### MT Robot Reading Group

# Smooth and Collision-Free Navigation for Multiple Robots Under Differential-Drive Constraints

by Jamie Snape, Jur van den Berg, Stephen J. Guy, and Dinesh Manocha

IEEE RSJ Int. Conf. Intelligent Robots and Systems, 2010

### Agenda

- 1. Introduction
- 2. Related Work
- 3. Approach
  - Kinematics of a Differential-Drive Robot
    - Kinematic Model
    - Effective Center and Effective Radius
  - Multi-Robot Navigation
    - Optimal Reciprocal Collision Avoidance
    - Navigation Algorithm
- 4. Experiment
- 5. Discussion

### Introduction

- Most mobile robots in practical service have differential-drives
- Robots as distributed system are used in many areas
- Most prior work in smooth and collision-free navigation for single robot

### **Related Work**

- Early work with kinematics constraints progressed:
  - 1. With classical Dubins car
  - 2. Reeds-Shepp car
  - 3. Simple car

### **Related Work**

- Single robot navigation through cluttered environment
  - Some based on velocity obstacles and its extensions





Figure 1: The robot and a moving obstacle.

Figure 2: The Relative Velocity  $v_{A,B}$  and the Collision Cone  $CC_{A,B}$ .

### **Related Work**

- Decoupled or centralized planners
  - Decoupled: Consider every robot separately
  - Centralized: Combining the degrees of freedom of each robot

#### **Kinematic Model**

Differential-drive robot:

- ullet Position of its center:  ${f q}=(x,y)$
- Orientation:  $\theta$
- Transition equations:

$$\dot{x}=rac{v_l+v_r}{2}cos( heta),\;\dot{y}=rac{v_l+v_r}{2}sin( heta),\;\dot{ heta}=rac{v_r-v_l}{L}$$

#### **Effective Center and Effective Radius**

- To enlarge the radius for navigation
   Increased maneuverability
   Smooth handling of the kinematic constraints
   The center q is not fully controllable



#### **Effective Center and Effective Radius**

- Effective center:  $\mathbf{p} = (X, Y)$ 
  - May be translated in a direction orthogonal to the wheels
- $\circ$  Fully controllable  $\bullet$  Effective radius:  $R=r+D,\;R>0$



### **Effective Center and Effective Radius**

$$X = x + Dcos( heta), \qquad Y = y + Dsin( heta)$$



#### Effective Center and Effective Radius

$$egin{aligned} X &= x + Dcos( heta), & Y &= y + Dsin( heta) \ \dot{X} &= ig(rac{cos( heta)}{2} + rac{Dsin( heta)}{L}ig)v_l + ig(rac{cos( heta)}{2} - rac{Dsin( heta)}{L}ig)v_r, \ \dot{Y} &= ig(rac{sin( heta)}{2} + rac{Dcos( heta)}{L}ig)v_l + ig(rac{sin( heta)}{2} - rac{Dcos( heta)}{L}ig)v_r, \ \mathbf{v} &= M( heta) \cdot \mathbf{u} \end{aligned}$$

### **Effective Center and Effective Radius**

$$\mathbf{v} = M(\theta) \cdot \mathbf{u}$$

Obtain wheel speeds  $v_l,\ v_r$  from velocity  ${f v}$  by solving

$$\mathbf{u} = M^{-1}( heta) \cdot \mathbf{v}$$

### **Multi-Robot Navigation**

Optimal Reciprocal Collision Avoidance

$$egin{aligned} VO_{A|B}^{ au} &= \{\mathbf{v} \mid \exists t \in [0, au] \; :: \; t(\mathbf{v} - \mathbf{v}_B) \ &\in D(\mathbf{p}_B - \mathbf{p}_A, R_A + R_B\} \end{aligned}$$

where  $D(\mathbf{p},R)$  is an open disc of radius R centered at  $\mathbf{p}$ 



### **Multi-Robot Navigation**

#### Optimal Reciprocal Collision Avoidance



#### **Multi-Robot Navigation**

**Optimal Reciprocal Collision Avoidance** 

$$CA^{ au}_{A|B} = \{ \mathbf{v} \mid \mathbf{v} 
otin VO^{ au}_{A|B} \}$$

- A and B will not collide but their trajectories may not be smooth
- Optimal reciprocal collision avoidance resolves this situation

$$ORCA^{ au}_{A|B} \subset CA^{ au}_{A|B}$$

### **Multi-Robot Navigation**

Optimal Reciprocal Collision Avoidance

$$egin{aligned} \mathbf{w} &= (\operatorname{argmin}_{v \in \partial VO_{A|B|}^{ au}} \left| \left| \mathbf{v} - (\mathbf{v}_A - \mathbf{v}_B) 
ight| 
ight|_2) - (\mathbf{v}_A - \mathbf{v}_B) \ ORCA_{A|B}^{ au} &= \{ \mathbf{v} \mid (\mathbf{v} - (\mathbf{v}_A + rac{1}{2}\mathbf{w})) \cdot \mathbf{n} \geq 0 \}. \end{aligned}$$



#### **Multi-Robot Navigation**

#### **Navigation Algorithm**

• Incorporating each of the previous components together

$$ORCA_{A_i}^{ au} = igcap_{A_j \in A, i 
eq j} ORCA_{A_i|A_j}^{ au}$$

- ullet Preferred velocity:  $\mathbf{v}_{A_i}^{ ext{pref}}$  velocity if no other robots in its way
- New velocity:  $\mathbf{v}_{A_i}^{ ext{new}} = \mathop{\mathrm{argmin}}_{\mathbf{v} \in ORCA_{A_i}^{ au}} ||\mathbf{v} \mathbf{v}_{A_i}^{ ext{pref}}||_2$ 
  - Calculated efficiently using linear programming

# Experiments



### **Discussion**

### Questions

• Strong assumption:

Each robot is aware of the exact position and velocity of all the other robots at all times.

 ORCA works without communication with each other, requiring knowledge of only the radius, position, and velocity of each other.