SPŠ a VOŠ technická Brno,	LABORATORNÍ CVIČENÍ Z ELEKTROTECHNIKY			Třída: L3A
Sokolská 1	Jméno a příjmení:Tomáš Názler, David Škrob			Poř. Číslo: 1
Název úlohy: Analogové měřící přístroje				Číslo úlohy: 1
Zkoušený předmět: Technické měření				Skupina:
Datum měření: 29.9.2021 Datum odevzdání: 13.10.2021 Klasifikace:				

Zadání

Podle obrázku 1 změřte pět trojic hodnot stejnosměrného napětí, proudu a ztrátového výkonu na reostatu R1, ověřte Ohmův zákon a vztah pro výkon stejnosměrného proudu. Použijete stejnosměrný zdroj a napětí budete postupně snižovat z 20 V na 10 V, přitom budete dávat pozor na maximální rozsahy všech přístrojů. Ověřte třídu přesnosti ampérmetru a voltmetru. Přitom jako referenční přístroj (ten, který ukazuje správnou hodnotu) použijte Metex M-4650CR (černý).

Teorie

Cílem měření bylo ověřit Ohmův zákon. Proto jsem použil vzorec pro výpočet paralelního zapojení odporů v obvodě (Vzorec 1). Ten dále pak můžeme použít v základním Ohmově zákoně (Vzorec 2). Pro ověření výsledek můžeme porovnat s výslednou hodnotou dopočítanou z naměřených hodnot tohoto zákonu.

Další částí práce bylo ověření vzorce pro výpočet výkonu elektrického proudu ze stejnosměrného zdroje (obr. 1). Ten můžeme dopočítat a následným srovnáním výsledku se změřenou hodnotou určit za validní výsledek nebo jako chybu měřícího přístroje. V poslední části se budeme zaměřovat na určení třídy přesnosti měření. Díky sadě pěti naměřených hodnot můžeme poté porovnat s referenčním měřením rozdíl pak použít na určení přesnosti a třídy přesnosti měřiče (Rovnice 1).

Vypracování

Při měření prvních tří hodnot jsme měřili pouze odpor. A hodnoty jsme měřili podle zapojení na (obr. 2). Druhou sadu hodnot jsme měřili přesně podle zapojení na (obr. 1). měřili jsme je v rozsahu od 4 do 20 V po 4 V.

Data pro kontrolu Ohmova zákonu

	 měření 	2. měření	3. měření
R_1	44 Ω	22 Ω	33 Ω
R_2	44 Ω	22 Ω	33 Ω
U	3,1 V	3,1 V	3,1 V
I	0,07 A	0,15 A	0,1 A

Data pro kontrolu třídy přesnosti analogových měřících přístrojů

	1. měření	2. měření	3. měření	4. měření	5. měření
$U_{\rm v}$	4 V	8 V	12 V	16 V	20 V
I_{v}	0,7 A	0,16 A	0,24 A	0,32 A	0,4 A
U_z	2,2 V	4,8 V	7,4 V	9,8 V	12,4 V
I_z	0,08 A	0,16 A	0,24 A	0,32 A	0,4 A
P	0 W	0,625 W	1,718 W	2,8125 W	5 W
U_k	2,552 V	5,07 V	10,09 V	10,09 V	12,568 V
I_k	0,0806 A	0,1 A	0,125 A	0,123 A	0,135 A

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

Vzorec 1 výpočet celkového odporu, 2 paralelně zapojených rezistorů

$$I = \frac{U}{R}$$

Vzorec 2 Ohmův zákon

Obrázek 1 Schéma zapojení na měření napětí, proudu a výkonu

$$\delta_{TP} = \frac{\left|\Delta_{m}\right|}{X_{R}} 100 \, [\%]$$

Rovnice Ivýpočet třídy přesnosti

Obrázek 2 Schéma zapojení měření proudu na kontrolu ohmova zákonu

Pro výpočet pro potvrzení ohmova zákona použijeme v tabulce vzorec pro $I_v = U/((R_1R_2)/(R_1+R_2); \Delta I = |I - I_v|)$

