Cryptanalyse — M1MA9W06 Responsable : G. Castagnos

Examen — mercredi 14 décembre 2011, 8h30

Durée 3h Notes de cours autorisées Nombre de pages : 3 Les 4 exercices sont indépendants

On considère un système de chiffrement à flot utilisant une suite chiffrante produite par un LFSR de longueur 3. Le LFSR est initialisé par une clef secrète K de 3 bits notés z_0, z_1, z_2 . Après l'initialisation, on effectue 11 itérations du LFSR sans utiliser les bits de sortie $(z_0, z_1, \ldots, z_{10})$. Les bits de sortie suivants z_{11}, z_{12}, \ldots sont utilisés de manière habituelle pour faire un chiffrement à flot.

On suppose qu'Alice et Bob connaissent tous les deux la clef secrète K et P un polynôme de rétroaction pour ce LFSR. On suppose que ce polynôme P utilisé par Alice et Bob est secret.

(a) Expliquer comment Alice et Bob peuvent utiliser ce système de chiffrement afin qu'Alice transmette un message m de ℓ bits $m = m_0, m_1, \ldots, m_{\ell-1}$ à Bob de manière confidentielle.

On intercepte la totalité d'un message chiffré c de 10 bits : c = 0,0,0,1,1,0,0,1,1,0 envoyé par Alice pour Bob avec ce système. On sait d'autre part que les 6 premiers bits du message clair m sont 0,1,0,0,0,1.

- (b) Quel est le polynôme P? Est-il primitif? $x^3 + x^2 + 1$, α
- (c) Déchiffrer le message tout entier.
- (d) Quelle est la clef secrète?

On rappelle qu'on associe à une boîte $S: F_2^s \to F_2^s$ d'un algorithme de chiffrement symétrique la matrices D_S , à 2^s lignes et 2^s colonnes, indexée sur F_2^s (identifié aux entiers de 0 à $2^s - 1$), définie par :

$$D_{S}[\alpha,\beta] := \operatorname{Card}\{(x,x^{*}) \in (F_{2}^{s} \times F_{2}^{s}) \text{ tel que } x + x^{*} = \alpha \text{ et } S(x) + S(x^{*}) = \beta\},$$

- (a) Rappelez brièvement quelle propriété de la matrice D_S est recherchée pour éviter les attaques par cryptanalyse différentielle.
- (b) Montrer que les coefficients de D_s sont tous pairs.
 - (c) Quelle est la forme de la matrice D_S si S est une application linéaire inversible de $F_2^s \to F_2^s$?

Dans toute la suite de l'exercice, on se place dans le cas de l'AES. On rappelle que la boîte S de l'AES est de la forme $S: F_2^8 \to F_2^8$ avec S(x) = A.I(x) + b où A est une certaine matrice carrée inversible 8×8 sur F_2 , b est un certain vecteur 8×1 sur F_2 et I désigne l'application de F_{2^8} dans F_{2^8} :

$$x \mapsto I(x) = \begin{cases} 0 \text{ si } x = 0\\ x^{-1} \text{ si } x \neq 0 \end{cases}$$

où l'inversion est effectuée dans le corps F_{2^8} après identification avec F_2^8 par le choix d'un certain polynôme irréductible.

(d) Montrer que les coefficients de la matrice D_S peuvent se déduire des coefficients de la matrice D_I, définie par :

$$D_{I}[\alpha, \beta] := Card\{(x, x^{*}) \in (F_{2}^{8} \times F_{2}^{8}) \text{ tel que } x + x^{*} = \alpha \text{ et } I(x) + I(x^{*}) = \beta\}.$$

