

DE10100720

Patent number:

DE10100720

Publication date:

2002-07-11

Inventor:

RUPPERT STEPHAN (DE); COUNRADI KATHRIN (DE);

ARGEMBEAUX HORST (DE); BLUCK MANUELA (DE)

Applicant:

BEIERSDORF AG (DE)

Classification:

- international:

A61K7/50

- european:

A61K8/44; A61Q5/02; A61Q19/10; C11D1/94;

C11D3/33; C11D10/04; C11D17/00B6; C11D17/00H6

Application number: DE20011000720 20010110 Priority number(s): DE20011000720 20010110 Also published as:

WO02055050 (A1) EP1351665 (A1)

Report a data error here

Abstract of DE10100720

The invention relates to cosmetic and dermatological cleaning preparations containing (a) an effective quantity of at least one surfactant, and (b) an effective quantity of iminodisuccinic acid and/or the salts thereof.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK

[®] Offenlegungsschrift[®] DE 101 00 720 A 1

(5) Int. CI.⁷: A 61 K 7/50

DEUTSCHES
PATENT- UND
MARKENAMT

Aktenzeichen: Anmeldetag:

101 00 720.5 10. 1. 2001

43 Offenlegungstag:

11. 7. 2002

7) Anmelder:

Beiersdorf AG, 20253 Hamburg, DE

Time Erfinder:

Ruppert, Stephan, Dr., 20259 Hamburg, DE; Counradi, Kathrin, 22143 Hamburg, DE; Argembeaux, Horst, 21465 Wentorf, DE; Bluck, Manuela, 21031 Hamburg, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 197 13 911 A1 DE 24 32 161 A1 US 59 77 053 A

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (§) Kosmetische und dermatologische waschaktive Zubereitungen, enthaltend eine wirksame Menge an Iminodibernsteinsäure und/oder ihren Salzen
- (5) Kosmetische und dermatologische Reinigungszubereitungen, enhaltend
 (a) eine wirksame Menge einer oder mehrerer grenzflächenaktiven Substanzen und
 (b) eine wirksame Menge an Iminodibernsteinsäure und/oder ihren Salzen.

Beschreibung

[0001] Die vorliegende Erfindung betrifft kosmetische Reinigungsmittel. Derartige Mittel sind an sich bekannt. Es handelt sich dabei im wesentlichen um oberflächenaktive Substanzen oder Stoffgemische, die dem Verbraucher in verschiedenen Zubereitungen angeboten werden.

[0002] Die Produktion von kosmetischen Reinigungsmitteln zeigt seit Jahren eine steigende Tendenz. Dies ist vor allem auf das zunehmende Gesundheitsbewusstsein und Hygienebedürfnis der Verbraucher zurückzuführen.

[0003] Reinigung bedeutet das Entfernen von (Umwelt-) Schmutz und bewirkt damit eine Erhöhung des psychischen und physischen Wohlbefindens. Die Reinigung der Oberfläche von Haut und Haaren ist ein sehr komplexer, von vielen Parametern abhängiger Vorgang. Zum einen sollen von außen kommende Substanzen wie beispielsweise Kohlenwasserstoffe oder anorganische Pigmente aus unterschiedlichsten Umfeldern sowie Rückstände von Kosmetika oder auch unerwünschte Mikroorganismen möglichst vollständig entfernt werden. Zum anderen sind körpereigene Ausscheidungen wie Schweiß, Sebum, Haul- und Haarschuppen ohne tiefgreifende Eingriffe in das physiologische Gleichgewicht abzuwaschen.

[0004] Die Forderungen an die Eigenschaften kosmetischer Reinigungspräparate haben sich in den letzten Jahren stark gewandelt. Früher standen Effekte wie Reinigen und Schäumen im Vordergrund der Verbraucherwünsche. Zur Zeit sind die ökologischen, ökonomischen und insbesondere dermatologischen Eigenschaften der Produkte vorrangig, obwohl das Schaumvermögen nach wie vor eine entscheidende Rolle spielt, beispielsweise als Indikator, um Restmengen von Tensiden nach der Reinigung von Haut und Haaren zu entfernen oder um Überdosierungen bei der Anwendung zu vermeiden. Allerdings steht bei kosmetischen Produkten – im Gegensatz zu den meisten technischen Reinigungsmitteln – die Haut- und Schleimhautverträglichkeit absolut im Vordergrund; die Produkte sollen "mild" sein.

[0005] Kosmetische oder dermatologische Reinigungspräparate sind sogenannte "rinse oft" Präparate, welche nach der Anwendung von der Haut abgespült werden. Sie werden in aller Regel in Form eines Schaums mit Wasser auf die zu reinigenden Körperpartien aufgetragen. Basis aller kosmetischen oder dermatologischen Reinigungspräparate sind waschaktive Tenside. Tenside sind amphiphile Stoffe, die organische, unpolare Substanzen in Wasser lösen können. Sie zeichnen sich durch ein ambivalentes Verhalten gegenüber Wasser und Lipiden aus: Das Tensidmolekül enthält mindestens je eine hydrophile und eine lipophile Gruppe, die die Anlagerung an der Grenzfläche zwischen diesen beiden Substanzklassen ermöglichen. Auf diese Weise sorgen Tenside für eine Herabsetzung der Oberflächenspannung des Wassers, die Benetzung der Haut, die Erleichterung der Schmutzentfernung und -lösung, ein leichtes Abspülen und – je nach Wunsch – auch für Schaumregulierung. Damit ist die Grundlage für die Schmutzentfernung lipidhaltiger Verschmutzungen gegeben.

[0006] Bei den hydrophilen Anteilen eines Tensidmoleküls handelt es sich meist um polare funktionelle Gruppen, beispielweise -COO⁻, -OSO₃²⁻, -SO₃⁻, während die hydrophoben Teile in der Regel unpolare Kohlenwasserstoffreste darstellen. Tenside werden im allgemeinen nach Art und Ladung des hydrophilen Molekülteils klassifiziert. Hierbei können vier Gruppen unterschieden werden:

- anionische Tenside,
- kationische Tenside,
- amphotere Tenside und
- nichtionische Tenside.

40

1010072041 1

[0007] Anionische Tenside weisen als funktionelle Gruppen in der Regel Carboxylat-, Sulfat- oder Sulfonatgruppen auf. In wässriger Lösung bilden sie im sauren oder neutralen Milieu negativ geladene organische Ionen. Kationische Tenside sind beinahe ausschließlich durch das Vorhandensein einer quarternären Ammoniumgruppe gekennzeichnet. In wässriger Lösung bilden sie im sauren oder neutralen Milieu positiv geladene organische Ionen. Amphotere Tenside enthalten sowohl anionische als auch kationische Gruppen und verhalten sich demnach in wässriger Lösung je nach pH-Wert wie anionische oder kationische Tenside. Im stark sauren Milieu besitzen sie eine positive und im alkalischen Milieu eine negative Ladung. Im neutralen pH-Bereich hingegen sind sie zwitterionisch, wie das folgende Beispiel verdeutlichen soll:

50 RNH₂+CH₂CH₂COOH X⁻ (bei pH = 2) X⁻ = beliebiges Anion, z. B. Cl⁻ RNH₂+CH₂CH₂COO⁻ (bei pH = 7)

RNHCH₂CH₂COO⁻ B⁺ (bei pH = 12) B⁺ = beliebiges Kation, z. B. Na⁺

[0008] Typisch für nicht-ionische Tenside sind Polyether-Ketten. Nicht-ionische Tenside bilden in wässrigem Medium keine Ionen.

[0009] Die waschaktiven Tenside in kosmetischen und dermatologischen Reinigungsmitteln unterliegen einer sehr kritischen Beurteilung bezüglich ihres dermatologischen und ökologischen Verhaltens. Letzteres ist insbesondere deswegen von Bedeutung, da sie in erheblicher Menge angewendet werden und nach Gebrauch bestimmungsgemäß ins Abwasser gelangen.

