٠١

-

الف) آدرس به صورت مقابل است:

10001111.00111000.00001111.00001010

Network Mask نیز به صورت زیر است:

پس از And کردن آدرس به صورت زیر خواهد بود:

ب)

143.56.8.1 - 143.56.8.254

اولی برای آدرس خود شبکه و آخری برای Broadcast است

۳.

چون ۱۴ تا کامپیوتر داریم پس به ۴ بیت در hostID نیاز داریم و به ۴ بیت در subnetID برای اینکه بتواند بیش از ۸ شبکه را آدرس دهی کند پس:

بیت های متغییر

۴.

 $10010110.\ 00001010.\ 00100100.\ 00000000$

10010110.00001010.00100110.00000000

با توجه به تغییر بیت ها در ۱۱ بیت آخر پروتکل CIDR به شکل مقابل خواهد شد:

10010110 . 00001010 . 00100---. → 150.10.32.0/21

۵.

سرآیند IP به اندازه ۲۰ بایت را از میزان هر بسته کم می کنیم تا مشخص شود چقدر داده وجود دارد 380=20-400

[380] = 47 می شود: Offset مربوط به IP مربوط به Offset می شود: میزان داده ها با توجه به

بايد اين تعدا چند بايتي باشند: 376 = 8*47

بنابراین داریم: 376+376+376+376

به هر كدام از اين بسته ها نيز ۲۰ بايت هدر اضافه مي شود: 92+396+396+396

برای محاسبه ی fragment offset داریم:

اولین ۳۷۶ بایت که fragment offset ندارد. دومی $\frac{376}{8} = 47$ و برای سومی $\frac{376+376}{8}$ و برای چهارمی $\frac{376+376+376}{8} = 141$

	Total Length	ID	DF	MF	Fragment Office
Original Packet	1220	Χ	0	0	0
Fragment1	396	Χ	0	1	0
Fragment2	396	Χ	0	1	47
Fragment3	396	Χ	0	1	94
Fragment4	92	Х	0	0	141

۸.

دقت كنيد كه بايد الگوريتم هاى bellman ford و dijkstra را بلد باشيد. خود الگوريتم را از كتاب بخوانيد و بلد باشيد، نه اينكه سوال امتحان باشه ها!

بعد از طی روند این الگوریتم جدول مطابق شکل زیر خواهد شد: (توجه داشته باشید که در امتحان طی مراحل حل بسیار مهم است و باید همه ی فرمول ها را بدست آورده و مشخص کنید از چه مسیری به جدول زیر رسیدید مثلا باید را

(از طریق مسیر جدید , اندازه قبلی $D(y) = \min\{$ حساب کنید برای همه ی نودها $\{$

Iterat ion	N'	D(t),P(t)	D(u),P(u)	D(v),P(v)	D(w),P(w)	D(x),P(x)	D(y),P(y)	D(z),P(z)
0	{z}	∞	∞	∞	∞	7,z	13,z	0,z
1	{z,x}	∞	∞	10,x	13,x	7,z	13,z	0,z
2	{z,x,v}	14,v	12,v	10,x	13,x	7,z	13,z	0,z
3	{z,x,v,u}	14,v	12,v	10,x	13,x	7,z	13,z	0,z
4	$\{z,x,v,u,y\}$	14,v	12,v	10,x	13,x	7,z	13,z	0,z
5	$\{z,x,v,u,y,w\}$	14,v	12,v	10,x	13,x	7,z	13,z	0,z
6	$\{z,x,v,u,y,w\}$	14,v	12,v	10,x	13,x	7,z	13,z	0,z

a. برای همه ی گره ها الگوریتم dijkstra را با اندازه ی هر یال برابر ۱ بدست می آوریم

<u>For Node A</u>	حرکت بعدی	Cost
В	В	1
С	С	1
D	В	2
Е	В	3
F	В	3

<u>For Node B</u>	حرکت بعدی	Cost
A	А	1
С	D	2
D	D	1
E	D	2
F	D	2

For Node C	حرکت بعدی	Cost
А	А	1
В	D	2
D	D	1
Е	D	2
F	D	2

<u>For Node D</u>	حرکت بعدی	Cost
А	В	2
В	В	1
С	С	1
Е	Е	1
F	F	1

<u>For Node E</u>	حرکت بعدی	Cost
А	D	3
В	D	2
С	D	2
D	D	1
F	D	2

For Node F	حركت بعدى	Cost
A	D	3
В	D	2
С	D	2
D	D	1
Е	D	2

همانطور که می بینیم این مسیریابی load balancing را ندارد، زیرا مثلا در شکل اول میبینیم که برای رسیدن به نود D,E,F همواره از طریق B حرکت می کند در صورتی که می توانست مثلا برای رفتن به E و برای رفتن به از C استفاده کند. در واقع بار شبکه و load شبکه را balance نمی کند و در همه جا پخش نمی کند و اگر ازدحام در B اتفاق بیفتند دیگر نمی توان بسته ها را به D رساند درصورتی که ممکن است نود C خالی باشد. باید از الگوریتمی مانند الگوریتم OSPF استفاده کرد در واقع نود هایی که اندازه هایی برابر دارند مانند DB,C را هردو را در شبکه نگه داشت و هرکدام که کمتر برای رسیدن به نودهایی دیگر استفاده شده را به کار برد. مثلا برای رسیدن به از C استفاده کرد که به شکل زیر در مسیریابی خواهیم رسید:

٩.

