Prof.dr.sc. Bojana Dalbelo Bašić

Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Fakultet elektrotehnike i računarstva

www.zemris.fer.hr/~bojana bojana.dalbelo@fer.hr

UMJETNA INTELIGENCIJA

Zaključivanje uporabom predikatne logike (1)

travanj 2008.

PREDIKATNE LOGIKE **AUTOMATSKO ZAKLJUČIVANJE UPORABOM**

PROPOZICIJSKA LOGIKA << LJUDSKO ZAKLJUČIVANJE

Premise:

Svaki student pohađa predavanja.

Ivan je student.

Intuitivno zaključujemo:

Ivan pohađa predavanja.

Ovakvo jednostavno zaključivanje nije moguće u propozicijskoj logici.

ONTOLOŠKA PRETPOSTAVKA

- Ontologija?
- Ontološka pretpostavka predikatne logike prvog reda:
- postoje:
- Objekti
- Relacije između objekata
- Svojstva objekata: 1-mjesne relacije
- Propozicije: 0-mjesne relacije
- Jače ontološke pretpostavke od onih propozicijske logike
- Propozicijska logika: postoje sudovi koji su istiniti/lažni
- Zbog toga: veća ekspresivnost od propozicijske logike!
- Naprednije logike imaju još jače ontološke pretpostavke!

- Skup elemenata nad kojim se izvodi zaključivanje uporabom predikatne logike naziva se domena
- Elementi domene označeni su posebnim imenima nazivaju se konstante
- Mala slova s početka abecede: a, b, c, ... ili nizovi znakova s velikim početnim slovom: Ivan, Ana, ...
- Primjer: Domena može biti skup cijelih brojeva Z, tada su 1,2,3,... konstante
- Varijable se označavaju simbolima u,v, w, x, y,... i mogu poprimiti bilo koju vrijednost iz domene
- Funkcije preslikavaju jedan ili više elemenata domene u taj isti skup
- Primjer: Funkcija add preslikava dva elementa domene u njihov zbroj. Dakle, add(2, 3) = 5

- Definicija
- elemenata domene u jednu od vrijednosti istinitosti: istinu Predikati su "funkcije" koje preslikavaju jedan ili više ili *laž*
- Predikati nam govore o svojstvima elemenata domene ili o njihovim međusobnim odnosima.
- Primjeri predikata:
- Neka je domena skup cijelih brojeva Z.
- Predikati su: ODD(x), EVEN(x), GT(u, v).
- ODD(6) = laž
- EVEN(6) ≡ istina
- GT(add(1,2), 4) = laž

Konstante, varijable, funkcije i predikati čine četiri disjunktna skupa u predikatnoj logici.

Definicija

- **Izraz** (engl. term) je definiran rekurzivno:
- konstanta je izraz
- varijabla je izraz
- $f(t_1, t_2, ..., t_n)$ je izraz akko je f funkcija od nargumenata, gdje su $t_{1},\ t_{2},\ \dots,\ t_{n}$ izrazi
- Primjer: Izrazi su 2, 3, add(3,4), add(v, add(1, 4))

Definicija

- P (t_1, t_2, \dots, t_n) je **atom** akko P označava predikat od *n* argumenata, a $t_1,\ t_2,\ \dots,\ t_n$ su izrazi

Primjer

GT(add(1, 2), 4) je atom

FORMULE

logički veznici kao i u propozicijskog logici ~, ∧, ∨, →, ↔ Za izgradnju formula u predikatnoj logici koriste se isti

Primjer

(ODD(3) \ GT(5,2)) čini formulu

- U predikatnoj logici još se koriste dva posebna simbola:
- ∀ univerzalni kvantifikator (čita se "za svaki"),
- ∃ egzistencijalni kvantifikator (čita se "postoji").

