

Fachrichtung Mathematik • Institut für Algebra • Prof. Baumann, Dr. Noack

Einführung in die Mathematik für Informatiker: Lineare Algebra INF 110 Wintersemester 2018/19

7. Übungsblatt für die Woche 19.11. - 25.11.2018

Vektorraum, Spannraum, lineare Unabhängigkeit, Basis, Dimension

Vorrechenaufgabe:

Es wird die Matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}$ betrachtet. Für welche Vektoren $b \in \mathbb{R}^3$ bildet die Menge

 $U = \{x \in \mathbb{R}^3 \mid Ax = b\}$ einen Untervektorraum des \mathbb{R}^3 ? Begründen Sie!

Untersuchen Sie weiterhin, ob die Spalten von A den Vektorraum \mathbb{R}^3 aufspannen.

Lässt sich ein Spaltenvektor von A als Linearkombination der anderen beiden Spaltenvektoren darstellen?

- Ü37 (a) Im \mathbb{R}^2 sind die Vektoren $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \ v_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \ v_4 = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ gegeben. Sind die Mengen $\{v_1, v_2\}, \ \{v_1, v_2, v_3\}$ bzw. $\{v_2, v_4\}$ linear unabhängig? Geben Sie zwei verschiedene Basen von Span $(\{v_1, v_3\})$ an. Zeigen Sie, dass $v_2 \in \operatorname{Span}(\{v_1, v_3\})$ gilt, und berechnen Sie die Koordinaten von v_2 bzgl. beider Basen.
 - (b) Es werden im \mathbb{R}^3 die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 6 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ -2 \\ 6 \end{pmatrix}, w_1 = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}, w_2 = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$$

und der Unterraum $U = \text{Span}(\{v_1, v_2, v_3\})$ betrachtet.

- (1) Ist die Menge $\{v_1, v_2, v_3\}$ linear unabhängig? Bildet sie ein Erzeugendensystem des \mathbb{R}^3 ?
- (2) Bestimmen Sie alle Teilmengen der Menge $\{v_1, v_2, v_3\}$, die eine Basis von U bilden. Welche Dimension hat U?
- (3) Liegen die Vektoren w_1 und w_2 in U? Berechnen Sie gegebenenfalls den zugehörigen Koordinatenvektor in einer Basis von U.
- Ü38 (a) Es seien v_1, \ldots, v_n Vektoren eines K-Vektorraums V. Beweisen Sie: Ist $\{v_1, \ldots, v_n\}$ linear unabhängig und $w \in \text{Span}(\{v_1, \ldots, v_n\})$, so ist die Darstellung vom w als Linearkombination von v_1, \ldots, v_n eindeutig.
 - (b) Es seien v_1, v_2, v_3 Vektoren eines K-Vektorraums V. Beweisen oder widerlegen Sie: Ist $\{v_1, v_2, v_3\}$ linear unabhängig, dann ist $\{2v_1 v_2 + v_3, v_1 + 2v_2, v_1 2v_3\}$ linear unabhängig.
- Ü39 (a) Bestimmen Sie eine Basis und die Dimension der folgenden Untervektorräume der gegebenen Vektorräume V:

$$(1) \ V = \mathbb{R}^2, \ U = \left\{ \begin{pmatrix} 2x - 5y \\ x + 7y \end{pmatrix} \mid x, y \in \mathbb{R} \right\},$$

(2)
$$V = GF(2)^4$$
, $U = \left\{ \begin{pmatrix} a+b \\ a+d \\ c+d \\ a+b+c+d \end{pmatrix} \mid a,b,c,d \in GF(2) \right\}$.

(b) Es sei $T \subseteq GF(2)^3$ die Menge aller 3-Tupel, in denen genau zwei Einsen vorkommen. Welche Dimension hat der von T aufgespannte Untervektorraum Span(T) des Vektorraums $GF(2)^3$?

(a) Gegeben sind vier Vekoren aus dem \mathbb{R}^3 :

$$v_1 := \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \ v_2 := \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \ v_3 := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ v_4 := \begin{pmatrix} -5 \\ -2 \\ 2 \end{pmatrix}.$$

Bestimmen Sie alle Teilmengen von $\{v_1, v_2, v_3, v_4\}$, die eine Basis des \mathbb{R}^3 bilden.

(b) Es sei V ein Vektorraum über $\mathbb R$ und u,v seien linear unabhängige Vektoren aus V. Es sei $T:=\{u+2v,2u+v\}$.

Untersuchen Sie, ob $u \in \operatorname{Span}(T)$ gilt und stellen Sie – falls möglich – u als Linearkombination der Elemente von T dar.

Bestimmen Sie die Dimension von Span(T).

H41 (a) Es seien

$$V_1 := \operatorname{Span}(\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} \right\}) \quad \text{und} \quad V_2 := \operatorname{Span}(\left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix} \right\}).$$

Ermitteln Sie für V_1 , V_2 und für $V_1 \cap V_2$ jeweils eine Basis und die Dimension.

(b) Bestimmen Sie für die Matrix

in einer Ebene liegen.

$$M = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 7 & -2 & 0 \\ -1 & 0 & -1 & 2 \end{pmatrix}.$$

eine maximale Menge linear unabhängiger Spaltenvektoren.

- H42 (a) Man bestimme $r \in \mathbb{R}$ so, dass die Vektoren $\begin{pmatrix} 3 \\ r \\ -2 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix}$
 - (b) Es sind

$$v_1 := \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \ v_2 := \begin{pmatrix} -3 \\ 9 \\ -6 \end{pmatrix}, \ v_3 := \begin{pmatrix} 5 \\ -7 \\ a \end{pmatrix} \text{ mit } a \in \mathbb{R}$$

Vektoren aus \mathbb{R}^3 . Für welche Werte von a gilt $v_3 \in \text{Span}(\{v_1, v_2\})$?