

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Barramentos: Parâmetros elétricos e eletrônicos.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Definição

Conjunto de **conexões elétricas** que transportam as informações entre os dispositivos de hardware.

Conjunto de **linhas de comunicação** que permitem a interligação entre dispositivos, como CPU, Memória e outros periféricos.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Barramentos

Existem vários **tipos de barramentos**, entre eles: Barramentos de cache, barramento de memória, barramento de E/S como o PCI, SCSI, IDE, USB, ISA, Firewire, todos com diferentes funções e taxas de transferência.

Exemplos:

Barramento de cache

Dedicado ao acesso à memória cache

Barramento de memória

Conexão entre processador e memória principal

Barramento de Entrada e Saída

Conexão para dispositivos de entrada e saída (E/S)

Possibilita a expansão de periféricos

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Fonte de alimentação chaveada – ATX

(Advanced Technology Extended – Intel 1995))

Os transístores são chaveados por saturação (condução) e corte (circuito aberto) em frequências que pode ir de 20kHz até 250KHz

O circuito de pulsos compensa as pequenas variações da tensão a saída permanece estabilizada. Mais leve que as fontes lineares, pois os componentes são menores, devido ao uso da alta frequência.

CPU: +12V

Memoria: +5V

HDD: +5V, +12V

HD SATA: +3.3V/+5V

Placa-mãe: todas voltagens

VGA: +3.3V, +5V, +12V

Optical drive: +5V, +12V

Placas de expansão: +5V, +12V

FAN: +12V

OBS: Voltagens negativas são usadas para sinais.

Porta Serial: -12V

Porta (mini-din): -5V (descontinuada)

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Alimentação 24 Pinos

Auxiliar ATX 4 Pinos

Conector de 24 Pinos

Conector IDE

Conector SATA

Floppy Drive 1,44"

PCI Express 6 Pinos

Tensão	Pino	Cor	Cor	Pine	Tensão	
+3.3 V	1			13	+3.3 V	
+3.3 V	2			14	-12 V	
Terra	3			15	Тетта	
+5 V	4			16	PS_ON	
Terra	5			17	Terra	
+5 V	6			18	Terra	
Terra	7			19	Terra	
Power OK	8			20	-5 V(opcional	
+5 VSB	9			21	+5 V	
+12 V	10			22	+5 V	
+12 V	11			23	+5 V	
+3.3 V	12			24	Terra	

Tabela de Cores de Tensão

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Placa-mãe

https://youtu.be/ljOoGyCso8s

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Barramento frontal

FSB (*Front Side Bus*), ou barramento frontal, é o responsável pela comunicação e transferência de dados entre a CPU e a North Bridge da placa-mãe.

Por exemplo: se o seu processador funciona na frequência de 3000MHz, ele terá de operar sobre um FSB de 200MHz com um multiplicador de 15 vezes.

Interface de Mídia Direta - DMI

Direct Media Interface

INTEL® H370 CHIPSET BLOCK DIAGRAM

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20 Sala: H204

AULA 04

Interrupções

Praticamente todos os computadores oferecem um mecanismo por meio do qual outros módulos (E/S, memoria) podem interromper o processamento normal do processador.

Classes de interrupções

Programa	Gerada por alguma condição que ocorre como resultado da execução de uma instrução, como o <i>overflow</i> aritmético, divisão por zero, tentativa de executar uma instrução de máquina ilegal ou referência fora do espaço de memória permitido para o usuário.
Timer	Gerada por um timer dentro do processo. Isso permite que o sistema operacional realize certas funções regularmente.
E/S	Gerada por um controlador de E/S para sinalizar o término normal de uma operação ou para sinalizar uma série de condições de erro.
Falha de hardware	Gerada por uma falha como falta de energia ou erro de paridade de memória.

