Introduction

Historique – 7 couches – Organismes de normalisation

Historique

- Au début (fin 60), ARPA (Advanced Research Project Agency) devait permettre aux ordinateurs du DoD de communiquer
- Collaboration avec différentes universités pour établir des réseaux hétérogènes (multi-vendeurs)
- 1969 4 nœuds interconnectés par des lignes à 56Kbps, utilisant NCP
- 1974 TCP / IP (Cerf & Kahn)
- 1979 IPv4
- 1979 Implémentation de TCP / IP disponible pour les machines Unix des universités

Historique – Le début

- Dans les années 80, le réseau, simple au début, croît:
 - Nombre de routeurs interconnectés
 - Nombre de réseaux connectés
 - Taille des tables de routage
 - Fréquence des modifications topologiques
 - Routing updates
 - Nombre de type de routeurs (gateways à l'époque)

– ...

Historique – La suite

- 1983: séparation du réseau en deux:
 - Milnet: applications militaires
 - Arpanet: réseau de recherche. Pour ce réseau,
 TCP/IP devient obligatoire
- 1988: remplacement des lignes à 56Kbps par des T1 (1.544 Mbps)
- Jusqu'aux années 90, l'Internet était principalement un réseau de recherche
- 1998 : apparition d'IPv6 (théorie)

- IAB: Internet Activities Board (anciennement ICCB (Internet Control and Configuration Board), 1983) est chargé de coordonner et guider les protocoles et l'architecture de l'Internet
- 1989, IAB est divisé en
 - IRTF: Internet Research Task Force (research group)
 - IETF: Internet Engineering Task Force (working group)
 - IANA: Internet Assigned Numbers Authority
- IAB devient Internet Architecture Board en 1992
- 2006: début d'IPv6 (pratique)

- IETF: Coordonne et gère l'évolution des protocoles utilisés dans l'Internet. Publie les RFCs. Divisé en 8 groupes: Applications, Internet, Opérations, Routage, Sécurité, Transport, Services aux Utilisateurs, Général
- IRTF: Doit comprendre les technologies et comment les utiliser dans l'Internet. Divisé en 8 groupes: End-to-End, Information et Infrastructure, Recherche dans l'Internet, Network Management, Multicast, Routage, Multicast sécurisé, Services

- IEEE: Institute of Electrical and Electronic Engineers
- ITU: International Telecommunication Union. Dépend des Nations Unies. Basé à Genève. Divisé en:
 - ITU-R: Radio Communication
 - ITU-T: Telecom
 - ITU-D: Développement

- IANA: Gestion et allocation des différents identifiants numériques nécessaires à la gestion et à l'utilisation de l'Internet. Basé sur 3 groupes régionaux qui distribue les adresses IP (v4 et v6), les numéros d'AS, les ports etc..
 - RIPE: Réseaux IP Européens
 - ARIN: American Registry for Internet Numbers
 - APNIC: Asia Pacific Network Information Center
 - AFRINIC : AFRIcan Network Information Center
 - LACNIC : Latin American and Caribbean Network Information Center

Distributions des adresses IPv4 et IPv6

Yves Gancberg Internet – Intranet – v 6.4 Slide 10 / 18

Evolution sans comparaison

• Il y a 30 ans: IBM PC 5150!

• 16K

- Aujourd'hui:50.000 fois plus!
- 3000\$
- 1.000.000 de machines vendues en 4 ans!
- Progrès fulgurants.

!! Les 7 couches OSI!!

Num	Nom de la couche	Type de données	Nom d'un élément	Exemple d'identifiant
7	Application	Flux	Gateway	Nom de machine, d'utilisateur, adresse mail
6	Présentation			
5	Session			
4	Transport	Segments; paquets ou session	Switch niveau 4 (Layer 4 switch)	Socket (Port) (UDP ou TCP) (2 bytes)
3	Réseau (Network)	Paquets (Packets)	Routeur (Router)	Adresse IP (v4, 4 bytes; v6 16 bytes),
2	Lien (Link – MAC)	Trames (Frames)	Pont (Bridge / Switch)	Adresse MAC (6 bytes) (Ethernet), DLCI (FR), VPI/VCI (ATM),
1	Physique (Physical)	Bits	Répéteur (Repeater / Hub)	Numéro / nom d'une porte ou d'une interface

Les 5 couches TCP/IP

Num	Nom de la couche	Type de données	Exemple d'identifiant
5	Application	Flux	Nom de machine, d'utilisateur, adresse mail
4	Transport	Segments; paquets ou session	TCP / UDP
3	Réseau (Network)	Paquets (Packets)	IP
2	Lien (Link – MAC)	Trames (Frames)	Ethernet, FR, ATM,
1	Physique (Physical)	Bits	Numéro / nom d'une porte ou d'une interface

Les 7 couches OSI – suite

- Le principe de mettre une couche dans l'autre est appelé 'encapsulation'
- La couche 2 (lien) a été divisée en 2 souscouches:
 - LLC: Logical Link Control, définie dans 802.2
 - MAC: Medium Access Control (CSMA/CD),
 définie dans 802.3, qui couvre aussi la couche 1 (physique)

Un exemple d'encapsulation: La dure vie du paquet (Telnet)!

Communication entre un PC et un serveur

Les réseaux – Classification

- 0,01 1m Internal Network (au sein d'une machine)
- 1m 500m LAN: Local Area Network
- 500m 50Km MAN: Metropolitan Area Network
- 50Km et +: WAN: Wide Area Network: Internet.

Dans le cours...

- On analyse des paquets, capturés avec un logiciel gratuit (Wireshark).
- Nous verrons plusieurs fois ces paquets décortiqués / montrés / étudiés de différentes manières !
- Voir plus loin, un peu partout...