Mecánica Clásica - 2do. cuatrimestre de 2020

Guía 7: Ecuación de Hamilton-Jacobi. Variables de ángulo acción

- 1. Una partícula de masa m se mueve sobre el eje x sometida a un potencial $V=a\sec^2(x/l)$, donde a y l son constantes. Resuelva la ecuación de H–J encontrando una expresión integral para S. Encuentre x(t) utilizando S.
- 2. Considerar el sistema físico cuya energía cinética es $T=\frac{1}{2}(\dot{q}_1^2+\dot{q}_2^2)(q_1^2+q_2^2)$ y cuya energía potencial resulta $V=(q_1^2+q_2^2)^{-1}$, donde $q_1,q_2,\dot{q}_1\,$ y \dot{q}_2 son coordenadas y velocidades generalizadas. ¿Cuál es la ecuación de Hamilton–Jacobi para este sistema? Resuelva esta ecuación para encontrar la función principal de Hamilton S. Encuentre o deduzca de allí el comportamiento dinámico del sistema.
- 3. Considere un movimiento unidimensional de una partícula de masa m y carga e sometida a una campo eléctrico uniforme dependiente del tiempo E(t). Encuentre el hamiltoniano del sistema. ¿Cuál es la ecuación de Hamilton–Jacobi? Muestre que la función principal de Hamilton puede escribirse como

$$S = e \int_0^t E(t')dt'x + \alpha x - \phi(t),$$

donde α es una constante y ϕ es una función del tiempo. Resuelva la ecuación para ϕ . De allí encuentre la posición y el momento canónico conjugado en función del tiempo.

- 4. Considere un oscilador armónico unidimensional:
 - (a) Halle su hamiltoniano y las correspondientes ecuaciones de Hamilton, construya los diagramas de fases, halle puntos de equilibrio y discuta su estabilidad, discuta la existencia de movimientos de libración y rotación.
 - (b) Halle la trasformación canónica de función generatriz $F_1(Q,q) = \lambda q^2 \cot Q$ eligiendo λ para que el nuevo hamiltoniano sea $K(Q,P) = \omega P$ (ω : pulsación del oscilador).
 - (c) Muestre que (Q, P) son variables de ángulo-acción. Halle el área encerrada por las curvas de E (energía) constante en el espacio de fases, y muestre que la curva que corresponde a un P dado encierra un área $2\pi P$.
 - (d) Halle la función generatriz de tipo $F_2(P,q)$ que genera la misma transformación canónica $(q,p) \rightarrow (Q,P)$. ¿Qué relación hay entre F_1 y F_2 ?
- 5. Demuestre que la función generatriz de la transformación canónica que lleva a variables de ángulo y acción es $F_2(q, J) = \int_0^q p(J, q') dq'$. Pruebe que esta función no es periódica como función de q, pero que $F_1(q, Q)$ sí lo es.
- 6. Considere el hamiltoniano

$$H = \frac{1}{2m}p_1^2 + \frac{1}{2m}(p_2 - kq_1)^2.$$

Resuelva el problema utilizando la técnica de Hamilton–Jacobi. Encuentre la órbita general de la solución de la ecuación de H–J. ¿Qué sistema físico podría corresponder a este problema? Resuelva este problema de otras tres maneras:

- (a) Resolviendo las ecuaciones canónicas.
- (b) Haciendo una transformación canónica con $Q_1 = Ap_1$, $P_1 = B(p_2 kq_1)$, eligiendo Q_2 y P_2 convenientemente (A y B son constantes), resolviendo para Q_i y P_i y luego antitransformando.
- (c) Por medio de variables de ángulo-acción.
- 7. Considere un péndulo físico formado por una barra de longitud *l*, que puede moverse en un plano vertical, con uno de sus extremos fijo (la barra gira libremente a su alrededor). El momento de inercia de la barra respecto al punto fijo es *I*. Hay gravedad.
 - (a) Muestre que el hamiltoniano del sistema es $H=\frac{1}{2}I(p_{\psi}^2-2\alpha^2\cos\psi)$ donde ψ es el ángulo de la barra con la vertical, p_{ψ} su momento conjugado y α una constante a determinar.
 - (b) Construya el correspondiente diagrama de fases; halle puntos de equilibrio y discuta su estabilidad; construya la curva separatriz correspondiente (halle su ecuación). Determine los movimientos de libración y rotación posibles y halle su período.
 - (c) Muestre que el área encerrada por la separatriz es 16α . Deduzca que el máximo valor de la variable de acción para el movimiento de libración es $8\alpha/\pi$.
- 8. Una partícula de masa m se mueve en el potencial

$$V(x) = \begin{cases} \frac{1}{2}m\lambda^2(x+a)^2 & x \le 0, \\ \frac{1}{2}m\lambda^2(x-a)^2 & x \ge 0. \end{cases}$$
 (1)

- (a) Plantee las ecuaciones de Hamilton, construya diagramas de fases, considerando especialmente las curvas de fases próximas al origen.
- (b) Muestre que el espacio de fases se divide en 3 regiones invariantes, y en cada una se definen distintas variables de ángulo-acción. Halle la variable de acción en función de E en cada caso.
- 9. Escriba las variables de acción y ángulo para las rotaciones en un plano de una barra con un punto fijo, sometida a un potencial angular $V(\psi)=k|\psi|/\pi$ si $-\pi<\psi<\pi$ (k>0), con $V(\psi)$ periódico, $V(\psi+2\pi)=V(\psi)$.
- 10. Considere una partícula con hamiltoniano $H=\frac{p^2}{2m}+V(q)$ para cada uno de los siguientes casos: $V(q)=-k^2/q+l^2/2mq^2$ y $V(q)=\frac{1}{2}m\omega^2q^2+l^2/2mq^2$.
 - (a) Dibuje los diagramas de fases, escriba las ecuaciones de las curvas separatrices e indique las regiones que corresponden a movimientos de libración y rotación.
 - (b) Para los movimientos de libración exprese a la variable de acción como función de la energía y halle la relación $\psi = \psi(q, J)$, donde ψ es la variable de ángulo. ¿Cómo es la frecuencia del movimiento?
 - (c) Encuentre la energía de las trayectorias que satisfacen las relaciones $J=n\hbar$ y $l=p\hbar$ (con n,p números naturales y \hbar constante). Discuta este punto con su docente.

- 11. Una partícula se mueve en el espacio bajo la acción de un potencial central $V(|\mathbf{r}|)$.
 - (a) Calcule las variables de acción para la parte angular del movimiento. ¿Cómo se expresa el módulo del momento angular como función de las mismas?
 - (b) ¿Bajo qué condiciones el movimiento de la partícula será periódico? Demuestre explícitamente que para el problema de Kepler y para el oscilador armónico el movimiento es periódico pero que para un potencial de la forma $V=a/r^2$ no lo es. Obtenga la frecuencia de movimiento como función de la energía.
 - (c) ¿Cuál es la energía de las órbitas definidas por las relaciones $J_i = n_i \hbar$? ¿Cuánto vale el momento angular de las mismas? (n_i entero y \hbar constante).
- 12. Para el potencial $V(q) = \epsilon (1 \alpha/q)^2$
 - (a) Dibujar el diagrama de fases indicando las zonas de libración.
 - (b) Calcular las variables de ángulo y acción J = J(E) y $\psi = \psi(q, J)$.
 - (c) ¿Qué pasa con el período del movimiento cuando la energía tiende al valor que corresponde a la curva separatriz?