#### Xử lý ảnh

#### Chương 3: Xử lý nâng cao chất lượng ảnh số

Biên soạn: Phạm Văn Sự

Bộ môn Xử lý tín hiệu và Truyền thông Khoa Kỹ thuật Điện tử l Học viện Công nghệ Bưu chính Viễn thông

ver.19a



Biên soan: Pham Văn Sư (PTIT

Xử lý ản l

r.19a 1 / 6

### Xử lý nâng cao chất lượng ảnh số

#### Tổng quan chung

- Thế nào là tăng cường chất lượng ảnh số?
  - Là quá trình thao tác trên một ảnh số sao cho ảnh kết quả phù hợp hơn với muc đích/yêu cầu cu thể so với ảnh gốc.
    - Mục đích/yêu cầu cụ thể: quyết định đầu ra mà các kỹ thuật tăng cường chất lượng ảnh hướng đến
  - Là quá trình có tính chủ quan
    - \* Khai thác khía cạnh sinh lý của hệ thống thị giác
- Thế nào là khôi phục ảnh số?
  - Là quá trình thao tác trên ảnh số làm thay đổi diện mạo của bức ảnh
    - ★ Có phần bao trùm với tăng cường
  - Là quá trình có tính khách quan
    - \* Công thức hóa các tiêu chuẩn về chất lượng để đạt được kết quả mong muốn một cách tối ưu
- Muc tiêu:
  - Làm nổi bật những chi tiết, khía canh cần quan tâm trong bức ảnh
  - ► Loai bỏ nhiễu
  - Làm cho bức ảnh trở nên hấp dẫn hơn về mặt trực giác



Biên soạn: Phạm Văn Sự (PTIT) Xử lý ảnh ver.19a 2 / 6

| Notes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| Notes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| _     |  |  |
|       |  |  |
|       |  |  |

#### Tăng cường chất lượng ảnh

Tổng quan về tăng cường ảnh

- Các kỹ thuật tăng cường ảnh trong miền không gian (spatial domain)
  - ► Sử dụng các phương pháp xử lý trực tiếp trên các điểm ảnh
  - ► Gồm hai nhóm chính: Chuyển đổi mức cường độ sáng (mức xám), Lọc trong miền không gian
- Các kỹ thuật tăng cường ảnh trong miền chuyển đổi (transform domain)



Biên soan: Pham Văn Sư (PTIT

Xử lý ản

ver.19a 3 / 6:

### Các kỹ thuật tăng cường ảnh trong miền không gian

Cơ sở xử lý ảnh trong miền không gian

- ullet Phép toán xử lý ảnh được biểu diễn:  $g(x,y)=\mathcal{T}[f(x,y)]$ 
  - ► f(x,y): ảnh đầu vào
  - $\triangleright g(x,y)$ : ảnh đầu ra
  - T: toán tử tác động lên f, được xác định trên một vùng lân cận của điểm (x,y)
    - $\star$  Tác động trên một ảnh (ảnh tĩnh) hoặc một dãy các ảnh (video)



- Kích thước vùng lân cận (x, y) là  $1 \times 1$ :  $T \equiv$  toán tử điểm ảnh hay hàm biến đổi mức xám
  - $\Rightarrow s = T(r)$  (s, r: mức xám tương ứng của g, f tại (x, y))



Biện soạn: Pham Văn Sư (PTIT)

X iř lý án

ver.19a 4 /

| Notes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| -     |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| Notes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

Toán tử điểm ảnh

Ánh xạ (biến đổi) giá trị mức xám r của điểm ảnh vào thành giá trị mức xám s của điểm ảnh ra theo luật T:

$$s = T(r)$$

với  $s, r \in [0, L-1]$ 

Ba loại hàm biến đổi mức xám cơ bản thường sử dụng để tăng cường ảnh:

- Tuyến tính (biến đổi âm bản, biến đổi identity)
- Lô-ga-rít (biến đổi lô-ga-rít và lô-ga-rít ngược)
- Luật mũ (biến đổi hàm số mũ, biến đổi căn)



Biên soạn: Phạm Văn Sự (PTIT

Xử lý ảnh

r.19a 5/6

## Các kỹ thuật tăng cường ảnh trong miền không gian

Toán tử điểm ảnh: Ảnh âm bản

 $s = intensity_{max} - r$ 



 Đặc biệt thích hợp với việc tăng cường chi tiết trắng hoặc xám trong một nền chủ yếu tối.

D:↑ DI 1/\* C (D.T.E.)

X ir lý ár

ver 19a 6

| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |

Toán tử điểm ảnh: Biến đổi lô-ga-rít

 $s = c \times log(1+r)$  trong đó c: hằng số;  $r \ge 0$ 





- ullet Dải mức xám thấp hẹp o rộng hơn
  - ► ≡ ↑ độ tương phản ở vùng tối
- ullet Dải mức xám cao rộng o hẹp
  - $ightharpoonup \equiv \downarrow$  độ tương phản ở vùng sáng
- Biến đổi lô-ga-rít ngược thực hiện điều ngược lại

• Chú ý: Mọi hàm có dạng tương tự hàm lô-ga-rít đều có hiệu ứng tương tự

## Các kỹ thuật tăng cường ảnh trong miền không gian

Toán tử điểm ảnh: Biến đổi hàm mũ (Biến đổi Gamma)

- $s=cr^{\gamma}$  hoặc có kể đến độ lệch (offset)  $s=c(r+\epsilon)^{\gamma}$ 
  - c,  $\gamma$ : hằng số dương;  $\epsilon$ : độ lệch (do vấn đề cân chỉnh hiển thị)



- $\bullet$   $\gamma < 1$ :
  - ► Tăng dải động cho vùng mức xám thấp, giảm dải động cho vùng xám mức cao
- - ► Hiệu ứng ngược lại với trường hợp
- ullet  $\gamma$  thay đổi để có các dạng đặc tuyến mong muốn khác nhau
- $c = \gamma = 1$ : Không có sư thay đổi, giữa ảnh vào - ra (identity transformation)

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

Toán tử điểm ảnh: Phân ngưỡng

$$s = \begin{cases} intensity_{max} & \text{n\'eu } r \geq T \\ intensity_{min} & \text{n\'eu } r < T \end{cases} \text{ hoặc } s = \{r \geq T?intensity_{max} : intensity_{min} \}$$

với T là ngưỡng.



- Nếu T=const,  $intensity_{min}=0$ ,  $intensity_{max}=1$  (255): Ẩnh thu được là ảnh nhị phân
- Rất hữu ích trong phân vùng ảnh

Biên soan: Pham Văn Sư (PTIT)

Xử lý ảnh

/er.19a 9/

# Các kỹ thuật tăng cường ảnh trong miền không gian

Toán tử điểm ảnh: Tăng giảm độ sáng

$$s = r + c$$

ullet c>0: ảnh sáng lên; c<0: ảnh tối đi

$$s = c \times r$$

- Hệ số c>0



Biên soan: Pham Văn Sư (PTIT)

X iř lý án

|       |  |  | <br> |
|-------|--|--|------|
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
|       |  |  |      |
| Notes |  |  |      |

Toán tử điểm ảnh: Sử dụng hàm biến đổi phân đoạn tuyến tính

- Có thể sử dụng hàm bất kỳ tự định nghĩa làm hàm biến đổi
  - Có thể sử dụng các hàm toán học khác nhau trên các phân đoạn khác nhau để đạt được mong muốn





Biên soan: Pham Văn Sư (PTIT

Xử lý ảnh

r.19a 11 /

## Các kỹ thuật tăng cường ảnh trong miền không gian

Xử lý lược đồ xám: Lược đồ xám?

