5

10

15

20

25

30

35

21PKG

514 Rec's

METHOD AND EQUIPMENT FOR ATTENUATING SOUND IN A DUCT

BACKGROUND OF THE INVENTION

The invention relates to a method for attenuating sound in a duct, the sound to be attenuated being detected in the method by means of a detector and the attenuation being performed by means of two successive actuator elements.

The invention also relates to an equipment for attenuating sound in a duct, the equipment comprising a detector for detecting the sound to be attenuated and two successive actuator elements for producing a sound attenuating counter-sound.

One of the methods presented for attenuating sound in ducts is a method known as the Swinbanks method, in which an attenuation sound is produced by means of two successive elements. Both elements produce a volume velocity of an equal amplitude, the volume velocities being, however, of opposite phases. In addition, to the element that is first in the direction of propagation of the sound to be attenuated is caused a delay proportional to the distance between the elements. A unidirectional, radiating element is thereby obtained, i.e. no acoustic feedback is caused to the detector measuring the sound to be attenuated. Instead, a signal is generated that only attenuates forward the sound of the sound source to be attenuated. To digitally implement inter-channel delay in different elements occupies, however, a great amount of signal processing resources, which means that the equipment to be used must have an extensive capacity and/or the processing time becomes inconveniently long.

An object of the present invention is to provide a method and an equipment that will allow the advantages of the above mentioned method to be obtained, avoiding, however, the above disadvantages.

A method of the invention is characterized in that sound is attenuated by means of two successive monopole elements in such a way that both elements function as a dipole approximation and also produce a monopole radiation needed, a dipole control signal being fed to both elements at a phase shift which is 180° between the two elements and a monopole control signal being fed to the elements cophasally.

Further, an equipment of the invention is characterized in that the actuator elements are monopole elements which are arranged to function as a dipole approximation and to also produce the monopole radiation needed and that the equipment comprises means for feeding the dipole control signal to both elements at a phase shift which is 180° between the two elements and for feeding a monopole control signal to the elements cophasally.

An essential idea of the invention is that sound is attenuated by means of two successive monopole elements in such a way that both elements function as a dipole approximation and that, in an equal manner, they are also used for approximatively producing the monopole radiation needed. The dipole control signal is fed to both elements at a phase shift which is 180° between the two elements. The monopole control signal is also fed to the same elements, only this time cophasally. Total volume velocities produced by both elements are combinations of the portions obtained from the monopole and dipole sources. An idea of a preferred embodiment is that control signals are specified by means of suitable control functions.

An advantage of the invention is that the equipment does not produce acoustic feedback between an actuator and the detector, because the equipment provides a unidirectional signal. In addition, the equipment is simple and in the control system of the equipment there is no inter-channel delay in the different elements, so when the equipment is used it is possible to apply simple algorithms and short processing times, while maintaining at the same time a good performance level. The use of control functions for specifying and correcting control signals allows an almost ideal system functionality to be obtained also at higher frequencies.

The term 'duct' is used in the present application to refer to a duct or a conduit, or the like, in which sound propagates substantially in only two directions at frequencies low enough.

The invention will be described in greater detail in the attached drawings, in which

Figure 1 is a schematic side view, in section, of an equipment of the invention;

Figure 2 is a diagram illustrating a control system of the invention;

Figure 3 illustrates a control function of a dipole part; and

Figure 4 illustrates a control function of a monopole part.

Figure 1 shows a duct 1. Sound appearing in the duct 1, caused by a sound source, is depicted with an arrow A. At a point x = -L is arranged a detector 2 which is used for detecting the sound caused by the sound source. In the direction of sound propagation, a first actuator element 3 is placed after

sul-BI)

15

10

5

20

30

ins B2>

B B Bart B B Gart House Bree Bart B Bart B B.

D

ŧħ

10

ins 337

35

5

10

15

25

the detector 2 at a point x = -d/2 and a second actuator element 4 is placed after the first one at a point x = +d/2, the actuator elements 3 and 4 being at a distance d from each other. The actuator elements 3 and 4 are monopole elements, therefore they do not impede the flow of a medium in the duct 1. Figure 1 also schematically shows control means 5 for controlling actuator elements 3 and 4 on the basis of a signal received from the detector 2.

The first actuator element 3 produces a volume velocity q_1 and the second actuator element 4 produces a volume velocity q_2 . Both actuator elements 3 and 4 function as a dipole approximation in such a way that a dipole control signal is fed to both elements 3 and 4 at a phase shift which is 180° between the two elements. In addition, a monopole control signal is fed to both elements 3 and 4, only this time cophasally. The total volume velocities q_1 and q_2 produced by the elements 3 and 4 are combinations of the portions obtained from monopole and dipole sources.

The volume velocity q_i describes the sound produced by the sound source at a point x = 0, the volume velocity q_i being proportional to the original sound pressure p_1 such that

$$p_1S$$
20
 $q_1 = \frac{1}{\rho_0 c_0}$

where S is the cross-sectional area of the duct, ρ_0 is the density of the medium in a static state and c_0 is the sound velocity in the medium.

The control signals of the actuator elements 3 and 4, i.e. the total volume velocities they produce, are

$$q_1 = \frac{1}{2}(\frac{1}{i}kd - \frac{1}{2})q_{ij} x = -\frac{d}{2}$$

30 and

$$q_2 = -\frac{1}{2}(\frac{1}{jkd} + \frac{1}{2})q_i$$
, $x = +\frac{d}{2}$,

where

j is an imaginary unit; k is a wave number = $ω/c_0$;

4

 ω is an angular frequency; c_0 is sound velocity in a medium; and q_i is the original sound pressure to be attenuated, located at the point x=0 and converted to a volume velocity quantity.

In the volume velocity expressions, the first parts relate to dipole radiation and the latter parts to monopole radiation.

The above described total volume velocities attenuate the sound produced by a sound source in the direction of propagation of the sound, and the actuator elements 3 and 4 do not radiate against the direction of sound of the sound source. At higher frequencies, however, the system does not function ideally, due to the approximative nature of the monopole and dipole radiation. Errors produced by the approximations can be compensated by means of suitable control functions. A dipole control function denoted by a quantity a and a monopole control function denoted by a quantity b allow the following total volume velocities to be obtained:

$$q_1 = \frac{1}{2}(a)jkd - b/2)q_i, x = -d/2,$$

20

15

5

10

and

$$q_2 = -\frac{1}{2}(a/jkd + b/2)q_i$$
, $x = +d/2$.

25

The control system of the actuator elements 3 and 4 is shown as a diagram in Figure 2. In Figure 2 a quantity q_L denotes a signal measured by the detector 2, the signal being converted to a volume velocity quantity, and a delay τ_L denotes the time required for sound to propagate from the detector point x=-L to the actuator system centre x=0, i.e. $\tau_L=L/c_0$, where c_0 denotes sound velocity in the medium. The delay in question can be estimated and implemented by means of an adaptive filter. In the embodiment shown in Figure 2 the imaginary unit j is replaced with an integrator, which allows the previously needed 90° phase shift and also the singularity of the control function at the frequency 0 to be avoided.

35

30

Errors produced by the approximations can be corrected for instance by applying the following dipole part control function

kd/2 a = ____ sin(kd/2)

5

and the following monopole part control function

10

15

20

25

A graph illustrating the dipole part control function a is shown in Figure 3 and a graph illustrating the monopole part control function b is shown in Figure 4. A quantity λ in Figures 3 and 4 denotes wave length. Monopole control is singular when d = $\lambda/2$. The continuous frequency area available is thus restricted to a frequency corresponding to the wave length in question.

The drawings and the related description are only meant to illustrate the inventive idea. The details of the invention may vary within the scope of the claims. An arrangement of the invention can thus also be used in a detector implementation. The most ideal function of an arrangement of the invention is obtained when the frequency is sufficiently low, ensuring that sound propagates only in a plane wave form only in the duct. The duct is most advantageously sufficiently long, so as to ensure that reflections from the duct ends do not affect the final result. In addition, the walls of the duct are most advantageously so hard that duct wall impedance need not to be taken into account. Further, the medium in the duct is most advantageously homogenous and motionless, sound velocity being equally high at every point of the duct and not dependent on the direction of sound propagation. Further, the medium is most advantageously so ideal that viscosity or thermal loss do not affect the final result.

30