Corso di

Chimica analitica dei materiali

Prof. Enrico Prenesti

Dipartimento di Scienze, progetto e politiche del territorio Viale Pier Andrea Mattioli, 39 - Torino Email: enrico.prenesti@unito.it

Misura del pH

- II pH
- Misura potenziometrica del pH
- Elettrodo a membrana di vetro
- Tamponi pH-metrici
- Applicazioni analitiche

Il valore pratico della misura di pH

La misura del pH è una fase fondamentale per riconoscere le proprietà chimiche di un composto o di una miscela e può aiutare a condurre studi di controllo di qualità su matrici reali.

Esempi di importanza dell misura del pH in diversi campi:

ambientale: controllo delle acque (es. piogge acide, acque reflue)

agroalimentare: controllo di cibi e bevande (es. latte e latticini, vino)

biomedico: analisi chimico-cliniche (es. sangue, urina)

industriale: controllo di processi (es. produzione di coloranti)

La misura del pH più utilizzata è quella con la tecnica potenziometrica ed elettrodo a membrana di vetro.

La cartina tornasole è una tipologia di carta assorbente lavorata in modo tale da essere utilizzata al fine di individuare se una soluzione con cui entra in contatto sia acida, neutra o basica.

La misura del pH

$$pH = -loga_H = -log[H^+] \cdot \gamma_H$$

I metodi di analisi potenziometrica si basano sulla misura del potenziale di celle elettrochimiche in assenza di passaggio di corrente.

Il potenziale assoluto di una semi-cella non può essere misurato e si misura, quindi, solamente il potenziale di una cella intera.

Schema di una cella elettrochimica (pila) per potenziometria:

Elettrodo di riferimento | ponte salino | soluzione da analizzare | elettrodo indicatore

Semi-cella a potenziale noto, costante a temperatura costante e indipendente dalla composizione della soluzione E_j

Setto poroso che previene il mescolamento della soluzione da analizzare con quella interna all'elettrodo di riferimento (j sta per giunzione)

Eind

Elettrodo il cui potenziale varia al variare della concentrazione dell'analita secondo una legge nota

Misura potenziometrica del pH

 E_i = potenziale di giunzione.

È dovuto alla diversa velocità di migrazione degli ioni attraverso il ponte salino. Tende ad annullarsi se cationi e anioni nella soluzione del ponte salino hanno circa la stessa mobilità.

L'elettrodo di RIFERIMENTO più comunemente utilizzato è l'elettrodo ad Ag/AgCl.

Un filo di Ag è immerso in una soluzione satura di KCl e AgCl e la semi-reazione di cella è:

$$AgCl_{(s)} + e^{-} = Ag_{(s)} + Cl^{-} = 0,199 \text{ V a } 25^{\circ}\text{C}$$

Comunica con la soluzione di analita attraverso un setto poroso che consente la migrazione degli ioni (da cui nasce E_j), ma impedisce il mescolamento della soluzione di riempimento dell'elettrodo con la soluzione esterna.

Per la misura del pH, l'elettrodo indicatore è un ELETTRODO A MEMBRANA DI VETRO.

Elettrodi iono-selettivi

Elettrodo a membrana di vetro

All'interno dell'elettrodo a vetro è contenuto un elettrodo di riferimento ad Ag/AgCl/Cl- che pesca nella soluzione di riferimento di HCl 0,1 M saturata con AgCl. La membrana di vetro separa la soluzione interna da quella esterna. Il circuito è chiuso da un secondo elettrodo di riferimento immerso nella stessa soluzione a pH incognito tramite un ponte salino. La differenza di potenziale misurata è quella tra l'elettrodo di riferimento interno e quello esterno. Tale d.d.p. dipenderà principalmente dalla differente concentrazione degli ioni H+ fra la soluzione interna di HCl e la soluzione a pH incognito in cui si immerge l'elettrodo.

Membrana di vetro sensibile alla concentrazione degli ioni H+

Soluzione acquosa di riempimento: HCl 0,1 M saturata con AgCl

Membrana di vetro e suo potenziale

Il contatto elettrico tra le due soluzioni è assicurato dallo "spostamento" essenzialmente degli ioni monovalenti dello strato anidro centrale

La membrana di vetro

Per i vetri sodio-silicati la conducibilità deriva proprio dagli ioni sodio che si spostano da una posizione interstiziale all'altra.

La membrana di vetro

La bontà di un elettrodo a vetro è determinata essenzialmente dalle proprietà della membrana di vetro. Si tratta di un vetro silicato (un materiale amorfo) composto da una rete tridimensionale di gruppi silicici tetraedrici (come ordine a corto raggio).

Negli interstizi ci sono cationi che bilanciano le cariche negative degli ossigeni. Se i CATIONI sono MONOVALENTI, come Li⁺ e Na⁺, si crea una MOBILITÀ IONICA.

Gli ioni alcalini (Na+) diffondono dal vetro nella soluzione test mentre gli ioni H+ della soluzione diffondono nella sottile parte idratata del vetro.

Quando degli ioni diffondono tra due zone a diversa attività c'è una variazione dell'energia libera che viene sfruttata dal pH-metro per la misura.

Lo strato gel della membrana

The Gel Layer

- The glass has a lithium silicate skeleton that forms a thin hydrated layer on both sides of the membrane.
- Ions can penetrate this thin layer and alter the electrochemical potential.
- Without the hydrated layer no pH measurements would be possible
- The structure of the glass has been optimised so that virtually only H⁺ ions can enter the gel layer

Elettrodo di vetro combinato

La cella di misurazione può essere congegnata in modo tale che l'elettrodo di riferimento sia contenuto nello stesso corpo dell'elettrodo a vetro: in tal caso, l'elettrodo a vetro risultante si denomina COMBINATO e la misurazione avviene immergendo nella soluzione da misurare il solo elettrodo combinato.

