Древесные симметрии

Проекты

Содержание

Стабилизация лучей и параболические подгруппы .								1
О модификации групп								
Геометрический проект								

Стабилизация лучей и параболические подгруппы

Определение 1. Пусть X^* — регулярное корневое дерево, e луч, а $G \leq \operatorname{Aut}(X^*)$ — произвольная подгруппа. Тогда ассоциированная e G параболическая подгруппа P_e — это $\operatorname{Stab}_G(e)$.

Иными словами, параболические подгруппы — это подгруппы, стабилизирующие лучи в X^* (или же, точки ∂X).

Базовые (и несложные) факты про параболические подгруппы изложены в [bartholdi2001parabolic] (всего несколько страничек).

Введём несколько важных для нас групп, действующих на корневых деревьях.

Определение 2. Пусть p — простое число, T_p — p-регулярное корневое дерево. Группой p- **базилики** \mathfrak{B}_p называется подгруппа в $\mathrm{Aut}(T_p)$, порожденная элементами

$$a = (1,1,\ldots,1,b), \quad b = (1,1,\ldots,1,a)\sigma, \quad \text{где } \sigma = (123\ldots p) \in S_p$$

Прочитать подробнее про неё можно в [didomenico2021pbasilica].

Определение 3. GGS-группой (или же группой Григорчука-Гупты-Сидки) называется, подгруппа $\langle a, \sigma \rangle$ в $\mathrm{Aut}(T_p)$, порожденная циклической перестановкой $\sigma = (123 \dots p)$ и элементом

$$a = (\sigma^{e_1}, \sigma^{e_2}, \dots, \sigma^{e_{p-1}}, a),$$

где
$$e_i \in \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$$
.

Подробнее о GGS-группах и связанных с ними результатах про рост вы можете прочитать в работе [didomenico2022ggsgroups].

Определение 4. Группа **Гупты-Фабриковского** определяется следующим образом. Рассмотрим $A=C_p=\langle a|a^p=1\rangle$ и p-регулярное корневое дерево $A^*=T_p$. Заметим, что тогда a мы можем отождествить с циклической перестановкой $\sigma=(12p)$, действующей на первом уровне. Определим автоморфизм $t\in {\rm Aut}(A^*)\cong {\rm Aut}(A^*)\wr S_p$, как t=(a,1,t). Заметим, что элементы a и t имеют порядок p. Группа $\Gamma=\langle a,t\rangle\leq {\rm Aut}(A^*)$ и будет называться группой **Гупты-Фабриковского** порядка p.

Подробнее об этой группе и связанных с ней результатах про рост вы можете прочитать в работе Л. Бартольди [Bartholdi 2009].

Кроме них, все мы помним про группу Григорчука G.

Все эти группы отличаются красотой и незаурядностью в их действии на деревьях и в связи с этим представляют видимый научный интерес. Про них предлагаются такие задачи:

- 1. Для каждой группы посчитать параболические группы каких-то бесконечных лучей и изучить факторы по ним, возможно их рост.
- 2. Правда ли, что елсли отфакторизовать группу 3-Базилики \mathfrak{B}_3 по параболической подгруппе $P_e = \operatorname{Stab}_{fB_3}(e)$, стабилизирующий некоторый луч в 3-регулярном дереве, группа 3-базилики превратится в группу 2-базилики. И, если нет, то каков результат факторизации?

О модификации групп

Понятие регулярного корневого дерева T_d можно естественно обобщить следующим образом: Определение 5. Пусть $\overline{m}=\{m_n\}, m_n\geq 2$ — последовательность натуральных чисел. Сферически однородным корневым деревом $T_{\overline{m}}$ мы будем называть корневое дерево, имеюще такой вид:

- У него есть корень \emptyset , а также
- m_1 вершин первого уровня, m_1m_2 вершин второго уровня, ..., $m_1m_2...m_n$ вершин n-го уровня $(n \in \mathbb{N})$.
- Каждая вершина уровня n имеет m_{n+1} детей, расположенных на следующем уровне.

Рис. 1: Сферически однородное корневое дерево

Более подробную информацию о них можно прочитать в работе Р.И. Григорчука [Grig_Sperical]. Так как эти деревья естественно обобщают T_d , возникает вопрос о нетривиальных вложениях $G \hookrightarrow \operatorname{Aut}(T_{\overline{m}})$ для различных подгрупп $G \le \operatorname{Aut}(T_d)$. В связи с этим предлагаются следующие задачи:

- 1. Предлагается изучить способы вложения групп p-базилики \mathfrak{B}_p , Гупты-Фабриковского, \mathbf{GGS} -групп в $\mathrm{Aut}(T_{\overline{m}})$. Возможно, вычислить количество вложений.
- 2. Попытаться вложиьб группу 2-Базилики и группу Григорчука ${\bf G}$ в дерево с последовательностью слоев $(23)^\infty$.

Геометрический проект

Существует понятие **константы гиперболичности пространства**. Это число δ , ассоциированное с ним и отвечающее тому, насколько его геометрия похожа на гиперболическую.

К сожалению этот инвариант работает так, что если $\delta < \infty$, то пространство "очень" гиперболическое, а если $\delta = \infty$, то всё, что мы знаем это то, что оно другое. То есть разделение очень дискретное, а хотелось бы критерия в духе "чем больше число тем более гиперболическое пространство".

Чтобы избавиться от такой большой критичности, можно по каждому пространству M определить функцию δ_M , которая будет исполнять ровно такую роль. Это очень **новый** инвариант и про него непонятно вообще ничего.

Предлагается две задачи:

- 1. Построить примеры метрических пространств, у которых эта функция будет устроена определенным образом (заранее заданным).
- 2. Вычислить эту функцию для конкретного пространства графа определенного вида.

Никаких конкретных пререквезитов не предполагается.