$$H(x) = \mathbb{E}\left[\log_2\left(\frac{1}{P(x)}\right)\right] = \sum_{x \in A_X} P(x) \cdot \log_2\left(\frac{1}{P(x)}\right) > 0$$

ENTROPY CHAIN RULE

$$H(x, y) = H(x|y) + H(y)$$

PROOF

$$H(x,y) = \mathbb{E}\left[\log\left(\frac{1}{P(x,y)}\right)\right] = \mathbb{E}\left[\log\left(\frac{1}{P(x|y)\cdot P(y)}\right)\right] = \mathbb{E}\left[\log\left(\frac{1}{P(x|y)\cdot P(y)}\right)\right] = \mathbb{E}\left[\log\left(\frac{1}{P(x|y)}\right) + \log\left(\frac{1}{P(x|y)}\right)\right] = \mathbb{E}\left[\log\left(\frac{1}{P(x|y)\cdot P(y)}\right)\right] = \mathbb{E}\left[\log\left(\frac{1}{P(x|y)\cdot P(y)}\right)\right]$$

$$= H(x|Y) + H(Y)$$

FANO'S INEQUALITY

$$H(x|Y) \leq H(Pe) + Pe \log_2(M-1)$$
, $M = CARS(Ax)$

$$H(x|Y) \leq H(Pe) + Pe \log_2(M-1)$$
, $M = cARS(\Delta_x)$
 $LE7.8E$:
 $E = \begin{cases} 0 & IF. & x = x \\ 1 & 0.05 \end{cases}$
 $E = \begin{cases} 0 & 0.05 \\ 1 & 0.05 \end{cases}$
 $E = \begin{cases} 0 & 0.05 \\ 1 & 0.05 \end{cases}$

PROOF

$$H(\mathcal{E}, \chi|Y) = \begin{cases} H(\mathcal{E}|\chi, Y) + H(\chi|Y) \\ H(\mathcal{E}, \chi|Y) = \end{cases}$$

$$H(\chi|\mathcal{E}, Y) + H(\mathcal{E}|Y)$$

$$H(\chi|\mathcal{E}, Y) + H(\mathcal{E}|Y)$$

$$\Rightarrow H(x|Y) = H(x|E,Y) + H(E|Y)$$

$$\leq H(E) = H(Pe)$$

$$\leq H(E) = H(Pe)$$

DATA PROCESSING INEQUALITY

LET. X + Y -> 7 BE. A MARKOV'S CHAIN, X, Y, Z. R.V. S

$$I(x; \xi) \leqslant I(x; y)$$

PROOF

$$I(x; Y|z) + I(x;z)$$

$$I(x; Y|z) + I(x;z)$$

$$I(x; Z|Y) + I(x;Y)$$

O SIMEE. X-AND ZIY ARE INSEPENSENT

$$\Rightarrow I(x, Y) = I(x, Y|x) + I(x|x) \Rightarrow I(x, x) \leq I(x, Y) \Box$$

STATIONARY PROCESS

{x:} IS.A.STATIONARY. PROCESS. IFF:

$$P((x_m,...,x_m)\in A)=P((x_{m-1},...,x_{m-1})\in A)$$

VMEZ, VM=M, M=Z, VA, VAEN

ENTROPY RATE

THEN Has = lim 1 H(x1, ,
$$\chi_n$$
) [b:t/syn802]

KRAFT'S INEQUALITY

1) C. IS. AN. INSTANTANEOUS.

1) B-ARY. SOURCE. CODE. WITH
$$CODEWORD$$
. LENGTH. $\{l:_{i=1}^{m}\}$ $m < \infty$
 $i=1$
 $i=1$
 $i=1$

