

SEQUENCE LISTING

<110> OLSON, ERIC
FREY, NORBERT

<120> METHODS AND COMPOSITIONS RELATING TO MUSCLE SPECIFIC
CALCINEURIN ASSOCIATED PROTEIN (CAP)

<130> UTSD:729US

<140> UNKNOWN
<141> 2001-11-07

<150> 60/246,629

<151> 2000-11-07

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

<211> 2531

<212> DNA

<213> Homo sapiens

<400> 1

gtcccgaggtt caaggataaa aaccatcagg cccaaagtgcc atccatagtc catctccaga 60
gttccctcc acaaaactggg attcatcccc gctgaaaaag cacaatctaa cagcaaggga 120
acaaaaaaaaac catgctatca cataatacta tggatgaagca gagaaaaacag caagcaacag 180
ccatccatgaa ggaagtccat ggaaatgatg ttgatggcat ggacctgggc aaaaagggtca 240
gcatccccag agacatcatg ttgaaagaat tatcccatct cagtaaccgt ggtgccaggc 300
tatttaagat gcgtcaaaga agatctgaca aatacacatt tgaaaatttc cagtatcaat 360
ctagagcaca aataaatcac agtattgcta tgcagaatgg gaaagtggat ggaagtaact 420
tggaaggtgg ttgcgcagcaa gccccctga ctccctccaa caccccgat ccacgaagcc 480
ctccaaatcc agacaacatt gtcggaggat attctggacc actgaaggaa attcctcctg 540
aaaaattccaa caccacagct gtccttaagt actatcaatc tccctggag caagccatta 600
gcaatgatcc ggagctttt gaggctttat atcctaaact tttcaaggct gaaggaaagg 660
cagaactgcc tgattacagg agctttaaca gggttgcac accatttgga ggtttgaaa 720
aagcatcaag aatggttaaa tttaaagttc cagatttga gctactattt ctaacagatc 780
ccaggtttat gtccttgtc aatcccctt ctggcagacg gtccttaat aggactccta 840
aggatggat atctgagaat attcctatag tgataacaac cgaacctaca gatgatacca 900
ctgtaccaga atcagaagac ctatgaaaag aaagttgtat gtgccacata aaactctgaa 960
tataaaagtt gctgttctac tattttact actggcaag cacttgcatt tttcatttagt 1020
agcaacaata gcaatttagt gatttccctt ttctgacatt caatttcaat ctcagatcaa 1080
atactaataa acaatttagaa atcttacttt aaaaaactta taactcaatt gtcttcattc 1140
ataattttgt ttccacctgg tttaaagaat ccagatattt tactgcaaaa gttcagatgg 1200
aaaagtaatt gacagcttca cctttgtctc attttatatg atttattaca gtgtaaattt 1260
ttcaagtggaa atctagaatc aaaatacagg gagagatatg aagacctatt cagagttca 1320
tctggggatg aaagctatgg aagatgtatg acaaatttta ttgatggaga aaatgggtgg 1380
tgtgtcctt ctgggtacca tgagaaaata atatgttgc atgaagtctt ttcatttagtc 1440
actcttagaa ttctaaagtg ctggcactt ttcaatatgt ttgaatcat taggttaattt 1500
attctggatg atattctcca aaattcaatt cagttattat attcatttag cattaagtca 1560
aggagactga gaatgactca agggacgtca tagtaccata gtttaagga ccaagggttg 1620

cccagaattc aagtttcaca aatcccaatg ctgtgcattg attatgttca actttatgtg 1680
tgcattctta gaagagtaag aacaaataaa gtacacccta atatacatat aaatacattc 1740
atgttgtga gagaaggaaa gagtaagtaa tttgaattgg cagcttctt tgctaaatct 1800
ttaaattctg ttaagatcct caagtaactg gggagtacat gctttaggac acaaacaaaa 1860
acaaaggca taaaagtatac tgaaagcaat gtagcacata tctatcgtaa tatatgtaat 1920
atattgacat aaaagacaca aactaatata aagttatagt tataatcttaa aatataattg 1980
aagaagcata tgacatataa cttatagaaa tcagtatcaa ttcccccatttcaattcag 2040
ttaagactct gtgatagatg tttatagcag agaagaatg tctcatcaat agaaaaacta 2100
tcagataaag tttaggagat aggaagaagg actgtgtgta gtaatgaaaa taccaagttg 2160
caacattaca tgtttacaaa aaaaatctgt gttttagtg tggaaagttgg tgactgtttt 2220
aatcatcatc tagacttgtt aagtagaaaa atttaaaaaa tttgcttagt aaaaatataac 2280
ccccagaaag taacaatgac aaagtattat atttatatat attattgttag agaatttgc 2340
tattttaaa gatgtcttaa gatatcttaa ttttatttat aagttttgtt gtttacctgt 2400
tttaaaatga taatgtggc atctgtgata aactatcaat gaggctccca tcatgccatt 2460
ttttgttcat ttaatctt aaaaataaa aattaggcat attaaaaaaaaaaaaaaaaa 2520
aaaaaaaaaa a 2531

<210> 2
<211> 264
<212> PRT
<213> Homo sapiens

<400> 2
Met Leu Ser His Asn Thr Met Met Lys Gln Arg Lys Gln Gln Ala Thr
1 5 10 15

Ala Ile Met Lys Glu Val His Gly Asn Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Leu Glu Glu Leu Ser
35 40 45

His Leu Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Gln Ser Arg Ala Gln
65 70 75 80

Ile Asn His Ser Ile Ala Met Gln Asn Gly Lys Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Ala Pro Leu Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Asp Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Lys Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Gln Ser Pro Trp Glu Gln Ala Ile Ser Asn Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Pro Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Arg Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Met Ser Phe Val Asn
210 215 220

