Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014

Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München 08. September 2014

Grundlagen und Formalismus

Aufgabe 1 (*) Betrachte die Wellenfunktion

$$\Psi(x,t) = Ae^{-\lambda|x|}e^{-i\omega t},$$

wobei $A, \lambda, \omega > 0$

- a) Normiere Ψ
- b) Was ist der Erwartungswert von x und x^2
- c) Bestimme die Standardabweichung von x. Wie sieht der Graph von $|\Psi|^2$ als Funktion von x aus? Markiere die Punkte $(\langle x \rangle + \Delta x)$ und $(\langle x \rangle \Delta x)$ und berechne die Wahrscheinlichkeit das Teilchen außerhalb dieses Bereichs zu finden

Aufgabe 2 (*) Wir haben einen unendlichdimensionalen Hilbertraum mit einem abzählbaren Orthonormalsystem $\{|0\rangle, |1\rangle, |2\rangle, ...\}$, dh $\langle n|m\rangle = \delta_{nm}$. Ein kohärenter Zustand ist definiert als

$$|\Psi_{\alpha}\rangle \equiv C \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

mit einer komplexen Zahl α .

Außerdem definieren wir uns den Absteigeoperator a über

$$a |n\rangle \equiv \sqrt{n} |n-1\rangle \ \forall n \geq 1 \quad und \quad a |0\rangle \equiv 0$$

- a) Bestimme C, sodass $|\Psi_{\alpha}\rangle$ normiert ist.
- b) Zeige, dass $|\Psi_{\alpha}\rangle$ Eigenzustand von a ist und berechne den Eigenwert.
- c) Sind kohärente Zustände $|\Psi_{\alpha}\rangle$ und $|\Psi_{\beta}\rangle$ für $\alpha \neq \beta$ orthogonal?

Seite 2

Aufgabe 3 (*) Der Hamilton-Operator eines Zwei-Niveau-Systems sei durch

$$\hat{H} = \epsilon(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| |2\rangle\langle 1|) \tag{1}$$

gegeben. Hierbei sind $|1\rangle$ und $|2\rangle$ die orthonormierten Basiszustände. Der Parameter ϵ hat die Einheit einer Energie.

- 1. Wie lautet die Matrixdarstellung des Operators \hat{H} in dieser Basis?
- 2. Finden Sie die Energieeigenwerte und die zugehörigen Eigenzustände des Operators \hat{H} .

Aufgabe 4 (*) Wir benutzen einen zweidimensionalen komplexen Hilbertraum (dh. den \mathbb{C}^2) um ein System mit zwei Zuständen zu beschreiben. Unsere Orthonormalbasis bezeichnen wir mit $|+\rangle$, $|-\rangle$. Außerdem definieren wir uns die Operatoren

$$S_x \equiv \frac{\hbar}{2}(|+\rangle \langle -|+|-\rangle \langle +|)$$

$$S_y \equiv \frac{i\hbar}{2}(-|+\rangle \langle -|+|-\rangle \langle +|)$$

$$S_z \equiv \frac{\hbar}{2}(|+\rangle \langle +|-|-\rangle \langle -|)$$

- a) Zeige, dass $|+\rangle$ und $|-\rangle$ Eigenzustände von S_z sind
- b) Zeige, dass $[S_x, S_y] = i\hbar S_z$
- c) Wie lautet die Unschärferelation für die beiden Operatoren S_x und S_y für ein System im Zustand $|+\rangle$.

Aufgabe 5 (**)

- a) Zeige, dass Eigenwerte von hermiteschen Operatoren reell sind.
- b) Zeige, dass Eigenwerte von antihermiteschen Operatoren imaginär sind.
- c) Zeige, dass Eigenfunktionen zu verschiedenen Eigenwerten von hermiteschen Operatoren orthogonal sind.

Aufgabe 6 (*)

- a) Zeige $[p, x^n] = -i\hbar nx^{n-1}$
- b) Zeige mit a), dass $[p, F(x)] = -i\hbar \frac{\partial F}{\partial x}$ für alle F gilt, die als Potenzreihe ausgedrückt werden können.

