

Introduction to Neural Networks

Johns Hopkins University
Engineering for Professionals Program
605-447/625-438

Dr. Mark Fleischer

Module 11.4.1: RBM Mathematics, Insights and Getting Your Head Around It!

Engineering for Professionals

What We've Covered So Far

- Probabilistic foundations of RBMs.
 - Energy/Consensus associated with a visible and hidden pair of vectors.
 - o Probability of a node's states

Goal

 Raise the probability that a visible vector with be faithfully reconstructed when a 'hidden' vector is presented to the visible layer.

Question:

How do we train an RBM so that 'reconstructions' are likely to create a reasonable facsimile of the original data?

Weights → Energies → Probabilities

- Each possible joint configuration of the visible and hidden units has an energy
 - The energy is determined by the weights and biases (as in a Hopfield net).
- The energy of a joint configuration of the visible and hidden units determines its probability:

$$p(\mathbf{v},\mathbf{h}) \propto e^{-E(\mathbf{v},\mathbf{h})}$$

 The probability of a configuration over the visible units is found by summing the probabilities of all the joint configurations that contain it.

From Hinton 2007 (modified)

Engineering for Professionals

Using energies to define probabilities

- The probability of a joint configuration over both visible and hidden units depends on the energy of that joint configuration compared with the energy of all other joint configurations.
- The probability of a configuration of the visible units is the sum of the probabilities of all the joint configurations that contain it.

From Hinton 2007 (modified)

$$p(\mathbf{v}, \mathbf{h}) = \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{\sum_{\substack{u,g \\ \text{function}}} e^{-E(\mathbf{v}^u, \mathbf{h}^g)}}$$

$$p(\mathbf{v}) = \frac{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^g)}}{\sum_{u,g} e^{-E(\mathbf{v}^u, \mathbf{h}^g)}}$$

How Do We Train an RBM?

$$p(\mathbf{v}) = \frac{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})}}{\sum_{u,g} e^{-E(\mathbf{v}^{u}, \mathbf{h}^{g})}} \longrightarrow \ln p(\mathbf{v}) = \ln \left(\frac{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})}}{\sum_{u,g} e^{-E(\mathbf{v}^{u}, \mathbf{h}^{g})}} \right)$$

$$= \ln \sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})} - \ln \sum_{u,g} e^{-E(\mathbf{v}^{u}, \mathbf{h}^{g})}$$

$$\frac{\partial \ln p(\mathbf{v})}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \ln \sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})} - \frac{\partial}{\partial w_{ij}} \ln \sum_{u,g} e^{-E(\mathbf{v}^{u}, \mathbf{h}^{g})}$$

Engineering for Professionals

Looking at Term A:

$$\frac{\partial}{\partial w_{ij}} \ln \sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})} = \frac{1}{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})}} \cdot \frac{\partial}{\partial w_{ij}} \sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})}$$

$$= \frac{1}{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})}} \cdot \sum_{g} \frac{\partial e^{-E(\mathbf{v}, \mathbf{h}^{g})}}{\partial w_{ij}}$$

$$= \frac{1}{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})}} \cdot \sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})} \cdot \frac{\partial \left(-E(\mathbf{v}, \mathbf{h}^{g})\right)}{\partial w_{ij}}$$

Looking at Term A:

Recall that
$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i,j} v_i h_j w_{ij}$$

$$\frac{\partial}{\partial w_{ij}} \ln \sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^g)} = \frac{1}{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^g)}} \cdot \sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^g)} \cdot \frac{\partial \left(-E(\mathbf{v}, \mathbf{h}^g)\right)}{\partial w_{ij}}$$

$$= \underbrace{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^g)}}_{E(\mathbf{v}, \mathbf{h}^g)} v_i h_j^g = \sum_{g} p(\mathbf{h}^g | \mathbf{v}) v_i h_j^g = \langle v_i \cdot h_j \rangle_{\mathbf{v}}$$

