Министерство науки и высшего образования Российской Федерации

Санкт-Петербургский Политехнический университет Петра Великого
Институт энергетики
Высшая школа энергетического машиностроения

Отчёт по практической работе №1

по дисциплине «Теория автоматического регулирования» «Исследование влияния параметров САР паровой турбины на качество переходных процессов»

Выполнили:	
Студент гр.3231303/21201 п/г 2	 А. К. Дмитриев
Студент гр.3231303/21201 п/г 2	 А. Д. Ярошевич
Принял:	
Доцент ВШЭМ	В. А. Суханов

Реферат

Отчет объемом 17 страниц, содержит две таблицы и 10 рисунков.

В данной практической работе было проведено исследование влияния параметров системы автоматического регулирования (CAP) паровой турбины на качество переходных процессов. Основная цель состояла в анализе изменения переходных процессов при варьировании параметров CAP: постоянные времени ротора, паровой емкости, сервомотора, а также степени неравномерности датчика угловой скорости.

КЛЮЧЕВЫЕ СЛОВА: ПЕРЕХОДНЫЙ ПРОЦЕСС, РОТОР, ПАРОВАЯ ЕМКОСТЬ, СЕРВОМОТОР, СТЕПЕНЬ НЕРАВНОМЕРНОСТИ.

СОДЕРЖАНИЕ

Введение	
1 Описание исследуемой САР и исходные данные	4
2 Система уравнений, описывающих переходные проце	ессы в исследуемой
САР и её перевод в программный вид	5
3 Методика исследования	7
4 Результаты численного моделирования	10
4.1 Варьирование T_a	11
4.2 Варьирование T_{π}	
4.3 Варьирование T_s	
4.4 Варьирование δ_ω	14
5 Анализ результатов численного моделирования	14
Заключение	15
Литерарура	

Введение

Цель работы состоит в исследовании влияния параметров САР на качество переходных процессов и в анализе качества переходных процессов в системе автоматического регулирования (САР) угловой скорости ротора паровой турбины. В ходе исследования использовались классические методы теории автоматического регулирования [1]. Работа проведена с помощью пакетов DifferentialEquations.jl [2] и Makie.jl [3] языка программирования Julia в среде Pluto.

Задача исследования заключается в анализе влияния параметров T_a, T_π, T_s и δ_ω системы автоматического регулирования на качество переходных процессов.

Актуальность исследования заключается в:

- 1. Повышении экономичности процесса получения энергии на электростанциях;
- 2. Улучшении эксплуатационных характеристик систем регулирования турбоагрегатов;
- 3. Значительном увеличение срока службы систем автоматического регулирования турбин САР и повышении их надежности;
- 4. Качественном повышении показателей переходных процессов и быстродействия, снижение стоимости САР и в итоге снижении стоимости вырабатываемой электроэнергии.

1 Описание исследуемой САР и исходные данные

Объектом исследования является система регулирования угловой скорости ротора паровой турбины без промежуточного перегрева пара, принципиальная схема которой изображена на рисунке 1.1.

1 — ротор турбогенератора; 2 — паровая ёмкость между регулирующим клапаном и соплами турбины; 3 — сервомотор; 4 — механизм управления; 5 — управляющий рычаг; 6 — датчик угловой скорости ротора; φ — относительное изменение угловой скорости ротора (величина, характеризующая ошибку регулирования); π — относительное изменение пара перед соплами турбины; ξ — относительное изменение положения регулирующего клапана (или поршня сервомотора); η — относительное изменение положения выходной координаты элемента сравнения; $\nu_{\rm r}$ — относительное изменение нагрузки на генераторе; $\zeta_{\rm My}$ — относительное изменение положения механизма управления

Рисунок 1.1 — Принципиальная схема САР ПТУ

Исходные значения параметров САР указаны в таблице 1.1.

