Supporting Document Mandatory Technical Document

PP-Module for Wireless Local Area Network (WLAN) Access System

Version: 1.0

2019-11-14

National Information Assurance Partnership

Foreword

This is a Supporting Document (SD), intended to complement the Common Criteria version 3 and the associated Common Evaluation Methodology for Information Technology Security Evaluation.

SDs may be "Guidance Documents", that highlight specific approaches and application of the standard to areas where no mutual recognition of its application is required, and as such, are not of normative nature, or "Mandatory Technical Documents", whose application is mandatory for evaluations whose scope is covered by that of the SD. The usage of the latter class is not only mandatory, but certificates issued as a result of their application are recognized under the CCRA.

Technical Editor:

National Information Assurance Partnership (NIAP)

Document history:

Version	Date	Comment
1.0	2019-11-14	Initial Release

General Purpose:

The purpose of this SD is to define evaluation methods for the functional behavior of Wireless Local Area Network (WLAN) Access System products.

Acknowledgements:

This SD was developed with support from NIAP Wireless Local Area Network (WLAN) Access System Technical Community members, with representatives from industry, Government agencies, Common Criteria Test Laboratories, and members of academia.

Table of Contents

- 1 Introduction
 - 1.1 Technology Area and Scope of Supporting Document
 - 1.2 Structure of the Document
- 1.3 Terms
 - 1.3.1 Common Criteria Terms
 - 1.3.2 Technical Terms
- 2 Evaluation Activities for SFRs
- 2.1 Network Device Protection Profile
 - 2.1.1 Modified SFRs
 - 2.1.1.1 Security Audit (FAU)
 - 2.1.1.2 Cryptographic Support (FCS)

2.1.1.3 Protection of the TSF (FPT)
2.1.1.4 Trusted Path/Channels (FTP)
2.1.2 TOE SFR Evaluation Activities
2.1.3 Cryptographic Support (FCS)
2.1.4 Identification and Authentication (FIA)
2.1.5 Security Management (FMT)
2.1.6 Protection of the TSF (FPT)
2.1.7 TOE Access (FTA)
8 Evaluation Activities for Optional SFRs
3.1 Cryptographic Support (FCS)
4 Evaluation Activities for Selection-Based SFRs
4.1 Cryptographic Support (FCS)
4.2 Identification and Authentication (FIA)
5 Evaluation Activities for Objective SFRs

1 Introduction

Appendix A - References

Evaluation Activities for SARs Required Supplementary Information

1.1 Technology Area and Scope of Supporting Document

The scope of the Wireless Local Area Network (WLAN) Access System PP-Module is to describe the security functionality of Wireless Local Area Network (WLAN) Access System products in terms of [CC] and to define functional and assurance requirements for them. The PP-Module is intended for use with the Network Device Protection Profile.

This SD is mandatory for evaluations of TOEs that claim conformance to a PP-Configuration that includes the PP-Module for Wireless Local Area Network (WLAN) Access System, Version 1.0. Although Evaluation Activities are defined mainly for the evaluators to follow, in general they also help Developers to prepare for evaluation by identifying specific requirements for their TOE. The specific requirements in Evaluation Activities may in some cases clarify the meaning of Security Functional Requirements (SFR), and may identify particular requirements for the content of Security Targets (ST) (especially the TOE Summary Specification), user guidance documentation, and possibly supplementary information (e.g. for entropy analysis or cryptographic key management architecture).

1.2 Structure of the Document

Evaluation Activities can be defined for both SFRs and Security Assurance Requirements (SAR), which are themselves defined in separate sections of the SD.

If any Evaluation Activity cannot be successfully completed in an evaluation then the overall verdict for the evaluation is a 'fail'. In rare cases there may be acceptable reasons why an Evaluation Activity may be modified or deemed not applicable for a particular TOE, but this must be approved by the Certification Body for the evaluation.

In general, if all Evaluation Activities (for both SFRs and SARs) are successfully completed in an evaluation then it would be expected that the overall verdict for the evaluation is a 'pass'. To reach a 'fail' verdict when the Evaluation Activities have been successfully completed would require a specific justification from the evaluator as to why the Evaluation Activities were not sufficient for that TOE.

Similarly, at the more granular level of Assurance Components, if the Evaluation Activities for an Assurance Component and all of its related SFR Evaluation Activities are successfully completed in an evaluation then it would be expected that the verdict for the Assurance Component is a 'pass'. To reach a 'fail' verdict for the Assurance Component when these Evaluation Activities have been successfully completed would require a specific justification from the evaluator as to why the Evaluation Activities were not sufficient for that TOE.

