南大学数学系概率论期中试卷(2018/2019)

	2018	8/2019	学年	第二学	期 考	试形式	闭卷	课	程名称	概	率论	
院系班级				学	号							
考试时间 2019/04/24			4 任	课教师	代雄平 赵玉林			考试成				
	题号		=	三	四	五.	六	七	八	九	+	总分
	得分											

一. (20分)

- 1. 陈述概率空间 (Ω, \mathcal{F}, P) 的定义。
- 2. 若 $B \in \mathcal{F}$ 满足P(B) > 0,证明条件概率 $P(\cdot|B)$ 是 (Ω, \mathcal{F}) 上的一个概率。

二. (10分) 设 (Ω, \mathscr{F}) 是一可测空间。设函数 $P: \mathscr{F} \to \mathbb{R}$ 满足: (1) $P(A) \geq 0 \ \forall A \in \mathscr{F}$; (2) $P(\Omega) = 1$; (3) 有限可加性: $P(A_1 + \dots + A_n) = P(A_1) + \dots + P(A_n)$. 证明 (Ω, \mathscr{F}, P) 是一个概率空间。

三. (10分) 证明"抽签与顺序无关"。

四. (10分) 设甲乙两人进行围棋比赛。约定先赢10局者获得全部奖金1000元。但是,比赛进行到甲获胜8局,乙获胜2局时,因故终止比赛。问应该如何分配这1000元奖金?(已知甲乙二人棋力相当)

七. (10分) 已知某一份文件等可能地藏在3个文件袋中。设快速翻寻第i个文件袋(如果文件确实在该袋中)而发现该文件的概率为 α_i , i=1,2,3。假设翻寻了第一个文件袋但没找到文件。问:文件在第一个文件袋中概率是多少?

六. (10分) 在平面上画满一族间距为1米的平行线。向平面随机地投一根长度为0.5米的细针。求针与线相交的概率。

八. (10分) 一质点从平面上某格点出发,等可能地上下左右跳动;每次跳动一个格点。 求经2n跳动后回到出发点的概率。

第三页(共五页) 第四页(共五页)

九. (10分) 在n-重Bernoulli试验中,以 p_n 代表事件A发生的概率,满足 $\lim_n np_n = \lambda > 0$ 。证明:

$$b(k; n, p_n) \to \frac{\lambda^n}{k!} e^{-\lambda}$$
 as $n \to \infty$