# Paweł Krzyszczak 272379

#### Zadanie 1

Podać deterministyczne automaty skończone (DFA) akceptujące następujące języki nad alfabetem {0, 1}:

1)

Zbiór wszystkich łańcuchów o zakończeniu 101;

#### Stany:

 $\mathbf{\Phi}$  q<sub>0</sub> – stan początkowy,

 $\mathbf{\Phi}$  q<sub>1</sub> – po przeczytaniu "1",

 $\Phi$  q<sub>2</sub> – po przeczytaniu "10",

• q<sub>3</sub> – po przeczytaniu "101"(stan akceptujący).

# Przejście:

| δ     | 0     | 1     |
|-------|-------|-------|
| $q_0$ | $q_0$ | $q_1$ |
| $q_1$ | $q_2$ | $q_1$ |
| $q_2$ | $q_0$ | $q_3$ |
| $q_3$ | $q_2$ | $q_1$ |



2) Zbiór wszystkich łańcuchów zawierających trzy kolejne jedynki;

### Stany:

 $\mathbf{\Phi}$  q<sub>0</sub> – stan początkowy,

 $\mathbf{0}$  q<sub>1</sub> – po przeczytaniu jednej "1",

• q<sub>2</sub> – po przeczytaniu dwóch kolejnych "1",

 $\mathbf{0}$  q<sub>3</sub> – po przeczytaniu trzech kolejnych "1"(stan akceptujący).

### Przejście:

| δ     | 0     | 1              |
|-------|-------|----------------|
| $q_0$ | $q_0$ | qı             |
| $q_1$ | $q_0$ | $q_2$          |
| $q_2$ | $q_0$ | q <sub>3</sub> |
| $q_3$ | $q_3$ | q <sub>3</sub> |



3) Zbiór wszystkich łańcuchów, w których każdy blok złożony z pięciu kolejnych symboli zawiera co najmniej dwa zera;

Automat musi sprawdzać, czy w każdym pięciosymbolowym bloku znajdują się przynajmniej dwa zera.

Stany:

 $\Phi$  q<sub>T</sub> stan pułapkowy (nie akceptujący)

• stan akceptujący ( ma co najmniej dwa zera w pięciu ostatnich symbolach)

$$Q = \{q_{a,b,c,d,e}: a,b,c,d,e \in \{0,1\}, a+b+c+d+e \leq 3\} \cup \{qT\}$$

$$\delta(q_{a,b,c,d,e},f) = \{ \begin{aligned} q_{b,c,d,e}, g dy b + c + d + e + f &\leq 3 \\ q_T, w p r z e c i w n y m p r z y p a d k u \end{aligned}$$

$$\delta(q_T, a) = q_T$$

4)

Zbiór wszystkich łańcuchów zaczynających się od 1, które interpretowane jako binarna reprezentacja liczby całkowitej są wielokrotnością 7;

### Stany:

 $\mathbf{\Phi}$  q<sub>0</sub> - reszta z dzielenia wynosi 0 (stan akceptujący),

**o** q<sub>1</sub> - reszta z dzielenia wynosi 1,

• q<sub>2</sub> - reszta z dzielenia wynosi 2,

**o** q<sub>3</sub> - reszta z dzielenia wynosi 3,

• q<sub>4</sub> - reszta z dzielenia wynosi 4,

**o** q<sub>5</sub> - reszta z dzielenia wynosi 5,

**o** q<sub>6</sub> - reszta z dzielenia wynosi 6,

# Przejście:

 $\begin{array}{l} q_i \ przechodzi \ przy \ 0 \ w \ q_{(2i \ mod \ 7)} \\ q_i \ przechodzi \ przy \ 1 \ w \ q_{(2i+1 \ mod \ 7)} \end{array}$ 

| δ              | 0              | 1              |
|----------------|----------------|----------------|
| $q_0$          | $q_0$          | $q_1$          |
| $q_1$          | $q_2$          | q <sub>3</sub> |
| $q_2$          | $q_4$          | $q_5$          |
| $q_3$          | q <sub>5</sub> | $q_6$          |
| $q_4$          | $q_6$          | $q_0$          |
| q <sub>5</sub> | $q_1$          | $q_2$          |
| $q_6$          | $q_3$          | q <sub>4</sub> |



5) Zbiór wszystkich łańcuchów, w których piąty symbol od końca jest zerem.

Automat śledzi 5 ostatnich symboli i akceptuje łańcuch w którym piąty symbol od końca to zero.

 $Q = \{q_{a,b,c,d,e} : a,b,c,d,e \text{ in } \{0,1\}\}$  przy założeniu że łańcuch dłuższy lub równy 5

$$\delta(q_{a,b,c,d,e},f)=q_{b,c,d,e,f}$$

 $F = \{q_{0,b,c,d,e}: b,c,d,e \text{ in } \{0,1\}\} uznajemyzastanak ceptujący$