Quantum Chemistry on Quantum Computers

#7 Computational Complexities

Kenji Sugisaki^{1,2,3}

¹Department of Chemistry, Graduate School of Science, Osaka City University, Japan

²JST PRESTO, Japan

³CQuERE, TCG CREST, India

Motivations

- 1) Sum of two integers of *N*-digits
- 2) Product of two integers of *N*-digits
- 3) Find the greatest common divisor of two integers of *N*-digits
- 4) Factorization of an N-digit integer
- 5) Sort *N* integers in ascending order

Some problems are easy but others are not.

- How to quantify the difficulty of problems?
 - Investigate the scaling of the number of elementary steps against the problem size *N*.
 - ➤ E.g., How much the computational cost will increase if the problem size N becomes twice?
- How to classify problems in terms of complexities?

Turing Machine

Photo taken from Wikipedia: https://en.wikipedia.org/wiki/Alan_Turing

- Mathematical model of computation
- Consists of a control unit with a finite-state (CPU) and a tape unit with a head that moves from one tape cell to a neighboring one in each unit of time (Memory)

- 1) Read the symbol X
- 2) Write the symbol Y according to the state of CPU S and the symbol X
- 3) Unmove or move the tape to left or right
- 4) Change the state to S'
- 5) Return to step 1 or halt

Big O Notations

Characterize functions according to their growth rates

f = O(g) if there exists a constant c such that $f(n) \le c \cdot g(n)$ for every sufficiently large n.

$$f(n) = 2n + 3$$

$$f(n) = n^{2} + 4n$$

$$f(n) = n^{2} + 4n$$

$$f(n) = 2^{n} + n$$

$$f(n) = 0(n^{2})$$

Big O tilde notation: Ignores logarithmic factors

$$\widetilde{O}(h(n)) = O(h(n)\log n)$$

Example: Fast Fourier transformation of length n can be solved in $O(n \log n) = \tilde{O}(n)$

Relationship between size, order and computational steps

- Practically solvable problems should be in the polynomial scaling.
- Exponential scaling is usually very hard to solve, except for small problem size *n*.
- From the practical point of view, problems in exponential scaling is *not always* harder than that in polynomial scaling.

E.g.,
$$1.00001^n$$
 vs. n^{10}
22025 vs. 10^{60} for $n = 10^6$

Complexity classes

A set of functions those can be computed within given resource bounds. We will pay attention to *Boolean functions*, those have only one bit of output.

Time complexity ... computational time (number of steps) Space complexity ... memory space

☆ The class P (polynomial-time)

Decision problems those can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.

 $O(n^c)$, where c is some constant c > 0.

Summation, multiplication, etc.

Primality test (AKS algorithm)

Finding the Eulerian path

^{*} Note that the computational cost of the AKS algorithm is $\tilde{O}(\log^{21/2} n)$ in the original proposal, and it is quite difficult to apply to large integers.

Königsberg seven bridge problem and Eulerian path

Kaliningrad, Russia

Is it possible to devise a walk through the city that would cross each of those bridges once and only once?

Leonhald Euler

Immanuel Kant, a philosopher

David Hilbert, a mathematician

To cross each of node once and only once,

- 1) The graph is connected.
- The number of vertices with odd number of nodes should be 0 or 2.

Complexity classes

☆ The class EXP (exponential-time)

Decision problems those can be solved by a deterministic Turing machine using a **exponential amount of computation time**, or exponential time.

 $2^{O(p(n))}$, where p(n) is a polynomial function of n.

Finding the Hamiltonian cycle

It is obvious that $P \subseteq EXP$.

The class NP (non-deterministic polynomial-time)

- 1) Allows non-deterministic choices (e.g., using dices, choice based on human intuition)
- 2) Use the computational cost of the luckiest case
- 3) Ignore if the answer is "No"

Solvable in polynomial time under three conditions above.

