

Week 16 Evaluating Data Models

Applied Data Science

Columbia University - Columbia Engineering

Course Agenda

- Week 10: Organizing and Analyzing Data with NumPy and Pandas
- Week 11: Cleaning and Visualizing Data with Pandas and Matplotlib
- Week 12: Statistical Distributions
- Week 13: Statistical Sampling
- Week 14: Hypothesis Testing
- ❖ Week 15: Regression Models in Python

- Week 16: Evaluating Data Models
- ❖ Week 17: Classification with K-Nearest Neighbors
- ❖ Week 18: Decision Tree Models
- Week 19: Clustering Models
- Week 20: Text Mining in Python -- Analyzing Sentiment
- Week 21: Text Mining in Python -- Topic Modeling

- Independent variables: sonar soundings at different frequencies
- Dependent variable (target): Rock or Mine

In [1]: import pandas as pd
 from pandas import DataFrame
 url="https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connection
 df = pd.read_csv(url, header=None)
 df.describe()

Out[1]:

	0	1	2	3	4	5	6	7	8	9	 50
coun	t 208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	 208.000000
mear	0.029164	0.038437	0.043832	0.053892	0.075202	0.104570	0.121747	0.134799	0.178003	0.208259	 0.016069
std	0.022991	0.032960	0.038428	0.046528	0.055552	0.059105	0.061788	0.085152	0.118387	0.134416	 0.012008
min	0.001500	0.000600	0.001500	0.005800	0.006700	0.010200	0.003300	0.005500	0.007500	0.011300	 0.000000
25%	0.013350	0.016450	0.018950	0.024375	0.038050	0.067025	0.080900	0.080425	0.097025	0.111275	 0.008425
50%	0.022800	0.030800	0.034300	0.044050	0.062500	0.092150	0.106950	0.112100	0.152250	0.182400	 0.013900
75%	0.035550	0.047950	0.057950	0.064500	0.100275	0.134125	0.154000	0.169600	0.233425	0.268700	 0.020825
max	0.137100	0.233900	0.305900	0.426400	0.401000	0.382300	0.372900	0.459000	0.682800	0.710600	 0.100400

8 rows x 60 columns

See all columns

In [2]: pd.options.display.max_columns=70 df.describe()

Out[2]:

	0	1	2	3	4	5	6	7	8	9	10	11
count	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000
mean	0.029164	0.038437	0.043832	0.053892	0.075202	0.104570	0.121747	0.134799	0.178003	0.208259	0.236013	0.250221
std	0.022991	0.032960	0.038428	0.046528	0.055552	0.059105	0.061788	0.085152	0.118387	0.134416	0.132705	0.140072
min	0.001500	0.000600	0.001500	0.005800	0.006700	0.010200	0.003300	0.005500	0.007500	0.011300	0.028900	0.023600
25%	0.013350	0.016450	0.018950	0.024375	0.038050	0.067025	0.080900	0.080425	0.097025	0.111275	0.129250	0.133475
50%	0.022800	0.030800	0.034300	0.044050	0.062500	0.092150	0.106950	0.112100	0.152250	0.182400	0.224800	0.249050
75%	0.035550	0.047950	0.057950	0.064500	0.100275	0.134125	0.154000	0.169600	0.233425	0.268700	0.301650	0.331250
max	0.137100	0.233900	0.305900	0.426400	0.401000	0.382300	0.372900	0.459000	0.682800	0.710600	0.734200	0.706000

8 rows × 60 columns

Out[2]:

	0	1	2	3	4	5	6	7
count	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000
mean	0.029164	0.038437	0.043832	0.053892	0.075202	0.104570	0.121747	0.134799
std	0.022991	0.032960	0.038428	0.046528	0.055552	0.059105	0.061788	0.085152
min	0.001500	0.000600	0.001500	0.005800	0.006700	0.010200	0.003300	0.005500
25%	0.013350	0.016450	0.018950	0.024375	0.038050	0.067025	0.080900	0.080425
50%	0.022800	0.030800	0.034300	0.044050	0.062500	0.092150	0.106950	0.112100
75%	0.035550	0.047950	0.057950	0.064500	0.100275	0.134125	0.154000	0.169600
max	0.137100	0.233900	0.305900	0.426400	0.401000	0.382300	0.372900	0.459000

Examine the distribution of the data in column 4

```
Quartile 1: from .0067 to .03805
Quartile 2: from .03805 to .0625
Quartile 3: from .0625 to .100275
Quartile 4: from .100275 to .401

<a href="https://doi.org/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/10.2007/1
```

