I. Réponse d'un système linéaire

I.1. Théorème de superposition

Un circuit linéaire correspond à la donnée d'équations (différentielles) linéaires.

• Mise en équation :
$$u_C + Ri = e(t)$$
or $i = C \frac{du_C}{dt}$
d'où $u_c(t) + R C \frac{du_C}{dt} = u(t)$

si à e₁(t) correspond la solution u_{c1}(t)

si à $e_2(t)$ correspond la solution $u_{c2}(t)$ et

alors à $\lambda e_1(t) + \beta e_2(t)$ correspond la solution $\lambda u_{c1}(t) + \beta u_{c2}(t)$

I.2. Réponse harmonique

combinaison linéaire des solutions.

• Si maintenant le circuit RC est alimenté par une tension sinusoïdale $e(t) = E\sqrt{2}.cos(\omega t)$. On peut alors utiliser les notations complexes.

On a calculé dans le chapitre précédant la fonction de transfert du système RC : $\underline{H}(j\omega) = \frac{1}{1+iRC\omega} = \frac{U_c}{F}$

Ainsi l'expression complexe de la tension de sortie est :
$$\underline{U_c} = \underline{H}(j\omega).\underline{E} = \frac{1}{1+iRC\omega} \ .E$$

D'où en passant en grandeurs instantanées $u_c(t) = \frac{E\sqrt{2}}{\sqrt{1 + (RC\omega)^2}} \cos(\omega t - \arctan(RC\omega))$

• Plus généralement, lorsque la tension d'entrée varie sinusoïdalement e(t) = $E\sqrt{2}.cos(\omega t)$, le signal de sortie sera aussi sinusoïdal de même pulsation.

La fonction de transfert permettra de connaitre son amplitude et sa phase :

$$u_s(t) = H(\omega)E\sqrt{2}cos(\omega t + Arg(\underline{H}(j\omega))).$$

I.3. Entrée combinaison linéaire de fonctions sinusoïdales

Exemple:
$$e(t) = E_1 \sqrt{2} \cos \omega_1 t + E_2 \sqrt{2} \cos \omega_2 t$$

Pour le filtre RC on connaît les courbes de réponse (diagramme de Bode) du filtre. On utilise alors le principe de superposition.

* réponse du filtre à
$$E_1 \sqrt{2} \cos \omega_1 t$$
:

pour
$$\omega = \omega_1$$
: $H(\omega_1) = \frac{1}{\sqrt{1 + (RC\omega_1)^2}}$ et $Arg(\underline{H}(j\omega_1) = -arctan(RC\omega_1))$

$$\Rightarrow u_{s1} (t) = \frac{\sqrt{2}E_1}{\sqrt{1 + (RC\omega_1)^2}} cos(\omega_1 t - arctan(RC\omega_1))$$

$$\Rightarrow u_{s1} (t) = \frac{\sqrt{2E_1}}{\sqrt{1 + (RC\omega_1)^2}} \cos(\omega_1 t - \arctan(RC\omega_1))$$

* réponse du filtre à $E_2\sqrt{2}\cos\omega_2 t$:

* reponse du filtre à
$$E_2\sqrt{2}\cos\omega_2 t$$
:
$$pour \ \omega = \omega_2 : H(\omega_2) = \frac{1}{\sqrt{1+(RC\omega_2)^2}} \quad \text{et } Arg(\underline{H}(j\omega_2) = -arctan(RC\omega_2))$$

$$\Rightarrow u_{s2} \ (t) = \frac{\sqrt{2}E_2}{\sqrt{1+(RC\omega_2)^2}} \quad \cos(\omega_2 t - arctan(RC\omega_2))$$
Finalement la réponse à l'ensemble de la tension appliquée par le théorème de superposition est :

$$\Rightarrow \mathsf{u}_{s2} \ (\mathsf{t}) = \frac{\sqrt{2}\mathsf{E}_2}{\sqrt{1 + (\mathsf{RC}\omega_2)^2}} \ \cos(\omega_2 \mathsf{t} - \arctan(\mathsf{RC}\omega_2))$$

$$u_s(t) = u_{s1}(t) + u_{s2}(t) = \frac{\sqrt{2}E_1}{\sqrt{1 + (RC\omega_1)^2}} \cos(\omega_1 t - \arctan(RC\omega_1)) + \frac{\sqrt{2}E_2}{\sqrt{1 + (RC\omega_2)^2}} \cos(\omega_2 t - \arctan(RC\omega_2))$$

II. Représentation spectrale

II.1. Décomposition en série de Fourier

On a vu lors du chapitre sur les ondes qu'un signal périodique pouvait être décomposé en une somme de termes sinusoïdaux appelés série de Fourier.

Rappels:

Toute fonction périodique s(t), de fréquence f₀ peut être décomposée en une somme de fonctions sinusoïdales de fréquences nf₀.

La fonction s(t) peut alors s'écrire :

$$s(t) = S_0 + S_1 \cos(2\pi f_0 t + \phi_1) + S_2 \cos(4\pi f_0 t + \phi_2) + S_3 \cos(6\pi f_0 t + \phi_3) + ... + S_n \cos(2n\pi f_0 t + \phi_n)...$$

avec S_0 = valeur moyenne du signal ou composante continue.

 S_1 = amplitude du l'harmonique 1

 S_2 = amplitude de l'harmonique 2

S₃ = amplitude de l'harmonique 3

.....

S_n = amplitude de l'harmonique n

La fonction sinusoïdale de même fréquence que la fonction périodique s(t) (harmonique de rang 1) est appelée **fondamental.**

Les autres fonctions, de fréquences multiples, sont appelées les harmoniques de la fonction s(t).

II.2. Exemple le signal carré.

Le signal créneau e(t) d'amplitude 2V de période $T=2\pi/\omega=10ms$ évoluant de 0 à 2V, sa valeur moyenne est donc 1V

Ce signal admet un développement en série de Fourier :

$$e(t) = 1 + \frac{4}{\pi} \sin(\omega t) + \frac{4}{3\pi} \sin(3\omega t) + \frac{4}{5\pi} \sin(5\omega t) + \dots$$

On reconnait dans cette décomposition :

- → La valeur moyenne de e(t) : 1V
- \rightarrow le fondamental, de même période T = $2\pi/\omega$ que le signal e(t) : $\frac{4}{\pi}$ sin(ω t)
- \rightarrow l'harmonique de rang 3, de période T/3 : $\frac{4}{3\pi}$ sin(3 ω t)
- \rightarrow l'harmonique de rang n impaire, de période T/n : $\frac{4}{n\pi} \sin(n\omega t)$

On a ainsi le spectre de e(t):

(Feuille excel pour la représentation)

III. Filtrage linéaire d'un signal non sinusoïdal

III.1. Méthodologie

Si on cherche la réponse d'un filtre à un signal périodique quelconque e(t) avec $T_q = 2\pi/\omega_q$, on adopte la démarche suivante :

① On décompose le signal d'entrée en série de Fourier :

$$e(t) = e_0 + \Sigma E_k \cos(k\omega_q t + \varphi_k)$$

② On détermine la réponse s_k à chacun des termes e_k grâce à la fonction de transfert du filtre :

$$s_k(t) = |\underline{H}(jk\omega)| E_k \cos(k\omega_q t + \varphi_k + \arg(\underline{H}(jk\omega)))$$

3 On applique le théorème de superposition :

$$s(t) = \sum s_k(t) + s_0$$

III.2. Filtre passe-bas

Soit la fonction de transfert $\underline{H}(j\omega) = \frac{1}{1+j\frac{\omega}{\omega_0}}$

Pour fixer les idées on regarde la réponse d'un filtre passe-bas à un signal carré.

La réponse va dépendre de la valeur de la période T = $2\pi/\omega$ du signal par rapport à la valeur de la pulsation caractéristique du filtre ω_0

Il faut noter que la valeur moyenne de e(t) a une pulsation nulle, elle est rejetée à l'infini à gauche de l'échelle logarithmique.

Trois cas se présentent :

• ω = $2\pi/T$ << ω_0 le spectre du signal carré est entièrement contenu dans la zone passante du filtre. Le signal de sortie sera très ressemblant au signal d'entrée. Plus ω = $2\pi/T$ est faible devant ω_0 et plus le nombre d'harmoniques qui « passent » est important et plus le signal de sortie tend vers un signal carré.

• $\omega = 2\pi/T \approx \omega_0$ c'est une zone de transition une partie seule du signal d'entrée est filtrée.

• ω = $2\pi/T$ >> ω_0 à part la valeur moyenne, le spectre du signal carré est entièrement contenue dans la zone à -20dB/déca du filtre où le signal est intégré. On observe une triangularisation du signal de sorti, mais de très faible amplitude par rapport à la valeur moyenne, on réalise ainsi un moyenneur.

III.3. Filtre passe-haut

Soit la fonction de transfert
$$\underline{H}(j\omega) = \frac{j\frac{\omega}{\omega_0}}{1+j\frac{\omega}{\omega_0}}$$

Pour fixer les idées on regarde la réponse d'un filtre passe-haut à un signal carré.

La réponse va dépendre de la valeur de la période $T=2\pi/\omega$ du signal par rapport à la valeur de la pulsation caractéristique du filtre ω_0

Il faut noter que la valeur moyenne de e(t) a une pulsation nulle, elle est rejetée à l'infini à gauche de l'échelle logarithmique, elle sera maintenant complétement éliminée.

Trois cas se présentent :

• ω = $2\pi/T$ << ω_0 le spectre du signal carré est entièrement contenue dans la zone à +20dB/déca. On observe un signal de sortie qui présente de brusques variations.

• ω = $2\pi/T\approx\omega_0$ c'est une zone de transition une partie seule du signal d'entrée est filtrée.

• ω = $2\pi/T$ >> ω_0 le spectre du signal carré est entièrement contenue dans la zone passante du filtre. Le signal de sortie sera différent du signal d'entrée car il n'y a plus la valeur moyenne.

III.4. Réalisation d'un moyenneur

Soit un signal périodique dont on cherche la valeur moyenne. On sait que la valeur moyenne correspond à la valeur de la tension quand la fréquence est nulle. Pour la mesurer, on utilise un filtre passe-bas de fréquence de coupure extrêmement basse : il ne va laisser passer que les signaux continus. Exemple $v_e(t)$ est un signal carré de fréquence 1kHz d'amplitude 0.8 V et de composante continue 0.5V. On regarde la réponse d'un filtre passe-bas de fréquence de coupure 1Hz.

EL7 : FILTRAGE LINEAIRE

I. Réponse d'un système linéaire	
I.1. Théorème de superposition	-
I.2. Réponse harmonique	·
I.3. Entrée combinaison linéaire de fonctions sinusoïdales	·
II. Représentation spectrale	_
II.1. Décomposition en série de Fourier	2
II 2 Evemple le signal carré	5
III. Filtrage linéaire d'un signal non sinusoïdal	3
III.1. Méthodologie	3
III.2. Filtre passe-bas	
III.3. Filtre passe-haut	-
III.4. Réalisation d'un moyenneur	