- 1 An unknown chemical element is presented by the following formula: ${}_{Z}^{A}X$. What is the name of index Z?
 - A Atomic mass number
 - B Atomic number
 - OC Principle quantum number
 - O D Orbital quantum number
 - E Magnetic quantum number

- 2 An unknown chemical element is presented by the following formula: ${}_{Z}^{A}X$. What is the name of index A?
 - A Atomic mass number
 - OB Atomic number
 - OC Principle quantum number
 - O D Orbital quantum number
 - E Magnetic quantum number

3	The atomic number is equivalent to which of the following?
	OA The number of neutrons in the atom.
	○ B The number of protons in the atom.
	OC Then number of nucleons in the atom.
	O D The number of alpha particles in the atom.
	OE None of the above

4 The atomic mass number is equivalent to which of the following?
○ A The number of neutrons in the atom.
○ B The number of protons in the atom.
○ C Then number of nucleons in the atom.
OD The number of alpha particles in the atom.
○ E None of the above

5 Which of the following particles has the smallest mass?
OA Proton
OB Electron
○ C Neutron
OD Nucleus
○ E Nucleon

6	6 Which of the following statements about the mass of an aton true?		
	OA	It is evenly divided between the protons and the orbiting electrons.	
	Ов	It is evenly divided between the nucleons and the orbiting electrons.	
	\bigcirc C	It is concentrated in the electron cloud.	
	\bigcirc D	It is concentrated in the nucleus.	
	ОE	It is evenly divided between protons, neutrons and orbiting electrons.	

7 Which of the following is correct for the number of neutrons in the nucl

$$\bigcirc A N = A - Z$$

$$\bigcirc$$
B N=Z-A

$$\bigcirc$$
 C N = Z + A

$$\bigcirc D N = Z$$

$$\bigcirc$$
 E N = A

8 How many electrons are in the ${}_{6}^{12}C$ atom?

- **QA** 12
- **○**B 6
- QC 18
- **○** D 3
- **OE** 9

9 How many nucleons are in the $^{20}_{10}Ne$ atom?

- **QA** 12
- **○**B 30
- QC 18
- **QD** 10
- **QE** 20

10 How many nucleons are in the $^{23}_{11}Na$ atom?

- **QA** 12
- **○**B 11
- QC 18
- OD 24
- **OE** 9

11 How many protons are in the ${}^{14}_{7}N$ atom?

- **QA** 14
- **○**B 6
- OC 7
- **OD** 10
- **OE** 9

12	What law did	Ernest I	Rutherford	use to	estimate	the size	of the
	nucleus?						

- A Conservation of nucleon number
- B Conservation of angular momentum
- OC Conservation of linear momentum
- O D Conservation of energy
- E Conservation of charge

13 Why are nuclear energy levels more complex than electron energy le
☐ Nuclear energy levels depend only on attractive forces.
Nuclear energy levels depend on attractive and repulsive forces.
Nuclear energy levels are an order of one hundred times as great as electron energy levels.
Electron energy levels depend on the interaction between neutrons and electrons.
Electron energy levels have greater energy than the nuclear energy levels.

14 Which of the following about the nuclear force is true

- A It is an attractive force between electrons and protons in an atom.
- B It is an attractive force between electrons and neutrons in an atom.
- OC It is much weaker than the electromagnetic force.
- O D It is much weaker than the gravitational force.
- E It is a strong, short-range, attractive force between the nucleons.

51100 107 00
15 What force is responsible for the radioactive decay of the nucleus?
OA Gravitational force
OB Weak Nuclear force
○ C Strong Nuclear force
OD Electromagnetic force

16 Isotopes of an elemen

- A have the same number of protons and electrons, but a different number of neutrons.
- B have the same number of protons and neutrons, but a different number of electrons.
- OC have different number of protons.
- O D have different number of electrons.
- E have the same number of neutrons and protons.

4 -	D : 1:		
1 /	Pindina	ODOROV.	10:
1 /	Binding	energy	1.5
	- 11131119	\circ	. • •
		0,	

- A the amount of energy required to break a nucleus apart into protons and neutrons.
- B the amount of energy required to break a nucleus apart into protons and electrons.
- OC the amount of energy required to break a nucleus apart into electrons and neutrons.
- O D the amount of energy released when neutrons change energy levels.
- E the amount of energy released when protons change energy levels.