Pro Leu Ser Gly Arg Arg Ser Phe Asn Arg Thr Pro Lys Gly Trp Ile
225 230 235 240

Ser Glu Asn Ile Pro Ile Val Ile Thr Thr Glu Pro Thr Asp Asp Thr
245 250 255

Thr Val Pro Glu Ser Glu Asp Leu
260

<210> 3

<211> 1207

<212> DNA

<213> Mus musculus

<400> 3

gagagccgac caccaactga gcagctggtc agatccacct ccaccatgcc actctcagga 60
accccgcccc ctaacaagag gagaaagtca agcaaactga ttatggagct cactggaggt 120
ggccgggaga gctcaggcct gaacctgggc aagaagatca gtgtcccaag ggatgtgatg 180
ttggaggagc tgtcccttct taccaaccga ggctccaaga tttcaagct acggcagatg 240
cgggtggaga aatttatcta tgagaatcac cccgatgttt tctctgacag ctcaatggat 300
caactccaga agtttcttcc cacagtggga ggacagctgg agacagctgg tcagggcttc 360
tcatatggca agggcagcag tggaggccag gctggcagca gtggctctgc tggacagat 420
ggctctgacc gtcatcagca gggctctggg tttggagctg ggggttcagg tggctctggg 480
ggccaggctg gtggaggagg agctcctggc acagtagggc ttggagagcc cggatcaggt 540
gaccaggcag gtggagatgg aaaacatgtc actgtgttca agacttatat ttccccatgg 600
gatcgcccac tgggggttga tcctcagcaa aaagtggAAC ttggcattga cctactggca 660
tacggtgcca aagctgaact ccccaaataat aagtccctca acaggacagc aatgccctac 720
ggtggatatg agaaggccctc caaacgcatg accttccaga tgcccaagtt tgacctgggg 780
cctctgctga gtgaaccctt ggtcctctac aaccagaacc tctccaacag gccttcttc 840
aatcgaaccc ctattccctg gttgagctct ggggagcatg tagactacaa cgtggatgtt 900
ggtatccctt tggatggaga gacagaggag ctgtgaagtg cctccctctg tcatgtgcat 960
cattccctt ctctggttcc aatttgagag tggatgttca acaggatgcc ccaactgtt 1020
atccagtatt cttgtggcaa tggagggtaa aggggtgggt ccgttgcctt tccacccttc 1080
aagtccctgc tccgaagcat ccctccctac cagctcagag ctcccatcct gctgtaccat 1140
atggaatctg ctctttatg gaattttctc tgccaccgggt aacagtcaat aaacttcaag 1200
gaaatga 1207

<210> 4

<211> 296

<212> PRT

<213> Mus musculus

<400> 4

Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Arg Arg Lys Ser Ser
1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Arg Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
35 40 45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95

Gln Leu Glu Thr Ala Gly Gln Gly Phe Ser Tyr Gly Lys Gly Ser Ser
100 105 110

Gly Gly Gln Ala Gly Ser Ser Gly Ser Ala Gly Gln Tyr Gly Ser Asp
115 120 125

Arg His Gln Gln Gly Ser Gly Phe Gly Ala Gly Gly Ser Gly Gly Pro
130 135 140

Gly Gly Gln Ala Gly Gly Gly Ala Pro Gly Thr Val Gly Leu Gly
145 150 155 160

Glu Pro Gly Ser Gly Asp Gln Ala Gly Gly Asp Gly Lys His Val Thr
165 170 175

Val Phe Lys Thr Tyr Ile Ser Pro Trp Asp Arg Ala Met Gly Val Asp
180 185 190

Pro Gln Gln Lys Val Glu Leu Gly Ile Asp Leu Leu Ala Tyr Gly Ala
195 200 205

Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr Ala Met Pro
210 215 220

Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe Gln Met Pro
225 230 235 240

Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val Leu Tyr Asn
245 250 255

Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro Ile Pro Trp
260 265 270

Leu Ser Ser Gly Glu His Val Asp Tyr Asn Val Asp Val Gly Ile Pro
275 280 285

Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 5
<211> 1261
<212> DNA
<213> Homo sapiens

<400> 5
cggtcacagc agctcagtcc tccaaagctg ctggacccta gggagagctg accactgccc 60
gagcagccgg ctgaatccac ctccacaatg ccgcctctcag gaaccccgcc ccctaataag 120
aagaggaaat ccagcaagct gatcatggaa ctcactggag gtggacagga gagctcaggc 180
ttgaacctgg gcaaaaagat cagtgtccca agggatgtga tgttggagga actgtcgctg 240
cttaccaacc ggggctccaa gatgttcaaa ctgcggcaga tgagggtgga gaagtttatt 300
tatgagaacc accctgatgt tttctctgac agctcaatgg atcacttcca gaagttcctt 360
ccaacagtgg ggggacagct gggcacagct ggtcaggat tctcatacag caagagcaac 420
ggcagaggcg gcagccaggc agggggcagt ggctctggc gacagtatgg ctctgatcag 480
cagcaccatc tgggctctgg gtctggagct ggggttacag gtggtcccgc gggccaggct 540
ggcaaaggag gagctgctgg cacaacaggg gtttgtgaga caggatcagg agaccaggca 600
ggcggagaag gaaaacatat cactgtttc aagacctata tttccccatg ggagcgagcc 660
atgggggttgc acccccagca aaaaatggaa ctggcattt acctgctggc ctaggggccc 720
aaagctgaac ttcccaaata taagtccttc aacaggacgg caatgcccta tggtgatata 780
gagaaggcct ccaaacgcatt gaccccttccag atgcccattt ttgacctggg gcccttgctg 840
agtgaaccccc tggcctctta caaccaaaaac ctctccaaaca ggccttcttt caatcgaacc 900
cctattccct ggctgagctc tggggagcct gtagactaca acgtggatata tggcatcccc 960
ttggatggag aaacagagga gctgtgaggt gtttcctctt ctgatttgca tcatttcccc 1020
tctctggctc caatttggag agggaaatgct gagcagatag ccccccattgt taatccagta 1080
tccttatggg aatggaggaga aaaaggagag atctacccctt ccatttttta ctccaaagtcc 1140
ccactccacg catccttcctt caccaactca gagctccctt tctacttgct ccatatggaa 1200
cctgctcgat tatgaaattt ntctgccacc agtaacagtc aataaaacttc aaggaaaatg 1260
a 1261

<210> 6
<211> 299
<212> PRT
<213> Homo sapiens

<400> 6
Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Lys Arg Lys Ser Ser
1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Gly Gln Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu

35

40

45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
 50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
 65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
 85 90 95

Gln Leu Gly Thr Ala Gly Gln Gly Phe Ser Tyr Ser Lys Ser Asn Gly
 100 105 110

Arg Gly Gly Ser Gln Ala Gly Gly Ser Gly Ser Ala Gly Gln Tyr Gly
 115 120 125

Ser Asp Gln Gln His His Leu Gly Ser Gly Ser Gly Ala Gly Gly Thr
 130 135 140

Gly Gly Pro Ala Gly Gln Ala Gly Lys Gly Gly Ala Ala Gly Thr Thr
 145 150 155 160

Gly Val Gly Glu Thr Gly Ser Gly Asp Gln Ala Gly Gly Glu Gly Lys
 165 170 175

His Ile Thr Val Phe Lys Thr Tyr Ile Ser Pro Trp Glu Arg Ala Met
 180 185 190

Gly Val Asp Pro Gln Gln Lys Met Glu Leu Gly Ile Asp Leu Leu Ala
 195 200 205

Tyr Gly Ala Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr
 210 215 220

Ala Met Pro Tyr Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe
 225 230 235 240

