

SURVIVABILITY - SUSTAINABILITY - MOBILITY SCIENCE AND TECHNOLOGY SOLDIER SYSTEM INTEGRATION

TECHNICAL REPORT NATICK/TR-95/008

AD	

VEGETABLE DRYING IN TWO NOVEL FOOD DRYERS

by

Joseph Cohen, Christopher Rees, Linnea Hallberg, and Tom C.S. Yang

19941214 050

November 1994

Final Report

January 1993 - March 1994

Approved for Public Release, Distribution Unlimited

UNITED STATES ARMY NATICK
RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
NATICK, MASSACHUSETTS 01760-5000

SUSTAINABILITY DIRECTORATE

DISCLAIMERS

The findings contained in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

DESTRUCTION NOTICE

For Classified Documents:

Follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For Unclassified/Limited Distribution Documents:

Destroy by any method that prevents disclosure of contents or reconstruction of the document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway Suite 1204 Artifactor VA 22202-4303, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188) Washington DC 20503

Davis Highway, Suite 1204, Arlington, VA 22202-4302	2, and to the Office of Management and	Budget, Paperwork Reduction Proj	eject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
	November, 1994	Final January	y 1993 - March 1994
4. TITLE AND SUBTITLE VEGETABLE DRYING IN TWO	O NOVEL FOOD DRYEF	as	5. FUNDING NUMBERS
6. AUTHOR(S)	YY-111 1		FTBB 1313 PR: ID:TB-PST
Joseph Cohen, Christopher Rees, L Tom C.S. Yang	innea Hallberg, and		
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
			REPORT NUMBER
U.S. Army Natick Research, Devel Kansas St. ATTN: SATNC-WRA Natick, MA 01760-5018	opment and Engineering Co	enter	NATICK/TR-95/008
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(E	5)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY STAT	TEMENT		12b. DISTRIBUTION CODE
Approved for public release, distrib	ution unlimited		
and a ball dryer (BD) were studied.	For the CB those parameters were BD, the parameters were For the CB the only parameterature of the drying chamber a microwave-augmented from	ers were temperature of the rotational speed of the dreter that significantly affecter and the rotational speed executive (MW). All the	eed of the drying balls were
14. SUBJECT TERMS CARROTS	DRYING FOOD	9	15. NUMBER OF PAGES
VEGETABLES DRIED VEGET.			40
PEAS DRYING APPA BEANS FREEZE DRYIN	RATUS AIR SPEED		16. PRICE CODE
17. SECURITY CLASSIFICATION 18.	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	CATION 20. LIMITATION OF ABSTRAC
Unclassified Unclassified	assified	Unclassified	

TABLE OF CONTENTS

List of Figures	iv
List of Tables	v
Preface	vii
Summary	1
Introduction	1
Equipment	3
Control of Flow Rate of Air with the CB	5
Procedure	5
Centrifugal Fluidized Bed Dryer	5
Ball Dryer	7
Freeze-Dryer	7
Quality Analyses	7
Rehydration Ratio	9
Shear Force	9
Reflectance Color	9
Results and Discussion	9
Centrifugal Fluidized Bed Dryer	9
Experimental Design for CB Drying	9
Ball Dryer	15
Quality Comparison	17
Conclusions	17
References	24
Appendix - Mapping of Flow	2 5

Accesion For
NTIS CRA&I
OTIC TAB
Unannounced
Justification
e - Colonia - Anno 1991 e mare real (en presente d'anne materiales (antità de la colonida del la colonida de la colonida del la colonida de la colonida de la colonida del la colonida de la colonida del la colonida
en e
1212 Iba rion /
Avriability Codes
Avail and/or
Special Special
^ .
4-1

LIST OF FIGURES

		Page
1	Schematic Diagram of Centrifugal Fluidized Bed Dryer	4
2	Schematic Diagram of Ball Dryer	6
3	Schematic Diagram of Microwave Augmented Freeze-Dryer	8
A-1	Positions for Flow Rate Measurements	26
A- 2	Mathematica ™ Plot of Anemometer Readings (cfm) as a Function of Position	31
A-3	Flow Rate as a Function of Fixed Velocity Probe Reading	34

LIST OF TABLES

	Page
1. Experimental Data for First Set of CB Runs	10
2. Analysis of Variance for First Set of CB Runs	11
3. Response Surface for First Set of CB Runs	11
4. Correlation between Processing Temperature and Final Mass	12
5. Final Percent Moisture	13
6. Experimental Data for Second Set of CB Runs	14
7. Analysis of Variance for Second Set of CB Runs	15
8. Effect of Operating Parameters on the Final Moisture Content and	
Drying Time with Peas in the Ball Dryer	16
9. Analysis of Variance for Final % Moisture for Ball Dryer	16
10. Rehydration Ratio of Vegetables	18
11. Texture Analysis of Rehydrated Vegetables	19
12a. Reflectance Color "L" of Rehydrated Vegetables	20
12b. Reflectance Color "a" of Rehydrated Vegetables	21
12c. Reflectance Color "b" of Rehydrated Vegetables	22
13. Drying Rate of Vegetables	23
A-1. Air Flow Rate as a Function of Opening and Temperature	27
A-2. Flow Rate Data of CB Dryer	
a. Opening as a Function of Flow Rate	33
b. Flow Rate as a Function of the Adjustable Opening	33

PREFACE

A portion of the information in this report on parameters that affect drying of vegetables was presented at the 54th Annual Meeting of the Institute of Food Technologists, 1994, Atlanta, GA. The investigation took place during the period January 1993 to March, 1994. The research was funded by FTBB1313, Program ID:TB-PST.

The citation of trade names in this report does not constitute an official endorsement of the product or item.

VEGETABLE DRYING IN TWO NOVEL FOOD DRYERS

Summary

The parameters that affect the drying of vegetables in a centrifugal fluidized bed dryer (CB) and a ball dryer (BD) were studied.

For the CB those parameters were: temperature of the drying air, air speed, rotational speed of the drying chamber. For the BD the parameters were: rotational speed of the drying balls, temperature of the drying chamber, feed rate to the chamber.

For the CB the only parameter that significantly affected the drying rate was the air temperature. For the BD the parameters of significant importance to the drying rate were the temperature of the drying chamber and the rotational speed of the drying balls.

Peas, green beans and carrots that were dried by these two methods as well as by freeze-drying (FD) and microwave augmented freeze-drying (MW) were compared to frozen, undried product for rehydration, texture and reflectance color.

