CODI TFG. Les trajectòries juvenils a Catalunya (1992-2012) des d'una perspectiva longitudinal: anàlisi de la transició escola-treball i la seva relació amb el temps de l'emancipació residencial.

Bruna Santanach

07-06-2023

Càrrega llibreries

```
library(writex1)
library(plyr)
library(haven)
library(tidyverse)
library(lubridate)
library(scales)
library(skimr)
library(ggplot2)
library(ggseqplot)
library(labelled)
library(TraMineR)
library(cluster)
library(kableExtra)
library(seqhandbook)
library(ade4)
library(cluster)
library(pvclust)
library(survival)
library(haven)
library(MASS)
library(survminer)
library(xfun)
library(forcats)
library(webshot2)
library(gt)
library(ggdendro)
library(factoextra)
```

Càrrega de dades

Obrim les dades de l'EJC 12,i agafem les generacions nascudes entre al 1997 i 1982 (es a dir entre 30 i 35 anys al 2012), per poder analitzar trajectòries completes fins als 30.

```
EJC12<- read_sav("0_EJC12_amb vC_anonimitzada.sav")
EJC12$v1<-as.integer(format(EJC12$v1, format="%Y"))
EJC12<- EJC12 %>% filter(v1<=1982)</pre>
```

Tenim aquests casos per cohorts:

Nombre d'observacions per generació


```
table(EJC12$v1)

##

## 1977 1978 1979 1980 1981 1982

## 138 167 166 217 224 176
```

Variables de gènere, lloc d'orígen, nivell socioeconòmic familiar i generació (per utilitzar més és endavant)

```
variables<-EJC12[,c(1,6,10,11,12,916,911)]
colnames(variables)<-
c("id","municipi","sexe","cohort","lloc.naix","c.socioecon","n.estudis")</pre>
```

Municipi

```
attributes(variables$municipi)$labels

## Capital de comarca Màxim rural Rural intermedi Urbà
## 1 2 3 4

variables$municipi<-as.factor(variables$municipi)
levels(variables$municipi)<-c("capital_Comarca", "max_rural",
"mitj_rural", "urbà")#codifiquem</pre>
```

Sexe

```
attributes(variables$sexe)$labels
```

```
## Dona Home
## 1 2

variables$sexe<-as.factor(variables$sexe)
levels(variables$sexe)<-c("dona","home")#codifiquem</pre>
```

LLoc naixement

```
attributes(variables$lloc.naix)$labels
```

```
## A Catalunya A la resta d'Espanya A l'estranger
## 1 2 3
## No pertinent Ns Nc
## 97 98 99

variables$lloc.naix<-as.factor(variables$lloc.naix)
levels(variables$lloc.naix)<-c("Cat", "Esp", "altre_País")#codifiquem</pre>
```

Categoria socioeconòmica

```
attributes(variables$c.socioecon)$labels
```

```
##
                                 Directors i gerents
##
##
                            Tècnics i Professionals
##
## Ocupacions que requereixen mitjana qualificació
##
                              Ocupacions elementals
##
##
##
                                 Ocupacions militars
##
##
                                              Altres
##
                                                    6
```

variables\$c.socioecon<-as.factor(variables\$c.socioecon)
summary(variables\$c.socioecon)</pre>

```
## 1 2 3 4 5 NA's
## 104 231 546 129 5 73
```

levels(variables\$c.socioecon)<-c("directors_gerents", "tèncincs_professinals",
"ocup.quali.mitjana", "ocup.elementals", "ocup.militars")</pre>

Nivell estudis

```
attributes(variables$n.estudis)$labels
```

```
## Estudis inferiors a obligatoris
## 1 2
## Estudis secundaris postobligatoris
## 3 Estudis universitaris
## No ho sap No contesta
## 98
```

```
variables$n.estudis<-as.factor(variables$n.estudis)
levels(variables$n.estudis)<-c("no_obligatoris", "oblifatoris",
"secundaris_postoblig", "universitaris")#codifiquem</pre>
```

4. Anàlisi de sequencies multicanal de les transicions escola-treball

4.2. La codificació de trajectòries

• Construcció de la matriu de trajectòries educatives de l'EJC12

```
Educ_traj<-data.frame(EJC12$id, EJC12[,c(46:135)])
educ.names<-c("esdeveniment", "data.i", "data.f", "centre", "beca", "repetició",
"titulació", "abandonament", "canvi", "en.curs")

col.names<-c("id")
for (i in 0:8){
    col.names<-c(col.names,(paste(educ.names," - E",i, sep="")))
}

colnames(Educ_traj)<-col.names
    colnames(Educ_traj) <- gsub(" ", "", colnames(Educ_traj))</pre>
```

Passem les EJC12 a format llarg:

```
seq.long.e<-Educ_traj %>%
    dplyr::select(id, starts_with(c(educ.names[1:3]))) %>%
    pivot_longer(-id,names_to= c(".value", "Esdeveniment"), names_sep="-")
seq.long.e$data.i<-as.integer(format(seq.long.e$data.i, format="%Y"))
seq.long.e$data.f<-as.integer(format(seq.long.e$data.f, format="%Y"))</pre>
```

Eliminem aquells estats que no han queda omplerts en la graella

```
seq.long.e<-seq.long.e %>% filter(esdeveniment !=999)
```

Visualització:

```
seq.long.e[1:10,]
## # A tibble: 10 × 5
##
        id Esdeveniment
                                                       esdeveniment data.i data.f
##
     <dbl> <chr>
                                                          <dbl+lbl> <int> <int>
## 1
                        1 [Educació obligatòria (ESO o EGB)]
       1 E0
                                                                     1994
                                                                            1994
## 2
         1 E1
                        3 [FP1 / CF Grau Mig]
                                                                            1997
                                                                     1994
## 3
                        0 [Escola taller, PGS, PQPI, escola d'adult...
         1 E2
                                                                     1997
                                                                              NA
## 4
        4 E0
                       1 [Educació obligatòria (ESO o EGB)]
                                                                            2000
                                                                     1994
## 5
        4 E1
                        2 [BUP, COU o Batxillerat]
                                                                     2000
                                                                            2002
        4 E2
## 6
                       4 [FP2 / CF Grau Superior]
                                                                     2002
                                                                            2004
## 7
        45 E0
                        1 [Educació obligatòria (ESO o EGB)]
                                                                     1995
                                                                            1997
## 8
        45 E1
                        4 [FP2 / CF Grau Superior]
                                                                     1997
                                                                            2001
## 9
        47 E0
                        1 [Educació obligatòria (ESO o EGB)]
                                                                     1993
                                                                            1994
        47 E1
## 10
                        2 [BUP, COU o Batxillerat]
                                                                     1994
                                                                            1996
```

