Assignment Project Pixarrillelp

Economics of Finance

https://powcoder.com

Add WeChat powcoder

Extending into multi-periods

Time: Present (time 0); Future time periods (times 1 and 2)

Assignment Project Exam Help

The Bond

- Two-period zero-coupon bond (no coupon payments)

Assignment 5 Project lu Exvanni del Project l

The Stock

- Its initial value is \$1.00. It pays no dividends.
- Its price increases 26% of its prior value in good times.

 Assignment6 Propositue xatus. Help

https://powcoder.com Addi.oweChat powcoder bg 0.9216 bb

Security revisited

As The purpose furty start sta

- What can we do?
- Interpretation of "security" dier state contingent
- Now that the time span has been extended into more than one periods, we need to extend the security space to accomposite the Chat powcoder

How?

Planned Acquisitions

Consider the following set of planned acquisitions

B0: Buy a Bond at period 0, sell it at the end of the next ssignment Project Exam Help

- S0: Buy a Stock at period 0, sell it at the end of the next period:
- httpls. if the end of the lext period:
- Sg: At period 1, if the state is g, buy a Stock, sell it at the end
- $\begin{array}{c} \overset{of the \ next}{\text{At}} \overset{\text{regiod};}{\text{Color}} \overset{\text{charge}}{\text{charge}} \overset{\text{charge}}{\text{charge}$ of the next period;
- Sb: At period 1, if the state is **b**, buy a Stock, sell it at the end of the next period.

Matrix Notation

Assignmenty Project Exam Help

$$\begin{array}{c} http{s.07/powcoder.eom} \\ Q = \begin{pmatrix} 0.05 & 0.05$$

Remarks

Assignment Project Exam Help

- Each presenting a payment stream for a planned acquisition;
- . https://powcoderecom
- Such linearly independent vector set is not unique, just like bond and stock is not the unique set of linearly independent valuables in liquid in provided CT

Price Vector

Assignment Project Exam Help

S0 Bg Sg Bb Sb https://powcoder.com

- Why are the strategies Bg, Sg, Bb, and Sb priced as 0?
 An usents in the near aft "DOWCOCET

Pricing a state

Assignment Project Exam Help To price a unity of payment at each state, we can now use the

To price a unity of payment at each state, we can now use the formula we are familiar with: $\mathbf{p}_{atom} = \mathbf{p}_S \cdot \mathbf{Q}^{-1}$:

https://powcoder.com

 $\mathbf{p}_{atom} = \begin{pmatrix} 0.2857 & 0.6666 & 0.0816 & 0.1904 & 0.1904 & 0.4444 \end{pmatrix}$

Add WeChat powcoder

Wrap up

Assignment Project Exam Help

• Extending time span necessarily extends the space of Project Exam Help
• Phis, however, does not necessarily mean we need more

- This, however, does not necessarily mean we need more than two securities;
- lastered by maripulating with existing securities in various periods, we expand the action space,
- These actions creates linearly independent planned acquisitions. We call them "elementary strategies";
- Add care carries;
- Notice the set of elementary strategies may not be unique.

Definition

Assignment Project Exam Help

(say shares, foreign currency or commodity) at a specified $strike\ price,\ or,\ exercise\ price(X).$

http://entitles.the.right.tolsell.the.underlying asset at the privite Oriental Activities and the privite Oriental Activities and the Oriental

- European option vs. American Option
 - A European put or call option: can be exercised only on A chird data Charles an option: can be exercised exercised on

any date up to and including its expiration date.

Call option payment

Example: Consider a call option that entitles the right to buy

A Set grante Project Exam Help

A set of the actual stack price is less than the strike

- Case 1: If the actual stock price is less than the strike price, p < X, then the option holder will not exercise the call antion. The payoff of exercising this Call option would be zero.
- Case 2: If the actual stock price in a year is more than the strike price, p > X, then it pays to exercise the Call option.

For example of p is the related power of the exercised is 75 - 55 = \$20.

Note: No need to actually buy the stock to receive this payoff.

