Experiment 10: Simulation of BER of BFSK in an AWGN Channel in MATLAB

Digital Communication Lab Electrical Engineering Department

Aim

To implement the BER of BFSK in an AWGN channel in MATLAB.

Binary FSK

In **binary FSK**, symbols 1 and 0 are distinguished from each other by transmitting one of two sinusoidal waves that differ in frequency by a fixed amount. A typical pair of sinusoidal waves is described by:

$$s_i(t) = \begin{cases} \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_i t), & 0 \le t \le T_b, \\ 0, & \text{elsewhere,} \end{cases}$$

where i = 1, 2, and E_b is the transmitted signal energy per bit. The transmitted frequency is set at

$$f_i = \frac{n_c + i}{T_i}$$
, for some fixed integer n_c and $i = 1, 2$.

Symbol 1 is represented by $s_1(t)$ and symbol 0 by $s_2(t)$. The FSK signal described here is known as Sunde's FSK. It is a continuous-phase signal, in the sense that phase continuity is always maintained, including the inter-bit switching times.

The signals $s_1(t)$ and $s_2(t)$ are orthogonal, but not normalized to have unit energy. The most useful form for the set of orthonormal basis functions is described by:

$$\phi_i(t) = \begin{cases} \sqrt{\frac{2}{T_b}} \cos(2\pi f_i t), & 0 \le t \le T_b, \\ 0, & \text{elsewhere,} \end{cases}$$

where i = 1, 2.

Correspondingly, the coefficient s_{ij} for where i = 1, 2 and j = 1, 2 is defined by:

$$s_{ij} = \int_0^{T_b} s_i(t)\phi_j(t) dt.$$

Substituting $s_i(t)$ and $\phi_i(t)$:

$$s_{ij} = \int_0^{T_b} \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_i t) \sqrt{\frac{2}{T_b}} \cos(2\pi f_j t) dt.$$

Carrying out the integration , the formula for s_{ij} simplifies to:

$$s_{ij} = \begin{cases} \sqrt{E_b}, & i = j, \\ 0, & i \neq j. \end{cases}$$

Thus, unlike binary PSK, binary FSK is characterized by having a signal-space diagram that is two-dimensional (i.e., N=2) with two message points (i.e., M=2). The two message points are defined by the vectors:

$$\mathbf{s}_1 = \begin{bmatrix} \sqrt{E_b} \\ 0 \end{bmatrix}$$

$$\mathbf{s}_2 = \begin{bmatrix} 0 \\ \sqrt{E_b} \end{bmatrix}$$

The Euclidean distance $\|\mathbf{s}_1 - \mathbf{s}_2\|$ is equal to $\sqrt{2E_b}$.

Error Probability of Binary FSK

The observation vector \mathbf{x} has two elements x_1 and x_2 that are defined by, respectively,

$$x_1 = \int_0^{T_b} x(t)\phi_1(t) dt$$

and

$$x_2 = \int_0^{T_b} x(t)\phi_2(t) dt$$

where x(t) is the received signal, whose form depends on which symbol was transmitted. Given that symbol 1 was transmitted, x(t) equals $s_1(t) + w(t)$, where w(t) is the sample function of a white Gaussian noise process of zero mean and power spectral density $N_0/2$. If, on the other hand, symbol 0 was transmitted, x(t) equals $s_2(t) + w(t)$. Now, applying the decision rule assuming the use of coherent detection at the receiver, we find that the observation space is partitioned into two decision regions, labeled Z_1 and Z_2 The decision boundary, separating region Z_1 from region Z_2 , is the perpendicular bisector of the line joining the two message points. The receiver decides in favor of symbol 1 if the received signal point represented by the observation vector \mathbf{x} falls inside region Z_1 . This occurs when $x_1 > x_2$. If, on the other hand, we have $x_1 < x_2$, the received signal point falls inside region Z_2 and the receiver decides in favor of symbol 0. On the decision boundary, we have $x_1 = x_2$, in which case the receiver makes a random guess in favor of symbol 1 or 0.

To proceed further, we define a new Gaussian random variable Y whose sample value y is equal to the difference between x_1 and x_2 ; that is,

$$y = x_1 - x_2$$

The mean value of the random variable Y depends on which binary symbol was transmitted. Given that symbol 1 was sent, the Gaussian random variables X_1 and X_2 , whose sample values are denoted by x_1 and x_2 , have mean values equal to $\sqrt{E_b}$ and zero, respectively. Correspondingly, the conditional mean of the random variable Y given that symbol 1 was sent is

$$\mathbb{E}[Y|1] = \mathbb{E}[X_1|1] - \mathbb{E}[X_2|1] = +\sqrt{E_b}$$

On the other hand, given that symbol 0 was sent, the random variables X_1 and X_2 have mean values equal to zero and $\sqrt{E_b}$, respectively. Correspondingly, the conditional mean of the random variable Y given that symbol 0 was sent is

$$\mathbb{E}[Y|0] = \mathbb{E}[X_1|0] - \mathbb{E}[X_2|0] = -\sqrt{E_b}$$

The variance of the random variable Y is independent of which binary symbol was sent. Since the random variables X_1 and X_2 are statistically independent, each with a variance equal to $N_0/2$, it follows that

$$var[Y] = var[X_1] + var[X_2] = N_0$$

Suppose we know that symbol 0 was sent. The conditional probability density function of the random variable Y is then given by

$$f_Y(y|0) = \frac{1}{\sqrt{2\pi N_0}} \exp\left[-\frac{(y+\sqrt{E_b})^2}{2N_0}\right]$$

Since the condition $x_1 > x_2$, or, equivalently, y > 0 corresponds to the receiver making a decision in favor of symbol 1, we deduce that the conditional probability of error given that symbol 0 was sent is

$$p_{10} = \mathbb{P}(y > 0 | \text{symbol } 0 \text{ was sent}) = \int_0^\infty f_Y(y|0) \, dy$$

$$= \frac{1}{\sqrt{2\pi N_0}} \int_0^\infty \exp\left[-\frac{\left(y + \sqrt{E_b}\right)^2}{2N_0}\right] dy$$

To put the integral in a standard form involving the Q-function, we set

$$z = \frac{y + \sqrt{E_b}}{\sqrt{N_0}}$$

Then, changing the variable of integration from y to z, we may rewrite (7.165) as

$$p_{10} = \frac{1}{\sqrt{2\pi}} \int_{\sqrt{E_b/N_0}}^{\infty} \exp\left(-\frac{z^2}{2}\right) dz = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Similarly, we may show the p_{01} , the conditional probability of error given that symbol 1 was sent, has the same value. Accordingly, averaging p_{10} and p_{01} and assuming equiprobable symbols, we find that the average probability of bit error, or equivalently, the BER for binary FSK with coherent detection is

$$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Conclusion

The experiment successfully simulated the BER of BFSK in an AWGN channel and observed its dependence on SNR using MATLAB.

References

S. Haykin, Communication Systems, 4th ed., Hoboken, NJ: Wiley, 2001.