PROCESSO SELETIVO

DE

ADMISSÃO

À

ESCOLA NAVAL

(PSAEN/2004)

(1ª FASE)

MATEMÁTICA

- Numa pirâmide regular cuja base é um quadrado, os números $\sqrt{2}$, o apótema <u>a</u> da base e a altura <u>h</u> da pirâmide formam, nesta ordem, uma progressão aritmética e a soma destes é $9\sqrt{2}$. O valor da área da superfície total desta pirâmide é
 - (A) $24(1 + 2\sqrt{17})$
 - (B) $48(3 + \sqrt{34})$
 - (C) $36(2 + 2\sqrt{34})$
 - (D) $12(3 + 3\sqrt{17})$
 - (E) $24(3 + \sqrt{34})$
- Considere a matriz $A = \begin{pmatrix} w & w \\ -1 & w \end{pmatrix}$, onde w é o número complexo $w = \cos \frac{2\pi}{3} + i \sec \frac{2\pi}{3}$. O valor do determinante de <u>A</u> é
 - (A) 1
 - (B) O
 - (C) -1
 - (D) $-1 + \sqrt{3} i$
 - (E) $1 + \sqrt{3}i$
- Considere a matriz quadrada A = $\begin{pmatrix} y^2 & 2 & 1 \\ -2 & 2y^2 & -1 \\ 4 & 3 & 1 \end{pmatrix}$ onde y ϵ IR.

O produto dos valores de \underline{y} , para os quais o determinante de \underline{A} é igual a menor raiz da equação |x-3|=15 é

- (A) 1
- (B) $\frac{1}{2}$
- (C) $-\frac{1}{2}$
- (D) -1
- (E) -√2

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

- Dadas as funções reais $f(x) = \frac{100}{1+2^{-x}}$ e $g(x) = 2^{\frac{x}{2}}$, pode-se afirmar que (gof^{-1}) (90) é igual a
 - (A) 10
 - (B) 3
 - (C) 1
 - (D) $\frac{1}{3}$
 - (E) $\frac{1}{10}$
- Se a, b, m e n são números reais tais que $a^2 + b^2 = 341$ ab, a $\neq 0$, b $\neq 0$, $\log_3 2 = m$ e $\log_3 7 = n$, então, o valor da expressão $\log_3 \frac{[a+b]^2}{64 \text{ ab}} \log_3 \left[\frac{7}{3}\right]^2 2[\log_9 2]^2 + \log_{\frac{1}{3}} 14 \text{ fe}$
 - (A) $m^2 + 6n 1$
 - (B) $-\frac{m^2}{2} 7m + 2$
 - (C) $3\frac{n^2}{2} + 3m 6n 2$
 - (D) $\frac{n^2}{2} + 6n 1$
 - $(E) n^2 + 6m 1$
- Dados os vetores $\vec{a} = \left(1, \frac{1}{2}, \frac{3}{2}\right), \vec{b} = (1, 0, 3) \ e \ \vec{c} = (2, -1, 1), o$ Valor do módulo de \vec{v} , onde \vec{v} é um vetor perpendicular aos vetores \vec{a} e \vec{b} tal que \vec{v} . $\vec{c} = 8$ é
 - (A) $\sqrt{11}$
 - (B) $\sqrt{13}$
 - (C) $\sqrt{15}$
 - (D) $\sqrt{17}$
 - (E) $\sqrt{19}$

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

- Sabendo-se que y(x) é uma função real derivável em todo o seu domínio e que y'(x) = $e^{3x} + \frac{1}{x^2 + 2x + 2} + \frac{1}{1 3x}$ e y(0) = $\frac{\pi}{4} + \frac{4}{3}$, pode-se afirmar que y(-1) é igual a
 - (A) $\frac{e^{-3} 2 \ln 2}{3}$
 - (B) $\frac{4e^{-3}+5}{4}$
 - (C) $\frac{e^{-3} + 3\ln 2 + 3}{3}$
 - (D) $\frac{3-2\ln 2+e^{-3}}{3}$
 - (E) $\frac{e^{-3} \ln 2 + 3}{3}$
- 8) Um octaedro regular está inscrito num cubo de aresta \underline{a} . A razão entre o volume do cubo e o volume do octaedro é
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) 5
 - (E) 6

Prova : Amarela Concurso : PSAEN

Profissão: PROVA DE MATEMÁTICA

9)

Na figura acima o triângulo ABC é equilátero e está inscrito em uma circunferência de centro \underline{o} e raio \underline{r} . Se os segmentos \overline{BC} e \overline{MQ} são paralelos, então a área do triângulo

APN é

(A)
$$\frac{\sqrt{3}}{2} r^2$$

(B)
$$\frac{\sqrt{2}}{3} r^2$$

(C)
$$\frac{\sqrt{3}}{6}$$
 r²

(D)
$$\frac{\sqrt{2}}{4} r^2$$

(E)
$$\frac{\sqrt{3}}{12} r^2$$

0 valor do $\lim_{n \to +\infty} \left(1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \frac{(-1)^{n-1}}{3^{n-1}} \right)$ é igual a

