

# Contents

| 1 | Definition of Entailment 5 |        |                                                          |    |
|---|----------------------------|--------|----------------------------------------------------------|----|
|   | 1.1                        | Partia | l Herbrand Interpretation                                | 5  |
|   |                            | 1.1.1  | More Literals                                            | 5  |
|   |                            | 1.1.2  | Clauses                                                  | 6  |
|   |                            | 1.1.3  | Partial Interpretations                                  | 6  |
|   |                            | 1.1.4  | Subsumptions                                             | 20 |
|   |                            | 1.1.5  | Removing Duplicates                                      | 21 |
|   |                            | 1.1.6  | Set of all Simple Clauses                                | 21 |
|   |                            | 1.1.7  |                                                          | 22 |
|   |                            | 1.1.8  | Entailment to be extended                                | 23 |
|   | 1.2                        | Partia | l Annotated Herbrand Interpretation                      | 24 |
|   |                            | 1.2.1  |                                                          | 24 |
|   |                            | 1.2.2  | Backtracking                                             | 29 |
|   |                            | 1.2.3  | Decomposition with respect to the First Decided Literals | 30 |
|   |                            | 1.2.4  | Negation of a Clause                                     | 34 |
|   |                            | 1.2.5  | <u>g</u>                                                 | 37 |
|   |                            | 1.2.6  |                                                          | 39 |
|   |                            | 1.2.7  |                                                          | 40 |
|   |                            | 1.2.8  | Negation of annotated clauses                            | 40 |
|   | 1.3                        | Bridgi |                                                          | 42 |
| 2 | Normalisation              |        |                                                          |    |
|   | 2.1                        | Logics |                                                          | 45 |
|   |                            | 2.1.1  | Definition and Abstraction                               | 45 |
|   |                            | 2.1.2  | Properties of the Abstraction                            | 46 |
|   |                            | 2.1.3  |                                                          | 48 |
|   |                            | 2.1.4  |                                                          | 50 |
|   | 2.2                        | Seman  | ntics over the Syntax                                    |    |

## Chapter 1

## Definition of Entailment

This chapter defines various form of entailment.

end

## 1.1 Partial Herbrand Interpretation

```
theory Partial-Herbrand-Interpretation
imports
Weidenbach-Book-Base.WB-List-More
Ordered-Resolution-Prover.Clausal-Logic
begin
```

## 1.1.1 More Literals

 $\langle proof \rangle$ 

The following lemma is very useful when in the goal appears an axioms like -L=K: this lemma allows the simplifier to rewrite L.

```
lemma allows the simplifier to rewrite L.

lemma in-image-uminus-uminus: (a \in uminus : A \longleftrightarrow -a \in A) for a :: ('v \ literal) \land (proof)

lemma uminus-lit-swap: -a = b \longleftrightarrow (a :: 'a \ literal) = -b \land (proof)

lemma atm-of-notin-atms-of-iff: (atm\text{-}of \ L \notin atms\text{-}of \ C' \longleftrightarrow L \notin C' \land -L \notin C' \land for \ L \ C' \land (proof)

lemma atm-of-notin-atms-of-iff-Pos-Neg: (L \notin atms\text{-}of \ C' \longleftrightarrow Pos \ L \notin C' \land Neg \ L \notin C' \land for \ L \ C' \land (proof)

lemma atms-of-uminus[simp]: (atms\text{-}of \ (uminus : \# \ C) = atms\text{-}of \ C) \land (proof)

lemma distinct-mset-atm-ofD: (distinct\text{-}mset\text{-}atm\text{-}of\text{-}cong\text{-}set\text{-}mset:} (set\text{-}mset\ D = set\text{-}mset\ D' \Longrightarrow atms\text{-}of\ D')
```

```
lemma lit-in-set-iff-atm: 

\langle NO\text{-}MATCH \ (Pos \ x) \ l \Longrightarrow NO\text{-}MATCH \ (Neg \ x) \ l \Longrightarrow 

l \in M \longleftrightarrow (\exists \ l'. \ (l = Pos \ l' \land Pos \ l' \in M) \lor (l = Neg \ l' \land Neg \ l' \in M)) \rangle 

\langle proof \rangle
```

We define here entailment by a set of literals. This is an Herbrand interpretation, but not the same as used for the resolution prover. Both has different properties. One key difference is that such a set can be inconsistent (i.e. containing both L and -L).

Satisfiability is defined by the existence of a total and consistent model.

```
\begin{array}{l} \textbf{lemma} \ \ lit\text{-}eq\text{-}Neg\text{-}Pos\text{-}iff\text{:} \\ (x \neq Neg \ (atm\text{-}of \ x) \longleftrightarrow is\text{-}pos \ x) \\ (x \neq Pos \ (atm\text{-}of \ x) \longleftrightarrow is\text{-}neg \ x) \\ (-x \neq Neg \ (atm\text{-}of \ x) \longleftrightarrow is\text{-}neg \ x) \\ (-x \neq Pos \ (atm\text{-}of \ x) \longleftrightarrow is\text{-}pos \ x) \\ (Neg \ (atm\text{-}of \ x) \neq x \longleftrightarrow is\text{-}pos \ x) \\ (Neg \ (atm\text{-}of \ x) \neq x \longleftrightarrow is\text{-}neg \ x) \\ (Neg \ (atm\text{-}of \ x) \neq -x \longleftrightarrow is\text{-}neg \ x) \\ (Pos \ (atm\text{-}of \ x) \neq -x \longleftrightarrow is\text{-}pos \ x) \\ (Pos \ (atm\text{-}of \ x) \neq -x \longleftrightarrow is\text{-}pos \ x) \\ (Posf) \end{array}
```

### 1.1.2 Clauses

```
Clauses are set of literals or (finite) multisets of literals.
```

```
type-synonym 'v clause-set = 'v clause set
type-synonym 'v clauses = 'v clause multiset
```

```
lemma is-neg-neg-not-is-neg: is-neg (-L) \longleftrightarrow \neg is-neg L \land proof \rangle
```

### 1.1.3 Partial Interpretations

```
type-synonym 'a partial-interp = 'a literal set
```

```
definition true-lit :: 'a partial-interp \Rightarrow 'a literal \Rightarrow bool (infix \models l \ 50) where I \models l \ L \longleftrightarrow L \in I
```

**declare** true-lit-def[simp]

#### Consistency

```
definition consistent-interp :: 'a literal set \Rightarrow bool where consistent-interp I \longleftrightarrow (\forall L. \neg (L \in I \land -L \in I))
```

```
lemma consistent-interp-empty[simp]: consistent-interp \{\} \langle proof \rangle
```

```
lemma consistent-interp-single[simp]: consistent-interp \{L\}\ \langle proof \rangle
```

```
\mathbf{lemma} \ \textit{Ex-consistent-interp}: \langle \textit{Ex consistent-interp} \rangle \\ \langle \textit{proof} \rangle
```

 ${\bf lemma}\ consistent \hbox{-} interp\hbox{-} subset:$ 

```
assumes
```

 $A \subseteq B$  and

```
consistent-interp B
  shows consistent-interp A
  \langle proof \rangle
lemma consistent-interp-change-insert:
  a \notin A \Longrightarrow -a \notin A \Longrightarrow consistent\text{-interp (insert } (-a) \ A) \longleftrightarrow consistent\text{-interp (insert } a \ A)
  \langle proof \rangle
lemma consistent-interp-insert-pos[simp]:
  a \notin A \Longrightarrow consistent\text{-}interp\ (insert\ a\ A) \longleftrightarrow consistent\text{-}interp\ A \land -a \notin A
  \langle proof \rangle
lemma consistent-interp-insert-not-in:
  consistent-interp A \Longrightarrow a \notin A \Longrightarrow -a \notin A \Longrightarrow consistent-interp (insert a A)
  \langle proof \rangle
lemma consistent-interp-unionD: \langle consistent\text{-interp}\ (I \cup I') \Longrightarrow consistent\text{-interp}\ I' \rangle
  \langle proof \rangle
lemma consistent-interp-insert-iff:
  \langle consistent\text{-}interp\ (insert\ L\ C) \longleftrightarrow consistent\text{-}interp\ C \land -L \notin C \rangle
  \langle proof \rangle
lemma (in -) distinct-consistent-distinct-atm:
  \langle distinct \ M \implies consistent\ interp\ (set \ M) \implies distinct\ mset\ (atm-of '\#\ mset\ M) \rangle
  \langle proof \rangle
Atoms
We define here various lifting of atm-of (applied to a single literal) to set and multisets of
literals.
definition atms-of-ms :: 'a clause set \Rightarrow 'a set where
atms-of-ms \psi s = \bigcup (atms-of ' \psi s)
lemma atms-of-mmltiset[simp]:
  atms-of (mset \ a) = atm-of 'set a
  \langle proof \rangle
lemma atms-of-ms-mset-unfold:
  atms-of-ms (mset 'b) = (\bigcup x \in b. atm-of 'set x)
  \langle proof \rangle
definition atms-of-s :: 'a literal set \Rightarrow 'a set where
  atms-of-s C = atm-of ' C
lemma atms-of-ms-emtpy-set[simp]:
  atms-of-ms \{\} = \{\}
  \langle proof \rangle
lemma atms-of-ms-memtpy[simp]:
  atms-of-ms \{\{\#\}\} = \{\}
  \langle proof \rangle
```

**lemma** atms-of-ms-mono:

```
A \subseteq B \Longrightarrow atms\text{-}of\text{-}ms \ A \subseteq atms\text{-}of\text{-}ms \ B
  \langle proof \rangle
lemma atms-of-ms-finite[simp]:
  finite \psi s \Longrightarrow finite (atms-of-ms \psi s)
  \langle proof \rangle
lemma atms-of-ms-union[simp]:
  atms-of-ms (\psi s \cup \chi s) = atms-of-ms \psi s \cup atms-of-ms \chi s
  \langle proof \rangle
lemma atms-of-ms-insert[simp]:
  atms-of-ms (insert \psi s \chi s) = atms-of \psi s \cup atms-of-ms \chi s
lemma atms-of-ms-singleton[simp]: atms-of-ms \{L\} = atms-of L
  \langle proof \rangle
lemma atms-of-atms-of-ms-mono[simp]:
  A \in \psi \Longrightarrow atms\text{-}of A \subseteq atms\text{-}of\text{-}ms \ \psi
  \langle proof \rangle
lemma atms-of-ms-remove-incl:
  shows atms-of-ms (Set.remove a \psi) \subseteq atms-of-ms \psi
  \langle proof \rangle
{\bf lemma}\ atms-of\text{-}ms\text{-}remove\text{-}subset:
  atms-of-ms (\varphi - \psi) \subseteq atms-of-ms \varphi
lemma finite-atms-of-ms-remove-subset[simp]:
  finite\ (atms-of-ms\ A) \Longrightarrow finite\ (atms-of-ms\ (A-C))
  \langle proof \rangle
\mathbf{lemma}\ atms\text{-}of\text{-}ms\text{-}empty\text{-}iff\colon
  atms-of-ms A = \{\} \longleftrightarrow A = \{\{\#\}\} \lor A = \{\}\}
  \langle proof \rangle
\mathbf{lemma}\ in\text{-}implies\text{-}atm\text{-}of\text{-}on\text{-}atms\text{-}of\text{-}ms\text{:}
  assumes L \in \# C and C \in N
  shows atm-of L \in atms-of-ms N
  \langle proof \rangle
lemma in-plus-implies-atm-of-on-atms-of-ms:
  assumes C + \{\#L\#\} \in N
  \mathbf{shows}\ \mathit{atm\text{-}of}\ L \in \mathit{atms\text{-}of\text{-}ms}\ N
  \langle proof \rangle
lemma in-m-in-literals:
  assumes add-mset\ A\ D\in\psi s
  shows atm\text{-}of A \in atms\text{-}of\text{-}ms \ \psi s
  \langle proof \rangle
lemma atms-of-s-union[simp]:
  atms-of-s (Ia \cup Ib) = atms-of-s Ia \cup atms-of-s Ib
  \langle proof \rangle
```

```
lemma atms-of-s-single[simp]:
  atms-of-s \{L\} = \{atm-of L\}
  \langle proof \rangle
lemma atms-of-s-insert[simp]:
  atms-of-s (insert\ L\ Ib) = \{atm-of\ L\} \cup\ atms-of-s\ Ib
  \langle proof \rangle
lemma in-atms-of-s-decomp[iff]:
  P \in atms-of-s I \longleftrightarrow (Pos \ P \in I \lor Neg \ P \in I) (is ?P \longleftrightarrow ?Q)
\langle proof \rangle
{f lemma}~atm	ext{-}of	ext{-}in	ext{-}atm	ext{-}of	ext{-}set	ext{-}in	ext{-}uminus:
  atm\text{-}of\ L'\in atm\text{-}of\ `B\Longrightarrow L'\in B\lor-L'\in B
  \langle proof \rangle
lemma finite-atms-of-s[simp]:
  \langle finite \ M \Longrightarrow finite \ (atms-of-s \ M) \rangle
  \langle proof \rangle
lemma
  atms-of-s-empty [simp]:
    \langle atms\text{-}of\text{-}s \ \{\} = \{\} \rangle and
  atms-of-s-empty-iff[simp]:
    \langle atms-of-s \ x = \{\} \longleftrightarrow x = \{\} \rangle
  \langle proof \rangle
Totality
definition total-over-set :: 'a partial-interp \Rightarrow 'a set \Rightarrow bool where
total-over-set I S = (\forall l \in S. Pos l \in I \lor Neg l \in I)
definition total-over-m :: 'a literal set \Rightarrow 'a clause set \Rightarrow bool where
total-over-m \ I \ \psi s = total-over-set I \ (atms-of-ms \ \psi s)
lemma total-over-set-empty[simp]:
  total-over-set I \{ \}
  \langle proof \rangle
lemma total-over-m-empty[simp]:
  total-over-m \ I \ \{\}
  \langle proof \rangle
lemma total-over-set-single[iff]:
  total-over-set I \{L\} \longleftrightarrow (Pos \ L \in I \lor Neg \ L \in I)
  \langle proof \rangle
lemma total-over-set-insert[iff]:
  total\text{-}over\text{-}set\ I\ (insert\ L\ Ls) \longleftrightarrow ((Pos\ L \in I\ \lor\ Neg\ L \in I)\ \land\ total\text{-}over\text{-}set\ I\ Ls)
  \langle proof \rangle
lemma total-over-set-union[iff]:
  total-over-set I (Ls \cup Ls') \longleftrightarrow (total-over-set I Ls \land total-over-set I Ls')
  \langle proof \rangle
```

```
\mathbf{lemma}\ total\text{-}over\text{-}m\text{-}subset:
  A \subseteq B \Longrightarrow total\text{-}over\text{-}m \ I \ B \Longrightarrow total\text{-}over\text{-}m \ I \ A
  \langle proof \rangle
lemma total-over-m-sum[iff]:
  shows total-over-m I \{C + D\} \longleftrightarrow (total\text{-}over\text{-}m \ I \{C\} \land total\text{-}over\text{-}m \ I \{D\})
  \langle proof \rangle
lemma total-over-m-union[iff]:
  total-over-m\ I\ (A\cup B)\longleftrightarrow (total-over-m\ I\ A\wedge total-over-m\ I\ B)
  \langle proof \rangle
lemma total-over-m-insert[iff]:
  total-over-m\ I\ (insert\ a\ A) \longleftrightarrow (total-over-set I\ (atms-of\ a)\ \land\ total-over-m\ I\ A)
  \langle proof \rangle
lemma total-over-m-extension:
  fixes I :: 'v \ literal \ set \ and \ A :: 'v \ clause-set
  assumes total: total-over-m I A
  shows \exists I'. total-over-m (I \cup I') (A \cup B)
    \land (\forall x \in I'. \ atm\text{-}of \ x \in atm\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atm\text{-}of\text{-}ms \ A)
\langle proof \rangle
{f lemma}\ total\mbox{-}over\mbox{-}m\mbox{-}consistent\mbox{-}extension:
  fixes I :: 'v \ literal \ set \ and \ A :: 'v \ clause-set
  assumes
    total: total-over-m I A and
    cons: consistent-interp I
  shows \exists I'. total-over-m (I \cup I') (A \cup B)
    \land (\forall x \in I'. \ atm\text{-}of \ x \in atms\text{-}of\text{-}ms \ B \land atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A) \land consistent\text{-}interp \ (I \cup I')
\langle proof \rangle
lemma total-over-set-atms-of-m[simp]:
  total-over-set Ia (atms-of-s Ia)
  \langle proof \rangle
lemma total-over-set-literal-defined:
  assumes add-mset\ A\ D\in\psi s
  and total-over-set I (atms-of-ms \psi s)
  shows A \in I \vee -A \in I
  \langle proof \rangle
lemma tot-over-m-remove:
  assumes total-over-m (I \cup \{L\}) \{\psi\}
  and L: L \notin \# \psi - L \notin \# \psi
  shows total-over-m I \{ \psi \}
  \langle proof \rangle
lemma total-union:
  assumes total-over-m \ I \ \psi
  shows total-over-m (I \cup I') \psi
  \langle proof \rangle
lemma total-union-2:
  assumes total-over-m \ I \ \psi
  and total-over-m I' \psi'
```

```
shows total-over-m (I \cup I') (\psi \cup \psi')
   \langle proof \rangle
\mathbf{lemma} \ total\text{-}over\text{-}m\text{-}alt\text{-}def\colon \langle total\text{-}over\text{-}m\ I\ S \longleftrightarrow atms\text{-}of\text{-}ms\ S \subseteq atms\text{-}of\text{-}s\ I \rangle
   \langle proof \rangle
lemma total-over-set-alt-def: \langle total\text{-}over\text{-}set\ M\ A \longleftrightarrow A \subseteq atms\text{-}of\text{-}s\ M \rangle
   \langle proof \rangle
Interpretations
definition true-cls: 'a partial-interp \Rightarrow 'a clause \Rightarrow bool (infix \models 50) where
   I \models C \longleftrightarrow (\exists L \in \# C. I \models l L)
lemma true-cls-empty[iff]: \neg I \models \{\#\}
   \langle proof \rangle
lemma true-cls-singleton[iff]: I \models \{\#L\#\} \longleftrightarrow I \models l L
   \langle proof \rangle
lemma true-cls-add-mset[iff]: I \models add-mset a \ D \longleftrightarrow a \in I \lor I \models D
   \langle proof \rangle
lemma true-cls-union[iff]: I \models C + D \longleftrightarrow I \models C \lor I \models D
   \langle proof \rangle
lemma true-cls-mono-set-mset: set-mset C \subseteq set-mset D \Longrightarrow I \models C \Longrightarrow I \models D
   \langle proof \rangle
lemma true-cls-mono-leD[dest]: A <math>\subseteq \# B \Longrightarrow I \models A \Longrightarrow I \models B
   \langle proof \rangle
lemma
   assumes I \models \psi
     true-cls-union-increase[simp]: I \cup I' \models \psi and
      true-cls-union-increase'[simp]: I' \cup I \models \psi
   \langle proof \rangle
\mathbf{lemma}\ true\text{-}cls\text{-}mono\text{-}set\text{-}mset\text{-}l\text{:}
  assumes A \models \psi
  and A \subseteq B
  shows B \models \psi
   \langle proof \rangle
lemma true-cls-replicate-mset[iff]: I \models replicate-mset \ n \ L \longleftrightarrow n \neq 0 \land I \models l \ L
   \langle proof \rangle
lemma true-cls-empty-entails[iff]: \neg {} \models N
   \langle proof \rangle
\mathbf{lemma}\ \mathit{true\text{-}\mathit{cls}\text{-}\mathit{not}\text{-}\mathit{in}\text{-}\mathit{remove}} :
  assumes L \notin \# \chi and I \cup \{L\} \models \chi
  shows I \models \chi
```

