Zadanie 1. Który z ciągów (1,1,2,1), (1,1,-2,2), (1,0,0,1) jest rozwiązaniem układu równań?

$$\begin{cases} x_1 + 3x_2 + 2x_3 + x_4 = 2 \\ 2x_1 + x_2 - x_4 = 1 \\ 4x_1 - x_2 + 3x_3 + 2x_4 = 6 \end{cases}$$

Odp. wyłącznie trzeci.

Zadanie 2. Znajdź wszystkie $t \in \mathbb{R}$ takie, że $(-1, t^2, t, -3)$ jest rozwiązaniem układu

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 0 \\ x_1 + 3x_2 - x_3 + x_4 = 0 \end{cases}$$

 $Odp. \ t = -1.$

Zadanie 3. Podaj rozwiązania ogólne poniższych układów równań.

i)
$$\begin{cases} x_1 + 2x_2 = 2\\ 2x_1 + 5x_2 = 1 \end{cases}$$

ii)
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 0 \\ 3x_1 + 4x_2 + 3x_3 + 2x_4 = 0 \end{cases}$$

iii)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1\\ 2x_1 + 4x_2 + 5x_3 = 1\\ 3x_1 + 6x_2 + 10x_3 = 1 \end{cases}$$

iv)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1\\ 2x_1 + 4x_2 + 5x_3 = 1\\ 3x_1 + 6x_2 + 10x_3 = 4 \end{cases}$$

v)
$$\begin{cases} 10x_1 + 5x_2 & - 5x_4 & = 15 \\ 2x_1 + x_2 + x_3 - x_4 + 2x_5 & = 5 \\ 6x_1 + 3x_2 + x_3 - 3x_4 + x_5 & = 10 \\ 2x_1 + x_2 + 2x_3 - x_4 & = 3 \end{cases}$$

Odp. i) $x_1 = 8$, $x_2 = -3$, ii) $x_1 = -5x_3 - 2x_4$, $x_2 = 3x_3 + x_4$, $x_3, x_4 \in \mathbb{R}$ iii) sprzeczny iv) $x_1 = -2x_2 - 2$, $x_3 = 1$, $x_2 \in \mathbb{R}$, v) $x_4 = 2x_1 + x_2 - 3$, $x_3 = 0$, $x_5 = 1$, $x_1, x_2 \in \mathbb{R}$

Zadanie 4. Dla jakiego parametru $t \in \mathbb{R}$ poniższy układ jest niesprzeczny?

i)
$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 1\\ 2x_1 + 5x_2 + x_3 + 3x_4 = 2\\ 3x_1 + 7x_2 - x_3 + 4x_4 = 3\\ 4x_1 + 9x_2 - 3x_3 + 5x_4 = t \end{cases}$$

ii)
$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 1\\ 2x_1 + 5x_2 + x_3 + 3x_4 = 2\\ 3x_1 + 7x_2 - x_3 + 4x_4 = 4\\ 4x_1 + 9x_2 - 3x_3 + 5x_4 = t \end{cases}$$

Odp. i) t = 4, ii) sprzeczny dla dowolnego $t \in \mathbb{R}$

Zadanie 5. Oblicz Arg(1+i), Arg(1-i), Arg $(\sqrt{3}+i)$. $Odp. \frac{\pi}{4}, \frac{7\pi}{4}, \frac{\pi}{6}$.

Zadanie 6. Oblicz |3+4i|, $\overline{(1-i)^2}$, Re((2+3i)(3-2i)), $\text{Im}((2-i)^2+i)$. Odp. 5, 2i, 12, -3.

Zadanie 7. Oblicz $z \cdot w$, $|z \cdot w|$, $\text{Re}(z \cdot w)$, $\text{Im}(z \cdot w)$, $\text{Arg}(z \cdot w^2)$, jeśli $z = 2(\cos 30^\circ + i \sin 30^\circ), w = 3(\cos 120^\circ + i \sin 120^\circ).$ $Odp. -3\sqrt{3} + 3i, 6, -3\sqrt{3}, 3, \frac{3\pi}{2}.$

Zadanie 8. Narysuj na płaszczyźnie zespolonej liczby $z\in\mathbb{C}$ spełniające warunki:

- i) Re(zi) = 2,
- ii) |z i| = 1,
- iii) $\overline{z+i} = z+i$,
- iv) $Arg(z^2) = 90^{\circ}$,
- v) |z i| = |z 1|.

 $Odp.\ i)\ prosta\ y=-2,\ ii)\ okrąg\ o\ środku\ w\ (0,1)\ i\ promieniu\ 1,\ iii)\ prosta\ y=-1,\ iv)\ prosta\ y=x\ bez\ (0,0),\ v)\ prosta\ y=x.$

Zadanie 9. Przedstaw poniższe liczby w postaci trygonometrycznej:

- i) 2*i*,
- ii) -2 + 2i,
- iii) $\sqrt{12} + 2i$,
- iv) $-2 + 2\sqrt{3}i$.

Odp. i) $2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$, ii) $2\sqrt{2}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$, iii) $4(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$, iv) $4(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$.

Zadanie 10. Oblicz pierwiastki kwadratowe z liczb zespolonych

i)
$$z = 4(\cos 60^{\circ} + i \sin 60^{\circ}),$$

ii)
$$z = 1 + i$$
.

Wywnioskuj, że

$$\sin\frac{\pi}{8} = \frac{\sqrt{2-\sqrt{2}}}{2}, \cos\frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}.$$

Przypomnienie:
$$w = \pm \left(\frac{b}{\sqrt{2(|z|-a)}} + i\sqrt{\frac{|z|-a}{2}}\right)$$
. $Odp.\ i)\ \pm (\sqrt{3}+i)\ ii)\ \pm \left(\frac{1}{\sqrt{2(\sqrt{2}-1)}} + i\sqrt{\frac{\sqrt{2}-1}{2}}\right)$