# Edexcel GCSE Statistics (9-1) Revision Notes

## **Chapter 1: Collection of Data**

- Raw Data
- Qualitative
- Quantitative
- Discrete
- Continuous
- Categorical
- Ordinal (rank)
- Bivariate
- Multivariate
- •
- •
- •
- 0
- •
- $\circ$  K
- 0
- Primary
- Secondary

|                   | Advantages                                                                                                                                     | Disadvantages                                                                                                                                                                                                            |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary<br>Data   | <ul> <li>Accurate</li> <li>Collection method known</li> <li>Can find answers to<br/>specific questions</li> </ul>                              | <ul><li>Time consuming</li><li>Expensive</li></ul>                                                                                                                                                                       |
| Secondary<br>Data | <ul> <li>Cheap</li> <li>Easy</li> <li>Quick</li> <li>Data from some organisations can be more reliable than data collected yourself</li> </ul> | <ul> <li>Method of collection unknown</li> <li>Data may be out of date</li> <li>May contain mistakes</li> <li>May come from unreliable source</li> <li>May be difficult to find answers to specific questions</li> </ul> |





- Population
- Census
- Sample
- Sampling Frame
- Sampling Unit
- Biased sample

|        | Advantages                                                                                       | Disadvantages                                                                                                                               |
|--------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Census | <ul> <li>Unbiased</li> <li>Accurate</li> <li>Takes into account<br/>entire population</li> </ul> | <ul> <li>Time consuming</li> <li>Expensive</li> <li>Lots of data to manage</li> <li>Difficult to ensure whole population is used</li> </ul> |
| Sample | <ul><li>Cheaper</li><li>Quicker</li><li>Less data to<br/>consider</li></ul>                      | <ul> <li>May be biased</li> <li>Not completely<br/>representative</li> </ul>                                                                |



• Random Sample

С

•

•

•

•

0

•

•

0

•

.

0

.

.

•

equal chance

intervals

0

.

$$stratified\ sample = \frac{strata}{total} \times sample\ size$$

each group

-

0

•

0

#### • Systematic Sampling

0

.

\_

.

0

•

•

0

#### • Cluster Sampling

0

.

-

0

:

#### • Quota Sampling

С

•

•

0

• P

•

0

•

#### • Opportunity Sampling

0

**-** F

-

•

0

#### • Judgement Sampling

0

•

• |

0

•

• P

$$\frac{M}{N} = \frac{m}{n}$$

$$N = \frac{Mn}{m}$$

 $\ensuremath{\textit{\textbf{N}}}\xspace$  is the population size to be estimated.

 ${\it M}$  is the number of members of the population that are captured initially and tagged.  ${\it n}$  is the number of members of the population that are captured subsequently.  ${\it m}$  is the number of members of this subsequent captured population that are tagged.

$$\frac{First\ Capture}{Total\ (N)} = \frac{Tagged}{Second\ Capture}$$

#### Method

#### they are thoroughly mixed

#### **Assumptions**

- - •
- •
- •
- o Explanatory (Independent) Variable –
- o Response (dependent) variable -
- Extraneous Variables –

| • | <b>Laboratory Experiments</b> | full control |                |
|---|-------------------------------|--------------|----------------|
|   | •                             |              |                |
|   | •                             |              |                |
|   | •                             |              |                |
| • | Field Experiments             |              | some control   |
|   | • •                           |              |                |
|   | •                             |              |                |
|   | •                             |              |                |
| • | Natural Experiments control   |              | no/very little |
|   | •                             |              |                |
|   | •                             | Р            |                |
|   | • K                           |              |                |
|   | •                             |              |                |
|   |                               |              |                |

