

 Σ Gesamt

(max. 32)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Lars Diening Dr. Sebastian Schwarzacher, Maximilian Wank $\begin{array}{c} \text{Wintersemester} \ \ 2013/14 \\ 22.2.2014 \end{array}$

Viel Erfolg!

Analysis einer Veränderlichen

Klausur

Nachname:	Vorname:								
Matrikelnr.:	Fachsemester:								
Abschluss:	Bachelor, PO 🗖 2007 📮 2010 📮 2				2011 Master, PO 🖵 2010 🖵 2011				
	Lehramt Gymnasium:				☐ modularisiert ☐ nicht modularisiert			larisiert	
	□ Diplom □ Anderes:								
Hauptfach:	☐ Mathem	atik [☐ Wirtsc	haftsm.	☐ Inf.	□ Phys	s. 🗖 Stat	. 🗅	
Nebenfach:	☐ Mathem	natik [☐ Wirtsc	haftsm.	☐ Inf.	☐ Phys	s. 🖵 Stat	. 🗅	
Anrechnung	der Credit	Points	für das	□ Haup	otfach [⊐ Neben	fach (Ba	chelor /	Master)
Bitte schalten selbst erstellte, bitte jede Aufg Sie dies am un Rest auf die Ri Zeit, um die K Da wir keine A dürfen, notieren Ihr Klausurerg	einseitig pe abe auf den teren Ende ickseite ode lausur zu b ushänge min n Sie sich bi ebnis veröff	er Hand n dafür des An er auf ei earbeit t Name tte die	l beschrie vorgesehe gabenbla ine von u en. n oder M nebenstel	ebene A4 enen Bla ttes der ns ausge atrikelm hende Za	4 Seite in att. Falls entsprechändigte ummern ahl unter	der Klader Platschenden er leere Semachen	usur zu ber z nicht aus Aufgabe u eite. Sie hal	nutzen. I reicht, ve nd schre	Lösen Sie ermerken eiben den
Aufgabe	1	2	3	4	5	6	7		
max. Punkt	e 5	3	5,5	8,5	3	3,5	3,5		
Punkte									

Name:

Aufgabe 1 3+2 Punkte

(a) Zeigen Sie per Induktion, dass für alle $q \in \mathbb{R}$ mit $q \neq 1$ und alle $n \in \mathbb{N}_0$ (mit Konvention $q^0 = 1$) gilt

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

(b) Sei $(a_k)_k$ eine Folge reeller Zahlen mit $|a_{k+1} - a_k| \leq 2^{-k}$ für alle $k \in \mathbb{N}$. Zeigen Sie, dass $(a_k)_k$ eine Cauchyfolge ist.

Lösung zu Aufgabe 1

(a) Induktionsanfang:

$$\sum_{k=0}^{0} q^k = 1 \quad \text{und} \quad \frac{1-q^1}{1-q} = 1.$$

Induktionsschritt $n \mapsto n+1$

$$\sum_{k=0}^{n+1} q^k = \sum_{k=0}^n q^k + q^{n+1}$$

$$= \frac{1 - q^{n+1}}{1 - q} + \frac{(1 - q)q^{n+1}}{1 - q} \quad \text{nach Induktions vor aussetzung}$$

$$= \frac{1 - q^{n+2}}{1 - q}$$

(b) Es sei m > k > 1, dann gilt

$$|a_m - a_k| = \left| \sum_{l=k}^{m-1} (a_{l+1} - a_l) \right|$$

$$\leq \sum_{l=k}^{m-1} |a_{l+1} - a_l|$$

$$\leq \sum_{l=k}^{m-1} 2^{-l} = 2^{-k} \sum_{l=0}^{m-k-1} 2^{-l}$$

$$= 2^{-k} \frac{1 - 2^{-m+k}}{\frac{1}{2}}$$

$$\leq 2^{-k-1}.$$

Da $2^{-k-1} \to 0$ folgt, dass für alle $\varepsilon > 0$ ein n_{ε} existiert, dass alle $m > n > n_{\varepsilon}$

$$|a_m - a_k| \le \varepsilon$$

also ist (a_k) eine Cauchy-folge ist.

□ Ankreuzen, falls Rest der Lösung auf Rückseite oder zusätzlichem Blatt.

Name:		

Aufgabe 2 3 Punkte

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar, c > 0 und sei $c := \sup_{x \in \mathbb{R}} |f'(x)| < \infty$. Zeigen Sie mit Hilfe des Mittelwertsatzes, dass f gleichmäßig stetig auf \mathbb{R} ist.

