

Guiding Questions

Questions this project attempted to answer were:

- Which community areas (neighborhoods) in Chicago have the most bike infrastructure, and which have the least?
- Are there areas that show an unmet demand for bike infrastructure?
- Can I predict bike infrastructure levels based on demographic data?

Background

- Chicago is divided into 77 official "Community Areas"
- They typically represent 1-3 neighborhoods grouped together

Why choose Community Areas for my analysis?

- Easiest way to convey neighborhood information to typical Chicago residents
- More static and concise than Wards

Bike Infrastructure

- Bike Lanes
- Bike Shops (repair and sales)
- Bike Racks
- Divvy Stations (bike sharing program)

- Darker green = higher bike infrastructure score
- See Tableau Dashboard for more detailed map [link]

Top 6 Communities by Bike Infrastructure

Communities with Lowest Bike Infrastructure

Data Sources and Processing

Bike Infrastructure Score Calculation

How Bike Infrastructure Score is Calculated

- Bike Lanes were calculated as a percent of total length of street within community area
- Bike Shops, racks and Divvy stations were calculated per capita within community area
- These calculations were then normalized and combined into a score 0-100

Bike Infrastructure Need Calculation

- To calculate comparative need for bike infrastructure, I used
 Divvy bike trips as a proxy for bike usage within a community
- I sampled the Divvy trip data, and used the month of June
 2019 for my calculations
- [Bike Usage Score] [Bike Infrastructure Score] = Need

Infrastructure Need Results

- Darker green = higher bike
 infrastructure need score
- See Tableau Dashboard for more detailed map [link]

Communities with Unmet Infrastructure Needs

Machine Learning

- As machine learning was a requirement of my project, I applied K
 Means clustering to the community areas using demographic
 data
- The communities were clustered into 4 groups, according to similar demographic data

K Means Clusters by Hardship Index

Machine Learning Results

Conclusion

- Bike infrastructure is not evenly distributed throughout the city
- The neighborhoods on the north side of the city, as well as along the lake, have more bike infrastructure

Conclusion

- The Near North Side has a strong need for more bike infrastructure, namely more bike lanes
- Other areas (Fuller Park, Hermosa) would benefit immediately from more bike infrastructure

Communities with Unmet Infrastructure Needs

Limitations

- No bike lane usage data was available Divvy trips were used as a proxy, but not all cyclists use Divvy
- Bike infrastructure score as calculated in an arbitrary way (based on my experience as a cyclist in Chicago and interviewing others)
- Community areas are good for communicating with the public, but aldermanic wards are probably a better way if the goal is to add more bike lanes

Further Directions

- Update data are more bike lanes are installed and maps are updated
- Analyze data by wards in order to communicate with member of City Council