PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-312244

(43) Date of publication of application: 09.11.2001

(51)Int.CI.

G09G 3/28

G09G 3/20

(21)Application number: 2000-127727

(71)Applicant: PIONEER ELECTRONIC CORP

(22)Date of filing:

27.04.2000 (72)Inventor: SHIGETA TETSUYA

NAGAKUBO TETSURO

HONDA KOJI

(54) DRIVING METHOD OF PLASMA DISPLAY PANEL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a driving method of plasma display panel capable of enhancing the contrast while preventing a pseudo contour.

SOLUTION: In only a leading subfield, only discharge cells other than a discharge cell bearing a display whose luminance level is zero are made to be writhingly discharged selectively to initialized to be in states of luminescent cells. Then, in only one of subfields other than the leading subfield, discharge cells being in the states of the luminescent cells are made to be erasigly discharged selectively in accordance with picture data to be shifted to be in states of nonluminescent cells and only discharge cells being in states of luminescent states are made to emit light by the number of light emissions assigned in accordance with the weighting of the subfield.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12)公開特許公報 (A)"

(11)特許出願公開番号

特開2001-312244

(P2001-312244A) (43)公開日 平成13年11月9日(2001.11.9)

(51) Int. Cl. 7	識別記号	F I	デーマコート'(参
G09G 3/28	0.11	G09G 3/20	
3/20	641		641 R
	642	9 /9 0	642 E
	042	3/28	В К Н
		客查請求	n : 未請求 請求項の数3 OL (全14頁)
(21)出願番号	特願2000-127727(P 2000-127727)	(71)出願人	000005016
			パイオニア株式会社
(22)出願日	平成12年4月27日(2000.4.27)		東京都目黒区目黒1丁目4番1号
		(72)発明者	重田 哲也
			山梨県中巨摩郡田富町西花輪2680番地 パ
			イオニア株式会社内
	·	(72)発明者	長久保 哲朗
			山梨県中巨摩郡田富町西花輪2680番地 パ
			イオニア株式会社内
	·	(74)代理人	100079119
			弁理士 藤村 元彦
			最終頁に続く

(54) 【発明の名称】プラズマディスプレイパネルの駆動方法

(57)【要約】

【課題】 偽輪郭を防止しつつコントラストを向上させることができるプラズマディスプレイパネルの駆動方法を提供することを目的とする。

【解決手段】 先頭サブフィールドにおいてのみで輝度レベル0の表示を担う放電セルを除く他の放電セルのみを選択的に書込放電せしめてこれらを発光セルの状態に初期化する。そして、先頭サブフィールドを除く他のサブフィールドの内のいずれか1のサブフィールドにおいてのみで上記発光セルの状態にある放電セルを画素データに応じて選択的に消去放電せしめて非発光セルの状態に推移せしめ、発光セルの状態にある放電セルのみをそのサブフィールドの重み付けに対応して割り当てた発光回数だけ発光せしめる。

【特許請求の範囲】

【請求項1】 表示ラインに対応した複数の行電極と前記行電極に交叉して配列された複数の列電極との交差部に画素を担う放電セルを形成しているプラズマディスプレイパネルを映像信号に応じて階調駆動するプラズマディスプレイパネルの駆動方法であって、

前記映像信号における1フィールドの表示期間を複数のサブフィールドに分割した際の先頭サブフィールドにおいてのみで、前記放電セル各々の内で輝度レベル0の表示を担う放電セルを除く他の放電セルのみを選択的に書 10 込放電せしめてこれらを発光セルの状態に初期化し、前記先頭サブフィールドを除く他のサブフィールド各々の内のいずれか1のサブフィールドにおいてのみで前記発光セルの状態にある前記放電セルを前記映像信号に対

前記サブフィールドの各々において、前記発光セルの状態にある前記放電セルのみを前記サブフィールド各々の 重み付けに対応して割り当てた発光回数だけ発光せしめ ることを特徴とするプラズマディスプレイパネルの駆動 20 方法。

応した画素データに応じて選択的に消去放電せしめて非

【請求項2】 前記書込放電の直後に前記発光セルの状態にある放電セルの各々に対してブライミング放電を生起せしめることを特徴とする請求項1記載のプラズマディスプレイパネルの駆動方法。

【請求項3】 複数の前記フィールド毎に、全ての前記 放電セルに対してプライミング放電を生起せしめること を特徴とする請求項1記載のプラズマディスプレイパネ ルの駆動方法。

【発明の詳細な説明】

発光セルの状態に推移せしめ、

[0001]

【発明が属する技術分野】本発明は、マトリクス表示方式のプラズマディスプレイパネルの駆動方法に関する。 【0002】

【従来の技術】現在、薄型表示装置として、AC型(交 流放電型)のブラズマディスプレイパネルが製品化され てきている。かかるブラズマディスプレイパネルは、放 電現象を利用して発光するものである為、最高輝度レベ ルに対応した"発光"状態、及び最低輝度レベルに対応し た"非発光"状態の2つの状態しかもたない。そこで、こ のようなプラズマディスプレイパネルに対して、入力映 像信号に対応した中間調の表示輝度を得るべく、サブフ ィールド法を用いた階調駆動を実施する。サブフィール ド法では、入力映像信号に対応したNビットの画素デー 夕の各ピット桁に対応させて、1フィールドの表示期間 をN個のサブフィールドに分割する。そして、これらN 個のサブフィールド各々に、画素データの各ビット桁の 重み付けに対応した発光回数(発光期間)を割り当て、上 記画素データビットに応じて各放電セルを選択的に発光 せしめる。

【0003】例えば、図1に示されるように、1フィールドの表示期間を6個のサブフィールドSF1~SF6に分割した場合には、各サブフィールドに、

SF1:1 SF2:2 SF3:4 SF4:8

SF5:16 SF6:32

10 なる発光回数を割り当てる。

【0004】この際、上記サプフィールドSF1~SF6の内のSF6のみで放電セルを発光させると、1フィールド表示期間を通じて32回分の発光が為されて、輝度"32"の表示輝度が視覚される。一方、又、サプフィールドSF6を除く他のサプフィールドSF1~SF5において放電セルを発光させると、1フィールド表示期間を通じて合計31回(16+8+4+2+1)分の発光が為されて、輝度"31"の表示輝度が視覚される。

