# **EUROPEAN PATENT OFFICE**

## Patent Abstracts of Japan

PUBLICATION NUMBER

07138250

**PUBLICATION DATE** 

30-05-95

APPLICATION DATE

27-11-91

APPLICATION NUMBER

03335853

APPLICANT: TAKASAGO INTERNATL CORP;

INVENTOR:

TOKORO KAZUHIKO:

INT.CL.

C07D311/16 C07D493/04 // A23L 2/44

A23L 3/3544

TITLE

COUMARIN DERIVATIVE AND

ANTIOXIDANT CONTAINING THE

SAME

ABSTRACT :

PURPOSE: To provide a new coumarin derivative useful for the food area, etc., as an antioxidant being colorless, tasteless, odorless and nontoxic and excellent in both

effectiveness and sustainability.

CONSTITUTION: The objective compound of the formula (R1 is methyl and

R<sup>2</sup> is H, or R<sup>1</sup> and R<sup>2</sup> are combined together into

vinylene), e.g. 9-geranyl-4- hydroxy-7H-furo[3,2g] [1]benzopyran-7-one. The compound of the formula can be obtained by the following processes: an essential oil obtained by squeezing lemon peelings is concentrated at reduced pressures into residues, which is, in turn, dissolved in an organic solvent, and the resultant solution is fractionated using an alkaline.solution.of.appropriate.strength.and.an.acid.to.obtain.a.weakly.acidic.fraction,

which is then subjected to column chromatography.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁 (JP)

## (12) 公開特許公報(A)

(11)特許出願公開番号

## 特開平7-138250

(43)公開日 平成7年(1995)5月30日

(51) Int.Cl.5

識別記号 庁内整理番号

FI

技術表示箇所

C 0 7 D 311/16

101

101 106 D

493/04 // A 2 3 L 2/44

3/3544

A 2 3 L 2/18

審査請求 未請求 請求項の数3 FD (全 10 頁)

(21)出願番号

特顏平3-335853

(22)出願日

平成3年(1991)11月27日

(71)出願人 000169466

高砂香料工業株式会社

東京都港区高輪3丁目19番22号

(72)発明者 芋原 麻左乃

東京都大田区蒲田 5 丁目36番31号 高砂香

料工業株式会社総合研究所内

(72)発明者 河原 誠一

東京都大田区蒲田 5 丁目36番31号 高砂香

料工業株式会社総合研究所内

(72) 発明者 桝村 聡

東京都大田区蒲田 5 丁目36番31号 高砂香

料工業株式会社総合研究所内

(74)代理人 介理士 井坂 實夫 (外1名)

最終頁に続く

### (54) 【発明の名称】 クマリン誘導体およびそれを含有する抗酸化剤

### (57)【要約】

(修正有)

【目的】 食品分野において使用することができる無 色、無味、無臭、無毒であって、効力と持続性が強く、 しかも安価な抗酸化剤を提供する。

【構成】 レモン果皮を圧搾して得られる精油を減圧濃縮した残渣を有機溶媒に溶かし、適当な強度のアルカリ液、及び酸を用いて分画して得られる弱酸性画分からカラムクロマトグラフィーにより得られる、一般式(1)で示される新規なクマリン誘導体、及び当該クマリン誘導体を含有する抗酸化剤。

(式中、 $R^1$  がメチル基で $R^2$  が水素原子であるか、または、 $R^1$  と $R^2$  とでビニレン基を形成する)。

10

【特許請求の範囲】

【請求項1】 一般式

(化1)

で表されるクマリン誘導体(ただし、式中の $R^1$  がメチル基で $R^2$  が水素原子であるか、または、 $R^1$  と $R^2$  とでピニレン基を形成する。)。

【請求項2】 一般式

【化2】

で表されるクマリン誘導体(ただし、式中の $R^1$  がメチル基で $R^2$  が水素原子であるか、または、 $R^1$  と $R^2$  とでピニレン基を形成する。)を含有する抗酸化剤。

【請求項3】 レモン果皮から得られる一般式 【化3】

で表されるクマリン誘導体(ただし、式中の $R^1$  がメチル基で $R^2$  が水素原子であるか、または、 $R^1$  と $R^2$  とでピニレン基を形成する。)を含有する抗酸化剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はクマリン誘導体、および 当該クマリン誘導体を含有する抗酸化剤に関し、更に群 しくはレモン果皮より見出された新規化合物である次式

(1) [0002] (化4)

