

FCC/IC Test Report

For: NetraDyne, Inc.

Model: DRI-128

Product Description:
Intelligent Driving Monitoring System Smart Connected Dash Cam

FCC ID: **2AM8R-DRI128** IC ID: **23098-DRI128**

Per:

47 CFR: Part 24, Part 27 RSS-133 Issue 6; RSS-139 Issue 3

REPORT #: EMC_NETRA_002_17001_FCC_24_27_ISED

DATE: 1/25/2018

A2LA Accredited

IC recognized # 3462B-2

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 • Fax: +1 (408) 586 6299 • E-mail: info@cetecom.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

TABLE OF CONTENTS

1		ASSESSMENT	3
2		ADMINISTRATIVE DATA	4
	2.1 2.2 2.3	I DENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	4
3		EQUIPMENT UNDER TEST (EUT)	5
	3.1 3.2 3.3 3.4 3.5	2 EUT SAMPLE DETAILS	6
4	;	SUBJECT OF INVESTIGATION	7
	4.1 4.2 4.3	2 MEASUREMENT UNCERTAINTY	7
5		MEASUREMENT PROCEDURES	8
	5.1 5.2		
6		MEASUREMENT RESULTS SUMMARY	11
	6.1 6.2		
7		TEST RESULT DATA	13
	7.1	RADIATED SPURIOUS EMISSIONS	13
8		TEST SETUP PHOTOS	57
9		TEST EQUIPMENT AND ANCILLARIES USED FOR TESTING	57
10		REVISION HISTORY	57

Test Report #:

EMC_NETRA_002_17001_FCC_24_27_ISED

1/25/2018

Page 3 of 57 IC ID: 23098-DRI128

FCC ID: 2AM8R-DRI128

Date of Report

1 Assessment

The following device as further described in section 3 of this report was evaluated for radiated spurious emissions in simultaneous transmission of cellular and unlicensed radios according to criteria specified in the Code of Federal Regulations Title 47 parts 24, 27 and Industry Canada Radio Standard Specifications RSS: 133 Issue 6, and 139 Issue 3.

No deficiencies were ascertained.

	Company Name	Product Description	Model
-	NetraDyne, Inc.	Intelligent Driving Monitoring System Connected Dash Cam	DRI-128

Responsible for Testing Laboratory:

			James Donnellan	
01/2	5/2018	Compliance	(Lab Manager)	
	ate	Section	Name	Signature

Responsible for the Report:

	Date	Section	Name	Signature
_	01/25/2018	Compliance	(EMC Engineer)	
			Issa Ghanma	

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

EMC_NETRA_002_17001_FCC_24_27_ISED

1/25/2018

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Lab Manager:	James Donnellan
Responsible Project Leader:	Josephine Mena

Page 4 of 57

2.2 Identification of the Client

Applicant's Name:	NetraDyne, Inc.	
Street Address:	4350 Executive DR., suite 150	
City/Zip Code	San Diego, CA 92127	
Country	USA	
Contact Person:	Sandeep Pandya	
Phone No.	8582455169	
e-mail:	Sandeep.pandya@netradyne.com	

2.3 Identification of the Manufacturer

Manufacturer's Name:	Same as applicant.
Manufacturers Address:	
City/Zip Code	
Country	
Contact	
Phone No.	
e-mail:	

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 5 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

