Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе №7

Дисциплина: Телекоммуникационные технологии **Тема:** Дискретное преобразование Фурье

Работу выполнил: Ляшенко В.В. Группа: 3530901/80201 Преподаватель: Богач Н.В.

Оглавление

1	Упражнение 7.1	4
2	Упражнение 7.2 2.1 Алгоритм	5
		5
3	Выводы	8

Список иллюстраций

Листинги

2.1	Вычисление БПФ с помощью np.fft.fft
2.2	Полученные результаты
2.3	Функция dft
2.4	Применение функции ДПФ
2.5	Полученные результаты
2.6	Функция fft_norec
2.7	Применение функции fft_norec
2.8	Полученные результаты
2.9	Функция fft
2.10	Применение функции fft
2 11	Полученные результаты

Глава 1

Упражнение 7.1

В начале мы должны для Jupyter загрузить chap07.ipynb, прочитать пояснения и запустить примеры.

Все примеры были успешно запущены.

Глава 2

Упражнение 7.2

2.1 Алгоритм

Реализуем алгоритм быстрого преобразования Фурье (БПФ), время работы которго $N \log N$. Для этого воспользуемся леммой Дэниелсона-Ланцоша.

$$DFT(y)[n] = DFT(e)[n] + exp(-2nin/N)DFT(o)[n]$$
(2.1)

В этой формуле DFT(y)[n] - это n-й элемент ДПФ от y, e и o - массивы сигнала, содержащие соответственно четные и нечетные элементы y.

Эта лемма предлагает рекурсивный алгоритм для ДПФ:

- 1. Дан массив сигнала y. Разделим его на чётные элементы e и нечётные элементы o.
- 2. Вычислим DFT e и o, делая рекурсивные вызовы.
- 3. Вычислим DFT(y) для каждого значения n, используя лемму Дэниелсона-Ланцоша.

В простейшем случае эту рекурсию надо продолжать, пока длина y не дойдет до 1. Тогда $\mathrm{DFT}(y) = y$. А если длина y достаточно мала, можно вычислить его ДПФ перемножением матриц, используя заранее вычисленные матрицы.

2.2 Реализация

Возьмём небольшой сигнал и вычислим его $\Pi\Phi$ с помощью имеющейся функции np.fft.fft.

```
ys = [-0.3, 0.8, 0.6, -0.4]
hs = np.fft.fft(ys)
print(hs)
```

Листинг 2.1: Вычисление БПФ с помощью np.fft.fft

Теперь реализуем функцию ДПФ.

```
def dft(ys):
    N = len(ys)
    ts = np.arange(N) / N
```

```
freqs = np.arange(N)
args = np.outer(ts, freqs)
M = np.exp(1j * PI2 * args)
amps = M.conj().transpose().dot(ys)
return amps
```

Листинг 2.3: Функция dft

Воспользуемся ей, чтобы убедиться, что результаты одинаковые.

1.0537365376317067e-15

Листинг 2.5: Полученные результаты

Как мы можем видеть, различия минимальны.

Для того, чтобы создать рекурсивное БП Φ , напишем функцию, которая разбивает входной массив и использует np.fft.fft для вычисления БП Φ полученных половин.

Применим эту функцию и убедимся, что результат тот же.

```
hs3 = fft_norec(ys)
np.sum(np.abs(hs - hs3))

Листинг 2.7: Применение функции fft norec
```

3.820527793534411e-16

Листинг 2.8: Полученные результаты

Разница также мала.

Теперь реализуем функцию fft, где заменим np.fft.fft на рекурсивные вызовы.

```
def fft(ys):
    N = len(ys)
    if N == 1:
        return ys

He = fft(ys[::2])
    Ho = fft(ys[1::2])

    ns = np.arange(N)
    W = np.exp(-1j * PI2 * ns / N)
```

Проверим её работу.

Листинг 2.10: Применение функции fft

3.820527793534411e-16

Листинг 2.11: Полученные результаты

Всё работает верно.

Полученная реализация работает за $N\log N$, однако имеют недостатки - занимаемое пространство так же составляет $N\log N$, к тому же тратится время на создание и копирование массивов.

Функцию можно улучшить, реализовав работу «на месте».

Глава 3

Выводы

В результате выполнения данной работы мы изучили дискретное преобразование Фурье и быстрое преобразование Фурье. Во многих случаях достаточно ДП Φ , которое работает за N^2 , но иногда требуется БП Φ , которое работает за $N\log N$.