Thermodynamik I Zusammenfassung

Michael Van Huffel, Dino Colombo

This summary has been written based on the Lecture of Thermodynamik I by Prof. Dimos Poulikakos (Autumn 20) and the summary of Peter Breurer. There is no guarantee for completeness	ss and/or
correctness regarding the content of this summary. Use it at your own discretion	

Konzepte und Definitionen

- Avogadro-Zahl $N_A = 6.022 \cdot 10^{26} \ kmol^{-1}$
- Bolzmannkonstante $k_B = 1.38 \cdot 10^{-23} \ JK^{-1}$
- Gaskonstante $\overline{R} = R_0 = 8.314 \frac{J}{mol \ K} = N_A \cdot k_B$
- Normalfallbeschleunigung $g_0 = 9.81 \ ms^{-2}$
- Normtemperatur $T_0 = 298 \ K \cong 25^{\circ} C$
- Tripelpunkt Wasser $T_c = 273.16 K = 0.01^{\circ}C$

Einheiten:

- Molmasse $M: \left[\frac{kg}{kmol}\right] N = \frac{m}{M} \cdot N_A = n \cdot N_A$ Druck $p: \left[\frac{N}{m^2}\right] = [Pa] \ 1 \ bar = 10^5 Pa$
- Spezifisches Volumen $v = \frac{V}{m} = \frac{1}{a} \left[\frac{m^3}{kg} \right]$
- Innere Energie $U:[kJ] \ u:\left[\frac{kJ}{kg}\right] \ \overline{u}:\left[\frac{kJ}{kmol}\right]$
- Enthalpie $H: [kJ] \ h: \left[\frac{kJ}{kg}\right] \ \overline{h}: \left[\frac{kJ}{kmol}\right]$
- Entropie $S: \left[\frac{kJ}{K}\right] \ s: \left[\frac{kJ}{kaK}\right] \ \overline{s}: \left[\frac{kJ}{kmolK}\right]$
- Gaskonst. $R: \left[\frac{J}{kgK}\right] = \frac{\overline{R} \cdot 1000}{M} R: \left[\frac{kJ}{kgK}\right] = \frac{\overline{R}}{M}$
- Kraft $F:[N]=\left[\frac{kg\ m}{2}\right]$
- Energie $E:[J]=\left[\frac{kg\ m^2}{2}\right]$
- Exergie $Ex:[J]=\left[\frac{kg\ m^2}{2}\right]$
- Leistung $P: [W] = \left[\frac{J}{s}\right] = \left[\frac{kg \ m^2}{s^3}\right]$
- Arbeit W: [Nm] = [J]

W > 0 vom System geleistet (abgeführte Arbeit)

W < 0 am System geleistet (**zu**geführte Arbeit)

Q > 0 dem System **zu**geführte Wärme

Q < 0 vom System **ab**gegebene Wärme

SI Präfixe:

P	Peta-	10^{15}	k	Kilo-	10^{3}	m	Milli-	10^{-3}
T	Tera-	10^{12}	h	Hekto-	10^{2}	μ	Mikro-	10^{-6}
G	Giga-	10^{9}	d	Dezi-	10^{-1}	n	Nano-	10^{-9}
M	Mega-	10^{6}	c	Zenti-	10^{-2}	p	Pico-	10^{-12}

Allgemeine Begriffe:

- **Zustandsgrössen**: absolute Grössen wie Druck, Temperatur, Volumen, Masse, Stoffmenge (thermisch) und innere Energie, Entropie (ΔS , Beachte: S_{erz} ist keine Zustandgroesse), Enthalpie (kalorisch)
- Prozessgrössen: Wärme, Arbeit; wegabhängig
- Intensive Grössen: keine Wertänderung bei gedachter Teilung des (homogenen) Systems; Druck, Temperatur, extensive Grössen als spezifische Grössen angegeben
- Extensive Grössen: abhängig von Stoffmenge; Masse, Volumen, Energie
- Spezifische Grössen: x = X/m

• Molare Grössen: extensive Zustandsgrössen in intensive umgewandelt:

$$\overline{u}: U = n \cdot \overline{u} = \frac{m}{MM} \cdot \overline{u}, u = \frac{\overline{u}}{MM}$$
 (1)

Bezieht sich auf N_A Moleküle.

Bsp: Molares Volumen $\overline{v} = MM/\rho \mid \frac{m^3}{kmol}$

- Prozess: Veränderung eines thermodyn. Zustandes durch eindeutig bestimmten Vorgang
- Ideales Gas: kein Nassdampfgebiet
- Perfektes Gas: ideal, einatomig

Thermodynamisches System:

- Massenstrom-System
 - geschlossenes System: kein Massenaustausch (Anzahl Moleküle im System konstant)
 - offenes System: Massenströme fliessen über Systemgrenze
- Wärmestromsystem
 - adiabates Systeme: kein Wärmeaustausch über Systemgrenze $(Q=0 \iff \text{isoliert})$
 - diathermes Systeme: nicht isoliert
- physikalisch-chemisches System
 - homogenes System: physikalische und chemische Zusammensetzung überall gleich
 - heterogenes System: Bsp. Mineralien

Beachte: ein chemisch homogenes System kann auch zwei Phasen beinhalten (z.B. das System $[H_2O_{(l)} \text{ und } H_2O_{(g)}]$ ist chemisch homogen aber physikalisch heterogen)

Nullter Hauptsatz: Wenn sich zwei Systeme mit einem dritten im Gleichgewicht befinden, sind sie auch untereinander im thermischen GGW. Aus $T_1 = T_2$ und $T_2 = T_3$ folgt $T_1 = T_3$.

Quasistatische Näherung: Homogenität der Zustandsgrössen (keine Gradienten im System) zu allen Zeiten.

Elemente der kinetischen Gastheorie

• Thermische Energie: Bewegung aller Moleküle (Translation, Rotation, Oszillation) ergibt eine endliche Menge $E_K =$ E_{th} .

$$E_{th} = \sum_{i=1}^{N} \frac{m_M}{2} \cdot w_i^2, \ \overline{E_{th}} = \frac{E_{th}}{N} = \frac{m_M}{2} \cdot \overline{w}_i^2$$
$$e_{th} = \frac{E_{th}}{N \cdot m_M} = \frac{\overline{w}_i^2}{2}$$

• Wärme Q: über Systemgrenze transportierte thermische Energie

• Absolute Temperatur: thermischen Energie dividiert durch die Anzahl Freiheitsgrade f

$$E_{th} = N \cdot \frac{f}{2} k_b T$$
, $\overline{E_{th}} = \frac{f}{2} k_b T$, $e_{th} = \frac{f}{2} \frac{k_b T}{m_M}$

 $(k_b$ beschreibt Umrechnung der Temperatur als Energie in Joule nach Kelvin)

• Druck: Kraftwirkung der Moleküle bezogen auf eine Flächeneinheit

$$p_0 = \frac{1}{3} \cdot m \cdot n \cdot w_0^2, \ p = n \cdot k_b \cdot T, \ p \propto T, n$$

Innere Energie bei perfekten Gasen:

$$\Delta U = \Delta E_{th}, \ u = \frac{3}{2}RT \tag{2}$$

Innere Energie bei idealen Gasen:

$$\Delta U = \Delta E_{th}, \ u = \frac{f}{2}RT \tag{3}$$

Daraus folgt: $c_v = \frac{f}{2}R$ und $c_p = (\frac{f}{2} + 1)R$ $c_p - c_v = R$ gilt weiterhin für alle Gase.

