14. Полупроспиранства. Представляне на права срез две равнини.

Нека $K = O\vec{e}, \vec{e}, \vec{e}, e$ е афинна координатна система и $z \in c$ уравиение $z \in Ax + By + Cz + D = 0$ спряво $x \in C$ точните $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$. B сила е следната $x \in C$ точно точно точно $x \in C$ т

9 пре попушн доуга двойка уравнения на 9. Мношеството S на всиски равнини през правата д се нарига скоп пресиганци се равнини с ос на снопа - д. Ясно е, те снопът S се определя напълно от равнините х, и х. Аналитить о той може да се опиние по спедния начин. Hera l1(x,y,z) = A,x+B,y+C,z+D, u l2(x,y,z)=A2x+B2y+Gz+D2. са полиномите състветно на «, и 22 и полиномъм

(4) l(x,y, Z) = 1, l(1x,y,Z) + 12 l2(x,y,Z)

е ненупева минейна комбинация на в, и в. Тогава:

- 1. За ваяка выйка (Л, 4) є R х R (0,0) (4) е полином на равнина or chona S.
- 2. Всяка равнина от снопа 5 има полином, польтавачи се от (4) 3a nodácodsnegu XI ru 1/2.

Доказачелетвата на 1. и 2. повтарят доказачелетвата на Теорена 2. от Тема 11 (за снопове прави в равнина). Следоватенно ruje e 6 cura crediama

Теорема 2. Една равнина д минава трез пресесната права д на мина равнините д и и д тогно тогава, когато поминомет на д е минейна комбинация на поминомите на д и д2.

По правата д манем да изберем такава двойка ровники от снопа 5, те да еа съответно успоредни на по една от кододинамите осм.

Нека д е зададена с уравненията (3). От vank $\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 2$ имаме, те поне една от детерминантите $A_x = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}$, $A_y = \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}$, $A_z = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$ е размитна от изпа.

Без аранитение на общността очитаме, те $A_x \neq 0$. В тастност (B_1, B_2) + (0, 0) и $(c_1, c_2) + (0, 0)$. Тогава д можне да се зададе с равнините B_1 и B_2 от B_3 по следния натин:

[$B_1 : C_2 l_1(x, y, z) - C_1 l_2(x, y, z) = A_1 x + A_2 y + D_1 = 0$] $B_2 : -B_2 l_1(x, y, z) + B_1 l_2(x, y, z) = A_2 x + A_2 z + D_2 = 0$.

Като решим спрямо x и y, полугаване

(5) $g: \begin{cases} y = bx + m \\ \overline{z} = cx + n \end{cases}$

Травненията (5) се наритат канонитни уравнения на g. Той като коефициентой пред \mathbf{z} в уравнението на \mathfrak{g}_1 е нула, то \mathfrak{g}_1 е успоредна на $0 \mathbf{z}$. Също така, коефициенты пред \mathbf{y} в уравнението на \mathfrak{g}_2 е нула, откодето имане, те \mathfrak{g}_2 110 \mathbf{y} . Геомешритното телкувание на коефициентите \mathbf{b} , \mathbf{c} , \mathbf{m} и \mathbf{n} се полугава по следния начин. Полагаме \mathbf{b} (5) \mathbf{x} = \mathbf{n} и записване

 $\begin{cases} x = \lambda \\ y = b\lambda + m \quad unu \quad g: \begin{cases} x = 0 + 1.\lambda \\ y = m + b.\lambda \end{cases}$ $\begin{cases} x = \lambda \\ y = m + c.\lambda \end{cases}$ $\begin{cases} x = \lambda \\ y = m + c.\lambda \end{cases}$ $\begin{cases} x = \lambda \\ y = m + c.\lambda \end{cases}$

(6) са координатно параметритни уравнения на g. От илях се винда, те тоската P(o, m, n) лени на g-това е пресетната тоска на g с координатната равнина 0у z. Векторът \vec{p} с координати $\vec{p}(1, b, c)$ е коминеарен с правата g.