Recodifiquem els nivells dels esdeveniments (explicat al word), a 8 nivells: "PQPI-escola d'adults", "ESO", "Batxillerat", "FP1", "FP2", "Diplomatures-LLicenciatures", "Postgrau-Masters-Doctorat" i "No estudiant".

```
nivells.e<-attributes(seq.long.e$esdeveniment)$labels</pre>
for (i in 1:nrow(seq.long.e)){
  if (seq.long.e$esdeveniment[i]==6)seq.long.e$esdeveniment[i]<-5</pre>
  else{
if(seq.long.e$esdeveniment[i]==7|seq.long.e$esdeveniment[i]==9|seq.long.e$esdeve
niment[i]==8) {seq.long.e$esdeveniment[i]<-6</pre>
  }
  else{
    if (sea.long.e$esdeveniment[i]==10) sea.long.e$esdeveniment[i]<-7</pre>
  }
}
seq.long.e<- seq.long.e %>%
  mutate(esdeveniment=esdeveniment+1)
seq.long.e<-seq.long.e %>% filter(esdeveniment !=91011)
levels(as.factor(seq.long.e$esdeveniment))
## [1] "1" "2" "3" "4" "5" "6" "7" "8"
nivells.e<-c("PQPI o escola d'adults", "ESO", "Batxillerat", "FP1", "FP2",</pre>
"Diplomatures o LLicenciatures", "Postgrau, Masters o Doctorat", "No estudiant")
Convertim a matriu de seqüències per edats:
Edat<-filter(EJC12, id %in% seq.long.e$id)</pre>
Edat<-Edat[,c(1,11)]</pre>
edats.educatiu <- seqformat(seq.long.e, from = "SPELL", to = "STS",
  id = "id", begin = "data.i", end = "data.f", status = "esdeveniment", process
= TRUE, pdata=Edat, pvar=c("id","v1"),limit=30)
edats.educatiu <- seqdef(edats.educatiu, alphabet = 1:8,
labels = nivells.e)
edats.educatiu<-edats.educatiu[,-c(1:15)]
colnames(edats.educatiu)<-gsub("a","",as.character(colnames(edats.educatiu)))</pre>
alphabet(edats.educatiu) <- nivells.e</pre>
alphabet(edats.educatiu)
## [1] "PQPI o escola d'adults"
                                         "ESO"
## [3] "Batxillerat"
                                         "FP1"
## [5] "FP2"
                                         "Diplomatures o LLicenciatures"
## [7] "Postgrau, Masters o Doctorat" "No estudiant"
edats.educatiu[edats.educatiu=="%"]<-"No estudiant" ## seqüències faltant per la
dreta, ho podem fer, perquè els missings els codifica com a *
Visualització següencia
edats.educatiu[1:5,]
```

```
Sequence
## 1 FP1-FP1-FP1-No estudiant-No estudiant-No estudiant-No estudiant-No
estudiant-No estudiant-No estudiant-No estudiant-No estudiant-No
estudiant
## 4 ESO-ESO-ESO-ESO-ESO-Batxillerat-Batxillerat-FP2-FP2-FP2-No estudiant-
No estudiant-No estudiant-No estudiant
## 45 ESO-ESO-FP2-FP2-FP2-FP2-No estudiant-No estudiant-No estudiant-No
estudiant-No estudiant-No estudiant-No estudiant
## 47 ESO-Batxillerat-Batxillerat-Diplomatures o LLicenciatures-Diplomatures o
LLicenciatures-Diplomatures o LLicenciatures-No estudiant-No estudiant-No
estudiant-No estudiant-No estudiant-Diplomatures o LLicenciatures-Diplomatures o
LLicenciatures-No estudiant-No estudiant
## 55 ESO-ESO-Batxillerat-Batxillerat-Batxillerat-Diplomatures o
LLicenciatures-Diplomatures o LLicenciatures-Diplomatures o LLicenciatures-
Diplomatures o LLicenciatures-Diplomatures o LLicenciatures-Diplomatures o
LLicenciatures-No estudiant-No estudiant-No estudiant
```

Gràfic distribució dels estats per freqüències relatives de les trajectòries educatives (gràfic 1)

```
educ.plot<-ggseqdplot(edats.educatiu, ltext=names(nivells.e), border=F) +
   labs(title = "Trajectòries educatives i formatives \n (cohorts nascudes entre
1977-1982)", x="Edat")
educ.plot</pre>
```


Construcció de la matriu de trajectòries laborals de l'EJC12
 Lab_traj<-data.frame(EJC12\$id, EJC12[,c(154:262)])
 lab.names<-c("esdeveniment", "activitat_en_curs", "data.i", "data.f",

```
"ocupacio_1", "codi_ocupacio_1", "Ocupació_última", "codi_ocupació_ultima",
"situació professional primera", "situació professional última",
"altres_activitats", "activitats_simultànes")
col.names<-c("id")</pre>
for (i in 0:8){
col.names<-c(col.names,(paste(lab.names," - E",i, sep="")))</pre>
colnames(Lab traj)<-col.names</pre>
colnames(Lab_traj) <- gsub(" ", "", colnames(Lab_traj))</pre>
Passem a format llarg
seq.long.l<-Lab_traj %>%
  dplyr::select(id,starts with(c(lab.names[c(1,3,4,12)]))) %>%
   pivot_longer(-id,names_to= c(".value", "Esdeveniment"), names_sep="-")
seq.long.l$data.i<-as.integer(format(seq.long.l$data.i, format="%Y"))</pre>
seq.long.l$data.f<-as.integer(format(seq.long.l$data.f, format="%Y"))</pre>
seq.long.l<-seq.long.l %>%
 drop na(data.i)%>%
  drop na(esdeveniment)
seq.long.l$data.f[is.na(seq.long.l$data.f)]<-2012</pre>
Generem els diferents nivells:
## canvis en les vairables 1a activitat
seq.long.l$esdeveniment[seq.long.l$esdeveniment==7]<-6 #cura dels fills com a</pre>
tasques reproductives.
seq.long.l$esdeveniment[seq.long.l$esdeveniment==9]<-8 #no treball</pre>
seq.long.l<-seq.long.l%>% filter( esdeveniment !=13068777600)
## canvis en les variables de 2na activitat, que la prendrem quan estat
principl=estudiar
seq.long.l$activitats_simultànes[seq.long.l$activitats_simultànes==7] <-</pre>
6#ALTRES-NO ESTUDIANT
seq.long.l$activitats simultànes[seq.long.l$activitats simultànes==8] <-7</pre>
seq.long.l$activitats_simultànes[seq.long.l$activitats_simultànes==6]<-8</pre>
seq.long.l$activitats simultànes[is.na(seq.long.l$activitats simultànes)]<- 8</pre>
#no
# Descartar La vairbale "estudiant" (=1) agafar 2a activitat en aquests casos.
for (i in 1:nrow(seq.long.l)){
  if (seq.long.l$esdeveniment[i]==1){
seq.long.l$esdeveniment[i]<-seq.long.l$activitats_simultànes[i]</pre>
```

```
}

#estudiar com a "no treball",tenint en compte que ja hem codificat la activitat
no principal
seq.long.l$esdeveniment[seq.long.l$esdeveniment==1]<-8 #no treball
seq.long.l<-seq.long.l %>% mutate(esdeveniment=esdeveniment-1)
```

Visualització

```
seq.long.l[1:10,]
## # A tibble: 10 × 6
         id Esdeveniment esdeveniment data.i data.f
activitats_simultànes
                                <dbl> <int> <dbl>
      <dbl> <chr>
<dbl+1b1>
## 1
          1 E0
                                    7
                                         1994
                                                1998 8 [Feinetes informals
d'acompa...
## 2
        1 E1
                                         1998
                                                1999 2 [Pràctiques retribuïdes /
                                    1
be...
## 3 1 E2
                                         2000
                                                2004 8 [Feinetes informals
                                    2
d'acompa...
## 4
                                         2004
                                                2004 8 [Feinetes informals
        1 E3
                                     2
d'acompa...
## 5
         1 E4
                                     2
                                         2004
                                                2012 8 [Feinetes informals
d'acompa...
## 6
         4 E0
                                     6
                                         1994
                                                2004 7 [Altres situacions
d'inactiv...
         4 E1
                                         2004
                                                2004 8 [Feinetes informals
## 7
                                     1
d'acompa...
                                                2005 8 [Feinetes informals
## 8
         4 E2
                                    4
                                         2004
d'acompa…
## 9
        4 E3
                                     2
                                         2005
                                                2012 8 [Feinetes informals
d'acompa...
## 10
         45 E0
                                                2001 2 [Pràctiques retribuïdes /
                                    1
                                         1995
be...
```