	1. měření	2. měření	3. měření
$R_1[\Omega]$	44	22	33
$R_2[\Omega]$	44	22	33
U [V]	3,1	3,1	3,1
I [A]	0,07	0,15	0,1
Iv[A]	0,14	0,28	0,18
ΔI [A]	0,07	0,13	0,08

 $\begin{array}{l} S_i = & (0.07 + 0.13 + 0.08)/3 \text{ A} = 0.09 \text{ A} \\ \delta_{i1} = & 0.09/0.07 = 128 \% \\ \delta_{i2} = & 0.09/0.15 = 60 \% \\ \delta_{i3} = & 0.09/0.1 = 90 \% \\ \text{průměrná relativní chyba měření} = 92,6\% \end{array}$

pro dokazani ohmuva zákona: I = U/R

 $R_{1m} = 22$; $R_{2m} = 11$; $R_{3m} = 16.5$

I = o*U/R +q, Provadíme linearní regresi, protože nemáme člen na vnitřní odpor baterie a nemame spravne nakalibrovany měřící přístroj, pak o = 0,563218, a q

=0.139926

potom: součet chyb = 0.111187, pak průměrná relativní chybs ohmova zákona = 3,7 %

Pro výpočet pro třídu přesnosti ampérmetru a voltmetru použijeme $\Delta I = |I_z - I_k|$; $\Delta U = |U_z - U_k|$;

$$\begin{split} &S_i = (0,0006 + 0,06 + 0,115 + 0,197 + 0,265 \text{ })/5 \\ &A = 0,12752 \text{ }A \\ &S_u = (0,352 + 0,27 + 2,05 + 0,9 + 0,168)/5 \text{ }V = \\ &0,748 \text{ }V \\ &a \text{ pak dle Rovnice 1 vypočítáme třídu přesnosti} \\ &\delta_i = 0,12752 \text{ }/ 12*100\% = 1.0626\% \end{split}$$

 $\delta_u = 0.748/600 *100 \% = 0.124 \%$

	1. měření	2. měření	3. měření	4. měření	5. měření
$U_{\rm v}$	4 V	8 V	12 V	16 V	20 V
I_{v}	0,7 A	0,16 A	0,24 A	0,32 A	0,4 A
U_z	2,2 V	4,8 V	7,4 V	9,8 V	12,4 V
I_z	0,08 A	0,16 A	0,24 A	0,32 A	0,4 A
P	0 W	0,625 W	1,718 W	2,8125 W	5 W
U_k	2,552 V	5,07 V	9,45 V	10,9 V	12,568 V
I_k	0,0806 A	0,1 A	0,125 A	0,123 A	0,135 A
ΔΙ	0,0006 A	0,06 A	0,115 A	0,197 A	0,265 A
ΔU	0,352 V	0,27 V	2,05 V	0,9 V	0,168 V

Při provádění tohoto laboratorního cvičení jsme dospěli k několika poznatkům. Kvůli podezřelým výsledkům z měření třídy přesnosti můžeme vyvodit, že jsem pravděpodobně nesprávně zapojili, a tudíž i změřili proud procházející obvodem s dvěma rezistory. Další problém a nepřesnost v měření nastal v momenty kdy jsme zvolili příliš velký maximální rozsah pro měření výkonu sestavy. Potvrdili jsme ale, že Ohmův zákon funguje. Kvůli nepřesnosti v měření mohlo dojít i ke značné odchylce od spočítaných hodnot.

Přístroj – pomůcka	Тур	Rozsah (pouze analogové)	Poznámka
Voltmetr	Analogový	0 - 600V	
Ampérmetr	Analogový	0 – 12A	
Wattmetr	Analogový	0 – 2A a 60V	
Metex M-4650CR	Digitálni		