6. (15 pontos) Se o conjunto $S = \{v_1, v_2, v_3\}$ é formado por vetores linearmente independentes, então prove que o conjunto $T = \{w_1, w_2, w_3\}$ onde $w_1 = 8v_1 + v_2$, $w_2 = v_2 - v_3$ e $w_3 = v_3 - 2v_1$ também linearmente independente.

S= $\{V_1, V_2, V_3\}$ · Li $T = \{8N_1 + N_2, N_3 - N_3, N_3 - N_4, \int g' \}$.

Se $T = \{1, V_2, V_3\}$ · Li $T = \{8N_1 + N_2, N_3 - N_3, N_3 - N_4, \int g' \}$.

It is a $\{1, V_2, V_3\}$ · Li $\{1, V_3, V_4\}$ pode not excute come combinaçãe linear de $N_2 - N_3 = N_3 - N_4$.

In potate $\{8N_1 + N_2 = \mathcal{L}_1 (N_2 - N_3) + \mathcal{L}_2 (N_3 - N_4)\} = \mathcal{L}_1 N_2 - \mathcal{L}_1 N_3 + \mathcal{L}_2 N_3 - \mathcal{L}_2 N_4$. $\{8N_1 + N_2 = -2\mathcal{L}_2 N_1 + \mathcal{L}_1 N_2 + (\mathcal{L}_2 - \mathcal{L}_1) N_3\}$ de forma que $\mathcal{L}_1 = \mathcal{L}_2$ of que e' um absurde $(-4 \neq 1)$ e, portante T mão e' $\mathcal{L}_1 = 1$ l. \mathcal{L}_1 e $\mathcal{L}_1 = 1$ l. \mathcal{L}_1 e $\mathcal{L}_1 = 1$ l. \mathcal{L}_1 e $\mathcal{L}_1 = 1$ l. $\mathcal{L}_1 = 1$ l. $\mathcal{L}_2 = 1$ l. $\mathcal{L}_3 = 1$ l. $\mathcal{L}_4 = 1$ l.

- 7. (15 pontos) Assinale as sentenças com V, se a sentença for verdadeira, ou F, se ela for falsa. Justifique aquelas que forem falsas.
 - (a) (\bigvee) Uma base para o espaço das matrizes simétricas de ordem 2×2 é $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$.
 - (b) ($\overline{\vdash}$) Os vetores u=(2,1,2), v=(0,1,0) são linearmente dependentes.
- (c) (\vec{F}) As coordenadas do vetor $v=t^3$ em relação à base $\{1,2-t,t^2+1,1+t+t^3\}$ são (-3,1,2,1)

Boa prova!