Finalment tenim 7 nivells d'esdeveniments possibles de les trajectòries laborals, amb els seguents nivells

```
nivells.l<- c("pràctiques", "treball mateixa empresa", "ocupacions precaries",
"atur", "treball reproductiu", "feinetes acompanyament estudis", "No treball")</pre>
```

Generem l'objecte sequència per edats:

```
Edat<-filter(EJC12, id %in% seq.long.l$id)
Edat<-Edat[,c(1,11)]

edats.lab <- seqformat(seq.long.l, from = "SPELL", to = "STS",
   id = "id", begin = "data.i", end = "data.f", status = "esdeveniment", process
= TRUE, pdata=Edat, pvar=c("id","v1"),limit=30)
## [!!] 1054 sequences truncated at limit 30 . Indexes in attribute 'issues'
## [>] converting SPELL data into 1088 STS sequences (internal format)
```

```
#edats.lab[is.na(edats.lab)]<-7</pre>
edats.lab <- seqdef(edats.lab, alphabet = 1:7,
 labels = nivells.l)
   [>] found missing values ('NA') in sequence data
   [>] preparing 1088 sequences
   [>] coding void elements with '%' and missing values with '*'
##
##
    [>] 7 distinct states appear in the data:
##
        1 = 1
##
        2 = 2
##
        3 = 3
        4 = 4
##
##
        5 = 5
##
        6 = 6
##
        7 = 7
##
   [>] state coding:
##
          [alphabet] [label] [long label]
##
                       1
                                1pràctiques
                       2
##
        2
                                2treball mateixa empresa
##
        3
                       3
                                3ocupacions precaries
##
        4
                       4
                                4atur
        5
                       5
##
                                5treball reproductiu
##
        6
                       6
                                6feinetes acompanyament estudis
##
                       7
## [>] 1088 sequences in the data set
## [>] min/max sequence length: 17/30
edats.lab<-edats.lab[,-c(1:15)]
colnames(edats.lab)<-gsub("a","",as.character(colnames(edats.lab)))</pre>
alphabet(edats.lab) <- nivells.l</pre>
```

visualització següències creades

```
edats.lab[1:5,]
##
      Sequence
     No treball-No treball-No treball-pràctiques-pràctiques-treball
## 1
mateixa empresa-treball mateixa empresa-treball mateixa empresa-treball mateixa
empresa-treball mateixa empresa-treball mateixa empresa-treball mateixa empresa-
treball mateixa empresa-treball mateixa empresa
## 4 feinetes acompanyament estudis-feinetes acompanyament estudis-feinetes
acompanyament estudis-feinetes acompanyament estudis-feinetes acompanyament
estudis-feinetes acompanyament estudis-feinetes acompanyament estudis-feinetes
acompanyament estudis-feinetes acompanyament estudis-feinetes acompanyament
estudis-atur-treball mateixa empresa-treball mateixa empresa-treball mateixa
empresa-treball mateixa empresa
## 45 pràctiques-pràctiques-pràctiques-pràctiques-pràctiques-pràctiques-treball
mateixa empresa-treball mateixa empresa-treball mateixa empresa-treball mateixa
empresa-treball mateixa empresa-treball mateixa empresa-treball mateixa empresa-
treball mateixa empresa-treball mateixa empresa
## 47 ocupacions precaries-ocupacions precaries-ocupacions precaries-ocupacions
precaries-ocupacions precaries-ocupacions precaries-treball mateixa empresa-
treball mateixa empresa-treball mateixa empresa-treball mateixa empresa-treball
mateixa empresa-treball mateixa empresa-treball mateixa empresa-treball mateixa
empresa-treball mateixa empresa
## 55 No treball-No treball-No treball-No treball-No treball-No
```

treball-No treball-No treball-pràctiques-treball mateixa empresatreball mateixa empresa-treball mateixa empresa-treball mateixa empresa

Gràfic distribució dels estats per freqüències relatives de les trajectòries laborals (grafic 1)

```
lab.plot<-ggseqdplot(edats.lab, ltext=names(nivells.e), border=F) +
  labs(title = "Trajectòries laborals (cohorts nascudes entre 1977-1982)",
x="Edat")
lab.plot</pre>
```


4.3. Càlcul de distancies per OM multicanal

Cal mirar per quins cassos (ID) tenim ambdues trajectòries, i tornar-los a convertir en un objecte "SEQDEF".

```
edats.educatiu<-edats.educatiu[rownames(edats.educatiu) %in%
rownames(edats.lab),]
edats.lab<-edats.lab[rownames(edats.lab) %in% rownames (edats.educatiu),]</pre>
```

Mirem si es troben associades les dues trajcetòries, fent OM per cada cannal i un test de mantel per mirar si la correlació entre les dues matrius de distàcnis generades és significativa.

```
dist.educ<-seqdist(edats.educatiu, method = "OM", with.missing = T, sm="TRATE")
## [>] including missing values as an additional state
## [>] 1087 sequences with 9 distinct states
## [>] Computing sm with seqcost using TRATE
## [>] creating substitution-cost matrix using transition rates ...
```

```
## [>] computing transition probabilities for states PQPI o escola
d'adults/ESO/Batxillerat/FP1/FP2/Diplomatures o LLicenciatures/Postgrau, Masters
o Doctorat/No estudiant/* ...
## [>] generated an indel of type number
## [>] 471 distinct sequences
## [>] min/max sequence lengths: 15/15
    [>] computing distances using the OM metric
## [>] elapsed time: 0.34 secs
dist.lab<-seqdist(edats.lab, method = "OM", with.missing = T, sm="TRATE")</pre>
## [>] including missing values as an additional state
##
   [>] 1087 sequences with 8 distinct states
    [>] Computing sm with seqcost using TRATE
## [>] creating substitution-cost matrix using transition rates ...
## [>] computing transition probabilities for states pràctiques/treball mateixa
empresa/ocupacions precaries/atur/treball reproductiu/feinetes acompanyament
estudis/No treball/* ...
## [>] generated an indel of type number
## [>] 486 distinct sequences
## [>] min/max sequence lengths: 2/15
## [>] computing distances using the OM metric
## [>] elapsed time: 0.86 secs
dist.educ<-as.dist(dist.educ)</pre>
dist.lab<-as.dist(dist.lab)</pre>
mantel.rtest(dist.educ, dist.lab, nrepet =
## Warning in is.euclid(m1): Zero distance(s)
## Warning in is.euclid(m2): Zero distance(s)
## Monte-Carlo test
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
##
## Observation: 0.1872007
##
## Based on 1000 replicates
## Simulated p-value: 0.000999001
## Alternative hypothesis: greater
##
##
         Std.Obs
                   Expectation
                                    Variance
## 13.5672416629 -0.0008291700 0.0001920749
cor.test(dist.educ, dist.lab)
##
   Pearson's product-moment correlation
##
##
## data: dist.educ and dist.lab
## t = 146.41, df = 590239, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1847378 0.1896612
## sample estimates:
##
         cor
## 0.1872007
```

P-valor significatiu, hi ha relació (taula 7)

Visualització matrius que es faran servir com a cost de substitució (opció "TRATE", matrius segons les probabilitats de transició entre estats)

