II "segnale"

Segnali e Sistemi di Acquisizione

Segnale
Suono di un strumento
Trasmissione radiofonica
Movimenti di un vigile
Voce del professore

SEGNALE: Grandezza fisica variabile nel tempo a cui è associata una informazione

Segnali e Sistemi di Acquisizione

Segnale	Rumore	
Suono di un strumento	Brusio del pubblico	
Trasmissione radiofonica	Segnale del cellulare	
Movimenti di un vigile	Persone a passeggio	
Voce del professore	Chiacchere degli studenti	

SEGNALE: Grandezza fisica variabile nel tempo a cui è associata una informazione

RUMORE: Variazione di una grandezza fisica non associata a una informazione

Segnali e Sistemi di Acquisizione

Segnale	Rumore	Sistema DAQ
Suono di un strumento	Brusio del pubblico	Sala di incisione
Trasmissione radiofonica	Segnale del cellulare	Registratore
Movimenti di un vigile	Persone a passeggio	Occhio e cervello guidatore
Voce del professore	Chiacchere degli studenti	Occhio e cervello degli studenti

SEGNALE: Grandezza fisica variabile nel tempo a cui è associata una informazione

RUMORE: Variazione di una grandezza fisica non associata a una informazione

SISTEMA DAQ: Sistema per rivelare/acquisire e memorizzare la variazione di una grandezza fisica

Esempi intuitivi di sistemi elettronici

Segnale dal sensore: analogico, continuo x(t) = s(t) + n(t) [segnale interessante + rumore]

Amplificatore: aumenta l'ampiezza del segnale $y(t) = A \cdot x(t)$

Filtro: modifica il segnale per aumentare il rapporto s(t)/n(t)

ADC: trasforma il segnale da analogico a digitale per poter essere elaborato da un calcolatore

Esempi intuitivi di sistemi elettronici

Segnale ai capi del canale di trasmissione (cavo): x(t) digitale, binario

Segnale distorto durante la trasmissione y(t)

Segnale filtrato z(t) (equalizzatore) e rigenerato w(t) (discriminatore di segno) alla fine del sistema di trasmissione: ripristino dell'informazione presente all'entrata del canale di trasmissione.

Esempi intuitivi di sistemi elettronici

Segnale pilota di controllo x(t) che stimola l'inizio di un processo e ne definisce il risultato atteso (esempio: cruise control settato a 100 km/h).

Un segnale dipendente dal tempo è inviato al sistema motore.

Il **controller** verifica lo stato del sistema motore e invia un feedback negativo per controllare il processo

Esiste tutta una teoria dei **processi di feedback**, che purtroppo non faremo...

Classificazione dei segnali

Segnali a:

tempo continuo: x(t), t reale

• **tempo discreto**: *x[t]*, *t* intero

Segnali a:

- ampiezza continua
- ampiezza discreta

	T continuo	T discreto
A continua	Analogico	Campionato
A discreta		Digitale

Campionamento di un segnale analogico

Campionare un segnale analogico x(t): misurare i valori in ampiezza in precisi istanti di tempo (istanti di campionamento)

Tipicamente segnali campionati in istanti regolari nel tempo.

Distanza tra campionamenti adiacenti: ΔT (s)

Frequenza di campionamento: $f_{c}=1/\Delta T$ (Hz)

Occhio umano: 25 Hz

Immagini TV (PAL): 50 Hz

Campionamento \rightarrow Perdita di informazione. Vedremo che è comunque possibile definire valori di $f_{\mathbb{C}}$ "adatti" in base alle proprietà temporali del segnale.

Digitalizzare un segnale campionato s[t]: associare i valori in ampiezza campionati a una scala regolare di valori prefissati.

Valore massimo di quantizzazione: Vmax

Valore minimo di quantizzazione: Vmin

Numero di intervalli: n (tipicamente potenze di 2: 4bit, 8bit, 16bit, 32bit,) Risoluzione = $\Delta V = (Vmax - Vmin) / n \leftrightarrow$ Least Significant Bit (LSB)

Esempio:
$$Vmin = -5V$$
, $Vmax = +5V$, $n = 8 \rightarrow bit = 2^8 = 256$
 $\Delta V = 10V / 256 = 40 \text{ mV}$

Digitalizzare un segnale campionato s[t]: associare i valori in ampiezza campionati a una scala regolare di valori prefissati.

Arrotondamento: associo al valore il canale più vicino in ampiezza

Valore massimo di quantizzazione: Vmax

Valore minimo di quantizzazione: Vmin

Numero di intervalli: n (tipicamente potenze di 2: 4bit, 8bit, 16bit, 32bit,) Risoluzione = $\Delta V = (Vmax - Vmin) / n \leftrightarrow$ Least Significant Bit (LSB)

Esempio:
$$Vmin = -5V$$
, $Vmax = +5V$, $n = 7 \rightarrow bit = 2^7 = 128$
 $\Delta V = 10V / 128 = 80 \text{ mV}$

Digitalizzare un segnale campionato s[t]: associare i valori in ampiezza campionati a una scala regolare di valori prefissati.

