EGZAMIN MATURALNY 2012

MATEMATYKA POZIOM PODSTAWOWY

Kryteria oceniania odpowiedzi

SIERPIEŃ 2012

Zadanie 1. (0-1)

Zakres umiejętności (standardy)	Opis wymagań	Poprawna odpowiedź (1 p.)	
Wykorzystanie i interpretowanie reprezentacji	Wykonuje obliczenia procentowe; wykorzystuje własności figur podobnych.	C	

Zadanie 2. (0-1)

i interpretowanie reprezentacji	Stosuje prawa działań na potęgach o wykładnikach wymiernych; oblicza potęgi o wykładniku wymiernym.	C	
	potęgi o wykiauniku wynnemym.		

Zadanie 3. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Oblicza wartości logarytmu.	D
--	-----------------------------	---

Zadanie 4. (0-1)

5 5	Wykonuje obliczenia z wykorzystaniem wzorów skróconego mnożenia.	D	
		D	

Zadanie 5. (0-1)

Wykorzystanie i tworzenie informacji	Wyznacza wzór funkcji liniowej.	В
--------------------------------------	---------------------------------	---

Zadanie 6. (0–1)

Wykorzystanie i interpretowanie reprezentacji	Wykorzystuje pojęcia wartości bezwzględnej i jej interpretacje geometryczną; zaznacza na osi liczbowej zbiory opisane nierównością.	A	
--	--	---	--

Zadanie 7. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wyznacza pierwszą współrzędną wierzchołka paraboli.	В	
--	---	---	--

Zadanie 8. (0-1)

Wykorzystanie i tworzenie informacji	Odczytuje z wykresu zbiór wartości funkcji.	В
--------------------------------------	---	---

7 1	•	Λ	10	1)
Zada	nie	У.	(U-	-1)
		-	, ~	-,

Wykorzystanie i tworzenie informacji	Rozwiązuje nierówności kwadratowe; zapisuje rozwiązanie w postaci przedziałów liczbowych.	A
--------------------------------------	---	---

Zadanie 10. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Rozkłada wielomian na czynniki stosując grupowanie wyrazów.	В
---	---	---

Zadanie 11. (0-1)

Wykorzystanie i tworzenie informacji	Rozwiązuje proste równanie wymierne.	В
--------------------------------------	--------------------------------------	---

Zadanie 12. (0-1)

Wykorzystanie i tworzenie informacji	Wyznacza wyraz ciągu określonego wzorem ogólnym.	D
--------------------------------------	--	---

Zadanie 13. (0-1)

Wykorzystanie Wyznacza n-ty wyraz ciągu geometrycznego.	
---	--

Zadanie 14. (0-1)

Wykorzystanie i tworzenie	Znając wartość jednej funkcji	
	trygonometrycznej wyznacza wartości	C
	pozostałych funkcji trygonometrycznych.	

Zadanie 15. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Wykorzystuje definicje funkcji trygonometrycznych i wyznacza wartości funkcji trygonometrycznych dla kątów ostrych.	A
--	--	---

Zadanie 16. (0-1)

Wykorzystanie i interpretowanie reprezentacji	Znajduje i wykorzystuje związki miarowe w figurach płaskich.	В
---	--	---

