

Schedule

Tentative Schedule

수업일	내용					
9/4	Course Introduction, Algorithm Basic, Level Test					
9/11	Order of Complexity, List					
9/18	Stack, Queue					
9/25	건학 기념일					
10/2	Tree, Binary Search Tree (BST)					
10/9	Priority Queue, Heap, Heap Sort 한글날					
10/16	Hash Table, Searching Revisited					
10/23	Graph Basic					
10/30	Midterm Exam					
11/6	Graph Algorithms					
11/13	Sorting					
11/20	Dynamic Programming (1)					
11/27	Dynamic Programming (2)					
12/4	Greedy Algorithms					
12/11	Algorithm Practice (Google software engineer)					
12/18	Final Exam					

Dynamic Programming

DP

- Dynamic Programming (DP)
 - An algorithm design technique for optimization problems
 - often minimizing or maximizing
- Like "divide and conquer", DP solves problems by combining solutions to sub-problems
- Unlike divide and conquer, sub-problems are not independent
 - Sub-problems may share sub-sub-problems

Dynamic Programming

DP

- When do we consider to apply DP?
 - Optimal substructure
 - Optimal solution of a bigger problem includes the optimal solution of a smaller problem
 - Overlapping recursive calls
 - Recursive solution results in many repetitions

Fibonacci Numbers

F-Numbers

- Computing the nth Fibonacci number recursively:
 - F(n) = F(n-1) + F(n-2)
 - F(0) = 0
 - F(1) = 1
 - A top-down approach

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```


Fibonacci Numbers

F-Numbers

- This top-down approach is not so inefficient
 - Re-compute many sub-problems

Fibonacci Numbers

F-Numbers

- Alternative bottom-up approach dynamic programming (O(n)!)
 - F(0) = 0
 - F(1) = 1
 - F(2) = 1+0 = 1
 - ...
 - F(n-2) =
 - F(n-1) =
 - F(n) = F(n-1) + F(n-2)

```
def fib(n):
    fibValues = [0,1]
    for i in range(2,n+1):
        fibValues.append(fibValues[i-1] + fibValues[i-2])
    return fibValues[n]
```

0 1 1 ... F(n-2) F(n-1) F(n)

Optimal Solution

Definition

$$N_{0,n-1} = \min_{0 \le k < n-1} \{ N_{0,k} + N_{k+1,n-1} + d_0 d_{k+1} d_n \}$$

Then the optimal solution $N_{0,n-1}$ is the sum of two optimal sub-problems, $N_{0,k}$ and $N_{k+1,n-1}$ plus the time for the last multiplication

DP

return $N_{0.n-1}$

Algorithm *matrixChain(S)*: **Input:** sequence S of n matrices to be multiplied Output: number of operations in an optimal parenthesization of S for $i \leftarrow 1$ to n-1 do (1) Initialize C[1,1], C[2,2], ..., C[n-1,n-1] as 0 $N_{i,i} \leftarrow 0$ - No computation is needed for same matrix for $b \leftarrow 1$ to n-1 do { b = j - i is the length of the problem } for $i \leftarrow 0$ to n - b - 1 do $j \leftarrow i + b$ $N_{i,i} \leftarrow +\infty$ for $k \leftarrow i$ to j - 1 do

 $N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}$

DP

```
Algorithm matrixChain(S):
   Input: sequence S of n matrices to be multiplied
   Output: number of operations in an optimal parenthesization of S
   for i \leftarrow 1 to n-1 do
       N_{i,i} \leftarrow \mathbf{0}
   for b \leftarrow 1 to n-1 do
       \{b = j - i \text{ is the length of the problem }\}
       for i \leftarrow 0 to n - b - 1 do
```

