عرفي سرى منع لفنفا دفرج ع Oles Role (os): cei de A: $\int_{M_M}^{M_D} = 105 - 10t$ $M_M = 510 - 25t$ B^{3} $M_{D} = 10,5-t$ $M_{M} = 51-2t$ in. A: { Sheether 105 -10tyo -> t < 10,5 (3, west - 100 : 510-25tyo -> t < 20,4 (ties = 100 : 51-24 40 -> + 125,5 نیادائی جو توان نفت مرسوی تر هر دو دارات ریاز دانها ل فاشند مردو دانوی م 1- اسور ره مستند جرآ و معلم به بعد ري و معد الله وي وسوات معنا ل برنمالا وي وسوات معنا ل برنمالا - قود الراصر دهند دراصد انسله عليك ركد ازه عابات عاج سُره وسوربازار الحصارًا برسُوني تعلق بليدر كر دربازار بالدولي اصرصيب سلوك سود سليك ما قيا لده ما از حالتي كر ا زميمله وا به بعد المامرين م بسيرسطد. حال بربراي دين اصلى براي مري هو سايد عالي برباني خودار سعد در دهای بر صدب زمان برصیات ریراست वालिया महिला कारिय है महिए पर ति ति विद्या है। या विद्या 13 برقابة المام دهم معيوع سودى در تالى معلى برست آموره לו משול של של יון לים משלת ועשונים A אני לא של של של אלי में हो गर में की है हिंदी से में हैं हिंदी से हिंदी है। معطر الع برقد منفي علاد ولى سلاك الله عاد معلم الع الم معلم الع

MWG 12.0.18;

 $P(9_{1}+9_{2}) = \alpha - b(9_{1}+9_{2})$ $\frac{1}{2} + \frac{1}{2} + \frac{1}{2$

MWG 12.03.a): P(9) = a-bq monoply quantity; M = (a - bq)q - cq-> a-c= 2ba -> = a-c 2b 30 = - pd + (a-pd) - c=0 monopoly price: $p(q^m) = q - b(q-c) = \frac{q+c}{2}$ monopoly profit: $(\frac{a+c}{2})(\frac{a-c}{2b}) - c(\frac{a-c}{2b}) = (\frac{a-c}{2b})(\frac{a-c}{2}) = \frac{(a-c)^2}{4b}$ a Bally de وصيفًا مر هيماراً عقال المنذ وهر نداكر در تاكل مراهل مي ولا توليد بنابرلين مرسام درهم صحام ر المار المار الماري ا $\Pi_{T}^{N/2} = \frac{(a-c)^{2}}{8b} + 8\frac{(a-c)^{2}}{8b} + 8^{2}\frac{(a-c)^{2}}{8b} + \cdots = \frac{(a-c)^{2}}{8b}(1+8+8^{2}+\cdots)$ $=\frac{1}{1-8},\frac{(\alpha-c)^2}{8b}$ معدد المعلى للذ معدادى مر مراكم الريف مل كان يولد الله بر صلا على المريد الله الم Max M, (9,9 %) = 9, [a-b(9,+9*)-c]

 $\frac{\partial M_{1}}{\partial Q_{1}} = \alpha - b(Q_{1} + Q_{2}^{*}) - C - bQ_{1} = 0 - \gamma \quad Q - bQ_{2}^{*} - C = 2bQ_{1}$ $- > Q_{1}^{*} = \frac{\alpha - bQ_{2}^{*} - C}{2b} \Big|_{= \gamma} Q_{1}^{*} = Q_{2}^{*} = \frac{\alpha - C}{3b}$ $BR_{2}(Q_{1})_{s} - > Q_{2}^{*} = \frac{\alpha - bQ_{1}^{*} - C}{2b}$ $BR_{2}(Q_{1})_{s} - > Q_{2}^{*} = \frac{\alpha - bQ_{1}^{*} - C}{2b}$ Scanned by TapScanner

