CLOUD COMPUTING MapReduce

Lorenzo Leonini lorenzo.leonini@unine.ch

Objectives

 Introduce the need for large-scale data processing in cloud environments

 Present the Map/Reduce principle and supporting frameworks

Detail some representative applications

Introduction

- Cloud computing allows larger-scale applications
- Large-scale applications attract more users
 - Users generate more data
 - Application generate more data (e.g. logs)
- How can we leverage this data to make the application better?
- "Big Data" phenomenon

The 4 "V" of Big Data

https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data

Data-supported services

- Applications using large volumes of public data
 - Web search and indexing (initially)
- Applications using user-generated data
 - Social networks
 - Recommendation engines (Netflix, Spotify, etc.)
 - Taxi hailing predictive models (where will clients be? Where will they want to go?)
- And using both
 - Web search and indexing (now)
 - Cambridge Analytica...

Dealing with the two first "V"s

- Need specific tools and programming models
 - (Very) large amounts of data
 - Complex environment (replication, distribution)
 - Faults and slow machines
- How to handle Volume & Velocity
 - Map/Reduce framework for large static data
 - Stream processing frameworks for dynamic data
- We will not cover Variety (data curation) and Veracity (data authenticity)

Motivating example: Logging

- Application front-end components generate logs
 - Client information
 - Errors
 - Page generation time
 - Items accessed/purchased
- Log entries stored as JSON documents in a distributed database

Processing logs

- We would like to know the *average generation time* for each type of page
 - **Types**: home, product, cart, checkout
- This information is available by *processing the logs*

```
"log type": "page view",
"page type": "product",
"generation time": 42.6
                                             time (ms)
          000
                                                60
                                             Avg . gen.
"log type": "page view",
"page type": "product",
                                                30
"generation time": 28.2
                                                             product
                                                                        cart
                                                                             checkout
                                                       home
"log type": "page view",
                                                                 Page type
"page type": "product",
"generation time": 27
```

Centralized processing?

- Should we collect all log documents and process them in a dedicated single process?
 - Amount of logs can be very large
 - May not fit in memory at all!
 - Not all logs entries are useful for our operation: wasted bandwidth
 - Very slow
- Need parallel processing

Processing logs in parallel

Handling Volume

- Split the dataset in multiple partitions, process each partition independently
 - Later, merge outputs for final result
- Difficult to do "manually"
 - Deploy worker processes close to the data
 - Coordinate all the workers
 - Handle faults at the workers
 - Collect all outputs and process them
 - Start again ...

Map/Reduce

- Big Data processing often follows a similar pattern:
 - PARTITION Iterate in parallel over a large number of records
 - MAP Extract information of interest from the records
 - SHUFFLE Regroup this information in sets, one for each category
 - REDUCE Aggregate each of the sets to obtain the final result(s)
- Map/Reduce is a programming model that allows expressing such queries and running them in parallel on many machines
- Key idea: provide an abstraction at the point of the two operations MAP and REDUCE, make others implicit

Programming model

- Programmer specifies two functions
 - map(record)
 - get records from a partition of the source data
 - can generate <key, value> pairs with the emit call
 - reduce(key, [values])
 - receives all values for the same key
 - generate aggregate results, also as <key, value> pairs

PARTITION and SHUFFLE are handled transparently

MAP phase

SHUFFLE phase

REDUCE phase

Reduce function

Bandwith inefficiency

• Several <key, value> pairs for the same key are generate by each mapper and shuffled independently to the corresponding reducer!

Local reduction

- Could we locally aggregate all <key, value> pairs for the same key at the Mapper process, before sending them to the SHUFFLE phase?
- The output of reduce() functions can be used in its input list
 - Local MAP output can be locally reduced before the SHUFFLE phase
 - This property holds for many aggregations: max, min, average,...
- Sometimes, we need to know if we are reducing local MAP results or the result of the SHUFFLE phase
 - Optional "rereduce" parameter to the reduce() call tells us if this is a local reduction or the final one:

```
reduce(key, [values], rereduce)
```

Local reduction applied

Link with functional programming

- Higher-order functions take a function as argument
- Map: function applied to every element in a list
 - Result is a new list
 - Each operation is independent
- Fold: accumulator set to initial value, function applied to list element and the accumulator, result stored in accumulator
 - Repeated for every item in the list
 - Result is the final value in the accumulator
- Map/Reduce similar in principle but multiple output lists for Map and parallel Fold operations

Examples of application

Distributed grep

- Count lines in all files that match <regex>, show in descending order
 - grep -Eh <regex> dir/* | sort | uniq -c | sort -nr
- Example
 - grep -Eh 'A|C|D' File* | sort | uniq -c | sort -nr

