R Notebook

Summary

In this project, ...

Step 0: Related Papers and Projects

We read more than 4 papers including Post-Earnings Announcement Effect, Momentum and Trend Following in Global Asset Allocation, and etc. Details and links of papers can be found in data/paper/ListofStrategyPapers.xlsx. We then implemented methods and algorithms described in those papers.

Step 1: Data Collection And Processing

Part a: Using Matlab to process data

- Data source: Using Bloomberg terminal to get stock related data(including EBIT_growth,Price to book value and 7 other indicators) and 06-17 earning announcement data. Original data can be found in data/original.
- Size: 9 files with a total size of 150MB
- Data Processing: For each announcement, we need to find the correspoding entry with same sticker and date in 9 indicators files respectively. We also calculate 1-year-Momentum = (Closing Price of Date a / Closing Price of Data(a-252) * 100). All the processing process took place in Matlab. Codes can be found at lib/data_process_matlab
- Result: We got 10 processed CSV files and you can find them at data/observation

Part b: Using R to run regression and find the most important indicators

- Data source: data/observation_processed/
- Size: 4 files
- Data Processing: Using StepWise AIC in R
- Result: Momentum and PS are two signiciant indicators

```
Load library
library(DAAG)
## Loading required package: lattice
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:DAAG':
##
##
       hills
library(leaps)
library(car)
##
## Attaching package: 'car'
## The following object is masked from 'package:DAAG':
##
##
       vif
Process Data
setwd("~/Spr2017-proj5-grp15/data/original/")
longBefore <- read.csv("../observation_processed/long_before_earning.csv")</pre>
longAfter <- read.csv("../observation_processed/long_after_earning.csv")</pre>
shortBefore <- read.csv("../observation_processed/short_before_earning.csv")</pre>
shortAfter <- read.csv("../observation_processed/short_after_earning.csv")</pre>
Using stepwise AIC to find the most inportant indicators
longBefore <- longBefore[,-1]</pre>
longAfter <- longAfter[,-1]</pre>
```

```
shortAfter <- shortAfter[,-1]</pre>
shortBefore <- shortBefore[,-1]</pre>
fitLongAfter <- lm(RETURN~DY+EBITG+EV2EBITDA+M2B+M0MENTUM+PB+PE+PF+PS+days+surprise,data=longAfter)
stepLA <- stepAIC(fitLongAfter, direction="both")</pre>
## Start: AIC=-127781.8
## RETURN ~ DY + EBITG + EV2EBITDA + M2B + MOMENTUM + PB + PE +
##
      PF + PS + days + surprise
##
##
              Df Sum of Sq
                                       AIC
                              RSS
## - EBITG
               1
                   0.00138 88.481 -127783
## - PE
                   0.00202 88.481 -127783
## <none>
                            88.479 -127782
## - M2B
              1 0.00943 88.489 -127781
## - PB
                  0.01151 88.491 -127781
               1 0.01251 88.492 -127781
## - PF
## - EV2EBITDA 1 0.01905 88.498 -127779
## - days
              1 0.02045 88.500 -127779
## - DY
              1 0.04665 88.526 -127772
## - surprise 1 0.10680 88.586 -127756
```

```
1 0.28966 88.769 -127709
## - MOMENTUM 1 1.11561 89.595 -127496
## Step: AIC=-127783.5
## RETURN ~ DY + EV2EBITDA + M2B + MOMENTUM + PB + PE + PF + PS +
      days + surprise
              Df Sum of Sq
##
                             RSS
## - PE
               1 0.00194 88.482 -127785
## <none>
                           88.481 -127783
## - M2B
               1
                   0.00945 88.490 -127783
## - PB
               1 0.01152 88.492 -127782
## - PF
               1 0.01257 88.493 -127782
## + EBITG
              1 0.00138 88.479 -127782
## - EV2EBITDA 1 0.01892 88.499 -127781
## - days
               1 0.02045 88.501 -127780
## - DY
                   0.04656 88.527 -127773
               1
## - surprise
                   0.10669 88.587 -127758
             1
## - PS
               1
                   0.28955 88.770 -127710
## - MOMENTUM
             1
                   1.11514 89.596 -127498
