

SHRI SHANKARACHARYA TECHNICAL CAMPUS SHRI SHANKARACHARYA GROUP OF INSTITUTIONS BHILAI

(An Autonomous Institute affiliated to CSVTU, Bhilai)
Scheme of Examination and Syllabus 2021
Second Year B. Tech. -CSE

3rd semester Subject Code:AM102301

Subject Code	APPLIED MATHEMATICS-	L = 3	T=1	P=0	Credits = 4
Evaluation 0.1	ESE	CT	TA	Total	ESE Duration
Evaluation Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
The objective of this course is to familiarize the prospective engineers with techniques in calculus of multivariable and infinite series expansion of continuous function as well as some statistical treatment of discrete functions. More precisely, the objectives are: To investigate a thorough knowledge of partial differential equations which arise in mathematical descriptions of situations in engineering. To develop the tool of Fourier series for learning	range of values that can't be predicted as it is but can be described in terms of their probability CO5. To study the technique of estimating the values of a function for any intermediate value of the independent variable.

UNIT – I Partial differential equation: Formation, Solution by direct integration method, Linear equation of first order, Homogeneous linear equation with constant coefficients, Nonhomogeneous linear equations, Method of separation of variables; Equation of vibrating string (wave equation).
[10 Hrs]

UNIT – II Fourier Series- Euler's formula; Functions having point of discontinuity; Change of interval; Even and Odd function; Half range series; Harmonic Analysis. [10Hrs]

UNIT – III Laplace transform: Definition; Transform of elementary functions; Properties of Laplace transform; Inverse Laplace Transform (Method of partial fraction, using properties and Convolution theorem); Transform of Unit step function and Periodic functions; Application to the solution of ordinary differential equations.

[10Hrs]

UNIT – IV Probability distributions: Random variable; Discrete and continuous probability distributions; Mathematical expectation; Mean, Variance and Moments; Moment generating functions; Probability distribution (Binomial, Poisson, and Normal distributions). [10Hrs]

Chairman (AC) Chairman (BoS)	October 2020 Date of Release	1.00 Version	Applicable for AY 2020-21 Onwards	
Chairman (AC) Chairman (BOS)				

SHRI SHANKARACHARYA TECHNICAL CAMPUS SHRI SHANKARACHARYA GROUP OF INSTITUTIONS BHILAI

(An Autonomous Institute affiliated to CSVTU, Bhilai)
Scheme of Examination and Syllabus 2021
Second Year B. Tech. -CSE

3rd semester

Subject Code: AM102301

Subject Code					
- apject code	APPLIED MATHEMATICS-II	L = 3	, - ,	P = 0	Credits = 4
Evaluation Scheme	ESE	CT	TA	Total	ESE Duration
Contente	100	20	30	150	3 Hours

UNIT – V Interpolation with equal and unequal intervals: Finite difference, Newton's Forward and Backward Difference Formulae, Central Difference Formula, Stirling's Formula, Bessel's Formula, Langrange's Formula and Newton's Divided Difference Formula.

[10Hrs]

Text Books:

S. No.	Title	Authors	Publisher
1)	Higher Engineering Mathematics	Dr. B.S. Grewal	Khanna Publishers
2)	Numerical Methods in Engineering and Science	Dr. B.S. Grewal	Khanna Publishers
3)	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons
4)	Applied Engineering Mathematics	Madan Mohan Singh	BS Publications

Reference Books:

S. No.	Title	Authors	Publisher
1)	Calculus and Analytic geometry	G. B. Thomas and R. L. Finney	Pearson, Reprint
2)	Engineering Mathematics for first year	T. Veerarajan	Tata McGraw- Hill, New Delhi
3)	Higher Engineering Mathematics	B. V. Ramana	Tata McGraw Hill New Delhi
4)	A text book of Engineering Mathematics	N.P. Bali and Manish Goyal	Laxmi Publications

Dr. M M Singh, Chairman(BOS)

		October 2020	1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2020-21 Onwards

* Existence of Laplace Transforme: -The L.T. of f(t), i.e. Joe st f(t)dt exists for S>a it (i) f(t) is continuous

(ii) Lt e-at f(t) is finite.

Date Page

* Change of Scale Property ? -Ist Shifting Property : -If L[f(t)] = f(s) then $L[e^{at}f(t)] = f(s-a)$ Standard Formula for L.T. L(1) = - 1 1570 $L(1) = \int_{0}^{\infty} e^{-St} dt = \int_{0}^{\infty} e^{-St} dt$ $= \begin{bmatrix} -\frac{e^{-St}}{S} \end{bmatrix}^{\infty} = \frac{1}{S}$ (Here, S70) $= \begin{bmatrix} \infty \\ -\frac{e^{-St}}{S} \end{bmatrix}^{\infty} = \frac{1}{S}$ (Here, S70) $= \int_{0}^{\infty} \frac{-p}{e} \int_{S}^{\infty} \frac{dp}{dp} \int_{S}^{\infty} \frac{dt}{s} \int_{S}^{\infty} \frac{dt}{s}$ - 1 P de linits are oto ∞ By By Cramma fun formula:

or - L [sint + cos2t] - L [sinat] = L(1) - L(.sin2t) $=\frac{1}{S}-\frac{2}{S^{2}+4}$ $\frac{or}{s(s^2+4)}$ $\frac{s^2+4-2s}{s(s^2+4)}$... 3) Find L.T. of cosat let $f(t) = cos^3 2t$ Taking L.T. operator on both sides. $L\{f(t)\} = L[\cos^3 2t]$ By Using Formula, cor3x = 4 3corx+corsx $L[f(t)] = L[\cos^3 2t]$ $= L4[3\cos 2t + \cos 6t]$ = 3 L (cos2t) + 1 L (cos6t) (By Linearity Prop.) $=\frac{3}{4}\left[\frac{3}{5^2+4}\right]+\frac{1}{4}\left[\frac{3}{5^2+6}\right]$ $=\frac{5}{4}\left[\frac{3}{5^2+4}+\frac{3}{5^2+6}\right]$