Таблица 1.1 — Значения параметров САР

T_a	T_{π}	T_s	δ_ω
7	0.4	0.7	0.12

2 Система уравнений, описывающих переходные процессы в исследуемой САР и её перевод в программный вид

В работе рассматривается представление САР в виде линейной математической модели в стандартной форме:

$$\begin{cases} T_{a} \cdot \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \pi - \nu_{\mathrm{r}} \\ T_{\pi} \cdot \frac{\mathrm{d}\pi}{\mathrm{d}t} + \pi = \xi \\ T_{s} \cdot \frac{\mathrm{d}\xi}{\mathrm{d}t} + \xi = \eta \\ \eta = -\frac{\varphi}{\delta_{\omega}} + \zeta_{\mathrm{My}} \end{cases}$$
 (2.1)

где T_a — постоянная времени ротора;

 T_{π} — постоянная времени паровой ёмкости;

 T_s — постоянная времени сервомотора;

 δ_{ω} — величина, пропорциональная коэффициенту усиления разомкнутой системы;

 η — относительное изменение положения выходной координаты элемента сравнения;

 φ — относительное изменение угловой скорости ротора турбины и генератора. Характеризует ошибку регулирования;

 π — относительное изменение давления пара в паровой ёмкости;

 ξ — относительное изменение положения регулирующего органа;

 $\zeta_{\text{му}}$ — относительное изменение положения механизма управления турбиной;

 $\nu_{\scriptscriptstyle \Gamma}$ — относительное изменение нагрузки на генераторе.

Эта система уравнений, подготовленная для анализа средствами DifferentialEquations.jl, записана в функции, приведённой на листинге 2.1.

Листинг 2.1 — Функция, описывающая исследуемую САР

```
1
    function simulate system(;
2
        Ta = 7,
3
        T\pi = 0.4
4
        Ts = 0.7,
5
        \delta\omega = 0.12,
6
        vr = t \rightarrow t \ge 2 ? -1 : 0.0,
7
        u0 = [0.0, 0.0, 0.0],
8
        tspan = (0.0, 30.0)
9
10
        function system!(du, u, p, t)
11
             \varphi, \pi, \xi = u
12
             η = -φ / δω
13
             du[1] = (\pi - vr(t)) / Ta
14
             du[2] = (\xi - \pi) / T\pi
15
             du[3] = (\eta - \xi
                                ) / Ts
16
        end
17
18
        prob = ODEProblem(system!, u0, tspan)
        solve(prob, Tsit5(), reltol=1e-6, abstol=1e-6)
19
20 end
```

Рассмотрим листинг 2.1 построчно:

- На строчках 2-9 задаются значения параметров САР $T_a, T_\tau, T_c, \delta_\omega$ согласно выданному варианту, а также закон зависимости внешнего воздействия от времени $\nu_{\scriptscriptstyle \Gamma}(t)$, начальные условия u0 и время симуляции;
- На строчках 10-16 описана собственно исследуемая система;
- На строчке 18 из уравнения, начальных условий и времени симуляции формулируется задача prob для решателя;
- На строчке 19 происходит решение системы уравнений с помощью выбранного решателя Tsit5() и выбранных коэффициентов для него; Результат представляет из себя численную зависимость $\varphi(t)$ для одного режима CAP.

3 Методика исследования

Первым шагом исследования является поиск значений варьируемых параметров, при которых система теряет устойчивость по Ляпунову, то есть не существует $\delta(\varepsilon)$ для любого ε , при котором все величины $\varphi_{t>t_0} \leq \delta(\varepsilon)$. В результате анализа с помощью двухстороннего бинарного поиска получено, что для параметров T_s, T_π и δ_ω таких значений нет, а критическим значением T_a является $T_{a_k}=2.125$, что демонстрирует рисунок 3.1, на котором изображено решение системы уравнений на большом промежутке времени. Видно, что это предельное значение, при котором $\varphi_{t\geq t_0}\leq \delta(\varepsilon)$, при более высоких значениях T_a каждый следующий пик $\varphi(t)$ будет выше предыдущего, то есть не будет существовать $\delta(\varepsilon)$, при котором выполняется условие, а значит система не будет устойчива по Ляпунову.

