

NÁZEV PRÁCE POKRAČOVÁNÍ NÁZVU PRÁCE

TITLE OF THE THESIS
CONTINUATION OF THE TITLE

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR JMÉNO PŘÍJMENÍ

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. JMÉNO PŘÍJMENÍ, Ph.D.

Abstrakt

Abstrakt česky...

Abstract

English abstract...

Klíčová slova

Klíčové slovo 1, klíčové slovo 2, ...

Keywords

keyword 1, keyword 2,...

Příjmení, J.: *Název práce*, Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2023. xx s. Vedoucí bakalářské práce doc. Ing. Jméno školitele, Ph.D.

Obsah 9

Obsah

1	Úvod	10
2	Sekce	11
	2.1 Limita funkce	11

10 1 Úvod

1 Úvod

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc

2 Sekce 11

dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

2 Sekce

2.1 Limita funkce

Definice 2.1 (limity funkce). Řekneme, že funkce f má v bodě $x_0 \in \mathbb{R}^*$ limitu $a \in \mathbb{R}^*$ a píšeme $\lim_{x \to x_0} f(x) = a$, jestliže ke každému okolí O(a) existuje ryzí okolí $O^*(x_0)$ takové, že pro každé $x \in O^*(x_0)$ je $f(x) \in O(a)$.

Poznámka. a) Definice zahrnuje 4 případy: je-li x_0 , $a \in \mathbb{R}$, hovoříme o *vlastní limitě ve vlastním bodě*, je-li $x_0 = \pm \infty$, $a \in \mathbb{R}$, hovoříme o *vlastní limitě v nevlastním bodě*, je-li $x \in \mathbb{R}$, $a = \pm \infty$, hovoříme o *nevlastní limitě ve vlastním bodě* a je-li $x_0 = \pm \infty$ a $a = \pm \infty$, hovoříme o *nevlastní limitě v nevlastním bodě*.

b) V definici se hovoří o ryzím okolí bodu x_0 , nevyskytuje se tedy žádný požadavek na $f(x_0)$. Existence a hodnota $\lim_{x\to x_0} f(x)$ nezávisí na tom, zda $x_0\in D(f)$, a pokud ano, tak nezávisí na hodnotě $f(x_0)$. Existuje-li však $\lim_{x\to x_0} f(x)$, musí být funkce f definována v nějakém ryzím okolí bodu x_0 .

Příklad 2.2. Ukažte, že
$$\lim_{x\to 0} f(x) = 0$$
, kde $f(x) = \begin{cases} x^2 & \text{pro } x \neq 0, \\ 1 & \text{pro } x = 0. \end{cases}$

Řešení. Nechť $\varepsilon>0$ je libovolné. Potom $\forall x\in O^*_\delta(0)$, kde $\delta=\sqrt{\varepsilon}$, platí $|x^2-0|=x^2<\delta^2=\varepsilon$.

Věta 2.3 (Heineho¹ podmínka). Funkce f má v bodě $x_0 \in \mathbb{R}^*$ limitu $a \in \mathbb{R}^* \Leftrightarrow pro$ každou posloupnost $\{x_n\}_{n=1}^{\infty} \subseteq D(f)$ takovou, že $\lim_{n\to\infty} x_n = x_0$, přičemž $x_n \neq x_0 \ \forall n \in \mathbb{N}$, platí $\lim_{n\to\infty} f(x_n) = a$.

 $D\mathring{u}kaz$. " \Rightarrow " Nechť $\lim_{x\to x_0} f(x) = a \in \mathbb{R}^*$ a $\{x_n\}$ je posloupnost splňující předpoklady. Buď O(a) libovolné. Pak existuje ryzí okolí $O^*(x_0)$ takové, že pro $x \in O^*(x_0)$ je $f(x) \in O(a)$. Poněvadž $x_n \to x_0$, $x_n \ne x_0$, existuje $n_0 \in \mathbb{N}$ takové, že pro $n \ge n_0$ platí $x_n \in O^*(x_0)$ a tedy $f(x_n) \in O(a)$, což znamená, že $\lim_{n\to\infty} f(x_n) = a$.

" \Leftarrow " Předpokládejme, že pro každou $\{x_n\}$, takovou, že $x_n \to x_0, x_n \neq x_0$, platí $\lim_{n\to\infty} f(x_n) = a \in \mathbb{R}^*$. Ukážeme, že $\lim_{x\to x_0} f(x) = a$. Připusťme, že existuje O(a) takové, že v každém ryzím okolí $O^*(x_0)$ existuje x takové, že $f(x) \notin O(a)$. Je-li $x_0 \in \mathbb{R}$ (resp. $x_0 = \infty$, resp. $x_0 = -\infty$), položíme $U_n(x_0) = (x_0 - \frac{1}{n}, x_0 + \frac{1}{n}) \setminus \{x_0\}$ (resp. $U_n(x_0) = (n, \infty)$, resp. $U_n(x_0) = (-\infty, -n)$). Pro libovolné $n \in \mathbb{N}$ existuje $y_n \in U_n(x_0)$ takové, že $f(y_n) \notin O(a)$. Z konstrukce $U_n(x_0)$ plyne, že $y_n \to x_0$, $y_n \neq x_0$ a tedy $\lim_{n\to\infty} f(y_n) = a$. To ale není možné, protože $f(y_n) \notin O(a)$.

