

# **Machine Learning**

Backpropagation

**ADF** 





#### **Outline**

- Gradient Descent
- Backpropagation
- Neural Network Training
- Advanced Techniques



# Aside: Mathematical Notation

4/5/2021



#### **Recall the Notation**

| $i, j, x, y, z, \dots$          | Scalar, single value                                                      | Plain italic letters |  |
|---------------------------------|---------------------------------------------------------------------------|----------------------|--|
| x, y, v,                        | Vector, list                                                              | Bold letters         |  |
| $X, Y, Z, \dots$                | Matrix, tensor                                                            | Capital letters      |  |
| Z                               | The set of integers                                                       |                      |  |
| $\mathbb{R}$                    | The set of real numbers                                                   |                      |  |
| $\mathbf{x} \in \mathbb{R}^n$   | ${f x}$ is a set of $n$ -dimensional vector, of real numbers              |                      |  |
| $X \in \mathbb{R}^{a \times b}$ | $\it X$ is a matrix of real numbers with $\it a$ rows and $\it b$ columns |                      |  |



# **Implementation Note**

In most programming language that supports matrix operation like, a vector is as either column-vector or row-vector

$$\mathbf{a} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \quad \Rightarrow \quad \mathbf{b} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \quad \text{or} \quad \mathbf{c} = [x_1 \ x_2 \ \cdots x_d]$$

- Which is technically a matrix
- So you can transpose row-vector into column-vector and vice-versa

$$\mathbf{b}^T = [x_1 \ x_2 \ \cdots x_d] \qquad \mathbb{R}^{1 \times d}$$

$$= \mathbf{c} = [x_1 \ x_2 \ \cdots x_d]$$



# **Implementation Note**

However, in most popular machine learning library and programming language like Python and Torch (Lua), a vector is defined as a 1-dimensional array. It is visualized as row-vector

$$\mathbf{a} = [x_1 \ x_2 \ \cdots x_d]$$

- And transpose is defined as flipping the dimension.
- Thus transposing a vector (1D/row-vector) is still a vector (1D/row-vector)

$$\mathbf{a}^T = [x_1 \ x_2 \ \cdots x_d]$$

This also affects several other matrix/vector operations



# **Implementation Note**

- Therefore, for this slide, we will refer row-vectors and column-vectors as 2D matrices
- Note the dimension and illustrations

$$\mathbf{a} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \quad \mathbb{R}^d$$

 In math, default vector is a column-vector

$$\mathbf{b} = \begin{bmatrix} x_1 & x_2 & \cdots & x_d \end{bmatrix}$$

$$\mathbb{R}^{1 \times d} \qquad \mathbf{c} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

$$E = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix} R^{n \times d}$$



# Aside: Linear Regression in Matrix Form



Linear form

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_d x_d$$

$$\hat{y} = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$

Matrix multiplication form

$$\hat{y} = \mathbf{w} \cdot \mathbf{x} + \mathbf{b}$$

$$\hat{y} = XW + b$$

$$\hat{y} = \mathbf{w} \cdot \mathbf{x}$$

$$\hat{y} = \mathbf{W} \mathbf{x}^T + \mathbf{b}$$

$$\hat{y} = \mathbf{w}^T \mathbf{x} + \mathbf{b}$$

$$\hat{y} = WX^T + b$$



$$\hat{y} = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$







$$\hat{y} = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$



$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \\ b \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \\ 1 \end{bmatrix}$$

$$\Rightarrow \widehat{y} = \mathbf{w} \cdot \mathbf{x}$$

$$\hat{y} = \mathbf{x} \cdot \mathbf{w}$$

11 4/5/2021 Machine Learning

 $\mathbb{R}^{d+1}$ 





 $x_1$   $x_2$   $w_2$   $\hat{y}$   $w_3$   $x_3$ 

In math, default vector is a column-vector





$$\hat{y} = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$

| i | $x_1$ | <i>x</i> <sub>2</sub> | <br>$x_d$ | у |
|---|-------|-----------------------|-----------|---|
| 1 | 0.5   | 0.2                   | <br>0.7   | 1 |
| 2 | 0.1   | 0.3                   | <br>0.2   | 0 |
|   |       |                       | <br>      |   |
| n | 0.2   | 0.5                   | <br>0.2   | 0 |