##
## Step: AIC=-127784.9
## RETURN ~ DY + EV2EBITDA + M2B + MOMENTUM + PB + PF + PS + days +
      surprise
##
              Df Sum of Sq
                            RSS
                                     AIC
## <none>
                           88.482 -127785
## - M2B
                 0.00924 88.492 -127785
              1
## - PB
              1 0.01129 88.494 -127784
## - PF
              1 0.01274 88.495 -127784
## + PE
               1 0.00194 88.481 -127783
## + EBITG
              1 0.00130 88.481 -127783
## - EV2EBITDA 1 0.01718 88.500 -127782
                   0.02045 88.503 -127782
## - days
               1
## - DY
               1
                  0.04646 88.529 -127775
## - surprise
              1 0.10639 88.589 -127759
## - PS
                   0.28777 88.770 -127712
## - MOMENTUM
             1
                   1.11793 89.600 -127498
summary(stepLA)
##
## Call:
## lm(formula = RETURN ~ DY + EV2EBITDA + M2B + MOMENTUM + PB +
      PF + PS + days + surprise, data = longAfter)
##
## Residuals:
                 1Q Median
                                  3Q
                                          Max
## -0.49333 -0.03223 -0.00191 0.03097 0.72365
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -3.534e-03 1.069e-03 -3.307 0.000945 ***
             -2.222e-04 6.397e-05 -3.473 0.000515 ***
## EV2EBITDA
             5.801e-05 2.747e-05 2.112 0.034704 *
```

```
-3.295e-04 2.128e-04 -1.549 0.121491
              -1.851e-02 1.087e-03 -17.038 < 2e-16 ***
## MOMENTUM
                                     1.712 0.086880 .
## PB
              4.441e-04 2.594e-04
## PF
              -4.691e-06 2.579e-06 -1.819 0.068895 .
## PS
               1.882e-03 2.177e-04
                                     8.645 < 2e-16 ***
               5.523e-04 2.397e-04
## days
                                     2.304 0.021210 *
              1.696e-05 3.226e-06 5.256 1.48e-07 ***
## surprise
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.06206 on 22977 degrees of freedom
## Multiple R-squared: 0.02536,
                                  Adjusted R-squared: 0.02498
## F-statistic: 66.43 on 9 and 22977 DF, p-value: < 2.2e-16
fitLongBefore <- lm(RETURN~DY+EBITG+EV2EBITDA+M2B+M0MENTUM+PB+PE+PF+PS+days,data=longBefore)</pre>
stepLB <- stepAIC(fitLongBefore, direction="both")</pre>
## Start: AIC=-152475.9
## RETURN ~ DY + EBITG + EV2EBITDA + M2B + MOMENTUM + PB + PE +
      PF + PS + days
##
##
##
              Df Sum of Sq
                              RSS
                                      AIC
               1 0.000006 31.064 -152478
## - PE
## - EV2EBITDA 1 0.000035 31.064 -152478
## - PF
              1 0.000587 31.065 -152477
## - DY
               1 0.002031 31.066 -152476
## <none>
                           31.064 -152476
## - PB
               1 0.003344 31.068 -152475
## - M2B
              1 0.003686 31.068 -152475
## - EBITG
               1 0.007261 31.072 -152473
## - PS
               1 0.014931 31.079 -152467
## - days
               1 0.037792 31.102 -152450
## - MOMENTUM 1 0.060704 31.125 -152433
## Step: AIC=-152477.9
## RETURN ~ DY + EBITG + EV2EBITDA + M2B + MOMENTUM + PB + PF +
##
      PS + days
##
                              RSS
              Df Sum of Sq
## - EV2EBITDA 1 0.000044 31.064 -152480
               1 0.000585 31.065 -152479
## - PF
## - DY
               1 0.002033 31.066 -152478
## <none>
                           31.064 -152478
## - PB
               1 0.003339 31.068 -152477
## - M2B
               1 0.003680 31.068 -152477
## + PE
               1 0.000006 31.064 -152476
## - EBITG
               1 0.007276 31.072 -152475
## - PS
               1 0.014944 31.079 -152469
## - days
               1 0.037792 31.102 -152452
## - MOMENTUM 1 0.060761 31.125 -152435
## Step: AIC=-152479.9
## RETURN ~ DY + EBITG + M2B + MOMENTUM + PB + PF + PS + days
##
##
              Df Sum of Sq
                              RSS
                                      AIC
```

```
## - PF
            1 0.000572 31.065 -152481
## - DY
              1 0.002007 31.066 -152480
## <none>
                           31.064 -152480