Engineering for Professionals

Where does that conditional probability come from?

$$\Pr\{A \middle| B\} = \frac{\Pr\{A \cap B\}}{\Pr\{B\}}$$

$$p(\mathbf{h}^g \middle| \mathbf{v}) = \frac{p(\mathbf{v}, \mathbf{h}^g)}{p(\mathbf{v})} = \frac{\frac{1}{Z}e^{-E(\mathbf{v}, \mathbf{h}^g)}}{\frac{1}{Z}\sum_{g}e^{-E(\mathbf{v}, \mathbf{h}^g)}} = \frac{e^{-E(\mathbf{v}, \mathbf{h}^g)}}{\sum_{g}e^{-E(\mathbf{v}, \mathbf{h}^g)}}$$

$$\frac{e^{-E(\mathbf{v}, \mathbf{h}^g)}}{\sum_{g}e^{-E(\mathbf{v}, \mathbf{h}^g)}} = \frac{p(\mathbf{v}, \mathbf{h}^g)}{p(\mathbf{v})} = p(\mathbf{h}^g \middle| \mathbf{v})$$

Looking at Term B:

$$\frac{\partial}{\partial w_{ij}} \ln \sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)} = \frac{1}{\sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)}} \cdot \frac{\partial}{\partial w_{ij}} \sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)}$$
$$= \frac{1}{\sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)}} \cdot \sum_{u,g} \frac{\partial e^{-E(\mathbf{v}^u,\mathbf{h}^g)}}{\partial w_{ij}}$$

Engineering for Professionals

Looking at Term B:

$$\frac{\partial}{\partial w_{ij}} \ln \sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)} = \frac{\sum_{u,g} \frac{\partial e^{-E(\mathbf{v}^u,\mathbf{h}^g)}}{\partial w_{ij}}}{\sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)}}$$

$$= \frac{\sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)} \frac{\partial \left(-E(\mathbf{v}^u,\mathbf{h}^g)\right)}{\partial w_{ij}}}{\sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)}}$$

$$= \frac{\sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)} v_i^u h_j^g}{\sum_{u,g} e^{-E(\mathbf{v}^u,\mathbf{h}^g)}} = \sum_{u,g} p(\mathbf{v}^u,\mathbf{h}^g) v_i^u h_j^g = \langle v_i \cdot h_j \rangle_{\mathbf{vh}}$$

Basis of Contrastive Divergence

$$\frac{\partial \ln p(\mathbf{v})}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \ln \sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^{g})} - \frac{\partial}{\partial w_{ij}} \ln \sum_{u,g} e^{-E(\mathbf{v}^{u}, \mathbf{h}^{g})}$$
$$= \langle v_{i} \cdot h_{j} \rangle_{\mathbf{v}} - \langle v_{i} \cdot h_{j} \rangle_{\mathbf{vh}}$$

Engineering for Professionals

Using Contrastive Divergence

 Use the derivative to perform stochastic gradient ascent!

$$\frac{\partial \ln p(\mathbf{v})}{\partial w_{ij}} \quad \propto \quad \Delta w_{ij} = \eta \left(\left\langle v_i \cdot h_j \right\rangle_{\mathbf{v}} - \left\langle v_i \cdot h_j \right\rangle_{\mathbf{vh}} \right)$$

But why?

Introduction to Neural Networks

Johns Hopkins University Engineering for Professionals Program 605-447/625-438

Dr. Mark Fleischer
Copyright 2014 by Mark Fleischer

Module 11.4.2: RBM Mathematics, Insights and Getting Your Head Around It!

Our Goal

 Strengthen the probability of reconstructed visible vectors so that they correspond to their probability of occurring in a training set of data.