$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix} \Rightarrow \hat{\mathbf{y}} = X\mathbf{w} + \mathbf{b}$$

$$\hat{\mathbf{y}} = \mathbf{w}X^T + \mathbf{b}$$



#### **Default Formula**

$$\hat{y} = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$



$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

$$\mathbb{R}^d$$

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$



$$\hat{y}_{1} = w_{11}x_{1} + w_{21}x_{2} + \dots + w_{d1}x_{d} + b_{1}$$

$$\hat{y}_{2} = w_{12}x_{1} + w_{22}x_{2} + \dots + w_{d2}x_{d} + b_{2}$$

$$\vdots$$

$$\hat{y}_{c} = w_{1c}x_{1} + w_{2c}x_{2} + \dots + w_{dc}x_{d} + b_{c}$$

$$y = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{c} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_c \end{bmatrix}$$



$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

 $\mathbb{R}^d$ 

$$w_{d1}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \quad | \quad \mathbf{W} = \begin{bmatrix} \mathbf{w}_{11} & \mathbf{w}_{12} & \cdots & \mathbf{w}_{1c} \\ \mathbf{w}_{21} & \mathbf{w}_{22} & \cdots & \mathbf{w}_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{w}_{d1} & \mathbf{w}_{dc} & \cdots & \mathbf{w}_{dc} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_c \end{bmatrix} \quad \Rightarrow \quad \hat{\mathbf{y}} = \mathbf{x} \mathbf{W} + \mathbf{b}$$

$$\mathbb{R}^{d \times c}$$

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_c \end{bmatrix}$$

$$\hat{\mathbf{v}} = \mathbf{W}\mathbf{x}^T + \mathbf{b}$$



| i | $x_1$ | <i>x</i> <sub>2</sub> | <br>$x_d$ | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> | <i>y</i> <sub>3</sub> |
|---|-------|-----------------------|-----------|-----------------------|-----------------------|-----------------------|
| 1 | 0.5   | 0.2                   | <br>0.7   | 1                     | 0                     | 0                     |
| 2 | 0.1   | 0.3                   | <br>0.2   | 0                     | 1                     | 0                     |
|   |       |                       | <br>      |                       |                       |                       |
| n | 0.2   | 0.5                   | <br>0.2   | 0                     | 0                     | 1                     |

$$X = \begin{bmatrix} 0.5 & 0.2 & \cdots & 0.7 \\ 0.1 & 0.3 & \cdots & 0.2 \\ \vdots & \vdots & \ddots & \vdots \\ 0.2 & 0.5 & \cdots & 0.2 \end{bmatrix} \quad y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbb{R}^{n \times d} \qquad \mathbb{Z}^{n \times c}$$

$$W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1c} \\ w_{21} & w_{22} & \cdots & w_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ w_{d1} & w_{dc} & \cdots & w_{dc} \end{bmatrix}$$

$$W = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1c} \\ w_{21} & w_{22} & \cdots & w_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ w_{d1} & w_{dc} & \cdots & w_{dc} \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_c \end{bmatrix} \Rightarrow \qquad \mathbf{\hat{y}} = XW + b$$



# Gradient Descent and Backpropagation



#### So Far...

- Logistic Regression
  - Standard Neuron with sigmoid activation

$$f(\mathbf{x}, W) = \sigma(W\mathbf{x} + b)$$

$$\sigma(v) = \frac{1}{1 + \exp(-v)}$$

- Intuition:
  - Class score  $\hat{y}$  = weighted sum of the attributes (x)
  - Use a transformation of the values of linear function



