Fonction Exponentielle

Premières Spécialité Mathématiques

1 Définition de la fonction exponentielle

$ur \mathbb{R}$, solution de l'équ	
	f'=f
vec condition initiale ;	f(0) = 1.
emarque.	
• « solution » : La	fonction \exp est définie et dérivable sur \mathbb{R} , et, pour tout $x \in \mathbb{R}$,
	$\begin{cases} \exp'(x) = \exp(x) \\ \exp(0) = 1 \end{cases}$
• « unique » : si u	ne fonction $f\colon \mathbb{R} o \mathbb{R}$ dérivable sur \mathbb{R} vérifie que pour tout $x\in \mathbb{R}$,
	$\begin{cases} f'(x) = f(x) \\ f(0) = 1 \end{cases}$
alors $f = \exp$.	
nple. a) Soit g:	$\mathbb{R} \longrightarrow \mathbb{R}$. Justifier que g est dérivable sur \mathbb{R} , puis calculer sa dérivée. $x \longmapsto x^2 - 3x + \exp(x)$
	$\mathbb R$. Justifier que h est dérivable sur $\mathbb R$, puis calculer sa dérivée. $\exp(-5x+2)$

2 Propriétés algébriques de l'exponentielle

Théorème 1. Soit x, y deux réels. Alors

$$\exp(x+y) = \exp(x) \times \exp(y)$$

Remarque. La fonction exponentielle transforme les sommes en produit.

 $\exp(x) > 0$ pour tout $x \in \mathbb{R}$).

- *a*) Justifier que g est dérivable sur \mathbb{R} et montrer que sa dérivée est nulle.
- b) À l'aide de g(0), en déduire la valeur de g(x) pour tout $x \in \mathbb{R}$.
- c) En conclure que $\exp(x + y) = \exp(x) \exp(y)$

Corollaire 1. Soit x, y deux réels. Alors,

$$\begin{cases} \exp(x) \times \exp(-x) = 1\\ \exp(-x) = \frac{1}{\exp(x)}\\ \exp(x - y) = \frac{\exp(x)}{\exp(y)} \end{cases}$$

 $D\'{e}monstration$. On prouve $\exp(x-y)=\frac{\exp(x)}{\exp(y)}$ en admettant les deux identités précédentes.