Engineering for Professionals

The Energy/Probability Relationships

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i,j} w_{ij} v_i h_j - \sum_i a_i v_i - \sum_j b_j h_j$$

$$Pr(\mathbf{v}, \mathbf{h}) = \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{\sum_{u,g} e^{-E(\mathbf{v}^u, \mathbf{h}^g)}}$$

$$Pr(\mathbf{v}) = \frac{\sum_g e^{-E(\mathbf{v}, \mathbf{h}^g)}}{\sum_{u,g} e^{-E(\mathbf{v}^u, \mathbf{h}^g)}}$$

A Numerical Example

We are going to increase the probability of the vector $\mathbf{v} = [0, 1]$.

Engineering for Professionals

So What is the Generative Model?

v	h	Joint Probability
0 0	00	
0 0	01	
0 0	10	
0 0	11	
01	00	
01	01	
0 1	10	
0 1	11	

v	h	Joint Probability
10	00	
10	01	
10	10	
10	11	
11	00	
11	01	
11	10	
11	11	

So What is the Generative Model?

					E	e^_E	Probability
	v1	v2	h1	h2			
1	0	0	0	0	0	1	0.031390208
2	0	0	0	1	0	1	0.031390208
3	0	0	1	0	0	1	0.031390208
4	0	0	1	1	0	1	0.031390208
5	0	1	0	0	0	1	0.031390208
6	0	1	0	1	_0.5	1.648721271	0.051753703
7	0	1	1	0	_0.5	1.648721271	0.051753703
8	0	1	1	1	_1	2.718281828	0.085327431
9	1	0	0	0	0	1	0.031390208
10	1	0	0	1	_0.5	1.648721271	0.051753703
11	1	0	1	0	_0.5	1.648721271	0.051753703
12	1	0	1	1	_1	2.718281828	0.085327431
13	1	1	0	0	0	1	0.031390208
14	1	1	0	1	$_{-}1$	2.718281828	0.085327431
15	1	1	1	0	_1	2.718281828	0.085327431
16	1	1	1	1	_2	7.389056099	0.231944006
						31.8570685	1

All energy and probability values are based solely on the weights and biases!

Engineering for Professionals

What Does This Tell Us?

- The different configurations will occur with the indicated probability.
- · How?
 - Present (activate) a initial visible vector onto the visible nodes (set their states).
 - · Stochastically assign states to the hidden vector nodes.
 - Let the hidden vector nodes stochastically influence the assignment of states to the visible nodes, and so on.

If we do this back and forth for a very large number of cycles and count the occurances of the different vectors (configurations), they will occur with the frequency from the preceding table!

What is the Frequency of Occurrence of Visible Vector [0,1]?

From the table, we can calculate the marginal probability.

$$p(\mathbf{v}) = \frac{\sum_{g} e^{-E(\mathbf{v}, \mathbf{h}^g)}}{\sum_{u,g} e^{-E(\mathbf{v}^u, \mathbf{h}^g)}}$$

This sums to about 0.22022505.

All based on the energy values and Boltzmann distribution function.

Engineering for Professionals

Let's See How Stochastic Update Functions are consistent with the table values.

- Thus, given a visible vector, the hidden vectors are assigned states with certain probabilities based on the activity function.
- Remember?

Introduction to Neural Networks

Johns Hopkins University Engineering for Professionals Program 605-447/625-438

Dr. Mark Fleischer
Copyright 2014 by Mark Fleischer

Module 11.4.3: RBM Mathematics, Insights and Getting Your Head Around It!

Engineering for Professionals

What are the probabilities of h given v?

$$\Pr\{h_1 = 1 | \mathbf{v}\} = \frac{1}{1 + e^{-S_{h_1}/T}}$$

If S = 0, then this probability is 1/2.

