Analiza Dużych Zbiorów Danych

Lista 1 - Wielokrotne testowanie

Wygeneruj macierz planu $X_{1000\times950}$ tak, że jej elementy są niezależnymi zmiennymi losowymi z rozkładu normalnego $N(0,\sigma=\frac{1}{\sqrt{1000}})$. Następnie wygeneruj wektor zmiennej odpowiedzi zgodnie modelu

$$Y = X\beta + \varepsilon$$
,

gdzie $\beta = (3, 3, 3, 3, 3, 0, \dots, 0)^T$, $\varepsilon \sim N(0, I)$.

Wykonaj następujące analizy w oparciu o modele wykorzystujące

- i) pierwszych 5 zmiennych;
- ii) pierwszych 10 zmiennych;
- iii) pierwszych 20 zmiennych;
- iv) pierwszych 100 zmiennych;
- v) pierwszych 500 zmiennych;
- vi) wszystkie 950 zmiennych.
 - 1. a) Dla każdego z powyższych modeli wyznacz estymator najmniejszych kwadratów dla wektora β i wykonaj testy istotności jego elementów.
 - **b)** Porównaj jak się zmienia odchylenie standarowe estymatora β_1 i szerokość 95% przedziału ufności dla tego parametru w miarę tego jak rośnie rozważany model.
 - c) Porównaj liczbę prawdziwych i fałszywych odkryć dla różnych modeli.
 - d) Porównaj wyniki 1c) z liczbą prawdziwych i fałszywych odkryć po zastosowaniu korekt Bonferroniego i Benjaminiego-Hochberga na wielokrotne testowanie.
 - 2. Powtórz powyższe doświadczenie 1000 razy i dla różnych modeli wyznacz
 - a) Średnią wariancję estymatora β_1 i porównaj z wartością teoretyczną (patrz odwrotny rozkład Wisharta).
 - b) Srednią szerokość 95% przedziału ufności dla β_1 i porównaj z teoretycznym oszacowaniem.
 - c) Średnią liczbę prawdziwych i fałszywych odkryć dla procedur testowania bez korekty oraz z korektą Bonferoniego i BH.
 - d) Estymatory FWER i FDR dla procedur testowania bez korekty oraz z korektą Bonferoniego i BH.
 - e) Dla procedur bez korekty i z korektą Bonferoniego wyznacz odpowiednie oszacowania teoretyczne średniej liczby fałszywych i prawdziwych odkryć oraz FWER.

1