[0010] Ausgehend von der bereits beschriebenen zentralen Bedeutung der waschaktiven Tenside für den Reinigungsvorgang ist ihr Verhalten auf der Humanhaut von größter Bedeutung.

[0011] Bereits bei einer Reinigung der Haut mit Hilfe von Wasser – ohne Zusatz von Tensiden – kommt es zunächst zu einer Quellung der Homschicht der Haut. Der Grad dieser Quellung hängt u. a. von der Dauer des Bads und dessen Temperatur ab. Gleichzeitig werden wasserlösliche Stoffe ab- bzw. ausgewaschen, wie z. B. wasserlösliche Schmutzbestandteile, aber auch hauteigene Stoffe, die für das Wasserbindungsvermögen der Homschicht verantwortlich sind. Durch hauteigene oberflächenaktive Stoffe werden außerdem auch Hautfette in gewissem Ausmaß gelöst und ausgewaschen.

Dies bedingt nach anfänglicher Quellung eine nachfolgende Austrocknung der Haut.

[0012] Es ist verständlich, daß waschaktive Tenside, die Haut und Haar von fettigen und wasserlöslichen Schmutzbestandieilen reinigen sollen, auch eine entsettende Wirkung auf die normalen Hautlipide haben. Bei jeder Hautreinigung

werden in unterschiedlichem Maß auch interkorneozytäre Lipide und Sebumbestandteile entfemt. Das bedeutet, daß der natürliche Wasser Lipid-Mantel der Haut bei jedem Waschvorgang mehr oder weniger gestört wird. Dies kann besonders bei extremer Entfettung zu einer kurzzeitigen Veränderung der Barrierefunktion der Haut führen, wobei selbstverständlich auch der jeweilige Zustand der behandelten Hautregion auf die dargestellten Veränderungen von erheblichem Einfluss ist. Beispielsweise kann die Hautdicke, die Anzahl der Talg- und Schweißdrüsen sowie die damit verbundene Empfindlichkeit erheblich vanieren.

[0013] Grundsätzlich gilt dementsprechend als Forderung an waschaktive Tenside, daß sie biologisch möglichst inaktiv sind, um unerwünschte Nebenwirkungen zu vermeiden. Sie sollen ihre reinigende Wirkung bei optimaler Milde, bester Hautverträglichkeit und geringer Entfettung entfalten.

[0014] Es hat daneben aber auch nicht an Versuchen gefehlt, geeignete Reinigungszubereitungen zu finden, welche die Haut bei guter Reinigungsleistung gleichzeitig regenerieren bzw. "rückfetten". Allerdings bleibt die erzielte Leistung häufig hinter der erwarteten zurück, so daß der Anwender in aller Regel auf separate Pflegeprodukte zurückgreifen muss, welche nach der Reinigung auf die Haut aufgetragen werden und auf dieser verbleiben (sogenannte "leave-on" Produkte).

[0015] Bedingt durch die zunehmende Waschfrequenz beim Verbraucher steigt allerdings nach wie vor der Wunsch nach milden, verträglichen und dabei möglichst regenerierenden Zubereitungen.

[0016] In der Regel sind kosmetische oder dernatologische Reinigungszubereitungen sehr gut auf ein angenommenes Anwendungsspektrum zugeschnitten, da für eine definierte, milde Reinigungswirkung insbesondere auch die je nach Anwendung unterschiedlichen mechanischen Parameter – wie beispielsweise der Zeitfaktor – von erheblicher Bedeutung sind: Dies wird z. B. deutlich, wenn man sich die unterschiedlichen Anwendungs- (Kontakt-) Zeiten eines Schaumbades im Vergleich zum kurzzeitigen Händewaschen vor Augen führt.

[0017] Kosmetische Reinigungsmittel enthalten meist Mischungen von Tensiden verschiedener Art. Die Auswahl orientiert sich in erster Linie an der Hautverträglichkeit und der gewünschten kosmetischen Leistung der Tenside. Daneben spielen Schaumvermögen, Formulierbarkeit und ein günstiges Leistungs-/Kostenverhältnis eine wesentliche Rolle.

[0018] Die vorliegende Erfindung betrifft in einer besonderen Ausführungsform kosmetische Reinigungsmittel in Form geformter Seifenprodukte. Derartige Mittel sind an sich bekannt. Es handelt sich dabei im wesentlichen um oberflächenaktive Substanzen oder Stoffgemische, die dem Verbraucher in verschiedenen Zubereitungen angeboten werden. Die Erfindung betrifft insbesondere Stückseifen mit verbesserter Glätte und erhöhtem Kalkseifendispergiervermögen durch einen Gehalt an Talkum und einem oder mehreren amphoteren Tenside bei gleichzeitiger Abwesenheit von Alkyl-(oligo)-glycosiden.

[0019] Oberflächenaktive Stoffe – am bekanntesten die Alkalisalze der höheren Fettsäuren, also die klassischen "Seifen" – sind amphiphile Stoffe, die organische unpolare Substanzen in Wasser emulgieren können.

[0020] Diese Stoffe schwemmen nicht nur Schmutz von Haut und Haaren, sie reizen, je nach Wahl des Tensids oder des Tensidgemisches, Haut und Schleimhäute mehr oder minder stark. Es ist zwar eine große Zahl recht milder Tenside erhältlich, jedoch sind die Tenside des Standes der Technik entweder mild, reinigen aber schlecht, oder aber sie reinigen gut, reizen jedoch Haut oder Schleimhäute.

[0021] Bei der Körperreinigung spielen Stückseifen eine große Rolle, die heutzutage großtechnisch durch kontinuierliche Verseifung von freien Fettsäuren mit Alkalien, Aufkonzentrieren der Grundseifen und Sprühtrocknung hergestellt werden. Man unterscheidet dabei zwischen echten Alkaliseifen, die ausschließlich Fettsäuresalze und gegebenenfalls noch freie Fettsäuren enthalten und sogenannten "Combibars", Stückseifen, die neben Fettsäuresalzen noch weitere synthetische Tenside, in der Regel Fettalkoholethersulfate oder Fettsäureisothionate aufweisen. Eine Sonderstellung nehmen hingegen die Syndetstückseifen, sogenannte "Syndetbars" ein, die bis auf Verunreinigungen frei von Fettsäuresalzen sind und ausschließlich synthetische Tenside enthalten.

[0022] Allein in Deutschland werden jährlich mehrere Millionen Stück Seifen für die Körperhygiene verkauft. Die Anforderungen des Marktes an diesen Massenverbrauchsartikel werden dabei jedoch immer höher: Stückseifen müssen die Haut nicht nur reinigen, sondern auch pflegen, d. h. ein Austrocknen verhindern, rückfetten und einen Schutz gegen Einflüsse von außen bieten. Selbstverständlich wird erwartet, daß die Seife in besonderem Masse hautverträglich ist, sie soll aber in der Anwendung dennoch möglichst viel und cremigen Schaum ergeben und ein angenehmes Hautgefühl bewirken. In diesem Zusammenhang suchen Hersteller von Stückseifen ständig nach neuen Inhaltsstoffen, die diesem gestiegenen Anforderungsprofil Rechnung tragen.