【0005】すなわち、発光を実施させるサブフィール ドの組み合わせにより、64種類の輝度が段階的に得ら れる、いわゆる64階調の輝度表示が可能となるのであ る。ここで、図1に示されるように、輝度"32"の表示 輝度を得る場合と、輝度"31"の表示輝度を得る場合と では、1フィールド期間内での発光パターンが反転して いる。つまり、1フィールド期間内において輝度"32" の表示輝度が得られる放電セルの発光期間中は、輝度" 31"の表示輝度が得られる放電セルは非発光状態にあ り、輝度"31"の表示輝度が得られる放電セルの発光期 間中は、輝度"32"の表示輝度が得られる放電セルは非 発光状態にある。この際、1画面内において輝度"32" で表示させるべき領域(以下、表示領域 E32と称する) と、輝度"31"で表示させるべき領域(以下、表示領域 E31と称する)とが互いに隣接する画像が表示された 場合には、以下の如き不具合が生じる。

【0006】例えば、表示領域E32に存在する放電セルが非発光状態から発光状態へと推移する直前に、表示領域E32からE31へと視線を移すと、両表示領域の非発光状態のみを連続して見ることになる。よって、その境界上に暗い線が視覚されことになり、これが画素データとは何等関係のない偽の輪郭となって現れて表示品質を低下させるのである。

【0007】又、上記サブフィールド法に基づく階調駆動を実施するにあたり、プラズマディスプレイパネルでは放電現象を利用することにより、上述した如き発光動作のみならず、全放電セルの初期化及び発光させるべき放電セルの設定等を行う。従って、画像内容に関与しない放電をも実施しなければならず、この放電に伴う発光が画像のコントラストを低下させてしまうという問題があった。

50 【0008】更に、現在、かかるPDPを製品化するに

あたり、低消費電力を実現することが一般的な課題とな っている。

[0009]

【発明が解決しようとする課題】本発明は、上記の問題 を解決するためになされたものであり、偽輪郭を抑制し つつも低消費電力にてコントラストの向上を図ることが 出来るブラズマディスプレイパネルの駆動方法を提供す ることを目的とする。

[0010]

【課題を解決するための手段】本発明によるプラズマデ 10 ィスプレイパネルの駆動方法は、表示ラインに対応した 複数の行電極と前記行電極に交叉して配列された複数の 列電極との交差部に画素を担う放電セルを形成している プラズマディスプレイパネルを映像信号に応じて階調駆 動するプラズマディスプレイパネルの駆動方法であっ て、前記映像信号における1フィールドの表示期間を複 数のサブフィールドに分割した際の先頭サブフィールド においてのみで、前記放電セル各々の内で輝度レベル0 の表示を担う放電セルを除く他の放電セルのみを選択的 に書込放電せしめてこれらを発光セルの状態に初期化 し、前記先頭サブフィールドを除く他のサブフィールド 各々の内のいずれか1のサブフィールドにおいてのみで 前記発光セルの状態にある前記放電セルを前記映像信号 に対応した画素データに応じて選択的に消去放電せしめ て非発光セルの状態に推移せしめ、前記サブフィールド の各々において、前記発光セルの状態にある前記放電セ ルのみを前記サブフィールド各々の重み付けに対応して 割り当てた発光回数だけ発光せしめる。

[0011]

【発明の実施の形態】以下、本発明の実施例を図を参照 30 しつつ説明する。図2は、本発明による駆動方法に基づ いてプラズマディスプレイパネルを階調駆動するプラズ マディスプレイ装置の概略構成を示す図である。図2に 示されるように、かかるプラズマディスプレイ装置は、 ブラズマディスプレイパネルとしてのPDP10と、以 下に説明するが如き各種機能モジュールからなる駆動部 とから構成されている。

【0012】PDP10は、アドレス電極としてのm個 の列電極D, ~Dm と、これら列電極各々と交叉して配 列された夫々n個の行電極X₁~X_n及び行電極Y₁~ Y。を備えている。これら行電極X及び行電極Yの一対 にて、PDP10における1表示ライン分に対応した行 電極を形成している。行電極X及びYと列電極Dとの間 には、放電ガスが封入されている放電空間が形成されて おり、この放電空間を含む各行電極対と列電極との交差 部に画案を担う放電セルが構築される構造となってい る。

【0013】駆動部は、同期検出回路1、駆動制御回路 2、A/D変換器3、データ変換回路30、メモリ4、 アドレスドライバ6、第1サスティンドライバ7及び第 50

2 サスティンドライバ8 から構成される。同期検出回路 1は、入力映像信号中から垂直同期信号を検出した場合 には垂直同期検出信号V、水平同期信号を検出した場合 には水平同期検出信号Hを発生してこれらを駆動制御回 路2に供給する。A/D変換器3は、入力映像信号をサ ンプリングしてこれを1画素毎の例えば8ビットの画素 データPDに変換してデータ変換回路30に供給する。 【0014】データ変換回路30は、かかる8ピットの 画素データPDを14ピットの駆動画素データGDに変 換し、これをメモリ4に供給する。図3は、かかるデー 夕変換回路30の内部構成を示す図である。図3におい て、第1データ変換回路32は、8ビットで"0"~"2 55"なる範囲で輝度レベルを表現し得る上記画素デー タPDを、図4に示されるが如き変換特性に従って"0" ~"224"なる輝度レベル範囲の8ピットの輝度抑制画 素データ P D に変換し、これを多階調化処理回路 3 3 に供給する。

【0015】多階調化処理回路33は、8ビットの上記 輝度抑制画素データPD」に対し、輝度分布に応じたビ ット圧縮を伴う誤差拡散処理及びディザ処理等の多階調 化処理を施して4ビットの多階調化処理画素データPD s を求める。図5は、かかる多階調化処理回路33の内 部構成を示す図である。図5に示されるが如く、多階調 処理回路33は、誤差拡散処理回路330及びディザ処 理回路350から構成される。

