场景。

C. TCP

• 解释: TCP 是可靠的协议,因为它通过三次握手建立连接、通过确认应答机制确保每个数据包被成功接收,并在必要时重发丢失的数据包,从而确保整个消息的成功传输。

8. Please describe the difference between a process, an algorithm, a program, a programming language and a pseudocode. (10 points)

ANSWER:

• 题目翻译

请描述进程、算法、程序、编程语言和伪代码之间的区别。(10分)

答案

1. 进程(Process)

• 定义: 进程是计算机中正在执行的程序的实例。它包括程序代码、程序计数器、堆

栈、数据段等资源,并且拥有独立的执行环境。

• **特点**:进程是程序在运行时的表现,每个进程有自己的内存空间和系统资源,通常由操作系统管理和调度。

2. 算法 (Algorithm)

- **定义**: 算法是解决问题的步骤与规则的集合,通常是以清晰、有限的步骤来描述的,可以通过计算机程序实现。
- **特点**: 算法具有明确的输入、输出、步骤及结束条件,解决问题的过程是确定的, 并且应该是有限的、有效的和无歧义的。

3. 程序 (Program)

- 定义:程序是由一系列指令组成的,能够在计算机上执行某些特定任务的软件。程序是代码的具体实现,可以是用编程语言编写的。
- **特点**:程序通过编写特定的代码,按照设定的规则控制计算机硬件来完成特定的任务。程序需要经过编译(对于编译型语言)或解释执行(对于解释型语言)。

4. 编程语言(Programming Language)

- **定义**:编程语言是<mark>用于编写程序的语言</mark>,提供了一组语法规则和语义定义,允许开 发者以某种结构化和抽象的方式描述计算过程。
- **特点**:编程语言如 C++、Python、Java 等,具有不同的特性和用途,通常包括变量、 控制结构、数据类型等,帮助开发人员实现算法并开发软件应用。

5. 伪代码 (Pseudocode)

- **定义**: 伪代码是一种非正式的、接近自然语言的编程描述方式,用于描述算法的逻辑步骤,而不关注具体编程语言的语法细节。
- **特点**: 伪代码通常简单易懂,能够清楚地展示算法的思路,既可以被程序员理解, 也能为实际的程序开发提供指导。它不依赖于任何编程语言的语法规则,主要用于 设计和交流算法。

总结

进程: 正在执行的程序实例, 具有独立资源和环境。

算法:解决问题的步骤或规则集合,描述解决问题的具体方法。

程序: 由指令组成的可执行代码, 完成特定任务。

编程语言: 用于编写程序的语言, 具备语法规则和语义定义。

伪代码:用<mark>自然语言</mark>接近的方式<mark>描述算法</mark>,不依赖具体编程语言的语法。

9. Explain the distinction between the imperative (命令式), declarative (声明式) and functional programming paradigms (范式).

Why a high-level programming language is machine independent? (8 points) *ANSWER*:

• 题目翻译

解释命令式编程、声明式编程和函数式编程范式之间的区别。

<mark>命令式范式要求程序员描述解决手头问题的算法。声明式范例要求程序员描述问题。</mark> 为什么高级编程语言是与机器无关的? (8 分)

答案

命令式编程(Imperative Programming)

- **定义**: 命令式编程强调如何通过一系列明确的<mark>指令</mark>来改变程序的状态。这种编程范 式通过顺序执行一组语句来完成任务。
- **特点**: 命令式编程侧重于计算的控制流,程序员需要详细描述每个步骤和状态的变化。常见的命令式编程语言包括 C、Java 和 Python。
- **例子**:使用循环、条件语句等来改变程序状态的过程,例如: x = x + 1。

声明式编程(Declarative Programming)

- **定义**: 声明式编程<mark>关注做什么而不是如何做</mark>。程序员描述的是想要达成的结果,而 非如何一步步实现。
- **特点**: 声明式编程避免了具体的控制流和状态变化的描述,程序员只需指定问题的 定义和要求。SQL 和 HTML 是典型的声明式编程语言。
- **例子**: 在 SQL 中,SELECT * FROM users WHERE age > 30,这条命令描述了我们 想要的数据,但没有指定如何获取数据。

函数式编程(Functional Programming)

- **定义**: 函数式编程是一种特殊类型的声明式编程,强调使用数学函数来进行计算。 它的核心概念是函数的"无副作用"和"不可变性"。
- 特点:函数式编程注重函数的组合与递归,而非改变程序的状态。变量在函数式编程中通常是不可变的,不会在执行过程中发生改变。常见的函数式编程语言有 Haskell 和 Lisp。
- **例子**: map、filter 和 reduce 函数在函数式编程中非常常见,它们操作数据并返回新结果,而不会改变原数据。

为什么高级编程语言是与机器无关的?