[0023] Man unterscheidet feste, meist stückförmige, und flüssige Seifen. Hauptbestandteile sind die Alkalisalze der Fettsäuren natürlicher Öle u. Fette, vorzugsweise der Kettenlängen C₁₂-C₁₈. Da Laurinsäureseifen besonders gut schäumen, sind die laurinsäurereichen Kokos- und Palmkernöle bevorzugte Rohstoffe für die Feinseifenherstellung. Die Natriumsalze der Fettsäuregemische sind fest, die Kaliumsalze weich-pastös. Zur Verseifung wird die verdünnte Natronoder Kalilauge den Fettrohstoffen im stöchiometrischen Verhältnis so zugesetzt, daß in der fertigen Seife ein Laugenüberschuss von höchstens 0,05% vorhanden ist. Vielfach werden die Seifen heute nicht mehr direkt aus den Fetten, sondern aus den durch Fettspaltung gewonnenen Fettsäuren hergestellt.

[0024] Übliche Seifen-Zusätze sind Fettsäuren, Fettalkohole, Lanolin, Lecithin, pflanzliche Öle, Partialglyceride und andere fettähnliche Substanzen zur Rückfettung der gereinigten Haut, Antioxidantien wie Ascorbylpalmitat oder Tocopherol zur Verhinderung der Autoxidation der Seife (Ranzigkeit). Komplexierungsmittel wie Nitrilotriacetat zur Bindung von Schwermetall-Spuren, die den autoxidativen Verderb katalysieren könnten, Parfümöle zur Erzielung der gewünschten Duftnoten, Farbstoffe zur Einfärbung der Seifenstücke und gewünschtenfalls spezielle Zusätze.

[0025] Wichtigste Typen der Feinseifen sind:

- Toilettenseifen mit 20-50% Kokosöl im Fettansatz, bis 5% Rückfetter-Anteil und 0,5-2% Parfümöl, sie bilden den größten Anteil der Feinseifen;
- Luxusseifen mit bis zu 5% besonders kostbarer Parfümöle;
- Deoseifen mit Zusätzen desodorierender Wirkstoffe, wie z. B. 3.4,4'-Trichlorcarbonilid (Triclocarbon);

10

DE 101 00 720 A

- Cremeseisen mit besonders hohen Anteilen rückfettender und die Haut cremender Substanzen;
- Babyseifen mit guter Rückfeitung und zusätzlich pflegenden Anteilen wie z.B. Kamille-Extrakten, allenfalls sehr schwach parfümiert;
- Hautschutzseifen mit hohen Anteilen rückfettender Substanzen sowie weiteren pflegenden und schützenden Zusätzen, wie z. B. Proteinen;
- Transparentseifen mit Zusätzen von Glycerin, Zucker u. a., welche die Kristallisation der Fettsäuresalze in der erstartten Seifenschmelze verhindern und so ein transparentes Aussehen bewirken;
- Schwimmseifen mit einer Dichte < 1, hervorgerufen durch bei der Herstellung kontrolliert eingearbeitete Luftbläschen.
- Seifen mit abrasiven Zusätzen zur Reinigung stark verschmutzter Hände.

[0026] Die vorliegende Erfindung betrifft in einer besonderen Ausführungsform flüssige Seifen oder Waschlotionen. Solche Produkte werden nicht nur zur Reinigung der Hände, sondern im Regelfall auch für den ganzen Körper, einschließlich des Gesichts, verwendet. Sie eignen sich dementsprechend auch zur Anwendung als Duschzubereitung. Bei der Entwicklung dieser Produkte stehen die dermatologischen Anforderungen im Vordergrund, da die Haut in intensiven Kontakt mit der konzentrierten Tensidlösung kommt. Auf die Auswahl milder Tenside in niedniger Konzentration wird daher besonderer Wert gelegt. Weitere Kriterien sind ferner ein gutes Schaumvennögen sowie ein angenehmer, erfrischender Duft und die gleichzeitige Pflege der Haut. Waschlotionen und insbesondere Duschbäder haben in der Regel Viskositäten von etwa 3.000 bis 10.000 mPa s, welche einerseits eine gute Verteilbarkeit des Produktes mit schnellem Anschäumen erlauben, dabei andererseits aber hoch genug sein sollen, um eine einwandfreie Anwendung per Hand oder Waschlappen zu ermöglichen.

[0027] Flüssige Seisen oder Waschlotionen zeichnen sich im allgemeinen durch einen mehr oder weniger hohen Wassergehalt aus, entfalten aber in der Regel keine nennenswerte Pflegewirkung, da sie nur einen geringen Ölgehalt aufweisen.

25 [0028] Die vorliegende Erfindung betrifft in einer besonderen Ausführungsform eine relativ neue technische Entwicklung, nämlich tensidhaltige Duschzubereitungen mit hohem Ölgehalt. Die Deutsche Offenlegungsschrift 44 24 210 beschreibt in diesem Zusammenhang kosmetische oder dermatologische Duschzubereitungen mit einem Tensidgehalt von höchstens 55 Gew.-% und einem Ölgehalt von mehr als 45 Gew.-%, wobei die Zubereitungen im wesentlichen wasserfrei sind. Aufgrund des hohen Ölgehalts wirken diese Zubereitungen regenerierend in bezug auf den allgemeinen Hautzustand. Sie haben dabei gleichzeitig eine gute Schaumentwicklung und eine hohe Reinigungskraft.

[0029] Ferner beschreib! WO 96/17591 schäumende flüssige Hautreinigungszusammensetzungen, welche die folgenden Substanzen enthalten: 5 bis 30 Gew.-% eines feuchtigkeitsspendenden Wirkstoffs, welcher einen Vaughan Solubility Parameter (VSP) von 5 bis 10 aufweist, 0,3 bis 5 Gew.-% eines in Wasser dispergierbaren gelformenden Polymers, 5 bis 30 Gew.-% einer synthetischen oberflächenaktiven Substanz, 0 bis 15 Gew.-% einer C₈ bis C₁₄ Fettsäureseife und Wasser, wobei die Zubereitungen einen Lipid Deposition Value (LDV) von mindestens 5 bis 1000 aufweisen und worin die synthetische oberflächenaktiven Substanz und die Seife einen gemeinsamen CMC Gleichgewichtsoberflächenspannungswert von 15 bis 50 haben. Allerdings konnte diese Schrift nicht den Weg zur vorliegenden Erfindung weisen.

[0030] Die vorliegende Erfindung betrifft in einer besonderen Ausführungsform ferner auch Reinigungsprodukte auf Emulsionsbasis. Diese werden in der Art formuliert, daß die Emulsion mit Emulgatoren stabilisiert und anschließend ein Tensidsystem angepasst wird.

[0031] Auch Emulgatoren haben eine amphiphile Struktur, sind also den Tensiden von der Struktur her vergleichbar. Emulgatoren emöglichen oder erleichtem die gleichmäßige Verteilung zweier oder mehrerer miteinander nicht mischbarer Phasen und verhindern gleichzeitig deren Entmischung. Da Emulsionen durch die Zugabe von Tensiden im allgemeinen zerstört werden, ist die Wahl des Tensidsystems stark eingeschränkt, und den erhaltenen Reinigungszubereitungen liegen teure und komplizierte Rezepturen zugrunde.