Can you determine the first row of the table?

$$\Pr\{\mathbf{v},\mathbf{h}\} = \Pr\{\mathbf{h} | \mathbf{v}\} \times \Pr\{\mathbf{v}\}$$

$$\Pr\{h_1 = 1 | \mathbf{v}\} = \frac{1}{1 + e^{-S_{h_1}/T}}$$

Let's assume for now that $\mathbf{v} = [0, 0]$

So,
$$S_{h_1} = \sum_{i} w_i v_i + \theta_i$$
$$= \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 + 0 = 0$$

Engineering for Professionals

The Generative Model

Since $S_{h1} = 0$, then

$$\Pr\{h_1 = 1 | \mathbf{v}\} = \frac{1}{1 + e^{-S_{h_1}/T}} = \frac{1}{1 + 1} = \frac{1}{2}$$

But for the first row of the table, we want to know the probability of $h_1 = 0$ (not 1). Also, we want to determine the probability of the **vector h given the vector v**₁

Probability of **h**, given that $v_1 = [0, 0]$, is $\frac{1}{4}$.

This is because h₁ is independent of h₂.

So What is the Generative Model?

		v	h	Joint Probability
	_	0 0	00	P _{v1} / 4
		0 0	01	P _{v1} / 4
P_{v1}		0 0	10	P _{v1} / 4
l	_	0 0	11	P _{v1} / 4
	_	01	00	
P_{v2}		01	01	
		01	10	
l	_	01	11	

		V	h	Joint Probability
ſ		10	00	
ل م		10	01	
P _{v3}		10	10	
	_	10	11	
		11	00	
		11	01	
P_{v4}		11	10	
Į	_	11	11	

Engineering for Professionals

What are the probabilities of h given v?

$$\Pr\{h_1 = 1 | \mathbf{v}_2\} = \frac{1}{1 + e^{-S_{h_1}/T}}$$

Now, $\mathbf{v} = [0, 1]$

So, again,
$$S_{h_1} = \sum_i w_i v_i + \theta_i$$

$$= \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$$

$$\Pr\{h_1 = 1 | \mathbf{v}_2\} = \frac{1}{1 + e^{-1/2}} = 0.622459331$$

So, given that $\mathbf{v} = [0, 1]$, Pr $\{ \mathbf{h} = [0,0] \mid \mathbf{v_2} \} = 0.3775 \times 0.3775 = 0.1425$.

Engineering for Professionals

So What is the Generative Model?

	v	h	Joint Probability
	0 0	00	P _{v1} / 4
	0 0	01	P _{v1} / 4
P_{v1}	0 0	10	P _{v1} / 4
L	0 0	11	P _{v1} / 4
	01	00	P _{v2} • 0.1425
	01	01	
P_{v2}	01	10	
L	01	11	

	v	h	Joint Probability
ſ	10	00	
P _{v3}	10	01	
' v3	10	10	
L	10	11	
	11	00	
P_{v4}	11	01	
' v4	11	10	
Ĺ	11	11	

$$\Pr\{h_1 = 1 | \mathbf{v}_2\} = \frac{1}{1 + e^{-1/2}} = 0.622459331$$

So, given that $\mathbf{v} = [0, 1]$, Pr $\{ \mathbf{h} = [0, 1] \mid \mathbf{v_2} \} = 0.3775 \times 0.6224 = 0.2350.$

Engineering for Professionals

So What is the Generative Model?

	v	h	Joint Probability
Γ	0 0	00	P _{v1} / 4
	0 0	01	P _{v1} / 4
P_{v1}	0 0	10	P _{v1} / 4
L	0 0	11	P _{v1} / 4
Γ	01	00	P _{v2} • 0.1425
	01	01	P _{v2} • 0.2350
P_{v2}	01	10	P _{v2} • 0.2350
L	01	11	

	v	h	Joint Probability
ſ	10	00	
P _{v3}	10	01	
' v3	10	10	
Ĺ	10	11	
ſ	11	00	
P_{v4}	11	01	
' v4	11	10	
Ĺ	11	11	

$$\Pr\{h_1 = 1 | \mathbf{v}_2\} = \frac{1}{1 + e^{-1/2}} = 0.622459331$$

So, given that $\mathbf{v} = [0, 1]$, Pr $\{ \mathbf{h} = [1,1] \mid \mathbf{v}_2 \} = 0.6224 \times 0.6224 = 0.3874$.

