STAT 215A Fall 2019 Week 11

Tiffany Tang 11/8/19

Announcements

- ► No GSI office hours this Monday due to Veteran's Day
- Lab 4 (group project) due in two weeks: Thursday, November 21 at 11:59pm
- ► Good job on the midterm!
 - ▶ Median: 34/38

Midterm T/F

- 1. When you calculate the ordinary least squares estimator, the residual vector always has mean zero.
- 2. Suppose that $\hat{\mu}$ is an estimator of some parameter of interest μ . Then the (population) MSE of $\hat{\mu}$ is given by

$$\mathbb{E}[(\hat{\mu} - \mu)^2] = Bias^2(\mu) + Var(\mu)$$

8. Under the linear regression model $y_i = x_i^{\top} \beta + \epsilon_i$, the errors ϵ_i must be i.i.d. normally distributed and have mean 0 in order for the OLS estimator $\hat{\beta}_{OLS}$ to be an unbiased estimator of β .

Function Documentation

- What does this function do?
- Describe the inputs and outputs
- ► Like a mini R help page

```
CalculateSampleCovariance <- function(x, y, verbose = TRUE) {
    # Computes the sample covariance between two vectors.
    # Args:
    # x: One of two vectors whose sample covariance is to be calculated.
    # y: The other vector. x and y must have the same length, greater than one,
    # with no missing values.
    # verbose: If TRUE, prints sample covariance; if not, not. Default is TRUE.
    # Returns:
    # The sample covariance between x and y.
...
}</pre>
```

Plan for Today

- Crash course in classification algorithms
 - ► Logistic Regression
 - Naive Bayes
 - Discriminant Analysis
 - ► KNN Classifier
- Next time
 - Maximum margin classifiers/SVMs
 - Random Forests
 - ▶ Ensembles
 - Evaluation metrics

Why classification and not regression?

- Suppose we have data X_1 , ..., X_n and responses y_1 , ..., y_n , but the responses are categorical (i.e., $y_i \in \{1, ..., K\}$)
- Problems with regression:
 - ► Hard to assign numeric values to categories
 - Usually no ordering of the categories
 - ▶ Even if categories are ordered, not necessarily equally spaced

Logistic Regression

Assume there are two classes and $y_i \mid x_i \sim Bern(p_i)$ are independent with

$$\log\left(\frac{p_{i}}{1-p_{i}}\right) = \alpha + \beta x_{i} \iff p_{i} = \frac{e^{\alpha + \beta x_{i}}}{1+e^{\alpha + \beta x_{i}}}$$

$$f(x) = \frac{e^{\alpha + \beta x}}{1+e^{\alpha + \beta x}}$$

$$0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0$$

$$-2 \quad -4 \quad -2 \quad 0 \quad 2 \quad 4$$

- Solve MLE via Newton-Rhapson or iteratively reweighted LS
- Can either output the fitted probabilities \widehat{p}_i or round them to the most likely class (i.e., class 0 or class 1)

Logistic Regression Extensions

- ▶ What if we have more than 2 classes?
 - Multinomial logistic regression
- ► What if we have p > n (or simply p is large)?
 - Regularized logistic regression

$$\max_{\alpha,\beta} \ell(\alpha,\beta,X) - \lambda P(\beta)$$

Something to think about carefully: why the logistic model and not some other model?

Naïve Bayes

- Central quantity of interest in classification: P(Y = k | X)
 - ▶ That is, given data X, what is the probability that it is in class k
 - Decision rule: if we knew P(Y = k | X) for each k, predict the class with the highest probability
- Idea: use Bayes rule to estimate P(Y = k | X)

$$P(Y = k \mid X) = \frac{P(X \mid Y = k) P(Y = k)}{P(X)} \propto P(X \mid Y = k) P(Y = k)$$
likelihood prior

- ▶ Define $P(Y = k) = \pi_k$
- ▶ Naïve Bayes → assume **independence**: $P(X \mid Y = k) = \prod_{i=1}^{n} P(X_i \mid Y = k)$

Naïve Bayes

One version of naïve Bayes with continuous data: assume

$$P(Y = k) = \pi_k$$
 and $X \mid Y = k \sim N(\mu_k, \sigma^2 I)$

Fit the model via MLE (using the training data): under the model above,

$$\hat{\pi}_k = \frac{1}{n} \sum_{i=1}^n 1\{Y_i = k\}$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i=1}^n 1\{Y_i = k\} X_i$$

$$\hat{\sigma}^2 = \frac{1}{np} \sum_{i=1}^n \sum_{j=1}^p (X_{ij} - \bar{X}_{.j})^2$$

- Beyond the normal model, what does this model assume?
 - ▶ Within each class, features have same variance and are **independent**!!
 - ▶ Geometrically, this is assuming that the classes are spherically distributed

▶ In the Gaussian case, let's relax this independence assumption and instead assume

$$X \mid Y = k \sim N(\mu_k, \Sigma_w)$$

where Σ_w denotes the within-class covariance matrix

Can again fit model via MLE:

$$\hat{\pi}_k = \frac{1}{n} \sum_{i=1}^n 1\{Y_i = k\}$$

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i=1}^n 1\{Y_i = k\} X_i$$

$$\hat{\Sigma}_w = \frac{1}{n-K} \sum_{k=1}^K \sum_{i:Y_i = k} (X_i - \hat{\mu}_k) (X_i - \hat{\mu}_k)^\top$$

- Turns out the Bayes classifier under this new assumption is equivalent to LDA
- Can show that the LDA decision boundary is linear in X
 - ► Consequently, works well when classes are linearly separable