- ullet Coi các giá trị mức xám của một bức ảnh là một đại lượng ngẫu nhiên  $r_k$ 
  - $r_k \in \{0,...,L-1\}$ ; với ảnh  $M \times N$ : có MN giá trị  $r_k$ ; số điểm ảnh có giá trị  $r_k$ :
  - ightharpoonup  $\Rightarrow$  Xác suất  $p(r_k)$  của giá trị mức xám  $r_k$ :  $p(r_k) = \frac{n_k}{MN}$
  - $h(r_k) = n_k$ : lược đồ xám (histogram), hay biểu đồ tần xuất mức xám
  - $p(r_k) = \frac{n_k}{MN}$ : lược đồ xám chuẩn hóa



- Lược đồ xám mô tả tổng thể phân bố mức xám trong ảnh
  - Là cơ sở của nhiều kỹ thuật xử lý ảnh trong miền không gian



| Biên soạn: Phạm Văn Sự (PTIT) | Xử lý ảnh | ver.19a 12 / 6 |
|-------------------------------|-----------|----------------|
|-------------------------------|-----------|----------------|

|       | <br> | <br> | <br> |
|-------|------|------|------|
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
|       |      |      |      |
| Notes |      |      |      |
| Votes |      |      |      |
| Notes |      |      |      |

Xử lý lược đồ xám: Cân bằng lược đồ xám

Mục tiêu là cần tìm hàm biến đổi T(): s = T(r) sao cho:

$$p_r(r_k) \stackrel{\mathsf{T}()}{\longrightarrow} p_s(s_k)$$
 phân bố đều (uniform)



$$\hat{s}_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) = \frac{L-1}{MN} \sum_{j=0}^k n_j$$
 $s_k = round(\hat{s}_k)$  với  $k = 0, 1, 2, ..., L-1$ 

- ullet Ånh cân bằng lý tưởng là ảnh có  $p_s(s_k)=p_s(s_m)\ orall s_k, s_m \Rightarrow n_k=n_m\ orall k
  eq m$
- Ånh sau cân bằng chưa chắc đã là ảnh lý tưởng

Biên soan: Pham Văn Sư (PTIT

Xử lý ản h

er.19a 13/6

### Các kỹ thuật tăng cường ảnh trong miền không gian

Xử lý lược đồ xám: Cân bằng lược đồ xám (2) - Số mức xám ra xác định

**Input**: Ảnh I ( $M \times N$ ), n: số mức xám mới của ảnh sau cân bằng (thường bằng số mức xám của ảnh gốc)

Output: Ånh cân bằng I'

- Tính số điểm ảnh trung bình của mỗi mức xám sau khi cân bằng:  $TB = \frac{MN}{n}$
- ② Lặp cho đến hết các giá trị mức xám có trong ảnh gốc:
  - ullet  $P_k = \sum_{j=0}^k h(r_j)$  (tổng tần xuất các giá trị mức xám  $\leq r_k$ )
  - $s_k = max \left( 0, round\left( \frac{P_k}{TB} \right) 1 \right)$



Siên soạn: Phạm Văn Sự (PTIT) Xử lý ảnh ver.19a 14 ,

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| lotes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

Xử lý lược đồ xám: Xử lý lược đồ xám cục bộ

- Xử lý lược đồ xám toàn cục:
  - ► Hàm biến đổi T() dựa trên phân bố mức xám trên toàn bộ ảnh
  - Các phương pháp đã nghiên cứu trong các phần trước thuộc lớp này
- Xử lý lược đồ xám cục bô:
  - Xác định hàm biến đổi T() dựa trên phân bố mức xám trong một vùng nhỏ lân cân điểm ảnh





## Các kỹ thuật tăng cường ảnh trong miền không gian

Xử lý lược đồ xám: Sử dụng đặc trưng thống kê lược đồ xám tăng cường ảnh

- Đặc trưng thống kê toàn cục:
  - Giá trị trung bình mức xám (mean, average intensity) của ảnh:  $m = \sum_{j=0}^{L-1} r_j p(r_j) \text{ hoặc tính trực tiếp từ ảnh } m = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)$

  - Moment bậc n quanh giá trị trung bình:  $\mu_n(r) = \sum_{j=0}^{L-1} (r_j m)^n p(r_j)$ \* Moment bậc 2 hay phương sai:  $\mu_2(r) = \sigma^2 = \sum_{j=0}^{L-1} (r_j m)^2 p(r_j)$  hoặc tính trực tiếp từ ảnh  $\sigma^2 = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [f(x,y) - m]^2$
- Đặc trưng thống kê cục bộ:
  - Giá trị trung bình mức xám trong một vùng lân cận  $S_{xy}$  của điểm (x,y):  $m_{S_{xy}} = \sum_{j=0}^{L-1} r_j p_{S_{xy}}(r_j)$  hoặc tính trực tiếp từ vùng ảnh:
    - $m_{S_{xy}} = \frac{1}{|S_{xy}|} \sum_{x \in S_{xy}} \sum_{y \in S_{xy}} f(x, y)$ 
      - $\star$   $p_{S_{xv}}$ : lược đồ xám của vùng  $S_{xv}$
  - Phương sai mức xám trong vùng lân cận  $S_{xy}$  của điểm (x,y):  $\sigma_{S_{xy}}^2 = \sum_{j=0}^{L-1} (r_j - m_{S_{xy}})^2 \rho_{S_{xy}}(r_j) \text{ hoặc tính trực tiếp từ vùng ảnh}$   $\sigma_{S_{xy}}^2 = \frac{1}{|S_{xy}|} \sum_{x \in S_{xy}} \sum_{y \in S_{xy}} [f(x,y) - m]^2$
- Kỳ vọng (giá trị trung bình): đo lường giá trị trung bình mức xám của ảnh (vùng ảnh)
- Phương sai (độ lệch chuẩn): đo lường độ tương phản của ảnh (vùng ảnh)

Notes Notes

Xử lý lược đồ xám: Xử lý bó cụm

- Thực hiện giảm số mức xám của ảnh : nhóm các mức xám có giá trị gần nhau thành một nhóm (một cụm)
  - ► Thường có nhiều nhóm, kích thước mỗi nhóm là khác nhau
    - ★ Nếu có 2 nhóm ⇒ Tách ngưỡng
  - ▶ Để đơn giản: kích thước các nhóm được lấy bằng nhau = Bsize
    - ★  $g(x,y) = \lfloor \frac{f(x,y)}{Bsize} \rfloor \times Bsize$





Biên soan: Pham Văn Sư (PTIT

Xử lý ản

er.19a 17/

## Các kỹ thuật tăng cường ảnh trong miền không gian

Xử lý lược đồ xám: Biến đổi mức xám tổng thể

- ullet Cho: ảnh I, hàm biến đổi  $T()\Rightarrow$  ảnh  $I'\Rightarrow$  lược đồ xám của ảnh biến đổi
- Thực tế, cho: lược đồ xám của ảnh I và hàm biến đổi  $T()\Rightarrow$  ?? lược đồ xám của ảnh biến đổi

Input: Lược đồ xám của ảnh f:h(r); Hàm biến đổi T()

Output: Lược đồ xám ảnh kết quả I'

- Các mức xám của ảnh kết quả I':  $s_j = T(r_j)$
- ② Lược đồ xám của ảnh kết quả:  $h(s_j) = \sum_{r_i \in T^{-1}(s_i)} h(r_j)$



Biên soạn: Phạm Văn Sự (PTIT)

X ír lý án

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| Notes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

