PRÁCTICAS de UNIDAD 1: SENSORES y ACTUADORES

Parte 1: Identificar motores pequeños stepper (PaP), BDC (motores de continua), BLDC

- Identificar tipo de motor, tecnología, características y cableado.
- Documentar con esquemas y anotaciones.

Materiales: Motores, tester, 4 LEDs, 4 resistencias de 100 ohms. Plaqueta experimental (breadboard). Cables para conexión en plaqueta.

Parte 2: Alimentar motores stepper y BDC con pulsadores

- Lograr la rotación e inversión de giro del motor *stepper* mediante la secuencia de pulsado, y determinar el ángulo de paso.
- En un motor *stepper* unipolar (de 5 terminales) identificar las fases pertenecientes al mismo circuito magnético. Sugerencia: utilizar propiedades de la inductancia.
- Lograr la rotación e inversión de giro de un motor BDC mediante 4 pulsadores.
- Experimentar los modos slow decay y fast decay.
- Documentar con esquemas y anotaciones.

Materiales: Motores, 4 pulsadores NA (para *stepper* unipolar) u 8 (para *stepper* bipolar). 4 diodos 1N4001. Resistencias de 22 ohm 1/2W. Plaqueta experimental (breadboard). Cables para conexión en plaqueta. Fuente.

Color de cables

Número de terminales: 4, 5, 6, 8 ...

Tipo: Unipolar - Unipolar / Bipolar - Bipolar

Genera voltaje al girar (Si/No):

Fase (A, B,)	Color/Colores	Resistencia de bobinado

Parte 3: Alimentar motores *stepper* y BDC con *drivers* dedicados.

- Lograr la rotación e inversión de giro del motor *stepper* mediante señales pulso-dirección aplicadas a un driver, y determinar el ángulo de paso.
- Lograr la rotación e inversión de giro de un motor BDC mediante 2 pulsadores aplicados a un driver (puente H).
- Lograr la variación de velocidad de un motor stepper mediante un oscilador de frecuencia variable.
- Lograr la variación de velocidad de un motor BDC mediante señal PWM producida en un oscilador y aplicada a un driver (puente H) o a un transistor.
- Observación de señales PWM en osciloscopio.
- Documentar con esquemas y anotaciones.

Circuitos auxiliares: Oscilador de frecuencia variable y oscilador PWM

Materiales: Integrado CD40106 (o 74C14), 1 potenciómetro 10k lineal, 2 diodos 1N4148, 2 R 100 ohms o 1K, 1 Capacitor 1uF, 1 Capacitor electrolítico 10uF/25Volts.

El objetivo es experimentar dos circuitos muy simples, que servirán para ensayar los circuitos principales de la práctica (*driver* de motor PaP y *driver* de motor BDC). **Estos circuitos luego serán reemplazados por señales generadas mediante microcontroladores.**

Oscilador de frecuencia variable

En este circuito la frecuencia de oscilación está determinada por (Rp+R1) y C1. R2 es solamente una protección de entrada de IC1a, que normalmente puede obviarse.

C1 Inicialmente descargado presenta un '0' lógico a la entrada de IC1a, el cual tendrá entonces su salida en '1'. Este '1' es del valor de Vdd (tensión alimentación del IC1), y carga a C1 a través del R1+Rp. Cuando el voltaje de C1 es visto como un '1', la salida de IC1a pasa a '0', descargando C1 a través de R1+Rp.

Los umbrales de conmutación de son aproximadamente Vdd/3 y 2Vdd/3. Por ejemplo, a 5 volts serán 1,66 y 3,33.

Esto hace que la frecuencia sea $f \approx 1/[1,44 \cdot (Rp+R1) \cdot C]$ Modificando Rp se varía la frecuencia. La salida se toma de IC1b.

