In the futre Please don't Format results like This. Conputional
Total 35
50

These or essentially Screens has. Numerical Linear Algebra

Kevin Corcoran

February 12, 2022

Contents

2:	Assignment 2	1						
1	Part 1 1.1 Output for Trace, Gaussian Elimination, LU decomposition and Two norm of Error in solution to AX = B	1 1 4						
2	Part 2 2.1 Schur decomposition of a symmetric matrix	5 5 6 6 6 6 7 7						
2	Assignment 2	Wed 02 Feb 2022 20:27						
1	Part 1							
1.	1.1 Output for Trace, Gaussian Elimination, LU decomposition and Two norm of Error in solution to $\mathbf{A}\mathbf{X} = \mathbf{B}$							
A								
	4 x 4 2.0000 1.0000 1.0000 0.0000 4.0000 3.0000 3.0000 1.0000 8.0000 7.0000 9.0000 5.0000 6.0000 7.0000 9.0000 8.0000	B 10						

Trace of A

				CM	Duiso	1
22.000000	000000000				-/02	7
Norm column 10.954451		1		/6	paiso exab	
Norm column		2			10	
10.392304	/	_				
Norm column 13.114877		3				
Norm column		4				
9.4868329	805051381					
В						
4 x	6					
3.0000	0.0000	1.0000	0.9000	2.1000	3.1416	
6.0000	-2.0000	1.0000	10.4000	-491.2000	-4.7124	
10.0000	2.0000	0.0000	-20.2000	0.1200	2.2440	
1.0000	10.0000	-5.0000	-5.1200	-51.3000	2.3562	
matrix A af	ter gauss				_	10
4	1				75	15
4 x 8.0000	4 7.0000	9.0000	5.0000		-, -	13
0.0000	1.7500	2.2500	4.2500			
0.0000	0.0000	-0.8571	-0.2857			
0.0000	0.0000	0.0000	0.6667			
matrix B af	ter gauss					
4 x	6					
10.0000	2.0000	0.0000	-20.2000	0.1200	2.2440	
-6.5000	8.5000	-5.0000	10.0300	-51.3900	0.6732	
-0.8571	-0.5714	-0.4286	23.3657	-505.9429	-5.6420	
-2.0000	3.3333	-1.0000	2.4600	148.6933	4.7498	
F						
solution X	to AX = B					
4 x	6					
-0.0000	3.5000	0.2500	-2.0050	360.2700	10.6309	
1.0000	-6.0000	-0.5000		-1234.3600	-22.3277	
2.0000	-1.0000	1.0000	-28.4900	515.9200	4.2075	
-3.0000	5.0000	-1.5000	3.6900	223.0400	7.1247	

Error Matrix

4	x	6				
-0.	0000	0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
0.	0000	0.0000	0.0000	-0.0000	-0.0000	0.0000

Two norm of columns of error matrix

Discussion?

Norm column: 1
2.6645352591003757E-015
Norm column: 2
2.5727487310015434E-015
Norm column: 3
9.0153937873535153E-015
Norm column: 4
2.9913803108461275E-013
Norm column: 5
3.6757338276243205E-013
Norm column: 6

7.3777640556099254E-015

A before LU

4 x	4	<u> </u>		
2.000	0	1.0000	1.0000	0.0000
4.000	0	3.0000	3.0000	1.0000
8.000	0	7.0000	9.0000	5.0000
6.000	0	7.0000	9.0000	8.0000

A after LU

4	х	4		
8.	0000	7.0000	9.0000	5.0000
0.	7500	1.7500	2.2500	4.2500
0.	5000	-0.2857	-0.8571	-0.2857
0.	2500	-0.4286	0.3333	0.6667

Permutation vector

4 3 4 2 1

1 PART 1

3

LU: 10

Solution AX = B using LU decomposition:

4	х	6				
-0	.0000	3.5000	0.2500	-2.0050	360.2700	10.6309
1	.0000	-6.0000	-0.5000	33.4000	-1234.3600	-22.3277
2	.0000	-1.0000	1.0000	-28.4900	515.9200	4.2075
-3	.0000	5.0000	-1.5000	3.6900	223.0400	7.1247

Two norm of error matrix using LU decomposition

Norm column:	1	No.
8.88178419700125	23E-016	Discussion
Norm column:	2	
3.66205343881779	00E-015	_ 5
Norm column:	3	73
1.83223802759935	32E-014	
Norm column:	4	
2.16099314926178	31E-013	
Norm column:	5	
3.81389145374119	67E-013	
Norm column:	6	
7.37776405560992	54E-015	

1.2 Plane Equation

The equation of a plane can be solved for a, b, c, d using the points A(1, 2, 3), B(-3,2,5), and $C(\pi,e,-\sqrt{2})$, by solving the following equation for

a + 2b + 3c + d = 0

 $\pi a + eb - \sqrt{2}c + d = 0$

3.0000

5.0000

-1.4142

Almost right.
$$a+2b+3c+d=0$$

$$-3a+2b+5c+d=0$$

$$\pi a+eb-\sqrt{2}c+d=0$$
Nick as $\frac{3}{4}$ $\frac{x}{4}$

1.0000

1.0000

1.0000

matrix after gauss

3	X	4		
3.	1416	2.7183	-1.4142	1.0000
0.	0000	4.5958	3.6495	1.9549
0.	0000	0.0000	2.5491	0.1990

2 Part 2

2.1 Schur decomposition of a symmetric matrix

If $A \in \mathbb{C}^{m \times m}$, then there exists a unitary matrix Q and an upper triangular matrix U such that $A = QUQ^*$.

