36710 - 36752

ADVANCED PROBABILITY OVERVIEW

FALL 2020

LECTURE 9: WED, SEP30, 2020

ASYNCHRONOUS LECTURE

B RIEMANN US LEBESGUE IMEGRAL

LEBESGUE INFERRATION IS MORE GENERAL I) IT ALLOSE FOR UNGONDOD FUNCTIONS

2) IT ALLOWS FOR GENERAL
PUNCTIONS

3) HUS GOOD LIMIT THEORY

RESULT: IF I IS CONTINUOUS ON [2,6] -00 <2 <6 < +00

THEN RIEMANN INTEGRAL OF I IS EQUAL TO THE LEBESSEGE

(MEGRAL OF I.

PANTS OF DISCONDINUTY THIS LESSEGUE MEASURE ZERO

RESULT IF $f: I = [a, \infty) \rightarrow \mathbb{R}$ is LEBESGUE INTEGRABLE

ON [a,b] $\forall b \geq a$ AND $\int |f(da)| \leq M$

TOR ALL 622 AND SOME MOD THEN FIS LES. INTEGRABLE ON I AND UT INTEGRAL IS lim 5 f di · IT IS POSSUBLE THAT INTEGRABILITY FAILS BUT THE ABOVE LIMIT EXISTS AS AN IMPROPER RIEMANN INTEGRAL EXAMPLE 1) $f(x) = \frac{1}{1+2^2}$ 2018. THEN $\int_{a}^{b} f(x) d\lambda(x) = \operatorname{anctan}_{b} b - \operatorname{arctan}_{a} a \leq T$ $\int_{-\infty}^{+\infty} f(x) dx = \lim_{x \to -\infty} \int_{-\infty}^{\infty} f(x) dx + \lim_{x \to -\infty} \int_{0}^{b} f(x) dx$ f is LEBESGLE INTEGRABLE OVER R 2) $f(x) = (-i)^n$ for $n-i \leq x < n$ $x \geq 0$ FIX 6 >0 AND LET M = L61. TREN $\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} f(x) dx + \int_{0}^{\infty} f(x) dx$ $= \underbrace{5!}_{n} (-1)^{n} + \underbrace{(b-m)}_{n} (-1)^{m+1}$ AS 5 -> 00 THE SECOND TERM VANISHES AND THE

PERST TERM CONVERGES TO - LOg 2 $\int_{-\infty}^{\infty} f(x) dx = -\log 2 \qquad \text{Not QUITE...}$ L> IMPROPER RIEMANN INTEGRAL BUT f IS NOT LEBESGUE (MEGRASIE ON [0,00) BECAUSE $\lim_{6\to\infty}\int |f| dx = \infty$ In Sinx dx = 21/2 IMPROPER RIEMANN INTEGRAL SIMILARLY, BUT $\lim_{b\to\infty} \int \int_{\mathbb{R}} \int_{\mathbb{$ 3) Los f: [01/3 ->R, f(x) = 10(x) S for) dx = 0 AS A LEBESCUE I MEGRAL BECAUSE A (Q)=0 SD f=0 2. (2] BUT F IS NOT RIEMANN INTEGRABLE

		X	
· A COM	NUOUS RANDOM	VARVABLE CS A	RANDOM VARIABLE
			[1.e. ux(3) = Pr(XeB)
IS AG	SOLUTELY CONTINUOU	s und research	MEANURE.
L>	cdf of X u	ALSO COMINUOUS	
			ON) IS JUST THE RN-DERIU.
gF	MX MA y	DLESE SOUR MEASUR	E
• 🛆 005	CRETE RANDOM	VARIABLE IS ONE	WHUSE PROB. DISTR. IS
ABS01	NELY CONTINUOUS	wit TRE	COUNTING MEASURE OVER
4	COUNTABLE SUBSÉ	TOF IR. TO	EN ITS RN-DER
ıs	JUST THE (P.M. F (PROBABI	LITY MASS FUNGTON)
· TUE	SUPPORT OF MX	IS EQUAL T	$\frac{1}{2} \left\{ x, \frac{dux}{d\lambda}(x) > 0 \right\}$
· 87A(1)	TICAL MODEL		
THEORY OF LET	(2-, 63) SE	A SAMPLE SPA	CE (TUPICALLY &= IR'S)
LET	H CIR BE LS PARAMETER	AN OPEN JET	
A	STATISTICAL MODE	2 IS A COLLÉC	TON OF PERSOLITY
Dr2.	RIBUTIONS ON (3		
P	= { Pa, A ∈ C	EXAM	P. { N(m, 1), n \ R }
	Peas, DISTR.	0	
	ere Pa << m	POR ALL D AV	NO SOME 6. FINITE MEASURE IN ON (CE,B)
The	E DENSITY OF	to is dro	V WELL-BETCAVE FUNCTIONS