- (e) Dans la suite on souhaite expliciter les coefficients de la matrice D_I . Que vaut $D_I[\alpha,\beta]$ si α ou β est nul? On suppose maintenant dans toute la suite que α et β sont non nuls.
- (f) Soit $x, x^* \in F_2^8$ tels que $x + x^* = \alpha$. Dans cette question uniquement, on suppose que x et x^* sont non nuls. Montrer que $I(x) + I(x^*) = \beta$ si et seulement si x et x^* sont solutions d'une équation de degré 2 à une inconnue dans le corps F_{2^8} . Montrer que si cette équation a une solution alors elle en a deux.
- (g) Montrer que l'équation $x^2 + x + 1$ admet deux solutions dans F_{28} .
- (h) On suppose que $\beta^{-1}=\alpha$ dans $F_{2^8}.$ Montrer que $D_I[\alpha,\beta]=4.$
- (i) Conclure : que peuvent valoir les coefficients $D_S[\alpha, \beta]$, pour tout $\alpha, \beta \in F_2^8$? Que peut on en déduire sur l'AES?
- 3 On considère le réseau \mathcal{L} de \mathbb{Z}^2 de base $\mathbb{M} = \begin{pmatrix} 6 & 1 \\ 10 & 3 \end{pmatrix}$.
 - (a) Quel est le déterminant de ce réseau?

1

- (b) Quel est le minimum de \mathcal{L} ? Donner un vecteur atteignant ce minimum.
- (c) Le vecteur (2, -5) est il dans le réseau? Sinon quel est le vecteur non nul du réseau le plus proche?
- (d) Même question avec le vecteur (1,0).
- (e) De manière générale, donner un algorithme qui prend en entrée M une matrice donnant une base d'un réseau \mathcal{L} de dimension n inclus dans \mathbf{Z}^n et un vecteur v, et qui renvoie vrai si et seulement si $v \in \mathcal{L}$.

- Dans cet exercice, on s'intéresse à la sécurité du système de chiffrement à clef publique défini de la façon suivante :
 - Génération des clefs: Soit k un entier, le paramètre de sécurité. On choisit un nombre premier p de k bits et k polynômes de degrés 1, f₁(x), f₂(x),..., f_k(x) à coefficients dans Z/p²Z. On notera f_i = f_{i,0} + f_{i,1}x les coefficients du polynôme f_i pour i = 1,...,k.
 On suppose de plus qu'il existe un entier s tel que pour tout i = 1,...,k, f_i(s) mod p² < p/k.
 La clef publique est constituée de p et des polynômes f₁,...,f_k.
 La clef privée est l'entier s.
 - Chiffrement d'un message clair $m \in \mathbb{Z}/p\mathbb{Z}$: on génère aléatoirement k bits, $r_1, r_2, \ldots, r_k \in \{0, 1\}$. Le chiffré de m est le polynôme de degré 1 défini par :

$$c(x) := m \times p + \sum_{i=1}^{k} r_i f_i(x) \mod p^2.$$

- **Déchiffrement** d'un chiffré c(x): on calcule dans **Z**,

$$\frac{c(s)-(c(s) \mod p)}{p}.$$

(a) Soit $c(x) = c_0 + c_1 x$ un message chiffré d'un message clair m en utilisant les bits aléatoires $r_1, r_2, \ldots r_k$. Soit $z_0, z_1 \in \mathbb{N}$, deux entiers strictement inférieurs à p tels que

$$z_0 + z_1 p = \sum_{i=1}^k r_i f_i(s) \mod p^2.$$

- \times Montrer que l'on a $z_1 = 0$. En déduire que le système est correct, c'est à dire que le déchiffrement de c(x) redonne bien m modulo p.
- (b) Soit $c(x) = c_0 + c_1 x$ un message chiffré d'un message clair m en utilisant les bits aléatoires $r_1, r_2, \ldots r_k$. Donner l'expression du coefficient de degré 1, c_1 de c(x) en fonction des coefficients des polynômes publics f_1, \ldots, f_k .
- (c) Comment s'appelle le problème de retrouver $r_1, r_2, \dots r_k$ dans l'expression de c_1 donnée précédemment? Indiquer comment et pourquoi on peut résoudre ce problème dans ce cas précis en utilisant l'algorithme LLL.
- (d) En déduire une attaque permettant de déchiffrer un chiffré c à l'aide de la clef publique, sans connaître la clef secrète.