Xử lý lược đồ xám: Áp dụng tìm tách ngưỡng tự động

- Xử lý lược đồ xám có thể cho phép áp dụng vào tìm tách ngưỡng tự động
  - ► Theo nguyên lý trong vật lý: Một vật thể có thể tách làm 2 phần nếu tổng độ lệch trong từng phần là tối thiểu
- Còn gọi là thuật toán Otsu

**Input**: Ảnh I kích thước  $M \times N$ ; số mức xám (kể cả mức khuyết thiếu): L;  $P_j$ : số điểm ảnh có giá trị mức xám  $\leq r_j$ 

Output: Mức ngưỡng của ảnh

- **1** Tính moment trung bình các mức xám có giá trị  $\leq r_j$ :  $m_j = \frac{1}{P_i} \sum_{k=0}^j r_k h(r_k)$
- lacksquare Tính giá trị hàm  $f:r_j\mapsto f(r_j)$ :  $f(r_j)=rac{P_j}{MN-P_j}[m_j-m_{L-1}]^2$
- **1** Ngưỡng  $\theta$  được xác định sao cho  $f(\theta) = \max_{0 < r_i < L-1} \{f(r_i)\}$



Biên soạn: Phạm Văn Sự (PTIT

Xử lý ár

er.19a 19/

#### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Toán tử vùng lân cận

- Phép toán xử lý ảnh được biểu diễn: g(x,y) = T[f(x,y)]
  - ightharpoonup f(x,y): ảnh đầu vào
  - $\Rightarrow g(x,y)$ : anh đầu ra
  - T: toán tử tác động lên f, được xác định trên một vùng lân cận của điểm (x,y)
    - \* Tác động trên một vùng các điểm ảnh xung quanh điểm (x,y)
- $\Rightarrow$  giá trị mức xám tại (x,y) của ảnh đầu ra phụ thuộc vào toán tử T() và vùng lân cận bao gồm cả điểm (x,y) của ảnh gốc



- Vùng lân cận thường là vùng hình chữ nhật xung quanh tâm là điểm (x,y)
  - Kích thước vùng có thể bất kỳ, << kích thước ảnh</p>
- Hoặc có thể có bất kỳ hình dạng nào đó
- Toán tử vùng lân cận (còn gọi là toán tử không gian) ứng dụng:
  - ▶ Biến đổi kích thước ảnh, Nắn không gian ảnh, Các phép lọc tăng cường ảnh, •

Biên soan: Pham Văn Sư (PTIT

X ír lý án

| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |

Lọc trong miền không gian: Toán tử vùng lân cận - Cửa sổ di chuyển



- ullet Vùng lân cận có tâm (x,y) xác định một "cửa sổ" trong miền không gian
- Quá trình thực hiện: các điểm tâm (x,y) di chuyển khắp các điểm ảnh gốc; toán tử T() tác động trên các điểm ảnh trong vùng xác định bởi "cửa sổ" để tạo điểm ảnh đầu ra.
  - ▶ ≡ "Cửa sổ" di chuyển khắp ảnh ⇒ Phép cửa sổ di chuyển, phép biến đổi ເບື້ອກີ

Biên soan: Pham Văn Sư (PTIT

Xử lý ản

r.19a 21 /

### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Cở sở của phép lọc trong miền không gian

- Toán tử vùng lân cận (còn gọi là toán tử không gian) tương tự như toán tử loc
  - ▶ Nếu T() là một hàm tuyến tính  $\Rightarrow$  phép lọc không gian tuyến tính; ngược lại  $\Rightarrow$  phép lọc không gian phi tuyến
  - ► "Cửa sổ" với các hệ số xác định: bộ lọc không gian, mặt nạ, nhân, mẫu



- Tại mỗi điểm (x,y):  $g(x,y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \dots + w(0,0)f(x,y) + \dots + w(1,1)f(x+1,y+1)$ 
  - ► Hệ số tâm bộ lọc w(0,0) được xếp trùng khít điểm (x,y)
- $\Rightarrow g(x,y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(x+i,y)$ 
  - Kích thước cửa sổ m = 2a n = 2b + 1

n soạn: Phạm Văn Sự (PTIT) Xử lý ảnh

| Notes |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
| Notes |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

Lọc trong miền không gian: Phép nhân tương quan, nhân chập trong không gian

 Phép nhân tương quan: Thực hiện dịch "cửa sổ" trên khắp ảnh, kết quả tại mỗi bước là tổng của các tích các giá trị các điểm tương ứng bao trùm nhau

• 
$$w(x,y) \star f(x,y) = \sum_{i=-a}^{a} \sum_{i=-b}^{b} w(i,j) f(x+i,y+j)$$

- Phép nhân chập: Cơ chế tương tự phép tương quan, tuy nhiên trước khi thực hiện phép nhân chập, "bộ lọc"" phải được lật (quay) 180°
  - $w(x,y) * f(x,y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(x-i,y-j)$ 
    - ★ Dấu "-": f(x,y) được quay (lật)  $180^{\circ}$
- ullet Nếu "bộ lọc" đối xứng  $\Rightarrow$  kết quả phép nhân tương quan  $\equiv$  phép nhân chập
- Mặc định các phép lọc ảnh trong không gian sử dụng công thức nhân tương quan
- Biểu diễn véc-tơ của phép lọc không gian:
  - $ightharpoonup R = w_1 z_{j1} + w_2 z_{j2} + \ldots + w_{mn} z_{jmn} = \sum_{k=1}^{mn} w_k z_{jk} = \mathbf{w}^T \mathbf{z}_j$ 
    - \*  $w_k$   $(k=1,2,\ldots,mn)$ : các hệ số của bộ lọc không gian;  $z_{jk}$ : các giá triệm trong vùng tác động bởi bộ lọc



Biên soạn: Phạm Văn Sự (PTIT

Xử lý án

er.19a 23/

### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Xây dựng bộ lọc không gian

- Xây dựng bộ lọc không gian tuyến tính kích thước  $m \times n$ :
  - ightharpoonup ightharpoonup Xác định cụ thể  $m \times n$  hệ số của bộ lọc
    - Các hệ số bộ lọc được lựa chọn dựa trên công việc (ứng dụng, tác vụ) cụ thể mà bộ lọc cần hướng đến để giải quyết
    - \* Ví dụ: Rời rạc hóa từ bộ lọc tương tự có cùng mục đích mong muốn







- (a) 2D Gaussian Filter
- (b) Rời rạc hóa
- (c) 5x5 GF



ên soan: Pham Văn Sư (PTIT)

Xử lý ảnh

| Notes |      |      |  |
|-------|------|------|--|
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
| Notes |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       | <br> | <br> |  |
|       |      |      |  |
|       |      |      |  |

Lọc trong miền không gian: Bộ lọc tuyến tính làm trơn ảnh - Bộ lọc trung bình

- Giá trị mức xám điểm ảnh ra là trung bình giá trị mức xám của một vùng lân cận ảnh trong vùng "cửa sổ" lọc
  - ► ≡ Bộ lọc trung bình, ≡ Bộ lọc thông thấp
- Tác dụng:
  - Độ sắc nét vùng chuyển giữa các mức xám bị giảm (bị làm mờ đi)
     \* Giảm nhiễu
  - Làm mờ các biên ảnh





(a) Ảnh gốc

(b) Loc TB 15x15

- Ứng dụng chủ yếu trong việc loại bỏ các chi tiết không thích hợp trong ảnh
  - Loại bỏ (làm mờ) các chi tiết (vùng ảnh) có kích thước nhỏ hơn kích thước của cửa sổ loc
- Tương tự phép tích phân không gian

Biên soan: Pham Văn Sư (PTIT)

