Introduction au signal et bruit Exercices

Gabriel Dauphin

September 17, 2025

Contents

1	Relations entrées-sorties sans effet mémoire	2
2	Signaux temps continu, fonction affine par morceaux	4
3	Définition et utilisation de la transformée de Fourier	6
4	Propriété de la transformée de Fourier	8
5	Diracs	9
6	Transformées de Fourier et dérivation	10
7	Équations différentielles	11
8	Filtres et effet mémoire	14
9	Description fréquentielle des filtres	16
10	Signaux périodiques	20
11	Filtres agissant sur des signaux périodiques	2 1
12	Échantillonnage d'un signal non-périodique	22
13	Modélisation stochastique du bruit	25
14	Filtrage des processus aléatoires	26
15	Autocorrélation et densité spectrale	27
16	Densité de probabilité et filtrage 16.1 Exercices	28 28

Relations entrées-sorties sans effet mémoire

Figure 1.1: Relation entrée-sortie associée à un Relu (exercice 1)

Exercice 1 Le graphique représente la relation entrée-sortie d'un Relu pour Rectified Linear Unit.

- 1. En utilisant la figure 1.1, combien valent les signaux en sortie lorsque respectivement, les signaux en entrées valent -3 et 3 ?
- 2. Combien valent les puissances de ces signaux?
- 3. Proposez une formule utilisant la valeur absolue, l'addition et la multiplication pour modéliser cette relation?
- 4. On considère le filtre $\mathcal{H}_1(x) = 0.5x$ et $\mathcal{H}_2(x) = |x|$, montrez comment en les associant on peut fabriquer le filtre Relu.
- 5. Écrire le pseudo-code permettant de générer la figure 1.1.

Simulation de la figure 1.1.

```
x=linspace(-4,4,1e2);
y=zeros(size(x));
y(x<=0)=0;
y(x>0)=x(x>0);
figure(1); plot(x,y); figure_jolie(1);
xlabel('x'); ylabel('y'); axis('equal');
saveas(1,'./figures/fig exSEB6a.png');
```


Figure 1.2: Schéma décrivant \mathcal{H} à partir de $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ pour l'exercice 2.

Exercice 2 Les filtres \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 sont définis par

$$\mathcal{H}_1(x) = |x| \quad \mathcal{H}_2(x) = \min(1, x) \quad \mathcal{H}_3(x) = \max(0, x)$$
 (1.1)

On appelle \mathcal{H} le filtre décrit par la figure 1.2 et défini par les filtres $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$. et associé à la relation transformant x en y.

- 1. Calculez les sorties y associées aux valeurs -2, -1, 0, 1, 2 pour x.
- 2. Écrivez la formule modélisant H?
- 3. Dessinez la relation associée à \mathcal{H} transformant x en y sur un graphe.

Signaux temps continu, fonction affine par morceaux

Figure 2.1: Visualisation de x(t) qui a la forme d'une maison avec son lampadaire (exercice 3).

Exercice 3 On considère le signal x(t) décrit par la figure 2.1.

- 1. Calculez les valeurs de x(t) pour les valeurs de t-2.5, 0.5, 1, 2.5.
- 2. Écrivez une formule décrivant x(t) au moyen de différents intervalles de temps.
- 3. Utilisez quelques unes des fonctions de base présentées en cours pour définir x(t).
- 4. Utilisez le crochet d'Iverson pour décrire x(t).

Simulation de la figure 2.1

```
t=linspace(-3,3,500);
x=2*fonction_porte((t-1)/2)+fonction_T(t-1)+4*fonction_porte((t+2.5)*4);
figure(1); plot(t,x); figure_jolie(1);
xlabel('t'); ylabel('x(t)');
saveas(1,'./figures/fig_exSEB8a.png');
```

Exercice 4 On considère le signal x(t) ainsi défini

$$x(t) = (at + b) [t_1 \le t \le t_2]$$
(2.1)

1. Représentez ce signal pour a = 1, b = 0 et $t_1 = 2$, $t_2 = 3$.

- 2. Représentez ce signal pour $a=-1,\;b=1$ et $t_1=0,\;t_2=1.$
- 3. Montrez que pour a=0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) \tag{2.2}$$

4. Montrez que pour a > 0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) + \beta \mathbb{C}(\gamma t + \delta)$$
(2.3)

5. Donnez un pseudo-code permettant de visualiser de signal.

Définition et utilisation de la transformée de Fourier

Exercice 5 On cherche à déterminer la transformée de Fourier de $s(t) = e^{-|t|}$.

