INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE MATEMÁTICA

Álgebra Lineal para Computación (MA-2405)

Tiempo: 2 h. 20 m. Total: 38 puntos II Semestre de 2011

Segundo Examen Parcial

Instrucciones: Trabaje en forma ordenada y clara. Escriba todos los procedimientos que utilice para resolver los ejercicios propuestos.

- 1. En \mathbb{R}^3 se definen los conjuntos $H_1 = \{(x, y, z) \in \mathbb{R}^3 / 2x y z = 0\}$ y $H_2 = \{(x, y, z) \in \mathbb{R}^3 / x + 2y + 3z = 0\}.$
 - (a) Calcule $H_1 \cap H_2$. (4 puntos)
 - (b) Determine una base para $H_1 \cap H_2$ y la dimensión de $H_1 \cap H_2$. (3 puntos)
 - (c) Demuestre que $H_1 \cap H_2$ es un subespacio de \mathbb{R}^3 . (3 puntos)
- 2. Demuestre que el conjunto de las matrices simétricas es un subespacio vectorial del espacio vectorial $(M_n(\mathbb{R}), +, \cdot)$. (4 puntos)
- 3. ¿Para cuál valor de k el vector u=(1,-2,k) en \mathbb{R}^3 se puede escribir como combinación lineal de los vectores v=(3,0,-2) y w=(2,-1,-5)? (3 puntos)
- 4. Determine si el vector $q = 14x^3 + 15x$ pertenece al subespacio generado por $u = 2x^3 3x^2$ y $v = 5x 2x^2$. Justifique. (3 puntos)
- 5. Si se sabe que los vectores $v_1=(3,-4,2)$ y $v_2=(-2,1,5)$ son linealmente independientes pero no son base de \mathbb{R}^3 . Encuentre un vector v_3 , de tal manera que $B=\{v_1,v_2,v_3\}$ sea una base de \mathbb{R}^3 . (3 puntos)
- 6. En el grupo $(\mathbb{Z}_2 \times \mathbb{Z}_5^*, \odot)$ donde $(a, b) \odot (c, d) = (a + c, bd)$.
 - (a) Calcule los ocho elementos del grupo. (2 puntos)
 - (b) Construya la tabla de operación. (2 puntos)
 - (c) Determine el elemento neutro y el inverso de cada elemento del grupo.

(2 puntos)

- (d) Calcule $(1,2)^{-3} \odot (0,3)^4$. (2 puntos)
- 7. Sea $D_2 = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in M_2(\mathbb{R}) \ / \ a^2 + b^2 \le 1 \right\}$. Determine si $(D_2, +)$ es o no un grupo. (4 puntos)
- 8. Sea H un subconjunto no vacío de G, con (G, \cdot) un grupo. Demuestre que si $a \cdot b^{-1} \in H, \forall a, b, \in H$, entonces H es subgrupo de G. (3 puntos)