# **Logistic Regression**

- Intuition:
  - Class score  $\hat{y}$  = weighted sum of the attributes (x)
  - Use a transformation of the values of linear function
  - Find weights that minimize the Cost Function
- Problem:

$$\widehat{w} = \left(X^T X\right)^{-1} X^T y$$

- Expensive calculation with the increasing of dimension in x,
- Need to come up with another technique
- Solution:
  - Gradient Descent Optimization



#### **Loss Score**

Given a binary class dataset of examples

$$X \in \mathbb{R}^{n \times d}$$

$$y \in \mathbb{Z}^n$$

Loss over the dataset is a sum of loss over examples

$$L = \sum_{i=1}^{N} L_i$$

$$L_i = \|y_i - f(\mathbf{x}, W)\|_2^2$$

L2 Loss (squared error)



#### **Loss Score**

 Common choice for loss function of a data is L2 Loss or Squared-error

$$L_i = ||f(\mathbf{x}, W) - y_i||_2^2$$

$$L_i = (\hat{y}_i - y_i)^2$$

For that, we get the loss function as SSE or sum-of-squared-error

$$L = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

One can also use MSE or mean-of-squared-error



# **Optimization Problem**

$$\hat{y}_i = \sigma(\mathbf{w_1} \mathbf{x_1} + \mathbf{w_2} \mathbf{x_2} + \mathbf{b})$$

$$L = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

- Loss is a function of weights
- Find weights that minimize the loss
- Use calculus to get the gradient



4/5/2021



#### **Gradient Descent**

- Problem:
  - generalization problem to minimize error for all data
- Gradient:
  - a slope of which way the parameters must go to minimize the error (based on current data)
- Gradient Descent
  - a first-order iterative optimization algorithm for finding the minimum of a function



# Gradient Descent in a Neuron (Logistic Regression)



#### **Gradient Descent in a Neuron**

$$\hat{y} = \sigma(\mathbf{x}\mathbf{w} + \mathbf{b})$$

$$\hat{y} = \sigma(\mathbf{v})$$

$$\sigma(\mathbf{v}) = \frac{1}{1 + \exp(-\mathbf{v})}$$

$$v = xw + b$$

$$L = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$L = \frac{1}{2} \sum_{i=1}^{N} \left( \frac{1}{1 + \exp(-(xw + b))} - y_i \right)^2$$

- Find w that minimize L
- Calculate gradient from partial derivative

$$\frac{\partial L}{\partial \mathbf{w}} \qquad \frac{\partial L}{\partial b}$$

4/5/2021



#### **Gradient Descent in a Neuron**

v = xw + b

 $\partial L$ ∂w

$$= \frac{\partial \frac{1}{2} \sum (\hat{y}_i - y_i)^2}{\partial \mathbf{w}}$$

Chain rule

$$\hat{y} = \frac{1}{1 + \exp(-\mathbf{v})}$$

$$= \frac{\partial \frac{1}{2} \sum (\hat{y}_i - y_i)^2}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial \mathbf{w}} = \frac{1}{2} 2(\hat{y}_i - y_i) \frac{\partial \hat{y}_i}{\partial \mathbf{w}}$$

$$= \frac{1}{2} 2(\hat{y}_i - y_i) \frac{\partial \hat{y}_i}{\partial \mathbf{w}}$$

$$= (\hat{y}_i - y_i) \frac{\hat{y}_i}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial \mathbf{w}}$$

$$= (\hat{y}_i - y_i)(\sigma(\mathbf{v}) - \sigma(\mathbf{v})^2) \frac{\partial \mathbf{v}}{\partial \mathbf{w}}$$