- 1. Calculer la somme et l'énergie de ce signal.
- 2. On note $s_1(t) = s(t)[[t \ge 0]](t)$. Calculez la transformée de Fourier de $s_1(t)$ notée $\widehat{S}_1(f)$.
- 3. On note $s_2(t) = s(t)[[t \le 0]](t)$. Calculez la transformée de Fourier de $s_2(t)$ notée $\widehat{S}_2(f)$.
- 4. On remarque $s(t) = s_1(t) + s_2(t)$ pour $t \neq 0$. Que peut-on en déduire sur la relation entre $\widehat{S}(f)$ et $\widehat{S}_1(f)$ et $\widehat{S}_2(f)$.
- 5. Déduisez $\widehat{S}(f)$.
- 6. En établissant le lien avec la première question, déterminez $\int_{-\infty}^{+\infty} \frac{1}{1+4\pi^2t^2} dt$.

Figure 3.1: Visualisation du signal x(t) (exercice 6).

Exercice 6 On considère le signal noté x(t) et décrit par la figure 3.1. Donnez un pseudo-algorithme permettant de calculer sa transformée de Fourier.

```
t=np.linspace(-3,3,10**3)
x=2*seb.fonction_P(t/2)-seb.fonction_T(t)
plt,np = seb.debut()
fig,ax = plt.subplots()
ax.plot(t,x)
```

```
set.x_label('t')
set.y_label('x(t)')
plt.tight_layout()
fig.savefig('./figures/fig_exSEB25_fig1.png')
fig.show()
```

Exercice 7 On considère le signal $x(t)=e^{-|t|}$ dont la transformée de Fourier vaut $\widehat{X}(f)=\frac{1}{1+4\pi^2f^2}$. On considère

$$y(t) = \sum_{n=0}^{+\infty} \frac{x(t-n)}{2^n}$$
 (3.1)

Montrez que la transformée de Fourier de y(t) est

$$\widehat{Y}(f) = \frac{1}{1 + 4\pi^2 f^2} \left(\frac{1}{1 - \frac{e^{-j2\pi f}}{2}} \right) \tag{3.2}$$

Propriété de la transformée de Fourier

Exercice 8 Cet exercice cherche à illustrer la notion de parité.

- 1. On considère le signal $s(t) = e^{-|t|}$. Montrez que la transformée de Fourier de ce signal est à valeurs réelles.
- 2. En considérant différents fonctions de bases, proposez un algorithme montrant que la transformée de Fourier d'un signal pair est réel et que la transformée de Fourier d'un signal impair est imaginaire pur.

Exercice 9 On se donne des fonctions de bases et des tirages aléatoires. Montrez comment par simulation on peut confirmer que $TF\left[x\left(\frac{t}{a}\right)\right](f) = a\widehat{X}(af)$ pour a > 0.

Diracs

Exercice 10 On considère le signal $x(t) = \Pi(t) = [-0.5 \le t \le 0.5](t)$.

- 1. Calculez sa dérivée $y(t) = \frac{d}{dt}x(t)$.
- 2. Calculez $z(t) = \int_{-\infty}^{t} x(\tau) d\tau$.
- 3. Calculez la transformée de Fourier de y(t) notée $\widehat{Y}(f)$ et en déduire celle de x(t) notée $\widehat{X}(f)$.
- 4. Représentez les signaux x(t), y(t), z(t).

Solution

1.
$$y(t) = \delta(t + 0.5) - \delta(t - 0.5)$$

2.
$$z(t) = (t + 0.5)[-0.5 \le t < 0.5](t) + [0.5 \le t](t) = \mathbb{C}(t) + \mathbb{H}(t - 0.5)$$

3.

$$\widehat{Y}(f) = \text{TF} \left[\delta(t+0.5) \right](f) - \text{TF} \left[\delta(t-0.5) \right](f) = e^{j\pi f} - e^{-j\pi f} = 2j\sin(\pi f)$$
(5.1)

Par conséquent,

$$\widehat{X}(f) = \frac{1}{j2\pi f}\widehat{Y}(f) = \frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(f)$$
(5.2)

Exercice 11 On considère un oscillateur obtenu avec un comparateur (un amplificateur opérationnel monté en comparateur) et une capacité qui se charge et se décharge avec une résistance en fonction de la sortie du comparateur.

