THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH4402 Analysis II

Tutorial 4 (Mar 7)

Chapter 4 (Section 4.1)

1. Define $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ by

$$f(x,y) = x^3 - 6xy + y^2.$$

Find all values $c \in \mathbb{R}$ for which the entire level set $f^{-1}(\{c\})$ is a 1-dimensional submanifold of \mathbb{R}^2 .

2. Decide whether the solution set of the system of equations

$$x^3 + y^3 + z^3 = 1$$
 and $x + y + z = 0$

is a 1-dimensional submanifold of \mathbb{R}^3 .

3. Let $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ be of class C^1 and let

$$M = \{(x, y, f(x, y)) : (x, y) \in \mathbb{R}^2\}.$$

Show that M is a 2-dimensional submanifold of \mathbb{R}^3 .

- 4. Prove that any k-dimensional vector subspace of \mathbb{R}^n is a k-dimensional submanifold of \mathbb{R}^n .
- 5. Let $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 2xz 4 = 0\}.$
 - (a) Show that M is a 2-dimensional submanifold of \mathbb{R}^3 .
 - (b) Let $x_0=(2,\sqrt{3},1)\in M.$ Find $T_{x_0}M$ and the equation of the tangent 2-plane at $x_0.$

1