Kinetic Simulation Algorithm Ontology

Dagmar Waltemath, <u>Anna Zhukova</u>, Nick Juty, Camille Laibe and Nicolas Le Novère

COMBINE 2011 Heidelberg, 3rd - 7th September

KiSAO 1.0 (OBO)

- algorithm using adaptive timesteps
 - Bortz-Kalos-Liebowitz method
 - tau-leaping method
- algorithm using discrete variables
 - tau-leaping method
 - deterministic cellular automata
- algorithm using stochastic rules
 - tau-leaping method

KiSAO 1.0 (OBO)

- algorithm using adaptive timesteps
 - Bortz-Kalos-Liebowitz method
 - tau-leaping method
- algorithm using discrete variables
 - tau-leaping method
 - deterministic cellular automata
- algorithm using stochastic rules
 - tau-leaping method

subsumption-based
/ subclassing

KiSAO 1.0 (OBO)

- algorithm using adaptive timesteps
 - Bortz-Kalos-Liebowitz method
 - tau-leaping method
- algorithm using discrete variables
 - tau-leaping method
 - deterministic cellular automata
- algorithm using stochastic rules
 - tau-leaping method

KiSAO 1.0 (OBO)

- algorithm using adaptive timesteps
 - Bortz-Kalos-Liebowitz method
 - tau-leaping method
- algorithm using discrete variables
 - tau-leaping method
 - deterministic cellular automata
- algorithm using stochastic rules
 - tau-leaping method

- deterministic cellular automata
- Bortz-Kalos-Liebowitz method
- tau-leaping method
- algorithm characteristic
 - type of variable
 - type of system behaviour
 - type of progression time step

KiSAO 1.0 (OBO)

- algorithm using adaptive timesteps
 - Bortz-Kalos-Liebowitz method
 - tau-leaping method
- algorithm using discrete variables
 - tau-leaping method
 - deterministic cellular automata
- algorithm using stochastic rules
 - tau-leaping method

- deterministic cellular automata
- Bortz-Kalos-Liebowitz method
- tau-leaping method
- algorithm characteristic
 - type of variable
 - type of system behaviour
 - type of progression time step

KiSAO 1.0 (OBO)

- algorithm using adaptive timesteps
 - Bortz-Kalos-Liebowitz method
 - tau-leaping method
- algorithm using discrete variables
 - tau-leaping method
 - deterministic cellular automata
- algorithm using stochastic rules
 - tau-leaping method

- deterministic cellular automata
- Bortz-Kalos-Liebowitz method
- tau-leaping method
- algorithm characteristic
 - type of variable
 - type of system behaviour
 - type of progression time step

KiSAO 1.0 (OBO)

- algorithm using adaptive timesteps
 - Bortz-Kalos-Liebowitz method
 - tau-leaping method
- algorithm using discrete variables
 - tau-leaping method
 - deterministic cellular automata
- algorithm using stochastic rules
 - tau-leaping method

- deterministic cellular automata
- Bortz-Kalos-Liebowitz method
- tau-leaping method
- algorithm characteristic
 - type of variable
 - type of system behaviour
 - type of progression time step
- algorithm parameter

more methods/

KiSAO 1.0 (OBO)

- algorithm using adaptive timesteps
 - Bortz-Kalos-Liebowitz method
 - tau-leaping method
- algorithm using discrete variables
 - tau-leaping method
 - deterministic cellular automata
- algorithm using stochastic rules
 - tau-leaping method

- deterministic cellular automata
- Bortz-Kalos-Liebowitz method
- tau-leaping method
- algorithm characteristic
 - type of variable
 - type of system behaviour
 - type of progression time step
- algorithm parameter

Use Case: libKiSAO and Simulation Tools

Use Case: libKiSAO and Simulation Tools

Use Case 2: libKiSAO and Simulation Tools

Use Case: libKiSAO and Simulation Tools

Acknowledgments

KiSAO

Dagmar Waltemath, Anna Zhukova, Nick Juty, Camille Laibe, Nicolas Le Novère

libKiSAO

Anna Zhukova, Richard Adams, Camille Laibe, Nicolas Le Novère

The community of SED-ML for their contributions and their comments.

We would like to thank European Molecular Biology Laboratory and Marie-Curie BioStar for providing resources to carry out this work.

http://biomodels.net/kisao

Download

✓ libKiSAO

Suggest terms

Submit bugs

zhutchok@ebi.ac.uk (Anna Zhukova)

