

MATHEMATICS 3A/3B Calculator-free WACE Examination 2013 Marking Key

Marking keys are an explicit statement about what the examiner expects of candidates when they respond to a question. They are essential to fair assessment because their proper construction underpins reliability and validity.

Section One: Calculator-free

(50 Marks)

Question 1

(4 marks)

A recursive sequence is defined by $u_n = pu_{n-1} + q$. Given that $u_1 = -8$, $u_2 = 8$ and $u_3 = 4$, write down **two** equations and solve simultaneously to determine the values of p and q.

Solution	3.01
8 = -8p + q	
4 = 8p + q	
adding gives $2q = 12$ $\therefore q = 6$	
using equation one $8p = 4 - 6$: $p = -\frac{1}{4}$	
Specific behaviours	***************************************
✓ correctly formulates equation one	
✓ correctly formulates equation two	

- correctly formulates equation two
- \checkmark correctly calculates q
- √ correctly substitutes and calculates p

Question 2 (9 marks)

The function y = f(x) shown below is transformed to produce g(x) = -f(x+1).

(a) Give the equation of f(x) in the form $y = (x - p)^2 + d$. (2 marks)

	Solution	
y =	$(x-1)^2-4$	
	Specific behaviours	
√	correctly indicates the value of p	
✓	correctly indicates the value of d	

(b) (i) Describe the transformations required to produce g(x) from f(x). (2 marks)

	Solution
	nslation of one unit in the negative x direction followed by a reflection in the kis. (order does not matter)
	Specific behaviours
✓	correctly states first transformation

(ii) State the coordinates of the turning point of g(x).

(1 mark)

	Solution	
(0,4)		
	Specific behaviours	
\checkmark	correctly states coordinates	

(c) On the grid above, draw the function y = g(x), showing the x and y intercepts. (2 marks)

(d) State the domain and range of y = g(x).

(2 marks)

Solution	ion
----------	-----

Domain: all reals Range: $y \le 4$

Specific behaviours

- √ states correct domain
- √ states correct range

Question 3

(5 marks)

(a) Give a reason why the following statement is false for real numbers.

$$(-4)^{\frac{3}{2}} \times (-4)^{\frac{3}{2}} = (-4)^3 = -64$$
 (1 mark)

Solution

 $(-4)^{\frac{3}{2}} = \sqrt{(-4)^3} = \sqrt{-64}$ which is undefined, therefore the statement is false

Specific behaviours

√ correctly recognises the negative square root is undefined

(b) In the following, b and c are positive integers. If the statement is correct, write **true** next to the statement. If the statement is false, rewrite the right-hand side of the equation to make the statement true.

Solution

(i) $c^2 \times c^{-2} = b^0$ (true)

(1 mark)

(ii)
$$(3bc)^2 = 6b^2c^2$$
 $(9b^2c^2)$

(1 mark)

(iii)
$$c^2 \div 3bc = \frac{2c^2}{b} \qquad \left(\frac{c}{3b}\right)$$

(1 mark)

(iv)
$$2b^{-1} = -2b$$
 $\left(\frac{2}{b}\right)^{-1}$

(1 mark)

Specific behaviours

- (i) ✓ recognises that the equation is true
- (ii) \checkmark correctly rewrites the expression as $9b^2c^2$
- (iii) \checkmark correctly rewrites the expression as $\left(\frac{c}{3b}\right)$
- (iv) \checkmark correctly rewrites the expression as $\left(\frac{2}{b}\right)$

Question 4

(5 marks)

Determine the gradient of $y = x^2 - 5x - 24$ at the point(s) where it crosses the x-axis.

Solution			
$x^2 - 5x - 24 = 0$			
$(x-8)(x+3) = 0 \Rightarrow$ roots are $x = 8$ and $x = -3$			
$\frac{dy}{dx} = 2x - 5$			
$\left. \frac{dy}{dx} \right _{x=8} = 11 \text{ and } \left. \frac{dy}{dx} \right _{x=-3} = -11$			
Specific behaviours			
✓ correctly factorises quadratic			
✓ correctly determines the roots			
✓ correctly differentiates <i>y</i>			
\checkmark correctly determines the gradient at $x = 8$			
\checkmark correctly determines the gradient at $x = -3$			

Question 5 (3 marks)

The activities A to G, their immediate predecessors and the time taken to complete each activity, are shown in the table below.

Activity	Immediate predecessors	Time (days)
Α	-	3
В	_	2
С	A,B	5
D	С	3
E	С	1
F	Е	3
G	D, F	1

Construct a project network for this information.

Question 6 (9 marks)

The function y = (x-1)(x-2)(x-4), shown below, has been graphed for the domain $0 \le x \le 4.5$. The function has turning points at D and G and a point of inflection at F.

