Review Exercise 3

- **Q.1** Multiple choice Questions. Choose of the correct answer.
- **(i)** If $a^x = n$, then...

(a)
$$a = \log_{x} n$$

(b)
$$x = \log_n a$$

(c)
$$x = \log_a n$$

(d)
$$a = \log_n x$$

(ii) The relation $y=\log_z x$ implies...

(a)
$$x^y = z$$

(b)
$$z^{y} = x$$

(c)
$$x^z = y$$

(d)
$$y^z = x$$

- (iii) The logarithm of unity to any base is...
 - (a) 1

(b) 10

(c) e

- (d) 0
- The logarithm of any number to itself as base is... (iv)
 - (a) 1

(c) e

(d) 10

Log e=...,where $e \approx 2.718$ **(v)**

(c)∞

(d) 1

The value of $\log\left(\frac{p}{q}\right)$ is... (vi)

(a)
$$\log p - \log q$$

(b)
$$\frac{\log p}{\log a}$$

(c)
$$\log p + \log q$$

(d)
$$\log q - \log p$$

(vii) $\operatorname{Log} p\operatorname{-log} q$ is same as ...

(a)
$$\log\left(\frac{q}{p}\right)$$

(b)
$$\log(p-q)$$

(c)
$$\frac{\log p}{\log q}$$

(d)
$$\log q - \log p$$

(viii) $Log(m^n)$ can be written as...

(a)
$$(\log m)^n$$

(c)
$$n \log m$$

(d)
$$\log(mn)$$

 $\log_b a \times \log_c b$ can be written as... (ix)

- (a) $\log_a c$
- (c) $\log_a b$

- **(b)** $\log_c a$
- (d) $\log_b c$

(x) Log_px will be equal to...

(c) $\frac{\log_z x}{\log_z y}$

ANSWER KEY

i	ii	iii	iv	V	vi	vii	viii	ix	X
c	b	d	a	b	a	d	c	b	c

Q.2 Complete the following:

- (i) For common logarithm, the base is...
- The integral part of the common logarithm of a number is called the ... (ii)
- The decimal part of the common logarithm of a number is called the ... (iii)
- If $x = \log y$, then y is called the... of x. (iv)
- If the characteristic of the logarithm of a number have...zero(s) immediately after the (v) decimal point.
- If the characteristic of the logarithm of a number is 1, that number will have digits in (vi) its integral part.

ANSWER KEY

i	ii	iii	iv	V	vi
10	Characteristic	Mantissa	Antilogarithm	One	2

- Q.3 Find the value of x in the following.
- (i) $\log_{3} x = 5$

Solution: $\log_3 x = 5$

Write in exponential form.

$$3^5 = x$$

$$243 = x$$
 Ans

 $\log_4 256 = x$ (ii)

Solution: $\log_4 256 = x$

Write in exponential form

$$4^x = 256$$

$$4^x = 4^4$$

$$x = 4$$

$$x = 4$$
 Ans

(iii)
$$\log_{625} 5 = \frac{1}{4}x$$

Solution: $\log_{625} 5 = \frac{1}{4} x$

Write in exponential form

$$(625)^{\frac{1}{4}x} = 5$$

$$(625)^{\frac{x}{4}} = 5$$

$$\left(5^4\right)^{\frac{x}{4}} = 5$$

(iv)
$$\log_{64} x = -\frac{2}{3}$$

Solution: $\log_{64} x = -\frac{2}{3}$

Write in exponential form

$$(64)^{\frac{-2}{3}} = x$$
$$(4^3)^{\frac{-2}{3}} = x$$
$$4^{\frac{-6}{3}} = x$$

$$\frac{1}{4^2} = x$$

$$\frac{1}{16} = x \text{ Ans}$$

Q.4 Find the value of x in the following.

(i)
$$\log x = 2.4543$$

Solution: $\log x = 2.4543$
 $\log x = 2.4543$
 $x = \text{antilog } 2.4543$
 $\text{Ch} = 2$
 $x = 284.6 \text{ Ans}$

(ii)
$$\log x = 0.1821$$

Solution: $\log x = 0.1821$
 $\log x = 0.1821$
 $x = \text{antilog } 0.1821$
 $\text{Ch} = 0$
 $x = 1.521 \text{ Ans}$

(iii)
$$\log x = 0.0044$$

Solution: $\log x = 0.0044$
 $\log x = 0.0044$
 $x = \text{antilog } 0.0044$

$$Ch = 0$$

 $x = 1.010 \text{ Ans}$

(iv)
$$\log x = \overline{1.6238}$$

Solution: $\log x = \overline{1.6238}$
 $\log x = \overline{1.6238}$
 $x = \text{antilog}\overline{16333}$
 $\text{Ch} = \overline{1}$
 $x = 0.4206 \, \text{Ans}$

Q.5 If
$$\log 2 = 0.3010$$
, $\log 3 = 0.4771$, and $\log 5 = 0.6990$ then find the values of the following.

