

ENEE 4583/5583 Neural Nets

Dr. Alsamman

Slide Credits:

Sequential Data Input

- Ordered data
- Spatial dependent order: text
- Physical order: chemical, DNA sequence
- Time order: audio, finance, medical
- Spatial and time order: video,

Sequential Driven Output

- Single output dependent on past sequence of input
 - > Classification of a sequence
 - E.g. sentiment classification
- Sequence output dependent on past single input
 - Sequence generation
 - > E.g. image caption
- sequence output dependent on current sequence of input
 - Updated prediction
 - E.g. stock prediction
- Current sequence output dependent on past sequence of input
 - Delayed prediction
 - E.g. language translation

Diagram Representation: Example 1

Example 2

Example 3

ENEE 6583

Problems with MLP

- Problem 1: Sequence inputs can be arbitrary length
- Solution: fixed window size as input
- Problem 2: choosing problem size
- Problem 3: number of parameters can explode
 - > 100 hidden neurons x 100 inputs x 100 words > 1M

TDNN (1989)

- Time delayed NN
 - ➤ E.g stock predictor
- Paper: Phoneme Recognition Using Time-Delay Neural Networks
 - ➤ Weibel, Hanzawa, Hinton, Shikano
 - ➤ Inspired by Fukushima's Neocognitron

Limitations of TDNN

- Finite response system:
 - Output driven by past N-T=s only
- Sliding predictor
 - > Much like a convolutional nnet
- Problem: some trends are "seasonal"
 - Bias the output
- Prefer: Infinite response system
 - > Would like to learn "trends"
 - With weaker and weaker influence

NARX (1985)

- Nonlinear autoregressive exogenous model
 - ➤ Leontaritis & Billings
- Recursion from output
- Popular for time-series
 - Weather
 - ➤ Stock-market
 - Tracking

T=4

Jordan Net (1986)

- Memory is a running average of outputs
 - > Stored statistic
 - > Doesn't learn to remember
- Fixed weights
 - $>W_{Y\mu}=1$

Elman Net (1990)

- M is memory: store the previous state
- Only the weight from M to MLP is learned
- M is approximated as independent 1-step history nets
 - ➤ Backrop only back 1 step
 - Can't backprop to the beginning

State-Space Model

- Fix number of input
- Share parameters of MLP at each step
 - Memory is embedded into state, h

MLP arbitrarily complex

Single Recurrent Network Model

Folded Model (in time)

Parameters

- $\rightarrow x_t$: input sequence at t
- $\triangleright y_t$: output (prediction)
- > h: state of network
- $\triangleright V$: weights of input
- $\triangleright U$: weights of outputs
- $\triangleright W$: shared weights
- $\triangleright b_h$: biases for hidden state
- $\triangleright b_{\nu}$: bias for output
- > f: typically tanh function
- $\triangleright g$: for classification softmax is typically used

$$h_t = f(Vx_t + Wh_{t-1} + b_h)$$
$$y_t = g(Uh_t + b_y)$$

Training RNN

- Random weight initialization
- *Feedforward (through time/sequence) to generate prediction, \hat{y}_t
- \bullet Compute cost function, C_t , based on actual y_t
- ❖ Total cost:

$$C = \sum_{i}^{t} C_i(y_i, \hat{y}_i)$$

Use backprop to compute:

$$\frac{\partial C}{\partial U}$$
, $\frac{\partial C}{\partial V}$, $\frac{\partial C}{\partial W}$, $\frac{\partial C}{\partial b_y}$, $\frac{\partial C}{\partial b_h}$

Backprop Through Time (BPTT)

Output function:

$$\hat{y}_t = f(Uh_t + b_y)$$

Shared weights:

$$\frac{\partial C}{\partial U} = \sum_{i}^{t} \frac{\partial C_{i}}{\partial U} = \sum_{i}^{t} \frac{\partial C_{i}}{\partial \hat{y}_{i}} \frac{\partial \hat{y}_{i}}{\partial U}$$

*For classification $\frac{\partial C_i}{\partial \hat{y}_i}$ based on the softmax