Steps

Example

| Ρ. |  |  |
|----|--|--|

#### Questionnaire -

P

#### Features of a good questionnaire:

- •
- •
- \_
- D
- P

#### **Problems with Questionnaires:**

•

- 0
- 0
- (
- 0

•

#### **Random Response Method:**

#### **Pilot Study**

- •
- •
- \_
- \_

#### Interviews:

|                            | Advantages                                                                                                                                                                                                     | Disadvantages                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interview                  | <ul> <li>Interviewer can explain questions</li> <li>Interviewer can put people at ease when having to answer personal qs</li> <li>Respondents can explain their answers</li> <li>High response rate</li> </ul> | <ul> <li>Less likely to answer personal questions and may be less honest</li> <li>Time consuming</li> <li>Expensive</li> <li>Smaller sample size than questionnaire</li> <li>Interviewer bias - interviewer may interpret answers to suit their opinion</li> <li>Respondent may try to impress/guess the answer the interviewer wants.</li> </ul> |
| Anonymous<br>Questionnaire | <ul> <li>Respondents more likely to answer personal questions</li> <li>No interviewer bias</li> <li>Easy to send questionnaires to large sample size</li> <li>Quick</li> <li>Cheap</li> </ul>                  | <ul> <li>Some questions may not be understood</li> <li>Researchers may not understand some of the responses</li> <li>Low response rate</li> </ul>                                                                                                                                                                                                 |

#### Outliers -

#### Cleaning Data -

- •
- •
- •
- •

#### • Control Groups

- 0
- 0
- 0

| <b>Hypothesis</b> - |  |  |
|---------------------|--|--|

# <u>Chapter 2 – Processing and Representing Data</u>

#### Databases -

|                | Septe              | September 2016      |        | September 2017      |                      |
|----------------|--------------------|---------------------|--------|---------------------|----------------------|
| Make           | sales              | market share<br>(%) | sales  | market share<br>(%) | % change<br>in sales |
| Ford           | 49.078             | 10.45               | 39 696 | 9.31                | -19.12               |
| Volkswagen     | 33.722             | 7.18                | 36332  | 8.53                | 7:74                 |
| BMW            | 32 595             | 6.94                | 31465  | 7.38                | -3.47                |
| Mercedes-Benz. | 31988              | 6.81                | 31430  | 7.37                | -1.74                |
| Vauxhall       | 41 697             | 8.88                | 31058  | 7.29                | -25.52               |
| Audi           | <del>-3</del> 1113 | 6.62                | 29619  | 6.95                | -4.80                |
| Nissan         | 27 807             | 5.92                | 28810  | 6.76                | 3.61                 |
| Toyota         | 18:888             | 4.02                | 19:222 | 4.51                | 1.77                 |
| Hyundai        | 17039              | 3.63                | 16587  | 3.89                | -2.65                |
| Kia            | 15340              | 3.27                | 15:706 | 3.69                | 2:39                 |
| Land Rover     | 14-629             | 3.11                | 14504  | 3.40                | -0:85                |
| Peugeot.       | 16130              | 3.43                | 12810  | 3.01                | -20:58               |
| Renault        | 17275              | 3.68                | 12378  | 2.90                | -28.35               |
| Mini           | —13-119—           | 2.79                | 12.282 | 2.88                | −6.38·               |

(Source: www.smmt.co.uk)

#### **Two-Way Tables**

| Age      | male | female | Total |
|----------|------|--------|-------|
| 18 to 22 | 2    | 4      |       |
| 23 to 29 | 15   |        |       |
| 30 to 36 |      |        | 21    |
| Total    | 30   | 30     |       |

(Source: www.wtatennis.com and www.atpworldtour.com)

| • | • |  |  |
|---|---|--|--|
|   |   |  |  |

•

| 4 | ۰ | ١ |  |
|---|---|---|--|
| u |   | , |  |
|   |   |   |  |

| Hip-hop    | <b>关关</b> 5  |
|------------|--------------|
| Indie rock | 2 2 2 2      |
| Metal      | 2 2          |
| Pop        | 2222         |
| R&B        | <b>关关关</b> 5 |
| Other      | £ £          |



#### • Simple Bar Charts



Vertical Line Graph



#### Multiple Bar Charts



• Composite Bar Charts



K

A good way of organising data without losing any of the detail

Κ

How to draw one:

first digits

numerical order

correct row.

numerical order

<u>key</u>

• Back-to-back Stem and Leaf Diagrams

0

0

0

#### **Area of Pie Chart = Total Frequency**

1.

2.

3.

4.

5.