Examine the distribution of the data in column 4

- Quartile 1: from .0067 to .03805
- Quartile 2: from .03805 to .0625
- Quartile 3: from .0625 to .100275
- Quartile 4: from .100275 to .401

Quartile 4 is much larger than the other quartiles. This raises the possibility of outliers

A Quantile - Quantile (qq) plot can help identify outliers

- y-axis contains values
- x-axis is the cumulative normal density function plotted as a straight line (-3 to +3)
- · y-axis is the values ordered from lowest to highest
- . the closer the curve is to the line, the more it reflects a normal distribution


```
In [3]: import numpy as np
  import pylab
  import scipy.stats as stats
  import matplotlib
  import matplotlib.pyplot as plt
  matplotlib.style.use('ggplot')
%matplotlib inline

stats.probplot(df[4], dist="norm", plot=pylab)
  pylab.show()
```


In [6]:

Examine the dependent variable

```
In [4]: df[60].unique()
Out[4]: array(['R', 'M'], dtype=object)
```

Examine correlations

import matplotlib.pyplot as plot

plot.pcolor(df.corr())

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x1169575f8>

Highly correlated items = not good!

Low correlated items = good

Correlations with target (dv) = good (high predictive power)

Data Set 2: Wine data

- Independent variables: Wine composition (alcohol content, sulphites, acidity, etc.)
- Dependent variable (target): Taste score (average of a panel of 3 wine tasters)

Data Set 2: Wine Data

- Independent variables: Wine composition (alcohol content, sulphites, acidity, etc.)
- Dependent variable (target): Taste score (average of a panel of 3 wine tasters)

```
In [8]: url = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/win
import pandas as pd
from pandas import DataFrame
w_df = pd.read_csv(url,header=0,sep=';')
w df.describe()
```

Out[8]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000

Data Set 2: Wine Data

In [9]:	w_df['volatile acidity'
Out[9]:	0	0.700
	1	0.880
	2	0.760
	3	0.280
	4	0.700
	5	0.660
	6	0.600
	7	0.650
	8	0.580
	9	0.500
	10	0.580
	11	0.500
	12	0.615
	13	0.610
	14	0.620
	15	0.620
	16	0.280
	17	0.560
	18	0.590
	19	0.320
	20	0.220

In [10]: w_df.corr()

Out[10]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269

Examining the correlation of one variable with the others

```
In [12]: w_df.corr()['fixed acidity'].plot()
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x116a9c390>

And we can examine quintile plots as we did with the rocks and mines data

Training a Classifier on Rocks vs. Mines

179


