Chapter 8.3. Maximum Likelihood Estimation

Prof. Tesler

Math 283 Fall 2016

Estimating parameters

- Let Y be a random variable with a distribution of known type but unknown parameter value θ .
 - **Bernoulli or geometric** with unknown p.
 - **Poisson** with unknown mean μ.
- Denote the pdf of Y by

$$P_{Y}(y;\theta)$$

to emphasize that there is a parameter θ .

• Do n independent trials to get data $y_1, y_2, y_3, \ldots, y_n$. The joint pdf is

$$P_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n;\theta) = P_Y(y_1;\theta)\cdots P_Y(y_n;\theta)$$

Goal: Use the data to estimate θ.

Likelihood function

- Previously, we knew the parameter θ and regarded the y's as unknowns (occurring with certain probabilities).
- Define the *likelihood* of θ given data y_1, \ldots, y_n to be

$$L(\theta; y_1, \dots, y_n) = P_{Y_1, \dots, Y_n}(y_1, \dots, y_n; \theta) = P_Y(y_1; \theta) \cdots P_Y(y_n; \theta)$$

• It's the exact same formula as the joint pdf; the difference is the interpretation. Now we consider the data y_1, \ldots, y_n to be given and θ to be an unknown.

Definition (Maximum Likelihood Estimate, or MLE)

The value $\theta = \widehat{\theta}$ that maximizes the likelihood is the *Maximum Likelihood Estimate*. Often, it is found using Calculus by locating a critical point:

$$\frac{dL}{d\theta} = 0 \qquad \frac{d^2L}{d\theta^2} < 0$$

However, be sure to check for complications such as discontinuities and boundary values of θ .

MLE for the Poisson distribution

- Y has a Poisson distribution with unknown parameter $\mu \geqslant 0$.
- Collect data from independent trials:

$$Y_1 = y_1, Y_2 = y_2, \cdots, Y_n = y_n$$

Likelihood:

$$L(\mu; y_1, \dots, y_n) = \prod_{i=1}^n e^{-\mu} \frac{\mu^{y_i}}{y_i!} = \frac{e^{-n\mu} \mu^{y_1 + \dots + y_n}}{y_1! \dots y_n!}$$

• Log likelihood is maximized at the same μ and is easier to use:

$$\ln L(\mu; y_1, \dots, y_n) = -n\mu + (y_1 + \dots + y_n) \ln \mu - \ln(y_1! \dots y_n!)$$

• Critical point: Solve $d(\ln L)/d\mu = 0$:

$$\frac{d(\ln L)}{d\mu} = -n + \frac{y_1 + \dots + y_n}{\mu} = 0 \qquad \text{so} \qquad \mu = \frac{y_1 + \dots + y_n}{n}$$

MLE for the Poisson distribution

• Log likelihood is maximized at the same μ and is easier to use:

$$\ln L(\mu; y_1, \dots, y_n) = -n\mu + (y_1 + \dots + y_n) \ln \mu - \ln(y_1! \dots y_n!)$$

• Critical point: Solve $d(\ln L)/d\mu = 0$:

$$\frac{d(\ln L)}{d\mu} = -n + \frac{y_1 + \dots + y_n}{\mu} = 0 \qquad \text{so} \qquad \mu = \frac{y_1 + \dots + y_n}{n}$$

• Check second derivative is negative:

$$\frac{d^2(\ln L)}{d\mu^2} = -\frac{y_1 + \dots + y_n}{\mu^2} = -\frac{n^2}{y_1 + \dots + y_n} < 0$$
 provided $y_1 + \dots + y_n > 0$. So it's a max unless $y_1 + \dots + y_n = 0$.

• Boundaries for range $\mu \ge 0$: Must check $\mu \to 0^+$ and $\mu \to \infty$. Both send $\ln L \to -\infty$, so the μ identified above gives the max.