**6.** K

#### **Comparative Pie Charts**

#### **Area of Pie Chart = Total Frequency**

$$r_2 = r_1 \frac{\sqrt{F_2}}{\sqrt{F_1}}$$

•

•

•



CF Step Polygons discrete

с'n

**CF Curves** 

grouped continuous

с'n



#### **Equal Class Widths**

Κ



#### **Unequal Class Widths**

 $Frequency\ Density = \frac{Frequency}{Class\ Width}$ 

 $Frequency\ Density \times Class\ Width = Frequency$ 



#### **Drawing Histograms:**

#### **Estimating frequencies from histograms:**



tion has positive skew. lata values are at the cample: The age at on learns to write.

ion is stretched out in direction  $\rightarrow$ .

This distribution is symmetrical. It has no skew. Example: The lengths of leaves on a tree.

This distribution has negative skew. Most of the data values are at the upper end. Example: The age at which a person dies.

The distribution is stretched out in the negative direction  $\leftarrow$ .

This distribu Most of the c lower end. Ex which a pers

the positive

The distribut

•

•

•



#### **Types of Misleading Diagrams:**

•

•

•

• K

#### Axes and Scales that can be misleading:

•

•

•

•

•

# **Chapter 3 – Summarising Data**

| Averages                                    |            |
|---------------------------------------------|------------|
| most                                        |            |
| middle                                      |            |
| Discrete Data:                              |            |
| median is the $rac{1}{2}(n+1)th$ value     |            |
|                                             |            |
|                                             |            |
| 1                                           |            |
| $\frac{1}{2}(n+1)th$                        |            |
| Grouped Data:                               | ½nth value |
|                                             |            |
| Estimate Median using Linear Interpolation: |            |
|                                             | _          |
|                                             |            |
|                                             |            |

#### sum of all the values divided by the number of values

#### **Discrete Data:**

Formula for Mean:  $\overline{x} = \frac{\sum x}{n}$ 

 $\bar{x}$ 

 $\boldsymbol{\chi}$ 

n

 $\sum x$ 

Frequency Table (not grouped):

$$f \times x$$

$$\sum fx$$

 $\sum f$ 

Formula:  $\frac{\sum fx}{\sum f}$ ,

$$\sum fx$$

$$\sum f$$

Frequency Table (grouped):

$$f \times midpoint$$

 $f \times midpoint$ 

$$f \times midpoint$$

$$\sum fx$$

$$\sum f$$

Formula:  $\frac{\sum (f \times midpoint)}{\sum f}$ 

#### **Weighted Mean**

#### different number of values or weights in each group

$$Weighted\ Mean = \frac{\sum (weight\ x\ value)}{\sum weights}$$

#### **Geometric Mean**

The nth root of the product of all the values

$$Geometric\ Mean = \sqrt[n]{value_1 \times value_2 \times ... \times value_n}$$

**Linear Transformation** 

Example

| Mode –   |              |  |
|----------|--------------|--|
| Median – | <br>         |  |
|          | <br><u> </u> |  |
| Mean –   | <br>         |  |
|          | <br>         |  |
|          | <br>         |  |

Median

Mean

Advantages

Disadvantages

Median

P

Mean

Disadvantages

| Mea              | asures   | of Disper      | <u>rsion</u>                                     |         |
|------------------|----------|----------------|--------------------------------------------------|---------|
|                  | spread   |                |                                                  |         |
|                  |          |                | Range = Largest Value - Smallest Value           |         |
| "Bet             | ween Q   | P<br>uartiles" |                                                  |         |
|                  |          | Inter          | quartile Range = Upper Quartile — Lower Quartile |         |
| K                | P<br>P   | KP<br>P        |                                                  | KP<br>P |
| Discr<br>KP<br>P | ete Dat  | a              |                                                  |         |
|                  |          | KP             | ΚP                                               |         |
|                  | Р        | Р КР           |                                                  |         |
| Grou<br>KP<br>P  | iped Dat | ta             |                                                  |         |

KP P P P KP KP P

**Percentiles** 

#### **Frequency Table (not grouped)**

Formulae: 
$$\sigma = \sqrt{\frac{\sum f(x-\overline{x})^2}{\sum f}}$$
 OR  $\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - (\frac{\sum fx}{\sum f})^2}$   $\sum f = n$ 

$$\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - (\frac{\sum fx}{\sum f})^2}$$

$$\sum f = n$$

$$\frac{\sum fx}{\sum f} = mean$$

$$x - \overline{x}$$

#### Grouped



Ρ

#### **Drawing Box Plots:**

#### **Outliers**

#### far from the rest of your data

#### distort the data

P P KP  $\begin{aligned} \textbf{Outliers are values} &> \textbf{UQ} + (\textbf{1}.\,\textbf{5} \times \textbf{IQR}) \\ & or < \textbf{LQ} - (\textbf{1}.\,\textbf{5} \times \textbf{IQR}) \end{aligned}$ 