【0016】先ず、誤差拡散処理回路330におけるデ ータ分離回路331は、上記第1データ変換回路32か ら供給された8ピットの輝度抑制画素データPDLの下 位2ビット分を誤差データ、上位6ビット分を表示デー タとして分離する。加算器332は、かかる誤差データ と、遅延回路334からの遅延出力と、係数乗算器33 5の乗算出力とを加算して得た加算値を遅延回路336 に供給する。遅延回路336は、加算器332から供給 された加算値を、画素データPDのサンプリング周期と 同一時間を有する遅延時間Dだけ遅らせ、これを遅延加 算信号AD」として上記係数乗算器335及び遅延回路 337に夫々供給する。係数乗算器335は、上記遅延 加算信号AD, に所定係数値K、(例えば、"7/16")を乗 算して得られた乗算結果を上記加算器332に供給す る。遅延回路337は、上記遅延加算信号AD」を更に (1水平走査期間-上記遅延時間D×4) なる時間だけ 遅延させたものを遅延加算信号AD』として遅延回路3 38に供給する。遅延回路338は、かかる遅延加算信 号AD2を更に上記遅延時間Dだけ遅延させたものを遅 延加算信号AD。として係数乗算器339に供給する。 又、遅延回路338は、かかる遅延加算信号AD。を更 に上記遅延時間D×2なる時間分だけ遅延させたものを 遅延加算信号AD4 として係数乗算器340に供給す る。更に、遅延回路338は、かかる遅延加算信号AD 2 を上記遅延時間D×3なる時間分だけ遅延させたもの

30

を遅延加算信号AD。として係数乗算器341に供給す る。係数乗算器339は、上記遅延加算信号AD。に所 定係数値K2(例えば、"3/16")を乗算して得られた乗算 結果を加算器342に供給する。係数乗算器340は、 上記遅延加算信号AD。に所定係数値K。(例えば、"5/ 16")を乗算して得られた乗算結果を加算器342に供給 する。係数乗算器341は、上記遅延加算信号AD。に 所定係数値K₄ (例えば、"1/16")を乗算して得られた乗 算結果を加算器342に供給する。加算器342は、上 記係数乗算器339、340及び341各々から供給さ れた乗算結果を加算して得られた加算信号を上記遅延回 路334に供給する。遅延回路334は、かかる加算信 号を上記遅延時間Dなる時間分だけ遅延させて上記加算 器332に供給する。加算器332は、上記データ分離 回路331から供給された誤差データと、遅延回路33 4からの遅延出力と、係数乗算器335の乗算出力との 加算結果に桁上げがない場合には論理レベル"0"、桁上 げがある場合には論理レベル"1"のキャリアウト信号C 。を発生して加算器333に供給する。加算器333 は、上記データ分離回路331から供給された表示デー 20 タに、上記キャリアウト信号C。を加算したものを6ビ ットの誤差拡散処理画素データEDとして出力する。

【0017】以下に、かかる構成からなる誤差拡散処理 回路330の動作について説明する。例えば、図6に示 されるが如きPDP10の画素G(j,k)に対応した誤差 拡散処理画素データEDを求める場合、先ず、かかる画 素G(j,k)の左横の画素G(j,k-1)、左斜め上の画素G(j -1, k-1)、真上の画素G(j-1, k)、及び右斜め上の画素G (j-1,k+1)各々に対応した各誤差データ、すなわち、 画素G(j,k-1)に対応した誤差データ:遅延加算信号A D,

画素G(j-1,k+1)に対応した誤差データ:遅延加算信号 AD

画素G(j-1,k)に対応した誤差データ:遅延加算信号A

画素G(j-1,k-1)に対応した誤差データ:遅延加算信号 AD₅

各々を、上述した如き所定の係数値K1~K4をもって 重み付け加算する。次に、この加算結果に、上記輝度抑 制画素データPD」の下位2ビット分、すなわち画素G 40 (j,k)に対応した誤差データを加算する。そして、かか る加算によって得られた1ビット分のキャリアウト信号 C。を輝度抑制画素データPD」の上位6ビット分、す なわち画素G(j,k)に対応した表示データに加算したも のを誤差拡散処理画素データEDとして出力するのであ

【0018】このように、誤差拡散処理回路330で は、輝度抑制画素データPD」の上位6ビットを表示デ ータ、下位2ビットを誤差データと捉え、周辺画素G (j, k-1)、G(j-1, k+1)、G(j-1, k)、G(j-1, k-1)各々で 50

得られた上記誤差データを重み付け加算したものを上記 表示データに反映させて誤差拡散処理画素データEDを 得る。かかる動作により、原画素 {G(j,k)} における 下位2ビット分の輝度が上記周辺画素により擬似的に表 現され、それ故に8ビットよりも少ないビット数、すな わち6ビット分の表示データにて、8ビット分の画素デ ータ P D と同等の輝度階調表現が可能になるのである。 尚、この誤差拡散の係数値が各画素に対して一定に加算 されていると、誤差拡散パターンによるノイズが視覚的 に確認される場合があり画質を損なってしまう。そこ で、後述するディザ係数の場合と同様に4つの画素各々 に割り当てるべき誤差拡散の係数K₁~K₄を1フィー ルド毎に変更するようにしても良い。

【0019】図5に示されるディザ処理回路350は、 かかる誤差拡散処理回路330から供給された誤差拡散 処理画素データEDにディザ処理を施すことにより、6 ビットで表現し得る輝度階調数を維持しつつもビット数 を更に4ビットに減らした多階調化処理画素データPD s を生成する。尚、かかるディザ処理では、隣接する複 数個の画素により1つの中間表示レベルを表現するもの である。例えば、8ビットの画素データの内の上位6ビ ットの画素データを用いて8ビット相当の階調表示を行 う場合、左右、上下に互いに隣接する4つの画素を1組 とし、この1組の各画素に対応した画素データ各々に、 互いに異なる係数値からなる4つのディザ係数a~dを 夫々割り当てて加算する。かかるディザ処理によれば、 4 画素で4つの異なる中間表示レベルの組み合わせが発 生することになる。よって、例え画素データのピット数 が6ビットであっても、表現出来る輝度階調レベルは4 倍、すなわち、8ビット相当の中間調表示が可能となる のである。

【0020】しかしながら、ディザ係数a~dなるディ ザパターンが各画素に対して一定に加算されていると、 このディザパターンによるノイズが視覚的に確認される 場合があり画質を損なってしまう。そこで、ディザ処理 回路350においては、4つの画素各々に割り当てるべ き上記ディザ係数 a~dを1フィールド毎に変更するよ うにしている。

