

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS PO Box 1450 Alexasofan, Virginia 22313-1450 www.repto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/623,857	07/22/2003	Jun Koyama	740756-2633	6363
22204 7500 12/642009 NIXON PEABODY, LLP 401 9TH STREET, NW			EXAMINER	
			SHAPIRO, LEONID	
SUITE 900 WASHINGTO	N, DC 20004-2128		ART UNIT	PAPER NUMBER
			2629	
			MAIL DATE	DELIVERY MODE
			12/04/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/623 857 KOYAMA ET AL. Office Action Summary Examiner Art Unit Leonid Shapiro 2629 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 02 September 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-3.7-9.13.14.17 and 18 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-3,7-9,13,14,17 and 18 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date ______.

Interview Summary (PTO-413)
Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Art Unit: 2629

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A palent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 1-3,7-9,13-14, and 17-18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sundahl et al. (Pub. No.: US 2004/0212573 A1) in view of Ishizuka (Patent No.: US 6,479,940 B1) and Storino (US 2003/0078741 A1).

With respect to Claim 1, Sundahl teaches a display device comprising a display panel which is equipped with pixels including a light-emitting element ([0017], lines 1-2; light-emitting element: OLED emitters), an aging characteristic of the light-emitting element are stored (See figure 3; [0023]; note that since the ratios of figure 3 are used to estimate the effective age of the device then aging characteristics of the light-emitting element must be stored; [0031], lines 5-7), an arithmetic operation unit ([0022], lines 4-12; note that the arithmetic operation unit is equivalent to the circuit used to measure current or voltage to maintain a desired level of luminance through reverse bias resistance; note the lighting period of a pixel is the time required to maintain the desired level of luminance, thus the arithmetic operation unit calculates a lighting period of each pixel) which calculates a lighting period of each pixel, a count unit ([0027], note that the arithmetic operation unit also functions as a count unit, where the characteristic is measured continuously: note that the continuous measurement of the characteristic is

Art Unit: 2629

equivalent to obtaining a cumulated lighting period; [0023], note that the measurement is used to identify a place on the curve of figure 3) which counts the lighting period to obtain a cumulated lighting period of each pixel using an output of the arithmetic operation unit, an A/D conversion circuit which converts detected data into digital data (paragraph 0046), and a correction unit (See figure 4, the correction unit is equivalent to elements 420 and 430; [0032], lines 1-4; [0046], lines 16-24) which corrects the video signal to be inputted to each pixel using the aging characteristic and the cumulated lighting period and supplies the corrected video signal to the display panel.

Sundahl does not explicitly teach a temperature detection unit which detects an ambient temperature, a storage unit in which a temperature characteristic of the light-emitting element is stored, and an arithmetic operation unit which calculates a lighting period of each pixel using an output of the temperature detection unit, the temperature characteristic, and a video signal, wherein the display panel, the temperature detection unit, the A/D conversion circuit, the storage unit, the arithmetic operation unit, the count unit and correction unit are formed over a same substrate.

Note that Sundahl shows that temperature also affects the degradation of luminance of the device ([0017], last four lines) and multiple characteristics may be measured and/or combined to provide a more definitive indication of degradation and required correction than available from a single set of measurements ([0027], last four lines), which clearly suggest that temperature compensation can be used to overcome degradation.

Art Unit: 2629

However, Ishizuka teaches temperature compensation by having a temperature detection unit (See figure 7, element 35; column 6, lines 52-54) which detects an ambient temperature, a storage unit in which a temperature characteristic of the light-emitting element is stored (column 6, lines 58-62; the temperature characteristic is equivalent to a predetermined temperature), and an arithmetic operation unit (See figure 7, element 33B; column 6, lines 54-57) which calculates a lighting period (the lighting period is equivalent to the time for a pixel to emit light based on the supplied voltage) of each pixel using an output of the temperature detection unit, the temperature characteristic, and a video signal.

Ishizuka also teaches a voltage converting circuit integrally formed (fig. 8, item 37, col. 7, lines 46-59).

Therefore it would have been obvious for a person of ordinary skill in the art at the time the invention was made to use the feature of temperature compensation where the measured temperature signal of Ishizuka is added to element 440 of figure 4 in the display device of Sundahl so as to produce a device that is able to compensate for both aging and temperature degradation to provide a display apparatus, wherein the display panel, the temperature detection unit, the A/D conversion circuit, the storage unit, the arithmetic operation unit, the count unit and correction unit are formed over a same substrate and in which even in case of changing a display luminance of a light-emitting panel, the number of gradations which can be displayed is not limited and the luminance can be easily changed and a multi-gradation display with a high precision can be performed (Ishizuka: column 2, lines 60-65).

Art Unit: 2629

Sundahl et al. and Ishizuka do not disclose the temperature characteristic comprises an acceleration factor corresponding to each detected temperature.

