Neural Networks and Deep Learning

Autoencoders

MOTIVATION

Drawing lines in space

Feature space

$$\hat{y} = \operatorname{sgn}(\mathbf{w}^T \mathbf{x} + \mathbf{b})$$

Drawing lines in space

Drawing lines in space

Embedding

Feature space

Embedding space

Classifier

An **embedding** is a new (intermediate) representation of our original features (data).

The final **embedding space** is typically a lower-dimensional space than our original features.

The embedding process converts our data in a way that it is easier to solve the problem at hand.

Embedding

Embedding
Feature extraction
Projecting data into a new space
Representation learning
Feature design / learning

Are all equivalent expressions (in our scenario)

•••

Feature design / learning can be driven by data and/or previous knowledge

and reused across models

Embedding

In deep neural networks, we repeatedly embed (project) our data into new spaces

The right embedding to use, depends on the problem we are solving.

In Deep Learning, this process is end-to-end (task driven), and data driven

Reusing embeddings

Learning features is data hungry... How can we get an embedding when we lack a lot of data?

Same pattern...

Supervised Learning

Semi-Supervised Learning

Unsupervised learning

Learning the underlying structure of the data over non-labelled samples, would make it easier to learn a supervised model afterwards

Unsupervised learning

A different idea, is to somehow create a supervisory signal from data that do not have annotations...

How can we create useful embeddings without annotated data?

AUTOENCODERS

Training a neural network

Given a training set: $(\mathbf{x}^{(1)}, \mathbf{y}^{(1)})$, $(\mathbf{x}^{(2)}, \mathbf{y}^{(2)})$, $(\mathbf{x}^{(3)}, \mathbf{y}^{(3)})$, ...

Adjust parameters **W** (of every layer) to make: $\hat{\mathbf{y}}^{(i)} = f_{\mathbf{W}}(\mathbf{x}^{(i)}) \approx \mathbf{y}^{(i)}$

Autoencoder

Given a training set without annotations: $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, $\mathbf{x}^{(3)}$, ...

Adjust parameters \mathbf{W} (of every layer) to make: $f_{\mathbf{W}}(\mathbf{x}^{(i)}) \approx \mathbf{x}^{(i)}$

How can we learn a useful representation (z)?

Types of autoencoders

(a) Shallow undercomplete

(b) Shallow overcomplete

Autoencoders taxonomy

The network is trained to output (reconstruct) the input.

This has a trivial solution (learn the identify function) unless we

- constrain the number of units in embedding layer (compressed representation)
- constrain the embedding layer to be sparse
- introduce a small change in the input and learn to undo it
- force some particular distribution for the embeddings

Compression – learning embeddings of lower dimensionality

COMPRESSION

Motivation

Think about the handwritten digits (MNIST) data

- 28 x 28 bitmaps
- Each pixel can either be black or white: {0, 1}⁷⁸⁴ possible events
- We will never see most of the events
- The actual digits are a tiny fraction of the possible events
- It should be possible to describe our data with less features

Autoencoders: compression

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L^{(i)}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L(f_{\mathbf{w}}(\mathbf{x}^{(i)}), \mathbf{y}^{(i)})$$

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L^{(i)}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L\left(g_{\mathbf{w}_2}\left(\mathbf{h}_{\mathbf{w_1}}(\mathbf{x}^{(i)})\right), \mathbf{x}^{(i)}\right)$$

Autoencoders: compression

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L^{(i)}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L\left(g_{\mathbf{w}_2}\left(h_{\mathbf{w_1}}(\mathbf{x}^{(i)})\right), \mathbf{x}^{(i)}\right)$$

$$L\left(g_{\mathbf{w_2}}\left(\mathbf{h_{w_1}}(\mathbf{x}^{(i)})\right), \mathbf{x}^{(i)}\right) = L_{MSE} \|\mathbf{x}^{(i)} - \hat{\mathbf{x}}^{(i)}\|$$

