Ejercicio 9. Sean S y T subespacios de un K-espacio vectorial V. Probar que $S \cup T$ es un subespacio de V si y solo si $S \subseteq T$ o $T \subseteq S$.

Ejercicio 12. Sean $v_1, \ldots, v_k \in \mathbb{R}^n$. Probar que $\{v_1, \ldots, v_k\}$ es linealmente independiente sobre \mathbb{R} si y solo si $\{v_1, \ldots, v_k\}$ es linealmente independiente sobre \mathbb{C} .

Ejercicio 13. Sean $m, n y r \in \mathbb{N}$.

- (a) Probar que si $\mathbf{A} \in K^{m \times n}$ satisface que $\mathbf{A}\mathbf{x} = 0 \ \forall \mathbf{x} \in K^n$, entonces $\mathbf{A} = 0$. Deducir que si $\mathbf{A}, \mathbf{B} \in K^{m \times n}$ satisfacen que $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{x} \ \forall \mathbf{x} \in K^n$, entonces $\mathbf{A} = \mathbf{B}$.
- (b) Probar que si $\mathbf{A} \in K^{m \times n}$, $\mathbf{B} \in K^{n \times r}$ con $\mathbf{B} = (b_{ij})$ y, para $1 \leq j \leq r$, $\mathbf{B}_j = \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix}$ es la columna j-ésima de \mathbf{B} , entonces $\mathbf{A}\mathbf{B} = (\mathbf{A}\mathbf{B}_1 \mid \cdots \mid \mathbf{A}\mathbf{B}_r)$ (es decir, $\mathbf{A}\mathbf{B}_j$ es la columna j-ésima de $\mathbf{A}\mathbf{B}$).

Ejercicio 16. Sean $A, A' \in K^{m \times n}$; $B \in K^{n \times r}$; $D, D' \in K^{n \times n}$; $\alpha \in K$. Probar:

(a)
$$(A + A')^t = A^t + (A')^t$$

(e)
$$tr(\mathbf{D} + \mathbf{D}') = tr(\mathbf{D}) + tr(\mathbf{D}')$$

(b)
$$(\alpha \mathbf{A})^t = \alpha \mathbf{A}^t$$

(f)
$$tr(\alpha \mathbf{D}) = \alpha tr(\mathbf{D})$$

(c)
$$(\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t$$

(g)
$$tr(\mathbf{D}\mathbf{D}') = tr(\mathbf{D}'\mathbf{D})$$

(d) $\mathbf{A}\mathbf{A}^t$ y $\mathbf{A}^t\mathbf{A}$ son matrices simétricas.

Ejercicio 20. Sean $A, B, C, D \in K^{n \times n}$ y $M \in K^{2n \times 2n}$ la matriz de bloques

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Probar que si A es inversible, entonces

(a)
$$M = \begin{pmatrix} A & 0 \\ C & I \end{pmatrix} \cdot \begin{pmatrix} I & A^{-1}B \\ 0 & D - CA^{-1}B \end{pmatrix}$$
.

(b) $det(M) = det(AD - ACA^{-1}B)$. Concluir que si AC = CA, det(M) = det(AD - CB).

Normas vectoriales y sucesiones

Ejercicio 10. Si $x \in \mathbb{R}^n$ y $A \in \mathbb{R}^{n \times n}$, probar que las constantes de equivalencia entre las normas $\|\cdot\|_1$ y $\|\cdot\|_2$ y entre las normas $\|\cdot\|_2$ y $\|\cdot\|_{\infty}$ vienen dadas por:

Vectorial

$$\|x\|_{\infty} \le \|x\|_{2} \le \sqrt{n} \|x\|_{\infty}$$

 $\frac{1}{\sqrt{n}} \|x\|_{1} \le \|x\|_{2} \le \|x\|_{1}$

Matricial

$$\frac{1}{\sqrt{n}} \|\mathbf{A}\|_{\infty} \le \|\mathbf{A}\|_{2} \le \sqrt{n} \|\mathbf{A}\|_{\infty}$$
$$\frac{1}{\sqrt{n}} \|\mathbf{A}\|_{1} \le \|\mathbf{A}\|_{2} \le \sqrt{n} \|\mathbf{A}\|_{1}$$

• Calcular los coeficientes para la equivalencia vectorial y matricial entre las normas $\|\cdot\|_1$ y $\|\cdot\|_{\infty}$

Ejercicio 16. Probar que para toda $A \in \mathbb{R}^{n \times n}$

(a)
$$||\mathbf{A}||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
 (b) $||\mathbf{A}||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$.

