

SEQUENCE LISTING

<110> Korherr, Christian

<120> Medical Use of TBK-1 or of Inhibitors Thereof

<130> 50458/002001

<140> US 10/574,306

<141> 2006-04-03

<150> PCT/EP2004/010996

<151> 2004-10-01

<150> US 60/508,100

<151> 2003-10-02

<160> 10

<170> PatentIn version 3.3

<210> 1

<211> 3031

<212> DNA

<213> Homo sapiens

<400> 1	
cctcgtgccg aattcggcac gaggcccgcc ggccgggtggcg cggcggagac ccggctggta	60
taacaagagg attgcctgat ccagccaaga tgcagagcac ttctaattcat ctgtggcttt	120
tatctgatat tttaggc当地 ggagctactg caaatgtctt tcgtggaaga cataagaaaa	180
ctgggtgattt atttgctatc aaagtattta ataacataag cttccttcgt ccagtggatg	240
ttcaaatgag agaatttgaa gtgttggaaa aactcaatca caaaaatatt gtcaaattat	300
ttgctattga agaggagaca acaacaagac ataaagtact tattatggaa ttttgtccat	360
gtgggagttt atacactgtt tttagaagaac cttctaattgc ctatggacta ccagaatctg	420
aattcttaat tgccccgc当地 gatgtggtgg gtggaaatgaa tcatactacga gagaatggta	480
tagtgcaccg tgatatacaag ccagggaaata tcatacgatgt tataggggaa gatggacagt	540
ctgtgtacaa actcacagat tttgggtgc当地 ctagagaatt agaagatgat gagcagttt	600
tttctctgta tggcacagaa gaatatttgc accctgatat gtatgagaga gcagtgc当地	660
gaaaagatca tcagaagaaa tatggagcaa cagttgatct ttggagcatt ggggttaacat	720
tttaccatgc agctactgga tcactgccat ttagaccctt tgaaggccct cgttaggaata	780
aagaagtgat gtataaaata attacaggaa agccttctgg tgcaatatct ggagttacaga	840
aagcagaaaa tggaccaatt gactggagtg gagacatgcc tgtttcttgc agtcttctc	900

gggtcttca ggttctactt acccctgttc ttgcaaacat ccttgaagca gatcaggaaa	960
agtgttgggg ttttgaccag tttttgcag aaactagtga tatacttcac cgaatggtaa	1020
ttcatgtttt ttgcgtacaa caaatgacag ctcataagat ttatattcat agctataata	1080
ctgctactat atttcatgaa ctggtatata aacaaaccaa aattatttct tcaaatacg	1140
aacttatcta cgaaggcgca cgcttagtct tagaacctgg aaggctggca caacattcc	1200
ctaaaactac tgaggaaaac cctatatttgc tagtaagccg ggaacctctg aataccatag	1260
gattaatata tgaaaaaatt tcctcccta aagtacatcc acgttatgtat ttagacgggg	1320
atgctagcat ggctaaggca ataacagggg ttgtgtgtta tgcctgcaga attgccagta	1380
ccttactgct ttatcaggaa ttaatgcgaa agggatacg atggctgatt gaattaatta	1440
aagatgatta caatgaaact gttcacaaaa agacagaagt tgtgatcaca ttggatttct	1500
gtatcagaaa cattgaaaaa actgtgaaag tatatgaaaa gttgatgaag atcaacctgg	1560
aagcggcaga gttaggtgaa atttcagaca tacacaccaa attgttgcata cttccagtt	1620
ctcagggAAC aatagaaacc agtcttcagg atatcgacag cagattatct ccaggtggat	1680
cactggcaga cgcatggca catcaagaag gcactcatcc gaaagacaga aatgtgaaaa	1740
aactacaagt cctgttaat tgcacatgcag agatttacta tcagttcaaa aaagacaaag	1800
cagaacgttag attagctt aatgaagaac aaatccacaa atttgataag caaaaactgt	1860
attaccatgc cacaaaagct atgacgcact ttacagatga atgtgttaaa aagtatgagg	1920
cattttgaa taagtcagaa gaatggataa gaaagatgct tcattttagg aaacagttat	1980
tatcgctgac taatcagtgt ttgtatatttgc aagaagaagt atcaaaatat caagaatata	2040
ctaattgagtt acaagaaaact ctgcctcaga aaatgtttac agcttccagt ggaatcaaac	2100
ataccatgac cccaatttat ccaagttcta acacattgtt agaaatgact cttggatgt	2160
agaaattaaa ggaagagatg gaaggggtgg ttaaagaact tgctgaaaat aaccacattt	2220
tagaaagggtt tggctttta accatggatg gtggccttcg caacgttgcac tgtcttagc	2280
tttctaatag aagttaaga aaagttccg tttgcacaag aaaataacgc ttggcatttt	2340
aatgaatgcc tttatagata gtcacttgtt tctacaatttgc agtatttgcat gtggcgtgt	2400
aaatatgtac aatattgtaa atacataaaaa aatatacataa ttttggctg ctgtgaagat	2460
gtaattttat ctttaacat ttataattat atgaggaaat ttgacctcag tgatcacgag	2520
aagaaagcca tgaccgacca atatgttgac atactgatcc tctactctga gtggggctaa	2580
ataagttatt ttctctgacc gcctactgga aatattttta agtggacca aaataggcat	2640

