Analysis Notes

Murillo Vega, Gustavo e-mail: g.murillo24@info.uas.edu.mx

November 1, 2024

Chapter 1

Abstract Integration

Through the notes,

$$\int f d\mu := \int_X f d\mu.$$

And unless stated otherwise, μ is a positive measure.

1.1 Non-negative Lebesgue Integrals

1.1.1 Lebesgue integral definition

Let $s: X \to [0, \infty]$ be a measurable simple function of the form

$$s = \sum_{i=1}^{n} \alpha_i \chi_{A_i},$$

where α_i are the values of s(x) if $x \in A_i$. For measurable E, we define

$$\int_{E} s \ d\mu = \sum \alpha_{i} \mu(A_{i} \cap E)$$

. There is no problem with this definition, as measurable s implies measurable A_i sets.

For measurable $f: X \to [0, \infty]$ we define

$$\int_{E} f d\mu = \sup \int s \ d\mu,$$

where the supreme is taken from all s such that $0 \le s \le f$. It can be proven that there is always a monotonically increasing sequence of simple s_n functions such that $\lim s_n = f$. So the supreme of non-negative s simple functions can approximate f well, so that the integral makes sense.

1.1.2 Theorem "change of variables"

Suppose $f: X \to [0, \infty]$ is measurable. Let

$$\varphi(E) = \int_E f d\mu$$

for measurable E, then φ is a measure on X. Furthermore if $g:X\to [0,\infty]$ is measurable,

$$\int g d\varphi = \int f d\mu.$$

1.2 Real and complex integrals

1.2.1 Definition

If f is complex measurable in X, we say that $f \in L^1(X)$ if

$$\int |f|d\mu < \infty.$$

Such f are called Lebesgue integrable functions, or summable functions.

1.2.2 Complex integrals

If f = u + iv is measurable and in $L^1(X)$, we define on measurable E,

$$\int_E f d\mu = \int_E u^+ d\mu - \int_E u^- d\mu + i \left(\int_E v^+ d\mu - \int_E v^- d\mu \right).$$

1.2.3 Extended real integrals

If $f: X \to [-\infty, \infty]$ is measurable, we define

$$\int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu,$$

for measurable E, when one of the integrals on the right are non-infinite, since $\infty - \infty$ is not defined.

1.2.4 Theorem

If $f_n: X \to [0, \infty]$ are measurable and

$$f = \sum f_n$$

then

$$\int f d\mu = \sum \int f_n d\mu.$$

1.2.5 Theorem

If $f \in L^1(X)$

$$\left| \int f d\mu \right| = \int |f| d\mu.$$

1.2.6 Lebesgue's dominated convergence theorem

If f_n are complex measurable functions on X such that

$$f = \lim f_n$$

converges in X, and there exists measurable complex g in X such that

$$|f_n| \leq g$$
.

Then $f \in L^1(X)$,

$$\lim \int |f - f_n| d\mu,$$

and

$$\int f d\mu = \lim \int f_n d\mu.$$

1.2.7 Definition

We say that P holds almost everywhere (a.e) in $E \subset X$, if P holds in E - N where $\mu(N) = 0$.

For example, we say f = g a.e for measurable f, g on the measure space X if they differ on a set of measure 0. If this holds, for any measurable E we have

$$\int_{E} f d\mu = \int_{E} g d\mu.$$

Notice that $f \sim g$ if f = g are is an equivalence relation.

1.2.8 Definition

We extend the definition of measurable function: If f defined on measurable $E \subset X$, we say f is measurable in X, if $\mu(X-E)$ and $f^{-1}(V) \cap E$ is measurable for open V.

If we care about integrating this function over X, f need not be defined on X-E as $\mu(X-E)=0$ thus $\int_X f d\mu=\int_E f d\mu$ no matter what f is defined to be in X-E.

1.2.9 Theorem

Let f_n be complex measurable functions defined a.e in X such that

$$\sum \int |f_n| d\mu < \infty.$$

Then

$$f = \sum f_n,$$

converges a.e in $X, f \in L^1(X)$, and

$$\int f d\mu = \sum \int f_n d\mu.$$

PROOF: Let $S = \{x : f_n(x) \text{ is defined } \forall n\}$, so that $\mu(X - S) = 0$. Defining $\varphi : S \to C$ by $\varphi = \sum |f_n|$, then by 1.2.4,

$$\int_{S} \varphi d\mu = \sum \int_{S} |f_n| d\mu < \infty. \tag{1.1}$$

Let $E = \{x \in S : \varphi(x) < \infty\}$, it follows that $\mu(X - E) = 0$ by 1.1.

Proof: Let A=X-S and B=X-E, B is the disjoint union of $A\cap B=A$ and B-A, then $\mu(B)=\mu(A)+\mu(B-A)$. As B-A=(X-E)-(X-S)=S-E which are the points $x\in S$ on which $\varphi(x)=\infty,\ \mu(B-A)=0$ as 1.1 must hold. So we have proven $\mu(X-E)=\mu(X-S)=0$.