Assignment 01

Paul Jones and Matthew Klein Professor Professor Kostas Bekris Design and Analysis of Computer Algorithms (01.198.344)

February 16, 2014

Part A

Problem 1

In each of the following situations indicate whether f = O(g) or $f = \Omega(g)$ or $f = \Theta(g)$:

1.
$$f(n) = \sqrt{2^{7x}}, g(n) = \lg(7^{2x})$$

$$f(n) = \sqrt{2^{7x}} = \sqrt{128^x}$$
$$g(n) = \lg(7^{2x}) = \lg(49^x)$$
$$lg(49^1) \approx 5.6$$
$$\sqrt{128^1} \approx 11.3$$

Notice that both of these functions only grow relative to x.

$$f = \Omega(g)$$

2.
$$f(n) = 2^{nln(n)}, g(n) = n!$$

The factorial, that is n!, function grows much, much faster than 2^n .

$$f = \Omega(g)$$

3.
$$f(n) = \lg(\lg^*(n)), g(n) = \lg^*(\lg(n))$$

$$f = \Theta(q)$$

4.
$$f(n) = \frac{lg(n^2)}{n}, g(n) = lg^*(n)$$

$$f(n) = \frac{\lg(n^2)}{n} = \frac{2\lg(n)}{n}$$

$$f = \Theta(g)$$

5.
$$f(n) = 2^n, g(n) = n^{\lg(n)}$$

This is comparing the exponential function to a function that is less than n^2 .

$$f = \Omega(g)$$

6.
$$f(n) = 2^{\sqrt{\ln(n)}}, g(n) = n(\lg(n)^3)$$

$$f(n) = 2^{\sqrt{n}}, g(n) = (2^n)(n^3)$$

$$f = \Omega g$$

7.
$$f(n) = e^{\cos(x)}, g(n) = \lg(x)$$

$$f = \Omega(g)$$
8. $f(n) = \lg(n^2), g(n) = (\lg(n))^2$
$$f = \Theta(g)$$
9. $f(n) = \sqrt{4n^2 - 12n + 9}, g(n) = n^{\frac{3}{2}}$
$$f = \Theta(g)$$
10. $f(n) = \sum_{k=1}^{n} k, g(n) = (n+2)^2$
$$f = \Omega(g)$$

Problem 2

Algorithm 1: Number_Theoretic_Algorithm (integer n)

```
1 N \leftarrow Random\_Sample(0, 2^n - 1);
 {f 2} if N is even then
       N \leftarrow N+1 /* Worse case, N is odd, 2 ** N - 1. */;
 4 m \leftarrow N \mod n / * worse case same as n */;
 5 for j \leftarrow 0 to m do
       if Greatest_Common_Divisor(j, N) \neq 1 then
          return FALSE; /* GCD is O(n) */
 7
       Compute x, z so that N - 1 = 2^z \cdot x and x is odd;
       y_0 \leftarrow (N-1-j)^x \mod N;
 9
       for i \leftarrow 1 to m do
10
          y_i \leftarrow y_{i-1}^2 \mod N;
11
12
          y_i \leftarrow y_i + y_{i-1} \mod N;
       if Low_Error_Primality_Test(y_m) == FALSE then
13
          return FALSE /* Naive primality test is O(sqrt(n)) */;
15 return TRUE;
```

Compute the asymptotic running time of the above algorithm as a function of its input parameter, given:

- The running times of integer arithmetic operations (e.g., multiplication of two large n-bit numbers is $O(n^2)$).
- \bullet Assume that sampling a number N is an operation linear to the number of bits needed to represent this number.

Do not just present the final result. For each line of pseudo-code indicate the best running time for the corresponding operation given current knowledge from lectures and recitations and then show how the overall running time emerges.

Worse case running n operations with times O(n), O(n), and $O(\sqrt{n})$. That's a run time of $O(2n^2 + n^{\frac{3}{2}})$, resulting in big-O of $O(n^2)$.

Part B

Problem 3

- A tree with m children is $\log_m^{(N+1)} 1$.
- A perfect tree will only be changing based on the m, m' values. Whichever value is larger will run faster.

•

Problem 4

- I found out how to do this using a website, since I didn't understand how to from lecture ? $2^{902} \mod 7$ We can find the original, $2 \mod 7 = 2$ because 7 doesn't go into 2 at all. We can next square, finding $4 \mod 7 = 4$. Divide exponent in half, $2^{451} \mod 7$. Next we can do $4 \mod 7 = 4$ again, and square. $16 \mod 7 = 2$. Once again we cut our exponent, $2^{225} \mod 7$. Now we have $4 \cdot 2 \mod 7 \to 8 \mod 7 = 1$. Next we square our other value, $4 \mod 7 = 4$. We divide exponent again, $2^{112} \mod 7$, and we do $16 \mod 7 = 2$. Another cut, $2^{56} \mod 7$. We can check $2^2 \mod 7 = 4$. Another time we cut, $2^{28} \mod 7$. We need to use previous value again, $16 \mod 7 = 2$. $2^{14} \mod 7$ from another cut, and we use $4 \mod 7 = 4$. We can cut again, $2^7 \mod 7$ and we use $4 \mod 7 = 4$. We are almost done and use $2^3 \mod 7$. We must check $8 \mod 7 = 1$, and now we are on the final step. $2^1 \mod 7 = 4$
- 11 mod 120 = 121, 13 mod 45 = 91, 9 mod 11 = 45. For the last one and third one I used Extended Euclidean Algorithm discussed in class. I also used $p_i = p_{i-2} p_{i-1}q_{i-2} \mod n$.

Third one: 35 mod $77 \rightarrow 77 = 2(35) + 7$ and $p_0 = 0$. Next, 35 = 5(7) + 0 and $p_1 = 1$. However, this can't be solved.

Last one: $11 \mod 1111 \rightarrow 1111 = 101(11) + 0$. This one can't be solved either because we were unable to get past the step, like the third one.

• $\forall y \in [1, x - 1] : \gcd(x, y) = 1$. If we want to find all of the modulo x^m between $0, 1, ..., x^m - 1$ then we can assume there are m total modulo inverses to compute.

Problem 5

Part C

Problem 6

Problem 7

Part D

Problem 8

Problem 9