- 1. Proposez un montage électronique ou un schéma
- 2. Donnez l'algorithme permettant de simuler le fonctionnement de cet oscillateur.

Transformées de Fourier et dérivation

Équations différentielles

Figure 7.1: Visualisation de l'entrée x(t) et de la sortie y(t) illustrant l'exercice 12.

Exercice 12 On considère un filtre défini par l'équation différentielle

$$LC\frac{d^2}{dt^2}y(t) + RC\frac{d}{dt}y(t) + y(t) = RC\frac{d}{dt}x(t)$$
(7.1)

avec R=3, C=0.5, L=1. On considère un signal en entrée défini par $x(t)=\mathbb{T}(t)$ et on cherche à simuler le signal de sortie y(t) associé à ce filtre décrit par l'équation (7.1).

1. Montrez que

$$\frac{d}{dt}\mathbb{T}(t) = \int_{-\infty}^{t} \left[\delta(\tau - 1) - 2\delta(\tau) + \delta(\tau + 1)\right] d\tau \tag{7.2}$$

2. On appelle $\tilde{y}(t)$ la solution de cette deuxième équation différentielle

$$LC\frac{d^2}{dt^2}\tilde{y}(t) + RC\frac{d}{dt}\tilde{y}(t) + \tilde{y}(t) = \delta(t)$$
(7.3)

Exprimez y(t) en fonction de $\tilde{y}(t)$.

3. En utilisant les fonctions sol_eq_diff, deriver, integrer et retarder de seb, donnez un pseudo-programme permettant de simuler y(t).

Solution:

1. On remarque que la fonction triangle dérivée une fois est une fonction porte avancée et une fonction porte retardée, (la porte étant définie $\Pi(t) = [\![t]\!] \le 0.5]\!]$).

$$\frac{d}{dt}\mathbb{T}(t) = \Pi(t+0.5) - \Pi(t-0.5) \tag{7.4}$$

Dérivée deux fois, ce sont trois, l'un avancé, le deuxième au milieu et un retardé.

$$\frac{d^2}{dt^2}\mathbb{T}(t) = \delta(t-1) - 2\delta(t) + \delta(t+1) \tag{7.5}$$

En intégrant cette expression, on trouve alors que

$$\frac{d}{dt}\mathbb{T}(t) = \int_{-\infty}^{t} \left[\delta(\tau - 1) - 2\delta(\tau) + \delta(\tau + 1)\right] d\tau \tag{7.6}$$

2.

$$y(t) = RC \int_{-\infty}^{t} \left[\tilde{y}(\tau - 1) - 2\tilde{y}(\tau) + \tilde{y}(\tau + 1) \right] d\tau$$

$$(7.7)$$

3. Le pseudo-code est donne par

Algorithm 1 générant la figure 7.1.

Rentrer les valeurs de R,L,C

Créer une échelle de temps ${\tt t}$ entre -2 et 4 avec 1000 points

Calculer $\tilde{y}(t)$ en utilisant sol eq diff avec les coefficients LC,RC et 1 et l'échelle de temps t.

Utiliser retarder pour calculer $\tilde{y}_2(t) = \tilde{y}(t+1) - 2\tilde{y}(t) + \tilde{y}(t-1)$

Utiliser integrer pour calculer $y(t) = RC \int_{-\infty}^{t} \tilde{y}_2(\tau) d\tau$

```
def y(R,L,C,t):
  """réponse à une fonction triangle utilisant une equation différentielle"""
  import seb
  y_tilde=seb.sol_eq_diff((L*C,R*C,1),t)
  assert all(y_tilde[t<0]==0)
  y_tilde2=R*C*(seb.retarder(t,y_tilde,-1)-2*y_tilde+seb.retarder(t,y_tilde,1))
  y=seb.integrer(t,y_tilde2)
  return y
R,C,L = 3,0.5,1
t=np.linspace(-2,4,10**3)
fig,ax = plt.subplots()
ax.plot(t,seb.fonction_T(t),label='x(t)')
ax.plot(t,y(R,L,C,t),label='y')
ax.set_xlabel('t')
ax.legend()
plt.tight_layout()
fig.savefig('./figures/fig_exSeb11_fig1.png')
fig.show()
```

Exercice 13 On considère un filtre dont la réponse fréquentielle vérifie

$$\hat{H}(f) = \frac{j2\pi f RC}{1 - 4\pi^2 f^2 + 4j RC\pi f}$$
(7.8)

1. Trouvez l'équation différentielle associée à la relation entrée-sortie ?

- 2. Trouvez l'équation différentielle associée à la réponse impulsionnelle ?
- 3. Proposez un algorithme permettant de caculer la réponse impulsionnelle.