Gln Met Pro Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val
 245 250 255

Leu Tyr Asn Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro
 260 265 270

Ile Pro Trp Leu Ser Ser Gly Glu Pro Val Asp Tyr Asn Val Asp Ile
 275 280 285

Gly Ile Pro Leu Asp Gly Glu Thr Glu Glu Leu
 290 295

<210> 7
 <211> 982

<212> DNA

<213> Mus musculus

<400> 7

attcggcaca tgggatcgag ggaccatgcc gttccaggtt caaggataaa acccattggg 60
ccatagtgcc gtcataattcc accttcagtg ctttcctcca caattggat tcacccctgc 120
tggaaaagcgc acgctgacag caagggaca aaaaactatg ctatcacata gtgcctgggt 180
gaagcaaaagg aaacagcaag catcagccat cacgaaggaa atccatggac atgatgtga 240
cgccatggac ctggcaaaa aagtttagcat ccccagagac atcatgatag aagaattgtc 300
ccatttcagt aatcggtggg ccaggctgtt taagatgcgt caaagaagat ctgacaaaata 360
cacctttgaa aatttccagt atgaatctag agcacaaaatt aatcacaata tcgcctatgca 420
gaatgggaga gttgatggaa gcaacctgga aggtggctca cagcaaggcc cctcaactcc 480
gccccacacc cccgatccac gaagcccccc aaatccagag aacatcgac caggatattc 540
tggaccactg aaggaaattc ctcctgaaag gtttaacacg acggccgttc ctaagtacta 600
ccggctctcca tgggagcagg cgattggcag cgatccggag ctcctggagg ctttgtaccc 660
aaaactttc aagcctgaag gaaaagcaga actgcgggat tacaggagct ttaacagggt 720
tgccactcca tttggaggtt ttgaaaaagc atcaaaaatg gtcaaattca aagttccaga 780
ttttgaacta ctgctgctga cagatcccgag gttcttgcc tttgccaatc ctcttcggg 840
cagacgatgc ttaacaggg cgccaaaggg gtgggtatct gagaatatcc ccgtcgtgat 900
cacaactgag cctacagaag acggcactgt accggaatca gatgacctgt gagagggaaag 960
ctgggatgc cacaggaagt tc 982

<210> 8

<211> 264

<212> PRT

<213> Mus musculus

<400> 8

Met Leu Ser His Ser Ala Met Val Lys Gln Arg Lys Gln Gln Ala Ser
1 5 10 15

Ala Ile Thr Lys Glu Ile His Gly His Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Ile Glu Glu Leu Ser
35 40 45

His Phe Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Glu Ser Arg Ala Gln
65 70 75 80

Ile Asn His Asn Ile Ala Met Gln Asn Gly Arg Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Gly Pro Ser Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Glu Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Arg Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Arg Ser Pro Trp Glu Gln Ala Ile Gly Ser Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Arg Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Lys Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Leu Ala Phe Ala Asn
210 215 220

Pro Leu Ser Gly Arg Arg Cys Phe Asn Arg Ala Pro Lys Gly Trp Val
225 230 235 240

Ser Glu Asn Ile Pro Val Val Ile Thr Thr Glu Pro Thr Glu Asp Ala
245 250 255

Thr Val Pro Glu Ser Asp Asp Leu
260

<210> 9

<211> 3330

<212> DNA

<213> Homo sapiens

<400> 9

gggacgccac gcaactctca gcttcccgac agagggttta atcittgaggg tctaagattc 60
cctcctgcct attgagggtcc catcctctca ggatgatccc caaggagcag aaggggccag 120
tgatggctgc catggggac ctcactgaac cagtcctac gctggacctg ggcaagaagc 180
tgagcgtgcc ccaggacctg atgatggagg agctgtcaact acgcaacaac agagggtccc 240
tcctcttcca gaagaggcag cgccgtgtgc agaagttcac tttcgagttt gcagccagcc 300
agcgggcgat gctggccgga agcgcaggaa ggaagggtgac tggAACAGCG gagtcggggaa 360
cggttgccaa tgccaatggc cctgaggggc cgaactaccg ctccggagctc cacatcttcc 420
cggcctcacc cggggcctca ctccgggggtc ccggaggcgc ccaccctgca gccgccccctg 480
ctgggtgcgt ccccagcccc agcgccttgg cgccaggctt tgccggagccg ctgaaggcg 540
tcccggccaga gaagtcaac cacaccgcca tccccaaagggtt ctaccgcttc ccttggcagg 600
agttcgtcag ctaccgggac taccagagcg atggccgaag tcacaccccc agccccaaacg 660
actaccgaaa ttcaacaag accccgggtgc catttggagg acccctcgat gggggcaattt 720
ttcccaaggcc aggcacccccc ttcatcccg agccccccttag tggcttggaa ctccctccgtc 780
tcagaccccg cttcaacaga gtggcccgagg gctgggtccg taacctccca gagtccgagg 840
agctgttagcc cttagctgaa tcttcgttcc cccagtcgtt gggccctggta aacatccgga 900
gccaagactt gtggacagca cttcacagtt gaagaaggcc cttcacacac aaaacctgat 960
tgcaaatggc ttccagaggcc accaagttca gtcgtcccaa aacatgggtg tgtttcaaaa 1020
ttacacctgggg atgttggttcc aaatcccgac aactggactt tcccgactt gcagcatcag 1080
agtctcctga gtcgaggaat ctgttattt aatagcaacc agggccgggt gtcgtgggtc 1140

acgcctgtca tcccagcact ttgggaggcc gaggcaggag gatcacctga ggtcaggagt 1200
 tttgagacca gtctggccaa aatagtggaa ccccgtcgct actaaaaata caaaaatgg 1260
 tcggacatgg tggtgcattgc ctgtatccc agctactgg gaggctgaga caggagaatc 1320
 acttgaacta ggaggcagag gttgcagtga gccgagattg cgccactgca cccccagcctg 1380
 gacaacagag tgagactct tctcaaaagt aaataaataa atagcaacca gtactccagg 1440
 tgattccagc ataacttatac catgtttgt gtcatttagga gtccacatcc acacctctgc 1500
 tcttcctgt tcctgttagt tacactcccc cggtgacagg gtgctactg gcaccccatc 1560
 ttcctgtgaa taactcaaata aattagaaaa tggccctttt actgagatgc agttggctt 1620
 catctattca tgctctaaac agttcctaag cgctgactgt gcgcctagaca ctgccaggcc 1680
 cgggcctcga ggaggaaaaag acagtaggga agacattata gagcatgaag tcaccataat 1740
 tttccctaaa gcatgcttat tgacaattga ggaacaaagt gttgggagca gaagaaggag 1800
 tccctcaccct taggtgtgag atggattct ggaagcttcc tgaaggattt gagtgggacc 1860
 ttgtgggagg cgtgagagtc catgaagggg gtgtgagggg gagggattt ctggaaagt 1920
 gaccagcatg tgcaaaaata tggaactgag cacgggtgca ggggttctg cagaaggag 1980
 aaggctgtgc tagaggagcc agtgaggggc agcatgggtt gggcttcaact aaggaaatgg 2040
 ggaaggtttt agtgtatggg cttgtctggg gctgtgtggg ggcgcatttg gagaaggta 2100
 atgccagaag ccaggaagcc tgcaagggat gaggccatgg gaatggagag aaggggccac 2160
 ccactggca cctaacagga caggtgcaaa gtgggtgtct tattaagatt ctttcttcc 2220
 actccatttt gaggcaggctg cttaaagtgg tggtgatgat gatgatgatg atggcagct 2280
 tataatcgagt gcctcagtgc ttggcgttgt agtagttct ctacatatct tatttcta 2340
 tctcagaaca accctgagag aaagatattt ttgtcccac tttacagatg tggatattta 2400
 ggccaaaagg aggaagtgc tttccagggg cagacacca atggaaatct gattccagt 2460
 gatgtctctt ttcatgtgcac tgggtgtca atgcccactc gctctgaaat catctgact 2520
 ttagtgcctg ctttggagtt tagaagttga gtgcaggctt gggagtcaga ctggatgggg 2580
 tagttctaa ctctgccact gctagccgga tgaactttag caagtcattt cacatctcc 2640
 agcctctgtt tctccaagtgc taagatgagg acaagttaa aacccctttt atgggttgc 2700
 tgtgaacaca gtgcaggggca catttataat aagagctcag tcaatggtag gtttcatgca 2760
 actgtctgtc taggctggaa aagttgtct tgcactggat gcagcatgag aagctggct 2820
 ctaagatgtc actgggggtc actaaagctg aagcctgaaag gaaagctctt cattgctgta 2880
 gagctctccc tgcctctctc tctggggggc atggggaaagg tcaggagttcc agccattcc 2940
 cagggtgtgt gggatagcga ttgcattttc cttttgtct ggagtttccac tccccttctg 3000
 ggtcccaagg gcccaatggc ctgacttttta gaattgtctg caattgggtt tttctcttga 3060
 atttgggggc tgccattttaa agccaggttt ccatgagctg aagaccagcc attcaagaat 3120
 ctgaaaagta gacaagagga ctccagttgc ctcaggttgg ttctgctgtg ctctggaaag 3180
 taactgcagc caccaggtat gaaaaggagc ctgggtggga gaccactgca cccaaaacaa 3240
 atcccttctt cttctgagaa tgtgactttt tctgggtttt taaaaaaagaa aaaaaaaaaaag 3300
 aatgctcatt gtaaaaaaaaaaaaaaaa 3330

