EECS 340: Assignment 2

Shaochen (Henry) ZHONG, sxz517 Zhitao (Robert) CHEN, zxc325

Due and submitted on 02/03/2020 EECS 340, Dr. Koyutürk

Problem 1

(a)
$$max\{f(n), g(n)\} = \Theta(f(n) + g(n))$$

True

Since it is known that $f(n) \ge 0$, $g(n) \ge 0$, and c > 0; we must have:

$$f(n) \le f(n) + g(n)$$

$$g(n) \le f(n) + g(n)$$

$$\Rightarrow \max(f(n), g(n)) \in O(f(n) + g(n)) \quad \text{for } \begin{cases} c = 1 \\ \forall n_0 \in \mathbb{R} \end{cases}$$
(1)

Since it is also known that $f(n) + g(n) \le 2 \cdot \max(f(n), g(n))$, we may therefore infer:

$$\max(f(n), g(n)) \in \Omega(f(n) + g(n)) \quad \text{for } \begin{cases} c = \frac{1}{2} \\ \forall n_0 \in \mathbb{R} \end{cases}$$
 (2)

Since both the O- and Ω -notations are established, we may therefore conclude:

$$\max(f(n), g(n)) \in \Theta(f(n) + g(n)) \tag{3}$$

(b1)
$$f(n) + d = O(f(n))$$

False

For the sake of disambiguation, we rewrite the questioned equation as f(n)+d=O(f(n)) by d replacing c for d>0.

To prove the statement to be valid, we need to show:

$$0 \le f(n) + d \le cf(n) \tag{4}$$

For f(n) = 0, we cannot find any c which satisfies the above equation since:

$$O(f(n)) = cf(n) = 0$$

$$\Rightarrow 0 \le 0 + d \le c(0) \text{ for } d > 0$$
(5)

As the equation $0 + d \le 0$ leads to a contradiction, the statement is invalid.

(b2) If
$$f(n) \ge 1$$
, then $f(n) + d = O(f(n))$

True

For the sake of disambiguation, we rewrite the questioned equation as f(n)+d=O(f(n)) by d replacing c for d>0.

According to the defination of *O*-notation, we have:

$$f(n) = O(f(n))$$

$$\exists c, n_0 > 0 \text{ s.t. } 0 \le f(n) \le cf(n) \text{ for } n \ge n_0$$
(6)

$$\exists n' > 0 \text{ s.t. } f(n) \ge f(n') \text{ for } n, n' \ge n_0$$
 (7)

$$\Rightarrow 0 \le f(n) + d \le cf(n) + d \quad \text{for } n \ge n_0 \tag{8}$$

Thus, we may rewrite the above equation as:

$$0 \le f(n) + d \le \left(c + \frac{d}{f(n)}\right)f(n) \quad \text{for } f(n) \ge 1 \tag{9}$$

$$\Rightarrow 0 \le f(n) + d \le c' f(n) \quad \text{for } \begin{cases} c' = c + \frac{d}{f(n')} \\ n, n' \ge n_0 \end{cases}$$
 (10)

Therefore, we may conclude if $f(n) \ge 1$, then f(n) + d = O(f(n)) via direct proof.

(c1) If
$$f(n) = O(g(n))$$
, $\log(f(n)) \ge 0$ and $\log(g(n)) \ge 0$, then $\log(f(n)) = O(\log(g(n))$

False

For f(n) = 2 and g(n) = 1, then $\log f(n) = 1$ and $\log g(n) = 0$. Since we cannot find any constant c where:

$$0 \le 1 \le c(0) \tag{11}$$

Thus the statement is invalid.

(c2) If
$$f(n) = O(g(n))$$
, $\log(f(n)) \ge 0$ and $\log(g(n)) \ge 1$, then $\log(f(n)) = O(\log(g(n))$

True

According to the definition of *O*-notation, we must have:

$$\exists c, n_0 > 0 \text{ s.t. } f(n) \le cg(n) \text{ for } n \ge n_0$$
 (12)

Since it is given that $\log(f(n)) \ge 0$, $\log(g(n)) \ge 1$, thus we must have:

$$\log(f(n)) \le \log(c(g(n))) \quad \text{for } n \ge n_0$$

$$\Rightarrow \log(f(n)) \le \log c + \log(g(n)) \quad \text{for } n \ge n_0$$
(13)

As c, n_0 are constants, there must be a constant c' s.t.

$$c' \ge \frac{\log c}{\log(q(n_0))} + 1 \tag{14}$$

$$\Rightarrow (c'-1)\log(g(n)) \ge (c'-1)\log(g(n_0)) \ge \log c \quad \text{for } n \ge n_0$$

$$\exists c, n_0 > 0 \quad \text{s.t.}$$

$$(15)$$

$$\log(f(n)) \le \log c + \log(g(n)) \le (c'-1)\log(g(n)) + \log(g(n))$$
 for $n \ge n_0$ (16)

$$\Rightarrow \log(f(n)) \le c' \log(g(n)) \tag{17}$$

Thus we may conclude $log(f(n)) = O(\log(g(n)))$, the statement is therefore proven to be valid.

