T.C.
PAMUKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ
CENG 306 BİÇİMSEL DİLLER ve OTOMATA TEORİSİ DERSİ VİZE SINAV SORULARI

Soru 1	Soru 2	Soru 3	Soru 4	Soru 5	Soru 6	Toplam
14	16	16	16	20	18	100

Süre: 90 dakika, Notlar: kapalı

Başarılar dilerim. Prof.Dr. Sezai TOKAT

SORU 1) $L = \{w \in \{a, b\}^* : w \text{ katarı ab ile bitmez.} \}$ düzenli dilini üreten düzenli ifadeyi yazınız. Sonu ab dışında herşeyin kabul edilmesi gerekir. Sadece boşlukta da sonu ab ile bitmez. Bunun dışındaki ab ile bitmeme durumunu da gözönüne alırsam:

e ∪ b ∪ (a ∪ b)* (a ∪ bb)

şeklinde kolayca elde edebilirim. (Bunun dışında da çözümler elde edilebilir.)

SORU 2) $\Sigma = \{0, 1\}$ alfabesinden üretilen katarlardan ilk üç sembolü içerisinde bir veya iki adet 0 olan herhangi uzunluktaki tüm katarları tanıyan bir DSO'yu çiziniz.

Note that, once you get 10 or 01 in the beginning, you don't care about the third input.

SORU 3) Regular expression → NFA

(b ∪ aa)* (bb) * (e ∪ aba) düzenli ifadesine denk dili tanıyan NDSO'yu çiziniz. (en fazla 7 durum kullanınız)

Burada önce b'lerle ve aa'larla Kleen Yıldız durumunu iki durumla sonra bb Kleen yıldızı iki durumla sağladıktan sonra en sonda hiçbir şey gelmemesi veya aba gelmesini üç durumla kolayca elde ederiz.

SORU 4) NFA→ DFA

 Σ ={a,b} alfabesinde tanımlı NDSO'ya denk olan DSO'yu bulup çiziniz.

E-geçişler yapıldıktan sonra...

SORU 5)

 $\Sigma = \{a,b\}$ alfabesinde tanımlı DSO'ya ait geçiş fonksiyonu verilmiş olsun:

	a	b	
\rightarrow q_0	q_0	q_1	
q_1	q_2	q_3	
q_2	q_2	q_3	
q_3	q_2	q_4	F
q_4	q_0	q_1	

 q_0 başlangıç durumu ve q_3 kabul edilir durum tabloda gösterilmiştir. Durum indirgeme adımlarını uygulayarak durum indirgenmiş DSO'yu çiziniz.

Çözüm: (Tablo indirgeme ile ilgili ara adımlar yapıldıktan sonra ...) $q0 \approx q4$ ve $q1 \approx q2$ bulmuş olmanız gerekir.

Bunun sonucunda elde edilen otomata ait durum geçiş fonksiyonu:

	a	b	
$\rightarrow \{q_0, q_4\}$	$\{q_0,q_4\}$	$\{q_1,q_2\}$	
$\{q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_3\}$	
$\{q_3\}$	$\{q_1,q_2\}$	$\{q_0,q_4\}$	F

İlgili otomat kolayca çizilebilir.

SORU 6)

X dizisini giriş olarak alan ve girişte '11011' dizisi oluştuğunda Z=1 aksi halde Z=0 çıkışı üreten ve bunu iç-içe geçmiş diziler için de sağlayan Mealy Makinesini çiziniz. (en fazla 5 durum kullanınız.) (Örneğin X='11011011011' girişi için üç tane iç-içe geçmiş '11011' vardır ve çıkış olarak her saptama sonucunda bir üretilerek Z='00001001001' çıkışı elde edilir.)