 $N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}$

(2) b: length of a sub-problem

 $j \leftarrow i + b$

 $N_{i,i} \leftarrow +\infty$

for $k \leftarrow i$ to j - 1 do

DP

```
Algorithm matrixChain(S):
    Input: sequence S of n matrices to be multiplied
    Output: number of operations in an optimal parenthesization of S
    for i \leftarrow 1 to n-1 do
        N_{i,i} \leftarrow \mathbf{0}
    for b \leftarrow 1 to n-1 do
        \{b = j - i \text{ is the length of the problem }\}
        for i \leftarrow 0 to n - b - 1 do
                                                   (3) b=1 \rightarrow subproblems with size 2
                                                    b=2 -> subproblems with size 3
            j \leftarrow i + b
                                                   (e.g., A_1 x A_2 x A_3, A_2 x A_3 x A_4, ...)
            N_{i,i} \leftarrow +\infty
             for k \leftarrow i to j - 1 do
                 N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}
    return N_{0.n-1}
```

DP

```
Algorithm matrixChain(S):
    Input: sequence S of n matrices to be multiplied
    Output: number of operations in an optimal parenthesization of S
    for i \leftarrow 1 to n-1 do
       N_{i,i} \leftarrow \mathbf{0}
    for b \leftarrow 1 to n - 1 do
        { b = j - i is the length of the problem }
        for i \leftarrow 0 to n - b - 1 do
           j \leftarrow i + b
            N_{i,i} \leftarrow +\infty
            for k \leftarrow i to j - 1 do
                                         (4) To find the minimum # operations
                N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}
    return N_{0,n-1}
```

Visualization

- The bottom-up construction fills in the N array by diagonals
- N_{i,j} gets values from previous entries in i-th row and j-th column
- Filling in each entry in the N table takes
 O(n) time
- Total run time: O(n³)
- Getting actual parenthesization can be done by remembering "k" for each N entry

$$N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Visualization

A₀: 30 X 35; A₁: 35 X15; A₂: 15X5; A₃: 5X10; A₄: 10X20; A₅: 20 X 25

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

$$\begin{split} N_{1,4} &= \min \{ \\ N_{1,1} + N_{2,4} + d_1 d_2 d_5 = 0 + 2500 + 35*15*20 = 13000, \\ N_{1,2} + N_{3,4} + d_1 d_3 d_5 &= 2625 + 1000 + 35*5*20 = 7125, \\ N_{1,3} + N_{4,4} + d_1 d_4 d_5 &= 4375 + 0 + 35*10*20 = 11375 \\ \} &= 7125 \end{split}$$

In This Lecture

Outline

- 1. Floyd-Warshall Algorithm
- 2. Knapsack Problem
- 3. Longest Common Subsequence

- A weighted, directed graph is a collection vertices connected by weighted edges (where the weight is some real number)
 - One of the most common examples of a graph in the real world is a road map
 - Each location is a vertex and each road connecting locations is an edge
 - We can think of the distance traveled on a road from one location to another as the weight of that edge

	Tampa	Orlando Jaxville				
Tampa	0	1.7	3.5			
Orlando	1.5	0	∞			
Jax	4	2.5	0			

- Store a weighted and directed graph -- Adjacency Matrix
 - Let D be an edge-weighted graph in adjacency-matrix form
 - D(i,j) is the weight of edge (i, j), or ∞ if there is no such edge
- Update matrix D, with the shortest path through immediate vertices

- Given a weighted graph, we want to know the shortest path from one vertex in the graph to another
 - The Floyd-Warshall algorithm determines the shortest path between all pairs of vertices in a graph
- What is the difference between Floyd-Warshall and Dijkstra's??

- If V is the number of vertices, Dijkstra's runs in O(V²)
 - We could just call Dijkstra |V| times, passing a different source vertex each time
 - $O(V \times V^2) = O(V^3)$
 - same runtime as the Floyd-Warshall Algorithm
- BUT, Dijkstra's doesn't work with negative-weight edges
- Also, the structure of the Floyd's algorithm is simple

Algorithm

- Let's go over the premise of how Floyd-Warshall algorithm works
 - Let the vertices in a graph be numbered from 1 ... n
 - Consider the subset {1,2,..., k} of these n vertices
 - Imagine finding the shortest path from vertex i to vertex j that uses
 vertices in the set {1,2,...,k} only
 - There are two situations:
 - k is an intermediate vertex on the shortest path
 - k is not an intermediate vertex on the shortest path