<210> 10
 <211> 251
 <212> PRT
 <213> Homo sapiens

<400> 10
 Met Ile Pro Lys Glu Gln Lys Gly Pro Val Met Ala Ala Met Gly Asp
 1 5 10 15

Leu Thr Glu Pro Val Pro Thr Leu Asp Leu Gly Lys Lys Leu Ser Val
 20 25 30

Pro Gln Asp Leu Met Met Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
 35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
 50 55 60

Glu Leu Ala Ala Ser Gln Arg Ala Met Leu Ala Gly Ser Ala Arg Arg
 65 70 75 80

Lys Val Thr Gly Thr Ala Glu Ser Gly Thr Val Ala Asn Ala Asn Gly
 85 90 95

Pro Glu Gly Pro Asn Tyr Arg Ser Glu Leu His Ile Phe Pro Ala Ser
 100 105 110

Pro Gly Ala Ser Leu Gly Gly Pro Glu Gly Ala His Pro Ala Ala Ala
 115 120 125

Pro Ala Gly Cys Val Pro Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala
 130 135 140

Glu Pro Leu Lys Gly Val Pro Pro Glu Lys Phe Asn His Thr Ala Ile
 145 150 155 160

Pro Lys Gly Tyr Arg Cys Pro Trp Gln Glu Phe Val Ser Tyr Arg Asp
 165 170 175

Tyr Gln Ser Asp Gly Arg Ser His Thr Pro Ser Pro Asn Asp Tyr Arg
 180 185 190

Asn Phe Asn Lys Thr Pro Val Pro Phe Gly Gly Pro Leu Val Gly Gly
 195 200 205

Thr Phe Pro Arg Pro Gly Thr Pro Phe Ile Pro Glu Pro Leu Ser Gly
 210 215 220

Leu Glu Leu Leu Arg Leu Arg Pro Ser Phe Asn Arg Val Ala Gln Gly
 225 230 235 240

Trp Val Arg Asn Leu Pro Glu Ser Glu Glu Leu
 245 250

<210> 11
 <211> 913
 <212> DNA
 <213> Mus musculus

<400> 11
 gtcggactgc aatagacaca caggccataa aactccagct tcccgactga agtgttaatc 60
 ttgggggtct gacatttctt cccatctact gtggcccac caggatgatc cccaggagc 120
 agaaggagcc agtgatggct gtcccgaaaa accttgctga accagtccct tcgctggacc 180
 tgggaaagaa gctgagcgtg cctcaggacc taatgataga ggagctgtct ctacgaaaca 240
 acccgccgatc cctcctcttt cagaagaggc agcgccgggt gcagaagttt accttgagc 300
 tatcagaaag tttgcaggcc atcctggcga gtagtgcccc aggaaaatg gctggcagag 360

cggcgcaggc aacggttccc aatggcttgg aggagcagaa ccaccactcc gagacgcacg 420
tgttccaggg gtcacctggg gaccccgaaa tcaccatct gggagcagcg gggactgggt 480
cggtccgtag tccaagcgcc ctggcaccag gctatgcaga gccccctgaag ggcgtcccac 540
cgagaagtt caaccacact gccatcccc aaggctaccg gtgcccttgg caggagtca 600
ccagctacca agactactcg agtggcagca gaagtcacac tcccatcccc cgagactatc 660
gcaactcaa caagacccca gtgcatttg gaggacccca cgtgagggag gccatttcc 720
acgcaggcac ccccttgc tcggagtct tcagtggctt ggaacttctc cgcctcagac 780
ccaattcaa cagggttgtc cagggctggg tccggaaagct cccggagtct gaggaactgt 840
agcctcagcc tgaagctaca attccctggg ctcaagaaac atgcttgtct tgaaaaaaaaa 900
aaaaaaaaaa aaa 913

<210> 12

<211> 245

<212> PRT

<213> Mus musculus

<400> 12

Met Ile Pro Lys Glu Gln Lys Glu Pro Val Met Ala Val Pro Gly Asp
1 5 10 15

Leu Ala Glu Pro Val Pro Ser Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Ile Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ser Glu Ser Leu Gln Ala Ile Leu Ala Ser Ser Ala Arg Gly
65 70 75 80

Lys Val Ala Gly Arg Ala Ala Gln Ala Thr Val Pro Asn Gly Leu Glu
85 90 95

Glu Gln Asn His His Ser Glu Thr His Val Phe Gln Gly Ser Pro Gly
100 105 110

Asp Pro Gly Ile Thr His Leu Gly Ala Ala Gly Thr Gly Ser Val Arg
115 120 125

Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala Glu Pro Leu Lys Gly Val
130 135 140

Pro Pro Glu Lys Phe Asn His Thr Ala Ile Pro Lys Gly Tyr Arg Cys
145 150 155 160

Pro Trp Gln Glu Phe Thr Ser Tyr Gln Asp Tyr Ser Ser Gly Ser Arg
165 170 175

Ser His Thr Pro Ile Pro Arg Asp Tyr Arg Asn Phe Asn Lys Thr Pro
180 185 190

Val Pro Phe Gly Gly Pro His Val Arg Glu Ala Ile Phe His Ala Gly
195 200 205

Thr Pro Phe Val Pro Glu Ser Phe Ser Gly Leu Glu Leu Leu Arg Leu
210 215 220

Arg Pro Asn Phe Asn Arg Val Ala Gln Gly Trp Val Arg Lys Leu Pro
225 230 235 240

Glu Ser Glu Glu Leu
245

SEQUENCE LISTING

<110> OLSON, ERIC
FREY, NORBERT

<120> METHODS AND COMPOSITIONS RELATING TO MUSCLE SPECIFIC
CALCINEURIN ASSOCIATED PROTEIN (CAP)