The rehydration ratio values varied with the product. With peas the BD values were less than all the others. With beans the BD values were greater than all the others. This might be a reflection of the size and shape of the vegetable, relative cellular damage and the surface area covered by intact exterior tissue.

All the dried products were generally softer than the frozen control, except that the ball dried carrots were tougher. This reflects the severity of the drying process on the structural deterioration of the vegetables. The BD carrots seemed to exhibit a case-hardening effect.

There were generally no significant color differences shown except for slight differences for the "a" value of peas. The FD, both conventional and microwave, were less green. The frozen control and BD were more green, although differences were not great.

Introduction

Fluidized bed dryers were first commercialized on a large scale by U.S. petroleum companies during World War II. The technique was first used for catalytic cracking to manufacture gasoline. The industry soon realized that the method was very

versatile and adapted it for such unit operations as fluid-bed coking, catalyst regeneration, platforming and ethylene manufacture. It also was used by the metallurgical and other elements of the chemical processing industry. The technique has the important characteristic of uniformity of both particle size distribution and temperature. This allows the operating conditions to be set within narrow limits, thus allowing scale-up from the laboratory to large commercial units. (Priestley, 1962).

The technique involves levitating particulate solids in an upward-flowing gas stream, usually hot air. The method mobilizes the solid particulates, thus creating intimate contact between the dry, hot carrier gas and the solids. At the proper gas flow rate the solids behave as liquids. Fluidization is dependent on the characteristics of the particles, i.e, size distribution, density, shape and viscosity. Carrier gas properties that contribute to fluidization include density and viscosity. (Rossi, 1984).

A typical commercial fluidized bed dryer used by the chemical industry has a reaction chamber that is fixed in place and is usually cylindrical in shape. The hot gas is typically introduced into the bottom of the preloaded bed and exits at the top. It is usually run as a batch process.

The design of such fluidized beds is well known (Frantz, 1962; Clark, 1967; Zenz, 1977). However, these designs were based on the chemical industry fixed bed reactor. The CB for food items uses a rotating rather than a fixed chamber. This should have the advantage of even more intimate contact between the particles and the carrier gas.

The CB has not been studied with foods in great depth. Farkas et al. (1969) determined that the pressure drop across the fluidized bed increased in proportion to the centrifugal force. Using diced carrots, they determined an equation for the air flow at minimum fluidization. Lazar and Farkas (1971) studied potato, apple and carrot pieces and determined that a skin layer developed during the early stages of drying that became increasingly resistant to heat and moisture transfer. Brown et al. (1972) used a CB to dry various piece-form foods, such as dried vegetables. Carlson et al. (1976) described a method for preparing quick-cooking rice products with a CB.

A well-designed CB would allow air flow rates to be much higher than conventional practical levels that are limited by the moisture migration rate of the particles that are to be dried. This is because the centrifugal force would effectively counteract the force of the air that flows past the particles. Farkas et al. (1969) found that the new limits on the air flow would be a function of the centrifugal force, the pressure and volume of the air, the available heating capacity of the chamber, and the moisture diffusion rate in the piece.

Ball dryers have been less characterized. Best (1988) stated that the enhanced heat transfer rates that occur with the large surface area of the balls would allow a dryer to be run at a relatively low temperature, 140 °F (60 °C), and thus this method should have less food quality degradation than other drying techniques that occur at higher temperatures.

Equipment

The CB used was an APV Mitchell™ (Dryers) Ltd centrifugal fluidized bed dryer. A schematic diagram of the dryer is shown in Fig. 1.

The product to be dried is placed in the drying chamber (A) and the door closed. The chamber is a rotating drum of 30 cm (12 in) diameter and 33 cm (13 in) in depth for a total volume of 23,300 cm³ (1,470 in³). A steam preheater (B) heats outside air that is then sent through the blower (C) and up the inlet tube (D) prior to reaching the chamber. The temperature of the process air is controlled at (E). The rotational speed of the chamber is controlled with a variable speed drive (F). The flow rate of the inlet air is controlled with an opening (G) on the bottom of the column that can be varied to allow different amounts of the process air to escape. There is an additional vent on the top (H), an inlet (I) on the side of the column, and a damper (K) to allow or restrict recirculation of the process air. Air is returned to the preheater through the return line (J). The rotational speed and the temperature is continuously monitored during the actual processing. Temperature can be controlled to ± 2 °C under most conditions. Rotational speed can be controlled to \pm 1 rpm. The flow rate is much more difficult to determine and control as explained below but it is estimated to fall within a range of ± 0.14 m³/s (± 5 ft³/s). After each run the mass of the finished product was weighed with a scale that could measure ± 0.05 g (± 0.01 lb).

Figure 1 - SCHEMATIC DIAGRAM OF CENTRIFUGAL FLUIDIZED BED DRYER

The BD used was a Precision Drying Systems Model 25NTM ball dryer. A schematic diagram of this dryer is shown in Fig. 2. The material to be dried is added at the top of the drying chamber through a screw conveyor. It falls into the chamber and comes in contact with rotating heated Teflon TM balls. Heated air is continuously added to the chamber. Upon completion of the drying, the product is separated from the balls and is collected at the bottom of the chamber.

The variation in operating parameters can be controlled closely. Temperature can be controlled to \pm 2 °C. Rotational speed can be controlled to less than 0.2 rpm. The feed rate is more difficult to control and care must be taken to insure that product does not jam up on the screw.

Control of Flow Rate of Air with the CB

It was realized at the start of this study that the flow rate would be very important to the drying process. The temperature and rotational speed could both be measured continuously during the drying process, but the flow rate could not. The flow rate would change with the temperature of the inlet air and with position within the inlet tube. The rate is a function of the amount of air entering, but this could not be easily measured.

The solution to this problem was to cut a rectangular hole in the bottom of the inlet tube with a covering that could be varied. The size of the hole could then be changed to allow different amounts of process air to escape. The flow rate at different points of a cross section within the inlet tube (Fig. A-1) was then measured, at different temperatures, and then numerically integrated to determine an estimate of the total flow rate. (This is shown in the Appendix.)

Procedure

Frozen whole peas of 0.8 to 1.0 cm (0.3 to 0.4 in) diameter, diced carrots of 0.8 to 1.0 cm on a side and cut green beans of 0.8 to 1.0 cm diameter and 2.8 to 3.0 cm (7.1 to 7.6 in) in length were used in this study. The initial moisture content of the vegetables was as follows: Peas - 74%, carrots - 93%, and beans - 90%.

