SOLUTIONS SHEET 5

YANNIS BÄHNI

Exercise 1. Let $\beta \in \mathbb{R}_{>0}$ and $\alpha \in \mathbb{R}$. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) := \frac{c}{1 + (x - \alpha)^2 / \beta^2} \tag{1}$$

for some $c \in \mathbb{R}$. Clearly $f \in \mathscr{C}(\mathbb{R})$ and thus Borel-measurable. From a standard fact of real analysis follows that the function $\mathsf{P} : \mathscr{B}(\mathbb{R}) \to \overline{\mathbb{R}}$ defined by

$$P(A) := \int_{A} f \, \mathrm{d}\lambda \tag{2}$$

is a measure. We now determine $c \in \mathbb{R}$ such that P is a probability measure. The substitution $s = (x - \alpha)/\beta$ yields

$$P(\mathbb{R}) = \int_{-\infty}^{\infty} f \, d\lambda$$

$$= c \int_{-\infty}^{\infty} \frac{1}{1 + (x - \alpha)^2 / \beta^2} \, d\lambda(x)$$

$$= c\beta \int_{-\infty}^{\infty} \frac{1}{1 + s^2} \, d\lambda(s)$$

$$= c\beta \arctan \Big|_{-\infty}^{\infty}$$

$$= c\beta \pi$$

and by $P(\mathbb{R}) = 1$ we conclude $c = 1/(\beta \pi)$. The distribution function F of P is now given by

$$\begin{split} F(t) &= \mathsf{P}((-\infty,t]) \\ &= \int_{-\infty}^t f \,\mathrm{d}\lambda \\ &= \frac{1}{\beta\pi} \int_{-\infty}^t \frac{1}{1+(x-\alpha)^2/\beta^2} \,\mathrm{d}\lambda(x) \\ &= \frac{1}{\pi} \int_{-\infty}^{(t-\alpha)/\beta} \frac{1}{1+s^2} \,\mathrm{d}\lambda(s) \\ &= \frac{1}{\pi} \arctan((t-\alpha)/\beta) + \frac{1}{2} \end{split}$$

(Yannis Bähni) UNIVERSITY OF ZURICH, RÄMISTRASSE 71, 8006 ZURICH *E-mail address*: yannis.baehni@uzh.ch.

for any $t \in \mathbb{R}$.

Exercise 2.

1.

Exercise 3. Let $\varepsilon > 0$. Since $\mathsf{E}(X) = np$ and $\mathrm{Var}(X) = np(1-p)$ Chebychev's inequality implies

$$\lim_{n \to \infty} \mathsf{P}(|X - np| \le n\varepsilon) = \lim_{n \to \infty} \mathsf{P}(|X - \mathsf{E}(X)| \le n\varepsilon)$$

$$= 1 - \lim_{n \to \infty} \mathsf{P}(|X - \mathsf{E}(X)| > n\varepsilon)$$

$$\ge 1 - \lim_{n \to \infty} \frac{\mathrm{Var}(X)}{n^2 \varepsilon^2}$$

$$= 1 - \lim_{n \to \infty} \frac{np(1 - p)}{n^2 \varepsilon^2}$$

$$= 1 - \lim_{n \to \infty} \frac{p(1 - p)}{n\varepsilon^2}$$

$$= 1$$

Since $\mathsf{P}(|X-np| \leq n\varepsilon) \leq 1$ for all $n \in \mathbb{N}$ we conclude that

$$\lim_{n \to \infty} \mathsf{P}(|X - np| \le n\varepsilon) = 1. \tag{3}$$