

Interdisciplinary Nature of Power Electronics (from Course Textbook)

Power Electronics Applications

- Light Rapid Transit \rightarrow 150 kW 500 kW
- Electric Car \rightarrow 20 kW Constant, 120 150 kW Peak distributed
- Wind Energy $\rightarrow 1 \text{ MW} 5 \text{ MW}$
- Solar Energy \rightarrow 10 kW (string inverters) 1 MW (centralized inverters)
- Locomotives $\rightarrow 2-4$ MW
- Rolling Mills/Process Control $\rightarrow 10 \text{ kW} 10 \text{ MW}$
- Computers, $PC \rightarrow 600 \text{ W}$
- Workstations $\rightarrow 5 15 \text{ kW}$
- Robotics, Welding, HVAC, Etc.

Typical Power Electronics Configuration

Power Electronics Review

Basic Rules of Power Electronics

- Inductor current cannot change instantaneously
- Capacitor voltage cannot change instantaneously
- Average voltage across an inductor = 0
- Average current through a capacitor = 0
- Energy is always conserved

"Golden Rules" of **Power Electronics**

An Example of the Basic Rules of Power Electronics

Voltage source → equivalent to a capacitor must be interfaced with L or Is

Current source → equivalent to an inductor must be interfaced with C or V_L

Power Electronic Devices

Power Electronic Devices (copied from https://commons.wikimedia.org/wiki/File:Power_devices_family.png)

Power Electronic devices are usually (and always in the context of this course) used as a commutation mode, i.e. either on or off.

Diode Characteristics

Thysristor - Silicon Controlled Rectifier (SCR)

- First commercially available power electronic device (GE 1957)
- Was essentially the only viable power electronics device for the next 25 years
- Converts AC grid power to DC
 - DC machines (process industry, traction drives, etc.)
 - DC power supplies (welding, metal plating, battery chargers, etc.)

Bipolar Junction Transistor

- Developed in 1970
- Low to medium power and frequency
- Difficult base drive requirements (current controlled)
- Essentially obsolete due to voltage controlled (FET) devices

Prof. N.J. Nagel, Autumn 2020 – Power Electronics Supplement

game changer for low

power application

MOSFET

- Developed in 1978
- Voltage controlled gate → low gate drive power required
- Used pervasively in low to medium power
- Capable of very high frequency

MOSFET Characteristics

game changer for medium

<u>IGBT</u>

• Developed in 1983

Combined power of BJT and gate control of MOSFET

• Currently on 6th generation design

IGBT Characteristics

Current/Voltage/Switching Frequency Domains of Main Power Electronic Switches (Copied from https://en.wikipedia.org/wiki/Power_semiconductor_device)

Introduction to Power Semiconductor Devices

- -Primary devices currently used in Power Electronics
 - Power Diodes
 - Power Metal Oxide Silicon Field Effect Transistors (MOSFETs)
 - Bipolar Junction Transistors (BJTs)
 - **Evolution of BJT and MOSFET** • Insulated Gate Bipolar Transistors (IGBTs)
 - Thyristors (SCR, GTO, MCT, IGCT)
- -On resistance vs. breakdown voltage vs. switching times
- -Minority and majority carrier devices
- -Not a course in semiconductor physics, but we need to know the basics

Power Electronics Semiconductor Physics Background Material

Not a course in semiconductor physics, but we'll explore the basics as they pertain to power electronics devices.

Common Semicoductors:

Common Sum Courtors.			
Material	Symbol	Group	
Germanium	Ge	IV	
Silicon	S	IV	Elemental Semiconductors
Gallium Arsenide	GaAs	III-V]]
Silicon Carbide	SiC	IV	Games and Games and Look and
Gallium Nitride	GaN	III-V	Compound Semiconductors
Gallium Phosphide	GaP	III-V]]

Semiconductors on Periodic Table

The Fermi-Dirac distribution function gives the probability that (at thermodynamic equilibrium) a state having energy ϵ is occupied by an electron:

$$f(\epsilon) = \frac{1}{e^{(\epsilon - \mu)}/KT + 1}$$
 at Fermi Level $(\epsilon = \mu) \rightarrow f(\epsilon = \mu) = \frac{1}{2}$

EE 560 – Electric Machines and Drives Prof. N.J. Nagel, Autumn 2020 – Power Electronics Supplement

Semiconductor Material Band Structure

Filling of the electronic states in various types of materials at equilibrium. Here, height is energy while width is the density of available states for a certain energy in the material listed. The shade follows the Fermi–Dirac distribution (black = all states filled, white = no state filled). In metals and semimetals, the Fermi level EF lies inside at least one band. In insulators and semiconductors the Fermi level is inside a band gap; however, in semiconductors the bands are near enough to the Fermi level to be thermally populated with electrons or holes. (Copied from https://en.wikipedia.org/wiki/Fermi_level)

Doped Silicon Showing Lattice Structure and Corresponding Energy Levels

Material Conduction in Semiconductors

Group IV – 4 valence electrons

At temperatures above absolute zero, some electrons break free from covalent bond (known as *thermal ionization*) and become a *free electron*. A *hole* is left behind. Electrons and holes are known as *charge carriers*. Each electron-hole pair creates two charge carriers (a positive and a negative). There is an equal number of holes and electrons within intrinsic semiconductors. Electron-hole pairs take place randomly throughout lattice structure and increase with temperature (increased number of charge carriers with increased temperature). As electrons move, they fill a hole left by other electron. This is known as *Recombination*.

