Introduction to Quantum Mechanics

Haoyu Zhen

June 3, 2022

Contents

The	e Wave Function 2
Tin	ne-independent Schrodinger Equation 3
2.1	Stationary states
2.2	The infinite square well
2.3	The harmonic oscillator
	2.3.1 Algebraic method
	2.3.2 Analytic method
2.4	The Free Particle
For	rmalism 8
3.1	Gerneralized Statistical Interpretation
3.2	Uncertainty Principle
•	antum Mechanics in Three Dimensions 9
4.1	The schrodinger Equation
	4.1.1 The angular Equation
	4.1.2 The Radial Equation
4.2	The Hydrogen Atom
4.3	Angular Momentum
4.4	Spin
Mis	SC 12
5.1	Before Schrodinger
	5.1.1 Black Body Radiation
	5.1.2 Photoelectric Effect
	5.1.3 Compton effect
	5.1.4 Bohr Model
5.2	Probability current
5.3	Two-state Quantum System
5.4	Famous Experiments

Acknowledgement

These Notes contain material developed and copyright by:

- Introduction To Quantum Mechanics, © the third edition by David J. Griffiths.
- $\mathit{Quantum\ Mechanics},$ © Zhiguo Lv, Shanghai Jiao Tong University.
- Slides of PHY1253-8, © Shiyong Liu, Shanghai Jiao Tong University.

1 The Wave Function

What we are looking for is the wave function Ψ .

Law 1.1 (Schrodinger Equation).

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi.$$

For simplicity, we always rewrite it as:

$$i\hbar\partial_t\Psi = -\frac{\hbar^2}{2m}\partial_x^2\Psi + V\Psi.$$

Born's statistical interpretation:

 $\int_a^b |\Psi(x,t)|^2 \, \mathrm{d}x = \text{probability of finding the particle between } a \text{ and } b \text{ at time } t.$

Law 1.2 (Normalization).

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 \, \mathrm{d}x = 1.$$

Proposition 1.1. The wave function will always stay NORMALIZED.

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} \left| \Psi(x,t) \right|^2 \mathrm{d}x = 0.$$

Proof. By Schrodinger EQ.,

LHS =
$$\frac{i\hbar}{2m} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) \Big|_{-\infty}^{+\infty}$$
.

Definition 1.1.

$$\langle x \rangle \stackrel{def}{=} \int_{-\infty}^{\infty} x |\Psi|^2 dx$$

and

$$\langle p \rangle \stackrel{def}{=} m \frac{\mathrm{d} \langle x \rangle}{\mathrm{d}t}.$$

Theorem 1.1.

$$\langle x \rangle = \int \Psi^*(x) \Psi \, \mathrm{d}x$$

and

$$\langle p \rangle = \int \Psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \Psi \, \mathrm{d}x.$$

Remark 1.1 (Operator). We say that the operator x represents position, and the operator $-i\hbar \partial/\partial x$ represents momentum. Also,

$$\langle Q(x,p)\rangle = \int_{-\infty}^{\infty} \Psi^* \left[Q(x,-i\hbar \frac{\partial}{\partial x}) \right] \Psi \, \mathrm{d}x.$$

Property 1.1. Operators do **NOT**, in general, commute. For example, $\hat{x}\hat{p} \neq \hat{p}\hat{x}$, i.e.,

 \exists a function f, s.t. $(\hat{x}\hat{p})f \neq (\hat{p}\hat{x})f$.

Theorem 1.2 (de Broglie formula). The wave length is related to the momentum of the particle:

$$p = \frac{h}{\lambda} = \frac{2\pi\hbar}{\lambda}.$$

Theorem 1.3 (Heisenberg's uncertainty principle).

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}.$$

2 Time-independent Schrodinger Equation

2.1 Stationary states

We look for solutions that are simple products,

$$\Psi(x,t) = \psi(x)\varphi(t).$$

Theorem 2.1. By the method of separation of variables,

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + V\psi = E\psi$$

and

$$\varphi(t) = e^{-iEt/\hbar}.$$

The first is called the **time-independent Schrodinger equation**.