Xử lý ản

er.19a 25/

### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Bộ lọc tuyến tính làm trơn ảnh - Bộ lọc trung bình - "Hệ số bộ lọc"

 Sử dụng giá trị trung bình thông thường

|               | 1 | 1 | 1 |
|---------------|---|---|---|
| $\frac{1}{9}$ | 1 | 1 | 1 |
|               | 1 | 1 | 1 |

|                | 1 | 2 | 1 |
|----------------|---|---|---|
| $\frac{1}{16}$ | 2 | 4 | 2 |
|                | 1 | 2 | 1 |

- Các hệ số khách nhau có trọng số
  - ▶ Bộ lọc làm trơn ảnh hiệu quả hơn
  - ightharpoonup ightharpoonup Bộ lọc trung bình có trọng số

Ånh I ( $M \times N$ ) được lọc với bộ lọc trung bình có trọng số  $\mathbf{w}$  ( $m \times n$ ) (m, n lẻ):

$$g(x,y) = \frac{\sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j)f(x+i,y+j)}{\sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j)}$$

với x = 0, 2, ..., M - 1, y = 0, 2, ..., N - 1, m = 2a + 1, n = 2b + 1

Biên soạn: Phạm Văn Sự (PTIT)

Xử lý ảnh

ver.19a 26 /

| otes |  |  |  |
|------|--|--|--|
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
| otes |  |  |  |

Lọc trong miền không gian: Kỹ thuật lọc trung bình (với ngưỡng  $\theta$ )

**Input**: Ånh / kích thước  $M \times N$ , cửa số lọc **w** kích thước  $m \times n$  (m = 2a + 1, n=2b+1: le), ngưỡng  $\theta$ 

Output: Ảnh kết quả l'

- Với mỗi điểm ảnh  $(x,y) \in I$  có giá trị mức xám f(x,y), giá trị trung bình với cửa số w:
  - $\hat{f}(x,y) = \frac{\sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(x+i,y+j)}{\sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j)}$
- ② Điểm tương ứng  $\in I'$  có giá trị mức xám g(x,y):
  - Nếu  $|f(x,y) \hat{f}(x,y)| \le \theta \Rightarrow g(x,y) = f(x,y)$ ; ngược lại  $g(x,y) = \hat{f}(x,y)$



### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Kỹ thuật lọc trung bình theo k giá trị gần nhất (với ngưỡng  $\theta$ )

**Input**: Ånh  $I(M \times N)$ , cửa số lọc  $\mathbf{w}(m \times n)$  (m = 2a + 1, n = 2b + 1: lẻ), ngưỡng  $\theta$ , số giá trị  $\hat{k}$ 

Output: Ẩnh kết quả I'

- Với mỗi điểm ảnh  $(x,y) \in I$  có giá trị mức xám f(x,y), điểm tương ứng  $\in I'$ có giá trị mức xám g(x, y):
  - Xác định k giá trị mức xám gần f(x,y) nhất:  $S_{xy}$   $\hat{f}(x,y) = \frac{\sum_{i \in S_{xy}} \sum_{j \in S_{xy}} w(i,j)f(x+i,y+j)}{\sum_{i \in S_{xy}} \sum_{j \in S_{xy}} w(i,j)}$
- Nếu  $|f(x,y) \hat{f}(x,y)| \le \theta \Rightarrow g(x,y) = f(x,y)$ ; ngược lại  $g(x,y) = \hat{f}(x,y)$
- $k > |\mathbf{w}| \Rightarrow K\tilde{y}$  thuật lọc trung bình (với ngưỡng  $\theta$ )
- $k = 1 \Rightarrow \text{Ånh ra không thay đổi so với ảnh gốc}$
- ullet  $\Rightarrow$  Chất lượng ảnh lọc phụ thuộc vào giá trị của k



| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |

Lọc trong miền không gian: Bộ lọc bậc thống kê

- Bộ lọc bậc thống kê (Oder-statistic filter)≡ bộ lọc không tuyến tính
  - Đáp ứng phụ thuộc vào bậc (thứ hạng) của các điểm ảnh nằm trong vùng bao trùm bởi bô loc
  - ► Các bộ lọc trung vị, max, min, ...
- Bộ lọc trung vị (median filter) là một bộ lọc điển hình thuộc lớp bộ lọc này
  - ► Là bộ lọc phổ biến
  - Trong một số trường hợp, bộ lọc trung vị cho kết quả tốt hơn bộ lọc trung bình:
    - Khả năng giảm nhiễu tốt với một số loại nhiễu nhất định (nhiễu xung impulse noise còn gọi là nhiễu muối-tiêu - salt-and-pepper noise)
    - \* Việc làm mờ ảnh ít hơn so với sử dụng mạch lọc tuyến tính làm tron ảnh



Biên soan: Pham Văn Sư (PTIT)

Xử lý ản l

.19a 29 /

### Các kỹ thuật tăng cường ảnh trong miền không gian

Loc trong miền không gian: Bô loc bậc thống kế - Bô loc trung vi

Giá trị trung vị  $\xi$  của một tập các giá trị là giá trị mà một nửa các giá trị trong tập nhỏ hơn hoặc bằng  $\xi$  và một nửa các giá trị trong tập lớn hơn hoặc bằng  $\xi$ .

- ullet Tập giá trị  $\{x_1,x_2,\ldots,x_n\}$  đơn điệu tăng (hoặc giảm).
  - $\xi = x_{(n+1)/2}$  nếu n lẻ;  $\xi = x_{n/2}$  hoặc  $x_{n/2+1}$  nếu n chẵn



**Input**: Ånh  $I(M \times N)$ ; bộ lọc  $\mathbf{w}(m \times n)(m = 2a + 1, n = 2b + 1)$ : lẻ)

Output: Ẩnh kết quả I'

- Với mỗi điểm ảnh  $(x,y) \in I$  có mức xám f(x,y):
  - g(x,y) = giá trị trung vị của các điểm ảnh lân cận <math>(x,y) (kể cả điểm (x,y)) bị bao trùm bởi bộ lọc
- Các điểm có giá trị mức xám rất khác biệt sẽ bị kéo về các giá trị gần giống

Biên soạn: Phạm Văn Sự (PTIT

Xử lý ản l

| Votes |  |  |  |
|-------|--|--|--|
| votes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

Lọc trong miền không gian: Bộ lọc bậc thống kê - Bộ lọc trung vị (với ngưỡng  $\theta$ )

**Input**: Ảnh  $I(M \times N)$ ; bộ lọc  $\mathbf{w}(m \times n)$  (m = 2a + 1, n = 2b + 1: lẻ), ngưỡng  $\theta$  **Output**: Ảnh kết quả I'

- Với mỗi điểm ảnh  $(x,y) \in I$  có mức xám f(x,y):
  - $\xi=$  giá trị trung vị của các điểm ảnh lân cận (x,y) (kể cả điểm (x,y)) bị bao trùm bởi bộ lọc
  - Nếu  $|f(x,y)-\xi| \leq heta$  thì g(x,y)=f(x,y) ; ngược lại  $g(x,y)=\xi$



Biên soan: Pham Văn Sư (PTIT

Xử lý ản l

r.19a 31 /

### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Bộ lọc bậc thống kê - Bộ lọc max, min

