

Interrogación 1 FIZ0223 -Métodos de la Física Matematica 1

Facultad de Física Pontificia Universidad Católica de Chile Septiembre 8, 2016

Tiempo para responder: 120 minutos

Atención!!

- Si utiliza lápiz de grafito en sus resultados finales, perderá la posibilidad de reclamar errores de corrección.
- Por favor no desprenda las hojas de los cuadernillos.
- Marque con su nombre y número de estudiante la parte superior de cada hoja que utilice .
 Cada ejercicio se califica con un puntaje máximo de 1 y mínimo de 0

Desigualdades

1) Si $a, b \in C$, demuestre claramente que $|a| - |b| \le |a - b|$.

Demostración Forma 1: Considere que $|a+b| \le |a| + |b| \Rightarrow |a+b|^2 \le (|a|+|b|)^2 \Rightarrow Re(a\overline{b}) \le |a\overline{b}|$ Ahora considere que $|a-b|^2 = (a-b)(\overline{a}-\overline{b}) = |a|^2 + |b|^2 - 2Re(a\overline{b}) \ge |a|^2 + |b|^2 - 2|a\overline{b}|$

$$\Rightarrow |a - b|^2 \ge |a|^2 + |b|^2 - 2|ab|$$

$$\Rightarrow |a - b|^2 \ge (|a| - |b|)^2$$

$$\Rightarrow |a - b| \ge |a| - |b|$$

Demostración Forma 2: Considere que $|a| = |a - b + b| \le |a - b| + |b|$

$$\Rightarrow |a| - |b| \le |a - b|$$

Ahora considere que $|b| = |b - a + a| \le |b - a| + |a|$

$$\Rightarrow |b| - |a| \le |b - a|$$

como |a-b|=|b-a| entonces la única forma de satisfacer las dos desigualdades es que

$$\left| |a| - |b| \right| \le |a - b| \qquad \blacksquare$$

2) Si $a, b \in C$ y además |a| < 1 y |b| < 1, demuestre claramente que

$$\left| \frac{a-b}{1-\overline{a}b} \right| < 1.$$

$$\Rightarrow |a-b| < |1-\overline{a}b|$$

$$\Rightarrow |a-b|^2 < |1-\overline{a}b|^2$$

$$\Rightarrow |a|^2 + |b|^2 - 2Re(a\overline{b}) < 1 + |\overline{a}b|^2 - 2Re(\overline{a}b)$$

$$\Rightarrow 0 < 1 + |a|^2|b|^2 - |a|^2 - |b|^2$$

$$\Rightarrow 0 < (1-|b|^2)(1-|a|^2)$$

Como |a|<1 y |b|<1entonces la desigualdad $0<(1-|b|^2)(1-|a|^2)$ se satisface \blacksquare

3) Si $a_n \in C$, $|a_n| < 1$ y $\lambda_n \ge 0$ para n = 1, ..., N y $\sum_{n=1}^N \lambda_n = 1$, entonces demuestre claramente que

$$\left| \sum_{n=1}^{N} \lambda_n \, a_n \right| < 1.$$

$$\Rightarrow \left| \sum_{n=1}^{N} \lambda_n \, a_n \right| \le \sum_{n=1}^{N} |\lambda_n \, a_n|$$

como $|a_n| < 1$ entonces $|\lambda_n a_n| < |\lambda_n|$ para todo n. Esto implica que $\sum_{n=1}^N |\lambda_n a_n| < \sum_{n=1}^N |\lambda_n|$. Ya que $\lambda_n \ge 0$ entonces $\sum_{n=1}^N |\lambda_n| = \sum_{n=1}^N |\lambda_n| = 1$, por tanto

$$\left| \sum_{n=1}^{N} \lambda_n \, a_n \right| < 1 \qquad \blacksquare$$

Series

4) Con la fórmula $(1-z)(1+z+z^2+\cdots+z^N)=1-z^{N-1}$ con $z\in C$ y $z\neq 1$, determine una expresion cerrada (no en forma de sumatoria) para

$$\sum_{k=0}^{N} \cos(k\theta) = ?$$

donde $0 < \theta < 2\pi$.