这意味着用该语言编写的程序不引用特定计算机属性,因此与任何计算机兼容。

10. What are formal and actual parameters? When a function passes parameters, what is the difference between the call-by-reference and call-by-value modes? (8 points)

ANSWER:

题目翻译

什么是形式参数(formal parameters)和实际参数(actual parameters)? 当一个函数传递参数时,按引用传递(call-by-reference)和按值传递 (call-by-value)模式有什么区别?(8分)

答案

形式参数 (Formal Parameters)

- **定义**: 形式参数是函数声明时定义的参数,它们只是占位符,表示函数 在调用时需要传入的值。形式参数在函数内部使用,并作为函数的输 入。
- **特点**:形式参数的名称是由开发者定义的,函数体内的变量将通过这些 形式参数来接收传递进来的实际值。
- 例子:
- void func(int x, int y) { // x, y 是形式参数
- // 使用 x 和 y 进行操作
- }

实际参数 (Actual Parameters)

- **定义**:实际参数是函数调用时传递给形式参数的具体值或表达式。它们可以是常量、变量、甚至是表达式的结果。
- 特点:实际参数提供给函数的输入值,在函数调用时由调用方提供。
- 例子:
- int a = 5, b = 10;
- func(a, b); // a 和 b 是实际参数

按值传递(Call-by-Value)

- **定义**: 在按值传递模式下,函数接收到的是实际参数的副本,而不是原始值。函数内部对参数的修改不会影响到调用函数中的变量。
- **特点**:参数传递时,实际参数的值被复制到形式参数,函数内部对形式 参数的更改不会影响实际参数。适用于不需要修改原始数据的情况。
- 例子:
- void func(int x) {
- x = 10; // 修改的是形式参数
- }
- .
- int a = 5;
- func (a);
- // 这里 a 仍然是 5

按引用传递(Call-by-Reference)

- **定义**:在按引用传递模式下,函数接收到的是实际参数的引用(地址),即对实际参数的直接访问。函数内部对参数的修改会影响到调用函数中的变量。
- **特点**:参数传递时,传递的是变量的内存地址,函数内部对参数的更改 会直接影响到实际参数。适用于需要修改原始数据或传递大型数据结构 的情况。
- 例子:
- void func (int &x) {

- x = 10; // 修改的是实际参数
- •
- .
- int a = 5;
- func(a);
- // 这里 a 的值变为 10

总结

形式参数:函数声明时定义的占位符,用于接收实际参数的值。

实际参数:函数调用时传递的实际值,可以是常量、变量或表达式。

按值传递:函数接收的是实际参数的副本,函数内部修改不会影响实际参数。

按引用传递:函数接收的是实际参数的引用,函数内部修改会直接影响实际参数。

11. Explain the distinction between translating a program (in a high-level language) and interpreting 解释 the program.

What are the main 3 activities in the process of translating a program? Please describe their roles briefly. (8 points)

ANSWER:

翻译程序与解释程序的区别;

翻译一个程序就是<mark>在不执行它的情况下将其转换为另一种(通常是低级的)语言。</mark>

解释程序就是直接从其高级语言形式执行它。

翻译程序的三项主要活动及其角色

- 1. 词法分析 (Lexical Analysis):
 - o **角色**:词法分析的主要任务是将源代码中的字符序列转换为一系列的记号

(tokens)。每个记号代表源代码中的一个语法元素,例如关键字、变量、操作符等。

。 **过程:** 该阶段会扫描整个源代码并将其分割成有意义的词法单元,例如*将 int* x = 10; *转换为 int*, x, =, 10, ; 等记号。

2. 语法分析 (Syntax Analysis):

- 角色:语法分析的任务是根据源代码的语法规则,检查源代码是否符合语言的语法结构。通过构建语法树,验证程序中各个语句的结构是否正确。
- 。 **过程**: 在这一阶段,编译器将词法分析得到的记号按语法规则进行排列和组合,确保程序没有语法错误。例如,intx = 10 这样的语法就应该符合"类型+变量+赋值"的结构。

3. 语义分析 (Semantic Analysis):