Another (equivalent) way to think about LDA: decomposition of variance

$$\hat{\Sigma}_t = \hat{\Sigma}_b + \hat{\Sigma}_w$$
Total Between-class Within-class variation variation

where

$$\hat{\Sigma}_{t} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})(X_{i} - \bar{X})^{\top}$$

$$\hat{\Sigma}_{b} = \frac{1}{n-1} \sum_{k=1}^{K} n_{k} (\hat{\mu}_{k} - \bar{X})(\hat{\mu}_{k} - \bar{X})^{\top}$$

$$\hat{\Sigma}_{w} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:Y_{i}=k} (X_{i} - \hat{\mu}_{k})(X_{i} - \hat{\mu}_{k})^{\top}$$

Another (equivalent) way to think about LDA: decomposition of variance

$$\hat{\Sigma}_t = \hat{\Sigma}_b + \hat{\Sigma}_w$$
Total Between-class Within-class variation variation

Beginning of the proof:

$$\hat{\Sigma}_{t} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})(X_{i} - \bar{X})^{\top} = \frac{1}{n-1} \sum_{k=1}^{K} \sum_{i:Y_{i} = k} (X_{i} - \bar{X})(X_{i} - \bar{X})^{\top}$$

$$= \frac{1}{n-1} \sum_{k=1}^{K} \sum_{i:Y_{i} = k} [(X_{i} - \hat{\mu}_{k}) + (\hat{\mu}_{k} - \bar{X})][(X_{i} - \hat{\mu}_{k}) + (\hat{\mu}_{k} - \bar{X})]^{\top}$$

Another (equivalent) way to think about LDA: decomposition of variance

$$\hat{\Sigma}_t = \hat{\Sigma}_b + \hat{\Sigma}_w$$
Total Between-class Within-class variation variation

► LDA finds a linear projection of the data that maximizes the between-class variation while controlling for the within class variation

$$\max_{v_k} v_k^{\top} \hat{\boldsymbol{\Sigma}}_b v_k \quad \text{subject to } v_k^{\top} \hat{\boldsymbol{\Sigma}}_w v_k = 1, \\ v_k^{\top} \hat{\boldsymbol{\Sigma}}_w v_j = 0 \ (\forall j < k)$$

- lacktriangle This is a generalized eigenvalue problem: solution is the eigendecomposition of $\hat{m{\Sigma}}_w^{-1}\hat{m{\Sigma}}_b$
- ▶ Why do we care? Enables easy visualization
 - If we put the discriminant directions into a matrix $V=[v_1,\ldots,v_K]$, then the discriminant components XV are the lower-dimensional projections of data that best separate the classes!

- Assumptions of LDA:
 - ▶ Implicit multivariate normal assumption: $X \mid Y = k \sim N(\mu_k, \Sigma_w)$
 - Decision boundaries are linear
 - \triangleright Assumes Σ_w is the same for each class
- ▶ We can allow the within class covariance to be different for each class, that is,

$$X \mid Y = k \sim N(\mu_k, \Sigma_k)$$

- This results in quadratic decision boundaries and hence called quadratic discriminant analysis (QDA)
- > QDA is more flexible than LDA, but requires estimating more parameters
- For both LDA and QDA, if n < p, then can't get Σ_w^{-1} ; in this case, add regularization (**regularized discriminant analysis (RDA)**)

Review: Classification methods thus far

		Logistic	Naïve Bayes	LDA	QDA
Pros	•	Can do inference (with all the caveats)	 Can choose any likelihood model 	Convenient visualizationsLinearly separable	 Quadratic decision boundaries
Cons		Problems when p>n (a solution: regularized logistic regression) Model misspecification?	 Assumes that features are independent (a very strong assumption) Model misspecification? 	 Problems when p>n (a solution: RDA) Model misspecification? Non-normal or non-linear decision boundaries? 	 Problems when p>n (a solution: RDA) Requires larger n to estimate more parameters adequately (compared to LDA) Model misspecification? Non-normal or non-linear decision boundaries?

▶ LDA is more *efficient* than logistic regression if X is Gaussian (i.e., LDA requires fewer samples to do well) whereas logistic regression is better than LDA if X is not Gaussian

K Nearest Neighbors (KNN) Classifier

- Let's take a purely algorithmic approach to classification
 - ► Maybe this is good or bad?
- For each test sample (or for each sample you want to make a prediction on):
 - ► Find the K "closest" neighbors
 - ► How do we define closest? Need to choose d(x, y)
 - ► Take majority vote from K closest neighbors
- Advantages: flexible, data-adaptive, simple, easy
- Disadvantages: curse of dimensionality
- In R: class::knn()

Next time

- SVMs
- ► Random Forests
- Ensembles
- ► Evaluation?

Lab 4: Remote Sensing/Cloud Data

Feature engineering: CORR, SD, NDAI

Lab 4: Remote Sensing/Cloud Data

Lab 4: Things to think about carefully

- Which methods/models? Are they well-suited for this data? Why or why not? What are the advantages/disadvantages and assumptions of the method(s) that you chose?
 - This can help you better identify the limitations of your prediction algorithm
- Data splitting scheme? This is very important for generalizability
- Post-hoc EDA? Can provide insights into how to improve your prediction

Lab 4 Groups

1	Cam Adams	Malvika Rajeev	Sohum Datta
2	Chao Zhang	Facu Sapienza	Jiaxi Liu
3	Corrine Elliott	Sam Stein	Yihuan Song
4	Katherine Kempfert	Phil Ryjanovsky	
5	Partow Imani	Yanting Pan	Yiyi He
6	Kanaad Deodhar	Liang Zhang	Mike Janson
7	Chenxing Wu	Ella Hiesmayr	Namita Trikannad
8	Dodo Qian	Robbie Netzorg	Teng Li
9	Aya Amanmyradova	Brooke Staveland	Shubei Wang
10	Spencer Wilson	Ziyang Zhou	