Engineering for Professionals

So What is the Generative Model?

		>	h	Joint Probability
	Γ	0 0	00	P _{v1} / 4
р _		00	01	P _{v1} / 4
P _{v1} -		0 0	10	P _{v1} / 4
Į	L	0 0	11	P _{v1} / 4
	Γ	01	00	P _{v2} • 0.1425
P _{v2}		01	01	P _{v2} • 0.2350
		01	10	P _{v2} • 0.2350
	L	01	11	P _{v2} • 0.3874

	v	h	Joint Probability
ſ	10	00	
P _{v3}	10	01	
' v3	10	10	
L	10	11	
	11	00	
P_{v4}	11	01	
' v4	11	10	
Ĺ	11	11	

So What is the Generative Model?

		V	h	Joint Probability
	Γ	0 0	00	P _{v1} / 4
р _		0 0	01	P _{v1} / 4
P _{v1}		0 0	10	P _{v1} / 4
	L	0 0	11	P _{v1} / 4
	Γ	01	00	P _{v2} • 0.1425
P _{v2}		01	01	P _{v2} • 0.2350
		01	10	P _{v2} • 0.2350
	L	01	11	P _{v2} • 0.3874

	v	h	Joint Probability
ſ	10	00	P _{v2} • 0.1425
P _{v3}	10	01	P _{v2} • 0.2350
' v3	10	10	P _{v2} • 0.2350
L	10	11	P _{v2} • 0.3874
ſ	11	00	
P_{v4}	11	01	
' v4	11	10	
L	11	11	

Engineering for Professionals

What are the probabilities of h given v?

$$S_{v_4} = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1$$

$$\Pr\{h_1 = 1 | \mathbf{v}_4\} = \frac{1}{1 + e^{-1}} = 0.7310$$

So, given that $\mathbf{v} = [1, 1]$, Pr $\{ \mathbf{h} = [0,0] \mid \mathbf{v_2} \} = 0.2689 \times 0.2689 = 0.0723$.

So What is the Generative Model?

		v	h	Joint Probability
	Γ	0 0	00	P _{v1} / 4
р _		0 0	01	P _{v1} / 4
P _{v1} -		0 0	10	P _{v1} / 4
	L	0 0	11	P _{v1} / 4
	Γ	01	00	P _{v2} • 0.1425
D -		01	01	P _{v2} • 0.2350
P _{v2} -		01	10	P _{v2} • 0.2350
	L	01	11	P _{v2} • 0.3874

	v	h	Joint Probability
٦	10	00	P _{v3} • 0.1425
P _{v3}	10	01	P _{v3} • 0.2350
' v3	10	10	P _{v3} • 0.2350
L	10	11	P _{v3} • 0.3874
ſ	11	00	P _{v4} • 0.0723
P_{v4}	11	01	P _{v4} • 0.1966
' v4	11	10	P _{v4} • 0.1966
L	11	11	P _{v4} • 0.5344

Engineering for Professionals

So, based on stochastic updating...

- What is the probability of v₂?
- Let's look at the 5th row of the preceding slide.

 $P_{v2} \cdot 0.142536957 = 0.031390208^{\circ}$

From the spreadsheet For the probability of the configuration [0,1], [0, 0]

Solving for $P_{v2} = 0.220225047!$

As expected, stochastic updating is consistent with the energy/probability functions defined earlier ---- that was the basis of stochastic updating afterall!

Introduction to Neural Networks

Johns Hopkins University Engineering for Professionals Program 605-447/625-438

Dr. Mark Fleischer
Copyright 2014 by Mark Fleischer

Module 11.4.4: RBM Mathematics, Insights and Getting Your Head Around It!

