

Parte Prática na página seguinte

16 fevereiro 2022 Lic. Engenharia Informática

EXAME FSIAP

Duração: 2h15min (+ 15 minutos de tolerância)		
Nome:	Turma:	N°
Parte teórica - Assinale a resposta corret	ta, colocando um <u>círculo em tor</u>	no da letra correspondente.
QUESTÕES de ESCOLHA MULTIPLA		

Parte Prática - Responda às questões seguintes, apresentando os cálculos correspondentes.

P.1 – Duas cargas elétricas puntiformes $Q_1 = -2 \mu \text{C}$ e $Q_2 = 4 \mu \text{C}$ estão fixas nos pontos A e B, separados pela distância d = 8 m, no vácuo. Dado $k = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$, determine:

a) (11%) a intensidade e o sentido do campo elétrico no ponto
D.

c) (10%) o trabalho da força elétrica resultante que atua numa carga $q = 0.2 \mu C$, ao ser levada de C para D.

P.2 – Considere o circuito da figura:

Sendo U_1 =10V; R_1 =10kΩ; R_2 =1kΩ; R_3 =10kΩ; R_4 =100kΩ; R_5 =10kΩ; C_1 =10μF; C_2 =100 μF;

a) (10%) Supondo os condensadores inicialmente descarregados estabeleça a U_{AB} em função do tempo, quando o interruptor é fechado.

b) (10%) Quanto tempo demora a atingir 3V, a U_{AB} ?

c) (10%) Qual a carga e a tensão em C_2 quando atinge essa tensão, definida em b?

P.3 – Um experimentalista pretende construir um ciclotrão para acelerar núcleos do isótopo mais pesado do hidrogénio, designado por trítio e constituído por um protão (p^+) e dois neutrões (n^0). Sabendo que no ciclotrão o campo magnético, de magnitude B = 0.350 mT, é perpendicular ao movimento dos núcleos, determine: (Dados: $m_p = 1,673 \times 10^{-27}$ kg; $m_n = 1,675 \times 10^{-27}$ kg)

a) (10%) O diâmetro, D, do ciclotrão a implementar para que os núcleos de trítio fossem ejetados do acelerador com uma velocidade, v = 6500 m/s.

b) (10%) Qual o tempo, T, necessário para os núcleos completarem uma volta completa no ciclotrão?

c) (10%) Se fosse aplicada uma d.d.p, $\Delta V = 2$ kV, à saída do ciclotrão para abrandar os núcleos através da força elétrica gerada, qual seria a desaceleração, a, sofrida por estes após uma distância, d = 35 m, desprezando-se a força gravítica?

P.4 – Um feixe eletromagnético na região dos micro-ondas tem as seguintes componentes magnéticas:

 $B_x = 0$, $B_y = 0$, $B_z = 10 \cos (80\pi x - (12/5) \pi \times 10^{10} t) \text{ mT}$.

a) (10%) Determine o comprimento de onda no vazio e a sua frequência.

b) (10%) Determine as componentes do campo elétrico e a potencia do feixe a 2 m de distância da fonte.

c) (10%) Se o feixe incidir com um ângulo de 70 ° com a superfície de um líquido, de uma solução aquosa, observase um feixe refratado, com um ângulo de 45 °. Qual a velocidade do feixe na solução aquosa?

P.5 – Soldam-se três varas, uma de cobre, outra de latão e a outra de aço, com a forma de um "Y", conforme figura. A área transversal de cada vara é de 2,00 cm². O extremo livre da vara de cobre é colocado a 100 °C, e os extremos livres das varas de latão e de aço a 0 °C. Suponha que não existem perdas de calor pelas superfícies laterais das varas, cujos comprimentos são: a de cobre tem 13,0 cm, a de latão tem 18,0 cm e a de aço tem 24 cm.

Os materiais têm as seguintes condutividades térmicas; cobre = 401 W/(m.K);

latão = 109 W/(m.K) e aço = 14 W/(m.K)

a) (9%) Determine a resistência térmica de cada uma das varas.

b) (12%) Determine a temperatura do ponto de junção ou união das varas.

c) (9%) Calcule o fluxo de calor que passa em cada vara.