As interrupções são fornecidas primeiramente como um modo de melhorar a eficiência do processamento. Por exemplo, a maioria dos dispositivos externos e muito mais lenta do que o processador.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Função de E/S

Em alguns casos, e desejável permitir que as trocas de E/S ocorram **diretamente** com a memoria. Nesse caso, o processador **concede** a um modulo de E/S a autoridade de ler ou escrever na memoria, de modo que a transferência entre E/S e memoria pode ocorrer sem prender o processador. Durante essa transferência, o modulo de E/S emite comandos de leitura ou escrita a memoria, tirando do processador a responsabilidade pela troca. Essa operação e conhecida como DMA (*Direct Memory Access*), acesso direto a memoria.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

As **linhas de dados** oferecem um caminho para movimentação de dados entre os módulos do sistema. Essas linhas, coletivamente, são chamadas de **barramento de dados**. Elas podem consistir em 32, 64, 128 ou ainda mais linhas separadas, sendo que o número de linhas é conhecido como a **largura do barramento** de dados. Por exemplo, se o barramento de dados tiver 32 bits de largura e cada instrução tiver 64 bits de extensão, então o processador precisa acessar o módulo de memória duas vezes durante cada ciclo de instrução.

As **linhas de endereço** são usadas para designar a origem ou o destino dos dados no **barramento de dados**. Por exemplo, se o processador deseja ler uma palavra (8, 16 ou 32 bits) de dado da memória, ele coloca o endereço da palavra desejada nas linhas de endereço. Claramente, a largura do barramento de endereço determina a capacidade de memória máxima possível do sistema. Além do mais, as linhas de endereço geralmente também são usadas para endereçar portas de E/S.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

As *linhas de controle* são usadas para controlar o acesso e o uso das **linhas de dados** e **endereços**. Como as linhas de dados e endereço são compartilhadas por todos os componentes, e preciso existir um meio de controlar seu uso. Os sinais de comando especificam operações a serem realizadas. As linhas de controle típicas incluem:

Escrita de memória: faz com que os dados no barramento sejam escritos no local endereçado.

Leitura de memória: faz com que os dados do local endereçado sejam colocados no barramento.

Escrita de E/S: faz com que os dados no barramento sejam enviados para a porta de E/S endereçada.

Leitura de E/S: faz com que os dados da porta de E/S endereçada sejam colocados no barramento.

AcK de transferência: indica que dados foram aceitos pelo barramento.

Solicitação de barramento (bus request): indica que um modulo precisa obter controle do barramento.

Concessão de barramento (bus grant): indica que um modulo solicitante recebeu controle do barramento.

Requisição de interrupção (interrupt request): indica que a interrupção está pendente.

AcK de interrupção: confirma que a interrupção pendente foi reconhecida.

Clock: e usado para operações de sincronização.

Reset: inicializa todos os módulos.

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20 Sala: H204

AULA 04

ISA

Criado pela IBM 1981, IBM PC

Desenvolvido para interligar dispositivos a placa mãe 1º versão possui tamanho 8 bits e taxa de 4.77MHz Em 1984 foi introduzido o padrão 16 bits, que possui taxas de 6 a 8MHz

EISA

Surgiu para substituir o barramento ISA (1988)
Possui largura de 32 bits e frequência
de 8.33MHz
Consegue trabalhar numa velocidade de
até 26Mb/s

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

VESA

Extensão do modelo ISA (1993)

Desenvolvido para suprir o limite de transferência do ISA

Utiliza largura de 32 bits e operava numa frequência de até 50Mhz e velocidade de até 133 Mb/s

Apesar da alta frequência de transmissão não permitia mais que 3 dispostos

Dependia da arquitetura 80486

PCI – Peripheral Component Interconnect

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Criado pela Intel em junho de 1992

Desenvolvido em paralelo com o processador Pentium

Oferece altas taxas de transferência de dados

Pode ser configurada como um barramento de 32 ou 64 bits

Frequências de 33MHz ou 66MHz e transmissão teórica de 133 Mb/s

Utiliza esquema de transferência síncrono e arbitração centralizada

Capaz de trabalhar com múltiplos processadores

Permite recursos Plug-and-Play

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20 Sala: H204

AULA 04

AGP - Accelerated Graphics Port

Devolvido pela Intel em 1997, em sincronia com lançamento do Pentium II

Barramento de alta velocidade, para conexão de placas gráficas, com função de acelerador 3D