Definition 2.1 (Hamiltonian). In classical mechanics, the total energy (kinetic plus potential) is called Hamiltonian:

$$H(x,p) = \frac{p^2}{2m} + V(x).$$

Now we introduce Hamiltonian operator:

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x).$$

Thus the time-independent Schrodinger EQ. can be written

$$\hat{H}\psi = E\psi$$

which is **IMPORTANT**.

Remark 2.1. Intriguingly and intuitively,

$$\langle H \rangle = E.$$

Also, if the equation yields an infinite collection of solutions $(\psi_1(x), \psi_2(x), \cdots)$, each with its associated value of the separation constant $(E1, E2, \cdots)$; thus the wave function is:

$$\Psi(x,t) = \sum_{n=1}^{+\infty} c_n \psi_n(x) e^{-iE_n t/\hbar}.$$

Particularly,

$$E_n \geq 0$$
 for all n

2.2 The infinite square well

Suppose

$$V(x) = \begin{cases} 0 & \text{if } 0 \le x \le a \\ \infty & \text{otherwise} \end{cases}.$$

Theorem 2.2. Inside the well, we have

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

and

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right).$$

Property 2.1. $\psi_n(x)$ has some interesting and important porperties:

- 1. They are alternately even and odd, with the respect to the center of the well.
- 2. They are mutually orthogonal (i.e., $\int \psi_m(x)^* \psi_n(x) dx = \delta_{mn}$) where δ_{mn} is **Kronecker delta**:

$$\delta_{mn} = \begin{cases} 0, & \text{if } m \neq n \\ 1, & \text{if } m = n \end{cases}.$$

3. They are complete by Dirichlet's theorem.

2.3 The harmonic oscillator

Let

$$V(x) = \frac{1}{2}m\omega^2 x^2.$$

Here I will introduce 2 entirely different approaches to this problem. The first is a diabolically clever algebraic technique and the second is a straitforward "brute force" solution.

2.3.1 Algebraic method

To begin with, let's rewrite the EQ. in a more suggestive form:

$$\frac{1}{2m} \left[\left(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} \right)^2 + \left(m\omega x \right)^2 \right] \psi = E\psi.$$

The idea is to factor the term in square brackets:

$$u^{2} + v^{2} = (u - iv)(u + iv).$$

Definition 2.2 (Ladder operator).

$$\hat{a}_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}} (\mp i\hat{p} + m\omega x).$$

Definition 2.3 (Commutator). The commutator of operators \hat{A} and \hat{B} is

$$\left[\hat{A}, \hat{B}\right] \stackrel{def}{=\!\!\!=\!\!\!=} \hat{A}\hat{B} - \hat{B}\hat{A}.$$

Property 2.2.

$$[\hat{a}_{-}, \hat{a}_{+}] = 1.$$

Theorem 2.3. If ψ satisfies the Schrodinger's EQ. with energy E, then $\hat{a}_+\psi$ satisfies the Schrodinger's EQ. with energy $E + \hbar\omega$:

$$\hat{H}\psi = E\psi \Longrightarrow \hat{H}(\hat{a}_+\psi) = (E + \hbar\omega)(\hat{a}_+\psi).$$

Similarly,

$$\hat{H}\psi = E\psi \Longrightarrow \hat{H}(\hat{a}_-\psi) = (E - \hbar\omega)(\hat{a}_-\psi).$$

Proof.

$$\hat{H} = a_+ a_- + \frac{1}{2}\hbar\omega.$$

Here, then, is a wonderful machine for generating new solutions—if we could just find one solution. Thus, we call \hat{a}_+ raising operator and \hat{a}_- lowering operator.

But what if I apply the lowering operator **repeatly**? We will reach a state with energy less than zero. By 2.1, there is **NO** guarantee that it will be normalized.