- Bộ lọc trung vị lấy giá trị trung vị ứng với biểu diễn 50% của một tập có thứ hang các số
- $\bullet \Rightarrow$  Nếu giá trị ứng với biểu diễn 100% của tập có thứ hạng các số  $\Rightarrow$  Bộ lọc max
  - ▶ Đáp ứng:  $R = max\{z_j k | k = 1, 2, ..., mn\}$
  - ▶ Điểm ảnh ra:  $g(x,y) = \max_{(i,j) \in S_{xy}} f(i,j)$  (với  $S_{xy}$  là vùng ảnh bao trùm bởi bộ lọc)
- ullet  $\Rightarrow$  Nếu giá trị ứng với biểu diễn 0% của tập có thứ hạng các số  $\Rightarrow$  Bộ lọc min
  - Đáp ứng:  $R = min\{z_j k | k = 1, 2, ..., mn\}$
  - ▶ Điểm ảnh ra:  $g(x,y) = min_{(i,j) \in S_{xy}} f(i,j)$  (với  $S_{xy}$  là vùng ảnh bao trùm bởi bộ lọc)

Riện soạn: Pham Văn Sư (PTIT) Xử lý ảnh ver 10a 32

| Notes |      |      |  |
|-------|------|------|--|
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
| lotes |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       |      |      |  |
|       | <br> | <br> |  |
|       |      |      |  |

Lọc trong miền không gian: Các bộ lọc tăng tính sắc nét của ảnh

- Mục tiêu chính của việc tăng tính sắc nét của ảnh là làm nổi bật những chuyển đổi trong mức xám
  - ► Loại bỏ phần mờ trong ảnh
  - Làm nổi các biên (cạnh) trong ảnh
  - ► Tăng cường độ tương phản cục bộ
- Úng dụng rộng rãi: in ấn điện tử, xử lý ảnh y tế, kiểm tra công nghiệp, tự động dẫn đường trong các hệ thống quân sự
- Dựa trên phép đạo hàm không gian
- Tương tự bộ lọc thông cao (highpass filter)



Biên soan: Pham Văn Sư (PTIT)

Xử lý ản l

r.19a 33 /

### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Các bộ lọc tăng tính sắc nét của ảnh - Cơ sở

- Đạo hàm của một hàm cho biết tốc độ thay đổi của hàm đó
- Các đạo hàm của hàm dữ liệu số (hàm rời rạc) được định nghĩa theo vi sai
- Đạo hàm bậc một:  $\frac{\partial f}{\partial x} = f(x+1) f(x)$
- Đạo hàm bậc hai:  $\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) 2f(x)$





Biên soạn: Phạm Văn Sự (PTIT

Xử lý án l

| <br> |  |  |
|------|--|--|
| <br> |  |  |
| <br> |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
| <br> |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
|      |  |  |
| <br> |  |  |
| <br> |  |  |
|      |  |  |
|      |  |  |
|      |  |  |

Lọc trong miền không gian: Các bộ lọc tăng tính sắc nét của ảnh - Bộ lọc đẳng hướng Laplace

- Toán tử Laplace với hàm ảnh f(x,y):  $\nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$ 
  - Dång hướng (isotropic operator)
  - ► Tuyến tính
- Theo true x:  $\frac{\partial^2 f(x,y)}{\partial x^2} = f(x+1,y) + f(x-1,y) 2f(x,y)$
- Theo true y:  $\frac{\partial^2 f(x,y)}{\partial y^2} = f(x,y+1) + f(x,y-1) 2f(x,y)$
- $\bullet \Rightarrow \nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) 4f(x,y)$

| 0 | 1  | 0 |
|---|----|---|
| 1 | -4 | 1 |
| 0 | 1  | 0 |

| 1 | 1  | 1 |
|---|----|---|
| 1 | -8 | 1 |
| 1 | 1  | 1 |

| 0  | -1 | 0  |
|----|----|----|
| -1 | 4  | -1 |
| 0  | -1 | 0  |

| -1 | -1 | -1 |
|----|----|----|
| -1 | 8  | -1 |
| -1 | -1 | -1 |



Biên soan: Pham Văn Sư (PTIT

Xử lý ánh

.19a 35 / 6

### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Các bộ lọc tăng tính sắc nét của ảnh - Bộ lọc đẳng hướng Laplace -Tăng cường ảnh

- Khôi phục các đặc trưng ảnh nền trong khi vẫn giữ hiệu ứng sắc nét của ảnh thu được bởi bộ lọc Laplace:
  - $g(x,y) = f(x,y) + c\nabla^2 f(x,y)$ 
    - \* c=-1 nếu sử dụng định nghĩa đạo hàm dương  $(f(x+1,y)+f(x-1,y)-2f(x,y));\ c=1$  nếu định nghĩa đạo hàm ngược lại



Origina Image



Laplacian Filtered Image



Sharpened



Biên soạn: Phạm Văn Sự (PTIT)

X ír lý án l

| Notes |  |  |
|-------|--|--|
| Notes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| Notes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

Lọc trong miền không gian: Các bộ lọc tăng tính sắc nét của ảnh - Bộ lọc đẳng hướng Laplace -Tăng cường ảnh - Hệ số bộ lọc

• Tổng hợp lại toàn bộ quá trình lọc tăng cường ảnh bằng bộ lọc Laplace:

| • | $g(x,y) = f(x,y) - \nabla^2 f(x,y) =$ |
|---|---------------------------------------|
|   | f(x,y)-[f(x+1,y)+f(x-1,y)+            |
|   | f(x, y+1)+f(x, y-1)-4f(x, y)          |

| 0  | -1 | 0  |
|----|----|----|
| -1 | 5  | -1 |
| 0  | -1 | 0  |

$$g(x,y) = 5f(x,y) - f(x+1,y) - f(x-1,y) - f(x,y+1) - f(x,y-1)$$







ver.19a 37 / 61

#### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Các bộ lọc tăng tính sắc nét của ảnh - Tạo mặt nạ mờ và lọc tăng cường

- Một quá trình đã được sử dụng rất lâu trong ngành công nghiệp in và xuất bản nhằm tăng tính sắc nét của hình ảnh:
  - Lấy ảnh gỗc trừ đi một phiên bản mờ (làm trơn) của chính ảnh đó
  - ► ≜ Tao mặt na mờ (unsharp masking)
- Quá trình tao mặt na mờ:
  - 1 Làm mờ ảnh gốc
  - Lấy ảnh gốc trừ đi phiên bản ảnh đã làm mờ: Kết quả là sự khác biệt được gọi là mặt na (mask)
  - Ong mặt nạ vào ảnh gốc



- Gọi  $\bar{f}(x, y)$  là phiên bản ảnh được làm mờ (làm tron)
  - $\dot{\text{Mặt nạ: }} g_{mask}(x,y) = f(x,y) \bar{f}(x,y)$
- Ånh cuối:  $g(x,y) = f(x,y) + k \times g_{mask}(x,y)$ 
  - k: trong số (thường > 0); k = 1: quá trình tạo mặt na mờ; k > 1: quá trình loc tăng cường (highboost filtering)

| Votes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |

Lọc trong miền không gian: Các bộ lọc tăng tính sắc nét của ảnh - Bộ lọc Gradient

• Gradient của một hàm f(x,y) tại điểm (x,y):

$$abla f(x,y) \equiv \operatorname{grad}(f) \equiv \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} rac{\partial f}{\partial x} \\ rac{\partial f}{\partial y} \end{bmatrix}$$

- Véc-tơ Gradient hướng theo chiều có sự biến thiên lớn nhất của hàm f(x,y)tại điểm (x, y)
- Độ lớn (còn gọi là độ dài) của véc-tơ Gradient  $\nabla f$  tại (x, y):

$$M(x,y) = mag(\nabla f) = \sqrt{G_x^2 + G_y^2}$$

- Là giá trị độ lớn của tốc độ biến đổi theo hướng véc-tơ Gradient tại điểm (x,y)
- ► Có cùng kích thước với ảnh gốc ⇒ Ẩnh Gradient (hoặc Gradient)
- Đơn giản hóa tính toán:  $M(x,y) \approx |G_x| + |G_y|$
- ullet Góc pha của véc-tơ Gradient abla f tại (x,y):  $\Phi(x,y)=arg(
  abla f)=atan(x,y)$