```
In [ ]: import numpy
          import random
          from sklearn import datasets, linear model
          from sklearn.metrics import roc curve, auc
          import pylab as pl
In [ ]: import pandas as pd
          from pandas import DataFrame
          url="https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connect
          df = pd.read csv(url, header=None)
          df.describe()
         Convert labels R and M to 0 and 1
In [17]: df[60]=np.where(df[60]=='R',0,1)
         Divide the dataset into training and test samples
         Separate out the x and y variable frames for the train and test samples
 In [ ]: train
In [18]: from sklearn.model selection import train test split
         train, test = train test split(df, test size = 0.3)
         x_train = train.iloc[0:,0:60]
         y train = train[60]
         x \text{ test} = \text{test.iloc}[0:,0:60]
         y test = test[60]
         y train
Out[18]: 6
         193
```

Introduction to Optimization

What is Optimization?

- Mathematical models of real-world problems
 - Goal: Find "best" possible decision or solution

- Variables represent decisions
- Constraints model the problem dynamics
- Objective models performance metric (such as cost, profit etc)

Our Goals

- Understanding optimization formulations
 - strong emphasis on modeling

- Use of Solvers (R, Gurobi,...)
 - extremely powerful even for large scale problems

Optimization Models

- Linear Optimization: linear constraints and objectives
- Integer Optimization: integer valued decision variables
- Convex Optimization: convex constraints and/or objectives
- Non-linear optimization: general non-linear constraints
- Optimization under uncertainty: uncertain constraints
 - stochastic optimization, robust optimization
 - online optimization

- ▶ Two factories F1, F2 with supplies 100, 200 units resp.
- ► Three shops S1, S2, S3 with demands 50, 100, 150 units resp.
- Shipping costs (in \$ per unit)

	S1	S2	S3
F1	(10)	12	14
F2	11	12	13

Problem: Minimize shipping cost

Example 1: Transportation Problem (minimum cost)

Example 1: Network Representation

Example 1: Decisions and objective

Decision x_{ij} : Number of units to ship from factory i to shop j (can be fractional)

► Objective: Minimize shipping cost

$$\begin{array}{ll} & \text{minimize } 10x_{11} + 12x_{12} + 14x_{13} + 11x_{21} + 12x_{22} + 13x_{23} \end{array}$$

Example 1: Constraints

- ▶ Supply: Can not ship more units from a factory than available
 - ► F1: $x_{11} + x_{12} + x_{13} \le 100$
 - ► F2: $x_{21} + x_{22} + x_{23} \le 200$
- ▶ Demand: Can not ship less units to a shop than needed
 - ► S1: $x_{11} + x_{21} \ge 50$
 - ► S2: $x_{12} + x_{22} \ge 100$
 - ► S3: $x_{13} + x_{23} \ge 150$
- Non-negativity: Can not ship negative amount of units
 - $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0$

Example 1: Linear program (LP)

minimize
$$10x_{11} + 12x_{12} + 14x_{13} + 11x_{21} + 12x_{22} + 13x_{23}$$

subject to $x_{11} + x_{12} + x_{13} \le 100$
 $x_{21} + x_{22} + x_{23} \le 200$
 $x_{11} + x_{21} \ge 50$ (1)
 $x_{12} + x_{22} \ge 100$
 $x_{13} + x_{23} \ge 150$
 $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0$

- We have \$100 to invest.
- Three investment options:
 - a. for every \$1 invested now, we get \$0.1 one year from now, and \$1.3 three years from now
 - for every \$1 invested now, we get \$0.2 one year from now, and \$1.1 two years from now
 - c. for every \$1 invested a year from now, we get \$1.5 three years from now
- Money-market account: 2% per year (denote it by "d")
- Goal: Maximize cash at the end of year 3

Example 2: Decisions, other variables, and objective

- ▶ Decisions x_a , x_b , x_c , x_d : Dollars invested in each option
- ► Other variables y₁, y₂ y₃ Cash available at the end of each year
- Objective: Maximize cash at the end of year 3
 maximize y₃

Example 2: Cash flow diagram

$$x_a : a) $1 \longrightarrow $0.1 \longrightarrow $1.3$$

$$x_b : b) $1 \longrightarrow $0.2 \longrightarrow $1.1$$

$$x_c : c) $1 \longrightarrow $0.5$$

$$x_d$$
