Planul numerelor complexe

Mulţimea numerelor complexe este, prin definiţie, $\mathbb{C} = \mathbb{R} \times \mathbb{R}$. După cum ştim, fiind dat într-un plan π un reper ortonormat, produsul cartezian $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ poate fi identificat cu mulţimea punctelor planului π , notând cu Z(x,y) punctul de coordonate $\mathbf{z} = (x,y) \in \mathbb{R}^2$. Prin urmare, fiecărui punct din plan îi corespunde câte un număr complex, numit afixul punctului, iar această corespondenţă este bijectivă. Vom spune că π este planul numerelor complexe, prin analogie cu axa numerelor reale, şi îl vom identifica cu \mathbb{C} , notând în acelaşi fel punctul Z(x,y) şi afixul său, z = (x,y) = x + iy.

Mai mult, produsul cartezian $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ se structurează în mod natural ca spațiu liniar real de dimensiune 2, definind adunarea şi înmulțirea cu scalari pe componente:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2,$$

şi

$$\alpha(x,y) = (\alpha x, \alpha y), \quad \forall \alpha \in \mathbb{R}, (x,y) \in \mathbb{R}^2.$$

Notând $\vec{u} = (1,0), \vec{i} = (0,1),$ orice vector $\vec{z} = (x,y)$ din acest spațiu se scrie ca

$$\vec{z} = (x, y) = x\vec{u} + y\vec{i},$$

adică este vectorul de poziție $\vec{z} = \overrightarrow{OZ}$ al punctului Z(x, y) în reperul ortonormat $\{O, \vec{u}, \vec{i}\}.$

In continuare vom utiliza în mod sistematic identificarea

$$z = \mathbf{z} = Z = \vec{z}$$
,

altfel spus, vom nota în același mod, când nu există pericol de confuzie, un număr complex, o pereche de numere reale, un punct și un vector.

§1. Adunarea numerelor complexe

Prin identificarea descrisă mai sus, definițiile adunării în \mathbb{C} și \mathbb{R}^2 coincid, rezultă că adunarea numerelor complexe are loc după regula paralelogramului: vectorul \overrightarrow{OS} corespunzător sumei $s = z_1 + z_2$ este diagonala paralelogramului format de vectorii $\overrightarrow{OZ_1}$ și $\overrightarrow{OZ_2}$.

Analog, vectorul de poziție \overrightarrow{OD} corespunzător diferenței $d=z_2-z_1$ este vectorul liber $\overrightarrow{Z_1Z_2}$ translatat cu Z_1 în origine (astfel încât $\overrightarrow{OZ_2}$ să fie diagonala paralelogramului format de $\overrightarrow{OZ_1}$ și \overrightarrow{OD} . Spunem că suma z_1+z_2 este diagonala paralelogramului format de vectorii z_1 și z_2 , iar diferența z_2-z_1 este vectorul $\overrightarrow{z_1z_2}$.

Cu acest prilej să observăm că înmulțirea cu scalari din spațiul liniar \mathbb{R}^2 este de fapt înmulțirea în \mathbb{C} dintre un număr real și un număr complex, deoarece

$$\alpha \vec{z} = \alpha(x,y) = (\alpha x, \alpha y) = (\alpha,0)(x,y) = \alpha z.$$

Urmează că înmulțirea cu numere reale reprezintă, în planul numerelor complexe, o scalare, adică o mărire/micșorare la scară cu centru în originea O. De exemplu, produsul cu 2, adică aplicația $z \to 2z$, mărește figurile din plan de două ori privind din origine (este o omotetie cu centru O și raport 2).

§2. Înmulțirea numerelor complexe

Forma trigonometrică ne permite să dăm o interpretare remarcabilă înmulţirii numerelor complexe.

Să calculăm produsul lui $\omega = \alpha(\cos\varphi + i\sin\varphi)$ cu $z = \rho(\cos\theta + i\sin\theta)$. Avem

$$\omega z = \alpha \rho [(\cos \varphi \cos \theta - \sin \varphi \sin \theta) + i(\sin \varphi \cos \theta + \cos \varphi \sin \theta)]$$

$$= \alpha \rho (\cos(\varphi + \theta) + i \sin(\varphi + \theta))$$

de unde obținem că

$$|\omega z| = |\omega||z|$$

şi

$$\arg \omega z = \arg \omega + \arg z \pmod{2\pi}.$$

Deci, la înmulțirea numerelor complexe, modulele se înmulțesc iar argumentele se adună. Deducem de aici că produsul cu $\omega = \alpha(\cos \varphi + i \sin \varphi)$, adică aplicația

$$z \to \omega z$$
,

reprezintă o scalare de factor α compusă cu o rotație de unghi φ în sens trigonometric în jurul originii.