1.3 Terms

The following sections list Common Criteria and technology terms used in this document. The following sections provide both Common Criteria and technology terms used in this Protection Profile.

1.3.1 Common Criteria Terms

Assurance	Grounds for confidence that a TOE meets the SFRs .
Common Criteria (CC)	Common Criteria for Information Technology Security Evaluation.
Common Evaluation Methodology (CEM)	Common Evaluation Methodology for Information Technology Security Evaluation.
Distributed TOE	A TOE composed of multiple components operating as a logical whole.

Operational Environment	Hardware and software that are outside the TOE boundary that support the TOE functionality and security policy.
Protection Profile (PP)	An implementation-independent set of security requirements for a category of products.
Protection Profile Configuration	A comprehensive set of security requirements for a product type that consists of at least one Base-PP and at least one PP-Module.
Protection Profile Module (PP-Module)	An implementation-independent statement of security needs for a TOE type complementary to one or more Base Protection Profiles.
Security Assurance Requirement (SAR)	A requirement to assure the security of the TOE.
Security Functional Requirement (SFR)	A requirement for security enforcement by the TOE.
Security Target (ST)	A set of implementation-dependent security requirements for a specific product.
TOE Security Functionality (TSF)	The security functionality of the product under evaluation.
TOE Summary Specification (TSS)	A description of how a TOE satisfies the SFRs in a ST.
Target of Evaluation (TOE)	The product under evaluation.

1.3.2 Technical Terms

Access Point (AP)	A device that provides the network interface that enables wireless client hosts to access a wired network.
Service Set Identifier (SSID)	The primary name associated with an 802.11 wireless local area network (WLAN).
Wireless Local Area Network (WLAN)	A wireless computer network that links two or more devices using wireless communication to form a local area network (LAN) within a limited area such as a home, school, computer laboratory, campus, office building etc.

2 Evaluation Activities for SFRs

The EAs presented in this section capture the actions the evaluator performs to address technology specific aspects covering specific SARs (e.g. ASE_TSS.1, ADV_FSP.1, AGD_OPE.1, and ATE_IND.1) – this is in addition to the CEM work units that are performed in 6 Evaluation Activities for SARs.

Regarding design descriptions (designated by the subsections labelled TSS, as well as any required supplementary material that may be treated as proprietary), the evaluator must ensure there is specific information that satisfies the EA. For findings regarding the TSS section, the evaluator's verdicts will be associated with the CEM work unit ASE_TSS.1-1. Evaluator verdicts associated with the supplementary evidence will also be associated with ASE_TSS.1-1, since the requirement to provide such evidence is specified in ASE in the cPP.

For ensuring the guidance documentation provides sufficient information for the administrators/users as it pertains to SFRs, the evaluator's verdicts will be associated with CEM work units ADV_FSP.1-7, AGD_OPE.1-4, and AGD_OPE.1-5.

Finally, the subsection labelled Tests is where the authors have determined that testing of the product in the context of the associated SFR is necessary. While the evaluator is expected to develop tests, there may be instances where it is more practical for the developer to construct tests, or where the developer may have existing tests. Therefore, it is acceptable for the evaluator to witness developer-generated tests in lieu of executing the tests. In this case, the evaluator must ensure the developer's tests are executing both in the manner declared by the developer and as mandated by the EA. The CEM work units that are associated with the EAs specified in this section are: ATE_IND.1-3, ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and ATE_IND.1-7.

2.1 Network Device Protection Profile

The EAs defined in this section are only applicable in cases where the TOE claims conformance to a PP-Configuration that includes the NDc PP.

2.1.1 Modified SFRs

2.1.1.1 Security Audit (FAU)

FAU GEN.1 Audit Data Generation

2.1.1.2 Cryptographic Support (FCS)

FCS_COP.1 Cryptographic Operation (AES Data Encryption/Decryption)

TSS

There are no additional TSS evaluation activities for this component beyond what the NDcPP requires.

Guidance

There are no additional guidance evaluation activities for this component beyond what the NDcPP requires.

Tests

In addition to the tests required by the NDcPP, the evaluator shall perform the following testing:

AES-CCM Tests

The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM for the following input parameter and tag lengths:

128 bit and 256 bit keys

Two payload lengths. One payload length shall be the shortest supported payload length, greater than or equal to zero bytes. The other payload length shall be the longest supported payload length, less than or equal to 32 bytes (256 bits).