18 If m_H is the atomic mass of Hydrogen, m_n is the mass of a neutron, and M is the atomic mass of the atom, which of the following is the mass defect formula?

$$\bigcirc A \Delta m = Z \cdot m_H + N \cdot m_n - M$$

$$\bigcirc$$
 B \triangle m = Z·m_H + N·m_n + M

$$\bigcirc$$
 C Δ m = Z·m_H – N·m_n – M

$$\bigcirc D \Delta m = Z \cdot m_H - N \cdot m_n + M$$

$$\bigcirc$$
 E Δ m = M $-$ Z·m_H $-$ N·m_n

19 When nucleons form a stable nucleus, binding energy is:			
OA created from nothing.			
○B destroyed into nothing.			
○ C transformed into visible light.			
OD absorbed as high energy photons or particles.			
○E released as high energy photons or particles.			

20 When a nucleus is divided into its constituents, energy is:			
OA created from nothing.			
OB destroyed into nothing.			
○ C transformed into visible light.			
OD absorbed by the nucleus which then breaks apart.			
○E released by the nucleus as it breaks apart.			

21 An isotope with a high Binding Energy per nucleon:
○ A will decay in a short period of time.
○B is very unstable.
○ C is very stable.
OD has very few electrons.
○ E has more protons than neutrons.

22	Why do heavier nuclei have a greater ratio of neutrons to protons
	than lighter nuclei?

- A to add more nucleons so that the binding energy is greater.
- B provide a greater weak nuclear force.
- O C to provide more attractive electromagnetic force.
- O D provide more attractive strong nuclear force to balance the repulsive electromagnetic force.
- E to provide more repulsive strong nuclear force to balance the attractive electromagnetic force.

23 Which of the following is the alpha particle?

- $\bigcirc A \quad {}^{\scriptscriptstyle 0}_{\scriptscriptstyle +1} e$
- $\bigcirc B \quad {}_{-1}^{0}e$
- $\bigcirc C$ $\frac{1}{0}n$
- $\bigcirc D$ ^{1}H
- \bigcirc E $_{2}^{4}He$

24 Which of the following is the β^- particle?

- $\bigcirc A \quad {}^{\scriptscriptstyle 0}_{\scriptscriptstyle +1} e$
- \bigcirc B $_{-1}^{0}e$
- \bigcirc C $\frac{1}{0}$ n
- $\bigcirc D$ ^{1}H
- \bigcirc E $_{2}^{4}He$

25 Which of the following is the β^+ particle?

- $\bigcirc A \quad {}^{\scriptscriptstyle 0}_{\scriptscriptstyle +1} e$
- \bigcirc B $_{-1}^{0}e$
- \bigcirc C $\frac{1}{0}$ n
- $\bigcirc D$ ^{1}H
- \bigcirc E $_{2}^{4}He$

26	Which	of the	following	about the	gamma	ray is	true?
			J		•	•	

- A It carries a positive charge.
- B It carries a negative charge.
- OC It can be deflected by a magnetic field.
- O D In can be deflected by an electric field.
- E It has zero rest mass and a neutral charge.

27 What type of radiation is stopped by a sheet of paper?				
○ A alpha particle				
○B beta particle				
○ C Gamma ray				
○D X-ray				
○ E Ultraviolet radiation				

What is the missing element from the following equation ${}^{226}_{88}Ra \rightarrow ?+ {}^{4}_{2}He$?

- $\bigcirc A_{86}^{230} Rn$
- \bigcirc B $^{220}_{86}$ Rn
- $\bigcirc C_{86}^{228} Rn$
- $\bigcirc D_{86}^{222} Rn$
- \bigcirc E $^{224}_{86}Rn$

29 What is the missing element from the following equation ${}_{6}^{14}C \rightarrow ?+ {}_{-1}^{0}e$?

- \bigcirc A $^{13}_{7}N$
- $\bigcirc B_{6}^{12}C$
- $Q_{c}^{17}O$
- $\bigcirc D_{8}^{16}O$
- \bigcirc E $^{14}_{7}N$

- 30 A 100 g sample of a radioactive element has a half-life of 5 days. How many grams of radioactive material will remain after 15 days?
 - ○A 100 g
 - ○B 50 g
 - ○C 25 g
 - D 12.5 g
 - ○E 0 g

31 A reaction that releases more energy than is put into it is called:
○ A endothermic
○B exothermic
○C nuclear
OD chemical
○ E radioactivity

32 The following reaction: ${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{56}^{141}Ba + {}_{36}^{92}Kr + 3{}_{0}^{1}n$ is called:

- OA Fusion
- OB Fission
- OC alpha decay
- O D beta decay
- OE gamma decay

33 The following reaction: ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$ is called:

- OA Fusion
- OB Fission
- OC alpha decay
- O D beta decay
- OE gamma decay