Foro di riempimento per rabboccare la soluzione di KCl dell'elettrodo di riferimento esterno

Elettrodi Aq/AqCl

Filo di Ag

Connessione al potenziometro

Soluzione acquosa di riempimento HCl 0,1 M saturata con AgCl

Setto poroso

11

Membrana di vetro sensibile alla concentrazione degli ioni H+

La misura di pH è una misura potenziometrica diretta: il valore di pH di una soluzione test è dato dal confronto tra il potenziale letto sul tale soluzione (incognita) e il potenziale di soluzioni di riferimento a concentrazione nota dell'analita (H⁺).

La **definizione operativa** di pH è stata stabilita dal *National Institute of Standards and Technology* (NIST) e dalla IUPAC (*International Union of Pure and Applied Chemistry*). Si basa sulla **calibrazione diretta** del pH-metro con **tamponi pH-metrici standard** attentamente prescritti, seguita dalla determinazione potenziometrica del pH delle soluzioni incognite.

Il pH di una soluzione è in relazione col valore di potenziale letto dal potenziometro secondo

l'equazione di Nernst:

$$E_{ind} = L + 0.0592 \cdot \log a_{H+}$$
 a 25 °C

Dunque: $E_{ind} = L - 0.0592 \cdot pH$

Questa equazione si combina con:

$$E_{\text{cella}} = E_{ind} - E_{ref} + E_{j}$$

$$L = L' + E_{refint} + E_{asim}$$

$$L' = -0.0592 \cdot \log a_2$$

dove a_2 = è l'attività dello ione H⁺ interno all'elettrodo, dunque è un valore costante.

E_{asim} è un potenziale che dipende da piccole differenze tra la parete interna e quella esterna della membrana di vetro. È un parametro che **cambia nel tempo** con l'utilizzo dello strumento (è un problema per la qualità)?

$$E_{\text{cella}} = E_{ind} - E_{ref} + E_{j}$$

Poiché si ha: $E_{ind} = L - 0.0592 \cdot pH$

$$E_{\text{cella}} = L - 0.0592 \cdot \text{pH} - E_{ref} + E_{j}$$

$$E_{\text{cella}} = L - E_{ref} + E_j - 0,0592 \cdot \text{pH}$$

K è un potenziale che dipende dall'apparato che si sta utilizzando e che non si mantiene costante nel tempo perché dipende da L, che è legato al potenziale di asimmetria. Dunque, per poter tradurre il valore di potenziale, letto su una soluzione test, in un valore di pH corretto è necessario tarare lo strumento per determinare K almeno giornalmente.

Il pH di una soluzione è in relazione col valore di potenziale letto dal potenziometro secondo l'equazione di Nernst:

$$E = K - 0.0592 \cdot pH$$
 a 25 °C

da cui si ricava:

$$pH = (E - K) / (-0.0592) = (K - E) / 0.0592$$

Procedura pratica per la misura di pH (deriva dalla definizione operativa del pH data dal NIST).

TARATURA A UN PUNTO

pH = (E - K) / (-0.0592) si assume valida la pendenza nernstiana a 25 °C

Soluzione standard: $pH_S = (E_S - K) / (-0.0592)$

Soluzione campione: $pH_U = (E_U - K) / (-0,0592)$ U = Unknown

 $pH_{II} = pH_{S} - [(E_{II} - E_{S}) / 0.0592]$

TARATURA A DUE PUNTI

Soluzione standard 1: $pH_{S1} = (E_{S1} - K) / s$

Soluzione standard 2: $pH_{S2} = (E_{S2} - K) / s$

 $s = (E_{S1} - E_{S2}) / (pH_{S2} - pH_{S1})$ s = slope = pendenza sperimentale

Soluzione campione: $pH_U = pH_{S1} - [(E_U - E_{S1}) / s]$

L'elettrodo per la misura del pH, collegato al potenziometro, è immerso nel tampone pH-metrico commerciale di riferimento, lo strumento registra il valore di potenziale letto e lo associa al valore di pH impostato.

Si ripete l'operazione per il secondo tampone di riferimento (per la taratura a due punti).

Si legge il valore di pH della soluzione incognita.

Tutte le soluzioni devono essere mantenute in agitazione e bisogna attendere un tempo sufficiente affinché il segnale strumentale sia stabile.

Ricordare che il valore di pH delle soluzioni è funzione della temperatura, perché il valore di γ_H dipende da T (termostatare aumenta la qualità).

$$pH = -loga_H = -log[H^+] \cdot \gamma_H$$

Un'unità di pH generalmente produce una differenza di potenziale di circa 0,059 V.

Applicazioni analitiche del pH

- 1) Misura potenziometrica diretta dell'attività dello ione H+: misura del pH.
- **2) Titolazioni potenziometriche**: si definiscono pH-metriche quando è utilizzato l'elettrodo a membrana di vetro.

Nelle titolazioni pH-metriche si segue una procedura di titolazione acido-base riportando i valori di potenziale (mV) o di pH in funzione del volume di titolante aggiunto. La procedura di titolazione fornisce dati più attendibili rispetto alla titolazione eseguita con indicatore chimico, ma la procedura è più lunga, anche se automatizzabile.

L'informazione che si ottiene dalla misura diretta del pH è assai diversa da quella che si ottiene da una titolazione pH-metrica.

Esempio

La misura del pH di una soluzione 0,001 M di HCl darà una risposta diversa rispetto a quella di una soluzione 0,001 M di acido acetico, mentre titolando le due soluzioni si ottengono punti equivalenti a uguali volumi di titolante.