## - PB
               1 0.003319 31.068 -152479
## - M2B
               1 0.003660 31.068 -152479
## + EV2EBITDA 1 0.000044 31.064 -152478
## + PE
              1 0.000014 31.064 -152478
## - EBITG
              1 0.007267 31.072 -152476
## - PS
               1 0.015887 31.080 -152470
## - days
               1 0.037791 31.102 -152454
## - MOMENTUM
              1 0.060745 31.125 -152437
##
## Step: AIC=-152481.5
## RETURN ~ DY + EBITG + M2B + MOMENTUM + PB + PS + days
##
##
              Df Sum of Sq
                              RSS
## - DY
               1 0.001962 31.067 -152482
## <none>
                           31.065 -152481
## - PB
               1 0.003349 31.068 -152481
## - M2B
               1 0.003692 31.069 -152481
## + PF
               1 0.000572 31.064 -152480
## + EV2EBITDA 1 0.000031 31.065 -152479
## + PE
               1 0.000010 31.065 -152479
## - EBITG
               1 0.007298 31.072 -152478
## - PS
               1 0.016196 31.081 -152471
## - days
               1 0.037790 31.103 -152455
## - MOMENTUM 1 0.060682 31.126 -152438
## Step: AIC=-152482
## RETURN ~ EBITG + M2B + MOMENTUM + PB + PS + days
##
##
              Df Sum of Sq
                              RSS
                                      AIC
## <none>
                           31.067 -152482
## - PB
               1 0.002845 31.070 -152482
## - M2B
               1 0.003165 31.070 -152482
## + DY
               1 0.001962 31.065 -152481
## + PF
               1 0.000528 31.066 -152480
## + EV2EBITDA 1 0.000011 31.067 -152480
## + PE
               1 0.000008 31.067 -152480
## - EBITG
               1 0.007251 31.074 -152479
## - PS
               1 0.015349 31.082 -152473
## - days
               1 0.037788 31.105 -152456
## - MOMENTUM
               1 0.060008 31.127 -152439
summary(stepLB)
##
## Call:
## lm(formula = RETURN ~ EBITG + M2B + MOMENTUM + PB + PS + days,
##
      data = longBefore)
##
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
## -0.40715 -0.01595 0.00052 0.01645 0.38948
##
```

```
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.343e-03 6.061e-04 2.216 0.026731 *
              4.717e-07 2.033e-07 2.320 0.020347 *
## EBITG
## M2B
               1.987e-04 1.296e-04
                                    1.533 0.125307
## MOMENTUM
              4.168e-03 6.245e-04 6.674 2.54e-11 ***
              -2.315e-04 1.593e-04 -1.453 0.146124
              -4.197e-04 1.243e-04 -3.376 0.000738 ***
## PS
## days
               7.494e-04 1.415e-04 5.296 1.19e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0367 on 23063 degrees of freedom
## Multiple R-squared: 0.004778, Adjusted R-squared: 0.004519
## F-statistic: 18.45 on 6 and 23063 DF, p-value: < 2.2e-16
fitShortBefore <- lm(RETURN~DY+EBITG+EV2EBITDA+M2B+M0MENTUM+PB+PE+PF+PS+days,data=shortBefore)
stepSB <- stepAIC(fitShortBefore, direction="both")</pre>
## Start: AIC=-152475.9
## RETURN ~ DY + EBITG + EV2EBITDA + M2B + MOMENTUM + PB + PE +
##
      PF + PS + days
##
##
              Df Sum of Sq
                              RSS
                                      ATC
## - PE
               1 0.000006 31.064 -152478
## - EV2EBITDA 1 0.000035 31.064 -152478
## - PF
              1 0.000587 31.065 -152477
## - DY
              1 0.002031 31.066 -152476
## <none>
                           31.064 -152476
## - PB
              1 0.003344 31.068 -152475
              1 0.003686 31.068 -152475
## - M2B
## - EBITG
              1 0.007261 31.072 -152473
               1 0.014931 31.079 -152467
## - PS
## - days
               1 0.037792 31.102 -152450
## - MOMENTUM 1 0.060704 31.125 -152433
##
## Step: AIC=-152477.9
## RETURN ~ DY + EBITG + EV2EBITDA + M2B + MOMENTUM + PB + PF +
##
      PS + days
##
              Df Sum of Sq
                              RSS
                                      AIC
## - EV2EBITDA 1 0.000044 31.064 -152480
## - PF
              1 0.000585 31.065 -152479
## - DY
               1 0.002033 31.066 -152478
## <none>
                           31.064 -152478
## - PB
              1 0.003339 31.068 -152477
## - M2B
              1 0.003680 31.068 -152477
