Konstruksjon av høydimensjonale nevralt nettverk-potensialer for molekylærdynamikk

John-Anders Stende

Fysisk institutt Universitetet i Oslo

Masterpresentasjon, oktober 2017

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

LAMMPS og TensorFlow

Konstruksjon av nevralt nettverk-potensial (NNP)

NNP for Si

Hva er molekylærdynamikk?

- Numerisk metode for å simulere atomers og molekylers bevegelser i gasser, væsker og faste stoffer.
- Virtuelt eksperiment.

Dynamikk

- ▶ Partiklenes interaksjoner styrer dynamikken.
- ▶ Interaksjonene bestemmes av et kraftfelt **F**:

$$\mathbf{F} = -\nabla V(\mathbf{r})$$

Potensiell energiflate / potensial):

$$V(\mathbf{r}), \quad \mathbf{r} = (\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_N)$$

V(r) inneholder fysikken.

Ab inito molekylærdynamikk Løse Schrödinger-likningen ved hvert tidssteg. Klassisk molekylærdynamikk Bruke en predefinert analytisk funksjon.

Klassisk potensial

$$V(\mathbf{r}) \approx \sum_{i}^{N} V_1(\mathbf{r}_i) + \sum_{i,j}^{N} V_2(\mathbf{r}_i,\mathbf{r}_j) + \sum_{i,j,k}^{N} V_3(\mathbf{r}_i,\mathbf{r}_j,\mathbf{r}_k) + \dots$$

- 1. Hvor mange ledd bør tas med?
- 2. Hvordan bør leddene se ut?

Eksperiementer / kvantemekanikk

Empirisk strategi:

- 1. Starte med en funksjonsform med noen parametre.
- 2. Bestemme parametre fra eksperimentelle data.

Kvantemekanisk strategi:

- 1. Produsere kvantemekaniske data.
- 2. Tilpasse en generell funksjonsform til datasettet.
- Fordeler: Nøyaktig, ingen bias, overførbart.
- Ulemper: Rent matematisk uttrykk, all relevant data må inkluderes.

Interpolere datasett

- Spliner
- ► Minste kvadraters metode
- Maskinlæring

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

LAMMPS og TensorFlow

Konstruksjon av nevralt nettverk-potensial (NNP)

NNP for Si

Kunstige nevrale nettverk

- Maskinlæringsalgoritme.
- Etterlikne en biologisk hjerne.
- Nettverk av matematiske nevroner.

$$X_1 \bigcirc W_1$$
 $X_2 \bigcirc W_2 \qquad U \qquad f(U) \qquad y$
 $X_3 \bigcirc W_3 \qquad V$

$$y = f\left(\sum_{i=1}^{n} w_i x_i + b_i\right) = f(u)$$

$$y_i^1 = f_1(u_i^1) = f_1\left(\sum_{j=1}^2 w_{ij}^1 x_j + b_i^1\right)$$

$$y_1^3 = f_3 \left[\sum_{j=1}^3 w_{1j}^3 f_2 \left(\sum_{k=1}^3 w_{jk}^2 f_1 \left(\sum_{m=1}^2 w_{km}^1 x_m + b_k^1 \right) + b_j^2 \right) + b_1^3 \right]$$

= $f_3(x_1, x_2)$

- Dimensjonene til nettet må stemme overens med funksjonen som skal tilpasses.
- Det universelle approksimasjonsteoremet.

Aktiveringsfunksjoner

Restriksjoner

- Ikke-konstant
- Begrenset
- Monotont økende
- ► Kontinuerlig

The sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

og hyperbolsk tangens

$$f(x) = \tanh(x)$$

Regresjon med nevralt nettverk

- ightharpoonup Regresjon: Interpolere datasett $X \to Y$
- ▶ X: inputdata, Y: outputdata/målverdier
- ► Trening: Iterativt minimere feilen til et sett med kjente energier.

Feilen defineres ved en cost-funksjon:

$$\Gamma = \frac{1}{2N} \sum_{i=1}^{N} (Y_i - y_i)^2$$

Optimering med gradient descent:

$$\theta_{k+1} = \theta_k - \gamma \nabla_{\theta_k} \Gamma(\theta)$$

Mange forskjellige måter å justere γ på.

Hvordan finne gradienten av nettet?

Backpropagation

- 1. Sender hvert treningsseksempel gjennom nettet.
- 2. Output (energi) sammenliknes med kjent energi.
- 3. Feilen propagares *bakover* ved kjerneregelen og vektene justeres.

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

LAMMPS og TensorFlow

Konstruksjon av nevralt nettverk-potensial (NNP)

NNP for Si

Flere muligheter

- Et eller flere nettverk?
- Hvordan representere energien?

Behler-Parrinello-metoden

$$E = \sum_{i=1}^{N} E_i$$

- Atomsentrert: Hver atomenergi E_i avhenger av alle naboatomer opp til en cutoff r_c .
- Hvert atom har et eget nettverk og et sett av symmetrifunksjoner som beskriver cutoff-kulen.
- Hver atomtype har identiske nettverk og symmetryfunskjonssett.