KP F

#### Outliers = Values outside $\overline{x} \pm 3\sigma$

**Interpreting box plots** 

Ρ

Types of Skew:



- •
- •
- \_\_\_\_\_

#### **Skewness on Box Plots:**

• \_\_\_\_

\_\_\_\_



#### **Skewness using the Formula:**

Formula:  $Skewness = \frac{3(mean-median)}{standard\ deviation}$ 

- \_\_\_\_\_
- •
- •

#### **Example Comparisons and Interpretations of Data**

Р

| ch ch | ch | сh | сh | ch | ćh | ch | ch ch | chch | сh |
|-------|----|----|----|----|----|----|-------|------|----|
|-------|----|----|----|----|----|----|-------|------|----|

• \_\_\_\_\_

| D   |
|-----|
| I I |
|     |
|     |

# <u>Chapter 4 – Scatter Diagrams and Correlation</u>

|                        | bivariate            |
|------------------------|----------------------|
|                        | Explanatory variable |
|                        | Response Variable    |
|                        |                      |
|                        |                      |
|                        |                      |
| • Positive Correlation |                      |
| Negative Correlation   |                      |
| • Zero Correlation     |                      |
|                        |                      |
| Linear Correlation     |                      |
| Non-Linear Correlation |                      |
|                        |                      |
|                        |                      |
| Causation              |                      |
|                        |                      |
|                        | Р                    |
|                        |                      |

K K

Κ

 $\textit{Mean Point } (\overline{x}, \overline{y}) = (\textit{Mean of x values}, \textit{Mean of y values})$ 

Κ

Interpolation K

Κ

within the range of data

Extrapolation

K

Κ

outside of the range of values

<u>K</u>

Κ

Κ

Eqn of LOBF: y = ax + b

**Drawing Regression Line:** 

Κ

K \_\_\_\_\_

**Finding Equation of LOBF/Regression Line:** 

 $(x_1, y_1)$   $(x_2, y_2)$ 

$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

Κ

$$b = y_1 - ax_1$$
$$y = ax + b$$



•

•

•

$$SRCC, r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

#### **Calculating SRCC:**

•

•

•

# **Chapter 5 - Time Series**

#### time plotted on the x-axis

K general trend



Κ

| Term             | Autumn | Spring | Summer | Autumn | Spring | Summer |
|------------------|--------|--------|--------|--------|--------|--------|
|                  | 2000   | 2001   | 2001   | 2001   | 2002   | 2002   |
| Number of people | 520    | 300    | 380    | 640    | 540    | 500    |

•

Seasonal Variation = Actual Value - Trend Value

**Estimated Mean Seasonal Variation (EMSV)** 

Estimated Mean Seasonal Variation
= Mean of all the seasonal variations for that season

**Predicting Values** 

 ${\it Predicted \, Value} = {\it Trend \, Line \, Value} \, ({\it from \, graph}) + {\it EMSV}$ 

#### <u>Chapter 6 – Probability</u>



# $Risk = \frac{Number\ of\ trials\ in\ which\ event\ happens}{Total\ number\ of\ trials}$

#### 2 types of risk:

Absolute Risk Relative Risk

Relative Risk =  $\frac{Risk for those in the group}{Risk for those not in the group}$ 

Sample Space list of all the possible outcomes

Sample Space Diagram table two events

outcomes of

|   | •   |     | •   |     | 3   | l°  |
|---|-----|-----|-----|-----|-----|-----|
| 1 | 1,1 | 2,1 | 3,1 | 4,1 | 5,1 | 6,1 |
| 2 | 1,2 | 2,2 | 3,2 | 4,2 | 5,2 | 6,2 |
| 3 | 1,3 | 2,3 | 3,3 | 4,3 | 5,3 | 6,3 |
| 4 | 1,4 | 2,4 | 3,4 | 4,4 | 5,4 | 6,4 |
| 5 | 1,5 | 2,5 | 3,5 | 4,5 | 5,5 | 6,5 |
| 6 | 1,6 | 2,6 | 3,6 | 4,6 | 5,6 | 6,6 |