#### Các kỹ thuật tăng cường ảnh trong miền không gian

Lọc trong miền không gian: Các bộ lọc tăng tính sắc nét của ảnh - Bộ lọc Gradient - Xây dựng bộ lọc

 $f(x-1,y-1) \mid f(x-1,y) \mid f(x-1,y+1)$ f(x, y+1)f(x,y)

f(x, y - 1) $f(x+1,y-1) \mid f(x+1,y) \mid f(x+1,y+1)$ 

| $z_1$                 | $z_2$                 | <i>z</i> <sub>3</sub> |
|-----------------------|-----------------------|-----------------------|
| <i>Z</i> <sub>4</sub> | <i>Z</i> <sub>5</sub> | <i>z</i> <sub>6</sub> |
| <b>Z</b> 7            | <b>Z</b> 8            | <b>Z</b> 9            |

- Xấp xỉ  $G_x$  và  $G_y$  cho vùng  $3 \times 3$  lân cận xung quanh  $z_5$  (tức (x,y)):  $G_x = \frac{\partial f}{\partial x} = (z_7 + 2z_8 + z_9) (z_1 + 2z_2 + z_3)$   $G_y = \frac{\partial f}{\partial y} = (z_3 + 2z_6 + z_9) (z_1 + 2z_4 + z_7)$

 $G_{x} =$ 

| -1 | -2 | -1 |
|----|----|----|
| 0  | 0  | 0  |
| 1  | 2  | 1  |

| -1 | 0 | 1 |
|----|---|---|
| -2 | 0 | 2 |
| -1 | 0 | 1 |



| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| lotes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

Lọc trong miền không gian: Các phương pháp tăng cường sử dụng kết hợp các kỹ thuật

- Việc tăng cường tốt ảnh không thể chỉ bằng cách sử dụng một kỹ thuật đơn
   lẻ
- Thường với một tác vụ, cần phải kết hợp nhiều phương pháp khác nhau nhằm bổ trợ cho nhau để đạt được một kết quả mong muốn





Biên soan: Pham Văn Sư (PTIT

Xử lý ảnh

.19a 41 /

## Tăng cường chất lượng ảnh trong miền tần số

Cơ sở xử lý trong miền tần số: 2-D DFT

Ånh số f(x,y) ( $M \times N$ ) có biến đổi Fourier rời rạc (DFT):

$$F(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})}$$

với  $u=0,1,\ldots,M-1$  và  $v=0,1,\ldots,N-1$ 

Hàm chuyển đổi F(u,v) của một ảnh số f(x,y)  $(M\times N)$ , f(x,y) có thể khôi phục được bằng cách sử dụng biến đổi Fourier rời rạc ngược (IDFT):

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(\frac{ux}{M} + \frac{vy}{N})}$$

với x = 0, 1, ..., M-1 và y = 0, 1, ..., N-1

ST ACT

Biên soạn: Phạm Văn Sự (PTIT)

Xử lý ảnh

ver.19a 42 /

| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |
| Notes |  |  |  |
| Votes |  |  |  |
| Notes |  |  |  |
| dotes |  |  |  |
| Jotes |  |  |  |
| Jotes |  |  |  |
| Jotes |  |  |  |
| Votes |  |  |  |
| Votes |  |  |  |
| Notes |  |  |  |

Cơ sở xử lý trong miền tần số: Tích chập 2-D

Tích chập vòng 2-D

$$f(x,y) * h(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$$

với x = 0, 1, ..., M - 1 và y = 0, 1, ..., N - 1

- $f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$ 
  - Nếu thực hiện tích chập ảnh bằng phép nhân trong miền tần số: phải chú ý đến tính tuần hoàn của các IDFT
  - Cần thực hiện thêm 0 (zero padding) để tránh kết quả sai
    - ★ Với f(x,y)  $(A \times B)$  và h(x,y)  $(C \times D)$

$$f_p(x,y) = \begin{cases} f(x,y) & 0 \le x \le A - 1 \text{ và } 0 \le y \le B - 1 \\ 0 & A \le x \le P \text{hoặc } B \le y \le Q \end{cases} \quad h_p(x,y) = \begin{cases} h(x,y) & 0 \le x \le C - 1 \text{ và } 0 \le y \le D - 1 \\ 0 & C \le x \le P \text{ hoặc } D \le y \le Q \end{cases}$$

- ★ P > A + C 1, Q > B + D 1
- \* Nếu cả hai ảnh vào cùng kích thước  $M \times N \Rightarrow P \ge 2M 1$ ,  $Q \ge 2N 1$
- $\star$  Các ảnh sau khi thêm 0 có cùng kích thước  $P \times Q$
- \* P, Q thường là số chẵn nhỏ nhất thỏa mãn điều kiện trên.



ver.19a 43 / 61



## Tăng cường chất lượng ảnh trong miền tần số

Cơ sở xử lý trong miền tần số: Đặc trưng của ảnh trong miền tần số

- Phổ biên đô của ảnh:
  - ▶ Thành phần tại gốc (u = v = 0): thành phần một chiều,  $\propto$  giá trị trung bình các mức xám của ảnh
  - Vùng gần xung quanh gốc: vùng tần số thấp ⇔ những thành phần mức xám thay đổi nhỏ
  - ► Vùng xa hơn quanh gốc: vùng tần số thấp ⇔ những thành phần mức xám thay đổi nhanh hơn (biên ảnh, những thành phần có mức xám thay đổi đột ngột)



• Những tương ứng có thể cho phép các phép xử lý mong muốn dễ dàng hơn



Notes

Cơ sở xử lý trong miền tần số: Xử lý ảnh trong miền tần số



- Tính DFT của ảnh:  $F(u, v) = FT\{f(x, y)\}$
- Nhân F(u, v) với hàm lọc mong muốn H(u, v): G(u, v) = F(u, v)H(u, v)
  - $\rightarrow$  H(u, v): hàm loc, bộ loc, hàm truyền đạt bộ loc
  - ► Phép nhân là nhân mảng (.\* trong Matlab)
- Tính IDFT của kết quả lọc:  $g(x,y) = IFT\{G(u,v)\}$



## Tăng cường chất lượng ảnh trong miền tần số

Cơ sở xử lý trong miền tần số: Xử lý ảnh trong miền tần số - Tóm tắt các bước

**Input**:  $Anh f(x, y) (M \times N)$ , đặc tính bộ lọc mong muốn

**Output**: Ånh mong muốn g(x,y)

- lacktriangle Mở rộng ảnh bằng cách thêm 0 o ảnh có kích thước P=2M,  $Q=2N \Rightarrow$  $f_p(x,y)$
- ② Dịch gốc tọa độ ảnh:  $\hat{f}(x,y) = (-1)^{(x+y)} f_p(x,y)$
- **3** $Tính <math>F(u, v) = FT\{\hat{f}(x, y)\}$
- Xây dựng hàm lọc thực, đối xứng H(u, v)  $(P \times Q)$  có tâm (P/2, Q/2)
- **5**Tính <math>G(u, v) = F(u, v)H(u, v)
- lack Tái tạo ảnh kết quả  $g_{
  ho}(x,y)=\Big(\Re\{\mathit{IFT}\{G(u,v)\}\}\Big)(-1)^{(x+y)}$
- 1 Tách ảnh kết quả g(x,y)  $(M \times N)$



| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |
| Votes |  |  |  |
| Notes |  |  |  |

Cơ sở xử lý trong miền tần số: Sự tương ứng lọc trong miền không gian và miền tần số

- Nếu  $f(x,y) = \delta(x,y) \Rightarrow F(u,v) = FT\{f(x,y)\} = 1$ 
  - $g(x,y) = IFT\{H(u,v)\}$
- $\bullet \Rightarrow h(x,y) \Leftrightarrow H(u,v)$ 
  - h(x,y): bộ lọc không gian, đáp ứng xung
    - $\star$  Số phần tử thường hữu hạn  $\Rightarrow$  FIR
- Thực hiện nhân chập không gian thuận lợi hơn
- Khái niệm lọc trực quan hơn khi xem xét trong miền tần số
  - ightharpoonup  $\Rightarrow$  Xác định bộ lọc mong muốn trong miền tần số  $\to$  IDFT  $\to$  Kết quả như là hình mẫu để xây dựng các mặt nạ bộ lọc không gian.