Troncamento: associo al valore il canale inferiore più vicino in ampiezza.

Valore massimo di quantizzazione: Vmax

Valore minimo di quantizzazione: Vmin

Numero di intervalli: n (tipicamente potenze di 2: 4bit, 8bit, 16bit, 32bit,) Risoluzione = $\Delta V = (Vmax - Vmin) / n \leftarrow \rightarrow$ Least Significant Bit (LSB)

Esempio:
$$Vmin = -5V$$
, $Vmax = +5V$, $n = 7$ bit = $2^7 = 128$
 $\Delta V = 10V / 128 = 80$ mV

Digitalizzare un segnale campionato s[t]: associare i valori in ampiezza campionati a una scala regolare di valori prefissati.

Troncamento: associo al valore il canale inferiore più vicino in ampiezza.

Valore massimo di quantizzazione: Vmax Valore minimo di quantizzazione: *Vmin*

Numero di intervalli: n (tipicamente potenze di 2: 4bit, 8bit, 16bit, 32bit,) Risoluzione = $\Delta V = (Vmax - Vmin) / n \leftrightarrow$ Least Significant Bit (LSB)

Esempio:
$$Vmin = -5V$$
, $Vmax = +5V$, $n = 7$ bit $= 2^7 = 128$
 $\Delta V = 10V / 128 = 80$ mV

Errore di quantizzazione

Errore di quantizzazione: differenza tra il valore analogico e il valore digitale.

Digitalizzare significa perdere informazione.

L'errore che facciamo è Δ < LSB.

La distribuzione di probabilità di Δ dipende da come quantizziamo (troncamento o approssimazione) e dalla forma del segnale, specialmente per segnali il cui range è comparabile al LSB dell'ADC

Perché in molte applicazioni si preferiscono sistemi digitali a sistemi analogici?

- Minore dipendenza da rumori esterni
- Integrazione in sistemi di trasmissione
- Facilità di elaborazione dei segnali digitali
- · Semplicità e convenienza di memorizzazione
- Costo

ADC: Analog to Digital Converter

ADC "commerciali" sono caratterizzati da:

- Range: Intervallo di tensione che l'ADC può accettare in ingresso: [Vmin, Vmax]
- Numero di canali in cui è diviso il range: definito dal numero n di bit
 - n = 12 bit: $N = 2^{12} = 4096$
 - n = 16 bit: $N = 2^{16} = 65536$
- Risoluzione: minima variazione di tensione rivelabile: (Vmax-Vmin) / n
- Sampling rate: frequenza di campionamento $f_C = 1/\Delta T_C$
- Sampling time: intervallo di tempo necessario ad effettuare una operazione di campionamento Δt

Canali e Canali...

"Canali di ADC": numero di intervalli in cui è diviso il range dell'ADC

un ADC a 12bit ha 4096 canali di ADC

"Canali di lettura": numero di segnali (i.e. "fili") che devono essere letti e digitalizzati

da un sistema di acquisizione

Un esempio

Elettronica di front-end per un rivelatore a microstrip al silicio

→ ~ 200k canali di lettura / sensori

Semplice schema di sistema DAQ

DAQ: Data AcQuisition (System)

Esempio: registrazione della temperatura misurata da un sensore

Clock: segnale interno al DAQ che fornisce una base di tempo per sincronizzare i processi intrinsecamente asincroni che operano simultaneamente.

Il segnale deve essere stabile: si utilizzano, ad esempio, oscillatori al quarzo

Modalità di acquisizione

Continua:

- A partire da un certo t_0 , il sistema acquisisce segnali a una frequenza costante Con "trigger":
- Un segnale di trigger definisce l'inizio dell'acquisizione di un certo numero di campioni

Un circuito analogico di **Sample&Hold** (S&H) memorizza il segnale analogico per il tempo necessario affinché l'ADC possa, operare la conversione AD (busy time).

 si introduce un certo dead-time prima della prossima acquisizione

Modalità di acquisizione

La sequenza di campioni può essere relativa a:

- lo stesso segnale a tempi diversi
- diversi segnali allo stesso istante di tempo (necessità di multiplexer)

Multiplexer: dispositivo che seleziona tra N input quale redirigere su un unico output Sample&Hold: qui utilizzato per immagazzinare di segnale degli N canali e inviarli in

Tempo morto

Trigger Regolari: se il busy time $t_{BUSY} < \Delta t_{TRG}$, allora

frequenza misurata = frequenza vera

Trigger Casuali: se il busy time $t_{BUSY} << \Delta t_{TRG}>$, allora

frequenza misurata ≈ frequenza vera

In generale, frequenza misurata < frequenza vera

Acquisizione a buffer circolare

BUFFER: spazio di memoria fisica utilizzato per immagazzinare temporaneamente dati acquisiti da un dispositivo di input prima di essere processati.

- La CPU accede al buffer durante l'acquisizione
- Esaurito il buffer la scheda continua a scrivere all'inizio del buffer, sovrascrivendo i dati esistenti
- Occorre che la lettura dei dati sia sufficientemente veloce per evitare perdite di dati

