Несимметричная проблема собственных значений

Игорь Лобанов

апрель 2021

Случай квадратных комплексных матриц общего вида: $A\in \mathsf{Mat}(n imes n,\mathbb{C}).$

ightharpoonup Собственные числа λ_k суть нули характеристического многочлена:

$$p(\lambda) = \det(A - \lambda) = 0.$$

- ightharpoonup Спектр образован n собственными значениями $\operatorname{spec}(A)=\{\lambda_k\colon k=1\dots n\}\subset\mathbb{C}.$
- ightharpoonup Правый собственный вектор $Ax = \lambda x, x \neq 0.$
- ▶ Левый собственный вектор $y^T A = \lambda y^T$, $y \neq 0$.
- ightharpoonup Вообще говоря $x \neq y$.

- ▶ Пространство S называют инвариантным для A, если $x \in S \Rightarrow Ax \in S$.
- ▶ Правое собственные подпространства инвариантно для A, левое для A^T .
- ightharpoonup Число собственных векторов вообще говоря меньше $n=\dim A$.
- ▶ Алгебраическая кратность λ такое d, что $p(z) = (z \lambda)^d \tilde{p}(z), \ p(\lambda) \neq 0.$
- ightharpoonup Геометрическая кратность λ равна dim ker $(A-\lambda)$.

- Матрицы A и B подобны, если найдется невырожденное X, такое что $B = X^{-1}AX$. Для подобных матриц $\operatorname{spec}(A) = \operatorname{spec}(B)$.
- ▶ Если для матриц $A \in \operatorname{Mat}(n \times n)$, $B \in \operatorname{Mat}(k \times k)$ найдется $X \in \operatorname{Mat}(n \times k)$, то Ran X инвариантно для A и B. Если ran X = k, то spec $B \subset \operatorname{spec} A$.

Теорема (Разложение Шура). Если $A\in {\sf Mat}(n\times n,\mathbb{C})$, то существует унитарная матрица Q, такая что

$$Q^*AQ=T=D+N,$$

где $D=\operatorname{diag}_k\lambda_k$, N — строго верхняя треугольная матрица. Выбором Q собственные значения λ_k можно расположить в любом порядке.

- ► Если $Q = (q_1 | \dots | q_n)$, q_k вектора Шура. q_k правый собственный вектор \Leftrightarrow столбец $N_{\cdot,k}$ равен нулю.
- ► Матрица нормальна, если $A^*A = AA^*$. Матрица нормальна \Leftrightarrow найдется такое Q, что в разложении Шура N = 0.
- Разложение Шура не единственно. Отклонение от нормальности $\|N\|_F^2$ не зависит от Q:

$$||N||_F^2 = ||A||_F^2 - ||D||_F^2.$$

Неунитарные преобразования

Теорема (Блочно-диагональное разложение). Пусть дано разложение Шура с квадратными блоками T_{kk} :

$$Q^*AQ = T = \begin{pmatrix} T_{11} & T_{12} & \dots & T_{1n} \\ 0 & T_{22} & \dots & T_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & T_{nn} \end{pmatrix}.$$

Если spec $T_{kk} \cap$ spec $T_{jj} = \varnothing$ для всех $k \neq j$, то существует невырожденная матрица Y, такая что

$$(QY)^{-1}A(QY)=\operatorname{diag}_k T_{kk}.$$

- Если все собственные числа матрицы А простые, то матрица А подобна диагональной матрице, но матрица подобия общего вида.
- ▶ Блоки T_{kk} можно выбрать так, что все элементы диагонали равны, а сами T_{kk} верхнетреугольные.
- ightharpoonup Жорданова нормальная форма дает такое разложение, где T_{kk} Жордановы клетки.

Теория возмущений.

Теорема (О кругах Гершгорина). Если $X^{-1}AX = D + F$, где $D = \operatorname{diag}_k d_k$ и все элементы диагонали F равны нулю, то

$$\operatorname{spec} A \subset \bigcup_{k=1}^N D_k, \quad D_k = \{z \in \mathbb{C} \colon |z - d_k| \le \sum_{j=1}^n |f_{kj}|\}.$$

Теорема (Бауэр-Файк). Если μ – собственное значение матрицы $A+E\in {\sf Mat}(n\times n,\mathbb{C})$ и $X^{-1}AX={\sf diag}_k\,\lambda_k$, то

$$\min_{\lambda \in \operatorname{spec}(A)} |\lambda - \mu| \le \kappa_p(X) ||E||_p,$$

в любой выбранной p-норме с подходящей константой $\kappa_p(X)$..

Обусловленность собственного значения.

Пусть λ — простое собственное значение матрицы $A\in \mathrm{Mat}(n\times n,\mathbb{C})$ с нормированными собственными векторами $Ax=\lambda x,\ A^Ty=\lambda y,\ x^2=y^2=1.$ Пусть F некоторая матрица возмущения с $\|F\|_2=1.$ Тогда для малого параметра $\epsilon\to 0$ собственное число $\lambda(\epsilon)$ и правый собственный вектор $x(\epsilon)$ возмущенной матрицы аналитически зависят от ϵ :

$$(A + \epsilon F)x(\epsilon) = \lambda(\epsilon)x(\epsilon), \quad x(0) = x, \quad \lambda(0) = \lambda$$

Тогда $\frac{d}{d\epsilon}\lambda(0)\leq \frac{1}{y\cdot x}$. Правую часть неравенства называют обусловленностью собственного значения λ .

- Собственные значения плохо обусловлены, если левые и правые вектора почти ортогональны. Так часто бывает, когда матрица А близка к имеющей кратные собственные значения.
- Чувствительность собственных вектор к возмущению тем больше, чем ближе собственные значения:

$$x_k(\epsilon) = x_k + \sum_{k \neq j} \frac{y_j \cdot Fx_k}{(\lambda_k - \lambda_j)y_j \cdot x_k} x_j(0) + O(\epsilon^2),$$

где $Ax_k=\lambda_k x_k$, а $x_k(\epsilon)$ собственные вектора возмущения $A+\epsilon F$.

Степенной метод.

for
$$k = 1, 2, ...$$
 do
 $z^{(k)} = Aq^{(k-1)}$
 $q^{(k)} = z^{(k)} / ||z^{(k)}||$
 $\lambda^{(k)} = q^{(k)} \cdot Aq^{(k)}$

end for

Алгоритм генерирует последовательность чисел $\lambda^{(k)}$, сходящихся к $|\lambda_1|=\max|\operatorname{spec} A|$. Если $|\lambda_2|<|\lambda_1|$ второе по величине модуля собственное значение A, то скорость сходимости

$$|\lambda^{(k)} - \lambda_1| = O\left(\frac{|\lambda_2|}{|\lambda_1|}\right)^k.$$

Ортогональные итерации.

Пусть $Q_0 \in \mathsf{Mat}(n \times p)$ для $p \neq n$.

$$egin{aligned} & ext{for } k=1,2,\dots ext{ do} \ & Z_k=AQ_{k-1} \ & Q_kR_k=Z_k \ ext{(QR-разложениe)}. \end{aligned}$$
 end for

Упорядочим собственные значения по абсолютной величине:

$$|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|.$$

Матрицы Q_k сходятся к собственному базису в собственном подпространстве, отвечающему числам $\lambda_1,\dots,\lambda_p$. Скорость сходимости пропорциональна $|\lambda_{p+1}/\lambda_p|^k$.