Рисунок 3.1 — График зависимости $\varphi(t)$ от t при $T_{a_k}=2.125$

Таким образом, можно назначить промежутки для варьирования параметров САР. Для T_s , T_π и δ_ω промежутки произвольного размера назначены симметрично их исходным значениям из соображения наглядности. Для T_a промежуток назначен с учётом T_{a_k} , чтобы продемонстрировать потерю устойчивости системы. Назначенные промежутки указаны в таблице 3.1.

Таблица 3.1 — Назначение промежутков варьирования

Параметр	Исходное значение	Промежуток
T_a	7c	2.125c - 10c
T_{π}	0.4c	0.4c - 1c
T_s	0.7c	0.2c - 0.6c
δ_{ω}	0.12%	0.08% - 0.16%

По итогам варьирования параметров САР и решения системы описывающих её уравнений получены трёхмерные графики в координатах, отражающих зависимость φ от t и варьируемого параметра САР, а также двумерные графики зависимости параметров переходного процесса от варьируемого параметра САР.

Для вычисления установившейся ошибки регулирования φ_0 производится визуальная оценка времени переходного процесса по полученным трёхмерным графикам, после чего берётся значение $\varphi(t)$ при t заведомо больше $t_{\rm m}$. Ответственная за это функция приведена на листинге 3.2.

Листинг 3.2 — Функция для вычисления φ_{∞}

```
1  function compute_static_errors(solutions)
2  static_errors = [sol[1,end] for sol in solutions]
3  end
```

Для поиска времени переходного процесса используется функция, приведённая на листинге 3.3. В ней при обратном ходе по времени происходит поиск значения времени, при котором значение $\varphi(t)$, отличается от φ_0 больше, чем на допуск 5%.

Листинг 3.3 — Функция для вычисления t_{π}

```
function find_settling_time(sol, phi_steady; tolerance=0.05)
2
       times = sol.t
3
       phi_values = sol[1, :]
       lower = phi_steady * (1 - tolerance)
4
5
       upper = phi_steady * (1 + tolerance)
6
7
       # Идем с конца к началу
8
       for i in length(phi_values):-1:1
            if !(lower <= phi values[i] <= upper)</pre>
9
10
                return i < length(times) ? times[i+1] : times[end]</pre>
11
            end
12
       end
13
        return times[1]
14 end
```

Для вычисления максимальной динамической ошибки регулирования φ_{\max} используется функция, приведённая на листинге 3.4. В ней берётся наибольшее по модулю значение φ , так как $\varphi_0=0$.

Листинг 3.4 — Функция для вычисления φ_{\max}

```
1 function compute_dynamic_errors(sol)
2  maximum(abs.(sol[1, :]))
3 end
```

4 Результаты численного моделирования

4.1 Варьирование T_a

На рисунке 4.1 изображён трёхмерный график зависимости $\varphi(t)$ от T_a . На рисунке 4.2 изображены графики зависимости $t_{\rm n}$, $\varphi_{\rm max}$ и φ_{∞} от T_a .

Рисунок 4.1 — График зависимости $\varphi(t)$ от T_a

Рисунок 4.2 — Графики зависимости t_{n} , φ_{max} и φ_{∞} от T_a

4.2 Варьирование T_π

На рисунке 4.3 изображён трёхмерный график зависимости $\varphi(t)$ от T_π . На рисунке 4.4 изображены графики зависимости t_{π} , φ_{\max} и φ_{∞} от T_π .

Рисунок 4.3 — График зависимости $\varphi(t)$ от T_π

Рисунок 4.4 — Графики зависимости t_{n} , φ_{max} и φ_{∞} от T_{π}

4.3 Варьирование T_s

На рисунке 4.5 изображён трёхмерный график зависимости $\varphi(t)$ от T_s . На рисунке 4.6 изображены графики зависимости $t_{\rm II}$, $\varphi_{\rm max}$ и φ_{∞} от T_s .