Engineering for Professionals

Let's Increase the Probability that v = [0, 1] occurs

$$\Delta w_{ij} = \eta \left(\left\langle v_i \cdot h_j \right\rangle_{\mathbf{v}} - \left\langle v_i \cdot h_j \right\rangle_{\mathbf{vh}} \right)$$

Recall that the first term is ... =
$$\sum_{g} p(\mathbf{h}^{g} | \mathbf{v}) v_{i} h_{j}^{g} = \langle v_{i} \cdot h_{j} \rangle_{\mathbf{v}}$$

Let's Do Some Calculations

$$\langle v_i \cdot h_j \rangle_{\mathbf{v}} = \sum_{g} p(\mathbf{h}^g | \mathbf{v}) v_i h_j^g = \sum_{g} \left(\frac{p(\mathbf{h}^g, \mathbf{v})}{p(\mathbf{v})} \right) v_i h_j^g$$

$$\begin{vmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 0.031390208 \\ 0 & 1 & 0 & 1 & 0.5 & 1.648721271 & 0.051753703 \\ 0 & 1 & 1 & 0 & -0.5 & 1.648721271 & 0.051753703 \\ 0 & 1 & 1 & 1 & 0 & -0.5 & 1.648721271 & 0.051753703 \\ 0 & 1 & 1 & 1 & -1 & 2.718281828 & 0.085327431 \end{vmatrix}$$

So for Δw_{11} , this term is:

Recall that

$$\left\langle v_1 \cdot h_1 \right\rangle_{\mathbf{v}} = \left(\frac{0.0313}{0.2202} \right) \bullet 0 \bullet 0 + \left(\frac{0.0517}{0.2202} \right) \bullet 0 \bullet 0 + \left(\frac{0.0517}{0.2202} \right) \bullet 0 \bullet 1 + \left(\frac{0.0853}{0.2202} \right) \bullet 0 \bullet 1 = 0$$

Engineering for Professionals

Now for the Second Term

 $\sum p(\mathbf{v}^u, \mathbf{h}^g) v_i^u h_i^g = \langle v_i \cdot h_i \rangle_{\mathbf{v}\mathbf{h}}$

31.8570685

			_	•	. ,	, ,	
			и, §	3	Е	e^_E	Probability
	v1	v2	h1	h2			
1	0	0	0	0	0	1	0.031390208
2	0	0	0	1	0	1	0.031390208
3	0	0	1	0	0	1	0.031390208
4	0	0	1	1	0	1	0.031390208
5	0	1	0	0	0	1	0.031390208
6	0	1	0	1	_0.5	1.648721271	0.051753703
7	0	1	1	0	_0.5	1.648721271	0.051753703
8	0	1	1	1	_1	2.718281828	0.085327431
9	1	0	0	0	0	1	0.031390208
10	1	0	0	1	_0.5	1.648721271	0.051753703
11	1	0	1	0	_0.5	1.648721271	0.051753703
12	1	0	1	1	$_{-1}$	2.718281828	0.085327431
13	1	1	0	0	0	1	0.031390208
14	1	1	0	1	_1	2.718281828	0.085327431
15	1	1	1	0	_1	2.718281828	0.085327431
16	1	1	1	1	_2	7.389056099	0.231944006

The Second Term for v₁ h₁

So,
$$\sum_{u,g} p(\mathbf{v}^u, \mathbf{h}^g) v_1^u h_1^g = \langle v_1 \cdot h_1 \rangle_{v\mathbf{h}} = 0.45435257$$

$$\Delta w_{11} = \eta \left(\left\langle v_1 \cdot h_1 \right\rangle_{v} - \left\langle v_1 \cdot h_1 \right\rangle_{vh} \right)$$

$$= 0.1 \left(0 - 0.45435257 \right)$$

$$= -0.045435257$$

Engineering for Professionals

Doing the Same Calculations for all the other weights, we get ...

