Math II Licence Physique - Chimie

Térence Bayen

Université d'Avignon

A partir du 17 mars 2020

Chapitre 3 : Partie II

Equations différentielles linéaires d'ordre 2

Equations différentielles linéaires d'ordre 2

Definition

On appelle équation différentielle linéaire d'ordre 2 l'équation

$$a(t)y'' + b(t)y' + c(t)y = d(t)$$
 (E_{NH})

où $a, b, c, d : I \to \mathbb{R}$ sont des applications continues définies sur un même intervalle I. L'inconnue est la fonction y de classe C^2 .

De même qu'à l'ordre 1 (cours précédent) :

- ► l'équation (E_{NH}) est l'équation différentielle non-homogène (ou équation générale).
- lorsque d(t) = 0, on parle de l'équation homogène associée à l'équation différentielle(E_{NH})

Quelques remarques

Bien que dans ce cours nous allons essentiellement étudier le cas où a(t), b(t), c(t) sont des fonctions constantes, il y a une théorie générale pour les solutions de (E_{NH}) :

- Existence de solutions définies sur I
- Propriétés des solutions (dimension de l'espace vectoriel engendré par les solutions), Wronskien...
- ▶ MAIS : contrairement à l'ordre 1, on ne peut en général pas calculer explicitement les solutions de (E_{NH}) .

Dans la suite on supposera que a(t), b(t), et c(t) sont des fonctions CONSTANTES :

$$a(t) = a$$
; $b(t) = b$; $c(t) = c$.

Equations différentielles linéaires d'ordre 2 à coefficients constants

Definition

On appelle équation différentielle linéaire homogène d'ordre 2 à coefficient constant l'équation

$$ay'' + by' + cy = 0 (E_H)$$

où a, b, c, sont trois nombres réels (avec $a \neq 0$). L'inconnue est la fonction y de classe C^2 .

- Caractère homogène : car le second membre = 0
- ▶ $a \neq 0$ (sinon on a une EDO d'ordre 1!!!)
- ▶ Intervalle de définition : ici $y : \mathbb{R} \to \mathbb{R}$ est définie sur \mathbb{R} car le second membre est 0.

Equation caractéristique

Definition

L'équation caractéristique associée à E_H est l'équation du second degré (rappelons que $a \neq 0$) :

$$ax^2 + bx + c = 0, (E_c)$$

Rappel : soit $\Delta := b^2 - 4ac$

- ▶ $\Delta = 0 \Rightarrow x = \frac{-b}{2a}$ (racine double)

Proposition

1. $si \Delta > 0$ et α , β sont les deux racines réelles de (E_c) , les solutions réelles de (E_H) sont de la forme

$$t \mapsto Ae^{\alpha t} + Be^{\beta t}$$
,

2. $si \Delta = 0$ et α est la racine double de (E_c) , les solutions réelles de (E_H) sont de la forme

$$t\mapsto (A+Bt)e^{\alpha t},$$

3. si Δ < 0 et $r \pm$ is sont les deux racines complexes de (E_c) , les solutions réelles de (E_H) sont de la forme

$$t \mapsto (A\cos(st) + B\sin(st))e^{rt}$$
,

$$y'' + y' + y = 0$$

- ► Equation caractéristique : $x^2 + x + 1 = 0 \Rightarrow x = \frac{-1 \pm i\sqrt{3}}{2}$
- Solutions :

$$y(t) = \left[A\cos\left(\frac{\sqrt{3}}{2}t\right) + B\sin\left(\frac{\sqrt{3}}{2}t\right)\right]e^{-\frac{t}{2}}$$

$$y'' + 3y' + 2y = 0$$

- ▶ Equation caractéristique : $x^2 + 3x + 2 = 0 \Rightarrow x = -2, -1$
- ► Solutions :

$$y(t) = Ae^{-t} + Be^{-2t}$$

$$y'' - 4y' + 4y = 0$$

- ► Equation caractéristique : $x^2 4x + 4 = 0 \Rightarrow x = 2$ (racine double).
- Solutions :

$$y(t) = (At + B)e^{2t}$$

Un cas particulier du cas général

On peut retenir la méthode suivante pour cette équation où il n'y a pas de terme devant y':

