SERIE DE REVISION n° 1

MR. FARHATI HICHEM

EX 1:

On considère la suite U_n définie par U_0 =3 et U_{n+1} = $\frac{2U_n^2 + U_n + 2}{2 + U_n^2}$ pour tout $n \in IN$

- 1) Montrer que pour tout $n \in IN$, on a $U_n > 2$.
- 2) a) Etudier la monotonie de la suite U_n b) en déduire qu'elle est convergente et déterminer sa limite.
- 3) a) montrer que pour tout n \in IN,0 < U_{n+1} $2<\frac{1}{2}$ (U_n -2)
 - b) en déduire que pour tout n \in IN , 0 < U_n 2 < $(\frac{1}{2})^n$
- 4) retrouver alors sa limite
- 5) a) montrer que $2n < \sum_{k=1}^{n} U_k < 2n + 1 (\frac{1}{2})^n$

EX 2:

On considère la suite U_n par $U_0 = \frac{3}{4}$ et $U_{n+1} = \frac{1}{2} U_n^2 + \frac{1}{2} U_n$

- 1) montrer que pour tout n de IN, $0 < U_n < 1$
- 2) montrer que la suite U est décroissante
- 3) en déduire qu'elle est convergente et déterminer sa limite
- 4) montrer que pour tout n de IN, $U_{n+1} < \frac{7}{8} U_n$
- 5) a) montrer que $U_n < (\frac{7}{8})^n$
 - b) retrouver alors sa limite

EX3:

On considère la suite définie par $\begin{cases} u_0 = \frac{1}{2} \\ U_{n+1} = \sqrt{\frac{U_n^2 + 1}{2}} \end{cases}$

- 1) a-montrer que pour tout n de IN : $0 < U_n < 1$
 - b-montrer que (U_n) est croissante
 - c- en déduire que (U_n) est convergente et calculer sa limite
- 2) soit la suite $V_n = U_n^2 1$
 - a- montrer que (V_n) est une suite géométrique dont on précisera sa raison et son premier terme
 - b- exprimer V_n puis U_n en fonction de n
 - c- retrouver alors la limite de ${\it U}_n$

EX4:

Soit la suite réelle (U_n) définie par $\begin{cases} U_0=2 \\ U_{n+1}=2+\frac{3}{U_n} \end{cases}$

- 1) montrer que $U_n \ge 2$
- 2) déterminer le sens de variation de la fonction f définie sur IR_{+}^{*} par f(x)= 2 + $\frac{3}{x}$
- 3) soit la suite(V_n) définie par : $V_n = U_{2n}$
 - a) montrer par récurrence que la suite (V_n) est majorée par 3
 - b) montrer par récurrence que la suite (V_n) est croissante.
- 4) a- montrer que $|U_{n+1} 3| \le \frac{1}{2} |U_n 3|$
 - b- montrer que $|U_n 3| \le (\frac{1}{2})^n$
 - c- en déduire la limite de U_n et celle de V_n
- 5) soit la suite S_n définie par $S_n = \frac{1}{n} \sum_{k=1}^n U_k$, pour tout $n \in IN^*$ Montrer que S_n converge vers 3
- 6) soit la suite q_n définie par $q_n = \frac{U_n 3}{U_n + 1}$, pour tout n de IN
 - a) montrer que U_n est une suite géométrique dont on précisera la raison
 - b) exprimer U_n en fonction de n et retrouver sa limite

Ex 5:

A- soit la fonction g définie sur $[0;+\infty[$ par $g(x)=\frac{x}{\sqrt{x^2+3}}-1$

- a) montrer que g est continue et dérivable sur [0 ;+∞[b) dresser le tableau de variation de g
- 2) déduire que $|g(x)| \le 1$ por tout $x \in [0; +\infty[$
- B- soit la fonction définie sur [0 ;+ ∞ [par f(x) = $\frac{1}{2}$ ($\sqrt{x^2 + 3} x + 1$)
- 1) vérifier que $f'(x) = \frac{1}{2}g(x)$ et déduire que $|f'(x)| \le \frac{1}{2}$
- 2) dresser le tableau de variation de f puis déduire que f(x) > 0

C-on considère la suite (U_n) définie par $U_0 = 0$ et $U_{n+1} = f(U_n)$

- 1) montrer que $U_n \ge 0$
- 2) montrer que $|U_{n+1} 1| \le \frac{1}{2} |U_n 1|$
- 3) déduire que $|U_n 3| \le (\frac{1}{2})^n$
- **4)** calculer alors la limite de U_n

BON TRAVAIL ET BONNE CHANCE