

1 0 OCT. 2000

Faco /2595

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION 30 OCT 2000

MEC'D 30 OCT 2000

COPIE OFFICIELLE

X

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 2 1 SEP. 2000

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS
CONFORMÉMENT À LA
RÈGLE 17.1.a) OU b)

Martine PLANCHE

INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE

STEGE
26 bis, rue de Saint Petersbourg
75800 PARIS Cédex 08
Téléphone : 01 53 04 53 04
Télécopie : 01 42 93 59 30

,

(2)

loi nº78-17 du 6 janvier

92-1092

BREVET D'INVENTION, CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle-Livre VI

REQUÊTE EN DÉLIVRANCE

26 bis, rue de Saint Pétersbourg Confirmation d'un dépôt par télécopie 75800 Paris Cedex 08 Téléphone: 01 53 04 53 04 Télécopie: 01 42 93 59 30 Cet imprimé est à remplir à l'encre noire en lettres o - Réservé à l'INPI NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE DATE DE REMISE DES PIÈCES 17 SEPT 19 9 À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE N° D'ENREGISTREMENT NATIONAL 9911649 Cabinet PLASSERAUD DÉPARTEMENT DE DÉPÔT 75 INPI PARIS 84, rue d'Amsterdam DATE DE DÉPÔT 75440 PARIS CEDEX 09 1 7 SEP. 1999 2 DEMANDE Nature du titre de propriété industrielle demande divisionnaire n°du pouvoir permanent références du correspondant brevet d'invention demande initiale JFo/EV/BFF990216 01 44 63 41 11 certificat d'utilité transformation d'une demande de brevet européen brevet d'invention certificat d'utilité n° date Établissement du rapport de recherche ___ différé y immédiat Le demandeur, personne physique, requiert le paiement échelonné de la redevance e de l'Invention (200 caractères maximum) Matériau thermoplastique extrudable et micromodule de fibre fabriqué à partir d'un tel matériau 3 DEMANDEUR (S) " SIREN ; 5.6 2 0 8.2.9 0 9. . : Nom et prénoms (souligner le nom patronymique) ou dénomination Forme juridique Société anonyme SAGEM SA 틢 Nationalité (s) Française Adresse (s) complète (s) Pays 6, avenue d'Iéna **FRANCE** 75016 PARIS INVENTEUR (S) Les inventeurs sont les demandeurs oui X non Si la réponse est non, fournir une désignation séparée requise pour la 1ère fois RÉDUCTION DU TAUX DES REDEVANCES requise antérieurement au dépôt ; joindre copie de la décision d'admission DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE pays d'origine nature de la demande date de dépôt DIVISIONS antérieures à la présente demande SIGNATURE DU DEMANDEUR OU DU MANDATAIRE SIGNATURE DU PRÉPOSÉ À LA RÉCEPTION ; SIGNATURE APRÈS ENREGISTREMENT DE LA DEMA (nom et qualité du signataire) J. FORT

ASSERAUD

DEPARTEMENT DES BREVETS 26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

JFo/EV/BFF990216

DÉSIGNATION DE L'INVENTEUR

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

N° D'ENREGISTREMENT NATIONAL

TITRE DE L'INVENTION:

Tél.: 01 53 04 53 04 - Télécopie: 01 42 93 59 30

Matériau thermoplastique extrudable et micromodule de fibre fabriqué à partir d'un tel matériau

La Demanderesse : SAGEM SA Ayant pour Mandataire :

LE(S) SOUSSIGNÉ(S)

Cabinet PLASSERAUD 84, rue d'Amsterdam 75440 PARIS CEDEX 09

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

- 1/ DUCROIX Bertrand SAGEM SA Etablissement de Tolbiac 11, rue Watt 75013 PARIS France
- BERNIER Daniel SAGEM SA Etablissement de Tolbiac 11, rue Watt 75013 PARIS France
- PETRUS Raymond SAGEM SA Etablissement de Tolbiac 11, rue Watt 75013 PARIS France
- 4/ POISSON Bernard SAGEM SA Etablissement de Tolbiac 11, rue Watt 75013 PARIS France

NOTA: A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

Paris, le 17 septembre 1999

J. FORT 92-1092

CABINET PLASSERAUD

MATERIAU THERMOPLASTIQUE EXTRUDABLE ET MICROMODULE DE FIBRE FABRIQUE A PARTIR D'UN TEL MATERIAU

La présente invention a pour objet un matériau extrudable permettant de constituer des pellicules de faible épaisseur, comportant un polymère oléfinique. L'invention trouve une application particulièrement importante, bien que non exclusive, dans la constitution de gaines de micromodules de fibres optiques gainées incorporables dans un câble tel que celui décrit dans le document EP-A-0 468 878 auquel on pourra se reporter.