Aloca dinamicamente a memória RAM para armazenar a imagem da tela

Normalmente excedem um pouco as placas PCI em tamanho

Primeira versão do AGP, chamada AGP 1x, usa um barramento de 32-bits operando a 66MHz

Versões disponíveis incluem AGP 2x, AGP 4x, e AGP 8x (8 transferências por ciclo, atingindo uma taxa de 2.133Mb/s

O barramento AGP caiu em desuso após o desenvolvimento do PCI Express

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

PCI Express

Também conhecido como **PCIe** ou **PCI-EX,** sucessor do AGP e do PCI, criado em 2004 pelo consorcio, Intel, Dell, HP e IBM, velocidade de x1 até x32 (atualmente só existe disponível até x16)

Frequência de 2,5 GHz, a PCI Express 1x consegue taxas de 250 Mb/s, bem maior que os 133 Mb/s do padrão PCI de 32 bits

Placas de vídeo PCI Express x16 são duas vezes mais rápido que uma AGP 8x

	Taxa de transferência bruta	Largura de banda	Faixa / Caminho	Total de banda X 16
PCIe 1.x	2,5 GT/s	2 Gb/s	250 Mb/s	8 GB/s
PCIe 2.x	5 GT/s	4Gb/s	500 Mb/s	16 GB/s
PCIe 3.x	8 GT/s	8 Gb/s	~1 Gb/s	~32 GB/s
PCIe 4.x	16 GT/s	16 Gb/s	~2 Gb/s	~64 GB/s
PCIe 5.x	32 GT/s	32 Gb/s	~4 Gb/s	~128 GB/s

GT: Gigatransferências - Intel

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

USB - Universal Serial Bus

Conexão *Plug and Play* desenvolvido em 1994 por um consórcio de empresas, entre as quais destacam-se: Microsoft, Intel, Compaq, DEC, IBM, Nortel e NEC

Permite ao SO e à placa-mãe diferenciar, transparentemente:

A classe do equipamento

As necessidades de alimentação elétrica

As necessidades de largura de banda

As necessidades de latência máxima

Eventuais modos de operação internos

	LANÇAMENTO	LARGURA DE BANDA	NOMENCLATURA
USB 1.0	1995 ~ 1996	12Mb/s	Full Speed
USB 1.1	1998	12Mb/s	200
USB 2.0	2000 ~ 2001	480Mb/s	High Speed
USB 3.0	2008	5Gb/s	SuperSpeed
USB 3.1	2013	10Gb/s	SuperSpeed+

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

FireWire

Foi desenvolvido pela Apple nos anos 90, também conhecido como i.Link, IEEE 1394 ou High Performance Serial Bus/HPSB

Interface serial para computadores pessoais e aparelhos digitais de áudio e vídeo Oferece comunicações de alta velocidade e serviços de dados em tempo real

	FireWire 400	FireWire 800
Velocidade de transmissão	400Mbps	800Mbps
Funcionamento	Peer-to-Peer	Peer-to-Peer
Cabo	Até 4,5m	Até 100m
Número de conexões	Até 63	Até 63
		16-

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

SCSI - Small Computer System Interface

Tecnologia antiga, utilizada a partir de 1986. Aplicação mais comum em HDs (discos rígidos) de servidores, mais outros dispositivos como impressoras, scanners e unidades de fita (geralmente usadas para backup), também a utilizavam.

Single-Ended (SE): o sinal é emitido pela controladora para todos os dispositivos conectados por meio de uma única via. Como o sinal se degrada ao longo do percurso, é recomendável que a conexão toda não tenha mais do que **6 metros**, **(3,3V)**.

High-Voltage Differential (HVD): o sinal é transmitido por meio de **duas vias**, característica que diminui a interferência, pois é possível identificar variações a partir do **cálculo de diferenças entre as voltagens**. Os dispositivos podem receber um sinal e retransmiti-lo até chegar ao destino. Com isso, este tipo de sinalização consegue ser mais rápido e pode ser utilizado em cabos mais longos, com até **25 metros, (5V)**.

