- 74. a) Seja A um conjunto. Mostre que o par $(\mathcal{P}(A), \subseteq)$ é um c.p.o. com elemento mínimo e elemento máximo.
 - b) Sendo $A = \{1, 2, 3\}$, construa o diagrama de Hasse de $(\mathcal{P}(A), \subseteq)$.
- 75. Sejam (A, \leq) um c.p.o. e $X \subseteq A$. Mostre que a relação \leq_X definida em X por

$$x \leq_X y \Longleftrightarrow x \leq y$$

é uma ordem parcial em X. (\leq_X designa-se por ordem parcial induzida em X por \leq)

- 76. Considere em \mathbb{N}_0 a relação | definida por $x \mid y \iff \exists_{k \in \mathbb{N}_0} : y = xk$.
 - a) Mostre que $(\mathbb{N}_0, |)$ é um c.p.o., mas não é uma cadeia.
 - b) Dados $a, b \in \mathbb{N}_0$, determine, caso existam, o supremo e o ínfimo de $\{a, b\}$.
 - c) Diga, justificando, se $(\mathbb{N}_0, |)$ tem elemento máximo ou elemento mínimo.
 - d) Sejam $X = \{1, 2, 3, 4, 6, 8, 9, 12, 16, 18\}$ e $Y = \{1, 2, 5, 6, 12, 20, 30, 120\}$.
 - i) Construa os diagramas de Hasse de $(X, |_X)$ e de $(Y, |_Y)$.
 - ii) Indique, caso existam, os elementos minimais e os elementos maximais de X.
 - iii) Indique, caso existam, elementos $a, b, c, d, u, v, x, y, \in Y$ tais que
 - exista supremo de $\{a, b\}$ em $(Y, |_Y)$ e $\sup_Y \{a, b\} \neq \sup_{N_0} \{a, b\}$;
 - exista ínfimo de $\{c, d\}$ em $(Y, |_Y)$ e ínf $_Y \{c, d\} \neq \inf_{\mathbb{N}_0} \{c, d\}$;
 - não exista supremo de $\{u, v\}$ em $(Y, |_Y)$;
 - não exista ínfimo de $\{x, y\}$ em $(Y, |_Y)$.
- 77. Prove que, para todo o $n \in \mathbb{N}$, todo o conjunto de n números naturais tem máximo (para a ordem \leq habitual em \mathbb{N}).
- 78. Sejam (A, \leq) um c.p.o. e $X \subseteq A$. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes.
 - a) Se X tem um elemento maximal, então X tem elemento máximo.
 - b) Se X tem elemento máximo, então X tem um elemento maximal.
 - c) Se existe supremo de *X*, então *X* tem um elemento maximal.
 - d) Se X tem um elemento maximal, então existe supremo de X.
- 79. Sejam (A, \leq) e (B, \leq') cadeias. Considere a relação \leq definida em $A \times B$ por

$$(a_1, b_1) \leq (a_2, b_2) \iff (a_1 \leq a_2 \land a_1 \neq a_2) \lor (a_1 = a_2 \land b_1 \leq' b_2).$$

Mostre que $(A \times B, \leq)$ é uma cadeia $(\leq designa-se por ordem lexicográfica em <math>A \times B)$.

- 80. Recorde que (\mathbb{N}, \leq) , onde \leq é a ordem usual em \mathbb{N} , é um conjunto bem ordenado (c.b.o.). Recorde ainda que (\mathbb{Z}, \leq) , onde \leq é a ordem usual em \mathbb{Z} , não é um c.b.o.
 - a) Defina uma ordem parcial \leq' em \mathbb{Z} , distinta de \leq , de tal forma que (\mathbb{Z}, \leq') seja um c.b.o.
 - b) Defina uma ordem parcial \leq' em \mathbb{N} , distinta de \leq , de tal forma que (\mathbb{N}, \leq') seja um c.b.o. que admita um elemento sem predecessor imediato.

- 81. Considere os conjuntos $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 3, 5, 7, 9, 11\}$.
 - a) Indique, caso exista, uma relação binária f de A para B tal que:
 - i) f não seja funcional;
 - ii) $f: A \rightarrow B$ seja uma função injetiva;
 - iii) $f: A \rightarrow B$ seja uma função não injetiva;
 - iv) $f: A \to B$ seja uma função sobrejetiva.
 - b) Indique, caso exista, uma relação binária f de B para A tal que:
 - i) f não seja funcional;
 - ii) $f: B \to A$ seja uma função injetiva.
 - iii) $f: B \to A$ seja uma função sobrejetiva.
 - iv) $f: B \to A$ seja uma função não sobrejetiva.
- 82. Em cada um dos seguintes casos, diga se f é funcional, em caso afirmativo se $f:A\to B$ é uma função, e ainda se é uma função injetiva ou sobrejetiva.
 - a) $f = \{(1, b), (2, c), (1, c), (3, c)\}; A = \{1, 2, 3\}; B = \{a, b, c\}.$
 - b) $f = \{(1, 2), (2, 3)\}; A = \{1, 2, 3\}; B = \{1, 2, 3\}.$
 - c) $f = \{(1, 3), (2, 1), (3, 2)\}; A = \{1, 2, 3\}; B = \{1, 2, 3\}.$
 - d) $f = \{(a, b), (b, c), (c, a), (d, b)\}; A = \{a, b, c, d\}; B = \{a, b, c\}.$
 - e) $f = \{(1, 2), (2, 3)\}; A = \{1, 2\}; B = \{1, 2, 3\}.$
- 83. Para cada um dos seguintes conjuntos A diga, justificando, se a relação $f = \{(x, y) \in A \mid x^2 + y^2 = 1\} \subseteq \mathbb{R}^2$ é funcional, e em caso afirmativo apresente uma função $f : B \to C$.
 - a) $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 0 \le x \le 1, 0 \le y \le 1\}.$
 - b) $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid -1 \le x \le 1, -1 \le y \le 1\}.$
 - c) $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid -1 \le x \le 1, 0 \le y \le 1\}.$
 - d) $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 0 \le x \le 1, -1 \le y \le 1\}.$
- 84. Recorde as definições de congruência módulo *n* e respetivas classes de equivalência (exercícios 67 e 68).
 - a) A relação de \mathbb{Z}_6 em \mathbb{Z} constituída pelos pares ([a] $_6$, 2a), com $a \in \mathbb{Z}$, é funcional?
 - b) Existe uma função de \mathbb{Z}_6 em \mathbb{N}_0 que a cada classe $[a]_6$ associa o resto na divisão inteira de a por 6?
- 85. Sejam A, B conjuntos e $f: A \to B$ uma função. Seja R_f a relação binária definida em A por

$$a R_f b \iff f(a) = f(b)$$
.

Mostre que R_f é uma relação de equivalência em A.