Evolutionary Computation Applied to System Architecture Development

Joseph Simpson Dr. Cihan H. Dagli April 5, 2008

Introduction

- Overview and Motivation
- Binary Matrix Representation
- Warfield Interpretive Structural Modeling
- Formal Concept Analysis (FCS)
- Abstract Relation Types (ART)
- City of Seattle Example
- Summary

Customer Values List

- A-07 Community Stewardship G-09 Education
- B-12 Environmental Quality H-03 Progress
- C-02 Freedom I-05 Fiscal Responsibility
- D-06 Economic Security J-08 Opportunities
- E-11 Environmental Stewardship K-10 Diversity
- F-01 Health and Safety L-04 Social Equity

Matrix 2 - Structured

Matrix 1 - Unstructured

Structured Graph

City of Seattle Mission Profile (example formal context)

	Attributes						
	A	В	С	D	E	F	G
National	Х		Х			Х	
State	Х		Х			Х	
County	Х	Х	Х	Х			Х
Regional	Х	Х	Х	Х			Х
City of Seattle	Х	Х	Х	Х	Х		Х
Urban Core		Х			Х		Х
Urban Village		Х			Х		Х
Suburban		Х			Х		Х

Where

A = Land Use

B = Utilities

C = Transportation

D = Economic Development
© 2008 Joseph J Simpson

E = Economic / Environmental Security

F = Environmental Impact

G = Growth Mgt Restrictions

Architecture Example

- Evaluate System and System of Systems Measures of Effectiveness Production Using Evolutionary Algorithms
- Three areas of the current development:
 - Using weighting factors for the roles
 - Exploring solution aggregation methods
 - Exploring different types of fuzzy inference methods.

City of Seattle Mission Function

A property of the system function that determines how well the mission function is performed

Operational Effectiveness

Regional Transport System Function

A property of the mission function, the system function and the system architecture

Operational Suitability

onal Life Cycle ility Cost

Light Rail Transport System Architecture

City of Seattle Mission Functions

City of Seattle Mission Functions

Genotype – Chromosome Structure

Operational Effectiveness

Where $M_n = n^{th}$ City of Seattle Mission Function

Operational Suitability, Risk, Affordability Where $\sum_{yy} \equiv \text{sum of the respective system attributes}$

$$M_1 \ M_2 \ M_3 \ M_4 \ M_5 \ M_6 \ M_7 \ M_8 \ M_9 \ M_{10} \ M_{11} \ M_{12} \ M_{13} \ M_{14} \ M_{15} \ \sum_{ro} \ \sum_{re} \ \sum_{av} \ \sum_{fl} \ \sum_{su} \ \sum_{af} \ M_{10} \ M$$

Phenotype – Candidate Architecture

Summary

- Opportunity to apply effective technology
- Existing systems architecting representation
- Standard techniques SE, SA and CI
- Low 'cost of entry' for CI and EA model
- Rapidly developing technology area

Questions?