- Quote. To see things in the seed, that is genius.
 Laozi 老子, Chinese philosopher, 6th century BC
- 2. Reminder.

(a)
$$R(3,3) = 6$$

Figure 1: K_6 - a complete graph on six vertices

(b)
$$R(4,3) = R(3,4) = 9$$

Figure 2: K_9 - a complete graph on nine vertices

(c) R(4,4) = 18: Consider a blue-red edge colouring of a K_{18} .

Figure 3: Step 1: Observe that each vertex ■ is adjacent to 9 edges of the same colour - say red

Case 1- There is a red K_3 n the induced K_9 Case 2: There is a blue K_4 in the induced K_9

Figure 4: Step 2 – Two cases

3. Jeopardy!

(a) There are only **two** 2-colourings of K_{16} without a monochromatic K_4 .

(b) There is only **one** 2-colouring of K_{17} without a monochromatic K_4 .

	K_n , a complete graph on n vertices, in red and blue contains a red K_s or a blue K_t . Three BIG Ouestions:
4.	Definition: The Ramsey number $R(s,t)$ is the minimum number n for which any edge 2-coloring of

- (a) Does the Ramsey number R(s, t) exist for any choice of natural numbers $s \ge 2$ and $t \ge 2$?
- (b) If R(s, t) exists, can we find the exact value of R(s, t)?
- (c) If R(s,t) exists and if we cannot find the exact value of R(s,t), what are the best known bounds for R(s,t)?

- 6. What About...
 - (a) R(s, 2)?

(b) R(2, t)?

7. **Ramsey's Theorem - Two Colours.** For any $s, t \in \mathbb{N} \setminus \{1\}$ the Ramsey number R(s, t) exists and, for $s, t \geq 3$,

$$R(s,t) \le R(s-1,t) + R(s,t-1).$$

8. Observation 1:

$$R(2,2) = 2$$
, $R(3,2) = R(2,3) = 3$, $R(3,3) = 6$, $R(4,2) = R(2,4) = 4$.

9. **Observation 2:** If $s, t \in \mathbb{N} \setminus \{1\}$ are such that

$$s + t = 4$$
 or $s + t = 5$ or $s + t = 6$

then R(s, t) exists!

10. **Observation 3:** Since, for any $s \ge 2$

$$R(s, 2) = R(2, s) = s$$

we are interested only in the question if R(s, t) exists for $s, t \ge 3$.

11. Observation 4:

$$(s-1) + t = s + (t-1) = (s+t) - 1$$

12. **Observation 5:** To prove that R(s,t), $s,t \ge 3$, exists it is enough to prove that any 2-colouring of a complete graph K_M where

$$M = R(s-1,t) + R(s,t-1)$$

yields a monochromatic K_s or a monochromatic K_t . Why?

13. **Strategy:** We prove that any 2-colouring of a complete graph K_M where

$$M = R(s-1,t) + R(s,t-1)$$

yields a monochromatic K_s or a monochromatic K_t via induction on the sum s + t.

14. **Proof of Ramsey's Theorem - Two Colours:** Let $s, t \ge 3$. We use mathematical induction on the sum s + t to prove that R(s, t) exists.

The base case of induction, s + t = 6, follows from the fact that R(3,3) = 6.

Suppose that $n \ge 6$ is such that for any $u, v \ge 3$ such that u + v = n the Ramsey number R(u, v) exists.

Let $s, t \ge 3$ by such that

$$s + t = n + 1$$
.

Then, since

$$(s-1) + t = s + (t-1) = n$$
,

by the induction hypothesis R(s-1,t) and R(s,t-1) exist. Let

$$M = R(s - 1, t) + R(s, t - 1)$$

and we consider a 2-colouring of K_M .

Figure 5: K_M : Each vertex is incident to M-1=R(s-1,t)+R(s-1,t)-1 edges

Fix a vertex. There are two possibilities:

Case 1: At least R(s-1,t) red edges Case 2: At least R(s,t-1) blue edges

Figure 6: Pigeonhole principle: Two cases

Suppose

Figure 7: Case 1: At least R(s-1,t) red edges

Then

Case 1.1: There is a red K_{s-1}

Case 1.2: There is a blue K_t

Figure 8: Recall the definition of R(s-1,t)

Hence, any red/blue 2-colouring of K_M yields a red K_s or a red K_t . Therefore R(s,t) exists and $R(s,t) \le R(s-1,t) + R(s,t-1)$.

15. Known Ramsey Numbers.

S	t	R(s,t)	Who & When
3	3	6	Greenwood & Gleason 1955
3	4	9	Greenwood & Gleason 1955
3	5	14	Greenwood & Gleason 1955
3	6	18	Graver & Yackel 1968
3	7	23	Kalbfleisch 1966
3	8	28	McKay & Min 1992
3	9	36	Grinstead & Roberts 1982
4	4	18	Greenwood & Gleason 1955
4	5	25	McKay & Radziszowski 1995

16. More Known Facts.

S	t	R(s,t)	Who and When
3	10	[40, 42]	Exoo 1989, Radziszowski & Kreher 1988
3	11	[46, 51]	Radziszowski & Kreher 1988
4	6	[35, 41]	Exoo, McKay & Radziszowski 1995
4	7	[49, 61]	Exoo 1989, Mackey 1994
5	5	[43, 48]	Exoo 1989, McKay & Radziszowski 1995
5	6	[58, 87]	Exoo 1993, Walker 1971
6	6	[102, 165]	Kalbfleisch 1965, Mackey 1994
6	7	[113, 298]	Exoo & Tatarevic 2015, Xu & Xie 2002

17. **In Erdős' Words.** Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack.

18. How Big - Upper Bound.

$$R(s,t) \le \binom{s+t-2}{t-1}.$$

19. **Therefore:** For $s \ge 3$

$$2^{s/2} < R(s,s) \le \binom{2s-2}{s-1}.$$

20.	Question: Suppose that we decide to use three colours, say blue, red, and green. Is there a something
	like $R(s, t, u)$, for $s, t, u \in \mathbb{N}$? In other words, is it possible to find a number n so that if each edge of
	K_n is coloured by one of the three colours then there will be always possible to find a blue K_s or a red
	K_t or a green K_u ?

One can go all the way and consider a situation in which, for $m \in \mathbb{N} \setminus \{1\}$, the edges of a complete graph K_n are coloured with m colours.

- 21. **Definition:** Ramsey number]Let $k \in \mathbb{N} \setminus \{1\}$ and $m_1, m_2, \ldots, m_k \in \mathbb{N} \setminus \{1\}$ be given. The Ramsey number $R(m_1, m_2, \ldots, m_k)$ is the minimum number n for which any edge k-colouring of K_n , with colours c_1, c_2, \ldots, c_k , contains a c_i monochromatic K_{m_i} , for some $i \in [1, k]$.
 - **Question** now becomes: Does the Ramsey number $R(m_1, m_2, ..., m_k)$ exist for any choice of natural numbers $k, m_1, m_2, ..., m_k \ge 2$?
- 22. **Ramsey's Theorem For Graphs**. For any $k, m_1, m_2, \ldots, m_k \in \mathbb{N} \setminus \{1\}$ the Ramsey number $R(m_1, m_2, \ldots, m_k)$ exists.