

6th lecture:

- output stages (2nd part)
- operational amplifiers (introduction)

EEE331 Analogue Electronics

emitter follower as typical class A output stage

emitter follower T_1 biased with constant quiescent current $I_{\rm Q}$ supplied by T_2

remark on amplifier gain:

Remember the emitter follower T_1 , where the load resistor is connected between emitter and ground and the collector is connected to the supply voltage, has **no voltage gain**:

$$\begin{aligned} G &= V_{o}/V_{i} \\ &= R_{L}(1+\beta)/[r_{BE} + R_{L}(1+\beta)] \\ &\text{with } g_{m}V_{BE} = \beta i_{B} \text{ and } r_{BE} = v_{BE}/i_{B} \\ &= g_{m}R_{L}/[g_{m}R_{L} + \beta/(\beta + 1)] \end{aligned}$$

It can amplify current, however, and therefore produce power gain!

EEE331 Analogue Electronics

Lecture 6

EEE331

Analogue Electronics

emitter follower as typical class A output stage

emitter follower T_1 biased with constant quiescent current I_Q supplied by T_2

EEE331 Analogue Electronics

consider large signals for transfer characteristic:

• Consider voltages: $V_i = V_{BE1} + V_o$

$$\begin{split} V_{\rm BE1} = & kT/q_{\rm e} \ln \left(I_{\rm C1}/I_{\rm S}\right) \\ \text{for saturation current } I_{\rm S} \text{ if } T_{\rm 1} \text{ is in} \\ \text{forward-active region and } R_{\rm L} << r_{\rm BE} \end{split}$$

• Consider currents: $I_{\text{C1}} \approx I_{\text{E1}} = I_{\text{Q}} + V_{\text{o}}/R_{\text{L}}$ if T_2 is also in forward-active region and $\beta_1 >> 1$

• Substitute I_{C1} into V_{i} expression: $V_{\text{i}} = kT/q_{\text{e}} \ln \left[(I_{\text{Q}} + V_{\text{o}}/R_{\text{L}})/I_{\text{S}} \right] + V_{\text{o}}$ relates V_{o} and V_{i} if both transistors are in forward-active region

emitter follower as typical class A output stage

emitter follower T_1 biased with constant quiescent current $I_{\rm Q}$ supplied by T_2

EEE331 Analogue Electronics

transfer characteristic:

 $V_i = kT/q_e \ln [(I_Q + V_o/R_L)/I_S] + V_o$ relates V_o and V_i if both transistors are in forward-active region

ecture 6

EEE331

Analogue Electronics

emitter follower as typical class A output stage

emitter follower T_1 biased with quiescent current I_Q supplied by T_2

EEE331 Analogue Electronics

power output and efficiency:

- consider sinusoidal signal $V_i = V_i^{\text{max}} \sin \omega t$
- average output power delivered to $R_{\rm L}$ for large load:

- power drawn from power supply: $P_{\sup} = V_{\text{CC}} (I_{\text{o}} + I_{\text{Q}}) \text{ where } \langle I_{\text{o}} \rangle = I_{\text{Q}}, \text{ hence } \\ P_{\sup} = 2V_{\text{CC}}I_{\text{Q}}$
- power conversion efficiency:

 $\eta_{\rm A} = P_{\rm L}/P_{\rm sup} = \frac{1}{4} (1 - V_{\rm CEsat}/V_{\rm CC}) \le \frac{1}{4} = 25\%$

emitter follower as typical class A output stage

instantaneous power dissipation:

consider sinusoidal signals of $V_{\rm CE1}$ and $I_{\rm C1}$, and neglect $V_{\rm CEsat}$, i.e.

 $V_{\text{CE1}} = V_{\text{CC}} (1 + \sin \omega t)$

 $I_{C1} = I_{Q} (1 - \sin \omega t)$

instantaneous power dissipation then is $P_{\text{C1}} = V_{\text{CE}1}I_{\text{C1}} = V_{\text{CC}}I_{\text{Q}}\cos^2\omega t = \frac{1}{2}V_{\text{CC}}I_{\text{Q}}(1+\cos2\omega t)$ has the following properties:

- (i) time averaged value is $1/2V_{\rm CC}I_{\rm Q}$ as before
- (ii) minima occur at voltage extrema $(I_{C1}=0 \text{ or } V_{CE1}=0)$
- (iii) maxima occur at quiescent operation $(I_{C1}=I_Q)$, i.e. the class A amplifier draws max. power when it does not amplify anything!