Рисунок 4.5 — График зависимости $\varphi(t)$ от T_s

Рисунок 4.6 — Графики зависимости $t_{\mathrm{n}},\, \varphi_{\mathrm{max}}$ и φ_{∞} от T_{s}

4.4 Варьирование δ_{ω}

На рисунке 4.7 изображён трёхмерный график зависимости $\varphi(t)$ от δ_ω . На рисунке 4.8 изображены графики зависимости $t_{\rm n}$, $\varphi_{\rm max}$ и φ_∞ от δ_ω .

Рисунок 4.7 — График зависимости $\varphi(t)$ от δ_ω

Рисунок 4.8 — Графики зависимости $t_{\rm n}$, $\varphi_{\rm max}$ и φ_{∞} от δ_{ω}

5 Анализ результатов численного моделирования

Из анализа графиков зависимости времени переходного процесса $t_{\rm n}$ от варьируемых параметров САР следует, что:

- 1. Изменение $t_{\rm n}$ происходит ступенчато, что, как видно из объёмных графиков, связано с «горбами», возникающими при колебаниях и методом определения этой величины, связанной с допуском. Наивысшая точка «горба» находится в его середине, по мере его уменьшения или увеличения сначала проходить допуск будут его крайние точки, но не центр, а с прохождением центра «горба» в допуск в него попадает вся его длина;
- 2. При увеличении T_a и δ_ω величина времени переходного процесса падает, тогда как при увеличении T_s и T_π это значение растёт.

Из анализа графиков зависимости максимальной динамической ошибки регулирования φ_{\max} от варьируемых параметров САР следует, что:

- 1. С ростом T_{π}, T_{s} и δ_{ω} значение динамической ошибки регулирования растёт, тогда как с ростом T_{a} её значение падает;
- 2. При варьировании T_{π}, T_s и δ_{ω} значение максимальной динамической ошибки изменяется линейно, тогда как при варьировании T_a значение изменяется нелинейно. Скорость этого уменьшения уменьшается с ростом T_a .

Из анализа графиков зависимости статической ошибки регулирования φ_{∞} от варьируемых параметров САР следует, что:

- 1. При варьировании параметров T_s и T_π , а также T_a , исключив участок неустойчивости, значение φ_∞ остаётся неизменным и численно равным значению коэффициента обратной связи $\delta_\omega=0.12$;
- 2. С ростом δ_{ω} значение φ_{∞} линейно растёт.

Заключение

По итогам проведения численного моделирования изменения параметров переходного процесса при варьировании параметров САР конденсационной паровой турбины без промежуточного перегрева пара получено, что:

- Для уменьшения времени переходного процесса $t_{\rm n}$ следует увеличивать значения T_a и δ_ω и уменьшать значения T_s и T_π ;
- Для уменьшения максимальной динамической ошибки регулирования φ_{\max} следует увеличивать значение T_a и уменьшать значения T_π, T_s и δ_ω ;
- Для уменьшения статической ошибки регулирования φ_{∞} следует уменьшать величину δ_{ω} ;
- При уменьшении величины постоянной времени ротора T_a система может потерять устойчивость по Ляпунову.

Литерарура

- 1. Егоршин В.П., Маспанов С.Н., Суханов В.А. Теория автоматического регулирования и автоматизация энергетических установок. учеб. пособие. СПб.: Изд-во Политехн. ун-та, 2021.
- 2. Rackauckas C., Nie Q. Differential equations.jl—a performant and feature-rich ecosystem for solving differential equations in julia // Journal of Open Research Software. Ubiquity Press, 2017. т. 5, № 1. с. 15.
- 3. Danisch S., Krumbiegel J. Makie.jl: Flexible high-performance data visualization for Julia // Journal of Open Source Software. The Open Journal, 2021. т. 6, № 65. с. 3349.