Two or three associated data lengths. One associated data length shall be 0, if supported. One associated data length shall be the shortest supported payload length, greater than or equal to zero bytes. One associated data length shall be the longest supported payload length, less than or equal to 32 bytes (256 bits). If the implementation supports an associated data length of 216 bytes, an associated data length of 216 bytes shall be tested.

Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall be tested.

Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be tested.

Due to the restrictions that IEEE 802.11 specifies for this mode (nonce length of 13 and tag length of 8), it is acceptable to test a subset of the supported lengths as long as the selections fall into the ranges specified above. In this case, the evaluator shall ensure that these are the only supported lengths. To test the generation-encryption functionality of AES-CCM, the evaluator shall perform the following four tests:

- **Test 1:** For EACH supported key and associated data length and ANY supported payload, nonce and tag length, the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and obtain the resulting ciphertext.
- Test 2: For EACH supported key and payload length and ANY supported associated data, nonce and tag length, the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and obtain the resulting ciphertext.
- Test 3: For EACH supported key and nonce length and ANY supported associated data, payload and tag length, the evaluator shall supply one key value and 10 associated data, payload and nonce value 3-tuples and obtain the resulting ciphertext.
- Test 4: For EACH supported key and tag length and ANY supported associated data, payload and nonce length, the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and obtain the resulting ciphertext

To determine correctness in each of the above tests, the evaluator shall compare the ciphertext with the result of generation-encryption of the same inputs with a known good implementation.

To test the decryption-verification functionality of AES-CCM, for EACH combination of supported associated data length, payload length, nonce length and tag length, the evaluator shall supply a key value and 15 nonce, associated data and ciphertext 3-tuples and obtain either a FAIL result or a PASS result with the decrypted payload. The evaluator shall supply 10 tuples that should FAIL and 5 that should PASS per set of 15.

Additionally, the evaluator shall use tests from the IEEE 802.11-02/362r6 document "Proposed Test vectors for IEEE 802.11 TGi", dated September 10, 2002, Section 2.1 AES-CCMP Encapsulation Example and Section 2.2 Additional AES-CCMP Test Vectors to further verify the IEEE 802.11-2012 implementation of AES-CCMP.

2.1.1.3 Protection of the TSF (FPT)

FPT_TST_EXT.1 TSF Testing

TSS

The evaluator shall examine the TSS to ensure that it describes how to verify the integrity of stored TSF executable code

when it is loaded for execution, which includes the generation and protection of the "check value" used to ensure integrity as well as the verification step. This description shall also cover the digital signature service used in performing these functions. The evaluator also checks the operational guidance to ensure that any actions required by the administrator to initialize or operate this functionality are present.

The evaluator shall also ensure that the TSS or operational guidance describes the actions that take place for successful and unsuccessful exection of the integrity test.

Guidance

The evaluator shall ensure that the TSS or operational guidance describes the actions that take place for successful and unsuccessful exection of the integrity test.

Tests

The evaluator shall perform the following tests:

- **Test 1:** Following the operational guidance, the evaluator shall initialize the integrity protection system. The evaluator shall perform actions to cause TSF software to load and observe that the integrity mechanism does not flag any executables as containing integrity errors.
- Test 2: The evaluator shall modify the TSF executable, and cause that executable to be loaded by the TSF. The evaluator shall observe that an integrity violation is triggered (care must be taken so that the integrity violation is determined to be the cause of the failure to load the module, and not the fact that the module was modified so that it was rendered unable to run because its format was corrupt).

2.1.1.4 Trusted Path/Channels (FTP)

FTP ITC.1 Inter-TSF Trusted Channel

TSS

The evaluator shall examine the TSS to determine that, for all communications with authorized IT entities identified in the requirement, each communications mechanism is identified in terms of the allowed protocols for that IT entity. The evaluator shall also confirm that all protocols listed in the TSS are specified and included in the requirements in the ST.

Guidance

The evaluator shall confirm that the guidance documentation contains instructions for establishing the allowed protocols with each authorized IT entity, and that it contains recovery instructions should a connection be unintentionally broken.

Tests

The evaluator shall perform the following tests:

- **Test 1:** The evaluator shall ensure that communications using each protocol with each authorized IT entity is tested during the course of the evaluation, setting up the connections as described in the guidance documentation and ensuring that communication is successful.
- Test 2: For each protocol that the TOE can initiate as defined in the requirement, the evaluator shall follow the guidance documentation to ensure that in fact the communication channel can be initiated from the TOE.
- Test 3: The evaluator shall ensure, for each communication channel with an authorized IT entity, the channel data is not sent in plaintext.
- Test 4: The evaluator shall, for each protocol associated with each authorized IT entity tested during test 1, physically
 interrupt an established connection. The evaluator shall ensure that when physical connectivity is restored,
 communications are appropriately protected.
- Test 5: The evaluator shall first configure the access system to use only WPA2 (AES, with no fallback to TKIP), then ensure that a WPA2 (AES) connection can be made between the access system and a client device. Finally, the evaluator shall attempt to connect a client device that does not support AES to the access system and ensure that the access system rejects the connection (does not fall back to TKIP).

