Problem

- 1. Design a state machine that counts 0, 1, 2, 3, 4, 5, 6, 7, 0, Your state bits can also be your count.
- If the count is less than (not equal to) 4 and A is true, then F will be true.
- 3. If the count is 3 or 7, then TS will be true.
- 4. TS and F cannot be true at the same time, TS takes priority over F.

Inputs	Outputs
A(L)	Count (H)
	F(H)
	TS(H)

You will implement all combinatorial logic for the state machine in VHDL, sample code is given below. You only need to show a simulation for this state machine, no physical circuit is necessary.

Submit - Lab Quiz 5 Phone

- An ASM chart describing the behavior of the sequence. Use Mealy and Moore outputs as appropriate, and label each state.
- A comprehensive truth table that includes next-state equations and equations describing the outputs of your controller. It should have every possible combination of inputs, use wildcards and dont-cares when needed.

Submit - Lab Quiz 5 Generic

- A screenshot of your VHDL code.
- A screenshot of your BDF showing all sequential logic.
- A screenshot of your Quartus Simulation (make sure you run the simulation).
- The Quartus Archive.

```
EEL3701C
Jaiden Magnan
11198
```

```
-- ex1.vhd from the Examples page of the course
website
library ieee;
use ieee.std logic 1164.all;
entity ex1 is
port(
    A, B: in std logic;
    Y : out std logic);
end ex1;
architecture behav of ex1 is
signal Cout: std logic;
begin
Y \le A \text{ or } B;
end behav;
To declare a bus, use
BUS NAME: out bit vector(1 downto 0);
And access bit 1 with
BUS NAME (1)
```

