EMNLP 2020 Follow-up

Chiyu Zhang

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge

Pei Ke, Haozhe Ji, Siyang Liu, Xiaoyan Zhu, Minlie Huang

Department of Computer Science and Technology, Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems,

Beijing National Research Center for Information Science and Technology,

Tsinghua University, Beijing 100084, China

kepeil106@outlook.com,{jhz20,siyang-l18}@mails.tsinghua.edu.cn

{zxy-dcs, aihuang}@tsinghua.edu.cn

SentiLARE

Goal: Introduce linguistic knowledge into pre-trained language representation model.

In this paper, they propose a novel pre-trained language representation model called SentiLARE to deal with **two** challenges:

- 1) Knowledge acquisition across different contexts.
- 2) Knowledge integration into pre-trained models.

Figure 1: Overview of SentiLARE. This model first labels each word with its part-of-speech tag, and then uses the word and tag to match the corresponding senses in SentiWordNet. The sentiment polarity of each word is obtained by weighting the matched senses with context-aware sentiment attention. During pre-training, the model is trained based on label-aware masked language model including *early fusion* and *late supervision*. Red dotted boxes denote that the linguistic knowledge is used in input embedding or pre-training loss function.

Linguistic Knowledge Acquisition

- Overview of knowledge acquisition module
 - Input: a sequence of words $X = \{x_1, ..., x_n\}$
 - Output: a sequence of words, POS tags, and sentiment polarities $X_k = \{(x_i, pos_i, polar_i)_{i=1}^n\}$

- POS tagging
 - Stanford log-linear part-of-speech tagger
 - ♦ Five POS labels: verb (v), noun (n), adjective (a), adverb (r), others (o)

- Sentiment polarity acquisition
 - Find the *m* senses for (x_i, pos_i) :

$$\{(SN_i^{(j)}, Pscore_i^{(j)}, Nscore_i^{(j)}, G_i^{(j)})_{j=1}^m\}$$

Context-aware sentiment attention:

$$\alpha_i^{(j)} = softmax(\frac{1}{SN_i^{(j)}} \cdot sim(X, G_i^{(j)}))$$

$$sim(X, G_i^{(j)}) = cos(SBERT(X), SBERT(G_i^{(j)}))$$

Sentiment score and polarity:

$$s(x_i, pos_i) = \sum_{j=1}^{m} \alpha_i^{(j)} \cdot (Pscore_i^{(j)} - Nscore_i^{(j)})$$

$$polar_i = \begin{cases} Positive, & s(x_i, pos_i) > 0 \\ Negative, & s(x_i, pos_i) < 0 \\ Neutral, & s(x_i, pos_i) = 0 \end{cases}$$

Knowledge Integration

Late supervision

Subtask#2: Late Supervision

- ◆ The sentence-level sentiment label is used as the **late** supervision signal.
- Loss function:

$$\mathcal{L}_{LS} = -\log P(l|\hat{X}_k) - \sum_{t=1}^{n} m_t \cdot [\log P(x_t|\hat{X}_k) + \log P(pos_t|\hat{X}_k) + \log P(polar_t|\hat{X}_k)]$$

Experiments

Pre-training settings

- ◆ Dataset: Yelp Dataset Challenge 2019 (6.68 million reviews with review-level sentiment labels)
- Base model: RoBERTa-base

Fine-tuning settings

Task	Input Format	Output Hidden States
Sentence-level Sentiment Classification	$[CLS] x_1, \cdots x_n [SEP]$	$h_{[\mathtt{CLS}]}$
Aspect Term Extraction	$[CLS] x_1 \cdots x_n [SEP]$	h_1, h_2, \cdots, h_n
Aspect Term Sentiment Classification	[CLS] $a_1 \cdots a_l$ [SEP] $x_1 \cdots x_n$ [SEP]	$h_{[\mathtt{CLS}]}$
Aspect Category Detection	$[CLS] x_1 \cdots x_n [SEP]$	$h_{[\mathtt{CLS}]}$
Aspect Category Sentiment Classification	[CLS] $a_1 \cdots a_l$ [SEP] $x_1 \cdots x_n$ [SEP]	$h_{[\mathtt{CLS}]}$
Text Matching	$[CLS] x_1 \cdots x_n [SEP] y_1 \cdots y_m [SEP]$	$h_{[\mathtt{CLS}]}$