In particular, $\hat{i}nmulțirea~cu~i$, care are modulul 1 și argumentul $\frac{\pi}{2}$ radiani, este o rotație de 90° în sens trigonometric în jurul originii. Prin urmare, produsul cu i^2 înseamnă două rotații de 90° în același sens, adică de o rotație de 180°, exact transformarea geometrică asociată produsului cu -1. Iată o interpretare geometrică elegantă a egalității $i^2 = -1$.

Să reamintim şi celebra formulă a lui Moivre (Abraham de Moivre (1667 – 1754), matematician francez): dacă $z = \rho(\cos \theta + i \sin \theta)$ atunci pentru orice $n \in \mathbb{Z}$ avem

$$z^n = \rho^n(\cos n\theta + i\sin n\theta).$$

Această formulă permite, printre altele, și următoarea extindere la exponenți reali pozitivi a operației de ridicare la putere a unui număr complex:

$$z^{\alpha} = \rho^{\alpha}(\cos \alpha \theta + i \sin \alpha \theta),$$

pentru orice $\alpha \in (0, +\infty)$.

Programul următor reprezintă grafic puterile numărului

$$z = \frac{995}{1000} \left(\cos\frac{\pi}{120} + i\sin\frac{\pi}{120}\right).$$

Deoarece $|z^n|=|z|^n=0.995^n\to 0$ pentru $n\to +\infty$, puterile lui z de exponent $n=1,2,3,\ldots$ vor forma un şir de puncte care se apropie de origine, rotindu-se în jurul ei la fiecare pas cu $\pi/120$ radiani, şi parcurgând astfel o spirală îndreptată către zero.


```
import ComplexPygame as C
import Color
import math

def Puteri():
    C.setXminXmaxYminYmax(-1.1, 1.1, -1.1, 1.1)
    C.fillScreen()
    C.setAxis()
    z = C.fromRhoTheta(0.995, math.pi / 120)
    p = 1
    for k in range(10000):
        p *= z
        C.setPixel(p, Color.Black)
        if C.mustClose():
            return

if __name__ == '__main__':
    C.initPygame()
    C.run(Puteri)
```

§3. Rădăcinile unității.

Considerăm un număr natural fixat $n \geq 1$, notăm

$$\theta = \frac{2\pi}{n}$$

şi definim

$$\varepsilon = \cos \theta + i \sin \theta$$
.

Este ușor de văzut că primele n puteri ale lui ε ,

$$1, \varepsilon, \varepsilon^2, \varepsilon^3, \dots, \varepsilon^{n-1},$$

date de formula

$$z_k = \varepsilon^k = \cos k\theta + i\sin k\theta,$$

sunt distincte și sunt vârfurile unui poligonului regulat cu n laturi înscris în cercul unitate. Deoarece pentru orice $k \in \{0, 1, 2, \dots, n-1\}$ avem

$$z_k^n = \cos nk\theta + i\sin nk\theta = \cos 2k\pi + i\sin 2k\pi = 1,$$

deducem că mulțimea

$$U_n = \{1, \varepsilon, \varepsilon^2, \varepsilon^3, \dots, \varepsilon^{n-1}\}$$

este formată din cele n soluții în $\mathbb C$ ale ecuației

$$z^n = 1$$
.

 U_n se numește mulțimea rădăcinilor de ordin n ale unității și are o structură de grup în raport cu înmulțirea. Puterile lui ε se repetă din n în n, mai precis avem

$$\varepsilon^k \varepsilon^h = \varepsilon^{k+h \pmod n}$$

și prin urmare aplicația $\varepsilon^k \to k$ este un izomorfism între (U_n, \cdot) și grupul $(\mathbb{Z}_n, +)$ al claselor de resturi modulo n.

§4. Conjugatul unui număr complex

Pentru a efectua împărțirea a două numere complexe sub formă algebrică avem nevoie de operația de conjugare.

