

Correction TP2

Exercice 1

Voir le fichier R correspondant

Exercice 2:

Voir le fichier R correspondant

1. Compléter les tableaux suivants :

Régression de la résistance à la rupture Y en fonction de l'épaisseur X1

Coefficients (\hat{eta}_j)	Erreurs-types s (\hat{eta}_j)
3.523	4.383
6.036	1.279

Source de variation Somme des carrés		ddl
Régression X1	980.63	1
Résiduelle	440.03	10

2. Compléter les tableaux suivants :

Régression de la résistance à la rupture Y en fonction de la densité X2

Coefficients (\hat{eta}_j)	Erreurs-types s (\hat{eta}_j)
-36.373	20.489
17.464	6.069

Source de variation	Somme des carrés	ddl
Régression X2	643.57	1
Résiduelle	777.10	10

3. Compléter les tableaux suivants :

Régression de la résistance à la rupture Y en fonction de l'épaisseur X_1 et de la densité X_2

Coefficients (\hat{eta}_j)	Erreurs-types $s(\hat{\beta}_i)$	
-30.081	11.455	
4.905	1.014	
11.072	3.621	

Source de variation	Somme des carrés	ddl
Régression (X1,X2)	1204.86	2
Résiduelle	215.81	9

4. Pour la régression de la résistance à la rupture (Y) en fonction de l'épaisseur (X₁): R2=980,64/1420,67= 0,6903.

Pour la régression de la résistance à la rupture (Y) en fonction de la densité (X_2) : R2=643.57/1420,67=0,453.

Pour la régression de la résistance à la rupture (Y) en fonction de l'épaisseur (X_1) et de la densité (X_2) : R2=1204.86/1420,67=0,8481.

5.

	Carré moyen résiduel	Ecart-type des résidus	
Régression due à X1	44, 003	6, 633	
Régression due à X2	77, 710	8, 815	
Régression due à	23, 979	4, 897	
(X1,X2)			

6.

Source de	Somme des	Ddl	Carrés	Fobs
variation	carrés		moyens	
Régression due à (X1,X2)	1204.86	2	602, 43	25, 123
Résiduelle	215, 81	9	23, 979	
Totale	1420, 67	11		

- 7. La p-value de la statistique de Fisher est largement inférieure 0.05. Donc nous sommes dans la zone de rejet de l'hypothèse nulle Ho. Donc nous décidons de refuser l'hypothèse nulle Ho et par conséquent d'accepter l'hypothèse alternative H1.
- 8. L'intervalle de confiance à 95% pour le coefficient de la pente est [3.187;8.885]. La régression est significative entre la résistance à la rupture et l'épaisseur du matériau si le test de Student qui teste si beta1 = 0 n'est pas v érifié. Calculons la statistique du test de Student observée : tobs =6,036/1,279=4,721. Le quantile de la loi de Student critique lu dans une table des quantiles de la loi de Student à 95% est égal à : tc,95% = 2,228. La statistique du test de St udent observée est plus grande que le quantile de la loi de Student critique. P ar conséquent nous sommes dans la zone de rejet de l'hypothèse nulle Ho. Do nc nous décidons de refuser l'hypothèse nulle Ho et par conséquent d'accepter l'hypothèse alternative H1.

Donc la régression est significative entre la résistance à la rupture et l'épaisseu r du matériau.

- 9. L'apport marginal de la variable explicative X₂ lorsqu'elle est introduite à la suite de la variable explicative X₁ est égal à : 1204, 858 980, 635 = 224, 223.
- 10. Les valeurs prédites par le modèle 3 sont 31.61175 , 22.27821 et 21.64689