Kryter	ia oceniania odpowiedzi – poziom podstawowy	
Zadanie 17. (0–1)		
Wykorzystanie i interpretowanie reprezentacji	Wykorzystuje związki między kątem wpisanym i środkowym do obliczenia miary kąta.	C
Zadanie 18. (0–1)		
Wykorzystanie i tworzenie informacji	Znajduje i wykorzystuje związki miarowe w figurach płaskich; wyznacza promień okręgu wpisanego w trójkąt równoboczny mając daną długość boku trójkąta.	C
Zadanie 19. (0–1)		
Wykorzystanie i tworzenie informacji	Wskazuje równania prostej prostopadłej do danej.	A
Zadanie 20. (0–1)		
Wykorzystanie i interpretowanie reprezentacji	Oblicza odległość punktów w układzie współrzędnych; oblicza pole kwadratu.	В
Zadanie 21. (0–1)		
Wykorzystanie i tworzenie informacji	Posługuje się postacią równania okręgu; z zapisu równania okręgu odczytuje współrzędne jego środka.	D
Zadanie 22. (0–1)		
Wykorzystanie i interpretowanie reprezentacji	Wyznacza związki miarowe w wielościanach; wykorzystuje związek miedzy polem powierzchni całkowitej sześcianu a jego objętością.	C
Zadanie 23. (0–1)		
Wykorzystanie i interpretowanie reprezentacji	Wyznacza związki miarowe w bryłach obrotowych; na podstawie danych przekroju osiowego stożka oblicza jego objętość.	D
Zadanie 24. (0–1)		
Wykorzystanie i tworzenie informacji	Oblicza medianę podanych danych liczbowych.	В
Zadanie 25. (0–1)		
Wykorzystanie i tworzenie informacji	Stosuje definicję prawdopodobieństwa; oblicza prawdopodobieństwo zdarzeń.	В

Zadanie 26. (0-2)

Rozwiąż nierówność $x^2 - 8x + 7 \ge 0$.

Wykorzystanie i interpretowanie reprezentacji	Rozwiązuje nierówność kwadratową.
--	-----------------------------------

Zdający otrzymuje1 pkt gdy:

- prawidłowo obliczy pierwiastki trójmianu kwadratowego $x_1 = 1$, $x_2 = 7$ i na tym poprzestanie lub dalej popełni błędy albo
- rozłoży trójmian kwadratowy $x^2 8x + 7$ na czynniki liniowe i zapisze nierówność $(x-1)(x-7) \ge 0$ i na tym poprzestanie lub dalej popełni błędy

albo

- popełni błąd rachunkowy przy obliczaniu pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność albo
- doprowadzi nierówność do postaci $|x-4| \ge 3$ (na przykład z postaci $(x-4)^2 9 \ge 0$ otrzymuje $(x-4)^2 \ge 9$, a następnie $|x-4| \ge 3$) i na tym poprzestanie lub dalej popełni błedy.

Zdający otrzymuje2 pkt gdy poda zbiór rozwiązań nierówności w postaci:

• $\left(-\infty,1\right) \cup \left\langle 7,\infty\right)$

albo

• $x \le 1$ lub $x \ge 7$

albo

• $x \le 1, x \ge 7$

albo

• w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Uwaga:

W związku z rozbieżnością w rozumieniu i używaniu spójników w języku potocznym i formalnym języku matematyki akceptujemy zapis, np. $x \in (-\infty, 1)$ i $x \in (7, +\infty)$.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Jeśli zdający poprawnie obliczy pierwiastki trójmianu x = 7, x = 1 i zapisze np. $x \in (-\infty, -1) \cup (7, +\infty)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $(-\infty,7) \cup (1,\infty)$, to przyznajemy **2 punkty**.

Zadanie 27. (0-2)

Rozwiąż równanie $x^3 - 6x^2 - 9x + 54 = 0$.

Wykorzystanie	Rozwiązuje równanie wielomianowe.
i interpretowanie reprezentacji	

Schemat oceniania

• przedstawi lewą stronę równania w postaci iloczynu $(x^2-9)(x-6)$ lub (x-3)(x+3)(x-6) i na tym zakończy lub dalej popełnia błędy

albo

• sprawdzi, że liczba -3 jest jednym z rozwiązań równania, podzieli wielomian $x^3 - 6x^2 - 9x + 54$ przez dwumian (x+3) i otrzyma $(x^2 - 9x + 18)$ i na tym poprzestanie lub dalej popełnia błędy

albo

• sprawdzi, że liczba 3 jest jednym z rozwiązań równania, podzieli wielomian $x^3 - 6x^2 - 9x + 54$ przez dwumian (x-3) i otrzyma $(x^2 - 3x - 18)$ i na tym poprzestanie lub dalej popełnia błędy

albo

• sprawdzi, że liczba 6 jest jednym z rozwiązań równania, podzieli wielomian $x^3 - 6x^2 - 9x + 54$ przez dwumian (x-6) i otrzyma (x^2-9) i na tym poprzestanie lub dalej popełnia błędy

Zadanie 28. (0-2)

Pierwszy wyraz ciągu arytmetycznego jest równy 3, czwarty wyraz tego ciągu jest równy 15. Oblicz sumę sześciu początkowych wyrazów tego ciągu.