## + PE
              1 0.000006 31.064 -152476
## - EBITG
               1 0.007276 31.072 -152475
## - PS
               1 0.014944 31.079 -152469
## - days
              1 0.037792 31.102 -152452
## - MOMENTUM 1 0.060761 31.125 -152435
##
## Step: AIC=-152479.9
## RETURN ~ DY + EBITG + M2B + MOMENTUM + PB + PF + PS + days
```

```
##
##
              Df Sum of Sq
                              RSS
                                      AIC
## - PF
             1 0.000572 31.065 -152481
## - DY
              1 0.002007 31.066 -152480
## <none>
                           31.064 -152480
## - PB
              1 0.003319 31.068 -152479
## - M2B
             1 0.003660 31.068 -152479
## + EV2EBITDA 1 0.000044 31.064 -152478
## + PE
               1 0.000014 31.064 -152478
## - EBITG
               1 0.007267 31.072 -152476
## - PS
               1 0.015887 31.080 -152470
## - days
               1 0.037791 31.102 -152454
## - MOMENTUM
              1 0.060745 31.125 -152437
##
## Step: AIC=-152481.5
## RETURN ~ DY + EBITG + M2B + MOMENTUM + PB + PS + days
##
##
              Df Sum of Sq
                              RSS
## - DY
               1 0.001962 31.067 -152482
## <none>
                           31.065 -152481
               1 0.003349 31.068 -152481
## - PB
## - M2B
              1 0.003692 31.069 -152481
## + PF
               1 0.000572 31.064 -152480
## + EV2EBITDA 1 0.000031 31.065 -152479
## + PE
          1 0.000010 31.065 -152479
## - EBITG
              1 0.007298 31.072 -152478
## - PS
               1 0.016196 31.081 -152471
## - days
               1 0.037790 31.103 -152455
## - MOMENTUM
              1 0.060682 31.126 -152438
##
## Step: AIC=-152482
## RETURN ~ EBITG + M2B + MOMENTUM + PB + PS + days
##
##
              Df Sum of Sq
                            RSS
## <none>
                           31.067 -152482
## - PB
               1 0.002845 31.070 -152482
## - M2B
              1 0.003165 31.070 -152482
## + DY
              1 0.001962 31.065 -152481
## + PF
               1 0.000528 31.066 -152480
## + EV2EBITDA 1 0.000011 31.067 -152480
## + PE 1 0.000008 31.067 -152480
## - EBITG
               1 0.007251 31.074 -152479
## - PS
               1 0.015349 31.082 -152473
## - days
               1 0.037788 31.105 -152456
## - MOMENTUM
               1 0.060008 31.127 -152439
summary(stepSB)
##
## Call:
## lm(formula = RETURN ~ EBITG + M2B + MOMENTUM + PB + PS + days,
##
      data = shortBefore)
##
## Residuals:
##
       \mathtt{Min}
                1Q
                      Median
                                   3Q
                                           Max
```

```
## -0.38948 -0.01645 -0.00052 0.01595 0.40715
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.343e-03 6.061e-04 -2.216 0.026731 *
## EBITG
              -4.717e-07 2.033e-07 -2.320 0.020347 *
              -1.987e-04 1.296e-04 -1.533 0.125307
## MOMENTUM
              -4.168e-03 6.245e-04 -6.674 2.54e-11 ***
               2.315e-04 1.593e-04
                                     1.453 0.146124
## PS
              4.197e-04 1.243e-04 3.376 0.000738 ***
## days
              -7.494e-04 1.415e-04 -5.296 1.19e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0367 on 23063 degrees of freedom
## Multiple R-squared: 0.004778, Adjusted R-squared: 0.004519
## F-statistic: 18.45 on 6 and 23063 DF, p-value: < 2.2e-16
fitShortAfter <- lm(RETURN~DY+EBITG+EV2EBITDA+M2B+M0MENTUM+PB+PE+PF+PS+days,data=shortAfter)</pre>
stepSA <- stepAIC(fitShortAfter, direction="both")</pre>
## Start: AIC=-127756.1
## RETURN ~ DY + EBITG + EV2EBITDA + M2B + MOMENTUM + PB + PE +
##
      PF + PS + days
              Df Sum of Sq
##
                              RSS
                                      AIC
## - EBITG
                   0.00126 88.587 -127758
               1
## - PE
               1
                   0.00171 88.588 -127758
## <none>
                           88.586 -127756
## - M2B
               1
                   0.00995 88.596 -127756
## - PB
                   0.01207 88.598 -127755
               1