Baseline

- ◆ General pre-trained models: BERT, XLNet, RoBERTa
- ◆ Task-specific pre-trained models: BERT-PT, TransBERT, SentiBERT
- Task-specific models without pre-training

Results

Model	SST	MR	IMDB	Yelp-2	Yelp-5
SOTA-NPT	55.20 [‡]	82.50 [#]	93.57 [†]	97.27 [‡]	69.15 [‡]
BERT	53.37	87.52	93.87	97.74	70.16
XLNet	56.33	89.45	95.27	97.41	70.23
RoBERTa	54.89	89.41	94.68	97.98	70.12
BERT-PT	53.24	87.30	93.99	97.77	69.90
TransBERT	55.56	88.69	94.79	96.73	69.53
SentiBERT	56.87	88.59	94.04	97.66	69.94
SentiLARE	58.59**	90.82**	95.71**	98.22**	71.57**

Table 3: Accuracy on sentence-level sentiment classification (SSC) benchmarks (%). SOTA-NPT means the state-of-the-art performance from the baselines without pre-training, where the results marked with \sharp , \dagger and \dagger are re-printed from Chen et al. (2019), Sachan et al. (2019) and Wang (2018), respectively. ** indicates that our model significantly outperforms the best pre-trained baselines on the corresponding dataset (t-test, p-value < 0.01).

Task	A	IE		A	15C		A	CD		ACS	_	
Dataset	Lap14	Res14	La	p14	Re	s14	Res14	Res16	Re	s14	Re	s16
Model	F1	F1	Acc.	MF1.	Acc.	MF1.	F1	F1	Acc.	MF1.	Acc.	MF1.
SOTA-NPT	81.59#	-	77.19 [†]	72.99 [†]	82.30 [†]	74.02 [†]	90.61 [‡]	78.38 [‡]	85.00 ^b	73.53 ^b	-	-
BERT	83.22	87.68	78.18	73.11	83.77	76.06	90.48	72.59	88.35	80.40	86.55	71.19
XLNet	86.02	89.41	80.00	75.88	84.93	76.70	91.35	73.00	91.63	84.79	87.46	73.06
RoBERTa	87.25	89.55	81.03	77.16	86.07	79.21	91.69	77.89	90.67	83.81	88.38	76.04
BERT-PT	85.99	89.40	78.46	73.82	85.86	77.99	91.89	75.42	91.57	85.08	90.20	77.09
TransBERT	83.62	87.88	80.06	75.43	86.38	78.95	91.50	76.27	91.43	85.03	90.41	78.56
SentiBERT	82.63	88.67	76.87	71.74	83.71	75.42	91.67	73.13	89.68	82.90	87.08	72.10
SentiLARE	88.22*	91.15**	82.16*	78.70*	88.32**	81.63**	92.22	80.71**	92.97**	87.30**	91.29	80.00

ACCC

Tools

ATE

Table 5: F1, accuracy (Acc.) and Macro-F1 (MF1.) on four aspect-level sentiment analysis tasks including aspect term extraction (ATE), aspect term sentiment classification (ATSC), aspect category detection (ACD) and aspect category sentiment classification (ACSC) (%). SOTA-NPT means the state-of-the-art performance from the baselines without pre-training, where the results marked with \sharp , \dagger , \dagger and \flat are re-printed from Xu et al. (2018), Sun et al. (2019a), Movahedi et al. (2019) and Wang et al. (2019b), respectively. - means that the results are not reported in the references. * indicates that our model significantly outperforms the best pre-trained baselines on the corresponding dataset (t-test, p-value< 0.05), while ** means p-value< 0.01.

SentiLARE	58.59	91.15	88.32	81.63	80.71	92.97	87.30
- EF	58.44	90.82	87.70	81.11	80.42	92.70	86.42
- LS	57.33	90.88	87.21	80.46	79.74	92.44	86.14
- EF - LS	56.91	90.74	86.95	79.71	78.92	91.32	84.73
- POS	58.15	90.94	87.98	81.38	80.27	92.51	86.61
- POL	57.95	90.63	87.64	81.34	79.40	92.46	86.30
- POS - POL	57.31	90.35	87.59	81.20	79.21	92.21	85.68

ATSC

Res14

Acc. MF1.

