LSU Algebra Question Bank Solution

Ayanava Mandal

April 2025

Contents

1	Group Theory	1
2	Ring Theory	3

iv CONTENTS

Chapter 1

Group Theory

G1: Let H be a normal subgroup of a group G, and let K be a subgroup of H.

- (a) Give an example of this situation where K is not a normal subgroup of G,
- (b) Prove that if the normal subgroup H is cyclic, then K is normal in G.

Solution 1. (a) Let $G = S_4$, $H = A_4$, and $K = \{e, (123), (132)\}$.

(b) Let H=< h> be cyclic. Let K=< k> where $k=h^a$ for some $a\in \mathbb{N}$. Since H is normal, $ghg^{-1}=h^b\in H$ for some b. $gkg^{-1}=gh^ag^{-1}=(ghg^{-1})^a=h^{ba}=k^b\in K.$ So, K is normal in G.

G2: Prove that every finite group of order at least three has a nontrivial automorphism.

Solution 2. We will try this in two cases:

Case 1: The group is not abelian. Let $g \notin Z(G)$. Let ϕ_g be the nontrivial automorphism $h \mapsto ghg^{-1}$.

Case 2: The group is abelian. If there is an element of order not equal to 2, the inverse map is a nontrivial automorphism. If every element is of order 2: $G = (\mathbb{Z}/2\mathbb{Z})^n$, where n > 1. Swap 2 elements. \square

- (a) State the structure theorem for finitely generated Abelian group.
- (b) If p and q are distinct primes, determine the number of nonisomorphic Abelian groups of order p^3q^4 .

Solution 3. (a) If G is finitely generated Abelian group, G is isomorphic to $\mathbb{Z}^n \times \mathbb{Z}_{a_1} \times \cdots \times \mathbb{Z}_{a_r}$ where $a_i \mid a_{i+1}, \mathbb{Z}_a = \mathbb{Z}/a\mathbb{Z}$ cyclic group of order a.

(b) Let P(n) be the partition function. The number of nonisomorphic Abelian groups of order $p^3q^4 = P(3)P(4) = 3 \times 5 = 15$.

G4:

Chapter 2

Ring Theory