$$\Rightarrow \sum_{i=1}^{m} D^{-i} \leq 1$$

2 IF
$$\{l_i\}_{i=1}^m$$
, $m < \infty$ ARE

SUCH THAT: $l_i \in \mathbb{N}$, $V: AVA$

$$\sum_{i=1}^m D^{-l_i} \leq 1$$

PR	00)F -	1																											
E١	/er	'nу	D-	ary	C	ode	2 V	vit	h	ma	хi	mur	n co	odew	ord	l	мх.	ca	n b	e i	rep	re	ser	ite	d w	it	n a	d-a	ry t	ree.
																													cend:	ing
								ed	,	otl	neı	rwi	se	the	COI	re	spo	nd:	Lng	CO	de	vor	ds	WO	ulc	v k	iol	ate	the	
pr	ef	ĺΧ	CC	nd:	ıtı	on	•										_		0											
			_			ļ.,						0			ate	_,	_Xn/	\x -	l:					_		0				
=	一:	> /	4 (code	ewo	rd	0	f	Le	ng	th	Xi	el:	imin	ate	s l	7			no	de	s a	ıτ	dep	th	Χy	AX.			
			_ <	m		0)									M												
					N	Žμ	4 x	- X	1			_	Lu	1 x			4	\ '	Ι.	۔ لا ۔			•							
			- {	┯	12)					<i>'</i>		7			_	→ ∠	<u>/</u>	_12	۲	-	` 1	-	_	_					
			4	: 1	\downarrow									KINA			i	- 1												
		,		FLIM								/r	Vol	411-11	16															
				ERH		1							700	63																
				10)																										
				,	307																									
PP	00	٦F -	2																											
- 11	•					M	-		0.																					
lf	l	i E	M	- A N	7	2	<u>, </u>	P	~ ~	1	>																			
						i : 1	ļ																							
													1				C n			1										
1)	В	ui	Ld	a c	d−a	ry	t	re	e	of	de	ept	h 🗶	MAX	= M	1x	}	,	_ X	HS										
2)	Р	lad	ce	a c	cod	ew	or	d	on	a	no	ode	of	de	pth	X	•													
						ļ.																								
3	R	emo	ΟVE	a a	LL	de	sc	en	dı	ng	n	ode	S																	
41													0			_														
4)	T	te:	rat	ce ı	unt	1 L	. t	ne	re	1	S I	no	χ;	avai	ilab	Le														
^	١,	۔ ۔ ۱	: .	n -	٦.	- b -	1	+ -				, la -	000	a b -	. С т	h c	+ 25 4													
5	<i>j F</i>	155	1 9	II a	. La	aD(d L	CC) E	: v e	т. А	D)	ran(of t	ne	CLE	:e												
6	Α	SS	igr	ı a	CO	de	WO	rd	t	0	ev	ery	no	de	by 1	rea	adin	g 1	the	la	be	ls	fr	om	the	e r	oot	to	the	node
U,			_												1			1												

STRONG LAW LARGE NUMBER

$$\{x_i\}_{i \in \mathbb{N}}$$
 and no.

$$\forall \varepsilon > 0 \quad \mathbb{P}(|\bar{x}_m - \mu| > \varepsilon) \xrightarrow{m \to \infty} 0$$

$$\mathbb{P}\left(\left|\overline{X}_{m}-\mu\right|>\varepsilon\right)=\mathbb{P}\left(\left|\overline{X}_{m}-\mu\right|^{2}>\varepsilon^{2}\right)\leqslant\frac{\mathbb{E}\left[\left(\overline{X}_{m}-\mu\right)^{2}\right]}{\varepsilon}=\frac{VAR(\overline{X}_{m})}{\varepsilon}=\star$$

$$H\left[\bar{X}_{m}\right] = H\left[\frac{1}{m}\sum_{i=1}^{m}x_{i}\right] =$$

$$= 1 \sum_{m}^{m} \mathbb{E}[x:] = n$$

$$VAR(\bar{x}_m) = VAR\left(1 \sum_{i=1}^{m} x_i\right) = 1 \left(\sum_{i=1}^{m} VAR(x_i) + \sum_{i=1}^{m} \sum_{s=2}^{m} VAR(x_i, x_s)\right)$$

$$K = \frac{\sigma^2}{ME}$$
 $M = \frac{\sigma^2}{ME}$

ASYMPTOTIC EQUIPARTITION PROPERTY

$$\begin{cases} x_c \end{cases} i \in \mathbb{N}$$

$$H(x_i) = H(x) < \infty$$

PROOF

$$\frac{1}{m}\log\left(\frac{1}{\rho(x_1,\ldots,x_n)}\right) = \frac{1}{m}\sum_{i=1}^{m}\log\left(\frac{1}{\rho(x_i)}\right)$$

TYPICAL SET

$$A_{\varepsilon}^{(m)} = \left\{ x = (x_1, \dots, x_m) \in A_{\varepsilon}^m : \left| \frac{1}{m} \log_{\varepsilon} \left(\frac{1}{P(\underline{x})} \right) - H(x) \right| < \varepsilon \right\}$$

$$\mathbb{P}\left((x_1,\ldots,x_m)\in\mathcal{A}_{\mathcal{E}}^{(m)}\right)>1-\mathcal{E}\ \forall \mathcal{E}>0\ ,\ \text{FOR}\cdot m\cdot \text{SUFF}\cdot \text{LARGE}.$$

SINCE:
$$P\left((x_1,...,x_m) \in A_{\mathcal{E}}^{\mathcal{E}}\right) \xrightarrow{N \to \infty} 1 \Rightarrow P\left((x_1,...,x_m) \in A_{\mathcal{E}}^{\mathcal{E}}\right) > 1 - \mathcal{E}$$