## - PF
                   0.01260 88.599 -127755
               1
                   0.01954 88.605 -127753
## - EV2EBITDA 1
## - days
                   0.02045 88.606 -127753
               1
                   0.04871 88.635 -127745
## - DY
               1
## - PS
                   0.28393 88.870 -127685
               1
## - MOMENTUM
              1 1.11912 89.705 -127470
##
## Step: AIC=-127757.8
## RETURN ~ DY + EV2EBITDA + M2B + MOMENTUM + PB + PE + PF + PS +
##
      days
##
##
              Df Sum of Sq
                              RSS
                                      AIC
## - PE
               1
                   0.00164 88.589 -127759
## <none>
                           88.587 -127758
## - M2B
                   0.00996 88.597 -127757
               1
## - PB
                   0.01209 88.599 -127757
## - PF
                   0.01266 88.600 -127756
               1
## + EBITG
               1
                   0.00126 88.586 -127756
## - EV2EBITDA 1 0.01942 88.607 -127755
## - days
               1 0.02045 88.608 -127754
## - DY
                   0.04862 88.636 -127747
               1
## - PS
                   0.28383 88.871 -127686
               1
## - MOMENTUM
              1 1.11867 89.706 -127471
##
```

```
## Step: AIC=-127759.3
## RETURN ~ DY + EV2EBITDA + M2B + MOMENTUM + PB + PF + PS + days
##
##
               Df Sum of Sq
                               RSS
                                       AIC
## <none>
                            88.589 -127759
## - M2B
                    0.00976 88.599 -127759
                1
## - PB
                1
                    0.01187 88.601 -127758
## - PF
                1
                    0.01282 88.602 -127758
## + PE
                    0.00164 88.587 -127758
                1
## + EBITG
                1
                    0.00119 88.588 -127758
## - EV2EBITDA 1
                    0.01787 88.607 -127757
## - days
                1
                    0.02045 88.609 -127756
## - DY
                    0.04852 88.637 -127749
                1
## - PS
                    0.28228 88.871 -127688
## - MOMENTUM
                1
                    1.12129 89.710 -127472
summary(stepSA)
##
## Call:
## lm(formula = RETURN ~ DY + EV2EBITDA + M2B + MOMENTUM + PB +
       PF + PS + days, data = shortAfter)
##
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
## -0.71892 -0.03096 0.00200
                               0.03229
                                        0.49368
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.316e-03 1.069e-03
                                       3.103
                                              0.00192 **
## DY
                2.270e-04 6.400e-05
                                       3.547 0.00039 ***
## EV2EBITDA
               -5.917e-05
                           2.748e-05
                                      -2.153
                                              0.03132 *
## M2B
                3.388e-04
                           2.129e-04
                                       1.591
                                              0.11156
## MOMENTUM
               -1.854e-02
                           1.087e-03 -17.054
                                              < 2e-16 ***
## PB
               -4.553e-04
                           2.595e-04
                                              0.07936 .
                                     -1.754
## PF
               4.705e-06
                           2.580e-06
                                       1.824
                                              0.06822 .
                                              < 2e-16 ***
## PS
               -1.863e-03
                           2.178e-04
                                      -8.557
## days
               -5.523e-04 2.398e-04
                                     -2.303 0.02128 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.06209 on 22978 degrees of freedom
## Multiple R-squared: 0.02419,
                                    Adjusted R-squared: 0.02385
## F-statistic: 71.2 on 8 and 22978 DF, p-value: < 2.2e-16
```

Step 2: Select the stocks based on their Momentum

- Data source: data/observation
- Size: 17 files with a total size of 70MB
- Data Processing: Using R to select 1500 observations with highest Momentum and use Python to reorganize data and store them in a proper way. Python code can be found at

• Result: We got 2 models: Long-Before-Model and Short-After-Model

```
### Selected 1500 observations with highest Momentum
setwd("~/Spr2017-proj5-grp15/data/original/")
mom <- read.csv("../observation/momentum39034.csv",header = FALSE)</pre>
n_rows=nrow(mom)
## Long_before_earning.csv and Short_after_earning.csv are written using Python
long_before <- read.csv('../observation_processed/long_before_earning.csv')</pre>
short_after <- read.csv('../observation_processed/short_after_earning.csv')</pre>
nrow longb=nrow(long before)
nrow_shorta=nrow(short_after)
mom_sa=c()
for (i in 1:nrow_shorta){
  inter=max(short_after[i,'MOMENTUM'])
 mom_sa=c(mom_sa,inter)
}
mom_sa_selected=sort(mom_sa,decreasing=TRUE,index.return=TRUE)
sa_selected=mom_sa_selected$ix[1:1500]
sa_data_selected=short_after[sa_selected,]
mom_lb=c()
for (i in 1:nrow_longb){
  inter=max(long_before[i,'MOMENTUM'])
  mom_lb=c(mom_lb,inter)
mom lb selected=sort(mom lb,decreasing=TRUE,index.return=TRUE)
lb_selected=mom_lb_selected$ix[1:1500]
lb_data_selected=long_before[lb_selected,]
# write.csv(lb_data_selected,'../observation_processed/long_before.csv')
# write.csv(sa_data_selected,'../observation_processed/short_after.csv')
```

Step 3: Classification model

- Data source: data/obesrvation_processed
- Size: 2 files with a total size of 140kb
- \bullet Data Processing: Devide data into training set (1200 observations) and test set (300 obervations)
- Classification method: GBM, SVM, NNET, Random Forest, and Logistic. We also taken into account majority vote(GBM,SVM and Random Forest)
- Result:

Load and Process Data

```
short_after_selected <- sa_data_selected
long_after_selected <- lb_data_selected

colnames(long_after_selected)[1] <- "y"
long_after_selected$y <- ifelse(long_after_selected$RETURN >0, 1, 0)
long_after_selected <- long_after_selected[,-11]

colnames(short_after_selected)[1] <- "y"
short_after_selected$y <- ifelse(short_after_selected$RETURN >0, 1,0)
short_after_selected <- short_after_selected[,-11]

test.index <- sample(1:1500,300,replace = F)

test.sas <- short_after_selected[test.index,]
test.lbs <- long_after_selected[test.index,]
test.sas.x <- test.sas[,-1]
test.lbs.x <- test.lbs[,-1]
train.sas <- short_after_selected[-test.index,]
train.lbs <- long_after_selected[-test.index,]</pre>
```

Load requred functions

```
source("../lib/evaluation_measures.R")
source("../lib/train.R")

## Loading required package: survival

## ## Attaching package: 'survival'

## The following object is masked from 'package:DAAG':
## ## lung
```

```
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.3
## Loading required package: ggplot2
## Attaching package: 'ggplot2'
## The following object is masked from 'package:kernlab':
##
##
       alpha
##
## Attaching package: 'caret'
## The following object is masked from 'package:survival':
##
       cluster
## Loading required package: grid
## Attaching package: 'DMwR'
## The following object is masked from 'package:plyr':
##
       join
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
source("../lib/test.R")
source("../lib/cross_validation.R")
```

Short After Model

GBM

```
# GBM
start.time <- Sys.time()
res_gbm = train.gbm(train.sas)
pred.gbm = test.gbm(res_gbm,test.sas.x)
sas.gbm.sum = table(pred.gbm,test.sas$y)
end.time <- Sys.time()
gbm.sas.time <- end.time-start.time
perf_sas_gbm <- performance_statistics(sas.gbm.sum)
perf_sas_gbm</pre>
```

```
## $precision
## [1] 0.7061404
##
## $recall
## [1] 0.875
##
## $f1
## [1] 0.7815534
##
## $accuracy
## [1] 0.7
```

