المادة: الفيزياء الشهادة: المتوسطة

نموذج رقم 1 المدة: ساعة واحدة

لهيئة الأكاديميّة المشتركة قسم العلم م

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-1017 وحتى صدور المناهج المطوّرة)

Cette épreuve comporte quatre exercices obligatoires répartis sur deux pages. L'usage des calculatrices non programmables est autorisé.

Exercice 1 (6 points) Image donnée par une lentille convergente

Le document, (Doc 1) ci-dessous, représente une lentille convergente (L), son axe optique, son centre optique O, son foyer image F' et un objet lumineux (AB).

- 1) Reproduire le document (Doc 1) ci-dessus sur le papier millimétré.
- 2) Placer, en le justifiant, le foyer objet F de (L).
- 3) Trouver la distance focale f de (L).
- 4) Soit (A'B') l'image, de (AB), donnée par (L)
 - **4-1**) Construire (A'B') en donnant les explications nécessaires.
 - **4-2**) Préciser la nature de (A'B').
 - **4-3**) Trouver la distance d entre (L) et (A'B').

Exercice 2 (6 points) Lois des tensions et lois des intensités

Le circuit, représenté par le document (Doc 2) ci-dessous, comporte :

- Une pile délivrant à ses bornes une tension constante : $U_{PN} = 20 \text{ V}$.
- Trois dipôles D₁, D₂ et D₃.

1) Calcul de tension

- **1-1**) Montrer que $U_{AC} = 20 \text{ V}$.
- 1-2) Calculer, en indiquant la loi utilisée, la valeur de la tension U_{AB} sachant que $U_{BC} = 12 \text{ V}$.

2) Calcul d'intensité

Soient:

I₁ l'intensité du courant électrique traversant le dipôle D₁;

I₃ l'intensité du courant électrique traversant le dipôle D₃.

L'intensité du courant électrique traversant la pile est I = 10 mA.

L'intensité du courant électrique traversant le dipôle D_2 est $I_2 = 3$ mA.

Calculer I₁ puis I₃ en indiquant les lois utilisées.

Exercice 3 (4 points) Equilibre d'un corps solide

(S) est un corps solide de masse m = 300 g.

On donne:

Accélération gravitationnelle : g = 10 N/kg ;

Constante de raideur du ressort : k = 2 N/cm.

Le solide (S) est suspendu à l'extrémité libre d'un ressort comme l'indique le document (Doc 3) ci-contre. Le solide (S) est en équilibre sous l'effet de son poids \vec{P} de valeur P et d'une autre force.

- 1) Donner le nom de l'autre force exercée sur (S).
- 2) Préciser la relation vectorielle entre les deux forces exercées sur (S).
- 3) Calculer la valeur de chacune de ces deux forces.
- 4) Calculer l'allongement ΔL du ressort.

Exercice 4 (4 points) Poussée d'Archimède

(S) est un corps solide de poids P = 3 N et de volume V = 100 cm³.

On donne:

Accélération gravitationnelle : g = 10 N/kg;

Masse volumique de l'eau : $\rho = 1~000 \text{ kg/m}^3$;

Le solide (S) est complétement immergé dans l'eau.

- 1) Calculer la valeur F de la poussée d'Archimède exercée par l'eau sur (S).
- 2) Le solide (S) est lâché à lui-même.
 - **2-1**) Comparer P à F. En déduire si (S) coule ou flotte à la surface de l'eau.
 - **2-2**) Calculer, dans ce cas, la valeur P_{app} du poids apparent de (S).

المادة: الفيزياء الشهادة: المتوسطة

الهيئة الأكاديميّة المشتركة قسم: العلوم

نموذج رقم 1 المدّة: ساعة واحدة

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Exercice 1	(6 points) Image donnée par une lentille convergente	
Question	Réponse	Note
1	f (L)	
	B B	
	A O F'	1/2
	A O F'	
	5 cm	
2	F est le symétrique de F' par rapport à O. « placer F sur la figure »	1/2 1/2
3	$f = \overline{OF'}$ $f = 2 \times 5 = 10 \text{ cm}$	1/2 1/2
4-1	(L)	
	В	
	A,	1/2
	A F O F' B'	
	5 cm	
	De B, on mène un rayon lumineux passant par O. Ce rayon émerge de la lentille sans déviation.	1/2
	De B, on mène un rayon lumineux incident parallèle à l'axe optique. Ce rayon émerge de la lentille en passant par F'.	1/2
	Les deux rayons émergents se rencontrent en B'. De B', on mène la perpendiculaire à l'axe optique. Elle le coupe en A'.	1/2
4-2	A'B' est une image réelle parce qu'elle se forme du côté des rayons émergents.	1/ ₂ 1/ ₂
4-3	$d = 3 \times 5 = 15 \text{ cm}$	1/2

Exercice 2 (6 points) Lois des tensions et lois des intensités

Question	Réponse	Note
1-1	D'après la loi de l'unicité de la tension :	1/2
	$U_{AC} = U_{PN} = 20 \text{ V}$	3/4
	ou bien	
	D'après la loi de l'additivité des tensions :	1/2
	$U_{AC} = U_{AP} + U_{PN} + U_{NC} = 0 + U_{PN} + 0 = U_{PN} = 20 \text{ V}$	3/4
1-2	D'après la loi de l'additivité des tensions :	1/2
	$U_{AC} = U_{AB} + U_{BC}$	
	$U_{AB} = U_{AC} - U_{BC}$	1/2
	donc $U_{AB} = 20 - 12 = 8 \text{ V}$	3/4
2	D'après la loi de l'unicité de l'intensité :	1/2
	$I_1 = I_2 = 3 \text{ mA}$	3/4
	D'après la loi de l'additivité des intensités :	1/2
	$I = I_1 + I_3$	
	$I_3 = I - I_1$	1/2
	donc $I_3 = 10 - 3 = 7 \text{ mA}$	3/4

Exercice 3 (4 points) Equilibre d'un corps solide

Question	Réponse	Note
1	La tension \vec{T} du ressort.	1/2
2	Comme (S) est en équilibre, $\vec{T} + \vec{P} = \vec{0}$	1/2
3	$P = m \times g$	1/2
	$P = 0.3 \times 10 = 3 \text{ N}$	1/2
	$\vec{T} = -\vec{P}$	
	T = P = 3 N	1/2
4	D'après la loi de Hooke :	1/2
	$T = k \times \Delta L$	
	$\Delta L = \frac{T}{L}$	1/2
	$\Delta L - \frac{1}{k}$	
	$\Delta L = \frac{3}{2} = 1.5 \text{ cm}$	1/2

Exercice 4 (4 points) Poussée d'Archimède

Question	Réponse	Note
1	$F = \rho \times V_{immerg\acute{e}} \times g$	1/2
	or V _{immergé} = V car (S) est complètement immergé dans l'eau	1/2
	donc $F = \rho \times V \times g$	1/2
	$F = 1\ 000 \times 100 \times 10^{-6} \times 10 = 1\ N$	1/2
2-1	P > F	1/2
	donc (S) coule dans l'eau.	1/2
2-2	$\begin{aligned} P_{app} &= P - F \\ P_{app} &= 3 - 1 = 2 \text{ N} \end{aligned}$	1/2
	$P_{app} = 3 - 1 = 2 \text{ N}$	1/2