Einatomig	f = 3	Transl. in 3 Rtg. [Ne]
Zweiatomig	f = 5	Transl. und Rot. $[O_2]$
Dreiatomig	f = 5	Transl. und Rot. $[CO_2]$
Dreiatomig	f = 12	ab $1800K$ Oszillation

Innere Energie bei realen Gasen:

Wärme-, Bindungs- und elektrische Energie

$$\Delta U = \Delta E_{th} + \Delta E_p \tag{4}$$

Enthalpie bei perfekten Gasen:

$$h = u + pv = \frac{5}{2}RT\tag{5}$$

Enthalpie bei idealen Gasen:

$$h = u + pv = u + RT = \left(\frac{f}{2} + 1\right)RT\tag{6}$$

Für ideale Gase gilt u = u(T), h = h(T)

Enthalpie bei realen Gasen:

Siehe Tabellen

1. Hauptsatz

Energie im System $E = E_k + E_p + U$ konstant

$$\Delta E = \underbrace{\Delta E_k + \Delta E_p}_{\text{oft vernachlässigbar}} + \Delta U = Q - W \tag{7}$$

Beachte die Vorzeichen:

- $Q > 0 \Rightarrow$ Dem System zugefuehrte Waerme.
- Q < 0: Dem System abgefuehrte Waerme.
- W > 0: Vom System geleistete Arbeit.
- W < 0: Am System geleistete Arbeit.

1. HS als Leistungsbilanz:

$$\frac{dE}{dt} = \dot{Q} - \dot{W}, \quad \frac{dU}{dt} = mc\frac{dT}{dt}$$
$$U(T_2) - U(T_1) = m \int_{T_1}^{T_2} c(T) \ dT$$

Kreisprozesse

$$\Delta E = \Delta U = 0 \implies Q_{KP} = W_{KP}$$

(Zustandsgrössen nach Kreisprozess unverändert)

W > 0 falls rechtslaufend W < 0 falls linkslaufend

Die pvT Beziehung:

- Triple-Linie: alle 3 Aggregatszustände zugleich
- Nassdampfgebiet: Wasser und Dampf zugleich

Dampfmassenanteil:

Prozentualer Anteil Dampf im Nassdampfgebiet:

$$x = \frac{v_x - v_f}{v_g - v_f} = \frac{u_x - u_f}{u_g - u_f} = \frac{m_x - m_f}{m_g - m_f}$$
(8)

$$\implies v_x(x,T) = v_f(T) + x \cdot (v_g(T) - v_f(T))$$

Lineare Interpolation

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Ideale Gasgleichung:

$$pv = RT, \ pV = mRT, \ pV = n\overline{R}T, p = \rho RT$$
 (9)

$$ho = rac{1}{v}, \quad R = rac{\overline{R}}{MM}, \ c_p - c_v = R$$

Polytrope Zustandsänderungen

Ideale Gase:

n: Polytropenkoeffizient

$$pV^{n} = \text{konst.} \leftrightarrow \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = \left(\frac{V_1}{V_2}\right)^{n-1} \tag{10}$$

 $|W| \uparrow \text{je} \downarrow n \text{ (weniger steil)}$

Isothermer Prozess (n = 1):

$$T = \text{konst.} \implies pV = \text{konst.}$$

 $\Delta U = 0 \implies Q_{12} = W_{12}$

$$W_{12} = \int_{V_1}^{V_2} p(V)dV = p_1 V_1 \cdot \ln\left(\frac{V_2}{V_1}\right) = p_1 V_1 \cdot \ln\left(\frac{p_1}{p_2}\right)$$
$$= mRT_1 \cdot \ln\left(\frac{V_2}{V_1}\right) = mRT_1 \cdot \ln\left(\frac{p_1}{p_2}\right)$$
(11)

Isenthalp = isotherm (ideales Gas)

Isobarer Prozess (n = 0):

$$p = \text{konst.} \implies \frac{T}{V} = \text{konst.} \implies \frac{T_1}{V_1} = \frac{T_2}{V_2}$$

$$\Delta Q = \Delta H = m \cdot c_p \cdot \Delta T$$

$$\Delta U = m \cdot c_v \cdot \Delta T$$

$$W_{12} = p_1(V_2 - V_1) = mp_1(v_2 - v_1) = mR(T_2 - T_1)$$
(12)

Isochorer Prozess $(n = \infty)$:

$$V = \text{konst.} \implies \frac{T}{p} = \text{konst.} \implies \frac{T_1}{p_1} = \frac{T_2}{p_2}$$

$$W_{12} = 0$$

$$\Delta U = Q_{12} = m(u_2 - u_1)$$

$$Q_{12} = mc_v(T_2 - T_1)$$
(13)

Isentroper Prozess $(n = \kappa)$:

$$n = \kappa = \frac{c_p}{c_v}, \ c_p = c_v + R$$

$$Q_{12} = 0 \implies \Delta U = -W_{12}$$

$$W_{12} = m(u_1 - u_2) = mc_v(T_1 - T_2)$$

$$= \frac{p_1 V_1^{\kappa}}{1 - \kappa} (V_2^{1 - \kappa} - V_1^{1 - \kappa})$$

$$= \frac{p_1 V_1}{1 - \kappa} \left(\frac{p_1^{1 - \kappa}}{p_2^{1 - \kappa}} - 1\right)$$

$$S = \text{konst.} \implies pV^{\kappa} = \text{konst.}$$

$$TV^{\kappa - 1} = \text{konst.}, \ p^{1 - \kappa} T^{\kappa} = \text{konst.}$$

$$c_v = \frac{\overline{R}}{\kappa - 1}, \ c_p = \frac{\overline{R} \cdot \kappa}{\kappa - 1}$$

$$w_{12} = c_v(T_1 - T_2) = \frac{1}{\kappa - 1} (p_1 v_1 - p_2 v_2)$$

(14)

Allgemeiner Prozess $(n \neq 1)$:

$$pV^{n} = \text{konst.}$$

$$T^{n}p^{1-n} = \text{konst.}, Tv^{n-1} = \text{konst.}$$

$$W_{12} = \frac{mR}{1-n}(T_{2} - T_{1}) = \frac{p_{2}V_{2} - p_{1}V_{1}}{1-n}$$

$$= \frac{p_{1}V_{1}^{n}}{1-n}(V_{2}^{1-n} - V_{1}^{1-n})$$
(15)

Reale Gase:

- $m = \frac{V}{v}$
- Allgemein: $\Delta U = m(u_2 u_1) = m(c_{v2}T_2 c_{v1}T_1)$
- Isotherm: $\Delta U = Q W \iff W = Q \Delta U$
- Isobar: $W_{12} = p_1(V_2 V_1) = mp_1(v_2 v_1)$
- Isochor: $W_{12} = 0$
- Isentrop/adiabat: $\Delta S = 0$

Thermodynamische Zustandsdaten

• Enthalpie: (Wärmefunktion)

$$H = U + pV, \tag{16}$$

und, $h = \frac{h}{M}u + pv$, wobei pV der benötigten Arbeit entspricht, um das Volumen V des Systems gegen die Wirkung des Aussendrucks p aufzuspannen.

