Математический анализ 1. Направление 38.03.01 Экономика Семинар 2.4. Дифференцирование – I.

Частные производные и дифференциал функций двух переменных

- 1. Найдите частные производные функции f(x,y). Выпишите ее градиент и дифференциал. Найдите производную по направлению вектора **L** в точке (x_0, y_0) и выпишите уравнение касательной плоскости к поверхности z = f(x,y) в точке $(x_0, y_0, f(x_0, y_0))$ для любой (x_0, y_0) , где это возможно, и указанной конкретной (x_0, y_0) :
 - (1) f(x,y) = 2x + 3y, $\mathbf{L} = (3,-2)$, $(x_0, y_0) = (1,1)$;
 - (2) f(x,y) = xy, $\mathbf{L} = (1,-1)$, $(x_0, y_0) = (1,1)$;
 - (3) $f(x,y) = x^3 + y^3 3xy$, $\mathbf{L} = (1,2)$, $(x_0, y_0) = (1,1)$;
 - (4) $f(x,y) = xy^2(4-x-2y)$, $\mathbf{L} = (1,1)$, $(x_0, y_0) = (1,1)$;
 - (5) $f(x,y) = x^y$ (где x > 0), $\mathbf{L} = (2,3)$, $(x_0, y_0) = (1,1)$;
 - (6) $f(x,y) = x\sin(x+y)$; $\mathbf{L} = (3,-4), (x_0,y_0) = (0,\pi)$;
 - (7) $f(x,y) = \operatorname{tg} \frac{x^2}{y}$; $\mathbf{L} = (-2,1), (x_0, y_0) = (\pi, \pi).$
- 2. Найдите частные производные функции f(x,y). Выпишите ее градиент и дифференциал. Найдите производную по направлению вектора **L** в точке (x_0, y_0) и выпишите уравнение касательной плоскости к поверхности z = f(x,y) в точке $(x_0, y_0, f(x_0, y_0))$ для любой (x_0, y_0) , где это возможно, и указанной конкретной (x_0, y_0) :
 - (1) f(x,y) = 3x 2y, $\mathbf{L} = (-3,2)$, $(x_0, y_0) = (1,1)$;
 - (2) $f(x,y) = \operatorname{arctg} \frac{y}{x}$ (где $x \neq 0$), $\mathbf{L} = (3,-2), (x_0,y_0) = (2,3);$
 - (3) f(x,y) = xy(3-x-y), $\mathbf{L} = (1,1)$, $(x_0, y_0) = (0,0)$;
 - (4) $f(x,y) = x^2 + 2y^2 2x^4 y^4$, $\mathbf{L} = (1,-1)$, $(x_0, y_0) = (1,0.5)$;
 - (5) $f(x,y) = \frac{2xy}{x^2 + y^2}$ (где $(x,y) \neq (0,0)$), $\mathbf{L} = (1,-1), (x_0,y_0) = (1,1)$;
 - (6) $f(x,y) = \log_x y$ (где $x > 0, x \neq 1, y > 0$), $\mathbf{L} = (2,3), (x_0, y_0) = (2,2).$
- 3. Найдите частные производные и дифференциал следующих функций:
 - $(1)\ f(x,y) = Ax^{\alpha}y^{\beta},\ A>0,\ 0<\alpha<1,\ \alpha+\beta=1$ (производственная функция Кобба-Дугласа);
 - (2) $f(x,y) = A(\alpha x^{-\beta} + (1-\alpha)y^{-\beta})^{-\frac{1}{\beta}}$, A > 0, $0 < \alpha < 1$, $\beta > -1$, $\beta \neq 0$ (производственная функция с постоянной эластичностью замещения).
- 4. Найдите частные производные и дифференциал следующих функций:
 - $(1)\ f(x,y,z)=Ax^{\alpha}y^{\beta}z^{\gamma},\ A>0,\ \alpha,\beta,\gamma\in(0,1),\ \alpha+\beta+\gamma=1$ (производственная функция Кобба-Дугласа);
 - (2) $f(x,y,z) = A(\alpha x^{-\gamma} + \beta y^{-\gamma} + (1-\alpha-\beta)z^{-\gamma})^{-\frac{1}{\gamma}}, A > 0, \alpha, \beta \in (0,1), \gamma > -1, \gamma \neq 0$ (производственная функция с постоянной эластичностью замещения).

1

- 5. Найдите дифференциал функции:
 - (1) $f(x,y) = a^{\ln(x^2+y^2)\cdot\arcsin\frac{y}{x}}, a > 0$ (при $\left|\frac{y}{x}\right| < 1, x \neq 0$);
 - (2) $f(x,y) = (\sin x)^y$ (при $\sin x > 0$);
 - (3) $f(x,y) = (\sin x)^{\ln(x^2+y^2)\cdot \arcsin\frac{y}{x}}$ (при $\sin x > 0$, $\left|\frac{y}{x}\right| < 1$).
- 6. Найдите дифференциал функции:
 - (1) $f(x,y) = a^{\ln(x^2+y^2)\cdot\arcsin\frac{x}{y}}, \ a > 0 \ (\text{при} \left|\frac{x}{y}\right| < 1, \ y \neq 0);$
 - (2) $f(x,y) = (\cos x)^y$ (при $\cos x > 0$);
 - (3) $f(x,y) = (\cos x)^{\ln(x^2+y^2)\cdot\arcsin\frac{x}{y}}$ (при $\cos x > 0$, $\left|\frac{x}{y}\right| < 1$, $y \neq 0$).
- 7. Найдите частные производные и производную по любому направлению $\ell = (\cos \varphi, \sin \varphi)$ функции:
 - (1) $f(x,y) = 3x + 4y + 12xy + x^2 + 2y^2$; (2) $f(x,y) = x^4 + 3y^5 2x^2y^3$.

Частные производные и дифференциал функции трех переменных

- 8. Найдите частные производные функции f(x, y, z). Выпишите ее градиент и 1-й дифференциал. Найдите производную по направлению **L** в любой точке (x_0, y_0, z_0) и указанной конкретной (x_0, y_0, z_0) :
 - (1) f(x, y, z) = 2x + 3y + 4z, $\mathbf{L} = (2, 3, 4)$, $(x_0, y_0, z_0) = (1, 1, 1)$;
 - (2) $f(x, y, z) = x^2 + y^2 + z^2$, $\mathbf{L} = (1, 2, -1)$, $(x_0, y_0, z_0) = (1, 2, 3)$;
 - (3) $f(x, y, z) = xy^2z^3(7 x 2y 3z), \mathbf{L} = (1, 1, 1), (x_0, y_0, z_0) = (1, 1, 1);$
 - (4) $f(x, y, z) = x^3 + x + y + xyz$, $\mathbf{L} = (1, 1, 1), (x_0, y_0, z_0) = (1, 1, -1).$
- 9. Найдите частные производные функции f(x,y,z). Выпишите ее градиент и 1-й дифференциал. Найдите производную по направлению **L** в любой точке (x_0,y_0,z_0) и указанной конкретной (x_0,y_0,z_0) :
 - (1) $f(x, y, z) = x^2 y^2 + 2z^2$, $\mathbf{L} = (1, 6, -5)$, $(x_0, y_0, z_0) = (2, 3, 4)$;
 - (2) $f(x, y, z) = x^2 y^3 z^4 (10 2x 3y 4z), \mathbf{L} = (1, 0, 1), (x_0, y_0, z_0) = (1, 1, 1);$
 - (3) $f(x, y, z) = x^3 + x + y + xyz$, $\mathbf{L} = (1, 1, 1)$, $(x_0, y_0, z_0) = (1, 1, -1)$.
- 10. Найдите частные производные и производную по произвольному направлению $\ell = (\cos \alpha, \cos \beta, \cos \gamma)$, где $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$, функции:
 - (1) f(x, y, z) = x + y + z + xy + xz + yz; (2) f(x, y, z) = xyz(4 x y z).

Производная векторной функции одной вещественной переменной

2

11. Найдите уравнение касательной к параметрической кривой γ при $t=t_0$:

(1)
$$\gamma(t) = \begin{pmatrix} \frac{1}{t+1} \\ \frac{t}{t+1} \end{pmatrix}$$
, $t_0 = 1$; (2) $\gamma(t) = \begin{pmatrix} e^{2t} \\ 1+t+t^2 \\ t \ln t \end{pmatrix}$, $t_0 = 1$;

(3)
$$\gamma(t) = \begin{pmatrix} 3\sin t \\ 4\cos t \end{pmatrix}, t_0 = \frac{\pi}{4};$$
 (4) $\gamma(t) = \begin{pmatrix} 1 - t + t^2 \\ 2 + 2t - t^2 \\ t \end{pmatrix}, t_0 = 1.$

12. Выполнив параметризацию, найдите уравнение касательной к кривой:

$$(1) \ \boldsymbol{\gamma} : \frac{x^2}{4} + \frac{y^2}{9} = 1 \ \text{в точке} \ A\Big(1, \frac{3\sqrt{3}}{2}\Big); \quad \hbox{(2)} \ \boldsymbol{\gamma} : x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1 \ \text{в точке} \ A\Big(\frac{1}{8}, \frac{3\sqrt{3}}{8}\Big).$$

