EE 2-04 Communication Systems

EXAM SOLUTIONS

1. a) i) [3]

Modulation is the modification of the source signals at the transmitter into a form that is suitable to be transmitted over the channel.

We have studied analog and digital modulation schemes. Analog modulation maps a continuous signal to a parameter of the carrier waveform continuously; whereas in digital communication, we first discretize the message signal, and map the corresponding values to discrete values of a paramater of the carrier waveform.

We use signal-to-noise ratio (SNR) to measure the performance of analog modulation, and error probability for digital communications.

The complex envelope of x(t) is given by $\tilde{x}(t) = x_I(t) + jx_Q(t)$, and we have

$$x(t) = \operatorname{Re}\{\tilde{x}(t)e^{j2\pi f_c t}\}.$$

iii) [4]

Bandpass filter at the front end removes the out-of-band noise. We then multiply the filtered received signal with $2\cos(2\pi f_c t)$ to obtain a baseband signal corresponding to the in-phase component. Low-pass filter removes the high frequency components that are located around $\pm 4f_c$.

SSB uses half the bandwidth of DSB-SC while achieving the same SNR performance.

iii) False.
$$S_X(f) = S_X(-f), \forall f$$
.

iv) False.
$$R_X(0) = \int_{-\infty}^{+\infty} S_X(f) df$$
. [1]

v) True. E[Y(t)] = H(0)E[X(t)] = 0, where $H(\cdot)$ is the Fourier transform corresponding to Hilbert transform, which is given by $-j \operatorname{sgn}(f)$. [2]

We have $Y \sim \mathcal{N}(-4,4)$. We can write

$$Pr(Y > 3) = Pr((Y + 4)/2 > 3.5) = Pr(\bar{Y} > 3.5),$$

where \bar{Y} is a standard normal distribution. Then we have Pr(Y > 3) = Q(3.5).

We have $Y \sim \mathcal{N}(0,4)$. We can write

$$Pr(3 \le Y \le 10) = Pr(1.5 \le Y/2 \le 5) = Pr(1.5 \le \overline{Y} \le 5),$$

where \bar{Y} is a standard normal distribution. We have $Pr(3 \le Y \le 10) = Q(1.5) - Q(5)$.

We have $Y \sim \mathcal{N}(1.25)$. We can write

$$Pr(Y \le 4) = Pr((Y - 1)/5 \le 4) = Pr(\bar{Y} \le 0.6),$$

where \bar{Y} is a standard normal distribution. Then we have $\Pr(Y \le 4) = \Pr(\bar{Y} \ge -0.6) = Q(-0.6)$.

d) i)
$$P_S = A^2 + \frac{B^2}{2}$$
. [2]

ii) [2] Quantization noise is assumed to have a uniform distribution with pdf
$$f_Q(q) = \frac{1}{\Delta}$$
 for $-\frac{\Delta}{2} < f \le \frac{\Delta}{2}$, where Δ is the length of the quantization interval. It follows that the quantization noise variance is given by $P_N = \Delta^2/12$.

The signal range is [A - B, A + B]. Hence, we have

$$\Delta = \frac{2B}{2^n} = \frac{B}{2^{n+1}}.$$

iii)
$$SNR = \frac{P_S}{P_N}$$

$$= \frac{A^2 + \frac{B^2}{2}}{\frac{B^2}{12 \cdot 2^{2n-2}}}$$

$$= 3\left(\frac{A^2}{B^2} + \frac{1}{2}\right) 2^{2n}.$$

Then

$$SNR_{dB} = 6.02n + 4.77 + 10 \cdot \log_{10} \left(\frac{A^2}{B^2} + \frac{1}{2} \right).$$

We need $n \ge 15$ to have $SNR \ge 100 dB$.

We obtain the following codewords for each symbol pair

Symbol	Probability	Codeword	
cz	7/32	10	
dz	6/32	11	
dy	5/32	001	
dx	4/32	010	
bt	4/32	011	
by	3/32	0000	
cx	2/32	00010	
ax	1/32	00011	

The average codeword length is 92/32 = 2.875.

ii) [5] If we consider each source separately, we obtain the following codes:

	Source S ₁	
Symbol	Probability	Codeword
d	15/32	1
С	9/32	00
b	7/32	010
a	1/32	011

The average codeword length per source symbol for source S_1 is 57/32 = 1.7813 bits.