• Verdampfungsenthalpie: $h_{fg} = h_g - h_f$ nötige Energie, um ein Fluid unter konst. Druck und Temperatur gasförmig zu machen

• Wärmemenge:

$$\Delta Q = mc\Delta T \tag{17}$$

(Grundgleichung der Kalorik, $c \to \text{Tab A-19}$).

- - isochore Wärmekapazität: c_v (Tab A-20) Wärmezufuhr bei konstantem Volumen) $u = u(T, v) \rightarrow du = \left(\frac{\partial u}{\partial T}\right)_v dT + \left(\frac{\partial u}{\partial v}\right)_T dv$ $\implies du = c_v dT \text{ wenn } dv = 0, \ c_v : \left\lceil \frac{kJ}{kgK} \right\rceil$

$$\Delta u = \int_{T_1}^{T_2} c_v(T) \cdot dT \approx c_v \left(\frac{T_1 + T_2}{2}\right) \Delta T \tag{18}$$

- **isobare Wärmekapazität:** c_p (Tab A-20) (Wärmezufuhr bei konstantem Druck) $h = h(T, p) \rightarrow du = \left(\frac{\partial h}{\partial T}\right)_p dT + \left(\frac{\partial h}{\partial p}\right)_T dp$ $\Longrightarrow dh = c_p dT \text{ wenn } dp = 0, \ c_p : \left[\frac{kJ}{kgK}\right]$

$$\Delta h = h_2 - h_1 = \int_{T_1}^{T_2} c_p(T) dT = c_p(T_2 - T_1)$$
 (19)

• Inkompressible Medien:

Spezifisches Volumen haengt nur ßewach vo Druck ab. $v(T,p) \approx v_f(T), u(T,p) \approx u_f(T), h(T,p) \approx h_f(T)$. Ab ein bestimmtes Saettigungsdruck nicht mehr inkompressibel (Wasser ist bis 25 bar inkompressibel) $c_p = c_v = c = \text{konst.}$

$$\Delta u = u_2 - u_1 = c(T_2 - T_1)$$

$$\Delta h = h_2 - h_1 = c(T_2 - T_1) + v(p_2 - p_1)$$

• Perfekte Gase:

Waermekapazitaten nur wenig aendern: $c_p = \text{konst.}, c_v = \text{konst.}$

$$\Delta u = u_2 - u_1 = c_v(T_2 - T_1)$$
$$\Delta h = h_2 - h_1 = c_v(T_2 - T_1)$$

• Allgemein: $c_p = c_v + R$, $\kappa(T) = \frac{c_p(T)}{c_v(T)}$, wobei $\kappa = \text{Isentropen-koeffizien}$

Beispiel: Endtemperatur

Gegeben seien 2 Stoffe: $m_{1/2}, c_{1/2}, T_{1/2}$. $\Delta U_1 + \Delta U_2 = 0 \Rightarrow$

$$m_1 c_1 (T_x - T_1) = m_2 c_2 (T_2 - T_x)$$
$$T_x = \frac{m_1 c_1 T_1 + m_2 c_2 T_2}{m_1 c_1 + m_2 c_2}$$

1. HS für offene Systeme

Massenstrom über Systemgrenze und damit verbundenen Energieströme werden in die Energiebilanz mit einbezogen.

Stationärer Betrieb: $\sum \dot{m}_{\rm in} = \sum \dot{m}_{\rm out}, \frac{d(\cdot)}{dt} = 0$

Massenstrombilanz

$$\frac{dM_s}{dt} = \sum \dot{m}_{\rm in} - \sum \dot{m}_{\rm out}$$

Energiestrombilanz:

Energiezunahme abhängig von Wärme und Arbeit sowie den Energien ein- und austretender Massen.

Arbeit in zwei Komponenten unterteilt:

- gewünschte Arbeit W_s (ungebunden)
 (nicht mit Massenstrom verbunden)
- Einschiebeleistung $\dot{W}_{\rm in}$ und Ausschiebeleistung $\dot{W}_{\rm out}$ des bewegten Fluids (an Masse gebunden)

$$\frac{dE_s}{dt} = \dot{Q} - \dot{W}_s + \sum \dot{m}_i (h_i + \frac{w_i^2}{2} + gz_i) - \sum \dot{m}_o (h_o + \frac{w_o^2}{2} + gz_o)$$

• Stationär, 1 Massenstrom \rightarrow

$$\dot{Q} - \dot{W}_s = \dot{m}(h_o - h_i + \frac{1}{2}(w_o^2 - w_i^2) + g(z_o - z_i)$$

- Isoliert $\implies \dot{Q} = 0$
- Keine Arbeit verrichtet $\implies \dot{W}_s = 0$
- $-T = const \Rightarrow h_0 = h_i$
- Wenn $\dot{Q} \neq 0 \Rightarrow$ Entropie bilanz
- Nützliche Beziehungen

$$\begin{split} m &= \frac{V}{v} \implies \dot{m} = \frac{\dot{V}}{v} = \rho \dot{V} = \rho A w = \frac{A w}{v} \\ \text{Ideale Gase: } \dot{m} &= \frac{p \dot{V}}{R T} = \frac{p A w}{R T} = \frac{A w}{v} [\frac{k g}{sec}] \end{split}$$

1. HS für halboffenes System:

$$m_2u_2 - m_1u_1 = Q - W + (m_2 - m_1)(h_{\text{Tank}} + \Delta E_p + \Delta E_K)$$

- Halboffenes System: Verbindung mit variablem System (z.B. Ballon)
- Zustandsgrössen von Tank/Reservoir unverändert

- Verengung in einer Strömung
- Enthalpie des Fluids zu E_K (Beschleunigung); U konst.
- Stationär, isoliert, $\dot{W}_s = 0 \rightarrow$

$$h_i + \frac{1}{2}w_i^2 = h_a + \frac{1}{2}w_a^2$$

$$w_2 > w_1, p_2 < p_1, h_2 < h_1$$

Isentroper Düsenwirkungsgrad

$$\eta_{D,s} = \frac{w_2^2}{w_{2,\text{max}}^2} \stackrel{\text{adiabat}}{=} \frac{h_2 - h_1}{h_{2,s} - h_1}$$