【0003】で表されるクマリン誘導体(ただし、式中のR<sup>1</sup>がメチル基でR<sup>2</sup>が水素原子であるか、または、R<sup>1</sup>とR<sup>2</sup>とでビニレン基を形成する。)およびこの化合物を含有する抗酸化剤に関する。本発明の抗酸化剤は飲料、冷薬等に使用することができる。

[0004]

【従来の技術】油脂を含む食品は空気酸化を受けやす く、それによって食品の品質が著しく劣化する。その品 質劣化を防止するために抗酸化剤が用いられており、従 20 来から用いられている抗酸化剤にはBHA(ブチル化ヒ ドロキシアニソール)、BHT (ブチル化ヒドロキシド ルエン) などの合成抗酸化剤およびα-トコフェロール (以下においては「α-Toc」と略記する。)、アス コルビン酸、グアヤク脂などの天然抗酸化剤があり、水 溶性抗酸化剤の一つとしてアスコルビン酸がよく用いら れているが、酸味が強いために添加した食品の味を損な うことがあり、添加量に限度があった。一方、油溶性の α-Tocは水溶液中で濁りを生じることがあり、また その抗酸化力はBHA、BHTなどの合成製品には一般 30 的に劣る。そのために飲料のような水溶液中で強い効果 を発現し、かつ濁らない無味無臭無色の天然抗酸化剤が 望まれていた。また、式(1)と類似の構造を有するも のとしては8-(1,1-ジメチル-2-プロペニル) -5-ヒドロキシ-7-メトキシ-2H-1-ベンゾピ ラン-2-オン(2) [ Tetrahedron letter, 24, 5897 (1983) ] や、5-ヒドロキシ-7-メトキシ-8-(3-メトキシ-3-メチルプチル) -2H-1-ペン ゾピラン (3) [ Phytochemistry., 17, 2111 (1 9 7 8) ] あるいは4, 9 - ジヒドロキシー 7 H - フロ [3, 2-g] [1] ペンゾピラン-7-オン(4) [Drug Metab. Dis-pos., 15. 318 (1987)] 等が既知であるが、これらは抗酸化性についての記載が

【0005】 【化5】

ない。

50

[0006] 【化6】

[0007] (化7)

[0008]

【発明が解決しようとする課題】しかしながら食品分野 においては、化学合成品の使用は合成副生物の毒性等の 問題もあることからあまり歓迎されない傾向にある。一 方、天然抗酸化剤は一般的に効力が弱く、その持続性も 弱いため、抗酸化剤としていっそう安全で効力、持続性 に富んだものが望まれている。

#### [0009]

【課題を解決するための手段】本発明者らは上記の問題 を解決するために、飲料等によく利用されている柑橘系 果実より大然抗酸化剤開発を目的として種々検討したと ころ、レモン果皮 (Citrus Limon Burn. 1.) を圧搾し て得られる精油を減圧濃縮した残渣を有機溶媒に溶か し、適当な強度のアルカリ液、及び酸を用いて分画した ところ、弱酸性画分が強い抗酸化性を有しており、この 画分よりカラムクロマトグラフィーにより前記の式 (1) で示される新規化合物を単離したところ、このも のが強い抗酸化性を有し、抗酸化剤として有効に使用し うることを見出して本発明を完成した。本発明にかかる 新規なクマリン誘導体は、下記の一般式(1)で示され る化学構造を有し(ただしR1 = H・・・を形成す る)、後述する特性値を有する。

[0010] 【化8】

【0011】 (抽出方法) 本発明の抗酸化剤を得るため には、先ずレモンオイルの減圧蒸留を行い、その残渣に 50

残渣の10倍量以上(好ましくは10~20倍)のメタ ノールを加えて加温攪拌して分散させ、冷凍庫中に一晩 放置する。その後、メタノール溶液とメタノール不溶性 のワックス状沈殿に分離するので、セライト等の濾過助 剤を用いてこれらを濾別し、溶液を減圧濃縮して油状物 を得る。次にこの油状物を有機溶媒に溶解させ、強酸性 部、中性部、弱酸性部に分ける。有機溶媒としては酢酸 メチル、酢酸エチル、酢酸プロビル等のエステル類、ジ エチルエーテル、ジプロピルエーテル等のエーテル類が 10 適するが、酢酸エチルが好ましい。すなわち有機溶媒層 をまず弱アルカリ性水溶液で抽出し、酸で中和して有機 溶媒により抽出することにより強酸性画分(画分SA) を取り出し、ついで有機溶媒層を強アルカリ性水溶液を 用いて抽出し、酸で中和して有機溶媒で抽出することに より弱酸性画分(画分WA)を取り出し、強アルカリ性 水溶液層と分離した有機溶媒層は水洗後、濃縮して中性 画分(画分N)とした。そして、強い抗酸化能を有する **弱酸性画分からカラムクロマトグラフィーにより本発明** 化合物を単離した。また、本発明化合物の構造確認のた め、このものの誘導体を別途合成した。

#### [0012]

20

【実施例】以下に本発明の実施例および比較例を示して 本発明を詳しく説明するが、本発明はこれによって限定 されるものではない.