Biên soan: Pham Văn Sư (PTIT

Xử lý án

r.19a 47 /

## Tăng cường chất lượng ảnh trong miền tần số

Làm trơn ảnh bằng các bộ lọc trong miền tần số: Bộ lọc thông thấp lý tưởng

Trong miền tần số, làm trơn (làm mờ) ảnh có thể thực hiện bằng cách làm suy giảm/loại bỏ các thành phần phổ tần số cao

- ullet  $\Rightarrow$  Sử dụng các bộ lọc thông thấp
- Bộ lọc thông thấp lý tưởng:

$$H_{LP}(u,v) = egin{cases} 1 & ext{n\'eu} \ D(u,v) \leq D_0 \ 0 & ext{n\'eu} \ D(u,v) > D_0 \end{cases}$$

- $D(u, v) = \sqrt{(u P/2)^2 + (v Q/2)^2}$
- $ightharpoonup D_0$ : hằng số dương;  $P,\ Q$ : kích thước ảnh









Biên soạn: Phạm Văn Sự (PTIT)

X iř lý ánh

| Nata  |  |  |
|-------|--|--|
| Notes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| Notes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

Làm sắc nét ảnh bằng các bộ lọc trong miền tần số: Bộ lọc thông cao lý tưởng

Trong miền tần số, việc làm tăng độ sắc nét của ảnh có thể thực hiện bằng cách làm suy giảm/loại bỏ các thành phần tần thấp

- ullet  $\Rightarrow$  Sử dụng các bộ lọc thông cao
- Bộ lọc thông cao lý tưởng:

$$H_{HP}(u,v) = egin{cases} 0 & ext{n\'eu} \ D(u,v) \leq D_0 \ 1 & ext{n\'eu} \ D(u,v) > D_0 \end{cases}$$

- $D(u, v) = \sqrt{(u P/2)^2 + (v Q/2)^2}$
- ► D<sub>0</sub>: hằng số dương; P, Q: kích thước ảnh
- $H_{HP}(u,v) = 1 H_{LP}(u,v)$





Biên soan: Pham Văn Sư (PTIT

Xử lý ảnh

r.19a 49 / (

#### Khôi phục ảnh

Mô hình quá trình suy giảm ảnh, khôi phục ảnh



- f(x,y): ảnh gốc; g(x,y): ảnh bị suy giảm;  $\eta(x,y)$ : nhiễu cộng;  $\hat{f}(x,y)$ : ảnh khôi phục; H (hay h(x,y)) hàm suy giảm ảnh
  - ► Trong miền không gian  $g(x,y) = h(x,y) * f(x,y) + \eta(x,y)$ 
    - \* Nếu chỉ có nhiễu tác động:  $g(x,y) = f(x,y) + \eta(x,y)$
  - ▶ Trong miền tần số: G(u, v) = H(u, v)F(u, v) + N(u, v)
    - $\star$  Nếu chỉ có nhiễu tác động: G(u,v)=F(u,v)+N(u,v)

Cho ảnh bị suy giảm g(x,y), thông tin (một chút, hoặc hoàn toàn, hoặc không một chút nào) về hàm suy giảm H và nhiễu cộng  $\eta(x,y)$ . Mục đích của việc khôi phục ảnh là có được ảnh ước lượng  $\hat{f}(x,y)$  của ảnh gốc sao cho gần (giống) với ảnh gốc nhất có thể

• Càng nhiều thông tin về H và  $\eta \to \text{khả năng khôi phục } \hat{f}(x,y)$  càng gần (giống) với f(x,y)

Biên soạn: Phạm Văn Sự (PTIT)

X ir lý ár

ver 19a 50 /

| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |

#### Nhiễu

- Nhiễu trong ảnh số được coi là sự thay đổi (dịch chuyển) đột ngột của tín hiệu ảnh trên một khoảng rất nhỏ.
- Các nguồn nhiễu chính trong ảnh số phát sinh trong quá trình thu nhân và/hoặc truyền nhận ảnh
- Các loai nhiễu:
  - ► Nhiễu do thiết bị thu nhân ảnh
  - ► Nhiễu ngẫu nhiên độc lập
  - ► Nhiễu do vật quan sát
- Các tính chất không gian và tần số của nhiễu:
  - ▶ Nhiễu có chu kỳ không gian; nhiễu độc lập với tọa độ không gian (không tương quan với ảnh)
  - Nhiễu trắng; nhiễu màu
- Có nhiều mô hình cho nhiễu trong ảnh số:
  - Nhiễu Gausse, nhiễu Rayleigh, nhiễu xung (nhiễu muối-tiêu), nhiễu Erlangey (nhiễu gamma), nhiễu hàm mũ, nhiễu phân bố đều.



Notes

ver.19a 51 / 61

#### Khôi phục ảnh

Ước lương tham số của nhiễu

- Nhiễu có chu kỳ  $\Rightarrow$  ước lượng tham số thông qua phân tích phổ
- Nếu hệ thống thu nhận ảnh có thể tái xây dựng được ⇒ nhiễu hệ thống có thể ước lương được bằng cách chup ảnh các mẫu
- Nếu chỉ có ảnh ⇒ khảo sát lược đồ xám vùng ảnh đồng nhất (vùng ảnh nền)
  - ► Hình dạng lược đồ xám thường khá gần với hình dạng hàm mật độ phân bố
  - Một dải ảnh (phần ảnh) S có lược đồ xám chuẩn hóa  $p_S(z_i)$  $(i=0,1,\ldots,L-1)$ 

    - \*  $\bar{z} = \sum_{i=0}^{L-1} z_i p_S(z_i)$ \*  $\sigma^2 = \sum_{i=0}^{L-1} (z_i \bar{z})^2 p_S(z_i)$



| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |
| Votes |  |  |  |
| Votes |  |  |  |
| Votes |  |  |  |
| Notes |  |  |  |

Khôi phục ảnh chỉ bị suy giảm bởi nhiễu: Các bộ lọc không gian

- Ånh chỉ bị suy giảm bởi nhiễu:
  - $g(x,y) = f(x,y) + \eta(x,y)$  hay G(u,v) = F(u,v) + N(u,v)
- ullet Nếu biết nhiễu  $\Rightarrow$  khôi phục ảnh  $\hat{f}(x,y)=g(x,y)-\eta(x,y)$
- Nhiễu thường là không biết ⇒ loại nhiễu khỏi (bằng phép trừ) không khả thi
  - ► Ước lượng nhiễu ⇒ giảm nhỏ được nhiễu



Biên soan: Pham Văn Sư (PTIT

Xử lý ảnh

r19a 53/

#### Khôi phục ảnh

Khôi phục ảnh chỉ bị suy giảm bởi nhiễu: Các bộ lọc không gian - Các bộ lọc trung bình