- Erweiterung in einer Strömung (Düsenvorgang umgek.)
- Verlangsamung des Fluids

$$w_2 < w_1, p_2 > p_1, h_2 > h_1$$

Drossel/Ventil:

- Fluid in Drosselelement entspannt (Bsp. Ventil) (Kompressionswärmepumpen und -Kältemaschinen)
- Adiabat, Isenthalp

$$h_1 = h_2, \ p_2 < p_1, \ W_{12} = 0, \ Q_{12} = 0$$

Pumpe:

- Erzeugung Massenstrom (bei möglichst geringem Druckanstieg) durch Arbeitsaufwand
- Isentrop, inkompressibel $\rightarrow h_{2,s} h_1 = v\Delta p \approx v_1(p_2 p_1)$ Stationär $\rightarrow \dot{W}_S - \dot{Q} = \dot{m} \cdot (h_{\rm in} - h_{\rm out})$, wobei $\dot{m} = \frac{\dot{V}}{m}$, mit
- Beachte: mit Wirkungsgrad und $\dot{Q} = 0$

$$\frac{\dot{W_s}}{\dot{m}} = h_1 - h_2 = \frac{h_1 - h_{2,s}}{n_s}$$

Kompressor/Verdichter:

- Druckerhöhung des Fluids durch Arbeitsaufwand
- Isentroper Verdichterwirkungsgrad Vergleich der minimal aufzuwendenden Arbeit (isentrop, $\dot{Q} =$ 0) mit realer Arbeit. $s_{2,s} = s_1$.

$$\eta_{V,s} = \frac{\frac{W_{min}}{m}}{\frac{W_{effektive}}{m}} = \frac{h_{2,s} - h_1}{h_2 - h_1}$$

$$\dot{W}_{12} = \dot{m} \cdot (h_1 - h_2)$$

Wärmetauscher/Verdampfer/Kondensator:

- Wärme mittels Durchströmung aufgenommen ($\dot{Q} > 0$) oder abgegeben $(\dot{Q} < 0)$
- Stationär (Systemgrenze: ein Massenstrom), iff $\dot{W} = 0 \rightarrow$

$$\dot{Q} = \dot{m}(h_{\rm out} - h_{\rm in})$$

• Beachte:

$$Q_{WT} = \eta \cdot Q_{max}$$

• Stationär, $\dot{Q} = 0$ (Bsp. Gegenstrom-Wärmetauscher; Systemgrenze: beide Massenströme) \rightarrow

$$0 = \dot{m}_1(h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_3(h_{\text{out},2} - h_{\text{in},2})$$

- Gas von hohem Druckniveau auf tiefes $(\dot{W} > 0)$
- $\dot{E}=0, E_P=0 \rightarrow$

$$\dot{W}_S = \dot{Q} + m_{in} \left(h_1 + \frac{w_1^2}{2} \right) - m_{out} \left(h_2 + \frac{w_2^2}{2} \right)$$

- Beachte: mit Wirkungsgrad $\frac{\dot{W_s}}{\dot{m}} = \eta \cdot (\dots)$ (Enthalpie tabelliert, 2. Zustand evtl. im Zweiphasengebiet)
- Isentroper Turbinenwirkungsgrad

$$\eta_{T,s} = rac{\dot{W}}{\dot{W}_{\mathrm{rev}}} \stackrel{\mathrm{adiabat}}{=} rac{h_1 - h_2}{h_1 - h_{2,s}}$$

2. HS der Thermodynamik

Wärme fliesst nicht spontan von einem kalten zu einem wärmeren Reservoir (Clausius). Ein Kreisprozess kann zugeführte Wärme nicht zu 100% in Wärme umwandeln (laut Kelvin-Planck gibt es immer Abwärme).

(Ir-)Reversible Prozesse:

- Reversibel: umkehrbar; Anfangszustand im System und der Umgebung kann wiederhergestellt werden (dafür nötige Arbeit ohne Verlust gespeichert); abgeführte Temperatur muss somit bei gleicher Temperatur gespeichert werden.
- Irreversibel: unumkehrbar; irreversible Teilprozesse enthalten (Bsp. Wärmeübertragung, Reibung)

$$|W_{
m rev}| > |W_{
m irr}|$$

$$\Delta U_{
m rev} = \Delta U_{
m irr}$$

$$|Q_{
m rev}| > |Q_{
m irr}|$$
Adiabat $\rightarrow |Q_{
m rev}| > |Q_{
m irr}| = 0$

$$|W_{\text{rev}}| < |W_{\text{irr}}|$$

$$\Delta U_{\text{rev}} = \Delta U_{\text{irr}}$$

$$|Q_{\text{rev}}| < |Q_{\text{irr}}|$$
(21)

Carnot Kreisprozess

Idealisierter, reversibler Kreisprozess um die theoretisch max. umsetzbare Wärmemenge in Arbeit zu definieren.

- 1 \rightarrow 2: Isotherm Kompr. $(W_{12} < 0, Q_K < 0 \text{ bei } T_K) \rightarrow \Delta U = 0$ $\Delta Q_K = W_{12} = \int_1^2 p dV = RT_K \ln(\frac{v_2}{v_1}) > 0$
- 2 \rightarrow 3: Adiabate Kompr. $(W_{23} < 0, S = \text{konst.}) \rightarrow \Delta Q = 0$ $0 = W_{23} = -\Delta U = c_v \cdot (T_K - T_H)$
- 3 \rightarrow 4: Isotherm Exp. $(W_{34} > 0, Q_H > 0 \text{ bei } T_H) \rightarrow \Delta U = 0$ $\Delta Q_H = W_{34} = \int_3^4 p dV = RT_H \ln(\frac{v_4}{v_2}) > 0$
- $4 \to 1$: Adiabate Exp. $(W_{41} > 0, S = \text{konst.}) \to \Delta Q = 0$ $0 = W_{41} = -\Delta U = c_v \cdot (T_H - T_K) = -W_{23}$

Nettoarbeit:

$$W_{KP} = W_{12} + W_{34} = R(T_H \ln(\frac{v_2}{v_1}) - T_K \ln(\frac{v_3}{v_4})) = q_{zu} - q_{ab}$$
(22)

 $\mathbf{Wirkungsgrad}:$

$$\eta_{KP} = \frac{W_{KP}}{q_{zu}} = 1 - \frac{T_K \ln(\frac{v_3}{v_4})}{T_H \ln(\frac{v_2}{v_1})}$$
 (23)

Andere Eigenschaften:

- $U_1 = U_2 \& U_3 = U_4$ $\frac{Q_{12}}{Q_{34}} = \frac{T_K}{T_H}$

- Carnotprozess im UZS (Nettoarbeit > 0)
- \bullet Wärme aus T_H und Abwärme an T_K
- $W_{KP} = |Q_{zu}| |Q_{ab}|$ (Uhrzeigersinn)

$$-1 \rightarrow 2: W_{12} = p_1 V_1 \cdot \ln (V_2/V_1) = Q_{34}$$

$$-2 \rightarrow 3: W_{23} = m(u_2 - u_3), Q_{23} = 0$$

$$-3 \rightarrow 4: W_{34} = p_3 V_3 \cdot \ln (V_4/V_3) = Q_{34}$$

$$-4 \rightarrow 1: W_{41} = m(u_4 - u_1), Q_{41} = 0$$

Kältemaschine/Wärmepumpe:

- Carnotprozess im Gegen-UZS (Nettoarbeit < 0)
- Wärme aus T_K an T_H
- $\bullet \quad -W_{KP} = Q_{zu} Q_{ab}$

$$-1 \rightarrow 2$$
: $W_{12} = m(u_1 - u_2), Q_{12} = 0$

$$-2 \rightarrow 3$$
: $W_{23} = p_2 V_2 \cdot \ln (V_3/V_2) = Q_{23}$

$$-3 \rightarrow 4$$
: $W_{34} = m(u_3 - u_4), Q_{34} = 0$

$$-4 \rightarrow 1$$
: $W_{41} = p_4 V_4 \cdot \ln (V_1/V_4) = Q_{41}$

Wobei Zustand 1 = Zustand 3 (Bild),2 = 2 (Bild), 3 = 1 (Bild), 4 = 4 (Bild)

Kältemaschine:

Nutzen ist aus T_K zugeführte Wärme: KP in gegenuhrzeigersinn (RHR, Nettiarbeit < 0)

• Leistungszahl: (Nutzwärme ÷ Arbeitsaufwand (Arbeitsleistung))

$$\epsilon_K = \frac{Q_{zu}}{W_{KP}} = \frac{Q_K}{-W_{\text{netto}}} = \frac{Q_K}{|Q_H| - |Q_K|} = \frac{Q_{zu}}{|Q_{ab}| - |Q_{zu}|}$$

• Reversibel $\rightarrow \epsilon_K = \epsilon_{K,\text{max}} = \frac{T_K}{T_H - T_K}$

Wärmepumpe:

Nutzen ist nach T_H abgeführte Wärme

• Leistungszahl

$$\epsilon_W = \frac{Q_{zu}}{W_{KP}} = \frac{Q_H}{-W_{\text{netto}}} = \frac{Q_H}{|Q_H| - |Q_K|} = \frac{Q_{ab}}{|Q_{ab}| - |Q_{zu}|}$$
(95)

• Reversibel $\rightarrow \epsilon_W = \epsilon_{W, \text{max}} = 1 + \frac{T_K}{T_H - T_K} = 1 + \epsilon_K$

Theorem: Kompressionsrate

Die Kompresskionsrate ist: $r = \frac{V_1}{V_2} = \frac{v_{ra}}{v_{rb}}$ (aus die Tabellen).

• Ausgehend von der Gleichung der Entropieänderung für ein ideales Gas:

$$s_2(T_2, p_2) - s_1(T_1, p_1) = s^0(T_2) - s^0(T_1) - R \ln(\frac{p_2}{p_1})$$

- Isentropen Fall: $s_2 s_1 = 0 \rightarrow \frac{p_2}{p_1} = \frac{e^{s_0} \frac{1}{R}}{e^{s_0} \frac{1}{R}}$
- Definition als relativer druck: $p_r(T) = C_1 e^{s^0 \frac{T}{R}}$
- Damit gilt für isentrope Prozesse bei Luft als idealem Gas $\frac{p_2}{p_1}=\frac{p_{r_2}}{p_{r_1}}$ und $\frac{v_2}{v_1}=\frac{v_{r_2}}{v_{r_1}}$

Beispiel: Leistung eine laufendes kreisprozess

$$P = \dot{W}_{net} = \frac{\textit{Umdrehungen}(\textit{Drehzahl})}{\textit{sec}} \cdot \frac{\textit{Zyklen}}{\textit{Umdrehungen}} \cdot W_{net,proZyklus} \cdot a.$$

Aufmerksam: es könnte sei dass nicht alle Zyklen leisten Arbeit ($a=\frac{Zyklen_{W\neq 0}}{Zyklen_{tot}}$). Es: a=4 fuer 4 Takt Motor.

Thermische Wirkungsgrade

Verhältnis zwischen Nutzen und Energieaufwand

$$\eta_{th} = \frac{\text{Nutzen}}{\text{Aufwand}} = \frac{W_{\text{Nutz}}}{Q_{\text{zu}}} = \frac{\dot{W}_{\text{Nutz}}}{\dot{Q}_{\text{zu}}}$$
(26)

Kreisprozesse:

$$\eta_{th} = \frac{(\sum)Q_{\text{zu}} - (\sum)Q_{\text{ab}}}{(\sum)Q_{\text{zu}}} = 1 - \frac{Q_{\text{ab}}}{Q_{\text{zu}}} = 1 - \frac{Q_K}{Q_H}$$
(27)

Carnot-Wirkungsgrad:

- Höchstmögliche Umwandlungsgrad von Q in W $\eta_{\text{Carnot}} \to 1$ für $T_H \to \infty, T_K \to 0$
- Thermische Wirkungsgrad eines irreversiblen KP immer geringer als derjenige eines reversiblen
- 2. HS: ein Teil von $Q_{\rm zu}$ muss zwingend an das kalte Reservoir abegeben werden $\implies \eta_{\rm Carnot} < 1$

$$\frac{Q_K}{Q_H} = \frac{T_K}{T_H} \implies \eta_{th} = 1 - \frac{T_K}{T_H}$$
 (28)

Isentrope Prozesse

• Zustandsdreieck (aus zwei folgt die dritte Eigenschaft)

ISENTROP ADIABAT REVERSIBEI

Entropie

Ein Prozess kann nur Entropie zunahme fahren wenn irreversibilitäten während der prozess erscheen: **FALSCH**:

 $\Delta S < 0 \text{ aber } S_{erz} > 0$

Entropie Aenderung: $\Delta S = m(s_2 - s_1)$

- Entropie S: Mass für Unordnung/Irreversibilität
- Prozess spontan immer in Richtung † Entropie ablaufen
- Isentrop: dS = 0 (adiabat und reversibel)

T-S Diagramm:

Wenn $\Delta S \nearrow \nearrow$ dann Steigung $\rightarrow 0$

Adiabat: S = const. Wichitig: Steigung isochore > isobare.