على الراسكان عدم الله المقال لله براي الله عدالشرسد را للربا بالم ميترين والله عود را فاري $\frac{a - b(q-c) - c}{2b} = \frac{a - a/4 + c/4 - c}{2} = \frac{3(a-c)}{8b}$ $M = \frac{3(a-c)}{8b} \left(a - b \left(\frac{3(a-c)}{8b} + \frac{(a-c)}{4b} \right) - c \right)^{\frac{1}{6}} \frac{2a-c}{8b} = \frac{3(a-c)}{8b} + \frac{3(a-c)}{4b} = \frac{3(a-c)}{4b} = \frac{3(a-c)}{8b} = \frac{3(a-c)}{8b} = \frac{3(a-c)}{4b} = \frac{3(a-c)}{4b} = \frac{3(a-c)}{8b} = \frac{3(a-c)}{4b} = \frac{3(a-c)}{8b} = \frac{3(a-c)}{4b} = \frac{3(a-c)}{8b} = \frac{3(a-c)}{4b} =$ $=\frac{3(a-c)}{8b}\left((a-c)-\frac{5(a-c)}{8}\right)=\frac{3(a-c)}{8b}\left(\frac{3(a-c)}{8}\right)=\frac{9(a-c)^2}{64b}$ و من الرائن صفار تقا مل المائن عاليد مدرا من مرساي على كليد مرائن عالي مرساي على المرائع والمعارف و عد براليا بأ 3 في $M = \frac{\alpha - c}{3b} \left(\alpha - c - \frac{2b(\alpha - c)}{3b} \right) = \frac{\alpha - c}{3b} \left(\frac{(\alpha - c)}{3} \right) = \frac{(\alpha - c)^2}{3b}$ نابرای رحلتی رقر تعطی ی شر سود او برکی بازی برطسات زیراس $= \frac{9(\alpha-c)^2}{64b} + \frac{8(\alpha-c)^2}{9b}(1+8+8^2+1) = \frac{9(\alpha-c)^2}{64b} + \frac{5}{1-8} \cdot \frac{(\alpha-c)^2}{9b}$ نا رائی مری انسار انگلیزه تعطی صور ندانستر با اس به به می انسان انگلیزه تعطی صور ندانستر با اس می به می انسان انگلیزه تعطی صور ندانستر با اس می به می انسان انگلیزه تعطی صور ندانستر با اس می به می انسان انگلیزه تعطی صور ندانستر با اس می به می انسان انگلیزه تعطی صور ندانستر با اس می به می انسان $\frac{1}{1-8} \cdot \frac{(a-c)^2}{8b} + \frac{9(a-c)^2}{64b} + \frac{5}{1-8} \cdot \frac{(a-c)^2}{9b}$ 01/C 1-88 24 + 5 1-8 9 ->(1-8)(1/8-5)>9/64 9-98 -> 78-848> 81-819

Add Ex1,

- بستراز بکه بعدی برای عود برطیده و بقیرا بروزدروای ۱+ آگریستار دهر:
 در بی حالات در در دوی ۱+ آگر بیشترها دا ورا نئی بزیرد و از (۱+ ۱-۱۸) بعدی ند
 او دلید بکی را قبل از صدک با در نوید و بقیر بر در ۱+ ۱ آگی را مد
 - کے بھدی برای خود بہ دارد و بقیہ بھتی (۲-۱) بھیری بہ درد دریا کی ۱۰۲۱ بھیدتھا دھر ہو در دریا کی استری کر نیزبرد دھی درائی ماری کر نیزبرد دھی در دریا کی استری کر نیزبرد دھی در دریا کی استری کر نیزبرد دھی کا میں استری کر نیزبرد دھی کا میں استری کر نیزبرد دھی کا میں استری کا میں کی کا میں کا میں
- تا کی صدی مای کر دارد بردود ۱۲ اگر کسیدها دهد اگر در درمای بیزین ۱۲-۱ معلی نفیسی کا گرد درمای بیزین ۱۲-۱ معلی نفیسی کا سکود + ساعد خرده شدای در ۱-۲ آگر از ۱۲-۱ معلی نفیسی کا سکود + ساعد خرده شدای ایجا دی اند ۱۲-۱ کا مدخره شدای ایجا دی اند در ۱۲-۱ کا مدین مالی سکوری سکوری

مل الراور الفريد ما وي الله ما المراور الفريد من الله المراور الفريد من الله المراور الفريد من الله المراور الفريد المراور المراور الفريد المراور المر الرفازي برن دروام الم ۱ برسد نعنی ا- م در تعلی و به بستها دها در دوام عبلی ارد کرده الله بنا در دوان در دوان الم ۱۱ م ۱۱ م ۱۱ به ۱۱ به ۱۲ به الم ۱۲ به ۱۲ ب السيالية على السيان السراد ١-٩ أو المن السرام المراه و الما المن السرام المراه و المستفاد ها وزوریای ع- جمع داندار وزد ۱-۶، کر معدد رو سونها داو تدها مطلعی تراسب عالی این است کرنفارگر خورده ساری وزد ع-۴، کر تو عدی دها با سال بیا برای وژد 1-9 ar aguired est 180/20 20 8:00 8-8 of construction R-1 اسم بسندها دعی دهد. اگر صبی سیر دا دارام دهم به نسی، زیری ک Aifearny Aifearn TAifearny Aifearn T Ritearnti Rif earnst-1 Rif earnti Rif earn 11-1 AR-9, il PR-8 il PR-1, il JR il ته برانی روسی بر تعداد نزدان سیای زمیج یا شار تفرادل برای انسلم وزره کاند کی بعلری می ورصعت تمالا در دال در ال در ال در ال در ال در الله تفراق کو بهادی بر تفریعدی پیشندها وی دهد والوهم برای اندار مطلعیات بسیندی سید کندی نیزیرد میازی شاک می سیور زیرانگر آنیدیرد برای آن در م معمد في تعرف السال المسال السال المسال السال السال . - المرازيك بعادي السال السال السال . : dien and the same of th