[0032] Ende der vierziger Jahre wurde ein System entwickelt, das die Auswahl von Emulgatoren erleichtern sollte. Jedem Emulgator wird ein sogenannter HLB-Wert (eine dimensionslose Zahl zwischen 0 und 20) zugeschrieben, der angibt, ob eine bevorzugte Wasser- oder Öllöslichkeit vorliegt. Zahlen unter 9 kennzeichnen öllösliche, hydrophobe Emulgatoren, Zahlen über 11 wasserlösliche, hydrophile. Der HLB-Wert sagt etwas über das Gleichgewicht der Größe und Stärke der hydrophilen und der lipophilen Gruppen eines Emulgators aus. Aus diesen Überlegungen lässt sich ableiten, daß auch die Wirksamkeit eines Emulgators durch seinen HLB-Wert charakterisien werden kann. Die folgende Aufstellung zeigt den Zusammenhang zwischen HLB-Wert und möglichem Anwendungsgebiet:

	HLB-Wert		Anwendungsgebiet
55	0 bis 3		Entschäumer
	3 bis 8		W/O-Emulgator
	7 bis 9	•	Netzmittel
	8 bis 18		O/W-Emulgator
	12 bis 18		Lösungsvermittler

[0033] Der HLB-Wert eines Emulgators lässt sich auch aus Inkrementen zusammensetzen, wobei die HLB-Inkremente für die verschiedenen hydrophilen und hydrophoben Gruppen, aus denen sich ein Molekül zusammensetzt. Tabellenwerken entnommen werden können. Auf diese Weise lassen sich im Prinzip auch für waschaktive Tenside HLB-Werte ermitteln, obwohl das HLB-System ursprünglich nur für Emulgatoren konzipiert worden ist. Es zeigt sich, daß waschaktive Substanzen in der Regel HLB-Werte aufweisen, die deutlich größer als 20 sind.

[0034] Aufgabe der vorliegenden Erfindung war es, Reinigungszubereitungen auf der Grundlage von Emulsionen zur Verfügung zu stellen, welche den Nachteilen des Standes der Technik Abhilfe schaffen und denen dementsprechend ein-

25

45

65

fache und kostengünstige Rezepturen zugrunde liegen. Die Zubereitungen sollten zudem eine hohe Pflegewirkung besitzen, ohne daß die reinigende Wirkung dahinter zurücksteht.

[0035] Die vorliegende Erfindung betrifft in einer besonderen Ausführungsform kosmetische und dermatologische

Reinigungszubereitungen in Form von Gelen [0036] Kosmetische Gele erfreuen sich beim Verbraucher äußerster Beliebtheit. Da sie meistens durchsichtig sind, oftmals eingefärbt aber ebenso oft farblos klar sein dürften, bieten sie dem kosmetischen Entwickler zusätzliche Gestaltungsmöglichkeiten, die teilweise funktionalen Charakter haben, teilweise aber auch lediglich der Aufbesserung des äußeren Erscheinungsbildes dienen. So können beispielsweise dem Produkt, welches sich dem Betrachter dann in der Regel in einer durchsichtigen Verpackung darbietet, durch eingearbeitete Farbpigmente, Gasbläschen und dergleichen, oder aber auch größere Objekte, interessante optische Effekte verliehen werden.

[0037] Eine weitere Aufgabe war es, Reinigungszubereitungen zur Verfügung zu stellen, welche gewünschtenfalls als optisch ansprechende, stabile Gele ausgestaltet werden können.

[0038] Die vorliegende Erfindung betrifft ferner waschaktive haarkosmetische Zubereitungen, im allgemeinen als Shampoos bezeichnet. Insbesondere betrifft die vorliegende Erfindung haarkosmetische Wirkstoffkombinationen und Zubereitungen zur Pflege des Haars und der Kopfhaut. Dem Stand der Technik mangelt es an Shampooformulierungen, welche geschädigtem Haar in befriedigender Weise Pflege zukommen lassen. Aufgabe war daher, auch diesen Nachteilen des Stands der Technik Abhilfe zu schaffen.

[0039] Es hat sich überraschend gezeigt, und darin liegt die Lösung dieser Aufgaben, daß kosmetische und dermatologische Reinigungszubereitungen, enthaltend

- (a) eine wirksame Menge einer oder mehrerer grenzflächenaktiven Substanzen und
- (b) eine wirksame Menge an Iminodibernsteinsäure und/oder ihren Salze

bzw. die Verwendung einer Kombination aus

- (a) einer wirksame Menge einer oder mehrerer grenzflächenaktiven Substanzen und
- (b) einer wirksamen Menge an Iminodibernsteinsäure und/oder ihren Salze zur Herstellung kosmetischer oder dermatologischer Reinigungszubereitungen,

den Nachteilen des Standes der Technik abhelfen würde.

[0040] Es war für den Fachmann nicht vorauszusehen gewesen, daß die erfindungsgemäßen Zubereitungen höhere Stabilität aufweisen und sich durch bessere Bioverträglichkeit auszeichnen würden als die Zubereitungen des Standes der Technik.

[0041] Die Verwendung von Immodibernsteinsäure als Komplexbildner und ihre grundsätzliche Tauglichkeit in Kosmetika ist an sich bekannt, beispielsweise aus DE 197 12 911. Dennoch konnte diese Schrift nicht den Weg, die letztlich nicht mehr offenbart als das Wort "Kosmetik", nicht den Weg zur vorliegenden Erfindung weisen.

[0042] Immodibernsteinsäure hat folgende Struktur, wobei vermutlich ein Gleichgewicht tautomerer Formen vorliegt:

HOOC
$$CH_2$$
 CH_2 CH_2 $COOH$ CH_2 $COOH$

[0043] Erfindungsgemäß enthalten kosmetische oder dermatologische Zubereitungen 0,1 bis 20 Gew.-%, vorteilhaft 0,5 bis 10 Gew.-%, ganz besonders bevorzugt 1 bis 5 Gew.-% Inninodibemsteinsäure und/oder ihrer Salze.

[0044] Den kosmetischen und/oder dermatologischen Reinigungszubereitungen im Sinn der vorliegenden Erfindung liegen einfache und kostengünstige Rezepturen zugrunde. Sie haben gleichzeitig eine gute Schaumentwicklung und eine hohe Reinigungskraft. Die Zubereitungen wirken regenenierend in bezug auf den allgemeinen Hautzustand, vermindern das Trockenheitsgefühl der Haut und mitchen die Haut geschmeidig.

[0045] Die Reinigungszubereitungen enthalten vorteilhaft ein oder mehrere erfindungsgemäße waschaktive anionische, kationische, amphotere und/oder nicht-ionische Tenside. Es ist besonders vorteilhaft das oder die erfindungsgemäßen waschaktiven Tenside aus der Gruppe der Tenside zu wählen, welche einen HLB-Wert von mehr als 25 haben, ganz besonders vorteilhaft sind solche, welchen einen HLB-Wert von mehr als 35 haben.

[0046] Ganz besonders vorteilhalte waschaktive anionische Tenside im Sinne der vorliegenden Erfindung sind Acylaminosäuren und deren Salze, wie

- Acylglutamate, insbesondere Natriumacylglutamat
- Sarcosinate, beispielsweise Myristoyl Sarcosin, TEA-lauroyl Sarcosinat, Natriumlauroylsarcosinat und Natriumcocoylsarkosinat,

Sulfonsäuren und deren Salze, wie

- Acyl-isethionate, z. B. Natrium-/Ammoniumcocoyl-isethionat,

- Sulfosuccinate, beispielsweise Dioctylnatriumsulfosuccinat, Dinatriumlaurethsulfosuccinat, Dinatriumlaurylsulfosuccinat und Dinatriumundecylenamido MEA-Sulfosuccinat

sowie Schwefelsäureester, wie

15

20

25

30

35

50

55

- Alkylethersulfat, beispielsweise Natrium-, Ammonium-, Magnesium-, MIPA-, TIPA-Laurethsulfat, Natriummy-rethsulfat und Natrium C12-13 Parethsulfat,
- Alkylsulfate, beispielsweise Natrium-, Ammonium- und TEA- Laurylsulfat.

[0047] Ganz besonders vorteilhafte waschaktive kationische Tenside im Sinne der vorliegenden Endung sind sind quatemäre Tenside. Quatemäre Tenside enthalten mindestens ein N-Atom, das mit 4 Alkyl- oder Arylgruppen kovalent verbunden ist. Vorteilhaft sind Benzalkoniumchlorid, Alkylbetain, Alkylamidopropylbetain und Alkyl-amidopropylhydroxysultain.

