Ninf-G/MPIハイブリッドによる 大規模一般化固有値問題の並列解法

小瀧義久¹,櫻井鉄也^{1,3},梅田宏明^{2,3},稲富雄一^{2,3},渡邊寿雄^{2,3},長嶋雲兵^{2,3}

- 1筑波大学,2産業技術総合研究所,
- 2科学技術振興機構

発表の構成

- □ 分子軌道計算
- □ 櫻井-杉浦法
- □ Ninf-Gによる並列化
- □ Ninf-G/MPIによる並列化
- □まとめと今後の課題

分子軌道計算

- \square $FC=SC\varepsilon$
- □ 計算対象:リゾチーム
- □リゾチームの行列
 - 次元数:20,758
 - 非零要素数:10,010,416 (約2.3%,約100MB, 1.0e-7で疎行列化)

一般化固有値問題の解法

- 口 従来法
 - Shift-Inverse + Arnoldiなど
 - リゾチームの計算には 従来法(Householder + bisection)では逐次計算 で約4時間
 - MPI化は既になされている(ライブラリが存在)
 - グリッド化は難しい

櫻井-杉浦法

■ グリッド環境に適した一般化固有値問題の解法

櫻井-杉浦法(1/4)

×:固有值λ

櫻井-杉浦法(2/4)

Γ上にN個の節点 ω_i (j=1,N) を設定 N個の連立一次方程式 $(\omega_i B-A)y_i=v (j=1,N)$ を解く $y_i(j=1,N)$ を利用して、 領域内の固有値 λ_i , 固有ベクトルqiを計算

櫻井-杉浦法(3/4)

櫻井-杉浦法(4/4)

櫻井杉浦法の疑似コード


```
broadcast A, B
```

for(*i*=1, *M*){ /*領域に関する並列性*/ for(*j*=1, *N*){ /*節点に関する並列性*/

$$\mathbf{y}_{j}^{(i)} = (\omega_{j}^{(i)}B-A)^{-1}\mathbf{v}^{(i)}$$

}

$$\lambda^{(i)} = f(\mathbf{y}_i^{(i)})$$

$$\boldsymbol{q}^{(i)} = g(\boldsymbol{y}_j^{(i)})$$

全ての連立一次方程式は 独立に解ける

Ninf-G向きである

分子軌道計算への応用(1/2)

- □ 分子軌道計算では,固有値は実軸上に分布
- □ 必要な固有値は, 0付近の数個
- □ *y_j*が実軸に対して対称なので 上半分の節点のみ計算すればよい

fig. 固有値の分布と領域設定の例.

分子軌道計算への応用(2/2)

- □ 領域数:32
 - -0.21〜-0.16(HOMO付近)に16領域
 - 0.16~0.21(LUMO付近)に16領域
- □ 節点数/領域:32(うち上半分16個について計算)

fig. リゾチーム全体, 及び0付近のエネルギー図.

利用した計算機環境

- □ クライアント
 - Intel Pentium 4 CPU 3.00GHz / 2GB memory
 - Ninf-G ver. 2.4.0 / Globus ver. 3.2.1
- ロ サーバ
 - AIST SuperCluster F-32
 - Intel Xeon CPU 3.06GHz Dual / 4GB memory * 260
 - Ninf-G ver. 2.4.0 / Globus ver. 3.3.3
- ロ ネットワーク
 - クライアント-サーバ間: Fast Ethernet (100Mbps)
 - F-32クラスタ内: Gigabit Ethernet (1Gbps)

Ninf-Gによる並列化(1/3)

- □ Ninf-G単体での利用を想定
 - クライアントとサーバが 一対一通信
 - Fast Ethernetで通信

Ninf-G

クライアント

- Fast Ethernet
- Gigabit Ethernet

Ninf-Gによる並列化(2/3)

櫻井杉浦法の疑似コード

```
broadcast A, B
for( i=1, M ){ /*領域に関する並列性*/
                                                                  Ninf-Gで並列化
       for( j=1, N ){ /*節点に関する並列性*/
                                                                       並列化しない
              \mathbf{y}_{i}^{(i)} = (\omega_{i}^{(i)}B - A)^{-1}\mathbf{v}^{(i)}
       \lambda^{(i)} = f(\mathbf{y}_i^{(i)})
       \boldsymbol{q}^{(i)} = g(\boldsymbol{y}_i^{(i)})
```

Ninf-Gによる並列化(3/3)

Ninf-G/MPIIによる並列化(1/3)

- □ 小規模クラスタを組み合わせる環境を想定
 - クライアントは、 クラスタのrank0のPUに Ninf-Gで行列転送
 - クラスタ内はMPIで行列転送

Ninf-G

クライアント

- Fast Ethernet
- Gigabit Ethernet

Ninf-G/MPIIによる並列化(2/3)

櫻井杉浦法の疑似コード

```
broadcast A, B
for( i=1, M ){ /*領域に関する並列性*/
                                                                  Ninf-Gで並列化
       for(j=1, N){ /*節点に関する並列性*/
                                                                      MPIで並列化
              \mathbf{y}_{i}^{(i)} = (\omega_{i}^{(i)}B - A)^{-1}\mathbf{v}^{(i)}
       \lambda^{(i)} = f(\mathbf{y}_i^{(i)})
       \boldsymbol{q}^{(i)} = g(\boldsymbol{y}_i^{(i)})
```

Ninf-G/MPIによる並列化(3/3)

計算機構成と実行時間

Table 実行時間(秒)と速度向上率.

