# Time-dependence (cont.) Uncertainty

Ivy Tsai 20231031

# Agenda 20231031

- 1st hour: quick review and R package time-varying values
- 2nd hour: video and self-study
- 3rd hour: discussion uncertainty/heterogeneity

Homework for 20231107:

Exercise 3.5 Hip Fracture (MUST)

Videos (if no time to read Briggs and Edlin)

# Exercise 3.5 Hip Fracture

• Page 67-75



Fig. 3.7 Diagram showing the structure of the model (Briggs et al. 2004, Fig. 1).

https://www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation





in health economics

15 March 2021

## Spotlight on: Beta distribution

#### Spotlight on: Beta distribution

https://www.youtube.com/watch?v=i8KvU-ODqgA



Decision analytical modelling in health economics

18 June 2021

Spotlight on: Lognormal distribution

#### **Spotlight on: Lognormal distribution**

https://www.youtube.com/watch?v=qxQ2GC1uYjs



Decision analytical modelling in health economics





#### **Spotlight on: Gamma distribution**

https://www.youtube.com/watch?v=-pIIVcwq6NI



Decision analytical modelling in health economics

18 March 2021

Spotlight on: Chi-square distribution

#### **Spotlight on: Chi-square distribution**

https://www.youtube.com/watch?v=rtv7elZT-OQ



Decision analytical modelling in health economics



**Spotlight on: Dirichlet distribution** 

https://www.youtube.com/watch?v=eOOzVyBDHjc



in health economics

18 March 2021

Spotlight on: Multivariate normal distribution



**Spotlight on: Multivariate normal distribution** https://www.youtube.com/watch?v=X3sbaqJ2tcY

23 February 2021



## Sensitivity analyses

Decision analytical modelling in health economics

How do changes in the inputs affect the outputs?





# Probabilistic sensitivity analysis

Decision analytical modelling in health economics

Part I – Introduction

23 February 2021



## Probabilistic sensitivity analysis (PSA) - Part I (Introduction)

https://www.youtube.com/watch?v=Mnftc8V0pU4



Decision analytical modelling in health economics

Part II - Analysing and presenting results



Probabilistic sensitivity analysis (PSA) - Part II (Analysing and presenting results)

https://www.youtube.com/watch?v=cTEceyHOqQQ

# Uncertainty in decision model

York Materials



1. Define the elements of decision problem



- Cycle length: 3 weeks
- Time horizon (t): 20 years
- Discount rate (r): 3% per year
- Outcome variables:
  - $\triangleright$  Effectiveness ( $E_1$  and  $E_c$ )
    - $\rightarrow$  Life years (Lys), quality-adjusted life years (QALYs = Life year  $\times$  quality of life).
  - > Directed medical costs (C<sub>1</sub> and C<sub>2</sub>)
    - → Medical cost reimbursed by NHI and NHI listing price.

## 2.1. Analytic Framework of Cost-Effectiveness Analysis (4/6)

## 2. Analytical Model building

- Decision analytical model: Cohort-based Markov model
- **Disease model:** 3 health states
  - (1) Progression-free (PF): Disease stable and keep current treatment.
  - (2) Progressed disease (PD): Disease progressed and shift to supportive care.





## 2.1. Analytic Framework of Cost-Effectiveness Analysis (4/6)

#### 2. Analytical Model building

- Decision analytical model: Cohort-based Markov model
- Cumulated outputs: E<sub>I,</sub> E<sub>C,</sub> C<sub>I,</sub> and C<sub>C</sub>

$$E = \sum_{0}^{T} \frac{1}{(1+r)^{t}} E_{t}$$
  $C = \sum_{0}^{T} \frac{1}{(1+r)^{t}} C_{t}$ 

$$C = \sum_{0}^{T} \frac{1}{(1+r)^t} C_t$$

| Cycle | Effectiveness (E)<br>(Unit: LYs, QALYs*) | Cost (C)<br>(Unit: NTD)                       |
|-------|------------------------------------------|-----------------------------------------------|
| 0     | $E_{0} = E_{PF_0}$                       | $C_0 = C_{PF_0}$                              |
| 1     | $E_1 = E_{PF_1} + E_{PD_1}$              | $C_1 = C_{PF_1} + C_{PD_1} + C_{D_1}$         |
| 2     | $E_2 = E_{PF_2} + E_{PD_2}$              | $C_2 = C_{PF_2} + C_{PD_2} + C_{D_2}$         |
| :     | :                                        |                                               |
| Т     | $E_{T} = E_{PF_{T}} + E_{PD_{T}}$        | $C_{T} = C_{PF_{T}} + C_{PD_{T}} + C_{D_{T}}$ |



<sup>\*</sup>LYs = life years, QALYs = quality-adjusted life years.

## 3-1. Study Design

- Target population: advanced ICC patients who failed their 1st line treatment
- Treatment regimens: 2<sup>nd</sup> line treatment for advanced ICC patients
  - Intervention: new treatment regimen (mFOLFOX and pemigatinib)
  - Comparator: current treatment regimen (5FU)



19

## 3-2. Building the Decision Analytical Model

#### Decision analytical model

Partitioned survival analysis (PartSA) model

#### Model structure

- 3 Health states
  - 1. Progression free (PF)
    - Clinical performance: stable
    - Treatment: 2<sup>nd</sup> line new or current regimen

#### 2. Progressed disease (PD)

- Clinical performance: tumor progressed
- Treatment: supportive care

#### 3. Death

- Cycle length: 1 month
- Time horizon: 5 years
- ➤ Discounting rate: 3% (CDE, 2014)

#### Perspective

National Health Insurance Administration, Taiwan

#### Outcomes

Life years, quality-adjusted life years (QALYs), direct medical costs, cost-effectiveness results

#### Parameters

- Proportion of ICC patients with FGFR2 gene fusion
  - Taiwan: 7.7% (Chiang et al., 2021)
- $\triangleright$  Willingness-to-pay (WTP,  $\lambda$ ) = 3 times GDP per capita
- Clinical efficacy
- Utility
- Direct medical costs

## Partitioned Survival Model



## Partitioned Survival Model





https://www.frontiersi n.org/journals/oncolo gy/articles/10.3389/fo nc.2021.728740/full

#### **B** Partitioned survival model



## 3-4. Cost-effectiveness Analysis: Base-Case Analysis

#### Incremental cost effectiveness ratio (ICER)

The cost per unit of the health outcome/effect.

Function: 
$$ICER = \frac{C_2 - C_1}{E_2 - E_1} = \frac{\Delta C}{\Delta E}$$

#### Net monetary benefit (NMB)

Function: 
$$NMB = \lambda \times \Delta E - \Delta C$$

 $C_1$ : the cost under the comparator.

 $C_2$ : the cost under the intervention of interest.

 $E_1$ : the effectiveness under the comparator.

 $E_2$ : the effectiveness under the intervention of interest.

 $\lambda$ : threshold, willingness to pay (WTP)

#### ✓ Decision criteria

- ICER < λ
- NMB > 0

 $\lambda = 3$  times of GDP per capita in Taiwan (2021)

(Edlin et al., 2015; Gray et al., 2010)

## 4-2. Base Case Analysis

#### Base-case: Cost-effectiveness outcomes in 5 years

|                                              | Current regimen | New regimen                                  |                      |  |
|----------------------------------------------|-----------------|----------------------------------------------|----------------------|--|
|                                              | (5FU)           | (mFOLFOX/pemigatinib)                        | Incremental change   |  |
| Cost                                         | 524,472         | 984,168                                      | 459,697              |  |
| Total cost of PF state                       | 369,229         | 795,614                                      |                      |  |
| <ul> <li>Genetic test cost</li> </ul>        | 0               | 30,000                                       |                      |  |
| <ul> <li>Medication costs (PF)</li> </ul>    | 63,430          | 387,176                                      |                      |  |
| <ul> <li>Non-medication cost (PF)</li> </ul> | 305,799         | 378,437                                      |                      |  |
| Total cost of PD state                       | 155,243         | 188,555                                      |                      |  |
| Life years                                   |                 |                                              |                      |  |
| Progression-free                             | 0.36            | 0.48                                         | 0.12                 |  |
| Overall                                      | 0.67            | 0.86                                         | 0.19                 |  |
| Quality-adjusted life years                  |                 |                                              |                      |  |
| Progression-free                             | 0.26            | 0.35                                         | 0.09                 |  |
| Overall                                      | 0.47            | 0.61                                         | 0.13                 |  |
| Incremental cost per QALY (ICER) NMB         |                 | WTP ( $\lambda$ ) = 3 times GDP (NT\$2,889,6 | 3,411,098<br>-70,269 |  |

LYs: life years, QALYs: quality-adjusted life years, ICER: incremental cost-effectiveness ratio, NMB: net monetary benefit

#### **Findings:**

- ICER (NT\$ 3,411,098) > WTP (NT\$2,889,684)
- NMB (NT\$ -70,269) < 0

NOT cost-effectiveness in base-case analysis!



(Figure sourced from the internet)

Q1: When we make decisions based on point estimates in cost-effectiveness analysis, what potential issues or concerns are there?

 Why and what do we (have to) be worried or concerned about the "evidence-based" decision?

□Why?

**□***What?* 

Not sure about the evidence (point estimates of CEA and NMB/NHB):



## What is uncertain about cost-effectiveness analysis?

The repercussions of a wrong decision, founded on inadequate evidence.

- The repercussions of a Decisions should not be based on <u>little or poor quality evidence</u>
  - Always a chance that the wrong adoption decision is made, resulting in health benefit and resources forgone

## 3-1. Study Design

- Target population: advanced ICC patients who failed their 1st line treatment
- Treatment regimens: 2<sup>nd</sup> line treatment for advanced ICC patients
  - Intervention: new treatment regimen (mFOLFOX and pemigatinib)
  - Comparator: current treatment regimen (5FU)



19

## 3-2. Building the Decision Analytical Model

#### Decision analytical model

Partitioned survival analysis (PartSA) model

#### Model structure

- 3 Health states
  - 1. Progression free (PF)
    - Clinical performance: stable
    - Treatment: 2<sup>nd</sup> line new or current regimen

#### 2. Progressed disease (PD)

- Clinical performance: tumor progressed
- Treatment: supportive care

#### 3. Death

- Cycle length: 1 month
- Time horizon: 5 years
- ➤ Discounting rate: 3% (CDE, 2014)

#### Perspective

National Health Insurance Administration, Taiwan

#### Outcomes

Life years, quality-adjusted life years (QALYs), direct medical costs, cost-effectiveness results

#### Parameters

- Proportion of ICC patients with FGFR2 gene fusion
  - Taiwan: 7.7% (Chiang et al., 2021)
- $\triangleright$  Willingness-to-pay (WTP,  $\lambda$ ) = 3 times GDP per capita
- Clinical efficacy
- Utility
- Direct medical costs

## Partitioned Survival Model





## Outline of a simple Markov model



| Current<br>treatment | Asymptomatic | Progressive | Dead   | Cost | QALY |
|----------------------|--------------|-------------|--------|------|------|
| Asymptomatic         | 0.6667       | 0.1667      | 0.1667 | £150 | 0.9  |
| Progressive          |              | 0.5000      | 0.5000 | £325 | 0.78 |
| Dead                 |              |             | 1.0000 |      |      |



Parameter values

**Cohort simulation** 



## What is uncertain about cost-effectiveness analysis?

The repercussions of a wrong decision, founded on inadequate evidence.

- The repercussions of a Decisions should not be based on <u>little or poor quality evidence</u>
  - Always a chance that the wrong adoption decision is made, resulting in health benefit and resources forgone
    - Different possible values for the parameters
      - Lack of knowledge about the parameter values
      - Different outcomes in different populations
    - Structural uncertainty
      - Choice of health states, choice of modelling approach
    - Distinguish between
      - Uncertainty, variability, heterogeneity and policy choices



## Course structure - where are we up to?



Q2. What are bias, variability, heterogeneity, uncertainty?

