LINEAR KALMAN FILTERS

SUBTEAM 2

General Framework

- State space model
- Discrete time
- Two sets of data: latent states and observables
- Goal: estimate state at time (k + 1) based on time (k)
- Prior versus Posterior predictions
- Follow 2 steps
 - Propagation Step
 - Update Step

Model Set Up

Process Equation

Transition Matrix Process Noise
$$x_{k+1} = F_{k+1,k} x_k + w_k \ (1.1)$$

Measurement Equation

$$y_k = H_k x_k + v_k \ (1.3)$$
Measurement Matrix Measurement Noise

Where F and H both known

Process and Measurement Noise

- White, additive, Gaussian with mean 0
- Process noise covariance:

$$E[w_n w_k^T] = \begin{cases} Q_k \text{ for } n = k \\ 0 \text{ for } n \neq k \end{cases}$$
 (1.2)

Measurement noise covariance:

$$E[v_n v_k^T] = \begin{cases} R_k \text{ for } n = k \\ 0 \text{ for } n \neq k \end{cases}$$
 (1.4)

Noises independent of one another

Notation

- $\hat{x_k}$ posterior prediction
- $\hat{x_k}$ prior prediction
- $\tilde{x_k}$ -posterior prediction error
- \tilde{x}_k^- prior prediction error
- $\bullet \ \tilde{x_k} = x_k \hat{x_k}$
- $\bullet \ \tilde{x}_k^- = x_k \hat{x}_k^-$
- $P_k = E[\tilde{x_k} * \tilde{x_k}^T]$ posterior covariance
- $P_k^- = E[\tilde{x_k}^- * \tilde{x_k}^{-T}]$ prior covariance

Approaching the Problem

- Minimizing mean squared error of state prediction
- I.e. find x to minimize the following:

$$\mathbf{E}[(x_k - \hat{x_k})^2]$$

Principle of Orthogonality

Thm 1.2 (Principle of Orthogonality): Let the stochastic processes $\{x_k\}$ and $\{y_k\}$ be of zero mean, that is,

$$E[x_k] = E[y_k] = 0$$
 for all k

Then:

- (i) the stochastic processes x_k and y_k are jointly Gaussian; or
- (ii) if the optimal estimate \hat{x}_k is restricted to be a linear function of the observables and the cost function is the mean square error,
- (iii) then the optimum estimate \hat{x}_k given the observables $y_1, y_2, ..., y_k$ is the orthogonal projection of x_k on the space spanned by those observables.

What does this buy us?

$$E[\tilde{x}_k y_i^T] = 0 \text{ for all } i = 1, ..., k-1$$
 (1.7)

Relate Prior and Posterior Predictions

- \blacksquare Before able to predict (k + 1), need posterior prediction for (k)
- Assume the following linear relationship:

Current Problems

- G_k unknown
- Write $G_k^{(1)}$ in terms of G_k

Solving for $G_k^{(1)}$ in terms of G_k

Begin with:

$$E[\tilde{x}_k y_i^T] = 0 \text{ for all } i = 1, ..., k-1$$
 (1.7)

Substitute in for x and y to yield:

$$E[(x_k - G_k^{(1)}\hat{x_k}^{-} - G_k H_k x_k - G_k w_k) * y_i^{T}] = 0$$

From which it follows from the principle of orthoganlity that:

$$(I - G_k H_k - G_k^{(1)}) E[x_k y_i^T] = 0$$

Which is only satisfied if:

$$G_k^{(1)} = I - G_k H_k$$

The Result: State Estimate Update

$$\hat{x}_k = \hat{x}_k^- + G_k(y_k - H_k * \hat{x}_k^-)$$

Not Yet Defined

The Prior Prediction

 $\hat{x_k}$ represents the prior prediction:

Can apply transition matrix to previous posterior prediction to obtain as follows:

$$\hat{x_k}^- = F_{k,k-1}\hat{x}_{k-1}$$

This update known as **State Estimate Propagation**

Finding the Kalman Gain

From Thm 1.2:

$$E[(x_k - \hat{x_k})\hat{y_k}^T] = 0$$

After bringing in $\tilde{y_k}$ have that:

$$E[(x_k - \hat{x_k})\tilde{y_k}^T] = 0$$

After substitions for first and second terms and some algebra:

$$(I - G_k H_k) E[\tilde{x_k}^- \tilde{x_k}^{-T}] H_k^T - G_k E[v_k v_k^T] = 0$$

$$\mathsf{P_k}^- \qquad \mathsf{R_k}$$

Finally, Solve for G_k

$$G_k = P_k^- * H_k^T * [H_k * P_k^- * H_k^T + R_k]^{-1}$$

Error Covariance Propagation

- Need closed form way to calculate P_k and P_k
- Done in 2 states
 - Given P_k^- , find P_k
 - Given P_{k-1} , find P_k^-

Using P_k to Find P_k

Consider definition of P_k as:

$$P_k = E[(x_k - \hat{x_k})(x_k - \hat{x_k})^T]$$

After some substitutions and using independence of v_k and $\tilde{x_k}$:

$$P_{k} = (I - G_{k}H_{k})P_{k}^{-}(I - G_{k}H_{k})^{T} + G_{k}R_{k}G_{k}^{T}$$

Finally after some more expansion:

$$P_k = (I - G_k H_k) P_k^{-1}$$

Given P_{k-1} Find P_k

Use definition of prior estimate $\hat{x_k}$ to write:

$$\tilde{x_k} = x_k - \hat{x_k} as$$

$$\tilde{x_k}^- = F_{k,k-1} \tilde{x_{k-1}} + w_{k-1}$$

Inserting this expression into $P_k^- = E[\tilde{x_k}^- * \tilde{x_k}^{-T}]$ results in:

$$P_k^- = F_{k,k-1}P_{k-1}F_{k,k-1}^T + Q_{k-1}$$

Initialization (what to do for k = 0?)

