Легенда о мухе Декарта или введение в систему координат.

(1596-1650)

"Я мыслю, следовательно, я существую."

Жизнь великих людей сопровождается мифами и легендами.

Исаак Ньютон (1642-1727)

Легендой стала история о том, что однажды, гуляя в саду, Ньютон увидел, как с ветки упало яблоко, и это подтолкнуло его к открытию закона всемирного тяготения. Принятая легенда, правда, гласит, что яблоко упало на голову Ньютона. Многие историки науки и учёные пытались установить, соответствует ли эта легенда истине. Ведь без закона всемирного тяготения не было бы знаменитой книги Ньютона "Начала". Вот что рассказывает в "Воспоминаниях о жизни Исаака Ньютона" его друг Уильям Стекли, посетивший Ньютона 15 апреля 1725 г. в Лондоне: "Так как стояла жара, мы пили послеобеденный чай в саду, в тени раскидистых яблонь. Были только мы вдвоём. Между прочим Ньютон сказал мне, что в такой же точно обстановке ему впервые пришла в голову мысль о тяготении. Она была вызвана падением яблока, когда он сидел, погрузившись в думы...".

Архимед (ок. 287-212 до н.э.)

Архимед — величайший ученый Древнего мира. Имя его овеяно легендами. Мы восклицаем: «Эврика!» — выражая, как Архимед, восторг по поводу своей удачи. Все знают, что когда Архимед купался в ванне, его осенило открытие и Архимед с криком "Эврика!" бежал по улицам своего города.

Есть и другая версия этой легенды.

Рассказывают, что Архимед лежал в ванне и размышлял о том, как узнать, есть ли примесь серебра в золотой короне. Выталкивающую силу человек отчетливо ощущает, принимая ванну. Закон неожиданно открылся Архимеду, представился в своей замечательной простоте. С возгласом «Эврика!» (что значит «нашел») Архимед выскочил из ванны и побежал в комнаты за драгоценной короной, чтобы немедленно определить потерю ее веса в воде.

Каждый знает, что вслед за Архимедом можно перевернуть мир, если только найдется надежная точка опоры.

И, конечно, все представляют картину: убийца с обнаженным мечом и сидящий старец, восклицающий: «Не трогай моих чертежей!»

Менделеев Д.И. (8.II 1834 - 2.II 1907)

ПРАВДА ли, что Менделеев увидел Периодическую систему элементов во сне?

Известен день, когда Менделеев сделал первые наброски, приведшие к созданию периодической таблицы. Это зафиксировано в литературе. Работая над трудом «Основы химии», открыл (февраль 1869 г.) один из фундаментальных законов природы - периодический закон химических элементов. Миф о его сновидении - всего лишь красивая легенда.

Рене Декарт (1596-1650 гг.)

Декарт (Descartes) Рене - французский философ, математик, физик и физиолог.

Рене Декарт является одним из создателей аналитической геометрии (которую он разрабатывал одновременно с П. Ферма), позволявшей алгебраизировать эту науку с помощью метода координат, т.е. вместо геометрических построений использовать математические расчеты. Предложенная им система координат получила его имя.

Заложил основы аналитической геометрии, в работе *«Геометрия»* (1637) дал понятия переменной величины и функции, ввел многие алгебраические обозначения. Высказал закон сохранения количества движения, дал понятие импульса силы.

Пьер Ферма (1601-1665 гг.)

Пьер Ферма — знаменитый французский математик, один из создателей аналитической геометрии и теории чисел (теоремы Ферма). Труды по теории вероятностей, исчислению бесконечно малых и оптике (принцип Ферма).

Научные знания Ферма, не только в области математических наук, поражали его соотечественников разносторонностью. Владея южноевропейскими языками и глубоко изучив латинский и греческий языки, Ферма и будучи гуманистом и поэтом, писал французские и латинские стихи.

Оба ученых внесли огромный вклад в становление и развитие математических и физических наук, своими открытиями положив начало совершенно новым подходам к решению многих задач.