Algorithm

- Sub-problems
 - Pass through k: D^{K-1}[i][k] + D^{K-1}[k][j]
 - Otherwise: D^{K-1}[i][j]

$$D^{(k)}(i,j) = \min \{D^{(k-1)}(i,j), D^{(k-1)}(i,k) + D^{(k-1)}(k,j)\}$$

Algorithm

Example

$$\mathcal{D}^{(0)} = \begin{bmatrix} 0 & 4 & 7 \\ 1 & 0 & 2 \\ 6 & \infty & 0 \end{bmatrix}$$
 Original weights

$$D^{(1)} = \begin{bmatrix} 0 & 4 & 7 \\ 1 & 0 & 2 \\ 6 & 10 & 0 \end{bmatrix}$$
 Consider Vertex 1:
 $D(3,2) = D(3,1) + D(1,2)$

$$D^{(2)} = \begin{bmatrix} 0 & 4 & 6 \\ 1 & 0 & 2 \\ 6 & 10 & 0 \end{bmatrix}$$

$$D^{(3)} = \begin{bmatrix} 0 & 4 & 6 \\ 1 & 0 & 2 \\ 6 & 10 & 0 \end{bmatrix}$$
 Consider Vertex 3:
Nothing changes

$$D(3,2) = D(3,1) + D(1,2)$$

Consider Vertex 2:

$$D(1,3) = D(1,2) + D(2,3)$$

Algorithm

- Looking at this example, we can come up with the following algorithm:
 - Let D store the matrix with the initial graph edge information initially, and update D with the calculated shortest paths

```
For k=1 to n {
    For i=1 to n {
        For j=1 to n
        D[i,j] = min(D[i,j],D[i,k]+D[k,j])
    }
}
```

The final D matrix will store all the shortest paths

- Given n items of
 - integer weights: w₁ w₂ ... w_n
 - values: $v_1 v_2 \dots v_n$
 - a knapsack of integer capacity W
- Find most valuable subset of the items that fit into the knapsack
 - 0-1 Knapsack problem

Problem

- Consider instance defined by first i items and capacity j (j <= W)
- Let V[i,j] be optimal value of such an instance. Then,

$$V[i,j] = \begin{cases} \max \{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i >= 0 \\ V[i-1,j] & \text{if } j-w_i < 0 \end{cases}$$

Initial conditions: V[0,j] = 0 and V[i,0] = 0

Value in case capacity of knapsack is (i-w_i) for objects 1 to (i-1)

Algorithm

return V[n,W]

```
Algorithm Knapsack(w[1..n], v[1..n], W)
   var V[0..n,0..W], P[1..n,1..W]: int
   for j := 0 to W do
           V[0,j] := 0
   for i := 0 to n do
            V[i,0] := 0
                                                                        O(nW)
   for i := 1 to n do
           for j := 1 to W do
                    if w[i] \le j and v[i] + V[i-1,j-w[i]] > V[i-1,j] then
                            V[i,i] := v[i] + V[i-1,i-w[i]]
                    else
                            V[i,j] := V[i-1,j];
```

Example

Example: Knapsack of capacity W = 5

item	weight	value								
1	2	\$12								
2	1	\$10								
3	3	\$20								
4	2	\$15				ca	oacit	уj		
				0	1	2	3	4	5	
			0	0	0	0	0	0	0	
	,	w1 = 2, v1= 12	1	0	0	12	12	12	12	
	,	w2 = 1, v2= 10	2	0	10	12	22	22	22	
	,	w3 = 3, v3= 20	3	0	10	12	22	30	32	
	,	w4 = 2, v4= 15	4	0	10	15	25	30	(37)	

Backtracing finds the actual optimal subset, i.e. solution.