Pour un certain nombre d'applications, et notamment pour la constitution de micromodules ayant un faisceau de fibres optiques gainées en contact mutuel, enfermé avec un gel d'étanchéité dans une enveloppe de maintien extrudée, il est souhaitable de remplir des conditions qui sont dans une certaine mesure contradictoires. Par exemple, on recherche souvent à la fois, notamment dans le cas de la constitution de micromodules :

- une aptitude à l'extrusion en pellicule mince (si possible vers 0,1 mm),
- la compatibilité du matériau avec les gels habituels d'étanchéité,

10

15

- une résistance suffisante du matériau mis sous forme de pellicule mince, afin de permettre une manipulation au cours d'opérations ultérieures sans risque de déchirure,
- l'absence de collage de la pellicule de gaine du micromodule sur les fibres, lors du chauffage qui intervient du fait de la mise en place de l'enveloppe extérieure en matériau thermoplastique,
 - le maintien d'une cylindricité correcte lors de la fabrication du micromodule et de l'assemblage des micromodules pour constituer un câble,
- un retrait réduit au cours de l'extrusion de la gaine pour constituer le micromodule, et au cours du refroidissement, cela pour éviter des contraintes sur les fibres optiques,
 - une coloration aisée du matériau, permettant d'identifier les micromodules,
 - une extensibilité limitée permettant de dénuder facilement un micromodule afin de préparer les extrémités pour raccorder les fibres,
- enfin, une résistance élevée aux produits chimiques utilisés lors des opérations effectuées sur les câbles, par exemple au solvant de nettoyage.

Dans le cas de la fabrication de câbles à fibres optiques, certaines des caractéristiques ci-dessus sont essentielles, notamment la résistance mécanique, y

compris lors du vieillissement thermique, et la compatibilité avec les gels d'étanchéité et les solvants de nettoyage utilisés pour éliminer le gel et les salissures avant d'effectuer le raccordement des fibres optiques à un connecteur. Mais la résistance mécanique est défavorable à la commodité d'emploi, car une pellicule de gainage résistante et ayant un grand allongement avant rupture gêne le dénudage des micromodules pour libérer les parties terminales des fibres.

5

10

15

20

25

30

La présente invention vise notamment à fournir un matériau extrudable en pellicule fine représentant un compromis satisfaisant entre les différents résultats à atteindre. L'invention propose notamment dans ce but un matériau extrudable en pellicule fine, constitué par une composition contenant un polymère oléfinique et un taux de charges compris entre 25 à 65 % en poids de la composition, ledit matériau à l'état non divisé ayant une résistance à la traction comprise entre 6 et 20 Mpa et un allongement à la rupture compris entre 50 et 300 %.

La dureté shore du matériau est avantageusement comprise entre 35 et 55 D.

Grâce à l'allongement limité à la rupture, dû notamment à la présence de charges, la dénudabilité est suffisante pour ne pas obliger à avoir recours à des outils spéciaux. Les caractéristiques minimales ci-dessus, notamment la résistance à la traction et l'allongement à la rupture, évitent une fragilité excessive du matériau lors de la manipulation. En particulier, ces minima permettent des manipulations lors de la fabrication d'un câble ou des raccordements sans risques excessifs de dommages.

De plus, le choix d'une dureté Shore D dépassant 35 permet, en cas d'utilisation du matériau pour constituer une gaine de micromodule, d'assurer une cylindricité satisfaisante et d'éviter l'effet dit "de paille", constituée par la formation d'un coude brutal lors des flexions nécessaires à la réalisation des raccordements.

La teneur minimale en charges indiquée plus haut permet de réduire la dilatation et la rétraction des matériaux lors des variations de température qui interviennent lors de la fabrication d'un câble. La présence d'une teneur suffisante de charges permet d'éviter le risque de collage des micromodules entre eux, sur des fibres gainées ou sur une enveloppe externe.

Les charges seront généralement minérales. On peut notamment utiliser l'alumine (hydratée ou non), la craie, le kaolin, le talc, la silice, l'hydroxyde de magnésie et leurs mélanges. Toutes ces charges réduisent l'allongement à la rupture et la

dilatation ou la rétraction lors des variations de température. Au surplus, elles augmentent l'inertie thermique.

