TS226

_

Codes convolutifs et codes concaténés associés

Romain Tajan

8 octobre 2018

Plan

- Introduction
- 2 Code Convolutif
- ▶ Un premier exemple de code convolutif
- Définition des codes convolutifs Codes convolutifs récursifs
 - Codes convolutifs systématiques
- Représentation octale

Notation octale des codes non récursifs

Notation octale des codes récursifs

- Code convolutif comme machine à états Diagramme d'état des codes convolutifs
 - Treillis associé aux codes convolutifs
- 3 Décodage maximum de vraisemblance des codes convolutifs
- 4 Turbo-Codes

Plan

- Introduction
- 2 Code Convolutif
- 3 Décodage maximum de vraisemblance des codes convolutifs
- 4 Turbo-Codes

Exemple de QCM

Comment allez vous aujourd'hui?

- A Très bien
- B Bien
- C Mal
- D Très mal

#QDLE#S#ABCD#30#

Introduction

Introduction

Hypothèses de travail

• Code convolutif ▷ Code binaire

$$\mathbf{U} \in \{0,1\}^K \& \mathbf{C} \in \{0,1\}^N$$

Message

$$\underbrace{\mathbf{U} \in \left\{0,1\right\}^{K}}_{\text{Encodeur}}$$

Message estimé

$$\mathbf{\hat{U}} \in \{0,1\}^K$$
 Décodeur

Hypothèses de travail

Code convolutif > Code binaire

$$\mathbf{U} \in \{0,1\}^K \& \mathbf{C} \in \{0,1\}^N$$

Message

Mot de code

 $X \in \mathcal{C} \subset \{-1, 1\}^N$ • Modulation BPSK

$$\mathcal{X} = \{-1, 1\} \& \mathbf{X} \in \{-1, 1\}^N$$

 $\mathbf{X} = 1 - 2\mathbf{C}$

Message estimé

$$\begin{array}{c}
\hat{\mathbf{U}} \in \{0,1\}^K \\
\hline
\end{array}$$
 Décodeur

Hypothèses de travail

Code convolutif ⊳ Code binaire

$$\mathbf{U} \in \{0,1\}^K \ \& \ \mathbf{C} \in \{0,1\}^N$$

Mot de code

$$\mathbf{U} \in \{0,1\}^K$$
 Encodeur
$$\mathbf{X} \in \mathcal{C} \subset \{-1,1\}^N$$

Modulation BPSK

$$\mathcal{X} = \{-1, 1\} \& \mathbf{X} \in \{-1, 1\}^N$$

 $\mathbf{X} = 1 - 2\mathbf{C}$

Canal sans mémoire

$$p(\mathbf{y}|\mathbf{x}) = \prod_{i=0}^{N-1} p(y_i|x_i)$$

 $p(\mathbf{y}|\mathbf{x}) = \prod_{i=0}^{n} p(y_i|x_i)$

• Canal BI-AWGN, $\mathcal{X} = \{-1, 1\} \& \mathcal{Y} = \mathbb{R}$

$$\mathbf{Y} = \mathbf{X} + \mathbf{Z} \text{ où } \mathbf{Z} \sim \mathcal{N}(0, \sigma_z^2 I_N)$$

$$p(y|x) = \frac{1}{\sqrt{2\pi\sigma_z^2}}e^{-\frac{1}{2\sigma_z^2}(y-x)^2}$$

Message

Plan

- Introduction
- 2 Code Convolutif
- Un premier exemple de code convolutif
- Définition des codes convolutifs
- Représentation octale
- Code convolutif comme machine à états
- 3 Décodage maximum de vraisemblance des codes convolutifs
- 4 Turbo-Codes

.

0

...]

Mot de code : c = [...

TS226 CC et Turbo-Codes

Romain Tajan

8 octobre 2018

$$\mbox{Message}: \qquad \mbox{\bf u} = [\quad \mbox{\bf 1} \qquad \mbox{\bf 0} \qquad \mbox{\bf 1} \qquad \mbox{\bf 0} \qquad \mbox{\bf 1} \qquad \mbox{\bf ...} \]$$

$$\mbox{Mot de code}: \quad \mbox{\bf c} = [\quad \ \ \, \dots \ \ \,]$$

Message:
$${\bf u} = [\ \ \, {\bf 1} \ \ \, 0 \ \ \, 1 \ \ \, 0 \ \ \, 1 \ \ \, \dots \]$$
 Mot de code : ${\bf c} = [\ \ \, c_0^{(1)} \ \ \, c_0^{(2)} \ \ \, \dots \ \ \,]$

Message:
$${\bf u} = [\ \ \, {\bf 1} \ \ \, 0 \ \ \, 1 \ \ \, 0 \ \ \, 1 \ \ \, \dots \]$$
 Mot de code : ${\bf c} = [\ \ \, c_n^{(1)} \ \ \, c_n^{(2)} \ \ \, \dots \ \ \,]$

Message:
$$\mathbf{u} = [\ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \dots \]$$
 Mot de code : $\mathbf{c} = [\ \mathbf{1} \ \mathbf{1} \ \dots \]$

Message:
$$\mathbf{u} = [\ 1 \ \ 0 \ \ 1 \ \ 0 \ \ 1 \ \dots]$$
 Mot de code: $\mathbf{c} = [\ 1 \ 1 \ \ c_1^{(1)} \ c_1^{(2)} \ \dots]$

Message: $u = [\ 1 \ 0 \ 1 \ 0 \ 1 \ \dots]$ Mot de code: $c = [\ 1 \ 1 \ 1 \ 0 \ \dots]$

Message:
$$\mathbf{u} = [\ 1 \ 0 \ 1 \ 0 \ 1 \ ...]$$
Mot de code: $\mathbf{c} = [\ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ ...]$

Message: $\mathbf{u} = [\ 1 \ 0 \ 1 \ 0 \ 1 \ ...]$ Mot de code: $\mathbf{c} = [\ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \]$

Message: $\mathbf{u} = [\ 1 \ 0 \ 1 \ 0 \ 1 \ \dots]$ Mot de code: $\mathbf{c} = [\ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ \dots]$

Quel est le prochain état?

