Chapter 10

Transportation and Assignment Models

Unbalanced Transportation Problems

- In real-life problems, total demand is frequently not equal to total supply
- These unbalanced problems can be handled easily by introducing dummy sources or dummy destinations
- If total supply is greater than total demand, a dummy destination (warehouse), with demand exactly equal to the surplus, is created
- If total demand is greater than total supply, we introduce a dummy source (factory) with a supply equal to the excess of demand over supply

Unbalanced Transportation Problems

- In either case, shipping cost coefficients of zero are assigned to each dummy location or route as no goods will actually be shipped
- Any units assigned to a dummy destination represent excess capacity
- Any units assigned to a dummy source represent unmet demand

Demand Less Than Supply

- Suppose that the Cairo factory increases its rate of production from 100 to 250 desks
- The firm is now able to supply a total of 850 desks each period
- Warehouse requirements remain the same (700) so the row and column totals do not balance
- We add a dummy column that will represent a fake warehouse requiring 150 desks
- This is somewhat analogous to adding a slack variable
- We use the northwest corner rule and either stepping-stone or MODI to find the optimal solution

Demand Less Than Supply

 Initial solution to an unbalanced problem where demand is less than supply

FROM	A	В	С	DUMMY WAREHOUSE	TOTAL AVAILABLE
D	250 \$5	\$4	\$3	0	250
E	50 \$8	200 \$4	50 \$3	0	300
F	\$9	\$7	150 \$5	150	300
WAREHOUSE REQUIREMENTS	300	200	200	150	850

Total cost = 250(\$5) + 50(\$8) + 200(\$4) + 50(\$3) + 150(\$5) + 150(0) = \$3,350

Table 10.16

New Cairo capacity

Demand Greater than Supply

- The second type of unbalanced condition occurs when total demand is greater than total supply
- In this case we need to add a dummy row representing a fake factory
- The new factory will have a supply exactly equal to the difference between total demand and total real supply
- The shipping costs from the dummy factory to each destination will be zero

Demand Greater than Supply

Unbalanced transportation table for Happy Sound Stereo Company

FROM	WAREHOUSE A	WAREHOUSE B	WAREHOUSE C	PLANT SUPPLY
PLANT W	\$6	\$4	\$9	200
PLANT X	\$10	\$5	\$8	175
PLANT Y	\$12	\$7	\$6	75
WAREHOUSE DEMAND	250	100	150	500 450

Totals do not balance

Table 10.17

Demand Greater than Supply

Initial solution to an unbalanced problem in which demand is greater than supply

FROM	WAREHOUSE A		WAREHOUSE B		WAREHOUSE C		PLANT SUPPLY
PLANT W	200	\$6		\$4		\$9	200
PLANT X	50	\$10	100	\$5	25	\$8	175
PLANT Y		\$12		\$7	75	\$6	. 75
PLANT Y		0		0	50	0	. 50
WAREHOUSE DEMAND	250		100		150		500

Total cost of initial solution =
$$200(\$6) + 50(\$10) + 100(\$5) + 25(\$8) + 75(\$6) + \$50(0) = \$2,850$$

Degeneracy in Transportation Problems

- *Degeneracy* occurs when the number of occupied squares or routes in a transportation table solution is less than the number of rows plus the number of columns minus 1
- Such a situation may arise in the initial solution or in any subsequent solution
- Degeneracy requires a special procedure to correct the problem since there are not enough occupied squares to trace a closed path for each unused route and it would be impossible to apply the stepping-stone method or to calculate the R and K values needed for the MODI technique

Degeneracy in Transportation Problems

- To handle degenerate problems, create an artificially occupied cell
- That is, place a zero (representing a fake shipment) in one of the unused squares and then treat that square as if it were occupied
- The square chosen must be in such a position as to allow all stepping-stone paths to be closed
- There is usually a good deal of flexibility in selecting the unused square that will receive the zero

Degeneracy in an Initial Solution

- The Martin Shipping Company example illustrates degeneracy in an initial solution
- They have three warehouses which supply three major retail customers
- Applying the northwest corner rule the initial solution has only four occupied squares
- This is less than the amount required to use either the stepping-stone or MODI method to improve the solution (3 rows + 3 columns -1 = 5)
- To correct this problem, place a zero in an unused square, typically one adjacent to the last filled cell

Degeneracy in an Initial Solution

Initial solution of a degenerate problem

FROM	CUSTOMER 1		CUSTOMER 2		CUSTOMER 3		WAREHOUSE SUPPLY
WAREHOUSE 1	100	\$8		\$2		\$6	100
WAREHOUSE 2	:	\$10	100	\$9	20	\$9	120
WAREHOUSE 3		\$7		\$10	80	\$7	80
					60		80
CUSTOMER DEMAND	100		100		100		300

Table 10.19

Possible choices of cells to address the degenerate solution

Degeneracy in an Initial Solution

Initial solution of a degenerate problem

FROM	CUSTOMER 1		CUSTOMER 2		CUSTOMER 3		WAREHOUSE SUPPLY
WAREHOUSE 1	100	8	0	\$2		\$6	100
		10	_	\$9		\$9	
WAREHOUSE 2	0		100	Ψ3	20	Ψ3	120
WAREHOUSE 3	\$	57		\$10	80	\$7	80
CUSTOMER DEMAND	100		100		100		300
Table 40.40							

Table 10.19

Possible choices of cells to address the degenerate solution

- A transportation problem can become degenerate after the initial solution stage if the filling of an empty square results in two or more cells becoming empty simultaneously
- This problem can occur when two or more cells with minus signs tie for the lowest quantity
- To correct this problem, place a zero in one of the previously filled cells so that only one cell becomes empty

Bagwell Paint transportation table

FROM	WAREHOUSE 1	WAREHOUSE 2	WAREHOUSE 3	FACTORY CAPACITY
FACTORY A	\$8	\$5	\$16	70
FACTORY B	\$15	\$10	\$7	130
FACTORY C	\$3	\$9	\$10	80
WAREHOUSE REQUIREMENT	150	80	50	280

Table 10.20

Bagwell Paint transportation table

FROM	WAREHOUSE 1		WAREHOUSE 2		WAREHOUSE 3		FACTORY CAPACITY
FACTORY A	70	\$8		\$5		\$16	70
FACTORY B	50	\$15	80	\$10		\$7	130
FACTORY C	30	\$3		\$9	50	\$10	80
WAREHOUSE REQUIREMENT	150		80		50		280

Table 10.20

- Bagwell Paint Example
 - After one iteration, the cost analysis at Bagwell Paint produced a transportation table that was not degenerate but was not optimal
 - The improvement indices are

```
factory A – warehouse 2 index = +2
```

factory
$$A$$
 – warehouse 3 index = +1

factory
$$B$$
 – warehouse 3 index = -15

factory
$$C$$
 – warehouse 2 index = +11

Only route with a negative index

Tracing a closed path for the factory B – warehouse 3 route

FROM	WAREHOUSE 1		WAREHOUSE 3		
FACTORY B	50	\$15	••••	\$7	
FACTORY C	30	\$3	50	\$10	

Table 10.21

- This would cause two cells to drop to zero
- We need to place an artificial zero in one of these cells to avoid degeneracy

More Than One Optimal Solution

- It is possible for a transportation problem to have multiple optimal solutions
- This happens when one or more of the improvement indices zero in the optimal solution
- This means that it is possible to design alternative shipping routes with the same total shipping cost
- The alternate optimal solution can be found by shipping the most to this unused square using a stepping-stone path
- In the real world, alternate optimal solutions provide management with greater flexibility in selecting and using resources

Example:

FROM	PROJECT A	PROJECT B	PROJECT C	PLANT CAPACITIES
PLANT 1	\$10	\$4	\$11	70
PLANT 2	\$12	\$5	\$8	50
PLANT 3	\$9	\$7	\$6	30
PROJECT REQUIREMENTS	40	50	60	150

Initial solution

TO FROM	PROJECT A		PROJECT B		PROJECT C		PLANT CAPACITIES
PLANT 1		\$10		\$4		\$11	
	40		30				70
PLANT 2		\$12		\$5		\$8	
			20		30		50
PLANT 3		\$9		\$7		\$6	
					30		30
PROJECT REQUIREMENTS	40		50		60		150