3 Equipment Under Test (EUT)

3.1 EUT Specifications

	3.1 EUT Specifications				
Model No DRI-128					
HW Version		RevD			
	SW Version	0.2.1			
	FCC-ID	2AM8R	-DRI128		
	IC-ID:	23098-DRI128			
	FWIN:	0.2.1			
	HVIN:	RevD			
	PMN:	Driver i			
Pro	duct Description	Intellige	nt Driving Monitoring S	System Smart Connected Da	ash Cam
			Module Information		
Module	Name and Number:			WP7504	
FCC ID:		N7NWP7			
	IC ID:			2417C-WP7	
	Technology	Band	UL Frequency (MHz)	DL Frequency (MHz)	Modulation
	LTE	2	1850 – 1910	1930– 1990	QPSK, 16QAM
Mode	LIE	4	1710 – 1755	2110 – 2155	QPSK, 16QAM
	WCDMA	Ш	1850 – 1910	1930 – 1990	QPSK
	WODINA	IV	1710 – 1755	2110 – 2155	QPSK
Max. documented antennan name and gain		Antenna	MO Antenna a 1(Main):3.5 dB a 2: 3.5 dB		
Max. documented average conducted form module report# B16W00042-FCC-RF		WCDM. WCDM. LTE Ba	A Band II: 23.1dBm A Band IV: 23.46dBm nd 2: 23.55dBm nd 4: 23.36dBm		
Operating Voltage Range		Low 10	.5 VDC, Nominal 12 VI	DC, High 14.5 VDC	
Operatin	g Temperature Range	-20° to	55 ⁰ C		

Test Report #:

EMC_NETRA_002_17001_FCC_24_27_ISED

FCC ID: 2AM8R-DRI128

CETECOM

Date of Report

1/25/2018

Page 6 of 57

IC ID: 23098-DRI128

Other Radios included in the device	GPS, BT, BLE, WLAN(Wi-Fi)2.4 and 5GHz.		
Sample Revision	□Prototype Unit;	■Production Unit;	□Pre-Production
EUT Dimensions	20X8X8cm		
Weight	300 grams		
EUT Diameter	■ < 60 cm	☐ Other	-

3.2 EUT Sample details

EUT#	Serial Number	HW Version	SW Version	Comments
1	16300054	RevD	0.2.1	Radiated Measurements

3.3 Accessory Equipment

AE#	Comments	
1	Superstar 12V Car Battery	

3.4 Test Sample Configuration

Set-up #	EUT / AE used for set-up	Comments
1	EUT #1 + AE #1	Radiated Measurements

3.5 Mode of Operation details

Mode of Operation	Description of Operating modes	Additional Information
Op. 1	Cellular and Wi-Fi Co-location	Cellular was tested on Low, Mid and High Channels Co- Transmission with Wi-Fi 5GHz Channel 60(worst case).

EMC_NETRA_002_17001_FCC_24_27_ISED

1/25/2018

Page 7 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

4 Subject of Investigation

The objective of the evaluation conducted by CETECOM Inc. is to support a request for new equipment authorization under FCC ID: 2AM8R-DRI128/ IC ID: 23098-DRI128

According to the guidelines from FCC KDB 996369 for the host product under evaluation, and the pre-certified module to be integrated (WP7504) as described in Section 3 Radiated Spurious Emissions test was performed for simultaneous transmission case. Results have been checked to meet limits per Code of Federal Regulations Title 47 parts 24, 27, and Industry Canada Radio Standard Specifications RSS: 133 Issue 6, and 139 Issue 3.

The conducted module test data that can be obtained under the FCC Filing ID: N7NWP7 / IC ID: 2417C-WP7 is applicable for the host described in section 3.

4.1 Dates of Testing:

11/14/2017 - 11/28/2017

4.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

9 kHz to 30MHz ±2.5 dB (Magnetic Loop Antenna) 30 MHz to 1000 MHz ±2.0 dB (Biconilog Antenna) 1 GHz to 40 GHz ±2.3 dB (Horn Antenna)

4.3 Environmental Conditions during Testing:

The following environmental conditions were maintained during the course of testing:

- Ambient Temperature: 20-25°C
- Relative humidity: 40-60%

Deviating test conditions are indicated at individual test description where applicable.

EMC_NETRA_002_17001_FCC_24_27_ISED

1/25/2018

Page 8 of 57 IC ID: 23098-DRI128

FCC ID: 2AM8R-DRI128

5 Measurement Procedures

Testing is performed according to the guidelines provided in FCC publication (KDB) 971168 D01 v02r02 – "Measurement Guidance for Certification of Licensed Digital Transmitters" and according to relevant parts of TIA-603C 2004 as detailed below.

