Quantum Walk

B2 AQUA

cocori

Faculty:Rodney D. Van Meter, Takahiko Satoh

Background

- We(parton, rum, me) are adopted for the mitou target project of gate quantum computer.
- We think quantum walk can be a solution of our suggestion.
- I want to expand it to use for larger problem.

Overview (What is quantum walk?)

Mathematica Simulator

Language	Python(3.6.5)
Module	Qiskit(0.6.1), matplotlib
Device	ibmq_20_tokyo ibmqx_hpc_qasm_simulator

I referred to [1] and implemented the quantum walk on the lattice of circle.

[Radhakrishnan Balu, Daniel Castillo, George Siopsis(2017) arXiv:1710.03615 [quant-ph]]

Expand from 1 step to any steps.

Step operators S^{\pm}

Coin operators $(\mathcal{T}_1, \mathcal{T}_2)$

Quantum Fourier Transformation

```
def _QFT_dg(self, circuit):
    q = self.q
    qc = circuit
    for n in range(1, self.qubits):
        # print(n)
        qc.h(q[n])
        for t in range(1, self.qubits-n):
            try:
                qc.cu1(pi/(2**(t)), q[n], q[n+t])
                continue
def OFT(self circuit)
    qc: QuantumCircuit
    ac = circuit
    for m in range(self.qubits-1, 0, -1):
        for u in range(self.qubits, 0, -1):
            try:
                qc.cu1(-pi/(2**(u)), q[m+u], q[m])
        ac.h(a[m])
```

Total walk

```
def walk(self, step):
    c = self.c
    q = self.q
    qc = self.qc
   qc.x(q[self.qubits-1])
    for i in range(step):
        self._coin_1(-1/8, -1/8, qc)
       self. QFT dq(qc)
       self._S_plus(qc)
       self._QFT(qc)
    for j in range(step):
       self._coin_2(-1/8-pi/2, 1/8+pi/2, qc)
       self._QFT_dg(qc)
       self._S_minus(qc)
       self._QFT(qc)
   for i in range(self.qubits):
       qc.barrier(q[i])
   mg = [j for j in range(self.gubits-1, 0, -1)]
   mc = [k for k in range(self.qubits-1)]
   for j, k in zip(mq, mc):
       qc.measure(q[j], c[k])
```


Error consideration

$Success \, rate \approx 0.95^n$

n...the number of two qubit gate.

3qubits 1step	$0.95^{20} = 0.35$
4qubits 1step	$0.95^{32} = 0.19$
5qubits 1step	$0.95^{52} = 0.069$

Conclusion

- I could check the expansion of probability distribution in hpc simulator.
- In the NISQ device, it does not work well.
- If we want to apply some real problems, we have to use error correction or divide the problems that we can simulate.

Future Work

Apply the quantum walk to graph kernels.

There is the way of using classical random walk.(Smola A.J., Kondor R. (2003))

→Can I apply the quantum walk to graph kernel?

A nearest neighbor graph.

Reference

[1]Radhakrishnan Balu, Daniel Castillo, George Siopsis(2017) Physical realization of topological quantum walks on IBM-Q and beyond arXiv:1710.03615 [quant-ph]

[2]Matthew Falk(2013). Quantum Search on the Spatial Grid arXiv:1303.4127 [quant-ph]

[3]今野 紀雄(2014). 量子ウォーク 森北出版

[4]Yaakov S. Weinstein(2014). Quantum error correction during 50 gates Phys. Rev. A 89, 020301(R)

[5]Takuya Kitagawa, Mark S. Rudner, Erez Berg, Eugene Demler(2010) Exploring Topological Phases With Quantum Walks Phys. Rev. A 82, 033429