

$f_{1^-}^{\#2} \alpha$	0	0	0	0	0	0	0	
В								
$f_{1}^{\#1}$	0	0	0	0	0	0	0	
$\omega_{1^{-}}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0	
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1$	0	0	0	
$f_{1}^{\#1}\alpha\beta$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0	
$\omega_1^{\# 2} \alpha eta$	$\frac{\sqrt{2} t_2}{3}$	2 2 3	$\begin{vmatrix} -\frac{1}{3} & i & k & t_2 \end{vmatrix}$	0	0	0	0	
$\omega_1^{\#_1}{}_+\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt$	0	0	0	0	
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} + \alpha$	

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2} t_{1^{-}\alpha}^{\#1} t_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#1}{}_{lpha}$	0	0	0	$-\frac{1}{k^2 r_1}$	0	0	0
${\mathfrak r}_1^{\#1}{}_{\!$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1^-}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Source constraints				
SO(3) irreps	#			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} == 0$	1			
$\tau_1^{\#2\alpha} == 0$	3			
$\tau_1^{\#1\alpha} == 0$	თ			
$\sigma_1^{\#2\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3			
$\sigma_{1+}^{\#1\alpha\beta} == \sigma_{1+}^{\#2\alpha\beta}$	3			
$\tau_{2}^{\#1\alpha\beta} == 0$	5			
$\sigma_{2^{+}}^{\#1\alpha\beta}==0$	5			
Total #:	2			

	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 (-r_1 + r_3)}$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

 $6 k^2 (-r_1 + r_3)$

 $f_{0^{+}}^{\#1}$

 $f_{0^{+}}^{\#2}$

 $\tau_2^{\#1}_{\alpha\beta}$

 $\alpha\beta$

	Massive particle		
? $P = 0$	Pole residue:	$-\frac{1}{r_2}$ >	
$\frac{3}{2}$	Polarisations:	1	
\vec{k}^{μ}	Square mass:	$-\frac{t_2}{r_2}$ >	
?	Spin:	0	
·	Parity:	Odd	

	Massive particle					
-?	Pole residue:	$-\frac{1}{r_2} > 0$				
	Polarisations:	1				
	Square mass:	$-\frac{t_2}{r_2} > 0$				
	Spin:	0				
	Parity:	Ddd				

Unitarity conditions	(No massless particles)
1 01	cles)

 $r_2 < 0 \&\& t_2 > 0$