Benign Overfitting without Linearity

Neural Network Classifiers Trained by Gradient Descent for Noisy Linear Data

Yujun Kim

Jaeryeong Kim

Contents

- Introduction to Benign Overfitting
- Theoretical Guarantee of Benign Overfitting
- Sketch of Proof and the Intuition Behind
- Follow-up Research
- Empirical Analysis

Introduction

The Benign Overfitting

The Overparametrized Regime

The Excess Risk

•
$$R(f_A) - R(f^*) = R(f_A) - R(f_F^*) + R(f_F^*) - R(f^*)$$
Estimation error Approximation Error

• ERM

• Recall.
$$P_S\left[R\left(f_S^{ERM}\right) - \inf_{f \in F} R(f) \le 2R_m(F) + 2\sqrt{\frac{\log\left(\frac{2}{\delta}\right)}{2m}}\right] \ge 1 - \delta$$

ullet c.f. d —dim linear classifier, cosine kernel classifier

The Overparametrized Regime

- Traditional Point of View
 - Overparameterization poorly generalize
 - $argmin_{f \in F} R(f) \text{ vs } f_S^{ERM}$
- Modern Al
 - Even overparameterized model generalize well

Benign Overfitting in Regression

• Kernel Regression with $\{\frac{\cos(it)}{i}\}_{i=1}^k$

The Approximation Theorem

- Representation of 2-Layer NN
- Continuous function h in a compact domain can be approximated by 2-layer ReLU network in $||\cdot||_{\infty}$

$$f(x; W, a, b) = \sum_{i} a_i \phi(W_i^T x - b_i)$$

Our Simplified Architecture

- $W \in \mathbb{R}^{m \times p}$ trainable
- $\forall a_i \in \{-1/\sqrt{m}, 1/\sqrt{m}\}$ uniformly random

$$f(x; W, a) = \sum_{i} a_{i} \phi(W_{i}^{T} x)$$

Meaning of the Main Theorem

Theoretical Guarantee of Benign Overfitting

Theorem 3.1

- When a neural network is trained under certain assumptions, it will exhibit benign overfitting.
 - **1.** Interpolation: Achieves arbitrary small training loss, $\widehat{L}(W) < \epsilon$
 - 2. Generalization: Achieves test error close to the noise rate,

$$\mathbb{P}_{(x,y)\sim P}\left[y\neq \operatorname{sgn}\left(f(x;W^{(T)})\right)\right] \leq \eta + 2\exp\left(-\frac{n\|\mu\|^4}{Cp}\right)$$

Assumptions on the Training Objectives

Trained with Full-batch Gradient Descent on Empirical Loss, $\widehat{L}(W)$

$$W^{(t+1)} = W^{(t)} - \alpha \Delta \hat{L}(W^{(t)})$$

Empirical Loss, $\widehat{L}(W)$

$$\widehat{L}(W) \coloneqq \frac{1}{n} \sum_{i=1}^{n} l(\mathbf{y}_{i} f(\mathbf{x}_{i}; \mathbf{W}))$$
where $l(z) = \log(1 + \exp(-z))$

Margin, $y_i f(x_i; W)$

(+) when
$$y_i = \operatorname{sgn}(f(x_i; W))$$

(-) when $y_i = -\operatorname{sgn}(f(x_i; W))$

Assumptions on the Generated Dataset

• A joint distribution P over $(x, y) \in \mathbb{R}^p \times \{\pm 1\}$, where p is very large.

- (1) Linearly separable gaussian distribution dataset,
- (2) Invert labels with probability η

Assumptions on the **Parameters**

Six Assumptions (A1)-(A6)

- (A1) Number of samples $n \geq C \log(1/\delta)$. (A2) Dimension $p \geq C \max\{n\|\mu\|^2, n^2 \log(n/\delta)\}$. (A3) Norm of the mean satisfies $\|\mu\|^2 \geq C \log(n/\delta)$.

which studied the same sample model setup as here analyzing maximum margin linear classifier

From Chatterji and Long [CL21b],

- (A4) Noise rate $\eta \leq 1/C$.
- (A5) Step-size $\alpha \leq \left(C \max\left\{1, \frac{H}{\sqrt{m}}\right\} p^2\right)^{-1}$, where ϕ is H-smooth.
- (A6) Initialization variance satisfies $\omega_{\text{init}}\sqrt{mp} \leq \alpha$.