 $\partial L$ дw

$$= (\hat{y}_i - y_i)(\sigma(\mathbf{v}) - \sigma(\mathbf{v})^2) \mathbf{x}$$

$$= \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial \mathbf{w}}$$



# **Gradient Descent Example**

v = xw + b

$$\frac{\partial L}{\partial b}$$

$$= \frac{\partial \frac{1}{2} \sum (\hat{y}_i - y_i)^2}{\partial b}$$

Chain rule

$$\hat{y} = \frac{1}{1 + \exp(-\mathbf{v})}$$

$$= \frac{\partial \frac{1}{2} \sum (\hat{y}_i - y_i)^2}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial b} = \frac{1}{2} 2(\hat{y}_i - y_i) \frac{\partial \hat{y}_i}{\partial b}$$

$$= \frac{1}{2} 2(\hat{y}_i - y_i) \frac{\partial \hat{y}_i}{\partial b}$$

$$= (\hat{y}_i - y_i) \frac{\hat{y}_i}{\partial \boldsymbol{v}} \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{b}}$$

$$= (\hat{y}_i - y_i)(\sigma(\mathbf{v}) - \sigma(\mathbf{v})^2) \frac{\partial \mathbf{v}}{\partial b}$$

$$\frac{\partial L}{\partial b}$$

$$= (\hat{y}_i - y_i)(\sigma(\mathbf{v}) - \sigma(\mathbf{v})^2) = \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial \mathbf{b}}$$

$$= \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial \mathbf{b}}$$



# **Gradient Descent Example for single data**



# **Gradient Descent Example**

| i | $x_1$ | $x_2$ | у |
|---|-------|-------|---|
| 1 | -0.1  | 0.2   | 0 |
| 2 | 0.1   | 0.8   | 0 |
| 3 | 0.9   | -0.2  | 0 |
| 4 | 0.8   | 0.8   | 1 |



$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{v})}$$

$$\mathbf{v} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \mathbf{b}$$

Initialize weights with random and bias with zero

| $w_1$ | 0.5 |  |  |
|-------|-----|--|--|
| $w_2$ | 0.7 |  |  |

29 4/5/2021

#### **Neuron Gate Structure**



$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\boldsymbol{v})}$$

$$\mathbf{v} = w_1 x_1 + w_2 x_2 + b$$

| $w_1$ | 0.5 |   | b | 0 | $x_1$ | $x_2$ | У |
|-------|-----|---|---|---|-------|-------|---|
| $w_2$ | 0.7 | · |   |   | -0.1  | 0.2   | 0 |

$$m = \mathbf{w_1} x_1 \qquad \qquad n = \mathbf{w_2} x_2$$

$$\mathbf{v} = m + n + \mathbf{b}$$



# **Forward Pass**



$$m = w_1 x_1 = -0.05$$
 
$$n = w_2 x_2 = 0.14$$



# **Forward Pass**



$$m = w_1 x_1 = -0.05$$
 
$$n = w_2 x_2 = 0.14$$

$$v = m + n + b$$
$$= -0.09$$



### **Forward Pass**



$$m = \mathbf{w_1} x_1 \\ = -0.05 \qquad n = \mathbf{w_2} x_2 \\ = 0.14$$

$$v = m + n + b$$
$$= -0.09$$

$$\hat{y} = \frac{1}{1 + \exp(-v)}$$
$$= 0.522$$



#### **Loss Gradient**



$$m = \mathbf{w_1} x_1 \\ = -0.05 \qquad n = \mathbf{w_2} x_2 \\ = 0.14$$

$$v = m + n + b$$
$$= -0.09$$

$$\hat{y} = \frac{1}{1 + \exp(-v)}$$
$$= 0.522$$

$$\frac{\partial L}{\partial \hat{y}} = (\hat{y}_i - y_i) = 0.522$$



#### **Loss Gradient**



#### Gradient

$$\frac{\partial L}{\partial \hat{y}} = (\hat{y}_i - y_i) = 0.522$$

$$\frac{\partial L}{\partial w_1} = ? \qquad \frac{\partial L}{\partial w_2} = ?$$