<130> UTSD:729US

<140> UNKNOWN
<141> 2001-11-07

<150> 60/246,629
<151> 2000-11-07

<160> 12

<170> PatentIn Ver. 2.1

<210> 1
<211> 2531
<212> DNA
<213> Homo sapiens

<400> 1
gtcccagggtt caaggataaa aaccatcagg cccaaagtgcc atccatagtc catctccaga 60
gtttcctcc acaaaactggg attcatcccc gctaaaaag cacaatctaa cagcaaggga 120
acaaaaaaaaac catgctatca cataatacta ttagtgaagca gagaaaaacag caagcaacag 180
ccatcatgaa ggaagtccat ggaaaatgatg tttagtggcat ggacctgggc aaaaagggtca 240
gcattccccag agacatcatg ttggaagaat tatccatct cagtaaccgt ggtgccaggc 300
tatattaatg gcgtaaaaga agatctgaca aatacacatt tggaaaatttc cagttatcaat 360
cttagagcaca aataaaatcac agtattgcta tgcagaatgg gaaagtggat ggaagtaact 420
tggaaggtgg ttgcgcagcaa gcccccttga ctccctccaa caccggcagat ccacgaagcc 480
ctccaaatcc agacaacatt gctccaggat attctggacc actgaagggaa attccctctg 540
aaaaattcaa caccacagct gtccttaagt actatcaatc tccctgggag caagccatttta 600
gcaatgatcc ggagcttttta gaggctttat atccttaact ttcaagcct gaaggaaagg 660
cagaactgcc tgattacagg agcttaaca gggttgccac accatttggaa ggttttggaa 720
aagcatcaag aatggtaaaa tttaaaggttc cagatttga gctactattt ctaacagatc 780
ccaggtttat gtccttgc aatccccctt ctggcagacg gtcctttat aggactccta 840
aggatggat atctgagaat attcctatag tgataacaac cgaacctaca gatgatacca 900
ctgtaccaga atcagaagac ctatggaaaag aaagttgtat gtgccacata aaactctgaa 960
tataaaagt gctgttctac tattttact actggcaaag cacttgcatt ttcttattttttt 1020
agcaacaata gcaatttagt gattttcctt ttctgcacatt caatttcaat ctcagatcaa 1080
atactaataa acaatttagaa atcttacttt aaaaaactta taactcactt gtcttcattt 1140
ataattttgt tttcacctgg tttaaagaat ccagatattt tactgaaaaa gttcagatgg 1200
aaaagtaatt gacagcttca cctttgtctc attttatatg atttattaca gtgttgttt 1260
ttcaagtggaa atctagaatc aaaatacagg gagagatatg aagacctatt cagagttca 1320
tctggggatg aaagctatgg aagatgtatg acaaatgttta ttgtatggaga aaatggttgg 1380
tgtgtcctt ctgggtacca tgagaaaata atatgtctt atgaagtctt ttcttattttttt 1440
actcttagaa ttcttaaagt gtttgcactt ttcaatatgt ttgtatcat taggtatattt 1500
attctggatg atattctcca aaattcaatt cagttattat attcatatgg cattaagtca 1560
aggagactga gaatgactca agggacgtca tagtaccata gtttaagga ccaagggtgtg 1620
cccagaattc aagtttcaca aatcccaatg ctgtgcattt attatgttca actttatgtg 1680
tgcatatttta gaagagtaag aacaaataaa gtacaccgtt atatacatat aaatacattt 1740

atgtttgtga gagaaggaaa gagtaagtaa tttgaattgg cagcttctt tgctaaatct 1800
ttaaattctg ttaagatcct caagtaactg gggagtacat gctttaggac acaaacaaaa 1860
acaaaaggca tgaaaagtatc tgaaaagcaat gtagcacata tctatcgtaa tatatgtaat 1920
atattgacat aaaagacaca aactaatata aagttatagt tatatcttaa aatataattg 1980
aagaagcata tgacatataa cttatagaaa tcagtatcaa ttcccccatttcaattcag 2040
ttaagactct gtgatagatg tttatagcag agaagaaatg tctcatcaat aggaaaacta 2100
tcagataaag tttaggagat aggaagaagg actgtgtgt aataatgaaaa taccaagttg 2160
caacattaca tgtttacaaa aaaaatctgt gttttagtg tggaaagttgg tgactgttt 2220
aatcatcatc tagactgtt aagtagaaaa attttaaaaa tttgcttatg aaaatataac 2280
ccccagaaaag taacaatgac aaagtattat atttatatat attattgttag agaatttgta 2340
tattttaaa gatgtcttaa gatatcttaa ttttattat aagttttggt gtttacctgt 2400
tttaaaatga taatgttggc atctgtgata aactatcaat gaggctccca tcatgccatt 2460
ttttgttcat tttaatcttt aaaaaataaa aattaggcat attaaaaaaaaaaaaaaaaa 2520
aaaaaaaaaaa a 2531

<210> 2
<211> 264
<212> PRT
<213> Homo sapiens

<400> 2
Met Leu Ser His Asn Thr Met Met Lys Gln Arg Lys Gln Gln Ala Thr
1 5 10 15

Ala Ile Met Lys Glu Val His Gly Asn Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Leu Glu Glu Leu Ser
35 40 45

His Leu Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Gln Ser Arg Ala Gln
65 70 75 80

Ile Asn His Ser Ile Ala Met Gln Asn Gly Lys Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Ala Pro Leu Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Asp Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Lys Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Gln Ser Pro Trp Glu Gln Ala Ile Ser Asn Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Pro Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Arg Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Met Ser Phe Val Asn
210 215 220