ccttacaaat caggaagact gacttgacac gtttgtaaat ggtagaacgg tggctactgt	2700
gagtggggag cagaaccgca ccactgttat actggataa caattttttt gagaaggata	2760
aagtggcatt attttatttt acaaggtgcc cagatccag ttatccttgt atccatgtaa	2820
tttcagatga attattaagc aaacattttt aagtgaattc attattaaaa actattcatt	2880
ttttccttt ggccataaaat gtgtaattgt cattaaaatt ctaaggtcat ttcaactgtt	2940
ttaagctgta tatttcttta attctgctta ctatttcatg gaaaaaaaaata aatttctcaa	3000
tttaaatgta aaaaaaaaaa aaaaaaaaaa a	3031

<210> 2
 <211> 729
 <212> PRT
 <213> Homo sapiens

<400> 2

Met Gln Ser Thr Ser Asn His Leu Trp Leu Leu Ser Asp Ile Leu Gly			
1	5	10	15

Gln Gly Ala Thr Ala Asn Val Phe Arg Gly Arg His Lys Lys Thr Gly		
20	25	30

Asp Leu Phe Ala Ile Lys Val Phe Asn Asn Ile Ser Phe Leu Arg Pro		
35	40	45

Val Asp Val Gln Met Arg Glu Phe Glu Val Leu Lys Lys Leu Asn His		
50	55	60

Lys Asn Ile Val Lys Leu Phe Ala Ile Glu Glu Glu Thr Thr Arg			
65	70	75	80

His Lys Val Leu Ile Met Glu Phe Cys Pro Cys Gly Ser Leu Tyr Thr		
85	90	95

Val Leu Glu Glu Pro Ser Asn Ala Tyr Gly Leu Pro Glu Ser Glu Phe		
100	105	110

Leu Ile Val Leu Arg Asp Val Val Gly Gly Met Asn His Leu Arg Glu		
115	120	125

Asn Gly Ile Val His Arg Asp Ile Lys Pro Gly Asn Ile Met Arg Val		
130	135	140

Ile Gly Glu Asp Gly Gln Ser Val Tyr Lys Leu Thr Asp Phe Gly Ala
145 150 155 160

Ala Arg Glu Leu Glu Asp Asp Glu Gln Phe Val Ser Leu Tyr Gly Thr
165 170 175

Glu Glu Tyr Leu His Pro Asp Met Tyr Glu Arg Ala Val Leu Arg Lys
180 185 190

Asp His Gln Lys Lys Tyr Gly Ala Thr Val Asp Leu Trp Ser Ile Gly
195 200 205

Val Thr Phe Tyr His Ala Ala Thr Gly Ser Leu Pro Phe Arg Pro Phe
210 215 220

Glu Gly Pro Arg Arg Asn Lys Glu Val Met Tyr Lys Ile Ile Thr Gly
225 230 235 240

Lys Pro Ser Gly Ala Ile Ser Gly Val Gln Lys Ala Glu Asn Gly Pro
245 250 255

Ile Asp Trp Ser Gly Asp Met Pro Val Ser Cys Ser Leu Ser Arg Gly
260 265 270

Leu Gln Val Leu Leu Thr Pro Val Leu Ala Asn Ile Leu Glu Ala Asp
275 280 285

Gln Glu Lys Cys Trp Gly Phe Asp Gln Phe Phe Ala Glu Thr Ser Asp
290 295 300

Ile Leu His Arg Met Val Ile His Val Phe Ser Leu Gln Gln Met Thr
305 310 315 320

Ala His Lys Ile Tyr Ile His Ser Tyr Asn Thr Ala Thr Ile Phe His
325 330 335

Glu Leu Val Tyr Lys Gln Thr Lys Ile Ile Ser Ser Asn Gln Glu Leu
340 345 350

Ile Tyr Glu Gly Arg Arg Leu Val Leu Glu Pro Gly Arg Leu Ala Gln
355 360 365

His Phe Pro Lys Thr Thr Glu Glu Asn Pro Ile Phe Val Val Ser Arg
370 375 380

Glu Pro Leu Asn Thr Ile Gly Leu Ile Tyr Glu Lys Ile Ser Leu Pro
385 390 395 400

Lys Val His Pro Arg Tyr Asp Leu Asp Gly Asp Ala Ser Met Ala Lys