Wykorzystanie	Oblicza sumę n początkowych wyrazów ciągu
i interpretowanie reprezentacji	arytmetycznego.

Schemat oceniania

albo

• obliczy lub zapisze poprawnie jeden z pozostałych wyrazów ciągu i na tym poprzestanie lub dalej popełnia błędy

albo

• popełni błąd rachunkowy przy obliczaniu r i konsekwentnie do tego błędu wyznaczy S_6 .

Uwaga:

Zdający otrzymuje 0 punktów, jeżeli:

- błędnie zapisze związek między a_1 , a_4 i r, np. $a_1 + 4r = 15$ i konsekwentnie do tego błędu wyznaczy S_6 ,
- zacytuje odpowiednie wzory, np. $a_4 = a_1 + 3r$ lub $S_6 = \frac{2a_1 + 5r}{2} \cdot 6$ i na tym poprzestanie.

Zadanie 29. (0-2)

W trójkącie równoramiennym ABC dane są |AC| = |BC| = 6 i $| \not \prec ACB | = 30^\circ$ (zobacz rysunek). Oblicz wysokość AD trójkąta opuszczoną z wierzchołka A na bok BC.

2	Znajduje związki miarowe w figurach płaskich z zastosowaniem trygonometrii.
---	---

Schemat oceniania

$$\sin 30^\circ = \frac{|AD|}{6}$$
 lub $\frac{1}{2} \cdot 6 \cdot 6 \cdot \sin 30^\circ = \frac{1}{2} \cdot |AD| \cdot 6$.

Uwaga:

Jeśli zdający od razu zapisze, że |AD| = 3, to otrzymuje **2 punkty.**

Zadanie 30. (0-2)

Dany jest równoległobok ABCD. Na przedłużeniu przekątnej AC wybrano punkt E tak, że $\left|CE\right|=\frac{1}{2}\left|AC\right|$ (zobacz rysunek). Uzasadnij, że pole równoległoboku ABCD jest cztery razy większe od pola trójkąta DCE.

Rozumowanie i argumentacja

Znajduje związki miarowe w figurach płaskich; wykorzystuje związek między polami trójkątów o takiej samej wysokości.

Rozwiązanie

Rysujemy wysokość DD_1 trójkąta ACD. Wysokość DD_1 jest również wysokością trójkąta DCE o podstawie CE.

$$P_{DCE} = \frac{1}{2} |CE| \cdot |DD_1|$$

Ponieważ $\left|CE\right| = \frac{1}{2}\left|AC\right|$, więc $P_{DCE} = \frac{1}{2} \cdot \frac{1}{2} \cdot \left|AC\right| \cdot \left|DD_1\right| = \frac{1}{2} P_{ACD}$.

$$P_{ABCD} = 2P_{ACD} = 4P_{DCE}.$$

Schemat oceniania

Zadanie 31. (0-2)

Wykaż, że jeżeli c < 0, to trójmian kwadratowy $y = x^2 + bx + c$ ma dwa różne miejsca zerowe.

Rozumowanie i argumentacja	Bada funkcję kwadratową.
----------------------------	--------------------------

Rozwiązanie

Zapisujemy wyróżnik danego trójmianu kwadratowego: $\Delta = b^2 - 4c$.

Ponieważ c < 0 to -4c > 0. Stąd Δ jest sumą dwóch wyrażeń: nieujemnego i dodatniego, czyli jest dodatnia.

A zatem trójmian $y = x^2 + bx + c$ ma dwa różne miejsca zerowe.