Pro Leu Ser Gly Arg Arg Ser Phe Asn Arg Thr Pro Lys Gly Trp Ile
225 230 235 240

Ser Glu Asn Ile Pro Ile Val Ile Thr Thr Glu Pro Thr Asp Asp Thr
245 250 255

Thr Val Pro Glu Ser Glu Asp Leu
260

<210> 3

<211> 1207

<212> DNA

<213> Mus musculus

<400> 3

gagagccgac caccaactga gcagctggtc agatccacctt ccaccatgcc actctcagga 60
accccgcccc ctaacaagag gaggaaatca agcaaactga ttatggagct cactggaggt 120
ggccgggaga gctcaggcctt gaacctgggc aagaagatca gtgtcccaag ggatgtgatg 180
ttggaggagc tgccttttctt taccaaccga ggctccaaga tggtcaagct acggcagatg 240
cggttgaga aatttatcta tgagaatcac cccgatgttt tctctgacag ctcaatggat 300
cacttccaga agtttcttcc cacagtggga ggacagctgg agacagctgg tcagggtttc 360
tcatatggca agggcagcag tggaggccag gctggcagca gtggctctgc tggacagtt 420
ggctctgacc gtcatacgca ggctctggg tttggagctg ggggttcagg tggcctggg 480
ggccaggctg gtggaggagg agctcctggc acagtagggc ttggagagcc cggatcagg 540
gaccaggcag gtggatggaaa aacatgtc actgtgttca agacttat ttccccatgg 600
gatcgccca tgggggttga tcctcagcaa aaagtggAAC ttggcattga cctactggca 660
tacgggtgcca aagctgaact ccccaaataat aagtccctca acaggacagc aatgccctac 720
ggtgatatg agaaggcctc caaacgcatg accttccaga tgcccaagtt tgacctgggg 780
cctctgtga gtgaaccctt ggtcctctac aaccagaacc tctccaacag gccttcttcc 840
aatcgaaccc ctattccctg gttgagctctt ggggagcatg tagactacaa cgtggatgtt 900
ggatccctt tggatggaga gacagaggag ctgtgaatgt cctccctctg tcatgtgtcat 960
cattttccctt ctctgttcc aatttgagag tggatgttgg acaggatgcc ccaactgtta 1020
atccagtatt ctgtggcaa tggagggtaa agggtgggt ccgttgccctt tccacccttc 1080
aagtccctgc tccgaagcat ccctccctcac cagctcagag ctcccatcct gctgtaccat 1140
atggaatctg ctctttatg gaatttctc tgccaccggta aacagtcaat aaacttcaag 1200
gaaatga 1207

<210> 4

<211> 296

<212> PRT

<213> Mus musculus

<400> 4

Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Arg Arg Lys Ser Ser

1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Arg Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
35 40 45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95

Gln Leu Glu Thr Ala Gly Gln Gly Phe Ser Tyr Gly Lys Gly Ser Ser
100 105 110

Gly Gly Gln Ala Gly Ser Ser Gly Ser Ala Gly Gln Tyr Gly Ser Asp
115 120 125

Arg His Gln Gln Gly Ser Gly Phe Gly Ala Gly Gly Ser Gly Gly Pro
130 135 140

Gly Gly Gln Ala Gly Gly Gly Ala Pro Gly Thr Val Gly Leu Gly
145 150 155 160

Glu Pro Gly Ser Gly Asp Gln Ala Gly Gly Asp Gly Lys His Val Thr
165 170 175

Val Phe Lys Thr Tyr Ile Ser Pro Trp Asp Arg Ala Met Gly Val Asp
180 185 190

Pro Gln Gln Lys Val Glu Leu Gly Ile Asp Leu Leu Ala Tyr Gly Ala
195 200 205

Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr Ala Met Pro
210 215 220

Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe Gln Met Pro
225 230 235 240

Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val Leu Tyr Asn
245 250 255

Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro Ile Pro Trp
260 265 270

Leu Ser Ser Gly Glu His Val Asp Tyr Asn Val Asp Val Gly Ile Pro
275 280 285

Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 5
<211> 1261
<212> DNA
<213> Homo sapiens

<400> 5
cggtcacagc agctcagtcc tccaaagctg ctggacccca gggagagctg accactgcc 60
gagcagccgg ctgaatccac ctccacaatg ccgcctcag gaaccccgcc ccctaataag 120
aagaggaaat ccagcaagct gatcatggaa ctcactggag gtggacagga gagctcaggc 180
ttgaacctgg gcaaaaagat cagtgtccca agggatgtga tggatggagga actgtcgctg 240
cttaccaacc ggggctccaa gatgttcaaa ctgcggcaga tgagggtgga gaagtttatt 300
tatgagaacc accctgatgt tttctctgac agctcaatgg atcacttcca gaagttcctt 360
ccaacagtgg ggggacagct gggcacagct ggtcaggat tctcatacag caagagcaac 420
ggcagaggcg gcagccagc agggggcagt ggctctgccg gacagtatgg ctctgatcag 480
cagcaccatc tgggctctgg gtctggagct ggggttacag gtggtcccgc gggccaggct 540
ggcaaaggag gagctgctgg cacaacaggg gttggtgaga caggatcagg agaccaggca 600
ggcggagaag gaaaacatat cactgtgttc aagacctata tttccccatg ggagcgagcc 660
atgggggttg acccccagca aaaaatggaa ctggcattt acctgctggc ctatgggccc 720
aaagctgaac ttcccaaata taagtccctt aacaggacgg caatgcccta tggatggat 780
gagaaggcct ccaaacgcat gaccttccag atgccaagt ttgacctggg gcccttgctg 840
agtgaacccc tggccctcta caacccaaac ctctccaaca ggcccttctt caatcgaacc 900
cctattccct ggctgagctc tggggagcct gtagactaca acgtggatat tggcatcccc 960
ttggatggag aaacagagga gctgtgaggt gttccctctt ctgatttgca tcattttccc 1020
tctctggctc caatttggag aggaaatgct gagcagatag ccccccattgt taatccagta 1080
tccttatggg aatggagggaa aaaaggagag atctacccctt ccatccttta ctccaagtcc 1140
ccactccacg catccttcct caccaactca gagctccct tctacttgct ccataatggaa 1200
cctgctcggt tatggaattt ntctgccacc agtaacagtc aataaacttc aaggaaaatg 1260
a
1261

<210> 6
<211> 299
<212> PRT
<213> Homo sapiens

<400> 6
Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Lys Arg Lys Ser Ser
1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Gln Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
35 40 45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95

Gln Leu Gly Thr Ala Gly Gln Gly Phe Ser Tyr Ser Lys Ser Asn Gly
100 105 110

Arg Gly Gly Ser Gln Ala Gly Gly Ser Gly Ser Ala Gly Gln Tyr Gly
115 120 125

Ser Asp Gln Gln His His Leu Gly Ser Gly Ser Gly Ala Gly Gly Thr
130 135 140

Gly Gly Pro Ala Gly Gln Ala Gly Lys Gly Ala Ala Gly Thr Thr
145 150 155 160

Gly Val Gly Glu Thr Gly Ser Gly Asp Gln Ala Gly Gly Glu Gly Lys
165 170 175

His Ile Thr Val Phe Lys Thr Tyr Ile Ser Pro Trp Glu Arg Ala Met
180 185 190

Gly Val Asp Pro Gln Gln Lys Met Glu Leu Gly Ile Asp Leu Leu Ala
195 200 205

Tyr Gly Ala Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr
210 215 220

Ala Met Pro Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe
225 230 235 240

Gln Met Pro Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val
245 250 255

Leu Tyr Asn Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro
260 265 270

Ile Pro Trp Leu Ser Ser Gly Glu Pro Val Asp Tyr Asn Val Asp Ile
275 280 285

Gly Ile Pro Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 7
<211> 982
<212> DNA
<213> Mus musculus