- "za svaki x domene vrijedi da je x+1 veći od x" Formula ∀x(GT(add(x,1),x)) se interpretira:
- Za formulu u gornjem primjeru se kaže da je pojavljivanje varijable x ograničeno (kvantificirano) sa ∀x
- Kažemo da je varijabla **vezana** ako je negdje ograničena kvantifikatorom, a **slobodna** ako to negdje nije

djelovanja, djelokrug, dohvat, domena) od ∀x jer se na tu Podformula (GT(add(x,1),x)) zove se doseg (područje formulu odnosi ∀x

- ∃y(GT(y, 4))
- postoji (*postoji barem jedan* ili *za neki*) element domene *y* tako da je y veći od 4;
- y je vezana varijabla, tj. pojavljivanje y ograničeno je sa ∃y,
- doseg od ∃y je GT(y, 4)

- $\forall u(ODD(u) \rightarrow EVEN(add(u,1)))$
- za svaki element domene u vrijedi: ako je u neparan tada je u+1
- u je vezana varijabla, tj. pojavljivanje u ograničeno je sa \forall u,
- doseg \forall u je (ODD(u) \rightarrow EVEN(ADD(u,1)))
- $\forall x(\exists y(GT(x, y)))$
- za svaki x iz domene postoji y iz domene tako da je x veće od y.
- pojavljivanje x ograničeno je sa $\forall x$, pojavljivanje y ograničeno je
- doseg od $\forall x$ je $\exists y(GT(x, y))$, doseg od $\exists y$ je GT(x, y) dosegjednog kvantifikatora je unutar dosega drugog kvantifikatora!

SINTAKSA PREDIKATNE LOGIKE

Definicija

slobodna u formuli akko barem jedno pojavljivanje nije Kaže se da je varijabla **vezana** u formuli akko je barem jedno pojavljivanje varijable ograničeno. Varijabla je ograničeno

- U formuli $\forall x(GT(x,y))$, x je vezana, ali y je slobodna
- U formuli $(\forall x(GT(x,y)) \land \exists y(ODD(y))), \ y$ je ujedno i slobodna i vezana varijabla
- Slobodna varijabla y nezavisna je od vezane

Formula u predikatnoj logici je definirana rekurzivno:

Definicija

- Dobro oblikovana formula (wff) gradi se na sljedeći način:
- 1. atom je formula;
- ako je F formula tada je i (~F) formula;
- ako su F i G formule tada su formule:
- $(\mathsf{F} \wedge \mathsf{G})$
- $\begin{pmatrix} F < G \\ + G \end{pmatrix}$

- 4. Ako je F formula takva da sadržava varijablu x koja u njoj nije vezana, tada su formule:
- $(\forall x) F$
- (∃×) F.
- Nema drugih formula osim upravo definiranih 5.
- Dogovorno dopuštamo uklanjanje zagrada:
- u pravilu 2 (zagrade oko negirane formule)
- u pravilu 3 ako su to vanjske zagrade
- u pravilu 4 (zagrade oko kvantifikatora)
- Uočite da se definicije atoma i formule razlikuju u propozicijskoj i predikatnoj logici.

SINTAKSA PREDIKATNE LOGIKE

Primjer :

- Formula ((∀x) GT(x,y) ∧ (∃y) ODD(y)) može se napisati kraće kao $\forall x \ GT(x,y) \land \exists y \ ODD(y)$
- Zagrade uvijek moraju zatvarati argumente funkcije ili predikata

Zadatak

- Kako bi formulom predikatne logike izrazili da za svaki cijeli broj x vrijedi da je x paran ili je x+1 paran ?
- Je li izraz ∀x(ODD(x ∨ add(x+1))) dobro oblikovana formula?

