

# Variabelreduksjon

Martin Jullum

Skatteetaten

01.09.21





#### **Oversikt**

- Kort om variabelreduksjon
- ▶ Ikke-stryrt variabelreduksjon
- Variabelreduksjon innen statistikk
- Variabelreduksjon innen maskinlæring
- Utfordringer med med Skatteetatens modeller
- Forslag til metoder for Skatteetaten

#### Hva er variabelreduksjon

- ► Regresjonsmodell:  $y \approx f(x)$ ,  $x = (x_1, ..., x_p)$
- Ønsker at p er liten, samtidig som approksimasjon er god
- ► Hvorfor
  - Mindre p => enklere modell, mindre varians (mer stabil modell), hindrer overtilpasning
  - Raskere trening/prediksjon
  - Enklere å visualisere og tolke\* modell
  - Enklere å sikre god datakvalitet (inkl. mindre utfordringer med manglende verdier)
  - Personvern mer problematisk jo mer info man har

# Ikke-styrt variabelreduksjon

- ightharpoonup Bruk egenskaper ved x til å redusere dimensjonen
- Prinsipalkomponentanalyse (PCA):
  - Transformerer data iterativt til rom der hver nye komponent har størst mulig varians og står ortogonalt på de øvrige
  - Reduksjonsmetode: Inkluder kun de q første prinsipalkomponentene
- Alternativer
  - T-sne: Mer komplisert, ikke-lineær. Laget for visualisering i dim 2 eller 3.
  - ISOMAP: Komplisert, ikke-lineær.
- Utfordringer: Ødelegger tolkning, tar ikke hensyn til respons/modell





### Variabelreduksjon innen statistikk

- I denne sammenheng
  - Statistisk modell = Modell  $f(x; \theta)$  tilpasset ved maximum likelihood e.l.,  $dim(\theta) = p$
- Variabel-reduksjon/-seleksjon = modellvalg for subset av  $x = (x_1, ..., x_p)$ . Totalt  $2^p$  ulike modeller
- Bruker kun treningsdata
- Trade off mellom hvor godt modellen passer vs få parametere/variable

## Variabelreduksjon innen statistikk 2

- Seleksjon basert på p-verdier
  - Eksempel (lineær) regresjon

$$f(\mathbf{x}) = \widehat{\beta_0} + \sum_{j=1}^{3} x_j \widehat{\beta_j}$$

- P-Verdi for  $x_j$ : Sannsynligheten for å estimere en større  $\widehat{\beta}_j$  dersom sann  $\beta_i = 0$
- Men hvordan velge beste modell?
  - 1. Fjern variable med høyest p-verdi
  - 2. Re-tilpass modell. Stopp hvis alle p-verdier  $< \alpha$  (f.eks 0.05), ellers hopp til<sub>6</sub>1

```
call:
lm(formula = y \sim ., data = data)
Residuals:
   Min
            10 Median
                                  Max
-2.6858 -0.4844 0.1352 0.6450 1.7453
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -0.1675
                       0.1384
                               -1.210
                                       0.23281
                               3.025
             0.5306
                       0.1754
                                       0.00414
x1
            -0.4115
                       0.1769
                               -2.326
                                       0.02470 *
                               0.771
             0.1289
                       0.1673
                                       0.44510
            -0.5884 0.1818
                               -3.237
                                       0.00230 **
            -0.2476
                       0.1432
                               -1.728
                                       0.09094
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Residual standard error: 0.9507 on 44 degrees of freedom
Multiple R-squared: 0.5179, Adjusted R-squared: 0.4631
F-statistic: 9.453 on 5 and 44 DF, p-value: 3.568e-06
```

## Variabelreduksjon innen statistikk 3

- Informasjonskriterier
  - Beregn en score for hvor "god" hver av de  $2^p$  modellene er og straff for antall parameter. Velg modellen med best score.
  - Definisjoner av "score":

$$\circ \quad AIC = 2\log\left(L(\widehat{\boldsymbol{\theta}})\right) - 2p$$

$$BIC = 2\log(L(\widehat{\boldsymbol{\theta}})) - \log(n)p$$

- FIC, DIC, GIC,...
- Hvis veldig mange modeller: Forward/backward-stagewise selection:
  - Backword: Start med modell med alle p variabler, og beregn AIC/BIC for alle modeller med p-1 variabler. Velg beste og fortsette til ingen forbedring
  - Forward: Start med ingen variabler og legg til en og en tilsvarende
  - Grådige (greedy) algoritmer -> Finner sjelden optimalt subset, men kan være nær. 7

## Variabelreduksjon innen maskinlæring

- Mest vanlig med automatisk/implisitt variabelreduksjon som reduserer utnyttelsen av variablene
  - ML-metoder gir ofte best prediksjoner med <u>tilgang</u> på alle variabler
- Regularisering
  - Lasso: Lineær regresjon  $f(x) = \widehat{\beta_0} + \sum_{j=1}^5 x_j \widehat{\beta_j}$  som straffer store verdier av  $\widehat{\beta_i}$  med  $L_1$ -norm som setter noen til 0 (variabelreduksjon)
  - Ridge: Som Lasso, men  $L_2$ -norm, som kun krymper alle  $\widehat{\beta}_j$ , gir redusert antall *effektive* parameter/frihetsgrader
  - Brukes også ofte i nevrale nett og tre-boosting metoder (xgboost, lightgbm, catboost)

#### Variabelreduksjon innen maskinlæring 2

- Kolonne-sampling
  - For random forest og tre-boosting:
    - Hvert tre trenes med et tilfeldig trukket utvalg av variabler fra hele datasettet
- Drop-out
  - For nevrale nett (og tre-boosting):
    - Ved hvert nye steg i treningen (ny epoch eller tre), fjernes enkelte noder/trær når man trener/oppdaterer parametere for å ikke legge for mye vekt på enkelte deler observasjoner/ variabler





(b) After applying dropout.

Finnes mange flere teknikk for å hindre overtilpasning

#### Variabelreduksjon innen maskinlæring 3

- Finnes også teknikker for <u>reell</u> variabelreduksjon
  - Dvs reduksjon av dim(x) = p for x som inngår i f(x).
- Boruta
  - Repeter følgende K ganger:
    - Legg til rad-randomiserte kopier av hver variabel til originalt datasett
    - Beregn feature importance
  - Inkluder alle variabler som hadde høyere score enn alle kopi-variablene i f.eks. 95% av kjøringene.
- Noen tilpasser også en statistisk modell på forhånd og gjøre variabelreduksjon med den (Lasso, forward/backword)