Holes don't physically move, but appear to move as electrons fill other holes along the path.

Prof. N.J. Nagel, Autumn 2020 – Power Electronics Supplement

Thermal ionization creates an equal number of electrons and holes. For a pure (intrinsic) semiconductor:

$$n_i^2 \approx Ce^{\left(\frac{-qE_g}{kT}\right)}$$
 carrier density

where

 n_i – density of electrons and holes at thermal equilibrium

C – constant of proportionality

q – magnitude of the electron charge

 E_g – energy gap of the semiconductor (1.1 eV for silicon)

k – Boltzmann's contant

T – Temperature (in degrees Kelvin)

Doped Semiconductors

Thermal equilibrium density of electrons and holes can be modified by the addition of impurity atoms, called *dopants*, in the lattice structure. For Silicon, dopants come from Group III (such as Boron) which make p-Type, or Group V (such as Phosphorous) which make n-Type.

Semiconductor density $\approx 10^{23} \frac{atoms}{cm^3}$

Typical dopant density $\approx 10^{19} \frac{atoms}{cm^3}$

Because dopant density is orders of magnitude lower than semiconductor material, the rate at which covalent bonds are broken by thermal ionization and refilled by free electron (electronhole recombination) is relatively unchanged. Thus:

$$n_0 p_0 = n_i^2$$

where

 n_0 – thermal equilibrium electron density

 p_0 – thermal equilibrium hole density

For a p-Type material:

$$n_0 \approx \frac{n_i^2}{N_a}$$
 and $p_0 \approx N_a$ (with $N_a \gg n_i$)

where

 N_a – ionized acceptor density

EE 560 – Electric Machines and Drives Prof. N.J. Nagel, Autumn 2020 – Power Electronics Supplement

For a n-Type material:

$$p_0 pprox rac{n_i^2}{N_d}$$
 and $n_0 pprox N_d$ (with $N_d \gg n_i$)

where

 N_d – ionized donor density

Recombination Rate of Free Carriers

In thermal equilibrium, free electrons and holes must be captured (recombined) at the same rate they are generated by thermal energy. The recombination rate is a material dependent property.

$$\frac{d(\delta n)}{dt} = -\frac{\delta n}{\tau}$$
 exponential decay for positive δn
$$\delta n(t) = \delta n_o e^{-\frac{t}{\tau}}$$

where

 δn – excess carrier density (in excess of n_o)

- Excess carrier lifetime increases with temperature → longer switching times for minority carrier devices
- Large excess carrier densities shorten recombination lifetime due to Auger recombination which can lead to increased on-state losses at high current levels

$$\tau = \frac{\tau_o}{1 + \frac{\delta n^2}{n_h^2}}$$

where

 τ_o – excess carrier lifetime with $\delta n \ll n_b$

Current Flow

Standard convention is current flow is in direction of hole migration and opposite the direction of electron migration. There are two mechanisms for current flow, *drift* and *diffusion*.

$$J_{drift} = q\mu_n nE + q\mu_p pE$$
 drift \rightarrow current due to electric field

where

 μ_n – electron mobility [cm²/Vs]

 μ_p – hole mobility [cm²/Vs]

n – number of free electrons per unit volume [#/cm³]

p – number of free hole per unit volume [#/cm³]

E – Electric Field Intensity [V/cm]

$$J_{diffusion} = q D_n \frac{dn}{dx} - q D_p \frac{dp}{dx}$$
 diffusion \rightarrow current due to carrier density gradient

where

 D_n – electron diffusion constant [cm²/s] D_p – hole diffusion constant [cm²/s]

Diode Structure

Diagram of a Diode Showing Depletion (Space Charge) Region

- Depletion region formed by charged atoms left behind by the holes and electrons that have diffused across the junction.
- This depletion region (also known as space charge region) creates an electric field which increases energy barrier and opposes diffusion current, promotes drift current
- An equilibrium is eventually reached where diffusion current is offset by drift current due to electric field in the depletion region

Reversed Biased Diode Showing Depletion Region

Current Flow

Χ

$$W = W_o \sqrt{1 - \frac{V}{\varphi_c}}$$
 where $\varphi_c = \frac{kT}{q} \ln \left(\frac{N_a N_d}{N_i^2} \right)$

Small leakage current

the depletion region

Reversed bias voltage increases the potential barrier which inhibits carrier diffusion.

Forward Biased Diode Showing Depletion Region

Forward biased voltage lowers potential barrier and upsets equilibrium between drift and diffusion currents (diffusion currents dominate). Injected minority carriers eventually recombine with majority carriers as they diffuse further into opposite region.

$$L_n = \sqrt{D_n \tau_n}$$
 and $L_p = \sqrt{D_p \tau_p}$

where

 D_n – electron diffusion constant

 D_p – hole diffusion constant

 τ_n – electron minority carrier lifetime

 τ_p – hole minority carrier lifetime

Power Diodes

Reversed Biased Power Diode Showing Depletion Region

Forward Biased Power Diode Showing Depletion Region

- diode turn-off in reverse (recombination of minority carriers)
- recombination affects turnoff time and stored charge

Diode Recovery Speeds: Left – Slow, Right – Fast

Stored Charge in Diode Recovery

Typical Switching Waveforms of Power Diode