

Data Science with Python Career Program (ChatGPT Included)

Assignment - SQL [Major]

Gouravy86451@gmail.com

Note: I have used "PostgreSQL" for this assignment. Most of these codes are compatible with "SQL Workbench" you can alter the code per your requirements.

Q1) Create a table "**STATION**" to store information about the weather observation stations:

ID	Number	Primary key
CITY	CHAR(20)	
STATE	CHAR(2)	
LAT_N	Number	
LONG_W	Number	

Ans. CREATE TABLE IF NOT EXISTS Station (

ID INT PRIMARY KEY,

CITY VARCHAR(50) NOT NULL,

STATE VARCHAR(2) NOT NULL,

LAT_N FLOAT NOT NULL,

LONG_W FLOAT NOT NULL

);

Q2) Insert the following records into the table:

ID	CITY	STATE	LAT_N	LONG_W
13	PHOENIX	AZ	33	112
44	DENVER	СО	40	105
66	CARIBOU	МЕ	47	68

Ans. INSERT INTO Station (ID, CITY, STATE, LAT_N, LONG_W)

VALUES

(13, 'PHOENIX', 'AZ', 33, 112),

(44, 'DENVER', 'CO', 40, 105),

(66, 'CARIBOU', 'ME', 47, 68);

```
Data Output Messages Notifications

INSERT 0 3

Query returned successfully in 94 msec.
```

Q3) Execute a query to look at table **STATION** in undefined order.

Ans. SELECT* FROM station;

Data	Data Output Messages Notifications					
= +	<u> </u>					
	id [PK] integer	city character varying (50)	state character varying (2)	lat_n double precision	long_w double precision	
1	13	PHOENIX	AZ	33	112	
2	44	DENVER	CO	40	105	
3	66	CARIBOU	ME	47	68	

Q4) Execute a query to select Northern stations (**Northern latitude > 39.7**).

Ans. SELECT*

FROM station

WHERE lat_n > 39.7;

	VVIIL	_RL ldt_H > 33.7,			
Data	Output Mess	ages Notifications			
=+	<u> </u>				
	id [PK] integer	city character varying (50)	state character varying (2)	lat_n double precision	long_w double precision
1	44	DENVER	CO	40	105
2	66	CARIBOU	ME	47	68

Q5) Create another table, **'STATS'**, to store normalized temperature and precipitation data:

Column	Data type	Remark
ID	Number	ID must match with some ID from the STATION table(so name & location will be known).
MONTH	Number	The range of months is between (1 and 12)
TEMP_F	Number	Temperature is in Fahrenheit degrees, Ranging between (-80 and 150)
RAIN_I	Number	Rain is in inches, Ranging between (0 and 100)

Ans. CREATE TABLE IF NOT EXIST Stats (

ID INT,

MONTH INT NOT NULL,

TEMP_F FLOAT NOT NULL,

RAIN_I FLOAT NOT NULL,

FOREIGN KEY (ID) REFERENCES Station(ID)

);

Q6) Populate the table **STATS** with some statistics for **January** and **July**:

ID	монтн	TEMP_F	RAIN_I
13	1	57.4	.31
13	7	91.7	5.15
44	1	27.3	.18
44	7	74.8	2.11
66	1	6.7	2.1
66	7	65.8	4.52

Ans. INSERT INTO Stats (ID, MONTH, TEMP_F, RAIN_I)

VALUES

(13, 1, 57.4, 0.31),

(13, 7, 91.7, 5.15),

(44, 1, 27.3, 0.18),

(44, 7, 74.8, 2.11),

(66, 1, 6.7, 2.1),

(66, 7, 65.8, 4.52);

Data	Output Me	essages N	otifications	
=+	~ <u></u>	~ i &	*	
	id integer	month integer	temp_f double precision	rain_i double precision
1	13	1	57.4	0.31
2	13	7	91.7	5.15
3	44	1	27.3	0.18
4	44	7	74.8	2.11
5	66	1	6.7	2.1
6	66	7	65.8	4.52

Q7) Execute a query to display temperature stats (from the **STATS** table) for each city (from the **STATION** table).

Ans.

SELECT S.CITY, AVG(ST.TEMP_F) AS AVG_TEMPERATURE,

MIN(ST.TEMP_F) AS MIN_TEMPERATURE,

MAX(ST.TEMP_F) AS MAX_TEMPERATURE

FROM

Station S

JOIN

Stats ST ON S.ID = ST.ID

GROUP BY S.CITY;

■ NOTE: I have created a temporary table Using CTE named "Temp_month_name" for month names to show the names correctly. Here is the code for that.