Exercice 14 On considère l'équation différentielle associée à une relation entrée-sortie :

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + y(t) = x(t)$$
(7.9)

- 1. Donnez la réponse fréquentielle.
- 2. Donnez un algorithme donnant la réponse impulsionnelle.
- 3. Écrivez le polynôme caractéristique.
- 4. Trouvez les solutions de ce polynôme.
- 5. En déduire la réponse impulsionnelle.

Filtres et effet mémoire

Exercice 15 Dans cet exercice, on cherche à montrer par simulation que

$$\Pi(t) * \Pi(t) = \mathbb{T}(t) \tag{8.1}$$

 $o\dot{u} \Pi(t) = [|t| \le 0.5](t) \ et \ T(t) = (1 - |t|)[|t| \le 1](t).$

- 1. Montrez que $\Pi(t) * \Pi(t) = \operatorname{sinc}^2(f)$ où $\operatorname{sinc}(f) = \frac{\sin(\pi t)}{\pi t}$.
- 2. Proposez un algorithme utilisant la transformée de Fourier pour montrer l'équation (8.1).
- 3. Donnez un autre algorithme utilisant le produit de convolution pour démontrer aussi l'équation (8.1).

Solution

1. On sait d'après le cours que TF $[\Pi(t)](f) = \text{sinc}(f)$.

$$TF \left[\Pi(t) * \Pi(t)\right](f) = TF \left[\Pi(t)\right](f)TF \left[\Pi(t)\right](f) = \operatorname{sinc}^{2}(f)$$
(8.2)

2. L'algorithme proposé utilise le fait qu'on sait d'après le cours que TF $[\Pi(t)](f) = \text{sinc}(f)$:

Créer une échelle de temps tx entre -2 et 2 avec 1000 points

Calculer x associé à tx en utilisant la fonction fonction_T de seb.py.

Créer une échelle de fréquence f entre -3 et 3.

Calculez la transformée de Fourier de x appelé X.

Calculez X_th défini par $\hat{X}_{\mathrm{th}}(f) = \mathrm{sinc}^2(f)$.

Comparez X avec X_th en calculant le maximum de la valeur absolue de la différence.

Algorithm 2: associé à l'exercice 15

3. Créer une échelle de temps tx entre -2 et 2 avec 1000 points

Calculer x associé à tx en utilisant la fonction fonction_P de seb.py.

Utilisez convolution de seb.py pour en déduire $x'(t) = \Pi(t) * \Pi(t)$ sur l'échelle tx.

Comparer en calculant le maximum de la valeur absolue de la différence entre x'(t) et $\mathbb{T}(t)$.

Algorithm 3: associé à l'exercice 15

tx=np.linspace(-2,2,1000)
x=seb.fonction_P(tx)
xp=seb.convolution(tx,x,tx,x,tx)

Exercice 16 Dans cet exercice, on cherche à montrer par simulation que

$$\Pi(t) * \Pi(t) = \mathbb{T}(t) \tag{8.3}$$

 $où \Pi(t) = [|t| \le 0.5](t) \text{ et } \mathbb{T}(t) = (1 - |t|)[|t| \le 1](t).$

- 1. On note $s(t) = \Pi(t) * \Pi(t)$, donnez une expression intégrale à s(t).
- $2.\ Montrez\ que\ pour\ t<-1,\ s(t)=0.$
- 3. Montrez que s(-t) = s(t) et que donc s(t) est un signal pair.
- 4. En déduire que pour t > 1, s(t) = 0.
- 5. Montrez que s(0) = 1.
- 6. Montrez que s(t) = 1 t pour $t \in [0, 1]$.
- 7. Déduisez que $s(t) = \mathbb{T}(t)$.