Les polymères oléfiniques utilisables sont sensiblement les mêmes que ceux couramment utilisés à l'heure actuelle. En particulier, on peut citer les produits suivants :

- PE : polyéthylènes

5

20

30

- PP : polypropylènes

- EPR : Ethylène Propylène Rubber (Caoutchouc d'ethylène propylène)

- EPDM : Ethylène propylène Diène Monomère

- EVA : copolymères ethylène-acétate d'alkyl inférieur (notamment acétate de vinyl)

- EBA : copolymères éthylène – acrylate d'alkyl inférieur (notamment acrylate de méthyl, éthyl et surtout butyl)

- EEA: Ethylène Ethyl Acrylate

- VLDPE : Very Low Density Polyethylène (polyethylène à très basse densité)

- polymères greffés d'acide acrylique ou d'anhydride maléique

- PVC : chlorure de polyvinyl

- leurs mélanges et co-polymères.

Le matériau extrudable comportera généralement de plus des plastifiants à faible teneur, ne dépassant pas quelques pour cent en poids, tels que des huiles aliphatiques ou des phtalates (par exemple phtalate de di-octyle ou de didécyle), des adipates, des trimellitates, etc. Des produits de protection contre la chaleur ou les ultraviolets doivent être incorporés lorsqu'une exposition ou le rayonnement solaire est à craindre.

Dans certains cas, on ajoutera un ou des silanes ou aminosilanes, tels que :

- 25 vinyl trimethoxysilane
 - γ amino propylsilane
 - y amino trimethoxysilane

Si on utilise un trialkoxy silane, il sera souhaitable de ne pas aller au-delà d'un composé ayant plus de cinq atomes de carbone.

On donnera maintenant, à titre d'exemple, les propriétés de plusieurs matériaux conformes à l'invention, en même temps qu'une comparaison avec un matériau témoin classiquement utilisé à ce jour pour constituer une gaine de micromodule. La description qui suit fait référence à la figure unique qui montre un micromodule dans un

état déformé qu'il est susceptible de prendre lorsqu'il est pressé contre d'autres micromodules par une enveloppe externe. Le micromodule comporte plusieurs fibres optiques 10 individuellement gainées contenues dans une gaine 12 qui doit être facilement déchirable pour permettre le dénudage des extrémités des fibres en vue de s raccordements. Cette gaine 12 est généralement constituée par extrusion sur le faisceau de fibres optiques 10 lors du tirage de ces dernières et prend alors une forme approximativement circulaire lorsque le faisceau de fibres présente lui même un pourtour dont la forme ne s'écarte pas trop du cercle corconscrit. La gaine enserre les fibres et s'applique en effet contre elles. A l'intérieur d'un câble, la pression des micromodules les uns contre les autres peut déformer leurs section et les amener par exemple à celle qui est illustrée.

Le matériau témoin est constitué par du polyéthylène ayant une densité nominale de 0,92 et un "melt flow index" de 0,3 g/10 mn à 190°C, sous une pression de 21,6 N. Ce matériau a été utilisé pour constituer la gaine d'un micromodule, par extrusion sur un faisceau de quatre fibres optiques. La gaine 12 constituée avait un diamètre de 1 mm et une épaisseur de 0,12 mm. L'extrusion se fait sans difficulté et la gaine obtenue est bien cylindrique. Mais lors de la constitution du câble, par extrusion d'une enveloppe externe à base de polyéthylène, la chaleur nécessaire à l'extrusion de l'enveloppe déforme les micromodules et les gaines tendent à se coller ensemble et à se coller à l'enveloppe extérieure, imposant des précautions particulières, comme par exemple l'interposition d'un ou plusieurs rubans séparateurs entre les micromodules et l'enveloppe.

Ces difficultés sont écartées lors de la mise en œuvre d'un matériau conforme à l'invention.

25

10

15

20

Exemple 1:

Dans un mélangeur, on a préparé une composition comprenant, en poids :

- 50 parts de polyethylène de densité 0,92 ayant un Melt Flow Index à 190°C, sous 21.6 30 N, de 1.8g/10 min
 - 50 parts de copolymère EVA contenent 18 % d'acétate de vinyle
 - 130 parts d'hydrate d'alumine

- 5 parts de lubrifiant (huile paraffinique)
- 5 parts d'additifs (anti-oxydants, silane, lubrifiant)

Les ingrédients sont mélangés pendant 10 minutes, jusqu'à 160°C.

