NOM: GROUPE:

R1.07 - Outils fondamentaux Contrôle Terminal

Nom du responsable :	A. Ridard
Date du contrôle :	Vendredi 21 janvier 2022
Durée du contrôle :	1h30
Nombre total de pages :	8 pages
Impression:	A4 recto-verso agrafé (1 point)
Documents autorisés :	A4 recto-verso manuscrit
Calculatrice autorisée :	Non
Réponses :	Directement sur le sujet

Exercice 1.

Exercice 1.

On considère la matrice $P = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.

1. Calculer $P^2 - 3P + 2I$.

2	En déduire que P est inversible et déterminer son inverse	

3. Calculer les coordonnées du vecteur (1,0,-2) dans la base $\mathcal{B}' = (u,v,w)$ définie par :

$$u = (0, -1, 1), \ v = (1, 2, -1), \ w = (-1, -1, 2)$$

Exercice 2.

On considère l'application linéaire f définie par :

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(x, y, z) \longmapsto (x - y, -x + 2y + z, -y - z)$

1. Écrire $\mathcal{M}(f)$, la matrice de f dans la base canonique.

2. Montrer que f n'est pas bijective.

3. Déterminer $f^{-1}\Big(\big\{(0,0,0)\big\}\Big)$ sous la forme d'un "Vect".

NOM:

Exercice 3.

On considère f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 canoniquement associée à $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}$.

1. Montrer que A est inversible et déterminer son inverse.

2. En déduire $f^{-1}(x, y, z)$ pour tout $(x, y, z) \in \mathbb{R}^3$.

NOM: GROUPE:

Exercice 4.

On considère f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 canoniquement associée à $A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$. On introduit la (nouvelle) base $\mathscr{B}' = \begin{pmatrix} e_1', e_2', e_3' \end{pmatrix}$ avec $e_1' = (1, 2, 2), e_2' = (1, 2, 1)$ et $e_3' = (1, 0, 0)$.

1. Déterminer sous forme de triplet $f\left(e_{1}'\right)$, $f\left(e_{2}'\right)$ et $f\left(e_{3}'\right)$

2. A l'aide de la sortie Jupyter Notebook suivante, calculer $\mathcal{M}(f,\mathcal{B}')$, la matrice de f dans la base \mathcal{B}' .

3. Vérifier les trois colonnes de $\mathcal{M}(f, \mathcal{B}')$ en utilisant les résultats de la question 1.