The Maximum Likelihood Estimate for the Poisson distribution

$$\hat{\mu} = \frac{y_1 + \dots + y_n}{n} = \frac{0(\text{# of 0's}) + 1(\text{# of 1's}) + 2(\text{# of 2's}) + \dots}{n}$$

MLE for the Poisson distribution

- The exceptional case on the previous slide was $y_1 + \cdots + y_n = 0$, giving $y_1 = \cdots = y_n = 0$ (since all $y_i \ge 0$).
- In this case,

$$\ln L(\mu; y_1, \dots, y_n) = -n\mu + (y_1 + \dots + y_n) \ln \mu - \ln(y_1! \dots y_n!)$$

$$= -n\mu + 0 \ln \mu - \ln(0! \dots 0!)$$

$$= -n\mu$$

• On the range $\mu \geqslant 0$, this is maximized at $\hat{\mu} = 0$, which agrees with

$$\hat{\mu} = \frac{y_1 + \dots + y_n}{n} = \frac{0 + \dots + 0}{n} = 0$$

Repeating the estimation gives different results

• A does n trials $y_{A1}, y_{A2}, \ldots, y_{An}$, leading to MLE $\widehat{\theta}_A$. B does n trials $y_{B1}, y_{B2}, \ldots, y_{Bn}$, leading to MLE $\widehat{\theta}_B$. \ldots How do $\widehat{\theta}_A, \widehat{\theta}_B, \ldots$ compare?

• Treat the n trials in each experiment as random variables Y_1, \ldots, Y_n and the MLE as a random variable $\widehat{\Theta}$.

Estimate Poisson parameter with n = 10 trials (secret: $\mu = 1.23$)

Experiment	Y_1	Y_2	<i>Y</i> ₃	Y_4	Y_5	<i>Y</i> ₆	<i>Y</i> ₇	Y_8	<i>Y</i> ₉	<i>Y</i> ₁₀	$\widehat{\Theta}$
А	1	0	0	0	3	0	2	2	0	2	1.0
В	1	2	0	1	1	3	0	0	0	1	0.9
С	3	2	2	1	1	1	1	2	1	1	1.5
D	1	2	1	2	1	4	2	3	2	1	1.9
E	0	3	0	1	1	0	0	1	2	2	1.0
Mean	1.2	1.8	0.6	1	1.4	1.6	1	1.6	1	1.4	1.26

Desireable properties of an estimator $\widehat{\Theta}$

- $\widehat{\Theta}$ should be narrowly distributed around the correct value of θ .
- Increasing n should improve the estimate.
- The distribution of $\widehat{\Theta}$ should be known.

The MLE often does this.

Bias

- Suppose Y is Poisson with secret parameter μ.
- Poisson MLE from data is

$$\hat{\mu} = \frac{Y_1 + \dots + Y_n}{n}$$

 If many MLEs are computed from independent data sets, the average tends to

$$E(\hat{\mu}) = E\left(\frac{Y_1 + \dots + Y_n}{n}\right) = \frac{E(Y_1) + \dots + E(Y_n)}{n}$$
$$= \frac{\mu + \dots + \mu}{n} = \frac{n\mu}{n} = \mu$$

- Since $E(\hat{\mu}) = \mu$, we say $\hat{\mu}$ is an *unbiased estimator* of μ .
- If the formula were different such that we had $E(\hat{\mu}) \neq \mu$, we would say $\hat{\mu}$ is a *biased estimator* of μ .

E.g.:
$$\hat{\mu}' = 2Y_1$$
 has $E(\hat{\mu}') = 2\mu$, so it's biased (unless $\mu = 0$).

Efficiency (want estimates to have small spread)

- Continue with Poisson MLE $\hat{\mu} = \frac{Y_1 + \dots + Y_n}{n}$ and secret mean μ .
- The variance is

$$\operatorname{Var}(\hat{\mu}) = \operatorname{Var}\left(\frac{Y_1 + \dots + Y_n}{n}\right) = \frac{\operatorname{Var}(Y_1) + \dots + \operatorname{Var}(Y_n)}{n^2}$$
$$= \frac{n \operatorname{Var}(Y_1)}{n^2} = \frac{\operatorname{Var}(Y_1)}{n} = \frac{\mu}{n}$$

Increasing n makes the variance smaller ($\hat{\mu}$ is more efficient).

• Here's a second estimator: Use Y_1, Y_2 and discard Y_3, \ldots, Y_n .

$$\hat{\mu}' = \frac{Y_1 + 2Y_2}{3}$$

$$E(\hat{\mu}') = \frac{\mu + 2\mu}{3} = \mu$$
 so unbiased

$$Var(\hat{\mu}') = \frac{Var(Y_1) + 4 Var(Y_2)}{9} = \frac{\mu + 4\mu}{9} = \frac{5\mu}{9}$$

so it has higher variance (less efficient) than the MLE.