Time-Adaptive Unit Commitment POWER TECH 2021

S. Pineda R. Fernández-Blanco J. M. Morales

OASYS group, University of Málaga (Spain)

Funded by the Spanish Ministry of Economy, Industry and Competitiveness through projects ENE2016-80638-R and ENE2017-83775-P

June 28, 2021

- For given:
 - Set of generating units $g=1,\ldots,N_G$
 - ullet Set of time periods $t=1,\ldots,N_T$
 - ullet Known electricity demand d_t

- For given:
 - Set of generating units $g=1,\ldots,N_G$
 - Set of time periods $t = 1, \dots, N_T$
 - ullet Known electricity demand d_t
- The unit commitment (UC) problem determines:
 - \bullet On/off status of generating units u_{gt}
 - \bullet Power dispatch of generating units p_{gt}

- For given:
 - Set of generating units $g=1,\ldots,N_G$
 - Set of time periods $t = 1, \dots, N_T$
 - ullet Known electricity demand d_t
- The unit commitment (UC) problem determines:
 - ullet On/off status of generating units u_{gt}
 - ullet Power dispatch of generating units p_{gt}
- Mathematically, UC is formulated as a mixed-integer program (MIP):

$$\min_{u_{gt}, p_{gt}} f(u_{gt}, p_{gt})$$
s.t.
$$g_j(u_{gt}, p_{gt}, d_t) \leq 0, \quad \forall j$$

$$u_{gt} \in \{0, 1\}$$

- For given:
 - Set of generating units $g=1,\ldots,N_G$
 - Set of time periods $t = 1, \dots, N_T$
 - ullet Known electricity demand d_t
- The unit commitment (UC) problem determines:
 - ullet On/off status of generating units u_{gt}
 - ullet Power dispatch of generating units p_{gt}
- Mathematically, UC is formulated as a mixed-integer program (MIP):

$$\min_{u_{gt}, p_{gt}} f(u_{gt}, p_{gt})$$
s.t.
$$g_j(u_{gt}, p_{gt}, d_t) \leq 0, \quad \forall j$$

$$u_{gt} \in \{0, 1\}$$

- UC problem is computationally expensive
- Increasing N_G or N_T may turn UC intractable

- Traditionally: 24 hourly time periods
- Conventional hourly unit-commitment (CH-UC)

• What happens if renewable penetration increases?

• FERC Order 764: "hourly transmission scheduling protocols (...) are insufficient to provide system operators with the flexibility to manage their system effectively and efficiently"

• What about increasing time resolution to 15 minutes?

- Existing approaches with finer time resolutions
 - Pandžić et al. 2014 (15 min)
 - Deane, Drayton, and Ó Gallachóir 2014 (5, 15, 30, 60 min)
 - Kazemi et al. 2016 (5, 10, 15, 30, 60 min)
 - Bakirtzis et al. 2014; Bakirtzis and Biskas 2017 (5-60 min)
- Operating cost savings
- Increase of computational time

- What about using 24 time periods of different duration?
- Time-adaptive unit-commitment (TA-UC)

Research question

Can we determine the duration of 24 time periods to make a more efficient use of the system flexibility without increasing the computational burden of the UC?

Original data (5-min resolution)

Original data (5-min resolution)

Compute distance between each pair of adjacent clusters

9 1 4 2 3 6 3 2 4 3 4 0 1 1 1 9 0 2 3 2 9 3 2 0 2 9 4 4 3 2 6 3 1 3 9

Merge the two closest adjacent clusters and update distances

Compute distance between each pair of adjacent clusters

Merge the two closest adjacent clusters and update distances

Repeat 2 and 3 until the final number of clusters is obtained

Comparison: CH-UC vs. TA-UC

- Demand is 10% of that in Spain in 2017 (3.8GW peak demand)
- Wind and solar capacity factors in Spain in 2017
- Renewable penetrations from 20% to 60%
- Start-up costs, ramp limits and minimum times of thermal units
- 13 units and three generation portfolios:

	Base ($\triangle u, p$)	Medium (≙ <i>u</i>)	Peak
Normal-flex	$g_1 - g_3(1.2 \text{GW})$	$g_4 - g_7 (1.2 \text{GW})$	$g_8 - g_{13} (1.5 \text{GW})$
High-flex	-	$g_1 - g_7$ (2.4GW)	$g_8 - g_{13} (1.5 {\sf GW})$
Low-flex	$g_1 - g_7$ (2.4GW)	-	$g_8 - g_{13} (1.5 \text{GW})$

Table: RELATIVE COST SAVINGS (%)

Wind (%)	Solar (%)	Normal-flex	High-flex	Low-flex case
10	10	0.01	0.00	0.27
20	0	0.01	0.01	0.30
0	20	0.12	0.07	0.53
30	30	2.35	1.04	3.49
60	0	0.56	0.08	1.02
0	60	2.56	1.43	4.76

Table: Relative Cost Savings (%)

Wind (%)	Solar (%)	Normal-flex	High-flex	Low-flex case
10	10	0.01	0.00	0.27
20	0	0.01	0.01	0.30
0	20	0.12	0.07	0.53
30	30	2.35	1.04	3.49
60	0	0.56	0.08	1.02
0	60	2.56	1.43	4.76

More renewables Higher savings

Table: RELATIVE COST SAVINGS (%)

Wind (%)	Solar (%)	Normal-flex	High-flex	Low-flex case
10	10	0.01	0.00	0.27
20	0	0.01	0.01	0.30
0	20	0.12	0.07	0.53
30	30	2.35	1.04	3.49
60	0	0.56	0.08	1.02
0	60	2.56	1.43	4.76

- More renewables Higher savings

Table: RELATIVE COST SAVINGS (%)

Wind (%)	Solar (%)	Normal-flex	High-flex	Low-flex case
10	10	0.01	0.00	0.27
20	0	0.01	0.01	0.30
0	20	0.12	0.07	0.53
30	30	2.35	1.04	3.49
60	0	0.56	0.08	1.02
0	60	2.56	1.43	4.76

- More renewables Higher savings
- More solar
- Higher savings
- Low flexibility
 Higher savings

Summary

- The conventional-hourly UC is proven inadequate for high penetration of renewables (Duck curve)
- Finer time discretizations reduce operating costs while increasing computational time
- The proposed time-adaptive UC reduces operating costs without increasing computational time
- The cost savings increase with renewable (solar) penetration and decrease with generation flexibility

Thanks!! Questions??

website: oasys.uma.es

S. Pineda, R. Fernández-Blanco and J.M. Morales, "Time-Adaptive Unit Commitment", in IEEE Transactions on Power Systems, 34(5), 3869-3878, 2019.

References I

- Bakirtzis, Emmanouil A. and Pandelis N. Biskas (2017). "Multiple Time Resolution Stochastic Scheduling for Systems With High Renewable Penetration". In: *IEEE Transactions on Power Systems* 32.2, pp. 1030–1040.
- Bakirtzis, Emmanouil A. et al. (2014). "Multiple time resolution unit commitment for short-term operations scheduling under high renewable penetration". In: *IEEE Transactions on Power Systems* 29.1, pp. 149–159.
- Deane, J. P., G. Drayton, and B. P. Ó Gallachóir (2014). "The impact of sub-hourly modelling in power systems with significant levels of renewable generation". In: *Applied Energy* 113, pp. 152–158.
- Kazemi, Mehdi et al. (2016). "Evaluating the impact of sub-hourly unit commitment method on spinning reserve in presence of intermittent generators". In: *Energy* 113, pp. 338–354.

References II

Pandžić, Hrvoje et al. (2014). "Effect of time resolution on unit commitment decisions in systems with high wind penetration". In: 2014 IEEE PES General Meeting — Conference & Exposition. IEEE, pp. 1–5.