Or with L2 regularization:

$$L\left(g_{\mathbf{w}_{2}}\left(h_{\mathbf{w}_{1}}(\mathbf{x}^{(i)})\right),\mathbf{x}^{(i)}\right) = L_{MSE} \|\mathbf{x}^{(i)} - \hat{\mathbf{x}}^{(i)}\| + \lambda \sum_{k} \omega_{k}^{2}$$
$$\mathbf{w}_{1},\mathbf{w}_{2} = \{\omega_{k}\}$$

If encoder and decoder are symmetric, we can tie weights (use the same weights) on both sides to decrease number of parameters

$$\mathbf{w_1} = \mathbf{w_2}^T$$

Going deeper

Comparison with PCA

Example: Document retrieval

words

Example: Final 2D embeddings

Different colours indicate different document clases – not used during training

O PyTorch Basic Autoencoder

```
class autoencoder (nn. Module):
    def init (self):
        super(autoencoder, self). init ()
        self.encoder = nn.Sequential(
            nn.Linear(28 * 28, 128), nn.ReLU(True),
            nn.Linear(128, 64), nn.ReLU(True),
            nn.Linear(64, 12), nn.ReLU(True),
            nn.Linear(12, 3))
        self.decoder = nn.Sequential(
            nn.Linear(3, 12), nn.ReLU(True),
            nn.Linear(12, 64), nn.ReLU(True),
            nn.Linear(64, 128), nn.ReLU(True),
            nn.Linear(128, 28 * 28),
            nn.Tanh())
    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x
model = autoencoder().cuda()
criterion = nn.MSELoss()
```

Convolutional Autoencoders

Convolutional Autoencoders

Unpooling

Unpooling

MaxUnpool2d() - see the documentation

A transposed convolution (also called fractionally strided convolution or deconvolution) is the reverse process of convolution.

w_1	w_2	w_3
W_4	w_5	W_6
w_7	w_8	W ₉

The easiest way of thinking about it is to take each value in your input and distribute it (using the corresponding weights of a kernel) to a local region in the output

A transposed convolution (also called fractionally strided convolution or deconvolution) is the reverse process of convolution.

w_1	W_2	W_3
w_4	w_5	W_6
w_7	w_8	W ₉

The easiest way of thinking about it is to take each value in your input and distribute it (using the corresponding weights of a kernel) to a local region in the output

A transposed convolution (also called fractionally strided convolution or deconvolution) is the reverse process of convolution.

w_1	W_2	W_3
w_4	w_5	W_6
w_7	w_8	W ₉

Note how "distributing" the input values ends up being equivalent to applying a normal convolution with the transposed kernel

A transposed convolution (also called fractionally strided convolution or deconvolution) is the reverse process of convolution.

w_1	w_2	W_3
w_4	w_5	W_6
w_7	w_8	W ₉

Applying a forward convolution with a transposed kernel, actually results in a much smaller output. What we are really doing here is equivalent to this transposed convolution but with full padding

Fractionally strided convolutions

The transpose of a convolution with stride s>1 involves an equivalent convolution with s<1. This is why transposed convolutions are sometimes called *fractionally strided convolutions*.

In the case of transposed convolutions invert the input and output sizes in the formula we defined earlier, and you get: o = (n-1)s - 2p + f

Transponsed Convolutions (Deconvolutions)

Convolution:

$$n_{W/H}^{[l]} = \frac{n_{W/H}^{[l-1]} + 2p - f}{s} + 1$$

Transposed Convolution:

$$n_{W/H}^{[l]} = (n_{W/H}^{[l-1]} - 1)s - 2p + f$$

Filter size: j

Stride: s

O PyTorch

Transposed Convolutions

ConvTranspose2d() - see the documentation

Autoencoders for weight initialisation

Makes sense if labeled training data is scarce, but unlabeled data is easy to get

Autoencoders for weight initialisation

Makes sense if labeled training data is scarce, but unlabeled data is easy to get

O PyTorch

model = autoencoder().cuda()

criterion = nn.MSELoss()