Conjugatul lui z=x+iy este $\bar{z}=x-iy$ și are proprietatea esențială

$$z\bar{z} = x^2 + y^2 = |z|^2 \in \mathbb{R}.$$

Operația de conjugare (adică aplicația $z \to \bar{z}$) reprezentă trecerea de la un punct la simetricul său în raport cu axa reală, prin urmare conjugarea păstrează operațiile:

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2,$$

$$\overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2,$$

$$\overline{z_1}\overline{z}_2 = \overline{z}_1\overline{z}_2,$$

$$\overline{z_1/z}_2 = \overline{z}_1/\overline{z}_2.$$

In sfârșit, pentru z = x + iy avem

$$\operatorname{Re} z = x = \frac{z + \overline{z}}{2}$$
 și $\operatorname{Im} z = y = \frac{z - \overline{z}}{2i}$.

Este util de ținut minte că, dacă |z| = 1 atunci $\bar{z} = \frac{1}{z}$.

Să observăm că pentru oricare trei puncte z_1 , z_2 și z_3 necoliniare, triunghiurile $\Delta z_1 z_2 z_3$ și $\Delta \overline{z}_1 \overline{z}_2 \overline{z}_3$ sunt totdeauna congruente, fără ca ele să poată fi suprapuse numai prin prin translații și rotații.

§5. Împărțirea numerelor complexe.

Sub formă algebrică, împărțirea a două numere complexe se efectuează prin amplificare cu conjugatul numitorului:

$$\frac{a+ib}{x+iy} = \frac{(a+ib)(x-iy)}{(x+iy)(x-iy)} = \frac{ax+by}{x^2+y^2} + i\frac{bx-ay}{x^2+y^2}.$$

După cum rezultă imediat din proprietățile înmulțirii, raportul a două numere complexe sub formă trigonometrică, $z_1 = \rho_1(\cos\theta_1 + i\sin\theta_1) \neq 0$ și $z_2 = \rho_2(\cos\theta_2 + i\sin\theta_2)$ este

$$\frac{z_2}{z_1} = \frac{\rho_2}{\rho_1} (\cos(\theta_2 - \theta_1) + i\sin(\theta_2 - \theta_1)).$$

Deducem că modulul raportului z_2/z_1 este raportul lungimilor vectorilor z_2 și z_1 iar argumentul raportului z_2/z_1 este unghiul $\widehat{z_10z_2}$ dintre cei doi vectori.

O interpretare remarcabilă vom avea într-un triunghi $\Delta z_0 z_1 z_2$ în care, dacă ținem cont că diferențele $z_2 - z_0$ și $z_1 - z_0$ sunt laturi, avem

$$\left| \frac{z_2 - z_0}{z_1 - z_0} \right| = \frac{|z_2 - z_0|}{|z_1 - z_0|} = \frac{Z_0 Z_2}{Z_0 Z_1}$$

şi

$$\arg \frac{z_2 - z_0}{z_1 - z_0} = \widehat{Z_1 Z_0 Z_2}.$$

Reţinem: raportul a două laturi este numărul complex care are modulul egal cu raportul lungimilor laturilor şi argumentul egal cu unghiul dintre cele două laturi. Deducem de aici că triunghiurile (orientate) $\Delta z_0 z_1 z_2$ şi $\Delta z_0' z_1' z_2'$ sunt asemenea dacă şi numai dacă

$$\frac{z_2' - z_0'}{z_1' - z_0'} = \frac{z_2 - z_0}{z_1 - z_0}$$

sau

$$\frac{z_2' - z_0'}{z_1' - z_0'} = \frac{\overline{z}_2 - \overline{z}_0}{\overline{z}_1 - \overline{z}_0}.$$

În primul caz spunem că triunghiurile sunt *direct-asemenea*, iar în al doilea caz spunem că sunt *invers-asemenea*.

