Exercise 2: Vectors

Problem 1: General Vectors Operations

The following column vectors are defined:

$$\vec{u} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}, \quad \vec{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

$$\vec{a} = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

- 1. Calculate $\vec{u} + \vec{v}$, $\vec{u} \vec{w}$, $\vec{u} \cdot \vec{v}$, $\vec{u} \cdot \vec{w}$. What does the result for $\vec{u} \cdot \vec{v}$ mean for these two vectors?
- 2. Draw \vec{u} , \vec{v} , $\vec{u} + \vec{v}$, $-\vec{v}$ on a cartesian coordinate system.
- 3. Calculate $5\vec{a} 3\vec{b}$.
- 4. Calculate $\vec{a} + \vec{w}$, $\vec{a} + \vec{b}$, $\vec{b} \cdot \vec{w}$, $\vec{a} \cdot \vec{c}$.
- 5. What are the lengths of \vec{u} , \vec{v} , \vec{a} and \vec{c} ?
- 6. What is the angle between \vec{v} and the x-axis?
- 7. What would be the cartesian coordinates of the vector \vec{v} rotated by 42° counter clockwise?
- 8. What is the angle between \vec{a} and \vec{b} ?
- 9. Calculate $\vec{c} = \vec{a} \times \vec{b}$. What is the general formula for all the vectors that are orthogonal to \vec{c} ?

Problem 2: Linear Combinations of Vectors

Write the vector $\vec{v} = \begin{pmatrix} 1 \\ 3 \\ 3 \\ 7 \end{pmatrix}$ as a linear combination of the following vectors:

$$\vec{u}_1 = \begin{pmatrix} -2\\5\\0\\5 \end{pmatrix}, \ \vec{u}_2 = \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}, \ \vec{u}_3 = \begin{pmatrix} -4\\4\\-8\\-2 \end{pmatrix}.$$

Problem 3: Linear Independence of Vectors

Which of the following sets of vectors are linearly independent?

$$1. \ \vec{a} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ -2 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 2 \\ 6 \\ 0 \\ 1 \end{pmatrix}$$

2.
$$\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} -2 \\ 4 \\ -10 \end{pmatrix}$

3.
$$\vec{a} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 5 \\ 1 \\ -3 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} -9 \\ 1 \\ 6 \end{pmatrix}$

4.
$$\vec{a} = \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \ \vec{c} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}, \ \vec{d} = \begin{pmatrix} -1 \\ -7 \\ 7 \end{pmatrix}$$