2.1.2 TOE SFR Evaluation Activities

2.1.3 Cryptographic Support (FCS)

FCS_CKM.1 Cryptographic Key Generation (Symmetric Keys for WPA2 Connections)

TSS

The cryptographic primitives will be verified through evaluation activities specified elsewhere in this PP-Module. The evaluator shall verify that the TSS describes how the primitives defined and implemented by this PP-Module are used by the TOE in establishing and maintaining secure connectivity to the wireless clients. This description shall include how the GTK and PTK are generated or derived. The TSS shall also provide a description of the developer's method(s) of assuring that their implementation conforms to the cryptographic standards; this includes not only testing done by the developing organization, but also proof of third-party testing that is performed (e.g. WPA2 certification). The evaluator shall ensure that the description of the testing methodology is of sufficient detail to determine the extent to which the details of the protocol specifics are tested.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following test using a packet sniffing tool to collect frames between the TOE and a wireless client:

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN sniffer to sniff only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should also be configured to filter on the MAC address of the TOE and/or client.

Step 2: The evaluator shall configure the TOE to communicate with a WLAN client using IEEE 802.11- 2012 and a 256-bit (64 hex values 0-f) pre-shared key, setting up the connections as described in the operational guidance. The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and WLAN client, and allow the TOE to authenticate, associate and successfully complete the 4-way handshake with the client.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect the client from the TOE and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark captures) and derive the PTK from the 4-way handshake frames and pre-shared key as specified in IEEE 802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between the client and TOE after the 4-way handshake successfully completed, and without the frame control value 0x4208 (the first 2 bytes are 08 42). The evaluator shall use the PTK to decrypt the data portion of the packet as specified in IEEE 802.11-2012, and shall verify that the decrypted data contains ASCII-readable text.

Step 7: The evaluator shall repeat Step 6 for the next 2 data frames between the TOE and client, and without frame control value 0x4208.

Additionally, the evaluator shall test the PRF function using the test vectors from:

- Section 2.4 "The PRF Function PRF(key, prefix, data, length)" of the IEEE 802.11-02/362r6 document "Proposed Test vectors for IEEE 802.11 TGi" dated September 10, 2002, and
- Annex M.3 "PRF reference implementation and test vectors" of IEEE 802.11-2012.

FCS_CKM.2 Cryptographic Key Distribution (GTK)

TSS

The evaluator shall check the TSS to ensure that it describes how the GTK is wrapped prior to being distributed using the AES implementation specified in this PP-Module, and also how the GTKs are distributed when multiple clients connect to the TOE.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following test using a packet sniffing tool to collect frames between a wireless client and the TOE (which may be performed in conjunction with the evaluation activity for FCS_CKM.1/PMK.

To fully test the broadcast/multicast functionality, these steps shall be performed as the evaluator connects multiple clients to the TOE. The evaluator shall ensure that GTKs established are sent to the appropriate participating clients.

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN sniffer to sniff only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should also be configured to filter on the MAC address of the TOE and/or client.

Step 2: The evaluator shall configure the TOE to communicate with the client using IEEE 802.11-2012 and a 256-bit (64 hex values 0-f) pre-shared key, setting up the connections as described in the operational guidance. The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and client, and allow the client to authenticate, associate and successfully complete the 4-way handshake with the TOE.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect the TOE from the client and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark captures) and derive the PTK and GTK from the 4-way handshake frames and pre- shared key as specified in IEEE 802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between the TOE and client after the 4-way handshake successfully completed, and with the frame control value 0x4208 (the first 2 bytes are 08 42). The evaluator shall use the GTK to decrypt the data portion of the selected packet as specified in IEEE 802.11-2012, and shall verify that the decrypted data contains ASCII-readable text.

Step 7: The evaluator shall repeat Step 6 for the next 2 data frames with frame control value 0x4208.

The evaluator shall also perform the following testing based on the supported GTK distribution method(s):

AES Key Wrap (AES-KW Tests)

• **Test 1:** The evaluator shall test the authenticated encryption functionality of AES-KW for EACH combination of the following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)

Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128 bits). One of the plaintext lengths shall be three semi-blocks (192 bits). The third data unit length shall be the longest supported plaintext length less than or equal to 64 semi-blocks (4096 bits).