Punctele z_0 , z_1 și z_2 sunt coliniare când unghiul $\widehat{Z_1Z_0Z_2}$ are 0 sau π radiani, deci atunci când raportul celor două laturi,

$$\frac{z_2 - z_0}{z_1 - z_0} = \lambda,$$

are argumentul 0 sau π și, prin urmare, este număr real. Deducem de aici caracterizarea: punctul z_2 care împarte segmentul z_0z_1 în raportul

$$\lambda = \frac{|z_2 - z_0|}{|z_1 - z_0|}$$

este dat de egalitatea

$$\lambda = \frac{z_2 - z_0}{z_1 - z_0},$$

și, prin urmare,

$$z_2 = z_0 + \lambda (z_1 - z_0).$$

Urmează că dreapta determinată de două puncte distincte, z_0 și z_1 , admite reprezentarea parametrică

$$z = z_0 + t(z_1 - z_0), t \in \mathbb{R}.$$

Ca aplicație, următorul program secționează triunghiul Δabc în zece felii de arii egale:

```
import ComplexPygame as C
import Color
def Sectiuni():
    def Sectioneaza(a, b, c, nrSectoare):
        C.drawLine(b, c, Color.Black)
        for k in range(nrSectoare + 1):
            C.drawLine(a, b + k * (c - b) / nrSectoare, Color.Black)
    C.setXminXmaxYminYmax(-1, 7, -1, 7)
    C.fillScreen()
    C.setAxis()
    a = 2 + 5j
    b = 1 + 1j
    c = 6 + 2j
    Sectioneaza(a, b, c, 10)
if __name__ == '__main__':
    C.initPygame()
    C.run(Sectiuni)
```


§6. Produsul scalar.

Fie $z_1 = x_1 + iy_1$ şi $z_2 = x_2 + iy_2$ afixele punctelor Z_1 şi Z_2 . După cum ştim, prin produsul scalar al vectorilor $\overrightarrow{OZ_1}$ şi $\overrightarrow{OZ_2}$ se înțelege numărul real

$$\overrightarrow{OZ_1} \cdot \overrightarrow{OZ_2} = ||OZ_1|| ||OZ_2|| \cos \triangleleft Z_1 O Z_2$$

și se calculează pe coordonate cu formula

$$\overrightarrow{OZ_1} \cdot \overrightarrow{OZ_2} = x_1 x_2 + y_1 y_2.$$

Din acest motiv, vom defini $produsul\ scalar$ al numerelor complexe z_1 și z_2 prin

$$\langle z_1, z_2 \rangle = x_1 x_2 + y_1 y_2 = \operatorname{Re} z_1 \bar{z}_2 = \frac{1}{2} (z_1 \bar{z}_2 + \bar{z}_1 z_2).$$

Următoarele proprietăți ale produsului scalar sunt evidente:

- \bullet $\langle z, z \rangle = |z|^2$
- $\bullet < u, v > = < v, u >$
- \bullet < z, u + v >=< z, u > + < z, v >
- $\bullet < \lambda u, v > = \lambda < u, v > = < u, \lambda v >, \forall \lambda \in \mathbb{R}.$
- $\bullet < z_1, z_2 >= 0 \Leftrightarrow OZ_1 \perp OZ_2$
- \bullet $< uz, vz >= |z|^2 < u, v >$

Produsul scalar este util la caracterizarea perpendicularității: dacă A, B, C și D au afixele a, b, c și d, atunci

$$AB \perp CD \Leftrightarrow < b-a, d-c> = 0 \Leftrightarrow \frac{b-a}{d-c} = \lambda i, \lambda \in \mathbb{R}.$$

Exemplu. Fie H ortocentrul și O centrul cercului circumscris triunghiului ΔABC . Arătați că între afixele h, o, a, b și c ale acestor puncte are loc relația

$$h = a + b + c - 2o.$$

Rezolvare Fie $\tilde{h} = a + b + c - 2o$. Din

$$<\tilde{h}-a,b-c>=<(b-o)+(c-o),(b-o)-(c-o)>=|b-o|^2-|c-o|^2=0,$$

rezultă că \tilde{H} se află pe înălțimea din A a triunghiului ΔABC . Din simetria relațiilor, rezultă că \tilde{H} este pe oricare înălțime, deci este ortocentrul triunghiului.

§7. Transformări geometrice.

Identificând în continuare \mathbb{C} cu mulțimea punctelor unui plan, prin figură geometrică vom înțelege, în cele ce urmează, o mulțime oarecare F de numere complexe, prin transformare geometrică o aplicație $T:\mathbb{C}\to\mathbb{C}$, iar prin transformata figurii F mulțimea formată din transformatele punctelor lui F:

$$F' = T(F) = \{z' = T(z), z \in F\}.$$

Pe baza interpretării geometrice a operațiilor cu numere complexe, avem următoarele caracterizări ale transformărilor întâlnite în geometria planului.