#### 実施例1

カリフォルニア産コールドプレスレモンオイル(サンキ スト社製) 1 K g の減圧蒸留を行い、蒸留残渣 3 4 g を 得た。滅圧蒸留は125℃、0、2~0、5mmHgの 条件下で留出物が出なくなるまで行った。この残渣に、 その10倍量のメタノールを加えて湯浴上で加温攪拌し て分散させ、室温まで冷却後に-28~-23℃の冷凍 庫中に一晩放置した。放置後、メタノール溶液とメタノ ール不溶性ワックス状沈殿物に分離するので、セライト を助剤として用いてこれらを濾別し、溶液を減圧濃縮し て油状物19gを得た。この油状物を、その10倍量の 酢酸エチルに溶解させたうえで、飽和炭酸水素ナトリム 水溶液150ミリリットルを加えて2分間振盪後に静置 して、炭酸水素ナトリウム水溶液層と酢酸エチル層とに 分液した。この抽出操作を2回繰り返した後に、得られ 40 た酢酸エチル層を5℃以下に保ちながら水酸化ナトリウ ム水溶液を徐々に加えてアルカリ性とし、水酸化ナトリ ウム水溶液層と酢酸エチル層とに分液した。水酸化ナト リウム水溶液層は塩酸で中和した後に、酢酸エチルで再 抽出を行い、酢酸エチルを留去することにより弱酸性画 分を4.1 g得た。水酸化ナトリウム水溶液層と分液し た酢酸エチル層は、水洗後に酢酸エチルを留去すること により中性両分を12.1g得た。他方、炭酸水素ナト リウム水溶液層は塩酸で中和した後に酢酸エチルで抽出 し、酢酸エチルを留去することによって強酸性画分を 0. 1 g 得た。各々の画分についての抗酸化効果をα-

-657-

Toc、BHT、コントロール(抗酸化剤無添加)と比 較したものを表1に示す。ただしO. Dは吸光度を表

#### 【0013】 (比較例1)

(試験法) 抗酸化効果の測定方法は以下のごとくロダン 鉄法で測定した。試験品(前記画分、α-Toc. BH T) を50ミリリットルのスクリューバイアルに秤量 し、99、5%エタノール2ミリリットルに溶解させ た。これに蒸留して精製したリノール酸を99.5%エ 溶液 2. 052ミリリットルと 0. 05Mリン酸緩衝液 (рН7.0) 4ミリリットルおよび水を加えて10ミ リリットルとした。この試験溶液を35℃の振盪恒温器\*

\*中にて遮光保存し、経時的にリノール酸の酸化進行を追 跡した。即ち、所定時間毎にこの試験溶液 0. 1ミリリ ットルを試験管に取り、75%エタノール9、7ミリリ ットル、30%チオシアン酸アンモニウム溶液0.1ミ リリットル、2×10-2 M塩化第一鉄溶液 (3.5%塩 酸中) 0. 1ミリリットルを加え、攪拌した。塩化第一 鉄を加えてから正確に3分後の500nmにおける吸光 度を測定し、過酸化物に起因する発色を追跡した。サン プルに抗酸化性物質があるときは吸光度の上昇がコント タノールに溶解させた 2. 53 (v/v%) リノール酸 10 ロールよりも著しく低くなる(参考文献 Agric. Biol. Chem., 47. 521(1983)).

 $\{0014\}$ 

【表1】

ロダン鉄法による抗酸化効果測定結果(0.p)

| 時間                                                         |      |                                  |                              |      |                      |                      |
|------------------------------------------------------------|------|----------------------------------|------------------------------|------|----------------------|----------------------|
| 試料                                                         | 4 🛭  | 7 E                              | 10⊞                          | 148  | 17E                  | 218                  |
| コントロール<br>α - T o c .<br>B H T<br>値分 N<br>動分 S A<br>両分 W A | 0.09 | 0. 14<br>0. 01<br>0. 24<br>0. 24 | 0.20<br>0.01<br>0.44<br>0.44 | 0.82 | 0.35<br>0.02<br>0.91 | 0.40<br>0.02<br>1.31 |