Ovdje razmatrana predikatna logika je tzv. PREDIKATNA -OGIKA PRVOG REDA (engl. First Order Predicate Logic - FOPL) u kojoj samo varijable mogu biti kvantificirane Ako je P predikat i f funkcija tada formule poput $\forall P(P(x))$ ∃f(f(x)) nisu razmatrane u predikatnoj logici prvog reda

SEMANTIKA PREDIKATNE LOGIKE

SEMANTIKA PREDIKATNE LOGIKE

- Interpretacija formule u predikatnoj logici sastoji se od sljedećeg:
- Određivanje elemenata domene. Svaki element domene označava se simbolom za konstantu.
- argumenata f ($\mathsf{c}_{\mathsf{1}},\,\mathsf{c}_{\mathsf{2}},\,\mathsf{c}_{\mathsf{3}},\,\ldots\,,\,\mathsf{c}_{\mathsf{n}}$), gdje c_{i} predstavljaju Definiranje preslikavanja f za svaku funkciju f od n konstante iz domene.
- Pridruživanje vrijednosti istinitosti svakom predikatu od n argumenata $P(t_1, t_2, t_3, ..., t_n)$

SEMANTIKA PREDIKATNE LOGIKE

Za danu interpretaciju formuli se pridružuje odgovarajuća vrijednost istinitosti

slobodne varijable pa ćemo od sada podrazumijevati da Ne mogu se interpretirati formule koje sadrže formule ne sadrže slobodne varijable

Formule su **ekvivalentne** ako poprimaju istu vrijednosti istinitosti za svaku moguću interpretaciju

TABLICA EKVIVALENCIJA PREDIKATNE LOGIKE

varijablu x dok H{x} označava formulu koja ne sadrži F(x) i G(x) označavaju formule koje sadrže slobodnu varijablu x

$$[1] \forall x F(x)$$

$$[2] \exists x F(x)$$

$$\equiv$$
 $\exists y F(y)$

 $\forall y F(y)$

Ш

[3]
$$\sim \forall x F(x)$$

$$= \exists x (\sim F(x))$$

[4]
$$\sim \exists x F(x)$$

$$= \forall x (\sim F(x))$$

$$(\forall x \ F(x) \lor \forall x \ G(x))$$

[2]

$$= (\forall x F(x) \lor \forall y G(y))$$

 $(\forall x F(x) \lor \exists x G(x))$

$$(\forall x \; \mathsf{F}(\mathsf{x}) \lor \exists \mathsf{y} \; \mathsf{G}(\mathsf{y}))$$

20

TABLICA EKVIVALENCIJA PREDIKATNE LOGIKE

$$(\exists x \ F(x) \lor \forall x \ G(x))$$

$$\exists x \ E(x) \land \exists x \ G(x)$$

$$(\forall x \ F(x) \land \forall x \ G(x))$$

$$((x) \times \exists x \in (x))$$

1]
$$(\exists x \ F(x) \land \forall x \ G(x))$$

1]
$$(\exists x \ F(x) \land \forall x \ G(x))$$

2]
$$(\exists x F(x) \land \exists x G(x))$$

3]
$$(\forall x F(x) \lor \forall y G(y))$$

4]
$$(\forall x F(x) \land \forall y G(y))$$

[18]
$$(\exists x F(x) \land H\{x\})$$

[19]
$$\forall x (F(x) \land G(x))$$

20]
$$\forall x (F(x) \land G(x))$$

$$= (\exists x F(x) \lor \forall y G(y))$$

$$(\exists x \ F(x) \lor \exists y \ G(y))$$

Ш

$$(\forall x \ F(x) \land \forall y \ G(y))$$

Ш

$$(\forall x F(x) \land \exists y G(y))$$

Ш

$$= (\exists x F(x) \land \forall y G(y))$$

$$= (\exists x F(x) \land \exists y G(y))$$

$$= \forall x \forall y (F(x) \lor G(y))$$

$$= \forall x \forall y (F(x) \land G(y))$$

$$= \forall x (F(x) \lor H\{x\})$$

$$= \forall x (F(x) \land H\{x\})$$

$$\equiv \exists x (F(x) \lor H\{x\})$$

$$= \exists x (F(x) \land H\{x\})$$

$$= (\forall x F(x) \land \forall x G(x))$$

$$= (\forall x F(x) \land \forall y G(y))$$

21

TABLICA EKVIVALENCIJA PREDIKATNE LOGIKE

[21]
$$\forall x (F(x) \land G(x))$$

$$= \forall x \forall y (F(x) \land G(y))$$

[22]
$$\exists x (F(x) \lor G(x))$$

$$= (\exists x \ F(x) \lor \exists x \ G(x))$$

[23]
$$\exists x (F(x) \lor G(x))$$

$$= (\exists x F(x) \lor \exists y G(y))$$

[24]
$$\exists x (F(x) \lor G(x))$$

$$= \exists x \exists y (F(x) \lor G(y))$$

Jesu li ekvivalencije formule [22]-[23] ako se umjesto kvantifikatora ∃ koristi kvantifikator ∀?