$\frac{\partial C}{\partial W}$

$$h_t = f(Vx_t + Wh_{t-1} + b_h)$$

 h_{t-1} dependes on W

$$\begin{split} \frac{\partial C_i}{\partial W} &= \frac{\partial C_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial h_i} \left(\frac{\partial h_i}{\partial W} + \frac{\partial h_i}{\partial h_{i-1}} \frac{\partial h_{i-1}}{\partial W} + \dots + \frac{\partial h_1}{\partial h_0} \frac{\partial h_0}{\partial W} \right) \\ &= \frac{\partial C_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial h_i} \left(\frac{\partial h_i}{\partial W} + \sum_{j=0}^{i-1} \frac{\partial h_{j+1}}{\partial h_j} \frac{\partial h_j}{\partial W} \right) \\ &= \frac{\partial C_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial h_i} \left(\frac{\partial h_i}{\partial W} + \sum_{j=0}^{i-1} \left(\prod_{k=j+1}^{i-1} \frac{\partial h_{k+1}}{\partial h_k} \right) \frac{\partial h_j}{\partial W} \right) \end{split}$$

$$\frac{\partial C}{\partial W} = \sum_{i=1}^{T} \frac{\partial C_i}{\partial W}$$

BPTT Example

$$h_1 = f(Wh_0 + Vx_1 + b_h) = f(Z_1)$$

$$h_2 = f(Wh_1 + Vx_2 + b_h) = f(Wf(Z_1) + Vx_2 + b_h) = f(Z_2)$$

$$= (W^2h_0 + WVx_1 + Wb_h) + Vx_2 + b_h$$

$$h_3 = f(Wh_2 + Vx_3 + b_h) = f(Wf(Z_2) + Vx_3 + b_h) = f(Z_3)$$

h_n

$$h_{1} = f(Wh_{0} + Vx_{1} + b_{h})$$

$$h_{2} = f(Wh_{1} + Vx_{2} + b_{h}) = (W^{2}h_{0} + WVx_{1} + Wb_{h}) + Vx_{2} + b_{h}$$

$$h_{3} = Wh_{2} + Vx_{3} + b_{h} = W((W^{2}h_{0} + WVx_{1} + Wb_{h}) + Vx_{2} + b_{h}) + Vx_{3} + b_{h}$$

$$= W^{3}h_{0} + W^{2}Vx_{1} + W^{2}b_{h} + WVx_{2} + Wb_{h} + Vx_{3} + b_{h}$$

$$= W^{3}h_{0} + W^{2}Vx_{1} + WVx_{2} + Vx_{3} + W^{2}b_{h} + Wb_{h} + b_{h}$$

Let
$$x_0 = h_0$$
:
 $h_3 = W^3 x_0 + W^2 V x_1 + W V x_2 + V x_3 + W^2 b_h + W b_h + b_h$

$$h_n = W^n x_0 + \sum_{t=1}^n W^{n-t} V x_t + W^{n-t} b_h$$

$\frac{\partial h_3}{\partial W}$

$$\frac{\partial h_3}{\partial W} = \frac{\partial f(Z_3)}{\partial Z_3} \frac{\partial Z_3}{\partial g(Z_2)} \frac{\partial f(Z_2)}{\partial Z_2} \frac{\partial Z_2}{\partial g(Z_1)} \frac{\partial f(Z_1)}{\partial Z_1} \frac{\partial Z_1}{\partial h_0}$$

$$\frac{\partial h_3}{\partial W} = \frac{\partial h_3}{\partial Z_3} \frac{\partial Z_3}{\partial h_2} \frac{\partial h_2}{\partial Z_2} \frac{\partial Z_2}{\partial h_1} \frac{\partial h_1}{\partial Z_1} \frac{\partial Z_1}{\partial h_0} = f'(Z_3) W f'(Z_2) W f'(Z_1) W$$

∂C ∂V

$$h_t = f(Vx_t + Wh_{t-1} + b_h)$$

Similarly, h is dependent on V

$$\frac{\partial C_i}{\partial V} = \frac{\partial C_i}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial h_i} \left(\frac{\partial h_i}{\partial V} + \sum_{j=0}^{i-1} \left(\prod_{k=j+1}^{i-1} \frac{\partial h_{k+1}}{\partial h_k} \right) \frac{\partial h_j}{\partial V} \right)$$

RNN One input – Many Outputs

- Sequence generation
- Example: image caption
 - > Image as input
 - > Text as output

RNN Many inputs – One output

- Sequence based classification/prediction
- Example: speech recognition
 - > Audio clips as input
 - ➤ Word as output
- Example: text classification
 - ➤ Words as input
 - > Subject/topic as output

RNN Many inputs – Many outputs

- Delayed output
 - > Encoder-Decoder design
- Example: machine translation
 - ➤ Input in English

RNN Many inputs – Many outputs

- Synched output
- Example: stock prediction
 - > Value of stock is fed in at each iteration
 - > Predicted value of stock is outputted at each sequence

ENEE 6583

Parallel Recursion

Unfolded Parallel Recursion

BRNN (1997)

- ❖ Bi-Directional RNN: Parallel backward and forward recursions
 - Schuster and Paliwal
 - > especially useful when the context of the input
- Forward layer
 - > Predict future from past
 - Processes data from t=0 to T
- Backward layer
 - > Deduces past from future
 - Processes data from t=T to 0
- Applications:
 - ➤ Speech Recognition
 - > Translation
 - > Handwritten Recognition
 - Protein Structure Prediction

Stability Analysis

- Problem: recursion and output saturation
 - > For sigmoid/Tanh: saturation
 - ➤ For ReLU: explosion
- Output stability, single tap: $y_t = g(Uh_t)$
 - \triangleright if h_t is bounded (stable) then output is stable
 - Ignoring bias
- *Hidden layer stability, single tap: $h_t = f(Vx_t + Wh_{t-1})$
 - $\triangleright x_t$ bounded (naturally)
 - Process depends on recursion

Stability of AF for 1 initialization

Alsamman ENEE 6583

Stability and Memory

Weight of recursion can cause instability

Bipolar functions hold memory

Low stability => memory is low

Exponential instability => memory is forgotten exponentially

Gradient Stability

- Deep recursions synonymous with deep networks
 - ➤ Gradients will explode or vanish
- Exploding Solutions:
 - ightharpoonup Clipping grads: if $||g|| > Thresh \Rightarrow g = \frac{Thresh}{||g||}g$
 - > Batch Process Loss: Forward pass and backward pass chunks

Vanishing Grad Solutions

- ❖ Vanishing grads ⇒ loss of memory
- ReLU activation
 - > Sigmoid/tanh: saturate and cause gradient to vanish
- Initialization solutions
 - \triangleright Choose orthogonal W matrix: $W^T = W^{-1}$
 - $\bullet \ w_{ij}^{-1} = w_{ji}$
 - Orthogonal W doesn't vanish (or explode)
- Skip connections
 - ➤ BP across skip connections
 - > Vanishes slower than other connections

Hidden State as a Cell

$$h_t = f(Wh_{t-1} + Vx_t + b_h)$$

- Nonlinearity causes vanishing gradient in the backward-pass
- Memory and gradient are tied together
 - ➤ Vanishing memory ⇒ lost memory

LSTM: Memory as a Separate Path

- Long Short Term Memory
- Idea1 : Separate path for cell memory
 - \triangleright Allows easier derivative $(\partial c_t/\partial c_{t-1}=1)$
 - ➤ No nonlinearities in the path
- c_t is cell memory
 - \triangleright Same dimension as h_t
- Idea 2: Update information from the cell into memory
 - > Input & previous states contains information
 - ➤ Updates can be added ⊕
 - ➤ Updates can be scaled ⊙

LSTM: Memory Updates

- Idea 2: Update memory with information from the cell into memory
 - Based on input and previous state
- ❖ Updates can be added ⊕
 - \triangleright Percentage of $x_t \& h_{t-1}$
- ❖ Updates can be multiplicative ⊙
 - ➤ Cause cell to forget
 - \triangleright Use sigmoid function, $\sigma()$
 - ➤ Need a percentage for scaling purposes

LSTM: Update Memory with new Input

$$i = \sigma(Wh_{t-1} + Vx_t + b_i)$$

$$g = \tanh(Wh_{t-1} + Vx_t + b_g)$$

$$c_t = i \odot g + f \odot c_{t-1}$$

⋄Input: $i \in [0:1]$

> Controls how much of past memory moves forward

LSTM: Forget Past Memory

$$f = \sigma(Wh_{t-1} + Vx_t + b_f)$$
$$c_t = f \odot c_{t-1} + i \odot g$$

❖ Forget: $f \in [0:1]$

> Controls how much of past memory moves forward

LSTM: Output

- ♦ Output: $o \in [0:1]$
 - > Controls how much of new memory is encoded in new state

Alsamman ENEE 6583

LSTM Cell Model

$$i = \sigma(Wh_{t-1} + Vx_t + b_i)$$

$$c_t = i \odot g + f \odot c_{t-1}$$

$$f = \sigma(Wh_{t-1} + Vx_t + b_f)$$

$$o = \sigma(Wh_{t-1} + Vx_t + b_o) \odot c_t$$

Extreme Conditions

Captures info

- gate is close
- gate is open

Erases info

Keeps info

=RNN

Alsamman ENEE 6583

Alternative LSTM2

http://colah.github.io/posts/2015

Alsamman ENEE 6583

LSTM2: Memory Path

LSTM2: Forget Gate

$$f_t = \sigma(Wh_{t-1} + Vx_t + b_f)$$

ENEE 6583

LSTM2: Input Gate

$$i_t = \sigma(W_i h_{t-1} + V_i x_t + b_i)$$

$$g_t = \tanh(W_g h_{t-1} + V_g x_t + b_g)$$

Alsamman

LSTM2: Update

$$c_t = f_t c_{t-1} + i_t g_t$$

LSTM2: Output Gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM2: Cell Model

$$i_{t} = \sigma(W_{i}h_{t-1} + V_{i}x_{t} + b_{i})$$

$$f_{t} = \sigma(W_{f}h_{t-1} + V_{f}x_{t} + b_{f})$$

$$o_{t} = \sigma(W_{h}h_{t-1} + V_{h}x_{t} + b_{h})$$

$$g_{t} = \tanh(W_{g}h_{t-1} + V_{g}x_{t} + b_{g})$$

$$c_{t} = f_{t}c_{t-1} + i_{t}g_{t}$$

$$h_{t} = o_{t} \tanh(c_{t})$$

$$y_{t} = \operatorname{softmax}(Uh_{t-1} + by)$$

\$LSTM

- \triangleright Outputs: c, h
- > States: input, output, forget
- > Additional parameters: g, i, o, f

Gated Recurrent Units

- ➤ Output: *h*
- > States: output, forget
- > Additional Parameters: r, u

$$u = \sigma(Wh_{t-1} + Vx_t + b_u)$$

$$r = \sigma(Wh_{t-1} + Vx_t + b_r)$$

$$g = \operatorname{Tanh}(W(h_{t-1} \odot r) + Vx_t + b_g)$$

$$h_t = (1 - u) \odot g + u \odot h_{t-1}$$

GRU

Alsamman ENEE 6583

LSTM or GRU

- **\$LSTM**
 - more parameters => longer training
 - ➤ More flexible
- **.** GRU
 - Less parameters => faster training
- Train using LSTM first
- Train using GRU next
- Choose GRU if performance is similar

RNN Information Flow

RNN

LSTM Information Flow

Alsamman ENEE 6583

Regularization

- L2 regularization is very effective
- Dropout can be applied to V, U but not W (memory)

Text and Language Modeling

Input as one-hot vector

For text:

- > each letter is a vector
- > number of characters = dimension of vector
- Includes upper case, lower case, hyphenated, commas, apostrophes as characters
- Output: predict next character/word

For language:

- > each word is a vector
- Dictionary of all inputs
- > size of dictionary = dimension of vector
- Includes upper case, lower case, hyphenated, commas, apostrophes as words
- ➤ Output: predict next word/sentence