[0048] Ganz besonders vorteilhafte waschaktive amphotere Tenside im Sinne der vorliegenden Erfindung sind

Acyl-/dialkylethylendiamine, beispielsweise Natriumacylamphoacetat, Dinatriumacylamphodipropionat, Dinatriumalkylamphodiacetat, Natriumacylamphohydroxypropylsulfonat, Dinatriumacylamphodiacetat und Natriumacylamphopropionat.

[0049] Ganz besonders vorteilhafte waschaktive nicht-ionische Tenside im Sinne der vorliegenden Erfindung sind

- Alkanolamide, wie Cocamide MEA/DEA/MIPA,
- Ester, die durch Veresterung von Carbonsäuren mit Ethylenoxid, Glycerin, Sorbitan oder anderen Alkoholen entstehen.
- Ether, beispielsweise ethoxylierte Alkohole, ethoxyliertes Lanolin, ethoxylierte Polysiloxane, propoxylierte POE Ether und Alkylpolyglycoside wie Laurylglucosid, Decylglycosid und Cocoglycosid.

[0050] Weitere vorteilhafte anionische Tenside sind

- Taurate, beispielsweise Natriumlauroyltaurat und Natriummethylcocoyltaurat,
- Ether-Carbonsäuren, beispielsweise Natriumlaureth-13 Carboxylat und Natrium PEG-6 Cocamide Carboxylat,
- Phosphorsäureester und Salze, wie beispielsweise DEA-Oleth-10 Phosphat und Dilaureth-4 Phosphat,
- Alkylsulfonate, beispielsweise Natriumcocosmonoglyceridsulfat, Natrium C12–14 Olefin-sulfonat, Natriumlaurylsulfoacetat und Magnesium PEG-3 Cocamidsulfat.

[0051] Weitere vorteilhafte amphotere Tenside sind

- N-Alkylaminosäuren, beispielsweise Aminopropylalkylglutamid, Alkylaminopropionsäure, Natriumalkylimidodipropionat und Lauroamphocarboxyglycinat.

[0052] Weitere vorteilhafte nicht-ionische Tenside sind Alkohole.

- [0053] Weitere geeignete anionische Tenside im Sinne der vorliegenden Erfindung sind ferner
 - Acylglutamate wie Di-TEA-palmitoylaspartat und Natrium Caprylic/Capric Glutamat,
 Acylpeptide, beispielsweise Palmitoyl hydrolysiertes Milchprotein, Natrium Cocoyl hydrolysiertes Soja Protein und Natrium-/Kalium Cocoyl hydrolysiertes Kollagen

sowie Carbonsäuren und Derivate, wie

- beispielsweise Laurinsäure, Aluminiumstearat, Magnesiumalkanolat und Zinkundecylenat,
- Ester-Carbonsäuren, beispielsweise Calciumstearoyllactylat, Laureth-6 Citrat und Natrium PEG-4 Lauramidcarboxylat,
- Alkylarylsulfonate.

[0054] Weitere geeignete kationische Tenside im Sinne der vorliegenden Erfindung sind ferner

- Alkylamine,
 - Alkylimidazole und
 - ethoxyliene Amine.

[0055] Weitere geeignete nicht-ionische Tenside im Sinne der vorliegenden Erfindung sind ferner Aminoxide, wie Co-coamidopropylaminoxid.

[0056] Es ist vorteilhaft im Sinn der vorliegenden Erfindung, wenn der Gehalt an einem oder mehreren waschaktiven Tensiden in der kosmetischen oder dermatologischen Reinigungszubereitungen aus dem Bereich von 5 bis 25 Gew.-%, ganz besonders vorteilhaft von 10 bis 20 Gew.-% gewählt wird, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.

[0057] Es ist besonders vorteilhaft im Sinne der vorliegenden Erfindung, den Gehalt an üblichen Komplexbildnern, etwa solchen gewählt aus der Gruppe Ethylendiamintetraessigsäure (EDTA) und deren Anionen, Nitrilotriessigsäure (NTA) und deren Anionen, Hydroxyethylendiamintetraessigsäure (HOEDTA) und deren Anionen, Diethylenaminopentaessigsäure (DPTA) und deren Anionen, trans-1,2-Diaminocyclohexantetraessigsäure (CDTA) und deren Anionen gering

zu halten bzw. auf diese ganz zu verzichten. Jedenfalls sollte ein Gehalt von ca. 0,5 Gew.-%, bezogen auf das Gesamtgewicht der kosmetischen Zubereitungen, an solchen Komplexbildnern bevorzugt nicht überschritten werden.

[0058] Eine gegebenenfalls gewünschte Ölkomponente der kosmetischen oder dermatologischen Reinigungszubereitungen – beispielsweise in Form von Reinigungsemulsionen – im Sinne der vorliegenden Erfindung wird vorteilhaft gewählt aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropylstearat, Isopropylstearat, Isopropylstearat, Isopropylstearat, Isopropylstearat, Isopropylstearat, Isopropylstearat, Isopropylstearat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Itexyldecylstearat, 2-Octyldodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, z. B. Jojobaöl.

[0059] Ferner kann die Ölkomponente vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silkonöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24. insbesondere 12 bis 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z. B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmiöl, Kokosöl, Palmkernöl und dergleichen mehr.

[0060] Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Lipidkomponente der Ölphase einzusetzen.

[0061] Vorteilhaft wird die Ölkomponente gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C_{12-15} -Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylylether.

25

[0062] Besonders vorteilhaft sind Mischungen aus C_{12-15} -Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C_{12-15} -Alkylbenzoat und lsotridecyüsononanoat sowie Mischungen aus C_{12-15} -Alkylbenzoat, 2-Ethylhexylisostearat und lsotridecylisononanoat.

[0063] Von den Kohlenwasserstoffen sind Paraffinöl, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

[0064] Vorteilhaft kann die Ölkomponente ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden.

[0065] Vorteilhaft wird Cyclomethicon (Octamethylcyclotetrasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Aber auch andere Silikonöle sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden, beispielsweise Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Polydimethylphenylsiloxan).

[0066] Besonders vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, aus Cyclomethicon und 2-Ethylhexylisostearat.

[0067] Die Ölkomponente wird ferner vorteilhaft aus der Gruppe der Phospholipide gewählt. Die Phospholipide sind Phosphorsäureester acylierter Glycerine. Von größter Bedeutung unter den Phosphatidylcholinen sind beispielsweise die Lecithine, welche sich durch die allgemeine Struktur

auszeichnen, wobei R' und R" typischerweise unverzweigte aliphatische Resie mit 15 oder 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen darstellen.

[0068] Vorteilhaft liegen Reinigungszubereitungen gemäß der Erfindung in Form von Gelen vor und enthalten einen oder mehrere Gelbildner bzw. Hydrokolloide.

