

Published in Analytics Vidhya

K-Neighbors Regression Analysis in Python

K nearest neighbors is a simple algorithm that stores all available cases and predict the numerical target based on a similarity measure (e.g., distance functions). KNN has been used in statistical estimation and pattern recognition already in the beginning of 1970's as a non-parametric technique. **Algorithm** A simple implementation of KNN regression is to calculate the average of the numerical target of the K nearest neighbors. Another approach uses an inverse distance weighted average of the K nearest neighbors. KNN regression uses the same distance functions as KNN classification.

Distance functions

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$
Manhattan
$$\sum_{i=1}^{k} |x_i - y_i|$$

$$\left(\sum_{i=1}^{k} (|x_i - y_i|)^q\right)^{1/q}$$
130

The above three distance measures are only valid for continuous variables. In the case of

Get started

The prediction using a single neighbor is just the target value of the nearest neighbor.

Let's go to hands on, in this article I use the dataset from mglearn, the first step if you don't have package in your note book, install in cmd/anaconda prompt..

pip install mglearn

After that, you can plot k-neighbors regression with n_n eighbors = 1.

```
import mglearn
import matplotlib.pyplot as plt

mglearn.plots.plot_knn_regression(n_neighbors=1)
```


Again, this k-neighbors regression just use 1 n_neighbors, you can use more than the single closest neighbor for regression, and the prediction is the average or mean of relevant neighbors. Let us see...

mglearn.plots.plot_knn_regression(n_neighbors=3)

figure 2. predictions make by three- nearest-neighbors regression on the wave dataset

Now we can make predict on the test data use knn regresson with $n_neightbors = 3$

from sklearn.neighbors import KNeighborsRegressor
X, y = mglearn.datasets.make_wave(n_samples=40)

Get started

```
reg = KNeighborsRegressor(n_neighbors=3)
# fit the model using the training data and training targets
reg.fit(X train, y train)
```

If you have done the above, you can use your model on test data

```
print(reg.score(reg.score(X_test, y_test)))
```

out: 0.83

ANALYZING KNEIGHBORS REGRESSOR

We can analyse how accuracy gets affected by n_neighbors: We can use different value 3 n neighbors, and explain where good value n neighbors for model.

```
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
# create 1,000 data points, evenly spaced between -3 and 3
line = np.linspace(-3, 3, 1000).reshape(-1, 1)
for n_neighbors, ax in zip([1, 3, 9], axes):
    # make predictions using 1, 3, or 9 neighbors
    reg = KNeighborsRegressor(n_neighbors=n_neighbors)
    req.fit(X train, y train)
    ax.plot(line, reg.predict(line))
    ax.plot(X_train, y_train, '^', c=mglearn.cm2(0),
             markersize=8)
    ax.plot(X_test, y_test, 'v', c=mglearn.cm2(1), markersize=8)
    ax.set_title("{} neighbor(s)\n train score: {:.2f} test
              score: {:.2f}".format(n neighbors,
              reg.score(X_train, y_train), reg.score(X_test,
              y test)))
    ax.set_xlabel("Feature")
    ax.set ylabel("Target")
axes[0].legend(["Model predictions", "Training data/target","Test
    data/target"], loc="best")
```


As we can see from the plot, using only a single neighbor, each point in the training set has an obvious influence on the predictions, and the predicted values go through all of the data points. This leads to a very unsteady prediction. Considering more neighbors leads to smoother predictions, but these do not fit the training data as well.

ref : Andreas C.Muller and Sarah Guido. 2017. Introduction to machine learning with pyhton

Sign up for Analytics Vidhya News Bytes

By Analytics Vidhya

Latest news from Analytics Vidhya on our Hackathons and some of our best articles! Take a look.

Your email

We couldn't process your request. Try again, or contact our support team.

Get this newsletter

Get started

About Help Terms Privacy

Get the Medium app