添加濃度はそれぞれ0.02w/v%であった。

【0015】表1に示される結果から、弱酸性画分のみ がα-Το c よりも高い抗酸化性を有していることがわ かる。そこでこの弱酸性画分につきカラムクロマトグラ 30 フィーを行った。展開溶媒は無極性溶媒と極性溶媒との 組み合わせがよく、好ましくはヘキサンと酢酸エチルの 組み合わせがよい。それを実施例2に示す。

### 【0016】実施例2

次に、弱酸性画分4.1gにつきシリカゲル41gを用 いてカラムクロマトグラフィーを行った。ヘキサンと酢 酸エチルの比が9:1(v/v.以下同様)の混合溶媒 を満たしたカラムに弱酸性画分を吸着させ、同液500 ミリリットルで流出させ溶媒を留去した画分をwl (2. 16g)、次いでヘキサンと酢酸エチルの比が 40

4:1の混合溶媒250ミリリットルで2回流出させ溶 媒を留去した画分を各々w2 (0. 41g)、w3 (0.19g)、ヘキサンと酢酸エチルの比が1:1の 混合溶媒250ミリリットルで2回流出させ溶媒を留去 した画分をおのおのw4 (0.24g)、w5 (0.2 2g)、酢酸エチルのみ500ミリリットルで流出させ 溶媒を留去した画分をw6(0.11g)とした。各々 のフラクションについて比較例1と同様に抗酸化効果を 測定したものを表2に示す。

【0017】(比較例2)

[0018]

【表2】

7

#### ロダン鉄法による抗酸化効果測定結果(O.D)

| 战科                                                 | 7 8                                  | 100                                  | 148                                  | 16日                          | 2 2 🖯                        |
|----------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|
| コントロール<br>α-Тос<br>ВНТ<br>W )<br>W 2<br>W 3<br>W 4 | 0.08<br>0.01<br>0.64<br>0.32<br>0.15 | 0.15<br>0.02<br>1.42<br>0.80<br>0.30 | 0.22<br>0.02<br>2.02<br>1.99<br>0.60 | 0.03<br>2.03<br>1.98<br>0.73 | 0.28<br>0.03<br>1.54<br>1.91 |
| ₩ 4<br>₩ 5                                         | 0.03                                 | 1                                    |                                      | 0.06                         |                              |
| w e                                                | 0.06                                 | 0.11                                 | 0.18                                 | 0.21                         | 0.32                         |

添加濃度はそれぞれり、02×ノッ%であった。

【0019】以下にw4のIRのデータを示す。

I R  $\nu$  max  $cm^{-1}$ : 2875, 1730, 1620, 1475, 1160

表 2 の結果よりw 4 のフラクションに高い抗酸化効果が 認められたので、このフラクションw 4 について更にカ *2*0 ラムクロマトグラフィーを行った。それを実施例 3 に示 す。

## 【0020】実施例3

上記実施例2で得られたフラクションw4 (1g) をシ リカゲル100gを用い、ヘキサンと酢酸エチルの比が 3:1である展開溶媒1350ミリリットルで流出さ せ、溶媒を留去して酢酸エチルで再結晶させたところ、 本発明化合物の1つである9ーゲラニルー4ーヒドロキ シー7H-フロ[3, 2g] [1] ペンゾピラン-7-オン(5)を0.04gを得た。更に同液150ミリリ ットルで流出させ、溶媒を留去して酢酸エチルで再結晶 したところ、ベルガモチンが0.04g得られた。この ものは機器分析によりベルガモチンと確認した。更に同 展開溶媒100ミリリットルを用いて流出させ、溶媒を 留去して酢酸エチルで再結晶したところ、もう1つの本 発明化合物である8-ゲラニル-5-ヒドロキシ-7-メトキシー2H-1-ベンゾピラン-2-オン(6)を 0. 04g得た。これらの成分の画分W4中での含有量 を高速液体クロマトグラフィーによる検量線法で確認し たところ、ベルガモチン5.05%、(5)5.01 %、(6) 4.83%であった。本発明化合物は各々次 の性質および機器分析値を示すものである。

