Fibonacci Numbers with Matrices

Rushi Shah

11 September 2015

Ahh, the Fibonacci numbers. What mathemetician doesn't love them? Well, in Week 06 of CIS194, some interesting implementations were discussed. My favorite (that I never actually had encountered before), was in order to get the n'th number, you raise a two by two matrix to the n'th power. Let's take a look at my implementation:

1 The Matrix

First off, you need to be able to represent matrices. I decided to use a tuple of tuples for the two by two matrix.

I also wanted to be able to print them nicely in the terminal, so I whipped up a quick show function. I could have derived it, but in my opinion, this makes it look slightly nicer.

```
instance Show Matrix where
```

And now let's instantiate a matrix!

```
m :: Matrix m = Matrix ((1, 1), (1, 0))
```

To check that it works, let's print out the matrix in ghci:

```
 > m  [1, 1] [1, 0]
```

2 Multiplying Matrices

So that's great, but these matrices don't really do much. We need to be able to raise each matrix to a specific power, but who knows how to do that? I sure don't. With that being said, I do know how to multiply two 2x2 matrices together! Let's define a function (*)

that takes two 2x2 matrices and returns a matrix representing the multiplication of the two arguments. This multiplication function is a part of the Num typeclass, so in essence, we are making Matrix an instance of Num.

instance Num Matrix where

You can raise any instance of Num to a power after defining the multiplication operator, so Haskell will take care of the rest.

3 Quick helper function

The last element of a matrix will represent the Fibonacci number you're looking for. So let's whip up a quick function to get that element.

```
1 :: Matrix -> Integer
1 (Matrix m) = (snd . snd) m
```

4 Finally, the Fibonacci Function!

In CIS194, this is the fourth version of the function, so it is named fib4. Essentially, you take a number n and return the nth Fibonacci number by raising a 2x2 matrix to the nth power. Note that raising the matrix to the 0th power won't work, so we'll use pattern-matching to account for that special case.

```
fib4 :: Integer \rightarrow Integer
fib4 0 = 0
fib4 n = 1 (f^n)
```

5 Conclusion

To conclude, let's try it out!

What's an insanely large Fibonacci number? Well my birthday is April 13th, 1998, so how about we calculate the 41398th Fibonacci? That'll take a while, right? Wrong.

\$ ~/github/CIS194/06/assignment (master) time ./Fibonacci $61609270008642800089995576179441468090797714030124869963327886340230666745224153129303433\underline{553348087626745}$

0m0.009s real 0m0,003s 0m0.004s \$ ~/github/CIS194/06/assignment (master) |

That's right, the answer is a 8652 digit number, and was calculated in about .009 seconds. If you want to see the answer, check out this .txt file.