$$y'' + ky = 0, \quad k \in \mathbb{R}$$

- $k = 0 \Rightarrow y(t) = At + B$
- $k < 0 \Rightarrow k = -\omega^2 \text{ (où } \omega > 0) \Rightarrow$

$$y(t) = Ae^{\omega t} + Be^{-\omega t}$$

• $k > 0 \Rightarrow k = \omega^2 \Rightarrow$ equation caractéristique $x^2 + \omega^2 = 0 \Rightarrow$ $x = \pm i\omega$ et

$$y(t) = A\cos(\omega t) + B\sin(\omega t)$$

Avec second membre

Definition

On appelle équation différentielle linéaire d'ordre 2 à coefficients constants non-homogène l'équation différentielle

$$ay'' + by' + cy = d(t) (E_{NH})$$

où $d: I \to \mathbb{R}$ est une fonction continue définie sur un intervalle I.

On cherchera des solutions y définies sur I

Théorème

Les solutions y(t) de (E_{NH}) s'écrivent

$$y(t) = y_H(t) + y_P(t), \quad t \in I,$$

où y_H est solution de l'équation homogène associée et y_P est une solution particulière de l'équation (E_{NH}) .

Méthode : principe de superposition

Proposition

Soient $d_1, d_2: I \to \mathbb{R}$ deux fonctions continues et soit

$$(E_{NH})$$
 $ay'' + by' + cy = d_1(t) + d_2(t)$
 (E_1) $ay'' + by' + cy = d_1(t)$
 (E_2) $ay'' + by' + cy = d_2(t)$.

Si y_1 est une solution de (E_1) et y_2 est une solution de (E_2) , alors $y_1 + y_2$ est une solution de (E_{NH}) .

Comme à l'ordre 1, vous retenez qu'il faut chercher SEPAREMENT des solutions particulières lorsque le second membre est une somme de plusieurs fonctions.

Méthode pour une solution particulière (dans \mathbb{R})

Proposition

Soient $a,b,c,\omega\in\mathbb{R}$, $a\neq 0$, et S un polynome réel. Alors l'équation

$$ay'' + by' + cy = S(t)e^{\omega t}$$

admet sur $\mathbb R$ une solution particulière de la forme $t\mapsto T(t)e^{\omega t}$ où T est un polynôme à coefficients dans $\mathbb R$ tel que

- 1. deg(T) = deg(S) si ω n'est pas racine de l'équation caractéristique.
- 2. deg(T) = deg(S) + 1 si ω est racine simple de l'équation caractéristique.
- 3. deg(T) = deg(S) + 2 si ω est racine double de l'équation caractéristique.

Soit l'équation

$$y'' - 3y' + 2y = t$$

Les solutions de l'équation sont les fonctions

$$t\mapsto \frac{2t+3}{4}+Ae^t+Be^{2t}$$

avec $A, B \in \mathbb{R}$. En effet, l'équation caractéristique est $x^2-3x+2=0$ d'où la solution de l'équation homogène est :

$$y_H(t) = Ae^t + Be^{2t}$$

puis on cherche $y_P(t)=at+b$ (car $\omega=0$). On met dans l'équation : $y_P''-3y_P'+2y_P=0$ qui donne

$$\forall t \in \mathbb{R}, -3a + 2at + 2b = t$$

Conclusion : a = 1/2 et 2b - 3a = 0 i.e. b = 3/4.

Soit l'équation

$$y'' - 3y' + 2y = e^{2t}$$

Les solutions de l'équation sont les fonctions

$$t \mapsto te^{2t} + Ae^t + Be^{2t}$$

avec $A, B \in \mathbb{R}$. En effet, (cf exemple 1), on a $y_H(t) = Ae^t + Be^{2t}$.

Puis, on cherche $y_P(t)=(at+b)e^{2t}$ d'où $y_P'=(2at+a+2b)e^{2t}$, $y_P''=(4at+4a+4b)e^{2t} \Rightarrow$ on forme l'équation et on trouve a par identification (b est quelconque) :

$$y_P'' - 3y_P' + 2y_P = (4a + 4b - 3a - 6b + 2b)e^{2t} = ae^{2t} = e^{2t}, \ \forall t \in \mathbb{R}$$

Conclusion : a = 1; b quelconque (b = 0 le plus simple).

