A first look at $B o \overline{D}\mu\mu$

Theory, Data and Selection

Igor Babuschkin

Introduction

Progress:

October 2014 September 2015

Topics:

- → Theory (Diagram, Predictions)
- → Dataset (Stripping, Blinding)
- → Selection (Preselection, Classification)

Theory

- → Paper by Evans et al. (2000)
- → OPE and Heavy Quark Expansion
- $\rightarrow\,$ Result depends on matrix elements β and β_8
- → A few crude assumptions made (in absence of Lattice QCD)
- → Prediction:

$$\begin{split} & \text{Br}(\overline{B}{}^0 \to D^0 e^+ e^-)|_{q^2 > 1 \text{ GeV}} = 2.6 \times 10^{-9} \\ & \text{Br}(\overline{B}{}^0 \to D^* e^+ e^-)|_{q^2 > 1 \text{ GeV}} = 1.4 \times 10^{-8} \end{split}$$

 \rightarrow Idea: Also look at D^*

Dataset: Stripping

- → Stripping line: Dimuon/B2XMuMu_Line
- \rightarrow Data from 2011 and 2012 (3 fb⁻¹)
- → Slightly over 10⁶ events

Candidate	Selection
В	IP $\chi^2 < 16$ (best PV)
	$4600{ m MeV/c^2} < M < 7000{ m MeV/c^2}$
	DIRA angle $<$ 14 mrad
	flight distance $\chi^2 > 121$
	$\operatorname{vertex} \chi^2/ndf < 8$
$\mu^-\mu^+$	$m(\mu^-\mu^+) < 7100{ m MeV/c^2}$
	$\operatorname{vertex} \chi^2/\operatorname{ndf} < 9$
	isMuon
	$\mathrm{DLL}_{\mu\pi} > -3$
D^0	$\mathrm{ADAMASS}(D^0) < 100\mathrm{MeV/c^2}$
	vertex $\chi^2 < 10$
tracks	ghost prob < 0.4
	$\min IP \; \chi^2 > 9$
GEC	SPD Mult. < 600

Dataset: Blinding

Dataset: Trigger lines

Trigger lines

- B_L0MuonDecision
- B_Hlt1TrackAllL0Decision
- B_Hlt1TrackMuonDecision
- B_Hlt2Topo{2,3,4}BodyBBDTDecision
- $\verb|B_Hlt2TopoMu{2,3,4}| Body BBDT Decision|$
- B_Hlt2SingleMuonDecision
- B_Hlt2DiMuonDetachedDecision

Dataset

Selection: J/ψ cuts

Selection: PID cuts

Selection: Classifier

- → Classifier: AdaBoost
- → Trained on
 - \rightarrow upper B^0 mass sideband (background)
 - $ightarrow \ B^0
 ightarrow \overline{D}{}^0 \mu \mu$ PHSP Monte Carlo (signal)
- → Feature set can still be improved (see rhs)

Variables

B TAU B_ISOLATION_BDT_Soft B_ENDVERTEX_CHI2 B DIRA OWNPV D~0 DIRA OWNPV Kplus_ProbNNpi Kplus_ProbNNk Kplus ProbNNp piminus ProbNNk piminus_ProbNNp piminus_ProbNNpi muplus_ProbNNmu muminus_ProbNNmu *_TRACK_GhostProb

Classifier: Feature correlation matrix

- → Data mostly unprepared
- → No transformations applied (log/acos)
- → Error values left in (idea: impute)

Classifier: Feature importance

Classifier: ROC curve

Classifier: Choice of $N_{\mathrm{estimators}}$

Classifer: Test on $B o K^* \mu \mu$

- → Monte Carlo is unreliable (PHSP) and signal is blinded
 - \Rightarrow Let's run the classifier on $B \to K^* \mu \mu!$
- → Idea: Use this sample to investigate partial dependence

Thanks for listening!

Backup (K^* decision function)

Backup (K^* masses)

Backup (D^0 decision function)