For problems in class **NP**, we can verify whether the instance is correct or not using

deterministic Turing machine in polynomial time.

Existence of the Hamiltonian cycle Satisfiability problem (SAT)

 $NP \subseteq EXP$

Longleat hedge maze, UK
Photo taken from Wikipedia:
https://en.wikipedia.org/wiki/Longleat

Icosian game and Hamiltonian cycle

Icosian game

Finding a cycle along the edges of a dodecahedron such that every vertex is visited a single time, and the ending point is the same as the starting point.

Finding a Hamiltonian cycle is quite difficult for the graphs with large number of vertices/edges.

Once the Hamiltonian cycle is given, verification is very easy.

Figure taken from J. Sleegers, D. van den Berg, Looking for the hardest Hamiltonian cycle problem instances. In *Proceedings of the 12th International Joint Conference on Computational Intelligence – ECTA*, pp. 40-48, 2020. DOI: 10.5220/0010066900400048

Satisfiability problem (SAT)

A propositional logic formula, also called Boolean expression, is built from variables, operators AND (\land) , OR (\lor) , NOT (\neg) , and parentheses.

Literals
$$(x_1 \lor x_2) \land (x_1 \land \overline{x_3}) \land (x_2 \lor x_3)$$
Clauses

or equivalently, $(x_1 \text{ or } x_2)$ and $(x_1 \text{ and not } x_3)$ and $(x_2 \text{ or } x_3)$

TRUE:
$$x_1 = 1$$
, $x_2 = 1$, and $x_3 = 0$

n-SAT problem: each clause has at most *n* literals.

Completeness and Hardness

The problem Q is in NP-complete if

- Q belongs to class NP and
- Any problems in class NP can be translated to the particular instance of problem Q in polynomial time

NP-complete problem is the most difficult problem in the class NP

Existence of the Hamiltonian cycles 3-SAT

The problem Q is in NP-hard if Q is at least as hard as the hardest problems in NP

Computational complexity class with a Venn diagram

Here, we assume that $P \neq NP$

Class BPP

Probabilistic Turing machine (PTM)

A non-deterministic Turing machine with two transition functions δ_0 and δ_1 . To execute a PTM, we choose in each step with probability 1/2 to apply the transition δ_0 and with probability 1/2 to apply δ_1 .

☆ The class **BPP** (bounded-error probabilistic polynomial-time)

Decision problems those can be solved by a **probabilistic Turing machine** using a **polynomial amount of computation time**, or polynomial time, with an error probability bounded away from 1/3 for all instances.

Complexity class for quantum computers

☆ The class BQP (bounded-error quantum polynomial-time)

Decision problems those can be solved by a quantum computer using a polynomial amount of computation time, or polynomial time, with an error probability bounded away from 1/3 for all instances.

The class BQP is the quantum analog of BPP

☆ The class QMA (Quantum Merlin Arthur)

For problems in class **QMA**, we can verify whether the instance is correct or not using a quantum computer in polynomial time.

The class QMA is the quantum analog of NP

k-Local Hamiltonian

 $H = \sum_{i} H_{i}$, where each H_{i} acts only on $\leq k$ qubits

(yes case) H has an eigenvalue less than a (no case) All of the eigenvalue of H are larger than b where $b-a \geq 1/\mathrm{poly}(N)$

5-local Hamiltonian is **QMA**-complete

A. Y. Kitaev, A. H. Shen, M. N. Vyalyi, Classical and Quantum Computation. Graduate Studies in Mathematics Volume 47, American Mathematical Society, 1999.