		Source S ₂	
Sym	bol	Probability	Codeword
Z		13/32	1
у		8/32	01
х		7/32	000
t		4/32	001

The average codeword length per source symbol for source S_2 is 62/32 = 1.9375 bits.

We find the average code length for the proposed code by averaging the sum code length for each symbol pair. We have

$$\sum_{s_1 \in \mathcal{S}_1, s_2 \in \mathcal{S}_2} p(s_1, s_2) (\operatorname{length}(s_1) + \operatorname{length}(s_2)),$$

where length(s_i) is the length of the corresponding codeword for each symbol obtained from the two separate codes. We find the average length per symbol pair as 135/32 = 4.2188.

Joint encoding achieves a lower average code length. The answer would still be the same if the sources were independent; this is the idea behind Shannon's source coding theorem.

iv) [5] $H(S_1, S_2) = 2.8273$. This is smaller than the average length of both codes. The average code length reduces as we code over more and more source symbol pairs.

No, entropy is a lower bound on the minimum average code length for any prefix code.

b) For a real WSS process, we have

$$E\left[\left(X(t+\tau) - X(t)\right)^{2}\right] = E[X^{2}(t+\tau) - 2X(t+\tau)X(t) + X^{2}(t)]$$

$$= 2R_{X}(0) - 2R_{X}(\tau)$$

$$= 2[R_{X}(0) - R_{X}(\tau)].$$

i) [4]

For $\tau = 3$, we have

$$2[R_X(0) - R_X(\tau)] = 2[A - Ae^{-3\alpha} + 1].$$

ii) [3]

For $\tau = -3$, we get the same result as above since $R_X(\tau)$ is an even function.

$$E\left[\left(X(t+\tau) + X(t) - X(t-\tau)\right)^{2}\right] = E[X^{2}(t+\tau) + X^{2}(t) + X^{2}(t-\tau) + 2X(t+\tau)X(t) - 2X(t+\tau)X(t-\tau) - 2X(t)X(t-\tau)]$$

$$= 3R_{X}(0) - 2R_{X}(2\tau)$$

$$= 3A - 2(Ae^{-6\alpha} - 2)$$

We have $\hat{M}(f) = -j \cdot sgn(f) \cdot M(f)$

[6]

ii)

[8]

The students may remember from class that the USB-LSB transmits only the lower halves of the spectrum of the signal, centered around carrier frequency f_c .

They should also be able to derive this directly from the basic principles as follows:

$$S(f) = \frac{1}{2} \left[M(f - f_c) + M(f + f_c) \right] + \frac{1}{2j} \left[\hat{M}(f - f_c) - \hat{M}(f + f_c) \right]$$

By simply shifting the spectrum of M(f) and $\hat{M}(f)$ and applying the appropriate sign and conjugate adjustments they get the spectrum as below.

iii)

[2]

We need a filter with bandwidth B, which passes only frequencies between $[-f_c, -f_c + B]$ and $[f_c - B, f_c]$.

iv) [4]

Multiplication with $\cos(2\pi f_c t + 3\pi/2) = \sin(2\pi f_c t)$ will decode the quadrature component of the modulated signal. Therefore, after low pass filtering, we will obtain $\hat{m}(t)$.

Since Hilbert transform is one to one, we can recover the message signal, by taking the Hilbert transform of $\hat{m}(t)$, we get -m(t).

b) i) [2]

Let X denote the input bit, and Y denote the decoded bit.

$$P(X=0|Y=1) = \frac{P(X=0,Y=1)}{P(Y=1)} = \frac{0.5(1-p_0)}{0.5(1-p_0-p_1)} = \frac{1-p_0}{1-p_0-p_1}.$$

ii) [3]

Probability of error is minimized by mapping the more likely outcome to the more reliable bit. We transmit a 0 for tails, and a 1 for heads. The probability of error is then given by $0.7(1-p_0)+0.3(1-p_1)=1-0.7p_0-0.3p_1$.

iii) [5]

We transmit 000 for tails, and 111 for heads. For an error, at least two bits should be flipped. Probability of error if 0 is transmitted is given by

$$Pe_0 = 3(1-p_0)^2p_0 + (1-p_0)^3$$

Probability of error if 1 is transmitted is given by

$$Pe_1 = 3(1-p_1)^2p_1 + (1-p_1)^3$$

Note that $Pe_1 > Pe_0$. Probability of error is then given by $0.7Pe_0 + 0.3Pe_1$.