Total: 30 puntos Álgebra Lineal para Computación (MA-2405)

II Semestre 2014

Tiempo: 2 horas 20 minutos

Segundo Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos necesarios o procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma ordenada, clara y utilice bolígrafo para resolver el examen. No son procedentes la apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono móvil.

- 1. Se dice que un elemento a de una estructura algebraica (G, *) es **idempotente** si este elemento cumple que a * a = a. Determine todos los elementos idempotentes de la estructura algebraica ($\mathbb{R}, *$) donde x * y = xy + yy para todo $x, y \in \mathbb{R}$. (3 puntos)
- 2. En el conjunto $\mathbb{R} \times \mathbb{R}^*$ se define la operación \otimes como:

$$(a,b)\otimes(c,d)=(a+c-2,2bd)$$

Si se sabe que $(\mathbb{R} \times \mathbb{R}^*, \otimes)$ es grupo abeliano

- (a) Calcule el elemento neutro de este grupo. (1 punto)
- (b) Determine la fórmula para el inverso de (a, b). (2 puntos)
- (c) Calcule el resultado de $(3,1)^{-2} \otimes (-1,-2)$. (2 puntos)
- 3. Si se sabe que (G,*) es un grupo y H_1 y H_2 son subgrupos de G, pruebe que $H_1 \cap H_2$ es subgrupo de G. (4 puntos)
- 4. Si $W = \{(a, b, c, d) \in \mathbb{R}^4 / a + b + 2c + 4d = 0 \land 2a + 3b + c + d = 0\}$:
 - (a) Pruebe que W es subespacio vectorial de \mathbb{R}^4 . (4 puntos)
 - (b) Encuentre un conjunto de vectores S de manera que gen(S) = W. (2 puntos)
- 5. Determine si los vectores u = (3, -1, 2, 1), w = (2, -1, 1, 2) y z = (0, 1, 1, -4)de \mathbb{R}^4 son linealmente dependientes o linealmente independientes.

(3 puntos)

6. Considere el conjunto \mathcal{B} definido como $\mathcal{B} = \{-x+1, x-2, x^2+1, x^3+x\}$. Escriba, si es posible, el vector $p(x) = -4x^3 + 5x^2 - 8x + 10$ como combinación lineal de los elementos de \mathcal{B} .

(4 puntos)

7. Justifique por qué $W = \{ax^3 + bx^2 + cx + d \in P_3(\mathbb{R}) \ / \ a = b + d, \ c \ge 0\}$ no es subespacio vectorial del espacio vectorial $P_3(\mathbb{R})$.

(2 puntos)

8. Sean V un espacio vectorial y $S = \{u_1, u_2, \ldots, u_n\}$ un subconjunto de V, tal que S es linealmente independiente y sea $x \in V$. Demuestre que si $x \in gen(S)$ entonces, el conjunto $H = \{u_1, u_2, \ldots, u_n, x\}$ es linealmente dependiente.

(3 puntos)