[0069] "Hydrokolloid" ist die technologische Kurzbezeichnung für die an sich richtigere Bezeichnung "hydrophiles Kolloid". Hydrokolloide sind Makromoleküle, die eine weitgehend lineare Gestalt haben und über intermolekulare Wechselwirkungskräfte verfügen, die Neben- und Hauptvalenzbindungen zwischen den einzelnen Molekülen und damit die Ausbildung eines netzartigen Gebildes ermöglichen. Sie sind teilweise wasserlösliche natürliche oder synthetische Polymere, die in wässrigen Systemen Gele oder viskose Lösungen bilden. Sie erhöhen die Viskosität des Wassers, indem sie entweder Wassermoleküle binden (Hydratation) oder aber das Wasser in ihre unter sich verflochtenen Makromoleküle aufnehmen und einhüllen, wobei sie gleichzeitig die Beweglichkeit des Wassers einschränken. Solche wasserlöslichen Polymere stellen eine große Gruppe chemisch sehr unterschiedlicher natürlicher und synthetischer Polymere dar, deren gemeinsames Merkmal ihre Löslichkeit in Wasser bzw. wäßrigen Medien ist. Voraussetzung dafür ist, daß diese Polymere über eine für die Wasserlöslichkeit ausreichende Anzahl an hydrophilen Gruppen besitzen und nicht zu stark vernetzt sind. Die hydrophilen Gruppen können nichtionischer, anionischer oder kationischer Natur sein, beispielsweise wie folgt:

NICOTO - DE 1010072041 I -

30

35

DE 101 00 720 A

25 [0070] Die Gruppe der kosmetisch und dermatologisch relevanten Hydrokolloide läßt sich wie folgt einteilen in:

organische, natürliche Verbindungen, wie beispielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Gelatine, Casein,

organische, abgewandelte Naturstoffe, wie z. B. Carboxymethylcellulose und andere Celluloseether, Hydroxyethyl- und -propylcellulose und dergleichen,

organische, vollsynthetische Verbindungen, wie z. B. Polyacryl- und Polymethacryl-Verbindungen, Vinylpolymere, Polycarbonsäuren, Polyether, Polyimine, Polyamide,

anorganische Verbindungen, wie z. B. Polykieselsäuren, Tonmineralien wie Montmorillonite, Zeolithe, Kieselsäuren.

[0071] Erfindungsgemäß bevorzugte Hydrokolloide sind beispielsweise Methylcellulosen, als welche die Methylether der Cellulose bezeichnet werden. Sie zeichnen sich durch die folgende Strukturformel aus

$$\begin{array}{c}
40 \\
\hline
ROCH_2 \\
\hline
OR \\
\hline
OR \\
OR \\
\hline
OR \\
ROCH_2
\end{array}$$

in der R ein Wasserstoff oder eine Methylgruppe darstellen kann.

[0072] Insbesondere vorteilhalt im Sinne der vorliegenden Erfindung sind die im allgemeinen ebenfalls als Methylcellulosen bezeichneten Cellulosemischether, die neben einem dominierenden Gehalt an Methyl- zusätzlich 2-Hydroxyethyl-, 2-Hydroxypropyl- oder 2-llydroxybutyl-Gruppen enthalten. Besonders bevorzugt sind (Hydroxypropyl)methylcellulosen, beispielsweise die unter der Handelsbezeichnung Methocel E4M bei der Dow Chemical Comp. erhältlichen. [0073] Erfindungsgemäß ferner vorteilhaft ist Natriumcarboxymethylcellulose, das Natrium-Salz des Glykolsäureethers der Cellulose, für welches R in Strukturformel 1 ein Wasserstoff und/oder CH2-COONa darstellen kann. Besonders bevorzugt ist die unter der Handelsbezeichnung Natrosol Plus 330 CS bei Aqualon erhältliche, auch als Cellulose Gum bezeichnete Natriumcarboxymethylcellulose.

[0074] Bevorzugt im Sinne der vorliegenden Erfindung ist ferner Xanthan (CAS-Nr. 11138-66-2), auch Xanthan Gummi genannt, welches ein anionisches Heteropolysaccharid ist, das in der Regel durch Fermentation aus Maiszucker gebildet und als Kaliumsalz isolien wird. Es wird von Xanthomonas campestris und einigen anderen Species unter aeroben Bedingungen mit einem Molekulargewicht von 2×10^6 bis 24×10^6 produziert. Xanthan wird aus einer Kette mit β -1,4-gebundener Glucose (Cellulose) mit Seitenketten gebildet. Die Struktur der Untergruppen besteht aus Glucose, Mannose, Glucuronsäure, Acetat und Pyruvat. Xanthan ist die Bezeichnung für das erste mikrobielle anionische Heteropolysaccharid. Es wird von Xanthomonas campestris und einigen anderen Species unter aeroben Bedingungen mit einem Molekulargewicht von 2-15 10 produziert. Xanthan wird aus einer Kette mit β-1,4-gebundener Glucose (Cellulose) mit Seitenketten gebildet. Die Struktur der Untergruppen besteht aus Glucose, Mannose, Glucuronsäure, Acetat und Pyruvat. Die Anzahl der Pyruvat-Einheiten bestimmt die Viskosität des Xanthans. Xanthan wird in zweitägigen Batch-Kulturen mit einer Ausbeute von 70 90%, bezogen auf eingesetztes Köhlenhydrat, produziert. Dabei werden Ausbeuten von

25-30 g/l erreicht. Die Aufarbeitung erfolgt nach Abtöten der Kultur durch Fällung mit z. B. 2-Propanol. Xanthan wird anschließend getrocknet und gemahlen.

[0075] Vorteilhafter Gelbildner im Sinne der vorliegenden Erfindung ist ferner Carrageen, ein gelbildender und ähnlich wie Agar aufgebauter Extrakt aus nordatlant., zu den Florideen zählenden Rotalgen (Chondrus crispus u. Gigartina stellata).

Häufig wird die Bezeichnung Carrageen für das getrocknete Algenprodukt und Carrageenan für den Extrakt aus diesem verwendet. Das aus dem Heißwasserextrakt der Algen ausgefällte Carrageen ist ein farbloses bis sandfarbenes Pulver mit einem Molekulargewichtsbereich von 100~000-800~000 und einem Sulfat-Gehalt von ca. 25%. Carrageen, das in warmem Wasser sehr leicht lösl. ist; beim Abkühlen bildet sich ein thixotropes Gel, selbst wenn der Wassergehalt 95–98% beträgt. Die Festigkeit des Gels wird durch die Doppelhelix-Struktur des Carrageens bewirkt. Beim Carrageenan unterscheidet man drei Hauptbestandteile: Die gelbildende K-Fraktion besteht aus D-Galactose-4-sulfat und 3,6-Anhydro-α-D-galactose, die abwechselnd in 1,3- und 1,4-Stellung glykosidisch verbunden sind (Agar enthält demgegenüber 3,6-Anhydro-α-1-galactose). Die nicht gelierende λ -Fraktion ist aus 1,3-glykosidisch verknüpften D-Galactose-2-sulfat und 1,4-verbundenen D-Galactose-2,6-disulfat-Resten zusammengesetzt u. in kaltem Wasser leicht löslich. Das aus D-Galactose-4-sulfat in 1,3-Bindung und 3,6-Anhydro-α-D-galactose-2-sulfat in 1,4-Bindung aufgebauter-Carrageenan ist sowohl wasserlöslich als auch gelbildend. Weitere Carrageen-Typen werden ebenfalls mit griechischen Buchstaben bezeichnet: α , β , γ , μ , ν , ξ , π , ω , χ . Auch die Art vorhandener Kationen (K⁺, NH₄⁺, Na⁺, Mg²⁺, Ca²⁺) beeinflußt die Löslichkeit der Carrageene.

[0077] Polyacrylate sind ebenfalls vorteilhaft im sinne der vorliegenden Erfindung zu verwendende Gelatoren. Polyacrylate sind Verbindungen der allgemeinen Strukturformel

20

25

40

deren Molgewicht zwischen ca. 400 000 und niehr als 4 000 000 betragen kann.

[0078] Erfindungsgemäß vorteilhafte Polyacrylate sind Acrylat-Alkylacrylat-Copolymere, insbesondere solche, die aus der Gruppe der sogenannten Carbomere oder Carbopole (Carbopol® ist eigentlich eine eingetragene Marke der B. F. Goodrich Company) gewählt werden. Insbesondere zeichnen sich das oder die erfindungsgemäß vorteilhaften Acrylat-Alkylacrylat-Copolymere durch die folgende Struktur aus:

$$\begin{bmatrix} CH_{2} & CH & CH_{3} \\ CH_{2} & CH & CH_{2} & C \\ C=O & C & C \\ OH & C & C \\ O &$$

[0079] Darin stellen R' einen langkettigen Alkylrest und x und y Zahlen dar, welche den jeweiligen stöchiometrischen Anteil der jeweiligen Comonomere symbolisieren.

