Jędrzej Kuczyński

Sprawozdanie - zadanie 1

1. Ćwiczenie 5

Część 1 - wersja jednokomputerowa

	LP1	LP2	LP3	LP4	LP5	LP6	LP7	LP8
Czas obliczeń[s]	12.0343	6.0507	4.1380	3.1672	2.6233	2.1864	1.8737	1.6393
Przyspieszenie		1.9889	2.9082	3.7997	4.5874	5.5042	6.4227	7.3412

Część 2 - wersja wielokomputerowa

	LP1/LP1	LP2/LP1	LP2/LP2	LP3/LP2	LP3/LP3	LP4/LP3	LP4/LP4	LP5/LP4	LP5/LP5	LP6/LP5	LP6/LP6	LP7/LP6	LP7/LP7
Czas obliczeń[s]	6.0253	4.0180	3.0286	2.4720	2.0672	1.8129	1.5861	1.4585	1.3128	1.1965	1.0952	1.0124	0.9393
Przyspieszenie	1.9973	2.9951	3.9736	4.8683	5.8214	6.6382	7.5876	8.2510	9.1672	10.0580	10.9880	11.8874	12.8117

	1/1/1	2/1/1	2/2/1	2/2/2	3/2/2	3/3/2	3/3/3	4/3/3	4/4/3	4/4/4	5/4/4	5/5/4	5/5/5
Czas obliczeń[s]	4.0187	3.0281	2.4249	2.0230	1.7726	1.5537	1.3827	1.2701	1.1554	1.0608	1.0092	0.9388	0.8776
Przyspieszenie	2.9946	3.9741	4.9629	5.9487	6.7892	7.7456	8.7035	9.4749	10.4159	11.3447	11.9243	12.8188	13.7129

	1/1/1/1	2/1/1/1	2/2/1/1	2/2/2/1	2/2/2/2	3/2/2/2	3/3/2/2	3/3/3/2	3/3/3/3	4/3/3/3	4/4/3/3	4/4/4/3	4/4/4/4
Czas obliczeń[s]	3.0151	2.4133	2.0169	1.7327	1.5180	1.3777	1.2447	1.1321	1.0382	0.9781	0.9092	0.8486	0.7955
Przyspieszenie	3.9913	4.9866	5.9668	6.9452	7.9280	8.7353	9.6684	10.6305	11.5916	12.3031	13.2362	14.1806	15.1274

	1/1/1/1/1	2/1/1/1/1	2/2/1/1/1	2/2/2/1/1	2/2/2/2/1	2/2/2/2/2	3/2/2/2/2	3/3/2/2/2	3/3/3/2/2	3/3/3/3/2	3/3/3/3/3	4/3/3/3/3	4/4/3/3/3
Czas obliczeń[s]	2.4145	2.0216	1.7337	1.5170	1.3497	1.2160	1.1260	1.0353	0.9593	0.8916	0.8328	0.7951	0.7493
Przyspieszenie	4.9842	5.9529	6.9412	7.9328	8.9162	9.8963	10.6872	11.6245	12.5450	13.4979	14.4499	15.1362	16.0611

1. Ćwiczenie 7

Mm - mała macierz 2000x2000

Dm - duża macierz 4000x4000

S - sekwencyjne obliczenia

IJK/IKJ - kolejność pętli

O - poziom optymalizacji przez kompilator

	Mm, S, IJK, O domyślny	Mm, S, IKJ, O domyślny	Mm, S, IJK, O3	Mm, S, IKJ, O3	Dm, S, IJK, O domyślny	Dm, S, IKJ, O domyślny	Dm, S, IJK, O3	Dm, S, IKJ, O3
Czas obliczeń[s]	90.5303	28.6854	62.3630	2.8016	867.0024	227.5953	642.6791	20.8237

Dalsze obliczenia były przeprowadzane na pętli IKJ oraz największym poziomie optymalizacji O3.

	2000x2000 1K/4P	4000x4000 1K/4P	2000x2000 4K/4P	2000x2000 4K/16P	4000x4000 4K/4P	4000x4000 4K/16P
Czas obliczeń [s]	0.8227	11.3530	0.4649	0.2527	4.3923	2.4195
Przyspieszenie	3.4056	1.8342	6.0259	11.0887	4.7410	8.6067
Efektywność	0.8514	0.4586	1.5065	0.6930	1.1852	0.5379
Koszt zrównoleglenia	0.4890	24.5882	-0.9419	1.2409	-3.2547	17.8880
Względny koszt zrównoleglenia	0.1745	1.1808	-0.3362	0.4429	-0.1563	0.8590

Z powyższych tabel można wyciągnąć następujące wnioski:

- czas obliczeń oraz reszta miar prezentują się lepiej, jeżeli prowadzimy obliczenia w sieci komputerów, z których każdy ma jeden przydzielony proces, aniżeli na jednym komputerze o wielu procesach. Może być to związane ze sposobem komunikacji i dzielenia/przydzielania pamięci w ramach jednego komputera.
- w przypadku większej liczby procesów przydzielonych każdemu komputerowi w sieci uzyskujemy około 2 razy większe przyspieszenie. Jednakże koszt komunikacji wzrasta (ze względu na większą liczbę procesów) a efektywność spada (co oznacza, że nie wszystkie procesy są efektywnie wykorzystywane podczas obliczeń). Dla powyższych rozmiarów macierzy można przypuszczać, że wartości pośrednie pomiędzy 4 a 16 procesów byłyby najlepszym rozwiązaniem.