A [0, 1, 0, 1, 0, 1]

B [1, 0, 1, 0, 1, 0]

C [1, 0, 1, 1, 0, 0]

D Aucune des réponses A, B ou C.

#QDLE#Q#AB*CD#30#

Quel est la sortie?

- A [0, 1]
- B [1, 0]
- C [0, 0]
- D [1, 1]

#QDLE#Q#ABCD*#30#

Codes Convolutifs: retour sur l'exemple

Addition modulo 2 (XOR)

$$c_n^{(2)} =$$

TS226 CC et Turbo-Codes

Codes Convolutifs: retour sur l'exemple

Addition modulo 2 (XOR) $u_{n} \xrightarrow{\qquad \qquad } c_{n}^{(1)}$ $v_{n} \xrightarrow{\qquad \qquad } c_{n}^{(2)}$

$$c_n^{(2)} =$$

TS226 CC et Turbo-Codes

Codes Convolutifs : retour sur l'exemple

$$c_n^{(2)} = 1 \cdot u_n + 0 \cdot u_{n-1} + 1 \cdot u_{n-2} + 1 \cdot u_{n-3} + 0 \cdot u_{n-4} + 1 \cdot u_{n-5} + 1 \cdot u_{n-6}$$

Codes Convolutifs : retour sur l'exemple

$$c_n^{(2)} = 1 \cdot u_n + 0 \cdot u_{n-1} + 1 \cdot u_{n-2} + 1 \cdot u_{n-3} + 0 \cdot u_{n-4} + 1 \cdot u_{n-5} + 1 \cdot u_{n-6}$$

On remarque:
$$c_n^{(i)} = \sum_{k=0}^m g_k^{(i)} u_{n-k}$$

En utilisant la TZ :
$$C^{(i)}(z) = U(z)G^{(i)}(z)$$

$$\underline{\text{lci}}: \quad \mathbf{g}^{(1)} = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1] \\
\mathbf{q}^{(2)} = [1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1]$$

Code Convolutif: définition

Code convolutif

Code Convolutif (CC) : code tel que ses mots de codes sont obtenu par filtrages numériques linéaires à valeurs dans $\mathbb{F}_2 = \{0,1\}$ des messages binaires.

Message :
$$U(z) = \sum_{k=0}^{+\infty} u_i z^{-i}$$
 [transformée en Z de la séquence message $(u_k)_{k \in \mathbb{N}}$]

Mot de code :
$$\mathbf{C}(z) = [C^{(0)}(z), C^{(1)}(z), \cdots, C^{(n_s-1)}(z)]$$
 [$C^{(i)}(z)$ sortie du filtre i]

$$C^{(i)}(z) = U(z)G^{(i)}(z)$$

Attention: de façon générale $G^{(i)}(z)$ est défini comme suit :

$$G^{(i)}(z) = \frac{a_0^{(i)} + a_1^{(i)}z^{-1} + \dots + a_m^{(i)}z^{-m}}{1 + b_1^{(i)}z^{-1} + \dots + b_m^{(i)}z^{-m}}$$

Encodeur récursif / Non récursif

Un encodeur est dit **récursif** s'il existe une boucle de rétroaction de sa sortie sur son entrée (s'il existe i tel que $B^{(i)}(z) \neq 1$).

$$G^{(i)}(z) = \frac{a_0^{(i)} + a_1^{(i)}z^{-1} + \dots + a_m^{(i)}z^{-m}}{1 + b_1^{(i)}z^{-1} + \dots + b_m^{(i)}z^{-m}}$$

Encodeur systématique / Non systématique

Un encodeur est dit **systématique** s'il existe une sortie i telle que $C^{(i)}(z) = U(z)$.

 \Leftrightarrow S'il existe une sortie *i* telle que $G^{(i)}(z) = 1$.

Quizz Encodeur Récursif, Encodeur Systématique

Cet encodeur est:

- A Récursif et systématique,
- B Récursif et non systématique,
- C Non Récursif et systématique,
- D Non Récursif et non systématique,

#QDLE#Q#A*BCD#30#

Quizz Encodeur Récursif, Encodeur Systématique

Ces deux encodeurs produisent le même code?

A Vrai

B Faux

#QDLE#Q#A*B#30#

Exemple:
$$\mathbf{g}^{(1)} = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1]$$
 $\mathbf{g}^{(2)} = [1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1]$

TS226 CC et Turbo-Codes

Ce code est noté (171, 133)₈

Notation octale des codes convolutifs récursifs

Ce code est noté $(1, \frac{133}{171})_8$ ou $(100, \frac{133}{171})_8$.

$$u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

$$\overset{\mathbf{c}_n}{-} u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

$$u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

$$u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

$$\mathbf{c}_n$$
 $u_n = 0$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

Dernier QCM

Comment avez-vous trouvé ce cours?

- A Très difficile
- B Difficile
- C Moyen
- D Simple
- E Très simple

#QDLE#S#ABCDE#30#

Plan

- Introduction
- 2 Code Convolutif
- 3 Décodage maximum de vraisemblance des codes convolutifs
- 4 Turbo-Codes

Plan

- Introduction
- 2 Code Convolutif
- 3 Décodage maximum de vraisemblance des codes convolutifs
- 4 Turbo-Codes