SB101 高空台的全流程调试及对比标定试验

燃气涡轮研究所 徐通源 焦天佑 刘大响

摘要 制述了 SB101 高空台所完成的主要试验状态。着重介绍了与俄罗斯中央航空发动机研究院 (IJMAM)合作对其进行计量标定和对比试验的工作进程和结果。

关键调 高空模拟试车台 全流程调试 对比标定试验

1 前言

SB101 高空模拟试车台(以下简称高空台)是目前我国、乃至亚洲唯一的采用连续式气源的高空台。其最大模拟高度 25 km,最大模拟 M 数 2.5,试验对象为标准海平面静止状态下最大空气流量为 120 kg/s 的涡轮喷气、涡轮风扇发动机。在十多年的时间里,先后完成了一期工程各厂房和设备的单机安装与性能调试,用 WP-7 发动机进行的一期工程直接排大气调试,WP-13A I 发动机的均匀流场性能试验和畸变流场考核试验,二期工程大型排气冷却器设备的安装,WP-7 发

动机加温加压试验,核心机的高空台试验及WP-7发动机模拟对比试验点的高空台全流程试验。最后用俄制P114-300发动机进行了与俄罗斯 LLIIAM LL-4H 高空台的对比、标定试验,技术上得出了肯定的结论,为向国家交付、验收,正式投入使用奠定了可靠的基础。

2 SB101 高空合试验情况简介

SB101 高空台历年进行的主要试验及设备状态见表 1。高空舱进口温度达到一50~250 ℃,进口最高压力 350 kPa。舱内最低环境静压 4 kPa。基本上达到了设计要求。

表 1 SB101	高空台的	主要试验情况
-----------	------	--------

序号	时间	试验件	高度 <i>H</i> (km)	М	进口总 压 P ₁ * (kPa)	进口总温 T₁* (K/℃)	舱内环 境静压 (kPa)	备注
1	1986-01	WP-13A I 发动机	0	0	93. 2	281. 5/8. 5	41.8	直接排大气
2	1986-01	WP-13A I 发动机	5	0. 7	75. 0	282. 5/9. 5	40. 7	直接排大气
3	1986-01	WP-13A I 发动机	11	1.45	77. 3	307. 7/34. 7	44. 2	直接排大气
4	1986-01	WP-13A I 发动机	11	1.8	130.0	360. 2/87. 2	46. 2	直接排大气

收益日期:1995-03-10

	·	,					· · · · · · · · · · · · · · · · · · ·	
序号	时间	试验件	高度 H (km)	М	进口总 压 P ₁ * (kPa)		舱内环 境静压 (kPa)	备注
5	1986-01	WP-13A I 发动机 +畸变模拟板	6	0.8	71. 6	281. 4/8. 4	50. 5	直接排大气
6	1986-01	WP-13A I 发动机 +畸变模拟板	9	1. 2	74. 2	295. 4/22. 4	49. 6	直接排大气
7	1986-01	WP-13A I 发动机 +畸变模拟板	12	1.8	74. 6	355. 4/82. 4	65. 4	直接排大气 (全加力)
8	1986-01	WP-13A I 发动机 →畸变模拟板	14	1. 93	89. 4	378. 8/105. 8	58. 1	直接排大气 (全加力)
9	1993-03	调节簡	1	1	38. 0	287/14	4. 36	大气进一抽气
10	1994-01	核心机	/	/	295. 0	436/163	58. 9	直接排大气
11	1994-11	调节简	1	/	54. 5	339/66.0	11.6	供一抽
12	1994-12	WP-7 发动机	0	0	73. 0	285. 5/12. 5	71.0	直接排大气
13	1994-12	WP-7 发动机	11	0. 7	32. 9	232. 9/-40. 1	22. 6	供一抽
14	1994-12	WP-7 发动机	13	1.0	28. 0	256.5/-16.5	15. 6	供一抽
15	1994-12	WP-7 发动机	15	1.6	50. 7	327. 4/54. 4	12. 9	供一抽
16	1994-12	WP-7 发动机	16	1.0	19. 3	256. 1/-16. 9	8. 0	供一抽
17	1994-12	WP-7 发动机	16.5	1. 85	58. 2	364.8/91.8	13. 8	供一抽
18	1995-02	P11Φ-300 发动机	0	0	70. 6	281/8	70. 2	大气进一抽 刚性喷口
19	1995-02	P11 4 -300 发动机	11	0. 7	32. 32	238/-35	21. 5	供一抽刚性喷口
20	1995-02	P114-300 发动机	13	1.0	31. 03	260/-13	16. 4	供一抽刚性喷口
21	1995-02	P114-300 发动机	18	2. 05	58. 2	399/126	13. 9	供一抽刚性喷口
22	1995-02	P11 6 -300 发动机	0	0	73. 4	286/13	73. 1	大气进一直排 大气可调喷口
23	1995-02	P114-300 发动机	18	2. 05	57.9	400/127	12.8	供一抽可调喷口
24	1995-02	P114-300 发动机	13	1.0	31.0	258/-15	16. 3	供一抽可调喷口
25	1995-02	P11Φ-300 发动机	0	0	70. 2	288/15	69. 9	大气进一抽可 调喷口调小