【0021】(5)9-ゲラニル-4-ヒドロキシ-7 H-フロ[3,2g][1]ペンソピラン-7-オン

外観:無色針状晶 融点:194~196℃

I R v m a x (K B r) c m - 1 : 3 2 8 0, 1 6 9 8, 1 6 2 0, 1 2 4 5, 1 1 4 2

<sup>1</sup> H-NMR (CD: OD) δ:1. 48 (3H, s), 1. 52 (3H, s), 1. 85 (3H, s),

1. 98 (2H, m), 2. 02 (2H, t), 3. 6 5 (2H, d), 4. 97 (1H, t), 5. 31 (1 H, t), 6. 22 (1 H, d), 7. 05 (1 H, d), 7. 71 (1H, d), 8. 33 (1H, d) <sup>13</sup>C-NMR (CD<sub>3</sub> OD) ppm: 163. 9, 15 4. 1, 152. 8, 145. 8, 141. 1, 13 6. 9, 132. 5, 128. 9, 125. 2, 12 4. 7, 122. 2, 113. 4, 111. 4, 10 6. 0, 105. 3, 40. 7, 27. 5, 15. 7, 22. 7, 17. 6, 16. 3, Direct MS m/z (%) 215 (100), 123 (93), 216 (90), 338 (87), 269 (85), 255 (82), 1 22 (72), 69 (65), 270 (63), 268 (47), 282 (46), 227 (45), 295 (35)

【0022】(6)8-ゲラニル-5-ヒドロキシ-7-メトキシ-2H-1-ベンゾピラン-2-オン

### 外観:無色針状晶

融点:147~149℃

I R  $\nu$  m a x (KBr) cm<sup>-1</sup>: 3155, 1694, 1615, 1339

1 H-NMR (CDC1,) &: 1. 52 (3H, s), 1. 60 (3H, s), 1. 80 (3H, s), 1. 92 (2H, t), 2. 03 (2H, m), 2. 8 (1H, s), 3. 40 (2H, d), 3. 84 (3H, s), 5. 05 (1H, t), 5. 20 (1H, t), 6. 07 (1H, s), 6. 33 (1H, s), 8. 02 (1H, d)

Direct MS m/z (%):205 (100), 259 (95), 206 (95), 122 (95), 123 (90), 245 (85), 328 (8

5), 260 (70), 69 (65), 217 (5 5), 272 (50), 258 (40), 257 (4

50 0), 207 (40), 285 (40)

9

13 C-NMR (CDC1; ) ppm: 162.5, 16 0.9, 153.4, 152.2, 139.3, 13 5.6, 131.2, 110.2, 103.0, 94. 6, 56.0, 39.8, 26.7, 26.2, 21. 2, 17.7, 16.2, 10
\*各々の化合物について前述の比較例と同様に抗酸化効果を測定した。その結果を表3に示す。

(比較例3)

[0023]

【表3】

ロダン鉄法による抗酸化効果測定結果(0.1))

| 時間試料                                                     | 4 H                               | 7 🛭                              | 9 H                 | li<br>Fi | 1 4<br>B              | 17<br>E        | 8 I   | 2 4<br>El    |
|----------------------------------------------------------|-----------------------------------|----------------------------------|---------------------|----------|-----------------------|----------------|-------|--------------|
| コントロール<br>a - T o c<br>B H T<br>化合物 1<br>化合物 2<br>ベルガモチン | 0.11<br>0.05<br>0<br>0.01<br>0.01 | 0. 12<br>0. 01<br>0. 82<br>0. 01 | 0.   7<br>  0.   01 |          | 0. <b>22</b><br>0. 02 | 0. 23<br>0. 03 | 0. 08 | 0.30<br>0.03 |

## 試料添加濃度はそれぞれり、02 (w/v) %であった。

[0024] 表3の結果より、一般式(1) で表される 本発明化合物には抗酸化効果が認められたが、同じフラ 20 クションに混合していたベルガモチンは効果が弱かっ た。また、w4は黄褐色でわずかな匂いと苦味がある が、本発明化合物 (5)、(6)は無味無臭であり粉末 のまま、あるいは溶液状として飲料などの抗酸化剤とし て使用できる。本発明の抗酸化剤は清涼飲料水、酒、果 実酒、柑橘酢、ジャム、マーマレード、ゼリー、ヨーグ ルト、またはそれらに用いるフルーツプレパレーション その他の食品などに添加して使用されうる。また、添加 の形態としてはW4の画分として用いる場合には油脂な どにはそのまま、飲料などにはエタノール(含水エタノ ールでも可、以下同様) などに溶解させて使用してもよ い。有効添加濃度は飲料などの場合は製品に対し0.0 00002~0.005 (w/v) %。香料を用いる製 品の場合にはエッセンス(40~60%含水エタノー ル) に添加して用いるのが望ましく、この場合の有効濃 度はエッセンスに対して0.004~0.01 (w/

w) %である。このエッセンスを製品に対し0.05~200.5 (v/v) %添加したときには、フレーバー劣化防止効果を発揮する。油脂を多く含む製品に対する有効濃度は0.01~0.05 (w/v) %である。また、一般式(1)で表される化合物の場合は、アルコール飲料などには粉末のまま添加してもよく、他のものにはエタノールなどに溶解させて使用してもよい。この場合の有効添加濃度は、飲料などに対しては0.00001~0.002 (w/v) %、他のものに対しては0.05~0.02 (w/v) %がよい。以下に、使用例を述べる。

