Decision Trees: Pt 1

CS 584 Data Mining (Spring 2022)

Prof. Sanmay Das George Mason University

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar, with additional input from Prof. Huzefa Rangwala

Example of a Decision Tree

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

			Defaulted Borrower
No	Married	80K	?

Decision Tree Classification Task

Test Set

Decision Tree Induction

What would be the best tree to learn from the training data? (Activity)

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

General Structure of Hunt's Algorithm

?Let D_t be the set of training records that reach a node t

? General Procedure:

- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No (7,3)

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Annual Defaulted

Income Borrower

No

No

No

Yes

No

No

Yes No

Yes

125K

100K

70K

120K

95K

60K

220K

85K

75K

90K

Marital

Status

Single

Married

Single

Married

Divorced

Married

Divorced

Single

Married

Single

02/03/2020 Introduction to Data Mining, 2nd Edition

15

(a)

Marital

Status

Single

Married

Single

Married

Divorced

Married

Divorced

Single

Married

Single

Home

Owner

Yes

No

No

Yes

No

No

Yes

No

No

ID

2

3

4

6

Annual Defaulted

No

No

No

No

No

Yes

No

Yes

16

Borrower

Income

125K

100K

70K

120K

95K

60K

220K

85K

75K

90K