Condición de matrices

Ejercicio 18. Se tiene el sistema Ax = b.

a) Sea \boldsymbol{x} la solución exacta y $\tilde{\boldsymbol{x}}$ la solución obtenida numéricamente. Se llama residuo al vector $\mathbf{r} := \boldsymbol{b} - \boldsymbol{A}\tilde{\boldsymbol{x}}$. Si notamos $\mathbf{e} = \boldsymbol{x} - \tilde{\boldsymbol{x}}$, mostrar que:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})} \frac{\|\mathbf{r}\|}{\|\boldsymbol{b}\|} \le \frac{\|\mathbf{e}\|}{\|\boldsymbol{x}\|} \le \operatorname{cond}(\boldsymbol{A}) \frac{\|\mathbf{r}\|}{\|\boldsymbol{b}\|}.$$

¿Cómo se puede interpretar este resultado?

b) En lugar del dato exacto \boldsymbol{b} se conoce una aproximación $\tilde{\boldsymbol{b}}$. $\tilde{\boldsymbol{x}}$ es tal que $\boldsymbol{A}\tilde{\boldsymbol{x}}=\tilde{\boldsymbol{b}}$. Probar que:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})}\frac{\|\boldsymbol{b}-\tilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|} \leq \frac{\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A})\frac{\|\boldsymbol{b}-\tilde{\boldsymbol{b}}\|}{\|\boldsymbol{b}\|}.$$

¿Cómo se puede interpretar este resultado?

Ejercicio 20. Probar que si $\mathbf{A} \in \mathbb{R}^{n \times n}$ es una matriz inversible y $\|\cdot\|$ es una norma matricial, la condición de \mathbf{A} verifica la desigualdad:

$$\frac{1}{\operatorname{cond}(\boldsymbol{A})} \leq \inf \left\{ \frac{\|\boldsymbol{A} - \boldsymbol{B}\|}{\|\boldsymbol{A}\|} : \boldsymbol{B} \text{ es singular} \right\}.$$

Deducir que

$$\operatorname{cond}(\boldsymbol{A}) \geq \sup \left\{ \frac{\|\boldsymbol{A}\|}{\|\boldsymbol{A} - \boldsymbol{B}\|} : \boldsymbol{B} \text{ es singular} \right\}.$$

Nota: En ambos casos, vale la igualdad, pero la otra desigualdad es un poco más complicada de probar. De la igualdad se puede concluir que cond(A) mide la distancia relativa de A a la matriz singular más próxima.

Ejercicio 1. Sean $A y B \in K^{n \times n}$. Probar que:

- (a) Si A y B son triangulares superiores, AB es triangular superior.
- (b) Si \boldsymbol{A} y \boldsymbol{B} son diagonales, $\boldsymbol{A}\boldsymbol{B}$ es diagonal.
- (c) Si \mathbf{A} es estrictamente triangular superior (es decir, $a_{ij} = 0$ si $i \geq j$), $\mathbf{A}^n = 0$.

Ejercicio 3. Escribir funciones de Python que calculen la solución de un sistema:

- (a) Ly = b, siendo L triangular inferior.
- (b) Ux = y, siendo U triangular superior.

Ejercicio 9. Sea $\mathbf{A} \in \mathbb{R}^{n \times n}$ una matriz simétrica. Probar que \mathbf{A} es definida positiva si y sólo si existe un conjunto de vectores linealmente independientes $\{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subseteq \mathbb{R}^n$ tal que $a_{ij} = \mathbf{x}_i^t \mathbf{x}_j$.

Ejercicio 10. Sean las matrices $A, B \in \mathbb{R}^{n \times n}$. Demostrar que A es simétrica definida positiva y B es no singular si y sólo si BAB^t es simétrica definida positiva.

Ejercicio 12. Sea $B = \{v_1, \dots, v_n\}$ una base de K^n $(K = \mathbb{R} \circ \mathbb{C})$.