Trung bình số học:

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(i,j) \in S_{xy}} g(i,j)$$

Trung bình hình học:

$$\hat{f}(x,y) = \sqrt[mn]{\prod_{(i,j)\in S_{xy}} g(i,j)}$$

Trung bình hài:

$$\hat{f}(x,y) = \frac{mn}{\sum_{(i,j) \in S_{xy}} \frac{1}{g(i,j)}}$$

Trung bình phản hài:

$$\hat{f}(x,y) = \frac{\sum_{(i,j) \in S_{xy}} g(i,j)^{Q+1}}{\sum_{(i,j) \in S_{xy}} g(i,j)^{Q}}$$



Biên soan: Pham Văn Sư (PTIT)

X iř lý án

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| Notes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

Khôi phục ảnh chỉ bị suy giảm bởi nhiễu: Các bộ lọc không gian - Các bộ lọc bậc thống kê

Trung vi

$$\hat{f}(x,y) = \underset{(i,j) \in S_{xy}}{median} \{g(i,j)\}$$

Max, min:

$$\hat{f}(x,y) = \max_{(i,j) \in S_{xy}} \{g(i,j)\}\$$

$$\hat{f}(x,y) = \min_{(i,j) \in S_{xy}} \{g(i,j)\}\$$

Diểm giữa:

$$\hat{f}(x,y) = \frac{1}{2} \left( \max_{(i,j) \in S_{xy}} \{g(i,j)\} + \min_{(i,j) \in S_{xy}} \{g(i,j)\} \right)$$

Trung bình cắt alpha:

$$\hat{f}(x,y) = \frac{1}{mn-d} \sum_{(i,j) \in S_{xy}} g_r(i,j)$$



Biên soan: Pham Văn Sư (PTIT)

Xử lý ảnh

ver.19a 55 / 61

#### Khôi phục ảnh

Khôi phục ảnh suy giảm

• Ẩnh bị suy giảm bởi hàm suy giảm h(x,y) (hay H(u,v)) và nhiễu  $\eta(x,y)$ :

• 
$$g(x,y) = h(x,y) * f(x,y) + \eta(x,y)$$
 hay  $G(u,v) = H(u,v)F(u,v) + N(u,v)$ 

- Chỉ xem xét hàm sự suy giảm tuyến tính bất biến với vị trí và nhiễu cộng
- Mong muốn tìm ra các bộ lọc có tác động ngược lại với hàm suy giảm  $\Rightarrow$  ảnh khôi phục
  - Uớc lượng hàm suy giảm
  - é
    áp dụng quá trình tác động ngược



Biên soạn: Phạm Văn Sự (PTIT) Xử lý ảnh ver.19a 56 /

| Notes |  |  |  |  |
|-------|--|--|--|--|
| Notes |  |  |  |  |

Khôi phục ảnh suy giảm: Lọc đảo

- Cách đơn giản nhất để khôi phục ảnh khi biết/ước lượng được hàm suy giảm H(u, v) là thực hiện lọc đảo trực tiếp.
  - $\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$
  - $\Rightarrow$   $\hat{F}(u,v) = H^{-1}(u,v)G(u,v)$  với  $H^{-1}(u,v)$  là bộ lọc đảo (hàm ngược của H(u,v))
    - \* Dù biết hoặc có thể ước lượng chính xác H(u, v), ảnh khôi phục  $\hat{F}(u, v)$  cũng không chính xác bằng ảnh gốc F(u, v)
    - \* Nếu H(u,v) có giá trị bằng 0 hoặc rất nhỏ  $\Rightarrow \frac{N(u,v)}{H(u,v)}$  sẽ trở thành thành phần chính trong ảnh khôi phục ★ ⇒ Cần hạn chế các tần số bộ lọc xung quanh vùng gần gốc
- Thích hợp với ảnh suy giảm (chỉ) bởi đặc tuyến của hệ thống thu nhận ảnh





#### Khôi phục ảnh

Khôi phục ảnh suy giảm: Lọc giả đảo

• Khắc phục trường hợp H(u, v) có giá trị nhỏ sẽ tăng cường nhiễu trong ảnh của phương pháp lọc đảo

$$H^{-1}(u,v) = egin{cases} rac{1}{H(u,v)} & ext{ n\'eu } |H(u,v)| \geq \epsilon \ 0 & ext{ trường hợp còn lại} \end{cases}$$



| Notes |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
| Notes |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

Khôi phục ảnh suy giảm: Bộ lọc Wiener (1/2)

- Kết hợp cả thông tin về hàm suy giảm và đặc trưng thống kê của nhiễu vào quá trình khôi phục ảnh.
- ullet Tìm kiếm một ước lượng  $\hat{f}$  của ảnh f sao cho trung bình bình phương lỗi (MSE: mean square error) giữa chúng là nhỏ nhất

 $\hat{f} = \arg\min\{E\{(f - \hat{f})^2\}\}\$ 

$$\hat{F}(u,v) = \left[ \frac{H * (u,v)S_f(u,v)}{S_f(u,v)|H(u,v)|^2 + S_{\eta}(u,v)} \right] G(u,v) 
= \left[ \frac{H * (u,v)S_f(u,v)}{|H(u,v)|^2 + S_{\eta}(u,v)/S_f(u,v)} \right] G(u,v) 
= \left[ \frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_{\eta}(u,v)/S_f(u,v)} \right] G(u,v)$$



► H\*(u,v): liên hợp phức của H(u,v);  $|H(u,v)|^2 = H*(u,v)H(u,v)$ ;

Biến soan: Pham Văn Sư (PTIT)

Ver.19a 59 / 61 công suất của ảnh gốc

#### Khôi phục ảnh

Khôi phục ảnh suy giảm: Bộ lọc Wiener (2/2)

- [] ≜ Bộ lọc Wiener, bộ lọc tối thiểu hóa lỗi trung bình bình phương (MMSE), bộ lọc lỗi trung bình bình phương ít nhất (LSE)
  - ightharpoonup Nếu không có nhiễu ightharpoonup Bộ lọc đảo
- Phổ công suất của ảnh gốc thường hiếm khi biết hoặc không thể ước lượng chính xác

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}\right] G(u,v)$$

\* K: hằng số xác định



| lotes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| lotes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

Khôi phục ảnh suy giảm: Đánh giá chất lượng ảnh khôi phục

• Tỷ số công suất trung bình tín hiệu trên nhiễu (SNR):

$$SNR = \frac{\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} |F(u, v)|^2}{\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} |N(u, v)|^2}$$

\* Là một đơn vị đo quan trọng đánh giá chất lượng các thuật toán khôi phục ảnh

• Trung bình bình phương sai số (MSE):

$$MSE = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left( f(x,y) - \hat{f}(x,y) \right)^{2}$$

• Nếu coi ảnh khôi phục  $\hat{f}(x,y)$  là tín hiệu, sự khác biệt giữa ảnh gốc và ảnh khôi phục là nhiễu,

$$SNR = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{f}^{2}(x,y)}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left( f(x,y) - \hat{f}(x,y) \right)^{2}}$$



|                               | $\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left( f(x,y) - \frac{1}{2} \right) $ | -f(x,y) | ₹ <u>(</u> E | YANNSO  |
|-------------------------------|--------------------------------------------------------------------------|---------|--------------|---------|
| Biên soạn: Phạm Văn Sự (PTIT) | Xử lý ảnh                                                                |         | ver.19a      | 61 / 61 |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |
|                               |                                                                          |         |              |         |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| Votes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |