A Systematic Description of the Wobbling Motion in Odd-Mass Nuclei Within a Semi-Classical Formalism

PhD CandidateRobert Poenaru^{1,2}

Scientific Supervisor Prof. Dr. Em. A. A. Raduta²

¹Doctoral School of Physics, UB ²Department of Theoretical Physics, IFIN-HH

A presentation for the degree of Doctor of Philosophy

May 11, 2023

TOC

Aim and Motivation

- 2 Introduction
 - Nuclear Shapes

Aim

- Extend the current interpretation of the nuclear triaxiality in the context of its unique fingerprint: Wobbling Motion
- Adopt a framework that is as close as possible to classical physics.
- Provide new formalisms for the phenomena related to nuclear deformation.

Objectives exclusive to the thesis

- Give the reader enough context towards a better understanding of the underlying concepts, methods, and results.
- C create a completely open-source project.

Motivation

- Nuclear Triaxiality has become a hot topic within the scientific community.
- Identifying nuclei with triaxial deformations represents a real experimental and theoretical challenge.

Fingerprints of Triaxiality

Evidence Q

- Currently, there are only two well-established phenomena uniquely attributed to triaxial deformation.
 - Wobbling Motion WM (Bohr and Mottelson, 1950s)
 - 2 Chiral Motion χ M (*Frauendorf*, 1997)
- These two can be measured/detected experimentally.

Experimental observations Q

First experimental evidence for nuclear wobbling motion in 2001.

Goal 🖪

Describe the elusive character of Wobbling Motion in the context of nuclear triaxiality.

QProbing triaxiality in nuclei

Triaxial nuclei can be observed/obtained in several experiments:

- Nuclear fission: $A \rightarrow B + C$
- Nuclear fusion: $X + Y \rightarrow Z$
- Fusion-evaporation reactions: Long-lived + enhanced deformation

$$Beam(N_1, E) + Target(N_2) \longrightarrow N_3^* \rightarrow \cdots \rightarrow triaxial(N_4)$$

QNuclear facilities

Figure: Gammasphere detector, ANL-ATLAS USA. *Source:* aps.org

Figure: a) IDS detector, CERN. *Source:* isolde.web.cern.ch b) JUROGAM II, Finland. *Source:* twitter.com

Nuclear Shapes (in the context of WM)

Nuclear Radius

The **shape** of the nucleus is most generally described in terms of the *nuclear radius*:

$$R(\theta, \varphi; t) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}(t) Y_{\lambda}^{\mu}(\theta, \varphi) \right)$$
(1)

Quadrupole deformations

• For us: Most relevant modes are the **quadrupole vibrations** $\lambda = 2$ \implies Play a crucial role in the rotational spectra of nuclei:

Axial shapes

i Most of the nuclei are either spherical or axially symmetric in their ground-state (Budaca, 2018).

Collective coordinates

• Coordinates $\alpha_{2\mu}$ can be reduced to only two deformation parameters: β_2 (eccentricity) and γ (triaxiality).

Figure: spherical: $\beta_2 = 0$ prolate: $\beta_2 > 0$ oblate: $\beta_2 < 0$

Non-axial (triaxial) shapes

Non-axial shapes

• The triaxiality parameter γ (Bohr, 1969): departure from axial symmetry.

Thank you for your attention ∇