Distributed grep

- Map function
 - Input: files line>
 - Emit: if line matches pattern < line, 1>
- Reduce function
 - Input: ! [1,1, ...]>
 - Emit: eline, n> where n is the total of 1s

Distributed grep

Wordcount

 Count how many times each word appears in a text corpus

```
map(text) {
  foreach (word: text.split(' ')) {
    emit(word, {count: 1})
  }
}
```

```
reduce(key, values) {
  var count = values.reduce((a,b) => a.count + b.count)
  emit (key, {count: count})
}
```

Local reducers

- Local reducers helps save bandwidth by pre-reducing the results of a map locally and send fewer <key, value> intermediate pairs
- In the previous examples, the same code can be used as local reducer
 - Aggregate <regex, 1> counts for lines matching the pattern(s) under a single <regex, n> pair
 - Aggregate <word,1> counts for different words under a single <word, n> pair
 - Not always the case!

Top-k page frequency

- Input: log of web page requests
- Output: the top-k accessed webpages
- Map function
 - Parse log, output <URL, 1> pairs
 - Similar to word count but goes to a single key
- Reduce function (for single key)
 - Aggregate <URL, 1> pairs for individual URLs
 - Sort by decreasing frequency
 - Output top-k < URL, n > pairs

Top-k page frequency

- Going to a single key is vastly inefficient
 - A single worker will receive all individual <URL, 1> pairs
 - Only to aggregate them and get the top-k URLs
- Use local reducer?
 - Here we cannot use the same code as in previous examples
 - It includes the selection of the top-k URLs
 - The union of the local top-k is not the global top-k
 - Sometimes OK to do local trimming for approximate solution

Reverse Web-link graph

- Get all the links pointing to some page
 - This is the basis for the PageRank algorithm!
- Map function
 - Input: web pages (fetched by a web crawler)
 - Output a <target, source> pair for each link to target URL in a page named source
- Reduce function
 - Concatenate the list of all source URLs associated with a given target URL and emits the pair:

```
<target, list(sources)>
```

Inverted index

- Get all documents containing some particular keyword
 - Used by the search mechanisms of Google, Yahoo!, etc.
 - Second input for PageRank
- Map function
 - Input: (e.g.) web pages (fetched by a web crawler)
 - Parse each document and emit a set of pairs <word, documentID>
- Reduce function
 - Take all pairs for a given word
 - Sort the documents IDs
 - Emit a final <word, list(document IDs)> pair

K-Means clustering

- Typical data mining / database problem
- Group items into k clusters
 - Clusters must minimize distance of contained points (relative to the center)
- NP hard problem
 - Heuristic algorithm

K-Means algorithm

- Goal: obtain m_1 , m_2 , ..., m_k as representative points of the k clusters
 - These will be the centroids of the clusters
- Initialize $m_1, m_2, ..., m_k$ to random values
- Iterate (*t* = iteration)
 - Assign each point to the clostest centroid

$$S_i^{(t)} = \left\{ \mathbf{x}_j : \left\| \mathbf{x}_j - \mathbf{m}_i^{(t)}
ight\| \leq \left\| \mathbf{x}_j - \mathbf{m}_{i^*}^{(t)}
ight\| orall \ i^* = 1, \dots, k
ight\}.$$

• m_i becomes the new centroid for its points

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_i \in S_i^{(t)}} x_j$$

K-Means iterations

K-Means in Map/Reduce

- Initialize
 - Choose centroids randomly
- Classify
 - Map eachpoint to the closest centroid

$$S_i^{(t)} = \left\{ \mathbf{x}_j : \left\| \mathbf{x}_j - \mathbf{m}_i^{(t)}
ight\| \leq \left\| \mathbf{x}_j - \mathbf{m}_{i^*}^{(t)}
ight\| orall \ i^* = 1, \dots, k
ight\}$$

- Recenter
 - *m_i* becomes new centroid for its points

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x_j$$

- Repeat until no change
 - Centroids have converged

Classification step as Map

- Initialize
 - Set global var centroids from file
 - Initially *k* random points
- map(point)
 - Access to global var centroids
 - Can also be provided as data directly inside the map function definition to keep the functionnal paradigm
 - Compute nearest centroid based on centroids:
 - emit(nearest centroid, point)

Recenter step as Reduce

- Initialize
 - Set global var centroids = []
- reduce(centroid₊, [points])
 - Recompute centroid from points in it
 - emit(centroid_{t+1})
- Cleanup (after all calls to reduce are made):
 - Save new centroids to file
 - Check if change since last iteration (if yes → re-iterate)
- Does not completely "fit" Map/Reduce model that assume no global shared state
 - But widely used in practice