§7.1. Translația. Dorim să translatăm o figură F astfel încât un punct fixat $z_0 \in F$ să ajungă într-un z'_0 fixat în F'. Fie $z \in F$ și $z' \in F'$ transformatul său. Vectorii $\overrightarrow{zz'}$ și $\overrightarrow{z_0z'_0}$ trebuie să fie egali, deci $z' - z = z'_0 - z_0$, de unde rezultă $z' = z + (z'_0 - z_0)$.

In concluzie, transformarea $T:\mathbb{C}\to\mathbb{C}$ dată de

$$T(z) = z + (z'_0 - z_0), \ z \in \mathbb{C},$$

este translația de vector $\overrightarrow{z_0}\overrightarrow{z_0}$.

§7.2. Omotetia. Fixăm un punct $z_0 \in \mathbb{C}$ şi un număr real $\lambda > 0$. Fiind dată o figură F, dorim să o "mărim la scară" cu factorul λ relativ la centrul z_0 . Fie $z \in F$ şi $z' \in F'$ transformatul său. Cerem ca punctele z_0 , z şi z' să fie coliniare şi raportul segmentelor z_0z' şi z_0z să fie λ , de unde rezultă că $z' = z_0 + \lambda(z - z_0)$.

In concluzie, transformarea $T:\mathbb{C}\to\mathbb{C}$ dată de

$$T(z) = z_0 + \lambda(z - z_0), \ z \in \mathbb{C},$$

cu $\lambda \in \mathbb{R}_+^*$, este omotetia de centru z_0 şi raport λ .

§7.3. Rotația. Dorim să rotim o figură F în jurul unui punct fix $z_0 \in \mathbb{C}$ cu un unghi θ . Considerăm un $z \in F$, notăm cu $z' \in F'$ transformatul său şi definim numărul complex ω prin

$$\omega = \frac{z' - z_0}{z - z_0}.$$

Avem

$$|\omega| = \frac{|z' - z_0|}{|z - z_0|} = 1$$

şi

$$\arg = \widehat{z'z_0z} = \theta = \text{const.},$$

de unde rezultă că $\omega = \cos \theta + i \sin \theta$.

 $Rotația de centru z_0 și unghi <math display="inline">\theta$ este dată de transformarea $T:\mathbb{C} \to \mathbb{C}$ definită de

$$T(z) = z_0 + \omega(z - z_0), \ z \in \mathbb{C},$$

 $cu \omega = \cos \theta + i \sin \theta.$

§7.4. Simetria față de un punct. Punctul z' este simetricul lui z față de z_0 dacă $z' - z_0 = -(z - z_0)$ și, prin urmare,

$$T(z) = 2z_0 - z, \ z \in \mathbb{C},$$

este simetria față de punctul z_0 .

§7.5. Simetria față de o dreaptă. Fie d_{ab} dreapta determinată de două puncte distincte a și b din \mathbb{C} . Dorim să determinăm simetricul z' al unui punct z față de dreapta d_{ab} .

Considerăm conjugatele $\bar{a},\ \bar{b},\ \bar{z}$ și $\bar{z'}$ care, după cum știm, sunt simetricele punctelor $a,\ b,\ z$ și z' față de axa reală. Din egalitatea

$$\frac{z'-a}{b-a} = \frac{\bar{z} - \bar{a}}{\bar{b} - \bar{a}},$$

dată de congruența triunghiurilor $\Delta az'b$ și $\Delta \bar{a}\bar{z}\bar{b}$, obținem mai departe

$$z' = a + \frac{b-a}{\bar{b} - \bar{a}}(\bar{z} - \bar{a}).$$

În concluzie, simetria față de dreapta determinată de punctele a și b este transformarea $T:\mathbb{C}\to\mathbb{C}$ dată de

$$T(z) = a + \omega(\overline{z} - \overline{a}), \ z \in \mathbb{C},$$

cu
$$\omega = \frac{b-a}{\overline{b}-\overline{a}}$$
.

§7.6. Asemănarea. Fie λ un număr real strict pozitiv. Numim asemănare de raport $\lambda > 0$ o transformare $T : \mathbb{C} \to \mathbb{C}$, cu proprietatea

$$|T(z_1) - T(z_2)| = \lambda |z_1 - z_2|,$$

pentru orice $z_1, z_2 \in \mathbb{C}$. Dacă $\lambda = 1$, spunem că T este o *izometrie*.