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KW authenticated encryption. To determine correctness, the evaluator shall use the AES-KW authenticated-encryption function of a known good implementation.

• **Test 2:** The evaluator shall test the authenticated-decryption functionality of AES-KW using the same test as for authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW authenticated-encryption with AES-KW authenticated-decryption. Additionally, the evaluator shall modify one byte of the ciphertext, attempt to decrypt the modified ciphertext, and ensure that a failure is returned rather than plaintext.

AES Key Wrap with Padding (AES-KWP Tests)

• **Test 1:** The evaluator shall test the authenticated-encryption functionality of AES-KWP for EACH combination of the following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)

Three plaintext lengths. One plaintext length shall be one octet. One plaintext length shall be 20 octets (160 bits). One plaintext length shall be the longest supported plaintext length less than or equal to 512 octets (4096 bits).

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KWP authenticated encryption. To determine correctness, the evaluator shall use the AES-KWP authenticated-encryption function of a known good implementation.

• Test 2: The evaluator shall test the authenticated-decryption functionality of AES-KWP using the same test as for AES-KWP authenticated-encryption, replacing plaintext values with ciphertext values and AES-KWP authenticated-encryption with AES-KWP authenticated-decryption. Additionally, the evaluator shall modify one byte of the ciphertext, attempt to decrypt the modified ciphertext, and ensure that a failure is returned rather than plaintext.

FCS_CKM.2 Cryptographic Key Distribution (PMK)

TSS

The evaluator shall examine the TSS to determine that it describes how the PMK is transferred (that is, through what EAP attribute) to the TOE.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall establish a session between the TOE and a RADIUS server according to the configuration guidance provided. The evaluator shall then examine the traffic that passes between the RADIUS server and the TOE during a successful attempt to connect a wireless client to the TOE to determine that the PMK is not exposed.

2.1.4 Identification and Authentication (FIA)

FIA_8021X_EXT.1 802.1X Port Access Entity (Authenticator) Authentication

TSS

In order to show that the TSF implements the 802.1X-2010 standard correctly, the evaluator shall ensure that the TSS contains the following information:

- The sections (clauses) of the standard that the TOE implements;
- For each identified section, any options selected in the implementation allowed by the standards are specified; and
- For each identified section, any non-conformance is identified and described, including a justification for the non-conformance.

Because the connection to the RADIUS server will be contained in an IPsec or RadSec (TLS) tunnel, the security mechanisms detailed in the RFCs identified in the requirement are not relied on to provide protection for these communications. Consequently, no extensive analysis of the RFCs is required. However, the evaluator shall ensure that the TSS describes the measures (documentation, testing) that are taken by the product developer to ensure that the TOE conforms to the RFCs listed in this requirement.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following tests:

- Test 1: The evaluator shall demonstrate that a wireless client has no access to the test network. After successfully authenticating with a RADIUS server through the TOE, the evaluator shall demonstrate that the wireless client does have access to the test network.
- **Test 2:** The evaluator shall demonstrate that a wireless client has no access to the test network. The evaluator shall attempt to authenticate using an invalid client certificate, such that the EAP-TLS negotiation fails. This should result in the wireless client still being unable to access the test network.
- **Test 3:** The evaluator shall demonstrate that a wireless client has no access to the test network. The evaluator shall attempt to authenticate using an invalid RADIUS certificate, such that the EAP-TLS negotiation fails. This should result in the wireless client still being unable to access the test network.

Note: Tests 2 and 3 above are not tests that "EAP-TLS works", although that's a by-product of the test. The test is actually that a failed authentication (under two failure modes) results in denial of access to the network, which demonstrates the enforcement of FIA 8021X EXT.1.3.

FIA_UAU.6 Re-Authenticating

TSS

There are no TSS evaluation activities for this component.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall attempt to change their password as directed by the operational guidance. While making this attempt, the evaluator shall verify that re-authentication is required.

If other re-authentication conditions are specified, the evaluator shall cause those conditions to occur and verify that the TSF re-authenticates the authenticated user.

2.1.5 Security Management (FMT)

FMT SMR EXT.1 No Administration from Client

TSS

There are no TSS evaluation activities for this component.

Guidance

The evaluator shall review the operational guidance to ensure that it contains instructions for administering the TOE both locally and remotely, including any configuration that needs to be performed on the client for remote administration. The evaluator shall confirm that the TOE does not permit remote administration from a wireless client by default.