Origin and implementation

Origin

- Map/Reduce originally proposed by Google in 2004
 - Necessary due to their unprecedented scale
 - One (if not the) most cited paper in computer science
 - Computation of the PageRank for webpages
 - Also, extraction of keywords, sanitation, etc.
 - Many other uses: log parsing, network monitoring, etc.
- Proprietary implementation
- Huge and immediate success
 - Simple programming model
 - Distributed computation complexity left to framework
 - Usable by non-CS majors

Original Map/Reduce

- The job is submitted to a master process
- The master orchestrates its execution
- Each node supports one or more workers
- Each worker can handle a map or reduce job when instructed by the master
- Map jobs get the data from file system
 - Google File System: optimized for storing large append-only files
 - Also possible from NoSQL database: Google BigTable
- Communication is based on key/values pairs
- Output written to file system

Implementation challenges

- Failing workers
 - Must detect and re-assign to another worker
 - Partitioning helps: partially processed data simply discarded
- Slow workers
 - Alive but slow worker can slow down entire job execution
 - Monitor work, assign fast workers work done by slow ones
 - Redundant computations, keep only first finisher
- Failing master
 - Original Map/Reduce: snapshot and retry
 - Today: use a coordination kernel!

Map/Reduce frameworks

Map/Reduce implementations

- Original Google Map/ Reduce proprietary
- Hadoop: open source implementation of MapReduce and associated tools
 - File systems, workflow management

Map/Reduce as a service

- Amazon Elastic Map Reduce: pre-configured versions of BigData frameworks including Hadoop, etc.
 - Can feed in data from S3, Dynamo DB, etc.

Similar offers at other providers

Map/Reduce in NoSQL databases

- Hadoop is a heavy machinery
 - Useful for processing vast amounts of unstructured data
 - But Cloud application data is stored in NoSQL databases
- Map/Reduce calls supported by most NoSQL databases
 - Computations performed directly on top of the data

https://rickosborne.org/download/SQL-to-MongoDB.pdf

MongoDB - Reduce function

- The reduce function should not affect the outside system
- MongoDB will not call the reduce function for a key that has only a single value
- MongoDB can invoke the reduce function more than once for the same key
 - In this case, the previous output from the reduce function for that key will become one
 of the input values to the next reduce function invocation for that key
 - The type of the return object must be identical to the type of the value emitted by the map function
 - The reduce function must be associative
 - reduce(key, [C, reduce(key, [A, B])]) == reduce(key, [C, A, B])
 - The reduce function must be idempotent
 - reduce(key, [reduce(key, valuesArray)]) == reduce(key, valuesArray)
 - The reduce function must be commutative
 - reduce(key, [A, B]) == reduce(key, [B, A])

Source: MongoDB Documentation

Beyond Map/Reduce

- Many algorithms require to iterate until stopping condition
 - K-Means: no point changes to new cluster
 - PageRank: ranking of webpage based on incoming links
 - Many machine learning algorithms
- And new usages
 - Algorithms applied on data streams
 - Interactive queries
- Map/Reduce intermediate storage (on distributed FS) is not well suited for these use cases
 - New abstrations have emerged to keep intermediary results in memory

- Writing to disk is slow and costly
 - Especially if we need to re-read immediately!
- Can we keep data in-memory instead?
- Apache Spark introduces Resilient Distributed Datasets
 - Shared memory abstraction
 - Programming model remains the same as Map/Reduce
 - Avoids re-reading from disk systematically
 - Builds different querying models on top of core engine
 - Can use pipeline of queries under different models

Spark VS Map/Reduce

Logistic regression in Hadoop and Spark

Conclusion

- Cloud-based web applications collect vast amounts of information about their clients, servers, infrastructure
 - Big Data processing
 - Necessary for Cloud scale
 - Enables new usages and applications
 - Process it in the background to derive information useful for business
- Map/Reduce: game changer for large-scale Big Data processing
 - Pioneered the use of a functional approach
 - Handles large-scale orchestration and fault tolerance
 - Specific (and simple) programming model
- Apache Spark improves/generalizes Map/Reduce principle
 - Support for iterative and interaction computations

References

- MapReduce: Simplified Data Processing on Large Clusters
 - Jeffrey Dean and Sanjay Ghemawat
 - OSDI'04: Sixth Symposium on Operating System Design and Implementation
- The Anatomy of a Large-Scale Hypertextual Web Search Engine
 - Sergey Brin, Lawrence Page
 - Computer Networks 30 1998
- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
 - Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael
 J. Franklin, Scott Shenker, Ion Stoica
 - NSDI'12
- Scaling Spark in the Real World: Performance and Usability
 - Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh Rosen, Ion Stoica, Patrick Wendell, Reynold Xin, Matei Zaharia
 - Proceedings of the VLDB Endowment 2015