Significance of Theorem 3.1

- Largely generalizes the condition when "benign overfitting" occurs
 - 1. Using **richer class**, the two-layered classification NN.
 - (Chatterji and Long [CL21b] proved for maximum margin linear classifier)
 - 2. Using **loose assumptions** compared to other theoretical analyses of NNs.
 - Allows networks of an arbitrary width, m, (m hidden neurons)
 - Arbitrary small initialization variance, ω_{init}
 - Arbitrary long training time, T
- Does not require the Neural Tangent Kernel approximation (NTK)
 - NTK is conducted in the infinite width limit
 - NTK fails to capture several aspects of NN, such as the ability to learn features

Sketch of a proof of Thm 3.1.

A bit of Details

Generalization on Noisy Data

CLAIM #1: Trained Network achieves test error close to the noise rate

$$\mathbb{P}_{(x,y)\sim P}\left[y\neq \operatorname{sgn}\left(f\left(x;W^{(T)}\right)\right)\right] \leq \frac{\eta}{Cp} + 2\exp\left(-\frac{n\|\mu\|^4}{Cp}\right)$$

Lemma 4.1

Establish an upper bound for the test error
 in terms of the expected normalized margin on clean points

Lemma 4.1. Suppose that $\mathbb{E}_{(x,\tilde{y})\sim \tilde{\mathsf{P}}}[\tilde{y}f(x;W)] \geq 0$. Then there exists a universal constant c>0 such that

$$\mathbb{P}_{(x,y)\sim \mathsf{P}}\big(y \neq \mathrm{sgn}(f(x;W))\big) \leq \eta + 2\exp\left(-c\lambda\left(\frac{\mathbb{E}_{(x,\tilde{y})\sim \tilde{\mathsf{P}}}[\tilde{y}f(x;W)]}{\|W\|_F}\right)^2\right).$$

Test error

Expected Normalized Margin

Key technical Lemmas for Proof

Lemma 4.8

Lower bound for the change in unnormalized margin every update,

$$y[f(x;W^{(t+1)}) - f(x;W^{(t)})]$$

$$\geq \frac{\alpha}{n} \sum_{i=1}^{n} g_i^{(t)} \left[\xi_i \langle y_i x_i, y x \rangle - \frac{HC_1 p ||x||^2 \alpha}{2\sqrt{m}} \right]$$

surrogate loss:
$$g_i^{(t)} := -l'(y_i f(x_i; W^{(t)}))$$

- For a Clean data sample, $(x, \tilde{y}) \sim P$
 - $\langle y_i x_i, \tilde{y}x \rangle$ is positive, when $(x_i, y_i) \sim C$
 - $\langle y_i x_i, \tilde{y}x \rangle$ is negative, when $(x_i, y_i) \sim \mathcal{N}$
- We should guarantee the g losses to be balanced

Key technical Lemmas for Proof

Lemma 4.9. (Loss Ratio Bound)

Ensures that the noisy points cannot have an outsized influence

Lemma 4.9. For a γ -leaky, H-smooth activation ϕ , there is an absolute constant $C_r = 16C_1^2/\gamma^2$ such that on a good run, provided C > 1 is sufficiently large, we have for all $t \ge 0$,

$$\max_{i,j \in [n]} \frac{g_i^{(t)}}{g_j^{(t)}} \le C_r.$$

Lemma 4.11. (Lower Bound on the Expected Normalized Margin)

Lemma 4.11. For a γ -leaky, H-smooth activation ϕ , and for all C > 1 sufficiently large, on a good run, for any $t \ge 1$,

$$\frac{\mathbb{E}_{(x,\tilde{y})\sim\tilde{\mathsf{P}}}[\tilde{y}f(x;W^{(t)})]}{\|W^{(t)}\|_{F}} \geq \frac{\gamma^{2}\|\mu\|^{2}\sqrt{n}}{8\max(\sqrt{C_{1}},C_{2})\sqrt{p}}$$

Interpolation on Noisy training dataset

CLAIM #2: Trained Network achieves arbitrary small training loss, when $T \geq C\hat{L}(W^{(0)})/||\mu||^2\alpha\epsilon^2$ holds.

$$\hat{L}(W) < \epsilon$$

Lemma 4.12. (Upper Bound on the Empirical Loss respect to T)

Lemma 4.12. For a γ -leaky, H-smooth activation ϕ , provided C > 1 is sufficiently large, then on a good run we have for all $t \ge 0$,

Moreover, any $T \in \mathbb{N}$.