54.89 89.55 86.07 79.21 77.89 90.67 83.81

ACD

Res16

F1

ACSC

Res14 Acc. MF1.

Task

Dataset

Model

RoBERTa

SSC

Acc.

ATE

F1

SST Res14

Table 6: Ablation test on sentiment analysis tasks. EF / LS / POS / POL denotes early fusion / late supervision / part-of-speech tag / word-level polarity, respectively.

Train No Evil: Selective Masking for Task-Guided Pre-Training

Yuxian Gu^{1,2,3}, Zhengyan Zhang^{1,2,3}, Xiaozhi Wang^{1,2,3}, Zhiyuan Liu^{1,2,3†}, Maosong Sun^{1,2,3}

¹Department of Computer Science and Technology, Tsinghua University, Beijing, China

²Institute for Artificial Intelligence, Tsinghua University, Beijing, China

³State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China

{qu-yx17, zy-z19, wangxz20}@mails.tsinghua.edu.cn

To better capture domain-specific and task specific patterns, we propose a three-stage framework by adding a task-guided pre-training stage with selective masking between the general pretraining and fine-tuning.

Figure 1: The overall three-stage framework. We add task-guided pre-training between general pre-training and fine-tuning to efficiently and effectively learn the domain-specific and task-specific language patterns.

Selective Masking

- Downstream Mask
 - Train a model to calculate classification scores of each sentence.
 - Calculate the score S(*) of each token.
 - Judge the important of the token by its score.

```
The food tastes good here . \longrightarrow BERT \longrightarrow P(positive \mid \text{The food tastes good here .}) S(good) = P(positive \mid \text{The food tastes good here .}) - P(positive \mid \text{The food tastes good}) S(good) < \delta \longrightarrow Important, mask "good" in the sentence
```


		MR	Sem14-Rest	
w/o Task-guided pre-training		87.37	88.60	
Amazon	Random	88.35	90.40	
	Selective	89.51 **	91.56**	
Yelp	Random	87.20	90.70	
	Selective	88.15 **	91.87 *	

Table 1: Test accuracies of models trained with different methods (without task-guided pre-training or task-guided pre-training with different masking strategies) after full general pre-training (1M steps). * and ** indicate statistically significant (p < .05 and p < .001).

Lifelong Language Knowledge Distillation

Yung-Sung Chuang Shang-Yu Su Yun-Nung Chen

National Taiwan University, Taipei, Taiwan

{b05901033, f05921117}@ntu.edu.tw y.v.chen@ieee.org

Facing <u>catastrophic forgetting</u> problem

(a) Normal Lifelong Language Learning.

Motivation

- Model has limited capacity.
- Previously learned knowledge is affected by new knowledge.
- Compress the knowledge of incoming tasks.

Mitigating catastrophic forgetting by knowledge distillation

Base Model: LAMOL

<u>LA</u>nguage <u>MO</u>deling for <u>L</u>ifelong Language Learning, ICLR 2020

- generate pseudo training samples for the previous tasks
- train on both data from the new task and the generated pseudo-data

Knowledge Distillation

1. Word-Level (Word-KD): soft target

$$\mathcal{L}_{\text{Word-KD}}(x;\theta_S;\theta_T) =$$

$$\sum_{t=t_0}^{T} \sum_{k=1}^{|\mathcal{V}|} -P(\mathcal{V}_k \mid x_{< t}; \theta_T) \log P(\mathcal{V}_k \mid x_{< t}; \theta_S),$$
teacher model output distribution output distribution

Knowledge Distillation

2. Sequence-Level (Seq-KD): hard target

$$\mathcal{L}_{\text{Seq-KD}}(\hat{x}; \theta_S) = \sum_{t=t_0}^{T} -\log P[\hat{x}_t | \hat{x}_{< t}; \theta_S).$$
greedy decode output from teacher model