and the state of t

برای وزید کی نیز محدالی لفت ستر مراسا در در الم ما م ما ما به ۱ عاب ما عاب ما ما با ا مرای لنسلیر الله على الله ما للسند U, (A, t, p) = 20 U, (A, b,p) = 10p + 40(1-p) = 40-30p U, (D, .,p) = 15p + 0 (1-p) = 15p -730P720 -71P72/3 U, (A, t, P) YU, (A, b, P) -> 20 740-30P U, (A, t, p) YU, (0, o, p) -> 20715p -> [P 32/15] U2 (A, b, p) = 10p + 20x(1-p) ->UE (Astp) >UE (Asb,p) $U_2(A_9^t, \rho) = 15$ -> 15 Y20-10p-> 10p45 Losing 1, - m (9) dw (A, t, ρ) (los /3 < ρ < 1 ν (Lues is) μίν رق نسب بر استرات با استرات با استرات با الله و با قرم بر ابتله در مسال مر بازنی ها idne - mi - lé s's l'ésée mi Bibil mes l'ésée A D

- از نقلر بالمؤوللموها نعنية كالاى Q بالعنال H برليرا, بالعنال H برليرا السراري السراري السراري السراري السرا - كالاى به لعقعد Q دروسان عاضل على ساؤوكد + مقفيدى نقارها با تعزيع بليولفت درباره ي [Q و] قوار دليد.

$$U(b uyer) = 2t-p$$
 $U(seller) = p$

Add EX5, despite the new part of the fact that the second se And the second s (1) 1) 9 9 9 9 10 9000 1 (90) 9

(1-9) duois H, 9 duois 6ina inco

	HH	HA	AH	AA						
H	(3,0)	(9,0)	(3,8)	(3,2)	Nouture choose 1					
A	(2,3)	(2,2)	(203)	(2,2)	Nouve de la constant					
	HH	HA	AH	AA						
H	(003)	(0,9)	(3,2)	(3,8)						
A	(2,3)	(2,2)	(2,3)	(2,2)	muture choose @					
A(2,3)(2,8)(2,8)										
مل فا توجر بدانیلد طبیعت براعت کی از کا کا ازی کا ندی کا ندی کا										
	1	HH	HA	AH						
Gi	H	(3/2 ,3/2)	(3/23/2)	(3,2)	(3,2)					
	nu A	(208)	(2,2)	(2,3)	(2,2)					
په پرلين پاتنج يې انسار لين بازی مار زير يا زی پانستر مالمار و آن کان پريان کان دی په و آن کان کان کان کان کان کان کان کان کان کا										

مركاني حالات السرائي هدك الراد وولين في بيسلى وبراس Sina = [HH, HA, AH, AA] 25 will @ Nature 18 800 8 HA in 1869, 1 A lier s/638 1 @ Nature / Purps of Gina Tina = HH, HA, AH, AA J (July H Cury) H Cury Wise: HA

ins; OA in line of A line of Tina HH HA AH AA ين يراين في نرجال لين برياس ويراس HH (0,3) (0,3) (3,02) (3,2) HH (3,0) (3,0) (3,2) (3,2) HA (3,0) (3,0) (3,2) (3,2) HA (2,3) (2,2) (2,3) (2,2) Gina Att (2,3) (2,2) (2,3) (2,2) AH (0,3) (0,3) (3,2) (3,2) AA (2,3) (2,2) (2,3) (2,2) AA (2,3) (2,2) (2,3) (2,2) Nature choose(8) Noture choose (1) 1 des péclisée missies @ le décense dé décis Nouve délapair (3/2,3/2) (3/2,3/e) (5/2 3%) (5/20/2) (3/2,2) (b/e , 1) (1,5/2) (5/2 05/2) (5/2 02) (2,3) (2,2) (2,2)

				Witemooning	1
d) (Jeon 30 de	ع دمر می در	eigs Tina	مرا جيناني	drien Hunk w Gener
	HH	UA	Tina	AA	-Swell i
HH	(1/2 05/2)	(1/20 5/e)	(3,2)	(3,2)	
	(19/6 9 1/2)		(13/6 , 19/6)	(13/6)2)	
A-(+	(1/3 9 3)	(1/3,13/6)	(13/6 9/3/6)	(13/6,2)	
AA	(2,3)	(2,2)	(2,3)	(2,2)	