8-8 Homework: Similar triangles, dilation ratios

1. A translation maps triangle ABC onto triangle XYZ.

Circle the true statement (s). The $\triangle s$ are ...

- (a) congruent, but not similar
- (b) similar, but not congruent
- (c) both congruent and similar
- (d) neither congruent nor similar
- 2. Given $\triangle JKL \sim \triangle MNO$. $m \angle K = 31^{\circ}$ and $m \angle M = 53^{\circ}$. Find the measure of $\angle L$.

3. Triangle ABC is dilated with a scale factor of k centered at A, yielding $\triangle ADE$, as shown. Given AB=12, BC=15, AC=18, and DE=20.

Find AD, CE, and k (the scale factor).

4. Given $\triangle ABP$ and $\triangle JKP$ as shown below. $\overline{AB} \parallel \overline{JK}$ with AB=5, PA=4, PB=2, and PK=5.

Find PJ and JK.

5. Triangle ADE and its midline \overline{BC} are drawn, with B the midpoint of \overline{AD} and C the midpoint of \overline{AE} . The two medians \overline{AE} and \overline{AE} are drawn, as shown, intersecting in point F, the centroid.

 $\triangle FCB \sim \triangle FDE$ with scale factor k=2.

Given BC = 9, find DE.

Given BF = 5, find FE.

8-3 Homework: Similar triangles, dilation ratios

1. Given $\triangle ABP$ and $\triangle JKP$ as shown below. $\overline{AB} \parallel \overline{JK}$. $AP=5.7,\ JP=11.4,$ and JK=14.8. Find AB.

2. Triangle ABC is dilated with a factor of $\frac{3}{2}$ centered at A, yielding $\triangle ADE$, as shown. Given AB = 10, BC = 12, and AC = 14.

Find AD, AE, and DE.

3. The vertices of $\triangle JKL$ have the coordinates J(-4,-2), K(-1,-1), and L(-2,3), as shown below.

Apply a translation of $(x,y) \to (x+7,y+2)$ to $\triangle JKL$ and then reflect the image across the x-axis. Draw both images $\triangle J'K'L'$ and $\triangle J''K''L''$ on the set of axes below, labeling the vertices.

4. A rotation of 90° is applied to $\triangle ABC$, mapping it onto $\triangle PQR$, as shown.

Which triangle has the larger area, or are they equal? Justify your answer.

5. Using a compass and straightedge, construct the perpendicular bisector of $\overline{BB'}$ What transformation has been applied to map $\triangle ABC$ on to $\triangle A'B'C'$?