[0025] [使用例] 本発明の抗酸化剤を用いた後述 の調整法に基づくモデル飲料において、フレーバー劣化 が防止されるものかどうか官能検査法により確認した。 その結果を表4に述べる。

[0026]

【表4】

官能上の経時変化

| 試験時間          |     |     |     |     |
|---------------|-----|-----|-----|-----|
| 試料            | 58  | 9 B | 125 | 19日 |
| コントロール        | ××× | _   | _   | _   |
| a-Toc         |     |     |     |     |
| (0.004w/w%添加) | ××  | ××× | -   | -   |
| フラクションw 4     |     |     |     |     |
| (0.004w/w%添加) | ××  | ××× | -   | -   |
| (0.008w/w%添加) | ×   | ××  | ××× | -   |
| (0.016w/w%添加) | ×   | ××  | ××  | ××× |
| (0.032w/w%添加) | ×   | ×   | ×   | ××  |

【0027】表記の添加量はエッセンスに対するもので ある。表中の表現は以下のことを表す。

×:フレーパーの劣化を感じる。

××:フレーバーの劣化を感じるが飲用可能

×××・飲用不可

表4の結果よりフレーバー劣化防止効果は、同濃度では 本発明抗酸化剤のほうがα-Τοcよりも効果的であっ た。これらは無添加のものよりはるかに清涼感を保って いた。

【0028】【飲料の調整と官能検査】本発明の抗酸化 10 剤をエッセンス中0.004 (w/w) %、0.008 (w/w) %、0.016 (w/w) %および0.03 2 (w/w) %になるように添加したレモンエッセンス を作り、これを用いた評酸広酸モデル飲料を作った。こ のときエッセンスはシトラールを0.1%添加して匂い を強化し、飲料への添加量を通常り、1(v/v)%の 4倍量 O. 4 (v / v) %とした。更にブリックスを通 常9.0のところを半量の4.5とした。これらはフレ ーパーの変化を分かりやすくするためである。すべての サンプルについて治蔵保存用と唐待用を作り、虐待用は 20 3.7℃で恒温器中に保存した。そして虐待によるフレー パーの変化が少ないものほど効果が高いと見なした。

【0029】【参考例】また本発明化合物の構造確認の ために別途合成を行った。つまり本発明化合物のヒドロ キシル基の代わりにメトキシ基を有するものを合成し、 本発明化合物のヒドロキシル基をジアゾメタンなどでメ トキシ化したものとを持々の物理データを比較すること によって確認するものである。以下に(6)の合成の実 験操作を述べる。水酸化カリウム 0. 4 g (0. 0 1 m ol) を水4ミリリットルに溶解させ、メタノール30 30 ミリリットルを加えた溶液にリメチン(5, 7ージメト キシクマリン) lg(0.005mol)を添加し、室 温で3時間攪拌させた。リメチンは初め結晶のままであ るが徐々に溶解し、均一な反応系となった。反応液はそ のまま減圧濃縮により溶媒を留去したのち、ジメチルス ルホキシド20ミリリットルを加え窒素気流下でゲラニ ルクロライド1g (0.006mol) を加えた。これ\*

Direct MS: 219 (100), 218 (78),

m/z (%)

273 (36), 272 (32),

221 (26), 69 (26), 122 (24)

同様にして(5)の誘導体も、5-メトキシブソラレン を出発原料として合成できる。

[0032]

12

\*を120℃に加熱して5時間攪拌し、反応終了後に水1 0ミリリットルと10%塩酸水溶液10ミリリットルを 加えて酸性条件とした後に室温にて30分間攪拌した。 この反応液からエーテルを25ミリリットルづつ用いて 2回抽出した有機層を飽和食塩水で洗浄し、硫酸ナトリ ウムで乾燥させた後に減圧濃縮によりエーテルを留去し た。得られた反応物は20gのシリカゲルをベンゼンで 満たしたカラムクロマトグラフィーに吸着させ100ミ リリットルのベンゼンで副生成物を流出させた後、酢酸 エチル5%含有ベンゼンで流出し、この画分から5,7 ージメトキシ-8-ゲラニルクマリン(7)57mgを 得た。この物質の種々の機器分析データ(IR, MS, NMR) はすべて本発明化合物のヒドロキシル基をジア ゾメタンによりメトキシ化したもののデータと一致し た。以下に物理データを示す。 5, 7-ジメトキシー 8-ゲラニルクマリン(7)

