Касьяненко Вера (Р3220, Теор.Вероятн. 5.1)

ИДЗ-19.2 (вариант 5)

Дано:

Дана таблица распределения 100 автомашин по затратам на перевозки X (ден. ед.) и по протяженности маршрутов перевозок Y (км). Известно, что между X и Y существует линейная корреляционная зависимость. Требуется:

- а) Найти уравнение прямой регрессии у и х;
- b) Построить уравнение эмпирической линии регрессии и случайные точки выборки (X, Y)

X	64	72	80	88	96	104	112	120	m_x
1,0	6	2	4	-	-	_	_	-	12
1,3	I	3	8	6	-	ı	ı	I	17
1,6	-	-	-	8	14	5	-	-	27
1,9	-	-	-	7	8	9	-	-	24
2,2	-	-	-	-	4	5	6	-	15
2,5	-	-	-	-	-	1	1	3	5
m_y	6	5	12	21	26	20	7	3	100

Решение:

Для подсчета числовых характеристик (выборочных средних \bar{x} и \bar{y} , выборочных средних квадратичных отклонений S_x и S_y и выборочного корреляционного момента S_{xy}) составляем расчетную таблицу. При заполнении таблицы осуществляем контроль по строкам и столбцам:

$$\sum_{i=1}^{6} m_{x_i} = \sum_{j=1}^{8} m_{y_j} = n = 100$$

$$\sum_{i=1}^{6} \sum_{j=1}^{8} m_{ij} x_i = \sum_{i=1}^{6} m_{x_i} x_i = 168,4$$

$$\sum_{i=1}^{6} \sum_{j=1}^{8} m_{ij} y_i = \sum_{j=1}^{8} m_{y_j} y_j = 9272$$

$$\sum_{i=1}^{6} \left(x_i \sum_{j=1}^{8} m_{ij} y_j \right) = \sum_{j=1}^{8} \left(y_j \sum_{i=1}^{6} m_{ij} x_i \right) = 16071,2$$

Вычисляем выборочные средние \bar{x} и \bar{y} , $i = \overline{1,6}$; $j = \overline{1,8}$:

$$\bar{x} = \frac{\sum \sum m_{ij} x_i}{n} = \frac{\sum m_{x_i} x_i}{n} = \frac{168,4}{100} = 1,684$$
$$\bar{y} = \frac{\sum m_{y_j} y_j}{n} = \frac{9272}{100} = 92,72$$

Выборочные дисперсии находим по формулам:

$$s_x^2 = \frac{1}{n-1} \left(\sum m_{x_i} x_i^2 - \frac{1}{n} \left(\sum m_{x_i} x_i \right)^2 \right) = \frac{1}{99} \left(300 - \frac{1}{100} (168,4)^2 \right) = 0,1658$$

$$s_y^2 = \frac{1}{n-1} \left(\sum m_{y_j} y_j^2 - \frac{1}{n} \left(\sum m_{y_j} y_j \right)^2 \right) = \frac{1}{99} \left(876864 - \frac{1}{100} (9272)^2 \right) = 173,3753$$

	j	1	2	3	4	5	6	7	8	9	10	11	12	13
i	Y	64	72	80	88	96	104	112	120	m_{x}	$m_x x_i$	$\sum_{j=1}^{k} m_{ij} y_j$	$m_{x_i}x_i^2$	$x_i \sum_{j=1}^k m_{ij} y_j$
1	1,0	6	2	4	-	-	-	-	-	12	12	848	12	848
2	1,3	_	3	8	6	-	-	-	-	17	22,1	1384	29	1799,2
3	1,6	_	-	-	8	14	5	-	-	27	43,2	2568	69	4108,8
4	1,9	-	-	-	7	8	9	-	-	24	45,6	2320	87	4408
5	2,2	_	_	-	-	4	5	6	-	15	33	1576	73	3467,2
6	2,5	-	-	-	-	-	1	1	3	5	12,5	576	31	1440
7	m_y	6	5	12	21	26	20	7	3	100	168,4	9272	300	16071,2
8	$m_y y_j$	384	360	960	1848	2496	2080	784	360	9272	-	-	_	-
9	$\sum_{i=1}^{m} m_{x_i} x_i$	6	5,9	14,4	33,9	46,4	38,6	15,7	7,5	168,4	ı	ı	ı	-
10	$m_{ij}y_j^2$	24576	25920	76800	162624	239616	216320	87808	43200	876864	-	-	-	-
11	$y_j \sum_{i=1}^m m_{x_i} x_i$	384	424,8	1152	2983,2	4454,4	4014,4	1758,4	900	16071,2	-	-	-	-

Корреляционный момент вычисляем по формуле:

$$S_{xy} = \frac{1}{n-1} \left(\sum \sum m_{ij} x_i y_j - \frac{1}{n} \left(\sum m_{x_i} x_i \right) \left(\sum m_{y_j} y_j \right) \right) = \frac{1}{99} \left(16071, 2 - \frac{1}{100} \left(168, 4 * 9272 \right) \right) \approx 4,6177$$

Оценкой теоретической линии регрессии является эмпирическая линия регрессии, уравнение которой имеет вид

$$y = \bar{y} + r_{xy} \frac{S_y}{S_x} (x - \bar{x}),$$

где $S_x = \sqrt{0,1658} \approx 0,407185; S_y = \sqrt{173,3753} \approx 13,16721;$

$$r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{4,6177}{0,407185 * 13,16721} = \frac{4,6177}{5,36149} \approx 0,861272$$

Составляем уравнение эмпирической линии регрессии у на х:

$$y = 92,72 + 0,861272 * \frac{13,16721}{0,407185}(x - 1,684)$$

$$y = 27,8511x + 45,81875$$

