

Complex Network

Quiz 5

WANG BIYUAN 18M38156

DEPARTMENT OF COMPUTER SCIENCE
LECTURER: TSUYOSHI MURATA

December 18, 2018

Code

```
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import pprint
import math
def printout(network):
  for n,c in sorted(network.items()):
    print("%d %0.2f"%(n,c))
  print("The most central node:", max(dc, key=network.get))
G = nx.Graph()
G.add_nodes_from(range(1,10))
G.add\_edges\_from([(0,2),(1,2),(2,3),(2,4),\
                (3,5), (3,6), (4,6), (5,7), (6,7), (7,8), (8,9), (8,10)]
plt.figure(figsize=(5,5))
nx.draw_spring(G, node_size=400, node_color='red', with_labels = True,
   font_weight = 'bold')
#A = nx.adjacency_matrix(G).todense()
#A = np.array(A, dtype = np.float64)
# print("degree centrality:", list(nx.degree_centrality(G).values()))
# v = list(nx.degree_centrality(G).values())
# s = ("degree centrality:" + ','.join(['%.2f']*len(v))) % tuple(v)
# print("biggest:", np.argmax(v))
# Degree Centrality
dc = nx.degree_centrality(G)
printout(dc)
# Betweenness Centrality
bc = nx.betweenness_centrality(G)
printout(bc)
# Closeness Centrality
cc = nx.closeness_centrality(G)
printout(cc)
# Eigenvector Centrality
ec = nx.eigenvector_centrality(G)
printout(ec)
# Page Rank
pr = nx.pagerank(G)
printout(pr)
# Katz Centrality
kc = nx.katz_centrality(G)
printout(kc)
```

Results

Make a program of computing (i) and (ii) of the following centralities ($1\hat{a}\check{A}\check{R}6$). Show the code and its outputs.

- (i) centrality values of all nodes in the right graph
- (ii) the most central node

Figure 1: Graph

1. Degree centrality: The most central node: 2

Node	Centrality
0	0.10
1	0.10
2	0.40
3	0.30
4	0.20
5	0.20
6	0.30
7	0.30
8	0.30
9	0.10
10	0.10

 ${\bf 2.}\,$ Betweenness centrality: The most central node: 7

Node	Centrality
0	0.00
1	0.00
2	0.40
3	0.30
4	0.12
5	0.13
6	0.34
7	0.49
8	0.38
9	0.00
10	0.00

3. Closeness centrality: The most central node: 6

Node	Centrality
0	0.29
1	0.29
2	0.40
3	0.45
4	0.42
5	0.43
6	0.48
7	0.45
8	0.37
9	0.28
10	0.28

4. Eigenvector centrality: The most central node: 3

Node	Centrality
0	0.16
1	0.16
2	0.42
3	0.45
4	0.33
5	0.31
6	0.44
7	0.36
8	0.20
9	0.07
10	0.07

5. PageRank: The most central node: 2

Node	Centrality
0	0.05
1	0.05
2	0.16
3	0.11
4	0.08
5	0.08
6	0.11
7	0.12
8	0.14
9	0.05
10	0.05

6. Katz centrality: The most central node: 2

Node	Centrality
0	0.27
1	0.27
2	0.35
3	0.33
4	0.30
5	0.30
6	0.33
7	0.33
8	0.32
9	0.26
10	0.26