

BEIHANG UNIVERSITY 北京航空航天大學

离散数学-数理逻辑

第二章命题逻辑语义

杜博文

主要内容

- 2.1 命题合式公式语义
- 2.2 推论式与等价式的语义
- 2.3 变换合式公式的语义
- 2.4 命题公式范式
- 2.5 等式演算
- 2.6 完全集

命题逻辑公式的真值

- 对于一个命题逻辑合式公式, 其逻辑真值是什么?
 - 什么情况下为真?
 - 什么情况下为假?
- 一个合式公式与逻辑真值之间的对应关系。

指派函数

- 定义 2.1.1 指派函数(简称指派)是一种从合式公式到集合 $\{0,1\}$ 的函数,记为 σ 。
- σ : $Q \rightarrow \{0, 1\}$

• 定义 2.1.2 设Q是命题变元, σ 是指派,则Q的语义是指定Q的真值(表示 σ 赋给命题变元Q的真值),即 $\sigma(Q) = Q^{\sigma}$,其中 $Q^{\sigma} \in \{0,1\}$ 。

合式公式语义

• 定义2.1.3 设Q,R是命题公式, σ 是指派,合式公式联结词的语义指定为对应的逻辑运算。

- $(1)(\neg Q)$ 是合式公式, $\sigma(\neg Q) = \neg \sigma(Q)$
- $(2)(Q \land R)$ 是合式公式, $\sigma(Q \land R) = \sigma(Q) \land \sigma(R)$
- (3) $(Q \lor R)$ 是合式公式, $\sigma(Q \lor R) = \sigma(Q) \lor \sigma(R)$
- $(4)(Q \rightarrow R)$ 是合式公式, $\sigma(Q \rightarrow R) = \sigma(Q) \rightarrow \sigma(R)$
- (5) $(Q \leftrightarrow R)$ 是合式公式, $\sigma(Q \leftrightarrow R) = \sigma(Q) \leftrightarrow \sigma(R)$
- (6) $(Q \oplus R)$ 是合式公式, $\sigma(Q \oplus R) = \sigma(Q) \oplus \sigma(R)$

合式公式语义

- 合式公式的联结词¬, ∧, ∨, →, ↔, ⊕的语义解 释为对应的逻辑域集合上的运算
- 符号0和1的语义解释为逻辑真值集合上的对象,即 $\{0,1\}$ 。
- 指派将命题变元指定为一个真值,将合式公式中的 联结词变换为对应的逻辑运算,任意命题逻辑合式 公式,经过指派求值运算,可得到对应的一个真值

推论式和等价式语义

■ 定义 2.1.4 (推论式)

若
$$Q$$
, R 是合式公式, $\sigma(Q \models R) = \sigma(Q) \models \sigma(R)$

■ 定义 2.1.5 (等价式)

若Q, R是合式公式,

$$\sigma(Q \Leftrightarrow R) = \sigma(Q) \Leftrightarrow \sigma(R)$$

推论式和等价式的⊨和⇔解释为逻辑域上相应的逻辑关系判断,符号⇔有时也表示为=

命题逻辑公式语义求值

■ \mathbf{M} 2.1.1 求合式公式 $\mathbf{S} = \mathbf{P} \rightarrow (\mathbf{Q} \rightarrow \mathbf{R})$ 的真值。

设指派函数
$$P^{\sigma} = 1, Q^{\sigma} = 1, R^{\sigma} = 0$$
 设指派函数 $P^{\sigma} = 0, Q^{\sigma} = 1, R^{\sigma} = 0$
$$\sigma(P \to (Q \to R))$$

$$= \sigma(P) \to \sigma(Q \to R)$$

$$= \sigma(P) \to (\sigma(Q) \to \sigma(R))$$

$$= \sigma(P) \to (\sigma(Q) \to \sigma(R))$$

$$= \sigma(P) \to (\sigma(Q) \to \sigma(R))$$

$$= P^{\sigma} \to (Q^{\sigma} \to R^{\sigma})$$

$$= P^{\sigma} \to (Q^{\sigma} \to R^{\sigma})$$

$$= 1 \to (1 \to 0)$$

$$= 1$$

在不同的指派情况下,同一个合式公式的真值可能不同。

在不同的指派下,什么情况下同一公式的真值一定相同?