Schemat oceniania

Uwaga:

Jeżeli zdający podstawi konkretną wartość w miejsce c, to otrzymuje $\mathbf{0}$ punktów.

Zadanie 32. (0-4)

Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC| oraz A = (2,1) i C = (1,9). Podstawa AB tego trójkąta jest zawarta w prostej $y = \frac{1}{2}x$. Oblicz współrzędne wierzchołka B.

Użycie i tworzenie strategii

I sposób rozwiązania: (odległość)

Punkt B leży na prostej o równaniu $y=\frac{1}{2}x$, więc jego współrzędne można zapisać w postaci $B=\left(x,\frac{1}{2}x\right)$. Obliczamy odległość punktu C od punktu A: $|AC|=\sqrt{65}$ oraz odległość punktu C od punktu B: $|BC|=\sqrt{\left(x-1\right)^2+\left(\frac{x}{2}-9\right)^2}$. Ponieważ |AC|=|BC|, więc możemy zapisać równanie z jedną niewiadomą $\sqrt{\left(x-1\right)^2+\left(\frac{x}{2}-9\right)^2}=\sqrt{65}$, skąd otrzymujemy równanie kwadratowe $\frac{5}{4}x^2-11x+17=0$ lub $5x^2-44x+68=0$. Równanie to ma dwa

rozwiązania $x = \frac{34}{5}$ lub x = 2. Ponieważ drugie rozwiązanie tego równania prowadzi do punktu o współrzędnych (2,1), co oznacza, że otrzymujemy podany w treści zadania punkt A, zatem szukany punkt $B = \left(\frac{34}{5}, \frac{17}{5}\right)$.

Schemat oceniania I sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp......2 pkt

- zapisanie równania $\sqrt{(x-1)^2 + (\frac{x}{2} 9)^2} = \sqrt{65}$ lub $(x-1)^2 + (\frac{x}{2} 9)^2 = 65$ lub $(2y-1)^2 + (y-9)^2 = 65$ albo
- zapisanie układu równań: $\begin{cases} y = \frac{1}{2}x \\ \sqrt{(x-1)^2 + (y-9)^2} = \sqrt{65} \end{cases} \text{ lub } \begin{cases} y = \frac{1}{2}x \\ (x-1)^2 + (y-9)^2 = 65 \end{cases}$

Wyznaczenie współrzędnych wierzchołka $B = \left(\frac{34}{5}, \frac{17}{5}\right)$.

II sposób rozwiązania: (środek odcinka)

lub $5y^2 - 22y + 17 = 0$.

albo

Niech punkt D będzie spodkiem wysokości opuszczonej z wierzchołka C. Wyznaczamy równanie prostej CD: y = -2x + 11. Obliczamy współrzędne punktu $D = \left(\frac{22}{5}, \frac{11}{5}\right)$. Wyznaczamy współrzędne punktu B:

- wykorzystując na przykład wzór na współrzędne środka odcinka: $\begin{cases} \frac{x+2}{2} = \frac{22}{5} \\ \frac{y+1}{2} = \frac{11}{5} \end{cases}$
- wykorzystując wzór na współrzędne środka odcinka i równanie prostej: $\begin{cases} \frac{x+2}{2} = \frac{22}{5} \\ y = \frac{1}{2}x \end{cases}$

albo

• porównując długości odcinków AD i DB:

$$\begin{cases}
\sqrt{\left(\frac{22}{5} - 2\right)^2 + \left(\frac{11}{5} - 1\right)^2} = \sqrt{\left(x - \frac{22}{5}\right)^2 + \left(y - \frac{11}{5}\right)^2} \\
y = \frac{1}{2}x
\end{cases}$$

Otrzymujemy $B = \left(\frac{34}{5}, \frac{17}{5}\right)$.

Schemat oceniania II sposobu rozwiązania

Pokonanie zasadniczych trudności zadania 3 pkt

Obliczenie współrzędnych punktu *D*: $D = \left(\frac{22}{5}, \frac{11}{5}\right)$.