Après calandrage sur un mélangeur à cylindres, le matériau est découpé, puis moulé à 180°C sous pression, sous forme de plaques permettant d'effectuer des mesures caractérisant le matériau.

Les caractéristiques mécaniques obtenues sur les plaques sont les suivantes :

Résistance à la rupture = 11.4 Mpa

Allongement à la rupture = 125 %

10 Dureté = 45 Shore D

5

15

20

La composition a été utilisée pour constituer des micromodules. Pour cela, on l'a mise sous forme de granulés qui sont introduits dans une extrudeuse de 45 mm de diamètre, et 24 diamètres de longueur.

Les températures d'extrusion sont comprises entre 130 et 165°C, depuis la trémie d'alimentation, jusqu'à la tête d'extrusion.

Pour caractériser la gaine obtenue, deux opérations ont été faites.

La première a été une mise en forme à une vitesse de 100m/min, pour obtenir un tube de 0.90 mm de diamètre externe, et de 0.12 mm d'épaisseur radiale.

Pour la seconde, la mise en forme a été identique à cela près qu'on introduit à travers la tête de l'extrudeuse 4 fibres optiques colorées, et qu'on injecte simultanément un gel d'étanchéité pour former un module qui, après refroidissement de la matière extrudée, est recueilli dans un bac où il s'enroule librement à plat.

Les caractéristiques obtenues sur les gaines sont les suivantes :

	Module sans gel d'étanchéité		Module avec gel	
Caractéristiques initiales	RT = 4.5N	AR = 138 %	RT = 4.6N	AR = 112 %
Enroulement sur mandrin 6D	Correct		Correct	
Après 10 jours 70°C	VaRT = 19%	VarAR = 15%	VarRT = 13%	VarAR = 13%
Après 10 jours à 70°C + 42 jours à 80°C	VarRT = 17%	VarAR = 20%	VarRT = 9%	VarAR = 11%

RT = Résistance à la Traction, exprimée en Newton

AR = Allongement à la rupture, exprimé en %

Va = Variation

Ces résultats indiquent d'une part la bonne résistance thermique, et d'autre part la bonne compatibilité avec les matériaux de remplissage des gaines du matériau conforme à l'invention.

Exemple 2

5

10

15

La composition du matériau est identique à l'exemple 1, à ceci près que la charge à base d'alumine hydratée est remplacée par une charge à base de carbonate de calcium. On réalise le mélange dans les mêmes conditions, et on extrude à 100m/min un micromodule de diamètre de 0.85 mm, et d'épaisseur 0.11 mm. Les caractéristiques ci-dessous montrent comment on obtient avec une telle formulation des modules présentant une résistance chimique correcte, malgré la faible épaisseur de la gaine du module.

Caractéristiques initiales	RT = 3.9N	AR = 155 %
Après une heure dans l'éthanol à 20°C	Var RT = 1%	Var AR = 3 %
Après une heure dans l'isopropanol à 20°C	Var RT = 5%	Var AR = 3 %

Exemple 3

On réalise une formulation identique à l'exemple 1, à ceci près que la charge à base d'alumine est remplacée par une charge kaolinique, et sa concentration abaissée à 65 parts. Le plastifiant paraffinique est remplacé par une huile de type adipate d'isononyle. Les différents ingrédients sont introduits en mélangeur interne, mélangés jusqu'à environ 160°C, et granulés. Les caractéristiques du matériau sur plaque sont les suivants:

Caractéristiques mécaniques initiales Résistance à la traction Allongement à la rupture	RT = 10.5 Mpa	AR = 157 %
Vieillissement 10 jours à 70°C	Var RT = + 1%	Var AR = -13%
Vieillissement 42 jours à 80°C	Var RT = + 7 %	Var AR = -19%
Compatibilité avec la gelée Macroplast CF 300 10 jours à 70°C	Var RT = -15% Variation masse =	Var AR = -18% 7%
Tenue en chaleur humide 42 jours à 40°C et 93 % HR	Var RT= -4%	Var AR = +2%
Immersion dans le kerdane 24 heures à 20°C	Var RT = - 25%	Var AR = -10%
Immersion dans l'éthanol 1 heure à 20°C	Var RT = -4%	. Var AR = -10%
Immersion dans l'isopropanol 1 heure à 20°C	Var RT = -6%	Var AR = -4%
Immersion dans l'isopropanol 1 heure à 20°C	Var RT = -4%	VarAR = -10%
Dureté	45 Shore D	

A partir de cette formulation, on réalise dans les mêmes conditions que précédemment un micromodule à quatre fibres optiques avec une gaine de 0,11 mm d'épaisseur et 0,85 mm de diamètre. Le gel d'étanchéité est la "Macroplast CF 300" de la société Henkel.

