1	2	3
Full joint parameters	Bayesian parameters	Conditionally independent
Prior probability	Conditional independence	Markov property
Markov chain	Absorbing state	Transient state
10	11	12
Ergodic chain	Ergodic transitions	Transient to transient
13	14	15
Transient to absorbing	Viterbi	Causal inference
13	14	15
Exact inference complexity		

5

11

We define X_1 to be conditionally independent of X_2 given X_3 if the probability of X_1 is not influenced by the value of X_2 when we have knowledge about X_3 .:

3

9

12

$$P(X_1|X_2, X_3) = P(X_1|X_3)$$

Conditionally independent

The Markov property asserts that the transition from $X_{t-1} = x_i$ to state X_{t-1} :

$$P(X_t|X_{t-1}, X_{t-2}, ..., X_0) =$$

= $P(X_t|X_{t-1})$

Markov property

A state i is transient if there exists jreachable from i, but i is not reachable from j

Transient state

$$(I-Q)^{-1}$$

Transient to transient

Causal inference is the process of identifying the independent and actual effect of a specific phenomenon within a larger system

Number of nodes by 2^k , where krepresents the number of incoming edges, giving us the total number of parameters needed

Bayesian parameters

Two sets of nodes, denoted as A and B, exhibit what is termed as $X_t = x_i$ depends only on the current conditional independence or are often referred to as being d-separated, given a set of nodes C if and only if all paths from A to B are effectively blocked by the presence of CConditional independence 8

> A state i is an absorbing state if $p_{ij} = 1$

Absorbing state

$$m_{ij} = 1 + \sum_{k \neq i} p_{ik} \cdot m_{kj}$$

Ergodic transitions

14 Objective is to minimize:

$$-\log P(X_0) + \sum_{i=1:t} (-\log P(X_i|X_{i-1}) - \log P(e_i|X_i))$$

Causal inference Viterbi

15

$$2^N-1$$

Full joint parameters

4

7

10

13

16

A prior probability is a probability associated with a variable that has no incoming edges in a Bayesian network

Prior probability

A discrete stochastic process is a first-order Markov chain when, for all t and for all N states, the following condition holds:

$$P(X_t|X_{t-1}, X_{t-2}, ..., X_0) =$$

= $P(X_t|X_{t-1})$

Markov chain

If all states in a Markov chain are recurrent, aperiodic, and communicate with each other, it is said to be ergodic

Ergodic chain

$$(I-Q)^{-1} \cdot R$$

Transient to absorbing

 $O(N|X_i|^k)$ where N is the number of

nodes, X_i is the max arity, and k is the max variable connected to a factor