SEMANTIKA PREDIKATNE LOGIKE

Primjer 1

Odredite vrijednosti istinitosti formule

$$\forall x \exists y (P(x) \land Q(x,f(y)))$$

za interpretaciju:

- Domena {a, b}
- f(a) = b i f(b) = a i sljedeće vrijednosti istinitosti atoma

P(a)	P(b)	Q(a,a)	Q(a,b)	Q(b,a)	Q(b,b)
false	true	true	true	false	true

- Za x = a, P(x) je false.
- Formula nije istinita za sve vrijednosti x iz domene.
- Dakle ∀x ∃y (P(x) ∧ Q(x,f(y))) je laž

SEMANTIKA PREDIKATNE LOGIKE

Primjer 2

Odredite vrijednosti istinitosti formule

$$\forall x \exists y (P(x) \land Q(x,f(y)))$$

za interpretaciju:

Domena {1, 2}

f(1) = 2 i f(2) = 1 i sljedeće vrijednosti istinitosti atoma

P(1)	P(2)	Q(1,1)	Q(1,2)	Q(2,1)	Q(2,2)
true	true	true	true	false	true

SEMANTIKA PREDIKATNE LOGIKE

- Evaluacija istinitosti:
- Za x = 1, P(1) je true.
- Q(x,f(y)) je istinito za y=1 i y=2
- Za x = 2, P(2) je true.
- Q(x,f(y)) je istinito za y=1
- Pokazali smo da za sve vrijednosti x iz domene postoji vrijednost y iz domene za koju je formula istinita
- Dakle, $\forall x \exists y (P(x) \land Q(x,f(y)))$ je istinita

POLUODLUČLJIVOST PREDIKATNE LOGIKE

- Podsjetimo se pojmova:
- tautologije, kontradikcije i konzistencije formula propozicijske logike. Iste definicije vrijede i u predikatnoj logici.
- Kako bismo dokazali da je formula G je logička posljedica formula F₁, F₂, ..., F_n, uveli smo dvije temeljne metode:
- Izravnu metodu
- pokazujemo da je (($F_1 \land F_2 \land ... \land F_n$) \rightarrow G) tautologija
- Metoda opovrgavanja
- pokazujemo da je (F₁ ∧ F₂ ∧ ... ∧ F_n ∧ ~G) proturječje

POLUODLUČLJIVOST PREDIKATNE LOGIKE

- interepretacija formula. Kako u predikatnoj logici domena može biti beskonačna, (npr. skup cijelih brojeva), može Te dvije metode temelje se na provjeri svih mogućih biti i beskonačno mnogo interpretacija formule
- opovrgavanja ne mogu primijeniti na predikatnu logiku tautologiju ili kontradikciju formule pod svim mogućim Dakle, u takvim slučajevima nije moguće provjeravati interpretacijama pa se izravna metoda i metoda

POLUODLUČLJIVOST PREDIKATNE LOGIKE

Važan matematički rezultat:

odnosno, kojim će se dokazati da G nije teorem (nije logička J predikatnoj logici ne postoji općenit postupak kojim se može dokazati cilj G, ako je G teorem (logička posljedica), posljedica), ako on to nije.

G teorem (logička posljedica), ali ti postupci mogu nikad ne lpak, postoje postupci kojim se može pokazati cilj G, ako je završiti u slučajevima kada G nije teorem (nije logička posljedica).