(d1)
$$f(2n) = \Theta(f(n))$$

False

For $f(n) = 2^n$, we have $f(2n) = 4^n$. Where $f(2n) \neq \Theta(f(n))$ due to the LHS has a higher asymptotic order, and therefore we can't find any constant c_1, c_2 to form a relation of $c_1 \cdot 2^n \leq 4^n \leq c_2 \cdot 2^n$. Thus, the statement is invalid.

(d2) If
$$f(n) = O(n^k)$$
, then $f(2n) = O(n^k)$

True

For the sake of disambiguation, we rewrite the questioned equation as: if $f(n) = O(n^k)$, then $f(2n) = O(n^k)$ by k replacing c for k > 0.

Since $f(n) = O(n^k)$, we must have $0 \le f(n) \le cn^k$ for $n \ge n_0$ and a c for $c \in \mathbb{R}^+$. Now substitute n as 2n, we may have:

$$0 \le f(2n) \le c(2n)^k$$

$$\Rightarrow 0 \le f(2n) \le c \cdot (2)^k \cdot n^k$$
(18)

$$\Rightarrow 0 \le f(2n) \le c' \cdot n^k \quad \text{where } c' = c \cdot (2)^k \tag{19}$$

Thus we may conclude if $f(n) = O(n^k)$, then $f(2n) = O(n^k)$.

(d3) If
$$f(n) = \Theta(n^k)$$
, then $f(2n) = \Theta(f(n))$

True For the sake of disambiguation, we rewrite the questioned equation as: if $f(n) = \Theta(n^k)$, then $f(2n) = \Theta(f(n))$.

Since $f(n) = \Theta(n^k)$, we must have $0 \le c_1 \cdot n^k \le f(n) \le c_2 \cdot n^k$ for $n \ge n_0$ and c_1, c_2 for $c_1, c_2 \in \mathbb{R}^+$. Now substitute n as 2n, we may have:

$$0 \le c_1 (2n)^k \le f(2n) \le c_2 (2n)^k$$

$$\Rightarrow 0 \le c_1 \cdot 2^k \cdot n^k \le f(2n) \le c_2 \cdot 2^k \cdot n^k$$
(20)

From $0 \le c_1 \cdot n^k \le f(n) \le c_2 \cdot n^k$, we may also infer:

$$\frac{f(n)}{c_1} \ge k \ge \frac{f(n)}{c_2} \tag{21}$$

$$\Rightarrow c_1 \cdot 2^k \cdot \frac{f(n)}{c_2} \le f(2n) \le c_2 \cdot 2^k \cdot \frac{f(n)}{c_1}$$
 (22)

$$\Rightarrow 0 \le c_{1}^{'} \cdot f(n) \le f(2n) \le c_{2}^{'} \cdot f(2n) \quad \text{for } \begin{cases} c_{1}^{'} = \frac{c_{1} \cdot 2^{k}}{c_{2}} \\ c_{2}^{'} = \frac{c_{2} \cdot 2^{k}}{c_{1}} \end{cases}$$
 (23)

Thus we may conclude if $f(n) = \Theta(n^k)$, then $f(2n) = \Theta(f(n))$.

Problem 2

Conclusion

$$n^{-a} \ll n^{-\epsilon} \ll \epsilon^n \tag{24}$$

$$\ll \log(n^{\epsilon}) \equiv \log(bn) \equiv \log(n^{a}) \equiv \log(n^{b}) \equiv \log_{\frac{1}{\epsilon}}(n)$$
 (25)

$$\ll (\log n)^a \ll n^{\epsilon} \ll a^{\log_a(n)}$$
 (26)

$$\equiv \epsilon n \equiv \frac{n}{a} \tag{27}$$

$$\ll n^a \equiv (n+b)^a \ll (n+a)^b \ll n^{a+b} \tag{28}$$

$$\ll a^{\epsilon n} \ll a^n \ll b^n$$
 (29)

Justifications

Justification of $n^{-a} \ll n^{-\epsilon} \ll \epsilon^n$

$$\lim_{n \to \infty} \frac{\epsilon^n}{n^{-\epsilon}} = \lim_{n \to \infty} \frac{n \log \epsilon}{-\epsilon \log n} = \lim_{n \to \infty} \frac{\log \epsilon}{-\epsilon} \cdot \frac{n}{\log n}$$
(30)