Theorem: Weitere Beziehungen

- 1.T-dS-Gleichung: dU = TdS - pdV = dU(S, V)
- formales Differential:
- $dU = \left(\frac{\partial U}{\partial S}\right)_V dS + \left(\frac{\partial U}{\partial S}\right)_S dV$ aus Koeffizientenvergleich:
- aus Koeffizientenvergleich: $T = (\frac{\partial U}{\partial S})_V, \ p = -(\frac{\partial U}{\partial V})_S$ • 2.T-dS-Gleichung:
- dH = TdS + Vdp = dH(S, p)• formales Differential:
- of ionitales Differential. $dH = (\frac{\partial H}{\partial S})_p dS + (\frac{\partial H}{\partial p})_S dp$ one Weeff sign temperal sight.
- aus Koeffizientenvergleich: $T = \left(\frac{\partial H}{\partial S}\right)_p, \ V = -\left(\frac{\partial H}{\partial p}\right)_S$

H-S (Mollier) Diagramm:

TdS Gleichungen

 $\begin{array}{ll} \Delta Q>0 \; \mbox{(W\"{a}rmezufuhr)} & dS>0 \; \mbox{(Entropie (sys) nimmt zu)} \\ \Delta Q<0 \; \mbox{(W\"{a}rmeabfuhr)} & dS<0 \; \mbox{(Entropie (sys) nimmt ab)} \\ \Delta Q=0 \; \mbox{(Adiabates System)} & dS=0 \; \mbox{(Entropie (sys) konstant)} \\ \mbox{Zusammenfassung der Beziehungen der verschiedenen thermodynamischen Grössen.} \end{array}$

$$T \cdot ds = du + p \cdot dv$$

$$T \cdot ds = dh - v \cdot dp$$
(29)

- Verdampfung/Kondensation: $(p = \text{konst.}, T = \text{konst.}) \implies T \cdot ds = dh$
- Inkompressible Stoffe: $v, c = \text{konst.} \implies ds = dU = \int c \cdot \frac{1}{T} dT = c \cdot \ln \frac{T_2}{T_1}$
- Ideale Gase: $du = c_v(T)dT, \ pv = RT \implies ds = c_v(T) \cdot \frac{dT}{T} + R \cdot \frac{dv}{v}$ $ds = c_p(T) \cdot \frac{dT}{T} + R \cdot \frac{dp}{p}$

 $Q = \int mTdS \leftrightarrow mT(\tilde{s}_2 - \tilde{s}_1), \frac{S}{m} = \tilde{s}$

Clausius Ungleichung:

$$\oint \frac{\delta Q}{T_G} = \frac{Q_H}{T_H} - \frac{Q_C}{T_C} \le 0 \stackrel{\text{reversibel}}{=} \Delta S_{\text{zu}} - \Delta S_{\text{ab}} = 0$$

(Umlaufintegral über Kreisprozess)

$$S_2 - S_1 \ge \sum_{j=1}^n \frac{Q_j}{T_j} \leftrightarrow S_{erz} = S_2 - S_1 - \sum_{j=1}^n \frac{Q_j}{T_j} \ge 0$$
 (30)

Entropieänderung - Ideale Gase:

• Luft (TAB A-22)

$$s(T_2, p_2) - s(T_1, p_1) = s^0(T_2) - s^0(T_1) - R \cdot \ln\left(\frac{p_2}{p_1}\right)$$
 (31)

Merke: bei isothermen Prozessen ist $\Delta s^0 = 0$

• Andere Gase (TAB A-23ff)

$$\overline{s}(T_2, p_2) - \overline{s}(T_1, p_1) = \overline{s}^0(T_2) - \overline{s}^0(T_1) - \overline{R} \cdot \left(\frac{p_2}{p_1}\right)$$
 (32)

$$c = \text{konst.} \implies s^0(T, p) = c_p(T) \cdot \ln\left(\frac{T}{T_0}\right)$$
:

$$s_2 - s_1 = c_p \cdot \ln\left(\frac{T_2}{T_1}\right) - R \cdot \ln\left(\frac{p_2}{p_1}\right)$$
$$s_2 - s_1 = c_v \cdot \ln\left(\frac{T_2}{T_1}\right) - R \cdot \ln\left(\frac{v_2}{v_1}\right)$$

Isentrope Prozesse - Ideale Gase:

$$\kappa = \frac{c_p}{c_v}$$

$$c_p = c_v + R \implies c_p = R \cdot \frac{\kappa}{\kappa - 1}$$

$$c_v = R \cdot \frac{1}{\kappa - 1}$$

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = \left(\frac{v_2}{v_1}\right)^{1 - \kappa}$$

$$\eta_r ev = \frac{h_2 - h_1}{h_{2,s} - h_1}$$
(33)

Entropiebilanz für geschlossene Systeme:

 ΔS ist eine Zustandgrösse,

 $S_{erz} = S_{produziert}$ ist **keine** Zustandgrösse.

$$S_{\text{erz}} = \Delta S - \sum \frac{Q}{T_G}$$

$$\dot{S}_{\text{erz}} = \dot{S} - \sum \frac{\dot{Q}}{T_G} = \dot{m} \cdot \Delta s - \sum \frac{\dot{Q}}{T_G}$$
(34)

 $(T_G \text{ ist Temperatur an Grenze der Wärmeübertragung})$

- Stationär $\rightarrow \Delta S = 0$
- Kreisprozess $\rightarrow \Delta S = 0$ aber i.A. $S_{\rm erz} \neq 0$
- Reversibel $\rightarrow S_{\text{erz}} = 0$ [Keine Irrersibilitaeten]
- Irreversibel $\rightarrow S_{erz} > 0, \Delta S > < 0 \leftrightarrow S_{irreversibel} > S_{reversibel}$. **VERIFICARE**

Entropiebilanz für offene Systeme:

$$\underbrace{\dot{S}_{\text{erz}}}_{1} = \underbrace{\dot{S}}_{2} - \underbrace{\sum_{1} \frac{\dot{Q}}{T_{G}}}_{3} + \underbrace{\sum_{1} \dot{m}_{\text{out}} s_{\text{out}}}_{4} - \underbrace{\sum_{1} \dot{m}_{\text{in}} s_{\text{in}}}_{5} \tag{35}$$

- 1. Erzeugungsrate im System (intrinsisch)
- 2. Zunahme Entropie des Systems
- 3. Entropietransp. über Systemgrenze per Wärmetransfer
- 4. Mit Massse austretender Entropiestrom
- 5. Mit Masse eintretender Entropiestrom
- Stationär, 1 Massenstrom \rightarrow

$$\dot{S}_{
m erz} = -\sum rac{\dot{Q}}{T_G} + \dot{m}(s_{
m out} - s_{
m in})$$

• Stationär, 1 Massenstrom, intern reversibel $(\dot{S}_{\rm erz}=0) \rightarrow$

$$\frac{\dot{Q}_{\text{rev}}}{\dot{m}} = T_G(s_{\text{out}} - s_{\text{in}}) \stackrel{\text{TdS}}{=} (h_{\text{out}} - h_{\text{in}}) - \int_1^2 v \cdot dp$$
$$\frac{\dot{W}_{\text{rev}}}{\dot{m}} = -\int_1^2 v \cdot dp - \frac{w_2^2 - w_1^2}{2} - g(z_2 - z_1)$$

