Characteristic Classes and Chern Classes

Bailey Whitbread

October 23, 2020

What are Characteristic Classes and Chern Classes?

Characteristic classes are the natural analogue of a cohomology class for vector bundles.

Chern classes are a type of characteristic class for complex vector bundles.

Outline of Talk

- (1) Vector Bundles.
 - (a) Definitions.
 - (b) Examples.
- (2) Characteristic Classes.
 - (a) The Cohomology Ring.
 - (b) Characteristic Classes.
 - (c) Chern Classes.
- (3) Is \mathbb{CP}^n Parallelisable?
 - (a) Complex Projective Space, \mathbb{CP}^n .
 - (b) Parallelisablity.
- (4) Recovering Steifel-Whitney Classes.

What's a Vector Bundle?

Definition (Complex Vector Bundles)

A complex vector bundle over a topological space B is

- (i) A topological space E called the total space, and
- (ii) A continuous surjection $p: E \rightarrow B$ called the *projection map*
- ...together with the conditions...
- (a) For each $b \in B$, the fibre $p^{-1}(b)$ is a complex vector space, and...

What's a Vector Bundle?

Definition (Complex Vector Bundles)

(b) (Local Triviality) Each point $b_0 \in B$ must possess a neighbourhood U with $p^{-1}(U)$ being homeomorphic to $U \times \mathbb{C}^r$. This homeomorphism $h: U \times \mathbb{C}^r \to p^{-1}(U)$ must map the fibres $p^{-1}(b)$ linearly onto $\{b\} \times \mathbb{C}^r$.

where π_1 is the projection map onto the first coordinate.

5

What's a Vector Bundle?

Example (Tangent Bundle)

Fix a differentiable manifold B.

Each point $x \in B$ has a tangent space, $T_x B$. We take the space of pairs

$$TB = \{(x, y) : x \in B, y \in T_x B\}$$

and form the tangent bundle, with

- 1. Base space B,
- 2. Total space TB, and
- 3. Projection map $p: TB \rightarrow B$ given by p(x, y) = x.

Characteristic Classes

Fix an abelian group A. Recall the cohomology ring of B,

$$H^*(B; A) = \bigoplus_{i=0}^{\infty} H^i(B; A) = H^0(B; A) + H^1(B; A) + ...$$

A characteristic class c_i of vector bundles is an assignment of each bundle $E \to B$ to a cohomology class

$$c_0(E)+c_1(E)+...\in \bigoplus_{i=0}^{\infty}H^i(B;A).$$

7

Characteristic Classes

Certain choices of B and A give rise to different classes:

- (1) Stiefel-Whitney classes: $w_i(E) \in H^i(B; \mathbb{Z}_2)$, $E \to B$ a real vector bundle.
- (2) Chern classes: $c_i(E) \in H^{2i}(B; \mathbb{Z})$, $E \to B$ a complex vector bundle.
- (3) The Euler class: $e(E) \in H^n(B; \mathbb{Z})$, $E \to B$ an oriented, n-dimensional real vector bundle.

What are Chern Classes?

Definition (Chern Classes)

Fix a complex vector bundle E over B. The Chern classes $c_k(E)$ are defined to be the unique classes satisfying:

- (i) $c_0(E) = 1$.
- (ii) (Naturality) If $f: B' \to B$ is a homeomorphism then recall f^*E is the pullback vector bundle over B'. Then

$$c_k(f^*E) = f^*c_k(E).$$

(iii) (Whitney Sum Formula) Let $F \to B$ be another complex vector bundle over B. Then

$$c_k(E \oplus F) = \sum_{i=0}^k c_i(E)c_{k-i}(F).$$

g

What are Chern Classes?

Definition (Chern Classes)

(iv) (Normalisation) The first Chern class of the tautological line bundle of \mathbb{CP}^1 is equal to -1 in $H^2(\mathbb{CP}^1; \mathbb{Z}) \cong \mathbb{Z}$.

The *total* Chern class of E is $c(E) = \sum_{i \geq 0} c_i(E)$. That is,

$$c(E) = c_0(E) + c_1(E) + ... \in H^*(B; \mathbb{Z}).$$

Complex Projective Space, \mathbb{CP}^n

Definition (Complex Projective Space)

Consider the non-zero vectors in $\mathbb{C}^{n+1} = \{(z_1, ..., z_{n+1}) : z_i \in \mathbb{C}\}.$ We identify non-zero vectors in \mathbb{C}^{n+1} with their scalar multiples.

$$(z_1,...,z_{n+1})\sim (\lambda z_1,...,\lambda z_{n+1}), \ \lambda\in\mathbb{C}.$$

Then
$$\mathbb{CP}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$$
.

 \mathbb{CP}^n has much more structure than just a topological space, it's a complex manifold.

 \mathbb{CP}^1 is the Riemann sphere, \mathbb{CP}^2 is the complex projective plane.

Parallelisability

Definition (Parallelisability)

Fix a differentiable manifold M of dimension n.

We say M is parallelisable if there exist a family of smooth vector fields on the manifold, $V_1, ..., V_n$, such that every point p in M provides a basis $\{V_1(p), ..., V_n(p)\}$ of T_pM .

Example (Hairy Ball Theorem)

Parallelisability

Theorem (Milnor, Stasheff)

As before, M is a differentiable manifold. Then

M is parallelisable $\iff M$ has trivial tangent bundle.

Is \mathbb{CP}^n Parallelisable?

Recall the cohomology ring of \mathbb{CP}^n over \mathbb{Z} ,

$$H^*(\mathbb{CP}^n;\mathbb{Z})\cong \mathbb{Z}[x]/\langle x^{n+1}\rangle.$$

Consider the tangent bundle, $T\mathbb{CP}^n$. If $T\mathbb{CP}^n$ were trivial, we would have $c(T\mathbb{CP}^n)=1$.

This has total Chern class

$$c(T\mathbb{CP}^n) = (1+x)^{n+1} \in H^*(\mathbb{CP}^n; \mathbb{Z}) \cong \mathbb{Z}[x]/\langle x^{n+1} \rangle.$$

Then $x \neq 0$ and $n \geq 0$, so $c(T\mathbb{CP}^n) \neq 1$.

Recovering Stiefel-Whitney Classes

Proposition

Regard an *n*-dimensional complex vector bundle $E \rightarrow B$ as a 2n-dimensional real vector bundle.

Then

- $w_{2i+1}(E) = 0$, and
- $w_{2i}(E)$ is the image of $c_i(E)$ under the coefficient homomorphism $H^{2i}(B; \mathbb{Z}) \to H^{2i}(B; \mathbb{Z}_2)$.

References

- Algebraic Topology,
 Allen Hatcher,
 pi.math.cornell.edu/
 ~hatcher/AT/AT.pdf
 2001.
- Vector Bundles and K-Theory,
 Allen Hatcher,
 pi.math.cornell.edu/
 ~hatcher/VBKT/VB.pdf
 2017.

- Characteristic Classes,
 John W. Milnor,
 James D. Stasheff,
 Princeton University Press,
 1974.
- Differential Forms in Algebraic Topology,
 Graduate Texts in Mathematics,
 Raoul Bott, Loring W. Tu,
 Springer,
 1995.