Since
$$\epsilon \in (0,1) \Rightarrow \log \epsilon < 0 \Rightarrow \frac{\log \epsilon}{\epsilon} > 0$$

$$\lim_{n \to \infty} \frac{\epsilon^n}{n^{-\epsilon}} = \lim_{n \to \infty} c \cdot \frac{n}{\log n} = \infty$$
 (31)

$$\Rightarrow \epsilon^n \gg n^{-\epsilon} \tag{32}$$

Since
$$0 < \epsilon < 1 < a$$
 (33)

$$\lim_{n \to \infty} \frac{n^{-a}}{n^{-\epsilon}} = \lim_{n \to \infty} n^{\epsilon - a} = 0 \tag{34}$$

$$\implies n^{-a} \ll n^{-\epsilon} \tag{35}$$

Combine the above two set of equations together, we have $n^{-a} \ll n^{-\epsilon} \ll \epsilon^n$.

Justification of $\epsilon^n \ll \log(n^{\epsilon})$

Since $\lim_{n\to\infty} \epsilon^n = 0$, where $0 < 1 < \log(n^{\epsilon})$, we may say the above inequality if true.

Justification of $\log(n^{\epsilon}) \equiv \log(bn) \equiv \log(n^{a}) \equiv \log(n^{b}) \equiv \log_{\frac{1}{\epsilon}}(n)$

The above equations can be losely rewritten as:

$$\log(n^{\epsilon}) = \epsilon \log(n) \tag{36}$$

$$\log(n^a) = a\log(n) \tag{37}$$

$$\log(bn) = \log(b) + \log(n) \tag{38}$$

$$\log(n^b) = b\log(n) \tag{39}$$

(40)

Where all of them can be generalized as $\Theta(\log(n))$, as it is known that $n^{\epsilon} \leq bn \leq n^a$ due to the decending of power(s).

Note the relationship of the above expressions with $\log_{\frac{1}{2}}(n)$ can be a bit unintuitive, we

may show they are considered equivalent with:

$$\lim_{n \to \infty} \frac{\log(n^{\epsilon})}{\log_{\frac{1}{\epsilon}}(n)} = \lim_{n \to \infty} \frac{\epsilon \log_2 n}{\frac{\log_2 n}{\log_2(\frac{1}{\epsilon})}} = \lim_{n \to \infty} \epsilon \log_2(\frac{1}{\epsilon}) = c$$

$$\Rightarrow \log(n^{\epsilon}) \equiv \log_{\frac{1}{\epsilon}}(n)$$
(41)

Justification of $\log(n) \ll (\log(n))^a$

$$\lim_{n \to \infty} \frac{(\log(n))^a}{\log(n)} = \lim_{n \to \infty} (\log(n))^{a-1} = \infty$$

$$\Rightarrow \log(n) \ll (\log(n))^a \tag{42}$$

Considered $\log(n)$ is a generalized form of the previous group of functions, $(\log(n))^a$ is proven to be greater than the previous group.

Justification of $(\log n)^a \ll n^{\epsilon} \ll a^{\log_a(n)}$

$$\lim_{n \to \infty} \frac{\log((\log(n)^a))}{\log(n^{\epsilon})} = \lim_{n \to \infty} \frac{a \cdot \log((\log(n)))}{\epsilon \log(n)} = 0$$

$$\Rightarrow (\log n)^a \ll n^{\epsilon}$$
(43)

And it is apparent to see $n^{\epsilon} \ll a^{\log_a(n)}$ since $a^{\log_a(n)} = n$; as $\epsilon \in (0,1)$, there will always be $n^{\epsilon} \ll n$.

Justification of $a^{\log_a(n)} \equiv \epsilon n \equiv \frac{n}{a}$

The above equations can be losely rewritten as:

$$a^{\log_a(n)} = n^1 = \Theta(n) \tag{44}$$

$$\epsilon n = \Theta(n) \tag{45}$$

$$\frac{n}{a} = \frac{1}{a}n = \Theta(n) \tag{46}$$

Thus, the above equality is justified.

Justification of $n^a \equiv (n+b)^a \ll (n+a)^b \ll n^{a+b}$

These are all polynomial functions with the greatest power > 1; thus they are considered greater than the previous group (functions with the greatest power = 1), and ordered according to ascending of power(s).

Justification of $n^{a+b} \ll a^{\epsilon n}$

 n^{a+b} is considered much greater than $a^{\epsilon n}$ due to its nature of being an exponential function.

Justification of $a^{\epsilon n} \ll a^n \ll b^n$

$$\lim_{n \to \infty} \frac{a^{\epsilon n}}{a^n} = 0$$

$$\Rightarrow a^{\epsilon n} \ll a^n \tag{47}$$

Also it is apparent to see that $a^n \ll b^n$ due to 1 < a < b. Thus, the inequality is justified.