- 角色:语义分析检查程序中的语义错误,确保程序的含义符合语言的规则, 处理程序中变量、类型等的正确性。
- o **过程**:在这一阶段,编译器检查符号表、数据类型等方面的错误,例如,*确 保变量在使用前已经声明,或者变量类型在赋值时是否匹配。*

总结

- **翻译程序**: 将源代码一次性转换为机器语言或中间代码, 生成可执行文件, 程序执行较快。
- 解释程序: 逐行解释执行源代码,不生成独立的可执行文件,执行速度较慢。
- 翻译程序的三项活动:
 - 1. 词法分析:将源代码转换为记号(tokens)
 - 2. 语法分析:检查代码的语法结构,构建语法树
 - 3. 语义分析: 检查代码中的语义错误,确保类型和变量等的正确性

12. What are the differences between list, stack, queue and tree? (8 points)

ANSWER:

1. 题目翻译

列出链表、栈、队列和树之间的区别。(8分)

2. 答案

列表、堆栈、队列和树都是常见的数据结构,它们各自有不同的特点和用途。下面是它们之间的主要区别:

• 1. 列表 (List)

定义:列表是一种<mark>线性</mark>数据结构,用于存储一组元素,元素在内存中可以按顺序排列。列表中的元素可以是不同类型的,可以通过索引访问。

访问方式: 支持随机访问, 可以通过索引访问任何元素。

插入与删除:可以在任意位置插入或删除元素。

特点:

- 。 元素的顺序是有意义的。
- 。 大多数列表是动态大小的,意味着它们的大小可以变化。
- 。 可支持重复元素。

应用:用于存储和管理一组元素,常见于实现其他数据结构(如堆栈、队列)时。

• 2. 堆栈 (Stack)

定义: 堆栈是一种后进先出(LIFO, Last In, First Out)的数据结构。堆栈只能在一端进行操作,这一端叫做栈顶。

访问方式:只能访问栈顶的元素。

插入与删除: <mark>只能在栈顶插入元素或从栈顶删除元素</mark>(即推入和弹出操作)。 特点:

- 。 数据是有序的,但只能通过栈顶访问和操作。
- 。 遵循"后进先出"原则。

应用:常用于函数调用的管理(递归调用栈)、浏览器历史记录的回退、撤销操作等。

• 3. 队列 (Oueue)

定义: 队列是一种先进先出(FIFO, First In, First Out)的数据结构。队列支持从一端(队尾)插入元素,从另一端(队头)删除元素。

访问方式: 只能访问队头的元素。

插入与删除:元素从队尾插入,从队头删除。

特点:

- 数据的顺序也很重要,但遵循"先进先出"原则。
- 。 插入和删除的操作分别发生在队列的两端。

应用:用于任务调度、缓冲区管理(如操作系统的任务队列)、打印队列等。

- 4. 树 (Tree)
 - 1. 定义: 树是一种<mark>层次</mark>结构的数据结构,由<mark>节点和边</mark>组成。一个树由一个根节点 开始,根节点通过边连接其他节点,形成一个层次结构。
 - 2. 访问方式:通常不支持像列表那样的随机访问,访问元素时要通过遍历树的节点(如深度优先遍历、广度优先遍历)。
 - 3. 插入与删除: 节点可以根据树的类型(如二叉树、平衡树、红黑树等)进行插入和删除操作。
 - 4. 特点:
 - 。 树是层次性结构,每个节点可以有多个子节点。
 - 。 常见的树类型有二叉树、AVL 树、红黑树、堆等。
 - 5. 应用:常用于表示层次结构(如文件系统目录树),以及在算法中用来表示决策过程(如二叉搜索树用于查找、堆用于优先队列等)。

总结:

数据结构	访问方式	插入与删除操作	存储结构特点	典型应用
列表	随机访问, 通过索引	在任意位置插入或删除元素	有序,元素可以 是不同类型	存储和管理元素,通常用 于实现其他数据结构
堆栈	只能访问栈 顶元素	只能在栈顶插入(push)或删除 (pop)元素	遵循"后进先出"原 则	函数调用栈、撤销操作、 表达式求值
队列	只能访问队 头元素	只能从队头删除,队尾插入元素	遵循"先进先出"原 则	任务调度、缓冲区管理、 打印队列等
树	通过遍历访 问	插入和删除根据树的结构进行 (如二叉树的左右子节点)	层次结构,节点 可有多个子节点	层次结构表示、二叉搜索 树、文件系统、决策树等

通过这些区别,可以更清楚地了解每种数据结构的特点和使用场景。