(a) Determine the coordinates of the *y*-intercept.

(2 marks)

	Solution	
x =	$0 \Rightarrow y = -1 \times -2 \times -4 = -8 \therefore y \text{-intercept is } (0, -8)$	
	Specific behaviours	
✓	correctly substitutes zero into the function	
✓	correctly states the coordinates of the y-intercept	

- (b) Which of the points on the graph labelled A to J shows the
 - (i) global maximum?

(1 mark)

	Solution	
J		
	Specific behaviours	
✓ states correct point		

(ii) local minimum?

(1 mark)

	Solution
G	
	Specific behaviours
✓ states correct point	

(c) Calculate the global maximum for the function.

(3 marks)

$$x = 4.5 \Rightarrow y = 3.5 \times 2.5 \times 0.5$$

$$-7 \quad 5 \quad 1 \quad 35$$

- \checkmark identifies that x = 4.5 gives the global maximum
- \checkmark correctly substitutes x = 4.5 into the equation
- √ correctly evaluates product
- (d) Between which two points for the given domain is the function concave up? (2 marks)

	Solution
B	etween F and J
	Specific behaviours
✓	correctly identifies F as the point of inflection
✓	identifies correct interval

Question 7 (6 marks)

In a Year 12 mathematics class, seven students used a Brand 'A' calculator and eight students used a Brand 'B' calculator. Three students used both brands of calculator and four students used neither brand of calculator.

Let A represent the set of students who used a Brand 'A' calculator and B represent the set of students who used a Brand 'B' calculator.

(a) Using this information, complete the Venn diagram.

(2 marks)

- √ transfers given information onto the Venn diagram
 - completes the remaining regions of the Venn diagram (i.e. 4 and 5)

(b) Determine

(i) $P(A \cup B)$.

(1 mark)

Solution	2010
$P(A \cup B) = \frac{12}{16}$	
Specific Behaviours	
\checkmark correctly states the probability of $A \cup B$	

(ii) $P(B \cap \overline{A})$.

(1 mark)

	Solution	***************************************
P($\left(B \cap \overline{A}\right) = \frac{5}{16}$	
	Specific behaviours	
1	correctly states the probability of $B \cap \overline{A}$	

(iii) the proportion of students who used a Brand 'B' calculator, given that they did not use a Brand 'A' calculator. (2 marks)

	Solution	
P(I	$B\left \overline{A}\right = \frac{5}{9}$	
∴ th	ne proportion is $\frac{5}{9}$	
	Specific behaviours	
✓	identifies the reduced sample size (i.e. 9)	
✓	states correct proportion	

Question 8 (5 marks)

The function $y = 2x^3(x-k)$, where k is a positive constant, has been graphed below for x > 0.

(a) Given that the point P has coordinates (2, 0), determine the value of k. (1 mark)

	Solution	
k=2		
	Specific behaviours	
✓	correctly determines the value of k	

(b) Determine the x-coordinate of the local minimum point Q.

(4 marks)

Solution

$$y = 2x^3(x-2) = 2x^4 - 4x^3$$
 $y' = 8x^3 - 12x^2$
 $= 4x^2(2x-3)$
 $= 0$ when $x = 0$ or $x = \frac{3}{2}$
 \therefore the x -coordinate is $x = \frac{3}{2}$ since the function is only defined for $x > 0$

Specific behaviours

 \checkmark correctly differentiates y
 \checkmark correctly factorises the derivative
 \checkmark correctly equates the derivative to zero and solves for x
 \checkmark correctly states the x -coordinate of the point Q

Question 9

(4 marks)

The following set of 14 integers is arranged in ascending order and has a mean of 10.

(a) Determine all possible values for p and q.

(2 marks)

Solution	
p + q = 140 - 120 = 20	
Therefore (p,q) can be $(2,18)$, $(3,17)$, $(4,16)$ or $(5,15)$	
Specific Behaviours	
\checkmark correctly calculates the sum of p and q	
\checkmark correctly gives the four possible pairs for p and q	

(b) Determine the smallest possible value for the interquartile range.

(2 marks)

Solution	
IQR = 14 - 5 = 9	7.77
Specific Behaviours	
✓ correctly identifies the lower quartile (5) and upper quartile (14)	
✓ correctly calculates interquartile range	

© School Curriculum and Standards Authority, 2013
This document—apart from any third party copyright material contained in it—may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.
Copying or communication for any other purpose can be done only within the terms of the <i>Copyright Act 1968</i> or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the <i>Copyright Act 1968</i> or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the <u>Creative Commons Attribution-NonCommercial 3.0 Australia licence</u>.

Published by the School Curriculum and Standards Authority of Western Australia 27 Walters Drive OSBORNE PARK WA 6017