The Hardware/Software Interface

CSE351 Spring2013

Floating-Point Numbers

Roadmap

C:

car *c = malloc(sizeof(car)); c->miles = 100;c->qals = 17;float mpg = get mpg(c); free(c);

Java:

```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
    c.getMPG();
```

Assembly language:

```
get mpg:
    pushq
             %rbp
             %rsp, %rbp
    movq
             %rbp
    popq
    ret
```

OS:

Data & addressing **Integers & floats** Machine code & C x86 assembly programming **Procedures &** stacks **Arrays & structs** Memory & caches **Processes** Virtual memory **Memory allocation** Java vs. C

Machine code:

```
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111
```


Computer system:

Today's Topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

Fractional Binary Numbers

What is 1011.101₂?

Fractional Binary Numbers

- What is 1011.101₂?
- How do we interpret fractional *decimal* numbers?
 - e.g. 107.95₁₀
 - Can we interpret fractional binary numbers in an analogous way?

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \cdot 2$

Fractional Binary Numbers: Examples

Value

Representation

101.112

- 5 and 3/4
- 2 and 7/8
 10.111₂
- **63/64**

0.111111,

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of the form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Shorthand notation for all 1 bits to the right of binary point: $1.0 \boxed{2}$

Representable Values

- Limitations of fractional binary numbers:
 - Can only exactly represent numbers that can be written as x * 2^y
 - Other rational numbers have repeating bit representations

Value Representation

- **1/3** 0.01010101[01]...₂
- **1/5** 0.00110011[0011]...₂
- **1/10** 0.000110011[0011]...₂

Fixed Point Representation

- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - "fixed point binary numbers"
- Let's do that, using 8-bit fixed point numbers as an example
 - #1: the binary point is between bits 2 and 3 $b_7 b_6 b_5 b_4 b_3$ [.] $b_2 b_1 b_0$
 - #2: the binary point is between bits 4 and 5 b₇ b₆ b₅ [.] b₄ b₃ b₂ b₁ b₀
- The position of the binary point affects the range and precision of the representation
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

Fixed Point Pros and Cons

Pros

- It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - ints are just fixed point numbers with the binary point to the right of b₀

Cons

- There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision the more you have of one, the less of the other.

IEEE Floating Point

Analogous to scientific notation

- Not 12000000 but 1.2 x 10⁷; not 0.0000012 but 1.2 x 10⁻⁶
 - (write in C code as: 1.2e7; 1.2e-6)

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs today

Driven by numerical concerns

- Standards for handling rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{S} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by a (possibly negative) power of two

Representation in memory:

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

s	exp	frac
		1140

Precisions

Single precision: 32 bits

s	ехр	frac
1	k=8	n=23

Double precision: 64 bits

Normalization and Special Values

- "Normalized" means the mantissa M has the form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it
- How do we represent 0.0? Or special / undefined values like 1.0/0.0?

Normalization and Special Values

- "Normalized" means the mantissa M has the form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it

Special values:

- The bit pattern 00...0 represents zero
- If **exp** == 11...1 and **frac** == 00...0, it represents ?

• e.g.
$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -1.0/0.0 = -\infty$

- If exp == 11...1 and frac != 00...0, it represents NaN: "Not a Number"
 - Results from operations with undefined result, e.g. sqrt(-1), $\infty \infty$, $\infty * 0$

How do we do operations?

 Unlike the representation for integers, the representation for floating-point numbers is not exact

Floating Point Operations: Basic Idea

- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = Round(\mathbf{x} \times \mathbf{y})$
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then, round the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into frac

Rounding modes

Possible rounding modes (illustrate with dollar rounding):

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Round-toward-zero	\$1	\$1	\$1	\$2	- \$1
■ Round-down (-∞)	\$1	\$1	\$1	\$2	- \$2
■ Round-up (+ ∞)	\$2	\$2	\$2	\$3	- \$1
Round-to-nearest	\$1	\$2	. 55	??	. 55
Round-to-even	\$1	\$2	\$2	\$2	- \$2

- What could happen if we're repeatedly rounding the results of our operations?
 - If we always round in the same direction, we could introduce a statistical bias into our set of values!
- Round-to-even avoids this bias by rounding up about half the time, and rounding down about half the time
 - Default rounding mode for IEEE floating-point

Mathematical Properties of FP Operations

- If overflow of the exponent occurs, result will be ∞ or $-\infty$
- Floats with value ∞ , $-\infty$, and NaN can be used in operations
 - Result is usually still ∞ , $-\infty$, or NaN; sometimes intuitive, sometimes not
- Floating point operations are not always associative or distributive, due to rounding!
 - (3.14 + 1e10) 1e10 != 3.14 + (1e10 1e10)
 - 1e20 * (1e20 1e20) != (1e20 * 1e20) (1e20 * 1e20)

Floating Point in C

C offers two levels of precision

```
float single precision (32-bit)
double double precision (64-bit)
```

- Default rounding mode is round-to-even
- #include <math.h> to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!