Soit l'équation

$$y'' - 3y' + 2y = te^t$$

Les solutions de l'équation sont les fonctions

$$t\mapsto -\left(\frac{t^2}{2}+t\right)e^t+Ae^t+Be^{2t}$$

avec $A, B \in \mathbb{R}$. En effet, on cherche y_P sous la forme :

$$y_P(t) = (at^2 + bt + c)e^t$$

 $y'_P(t) = (at^2 + (b+2a)t + b + c)e^t$
 $y''_P(t) = (at^2 + (4a+b)t + 2a + 2b + c)e^t$ \Rightarrow

en formant l'équation

$$y_P'' - 3y_P' + 2y_P = (-2at + 2a - b)e^t = te^t \Rightarrow$$
 $-2a = 1, 2a - b = 0$ et donc $a = -\frac{1}{2}$ et $b = -1$.

Recherche d'autres solutions particulières

Il arrive souvent en physique (électricité, ressort,...) de devoir chercher une solution particulière de l'équation

$$ay'' + by' + cy = S(t)e^{rt} \times \underbrace{\cos \omega t}_{\text{terme d'excitation}}$$

ou bien de

$$ay'' + by' + cy = S(t)e^{rt}\sin\omega t$$

où $a,b,c,r,\omega\in\mathbb{R}$. L'idée est d'introduire l'équation dans $\mathbb C$

$$ay'' + by' + cy = S(t)e^{rt + i\omega t}$$

et de résoudre dans \mathbb{C} . On a alors le résultat suivant (même idée que la proposition précédente).

Proposition

Soient $a,b,c,\omega\in\mathbb{R}$, $a\neq 0$, et S un polynôme réel. Alors l'équation

$$ay'' + by' + cy = S(t)e^{(r+i\omega)t}$$

admet sur $\mathbb C$ une solution particulière de la forme $t\mapsto T(t)e^{(r+i\omega)t}$ où T est un polynôme à coefficients dans $\mathbb C$ tel que

- 1. deg(T) = deg(S) si $r + i\omega$ n'est pas racine de l'équation caractéristique.
- 2. deg(T) = deg(S) + 1 si $r + i\omega$ est racine simple de l'équation caractéristique.
- 3. $deg(T) = deg(S) + 2 si r + i\omega$ est racine double de l'équation caractéristique.

Remarques sur la proposition précédente

- ▶ La solution y est à valeur dans $\mathbb{C}!!!$
- Notez que l'on regarde si le nombre complexe $r + i\omega$ est solution de l'équation caractéristique!

Comment obtient-on les solutions réelles??

On a trouvé une solution $y_P : \mathbb{R} \to \mathbb{C}$ de

$$ay_P'' + by_P' + cy_P = S(t)e^{(r+i\omega)t}$$

qui s'écrit $y_P(t) = T(t)e^{(r+i\omega)t}$. ATTENTION, T est à valeurs dans \mathbb{C} . On veut une solution réelle. Alors,

$$\operatorname{Re}(T(t)e^{(r+i\omega)t})$$
 et $\operatorname{Im}(T(t)e^{(r+i\omega)t})$

sont respectivement solutions de

$$ay_P'' + by_P'' + cy_P = S(t)e^{rt}\cos(\omega t)$$

et

$$ay_P'' + by_P'' + cy_P = S(t)e^{rt}\sin(\omega t)$$

$$y'' + 4y' + 5y = e^{-2t} \sin t$$

▶ Equation caractéristiques : $x^2 + 4x + 5 = 0$ ⇒ solutions

$$x = -2 \pm i$$

- $D'où y_H(t) = e^{-2t}(A\cos t + B\sin t)$
- ▶ Solution particulière : on la cherche dans ℂ sous la forme

$$y_P(t) = \alpha t e^{(i-2)t}$$

et oui, i-2 est solution de l'équation caractéristique, il faut donc augmenter le degré de 1. Notez que l'on prend 0 le coefficient de degré 0 car on sait que $t \mapsto e^{(i-2)t}$ est solution de $(E_H)!!!$

Exemple (suite)