405 410 415

Ala Ile Thr Gly Val Val Cys Tyr Ala Cys Arg Ile Ala Ser Thr Leu
420 425 430

Leu Leu Tyr Gln Glu Leu Met Arg Lys Gly Ile Arg Trp Leu Ile Glu
435 440 445

Leu Ile Lys Asp Asp Tyr Asn Glu Thr Val His Lys Lys Thr Glu Val
450 455 460

Val Ile Thr Leu Asp Phe Cys Ile Arg Asn Ile Glu Lys Thr Val Lys
465 470 475 480

Val Tyr Glu Lys Leu Met Lys Ile Asn Leu Glu Ala Ala Glu Leu Gly
485 490 495

Glu Ile Ser Asp Ile His Thr Lys Leu Leu Arg Leu Ser Ser Ser Gln
500 505 510

Gly Thr Ile Glu Thr Ser Leu Gln Asp Ile Asp Ser Arg Leu Ser Pro
515 520 525

Gly Gly Ser Leu Ala Asp Ala Trp Ala His Gln Glu Gly Thr His Pro
530 535 540

Lys Asp Arg Asn Val Glu Lys Leu Gln Val Leu Leu Asn Cys Met Thr
545 550 555 560

Glu Ile Tyr Tyr Gln Phe Lys Lys Asp Lys Ala Glu Arg Arg Leu Ala
565 570 575

Tyr Asn Glu Glu Gln Ile His Lys Phe Asp Lys Gln Lys Leu Tyr Tyr
580 585 590

His Ala Thr Lys Ala Met Thr His Phe Thr Asp Glu Cys Val Lys Lys
595 600 605

Tyr Glu Ala Phe Leu Asn Lys Ser Glu Glu Trp Ile Arg Lys Met Leu
610 615 620

His Leu Arg Lys Gln Leu Leu Ser Leu Thr Asn Gln Cys Phe Asp Ile
625 630 635 640

Glu Glu Glu Val Ser Lys Tyr Gln Glu Tyr Thr Asn Glu Leu Gln Glu
645 650 655

Thr Leu Pro Gln Lys Met Phe Thr Ala Ser Ser Gly Ile Lys His Thr
660 665 670

Met Thr Pro Ile Tyr Pro Ser Ser Asn Thr Leu Val Glu Met Thr Leu
675 680 685

Gly Met Lys Lys Leu Lys Glu Glu Met Glu Gly Val Val Lys Glu Leu
690 695 700

Ala Glu Asn Asn His Ile Leu Glu Arg Phe Gly Ser Leu Thr Met Asp
705 710 715 720

Gly Gly Leu Arg Asn Val Asp Cys Leu
725

<210> 3
<211> 19
<212> RNA
<213> artificial

<220>
<223> oligonucleotide siTBK-1 sense

<400> 3
ggagacaaca acaagacau 19

<210> 4
<211> 20
<212> RNA
<213> artificial

<220>
<223> oligonucleotide siTBK-1 antisense

<400> 4

augucuuguu guugucuccc	20
<210> 5 <211> 23 <212> DNA <213> artificial	
<220> <223> oligonucleotide TBK-1 sense	
<400> 5 ttgaagagga gacaacaaca aga	23
<210> 6 <211> 19 <212> DNA <213> artificial	
<220> <223> oligonucleotide TBK-1 antisense	
<400> 6 cattccaccc accacatct	19
<210> 7 <211> 20 <212> DNA <213> artificial	
<220> <223> oligonucleotide VEGF sense	
<400> 7 cttgccttgc tgctctacct	20
<210> 8 <211> 20 <212> DNA <213> artificial	
<220> <223> oligonucleotide VEGF antisense	
<400> 8 gattctgccc tcctccttct	20
<210> 9 <211> 20 <212> DNA <213> artificial	
<220>	

<223> oligonucleotide Rantes sense

<400> 9

cgctgtcatc ctcatttgcta

20

<210> 10

<211> 20

<212> DNA

<213> artificial

<220>

<223> oligonucleotide Rantes antisense

<400> 10

gcacttgc当地 ctgggttaga

20