Proposition 2.1. Thus, there occurs a "lowest rung" ψ_0 such that

$$\hat{a}_{-}\psi_{0}=0.$$

Theorem 2.4.

$$\psi_0(x) = A_0 e^{-m\omega/2\hbar x^2}$$

and

$$E_0 = \frac{1}{2}\hbar\omega.$$

Thus we could get

$$\psi_n(x) = A_n(a_+)^n e^{-m\omega/2\hbar x^2}$$
, with $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$

where A_n are used for normalization.

Theorem 2.5. ψ_n and ψ_{n+1} should satisfy:

$$\begin{cases} a_+\psi_n = i\sqrt{(n+1)\hbar\omega} \\ a_-\psi_n = -i\sqrt{n\hbar\omega}\psi_{n-1} \end{cases}.$$

Proof.

$$\int_{-\infty}^{\infty} |a_+ \psi_n|^2 dx = (n+1)\hbar\omega$$

and

$$\int_{-\infty}^{\infty} |a_{-}\psi_{n}|^{2} \, \mathrm{d}x = n\hbar\omega.$$

Ultimately,

$$A_n = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{(-i)^n}{\sqrt{n!(\hbar\omega)^n}}.$$

2.3.2 Analytic method

Things look a little cleaner if we introduce the dimensionless variables

$$\xi = \sqrt{\frac{m\omega}{\hbar}}x$$
 and $K = \frac{2E}{\hbar\omega}$.

In terms of ξ and K, the Schrodinger equation reads

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}\xi^2} = (\xi^2 - K)\psi.$$

To begin with, consider that at very large ξ , ξ^2 completely dominates over the constant K, so in this regime $\mathrm{d}^2\psi/\mathrm{d}\xi^2=\xi^2\psi$, which means that $\psi\Longrightarrow Ae^{\xi^2/2}+Be^{-\xi^2/2}$. Thus we let $\psi=h(\xi)e^{-\xi^2/2}$. Plugging ψ into Schordinger EQ., we have

$$h(\xi) = \sum_{n=0}^{\infty} a_n \xi^n$$
 and $a_{n+2} = \frac{2n+1-K}{(n+1)(n+2)}$.

For physically acceptable solutions (normalizable solutions), then, we must have K = 2n + 1. Finally,

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2}$$

where H_n is the **Hermite polynomials**.

-2

0

2

4

6

1 0.4 0.8 0.2 0.60 0.4-0.20.2-0.40 -22 0 2 -20 1 4 2 0 0 -1-2

The first four stationary states of the harmonic oscillator are as follows.

2.4 The Free Particle

-2

We turn next to what should have been the simplest case of all: the free particle. The time Schrodinger Eq. reads:

-6

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} = E\psi.$$

Let $k \equiv \sqrt{2mE/\hbar}$, we have

$$\Psi_k(x,t) = Ae^{i(kx-\hbar k^2t/2m)}.$$

Remark 2.2. The speed of these waves is:

0

2

$$v_{\rm quantum} = \sqrt{E/2m} = 0.5 v_{\rm classical}$$

And

$$\int_{-\infty}^{\infty} \Psi_k^*(x,t) \Psi_k(x,t) \, \mathrm{d}x = +\infty,$$

which means that a free particle cannot exist in a stationart state.

Haoyu Zhen 3 FORMALISM

Theorem 2.6. The general solution to the time-independent Schrodinger EQ. is still a linear combination of separable solutions:

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \hbar k^2 t/2m)} dk.$$

Now this wave function can be normalized for appropriated $\phi(k)$. We call it a wave packet.

Definition 2.4 (phase velocity and group velocity). For the wave function:

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \omega t)} \, \mathrm{d}k.$$

We define:

$$v_{\mathrm{phase}} = \frac{\omega}{k}, \ v_{\mathrm{group}} = \frac{\mathrm{d}\omega}{\mathrm{d}k}.$$

3 Formalism

3.1 Gerneralized Statistical Interpretation

First we assume the spectrum of the wave funtion is discrete, we have

$$\langle Q \rangle = \sum_{n'} \sum_{n} c_{n'}^* c_n q_n \langle f_{n'} | f_n \rangle = \sum_{n} |c_n|^2 q_n$$

where q_n is the eigenvalue of operator \hat{Q} and $\Psi(x,t) = \sum_n c_n(t) f_n(x)$. What about momentum?

$$\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) dx$$

and

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Phi(p,t) dp.$$

3.2 Uncertainty Principle

Theorem 3.1 (generalized uncertainty principle).