• (Briggs: **Box 2.1.**; page 80-82)

Box 2.1. Key concept in understanding uncertainty and heterogeneity in decision models for cost-effectiveness analysis



## First and second order uncertainty

## 1st order

- Distribution of outcomes in population
- ≈ Sample variance
- Standard deviation in a mean value
  - Range of outcomes in sample
- Incorporate in CEA by simulating and recording pathway of individual patients through a model
- Large number of patients required to estimate mean and standard deviation
- Must repeatedly sample large numbers of patients to estimate uncertainty in mean and standard error

## 2nd order

- Distribution of sample mean outcome
- ≈ Variance of sample mean
- Standard error of mean
  - Range of population mean values supported by the sample outcomes
- Incorporate in CEA by simulating and recording pathway of cohort through a model
- One cohort provides estimate of mean but no information on standard deviation
- Large number of cohorts entered into models to estimate uncertainty in mean and standard error



## 1st order uncertainty – screen share example

- Simulate individual patients progress through model
- Random numbers to determine occurrence of chance events
- Markov trace generated for multiple individuals to get mean costs and QALYs

| TRANSITION MATRIX | То           |             |        |
|-------------------|--------------|-------------|--------|
| From              | Asymptomatic | Progressive | Dead   |
| Asymptomatic      | 0.6667       | 0.1667      | 0.1667 |
| Progressive       |              | 0.6666      | 0.3333 |
| Dead              |              |             | 1.0000 |



|              | Asymptomatic | Progressive | Dead             |
|--------------|--------------|-------------|------------------|
| Asymptomatic | 1, 2, 3, 4   | 5           | 6                |
| Progressive  |              | 1, 2, 3, 4  | 5, 6             |
| Dead         |              |             | 1, 2, 3, 4, 5, 6 |



## **Uncertain decisions**

- 1<sup>st</sup> order uncertainty and variation within groups of patients not the focus of CEA
  - Decision must be made for group as a whole
  - Variability cannot be reduced
  - Computationally time consuming when combined with 2<sup>nd</sup> order uncertainty
- 2<sup>nd</sup> order uncertainty is the focus of CEA
  - Informs questions about likelihood of making wrong decision, and likelihood of new information changing the optimal decision
- Structural uncertainty
  - Lack of knowledge about most appropriate model structure
  - Different modelling approaches provide different estimates of mean costs and QALYs
    - Contributes to uncertainty in mean outcomes



## **Heterogeneity - multiple decisions**

- 'Baseline' characteristics 'explain' a proportion of overall variability between patients (e.g. age, sex)
- Can condition decision on these characteristics, and recommend different options in different groups
- To incorporate in CEA, generate mean parameter values per subgroup population
  - Variability within sub-group will remain
  - Need to present results by sub-group (defined by patient characteristics)



## Policy choices and value judgements

- The authority taking the decision may set some parameter values
  - For example, the discount rate applied to costs and health outcomes
- The values are relevant for particular decision
  - E.g. NICE specifies 3.5% for costs and health outcomes
  - Sensitivity analysis of 1.5% per annum
- Different decision makers may have different values
  - Heterogeneity in value of parameter between decision makers
  - Choice taken by an individual decision maker is not uncertain

'5.1.2 There is considerable debate about the most appropriate methods to use for some aspects of health technology assessment. This uncertainty relates to choices that are essentially value judgements; for example, whose preferences to use for valuation of health outcomes.... The reference case specifies the methods considered by the Institute to be the most appropriate for the Appraisal Committee's purpose and consistent with an NHS objective of maximising health gain from limited resources.'

NICE Guide to the methods of technology appraisal 2013

# An analogy with regression(Briggs, page 83)

$$Y = \alpha + \sum_{j=1}^{p} \beta_j X_j + \varepsilon$$

# Q3: what should we focus on in CEA analysis?

- Parameter uncertainty
- Heterogeneity
- Structural
- Variability
- Policy choice



## **Types of uncertainty - Summary**

| Need to address | Not main focus of CEA |
|-----------------|-----------------------|
|                 |                       |
|                 |                       |
|                 |                       |
|                 |                       |
|                 |                       |

# Q4: how to handle heterogeneity?

| Data         | Probabilities from binomial data | Probabilities from time-<br>to-event data | Continuous variable like cost and utility |
|--------------|----------------------------------|-------------------------------------------|-------------------------------------------|
| Model        |                                  |                                           |                                           |
| E[Y]         |                                  |                                           |                                           |
| Var(Y)       |                                  |                                           |                                           |
| Distribution |                                  |                                           |                                           |
| Notes        |                                  |                                           |                                           |
|              |                                  |                                           |                                           |