<u>Uwaga:</u>

Jeżeli zdający zapisze układ równań: $\begin{cases} y = -2x + 11 \\ y = \frac{1}{2}x \end{cases}$ lub analogiczny i popełni błąd

rachunkowy w jego rozwiązaniu, to otrzymuje 2 punkty.

Rozwiązanie pełne4 pkt

Wyznaczenie współrzędnych wierzchołka $B = \left(\frac{34}{5}, \frac{17}{5}\right)$.

III sposób rozwiązania: (kąt między prostymi)

Wyznaczamy współczynnik kierunkowy prostej AC: $a_1 = -8$. Zapisujemy równanie:

$$\left| \frac{\frac{1}{2} + 8}{1 - 4} \right| = \left| \frac{\frac{1}{2} - a_2}{1 + \frac{1}{2} a_2} \right|, \text{ korzystając ze wzoru na tangens kąta między prostymi } AC \text{ i } BC,$$

gdzie a_2 jest współczynnikiem kierunkowym prostej BC. Obliczamy a_2 : $a_2 = -\frac{28}{29}$ (drugie rozwiązanie tego równania $a_2 = -8$ to współczynnik kierunkowy prostej AC). Zapisujemy równanie prostej BC: $y = -\frac{28}{29}(x-1) + 9$, a następnie wyznaczamy punkt wspólny tej prostej i prostej AB o równaniu $y = \frac{1}{2}x$. Rozwiązujemy układ równań:

$$\begin{cases} y = -\frac{28}{29}(x-1) + 9 \\ y = \frac{1}{2}x \end{cases}$$

Otrzymujemy współrzędne szukanego punktu: $B = \left(\frac{34}{5}, \frac{17}{5}\right)$.

Schemat oceniania III sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp......2 pkt

Zapisanie równania z niewiadomym współczynnikiem kierunkowym prostej *BC*:

$$\left| \frac{\frac{1}{2} + 8}{1 - 4} \right| = \left| \frac{\frac{1}{2} - a_2}{1 + \frac{1}{2} a_2} \right|$$

Pokonanie zasadniczych trudności zadania.....3 pkt

Wyznaczenie współczynnika kierunkowego prostej *BC*: $a_2 = -\frac{28}{29}$.

Rozwiązanie pełne......4 pkt

Wyznaczenie współrzędnych wierzchołka $B = \left(\frac{34}{5}, \frac{17}{5}\right)$ jako punktu wspólnego prostych o równaniach $y = \frac{1}{2}x$ oraz $y = -\frac{28}{29}(x-1) + 9$.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający przepisze z błędem współrzędne punktów lub zamieni miejscami liczby będące współrzędnymi danych punktów i rozwiąże konsekwentnie zadanie do końca, to za takie rozwiązanie otrzymuje **4 punkty.**

Zadanie 33. (0-4)

W ostrosłupie prawidłowym czworokątnym *ABCDS* o podstawie *ABCD* i wierzchołku *S* trójkąt *ACS* jest równoboczny i ma bok długości 8. Oblicz sinus kąta nachylenia ściany bocznej do płaszczyzny podstawy tego ostrosłupa (zobacz rysunek).

Użycie i tworzenie strategii

Wyznacza związki miarowe w wielościanach; znajduje związki miarowe w figurach płaskich, w tym stosuje własności trójkąta równobocznego i prostokątnego i wykorzystuje definicję i własności funkcji trygonometrycznych.

I sposób rozwiązania:

1) Obliczenie H (wysokości ostrosłupa), np. z własności trójkąta równobocznego ACS: $H = \frac{b\sqrt{3}}{2} = 4\sqrt{3}$, gdzie b = 8

lub z trójkąta prostokątnego AOS: $H = \sqrt{b^2 - \left(\frac{b}{2}\right)^2}$

Zdający może wykonać obliczenia i zapisać wynik w przybliżeniu: $H \approx 6,93$.