Convolutional AE

```
class autoencoder (nn. Module):
                                                       #Input: b, 1, 28, 28
    def init (self):
        super(autoencoder, self). init ()
        self.encoder = nn.Sequential(
            nn.Conv2d(1, 16, 3, stride=3, padding=1), # b, 16, 10, 10
            nn.ReLU(True), nn.MaxPool2d(2, stride=2), # b, 16, 5, 5
            nn.Conv2d(16, 8, 3, stride=2, padding=1), # b, 8, 3, 3
            nn.ReLU(True), nn.MaxPool2d(2, stride=1) # b, 8, 2, 2
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(8, 16, 3, stride=2),
                                                               #b,16,5,5
            nn.ReLU(True),
            nn.ConvTranspose2d(16, 8, 5, stride=3, padding=1), #b,8,15,15
            nn.ReLU(True),
            nn.ConvTranspose2d(8, 1, 2, stride=2, padding=1), \#b, 1, 28, 28
            nn.Tanh()
    def forward(self, x):
        z = self.encoder(x)
                                                   Note: This is a non
        x = self.decoder(z)
                                                   symmetric example
        return x
```

Convolution: $n_{W/H}^{[l]} = \frac{n_{W/H}^{[l-1]} + 2p - f}{s} + 1$ Transposed Convolution: $n_{W/H}^{[l]} = (n_{W/H}^{[l-1]} - 1)s - 2p + f$

Regularisation – learning sparse / smooth embeddings

REGULARISATION

Regularise by enforcing sparsity

Regularise by enforcing smoothness

Intuition: Points close to each other in input space should maintain that property in the embedding space

The "contractive" autoencoder encourages the derivatives of the embedding with respect to the input to be small, meaning that the representation of the input should be robust to small changes in the input

$$\begin{split} \|J_h(\mathbf{x})\|_F^2 &= \sum\nolimits_{j=1}^d \sum\nolimits_{i=1}^c \left(\frac{\partial h_i}{\partial x_j}(\mathbf{x})\right)^2 \\ \Omega_{CAE}(\mathbf{w}) &= \sum\nolimits_{x^i} \left\|J_h(\mathbf{x}^{(i)})\right\|_F^2 \\ L\left(g_{\mathbf{w}_2}\left(h_{\mathbf{w}_1}(\mathbf{x}^{(i)})\right), \mathbf{x}^{(i)}\right) &= L_{MSE} \left\|\mathbf{x}^{(i)} - \hat{\mathbf{x}}^{(i)}\right\| + \lambda \Omega_{CAE}(\mathbf{w}_1) \end{split}$$

Introduce a small change in the input and learn to undo it

NOISE TOLERANCE

Denoising Autoencoders

Intuition: learn to generate robust features from inputs by reconstructing partially destroyed samples

For every input x, we apply a corrupting function $C(\cdot)$ to create noisy version: $\tilde{\mathbf{x}} = C(\mathbf{x})$

$$L\left(g_{\mathbf{w}_{2}}\left(h_{\mathbf{w}_{1}}\left(\tilde{\mathbf{x}}^{(i)}\right)\right),\mathbf{x}^{(i)}\right) = L_{MSE} \|\mathbf{x}^{(i)} - \hat{\mathbf{x}}^{(i)}\|$$

$$\tilde{\mathbf{x}} = C(\mathbf{x})$$

Learning the manifold

The corrupting function $C(\cdot)$ can corrupt in any direction. autoencoder must learn the "location" of data manifold and its distribution $p_{data}(\mathbf{x})$

Learning the manifold

The corrupting function $C(\cdot)$ can corrupt in any direction. autoencoder must learn the "location" of data manifold and its distribution $p_{data}(\mathbf{x})$

Learning the manifold

2D vector field around a 1D curved manifold where the data concentrates

Denoising Example

Denoising examples

Generative models

VARIATIONAL AUTOENCODERS

Discriminative and Generative Models

Discriminative models

describe the decision surface; we can tell if a new point is on one side or another

Generative models

describe the data distribution. We can ask which distribution a new point is most probable to come from

And we can use the learnt distributions to generate new data!