5.1 Radiated Measurement

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn antennas are used to cover frequencies up to 40 GHz.

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 9 of 57

5.2 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- Measured reading in dBµV
- Cable Loss between the receiving antenna and SA in dB and
- Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS ($dB\mu V/m$) = Measured Value on SA ($dB\mu V$)- Cable Loss (dB)+ Antenna Factor (dB/m)

Example:

Frequency	Measured SA	Cable Loss	Antenna Factor Correction (dB)	Field Strength Result
(MHz)	(dBµV)	(dB)		(dBµV/m)
1000	80.5	3.5	14	98.0

Test Report #:

EMC_NETRA_002_17001_FCC_24_27_ISED

FCC ID: 2AM8R-DRI128

CETECOM

Date of Report

1/25/2018 Page 1

Page 11 of 57 IC ID: 23098-DRI128

6 Measurement Results Summary

6.1 FCC 24, RSS-133:

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
§2.1046; §24.232 (a)	RF Output Power	Nominal	UMTS LTE					Complies Note 2
§2.1055; §24.235	Frequency Stability	Nominal	UMTS LTE					Complies Note 2
§2.1049; §24.238	Occupied Bandwidth	Nominal	UMTS LTE				•	Complies Note 2
§2.1051; §24.238	Band Edge Compliance	Nominal	UMTS LTE				•	Complies Note 2
§2.1051; §24.238	Conducted Spurious Emissions	Nominal	UMTS LTE				•	Complies Note 2
§2.1053; §24.238(a); RSS-133 Issue 6-6.5.1	Radiated Spurious Emissions	Nominal	UMTS LTE					Complies

Note 1: NA= Not Applicable; NP= Not Performed.

Note 2: Leveraged from module certification WP7504 FCC ID: N7NWP7 / IC ID: 2417C-WP7.

EMC_NETRA_002_17001_FCC_24_27_ISED

1/25/2018

FCC ID: 2AM8R-DRI128

IC ID: 23098-DRI128

6.2 FCC 27, RSS-139:

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
§2.1046; §27.50 (d)	RF Output Power	Nominal	UMTS LTE					Complies Note 2
§2.1055; §27.54	Frequency Stability	Nominal	UMTS LTE					Complies Note 2
§2.1049; §27.53	Occupied Bandwidth	Nominal	UMTS LTE					Complies Note 2
§2.1051; §27.53	Band Edge Compliance	Nominal	UMTS LTE					Complies Note 2
§2.1051; §27.53	Conducted Spurious Emissions	Nominal	UMTS LTE					Complies Note 2
§2.1053; §27.53(h); RSS-139 Issue 3-6.6;	Radiated Spurious Emissions	Nominal	UMTS LTE	•				Complies

Page 12 of 57

Note 1: NA= Not Applicable; NP= Not Performed.

Note 2: Leveraged from module certification WP7504 FCC ID: N7NWP7 / IC ID: 2417C-WP7.

Test Report #:

EMC_NETRA_002_17001_FCC_24_27_ISED

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

CETECOM

Date of Report

1/25/2018 Page 13 of 57

Test Result Data

7.1 Radiated Spurious Emissions

7.1.1 Measurement according to FCC: CFR 47 Part 2.1053; CFR Part 24.238; Part 27.53, utilizing KDB 971168 D01 Power Meas License Digital Systems v02r02, and according to TIA-603C 2004- 2.2.12

	Spectrum Analyzer Settings for FCC 24 and 27											
Frequency Range 30MHz – 1 GHz 1 – 2.7 GHz 2.7 – 18 GHz 18 – 19.1 GH												
Resolution Bandwidth	100 kHz	1 MHz	1 MHz	1 MHz								
Video Bandwidth	100 kHz	1 MHz	1 MHz	1 MHz								
Detector	Peak	Peak	Peak	Peak								
Trace Mode	Max Hold	Max Hold	Max Hold	Max Hold								
Sweep Time	Auto	Auto	Auto	Auto								

