Modelling of Complex Systems

Department of Physics, University of Aveiro.

Project 2

One-dimensional random walks

Part 1 — One-dimensional symmetrical Random Walks

Perform simulations of random walks of a particle on a one-dimensional chain. The probabilities of jumping to the left p and to the right q are equal, p = q = 0.5.

Task 1.1. At t = 0 the particle starts the walk at x = 0 and makes a total of $t_f = 50$ jumps.

Plot the trajectories of three random walks, i.e., plot the position x of the particle as a function of time t, from t=0 to $t=t_f$ (we define time t as the number of jumps):

$$x(t) = \sum_{i=1}^{t} S_i$$

Here $S_i = \pm 1$ is the random jump made by the particle at step *i*.

Task 1.2. Compute the probability $P(x, t_f)$ of finding the particle at site x at a given time t_f . The particle starts the walk (at t = 0) from site x = 0. Use (i) $t_f = 40,41$; (ii) $t_f = 400,401$; (iii) $t_f = 4000,4001$, then average over even and odd t_f and find the averaged probability $\bar{P}(x, t_f)$. Compare the distribution obtained experimentally from your simulations with the theoretical distribution function:

$$P(x,t) = \frac{1}{\sqrt{2\pi t}}e^{-\frac{x^2}{2t}}$$

Algorithm:

1. For each time t_f generate $N = 50\,000$ trajectories (or more, if possible, to get batter statistics). Find $P(x, t_f) = N(x, t_f)/N$, where $N(x, t_f)$ is the number of trajectories that finish at point x. Average over even and odd times:

$$\bar{P}(x,t) = \frac{1}{2}[P(x,t) + P(x,t+1)].$$

Plot the averaged distribution function $\bar{P}(x,t)$. Compare with the theoretical distribution function P(x,t).

2. Check that

$$\sum_{x} \bar{P}(x,t) = 1, \quad \langle x \rangle = \sum_{x} x \bar{P}(x,t) = 0, \text{ and } \langle (x - \langle x \rangle)^{2} \rangle = \sum_{x} (x - \langle x \rangle)^{2} \bar{P}(x,t) = t.$$

3. Plot on the same graph your results for (i)-(iii).

Part 2 — One-dimensional Random Walks with a drift

Task 2.1. Simulate random walks of a particle on a one-dimensional chain with asymmetric jump probabilities. The probabilities to jump on the left and on the right equal to $p = 0.5 - \delta$ and $q = 0.5 + \delta$, respectively. Take $\delta = 0.015$. Compute the probability $P(x, t_f)$ to find this particle after time t_f (i.e., after t_f jumps) at site x. At t = 0 the particle starts the walk at x = 0. Use (i) $t_f = 40,41$; (ii) $t_f = 400,401$; (iii) $t_f = 4000,4001$, then average over even and odd t_f and find the averaged probabilities $\bar{P}(x,t)$. Compare the distribution obtained experimentally with the theoretical distribution function:

$$P(x,t) = \frac{1}{\sqrt{2\pi t}}e^{-\frac{(x-2t\delta)^2}{2t}}.$$

Algorithm:

1. For each time t_f generate $N=50\,000$ trajectories (or more, if possible, to get batter statistics). Find $P(x,t_f)=N(x,t_f)/N$, where $N(x,t_f)$ is the number of trajectories that finish at point x. Then average over even and odd times:

$$\bar{P}(x,t) = \frac{1}{2} [P(x,t) + P(x,t+1)].$$

Plot the averaged distribution function $\bar{P}(x,t)$. Compare with the theoretical distribution function P(x,t).

2. Check that

$$\sum_{x} \bar{P}(x,t) = 1, \quad \langle x \rangle = \sum_{x} x \bar{P}(x,t) = 2t\delta, \text{ and } \langle (x - \langle x \rangle)^{2} \rangle = \sum_{x} (x - \langle x \rangle)^{2} \bar{P}(x,t) = t.$$

3. Plot on the same graph your results for (i)-(iii).