【0021】図7は、かかるディザ処理回路350の内 部構成を示す図である。図7において、ディザ係数発生 回路352は、互いに隣接する4つの画素毎に4つのデ ィザ係数a、b、c、dを発生してこれらを順次加算器 351に供給する。例えば、図8に示されるように、第 j 行に対応した画素 G(j, k) 及び画素 G(j, k+1)、第(j + 1) 行に対応した画素G(j+1,k)及び画素G(j+1,k+1) なる4つの画素各々に対応した4つのディザ係数a、 b、c、dを発生する。この際、ディザ係数発生回路3 52は、これら4つの画素各々に割り当てるべき上記デ ィザ係数a~dを図8に示されるように1フィールド毎 に変更して行く。

【0022】すなわち、最初の第1フィールドにおいて は、

画素G(j,k) :ディザ係数 a 画素G(j, k+l) : ディザ係数 b 画素G(j+1,k) : ディザ係数 c 画素G(j+1,k+1):ディザ係数 d 次の第2フィールドにおいては、 画素G(j,k) :ディザ係数 b 画素G(j,k+1) : ディザ係数 a 画素G(j+1,k) : ディザ係数 d 画素G(j+1,k+1): ディザ係数 c 次の第3フィールドにおいては、 画素G(j,k) :ディザ係数 d 画素G(j,k+1) : ディザ係数 c 画素G(j+1,k) : ディザ係数 b 画素G(j+1,k+1): ディザ係数 a そして、第4フィールドにおいては、

画素G(j,k) :ディザ係数 c 画素G(j,k+l) : ディザ係数 d 画素G(j+1,k) : ディザ係数 a 画素G(j+1,k+1): ディザ係数 b

の如き割り当てにてディザ係数a~dを発生し、この第 1フィールド~第4フィールド各々での動作を繰り返し 実行する。すなわち、上記第4フィールドでのディザ係 数発生動作が終了したら、再び、上記第1フィールドの 動作に戻って、前述した動作を繰り返すのである。

【0023】加算器351は、上記誤差拡散処理回路3 3 0 から供給されてくる上記画素G(j,k)、画素G(j,k+ 1)、画素G(j+1,k)、及び画素G(j+1,k+1)各々に対応し た誤差拡散処理画素データED各々に、上記ディザ係数 30 a~dを夫々加算し、この際得られたディザ加算画素デ ータを上位ビット抽出回路353に供給する。例えば、 図8に示される第1フィールドにおいては、画素G(j, k)に対応した誤差拡散処理画素データED+ディザ係数 a、画素G(j,k+1)に対応した誤差拡散処理画素データ ED+ディザ係数b、画素G(j+l,k)に対応した誤差拡 散処理画素データED+ディザ係数 c 、画素 G(j+1, k+ 1)に対応した誤差拡散処理画素データED+ディザ係数 dの各々をディザ加算画素データとして上位ビット抽出 回路353に順次供給して行くのである。

【0024】上位ピット抽出回路353は、かかるディ ザ加算画素データの上位4ビット分までを抽出し、これ を多階調化処理画素データPD。として図3に示される 第2データ変換回路34に供給する。第2データ変換回 路34は、図9に示されるが如き変換テーブルに従っ て、かかる多階調化処理画素データPD。を第0~第1 4ビットからなる駆動画素データGDに変換して、メモ リ4に供給する。

【0025】メモリ4は、駆動制御回路2から供給され

込む。ここで、1画面分、つまり第1行・第1列〜第 n 行・第m列の各画素に対応した(n×m)個分の駆動画素 データGD₁ ~GD_n の書き込みが終了すると、メ モリ4は、以下の如き読み出し動作を行う。先ず、メモ リ4は、駆動画素データGD₁、~GD_n 各々の第0 ピット目を初期化データピットRDB」」~RDB。。 と捉え、これらを1表示ライン分ずつ読み出してアドレ スドライバ6に供給する。

【0026】次に、メモリ4は、駆動画素データGD 10 1 ~ GD。 A 各々の第1ビット目を駆動画素データビ ットDB1」、~DB1。。と捉え、これらを1表示ラ イン分ずつ読み出してアドレスドライバ6に供給する。 次に、メモリ4は、駆動画素データGD」、~GD。m 各々の第2ビット目を駆動画素データビットDB2,1 ~DB2。』と捉え、これらを1表示ライン分ずつ読み 出してアドレスドライバ6に供給する。次に、メモリ4 は、駆動画素データGD」」~GD。m 各々の第3ビッ ト目を駆動画素データピットDB3, 、~DB3。 ~ と 捉え、これらを1表示ライン分ずつ読み出してアドレス 20 ドライバ6に供給する。以下、同様にして、メモリ4 ト目~第14ビット目各々を駆動画素データビットDB 3~DB14と捉え、夫々、1表示ライン分ずつ読み出 してアドレスドライバ6に供給する。

【0027】駆動制御回路2は、図10に示されるが如 き発光駆動フォーマットに従ってPDP10を階調駆動 すべき各種タイミング信号を発生して、アドレスドライ バ6、第1サスティンドライバ7及び第2サスティンド ライバ8各々に供給する。尚、図10に示される発光駆 動フォーマットでは、1フィールドの表示期間を14個 のサブフィールドSF1~SF14に分割し、各サブフ ィールド内において画素データ書込行程Wc及び発光維 持行程Icを夫々実行する。更に、先頭のサブフィール ドSF1においてのみで選択初期化行程SRcを実行 し、最後尾のサブフィールドSF14においてのみで消 去行程Eを実行する。この際、図10に示される発光駆 動フォーマットでは、各画素データ書込行程Wcでの画 素データの書込方法として、選択消去アドレス法を採用 している。

【0028】図11は、図10に示される発光駆動フォ 40 ーマットに従ってアドレスドライバ6、第1サスティン ドライバ7及び第2サスティンドライバ8各々がPDP 10の列電極及び行電極対に印加する各種駆動パルス と、その印加タイミングを示す図である。図11におい て、サブフィールドSF1のみで実施される選択初期化 行程SRcでは、アドレスドライバ6は、上記メモリ4. から読み出された初期化データビットRDB」」~RD ルスを生成する。例えば、アドレスドライバ6は、上記 た書込信号に従って上記駆動画素データGDを順次書き 50 初期化データビットRDBの論理レベルが"1"である場

