1 Questions diverses [8 points]

Question 1. [2 points] L'arbre de Huffman est un peigne et donne les codages suivants :

$$a:0000000$$
 $b:0000001$ $c:000001$ $d:00001$ $e:0001$ $f:001$ $g:01$ $h:1$.

Cas où les fréquences sont les n premiers nombres de Fibonacci $(a_i$ de fréquence $F_i)$, les codages sont :

$$a_1:0^{n-2}.0$$
 $a_2:0^{n-2}.1$ $a_i:0^{n-i}.1$

Question 2. [3 points]

On a 256 caractères a_1, \ldots, a_{256} de fréquences $f_1 \leq f_2 \leq \ldots f_{256}$, avec l'hypothèse : $f_{256} < 2f_1$. Comme $f_{256} \leq f_1 + f_2$, les 128 premières étapes de la construction de l'arbre de Huffman donnent 128 arbres de poids $f_1 + f_2 \leq f_3 + f_4 \leq \ldots \leq f_{255} + f_{256}$, avec $f_{255} + f_{256} \leq 2(f_1 + f_2)$, ces arbres sont de hauteur 1 et sont complets à tous les niveaux. Les 64 étapes suivantes donnent 64 arbres de hauteur 2 complets à tous les niveaux, dont les poids ont toujours la même propriété. En réitérant la construction, on obtient finalement 1 arbre de hauteur 8 complet à tous les niveaux. Les 256 caractères ont donc tous des codes de 8 bits.

Question 3. [3 points]

Avec Huffman : a:0, b:1, d'où un texte compressé de 2000 bits, donc 250 octets.

Avec LZW, le texte se décompose en $a-b-(ab)-(ab)a-(ba)-(ba)b-(ab)^2-(ab)^2-(ab)^2-(ba)^2b-(ab)^3-(ab)^3-(ba)^3-($

- 1 code pour le premier a,
- 1 code pour le premier b,
- pour les 1998 caractères suivants, 4 codes pour chaque facteur $(ab)^k.(ab)^ka.(ba)^kb.$

Chacun des facteurs est de longueur 8k + 2, le nombre de facteurs est majoré par n tel que :

$$\sum_{k=1}^{n-1} (8k+2) \le 1998 \le \sum_{k=1}^{n} (8k+2).$$

La valeur de n est 23 et le nombre de codes nécessaires pour le texte est majoré par 2 + 4 * 23 = 94. Avec LZW, 94 octets suffisent pour compresser $(ab)^{1000}$.

Conclusion: LZW est meilleur que Huffman.

2 Compression par anti-dictionnaire [12 points]

Question 1. [1 point] Plein de possibilités!

Question 2. [3 points]

T = 01101010 et $AD(T) = \{00, 111, 1011\}.$

v	TC	facteur dans $AD(T)$
0	0	00
01	0	_
011	01	111
0110	01	00
01101	01	1011
011010	01	00
0110101	01	1011
01101010	01	

T = 01101010 et $AD(T) = \{00, 0111\}.$

v	TC	facteur dans $AD(T)$
0	0	00
01	0	_
011	01	0111
0110	01	00
01101	01	_
011010	010	00
0110101	010	_
01101010	0100	

Question 3. [2 points] Dans l'algorithme T[1..n] est le texte à compresser, E = AD(T), TC est le texte compressé, k est le max des longueurs des mots de E.

Algorithm 1 Compression par anti-dictionnaire

```
\begin{aligned} &\text{for } i = 1 \text{ to } n \text{ do} \\ &j \leftarrow i \\ &\text{while } j \geq 1 \text{ do} \\ &\text{ if } i - j + 1 > k \text{ then} \\ &j \leftarrow 0 \\ &\text{ else if } \operatorname{estDans}(T[j..i].\overline{T[i+1]}, E) \text{ then} \\ &j \leftarrow -1 \\ &\text{ else} \\ &j \leftarrow j - 1 \\ &\text{ end if} \\ &\text{ end while} \\ &\text{ if } j = 0 \text{ then} \\ &TC \leftarrow TC + T[i+1] \\ &\text{ end if} \\ &\text{ end for} \end{aligned}
```

Complexité : O(nk).

Question 4. [2 points] Dans l'exemple où $AD(T) = \{00, 111, 1011\}$ et le texte compressé est 01, si on ne fournit pas la taille du texte T, 01 peut se décompresser en 011 ou en n'importe quel texte de la forme $011(01)^m$ ou $011(01)^m0$.