On cherche donc dans $\mathbb C$ une solution particulière de

 $y_P(t) = \alpha t e^{(i-2)t}$

$$y'' + 4y' + 5y = e^{(i-2)t}$$

$$y_P'(t) = \alpha[1 + (i-2)t]e^{(i-2)t}$$

$$y_P''(t) = \alpha[i-2 + (1+(i-2)t)(i-2)]e^{(i-2)t} \Rightarrow$$

$$y_P''(t)+4y_P'(t)+5y_P(t)=\cdots=i2\alpha e^{(i-2)t}=e^{(i-2)t}\Rightarrow \alpha=\frac{1}{2i}=-\frac{i}{2}.$$

<u>Conclusion</u>: $y_P(t) = -\frac{it}{2}e^{(i-2)t}$ en complexe. Pour avoir la solution réelle, on prend la partie imaginaire (regardez l'équation, il y a un sinus):

$$\tilde{y}_P(t) = \operatorname{Im}(y_P(t)) = \operatorname{Im}(-\frac{it}{2}e^{(i-2)t}) = -\frac{t}{2}e^{-2t}\operatorname{Im}(ie^{it}) = -\frac{t}{2}e^{-2t}\cos t$$

Exemple (suite)

En conclusion de la conclusion : la solution générale de l'équation

$$y'' + 4y' + 5y = e^{-2t} \sin t$$

s'écrit :

$$y_G(t) = \underbrace{e^{-2t}(A\cos t + B\sin t)}_{homogene} - \underbrace{\frac{t}{2}e^{-2t}\cos t}_{particuliere}$$

▶ Je vous conseille de regarder le polycopié p.14 pour un autre exemple portant sur le phénomène de résonance (lorsqu'un système est excité avec sa fréquence propre ⇒ EXPLOSION (oscillateur sans frottement)

Problème de Cauchy

Retournons à l'équation

$$ay'' + by' + cy = d(t) (E_{NH})$$

où $d:I \to \mathbb{R}$ est une fonction continue définie sur un intervalle I, et $a,b,c,\in\mathbb{R}$ avec $a\neq 0$. On va chercher A et B à l'aide des conditions initiales (fixées à l'avance).

Proposition

Soit $t_0 \in I$, y_0 , y_0' deux réels. Alors il existe une seule et unique solution de (E_{NH}) telle que

$$y(t_0) = y_0, \quad y'(t_0) = y_0'$$

(Ceci revient à prescrire la position et la vitesse à l'instant initial t_0 de l'expérience).

Explication physique du problème de Cauchy

- ▶ Le problème de Cauchy permet de déterminer les deux constantes A et B en résolvant un système de deux équations à deux inconnues.
- Physiquement, on se donne la position initiale (ci-dessous, le point (0, h)) et la vitesse initiale (angle du vecteur vitesse θ_0 + module de la vitesse v_0)

Explication physique du problème de Cauchy

$$PFD: m\vec{\gamma} = -\vec{g}$$

$$\begin{cases} m\ddot{x} = 0\\ m\ddot{y} = -g \end{cases}$$

 \Rightarrow

$$\begin{cases} \dot{x} = v_0 \cos \theta_0 \\ \dot{y} = v_0 \sin \theta_0 - \frac{gt}{m} \end{cases}$$

Equations horaires :

$$\begin{cases} x(t) = (v_0 \cos \theta_0)t \\ y(t) = (v_0 \sin \theta_0)t - \frac{gt^2}{2m} + h \end{cases}$$

<u>Conclusion</u>: prescrire les conditions initiales est important dans de nombreux problèmes physiques.

$$y'' - 3y' + 2y = t$$
, $y(0) = y'(0) = 1$

▶ Equation caractéristique $x^2 - 3x + 2 = 0$. D'où x = 1, 2 et

$$y_H(t) = Ae^t + Be^{2t}$$

- Solution particulière : $y_P(t) = at + b$ (par ce qui précède, $\omega = 0$). D'où -3a + 2(at + b) = t pour tout t. Par identification : a = 1/2, b = 3/4 et $y_P(t) = \frac{2t+3}{4}$.
- ► Solution générale :

$$y(t) = Ae^t + Be^{2t} + \frac{2t+3}{4}$$

Il vient A+B+3/4=1 et A+2B+1/2=1 ce qui donne $B=1/4,\ A=0.$ Ainsi, l'unique solution du problème de Cauchy est

$$y(t) = \frac{1}{4}e^{2t} + \frac{2t+3}{4}$$

A vous de jouer

- 1. il y a d'autres exemples de problèmes de Cauchy dans le polycopié de cours.
- 2. Exercices sur les EDO du second ordre :