Lösung zu Aufgabe 2

Seien $x, y \in \mathbb{R}$ mit x < y. Dann existiert nach dem Mittelwertsatz ein $\xi \in (x, y)$ mit

$$\frac{f(x) - f(y)}{x - y} = f'(\xi).$$

Daraus folgt

$$|f(x) - f(y)| = |f'(\xi)||x - y|$$

$$\leq c|x - y|$$

Es bleibt zu zeigen, dass f gleichmäßig stetig ist. Sei also $\varepsilon > 0$ beliebig. Es ist zu zeigen, dass es ein $\delta > 0$ gibt, so dass aus $|x - y| < \delta$ schon $|f(x) - f(y)| < \varepsilon$ folgt.

Mit der Wahl $\delta := \frac{\varepsilon}{c}$ folgt

$$|f(x) - f(y)| \le c \frac{\varepsilon}{c} = \varepsilon.$$

Damit ist f gleichmäßig stetig.

Aufgabe 3

1,5+1,5+2,5 Punkte

Berechnen Sie die folgenden Grenzwerte

(a)
$$\lim_{x \to \infty} \left(x \left(1 - \cos\left(\frac{1}{x}\right) \right) \right)$$

(b)
$$\lim_{x \searrow 0} \left(\sqrt{x} \log x \right)$$

(b)
$$\lim_{x \to 0} \left(\sqrt{x} \log x \right)$$
(c)
$$\lim_{x \to 0} \frac{\cos x - 1}{x \sin x}$$

Falls Sie die Regeln von L'Hospital benutzen, so machen Sie dies hierbei deutlich.

Lösung zu Aufgabe 3

(a)

$$\lim_{x \to \infty} \frac{1 - \cos\left(\frac{1}{x}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{+\sin\left(\frac{1}{x}\right) \cdot \frac{-1}{x^2}}{-\frac{1}{x^2}} \qquad \text{mit L'Hospital } \frac{0}{0}$$
$$= \lim_{x \to \infty} \sin\left(\frac{1}{x}\right) = 0 \qquad .$$

Alternativ kann man erst substituieren und dann L'Hospital anwenden:

$$\lim_{x \to \infty} \frac{1 - \cos\left(\frac{1}{x}\right)}{\frac{1}{x}} = \lim_{y \searrow 0} \frac{1 - \cos(y)}{y}$$

$$= \lim_{y \searrow 0} \frac{\sin(y)}{1} \qquad \text{mit L'Hospital } \frac{0}{0}$$

$$= 0$$

(b)

$$\lim_{x \searrow 0} \left(\sqrt{x} \log x \right) = \lim_{x \searrow 0} \frac{\log(x)}{\frac{1}{\sqrt{x}}}$$

$$= \lim_{x \searrow 0} \frac{\frac{1}{x}}{-\frac{1}{2}x^{\frac{3}{2}}} \qquad \text{mit L'Hospital } \frac{\infty}{\infty}$$

$$= \lim_{x \searrow 0} (-2\sqrt{x}) = 0.$$

(c)

$$\lim_{x \to 0} \frac{\cos x - 1}{x \sin x} = \lim_{x \to 0} \frac{-\sin x}{\sin x + x \cos x}$$
 mit L'Hospital $\frac{0}{0}$

$$= \lim_{x \to 0} \frac{-\cos x}{\cos x + \cos x - x \sin x}$$
 mit L'Hospital $\frac{0}{0}$

$$= \frac{-1}{2}.$$

□ Ankreuzen, falls Rest der Lösung auf Rückseite oder zusätzlichem Blatt.

Name:

Aufgabe 4

2+2+2,5+1+1 Punkte

Sei $f: [0, \infty) \to \mathbb{R}, x \mapsto xe^{-x} = x \exp(-x).$

- (a) Bestimmen Sie f' und f''.
- (b) Auf welchen Intervallen ist f monoton steigend bzw. monoton fallend.
- (c) Bestimmen Sie die lokalen und globalen Extrema von f.
- (d) Zeigen Sie, dass f auf $[2, \infty)$ konvex ist.
- (e) Bestimmen Sie das Taylorpolynom vom Grad 2 von f an der Stelle x = 1.