$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} \left\langle \left[\hat{A}, \hat{B}\right] \right\rangle \right)^2.$$

How to interpret Δt ?

Definition 3.1.

$$\Delta t \equiv \frac{\sigma_Q}{|\operatorname{d}\langle Q\rangle/\operatorname{d}t|},$$

where

$$\frac{\mathrm{d}\langle Q\rangle}{\mathrm{d}t} = \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{Q} \right] \right\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle.$$

I recommend you to learn Hilbert space and Dirac notation.

4 Quantum Mechanics in Three Dimensions

4.1 The schrodinger Equation

The generalization oto three dimensions is straitforward.

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi$$

where

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

is the **Laplacian**. Also the normalization conditions reads $\int \Psi d^3 \mathbf{r} = 1$. If V is independent of time, there will be a complete set of stationary states

$$\Psi_n(\mathbf{r},t) = \psi_n(\mathbf{r})e^{-iE_nt/\hbar}$$

Now we adopt spherical coordinates

Lemma 4.1 (Laplacian in spherical coordinates).

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right).$$

If $\Psi = R(r)Y(\theta, \phi)$ and $Y = \Theta(\theta)\Phi(\phi)$, we could separate r, θ and ϕ into three equations with important separation constants.

4.1.1 The angular Equation

The ϕ equation is easy

$$\frac{\mathrm{d}^2 \Phi}{\mathrm{d}\phi^2} = -m^2 \Phi \implies \Phi = e^{im\phi}.$$

When ϕ advances by 2π , we return to the same point in space, so it is natural to require that $\Phi(\phi+2\pi) = \Phi(\phi)$. From this it follows that m must be an integer:

$$m = 0, \pm 1, \pm, 2, \cdots$$

The θ equation reads

$$\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) + \left[l(l+1)\sin^2\theta - m^2\right]\Theta = 0.$$

Lemma 4.2 (Legendre function). The solution of Θ is

$$\Theta(\theta) = AP_l^m(\cos\theta).$$

where

$$P_l^m(x) \triangleq (-1)^m (1-x^2)^{m/2} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^m P_l(x)$$

is the associated Legendre function, defined by the Rodrigues formula

$$P_l(x) \triangleq \frac{1}{2^l l!} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^l (x^2 - 1)^l.$$

Remark 4.1. Notice that l must be a non-negative integer, for Rodrigues formula to make sense; moreover, if m > l, we cwill have $P_l^m(x) = 0$. For any given l, then there are 2l + 1 possible values of m:

$$l = 0, 1, 2 \cdots$$
 and $m = -l, -l + 1, \cdots, l - 1, l$.

By normalization condition

$$\int_0^{\pi} \int_0^{2\pi} |Y|^2 \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi = 1,$$

we deduce that

$$Y_{l}^{m}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} e^{im\phi} P_{l}^{m}(\cos\theta)$$
(4.1)

4.1.2 The Radial Equation

Theorem 4.1 (Radial equation).

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[V + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu$$

where $u(r) \equiv rR(r)$.

Remark 4.2 (Effective potential).

$$V_{\text{eff}} = V + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}$$

and the latter term is the so-called **centrifugal potential**.

4.2 The Hydrogen Atom

The radical equation says:

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[-\frac{e^2}{4\pi\varepsilon_0 r} + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu.$$

To tidy up the notation, let

$$\kappa = \frac{\sqrt{-2mE_e}}{\hbar}, \quad \rho = \kappa r \quad \text{and} \quad \rho_0 = \frac{m_e e^2}{2\pi\varepsilon_0 \hbar^2 \kappa}$$

so that

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = \left[1 - \frac{\rho_0}{\rho} + \frac{l(l+1)}{\rho^2}\right] u.$$