Centrifugal Fluidized Bed Dryer

To determine the significance of the operating parameters, 1.82 kg (3.96 lb) of

Figure 2 - SCHEMATIC DIAGRAM OF BALL DRYER

frozen vegetables were placed in the preheated chamber after the inlet tube opening was set. The chamber temperature control was preset. The individual runs were made beginning with the lowest temperature and finishing at the highest. Depending on the temperature, the time to achieve the operating temperature was typically 2 to 5 minutes. The operating conditions were maintained during each individual run. Each run was terminated after 15 minutes. The vegetables were then removed from the chamber and weighed. A sample of the vegetable was removed for moisture determination and maintained in a closed container at refrigerated conditions. This procedure for determining moisture was done for all the samples within 48 hours of completion of the run. The determinations were done with a Computrac Max 50^{TM} instrument.

For the drying time comparison study, 1.5 kg (3.3 lb) of vegetables was used for each run.

Ball Dryer

For all the studies with this dryer, 1.5 kg (3.3 lb) of vegetables were used. The chamber was preheated to the desired temperature. The other parameters were set. The entire product was placed in the feed hopper. The run was terminated when no further product emerged. The beans were too large to be fed through the screw so they had to be added by hand through the top of the drying chamber at a rate that simulated that of the feed screw. When collected they were shredded in strips lengthwise and had the appearance of French-style beans

Freeze-Dryer

For purposes of drying rate comparison, additional peas were freeze-dried (FD) and freeze-dried with microwave power augmentation. A Cober Electronics TM microwave freeze-dryer was used. A schematic diagram of this equipment is shown in Fig. 3. The microwave power was set at 500 watts. Again, 1.5 kg (3.3 lb) were used for each run.

Quality Analyses

Various instrumental studies were made on the rehydrated products to determine quality differences.

Figure 3 - SCHEMATIC DIAGRAM OF MICROWAVE AUGMENTED FREEZE-DRYER

Rehydration Ratio

The product to be measured was placed in 600 to 800 mL of boiling water. It was 7 continuously stirred for two minutes while in the boiling water. The water was then drained off through a No. 150 mesh metal screen, the product cooled and the mass of the drained product measured. The rehydration ratio is defined as the ratio of the increase in mass divided by the initial mass.

Shear Force

An SMS-TAXT2 TexturometerTM was used for these measurements. A single 0.3×6.5 cm $(0.12 \times 2.4$ in) blade was used. Individual rehydrated vegetables were placed over the entire length of the slit. Seven to eight whole peas, carrot cubes, or green bean slices were used for each measurement. The beans were placed so that the cross section was over the slit.

Reflectance Color

A Pacific Systems Spectrogard Reflectometer, Model 96™ was used to measure the color of rehydrated vegetables. A 3.3 cm (1.3 in) thick quartz cell was used to hold the samples being measured. A single reading was taken on each side of the cell through an aperture of 0.5 cm² (0.04 in²). Hunter "L", "a" and "b" measurements were made. A greater "L" value indicates a lighter color. A greater "a" value indicates more red, less green. A greater "b" value indicates more yellow, less blue.

Results and Discussion

Centrifugal Fluidized Bed Dryer

The experimental data for the first series of experiments is shown in Table 1 This data consists of the final mass of partially dried vegetables and the final measured moisture level for each of the 19 sets of processing conditions.

Experimental Design for CB Drying

A response surface methodology was used to determine the optimum parameters for drying rate with this equipment. Three variables (air flow rate, drying temperature and drum rotational speed) were used to change the operating conditions in a set of 19 runs. The temperatures ranged from 40 to 90 °C

(104 to 194 °F), the rotational speed from 30 to 180 rpm, the flow rate from 0.42 to 0.84 m³ (15 to 30 ft³) per second. The data for the percent of the initial moisture removed is calculated from the initial moisture and the final mass.

TABLE 1 - EXPERIMENTAL DATA FOR FIRST SET OF CB RUNS

Temp.		Flow	Final Mass low <u>kg</u>			Final % Moisture (% initial Moisture Removed)		
Run	oC	RPM	$m^{3/s}$	Peas	Carrots	Peas	Carrots	
1	40	105	0.56	1.17	1.38	64.40 (40)	00.04 (26)	
-						64.42 (48)		
2	50	60	0.42	1.19	1.07	66.42 (47)		
3	50	150	0.42	1.31	1.29	69.14 (38)	90.18 (31)	
4	50	60	0.70	1.09	0.92	62.94 (54)	85.27 (53)	
5	50	150	0.70	1.20	1.19	67.08 (46)	89.54 (37)	
6	65	30	0.56	1.02	0.73	60.38 (59)	82.29 (64)	
7	65	105	0.28	1.01	1.05	60.57 (60)	78.38 (44)	
8	6 5	105	0.56	1.01	0.98	60.57 (60)	88.13 (50)	
9	65	105	0.56	1.00	1.05	61.33 (61)	86.89 (46)	
10	6 5	105	0.56	1.01	0.95	60.08 (60)	85.91 (51)	
11	6 5	105	0.84	1.01	0.88	57.94 (60)	86.47 (56)	
12	65	180	0.56	1.04	0.80	61.55 (58)	82.99 (60)	
13	80	60	0.42	0.91	0.58	56.29 (67)	78.83 (75)	
14	80	150	0.42	1.06	0.75	64.59 (56)	84.59 (63)	
15	80	60	0.70	0.88	0.57	55.07 (70)	75.72 (75)	
16	80	150	0.70	0.97	0.74	58.90 (63)	82.69 (64)	
17	90	105	0.56	0.89	0.68	54.33 (69)	, ,	
18	50	105	0.56	1.04	1.15	60.13 (58)	89.20 (40)	
19	80	105	0.56	0.88	0.63	54.90 (70	` '	

The mass had a correlation with the percent moisture of -0.963 with the peas and -0.832 with the carrots. Since the final mass measured the mass of all the vegetables while the moisture was determined from a sample of the vegetables, the data for the final mass was that used for the statistical analyses.

Table 2 presents the analysis of a subset of the data, based on two conditions of each of the variables.

