الوحدة 01: المتابعة الزمنية لتحول كيميائي

الوحدة 10: المتابعة الزمنية لتحول كيمياني								
كمية المادة مقدرة بالمول (mol)					n		$n = \frac{m}{M}$	
الكتلة مقدرة بالغرام (g)					m		M	
الكتلة المولية (g/mol)					М		$n = \frac{v_g}{V_M}$	كمية المادة
			(L)را باللتر.	حجم الغاز مقا	V_g		V_{M}	حميد المادة
$V_M=22.40$	(L/mol) بة	في الشروط النظام	- (L/mol	الحجم المولي (V_{M}		N	
			الذرات أو النويات	عدد الدقائق أو	N		$n = \frac{N}{N_A}$	
	($(N_A=6.0$	(23×10^{23})	عدد أفوغادروا	N_A			
التركيز الكتلي	التركيز المولي		((Pa باسكال)	ضغط الغاز	P		
$t = C_m = \frac{m}{V}$	$C = \frac{n}{V}$			(m^3)	حجم الغاز (V	PV = nRT	قانون الغازات
√ مقدر بــ:	√ مقدر بــ:			(mol)	كمية المادة	n		المثالية
g/l	mol/l	$T = \theta(c)$	°) + 273	$(K^0$ کلفن)	درجة الحرارة	T		
971		(8.	314 j. mol ⁻	$K^{-1}.K^{-1}$	ثابت الغازات	R		
ئي (أمبي <i>ر</i> A	شدة التيار الكهربا	I	(سیمنس ۶)	الناقلية G				الـــناقلـية
(V فولط	التوتر الكهربائي (U	النوعية (s/m)	الناقلية σ	G-	_ <u>I</u>	$-\frac{1}{\sigma} - \frac{S}{\sigma} \times \frac{S}{\sigma}$	$-\sigma \times K$
$G = \overline{U} = \overline{R} = \delta imes \overline{L} = \delta imes K$ المساحة سطح الخلية (m^2) مساحة سطح الخلية المساحة سطح								
$C = \lambda C = \lambda_{-+}[M^+] + \lambda_{}[M^+]$					الناقلية النوعية			
$(s.m^2.mol^{-1})$ الناقلية النوعية المولية الشاردية $\delta=\lambda. C=\lambda_M+\lfloor M^+ \rfloor+\lambda_M$					+ Λ _M -[M]			
$C=10rac{P}{M}$ من المادة في $m'(g)$								
م عينة من الغاز			M		ر التجاري			يوجد (و) 1 من الم
1	كتلة حج m_g كتلة نفس m_{ai}	(1.	$=\frac{11}{29}$	ط النظامية	في الشرو	d:	$=rac{m_g}{m_{air}}$	كثافة غاز
$\rho_{H_20} = 1 kg/l$	_	$ ho_{H_20}$ خاء m	$o(a/l) = \frac{1}{2}$	<u>n</u> لحجمية	الكتلة ١-	d:	$=rac{ ho}{ ho_{H_20}}$ لب	كثافة سائل أو ص
V						1.51 0(a/1)		
	جم مقدرا باللتر <i>(L</i>)		111 112 -				ة الحجمية للسائل أو ال ــــــــــــــــــــــــــــــــــــ	الكتل $ ho(g/l)$
حصول على محلول $(V_1 < V_2)$ أو			د محلول ترکیزه المولی $ C_2 $ أقل م		$\frac{n_1 =}{C_1 V_1 =}$		ر التخفيف 2	قانون التمديد أو
	Fکلول کا مرة)	(في حالة تمديد الخ	معامل التمديد	F	$\frac{C_1}{C_2} = \frac{V_2}{V_1}$	$\frac{2}{1} = 1$	F	
		قدر بــ: m ³	ــــــــــــــــــــــــــــــــــــــ				$ m n^3$:الناقلية مقدر بالناقلية	ملاحظة: التركيز في

موازنة المعادلة النصفية

imes m $imes A o A^{n+} + ext{n\'e}$ imes 1 المعادلة النصفية imes n $imes B^{m+} + ext{m\'e} o B$ imes 2 المعادلة النصفية

 ${
m nB}^{m+}+{
m mA}\longrightarrow {
m nB}+{
m mA}^{n+}$: المعادلة الأكسدة الإرجاعية