Exercices 9, 10, 11, 15, 16

Equation du ressort

Soit un poids de masse m, attaché à un ressort de raideur k et de longueur à vide ℓ_0 immergé dans un liquide. On néglige la poussée d'Archimède et on modélise l'action du milieu liquide sur le poids par une force de frottement fluide (de la forme $\vec{f}=-2\mu\vec{v}$, où \vec{v} est la vitesse de la bille et $\mu\geq 0$).

On choisit l'extrémité de fixation du ressort comme origine O et on note \vec{u} le vecteur unitaire qui dirige la verticale descendante. La position de la bille à l'instant t sera repérée à l'instant t par sa position y(t) dans le repère (O, \vec{u}) . L'équation fondamentale de la dynamique s'écrit

$$my''(t)\vec{u} = -k(y(t) - \ell_0)\vec{u} - 2\mu y'(t)\vec{u} + mg\vec{u}.$$

$$my''(t)\vec{u} = -k(y(t) - \ell_0)\vec{u} - 2\mu y'(t)\vec{u} + mg\vec{u}.$$

A l'équilibre, cette équation s'écrit

$$\vec{0} = -k(\ell_e - \ell_0)\vec{u} + mg\vec{u};$$

en faisant la différence des deux équations et en posant $y_e(t) = y(t) - \ell_e$ (c-à-d qu'on se repère par rapport à la position d'équilibre ℓ_e), on obtient l'équation

$$my''_{e}(t) + 2\mu y'_{e}(t) + ky_{e}(t) = 0.$$

Si on pose $\omega_0=\sqrt{\frac{k}{m}}$ et $\lambda=\frac{\mu}{m\omega_0}$, on veut donc résoudre l'équation $y''(t)+2\lambda\omega_0y'(t)+\omega_0^2y(t)=0.$

- Dans le cas d'un frottement non négligeable (c-à -d $\lambda > 0$, c-à -d $\mu > 0$), on parle d' $oscillateur\ amorti$.
- Quand $\lambda = 0$, on parle d' oscillateur non amorti.
- ω_0 : pulsation propre.

Pas de frottement $\lambda = 0$

$$y'' + \omega_0^2 y = 0$$

$$x^2 + \omega_0^2 = 0 \Rightarrow x = \pm i\omega_0 \Rightarrow$$

Pas de frottement $\lambda = 0$

$$y'' + \omega_0^2 y = 0$$

$$x^2 + \omega_0^2 = 0 \Rightarrow x = \pm i\omega_0 \Rightarrow$$

$$y(t) = C\cos(\omega_0 t - \phi)$$
??

Pas de frottement $\lambda = 0$

$$y'' + \omega_0^2 y = 0$$
$$x^2 + \omega_0^2 = 0 \Rightarrow x = \pm i\omega_0 \Rightarrow$$
$$y(t) = C\cos(\omega_0 t - \phi)$$

??En fait, on a vu que 1:

$$y(t) = A\cos\omega_0 t + B\sin\omega_0 t$$

$$= \underbrace{\sqrt{A^2 + B^2}}_{:=C} \left[\underbrace{\frac{A}{\sqrt{A^2 + B^2}}\cos\omega_0 t}_{\cos\phi} + \underbrace{\frac{B}{\sqrt{A^2 + B^2}}}_{\sin\phi} \sin\omega_0 t \right]$$

$$= C[\cos\phi\cos\omega_0 t + \sin\phi\sin\omega_0 t]$$

$$= C\cos(\omega_0 t - \phi)$$

Avec frottement $0 < \lambda < 1$: oscillateur faiblement amorti

$$y''(t) + 2\lambda\omega_0y'(t) + \omega_0^2y(t) = 0.$$
 Equation caractéristique : $x^2 + 2\lambda\omega_0x + \omega_0^2 = 0$
$$\Delta = 4\omega_0^2(\lambda^2 - 1) < 0$$