What do autoencoders model?

Let's rethink the underlying idea of autoencoders. Instead of seeing the encoder and decoder as functions that map points between spaces, we can see them as probability distributions

Generating new data

Which is the probability of a pixel to be 'on' on an image representing number '1'

Generating new data

Since we do not know the data distribution in the original space, we cannot directly generate new data

BUT, if we manage to map whatever distribution we have into a known distribution we know how to sample from, then we could use our generator to generate new data

Unit Gaussian Embedding of MNIST data

Traditional Autoencoder

Generative Autoencoders

- Generative models learn a distribution in order to be able to draw new samples from, different from those observed
- AEs can generally reconstruct encoded data, but are not necessarily able to build meaningful outputs from arbitrary encodings
- Variational and adversarial AEs learn a model of the data from which new instances can be generated

Variational Autoencoders (VAE)

Input \rightarrow encode to statistics vectors \rightarrow sample a latent vector \rightarrow decode for reconstruction

$$L(w_1, w_2, x) = (reconstruction \ loss) + (regularization \ term)$$

Variational Autoencoders (VAE)

Variational Autoencoders (VAE)

 $L(w_1, w_2, x) = (reconstruction loss) + (regularization term)$

Prior on the latent distribution

$$L_{div}(x) = -\frac{1}{2} \sum_{j=0}^{k-1} (\sigma_j + \mu_j^2 - 1 - \log \sigma_j)$$

Common choice of prior – Normal Gaussian:

$$p(z) = N(\mu = 0, \sigma^2 = 1)$$

Backpropagating

How can we backpropagate through the sampling process?

 $L(w_1, w_2, x) = (reconstruction loss) + (regularization term)$

Reparametrisation trick

Instead of thinking about z as a sample from a gaussian $z \sim N(\mu, \sigma)$ think of it as the sum of the μ and a fixed vector σ scaled by a random constant ϵ

Deterministic node

Stochastic node

Variational Autoencoder

https://www.siarez.com/projects/variational-autoencoder

Autoencoders: standard

```
class StandardAE(nn.Module):
  def init (self):
       super(VAE, self). init ()
       self.fc1 = nn.Linear(784, 400)
       self.fc21 = nn.Linear(400, 20)
       self.fc3 = nn.Linear(20, 400)
       self.fc4 = nn.Linear(400, 784)
  def encode(self, x):
      h1 = F.relu(self.fc1(x))
       return self.fc21(h1)
  def decode(self, z):
      h3 = F.relu(self.fc3(z))
       return F.sigmoid(self.fc4(h3))
  def forward(self, x):
                  = self.encode(x)
       return self.decode(z)
```

Autoencoders: code – VAE

```
class VAE(nn.Module):
  def init (self):
       super(VAE, self). init ()
       self.fc1 = nn.Linear(784, 400)
       self.fc21 = nn.Linear(400, 20)
       self.fc22 = nn.Linear(400, 20)
       self.fc3 = nn.Linear(20, 400)
       self.fc4 = nn.Linear(400, 784)
  def encode(self, x):
      h1 = F.relu(self.fc1(x))
       return self.fc21(h1), self.fc22(h1)
  def decode(self, z):
      h3 = F.relu(self.fc3(z))
       return F.sigmoid(self.fc4(h3))
  def forward(self, x):
      mu, logvar = self.encode(x)
       return self.decode(z), mu, logvar
```