- موازنة الهيدروجين H : تتم بإضافة H^+ أو H_3 في وسط حامضي أو H_3^- في وسط أساسي
 - H_2O موازنة الأوكسجين O : تتم بإضافة الماء \bullet
 - موازنة الشحنة: تتم بإضافة العدد السالب الإلكترونات (é)
- موازنة الذرات الاخرى: تتم بالضرب في الأعداد الستكيومترية

 $2H_2O=0H^-+H_3O^+$ من خلال المعادلة عكن تغير الوسط الحامضي والاساسي عن طريق إضافة H_3O^+ أو OH^- من خلال المعادلة

الوحدة 01: المتابعة الزمنية لتحول كيميائي

	تعریف المؤکسد والمرجع	
Réduction إرجاع	هو كل فرد كيمائي بإمكانه كسب إلكترونات	المؤكسد (OX)
$OX + n\acute{e} \longrightarrow R\acute{e}d$	هو كل فرد كيمائي بإمكانه فقد إلكترونات	المرجع (Red)
•	هو كل تفاعل كيميائي يحدث فيه فقدان إلكترون أو أكثر من طرف فرد كيميائي	تفاعل الأكسدة
أكسدة Oxydation	هو كل تفاعل كيميائي يحدث فيه اكتساب إلكترون أو أكثر من طرف فرد كيميائي	تفاعل الإرجاع
مع إلكترون أو أكثر ليلتقطه المؤكسد	هو كل تفاعل كيميائي يحدث فيه تبادل إلكتروني بين المرجع والمؤكسد حيث يفقد المرج	تفاعل الأكسدة- الإرجاعية
(A^{n+}/A)	المعادلة النصفية التالية $A o A^{n+} + n$ تكتب على الشكل	الثنائيات(OX/Red)
دون تفاعل الأكسدة	لارجاع يحدث في آن واحد لا يحدث تفاعل أكسدة من دون إرجاع ولا تفاعل إرجاع من	ملاحظة: تفاعل الأكسدة وا

التقدم X							
هو مقدار يعبر عنه بالمول (كمية مادة المتفاعلات والنواتج في كل لحظة) والذي يسمح بوصف حالة جملة أثناء التحول الكيمائي							التقدم X
				، تطور حالة الجملة الكيم			X_f التقدم النهائي
				ف التفاعل بانتهاء أحد ا			X_{max} التقدم الأعظمي
X_f	$<$ X_{max} التفاعل غير التام	حالة $X_f =$	$=X_{max}$ فاعل التام	علات الأخرى حالة الت	ه قبل کل المتفاء	نهلك كمية مادت	المتفاعل المحد : هو الذي تست
. و B	B و $oldsymbol{A}$ و $oldsymbol{n}_{0B}$, $oldsymbol{n}_{0A}$ و $oldsymbol{lpha}$. الكمية الابتدائية للمتفاعلات $oldsymbol{lpha}$ و B						
	(مالاحظة : المزيج الستكيومتري معناه $rac{n_{0A}}{lpha}=rac{n_{0B}}{eta}$ والعكس صحيح $lpha$: أعداد ستكيومترية						أعداد ستك : $lpha,eta,\gamma,\delta$
	الحالات	التقدم $oldsymbol{lpha}A$ + $oldsymbol{eta}B$ $ ightarrow$ $oldsymbol{\gamma}C$ + $oldsymbol{\delta}D$					
	(t=0) الحالة الابتدائية	X = 0	n_{0A}	n_{0B}	0	0	جدول التقدم التفاعل
	الحالة الانتقالية (t)	X =?	$n_{0A} - \alpha X$	$n_{0B} - \beta X$	γX	δX	05 235 (2000) 0900.
	$\left(t_{f} ight)$ الحالة النهائية	$X = X_f$	$n_{0A} - \alpha X_f$	$n_{0B} - \beta X_f$	γX_f	δX_f	

المتابعة الزمنية لتحول كيمائي	
σ . σ متابعة تقدم التفاعل بواسطة قياس الناقلية G أو الناقلية النوعية	1) طريقة قياس الناقلية (طريقة فيزيائية)
هي تحديد تركيز نوع كيمائي مجهول في محلول.	2) طريقة المعايرة (طريقة كيميائية)

