3.10: Linear Approximations and Differentials

We can use the tangent line at (a, f(a)) to approximate the curve y = f(x) when $x \approx a$. An equation of this tangent line is

$$L(x) = f(a) + f'(a)(x - a)$$

called the **linearization** of f at a and the approximation

$$f(x) \approx f(a) + f'(a)(x - a)$$
 for $x \approx a$

is called the **linear approximation** of f at a.

Example 1. Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates of underestimates?

Example 2. For what values x is the linear approximation

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

accurate to within 0.5?

Example 3. Use a linear approximation to estimate the given numbers

(a)
$$(1.999)^4$$
 (b) $e^{-0.015}$

Differentials

Let y = f(x), the **differential** dx represents a change Δx in x. The corresponding change Δy in y along f is

$$\Delta y = f(x + \Delta x) - f(x).$$

The **differential** dy given by

$$dy = f'(x)dx$$

represents the corresponding change in y along the linearization of f.

Example 4. Compare the values of Δy and dy if $y = x^3 + x^2 - 2x + 1$ and x changes(a) from 2 to 2.05 and (b) from 2 to 2.01.

Example 5. Find the differential dy of each function.

- (a) $y = x^2 \sin x$
- $(b) \ y = \ln \sqrt{1 + t^2}$
- (c) $y = \frac{s}{1+2s}$
- (d) $y = e^{-u} \cos u$