Se știe că orice izometrie poate fi scrisă ca o compunere formată dintr-o translație, o rotație și, eventual, o simetrie față de o dreaptă. Mai departe, orice asemănare poate fi scrisă ca o compunere dintre o izometrie și o omotetie.

Este ușor de văzut că, în planul complex, orice asemănare este de forma

$$T(z) = a + \omega z$$
,

sau

$$\widetilde{T}(z) = a + \omega \overline{z},$$

cu a și $\omega \neq 0$ numere complexe oarecare, unde $\lambda = |\omega| > 0$ este raportul de asemănare.

Spunem că T este o $asemănare\ directă$, o asemănare care păstrează mărimea unghiurilor, în timp ce \widetilde{T} este o $asemănare\ inversă$, deoarece inversează semnul mărimii unghiurilor.

De exemplu, simetria față de o dreapă este o $izometrie\ inversă$. Într-adevăr, simetria față de dreapta ab are forma

$$T(z) = a + \omega(\overline{z} - \overline{a}) = (a - \omega \overline{a}) + \omega \overline{z}, \forall z \in \mathbb{C},$$

unde
$$\omega = \frac{b-a}{\overline{b}-\overline{a}}$$
 are modulul $|\omega| = 1$.

Este clar că asemănările duc triunghiuri în triunghiuri asemenea și, în consecință, transformă poligoane în poligoane asemenea. Din acest motiv, două figuri $F, F' \subset \mathbb{C}$ se numesc figuri asemenea, (direct-asemenea sau invers-asemenea), dacă există o asemănare T, (directă sau inversă), astfel încât T(F) = F'.

Orice pereche de triunghiuri asemenea $\Delta z_0 z_1 z_2 \sim \Delta u_0 u_1 u_2$ determină în mod unic o asemănare T astfel încât $T(z_0) = u_0$, $T(z_1) = u_1$ şi $T(z_2) = u_2$. De fapt transformarea T este determinată, până la sensul direct sau invers, de oricare pereche de segmente care se corespund.

Teoremă. Fiind date punctele $z_1 \neq z_2$ şi $u_1 \neq u_2$, există o unică asemănare directă T astfel încât $T(z_1) = u_1$ şi $T(z_2) = u_2$ şi o unică asemănare inversă \widetilde{T} astfel încât $\widetilde{T}(z_1) = u_1$ şi $\widetilde{T}(z_2) = u_2$.

Demonstrație. Fie z un punct necoliniar cu z_1z_2 . Notăm u=T(z). Asemănarea directă T se determină din condiția ca triunghiul Δuu_1u_2 să fie direct asemenea cu Δzz_1z_2 , condiție care, după cum am văzut la interpretarea geometrică a împărțirii numerelor complexe, înseamnă

$$\frac{u-u_1}{u_2-u_1} = \frac{z-z_1}{z_2-z_1},$$

de unde urmează că

$$T(z) = u_1 + \frac{u_2 - u_1}{z_2 - z_1}(z - z_1).$$

Observăm că $T(z)=a+\omega z$ cu $\omega=\frac{u_2-u_1}{z_2-z_1}$ și $a=u_1-\omega z_1,$ deci T este o asemănare directă.

Asemănarea inversă $u = \widetilde{T}(z)$ se determină din condiția ca triunghiul Δuu_1u_2 să fie invers-asemenea cu Δzz_1z_2 . Aceasta însemnă că Δuu_1u_2 este direct-asemenea cu $\Delta \overline{z}\overline{z}_1\overline{z}_2$, de unde avem

$$\frac{u-u_1}{u_2-u_1} = \frac{\bar{z}-\bar{z}_1}{\bar{z}_2-\bar{z}_1},$$

şi, prin urmare,

$$\widetilde{T}(z) = u_1 + \frac{u_2 - u_1}{\overline{z}_2 - \overline{z}_1} (\overline{z} - \overline{z}_1).$$

În final, observăm că $\widetilde{T}(z) = a + \omega \overline{z}$, cu $\omega = \frac{u_2 - u_1}{\overline{z}_2 - \overline{z}_1}$ și $a = u_1 - \omega \overline{z}_1$, deci \widetilde{T} este o asemănare inversă.