Tests

The evaluator shall demonstrate that after configuring the TOE for first use from the operational guidance, it is possible to establish an administrative session with the TOE on the "wired" portion of the device. They shall then demonstrate that an identically configured wireless client that can successfully connect to the TOE cannot be used to perform administration.

2.1.6 Protection of the TSF (FPT)

FPT FLS.1 Failure with Preservation of Secure State

TSS

The evaluator shall examine the TSS to determine that the TOE's implementation of the fail secure functionality is documented. The evaluator shall examine the TSS to ensure that it describes all failure conditions and how a secure state is preserved if any of these failures occur. The evaluator shall ensure that the definition of a secure state is suitable to ensure the continued protection of any key material and user data.

Guidance

The evaluator shall examine the operational guidance to verify that it describes applicable recovery instructions for each TSF failure state.

Tests

For each failure mode specified in the ST, the evaluator shall ensure that the TOE attains a secure state (e.g., shutdown) after initiating each failure mode type.

2.1.7 TOE Access (FTA)

FTA_TSE.1 TOE Session Establishment

TSS

The evaluator shall examine the TSS to determine that all of the attributes on which a client session can be denied are specifically defined.

Guidance

The evaluator shall examine the operational guidance to determine that it contains guidance for configuring each of the attributes identified in the TSS.

Tests

For each supported attribute, the evaluator shall perform the following test:

• Test 1: The evaluator successfully establishes a client session with a wireless client. The evaluator then follows the operational guidance to configure the system so that that client's access is denied based on a specific value of the attribute. The evaluator shall then attempt to establish a session in contravention to the attribute setting (for instance, the client is denied WLAN access based upon the TOE interface (e.g. WLAN access point) it is connecting to or the client is denied access based upon the time-of-day or day-of-week it is attempting connection on). The evaluator shall observe that the access attempt fails.

3 Evaluation Activities for Optional SFRs

3.1 Cryptographic Support (FCS)

FCS_CKM.2 Cryptographic Key Distribution (802.11 keys)

TSS

The evaluator shall examine the TSS to determine that it describes which keys are distributed outside the TOE, where they are sent, and the purpose for this transfer.

Guidance

If this function is dependent on TOE configuration, the evaluator shall confirm that the operational guidance contains instructions for how to configure that the keys are adequately protected.

Tests

This requirement will be tested in conjunction with the tests for the cryptographic primitives, the secure protocols, and FPT_ITT.1.

4 Evaluation Activities for Selection-Based SFRs

4.1 Cryptographic Support (FCS)

FCS RADSEC EXT.1 RadSec

TSS

The evaluator shall verify that the TSS description includes the use of RADIUS over TLS, as described in RFC 6614.

If X.509v3 certificates is selected, the evaluator shall ensure that the TSS description includes the use of client-side certificates for TLS mutual authentication.

Guidance

The evaluator shall verify that any configuration necessary to meet the requirement must be contained in the guidance.

Tests

The evaluator shall demonstrate the ability to successfully establish a RADIUS over TLS connection with a RADIUS server. This test shall be performed with X.509v3 certificates if selected and performed with pre-shared keys if selected.

FCS_RADSEC_EXT.2 RadSec using Pre-Shared Keys

TSS

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure that the cipher suites supported are specified. The evaluator shall check the TSS to ensure that the cipher suites specified are identical to those listed for this component. The evaluator shall also verify that the TSS contains a description of the denial of old SSL and TLS versions.

The evaluator shall examine the TSS to ensure it describes the process by which the bit-based pre-shared keys are generated (if the TOE supports this functionality), and confirm that this process uses the RBG specified in FCS_RBG_EXT.1.

The evaluator shall ensure that the TSS describes the client's method of establishing all reference identifiers from the administrator/application-configured reference identifier, including which types of reference identifiers are supported (e.g.,

Common Name, DNS Name, URI Name, Service Name, or other application-specific Subject Alternative Names) and whether IP addresses and wildcards are supported. The evaluator shall ensure that this description identifies whether and the manner in which certificate pinning is supported or used by the TOE.

Guidance

The evaluator shall verify that any configuration necessary to meet the requirement must be contained in the guidance.

The evaluator shall also check the guidance documentation to ensure that it contains instructions on configuring the TOE so that RADIUS over TLS conforms to the description in the TSS (for instance, the set of cipher suites advertised by the TOE may have to be restricted to meet the requirements).

The evaluator shall confirm the operational guidance contains instructions for either entering bit-based pre-shared keys, or generating a bit-based pre-shared key (or both).

The evaluator shall verify that the operational guidance includes instructions for setting the reference identifier to be used for the purposes of certificate validation in TLS.