在 1994 年 12 月开始的高空台热态调试中,发动机排出的高温燃气经排气冷却器冷却后,到抽气机进口时温度均不足 15 $^{\circ}$ C,远远低于设计值(50 $^{\circ}$ C)。

3 高空台标定的目的、要求和主要工作内容

3.1 目的

标定的目的是确定高空台的推力、空气质量流量、燃油消耗量、压力、温度及发动机热态喷口面积、转速、气体含湿量等8个参数的数据精度,寻求确定飞行推力的方法及其数据精度。

3.2 要求

通过校准和发动机在中、俄两国高空台上的对比试验,确定上述8个参数的数据精度。在H=0,M=0,发动机带不可调施工喷口,最大不加力工作状态下,使空气质量流量、飞行推力及燃油消耗率的确定精度分别优于±1.0%、±1.5%和±1.6%,或然率P。=0.95。最终由俄方出示高空台的技术合格证书。

3.3 标定工作的主要内容

新建的高空台或地面台正式投入使用前,必须经过标定。发达国家高空台较多,可在一国范围内通过大量的对比试验,校准新建设备。有的则在国家之间进行。如英、美等国,曾用同一台发动机,对数个高空台进行交叉对比试验。

不能用地面台来标定,因二者功能不同。高空台有气源供气和抽气,可模拟不同的飞行高度和 M 数;地面台则仅能模拟当地高度和零 M 数。由于气动力的影响,在不同飞行状态下,高空台的飞行推力要考虑多种因素加以修正后才能得到,由测力系统测出的推力仅占飞行推力的 15%~85%。

与俄 ЦИАМ 合作对 SB101 高空台进行标定的主要工作内容有:

14

- (1) 俄罗斯专家对 SB101 高空台的测量系统进行计量标定,并写出技术报告;
- (2) 中方专家参加在俄罗斯 LLAIM 的 LL-4H 高空台上用 P11Φ-300 发动机进行的 对比试验,俄方提出技术报告;
- (3) 按俄方要求,中方对 SB101 高空台 作相应的改造;
- (4) 俄罗斯专家参加在 SB101 高空台 上用 P11Φ-300 发动机进行的对比试验,并写 出技术报告;
- (5) 由俄罗斯专家对 SB101 高空台的标定工作进行技术总结,并按标定结果出具技术合格证书。
- 4 俄罗斯 Ц-4H 高空台与 P11Φ-300 发动机。 试验
 - 4.1 LI-4H 高空台简介
 - (1) 主要技术特性: 最大模拟飞行 M 数:3; 最大模拟飞行高度:27 km; 试车台最大可测推力:25×10⁴ N; 试车台前进口总温范围:213~573 K (-60~300 °C);

试车台前进口总压范围:2.0~294 kPa。

(2) 进口空气流量:

进口总温≤273 K 时,空气流量达到 200 kg/s;

进口总温=273~333 K 时,空气流量达到 800 kg/s;

进口总温=333~573 K 时,空气流量达到 300 kg/s;

进口总温=573~623 K 时,空气流量达到 90 kg/s。

(3) 试车台结构件的几何尺寸:

高空舱直径 5.7 m;

高空舱长度 14 m;

舱盖孔直径 4 m;

燃气涡轮试验与研究 1995 年第 2 期

测力平台尺寸 10.5 m×2.42 m;

从高空舱轴心到测力平台表面的距离 1,74 m。

(4) 在模拟过渡工作状态和不稳定工作状态时,自动调节系统保证:

进口总压误差≪±3%; 进口总温误差≪±3 K; 舱内误差≪±6%。 (5) 空气流量管的直径有:

0.678 m, 0.75 m, 0.84 m, 0.95 m, 1.02 m, 1.19 m, 1.415 m 及 2.075 m 8 种。

U-4H 高空台至今已试过 800 台发动机。 4.2 P11Φ-300 发动机在 U-4H 上的试验情况

P11Φ-300 发动机在俄 LL-4H 高空台上的试验情况见表 2。

进口总压 进口总温 舱 压 Н 序号 P_1^{\bullet} T_i^* 日期 M P_{D} (km) (Pa) (3) (Pa) 0.196×10^{5} -13 0.1035×10^{5} 可调喷口 1.0 16 1994 - 05 - 051 13 1.0 0.31398×10^{5} -13 0.1658×10^{5} 可调喷口 0 0.9×10⁵ 2 1994 - 05 - 100 0.9×10^{5} 15 可调喷口 3 1994 - 05 - 1218 2.05 0.589×10^{5} 126 0.075 6×105 可调喷口 1994-05-19 0.589×10^{5} 126 0.075 6×10⁵ 可调喷口 4 18 2, 05 0.9×10^{5} 0.9×10^{5} 刚性喷口 0 0 15 1994 - 05 - 230 0.7×10^{5} 15 0.7×10^{5} 刚性喷口 5 0 刚性喷口 0 0 0.6×10^{5} 15 0.6×10⁵ 0.075 6×10⁵ 刚性喷口 1994-05-24 2.05 0.589×10^{5} 126 18 6 0.31398×10^{5} -130.165 8×10⁵ 刚性喷口 1.0 13 -13 0.1035×10^{5} 刚性喷口 1994 - 05 - 2516 1.0 0.196×10^{5} 7

 0.3149×10^{5}

 0.9×10^{5}

0.7

0

11

0

表 2 P11Φ-300 发动机在俄 LI-4H 高空台上的试验点

当 H=0, M=0, 在不开加力的最大状态, 或然率 $P_0=0$. 95 时, 装工艺喷管(刚性喷管)的 $P11\Phi$ -300 发动机的基本参数误差值为:

空气流量: ± 0. 4%; 台架推力: ± 0. 845%;