7.1.2 Limits:

- FCC Part 24.238 (a) and Part 27.53 (h)
- RSS-133 Issue 6 6.5.1, RSS-139 Issue 3 6.6

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB = (-13dBm)

EMC_NETRA_002_17001_FCC_24_27_ISED

FCC_24_27_ISED FCC ID: 2AM8R-DRI128
Page 14 of 57 IC ID: 23098-DRI128

7.1.3 Test conditions and setup:

1/25/2018

Ambient Temperature (C)	EUT Set-Up#	EUT operating mode	Power Input
22	1	LTE,FDD co-transmitting with Wi-Fi 5GHz	Vehicle 12 VDC

7.1.4 Measurement result:

Plot #	Cellular Channel	Wi-Fi Channel	EUT operating mode	Scan Frequency	Limit (dBm)	Result
1 - 3	Low	60	FDD II	30 MHz – 18 GHz	-13	Pass
4 - 8	Mid	60	FDD II	9 kHz – 40 GHz	-13	Pass
9 - 11	High	60	FDD II	30 MHz – 18 GHz	-13	Pass
12 – 14	Low	60	FDD IV	30 MHz – 18 GHz	-13	Pass
15 – 18	Mid	60	FDD IV	9 kHz – 18 GHz	-13	Pass
19 – 21	High	60	FDD IV	30 MHz – 18 GHz	-13	Pass
22 – 24	Low	60	LTE 2	30 MHz – 18 GHz	-13	Pass
25 – 29	Mid	60	LTE 2	9 kHz – 40 GHz	-13	Pass
30 – 32	High	60	LTE 2	30 MHz – 18 GHz	-13	Pass
33 – 35	Low	60	LTE 4	30 MHz – 18 GHz	-13	Pass
36 – 39	Mid	60	LTE 4	9 kHz – 18 GHz	-13	Pass
40 – 42	High	60	LTE 4	30 MHz – 18 GHz	-13	Pass

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

7.1.5 Measurement Plots:

FDD II

				Channe	I: Low					
al Resu	lt									
Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	(
648.019700		-59.07	-13.00	46.07	200.0	100.000	136.0	Н	0.0	-
648.019700	-57.77		-13.00	44.77	200.0	100.000	136.0	Н	0.0	-
672.002800		-64.73	-13.00	51.73	200.0	100.000	133.0	Н	16.0	-
672.002800	-61.25		-13.00	48.25	200.0	100.000	133.0	Н	16.0	-
696.046200		-62.65	-13.00	49.65	200.0	100.000	129.0	Н	30.0	-
696.046200	-60.24		-13.00	47.24	200.0	100.000	129.0	Н	30.0	-
-5- -10-									-1.3.d B n	n
-15 -20										
-25										
-30										
-35										
-40										
-45										
<u>m</u> -50										
Fevel in dBm										
-60										
-65										
-70		A								
-75								M. Ardini	A STATE OF THE PARTY OF THE PAR	
-80	744	11			المراجع الما		113	1 1 1 1 1 1		
-85-				Appropriate party	111					
-90										
-95										
-100										
-105										
301	M 50	60	80 100		200 quency		400 50	0	800 10	;

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 16 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 17 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Channel: Low

•	IIIai_ixesuit									
	Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
	3706.384667		-46.57	-13.00	43.57	200.0	1000.000	298.0	Н	333.0

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 18 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 4 Radiated Emissions: 9 kHz-30 MHz

Channel: Mid

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
0.010080	-23.08		-13.00	10.08	500.0	0.200	108.0	V	78.0	-35.0
0.101269	-36.98		-13.00	23.98	500.0	0.200	100.0	Η	237.0	-56.6