$$\frac{\partial L}{\partial b} = ?$$



#### **Backward Pass**



Gradient

$$\frac{\partial L}{\partial \hat{y}} = (\hat{y}_i - y_i) = 0.522$$

$$\hat{y} = \frac{1}{1 + \exp(-v)}$$
$$= 0.522$$

$$\frac{\partial \hat{y}}{\partial v} = \hat{y} - \hat{y}^2 = 0.249$$

Local Gradient

Chain Rule

$$\frac{\partial L}{\partial v} = \frac{\partial \hat{y}}{\partial v} \frac{\partial L}{\partial \hat{y}} = 0.13$$



### **Backward Pass**

#### Gradient



$$\frac{\partial L}{\partial v} = \frac{\partial \hat{y}}{\partial v} \frac{\partial L}{\partial \hat{y}} = 0.13$$

$$\mathbf{v} = m + n + \mathbf{b}$$

#### Local Gradient

$$\frac{\partial v}{\partial m} = 1 \qquad \frac{\partial v}{\partial n} = 1$$

$$\frac{\partial v}{\partial b} = 1$$

### Chain Rule

$$\frac{\partial L}{\partial n} = 0.13$$

$$\frac{\partial L}{\partial m} = \frac{\partial v}{\partial m} \frac{\partial \hat{y}}{\partial v} \frac{\partial L}{\partial \hat{y}} = 0.13$$



### **Backward Pass**

### Gradient



$$\frac{\partial L}{\partial n} = 0.13$$

$$\frac{\partial L}{\partial m} = \frac{\partial v}{\partial m} \frac{\partial \hat{y}}{\partial v} \frac{\partial L}{\partial \hat{y}} = 0.13$$

$$m = \mathbf{w_1} x_1$$

$$n = \mathbf{w_2} x_2$$

$$\frac{\partial m}{\partial w_1} = x_1$$

$$\frac{\partial n}{\partial w_2} = x_2$$

Local Gradient

### Chain Rule

$$\frac{\partial L}{\partial w_2} = 0.026$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial m}{\partial w_1} \frac{\partial v}{\partial m} \frac{\partial \hat{y}}{\partial v} \frac{\partial L}{\partial \hat{y}} = -0.013$$



### **Weight Update**





$$W_{t+1} = W_t - \alpha \nabla f(W_t)$$

$$\nabla w_1 = -0.013$$

$$w_1 = w_1 - \alpha \nabla w_1 = 0.513$$

$$\nabla w_2 = 0.026$$

$$w_2 = w_2 - \alpha \nabla w_2 = 0.674$$

$$\nabla b = 0.13$$

$$b = b - \alpha \nabla b = -0.37$$

| $w_1$ | 0.513 |
|-------|-------|
|       |       |

**b** -0.37



# **Gradient Descent Example Vectorized**



### **Chain Rule Vectorized**





## Backpropagation in Neural Network



### **Single Layer Derivative, Easy**





### **Multi Layer Derivative?**



 $\frac{\partial L}{\partial W} = ???$ 

Complicated to calculate as a whole, Modifying any function require re-derive from scratch



### MLPs = Stacks of Linear Functions

- Each layer use the same function
  - Remember that when calculating gradient, we get  $\partial w$  and  $\partial x$





### **Back Propagate the Gradient**

- Calculate gradient one-by one
  - Output Gradient = external gradient \* local gradient





### This is called: Backpropagation





### **Backpropagation**

- Backward propagation of errors
- Calculating gradient of weights in the stacked functions by flowing gradient error that is computed at the output end and distributed backwards throughout the network's layers



### 2-steps in Backpropagation

- Forward Pass
  - Calculate forward the input with the weights in each layer toward the output
  - Calculate the error of the output based on the target
- Backward Pass
  - Propagate back the errors to the weights via their gradients in each layer



