Homework 1

Deadline: March 30, 2022

- 1. For any $\mathbf{A} \in \mathbb{S}^n$, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$, prove that $\mathbf{x}^{\top} \mathbf{A} \mathbf{y} = \mathbf{y}^{\top} \mathbf{A} \mathbf{x}$.
- 2. Prove that for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, it turns out that the column rank of \mathbf{A} is equal to the row rank of \mathbf{A} .
- 3. For $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, prove that $\|\mathbf{A}\mathbf{B}\|_F \leq \|\mathbf{A}\|_F \|\mathbf{B}\|_F$.
- 4. Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1, \dots, \lambda_n$ associated with eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ respectively. Prove the following statements
 - (a) $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$
 - (b) $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$
- 5. Prove the SVD always exists for any $\mathbf{A} \in \mathbb{R}^{m \times n}$. (Hint: Using spectral decomposition theorem)
- 6. Given the symmetric matrix

$$\mathbf{N} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\top & \mathbf{D} \end{bmatrix}$$

with non-singular **D** and let $\mathbf{S} = \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{B}^{\top}$. Prove that

- (a) $N \succ 0 \iff A \succ 0 \text{ and } S \succ 0$.
- (b) If $A \succ 0$, then $N \succ 0 \iff S \succ 0$.