合には高電圧、 $^{"}$ 0 $^{"}$ である場合には低電圧(0ボルト)の初期化データパルスを生成する。そして、アドレスドライバ6は、かかる初期化データパルスを1表示ライン分ずつグループ化した初期化データパルス群RDP $_1$ ~RDP $_n$ を、図11に示されるように順次、PDP10の列電極D $_1$ ~D $_m$ に印加して行く。更に、かかる選択初期化行程SRcでは、第2サスティンドライバ8が、上記初期化データパルス群RDP $_1$ ~RDP $_n$ 各々の印加タイミングと同一タイミングにて負極性の走査パルスSP $_w$ を発生し、これを図11に示されるが如く行電極 Y_1 ~Y $_n$ ~と順次印加して行く。

【0029】この際、上記走査パルスSPwが印加された表示ラインと、高電圧の初期化データパルスが印加された"列"との交差部の放電セルにのみ書込放電が生起され、その放電セルの放電空間内には荷電粒子が発生する。そして、かかる書込放電の終息後、その放電セル内には壁電荷が形成され、この放電セルは"発光セル"の状態に初期化される。一方、上記走査パルスSPwが印加されたものの低電圧の初期化データパルスが印加された放電セルには上述のような書込放電は生起されない。よ20って、その放電セル内には上述した如き壁電荷が形成されず、この放電セルは"非発光セル"状態のままである。

【0030】そして、走査パルスSP $_w$ が行電極Y $_n$ に 印加された後、第2サスティンドライバ8は、図11に 示されるが如き正極性のプライミングパルスPP $_v$ を行電極Y $_1$ ~Y $_n$ の各々に同時に印加する。その後、第1 サスティンドライバ7は、図11に示されるが如き正極性のプライミングパルスPP $_x$ を行電極X $_1$ ~X $_n$ の各々に同時に印加する。上記プライミングパルスPP $_v$ 及びプライミングパルスPP $_x$ の印加により、壁電荷が残留している放電セルのみで2回分のプライミング放電が生起され、その放電終息後に再び壁電荷が形成される。つまり、前述した如き書込放電の生起された放電セルに対してのみにプライミング放電が生起され、上記書込放電によって形成されたものの時間経過と共に減少してしまった荷電粒子が再形成されるのである。

【0031】ここで、上記書込放電が生起されるのか否かは、図9に示される駆動画素データGDの第0ビットの論理レベルに依存している。尚、かかる駆動画素データGDの第0ビットは、図9に示されるように、多階調 40化処理画素データPD。が"0000"、すなわち輝度レベル"0"を表す場合には論理レベル"0"となり、PD。が輝度レベル"0"以外の輝度を表す場合には、論理レベル"1"となる。そして、駆動画素データGDの第0ビットが論理レベル"1"である場合に限り上述した如き書込放電を生起させ、第0ビットが論理レベル"0"である場合には一切放電を起こさないのである。

【0032】従って、上記選択初期化行程 S Rcの実行 るように、行電極 X 、 $\sim X$ 、 $\sim X$ へと順次印加して行く。かによれば、輝度レベル"0"以外の輝度を表す画素データ かる画素データ書込行程Wにおいて、上記走査パルスに対応した放電セルの各々には上記書込放電に伴う壁電 S P 。が印加された表示ラインと、高電圧の画素データ

荷が形成され、"発光セル"の状態に初期化される。一方、輝度レベル" 0"を表す画素データに対応した放電セルの各々には放電が起こらないので上述した如き壁電荷も形成されず、"非発光セル"の状態のままとなる。すなわち、そもそも輝度レベル" 0"の表示では放電セルを発光させる必要は無いので、この放電セルに対しては、"発光セル"の状態に初期化させる為の書込放電を生起させないようにしたのである。

. .10

【0033】次に、各サブフィールド内で実施される画素データ書込行程Wcでは、アドレスドライバ6が、上記メモリ4から供給された駆動画素データピットDBに応じたパルス電圧を有する画素データパルスを生成する。例えば、アドレスドライバ6は、駆動画素データピットDBの論理レベルが"1"である場合には高電圧の画素データパルスを生成し、"0"である場合には低電圧(0ボルト)の画素データパルスを生成する。そして、アドレスドライバ6は、上記画素データパルスを1表示ライン分毎にグループ化した画素データパルス群DPを順次、列電極D1~Dmに印加して行く。

【0034】ここで、サブフィールドSF1の画素デー 夕書込行程Wcでは、メモリ4からは、前述した如き駆 動画素データビットDB1」」~DB1。 各々が1表 示ライン分ずつ順次読み出される。従って、この間、ア ドレスドライバ6は、かかる駆動画素データビットDB 1, 1~DB1, に基づいて生成した1表示ライン分 毎の画素データパルス群DP₁、DP₂、DP₃、··· ·、DP。を図11に示されるように順次、列電極Di ~Dm に印加して行く。又、サブフィールドSF2の画 素データ書込行程Wcでは、メモリ4からは、前述した 如き駆動画素データビットDB211~DB211 各々 が1表示ライン分ずつ順次読み出される。従って、この 間、アドレスドライバ6は、かかる駆動画素データビッ トDB2, 、~DB2, 、 に基づいて生成した1表示ラ イン分毎の画素データパルス群DP1、DP2、D P₃、····、DP_nを図11に示されるように順次、列 電極D」~Dm に印加して行く。以下、同様にしてサブ フィールドSF3~SF14各々の画素データ書込行程 Wcにおいて、アドレスドライバ6は、メモリ4から読 み出された駆動画素データビットDB3~DB14各々 に基づく1表示ライン分毎の画素データパルス群D P₁、DP₂、DP₃、・・・・、DP_nを順次、列電極D 、~Dm に印加して行く。

【0035】更に、上記画素データ書込行程Wcでは、第2 サスティンドライバ8が、上記画素データパルス群DP₁、DP₂、・・・・、DP_n各々の印加タイミングと同一タイミングにて負極性の走査パルスSP_nを発生する。そして、かかる走査パルスSP_nを図11に示されるように、行電極 $X_1 \sim X_n$ へと順次印加して行く。かかる画素データ書込行程Wcにおいて、上記走査パルスSP_nが印加された表示ラインと、高電圧の画素データ