 $\langle proof \rangle$ 

```
definition true-clss :: 'a partial-interp \Rightarrow 'a clause-set \Rightarrow bool (infix \modelss 50) where
  I \models s \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models C)
lemma true-clss-empty[simp]: I \models s \{ \}
  \langle proof \rangle
lemma true-clss-singleton[iff]: I \models s \{C\} \longleftrightarrow I \models C
  \langle proof \rangle
lemma true-clss-empty-entails-empty[iff]: \{\} \models s \ N \longleftrightarrow N = \{\}
  \langle proof \rangle
lemma true-cls-insert-l [simp]:
  M \models A \Longrightarrow insert \ L \ M \models A
  \langle proof \rangle
lemma true-clss-union[iff]: I \models s CC \cup DD \longleftrightarrow I \models s CC \land I \models s DD
lemma true\text{-}clss\text{-}insert[iff]: I \models s \ insert \ C \ DD \longleftrightarrow I \models C \land I \models s \ DD
  \langle proof \rangle
lemma true-clss-mono: DD \subseteq CC \Longrightarrow I \models s \ CC \Longrightarrow I \models s \ DD
  \langle proof \rangle
lemma true-clss-union-increase[simp]:
 assumes I \models s \psi
 shows I \cup I' \models s \psi
 \langle proof \rangle
lemma true-clss-union-increase'[simp]:
assumes I' \models s \psi
 shows I \cup I' \models s \psi
 \langle proof \rangle
\mathbf{lemma}\ true\text{-}clss\text{-}commute\text{-}l:
  (I \cup I' \models s \psi) \longleftrightarrow (I' \cup I \models s \psi)
  \langle proof \rangle
lemma model-remove[simp]: I \models s N \Longrightarrow I \models s Set.remove a N
  \langle proof \rangle
lemma model-remove-minus[simp]: I \models s N \Longrightarrow I \models s N - A
  \langle proof \rangle
\mathbf{lemma}\ not in\text{-}vars\text{-}union\text{-}true\text{-}cls\text{-}true\text{-}cls\text{:}
  assumes \forall x \in I'. atm\text{-}of x \notin atms\text{-}of\text{-}ms A
  and atms-of L \subseteq atms-of-ms A
  and I \cup I' \models L
  shows I \models L
  \langle proof \rangle
{f lemma}\ notin-vars-union-true-clss-true-clss:
  assumes \forall x \in I'. atm\text{-}of \ x \notin atms\text{-}of\text{-}ms \ A
  and atms-of-ms L \subseteq atms-of-ms A
  and I \cup I' \models s L
```

```
shows I \models s L
   \langle proof \rangle
lemma true-cls-def-set-mset-eq:
   \langle set\text{-}mset\ A=set\text{-}mset\ B\Longrightarrow I\models A\longleftrightarrow I\models B\rangle
   \langle proof \rangle
\mathbf{lemma} \ \mathit{true\text{-}\mathit{cls}\text{-}\mathit{add}\text{-}\mathit{mset}\text{-}\mathit{strict}} \colon \langle I \models \mathit{add\text{-}\mathit{mset}}\ L\ C \longleftrightarrow L \in I \lor I \models (\mathit{removeAll\text{-}\mathit{mset}}\ L\ C) \rangle
   \langle proof \rangle
Satisfiability
definition satisfiable :: 'a \ clause \ set \Rightarrow bool \ \mathbf{where}
  satisfiable CC \longleftrightarrow (\exists I. (I \models s \ CC \land consistent\text{-interp} \ I \land total\text{-over-m} \ I \ CC))
lemma satisfiable-single[simp]:
  satisfiable \{\{\#L\#\}\}
  \langle proof \rangle
lemma satisfiable-empty[simp]: \langle satisfiable \{ \} \rangle
   \langle proof \rangle
abbreviation unsatisfiable :: 'a \ clause \ set \Rightarrow bool \ \mathbf{where}
   unsatisfiable\ CC \equiv \neg\ satisfiable\ CC
{\bf lemma}\ satisfiable\text{-}decreasing:
  assumes satisfiable (\psi \cup \psi')
  shows satisfiable \psi
   \langle proof \rangle
lemma satisfiable-def-min:
  satisfiable CC
     \longleftrightarrow (\exists I.\ I \models s\ CC \land consistent\_interp\ I \land total\_over\_m\ I\ CC \land atm\_of`I = atms\_of\_ms\ CC)
     (is ?sat \longleftrightarrow ?B)
\langle proof \rangle
lemma satisfiable-carac:
  (\exists I. \ consistent-interp\ I \land I \models s\ \varphi) \longleftrightarrow satisfiable\ \varphi\ (is\ (\exists\ I.\ ?Q\ I) \longleftrightarrow ?S)
\langle proof \rangle
lemma satisfiable-carac'[simp]: consistent-interp I \Longrightarrow I \models s \varphi \Longrightarrow satisfiable \varphi
   \langle proof \rangle
lemma unsatisfiable-mono:
  \langle N \subseteq N' \Longrightarrow unsatisfiable \ N \Longrightarrow unsatisfiable \ N' \rangle
  \langle proof \rangle
Entailment for Multisets of Clauses
definition true-cls-mset :: 'a partial-interp \Rightarrow 'a clause multiset \Rightarrow bool (infix \models m 50) where
  I \models m \ CC \longleftrightarrow (\forall \ C \in \# \ CC. \ I \models C)
lemma true-cls-mset-empty[simp]: I \models m \{\#\}
   \langle proof \rangle
lemma true-cls-mset-singleton[iff]: I \models m \{ \# C \# \} \longleftrightarrow I \models C
```

```
\langle proof \rangle
lemma true-cls-mset-union[iff]: I \models m \ CC + DD \longleftrightarrow I \models m \ CC \land I \models m \ DD
  \langle proof \rangle
lemma true-cls-mset-add-mset[iff]: I \models m add-mset C \ CC \longleftrightarrow I \models C \land I \models m \ CC
lemma true-cls-mset-image-mset[iff]: I \models m image-mset f A \longleftrightarrow (\forall x \in \# A. I \models f x)
\mathbf{lemma} \ \mathit{true\text{-}\mathit{cls\text{-}mset\text{-}mono}}: \mathit{set\text{-}mset} \ \mathit{DD} \subseteq \mathit{set\text{-}mset} \ \mathit{CC} \Longrightarrow \mathit{I} \models \!\!\! \mathit{m} \ \mathit{CC} \Longrightarrow \mathit{I} \models \!\!\! \mathit{m} \ \mathit{DD}
  \langle proof \rangle
lemma true-clss-set-mset[iff]: I \models s set-mset CC \longleftrightarrow I \models m CC
  \langle proof \rangle
lemma true-cls-mset-increasing-r[simp]:
  I \models m \ CC \Longrightarrow I \cup J \models m \ CC
  \langle proof \rangle
theorem true-cls-remove-unused:
  assumes I \models \psi
  shows \{v \in I. \ atm\text{-}of \ v \in atm\text{s-}of \ \psi\} \models \psi
  \langle proof \rangle
theorem true-clss-remove-unused:
  assumes I \models s \psi
  shows \{v \in I. atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi\} \models s \ \psi
  \langle proof \rangle
A simple application of the previous theorem:
{\bf lemma}\ true\text{-}clss\text{-}union\text{-}decrease\text{:}
  assumes II': I \cup I' \models \psi
  and H: \forall v \in I'. atm-of v \notin atms-of \psi
  shows I \models \psi
\langle proof \rangle
lemma multiset-not-empty:
  assumes M \neq \{\#\}
  and x \in \# M
  shows \exists A. \ x = Pos \ A \lor x = Neg \ A
  \langle proof \rangle
lemma atms-of-ms-empty:
  fixes \psi :: 'v \ clause-set
  assumes atms-of-ms \psi = \{\}
  shows \psi = \{\} \lor \psi = \{\{\#\}\}\
  \langle proof \rangle
lemma consistent-interp-disjoint:
 assumes consI: consistent-interp I
 and disj: atms-of-s \ A \cap atms-of-s \ I = \{\}
 and consA: consistent-interp A
 shows consistent-interp (A \cup I)
```

 $\langle proof \rangle$ 

```
lemma total-remove-unused:
  assumes total-over-m \ I \ \psi
  shows total-over-m \{v \in I. atm\text{-}of \ v \in atms\text{-}of\text{-}ms \ \psi\} \ \psi
  \langle proof \rangle
{f lemma}\ true\text{-}cls\text{-}remove\text{-}hd\text{-}if\text{-}notin\text{-}vars:
  assumes insert a M' \models D
  and atm-of a \notin atms-of D
  shows M' \models D
   \langle proof \rangle
lemma total-over-set-atm-of:
  fixes I :: 'v partial-interp and K :: 'v set
  shows total-over-set I \ K \longleftrightarrow (\forall \ l \in K. \ l \in (atm\text{-}of \ `I))
   \langle proof \rangle
lemma true-cls-mset-true-clss-iff:
   \langle finite\ C \Longrightarrow I \models m\ mset\text{-set}\ C \longleftrightarrow I \models s\ C \rangle
  \langle I \models m \ D \longleftrightarrow I \models s \ set\text{-mset} \ D \rangle
  \langle proof \rangle
```

## **Tautologies**

We define tautologies as clause entailed by every total model and show later that is equivalent to containing a literal and its negation.

```
definition tautology (\psi :: 'v \ clause) \equiv \forall I. \ total-over-set \ I \ (atms-of \ \psi) \longrightarrow I \models \psi
lemma tautology-Pos-Neg[intro]:
  assumes Pos \ p \in \# \ A and Neg \ p \in \# \ A
  \mathbf{shows}\ tautology\ A
  \langle proof \rangle
lemma tautology-minus[simp]:
  assumes L \in \# A and -L \in \# A
  shows tautology A
  \langle proof \rangle
lemma tautology-exists-Pos-Neg:
  assumes tautology \psi
  shows \exists p. Pos p \in \# \psi \land Neg p \in \# \psi
\langle proof \rangle
lemma tautology-decomp:
  tautology \ \psi \longleftrightarrow (\exists p. \ Pos \ p \in \# \ \psi \land Neg \ p \in \# \ \psi)
  \langle proof \rangle
lemma tautology-union-add-iff[simp]:
  \langle tautology \ (A \cup \# B) \longleftrightarrow tautology \ (A + B) \rangle
  \langle proof \rangle
```

 $\langle tautology\ (add\text{-}mset\ L\ (A\cup\#\ B)) \longleftrightarrow tautology\ (add\text{-}mset\ L\ (A+\ B)) \rangle$ 

**lemma** not-tautology-minus:

 $\langle proof \rangle$ 

**lemma** tautology-add-mset-union-add-iff[simp]:

```
\langle \neg tautology \ A \Longrightarrow \neg tautology \ (A - B) \rangle
   \langle proof \rangle
lemma tautology-false[simp]: \neg tautology {#}
   \langle proof \rangle
\mathbf{lemma}\ tautology	ext{-}add	ext{-}mset:
   tautology \ (add\text{-}mset \ a \ L) \longleftrightarrow tautology \ L \lor -a \in \# \ L
   \langle proof \rangle
lemma tautology-single[simp]: \langle \neg tautology \{ \#L\# \} \rangle
   \langle proof \rangle
lemma tautology-union:
   (tautology\ (A+B) \longleftrightarrow tautology\ A \lor tautology\ B \lor (\exists\ a.\ a \in \#\ A \land -a \in \#\ B))
   \langle proof \rangle
lemma
   tautology\text{-}poss[simp]: \langle \neg tautology (poss A) \rangle and
   tautology-negs[simp]: \langle \neg tautology \ (negs \ A) \rangle
   \langle proof \rangle
lemma tautology-uminus[simp]:
   \langle tautology \ (uminus \ `\# \ w) \longleftrightarrow tautology \ w \rangle
   \langle proof \rangle
\mathbf{lemma}\ minus-interp\text{-}tautology:
  assumes \{-L \mid L. L \in \# \chi\} \models \chi
  shows tautology \chi
\langle proof \rangle
lemma remove-literal-in-model-tautology:
  assumes I \cup \{Pos \ P\} \models \varphi
  and I \cup \{Neg \ P\} \models \varphi
  shows I \models \varphi \lor tautology \varphi
  \langle proof \rangle
lemma tautology-imp-tautology:
  fixes \chi \chi' :: 'v \ clause
  assumes \forall I.\ total\text{-}over\text{-}m\ I\ \{\chi\} \longrightarrow I \models \chi \longrightarrow I \models \chi' \ \text{and}\ tautology\ \chi
  shows tautology \chi' \langle proof \rangle
lemma not-tautology-mono: \langle D' \subseteq \# D \Longrightarrow \neg tautology D \Longrightarrow \neg tautology D' \rangle
   \langle proof \rangle
lemma tautology-decomp':
   \langle tautology \ C \longleftrightarrow (\exists L. \ L \in \# \ C \land - L \in \# \ C) \rangle
   \langle proof \rangle
lemma consistent-interp-tautology:
   \langle consistent\text{-}interp\ (set\ M') \longleftrightarrow \neg tautology\ (mset\ M') \rangle
   \langle proof \rangle
\mathbf{lemma}\ consistent\text{-}interp\text{-}tuatology\text{-}mset\text{-}set:
   \langle finite \ x \Longrightarrow consistent\ interp \ x \longleftrightarrow \neg tautology \ (mset\ set \ x) \rangle
   \langle proof \rangle
```

```
\mathbf{lemma}\ tautology\text{-}distinct\text{-}atm\text{-}iff\colon
   \langle distinct\text{-}mset \ C \Longrightarrow tautology \ C \longleftrightarrow \neg distinct\text{-}mset \ (atm\text{-}of \ `\# \ C) \rangle
   \langle proof \rangle
lemma not-tautology-minusD:
   \langle tautology (A - B) \Longrightarrow tautology A \rangle
   \langle proof \rangle
```