Tests

The evaluator shall perform the following tests:

- **Test 1:** The evaluator shall establish a RADIUS over TLS connection using each of the cipher suites selected in FCS_RADSEC_EXT.2.1. It is sufficient to observe the successful negotiation of a cipher suite to satisfy the intent of the test; it is not necessary to examine the characteristics of the encrypted traffic in an attempt to discern the cipher suite being used (for example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).
- Test 2: The evaluator shall set the pre-shared key to a value that does not match the server's pre-shared key and demonstrate that the TOE cannot successfully complete a protocol negotiation using this key.
- Test 3: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL cipher suite and verify that the client denies the connection.
- **Test 4:** The evaluator shall perform the following modifications to the traffic:
 - Change the TLS version selected by the server in the Server Hello to a non-supported TLS version (for example 1.3 represented by the two bytes 03 04) and verify that the client rejects the connection.
 - Modify at least one byte in the server's nonce in the Server Hello handshake message, and verify that the client rejects the Server Key Exchange handshake message (if using a DHE cipher suite) or that the server denies the client's Finished handshake message.
 - Modify the server's selected cipher suite in the Server Hello handshake message to be a cipher suite not presented in the Client Hello handshake message. The evaluator shall verify that the client rejects the connection after receiving the Server Hello.
 - Modify a byte in the Server Finished handshake message, and verify that the client rejects the connection and does not send any application data.
 - Send a garbled message from the server after the server has issued the ChangeCipherSpec message and verify that the client denies the connection.
- Test 5: [conditional] If any of the TLS RSA PSK cipher suites are selected:
 - The evaluator shall attempt to establish the connection using a server with a server certificate that contains the Server Authentication purpose in the extendedKeyUsage field and verify that a connection is established. The evaluator will then verify that the client rejects an otherwise valid server certificate that lacks the Server Authentication purpose in the extendedKeyUsage field and a connection is not established. Ideally, the two certificates should be identical except for the extendedKeyUsage field.
 - The evaluator shall present a server certificate that does not contain an identifier in either the Subject Alternative Name (SAN) or Common Name (CN) that matches the reference identifier. The evaluator shall verify that the connection fails.
 - The evaluator shall present a server certificate that contains a CN that matches the reference identifier, contains the SAN extension, but does not contain an identifier in the SAN that matches the reference identifier. The evaluator shall verify that the connection fails. The evaluator shall repeat this test for each supported SAN type.
 - The evaluator shall present a server certificate that contains a CN that does not match the reference identifier but does contain an identifier in the SAN that matches. The evaluator shall verify that the connection succeeds.
 - If the TOE does not mandate the presence of the SAN extension, the evaluator shall present a server certificate
 that contains a CN that matches the reference identifier and does not contain the SAN extension. The evaluator
 shall verify that the connection succeeds. If the TOE does mandate the presence of the SAN extension, this Test
 shall be omitted.
 - If wildcards are supported by the TOE, the evaluator shall perform the following tests:
 - The evaluator shall present a server certificate containing a wildcard that is not in the left-most label of the presented identifier (e.g. foo.*.example.com) and verify that the connection fails.
 - The evaluator shall present a server certificate containing a wildcard in the left-most label but not preceding the public suffix (e.g. *.example.com). The evaluator shall configure the reference identifier with a single left-most label (e.g. foo.example.com). The evaluator shall verify that the connection succeeds. The evaluator shall configure the reference identifier without a left-most label as in the certificate (e.g. example.com) and verify that the connection fails. The evaluator shall configure the reference identifier with two left-most labels (e.g. bar.foo.example.com) and verify that the connection fails.
 - The evaluator shall present a server certificate containing a wildcard in the left-most label immediately preceding the public suffix (e.g. *.com). The evaluator shall configure the reference identifier with a single left-most label (e.g. foo.com) and verify that the connection fails. The evaluator shall configure the reference identifier with two left-most labels (e.g. bar.foo.com) and verify that the connection fails.
 - If wildcards are not supported by the TOE, the evaluator shall present a server certificate containing a wildcard and

- verify that the connection fails.
- [conditional] If URI or Service name reference identifiers are supported, the evaluator shall configure the DNS
 name and the service identifier. The evaluator shall present a server certificate containing the correct DNS name
 and service identifier in the URIName or SRVName fields of the SAN and verify that the connection succeeds. The
 evaluator shall repeat this test with the wrong service identifier (but correct DNS name) and verify that the
 connection fails.
- **Test 6:** [conditional] If the TOE does not generate bit-based pre-shared keys, the evaluator shall obtain a bit-based pre-shared key of the appropriate length and enter it according to the instructions in the operational guidance. The evaluator shall then demonstrate that a successful protocol negotiation can be performed with the key.
- Test 7: [conditional] If the TOE does generate bit-based pre-shared keys, the evaluator shall generate a bit-based pre-shared key of the appropriate length and use it according to the instructions in the operational guidance. The evaluator shall then demonstrate that a successful protocol negotiation can be performed with the key.