Per la matriu de les trajectòries educatives (taula 8)

```
subs.educ<-seqsubm(edats.educatiu, method = "TRATE")</pre>
   [>] creating substitution-cost matrix using transition rates ...
## [>] computing transition probabilities for states PQPI o escola
d'adults/ESO/Batxillerat/FP1/FP2/Diplomatures o LLicenciatures/Postgrau, Masters
o Doctorat/No estudiant ...
subs.educ<-as.data.frame(subs.educ)</pre>
subs.educ<-round(subs.educ,3)</pre>
subs.educ$nivells <- rownames(subs.educ)</pre>
subs.educ<-subs.educ[,c(9,1,2,3,4,5,6,7,8)]
subs.educ<-subs.educ %>%
  gt() %>%
   cols_width(nivells~px(250),
              `Diplomatures o LLicenciatures`~px(110),
     everything() \sim px(100)) %>%
  data_color(columns = 2:9,
             fn = col numeric(palette = c("white", "dodgerblue"),
                                   domain = c(1.600, 1.999))
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
subs.educ<-subs.educ %>%
  tab_style_body(
    style = list(
      cell text(color = "black"),cell fill(color = "white")),
    values = c(0.000)
subs.educ<-subs.educ %>%
  tab_style_body(
    style = cell fill(color = "darkblue"),
    values = c(2.000))
#subs.educ %>% gtsave("subs.educ.png", vwidth = 1200, path
="C:/Users/santa/Documents/UAB/TFG/TFG ESTADISTICA" )
subs.educ
```

nivells	PQPI o escola d'adults	ESO	Batxillerat	FP1	FP2	Diplomatures o LLicenciatures	Postgrau, Masters o Doctorat	No estudiant
PQPI o escola d'adults	0.000	1.994	1.999	1.980	1.965	1.983	2.000	1.676
ESO	1.994	0.000	1.718	1.924	1.948	1.997	2.000	1.889
Batxillerat	1.999	1.718	0.000	1.972	1.958	1.769	2.000	1.903
FP1	1.980	1.924	1.972	0.000	1.935	1.987	2.000	1.719
FP2	1.965	1.948	1.958	1.935	0.000	1.922	1.997	1.759
Diplomatures o LLicenciatures	1.983	1.997	1.769	1.987	1.922	0.000	1.968	1.854
Postgrau, Masters o Doctorat	2.000	2.000	2.000	2.000	1.997	1.968	0.000	1.655
No estudiant	1.676	1.889	1.903	1.719	1.759	1.854	1.655	0.000

Per la matriu de les trajectòries laborals (taula 9)

```
subs.lab<-seqsubm(edats.lab, method = "TRATE")</pre>
    [>] creating substitution-cost matrix using transition rates ...
   [>] computing transition probabilities for states practiques/treball mateixa
empresa/ocupacions precaries/atur/treball reproductiu/feinetes acompanyament
estudis/No treball ...
subs.lab<-as.data.frame(subs.lab)</pre>
subs.lab<-round(subs.lab,3)</pre>
subs.lab$nivells <- rownames(subs.lab)</pre>
subs.lab<-subs.lab[,c(8,1,2,3,4,5,6,7)]
subs.lab<-subs.lab %>%
  gt() %>%
   cols_width(nivells~px(250),
     everything() \sim px(100)) \% > \%
  data_color(columns = 2:8,
             fn = col_numeric(palette = c("white", "dodgerblue"),
                                   domain = c(1.600, 1.999))
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
## Warning: Some values were outside the color scale and will be treated as NA
```

```
subs.lab<-subs.lab %>%
  tab_style_body(
    style = list(
        cell_text(color = "black"),cell_fill(color = "white")),
    values = c(0.000))

subs.lab<-subs.lab %>%
  tab_style_body(
    style = cell_fill(color = "darkblue"),
    values = c(2.000))

getwd()

## [1] "C:/Users/santa/Documents/UAB/TFG/TFG ESTADISTICA"

#subs.lab %>% gtsave("subs.lab.png",vwidth = 1500, path
    ="C:/Users/santa/Documents/UAB/TFG/TFG ESTADISTICA" )

#seqsubm(edats.lab, method="TRATE")
subs.lab
```

nivells	pràctiques	treball mateixa empresa	ocupacions precaries	atur	treball reproductiu	feinetes acompanyament estudis	No treball
pràctiques	0.000	1.763	1.976	1.994	2.000	1.993	1.957
treball mateixa empresa	1.763	0.000	1.892	1.791	1.957	1.879	1.860
ocupacions precaries	1.976	1.892	0.000	1.954	1.986	1.982	1.955
atur	1.994	1.791	1.954	0.000	2.000	1.996	1.987
treball reproductiu	2.000	1.957	1.986	2.000	0.000	2.000	1.996
feinetes acompanyament estudis	1.993	1.879	1.982	1.996	2.000	0.000	1.953
No treball	1.957	1.860	1.955	1.987	1.996	1.953	0.000

Distàncies per OM multichannel

```
mcdist <- seqdistmc(channels=list(edats.educatiu, edats.lab),
    method="OM", sm =list("TRATE", "TRATE"), with.missing=T ) #TRATE-> Agafem
prob. de transisio com a costos.

## [!!] 2 domains with 1087 sequences

## [!!] Some individuals have channels of different length. Shorter sequences
will be filled with missing values and corresponding channel with.missing set as
TRUE

## [>] building MD sequences of combined states... OK
## [>] including missing value as an additional state
## [>] computing substitution cost matrix for domain 1
## [>] including missing value as an additional state
## [>] computing substitution cost matrix for domain 2
## [>] computing MD substitution and indel costs with additive trick... OK
```

```
## [>] computing distances using additive trick ...
## [>] 1087 sequences with 60 distinct states
## [>] checking 'sm' (size and triangle inequality)
## [>] 935 distinct sequences
## [>] min/max sequence lengths: 15/15
## [>] computing distances using the OM metric
## [>] elapsed time: 1.57 secs
```

4.4. Tipificació de les trajectòries escola-treball: clústers jeràrquics per Ward

Generem els clústers per Ward

```
cluster<-agnes(mcdist, diss=T, method="ward")</pre>
```

Scree graph per la minimització de l'RSS (o WSS) com a criteri de decisió del numero de clusters (gràfic 2)

Scree-graph per a la decisió del nombre de clústers (r

Observem com quedaria el denograma amb sis particions (en colors) (gràfic 3)

```
dhc <- as.dendrogram(cluster)
fviz_dend(
  dhc,
  k = 6,
  rect = TRUE,
  k_colors = c("#2E9FDF", "#66CC33", "#E7B800", "#FF9933", "#CC66FF",
"#CC0000"),
show_labels = F, main = "Denograma pels clústers de ward colorejat en 6
particions", ylab = "RSS")</pre>
```

Denograma pels clústers de ward colorejat en 6 partic

Scree graph per la minimització de l'RSS (o WSS) com a criteri de decisió del numero de clústers.