(A)
$$\frac{3}{2}$$

(B)
$$\frac{3}{4}$$

(C)
$$-\frac{1}{3}$$

(D)
$$-\frac{3}{2}$$

(E)
$$-\frac{4}{3}$$

Prova : Amarela

Profissão: PROVA DE MATEMÁTICA

- 11) O conjunto dos números reais \underline{x} que satisfaz a desigualdade $\left|\frac{3-2x}{2+x}\right| \leq 4 \text{ \'e}$
 - (A)] $-\infty_r$ -2 [U] -2, $+\infty$ [
 - (B)] $-\infty$, -2 [U [$-\frac{5}{6}$, $+\infty$ [
 - (C) $\left[-\frac{11}{2}, -\frac{5}{6} \right]$ U $\left[\frac{3}{2}, +\infty \right]$
 - (D)] $-\infty$, $-\frac{11}{2}$] U [$-\frac{5}{6}$, $+\infty$ [
 - (E)] $-\infty$, $-\frac{5}{6}$] U [$\frac{3}{2}$, $+\infty$ [
- 12) Um Banco de Sangue catalogou um grupo de 50 doadores, assim distribuídos: 19 com sangue tipo 0; 24 com fator Rh (negativo); e 11 com fator Rh (positivo) e tipo diferente de 0. Quantos são os modos possíveis de selecionar 3 doadores desse grupo que tenham sangue de tipo diferente de 0, mas com fator Rh (negativo)?
 - (A) 4495
 - (B) 2024
 - (C) 1140
 - (D) 165
 - (E) 155

Prova : Amarela Concurso : PSAEN

Profissão : PROVA DE MATEMÁTICA

13)

O quadrilátero MNPQ está inscrito em uma circunferência de centro O e raio 6cm, conforme a figura acima.

Sabe-se que $\overline{QM} = 3$ cm, $\overline{MN} = 8$ cm e que a diagonal \overline{MP} passa por \underline{O} . Se \underline{E} é um ponto do segmento \overline{QN} tal que \overline{ME} é perpendicular a \overline{QN} , então o valor do perímetro do triângulo QME, em cm, é

- (A) $5 + \sqrt{5}$
- (B) $\frac{9}{3}$
- (c) $7 + \sqrt{2}$
- (D) $\frac{5}{2} + \sqrt{3}$
- (E) $\sqrt{2} + \sqrt{3}$
- 14) 0 conjunto solução da inequação $\frac{1}{3^{(x+2)}} > 3^{\frac{4}{(1-x)}}$, onde x é uma variável real é
 - (A)] $-\infty$, -3 [U] 1, 2 [
 - (B)] ∞ , -3 [U] 2, + ∞ [
 - (C)] $-\infty$, -2 [U] 1, 3 [
 - (D)] 2, 1 [U] 3, $+ \infty$ [
 - (E)] 3, 1 [U] 2, $+ \infty$ [
- 15) A equação da reta que passa pelo centro da curva $4x^2+y^2-4x+4y=0\ \ e\ \ \acute{e}\ \ normal\ \ ao\ gráfico\ \ da\ função\ real$ $f(x)=arc\ sen\ \sqrt{x}\ no\ ponto\ da\ abscissa\ x=\frac{1}{2}\ \acute{e}$
 - (A) 2y 2x + 3 = 0
 - (B) y x + 3 = 0
 - (C) y + x + 1 = 0
 - (D) 2y + 2x + 3 = 0
 - (E) y x 1 = 0

Prova : Amarela Concurso : PSAEN

Profissão: PROVA DE MATEMÁTICA

16)

Um determinado recipiente tem a forma da figura indicada acima. Sabendo-se que a semi-esfera, o cilindro e o cone circular reto que constituem o recipiente têm volumes iguais, é verdadeiro afirmar que

- (A) h R + 2H = 0
- (B) 2h 2R 3H = 0
- (C) 2h R + 3H = 0
- (D) 2h + 2R H = 0
- (E) h 3R + H = 0

17)

A área da região hachurada na figura acima é igual a

- $(A) \quad \frac{7 \pi}{8}$
- (B) $\frac{7\pi}{6}$
- (C) $\frac{6\pi}{7}$
- (D) $\frac{5 \pi}{8}$
- $(E) \quad \frac{5\pi}{16}$

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

Os pontos $A = (x_1, y_1)$ e $B = (x_2, y_2)$ são soluções do 18)

sistema de equações
$$\begin{cases} \text{sen } (x + y) + \text{sen } (x - y) = 2 \\ \text{sen } x + \cos y = 2 \end{cases}$$

onde x \in [0, 2π] e y \in [0, 2π]. A distância desde \underline{A} até \underline{B} é

- (B) $\frac{\sqrt{3}}{2}\pi$
- (C) π
- (D) 2π
- (E) 3T
- Seja $\underline{\alpha}$ o plano que contém a reta $\frac{x-1}{2} = \frac{y+2}{-2} = z+1$ e o ponto $\underline{p} = (-1, 0, 2)$. A equação do plano $\underline{\beta}$, que é paralelo a α e passa 19) pelo ponto Q=(3, -2, 1) é
 - (A) x y + 3z 8 = 0(B) 2x 5z 1 = 0

 - (C) y + z + 1 = 0(D) x + 2y + z = 0
 - (E) x + y 1 = 0
- 20) O valor das constantes reais <u>a</u> e <u>b</u> para as quais a função real $g(x) = \begin{cases} ax + b & \text{se } x \le -1 \\ ax^3 + x + 2b & \text{se } x > -1 \end{cases}$

seja derivável para todo x é

- (A) a = 1/2 e b = 1
- (B) a = 1 e b = -1/2
- (C) a = -1/2 e b = 1
- (D) a = -1 e b = -1/2
- (E) a = 1/2 e b = -1

Prova : Amarela

Profissão: PROVA DE MATEMÁTICA

PROCESSO SELETIVO DE ADMISSÃO À ESCOLA NAVAL (PSAEN/2004).

MATEMÁTICA	
PROVA	
AMARELA	
01	E
02	С
03	A
04	В
05	В
06	E
07	D
08	E
09	E
10	В
11	D
12	С
13	A
14	А
15 Anulada	
16	В
17	A
18	D
19	E
20	С