Long Call Payoff = $Max\{p - X, 0\}$

We plot the payoff of a call option with a given strike price as a function of price of the *underlying security ("underlier")*.

Assignment Project Exam Help Call option https://powcoder.com WeChat powcoder 45° \$75 \$55

Overall profit

The overall profit/loss will also include the price of the option.

The Setup: Three Period Binomial Model

• Two-period zero-coupon bond with initial value of \$1.00. Its price increases 5% of its prior value in every period.

Assignment 2 % 601 es tale ix antimes. Telp

• Its price falls to 96% of its prior value in bad times.

Computing atomic (state) prices

• The Payment Matrix:

• The Price Vector:

$Add \underset{\mathbf{p}_{S} = (1.00 - 1.00 - 0.0 - 0.0 - 0.0 - 0.0)}{\text{WeChat}} \mathbf{p}_{\mathbf{p}_{S}} \mathbf{p}_{\mathbf{0}} \mathbf{w}_{\mathbf{0}} \mathbf{c}_{\mathbf{0}} \mathbf{der}$

• The atomic prices $\mathbf{p}_{atom} = \mathbf{p_S} \cdot \mathbf{Q}^{-1}$:

$$\mathbf{g}$$
 \mathbf{b} $\mathbf{g}\mathbf{g}$ $\mathbf{g}\mathbf{b}$ $\mathbf{b}\mathbf{g}$ $\mathbf{b}\mathbf{b}$

$$\mathbf{p}_{atom} = \begin{pmatrix} 0.2857 & 0.6666 & 0.0816 & 0.1904 & 0.1904 & 0.4444 \end{pmatrix}$$

Alternative and better way to compute atomic (state) prices

• The Payment Matrix:

$\hbox{\bf \cdot } \hbox{\bf Add We Chat powcoder}\\$

$$\mathbf{p}_S = \begin{pmatrix} 1.00 & 1.00 & 0.0 & 0.0 & 0.0 \end{pmatrix}$$

• The atomic prices $\mathbf{p}_{atom} = \mathbf{p_S} \cdot \mathbf{Q}^{-1}$:

g b gg gb bg bb $\mathbf{p}_{atom} = \begin{pmatrix} 0.2857 & 0.6666 & 0.0816 & 0.1904 & 0.1904 & 0.4444 \end{pmatrix}_{18/24}$

European Call Option

The matrix c can be derived from the payoff of call options at the end of each state by using Max (S-X,0) where X is given by \$1.1 in the example. Since the European call option will be_

A six in the example. Since the European can option will be a six in the property of the prope

Example: European Call Option

Consider a European Call option that gives the holder a right to buy the Stock at Period 2 at the Exercise Price, X = 1.10.

Assignment Project Exam_{x=1.10}

_{x=1.10}

Pricing a European Call Option

The cash flow associated with the Call option:

The atomic prices are still the same:

$$\underset{\mathbf{p}_{atom}}{Add} \underset{=(0.2857}{WeC} \underset{0.6666}{hat} \overset{\mathbf{p}}{\mathbf{p}} \underset{0.1904}{\text{ov}} \overset{\mathbf{c}}{\mathbf{0}} \overset{\mathbf{b}}{\mathbf{0}} \overset{\mathbf{c}}{\mathbf{0}} \overset{\mathbf{c}}{\mathbf{0}}$$

The value of the Call option is:

$$\mathbf{p}_{\text{Call}} = \mathbf{p}_{atom} \cdot \mathbf{c} = 0.0816$$

Put-Call Parity: Cash and Call

Put-Call Parity: Underlier and Put

Put-Call Parity

• The two portfolios (call + cash and put + underlier) have identical expiration values.

SSIGNIMOND in the same value today.

Otherwise, an investor could make an arbitrage profit

· https://powcoder.com

$$p_{call} + PV(X) = p_{put} + p_{underlier} \tag{1}$$

Add WeChat powcoder

- PV(X) is the present value of the strike price, X;
- p_{put} is the current market value of the put;
- p_{underlier} is the current market value of the underlying stock.