Aprendizado Federado

Arduino e seu Papel na Privacidade em Redes Neurais Profundas

Kaylani Bochie

https://www.gta.ufrj.br/~kaylani/ https://github.com/kaylani2/minicursos

Prefácio

Arduino como:

- Produto final
- Plataforma de prototipagem
- Ferramenta de pesquisa
- Ferramenta de ensino

Prefácio

Arduino como:

- Produto final
- Plataforma de prototipagem
- Ferramenta de pesquisa
- Ferramenta de ensino

FAQ:

- Perguntas?
- Conhecimento prévio?

Conteúdo

- 1 Introdução ao Aprendizado Profundo
 - Aprendizado de Máquina
 - Redes Neurais e Aprendizado Profundo
- 2 Circuito de uma "Rede Neural" com Arduino
- 3 Aprendizado Federado
 - Definindo Privacidade
 - Distribuindo Aprendizado
 - Aplicações Atuais
- Discussão: Como Arduino Contribui para o Aprendizado Federado?

- Introdução ao Aprendizado Profundo
 - Aprendizado de Máguina
 - Redes Neurais e Aprendizado Profundo
- - Definindo Privacidade

 - Aplicações Atuais

O que é Aprendizado de Máquina?

5 / 38

O que é Aprendizado de Máquina?

"Machine learning is about extracting knowledge from data. It is a research field at the intersection of statistics, artificial intelligence, and computer science and is also known as predictive analytics or statistical learning."

Andreas C. Müller e Sarah Guido, "Introduction to Machine Learning with Python", página 1, 2016.

O que é Aprendizado de Máquina?

"Machine learning is about extracting knowledge from data. It is a research field at the intersection of statistics, artificial intelligence, and computer science and is also known as predictive analytics or statistical learning."

Andreas C. Müller e Sarah Guido, "Introduction to Machine Learning with Python", página 1, 2016.

"Machine learning is essentially a form of applied statistics with increased emphasis on the use of computers to statistically estimate complicated functions and a decreased emphasis on proving confidence intervals around these functions [...]"

lan Goodfellow, "Deep Learning", página 96, 2016.

- Supervisionado
- Não supervisionado
- Semissupervisionado
- Por reforço

Supervisionado

Amostras rotuladas.
$$TS = \{\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, ..., \langle x_n, y_n \rangle\}$$

- Não supervisionado
- Semissupervisionado
- Por reforço

- Supervisionado
- Não supervisionado

Amostras não rotuladas. $TS = \{\langle x_1 \rangle, \langle x_2 \rangle, ..., \langle x_n \rangle\}$

- Semissupervisionado
- Por reforço

- Supervisionado
- Não supervisionado
- Semissupervisionado Amostras rotuladas e não rotuladas $TS = \{\langle x_1, y_1 \rangle, \langle x_2 \rangle, ..., \langle x_n, y_n \rangle\}$
- Por reforço

- Supervisionado
- Não supervisionado
- Semissupervisionado
- Por reforço

Aprendizado iterativo. Agente X ação X recompensa.

6 / 38

Divisão do Conjunto de Dados

Como dividir os dados para treinamento?

- Treino, teste e validação
- Vazamento de dados
- Overfitting (sobreajuste) e underfitting (subajuste)
- Ruído

Exemplo de Sobreajuste

Separabilidade Linear

Função XOR

Multilayer Perceptron

Exemplo de uma rede neural feedforward.

Multilayer Perceptron

Exemplo de uma rede neural feedforward.

Neurônio

Tangente Hiperbólica

Neurônios podem saturar

ReLU (Rectified Linear Unit)

- max(0,x)
- Computacionalmente eficiente
- Não satura na região positiva
- Converge mais rapidamente que a sigmoid e a tangente hiperbólica
- Saída não é centrada em zero
- Há saturação na região negativa

Stochastic Gradient Descent (SGD)

- ullet Saída desejada o Y, ou seja, é desejado que $a^{(L)} = Y$
- Custo $\rightarrow C_0(...) = (a^{(L)} Y)^2$, C_0 deve ser minimizado

- ullet Saída desejada o Y, ou seja, é desejado que $a^{(L)} = Y$
- ullet Custo $ightarrow C_0(...) = (a^{(L)} Y)^2$, C_0 deve ser minimizado
- $\bullet \ a^{(L)} = \sigma(w^{(L)} * a^{(L-1)} + b^{(L)}) = \sigma(z^{(L)})$

- ullet Saída desejada o Y, ou seja, é desejado que $a^{(L)} = Y$
- ullet Custo $ightarrow C_0(...) = (a^{(L)} Y)^2$, C_0 deve ser minimizado
- $a^{(L)} = \sigma(w^{(L)} * a^{(L-1)} + b^{(L)}) = \sigma(z^{(L)})$
- $\bullet \ a^{(L)} = \sigma(z^{(L)})$