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Channel: Mid

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
648.046100	-57.49		-13.00	44.49	200.0	100.000	134.0	Н	18.0	-104.9
648.046100		-59.80	-13.00	46.80	200.0	100.000	134.0	Н	18.0	-104.9
672.007100		-64.37	-13.00	51.37	200.0	100.000	133.0	Н	32.0	-104.1
672.007100	-61.05		-13.00	48.05	200.0	100.000	133.0	Н	32.0	-104.1
696.026800	-60.14		-13.00	47.14	200.0	100.000	127.0	Н	40.0	-104.1
696.026800		-61.63	-13.00	48.63	200.0	100.000	127.0	Н	40.0	-104.1

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 21 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Channel: Mid

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3757.602000		-47.48	-13.00	34.48	200.0	1000.000	288.0	Н	332.0

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 22 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 23 of 57 FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 9 Radiated Emissions: 30 MHz - 1GHz

Channel: High

Frequency	QuasiPeak	RMS	Limit	Margin	Meas.	Bandwidth	Height	P	Azimuth	Corr.			
(MHz)	(dBm)	(dBm)	(dBm)	(dB)	Time	(kHz)	(cm)	ol	(deg)	(dB)			
					(ms)								
648.04160		-59.34	-13.00	46.34	200.0	100.000	134.0	Н	6.0	-104.9			
648.04160	-57.32		-13.00	44.32	200.0	100.000	134.0	Н	6.0	-104.9			
671.97930	-61.69		-13.00	48.69	200.0	100.000	133.0	Н	16.0	-104.1			
671.97930		-65.93	-13.00	52.93	200.0	100.000	133.0	Н	16.0	-104.1			
696.00560	-60.31		-13.00	47.31	200.0	100.000	126.0	Н	23.0	-104.1			
696.00560		-62.01	-13.00	49.01	200.0	100.000	126.0	Н	23.0	-104.1			

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 25 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 26 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 12 Radiated Emissions: 30MHz - 1GHz

Channel: Low

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
648.032800		-59.16	-13.00	46.16	200.0	100.000	136.0	Н	18.0	-104.9
648.032800	-57.56	-	-13.00	44.56	200.0	100.000	136.0	Н	18.0	-104.9
672.009900		-64.29	-13.00	51.29	200.0	100.000	133.0	Н	32.0	-104.1
672.009900	-61.02	-	-13.00	48.02	200.0	100.000	133.0	Н	32.0	-104.1
696.038800		-62.39	-13.00	49.39	200.0	100.000	131.0	Н	42.0	-104.1
696.038800	-60.43		-13.00	47.43	200.0	100.000	131.0	Н	42.0	-104.1

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 28 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 14 Radiated Emissions: 3GHz-18GHz

Channel: Low

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3426.350000		-48.18	-13.00	35.18	200.0	1000.000	249.0	V	259.0
3427.070000	-53.69		-13.00	40.69	200.0	1000.000	273.0	٧	250.0

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 29 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 15 Radiated Emissions: 9KHz-30MHz

Channel: Mid

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB)
0.011203	-23.58		-13.00	10.58	500.0	0.200	135.0	Н	192.0	-35.6
0.101275	-36.80		-13.00	23.80	500.0	0.200	100.0	Н	314.0	-56.6

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 30 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 16 Radiated Emissions: 30MHz-1GHz

Channel: Mid

Einal	_ D	001	ılŧ
Final	$^{-}$	G21	uιι

mai_rtoodit												
Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Heigh t (cm)	Pol	Azimuth (deg)	Corr. (dB)		
648.013600	-57.52		-13.00	44.52	200.0	100.000	133.0	Н	19.0	-104.9		
648.013600		-58.84	-13.00	45.84	200.0	100.000	133.0	Н	19.0	-104.9		
696.013200	-60.45		-13.00	47.45	200.0	100.000	127.0	Н	40.0	-104.1		
696.013200		-61.97	-13.00	48.97	200.0	100.000	127.0	Н	40.0	-104.1		

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 32 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 18 Radiated Emissions: 3GHz-18GHz

Channel: Mid

•	iliai_itesait												
	Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)			
Ī	3463.607333		-49.25	-13.00	36.25	200.0	1000.000	181.0	Н	276.0			
	3467.475333	-56.20		-13.00	43.20	200.0	1000.000	188.0	Ξ	125.0			