(1) Upper bound the Surrogate Loss, $\hat{G}(W^{(T)})$ in terms of T

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left(y_i \neq \operatorname{sgn}(f(x_i; W^{(T-1)})) \right) \leq 2 \widehat{G}(W^{(T-1)}) \leq 2 \left(\frac{32\widehat{L}(W^{(0)})}{\gamma^2 \|\mu\|^2 \alpha T} \right)^{1/2}$$

In particular, for $T \geq 128\widehat{L}(W^{(0)})/\left(\gamma^2\|\mu\|^2\alpha\varepsilon^2\right)$,

(2) Using the condition on T , bound $\hat{G}(W^{(T)})$ in terms of ϵ

Follow-up Research

Using a Different Approach

Idea

- 1. Gradient flow approximates gradient descent
- 2. Gradient flow on *logistic loss* converges to KKT point of margin maximization problem
- 3. Our data generation implies orthogonality
- 4. Training with orthogonal data,
 - KKT point is almost a uniform average of inputs
- 5. Solution that is almost a uniform average of inputs exhibits benign overfitting

1. The Gradient Flow

Discrete v.s. Continuous Dynamic

Gradient descent W_i $W_{i+1} = W_i - \alpha \nabla L(W_i)$

Gradient flow w(t)

$$\frac{dW}{dt} = -\nabla L\big(W(t)\big)$$

• Unification via a theorem

$$\sup_{t\in[0,T]}\left|W(t)-W_{\left\lfloor\frac{t}{\alpha}\right\rfloor}\right|\to 0 \text{ as } \alpha\to 0$$

2. Gradient Flow on Logistic Loss

[Ji and Telgarsky]

$$L(W) = \frac{1}{n} \sum_{i} l(y_i f(x_i; W))$$

- $l(q) = \log(1 + \exp(-q))$ or $l(q) = \exp(-q)$
- $L(W(0)) < \log(2)/n$
- W*: KKT point (...of what?)

$$\frac{W(t)}{||W(t)||} \to \frac{W^*}{||W^*||}$$

2. KKT Point of Margin Maximization

Margin maximization problem

$$\min_{W \in R^{m \times d}} ||W||_F^2 \text{ such that } y_i f(x_i; W) \ge 1$$

• c.f. Max margin SVM

Gradient descent converges to max margin SVM

3. Orthogonality and Uniformity

Set of data n points are p-orthogonal

$$R_{min}^2 \ge pR^2n \max_{i \ne j} |\langle x_i, x_j \rangle|$$

- $R_{min}^2 = \min ||x_i||^2$, $R_{max}^2 = \max ||x_i||^2$, $R^2 = R_{max}^2 / R_{min}^2$
- Depends on $\{(x_i, y_i)\}$
- $w \in R^d$ is τ -uniform if

$$w = \sum s_i y_i x_i$$

- $\{s_i\}_{i=1}^n$ positive and $\frac{\max s_i}{\min s_i} \le \tau$
- But we don't have w...?

3. Data Generation implies Orthogonality

- NN Architecture
 - Leaky ReLU activation
- Data Generation
 - From k clusters with mean μ^i for $i=1,\cdots,k$
 - Cluster means are nearly orthogonal $\min_i ||\mu||^2 \ge Ck \max_{i \ne j} |\langle \mu^i, \mu^j \rangle|$
 - Each cluster assigned for label {±1}
 - Implies *p*-orthogonality with high probability

$$k = 3$$

4. Orthogonality implies Uniformity

- Orthogonality implies uniformity
- If W^* is KKT point of margin maximization,

∃w such that

$$sign(f(\cdot; \mathbf{W}^*)) = sign(\langle \mathbf{w}, \cdot \rangle)$$

and w is τ -uniform

$$\tau = \frac{R^2}{\gamma^2} (1 + \frac{2}{\gamma p R^2 - 2})$$

5. Theorem

• With high probability, τ -uniform $w \in \mathbb{R}^d$

$$y_k = sign(\langle \mathbf{w}, x_k \rangle) \text{ for all } k \in [n]$$

$$\eta \le P_{(x,y)}[y \ne sign(\langle \mathbf{w}, x \rangle)] \le \eta + \exp(-\frac{n \min \left| \left| \mu^i \right| \right|^4}{C'k^2d})$$