Cutoff-funksjon

$$f_c(r_{ij}) = \begin{cases} 0.5 \left[\cos\left(\frac{\pi r_{ij}}{r_c}\right) + 1\right], & r_{ij} \le r_c \\ 0, & r_{ij} > r_c \end{cases}$$

$$\begin{array}{c} 1.0 \\ 0.8 \\ 0.6 \\ 0.2 \\ 0.8 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \end{array}$$

 r_{ij}/r_c

Radiell symmetrifunksjon

$$G_i^2 = \sum_{i=1}^{N} \exp[-\eta (r_{ij} - r_s)^2] f_c(r_{ij})$$

Angulær symmetrifunksjon

$$G_i^5 = 2^{1-\zeta} \sum_{j \neq i} \sum_{k > j} \left[(1 + \lambda \cos \theta_{jik})^{\zeta} \exp(-\eta (r_{ij}^2 + r_{ik}^2)) f_c(r_{ij}) f_c(r_{ik}) \right]$$

Krefter

$$E_i = \mathrm{NN}_e[\mathbf{G}_e(\mathbf{r}_{ij})]$$

$$F_{i,x} = -\sum_{j=1}^{N_i+1} \frac{\partial E_j}{\partial x} = -\sum_{j=1}^{N_i+1} \sum_{s=1}^{M_j} \frac{\partial E_j}{\partial G_{j,s}} \frac{\partial G_{j,s}}{\partial x}$$

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

LAMMPS og TensorFlow

Konstruksjon av nevralt nettverk-potensial (NNP)

NNP for Si

LAMMPS

- Simuleringspakke for klassisk molekylærdynamikk utviklet ved Sandia National Laboratories.
- Kjøres ved inputscripts med egen syntaks.
- Vi har utvidet med samplingsalgoritme og nevralt nettverk-potensial.

TensorFlow

- Maskinlæringspakke utviklet av Google.
- Setter opp nevrale nettverk som data flow-grafer (DFG).
- ▶ DFG: En graf bestående av noder som er forbundet av kanter med retning.
- Noder er matematiske operasjoner, kanter er tensorer.

$$ax^2 + bx + c = 0$$

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensia

LAMMPS og TensorFlow

Konstruksjon av nevralt nettverk-potensial (NNP)

NNP for Si

- 1. Generere treningsdata som er relevant for applikasjonen av NNP.
- 2. Trene et nevralt nettverk for å tilpasse en funksjon til dataene.
- 3. Bruke det trente nettverket som et analytisk potensial i molekylærdynamikksimuleringer.

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensia

LAMMPS og TensorFlow

Konstruksjon av nevralt nettverk-potensial (NNP)

NNP for Si

Initiell sampling

- ► Stillinger-Weber.
- ▶ $T \in [0,500]$ K.
- ► Konfigurasjoner og energies samples med samplingsalgoritme.

Ekstrapolasjon

Lagre max og min for hver symmetryfunksjon.

Interpolasjon - multiple-NN-metoden

Gridsøk

Layers	Nodes	RMSE	Epoch	Time
L=1	4	4.445	37035	575
	8	2.250	37305	570
	12	2.303	37980	622
	16	2.201	39780	630
	20	1.860	36180	617
	24	1.928	37305	621
	28	2.407	39375	697
	32	2.214	38700	672
L=2	4	2.947	39960	750
	8	1.933	36180	671
	12	1.450	37350	766
	16	1.791	32265	633
	20	1.492	24840	546
	24	2.118	37620	819
	28	1.455	37350	895
	32	2.008	14895	344

Tilpasse endelig treningssett

Velger nettet med lavest RMSE etter 40000 epoker. RMSE: 0.864 meV.

RMSE krefter

RMSE: 41.2 meV

Radiell distribusjonsfunksjon g(r)

Sammenlikner tidsmidlet SW og NN.

Mekaniske egenskaper

	NNP	Analytic SW	Relative error
Bulk modulus	103.0	101.4	1.58 %
Shear modulus	53.6	56.4	5.22 %
Poisson ratio	0.348	0.335	3.88 %

Molekylærdynamikk

Nevrale nettverk

Nevralt nettverk-potensial

LAMMPS og TensorFlow

Konstruksjon av nevralt nettverk-potensial (NNP)

NNP for Si

Det ideelle potensial

- Potensialet bør være nøyaktig.
- Burde finnes måter å systematisk forbedre potensialet.
- Potensialet bør være generelt og anvendbart på alle typer systemer.
- Potensialet b
 ør kunne modellere faseoverganger.
- Potensialet bør være høydimensjonalt, dvs. avhenge av alle frihetsgrader.

Det ideelle potensial fortsetter

- Konstruksjonen av potensialet bør være så automatisert som mulig.
- Potensialet bør være prediktivt.
- Potensialet bør være raskt å evaluere.
- Konstruksjonen bør ikke ta for mye tid.
- Analytisk derivert bør være tilgjengelig.

Fremtidig arbeid

- ► Ab inito data.
- Mer nøyaktige krefter.
- Andre systemer.
- Optimering.