Oscilador PWM

Es una variante del anterior en el que mediante los diodos D1 y D2 se consigue que la carga y descarga de C1 se produzca a través de R1+x.Rp y R1+(1-x).Rp respectivamente, siendo x el recorrido normalizado del potenciómetro de izquierda a derecha en la figura, con valor de 0 a 1. Si se desprecian las caídas en D1 y D2 y se suponen los umbrales de conmutación antes mencionados, la salida de IC1a tendrá los siguientes tiempos de '1' y de '0': TON=1,44.(R1+x.Rp).C1 = R1.C1 + x. Rp.C1
TOFF=1,44.[R1+(1-x).Rp].C1 = R1.C1 + (1-x).Rp.C1

El período será: T=TON+TOFF=1,44.(R1+Rp).C1 El efecto de umbral de los diodos modifica ligeramente estos cálculos.

Circuitos básicos para aplicar pulsos en forma manual a las entradas de los drivers.

Ensayo de driver de PaP.

Materiales: Motor PaP, 2 pulsadores, 2 R 10k, 1 driver DRV8825, A4988 o similar (Ej. L297+L298). Fuente 9

a 12 V, plaqueta, cables.

Procedimiento:

Aplicar la salida del generador de frecuencia variable a la entrada STEP.

Colocar un pulsador (alguno de los 4 circuitos vistos) en la entrada DIR.

Observar el comportamiento del motor variando la frecuencia del oscilador y modificando el sentido de giro.

¿Qué ocurre en baja frecuencia? ¿Qué ocurre en alta frecuencia?. Qué ocurre ante un cambio de dirección. ¿Y ante un breve bloqueo del rotor?. Modificar el modo de micropaso (ver tablas) y observar compotamiento. Obtener conclusiones.

Ensayo de driver de BDC.

Materiales: Motor BDC, 2 pulsadores. 1 driver L298 (en placa). Fuente, plaqueta, cables.

Nota: IN1 es A, IN2 es B, IN3 es C, IN4 es D

Procedimiento:

En las entradas IN1-IN2 conectar 2 pulsadores NA a 5V, con resistencia pull-down a GND.

Conectar la entrada ENA a 5V.

Conectar motor en bornera Motor A. Para motores pequeños colocar una R limitadora en serie, comenzando por un valor de unos 100 ohms (probar con valores menores si el motor no arranca cuando se activen las entradas).

Conectar fuente 6 a 12 volts en bornera de alimentación.

Experimentar la activación de IN1 e IN2 con los pulsadores indicados.

Observar el frenado con ENA a 5V y comparar con el frenado con ENA a 0 V.

Aplicar la salida S1 del oscilador PWM (ver circuito siguiente) a la entrada IN1, con IN2 a 0 volts y a 5 volts. Observar la respuesta del motor.

Repetir aplicando S1 a la entrada IN2, con IN1 a 0 y 5 volts (la respuesta debería ser similar, pero con sentidos invertidos).

Aplicar S1 y S2 del oscilador PWM a las entradas IN1 e IN2 respectivamente. Observar la respuesta del motor.

Ensayo de MOSFET con BDC.

Materiales: Motor BDC. 1 transistor NPN (Ej TIP 41) ó MOSFET canal N (Ej. IRFZ44N). Resistencias de 1k y 10k.

Parte 4: Ensayo de codificadores en cuadratura (encoders), sensores de final de carrera, sensores Hall).

- Identificar terminales del encoder.
- Verificar distintos principios de funcionamiento de sensores ON-OFF (reed switches, sensores Hall, sensores inductivos, sensores ópticos de ranura y reflectivos).
- Observación de señales con tester, diodos leds y osciloscopio.
- Documentar con esquemas y anotaciones.

Materiales: Sensores, fuente 5V, 2 leds, 2 R 1k5, imanes, 1 CD 40106 o 74C14.

Parte 5: Demostración de ejes electromecánicos, con PaP y con brushless.

- Identificar partes del sistema. Realizar diagrama de conexiones.
- Verificar modos de funcionamiento.