(i)
$$\log 45$$

Solution: $\log 45$
 $= \log (9 \times 5)$
 $= \log (3^2 \times 5)$
 $= \log 3^2 + \log 5$
 $= 2 \log 3 + \log 15$
 $= 2(0.4771) + 0.6990$
 $= 0.9542 + 0.6990$
 $= 1.6532$ Ans

(ii)
$$\log \frac{16}{15}$$

Solution: $\log \frac{16}{15}$
 $= \log \frac{2^4}{3 \times 5}$
 $= \log 2^4 - \log (3 \times 5)$
 $= 4\log 2 - (\log 3 + \log 5)$
 $= \log 2^4 - \log 3 - \log 5$
 $= 4\log 2 - \log 3 - \log 5$
 $= 4(0.3010) - 0.4771 - 0.6990$
 $= 1.2040 - 0.4771 - 0.6990$
 $= 0.0279 \text{ Ans}$

(iii) log 0.048

Solution: log 0.048

$$= \log \frac{48}{1000}$$
$$= \log \frac{2 \times 2 \times 2 \times 2 \times 3}{2 \times 2 \times 2 \times 5 \times 5 \times 5}$$

$$=\log\frac{2^4\times 3}{2^3\times 5^3}$$

$$= \log 2^4 + \log 3 - \log 2^3 - \log 5^3$$

$$=4\log 2 + \log 3 - 3\log 2 - 3\log 5$$

$$=4(0.3010)+0.4771-3(0.3010)-3(0.6990)$$

$$=1.2040+0.4771-0.9030-2.0970$$

$$=-1.3189$$

$$=-1-0.3189$$

$$=-1-1+1-0.3189$$

$$=-2+0.6811$$

$$= \overline{2}.6811 \, \text{Ans}$$

Q.6 Simplify the following.

(i)
$$\sqrt[3]{25.47}$$

Solution: $\sqrt[3]{25.47}$

Let
$$x = \sqrt[3]{25.74}$$

$$=(25.47)^{\frac{1}{3}}$$

Taking log on both sides

$$\log x = \log(25.47)^{\frac{1}{3}}$$

$$= \frac{1}{3} \log 25.47$$

$$=\frac{1}{3}(1.4060)$$

$$\log x = 0.4687$$

$$x = \text{anti log } 0.4687$$

$$Ch = 0$$

$$x = 2.943 \, \text{Ans}$$

(ii)
$$\sqrt[5]{342.2}$$

Solution: $\sqrt[5]{342.2}$

Let

$$x = \sqrt[5]{342.2}$$

$$x = (242.)^{\frac{1}{5}}$$

Taking log on both sides

$$\log x = (342.2)^{\frac{1}{5}}$$

$$\log x = \frac{1}{5}\log 342.2$$

$$=\frac{1}{5}(2.5343)$$

$$\log x = 0.5069$$

$$\log x = \text{antilog } 0.5069$$

$$Ch = 0$$

$$x = 3.213 \, \text{Ans}$$

(iii)
$$\frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$$

Solution: $\frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$

Let
$$x = \frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$$

Taking log on both sides

$$\log x = \log \frac{\left(8.97\right)^3 \times \left(3.95\right)^2}{\sqrt[3]{15.37}}$$

$$= \log(8.97)^3 + \log(3.95)^2 - \log(15.37)^{\frac{1}{3}}$$

$$=3\log 8.97 + 2\log 3.95 - \frac{1}{3}\log 15.37$$

$$=3(0.9528)+2(0.5966)-\frac{1}{3}(1.1867)$$

$$= 2.8584 + 1.1932 - 0.3956$$

$$\log x = 3.656$$

$$x = \text{antilog } 3.656$$

$$Ch = 3$$

$$x = 4529 \, \text{Ans}$$

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com