## Entailment for clauses and propositions

```
We also need entailment of clauses by other clauses.
definition true-cls-cls :: 'a clause \Rightarrow 'a clause \Rightarrow bool (infix \models f 49) where
\psi \models f \chi \longleftrightarrow (\forall I. \ total \ over \ m \ I \ (\{\psi\} \cup \{\chi\}) \longrightarrow consistent \ interp \ I \longrightarrow I \models \psi \longrightarrow I \models \chi)
definition true-cls-clss :: 'a clause \Rightarrow 'a clause-set \Rightarrow bool (infix \modelsfs 49) where
\psi \models fs \ \chi \longleftrightarrow (\forall I. \ total\text{-}over\text{-}m \ I \ (\{\psi\} \cup \chi) \longrightarrow consistent\text{-}interp \ I \longrightarrow I \models \psi \longrightarrow I \models s \ \chi)
definition true-clss-cls :: 'a clause-set \Rightarrow 'a clause \Rightarrow bool (infix \models p 49) where
N \models p \chi \longleftrightarrow (\forall I. \ total\text{-}over\text{-}m \ I \ (N \cup \{\chi\}) \longrightarrow consistent\text{-}interp \ I \longrightarrow I \models s \ N \longrightarrow I \models \chi)
definition true-clss-clss :: 'a clause-set \Rightarrow 'a clause-set \Rightarrow bool (infix \models ps 49) where
N \models ps\ N' \longleftrightarrow (\forall\ I.\ total\text{-}over\text{-}m\ I\ (N \cup N') \longrightarrow consistent\text{-}interp\ I \longrightarrow I \models s\ N \longrightarrow I \models s\ N')
lemma true-cls-refl[simp]:
  A \models f A
  \langle proof \rangle
lemma true-clss-cls-empty-empty[iff]:
   \langle \{\} \models p \{\#\} \longleftrightarrow \mathit{False} \rangle
   \langle proof \rangle
lemma true-cls-cls-insert-l[simp]:
   a \models f C \Longrightarrow insert \ a \ A \models p \ C
   \langle proof \rangle
```

**lemma** true-cls-clss-empty[iff]:  $N \models fs \{\}$  $\langle proof \rangle$ 

**lemma** true-prop-true-clause[iff]:  $\{\varphi\} \models p \ \psi \longleftrightarrow \varphi \models f \ \psi$  $\langle proof \rangle$ 

**lemma** true-clss-clss-true-clss-cls[iff]:  $N \models ps \{\psi\} \longleftrightarrow N \models p \psi$  $\langle proof \rangle$ 

**lemma** true-clss-clss-true-cls-clss[iff]:  $\{\chi\} \models ps \ \psi \longleftrightarrow \chi \models fs \ \psi$  $\langle proof \rangle$ 

**lemma** true-clss-empty[simp]:  $N \models ps \{\}$  $\langle proof \rangle$ 

```
\mathbf{lemma}\ \mathit{true\text{-}\mathit{clss\text{-}\mathit{cls\text{-}\mathit{subset}}}} :
  A \subseteq B \Longrightarrow A \models p \ CC \Longrightarrow B \models p \ CC
  \langle proof \rangle
This version of [?A \subseteq ?B; ?A \models p ?CC] \implies ?B \models p ?CC is useful as intro rule.
lemma (in –) true-clss-cls-subset I: \langle I \models p \ A \Longrightarrow I \subseteq I' \Longrightarrow I' \models p \ A \rangle
   \langle proof \rangle
{\bf lemma}\ true\text{-}clss\text{-}cs\text{-}mono\text{-}l[simp]\text{:}
  A \models p \ CC \Longrightarrow A \cup B \models p \ CC
  \langle proof \rangle
lemma true-clss-cs-mono-l2[simp]:
   B \models p \ CC \Longrightarrow A \cup B \models p \ CC
  \langle proof \rangle
lemma true-clss-cls-mono-r[simp]:
   A \models p \ CC \Longrightarrow A \models p \ CC + CC'
  \langle proof \rangle
lemma true-clss-cls-mono-r'[simp]:
  A \models p CC' \Longrightarrow A \models p CC + CC'
  \langle proof \rangle
lemma true-clss-cls-mono-add-mset[simp]:
  A \models p \ CC \Longrightarrow A \models p \ add\text{-mset} \ L \ CC
    \langle proof \rangle
lemma true-clss-clss-union-l[simp]:
   A \models ps \ CC \Longrightarrow A \cup B \models ps \ CC
   \langle proof \rangle
lemma true-clss-clss-union-l-r[simp]:
   B \models ps \ CC \Longrightarrow A \cup B \models ps \ CC
  \langle proof \rangle
lemma true-clss-cls-in[simp]:
   CC \in A \Longrightarrow A \models p \ CC
   \langle proof \rangle
lemma true-clss-cls-insert-l[simp]:
  A \models p C \Longrightarrow insert \ a \ A \models p \ C
  \langle proof \rangle
lemma true-clss-clss-insert-l[simp]:
  A \models ps \ C \implies insert \ a \ A \models ps \ C
  \langle proof \rangle
lemma true-clss-clss-union-and[iff]:
   A \models ps \ C \cup D \longleftrightarrow (A \models ps \ C \land A \models ps \ D)
\langle proof \rangle
```

**lemma** true-clss-clss-insert[iff]:

 $\langle proof \rangle$ 

 $A \models ps \ insert \ L \ Ls \longleftrightarrow (A \models p \ L \land A \models ps \ Ls)$ 

```
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}subset:
```

$$A \subseteq B \Longrightarrow A \models ps \ CC \Longrightarrow B \models ps \ CC \langle proof \rangle$$

Better suited as intro rule:

 $\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}subsetI$ :

$$A \models ps \ CC \Longrightarrow A \subseteq B \Longrightarrow B \models ps \ CC$$
$$\langle proof \rangle$$

 $\mathbf{lemma} \ union\text{-}trus\text{-}clss\text{-}clss[simp] : \ A \cup B \models ps \ B \\ \langle proof \rangle$ 

**lemma** true-clss-clss-remove[simp]:

$$\begin{array}{c}
A \models ps \ B \Longrightarrow A \models ps \ B - C \\
\langle proof \rangle
\end{array}$$

 $\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}subsetE\text{:}$ 

$$N \models ps \ B \Longrightarrow A \subseteq B \Longrightarrow N \models ps \ A \langle proof \rangle$$

 $\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}in\text{-}imp\text{-}true\text{-}clss\text{-}cls\text{:}$ 

assumes 
$$N \models ps \ U$$
  
and  $A \in U$   
shows  $N \models p \ A$   
 $\langle proof \rangle$ 

lemma all-in-true-clss-clss:  $\forall x \in B. \ x \in A \Longrightarrow A \models ps \ B \ \langle proof \rangle$ 

lemma true-clss-clss-left-right:

assumes 
$$A \models ps B$$
  
and  $A \cup B \models ps M$   
shows  $A \models ps M \cup B$   
 $\langle proof \rangle$ 

 $\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}generalise\text{-}true\text{-}clss\text{-}clss\text{:}$ 

$$A \cup C \models ps \ D \Longrightarrow B \models ps \ C \Longrightarrow A \cup B \models ps \ D \\ \langle proof \rangle$$

 $\mathbf{lemma}\ true\text{-}clss\text{-}cls\text{-}or\text{-}true\text{-}clss\text{-}cls\text{-}or\text{-}not\text{-}true\text{-}clss\text{-}cls\text{-}or\text{:}$ 

**assumes** 
$$D$$
:  $N \models p \ add\text{-}mset \ (-L) \ D$   
**and**  $C$ :  $N \models p \ add\text{-}mset \ L \ C$   
**shows**  $N \models p \ D + C$   
 $\langle proof \rangle$ 

lemma  $true\text{-}cls\text{-}union\text{-}mset[iff]: I \models C \cup \# D \longleftrightarrow I \models C \lor I \models D \land proof \rangle$ 

lemma true-clss-cls-sup-iff-add:  $N \models p \ C \cup \# \ D \longleftrightarrow N \models p \ C + D \ \langle proof \rangle$ 

 ${\bf lemma}\ true\text{-}clss\text{-}cls\text{-}union\text{-}mset\text{-}true\text{-}clss\text{-}cls\text{-}or\text{-}not\text{-}true\text{-}clss\text{-}cls\text{-}or\text{:}}\\ {\bf assumes}$ 

$$D: N \models p \ add\text{-}mset \ (-L) \ D \ \mathbf{and} \ C: N \models p \ add\text{-}mset \ L \ C$$

```
shows N \models p D \cup \# C
   \langle proof \rangle
lemma true-clss-cls-tautology-iff:
   \langle \{\} \models p \ a \longleftrightarrow tautology \ a \rangle \ (\mathbf{is} \langle ?A \longleftrightarrow ?B \rangle)
\langle proof \rangle
lemma true-cls-mset-empty-iff[simp]: \langle \{ \} \models m \ C \longleftrightarrow C = \{ \# \} \rangle
lemma true-clss-mono-left:
   \langle I \models s A \Longrightarrow I \subseteq J \Longrightarrow J \models s A \rangle
   \langle proof \rangle
lemma true-cls-remove-alien:
   \langle I \models N \longleftrightarrow \{L. \ L \in I \land atm\text{-}of \ L \in atms\text{-}of \ N\} \models N \rangle
{f lemma} true\text{-}clss\text{-}remove\text{-}alien:
   \langle I \models s \ N \longleftrightarrow \{L. \ L \in I \land atm\text{-}of \ L \in atms\text{-}of\text{-}ms \ N\} \models s \ N \rangle
   \langle proof \rangle
lemma true-clss-alt-def:
   \langle N \models p \ \chi \longleftrightarrow
     (\forall I. \ atms\text{-}of\text{-}s\ I = atms\text{-}of\text{-}ms\ (N \cup \{\chi\}) \longrightarrow consistent\text{-}interp\ I \longrightarrow I \models s\ N \longrightarrow I \models \chi)
   \langle proof \rangle
lemma true-clss-alt-def2:
   assumes \langle \neg tautology \ \chi \rangle
  shows \langle N \models p \ \chi \longleftrightarrow (\forall I. \ atms-of\text{-}s \ I = atms-of\text{-}ms \ N \longrightarrow consistent\text{-}interp \ I \longrightarrow I \models s \ N \longrightarrow I \models
\chi) (is \langle ?A \longleftrightarrow ?B \rangle)
\langle proof \rangle
\mathbf{lemma}\ true\text{-}clss\text{-}restrict\text{-}iff\colon
  assumes \langle \neg tautology \ \chi \rangle
   shows \langle N \models p \ \chi \longleftrightarrow N \models p \ \{\#L \in \# \ \chi. \ atm\text{-of} \ L \in atms\text{-of-ms} \ N\# \} \rangle (is \langle ?A \longleftrightarrow ?B \rangle)
This is a slightly restrictive theorem, that encompasses most useful cases. The assumption ¬
tautology C can be removed if the model I is total over the clause.
\mathbf{lemma}\ true\text{-}clss\text{-}cls\text{-}true\text{-}cls\text{-}true\text{-}cls\text{:}
  assumes \langle N \models p C \rangle
     \langle I \models s N \rangle and
     cons: \langle consistent\text{-}interp\ I \rangle and
     tauto: \langle \neg tautology \ C \rangle
   \mathbf{shows} \ \langle I \models C \rangle
\langle proof \rangle
1.1.4
                Subsumptions
\mathbf{lemma}\ \mathit{subsumption-total-over-m}\colon
   assumes A \subseteq \# B
   shows total-over-m I \{B\} \Longrightarrow total-over-m I \{A\}
   \langle proof \rangle
```

```
\begin{array}{l} \textbf{lemma} \ atms\text{-}of\text{-}replicate\text{-}mset\text{-}replicate\text{-}mset\text{-}uminus[simp]:} \\ atms\text{-}of \ (D\ -\ replicate\text{-}mset\ (count\ D\ L)\ L\ -\ replicate\text{-}mset\ (count\ D\ (-L))\ (-L)) \\ = \ atms\text{-}of\ D\ -\ \{atm\text{-}of\ L\} \\ \langle proof \rangle \\ \\ \\ \textbf{lemma} \ subsumption\text{-}chained:} \\ \textbf{assumes} \\ \forall\ I.\ total\text{-}over\text{-}m\ I\ \{D\}\ \longrightarrow\ I\ \models\ D\ \longrightarrow\ I\ \models\ \varphi\ \textbf{and} \\ C\ \subseteq\#\ D \\ \textbf{shows}\ (\forall\ I.\ total\text{-}over\text{-}m\ I\ \{C\}\ \longrightarrow\ I\ \models\ C\ \longrightarrow\ I\ \models\varphi)\ \lor\ tautology\ \varphi \\ \langle proof \rangle \\ \end{array}
```

## 1.1.5 Removing Duplicates

## 1.1.6 Set of all Simple Clauses

A simple clause with respect to a set of atoms is such that

- 1. its atoms are included in the considered set of atoms;
- 2. it is not a tautology;
- 3. it does not contains duplicate literals.

It corresponds to the clauses that cannot be simplified away in a calculus without considering the other clauses.

**lemma** *simple-clss-finite*:

```
fixes atms :: 'v set
  assumes finite atms
  shows finite (simple-clss atms)
  \langle proof \rangle
lemma simple-clssE:
  assumes
    x \in simple\text{-}clss\ atms
  shows atms-of x \subseteq atms \land \neg tautology x \land distinct-mset x
\mathbf{lemma}\ \mathit{cls-in-simple-clss}\colon
  shows \{\#\} \in simple\text{-}clss\ s
  \langle proof \rangle
\mathbf{lemma}\ simple\text{-}clss\text{-}card\colon
  fixes atms :: 'v set
  assumes finite atms
  shows card (simple-clss\ atms) \leq (3::nat) \cap (card\ atms)
  \langle proof \rangle
lemma simple-clss-mono:
  assumes incl: atms \subseteq atms'
  shows simple-clss atms \subseteq simple-clss atms'
  \langle proof \rangle
\mathbf{lemma}\ distinct\text{-}mset\text{-}not\text{-}tautology\text{-}implies\text{-}in\text{-}simple\text{-}clss:}
  assumes distinct-mset \chi and \neg tautology \chi
  shows \chi \in simple\text{-}clss (atms\text{-}of \chi)
  \langle proof \rangle
\mathbf{lemma} \ simplified\text{-}in\text{-}simple\text{-}clss:
  assumes distinct-mset-set \psi and \forall \chi \in \psi. \neg tautology \chi
  shows \psi \subseteq simple\text{-}clss (atms\text{-}of\text{-}ms \ \psi)
  \langle proof \rangle
lemma simple-clss-element-mono:
  \langle x \in simple\text{-}clss \ A \Longrightarrow y \subseteq \# \ x \Longrightarrow y \in simple\text{-}clss \ A \rangle
  \langle proof \rangle
             Experiment: Expressing the Entailments as Locales
locale entail =
  fixes entail :: 'a set \Rightarrow 'b \Rightarrow bool (infix \models e 50)
  \textbf{assumes} \ \textit{entail-insert}[\textit{simp}] \text{:} \ I \neq \{\} \Longrightarrow \textit{insert} \ L \ I \models e \ x \longleftrightarrow \{L\} \models e \ x \lor I \models e \ x
  assumes entail-union[simp]: I \models e A \Longrightarrow I \cup I' \models e A
begin
definition entails :: 'a set \Rightarrow 'b set \Rightarrow bool (infix \modelses 50) where
  I \models es A \longleftrightarrow (\forall a \in A. I \models e a)
lemma entails-empty[simp]:
  I \models es \{\}
  \langle proof \rangle
lemma entails-single[iff]:
```

```
I \models es \{a\} \longleftrightarrow I \models e \ a
  \langle proof \rangle
lemma entails-insert-l[simp]:
  M \models es A \implies insert \ L \ M \models es \ A
  \langle proof \rangle
lemma entails-union[iff]: I \models es \ CC \cup DD \longleftrightarrow I \models es \ CC \land I \models es \ DD
lemma entails-insert[iff]: I \models es insert CDD \longleftrightarrow I \models es DD
lemma entails-insert-mono: DD \subseteq CC \Longrightarrow I \models es CC \Longrightarrow I \models es DD
  \langle proof \rangle
lemma entails-union-increase[simp]:
 assumes I \models es \psi
 shows I \cup I' \models es \psi
 \langle proof \rangle
lemma true-clss-commute-l:
  I \cup I' \models es \ \psi \longleftrightarrow I' \cup I \models es \ \psi
  \langle proof \rangle
lemma entails-remove[simp]: I \models es N \Longrightarrow I \models es Set.remove a N
lemma entails-remove-minus[simp]: I \models es N \Longrightarrow I \models es N - A
  \langle proof \rangle
end
interpretation true-cls: entail true-cls
  \langle proof \rangle
```

## 1.1.8 Entailment to be extended

In some cases we want a more general version of entailment to have for example  $\{\} \models \{\#L, -L\#\}$ . This is useful when the model we are building might not be total (the literal L might have been definitely removed from the set of clauses), but we still want to have a property of entailment considering that theses removed literals are not important.

We can given a model I consider all the natural extensions: C is entailed by an extended I, if for all total extension of I, this model entails C.

```
definition true-clss-ext :: 'a literal set \Rightarrow 'a clause set \Rightarrow bool (infix \modelssext 49) where I \models sext \ N \longleftrightarrow (\forall \ J. \ I \subseteq J \longrightarrow consistent-interp \ J \longrightarrow total-over-m \ J \ N \longrightarrow J \models s \ N) lemma true-clss-imp-true-cls-ext: I \models s \ N \Longrightarrow I \models sext \ N \ \langle proof \rangle lemma true-clss-ext-decrease-right-remove-r: assumes I \models sext \ N
```

```
shows I \models sext N - \{C\}
   \langle proof \rangle
\mathbf{lemma}\ consistent\text{-}true\text{-}clss\text{-}ext\text{-}satisfiable:
  assumes consistent-interp I and I \models sext A
  shows satisfiable A
   \langle proof \rangle
\mathbf{lemma}\ not\text{-}consistent\text{-}true\text{-}clss\text{-}ext\text{:}
  assumes \neg consistent-interp I
  shows I \models sext A
   \langle proof \rangle
lemma inj-on-Pos: (inj-on Pos A) and
   inj-on-Neg: \langle inj-on Neg A \rangle
  \langle proof \rangle
\mathbf{lemma} \ \mathit{inj-on-uminus-lit:} \ \langle \mathit{inj-on} \ \mathit{uminus} \ A \rangle \ \mathbf{for} \ A :: \langle 'a \ \mathit{literal} \ \mathit{set} \rangle
   \langle proof \rangle
end
```

## 1.2 Partial Annotated Herbrand Interpretation

We here define decided literals (that will be used in both DPLL and CDCL) and the entailment corresponding to it.

```
\begin{array}{c} \textbf{theory} \ Partial-Annotated-Herbrand-Interpretation \\ \textbf{imports} \\ Partial-Herbrand-Interpretation \\ \textbf{begin} \end{array}
```

#### 1.2.1 Decided Literals

#### Definition

```
\mathbf{lemma} \ \textit{is-propedE} : \langle \textit{is-proped } L \Longrightarrow (\bigwedge K \ \textit{C}. \ L = \textit{Propagated } K \ \textit{C} \Longrightarrow \textit{P}) \Longrightarrow \textit{P} \rangle
lemma is-decided-no-proped-iff: \langle is\text{-decided } L \longleftrightarrow \neg is\text{-proped } L \rangle
   \langle proof \rangle
lemma not-is-decidedE:
   \langle \neg is\text{-}decided \ E \Longrightarrow (\bigwedge K \ C. \ E = Propagated \ K \ C \Longrightarrow thesis) \Longrightarrow thesis \rangle
type-synonym ('v, 'm) ann-lits = \langle ('v, 'm) | ann-lit list
fun lit-of :: \langle ('a, 'a, 'mark) \ annotated-lit \Rightarrow 'a \rangle where
  \langle lit\text{-}of\ (Decided\ L) = L \rangle
  \langle lit\text{-}of \ (Propagated \ L \ \text{-}) = L \rangle
definition lits-of :: \langle ('a, 'b) | ann-lit set \Rightarrow 'a | literal | set \rangle where
\langle lits\text{-}of\ Ls = lit\text{-}of\ `Ls \rangle
abbreviation lits-of-l :: \langle ('a, 'b) | ann\text{-lits} \Rightarrow 'a | literal | set \rangle where
\langle lits\text{-}of\text{-}l \ Ls \equiv lits\text{-}of \ (set \ Ls) \rangle
lemma lits-of-l-empty[simp]:
  \langle lits\text{-}of \{\} = \{\} \rangle
  \langle proof \rangle
lemma lits-of-insert[simp]:
   \langle lits-of\ (insert\ L\ Ls) = insert\ (lit-of\ L)\ (lits-of\ Ls) \rangle
   \langle proof \rangle
lemma lits-of-l-Un[simp]:
   \langle lits\text{-}of\ (l\cup l') = lits\text{-}of\ l\cup lits\text{-}of\ l' \rangle
   \langle proof \rangle
lemma finite-lits-of-def[simp]:
   \langle finite\ (lits-of-l\ L) \rangle
   \langle proof \rangle
abbreviation unmark where
  \langle unmark \equiv (\lambda a. \{\#lit\text{-}of a\#\}) \rangle
abbreviation unmark-s where
   \langle unmark-s \ M \equiv unmark \ `M \rangle
abbreviation unmark-l where
  \langle unmark-l \ M \equiv unmark-s \ (set \ M) \rangle
lemma atms-of-ms-lambda-lit-of-is-atm-of-lit-of[simp]:
   \langle atms\text{-}of\text{-}ms \ (unmark\text{-}l \ M') = atm\text{-}of \ `lits\text{-}of\text{-}l \ M' \rangle
   \langle proof \rangle
lemma lits-of-l-empty-is-empty[iff]:
  \langle \mathit{lits\text{-}\mathit{of}\text{-}\mathit{l}}\ M = \{\} \longleftrightarrow M = [] \rangle
   \langle proof \rangle
```

```
\mathbf{lemma} \ \textit{in-unmark-l-in-lits-of-l-iff} \colon \langle \{\#L\#\} \in \textit{unmark-l} \ M \longleftrightarrow L \in \textit{lits-of-l} \ M \rangle
   \langle proof \rangle
lemma atm-lit-of-set-lits-of-l:
   (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) 'set xs = atm\text{-}of 'lits-of-l xs
   \langle proof \rangle
Entailment
definition true-annot :: \langle ('a, 'm) | ann-lits \Rightarrow 'a | clause \Rightarrow bool \rangle (infix \models a \not= 49) where
   \langle I \models a \ C \longleftrightarrow (lits - of - l \ I) \models C \rangle
definition true-annots :: \langle ('a, 'm) \ ann-lits \Rightarrow 'a \ clause-set \Rightarrow bool \rangle (infix \models as \ 49) where
   \langle I \models as \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models a \ C) \rangle
lemma true-annot-empty-model[simp]:
   \langle \neg [] \models a \psi \rangle
   \langle proof \rangle
lemma true-annot-empty[simp]:
   \langle \neg I \models a \{\#\} \rangle
   \langle proof \rangle
lemma empty-true-annots-def[iff]:
   \langle [] \models as \ \psi \longleftrightarrow \psi = \{\} \rangle
   \langle proof \rangle
lemma true-annots-empty[simp]:
   \langle I \models as \{\} \rangle
   \langle proof \rangle
\mathbf{lemma} \ true\text{-}annots\text{-}single\text{-}true\text{-}annot[iff]:
   \langle I \models as \{C\} \longleftrightarrow I \models a C \rangle
   \langle proof \rangle
lemma true-annot-insert-l[simp]:
   \langle M \models a A \Longrightarrow L \# M \models a A \rangle
   \langle proof \rangle
lemma true-annots-insert-l [simp]:
   \langle M \models as \ A \Longrightarrow L \# M \models as \ A \rangle
   \langle proof \rangle
\mathbf{lemma} \ \mathit{true-annots-union}[\mathit{iff}] :
   \langle M \models as \ A \cup B \longleftrightarrow (M \models as \ A \land M \models as \ B) \rangle
   \langle proof \rangle
lemma true-annots-insert[iff]:
   \langle M \models as \ insert \ a \ A \longleftrightarrow (M \models a \ a \land M \models as \ A) \rangle
   \langle proof \rangle
lemma true-annot-append-l:
   \langle M \models a A \Longrightarrow M' @ M \models a A \rangle
   \langle proof \rangle
```

**lemma** true-annots-append-l:

```
\langle M \models as A \Longrightarrow M' @ M \models as A \rangle \langle proof \rangle
```

Link between  $\models as$  and  $\models s$ :

 $\mathbf{lemma} \ \mathit{true-annots-true-cls} :$ 

$$\langle I \models as \ CC \longleftrightarrow lits\text{-}of\text{-}l \ I \models s \ CC \rangle$$
  
 $\langle proof \rangle$ 

 $\mathbf{lemma}\ in ext{-}lit ext{-}of ext{-}true ext{-}annot:$ 

$$\begin{array}{l} \langle a \in \mathit{lits\text{-}of\text{-}l} \ M \longleftrightarrow M \models \!\! a \ \{\#a\#\} \rangle \\ \langle \mathit{proof} \rangle \end{array}$$

 $\mathbf{lemma}\ true\text{-}annot\text{-}lit\text{-}of\text{-}notin\text{-}skip$ :

 ${\bf lemma}\ true\text{-}clss\text{-}singleton\text{-}lit\text{-}of\text{-}implies\text{-}incl\text{:}}$ 

$$\langle I \models s \ unmark-l \ MLs \Longrightarrow lits-of-l \ MLs \subseteq I \rangle \ \langle proof \rangle$$

 $\mathbf{lemma}\ true\text{-}annot\text{-}true\text{-}clss\text{-}cls\text{:}$ 

$$\langle \mathit{MLs} \models a \psi \Longrightarrow \mathit{set} \; (\mathit{map} \; \mathit{unmark} \; \mathit{MLs}) \models p \; \psi \rangle \langle \mathit{proof} \rangle$$

 ${f lemma}$  true-annots-true-clss-cls:

$$\langle MLs \models as \ \psi \implies set \ (map \ unmark \ MLs) \models ps \ \psi \rangle \langle proof \rangle$$

**lemma** true-annots-decided-true-cls[iff]:

$$\langle map \ Decided \ M \models as \ N \longleftrightarrow set \ M \models s \ N \rangle$$
  
 $\langle proof \rangle$ 

 $\mathbf{lemma} \ true\text{-}annot\text{-}singleton[iff]: \ \ \langle M \models a \ \{\#L\#\} \longleftrightarrow L \in \mathit{lits\text{-}of\text{-}l} \ M \rangle \\ \langle \mathit{proof} \rangle$ 

 $\mathbf{lemma} \ true\text{-}annots\text{-}true\text{-}clss\text{-}clss\text{:}$ 

$$\begin{array}{c} \langle A \models \! as \; \Psi \Longrightarrow \mathit{unmark-l} \; A \models \! ps \; \Psi \rangle \\ \langle \mathit{proof} \rangle \end{array}$$

 $\mathbf{lemma} \ \mathit{true-annot-commute} :$ 

$$\langle M @ M' \models a D \longleftrightarrow M' @ M \models a D \rangle$$
 
$$\langle proof \rangle$$

lemma true-annots-commute:

$$\langle M @ M' \models as D \longleftrightarrow M' @ M \models as D \rangle$$
  
 $\langle proof \rangle$ 

lemma true-annot-mono[dest]:

$$\langle set \ I \subseteq set \ I' \Longrightarrow I \models a \ N \Longrightarrow I' \models a \ N \rangle$$
 $\langle proof \rangle$ 

 $\mathbf{lemma}\ true\text{-}annots\text{-}mono:$ 

$$\langle set \ I \subseteq set \ I' \Longrightarrow I \models as \ N \Longrightarrow I' \models as \ N \rangle \\ \langle proof \rangle$$

#### **Defined and Undefined Literals**

We introduce the functions *defined-lit* and *undefined-lit* to know whether a literal is defined with respect to a list of decided literals (aka a trail in most cases).

Remark that undefined already exists and is a completely different Isabelle function.

```
definition defined-lit :: \langle ('a \ literal, 'a \ literal, 'm') \ annotated-lits \Rightarrow 'a \ literal \Rightarrow bool \rangle
     where
\langle defined\text{-}lit\ I\ L\longleftrightarrow (Decided\ L\in set\ I)\ \lor\ (\exists\ P.\ Propagated\ L\ P\in set\ I)
     \vee (Decided (-L) \in set \ I) \vee (\exists \ P. \ Propagated \ (-L) \ P \in set \ I) \rangle
abbreviation undefined-lit: ((a \text{ literal}, (a \text{ literal}, (m) \text{ annotated-lits})) + (a \text{ literal}) + (a \text{ lite
where \langle undefined\text{-}lit \ I \ L \equiv \neg defined\text{-}lit \ I \ L \rangle
lemma defined-lit-rev[simp]:
      \langle defined\text{-}lit \ (rev \ M) \ L \longleftrightarrow defined\text{-}lit \ M \ L \rangle
      \langle proof \rangle
lemma atm-imp-decided-or-proped:
     assumes \langle x \in set I \rangle
     shows
           (Decided\ (-\ lit\text{-}of\ x)\in set\ I)
           \vee (Decided (lit - of x) \in set I)
           \vee (\exists l. Propagated (- lit-of x) l \in set I)
           \vee (\exists l. \ Propagated \ (lit of \ x) \ l \in set \ I) \rangle
      \langle proof \rangle
lemma literal-is-lit-of-decided:
     assumes \langle L = lit \text{-} of x \rangle
     shows \langle (x = Decided \ L) \ \lor \ (\exists \ l'. \ x = Propagated \ L \ l') \rangle
      \langle proof \rangle
\mathbf{lemma} \ \mathit{true-annot-iff-decided-or-true-lit}:
      \langle defined\text{-}lit\ I\ L \longleftrightarrow (lits\text{-}of\text{-}l\ I\ \models l\ L\ \lor\ lits\text{-}of\text{-}l\ I\ \models l\ -L) \rangle
      \langle proof \rangle
\mathbf{lemma}\ consistent\text{-}inter\text{-}true\text{-}annots\text{-}satisfiable:
      \langle consistent\text{-}interp\ (lits\text{-}of\text{-}l\ I) \Longrightarrow I \models as\ N \Longrightarrow satisfiable\ N \rangle
      \langle proof \rangle
lemma defined-lit-map:
      \langle defined\text{-}lit \ Ls \ L \longleftrightarrow atm\text{-}of \ L \in (\lambda l. \ atm\text{-}of \ (lit\text{-}of \ l)) \ \ \ \ set \ Ls \rangle
  \langle proof \rangle
lemma defined-lit-uminus[iff]:
      \langle defined\text{-}lit \ I \ (-L) \longleftrightarrow defined\text{-}lit \ I \ L \rangle
      \langle proof \rangle
lemma Decided-Propagated-in-iff-in-lits-of-l:
      \langle defined\text{-}lit\ I\ L \longleftrightarrow (L \in lits\text{-}of\text{-}l\ I\ \lor -L \in lits\text{-}of\text{-}l\ I) \rangle
      \langle proof \rangle
lemma consistent-add-undefined-lit-consistent[simp]:
           \langle consistent\text{-}interp\ (lits\text{-}of\text{-}l\ Ls) \rangle and
           \langle undefined\text{-}lit\ Ls\ L \rangle
```

```
shows \langle consistent\text{-}interp \ (insert \ L \ (lits\text{-}of\text{-}l \ Ls)) \rangle
   \langle proof \rangle
lemma decided-empty[simp]:
   \langle \neg defined\text{-}lit \mid L \rangle
   \langle proof \rangle
lemma undefined-lit-single[iff]:
   \langle defined\text{-}lit \ [L] \ K \longleftrightarrow atm\text{-}of \ (lit\text{-}of \ L) = atm\text{-}of \ K \rangle
   \langle proof \rangle
lemma undefined-lit-cons[iff]:
   (undefined-lit\ (L\ \#\ M)\ K\longleftrightarrow atm\text{-}of\ (lit\text{-}of\ L) \neq atm\text{-}of\ K\land undefined-lit\ M\ K)
lemma undefined-lit-append[iff]:
   (undefined-lit\ (M\ @\ M')\ K\longleftrightarrow undefined-lit\ M\ K\land undefined-lit\ M'\ K)
   \langle proof \rangle
lemma defined-lit-cons:
   \langle defined\text{-}lit \ (L \# M) \ K \longleftrightarrow atm\text{-}of \ (lit\text{-}of \ L) = atm\text{-}of \ K \lor defined\text{-}lit \ M \ K \lor defined
   \langle proof \rangle
lemma defined-lit-append:
   \langle defined\text{-}lit \ (M @ M') \ K \longleftrightarrow defined\text{-}lit \ M \ K \lor defined\text{-}lit \ M' \ K \rangle
   \langle proof \rangle
\mathbf{lemma} \ \textit{in-lits-of-l-defined-litD} : \langle \textit{L-max} \in \textit{lits-of-l} \ \textit{M} \implies \textit{defined-lit} \ \textit{M} \ \textit{L-max} \rangle
lemma undefined-notin: \langle undefined\text{-}lit\ M\ (lit\text{-}of\ x) \Longrightarrow x \notin set\ M \rangle for x\ M
   \langle proof \rangle
lemma uminus-lits-of-l-definedD:
   \langle -x \in \mathit{lits}\text{-}\mathit{of}\text{-}\mathit{l}\ M \Longrightarrow \mathit{defined}\text{-}\mathit{lit}\ M\ x \rangle
   \langle proof \rangle
lemma defined-lit-Neg-Pos-iff:
   \langle defined\text{-}lit\ M\ (Neg\ A) \longleftrightarrow defined\text{-}lit\ M\ (Pos\ A) \rangle
   \langle proof \rangle
lemma defined-lit-Pos-atm-iff[simp]:
   \langle defined\text{-}lit \ M1 \ (Pos \ (atm\text{-}of \ x)) \longleftrightarrow defined\text{-}lit \ M1 \ x \rangle
   \langle proof \rangle
lemma defined-lit-mono:
   \langle defined\text{-}lit \ M2 \ L \Longrightarrow set \ M2 \subseteq set \ M3 \Longrightarrow defined\text{-}lit \ M3 \ L \rangle
   \langle proof \rangle
lemma defined-lit-nth:
   \langle n < length \ M2 \implies defined-lit \ M2 \ (lit-of \ (M2! \ n)) \rangle
   \langle proof \rangle
```

## 1.2.2 Backtracking

**fun**  $backtrack-split :: \langle ('a, 'v, 'm) \ annotated-lits$ 

```
\Rightarrow ('a, 'v, 'm) annotated-lits \times ('a, 'v, 'm) annotated-lits where
\langle backtrack-split [] = ([], []) \rangle
\langle backtrack\text{-}split \ (Propagated \ L \ P \ \# \ mlits) = apfst \ ((\#) \ (Propagated \ L \ P)) \ (backtrack\text{-}split \ mlits) \rangle
\langle backtrack-split \ (Decided \ L \ \# \ mlits) = ([], \ Decided \ L \ \# \ mlits) \rangle
lemma backtrack-split-fst-not-decided: (a \in set (fst (backtrack-split l)) \implies \neg is-decided a)
  \langle proof \rangle
{\bf lemma}\ backtrack\text{-}split\text{-}snd\text{-}hd\text{-}decided\text{:}
  \langle snd \ (backtrack-split \ l) \neq [] \implies is\text{-}decided \ (hd \ (snd \ (backtrack-split \ l))) \rangle
  \langle proof \rangle
lemma backtrack-split-list-eq[simp]:
  \langle fst \ (backtrack-split \ l) \ @ \ (snd \ (backtrack-split \ l)) = l \rangle
  \langle proof \rangle
lemma backtrack-snd-empty-not-decided:
  \langle backtrack-split \ M = (M'', []) \Longrightarrow \forall \ l \in set \ M. \ \neg \ is-decided \ l \rangle
  \langle proof \rangle
lemma backtrack-split-some-is-decided-then-snd-has-hd:
  (\exists l \in set \ M. \ is\text{-}decided \ l \Longrightarrow \exists M' \ L' \ M''. \ backtrack\text{-}split \ M = (M'', \ L' \# \ M'))
  \langle proof \rangle
Another characterisation of the result of backtrack-split. This view allows some simpler proofs,
since take While and drop While are highly automated:
```

## ${\bf lemma}\ backtrack-split-take\ While-drop\ While:$

 $\langle backtrack split \ M = (take While \ (Not \ o \ is - decided) \ M, \ drop While \ (Not \ o \ is - decided) \ M \rangle \\ \langle proof \rangle$ 

## 1.2.3 Decomposition with respect to the First Decided Literals

In this section we define a function that returns a decomposition with the first decided literal. This function is useful to define the backtracking of DPLL.

## Definition

The pattern get-all-ann-decomposition [] = [([], [])] is necessary otherwise, we can call the hd function in the other pattern.

```
fun get-all-ann-decomposition :: ⟨('a, 'b, 'm) annotated-lits

⇒ (('a, 'b, 'm) annotated-lits × ('a, 'b, 'm) annotated-lits) list⟩ where
⟨get-all-ann-decomposition (Decided L # Ls) =
(Decided L # Ls, []) # get-all-ann-decomposition Ls⟩ |
⟨get-all-ann-decomposition (Propagated L P# Ls) =
(apsnd ((#) (Propagated L P)) (hd (get-all-ann-decomposition Ls)))
# tl (get-all-ann-decomposition Ls)⟩ |
⟨get-all-ann-decomposition [] = [([], [])]⟩

value ⟨get-all-ann-decomposition [Propagated A5 B5, Decided C4, Propagated A3 B3, Propagated A2 B2, Decided C1, Propagated A0 B0]⟩

Now we can prove several simple properties about the function.
```

**lemma** get-all-ann-decomposition-never-empty[iff]:  $\langle get$ -all-ann-decomposition  $M = [] \longleftrightarrow False \rangle$ 

```
\langle proof \rangle
lemma get-all-ann-decomposition-never-empty-sym[iff]:
  \langle [] = get\text{-}all\text{-}ann\text{-}decomposition } M \longleftrightarrow False \rangle
  \langle proof \rangle
{f lemma}\ get-all-ann-decomposition-decomp:
  \langle hd \ (get-all-ann-decomposition \ S) = (a, c) \Longrightarrow S = c \ @ \ a \rangle
\langle proof \rangle
\mathbf{lemma}\ qet-all-ann-decomposition-backtrack-split:
  \langle backtrack-split \ S = (M, M') \longleftrightarrow hd \ (get-all-ann-decomposition \ S) = (M', M) \rangle
\langle proof \rangle
\mathbf{lemma}\ qet-all-ann-decomposition-Nil-backtrack-split-snd-Nil:
  \langle get\text{-}all\text{-}ann\text{-}decomposition } S = [([], A)] \Longrightarrow snd (backtrack\text{-}split } S) = [] \rangle
  \langle proof \rangle
This functions says that the first element is either empty or starts with a decided element of
the list.
\mathbf{lemma}\ \textit{get-all-ann-decomposition-length-1-fst-empty-or-length-1}:
  assumes \langle get\text{-}all\text{-}ann\text{-}decomposition } M = (a, b) \# [] \rangle
  shows \langle a = [] \lor (length \ a = 1 \land is\text{-}decided \ (hd \ a) \land hd \ a \in set \ M) \rangle
  \langle proof \rangle
\mathbf{lemma} \ \textit{get-all-ann-decomposition-fst-empty-or-hd-in-}M:
  assumes \langle qet\text{-}all\text{-}ann\text{-}decomposition } M = (a, b) \# l \rangle
  shows \langle a = [] \lor (is\text{-}decided (hd \ a) \land hd \ a \in set \ M) \rangle
  \langle proof \rangle
lemma qet-all-ann-decomposition-snd-not-decided:
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  and \langle L \in set b \rangle
  shows \langle \neg is\text{-}decided \ L \rangle
  \langle proof \rangle
lemma tl-get-all-ann-decomposition-skip-some:
  assumes \langle x \in set \ (tl \ (get-all-ann-decomposition \ M1)) \rangle
  shows \langle x \in set \ (tl \ (get-all-ann-decomposition \ (M0 @ M1))) \rangle
  \langle proof \rangle
lemma hd-get-all-ann-decomposition-skip-some:
  assumes \langle (x, y) = hd \ (get-all-ann-decomposition \ M1) \rangle
  shows \langle (x, y) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ (M0 @ Decided \ K \# M1) \rangle \rangle
  \langle proof \rangle
lemma\ in-qet-all-ann-decomposition-in-qet-all-ann-decomposition-prepend:
  \langle (a, b) \in set \ (get-all-ann-decomposition \ M') \Longrightarrow
    \exists b'. (a, b' @ b) \in set (get-all-ann-decomposition (M @ M'))
  \langle proof \rangle
\mathbf{lemma}\ in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}decided\text{-}or\text{-}empty:
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  shows \langle a = [] \lor (is\text{-}decided (hd a)) \rangle
  \langle proof \rangle
```

```
\mathbf{lemma}\ \textit{get-all-ann-decomposition-remove-undecided-length}:
  assumes \forall l \in set M'. \neg is\text{-}decided l \rangle
  shows (length\ (qet-all-ann-decomposition\ (M'\@M'')) = length\ (qet-all-ann-decomposition\ M''))
  \langle proof \rangle
lemma get-all-ann-decomposition-not-is-decided-length:
  assumes \forall l \in set M'. \neg is\text{-}decided l
  shows (1 + length (get-all-ann-decomposition (Propagated <math>(-L) P \# M))
 = length (get-all-ann-decomposition (M' @ Decided L # M))
 \langle proof \rangle
{\bf lemma}~get-all-ann-decomposition-last-choice:
  assumes \langle tl \ (get\text{-}all\text{-}ann\text{-}decomposition} \ (M' @ Decided \ L \ \# \ M)) \neq [] \rangle
  and \forall l \in set M'. \neg is\text{-}decided l
  and \langle hd \ (tl \ (qet-all-ann-decomposition \ (M' @ Decided L \# M))) = (M0', M0) \rangle
  shows (hd (get-all-ann-decomposition (Propagated (-L) P \# M)) = (M0', Propagated (-L) P \#
M0)
  \langle proof \rangle
\mathbf{lemma} \ \ \textit{get-all-ann-decomposition-except-last-choice-equal}:
  assumes \forall l \in set M'. \neg is\text{-}decided l \rangle
  shows \langle tl \ (get\text{-}all\text{-}ann\text{-}decomposition \ (Propagated \ (-L) \ P \ \# \ M))
 = tl \ (tl \ (get-all-ann-decomposition \ (M' @ Decided \ L \ \# \ M)))
  \langle proof \rangle
lemma qet-all-ann-decomposition-hd-hd:
  assumes \langle get\text{-}all\text{-}ann\text{-}decomposition } Ls = (M, C) \# (M0, M0') \# l \rangle
  shows \langle tl \ M = M0' @ M0 \land is\text{-}decided (hd M) \rangle
  \langle proof \rangle
lemma get-all-ann-decomposition-exists-prepend[dest]:
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  shows \langle \exists c. M = c @ b @ a \rangle
  \langle proof \rangle
lemma get-all-ann-decomposition-incl:
  assumes \langle (a, b) \in set \ (qet\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  shows \langle set\ b \subseteq set\ M \rangle and \langle set\ a \subseteq set\ M \rangle
  \langle proof \rangle
lemma get-all-ann-decomposition-exists-prepend':
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  obtains c where \langle M = c @ b @ a \rangle
  \langle proof \rangle
\mathbf{lemma}\ union\text{-}in\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}is\text{-}subset}:
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  shows \langle set \ a \cup set \ b \subseteq set \ M \rangle
  \langle proof \rangle
\mathbf{lemma}\ \textit{Decided-cons-in-get-all-ann-decomposition-append-Decided-cons}:
  (\exists c''. (Decided K \# c, c'') \in set (get-all-ann-decomposition (c' @ Decided K \# c)))
  \langle proof \rangle
\mathbf{lemma}\ \mathit{fst-get-all-ann-decomposition-prepend-not-decided}:
  assumes \forall m \in set MS. \neg is\text{-}decided m
```

```
shows \langle set \ (map \ fst \ (get-all-ann-decomposition \ M))
    = set (map fst (get-all-ann-decomposition (MS @ M)))
  \langle proof \rangle
lemma no-decision-get-all-ann-decomposition:
  \forall l \in set \ M. \ \neg \ is \ decided \ l \Longrightarrow \ get \ -all \ -ann \ -decomposition \ M = [([], M)] \ )
  \langle proof \rangle
Entailment of the Propagated by the Decided Literal
\mathbf{lemma}\ get-all-ann-decomposition-snd-union:
  \langle set\ M = \bigcup (set\ `snd\ `set\ (get\ -all\ -ann\ -decomposition\ M)) \cup \{L\ | L.\ is\ -decided\ L \land L \in set\ M\} \rangle
  (\mathbf{is} \ \langle ?M \ M = ?U \ M \cup ?Ls \ M \rangle)
\langle proof \rangle
definition all-decomposition-implies :: \langle 'a \ clause \ set \ 
  \Rightarrow (('a, 'm) \ ann\text{-}lits \times ('a, 'm) \ ann\text{-}lits) \ list \Rightarrow bool \ where
 \langle all\text{-}decomposition\text{-}implies\ N\ S\longleftrightarrow (\forall\ (Ls,\ seen)\in set\ S.\ unmark\text{-}l\ Ls\cup\ N\ \models ps\ unmark\text{-}l\ seen)\rangle
lemma all-decomposition-implies-empty[iff]:
  \langle all\text{-}decomposition\text{-}implies\ N\ [] \rangle\ \langle proof \rangle
lemma all-decomposition-implies-single[iff]:
  \langle all-decomposition-implies\ N\ [(Ls,\ seen)] \longleftrightarrow unmark-l\ Ls \cup N \models ps\ unmark-l\ seen \rangle
  \langle proof \rangle
lemma all-decomposition-implies-append[iff]:
  \langle all\text{-}decomposition\text{-}implies\ N\ (S\ @\ S')
    \longleftrightarrow (all-decomposition-implies N S \land all-decomposition-implies N S')
  \langle proof \rangle
lemma all-decomposition-implies-cons-pair[iff]:
  \langle all\text{-}decomposition\text{-}implies\ N\ ((Ls, seen)\ \#\ S')
    \longleftrightarrow (all-decomposition-implies N [(Ls, seen)] \land all-decomposition-implies N S')\lor
  \langle proof \rangle
lemma all-decomposition-implies-cons-single[iff]:
  \langle all\text{-}decomposition\text{-}implies\ N\ (l\ \#\ S') \longleftrightarrow
    (unmark-l (fst l) \cup N \models ps unmark-l (snd l) \land
       all-decomposition-implies N(S')
  \langle proof \rangle
lemma all-decomposition-implies-trail-is-implied:
  assumes \langle all\text{-}decomposition\text{-}implies\ N\ (qet\text{-}all\text{-}ann\text{-}decomposition\ }M) \rangle
  shows \langle N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\}
     \models ps \ unmark \ ( \bigcup (set \ `snd \ `set \ (get-all-ann-decomposition \ M)) \rangle
\langle proof \rangle
lemma all-decomposition-implies-propagated-lits-are-implied:
  assumes \langle all\text{-}decomposition\text{-}implies\ N\ (get\text{-}all\text{-}ann\text{-}decomposition\ M)} \rangle
  shows \langle N \cup \{unmark\ L\ | L.\ is\text{-}decided\ L \land L \in set\ M\} \models ps\ unmark\text{-}l\ M \rangle
    (is \langle ?I \models ps ?A \rangle)
```

 $\langle proof \rangle$ 

```
lemma all-decomposition-implies-insert-single:
  \langle all\text{-}decomposition\text{-}implies\ N\ M \implies all\text{-}decomposition\text{-}implies\ (insert\ C\ N)\ M \rangle
  \langle proof \rangle
{f lemma}\ all\mbox{-}decomposition\mbox{-}implies\mbox{-}union:
  \langle all\text{-}decomposition\text{-}implies\ N\ M \implies all\text{-}decomposition\text{-}implies\ (N\ \cup\ N')\ M \rangle
  \langle proof \rangle
{f lemma}\ all\mbox{-}decomposition\mbox{-}implies\mbox{-}mono:
  (N \subseteq N' \Longrightarrow all\text{-}decomposition\text{-}implies\ N\ M \Longrightarrow all\text{-}decomposition\text{-}implies\ N'\ M)
  \langle proof \rangle
\mathbf{lemma}\ all\text{-}decomposition\text{-}implies\text{-}mono\text{-}right:}
  (all-decomposition-implies\ I\ (get-all-ann-decomposition\ (M'\ @\ M)) \Longrightarrow
     all-decomposition-implies I (qet-all-ann-decomposition M)
  \langle proof \rangle
1.2.4
             Negation of a Clause
We define the negation of a 'a clause: it converts a single clause to a set of clauses, where each
clause is a single literal (whose negation is in the original clause).
definition CNot :: \langle 'v \ clause \Rightarrow \ 'v \ clause\text{-set} \rangle where
\langle CNot \ \psi = \{ \{\#-L\#\} \mid L. \ L \in \# \ \psi \} \rangle
lemma finite-CNot[simp]: \langle finite\ (CNot\ C) \rangle
  \langle proof \rangle
lemma in-CNot-uminus[iff]:
  shows \langle \{\#L\#\} \in CNot \ \psi \longleftrightarrow -L \in \# \ \psi \rangle
  \langle proof \rangle
lemma
  shows
     CNot\text{-}add\text{-}mset[simp]: \langle CNot \ (add\text{-}mset \ L \ \psi) = insert \ \{\#-L\#\} \ (CNot \ \psi) \rangle and
     CNot\text{-}empty[simp]: \langle CNot \{\#\} = \{\} \rangle and
     CNot\text{-}plus[simp]: \langle CNot\ (A+B) = CNot\ A \cup CNot\ B \rangle
  \langle proof \rangle
lemma CNot-eq-empty[iff]:
  \langle CNot \ D = \{\} \longleftrightarrow D = \{\#\} \rangle
  \langle proof \rangle
\mathbf{lemma}\ in\text{-}CNot\text{-}implies\text{-}uminus:
  \mathbf{assumes} \ \langle L \in \# \ D \rangle \ \mathbf{and} \ \langle M \models as \ \mathit{CNot} \ D \rangle
  shows \langle M \models a \{\#-L\#\} \rangle and \langle -L \in lits\text{-}of\text{-}l M \rangle
  \langle proof \rangle
lemma CNot\text{-}remdups\text{-}mset[simp]:
```

 $\langle CNot \ (remdups\text{-}mset \ A) = CNot \ A \rangle$ 

 $\langle (\forall x \in CNot \ D. \ P \ x) \longleftrightarrow (\forall L \in \# \ D. \ P \ \{\#-L\#\}) \rangle$ 

**lemma** Ball-CNot-Ball-mset[simp]:

 $\langle proof \rangle$ 

 $\langle proof \rangle$ 

```
\mathbf{lemma}\ consistent	ext{-}CNot	ext{-}not:
   \mathbf{assumes} \ \langle consistent\text{-}interp\ I \rangle
   shows \langle I \models s \ \textit{CNot} \ \varphi \Longrightarrow \neg I \models \varphi \rangle
   \langle proof \rangle
\mathbf{lemma}\ total\text{-}not\text{-}true\text{-}cls\text{-}true\text{-}clss\text{-}CNot:
   assumes \langle total\text{-}over\text{-}m \ I \ \{\varphi\} \rangle and \langle \neg I \models \varphi \rangle
   shows \langle I \models s \ CNot \ \varphi \rangle
   \langle proof \rangle
lemma total-not-CNot:
   assumes \langle total\text{-}over\text{-}m\ I\ \{\varphi\}\rangle and \langle \neg I \models s\ CNot\ \varphi\rangle
   shows \langle I \models \varphi \rangle
   \langle proof \rangle
lemma atms-of-ms-CNot-atms-of [simp]:
   \langle atms-of-ms\ (CNot\ C) = atms-of\ C \rangle
   \langle proof \rangle
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}contradiction\text{-}true\text{-}clss\text{-}cls\text{-}false:
   \langle C \in D \Longrightarrow D \models ps \ CNot \ C \Longrightarrow D \models p \ \{\#\} \rangle
   \langle proof \rangle
\mathbf{lemma}\ true\text{-}annots\text{-}CNot\text{-}all\text{-}atms\text{-}defined:
   assumes \langle M \models as \ CNot \ T \rangle and a1: \langle L \in \# \ T \rangle
   shows \langle atm\text{-}of \ L \in atm\text{-}of \ `lits\text{-}of\text{-}l \ M \rangle
   \langle proof \rangle
\mathbf{lemma} \ \textit{true-annots-CNot-all-uminus-atms-defined} :
   assumes \langle M \models as \ CNot \ T \rangle and a1: \langle -L \in \# \ T \rangle
   \mathbf{shows} \ \langle \mathit{atm-of} \ L \in \mathit{atm-of} \ `\mathit{lits-of-l} \ \mathit{M} \rangle
   \langle proof \rangle
lemma true-clss-clss-false-left-right:
   assumes \langle \{\{\#L\#\}\} \cup B \models p \{\#\} \rangle
   shows \langle B \models ps \ CNot \ \{\#L\#\}\rangle
   \langle proof \rangle
\mathbf{lemma} \ \mathit{true-annots-true-cls-def-iff-negation-in-model:}
   \langle M \models as \ CNot \ C \longleftrightarrow (\forall \ L \in \# \ C. \ -L \in \mathit{lits-of-l} \ M) \rangle
   \langle proof \rangle
\mathbf{lemma}\ true\text{-}clss\text{-}def\text{-}iff\text{-}negation\text{-}in\text{-}model\text{:}}
   \langle M \models s \ CNot \ C \longleftrightarrow (\forall \ l \in \# \ C. \ -l \in M) \rangle
   \langle proof \rangle
\mathbf{lemma} \ \mathit{true-annots-CNot-definedD}:
   \langle M \models as \ CNot \ C \Longrightarrow \forall \ L \in \# \ C. \ defined-lit \ M \ L \rangle
   \langle proof \rangle
lemma true-annot-CNot-diff:
   \langle I \models as \ CNot \ C \Longrightarrow I \models as \ CNot \ (C - C') \rangle
   \langle proof \rangle
```

**lemma** CNot-mset-replicate[simp]:

```
\langle CNot \ (mset \ (replicate \ n \ L)) = (if \ n = 0 \ then \ \{\} \ else \ \{\{\#-L\#\}\}) \rangle
   \langle proof \rangle
lemma consistent-CNot-not-tautology:
   \langle consistent\text{-}interp\ M \Longrightarrow M \models s\ CNot\ D \Longrightarrow \neg tautology\ D \rangle
   \langle proof \rangle
lemma atms-of-ms-CNot-atms-of-ms: \langle atms-of-ms (CNot CC) = atms-of-ms {CC}\rangle
   \langle proof \rangle
lemma total-over-m-CNot-toal-over-m[simp]:
   \langle total\text{-}over\text{-}m \ I \ (CNot \ C) = total\text{-}over\text{-}set \ I \ (atms\text{-}of \ C) \rangle
   \langle proof \rangle
\mathbf{lemma}\ true\text{-}clss\text{-}cls\text{-}plus\text{-}CNot:
  assumes
      CC-L: \langle A \models p \ add\text{-}mset \ L \ CC \rangle and
      CNot\text{-}CC: \langle A \models ps \ CNot \ CC \rangle
   shows \langle A \models p \{ \#L\# \} \rangle
   \langle proof \rangle
lemma true-annots-CNot-lit-of-notin-skip:
   assumes LM: \langle L \# M \models as \ CNot \ A \rangle and LA: \langle lit\text{-}of \ L \notin \# \ A \rangle \langle -lit\text{-}of \ L \notin \# \ A \rangle
   \mathbf{shows} \ \langle M \models as \ CNot \ A \rangle
   \langle proof \rangle
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}union\text{-}false\text{-}true\text{-}clss\text{-}clss\text{-}cnot\text{:}
   \langle A \cup \{B\} \models ps \{\{\#\}\} \longleftrightarrow A \models ps \ CNot \ B \rangle
   \langle proof \rangle
lemma true-annot-remove-hd-if-notin-vars:
  assumes \langle a \# M' \models a D \rangle and \langle atm\text{-}of (lit\text{-}of a) \notin atms\text{-}of D \rangle
  shows \langle M' \models a D \rangle
   \langle proof \rangle
{f lemma}\ true-annot-remove-if-notin-vars:
   assumes \langle M @ M' \models a D \rangle and \langle \forall x \in atms \text{-} of D. x \notin atm \text{-} of \text{'} lits \text{-} of \text{-} l M \rangle
  shows \langle M' \models a D \rangle
   \langle proof \rangle
lemma true-annots-remove-if-notin-vars:
  assumes \langle M @ M' \models as D \rangle and \langle \forall x \in atms\text{-}of\text{-}ms D. x \notin atm\text{-}of \text{'} lits\text{-}of\text{-}l M \rangle
  shows \langle M' \models as D \rangle \langle proof \rangle
{f lemma} all-variables-defined-not-imply-cnot:
   assumes
     \forall s \in atms\text{-}of\text{-}ms \{B\}. \ s \in atm\text{-}of \ `lits\text{-}of\text{-}l \ A >  and
     \langle \neg A \models a B \rangle
  shows \langle A \models as \ CNot \ B \rangle
   \langle proof \rangle
lemma CNot-union-mset[simp]:
   \langle CNot \ (A \cup \# B) = CNot \ A \cup CNot \ B \rangle
   \langle proof \rangle
```

 $\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}true\text{-}clss\text{-}cls\text{-}true\text{-}clss\text{-}cls\text{-}}$ 

```
assumes
     \langle A \models ps \ unmark-l \ M \rangle \ \mathbf{and} \ \langle M \models as \ D \rangle
   shows \langle A \models ps \ D \rangle
   \langle proof \rangle
\mathbf{lemma}\ true\text{-}clss\text{-}clss\text{-}CNot\text{-}true\text{-}clss\text{-}cls\text{-}unsatisfiable}:
   assumes \langle A \models ps \ CNot \ D \rangle and \langle A \models p \ D \rangle
  shows \langle unsatisfiable A \rangle
   \langle proof \rangle
lemma true-clss-cls-neg:
   \langle N \models p \mid I \longleftrightarrow N \cup (\lambda L. \{\#-L\#\}) \text{ '} set\text{-mset } I \models p \{\#\} \rangle
\langle proof \rangle
\mathbf{lemma}\ \mathit{all-decomposition-implies-conflict-DECO-clause}:
  assumes \langle all\text{-}decomposition\text{-}implies\ N\ (get\text{-}all\text{-}ann\text{-}decomposition\ }M)\rangle and
     \langle M \models as \ CNot \ C \rangle and
     \langle C \in N \rangle
  shows \langle N \models p \ (uminus \ o \ lit - of) \ '\# \ (filter-mset \ is-decided \ (mset \ M)) \rangle
     (is \langle ?I \models p ?A \rangle)
\langle proof \rangle
1.2.5
                Other
definition (no-dup L \equiv distinct \ (map \ (\lambda l. \ atm-of \ (lit-of \ l)) \ L))
lemma no-dup-nil[simp]:
   \langle no\text{-}dup \mid \rangle
   \langle proof \rangle
lemma no-dup-cons[simp]:
   \langle no\text{-}dup \ (L \ \# \ M) \longleftrightarrow undefined\text{-}lit \ M \ (lit\text{-}of \ L) \ \land \ no\text{-}dup \ M \rangle
   \langle proof \rangle
lemma no-dup-append-cons[iff]:
   \langle \textit{no-dup} \ (\textit{M} \ @ \ \textit{L} \ \# \ \textit{M'}) \longleftrightarrow \textit{undefined-lit} \ (\textit{M} \ @ \ \textit{M'}) \ (\textit{lit-of} \ \textit{L}) \ \land \ \textit{no-dup} \ (\textit{M} \ @ \ \textit{M'}) \rangle
   \langle proof \rangle
lemma no-dup-append-append-cons[iff]:
   (no-dup\ (M0\ @\ M\ @\ L\ \#\ M')\longleftrightarrow undefined-lit\ (M0\ @\ M\ @\ M')\ (lit-of\ L)\ \land\ no-dup\ (M0\ @\ M\ @
M'\rangle
   \langle proof \rangle
lemma no-dup-rev[simp]:
   \langle no\text{-}dup \ (rev \ M) \longleftrightarrow no\text{-}dup \ M \rangle
   \langle proof \rangle
lemma no-dup-appendD:
   \langle no\text{-}dup \ (a @ b) \Longrightarrow no\text{-}dup \ b \rangle
   \langle proof \rangle
lemma no-dup-appendD1:
   \langle no\text{-}dup \ (a @ b) \Longrightarrow no\text{-}dup \ a \rangle
   \langle proof \rangle
```

lemma no-dup-length-eq-card-atm-of-lits-of-l:

```
assumes \langle no\text{-}dup \ M \rangle
  shows \langle length \ M = card \ (atm\text{-}of \ `lits\text{-}of\text{-}l \ M) \rangle
   \langle proof \rangle
lemma distinct-consistent-interp:
   \langle no\text{-}dup\ M \Longrightarrow consistent\text{-}interp\ (lits\text{-}of\text{-}l\ M) \rangle
\langle proof \rangle
lemma same-mset-no-dup-iff:
  \langle mset \ M = mset \ M' \Longrightarrow no\text{-}dup \ M \longleftrightarrow no\text{-}dup \ M' \rangle
   \langle proof \rangle
\mathbf{lemma}\ distinct\text{-}get\text{-}all\text{-}ann\text{-}decomposition\text{-}no\text{-}dup:
  assumes \langle (a, b) \in set \ (get\text{-}all\text{-}ann\text{-}decomposition} \ M) \rangle
  and \langle no\text{-}dup \ M \rangle
  shows \langle no\text{-}dup \ (a @ b) \rangle
   \langle proof \rangle
lemma true-annots-lit-of-notin-skip:
  \mathbf{assumes} \ \langle L \ \# \ M \models as \ \mathit{CNot} \ A \rangle
  and \langle -lit\text{-}of \ L \notin \# \ A \rangle
  and \langle no\text{-}dup\ (L \# M)\rangle
  shows \langle M \models as \ CNot \ A \rangle
\langle proof \rangle
lemma no-dup-imp-distinct: \langle no\text{-dup } M \implies distinct \ M \rangle
   \langle proof \rangle
lemma no\text{-}dup\text{-}tlD: \langle no\text{-}dup \ a \Longrightarrow no\text{-}dup \ (tl \ a) \rangle
   \langle proof \rangle
lemma defined-lit-no-dupD:
   \langle defined\text{-}lit \ M1 \ L \implies no\text{-}dup \ (M2 \ @ \ M1) \implies undefined\text{-}lit \ M2 \ L \rangle
   \langle defined\text{-}lit \ M1 \ L \Longrightarrow no\text{-}dup \ (M2' @ M2 @ M1) \Longrightarrow undefined\text{-}lit \ M2' \ L \rangle
  (\textit{defined-lit M1 L} \implies \textit{no-dup (M2' @ M2 @ M1)} \implies \textit{undefined-lit M2 L})
   \langle proof \rangle
lemma no-dup-consistentD:
   (no-dup\ M \Longrightarrow L \in lits-of-l\ M \Longrightarrow -L \notin lits-of-l\ M)
   \langle proof \rangle
lemma no-dup-not-tautology: (no-dup\ M \Longrightarrow \neg tautology\ (image-mset\ lit-of\ (mset\ M)))
   \langle proof \rangle
\mathbf{lemma} \ \textit{no-dup-distinct:} \ \langle \textit{no-dup} \ M \Longrightarrow \textit{distinct-mset} \ (\textit{image-mset lit-of} \ (\textit{mset} \ M)) \rangle
lemma no-dup-not-tautology-uminus: (no-dup M \Longrightarrow \neg tautology \{\#-lit\text{-}of\ L.\ L \in \#\ mset\ M\#\})
   \langle proof \rangle
lemma no-dup-distinct-uninus: (no-dup M \Longrightarrow distinct-mset \{\#-lit\text{-of } L. \ L \in \# \ mset \ M\#\})
   \langle proof \rangle
lemma no-dup-map-lit-of: (no-dup\ M \Longrightarrow distinct\ (map\ lit-of\ M))
   \langle proof \rangle
```

```
\begin{array}{l} \textbf{lemma } \textit{no-dup-alt-def:} \\ & \langle \textit{no-dup } M \longleftrightarrow \textit{distinct-mset } \left\{ \# \textit{atm-of } \left( \textit{lit-of } x \right). \ x \in \# \textit{ mset } M \# \right\} \rangle \\ & \langle \textit{proof} \rangle \\ \\ \textbf{lemma } \textit{no-dup-append-in-atm-notin:} \\ & \textbf{assumes } \langle \textit{no-dup } \left( M \ @ \ M' \right) \rangle \ \textbf{and } \langle L \in \textit{lits-of-l } M' \rangle \\ & \textbf{shows } \langle \textit{undefined-lit } M \ L \rangle \\ & \langle \textit{proof} \rangle \\ \\ \textbf{lemma } \textit{no-dup-uminus-append-in-atm-notin:} \\ & \textbf{assumes } \langle \textit{no-dup } \left( M \ @ \ M' \right) \rangle \ \textbf{and } \langle -L \in \textit{lits-of-l } M' \rangle \\ & \textbf{shows } \langle \textit{undefined-lit } M \ L \rangle \\ & \langle \textit{proof} \rangle \\ \end{array}
```

## 1.2.6 Extending Entailments to multisets

We have defined previous entailment with respect to sets, but we also need a multiset version depending on the context. The conversion is simple using the function *set-mset* (in this direction, there is no loss of information).

```
abbreviation true-annots-mset (infix \models asm 50) where
\langle I \models asm \ C \equiv I \models as \ (set\text{-}mset \ C) \rangle
abbreviation true-clss-clss-m :: \langle v \text{ clause multiset} \Rightarrow v \text{ clause multiset} \Rightarrow bool \langle \text{infix } \models psm 50 \rangle
\langle I \models psm \ C \equiv set\text{-}mset \ I \models ps \ (set\text{-}mset \ C) \rangle
Analog of theorem true-clss-clss-subsetE
lemma true\text{-}clss\text{-}clssm\text{-}subsetE: \langle N \models psm \ B \Longrightarrow A \subseteq \# \ B \Longrightarrow N \models psm \ A \rangle
   \langle proof \rangle
abbreviation true-clss-cls-m:: \langle a \text{ clause multiset} \Rightarrow a \text{ clause} \Rightarrow bool \rangle (infix \models pm 50) where
\langle I \models pm \ C \equiv set\text{-mset} \ I \models p \ C \rangle
abbreviation distinct-mset-mset :: \langle 'a \text{ multiset multiset} \Rightarrow bool \rangle where
\langle distinct\text{-}mset\text{-}mset \ \Sigma \equiv distinct\text{-}mset\text{-}set \ (set\text{-}mset \ \Sigma) \rangle
abbreviation all-decomposition-implies-m where
\langle all\text{-}decomposition\text{-}implies\text{-}m\ A\ B \equiv all\text{-}decomposition\text{-}implies\ (set\text{-}mset\ A)\ B \rangle
abbreviation atms-of-mm :: \langle 'a \ clause \ multiset \Rightarrow 'a \ set \rangle where
\langle atms-of-mm \ U \equiv atms-of-ms \ (set-mset \ U) \rangle
Other definition using \( \) #
lemma atms-of-mm-att-def: \langle atms-of-mm U = set-mset (\bigcup \# (image-mset (image-mset atm-of) U) \rangle \rangle
   \langle proof \rangle
abbreviation true-clss-m:: \langle 'a \ partial-interp \Rightarrow 'a \ clause \ multiset \Rightarrow bool \rangle (infix \models sm \ 50) where
\langle I \models sm \ C \equiv I \models s \ set\text{-mset} \ C \rangle
abbreviation true-clss-ext-m (infix \models sextm 49) where
\langle I \models sextm \ C \equiv I \models sext \ set\text{-mset} \ C \rangle
lemma true-clss-cls-cong-set-mset:
   \langle N \models pm \ D \Longrightarrow set\text{-mset} \ D = set\text{-mset} \ D' \Longrightarrow N \models pm \ D' \rangle
   \langle proof \rangle
```

#### 1.2.7 More Lemmas

```
{f lemma} no-dup-cannot-not-lit-and-uminus:
   (no-dup\ M \Longrightarrow -\ lit-of\ xa = lit-of\ x \Longrightarrow x \in set\ M \Longrightarrow xa \notin set\ M)
   \langle proof \rangle
lemma atms-of-ms-single-atm-of [simp]:
   \langle atms-of-ms \ \{unmark \ L \ | L. \ P \ L\} = atm-of \ ` \{lit-of \ L \ | L. \ P \ L\} \rangle
{f lemma} true	ext{-}cls	ext{-}mset	ext{-}restrict:
   \langle \{L \in I. \ atm\text{-}of \ L \in atm\text{-}of\text{-}mm \ N\} \models m \ N \longleftrightarrow I \models m \ N \rangle
   \langle proof \rangle
\mathbf{lemma}\ true\text{-}clss\text{-}restrict:
   \langle \{L \in I. \ atm\text{-}of \ L \in atm\text{-}of\text{-}mm \ N\} \models sm \ N \longleftrightarrow I \models sm \ N \rangle
   \langle proof \rangle
lemma total-over-m-atms-incl:
  assumes \langle total\text{-}over\text{-}m \ M \ (set\text{-}mset \ N) \rangle
     \langle x \in atms\text{-}of\text{-}mm \ N \Longrightarrow x \in atms\text{-}of\text{-}s \ M \rangle
   \langle proof \rangle
lemma true-clss-restrict-iff:
  assumes \langle \neg tautology \ \chi \rangle
  \mathbf{shows} \ \langle N \models p \ \chi \longleftrightarrow N \models p \ \{\#L \in \# \ \chi. \ \mathit{atm-of} \ L \in \mathit{atms-of-ms} \ N\# \} \rangle \ (\mathbf{is} \ \langle ?A \longleftrightarrow ?B \rangle)
  \langle proof \rangle
1.2.8
               Negation of annotated clauses
definition negate-ann-lits :: \langle (v, v | lause) | ann-lits \Rightarrow v | literal multiset \rangle where
   \langle negate\text{-}ann\text{-}lits \ M = (\lambda L. - lit\text{-}of \ L) \text{ '}\# \ mset \ M \rangle
lemma negate-ann-lits-empty[simp]: \langle negate-ann-lits [] = {\#} \rangle
   \langle proof \rangle
\mathbf{lemma}\ \mathit{entails-CNot-negate-ann-lits}:
   \langle M \models as \ CNot \ D \longleftrightarrow set\text{-}mset \ D \subseteq set\text{-}mset \ (negate\text{-}ann\text{-}lits \ M) \rangle
   \langle proof \rangle
Pointwise negation of a clause:
definition pNeg :: \langle v \ clause \Rightarrow v \ clause \rangle where
   \langle pNeg \ C = \{ \#-D. \ D \in \# \ C\# \} \rangle
lemma pNeq-simps:
   \langle pNeq \ (add\text{-}mset \ A \ C) = add\text{-}mset \ (-A) \ (pNeq \ C) \rangle
  \langle pNeg \ (C + D) = pNeg \ C + pNeg \ D \rangle
   \langle proof \rangle
lemma atms-of-pNeg[simp]: \langle atms-of\ (pNeg\ C) = atms-of\ C \rangle
  \langle proof \rangle
\textbf{lemma} \ \textit{negate-ann-lits-pNeg-lit-of:} \ \langle \textit{negate-ann-lits} = \textit{pNeg o image-mset lit-of o mset} \rangle
   \langle proof \rangle
```

```
lemma negate-ann-lits-empty-iff: \langle negate-ann-lits \ M \neq \{\#\} \longleftrightarrow M \neq [] \rangle
  \langle proof \rangle
lemma atms-of-negate-ann-lits[simp]: \langle atms-of\ (negate-ann-lits\ M) = atm-of\ `(lits-of-l\ M) \rangle
  \langle proof \rangle
lemma tautology-pNeg[simp]:
  \langle tautology \ (pNeg \ C) \longleftrightarrow tautology \ C \rangle
  \langle proof \rangle
lemma pNeg\text{-}convolution[simp]:
  \langle pNeg \ (pNeg \ C) = C \rangle
  \langle proof \rangle
lemma pNeq\text{-}minus[simp]: \langle pNeq (A - B) = pNeq A - pNeq B \rangle
lemma pNeg-empty[simp]: \langle pNeg \{\#\} = \{\#\} \rangle
  \langle proof \rangle
lemma pNeg-replicate-mset[simp]: \langle pNeg \ (replicate-mset \ n \ L) = replicate-mset \ n \ (-L) \rangle
\mathbf{lemma} \ \textit{distinct-mset-pNeg-iff[iff]:} \ \langle \textit{distinct-mset} \ (p\textit{Neg} \ x) \longleftrightarrow \textit{distinct-mset} \ x \rangle
lemma pNeg-simple-clss-iff[simp]:
  \langle pNeg \ M \in simple\text{-}clss \ N \longleftrightarrow M \in simple\text{-}clss \ N \rangle
  \langle proof \rangle
lemma atms-of-ms-pNeg[simp]: \langle atms-of-ms\ (pNeg\ `N) = atms-of-ms\ N \rangle
  \langle proof \rangle
definition DECO-clause :: \langle ('v, 'a) | ann\text{-}lits \Rightarrow 'v | clause \rangle where
  \langle DECO\text{-}clause\ M = (uminus\ o\ lit\text{-}of)\ '\#\ (filter\text{-}mset\ is\text{-}decided\ (mset\ M)) \rangle
lemma
  DECO-clause-cons-Decide[simp]:
     \langle DECO\text{-}clause \ (Decided \ L \ \# \ M) = add\text{-}mset \ (-L) \ (DECO\text{-}clause \ M) \rangle and
  DECO-clause-cons-Proped[simp]:
    \langle DECO\text{-}clause\ (Propagated\ L\ C\ \#\ M) = DECO\text{-}clause\ M \rangle
  \langle proof \rangle
lemma no-dup-distinct-mset[intro!]:
  assumes n\text{-}d: \langle no\text{-}dup\ M \rangle
  shows \langle distinct\text{-}mset \ (negate\text{-}ann\text{-}lits \ M) \rangle
  \langle proof \rangle
lemma in-negate-trial-iff: \langle L \in \# \text{ negate-ann-lits } M \longleftrightarrow -L \in \text{lits-of-l } M \rangle
  \langle proof \rangle
lemma negate-ann-lits-cons[simp]:
  \langle negate-ann-lits\ (L\ \#\ M)=add-mset\ (-\ lit-of\ L)\ (negate-ann-lits\ M) \rangle
  \langle proof \rangle
```

```
lemma uminus-simple-clss-iff[simp]:
  \langle uminus ' \# M \in simple\text{-}clss \ N \longleftrightarrow M \in simple\text{-}clss \ N \rangle
 \langle proof \rangle
lemma pNeg\text{-}mono: \langle C \subseteq \# C' \Longrightarrow pNeg C \subseteq \# pNeg C' \rangle
end
theory Partial-And-Total-Herbrand-Interpretation
  imports Partial-Herbrand-Interpretation
    Ordered-Resolution-Prover. Herbrand-Interpretation
begin
```

## Bridging of total and partial Herbrand interpretation

This theory has mostly be written as a sanity check between the two entailment notion.

```
1.3
definition partial-model-of :: \langle 'a | interp \Rightarrow 'a | partial-interp \rangle where
\langle partial\text{-}model\text{-}of\ I = Pos\ `I \cup Neg\ `\{x.\ x \notin I\} \rangle
definition total-model-of :: \langle 'a \ partial-interp \Rightarrow 'a \ interp \rangle where
\langle total\text{-}model\text{-}of \ I = \{x. \ Pos \ x \in I\} \rangle
lemma total-over-set-partial-model-of:
   \langle total\text{-}over\text{-}set \ (partial\text{-}model\text{-}of \ I) \ UNIV \rangle
   \langle proof \rangle
lemma consistent-interp-partial-model-of:
   \langle consistent\text{-}interp\ (partial\text{-}model\text{-}of\ I) \rangle
   \langle proof \rangle
\mathbf{lemma}\ consistent\text{-}interp\text{-}alt\text{-}def \colon
   \langle consistent\text{-}interp\ I \longleftrightarrow (\forall\ L.\ \neg(Pos\ L \in I \land\ Neg\ L \in I)) \rangle
   \langle proof \rangle
context
  fixes I :: \langle 'a \ partial-interp \rangle
  assumes cons: \langle consistent\text{-}interp \ I \rangle
begin
lemma partial-implies-total-true-cls-total-model-of:
  \mathbf{assumes} \ \langle Partial\text{-}Herbrand\text{-}Interpretation.true\text{-}cls\ I\ C \rangle
  shows \langle Herbrand\text{-}Interpretation.true\text{-}cls \ (total\text{-}model\text{-}of \ I) \ C \rangle
   \langle proof \rangle
\mathbf{lemma}\ total\text{-}implies\text{-}partial\text{-}true\text{-}cls\text{-}total\text{-}model\text{-}of\text{:}}
  assumes \langle Herbrand\text{-}Interpretation.true\text{-}cls \ (total\text{-}model\text{-}of \ I) \ C \rangle and
    \langle total\text{-}over\text{-}set\ I\ (atms\text{-}of\ C) \rangle
  shows \langle Partial-Herbrand-Interpretation.true-cls\ I\ C \rangle
   \langle proof \rangle
```

 $\mathbf{lemma}\ \mathit{partial-implies-total-true-clss-total-model-of}:$ **assumes**  $\langle Partial\text{-}Herbrand\text{-}Interpretation.true\text{-}clss\ I\ C \rangle$ 

```
\mathbf{shows} \ \langle Herbrand\text{-}Interpretation.true\text{-}clss \ (total\text{-}model\text{-}of \ I) \ C \rangle
   \langle proof \rangle
\mathbf{lemma}\ total\text{-}implies\text{-}partial\text{-}true\text{-}clss\text{-}total\text{-}model\text{-}of\text{:}}
   \mathbf{assumes} \ \langle \mathit{Herbrand-Interpretation.true-clss} \ (\mathit{total-model-of} \ \mathit{I}) \ \ \mathit{C} \rangle \ \ \mathbf{and}
      \langle total\text{-}over\text{-}m\ I\ C\rangle
   \mathbf{shows} \ \langle Partial\text{-}Herbrand\text{-}Interpretation.true\text{-}clss\ I\ C \rangle
   \langle proof \rangle
end
\mathbf{lemma}\ total\text{-}implies\text{-}partial\text{-}true\text{-}cls\text{-}partial\text{-}model\text{-}of\text{:}}
   \mathbf{assumes} \ \langle Herbrand\text{-}Interpretation.true\text{-}cls \ I \ C \rangle
   shows \langle Partial\text{-}Herbrand\text{-}Interpretation.true\text{-}cls\ (partial\text{-}model\text{-}of\ I)\ C \rangle
   \langle proof \rangle
\mathbf{lemma}\ total\text{-}implies\text{-}partial\text{-}true\text{-}clss\text{-}partial\text{-}model\text{-}of\text{:}}
   \mathbf{assumes} \ \langle Herbrand\text{-}Interpretation.true\text{-}clss \ I \ C \rangle
   \mathbf{shows} \ \langle \textit{Partial-Herbrand-Interpretation.true-clss} \ (\textit{partial-model-of} \ I) \ C \rangle
   \langle proof \rangle
\mathbf{lemma}\ \mathit{partial-total-satisfiable-iff}\colon
   \langle Partial\text{-}Herbrand\text{-}Interpretation.satisfiable\ N \longleftrightarrow Herbrand\text{-}Interpretation.satisfiable\ N \rangle
   \langle proof \rangle
end
theory Prop-Logic
imports Main
begin
```

## Chapter 2

# Normalisation

We define here the normalisation from formula towards conjunctive and disjunctive normal form, including normalisation towards multiset of multisets to represent CNF.

## 2.1 Logics

In this section we define the syntax of the formula and an abstraction over it to have simpler proofs. After that we define some properties like subformula and rewriting.

### 2.1.1 Definition and Abstraction

The propositional logic is defined inductively. The type parameter is the type of the variables.

```
datatype 'v propo =

FT | FF | FVar 'v | FNot 'v propo | FAnd 'v propo 'v propo | FOr 'v propo 'v propo |

FImp 'v propo 'v propo | FEq 'v propo 'v
```

We do not define any notation for the formula, to distinguish properly between the formulas and Isabelle's logic.

To ease the proofs, we will write the formula on a homogeneous manner, namely a connecting argument and a list of arguments.

```
datatype 'v connective = CT \mid CF \mid CVar \mid v \mid CNot \mid CAnd \mid COr \mid CImp \mid CEq

abbreviation nullary-connective \equiv \{CF\} \cup \{CT\} \cup \{CVar \mid x \mid x. \mid True\}

definition binary-connectives \equiv \{CAnd, COr, CImp, CEq\}
```

We define our own induction principal: instead of distinguishing every constructor, we group them by arity.

```
lemma propo-induct-arity[case-names nullary unary binary]: fixes \varphi \psi :: 'v \ propo assumes nullary: \bigwedge \varphi \ x. \ \varphi = FF \lor \varphi = FT \lor \varphi = FVar \ x \Longrightarrow P \ \varphi and unary: \bigwedge \psi . P \ \psi \Longrightarrow P \ (FNot \ \psi) and binary: \bigwedge \varphi \ \psi 1 \ \psi 2. \ P \ \psi 1 \Longrightarrow P \ \psi 2 \Longrightarrow \varphi = FAnd \ \psi 1 \ \psi 2 \lor \varphi = FOr \ \psi 1 \ \psi 2 \lor \varphi = FImp \ \psi 1 \psi 2 \lor \varphi = FEq \ \psi 1 \ \psi 2 \Longrightarrow P \ \varphi shows P \ \psi \langle proof \rangle
```

The function conn is the interpretation of our representation (connective and list of arguments). We define any thing that has no sense to be false

```
\begin{array}{l} \mathbf{fun}\ conn\ ::\ 'v\ connective \Rightarrow 'v\ propo\ list \Rightarrow 'v\ propo\ \mathbf{where}\\ conn\ CT\ [] = FT\ |\\ conn\ CF\ [] = FF\ |\\ conn\ (CVar\ v)\ [] = FVar\ v\ |\\ conn\ CNot\ [\varphi] = FNot\ \varphi\ |\\ conn\ CAnd\ (\varphi\ \#\ [\psi]) = FAnd\ \varphi\ \psi\ |\\ conn\ COr\ (\varphi\ \#\ [\psi]) = FOr\ \varphi\ \psi\ |\\ conn\ CImp\ (\varphi\ \#\ [\psi]) = FImp\ \varphi\ \psi\ |\\ conn\ CEq\ (\varphi\ \#\ [\psi]) = FEq\ \varphi\ \psi\ |\\ conn\ - - = FF \end{array}
```

We will often use case distinction, based on the arity of the v connective, thus we define our own splitting principle.

```
lemma connective-cases-arity[case-names nullary binary unary]: assumes nullary: \bigwedge x.\ c = CT \lor c = CF \lor c = CVar\ x \Longrightarrow P and binary: c \in binary\text{-connectives} \Longrightarrow P and unary: c = CNot \Longrightarrow P shows P \langle proof \rangle
```

```
assumes nullary: c \in nullary\text{-}connective \Longrightarrow P
and unary: c = CNot \Longrightarrow P
and binary: c \in binary\text{-}connectives \Longrightarrow P
shows P
\langle proof \rangle
```

Our previous definition is not necessary correct (connective and list of arguments), so we define an inductive predicate.

```
inductive wf-conn :: 'v connective \Rightarrow 'v propo list \Rightarrow bool for c :: 'v connective where
wf-conn-nullary[simp]: (c = CT \lor c = CF \lor c = CVar \ v) \Longrightarrow wf-conn c \ [] \ []
wf-conn-unary[simp]: c = CNot \Longrightarrow wf-conn c [\psi]
wf-conn-binary[simp]: c \in binary-connectives \implies wf-conn c (\psi \# \psi' \# [])
thm wf-conn.induct
lemma wf-conn-induct[consumes 1, case-names CT CF CVar CNot COr CAnd CImp CEq]:
  assumes wf-conn c x and
    \bigwedge v. \ c = CT \Longrightarrow P [] and
    \bigwedge v. \ c = CF \Longrightarrow P \mid  and
    \bigwedge v. \ c = CVar \ v \Longrightarrow P \ [] and
    \wedge \psi \psi'. c = COr \Longrightarrow P [\psi, \psi'] and
    \wedge \psi \psi'. c = CAnd \Longrightarrow P[\psi, \psi'] and
    \wedge \psi \psi'. c = CImp \Longrightarrow P [\psi, \psi'] and
    \wedge \psi \psi'. c = CEq \Longrightarrow P [\psi, \psi']
  shows P x
  \langle proof \rangle
```

### 2.1.2 Properties of the Abstraction

First we can define simplification rules.