[0080] Erfindungsgemäß besonders bevorzugt sind Acrylat-Copolymere und/oder Acrylat-Alkylacrylat-Copolymere, welche unter den Handelbezeichnungen Carbopol® 1382, Carbopol® 981 und Carbopol® 5984 von der B. F. Goodrich Company erhältlich sind.

[0081] Femer vorteilhaft sind Copolymere aus C₁₀₋₃₀-Alkylacrylaten und einem oder mehreren Monomeren der Acrylsäure, der Methacrylsäure oder deren Ester, die kreuzvemetzt sind mit einem Allylether der Saccharose oder einem Allylether des Pentaerythrit.

[0082] Vorteilhaft sind Verbindungen, die die INCI-Bezeichnung "Acrylates/C 10-30 Alkyl Acrylate Crosspolymer" tragen. Insbesondere vorteilhaft sind die unter den Handelsbezeichnungen Pemulen TR1 und Pemulen TR2 bei der B. F. Goodrich Company erhältlichen.

[0083] Die Gesamtmenge an einem oder mehreren Hydrokolloiden wird in den fertigen kosmetischen oder dermatologischen Zubereitungen vorteilhaft kleiner als 1,5 Gew.-%, bevorzugt zwischen 0,1 und 1,0 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, gewählt.

[0084] Es ist vorteilhaft im Sinn der vorliegenden Erfindung, wenn der Gehalt an einem oder mehreren Polyacrylaten in der kosmetischen oder dermatologischen Reinigungsemulsion aus dem Bereich von 0,5 bis 2 Gew.-%, ganz besonders vorteilhaft von 0,7 bis 1,5 Gew.-% gewählt wird, jeweils bezogen auf das Gesamtgewicht der Zubereitungen

[0085] Kosmetische Zubereitungen, die kosmetische Reinigungszubereitungen für die Haut darstellen, können in flüssiger oder fester Form vorliegen.

[0086] Die Zusammensetzungen enthalten gemäß der Erfindung außer den vorgenannten Substanzen gegebenenfalls die in der Kosmetik üblichen Zusatzstoffe, beispielsweise Parfüm, Farbstoffe, antinikrobielle Stoffe, rückfettende Agentien, Komplexierungs- und Sequestrierungsagentien, Perlglanzagentien, Pflanzenextrakte, Vitamine, Wirkstoffe, Konservierungsmittel, Bakterizide, Pigmente, die eine färbende Wirkung haben, Verdickungsmittel, weichmachende, anfeuchtende und/oder feuchthaltende Substanzen, oder andere übliche Bestandteile einer kosmetischen oder dermatologi-

schen Formulierung wie Alkohole, Polyole, Polymere, Schaumstabilisatoren, Elektrolyte, organische Lösemittel oder Silikonderiyate.

[0087] Ein zusätzlicher Gehalt an Antioxidantien ist im allgemeinen bevorzugt. Erfindungsgemäß können als günstige Antioxidantien alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.

[0088] Es ist auch von Vorteil, den erfindungsgemäßen Zubereitungen Antioxidantien zuzusetzen. Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Carotine (z. B. \alpha-Carotin, \beta-Carotin, Lycopin) und deren Derivale, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleotide und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z. B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z. B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), \(\alpha\)-Hydroxysäuren (z. B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Camosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Hamsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z. B. ZnO, ZnSO₄) Selen und dessen Derivate (z. B. Selenmethionin), Stilbene und deren Derivate (z. B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Deri-

vate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

[0089] Die Menge der vorgenannten Antioxidantien (eine oder mehrere Verbindungen) in den Emulsionen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 bis 20 Gew.-%, insbesondere 0,1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

[0090] Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen

[0091] Sofern Vitamin A, bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

[0092] Die folgenden Beispiele, in welchen Waschpräparate zur Haar- und Körperpflege beschrieben werden, sollen die erfindungsgemäßen Zusammensetzungen erläutern, ohne daß aber beabsichtigt ist, die Erfindung auf diese Beispiele zu beschränken. Die Zahlenwerte in den Beispielen bedeuten Gewichtsprozente, bezogen auf das Gesamtgewicht der jeweiligen Zubereitungen.

10

40

45

50

Beispiel 1

Duschgel .

48,00
5,00
)
5,00
0,50
0,50
0,45
0,30
2
0,50
q.s.
ad
100,00

Beispiel 2

Mildes Duschgel

Sodium Myreth Sulfate (70%ige Lösung)	7,0
Laurylglucoside (50%ige Lösung)	. 5,0
Sodium Cocoamphoacetat (36%ige Lö-	18,0
sung)	·
PEG-200 Hydrogenated Glyceryl Palmat	0,4
PEG-40 Hydrogenated Castor Oil	1,0
Parfum	0,5
Diammonium Citrat	0,12
Sodium Benzoat	0,4
Sodium Salicylat	0,3
IDS	3,0
Citric Acid	1,2
Wasser	ad
	100,00

15 .

Beispiel 3

Gelförmige Zubereitung

5	Decylglucosid (50%ige Lösung)	20,0
	Carbopol 1382	1,0
	Natriumhydroxid	0,5
10	Butylenglykol	10,0
	Propylenglycol	17,5
15	Na ₃ HEDTA	0,5
	Sodium Benzoat	0,4
	Sodium Salicylat	0,25
20	IDS	2,5
	Parfüm, Antioxidantien	q.s.
	Wasser	ad
25	·	100,00

Beispiel 4

30

Duschemulsion

	Paraffinöl	45
35	Sojaōl	24,3
	Natriumlaurylethersulfat (25%ige Lō- sung in Wasser)	28
40	Sodium Benzoat	0,3
	Sodium Salicylat	0,2
45	IDS	1,5
43	Parfūm, Antioxidantien	q.s.
	Wasser	ad
50		100,00

55

60

	Conditioner-Shamp	oo mit Perlglanz		•
	5	6	7	5
Polyquaternium-10	0,5	0,5	0,5	
Natriumlaurethsulfat	9,0	9,0	9,0	. 10
Cocoamidopropylbetain	2,5	2,5	2,5	
Periglanzmittel	2,0	2,0	2,0	15
IDS	1,0	2,5	3,8	13
Konservierungsmittel, Parfüm,				
Verdicker, pH-Einstellung und		,		20
Lösungsvermittler	q.s.	q.s	. q.s.	
Wasser, VES (vollentsalzt)	ad 100,0	ad 100,0	ad 100,0	
Der pH-Wert wird auf 6 eingeste		e 8-10	·	30
	klares Condition	oner-Shampoo	·	-
	8	9	10	
	•			
Polyquaternium-10	0,5	0,5	0,5	
Natriumlaurethsulfat	9,0	9,0	9,0	
Cocoamidopropylbetain	2,5	2,5	5 2,5	40
IDS	2,5	3,0	5,0	
Konservierungsmittel, Parfüm,			·	45
Verdicker, pH-Einstellung und				42
Lösungsvermittler	q.s	s. q.:	s. q.s	
Wasser, VES	ad 100,0	ad 100,0	ad 100,0	50

Der pH-Wert wird auf 6 eingestellt.