U tom smislu predikatna logika je poluodlučljiva.

logici, ali je njezina moć ograničena poluodlučljivošću Rezolucija opovrgavanjem koristi se u predikatnoj predikatne logike

TEORIJA DOKAZA

TEORIJA DOKAZA PREDIKATNE LOGIKE

- zaključivanja") koja vrijede za propozicijsku logiku vrijede Sva pravila zaključivanja (uvedena u okviru "prirodnog i za predikatnu logiku
- Pored toga predikatna logika ima dodatno pravilo:

Pravilo univerzalne specijalizacije

- Ako je formula istinita za svaki element domene onda je istinita i za jedan određeni element domene
- Ako je x varijabla i b bilo koja konstanta iz domene

$$\forall x F(x) \vdash F(b)$$

TEORIJA DOKAZA PREDIKATNE LOGIKE

Pravilo univerzalne specijalizacije

Svaki element domene može biti zamjena za univerzalno kvantificiranu varijablu Primier uporabe pravila univerzalne specijalizacije u postupku zaključivanja:

Premise

Svaki muž voli svoju ženu.

Marko je muž.

Cilj koji treba dokazati

Marko voli svoju ženu

TEORIJA DOKAZA PREDIKATNE LOGIKE

- Predikati:
- MUŽ(x); definira da je x muž.
- VOLI(x,y)
- Funkcija:
- žena(x): funkcija koja preslikava x u žena od x. Ako je $z = \check{z}ena(x)$, to znači da je z žena od x
- Cilj koji treba dokazati:
- VOLI(Marko, žena(Marko))

TEORIJA DOKAZA PREDIKATNE LOGIKE

Premise se mogu napisati

[1] $\forall x(MUZ(x) \rightarrow VOLI(x, \check{z}ena(x)))$

[2] MUŽ(Marko)

Zaključivanje:

Marko je konstanta u domeni osoba, stoga primjenjujući pravilo univerzalne specijalizacije na [1] zaključujemo:

[3] (MUŽ(Marko) → VOLI(Marko, žena(Marko))

Primjenjujući Modus ponens na [2] i [3] dobivamo: [4] VOLI(Marko, žena(Marko))

Tako smo dokazali da je cilj teorem

PREDUVJETI ZA REZOLUCIJSKO ZAKLJUČIVANJE

Pretvaranje formule u klauzalni oblik

- Rezolucijsko pravilo u predikatnoj logici zahtijeva pretvaranje formule u klauzalni oblik (konačna disjunkcija od *n* literala)
- Implicitno se podrazumijeva:
- sve varijable u klauzuli su univerzalno kvantificirane
- između klauzula je konjunkcija
- Sve klauzule u predikatnoj logici su standardizirane ne postoje dvije klauzule koje sadrže iste varijable
- Formula u predikatnoj logici se pretvara u klauzalni oblik u 10 koraka

PRETVARANJE FORMULE U KLAUZALNI OBLIK

. Uklanjanje ↔

$$(\mathsf{F} \leftrightarrow \mathsf{G}) \equiv (\mathsf{\sim}\mathsf{F} \lor \mathsf{G}) \land (\mathsf{\sim}\mathsf{G} \lor \mathsf{F})$$

. Uklanjanje →

$$(F \rightarrow G) \equiv (\sim F \lor G)$$

Smanjivanje dosega operatora negacije tako da se odnosi samo na jedan atom

$$\sim$$
(F \vee G) \equiv (\sim F \wedge \sim G)

$$\sim$$
(F \wedge G) \equiv (\sim F \vee \sim G)

$$\sim \forall x F(x) \equiv \exists x (\sim F(x))$$

$$\sim \exists x \ F(x) \equiv \forall x \ (\sim F(x))$$

Kada se u nekom od prethodna tri koraka pojavi dvostruka negacija, eliminiraj je primjenom involutivnosti