On connaît TC = 01, $AD(T) = \{00, 111, 1011\}$ et on sait que la taille de T est 8. On lit TC[1] = 0 donc T = 0, 00 est interdit donc T = 01. Il n'y a aucun suffixe de 01 qui se complète en un mot interdit, on lit donc TC[2] = 1 et on l'écrit dans T, donc T = 011. 111 est interdit donc T = 0110, 00 est interdit donc T = 01101. 1011 est interdit donc T = 011010. On arrête car on a atteint la taille de T.

Question 5. [2 points] Dans l'algorithme TC[1..p] est le texte à décompresser, E = AD(T), k est le max des longueurs des mots de E.

Algorithm 2 Décompression par anti-dictionnaire

```
i \leftarrow 1
m \leftarrow 1
while i \leq p and m < n do
   j \leftarrow i
   while j \ge 1 do
      if i - j + 1 > k then
         j \leftarrow 0
      else if estDans(T[j..i].0, E) then
         T \leftarrow T + 1
         i \leftarrow -1
      else if estDans(T[j..i].1, E) then
         T \leftarrow T + 0
         j \leftarrow -1
      else
         j \leftarrow j - 1
      end if
   end while
   if j = 0 then
      i \leftarrow i+1
      T \leftarrow T + TC[i]
   end if
   m \leftarrow m + 1
end while
```

Complexité : O(nk).

Question 6. [1 point] à voir...

Question 7. [1 point] à voir...

3 Triangulations d'un polygone simple [12 points]

Dans toutes les questions, on connaît un contour positif (p_0, \ldots, p_{n-1}) du polygone considéré.

Question 1. [1 point] Dans une liste initialement vide, on ajoute un à un les triangles $p_0p_ip_{i+1}$, pour i allant de 1 à n-2. En comptant les ajouts dans une liste, la complexité est en $\Theta(n)$.

Question 2. [3 points] Supposons que $p_{i-1}p_ip_{i+1}$ soit une oreille. Lorsqu'on coupe cette oreille, le nouveau contour est $(p_0, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n-1})$ (sauf dans des cas particuliers, traités juste après). Le seul côté susceptible d'intersecter un côté qui ne lui est pas adjacent est $[p_{i-1}, p_{i+1}]$, mais ce n'est pas le cas, par définition (bis) d'une oreille. Les cas particuliers :

- p_{i-1} , p_{i+1} , p_{i+2} alignés → le nouveau contour est $(p_0, \ldots, p_{i-1}, p_{i+2}, \ldots, p_{n-1})$, le seul côté susceptible d'intersecter un côté qui ne lui est pas adjacent est $[p_{i-1}, p_{i+2}]$, mais ce n'est pas le cas car :
 - ou bien p_{i+1} est entre p_{i-1} et p_{i+2} , et alors $[p_{i-1}, p_{i+2}]$ est l'union de $[p_{i-1}, p_{i+1}]$ (côté de l'oreille) et $[p_{i+1}, p_{i+2}]$ (côté du polygone simple initial),
 - ou bien p_{i+2} est entre p_{i-1} et p_{i+1} , et alors $[p_{i-1}, p_{i+2}]$ est contenu dans $[p_{i-1}, p_{i+1}]$ (côté de l'oreille),
 - le cas p_{i-1} entre p_{i+1} et p_{i+2} est exclu car le polygone initial est simple;
- $-p_{i-2}, p_{i-1}, p_{i+1}$ alignés \rightarrow le nouveau contour est $(p_0, \dots, p_{i-2}, p_{i+1}, \dots, p_{n-1})$, idem;
- $-p_{i-2}, p_{i-1}, p_{i+1}, p_{i+2}$ alignés \rightarrow le nouveau contour est $(p_0, \dots, p_{i-2}, p_{i+2}, \dots, p_{n-1})$, idem.

On montre qu'un polygone simple ayant n sommets admet au moins une triangulation et que cette triangulation a au plus n-2 triangles. Si n=3, c'est vrai. Si n>3 le polygone est l'union, sans recouvrement, d'une oreille et d'un polygone simple ayant au plus m sommets, avec $m \le n-1$. Par hypothèse de récurrence, il existe une triangulation pour m sommets et elle compte au plus $m-2 \le n-3$ triangles. Il existe donc une triangulation du polygone simple à n sommets et elle compte au plus n-2 triangles.