**lemma** wf-conn-conn[simp]:

```
wf-conn CT l \Longrightarrow conn CT l = FT
wf-conn CF l \Longrightarrow conn CF l = FF
wf-conn (CVar x) l \Longrightarrow conn (CVar x) l = FVar x \langle proof \rangle
```

**lemma** wf-conn-list-decomp[simp]:

```
 \begin{array}{l} \textit{wf-conn} \ \textit{CT} \ l \longleftrightarrow l = [] \\ \textit{wf-conn} \ \textit{CF} \ l \longleftrightarrow l = [] \\ \textit{wf-conn} \ (\textit{CVar} \ x) \ l \longleftrightarrow l = [] \\ \textit{wf-conn} \ \textit{CNot} \ (\xi \ @ \ \varphi \ \# \ \xi') \longleftrightarrow \xi = [] \ \land \ \xi' = [] \\ \langle \textit{proof} \rangle \\ \end{array}
```

lemma wf-conn-list:

```
 \begin{array}{l} \textit{wf-conn}\ c\ l \Longrightarrow \textit{conn}\ c\ l = \textit{FT} \longleftrightarrow (c = \textit{CT}\ \land\ l = []) \\ \textit{wf-conn}\ c\ l \Longrightarrow \textit{conn}\ c\ l = \textit{FF} \longleftrightarrow (c = \textit{CF}\ \land\ l = []) \\ \textit{wf-conn}\ c\ l \Longrightarrow \textit{conn}\ c\ l = \textit{FVar}\ x \longleftrightarrow (c = \textit{CVar}\ x \land\ l = []) \\ \textit{wf-conn}\ c\ l \Longrightarrow \textit{conn}\ c\ l = \textit{FAnd}\ a\ b \longleftrightarrow (c = \textit{CAnd}\ \land\ l = a\ \#\ b\ \#\ []) \\ \textit{wf-conn}\ c\ l \Longrightarrow \textit{conn}\ c\ l = \textit{FOr}\ a\ b \longleftrightarrow (c = \textit{COr}\ \land\ l = a\ \#\ b\ \#\ []) \\ \textit{wf-conn}\ c\ l \Longrightarrow \textit{conn}\ c\ l = \textit{FImp}\ a\ b \longleftrightarrow (c = \textit{CImp}\ \land\ l = a\ \#\ b\ \#\ []) \\ \textit{wf-conn}\ c\ l \Longrightarrow \textit{conn}\ c\ l = \textit{FNot}\ a \longleftrightarrow (c = \textit{CNot}\ \land\ l = a\ \#\ b\ \#\ []) \\ \textit{wf-conf}\ \rangle \\ \langle \textit{proof}\ \rangle \\ \end{array}
```

In the binary connective cases, we will often decompose the list of arguments (of length 2) into two elements.

```
lemma list-length2-decomp: length l = 2 \Longrightarrow (\exists \ a \ b. \ l = a \# b \# []) \land proof \rangle
```

wf-conn for binary operators means that there are two arguments.

**lemma** wf-conn-bin-list-length:

```
fixes l:: 'v \ propo \ list assumes conn: c \in binary\text{-}connectives shows length \ l = 2 \longleftrightarrow wf\text{-}conn \ c \ l \langle proof \rangle
```

```
lemma wf-conn-not-list-length[iff]:

fixes l:: 'v \ propo \ list

shows wf-conn CNot l \longleftrightarrow length \ l = 1

\langle proof \rangle
```

Decomposing the Not into an element is moreover very useful.

```
lemma wf-conn-Not-decomp:
```

```
fixes l:: 'v propo list and a:: 'v assumes corr: wf-conn CNot l shows \exists a. l = [a] \langle proof \rangle
```

The wf-conn remains correct if the length of list does not change. This lemma is very useful when we do one rewriting step

```
{\bf lemma}\ \textit{wf-conn-no-arity-change}:
```

```
\begin{array}{c} \textit{length } l = \textit{length } l' \Longrightarrow \textit{wf-conn } c \ l \longleftrightarrow \textit{wf-conn } c \ l' \\ \langle \textit{proof} \rangle \end{array}
```

```
lemma wf-conn-no-arity-change-helper:
length (\xi @ \varphi \# \xi') = length (\xi @ \varphi' \# \xi')
\langle proof \rangle
```

The injectivity of *conn* is useful to prove equality of the connectives and the lists.

### 2.1.3 Subformulas and Properties

A characterization using sub-formulas is interesting for rewriting: we will define our relation on the sub-term level, and then lift the rewriting on the term-level. So the rewriting takes place on a subformula.

```
inductive subformula :: 'v propo \Rightarrow 'v propo \Rightarrow bool (infix \leq 45) for \varphi where subformula-refl[simp]: \varphi \leq \varphi | subformula-into-subformula: \psi \in set\ l \Longrightarrow wf\text{-}conn\ c\ l \Longrightarrow \varphi \leq \psi \Longrightarrow \varphi \leq conn\ c\ l
```

On the *subformula-into-subformula*, we can see why we use our *conn* representation: one case is enough to express the subformulas property instead of listing all the cases.

This is an example of a property related to subformulas.

```
\mathbf{lemma}\ subformula-in-subformula-not:
shows b: FNot \varphi \leq \psi \Longrightarrow \varphi \leq \psi
  \langle proof \rangle
lemma subformula-in-binary-conn:
  assumes conn: c \in binary-connectives
  shows f \leq conn \ c \ [f, \ g]
  and g \leq conn \ c \ [f, \ g]
\langle proof \rangle
lemma subformula-trans:
 \psi \preceq \psi' \Longrightarrow \varphi \preceq \psi \Longrightarrow \varphi \preceq \psi'
  \langle proof \rangle
lemma subformula-leaf:
  fixes \varphi \psi :: 'v \ propo
  assumes incl: \varphi \leq \psi
  and simple: \psi = FT \lor \psi = FF \lor \psi = FVar x
  shows \varphi = \psi
  \langle proof \rangle
```

 $\mathbf{lemma}\ \mathit{subfurmula-not-incl-eq}\colon$ 

```
assumes \varphi \leq conn \ c \ l
  and wf-conn c l
  and \forall \psi. \ \psi \in set \ l \longrightarrow \neg \ \varphi \preceq \psi
  shows \varphi = conn \ c \ l
  \langle proof \rangle
lemma wf-subformula-conn-cases:
  wf-conn c \ l \Longrightarrow \varphi \preceq conn \ c \ l \longleftrightarrow (\varphi = conn \ c \ l \lor (\exists \psi. \ \psi \in set \ l \land \varphi \preceq \psi))
  \langle proof \rangle
lemma subformula-decomp-explicit[simp]:
  \varphi \leq FAnd \ \psi \ \psi' \longleftrightarrow (\varphi = FAnd \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi') \ (is \ ?P \ FAnd)
  \varphi \leq FOr \ \psi \ \psi' \longleftrightarrow (\varphi = FOr \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi')
  \varphi \leq FEq \ \psi \ \psi' \longleftrightarrow (\varphi = FEq \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi')
  \varphi \leq FImp \ \psi \ \psi' \longleftrightarrow (\varphi = FImp \ \psi \ \psi' \lor \varphi \leq \psi \lor \varphi \leq \psi')
\langle proof \rangle
lemma wf-conn-helper-facts[iff]:
  wf-conn CNot [\varphi]
  wf-conn CT []
  wf-conn CF []
  wf-conn(CVarx)
  wf-conn CAnd [\varphi, \psi]
  wf-conn COr [\varphi, \psi]
  wf-conn CImp [\varphi, \psi]
  wf-conn CEq [\varphi, \psi]
  \langle proof \rangle
lemma exists-c-conn: \exists c \ l. \ \varphi = conn \ c \ l \land wf\text{-}conn \ c \ l
  \langle proof \rangle
lemma subformula-conn-decomp[simp]:
  assumes wf: wf-conn c l
  shows \varphi \leq conn \ c \ l \longleftrightarrow (\varphi = conn \ c \ l \lor (\exists \ \psi \in set \ l. \ \varphi \leq \psi)) (is ?A \longleftrightarrow ?B)
\langle proof \rangle
lemma subformula-leaf-explicit[simp]:
  \varphi \leq FT \longleftrightarrow \varphi = FT
  \varphi \preceq \mathit{FF} \longleftrightarrow \varphi = \mathit{FF}
  \varphi \leq FVar \ x \longleftrightarrow \varphi = FVar \ x
  \langle proof \rangle
The variables inside the formula gives precisely the variables that are needed for the formula.
primrec vars-of-prop:: 'v propo \Rightarrow 'v set where
vars-of-prop\ FT = \{\}\ |
vars-of-prop FF = \{\} \mid
vars-of-prop (FVar x) = \{x\} \mid
vars-of-prop \ (FNot \ \varphi) = vars-of-prop \ \varphi \ |
vars-of-prop \ (FAnd \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi \ |
vars-of-prop \ (FOr \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi \ |
vars-of-prop \ (FImp \ \varphi \ \psi) = vars-of-prop \ \varphi \cup vars-of-prop \ \psi \ |
vars-of-prop (FEq \varphi \psi) = vars-of-prop \varphi \cup vars-of-prop \psi
lemma vars-of-prop-incl-conn:
  fixes \xi \xi' :: 'v \text{ propo list and } \psi :: 'v \text{ propo and } c :: 'v \text{ connective}
```

assumes corr: wf-conn c l and incl:  $\psi \in set l$ 

```
shows vars-of-prop \psi \subseteq vars-of-prop (conn \ c \ l)
\langle proof \rangle
The set of variables is compatible with the subformula order.
lemma subformula-vars-of-prop:
  \varphi \preceq \psi \Longrightarrow vars-of-prop \ \varphi \subseteq vars-of-prop \ \psi
  \langle proof \rangle
2.1.4 Positions
Instead of 1 or 2 we use L or R
datatype sign = L \mid R
We use nil instead of \varepsilon.
fun pos :: 'v \ propo \Rightarrow sign \ list \ set \ where
pos FF = \{[]\} \mid
pos \ FT = \{[]\} \ |
pos (FVar x) = \{[]\}
pos (FAnd \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \mid
pos (FOr \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \mid
pos (FEq \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \mid
pos (FImp \varphi \psi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\} \cup \{R \# p \mid p. p \in pos \psi\} \mid
pos (FNot \varphi) = \{[]\} \cup \{L \# p \mid p. p \in pos \varphi\}
lemma finite-pos: finite (pos \varphi)
  \langle proof \rangle
lemma finite-inj-comp-set:
  fixes s :: 'v \ set
  assumes finite: finite s
  and inj: inj f
  shows card (\{f \mid p \mid p. p \in s\}) = card \mid s
  \langle proof \rangle
lemma cons-inject:
  inj ((\#) s)
  \langle proof \rangle
lemma finite-insert-nil-cons:
  finite s \Longrightarrow card\ (insert\ [\ \{L \ \#\ p\ | p.\ p \in s\}) = 1 + card\ \{L \ \#\ p\ | p.\ p \in s\}
  \langle proof \rangle
lemma cord-not[simp]:
  card (pos (FNot \varphi)) = 1 + card (pos \varphi)
\langle proof \rangle
lemma card-seperate:
  assumes finite s1 and finite s2
  shows card (\{L \# p \mid p. p \in s1\} \cup \{R \# p \mid p. p \in s2\}) = card (\{L \# p \mid p. p \in s1\})
            + \ card(\{R \ \# \ p \ | p. \ p \in s2\}) \ (\textbf{is} \ \ card \ (?L \cup ?R) = \ \ card \ ?L + \ \ \ \ \ \ \ ?R)
\langle proof \rangle
```

**definition** prop-size where prop-size  $\varphi = card \ (pos \ \varphi)$ 

```
lemma prop-size-vars-of-prop: fixes \varphi :: 'v propo shows card (vars-of-prop \varphi) \leq prop-size \varphi \langle proof \rangle value pos (FImp (FAnd (FVar P) (FVar Q)) (FOr (FVar P) (FVar Q))) inductive path-to :: sign list <math>\Rightarrow 'v propo \Rightarrow 'v propo \Rightarrow bool where path-to-refl[intro]: path-to [] \varphi \varphi | path-to-l: c \in binary-connectives <math>\vee c = CNot \Longrightarrow wf-conn c (\varphi \# l) \Longrightarrow path-to p \varphi \varphi' \Longrightarrow path-to (L \# p) (conn c (\varphi \# l)) \varphi' | path-to-r: c \in binary-connectives \Longrightarrow wf-conn c (\psi \# \varphi \# l]) \Longrightarrow path-to p \varphi \varphi' \Longrightarrow path-to (R \# p) (conn c (\psi \# \varphi \# l])) \varphi'
```

There is a deep link between subformulas and pathes: a (correct) path leads to a subformula and a subformula is associated to a given path.

```
lemma path-to-subformula:
  path-to p \varphi \varphi' \Longrightarrow \varphi' \preceq \varphi
  \langle proof \rangle
{f lemma}\ subformula-path-exists:
  fixes \varphi \varphi' :: 'v \ propo
  shows \varphi' \preceq \varphi \Longrightarrow \exists p. path-to p \varphi \varphi'
fun replace-at :: sign \ list \Rightarrow 'v \ propo \Rightarrow 'v \ propo \Rightarrow 'v \ propo \ where
replace-at [] - \psi = \psi |
replace-at (L \# l) (FAnd \varphi \varphi') \psi = FAnd (replace-at l \varphi \psi) \varphi'
replace-at (R \# l) (FAnd \varphi \varphi') \psi = FAnd \varphi (replace-at l \varphi' \psi)
replace-at (L \# l) (FOr \varphi \varphi') \psi = FOr (replace-at l \varphi \psi) \varphi'
replace-at (R \# l) (FOr \varphi \varphi') \psi = FOr \varphi (replace-at l \varphi' \psi)
replace-at (L \# l) (FEq \varphi \varphi') \psi = FEq (replace-at l \varphi \psi) \varphi'
replace-at (R \# l) (FEq \varphi \varphi') \psi = FEq \varphi (replace-at l \varphi' \psi)
replace-at (L \# l) (FImp \varphi \varphi') \psi = FImp (replace-at l \varphi \psi) \varphi'
replace-at (R \# l) (FImp \varphi \varphi') \psi = FImp \varphi (replace-at l \varphi' \psi)
replace-at (L \# l) (FNot \varphi) \psi = FNot (replace-at l \varphi \psi)
```

## 2.2 Semantics over the Syntax

Given the syntax defined above, we define a semantics, by defining an evaluation function *eval*. This function is the bridge between the logic as we define it here and the built-in logic of Isabelle.

```
fun eval :: ('v \Rightarrow bool) \Rightarrow 'v \ propo \Rightarrow bool \ (infix \models 50) \ where 
\mathcal{A} \models FT = True \mid
\mathcal{A} \models FF = False \mid
\mathcal{A} \models FVar \ v = (\mathcal{A} \ v) \mid
\mathcal{A} \models FNot \ \varphi = (\neg(\mathcal{A} \models \varphi)) \mid
\mathcal{A} \models FAnd \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \land \mathcal{A} \models \varphi_2) \mid
\mathcal{A} \models FOr \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \lor \mathcal{A} \models \varphi_2) \mid
\mathcal{A} \models FImp \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \to \mathcal{A} \models \varphi_2) \mid
\mathcal{A} \models FEq \ \varphi_1 \ \varphi_2 = (\mathcal{A} \models \varphi_1 \longleftrightarrow \mathcal{A} \models \varphi_2)
definition evalf \ (infix \models f \ 50) \ where
evalf \ \varphi \ \psi = (\forall A. \ A \models \varphi \longrightarrow A \models \psi)
```

The deduction rule is in the book. And the proof looks like to the one of the book.

```
theorem deduction-theorem:
```

```
\varphi \models f \psi \longleftrightarrow (\forall A. \ A \models FImp \ \varphi \ \psi)\langle proof \rangle
```

A shorter proof:

$$\mathbf{lemma} \ \varphi \models f \ \psi \longleftrightarrow (\forall \ A. \ A \models \mathit{FImp} \ \varphi \ \psi)$$
 
$$\langle \mathit{proof} \rangle$$

```
definition same-over-set:: ('v \Rightarrow bool) \Rightarrow ('v \Rightarrow bool) \Rightarrow 'v \ set \Rightarrow bool where same-over-set A \ B \ S = (\forall \ c \in S. \ A \ c = B \ c)
```

If two mapping A and B have the same value over the variables, then the same formula are satisfiable.

```
\mathbf{lemma}\ \mathit{same-over-set-eval} :
```

```
 \begin{array}{l} \textbf{assumes} \ \textit{same-over-set} \ A \ B \ (\textit{vars-of-prop} \ \varphi) \\ \textbf{shows} \ A \models \varphi \longleftrightarrow B \models \varphi \\ \langle \textit{proof} \rangle \\ \end{array}
```

end