BÀI TOÁN GIẾNG THỂ VUÔNG HỮU HẠN Ở TRẠNG THÁI LIÊN KẾT VỚI HÀM SÓNG LÀ HÀM CHẪN

21130243 - Phạm Hoàng Minh Quang, 21130270 - Huỳnh Anh Thư,
21130271 - Nguyễn Đàm Minh Thư, 21130299 - Thạch Thị Huyền Trân,
21130182 - Trần Đại Bảo Khanh

Ngày 21 tháng 10 năm 2024

1. Mô tả bài toán vật lý

Giếng thế vuông hữu hạn được mô tả bởi thế năng V(x) như sau:

$$V(x) = \begin{cases} -V_0 & ; -a \le x \le a, \quad (V_0 > 0) \\ 0 & ; |x| > a \end{cases}$$

Trong đó:

- a là nửa chiều rộng của giếng thế.
- V_0 là độ sâu của giếng thế.

Hạt có năng lượng E nằm trong khoảng $0 < E < V_0$, tức là năng lượng của hạt nhỏ hơn độ sâu của giếng, điều này dẫn đến các trạng thái ràng buộc (hạt bị giới hạn trong giếng).

Phương trình Schrödinger

Phương trình Schrödinger độc lập với thời gian cho bài toán này là:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

Giải phương trình cho từng miền của x

Ngoài giếng thế: V(x) = 0

Xét trường hợp x < -a: Phương trình Schrödinger trở thành:

$$\frac{d^2\psi(x)}{dx^2} = -\frac{2mE}{\hbar^2} = -\kappa^2\psi(x)$$

Trong đó $\kappa = \frac{\sqrt{-2mE}}{\hbar}$.

Nghiệm tổng quát:

$$\psi(x) = Ae^{-\kappa x} + Be^{\kappa x}$$

Để đảm bảo hàm sóng $\psi(x)$ không phân kỳ khi $x \to -\infty$, ta chọn A = 0, nên:

$$\psi(x) = Be^{\kappa x}, \quad (x < -a)$$

Xét trường hợp x > a: Phương trình Schrödinger trở thành:

$$\frac{d^2\psi(x)}{dx^2} = -\frac{2mE}{\hbar^2} = -\kappa^2\psi(x)$$

Nghiệm tổng quát trong vùng này là:

$$\psi(x) = Fe^{-\kappa x} + Ge^{\kappa x}$$

Tương tự, để hàm sóng $\psi(x)$ không phân kỳ khi $x \to +\infty$, ta chọn G=0:

$$\psi(x) = Fe^{-\kappa x}, \quad (x > a)$$

Bên trong giếng thể: -a < x < a

Với $V(x) = -V_0$, phương trình Schrödinger trở thành:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} - V_0\psi(x) = E\psi(x) \to \frac{d^2\psi(x)}{dx^2} = -l^2\psi(x)$$

Trong đó $l \equiv \frac{\sqrt{2m(E+V_0)}}{\hbar}$.

Nghiệm tổng quát trong vùng này là:

$$\psi(x) = C\sin(lx) + D\cos(lx), \quad -a < x < a$$

Điều kiện biên và tính chất hàm sóng chẵn

Trong bài toán, ta xét hàm sóng là hàm chẵn: $\psi(x) = \psi(-x)$, dẫn đến các hệ số C = 0vì $\sin(kx)$ là hàm lẻ). Như vậy, hàm sóng bên trong giếng sẽ có dạng:

$$\psi(x) = D\cos(lx)$$

Bên ngoài giếng, để hàm sóng tránh sự phân kỳ khi $x \to \infty$, ta chọn G = 0. Do đó, nghiệm bên ngoài giếng là:

$$\psi(x) = Fe^{-\kappa x}$$

Tính liên tục của hàm sóng

Xét tại biên x = a: Hàm sóng liên tục:

Bên trong giếng thế:
$$-a < x < a$$
: $\psi(a) = D\cos(la)$

Bên ngoài giếng thế: $x>a: \quad \psi(a)=Fe^{-\kappa a}$

$$\Rightarrow D\cos(la) = Fe^{-\kappa a}$$

Đạo hàm của hàm sóng liên tục

$$-lD\sin(la) = -\kappa F e^{-\kappa a}$$

Hàm sóng là hàm chẵn có dạng:

$$\psi(x) = Fe^{-\kappa x}, \quad x > a$$

$$\psi(x) = D\cos(lx), \quad 0 < x < a$$

$$\psi(x) = Fe^{-\kappa x}, \quad x < 0$$

Sử dụng các phương trình:

$$Fe^{-\kappa a} = D\cos(la)$$

$$-kFe^{-\kappa a} = -lD\sin(la)$$

Chia phương trình trên cho phương trình dưới:

$$\frac{-kFe^{-\kappa a}}{Fe^{-\kappa a}} = \frac{-lD\sin(la)}{D\cos(la)}$$

Từ đó ta có:

$$\kappa = l \tan(la)$$

Đặt:

$$z \equiv la, \quad z_0 \equiv \frac{a}{\hbar} \sqrt{2mV_0}$$

Từ phương trình $\kappa = l \tan(la)$, ta có:

$$\kappa a = \sqrt{z_0^2 - z^2}$$

Cuối cùng, ta có:

$$\Rightarrow \tan(z) = \sqrt{\frac{z_0^2}{z^2} - 1}$$

Việc tìm z và z_0 giúp ta xác định trạng thái năng lượng và điều kiện biên của hàm sóng.