Intuitively, $(d^2u/d\rho^2 = u$ when $\rho \to +\infty$ and $d^2u/d\rho^2 = ul(l+1)/\rho^2$ when $\rho \to_0$

$$u(\rho) = \rho^{l+1} e^{-\rho} v(\rho).$$

Now we assume the solution, $v(\rho)$, can be expressed as a power series in ρ :

$$v(\rho) = \sum_{j=0}^{+\infty} c_j \rho^j.$$

Plugin it into the radical equation

$$c_{j+1} = \left\{ \frac{2(j+l+1) - \rho_0}{(j+1)(j+2l+2)} \right\} c_j.$$

Theorem 4.2. The series must terminate. I.e., $\exists N \in \mathbb{N}, c_N = 0$, which means

$$2(N+l) - \rho_0 = 0.$$

Proof. For large j, the recursion formula says

$$c_{j+1} \approx \frac{2}{j+1} c_j \implies c_{j+1} \approx \frac{2^j}{j!} c_0.$$

Then

$$v(\rho) = c_0 e^{2\rho}$$
 and $u(\rho) = c_0 \rho^{l+1} e^{\rho}$

which could not be **NORMALIZED**.

Theorem 4.3 (Bohr Formula & Radius).

$$E_n = -\left[\frac{m_e}{2\hbar^2} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2\right]$$
 and $a = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2}$.

Finally, we obtain the spactial wave functions

$$\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_l^m(\theta,\phi)$$

where $R_{nl}(r) = r^{-1}\rho^{l+1}e^{-\rho}v(\rho)$ and $Y_l^m(\theta,\phi)$ is defined by Eq 4.1.

Remark 4.3 (Laguerre Polynomials).

$$v(\rho) = L_{n-l-1}^{2l+1}(2\rho)$$

where

$$L_q^p(x) \triangleq (-1)^p \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^p L_{p+q}(x)$$

is an associated Lguerre polynomial, and

$$L_q(x) \triangleq \frac{e^x}{q!} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^q (e^{-x}x^q)$$

is the
$$q^{\text{th}}$$
 Laguerre polynomial. "Brutally",
$$\psi_{nlm} = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}} e^{-r/na} \left(\frac{2r}{na}\right)^l \left[L_{n-l-1}^{2l+1}(2r/na)\right] Y_l^m(\theta,\phi).$$

4.3 Angular Momentum

By the formula $\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p}$

$$L_x = yp_z - zp_y$$
 (cyc).

Then we deduce the fundamental commutation relations for angular momentum

$$[L_x, L_y] = i\hbar L_z$$
 and $[L^2, L_x] = 0$ (cyc).

According to generalized uncertainty principle,

$$\sigma_{L_x}\sigma_{L_y} \ge \frac{\hbar}{2} |\langle L_z \rangle|.$$

Haoyu Zhen 5 MISC

With the help of ladder operator $L_{\pm} = L_x \pm i L_y$, we could obtain the eigenvalues and the eigenfunctions for angular momentum.

Theorem 4.4 (Eigenvalues and Eigenfunctions for L).

$$L^2 Y_l^m = l(l+1)\hbar^2 Y_l^m$$
 and $L_z Y_l^m = m\hbar Y_l^m$.

Remark 4.4. Spherical harmonics (Eq 4.1) are the eigenfunctions of L^2 and L_z .

4.4 Spin

Similarly,

$$[S_x, S_y] = i\hbar S_z$$
, $S^2 |s m\rangle = s(s+1)\hbar^2 |s m\rangle$ and $S_z |s m\rangle = m_s\hbar |s m\rangle$.

Definition 4.1 (Quantum Numbers). Intuitively,

- n $(0,1,2,\cdots)$ is the **principal quantum number**; it tells you the energy of electron.
- $l (0, 1, 2, \dots, n-1)$ is called **azimuthal quantum number** and $m_l (0, \pm 1, \pm 2, \dots, \pm l)$ the **megnetic quantum number**; they are related to the angular momentum of the electron.
- $s (\pm 1/2)$ is the spin quantaum number. And $m_s \in \{-s, -s+1, \cdots, s\}$.

5 Misc

5.1 Before Schrodinger

First we will introduce the theories before Schrodinger Equation.

5.1.1 Black Body Radiation

$$M_{\lambda}(T) = \frac{\mathrm{d}E_{\lambda}}{\mathrm{d}\lambda}, \quad \alpha_{\lambda}(T) = \frac{E_{\mathrm{absorb}}}{E_{\mathrm{in}}} \quad \text{and} \quad \frac{M_{\lambda}(T)}{\alpha_{\lambda}(T)} = M_{0}(\lambda, T) = \mathrm{Const.}$$

Law 5.1. Stefan Boltzmann law: $M(T) = \sigma T^4$. Wien's displacement law: $\lambda_m T = b$.

5.1.2 Photoelectric Effect

$$h\nu = \frac{1}{2}mv^2 + W.$$

5.1.3 Compton effect

$$\Delta \lambda = \lambda - \lambda_0 = \frac{2\hbar}{m_0 c} \sin^2 \frac{\psi}{2}.$$

Haoyu Zhen 5 MISC

5.1.4 Bohr Model

The quantization of angular momentum says:

$$L = mvr = n\hbar$$
.

Also,

$$\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{m^2} - \frac{1}{n^2} \right).$$

5.2Probability current

Definition 5.1 (Probability current).

$$J\triangleq -\frac{i\hbar}{2m}(\Psi^*\nabla\Psi-\Psi\nabla\Psi^*)=\frac{\hbar}{m}\operatorname{Im}(\Psi^*\nabla\Psi).$$

Then

$$\frac{\partial \rho}{\partial t} + \nabla J = 0$$

where $\rho = \int \Psi^* \Psi \, dx$.

5.3 Two-state Quantum System

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} E_1 & A \\ A & E_2 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}.$$

Then,

$$C_1 + k_{\pm}C_2 = \left[C_1(0) + k_{\pm}C_2(0)\right] \exp\left[-\frac{i(E_1 + k_{\pm}A)}{\hbar}t\right]$$

where
$$k \pm = \left(E_2 - E_1 \pm \sqrt{(E_2 - E_1)^2 + 4A^2}\right) / 2A$$
.

Lemma 5.1.
$$C_{1}(t) = \frac{1}{k_{+} - k_{-}} \left\{ k_{+} \left[C_{10} + k_{-} C_{20} \right] e^{-\frac{i(E_{1} + k_{-} A)}{\hbar} t} - k_{-} \left[C_{10} + k_{+} C_{20} \right] e^{-\frac{i(E_{1} + k_{+} A)}{\hbar} t} \right\}$$
 and
$$C_{2}(t) = \frac{1}{k_{+} - k_{-}} \left\{ \left[C_{10} + k_{-} C_{20} \right] e^{-\frac{i(E_{1} + k_{-} A)}{\hbar} t} - \left[C_{10} + k_{+} C_{20} \right] e^{-\frac{i(E_{1} + k_{+} A)}{\hbar} t} \right\}$$

$$C_2(t) = \frac{1}{k_+ - k_-} \left\{ \left[C_{10} + k_- C_{20} \right] e^{-\frac{i(E_1 + k_- A)}{\hbar}t} - \left[C_{10} + k_+ C_{20} \right] e^{-\frac{i(E_1 + k_+ A)}{\hbar}t} \right\}$$

What if $C_{10} = 1$, $C_{20} = 0$ and $E_1 = E_2 = 0$?

$$C_1(t) = \frac{1}{2} \left[e^{iAt/\hbar} + e^{-iAt/\hbar} \right]$$
 and $C_2(t) = \frac{1}{2} \left[e^{iAt/\hbar} - e^{-iAt/\hbar} \right]$

which entails that

$$C_1(t) = \cos(At/\hbar)$$
 and $C_2(t) = \sin(At/\hbar)$.

5.4Famous Experiments

Milikan+Compton Davisson-Germer Zeeman Stern-Gerlach

Wave-particle Duality de Broglie Formula Quantization of Angular Momentum Electronic Spin