$$\Rightarrow \sum_{k=0}^{N} z^k = \frac{1 - z^{N-1}}{1 - z}$$

Si consideramos $z = e^{i\theta}$

$$\Rightarrow \sum_{k=0}^{N} e^{ik\theta} = \frac{1 - e^{i(N-1)\theta}}{1 - e^{i\theta}} = \frac{e^{i(N-1)\theta/2}}{e^{i\theta/2}} \frac{\sin((N-1)\theta/2)}{\sin(\theta/2)} = e^{i(N-2)\theta/2} \frac{\sin((N-1)\theta/2)}{\sin(\theta/2)}$$

$$\Rightarrow Re\left(\sum_{k=0}^{N} e^{ik\theta}\right) = \sum_{k=0}^{N} \cos(k\theta) = \cos((N-2)\theta/2) \frac{\sin((N-1)\theta/2)}{\sin(\theta/2)}$$

Funciones elementales

5) Si $z, c \in C$ y suponiendo que f'(z) existe, encuentre la fórmula para la operación:

$$\frac{d}{dz}(c^{f(z)}).$$

Observemos que $c^{f(z)} = e^{\log(c)f(z)}$ con $\log(c) = \ln|c| + \arg(c) + 2\pi ki \ k \in \mathbb{Z}$.

$$\Rightarrow \frac{d}{dz}(c^{f(z)}) = e^{\log(c)f(z)}\log(c)f'(z) = c^{f(z)}\log(c)f'(z)$$

Funciones analíticas

6) Para las siguientes funciones reales u(x,y) determine si son apropiadas para definir una función analítica f(z) = u(x,y) + iv(x,y). En caso afirmativo determine la correspondiente función f(z).

a)
$$u(x,y) = e^{x+y}$$
.

b)
$$u(x,y) = e^{x^2 - y^2} \cos(2xy)$$
.

Solución: Para deteminar si la función u(x,y) es parte de una función analítica, primero se debe verificar si es armónica, i.e. $\nabla^2 u(x,y) = 0$. Tras una confirmación positiva se deben usar las relaciones de Cauchy-Riemann para determinar la función v(x,y).

a) Para $u(x,y) = e^{x+y}$ se tiene que

$$\nabla^2 u(x,y) = \frac{\partial u(x,y)}{\partial x^2} + \frac{\partial u(x,y)}{\partial y^2} = 2e^{x+y} \neq 0$$

luego no es armónica

b) Para $u(x,y) = e^{x^2-y^2}\cos(2xy)$ se tiene que

$$\nabla^2 u(x,y) = \frac{\partial u(x,y)}{\partial x^2} + \frac{\partial u(x,y)}{\partial y^2}$$

$$\nabla^2 u(x,y) = 2e^{x^2 - y^2} \left[\left(\left(2x^2 - 2y^2 + 1 \right) \cos(2xy) - 4xy \sin(2xy) \right) - \left(\left(2x^2 - 2y^2 + 1 \right) \cos(2xy) - 4xy \sin(2xy) \right) \right]$$

$$\Rightarrow \nabla^2 u(x,y) = 0$$

Luego $u(x,y) = e^{x^2-y^2}\cos(2xy)$ es armónica. Por tanto ahora usamos las relaciones de Cauchy-Riemann para determinar la función v(x,y).

De la relación

$$\frac{\partial u(x,y)}{\partial x} = \frac{\partial v(x,y)}{\partial y}$$

se obtiene

$$\frac{\partial u(x,y)}{\partial x} = 2e^{x^2 - y^2} (x\cos(2xy) - y\sin(2xy))$$
$$v(x,y) = \int \frac{\partial u(x,y)}{\partial x} dy + c(x) = e^{x^2 - y^2} \sin(2xy) + c(x),$$

donde c(x) es una función en x por definir. Para ello usamos la otra relación de Cauchy-Riemann, i.e.

$$\frac{\partial v(x,y)}{\partial x} = -\frac{\partial u(x,y)}{\partial y}$$

$$\Rightarrow \frac{\partial v(x,y)}{\partial x} = e^{-y^2} \left(e^{y^2} c'(x) + 2e^{x^2} (x \sin(2xy) + y \cos(2xy)) \right)$$
$$\Rightarrow \frac{\partial u(x,y)}{\partial y} = -2e^{x^2 - y^2} (x \sin(2xy) + y \cos(2xy))$$

entonces de la relación

$$\frac{\partial v(x,y)}{\partial x} + \frac{\partial u(x,y)}{\partial y} = 0$$

obtenemos que c'(x) = 0, por tanto $c(x) = c_0$ con c_0 constante. Finalmente vemos que

$$v(x,y) = e^{x^2 - y^2} \sin(2xy) + c_0 \qquad \blacksquare$$

7) Considere la función f(z) = u(x,y) + iv(x,y) analítica en el plano complejo y definamos las funciones

$$U(x,y) = u^{3}(x,y) - 3u(x,y)v^{2}(x,y) + v(x,y)$$
 y
$$V(x,y) = 3u^{2}(x,y)v(x,y) - v^{3}(x,y) - u(x,y).$$

Considere las familias de curvas de nivel $U(x,y) = c_1$ y $V(x,y) = c_2$, donde c_1 y c_2 son constantes arbitrarias.