パルスが印加された"列"との交差部の放電セルにのみ放電(選択消去放電)が生じる。かかる選択消去放電により、その放電セル内に形成されていた壁電荷は消滅し、この放電セルは"非発光セル"の状態に推移する。一方、上記走査パルスSP。が印加されたものの低電圧の画素データパルスが印加された放電セルには上述のような選択消去放電は生起されず、上記選択初期化行程SRCにて初期化された状態、つまり"発光セル"の状態が保持される。

【0036】すなわち、画素データ書込行程Wcによれ 10 ば、入力映像信号に対応した各画素毎の画素データに応じて各放電セルが"発光セル" あるいは"非発光セル"の状態に設定される、いわゆる画素データの書込が為されるのである。次に、各サブフィールド内の発光維持行程 I cでは、第1サスティンドライバ7及び第2サスティンドライバ8各々が、図11に示されるが如く行電極X、 \sim X。及びY、 \sim Y。に対して交互に正極性の維持パルス I Px 及び I Px を繰り返し印加する。この際、各発光維持行程 I cにおいて印加すべき維持パルス I Pの回数は、各サブフィールドの階調輝度の重み付けに応じて 20 異なっている。例えば、サブフィールドSF1での発光実施回数(プライミングパルス P Px 及び P Px に基づく2回分+SF1の発光維持行程 I cで印加する維持パルス I Pの数)を"1"とした場合、

SF1:1 SF2:3 SF3:5 SF4:8 SF5:10 SF6:13 SF7:16 SF8:19 SF9:22 SF10:25 SF11:28 SF12:32 SF13:35 SF14:39

である。

【0038】以上の如き動作により、PDP10の画面 上には、1フィールド表示期間内において上記サブフィ ールドSF各々の維持発光行程 Icで実施された発光の 合計回数に応じた表示輝度が現れる。尚、各サプフィー ルドの発光維持行程Icで上記維持放電を生起させるか 否かは、そのサブフィールド内の画素データ書込行程W cにおいて選択消去放電を生起させるか否かにより決定 する。ここで、図9に示されるが如き駆動画素データG Dのビットパターンによれば、同図中において黒丸にて 示されるように、1フィールド表示期間中における多く 10 とも1つのサブフィールドの画素データ書込行程Wcに おいてのみで選択消去放電が生起される。よって、先頭 サブフィールドSF1の選択初期化行程SRcにて形成 された壁電荷は上記選択消去放電が生起されるまでの間 残留して各放電セルは"発光セル"の状態を維持する。従 って、その間に存在するサブフィールド各々(白丸にて 示す)の発光維持行程 I c各々において連続して発光が生 じることになる。この際、図9に示されるように、上記 選択消去放電によって一旦、非発光状態に推移した放電 セルは、その1フィールド内において再び"発光セル"の 状態に推移することはない。よって、図1に示されるが 如き、1フィールド表示期間内において放電セルが発光 状態にある期間と、非発光状態にある期間とが反転する ような発光パターンは存在しないので、偽輪郭の発生が 抑制されるようになる。

【0039】図9に示されるが如き15系統のビットパターンを取り得る駆動画素データGDを用いて、図10及び図11に示されるが如き階調駆動を実施すれば、各ビットパターンに応じた15系統の発光駆動が為され、

30 {0,1,4,9,17,27,40,56,75,97,122,150,182,217,255} なる15階調分の中間表示輝度が得られる。

【0040】一方、A/D変換器3にて得られた画素データPDは、8ピット、すなわち、256段階の中間調を表現し得るものである。そこで、上記15階調の階調駆動によっても擬似的に256段階の中間調表示を実現させるべく、図3に示される多階調化処理回路33によって多階調化処理を実施しているのである。更に、本発明では、選択初期化行程SRcにおいて、輝度レベル"0"の表示、つまり黒表示を担う放電セルに対してはその初期化の為の書込放電を生起させないようにしている。よって、この黒表示を担う放電セルでは一切、放電発光が生じないので、黒表示に対するコントラストが向上する。

【0041】尚、上記実施例においては、先頭のサブフィールドSF1において、画素データ書込行程Wcを実行するようにしている。しかしながら、輝度レベル"0"以外の輝度レベルを担う放電セルは、必ずサブフィールドSF1の発光維持行程Icにおいて発光させることになるので、サブフィールドSF1の画素データ書込行程50 Wcをわざわざ実施する必要はない。

14

【0042】図12は、かかる点に鑑みて為された発光 駆動フォーマットを示す図である。又、図13は、この 発光駆動フォーマットに従ってアドレスドライバ6、第 1サスティンドライバ7及び第2サスティンドライバ8 各々がPDP10の列電極及び行電極対に印加する各種 駆動パルスと、その印加タイミングを示す図である。図 12に示される発光駆動フォーマットでは、各サブフィールド内において発光維持行程Icを実行し、先頭のサブフィールドSF1を除く他のサブフィールドの各々に おいて画素データ書込行程Wcを実行する。そして、先頭のサブフィールドSF1においてのみで選択初期化行程SRc を実行し、最後尾のサブフィールドSF14に おいてのみで消去行程Eを実行する。

【0043】尚、図12及び図13に示される階調駆動 では、サブフィールドSF1を除く他のサブフィールド SF2~SF14各々での動作は、図10及び図11に 示されるものと同一である。よって、以下にサブフィー ルドSF1内での動作のみ説明する。図13に示される ように、選択初期化行程SRc'では、アドレスドライバ 6が、上記メモリ4から読み出された初期化データビッ 20 トRDB」、~RDB。 M 各々に応じたパルス電圧を有 する初期化データパルスを生成する。この際、前述した ように、初期化データピットRDBとは、図9に示され る駆動画素データGDの第0ビット目の論理レベルを示 すものである。例えば、アドレスドライバ6は、上記初 期化データピットRDBの論理レベルが"1"である場合 には高電圧、"0"である場合には低電圧(0ボルト)の初 期化データパルスを生成する。そして、アドレスドライ バ6は、かかる初期化データパルスを1表示ライン分ず つグループ化した初期化データパルス群RDP、~RD P。を、図13に示されるように順次、PDP10の列 電極D」~Dm に印加して行く。更に、かかる選択初期 化行程SRc'では、第2サスティンドライバ8が、上記 初期化データパルス群RDP」~RDP。各々の印加タ イミングと同一タイミングにて負極性の走査パルスSP w を発生し、これを行電極Y」~Y。へと順次印加して 行く。

