Computational Physics Lecture 6

sieversj@ukzn.ac.za

git clone https://github.com/ukzncompphys/lecture6_2016.git

DFT (Discrete FT)

- Computers don't do continuous. Not enough RAM for starters...
- Function exists over finite range in x at finite number of points.
- If input function has n points, output can only have n k's.
- Gives rise to discrete Fourier Transform (DFT)
- $F(k)=\sum f(x)\exp(2\pi ikx/N)$ for N points and $0 \le k \le N$
- What would DFT of f(0)=1, otherwise f(x)=0 look like?
- What would DFT of f(x)=1 look like?
- DFTs have subtle behaviours not seen in continuous, infinite FTs.

DFTs with Numpy

- Numpy has many Fourier Transform operations
- (for reasons to be seen) they are called *Fast* Fourier Transforms FFT is one way of implementing DFTs.
- FFT's live in a submodule of numpy called FFT
- xft=numpy.fft.fft(x) takes DFT
- x=numpy.fft.ifft(x) takes inverse DFT
- Numpy normalizes such that f==fft(ifft(f))==ifft(fft(f))

Flipping

- What is DFT of f(-x)?
- $\sum f(-x) \exp(2\pi i kx/N), x^*=-x, \sum f(x^*) \exp(2\pi i k(-x)/N)$
- DFT(f(-x))= $\sum f(x) \exp(-2\pi i kx/N) = \operatorname{conj}(F(k))$

Shifting

- What is FFT(x+dx)? $\sum f(x+dx) \exp(2\pi i kx/N)$.
- $x^*=x+dx$: $F(k)=\sum f(x^*)\exp(2\pi i k(x^*-dx)/N)$
- $F(k) = \exp(-2\pi i k dx/N) \sum f(x^*) \exp(2\pi i k x^*/N)$
- So, just apply a phase gradient to the DFT to shift in x

Real Data Symmetry

- If I know F(k), what is F(N-k) is f(x) is real?
- F(N-k)=F(-k) (from alias theorem)
- $F(-k)=\sum f(x)\exp(2\pi i(-k)x/N)$. let $x^*=-x$
- $F(-k)=\sum f(-x^*)\exp(2\pi i k x^* N) = conj(F(k))$ by flipping
- So, if f(x) is real, F(k) = conj(F(N-k))
- If N even, F(N/2)=conj(F(N/2)), so F(N/2) must be real.

```
>>> x=numpy.random.randn(8)
>>> xft=numpy.fft.fft(x)
>>> for xx in xft:
... print xx
...
(-4.53568815727+0j)
(-0.174046761579+2.08827239558j)
(2.15348308858+2.32162497273j)
(-0.423040513854-3.72126858798j)
(2.75685372591+0j)
(-0.423040513853+3.72126858798j)
(2.15348308858-2.32162497273j)
(-0.174046761579-2.08827239558j)
>>>
```

Convolution

- Say we have instrument with some response.
 - cosmic ray hits detector, raises temperature. Temperature decays
 - out-of-focus camera smears image
- Observed signal at time t is true signal at time t' time response/smearing for $\delta t = t t$ '. But, must integrate over all times.
- So, $f_{obs}(t) = \int f(t')g(t-t') dt'$. This is a convolution.

Cosmic Rays from Planck Satellite

Convolution Theorem

- Convolution defined to be $conv(y)=f\otimes g==\int f(x)g(y-x)dx$
- $\sum_{x} \sum F(k) \exp(-2\pi i k x) \sum_{x} conj(G(k')) \exp(-2\pi i k' x) \exp(2\pi i k' y/N)$
- Reorder sum: $\sum F(k) \operatorname{conj}(G(k')) \exp(2\pi i k' y/N) \sum_{x} \exp(-2\pi i (k+k')x)$
- equals zero unless k'==-k. Cancels one sum, conjugates G
- $f \otimes g = \sum F(k)G(k) \exp(-2\pi i k y/N) = ift(dft(f)*dft(g))$
- So, to convolve two functions, multiply their DFTs and take the IFT

Convolution Example

```
from numpy import arange,exp,real
from numpy.fft import fft,ifft
from matplotlib import pyplot as plt
def conv(f,g):
    ft1=fft(f)
    ft2=fft(g)
    return real(ifft(ft1*ft2))
x=arange(-10,20,0.1)
f=exp(-0.5*(x+3)**2/0.5**2)
g=0*x;g[(x>0)&(x<5)]=1
g=g/g.sum()
f=f/f.sum()
h=conv(f,g)
plt.plot(x,f,'b')
plt.plot(x,g,'k')
plt.plot(x,h,'r')
plt.savefig('convolved')
plt.show()
```


2D Fourier Transforms

- Fourier transform defined in 2 dimensions:
- $F(k,l) = \int \int f(x,y) \exp(-ikx) \exp(-ily) dxdy$
- 2D FT's extremely common in image processing.
- JPEGs in fact are based on picking out modes from image FT's.

