Introduction to Soils

Soil Formation

- Soil is defined as the entire unconsolidated material that overlies and is distinguishable from bedrock.
- Composed of loosely bound mineral grains of various sizes and shapes.
- Contains voids of varying sizes. These voids contain:
 - Air
 - Water
 - Organics

Soil Formation - Weathering

The principal factor by which rock is converted into soil.

Soil Formation - Weathering

Two types:

- Physical
 - breaks rock masses into smaller pieces without altering the chemical composition of the pieces.

Chemical

atmacahara

 decomposition of rock through the chemical reactions that take place between minerals of the rock and the air, water or dissolved chemicals in the

Unloading – fracturing; removal of overlying material

Exfoliation slabs, Enchanted Rock State Park, Texas

Frost Action - trapped moisture in rocks freeze. Moisture expand to 1/10 of its original volume, creating pressure of up to 4000 psi

Organism Growth—wedging action caused by tree and plant root growth in

the joints of rock hastens the

 Abrasion – Sediments suspended in wind or fast-moving water.
 Rock particles carried by glacial

ice.

- Decomposition of rock through chemical bonding
- Examples include:
 - Hydration (combining with water)
 - Oxidation
 - Carbonation (saturation with carbon dioxide)

Oxidation – chemical union of a compound with oxygen; e.g. rusting, chemical reaction of oxygen, water and the iron mineral pyrite forming ferrous sulfate.

Hydration – chemical union of a compound with water.

Carbonation − CO2 from the air unites with various minerals to form

Soil Formation - Methods

Residual Soils - weathered in place.

Transported Soils – glacial ice, water and wind – agents.

Questions?

• What are the two types of weathering called?

What are the two types of soil formation methods?

Soil Characteristics

♦PHYSICAL

GRAIN / PARTICLE SIZE

GRAIN / PARTICLE SHAPE

Soil Characteristics – Sieve Analysis

INCH SIEVES
Ranging from 3" - 1/4"

NUMBERED SIEVES Ranging from # 4 - # 200

Soil Characteristics – Grain/Particle <u>SIZE</u>

- Four major SIZE groups:
 - Cobbles greater than 3"
 - Gravels Passes a 3" sieve and retained on No.4 sieve (approx 0.25")
 - Sands Passes No.4 sieve and retained on No. 200 sieve (0.072 mm)

Soil Characteristics – Grain/Particle SHAPE

subdivided depending on the amount of weathering that has acted on them

- Extremely thin compared to their length and width.
- Only fine grained material of the clay variety has this characteristic shape.
- Platy grains are responsible for the plasticity of clay.
- Highly compressible under static load⁸

Grain/Particle <u>SHAPE</u> - Platy

- PLATY SHAPES
 - PRIMARILY GRAINED MATERIAL OF THE CLAY VARIETY

 In general, the higher the moisture content of clay or silt, the less its strength and bearing capacity.

Soil Characteristics

GRADATION

distribution of particle sizes within a soil mass.

Well-graded soil.

Uniformly graded soil.

Gap-graded soil.

Questions?

How is particle size determined?

• What are the two types of poorly graded soil?

Soil Classification

UNIFIED SOILS
CLASSIFICATION SYSTEM
(USCS)

Soil Classification- USCS

- **COARSE GRAINED**
 - Gravel / Sand
- **FINE GRAINED**
 - Silt / Clay
- **◆ PEAT**
 - Organic Material

Soil Classification- USCS

Soil Groups	Symbol	Remarks
Gravel	G	Primary only
Sand	S	Primary only
Silt	M	Primary and secondary
Clay	С	Primary and secondary
Organic (silts or clays)	0	Primary only
Highly Organic (peat)	Pt	Stands alone

Soil Classification- USCS

Soil Characteristics	Symbol	Remarks
Well graded	Tot	Secondary only
Poorly graded	₽	Secondary only
Low liquid limit (less than 50)	上	Secondary only
High liquid limit (50 or greater)	用	Secondary only

Questions?

What is the USCS based on?

• What is the symbol for gravel based of the USCS?

Field Identification of Soil

Useful Sources of Information

- S-2 Intelligence Report
- Local Inhabitants
- Maps and Aerial Photos

Soil Exploration

- Surface Sample
- Existing Excavations
- Test Hole

KSE K-2009 SOIL TEST SET

LABORATORY

SPEEDY MOISTURE

DYNAMIC CONE PENETROMETER

Soil Classification Wire Diagram

Questions

Demonstration

Practical Application

Bearing Capacity

Bearing Capacity

- The ability of a soil to support a load applied by an engineering structure.
- A soil with insufficient bearing capacity might fail, by shear, allowing the structure to sink and shift.
- Dense and well graded soil with angular particles generally has good bearing capacities.

California Bearing Ratio (CBR)

CBR

- Used to measure bearing capacity
- CBR is a comparison of soil to crushed limestone
- CBR is expressed as a percentage

Determined using the Dual Mass Dynamic Cone

Dynamic Cone Penetrometer

- Used To estimate strength characteristics of:
 - Fine and course grained soils
 - Granular construction materials
 - Weakly stabilized or modified materials
 - Soils under stable layer (by drilling access hole)

- Operations Pre Ops
 <u>Inspection</u>
 - Normal, wear, tear, and fatigue expected
 - Ensure joints tight use loctite and tools
 - Ensure points are within tolerance, check with go-no go

◆Two Man Ops

- Marine 1 Hold device in place by handle in vertical position
 - Tap device (hammer) till top of cone flush with soil
 - Start hammer process
 - Lift hammer, drop hammer

 - Marine 2 Check device for zero reading
 - Hold vertical scale between soil surface and bottom

of hammer

- Records:
 - number of hammer blows
 - depth of penetration

Data Recording - Manual

Manual recording of CBR data

DCP DATA SHEET									
Project: Location: Depth of zero point below surface: Material Classification: Pavement conditions:					Date: Personnel: Hammer Weight: Weather: Water Table Depth:				
#	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)
	Number of Blows	Cummulative Penetration (mm)	Penetration Between Reading (mm)	Penetration per Blow (mm)		Hammer Blow Factor	DCP Index mm/blow	CBR %	Moisture %
1									
2									
3									<u> </u>
4									ļ
5					_				
6					_				
7			-						
8									
9					_				
10									
11									

Hardness Measurement -Manual

Questions?

Data Acquisition System (DAS)

DAS

- Records data from DCP test
- Communicates with and records data from Soil Moisture Probe (SMP)
- Can store up to 8 hours of test data
- Can download to a computer

Never let the depth gauge string retract unrestricted, as this will damage the depth transducer.

Questions?

Soils Moisture Probe

(SMP)

Multifunctional:
Soil Moisture
Soil Temperature

Sends data to the DAS

SMP

Speedy Moisture Tester

- Used to test soil
 Moisture
- Used with Calcium Carbide reagent
- 0-40% moisture range
- 26 grams sample or <u>13</u> grams if over 20%
- 1 or 3 minute test.

QUALITY CONTROL

TEST STRIP

SPEEDY MOISTURE TESTER

DM-DCP WITH SMP & DAS

Demonstration / Practical Application

Questions?

What two methods are used for the sedimentation test?

• What is California Bearing Ratio use to determine?

Summary

- How soil is formed.
- Composition of a soil mass.
- How to conduct a hasty field I.D. on a previously unknown soil.

IRF