- 2) Obliczenie a (długości krawędzi podstawy ostrosłupa), np. ze wzoru na długość przekątnej kwadratu: $a\sqrt{2}=8$, $a=4\sqrt{2}$ lub $a\approx 5,66$.
- 3) Obliczenie h = |SE| (wysokości ściany bocznej) z trójkąta prostokątnego SOE:

$$h = \sqrt{H^2 + \left(\frac{a}{2}\right)^2}$$
, $h = 2\sqrt{14}$

lub z trójkąta prostokątnego *SEA*: $h = \sqrt{b^2 - \left(\frac{a}{2}\right)^2}$

Zdający może wykonać obliczenia i zapisać wynik w przybliżeniu: $h \approx 7,48$.

4) Obliczenie sinusa kąta α : $\sin \alpha = \frac{H}{h} = \frac{\sqrt{42}}{7}$ lub obliczenie cosinusa kąta α , np. z twierdzenia cosinusów: $h^2 = a^2 + h^2 - 2ah\cos\alpha$, $\cos\alpha = \frac{\sqrt{7}}{7}$, a następnie sinusa kąta α , np. z jedynki trygonometrycznej: $\sin\alpha = \sqrt{1-\cos^2\alpha} = \sqrt{1-\frac{7}{49}} = \frac{\sqrt{42}}{7}$

lub wykorzystanie dokonanych przybliżeń do obliczenia $\sin \alpha \approx 0.93$.

Schemat oceniania I sposobu rozwiązania

- obliczenie H (wysokości ostrosłupa): $H = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ lub $H \approx 6,93$ albo
- obliczenie a (długości krawędzi podstawy): $a = 4\sqrt{2}$ lub $a \approx 5,66$.

Pokonanie zasadniczych trudności zadania......3 pkt

- obliczenie h (wysokości ściany bocznej ostrosłupa): $h = 2\sqrt{14}$ lub $h \approx 7,48$ oraz
- obliczenie H (wysokości ostrosłupa): $H = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ lub $H \approx 6,93$.

Obliczenie sinusa kąta α : $\sin \alpha = \frac{\sqrt{42}}{7}$ lub $\sin \alpha \approx 0.93$.

II sposób rozwiązania:

1) Obliczenie H (wysokości ostrosłupa), np. z własności trójkąta równobocznego ACS $H = \frac{b\sqrt{3}}{2} = 4\sqrt{3}$, gdzie b = 8

lub z trójkąta prostokątnego AOS: $H = \sqrt{b^2 - \left(\frac{b}{2}\right)^2}$

Zdający może wykonać obliczenia i zapisać wynik w przybliżeniu: $H \approx 6,93$.

2) Obliczenie a (długości krawędzi podstawy ostrosłupa), np. ze wzoru na długość przekątnej kwadratu $a\sqrt{2}=8$, $a=4\sqrt{2}$ lub $a\approx 5,66$.

- 3) Obliczenie tangensa kąta α : $tg\alpha = \frac{H}{\frac{a}{2}} = \frac{2H}{a} = \sqrt{6}$ lub $tg\alpha \approx 2,45$.
- 4) Odczytanie wartości kąta α : $\alpha \approx 68^\circ$ i sinusa tego kąta z tablic trygonometrycznych: $\sin \alpha \approx 0.93$

lub obliczenie
$$\sin \alpha$$
 z układu równań:
$$\begin{cases} \frac{\sin \alpha}{\cos \alpha} = \sqrt{6} \\ \sin^2 \alpha + \cos^2 \alpha = 1 \end{cases}$$

Stąd
$$\sin \alpha = \frac{\sqrt{42}}{7}$$
.

Schemat oceniania II sposobu rozwiązania

- obliczenie H (wysokości ostrosłupa): $H = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ lub $H \approx 6,93$ albo
- obliczenie *a* (długości krawędzi podstawy): $a = 4\sqrt{2}$ lub $a \approx 5,66$.