Storino teaches disclose the temperature characteristic comprises an acceleration factor corresponding to each detected temperature (fig. 4A, item Delta T, par. 0076).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate teachings of Storino into Sundahl et al. and Ishizuka system in order to define how much of the product's life remains (par. 0020 in the Storino reference).

With respect to Claim 7, claim 7 differs from claim 1 only in that claim 1 is a display device whereas claim 7 is a method claim. Thus, the method of claim 7 is analyzed as previously discussed with respect to the display device of claim 1.

With respect to Claim 13, claim 13 differs from claim 1 in that claim 13 does not recite the limitation "an arithmetic operation unit which calculates a lighting period of each pixel using an output of the temperature detection unit, the temperature characteristic, and a video signal". However, claim 13 recites the limitation "wherein the lighting period is corrected using the temperature characteristic and the ambient temperature" which is equivalent to the processing of the arithmetic operation unit and count unit of claim 1. Therefore claim 13 is analyzed as previously discussed with respect to the display device of claim 1.

Art Unit: 2629

With respect to Claim 17, claim 17 differs from claim 13 only in that claim 13 is a display device whereas claim 17 is a method claim. Thus, the method of claim 17 is analyzed as previously discussed with respect to the display device of claim 13.

With respect to Claims 2 and 8, a display apparatus according to claims 1 and 7, Sundahl teaches the arithmetic operation unit calculates an acceleration factor ([0023], note that the acceleration factor is equivalent to the ratios illustrated in figure 3 that are compared with the original current flow through the OLED) and calculates the lighting period of each pixel from a multiplication of the video signal and the acceleration factor (note that the equation in [0023], where V/V_o is equivalent to the acceleration factor and I_o is equivalent to the video signal).

temperature detection unit and the temperature characteristic

 Claims 3, 9, 14, and 18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sundahl, Storino and Ishizuka as applied to claims 1, 7, 13, and 17 above, and further in view of Miyashita et al. (Patent No.: JP361261921A).

With respect to Claims 3, 9, 14, and 18, a display device according to claims 1, 7, 13 and 17, Sundahl mentions that temperature may accelerate the degradation of the display device (100171: last four lines), thus measuring the reverse bias resistance of the

Art Unit: 2629

OLED is equivalent to having a temperature detection unit that is a light-emitting element.

For further supplemental support Miyashita teaches having a temperature characteristic being reverse to a characteristic of the light emitting output of the light emitting element and an ambient temperature (abstract), which is equivalent to a temperature detection unit that is a light-emitting element.

It would have been obvious for a person of ordinary skill in the art at the time the invention was made to use a light-emitting element as a temperature detection unit, as taught by Miyashita, to the display device of Sundahl, Storino so as to provide a low cost temperature detection unit and to provide constant output from the light emitting element.

Response to Arguments

4. Applicant's arguments filed 09/02/09 have been fully considered but they are not persuasive: On page 6, 2nd paragraph of Remark, Applicant's stated that Claims 1-3, 7-9, 13-14 and 17-18 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Sundahl et al. (U.S. Pat. Pub. 2004/0212573 A1) (Sundahl, hereinafter) in view of Ishizuka (U.S. Patent No. 6,479,940 B1) (Ishizuka, hereinafter) and Storino (U.S. Pat. Pub. 2003/0078741 A1). Sundahl, Ishizuka, and Storino, however, fail to render the claimed invention unpatentable. Each of the claims recite a specific combination of features that distinguishes the invention from the prior art in different ways. For example, independent claims 1, 7, 13, and 17 recite a combination

Art Unit: 2629

that includes, among other things: "... wherein the display panel, the temperature detection unit, the A/D conversion circuit, the storage unit, the arithmetic operation unit, the count unit and correction unit are formed over a same substrate...". However, Ishizuka teaches a voltage converting circuit integrally formed (fig. 8, item 37, col. 7, lines 46-59).

Notice, that problem to be solved by different units and circuits on the same substrate as display is regarded as how to reduce the costs of the display device including electronic circuits for controlling the display described above. It is common trend to integrate electronic display controlling circuits on the substrate of the display in order to reduce the costs and to improve the driving speed. Therefore, the skilled person would also dispose different units and circuits on a substrate of the display as mentioned in all independent claims, without exercise of inventive skill.

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the

Art Unit: 2629

shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Telephone Inquire

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Leonid Shapiro whose telephone number is 571-272-7683. The examiner can normally be reached on 8 a.m. to 5 p.m..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Richard Hjerpe can be reached on 571-272-7691. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Application/Control Number: 10/623,857 Page 10

Art Unit: 2629

/L. S./ Examiner, Art Unit 2629 11/23/09

/Richard Hjerpe/ Supervisory Patent Examiner, Art Unit 2629