Ashvni Narayanan

Lean Summer Projects 2021

June 29, 2021

• To formalize Iwasawa Theory Main Conjecture :

$$f_k((1+p)^s-1)=L_p(\omega^k,s)$$

To formalize Iwasawa Theory Main Conjecture :

$$f_k((1+p)^s-1)=L_p(\omega^k,s)$$

To formalize the p-adic L-functions :

$$L_p(-s,\chi) = \frac{-1}{1-\chi(c) < c >^{s+1}} \int_{(\mathbb{Z}/dp\mathbb{Z})^{\times} \times (1+p\mathbb{Z}_p)} \chi \omega^{-1}(a) < a >^{s} dE_c$$

To formalize Iwasawa Theory Main Conjecture :

$$f_k((1+p)^s-1)=L_p(\omega^k,s)$$

To formalize the p-adic L-functions :

$$L_p(-s,\chi) = \frac{-1}{1-\chi(c) < c >^{s+1}} \int_{(\mathbb{Z}/dp\mathbb{Z})^\times \times (1+p\mathbb{Z}_p)} \chi \omega^{-1}(a) < a >^s dE_c$$

To formalize the p-adic integral

To formalize Iwasawa Theory Main Conjecture :

$$f_k((1+p)^s-1)=L_p(\omega^k,s)$$

To formalize the p-adic L-functions :

$$L_p(-s,\chi) = \frac{-1}{1-\chi(c) < c >^{s+1}} \int_{(\mathbb{Z}/dp\mathbb{Z})^\times \times (1+p\mathbb{Z}_p)} \chi \omega^{-1}(a) < a >^s dE_c$$

- To formalize the p-adic integral
- To define the Bernoulli measure

To formalize Iwasawa Theory Main Conjecture :

$$f_k((1+p)^s-1)=L_p(\omega^k,s)$$

To formalize the p-adic L-functions :

$$L_p(-s,\chi) = \frac{-1}{1-\chi(c) < c >^{s+1}} \int_{(\mathbb{Z}/dp\mathbb{Z})^\times \times (1+p\mathbb{Z}_p)} \chi \omega^{-1}(a) < a >^s dE_c$$

- To formalize the p-adic integral
- To define the Bernoulli measure
- To define the Bernoulli polynomial

The Bernoulli numbers are an important number theoretic object. They occur as special values of the Reimann-zeta functions / p-adic L-functions. They are a generalization of Bernoulli numbers.

The Bernoulli numbers are an important number theoretic object. They occur as special values of the Reimann-zeta functions / p-adic L-functions. They are a generalization of Bernoulli numbers.

The Bernoulli numbers B_n are generating functions given by :

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1}$$

The Bernoulli numbers are an important number theoretic object. They occur as special values of the Reimann-zeta functions / p-adic L-functions. They are a generalization of Bernoulli numbers.

The Bernoulli numbers B_n are generating functions given by :

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1}$$

Note that several authors think of Bernoulli numbers B'_n to be defined as :

$$\sum_{n=0}^{\infty} B_n' \frac{t^n}{n!} = \frac{t}{1 - e^{-t}}$$

The Bernoulli numbers are an important number theoretic object. They occur as special values of the Reimann-zeta functions / p-adic L-functions. They are a generalization of Bernoulli numbers.

The Bernoulli numbers B_n are generating functions given by :

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1}$$

Note that several authors think of Bernoulli numbers B'_n to be defined as :

$$\sum_{n=0}^{\infty} B_n' \frac{t^n}{n!} = \frac{t}{1 - e^{-t}}$$

The difference between these two is : $B'_n = (-1)^n B_n$, with $B_1 = \frac{-1}{2}$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

The Bernoulli numbers are an important number theoretic object. They occur as special values of the Reimann-zeta functions / p-adic L-functions. They are a generalization of Bernoulli numbers.

The Bernoulli numbers B_n are generating functions given by :

$$\sum_{n=0}^{\infty} B_n \frac{t^n}{n!} = \frac{t}{e^t - 1}$$

Note that several authors think of Bernoulli numbers B'_n to be defined as :

$$\sum_{n=0}^{\infty} B_n' \frac{t^n}{n!} = \frac{t}{1 - e^{-t}}$$

The difference between these two is : $B'_n = (-1)^n B_n$, with $B_1 = \frac{-1}{2}$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Bernoulli numbers in Lean

Using recursion,
$$B_n$$
 is defined in mathlib as $B_n:=\sum_{k=0}^{n-1}\binom{n}{k}\frac{B_k}{n-k+1}:$ bernoulli' $n=1-\Sigma$ k : fin n, n.choose k / $(n-k+1)$ * bernoulli' k

Bernoulli numbers in Lean

```
Using recursion, B_n is defined in mathlib as B_n:=\sum_{k=0}^{n-1}\binom{n}{k}\frac{B_k}{n-k+1}: bernoulli'n = 1 - \Sigma k : fin n, n.choose k / (n - k + 1) * bernoulli'k and B_n' as B_n':=(-1)^nB_n:
```

def bernoulli $(n : \mathbb{N}) : \mathbb{Q} := (-1)^n * bernoulli' n$

Bernoulli polynomials

The Bernoulli polynomials denoted $B_n(X)$, a generalization of the Bernoulli numbers, are generating functions :

$$\sum_{n=0}^{\infty} B_n(X) \frac{t^n}{n!} = \frac{te^{tX}}{e^t - 1}$$

Bernoulli polynomials

The Bernoulli polynomials denoted $B_n(X)$, a generalization of the Bernoulli numbers, are generating functions:

$$\sum_{n=0}^{\infty} B_n(X) \frac{t^n}{n!} = \frac{te^{tX}}{e^t - 1}$$

We now define the Bernoulli polynomials as $B_n(X) := \sum_{i=0}^n \binom{n}{i} B_i X^{n-i}$:

The following properties of Bernoulli polynomials were proved :

1
$$B_0(X) = X$$
:

lemma bernoulli_poly_zero : bernoulli_poly 0 = 1

The following properties of Bernoulli polynomials were proved :

1
$$B_0(X) = X$$
:

lemma bernoulli_poly_zero : bernoulli_poly 0 = 1

② $B_n(0) = B_n$:

```
lemma bernoulli_poly_eval_zero (n : \mathbb{N}) : (bernoulli_poly n).eval 0 = bernoulli n
```

The following properties of Bernoulli polynomials were proved :

- **1** $B_0(X) = X$:
 - lemma bernoulli_poly_zero : bernoulli_poly 0 = 1
- ② $B_n(0) = B_n$:
 - lemma bernoulli_poly_eval_zero (n : N) : (
 bernoulli_poly n).eval 0 = bernoulli n
- **3** $B_n(1) = B'_n$:
 - lemma bernoulli_poly_eval_one (n : N) : (
 bernoulli_poly n).eval 1 = bernoulli' n

```
 \sum_{k=0}^{n} \binom{n+1}{k} B_k(X) = (n+1)X^n  theorem sum_bernoulli_poly (n : \mathbb{N}) :  \sum_{k=0}^{n} \sum_{k=0}^{n} (n+1), ((n+1) \cdot \text{choose } k : \mathbb{Q}) \cdot \text{bernoulli_poly } k = \text{polynomial.monomial } n \cdot (n+1 : \mathbb{Q})
```

So..

Come join us on Discord/Zulip!

So..

Come join us on Discord/Zulip!

HELP WILL ALWAYS BF GIVEN AT HOGWARTS TO THOSE WHO **ASK** FOR IT.

ALBUS DUMBLEDORE

Thank you!