

デジタルツインソリューションのご紹介

伊藤忠テクノソリューションズ株式会社 エンタープライズ事業グループ 科学システム本部 森田 敬大

会社概要

会 社 名

伊藤忠テクノソリューションズ株式会社 (略称 CTC)

英文社名

ITOCHU Techno-Solutions Corporation

本社所在地

〒100-6080 東京都千代田区霞が関3-2-5 霞が関ビル

TEL: 03-6203-5000(代)

URL: http://www.ctc-g.co.jp/

代 表 者

代表取締役社長 柘植 一郎

創立

1972年(昭和47年) 4月1日

資本金

21,763百万円

社 員 数

9,085名 (CTCグループ 2020年4月1日現在)

事業内容

コンピュータ・ネットワークシステムの販売・保守、ソフトウェア受託開発、 情報処理サービス、科学・工学系情報サービス、サポート、その他

リーディングカンパニーとして IT産業の進化を担う

SLOGAN スローガン

Challenging Tomorrow's Changes

MISSION 使命

明日を変えるITの可能性に挑み、夢のある豊かな社会の実現に貢献する。

VALUES 価値観	ACTION GUIDELINES 私たちの心得
変化への挑戦	常に新しいことに取り組み、決して諦めずに臨んでいるか?
価値への挑戦	お客さまが期待する以上の価値を、生み出しているか?
明日への挑戦	自由な発想で、より良い明日の姿を描いているか?

売上比率

Copyright 2019 ITOCHU Techno-Solutions Corporation All rights reserved.

日本の技術者・研究者と共に 社会課題の解決に挑戦

科学システム本部の歩み

コンピュータが科学・工学分野で利用され始めた黎明期から、 CTCは日本の技術者・研究者の皆様と共に歩んでまいりました。 より高速な計算、より高度な解析、より深い識見を追求してきた60年。

私たちは資源・エネルギー、原子力・プラント、建設、CAEの各分野で、

社会を取り巻く様々な課題を高い専門性と

解析・シミュレーション技術で解決していきます。

1958_{#~}1970_{#ft}

創業。Bendix G-15を導入、料 学・工学系の計 算サービス開始

原子力コードによる解析サービスを開始

1964年 東京オリンピック

CDC3600/3200を導入、大型コンピュータ時代へ

1966年

東海発電所の炉心管理業務開始

万博パビリオンの構造解析や関門橋の 般計計算を手掛ける

1970年 日本万国牌覧会(大阪)

当時世界最高速の超大型コンピュータ CDC6600を導入

1972年

いち早く有限要素法による解析に取り組む

当時の宇宙開発事業団からNロケット打上協力で表彰

自計開発の取り組み

- 骨組み耐震解析コード
- 汎用非線形構造解析システム

の長大橋梁

建設プロジェ

1980年~

本四架橋、レインポープリッジ、アク アラインなど

1986年

衝撃解析ソフトAUTODYN代理店 契約締結

1988年

横浜コンピュータセンター (YCC) が 営業開始。CRAY X-MPをYCCに導入

1988年

アメリカズカップの日本解設計に CRAYで協力

- NEDO*全国電力激定プロジェクト参画
- 現JOGMEC*資源調査船プロジェ クト参画
- 有限要素法プログラムDYNA3D導入

自社開発の取り組み

- 地震耐震解析コード
- 最磁場解析コード

衝撃解析コード

1990年代

ペルシャ湾岸原油流出防除対策に原 油流出シミュレーションで協力

原油流出跡除対策に協力

1992年

気象庁予報許可第34号取得、気象 予報業務開始

1993年

科学技術系コンピュータシステムと してCRAY EL98を導入

1995年 阪神淡路大震災

1996年

気象情報提供サイトWEATHER-EYE

- 耐震設計基準の大幅変更に適応し たサービスを提供
- 現JSS*資源探査衛星プロジェクト
- 米国Landmark社総代理店開始
- ·構造解析パッケージLS-DYNA 代理店契約締結

自社開発の取り組み

- 3次元地質解析システム
- ・局地気象評価予測システム
- 風力発電出力予測技術

2000_{ft}

2001年

Webによる情報発信 engineering-eye.comが本格化

2004年

見力発電適地選定支援システム WinPASが新エネ大賞で「資源エネ ルギー庁長官警 を受賞

2006年

緊急地震速報ビジネスに参画

フジテレビドラマ 「ガリレオΦ(エピ ソードゼロ) | に技術協力

- 風力発電総合コンサルサービス開始
- MDPC*海上災害防止システム参画
- JOGMEC三次元物理探査船デー タ処理支援開始

自社開発の取り組み

- 資源開発分野のデータ管理効率化ツール
- 流体解析コード
- ・ボクセルFEM地震波伝播コード
- 確認系、構造系、循磁場解析の共通基盤・ソルバー
- 超音波探傷解析コード

2010年代~現在

CAEソリューションを紹介する自社イ ベント [CAE POWER] スタート

クリーンエネルギーを活用した低炭素 交通社会システムの共同実証プロ ジェクトGreen Crossover Project

2011年 東日本大震災

震災支援のため被害把握・情報提供 向け地図情報配信に無償協力

震災復興に関わる業務で橋梁設計ソ フトウェアライセンスを無償提供

原子力発電所全サイトの津波評価に

2012年~

2010年

文部科学省 全国津波ハザード評価 プロジェクトに参画

2012年~

原子力新規制基準に係る安全評価コ ンサルティングサービス開始

2013年

風力発電出力予測システムの導入で、 新エネ大賞「新エネルギー財団会長 賞|を東北震力と共同受賞

2014年

NHKスペシャル「知られざる衝撃波 ~長崎原備・マッハステムの脅威~ に技術協力

- 太陽光発電総合コンサルティング サービス開始
- · JAMSTEC*海域斯層情報総合評価 プロジェクト参画
- · NEDO電力系出力変動対応技術研 究開発事業参画

自社開発の取り組み

- スマートコミュニティの計画・運営 を支援するクラウドサービス E-PLSMを提供開始
- 建設情報共有クラウドサービス

GEORAMAで作成したOMモデル(地形+地質

そもそもデジタルツインとは?