Lösung zu Aufgabe 4

(a)

$$f'(x) = (1 - x)e^{-x}$$
$$f''(x) = (x - 2)e^{-x}$$

- (b) f ist monoton steigend, wenn f'>0, d.h. in [0,1] . f ist monoton fallend, wenn f'<0, d.h. in $[1,\infty)$.
- (c) Für ein Extremum im Inneren muss gelten f'(x) = 0. Damit kann nur bei x = 1 eine Extremstelle sein.

Da f''(1) = -1 < 0, hat f an der Stelle x = 1 ein lokales Maximum.

Da f wachsend auf [0,1] und fallend auf $[1,\infty)$ hat f bei x=1 ein globales(!) Maximum . (Für dieses Argument sind die beiden vorherigen Schritte nicht nötig.)

Es gilt $f(x) \ge 0$ für alle $x \in [0, \infty)$ und f(0) = 0. Damit hat f ein globales Minimum bei x = 0.

- (d) Es gilt $f''(x) \ge 0$ für alle $x \in [2, \infty)$. Damit ist f dort konvex.
- (e) Es gilt

$$T_2(f,1)(x) = \sum_{k=0}^{2} \frac{f^{(k)}(1)}{k!} (x-1)^k$$
$$= e^{-1} + \frac{1}{2} e^{-1} (x-1)^2.$$

Vame:	
	□ Ankreuzen, falls Rest der Lösung auf Rückseite oder zusätzlichem Blatt.

Aufgabe 5 3 Punkte

Seien $a, b \in \mathbb{R}$ mit a < b sowie $f: [a, b] \to [a, b]$ stetig. Zeigen Sie, dass f einen Fixpunkt besitzt, d.h. es gibt ein $\xi \in [a, b]$ mit $f(\xi) = \xi$.

Lösung zu Aufgabe 5

Betrachte g(x) := f(x) - x. Es gilt $g(a) = f(a) - a \ge a - a \ge 0$ und $g(b) = f(b) - b \le b - b = 0$. Da g stetig gibt es nach dem Zwischenwertsatz ein $\xi \in [a, b]$ mit $g(\xi) = 0$. Dies ist gleichbedeutend mit $f(\xi) = \xi$.

3.7		
Name [,]		
1 tanc		

Aufgabe 6 1+2,5 Punkte

Wir betrachten die Potenzreihe

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k \, 3^k} x^k.$$

- (a) Bestimmen Sie den Konvergenzradius der Reihe.
- (b) Bestimmen Sie die Mengen

 $M_1 := \{x \in \mathbb{R} : \text{ die Reihe konvergiert}\} \text{ und } M_2 := \{x \in \mathbb{R} : \text{ die Reihe konvergiert absolut}\}.$

Lösung zu Aufgabe 6

(a) Sei $a_n := \frac{(-1)^n}{n \, 3^n}$.

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \frac{1}{3\sqrt[n]{n}} = \frac{1}{3}.$$

Das ergibt den Konvergenzradius 3.

(b) Da der Konvergenzradius R=3, konvergiert die Reihe absolut für |x|<3 und divergiert für |x|>3

Randbetrachtung: Es bleiben die Fälle x = -3 und x = 3.

Fall x=3. Die Reihe ist dann $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. Die Reihe konvergiert, aber nicht absolut.

Fall x = -3. Die Reihe ist dann $\sum_{n=1}^{\infty} \frac{1}{n}$. Die Reihe konvergiert nicht.

Damit folgt $M_1 = (-3, 3]$ und $M_2 = (-3, 3)$.

Name:		

Aufgabe 7 2,5+1 Punkte

Sei $f: \mathbb{R} \to \mathbb{R}$ stetig mit f(0) = 1 und $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$.

- (a) Zeigen Sie, dass f ein globales Maximum hat.
- (b) Bestätigen Sie durch Angabe eines Beispiels, dass f kein globales Minimum haben muss.

Lösung zu Aufgabe 7

(a) Da $\lim_{x\to\infty} f(x) = \lim_{x\to-\infty} f(x) = 0$ existiert ein R>0, so dass f(x)<1 für alle |x|>R.

Da [-R, R] kompakt, nimmt f als stetige Funktion ihr Maximum auf [-R, R] an, d.h. es existiert $x_0 \in [-R, R]$ so dass $f(x) \leq f(x_0)$ für alle $x \in [-R, R]$.

Da weiterhin $f(x_0) \ge f(0) = 1$ und f(x) < 1 für alle |x| > R, hat f bei x_0 sogar ein globales Maximum.

(b) Beispiel: $f(x) = \frac{1}{1+x^2}$.