Autoencoders: code – VAE

```
class VAE (nn.Module):
   def init (self):
       super(VAE, self). init ()
       self.fc1 = nn.Linear(784, 400)
       self.fc21 = nn.Linear(400, 20)
       self.fc22 = nn.Linear(400, 20)
       self.fc3 = nn.Linear(20, 400)
       self.fc4 = nn.Linear(400, 784)
   def encode(self, x):
       h1 = F.relu(self.fc1(x))
       return self.fc21(h1), self.fc22(h1)
   def reparametrize(self, mu, logvar):
       std = logvar.mul(0.5).exp()
       eps = torch.cuda.FloatTensor(std.size()).normal ()
       eps = Variable(eps)
       return eps.mul(std).add_(mu) z = \mu + \sigma \epsilon
                                                def loss function (recon x, x, mu, logvar):
   def decode(self, z):
                                                    BCE = F.binary cross entropy(recon x,
       h3 = F.relu(self.fc3(z))
                                                                      x.view(-1, 784), reduction='sum')
       return F.sigmoid(self.fc4(h3))
                                                    # see Appendix B from VAE paper:
   def forward(self, x):
                                                    # Kingma and Welling. Auto-Encoding Variational Bayes
       mu, logvar = self.encode(x)
                                                    # https://arxiv.org/abs/1312.6114
       z = self.reparametrize(mu, logvar)
                                                    \# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
       return self.decode(z), mu, logvar
                                                    KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2))
                                                                                 - logvar.exp())
```

Encoder-Decoder Architectures

EXTENDING THE CONCEPT

Computer Vision Tasks

Computer Vision Tasks

Autoencoder for image segmentation

Semantic segmentation using convolutional networks

Very coarse segmentation

Solution: Skip connections

Skip connections

Details are still a problem

U-Net

U-Net

Input

Ground truth

FC-DenseNet103 model on UNET

Mixing and Matching encoders and decoders

GENERATIVE ADVERSARIAL NETWORKS

Real or Fake?

GAN: Generative Adversarial Networks

Two NNs competing against each other

- The generator NN learns to generate plausible data.
 The generated instances become negative training examples for the discriminator.
- The **discriminator** NN learns to distinguish the generator's fake data from real data. The discriminator penalizes the generator for producing implausible results.

GAN Process

GAN Process

GAN Process

Generative Adversarial Networks

The OG

GAN

Deep

Convolutional

GAN

GAN

Progressively Growing GAN

Style-based **GAN**

2020 **Improved** Style-based **GAN**

The GAN zoo

https://github.com/hindupuravinash/the-gan-zoo

And now? Stable Difussion Models

Resources (I)

I. Goodfellow, Y. Bengio, A. Courville, "Deep Learning", MIT Press, 2016

http://www.deeplearningbook.org/

C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

http://research.microsoft.com/enus/um/people/cmbishop/prml/index.htm

D. MacKay, "Information Theory, Inference and Learning Algorithms", Cambridge University Press, 2003
http://www.inference.phy.cam.ac.uk/mackay/

R.O. Duda, P.E. Hart, D.G. Stork, "Pattern Classification", Wiley & Sons, 2000

http://books.google.com/books/about/Pattern Classificati on.html?id=Br33IRC3PkQC

J. Winn, C. Bishop, "Model-Based Machine Learning", early access

http://mbmlbook.com/

Further Info

- Many of the slides of these lectures have been adapted from various highly recommended online lectures and courses:
 - Andrew Ng's Machine Learning Course, Coursera https://www.coursera.org/course/ml
 - Andrew Ng's Deep Learning Specialization, Coursera https://www.coursera.org/specializations/deep-learning
 - Victor Lavrenko's Machine Learning Course
 https://www.youtube.com/channel/UCs7alOMRnxhzfKAJ4JjZ7Wg
 - Fei Fei Li and Andrej Karpathy's Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
 - Geoff Hinton's Neural Networks for Machine Learning, (ex Coursera)
 https://www.youtube.com/playlist?list=PLiPvV5TNogxKKwvKb1RKwkq2hm7ZvpHz0
 - Luis Serrano's introductory videos
 https://www.youtube.com/channel/UCgBncpylJ1kiVaPyP-PZauQ
 - Michael Nielsen's Neural Networks and Deep Learning http://neuralnetworksanddeeplearning.com/
 - David Charte et al. A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines https://arxiv.org/abs/1801.01586