Obliczenie sinusa kąta α : $\sin \alpha = \frac{\sqrt{42}}{7}$ lub $\sin \alpha \approx 0.93$.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Nie obniżamy punktacji za rozwiązanie, w którym zdający poprawnie obliczył wysokość ostrosłupa, ale przy obliczaniu sinusa kąta nachylenia ściany bocznej do płaszczyzny podstawy podstawił błędną wartość.

Zadanie 34. (0–5)

Kolarz pokonał trasę 114 km. Gdyby jechał ze średnią prędkością mniejszą o 9,5 km/h, to pokonałby tę trasę w czasie o 2 godziny dłuższym. Oblicz, z jaką średnią prędkością jechał ten kolarz.

Modelowanie matematyczne	Rozwiązuje zadania dotyczących sytuacji praktycznych,
	prowadzące do równania kwadratowego.

I sposób rozwiązania:

Przyjmujemy oznaczenia, np.: t – czas pokonania całej trasy w godzinach, v – średnia prędkość w kilometrach na godzinę. Zapisujemy zależności między czasem a prędkością w obu sytuacjach opisanych w zadaniu: $v \cdot t = 114$ oraz $(v-9,5) \cdot (t+2) = 114$.

Następnie zapisujemy układ równań $\begin{cases} v \cdot t = 114 \\ (v-9,5) \cdot (t+2) = 114 \end{cases}$

Rozwiązując układ równań doprowadzamy do równania z jedną niewiadomą, np.:

$$\left(\frac{114}{t} - 9,5\right) \cdot \left(t + 2\right) = 114$$

$$114 + \frac{228}{t} - 9,5 \cdot t - 19 = 114$$

Mnożymy obie strony przez t:

$$9.5t^2 + 19t - 228 = 0$$

Dzielimy obie strony przez 9,5:

$$t^2 + 2t - 24 = 0$$

$$(t+6)\cdot(t-4)=0$$

$$t_1 = -6$$
 lub $t_2 = 4$

 t_1 jest sprzeczne z warunkami zadania.

Obliczamy średnią prędkość, z jaką jechał kolarz: $v = \frac{114}{4} = 28,5$.

II sposób rozwiązania:

Zapisujemy zależności między czasem a prędkością w obu sytuacjach opisanych w zadaniu:

$$v \cdot t = 114 \text{ oraz } (v-9,5) \cdot (t+2) = 114$$

Następnie zapisujemy układ równań
$$\begin{cases} v \cdot t = 114 \\ (v-9,5) \cdot (t+2) = 114 \end{cases}$$

Rozwiązując układ równań doprowadzamy do równania z jedną niewiadomą, np.:

$$\left(v-9,5\right)\cdot\left(\frac{114}{v}+2\right)=114$$

$$114 + 2v - \frac{1083}{v} - 19 = 114$$

Mnożymy obie strony przez v

$$2v^2 - 19v - 1083 = 0$$

$$\Delta = 19^2 + 8 \cdot 1083 = 9025$$

$$\sqrt{\Lambda} = 95$$

$$v_1 = \frac{19 - 95}{4}$$
 $v_2 = \frac{19 + 95}{4} = \frac{114}{4} = 28,5$

 V_1 jest sprzeczne z warunkami zadania.

Średnia prędkość, z jaką jechał kolarz, jest równa 28,5 km/godzinę.

III sposób rozwiązania:

Przyjmujemy oznaczenia, np.: t – czas pokonania całej trasy w godzinach, v – średnia prędkość w kilometrach na godzinę.

Narysowane duże prostokąty reprezentują trasę przebytą przez kolarza w obu sytuacjach opisanych w zadaniu, mają zatem równe pola. Wobec tego pola zakreskowanych prostokątów są równe. Stąd równość $9.5 \cdot t = 2(v-9.5)$ i następnie 9.5(t+2) = 2v i v = 4.75(t+2). Ponieważ trasa przebyta przez kolarza ma długość 114 km, otrzymujemy równanie: $4.75(t+2) \cdot t = 114$

$$4,75t^2+9,5t-114=0$$
.