【0044】この際、上記走査パルスSPwが印加された表示ラインと、高電圧の初期化データパルスが印加された"列"との交差部の放電セルにのみ書込放電が生起され、その放電セルの放電空間内には荷電粒子が発生する。そして、かかる書込放電の終息後、その放電セル内には壁電荷が形成され、この放電セルは"発光セル"の状態に初期化される。一方、上記走査パルスSPwが印加されたものの低電圧の初期化データパルスが印加された放電セルには上述のような書込放電は生起されない。よって、その放電セルは「非発光セル」状態のままである。【0045】ここで、上記書込放電が生起されるのか否

【0045】ここで、上記書込放電が生起されるのか否 かは、図9に示される駆動画素データGDの第0ビット 50 の論理レベルに依存している。尚、かかる駆動画素データGDの第0ビットは、図9に示されるように、多階調化処理画素データPD。が"0000"、すなわち輝度レベル"0"を表す場合には論理レベル"0"となり、PD。が輝度レベル"0"以外の輝度を表す場合には、論理レベル"1"となる。そして、駆動画素データGDの第0ビットが論理レベル"1"である場合に限り上述した如き書込放電を生起させ、第0ビットが論理レベル"0"である場合には一切放電を起こさないのである。

【0046】従って、上記選択初期化行程SRc'の実行によれば、輝度レベル"0"以外の輝度を表す画素データに対応した放電セルの各々には上記書込放電に伴う壁電荷が形成されて、"発光セル"の状態に初期化される。一方、輝度レベル"0"を表す画素データに対応した放電セルの各々には放電が起こらないので上述した如き壁電荷も形成されず、"非発光セル"の状態のままとなる。すなわち、輝度レベルが"0"となる黒表示では放電セルを発光させる必要は無いので、この放電セルに対しては、"発光セル"の状態に初期化させる為の書込放電を生起させないようにしたのである。

【0047】上記選択初期化行程SRc'の実行後、サブフィールドSF1では画素データ書込行程Wcを実行せずに直ちに発光維持行程Icを実行する。尚、画素データ書込行程Wcを実行しないので、図9に示される駆動画素データGDの第1ビット目は使用しない。サブフィールドSF1での発光維持行程Icによれば、上記選択初期化行程SRc'において"発光セル"の状態に初期化された放電セルのみが、図13に示されるが如き上記維持パルスIPx及びIP、が交互に印加される度に維持放電してそれに伴う発光を繰り返す。

【0048】このように、図12及び図13に示される 階調駆動におけるサブフィールドSF1では、選択初期 化行程SRc'の後、画素データ書込行程Wcを実行せず に発光維持行程Icに移行するので、図10及び図11に示される駆動に比してサブフィールドSF1の実行に 費やされる時間が短縮される。従って、その時間短縮分だけ、サブフィールドSF1~SF14各々の発光維持 行程Icで実施すべき発光回数を増加すれば高輝度表示が為されるようになる。又、上記時間短縮分だけ、1フィールド表示期間内でのサブフィールド数を増やせば輝度階調数も増加するので、画像の表示品質を高めることが可能となるのである。

【0049】尚、上記実施例に示される階調駆動では、低輝度レベルの画像に対応した映像信号が連続して供給された場合には維持放電の実施回数も減るので、各放電セル内のプライミング効果が低くなって放電が良好に生起されにくくなる。つまり、選択初期化行程SRc(SRc')での選択書込放電、及び画素データ書込行程Wcでの選択消去放電が不安定になるのである。

【0050】そこで、所定数のフィールド毎に、上記選

択初期化行程SRc(SRc')の直前にプライミング放電を生起させるプライミング行程を設けることにより、選択初期化行程SRc(SRc')における選択書込放電を確実に生起させるようにする。この際、上記プライミング放電は、例えば図11に示されるが如き正極性のプライミングパルスPPを行電極に印加することにより生起させる。

15

【0051】又、サブフィールド各々の内のいずれか1 のサブフィールドでの画素データ書込行程Wcにて選択 消去放電の対象となった放電セルを、その次のサブフィ 10 ールドの画素データ書込行程Wcにおいて再び選択消去 放電の対象とすることにより、画素データ書込動作を確 実にするようにしても良い。この際、第2データ変換回 路34では図14に示されるデータ変換テーブルを採用 する。従って、このデータ変換テーブルに基づいて変換 された駆動画素データGDによれば、図14中の黒丸に 示されるように、互いに連続した2つのサブフィールド 各々の画素データ書込行程Wcにて、連続して選択消去 放電が実施されるのである。かかる動作によれば、例 え、1回目の選択消去放電で放電セル内の壁電荷を正常 20 に消去させることが出来なくても、2回目の選択消去放 電により壁電荷の消去が為されるようになるので、画素 データ書込動作が確実に為される。

[0052]

【発明の効果】以上詳述した如く、本発明においては、 先頭のサブフィールドにおいてのみで、プラズマディス プレイパネルの放電セル各々の内で輝度レベル 0 の表示 を担う放電セルを除く他の放電セルのみを選択的に書込 放電せしめてこれらを発光セルの状態に初期化する。そ して、先頭サブフィールドを除く他のサブフィールド各 々の内のいずれか 1 のサブフィールドにおいてのみで上 記発光セルの状態にある放電セルを画素データに応じて 選択的に消去放電せしめて非発光セルの状態に推移せし める。更に、各サブフィールドにおいて上記発光セルの 状態にある放電セルのみをそのサブフィールドの重み付 けに対応して割り当てた発光回数だけ発光せしめる。

【0053】よって、1フィールドの表示期間内において放電セルが発光状態にある期間と、非発光状態にある期間とが反転するような発光パターンが存在しないので、偽輪郭の発生が抑制されるようになる。更に、本発 40 明においては、輝度レベル0の表示(黒表示)を担うことになる放電セルに対しては、初期化、つまり壁電荷の形成を行わない。従って、本発明によれば、黒表示を担うことになる放電セルでは、壁電荷を形成させる為の放電(発光を伴う)が一切為されないので、黒表示でのコントラストが向上するのである。