$$x = \omega_0[-\lambda \pm i\sqrt{1 - \lambda^2}]$$

Avec frottement $0 < \lambda < 1$: oscillateur faiblement amorti

$$y''(t) + 2\lambda\omega_0y'(t) + \omega_0^2y(t) = 0.$$
 Equation caractéristique : $x^2 + 2\lambda\omega_0x + \omega_0^2 = 0$
$$\Delta = 4\omega_0^2(\lambda^2 - 1) < 0$$

$$x = \omega_0[-\lambda \pm i\sqrt{1 - \lambda^2}]$$

$$y(t) = \left[A\cos(\omega_0\sqrt{1-\lambda^2}t) + B\sin(\omega_0\sqrt{1-\lambda^2}t)\right]e^{-\lambda\omega_0t} \to 0$$

 \Rightarrow AMORTISSEMENT (avec oscillations)

Avec frottement $\lambda > 1$

Oscillateur très amorti (pas d'oscillation)

$$x^{2} + 2\lambda\omega_{0}x + \omega_{0}^{2} = 0$$

$$\begin{cases} x_{1} = (-\lambda - \sqrt{\lambda^{2} - 1})\omega_{0} < 0 \\ x_{2} = (-\lambda + \sqrt{\lambda^{2} - 1})\omega_{0} < 0 \end{cases}$$

$$y(t) = Ae^{x_{1}t} + Be^{x_{2}t} \to 0$$

quand $t \to +\infty$

Oscillateur forcé

Nous sommes maintenant en mesure d'expliquer les phénomènes observés lors des expériences sur les oscillations mécaniques entretenues. L'équation générale d'une grandeur physique y(t) soumise à des oscillations forcées s'écrit

(E)
$$y'' + 2\lambda\omega_0 y' + \omega_0^2 y = F\cos(\omega t)$$

$$y'' + \omega_0^2 y = \cos(\omega t)$$

1) si $\omega=\omega_0$: alors

$$y(t) = A\cos\omega_0 t + B\sin\omega_0 t + \frac{t\sin\omega_0 t}{2\omega_0}$$

$$y'' + \omega_0^2 y = \cos(\omega t)$$

1) si $\omega=\omega_0$: alors

$$y(t) = A\cos\omega_0 t + B\sin\omega_0 t + \frac{t\sin\omega_0 t}{2\omega_0}$$

L'excitation à la pulsation propre d'un oscillateur non amorti se traduit par une explosion progressive de la réponse du système

Démonstration

2)
$$\omega \neq \omega_0$$

$$y(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) + \frac{A\cos(\omega t)}{\omega_0^2 - \omega^2}$$
 avec $\lambda, \mu \in \mathbb{R}$.

Dans ce cas il y a des oscillations forcées, obtenues par superposition des deux oscillations de fréquences distinctes ω et ω_0 , le résultat n'est plus une sinusoïde.

2)
$$\omega \neq \omega_0$$

$$y(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) + \frac{A\cos(\omega t)}{\omega_0^2 - \omega^2}$$
 avec $\lambda, \mu \in \mathbb{R}$.

Dans ce cas il y a des oscillations forcées, obtenues par superposition des deux oscillations de fréquences distinctes ω et ω_0 , le résultat n'est plus une sinusoïde.

Résonance : si $\omega \to \omega_0$ alors

$$|y(t_n)| \to +\infty$$

i.e. $y(\cdot)$ n'est plus bornée.

Démonstration

frottement : $0 < \lambda < 1$ (et F = 1)

$$y''(t) + 2\lambda\omega_0y'(t) + \omega_0^2y(t) = \cos\omega t.$$

Equation caractéristique : $x^2+2\lambda\omega_0x+\omega_0^2=0$. Soit $\delta:=\omega_0\sqrt{1-\lambda^2}$ de sorte que les racines de l'équation caractéristiques s'écrivent

$$x = -\lambda\omega_0 \pm i\delta$$

Solution:

$$y(t) = [A\cos(\delta t) + B\sin(\delta t)] e^{-\lambda\omega_0 t} + \frac{\cos(\omega t + \varphi)}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\lambda^2\omega^2\omega_0^2}}$$

⇒ Oscillations forcées

Démonstration