Knowledge Distillation

3. Soft Sequence-Level (Seq-KD_{soft}): soft target

$$\mathcal{L}_{\text{Seq-KD}_{\text{soft}}}(\hat{x};\theta_S;\theta_T) = \\ \sum_{t=t_0}^{T} \sum_{k=1}^{|\mathcal{V}|} -\underbrace{P(\mathcal{V}_k \mid \hat{x}_{< t})\theta_T)}_{\text{teacher model output distribution}} \underbrace{P(\mathcal{V}_k \mid \hat{x}_{< t})\theta_S)}_{\text{lifelong model output distribution}}.$$

Loss Function

$$\mathcal{L}_{\text{new}}(X_{i}^{m};\theta_{S};\theta_{T}^{m}) = \mathcal{L}_{\text{new}}^{\text{QA}} + \mathcal{L}_{\text{new}}^{\text{LM}}$$

$$\mathcal{L}_{\text{prev}}(X_{i}^{\text{prev}};\theta_{S}) = \mathcal{L}_{\text{prev}}^{\text{QA}} + \mathcal{L}_{\text{prev}}^{\text{LM}}$$

$$\mathcal{L}_{\text{prev}}^{\text{QA}} = \mathcal{L}_{\text{Word-KD}}(X_{i}^{m};\theta_{S};\theta_{T}^{m};t_{0} = a_{1})$$

$$\mathcal{L}_{\text{new}}^{\text{QA}} = \mathcal{L}_{\text{NLL}}(X_{i}^{\text{prev}};\theta_{S};t_{0} = a_{1})$$

$$\mathcal{L}_{\text{prev}}^{\text{LM}} = \mathcal{L}_{\text{NLL}}(X_{i}^{\text{prev}};\theta_{S};t_{0} = a_{1})$$

$$\mathcal{L}_{\text{prev}}^{\text{LM}} = \mathcal{L}_{\text{NLL}}(X_{i}^{\text{prev}};\theta_{S};t_{0} = 0).$$

$$heta_S^* = \arg\min_{ heta_S} (\sum_{X_i^m \in D_m} \mathcal{L}_{\text{new}} + \sum_{X_i^{\text{prev}} \in D_{\text{prev}}} \mathcal{L}_{\text{prev}})$$

Dataset	Metric	# Train	# Test
Sequence Genera	tion for Differ	ent Tasks	
WikiSQL	lfEM	6,525	15,878
CNN/DailyMail	ROUGE	6,604	2,250
MultiWOZ	dsEM	2,536	1,646
Sequence Genera	tion for Differ	ent Doma	ins
E2E NLG		6,000	2,000
RNNLG (rest.)		6,228	1,039
RNNLG (hotel)	ROUGE	6,446	1,075
RNNLG (tv)		8,442	1,407
RNNLG (laptop)		7,944	2,649
Text Classificatio	n for Different	Tasks	
AGNews		115,000	7,600
Yelp		115,000	7,600
Amazon	Exact Match	115,000	7,600
DBPedia		115,000	7,600
Yahoo		115,000	7,600

Table 1: Dataset sizes and the evaluation metrics.

	1,1011104	02	01111	~~_			O1 11 1	~~	17.8		01111	242	
		WO	Z → CN	IN → S	QL	CNI	N → SQ	L → W	oz	SQI	L→ WO	Z → Cl	NN
(a)	Finetune	0.0	26.3	64.3	30.2	84.6	6.8	2.1	31.2	0.1	26.0	0.0	8.7
(b)	LAMOL	67.6	27.3	62.5	52.4	83.0	27.8	60.8	57.2	76.1	26.0	55.0	52.4
(c)	(b) + Word-KD	82.4	27.6	65.0	58.3	86.1	27.5	63.2	59.0	79.5	26.2	59.6	55.1
(d)	$(b) + Seq-KD_{soft}$	81.0	26.9	64.7	57.5	84.1	27.6	63.4	58.4	81.7	25.9	58.4	55.3
(e)	(b) + Seq-KD	76.4	28.0	63.7	56.1	83.0	28.3	61.5	57.6	81.0	27.5	57.3	55.3
		WO	Z → SQ	L → Cl	NN	CNI	N → WC	OZ → S	QL	SQI	L → CNI	N → W(ΟZ
(a)	Finetune	0.0	25.8	0.0	8.6	3.6	24.5	64.0	30.7	85.0	7.3	0.0	30.8
(b)	LAMOL	76.1	26.3	59.3	53.9	79.8	27.3	64.1	57.0	84.0	27.2	58.7	56.6
(c)	(b) + Word-KD	81.4	26.7	59.6	55.9	83.5	27.8	65.0	58.8	78.7	26.4	59.0	54.7
(d)	$(b) + Seq-KD_{soft}$	80.4	26.1	59.9	55.5	83.7	28.6	64.8	59.0	84.7	26.2	58.8	56.6

