SoC Final Project

Group1: 游承緯 312580044 符顥瀚 312510154

1. Block Diagram of System

2. Bottleneck of baseline design & Optimize directions 我們使用 Lab6的 design作為我們的 Baseline design, 但由於原先的 design 是使用 fireware code 來進行 quick sort, matrix multiplier, fir 的運算, 要使用乘法 運算時 CPU 會一直 jump 進乘法的 instruction code, 產生多餘的 instructions

Optimize directions:

- Hardware accelerator
 - qsort
 - o mm
 - o fir
- SDRAM prefetch
- Firmware optimization

3. Hardware FIR Block Diagram:

4. Hardware MatMul Block Diagram:

首先透過 axi-stream interface 將 data 吃進來, 並先把 matrixB 的16個值都先存在 buffer 內, 接著每讀完一個 matrixA 的 Row 後進行乘加運算, 總共使用4個乘法器與3個加法器, 最後一樣透過 axi-stream interface 輸出答案。

5. Sdram prefetch & burst

6. Results

	origin	with O2	hardware accelerator + sdram	hardware accelerator + sdram with O2	improvement
QSORT	37961	6182	29896	4034	9.41x
MM	69033	13597	17075	3697	18.67x
FIR	72120(4-2)	40548	40082	4983	14.47x

7. Address mapping

	FIR_CTRL	0x30000000		
FIR	DATALENGTH	0x30000010		
	TAP	0x30000040		
	Xn	0x30000080		
	Yn	0x30000084		
	MM_CTRL	0x30000100		
MM	arrA	0x30000180		
	arrB	0x30000184		
	arrR	0x3000018c		
	QSORT_CTRL	0x30000200		
QSORT	QSORT_IN	0x30000280		
	QSORT_OUT	0x30000284		

8. Block design of FPGA

9. Timing report

		_
Desig	n Timing	Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	9.054 ns	Worst Hold Slack (WHS):	0.026 ns	Worst Pulse Width Slack (WPWS):	11.250 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	12807	Total Number of Endpoints:	12807	Total Number of Endpoints:	5301

10. Resource report

Resource	Utilization	Available	Utilization %
LUT	5362	53200	10.08
LUTRAM	188	17400	1.08
FF	6195	106400	5.82
BRAM	8	140	5.71
BUFG	5	32	15.63

11. Jupyter Notebook

```
asyncio.run(async_main())
Start Caravel Soc
Waitting for interrupt
matmul start
matmul end
qs start
gs end
fir start
fir end
hello
main(): uart_rx is cancelled now
print ("0x10 = ", hex(ipPS.read(0x10)))
print ("0x14 = ", hex(ipPS.read(0x14)))
print ("0x1c = ", hex(ipPS.read(0x1c)))
print ("0x20 = ", hex(ipPS.read(0x20)))
print ("0x34 = ", hex(ipPS.read(0x34)))
print ("0x38 = ", hex(ipPS.read(0x38)))
0x10 = 0x0
0x14 = 0x0
0x1c = 0xab510040
0x20 = 0x0
0x34 = 0x20
0x38 = 0x3f
```