- se mijenjati jer se varijable mogu smatrati kao "dummy" jedinstvenu varijablu. Vrijednost istinitosti formule neće Preimenuj varijable tako da svaki kvantifikator vezuje varijable
- $(\forall x \; F(x) \lor \forall x \; G(x)) \equiv (\forall x \; F(x) \lor \forall y \; G(y))$
 - $(\forall x \ F(x) \lor \exists y \ G(y))$ $(\forall x F(x) \lor \exists x G(x)) \equiv$
 - $(\exists x \ F(x) \lor \forall y \ G(y))$ $\exists x \; F(x) \lor \forall x \; G(x)) \equiv$
 - $(\exists x \ F(x) \lor \exists y \ G(y))$ $\exists x \ F(x) \land \exists x \ G(x)) \equiv$
- $(\forall x \ F(x) \land \forall x \ G(x)) \equiv (\forall x \ F(x) \land \forall y \ G(y))$ $(\forall x \ F(x) \land \exists x \ G(x)) \equiv (\forall x \ F(x) \land \exists y \ G(y))$
- $(\exists x \ F(x) \land \forall x \ G(x)) \equiv (\exists x \ F(x) \land \forall y \ G(y))$
- $(\exists x \ F(x) \land \exists x \ G(x)) = (\exists x \ F(x) \land \exists y \ G(y))$

36

PRETVARANJE FORMULE U KLAUZALNI OBLIK

5. Skolemizacija

Zamijeni sve egzistencijalno kvantificirane varijable Skolem izrazima

- ∃x SESTRA(x, Ivan);
- Skolemizacija daje:
- SESTRA (Ana, Ivan)

od ostalih varijabli u formuli, egzistencijalno kvantificirane U složenijim izrazima u kojima vrijednost zamjene zavisi varijable zamjenjuju se tzv. SKOLEM FUNKCIJOM

Primjer:

- U formuli ∀x ∃y MAJKA(y, x);
- vrijednost od y zavisi o x.
- Skolemizacija daje
- $\forall x MAJKA (f(x), x),$
- gdje je f(x) Skolem funkcija

38

egzistencijalno kvantificirane varijable koja se zamjenjuje kvantificirane varijable čiji doseg uključuje doseg Argumenti Skolem funkcije su one univerzalno

- $\exists u \ \forall v \ \forall w \ \exists x \ \forall y \ \exists z \ F(u, v, w, x, y, z);$
- Eliminiraju se $\exists u, \exists x, i \exists z$:
- $\forall v \forall w \forall y F(a, v, w, f(v, w), y, g(v, w, y));$
- i zamjenjuju redom SKOLEM IZRAZIMA:
- a, f(v, w), g(v, w, y), gdje su a, f, g Skolem funkcije.
- Niti jedan od simbola a, f, g ne smije se pojavljivati u izvornoj formuli

PRETVARANJE FORMULE U KLAUZALNI OBLIK

Skolemizacija kao postupak ne daje nužno definiciju Skolem funkcije nego se radi o metodi pridjeljivanja imena funkcijama koje moraju postojati

- $\forall x \exists y GT(y, x)$
- Skolemizacija daje $\forall x GT(f(x), x)$, gdje je f Skolem funkcija. Ona može biti:
- f(x) = x + 1 ili
- f(x) = x + 5 itd.

OPRAVDANJE ZA SKOLEMIZACIJU?

- Zašto egzistencijalno kvantificiranu varijablu smijemo zamijeniti konstantom?
- ∃x SESTRA(x, Ivan) = SESTRA(Ana, Ivan) ???
- Odgovor:
- gornja ekvivalencija općenito ne vrijedi, ali...
- ... skolemizacija ne utječe na svojstvo nezadovoljivosti formule!
- Ako ∃x SESTRA(x, Ivan) ≡ false onda SESTRA(Ana, Ivan) ≡ false
- U kontekstu rezolucije opovrgavanjem to je dovoljno
- Ako su premise + negirani cilj proturječni, bit će takvi i nakon skolemizacije

univerzalni) na lijevu stranu formule tako da se na lijevoj strani nalazi niz kvantifikatora koji se nazivaju prefiks. kvantifikatora ostaje nepromijenjen! Formula u takvom oslobođena je svih kvantifikatora. Međusobni uređaj obliku se naziva PRENEKS NORMALNI OBLIK Premjesti sve kvantifikatore (preostali su samo Desna strana formule koja se naziva matrica,