Les caractéristiques obtenues sur le module sont les suivantes :

CM initiales	RT = 2.4 N	AR = 105%
Variations CM après 10 jours à 70°C	Var RT = 5%	Var AR = 4%
Variations CM après 10 jours à 70°C dans Macroplast CF 300	Var RT = 0	Var AR = 6%
Variations CM après 42 jours à 80°C	Var RT = 2%	Var AR = 5%
Variations CM après 10 jours à 70°C dans CF 300, et 42 jours à 80°C	Var RT = - 21 %	Var AR = - 6%
Variations CM après 42 jours à 40°C et 93%HR	Var RT = 5.4%	Var AR = 0
Variations CM après 24h dans kerdane	Var RT = 11%	Var = 25%
Variations après 24 heures dans l'éthanol	Var RT = 8%	Var AR = 12%
Variations après 24 heures dans l'isopropanol	Var RT = 4%	Var AR = 13%

REVENDICATIONS

- 1. Matériau extrudable permettant de constituer des pellicules de faible épaisseur, comportant un polymère oléfinique, caractérisé en ce qu'il est constitué par une composition contenant un polymère oléfinique et un taux de charges compris entre 25 à 65 % en poids de la composition, ledit matériau à l'état non divisé ayant une résistance à la traction comprise entre 6 et 20 Mpa et un allongement à la rupture compris entre 50 et 300 %.
- 2. Matériau suivant la revendication 1, caractérisé en ce qu'il présente une dureté Shore D entre 35 et 55.
- 3. Matériau suivant la revendication 1 ou 2, caractérisé en ce que le polymère est choisi dans le groupe constitué par :
- PE : polyéthylènes

5

- PP : polypropylènes
- EPR : Ethylène Propylène Rubber (Caoutchouc d'ethylène propylène)
 - EPDM : Ethylène propylène Diène Monomère
 - EVA : copolymères éthylène-acétate d'alkyl inférieur (notamment acétate de vinyl)
 - EBA : copolymères éthylène acrylate d'alkyl inférieur (notamment acrylate de méthyl, éthyl et surtout butyl)
- 20 EEA : Ethylène Ethyl Acrylate
 - VLDPE : Very Low Density Polyethylène (polyethylène à très basse densité)
 - polymères greffés d'acide acrylique ou d'anhydride maléique
 - PVC : chlorure de polyvinyle
 - leurs mélanges et co-polymères.
- 4. Matériau suivant la revendication 1, 2 ou 3, caractérisé en ce que les charges sont choisies dans le groupe constitué par l'alumine (hydratée ou non), la craie, le kaolin, le talc, la silice, l'hydroxyde de magnésie, et leurs mélanges.
- 5. Matériau suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte, en plus d'un lubrifiant et d'additifs :
 - 50 parts de polyethylène de densité 0,92 ayant un Melt Flow Index à 190°C, sous 21.6 N, de 1.8g/10 min
 - 50 parts de copolymère EVA contenant 18 % d'acétate de vinyle

- 130 parts d'hydrate d'alumine
- 6. Matériau suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comporte, en plus d'un lubrifiant et d'additifs :
- 50 parts de polyethylène de densité 0,92 ayant un Melt Flow Index à 190°C, sous 21.6 N, de 1.8g/10 min
- 50 parts de copolymère EVA contenant 18 % d'acétate de vinyle
- 130 parts de carbonate de calcium.
- 7. Matériau suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comporte, en plus d'un lubrifiant et d'additifs :
- 50 parts de polyethylène de densité 0,92 ayant un Melt Flow Index à 190°C, sous 21.6 N, de 1.8g/10 min
 - 50 parts de copolymère EVA contenant 18 % d'acétate de vinyle
 - 65 parts de kaolin.
- 8. Matériau selon l'une quelconque des revendications 1 à 7, contenant un ou des silanes ou aminosilanes.
 - 9. Micromodule de fibres optiques comprenant un faisceau de fibres optiques gainées individuellement et une gaine entourant le faisceau en un matériau suivant l'une quelconque des revendications précédentes.

Documents reçus la: 17-08-00 Non examinés par LIN.P.L.