ب) برای اولی داریم:

165.230.198.64 - 165.230.198.127

که از این ۶۳ تا، دو تا کم می شود. (۶۱)

برای دو می داریم:

192.168.1.0 - 192.168.1.255

که از این 256 تا، دو تا کم می شود. (۲۵۴)

٠١.

1. Initialization

$$D_i = \infty, \forall i \neq d$$
$$D_d = 0$$

2. Updating: For each $i \neq d$,

$$D_i = \min_j \{C_{ij} + D_j\}, \forall j \neq i$$

Repeat step 2 until no more changes occur in the iteration.

ماتریس همجواری به شکل مقابل است:

سپس الگوریتم را اعمال می کنیم و جواب به صورت زیر خواهد شد: (توجه خود الگوریتم را حفظ کنید و محاسبات را هم کامل بنویسید)

.a

Iteration	A	C	D	E	F
Initial	(-1, ∞)	(-1, ∞)	(-1, ∞)	(-1, ∞)	(-1, ∞)
	(B, 2)	(A, ∞)	(A, ∞)	(C, ∞)	(C, ∞)
	(C, ∞)	(B, 6)	(B, 2)	(D, ∞)	(E, ∞)
	(D, ∞)	(D, ∞)	(C, ∞)	(F, ∞)	
		(E, ∞)	(E, ∞)		
	4	(F, ∞)			
1	(B, 2)	(B, 6)	$(\mathbf{B}, 2)$	(-1, ∞)	(-1, ∞)
	(B, 2)	(A, 7)	(A, 8)	(C,7)	(C, 14)
	(C, 9)	(B, 6)	(B, 2)	(D, 5)	(E, ∞)
	(D,3)	(D, 5)	(C, 9)	(F, ∞)	
		(E, ∞)	(E, ∞)		
		(F, ∞)	500 W 100 W		
2	(B, 2)	(D, 5)	$(\mathbf{B}, 2)$	(D, 5)	(C, 14)
	(B, 2)	(A, 7)	(A, 8)	(C, 6)	(C, 13)
	(C, 8)	(B, 6)	(B, 2)	(D, 5)	(E, 9)
	(D, 3)	(D, 5)	(C, 8)	(F, 16)	
		(E, 6)	(E, 8)		
2	(D. 2)	(F, 18)	(D. 2)	(D, 5)	(F. 0)
3	(B, 2)	(D, 5)	(B, 2)	(D, 5)	(E, 9)
	(B, 2)	(A, 7)	(A, 8)	(C, 6)	(C, 13)
	(C, 8) (D, 3)	(B, 6) (D, 5)	(B, 2) (C, 8)	(D, 5) (F, 11)	(E, 9)
	(D, 3)	(E, 6)	(E, 8)	(1, 11)	
		(F, 13)	(L, 0)		
4	(B, 2)	(D, 5)	(B, 2)	(D, 5)	(E, 9)

Iteration	A	C	D	E	F
Before Break	(B, 2)	(D, 5)	(B, 2)	(D, 5)	(E, 9)
	(B, 2)	(A, 7)	(A, 8)	(C, 6)	(C, 13)
	(C,8)	(B, 6)	(C, 8)	(D, 5)	(E, 9)
	(D,3)	(D, 5)	(E, 8)	(F, 11)	1.50,2.00
		(E, 6)			
		(F, 13)			
1	(B, 2)	(D, 5)	(A, 8)	(D, 5)	(E, 9)
	(B, 2)	(A, 7)	(A, 8)	(C, 6)	(C, 13)
	(C, 8)	(B, 6)	(C, 8)	(D, 11)	(E, 9)
	(D, 9)	(D, 11)	(E, 8)	(F, 11)	
		(E, 6)			
	(D. 3)	(F, 13)	(4.0)	(6.0	(F. 0)
2	(B, 2)	(B, 6)	(A, 8)	(C, 6)	(E, 9)
	(B, 2)	(A, 7)	(A, 8)	(C, 7)	(C, 14)
	(C, 9) (D, 9)	(B, 6) (D, 11)	(C, 9) (E, 9)	(D, 11) (F, 11)	(E, 10)
	(D, 9)	(E, 7)	(E, 9)	(1, 11)	
		(F, 13)			
3	(B, 2)	(B, 6)	(A, 8)	(C, 7)	(E, 10)
	(B, 2)	(A, 7)	(A, 8)	(C,7)	(C, 17)
	(C,9)	(B, 6)	(C, 9)	(D, 11)	(E, 11)
	(D, 9)	(D, 11)	(E, 10)	(F, 12)	
	2012/2011 12	(E, 8)	5050.000 F6	15. 10. 51	
		(F, 14)			
4	(B, 2)	(B, 6)	(A, 8)	(C, 7)	(E, 11)
	(B, 2)	(A, 7)	(A, 8)	(C,7)	(C, 17)
	(C, 9)	(B, 6)	(C,9)	(D, 11)	(E, 11)
	(D, 9)	(D, 11)	(E, 10)	(F, 13)	
		(E, 8)			
-	(D. 4)	(F, 15)	(4.0)	(6. 7)	(F. 11)
5	(B, 2)	(B, 6)	(A, 8)	(C, 7)	(E, 11)

١١.

١٢.

برای distance-vector برای $\mathbf{m}^*\mathbf{N}$ خواهد شد و برای $\mathbf{m}^*\mathbf{N}$ برایر distance-vector برای