4.2 Identification and Authentication (FIA)

FIA_PSK_EXT.1 Pre-Shared Key Composition

TSS

The evaluator shall examine the TSS to ensure that it identifies all protocols that allow both text-based and bit-based preshared keys, and states that text-based pre-shared keys of 22 characters are supported. For each protocol identified by the requirement, the evaluator shall confirm that the TSS states the conditioning that takes place to transform the text-based preshared key from the key sequence entered by the user (e.g., ASCII representation) to the bit string used by the protocol, and that this conditioning is consistent with the last selection in the FIA_PSK_EXT.1.3 requirement.

The evaluator shall also examine the TSS to ensure it describes the process by which the bit-based preshared keys are generated (if the TOE supports this functionality), and confirm that this process uses the RBG specified in FCS RBG EXT.1.

Guidance

The evaluator shall examine the operational guidance to determine that it provides guidance to administrators on the composition of strong text-based pre-shared keys, and (if the selection indicates keys of various lengths can be entered) that it provides information on the range of lengths supported. The guidance must specify the allowable characters for pre-shared keys, and that list must be a superset of the list contained in FIA PSK EXT.1.2.

The evaluator shall confirm the operational guidance contains instructions for either entering bit-based pre-shared keys for each protocol identified in the requirement, or generating a bit-based pre-shared key (or both).

Tests

The evaluator shall also perform the following tests for each protocol (or instantiation of a protocol, if performed by a different implementation on the TOE). Note that one or more of these tests can be performed with a single test case.

- **Test 1:** The evaluator shall compose a pre-shared key of 22 characters that contains a combination of the allowed characters in accordance with the operational guidance, and demonstrates that a successful protocol negotiation can be performed with the key.
- Test 2: [conditional]: If the TOE supports pre-shared keys of multiple lengths, the evaluator shall repeat Test 1 using the minimum length; the maximum length; a length inside the allowable range; and invalid lengths beyond the supported range (both higher and lower). The minimum, maximum, and included length tests should be successful, and the invalid lengths must be rejected by the TOE.
- Test 3: [conditional]: If the TOE does not generate bit-based pre-shared keys, the evaluator shall obtain a bit-based pre-shared key of the appropriate length and enter it according to the instructions in the operational guidance. The evaluator shall then demonstrate that a successful protocol negotiation can be performed with the key.
- **Test 4:** [conditional]: If the TOE does generate bit-based pre-shared keys, the evaluator shall generate a bit-based pre-shared key of the appropriate length and use it according to the instructions in the operational guidance. The evaluator shall then demonstrate that a successful protocol negotiation can be performed with the key.

5 Evaluation Activities for Objective SFRs

The PP-Module does not define any objective requirements.

6 Evaluation Activities for SARs

The PP-Module does not define any SARs beyond those defined within the NDc PP base to which it must claim conformance. It is important to note that a TOE that is evaluated against the PP-Module is inherently evaluated against this Base-PP as well. The NDc PP includes a number of Evaluation Activities associated with both SFRs and SARs. Additionally, the PP-Module includes a number of SFR-based Evaluation Activities that similarly refine the SARs of the Base-PPs. The evaluation laboratory will evaluate the TOE against the Base-PP and supplement that evaluation with the necessary SFRs that are taken from the PP-Module.

7 Required Supplementary Information

This Supporting Document has no required supplementary information beyond the ST, operational guidance, and testing.

Appendix A - References

Identifier Title

Common Criteria for Information Technology Security Evaluation
Part 1: Introduction and General Model, CCMB-2017-04-001, Version 3.1 Revision 5, April 2017.
Part 2: Security Functional Components, CCMB-2017-04-002, Version 3.1 Revision 5, April 2017.
Part 3: Security Assurance Components, CCMB-2017-04-003, Version 3.1 Revision 5, April 2017.

[NDc PP] collaborative Protection Profile for Network Devices, Version 2.1, March 2019

Supporting Desurgest Mandatary Technical Desurgest, DD Madula for Wireless Level Area Naturals (MI AN)

[SD] Supporting Document Mandatory Technical Document, PP-Module for Wireless Local Area Network (WLAN) Access System, Version 1.0, November 2019