**Completing Venn Diagrams:** 

$$P(A \text{ or } B) = P(A) + P(B)$$

**Exhaustive Events** 

contains ALL the possible outcomes

$$P(A) + P(not A) = 1$$
  
 
$$P(not A) = 1 - P(A)$$

K

**General Addition Law.** not mutually exclusive

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$



 $P(A \cap B)$  $P(A \cup B)$ 



**Unconnected Events** 

**Multiplication Law for Independent Events:** 

$$P(A \text{ and } B) = p(A) \times P(B)$$

$$P(A \text{ and } B \text{ and } C) = P(A) \times P(B) \times P(C)$$

$$P(at least 1) = 1 - P(none)$$

#### multiply along the branches

# Add probabilities down columns Replacement

Without replacement



When one event affects the chances of another event happening

#### **Notation:**

P(B|A) = P(B given that A happens)

How to know it is conditional probability?

'given that' 'if'

from that' 'this'

$$P(B|A) = \frac{P(A \text{ and } B)}{P(B)}$$

$$P(A \text{ and } B) = P(B|A) \times P(A)$$

For two independent events, A and B P(A) = P(A|B).

# **Chapter 7 - Index Numbers**

**Simple Index numbers** 

$$Index \ Number = \frac{Price}{Base \ Year \ Price} \times 100$$

•

•

**Retail Price Index (RPI** 

**Consumer Price Index (CPI)** 

J

**Gross Domestic Product (GDP)** 

J

**Weighted Index Numbers** 

$$Weighted\ Index\ Number = \frac{\sum (index\ number\ \times weight)}{\sum weights}$$

Chain Base Index Numbers = 
$$\frac{price}{last\ year's\ price} \times 100$$

Crude Rate
Crude Birth Rate
Crude Death Rate

$$\textit{Crude Rate} = \frac{number\ of\ births/deaths}{total\ population} \times 1000$$

**Standard Populations** 

$$\textit{Standard Population} = \frac{\textit{number in age group}}{\textit{total population}} \times 1000$$

**Standardised Rate** 

$$\textit{Standardised Rate} = \frac{\textit{Crude Rate}}{1000} \times \textit{Standard Population}$$

### **Chapter 8 - Probability Distributions**

with

**Notation** 

B (n, p)

**Conditions for Binomial Distribution:** 

Finding Probabilities using the Binomial Distribution: Use  $(p+q)^n$  to find the probabilities

$$(p+q)^n$$

Κ

$$10 \times (\frac{1}{6})^3 \times (\frac{5}{6})^2$$

#### **Finding the Probabilities/Coefficients:**

$$(p+q)^{n}$$

$$(p+q)^{4}$$

$$1p^{4} + 4p^{3}q^{2} + 6p^{2}q^{2} + 4p^{1}q^{3} + 1q^{4}$$

The mean (or expected value)

B (n, p) is np.

smooth, bell-shaped curve.



Notation:  $N(\mu, \sigma^2)$ 

$$\sigma^2$$

#### σ

#### **Conditions for Normal Distribution:**

#### Important properties of a Normal Distribution:

$$\mu \pm \sigma$$
)

$$\mu \pm 2\sigma$$
)

$$\mu \pm 3\sigma$$
)



For each property half the area lies either side of the mean.

$$\mu + \sigma$$

$$\mu + 2\sigma$$

$$\mu - 2\sigma$$

 $\mu - 3\sigma$ 

 $\mu - \sigma$ 





#### **Sketching a Normal Distribution:**

Calculating number of SDs  $Number\ of\ SD\ from\ mean = \frac{value-mean}{standard\ deviation}$ 

$$\frac{960-1000}{15} = -2 \qquad \qquad \frac{1030-1000}{15} = 2$$

 $Standardised\ Score = \frac{Score - Mean}{Standard\ Deviation}$ 

- •
- •
- •

Involves checking samples to make sure products are all of the same quality and standard

#### How it works:

#### **Control Chart**

•

• K K

• K K

