Problème

- On souhaite un analogue algébrique au théorème de Kleene (Rat(Σ)=Rec(Σ))
- Montrer que tout langage algébrique est reconnaissable par AP (non-déterministe) et réciproquement, tout langage reconnaissable par un AP est algébrique!

Algébrique⇒ reconnaissable

Théorème : Si L est algébrique, alors il existe un automate à pile qui reconnaît L par pile vide.

Principe de construction de l'automate :

- L algébrique ⇒ il existe une grammaire algébrique G qui l'engendre.
- L'automate à pile M acceptera le mot w si G engendre w.
- M va simuler une suite de dérivations gauches de G qui engendrent w.

Hypothèses de départ :

- le mot vide n'est pas dans L(G)
- G sous forme normale de Greibach (ou presque)

Pour simplifier

Règles de G sous la forme X→aγ avec a∈T et γ∈N*
 (il suffit d'ajouter dans γ des règles C_a→a (comme en FNC))

Construction

Donnée G=(N,T,S,R), on construit

$$M=(Q = \{q\}, \Sigma = T, \Gamma = N, \delta, q, S, \emptyset)$$

• Si $X \rightarrow a\gamma \in R$ on ajoute la transition

$$\{(q,\gamma)\}\in\delta(q,\alpha,X)$$

- M simule les dérivations gauches de G
- Les mots engendrés par dérivations gauches sont de la forme $m\alpha$ pour $m\in T^*$ et $\alpha\in N^*$
- \blacksquare M mémorise α dans la pile après avoir traité m.

Construction

- Pour finir la preuve, il faudrait montrer
 - par récurrence sur le nombre de transitions que
 - par récurrence sur la longueur de la dérivation que $S \rightarrow *x\alpha$ par dérivation gauche SSI (q,x,S)

lerivation gauche SSI (q,x,S)
$$\rightarrow$$
*(q, ε , α)

■ Pour terminer, notons que

$$x \in L(G) \Leftrightarrow (q,x,S) \rightarrow (q,\varepsilon,\varepsilon)$$

Ce qui est le cas pour $\alpha=\epsilon$ i.e. que

- x peut être engendré par dérivation gauche par G
- x est reconnu par pile vide avec M

Exemple

- Grammaire |w|_a=|w|_b
- S→aB|bA
- A→a|aS|bAA
- B→b|bS|aBB
- X→αγ

 $\{(q,\gamma)\}\in\delta(q,\alpha,X)$

Intérêt de la preuve

- Etant donnée un grammaire algébrique sous forme normale de Greibach, on a construit un automate à pile qui reconnaît les mots du langage engendré par la grammaire
- C'est PRECISEMENT ce que fait un outil d'analyse syntaxique utilisé dans un compilateur
- Pratiquement, Un outil d'analyse syntaxique ne transforme pas la grammaire pour la mettre sous FNG
- But de l'analyse syntaxique :
 - Faire la même chose en conservant la structure de lagrammaire.

Caractériser les algébriques

Le but :

Théorème :

L algébrique SSI il existe un AP qui le reconnaît.

<u>Théorème</u>

L algébrique ⇒∃ un AP qui reconnaît L.

reste à montrer :

Théorème:

L reconnu par pile vide par AP \Rightarrow L algébrique

Idée

■Donnée : un AP M

Résultat : G grammaire algébrique tq L(G)=L(M)

■G engendre w ssi w reconnu par M.

■A chaque paire d'états (p,q) de M, on associe une variable de la forme [q,A,p] pour $A \in \Gamma$

les variables de G correspondent à l'état de la pile

■G engendre w depuis [q,A,p] SSI $(q,w,A) \rightarrow *(p,\epsilon,\epsilon)$: une dérivation gauche du mot w est la simulation du fonctionnement de l'AP sur l'entrée w.

Construction

 $M=(Q,\Sigma,\Gamma,\delta,i,Z,\varnothing) \rightarrow G=(N,T,S,R)$

- T=Σ.
- N={[q,A,p]: $p,q\in Q, A\in \Gamma$ } \cup {S}

Une variable [q,A,p] correspond aux mots qu'on peu obtenir par pile vide si on commence en état q et on termine en état p

- Au démarrage :
 - $S\rightarrow [i,Z,q], \forall q\in Q$

Construction (2)

- Au démarrage :
 - $S \rightarrow [i,Z,q], \forall q \in Q$
- Régime de croisière :
 - $(p,\epsilon) \in \delta(q,a,A) \Rightarrow [q,A,p] \rightarrow a$
 - $$\begin{split} \bullet & (p, B_1 B_2 ... B_m) \in \delta(q, a, A) \text{ (m>0)} \\ & [q, A, r] \rightarrow a[p, B_1, q_2][q_2, B_2, q_3] ... [q_m, B_m, r] \\ & \forall q_2, ..., q_m, r \in Q, \ a \in \Sigma \cup \{\epsilon\}, \ A, B_1, ..., B_m \in \Gamma \end{split}$$

Exemple

Démarrage:

S→[0,Z,*]

 $S \rightarrow [0, Z, 0]$

 $S\rightarrow [0,Z,1]$

•Transition de 0 à 1 $\delta(0,b,A)$ =(1, ϵ)

[0,*A*,1]→b

Exemple (la boucle en 0)

 $\delta(0,\alpha,Z)=(0,AZ)$

 $\delta(0,\alpha,A)=(0,AA)$

■ r=0

■ $[0,Z,0] \rightarrow a[0,A,^*][^*,Z,0]$ $[0,Z,0] \rightarrow a[0,A,0][0,Z,0]$ $[0,Z,0] \rightarrow a[0,A,1][1,Z,0]$ ■ <u>r=0</u>