Tallem el denograma en sis clústers

```
n.clus <- cutree(cluster, k = 6)
clusters <- factor(n.clus, labels = paste("C", 1:6))</pre>
```

4.5. Visualització i caracterització de les tipologies de trajectòries escola-treball

-Visualitzcaió de distribució dels estats per freqüència relativa, per clústers (gràfic 4)

```
ggseqdplot(edats.educatiu, border=F, group=clusters)+
  labs(title = "Freqüència relativa dels estats en les trajectòries educatives
\n (distribució dels estats), per clústers", x="Edat")
```

Freqüència relativa dels estats en les trajectòries ec (distribució dels estats), per clústers

ggseqdplot(edats.lab, border=F, group=clusters) +
 labs(title = "Freqüència relativa dels estats en les trajectòries laborals \n
(distribució dels estats), per clústers", x="Edat")

Freqüència relativa dels estats en les trajectòries la (distribució dels estats), per clústers

Visualització dels estats modals per clústers (gràfic 5)

```
ggseqmsplot(edats.educatiu, group=clusters) +
   labs(title = "Estats modals de les trajectòries educatives, per clústers",
x="Edat")
```

Estats modals de les trajectòries educatives, per clú

ggseqmsplot(edats.lab, group=clusters) +
 labs(title = "Estats modals de les trajectòries laborals, per clústers",
x="Edat")

Estats modals de les trajectòries laborals, per clúste

• Visualització temps mitjà en cada estat (gràfic 6)

Temps mitjà en cada estat per les trajectòries educative

Note: error bars show standard errors

Temps mitjà en cada estat per les trajectòries laborals,

Note: error bars show standard errors

4.6. Mesures de complexitat

Generem una llista amb les següències en cada cluster, per facilitar el càlcul mitjà de les mesures de complexitat en cada clúster.

```
#traj.educaitves
educatiu.c<-cbind(clusters,edats.educatiu)</pre>
llista.educ<-list(C1=data.frame(split(educatiu.c, educatiu.c$clusters)[1]),</pre>
                   C2=data.frame(split(educatiu.c, educatiu.c$clusters)[2]),
                   C3=data.frame(split(educatiu.c, educatiu.c$clusters)[3]),
                   C4=data.frame(split(educatiu.c, educatiu.c$clusters)[4]),
                   C5=data.frame(split(educatiu.c, educatiu.c$clusters)[5]),
                   C6=data.frame(split(educatiu.c, educatiu.c$clusters)[6]))
#canviem el nom
canvi.nom <- function(x) {</pre>
    names(x)<-c(16:30)
    return(x)
llista.educ<-lapply(llista.educ, `[`,-1)</pre>
llista.educ<-lapply(llista.educ, canvi.nom)</pre>
llista.educ<-lapply(llista.educ,seqdef)</pre>
#trajectòries laborals
lab.c<-cbind(clusters,edats.lab)</pre>
llista.lab<-list(C1=data.frame(split(lab.c, lab.c$clusters)[1]),</pre>
                  C2=data.frame(split(lab.c, lab.c$clusters)[2]),
                  C3=data.frame(split(lab.c, lab.c$clusters)[3]),
                    C4=data.frame(split(lab.c, lab.c$clusters)[4]),
```

```
C5=data.frame(split(lab.c, lab.c$clusters)[5]),
                  C6=data.frame(split(lab.c, lab.c$clusters)[6]))
#canviem el nom
canvi.nom <- function(x) {</pre>
    names(x)<-c(16:30)
    return(x)
llista.lab<-lapply(llista.lab, `[`,-1)</pre>
llista.lab<-lapply(llista.lab, canvi.nom)</pre>
llista.lab<-lapply(llista.lab,seqdef)</pre>
       Numero de canvis mitjà
canvi.seq <- function(x){</pre>
  mean(seqtransn(x))
}
#seq.laboral
trans.l<-lapply(llista.educ,canvi.seq) #grafics trajectories laborals</pre>
trans.l<-as.data.frame(trans.l)</pre>
#seq.edducativa
trans.e<-lapply(llista.lab,canvi.seq) #grafics trajectories Laborals
trans.e<-as.data.frame(trans.e)</pre>
-Índex de complexitat
complex <- function(x){</pre>
  mean(seqici(x))
}
#seq.laboral
complex.l<-lapply(llista.educ,complex) #grafics trajectories laborals</pre>
complex.l<-as.data.frame(complex.l)</pre>
#seq.edducativa
complex.e<-lapply(llista.lab,complex) #grafics trajectories laborals</pre>
complex.e<-as.data.frame(complex.e)</pre>
Entropia
entropy <- function(x){</pre>
  mean(seqient(x))
}
#seq.laboral
entropy.l<-lapply(llista.educ,entropy) #grafics trajectories laborals
entropy.1<-as.data.frame(entropy.1)</pre>
#seq.edducativa
entropy.e<-lapply(llista.lab,entropy) #grafics trajectories laborals
entropy.e<-as.data.frame(entropy.e)</pre>
Taula dels valors de les característiques de les trajectòries educatives
```

caracteristiques<-c("nombre transisions","complexity index","entropy")</pre>

caracteristiques.l<-rbind(trans.l,complex.l, entropy.l)</pre>

caracteristiques.e<-rbind(trans.e, complex.e, entropy.e)</pre>

caracteristiques.l<-cbind(caracteristiques, caracteristiques.l)</pre>

```
caracteristiques.e<-cbind(caracteristiques,caracteristiques.e)</pre>
caracteristiques.e
##
                                          C2
                                                               C4
       caracteristiques
                                C1
                                                     C3
                                                                         C5
## 1 nombre transisions 1.5452539 1.6685083 1.3109756 1.6142132 1.3943662
       complexity index 0.1695730 0.2032556 0.1601039 0.1990887 0.1663970
                entropy 0.2665783 0.3562765 0.2848968 0.3511129 0.2844096
##
             C6
## 1 0.57142857
## 2 0.07754181
## 3 0.15000343
caracteristiques.1
##
       caracteristiques
                                C1
                                          C2
                                                     C3
                                                               C4
                                                                         C5
## 1 nombre transisions 1.8211921 2.8287293 3.1890244 3.5380711 2.1690141
## 2
       complexity index 0.2012438 0.3211268 0.3396626 0.3873106 0.2262103
## 3
                entropy 0.3157450 0.5171078 0.5110019 0.5988734 0.3363405
##
## 1 0.52380952
## 2 0.06852144
## 3 0.12765157
```

Visualitzaicó resumida de les mitjanes per clúster, trajectòries educatives (gràfic 7)

```
car.e<-caracteristiques.e%>%pivot_longer(!caracteristiques,
names_to="clusters",values_to="valor")
ggplot(car.e, aes(fill=caracteristiques, y=valor, x=clusters)) +
    geom_bar(position="dodge", stat="identity")+
    geom_text(aes(label = round(valor,2)), ,
    hjust = -0.05, size = 3,
    position = position_dodge(width = 0.9),
    inherit.aes = TRUE )+
    coord_flip()+
    ggtitle("Caracteristiques trajectòries educatives, valor mitjà dels cústers")
```

Característiques trajectòries educatives, valor mitjà de

Visualitzaicó resumida de les mitjanes per clúster, trajectòries larboals (gràfic 7)

```
car.l<-caracteristiques.l%>%pivot_longer(!caracteristiques,
names_to="clusters",values_to="valor")

ggplot(car.l, aes(fill=caracteristiques, y=valor, x=clusters)) +
    geom_bar(position="dodge", stat="identity")+
    geom_text(aes(label = round(valor,2)), ,
    hjust = -0.05, size = 3,
    position = position_dodge(width = 0.9),
    inherit.aes = TRUE )+
    coord_flip()+
    ggtitle("Caracteristiques trajectòries laborals, valor mitjà dels cústers")
```