- Given sequences x[1..m] and y[1..n], find a longest common subsequence of both
 - A subsequence of a sequence/string S is obtained by deleting zero or more symbols from S
 - For example, the following are some subsequences of "president": pred,
 sdn, predent
 - In other words, the letters of a subsequence of S appear in order in S,
 but they are not required to be consecutive
- Example: x=ABCBDAB and y=BDCABA,
 - BCA is a common subsequence and
 - BCBA and BDAB are two LCSs

Examples

- An example
 - Sequence 1: president
 - Sequence 2: providence
 - Its LCS is priden
- Another example
 - Sequence 1: algorithm
 - Sequence 2: alignment
 - One of its LCS is algm

- LenLCS(i, j): the length of an LCS of Xi and Yj
- Zk: an LCS of Xi and Yj
- If Xi and Yj do not end with the same character there are two possibilities:
 - Case 1: either the LCS does not end with xi,
 - Case 2: or it does not end with yj

Problem

Case 1: Xi and Yj end with xi=yj

$$X_i$$
 $x_1 x_2 \dots x_{i-1} x_i$

$$Y_{\mathbf{j}} \quad \mathbf{y}_{1} \mathbf{y}_{2} \quad \dots \quad \mathbf{y}_{\mathbf{j}-1} \quad \mathbf{y}_{\mathbf{j}} = \mathbf{x}_{\mathbf{i}}$$

$$Z_k$$
 $z_1 z_2...z_{k-1}$ $z_k = y_j = x_i$

 Z_k is Z_{k-1} followed by $z_k = y_j = x_i$ where Z_{k-1} is an LCS of X_{i-1} and Y_{j-1} and LenLCS(i,j)=LenLCS(i-1,j-1)+1

Problem

Case 2: Xi and Yj end with xi ≠ yj

$$X_i$$
 X_1 X_2 \dots X_{i-1} X_i

$$X_i \quad x_1 \quad x_2 \quad \dots \quad x_{i-1} \quad x_i$$

$$Y_j \begin{bmatrix} y_1 y_2 & \dots & y_{j-1} y_j \end{bmatrix}$$

$$Y_j \begin{bmatrix} y_j y_1 y_2 & \dots y_{j-1} & y_j \end{bmatrix}$$

$$Z_{k} z_{1} z_{2} z_{k-1} z_{k} \neq y_{j}$$

$$Z_{k} \begin{bmatrix} z_{1} z_{2} \dots z_{k-1} \\ z_{k} \neq x_{i} \end{bmatrix}$$

 Z_k is an LCS of X_i and Y_{j-1}

 Z_k is an LCS of X_{i-1} and Y_j

 $LenLCS(i,j)=\max\{LenLCS(i,j-1), LenLCS(i-1,j)\}$

Problem

Formulation

$$lenLCS(i, j) = \begin{cases} 0 & \text{if } i = 0, \text{ or } j = 0\\ lenLCS(i-1, j-1) + 1 \text{ if } i, j > 0 \text{ and } x_i = y_j\\ \max\{lenLCS(i-1, j), lenLCS(i, j-1)\} \text{ otherwise} \end{cases}$$

Solution

- Initialize the first row and the first column of the matrix LenLCS to 0
- Calculate LenLCS (1, j) for j = 1,..., n
- Then the LenLCS (2, j) for j = 1,..., n, etc.
- It is easy to see that the computation is O(mn)

Algorithm

```
m \leftarrow length[X]
n \leftarrow length[Y]
for i \leftarrow 1 to m do
   c[i, 0] \leftarrow 0
for j \leftarrow 1 to n do
   c[0, j] \leftarrow 0
for i \leftarrow 1 to m do
 for j \leftarrow 1 to n do
   if x_i = y_i
     c[i, j] \leftarrow c[i-1, j-1]+1
    else
                if c[i-1, j] \ge c[i, j-1]
                                c[i, j] \leftarrow c[i-1, j]
                else
                                c[i, j] \leftarrow c[i, j-1]
return c and b
```

Example

Example

	y _j	В	D	C	A
x_{i}	0	0	0	0	0
A	0	0	0	0	1
В	0	1	1	1	1
С	0	1	1	2	2
В	0	1	1	2	2

What You Need to Know

Summary

- Dynamic programming problems
 - Fibonacci Numbers
 - Matrix Chain-Products Problem
 - Floyd-Warshall Algorithm
 - Knapsack Problem
 - Longest Common Subsequence
 - And many others...