[0030]

【化9】

【0031】外観 無色粉末状

融点 97~99℃

IRvmax (KBr) cm-1; 1720, 1608, 1 1.0.0

 $^{1}$  H-NMR (C<sub>6</sub> D<sub>6</sub>) :  $\delta$  1.48 (3H, s), 1. 61 (3H, s), 2. 01 (3H, s), 2. 09 (2H, t), 2. 14 (2H, t), 3. 2 1 (3H, s), 3. 26 (3H, s), 3. 70 (2 H, d), 5. 16 (1H, t), 5. 58 (1H, t), 5. 75 (1H, s), 5. 89 (1H, d), 7. 58 (1H, d)

【発明の効果】本発明の抗酸化剤は、無色、無味、無 臭、無毒であって、効力と持続性が強く、しかもレモン の果皮から抽出することができるから、安価である。

【手統補正書】

【提出日】平成3年12月20日

【手続補正1】

【補正対象書類名】明細書

[補正対象項目名] 0009

【補正方法】変更

【補正内容】

[0009]

【課題を解決するための手段】本発明者らは上記の問題 を解決するために、飲料等によく利用されている柑橘系 果実より天然抗酸化剤開発を目的として種々検討したと ころ、レモン果皮 (Citrus Limon Bur m. f.) を圧搾して得られる精油を減圧濃縮した残渣 を有機溶媒に溶かし、適当な強度のアルカリ液、及び酸 を用いて分画したところ、弱酸性画分が強い抗酸化性を 有しており、この画分よりカラムクロマトグラフィーに より前記の式 (1) で示される新規化合物を単離したと ころ、このものが強い抗酸化性を有し、抗酸化剤として 有効に使用しうることを見出して本発明を完成した。本 発明にかかる新規なクマリン誘導体は、下記の一般式 (1) で示される化学構造を有し(ただし、式中のR' がメチル基でR2が水素原子であるか、または、R1と R 2 とでピニレン基を形成する。)、後述する特性値を 有する。

【手続補正2】

(補正対象書類名) 明細書

【補正対象項目名】0012

【補正方法】変更

【補正内容】

[0012]

【実施例】以下に本発明の実施例および比較例を示して本発明を詳しく説明するが、本発明はこれによって限定されるものではない。

実施例1

カリフォルニア産コールドプレスレモンオイル(サンキスト社製) 1 Kgの減圧蒸留を行い、蒸留残渣34gを

得た。減圧蒸留は125℃、0.2~0.5mmHgの 条件下で留山物が山なくなるまで行った。この残渣に、 その10倍量のメタノールを加えて場浴上で加温攪拌し て分散させ、室温まで冷却後に-28~-23℃の冷凍 庫中に一晩放置した。放置後、メタノール溶液とメタノ ール不溶性ワックス状沈殿物に分離するので、セライト を助剤として用いてこれらを濾別し、溶液を減圧濃縮し て油状物19gを得た。この油状物を、その10倍量の 酢酸エチルに溶解させたうえで、飽和炭酸水素ナトリム 水溶液150ミリリットルを加えて2分間振盪後に静置 して、炭酸水素ナトリウム水溶液層と酢酸エチル層とに 分液した。この抽出操作を2回繰り返した後に、得られ た酢酸エチル層を5℃以下に保ちながら水酸化ナトリウ ム水溶液を徐々に加えてアルカリ性とし、水酸化ナトリ ウム水溶液層と酢酸エチル層とに分液した。水酸化ナト リウム水溶液層は塩酸で中和した後に、酢酸エチルで再 抽出を行い、酢酸エチルを留去することにより羽酸性画 分を4.1g得た。水酸化ナトリウム水溶液層と分液し た酢酸エチル層は、水洗後に酢酸エチルを留去すること により中性画分を12.1g得た。他方、炭酸水素ナト リウム水溶液層は塩酸で中和した後に酢酸エチルで抽出 し、酢酸エチルを留去することによって強酸性画分を 0.1g得た。各々の画分についての抗酸化効果を $\alpha$ -Toc、BHT、コントロール(抗酸化剤無添加)と比 較したものを表1に示す。ただしO.D. は吸光度を表 す。

【手統補正3】

【補正対象書類名】明細書

【補正対象項目名】0026

【補正方法】変更

【補正内容】

[0026]