Remarque : toutes les triangulations d'un polygone n'ont pas le même nombre de triangles. Par exemple, considérons un polygone simple de contour $(p_0, p_1, p_2, p_3, p_4, p_5)$ tel que $p_2p_3p_4$ est une oreille et p_1, p_2, p_4, p_5 sont alignés dans cet ordre. Il admet une triangulation ayant 2 triangles : $(p_0p_1p_5, p_2p_3p_4)$, une triangulation ayant 4 triangles : $(p_0p_1p_2, p_0p_2p_4, p_0p_4p_5, p_2p_3p_4)$, et des triangulations ayant 3 triangles.

Question 3. [1 point] Pour tester si $p_i p_{i+1} p_{i+2}$ est une oreille :

- tester si (p_i, p_{i+1}, p_{i+2}) est un tour gauche,
- puis tester si intersecte? $(p_i, p_{i+2}, p_j, p_{j+1})$ pour j allant de i+3 à i-2.

En comptant les appels à intersecte?, la complexité est en 0(n).

Pour déterminer une oreille, on teste si $p_i p_{i+1} p_{i+2}$ est une oreille, pour i allant de 0 à n-1. Complexité en $0(n^2)$.

Question 4. [1 point] Pour trianguler un polygone simple :

- déterminer une oreille,
- calculer une triangulation du polygone simple obtenu en coupant cette oreille,
- ajouter l'oreille à cette triangulation.

Avec cette méthode on a une complexité en $0(n^3)$.

Question 5. [1 point] Quand on enlève une pointe p_i à une montagne, on lui coupe une oreille donc le polygone obtenu est simple. La pointe n'est ni p_0 ni p_1 donc le nouveau contour est (p_0, p_1, \ldots) , avec $abscisse(p_0) < abscisse(p_1)$ et les abscisses qui décroissent de p_1 à p_0 . Le nouveau polygone est donc une montagne.

Question 6. [2 points]

Principe de l'algorithme, calqué sur la fin de l'algorithme de Graham : éliminer les tours gauches. On connaît un contour positif de la montagne et on dispose des fonctions *pred* et *succ*.

Algorithm 3 Triangulation d'une montagne

```
L \leftarrow \emptyset
p \leftarrow succ(p_0)
while p \neq p_0 do
if (p, succ(p), succ(succ(p))) n'est pas un tour gauche then
p \leftarrow succ(p)
else
supprimer succ(p) \text{ du contour}
ajouter <math>(p, succ(p), succ(succ(p))) à L
if pred(p) \neq p_0 then
p \leftarrow pred(p)
end if
end if
end while
```

Remarque : dans le cas où (p, succ(p), succ(succ(p))) est un tour gauche, on pourrait aussi supprimer p du contour si pred(p), p et succ(succ(p)) sont alignés.

Comme dans l'algorithme de Graham, on a une complexité linéaire.

Question 7. [1 point]

- 1. Le polygone $(p_0, p_1, p_m, p_{m+1}, \dots, p_{n-1})$ est une montagne.
- 2. Le sommet p_k fait partie du contour $(p_1, p_2, \ldots, p_{m-1}, p_m)$. Les abscisses de p_1, \ldots, p_k croissent et les abscisses de $p_k, p_{k+1}, \ldots, p_{m-1}, p_1$ décroissent. Le polygone $(p_1, p_2, \ldots, p_{m-1}, p_m)$ est donc monotone.

Question 8. [1 point] Si $abscisse(p_{n-1}) = abscisse(p_1)$ alors le polygone initial est l'union, sans recouvrement, du triangle $p_0p_1p_{n-1}$ et d'un polygone monotone.

Question 9. [1 point]

- Si $abscisse(p_{n-1}) = abscisse(p_1)$, on ajoute le triangle $p_0p_1p_{n-1}$ à la triangulation du polygone monotone (p_1, \ldots, p_{n-1})
- Si $abscisse(p_{n-1}) < abscisse(p_1)$, on détermine le plus petit indice m tel que $abscisse(p_m) < abscisse(p_1)$ en reculant dans la liste (n-m tests). On obtient une montagne ($p_0, p_1, p_m, p_{m+1}, \ldots, p_{n-1}$), que l'on triangule avec l'algorithme de triangulation d'une montagne (complexité en n-m) et un polygone monotone ($p_1, p_2, \ldots, p_{m-1}, p_m$).
- Si $abscisse(p_{n-1}) > abscisse(p_1)$: analogue au cas précédent. Complexité linéaire.