Aufgabe 7 (*) Zeige für zwei hermitesche Operatoren A und B die Identität

$$\langle i[B,A] \rangle_{\Psi} = 2 \mathrm{Im} \langle A\Psi, B\Psi \rangle$$

Aufgabe 8 (***) Zeige, dass kommutierende Observablen einen gemeinsamen Satz von Eigenfunktionen haben, also simultan diagonalisierbar sind.

Aufgabe 9 (**, falls Zeit und Lust) Wir definieren das Exponential eines Operators A als

$$e^A \equiv \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

- a) Zeige $e^{A+B}=e^Ae^B$ für [A,B]=0. Hinweis: Cauchy-Produkt
- b) Zeige mit a), dass $e^{-A}e^A = e^Ae^{-A} = 1$
- c) Nun sei [A, [A, B]] = [B, [A, B]] = 0. Berechne

$$e^A B e^{-A}$$
.

Benutze dafür die Taylorentwicklung der operatorwertigen Funktion

$$f(\lambda) = e^{\lambda A} B e^{-\lambda A}$$

d) Sei immer noch [A, [A, B]] = [B, [A, B]] = 0. Verwende c) um zu zeigen, dass $e^B e^A = e^A e^B e^{[B,A]}$

Aufgabe 10 (*) Betrachte einen Hilbertraum der von den Eigenkets $|1\rangle$, $|2\rangle$, $|3\rangle$, ... von A aufgespannt wird. Die entsprechenden Eigenwerte lauten a_1, a_2, a_3, \ldots Beweise, dass

$$\prod_{n} (A - a_n)$$

der Nulloperator ist.

Aufgabe 11 (*) Eine Observable A besitzt die zwei normierten Eigenzustände ψ_1 und ψ_2 , mit den Eigenwerten a_1 und a_2 . Die Observable B besitzt die normierten Eigenzustände ϕ_1 und ϕ_2 mit den Eigenwerten b_1 und b_2 . Für die Eigenzustände gilt

$$\psi_1 = (3\phi_1 + 4\phi_2)/5, \quad \psi_2 = (4\phi_1 - 3\phi_2)/5$$

- a) Observable A wird gemessen und man erhält den Wert a₁. Was ist der Zustand des Systems direkt nach der Messung?
- b) Im Anschluss wird B gemessen. Was sind die möglichen Ergebnisse und mit welcher Wahrscheinlickeit treten sie auf?
- c) Direkt nach der Messung von B wird wieder A gemessen. Mit welcher Wahrscheinlichkeit erhalten wir wieder a₁?

Aufgabe 12 (**) Wir betrachten ein Teilchen in einem zeitlich konstanten Potential $V(\vec{r})$. Der Hamiltonoperator für dieses Teilchen ist dementsprechend $\hat{H} = \hat{p}^2/2m + V(\vec{r})$. Wenden Sie das Ehrenfesttheorem auf den Ortsoperator \hat{r} und Impulsoperator \hat{p} an. Kommt Ihnen etwas aus der klassischen Mechanik bekannt vor? Führen Sie hierzu im zweiten Fall eine Kraft ein. Kombinieren Sie schließlich beide Resultate.

Aufgabe 13 (**), Zeitentwicklungsoperator (wichtig) Anstelle mit der Schrödinger-Gleichung kann die Zeitentwicklung eines Anfangszustandes $|\psi_0\rangle$ auch durch Anwenden eines Zeitentwicklungsoperators \hat{U}_t beschrieben werden (Wir befinden uns also im Schrödinger-Bild). Leiten Sie hierzu eine Bestimmungsgleichung für \hat{U}_t ab und lösen Sie explizit für ein isoliertes quantenmechanisches System, d.h. mit einem zeitunabhängigen Hamilton-Operator \hat{H} . Warum muss \hat{U}_t stets unitär sein? Erfüllt dies ihre Lösung?