Counting in two ways

Miroslav Stankovic Marko Puza

Week 7

1 Theory

Being able to employ a combinatorial point of view in seemingly non-related problems may often prove very useful - even provide a proof. In the following, we will take a look at a number of identities that can be proved by counting in two different ways. The simple example of usefulness of this technique can be the Handshaking lemma.

Example 1 (Handshaking lemma). For any undirected graph, we have $\sum_{v \in V} deg(v) = 2|E|$. (where we are summing over all vertices v, deg(v) is the number of edges connected to vertex v and |E| is the number of edges in the graph)

Proof. We will prove this lemma by counting in two ways. The number of edge-vertex connections is $\sum_{v \in V} deg(v)$ when we take a look at the connections of each vertex. At the same time, if we take a look at the connections of each edge, the number of edge-vertex connections is 2|E|.

Let us now define the following, which are most probably very familiar to you, combinatorially.

Definition 1 (Binomial numbers). $\binom{n}{k}$ is the number of ways how to choose k elements out of n.

Definition 2 (Fibonacci numbers). F_n is the number of ways to fill a table of size $(n-1) \times 1$ by tiles of size 1×1 and 2×1 .

Exercise 1. Convince yourself that the above definitions agree with the usual definitions of a binomial and Fibonacci numbers.

2 Problems

Problem 1. See that the number of subsets of a set with n elements is 2^n .

Problem 2. See that $\binom{n}{k} = \binom{n}{n-k}$.

Problem 3. See that $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

Problem 4. See that $n\binom{n-1}{k-1} = k\binom{n}{k}$.

Problem 5. See that $\sum_{i=1}^{n} i = \binom{n+1}{2}$.

Problem 6. See that $\binom{n}{r} = \binom{n-2}{r-2} + 2\binom{n-2}{r-1} + \binom{n-2}{r}$.

Problem 7 (Binomial theorem). See that $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$.

Problem 8. See that $\sum_{i=1}^{n} i^2 = 2\binom{n+1}{3} + \binom{n+1}{2}$. Can you derive a formula for $\sum_{i=1}^{n} i^3$?

Problem 9. See that $\sum_{k=0}^{n} {2k \choose k} {2(n-k) \choose n-k} = 2^{2n}$.

Problem 10. See that $\binom{n}{r}\binom{r}{k} = \binom{n}{k}\binom{n-k}{r-k}$.

Problem 11. See that $\binom{2n}{2} = 2\binom{n}{2} + n^2$.

Problem 12. See that $F_n + F_{n+1} = F_{n+2}$.

Problem 13. See that the number of ways to fill a table $(n-1) \times 2$ by tiles of size 2×1 is F_n .

Problem 14. See that $F_{a+b+1} = F_{a+1}F_{b+1} + F_aF_b$.

Problem 15. See that $F_0 + F_1 + \cdots + F_n = F_{n+2} - 1$.

Problem 16. See that $F_1 + F_3 + \cdots + F_{2n-1} = F_{2n} - 1$.

Problem 17. See that $nF_0 + (n-1)F_1 + \cdots + F_{n-1} = F_{n+3} - (n+3)$.

Problem 18. See that $F_{2n+1} = F_n^2 + F_{n+1}^2$.

Problem 19 (Number of divisors). See that for number n with prime factorization $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ the number of its divisors is $(a_1 + 1)(a_2 + 1) \cdots (a_k + 1)$.