

یادگیری عمیق

مدرس: محمدرضا محمدی بهار ۱۴۰۲

مكانيزمهاي توجه

Attention Mechanisms

مبدُل بینایی (Vision-Transformer)

مبدّل Swin

• در لایههای ابتدایی میتوان تکههای کوچکتری از تصویر را پردازش کرد و برای کاهش محاسبات ناحیه توجه به خود را محدود کرد segmentation

classification classification detection ...

(a) Swin Transformer (ours)

• در بین لایهها میتوان محدوده توجه را جابجا کرد

Shifted windows -

(b) ViT

مبدّل Swin

(a) Regu	lar Im	ageNet-	1K train	ned models								
method	image size	#param	. FLOPs	throughput (image / s)	_							
RegNetY-4G [44]	224^{2}	21M	4.0G	1156.7	80.0							
RegNetY-8G [44]	224^{2}	39M	8.0G	591.6	81.7							
RegNetY-16G [44]	224^{2}	84M	16.0G	334.7	82.9		(b) Im	ageNe	t-22K pr	re-traine	ed models	
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	77.9		method	image	#param.	FI OPs	throughput	ImageNet
ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	76.5	_	method	size	<i>прагант.</i>	LOIS	(image / s)	top-1 acc.
DeiT-S [57]	224^{2}	22M	4.6G	940.4	79.8		R-101x3 [34]	384^{2}	388M	204.6G	-	84.4
DeiT-B [57]	224^{2}	86M	17.5G	292.3	81.8		R-152x4 [34]	$ 480^2 $	937M	840.5G	-	85.4
DeiT-B [57]	384^{2}	86M	55.4G	85.9	83.1	_	ViT-B/16 [19]	384 ²	86M	55.4G	85.9	84.0
Swin-T	224 ²	29M	4.5G	755.2	81.3		ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	85.2
Swin-S	224^{2}	50M	8.7G	436.9	83.0	_	Swin-B	224 ²	88M	15.4G	278.1	85.2
Swin-B	224^{2}	88M	15.4G	278.1	83.5		Swin-B	384^{2}	88M	47.0G	84.7	86.4
Swin-B	384 ²	88M	47.0G	84.7	84.5	_	Swin-L	384 ²	197M	103.9G	42.1	87.3

Convolutional Block Attention Module

- برای یک نقشه ویژگی، CBAM به کانالها و مکانهای بااهمیت توجه میکند
- نقشههای توجه که مقادیر آنها در بازه ۰ تا ۱ هستند، در نقشههای ویژگی ضرب میشوند
 - این دو بخش می توانند به ترتیب توجه به چه (what) و کجا (where) را یاد بگیرند
 - بر ویژگیهای مهم تمرکز میشود و موارد غیرضروری تضعیف میشوند
 - حذف اطلاعات غیرضروری به بهبود عملکرد مدل کمک می کند

توجه كانالى

$$\mathbf{M_c}(\mathbf{F}) = \sigma(\mathbf{W_1}(\mathbf{W_0}(\mathbf{F_{avg}^c})) + \mathbf{W_1}(\mathbf{W_0}(\mathbf{F_{max}^c})))$$

Convolutional Block Attention Module

- توجه کانالی بر اینکه چه ویژگیهایی با توجه به یک تصویر ورودی معنادار است متمرکز میشود
- مقالاتی داریم که مستقیما از خود AvgPool استفاده می کنند و هیچ پارامتر قابل آموزشی ندارند اما اینجا از دو نوع ادغام استفاده می کند و یک زیرشبکه ۲ لایه را هم آموزش می دهد

توجه مکانی

$$\mathbf{M_s}(\mathbf{F}) = \sigma(f^{7 \times 7}([\mathbf{F_{avg}^s}; \mathbf{F_{max}^s}]))$$

Convolutional Block Attention Module

• توجه مکانی بر اینکه کدام مکانها با توجه به یک تصویر ورودی معنادار است متمرکز میشود

Description	Parameters	GFLOPs	Top-1 Error(%)	Top-5 Error(%)
ResNet50 (baseline)	25.56M	3.86	24.56	7.50
ResNet50 + AvgPool (SE [28])	25.92M	3.94	23.14	6.70
$\overline{ ext{ResNet50} + ext{MaxPool}}$	25.92M	3.94	23.20	6.83
ResNet50 + AvgPool & MaxPool	25.92M	4.02	22.80	$\boldsymbol{6.52}$

Table 1: Comparison of different channel attention methods. We observe that using our proposed method outperforms recently suggested Squeeze and Excitation method [28].

Description	Top-1 Error(%) Top-5 Error(%)			
$\overline{\mathrm{ResNet50} + \mathrm{channel} \; (\mathrm{SE} \; [28])}$	23.14	6.70		
$\overline{ ext{ResNet50} + ext{channel} + ext{spatial}}$	22.66	6.31		
ResNet50 + spatial + channel	22.78	6.42		
ResNet50 + channel & spatial in parallel	22.95	6.59		

Table 3: Combining methods of channel and spatial attention. Using both attention is critical while the best-combining strategy (*i.e.* sequential, channel-first) further improves the accuracy.