- $(\forall x \ F(x) \lor \forall y \ G(y)) \equiv \forall x \ \forall y \ (F(x) \lor G(y))$
- $(\forall x \ F(x) \land \forall y \ G(y)) \equiv \forall x \ \forall y \ (F(x) \land G(y))$
 - $\forall x (F(x) \lor H(x))$ Ш $(\forall x F(x) \lor H\{x\})$
- $\forall x (F(x) \land H(x))$ Ш $(\forall x F(x) \land H\{x\})$

- Eliminiraj prefix, ostavi samo matricu. Podrazumijeva kvantificirane. (Nema slobodnih varijabli u formuli) se da su sve varijable u formuli univerzalno
- Pretvori matricu u konjunkciju disjunkcija (konjunktivnu normalnu formu) koristeći distributivnost ∞.

$$(\mathsf{F} \mathrel{\vee} (\mathsf{G} \mathrel{\wedge} \mathsf{H})) \equiv ((\mathsf{F} \mathrel{\vee} \mathsf{G}) \mathrel{\wedge} (\mathsf{F} \mathrel{\vee} \mathsf{H}))$$

$$((G \land H) \lor F) \equiv ((G \lor F) \land (H \lor F))$$

Napiši konjunktivnu normalnu formu kao skup klauzula podrazumijava konjunkcija između klauzula brišući operatore konjunkcija. Implicitno se

- 10. Standardiziraj klauzule preimenovanjem varijabli tako da nema dvije klauzule koje sadrže iste varijable
- kvantificirane (korak 7) i postoji implicitna konjunkcija između klauzula (korak 9) pa je preimenovanje varijabli valjano i dopušteno jer se temelji na Sve varijable u klauzulama implicitno su slijedećoj ekvivalenciji:

$$\forall x (F(x) \land G(x)) \equiv \forall x \ \forall y (F(x) \land G(y))$$

- Pazi! Svrha preimenovanja nije ukloniti višestruko pojavljivanje iste varijable unutar iste klauzule!
- Npr. općenito ne vrijedi:

$$\forall x P(x,x) \equiv \forall x \forall y P(x,y)$$

Primjer

Pretvorba formule

 $\forall y \ \forall z \ (\exists u(P(y, u) \lor P(z, u)) \rightarrow \exists uQ(y, z, u))$

u klauzalni oblik

. Uklanjanje ↔

S

.. Uklanjanje →

 $\forall y \ \forall z \ (\sim(\exists u \ (P(y, u) \lor P(z, u))) \lor \exists uQ(y, z, u))$

3. Smanjivanje dosega operatora ~

 $\forall y \ \forall z \ (\forall u(\sim P(y, u) \land \sim P(z, u)) \lor \exists uQ(y, z, u))$

Preimenovanje varijabli

 $\forall y \ \forall z \ (\forall u(\sim P(y, u) \land \sim P(z,u)) \lor \exists vQ(y, z, v))$

45

Skolemizacija

 $\forall y \ \forall z \ (\forall u(\sim P(y, u) \land \sim P(z, u)) \lor Q(y, z, f(y, z)))$

Preneks normalni oblik

 $\forall y \ \forall z \ \forall u((\sim P(y, u) \land \sim P(z, u)) \lor Q(y, z, f(y, z)))$

Eliminiraj prefiks

 $(\sim P(y, u) \land \sim P(z, u)) \lor Q(y, z, f(y, z))$

Konjunktivni normalni oblik

 $(\sim P(y, u) \lor Q(y, z, f(y, z))) \land (\sim P(z, u) \lor Q(y, z, f(y, z)))$

46

9. Skup klauzula

$$\sim P(y, u) \lor Q(y, z, f(y, z))$$

 $\sim P(z, u) \lor Q(y, z, f(y, z))$

10. Standardizacija