الوحدة 01: المتابعة الزمنية لتحول كيميائي

المدة المستغرقة في تحول كيمائي	
تطور الجملة الكيميائية يصل إلى حالته النهائية مباشرة عند التلامس بين المتفاعلات– (تحول آنيا أو لحظيا)	1) التحولات السريعة
تطور الجملة الكيميائية يصل إلى حالته النهائية بعد أن يستغرق عدة ثواني ، دقائق أو ساعات	2) التحولات البطيئة
تطور الجملة الكيميائية يصل إلى حالته النهائية بعد عدة أيام أو شهور	3) التحولات البطيئة جدا

سرعة التفاعل	سرعة إختفاء نوع كيميائي	سرعة تشكل نوع كيميائي	
	$\mathcal{V}_m = -rac{\Delta n}{\Delta t}$	$\mathcal{V}_m = rac{\Delta n}{\Delta t}$	السرعة المتوسطة
		 سرعة التفاعل تمثل معامل توجيه المماس للمنحخ 	
$\mathcal{V} = \frac{dX}{dt}$	$\mathcal{V} = \lim_{\Delta t \to 0} \frac{\Delta n}{\Delta t} = -\frac{dn}{dt}$	$\mathcal{V} = \lim_{\Delta t \to 0} \frac{\Delta n}{\Delta t} = \frac{dn}{dt}$	السرعة اللحظية
	عنها بــ :	هي سرعة التفاعل في وحدة الحجم (L) يعبر ع	
$\mathcal{V} = \frac{1}{V} \cdot \frac{dX}{dt} = \frac{d[X]}{dt}$ $\frac{\mathcal{V}_A}{\mathcal{V}_A} = \frac{\mathcal{V}_B}{\mathcal{V}_A}$	$\mathcal{V} = -\frac{1}{V} \cdot \frac{dn}{dt} = -\frac{d[n]}{dt}$	$\mathcal{V} = \frac{1}{V} \cdot \frac{dn}{dt} = \frac{d[n]}{dt}$	السوعة الحجمية
$\frac{\mathcal{V}_A}{\alpha} = \frac{\mathcal{V}_B}{\beta}$	$=\frac{\mathcal{V}_C}{\gamma} = \frac{\mathcal{V}_D}{\delta}$	 بالنسبة لسرعة اللحظية أو السرعة الحجمية يك 	العلاقة بين السرع
	السرعة موجبة دوما.	 اشارة (-) تعني ان كمية المادة تتناقص و قيمة 	ملاحظة
(mol/L	/mol وحدة السرعة الحجمية . (S).	– وحدة سرعة التفاعل(mol/S) أو min)	

العوامل الحركية			
الجملة تتطور أسرع كلما ارتفعت درجة الحرارة – (إن إضافة الماء البارد لتفاعل كيميائي يمكن من توقيف التفاعل لجملة كيميائية)			درج
الجملة تتطور بشكل أسرع كلما زدنا في أحد تراكيز المتفاعلات.			
هو نوع كيمائي يسرع التفاعل ولكن لا يدخل كطرف فيها و يوجد على عدة أنواع			
لايمكن التمييز بينه وبين باقي المتفاعلات — له نفس الحالة الفيزيائية للمتفاعلات —	وسيط متجانس		
الحالة الفيزيائية للوسيط تختلف عن الحالة الفيزيائية للمتفاعلات — ليس من طبيعة المتفاعلات —	وسيط غير متجانس	ع الوسيط	أنوا
الإنزيمات وسائط هامة في البيولوجيا، مثلا في المادة الحية تحدث تفاعلات بيوكيميائية تتدخل فيها الإنزيمات كوسيط	وسيط إنزيمي		
التفسير المجهري لتأثير التراكيز الابتدائية ودرجة الحرارة			

- الزيادة في التراكيز الإبتدائية يؤدي إلى الزيادة في كمية المتفاعلات وبالتالي الزيادة في التصادمات الفعالة بين الجزيئات وبالتالي تزداد الطاقة الحركية
 الميكروسكوبية ، مما يؤدي إلى الزيادة في سرعة التفاعل.
 - كلماكانت درجة الحرارة عالية و كان عدد الأفواد في وحدة الحجم أكبركان تواتر الاصطدامات الفعالة أكبر وكان التحول أسرع.
 - إن التغير في درجة حرارة مائع يؤدي إلى تغير الطاقة الحركية للأفراد الكيميائية الموجودة في المائع، تسمى هذه الحركة بالحركة الحرارية.
 - الحركة العشوائية السريعة للأفراد الكيميائية تسمى الحركة البرونية .