WOZ CNN SOL Avg WOZ CNN SOL Avg WOZ CNN SOL Avg

Method

(e) (b) + Seq-KD 77.2 27.0 59.5 54.5 82.8 29.5 64.4 58.9 84.9 27.8 57.3 56.6

Table 2: Detailed experimental results on MultiWOZ (WOZ), CNN/DailyMail (CNN), WikiSQL (SQL), with six different lifelong learning orders.

F	Averaged Results
•	KD improve LAMOL by 2.2
	KD improve Multitask by 0.2
•	Lifelong learning model has more space to improve
	VD dealines the STD by 1.4

•	KD improve LAMOL by 2.2
•	KD improve Multitask by 0.2
>	Lifelong learning model has more space to improve
•	KD declines the STD by 1.4
>	Lifelong learning model can be

more "order-robust" with KD

(1)	Single QA	84.8	25.5	63.1	57.8	
(2)	Single QA+LM	82.2	25.9	63.7	57.3	
(3)	Multi _{same} QA	66.2	25.6	53.0	48.3	upper bounds
(4)	Multi _{same} QA+LM	59.0	26.3	53.6	46.3	
(5)	Multilong QA	82.7	26.1	61.1	56.6	
(6)	Multilong QA+LM	85.4	26.7	61.3	57.8	
(7)	(6) + Seq-KD	84.4	27.6	61.8	58.0	+0.2 KD improves little
Life	elong Methods (avera	aged ov	er six o	orders)		on multitask
(a)	Finetune	28.9	19.5	21.7	23.4	
(b)	LAMOL	77.7	27.0	60.0	54.9	without KD
(c)	(b) + Word-KD	81.9	27.0	61.9	57.0	+2.2
(d)	(b) + Seq- KD_{soft}	82.6	26.9	61.7	57.1	with KD
(e)	(b) + Seq-KD	80.9	28.0	60.6	56.5	
STL	O of Lifelong Method	!s				
(f)	Finetune	43.3	9.6	32.9	28.6	
(g)	LAMOL	6.0	0.7	3.2	3.3	
(h)	(g) + Word-KD	2.7	0.7	2.8	2.1	→ -1.4

1.0

0.9

1.8

3.4

3.0

3.1

KD improves

order-robustness

Non-Lifelong Methods WOZ CNN SQL Avg

(i) $(g) + Seq-KD_{soft}$

(j) (g) + Seq-KD

LAMOL 52.7 61.6 70.3 93.6 99.1 75							
+ Word-KD	<i>57.5</i>	63.6	71.3	93.9	99.2	77	
+ Seq-KD _{soft}	55.7	62.0	71.3	93.9	99.2	76	
+ Seq-KD	56.8	62.3	71.1	93.4	99.1	76	
LAMOL + Word-KD	57.9 57.0	63.5 64.1	70.7 73.2	91.7 92.7	98.3 98.8	76 77	
+ Word-KD + Seq-KD _{soft}	57.0	64.1	71.9	92.4	98.8	76	
+ Seq-KD	58.4	64.4	71.7	91.5	98.8	76	

amazon yelp yahoo

63.3

64.5

63.3

70.6

70.1

69.2

55.9

56.9

56.6

dbpedia | Avg

76.5

76.9

76.4

99.0

99.1

99.0

ag

93.6

93.7

93.7

Method

Single_(QA)

Multi_(QA)

Single_(QA+LM)