Berechnung von $\int v \cdot dp$ mit $p \cdot v^n = \text{konst.}$

$$-n = 1 \text{ (isotherm): } p_1 v_1 \cdot \ln \left(\frac{p_2}{p_1}\right)^{\text{id.} \subseteq \text{Gas}} RT_1 \cdot \ln \left(\frac{p_2}{p_1}\right)$$
$$-n \neq 1: \frac{n}{n-1} (p_2 v_2 - p_1 v_1) \stackrel{\text{id.} \subseteq \text{Gas}}{=} \frac{n}{n-1} R(T_2 - T_1)$$

Düse/Diffusor: mit $W_{\text{rev}} = 0$ folgt Bernoulli

$$\int_{1}^{2} v \cdot dp + \frac{w_{2}^{2} - w_{1}^{2}}{2} - g(z_{2} - z_{1}) = 0$$

Isotherm

$$\frac{\dot{W}_{\text{rev}}}{\dot{m}} = T(\Delta s) - (p_2 \frac{\dot{V}_2}{\dot{m}} - p_1 \frac{\dot{V}_1}{\dot{m}}) - \frac{w_2^2 - w_1^2}{2} - g(\Delta z)$$

Exergie

- Mass für vorhandene Arbeitsmöglichkeit der Energie
- Anteil des Energieinhaltes eines Systems, der maximal mittels eines reversiblen Prozesses in Arbeit umgewandelt werden kann (bis GGW mit Umgebung)
- Exergie eines isolierten Systems kann nur abnehmen.

Anergie: Energieanteil, der nach Erreichen des Gleichgewichtes mit der Umgebung im System zurückbleibt und nicht mehr in Arbeit umgewandelt werden kann.

Exergieverlust - Guoy-Stodola Theorem:

Die verlorene Arbeitsmöglichkeit ist die Differenz zwischen der maximal möglichen und der effektiv vorhandenen Arbeitsleistung. Die maximal verlorene Arbeit kann als Exergieverlust betrachtet werden.

$$E_{x,\text{rev}} - E_x = E_{x,V} = T_0 \cdot S_{\text{erz}} = W_{\text{Verlust}} = W_{\text{rev}} - W$$

Exergiebilanz für geschlossene Systeme:

$$\Delta E_x = \underbrace{\int \left(1 - \frac{T_0}{T_G}\right) \delta Q}_{E_{x,Q}} - \underbrace{\left(W - p_0 \Delta V\right)}_{E_{x,W}} - \underbrace{T_0 \cdot S_{\text{erz}}}_{E_{x,V}}$$
(36)

 $(E_{x,V}$ ist die exergie Verlust). (T_0, p_0) ist Umgebungszustand (i.d.R. $p_0 = 1$ bar)

- Stationär $\rightarrow \Delta E_x = 0$
- Reversibel $\to E_{x,V} = T_0 \cdot S_{\text{erz}} = 0$
- Keine Arbeit $\rightarrow E_{x,W} = (W p_0 \Delta v) = 0$
- Isobare $\rightarrow E_{x,W} = 0$
- Adiabat $\rightarrow E_{X,Q} = 0$

$$\int \left(1 - \frac{T_0}{T_G}\right) \delta Q = Q_{12} - T_0 \cdot \Delta S$$

Exergie - geschlossenes System:

$$E_x = U - U_0 + p_0(V - V_0) - T_0(S - S_0) + E_K + E_P$$
 (37)

Exergiedifferenz - geschlossenes System

$$\Delta E_x = E_{x,2} - E_{x,1} = \Delta U + p_0 \Delta V - T_0 \Delta S + \Delta E_K + \Delta E_P$$
(38)

Exergieänderungsgeschwindigkeit:

$$\dot{E}_x = \sum \dot{Q}_i \left(1 - \frac{T_0}{T_i} \right) - \left(\dot{W} - p_0 \frac{dV}{dt} \right) - T_0 \cdot \dot{S}_{\text{erz}}$$
(39)

- Guoy-Stodola: $-\dot{E}_{x,\text{irr}} = E_{x,V} = T_0 \cdot S_{\text{erz}}$
- \bullet Stationär, keine Arbeit (Wärmeübergang) \rightarrow

$$\dot{E}_{x,V} = T_0 \cdot \dot{S}_{
m erz} = \sum \left(1 - \frac{T_0}{T_i} \right) \dot{Q}_i = \dot{Q} \left(\frac{T_0}{T_1} - \frac{T_0}{T_2} \right)$$

Exergiebilanz für offene Systeme:

$$\dot{E}_{x} = \sum \dot{m}_{\text{in}} \cdot e_{x,\text{str,in}} - \sum \dot{m}_{\text{out}} \cdot e_{x,\text{str,out}} - (\dot{W}_{S} - p_{0} \frac{dV}{dt}) + \sum \dot{Q}_{i} \left(1 - \frac{T_{0}}{T_{i}} \right) - T_{0} \cdot \dot{S}_{\text{erz}}$$

$$(40)$$

- Reversibel $\to T_0 \cdot \dot{S}_{erz} = 0$
- Stationär ($\dot{E}_x = 0$), 1 Massenstrom \rightarrow

$$\sum \dot{Q}_i \left(1 - \frac{T_0}{T_i} \right) - \dot{W}_S - T_0 \cdot \dot{S}_{erz}$$

$$= \dot{m} (h_2 - h_1 - T_0 (s_2 - s_1) + \Delta E_K + \Delta E_P)$$

$$= \dot{E}_{x, \text{str,out}} - \dot{E}_{x, \text{str,in}}$$

• Stationär, adiabat, keine Leistung \rightarrow

$$\dot{E}_{x,V} = T_0 \cdot \dot{S}_{\mathrm{erz}} = \sum_i \dot{m}_i (e_{x,\mathrm{str,i,in}} - e_{x,\mathrm{str,i,out}})$$

Exergie - offenes System

$$\dot{E}_{x,\text{str}} = \dot{m} \cdot e_{x,\text{str}} = \dot{m} \left[(h - h_0) - T_0(s - s_0) + e_k + e_p \right]$$
(41)

Exergiedifferenz - offenes System

$$\Delta \dot{E}_{x,\text{str}} = \dot{E}_{x,\text{str},2} - \dot{E}_{x,\text{str},1} = \dot{m} \left[(h_2 - h_1) - T_0(s_2 - s_1) + \Delta e_k + \Delta e_p \right]$$
(42)

(Stationär)

Exergetische Wirkungsgrad:

- \bullet bewertet die quantitative Nutzung der Exergie (und damit die qualitative Nutzung der Energie)
- i.A. $(T_N T_0) \uparrow, (T_Q T_N) \downarrow \text{ führt zu } \epsilon \uparrow$
- $\epsilon \to \eta$ führt zu $E_{x,V} \to 0$
- $T_N \to T_Q$ führt zu $S_{\text{erz}} \to 0$ oder $T_0 \to 0$

$$\epsilon = \frac{\text{gen. Exergiestrom}}{\text{zugef. Exergiestrom}} \stackrel{\text{Wärmeströme}}{=} \frac{\dot{Q}_N \cdot \left(1 - \frac{T_0}{T_N}\right)}{\dot{Q}_Q \cdot \left(1 - \frac{T_0}{T_Q}\right)}$$
(43)

