Algorithmique de graphe

Rakotoarimalala Tsinjo Tony

Introduction Graphe

Définition

 Wikipedia: un graphe est une structure composée d'objets dans laquelle certaines paires d'objets sont en relation. Les objets correspondent à des abstractions mathématiques et sont appelés sommets (ou nœuds ou points), et les relations entre sommets sont des arêtes (ou liens ou lignes).

Définitions

- Un graphe simple non orienté est un couple G = (E, V)) avec
 - V un ensemble de sommets (aussi appelés nœuds ou points)
 - $E \subset \{(x,y)|(x,y) \in V^2, x \neq y\}$ un ensemble d'arêtes

- Un graphe simple orienté est un couple G = (E, V)) avec
 - V un ensemble de sommets (aussi appelés nœuds ou points)
 - $E \subset \{(x,y)|(x,y) \in V^2, x \neq y\}$ un ensemble de flèches ou arcs.

Graphe non orienté

- Une boucle est une arête partant d'un sommet vers lui-même
- Si deux sommets sont liés par une arête alors on dit que les deux sommets sont adjacents ou encore voisins, on note $x \sim y$
- Le degré d'un sommet est le nombre de voisins de ce sommet

Graphe orienté

- Une boucle est une arête partant d'un sommet vers lui-même
- Dans la flèche (x,y) orientée de x vers y, x est appelé la queue de la flèche et y la tête de la flèche. La flèche (y,x) est appelée la flèche inverse de (x, y).

Graphe pondéré

- Un graphe pondéré ou un réseau est un graphe où chaque arête porte un nombre (son poids)
- Ces poids peuvent représenter par exemple des coûts, des longueurs ou des capacités, en fonction du problème traité.

Exemple d'objets modélisables avec un graphe

D'après vous ?

Matrice d'adjacence

- Supposons que G = (V, E) est un graphe simple, où |V| = n.
- Supposons aussi que les sommets de G sont numérotés arbitrairement $v_1, v_2, \ldots v_n$.
- La matrice d'adjacence A de G se rapportant à cet ensemble de sommets est la matrice $n \times n$ booléenne A avec

$$a_{ij} = \begin{cases} 1 & \text{si } (v_i, v_j) \in E \\ 0 & \text{sinon} \end{cases}$$

Matrice d'adjacence

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Liste d'adjacence

• La liste d'adjacence d'un graphe non orienté, est la liste des voisins de chaque sommet

Représenter le graphe suivant avec une matrice et une liste

Parcours en largeur

Algorithm Parcours en largeur (BFS)

```
procedure BFS(G, s) \triangleright G: graphe, s: sommet de depart
    visited[s] \leftarrow true
    Q \leftarrow \text{file vide}
   Enfiler (Q, s)
   while Q n'est pas vide do
        v \leftarrow \text{Défiler}(Q)
       for chaque voisin u de v dans G do
           if u n'est pas visite then
                Marquer u comme visite
                Enfiler (Q, u)
            end if
       end for
   end while
end procedure
```


BFS

BFS

Arbre de jeu simple

Arbre de jeu plus compliqué

Minimax

Algorithm Minimax

```
1: function MINIMAX(état, profondeur, estMax)
        if profondeur = 0 ou état est terminal then
 2:
            return la valeur heuristique de état
 3.
        end if
 4:
 5.
        if estMax then
             v \leftarrow -\infty
 6:
            for chaque mouvement valide m depuis état do
 7:
 8:
                 v \leftarrow \max(v, \text{Minimax}(m, \text{profondeur} - 1, \text{Faux}))
            end for
 9:
10.
            return v
11:
        else
12.
             v \leftarrow +\infty
13:
            for chaque mouvement valide m depuis état do
                 v \leftarrow \min(v, \text{Minimax}(m, \text{profondeur} - 1, \text{Vrai}))
14.
15:
            end for
16.
            return v
        end if
17:
18: end function
```