Package 'ForeComp'

September 16, 2019

	Septen	1001 10, 2019		
Type Package				
Title Testing for equal predic	ctive ability			
Version 0.1.0				
Author Minchul Shin				
Maintainer Minchul Shin <v< th=""><th>visiblehand@gma:</th><th>il.com></th><th></th><th></th></v<>	visiblehand@gma:	il.com>		
Description Collection of fur	nctions to preform	a statistical for ed	qual predictive ability	/.
License GPL-3				
Encoding UTF-8				
LazyData true				
Depends R (>= 3.0.0), stats				
RoxygenNote 6.1.1				
dm.test.bt.fb dm.test.ewc.fb dm.test.r				
dm.test.bt	Diebold-Mariand) Test (Bartlett kei	rnel, normal approxi	rnation)

Description

Diebold-Mariano Test (Bartlett kernel, normal approximation). This is a two-sided test.

Usage

```
dm.test.bt(d, M = NA, Mopt = NA, cl = 0.05)
```

dm.test.bt.fb

Arguments

d loss differential

M truncation parameter for the Bartlett kernel (if M = NA, then Mopt = 2 by default)

Mopt option for optimal bandwidth, 1 if Lazarus et al. (2018), 2 if Newey and West (1994)

cl confidence level (default = 0.05, i.e., 5%)

Value

This function returns a class with the following elements

- rej is a T/F value. TRUE (reject), FALSE (accept)
- stat is a test statistic
- pval is an associated p-value

Author(s)

Minchul Shin

dm.test.bt.fb

Diebold-Mariano Test (Bartlett kernel, fixed-b approximation)

Description

Diebold-Mariano Test (Bartlett kernel, fixed-b approximation). This is a two-sided test.

Usage

```
dm.test.bt.fb(d, M = NA, Mopt = NA, cl = 0.05)
```

Arguments

d loss differential

M truncation parameter for the Bartlett kernel (if M = NA, then Mopt = 1 by default)

Mopt option for optimal bandwidth, 1 if Lazarus et al. (2018), 2 if Newey and West (1994)

cl confidence level (default = 0.05, i.e., 5%), Only 0.05 (5%) or 0.10 (10%) are allowed.

Value

This function returns a class with the following elements

- rej is a T/F value. TRUE (reject), FALSE (accept)
- stat is a test statistic
- pval is an associated p-value

Author(s)

Minchul Shin

dm.test.ewc.fb 3

dm.test.ewc.fb

Diebold-Mariano Test (EWC, fixed-b approximation)

Description

Diebold-Mariano Test (EWC, fixed-b approximation). This is a two-sided test.

Usage

```
dm.test.ewc.fb(d, B = NA, Bopt = NA, cl = 0.05)
```

Arguments

d loss differential

B truncation parameter for the EWC long-run variance estimator (if B = NA, then

Bopt = 1 by default)

Bopt option for optimal bandwidth, 1 if Lazarus et al. (2018)' recommendation

cl confidence level (default = 0.05, i.e., 5%)

Value

This function returns a class with the following elements

- rej is a T/F value. TRUE (reject), FALSE (accept)
- stat is a test statistic
- pval is an associated p-value

Author(s)

Minchul Shin

dm.test.r

Diebold-Mariano Test (with an original recommendation)

Description

Diebold-Mariano Test (with an original recommendation). This is a two-sided test. Let d_t be a loss differential, t = 1, 2, ..., T. Then, the DM test statistic is in the following form

$$d_t = \frac{\bar{d}}{\hat{\sigma}}$$

where \bar{d} is the sample average of d_t and $\hat{\sigma}^2$ is the long-run variance estimator.

Usage

$$dm.test.r(d, h = 1, cl = 0.05)$$

4 dm.test.r.m

Arguments

d loss differential

h h-step-ahead forecast (default = 1, i.e., one-step-ahead forecasts)

cl confidence level (default = 0.05, i.e., 5%)

Value

This function returns a class with the following elements

- rej is a T/F value. TRUE (reject), FALSE (accept)
- stat is a test statistic
- pval is an associated p-value

Author(s)

Minchul Shin

dm.test.r.m

Diebold-Mariano Test (Modified-DM)

Description

Diebold-Mariano Test (Modified-DM). Finite-sample modification to the original DM's test. This is a two-sided test.

Usage

```
dm.test.r.m(d, h = 1, cl = 0.05)
```

Arguments

d loss differential

h h-step-ahead forecast (default = 1, i.e., one-step-ahead forecasts)

cl confidence level (default = 0.05, i.e., 5%)

Value

This function returns a class with the following elements

- rej is a T/F value. TRUE (reject), FALSE (accept)
- stat is a test statistic
- pval is an associated p-value

Author(s)

Minchul Shin

Index

```
dm.test.bt, 1
dm.test.bt.fb, 2
dm.test.ewc.fb, 3
dm.test.r, 3
dm.test.r.m, 4
```