CB	A	M

A - 1 :44	D	CEL OD-	T 1 F (07)	T 5 F (07)
Architecture	Param.	GFLOPs	Top-1 Error (%)	Top-5 Error (%)
ResNet18 [5]	11.69M	1.814	29.60	10.55
ResNet18 [5] + SE [28]	11.78M	1.814	29.41	10.22
ResNet18 [5] + CBAM	11.78M	1.815	29.27	10.09
ResNet34 [5]	21.80M	3.664	26.69	8.60
ResNet34 [5] + SE [28]	21.96M	3.664	26.13	8.35
ResNet34 [5] + CBAM	21.96M	3.665	25.99	8.24
ResNet50 [5]	25.56M	3.858	24.56	7.50
ResNet50 $[5]$ + SE $[28]$	28.09M	3.860	23.14	6.70
ResNet50 [5] + CBAM	28.09M	3.864	22.66	6.31
ResNet101 [5]	44.55M	7.570	23.38	6.88
ResNet101 [5] + SE [28]	49.33M	7.575	22.35	6.19
ResNet101 [5] + CBAM	49.33M	7.581	21.51	5.69
WideResNet18 [6] (widen=1.5)	25.88M	3.866	26.85	8.88
WideResNet18 [6] (widen= 1.5) + SE [28]	26.07M	3.867	26.21	8.47
WideResNet18 [6] $(widen=1.5) + CBAM$	26.08M	3.868	26.10	8.43
WideResNet18 [6] (widen=2.0)	45.62M	6.696	25.63	8.20
WideResNet18 [6] (widen= 2.0) + SE [28]	45.97M	6.696	24.93	7.65
WideResNet18 [6] $(widen=2.0) + CBAM$	45.97M	6.697	24.84	7.63
ResNeXt50 [7] (32x4d)	25.03M	3.768	22.85	6.48
ResNeXt50 [7] $(32x4d) + SE$ [28]	27.56M	3.771	21.91	6.04
ResNeXt50 [7] $(32x4d) + CBAM$	27.56M	3.774	21.92	5.91
ResNeXt101 [7] (32x4d)	44.18M	7.508	21.54	5.75
ResNeXt101 [7] $(32x4d) + SE [28]$	48.96M	7.512	21.17	5.66
ResNeXt101 [7] (32x4d) + CBAM	48.96M	7.519	21.07	5.59

روششناسی کاربردی

Practical Methodology

روششناسی کاربردی

- بکارگیری موفقیتآمیز تکنیکهای یادگیری عمیق به چیزی بیش از دانش کافی از الگوریتمها و نحوه کار آنها نیاز دارد
- چگونه یک الگوریتم را برای یک کاربرد خاص انتخاب کنیم و چگونه می توان به بازخورد بدست آمده از
 آزمایشها نظارت کرد و به آنها پاسخ داد؟

Lifecycle of an ML Project

- تصمیم برای جمع آوری داده های بیشتر
 - افزایش یا کاهش ظرفیت مدل
 - افزودن یا حذف منظّمسازی پارامترها
 - بهبود بهینهسازی یک مدل
 - اشكالزدايي نرمافزاري

فرآيند طراحي

- اهداف خود را مشخص کنید
- در اسرع وقت یک مدل پایه end-to-end ایجاد کنید
- تشخیص دهید کدام بخشها ضعیف تر از حد انتظار عمل می کنند
 - به طور مکرر تغییرات تدریجی ایجاد کنید

Lifecycle of an ML Project

مثال: خواندن شماره پلاک ساختمانها

- هدف افزودن ساختمانها به نقشه گوگل است
- خودروهای Street View از ساختمانها تصویر می گیرند و مختصات GPS مرتبط با هر تصویر را ثبت می کنند

0.15 - p(x|w1)Prob(w1) - 0.10 - p(x|w2)Prob(w2) - 0.05 - 0.00 - 0.05 - 0.00 - 0.05 - 0.00 - 0

معیارهای ارزیابی عملکرد

- اهداف خود را مشخص کنید
- از چه معیاری استفاده شود؟
- چه سطحی از عملکرد مورد نظر است؟
- همه اقدامات آینده خود را با معیار خطا هدایت کنید
 - هیچ برنامهای به خطای صفر دست پیدا نمی کند!
- حجم دادههای آموزشی به دلایل مختلفی محدودیت دارد
 - زمان، پول، دشواری

معیارهای ارزیابی عملکرد

• چگونه می توان سطح معقولی از عملکرد مورد انتظار را تعیین کرد؟

- در محیط دانشگاهی
- نرخ خطای قابل دستیابی بر اساس نتایج منتشر شده

- در محیط صنعتی
- در مورد میزان حداکثر خطای ممکن برای ایمن، مقرون به صرفه یا جذاب بودن یک برنامه کاربردی برای مصرفکنندگان، ایدههایی وجود دارد