• ¿Son estas familias ortogonales entre sí? Justifique claramente su respuesta.

Solución: Para que las familias sean ortogonales entre sí es necesario y suficiente que las funciones U(x,y) y V(x,y) satisfagan las condiciones de Cauchy-Riemann:

$$U_x - V_y = 0 \qquad \text{y} \qquad V_x + U_y = 0.$$

Opción a) hacer directamente los culculos de estas relaciones:

$$U_x - V_y = 3u^2 (u_x - v_y) - 6uv (u_y + v_x) + 3v^2 (v_y - u_x) + (u_y + v_x) = 0$$
$$V_x + U_y = u^2 (3u_y + 3v_x) + uv (6u_x - 6v_y) + v^2 (-3u_y - 3v_x) - (u_x - v_y) = 0$$

Nótese que las expresiones entre los paréntesis son cero, pues son las condiciones de Cauchy-Riemann asociadas a la función compleja f(z). En otras palabras, U(x,y) y V(x,y) satisfacen las condiciones de Cauchy-Riemann, por tanto sus curvas de nivel son ortogonales entre sí.

Opción b) considerar que F = U(u, v) + iV(u, v) con f(z) = u(x, y) + iv(x, y) analítica. Entonces por regla de la cadena tenemos que:

$$U_x = U_u u_x + U_v v_x$$

$$V_x = V_u u_x + V_v v_x$$

$$U_y = U_u u_y + U_v v_y$$

$$V_y = V_u u_y + V_v v_y$$

como $U_x - V_y = 0$ y $V_x + U_y = 0$, entonces

$$U_u u_x + U_v v_x - V_u u_y - V_v v_y = 0$$

$$V_u u_x + V_v v_x + U_u u_y + U_v v_y = 0$$

Usando las condiciones de Cauchy-Riemann para f(z), i.e. $u_x = -v_y$ y $v_x = -u_y$ podemos agrupar estas ultimas expresiones así:

$$u_x(U_u - V_v) + v_x(U_v + V_u) = 0$$

$$v_x(V_v - U_u) + u_x(V_u + U_v) = 0$$

Ya que u_x y v_x son linealmente independientes, entonces los paréntesis deben ser cero, i.e.

$$U_u - V_v = 0$$

У

$$U_v + V_u = 0$$

Estas dos ultimas relaciones son las condiciones de Cauchy-Riemann para F = U(u, v) + iV(u, v) y que se pueden verificar fácilmente que son ciertas, para las funciones U y V del problema propuesto, i.e.

$$U(u, v) = u^3 - 3uv^2 + v$$
 y $V(u, v) = 3u^2v - v^3 - u$.

8) Determine la región donde la función $f = \overline{z}e^{-|\overline{z}|^2}$ es analítica.

Solución: Si z = x + iy entonces $f = (x - iy)e^{-x^2 - y^2}$ por tanto $u = xe^{-x^2 - y^2}$ y $v = -ye^{-x^2 - y^2}$.

$$v_x + u_y = 0$$

$$u_x - v_y = -2e^{-x^2 - y^2} (x^2 + y^2 - 1)$$

Para satisfacer las condiciones de Cauchy-Riemann $x^2 + y^2 - 1 = 0$, el cual es un círculo de radio 1 y centrado en el origen.

9) Si f(z) y $\overline{f(z)}$ son funciones analíticas en un dominio D, halle la función f(z).

Solución: Sea f = u + iv entonces $\overline{f} = u - iv$, por tanto las relaciones de Cauchy-Riemman para las dos ecuaciones son: $u_x = v_y$, $v_x = -u_y$, $u_x = -v_y$ y $v_x = u_y$. De estas condiciones se obienen relaciones de la forma $u_x = -u_x$, $u_y = -u_y$, $v_x = -v_x$, $v_y = -v_y$, por tanto la unica solución posible es que

$$u_x = u_y = v_x = v_y = 0,$$

es decir f(z) = c con $c \in C$ constante.