Lecture 6

EEE331

Analogue Electronics

transformer coupled class A output stage

emitter follower T_1 biased by T_2 but now transformer coupled to the load

NB: The 25% max. efficiency rule also holds for a single emitter follower T_1 without T_2 : I_{C1} still swings from 0 to $2I_{\text{Q}}$, i.e. $I^{\max}=\pm I_{\text{Q}}$, but V_{C1} only swings from 0 to V_{CC} , i.e. $V^{\max}=\pm 1/2 V_{\text{CC}}$: $\eta_{\text{direct}} \leq P_{\text{L,ac}}/P_{\text{dc}} = (1/2 V^{\max}I^{\max})/(V_{\text{CC}}I_{\text{Q}}) = 1/4 = 25\%$ The reason for the low efficiency is the quiescent current I_{Q} passing through the load all the time.

This can be avoided by using a transformer for coupling of the load. As DC bias components are not transferred by the transformer, only the time-varying $I_{\rm o}$ but not the constant $I_{\rm Q}$ needs to be considered in the term for $P_{\rm sub}$, halving the load to $P_{\rm sup} = V_{\rm CC}I_{\rm Q}$, thus doubling efficiency to:

 $\eta_{\text{A+transformer}} \leq P_{\text{L}}/P_{\text{sup}} = \frac{1}{2} = 50\%$

Lecture 6

EEE331 Analogue Electronics

source follower as class A output stage

source follower M_1 biased by current mirror M_2 & M_3

EEE331 Analogue Electronics

consider large voltage signals for transfer: $V_i = V_o + V_{GS1} = V_o + V_{t1} + V_{ov1}$ problems:

- (i) body effect changes threshold voltage: $V_{t1} = V_{to} + \gamma [(2\Phi_{\rm F} + V_{\rm SB})^{1/2} (2\Phi_{\rm F})^{1/2}]$ with $\gamma = t_{\rm ov} / \varepsilon_{\rm SiO_2} (2q_{\rm e}\varepsilon_0 N_{\rm A})^{1/2} \approx 0.5 {\rm V}^{0.5}$ in Si for permittivity ε , doping density $N_{\rm A}$, Fermi level $\Phi_{\rm F} = kT/q_{\rm e} \ln(N_{\rm A}/n_{\rm i})$, source-body voltage $V_{\rm SB} = V_{\rm o} + V_{\rm DD}$
- (ii) overdrive voltage $V_{\rm ov} = V_{\rm GS} V_{\rm to}$ is not constant but depends on drain current and increases with temperature: $V_{\rm ov1} = [2I_{\rm D}/(\mu_{\rm n}C_{\rm ox}~(W/L)]^{1/2}~{\rm with} \\ \mu_{\rm n} = {\rm mobility},~C_{\rm ox} = \varepsilon_{\rm SiO_2}\varepsilon_{\rm o}/t_{\rm ox},~I_{\rm D} = I_{\rm o} + V_{\rm o}/R_{\rm L} \\ {\rm (for~detailed~derivation:~Grey,~Hurst,~Lewis,~Meyer:~Analysis~and~design~of~analog~ICs,~Wiley,~New~York,~4^{th}~ed.,~2001,~chapter~1.5)} \\ _{\rm Lecture}$

