Contents

7장 자연어 처리

7.1. 자연어 처리 과정

7.2. 단어를 벡터로 Word Embedding

7.3. sequence를 다루는 모델

7.4. Seq2Seq 모델

자연어 처리 과정

Contents

7장 자연어 처리

7.1. 자연어 처리 과정

7.2. 단어를 벡터로 Word Embedding

7.3. sequence를 다루는 모델

7.4. Seq2Seq 모델

1. Word Embedding 과정

One-hot vector

Embedding vector

	One-Hot vector	Embedding vector
차원	고차원 (단어 집합의 크기)	저차원 (128, 256 등)
표현 방식	희소 벡터	밀집 벡터
표현 방법	수동	훈련 데이터로부터 학습
값의 형식	하나의 값만 1, 나머지는 0	실수

Word Embedding

2. CBOW 원리

주변 단어로 중심 단어 예측

CBOW 모델

3. Skip-gram 원리

중심 단어로 주변 단어 예측

skip-gram 과정

Contents

7장 자연어 처리

7.1. 자연어 처리 과정

7.2. 단어를 벡터로 Word Embedding

7.3. sequence를 다루는 모델

7.4. Seq2Seq 모델

수열과 점화식

수열 sequence

$$\{a_n\}_{n=0}^{\infty}$$

$$a_0$$
, a_1 , a_2 , ..., a_{n_1} , a_{n+1} , ...

점화식 recurrence relation

$$h_{n+1} = f(h_n, h_{n-1})$$

$$a_{n+1} = a_n + a_{n-1} \quad \longrightarrow \quad a_n?$$

$$b_{n+1} = 2b_n - b_{n-1} \implies b_n$$
?

1. RNN 모델

SimpleRNN 모델

다양한 RNN 모델

One to one

Simple Neural Network

One to many

이미지 자막 이미지 → 문자열

many to one

감정 분류 문자열 → 감정

many to many

.

many to many

프레임 레벨 비디오 분류

RNN 모델과 손실 계산

CNN+RNN: Image Captioning

RNN+RNN: Machine Translation

Sutskever et al., "Sequence to Sequence Learning with Neural Networks", NIPS 2014

2. LSTM 구조

i: input gate

f: forget gate

셀에 정보를 저장할지 여부

셀에 정보 반영하는 정도

o: output gate

출력값 결정

g: update gate

셀에 저장할 정보의 정도를 결정

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ \chi_t \end{pmatrix}$$

$$C_t = f \odot C_{t-1} + i \odot g$$
$$h_t = o \odot \tanh C_t$$

Forget Gate

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

입력 활성화 출력
 h_{t-1}, x_t sigmoid \rightarrow $0 < \sigma < 1$

Input Gate

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Cell State

Output Gate

LSTM 오류역전파

3. GRU: Reset Gate

$$r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$$

GRU: Update Gate

Contents

7장 자연어 처리

7.1. 자연어 처리 과정

7.2. 단어를 벡터로 Word Embedding

7.3. sequence를 다루는 모델

7.4. Seq2Seq 모델

Encoder-Decoder

Attention Mechanism

Decoder 개선 **Attention** input **Encoder** 이것은 책이다. output Decoder This is a book.

Attention Mechanism

Attention Mechanism

단어 사이의 관계

Transformer

Positional Encoding

Self Attention

Multi-Head Attention

Residual Connection

Encoder N-Layer

Decoder N-Layer

Contents

7장 자연어 처리

실습예제

- 1. Bag of Words
 - 2. KoNLPy

Word Embedding 과정

Tokenizer

Tokenizer()

#text를 전처리하는 클래스

```
keras.preporcessing.text.Tokenizer
tk=Tokenizer()
tk.fit on texts() #사용빈도에 따른 단어 정렬
tk.word_index #사용빈도 순으로 단어 뭉치(corpus) 전체 출력
tk.word_index['word'] #'word' 단어의 사용빈도 순위 출력
tk.word count #전체 단어의 사용된 횟수 출력
tk.word_count['word'] #'word' 단어가 사용된 횟수 출력
all text=tk.texts to sequences(alldata)
#문장을 만들어진 말뭉치 사전의 index를 기준으로 벡터로 변환
```

pad_sequences

```
pad_sequences()
```

#서로 다른 길이의 문장을 같은 길이로 만들어주는 함수

pad_sequences(seq, maxlen=None, padding='pre')

-seq: 입력 데이터 (각 성분이 sequence)

-maxlen : sequence의 최대 길이

-padding: 각 sequence의 처음(pre) 또는 끝(post)을 디폴트 값(0)으로 패딩하여 길이를 맞춤

from tensorflow.keras.preprocessing.sequence import pad_sequences
all_pad=pad_sequences(all_text, maxlen=150, padding='post')

Embedding

Embedding()

#one-hot 벡터를 밀집 벡터로 전환해주는 함수

Embedding(input_dim, output_dim, input_length=None)

```
-input_dim : 입력 차원 설정
```

-output_dim : 출력 차원 설정

-input_length: 입력 데이터(sequence)의 정해진 길이 값 설정

```
from tensorflow.keras.layers import Embedding
model.add(Embedding(len(tk.word_index)+1, 300, input_length = 150))
```

SimpleRNN

SimpleRNN()

#output이 input에 연결되는 완전연결 순환망(RNN)

```
SimpleRNN(units, activation='tanh')
```

-units: output 텐서의 차원 설정

-activation : 활성화 함수 설정. 기본값은 tanh

from tensorflow.keras.layers import SimpleRNN
model.add(SimpleRNN(10))

LSTM

LSTM()

#LSTM 함수

LSTM(units, activation='tanh')

-units: output 텐서의 차원 설정

-activation : 활성화 함수 설정. 기본값은 tanh

from tensorflow.keras.layers import LSTM
model.add(LSTM(32))

Bidirectional

Bidirectional()

#양방향 RNN 입력 함수

Bidirectional(layer)

-layer : 양방향으로 변환한 후 적용되는 층

from tensorflow.keras.layers import Bidirectional
model.add(Bidirectional(LSTM(32)))

RNN 모델 설정

RNN 모델

```
model = Sequential()
model.add(Embedding(len(tk.word_index)+1, 300, input_length = 150))
model.add(SimpleRNN(10))
model.add(Dense(1, activation = 'sigmoid'))
model.summary()
```

RNN 모델 학습

compile/fit

평가

md.evaluate(test)

RNN 모델 결과 예측 및 제출

predict

```
result = model.predict(test2) #결과 예측
sub['sentiment'] = result
sub.to_csv('popcorn.csv', index=False)
#결과를 popcorn.csv에 index는 제외하고 저장
```

LSTM 모델 설정

LSTM 모델

```
model2 = Sequential()
model2.add(Embedding(len(tk.word index)+1, 300, input length = 150))
model2.add(Bidirectional(LSTM(60)))
model2.add(Dropout(0.3))
model2.add(Dense(64, activation = 'relu'))
model2.add(Dropout(0.3))
model2.add(Dense(1, activation = 'sigmoid'))
model2.summary()
```