Característiques trajectòries laborals, valor mitjà dels c

4.7. L'impacte de l'estratificació social en les trajectòries (models de regressió logística)

A partir d'una llista i una funció, generem una taula amb el p-valor i l'exp(coef) per sis models de regressió logística on la vairbale resposta binària és ser del cluster X contra no ser-ho. (taula 10 *s'exporta a exel)

```
lloc.naix + c.socioecon + n.estudis +
    cohort + municipi, data = variables.c)
a<-as.data.frame(summary(m1)$coefficients)[,c(1,4)]</pre>
a$odds<-exp(a$Estimate)</pre>
# B < -a[, -c(1)]
a<-a[,-c(1)]
a$`Pr(>|t|)`<-round(a$`Pr(>|t|)`,4)
#<-rownames(a)
return(a)
}
taules<-lapply(model.clus, model)
model.s<-cbind(taules[[1]], taules[[2]], taules[[3]], taules[[4]], taules[[5]],</pre>
taules[[6]])
colnames(model.s)<-c("p-value.c1", "exp(coef).c1", "p-value.c2",</pre>
"exp(coef).c2","p-value.c3", "exp(coef).c3","p-value.c4", "exp(coef).c4","p-
value.c5", "exp(coef).c5", "p-value.c6", "exp(coef).c6")
model.s
##
                                     p-value.c1 exp(coef).c1 p-value.c2
## (Intercept)
                                         0.3057 7.568321e-09
                                                                  0.7734
## sexehome
                                         0.0000 1.133422e+00
                                                                  0.8078
## lloc.naixEsp
                                         0.5010 1.051414e+00
                                                                  0.6689
                                         0.1295 1.060407e+00
## lloc.naixaltre País
                                                                  0.7878
## c.socioecontèncincs professinals
                                         0.6659 1.024896e+00
                                                                  0.3451
## c.socioeconocup.quali.mitjana
                                         0.0426 1.113308e+00
                                                                  0.8066
## c.socioeconocup.elementals
                                         0.1241 1.109463e+00
                                                                  0.4709
## c.socioeconocup.militars
                                         0.2194 7.399186e-01
                                                                  0.7132
## n.estudisoblifatoris
                                         0.2710 1.128522e+00
                                                                  0.3214
## n.estudissecundaris postoblig
                                         0.9983 9.997662e-01
                                                                  0.2459
## n.estudisuniversitaris
                                         0.5344 9.315858e-01
                                                                  0.1860
                                         0.3007 1.009588e+00
## cohort
                                                                  0.7772
                                         0.3262 1.053596e+00
                                                                  0.4300
## municipimax_rural
## municipimitj rural
                                         0.5950 9.789248e-01
                                                                  0.6294
## municipiurbà
                                         0.0145 1.098843e+00
                                                                  0.1995
##
                                     exp(coef).c2 p-value.c3 exp(coef).c3
## (Intercept)
                                       66.8114329
                                                      0.2788 2.670848e+06
## sexehome
                                        1.0059164
                                                      0.5425 9.862670e-01
## lloc.naixEsp
                                        0.9748535
                                                      0.8489 1.010683e+00
## lloc.naixaltre País
                                                      0.5539 1.017275e+00
                                        0.9917139
                                                      0.4296 9.668936e-01
## c.socioecontèncincs_professinals
                                        0.9579183
## c.socioeconocup.quali.mitjana
                                        0.9897010
                                                      0.0336 9.192503e-01
## c.socioeconocup.elementals
                                        1.0396876
                                                      0.0135 8.824819e-01
                                                      0.1129 7.474826e-01
## c.socioeconocup.militars
                                        1.0746852
## n.estudisoblifatoris
                                        1.0909743
                                                      0.2408 9.080728e-01
## n.estudissecundaris postoblig
                                                      0.6088 9.577565e-01
                                        1.1102449
## n.estudisuniversitaris
                                                      0.9097 9.903638e-01
                                        1.1282257
## cohort
                                        0.9979169
                                                      0.2891 9.927112e-01
## municipimax_rural
                                        0.9670134
                                                      0.3416 9.628595e-01
## municipimitj rural
                                        1.0155780
                                                      0.5738 9.832742e-01
## municipiurbà
                                                      0.0049 9.219707e-01
                                        1.0402813
##
                                     p-value.c4 exp(coef).c4 p-value.c5
```

```
## (Intercept)
                                       0.2910 3.588467e+06
                                                              0.1080
## sexehome
                                       0.0000 8.918359e-01
                                                              0.2138
## lloc.naixEsp
                                       0.9865 9.990109e-01
                                                              0.1754
## lloc.naixaltre_País
                                       0.0000 8.520975e-01
                                                              0.0246
## c.socioecontèncincs professinals
                                       0.1821 1.061328e+00
                                                              0.9847
## c.socioeconocup.quali.mitjana
                                       0.8878 9.941743e-01
                                                              0.8199
## c.socioeconocup.elementals
                                       0.7585 9.838814e-01
                                                              0.7399
## c.socioeconocup.militars
                                       0.0456 1.468364e+00
                                                              0.1489
## n.estudisoblifatoris
                                       0.7442 1.028454e+00
                                                              0.9075
## n.estudissecundaris_postoblig
                                       0.1770 1.126581e+00
                                                              0.7016
## n.estudisuniversitaris
                                       0.1062 1.155328e+00
                                                              0.7192
## cohort
                                       0.2980 9.925147e-01
                                                              0.1072
## municipimax_rural
                                       0.5314 9.742841e-01
                                                              0.2327
## municipimitj rural
                                       0.6219 9.846447e-01
                                                              0.1004
## municipiurbà
                                       0.0033 9.151400e-01
                                                              0.0736
                                   exp(coef).c5 p-value.c6 exp(coef).c6
## (Intercept)
                                   2.818678e-07
                                                   0.8787
                                                             1.9899428
## sexehome
                                                   0.0031
                                   1.019573e+00
                                                             0.9780223
## lloc.naixEsp
                                   9.494208e-01
                                                   0.3391
                                                             1.0177547
## lloc.naixaltre País
                                                   0.0000
                                                             1.0490644
                                   1.045710e+00
## c.socioecontèncincs professinals 1.000560e+00
                                                   0.5691
                                                             0.9920204
                                   9.938316e-01
                                                   0.9538
## c.socioeconocup.quali.mitjana
                                                             0.9992438
## c.socioeconocup.elementals
                                   1.011583e+00
                                                   0.4342
                                                             0.9870384
## c.socioeconocup.militars
                                   1.199509e+00
                                                   0.4493
                                                             0.9552051
## n.estudisoblifatoris
                                   1.006579e+00
                                                   0.0000
                                                             0.8640163
## n.estudissecundaris_postoblig
                                   9.780565e-01
                                                   0.0000
                                                             0.8536917
## n.estudisuniversitaris
                                                   0.0000
                                 9.791483e-01
                                                             0.8492445
## cohort
                                  1.007664e+00
                                                   0.9079
                                                             0.9997366
## municipimax_rural
                                  1.033145e+00
                                                   0.3365
                                                             1.0127063
                                                   0.6613
## municipimitj rural
                                   1.034426e+00
                                                             1.0043473
## municipiurbà
                                   1.036041e+00
                                                   0.9360
                                                             1.0007641
model.s<-round(model.s, 3)</pre>
openxlsx::write.xlsx(model.s,"model.xlsx", rowNames=TRUE) #quardem a exel per
despres posar-la al document del treball.
```

6. Anàlisi de supervivència a la llar familiar

Codifiquem les matrius de la trajectòria residencial de l'EJC 2012

```
traj.hab<-EJC12[,c(1,401:521)]
noms12<- c("v62a0","v62a2", "v62b11", "v62b12")
traj.hab<-traj.hab %>%
    dplyr::select(id,starts_with(noms12))

noms.f.12<-c("situacio","actual","data.i","data.f")

contador<-rep(paste0(" - E",c(0:8)),4)
col.names12h<-paste0(rep(noms.f.12,1,each=9),contador)
col.names12h<-c("id",col.names12h) #vector de nous noms de columnes

colnames(traj.hab)<-col.names12h
colnames(traj.hab)<- gsub(" ", "", colnames(traj.hab))</pre>
```

```
#format Long:
long.hab<-traj.hab %>%
    pivot_longer(-id,names_to= c(".value", "Emancipat"), names_sep="-")
```