Однако и эти открытия овеяны множеством забавных историй и легенд.

Существует несколько легенд об изобретении системы координат, которая носит имя Декарта.

Однажды Рене Декарт весь день пролежал в кровати, думая о чем-то, а муха жужжала вокруг и не давала ему сосредоточиться. Он стал размышлять, как бы описать положение мухи в любой момент времени математически, чтобы иметь возможность прихлопнуть ее без промаха. И ... придумал декартовы координаты, одно из величайших изобретений в истории человечества.

Проследим путь открытия системы координат согласно этой легенде в картинках.

Время открытия: 1637 год.

<u>Действующие лица:</u>

Автор открытия: французский математик Рене Декарт.

"Соавтор" открытия": муха Декарта

<u>Место действия:</u> "кабинет" Рене Декарта. На рисунке условно показаны три стены кабинета:

Обратите внимание! Каждые две плоскости пересекаются по прямой линии.

1. На фронтальную плоскость садится муха

2. Предположим, что Р. Декарт смотрит на фронтальную плоскость в перпендикулярном ей направлении.

Мы видим, что муха находится на фронтальной плоскости.

Но как точно определить ее положение?

3. Эврика!

Нужно взять две взаимно перпендикулярные числовые прямые. Точку пересечения прямых обозначим как O - начало системы координат.

Одну из прямых назовем ось X, другую - ось Y.

На нашем рисунке расстояние между делениями на числовых прямых равно единице.

Внимание! Вы можете выбрать начало координат и направление осей так, как это удобно в конкретной задаче.

4. Определим точное положение "соавтора" - мухи.

Проведем через точку, где находится муха две прямые:

- 1. Параллельно оси X. Прямая пересекает ось Y в точке с числовым значением, равным 4. Это значение назовем координатой "y" нашего "соавтора".
- 2. Параллельно оси Ү. Прямая пересекает ось Х в точке с числовым значением, равным (-2). Это значение назовем координатой "х" нашего объекта.

Принято координаты объекта, обычно точки, записывать в форме (x, y).

Для нашей мухи мы можем сказать, что она находится в точке с координатами (-2, 4).

Задача точного определения положения мухи решена!

Новизна идеи состоит в том, что положение точки или объекта на плоскости определяется с помощью двух пересекающихся осей.

Точно так же можно поступить и для определения положения мухи на потолке.

Определите положение жука и бабочки на координатной плоскости.

Все эти примеры демонстрируют преимущества координатного способа определения положения мухи, жука и бабочки на плоскости с помощью

системы координат Декарта. А как определить координаты тех же насекомых, если они летают, ведь в этом случае они не ползают по поверхности стены или потолка.

Для измерения положения объектов в пространстве в начале 19-го века была добавлена ось \mathbf{Z} , которая направлена перпендикулярно осям X и Y.

На рисунке ось **Z** направлена вверх.

Представьте себе, что амурский кот сидит на ветке дерева.

Если бы кот упал на горизонтальную плоскость - плоскость XOY, точка его падения имела координаты (X_l, Y_l) . Кот сидит на высоте Z_1 от горизонтальной плоскости. Итак, положение амурского кота в пространстве можно описать тремя координатами $(X_l, Y_l Z_l)$, он находится на некоторой высоте над поверхностью земли.

Координаты могут иметь различные числовые значения, в том числе и нулевые, это означает, что объект находится на какой-то координатной оси. Если все три координаты имеют нулевые значения - объект находится в начале системы координат.

Давайте определим координаты различных объектов на следующем рисунке.

Попугай находится в точке с координатами (0, 0, Z_l).

Бобер слева - $(X_1 \ 0 \ 0)$.

Бобер справа - (0 Y₁ 0).

Мышь - $(X_1 \ Y_1 \ 0)$.

Кот амурский - $(X_1 Y_1 Z_1)$.

Ответьте на вопрос: "Куда нужно сесть этому хамелеону?"

Применение координатного метода позволяет без труда определить положение объекта как на плоскости, так и в пространстве.