TABLE 2 - ANALYSIS OF VARIANCE FOR FIRST SET OF CB RUNS (RUNS 2 - 5, 13 - 16)

		Peas	Ca	Carrots		
Factor	F	Signif.		Signif.		
Temperature	32.64	89.0	102.65	93.7		
rpm	5.58	74.5	18.32	85.4		
Flow Rate	4.91	73.0	30.35	88.6		
Temperature x rpm	0.04	12.6	9.00	79.5		
Temperature x Flow Rate	3.24	67.8	21.16	86.4		
rpm x Flow Rate	1.96	60.5	1.00	50.0		

Table 3 is the response surface analysis of the first set of CB data.

TABLE 3 - RESPONSE SURFACE FOR FIRST SET OF CB RUNS (RUNS 1 - 17)

	F	Peas	Carrots	
Factor	F	Signif.	F	Signif.
Temperature	18.61	>99.9%	80.0	>99.9%
rpm	1.35	nsd	20.5	>99.9%
Flow Rate	0.99	nsd	3.54	nsd

These analyses showed that the most significant factor governing the drying rate was that of temperature. The other primary factors of RPM and flow rate can also affect the drying rate, but these are not as important as the temperature. The interaction of temperature and flow rate was the most important, but again, not significant.

No factor was statistically significant with the analysis of variance, primarily because of the small amount of data used in the calculations although temperature was the most important. Temperature was statistically significant with the response surface analysis.

The data from runs 1, 18, 8, 19 and 17 were used to determine a correlation between the processing temperature and the final mass, since this was the most

important factor. All these runs were made at 105 rpm and 0.56 ft³/s. The correlation was -0.954 for the peas and -0.970 for the carrots, which were highly significant. There was a leveling off of the final mass at the very highest temperatures. These data are shown in Table 4.

TABLE 4 - CORRELATION BETWEEN PROCESSING TEMPERATURE AND FINAL MASS

Temperature	Final M	Final Mass, kg		
<u>о</u> С	Peas	Carrots		
40	1.17	1.38		
50	1.04	1.15		
65	1.00	1.00		
80	0.88	0.63		
90	0.89	0.68		

Calculations were made that used the initial moisture values of 74% for the peas and 93 % for the carrots and the known moisture loss to determine a calculated final moisture to compare to the actual measured final moisture. These figures are shown in Table 5.

TABLE 5 - FINAL PERCENT MOISTURE

		Peas			Carrots	
Run	Measured	Calculated	Difference	Measured	Calculated	Difference
1	64.42	60.08	+4.34	90.04	90.08	-0.04
2	66.42	60.69	+5.73	87.27	88.14	-0.87
3	69.14	64.24	+4.90	90.18	90.14	+0.04
4	62.94	57.08	+5.87	85.27	86.13	+0.86
5	67.08	60.98	+6.10	89.54	86.13	-0.90
6	60.38	54.02	+6.36	82.29	82.50	-0.21
7	60.57	53.60	+6.97	78.38	78.46	-0.08
8	59.14	53.40	+5.74	88.13	87.04	+1.09
9	61.33	53.18	+8.15	86.89	87.93	-1.04
10	60.08	53.60	+6.48	85.91	86.67	-0.76
11	57.94	53.60	+4.34	86.47	85.56	+0.91
12	61.55	54.82	+6.73	82.99	84.95	-1.96
13	56.28	48.50	+7.78	78.83	79.71	-0.88
14	64.59	55.98	+8.61	84.59	83.13	+1.46
15	55.07	46.91	+8.16	75.72	77.78	-2.06
16	58.90	51.87	+7.03	82.69	82.72	-0.03
17	54.33	47.45	+6.88	77.31	81.33	-4.02
18	60.13	54.82	+5.31	89.20	88.98	+0.65
<u> 19</u>	54.90	46.91	+7.99	 77.68	79.71	- 2.03

The calculated final moistures were slightly different from the actual final moistures. This fact indicates that there were probably sampling differences within the final products. At any rate, all the other data analyses were based on the values for the final mass.

The processing conditions used for the second set of experimental runs corresponded to Runs 2 to 5 and 13 to 16. These data are shown in Table 6. These runs were all made with 1.5 kg of vegetables and 20 minutes processing time.

TABLE 6 - EXPERIMENTAL DATA FOR SECOND SET OF CB RUNS

	•	Temp.	Flow Rate	Rotat. Speed	Final Mass	% Initial Moisture	Final
Produ		о <u>с</u>	m ³ /s	rom	ka	Removed	% Moisture
A. Be	ans	50	0.42	60	0.56	58	8 3
Be	ans	50	0.42	150	0.75	34	87
B€	ans	50	0.70	6 0	0.47	73	79
Be	ans	50	0.70	150	0.70	42	8 6
Be	eans	80	0.42	60	0.32	49	6 9
Be	ans	80	0.42	150	0.37	87	74
Ве	ans	80	0.70	60	0.30	97	6 8
Be	ans	80	0.70	150	0.44	78	78
B. Pe	as	50	0.42	6 0	0.63	49	61
Pe	as	50	0.42	150	0.60	53	60
Pe	as	50	0.70	6 0	0.56	58	57
Pe	as	50	0.70	150	0.57	56	58
Pe	as	80	0.42	60	0.47	70	49
Pe	as	80	0.42	150	0.47	70	49
Pe	as	80	0.70	60	0.48	6 8	50
Pe	as	80	0.70	150	0.46	71	48
C. Ca	rrots	50	0.42	60	0.47	58	81
Са	rrots	50	0.42	150	0.58	46	85
Ca	rrots	50	0.70	60	0.35	72	75
Са	rrots	50	0.70	150	0.52	53	83
Ca	rrots	80	0.42	60	0.22	86	60
Ca	rrots	80	0.42	150	0.29	78	70
Ca	rrots	80	0.70	60	0.19	89	54
Ca	rrots	80	0.70	150	0.27	80	68

The data for all three products was combined for the percent mass removed and the percent moisture removed. The analysis of variance for these data are shown in Table 7.