Description fréquentielle des filtres

Exercice 17 On considère un filtre de réponse impulsionnelle

$$h(t) = \cos(2\pi t)e^{-t}[t \ge 0](t)$$
(9.1)

Ce filtre est un passe-haut. Donnez un algorithme permettant de trouver les deux fréquences de coupure et sa bande passante.

Solution:

- Créer une échelle de fréquence ${\tt f}$ entre -5 et 5 avec 10^4 valeurs de fréquences
- Créer une échelle de temps t entre 0 et 100 avec 10^4 points.
- Calculer le module de la transformée de Fourier notée $|\widehat{H}(f)|$ avec seb. TF et la réponse impulsionnelle
- Trouver la fréquence f_{\max} et la valeur du module en f_{\max} notée $|\hat{H}_{\max}|$.
- Trouver la fréquence f_0 entre 0 et f_{\max} qui minimise la valeur absolue de la différence entre $|\hat{H}_{\max}/sqrt(2)|$ et $|\hat{H}(f)|$
- Trouver la fréquence f_2 entre f_{\max} et $+\infty$ qui minimise la valeur absolue de la différence entre $|\hat{H}_{\max}|/sqrt(2)$ et $|\hat{H}(f)|$
- La bande passante est $f_2 f_1$.

Exercice 18 On considère un filtre de réponse impulsionnelle

$$h(t) = \cos(2\pi t)e^{-|t|} \tag{9.2}$$

1. Montrer que la réponse fréquentielle de ce filtre est

$$\widehat{H}(f) = \frac{1}{1 + 4\pi^2 (f - 1)^2} + \frac{1}{1 + 4\pi^2 (f + 1)^2}$$
(9.3)

Pour cela vous pouvez utiliser le fait que $\cos(2\pi t) = \frac{1}{2}e^{-j2\pi t} + \frac{1}{2}e^{j2\pi t}$ et que quand z est un complexe, $\frac{1}{z} + \frac{1}{\overline{z}} = \frac{2\Re e(z)}{|z|^2}$.

- 2. Pourquoi en observant h(t), on pouvait savoir que $\hat{H}(f) = |\hat{H}(f)|$
- 3. En observant l'équation (9.3), montrez trouvez la valeur de f > 0 qui maximise $|\hat{H}(f)|$.
- 4. On considère maintenant

$$|\widehat{H}(f)| = \frac{1}{1 + 16\pi^2} + \frac{1}{1 + 4\pi^2(f - 1)^2}$$
(9.4)

Montrez que ceci est une bonne approximation de $|\hat{H}(f)|$ autour de f = 1.

5. En utilisant cette nouvelle approximation, calculez les deux fréquences de coupures et la bande passante.

Exercice 19 On considère un signal non-périodique défini par $x(t) = e^{-t} [0 \le t < 1](t)$ et un signal périodique obtenu en périodisant x(t).

$$y(t) = \sum_{k=-\infty}^{+\infty} x(t-k) \tag{9.5}$$

- 1. Donnez l'algorithme permettant de tracer y(t) pour $t \in [-3,3]$.
- 2. Donnez l'algorithme permettant d'estimer M_y et P_y .
- 3. Donnez l'algorithme permettant de calculer la série de Fourier associée à y(t).
- 4. Donnez un algorithme permettant de vérifier expérimentalement que $P_y = \sum_{k=-\infty}^{+\infty} |\widehat{Y}_k|^2$ et que $M_y = \widehat{Y}_0$ non pas seulement pour ce signal spécifiquement mais pour des signaux construits à partir de x(t) et tirés aléatoirement.

Exercice 20 On considère un signal non-périodique défini par $x(t) = e^{-t} [0 \le t < 1](t)$ et un signal périodique obtenu en périodisant x(t).

$$y(t) = \sum_{k=-\infty}^{+\infty} x(t-k) \tag{9.6}$$

- 1. Représentez graphiquement x(t) et y(t) pour $t \in [-3,3]$.
- 2. Calculez A_x et en déduire M_y .
- 3. Calculez E_x et en déduire P_y .
- 4. Montrez que les coefficients de la série de Fourier sont

$$\widehat{Y}_k = \frac{1 - e^{-1}}{1 + i2\pi k} \tag{9.7}$$

5. En utilisant le fait que

$$\sum_{k=-\infty}^{+\infty} \frac{1}{1+4\pi^2 k^2} = \frac{1}{2} \frac{e+1}{e-1} \tag{9.8}$$

montrez qu'on retrouve le résultat précédent $P_y = \frac{1}{2} \frac{e^2 - 1}{e^2}$.