2. Tìm hệ số chuẩn hóa của hàm sóng

Sử dụng điều kiện chuẩn hóa của hàm sóng. Đồng thời, hàm sóng đang xét là hàm chẵn nên ta được:

$$1 = 2 \int_0^\infty |\psi|^2 dx = 2 \left(|D|^2 \int_0^a \cos^2(lx) dx + |F|^2 \int_a^\infty e^{-2\kappa x} dx \right)$$

$$= 2 \left[|D|^2 \left(\frac{x}{2} + \frac{1}{4l} \sin(2lx) \right) \Big|_0^a + |F|^2 \left(-\frac{1}{2\kappa} e^{-2\kappa x} \right) \Big|_a^\infty \right]$$

$$= 2 \left[|D|^2 \left(\frac{a}{2} + \frac{\sin(2la)}{4l} \right) + |F|^2 \frac{e^{-2\kappa a}}{2\kappa} \right].$$

Mà ta có điều kiện biên - tính liên tục của ψ tại biên x=a: $Fe^{-ka}=D\cos(la)\to F=De^{\kappa a}\cos(la)$

$$1 = |D|^2 \left(a + \frac{\sin(2la)}{2l} + \frac{\cos^2(la)}{\kappa} \right).$$

mà ta có: $\kappa = l \tan(la)$

$$1 = |D|^2 \left(a + \frac{2\sin(la)\cos(la)}{2l} + \frac{\cos^3(la)}{l\sin(la)} \right)$$
$$= |D|^2 \left(a + \frac{\cos(la)}{l\sin(la)} \left(\sin^2(la) + \cos^2(la) \right) \right)$$
$$= |D|^2 \left(a + \frac{1}{l\tan(la)} \right) = |D|^2 \left(a + \frac{1}{\kappa} \right).$$

Do đó,

$$|D|^2 \left(a + \frac{1}{\kappa} \right) = 1,$$

$$|D| = \frac{1}{\sqrt{a + \frac{1}{\kappa}}}, \quad F = \frac{e^{\kappa a} \cos(la)}{\sqrt{a + \frac{1}{\kappa}}}.$$

3. CODE

3. Thuật toán

Step 1: Khởi tạo các hàm

Hàm f:

$$f(z, z_0) = \tan(z) - \sqrt{\left(\frac{z_0}{z}\right)^2 - 1}$$

Hàm đạo hàm f':

$$f'(z, z_0) = \frac{1}{\cos^2(z)} + \frac{z_0^2}{z^3 \sqrt{\left(\frac{z_0}{z}\right)^2 - 1}}$$

Step 2: Chia khoảng tìm nghiệm

Input: $f, z_0, z_{\min}, z_{\max}, \Delta z$

Output:intervals # Các khoảng (b,c) chứa nghiệm.

Step 3: Phương pháp Bisection

Input: $f, z_0, b, c, N, \text{tol} = 1 \times 10^{-8}$

Step 4: Phương pháp Newton-Raphson

Input: $f, g, x_0, z_0, N, \epsilon$

Step 5: Phương pháp Secant

Input: $f, z_0, x_0, x_1, N, \epsilon$

Step 6: Tính hàm sóng $\psi(x)$

Input: $x, a, \kappa_{\text{values}}, l_{\text{values}}$ Output: all_ ψ , STOP

Step 7: Vẽ đồ thị

Đồ thị 1: Vẽ $\tan(z)$ và $\sqrt{\left(\frac{z_0}{z}\right)^2-1}$

Đồ thị 2: Vẽ các hàm sóng $\psi(x)$ cho các giá trị khác nhau của κ và l.

Step 8: Chay chương trình chính main()

Input các thông số:

Tính z_0 :

$$z_0 = \frac{a}{\hbar} \sqrt{2mV0_{\text{Joules}}}$$

Tìm khoảng có nghiệm:

$$intervals = find_intervals(f, z_0, 10^{-10}, z_0, 10^{-5})$$

Tạo thông số để lưu kết quả của $\kappa,\ l$ và E vào cùng một file. Ghi các nghiệm tìm được vào các file:

- result_Bisection.txt: Luu nghiệm từ phương pháp Bisection
- result_NR.txt: Lưu nghiệm từ phương pháp Newton-Raphson
- result_Secant.txt: Luu nghiệm từ phương pháp Secant
- kappa_1_E_data.txt: Luu giá tri (κ, l, E)

Tính toán hàm sóng $\psi(x)$:

all
$$\psi_{\text{values}} = \text{find}$$
 all $\psi(x_{\text{values}}, a, \kappa, l)$

Gọi hàm vẽ đồ thị:

$$\text{plot_graph}(z_0, z_{\text{values}}, \tan(z), \sqrt{\left(\frac{z_0}{z}\right)^2 - 1}, f_{\text{max}}, x_{\text{values}}, \text{all_}\psi_{\text{values}}, z, \kappa, l)$$

Step 9: Kết thúc chương trình

4. Mô phỏng kết quả

Hình dưới là cho trưởng hợp giếng thế sâu rộng, với các giá trị đầu vào là:

Hình dưới là cho trưởng hợp giếng thế nông hẹp, với các giá trị đầu vào là:

