Bottleneck Steiner Tree (BST)

Manasses Ferreira

manassesferreira@dcc.ufmg.br

Federal University of Minas Gerais (UFMG)

Wireless Informational Sensing Embedded systems Models Algorithms and Protocols (WISEMAP)

Descrição do Problema Prático

Bottleneck Steiner Tree \mathcal{BST} Dado um conjunto $\mathcal{T} = \{t_1, t_2, ..., t_n\}$ de n Terminais e um inteiro positivo k, obtenha a Árvore de Steiner contendo, no máximo, k Pontos de Steiner $\mathcal{S} = \{s_1, s_2, ..., s_k\}$ tal que o comprimento da aresta mais longa seja minimizado. 3

Terminais Vértices localizados em uma dada posição no plano.

Árvore de Steiner Rede de comunicação acíclica entre os Terminais.

Pontos de Steiner Vértices $n\tilde{a}o$ -terminais da Árvore de Steiner.

Algorith	m 1:	STEINE	RMinimal	TREE
Input:	Grafo	planar	euclidiano	$G(\mathcal{T}, \mathcal{I})$

Output: Arvore de Steiner Minimal T^* e um inteiro k

1 $\{T^*, k\} \leftarrow \text{GeoSteiner}(G)$

2 return $\{T^*, k\}$

22 return T

	Total Length	Bottleneck
MST	90.36	2.35
MST_SST	90.36	0.68
SMT	61.87	0.95
SMT_SST	61.87	0.38