Solution:

Figure 9.1: Graphe de x(t) et y(t) correspondant à l'exercice 20.

1. La figure 9.1 montre x(t) en bleu et y(t) en orange.

2.

$$A_x = \int_{-\infty}^{+\infty} x(t) dt = \int_0^1 e^{-t} dt = \frac{e - 1}{e}$$
 (9.9)

Il se trouve que $M_x = \int_0^1 e^{-t} dt = A_x$.

3.

$$E_x = \int_{-\infty}^{+\infty} x^2(t) dt = \int_0^1 e^{-2t} dt = \frac{1}{2} \frac{e^2 - 1}{e^2}$$
 (9.10)

Il se trouve que $P_y = \int_0^1 e^{-2t} dt = E_x$.

4. On remarque que comme la période est de T=1, $e^{j2\pi k}=1$.

$$\widehat{Y}_k = \int_0^1 e^{-t} e^{-j2\pi k} dt = \frac{1 - e^{-1}}{1 + j2\pi k}$$
(9.11)

```
import seb
plt,np = seb.debut()
tx=np.linspace(-3,3,10**3)
x=np.exp(-tx)*(tx>=0)*(tx<=1)
ty=seb.periodiser_ech_t(tx,(0,1))
assert all(ty>=0)&all(ty<=1)
y=np.exp(-ty)
plt.close('all')
fig,ax=plt.subplots()
ax.plot(tx,x,label='x(t)')
ax.plot(tx,y,label='y(t)')
ax.set_xlabel('t')
ax.legend()
plt.tight_layout()
fig.savefig('../figures/fig_exSEB22_fig1a.png')
fig.show()
ty2=tx[(tx>=0)*(tx<1)]
My=seb.TF(ty2,np.exp(-ty2),0)
k=np.arange(-10**3,10**3)
e=np.exp(1)
print(np.sum(1/(1+4*np.pi**2*k**2))-(e+1)/(e-1))
""" 2.0.0.
alors que numpy.__version__ 0.24.2
11 11 11
```

Exercice 21 On considère un signal défini par

$$x(t) = \Pi(t) - \frac{1}{2}\Pi\left(\frac{t}{3}\right) \tag{9.12}$$

On note y(t) le signal périodisé en répétant l'intervalle $[-\frac{3}{2},\frac{3}{2}]$. On considère le filtre défini par l'équation différentielle

$$\frac{d^2}{dt^2}y(t) + \frac{d}{dt}y(t) + y(t) = x(t)$$
(9.13)

1. Représentez graphiquement y(t) pour $t \in [-3, 3]$.

- 2. Montrez que $\hat{X}(f) = \operatorname{sinc}(f) \frac{3}{2}\operatorname{sinc}(f)$.
- 3. En déduire que $\widehat{Y}_k = \frac{1}{3}\operatorname{sinc}(\frac{k}{3}) \frac{1}{2}\delta_k$, δ_k étant la suite nulle sauf en k = 0 ou elle vaut 1.
- 4. Calculez la réponse fréquentielle du filtre
- 5. En déduire la \hat{Y}_k .
- 6. Proposez une approximation de y(t).

Signaux périodiques

Filtres agissant sur des signaux périodiques

Échantillonnage d'un signal non-périodique

Exercice 22 On considère le signal $x(t) = e^{-t}[t \ge 0](t)$ et on souhaite illustrer la question du repliement spectral.

- 1. Donnez un algorithme permettant de simuler y_n le signal x(t) échantillonné à la fréquence f_e .
- 2. Donnez un algorithme permettant de simuler $\hat{Y}(f)$ la transformée de Fourier de y_n .
- 3. Donnez un algorithme permettant de simuler $\widehat{Z}(f)$, défini par

$$\widehat{Z}(f) = \left| \frac{1}{f_e} \widehat{Y}(f) - \widehat{X}(f) - \widehat{X}(f - f_e) - \widehat{X}(f + f_e) \right|$$
(12.1)

x(t) présente une discontinuité en t=0, aussi il est nécessaire pour la valeur de x(t) en t=0 d'utiliser

$$\frac{1}{2} \lim_{t \to 0^{-}} x(t) + \frac{1}{2} \lim_{t \to 0^{+}} x(t) = \frac{1}{2}$$
 (12.2)

Exercice 23 On considère le signal $x(t) = e^{-t} [t \ge 0](t)$ et on souhaite calculer la transformée de Fourier du signal échantillonné. On considère f_e une fréquence d'échantillonnage. On note y_n le signal x(t) échantillonné à la fréquence f_e .