PROP. 2

PROP. 2

$$\forall \varepsilon \succ 0 \quad CARD(A_{\varepsilon}^{(n)}) \leq 2^{M(H(x)+\varepsilon)}$$

FROM. THE . DEF. OF. TYPICAL SET:

$$-1 \log_{\varepsilon}(P(x)) - H(x) < \varepsilon \rightarrow P(x) > \varepsilon - M(H(x) + \varepsilon)$$

$$-\left(-\frac{1}{m}\log_{\varepsilon}\left(P(x)\right)-H(x)\right)<\varepsilon \longrightarrow P(x)\leqslant \varepsilon^{-m(H(x)-\varepsilon)}$$

$$| (\mathcal{M}) \circ \mathcal{L} \circ \mathcal{L$$

$$= CARD \left(A_{\varepsilon}^{(m)}\right) \cdot 2^{-m(HQ)+\varepsilon} \Rightarrow 1 \geq CARD \left(A_{\varepsilon}^{(m)}\right) \cdot 2^{-m(HQ)+\varepsilon} \Rightarrow$$

$$\Rightarrow 2^{m(H(X)+E)} \geq CARD\left(A_{\epsilon}^{(m)}\right)$$

$$\forall \mathcal{E} \neq 0$$
 CARD $(\mathcal{A}_{\mathcal{E}}^{(m)}) > (1 - \mathcal{E}) \cdot 2^{m(H(x) - \mathcal{E})}$, FOR.M. SUFF. LARGE

PROOF. 3

FOR. M. SUFF. LARGE P(XE de) > 1-E, SO:

$$1-\varepsilon < P(x \in \mathcal{A}_{\varepsilon}^{(n)}) \leqslant \sum_{x \in \mathcal{A}_{\varepsilon}^{(n)}} 2^{-m(H(x)-\varepsilon)} = CARb(\mathcal{A}_{\varepsilon}^{(n)}) \cdot 2^{-m(H(x)-\varepsilon)} \Rightarrow$$

$$\Rightarrow CARb(\mathcal{A}_{\varepsilon}^{n}) > (1-\varepsilon) \cdot 2^{m(H(x)-\varepsilon)}, M \longrightarrow B$$

SOURCE CODE

A-SOURCE CONE FOR A R.V. X- 15 AN APPLICATION:

NON-SINGULAR

A.COBE-15. NON-SINGULAR. IF. C.15. INSECTIVE:

IF.
$$\forall x_1 \neq x_2 \Rightarrow c(x_1) \neq c(x_2)$$

EXTENDED CODE

THE EXTENSION. C* OF . A . CODE . C. 15 THE . APPLICATION:

$$C^*: A_{\chi} \longrightarrow D^* = C^*(\chi_{a}, \chi_{m}) =$$

$$= C(\chi_{a}) C(\chi_{a}) - C(\chi_{m})$$

UNIQUELY DECODABLE

A. CODE. C. 15. UNIQUELY. DECOBABLE. IF.C*. IT. NOW-SINGULAR.

TAKEN-FROM·AX.

PREFIX CODE

C. IS. A. PREFIX. CODE. IF. IT - SATISFIES . THE. PREFIX - CONSITION:

NO-COLEWORL IS PREFIX

OF ANY-COLEWORL

C. IS. A. D-ARY- PREFIX- COSE-FOR- X-R.V.

$$L = \mathbb{E}\left[l(x)\right] > H(x)$$

= 1FF. P(x).15.D-ABIC

PR 0 0 F

$$L-H(x) = \mathbb{E}\left[l(x)\right] - \mathbb{E}\left[l_{Q(x)}\left(\frac{1}{\rho(x)}\right)\right] = \mathbb{E}\left[l(x) - l_{Q(x)}\left(\frac{1}{\rho(x)}\right)\right] =$$

$$= \mathbb{E}\left[-\log_{b}\left(b^{-l(x)}\right) - \log_{b}\left(\frac{1}{\rho(x)}\right)\right] = \mathbb{E}\left[\log_{b}\left(\frac{\rho(x)}{b^{-l(x)}}\right)\right] =$$

$$= \mathbb{E} \left[\log \left(\frac{\rho(x)}{S^{-R(x)}} \right) \right] + \mathbb{E} \left[\log \left(\frac{1}{S^{-R(x)}} \right) \right] = \frac{11's \cdot sust.}{S^{-R(x)}}$$