- \mathbf{M} 2.1.2: 求合式公式 $\neg(p \land q) \rightarrow \neg p \lor \neg q$ 真值
- 设 $p^{\sigma}=0$ 或 $q^{\sigma}=0$

$$\sigma(\neg(p \land q) \rightarrow \neg p \lor \neg q)$$

$$= \neg(\sigma(p) \land \sigma(q)) \rightarrow \neg\sigma(p) \lor \neg\sigma(q)$$

$$= \neg(\sigma(p) \land \sigma(q)) \rightarrow 1$$

• 设
$$p^{\sigma}=1$$
且 $q^{\sigma}=1$

$$\sigma(\neg(p \land q) \rightarrow \neg p \lor \neg q)$$

$$= \neg(\sigma(p) \land \sigma(q)) \rightarrow \neg\sigma(p) \lor \neg\sigma(q)$$

$$= \neg 1 \rightarrow 0 \lor 0$$

$$= 1$$

真值表

- 真值表由逻辑变量每种取值组合以及相对应的唯一值列表组成。
 - 每个逻辑变量均有0、1两种取值
 - 按二进制数递增方式排列起来
 - 每个逻辑公式为一列
 - 将对应的逻辑函数值写相应位置上
- 真值表用来定义联结词
- 真值表用来验证合式公式

真值表						
p	q	r	f_0 f_1			
0	0	0	0	1		
0	0	1	1	1		
0	1	0	0	0		
0	1	1	1	1		
1	0	0	1	0		
1	0	1	0	0		
1	1	0	0	0		
1	1	1	1	1		

真值表求公式真值

- \mathbf{M} 2.1.3 求公式 $\neg(\mathbf{q} \wedge \mathbf{r}) \leftrightarrow (\neg \mathbf{q} \vee \neg \mathbf{r})$ 真值
- 首先将公式逐次分解成子公式:

$$q \wedge r, \neg (q \wedge r), \neg q, \neg r, \neg q \vee \neg r$$

■ 最后求得公式 $\neg(q \land r) \leftrightarrow (\neg q \lor \neg r)$ 真值。

q	r	$q \wedge r$	$\neg (q \land r)$	$\neg q$	$\neg r$	$\neg q \lor \neg r$	$\neg (q \land r) \leftrightarrow (\neg q \lor \neg r)$
0	0	0	1	1	1	1	1
0	1	0	1	1	0	1	1
1	0	0	1	0	1	1	1
1	1	1	0	0	0	0	1

- 真值表求合式公式逻辑值有容易、直观的优点。
- 当命题变量较多时,命题变量真值有组合数大,公 式复杂,难以计算等缺点。

11

Python程序赋值函数

- 命题逻辑公式的语义都能够通过程序实现
- 设计Python程序求命题逻辑公式的真值。
- [Q, R]=[0, 0]作为赋值。
- 例 2.1.2 $\dot{\mathbb{R}}(\neg(Q \land R)) \rightarrow ((\neg Q) \lor (\neg R))$

赋值 σ	真值表: 任意赋值σ
$s='(\neg(Q\land R))\rightarrow((\neg Q)\lor(\neg R))'$	import dmath.logic as dml
s='(not(not(Q&R))) ((not Q) (not R))'	s='((not(not(Q&R))) ((not Q) (not
[Q,R]=[0,0]	(R)))'
tv1=eval(s)	dml.truthtable2(s)
[Q,R]=[1,0]	Q R ((not(not(Q&R))) ((not
tv2=eval(s)	Q (not R))'
print(tv1)	0 0 1
print(tv2)	0 1 1
True	1 0 1
True	1 1 1

求语义方法

- 指派函数求真值法
- 真值表求真值法
- Python程序求真值法

命题逻辑是可判定的。

公式的可满足性和有效性

- 定义 2.1.6 设 Q 是公式。
- (1)如果真值指派 σ 使得 $\sigma(Q)=1$,则称 σ 满足Q。
- (2)如果每个真值指派都满足Q,则称Q为有效式,或称为永真式,也称为重言式。
- (3)如果每个真值指派都不满足Q,则称Q为永假式,也称为矛盾式,不可满足式。
- (4)如果至少有一个真值指派满足Q,则称Q为可满足式。

应用*

- 自然语言翻译
- 系统需求规范说明的一致性(无矛盾)
 - "诊断消息存储在缓冲区或者被重传"
 - "诊断消息没有存储在缓冲区"
 - "如果诊断消息存储在缓冲区中,那么它被重传"

P: 诊断消息存储在缓冲区

Q: 诊断消息被重传

上述表示为:

$$P \lor Q, \neg P, P \rightarrow Q$$

若一致,则有 σ 使得

$$\sigma(P \lor Q) = \sigma(\neg P) = \sigma(P \to Q) = 1$$

有: $P^{\sigma}=0$, $Q^{\sigma}=1$

故一致。