- 1. Montrez que $y_n = e^{-nT_e} \frac{1}{2}\delta_n$
- 2. Montrez que

$$\widehat{Y}(f) = -0.5 + \frac{1}{1 - e^{-T_e - j2\pi f T_e}}$$
(12.3)

Figure 12.1: Graphe de x(t) relatif à l'exercice 24.

Exercice 24 Le signal montré sur la figure 12.1 est noté x(t). Sa transformée de Fourier est notée \hat{X} .

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique.
- 2. Donnez une expression de x(t) sous la forme de sa description sur plusieurs intervalles.
- 3. Donnez une expression de x(t) en fonction de [].
- 4. Calculez x(0), x(1), E_x .
- 5. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 6. Construire $y_1(t) = x(\frac{t}{2})$
- 7. Construire $y_1(t) = x(t-1)$
- 8. Construire $y_1(t) = \frac{1}{2}x(t)$
- 9. Construire $y_1(t) = x(t) x(t-2)$

Simulation générant la figure 12.1 de l'exercice 24

```
t=linspace(-1,5,1e3);
x=3/2*t.*(t>=0).*(t<=2)+(4-t)*3/2.*(t>2).*(t<=4);
figure(1);
plot(t,x,'b-','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB1_fig1.png');</pre>
```

Solutions

1.

Figure 12.2: Graphe de x(t) et de sa tangente pour l'exercice 27.

Exercice 25 Le signal montré sur la figure 16.1 est noté x(t). Sa transformée de Fourier est notée \hat{X} . Ce signal est de la forme $x(t) = ae^{-bt}\mathbf{1}(t \ge 0)$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique.
- 2. Justifiez la valeur de a avec la courbe exponentielle sur la figure 16.1.
- 3. Justifiez la valeur de b avec la ligne tangente à la courbe exponentielle sur la figure 16.1.

```
4. Donnez une expression de x(t) en fonction de 1().
   5. Calculez x(0), x(1), E_r.
   6. Calculez \widehat{X}(0) et \widehat{X}(1).
   7. Construire y_1(t) = x(\frac{t}{2})
   8. Construire y_1(t) = x(t-1)
   9. Construire y_1(t) = \frac{1}{2}x(t)
  10. Construire y_1(t) = x(t) - x(t-2)
Simulation générant le graphe
t=linspace(-1,5,1e3);
x=2*exp(-t).*(t>=0);
t tg=t((t>=0)&(t<=1));
x_tg=2-2*t_tg;
figure(1);
plot(t,x,'b-','linewidth',2,t_tg,x_tg,'r:','linewidth',2);
set(gca,'fontsize',20);
saveas(1, 'C:\A\SIMU\SEB\ex\exSEB2_fig1.png');
Solutions
   1.
Exercice 26 Le signal étudié ici est x(t) = t\mathbf{1}(t \in [0,1]) + (2-t)\mathbf{1}(t \in [1,2]) On considère y(t) obtenu en périodisant
le signal x(t) pour t \in [0,3].
   1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique.
   2. y(t) est-il un signal temps continu, temps discret, périodique, non-périodique.
   3. Dessiner x(t) pour t \in [-1, 5] sur un graphe.
   4. Dessiner y(t) pour t \in [-1, 5] sur le même graphe.
   5. Calculez x(0), x(-2), E_x et P_x.
   6. Calculez y(0), y(-2), E_y et P_y.
   7. Calculez \widehat{X}_0 et \widehat{Y}_0.
   8. Calculez \widehat{X}_0 et \widehat{Y}_0.
   9. Dessiner sur le graphe y_1(t) = y(\frac{t}{2})
  10. Dessiner sur le graphe y_2(t) = y(t-1)
  11. Dessiner sur le graphe y_3(t) = \frac{1}{2}y(t)
  12. Dessiner sur le graphe y_4(t) = y(t) - y(t-2)
Simulation générant le graphe
t=linspace(-1,5,1e3);
x=2*cos(pi*t+0.5*pi);
figure(1);
plot(t,x,'b-','linewidth',2);
set(gca,'fontsize',20);
saveas(1, 'C:\A\SIMU\SEB\ex\exSEB3_fig1.png');
Solutions
```

1.

