

Lecture 31

Least Squares

Announcements

Prediction

If we have a line describing the relation between two variables, we can make predictions

Prediction

- Problem: given a known x value, predict y, where both are in standard units
- Solution:
 - Compute correlation coefficient r
 - Predict that y = r * x
- Why is that a line? (slope = r, intercept = 0)
- Why use that line?
 - It is a version of the graph of averages, smoothed to a line

Regression Line Equation

In standard units, the equation of the regression line is:

Regression Line Equation

In original units, the regression line has this equation:

$$\left| \frac{\text{estimate of } y - \text{average of } y}{\text{SD of } y} \right| = r \times \left| \frac{\text{the given } x - \text{average of } x}{\text{SD of } x} \right|$$

y in standard units

x in standard units

$$y = \text{slope} \times x + \text{intercept}$$

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

Regression Line

Abuses of r

- Summarizing non-linear data with r
- Eliminating outliers to "improve" r
- Drawing conclusions about individuals based on data about groups (ecological correlations)
- Jumping to conclusions about causality

Correlation is not causation

Correlation is not causation

Quantifying Error

Error in Prediction

- How good is the regression line at making predictions?
 - Hard to say for unknown data
 - But easy for data we already have

error = actual value - prediction

Error in Prediction

- How good is the regression line at making predictions?
 - Hard to say for unknown data
 - But easy for data we already have

- error = actual value prediction
- RMSE = root mean square error
 - 4 3 2
- RMSE = root mean square of deviation from prediction
 - 5 4 3 2 1

RMSE

RMSE = root mean square error

```
RMSE = std(y) * sqrt(1 - r^2)
```

- If r = 1, what is RMSE? 0
- If r = 0, what is RMSE? std(y)

Compare regression line to other lines using RMSE...

Line with smallest RMSE?

- SciPy function minimize (f) returns the value x that produces the minimum output f(x) from f
- Also works for functions that make multiple arguments
- How to use to find best line:
 - Write function rmse(a, b) that returns the RMSE for line with slope a and intercept b
 - Call minimize (rmse) and get output array [a₀, b₀]
 - a₀ is slope and b₀ intercept of line that minimizes RMSE

Regression line

- Regression line has the minimum RMSE of all lines
- Names:
 - Regression line
 - Least squares line
 - "Best fit" line

What we can learn from r

- How clustered points are around a line
- How y depends on x
- How accurate linear regression predictions will be

Non-linear regression

Minimization technique works to fit curves as well as lines