The University Of Sheffield **Analogue Electronics EEE331** source follower as class A output stage Hence complete transfer function: $V_{\rm i} = V_{\rm o} + V_{\rm to} + \gamma [(2 \Phi_{\rm F} + V_{\rm o} + V_{\rm DD})^{1/2} - (2 \Phi_{\rm F})^{1/2}]$ $+V_{\rm DD}$ $+[2(I_Q+V_0/R_L)/(\mu_nC_{ox}(W/L)_1]^{1/2}$ M₁ saturated M₁ triode region $-I_{O}R_{L}$ if R_{L} small (clipping) $-V_{
m DD}$ M₂ saturated offset: $V_{\text{GS1qu}} = V_{\text{to}} + \gamma [(2 \Phi_{\text{F}} + V_{\text{DD}})^{1/2} - (2 \Phi_{\text{F}})^{1/2}]$ source follower M₁ biased by $+[2(I_{\rm O}/(\mu_{\rm n}C_{\rm ox}(W/L)_{\rm 1})]^{1/2}$ current mirror M2 & M3 slope: $v_o/v_i = g_m R_L/[1 + (g_m + g_{mb})R_L]$ for $r_o \rightarrow \infty$ $\approx 1/(1+g_{\rm mb}/g_{\rm m})\approx 0.8$ for $g_{\rm mb}/g_{\rm m}=0.2$, $R_{\rm L} \xrightarrow{\infty}$ EEE331 Analogue Electronics

Analogue Electronics EEE331

distortion in the source follower as class A output stage

derivation of quantitative body effect

drain current:

definition of g_{mb} :

first derivate:

where the threshold voltage is

insertion into above equation:

this yields:

with effective channel length L_{eff} :

 $I_{\rm D} = \frac{1}{2} \mu_{\rm n} C_{\rm ox} W/L_{\rm eff} (V_{\rm GS} - V_{\rm t})^2$ $L_{\rm eff}$ =L- ΔL which depends on $V_{\rm DS}$ at pinch-off $I_{\rm D} = \frac{1}{2} \mu_{\rm n} C_{\rm ox} W/L(V_{\rm GS} - V_{\rm t})^2 (1 + \lambda V_{\rm DS})$

with channel length modulation parameter

 $\lambda = 1/L_{\text{eff}} (\partial \Delta L/\partial V_{\text{DS}})$

 $^{\circ}$ $g_{\rm mb}$ = $\partial I_{\rm D}/\partial V_{\rm BS}$

= $-\mu_n C_{ox} W/L(V_{GS}-V_t) (1+\lambda V_{DS}) \partial V_t/\partial V_{BS}$

 $V_t = V_{to} + \gamma [(2\Phi_F + V_{SB})^{1/2} - (2\Phi_F)^{1/2}]$

 $\partial V_{t}/\partial V_{BS} = -\gamma/[2(\Phi_{F} + V_{SB})^{1/2}]$

 $g_{mb} = \mu_n C_{ox} W/L(V_{GS} - V_t) (1 + \lambda V_{DS}) \gamma [2(\Phi_F + V_{SB})^{1/2}]$

 $= \partial I_{\rm D} \partial V_{\rm GS} = g_{\rm m}$

 $g_{\rm mb}/g_{\rm m}$

EEE331 Analogue Electronics

distortion in the source follower as class A output stage

derivation of higher harmonic distortions (not needed for exam): use transfer function $V_i=f(V_0)$, for $R_L\to\infty$ for simplicity:

isier function
$$V_i = I(V_0)$$
, for $H_L \to \infty$ for simplicity:

$$V_i = V_0 + V_{10} + \gamma [(2\Phi_F + V_0 + V_{DD})^{1/2} - (2\Phi_F)^{1/2}] + V_{ov1}$$

principle: Taylor series expansion of $V_i = f(V_0) = \sum_{n=0,...\infty} 1/n! (\partial V_i/\partial V_0)|_{V_0 = V_x} (V_0 - V_x)^n$

$$=\sum_{n=0,...\infty} b_n v_0^n$$

around some DC value $V_x = V_0 - v_0$

differentiating with respect to V_o yields:

$$f'(V_0) = 1 + \frac{1}{2}\gamma(V_0 + V_{DD} + 2\Phi_F)^{-\frac{1}{2}}$$

$$f''(V_0) = -\frac{1}{4}\gamma(V_0 + V_{DD} + 2\Phi_F)^{-\frac{3}{2}}$$

$$\begin{split} \text{f"}(V_{\text{o}}) &= -\frac{1}{4}\gamma \; (V_{\text{o}} + V_{\text{DD}} + 2\,\varPhi_{\text{F}})^{-3/2} \\ \text{f"}(V_{\text{o}}) &= 3/8 \; \gamma \; (V_{\text{o}} + V_{\text{DD}} + 2\,\varPhi_{\text{F}})^{-5/2} \end{split}$$