$$\hat{x_0} = E[x_0]$$

$$P_0 = E[(x_0 - E[x_0])(x_0 - E[x_0])^T]$$

Summary

1. Model

- Describe latent variable x through $x_{k+1} = F_{k+1,k} * x_k + w_k$
- Describe observable data though $y_k = H_k * x_k + v_k$

2. Initialization

- For k = 0, set $\hat{x_0} = E[x_0]$
- Also set $P_0 = E[(x_0 E[x_0])(x_0 E[x_0])^T]$

3. Computation

- Propagation Step
 - State estimate Propagation: $\hat{x_k} = F_{k,k-1} * \hat{x}_{k-1}$ (1.26)
 - Error Covariance Propagation: $P_k^- = F_{k,k-1} * P_{k-1} * F_{k,k-1}^T + Q_{k-1}$ (1.28)
- Update Step
 - Kalman Gain Matrix: $G_k = P_k^- * H_k^T * [H_k * P_k^- * H_k^T + R_k]^{-1}$ (1.22)
 - State Estimate Update: $\hat{x}_k = \hat{x}_k^- + G_k(y_k H_k * \hat{x}_k^-)$ (1.12)
 - Error Covariance Update: $P_k = (I G_k H_k) P_k^-$ (1.25)

Example

- Assume system of 2 ODE's representing latent states (x's)
- Assume system of 3 variables representing observable data (y's)
- Assume transition and measurement matrices independent of time

Where $x^{(z)}$ represents single element and $F^{(z)}$ represents single row

Initialization

Since x is a random variable, can initialize with:

$$\hat{x_0} = E[x_0] = \bar{X} \qquad x_0 = \begin{bmatrix} 2x_1 \end{bmatrix}$$

Which means P_0 intialized to:

$$P_0 = E[(x_0 - \bar{X})(x_0 - \bar{X})^T]$$
 $P_0 = \begin{bmatrix} 2x^2 \end{bmatrix}$

Model Set Up (Latent States)

$$x_1 = Fx_0 + w_0$$
 (1.1)

$$\begin{bmatrix} 2x1 \end{bmatrix} = \begin{bmatrix} 2x2 \end{bmatrix} \begin{bmatrix} 2x1 \end{bmatrix} + \begin{bmatrix} 2x1 \end{bmatrix}$$

Model Set Up (Observables)

$$y_0 = Hx_0 + v_0 \ (1.3)$$

$$\begin{bmatrix} 3x1 \end{bmatrix} = \begin{bmatrix} 3x2 \end{bmatrix} \begin{bmatrix} 2x1 \end{bmatrix} + \begin{bmatrix} 3x1 \end{bmatrix}$$

State Estimate Propagation

$$\hat{x}_1^- = F\bar{X} \ (1.26)$$

$$\begin{bmatrix} 2x1 \end{bmatrix} = \begin{bmatrix} 2x2 \end{bmatrix} \begin{bmatrix} 2x1 \end{bmatrix}$$

Error Covariance Propagation

$$P_1^- = FP_0F^T + Q_0 \ (1.28)$$

$$\begin{bmatrix} 2x2 \end{bmatrix} = \begin{bmatrix} 2x2 \end{bmatrix} \begin{bmatrix} 2x2 \end{bmatrix} \begin{bmatrix} 2x2 \end{bmatrix} + \begin{bmatrix} 2x2 \end{bmatrix}$$

Kalman Gain Matrix

$$G_1 = P_1^- * H_1^T * [H_1 * P_1^- * H_1^T + R_1]^{-1} (1.22)$$

$$\begin{bmatrix} 2x3 \end{bmatrix} = \begin{bmatrix} 2x2 \end{bmatrix} \begin{bmatrix} 2x3 \end{bmatrix} \begin{bmatrix} 2x3 \end{bmatrix} \begin{bmatrix} 3x2 \end{bmatrix} \begin{bmatrix} 2x2 \end{bmatrix} \begin{bmatrix} 2x3 \end{bmatrix} + \begin{bmatrix} 3x3 \end{bmatrix}$$

State Estimate Update

$$\hat{x}_1 = \hat{x}_1^- + G_1(y_1 - H_1\hat{x}_1^-) \ (1.12)$$

$$\begin{bmatrix} 2x1 \end{bmatrix} = \begin{bmatrix} 2x1 \end{bmatrix} + \begin{bmatrix} 2x3 \end{bmatrix} \left(\begin{bmatrix} 3x1 \end{bmatrix} - \begin{bmatrix} 3x2 \end{bmatrix} \begin{bmatrix} 2x1 \end{bmatrix} \right)$$

Error Covariance Update

$$P_1 = (I - G_1 H_1) P_1^- (1.25)$$

$$\left[\begin{array}{c} 2x2 \end{array}\right] = \left(\left[\begin{array}{c} 2x2 \end{array}\right] - \left[\begin{array}{c} 2x3 \end{array}\right] \left[\begin{array}{c} 3x2 \end{array}\right] \right) \left[\begin{array}{c} 2x2 \end{array}\right]$$

CAN NOW PROCEED TO ITERATION

K = 2 FOLLOWING THE SAME

PROCESS