Now for all the Second Terms

$$\begin{split} \left\langle v_1 \cdot h_1 \right\rangle_{\mathbf{vh}} &= 0.0517 + 0.0853 + 0.0853 + .2319 = 0.454352573 \\ \left\langle v_1 \cdot h_2 \right\rangle_{\mathbf{vh}} &= 0.0517 + 0.0853 + 0.0853 + .2319 = 0.454352573 \\ \left\langle v_2 \cdot h_1 \right\rangle_{\mathbf{vh}} &= 0.0517 + 0.0853 + 0.0853 + .2319 = 0.454352573 \\ \left\langle v_2 \cdot h_2 \right\rangle_{\mathbf{vh}} &= 0.0517 + 0.0853 + 0.0853 + .2319 = 0.454352573 \end{split}$$

Engineering for Professionals

Updated Weights

$$\begin{split} \Delta w_{11} &= \eta \left(\left\langle v_1 \cdot h_1 \right\rangle_{\mathbf{v}} - \left\langle v_1 \cdot h_1 \right\rangle_{\mathbf{vh}} \right) = 0.1 \Big(0 - 0.45435257 \Big) = -0.045435257 \\ \Delta w_{12} &= 0.1 \Big(0 - 0.45435257 \Big) = -0.045435257 \\ \Delta w_{21} &= 0.1 \Big(0.622459331 - 0.45435257 \Big) = 0.016810676 \\ \Delta w_{22} &= 0.1 \Big(0.622459331 - 0.45435257 \Big) = 0.016810676 \end{split}$$

The Updated Configurations

	v1	v2	h1	h2	E	e ⁻ _E	Probability
1	0	0	0	0	0	1	0.032197018
2	0	0	0	1	0	1	0.032197018
3	0	0	1	0	0	1	0.032197018
4	0	0	1	1	0	1	0.032197018
5	0	1	0	0	0	1	0.032197018
6	0	1	0	1	-0.516810676	1.676671664	0.053983827
7	0	1	1	0	-0.516810676	1.676671664	0.053983827
8	0	1	1	1	-1.033621352	2.811227869	0.090513154
9	1	0	0	0	0	1	0.032197018
10	1	0	0	1	_0.454564743	1.575487492	0.050725999
11	1	0	1	0	_0.454564743	1.575487492	0.050725999
12	1	0	1	1	-0.909129486	2.482160837	0.079918176
13	1	1	0	0	0	1	0.032197018
14	1	1	0	1	-0.971375419	2.641575235	0.085050845
15	1	1	1	0	_0.971375419	2.641575235	0.085050845
16	1	1	1	1	-1.942750838	6.97791972	0.224668205
						31 05877721	1

So now the total probability $Pr\{v=[0,1]\} = 0.230677826$

If eta = 1, the probability goes up to 0.332961042!

Recall, it was 0.22022505

Engineering for Professionals

Hinton's Approximation in vector form

- 1. Take a training sample v, compute the probabilities of the hidden units and sample a hidden activation vector h from this probability distribution.
- 2. Compute the outer product of **v** and **h** and call this the positive gradient.
- 3. From **h**, sample a reconstruction **v'** of the visible units, then resample the hidden activations **h'** from this. (Gibbs sampling step)
- 4. Compute the outer product of **v**' and **h**' and call this the negative gradient.
- 5. Let the update to the weight matrix W be the positive gradient minus the negative gradient, times some learning rate: $\Delta W = \epsilon (\mathbf{v}\mathbf{h}^T \mathbf{v}'\mathbf{h}'^T)$.
- 6. Update the biases a and b analogously: $\Delta a = \epsilon(\mathbf{v} \mathbf{v'})$, $\Delta b = \epsilon(\mathbf{h} \mathbf{h'})$.

From Wikipedia.

Summary

- Showed the derivative of the log probability with respect to weights
- This can serve as the basis of a gradient ascent method for increasing the probability of the reconstructed vector v.