Indizes: Q: Quelle, N: Nutz, 0: Umgebung

Beispiel: Exergetische Wirkungsgrad

• Offenes System mit Leistung

$$\epsilon = \frac{\dot{E}_{x,N}}{\dot{m}(e_{x,\mathrm{str},1} - e_{x,\mathrm{str},2})} = \frac{\dot{E}_{x,N}}{\dot{E}_{x,N} + T_0 \cdot S_{\mathrm{erz}}}$$

- Nutzung der Abwärme $\dot{E}_{x,N} = \dot{Q}_A \cdot \left(1 \frac{T_0}{T_A}\right) + \dot{W}_S$
- keine Nutzung der Abwärme $\dot{E}_{x,N} = \dot{W}_S$
- Turbine

$$\epsilon = \frac{\dot{W}_S}{\dot{m}(e_{x,\text{str},1} - e_{x,\text{str},2})} = \frac{\dot{W}_S}{\dot{W}_S + T_0 \cdot S_{\text{erz}}}$$

• Pumpe/Kompressor

$$\begin{split} \epsilon &= \frac{\dot{m}(e_{x,\mathrm{str},1} - e_{x,\mathrm{str},2})}{\dot{W}_{\mathrm{invest}}} = \frac{\dot{W}_{\mathrm{invest}} - E_{x,V}}{\dot{W}_{\mathrm{invest}}} \\ &= \frac{-\dot{W}_S - T_0 \cdot S_{\mathrm{erz}}}{-\dot{W}_S} \, \, {}^{Q_{\mathrm{Verlust}} = 0} \, \frac{(h_2 - h_1) - T_0(s_2 - s_1)}{h_2 - h_1} \end{split}$$

- Wärmetauscher
 - ohne Vermischung

$$\epsilon = \frac{\dot{m}_C(e_{x,\text{str,C,out}} - e_{x,\text{str,C,in}})}{\dot{m}_H(e_{x,\text{str,H,in}} - e_{x,\text{str,H,out}})}$$

- mit Vermischung

$$\epsilon = \frac{\dot{m}_{C,i}(e_{x,\text{str,C,out}} - e_{x,\text{str,C,in}})}{\dot{m}_{H,i}(e_{x,\text{str,H,in}} - e_{x,\text{str,H,out}})}$$

Periodische Tabelle

	1 IA																	18 VIIIA
1	1 1.0079 H Hydrogène	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 4.0025 He Hélium
2	3 6.941 Li Lithium	4 9.0122 Be Beryllium											5 10.811 B Bore	6 12.011 C Carbone	7 14.007 N Azote	8 15.999 O Oxygène	9 18.998 F Fluor	10 20.180 Ne Néon
3	11 22.990 Na Sodium	12 24.305 Mg Magnésium	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	13 26.982 Al Aluminium	14 28.086 Si Silicium	15 30.974 P Phosphore	16 32.065 S Soufre	17 35.453 CI Chlore	18 39.948 Ar Argon
4	19 39.098 K Potassium	20 40.078 Ca Calcium	21 44.956 Sc Scandium	22 47.867 Ti Titane	23 50.942 V Vanadium	24 51.996 Cr Chrome	25 54.938 Mn Manganèse	26 55.845 Fe Fer	27 58.933 Co Cobalt	28 58.693 Ni Nickel	29 63.546 Cu Cuivre	30 65.39 Zn Zinc	31 69.723 Ga Gallium	32 72.64 Ge Germanium	33 74.922 As Arsenic	34 78.96 Se Sélenium	35 79.904 Br Brome	36 83.8 Kr Krypton
5	37 85.468 Rb Rubidium	38 87.62 Sr Strontium	39 88.906 Y Yttrium	40 91.224 Zr Zirconium	41 92.906 Nb Niobium	42 95.94 Mo Molybdène	43 96 Tc Technétium	44 101.07 Ru Ruthénium	45 102.91 Rh Rhodium	46 106.42 Pd Palladium	47 107.87 Ag Argent	48 112.41 Cd Cadmium	49 114.82 In Indium	50 118.71 Sn Etain	51 121.76 Sb Antimoine	52 127.6 Te Tellure	53 126.9 I lode	54 131.29 Xe Xénon
6	55 132.91 Cs Césium	56 137.33 Ba Barium	57-71 La-Lu Lanthanide	72 178.49 Hf Halfnium	73 180.95 Ta Tantale	74 183.84 W Tungstène	75 186.21 Re Rhénium	76 190.23 Os Osmium	77 192.22 Ir Iridium	78 195.08 Pt Platine	79 196.97 Au Or	80 200.59 Hg Mercure	81 204.38 TI Thallium	82 207.2 Pb Plomb	83 208.98 Bi Bismuth	Po Polonium	85 210 At Astatine	86 222 Rn Radon
7	87 223 Fr Francium	88 226 Ra Radium	89-103 Ac-Lr Actinide	104 261 Rf Rutherfordium	105 262 Db Dubnium	106 266 Sg Seaborgium	107 264 Bh Bohrium	108 277	109 268 Mt Meitnerium	110 281 Ds Darmstadtium	111 280 Rg Roentgenium	112 285 Uwb Ununbium	113 284 Uwt Ununtrium	114 289 Uwq Ununquadium	115 288 Ump Ununpentium	116 293 Uwh Ununhexium	117 292 Ums Ununseptium	118 294 Uum Ununoctium
,	Alcalins Alcalino-terreu Metal Métalloïde Non-métal Halogène Gaz noble Lanthanide/Ac			57 138.91 La Lanthanum	58 140.12 Ce Cerium	59 140.91 Pr Praseodymium	60 144.24 Nd Neodymium	61 145 Pm Promethium	62 150.36 Sm Samarium	63 151.96 Eu Europium	64 157.25 Gd Gadolinium	65 158.93 Tb Terbium	66 162.50 Dy Dysprosium	67 164.93 Ho Holmium	68 167.26 Er Erbium	69 168.93 Tm Thulium	70 173.04 Yb Ytterbium	71 174.97 Lu Lutetium
	Z mass Symbole Name	Artificiel		89 227 Ac Actinium	90 232.04 Th Thorium	91 231.04 Pa Protactinium	92 238.03 U Uranium	93 237 Np Neptunium	94 244 Pu Plutonium	95 243 Am Americium	96 247 Cm Curium	97 247 Bk Berkelium	98 251 ©f Californium	99 252 Es Einsteinium	100 257 Fm Fermium	101 258 Md Mendelevium	102 259 № Nobelium	103 262 Lir Lawrencium