Transició de fase i components connexes en grafs aleatoris

Build

Per generar les binàries cal fer make i es generen a la carpeta bin/.

Tenim dues binàries bin_Ncomp i geo_Ncomp i reben els mateixos parametres:

- 1. N nombre de vèrtex del graf
- 2. rep nombre de repeticions per la mitja
- 3. dy determina el nombre de dades que es calcula, com més petit més dades es calcularan

Treu per pantalla les dades calculades en un format que després podrem llegir en Python.

Càlcul

Per calcular les dades tenim un script en Python compute.py. Executa geo_Ncomp o bin_Ncomp per diferents valors de N passats com a arguments.

Exemple

```
# genera dades de bin_Ncomp per valors de N 10, 20, 50 i 100 i les dades
es guarden al directori data
python3 compute.py --repeticions 500 -d 0.1 --out-dir data ./bin/bin_Ncomp
10 20 50 100
```

Gràfics

Per generar els gràfics utilitzem un script de Python plot.py i els parametres es poden veure fent python3 plot.py -h.

Exemple

```
# plot de BRG per totes les dades a la carpeta data
python3 plot.py -t "Binomial Random Graph \$p \leq 0.4\$" -x p -y "Nombre
components connexos" --xmax 0.4 --show-legend -o plots/bin_mult_0.4.pdf
data/bin*.dat

# plot de GRG per N=25
python3 plot.py -t "Geometric Random Graph \$ N = 25 \$" -x p -y "Nombre
components connexos" -o plots/geo_Ncomp_0025.pdf data/binNcomp_0025.dat
```

makePlots.sh

Es un script de bash que executa compute.py i plot.py per tal de automatitzar el càlcul de dades i generació de gràfics.

Guarda les dades a la carpeta data/ i els gràfics a plots/.

```
1 | bash makePlots.sh 10 25 50 60 80 100 150
```