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot #19 Radiated Emissions: 30MHz - 1GHz

Channel: High

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Heigh t (cm)	Pol	Azimuth (deg)	Corr. (dB)
648.044100	-57.48		-13.00	44.48	200.0	100.000	133.0	Н	20.0	-104.9
648.044100		-59.72	-13.00	46.72	200.0	100.000	133.0	Н	20.0	-104.9
672.007800		-64.25	-13.00	51.25	200.0	100.000	133.0	Н	30.0	-104.1
672.007800	-60.94		-13.00	47.94	200.0	100.000	133.0	Н	30.0	-104.1
696.013900	-60.63	-	-13.00	47.63	200.0	100.000	127.0	Η	40.0	-104.1
696.013900		-62.08	-13.00	49.08	200.0	100.000	127.0	Н	40.0	-104.1

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 34 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 35 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 36 of 57 FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

LTE 2

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 37 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 38 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Channel: Low

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3709.794667		-40.38	-13.00	27.38	200.0	1000.000	272.0	Ξ	328.0

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 39 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Channel: Mid

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Heigh t (cm)	Pol	Azimuth (deg)	Corr. (dB)
648.035700		-58.80	-13.00	45.80	200.0	100.000	138.0	Н	-4.0	-104.9
648.035700	-56.94		-13.00	43.94	200.0	100.000	138.0	Н	-4.0	-104.9

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 41 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 42 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 28 Radiated Emissions: 3GHz – 18GHz

Channel: Mid

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3759.761333		-42.42	-13.00	29.42	200.0	1000.000	278.0	V	174.0

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 43 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 44 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 30 Radiated Emissions: 30MHz - 1GHz

Channel: High

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Heigh t (cm)	Pol	Azimuth (deg)	Corr. (dB)
648.055500		-60.43	-13.00	47.43	200.0	100.000	133.0	Н	-3.0	-104.9
648.055500	-57.48		-13.00	44.48	200.0	100.000	133.0	Н	-3.0	-104.9
696.008500		-61.81	-13.00	48.81	200.0	100.000	131.0	Н	42.0	-104.1
696.008500	-60.22		-13.00	47.22	200.0	100.000	131.0	Н	42.0	-104.1

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Channel: High

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3809.935333		-40.44	-13.00	27.44	200.0	1000.000	257.0	Н	325.0

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 47 of 57 FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

LTE 4

Plot # 33 Radiated Emissions: 30MHz - 1GHz

Channel: Low

	- •									
Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Heigh t (cm)	Pol	Azimuth (deg)	Corr. (dB)
0.47.000000		50.07	40.00	40.07	` '	400.000	` '		0.0	4040
647.993200		-59.87	-13.00	46.87	200.0	100.000	138.0	Н	-3.0	-104.9
647.993200	-57.71		-13.00	44.71	200.0	100.000	138.0	Н	-3.0	-104.9
695.988000		-63.50	-13.00	50.50	200.0	100.000	129.0	Н	42.0	-104.1
695.988000	-60.76		-13.00	47.76	200.0	100.000	129.0	Н	42.0	-104.1

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 48 of 57

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 49 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 35 Radiated Emissions: 3GHz - 18GHz

Channel: Low

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3429.769333		-40.98	-13.00	27.98	200.0	1000.000	187.0	V	242.0
5144.912000		-44.80	-13.00	31.80	200.0	1000.000	287.0	Н	125.0
6859.583333		-49.73	-13.00	36.73	200.0	1000.000	247.0	V	24.0

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 50 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 37 Radiated Emissions: 30MHz - 1GHz

Channel: Mid

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Heigh t (cm)	Pol	Azimuth (deg)	Corr. (dB)
647.994100		-59.82	-13.00	46.82	200.0	100.000	136.0	Н	-4.0	-104.9
647.994100	-57.72		-13.00	44.72	200.0	100.000	136.0	Н	-4.0	-104.9
696.040300		-62.35	-13.00	49.35	200.0	100.000	125.0	Н	41.0	-104.1
696.040300	-60.23		-13.00	47.23	200.0	100.000	125.0	Н	41.0	-104.1