Исследование функции на дифференцируемость

13. Исследуйте функцию f на дифференцируемость в точке (0,0):

$$(1) \ f(x,y) = \begin{cases} \frac{x^4}{x^2 + xy + y^2}, & (x,y) \neq 0 \\ 0, & (x,y) = 0 \end{cases}; (2) \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq 0 \\ 0, & (x,y) = 0 \end{cases};$$

(3)
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & (x,y) \neq 0 \\ 0, & (x,y) = 0 \end{cases}$$

14. Найдите все значения параметра α , при которых функция f:

$$(1) \ f(x,y) = \begin{cases} \frac{x^{\alpha}}{x^2 + y^2}, & (x,y) \neq 0 \\ 0, & (x,y) = 0 \end{cases}; \quad (2) \ f(x,y) = \begin{cases} (x^2 + y^2)^{\alpha} \sin \frac{1}{x^2 + y^2}, & (x,y) \neq 0 \\ 0, & (x,y) = 0 \end{cases}$$

обладает свойствами:

- а) она непрерывна в точке (0,0);
- б) она дифференцируема в точке (0,0);
- в) она имеет непрерывные в точке (0,0) частные производные.

Матрица Якоби

15. Выпишите матрицу Якоби заданной функции в указанной точке:

(1)
$$f(x,y) = xy$$
, (x_0,y_0) – произвольная точка;

(2)
$$\mathbf{f}(x) = \begin{pmatrix} x^2 \\ x^3 \\ x^4 \end{pmatrix}$$
, $x_0 = 1$; (3) $\mathbf{f} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ xy \\ \frac{x}{y} \end{pmatrix}$, $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$;

(4)
$$f(x,y) = x^2 - xy + y^2$$
, (x_0, y_0) – произвольная точка;

(5)
$$\mathbf{f}(x) = \begin{pmatrix} \sin x \\ \cos x \\ \tan x \end{pmatrix}, x_0 = \frac{\pi}{4};$$
 (6) $\mathbf{f}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x^2 + y^2 \\ xy \end{pmatrix}, \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$

Экономические приложения

Два товара называются **взаимно заменяемыми**, если рост спроса на один товар приводит к падению спроса на другой товар; примером таких товаров являются масло и маргарин. С другой стороны, два товара называются **взаимно дополняемыми**, если падение спроса на какой-либо из них влечет падение спроса и на другой; примером таких товаров служат цифровые камеры и карты памяти для них.

Частные производные можно использовать для получения критериев того, являются ли два товара взаимно заменяемыми или взаимно дополняемыми. Пусть при ценах в p_1 у.е. за первый товар и p_2 у.е. на второй товар спрос на них составляет соответственно $D_1(p_1,p_2)$ и $D_2(p_1,p_2)$ единиц. Для взаимно заменяемых товаров верны

неравенства $\frac{\partial D_1}{\partial p_2} > 0$, $\frac{\partial D_2}{\partial p_1} > 0$, а для взаимно дополняемых товаров верны другие неравенства $\frac{\partial D_1}{\partial p_2} < 0$, $\frac{\partial D_2}{\partial p_1} < 0$.

16. Функция спроса на арахисовое масло равна $D_1(p_1, p_2) = 800 - 0.03p_1^2 - 0.04p_2^2$, а функция спроса на второй товар равна $D_2(p_1, p_2) = 500 - 0.002p_1^2 - p_1p_2$. Второй товар с большей вероятностью является мармеладом или хлебом? Объясните свой ответ.

Указание. Установите, являются ли два товара взаимно заменяемыми или взаимно дополняемыми.

- 17. Функция спроса на определенную марку гелевых ручек равна $D_1(p_1, p_2) = 700 4p_1^2 + 7p_1p_2$, а функция спроса на второй товар равна $D_2(p_1, p_2) = 300 2\sqrt{p_2} + 5p_1p_2$. Второй товар с большей вероятностью является карандашами или бумагой? Объясните свой ответ.
- 18. Две конкурентные марки газонокосилок продаются в одном городе. Цена первой марки составляет x у.е. за штуку, а второй y у.е. за за штуку. Местный спрос на первую газонокосилку задается функцией D(x,y).
 - (1) По вашим ожиданиям, как будет меняться спрос на первую марку газонокосилки с ростом x? С ростом y?
 - (2) Сформулируйте свои ответы на пункт (1) как условия на знаки частных производных функции D.
 - (3) Если D = a + bx + cy, то что можно сказать о знаках коэффициентов b и c на основе пп. 1 и 2?