3-local Hamiltonian is **QMA**-complete

J. Kempe, O. Regev, Quantum Info. Comp. 2003, 3, 258–264.

2-local Hamiltonian is **QMA**-complete

J. Kempe, A, Kitaev, O. Regev, SIAM J. Comput. 2006, 35, 1070-1097.

1-local Hamiltonian is P

Relationships of complexity classes

$$P \subseteq BPP \subseteq BQP$$

Problems in class **P** can be solved in polynomial time using a quantum computer

$$P \subseteq NP \subseteq QMA$$

$$BQP \subseteq QMA$$

$$NP \not\subseteq BQP$$

Complexity classes of electronic structure problems

THE JOURNAL OF CHEMICAL PHYSICS 141, 234103 (2014)

On the NP-completeness of the Hartree-Fock method for translationally invariant systems

James Daniel Whitfield^{1,a)} and Zoltán Zimborás^{2,3,b)}

arXiv:2103.08215

Electronic Structure in a Fixed Basis is QMA-complete

Bryan O'Gorman* Sandy Irani[†] James Whitfield** Bill Fefferman[‡]

March 16, 2021

¹Vienna Center for Quantum Science and Technology, Department of Physics, University of Vienna, Boltzmanngasse 5, Vienna, Austria

²Department of Computer Science, University College London, Gower Street, WC1E 6BT London, United Kingdom

³Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain

Complexity classes of density functional theory

LETTERS

PUBLISHED ONLINE: 23 AUGUST 2009 | DOI:10.1038/NPHYS1370

physics

Computational complexity of interacting electrons and fundamental limitations of density functional theory

Norbert Schuch1* and Frank Verstraete2*

Finding an universal functional is **QMA**-complete

PRL 98, 110503 (2007)

PHYSICAL REVIEW LETTERS

week ending 16 MARCH 2007

Quantum Computational Complexity of the N-Representability Problem: QMA Complete

Yi-Kai Liu, 1 Matthias Christandl, 2 and F. Verstraete 3,4

¹Computer Science and Engineering, University of California, San Diego, California, USA

²Centre for Quantum Computation, Centre for Mathematical Sciences, DAMTP, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

³Facultät für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria

⁴Institute for Quantum Information, Caltech, Pasadena, California, USA

(Received 17 September 2006; published 16 March 2007)

Complexity classes of density functional theory

New Journal of Physics

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft DPG I DPG Institute of Physics

Computational complexity of time-dependent density functional theory

J D Whitfield¹, M-H Yung^{2,3}, D G Tempel³, S Boixo⁴ and A Aspuru-Guzik³

Received 19 May 2014, revised 8 July 2014 Accepted for publication 14 July 2014 Published 15 August 2014

New Journal of Physics 16 (2014) 083035

doi:10.1088/1367-2630/16/8/083035

Computing the time-dependent Kohn-Sham potential is BQP

¹ Vienna Center for Quantum Science and Technology, University of Vienna, Department of Physics, Boltzmanngasse 5, Vienna A-1190, Austria

² Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China

³ Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA

⁴Google, Venice Beach, CA 90292, USA E-mail: JDWhitfield@gmail.com

Complexity classes of variational quantum algorithms

PHYSICAL REVIEW LETTERS 127, 120502 (2021)

Editors' Suggestion

Training Variational Quantum Algorithms Is NP-Hard

Lennart Bittel^{®*} and Martin Kliesch^{®†}

Quantum Technology Group, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany

(Received 25 February 2021; accepted 10 August 2021; published 17 September 2021)

Review papers

☆ General reviews

J. Watrous, Quantum Computational Complexity. In *Encyclopedia of Complexity and Systems Science*, Springer, New York, 2009.

☆ Computational complexities of quantum chemical calculations

J. D. Whitfield, P. J. Love, A. Aspuru-Guzik, *Phys. Chem. Chem. Phys.* **2013**, *15*, 397–411.

☆ BQP-complete problems

P. Wocjan, S. Zhang, arXiv:quant-ph/0606179.

☆ QMA-complete problems

A. D. Bookatz, Quantum Inf. Comp. 2014, 14, 361-383; arXiv:1212.6312.

☆ Book

S. Arora, B. Barek, *Computational Complexity*. *A Modern Approach*, Cambridge University Press, 2009.