Passem els diferents estats a estar emacnipat o no

```
long.hab$data.i<-as.integer(format(long.hab$data.i, format="%Y"))
long.hab$data.f<-as.integer(format(long.hab$data.f, format="%Y"))

#si la sitaució és actual(=1), data.f-> 2012
for (i in 1:nrow(long.hab)){
   if(!is.na(long.hab$actual[i])){
      if(long.hab$actual[i]==1){
        long.hab$data.f[i]<-2012
   }
   }
}

long.hab<-long.hab %>%
   drop_na(situacio)
long.hab<-long.hab[,c(-4)] #ja hem codificat si era actual</pre>
```

Codifiquem les diferents situacions com emancipat o no emancipat.

```
long.hab$situacio[long.hab$situacio==14|long.hab$situacio==15]<-NA #no sabem si
es troba emacipat o no
long.hab<-long.hab %>%
    drop_na(situacio)

for(i in 1:nrow(long.hab)){
    if
    (long.hab$situacio[i]==4|long.hab$situacio[i]==6|long.hab$situacio[i]==7|long.hab$situacio[i]==8|long.hab$situacio[i]==10|long.hab$situacio[i]==11|long.hab$situacio[i]==13){
        long.hab$situacio[i]<-1
    }
    else{ long.hab$situacio[i]<-0}
}</pre>
```

Convertim en una base de dades amb censura i el temps de la primera emancipació.

```
#dades fins la primera emancipació (fins al primer 1)
long.hab$situacio<-as.numeric(long.hab$situacio)
hab.1r<-long.hab %>%
    group_by(id) %>%
    filter(lag(cumsum(situacio=="1"), default=0)<1) %>%
        ungroup

hab.1r<-hab.1r[!duplicated(hab.1r$id, fromLast=T),] #ultima observacio per tenir
columna censura,
hab.1r<-hab.1r[,c(1,3,4)]
#censura--> tots surten de la base de dades al 2012 (tindran edats diferents)
for(i in 1:nrow(hab.1r)){
    if (hab.1r$situacio[i]==0) {
```

```
hab.1r$data.i[i]=2012
}
}
```

Afegim a les dades, a quin clúster pertanyen

```
id.clus<-cbind(rownames(educatiu.c), educatiu.c$clusters) #indiferent si es amb
lab,
colnames(id.clus)<-c("id","cluster")
hab.1r<-merge(hab.1r,id.clus, by="id")
hab.1r<-merge(hab.1r,variables,by="id")</pre>
```

Convertim la data de la primera emancipació com a edat, a partir dels anys de naixemen dels individus.

```
hab.1r<-hab.1r %>% mutate(data.i=data.i-cohort)
colnames(hab.1r)[3]<-"temps"
hab.1r$cluster<-as.factor(hab.1r$cluster)</pre>
```

Corba de Kaplan-meyer per clústers (taula 11)

```
clus.fit <- survfit(Surv(temps, situacio)~as.factor(cluster), data=hab.1r)</pre>
clus.fit
## Call: survfit(formula = Surv(temps, situacio) ~ as.factor(cluster),
##
       data = hab.1r
##
                           n events median 0.95LCL 0.95UCL
##
## as.factor(cluster)=1 453
                                        25
                                                 24
                                                         25
                                391
## as.factor(cluster)=2 181
                                         25
                                                         26
                                155
                                                 24
## as.factor(cluster)=3 164
                                135
                                         25
                                                 24
                                                         26
## as.factor(cluster)=4 197
                                179
                                         24
                                                 22
                                                         25
                                 44
                                         25
                                                         NA
## as.factor(cluster)=5 71
                                                 23
## as.factor(cluster)=6 21
                                 18
                                         21
                                                 19
                                                         29
```

Log-rank test, són diferents les corobes?

```
cluster.longrk<-survdiff(Surv(temps, situacio)~as.factor(cluster), data=hab.1r)</pre>
cluster.longrk
## Call:
## survdiff(formula = Surv(temps, situacio) ~ as.factor(cluster),
##
       data = hab.1r)
##
##
                           N Observed Expected (0-E)^2/E (0-E)^2/V
## as.factor(cluster)=1 453
                                  391
                                         376.5
                                                   0.558
                                                             1.064
## as.factor(cluster)=2 181
                                  155
                                         164.8
                                                   0.578
                                                             0.794
                                 135
## as.factor(cluster)=3 164
                                         144.4
                                                             0.822
                                                   0.614
## as.factor(cluster)=4 197
                                  179
                                         149.3
                                                   5.896
                                                             7.928
## as.factor(cluster)=5 71
                                   44
                                          72.6
                                                  11.248
                                                             13.882
## as.factor(cluster)=6 21
                                   18
                                          14.4
                                                   0.892
                                                             1.021
##
## Chisq= 22.4 on 5 degrees of freedom, p= 4e-04
```

El p valor és més petit de 0.05, així que la diferència entre les corbes es significativa amb un nivell de confiança del 95%.

Visuaització de les corbes de superviència (gràfic 8)

```
ggsurvplot(
clus.fit,
ggtheme = theme_bw(),
title = "Estimació de la funció de supervivencia de Kaplan-Meier per clústers",
legend.labs=c("C1", "C2","C3","C4", "C5","C6"),
xlim=c(15,30)
)
```

Estimació de la funció de supervivencia de Kaplan-Me

Model de COX, només amb la variable clústers (annex III)

```
cox.clus<-coxph(Surv(temps, situacio)~as.factor(cluster), data=hab.1r)</pre>
cox.clus
## Call:
## coxph(formula = Surv(temps, situacio) ~ as.factor(cluster), data = hab.1r)
##
##
                        coef exp(coef) se(coef)
## as.factor(cluster)3 -0.11133 0.89464
                                      0.09993 -1.114 0.265231
## as.factor(cluster)4 0.15169 1.16380 0.09026 1.681 0.092856
## as.factor(cluster)5 -0.57351
                              0.56354 0.15935 -3.599 0.000319
## as.factor(cluster)6 0.17274
                            1.18856 0.24121 0.716 0.473893
##
## Likelihood ratio test=23.82 on 5 df, p=0.0002353
## n= 1087, number of events= 922
```

Comprovem si el supòsit de riscos proporcionals és compleix per mirar si és adequat el model:

```
test.ph<-cox.zph(cox.clus)
test.ph

## chisq df p
## as.factor(cluster) 22.8 5 0.00037
## GLOBAL 22.8 5 0.00037
ggcoxzph(test.ph)
```

