Ch. 25/ Electric Potential

25.5 Electric Potential and Potential Difference

When a point change 2 in E = 9 E

If 2 is free to move -> E will do a work on 9

If 9 moves a displacement d's

Work done + Wint = Foods

From Physics L:

 $W_c = W_{int} = -\Delta U = U_i - U_f$

West = + DU = Up - Ui

-dU=Wim= Fe. ds => dU =- Fe. ds $3W_{int} = -\Delta U$

Integrate \Rightarrow $\int dV = -9 \int \vec{E} \cdot ds$

 $\Delta U = U_B - U_A = -9 \int_{\overline{E}}^{B} ds \longrightarrow (*)$

The change in electric potential evergy of the zystem

plantic potential (or potential)

V =
$$\frac{U}{Q}$$
 $\Rightarrow \Delta V = \frac{\Delta U}{2}$
 $V = \frac{U}{Q}$ $\Rightarrow \Delta V = \frac{\Delta U}{2}$
From eqn (34) $\Rightarrow \Delta V = \frac{\Delta U}{Q} = V_B - V_A = -\int_{E}^{E} \cdot J_S$
Potential difference

The work done needed to move a charge

2 by an external agent at constant velocity: $W = +\Delta V = 9 \Delta V$

$$W = +\Delta U = 7 \Delta V$$

Units of DV = = = V -> Volla

electron-volt =
$$eV = ?$$

= $(1.6 \times 10^{19} C) (1V)$
= $1.6 \times 10^{19} C.V$
 $= 1.6 \times 10^{19} J$

From eqn (**) => another punit of \overrightarrow{E} => V/m

Potential Difference in a Uniform Field (25.2)

The equations for electric potential between two points A and B can be simplified if the electric field is uniform:

 $V_B - V_A = \Delta V = -\int_A^B \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -E \int_A^B d\mathbf{s} = -Ed$

The displacement points from A to B and is parallel to the field lines.

The negative sign indicates that the electric potential at point B is lower than at point A

Electric field lines always point in the direction of decreasing electric potential.

AOT

Energy and the Direction of Electric Field

When the electric field is directed downward, point B is at a lower potential than point A.

When a positive test charge moves from A to B, the charge-field system loses potential energy.

Electric field lines always point in the direction of decreasing electric potential.

 $\Delta U = 9 \Delta Y = 9 (-Ed) = -9Ed$ $\Rightarrow If 9 is (+) \Rightarrow \Delta U (\circ (-))$ $= 1f 9 is (-) \Rightarrow \Delta U (\circ (+))$

More About Directions

A system consisting of a positive charge and an electric field loses electric potential energy when the charge moves in the direction of the field.

An electric field does work on a positive charge when the charge moves in the direction of the electric

The charged particle gains kinetic energy and the potential energy of the charge-field system decreases by an equal amount.

Another example of Conservation of Energy

Win = - SU = Wint

Directions, cont.

If q_0 is negative, then ΔU is positive.

A system consisting of a negative charge and an electric field *gains* potential energy when the charge moves in the direction of the field.

• In order for a negative charge to move in the direction of the field, an external agent must do positive work on the charge.

