Reevaluación de las dosis de enterramiento de luminiscencia y el blanqueamiento de depósitos fluviales mediante estadística computacional bayesiana

Reevaluation of luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics

Salome Margaret Quispe Hilasaca Universidad Nacional del Altiplano - Puno

1. Variables del estudio

Variable	Descripción
Dosis de enterramiento (De)	Energía acumulada desde el último blanqueamiento to-
	tal; utilizada para estimar la edad del sedimento.
Grado de blanqueamiento	Proporción de granos bien blanqueados al momento de
	la deposición.
Sensibilidad a la luminis-	Capacidad de los granos para emitir señal bajo estímulo
cencia	óptico.
Tamaño de alícuota	Cantidad de granos utilizados por medición; afecta la
	interpretación de datos.
Profundidad de la muestra	Altura desde la superficie hasta el punto de extracción
	de la muestra.
Profundidad relativa al ni-	Distancia vertical entre la muestra y el nivel medio del
vel medio del agua	agua actual.
Entorno deposicional	Características del ambiente en que se depositó el sedi-
	mento.
Textura del sedimento	Tamaño y tipo de partículas presentes en la muestra de
	sedimento.
Tasa de dosis	Tasa de radiación natural que afecta el sedimento, usada
	para el cálculo de la edad.

2. Métodos estadísticos utilizados

Método	Aplicación en el estudio
Estadística computacional	Estimación de la dosis de enterramiento y del grado de
bayesiana	blanqueamiento mediante modelos probabilísticos.
Modelado de distribuciones	Análisis de la distribución de la señal OSL a nivel de
de dosis (De)	grano único a partir de datos multigrano.

Parámetros de sensibilidad	Inclusión de la variabilidad en la sensibilidad de los gra-
OSL	nos en el modelo estadístico.
Estimación del tamaño de	Ajuste del modelo según el tamaño de alícuota para me-
alícuota	jorar la precisión de los resultados.
Correlación con variables	Análisis exploratorio de relaciones entre blanqueamiento
geomorfológicas	y variables como profundidad o textura.

3. Conclusión

El estudio desarrolló un nuevo enfoque estadístico basado en métodos bayesianos para estimar de forma más precisa la dosis de enterramiento y el grado de blanqueamiento en muestras de sedimento fluvial datadas mediante luminiscencia ópticamente estimulada (OSL). El modelo permite extraer información útil a partir de datos de alícuotas pequeñas y refleja la influencia de factores geomorfológicos, como la proximidad al nivel medio del agua, en el grado de blanqueamiento. Se observa que los sedimentos pueden recibir una exposición adicional a la luz solar tras la deposición, debido al retrabajo local. Asimismo, se sugiere que los cambios en la gestión del río, como la construcción de estructuras hidráulicas en el Rin desde 1850, podrían haber influido en la variabilidad del blanqueamiento a lo largo del tiempo. A pesar de las limitaciones, como el desconocimiento exacto del tamaño de alícuota en datos antiguos, el modelo propuesto demuestra tener un gran potencial para mejorar la interpretación de señales OSL y comprender mejor los procesos de transporte y deposición en ambientes fluviales.