1994 - 05 - 26

SB101 高空台的全流程调试及对比标定试验

耗油量:±0.91%。

-- 35

15

5 SB101 高空台测量系统计量标定与 P11Φ-300 发动机试验

 0.227×10^{5}

 0.9×10^{5}

5.1 SB101 高空台測量系统的计量标定 SB101 高空台測量系统计量标定结果见

15

刚性喷口

刚性喷口

测量通道名称	测量上限 测量值变化范围		灣量通道误差极限	
发动机推力 R,kN	75. 4	(50%~100%)R _{max}	士0.44%测量值	
A ALAN MILE / I MILE /	10.4	(0%~50%)R _{max}	±0.44%(0.5R _{max})	
燃油质量液量 Gr,kg/min	171	17~171	±0.45%衡量值	
	100	(10%~100%)P _{max}	±0.22%F.S.	
	300	(10%~100%)P _{max}	±0.19%F.S.	
气体介质压力 P,kPa	500	(10%~100%)Pmx	±0.18%F.S.	
	1 600	(10%~100%)P _{max}	±0.21%F.S.	
	3 000	(10%~100%)P _{max}	±0.21%F.S.	
气压 Ps,kPa	110	(0.9~1.1)P _s max	±1.7×10 ⁻³ %测量值(带修正)	
气体介质温度 T, C				
热电偶 T	320	-40~320	±0.56%F.S.	
热电偶 K	900	0~900	±0.49%F.S.	
热电偶 E	800	-40~800	±0.46%F.S.	
热电偶 S	900	0~900	±0.21%F.S.	
电阻温度计 Pt100	500	-130~500	±0.66%F.S.	
电阻温度计 Cu50	150	-30~150	±0, 95%F.S.	
转子转速 n,r/min				
数字通道	12 551	(10%~100%)n _{max}	±0.02%F.S.	
模拟通道	12 551	(10%~100%)n _{max}	±0.11%F.S.	
空气相对湿度 Φ,%RH	95	10~95	±3.4	

表 3 SB101 高空台测量系统计量标定结果

5. 2 P11**4**-300 发动机在 SB101 高空台上 的试验情况

P11Φ-300 发动机在 SB101 高空台上的 试验情况见表 1。

1995年2月12日至2月27日,P11Ф-300发动机在SB101高空台上共开车21次,运转800 min。运行的高空台设备共342台套,运行时间为78821 min。投入运行的设备有供气机组、抽气机组、变频机组、氨冷冻机

组、气水分离及硅胶干燥系统、膨胀涡轮、空气加温炉、进气调压系统、排气调压系统、发动机试车工艺系统、测量及数采系统、排气冷却器、循环软化水系统、污水系统、蒸气系统、直供水系统、供电与供油系统及通讯指挥系统等,这是 SB101 高空台有史以来投入运行设备最多的一次试验。按照中、俄商定的试验大纲,采用 2 种喷口(固定喷口及可调喷口),4 个对比试验点(H=0,M=0;H=11 km,

燃气涡轮试验与研究 1995年第2期

M=0.7;H=13 km,M=1.0;H=18 km,M=2.05)进行对比试验,按期圆满完成了任务。俄方专家的最终技术报告需到5月份提供。但经初步计算分析,用同一台P11Φ-300发动机(带刚性喷口),不作任何调整,进行对

比试验时,在同一飞行状态、100%换算转速下,SB101和 LL-4H 的发动机飞行推力相对误差小于 2.4%。两个台的其余参数比较见表 4。

表 4 SB101 高空台与 LI-4H 高空台试验结果初步比较(发动机状态:最大状态)

试验状态	比较	净推力 (daN)	耗油率 (kg/daN.h)	空气质量流量 (kg/s)
	SB101	4 023	0. 94	65. 76
H=0.M=0	Ц—4Н	3 988.6	0. 946	65. 30
	误差 %	+0.86	-0.63	+0.70
	SB101	1 190. 65	1.143	22. 971
H=11 km, M=0.7	Ц—4Н	1 181.7	1. 151	23. 10
	误差 %	+0.76	-0.70	-0.56
	SB101	1 077. 3	1. 179	21. 78
H = 13 km, M = 1.0	Ц—4Н	1 080.4	1. 165	21. 65
	误差 %	-0.29	+1.20	+0.60
	SB101	697. 45	1. 662	24. 66
H = 18 km, M = 2.05	Ц—4Н	696. 27	1.666	24. 48
•	误差 %	+0.17	-0.24	+0.74

6 结论

计量标定和 P11Φ-300 发动机的对比试验证明,SB101 高空台可用于模拟飞行条件下的航空燃气涡轮发动机试验。这一结论已

载入由俄罗斯巴拉诺夫 II. 14. 中央航空发动机研究院院长 II. 14. 阿果罗德呢科夫和 IIIIAM 标定委员会主任 B. M. 克林斯基签署 生效的 SB101 高空台标定证书。

本文表 4 数据由杜鹤龄研究员提供,在此表示感谢。