Oppgaver MAT2500

Fredrik Meyer

28. august 2014

Oppgave 1. Bruk cosinus-setningen til å se at definisjonen av vinkel i planet blir riktig. ■

Oppgave 2. Vis at $d(\vec{x}, \vec{y}) = 0$ hvis og bare hvis $\vec{x} = \vec{y}$. Vis at en funksjon $m: E^n \to E^n$ som bevarer avstand nødvendigvis er injektiv.

Altså holder det å kreve at en isometri er surjektiv.

Løsning 2. Husk at avstanden mellom to vektorer \vec{x} og \vec{y} er definert som

$$d(\vec{x}, \vec{y}) \stackrel{def}{=} \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Her er altså $\vec{x} = (x_1, \dots, x_n)$ og $\vec{y} = (y_1, \dots, y_n)$. Så anta først at $\vec{x} = \vec{y}$. Det betyr at $x_i = y_i$ for $i = 1, \dots, n$. Så hvert ledd i summen er null, så summen er null, så kvadratroten er null, så $d(\vec{x}, \vec{y}) = 0$. Dette var ene retningen av implikasjonen.

Andre retningen. Anta så at $d(\vec{x}, \vec{y}) = 0$. Vi skal vise at da må $\vec{x} = \vec{y}$. Hvis $d(\vec{x}, \vec{y}) = 0$, betyr det at

$$\sum_{i=1}^{n} (x_i - y_i)^2 = 0,$$

siden vi alltid kan kvadrere begge sidene. Men x_i, y_i er relle tall, og kvadrater er alltid positive, så hvert ledd er ≥ 0 . Det betyr at hvis ett ledd var positivt, ville summen også vært positiv. Vi konkluderer med at da må alle $(x_i-y_i)^2=0$. Men dette betyr at $x_i=y_i$ for alle i, så $\vec{x}=\vec{y}$.

Oppgave 3. Vis at mengden av symmetrier av en delmengde $F \subseteq E^n$ er en undergruppe av Isom_n .

Løsning 3. La oss første minne oss på noen definisjoner:

Definition 0.1. En **gruppe** er en mengde G sammen med en multiplikasjon \times (altså en funksjon som tar par av elementer fra G og produserer et nytt). Vi dropper stort sett \times og skriver gh i stedet for $g \times h$. Denne multiplikasjonen skal tilfredsstille følgende regler:

- 1. Assosiativitet: (gh)k = g(hk).
- 2. **Identitetselement:** Det skal finnes et nøytralt element, som vi kaller e. Denne tilfredsstiller for alle $g \in G$:

$$eg = ge = g$$
.

3. Inverser: For hver g skal det finnes en invers. Det vil si et element $g^{-1} \in G$ slik at

$$g^{-1}g = gg^{-1} = e.$$