Low-Voltage Differential (LVD): este modo é semelhante ao HVD, mas utiliza voltagens menores, e limita os cabos a até 12 metros, (3.3V).

Derivação: **SAS (Serial Attached SCSI)**Velocidade de até 6 Gb/s (gigabits por segundo) e suporta a conexão de até 128 dispositivos.

Derivação: **iSCSI (Internet SCSI)** Especificação que permite a ativação de comandos do SCSI a partir de redes IP.

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20

Sala: H204

AULA 04

Versão	Clock	Bits	Dispositivos	Velocidade
SCSI-1	5 MHz	8	8	5 MB/s
SCSI-2(Fast SCSI)	10 MHz	8	8	10 MB/s
Wide Fast SCSI	10 MHz	16	16	20 MB/s
SCSI-3 (Ultra SCSI)	20 MHz	8	8	20 MB/s
Wide Ultra SCSI	20 MHz	16	16	40 MB/s
Ultra2 SCSI	40 MHz	8	8	40 MB/s
Wide Ultra2 SCSI	40 MHz	16	16	80 MB/s
Ultra160 SCSI	40 MHz	16 (2x)	16	160 MB/s
Ultra320 SCSI	80 MHz	16 (2x)	16	320 MB/s
Ultra640 SCSI	160 MHz	16 (2x)	16	640 MB/s

DB - 25

DB - 50

HD DB 50-PIN (SCREW)

\aaaoappaaaooopppaooop

HD DB 50-PIN (CLIP)

HD DB 68 (SCREW) HD DB 68 (CLIP)

HD CENTRONICS 50

HD CENTRONICS 68

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Sata - Serial Advanced Technology Attachment

Tecnologia para discos rígidos, unidades ópticas e outros dispositivos de armazenamento de dados surgiu para o mercado em 2000 para substituir a interface *PATA* (*Paralell ATA*, somente *ATA* ou, ainda, *IDE*), seu desenvolvimento começo em 1997 pela Intel junto com 70 empresas.

NCQ (Native Command Queuing): permite ao HD organizar as solicitações de gravação ou leitura de dados de forma que as cabeças se movimentem o mínimo possível, aumentando (teoricamente) o desempenho do dispositivo e a sua vida útil. Uso obrigatório nos SATA II e III, opcional no padrão SATA I.

Link Power Management: este recurso permite ao HD utilizar menor energia elétrica. Para isso, o disco rígido pode assumir três estados: ativo (active), parcialmente ativo (partial) ou inativo (slumber).

Staggered Spin-Up: recurso muito útil em sistemas RAID, ele permite ativar ou desativar HDs trabalhando em conjunto sem interferir no funcionamento do grupo de discos, além de melhorar a distribuição de energia entre os discos;

Hot Plug: permite conectar o disco ao computador com o sistema operacional em funcionamento. Este é um recurso muito utilizado em HDs do tipo removível.

Derivação: mSATA (mini-SATA)

Padrão de conexão desenvolvido especialmente para unidades SSD de pequeno para uso em ultrabooks e tablets.

Derivação: **eSATA (external SATA)**Porta que permite a conexão de dispositivos externos como HDs com para obter melhores taxas de transferência.

Derivação: eSATAp (external SATA power) utiliza uma porta USB compatível com eSATA em conjunto com dois pinos de energia, normalmente de 12V. Se for necessário 5V, pode-se usar os pinos já fornecido pela porta USB.

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 04

VGA (Video Graphics Array)

Introduzido pela IBM em 1987.

Trabalha em modo analógico, serve para transmitir apenas imagens.

HDMI (High-Definition Multimedia)

Interface condutiva digital de áudio e vídeo, capaz de transmitir dados não comprimidos.

DVI: (Digital Visual Interface)

DVI-Digital, DVI-Analógico e DVI-Integrated.

Conecta dispositivos de saída como, monitor LCD. Não transmitem áudio*.