PROBLEM SETS FOR INTRODUCTION TO ENUMERATIVE GEOMETRY

FULVIO GESMUNDO

ABSTRACT. This document collects a few problems which should be useful to practice on the material that is covered during the lectures.

Lecture 1

Problem 1. Let V be a vector space of dimension n+1 and let $\nu_{d,n}: \mathbb{P}V \to \mathbb{P}S^dV$ be the Veronese embedding. Show that if $X \subseteq \mathbb{P}V$ is a variety of dimension k and degree e, then $\nu_{d,n}(X)$ has degree d^ke .

In particular, the degree of a k-dimensional subvariety of $\nu_{d,n}(\mathbb{P}V)$ is a multiple of d^k .

Problem 2. Let

$$\Psi = \{ (p, q, r) \in \mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n : p, r, s \text{ are collinear} \}.$$

Show that Ψ is a subvariety of $\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n$ of codimension n-1.

Determine the class $[\Psi]$ in the Chow ring $CH(\mathbb{P}^n \times \mathbb{P}^n \times \mathbb{P}^n)$.

Note: The Chow ring of a product of several projective spaces is what one expects. If $\dim V_i = n_i + 1$, then

$$CH(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_s) = \mathbb{Z}[\alpha_1, \dots, \alpha_s]/(\alpha_1^{n_1+1}, \dots, \alpha_s^{n_s+1})$$

where α_j is identified with the class of the pull back of the hyperplane section in $\mathbb{P}V_j$ via the projection map. In other words

$$\alpha_j = [\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_{j-1} \times H_j \times \mathbb{P}V_{j+1} \times \cdots \times \mathbb{P}V_s].$$

Problem 3. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables. Let

$$\mathcal{T} = \{f : f = \ell_1 \ell_2 \ell_3 \text{ for some linear forms } \ell_i \},$$

that is the space of *triangles* (i.e., cubic curves which are union of three lines).

Determine the dimension and the degree of \mathcal{T} .

Hint: Write \mathcal{T} is the image of a map defined on $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Problem 4. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables, that is the space of plane cubic curves. Let

$$\mathcal{A} = \{f : f = \ell_1 \ell_2 \ell_3 \text{ for some linear forms } \ell_i \text{ with a common zero}\}\},$$

that is the space of asterisks (i.e., cubic curves which are union of three lines passing through the same point).

Determine the dimension and the degree of A.

Hint: It is similar to the previous problem, but one needs something more complicated than $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$.

Problem 5. Let $\mathbb{P}S^3\mathbb{C}^3$ be the space of homogeneous polynomials of degree 3 in three variables, that is the space of plane cubic curves. Let

$$C = \{ f = \ell_1^2 \ell_2 : \ell_i \text{ is a linear form} \},$$

that is the space of cubic curves which are union of a double line and a line.

Determine the dimension and the degree of C.

Lecture 2

Problem 6. Let $C_1, C_2 \subseteq \mathbb{P}^3$ be two curves of degree d_1, d_2 respectively and genera g_1, g_2 respectively. Suppose C_1, C_2 are in general position with respect to each other. How many lines are secant both two C_1 and C_2 ?

Problem 7. Let C be a smooth non-degenerate curve in \mathbb{P}^3 of degree d and genus g. Let

$$TC = \{\Lambda \in G(2,4) : \Lambda = T_pC \text{ for some } p \in C\}.$$

What is the class of TC in G(2,4)?

Problem 8. Let $S_1, \ldots, S_4 \subseteq \mathbb{P}^3$ be four surfaces with $\deg(S_i) = d_i$ in general position. How many lines are tangent to all of them?

Problem 9. Let C be a smooth non-degenerate curve of degree d and genus g in \mathbb{P}^3 . Let S be a smooth surface of degree e. Suppose C and S are in general position with respect to each other. How many lines are tangent to both S and C?

Problem 10. Let $X \subseteq G(2,4)$ be an irreducible variety of codimension 2. Then $[X] = \alpha \sigma_2 + \beta \sigma_{1,1}$. Show that if $\alpha = 0$ then $\beta = 1$. What if $\beta = 0$?

Lecture 3

Problem 11. Let C be a smooth non-degenerate curve of degree d and genus g in $\mathbb{P}V$. Let

$$s_2(C) = \overline{\{\Lambda \in G(2,V) : \mathbb{P}\Lambda \text{ is a secant line to } C\}}.$$

Determine the class of $s_2(X)$ in G(2, V).

Problem 12. Let C be a smooth non-degenerate curve of degree d and genus q in $\mathbb{P}V$. Let

$$T(C) = \overline{\{\Lambda \in G(2, V) : \mathbb{P}\Lambda \text{ is a tangent line to } C\}}.$$

Determine the class of T(C) in G(2, V).

Problem 13. In G(3,6), compute the product

$$\sigma_{2,1} \cdot \sigma_{2,1}$$
.

Problem 14. Let λ be a partition contained in the $k \times (n-k)$ box and let Σ_{λ} be the corresponding Schubert variety in G(k,n). Consider the identification

$$i: G(k,n) \to G(n-k,n)$$

Show that i maps Σ_{λ} to Σ_{λ^T} , where λ^T is the partition in the $(n-k) \times k$ whose Young diagram is the transpose of the Young diagram of λ .

PROBLEM SETS

Problem 15. Let X be an irreducible smooth variety of codimension c and degree d in $\mathbb{P}V$. Let

$$H(X) = \{ \Lambda \in G(c, V) : \mathbb{P}\Lambda \cap X \neq \emptyset \}.$$

This is the Chow form of X.

- Prove that $\operatorname{codim}_{G(c,V)}(H(X)) = 1;$
- Determine the class [H(X)] in $CH^1(G(c,V))$.

Lecture 4

Problem 16. Prove the statements about global sections mentioned during the lectures. In particular prove:

- $H^0(\mathcal{S}) = 0$ where \mathcal{S} is the tautological bundle on G(k, V);
- $H^0(\mathcal{S}^{\vee}) = V^*$ where \mathcal{S}^{\vee} is the dual of the tautological bundle on G(k, V);
- $H^0(\mathcal{Q}) = V$ where \mathcal{Q} is the universal quotient bundle on G(k, V).

Problem 17. Compute the Chern classes of the tangent bundle of G(2,4).

Problem 18. Let X be a generic hypersurface of degree 2n-3 in \mathbb{P}^n . Prove that X contains a finite number of lines and determine this number.

Problem 19. Let X be a generic hypersurface of degree 4 in \mathbb{P}^7 . Prove that X contains a finite number of 2-planes and determine this number.

Problem 20. Let X_1, X_2 be two generic cubic hypersurfaces in general position in \mathbb{P}^5 . How many lines are contained in both of them?