OPPSUMMERING

Kraft = en vekselvirkning mellom 2 legemer som
kan forandre form ogleller fart (til legemen)

Enhet: Newton = $N = kg \cdot \frac{m}{52}$

Kraft er en vektorstørrelse: 1) Størrelse ?

2) Retning ?

Eksempel: kraft på kjelke

R: friksjonskraft

R: friksjonskraft

G: tyngdebraft

Eksempel: krefter på snor

N: normalkratt : feskepundt G: tyngdekraft på snor |odd -> || F: kraft fra lodd pu snor

IF: summen av kretter som virker på et legeme.

Når alle krettese ligger på samme linge - 1Dkan vi summere vektorese som vanlige tall der retningen på vektorese angir fortegnet til tallet.

t (positiv

Summer au kreftene pu leasser:

 $\sum F = 4N - G$ = N - G

= 200N - 200N = 0

VEKSELVIRKNING MELLOM TO LEGEMER

NEWTONS 3. LOV

Nac et legeme A virker poi et legeme B med en kraft F, vil alltid B virke tilbake poi A med en like stor og moësatë rettet kraft F'

(kraft = motkraft) · · F = · - F'

Eksempel 1

G: krafter fra solen på jorden

(Sold)

G1: kroften fra jorden på solen

G = 3,7.1022 N

G'=3,7.1022N

Eksempel 2	
Ball	
	G=10N - kraft fra jorden på ballen
	G'=10W - Kraft fra balles på jorder
Eksempel 3	
casse	Finn motkrettene til kreftene Som virke på kassen.
	N': kraften kassen virler på underlaget med N'=N
	G': krafter kosser virker på jorder med

TYNGDEKRAFTEN

En Kraft som virker mellom legemer som har masse

Ball, masse M

G: retning nedover mot jordoverflaten

Sorde

Tyngdekraften er proporsjonal med m.

 $G = m \cdot g$

M: masser til et legeme som befinner seg nærme jordoverflaten

g: -feltstyrke til gravitasjonsfelt/ tyngdefelt -tyngdeakselerasjonen

Enhet: $[G] = N = kg \frac{m}{52}$

 $[g] = \frac{[G]}{[m]} = \frac{N}{kg} = \frac{\frac{m}{s^2}}{kg}$

[g] = m/52 -> akselerusjon

 $g = 9,81 \frac{m}{5^2}$ på jorden

Tyngdeakselerasjonen varierer med:

- · masser til legemet gminer = 1,62 m
- austanden til legemet austand 7, g si eks. Gekrotor = 9,78 m/s²

Eksempel En person veier (har masser) m= 81 kg.

- a) Hua er tyngdekraften på denne personen?
- b) Hvor stor er kræften fra personen på jorden?

$$m = 81 \text{ leg}$$

$$g = 981 \frac{N}{\text{leg}} \quad (=9,81 \frac{m}{5^2})$$

$$G = m \cdot (-g)$$

= 81 kg · $(-9,81 \frac{N}{Kg})$

$$= -794,6 \text{ kg} \cdot \frac{N}{\text{kg}}$$

$$G = -7,9.10^2 N$$

G har verdien 0,79 kN med rekning nedover

b) Newton's 3.10v: Siden kratten fra jorden på personen er 0,79 kN, må kratten fra personen på jorden også være 0,79 kN. Retning: opposer.

G'-6 = 0,79 LN

SAMMENHENGEN MELLOM BEVEGELSE KREFTER

Newtons 1. lov

Når summen av ytre kretter som virker på et legeme er lik null, så vil legemet fortsettle; sin tilstand av vo eller i sin tilstand av bevegelse med konstant rettlinget fact

nar V= Konstant eller V=0

En curlingstein har massen m=20 kg og alir med konstant fart på isen. Finn krettene som virker på steinen.

$$M = 20 ky$$

 $g = 9.81 N/ky$

$$G = m \cdot (-g)$$

= $20 \text{ kg}(-9.81 \frac{N}{kg})$

$$N = -G$$
$$= -(-0,20 \text{ kN})$$

En kjelke har massen m = 4,2 kg. Den blir dradd med et horisontalE Snordrag på 8,0 N när den har konstant fart. Bestern de andre breftene på kjelken. $\sqrt{g} = 9.81 \text{ kg}$ $\sqrt{= \text{konstant}}$ 5: Snorkraft 6: tyngdekraft N: normalkraft R: friksjonskræft : ZFrent. = 0 => GTN = 0 Vertilial retning N=-G=-m(-g)=4,2kg.9,81 N N=41N relainy opp G = -41 N, retning ned Horisontal retning: V=konstant => ZFhor. =0 S+R = 0, S=8,0N motsatt retning R = -S = -8,0N

Eksempel

La ZIF vore summen av kreftere som Virker på et legeme med masser m. Da får legemet en akselerasjon gitt Ved ligningen

- 1) Kraften og akselerasjonen har samme vetning.
- 2) For rettlinjet bevegelse: $\sum F = ma$ regning med "vanlige tall". Fortegn

 angir retning
- 3) Enhet: $\left[\sum F \right] = N = kg \frac{m}{s^2}$ $\left[m \ a \right] = \left[m \right] \cdot \left[a \right] = kg \cdot \frac{m}{s^2}$ $\left[a \right] = \left[\frac{\sum F}{m} \right] = \frac{kg \cdot \frac{m}{s^2}}{kg} = \frac{m}{s^2}$