COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 2: https://eduassistpro.gitauanid/

Workload A Chartiedu_assist_pro

COMP9334

Last lecture

- Modelling of computer systems using Queueing Networks
 - Open networks
 - Closed networks

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Open networks

Example: The server has a CPU and a disk.

A transaction may visit the CPU and disk multiple times. An open network is characterised by external transactions.

Closed queuing networks

Closed queueing networks model

- Running batch jobs overnight
- Once a job has completed, a new job starts.
 Good performance means high throughput.
 #jobs in the system = multi-programming level

S1,2017 COMP9334

This lecture

- The basic performance metrics
 - Response time, Throughput, Utilisation etc.
- Operational analysis
 - Fundamental Laws relating the basic performance metrics
 - Bottleneck Andigorfaeman People by Exam Help
- Workload chara
 - Poisson proces https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Operational analysis (OA)

- "Operational"
 - Collect performance data during day-to-day operation
- Operation laws
- Applications:
 - Use the data for building Queueng Freework models
 - Perform bottle https://eduassistpro.github.io/
 - Perform modifi

Add WeChat edu_assist_pro

iostat

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Single-queue example (1)

In an observational A requests arrived, https://eduassistpro.github.time B

Add WeChat edu_assist_pro

A, B and C are basic measurements

Deductions: Arrival rate $\lambda = A/T$

Output rate X = C/T

Utilisation U = B/T

Mean service time per completed request = B/C

\$1,2017 COMP9334

Motivating example

- Given
 - Observation period = 1 minute
 - CPU
 - Busy for 36s.
 - 1790 recausing an invent Project Exam Help
 - 1800 request
 - https://eduassistpro.github.io/ Find
 - Mean service time per completi edu assist pro
 - Utilisation =
 - Arrival rate =
 - Output rate =

S1,2017

Utilisation law

- The operational quantities are inter-related
- Consider
 - Utilisation U = B / T

 - Mean service time per completion S = B / C
 Output rate Assignment Project Exam Help

https://eduassistpro.github.io/ Utilisation law – Add WeChat edu_assist_pro

Utilisation law is an example of operational law.

COMP9334 S1,2017 10

Application of OA

- Don't have to measure every operational quantities
 - Measure B to deduce U don't have to measure U
- Consistency checks
- If U ≠ S X, something is wrong.
 Assignment Project Exam Help
 rmance analysis
 - Bottleneck anal https://eduassistpro.github.io/
 - Mean value analysis (Later in th Add WeChat edu_assist_pro

COMP9334 S1,2017 11

Equilibrium assumption

- OA makes the assumption that
 - C = A
 - Or at least C ≈ A
- This means that
 - The devices snight and the devices snight a
 - Arrival rate ut rate of requests for that device = Thrhttps://eduassistpro.github.io/
 - The above statement also app tem, i.e. replace the word "device" by "systemWeChat edu_assist_pro

OA for Queueing Networks (QNs)

```
The computer system has K Assignment Project Exam Help devices, labelled https://eduassistpro.github?o/,...,K.
```

Add WeChat edu_assist_pre convention is to add an additional device 0 to represent the outside world.

OA for QNs (cont'd)

- We measure the basic operational quantities for each device (or other equivalent quantities) over a time of T
 - A(j) = Number of arrivals at device j
 - B(j) = Busy time for device j
 - C(i) = Numbersofi gommente Provise to le vaine Help
- In addition, we h https://eduassistpro.github.io/
 - A(0) = Number o
 - C(0) = Number of Add p We tex Cols at the edu_assist_pro
- Question: What is the relationship between A(0) and C(0) for a closed QNs?

COMP9334 S1,2017 14

Visit ratios

- A job arriving at the system may require multiple visits to a device in the system
 - Example: If every job arriving at the system will require 3 visits to the disk (= device j), what is the ratio of C(j) to C(0)?
 - Assignment Project Exam Help
 We expect C(j)/C(0) =

https://eduassistpro.github.io/

- V(j) = Visit ratio of device j
 - = Number of And Workland edu_assist_pro
 - We have V(j) = C(j) / C(0)

Forced Flow Law

Since
$$V(j) = \frac{C(j)}{C(0)}$$

Assignment Project Exam Help

https://eduassistpro.github.io/

The forced flow law Aid We Chat edu_assist_pro

$$V(j) = \frac{X(j)}{X(0)}$$

Service time versus service demand

- Ex: A job requires two disk accesses to be completed. One disk access takes 20ms and the other takes 30ms.
- Service time = the amount of processing time required *per visit* to the devicesignment Project Exam Help
 - The quantities "2 https://eduassistpro.github.lo/service times.
- D(j) = Service demand Waghat edu_assists_Pre total service time required by that job
 - The service demand for this job = 20ms + 30 ms = 50ms

Service demand

- Service demand can be expressed in two different ways
 - Ex: A job requires two disk accesses to be completed. One disk access takes 20ms and the other takes 30ms.
 - D(j) = 50ms.
 Assignment Project Exam Help
 What are V(j) and S(j)?
 - Recall that https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Service demand D(j) = V(j) S(j)

Service demand law (1)

Given
$$D(j) = V(j) S(j)$$

Since
$$V(j) = \frac{X(j)}{X(0)}$$
 Assign Meth Opproject Exam Help

https://eduassistpro.github.io/S(i)?

Add WeChat edu_assist_pro

Service demand law

$$D(j) = \frac{U(j)}{X(0)}$$

Service demand law (2)

- Service demand law D(j) = U(j) / X(0)
 - You can determine service demand without knowing the visit ratio
 - Over measurement period T, if you find
 - B(j) = Busy time of device j
 - C(0) = Number of requests completed
 Assignment Project Exam Help
 You've enough information to find D(j)

https://eduassistpro.github.io/

- The importance of service de Add WeChat edu_assist_pro
 You will see that service dema mental quantity you
 - need to determine the performance of a queueing network
 - You will use service demand to determine system bottleneck today

COMP9334 S1,2017 20

Server example exercise

	Measurement time = 1 hr		
		# I/O/s	Utilisation
Assignment Pro	Disk 1	32 Holp	0.30
	Disk 2	Help 36	0.41
https://edua	ıssistpro.g	github.io/	0.54
Add WeCh	a € edu_as	sist_pro	0.35
	Total # jobs=13680		

What is the service time of Disk 2? What is the service demand of Disk 2? What is its visit ratio?

Server example solution

	Measurement time = 1 hr			
		# I/O/s	Utilisation	
Assignment Pro	Disk 1	32 Holp	0.30	
	j <mark>ect Exam</mark> Disk 2	36	0.41	
https://edua	ıssistpro.g	github.io/	0.54	
Add WeCh	a € edu_as	sist_pro	0.35	
	Total # jobs=13680			

Service time = U2/X2
System throughput
Service demand
Visit ratio

Little's law (1)

- Due to J.C. Little in 1961
 - A few different forms
 - The original form is based on stochastic models
 - An important result which is non-trivial
 - All the other operational laws are easy to derive but Little's Law's derivation is more elaborate.
- https://eduassistpro.github.io/
 Consider a single-
 - Navg = Average nondele We Cobat edu_assist_pro
 - When we count the number of jobs in a device, we include the one being served and those in the queue waiting for service

Little's Law (2)

- X = Throughput of the device
- Ravg = Average response time of the jobs
- Navg = Average number of jobs in the device
- Little's Law (for OA) says that Assignment Project Exam Help

Navg https://eduassistpro.github.io/

We will argue the validity of that edu_assistingre simple example.

Consider the single sever queue example from Week 1

Job index	Arrival time	Service time	Departure time
1	2	2	4
2	6	4	10
3	8	4	14
4	9 Assignment	Project Exam Help	17

Let us use blocks ohttps://eduassistpro.githnub.sp/an of the jobs, i.e. width of each block = re e of the job Add WeChat edu_assist_pro

Assuming that in the mast remain the line of the line

Total area of the blocks

Add WeChat edu_assist_pro

- = Response time of job 1 + Response time of job 2 + Response time of job 3 + Response time of job 4
- = Average response time over the measurement interval * Number of jobs departing over the measurement interval

This is one interpretation. Let us look at another.

Let us assume thes and let them fall to the ground. Like thttps://eduassistpro.github.io/

There is an interpretation of the height of the graph.

\$1,2017 COMP9334

Job index	Arrival time	Service time
1	2	2
2	6	4
3	8	4
4	9	3

Interpretation: Height of the graph = number of jobs in the device E.g. Number of jobs in [9,10] = 3

E.g. Number of jobs in [11,12] = 2 etc.

Again, consider the makets Wethattedu_assistapoo [0,20].

Area under the graph in [0,20]

- = Height of the graph in [0,1] + Height of the graph in [1,2] + ... Height of the graph in [19,20]
- = #jobs in [0,1] + #jobs in [1,2] + ... + #jobs in [19,20]
- = Average number of jobs in [0,20] * 20

\$1,2017 COMP9334

Area = Average signoment Projecte [Auti] Help
Number of
https://eduassistpro.github.io/

Area = Average number of jobs in [0,T] * T

Deriving Little's Law

```
Area = Average response time of all jobs *

Number of jobs leaving in [0,T] (Interpretation #1)

= Average number of jobs in [0,T] Helphterpretation #2)

https://eduassistpro.github.io/

Since Number of job

= Device throughout plumatjedu_assist_pro
```

We have Little's Law.

Average number of jobs in [0,T]

= Average response time of all jobs * Device throughput in [0,T]

Using Little's Law (1)

- A device consist https://eduassistpro.github.io/
- The device comp uests per second
- On average, there are 3.2 req device
- What is the response time of the device?

Intuition of Little's Law

- Little's Law
 - Mean #jobs = Mean response time * Mean throughput
- If # jobs in the device 1, then response time 1
 - And vice versa

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Applicability of Little's Law

- Little's Law can be applied at many different levels
- Little's law can be applied to a device
 - Navg(j) = Ravg(j) * X(j)
- A system with K devices
 - Navg(j) = #jessignment Project Exam Help
 - Average numb Navg(K)
 https://eduassistpro.github.io/
 - Average responsed in the description of the description o
 - Average response time of the system = Ravg
- We can also apply it to an entire system
 - Navg = Ravg * X(0)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Using Little's Law (2)

- The device compl

 uests per second
- On average, ther https://eduassistpro.github.io/
 - 3.2 requests in the device Chat edu_assist_pro
 - 2.4 requests in the queue
 - 0.8 requests in the server
- What is the mean waiting time and mean service time?
- Hint: You need to draw "boxes" around certain parts of the device and interpret the meaning of response time for that box.

Using Little's Law (2)

- The device compl

 uests per second
- On average, ther https://eduassistpro.github.io/
 - 3.2 requests in the device Chat edu_assist_pro
 - 2.4 requests in the queue
 - 0.8 requests in the server
- What is the mean waiting time and mean service time?

Interactive systems

M users

Each user sends a job to the system

The system sends the results to the user.

Assignment Project Exam Help

he user after a thinking https://eduassistpro.githeub.eo/ds another job to

system.

Add Welchat edu_assist_hpkong time = time

spent by the user

results

An interactive system is an example of closed system.

Interactive systems (Time line)

Interactive system (1)

- M interactive clients
- Z = mean thinking time
- R = mean response time

Assignment Project Extatme Holp puter system

https://eduassistpro.github.fo/

Add WeChat edu_assist_pro

Interactive system (2)

- Mavg = mean # interactive clients
 - Z = mean thinking time

Assignment Project Exam Helpoughput

https://eduassistpro.github.io/ ive part, we

Add WeChat edu_assistMareg = Z * X0

Interactive system (3)

- Navg = average # clientsin the computer system
- R = mean response time
 at the computer system
 throughput

https://eduassistpro.gitbittleio Law to the er system, we Add WeChat edu_assistance R * X0

Interactive system (4)

```
Mavg = X0 * Z

Navg = X0 * R

The system is closed, the Assignment Project Example of users M is stant, we have https://eduassistpro.gitavb.io/Navg

Add WeChat edu_assist
```

The operational laws

- These are the operational laws
 - Utilisation law U(j) = X(j) S(j)
 - Forced flow law X(j) = V(j) X(0)
 - Service demand law D(j) = V(j) S(j) = U(j) / X(0)

 - Little's law N = X R
 Interactive response time M = X(0) (R+Z)
- Applications https://eduassistpro.github.io/
 - Mean value anal
 - Bottleneck analysisdd WeChat edu_assist_pro
 - Modification analysis

COMP9334 S1,2017 44

Bottleneck analysis - motivation

		D(j)	Utilisation
	Disk 1	79ms	0.30
	Disk 2	108ms	0.41
Assignment Pro	j o gt _k E3xam	Helps	0.54
https://edua	ssistpro.g	gRAWB.io/	0.35

Add WeChat edu_assist_pro

Service demand law: D(j) = U(j) / X(0) ==> U(j) = D(j) X(0) Utilisation increases with increasing throughput and service demand

\$1,2017 COMP9334

Utilisation vs. throughput plot U(j) = D(j) X(0)

Disk 3

Disk 2 CPU

Assignment Project Exam Help

Disk 1

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

What determines this order?

Observation: For all system throughput: Utilisation of Disk 3 > Utilisation of Disk 2 > Utilisation of CPU COMP9334 isation of Disk 1

Bottleneck analysis

- Recall that utilisation is the busy time of a device divided by measurement time
 - What is the maximum value of utilisation?
- Based on the example on the previous slide, which device will reach the maximum willisetion first Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Bottleneck (1)

- Disk 3 has the highest service demand
- It is the bottleneck of the whole system

Assignment Project Exam Help

Operational law:
$$\frac{X}{D(j)} = \frac{1}{D(j)}$$
 Utilisation limit:
$$\frac{X}{D(j)} = \frac{1}{D(j)}$$

Bottleneck (2)

$$X(0) \leq \frac{1}{D(j)}$$
 Should hold for all K devices in the system Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$\Rightarrow X(0) \le \min \frac{1}{D(j)}$$

$$\Rightarrow X(0) \le \frac{1}{\max D(j)}$$

Bottleneck throughput is limited by the maximum service demand

49

S1,2017 COMP9334

Bottleneck exercise

		D(j)	Utilisation
	Disk 1	79ms	0.30
	Disk 2	108ms	0.41
ignment Pro	j e gt _k Exam	Helps	0.54
https://edua	ıssistpro.ç	gRAWB.io/	0.35

50

Add WeChat edu_assist_pro

Assignment Pro

The maximum system throughput is 1 / 0.142 = 7.04 jobs/s. What if we upgrade Disk 3 by a new disk that is 2 times faster, which device will be the bottleneck after the upgrade? You can assume that service time is inversely proportional to disk

COMP9334

Another throughput bound

Little's law

$$N = R \times X(0) \ge (\sum_{i=1}^{K} D_i) \times X(0)$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Previously, we have
$$X(0) \leq \frac{1}{\max D(j)}$$

Therefore:
$$X(0) \leq \min \left[\frac{1}{\max D_i}, \frac{N}{\sum_{i=1}^K D_i} \right] -$$

S1,2017

Throughput bounds

$$X(0) \le \min \left[\frac{1}{\max D_i}, \frac{N}{\sum_{i=1}^K D_i} \right]$$

Bottleneck analysis

- Simple to use
 - Needs only utilisation of various components
- Assumes service demand is load independent

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Modification analysis (1)

- (Reference: Lazowska Section 5.3.1)
- A company currently has a system (3790) and is considering switching to a new system (8130). The service demands for these two systems are given below:

Assignment Project Exam Help				
System	1 100151		sk	
3790	htt	:ps://eduassistpro	o.gothub.io/	
8130	A	da WeChat edu	assist pro	

- The company uses the system for interactive application with a think time of 60s.
- Given the same workload, should the company switch to the new system?
- Exercise: Answer this question by using bottleneck analysis. For each system, plot the upper bound of throughput as a function of the number of interactive users.

Modification analysis (2)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Operational analysis

- These are the operational laws
 - Utilisation law U(j) = X(j) S
 - Forced flow law X(j) = V(j) X(0)
 - Service demand law D(j) = V(j) S(j) = U(j) / X(0)
 - Little's law N = X R
 - Interactive Assignmente Rrojecto Exam Help
- Operational analattps://eduassistpro.github.fo/performance but u to find the throughput and response Chateedu_assistmpro
- To order to find the throughput and response time, we need to use queueing analysis
- To order to use queueing analysis, we need to specify the workload

Workload analysis

- Performance depends on workload
 - When we look at performance bound earlier, the bounds depend on number of users and service demand
 - Queue response time depends on the job arrival rate and job service time

Assignment Project Exam Help

- One way of spe distribution.
 https://eduassistpro.github.io/
- We will look at a well who wat edu_assistes called Poisson process today.
- We will first begin by looking at exponential distribution.

Exponential distribution (1)

• A continuous random variable is exponentially distributed with rate λ if it has probability density function

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ \text{Assignment Project Exam? Help} \end{cases}$$

https://eduassistpro.github.io/

Add WeChapt edu_assistappo $X \leq X + \delta X$ is

$$f(x) \delta x = \lambda \exp(-\lambda x) \delta x$$

Exponential distribution - cumulative distribution

• The cumulative distribution function $F(x) = Prob(X \le x)$ is:

$$F(x) = \int_0^x \lambda e^{-\lambda z} dz = 1 - e^{-\lambda x} \text{ for } x \ge 0$$
 Assignment Project Exam Help

https://eduassistpro.github.io/prob(X ≥ x)?

Add WeChat edu_assist_pro

Arrival process

 Each vertical arrow in the time line below depicts the arrival of a customer

Inter-arrival time

An arrival can mean

- A telephone call arriving a large of the angle of the large of the lar
- A transaction arriving at a computer system
- A customer arriving at a checkout counter
- An HTTP request arriving at a web server
- The inter-arrival time distribution will impact on the response time.
- We will study an inter-arrival distribution that results from a large number of independent customers.

Many independent arrivals (1)

- Assume there is a large pool of N customers
- Within a time period of δ (δ is a small time period), there is a probability of $p\delta$ that a customer will make a request (which gives rise to an arrival)
- Assuming the probability that each customer makes a request is independent, the probability that a customer arrives in time period δ is Np δ
- If a customer arrive customer does not https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Many independent arrivals (2)

• Divide the time t into intervals of width δ

- No arrival in [0,t] https://eduassistpro.github.io/ ch interval δ
- Probability of no and high Wich the Statt edu_assist_pro
- There are t / δ intervals
- Probability of no arrival in [0,t] is

$$(1 - Np\delta)^{\frac{t}{\delta}} \rightarrow e^{-Npt} \text{ as } \delta \rightarrow 0$$

Exponential inter-arrival time

- We have showed that the probability that there is no arrival in [0,t] is exp(- N p t)
- Since we assume that there is an arrival at time 0, this means

Probability(inter-arrival time > t) = exp(- N p t)
Assignment Project Exam Help

- This means https://eduassistpro.github.io/
 Probability(inter-arrival ti edu_assist_pro(- N p t)
- What this shows is the inter-arrival time distribution for independent arrival is exponentially distributed
- Define: $\lambda = Np$
 - λ is the mean arrival rate of customers

Two different methods to describe arrivals

Method 1: Continuous probability distribution of inter-arrival time

Two different methods to describe arrivals

Method 2: Use a fixed time interval (say t), and count the number of arrivals within t.

- The number of arrivals in t is ra
- The number of arrivals must be an non-negative integer
- We need a discrete probability distribution:
 - Prob[#arrivals in t = 0]
 - Prob[#arrivals in t = 1]
 - etc.

COMP9334 S1,2017 65

Poisson process (1)

 Definition: An arrival process is Poisson with parameter λ if the probability that n customer arrive in any time interval t is

 $(\lambda t)^n e^{-\lambda t}$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assistmpte: $\lambda = 5$ and t = 1

Note: Poisson is a discrete probability distribution.

Poisson process (2)

- Theorem: An exponential inter-arrival time distribution with parameter λ gives rise to a Poisson arrival process with parameter λ
- How can you prove this theorem? Assignment Project Exam Help
 - A possible methatips://eduassistpro.github.io/ e intervals of width δ . A fini stribution and with $\delta \rightarrow 0$, we get a Poissor distribution at edu assist pro

Customer arriving rate

• Given a Poisson process with parameter λ , we know that the probability of n customers arriving in a time interval of t is given by:

 $(\lambda t)^n e^{-\lambda t}$

Assignment Project Exam Help

What is the me https://eduassistpro.githalbritoing in a time interval of t?
 Add WeChat edu_assist_pro

• That's why λ is called the arrival rate.

Customer inter-arrival time

- You can also show that if the inter-arrival time distribution is exponential with parameter λ , then the mean inter-arrival time is $1/\lambda$
- Quite nicely, we have
 Mean arriva Areatig mule htmleanie interval delime

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Application of Poisson process

- Poisson process has been used to model the arrival of telephone calls to a telephone exchange successfully
- Queueing networks with Poisson arrival is tractable
 - We will see that in the next few weeks.
- Beware that Astigharita Project Sesmal Let Poisson! Many arrival processe et today are not Poisson. We will https://eduassistpro.github.io/

Add WeChat edu_assist_pro

References

- Operational analysis
 - Lazowska et al, Quantitative System Performance, Prentice Hall, 1984. (Classic text on performance analysis. Now out of print but can be download from http://www.cs.washington.edu/homes/lazowska/qsp/
 - Chapters 3 and 5 (For Chapter 5, up to Section 5.3 only)
 - Alternative 1: You can read Menasce et al. "Performance by design", Chapter 3. Note that Menasce doesn't cover certain aspects of performance bounds. So, you will also ne
 - Alternative 2: You c https://eduassistpro.github.io/ more rigorous. You can gross over the discrete edu_assist_pro
- Little's Law (Optional)
 - I presented an intuitive "proof". A more formal proof of this well known Law is in Bertsekas and Gallager, "Data Networks", Section 3.2
- Tutorial exercises based on this week's lecture are available from course web site
 - We will discuss the questions in next week's tutorial time

COMP9334 S1,2017 71