在2-1 新知知道了[] 是R'中
wunter clockwise 转90°的 linear transformation
现在再看几个:

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0.2 \\ 0 & 1 \end{bmatrix}, F = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, C2,4$$

$$A = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}, F = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, C2,4$$

$$A = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}, F = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, C2,4$$

$$A = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 0 & 0 \\ 0$$

. Scaling

Thm3) Scalings [k o] defines a scaling by k. since $\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \overrightarrow{x} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= \begin{bmatrix} kx_1 \\ kx_2 \end{bmatrix} = k \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = k \overrightarrow{x}$ 2. Orthogonal Projection Defra 2.2.1 Orthogonal Projection) Consider a line L in coordinate plane, 第5 (0,0) 40 7 ER 2 ATUST = 7"+ 7" 趣マルル、マナトし、 而过个 T (灵)= 灵" Bs transformation all orthogonal projection of 灵 onto L. denoted: proj_ (2)

随意取
$$\overline{U}$$
 $| L$ $| proj_L \overline{X} | = (\overline{X} \cdot \overline{W}) \overline{W} |$
 \overline{U} $| L$ $| proj_L \overline{X} | = (\overline{X} \cdot \overline{U}) \cdot \overline{U} |$
 \overline{U} $| L$ $| L$

3. Reflection

Def 52.22 Reflection)

Consider a line L in coordinate plane, it (0,0), Let $\overrightarrow{R} = \overrightarrow{X}^{\perp} + \overrightarrow{X}^{\parallel}$

T(
$$\vec{x}$$
) = \vec{x} " - \vec{x} b reflection of \vec{x} denoted: $[ref_{L}(\vec{x})] = \vec{x}$ " - \vec{x} b Def@ 2.2.1 JB $[ref_{L}(\vec{x})] = \vec{x}$ " - $[\vec{x}] = \vec{x}$ " - $[\vec{x$

$$ref_{L}(\vec{x}) = 2proj_{L}(\vec{x}) - \vec{x}$$

$$= 2p\vec{x} - \vec{x} = (2p - I_{2})\vec{x}$$

$$\implies S = 2p - I_{2} = \begin{bmatrix} 2u_{1}^{2} & 2u_{1}u_{2} \\ 2u_{1}u_{2} & 2u_{2}^{2} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2u_{1}^{2} - 1 & 2u_{1}u_{2} \\ 2u_{1}u_{2} & 2u_{2}^{2} - 1 \end{bmatrix}$$
4. Rotation

Thin @ 2.2.4 Rotations

对于原始 vector ? 将其 coordinate 以 polar 形式表示为 $(rcos \varphi, rsin \varphi)$ = notation for = (rcos (g+t), rsin (ptu)) = x cos \textit{\texti Y' = rsin(9+0) = rsin pas H+rox psihA = xsinD+ycusH

5. Shearty

horizontal

$$\frac{1}{x_1} \frac{1}{kx_2}$$

$$\frac{1}{x_1} \frac{1}{kx_2}$$

$$\frac{1}{x_1} \frac{1}{kx_2}$$

$$= \left[\frac{x_1}{x_2} \right] = \left[\frac{1}{x_1} \frac{x_1}{x_2} \right]$$

Thm (5)22.5 Horizontal and vertical shearing

horizontal shearing of slope $\frac{1}{2}$: $\frac{1}{2}$: $\frac{1}{2}$: Vertical shearing of slope $\frac{1}{2}$: $\frac{1}{2}$: $\frac{1}{2}$

Ř. 4ª	
Transformation	Matrix
Scaling by k	$kl_2 = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$
Orthogonal proj onto line L	[U,2 U,U2] (V//L) [U,U2 U22] (& v =1)
Reflection about like L	$\begin{bmatrix} 2U_1^2 - 1 & 2U_1U_2 \\ 2U_1U_2 & 2U_2^2 - 1 \end{bmatrix} \begin{bmatrix} a & b \\ b & A \\ a^2 + b^2 = 1 \end{bmatrix}$
Rotation through angle 日(達時村)	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{pmatrix} \begin{bmatrix} a & b \\ b & a \\ a^2 + b^2 = L \end{pmatrix}$
Rotation through the with scaling by r	$r \left[\begin{array}{c} \cos \theta - \sin \theta \\ \sin \theta \end{array} \right] \left(a^2 + b^2 = r^2 \right)$
Shear	horizontal: [k]; vertical; [k]