【表4】

表 4 官能上の経時変化

| 試験時間 5日 9日 12日 19日 コントロール                                                                                                                                                           |               |      | •   |     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-----|-----|-----|
| a-Toc<br>(0.015 w/w %添加) ×× ×××<br>フラクションW 4<br>(0.004 w/w %添加) ×× ×××<br>(0.008 w/w %添加) × ×× ××× -<br>(0.015 w/w %添加) × ×× ×××××××××××××××××××××××××××××××                        |               | 5 E) | 98  | 12日 | 19日 |
| (0.016w/w%添加)     ××     ××     -       フラクションW4     (0.004w/w%添加)     ××     ××     -       (0.008w/w%添加)     ×     ××     ××     -       (0.016w/w%添加)     ×     ××     ××     ×× | コントロール        | ×××  | -   | _   | _   |
| (0.004w/w%添加)     ××     ××     -     -       (0.008w/w%添加)     ×     ××     ××     -       (0.015w/w%添加)     ×     ××     ××     ××                                                |               | ××   | ××× | _   | -   |
| (0.015w/w%添加) × ×× ×××                                                                                                                                                              |               | ××   | ××× |     |     |
| (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                                                                           | (0.008w/w%添加) | ×    | ××  | ××× | _   |
| (0.032w/w%添加) × × × ××                                                                                                                                                              | (0.015w/w%添加) | ×    | х×  | ××  | ××× |
|                                                                                                                                                                                     | (0,032w/w%添加) | ×    | ×   | ×   | ××  |

【手繞補正書】

【提出日】平成4年6月8日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0020

【補正方法】変更

【補正内容】

【0020】実施例3

上記実施例2で得られたフラクションw4(1g)をシ リカゲル100gを用い、ヘキサンと酢酸エチルの比が 3:1である展開溶媒1350ミリリットルで流出さ せ、溶媒を留去して酢酸エチルで再結晶させたところ、 本発明化合物の1つである9ーゲラニルー4ーヒドロキ シー7H-フロ[3, 2g][1]ペンゾピラン-7-オン (5) を0, 04 gを得た。更に同被150ミリリ ットルで流出させ、溶媒を留去して酢酸エチルで再結晶 したところ、ベルガモチンが0.04g得られた。この ものは機器分析によりベルガモチンと確認した。更に同 展開溶媒100ミリリットルを用いて流出させ、溶媒を 留去して酢酸エチルで再結晶したところ、もう1つの本 発明化合物である8-ゲラニル-5-ヒドロキシ-7-メトキシー2H-1-ペンソピラン-2-オン(6)を 0.04g得た。これらの成分の画分W4中での含有量 を高速液体クロマトグラフィーによる検量線法で確認し たところ、ベルガモチン5.05%、(5)4.83 %、(6) 5.01%であった。本発明化合物は各々次 の性質および機器分析値を示すものである。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0028

【補正方法】変更

【補正内容】

【0028】 [飲料の調整と官能検査] 本発明の抗酸化 剤をエッセンス中0.001 (w/w) %、0.002 (w/w) %、0.002 (w/w) %、0.002 (w/w) %になるように添加したレモンエッセンスを作り、これを用いた糖酸炭酸モデル飲料を作った。このときエッセンスはシトラールを0.1%添加して匂いを強化し、飲料への添加量を通常0.1 (v/v) %の4倍量0.4 (v/v) %とした。更にブリックスを通常9.0のところを半量の4.5とした。これらはフレーバーの変化を分かりやすくするためである。すべてのサンブルについて冷蔵保存用と虐待用を作り、虐待用は37℃で恒温器中に保存した。そして虐待によるフレーバーの変化が少ないものほど効果が高いと見なした。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0026

【補正方法】変更

【補正内容】

[0026]

【表4】

表 4 官能上の経時変化

| 試験時間                    | 5 🗆 | 9 🗆  | 120 | 190 |
|-------------------------|-----|------|-----|-----|
| 】                       |     |      |     |     |
| コントロール                  | ××× | _    | _   |     |
| a-Toc                   |     |      |     |     |
| (0.004w/w%添加)           | ××  | ×××  | _   | -   |
| フラクションW 4               |     |      |     |     |
| (0.001w/w%添加)           | ××  | ×××  |     |     |
| (D. OO <u>2</u> w/w%添加) | ·×  | . ×× | xxx |     |
| (0.0 <u>04</u> w/w%添加)  | ×   | ××   | ××  | xxx |
| (0.0 <u>08</u> w/w%添加)  | ×   | ×    | ×   | х×  |

## フロントページの続き

(72)発明者 所 一彦

東京都大田区蒲田 5 丁 H 36番31号 高砂香 科工業株式会社総合研究所内