# Backpropagation Example in 2-Layer Neural Net



### **XOR Gate Example**

| i | $x_1$ | $x_2$ | у |
|---|-------|-------|---|
| 1 | 0     | 0     | 0 |
| 2 | 0     | 1     | 1 |
| 3 | 1     | 0     | 1 |
| 4 | 1     | 1     | 0 |



$$\mathbf{v} = X \, \mathbf{W} + \mathbf{b}$$

$$A = \frac{1}{1 + \exp(-v)}$$



### **Forward Pass**







### **Backward Pass**





### **Complete Step (Iteration)**





### 2-layer NN needs ~11 lines

```
#
     import numpy as np
    data = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
 1
    target = np.array([[0, 1, 1, 0]]).T
 #
    1r = 0.01
 #
    maxep = 60000
 #
    nparam = len(data[0])
 #
    nhid = 4
 #
    noutput = 1
    W1 = 2 * np.random.rand(nparam, nhid) - 1
 3
    W2 = 2 * np.random.rand(nhid, noutput) - 1
 4
 5
    for i in xrange(maxep):
 6
        A1 = 1 / (1 + np.exp(-(np.dot(data, W1))))
 7
        A2 = 1 / (1 + np.exp(-(np.dot(A1, W2))))
 #
         error = target - A2
 8
        D2 = error * (A2 * (1 - A2))
        D1 = D2.dot(W2.T) * (A1 * (1 - A1))
         W2 += A1.T.dot(D2) * lr
10
         W1 += data.T.dot(D1) * lr
11
```

### 🕶 Fakultas Informatika School of Computing Telkom University

Neural Network Simplified

Berikut adalah skema proses pembelajaran Jaringan Syaraf Tiruan dengan 1 hidden layer atau bisa disebut sebagai 2-layer ANN. Input dataset adalah X sebanyak N data yang memiliki D parameter, di mana setiap data memiliki target Y dengan C parameter output. Arsitektur yang dipakai Fully Connected dengan fungsi aktivasi





## **API Building**



### Forward/Backward API

\*rough pseudo code



## Forward/Backward API

```
class MultiplyLayer(object):

# ...

def forward(x, y):

z = x*y

return z

def backward(dz):

dx = ??

dy = ??

return dx, dy

\frac{\partial L}{\partial x} \frac{\partial L}{\partial y}

Gradient

x = x*y

x =
```



x, y, z are scalars



### Forward/Backward API

```
class MultiplyLayer(object):
    # ...
    def forward(x, y):
        z = x*y
        self.x = x # need to keep these
        self.y = y
        return z

def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return dx, dy
```



x, y, z are scalars

Complete API by storing intermediate gradient that needed in backward pass



### Single Layer using API



```
# single layer
v1 = affine_forward(x, w, b)
a1 = sigmoid_forward(v1)

err = y-a1
print('mse =', np.mean(err**2))

dv1 = sigmoid_backward(err, a1)
dx, dw, db = affine_backward(dv1, x, w, b)
```



### **Multi Layer Perceptron**



```
# 2 layers
v1 = affine_forward(x, w1, b1)
a1 = sigmoid_forward(v1)
v2 = affine_forward(a1, w2, b2)
a2 = sigmoid_forward(v2)

err = y-a2
print('mse =', np.mean(err**2))

dv2 = sigmoid_backward(err, a2)
da1, dw2, db2 = affine_backward(dv2, a1, w2, b2)
dv1 = sigmoid_backward(da1, a1)
dx, dw, db = affine_backward(dv1, x, w1, b1)
```



### **Summary so far**

- Neural nets will be very large
  - Impractical to write down gradient formula by hand for all parameters
- Backpropagation
  - Recursive application of the chain rule along a computational graph to compute the gradients of all input/parameters/intermediates
- Implementations maintain a graph structure
  - forward() / backward() API



## **Question?**





## 7HANK YOU