SVM

```
\# model.svm <- svm(y \sim ., data = train.sas, cost = 256, gamma = 0.3)
# Tune svm
start.time <- Sys.time()</pre>
model.svm.sas <- train.svm(train.sas)</pre>
pre.svm <- test.svm(model.svm.sas,test.sas.x)</pre>
svm.sas <- table(pre.svm,test.sas$y)</pre>
end.time <- Sys.time()</pre>
svm.sas.time <- end.time-start.time</pre>
perf_sas_svm <- performance_statistics(svm.sas)</pre>
perf_sas_svm
## $precision
## [1] 0.7631579
##
## $recall
## [1] 0.7880435
##
## $f1
## [1] 0.7754011
## $accuracy
## [1] 0.72
```

BPNN

```
# netural network
start.time <- Sys.time()
# model.nnet <- nnet(y ~ ., data = train.sas, linout = F, size = 10, decay = 0.001, maxit = 200, trace
# Tune bpnn
model.nnet <- train.bp(train.sas)
pre.nnet <- test.bp(model.nnet,test.sas.x)
nnet.sas <- table(pre.nnet,test.sas$y)
end.time <- Sys.time()
nnet.sas.time <- end.time-start.time
perf_sas_nnet <- performance_statistics(nnet.sas)
perf_sas_nnet</pre>
```

\$precision

```
## [1] 0.6768559
## 
## $recall
## [1] 0.8423913
## 
## $f1
## [1] 0.7506053
## 
## $accuracy
## [1] 0.6566667
```

Random Forest

```
# Random Forest
start.time <- Sys.time()</pre>
model.rf <- train.rf(train.sas)</pre>
## mtry = 3 00B error = 14.5%
## Searching left ...
## mtry = 2
                  00B = 14.83\%
## -0.02298851 1e-05
## Searching right ...
## mtry = 4
                  00B error = 14.5\%
## 0 1e-05
       0.1480
       0.1470
OOB Error
       0.1460
       0.1450
               2
                                                             3
                                                                                             4
                                                     m_{try}
```

```
pre.rf <- test.rf(model.rf,test.sas.x)
rf.sas <- table(pre.rf,test.sas$y)
end.time <- Sys.time()
rf.sas.time <- end.time-start.time
perf_sas_rf <- performance_statistics(rf.sas)
perf_sas_rf</pre>
```

\$precision

```
## [1] 0.8393782
##
## $recall
## [1] 0.8804348
##
## $f1
## [1] 0.8594164
##
## $accuracy
## [1] 0.8233333
```

Logistic

```
start.time <- Sys.time()</pre>
res_logi = train.log(train.sas)
pred.logi = test.log(res_logi,test.sas.x)
log.sas <- table(pred.logi,test.sas$y)</pre>
end.time <- Sys.time()</pre>
log.sas.time <- end.time-start.time</pre>
perf_sas_log <- performance_statistics(log.sas)</pre>
perf_sas_log
## $precision
## [1] 0.6174497
## $recall
## [1] 1
##
## $f1
## [1] 0.7634855
##
## $accuracy
## [1] 0.62
```

Majority Vote(Equal Weight)

\$f1

##

[1] 0.8434343

```
# Majority Vote
pre=(as.numeric(as.character(pre.svm))+as.numeric(as.character(pred.gbm))+as.numeric(as.character(pre.r
pre=ifelse(pre>=2,1,0)
mv <- table(pre,test.sas$y)
perf_sas_mv <- performance_statistics(mv)
perf_sas_mv

## $precision
## [1] 0.7877358
##
## $recall
## [1] 0.9076087</pre>
```

```
## $accuracy
## [1] 0.7933333
```

Long - Before Model

SVM

```
\# model.svm <- svm(y \sim ., data = train.lbs, cost = 256, gamma = 0.3)
# Tune svm
start.time <- Sys.time()</pre>
model.svm.lbs <- train.svm2(train.lbs)</pre>
pre.svm <- test.svm(model.svm.lbs,test.lbs.x)</pre>
svm.lbs <- table(pre.svm,test.lbs$y)</pre>
end.time <- Sys.time()</pre>
svm.lbs.time <- end.time-start.time</pre>
perf_lbs_svm <- performance_statistics(svm.lbs)</pre>
perf_lbs_svm
## $precision
## [1] 0.6118421
##
## $recall
## [1] 0.7153846
##
## $f1
## [1] 0.6595745
## $accuracy
## [1] 0.68
```