TABLE 7 - ANALYSIS OF VARIANCE FOR SECOND SET OF CB RUNS LEADING TO

	% Mass	Remove	<u>d</u>	% Mois	t. Removed
Factor	F	Signif.	df	F	Signif.
Temperature	308	95%	1/2	613	95%
Flow Rate	9.9	nsd	1/2	17.9	nsd
Rotational Speed	52.1	95%	1/2	94.3	95%
Product	76.9	95%	2/2	28.0	95%
Temp. x Flow Rate	9.9	nsd	1/2	20.6	95%
Temp. x Rotational Speed	7.4	nsd	1/2	11.9	nsd
Temp. x Prod.	14.9	nsd	2/2	68.1	95%
Flow Rate x Rotational Speed	22.3	95%	1/2	5.5	nsd
Flow Rate x Product	1.0	nsd	2/2	1.0	nsd
Rotational Speed x Product	17.4	nsd	2/2	34.6	95%
Temp. x Flow Rate x Rot. Speed	0.2	nsd	1/2	0.6	nsd
Temp. x Flow Rate x Product	0.4	nsd	2/2	1.3	nsd
Temp. x Rot. Speed x Product	2.0	nsd	2/2	3.6	nsd
Flow Rate x Rot. Speed x Product	0.4	nsd	2/2	1.2	nsd

The results from this data is similar to that from the first set. Temperature is the most important factor of the three variables. Rotational speed was also significant. Of course, the product used was significant to the data. Some of the interactions were also significant, specifically flow rate and rotational speed on % mass removed and temperature and flow rate, temperature and product and rotational speed and product on % moisture removed.

Ball Dryer

Conditions were chosen so a three-way analysis of variation could be used to determine the effect of the different operating conditions. The results are shown in Table 8.

TABLE 8 - EFFECT OF OPERATING PARAMETERS ON THE FINAL MOISTURE CONTENT AND DRYING TIME WITH PEAS IN THE BALL DRYER

	Temp.	Feed Rate	Rotational Speed	Final %	Drying Time
Run	°C	%	rpm	Moistu	ure min.
1	60	10	1.5	24.3	105
2	60	10	8.0	62.0	60
3	60	15	1.5	24.6	105
4	60	15	8.0	56.1	6 5
5	71	10	1.5	12.8	155
6	71	10	8.0	43.0	100
7	71	15	1.5	20.4	145
8	71	15	8.0	42.1	100
9	82	10	1.5	5.8	165
10	82	10	8.0	49.3	50
11	82	15	1.5	13.5	150
12	82	15	8.0	52.4	30

Table 9 is the analysis of variance of the data in Table 8.

TABLE 9 - ANALYSIS OF VARIANCE FOR FINAL % MOISTURE FOR BALL DRYER

Factor	F	Signif.	Differences *	
Temperature	189.3	99%	60 71 82	
Feed Rate	12.2	nsd	10% 15%	
Rotational Speed		3588.6	99% 1.5	8.0
Temp. x Feed Rate	18.9	95%		
Temp. x Rotational Speed	58.5	95%		
Feed Rate x Rot. Speed	31.0	95%		

^{*} Conditions underlined are not significantly different from each other.

The temperature and ball speed were significant in their effect on the final moisture content, as were all the interactions. The feed rate was not significant. The most significant factor was the ball rotational speed. This is not surprising as

the ball speed controls the residence time within the drying chamber. There was no difference in the final % moisture between 71 and 82 °C. The lowest temperature, 60 °C, removed significantly less moisture at the end of the run. Unless there were significant quality difference,s it would probably be best to run at 71 °C and the lower rotational speed. However, the operating conditions can be varied to give a desired final moisture content.

Quality Comparison

The rehydration ratio values are shown in Table 10.

The texture values are shown in Table 11.

The reflectance color values are shown in Table 12 a, b and c.

The rehydration ratio values varied with the product. With peas the BD values were less than all the others. With beans the BD values were greater than all the others. With carrots, the BD and CB values were less than the others. This might be a reflection of the size and shape of the vegetable, relative cellular damage and the surface area covered by intact exterior tissue.

All the dried products were generally softer than the frozen control, except that the ball dried carrots were tougher. This reflects the severity of the drying process on the structural deterioration of the vegetables. The BD carrots seemed to exhibit a case-hardening effect.

There were generally no significant color differences shown except for slight differences for the "a" value of peas. The FD, both conventional and microwave, were less green. The control and ball dried were more green, although differences were not great. In the tables, samples connected by a an underline are not significantly different.

Table 13 shows the drying rate. The CB rate was the fastest, followed by the BD rate. The MW rate was slower than either BD or CB but much faster than FD.

Conclusions

This study showed that for CB drying, all three factors of flow rate, rpm and temperature affected the rate of moisture removal, with temperature being the most important. Some experimental conditions do not promote fluidizing and should not be used. Too high a flow rate may tend to push the product onto the walls of the

TABLE 10 - REHYDRATION RATIO (RR) OF VEGETABLES

F	Process	Data	Average	
A. Peas				
	FD	1.1, 1.3	1.2	
	MW	1.4, 1.4	1.4	
	СВ	1.3, 1.6	1.45	
	BD	0.7, 0.8	0.75	
Analysis	of Variar	nce		
Factor		F	Significance	Isd
Treatme	nt	12.32	95%	0.25 BD <u>FD MW CB</u>
D 0	.			
B. Green		4 4 4 4	4.4	
	FD	1.4, 1.4	1.4	
	MW	1.3, 1.1	1.2 1.2	
	CB	1.3, 1.1	2.1	
	BD of Varion	1.8, 2.4	2.1	
•	of Varian			
Factor		F	Significance	Isd
Treatmer	nt	0.088	nsd	NA <u>CB MW FD BD</u>
C. Carrots	s			
	FD	1.7, 1.6	1.65	
	MW	1.9, 2.0	1.95	
	СВ	0.8, 0.7	0.75	
	BD	1.2,1.2	1.2	
Analysis	of Varian	ce		
Factor		F	Isd	
Treatmen	nt	165.97	99%	0.46 CB BD <u>FD MW</u>
			95%	0.28 CB BD FD MW

TABLE 11- TEXTURE ANALYSIS OF REHYDRATED VEGETABLES

All readings at 0.5 speed 15.0 mm travel length, single 0.3 x 6.5 cm blade. Seven to eight vegetables were used to completely cover the slit. All values are in Newtons.