<400> 7
attcggcaca tgggatcgag ggaccatgcc gttccagggtt caaggataaa acccattggg 60
ccatagtgcc gtcattttcc accttcagtg ctttcctcca caattggat tcacccctgc 120
tgaaaaagcgc acgctgacag caaggaaaca aaaaactatg ctatcacata gtgcatttgtt 180
gaagcaaagg aaacagcaag catcagccat cacgaaggaa atccatggac atgatgttga 240
cggcatggac ctgggcaaaa aagtttagcat ccccagagac atcatgatag aagaattgtc 300
ccatttcagt aatcggtggg ccaggctgtt taagatgcgt caaagaagat ctgacaaaata 360
cacctttgaa aatttcagt atgaatctag agcacaaatt aatcacaata tcgccccatgca 420
gaatggaga gttgatggaa gcaacctgga aggtggctca cagcaaggcc cctcaactcc 480

gccccacacc cccgatccac gaagccccc aaatccagag aacatcgac caggatcc 540
tggaccactg aaggaaattc ctccctgaaag gtttaacacg acggccgttc ctaagtacta 600
ccggctctcca tgggagcagg cgattggcag cgatccggag ctccctggagg ctttgtaccc 660
aaaactttc aagcctgaag gaaaagcaga actgcgggat tacaggagct ttaacaggg 720
tgccactcca tttggaggtt ttgaaaaagc atcaaaaatg gtcaaattca aagttccaga 780
tttgaacta ctgctgctga cagatcccag gttcttgcc tttgccaatc ctcttcggg 840
cagacgatgc tttaacaggg cgccaaaggg gtgggtatct gagaatatcc ccgtcgtatc 900
cacaactgag cctacagaag acgccactgt accggaatca gatgacctgt gagagggaa 960
ctggggatgc cacaggaagt tc 982

<210> 8
<211> 264
<212> PRT
<213> Mus musculus

<400> 8
Met Leu Ser His Ser Ala Met Val Lys Gln Arg Lys Gln Gln Ala Ser
1 5 10 15

Ala Ile Thr Lys Glu Ile His Gly His Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Ile Glu Glu Leu Ser
35 40 45

His Phe Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Glu Ser Arg Ala Gln
65 70 75 80

Ile Asn His Asn Ile Ala Met Gln Asn Gly Arg Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Ser Gln Gln Gly Pro Ser Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Glu Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Arg Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Arg Ser Pro Trp Glu Gln Ala Ile Gly Ser Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Arg Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Lys Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Leu Ala Phe Ala Asn
210 215 220

Pro Leu Ser Gly Arg Arg Cys Phe Asn Arg Ala Pro Lys Gly Trp Val
225 230 235 240

Ser Glu Asn Ile Pro Val Val Ile Thr Thr Glu Pro Thr Glu Asp Ala
245 250 255

Thr Val Pro Glu Ser Asp Asp Leu
260

<210> 9
<211> 3330
<212> DNA
<213> Homo sapiens

<400> 9
gggacgccac gcaactctca gctcccgac agagggttta atcttgaggg tctaagattc 60
cctcctgcct attgaggtcc ctcactctca ggatgatccc caaggaggcag aaggggccag 120
tgcgtgcac catggggac ctcactgaac cagtcctac gctggacactg ggcaagaagc 180
tgagcgtgcc ccaggacactg atgatggagg agctgtcact acgcaacaac agagggtccc 240
tcctcttcca gaagaggcag cgccgtgtgc agaagttcac tttcgagttt gcagccagcc 300
agccggcgat gctggccgga agccgcagga ggaaggtgac tgaacacagcg gagtcgggga 360
cggttgccaa tgccaatggc cctgaggggc cgaactaccg ctcggagctc cacatcttcc 420
cgccctcacc cggggcctca ctccggggc cccggggcgc ccacccctgc gccggccctg 480
ctgggtgcgt ccccgcccc agccgcctgg cgccaggtca tgccggagccg ctgaagggcg 540
tcccggccaga gaagttcaac cacaccgcca tccccaaagg ctaccgtctc cttggcagg 600
agttcgtcag ctaccggac taccagagcg atggcccaag tcacacccccc agccccaacg 660
actaccgaaa ttcaacaag accccggcgc cattttggagg accccctcgat gggggcactt 720
ttcccaggcc aggcacccccc ttcatcccg agcccccctcag tgcttggaa ctccctccgtc 780
tcagaccccg cttcaacaga gtggcccaagg gctgggtcccg taacctccca gagtcgcagg 840
agctgttagcc cttagcctgaa ttttcagtttc cccagtcgtc gggggctgtt aacatccgga 900
gccaagactt gtggacagca cttcacagtt gaagaaggcc cttcacacac aaaacctgtat 960
tgcaaatggc ttccagaggc accaagttca gtcgtcccaa aacatgggtt tgtttcaaaa 1020
ttacctgggg atgttggttcc aaatccagac aactggactg tcccgactt gcagcatcag 1080
agtctcctga gtcgaggaat ctgtattttt aatagcaacc agggccgggt gtcgtggctc 1140
acgcctgtca tcccgactt ttggggaggcc gaggcaggag gatcacctga ggtcaggagt 1200
ttttagacca gtcgtcccaa aatagtggaa ccccgctcgat actaaaaata caaaaatgg 1260
tcggacatgg tggtgcatgc ctgtatccc agctacttgg gaggctgaga caggagaatc 1320
acttgaacta ggaggcagag gttgcagtga gccgagattt cgccactgc ccccgccctg 1380
gacaacagag tgagactcct tctcaaaaat aaataaataa atagcaacca gtactccagg 1440
tgattccagc ataacttatac catggttgt gtcatttaga gtcccacatcc acacctctgc 1500
tcttcctgt tcctgttagt tacactcccc cggtgacagg gtgctactg gcacccatc 1560
ttcctgtgaa taactcaaat aattagaaaa ttgttccctttt actgagatgc agttgtctt 1620
catctattca tgctctaaac agttcctaag cgctgactgt ggcgttagaca ctgcccaggcc 1680
cgccgcctgaa ggaggaaaaag acagtagggaa agacattata gagcatgaag tcaccataat 1740
tttccctaaa gcatgcttat tgacaatttg ggaacaaaagt gttggggagca gaagaaggag 1800
tccctcaccc taggtgttagt atgggatttcc ggaagttcc tgaaggattt gagtgggacc 1860
ttgtggggagg cgtgagagtc catgaagggg gttgtggggagg gagggttattt ctggaaatgt 1920
gaccagcatg tgcaaaaata tgaacttgaa cacgggtgca ggggtttctg cagaaggag 1980
aaggctgtgc tagaggagcc agtgaggggcc agcatggggt gggcttcaact aaggaaatgg 2040
ggaagggtttt agtgatgggtt ctgtgtgggt gctgtgtggg ggcgtatattt gagaaggta 2100