55

Beispiele 11-13

klares Light-Shampoo mit Volumeneffekt

5			11		12 -		13
	Natriumlaurethsulfat	10,0	•	10,0		10,0	
10	Cocoamidopropylbetain		2,5		2,5		2,5
	IDS		8,0		2,5		4,0
- 15	Konservierungsmittel, Parfüm, Verdicker, pH-Einstellung und						
	Lösungsvermittler		q.s.		q.s.		q.s.
20	Wasser, VES	ad 100,0		ad 100,0	a	d 100,0	
	Der pH-Wert wird auf 5,5 einges	stellt.			:		

Beispiele 14 + 15

Seifen

Grundseife

	Gew%
Natriumtallowat	68,0
Natriumcocoat	17,0
Aqua	12,0
NaCl	0,4
IDS	0,5
Natriumetidronat	0.0
Glycerin	2,
Natrium-Palmkernfettsäuresalze	ad 100,0

50

25

Farbslurry

		Gew%
	Wollwachsalkohol	2,00
55	Paraffinum liquidum	33,00
	Prunus dulcis	7,00
60	Disteardimoniumhectorit	1,00
	TiO ₂	13,00
	Wasser	ad 100,00

Beispiel 14

	Gew%
Farbslurry	3,00
Grundseife	93,00
Paraffin	2,00
Parfum	1,0
Na ₂ S ₂ O ₃	0,40
Octyldodecanol	0,50
Wasser	ad 100,00

[0093] Die Grundseifennudeln werden mit dem Farbslurry und den übrigen Komponenten in einen üblichen Seifenmischer (Schneckenmischer mit Lochsieb) dosiert, durch mehrmaliges Vermischen homogenisiert, über eine Strangpresse 20 ausgetragen, geschnitten und in üblicher Weise zu Stücken verarbeitet.

Beispiel 15

	Gew%
Farbslurry	3,00
Grundseife	87,00
Paraffin	1,00
Talkum	600
Parfum	1,00
Na ₂ S ₂ O ₃	0,40
Octyldodecanol	0,50
Wasser	ad 100,00

[0094] Die Grundseifennudeln werden mit dem Farbslurry und den übrigen Komponenten in einen üblichen Seifenmischer (Schneckenmischer mit Lochsieb) dosiert, durch mehrmaliges Vermischen homogenisiert, über eine Strangpresse ausgetragen, geschnitten und in üblicher Weise zu Stücken verarbeitet.

Beispiel 16

Syndet

Grundseife

		Gew%
10	Natriumtallowat	67,80
	Natriumcocoat/ Natrium-Palmkernfettsäuresalze	16,95
15	NaCl	0,40
	IDS	0,40
	Natriumetidronat	0,09
20	Glycerin	2,50
	Wasser	ad
		100,00

Beispiel 16

Stearinsäure 23,0 Grundseife 11,0 Paraffin 8,0 Kokosnußfettsäuren 3,0 Paraffin 2,0 Polyethylenglycol-150 2,0 Talkum 5,0 TiO2 0,3 Panthenol 0,0 Wollwachsalkohol 0,0		Gew%
Grundseife 11,0 Paraffin 8,0 Kokosnußfettsäuren 3,0 Paraffin 2,0 Polyethylenglycol-150 2,0 Talkum 5,0 TiO2 0,5 Panthenol 0,0 Wollwachsalkohol 0,0	Natriumacylamphoacetat	31,00
Paraffin 8,0 Kokosnußfettsäuren 3,0 Paraffin 2,0 Polyethylenglycol-150 2,0 Talkum 5,0 TiO2 0,5 Panthenol 0,0 Wollwachsalkohol 0,0	Stearinsäure	23,00
Kokosnußfettsäuren 3,0 Paraffin 2,0 Polyethylenglycol-150 2,0 Talkum 5,0 TiO2 0,5 Panthenol 0,0 Wollwachsalkohol 0,0	Grundseife	11,00
Paraffin 2,0 Polyethylenglycol-150 2,0 Talkum 5,0 TiO2 0,3 Panthenol 0,0 Wollwachsalkohol 0,0	Paraffin	8,00
Polyethylenglycol-150 2,0 Talkum 5,0 TiO2 0,3 Panthenol 0,0 Wollwachsalkohol 0,0	Kokosnußfettsäuren	3,00
Talkum 5,0 TiO2 0,5 Panthenol 0, Wollwachsalkohol 0,	Paraffin	2,00
TiO ₂ 0,5 Panthenol 0, Wollwachsalkohol 0,	Polyethylenglycol-150	2,00
Panthenol 0, Wollwachsalkohol 0,	Talkum	5,00
Wollwachsalkohol 0,	TiO ₂	0,50
	Panthenol	0,15
Wasser ad 100.	Wollwachsalkohol	0,10
vva33ci	Wasser	ad 100,00

[0095] Die Grundseisennudeln werden mit den übrigen Komponenten in einen üblichen Seisenmischer (Schneckenmischer mit Lochsieb) dosiert, durch mehrmaliges Vermischen homogenisiert, über eine Strangpresse ausgetragen, geschnitten und in üblicher Weise zu Stücken verarbeitet

[0096] Beim verwendeten IDS handelt es sich um das Tetranatriumiminodisuccinat, einen Feststoff von der Firma Bayer mit einem Aktivgehalt von ca. 60% auf die freie Säure bezogen.

Patentansprüche

- 1. Kosmetische und dermatologische Reinigungszubereitungen, enthaltend
 - (a) eine wirksame Menge einer oder mehrerer grenzflächenaktiven Substanzen und
 - (b) eine wirksame Menge an Iminodibemsteinsäure und/oder ihren Salzen.
- 2. Verwendung einer Kombination aus
 - (a) einer wirksame Menge einer oder mehrerer grenzflächenaktiven Substanzen und
 - (b) einer wirksamen Menge an Iminodibenisteinsäure und/oder ihren Salze zur Herstellung kosmetischer oder dermatologischer Reinigungszubereitungen.

60

65

- 3. Zubereitungen nach Anspruch 1, dadurch gekennzeichnet, daß die Gesamtmenge an Iminodibernsteinsäure und/oder ihren Salzen in den fertigen kosmetischen oder dernatologischen Zubereitungen aus dem Bereich von 0.1-25.0 Gew.-%, bevorzugt 0.5-15.0 Gew.-% gewählt wird, bezogen auf das Gesamtgewicht der Zubereitungen.
- 4. Zubereitungen nach Anspruch 1, dadurch gekennzeichnet, daß sie in Form von Gelen vorliegen.
- 5. Zubereitungen nach Anspruch 1, dadurch gekennzeichnet, daß sie in Form von flüssigen Darreichungsformen vorliegen.
- 6. Zubereitungen nach Anspruch 1, dadurch gekennzeichnet, daß sie in Form von festen Seifen- bzw. Syndetstükken vorliegen.
- 7. Kosmelische oder dermatologische Reinigungsemulsionen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das oder die Tenside gewählt werden aus der Gruppe, welche gebildet wird aus Natriumacylglutamat, Myristoyl Sarcosin, TEA-Lauroyl Sarcosinat, Natriumlauroylsarcosinat und Natriumcocoylsarkosinat, Natrium-/Ammoniumcocoyl-isethionat, Dioctylnatriumsulfosuccinat, Dinatriumlaurethsulfosuccinat, Dinatriumlaurylsulfosuccinat, und Dinatriumundecylenamido MEA-Sulfosuccinat, Natrium-, Ammonium-, Magnesium-, MIPA-, TIPA-Laurethsulfat, Natriummyrethsulfat und Natrium C₁₂₋₁₃ Parethsulfat, Natrium-, Ammonium- und TEA-Laurylsulfat, Benzalkoniumchlorid, Alkylbetain, Alkylamidopropylbetain und Alkyl-amidopropylhydroxysultain, Natriumacylamphoacetat, Dinatriumacylamphodipropionat, Dinatriumalkylamphodiacetat, Natriumacylamphodiacetat und Natriumacylamphopropionat, Cocamide MEA/DEA/MIPA, Laurylglucosid, Decylglycosid und Cocoglycosid.

- Leerseite -

BEST AVAILABLE COPY

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ other: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.