:
 $y_1 = 0.1 x_a + 0.2 x_b + 1.02 x_d$
 $x_c \le y_1$
 $y_2 = 1.1 x_b + (y_1 - x_c) 1.02$
 $y_3 = 1.02 y_2 + 1.3 x_4 + 1.5 x_c$

Example 2: Constraints

Budget

$$x_a + x_b + x_d = 100$$

► Logical relationships (flow balance)

$$y_1 = 0.1x_a + 0.2x_b + 1.02x_d$$

$$x_c \le y_1 (why?)$$

$$y_2 = 1.1x_b + 1.02(y_1 - x_c)$$

$$y_3 = 1.02y_2 + 1.3x_a + 1.5x_c$$

► Non-negativity

$$x_a, x_b, x_c, x_d \ge 0$$

Example 2: LP

maximize
$$y_3$$

subject to $x_a + x_b + x_d = 100$
 $y_1 = 0.1x_a + 0.2x_b + 1.02x_d$
 $x_c \le y_1$
 $y_2 = 1.1x_b + 1.02(y_1 - x_c)$
 $y_3 = 1.02y_2 + 1.3x_a + 1.5x_c$
 $x_a, x_b, x_c, x_d \ge 0$ (2)

Introduction to Linear Optimization

f(x) = Co + \(\subseteq C_j \(z_j \)

- ▶ Decision variables: $\mathbf{x} = (x_1, ..., x_n)$
- Objective function: f(x) (linear in x)
- ▶ Constraint $i: g_i(\mathbf{x}) \ge 0$ (linear in \mathbf{x})
- Mathematical model:

$$f(\mathbf{x}) \geq 0 \text{ (linear in } \mathbf{x}) \qquad i = 1, \dots, m$$

$$g_i(\mathbf{x}) \geq 0 \text{ (linear in } \mathbf{x}) \qquad i = 1, \dots, m$$

$$g_i(\mathbf{x}) = a_{io} + \sum_{j=1}^{n} a_{ij} \neq j \neq 0$$

$$g_i(\mathbf{x}) = x_j \neq 0$$

$$\text{minimize} \qquad f(\mathbf{x})$$

$$\text{subject to} \qquad g_i(\mathbf{x}) \geq 0 \quad \forall i$$

$$g_i(\mathbf{x}) \approx 0$$

$$g_i(\mathbf{x}) \approx 0$$

$$g_i(\mathbf{x}) \approx 0$$

▶ LP: Both f(x) and g_i(x) are linear functions of x

Introduction: Linear vs. non-linear functions

Graphical look at linear programming

Suppose $\mathbf{x} = (x_1, x_2)$

Linear functions of x

- $x_1 + x_2$
- $\triangleright 2x_1 3x_2$
- ▶ $a_1x_1 + a_2x_2$, where $(a_1, a_2) \in \mathbb{R}^2$

Non-linear functions of x

- $x_1 + x_2^2$
- \triangleright sin(x₁) + e^{x_1}
- $\log(x_1 + x_2)$
- ▶ Any function not of the form $a_1x_1 + a_2x_2$, where $(a_1, a_2) \in \mathbb{R}^2$

Consider the following LP:

maximize
$$3x_1 + 2x_2$$

$$x_1 + x_2 \le 80$$

$$2x_1 + x_2 \le 100$$

$$x_1 \le 40$$

$$x_1, x_2 \ge 0$$

Introduction to Linear Optimization

Graphical look: $x_1, x_2 \ge 0$

Graphical look: Add $2x_1 + x_2 \le 100$

Graphical look: Add $x_1 + x_2 \le 80$

Graphical look: Add $x_1 \le 40$

Introduction to Linear Optimization

Graphical look: Corner/extreme points

If an LP has a finite optimum and the feasible region has at least one corner point, then there is a corner point optimal solution.

Graphical look: Obj. function value at the corner points

Linear Regression

- ▶ Data: $(x_1, y_1), \dots, (x_N, y_N) \in \mathbb{R}^n \times \mathbb{R}$
- Goal: Find the best linear model that explains the data, i.e., find a ∈ Rⁿ, b ∈ R s.t.

$$y_i \approx \mathbf{a}^T \mathbf{x}_i + b, \quad 1 \leq i \leq N.$$

Traditional approach:

$$\min_{\underline{\boldsymbol{a}},\underline{b}} \left\{ \sum_{i=1}^{N} (\boldsymbol{a}^{T} \boldsymbol{x}_{i} + b - y_{i})^{2} \right\}.$$

Linear Regression

- ▶ Data: $(x_1, y_1), \dots, (x_N, y_N) \in \mathbb{R}^n \times \mathbb{R}$
- ► Goal: Find the best linear model that explains the data.
- Alternate approach:

$$\begin{array}{c}
\min_{\mathbf{a},b} \max_{i=1}^{N} |\mathbf{a}^{T} \mathbf{x}_{i} + b - y_{i}|. \\
e \geqslant e; \quad \text{for all } i = 1...N \\
e_{i} \geqslant (a^{T} \mathbf{x}_{i} + b - y_{i}) \\
e_{i} \geqslant (a^{T} \mathbf{x}_{i} + b - y_{i})
\end{array}$$

$$\begin{array}{c}
\left(a^{T} \mathbf{x}_{i} + b - y_{i}\right) \\
e_{i} \geqslant \left(a^{T} \mathbf{x}_{i} + b - y_{i}\right)
\end{array}$$

$$\begin{array}{c}
\left(a^{T} \mathbf{x}_{i} + b - y_{i}\right) \\
e_{i} \geqslant \left(a^{T} \mathbf{x}_{i} + b - y_{i}\right)
\end{array}$$

Linear Regression

- ▶ Data: $(x_1, y_1), \dots, (x_N, y_N) \in \mathbb{R}^n \times \mathbb{R}$
- ► Goal: Find the best linear model that explains the data
- Third approach:

$$\min_{\mathbf{a},b} \sum_{i=1}^{N} |\mathbf{a}^{T} \mathbf{x}_{i} + b - y_{i}|.$$

$$\sum_{i=1}^{N} e_{i}$$

$$e_{i} \geqslant (a^{T} \mathbf{x}_{i} + b - y_{i})$$

$$e_{i} \geqslant (a^{T} \mathbf{x}_{i} + b - y_{i})$$

$$e_{i} \geqslant -(a^{T} \mathbf{x}_{i} + b - y_{i})$$