atgccagaag ccaggaagcc tgcaagggtt gaggccatgg gaatggagag aaggggccac 2160
ccactgggca cctaacacgga caggtgcaaa gtggggtgct tattaagatt ccttctttcc 2220
actccatttt gagcaggctg cttaaaagtgg tggtgatgtat gatgtatgtat atggcagctt 2280
tatatcgagt gcctcagtgc ttgggcttgtt agtagttctt ctacatatct tatttctaata 2340
tctcagaaca accctgagag aaagatattt tggtccccac tttacagatg tggatatttt 2400
ggccaaaagg aggaagtgac ttccaggggg cagacacccaa atggaatctt gattccagtg 2460
gatgtctctt ttcatgtcac tgggtgtca atgcccactc gctctgaaat catctgactt 2520
tgatgccctg ccttggagtt tagaaggtaa gtgcaggctt gggagtcaga ctggatgggg 2580
taggttctaa ctctgccact gctagccgaa tgaacttgag caagtcattt cacatctcc 2640
agcctctgtt tctccaagtg taagatgagg acaagttaaa aacccctttt atgggtttgt 2700
tgtgaacaca gtgcaggggca catttataat aagagcttag tcaatggtag gtttcatgca 2760
actgctgtc taggctggaa aagttgttct tgcactggat gcagcatgag aagctggctt 2820
ctaagatgtc actgggggtc actaaagctg aagcctgaag gaaaggctctt cattgctgtt 2880
gagctctccc tgcctctctc tctggggcg atggggaaagg tcaggagtcc agcccattcc 2940
cagggtgtgtt gggatagcga ttgcattttc cttttgtctt ggagttcac tcccttctg 3000
ggtcccaagg gccaaatggc ctgacttttta gaattgcttg caattgggtt tttcttcttga 3060
atttgggggc tgccattttaa agccaggttt ccatgagctg aagaccagcc attcaagaat 3120
ctgaaaagta gacaagagga ctccagttgc ctcaggttgg ttctgtgttgc ctctggaaag 3180
taactgcagc caccaggtat gaaaaggagc ctgggtgggg gaccactgca cccaaaacaa 3240
atcccttctt ctctgtgagaa tgtgactttt tctgggttttggaaaaaaagaaaaaa 3300
aatgcttattt gtaaaaaaaaaaaaaaaa 3330

```
<210> 10  
<211> 251  
<212> PRT  
<213> Homo sapiens
```

<400> 10
Met Ile Pro Lys Glu Gln Lys Gly Pro Val Met Ala Ala Met Gly Asp
1 5 10 15

Leu Thr Glu Pro Val Pro Thr Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Met Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ala Ala Ser Gln Arg Ala Met Leu Ala Gly Ser Ala Arg Arg
 65 70 75 80

Lys Val Thr Gly Thr Ala Glu Ser Gly Thr Val Ala Asn Ala Asn Gly
 85 90 95

Pro Glu Gly Pro Asn Tyr Arg Ser Glu Leu His Ile Phe Pro Ala Ser
 100 105 110

Pro Gly Ala Ser Leu Gly Gly Pro Glu Gly Ala His Pro Ala Ala Ala
115 120 125

Pro Ala Gly Cys Val Pro Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala
130 135 140

Glu Pro Leu Lys Gly Val Pro Pro Glu Lys Phe Asn His Thr Ala Ile
 145 150 155 160
 Pro Lys Gly Tyr Arg Cys Pro Trp Gln Glu Phe Val Ser Tyr Arg Asp
 165 170 175
 Tyr Gln Ser Asp Gly Arg Ser His Thr Pro Ser Pro Asn Asp Tyr Arg
 180 185 190
 Asn Phe Asn Lys Thr Pro Val Pro Phe Gly Gly Pro Leu Val Gly Gly
 195 200 205
 Thr Phe Pro Arg Pro Gly Thr Pro Phe Ile Pro Glu Pro Leu Ser Gly
 210 215 220
 Leu Glu Leu Leu Arg Leu Arg Pro Ser Phe Asn Arg Val Ala Gln Gly
 225 230 235 240
 Trp Val Arg Asn Leu Pro Glu Ser Glu Glu Leu
 245 250

<210> 11
 <211> 913
 <212> DNA
 <213> Mus musculus

<400> 11
 gtccggactgc aatagacaca caggccataa aactccagct tcccgactga agtgttaatc 60
 ttgggggtct gacatttctt cccatctact gtggccccac caggatgatc cccaaggagc 120
 agaaggagcc agtgatggct gtcccggggg accttgctga accagtccct tcgctggacc 180
 tgggaaagaa gctgagcgtg cctcaggacc taatgataga ggagctgtct ctacgaaaca 240
 accgcggatc ctcctcttt cagaagaggc agcgccgggt gcagaagttt accttgagc 300
 tattcagaaaag tttgcaggcc atcctggcga gtagtgcccg agggaaaagtg gctggcagag 360
 cggcgcaggc aacggttccc aatggcttgg aggagcagaa ccaccactcc gagacgcacg 420
 tttccagggg gtcacctggg gaccccgggta tcacccatct gggagcagcg gggactgggt 480
 cggccgttag tccaagcggcc ctggcaccag gctatgcaga gccctgaag ggcgtcccac 540
 cggagaagtt caaccacact gccatccccca aaggctaccg gtgccttgg caggagttca 600
 ccaagctacca agactactcg agtggcagca gaagtcacac tcccatcccc cgagactatc 660
 gcaacttcaa caagaccccc gtgccatttg gaggacccca cgtgagggag gccatttcc 720
 acgcaggcac ccccttgtc cccggactct tcagtggctt ggaacttctc cgcctcagac 780
 ccaatttcaa cagggttgct cagggtctggg tccggaaagct cccggagtct gaggaactgt 840
 agcctcagcc tgaagctaca attccctggg ctcaagaaac atgcttgcct tgaaaaaaaaa 900
 aaaaaaaaaaaa aaa 913

<210> 12
 <211> 245
 <212> PRT
 <213> Mus musculus

<400> 12
 Met Ile Pro Lys Glu Gln Lys Glu Pro Val Met Ala Val Pro Gly Asp
 1 5 10 15

Leu Ala Glu Pro Val Pro Ser Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Ile Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ser Glu Ser Leu Gln Ala Ile Leu Ala Ser Ser Ala Arg Gly
65 70 75 80

Lys Val Ala Gly Arg Ala Ala Gln Ala Thr Val Pro Asn Gly Leu Glu
85 90 95

Glu Gln Asn His His Ser Glu Thr His Val Phe Gln Gly Ser Pro Gly
100 105 110

Asp Pro Gly Ile Thr His Leu Gly Ala Ala Gly Thr Gly Ser Val Arg
115 120 125

Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala Glu Pro Leu Lys Gly Val
130 135 140

Pro Pro Glu Lys Phe Asn His Thr Ala Ile Pro Lys Gly Tyr Arg Cys
145 150 155 160

Pro Trp Gln Glu Phe Thr Ser Tyr Gln Asp Tyr Ser Ser Gly Ser Arg
165 170 175

Ser His Thr Pro Ile Pro Arg Asp Tyr Arg Asn Phe Asn Lys Thr Pro
180 185 190

Val Pro Phe Gly Gly Pro His Val Arg Glu Ala Ile Phe His Ala Gly
195 200 205

Thr Pro Phe Val Pro Glu Ser Phe Ser Gly Leu Glu Leu Leu Arg Leu
210 215 220

Arg Pro Asn Phe Asn Arg Val Ala Gln Gly Trp Val Arg Lys Leu Pro
225 230 235 240

Glu Ser Glu Glu Leu
245