		# handles											
		1		2		4		8		16		32	
	1	2672	(1.0)	1382	(1.9)	721	(3.7)	412	(6.5)	284	(9.4)	267(10	0.0)
	2	1769	(1.5)	934	(2.9)	483	(5.5)	286	(9.3)	213	(12.5)		
	4	1028	(2.6)	536	(5.0)	284	(9.4)	186	(14.4)				
	8	621	(4.3)	337	(7.9)	190	(14.1)						
	16	447	(6.0)	245(10.9)								

- □ 1PUの場合2672秒(従来法では約4時間)
- □ Ninf-Gのみの場合, 32PUで267秒
- □ Ninf-G/MPIの場合, 同PU数で186秒まで高速化

結論

- □ 櫻井杉浦法をNinf-Gを用いて実装した1PUで2672秒→32PUで267秒
- □ Ninf-G/MPIハイブリッドによって 行列転送時間を短縮し、高速化した →32PUで186秒

今後の予定

□ MPIの機能を活用し、 連立一次方程式についても並列計算を行う

前処理について(1/2)

櫻井杉浦法の疑似コード

```
broadcast A, B
for( i=1, M ){ /*領域に関する並列性*/
                                                         Ninf-Gで並列化
      for( j=1, N ){ /*節点に関する並列性*/
                                                             MPIで並列化
            P^{(i)} = h(A, B, i) / *前処理行列を生成* / i
            y_i^{(i)} = (\omega_i^{(i)}B-A)^{-1}v^{(i)} / * 反復解法に<math>P^{(i)}を利用 */
      \lambda^{(i)} = f(\mathbf{y}_i^{(i)})
      \boldsymbol{q}^{(i)} = g(\boldsymbol{y}_i^{(i)})
```

前処理について(2/2)

櫻井杉浦法の疑似コード

```
broadcast A, B
for( i=1, M ){ /*領域に関する並列性*/
                                                      Ninf-Gで並列化
     P^{(i)}=h(A,B,i) /*前処理行列を生成*/ \leftarrowMPIで並列化されない
     for( j=1, N ){ /*節点に関する並列性*/
                                                         MPIで並列化
           y_i^{(i)} = (\omega_i^{(i)}B-A)^{-1}v^{(i)} / * 反復解法に<math>P^{(i)}を利用*/
     \lambda^{(i)} = f(\mathbf{y}_i^{(i)})
     \boldsymbol{q}^{(i)} = g(\boldsymbol{y}_i^{(i)})
```

速度向上に関する考察2

Table 実行時間(秒)と速度向上率.

		# handles											
		1		2		4		8		16		32	
	1	2672	(1.0)	1382	(1.9)	721	(3.7)	412	(6.5)	284	(9.4)	267	(10.0)
	2	1769	(1.5)	934	(2.9)	483	(5.5)	286	(9.3)	213	(12.5)	223	(12.0)
# PU/	4	1028	(2.6)	536	(5.0)	284	(9.4)	186	(14.4)	160	(16.7)	170	(15.7)
handle	8	621	(4.3)	337	(7.9)	190	(14.1)	136	(19.7)	144	(18.6)		
	16	447	(6.0)	245	(10.9)	145	(18.4)	112	(23.9)				

- □ 最速で、128CPUを使用し、112秒まで高速化
- □ 同CPU数の中では、16PU×8handleのものが最も速い

同CPU数で最速の組み合わせ

Table 実行時間(秒)と速度向上率.

			# handles											
		1		2		4		8		16		32		
	1	2672	(1.0)	1382	(1.9)	721	(3.7)	412	(6.5)	284	(9.4)	267	(10.0)	
	2	1769	(1.5)	934	(2.9)	483	(5.5)	286	(9.3)	213	(12.5)	223	(12.0)	
# PU/	4	1028	(2.6)	536	(5.0)	284	(9.4)	186	(14.4)	160	(16.7)	170	(15.7)	
handle	8	621	(4.3)	337	(7.9)	190	(14.1)	136	(19.7)	144	(18.6)			
	16	447	(6.0)	245	(10.9)	145	(18.4)	112	(23.9)					

連立一次方程式について

- □ ソルバー: 前処理付きCOCG法
 - 収束判定:1.0e-8
 - 最大反復回数:300
- □ 前処理:複素シフト付き不完全コレスキー分解
 - シフト量:0.02
 - ドロップ値:0.01

櫻井-杉浦法のパラメータ

- □ 小規模固有値問題の次元数:12
- □ ゴーストの判定:1.0e-6

FMO-MOについて