	Process	Data		Average	Standard Deviation
A. Peas					•
	Control	66, 67, 59,		63.3	3.9
	FD MW	62, 63, 59, 58, 66, 40,		61.8 52.5	1.9 11.7
	CB	47, 53, 57,		50.0	6.2
	BD	42, 38, 47,		43.3	4.1
Analysi	s of Variar	nce			
Factor		F	significance	Isd	
Treatm	ent	6.62	99%	4.3	BD CB MW FD CN
			95%	3.4	BD <u>CB MW</u> <u>FD CN</u>
B. Gree	n Beans				
	Control	253, 275, 3		266.5	28.6
	FD	98, 116, 1	•	122.0	19.4
	MW	106, 86, 1		103.5 140.0	13.2 24.3
	CB BD	129, 169, ¹ 79, 83,	•	96.3	18.7
Analysi	s of Variar	•			X.
Factor		F	significance	isd	
Treatm	ent	, 42.05	99%	14.3	BD MW FD CB CN
11000111	O110	12.00	33,0	11.1	BD MW FD CB CN
C. Carro	ots Control	116, 154, ¹	117 228	156.3	57.3
	FD	93, 84,		79.0	15.4
	MW	•	87, 109	74.8	31.4
	CB	94, 99,	•	73.3	42.6
	BD	222, 280, 2		217.8	51.1
Analysi	s of Variar	nce			
Factor		F	significance	Isd	
Treatm	ent	9.13	99%	10.8	CB MW FD CN BD
				8.3	CB MW FD CN BD

TABLE 12a - REFLECTANCE COLOR "L" OF REHYDRATED VEGETABLES

	Process	Data		Average	Standard Deviation
A Door					
A. Peas	Control FD MW CB BD	23.7, 24.6, 19.0, 21.6, 22.0, 22.5,	, 17.5, 24.0 , 22.5, 23.5 , 21.8, 25.6 , 17.9, 24.1 , 25.9, 18.5	21.5 23.6 22.0 21.6 21.2	4.3 0.9 2.7 2.6 3.4
Analys	is of Varia	nce			
Factor Treatm	ent	<i>F</i> 0.41	significance nsd	lsd NA	BD CN CB MW FD
	en Beans Control FD MW CB BD	23.9, 21.1, 27.3, 16.0, 20.3, 22.0, 29.8, 24.1, nce		21.7 23.2 21.5 21.2 24.3	5.5 2.3 5.4 2.8 3.9
Facto Treatm	ent	<i>F</i> 0.39	significance nsd	Isd NA	FD CB BD MW CN
C. Carro	Control FD MW CB BD	28.1, 26.4, 25.8, 27.6, 43.0, 32.6, 33.3, 23.3, 31.1, 28.9,	27.0, 31.7 38.6, 28.9 18.6, 30.4	26.0 28.0 35.8 26.4 27.2	1.9 2.6 6.3 6.7 5.0
Factor Treatme	s of Variar ent	F 2.75	significance nsd	lsd NA	CN FD BD MW CB

TABLE 12b - REFLECTANCE COLOR "a" OF REHYDRATED VEGETABLES

	Process	Data		Average	Standard Deviation
A. Peas					
	Control	-4.3, -2.3, -	1.8, - 4.3	-3.2	1.3
	FD	-4.3, -5.3, -4	4.0, - 5.4	-4.7	0.7
	MW	-3.5, -4.6, -4	4.8, -5.5	-4.6	0.8
	CB	-4.6, -4.3, -	3.1, - 3.8	-4.0	0.7
	BD	-3.3, -3.3, -	3.3, - 3.1	-3.2	0.1
Analysis	of Variar	nce			
Factor		F	significance	Isd	
Treatme	ent	3.2	95%	1.8	CN BD CB MW FD
B. Green	Beans				
	Control	-0.4, -0.4, -0	0.3, -0.3	-0.3	0.1
	FD	-1.8, -1.1, <i>-2</i>	2.3, -1.5	-1.7	0.5
	MW	-2.5, -0.7, -	1.3, -2.5	-1.8	0.9
	CB	-3.0, -7.7, <i>-2</i>	-	- 3.5	2.9
	BD	-1.1, -1.7, -2	2.1, -2.1	-1.8	0.5
Analysis	of Varian	ice			
Factor		F	significance	isd	
Treatme	nt	2.7	nsd	NA	CN FD MW BD CB
C. Carrot:	e				
O. Ourrot.	Control	5.5, 6.6, 7.0	72	6.6	0.8
	FD	1.7, 5.7, 3.0		4.9	3.3
	MW	0.3, 5.0, 0.9	•	1.9	2.2
	CB	3.9, 6.0, 4.2		4.0	1.6
	BD	6.5, 1.4, 2,7		3.4	2.2
Analysis	of Varian		, -,-		
Factor		F	significance	isd	
Treatme	nt	2.6	nsd	NA	MW BD CB FD CN

TABLE 12c - REFLECTANCE COLOR "b" OF REHYDRATED VEGETABLES

•	Process	Data		Average	Standard Deviation
A Dece					
A. Peas	Control FD MW CB	10.2, 10.1 6.7, 7.9,	, 3.5, 8.6 , 9.0, 10.0 , 8.4, 10.8 , 6.5, 8.6	6.5 9.9 8.4 8.2	2.9 0.3 1.7 1.1
	BD	7.0, 6.7,	7.6, 6.6	7.0	0.4
Analysis	of Variar	nce			
Factor Treatme	ent	<i>F</i> 2.8	significance nsd	Isd NA	FD BD CB MW CN
B. Green	Beans				
J. G. 66.	Control FD MW CB	8.0, 5.2, 6.7, 5.1, 7.1, 6.8,	3.4, 5.6 7.8, 5.0 4.9, 7.0 7.7, 5.6 6.4, 7.2	5.6 6.5 5.9 6.8 6.6	2.7 1.7 1.1 0.9 0.5
Analysis	of Variar	, ,	J. 1,		
Factor Treatme		<i>F</i> 0.4	significance nsd	lsd NA	CN MW FD BD CB
C. Carrot	s				
	Control FD MW CB BD	6.0, 10.2 4.6, 11.8, 5.3, 8.3,	8.5, 8.7 6.1, 13.0 3.6, 6.4 5.8, 6.9 5.6, 8.1	8.7 8.9 6.6 6.6 5.0	0.3 3.4 3.7 1.4 3.3
Analysis	of Varian	ce			
Factor Treatme	nt	<i>F</i> 1.4	significance nsd	Isd NA	BD MW CB CN FD

TABLE 13 - DRYING RATE OF VEGETABLES All data for a load of 1.5 kg

	Process	Time minutes
A. Peas	(43 - 48% fir	nal H ₂ O)
	FD MW	260 131
	CB BD	20 100
B. Green	n Beans (51	- 69% final H ₂ O)
	FD MW	236 183
	CB BD	20 71
C Carro	ts (57 - 70%	⊊ final HoO\
O. Carlo	FD	275
	MW CB	246 20
	BD	55

chamber. These conditions can be determined when the chamber is opened up at the end of the run. The process removes moisture very quickly. At 65 °C, 58 to 60% of the initial moisture of the peas and 44 to 64% of the initial moisture of the carrots was removed.