$$= \mathbb{E}_{\rho} \left[\mathcal{L}_{S_b} \left(\frac{\rho(x)}{q(x)} \right) \right] + \mathcal{L}_{S_b} \left(\frac{1}{\sum_{y \in A_b} - \ell(y)} \right) =$$

$$= b_{\rho}(P(x) /\!\!/ q(x)) + l_{\infty} \left(\frac{1}{\sum_{i \in A_{x}} b_{i}(x)} \right) + kRAFT \Rightarrow \leq 1$$

$$\Rightarrow$$
 L-H(x) $\geqslant 0$ \square $\geqslant 6$

BOUNDS TO THE AVERAGE LENGTH

C.15. AN. OPTIMIC. CODE \Rightarrow $H(x) \leq L^* \leq H(x) + 1$

LET C. BETHE SHANNON COSE:

$$\Rightarrow l(x) = \lceil log_{1}(\frac{1}{P(x)}) \rceil \quad \text{SINCE} \quad \partial \leq \lceil \partial 7 \leq 9 + 1 \rceil$$

$$\Rightarrow \log_{1}\left(\frac{1}{\rho(x)}\right) \leq l(x) \leq \log_{1}\left(\frac{1}{\rho(x)}\right) + 1$$

AN. (M, m). CHANNEL. CODE. IS. THE-MAPPING:

$$\left\{ \begin{array}{c} \times_{m}(1), --, \times_{m}(n) \end{array} \right\} = cos_{\overline{c}} 800K$$

~ COSEWORS

DECODING RULE

A SECOSING RULE 15 THE MAPPING:

RATE

THE-RATE-ROF. A. (M, M) CHANNEL . CODE-15:

ACHIEVABLE RATE

THE - RATE . R. IS A CHIEVABLE . IF J. A. SEQUENCE . OF (\(\tau^{\text{R}} \)], m) CHANNEL COSES:

$$P_{m}^{Mx}(e) \xrightarrow[m \to \infty]{} 0$$

CHANNEL CODING THEOREM

2 IF. FOA. A. SERVENCE. OF.

$$([2^{MR}], M) \cdot CHANNEL \implies R \leq C$$

$$COLES: P_{m}^{MX}(e) \xrightarrow{b} 0$$

PROOF

1) RAVSOH-COSING

THE. (M, M). CHANNEC. CODE 15. GENERATES. AS. FOLLOWS:

$$\begin{pmatrix} x_1(1) & \dots & x_m(1) \\ x_1(2) & \dots & x_m(2) \end{pmatrix} = \begin{pmatrix} x_m(1) \\ x_m(2) \end{pmatrix} = COSEBOOK$$

$$\begin{pmatrix} x_1(n) & \dots & x_m(n) \\ x_1(n) & \dots & x_m(n) \end{pmatrix}$$

ATHE ENTRIES. OF THIS MATRIX-ARE Lid. P.O. BRAWN

THE COSE-15-SHARES-WITH-THE SESTIMATION.

2) 501NTLY. TYPICAL. & ECOSING. RULE

JOINTLY TYPICAL WITH Ym .e.

$$\begin{cases} (X_m(i), Y_m) \in A_{\mathcal{E}}^{(m)} \\ (X_m(s), Y_m) \notin A_{\mathcal{E}}^{(n)} \forall s \neq i \end{cases}$$

ACHILLE CANNAVALE

$$C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$$

AND. CAN. BE. A CHEIVES - WITH: X~ NO(0,P)

PROOF

$$I(x; Y) = h(Y) - h(Y|X) =$$

$$h(x+z|x) = h(z|x) = h(z) = 1 log(2\pi eN)$$

€ 2 ~ M(0, N)

$$VAR(Y) = VAR(x+z) = VAR(x) + VAR(z) = E[x^2] - (E[x])^2 + V \leq P+N$$

$$\Rightarrow h(Y) \leq \frac{1}{2} \log_2 \left(2 e(P+V)\right)$$

IF
$$x \sim \mathcal{N}(0, P)$$

$$\Rightarrow I(x,y) = h(y) - \frac{1}{2} \log_2 \left(2\pi e N\right) \leq \frac{1}{2} \log_2 \left(2\pi e (P+V)\right) - \frac{1}{2} \log_2 \left(2\pi e N\right)$$

$$=\frac{1}{2}\log_2\left(\frac{\rho+\nu}{\nu}\right)=\frac{1}{2}\log_2\left(2+\frac{\rho}{\nu}\right)$$

$$\Rightarrow C = \max_{P_{x} \leq P} \left\{ I(x, y) \right\} = \frac{1}{2} \log_{2} \left(1 + \frac{P}{N} \right)$$

PROOF

SINCE . M. IS . USES . 2 W. TIMES . PER SECONS WE HAVE: