# UNIVERSITEIT TWENTE.

FINAL PROJECT THESIS

# Developing a Tool for Learning Concept Maps

Author:
M.C. VAN DEN ENK
[s1004654]
m.c.vandenenk@student.utwente.nl

Supervisors:
dr. A.H. Gijlers
a.h.gijlers@utwente.nl
dr. L. Bollen
l.bollen@utwente.nl

# Contents

| Ι  | Introduction                                          | 5          |
|----|-------------------------------------------------------|------------|
| Pr | roject Description                                    | 6          |
|    | Concept mapping                                       | 7          |
|    | Flashcard system                                      | 10         |
|    | Comparison of the two tools                           | 12         |
|    | Flashmap system                                       | 12         |
|    | Evaluation                                            | 13         |
| Co | ontext                                                | 15         |
|    | Five educational philosophies                         | 15         |
|    | Perennialism                                          | 15         |
|    | Essentialism                                          | 16         |
|    | Progressivism                                         | 16         |
|    | Reconstructivism                                      | 17         |
|    | Existentionalism                                      | 17         |
|    | Discussion of the five educational philosophies       | 18         |
| Co | ognitive theories                                     | 20         |
|    | Storage and retrieval                                 | 20         |
|    | Cognitive effects with regard to encoding practices   | 22         |
|    | Cognitive effects with regard to retrieval practices  | 23         |
|    | Conclusion                                            | 28         |
| II | Design Report                                         | <b>2</b> 9 |
| Aı | nalyses                                               | 31         |
|    | Analysis of the learning context                      | 31         |
|    | Analysis of the learner                               | 35         |
|    | Analysis of the task                                  | 41         |
|    | Implications for design                               | 43         |
| De | efining the general use cases                         | 45         |
|    | Supplantive or generative                             | 45         |
|    | Choice of platform                                    | 45         |
|    | Supported user actions                                | 46         |
|    | Detailed description of the client server interaction | 47         |

| er design and development  at design and development  50 |       |
|----------------------------------------------------------|-------|
| Client design and development                            | 50    |
| III Research                                             | 51    |
| Aims and goals for the research                          | 52    |
| Methods                                                  | 53    |
| Research design                                          | . 53  |
| Respondents                                              | . 53  |
| Procedure                                                |       |
| Instrumentation                                          |       |
| Analysis                                                 | . 53  |
| Results                                                  | 54    |
| Quantitative results                                     | . 54  |
| Qualitative results                                      | . 54  |
| IV Recommendations                                       | 55    |
| ${f V}$                                                  | 56    |
| Epilogue                                                 | 57    |
| References                                               | 58    |
| Appendices                                               | 63    |
| Test literature history 16th and 17th century            | . 64  |
| Use case diagram for registering and logging in          | . 67  |
| Use case diagram for main purposes                       |       |
| Activity diagram for logging in                          |       |
| Activity diagram learning functionality                  | . 70  |
| Pretest and posttest statistics                          | 94    |
| Descriptives of the knowledge questions                  | . 94  |
| Descriptives of the comprehension questions              |       |
| Comparisons of the knowledge questions                   |       |
| Comparisons of the comprehension questions               | . 109 |
| Questionnaire statistics                                 | 113   |
| Descriptives of Perceived Usefulness questions           | . 113 |
| Descriptives of Perceived Ease of Use questions          |       |
| Comparisons of the Perceived Usefulness questions        | . 125 |
| Comparisons of the Perceived Usefulness questions        | . 127 |
|                                                          |       |

# a730756

| Instance statistics                                          | 130 |
|--------------------------------------------------------------|-----|
| Descriptives of the number of responses                      | 130 |
| Descriptives of percentage of responses marked as correct    | 136 |
| Comparisons of the number of responses                       | 148 |
| Comparisons of the percentage of responses marked as correct | 150 |
| Comparisons of the amount of time spent on the application   | 152 |

# Part I Introduction

# **Project Description**

Over the centuries, knowledge has been fundamental to any learning process. Socrates already stated that knowledge is the only true virtue, and the tragedian Aeschylus regarded memory as the mother of all knowledge. Moreover, it was not only regarded as important by ancient thinkers, but is still regarded as such by modern scholars on education. Both the taxonomy of learning by Bloom, Engelhart, Furst, Hill, and Krathwohl (1956) as a revision of this taxonomy by Krathwohl (2002), as well as the three stages of skill acquisition by J. Anderson (1982), propose that all learning should start with memorising factual knowledge. Furthermore, von Glaserfield (2001), one of the main founders for critical constructivism, expresses a need for training students so that they permanently possess facts and are able to repeat them flawlessly whenever they are needed, while also understanding what is placed into their memory. Ericsson and Kintsch (1995) adds to this by stating that in order to perform complex tasks, people must maintain access to large amounts of information, and that solely encoding knowledge is not sufficient. Despite all of this, Karpicke (2012) argues that "[r]etrieval processes, the processes involved in using available cues to actively reconstruct knowledge, have received less attention" (p. 158), whereas basic research on learning and memory has emphasised that retrieval must be considered in any analysis of learning.

Traditionally, when students have to gain complex and meaningful knowledge – for example knowledge about a historical event or a chapter in a psychology textbook, they are asked to read the relevant chapter from a provided textbook. However, Mayer (2008) states that many students have difficulty gaining knowledge in this manner. He breaks reading for comprehension down into four separate skills, which are integrating, organising, elaborating, and monitoring. Integrating refers to relating a text to one's prior knowledge, for which evidence exists that rich background knowledge leads to better inferences about the text, and thereby to better comprehension. This need also has been stressed by Ausubel (1968), and forms different problems between individual readers having access to different background knowledge. After integration, the reader has to organise the text, so that the important ideas and the relationships among them are identified. This is mainly a problem for less experienced readers, possessing fewer strategies to quickly identify important parts and thereby spending too much time on reading unimportant information. While organising a text, the student also has to make necessary inferences while reading, or has to elaborate, which is quite difficult for readers when not prompted to do so. Finally, students have to monitor their comprehension, which refers to evaluating their understanding of the text and if necessary adjusting the reading strategy. This is again quite difficult for the average reader, however this can be trained.

While intergrating is something more dependent on the curriculum design, organising and elaborating can be facilitated by a technique called concept mapping, and monitoring by so-called flashcard systems. Furthermore, the latter might be helpful for the integration of the next topic with the current. This research aims to develop a new tool combining these learning tools. In this chapter, concept mapping, flashcard systems, and the new learning tool called the flashmap will

be explored on a practical level in order to establish their definitions together with a summary of arguments in favour or opposition of using them as tools for studying textual material, while also describing their current applications within education.

# Concept mapping

A Concept map is a learning tool deviced by Joseph Novak in 1970's, based on constructivist theories of learning. It was originally intended for assessing the structure of student conceptions, before and after instruction, in order to map their prior knowledge and compare it to what they learned during the instruction. This expanded on the notions of Ausubel (1968), who stated that what the learner already knows is most important, and that this had to be ascertained before teaching. Although the use of concept maps as an assessment tool remains prevalent (Canas & Novak, 2012; Chung, O'Neil Jr., & Herl, 1999; Hwang, Wu, & Ke, 2011; Ruiz-Primo & Shavelson, 1996), over time, students began to use it as a tool to comprehend textual material by organising and elaborating on the included concepts (Canas & Novak, 2012; Eppler, 2006; Hwang et al., 2011; Karpicke & Blunt, 2011; Nesbit & Adesope, 2006).

# Definition

One definition provided by Burdo and O'Dwyer (2015) states that "concept maps are hierarchical representations of knowledge. Construction of them involves linking concepts [...] through the use of linking phrases into propositional statements" (p. 335). The concepts are typically nouns or verbs with or without modifying adjectives or adverbs, and linking phrases specify the relationship between two concepts. Ruiz-Primo and Shavelson (1996) also mention these elements in their own definition, yet Canas and Novak (2012) and Eppler (2006) include a few extra features, such as the concepts being ordered in hierarchical fashion. They describe two different kinds of links, which are hierarchical links to indicate ranking between the concepts, and crosslinks to indicate relationships between concepts in different segments or domains of the concept map. The latter would help to see how a concept in one domain of knowledge represented on the map is related to a concept in another part of the knowledge producer, enabling better connections to prior knowledge of the user. According to Eppler (2006), concept maps are always top-down and show systematic relationships among sub-concepts relating to one main concept, however Canas and Novak (2012) state that they can also be cyclical as long as the concepts still have a conceptual hierarchy. Finally, most of the above mentioned articles describe the links between concepts to be directed. In conclusion, the definition of concept maps used within this thesis will be:

A concept map refers to a directed graph, in which the nodes consist of concepts, and the edges of – either hierarchical or cross–links labeled with linking phrases, forming several propositional statements about a knowledge domain.

An example of a concept map is displayed in figure 1.

For this study, the more interesting aspects of concept maps are the use of concept mapping for elaborating, and of demonstrating meaningful relationships between concepts to learners. The first use of the concept map is known as generative use, and the second as supplantive (Smith & Ragan, 2005).



Figure 1: A fraction of the concept map used in this study

### Effectiveness

Multiple studies, both qualitative and quantitative, have demonstrated that concept maps can promote meaningful learning (Canas & Novak, 2012; Hwang et al., 2011; Nesbit & Adesope, 2006; Subramaniam & Esprivalo Harrell, 2015). When comparing the concept mapping strategy with traditional teaching strategies (in a study conducted within the context of tertiary chemistry), Singh and Moono (2015) found that the concept map teaching strategy was more effective, however that it was most effective if both strategies were used in combination. One of the positives of the concept map is that it does not provide learning by means of disconnected facts, but rather as a cohesive narrative placing emphasis on the connections between the concepts. However, most studies state that merely studying a concept map (supplantive use) is not sufficient, and that the activity of constructing the concept map (generative use) is essential for using it as a learning tool. Canas and Novak (2012) even state that meaningful learning does not work by memorising a concept map, because the information is not integrated with other relevant knowledge. Furthermore, Nesbit and Adesope (2006) state that much of the benefits may be due to greater learner engagement rather than the properties of the concept map as an information medium. However, no studies were found testing these hypotheses, and yet Blankenship and Dansereau (2000) have found that expert generated concept maps are believed to help students form conceptual understanding. Still, this study did also indicate that greater maps (more than 20 nodes) used within textbooks lead to map-shock: "a type of cognitive overload that prevents students from effectively processing the concept map, thereby inhibiting their ability to learn from it" (Moore, North, Johri, & Paretti, 2015, p. 3). Finally, Eppler (2006) enlists some of the main advantages and disadvantages in comparison to other visualisation formats (mind maps, conceptual diagrams, and visual metaphors). A positive aspect is that students can gain information rapidly, because of the systematic, proven approach to provide an overview and the emphasis on relationships and connections among concepts. On the other hand, the technique of concept mapping is not easy to apply by novices and requires exstensive training, since otherwise the maps tend to turn out to be idiosyncratic. Furthermore, although better understandability is provided, the overall pattern does not necessarily assist memorability. Finally, the quality of concept maps can be assessed through evaluation rules, however this turns out to be quite a time consuming task for the tutors.

# Applications of concept mapping

An article by De Simone (2007) states that despite the effectiveness of concept mapping, its use is not that widespread because students find it cognitively difficult, time consuming, or nonessential vis-à-vis task demands. The article then provides an overview of how concept maps are generally used in the classroom: as an external scratch pad to represent major ideas and their organisation, as a time-efficient tool for mental construction, and as a tool for exchange of diversifying ideas and gaining new insights; and provides benefits and limitations for each of these uses. When used as an external scratch pad, students map their ideas on paper by writing a main idea and linking it with other related concepts through action words and arrows. Although most students find it helpful to offload information externally and detect and correct gaps and inconsistencies in their knowledge, they still find the process of mapping to be time consuming. This is because they often have to make major revisions, requiring them to redraw the concept map multiple times. Therefore, a more time-efficient approach might be mental concept mapping, where they had to represent answers within the map to questions such as "what are the key ideas?" and "how are these ideas related?". This provided to be more efficient due to better mastery of the mapping strategies, and thereby more comfortable for the students. Finally, concept mapping enables students to draw relationships more freely, due to its flexibilities regarding layout and adding or

removing concepts or relations. It also stimulated collaborative learning by enabling easier sharing and even co-construction. Nonetheless, of these strategies, the traditional strategy remains the most prevalent, since it is the best known use of concept mapping. Finally, as already stated before, Moore et al. (2015) state that multiple textbook publishers started including concept maps within their textbooks in order to provide an overview of the content.

# Flashcard system

In contrast to concept maps, a flashcard system is not intended for meaningful knowledge encoding, but rather for the rehearsal of knowledge so that it keeps active and as such is prevented from being forgotten.

### Definition

In the context of language learning, Nakata (2011) defines flashcard systems as learning tools in which "target items are presented outside meaning-focused tasks, and learners are asked to associate the L2 [foreign language] word form with its meaning, usually in the form of a first language translation, L2 synonym, or L2 definition" (p. 17). This form of learning is also referred to as a paired-associate format, which refers to learning by being presented by cues and the learner having to recall an associated counterpart. Besides vocabulary learning, it can also be used to memorise word definitions or topographical information. In order to be more inclusive of other use cases, the following general definition is proposed:

A flashcard system refers to any system in which a learner is presented with cues and has to recall their counterparts from a paired-associate format.

The most simple form of a flashcard system is a system where the learner has a stack of cards, with each containing a retrieval cue on one side and the correct associated response on the other side. A learning session then consists of going through the whole stack each day and trying to come up with correct answers. Efficiency can then be increased by repeating difficult cards more often, or skipping reviewing certain easy cards for multiple days. This way only on the pairs which are more needy of retrieval are focused on. Finally, the size of the stack of cards can be increased over multiple days in order to improve the spreading of cognitive load. Next to these paper flashcards, there is also a multitude of digital flashcard systems available (Hwang et al., 2011; Nakata, 2011; Edge, Fitchett, Whitney, & Landay, 2012), which allows for automating the rescheduling of flashcards, providing better access to more advanced algorithms for the rescheduling of flashcards.

# Effectiveness

Flashcard systems have not been completely free from criticism by other researchers. Hulstijn (2001) for example describes flashcards as a relic of the old-fashioned behaviourist learning model, and McCullough (1955) states that the main emphasis of flashcards is memorisation, not comprehension. However, Zirkle and Ellis (2010) states that it is still important for teachers and students to understand and utilise memory in such a way that a store of knowledge is produced that remains flexibly retrievable in a variety of contexts over a period of time, even more so because even though it is deemed useless to learn without comprehension, students still should learn by heart many conventional facts (von Glaserfield, 2001). Flashcards have been found to be

both a time efficient tool for learning large numbers of facts and an effective tool for these facts to be more resistant to decay in comparison to traditional teaching methods (Nakata, 2011). Their effectiveness also has been demonstrated accross studies in different contexts, for example that of language learning (Chien, 2015; Macquarrie, Tucker, Burns, & Hartman, 2002; McCullough, 1955; Nakata, 2011), word recognition (Joseph, Eveleigh, Konrad, Neef, & Volpe, 2012), psychology courses (Burgess & Murray, 2014; Golding, Wasarhaley, & Fletcher, 2012), and geography (Zirkle & Ellis, 2010). Therefore, many authors support pursuing research into flashcards and its effective application into classrooms.

# Design features

Nakata (2011) also describes general design features of flashcard software, which are seperated in terms of creation and editing of flashcards, and learning of flashcards. Examples are whether learners are able to create their own flashcards or flashcard sets, whether learners merely have to recall an answer or have to produce an answer, how big a learning session is and how repetitions are scheduled. Partly, these features are also applicable on paper flashcards. The features will be further elaborated later on page INSERT REFERENCE TO DESIGN CHAPTER, but for now it is sufficient to state that at the time of writing there are no commonly accepted guidelines for how flaschard software should be designed. This mainly is due to the fact that not a lot of research is conducted on specific design-features, because of research reviewing mostly the same program, and there being discrepancies in the way they are designed. Therefore, further research is necessary in order to establish these guidelines.

# Application of flashcards

Multiple sources describe an increase in the use of flashcards in education: Kornell and Bjork (2008) states that "perhaps no memorisation technique is more widely used than flashcards" (p. 125), and more recently textbooks have also started making them available (Burgess & Murray, 2014; Golding et al., 2012). Two reasons for the popularity of flashcards are provided by Golding et al. (2012): students can generate flashcards for themselves, they feel that they are 'doing' something when they study. Most of the studies found are based around flashcard usage in language courses (Nakata, 2011; Joseph et al., 2012; Chien, 2015), but there also exists a study by Golding et al. (2012) describing that 70% of general psychology students used flashcards for at least one exam.

Chien (2015) and Nakata (2011) describe that multimedia and digital flashcards are used widely within vocabulary learning, because they can be easily programmed to keep track of performance and better control the sequency, which is cumbersome if done manually. Furthermore, students might be more motivated using digital flashcards because of the enhanced presentation of materials due to their multimedia capabilities. However, Golding et al. (2012) still found the majority of students using written flashcards. These findings surprised Burgess and Murray (2014), since many students have their smart phones with them most of the time – 75% of students report using smartphones during breaks, meetings etc, 55% while waiting, and 45% for school related uses – and phones are more portable than large stacks of traditional flashcards. However, when he pursued the study by providing students with either written or digital flashcards, students used the digital flashcards less frequently than the traditional flashcards, even when the students had to make their own flashcards. Reasons students provided were technical issues such as battery consumption, simply forgetting about it, using entertainment apps instead of studying, and preference for traditional flashcards.

# Comparison of the two tools

In summary, most studies describe concept mapping as a tool for meaningful encoding, whereas flashcards are described as a tool for rote memorisation, and therefore imply that the former approach leads to more comprehension than the latter. A recent study by Karpicke and Blunt (2011) researched this hypothesis by having participants study a science text with four different learning conditions and prompting them afterwards with verbatim and inference questions and metacognitive predictions. Within the first condition, students only had to read the text and then answer the quesions. The second group studied the text in four consecutive study periods. Students within the third group studied the text in one initial study period and then created a concept map after being instructed in concept mapping. The final group studied the text in an initial study period and then had to recall as much as they could on a free recall test, and repeated this strategy. The time spent on concept mapping and recalling was equal. When analysing the results, it was found that the retrieval practice group performed highest on both the verbatim and the inference questions, whereas the repeated study and concept mapping groups performed about equally well and the study once group performed the worst. Interestingly enough, the retrieval practice group judged their own learning the lowest, and the repeated study group the highest. The same effect of concept mapping and retrieval practice was found again in a second reproduction study, and also in another study by Burdo and O'Dwyer (2015). It is theorised that during elaboration, subjects attain detailed representations of encoded knowledge by linking concepts together in meaningful ways, but that during retrieval, subjects use retrieval cues to reconstruct meaning en thereby already organise the content in a meaningful way. Karpicke and Blunt (2011) conclude that these insights could pave the way for the design of new educational activities with retrieval practices in mind.

# Flashmap system

It can be concluded that both of these tools are helpful for studying, since concept maps help students organise by drawing hierarchical links and elaborate on the content by drawing cross-links, and flashcards help students monitor their understanding of the text and retain the knowledge in order to facilitate integration with a following topic where the knowledge may prove relevant. The object of this study is therefore to create a new learning tool, and intends to combine both the visual overview of concept maps with the retrieval mechanism of flashcard systems by means of a new digital tool, which from this point onwards will be referred to as the Flashmap system. It will present incomplete parts of a concept map, in which the student has to fill in the missing parts of propositions represented by that map (see figure 2). These parts will consecutively be repeated according to algorithms already used by digital flashcard systems. The flashmap system might have the potential to bridge the gap between the two systems, and therefore make meaningful and effective rote memorisation possible, for it should make the relations between the concepts explicit to the student, thereby increasing the organisation of the knowledge and reducing the segregation of facts. Hereby, this tool might facilitate the needs stressed by both Karpicke (2012) and Zirkle and Ellis (2010) of more meaningful retrieval. Furthermore, by having the students memorise the concept map and graduately expanding on it, the generally experienced map shock occurring with expert-generated concept maps might also be mitigated (see also Tzeng, 2010).



Figure 2: A display of the flashmap system, where the user has to think of the concepts fitting in the orange nodes on the left, and has to indicate which nodes were correct on the right

# **Evaluation**

This project does not only aim to develop a flashmap system, but also to evaluate it by comparing it to a similarly functioning flashcard system. For evaluating this flashmap system, a group of Dutch high school teachers of the Stedelijk Lyceum has been found willing to participate, with their students using either the flashmap or the flashcard system for self study parallel with classroom instruction. The content of the instruction will be the history of Dutch literature during the sixteenth and seventeenth century. For example, the students have to learn what the influence is of the Dutch War of Independence on the *Spaanschen Brabander* by Bredero. Because of the content existing mainly of concepts with meaningful relations it fits to the concept map technique and thereby the flashmap system could be significantly beneficial over the flashcard system.

The research aims to investigate the following questions: Regarding high school students learning for Dutch literature using the flashmap system in comparison to them using the flashcard system...

Ia. ...is the learning gain larger?

Ib. ...is the learning gain larger controlled for the time spend with the system?

IIa. ...do they perceive the system to be more useful?

IIb. ...do they perceive the system to be easier to use?

III How did the students use the flashmap or flashcard system?

For researching the effects of the flashmap system relative to the effects of the flashcard system, it is important to consider two main factors: its actual benefits (research question Ia and b), and its perceived benefits (research question IIa and b). Furthermore, for the validity of the system and of the experiment it is important to investigate how the system was used by the students (research question III).

To research whether the flashmap system is more effective or efficient than the flashcard system, the learning gain of high school the students will be measured, referring to the knowledge obtained by a student over the course of an instruction. Sequentially, the efficiency of the system is determined by the learning gain controlled for time spend on the system.

For measuring the affectiveness of the systems, the Technology Acceptance Model by Davis,



Figure 3: The Technology Acceptance Model by Davis et al. (1989)

Bagozzi, and Warshaw (1989) will be used (see figure 3). This model predicts the use of an information system by measuring the Perceived Usefulness and the Perceived Ease of Use of the user. These variables are mediators between External Variables and Attitude toward using, leading to Behavioural intention to use, which in turn leads to the Actual system use.

Finally, for the answering the final question an interview will be conducted with a sample of the participants, and by the server logging usage information about the user.

Answering the research questions has both practical and scientific relevance. From a practical perspective, it has potential to overcome the criticism from various authors about flashcard systems and answer the need for meaningful rote memorisation. From a scientific perspective, it could confirm the hypothesis by Tzeng (2010) that an expanding concept map might mitigate map shock. It also makes way for new research opportunities, for example what the effect is of integrating the flashmap with the games condition formulated by Canas and Novak (2012).

The following two chapters within the introduction will elaborate further on the needs for memorisation on page 15 and the cognitive theories underlying concept mapping and flaschard systems on page 20, after which the design and development of the flashmap will be described in part II. After that, the research conducted within this project and its results will be described in part III, and finally part IV will be elaborating on additional features of the flashmap system and how these could be evaluated by further research.

# Context

As can be read in the previous chapter, the aim of this study is to develop and evaluate a tool designed for the purpose of meaningful memorisation. However, why is it actually important to memorise? This question has historically been debated since the days of the early Greek philosophers, and still remains relevant today. Therefore, it seems important to briefly reflect on this question before delving into the effectivity and specifications of the tool itself. This chapter does not aim to answer this age-old question, but rather tries to provide both some philosophical and historical context, for better understanding of the relevance of a better memorisation tool, and what is generally considered to be better. Furthermore, it will relate these questions more specifically to the tools investigated within this study.

# Five educational philosophies

Curriculum theorisers have proposed many different systems of categories (Marsh & Willis, 1999), of which the aim is to investigate which goals people involved with education have, and which aspects they therefore regard as being important. Apps (1973) differentiates between the five philosophies of education, being *Perennialism*, *Essentialism*, *Progressivism*, *Reconstructionalism*, and *Existentionalist education*, which have also (at least partly) been acknowledged by other authors (Brameld, 1971; Ozmon & Johnson, 1967; Yilmaz, Altinkurt, & Cokluk, 2011; Howick, 1971). Furthermore, Yilmaz et al. (2011) have found these categories to be sufficiently valid and reliable upon measuring their prevalence among teachers. In this chapter, these categories will be discussed further individually in order to provide philosophical context towards the function of knowledge.

# Perennialism

According to perennialism, there is no alterior motive for obtaining knowledge, but rather that it is a purpose on itself. This is along philosophy of Socrates, who concluded that knowledge is the only virtue. He concluded this based on that wisdom is the same as knowledge (Meno, 2000), that wisdom is one of the five cardinal virtues, and that all other virtues (e.g. justice) are merely derived from the virtue of wisdom.

The perennialists are mainly based on either the general philosophy of idealism or of realism. The most notable idealist perennialist are the scholastics, who focused on teaching the great classical and religious works in order to better understand their supreme being. Realist perennialists believe the classic works still have much implications today, and therefore should be taught to the next generation.

Methods generally practiced by are considered to be rather traditional, example of these are memorisation, reading, writing, drill, and recitation. It is also the only philosophy which has

many of its followers believing that education should be directed towards the intellectually gifted, and that other students should only receive vocational education.

Perennialism has been the leading philosophy in academics before the enlightenment. In the classical era, Greek students had to memorise and recite famous poetry, such as the Iliad and Odyssey by Homer, because these were believed to "provide great moral lessons and taught them what it meant to be a Greek" (Renshaw, 2008, p.139). This academic tradition was then perpetuated throughout the middle ages by the scholastics, who used the rationalism of the Greek philosophers to defend christian doctrine – most notably in the Summa Theologica by Thomas Aquinas. Scholastic instruction consisted of four elements: lectio, the reading of an authoritative text; mediatio, a reflection on the text; quaestio, questions from students about the text; and disputationes, a discussion about controversial quaestiones. With the coming of the enlightenment, academics made a transistion from using classical idealism as a source of truth and instead used experimentalism as a source of learning about the material world and verifying truth claims, and humanism as a means to a better understanding of the human endeavour. Nonetheless, perennialism remained a prominent philosophy in education until the industrial revolution in the 19th century, and still has a place in modern society in the form of for example the Great Book program proposed by Hutchins, albeit in a far lesser degree than before the enlightenment.

# Essentialism

Essentialism is generally seen as a child philosophy of perennialism, and is more goal oriented than its parent. Its purpose is to pass on knowledge to new generations in order for them to be able to function in society, and focuses on subject matter. It is also a very teacher oriented approach to education.

This philosophy also is based on both idealism and realism, whereas the idealists think the content comes from history, language and the classics, and the realists think it comes from the physical world, including mathematics and the natural sciences.

Just like perennialism, essentialist teaching methods are rather traditional, and include returning to the three R's, reading, lectures, memorisation, repetition, audio-visual materials, and examinations.

The earliest form recognisable as essentialist is the factory model of education (Stokes, 2013), which was a means to deliver education to the general public for the benefit of the whole society. This model was improved upon by introducing aspects of behaviourism with the introduction of reinforcement and repetition in order to shape the behaviour the teacher wanted. Furthermore, it introduced the audio-lingual method, where the whole class as a group chanted correct answers or key phrases. Furthermore, because of the importance of high-quality instruction, cognitivism contributed towards a better understanding of how to present materials more effectively. Essentialism still remains a popular philosophy in the form of people wanting to go 'back to basics' or wanting more order in the classroom.

# Progressivism

Progressivism goes one step further than essentialists by teaching new students not only to function in society, but to go beyond and improve society. This is rather involved for it has its base in opposing authorianism instead of conforming to it.

It also has its root philosophy in experimentalism, where truth is not constant such as in idealism or realism, but rather is constantly in transition to a better understanding. Therefore, a progressivist curriculum focuses itself not on teaching already existing knowledge, but rather on

the methods existing to discover knowledge, such as the scientific method. This, however, does not mean that knowledge has become irrelevant. Students still have to be brought up to date with the newest developments in their field of interest, and thereby there is still some knowledge transfer necessary. The only difference is that this knowledge is never taught to be final, and the focus still lies within the transition and the still unknown parts.

Progressivists generally use more generative methods for instruction, such as enquiry learning, the scientific method and problem solving skills.

Starting from the philosophy of pragmatism of Peirce and James, progressivism became a serious contender for perennialism and essentialism in the 1920's, opposing their extreme authoritarian positions. As an educational practice, they grew larger with cognitivism and constructionism, where enquiry learning developed further and proved to be a more meaningful way of education. Yet, this approach was also criticised by the traditionalists, because it lacked rote learning and therefore could not be controlled, and was deemed highly inefficient for the students had to invent the wheel over and over again. However, progressivists argued that discovering truth is a very important part of learning, for it makes it meaningful and independent of an authoritarian truth. This idea of knowledge transmission also sprouted the idea of constructivism, a movement very close to progressivism.

# Reconstructivism

There are many similarities between progressivism and reconstructivism, such as both subscribing to experimentalism, moral and epistemological relativism, and the goal of improving society instead of conforming to society. Yet, reconstructivists differ from progressivists in the sense that they are more concerned with the ends than the means. Their goal is not to teach problem solving, but rather problem solving itself, and that society should be repaired. This emphasises the idea that the current society is broken, and focuses on social problems such as inequalities.

One might conclude that reconstructivism is thereby not different from the traditional perennialism and essentialism, because these philosophies also focus on the ends rather than the means. However, these philosophies still assume that the truth is absolute, unchanging, and provided by previous generations, whereas reconstructivism is still rooted in experimentalism and as such states that the truth has to be discovered using the scientific method.

Reconstructivism stems from critical pedagogy, which is again based on postmodernism, anti-racism, feminism, and queer theories. Critical pedagogy was also applied in other countries with problems of social injustice and poverty, such as the Philippines and South-Africa during the apartheid. Reconstructivism was then created by Theodore Brameld, who advocated for using it in the US for avoiding fascism and fighting the still prevalent institutionalised racism.

# Existentionalism

Out of all described educational philosophies, existentionalism differentiates itself the most. Its core direction is towards individual self-fulfillment, and views education as an instrument for encouraging individual choice and autonomy. Not only does it oppose current authority, but it even goes far enough to state that there should be no authority, and that nobody should decide what students are supposed to learn. It also states that what a person is capable of knowing and experiencing is more important than what he knows.

The main method of existentionalism is to put students into situations where they have to make meaningful choices, and to let them confront them alone in order to overcome personal crises so he develops selfreliance and overcomes despair. These are completely different from the

methods used by other philosophies, since they do not rely on values preexistent to actions and thereby merely waiting to be discovered.

Existentionalism has seen the least progress in comparison to the aforementioned philosophies, both because of its relative novelty and its radical difference in methodology. It is also the philosophy which is most difficult to implement in current schools. One could even argue that existentialists are opposed to institutionalised education, since it revolves around self discovery and has a very anti-authoritarian viewpoint in the sense that no one should have the authority on deciding what students have to learn. One might argue that democratic schools are a form of an existentionalist curriculum, since here the students get to vote on the content they get to learn, and this school teaches democracy not from theory, but by experience. However, it is not a full realisation, for students do not learn by overcoming personal crises. Another form could be the Dutch *Iederwijs*, a school where students are placed together in a learn-friendly environment and are allowed to do whatever they please. However, this *laissez-faire* method of education still does not challenge the students in any way, which still would be part of existentionalism.

# Discussion of the five educational philosophies

Table 1 shows a comparitive summary on all aforementioned philosophies, giving an indication on the growing perspective on knowledge and learning methodology throughout history. In general the older philosophies, perennialism and essentialism, are labeled as the traditional philosophies, whereas the other three, progressivism, reconstructivism, and existentionalism, are often labeled as the modern philosophies. These two groups have the most apparent clashes: traditionalists place most trust in the current authorities where the modernists oppose them; traditionalists emphasise rote memorisation where modernists emphasise enquiry; and traditionalists want students to conform to society where modernists want students to change it.

Comparing these two general paradigms with the tools investigated within this thesis, the drill and practice used by the flashcards is most advocated for by the traditionalists, whereas the constructionist concept mapping technique fits mostly to the enquiry practice of the modernists. Flashcards are used by perennialists to memorise data such as dates and reproduction questions, and even more so by essentialists for drilling facts such as multiplication tables and spelling. Concept maps however would be used to shift the attention towards the meaning behind the surface concepts: progressivists use them to discover the ever expanding scientific body of knowledge, reconstructivists for demonstrating historical causality behind social inequalities and how these could be countered, and existentialists to let students map out their own experience and knowledge. However, this preference is not absolute, perennialists could for example also use concept mapping in order to let students figure out the arguments of Socrates in a philosophy assignment (an argument map), and a modernist could still use flashcards for drilling vocabulary.

It is important to consider the five educational philosophies when attempting to successfully develop the new learning tool flashmaps which combines the flashcards and concept maps. For example, one might ask themselves the questions 'what are the benefits of concept map visualisation of flashcards for essentialists' or 'why would an existentialist want to memorise the concept map', but also more practical questions such as 'should the concept map be provided to or constructed by the students' or 'in which order should the student traverse through the map'. These are questions which have to be addressed during the design and development of the new tool.

| Educational    | Perennialism      | Essentialism      | Progressivism   | Reconstructivism     | Existentialism   |
|----------------|-------------------|-------------------|-----------------|----------------------|------------------|
| Philosophy     |                   |                   |                 |                      |                  |
| Function of    | As a purpose on   | In order to func- | In order to im- | In order to change   | In order to dis- |
| knowledge      | itself            | tion in society   | prove society   | society              | cover oneself    |
| Purpose of ed- | Preserving        | Supplying         | Supplying tools | Supplying tools for  | Encouraging      |
| ucation        | knowledge         | knowledge         | for discovering | discovering inequal- | maximum in-      |
|                |                   |                   | knowledge       | ities                | dividual choice  |
|                |                   |                   |                 |                      | and autonomy     |
| Philosophies   | Classical ideal-  | Idealism, real-   | Experimentalism | Experimentalism      | Existentialism   |
|                | ism, realism      | ism               |                 |                      |                  |
| Subject mat-   | Classical litera- | Three R's         | Scientific      | Social problems      | Personal reflec- |
| ter            | ture              |                   | method          |                      | tion             |
| Methodology    | Memorisation,     | Reading, lec-     | Problem solving | Problem solving      | Subjecting stu-  |
|                | reading, writing, | tures, memorisa-  |                 |                      | dents to crises  |
|                | drill, recitation | tion, repetition, |                 |                      |                  |
|                |                   | audio-visual      |                 |                      |                  |
|                |                   | materials, exam-  |                 |                      |                  |
|                |                   | inations          |                 |                      |                  |
| Authority      | Ancient works     | Teacher           | Science         | Socialists           | Student          |

Table 1: A comparative summary on the five educational philosophies (Apps, 1973)

# Cognitive theories

This chapter aims to explain the effectivity and inner workings of both concept mapping and flashcard systems by elaborating on the physiology of the relevant parts of the brain, and the relevant cognitive theories. It is important however that these theories mainly focus on a certain type of learning only. According to Squire (1987), there are multiple varieties of memory, which can mainly be categorised into declarative and nondeclarative knowledge, sometimes also referred to as respectively explicit and implicit knowledge J. Anderson (2015). Declarative knowledge also refers to memories that can be explicitly recalled, entailing facts such as definitions, paired associations etc., but also the events where these facts were acquired. Nondeclarative memory involves every memory which can be demonstrated in action, but not in conscious recall per se. Subcategories of these memories are procedural skills, priming, conditioning, and nonassociative memories. Because of the nature of this study, the cognitive theories discussed below are mainly focused on declarative knowledge, although most theories also are relevant to nondeclarative memory in some degree.

Furthermore, Smith and Ragan (2005) describes declarative knowledge as one of Gagné's types of learning outcomes, and relates declarative knowledge to Bloom's levels of recall and understanding, meaning that declarative knowledge does not only encompass rote memorisation of facts, but also understanding the meaning behind this fact. This is also in line with the essay written by von Glaserfield (2001) on radical constructivism, in which it is stated that whatever it is that students are to place into memory they should also understand. Another category of learning outcomes applicable to this context is that of intellectual skills, mainly that of concepts. These, according to Smith and Ragan (2005), help the learners simplify the world and can make them into more efficient thinkers. From a cognitive perspective however, there is not a great difference in dealing with declarative knowledge or concepts, because both relate to explicitly recallable memories and thereby can both be considered as being explicit (Squire, 1987).

# Storage and retrieval

Although the whole brain is involved in storing memories, the most prominent areas facilitating the process of memorising are the frontal lobes, medial septum and the hippocampus (J. Anderson, 2015) (see figure 4). The prefrontal regions are responsible for the creation and retrieval of memories, whereas the hippocampal and surrounding areas allow permanent storage of these memories. Because of this dynamic, Atkinson and Shiffrin (1968) conceived a modal theory of memory, displayed in figure 5. In this model, information is perceived as sensory input, and is then shortly stored in the sensory memory. If the perceiver has paid enough attention to the input, it is then transfered (or encoded) into short-term memory. When the input is strong enough, that is, rehearsed often enough within short term memory, it can be more permanently stored in long-term memory. If not, the input fades away from memory and is forgotten. When a



Figure 4: The brain areas mainly involved in storing and retrieving declarative knowledge (A. White, 2003)



Figure 5: The modal model of memory proposed by Atkinson and Shiffrin (1968)

memory exists in long-term memory, it has to be retrieved into short-term memory in order to be remembered and used.

This model was heavily influenced by developments in electrical engineering and computer sciences, and can be thought of as functioning like a complex computer, where data is written on a hard drive (the long-term memory), and can be used by first retrieving it into working memory (or short-term memory) and later be transferred to the hard drive again (although within a computer the separation is much more clear, whereas short- and long-term memory might overlap more). However, the way the brain works is different from a computer in the sense that a brain has to put effort into memorising data, and that a brain forgets data over time. Therefore, instead of merely inputting the data, learning requires a more rigid approach.

Karpicke (2012) describes two seperate learning practices based on the modal model of memory, namely encoding and retrieval practices, where encoding practices are focused on meaningful encoding or construction of knowledge, and retrieval practiced are more focused on the reconstruction and rehearsal of knowledge. He states that both practices are essential to enhancing learning. Flashcards are a famous retrieval practice, which emphasise drilling the same pairs by association over and over again, whereas concept maps are known to be an encoding practice where the student has to connect diverse concepts within one topic by meaningful relations.

The following sections will elaborate on cognitive effects with regard to both encoding and retrieval practices, and relating them with their relevance to the effectiveness of concept mapping and flashcard systems respectively.

# Cognitive effects with regard to encoding practices

The first step of memorisation is always encoding, because (logically speaking) a stimulus first has to be processed and encoded in either short-term or long-term memory in order to be retrieved or used later on. After all, one cannot retrieve a memory which is not already there. It therefore is important to first acknowledge by which means knowledge is encoded, and in what kind of structure it is then stored.

# Early metaphors for the brain

For centuries, a lot of metaphors describing memory depicted the brain as a room in which a person could store physical things, for example as a library filled with books or a storehouse with items (Roediger, 1980). This metaphor seems intuitive and is easy to understand, hence it is still prevalent today. There even exists a widely-used memorisation technique called the *loci method*, which lets students are asked to imagine a house where they have to store memories as physical objects in the room. They can then later retrieve the memories by walking through the house along the objects they have stored the memories in (J. Anderson, 2015).

Yet, this model still has certain flaws. Firstly, with regards to retrieval practices, it depicts memories as static objects which only have to be stored to be remembered forever, misleading students, teachers and scientists into focusing more on encoding practices than on retrieval practices (Karpicke, 2012). Furthermore, memories are imagined as separate objects, which does not correspond with how memories are encoded in the brain. As a matter of fact, already in the 19th century, Cajal discovered that memories were patterns of electrical neural activity leading to synaptic changes (Bliss & Collingridge, 1993). This enabled another spatial metaphor, namely that of a switchboard, where the synapses were represented by electrical wires (Roediger, 1980). Later on, when the field of computer science begun to emerge, this metaphor transformed to that of a computer, enabling the conception of the modal model of memory. This is already a more useful metaphor than the physical space metaphor, since it is more biologically accurate, and it emphasises the need of communication between certain nodes (encoding and retrieval between the different memory systems).

However, the metaphor of a computer still has its flaws. A computer stores information on certain independent addresses in the form of binary data, and thereby implies that one can store data for later use without any need for comprehension of the data, and that the data can be formatted in any way the user would like to. Yet, the brain is differently structured, which has consequences for successfull encoding.

### The brain as an associative network

Unlike a computer, the brain is not organised into bits with physical addresses, but rather structured as an associative network. This entails the data being stored and retrieved by means of associated peers. In the brain, the neurons function as the nodes, and the synapses function as the edges. When information is encoded, new neurons are marked, and these are connected to other relevant, already marked neurons in the network. When something then has to be retrieved from memory, neurons signal relevant neighbouring neurons in order to activate the relevant parts of the brain. More generally speaking, when stimulated with a retrieval cue, the brain can then use neural pathways to find a corresponding item in the brain. These networks are sometimes referred to as semantic networks, and the implication for retrieval as spreading activation (J. Anderson, 2015). This effect has also been found on a cognitive level, for example Kintsch, Welsch, Schmalhofer, and Zimny (1990) has found that material is often not literally

encoded, but rather as a set of abstract meaning units representing certain associations between concepts.

# Elaborative processing

Because information is retrieved in the brain via related nodes and edges in the semantic network, strong neural pathways facilitate the retrieval process. One way of creating these pathways is elaborative processing (Karpicke, 2012; J. Anderson, 2015), which focuses on meaningful processing of the content. Craik and Lockhart (1972) conducted an experiment where students were to freely recall from a list of words after the students had to train the words by one of the following techniques: answering questions about structural details (e.g. is it in capital letters); about phonemical details (e.g. the word rhyming on another word); whether the word fits into a certain category; and whether the word fits in a certain sentence. They found that the more meaningful the task was, the higher the retrieval rate was (so the latter techniques were more effective). The same result was found by Barclay, Bransford, Franks, McCarrell, and Nitsch (1974). Furthermore, research conducted by Nelson (1979) presented students with paired associates that where either semantic or phonetic (in this case rhymes), and students showed a significantly higher recall of semantic associates. These studies demonstrate the importance of meaningful processing for retention.

## Implications for concept mapping

Reflecting on the previously described theory of associated networks, it appears that a semantic network is very similar in structure to concept maps, and thereby the maps provide an accurate representation of the way information is retrieved from the brain. For example, Canas and Novak (2012) states that "the widespread use of concept maps is based on the notion that a concept map is a reflection of the builder's cognitive structure and thus portrays his or her understanding of the domain depicted in the map" (p. 1). Nesbit and Adesope (2006) speculate that because of this, more and better retrieval cues are created when learning from or generating a concept map. Furthermore, a concept map displays the relations between certain concepts, and thereby focuses more on the meaning behind the content, rather than just the content itself.

# Cognitive effects with regard to retrieval practices

According to Karpicke (2012), a lot of educational practices have placed an emphasis on finding optimal ways to encode knowledge and experiences, but that retrieval practices have received less attention. Nevertheless, basic research has indicated that retrieval is still important to consider in any analysis of learning. This is mainly due to the fact that information is not stored exactly and indefinitely, but rather that memories are forgotten over time. Two theories have been proposed and debated over explaining why forgetting occurs, namely by interference of other redundant memories and by decay of existing memories.

# Interference and Decay

The theory of interference being responsible for forgetting has been demonstrated in an experiment by J. Anderson (1974). The participants were asked to memorise sentences in the form A < person > is in the < location >, where sometimes multiple persons where associated with only one location, and some locations with only one person. They found that if a sentence contained locations or persons with multiple associations this had an impact on the recognition time for that sentence,



Figure 6: A schematic image of a neuron with a closeup of a synapse (Matsaridis, 2013)

and even more so if both the location and the person had multiple associations. The explanation for this phenomenon is that since memories are retrieved by means of spreading activation and only limited activation can spread from one source (J. Anderson, 2015), the activity has to be divided over different branches in the semantic network, increasing the retrieval difficulty of the correct node. The increase in difficulty is also related to as the *fan effect*.

The effect of decaying memories takes place in the connections between neurons, and therefore it is important to first examine how neurons communicate signals. Figure 6 displays a schematic representation of a neuron in which it can be seen how the soma (cell body) is connected via an axon to the dendritic tree of other cells. The neuron can transmit stimuli by creating an action potential in the nucleus, transmitting this signal through the axon to the terminal button in the connected telodendrion (in the image refered to as the terminal aborization). There, neurotransmitters are released from vesicles, and after they have crossed the synaptic cleft there is a certain chance of being received by postsynaptic receptors. When this is the case, the nucleus of the receiving cell is triggered via the connected dendrite to also create an action potential, and the whole process is repeated (Bliss & Collingridge, 1993). The strength of a certain connection between neurons is therefore dependent on the action potential generated by a nucleus, the amount of telodendria over which the action potential has to be distributed (hence the aforementioned fan effect), the amount of neurotransmitters in the terminal button, and the amount of postsynaptic receptors in the dendrite of the next neuron.

One widely studied effect with regard to the increase and decrease of action potential and strength of memory traces is called long-term potentiation (LTP) (J. Anderson, 2015; Bliss & Collingridge, 1993; Pavlik & Anderson, 2005; A. White, 2003). Whenever a neurotransmitter is received by by a receptor, not only is the next nucleus activated to release its action potential, but also more receptors are activated, so that the postsynaptic membrane is able to receive more neurotransmitters at the next activation. Furthermore, another process is activated altering the

metabolical profile of the neuron, causing it to create proteins for more stable increased sensitivity towards stimuli. It is also speculated that there might be a retrograde effect, causing presynaptic modifications such as the creation of more neurotransmitters in the presynaptic vessicles (Bliss & Collingridge, 1993). This all results in an increased sensitivity in the postsynaptic neuron towards action potential in the presynaptic neuron, which then again increases the strength of this particular memory trace. Over time, if a specific neural pathway is not used, the effects of LTP decrease again, causing its strength to decrease and thereby causing decay. This also is a predictor for the testing effect, the effect of retrieval strengthening memory more than extra opportunities for further encoding, even when the retrieval is only carried out internally without any outward response (Edge et al., 2012).

Although both the effect of interference and decay have been proposed as separate theories and have been debated, they are still mutually inclusive, and J. Anderson (2015) therefore concludes that forgetting results both from decay and from interference.

# Power laws of forgetting and learning

Now that the relevant theories for learning and forgetting have been discussed, it is important to investigate with which rate people learn and forget. Already in 1885, Ebbinghaus discovered the power law of learning, referred to as the inversal exponential nature of forgetting (Edge et al., 2012; Pavlik & Anderson, 2005). The implication of this model is that memory not only systematically deteriorates with delay, but also that this loss is negatively accelerated, meaning that the rate of change gets smaller with increasing delay (J. Anderson, 2015). Wickelgren (1974) already proposed the formula  $m = \lambda(1 + \beta t)^{-\psi}$ , where m is memory strength (the probability of recognition), t is time,  $\lambda$  is the state of long-term memory at t = 0,  $\psi$  is the rate of forgetting, and  $\beta$  is the scaling parameter (see figure 7a). This formula has also found to be accurate by Wixted and Carpenter (2007). Finally, the effect has been directly related to LTP in the rat hippocampus by stimulating neural pathways directly with electrical signals (Raymond & Redman, 2006).

A similar effect has been found for the effectiveness of repetition: Newell and Rosenbloom (1981) have proposed a power law of learning, stating that a learning curve is inversal exponential (see also R. Anderson (2001) and Wixted and Ebessen (1991)). Murre and Chessa (2011) propose  $P = p(t) = 1 - e^{-\mu_i t}$  as a function describing this power law, where P or p is the probability of recognition after t iterations and  $\mu$  is the learning rate of student i (see figure 7b). The power law states that repetition has a positive effect on retrieval probability. This effect however does not increase linearly but inverse exponentially, with an asymptote at a certain amount of repetition. Again, this effect has also been demonstrated in the context of LTP in rat hippocampi (Barnes, 1979). The stronger memory trace from a higher repetition rate does not only result in a higher recall probability, but also in a more gradual retention curve, allowing memories to persist longer.



 $\it (a)$  The power law of forgetting, with m as the probability of recognition and t as the time passed since learning



(b) The power law of forgetting, with  $\mathbf{p}(\mathbf{t})$  as the probability of recognition and  $\mathbf{t}$  as the iterations of learning

Figure 7: The power laws of learning and forgetting

# Spacing effect

The spacing effect is a well known effect occuring within paired-associate learning, and demonstrates that repeated items are better remembered when both occurences are separated by other events or items than when they are presented in immediate succession (Verkoeijen & Delaney, 2008; Logan, Castel, Haber, & Viehman, 2012; Siegel & Kahana, 2014; Xue et al., 2011; Karpicke & Blunt, 2011). This effect has been demonstrated with diverse populations (Verkoeijen & Delaney, 2008; Logan et al., 2012), under various learning conditions (Verkoeijen & Delaney, 2008; Logan et al., 2012), and in both explicit and implicit memory tasks (Verkoeijen & Delaney, 2008). Items in immediate succession are called massed items, and items in separated succession are called spaced items.

One can test the spacing effect either by using pure lists or mixed lists. When using pure lists, one compares the effect of learning a list containing only massed items with a list containing only spaced items, and using mixed lists one measures the effect of learning both massed items and spaced items in one list, comparing their individual retentions. Verkoeijen and Delaney (2008) state that the vast majority of studies are conducted using mixed lists and found that spaced items were consistently better recalled than massed items, yet studies using pure lists are relatively rare and have produced contradictory outcomes. They conducted a study providing participants first with an all-massed list, then letting them write down as many words as they could remember, and repeat an identical procedure for an all-spaced list with a 2 minute break inbetween. They conducted this experiment with short-lagged spaced items (with 1-4 items in between) and long-lagged spaced items (with 4-13), and found only a spacing effect in the latter experiment. However, Wahlheim, Maddox, and Jacoby (2014) adds to this that repetition is only increases when a student detects the repetition of an item, and therefore the lag should not be too long.

Two theories have been presented explaining this phenomenon, namely the contextual variability theory and the study-phase retrieval theory (Siegel & Kahana, 2014). The first theory entails that because context is not static but continuous, and that therefore spaced items are studied in a greater variety of contexts and as such are easier to recall in yet other contexts than massed items due to the so-called encoding-specificity principle (J. Anderson, 2015). This principle entails that the probability of recalling an item depends on the similarity of the context during the encoding. The study-phase retrieval theory entails that additional retrieval cues for the repetition of an item are generated by earlier occurrences and their associated contexts being associated with the repeated item. These theories are not mutually exclusive (Siegel & Kahana, 2014).

Inspired by the power laws of learning and forgetting, Karpicke and Bauernschmidt (2011) conducted an experiment to test the effect of constant or varying lags between items on learning. They tested this by conducting a similar experiment to Verkoeijen and Delaney (2008), however in this experiment they only tested pure lists with three different lag intervals to test for an absolute spacing effect. For each lag interval category they tested for an expanding lag condition (where the lag would increase for the repetition of each next item), an equal lag condition (where the lag would remain constant) and a contracting lag condition (where the lag would decrease for the repetition of each next item) in order to test for a relative spacing effect. From their findings they confirmed the effect of absolute spacing, namely that longer gaps between items do have an effect on long-term retention, yet they did not find a relative spacing effect. However, this has not been tested for spacing with longer intervals, such as intervals spanning multiple days or weeks.



Figure 8: Adaptive spaced-repetition learning (taken from Edge et al. (2012))

## Implications for the flashcard system

It can be concluded that the flashcard system derives its effects mainly from the testing effect by having students actively retrieve information instead of simply encoding it, and from the spacing effect by students going through the items interspersally instead of by immediate succession. The key question however is how often a single card has to be repeated. On the one hand, overlearning can occur, where the student repeats an item too often resulting in diminished learning effects because of the power law of learning, and also only on the short term (Rohrer, Taylor, Pashler, Wixted, & Cepeda, 2005), which is inefficient. On the other hand, if the intervals are too long, students forget the items inbetween intervals, and then the spacing effect does not apply anymore. In order to solve this problem, most modern digital flashcard systems apply a system called adaptive spaced-repetition learning (e.g. the Pimsleur system, the Leitner system, Supermemo, and Anki (Edge et al., 2012). In this system, exponentially expanding intervals are used, not because of a relative spacing effect which does not exist according to the previously mentioned literature, but rather to increase the average (absolute) spacing with each new repetition. This creates a stronger memory trace every time, but also takes into account the further decreasing risk of forgetting because of the slower declining retention curve (see figure 8).

# Conclusion

Overall, this chapter has discussed several cognitive theories related to the storage and retrieval of explicit (or declarative) knowledge in and from the hippocampus. Related to encoding practices, it has now been established that the brain works as an associative or semantic network, and that meaningful or elaborative processing is important for the later retrieval of memories. This seems to fit with the structure and process of concept mapping, although more research is needed in this area. Furthermore, the theories of interference and decay have been discussed in order to explain forgetting of memories, together with Long-Term Potentiation and its effects on the rate of forgetting and learning. In addition, articles were discussed demonstrating that spaced rehearsal is more effective than massed rehearsal. This has finally led to the conclusion that adaptive spaced-repetition learning is an effective method to expand absolute spacing, which entails that items are repeated with exponentially increasing intervals.

# Part II Design Report

a730756 Design Report

The Project Description mainly described the needs which the Flashmap System might be able to accomodate, and on page 12 generic features of such a system is described. Although the term Flashmap System is intended for describing any system including these features, when having to evaluate the idea one has to evaluate one or multiple specific implementations of that idea. Therefore this part will specify the design features of the specific tool developed within this project, along with arguments in favour of and against these choices and their considerations, and the process with which they are incorporated within the tool itself. This description will follow the different steps of the Generic Model (Plomp, Feteris, & Pieters, 1992), which is displayed in figure 9.



Figure 9: The generic model by Plomp et al. (1992)

The first step consists of analysing the context, learner and task characteristics in order derive their possibilities and requirements. Based on these together with general design guidelines provided by educational literature, design choices can be made and argued for within the next step. When these choices have been made, they can be developed and incorporated within the product. When the product then is finished it can be implemented within the context and evaluated. As can be seen in the model, the implementation and evaluation play an important part throughout the design process, rather than them being seperate steps at the end, and will therefore already be addressed during the description of the first three steps. Furthermore, these seperate steps will be described in the next part, which describes the research conducted within this project. Finally, rather than addressing the design and development in seperate chapters, they will be described alongside each other within the chapters describing the separate facets of the product. INSERT SEPARATE FACETS OF THE PRODUCT

Design Report a730756

# **Analyses**

Before designing an educational product, it is important that the designer first acquaints himself with the extrinsic factors important to this product. In order to discover the important characteristics of these factors, Smith and Ragan (2005) enlist three types of analyses to be conducted, together with steps for conducting them. These are an analysis of the context, of the learner, and of the learning task. Although these analyses are more targeted towards instructional design, and therefore more focused on a specific group being taught specific content, these analyses will still provide relevant information for the design choices and the evaluation. However, the steps will be adjusted and generalised or even omitted in order to fit the design of the more generic learning tool. The information gathered in order to conduct these analyses mainly stems from meetings with one of the teachers. This might not be the most reliable source of information because of the lack of triangulation, and should therefore not be taken as insight in the curriculum of Dutch Literature courses in secondary education, but rather as context information relevant to the design.

# Analysis of the learning context

As already stated in the Evaluation section on page 13, the evaluation of the flashmap system will be evaluated within the Dutch secondary school Stedelijk Lyceum, with students having to learn about the Renaissance genres in Dutch Literature. Although the general needs for a flashmap system are already described in the Project Description, it is still important to investigate the specific needs of the context where the programm will be implemented. Therefore, this context will be further investigated within this section, starting with the Needs Assessment (Smith & Ragan, 2005).

### Needs assessment

According to Smith and Ragan (2005), the first step in a needs assessment is to assess whether there is a problem, and what the nature of the problem is (see figure 10), mostly to identify the problem, but also in order to assess whether the innovation model or the discrepancy model applies for determining the needs. The first step is to assess whether there really is a problem in order to establish the general need. During the meetings, the teacher did confirm the need for better retention and comprehension of the content, and indicated that most of the time the students only learned the night before the exam in order to get a high (enough) grade and consequently forget everything again. This is not only wasteful of the effort of learning, but also causes problems when the knowledge becomes relevant again in the next chapter. The cause of this problem therefore definitely lies within the learning process, and could possibly be improved by the use of a flashcard or flashmap system, so it can be concluded that there is indeed a problem caused by learning, and it is thereby useful to proceed with the next phase of

a730756 Design Report



Figure 10: The three sides of needs assessment (Smith & Ragan, 2005)

the assessment. Finally, Smith and Ragan (2005) state that if there already exists instruction for the relevant learning goals, one has to proceed by using the discrepancy model, and otherwise by using the innovation model. The new tool is only there to enhance the current learning process by adding an additional activity, rather than adding new learning goals to an empty space in the curriculum. Thereby, from an instructional perspectice, the flashcard or flashmap system is only an improvement of the currently existing instructional activities rather than a new innovation, and therefore the discrepancy model will be used.

As can be seen in figure 10, the discrepancy model for needs assessment uses evaluative methods rather than analytical in order to establish the needs within the organisation. These methods include establishing the goals of the instructional system, determining how well these goals are currently being achieved, determining the gaps, prioritising the gaps, and determining which gaps are instructional needs (or in this case, educational needs). These remaining gaps can consecutively be used as a basis for determining the general use cases of the educational product. Normally an instructional designer tries to come into the organisation as a tabula rasa, without any preconceptions on what he would want to achieve and merely try to solve the real problem apparent in the organisation itself. However, because this design is theory driven rather than problem driven, it was merely checked with the teacher whether the problems stated in literature are also a problem here.

The first step was to confirm whether the goal stated by von Glaserfield (2001) of wanting students to memorise many facts in a meaningful way aligned with the goal of the teachers. Upon prompting the contact person what she deemed to be most important for her students to take away from her lessons was for them to become more familiar with the Dutch Renaissance writers

Design Report a730756

or work. For example, she stated that she wanted the students to at least recognise important names when they saw a street name such as the "P.C. Hooftstraat" or the "Vondelpark". She also would like the students to be able to distinguish between different genres of literature, such as the *sonnet* or *emblematiek*. Based on these statements, the goals within the context are in line with students memorising and understanding all of the facts, without them being too ambitious. There are also differences between her and the other two teachers, they namely only offered the materials presented within the books, whereas she offered some additional content which the students also needed to master. However, she also stated that she would be responsible for the extra materials, and that the tool could be only to learn the textbook materials. Finally, she provided a test from the previous year to offer some more concrete examples of what she wanted the students to know, of which an English translation is included in the appendix on page 64. From this test, more goals can be extrapolated, such as students having to not only distinguish different genres, but also to define them or provide characteristics, and recognise the application of these features in both examples of the time periods as well as modern examples. Furthermore, they have to be able to relate the famous writers and writings to the genres.

According to the teacher, the students were mostly able to score points on the reproduction questions, such as having them to provide definitions or enlisting characteristics of genres. Thereby, most students were able to (barely) pass the test, which was already regarded as an important achievement, however minimal it might be. In this regard, the teachers already had scaled down their expectations of the students quite a bit to a realistic and feasible bar. The teacher also tried to make the material more appealing by focusing on examples, with success.

However, as already indicated before, the main problem short retention time due to students learning just before the exam remained an issue for the teacher, and more improvements could be made towards creating an understanding of the content by the students. Furthermore, although the examples make the content more appealing, according to the teacher students generally still did not experience the topic of Dutch renaissance literature as engaging or interesting (see also Heemskerk, 2010). Finally, most of the students would rapidly forget what they have learned after the exam, which the teacher did experience as wasteful. Therefore, the general categories of improvement can be enlisted as the students insufficiently understanding the content, not being immersed or engaged with the content (adequately), and retaining the acquired knowledge for a too short period of time.

Within the context of the Flashmap system, for now only the insufficient comprehension and retention of the content are prioritised, since there is no real evidence within the studied literature that the tool would also make content more immersive (although this could still be a side effect of the tool). These gaps are both instructional needs and are therefore appropriate gaps to tackle within the design.

# The learning environment

### The school

The Stedelijk Lyceum is one of the two major schools in Enschede (together with the Bonhoeffer College), which has an open denomination and provides education to 3339 students. It consists of 7 minor schools on different locations, of which the Kottenpark location is approached within this project. The location was approved by the Dutch Inspection of Education (Kwaliteitsonderzoek in het kader van het onderwijsverslag 2016, Het Stedelijk Lyceum - locatie Kottenpark, HAVO, VWO, 2015) based on analysing relevant documents, visiting the school and observing lessons, conduct interviews with relevant agents (such as teachers and students), and discussing the results with the director and administrator. They reported that the school climate is very positive and safe, and that the teachers have enough professional space to develop themselves. However, they

a730756 Design Report



Figure 11: The curricular spiderweb (van den Akker, 2003)

also found that the exam results are some years around the national average, and some years below. The possible reasons they provided were that teachers usually focus on what students have to do instead of what they have to learn, and that they apply differentiation to a lesser extent. Yet, the school now makes use of student monitoring systems, so that they can better tackle problems like language deficiencies and the like.

# The curricular spiderweb

Although Smith and Ragan (2005) do enlist some of the steps necessary for describing the learning environment, van den Akker (2003) provides a more widely used and thorough model, and therefore this will be used instead. This model is depicted in figure 11, and displays the relevant components which have to be taken into account for implementation of educational innovations. They are arranged as a spider's web, not only illustrating their many inter-connections, but also underlining the vulnerability of the whole implementation. These aspects will be visited one by one from the perspective of the school, since the learner will be addressed separately in the next section.

The central aspect, rationale (or vision), represents the question why students are learning the content in the first place. From the previously visited educational philosophies, one could make many arguments why students should familiarise themselves with Dutch renaissance literature: from a perennialistic or essentialistic perspective one could argue that it is the only way this knowledge can be transferred to the next generation and keeping it relevant; a progressivist could argue that one should first be familiar with older genres before one improve upon them or create new genres; reconstructivists might deem it important since it explains something about the national heritage, and thereby point out the flaws of the old ways; and finally an existentialist sees art in general as a meaningful way for self discovery. This intrinsic motivation is heavily dependent on the individual motivations and philosophy of the teacher. Most of these arguments are represented in diverse Dutch opinion pieces (e.g. Slings, 2007; Dirksen, 2007). In the case of

Design Report a730756

the consulted teacher, the arguments provided seemed to come mainly from the perennialistic and essentialistic perspective, namely that the content is part of our cultural identity and thereby important an sich. However, she also indicated the existentialist self-discovery to be valuable. Furthermore, schools are extrinsically motivated to teach the material, since it has to demonstrate to society (mainly the exam committee) that their students have mastered this content. This is mainly related to subdomain E2 and E3 in the Dutch national exam programm, which states that a student can recognise and distinct between literary textgenres, and apply literary concepts in the interpretation of literary work; and that a student can provide the outlines of the (Dutch) literature history, and place literary works in this historical perspective.

Both the content and aims & goals are already stated in the needs assessment, and can be summarised as: Students have to learn about prominent writers and genres within the context of Dutch renaissance literature; have to be able to recognise important names and concepts, be able to define them or relate them to each other, and apply features of genres in examples of texts.

The course consists of two different types of learning activities, which are classroom instruction, and individual learning at home by the students. There are two sessions of classroom instruction, both lasting 50 minutes, in which the 100 students are divided over the three teachers in static groups on separate locations. These lessons take place over the course of two weeks, with one lesson provided in one week. Within these lessons, the teachers transfer knowledge and provide excersises for the students. Outside of the lessons, the students still have to study the textbook Laagland individually (van der Meulen & Kraaijeveld, 2010), which contains all of the materials which will be prompted on a final written assessment. As already stated before, the teacher indicated this activity mostly to take place on the evening before the assessment, and only on a superficial level. Finally, this assessment takes place in the second week after the final instruction, and will be similar to the example test included in the appendix on page V.

The teacher stated that the course mainly consisted of the rote memorisation of facts, and that she was still doubtful whether the students would actually be willing to participate in the evaluation of the Flashmap system. Yet, she did see the general use of the tool for achieving the learning goals, and therefore still seemed to be enthusiastic in cooperation and encouraging the students to participate. The only two technical problems are that there is not too much time for extra activities within the lesson plan and the teachers being quite busy themselves, and that the technological possibilities within the classroom are limited. Within the classroom, only a couple of computers are available for use, and still run relatively old software. Therefore, the activities envolved in using the flashmap have to target the individual learning of students, since they have more time outside of the lesson plan, and mostly do possess the hardware and software necessary to run the software.

# Analysis of the learner

In order to tailor to the specific needs and interest of the students themselves, it is important to also investigate the characteristics of the learner. Smith and Ragan (2005) propose a methodology for assessing a learner which focuses on two axes: Stable and Changing, and Similarities and Differences, creating 4 categories. Within these categories, different types of learner characteristics can be distinguished, which are enlisted in table 2. Stable similarities involve characteristics which are similar among people and do not change over time, such as sensory capabilities and their corresponding perceptual responses, the way people process information, and finally the ways and conditions in which people learn. Stable differences relate to characteristics different among people but stable over time, such as certain aptitudes, cognitive styles, psychosocial traits, or inheritary traits such as gender, ethnicity & racial group. Changing similarities are similarities that do

a730756 Design Report

change over time, these characteristics are mainly attributed towards development processes. Finally, changing differences are differences in development across people, which can mainly be attributed towards different upbringings or interests. Instead of visiting the learner characteristic according to each above mentioned category, Smith and Ragan (2005) propose a more conveniently arranged outline which will be used in the next sections, albeit slightly altered in order to fit the current project.

|          | Similarities                                                                    | Differences                                                                      |
|----------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Stable   | Sensory Capacities Information processing Types and conditions of learning      | Aptitudes Cognitive Styles Psychosocial traits Gender, Ethnicity, & Racial Group |
| Changing | Development Processes: - Intellectual - Language - Psychosocial - Moral - Other | Developmental state: - Intellectual - Other Prior learning: - General - Specific |

Table 2: The four categories of learner characteristics (Smith & Ragan, 2005)

# Physiological characteristics

The students who will participate in the research are enrolled in grade 4 of Dutch secondary education, and therefore should be around the age of 16-17, with some deviations due to students either having skipped or repeated a grade. Therefore, the students are generally considered to be either at the end of puberty, or the beginning of young adolescence. The Cognitive theories chapter on page 20 already provides general theories about the learning process within the brain. However, during late puberty and early adolescence, the brain is still heavily in development, especially the prefrontal cortex. (Blakemore, Burnett, & Dahl, 2010). These changes might be even more relevant than the proper age, and therefore they will have to be elaborated on further before delving into the cognitive characteristics.

In order to map out the changes in the adolescent brain, Giedd et al. (1999) performed a longitudinal MRI study of the brain development during this period, of which the results are displayed in figure 12. Within this study, three themes emerged within the adolescent development of the brain:

- 1. After a peak in growth of both brain cells, connections and neurotransmitters during childhood, one can see a decline in adolescence;
- 2. The connectivity between different regions of the brain increases;
- $3.\,$  A new balance is formed among frontal and limbic lobes.

The first theme is a result for the brain becoming more streamlined after having collected a lot of information during late childhood, making it more efficient (see also page 23 on Interference and Decay). This is also known as peak plasticity, after which a decrease can be observed. Powell (2006) describes this phenomenon as *Use it or lose it*, since the brain rigorously selects the specific memories which are activated during this time. The second theme refers to the strengthening of specific memories, which are enhanced during that period. Finally, during adolescence a shift



Figure 12: The MRI scans from the longitudinal study conducted by Giedd et al. (1999), showing the maturation of the brain during childhood and adolescence

is made from "cold" to "hot" cognition, where the former relates to hypothetical, low-emotion reactions, and the latter to high arousal decision making, strongly influenced by peer pressure and real, direct consequences. This is highly related to the prefrontal cortex being heavily developed, resulting in the teenage brain to rely more on the amygdala which is the more emotional, impulsive area of the brain.

The developmental level of the prefrontal cortex has also been found to positively correlate with the IQ of students, more so than other regions of the brain, which is an indication of this development to be the most influential for the cognitive development within adolescents. Finally, it has important consequences for the cognitive development of adolescents. They become more capable of abstract, multidimensional, planned and hypothetical thinking in comparison to children (Steinberg, 2005). Adolescents also tend to use their hippocampus more often during the execution of certain tasks (Finn, Sheridan, Hudson Kam, hinshaw, & D'Esposito, 2010).

#### Cognitive characteristics

The Dutch highschool is subdivided into three main categories, which are VMBO, HAVO and VWO, ranking from lower to higher rates of academic achievement and expectations. The students targeted within this projects are VWO-students, which means that they are most likely to have a relatively high IQ, and are quite apt of learning for and passing written tests. Furthermore, at the beginning of grade 4 of VWO, students are allowed to choose between a nature profile or a society profile, determining whether they have respectively have more STEM subjects (such as math or biology), or subjects more related to language, humanities or economy. Therefore, where students who chose the nature profile are generally more apt to apply logic to technical problems, those who chose the society profile are generally more apt and used to learning information by reading texts. This makes up for different specific aptitudes within this specific Dutch literature course, where reading skills are more relevant. VWO-students are also subdivided into Gymnasium and Atheneum students, where the former group outside of the regular curriculum also has to learn classical languages (Latin and Ancient Greek) and culture. Because the Dutch renaissance literature has a lot of connections with classical genres, Gymnasium students might have an advantage in prior knowledge. Furthermore, all students should have learned about the relevant time period in their history classes prior to this course (e.g. the Spanish War, the Lutheran

reformation etc.), providing with the relevant knowledge to understand the context of Dutch renaissance literature. Finally, the students have received a similar instruction on Dutch medieval literature, which is also relvant for concepts in the renaissance literature, such as the *Mecenas*, the *Lyriek* and *Rederijkers*.

#### Social characteristics

This section covers the stage of moral development, the socioeconomic status, the racial or ethnic background, and the religious denominations of the students. The stage of moral development is relevant since it influences the individual decisions the students are likely to make. The socioeconomic status (SES) is found to influence the academic achievement of students, since they are predictors of both the safety of the home situation and the support from the parents. Furthermore, racial and ethnic backgrounds might influence the attitudes that students have towards certain topics. Finally, since the subject of Dutch renaissance literature is heavily influenced by religion, especially the reformed church, the denomination influences the perspective of the student towards the subject, and determines a certain amount of prior knowledge. The SES, the racial or ethnic background, and the religion have not been investigated within the target group, so instead public available statistics from the Dutch social and cultural plan agency (Sociaal en Cultureel Planbureau, SCP), the Ministry of the Interior and Kingdom Relations (Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, BZK), and Statistics Netherlands (Centraal bureau voor de Statistiek, CBS) were used.

Every four years the SCP publishes data reporting the socioeconomic status (SES) of postal areas in the Netherlands (Statusscores, 2015). The SES is based on three variables of the people living there, namely their education, their spendable income, and their position on the labour market. The data about the postal area of the school is displayed in table 3, together with the data of its two major neighbouring postal areas. As one can see, all of the values are below the national average SES, and that the surrounding postal areas have a lower SES than the school's postal area. However, academic achievement and socioeconomic status are highly correlated (K. White, 1982), and given that the approached students are enrolled on the VWO level one might expect them to come from households with higher incomes. Furthermore, the BZK frequently publishes indications of living circumstances (Leefbaarheidssituatie Buurten Enschede, 2015), which is specified with smaller areas and is found to correlate with the SES (Knol, 2005). On this map, the area Bolhaar scores a 0.3 in comparison to the national average. It could therefore be that the actual SES of the students of the school is somewhat higher than indicated within the table, especially since there is also a university campus within the same postal area, where low income university students live.

Among other data, the CBS offers descriptives of students, categorised per national district. This descriptive data entails information about the age, sex, type of education, and ethnicity of students, and the interactions among these variables (*Leerlingen*, *deelnemers en studenten*;

| Postal code | Number of | Number of  | SES score | SES rank |
|-------------|-----------|------------|-----------|----------|
|             | residents | households |           |          |
| National    |           |            | 0.28      |          |
| 7521        | 9555      | 4624       | -1.28     | 3254     |
| 7522        | 7100      | 4551       | -0.37     | 2792     |
| 7523        | 12180     | 6060       | -1.62     | 3333     |

Table 3: Indicators of socioeconomic status on both national and postal code levels (Statusscores, 2015)



Figure 13: The distribution of ethnicities among 16-17 year old vwo students of education type vwo3-6 (Leerlingen, deelnemers en studenten; onderwijssoort, woonregio, 2016)

onderwijssoort, woonregio, 2016). From this data, descriptives about 16-17 year old students from Enschede enrolled in vwo grade 3-6 was extracted, displaying their age and ethnicities. 23% of the 16-17 year old students are enrolled in VWO, where 44% is male and 56% is female. The distribution of ethnicity is visualised in figure 13. 77% of the students are native and 31% are non-native. 9% of the students is western non-native, and 22% is non-western non-native. The CBS defines a non-western non-native is an non-native originating from Afrika, Latin-Amerika and Asia (except for Indonesia and Japan) or Turkey. The most prevalent non-western ethnicity is Turkish, with 8%.

Finally, the CBS also offers statistics about religious denominations (Religieuze betrokkenheid; kerkelijke gezindte; regio, 2015), which state that 57% of the people in the province of Overijssel is affiliated to a church. These affiliations are split up in different religions: 22% Roman-Catholic, 8% Protestant, 12% Dutch Reformed, 7% Continental Reformed, 4% Islam, and 5% miscellaneous (see figure 14a. 43% is not affiliated to any church, however this does not necessarily entail that they do not have a religious worldview. Data is also offered on how frequent people visit the church: 14% visits every week or more often, 4% two or three times a month, 4% once a month, 8% less than once a month, and finally 70% (almost) never (see figure 14b. This would indicate that although there is a majority affiliated with a certain church, most of the people do not actively take part in their respective community. There are also more specific statistics available about the region of Twente only (Relique; naar regio; 2000/2002 of 2003, 2004), however these are older and might already have changed significantly over the last 13 years. Yet, they state that Twente is more religious than the overal province of Overijssel. Unfortunately, there are no statistics available about Enschede only. Finally, the school of the target group has an open (i.e. non-religious) denomination, whereas the other large school in Enschede has a christian denomination, so one might expect mainly the students without any strong religious views to choose for this school.



(a) A distribution of church affiliations



(b) The distribution of frequencies of church visits within the group of people affiliated to a church

 $\textit{Figure 14:} \ \ \text{Denominations within the region of Twente } \ (\textit{Religieuze betrokkenheid; kerkelijke gezindte; regio, 2015})$ 

#### Affective characteristics

The influences on the students attitudes can be mainly categorised into two factors: the natural factors and the nurtural factors, which will be described in separate paragraphs below.

Within the section Physiological characteristics on page 36 it was already described that students rely mainly on their amygdalic systems instead of their prefrontal cortex during young adolescence. According to Steinberg (2005), this mainly leads to reward-seeking behaviour, peer-reliance, risk-taking, and poor decision making. This has the consequence of students being heavily influenced by the direct consequences of their actions rather than the long-term benefits or drawbacks, which are in a lot of cases related to social rewards and stimuli rather than cognitive rewards. Furthermore, they are more likely to take certain risks in order to gain these rewards, possibly causing procrastination-like behaviour until the risk of failing the exam is too large. This is also heavily related to poor decision making, at least in the long term. These types of behaviour are also in line with what the teacher stated about her students, namely that they postpone their studying behaviours until the last possible moment (in most cases the night before the exam), and that their strategies are not more elaborate than just reading or even skimming through the chapter.

Furthermore, it is useful to involve research on attitudes of the target group towards the task they have to perform. However, no research has been conducted on the attitude of high school students towards Dutch renaissance literature, and research into high school student perspectives on subjects within the Humanities are scarce in general. The most relevant study found was a study conducted by Grever, Pelzer, and Haydn (2011), on the perspectives on learning history by Dutch, English and French high school students. Within this study, students were asked several questions about what kinds of history, which periods of history are important or interesting for the students, and what the meaning of history is for their personal lives and what they believe to be its relevance for society. For Dutch students, this study found that the history of ones own family generally ranks high, and after that the history of the country where the parents come from (both for natives and non-natives). This means that native students might be more interested in learning about the subject than non-native students. Furthermore, the history of ones own religion is mostly important for Moroccan and Turkish students (which are mostly muslim), so the history of christianity is generally not that interesting towards most students. The study also found that the time period of early modern history is the least interesting for students, no matter the gender or nationality, despite that in the Netherlands the most important topic is the rise of the Dutch republic and the Golden Age (the content of the subject used within this study). Finally, the study states that there were no significant differences in perceptions of pre-vocational students and HAVO/VWO students in these respects, although one might expect Gymnasium students to be more interested in the classical revival of art during the renaissance than the Atheneum students.

### Analysis of the task

Finally, the characteristics of the task itself will be investigated in order to learn how to design a tool in such a way that it facilitates or augments the learning process. Smith and Ragan (2005) enlist primary steps for performing a learning task analysis, which are writing a learning goal, determining the types of learning of the goal, conducting an information-processing analysis of that goal, conducting a prerequisite analysis and determining the type of learning of the prerequisites, writing the learning objectives for the learning goal and each of the prerequisites, and writing the test specifications. However, within this project the instruction has already been written (van der Meulen & Kraaijeveld, 2010), and only has to be used to create a concept map.

Still, knowledge of the underlying structure of the instruction might prove to be helpful for finding the relevant elements, and it is also useful to investigate the specific uses of the instruction within the context of this project.

#### Learning goals

The direct learning goals of the instruction can be found in paragraph 13.4 of Laagland, the specific instruction for the Dutch renaissance literature, where the previous paragraphs only provide the prerequisite knowledge necessary to understand this paragraph. The different chapters describe the *emblematiek*, the *lyriek*, the sonnet, and the different theatrical genres (the tragedy, the comedy, and the *klucht*). One of the goals of this instruction is that the students are able to describe these genres, and are able to differentiate between the subgenres or terminology within these genres. However, the students also have to be able to relate these genres to the general context described in the previous chapters, which consist out of the political, the socioeconomic, and the cultural backgrounds.

#### Types of learning

Attaining these skills are mainly intellectual in the typology defined by Smith and Ragan (2005), because the students mainly have to be able to describe and discriminate between defined concepts. However, there is also a certain amount of declarative knowledge learning involved because students have to first learn and memorise certain definitions or conceptual organisations. Furthermore, within the book there are not only abstract concepts being defined, but also declarative knowledge such as names of important authors (Vondel, Bredero etc.), books or plays (e.g. the *Klucht van de koe*), and certain historic events such as the migration of calvinists from Antwerpen to Amsterdam in 1585.

### Concept map

Because the information has already been defined within the textbook (both the new content and prerequisite content), the information-processing and prerequisite analysis activities have been replaced by translating the content of the instruction within the textbook to a concept map. Within this map, not only the relevant concepts, names and events are presented, but also the relations between them, providing a more meaningful representation. Furthermore, the concept map also contains information about the order in which the concepts have to be learned, because of the direction of the relations. The data used for the concept map is uploaded on github<sup>1</sup>. A direct visualisation is too extensive to be feasibly included within this report, however a digital visualisation is available<sup>2</sup> (after a short initial rendering time due to its size). The Client design and development chapter on page 50 will elaborate further on the design choices for the concept map. Finally, this map is directly shown to the students within the flashmap condition during the experiment.

#### Flashcards

The activity of specifying the learning objectives is replaced by formulating the flashcards, because the flashcards already form the specific knowledge-based learning objectives. They already contain the most important types of information which should be included in an objective, namely the

 $<sup>^{1} \</sup>texttt{https://github.com/mcvdenk/MasterThesis-Software/blob/master/database/concept\_map.json}$ 

<sup>&</sup>lt;sup>2</sup>http://www.mvdenk.com/thesis/concept\_map/

statement of the terminal behaviour (the answer itself), the conditions of demonstration (given this question, the student can reproduce the correct associated answer). The standards or criteria for these objectives are globally defined, namely that the student has to be able to demonstrate that he knows the correct concept corresponding to a parent node and edge label. The flashcards are directly based on the previously defined concept map. Within this activity, edges and their corresponding parent nodes were transformed to a question, and the child node formed the answer to that question. For example, the nodes Strijdliteratuur and Actualiteit, respectively connected by the edge  $verwees\ naar$ , is translated to a flashcard "Q: Waar verwees de Strijdliteratuur naar?"  $\rightarrow$  "A: Naar de actualiteit" (Translation: To which did the war literature refer? To actual events). Sometimes, multiple edges from one node to several child nodes having the same label or falling within the same category were translated to only one single flashcard. The data for the flashcards can be found again on github<sup>3</sup>.

#### Test specifications

The assessments conducted before and after the students have used the learning tool consist partly out of the questions from the flashcards for measuring knowledge reproduction, but also partly of questions targeted to measure the comprehension levels of the students (see Bloom et al., 1956). On both assessments for all questions, the students are asked to fill in an answer in a textbox. In order to answer the questions for comprehension, a student has to be able to draw relations between not directly linked nodes, and thereby requires a higher degree of mastery of the content. It does however not yet contain any questions where students have to apply the content within different context, or have to think outside of the content directly taught, since these questions would rate on even higher levels on the taxonomy of Bloom. Finally, the questions are phrased according to the specified action verbs related to the level of learning. A more detailed elaboration of the test construction and analysis can be found in the Instrumentation section on page 53, and all of the comprehension level questions are included on github<sup>4</sup>.

### Implications for design

From the analyses above, certain conclusions can be drawn for designing the learning tool. First and foremost, the tool should aim to facilitate long-term learning, so that the effort spend both teaching and learning is not wasted due to the students afterwards forgetting the content again. Furthermore, it is important that the students not only memorise the content, but also comprehend it.

The tool also has to be used for self-study only, since the school cannot spend any extra time on using the tool within the curriculum. This means that students are learning individually, whenever and wherever they want to, and are using the tool on a voluntary basis. This creates a more informal but also unstable learning environment.

However, because young adolescents have a heavily developing prefrontal cortex, they experience problems with planning ahead for studying, and are also less motivated to do so because of higher amounts of peer pressure and the like. Furthermore, it was found that the subject that they have to study is less than favourable, since it is about early modern history, and non-western non-natives might even have a lower interest in the rather nationalistic subject. On the other hand, the Stedelijk Lyceum is reported to have a safe and positive school climate, which could stimulate a higher degree of learning within the students. Students will probably also be familiar

 $<sup>^3 \</sup>texttt{https://github.com/mcvdenk/MasterThesis-Software/blob/master/database/flashcards.json}$ 

<sup>&</sup>lt;sup>4</sup>https://github.com/mcvdenk/MasterThesis-Software/blob/master/database/itembank.json

with the christian themes within Renaissance literature, since a large portion of the population in Twente identifies as christian (although the majority does not regularly visit church ceremonies). In conclusion, because of the low intrinsic motivation and adolesents having weaker metacognitive abilities, the tool should facilitate the planning process so that the students only have to focus on the learning itself.

### Defining the general use cases

### Supplantive or generative

The first important design choice which has to be made is whether the students are supplied with a concept map or flashcards, or that they generate the content themselves. The dichotomy of generative versus supplantive instruction is described in further detail by Smith and Ragan (2005), where the implications of both sides are enlisted for the learner, the task and the context.

One of the aspects of generative strategies is that the learner requires a higher amount of prior knowledge, a higher aptitude, and a wider and more flexible range of cognitive strategies, because the content still has to be (partly) researched and constructed. This can be a disadvantage, because the learner might not possess these skills and therefore the instruction may not be suitable or highly inefficient using generative strategies. On the other hand, greater mental effort generally leads to greater depth of processing and therefore better, more meaningful learning, which was also stressed by Canas and Novak (2012) and Nesbit and Adesope (2006). Furthermore, learners experience a higher motivation and a lower amount of anxiety when using generative strategies, and their attribution of success is internal rather than external.

Furthermore, when using more generative strategies, the learning task becomes more complex and ill-structured, and therefore requires more instruction and time to complete. It also leads to a higher focus on cognitive strategies, but less so on the learning goals. These goals can also not become universal, since each student creates their own flashcards or concept map, and therefore decides on their own learning content.

The most important factor for this design choice is feasibility. The teacher already stated that there is only limited time available during the lesson to introduce them to the software, so there is no time for extensive instruction on how to create concept maps, let alone creating the maps within the classroom. Additionally, students do not have much time at home to spend on creating the maps, and it is also known from both interviews with the teacher as literature that they will probably have only a low amount of intrinsic motivation. Finally, when the students have to create their own maps, it cannot be guaranted that they will include the nodes relevant for the goals of the instruction, and might become either to narrow or to extensive in certain branches. The same arguments are valid for letting students create their own flashcards. Therefore, despite of the benefits that a more generative approach may have for the learning process, the content will be supplied to the students instead.

### Choice of platform

The next design decision is centered around the choice of platform or medium going to be used in order to support the learning tool. In the section Application of flashcards on page 11 it is described that students generally prefer to use traditional or written flashcards, despite the many

advantages of digital flashcards. However, with the flashmap tool this is not a feasible option, since the tool has to dynamically generate different graphs based on the general concept map and the profile of the students. Of course it would be possible to provide the concept map digitally and the flashcards in written form, however this would introduce an extra variable to the research design. Finally, with written flashcards one can only use rather crude methods for rescheduling the cards, instead of using the more precise algorithms possible within a digital tool.

There are various options for the specific implementation, for example a computer program or an app. Of these options, a web application is the most convenient, since it is accessible for any device with a modern web browser, and immediately stores the usage data on a centralised server so that it is immediately accessible for the researcher. Furthermore, adjustments or fixes can be applied during the research, without all users having to update to the newest version.

For the client, HTML, CSS, and Javascript are used, importing the vis.js library for visualising the concept map dynamically<sup>5</sup>. Furthermore, Python is used for the server logic, communicating with the webclient through a websocket using JSON messages. The choice for Python is mainly based on preference by the programmer. Finally, MongoDB was used as a database engine since it stores data in a format very similar to JSON, which is also used by vis.js to represent concept maps.

The server implementation will be further elaborated in the Server design and development chapter on page 49, and the client implementation in the Client design and development chapter on page 50.

### Supported user actions

The final design decision related to the general ideation of software is deciding which use cases should be supported, which are generally displayed within a UML use case diagram ((OMG), 2015). For the flashmap software, the use cases are divided in cases related to the registering and login process (see the Use case diagram for registering and logging in appendix on page 67), and the cases related to the main use of the software (see the Use case diagram for main purposes appendix on page 68).

Login use cases When opening the webapplication, the user is first prompted with a login screen. Here, the user can either enter an already existing username to continue this session, or he can enter a new name in order to register as a new user. When the user is registering as a new user, a form is presented asking for information on gender and birthdate as descriptive information, and asking for the specific code the user received on the informed consent form in order to validate that the user indeed signed this form before partaking in the research (see section Procedure on page 53). After that, another form will be prompted for the pretest (section Instrumentation on page 53). When the user has met certain criteria, a posttest similar to the pretest will be prompted, followed by a questionnaire and a debriefing text. When none of these criteria are met, the user can access he main use cases.

Main use cases The main use cases entail requesting items for review, requesting the learning progress, or logging out. When requesting items for review, the user can receive a due or new flashcard or flashmap, depending whether there are any old items due for review and the experimental group the user is in. Alternatively, the user can also be prompted whether a certain section of the instruction material has been read. These prompts take often place at the beginning of a session so that the user does not have to interrupt a session. Furthermore, they prompt two

<sup>&</sup>lt;sup>5</sup>http://www.visjs.org/

sections ahead of the material currently being learned or reviewed by the user from the flashmap or flashcards in order to guarantee that the user is familiar with the material before learning the items. Finally, the user is prompted to read a section at most once per day. When requesting the learning progress, the user is presented of an overview of what has already been learned and what is still left as either unseen items or items due for review. This provides an indication for the user so that he can estimate how much time he still needs to invest into the software, but also could stimulate the user by seeing the number of new or due items lowering and learned items increasing. Finally, the user can return to the login screen by logging out.

### Detailed description of the client server interaction

Based on the previous description of use cases, there are two sets of complex interaction between the client and server, which are again the interaction for the login and registering process, and the interaction for the learning process. These are described as activity diagrams in the Activity diagram for logging in and he Activity diagram learning functionality appendices on page 69 and page 70. These diagrams are described below together with the specific network messages belonging to the interaction step. Each network message is a simple JSON message consisting of a keyword field — containing the main function which has to be performed by the other party — and a data field containing a dictionary with necessary supplementary data.

#### Login activities

The exact reasoning behind the different activities can be found in the Procedure and Instrumentation sections of the Methods chapter on pages 53 and 53.

Authenticate When the user logs in, the client sends a message with keyword "AUTHENTICATE-REQUEST" and data containing a name field with the username. When a user with this username does not exist yet, the server creates a new user with a randomly assigned condition (either flashcard or flashmap, also known as control or experimental). When this user already exists, the server fetches this user from the database.

Descriptives The server then checks whether the user already has set description fields. If not, the server returns a message with keyword "DESCRIPTIVES-REQUEST", on which the client responds with keyword "DESCRIPTIVES-RESPONSE" with the data fields gender, birthdate, and code.

Pretest When the previous condition is met, the server will check whether the user has a registered pretest. If this is not the case, it will create a new test by randomly selecting 5 items from the flashcard dataset and 5 items from the itembank, which it will then send to the user with the keyword "TEST-REQUEST". After the user has answered the questions, the client sends the responses to the server with the keyword "TEST-RESPONSE".

After the experiment — If the previous condition is also met, the user will be directed towards the main application with an "AUTHENTICATE-RESPONSE" message from the server, unless he has used the software for at least 15 minutes on 6 days. In that case the checks described below will be performed.

Posttest In this step the server checks whether the user also has a posttest entry. When this is not the case, it will send a similar test message to the pretest message, with the exception that the flashcards and test items from the pretest are excluded from the random selection in the posttest.

Questionnaire Sequentially, if the user has no questionnaire entry, the server will construct a new questionnaire by shuffling the Perceived Usefulness item, randomly selecting for each item whether it is positively phrased or negatively, copying this item set but with the opposite phrasing, and finally shuffeling the second set. The same is done for the Perceived Ease of Use items. This questionnaire is then sent to the client with the "QUESTIONNAIRE-REQUEST" keyword. The client sends a filled in version back with the "QUESTIONNAIRE-RESPONSE" keyword to the server with an extra textfield for what was good about the software, what could improved about the software, and an (optional) emailadress of the user for an interview at a later time.

Debriefing Finally, if the user has not debriefed before, the server sends a message with the keyword "DEBRIEFING-REQUEST" to the client, which will show a debriefing message to the user and returning a message with the keyword "DEBRIEFING-RESPONSE". When all the checks are met, the user will be directed to the main application with the "AUTHENTICATE-RESPONSE" message.

Learning activities

Learning progress

# Server design and development

# Client design and development

Part III

Research

a730756 Research

# Aims and goals for the research

Research a730756

### Methods

Research design

Respondents

Procedure

Instrumentation

Analysis

a730756 Research

## Results

Quantitative results

Qualitative results

# Part IV Recommendations

### Part V

# **Epilogue**

### References

- Anderson, J. (1974). Retrieval of propositional information from long-term memory. Cognitive Psychology, 6(4), 451-474. doi: 10.1016/0010-0285(74)90021-8
- Anderson, J. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369-406. doi:  $10.1037/0033-295 \times 89.4.369$
- Anderson, J. (2015). Cognitive psychology and its implications (8th ed.). New York, NY: Worth publishers.
- Anderson, R. (2001). The power law as an emergent property. Memory & Cognition, 7, 1061–1068. doi: 10.3758/BF03195767
- Apps, J. (1973). Toward an working philosophy of adult education. New York, NY: Publications in continuing education.
- Atkinson, R., & Shiffrin, R. (1968). The psychology of learning and motivation: Advances in research and theory. In K. Spence (Ed.), (pp. 89–195). New York: Academic Press.
- Ausubel, D. (1968). Educational psychology: A cognitive view. New York, NY: Holt, Rinehart & Winston.
- Barclay, J., Bransford, J. D., Franks, J. J., McCarrell, N. S., & Nitsch, K. (1974). Comprehension and semantic flexibility. *Journal of Verbal Learning and Verbal Behavior*, 13(4), 471 481. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022537174800241 doi: http://dx.doi.org/10.1016/S0022-5371(74)80024-1
- Barnes, C. (1979). Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. *Journal of Comparative Physiology*, 43, 74–104.
- Blakemore, S., Burnett, S., & Dahl, R. (2010). The role of puberty in the developing adolescent brain. *Human Brain Mapping*, 31, 926–933. doi: 10.1002/hbm.21052
- Blankenship, J., & Dansereau, D. (2000). The effect of animated node-link displays on information recall. The Journal of Experimental Education, 68(4), 293-308. doi: 10.1080/00220970009600640
- Bliss, T., & Collingridge, G. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. *Nature*, 361, 31–39. doi: 10.1038/361031a0
- Bloom, B., Engelhart, M., Furst, E., Hill, W., & Krathwohl, D. (1956). Taxonomy of educational objectives: The classification of educational goals. handbook i: Cognitive domain. New York, NY: David McKay Company.
- Brameld, T. (1971). Patterns of educational philosophy. divergence and convergence in culturological perspective. New York, NY: Holt, Rinehart and Winston, Inc.
- Burdo, J., & O'Dwyer, L. (2015). The effectiveness of concept mapping and retrieval practice as learning strategies in an undergraduate physiology course. *Advances in Physiology Education*, 39, 335–340. doi: 10.1152/advan.00041.2015
- Burgess, S., & Murray, A. (2014). Use of traditional and smartphone app flashcards in an introductory psychology class. *Journal of Instructional Pedagogies*, 13, 1–7.

- Canas, A., & Novak, J. (2012). Freedom vs restriction of content and structure during concept mapping: possibilities and limitations for construction and assessment.
- Chien, C. (2015). Analysis the effectiveness of three online vocabulary flashcard websites on l2 learners' level of lexical knowledge. *English Language Teaching*, 8(5), 111–121. doi: 10.5539/elt.v8n5p111
- Chung, G., O'Neil Jr., H., & Herl, H. (1999). The use of computer-based collaborative knowledge mapping to measure team processes and team outcomes. *Computers in Human Behaviour*, 15(3–4), 463–493. doi: 10.1016/S0747-5632(99)00032-1
- Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research.

  Journal of Verbal Learning & Verbal Behavior, 11(6), 671–684. doi: 10.1016/S0022-5371(72)
  80001-X
- Davis, F., Bagozzi, R., & Warshaw, P. (1989). User acceptance of computer technology: A comparison of two theoretical models. *Management Science*, 35(8), 982–1003. doi: 10.1287/mnsc.35.8.982
- De Simone, C. (2007). Applications of concept mapping. College Teaching, 55(1), 33–36. doi: 10.3200/CTCH.55.1.33-36
- Dirksen, J. (2007). Leerlingen, literatuur en literatuuronderwijs. Forum of arena: opvattingen over literatuuronderwijs. Een stand van zaken in 2007. Retrieved from http://taalunieversum.org/inhoud/von-cahier-1/leerlingen-literatuur-en-literatuuronderwijs
- Edge, D., Fitchett, S., Whitney, M., & Landay, J. (2012). Memreflex: Adaptive flashcards for mobile microlearning. doi: 10.1145/2371574.2371641
- Eppler, M. (2006). A comparison between concept maps, mind maps, conceptual diagrams, and visual metaphors as complementary tools for knowledge construction and sharing. *Information Visualization*, 5, 202–210. doi: 10.1057/palgrave.ivs.9500131
- Ericsson, K., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211-245. doi: 10.1037/0033-295X.102.2.211
- Finn, A., Sheridan, M., Hudson Kam, C. L., hinshaw, S., & D'Esposito, M. (2010). Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. *The Journal of NEuroscience*, 30(33), 11062-11067. doi: 10.1523/JNEUROSCI.6266-09.2010
- Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., ... Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal mri study. *Nature neuroscience*, 2(10), 861–863. doi: 10.1038/13158
- Golding, J., Wasarhaley, N., & Fletcher, B. (2012). The use of flashcards in an introduction to psychology class. *Teaching of Psychology*, 39(3), 199–202. doi: 10.1177/0098628312450436
- Grever, M., Pelzer, B., & Haydn, T. (2011). High school students' views on history. *Journal of Curriculum Studies*, 43(2), 207–229. doi: 10.1080/00220272.2010.542832
- Heemskerk, J. (2010). Vroeger was het oorlog. geschiedeniskennis bij nederlandse jongeren (Unpublished master's thesis). Erasmus Universiteit Rotterdam.
- Howick, W. H. (1971). *Philosophies of western education*. Danville, Ill: Interstate Printers & Publishers.
- Hulstijn, J. (2001). Intentional and incidental second-language vocabulary learning: A reappraisal of elaboration, rehearsal and automaticity. Cambridge University Press.
- Hwang, G., Wu, P., & Ke, H. (2011). An interactive concept map approach to supporting mobile learning activities for natural science courses. Computers and Education, 57, 2272–2280. doi: 10.1016/j.compedu.2011.06.011
- Joseph, L., Eveleigh, E., Konrad, M., Neef, N., & Volpe, R. (2012). Comparison of the efficiency of two flashcard drill methods on children's reading performance. *Journal of Applied School Psychology*, 28(4), 317–337. doi: 10.1080/15377903.2012.669742

- Karpicke, J. (2012). Retrieval-based learning: Active retrieval promotes meaningful learning. Current Directions in Psychological Science, 21(3), 157–163. doi: 10.1177/0963721412443552
- Karpicke, J., & Bauernschmidt, A. (2011). Spaced retrieval: Absolute spacing enhances learning regardless of relative spacing. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 37(5), 1250–1257. doi: 10.1037/a0023436
- Karpicke, J., & Blunt, J. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. *Science*, 331, 772–775. doi: 10.1126/science.1199327
- Kintsch, W., Welsch, D., Schmalhofer, F., & Zimny, S. (1990). Sentence memory: A theoretical analysis. *Journal of Memory and Language*, 29, 133–159.
- Knol, F. (2005). Wijkkwaliteiten, de kwaliteit van de fysieke woonomgeving 1994-2002 (Tech. Rep.). Sociaal en Cultureel Planbureau. Retrieved from http://www.scp.nl/Publicaties/Alle\_publicaties/Publicaties\_2005/Wijkkwaliteiten
- Kornell, N., & Bjork, R. (2008). Optimising self-regulated study: The benefits and costs of dropping flashcards. *Memory*, 16(2), 125–136.
- Krathwohl, D. (2002). A revision of bloom's taxonomy: an overview. Theory into practice, 41(4), 212–264.
- Kwaliteitsonderzoek in het kader van het onderwijsverslag 2016, het stedelijk lyceum locatie kottenpark, havo, vwo (Tech. Rep.). (2015). Inspectie van het Onderwijs. Retrieved from https:// zoekscholen.onderwijsinspectie.nl/pdf/arrangement.pdf?pdfId=A0000333800
- Leefbaarheidssituatie buurten enschede (Tech. Rep.). (2015). BZK. Retrieved from http://www.leefbaarometer.nl/tabel.php?indicator=Leefbaarheidssituatie&schaal=Buurt&gemeente=GM0153 ([Data set])
- Leerlingen, deelnemers en studenten; onderwijssoort, woonregio (Tech. Rep.). (2016). CBS. Retrieved from http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=71450ned&D1=0&D2=a&D3=8-9&D4=0,2&D5=a&D6=251&D7=1&HDR=T,G4,G6,G5&STB=G3,G1,G2&CHARTTYPE=1&VW=T ([Data set])
- Logan, J., Castel, A., Haber, S., & Viehman, E. (2012). Metacognition and the spacing effect: the role of repetition, feedback, and instruction on judgments of learning for massed and spaced rehearsal. *Metacognition Learning*, 7, 175–195. doi: 10.1007/s11409-012-9090-3
- Macquarrie, L., Tucker, J., Burns, M., & Hartman, B. (2002). Comparison of retention rates using traditional, drill sandwich, and incremental rehearsal flash card methods. *School psychology review*, 31(4), 584–595.
- Marsh, C., & Willis, G. (1999). Curriculum. alternative approaches, ongoing issues (2nd ed.). Upper Saddle River, NJ: Prentice-Hall.
- Matsaridis, G. (2013, April). Neuroscience for beginners v2.0: Lesson 2 the materialistic mind your brain's ingredients. Retrieved from http://neuroscientist.weebly.com/blog/lesson-2-the-materialistic-mind-your-brains-ingredients (Retrieved September 9, 2016)
- Mayer, R. (2008). Learning and instruction (2nd ed.). Upper Saddle River, NJ: Pearson Education.
- McCullough, C. (1955). Flash cards the opiate of the reading program? *Elementary English*, 32(6), 39–381.
- Meno, P. (2000). Stevenson, dc. The Internet Classics Archive.
- Moore, J., North, C., Johri, A., & Paretti, M. (2015). Effectiveness of adaptive concept maps for promoting conceptual understanding: Findings from a design-based case study of a learner-centered tool. *Advances in Engineering Education*, 4(4), 1–35.
- Murre, J., & Chessa, A. (2011). Power laws from individual differences in learning and forgetting: mathematical analyses. *Psychonomic bulletin & review*, 18(3), 592–597. doi: 10.3758/s13423-011-0076-y

- Nakata, T. (2011). Computer-assisted second language vocabulary learning in a paired-associate paradigm: a critical investigation of flashcard software. Computer Assisted Language Learning, 24(1), 17–38. doi: 10.1080/09588221.2010.520675
- Nelson, D. L. (1979). Remembering pictures and words: Appearance, significance, and name. In L. S. Cermak & F. I. M. Craik (Eds.), Levels of processing in human memory (p. 45-76). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Nesbit, J., & Adesope, O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76(3), 413-448. doi: 10.3102/00346543076003413
- Newell, A., & Rosenbloom, P. (1981). Mechanisms of skill acquisition and the law of practice. In (Vol. 1, pp. 1–55).
- (OMG), O. M. G. (2015). Ome unified modeling language reference manual (2.5 ed.). OMG Document Number formal/2015-03-01 (http://www.omg.org/spec/UML/2.5/PDF).
- Ozmon, H., & Johnson, J. (1967). Value implications in children's reading material (Tech. Rep.). U.S. Department of Health, Education, and Welfare: Office of Education; Bureau of Research.
- Pavlik, I., & Anderson, J. (2005). Practice and forgetting effects on vocabulary memory: an activation-based model of the spacing effect. Cognitive Science, 29(4), 559-586. doi:  $10.1207/s15516709cog00000_14$
- Plomp, T., Feteris, A., & Pieters, J. (1992). Ontwerpen van onderwijs en trainingen (W. Toic, Ed.). Utrecht: LEMMA.
- Powell, K. (2006). Neurodevelopment: How does the teenage brain work? Nature, 442, 865–867. doi: 10.1038/442865a
- Raymond, C., & Redman, S. (2006). Spatial segregation of neuronal calcium signals encodes different forms of ltp in rat hippocampus. Journal of Physiology, 570, 97–111. doi: 10.1113/jphysiol.2005.098947
- Religie; naar regio; 2000/2002 of 2003 (Tech. Rep.). (2004). CBS. Retrieved from http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=70794NED&D1=a&D2=0 ,8,28&D3=a&VW=T ([Data set])
- Religieuze betrokkenheid; kerkelijke gezindte; regio (Tech. Rep.). (2015). CBS. Retrieved from http://statline.cbs.nl/Statweb/publication/?DM=SLNL&PA=83288NED&D1=a&D2=0% 2c2%2c8&D3=1&HDR=T&STB=G1%2cG2&CHARTTYPE=2&VW=T ([Data set])
- Renshaw, J. (2008). In search of the greeks. Columbia MD: A&C Black.
- Roediger, H. (1980). Memory metaphors in cognitive psychology. Memory & Cognition, 8(3), 231–246. doi: 10.3758/BF03197611
- Rohrer, D., Taylor, K., Pashler, H., Wixted, J., & Cepeda, N. (2005). The effect of overlearning on long-term retention. Applied Cognitive Psychology, 19, 361–374. doi: 10.1002/acp.1266
- Ruiz-Primo, M., & Shavelson, R. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33(6), 569–600.
- Siegel, L. L., & Kahana, M. J. (2014). A retrieved context account of spacing and repetition effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 755-764.
- Singh, I., & Moono, K. (2015). The effect of using concept maps on student achievement in selected topics in chemistry at tertiary level. Journal of Education and Practice, 6(15), 106-116.
- Slings, H. (2007). Het waarom en hoe van historisch literatuuronderwijs. Forum of arena: opvattingen over literatuuronderwijs. Een stand van zaken in 2007. trieved from http://taalunieversum.org/inhoud/von-cahier-1/het-waarom-en-hoe -van-historisch-literatuuronderwijs

- Smith, P., & Ragan, T. (2005). *Instructional design* (3rd ed.). Westford, MA: John Wiley & Sons, Inc.
- Squire, L. (1987). Memory and brain. New York, NY: Oxford university press.
- Statusscores (Tech. Rep.). (2015). SCP. Retrieved from https://www.scp.nl/Onderzoek/Lopend\_onderzoek/A\_Z\_alle\_lopende\_onderzoeken/Statusscores ([Data set])
- Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in cognitive sciences, 9(2), 69–74. doi: 10.1016/j.tics.2004.12.005
- Stokes, K. (2013). The impact of the factory model of education in central texas (Unpublished master's thesis). Baylor University.
- Subramaniam, K., & Esprivalo Harrell, P. (2015). An analysis of prospective teachers' knowledge for constructing concept maps. *Educational research*, 57(3), 217–236.
- Tzeng, J. (2010). Designs of concept maps and their impacts on readers' perfomance in memory and reasoning while reading. *JOurnal of Research in Reading*, 33(2), 128–147. doi: 10.1111/j.1467-9817.2009.01404.x
- van den Akker, J. (2003). Curriculum perspectives: An introduction. In Curriculum landscapes and trends (pp. 1–10). Dordrecht: Springer Netherlands. Retrieved from http://dx.doi.org/10.1007/978-94-017-1205-7\_1 doi: 10.1007/978-94-017-1205-7\_1
- van der Meulen, G., & Kraaijeveld, R. (2010). Laagland. literatuur nederlands voor de tweede fase. informatieboek vwo (2nd ed.). Amersfoort: ThiemeMeulenhoff.
- Verkoeijen, P., & Delaney, P. (2008). Rote rehearsal and spacing effects in the free recall of pure and mixed lists. *Journal of Memory and Language*, 58, 35–47. doi: 10.1016/j.jml.2007.07.006
- von Glaserfield, E. (2001). Radical constructivism and teaching. *Prospects*, 31(2), 161–173. doi: 10.1007/BF03220058
- Wahlheim, C., Maddox, G., & Jacoby, L. (2014). The role of reminding in the effects of spaced repetitions on cued recall: Sufficient but not necessary. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 40(1), 94–105. doi: 10.1037/a0034055
- White, A. (2003). What happened? alcohol, memory blackouts and the brain. Alcohol research and health, 27(2), 186–196. doi: 10.3390/ijerph6112783
- White, K. (1982). The relation between socioeconomic status and academic achievement. *Psychological Bulletin*, 91(3), 461–481. doi: 10.1037/0033-2909.91.3.461
- Wickelgren, W. (1974). Single-trace fragility theory of memory dynamics. Memory & Cognition, 2,775-780. doi: 10.3758/BF03198154
- Wixted, J., & Carpenter, S. (2007). The wickelgren power law and the ebbinghaus savings function. *Psychological Science*, 18(2), 133–134. doi: 10.1111/j.1467-9280.2007.01862.x
- Wixted, J., & Ebessen, E. (1991). On the form of forgetting. *Psychological Science*, 2(6), 409–415. doi: 10.1111/j.1467-9280.1991.tb00175.x
- Xue, G., Mei, L., Chen, C., Lu, Z.-L., Poldrack, R., & Dong, Q. (2011). Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression. *Journal of Cognitive Neuroscience*, 23(7), 1624–1633.
- Yilmaz, K., Altinkurt, Y., & Cokluk, O. (2011). Developing the educational belief scale: The validity and reliability study. *Educational Sciences: Theory and Practice*, 11(1), 343–350.
- Zirkle, D., & Ellis, A. (2010). Effects of spaced repteition on long-term map knowledge recall.  $Journal\ of\ Geography,\ 109(5),\ 201-206.$  doi: 10.1080/00221341.2010.504780

# Appendices

### Test literature history 16th and 17th century

This is not the test used as pre- and posttest within the research, but a test provided to the previous generation of students provided by the teacher.

- 1. Provide a Dutch word for the term 'renaissance'. Furthermore, explain the central idea of the renaissansistic body of thoughts.
- 2. Indicate whether the following statements are 'true' or 'false':
  - (a) The renaissance originated in the Northern and Central Italian republican citystates.
  - (b) The literature from the renaissance is only a revival of classical genres.
  - (c) The eventual goal of renaissance writers is imitatio.
  - (d) An amount of great playwriters from the renaissance is literarily schooled within a chamber of rhetoric [rederijkerskamer].
- 3. What is the essence of humanism?
- 4. Read the citation below: [...]
  - (a) What is the title of the book from which this citation originates and who wrote this book?
  - (b) What was the goal of writing this book and why is the book still attractive to read?
- 5. (a) What was the reason for writing the Dutch Authorised Version of the bible [Statenbij-bel]?
  - (b) Some of the expressions we are still using come from the Dutch Authorised Version of the bible. Why was this bible, generally stated, so important for language in that time?
- 6. Except of imitatio writers used two other methods. Enlist the three methods in the right order and provide a description for each.
- 7. (a) Which poet is the great example for those who write lovepoetry in this era?
  - (b) Explain what platonic love is and what this has to do with lovepoetry from question 7a and with the adjoining picture [see figure 15].
- 8. Which combination of terms best displays the central ideas from renaissance literature?
  - (a) Learning and pleasure
  - (b) Antiquity and church
  - (c) Love and antiquity
  - (d) Church and pleasure
- 9. Provide for each of the genres of theater (tragedy, comedy, and farce [klucht]) a name of a matching writer and the title of a matching play.
- 10. Provide two differences between a tragedy and a farce.
- 11. Quickly after Willem-Alexander became king of the Netherlands, he visited different provinces together with Máxima. The province of Drenthe gave a small book on the occasion of this visit, containing among else the following poem: [...]



Figure 15: The figure accompanying question 7b

- (a) This poem is a sonnet. Enlist the characteristics of a sonnet regarding the form and content.
- (b) Explain how the content-related characteristic is included in the poem above.
- (c) Who was our most important sonnet writer in the 17th century?
- 12. (a) What is the goal of *emblematiek*? Include the term 'analogical thinking' in your answer.
  - (b) Of which three parts does an emblem exist? Use the original terms/names.
- 13. View and read the emblem below [see figure 16] and conduct the following assignments:
  - (a) Explain in your own words which analogy is made in the emblem and which lesson the writer wants to teach the reader.
  - (b) With which word from the original emblem does the analogy start?
- 14. In the children series 'Dappere Dodo', 75 episodes were broadcasted on the Dutch TV between 1955 and 1964. The programm revolved around *Dappere Dodo*, who together with his friends Kees, Uncle Harrie, the captain, Grandfather Buiswater and Mrs Vulpen sailed around the world and experienced all kinds of adventure. 'Dodo' is in this series an appropriate name for the main person. Provide a good explanation for this.
- 15. The shipsjournal of Bontekoe went up in flames during a shipboard fire. Why did he write the journal again after the sea journey?
- 16. What does the Meertens Institute? It occupies itself with:
  - (a) the study and documentation of Dutch language variation and folk culture
  - (b) research into and documentation of European language and culture
  - (c) collecting and documenting songs, specific from the period of the 16th and 17th century
  - (d) research into dialects and socilects in European context.



Figure 16: The figure accompanying question 13. This figure was accompanied by the following text: "Soo lang de Roe wanckt. Veel mensche zijn deughdelijck, soo langh zy onder het kruys en verdruckinghe leven: maer als de Roede van den eers is, soo worden zy luy in den dienste Goods. Ghelijuck enen Drijf-tol, die niet meer gheslaghen of ghegispt en wort, die valt haest in onmacht ende blijft ligghen. Uit: Roemer Visscher, Sinnepoppen." In the original test a modern Dutch translation was also provided.

### Use case diagram for registering and logging in



### Use case diagram for main purposes



### Activity diagram for logging in



### Activity diagram learning functionality



Figure 17: General schema



 $Figure\ 18:\ {\rm Instance\ scheduling\ on\ the\ server}$ 



Figure~19: Prompting an instance on the client

# **Flashmap server Documentation**

Release 1.0

M.C. van den Enk

## **CONTENTS**

| 1  | Class  | s diagram                      | 1  |
|----|--------|--------------------------------|----|
| 2  | Mod    | ules:                          | 3  |
|    | 2.1    | concept_map module             | 3  |
|    | 2.2    | controller module              | 4  |
|    | 2.3    | edge module                    | 6  |
|    | 2.4    | flashcard module               | 6  |
|    | 2.5    | flashcard_instance module      | 7  |
|    | 2.6    | flashmap_instance module       | 7  |
|    | 2.7    | instance module                | 7  |
|    | 2.8    | log_entry module               | 8  |
|    | 2.9    | node module                    | 8  |
|    | 2.10   | questionnaire module           | 8  |
|    | 2.11   | questionnaire_item module      | 9  |
|    | 2.12   | questionnaire_response module  | 9  |
|    | 2.13   | response module                | 10 |
|    | 2.14   | session module                 | 10 |
|    | 2.15   | test module                    | 10 |
|    | 2.16   | test_flashcard_response module | 11 |
|    | 2.17   | test_item module               | 11 |
|    | 2.18   | test_item_response module      | 12 |
|    | 2.19   | user module                    | 12 |
| Py | thon N | Module Index                   | 15 |

#### **CHAPTER**

## **ONE**

## **CLASS DIAGRAM**



#### **CHAPTER**

#### **TWO**

#### **MODULES:**

## 2.1 concept\_map module

class concept\_map.ConceptMap(\*args, \*\*values)

Bases: mongoengine.document.Document

A class representing a concept map

#### **Variables**

- nodes a list of nodes (by default all existing node documents)
- edges a list of edges (by default all existing edge documents)

#### find\_nodes (edges)

Returns the from and to self.nodes given a list of self.edges

**Parameters self.edges** (list (Edge)) - The list of self.edges for which to find the self.nodes

**Returns** The list of nodes referred to in the edges

Return type list(Node)

#### find\_prerequisites (postreq, prereqs, sources)

Return a list of parent self.edges given a certain edge from a list of self.edges, filtered by a list of sources

#### **Parameters**

- postreq (Edge) The edge which is currently investigated for parent self.edges
- **prereqs** (list(Edge)) A list of already found parent self.edges (starts usually empty, necessary for recursion)
- **sources** (*list* (*string*)) A list of the currently read sources, self.edges which have a source not included in this list will not be included in the resulting list

Returns A list of self.edges which are prerequisites from edge

Return type list(edge)

#### find\_siblings (edge, sources, partial\_edges)

Return a list of self.edges which are siblings of the given edge and have the same label

#### **Parameters**

- edge (Edge) The edge investigated for siblings
- sources (list (string)) The sources to filter on when looking for siblings

• partial\_edges (list (Edge)) - A list of self.edges for exclusion when looking for siblings

Returns A list of edges which are siblings of edge and have the same label

Return type list(edge)

```
get_partial_map (edge, sources)
```

Returns a concept map containing only the parent and sibling self.edges together with the referred self.nodes

#### **Parameters**

- edge (Edge) The input edge
- sources (list (string)) The list of sources to filter on

**Returns** A concept map containing parent and sibling self.edges of edge together with the referred self.nodes

Return type ConceptMap

#### to\_dict()

Returns a dictionary representation of this object

The representation is compatible for use with vis.js, with 'self.nodes' entries containing an 'id' and 'label', and 'self.edges' entries containing an 'id', 'label', 'from', 'to', and an additional 'source' entry

Result The dictionary representation, compatible with visjs

Return type dict

#### 2.2 controller module

```
class controller.Controller(database)
```

Bases: object

This is the class from which the program is controlled. It can be used together with the handler module in order to communicate with an external client over a websocket

#### Variables

- database The mongodb to connect to
- concept\_map The concept map object containing references to nodes and edges
- **SOURCES** All of the sources referenced to in the edges of the concept map
- user The active user

append\_questionnaire (responses, good, can\_be\_improved, email)

A method for appending a questionnairy to the user given responses

#### **Parameters**

- responses (list(dict)) A list of dict objects containing the id of a QuestionnaireItem (key = 'id'), the phrasing (key = 'phrasing') and an answer (key = 'answer')
- **good** (*string*) A description of what was good about the software according to the user
- can\_be\_improved (string) A description of what can be improved about the software according to the user

#### append test (flashcard responses, item responses)

A method for appending a test to the user given flashcard and item responses

#### **Parameters**

- **flashcard\_responses** (dict) A list of dict objects containing the id of an Flashcard (key = 'id') and an answer (key = 'answer')
- item\_responses (dict) A list of dict objects containing a TestItem (key = 'item') and an answer (key = 'answer')

#### authenticate(name)

A function to either set self.user to an existing user.User or to a new User based on the given name

**Parameters** name (str) – The self.username

#### check\_prerequisites()

Checks whether the self.user still has to fill in forms and returns the appropriate message

**Returns** A dict containing the appropriate keyword and data for this self.user

Return type dict

#### controller (keyword, data)

Pass data to the function corresponding to the provided keyword for the provided user

#### **Parameters**

- **keyword** (str) the keyword for which function to use
- data (dict (str, str or dict)) the data necessary for executing the function

Returns Contains the keyword and data to send over a websocket to a client

Return type dict(str, str or dict)

#### learning\_message (item)

Generates a learning message for the provided instance

Parameters instance (Instance) – The instance which has to be rehearsed

**Returns** The message with keyword "LEARNING RESPONSE" and data containing the partial concept map or flashcard dict representation

Return type dict

#### provide\_learned\_items()

Provides an overview of all learning

**Returns** A partial concept map containing all instances for this self.user or a message containing progress information

Return type dict

#### provide\_learning()

Provides a dict containing relevant information for learning

Provides a dict containing the keyword "NO\_MORE\_INSTANCES", "READ\_SOURCE-REQUEST", or "LEARNING-RESPONSE" and relevant data (the source string for "READ\_SOURCE-REQUEST" or either the output of ConceptMap.to\_dict() with an added 'learning' entry or the output of Flashcard.to\_dict() for "LEARNING-RESPONSE" with an added condition entry)

Returns A dict containing 'keyword' and the relevant 'data' described above

Return type dict

2.2. controller module 5

```
validate (responses)
```

Adds responses to certain instances

**Parameters responses** (list(dict)) – A list of responses containing an instance id and a boolean correctness value

## 2.3 edge module

```
class edge . Edge (*args, **values)
```

Bases: mongoengine.document.Document

A class representing an edge from a concept map

#### **Variables**

- **from\_node** The parent node of the edge
- to\_node The child node of the edge
- label A label describing the relation between from\_node and to\_node
- sources The source where this edge is described (e.g. paragraph 13.2 from Laagland)

#### to\_dict()

Returns a dictionary representation of this object

It contains an 'id', 'label', 'from', 'to', and 'sources' entry

Returns The dictionary representation of this object, compatible with visjs

Return type dict

## 2.4 flashcard module

```
class flashcard.Flashcard(*args, **values)
```

Bases: mongoengine.document.Document

A class representing a flashcard

#### **Variables**

- answer The answer on the back side of the flashcard
- sources The edges where this flashcard is based on
- **response\_model** A list consisting of parts of valid responses to the question (for the test matrix)

#### to\_dict()

6

Returns a dictionary representation of this object

It contains an 'id', 'question', 'answer', and 'sources' entry

**Returns** The dictionary representation of this object

Return type dict

## 2.5 flashcard\_instance module

class flashcard\_instance.FlashcardInstance(\*args, \*\*kwargs)

Bases: instance. Instance

A class for storing responses from the flashmap system

Variables reference – The flashcard to which this instance refers

## 2.6 flashmap instance module

class flashmap\_instance.FlashmapInstance(\*args, \*\*kwargs)

Bases: instance. Instance, mongoengine.document. Embedded Document

A class for storing responses from the flashmap system

Variables reference – The edge from the concept map to which this instance refers to

#### 2.7 instance module

```
class instance.Instance(*args, **kwargs)
```

Bases: mongoengine.document.EmbeddedDocument

A class describing a general flash instance, which can either be a FlashmapInstance or a FlashcardInstance

#### Variables

- responses A list of responses provided to this instance (an empty list by default)
- **reference** A reference to either an edge in a concept map or a flashcard (defined within the subclass)
- due\_date The date this instance is due for repetition

#### check\_due()

Checks whether this instance is due for repetition

**Returns** Whether the due datetime is earlier than the current datetime

Return type bool

#### finalise\_response(correct)

Sets the correctness value for the final response and sets the end date to now

Parameters correct (bool) – Whether the response was correct

```
get_exponent()
```

Determines the exponent for the rescheduling of this instance

**Returns** The amount of times this instance was answered correctly since the previous incorrect answer

Return type int

#### schedule()

Reschedules this instance for review based on the previous responses

#### ${\tt start\_response}\,(\,)$

Adds a new response to this instance

## 2.8 log\_entry module

```
class log_entry.LogEntry(*args, **values)
```

Bases: mongoengine.document.Document

An object representing a incoming or outgoing network message

#### **Variables**

- user The user which was involved with this network message
- keyword The network keyword
- data The dictionary containing the necessary data
- time The time that this message was received or transmitted

#### 2.9 node module

```
class node. Node (*args, **values)
```

Bases: mongoengine.document.Document

A class for representing nodes in the concept map

**Variables** label – The label appearing within the node

to dict()

Returns a dictionary representation of this object

It contains an 'id' and 'label' entry

**Returns** The dictionary representation of this object, compatible with visjs

Return type dict

## 2.10 questionnaire module

```
class questionnaire.Questionnaire(*args, **kwargs)
```

 $Bases: \verb|mongoengine.document.EmbeddedDocument|\\$ 

A class representing a stored questionnaire for a user

#### Variables

- perceived\_usefulness\_items Responses to the perceived usefulness items from TAM
- perceived\_ease\_of\_use\_items Responses to the perceived ease of use item from TAM
- good A description of what was good about the software according to the user
- can\_be\_improved A description of what could be improved according to the user

append\_answer (item, phrasing, answer)

Appends an answer to an item within the questionnaire

#### **Parameters**

• item (QuestionnaireItem) - The item to which the answer refers

- phrasing (bool) Whether the item is positively (True) phrased or negatively (False)
- answer (string) The answer to be appended

#### generate\_questionnaire (pu\_items, peou\_items)

A method to set the questionnaire items based on two sets of items

#### **Parameters**

- pu\_items (list(QuestionnaireItem)) The perceived usefulness items of TAM
- pu\_items The perceived ease of use items of TAM

## 2.11 questionnaire\_item module

```
class questionnaire_item.QuestionnaireItem(*args, **values)
```

Bases: mongoengine.document.Document

A class representing a single item on the questionnaire

#### **Variables**

- **usefulness** Defines whether the item is part of the perceived usefulness items (True) or of the perceived ease of use items (False)
- positive\_phrasing The version of this item which is positively phrased
- negative\_phrasing The version of this item which is negatively phrased

to\_dict (phrasing)

A method for generating a dictionary representation of this object

**Parameters** phrasing (bool) – Whether the positive or negative question is required

Returns The representation containing an id field, a phrasing field and a question field

Return type dict

## 2.12 questionnaire\_response module

```
class questionnaire_response.QuestionnaireResponse(*args, **kwargs)
```

Bases: mongoengine.document.EmbeddedDocument

A class for storing singular responses to questionnaire items

#### **Variables**

- questionnaire\_item The questionnaire item to which this answer refers
- **answer** The value of the likert-scale rating the user gave to this item (ranges from -2 to 2)
- **phrasing** Whether this answer refers to the positively (True) or the negatively (False) phrased version of the questionnaire\_item

## 2.13 response module

```
class response.Response(*args, **kwargs)
```

Bases: mongoengine.document.EmbeddedDocument

A class representing a singular response to an Instance.

#### Variables

- start The moment the parent Instance was sent to the client
- end The moment the answer from the client was received
- correct Whether the answer to the Instance was correct (True) or incorrect (False)

#### 2.14 session module

```
class session.Session(*args, **kwargs)
```

Bases: mongoengine.document.EmbeddedDocument

A class representing a session the user was logged in

#### Variables

- **start** The time that the user logged in
- end The time that the user logged out
- **source\_prompted** Whether the user was asked to have read a certain source from SOURCES
- browser The type of browser used to log in

end\_session()

Closes this session

### 2.15 test module

```
class test.Test (*args, **kwargs)
```

Bases: mongoengine.document.EmbeddedDocument

A class representing a pre- or posttest the user filled in

#### Variables

- **test\_flashcard\_responses** A list of responses to the flashcard questions on the test
- test\_item\_responses A list of responses to the item questions on the test

append\_flashcard (flashcard, answer)

Adds a flashcard response to this test

#### **Parameters**

- ${\tt flashcard}$  (Flashcard) The flashcard this item refers to
- answer (string) The answer to the flashcard provided by the user

#### append\_item(item, answer)

Adds an item response to this test

#### **Parameters**

- item The test item this item refers to
- answer (string) The answer to the flashcard provided by the user

```
generate_test (flashcards, items, prev_flashcards=[], prev_items=[])
```

A method for creating test items for this test based on a set of given flashcards and items, using randomise()

#### **Parameters**

- flashcards (list (Flashcard)) The flashcards to be used for the test
- items (list (Item)) The items to be used for the test
- prev\_flashcards (list (Flashcard)) The list of flashcards to be excluded from this test
- prev\_items (list (TestItem)) The list of items to be excluded from this test

#### randomise (items, prev\_items)

A method for taking five random items in a random order from the provided list of items without the items in the previous items

#### **Parameters**

- items (list (Flashcard) or list (TestItem)) The complete list of items
- prev\_items (list(Flashcard) or list(TestItem)) The list of items to be excluded from the result

**Result** A sample of five items from items not included in prev\_items

**Return type** list(FlashcardResponse) or list(*TestItemResponse*)

## 2.16 test\_flashcard\_response module

```
class test_flashcard_response.TestFlashcardResponse(*args, **kwargs)
```

 $Bases: \verb|mongoengine.document.EmbeddedDocument|\\$ 

An answer for a flashcard item within a pre- or posttest

#### Variables

- answer The answer provided by the user
- flashcard The flashcard to which this response refers to

## 2.17 test\_item module

```
class test_item.TestItem(*args, **values)
```

Bases: mongoengine.document.Document

A class representing an item from a pre- or posttest

#### **Variables**

• question – The question for this item

- sources A list of sources relevant to this question
- response\_model A list of the parts of a valid answer used for the test matrix

to\_dict()

A method for generating a dictionary representation of this object

Returns The representation containing an id field and a question field

Return type dict

## 2.18 test\_item\_response module

```
class test_item_response.TestItemResponse(*args, **values)
```

Bases: mongoengine.document.Document

A class representing singular answers to test items

#### **Variables**

- answer The answer to item provided by the user
- item The specific item this response refers to

### 2.19 user module

```
class user.User(*args, **values)
```

Bases: mongoengine.document.Document

A class representing a user

#### Variables

- name The username
- type StringField
- condition The condition of the user ("FLASHMAP" or "FLASHCARD")
- birthdate The birthdate of the user
- read\_sources A list of read sources by the user
- gender The gender of the user (can be either 'male', 'female', or 'other')
- code The code from the user's informed consent form
- tests The pre- and posttest
- questionnaire The questionnaire
- instances A list of instances storing the flashmap/flashcard data for the user
- sessions A list of past sessions for this user
- email The email address for this user
- source\_requests The days that the user was prompted a source request
- **successful\_days** The days that the user successfuly completed a session
- debriefed Whether the user already got the briefing after the experiment

#### add\_new\_instance(references)

Adds a new Instance to this user

Parameters reference (list (Flashcard or Edge)) - A set of flashcards or edges for which to add a new instance

Returns The reference for which a new instance was added

**Return type** *Flashcard* or *Edge* 

#### add source(source)

Adds a read source to self

Parameters source (string) - The source to be added

#### check\_due(item)

Checks whether the provided item is due for review

Parameters item (Edge or Flashcard) – The item to which the checked instance refers to

**Returns** Whether the provided item is due for review

Return type bool

#### create\_questionnaire (pu\_items, peou\_items)

A method for creating a new questionnaire

#### **Parameters**

- pu\_items A list of perceived usefulness items
- peou\_items A list of perceived ease of use items

**Returns** A randomised list of questionnaire items

**Return type** list(QuestionnaireItem)

#### create\_test (flashcards, items)

A method for creating a new test with unique questions

#### **Parameters**

- flashcards (list (Flashcard)) A list of flashcards from the database
- items (list (TestItem)) A list of items from the database

Returns A dict containing a list of FlashcardResponses and TestItemResponses

**Return type** dict(string, *Flashcard* or *TestItem*)

#### get\_due\_instance()

Returns the instance with the oldest due date

**Returns** Either the instance with the lowest due date or a None object

Return type Instance

#### get\_instance\_by\_id (instance\_id)

Retrieves an instance based on a provided instance id

**Parameters instance\_id** (ObjectId) – The id of the instance to be requested

**Returns** The instance or None if no instance with instance\_id exists

Return type Instance

2.19. user module

#### retrieve\_recent\_instance()

Retrieves the instance most recently answered by the user

Returns The instance with the latest response.end being the most recent of all instances

**Return type** *instance* 

#### set\_descriptives (birthdate, gender, code)

A method for setting the descriptives of the user

#### **Parameters**

- birthdate (DateTime) The provided birthdate of the user
- gender (string) The gender of the user (can be either 'male', 'female', or 'other')
- code (string) The code from the informed consent form

#### time\_spend\_today()

A method for calculating the amount of seconds the user has spend on practicing flashcards

**Returns** The amount of seconds between every start and end of all responses of all instances of today

Return type int

#### undo()

Removes the response last submitted by the user, reschedules the respective instance, and returns the referred flashcard or edge

Returns The flashcard or edge referred to by the instance with the latest response

Return type Flashcard or Edge

#### validate (instance\_id, correct)

Finalises a Response within an existing Instance

#### **Parameters**

- instance\_id The id of the instance which the response refers to
- correct (boolean) Whether the response provided by the user was correct or not

## **PYTHON MODULE INDEX**

```
С
concept_map, 3
controller,4
е
edge, 6
flashcard, 6
flashcard_instance,7
flashmap_instance,7
instance, 7
log\_entry, 8
n
node, 8
q
questionnaire, 8
{\tt questionnaire\_item}, 9
{\tt question naire\_response}, 9
{\tt response}, 10
S
session, 10
t
test, 10
test_flashcard_response, 11
test_item, 11
test_item_response, 12
u
user, 12
```

## **INDEX**

| A                                                                                                                                                                                                                                                                    | G                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| add_new_instance() (user.User method), 12<br>add_source() (user.User method), 13<br>append_answer() (questionnaire.Questionnaire method),                                                                                                                            | generate_questionnaire() (questionnaire.Questionnaire method), 9 generate_test() (test.Test method), 11 get_due_instance() (user.User method), 13                                                         |
| append_flashcard() (test.Test method), 10 append_item() (test.Test method), 10 append_questionnaire() (controller.Controller method), 4 append_test() (controller.Controller method), 4 authenticate() (controller.Controller method), 5                             | get_exponent() (instance.Instance method), 7 get_instance_by_id() (user.User method), 13 get_partial_map() (concept_map.ConceptMap method), 4                                                             |
| С                                                                                                                                                                                                                                                                    | Instance (class in instance), 7 instance (module), 7                                                                                                                                                      |
| check_due() (instance.Instance method), 7 check_due() (user.User method), 13 check_prerequisites() (controller.Controller method), 5 concept_map (module), 3 ConceptMap (class in concept_map), 3 Controller (class in controller), 4                                | L learning_message() (controller.Controller method), 5 log_entry (module), 8 LogEntry (class in log_entry), 8                                                                                             |
| controller (class in controller), 4 controller (module), 4 controller() (controller.Controller method), 5 create_questionnaire() (user.User method), 13 create_test() (user.User method), 13                                                                         | Node (class in node), 8 node (module), 8                                                                                                                                                                  |
| Edge (class in edge), 6 edge (module), 6 end eastier (cassier Sessier method), 10                                                                                                                                                                                    | P provide_learned_items() (controller.Controller method), 5 provide_learning() (controller.Controller method), 5                                                                                          |
| end_session() (session.Session method), 10                                                                                                                                                                                                                           | Q Questionnaire (class in questionnaire), 8                                                                                                                                                               |
| finalise_response() (instance.Instance method), 7 find_nodes() (concept_map.ConceptMap method), 3 find_prerequisites() (concept_map.ConceptMap method), 3 find_siblings() (concept_map.ConceptMap method), 3 Flashcard (class in flashcard), 6 flashcard (module), 6 | questionnaire (module), 8 questionnaire_item (module), 9 questionnaire_response (module), 9 QuestionnaireItem (class in questionnaire_item), 9 QuestionnaireResponse (class in questionnaire_response), 9 |
| flashcard_instance (module), 7 FlashcardInstance (class in flashcard_instance), 7 flashmap_instance (module), 7 FlashmapInstance (class in flashmap_instance), 7                                                                                                     | R randomise() (test.Test method), 11 Response (class in response), 10 response (module), 10 retrieve_recent_instance() (user.User method), 13                                                             |

### S

```
schedule() (instance.Instance method), 7
Session (class in session), 10
session (module), 10
set_descriptives() (user.User method), 14
start_response() (instance.Instance method), 7
Т
Test (class in test), 10
test (module), 10
test_flashcard_response (module), 11
test_item (module), 11
test_item_response (module), 12
TestFlashcardResponse
                                   (class
                                                      in
         test_flashcard_response), 11
TestItem (class in test_item), 11
TestItemResponse (class in test_item_response), 12
time_spend_today() (user.User method), 14
to_dict() (concept_map.ConceptMap method), 4
to_dict() (edge.Edge method), 6
to_dict() (flashcard.Flashcard method), 6
to_dict() (node.Node method), 8
to_dict()
                 (questionnaire_item.QuestionnaireItem
         method), 9
to_dict() (test_item.TestItem method), 12
U
undo() (user.User method), 14
User (class in user), 12
user (module), 12
V
validate() (controller.Controller method), 5
validate() (user.User method), 14
```

Index 17

# Pretest and posttest statistics

## Descriptives of the knowledge questions

Table 4: Flashcard condition

|                                | N  | min | max | mean  | var  | skew | kurt  | norm-t | norm-p | α      |
|--------------------------------|----|-----|-----|-------|------|------|-------|--------|--------|--------|
| ctt:total                      | 24 | 0   | 6   | 1.29  | 4.13 | 1.34 | 0.40  | 8.732  | 0.0127 | 0.6958 |
| ctt:pretest                    | 12 | 0   | 3   | 0.67  | 1.15 | 1.16 | -0.19 | 4.546  | 0.1030 | 0.4290 |
| ctt:posttest                   | 12 | 0   | 6   | 1.92  | 6.63 | 0.70 | -1.29 | 3.371  | 0.1854 | 0.7261 |
| $ctt: abs\_learn\_gain$        | 12 | -3  | 6   | 1.25  | 8.39 | 0.47 | -0.84 | 0.900  | 0.6378 | 0.4290 |
| $ctt:rel\_learn\_gain$         | 12 | 0   | 0   | 0.04  | 0.00 | 0.43 | -0.86 | 0.810  | 0.6671 | 0.4290 |
| irt:total                      | 24 | -1  | 4   | -0.03 | 3.05 | 1.05 | 0.04  | 5.537  | 0.0627 | 0.4556 |
| irt:pretest                    | 12 | 0   | 0   | 0.00  | 0.08 | 0.62 | 0.07  | 2.059  | 0.3573 | 0.0687 |
| irt:posttest                   | 12 | -2  | 3   | -0.01 | 2.70 | 0.61 | 0.63  | 3.146  | 0.2074 | 0.3769 |
| $irt:abs\_learn\_gain$         | 12 | -2  | 3   | -0.01 | 2.87 | 0.91 | 0.61  | 4.553  | 0.1026 | 0.0687 |
| $irt:rel\_learn\_gain$         | 12 | 0   | 0   | 0.02  | 0.00 | 0.90 | 0.59  | 4.487  | 0.1061 | 0.0687 |
| fixed irt:total                | 24 | -4  | 3   | -0.83 | 4.14 | 0.58 | -0.36 | 1.812  | 0.4042 | 0.5294 |
| fixed irt:pretest              | 12 | 1   | 3   | 2.60  | 0.17 | 0.43 | 0.39  | 2.010  | 0.3661 | 0.1088 |
| fixed irt:posttest             | 12 | -2  | 3   | -0.07 | 2.71 | 0.61 | 0.63  | 3.188  | 0.2031 | 0.3774 |
| $fixed \ irt:abs\_learn\_gain$ | 12 | -4  | 1   | -2.67 | 2.91 | 1.01 | 0.64  | 5.199  | 0.0743 | 0.1088 |
| fixed irt:rel_learn_gain       | 12 | 0   | 0   | -0.03 | 0.00 | 1.01 | 0.62  | 5.132  | 0.0769 | 0.1088 |
|                                |    |     |     |       |      |      |       |        |        |        |





Table 5: Flashmap condition

|                                 | N  | min | max | mean  | var  | skew  | kurt  | norm-t | norm-p | $\alpha$ |
|---------------------------------|----|-----|-----|-------|------|-------|-------|--------|--------|----------|
| ctt:total                       | 22 | 0   | 7   | 1.32  | 4.89 | 1.48  | 0.77  | 10.348 | 0.0057 | 0.7424   |
| ctt:pretest                     | 11 | 0   | 1   | 0.18  | 0.16 | 1.65  | 0.72  | 9.711  | 0.0078 | -0.1132  |
| ctt:posttest                    | 11 | 0   | 7   | 2.45  | 7.27 | 0.45  | -1.31 | 2.304  | 0.3160 | 0.6841   |
| $ctt: abs\_learn\_gain$         | 11 | -1  | 7   | 2.27  | 7.42 | 0.45  | -1.14 | 1.448  | 0.4848 | -0.1132  |
| $ctt:rel\_learn\_gain$          | 11 | 0   | 0   | 0.05  | 0.00 | 0.44  | -1.15 | 1.490  | 0.4747 | -0.1132  |
| irt:total                       | 22 | -2  | 4   | -0.03 | 3.02 | 0.62  | 0.46  | 3.124  | 0.2097 | 0.3942   |
| irt:pretest                     | 11 | 0   | 0   | -0.00 | 0.00 | 1.65  | 0.72  | 9.711  | 0.0078 | 0.0000   |
| irt:posttest                    | 11 | -1  | 1   | -0.00 | 0.76 | -0.00 | 2.50  | 6.534  | 0.0381 | 0.1362   |
| $irt:abs\_learn\_gain$          | 11 | -1  | 1   | -0.00 | 0.76 | -0.00 | 2.50  | 6.534  | 0.0381 | 0.0000   |
| $irt:rel\_learn\_gain$          | 11 | 0   | 0   | 0.02  | 0.00 | 0.00  | 2.50  | 7.592  | 0.0225 | 0.0000   |
| fixed irt:total                 | 22 | -4  | 3   | -0.80 | 3.94 | 0.17  | 0.04  | 0.556  | 0.7575 | 0.4530   |
| fixed irt:pretest               | 11 | 0   | 0   | 0.11  | 0.00 | 0.00  | -3.00 | 1.057  | 0.5894 | 0.0000   |
| fixed irt:posttest              | 11 | 2   | 4   | 3.27  | 0.15 | -0.02 | 2.44  | 6.403  | 0.0407 | 0.1020   |
| $fixed \ irt: abs\_learn\_gain$ | 11 | 2   | 4   | 3.17  | 0.15 | -0.02 | 2.44  | 6.403  | 0.0407 | 0.0000   |
| fixed irt:rel_learn_gain        | 11 | 0   | 0   | 0.07  | 0.00 | -0.02 | 2.44  | 6.403  | 0.0407 | 0.0000   |
|                                 |    |     |     |       |      |       |       |        |        |          |





Table 6: Combined conditions

|                                 | N  | min | max | mean  | var  | skew  | kurt  | norm-t | norm-p | $\alpha$ |
|---------------------------------|----|-----|-----|-------|------|-------|-------|--------|--------|----------|
| ctt:total                       | 46 | 0   | 7   | 1.30  | 4.39 | 1.42  | 0.64  | 14.471 | 0.0007 | 0.7112   |
| ctt:pretest                     | 23 | 0   | 3   | 0.43  | 0.71 | 1.83  | 2.28  | 17.317 | 0.0002 | 0.3937   |
| ctt:posttest                    | 23 | 0   | 7   | 2.17  | 6.70 | 0.58  | -1.30 | 6.839  | 0.0327 | 0.6851   |
| $ctt: abs\_learn\_gain$         | 23 | -3  | 7   | 1.74  | 7.84 | 0.40  | -0.93 | 2.023  | 0.3637 | 0.3937   |
| $ctt:rel\_learn\_gain$          | 23 | 0   | 0   | 0.03  | 0.00 | 0.39  | -0.93 | 1.977  | 0.3722 | 0.3937   |
| irt:total                       | 46 | -3  | 5   | -0.10 | 4.92 | 0.98  | -0.23 | 7.303  | 0.0259 | 0.5856   |
| irt:pretest                     | 23 | -2  | 2   | -0.00 | 1.22 | 0.97  | 2.19  | 9.614  | 0.0082 | 0.2141   |
| irt:posttest                    | 23 | -3  | 3   | -0.02 | 3.68 | 0.87  | -0.19 | 3.757  | 0.1528 | 0.4740   |
| $irt:abs\_learn\_gain$          | 23 | -4  | 4   | -0.02 | 5.31 | 0.42  | -0.29 | 0.967  | 0.6166 | 0.2141   |
| $irt:rel\_learn\_gain$          | 23 | 0   | 0   | 0.01  | 0.00 | 0.38  | -0.27 | 0.833  | 0.6592 | 0.2141   |
| fixed irt:total                 | 46 | -5  | 3   | -1.85 | 5.68 | 0.80  | -0.29 | 5.224  | 0.0734 | 0.6710   |
| fixed irt:pretest               | 23 | -2  | 2   | -0.01 | 1.22 | 0.98  | 2.19  | 9.677  | 0.0079 | 0.2142   |
| fixed irt:posttest              | 23 | -4  | 3   | -0.88 | 5.74 | 0.31  | -0.53 | 0.564  | 0.7541 | 0.5859   |
| $fixed \ irt: abs\_learn\_gain$ | 23 | -7  | 4   | -0.88 | 8.23 | -0.21 | 0.11  | 0.742  | 0.6900 | 0.2142   |
| fixed irt:rel_learn_gain        | 23 | 0   | 0   | 0.00  | 0.00 | -0.26 | 0.19  | 1.015  | 0.6019 | 0.2142   |





## Descriptives of the comprehension questions

Table 7: Flashcard condition

|                                | N  | min | max | mean  | var  | skew  | kurt  | norm-t | norm-p | α      |
|--------------------------------|----|-----|-----|-------|------|-------|-------|--------|--------|--------|
| ctt:total                      | 24 | 0   | 6   | 1.33  | 4.23 | 1.19  | -0.05 | 6.646  | 0.0361 | 0.7215 |
| ctt:pretest                    | 12 | 0   | 4   | 0.33  | 1.33 | 3.02  | 7.09  | 33.648 | 0.0000 | 0.7670 |
| ctt:posttest                   | 12 | 0   | 6   | 2.33  | 5.33 | 0.41  | -1.25 | 2.077  | 0.3540 | 0.6450 |
| $ctt: abs\_learn\_gain$        | 12 | 0   | 6   | 2.00  | 5.45 | 0.72  | -0.96 | 2.091  | 0.3516 | 0.6450 |
| $ctt:rel\_learn\_gain$         | 12 | 0   | 0   | 0.07  | 0.00 | 0.72  | -0.95 | 2.097  | 0.3504 | 0.6450 |
| irt:total                      | 24 | -2  | 4   | 0.05  | 4.71 | 0.80  | -0.83 | 4.030  | 0.1333 | 0.6583 |
| irt:pretest                    | 12 | -1  | 4   | -0.09 | 2.62 | 2.47  | 5.19  | 26.077 | 0.0000 | 0.3406 |
| irt:posttest                   | 12 | -2  | 2   | 0.01  | 3.51 | 0.00  | -1.31 | 1.869  | 0.3929 | 0.7510 |
| $irt:abs\_learn\_gain$         | 12 | -3  | 3   | 0.10  | 5.54 | -0.07 | -1.19 | 1.211  | 0.5459 | 0.3406 |
| $irt:rel\_learn\_gain$         | 12 | 0   | 0   | 0.02  | 0.00 | -0.15 | -1.11 | 0.886  | 0.6420 | 0.3406 |
| fixed irt:total                | 24 | -3  | 3   | -1.15 | 3.83 | 0.90  | -0.52 | 4.058  | 0.1315 | 0.6673 |
| fixed irt:pretest              | 12 | 0   | 5   | 0.42  | 2.58 | 2.72  | 6.04  | 29.551 | 0.0000 | 0.3207 |
| fixed irt:posttest             | 12 | -3  | 1   | -0.87 | 3.16 | 0.03  | -1.30 | 1.835  | 0.3994 | 0.7480 |
| $fixed \ irt:abs\_learn\_gain$ | 12 | -5  | 2   | -1.28 | 5.01 | -0.15 | -1.04 | 0.652  | 0.7218 | 0.3207 |
| $fixed \ irt:rel\_learn\_gain$ | 12 | 0   | 0   | -0.01 | 0.00 | -0.29 | -0.81 | 0.411  | 0.8142 | 0.3207 |





 $Table\ 8:$  Flashmap condition

|                                | N  | $\min$ | max | mean  | var  | skew | kurt  | norm-t | norm-p | $\alpha$ |
|--------------------------------|----|--------|-----|-------|------|------|-------|--------|--------|----------|
| ctt:total                      | 22 | 0      | 8   | 1.27  | 3.92 | 2.06 | 4.13  | 22.828 | 0.0000 | 0.7202   |
| ctt:pretest                    | 11 | 0      | 4   | 0.82  | 1.56 | 1.64 | 1.82  | 12.332 | 0.0021 | 0.5351   |
| ctt:posttest                   | 11 | 0      | 8   | 1.73  | 6.22 | 1.58 | 1.62  | 11.397 | 0.0034 | 0.7566   |
| $ctt: abs\_learn\_gain$        | 11 | -1     | 4   | 0.91  | 2.89 | 1.04 | -0.35 | 3.526  | 0.1715 | 0.5351   |
| $ctt: rel\_learn\_gain$        | 11 | 0      | 0   | 0.04  | 0.00 | 1.09 | -0.23 | 3.961  | 0.1380 | 0.5351   |
| irt:total                      | 22 | -1     | 3   | 0.01  | 2.83 | 0.65 | -1.02 | 3.743  | 0.1539 | 0.6260   |
| irt:pretest                    | 11 | -1     | 3   | -0.00 | 2.98 | 0.91 | -0.34 | 2.786  | 0.2483 | 0.5317   |
| irt:posttest                   | 11 | -2     | 2   | 0.01  | 3.41 | 0.19 | -1.62 | 4.801  | 0.0907 | 0.6901   |
| $irt:abs\_learn\_gain$         | 11 | -1     | 2   | 0.01  | 1.71 | 1.00 | -0.12 | 3.564  | 0.1683 | 0.5317   |
| $irt:rel\_learn\_gain$         | 11 | 0      | 0   | 0.02  | 0.00 | 0.99 | -0.11 | 3.521  | 0.1720 | 0.5317   |
| fixed irt:total                | 22 | -1     | 3   | 0.05  | 2.92 | 0.66 | -1.01 | 3.727  | 0.1551 | 0.6277   |
| fixed irt:pretest              | 11 | 0      | 4   | 1.54  | 2.10 | 0.93 | -0.32 | 2.893  | 0.2354 | 0.4888   |
| fixed irt:posttest             | 11 | -1     | 3   | 0.57  | 3.81 | 0.15 | -1.64 | 5.133  | 0.0768 | 0.6957   |
| $fixed \ irt:abs\_learn\_gain$ | 11 | -2     | 1   | -0.97 | 1.88 | 1.08 | 0.01  | 4.284  | 0.1174 | 0.4888   |
| $fixed \ irt:rel\_learn\_gain$ | 11 | 0      | 0   | 0.00  | 0.00 | 1.08 | 0.01  | 4.277  | 0.1178 | 0.4888   |





Table 9: Combined conditions

| -                              | N  | min | max | mean  | var  | skew | kurt  | norm-t | norm-p | $\alpha$ |
|--------------------------------|----|-----|-----|-------|------|------|-------|--------|--------|----------|
| ctt:total                      | 46 | 0   | 8   | 1.30  | 3.99 | 1.58 | 1.77  | 19.890 | 0.0000 | 0.7140   |
| ctt:pretest                    | 23 | 0   | 4   | 0.57  | 1.44 | 2.19 | 3.53  | 23.159 | 0.0000 | 0.6350   |
| ctt:posttest                   | 23 | 0   | 8   | 2.04  | 5.59 | 0.98 | -0.02 | 4.808  | 0.0903 | 0.6951   |
| ctt:abs_learn_gain             | 23 | -1  | 6   | 1.48  | 4.35 | 0.97 | -0.34 | 4.419  | 0.1097 | 0.6350   |
| ctt:rel_learn_gain             | 23 | 0   | 0   | 0.05  | 0.00 | 0.95 | -0.42 | 4.277  | 0.1178 | 0.6350   |
| irt:total                      | 46 | -1  | 3   | 0.00  | 2.33 | 0.81 | -0.90 | 8.324  | 0.0156 | 0.6015   |
| irt:pretest                    | 23 | -1  | 4   | 0.01  | 2.56 | 1.65 | 1.53  | 13.943 | 0.0009 | 0.4629   |
| irt:posttest                   | 23 | -1  | 2   | 0.00  | 2.04 | 0.19 | -1.52 | 11.285 | 0.0035 | 0.6781   |
| irt:abs_learn_gain             | 23 | -3  | 3   | -0.01 | 2.86 | 0.32 | -0.85 | 1.311  | 0.5192 | 0.4629   |
| irt:rel_learn_gain             | 23 | 0   | 0   | 0.02  | 0.00 | 0.24 | -0.77 | 0.786  | 0.6749 | 0.4629   |
| fixed irt:total                | 46 | -2  | 2   | -0.62 | 2.30 | 0.82 | -0.86 | 8.005  | 0.0183 | 0.6058   |
| fixed irt:pretest              | 23 | -1  | 4   | 0.04  | 2.52 | 1.66 | 1.54  | 13.979 | 0.0009 | 0.4618   |
| fixed irt:posttest             | 23 | -1  | 2   | -0.23 | 1.97 | 0.17 | -1.56 | 12.676 | 0.0018 | 0.6732   |
| fixed irt:abs_learn_gain       | 23 | -3  | 2   | -0.26 | 2.85 | 0.27 | -0.87 | 1.246  | 0.5362 | 0.4618   |
| $fixed \ irt:rel\_learn\_gain$ | 23 | 0   | 0   | 0.02  | 0.00 | 0.18 | -0.76 | 0.640  | 0.7262 | 0.4618   |





## Comparisons of the knowledge questions

## Pre- and posttest comparisons

Table 10: Flashcard condition

|           | MW k   | MW p   | t-test k | t-test p |
|-----------|--------|--------|----------|----------|
| ctt       | -1.552 | 0.1348 | -1.552   | 0.1418   |
| irt       | 0.016  | 0.9872 | 0.016    | 0.9873   |
| fixed irt | 5.454  | 0.0000 | 5.454    | 0.0001   |

Table 11: Flashmap condition

|           | MW k    | MW p   | t-test k | t-test p |
|-----------|---------|--------|----------|----------|
| ctt       | -2.764  | 0.0120 | -2.764   | 0.0192   |
| irt       | -0.000  | 1.0000 | -0.000   | 1.0000   |
| fixed irt | -27.206 | 0.0000 | -27.206  | 0.0000   |

Table 12: Combined conditions

|           | MW k   | MW p   | t-test k | t-test p |
|-----------|--------|--------|----------|----------|
| ctt       | -3.065 | 0.0037 | -3.065   | 0.0049   |
| irt       | 0.051  | 0.9597 | 0.051    | 0.9598   |
| fixed irt | 1.591  | 0.1187 | 1.591    | 0.1217   |

### Between conditions

Table 13: Classical test theory

|                    | MW k   | MW p   | t-test k | t-test p |
|--------------------|--------|--------|----------|----------|
| total              | -0.042 | 0.9664 | -0.042   | 0.9665   |
| pretest            | 1.407  | 0.1739 | 1.456    | 0.1669   |
| posttest           | -0.489 | 0.6297 | -0.488   | 0.6305   |
| $abs\_learn\_gain$ | -0.870 | 0.3940 | -0.873   | 0.3927   |
| $rel\_learn\_gain$ | -0.747 | 0.4635 | -0.751   | 0.4611   |

Table 14: Item response theory

|                    | MW k   | MW p   | t-test k | t-test p |
|--------------------|--------|--------|----------|----------|
| total              | -0.001 | 0.9989 | -0.001   | 0.9989   |
| pretest            | 0.000  | 1.0000 | 0.000    | 1.0000   |
| posttest           | -0.014 | 0.9889 | -0.014   | 0.9887   |
| $abs\_learn\_gain$ | -0.014 | 0.9892 | -0.014   | 0.9889   |
| $rel\_learn\_gain$ | 0.072  | 0.9436 | 0.074    | 0.9423   |

Table 15: Item response theory with fixed item difficulties

|                    | MW k    | MW p   | t-test k | t-test p |
|--------------------|---------|--------|----------|----------|
| total              | -0.050  | 0.9602 | -0.050   | 0.9602   |
| pretest            | 20.261  | 0.0000 | 21.204   | 0.0000   |
| posttest           | -6.549  | 0.0000 | -6.821   | 0.0000   |
| $abs\_learn\_gain$ | -11.067 | 0.0000 | -11.531  | 0.0000   |
| $rel\_learn\_gain$ | -10.401 | 0.0000 | -10.845  | 0.0000   |





### Comparisons of the comprehension questions

Table 16: Flashcard condition

|                        | MW k   | MW p   | t-test k | t-test p |
|------------------------|--------|--------|----------|----------|
| $\overline{	ext{ctt}}$ | -2.683 | 0.0136 | -2.683   | 0.0162   |
| irt                    | -0.146 | 0.8852 | -0.146   | 0.8852   |
| fixed irt              | 1.856  | 0.0768 | 1.856    | 0.0770   |

Table 17: Flashmap condition

|                        | MW k   | MW p   | t-test k | t-test p |
|------------------------|--------|--------|----------|----------|
| $\overline{	ext{ctt}}$ | -1.081 | 0.2926 | -1.081   | 0.2971   |
| irt                    | -0.018 | 0.9854 | -0.018   | 0.9854   |
| fixed irt              | 1.318  | 0.2024 | 1.318    | 0.2036   |

Table 18: Combined conditions

|           | MW k   | MW p   | t-test k | t-test p |
|-----------|--------|--------|----------|----------|
| ctt       | -2.674 | 0.0105 | -2.674   | 0.0116   |
| irt       | 0.023  | 0.9818 | 0.023    | 0.9818   |
| fixed irt | 0.595  | 0.5549 | 0.595    | 0.5549   |

#### Between conditions

Table 19: Classical test theory

|                    | MW k   | MW p   | t-test k | t-test p |
|--------------------|--------|--------|----------|----------|
| total              | 0.102  | 0.9195 | 0.102    | 0.9194   |
| pretest            | -0.967 | 0.3446 | -0.963   | 0.3466   |
| posttest           | 0.605  | 0.5515 | 0.603    | 0.5531   |
| $abs\_learn\_gain$ | 1.270  | 0.2179 | 1.288    | 0.2124   |
| $rel\_learn\_gain$ | 1.197  | 0.2448 | 1.211    | 0.2399   |

Table 20: Item response theory

|                    | MW k   | MW p   | t-test k | t-test p |
|--------------------|--------|--------|----------|----------|
| total              | 0.071  | 0.9436 | 0.072    | 0.9430   |
| pretest            | -0.132 | 0.8961 | -0.132   | 0.8965   |
| posttest           | -0.002 | 0.9982 | -0.002   | 0.9982   |
| $abs\_learn\_gain$ | 0.112  | 0.9116 | 0.115    | 0.9097   |
| $rel\_learn\_gain$ | 0.064  | 0.9496 | 0.066    | 0.9484   |

Table 21: Item response theory with fixed item difficulties

|                    | MW k   | MW p   | t-test k | t-test p |
|--------------------|--------|--------|----------|----------|
| total              | -2.188 | 0.0340 | -2.202   | 0.0330   |
| pretest            | -1.748 | 0.0950 | -1.756   | 0.0936   |
| posttest           | -1.849 | 0.0785 | -1.842   | 0.0802   |
| $abs\_learn\_gain$ | -0.407 | 0.6882 | -0.415   | 0.6826   |
| rel_learn_gain     | -0.455 | 0.6537 | -0.465   | 0.6476   |





# Questionnaire statistics

### Descriptives of Perceived Usefulness questions

Table 22: Flashcard condition

|                        | N  | min | max | mean  | variance | skew  | kurt  | norm-t | norm-p | $\alpha$ |
|------------------------|----|-----|-----|-------|----------|-------|-------|--------|--------|----------|
| $\overline{	ext{ctt}}$ | 12 | -4  | 14  | 6.50  | 27.36    | -0.57 | -0.52 | 1.144  | 0.5643 | 0.6432   |
| irt                    | 12 | -5  | 1   | -0.16 | 4.40     | -1.89 | 3.15  | 17.284 | 0.0002 | 0.6263   |





Table 23: Flashmap condition

|                        | N  | min | max | mean  | variance | skew  | kurt | norm-t | norm-p | $\alpha$ |
|------------------------|----|-----|-----|-------|----------|-------|------|--------|--------|----------|
| $\overline{	ext{ctt}}$ | 11 | 0   | 13  | 8.82  | 15.16    | -1.05 | 0.32 | 4.698  | 0.0955 | 0.6777   |
| irt                    | 11 | -3  | 1   | -0.15 | 1.89     | -1.41 | 1.44 | 9.670  | 0.0079 | 0.5298   |





Table 24: Combined conditions

|                        | N  | min | max | mean | variance | skew  | kurt  | norm-t | norm-p | $\alpha$ |
|------------------------|----|-----|-----|------|----------|-------|-------|--------|--------|----------|
| $\overline{	ext{ctt}}$ | 23 | -4  | 14  | 7.61 | 21.98    | -0.86 | -0.02 | 3.864  | 0.1448 | 0.6509   |
| irt                    | 23 | -3  | 2   | 0.49 | 1.82     | -0.73 | 0.55  | 4.058  | 0.1315 | 0.4619   |





## Descriptives of Perceived Ease of Use questions

Table 25: Flashcard condition

|                        | N  | min | max | mean | variance | skew  | kurt  | norm-t | norm-p | α      |
|------------------------|----|-----|-----|------|----------|-------|-------|--------|--------|--------|
| $\overline{	ext{ctt}}$ | 12 | -4  | 17  | 6.58 | 38.08    | -0.26 | -0.62 | 0.232  | 0.8904 | 0.8794 |
| irt                    | 12 | 0   | 4   | 0.91 | 1.87     | 1.08  | 0.52  | 5.358  | 0.0686 | 0.2295 |





 $Table\ 26:$  Flashmap condition

|                        | N  | min | max | mean | variance | skew  | kurt | norm-t | norm-p | $\alpha$ |
|------------------------|----|-----|-----|------|----------|-------|------|--------|--------|----------|
| $\overline{	ext{ctt}}$ | 11 | 0   | 19  | 8.27 | 26.22    | 0.50  | 0.12 | 1.725  | 0.4220 | 0.7689   |
| irt                    | 11 | -2  | 2   | 0.22 | 1.87     | -0.20 | 1.01 | 3.041  | 0.2186 | 0.2538   |





Table 27: Combined conditions

|                        | N  | min | max | mean | variance | skew  | kurt  | norm-t | norm-p | α      |
|------------------------|----|-----|-----|------|----------|-------|-------|--------|--------|--------|
| $\overline{	ext{ctt}}$ | 23 | -4  | 19  | 7.39 | 31.70    | -0.08 | -0.10 | 0.239  | 0.8876 | 0.8285 |





## Comparisons of the Perceived Usefulness questions

|                        | MW k   | MW p   | t-test k | t-test p |
|------------------------|--------|--------|----------|----------|
| $\overline{	ext{ctt}}$ | -1.196 | 0.2449 | -1.212   | 0.2395   |
| irt                    | -0.014 | 0.9891 | -0.014   | 0.9889   |





## Comparisons of the Perceived Usefulness questions

|                        | MW k   | MW p   | t-test k | t-test p |
|------------------------|--------|--------|----------|----------|
| $\overline{	ext{ctt}}$ | -0.711 | 0.4851 | -0.717   | 0.4816   |
| irt                    | 1.206  | 0.2411 | 1.206    | 0.2412   |





# Instance statistics

### Descriptives of the number of responses

Table 30: Flashcard condition

|     | N  | min | max | mean   | variance | skew | kurt | norm-t | norm-p | $\alpha$ |
|-----|----|-----|-----|--------|----------|------|------|--------|--------|----------|
| abs | 12 | 298 | 915 | 408.17 | 28248.33 | 2.53 | 5.26 | 26.675 | 0.0000 | 0.8557   |
| rel | 12 | 6   | 19  | 8.87   | 13.35    | 2.53 | 5.26 | 26.675 | 0.0000 | 0.8557   |





Table 31: Flashmap condition

|                | N  | min | max | mean   | variance | skew | kurt  | norm-t | norm-p | α      |
|----------------|----|-----|-----|--------|----------|------|-------|--------|--------|--------|
| abs            | 11 | 278 | 471 | 374.36 | 4875.05  | 0.13 | -1.28 | 1.516  | 0.4686 | 0.7098 |
| $\mathbf{rel}$ | 11 | 5   | 9   | 7.49   | 1.95     | 0.13 | -1.28 | 1.516  | 0.4686 | 0.7098 |





Table 32: Combined conditions

|                | N  | min | max  | mean   | variance | skew | kurt  | norm-t | norm-p | α      |
|----------------|----|-----|------|--------|----------|------|-------|--------|--------|--------|
| abs            | 23 | 328 | 1230 | 474.74 | 34192.57 | 3.12 | 10.33 | 41.081 | 0.0000 | 0.8731 |
| $\mathbf{rel}$ | 23 | 6   | 24   | 9.31   | 13.15    | 3.12 | 10.33 | 41.081 | 0.0000 | 0.8731 |





## Descriptives of percentage of responses marked as correct

Table 33: Flashcard condition

|                | N  | min | max | mean  | variance | skew  | kurt | norm-t | norm-p | α      |
|----------------|----|-----|-----|-------|----------|-------|------|--------|--------|--------|
| abs            | 12 | 35  | 43  | 40.42 | 4.04     | -1.15 | 1.74 | 8.672  | 0.0131 | 0.9106 |
| $\mathbf{rel}$ | 12 | 0   | 0   | 0.88  | 0.00     | -1.15 | 1.74 | 8.672  | 0.0131 | 0.9106 |





Table 34: Flashmap condition

|                | N  | min | max | mean  | variance | skew | kurt  | norm-t | norm-p | $\alpha$ |
|----------------|----|-----|-----|-------|----------|------|-------|--------|--------|----------|
| abs            | 11 | 43  | 51  | 47.11 | 6.19     | 0.31 | -1.17 | 1.231  | 0.5404 | 0.9511   |
| $\mathbf{rel}$ | 11 | 0   | 1   | 0.92  | 0.00     | 0.31 | -1.17 | 1.231  | 0.5404 | 0.9511   |





Table 35: Combined conditions

|     | N  | min | max | mean  | variance | skew | kurt | norm-t | norm-p | α      |
|-----|----|-----|-----|-------|----------|------|------|--------|--------|--------|
| abs | 23 | 40  | 51  | 45.97 | 6.47     | 0.06 | 0.22 | 0.711  | 0.7008 | 0.9459 |
| rel | 23 | 0   | 1   | 0.90  | 0.00     | 0.06 | 0.22 | 0.711  | 0.7008 | 0.9459 |





#### Descriptives of the amount of time spent on the application

Table 36: Flashcard condition

|                | N  | min  | max   | mean    | variance    | skew  | kurt  | norm-t | norm-p | $\alpha$ |
|----------------|----|------|-------|---------|-------------|-------|-------|--------|--------|----------|
| abs            | 12 | 1544 | 12345 | 8173.94 | 10611999.29 | -0.77 | -0.33 | 2.156  | 0.3402 | 0.8776   |
| $\mathbf{rel}$ | 12 | 33   | 268   | 177.69  | 5015.12     | -0.77 | -0.33 | 2.156  | 0.3402 | 0.8776   |





Table 37: Flashmap condition

|                | N  | min  | max   | mean    | variance   | skew | kurt  | norm-t | norm-p | $\alpha$ |
|----------------|----|------|-------|---------|------------|------|-------|--------|--------|----------|
| abs            | 11 | 1707 | 12233 | 7221.30 | 8917086.17 | 0.05 | -0.44 | 0.092  | 0.9551 | 0.8268   |
| $\mathbf{rel}$ | 11 | 34   | 244   | 144.43  | 3566.83    | 0.05 | -0.44 | 0.092  | 0.9551 | 0.8268   |





Table 38: Combined conditions

|                | N  | min  | max   | mean    | variance    | skew  | kurt  | norm-t | norm-p | α      |
|----------------|----|------|-------|---------|-------------|-------|-------|--------|--------|--------|
| abs            | 23 | 1426 | 16484 | 9283.95 | 14203173.83 | -0.31 | -0.29 | 0.544  | 0.7617 | 0.8591 |
| $\mathbf{rel}$ | 23 | 27   | 323   | 182.04  | 5460.66     | -0.31 | -0.29 | 0.544  | 0.7617 | 0.8591 |





## Comparisons of the number of responses

|     | MW k  | MW p   | t-test k | t-test p |
|-----|-------|--------|----------|----------|
| abs | 0.619 | 0.5426 | 0.639    | 0.5324   |
| rel | 1.180 | 0.2513 | 1.220    | 0.2420   |





## Comparisons of the percentage of responses marked as correct

|                  | MW k    | MW p   | t-test k | t-test p |
|------------------|---------|--------|----------|----------|
| $\overline{abs}$ | -16.597 | 0.0000 | -15.857  | 0.0000   |
| rel              | -16.421 | 0.0000 | -15.689  | 0.0000   |





## Comparisons of the amount of time spent on the application

|     | MW k  | MW p   | t-test k | t-test p |
|-----|-------|--------|----------|----------|
| abs | 7.924 | 0.0000 | 8.292    | 0.0000   |
| rel | 7.954 | 0.0000 | 8.324    | 0.0000   |