Modélisation stochastique du bruit

Filtrage des processus aléatoires

Autocorrélation et densité spectrale

Densité de probabilité et filtrage

16.1 Exercices

Figure 16.1: Graphe de x(t) et de sa tangente pour l'exercice 27.

Exercice 27 Le signal montré sur la figure 16.1 est noté x(t). Sa transformée de Fourier est notée \hat{X} . Ce signal est de la forme $x(t) = ae^{-bt}\mathbf{1}(t \ge 0)$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique.
- 2. Justifiez la valeur de a avec la courbe exponentielle sur la figure 16.1.
- 3. Justifiez la valeur de b avec la ligne tangente à la courbe exponentielle sur la figure 16.1.
- 4. Donnez une expression de x(t) en fonction de $\mathbf{1}()$.
- 5. Calculez x(0), x(1), E_x .
- 6. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 7. Construire $y_1(t) = x\left(\frac{t}{2}\right)$
- 8. Construire $y_1(t) = x(t-1)$
- 9. Construire $y_1(t) = \frac{1}{2}x(t)$
- 10. Construire $y_1(t) = x(t) x(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*exp(-t).*(t>=0);
t_tg=t((t>=0)&(t<=1));
x_tg=2-2*t_tg;
figure(1);
plot(t,x,'b-','linewidth',2,t_tg,x_tg,'r:','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB2_fig1.png');
Solutions
1.</pre>
```

Exercice 28 Le signal étudié ici est $x(t) = t\mathbf{1}(t \in [0,1[) + (2-t)\mathbf{1}(t \in [1,2[) \ On \ considère \ y(t) \ obtenu \ en \ périodisant le signal <math>x(t)$ pour $t \in [0,3]$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique.
- 2. y(t) est-il un signal temps continu, temps discret, périodique, non-périodique.
- 3. Dessiner x(t) pour $t \in [-1, 5]$ sur un graphe.
- 4. Dessiner y(t) pour $t \in [-1, 5]$ sur le même graphe.
- 5. Calculez x(0), x(-2), E_x et P_x .
- 6. Calculez y(0), y(-2), E_y et P_y .
- 7. Calculez \hat{X}_0 et \hat{Y}_0 .
- 8. Calculez \hat{X}_0 et \hat{Y}_0 .
- 9. Dessiner sur le graphe $y_1(t) = y(\frac{t}{2})$
- 10. Dessiner sur le graphe $y_2(t) = y(t-1)$
- 11. Dessiner sur le graphe $y_3(t) = \frac{1}{2}y(t)$
- 12. Dessiner sur le graphe $y_4(t) = y(t) y(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*cos(pi*t+0.5*pi);
figure(1);
plot(t,x,'b-','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB3_fig1.png');
Solutions
```

1.

Exercice 29 Le signal montré sur la figure 16.2 est noté x(t). Sa transformée de Fourier est notée \hat{X} . Ce signal est de la forme $x(t) = a\cos(bt + c)$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Justifiez la valeur de a en observant la valeur maximale et minimale sur la figure 16.2.
- 3. Justifiez la valeur de b en mesurant la période sur la figure 16.2.

Figure 16.2: Graphe de x(t) relatif à l'exercice 29.

- 4. Justifiez la valeur de c en interprétant cette courbe comme en retard (ou en avance) par rapport à $a\cos(bt)$ sur la figure 16.1.
- 5. Calculez x(0), x(1), P_x .
- 6. Calculez \hat{X}_0 et \hat{X}_1 .
- 7. Dessiner sur le graphe $y_1(t) = x(\frac{t}{2})$
- 8. Dessiner sur le graphe $y_1(t) = x(t-1)$
- 9. Dessiner sur le graphe $y_1(t) = \frac{1}{2}x(t)$
- 10. Dessiner sur le graphe $y_1(t) = x(t) x(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*cos(pi*t+pi/2);
figure(1);
plot(t,x,'b-','linewidth',2);
grid;
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB4_fig1.png');
```

Solutions

- 1.
- $2. \ a = 2$
- 3. $b = \pi$
- 4. $c = \frac{\pi}{2}$.