

Metody programowania 2021/2022 Trójkąty

P 02

Opis

Danych jest n odcinków, których długości są liczbami całkowitymi dodatnimi, umieszczonymi w tablicy T[].

Napisz w Javie program, który wyznaczy liczbę możliwych trójek indeksów w tablicy zawierających odcinki, z których można zbudować trójkąt, działający z pesymistyczną złożonością $O(n^2log_2n)$.

Każdy odcinek może występować tylko raz w budowanym trójkącie, choć może być wiele odcinków o tej samej długości. Może się też zdarzyć, ze otrzymamy kilka trójkątów o takich samych długościach boków, w takim przypadku liczymy je wszystkie.

Przykładowo dla tablicy T[] = [2, 2, 3, 3] można zbudować 4 trójkąty, których długości boków występują w tablicy pod indeksami: (0, 1, 2), (0, 1, 3), (0, 2, 3) i (1, 2, 3).

W komentarzu, w opisie idei rozwiązania uzasadnij złożoność obliczeniową rozwiązania.

Wejście

Dane do programu wczytywane są ze standardowego wejścia (klawiatury) zgodnie z poniższą specyfikacją. Pierwszą podawaną wartością będzie dodatnia liczba całkowita mniejsza od 2^{15} oznaczająca ilość zestawów danych, po której na wejściu pojawią się zestawy danych w ilości równej wczytanej liczbie. Każdy zestaw danych zawiera w pierwszej linii dodatnią liczbę całkowitą n, przy czym 3 <= n <= 100 oznaczającą ilość odcinków wczytywanego zestawu . Zasadnicze dane zestawu w ilości równej poprzednio wczytanej wartości, będące liczbami całkowitymi z zakresu od -2^{15} do $+2^{15}$.

Ostatnia linia każdego zestawu zakończona jest znakiem '\n'.

Wyjście

Dla każdego zestawu danych wypisz:

- (a) w pierwszym wierszu numer zestawu i liczbę odcinków,
- (a) w kolejnych wierszach uporządkowaną niemalejąco tablicę odcinków po 25 elementów w jednym wierszu
- (b) jeśli można z podanych odcinków zbudować co najmniej jeden trójkąt wypisz w nowym wierszu listę uporządkowanych leksykograficznie co najwyżej 10 pierwszych trójek, zawierających indeksy odcinków uporządkowanej tablicy, z których można zbudować trójkąt a w ostatnim wierszu wypisz liczbę wszystkich możliwych takich trójek indeksów tablicy. W przeciwnym przypadku wypisz zdanie: *Triangles cannot be built*.

Wymagania implementacyjne

Jak programie P_01.

Metody programowania 2021/2022 Trójkąty

P_02

Dane przykładowe

wejście:	wyjście:
5	1: n= 4
4	2233
2323	(0,1,2) (0,1,3) (0,2,3) (1,2,3)
6	Number of triangles: 4
121233	2: n= 6
6	112233
142233	(0,2,3) (0,4,5) (1,2,3) (1,4,5) (2,3,4) (2,3,5) (2,4,5) (3,4,5)
4	Number of triangles: 8
1111	3: n= 6
4	122334
1314	(0,1,2) (0,3,4) (1,2,3) (1,2,4) (1,3,4) (1,3,5) (1,4,5) (2,3,4) (2,3,5) (2,4,5) Number of triangles: 11
	4: n= 4
	1111
	(0,1,2) (0,1,3) (0,2,3) (1,2,3)
	Number of triangles: 4
	5: n= 4
	1134
	Triangles cannot be built