Curse of Dimensionality

- Number of training samples = multiple of each dimension
- Observation: sparse space
 - > Vertices of the space used not volume
 - \triangleright Density = $N/2^N$
 - > Highly inefficient
- Observation: vectors are unordered
 - ➤ Same length
- Idea: project to lower dimension space
 - \triangleright Input vector is X_t : $1 \times N$
 - \triangleright Projection is $1 \times M$, M < N
 - \triangleright Projection function $P: M \times N$
 - \triangleright Projection: $\tilde{X}_t = PX_t^T$
 - ➤ Learn the projection function, P
 - Unsupervised

Language Synthesis: Training

❖ Use BPTT to train model

Language Synthesis: Generation

- Provide first few inputs
- Let the network feedback output back in

Beam Search

- Output: softmax gives most likely next character (or word)
 - > Probability distribution over all dictionary vectors
 - Greedy: susceptible to propagating errors

The quick br
$$\begin{bmatrix} a = 0.3 \\ b = 0.01 \\ c = 0.01 \\ \vdots \\ o = 0.4 \\ \vdots \end{bmatrix}$$

❖ Beam search:

- > pick a number of non-max outcomes (aka hypothesis)
- \triangleright Evaluate each hypothesis by its overall probability: $\prod_i p(y_i)$
- > Prune weak hypothesis at each iteration
- Repeat

Alsamman ENEE 6583

The quick br
$$\begin{bmatrix} a = 0.3 \\ b = 0.01 \\ c = 0.01 \\ \vdots \\ o = 0.4 \\ \vdots \end{bmatrix}$$

$$\begin{bmatrix} a = 0.01 \\ c = 0.3 \\ \vdots \end{bmatrix}$$

$$\begin{bmatrix} a = 0.2 \\ b = 0.01 \\ \vdots \\ w = 0.6 \\ \vdots \end{bmatrix}$$

$$\begin{bmatrix} braa = 0.3 \times 0.01 \\ brab = 0.3 \times 0.1 \\ brac = 0.3 \times 0.3 \\ \vdots \\ broa = 0.4 \times 0.2 \\ brob = 0.4 \times 0.01 \\ brow = 0.4 \times 0.6 \\ \vdots \end{bmatrix}$$

Sampled Softmax

- Regular softmax: $e^{y_j}/\sum_i e^{y_i}$
 - \triangleright j is the target output
 - $\geq i$ is the negative (non-targets)
- ❖ Problem: possible outputs *i* is large
 - > large dictionary
- Randomly select negatives and use in softmax
 - Importance sampling (speedup x19)
 - > Adaptive importance sampling (x100)
 - > Target sampling (AIS but partitioning training data to limit words)

Alternatives:

- Self normalization (x15 higher accuracy)
- Noise contrastive estimator (x45 higher accuracy)

Phenome Recognition

- Input: sequence of spectral data
- Output: phenome
- In reality output is produced in each iteration
 - ▶ Ignored until end

Training: consider error at each iteration

Speech Recognition

- Input: sequence of inputs data (spectra)
- Output: <u>asynchronously</u> sequence of symbols (phenomes)

- No timing information
- Problem 1: output is a probability distribution over all symbols (phenomes)
- Problem 2: Can't differentiate between symbol repetition and symbol extension
- Problem 3: Even if the sequence is know, the timed output is not

- No timing information
- Problem 1: output is a probability distribution over all symbols (phenomes)
- Solution: merge the symbols

a	0.1	0.15	0.4	0.55	0.45	0.2	0.15
b	0.5	0.6	0.3	0.05	0.1	0.05	0.15
d	0.1	0.05	0.2	0.05	0.3	0.3	0.25
e	0.1	0.10	0.05	0.1	0.05	0.2	0.15
i	0.1	0.05	0.05	0.2	0.05	0.1	0.2
f	0.1	0.05	0.05	.05	0.05	0.05	0.2

Problem 2: Can't differentiate between symbol repetition and symbol extension

- No timing information
- Problem 1: output is a probability distribution over all symbols (phenomes)
- Problem 2: Can't differentiate between symbol repetition and symbol extension
- Problem 3: Even if the sequence is know, the timed output is not

TDNN Model

Predict characters/words based on last N

Language Synthesis: Generation

- Provide first few inputs
- After last input, generate a probability distribution over all dictionary entries
- Draw an entry from the dictionary with the highest probability