CREATE TEMPORARY TABLE IF NOT EXISTS temp_month_name AS

WITH month_name AS(

SELECT DISTINCT month, TO_CHAR(TO_DATE(CONCAT('2023-', month, '-01'), 'YYYY-MM-DD'), 'Month') AS M_name

FROM stats
)

SELECT * FROM month_name;

SELECT * FROM temp_month_name;

Data Output Messages Notifications

month integer in manage in the state of the state o

July

2

Q8) Execute a query to look at the table **STATS**, ordered by month and greatest rainfall, with columns rearranged. It should also show the corresponding cities.

Ans. SELECT s.city, m.m_name AS month, st.temp_f, st.rain_i

FROM stats AS st

JOIN station AS s

ON st.id = s.id

JOIN temp_month_name AS m

ON st.month = m.month

ORDER BY month, rain_i DESC;

Q9) Execute a query to look at temperatures for **July** from table **STATS**, lowest temperatures first, picking up **city name** and **latitude**.

Ans. SELECT S.CITY, M.m_name AS month, S.LAT_N, ST.TEMP_F

FROM Stats AS ST

JOIN Station AS S

ON ST.ID = S.ID

JOIN temp_month_name AS M

ON ST.month = M.month

WHERE ST.MONTH = 7

ORDER BY ST.TEMP_F;

Q10) Execute a query to show **MAX** and **MIN** temperatures as well as average rainfall for each city.

Ans. S.CITY,

ROUND(MAX(ST.TEMP_F)::numeric, 2) AS MAX_TEMPERATURE,

ROUND(MIN(ST.TEMP_F)::numeric, 2) AS MIN_TEMPERATURE,

ROUND(AVG(ST.RAIN_I)::numeric, 2) AS AVG_RAINFALL

FROM Station AS S

JOIN Stats AS ST ON S.ID = ST.ID

GROUP BY S.CITY;

-- suitable for workbench

SELECT

S.CITY,

ROUND(MAX(ST.TEMP_F), 2) AS MAX_TEMPERATURE,

ROUND(MIN(ST.TEMP_F), 2) AS MIN_TEMPERATURE,

ROUND(AVG(ST.RAIN_I), 2) AS AVG_RAINFALL

FROM Station AS S

JOIN Stats ST ON S.ID = ST.ID

GROUP BY S.CITY;

Data	Data Output Messages Notifications						
	city character varying (50)	max_temperature numeric	min_temperature numeric	avg_rainfall numeric			
1	PHOENIX	91.70	57.40	2.73			
2	DENVER	74.80	27.30	1.15			
3	CARIBOU	65.80	6.70	3.31			

Q11) Execute a query to display each city's monthly temperature in **Celsius** and rainfall in **Centimeter**.

Ans. SELECT

S.CITY,

M.m_name AS MONTH,

CONCAT(ROUND(((ST.TEMP_F - 32) * 5/9)::numeric, 2), ' °C') AS TEMPERATURE_CELSIUS,

CONCAT(ROUND((ST.RAIN_I * 2.54)::numeric, 2), 'cm') AS RAINFALL_CENTIMETER

FROM Stats ST

JOIN Station S ON ST.ID = S.ID

JOIN temp_month_name M ON ST.MONTH = M.month

ORDER BY s.id;

Data	Data Output Messages Notifications					
=+		<u> </u>				
	city character varying (50)	month text	temperature_celsius text	rainfall_centimeter text		
1	PHOENIX	January	14.11 °C	0.79 cm		
2	PHOENIX	July	33.17 °C	13.08 cm		
3	DENVER	January	-2.61 °C	0.46 cm		
4	DENVER	July	23.78 °C	5.36 cm		
5	CARIBOU	January	-14.06 °C	5.33 cm		
6	CARIBOU	July	18.78 °C	11.48 cm		

Q12) Update all rows of table **STATS** to compensate for faulty rain gauges known to read 0.01 inches low.

Ans. UPDATE Stats

SET RAIN_I = RAIN_I + 0.01;

Data	Data Output Messages Notifications					
	id integer	month text	temp_f double precision	round numeric		
1	13	January	57.4	0.32		
2	13	July	91.7	5.16		
3	44	January	27.3	0.19		
4	44	July	74.8	2.12		
5	66	January	6.7	2.11		
6	66	July	65.8	4.53		

Q13) Update Denver's July temperature reading as 74.9.

Ans. UPDATE Stats

SET TEMP_F = 74.9

WHERE ID = (SELECT ID FROM Station WHERE CITY = 'DENVER')

AND MONTH = 7;

6	DENVER	44	july	74.9	2.12	