numpy.fft.fft2

Smoothing Images

- Out-of-focus images are convolutions.
- Can defocus an image by convolving with a blurry kernel
- Let's fuzz out map by a Gaussian.

```
def get fft vec(n):
    vec=numpy.arange(n)
    vec[vec>n/2]=vec[vec>n/2]-n
    return vec
def smooth_map(map,npix,smooth=True):
    nx=map.shape[0]
    ny=map.shape[1]
    xind=get_fft_vec(nx)
    yind=get_fft_vec(ny)
    #make 2 1-d gaussians of the correct lengths
    sig=npix/numpy.sqrt(8*numpy.log(2))
    xvec=numpy.exp(-0.5*xind**2/sig**2)
    xvec=xvec/xvec.sum()
    yvec=numpy.exp(-0.5*yind**2/sig**2)
    yvec=yvec/yvec.sum()
    #make the 1-d gaussians into 2-d maps using numpy.repeat
    xmat=numpy.repeat([xvec],ny,axis=0).transpose()
    ymat=numpy.repeat([yvec],nx,axis=0)
    #if we didn't mess up, the kernel FT should be strictly real
    kernel=numpy.real(numpy.fft.fft2(xmat*ymat))
    #get the map Fourier transform
    mapft=numpy.fft.fft2(map)
    #multiply/divide by the kernel FT depending on whath we're after
    if smooth:
        mapft=mapft*kernel
    else:
        mapft=mapft/kernel
    #now get back to the convolved map with the inverse FFT
    map_smooth=numpy.fft.ifft2(mapft)
    #since numpy gets imaginary parts from roundoff, return the real part
    return numpy.real(map_smooth)
```

smooth_map.py

Deconvolution

- Well, if I smear out by multiplying FT's, I can unsmear by dividing, right?
- If yes, worth billions and billions of your favo(u)rite currency. Save those fuzzy pictures...
- Maybe. Let's try smoothing image by 3.5 pixels, then unsmoothing by 4.
- What happened?

Deconvolution

- smoothing lowers high-frequency signal
- unsmoothing must raise it back up.
- if there's any noise, it gets amplified by unsmoothing.
- If I smooth, then write to jpg, I round to nearest integer. Equivalent to adding noise.
- So, think those fuzzy license plates in google maps are safe?

Fast Fourier Transform

- How many operations does a DFT take?
- Have an N by N matrix operating on a vector of length N clearly N^2 operations, right?
- Nope! Otherwise we'd never use them. What's actually going on?
- Note DFT= $\sum f(x) \exp(2\pi i k x/N) = \sum f_{even}(x) \exp(2\pi i k (2x)/N) + \sum f_{odd}(x) \exp(2\pi i k (2x)/N) + \sum f_{odd}(x) \exp(2\pi i k (2x)/N)$
- = F_{even} +exp($2\pi i k/N$) F_{odd} . Let W_k =exp($2\pi i k/N$)
- if k>N/2, then $k^*=k-N/2$ and DFT= $F_{even}+exp(2\pi i k^*/N+i\pi)F_{odd}=F_{even}-W_kF_{odd}$.

FFT cont'd

- So $F(k)=F_{even}(k)+W_kF_{odd}(k)$ (k<N/2) or $F_{even}(k)-W_kF_{odd}(k)$ (k>=N/2)
- So, can get *all* the frequencies if I have 2 half-length FFTs.
- Well, just do the same thing again. FFT of a single element is itself.
- This algorithm works for arrays whose length is a power of 2
- Popularized by Cooley/Tukey in early computer days. Later found to go back to Gauss in 1805. Changes computational work from n² to nlogn.

Sample FFT

- Routine uses recursion function calls itself. Recursion can be very powerful, but also easy to goof.
- numpy.concatenate will combine arrays - note that they have to be passed in as a tuple, hence the extra set of parenthesis
- Modern FFT routines deal with arbitrary length arrays. Fastest Fourier Transform in the West (FFTW) standard packaged usually used by numpy.

```
from numpy import concatenate, exp, pi, arange, complex
def myfft(vec):
    n=vec.size
    #FFT of length 1 is itself, so quit
    if n==1:
        return vec
    #pull out even and odd parts of the data
    myeven=vec[0::2]
    myodd=vec[1::2]
    nn=n/2;
    j=complex(0,1)
    #get the phase factors
    twid=exp(-2*pi*j*arange(0,nn)/n)
    #get the dfts of the even and odd parts
    eft=myfft(myeven)
    oft=myfft(myodd)
    #Now that we have the partial dfts, combine them with
    #the phase factors to get the full DFT
    myans=concatenate((eft+twid*oft,eft-twid*oft))
    return myans
```

```
>>> import myft
>>> x=numpy.random.randn(32)
>>> xft1=numpy.fft.fft(x)
>>> xft2=myft.myfft(x)
>>> print numpy.sum(numpy.abs(xft1-xft2))
2.33937690259e-13
>>> |
```


Instrument deployed to Marion Island (2000 km south of SA) right now. Looking for signal from the first stars in the universe. Main job of back end is to FFT 4 billion numbers/second. Uses 30W total.

Tutorial Problems

- Write a function that will shift an array by an arbitrary amount using a convolution (yes, I know there are easier ways to do this). The function should take 2 arguments an array, and an amount by which to shift the array. Plot a gaussian that started in the centre of the array shifted by half the array length. (10)
- The correlation function $f \bigstar g$ is $\int f(x)g(x+y)$. Through a similar proof, one can show $f \bigstar g = ift(dft(f)*conj(dft(g)))$. Write a routine to take the correlation function of two arrays. Plot the correlation function of a Gaussian with itself. (10)
- Using the results of part I and part 2, write a routine to take the correlation function of a Gaussian (shifted by an arbitrary amount) with itself. How does the correlation function depend on the shift? Does this surprise you? (10)
- The circulant (wrap-around) nature of the dft can sometimes be problematic. Write a routine to take the convolution of two arrays *without* any danger of wrapping around. You may wish to add zeros to the end of the input arrays. (10)

Tutorial Bonus Problem

• You have a sample code that calculates an FFT of an array whose length is a power of 2. Using that routine as a guideline, write an FFT routine that works on an array whose length is a power of 3 (e.g. 9, 27, 81). Verify that it gives the same answer as numpy.fft.fft (10)