For BD drying the only factor that had significance was the rotational speed of the screw coneyor. This is the controlling factor for residence time within the chamber. Temperature of drying was not at all significant, possibly because the conditions chosen were fairly close.

The two processes have significance for use in the development of military rations, many of which have partially dried components of a particle size suitable for CB drying. The studies described here should be followed up with sensory analyses although the quality analyses indicated few differences, if any

References

- Best. D., 1988. Technology ripens opportunities for fruit and vegetable processors. Prepared Foods, 158 Oct. 83
- Brown, G.E., Farkas, D.F. and De Marchena, E.S. 1972. Centrifugal fluidized bed blanches, dries, and puffs piece-form foods. Food Technol. 26 (12): 23
- Carlson, R.A., Roberts, R.L. and Farkas, D.F. 1976. Preparation of quick-cooking rice products using a centrifugal fluidized bed. J. of Food Sci. 41: 1177
- Clark, W.E. 1967. Fluid-bed drying. Chem. Eng. March 13: 177.
- Farkas, D.F., Lazar, M.E. and Butterworth, T.A. 1969. The centrifugal fluidized bed. 1. flow and pressure drop relationships. Food Technol. 23: 1457.
- Frantz, J.F. 1962. Design for fluidization. Chem. Eng. Sept. 17: 161; Oct. 1, 89; Oct. 29: 103.
- Lazar, M.E. and Farkas, D.F. 1971. The centrifugal fluidized bed. 2. drying studies on piece-form foods, J. Food Sci. 36: 315.
- Priestley, R.J. 1962. Where fluidized solids stand today. Chem. Eng. July 9: 125.
- Rossi, R.A. 1984. Indirect heat transfer in CPI fluidized beds. Chem. Eng. Oct. 15: 95.
- Zenz, 1977. How flow phenomena affect design of fluidized beds. Chem. Eng. Dec. 19: 81.

APPENDIX - MAPPING OF AIR FLOW WITHIN CB DRYER

One of the operating parameters of the CB dryer that we wanted to control was the air flow rate. As originally designed, the flow rate was largely constant over the range of loads in the drum and also at different positions of the recirculation damper and top vent. This was accomplished by powering the blower impeller with an abnormally large (25 hp) motor. Economics did not allow us to procure and install a variable speed drive on the blower.

Therefore, an adjustable vent was installed at the point where the blower outlet joins the drum inlet tube. This vent can be opened to allow a portion of the process air to escape the system, thereby reducing the total flow to the drum. One disadvantage to this approach is that at low flow rates the system is more sensitive to variation in loads in the drum than the original design.

Air flow rate data were taken at fixed positions on a selected (rectangular) cross section of the inlet tube. This cross section was selected to be a reasonable distance upstream from the drying drum and as far as practical downstream from the blower impeller. This cross section was divided into 16 identically sized cells. The air flow was measured at the center of each cell with a hot-wire anemometer. The positions are shown in Fig. A-1. A second, temperature-compensated hot wire anemometer was mounted in the same cross section in a fixed position as near to the center of the duct as was practical. This position is labeled F in Fig. A-1.

The air flow for the 16 positions as well as the fixed probe was measured while varying the flow control vent at the bottom of the inlet tube at different temperatures. All the data were taken at standard conditions of 65 rpm, top vent open, recirculation damper closed and a load of 1.8 kg peas. The air flow exhibited short-term semicyclic fluctuations on the order of 5 to 10 seconds. Therefore a procedure was adopted to take each data point during the portion of the cycle when the fluctuation decreased and the flow as indicated by the fixed anemometer was approximately repetitive. These data, in feet per minute, are shown in Table A-1.

The results are plotted in Fig. A-2. These are three Mathematica ™ contour plots of sets of the 16 data points described above, together with the value read from the contour plot at the location of the fixed velocity probe, F, based on three different flow rates at the center. At a lower flow rate (i.e. 400 cfmin) the gradients were large,

Figure A-1 - Positions for Flow Measurements in Cross Section of Inlet Tube Top View Looking Down (Dimensions in cm). 0 = air flow measurement points; F = fixed probe

TABLE A-1 - Air Flow Rate (ft/min) as a Function of Opening and Temperature

		Opening	(inches/cm)		
Position	1.0/2.5	2.0/5.0	3.0/7.5	4.0/10.0	<u>5.0/12.5</u>
A. 40 °C					
1A	5270	5290	4735	2010	
1B	4995	4220	3160	1475	
1C	1405	1395	1185	1010	
1D	3140	2850	1555	640	
2A	5010	3925	2480	1055	
2B	3180	2855	1680	840	
2C	1510	1630	1320	685	
2D	3740	2960	2330	620	
3 A	5060	4180	2930	1090	
3B	3840	2580	1500	930	
3C	1555	1480	1340	665	
3D	3700	2770	2075	720	
4A	5440	5410	5320	3580	
4B	5265	4910	3610	2460	
4C	1500	1345	1095	655	
4D	3265	2620	1860	710	
B. 50 °C					
1A	4990	5120	3270	2035	1125
1B	4525	4410	2610	1480	1000
1C	1170	1235	1055	970	675
1D	3270	2570	1040	575	335
2A	4870	3590	1755	820	550
2B	2810	2670	1300	535	530
2C	1340	1320	1000	650	435
2D	3215	3105	1090	585	470
ЗА	4900	3915	2060	1165	1250
3B	3320	2350	, 1140	720	890
3C	1555	1580	890	730	690
3D	3640	3075	1390	670	715
4A	5290	5070	5040	3560	2775
4B	5170	4300	3010	2030	1790
4C	1340	1200	880	615	570
4D	1450	2530	1710	830	785

