Topics: exponential functions, compound interest, the number e, exponential functions with base e, growth and decay

Student Learning Outcomes:

- 1. Students will be able to recognize a logarithic function graphically and algebraically.
- 2. Students will be able to evaluate the logarithmic expressions.
- 3. Students will be able to apply basic logarithmic properties.

1 Logarithmic Functions

Let a be a positive real number different from 1. The logarithm of x with base a is defined by $y = \log_a(x)$ if and only if $a^y = x$.

Above, the left-hand equation is said to be in *logarithmic form*, while the right-hand equation is said to be in *exponential form*. The equations are *equivalent*: they have the same solutions.

1. Write in exponential form. model: $\log_a(x) = y$

$$\log_2(16) = 4$$

$$\log_p(13) = y$$

2. Write in logarithmic form.

model:
$$a^y = x$$

$$4^{-3} = \frac{1}{64}$$

$$\pi^t = 9.4$$

- 3. The expression $\log x$, called the *common logarithm*, is shorthand for $\log_{10}(x)$. Write in logarithmic form: $10^{2x+3} = 7$.
- 4. The expression $\log x$, called the *common logarithm*, is shorthand for $\log_{10}(x)$. Write in logarithmic form: $10^{2x+3} = 7$.
- 5. Find the domain of the function $f(x) = \ln(9 6x)$.

2 Evaluating Logarithmic Expressions

6. Find the number, if possible. Rewrite in exponential form, either to solve, or to check.

 $\log_2\left(\frac{1}{8}\right)$

 $\log_3(27)$

 $\log_4(0)$

 $\log_b\left(\frac{1}{b^3}\right)$

Basic Logarithmic Properties Involving One

- 1. $\log_b b = 1$ because 1 is the exponent to which b must be raised to obtain b. $(b^1 = b)$
- **2.** $\log_b 1 = 0$ because 0 is the exponent to which b must be raised to obtain 1. $(b^0 = 1)$

Inverse Properties of Logarithms

For b > 0 and $b \neq 1$,

 $\log_b b^x = x$ The logarithm with base b of b raised to a power equals that power.

 $b^{\log_b x} = x$. b raised to the logarithm with base b of a number equals that number.

7. Evaluate the common and natural logarithms.

 $\log(100,000)$

 $\log(0.001)$

 $\ln(e^4)$

 $\ln\left(\frac{1}{e}\right)$

3 Graphing Logarithmic Functions

8. Graph $\log_2 x$ and $\log_{1/4} x$

Student Learning Outcomes Check

- 1. Can you recognize a logarithic function graphically and algebraically?
- 2. Can you evaluate the logarithmic expressions?
- 3. Are you able to apply basic logarithmic properties?

If any of your answers were no, please ask about these topics in class.