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 52 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 39 Radiated Emissions: 3GHz - 18GHz

Channel: Mid

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3464.872000		-44.10	-13.00	31.10	200.0	1000.000	170.0	Н	234.0
4264.872000		-53.93	-13.00	40.93	200.0	1000.000	133.0	Н	314.0
5196.836667		-51.83	-13.00	38.83	200.0	1000.000	271.0	Н	135.0
6929.815333		-47.44	-13.00	34.44	200.0	1000.000	164.0	٧	319.0

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 40 Radiated Emissions: 30MHz - 1GHz

Channel: High

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidth (kHz)	Heigh t (cm)	Pol	Azimuth (deg)	Corr. (dB)
648.002600		-59.32	-13.00	46.32	200.0	100.000	136.0	Н	18.0	-104.9
648.002600	-57.68		-13.00	44.68	200.0	100.000	136.0	Н	18.0	-104.9
696.057500		-63.57	-13.00	50.57	200.0	100.000	124.0	Н	41.0	-104.1
696.057500	-60.45		-13.00	47.45	200.0	100.000	124.0	Н	41.0	-104.1

EMC_NETRA_002_17001_FCC_24_27_ISED 1/25/2018 Page 56 of 57

FCC ID: 2AM8R-DRI128 IC ID: 23098-DRI128

Plot # 42 Radiated Emissions: 3GHz - 18GHz

Channel: High

Frequency (MHz)	QuasiPeak (dBm)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
3499.892667		-41.98	-13.00	28.98	200.0	1000.000	257.0	V	256.0
4300.039333		-53.35	-13.00	40.35	200.0	1000.000	141.0	Н	320.0
5249.976000		-50.84	-13.00	37.84	200.0	1000.000	163.0	Н	-16.0
6999.852000		-46.39	-13.00	33.39	200.0	1000.000	208.0	Н	161.0

EMC_NETRA_002_17001_FCC_24_27_ISED

Page 57 of 57 IC ID: 23098-DRI128

FCC ID: 2AM8R-DRI128

8 Test setup photos

Setup photos are included in supporting file name: "EMC_NETRA_002_17001_FCC_ISED_Setup_Photos.pdf"

9 Test Equipment And Ancillaries Used For Testing

1/25/2018

Item Name	Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
PASSIVE LOOP ANTENNA	LOOP ANTENNA	ETS LINDGREN	6512	00164698	3 YEARS	08/08/2017
CBL 6141B BILOG ANTENNA	BOLOG ANTENNA	TESEO	CBL 6141B	41106	3 YEARS	11/01/2017
3117 HORN ANTENNA	HORN ANTENNA	ETS LINDGREN	3117	00167061	3 YEARS	08/08/2017
3116C HORN ANTENNA	HORN ANTENNA	ETS LINDGREN	3116C	00166821	3 YEARS	09/24/2017
SPECTRUM ANALYZER FSU26	SIGNAL ANALYZER	R&S	FSU26	200065	2 YEARS	03/07/2007
CMU200	UNIVERSAL RADIO COMMUNICATION	R&S	CMU200	121673	2 YEARS	06/07/2017
CMW500	WIDEBAND RADIO COMMUNICATION	R&S	CMW500	125231	2 YEARS	10/07/2017
FSV	SIGNAL ANALYZER	R&S	FSV 40	101022	2 YEARS	07/05/2017
DIGITAL BAROMETER	COMPACT DIGITAL BAROMETER	CONTROL COMPANY	35519-055	91119547	1 YEARS	06/05/2017
TM320	THRMOMETER HUMIDIY	DICKSON	TM320	16253639	1 YEARS	11/02/2017

Note

10 Revision History

Date	Report Name	Changes to report	Report prepared by
1/25/2018	EMC_NETRA_002_17001_FCC_24_27_ISED	Initial Version	Issa Ghanma

^{1.} Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels.

Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.