デジタルトランスフォーメーション -データ主導社会へ-

(出典)総務省「我が国のICTの現状に関する調査研究」

技術発展によるビジネスモデルの転換

デジタルツインとは:製造業を例にとると・・・

データ収集・蓄積・可視化

分析・最適化・活用

機器・人・モノの情報をリアルタイムにサイバー空間で再現し、活用

Copyright 2020 ITOCHU Techno-Solutions Corporation All rights reserved.

デジタルツインのメリット

1.現在の全状態をどこからでも把握できる

2.過去の事象に関して、原因分析ができる

3.未来に対して、シナリオに基づく意思決定ができる

Copyright 2020 ITOCHU Techno-Solutions Corporation All rights reserved.

デジタルツイン活用イメージ

- 1. リアルタイムに稼働状況を可視化・再現
 - 2. 数理最適化による最適な人員数・ 製品の投入順序の算出
 - 3. 機械学習による設備の異常検知 製品の不良予測
 - 4. シミュレーションで各施策の実現 性確認・定量評価

5. 現場へフィードバック

デジタルツインでは各ソリューションが相互に補完しなければならない

集める・貯める 🕨 見る・知る 🕨 探る・予測する 🕻 最適化・制御する 数理最適化 シミュレーション 機械学習 BIダッシュボード IoT IoT 時系列DB データ活用基盤 エッジPC スキル教育

Copyright 2020 ITOCHU Techno-Solutions Corporation All rights reserved.

コンセプトイメージ・デモ事例

ミニ工場デジタルツイン全体構成 HPE Edgeline EL300 エッジ領域 IoT シミュレーション データ蓄積 データ蓄積 ミニエ場 不良検知 生産効率評価 ダッシュボード 可視化 各種センサー 制御機器 influxdb influxdb Witness MOTION BOARD **SAS Event Stream Processing**

様々なソリューションを組み合わせデジタルツインの価値最大化

デジタルツインを活用したミニストーリーのご紹介

AIでわかるようになった不良検知を制御に自動で 適用したら生産効率はどれくらい良くなるんだろう?

AIでこの精度で不良検知すれば これくらい良くなりますよ!!

AIとシミュレーションを相互に補完し、意思決定をサポート

参考:工程1でのAIによる不良検知詳細

AIによる分析結果

ルールベースでは検出できないような非定常状態を不良と検知できる

前提条件:5%で不良が発生

工程1: サイクルタイム[sec]

赤	白	青
3	6	9

工程2:サイクルタイム[sec]

赤	白	青
5	10	15

生産ライン 生産品種3種

生産品種は同じ確率でランダムに発生

前提条件:5%で不良が発生 AIで工程1にて100%不良検知できる

工程1:サイクルタイム[sec]

※AIの結果から工程2の制御を変更する

不良検知時に後工程(工程2)をスキップしたらライン状況はどうなる?

90日分を計算 現状モデル

稼働状態タイムライン

Copyright 2019: FOCHU Techno-Solutions 120000 程過**€の**poration All rights reserved.

90日分を計算 AIの結果より制御変更あり

Copyright 2019年OCHU Techno-Solutions 120000 程過過回poration All rights reserved.

デジタルツイン -シミュレーションモデル構築の効果-

AIの予測モデル精度はどの程度必要?

AIにかけるべきコストは?

意思決定のタイミングは?

シミュレーションモデルで検証し、施策を総合的に評価

お客様のご状況に合わせ、スタートをご提案いたします

- ・どんな問題が効果的なんだろうか?
 - ⇒AI Business Academyで課題設定・社員の意識UP
- ・データを集められてきたが効果的な使い方は?
 ⇒データ活用基盤を構築し、データ活用への ハードルをぐっと下げる
- ・<u>問題は明確だがどれくらい効果がでる?</u> ⇒AI・シミュレーションで施策の定量評価

伊藤忠テクノソリューションズ株式会社 ep-telco_digtwin@ctc-g.co.jp

各ソリューション紹介

エッジPC: HPE Edgeline EL300

データを収集からクラウド転送プラットフォームまで一元提供

機械学習: SAS ESP

シミュレーション: WITNESS

生産プロセスシミュレーション

特徵

- ▶ 多彩なレポート機能
- ▶ 最適化によるケース探索機能
- > 外部連携機能

主な活用事例

- ▶ 製造業:機械数・必要スタッフ人数とシフト調整
- ▶ 運輸業:施設のサイズの決定および最適化

課題設定

- ▶ 新規ライン検証
- > 適正量の検討

条件・データ整理

- ▶ 目的パラメータ
- ▶ 運用ロジック

モデル作成・ケースラン

- ▶ 検討モデル作成
- ▶ トライ&エラー

結果評価

- > 定量的評価
- ▶ ボトルネック発見

時系列DB: InfluxData

データの保管・管理を行い簡単に時系列データの取り出しが可能になります。