Dzielimy obie strony przez 4,75:

$$t^2 + 2t - 24 = 0$$

$$(t+6)\cdot(t-4)=0$$

$$t_1 = -6$$
 lub $t_2 = 4$

 t_1 jest sprzeczne z warunkami zadania.

Obliczamy średnią prędkość, z jaką jechał kolarz: $v = \frac{114}{4} = 28,5$.

Odp. Średnia prędkość, z jaką jechał kolarz, jest równa 28,5 km/godzinę.

Schemat oceniania I, II i III sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania 1 pkt

Zapisanie równania w sytuacji domniemanej (t oznacza czas pokonania całej trasy w godzinach, a v średnią prędkość rowerzysty w kilometrach na godzinę) $(t+2)\cdot(v-9.5)=114$

Rozwiązanie, w którym jest istotny postęp 2 pkt

Zapisanie układu równań z niewiadomymi v i t, np.:

$$\begin{cases} t \cdot v = 114 \\ (t+2) \cdot (v-9,5) = 114 \end{cases}$$

Pokonanie zasadniczych trudności zadania 3 pkt

Zapisanie równania z jedną niewiadomą v lub t, np.:

$$\left(\frac{114}{t} - 9.5\right) \cdot (t+2) = 114$$
 lub $(v-9.5) \cdot \left(\frac{114}{v} + 2\right) = 114$ lub $4.75(t+2) \cdot t = 114$

Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą.

• obliczenie czasu: t=4 lub t=-6 i nie obliczenie prędkości lub obliczenie prędkości z błędem rachunkowym

albo

- obliczenie czasu: t=4 lub t=-6 i obliczenie prędkości: v=28,5 i v=-19 i niewyeliminowanie prędkości niezgodnej z warunkami zadania albo
- obliczenie czasu z błędem rachunkowym i konsekwentne obliczenie prędkości albo
- rozwiązanie równania z niewiadomą v z błędem rachunkowym.

Uwagi:

- 1. Jeżeli zdający porównuje wielkości różnych typów, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający odgadnie średnią prędkość jazdy kolarza i nie uzasadni, że jest to jedyne rozwiązanie, to otrzymuje **1 punkt**.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

Przykład 1.

Jeśli zdający przedstawi następujące rozwiązanie:

v - prędkość kolarza, t - czas pokonania całej trasy w godzinach przez kolarza

$$v-9,5 = \frac{114}{t+2}$$

$$\begin{cases} 114 = v \cdot t \\ 114 = (v-9,5)t+2 \end{cases}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie, w którym jest istotny postęp** i przyznajemy **2 punkty**, mimo że w drugim równaniu układu zdający nie ujął wyrażenia t+2 w nawias. Zapis równania $v-9,5=\frac{114}{t+2}$ wskazuje na poprawną interpretację zależności między wielkościami.

Przykład 2.

Jeśli zdający przedstawi następujące rozwiązanie:

v - prędkość kolarza, t - czas pokonania całej trasy w godzinach przez kolarza

$$v-9,5 = \frac{114}{t+2} \qquad \begin{cases} v = \frac{114}{t} \\ v-9,5 = \frac{210}{t+} \end{cases} \qquad \frac{411}{t} - 9,5 = \frac{114}{t+}$$

i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii **Pokonanie zasadniczych trudności zadania** i przyznajemy **3 punkty,** mimo że w równaniu $\frac{411}{t} - 9,5 = \frac{114}{t+}$ zdający przestawił cyfry w zapisie liczby 114 i pominął liczbę 2 w mianowniku ułamka.

Przykład 3.

Jeśli zdający otrzyma inne równanie kwadratowe, np. $2v^2 + 19v - 1083 = 0$ zamiast równania $2v^2 - 19v - 1083 = 0$ (np. w wyniku złego przepisania znaku lub liczby), konsekwentnie jednak rozwiąże otrzymane równanie kwadratowe, odrzuci ujemne rozwiązanie i pozostawi wynik, który może być realną prędkością jazdy kolarza, to takie rozwiązanie kwalifikujemy do kategorii **Rozwiązanie pełne** i przyznajemy **5 punktów**.