Lista 5 z AiSD

Zadanie 6

Kamil Banaś 308262

26 maja 2020

1 Treść

Rozważmy problem wyznaczenia za pomocą porównań elementów największego i drugiego z kolei w zbiorze n-elementowym. Udowodnij, że $n+\lceil logn \rceil-2$ porównań potrzeba i wystarcza do wyznaczenia tych elementów.

2 Rozwiązanie

Pokażemy, że:

- wystarcza tyle porównań poprzez skonstruowanie odpowiedniego algorytmu,
- następnie pokażemy strategię dla adwersarza, żeby pokazać potrzebę tylu porównań.

2.1 Dowód, że wystarczy

Przyjmijmy, że elementy znajdują się w ciągu c. Skonstruujmy następuący alorytm: na początku parujemy i porównujemy elementy $< c[2k-1], c[2k] > \text{dla } k = < 1, \left\lfloor \frac{n}{2} \right\rfloor > .$ Policzyliśmy zatem maksimum dla każdej pary elementów (jeżeli n nieparzyste, to c[n] nie zostało z żadnym elementem zparowane). Powtarzamy takie porównania w parach dostając maksimum dla kolejnych 4,8... elementów itd. osiągając maksimum dla wszystkich elementów. Po każdym etapie z i elementów otrzymujemy $\lceil i/2 \rceil$ elementów. Zatem będziemy mieli takich etapów $\lceil logn \rceil$.

Łatwo pokazać, że zaszło dokładnie n-1 porównań, ponieważ każdy element z wyjątkiem największego przegrał dokładnie jedno porównanie (inną argumentacją jest popatrzenie na algorytm jako na drzewo binarne z n liśćmi; takie drzewo będzie miało n-1 wierzchołków wewnętrznych - wyników porównań).

Pozostało nam wyznaczyć drugi największy element. Wiemy, że taki element przegrał w porównaniu z największym elementem. W przeciwnym wypadku dla pary i,j mielibyśmy i < j < max, czyli element i nie mógłby być drugim największym. Z poprzednich rozważań mamy, że z największym elementem przegrało łącznie $\lceil logn \rceil$ elementów. Wyliczymy drugi największy element w $\lceil logn \rceil - 1$ porównaniach osiągając w sumie $n-1+\lceil logn \rceil - 1$ = $n+\lceil logn \rceil - 2$ porównań.

2.2 Dowód, że potrzeba

Przyjmijmy, że a_j oznacza liczbę elementów, która przegrała porówanie j razy. Łączna suma porównań to będzie $a_1 + a_2 + a_3 + \dots$ Dla zdeterminowania drugiego elementu musimy zdeterminować także pierwszy element. Zatem mamy $a_1 = n - 1$. Stąd musimy pokazać, że $a_2 \geqslant \lceil logn \rceil - 1$.

Załóżmy, że ostatecznie największy element został porównany z x elementami. Z tych x elementów jeden będzie drugi największy, więc $a_2 \geqslant x-1$. Zatem wystarczy pokazać taką strategię dla adwersarza, że dla dowolnego algorytmu porównującego elementy wybierze takie wyniki porównań, żeby największy element musiał być porównany z co najmniej $\lceil logn \rceil$ innymi elementami.

Dla elementów i, j adwersarz przyjmie następujący porządek : $i >_A j$, jeżeli i jeszcze nie przegrał porównania, a j już przegrał, albo oba elementy jeszcze nie przegrały, ale i brał udział w większej ilości porównań niż j. W innych wypadkach adwersarz podejmuje arbitralnie decyzję zgodną z pewnym porządkiem częściowym.

Weźmy pod uwagę dowolny algorytm wyliczający dwa największe elementy, którego porównania były zadecydowane przez adwersarza z powyższym porządkiem. Powiemy, że dla dwóch elementów i, j idominujej wtedy i tylko wtedy, kiedy i = j lub idominuje osobę, która pierwsza wygrała z j (bierzemy pod uwagę tylko pierwszą przegraną elementu; zgodnie z porządkiem $>_A$ element, z którym dany element po raz pierwszy przegrywa, musiał wygrać wszystkie poprzednie porównania).

Rozważmy element e, który jako pierwszy wygrał x porównań. Pokażemy używając indukcji, że e dominuje co najwyżej 2^x elementów na podstawie tych x porównań:

- Dla x = 0 e dominuje tylko samego siebie.
- Załóżmy, że dla x = m 1 e dominuje maksymalnie 2^{m-1} innych elementów. Podczas m—tego porównania element e wygrywa z elementem f, który dominuje co najwyżej 2^{m-1} elementów różne od elementów dominowanych przez e. Stąd element e może dominować co najwyżej 2^m elementów.

Z powyższej indukcji otrzymujemy, że największy element, który dominuje wszysktie pozostałe elementy, musiał wziąć udział w co najmniej [logn] porównaniach.