Логика

конспект от TheLostDesu

11 сентября 2021 г.

1 Основы логики

Существуют повествователные предложения. Они бывают истиными и ложными

Так, например, «2=3» - ложь, а «Сегодня суббота» - правда¹. Однако, это не всегда суббота, поэтому это высказывание не всегда справедливо, и зависит от некоторого «сегодня»

«Существует нечетное совершенное число» - сейчас нет доказательства того, что их не существует, но и нет найденных совершенных чисел - поэтому об этом высказывании говорить нет смысла. Рассмотрим еще один пример. «Это предложение истинно» - Это высказывание может быть и истинным, так и ложным, так как оно описывает действительность в самом предложении.

Также, есть и пародоксальный пример «Это предложение ложно» - не может быть истинно и не может быть ложно 2 .

Однако, в математике используются «высказывания» - это некотарая модель повествовательного предложения, которое всегда либо истинно, либо ложно, но никогда не истинно и ложно одновременно.

2 Составные высказывания

2=3 или 7=5 - составное высказывание. Его можно разбить на 2 более простых высказывания.

Есть множество способов построить составное высказывание. Разобъем их на 2 группы:

¹лекция проходит в субботу

 $^{^{2}}$ Читатель может проверить, что происходит, когда это истино или ложно

- I) А или В; А и В; если А, то В; либо А, либо В; не А; А равносильно В...
- II) Мне нравится, что A, Все студенты знают, что A^3

В первой группе результат высказывания можно однозначно определить, зная справедливость простых высказываний. Истиность II группы высказываний сложно зависит от A, а не только от его истинности. Высказывания из II группы не будут рассматриватся.

2.1 Логичесие связки

Это способ образования новых высказываний, такой что истинность целого полностью определяется истинностью его частей.

A	В	АиВ	не А	А или В	если А, то В
0	0	0	1	0	1
0	1	0	1	1	1
1	0	0	0	1	0
1	1	1	0	1	1

В математике часто используют разные символические сокращения.

 $\Pi: \land$ - коньюнкция⁴

Или: ∨ - дизъюнкция 5

Отрицание: 76

Следование: \leftarrow - импликация⁷

Равносильность: \Leftrightarrow ⁸

Левая часть импликации называют посылкой; правую - заключением.

Стоит отметить, что когда высказывание A истинно - следует писать [A]=1, а не A=1. Это позволяет убрать недопонимание во время приравнивания высказываний.

2.2 Тавтология

Назовем $F(A_1, A_2, A_3,...,A_n)$ - высказывание зависящее от $A_1, A_2, A_3, ..., A_n$.

Тавтология - Если $F(A_1,\ A_2,\ A_3,...,\ A_n)$ истинно при любых $A_1,\ A_2,\ A_3,...,A_n.$

³Далее ВСЗЧА

 $^{^4}$ Для латеха wedge

 $^{^5}$ Для латеха - vee

 $^{^6}$ Для латеха - urcorner

⁷Для латеха - leftarrow

⁸Для латеха - Leftrightarrow

 $^{^9}$ Например, если записать, что Великая Теорема Ферма истина, как «ВТФ» = 1, и «0=0» = 1, то можно будет сказать, что 0=0 = ВТФ, что не совсем верно.

Есть несколько способов проверки на тавтологию:

- 1. Перебрать все возможные варианты входных данных и построить таблицу истинности.
- 2. Подставить в значение 0, и попробовать подобрать значения входных данных, для которых 0 значение.
- 3. Построить таблицу. В правую часть записывать то, что должно быть истинным, в левую то, что должно быть ложным, для того, чтобы значение стало 0. Тогда, если в обоих столбцах записано одно значение, то тогда высказывание тавтология.

2.3 Эквивалентность

Некоторые высказывания приобретают одинаковые значения, их называют эквивалентными. Этим можно пользоваться при упрощении выражений по некоторым формулам.

- 1) $A \lor A \Leftrightarrow A \land A \Leftrightarrow A$
- 2) $A \lor 1 \Leftrightarrow 1$ 3) $A \land 1 \Leftrightarrow A$ 4) $A \lor \neg A \Leftrightarrow 1$
- 5) $A \wedge \neg A \Leftrightarrow 0$
- 6) $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
- 7) $A \to B \Leftrightarrow \neg A \lor B$
- 9) $A \to (B \to C) \Leftrightarrow (A \land B) \to C$
- 10) $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
- 11) $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$

Этим способом можно находить тавтологии. Просто следует упростить выражение до его минимальной длины. Тогда станет возможно легко проверить это даже глазами.