¹Heinrich Eduard Heine 1821–1881, Němec

12 2 Sekce

Základní limity

- 1. Nechť $f(x) = c \in \mathbb{R}$ pro každé $x \in \mathbb{R}$. Pak pro každé $x_0 \in \mathbb{R}^*$ je $\lim_{x \to x_0} f(x) = c$.
- 2. Buď P polynom. Pak pro libovolné $x_0 \in \mathbb{R}$ je $\lim_{x \to x_0} P(x) = P(x_0)$.
- 3. Buď R racionální lomená funkce a $x_0 \in D(R)$. Pak $\lim_{x\to x_0} R(x) = R(x_0)$.
- 4. Buď a > 0, $f(x) = a^x$. Pak pro libovolné $x_0 \in \mathbb{R}$ je $\lim_{x \to x_0} a^x = a^{x_0}$.
- 5. Buď $a \in \mathbb{R}$, $f(x) = x^a$. Pak pro libovolné $x_0 > 0$ je $\lim_{x \to x_0} x^a = x_0^a$.
- 6. Pro libovolné $x_0 \in \mathbb{R}$ je $\lim_{x \to x_0} \sin x = \sin x_0$, $\lim_{x \to x_0} \cos x = \cos x_0$. 7. $\lim_{x \to 0} \frac{\sin x}{x} = 1$, $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$, $\lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}$,

Tabulky

U tabulek se dělají popisky (příkaz \caption) nad tabulkou. Za popiskem tabulky nebo obrázku se nedělá tečka. Typografie velí, že lépe je nepoužívat svislé čáry.

Tabulka 2.1: Laplaceova transformace vybraných funkcí

		_		
$f(x), x \ge 0$	$\mathcal{L}{f}(s)$		$f(x), x \ge 0$	$\mathcal{L}{f}(s)$
1	$\frac{1}{s}$, Re $s > 0$		sin ax	$\frac{a}{s^2 + a^2}, \text{ Re } s > 0$
x	$\frac{1}{s^2}$, Re $s > 0$		cos ax	$\frac{s}{s^2 + a^2}, \text{ Re } s > 0$
x^n ,	$\frac{n!}{s^{n+1}}, \text{ Re } s > 0$		$e^{ax} \sin bx$	$\frac{b}{(s-a)^2+b^2}, \text{ Re } s > a$
e ^{ax} ,	$\frac{1}{s-a}$, Re $s > a$		$e^{ax}\cos bx$	$\frac{s-a}{(s-a)^2+b^2}, \text{ Re } s > a$
xe^{ax} ,	$\frac{1}{(s-a)^2}, \text{ Re } s > a$		$x \sin ax$	$\frac{2as}{(s^2+a^2)^2}$, Re $s>0$
$x^n e^{ax}$,	$\frac{n!}{(s-a)^{n+1}}, \text{ Re } s > a$		$x \cos ax$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}, \text{ Re } s > 0$

Obrázky

Popisky obrázků (opět příkaz \caption) se dávají pod obrázek, viz obr. 2.1. Preferencí je tvořit čárovou grafiku ve vektorovém formátu (optimálně PDF), např. v kombinaci exportu ze softwaru Matlab/Maple a následné editaci v programu IPE.

Obrázek 2.1: Logo FSI

K sazbě matematických prostředí je doporučeno využívat balíčku "amsmath" (align, alignat, gather, multline):

$$a^2 + b^2 = c^2$$
. (Nezapomínejte na tečku za vzorcem.) (2.1)

2 Sekce 13

Z rovnice (2.1) plyne...

$$\begin{split} \lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 k + a_0}{b_\ell n^\ell + b_{\ell-1} n^{\ell-1} + \dots + b_1 n + b_0} \\ &= \begin{cases} 0 & \text{je-li } k < \ell, \\ a_k/b_\ell & \text{je-li } k = \ell, \\ \pm \infty & \text{je-li } k > \ell \end{cases} \text{ (nevlastní limita, tento pojem bude upřesněn později)}. \end{split}$$

14 Literatura

K tvorbě seznamu literatury lze použít portál Citace PRO, ten ale nabízí formáty (včetně doporučovaného ČSN ISO 690), které příliš neodpovídají zvyklostem v matematických oborech. Odkazy na jednotlivé položky literatury se provádějí pomocí příkazu \cite{nazev-polozky-v-bibitem}.

Literatura

- [1] Čermák, J., Nechvátal, L., *On a problem of linearized stability for fractional difference equations*, Nonlinear Dyn. **104** (2021), 1253–1267.
- [2] Kneschke, A., Používanie diferenciálných rovníc v praxi, Alfa, Bratislava, 1969.
- [3] Potter, M., Wiggert, D. C., Fluid Mechanics, Schaum's Outline Series, McGraw-Hill, 2008.
- [4] Warsi, U. A., Fluid Dynamics, Theoretical and Computational Approaches, 2nd ed., CRC Press, 1998.