■ $[0,A,0] \rightarrow a[0,A,^*][^*,A,0]$ $[0,A,0] \rightarrow a[0,A,0][0,A,0]$ $[0,A,0] \rightarrow a[0,A,1][1,A,0]$

■ r=1

12

■ $[0,Z,1] \rightarrow a[0,A,^*][^*,Z,1]$ $[0,Z,1] \rightarrow a[0,A,0][0,Z,1]$ $[0,Z,1] \rightarrow a[0,A,1][1,Z,1]$ • <u>r=1</u>

■ $[0,A,1] \rightarrow a[0,A,^*][^*,A,1]$ $[0,A,1] \rightarrow a[0,A,0][0,A,1]$ $[0,A,1] \rightarrow a[0,A,1][1,A,1]$

$(q,x,A)\rightarrow^i(p,\epsilon,\epsilon)\Rightarrow [q,A,p]\rightarrow^* x$

Par récurrence sur i

- Base : i=1 $(q,x,A) \rightarrow {}^{1}(p,\epsilon,\epsilon) \Rightarrow [q,A,p] \rightarrow {}^{*}x$ $(p,\epsilon) \in \delta(q,x,A)$ pour $x \in T \cup \{\epsilon\}$ et $[q,A,p] \rightarrow x$ règle de G
- Induction : i>1 (HR) $(q,x,A) \rightarrow i(p,\epsilon,\epsilon) \Rightarrow [q,A,p] \rightarrow^* x$ vrai pour toute lecture de longueur au plus i
- Soit x=ay et

$$(q,\alpha y,A) \rightarrow (q_1,y,B_1...B_m) \rightarrow^{i-1}(p,\epsilon,\epsilon)$$

• Ruse : découpage de y : $y=y_1...y_m$: y_j a pour effet de dépiler B_j éventuellement après plusieurs transitions

 $(q,x,A)\rightarrow^i(p,\epsilon,\epsilon)\Rightarrow [q,A,p]\rightarrow^* x$

 $(q, \alpha y_1...y_m, A) \rightarrow (q_1, y_1...y_m, B_1...B_m) \rightarrow^{i-1}(p, \varepsilon, \varepsilon)$

 Il existe des états q₂,...,q_{m+1} tels que q_{m+1}=p et pour lesquels

$$(q_j,y_j,B_j) \rightarrow *(q_{j+1},\epsilon,\epsilon)$$

en moins de i transitions. Par (HR), dérivation de 6: pour 0<j<m+1

$$\begin{array}{c} [q_j, B_j, q_{j+1}] \rightarrow^* \gamma_j \\ (q, ay_1...y_m, A) \rightarrow (q_1, y_1...y_m, B_1...B_m) \rightarrow^{i-1} (p, \epsilon, \epsilon) \\ [q_j, B_j, q_{j+1}] \rightarrow^* \gamma_j \text{ pour } 0 < j < m+1 \end{array}$$

Donc, avec la construction pour la 1ère transition,

$$[q,A,p] \rightarrow \alpha[q_1, B_1, q_2] [q_2, B_2, q_3]... [q_m, B_m, p]$$

 $[q,A,p] \rightarrow^* \alpha y_1 y_2... y_m$

Réciproquement

- On montre $[q,A,p] \rightarrow^i x \Rightarrow (q,x,A) \rightarrow^* (p,\epsilon,\epsilon)$ par récurrence sur i.
 - Base i=1: [q,A,p]→ x ⇒ (q,x,A)→*(p,ε, ε)
 [q,A,p]→ x règle de G, x∈T∪{ε} doit être reconnu par M donc

$$(p,\varepsilon) \in \delta(q,x,A)$$

• Induction : (HR) vraie pour toute dérivation de longueur au plus i.

 $[q,A,p] \rightarrow \alpha[q_1, B_1, q_2] [q_2, B_2, q_3]... [q_m, B_m, p=q_{m+1}] \rightarrow^{i-1} x$

22

Réciproquement

- Et x=ax_{1...}x_m avec [q_j , B_j , q_{j+1}] \rightarrow * x_j pour 0<j<m+1 en moins de i étapes
- Par (HR), $(q_j, x_j, B_j) \rightarrow^* (q_{j+1}, \epsilon, \epsilon)$
- On ajoute B_{i+1}... B_m au fond de chaque pile,

 $(q_{j},x_{j},B_{j}) \rightarrow *(q_{j+1},\varepsilon,\varepsilon) \rightarrow (q_{j},x_{j},B_{j}B_{j+1}...B_{m}) \rightarrow *(q_{j+1},\varepsilon,B_{j+1}...B_{m})(1)$

• Et par la première étape de la génération de x par [q,A,p] on a

$$(q, x=ax_1...x_m, A) \rightarrow (q_1, x_1...x_m, B_1...B_m)$$
 (2)

• En combinant (1) et (2) on obtient

$$(q, x=ax_1...x_m, A) \rightarrow *(p, \varepsilon, \varepsilon)$$

22

Conclusion

$$[q,A,p] \rightarrow^* \times SSI(q,x,A) \rightarrow^* (p,\varepsilon,\varepsilon)$$

Pour q=i, A=Z, on a que

$$[i,Z,p] \rightarrow^* x SSI (i,x,Z) \rightarrow^* (p,\epsilon,\epsilon)$$

Or par construction de G, $S \rightarrow [i,Z,p]$

$$S \rightarrow^* \times SSI (i,x,Z) \rightarrow^* (p,\varepsilon,\varepsilon) \Leftrightarrow L(G)=L(M)$$

Donc, L algébrique SSI L reconnaissable par AP

Conclusion

- Deux manières de caractériser les langages algébriques :
 - Par un mécanisme de génération : les grammaires algébriques
 - Par un mécanisme de reconnaissance : les automates à pile

1

_