

Noções sobre representação de dados

Disciplina: Algoritmos e Programação Curso: Engenharia de Computação

Professora: Mariza Miola Dosciatti mariza@utfpr.edu.br

Representação dos dados - Bit

O nome "bit" é uma abreviação para dígito binário (*BInary digiT*) em inglês, e ele é representado por sequências de 0 e
 1.

Códigos binários permitem representar dados e informações

no computador.

Representação dos dados - Byte

Agrupamento de 8 bits para representar um caractere (byte).

Representação dos dados — Byte (cont.)

Tabela <u>ASCII</u>

256 combinações de 8 bits (caracteres)

Padrão UNICODE

- Padrão universal de codificação de caracteres.
- Possibilita que todos os caracteres de todas as linguagens escritas possam ser representados (ANDRADE, 2016).
- Fornece uma identificação única para cada caractere.
- Suporta praticamente todos idiomas do mundo.

Representação dos dados - Byte (cont.)

PREFIXO	SÍMBOLO	TAMANHO EM BYTES
byte	byte	1
quilo	KB	1.024
mega	MB	1.048.576
giga	GB	1.073.741.824
tera	ТВ	1.099.511.627.776
peta	PB	1.125.899.906.843.624
exa	EB	1.152.921.504.607.870.976
zeta	ZB	1.180.591.620.718.458.879.424
yotta	YB	1.208.925.819.615.701.892.530.176

Exemplo:

1 bit – armazena 0 caracteres

1 byte – armazena 1 caractere

1 kbyte – armazena 1.024 caracteres

. . .

Representação dos dados — Byte (cont.)

Tornando simples:

Principais:

- Decimal Base 10, dez algarismos distintos: 0 a 9;
- Binário Base 2, dois algarismos distintos: 0 e 1;
- Hexadecimal Base 16, dezesseis algarismos distintos: 0,
 1, 2, 3, 4, 5, 6, 7, 8, 9 do sistema decimal e as letras A, B, C,
 D, E, F. Equivalências: A=10, B=11, C=12, D=13, E=14 e
 F=15.
- São utilizados para o processamento, endereçamento de memória, caracterização dos dados (imagem, som), dentre outras aplicações.

Memória

- A memória RAM (Random Access Memory) é constituída por um número finito de localizações (ou células) nas quais são armazenados os dados.
- É a área de trabalho do computador.

Memória (cont.)

A memória é organizada em posições, como os elementos de uma matriz.
 Um sistema de endereçamento permite identificar cada localização (ou célula) da memória. Esta identificação é conhecida como endereço e possui representação numérica em hexadecimal.

Para escrever ou ler algum dado na memória do computador é necessário fazê-lo

byte a byte*.

*Considerando que a palavra do computador possui 1 byte de tamanho, ou mais, especificamente fazê-lo **palavra** a **palavra**.

Endereço	Conteúdo							6	
A013545D	0	1	0	0	1	1	0	1	Cas
A013545E	0	1	1	0	1	0	1	1	õ
A013545F	0	1	1	1	1	1	1	1	
A0135460	0	0	0	0	0	0	0	0	
A0135461	0	1	0	1	1	1	0	1	
A0135462	1	0	1	1	1	0	1	1	
A0135463	1	0	1	0	0	1	0	1	

Memória (cont.)

- **Memória** armazenar bytes em tempo de execução. Esses bytes compõem os programas e os dados manipulados.
- Representação esquemática da memória (RAM):

0022FF74	0022FF75	0022FF76	0022FF77	0022FF78	0022FF79	
0022FF80	0022FF81	0022FF82	0022FF83	0022FF84	0022FF85	
0022FF86	0022FF87	0022FF88	0022FF89	0022FF90	0022FF91	
†						

Célula de memória (endereço sequencial)-local de armazenamento

Exemplo: palavra "aluno" armazenada na memória de um computador

Endereço	Conteúdo (representação binária)
0040180E	01100001
0040180F	01101100
00401810	01110101
00401811	01101110
00401812	01101111

célula de memória, armazenamento de um b*yte (*um caractere)

Localização na memória

Referências

- Prof Olibário. Bits e Bytes. Disponível em:
 https://www.youtube.com/watch?v=gL1mjc_anJ0&t=0s&ab_channel=DesCOMP_lica%2COliba%21. Acesso em 02 mar. 2022.
- **Tabela ASCII Completa.** Disponível em: https://gdhpress.com.br/wp-content/uploads/2019/07/tabelaASCII.pdf. Acesso em 02 mar. 2022.
- Prof Olibário. Representação de caracteres. Disponível em:
 https://www.youtube.com/watch?v=q5teAs-158o&ab-channel=DesCOMPlica%2COliba%21. Acesso em 02 mar. 2022.
- ANDRADE, Eduardo M. Unicode: conceitos básicos. Disponível em: http://www.devmedia.com.br/unicode-conceitos-basicos/25169. Acesso em 02 mar. 2022.
- Unicode. Unicode. Disponível em: https://pt.wikipedia.org/wiki/Unicode.
 Acesso em 02 mar. 2022.
- **Bases numéricas.** Disponível em: https://dicasdeprogramacao.com.br/as-10-conversoes-numericas-mais-utilizadas-na-computacao/. Acesso em 02 mar. 2022.

Dúvidas

• 555

Representação dos dados

 O sistema binário é a linguagem interna dos computadores eletrônicos, programadores profissionais devem saber como converter de decimal para binário.

- Conversão de Decimal para Binário:
 - Método do teste de resto na divisão por 2:

- Conversão de Decimal para Binário:
 - Método do teste de resto na divisão por 2:

- Conversão de Decimal para Binário outro exemplo:
 - Método do teste de resto na divisão por 2:

- Conversão de Binário para Decimal:
 - Método da notação posicional:

$$= 1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = 254$$

- Conversão de Binário para Decimal outro exemplo:
 - Método da notação posicional:

- Conversão de Decimal para Hexadecimal:
 - Divisões sucessivas por 16 até obter um quociente menor que 16:

$$418 \rightarrow 1A2_{H}$$

Em hexadecimal temos:

$$A = 10 D = 13$$

$$C = 12 F = 15$$

- Conversão de Decimal para Hexadecimal outro exemplo:
 - Divisões sucessivas por 16 até obter um quociente menor que 16:

12412 Decimal = 307C Hexadecimal

Conversão de Hexadecimal para Decimal:

Em hexadecimal temos:

$$A = 10 D = 13$$

$$C = 12 F = 15$$

- Conversão de Binário para Hexadecimal:
 - Basta observar a tabela de correspondência abaixo, cada dígito em hexadecimal corresponde a quatro dígitos binários:

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

- Conversão de Hexadecimal para Binário:
 - Basta observar a tabela de correspondência abaixo, cada dígito em hexadecimal corresponde a quatro dígitos binários:

Hexadecimal	Binário	Hexadecimal	Binário
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

1A60

0001 1010 0110 0000

0001101001100000

1101001100000