Floating Point in C

Conversions between data types:

- Casting between int, float, and double changes the bit representation!!
- int \rightarrow float
 - May be rounded; overflow not possible
- int \rightarrow double or float \rightarrow double
 - Exact conversion, as long as int has \leq 53-bit word size
- double **or** float \rightarrow int
 - Truncates fractional part (rounded toward zero)
 - Not defined when out of range or NaN: generally sets to Tmin

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- Never test floating point values for equality!

Additional details

- Exponent bias
- Denormalized values to get finer precision near zero
- Tiny floating point example
- Distribution of representable values
- **■** Floating point multiplication & addition
- Rounding

Normalized Values

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as biased value: E = exp Bias
 - **exp** is an *unsigned* value ranging from 1 to 2^k-2 (k == # bits in **exp**)
 - $Bias = 2^{k-1} 1$
 - Single precision: 127 (so *exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (so *exp*: 1...2046, *E*: -1022...1023)
 - These enable negative values for E, for representing very small values
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: the n bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when **111...1** ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

- Value: float f = 12345.0;
 - $12345_{10} = 11000000111001_2$ = $1.1000000111001_2 \times 2^{13}$ (normalized form)
- Significand:

■ Exponent: E = exp - Bias, so exp = E + Bias

```
E = 13
Bias = 127
exp = 140 = 10001100_{2}
```

Result:

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = exp Bias + 1 (instead of E = exp Bias)
- Significand coded with implied leading 0: M = 0. xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - $exp = 000...0, frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- **■** Condition: **exp** = **111...1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Visualization: Floating Point Encodings

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s exp	frac	Ε	Value
	0 0000	000	-6	0
	0 0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512
numbers	•••			
	0 0000	110	-6	6/8*1/64 = 6/512
	0 0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0 0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512
	•••			
	0 0110	110	-1	14/8*1/2 = 14/16
Noveolizad	0 0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1
numbers	0 0111	001	0	9/8*1 = 9/8 closest to 1 above
	0 0111	010	0	10/8*1 = 10/8
	•••			
	0 1110	110	7	14/8*128 = 224
	0 1110	111	7	15/8*128 = 240 largest norm
	0 1111	000	n/a	inf

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value		
Zero	0000	0000	0.0		
■ Smallest Pos. Denorm. ■ Single $\approx 1.4 * 10^{-45}$ ■ Double $\approx 4.9 * 10^{-324}$	0000	0001	2- {23,52} * 2- {126,1022}		
 Largest Denormalized Single ≈ 1.18 * 10⁻³⁸ Double ≈ 2.2 * 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) * 2^{-\{126,1022\}}$		
■ Smallest Pos. Norm.		0000	1.0 * 2- {126,1022}		
 Just larger than largest denormalized 					
One	0111	0000	1.0		
 Largest Normalized Single ≈ 3.4 * 10³⁸ Double ≈ 1.8 * 10³⁰⁸ 	1110	1111	$(2.0 - \varepsilon) * 2^{\{127,1023\}}$		

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Multiplication

 $(-1)^{s1}$ M1 2^{E1} * $(-1)^{s2}$ M2 2^{E2}

■ Exact Result: (-1)^s M 2^E

• Sign s: s1 ^ s2 // xor of s1 and s2

Significand M: M1 * M2

• Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Floating Point Addition

$$(-1)^{s1}$$
 M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2} Assume E1 > E2

- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

■ "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
  float f1 = 1.0;
  float f2 = 0.0;
  int i;
  for ( i=0; i<10; i++ ) {
    f2 += 1.0/10.0;
                                                          $ ./a.out
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
                                                          0x3f800000 0x3f800001
 printf("f1 = %10.8f\n", f1);
                                                          f1 = 1.000000000
 printf("f2 = %10.8f\n\n", f2);
                                                          f2 = 1.000000119
  f1 = 1E30;
                                                         f1 == f3? yes
 f2 = 1E-30;
  float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
  return 0;
```

Memory Referencing Bug

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```

Explanation:

Representing 3.14 as a Double FP Number

- **3.14** = **11.0010 0011 1101 0111 0000 1010 000...**
- - S = 0 encoded as 0
 - M = 1.1001 0001 1110 1011 1000 0101 000.... (leading 1 left out)
 - E = 1 encoded as 1024 (with bias)

```
        s
        exp
        (11)
        frac (first 20 bits)

        0
        100 0000 0000
        1001 0001 1110 1011 1000
```

```
frac (the other 32 bits)
```

0101 0000 ...

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```

```
      Saved State
      4

      d7 ... d4
      0100 0000 0000 1001 0001 1110 1011 1000

      d3 ... d0
      0101 0000 ...

      a[1]
      1

      a[0]
      0
```

Location accessed by fun(i)

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```

Location accessed by fun(i)

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```

Location

accessed

by fun(i)