Back propagation

- ullet Saída desejada o Y, ou seja, é desejado que $a^{(L)} = Y$
- Custo $o C_0(...) = (a^{(L)} Y)^2$, C_0 deve ser minimizado
- $a^{(L)} = \sigma(w^{(L)} * a^{(L-1)} + b^{(L)}) = \sigma(z^{(L)})$
- $\bullet \ a^{(L)} = \sigma(z^{(L)})$
- $a^{(L-1)} = \sigma(w^{(L-1)} * a^{(L-2)} + b^{(L-1)}) = \sigma(z^{(L-1)})$

Back propagation

- ullet Saída desejada o Y, ou seja, é desejado que $a^{(L)} = Y$
- Custo $o C_0(...) = (a^{(L)} Y)^2$, C_0 deve ser minimizado
- $\bullet \ a^{(L)} = \sigma(w^{(L)} * a^{(L-1)} + b^{(L)}) = \sigma(z^{(L)})$
- $a^{(L)} = \sigma(z^{(L)})$
- $a^{(L-1)} = \sigma(w^{(L-1)} * a^{(L-2)} + b^{(L-1)}) = \sigma(z^{(L-1)})$
- $C_0 = f(Y, a_{(L)})$

Back propagation

- ullet Saída desejada o Y, ou seja, é desejado que $a^{(L)} = Y$
- ullet Custo $ightarrow C_0(...) = (a^{(L)} Y)^2$, C_0 deve ser minimizado
- $\bullet \ a^{(L)} = \sigma(w^{(L)} * a^{(L-1)} + b^{(L)}) = \sigma(z^{(L)})$
- $a^{(L)} = \sigma(z^{(L)})$
- $a^{(L-1)} = \sigma(w^{(L-1)} * a^{(L-2)} + b^{(L-1)}) = \sigma(z^{(L-1)})$
- $C_0 = f(Y, a_{(L)})$
- $a_{(L)} = f(w^{(L)}, a^{(L-1)}, b^{(L)})$

Stochastic Gradient Descent (SGD)

Redes Neurais Convolucionais

Filtros Convolucionais

3 4 -5 -1

Filtro convolucional Saída

Redes Neurais Autoassociativas

Redes Neurais Recorrentes

Fluxo de Trabalho Típico

- - Aprendizado de Máguina
 - Redes Neurais e Aprendizado Profundo
- 2 Circuito de uma "Rede Neural" com Arduino
- - Definindo Privacidade

 - Aplicações Atuais

Rede Neural Rasa

Rede Neural "Profunda"

- 1 Introdução ao Aprendizado Profundo
 - Aprendizado de Máquina
 - Redes Neurais e Aprendizado Profundo
- 2 Circuito de uma "Rede Neural" com Arduino
- 3 Aprendizado Federado
 - Definindo Privacidade
 - Distribuindo Aprendizado
 - Aplicações Atuais
- 1 Discussão: Como Arduino Contribui para o Aprendizado Federado?

Brechas e Comportamento

- Desafio Netflix
- Dados no formato <user, movie, date of grade, grade>
- Pesquisadores da University of Texas at Austin identificaram usuários cruzando informações com a base de dados do IMDb em 2007
- Em 2010 Netflix fez um acordo com usuários que iniciaram um processo em 2019

Brechas e Comportamento

- Desafio Netflix
- Dados no formato <user, movie, date of grade, grade>
- Pesquisadores da University of Texas at Austin identificaram usuários cruzando informações com a base de dados do IMDb em 2007
- Em 2010 Netflix fez um acordo com usuários que iniciaram um processo em 2019
- Paradoxo da privacidade

Brechas e Comportamento

- Desafio Netflix
- Dados no formato <user, movie, date of grade, grade>
- Pesquisadores da University of Texas at Austin identificaram usuários cruzando informações com a base de dados do IMDb em 2007
- Em 2010 Netflix fez um acordo com usuários que iniciaram um processo em 2019
- Paradoxo da privacidade

Privacidade diferencial:

- Baseada no conceito de bases de dados adjacentes
- Dependente de aplicação
- Mecanismo de ruído aditivo
- "Dados + ruído = privacidade"

Cenário no Brasil

- Marco Civil da Internet de 2014 é um pouco vago sobre proteção de dados
- Lei nº 13.709/18 (Lei de Proteção de Dados LGPD) de 2018, inspirada na General Data Protection Regulation (GDPR) Europeia de 2018
- Reflexo cotidiano da LGPD: confirmação para uso de cookies

Agregar os modelos

Agregar os modelos

GBoard

NVIDIA Healthcare

- - Aprendizado de Máguina
 - Redes Neurais e Aprendizado Profundo
- - Definindo Privacidade

 - Aplicações Atuais
- Discussão: Como Arduino Contribui para o Aprendizado Federado?

Etapas Típicas em Pesquisas Científicas

- Estudar a literatura
- Construir hipóteses
- Simular e analisar
- Publicar resultados e conclusões
- Implementar e analisar
- O Publicar resultados e conclusões

Perguntas

Kaylani Bochie GTA | Arduino e Privacidade

38 /