Global Schoenfeld Test p: 0.0003688

Model de COX amb altres covairables (annex III)

```
cox.multi<-coxph(Surv(temps, situacio)~cluster+sexe+lloc.naix+</pre>
c.socioecon+n.estudis+cohort+municipi,data=hab.1r)
cox.multi
## Call:
## coxph(formula = Surv(temps, situacio) ~ cluster + sexe + lloc.naix +
       c.socioecon + n.estudis + cohort + municipi, data = hab.1r)
##
##
##
                                         coef exp(coef) se(coef)
## cluster2
                                     -0.18418
                                                0.83178 0.09963 -1.849 0.064499
## cluster3
                                     -0.19011
                                                0.82687
                                                         0.10932 -1.739 0.082031
## cluster4
                                      0.16817
                                                1.18314
                                                         0.10178
                                                                 1.652 0.098472
## cluster5
                                     -0.62644
                                                0.53449
                                                         0.17128 -3.657 0.000255
## cluster6
                                     -0.41523
                                                0.66019
                                                         0.30449 -1.364 0.172666
## sexehome
                                     -0.22991
                                                0.79460 0.07144 -3.218 0.001290
                                                1.25691 0.16717 1.368 0.171372
## lloc.naixEsp
                                      0.22865
```

```
## lloc.naixaltre País
                                   0.49222
                                             1.63594 0.08881 5.543 2.98e-08
                                             0.87298 0.12914 -1.052 0.292842
## c.socioecontèncincs professinals -0.13584
## c.socioeconocup.quali.mitjana
                                   -0.23483
                                             0.79070 0.12024 -1.953 0.050824
                                             0.73410 0.15738 -1.964 0.049522
## c.socioeconocup.elementals
                                   -0.30911
## c.socioeconocup.militars
                                   -1.67607
                                             0.18711 0.72262 -2.319 0.020372
## n.estudisoblifatoris
                                   0.02356
                                             1.02384 0.24968 0.094 0.924819
## n.estudissecundaris postoblig
                                                      0.25575 0.257 0.797416
                                   0.06565
                                             1.06785
## n.estudisuniversitaris
                                   0.03855
                                             1.03930 0.25861 0.149 0.881504
## cohort
                                   -0.01362
                                             0.98647 0.02097 -0.650 0.515925
## municipimax rural
                                   -0.27226
                                             0.76165 0.13203 -2.062 0.039191
## municipimitj rural
                                             1.13511 0.09138 1.387 0.165474
                                   0.12673
## municipiurbà
                                   0.16428
                                             1.17854 0.08836 1.859 0.062986
##
## Likelihood ratio test=101.4 on 19 df, p=2.96e-13
## n= 997, number of events= 848
  (90 observations deleted due to missingness)
```

Refem el model, nivell estudis pares + chohort, no són significatius (annex III)

```
cox.multi<-coxph(Surv(temps,</pre>
situacio)~cluster+as.factor(sexe)+as.factor(lloc.naix)+
as.factor(c.socioecon)+as.factor(municipi),data=hab.1r)
cox.multi
## Call:
## coxph(formula = Surv(temps, situacio) ~ cluster + as.factor(sexe) +
       as.factor(lloc.naix) + as.factor(c.socioecon) + as.factor(municipi),
##
       data = hab.1r)
##
##
                                                    coef exp(coef) se(coef)
## cluster2
                                                -0.17962
                                                           0.83559 0.09857 -
1.822
## cluster3
                                                -0.18893
                                                           0.82784 0.10685 -
1.768
## cluster4
                                                0.19111
                                                           1.21059 0.09951
1.920
## cluster5
                                                -0.64186
                                                           0.52631 0.16849 -
3.809
## cluster6
                                               -0.37187
                                                           0.68944 0.29190 -
1.274
## as.factor(sexe)home
                                               -0.22225
                                                           0.80072 0.07076 -
3.141
## as.factor(lloc.naix)Esp
                                                0.17812
                                                           1.19497 0.16244
## as.factor(lloc.naix)altre País
                                                0.49310
                                                           1.63739 0.08655
5.697
## as.factor(c.socioecon)tèncincs professinals -0.14758
                                                           0.86280 0.12733 -
1.159
## as.factor(c.socioecon)ocup.quali.mitjana
                                               -0.24071
                                                           0.78607 0.11706 -
2.056
## as.factor(c.socioecon)ocup.elementals
                                               -0.33320
                                                           0.71663 0.14992 -
2.223
## as.factor(c.socioecon)ocup.militars
                                               -1.47214
                                                           0.22943 0.59457 -
2.476
```

```
## as.factor(municipi)max_rural
                                               -0.31277
                                                          0.73142 0.13150 -
2.378
## as.factor(municipi)mitj rural
                                                0.11139
                                                          1.11784 0.09084
1.226
## as.factor(municipi)urbà
                                                0.17598
                                                          1.19242 0.08744
2.013
## cluster2
                                               0.068428
## cluster3
                                               0.077034
## cluster4
                                               0.054797
                                               0.000139
## cluster5
## cluster6
                                               0.202671
## as.factor(sexe)home
                                               0.001685
## as.factor(lloc.naix)Esp
                                               0.272851
## as.factor(lloc.naix)altre País
                                               1.22e-08
## as.factor(c.socioecon)tèncincs_professinals 0.246466
## as.factor(c.socioecon)ocup.quali.mitjana
                                               0.039759
## as.factor(c.socioecon)ocup.elementals
                                               0.026249
## as.factor(c.socioecon)ocup.militars
                                               0.013288
## as.factor(municipi)max rural
                                               0.017384
## as.factor(municipi)mitj rural
                                               0.220112
## as.factor(municipi)urbà
                                               0.044149
## Likelihood ratio test=106 on 15 df, p=9.196e-16
## n= 1014, number of events= 859
## (73 observations deleted due to missingness)
```

Mirem l'assumpació de riscos proporcionals del model (annex III)

```
test.ph
## chisq df p
## cluster 20.72 5 0.00092
## as.factor(sexe) 6.83 1 0.00898
## as.factor(lloc.naix) 2.70 2 0.25883
## as.factor(c.socioecon) 5.59 4 0.23198
## as.factor(municipi) 7.47 3 0.05846
## GLOBAL 40.19 15 0.00042
```

Com que no es commpleix per lloc naix i c.socioecon, hi posem strata (taula 13)

```
cox.multi<-coxph(Surv(temps,</pre>
situacio)~cluster+as.factor(sexe)+strata(as.factor(lloc.naix))+
strata(as.factor(c.socioecon))+as.factor(municipi),data=hab.1r)
cox.multi
## Call:
## coxph(formula = Surv(temps, situacio) ~ cluster + as.factor(sexe) +
       strata(as.factor(lloc.naix)) + strata(as.factor(c.socioecon)) +
##
       as.factor(municipi), data = hab.1r)
##
##
##
                                      coef exp(coef) se(coef)
                                            0.84308 0.09972 -1.712 0.086943
## cluster2
                                 -0.17069
                                            0.83961 0.10783 -1.621 0.104959
## cluster3
                                 -0.17482
## cluster4
                                            1.22516 0.10052 2.020 0.043359
                                  0.20307
```

```
## cluster5
                                -0.63678
                                          0.52899 0.16960 -3.755 0.000174
## cluster6
                                          0.77632 0.29721 -0.852 0.394270
                                -0.25319
## as.factor(sexe)home
                                -0.22872
                                          0.79555 0.07148 -3.200 0.001376
## as.factor(municipi)max_rural -0.30142
                                          0.73977 0.13246 -2.276 0.022872
## as.factor(municipi)mitj_rural 0.09896
                                          1.10402 0.09198 1.076 0.281973
## as.factor(municipi)urbà
                                0.16102
                                          1.17470 0.08865 1.816 0.069323
## Likelihood ratio test=58.87 on 9 df, p=2.21e-09
## n= 1014, number of events= 859
## (73 observations deleted due to missingness)
```

Tornem a mirar si els riscos són proporcionals

```
test.ph<-cox.zph(cox.multi)
test.ph

## chisq df p
## cluster 19.53 5 0.0015
## as.factor(sexe) 5.94 1 0.0148
## as.factor(municipi) 7.43 3 0.0593
## GLOBAL 29.66 9 0.0005
```

Més o menys, municipi poc significatiu, però ho deixem així, dona un bon test global.