BPNN

```
# netural network
start.time <- Sys.time()</pre>
# model.nnet \leftarrow nnet(y \sim ., data = train.sas, linout = F, size = 10, decay = 0.001, maxit = 200, trace
# Tune bpnn
model.nnet <- train.bp(train.lbs)</pre>
pre.nnet <- test.bp(model.nnet,test.lbs.x)</pre>
nnet.lbs <- table(pre.nnet,test.lbs$y)</pre>
end.time <- Sys.time()</pre>
nnet.lbs.time <- end.time-start.time</pre>
perf_lbs_nnet <- performance_statistics(nnet.lbs)</pre>
perf_lbs_nnet
## $precision
## [1] 0.56
##
## $recall
## [1] 0.6461538
##
## $f1
```

```
## [1] 0.6
##
## $accuracy
## [1] 0.6266667
```

Random Forest

```
# Random Forest
start.time <- Sys.time()</pre>
model.rf <- train.rf(train.lbs)</pre>
## mtry = 3 00B error = 26.42%
## Searching left ...
## mtry = 2
                 00B = 26.42\%
## 0 1e-05
## Searching right ...
## mtry = 4
                 00B = 25.58\%
## 0.03154574 1e-05
## mtry = 6
                 00B = 25.92\%
## -0.01302932 1e-05
      0.264
      0.262
OOB Error
      0.260
      0.258
      0.256
              2
                                          3
                                                             4
                                                                                        6
                                                  m_{try}
```

```
pre.rf <- test.rf(model.rf,test.lbs.x)
rf.lbs <- table(pre.rf,test.lbs$y)
end.time <- Sys.time()
rf.lbs.time <- end.time-start.time
perf_lbs_rf <- performance_statistics(rf.lbs)
perf_lbs_rf

## $precision
## [1] 0.6740741
##
## $recall</pre>
```

```
## [1] 0.7
##
## $f1
## [1] 0.6867925
## $accuracy
## [1] 0.7233333
Logistic
start.time <- Sys.time()</pre>
res_logi = train.log(train.lbs)
pred.logi = test.log(res_logi,test.lbs.x)
log.lbs <- table(pred.logi,test.lbs$y)</pre>
end.time <- Sys.time()</pre>
log.lbs.time <- end.time-start.time</pre>
perf_lbs_log <- performance_statistics(log.lbs)</pre>
perf_lbs_log
## $precision
## [1] 0.4676259
##
## $recall
## [1] 0.5
## $f1
## [1] 0.4832714
##
## $accuracy
## [1] 0.5366667
GBM
# GBM
start.time <- Sys.time()</pre>
res_gbm = train.gbm(train.lbs)
pred.gbm = test.gbm(res_gbm,test.lbs.x)
lbs.gbm.sum = table(pred.gbm,test.lbs$y)
end.time <- Sys.time()</pre>
gbm.lbs.time <- end.time-start.time</pre>
perf_lbs_gbm <- performance_statistics(lbs.gbm.sum)</pre>
perf_lbs_gbm
## $precision
## [1] 0.55
##
## $recall
## [1] 0.5923077
```

##

```
## $f1
## [1] 0.5703704
##
## $accuracy
## [1] 0.6133333
```

Short-After-Model Summary

Table 1: Comparision of performance for two different methods(Short-After-Model)

method	precision	recall	f1	accuracy	time
GBM	0.71	0.88	0.78	0.70	0.14666295 secs
SVM	0.76	0.79	0.78	0.72	33.51036286 secs
NNET	0.68	0.84	0.75	0.66	84.84540105 secs
RF	0.84	0.88	0.86	0.82	4.17855310 secs
LOGISTIC	0.62	1.00	0.76	0.62	$0.01478505~\mathrm{secs}$
MV	0.79	0.91	0.84	0.79	NA

Long-Before-Model Summary

kable(compare_df,caption="Comparision of performance for two different methods(Long-Before-Model)", dig

Table 2: Comparision of performance for two different methods(Long-Before-Model)

method	precision	recall	f1	accuracy	time
GBM	0.55	0.59	0.57	0.61	0.3874459 secs
SVM	0.61	0.72	0.66	0.68	107.2432630 secs
NNET	0.56	0.65	0.60	0.63	72.2320290 secs
RF	0.67	0.70	0.69	0.72	4.8966820 secs
LOGISTIC	0.47	0.50	0.48	0.54	$0.0203681~{\rm secs}$