REVENDICATIONS

- 1. Matériau extrudable permettant de constituer des pellicules de faible épaisseur, comportant un polymère oléfinique, caractérisé en ce qu'il est constitué par une composition contenant un polymère oléfinique et un taux de charges compris entre 25 et 65 % en poids de la composition, ledit matériau à l'état non divisé ayant une résistance à la traction comprise entre 6 et 20 Mpa, un allongement à la rupture compris entre 50 et 300 % et une dureté shore D entre 35 et 55, les charges étant choisies dans le groupe constitué par l'alumine (hydratée ou non), la craie, le kaolin, le talc, la silice, l'hydroxyde de magnésie, et leurs mélanges.
- 2. Matériau suivant la revendication 1, caractérisé en ce que le polymère est choisi dans le groupe constitué par :
 - PE : polyéthylènes
- PP: polypropylènes

5

10

- EPR : Ethylène Propylène Rubber (Caoutchouc d'ethylène propylène)
- EPDM: Ethylène propylène Diène Monomère
- EVA : copolymères éthylène-acétate d'alkyl inférieur (notamment acétate de vinyl)
- EBA : copolymères éthylène acrylate d'alkyl inférieur (notamment acrylate de méthyl, éthyl et surtout butyl)
 - EEA: Ethylène Ethyl Acrylate
 - VLDPE : Very Low Density Polyéthylène (polyéthylène à très basse densité)
 - polymères greffés d'acide acrylique ou d'anhydride maléique
- 25 PVC : chlorure de polyvinyle
 - leurs mélanges et co-polymères.
 - 3. Matériau suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte, en plus d'un lubrifiant et d'additifs :
 - 50 parts de polyethylène de densité 0,92 ayant un Melt Flow Index à 190°C, sous
 21.6 N, de 1.8g/10 min
 - 50 parts de copolymère EVA contenant 18 % d'acétate de vinyle
 - 130 parts d'hydrate d'alumine

- 4. Matériau suivant l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte, en plus d'un lubrifiant et d'additifs :
 - 50 parts de polyethylène de densité 0,92 ayant un Melt Flow Index à 190°C, sous 21.6 N, de 1.8g/10 min
 - 50 parts de copolymère EVA contenant 18 % d'acétate de vinyle
 - 130 parts de carbonate de calcium.
- 5. Matériau suivant l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte, en plus d'un lubrifiant et d'additifs :
 - 50 parts de polyéthylène de densité 0,92 ayant un Melt Flow Index à 190°C, sous
 21.6 N, de 1.8g/10 min
 - 50 parts de copolymère EVA contenant 18 % d'acétate de vinyle
 - 65 parts de kaolin.

5

- 6. Matériau selon l'une quelconque des revendications 1 à 5, contenant un ou des silanes ou aminosilanes.
- 7. Micromodule de fibres optiques comprenant un faisceau de fibres optiques gainées individuellement et une gaine entourant le faisceau, formée d'une pellicule mince en un matériau extrudable comportant un polymère oléfinique, caractérisé en ce qu'il est constitué par une composition contenant un polymère oléfinique et un taux de charges compris entre 25 et 65 % en poids de la composition, ledit matériau à l'état non divisé ayant une résistance à la traction comprise entre 6 et 20 Mpa et un allongement à la rupture compris entre 50 et 300 %.
 - 8. Micromodule suivant la revendication 7, caractérisé en ce que le polymère est choisi dans le groupe constitué par :
 - PE : polyéthylènes
- 25 PP : polypropylènes
 - EPR : Ethylène Propylène Rubber (Caoutchouxc d'éthylène propylène)
 - EPDM : Ethylène Propylène Diène Monomère
 - EVA : copolymères éthylène-acétate d'alkyl inférieur
 - EBA: copolymères éthylène acrylate d'alkyl inférieur
- 30 EEA : Ethylène Ethyl Acrylate
 - VLDPE : Very Low Density polyethylene (polyéthylène à très basse densité)
 - polymères greffés d'acide acrylique ou d'anhydride maléique

Documents reçus
le://2-08-00
Non examinés par
l'I.N.P.I.

- PVC : chlorure de polyvinyle

- leurs mélanges et co-polymères.
- 9. Micromodule selon la revendication 7 ou 8, caractérisée en ce que les chages sont choisies dans le groupe constitué par l'alumine (hydratée ou non), la craie, le kaolin, le talc, la silice, l'hydroxyde de magnésie, et leurs mélanges.