If A is (real) symmetric then

$$A = QUQ^T = QU^TQ^T = A^T.$$

This implies

$$U = U^T$$
.

and the only way this can happen is if U=D is diagonal, so the Schur decomposition implies that A is orthogonally diagonalizable

$$A = QDQ^T.$$

where the columns of Q form an eigenbasis for A, and Q^T is the change of basis matrix that transforms A into a diagonal matrix D of eigenvalues of A.

2.2 Stability of Gaussian elimination

Consider

$$\begin{pmatrix} 1 & 1 \\ \varepsilon & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Multiply the last row by c so that $c\varepsilon \gg 1$, then swapping row one with row two. The augmented system becomes

$$\begin{pmatrix} c\varepsilon & c & c \\ 1 & 1 & 2 \end{pmatrix}.$$

the elimination step

$$\begin{pmatrix} c\varepsilon & c & c \\ 0 & 1-\frac{1}{\varepsilon} & 2-\frac{1}{\varepsilon} \end{pmatrix}.$$

which is numerically equivalent to

$$\begin{pmatrix} c\varepsilon & c & c \\ 0 & -\varepsilon^{-1} & \varepsilon^{-1} \end{pmatrix}.$$

and leads to the incorrect solution

$$y = \frac{-\varepsilon^{-1}}{-\varepsilon^{-1}} = 1$$
 $x = \frac{1-1}{\varepsilon} = 0.$

The issue partial pivoting hoped to correct was reintroduced by scaling the row with a smaller pivot.

2.3 Diagonal entries of a symmetric positive definite matrix

If A is symmetric positive definite then for all v

$$v^T A v > 0.$$

Considering the standard basis vectors e_i

$$e_i^T A e_i = a_{ij}$$
.

Since any vector v can be written as a linear combination of these basis vectors

$$v = v_1 e_1 + \dots + v_n e_n.$$

then

$$v^T A v = \sum_{j=1}^n a_{jj} v_j^2 > 0.$$

implies $a_{jj} > 0$

2.4 LU decomposition of a block matrix

2.4.1 Verify the formula

$$\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ -A_{21}A_{11}^{-1}A_{11} + A_{21} & -A_{21}A_{11}^{-1}A_{12} + A_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}$$

2.4.2 Show $D=A_{22}-A_{21}A_{11}^{-1}A_{12}$ after n steps of Gaussian elimination

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \Rightarrow \begin{pmatrix} A_{11} & C \\ 0 & D \end{pmatrix}.$$

First defining the matrix R_i as the matrix that contains the negation of the i^{th} row of A_{21} and zeros everywhere else. Then performing n steps of Gaussian elimination on A using block elementary matrices

$$E_i = \begin{pmatrix} I & 0 \\ R_i A_{11}^{-1} & I \end{pmatrix}.$$

eliminates the block matrix A_{21}

$$E_n \dots E_1 A = \begin{pmatrix} I & 0 \\ R_n A_{11}^{-1} & I \end{pmatrix} \dots \begin{pmatrix} I & 0 \\ R_1 A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & C \\ 0 & D \end{pmatrix}$$

where

$$E_n \dots E_1 = \begin{pmatrix} I & 0 \\ R_n A_{11}^{-1} & I \end{pmatrix} \dots \begin{pmatrix} I & 0 \\ R_1 A_{11}^{-1} & I \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ R_n A_{11}^{-1} + \dots + R_1 A_{11}^{-1} & I \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ (R_n + \dots + R_1) A_{11}^{-1} & I \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ -A_{21} A_{11}^{-1} & I \end{pmatrix}$$

which is exactly what we used to verify the formula in (2.4.1)

2.5 Ax = b complex valued

2.5.1 Modify problem

Decompose $A = A_1 + iA_2$ and $b = b_1 + ib_2$ then

$$Ax = b$$
$$(A_1 + iA_2)x = b_1 + ib_2$$

equating the real and imaginary parts this is equivalent to solving

$$A_1 x_1 = b_1 \qquad A_2 x_2 = b_2.$$

where $x_1 = \text{Re}(x)$, $x_2 = \text{Im}(x)$, and both systems are real

2.5.2 Compare storage and number of floating point operations

Consider complex numbers a_{ij}/a_{jj} used in Gaussian elimination

$$\frac{a_{ij}}{a_{jj}} = \frac{(a,b)}{(c,d)} = \frac{(ac+bd, -ad+bc)}{c^2+d^2}.$$

this introduces 6 multiplications and 3 additions, compared to just 1 operation if they were real. The storage requirements for the complex case Ax = b is the same as for the two systems $A_1x_1 = b_1$ and $A_2x_2 = b_2$.