This yields the coefficients:

$$b_{\rm o} = f(V_{\rm o} = V_{\rm x}) = V_{\rm x} + V_{\rm t0} + \gamma [(V_{\rm x} + V_{\rm DD} + 2\,\varPhi_{\rm F})1/2 - (2\,\varPhi_{\rm F})1/2] + V_{\rm ov1} = {\rm constant\ DC\ input}$$

$$b_1 = f'(V_0 = V_X) = 1 + \frac{1}{2}\gamma(V_X + V_{DD} + 2\Phi_F)^{-\frac{1}{2}}$$

$$b_2 = f''(V_o = V_x) = -\frac{1}{2}8 (V_x + V_{DD} + 2\Phi_F)^{-3/2}$$

$$b_3 = f'''(V_0 = V_x) = 1/16 (V_x + V_{DD} + 2\Phi_F)^{-5/2}$$

EEE331 Analogue Electronics

EEE331

Analogue Electronics

distortion in the source follower as class A output stage

derivation of higher harmonic distortions (not needed for exam):

To find the distortions we will have to re-arrange $v_i = f(v_0) = \sum_{n=1}^{\infty} b_n v_0^n$ into some form $V_0 = \sum_{n=1,\dots\infty} a_n V_i^n$.

Substituting this into the above gives:

$$V = b_1(a_1v_1 + a_2v_1^2 + a_3v_1^3 + ...) + b_2(a_1v_1 + a_2v_1^2 + a_3v_1^3 + ...)^2 + b_3(a_1v_1 + a_2v_1^2 + a_3v_1^3 + ...)^3 + ...$$

= $b_1a_1v_1 + (b_1a_2 + b_2a_1^2)v_1^2 + (b_1a_3 + 2b_2a_1a_2 + b_3a_1^3)v_1^3 + ...$ (sorted acc. to powers of v_1)

Inserting the expressions for the b_i yields finally:

$$a_1 = 1/[1 + \frac{1}{2}\gamma(V_x + V_{DD} + 2\Phi_F)^{-\frac{1}{2}}]$$

$$a_2 = \frac{\gamma}{8} \left(V_x + V_{DD} + 2 \Phi_F \right)^{-3/2} / \left[1 + \frac{\gamma}{2} \left(V_x + V_{DD} + 2 \Phi_F \right)^{-1/2} \right]^3$$

$$a_3 = -\frac{\gamma}{16} \left(V_x + V_{DD} + 2 \Phi_F \right)^{-5/2} / \left[1 + \frac{\gamma}{2} \left(V_x + V_{DD} + 2 \Phi_F \right)^{-1/2} \right]^5$$

EEE331 Analogue Electronics

distortion in the source follower as class A output stage

derivation of higher harmonic distortions (not needed for exam):

To find the harmonic distortions use

 $v_i = u_i \sin \omega t$

with amplitudes u_i and insert this into the equation for v_0 to get $v_0 = a_1 u_i \sin \omega t + a_2 u_i^2 \sin^2 \omega t + a_3 u_i^3 \sin^3 \omega t + ...$

 $= a_1 u_i \sin \omega t + \frac{1}{2} a_2 u_i^2 (1 - \cos 2\omega t) + \frac{1}{4} a_3 u_i^3 (3 \sin \omega t - \sin 3\omega t) + \dots$

fundamental frequency, ω higher harmonic frequencies, $N\omega$, not present in input

 ${\bf x}^{\rm th}$ harmonic distortion=ratio of amplitude of output frequency component ${\bf x}\omega$ to amplitude of fundamental frequency component

second harmonic distortion $HD_2 = \frac{1}{2}a_2u_i/a_1$

= $\chi (V_x + V_{DD} + 2\Phi_F)^{-3/2} u_i / \{16[1 + \gamma/2(V_x + V_{DD} + 2\Phi_F)^{-1/2}]^2\}$ $\approx \chi (V_x + V_{DD} + 2\Phi_F)^{-3/2} u_i / 16$ for small γ

can be reduced by increasing the DC output V_x and is proportional to the signal amplitude u_i and γ