• Benign overfitting if $n \min \left| \left| \mu^i \right| \right|^4 = \omega(k^2 d)$

Corollary

• KKT point W^* of the Margin maximization problem satisfies followings with high probability

$$y_k = sign(f(x_k; W^*)) \text{ for all } k \in [n]$$

$$\eta \le P_{(x,y)}[y \ne sign(f(x; W^*))] \le \eta + \exp(-\frac{n \min |\mu^i|^4}{C'k^2d})$$

Recall. W_i W(t) W^*

Recap!

- 1. Gradient descent
- 2. Gradient flow
- 3. KKT point of margin maximization problem
- 4. p-orthogonality
- 5. Uniform average
- 6. benign overfitting

Comparison to Previous Work

	FCB 22	FVBS 23
Analysis	Discrete	Continuous
Data Generation	Negative two Cluster	Orthogonal k cluster
Linearly Separable Assumption	Implicit(w.h.p.)	Implicit(w.h.p.)
Architecture	Smoothed Leaky ReLU	Leaky ReLU

Empirical Analysis

So, does it really happen?

Generating Samples from Data Distribution

• Generated N = 100 samples using Gaussian distribution

Example 2.1. If $P_{\text{clust}} = N(0, \Sigma)$, where $\|\Sigma\|_2 \le 1$ and $\|\Sigma^{-1}\| \le 1/\kappa$, and each of the labels are flipped independently with probability η , then all the properties listed above are satisfied.

Model Training

Full-batch Gradient Descent

$$W^{(t+1)} = W^{(t)} - \alpha \Delta \hat{L}(W^{(t)})$$

- With Epoch = 10000, α (learning_rate) = 0.001
 - α violates the assumption (A5), but theoretical upper bound for α is too small
 - Furthermore, the epoch is bounded in terms of α , so it violates the assumption too.

It really works!

- Convergence of Train loss occurs
- Test error is 0

Does it generalize well?

- Decision Boundary of hyperplane
 - Set $\|\mu\|^2 = 128.0$, p = 80000, $\eta = 0.1$
 - Boundary is **perpendicular** to the first principal component direction
 - Boundary is almost parallel to the (10, 11)-principal hyperplane.

Is high *p* required?

- Measure the training loss and the accuracy by changing p.
 - when $n=100, m=64, \eta=0.1, \|\mu\|^2=128.0, 100000$ Epoch
- Throughout the whole paper $p \ge n$ was required. \rightarrow Is it required?
- We've successfully reproduced the heuristic result of the train/test error tendency respect to model capacity

p	10	50	80	80000
Train Loss	0.281	0.251	0.165	5.178e-04
Train Accuracy	0.911	0.867	0.922	1.0
Test Accuracy	0.9	0.7	1.0	1.0

Table 1: Growing p

Is high *p* required?

- Measure the training loss and the accuracy by changing p.
 - when $n=100, m=64, \eta=0.1, \|\mu\|^2=128.0, 100000$ Epoch
- Throughout the whole paper $p \ge n$ was required. \rightarrow Is it required?
- We've successfully reproduced the heuristic result of the train/test error tendency respect to model capacity

p	10	50	80	80000
Train Loss	0.281	0.251	0.165	5.178e-04
Train Accuracy	0.911	0.867	0.922	1.0
Test Accuracy	0.9	0.7	1.0	1.0

Table 1: Growing p

How tight is the test error bound?

- Set $\eta = 0.1$
- As $\|\mu\|^2$ changes, the test error bound gets tighter and the real error is bounded

$ \mu ^2$	8.0	16.0	32.0	64.0	128.0	256.0
η	0.1	0.1	0.1	0.1	0.1	0.1
$2\exp\left(-rac{n \mu ^4}{Cp} ight)$	1.929	1.732	1.124	0.200	1.988E-4	1.955E-16
Test Error Bound	2.029	1.832	1.224	0.3	0.1	0.1
Real Test Error	0.4	0.2	0.1	0.1	0	0

Table 2: Growing $||\mu||^2$

Question and Discussion

Thank you©