(a) Probar que si B es ortogonal, entonces

$$\mathbf{C}_{EB} = \begin{pmatrix} \cdots & \frac{\boldsymbol{v}_1^*}{\|\boldsymbol{v}_1\|_2^2} & \cdots \\ \cdots & \frac{\boldsymbol{v}_2^*}{\|\boldsymbol{v}_2\|_2^2} & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & \frac{\boldsymbol{v}_n^*}{\|\boldsymbol{v}_n\|_2^2} & \cdots \end{pmatrix}$$

- (b) Probar que si B es ortonormal, entonces $\mathbf{C}_{EB} = \mathbf{C}_{BE}^*$.
- (c) Concluir que si B es ortonormal, entonces las coordenadas de un vector \boldsymbol{v} en base B son:

$$(\boldsymbol{v})_B = (\boldsymbol{v}_1^* \boldsymbol{v}, \boldsymbol{v}_2^* \boldsymbol{v}, \dots, \boldsymbol{v}_n^* \boldsymbol{v}).$$

(d) Calcular $(\boldsymbol{v})_B$ siendo $\boldsymbol{v}=(1,-i,3),\,B=\{(\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(-\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(0,0,i)\}.$

Ejercicio 16. Sea $v \in \mathbb{C}^n$ un vector columna tal que $||v||_2 = 1$. Probar que:

- (a) La transformación lineal definida por la matriz vv^* es la proyección ortogonal sobre $\langle v \rangle$.
- (b) Si $\{v_1, \ldots, v_m\}$ es una base ortonormal del subespacio S, entonces: $\mathbf{A} = \sum_{i=1}^m \mathbf{v}_i \mathbf{v}_i^*$ es la proyección ortogonal sobre S.
- (c) Si \boldsymbol{A} es como en el ítem anterior, $\boldsymbol{I} \boldsymbol{A}$ es la proyección ortogonal sobre S^{\perp} .
- (d) Eligiendo $\mathbf{v} \in \mathbb{R}^2$ tal que $\|\mathbf{v}\|_2 = 1$, corroborar gráficamente en Python que $R = \mathbf{I} 2\mathbf{v}\mathbf{v}^*$ es la reflexión respecto de $\langle \mathbf{v} \rangle^{\perp}$.

Ejercicio 18. Sea $Q \in \mathbb{R}^{n \times n}$. Probar que son equivalentes:

- (a) $Q^{-1} = Q^t$.
- (b) Las columnas de Q forman un conjunto ortonormal.
- (c) Las filas de Q forman un conjunto ortonormal.
- (d) $\|\boldsymbol{Q}\boldsymbol{x}\|_2 = \|\boldsymbol{x}\|_2$ para todo $\boldsymbol{x} \in \mathbb{R}^n$.

Interpretar (d) geométricamente.

Sugerencia: para demostrar la implicación (d \Rightarrow b) usar que $x^t y = \frac{1}{4}(\|x + y\|_2^2 - \|x - y\|_2^2)$.

Ejercicio 5. Sea $A \in \mathbb{K}^{n \times n}$. Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.

Ejercicio 6. Sea $\mathbf{A} \in \mathbb{C}^{n \times n}$ y λ un autovalor de \mathbf{A} . Probar que:

- (a) Si A es triangular sus autovalores son los elementos de la diagonal.
- (b) λ^k es autovalor de A^k , con el mismo autovector.
- (c) $\lambda + \mu$ es autovalor de $\mathbf{A} + \mu \mathbf{I}$, con el mismo autovector.
- (d) Si p es un polinomio, $p(\lambda)$ es autovalor de $p(\mathbf{A})$.

Ejercicio 8. Sea $A \in \mathbb{R}^{n \times n}$. Probar:

- (a) Si los autovalores de \boldsymbol{A} son todos reales, sus autovectores pueden tomarse con coordenadas reales.
- (b) Si **A** es simétrica, entonces sus autovalores son reales.
- (c) Si **A** es simétrica y definida positiva (negativa), entonces todos sus autovalores son positivos (negativos)
- (d) Si \boldsymbol{A} es simétrica y λ_1 y λ_2 son autovalores distintos, entonces sus correspondientes autovectores son ortogonales entre sí.

Ejercicio 9. Una transformación lineal $f: \mathbb{K}^n \to \mathbb{K}^n$ se llama proyector si verifica f(f(x)) = f(x) para todo $x \in \mathbb{K}^n$. Probar que los únicos autovalores de un proyector son 1 y 0.

Ejercicio 13. Probar que P y Q son matrices estocásticas, entonces:

- (a) **PQ** es estocástica.
- (b) \mathbf{P}^n es estocástica $(n \in \mathbb{N})$.
- (c) $\mathbf{P}^n \mathbf{Q}^m$ es estocástica $(n, m \in \mathbb{N})$.