【図面の簡単な説明】

【図1】サブフィールド法に基づく従来の輝度階調動作 を説明する為の図である。

16

【図2】本発明による駆動方法に従ってプラズマディスプレイパネルを駆動するプラズマディスプレイ装置の概略構成を示す図である。

【図3】データ変換回路30の内部構成を示す図である。

【図4】第1データ変換回路32によるデータ変換特性を示す図である。

【図5】多階調処理回路33の内部構成を示す図である。

【図6】誤差拡散処理回路330の動作を説明する為の図である。

【図7】ディザ処理回路350の内部構成を示す図である

【図8】ディザ処理回路350の動作を説明する為の図である。

【図9】第2データ変換回路34におけるデータ変換テーブルと、1フィールド表示期間内での発光駆動パターンとを示す図である。

【図10】本発明による駆動方法に基づく発光駆動フォーマットの一例を示す図である。

【図11】図10に示される発光駆動フォーマットに従ってPDP10に印加される各種駆動パルスと、その印加タイミングを示す図である。

【図12】本発明による駆動方法に基づく発光駆動フォーマットの他の一例を示す図である。

放電せしめてこれらを発光セルの状態に初期化する。そ 【図13】図12に示される発光駆動フォーマットに従して、先頭サブフィールドを除く他のサブフィールド各 30 ってPDP10に印加される各種駆動パルスと、その印々の内のいずれか1のサブフィールドにおいてのみで上 加タイミングを示す図である。

【図14】画素データ書込動作を確実にする際に第2データ変換回路34で採用するデータ変換テーブルと、1フィールド表示期間内での発光駆動パターンとを示す図である。

【主要部分の符号の説明】

- 2 駆動制御回路
- 6 アドレスドライバ
- 7 第1サスティンドライバ
- 8 第2サスティンドライバ
 - 10 PDP
- 30 データ変換回路
- 32 第1データ変換回路
- 33 多階調化処理回路
- 34 第2データ変換回路

【図2】

【図4】

【図5】

【図8】

【図9】

		第2データ変換回路34のデータ変換テーブル															•	1	フィー	- <i>n</i> .i	*1=3	における発光運動パターン										
NE	PDs	0	1	2	3	4	5	•	Đ,	8	9	10	11	12	13	14	SF 1	SF 2	SF 3	SF 4	SF 5	SF	SF 7	SF 8	SF.	SF 10	SF 11	8F 12	SF 13	SF 14	表示	
1	0000	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	Γ														0	
2	0001	1	0	1	0	0	0	0	C	0	0	0	0	0	0	0	0	•													1	
3	0010	lı	0	0	1	0	0	0	C	0	0	0	0	O	0	0	0	0	•												4	
4	0011	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	•											9	
S	0100	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	•										17	
6	0101	1	0	0	0	0	0	1	0	0	0	0	٥	0	0	0	0	0	0	0	0	•									27	
7	0110	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	Ô	•								40	
8	0111	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	Ō	ō	O	•							56	
9	1000	1	0	0	0	0	0	0	0	0	1	C	0	0	0	0	0	0	0	0	0	0	0	0	•						75	
10	1001	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	O	O	0	0	0	0	0	•					97	
11	1010	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	O	0	ō	ō	O	O	ō	ō	•				122	
12	1011	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	O	ō.	0	•			150	
13	1100	1	0	0	0	0	٥	0	0	0	0	0	0	0	1	0	0	ō	ō	ō	Õ	ŏ	ŏ	ŏ	ō	o	ō	ō	•		182	
14	1101	1	0	0	0	0	0	0	٥	0	0	0	0	0	O	1	0	O	Ö	Ō	ō	ō	ō	ō	ō	Õ	Õ	ŏ	ō	•	217	
15	1110	ı	0	0	0	0	0	0	Q	0	0	0	0	0	a	0	0	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	255	

□ :選択書込放電+"発光"○ : "規光"● :選択消去放電

【図10】

【図11】

【図12】

[図13]

[図14]

		第2データ変換回路34のデータ変換テーブル														Г		1フィールドにおける発光駆動パターン										1			
を対	PDs		1	2	3	4	8	•	3 D,		9	10	11	12	13	14	SF	SF	SF	SF	SF	SF	SF	SF	SF	6F 10	Ş.F	5F _12	SF 13	SF	
1	0000	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	ΙĖ								-	10		18	13	14	0
2	0001	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0														[
3	0010	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	ō	•												1
4	0011	1	C	0	0	1	1	0	0	0	0	0	0	0	0	0	0	ō	ō	•	•										
5	0100	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	Ö	ō	ō		•									17
8	0101	1	0	0	0	0	0	1	t	0	0	0	C	0	0	C	0	ŏ	ō	ŏ	õ	•									27
7	0110	1	0	0	0	0	0	0	1	1	0	0	0	0	0	a	0	ō	ō	ō	ō	õ	•	•							40
8	0111	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	ŏ	ō	ŏ	ŏ	ŏ	0	_	•						56
9	1000	1	0	0	0	0	0	0	0	0	1	1	0	0	0	O	0	ō	ŏ	_	ā	ŏ	ŏ	0	_	•					75
10	1001	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	ō	ō	Ξ	ŏ	ŏ	ŏ	ŏ	0	-	•				97
11	1010	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	ō	ō	_	ō	ŏ	ŏ	_	ŏ	0	_				122
12	1011	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	õ	ō	Ξ	ŏ	_	ŏ	ŏ	ŏ	ŏ	0	_	_		150
13	1100	1.	0	0	0	0	O	0	0	0	0	0	0	Ó	1	1	0	õ	ŏ	_	ŏ	ŏ	õ	ă	õ	ŏ	ŏ	0	=		182
14	1101	1	0	0	0	0	0	0	0	0	0	0	Ó	0	0	i	0	ŏ	ŏ	õ	õ	õ	0	õ	0	o	ö	_	0		217
15	1110	1	0	o	0	0	0	0	0	0	D	0	0	Ô	n	0	0	ŏ	0	ŏ	ö	õ	0	ö	0	0	_	_	Ξ	0	255

□ 透択書込放電+"発光"○ : "発光"● : 透択消去放電

フロントページの続き

(72)発明者 本田 広史 山梨県中巨摩郡田富町西花輪2680番地 パ イオニア株式会社内

Fターム(参考) 5C080 AA05 BB05 DD01 DD30 EE19 EE29 FF12 GG12 JJ02 JJ04 JJ05