TABLE A-1 Continued

Position	Opening (inches/cm)				
	1.0/2.5	2.0/5.0	3.0/7.5	4.0/10.0	
C. 65 °C					
1A	4440	3830	2010	1045	
1B	2080	3065	1630	975	
1C	1090	1265	1270	690	
1 D	2800	1770	680	260	
2A	2895	2985	940	500	
2B	2215	2280	635	415	
2C	1440	1090	605	305	
2D	3070	2110	540	835	
3A	4120	2855	975	490	
3B	2630	2010	870	430	
3C	1090	1245	685	400	
3D	2755	2310	695	340	
4A	4960	4915	2765	1735	
4B	3580	990	570	400	
4C	2970	2360	675	510	
D. 70 °C		•			
1A	4845	3320	2280	1040	
1B	2330	2545	1750	885	
1C	900	1060	890	680	
1D	2580	1810	620	325	
2A	3880	2230	1020	565	
2B	2160	1690	760	390	
2C	1255	1210	620	350	
2D	2740	2290	630	260	
ЗА	4030	2370	1400	760	
3B	3030	1990	810	550	
зС	1140	1180	840	500	
3D	2700	2190	685	240	
4A	4910	4880	, 2990	1770	
4B	46 05	2810	2300	1375	
4C	1410	1130	1080	395	
4D	2990	2170	1260	445	

TABLE A-1 Continued

Position		Opening (ii	(inches/cm)		
	1.0/2.5	2.0/5/0	3.0/7.5	4.0/10.0	
E. 75 °C					
1A	4205	3345	2430	905	
1B	3280	2690	1530	855	
1C	1040	1055	1130	550	
1D	2430	1675	610	300	
2A	3230	2460	1180	445	
2B	2220	1615	73 5	355	
2C	1300	955	715	270	
2D	2640	2115	620	270	
3A	3570	2670	1060	750	
3B	2290	2125	765	580	
3C	1160	975	605	295	
3D	2625	2290	810	450	
4A	4950	4910	2810	1750	
4B	3580	3380	1870	1315	
4C	1140	985	675	345	
4D	2545	1695	925	420	
F. 80 °C					
1A	3370	3240	1650	865	
1B	2240	2775	1355	940	
1C	890	960	870	580	
1D	2510	1670	425	280	
2A	2710	2775	920	415	
2B	1945	970	610	315	
2C	1020	2380	525	300	
2D	2130	2805	475	260	
3A	3300	1930	965	640	
3B	2655	1280	830	475	
3C	1255	900	620	380	
3D	2420	2410	540	330	
4A	4790	4110	2410	1420	
4B	4065	3340	2085	1050	
4C	1070	1250	500	330	
4D	2615	2040	605	530	

TABLE A-1 Continued

Position	Opening (inches/cm)					
G. 85 °C	1.0/2.5	<u>2.0/5/0</u>	<u>3.0/7.5</u>	4.0/10.0		
1A	3290	3370	1325	860		
1B	2575	2155	895	875		
1C	690	855	745	580		
1D	1515	1505	380	305		
2A	2315	1835	420	400		
2B	1675	1500	370	365		
2C	910	965	330	280		
2D	1765	1545	255	250		
3A	2655	2255	610	820		
3B	1760	1375	520	475		
3C	920	915	350	385		
3D	2140	1830	310	410		
4A	4780	3880	1675	1685		
4B	2605	2705	1170	1275		
4C	870	940	320	285		
4D	1830	1345	425	380		
H. 90 °C						
1A	4205	3240	2795			
1B	2415	3070	2150			
1C	760	725	985			
1D	2050	1510	1155			
2A	2500	2405	2160			
2B	1960	1355	1355			
2C	850	790	900			
2D	2360	2080	1465			
ЗА	2640	2125	1900			
3B	2100	1750	1170			
3C	970	875	945			
3D	2360	2080	1465			
4A	4420	3880	4520			
4B	3150	3070	2520			
4C	780	985	730			
4D	1890	2060	1120			

Figure A-2 - MathematicaTM Plot of Anemometer Readings (cf/min) as a Function of Position

ranging from 400 to 1,000 cfmin. As the rate increased (i.e., 670, 790 cfmin), the gradients became smaller (i.e. 600 - 1,000 cfmin) and the higher rate (i.e. 1,000 cfmin) started to engulf the inlet tube. It was also noticed that the flow rate tended to be higher at the front and right side of the tube and lower at the rear, corresponding to the position of the greatest discharge from the blower impeller. For a continuous CB dryer unit, this phenomenon is advantageous, as the higher flow rate would remove moisture faster in the front opening of the rotating drum where the wet ingredients enter. The discharging end of the drum receives less air flow, thus reducing the heat damage of the dry products.

The average velocity for the 16 cells was corrected by the proportion between the value on the contour plot of the location of the fixed probe and the fixed probe reading. The relationship between the flow rate and the adjustable vent opening is presented in Table A-2a. The relationship between the flow rate and the adjustable vent opening is presented in Table A-2b.

The flow as a function of the fixed velocity probe reading is shown in Fig. A-3.

To estimate the integrated value for the flow rate, it was assumed that each point was in the center of a uniform area. An average value for all 16 points was calculated and then multiplied by the total area of that portion of the column. This value of ft³/min was then converted to cm³/s. These values are shown in Table A-2.

TABLE A-2 - Flow Rate Data of CB Dryer

a. Opening (cm) As A Function Of The Flow Rate

Temp. OC	Flow Rate (cm ³ /s)				
	<u>0.28</u>	<u>0.42</u>	<u>0.56</u>	0.70	<u>0.84</u>
4 0		9.8	9.2	8.1	7.0
50	12.7	10.9	8.8	6.7	6.1
65	8.8	6.9	6.3	5.8	4.4
70	9.2	7.3	6.3	5.2	3.7
<i>7</i> 5	8.8	7.0	6.2	5.4	3.0
80	8.2	6.6	6.3	5.2	
85	6.6	6.1	5.6		-
90			7.7	3.4	

b. Flow Rate (m³/s) As A Function Of The Adjustable Opening

	Opening (cm)				
Temp. OC	<u>2.5</u>	<u>5.0</u>	<u>7.5</u>	<u>10.0</u>	<u>12.5</u>
40	1.27	1.05	0.79	0.40	
50	1.10	0.99	0.61	0.49	0.30
65	0.90	0.80	0.36	0.22	
70	0.95	0.72	0.41	0.22	
75	0.87	0.74	⁷ 0.38	0.20	**
80	0.81	0.72	0.32	0.19	
85	0.67	0.60	0.21	0.20	
90	0.73	0.66	0.57		**

V, FIXED VELOCITY PROBE READING STANDARD FEET PER MINUTE

Figure A-3 - Flow Rate as a Function of Fixed Velocity Probe Reading