EEE331 Analogue Electronics

EEE331

Analogue Electronics

distortion in the source follower as class A output stage

derivation of higher harmonic distortions (not needed for exam):

third harmonic distortion $HD_3 = \frac{1}{4}a_3u_1^2/a_1$

can be reduced by increasing the DC output $V_{\rm x}$ & is proportional to square of signal amplitude $u_{\rm i}^2$

application example:

peak sinusoidal input voltage u_i =1V (no DC component: V_i =0), V_{DD} =2.5V, Φ_F =0.3V, V_{10} =0.7V, I_O =1mA, R_I = ∞ , $(W/L)_1$ =1000, μ_D C_{0x}=200 μ A/V², γ =0.5V^{1/2}

First determine $V_{\text{ov1}} = [2I_{\text{Q}}/[\mu_{\text{n}}C_{\text{ox}}(W/L)_{1}]^{1/2} = 0.1\text{V}$

Now get the DC output voltage $V_{\rm x} = V_{\rm I} - V_{\rm t0} - \gamma [(V_{\rm x} + V_{\rm DD} + 2\Phi_{\rm F})^{1/2} - (2\Phi_{\rm F})^{1/2}] - V_{\rm ov1}$

Rearrange to get a quadratic equation that can be solved for V_x :

 $(V_x + V_{DD} + 2\Phi_F) + \gamma (V_x + V_{DD} + 2\Phi_F)^{\frac{1}{2}} - V_1 + V_{ov1} + V_{t0} - \gamma (2\Phi_F)^{\frac{1}{2}} - V_{DD} - 2\Phi_F = 0$ $V_x = -V_{DD} - 2\Phi_F \pm \left\{ -\frac{1}{2}\gamma + \left[\frac{1}{4}\gamma^2 + V_1 - V_{ov1} - V_{t0} + \chi(2\Phi_F)^{\frac{1}{2}} + V_{DD} + 2\Phi_F \right]^{\frac{1}{2}} \right\}^2 = -1.1168V$

Thus: a_0 =0, a_1 =0.8492, a_2 =0.0137, a_3 =0.0025, HD₂=0.008=0.8%, HD₃=0.0007=0.07%

EEE331 Analogue Electronics

EEE331

Analogue Electronics

class AB output stages

 $\begin{array}{c} \text{complementary output} \\ \text{stage with pnp \& npn BJTs} \\ \text{and bias by } V_{\text{BE}} \text{ multiplier} \\ \\ \text{EEE331 Analogue Electronics} \end{array}$

Biasing can alternatively be performed by a third transistor T_3 and two resistors R_1 and R_2 in a configuration known as \textbf{V}_{BE} multiplier: $I_{\text{R}} = V_{\text{BE}3}/R_1$, if base current I_{B3} negligible $V_{\text{BB}} = I_{\text{R}}(R_1 + R_2) = V_{\text{BE3}}(1 + R_2/R_1)$ then forms an adjustable bias

further biasing alternatives:

- emitter follower as unity-gain buffer for T_2 (output stage of OpAmp 709: *Meyer*, p. 370)
- Darlington pair instead of diode pair (output stage of OpAmp 741: *Meyer*, p. 372)

general problem with BJTs:

no high-power substrate pnp BJTs: use

- (i) all-npn BJTs plus diodes or
- (ii) create quasi-complementary pnp using lateral pnp and high-power npn BJT
- (iii) BICMOS combines BJTs and MOSFETs

Lecture 6

EEE331

Analogue Electronics

schematic of the output stage of the 741 OpAmp where Q_{14} & Q_{20} operate as class AB

EEE331 Analogue Electronics

overload protection

problem: if base currents get above a certain threshold then high-gain stages without protection can create destructively high currents

aim: overload protection in IC output stages against self-destruction in case of short-circuited output

implementation: divert current from base of transistor in question (here: Q_{14}) by using a resistor (here: R_6) that switches another transistor on (here: Q_{15}) only if appreciable current flows across it

