PRÁCTICO 5: PRODUCTO INTERNO Y NORMA INDUCIDA. ORTOGONALIDAD.

1. Producto interno y norma inducida

EJERCICIO 1. En cada caso, probar que $\langle , \rangle : V \times V \to \mathbb{K}$ es un producto interno en V.

1.
$$V = \mathbb{R}^3$$
, $\mathbb{K} = \mathbb{R}$ y $\langle (x, y, z), (x', y', z') \rangle = xx' + 2yy' + 3zz'$.

2.
$$V = M_n(\mathbb{R})$$
, $\mathbb{K} = \mathbb{R}$ y $\langle A, B \rangle = tr(AB^t)$.

¿Cómo ajustaría este producto interno para que funcione para las matrices complejas?

3.
$$V = \mathbb{C}^2$$
, $\mathbb{K} = \mathbb{C}$ Si $X = \begin{pmatrix} x \\ y \end{pmatrix}$ e $Y = \begin{pmatrix} x' \\ y' \end{pmatrix}$, entonces $\langle X, Y \rangle = X^t A \overline{Y}$ donde $A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$ (observe que X^t es un vector fila e \overline{Y} es el vector columna conjugado de Y).

EJERCICIO 2. En cada caso, probar que $\langle \ , \ \rangle : V \times V \to \mathbb{K}$ no es un producto interno en V.

1.
$$V = \mathcal{P}_3$$
, $\mathbb{K} = \mathbb{R}$ y $\langle p, q \rangle = p(1)q(1)$.

2.
$$V = \mathbb{R}^2$$
, $\mathbb{K} = \mathbb{R}$ y $\langle (x, y), (x', y') \rangle = x |x'| + y |y'|$.

3.
$$V = \mathbb{R}^2$$
, $\mathbb{K} = \mathbb{R}$ y $\langle (a, b), (c, d) \rangle = ac - bd$.

4.
$$V = \mathcal{M}_n(\mathbb{R}), \mathbb{K} = \mathbb{R} \text{ y } \langle A, B \rangle = tr(A + B).$$

5.
$$V = C[0,1], \mathbb{K} = \mathbb{R} \text{ y } \langle f, g \rangle = \int_0^{1/2} f(t)g(t)dt.$$

EJERCICIO 3. Indicar si las siguientes afirmaciones sobre un espacio vectorial con producto interno son verdaderas o falsas.

1. Un producto interno es lineal en ambas componentes.

2.
$$\langle v_1 + v_2, w_1 + w_2 \rangle = \langle v_1, w_1 \rangle + \langle v_2, w_2 \rangle \ \forall \ v_1, v_2, w_1, w_2 \in V.$$

3. Si
$$\langle v, w \rangle = 0 \ \forall \ w \in V$$
, entonces $v = \mathbf{o}$.

EJERCICIO 4. Sea $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ un producto interno cualquiera.

Probar que:

$$\langle \vec{X}, \vec{Y} \rangle = a_{11}x_1y_1 + \dots + a_{1n}x_1y_n$$

$$+a_{21}x_2y_1 + \dots + a_{2n}x_2y_n$$

$$\vdots$$

$$+a_{n1}x_ny_1 + \dots + a_{nn}x_ny_n$$

siendo
$$\vec{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $\vec{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ y $a_{ij} \in \mathbb{R} \ \forall i, j = 1, \dots, n$.

Concluir que $\langle \vec{X}, \vec{Y} \rangle = \vec{X}^t A \vec{Y}$ con $A \in \mathcal{M}_n(\mathbb{R})$.

¿Cuál producto interno se define si se considera que A es la matriz identidad?

EJERCICIO 5. Sea V un espacio vectorial real con producto interno y $\|\cdot\|: V \to \mathbb{R}$ la norma inducida por él.

1. Probar que

$$||v + w||^2 + ||v - w||^2 = 2 ||v||^2 + 2 ||w||^2$$
 $\forall v, w \in V$. (Regla del paralelogramo).

2. Probar que

$$4\langle v, w \rangle = \|v + w\|^2 - \|v - w\|^2 \qquad \forall v, w \in V. \quad (Polarización).$$

- 3. Analice cuál de las dos propiedades anteriores sigue valiendo en un espacio vectorial complejo.
- 1. Sea $V=\mathbb{C}^3$ con el producto interno habitual. Se consideran los vectores v=Ejercicio 6. (2, 1+i, i) y w = (2-i, 2, 1+2i). Calcular (v, w), $||v||^2$, $||w||^2$ y $||v+w||^2$. Verificar la designal dad de Cauchy-Schwarz y la desigualdad triangular para estos vectores.
 - 2. Sea V = C[0,1] con el producto interno $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$. Se consideran f(t) = t y $g(t) = e^t$. Calcular $\langle f, g \rangle$, $||f||^2$, $||g||^2$ y $||f + g||^2$. Verificar la designaldad de Cauchy-Schwarz v la desigualdad triangular para estos vectores.

2. Conjuntos ortogonales y ortonormales

EJERCICIO 7. En un espacio vectorial real con producto interno y considerando su norma inducida, probar que si v + w y v - w son ortogonales entonces v y w tienen la misma norma.

EJERCICIO 8. Sea V un espacio vectorial real con producto interno. Probar que si u y v son ortogonales, entonces $||u + \lambda v|| \ge ||u|| \ \forall \lambda \in \mathbb{R}$.

1. Se considera \mathbb{R}^4 con el producto interno habitual. Ejercicio 9.

Hallar una base ortonormal del subespacio S = [(1, 1, 0, 0), (1, 1, 1, 1), (-1, 0, 2, 1)].

2. Se considera \mathbb{C}^3 con el producto interno habitual.

Hallar una base ortonormal del subespacio S = [(1, i, 0), (1, 1, 1)].

EJERCICIO 10. Sea A en $\mathcal{M}_{m \times n}(\mathbb{R})$. Probar que si las columnas de A forman un conjunto ortonormal de vectores de \mathbb{R}^m con el producto interno habitual, entonces $A^tA = I_n$.

EJERCICIO 11. Hallar un producto interno en V para el cual la base \mathcal{B} resulta ser ortonormal:

- 1. $V = \mathbb{R}^2$, $\mathcal{B} = \{(1,1), (2,-1)\}$.
- 2. $V = \mathbb{C}^2$, $\mathcal{B} = \{(1, i), (-1, i)\}.$
- 3. $V = \mathbb{C}^3$, $\mathcal{B} = \{(1, i, 1), (0, 0, 1), (0, 1, i)\}.$

EJERCICIO 12. Sea $\{v_1, \ldots, v_n\}$ una base de V, espacio vectorial real con producto interno.

Si se cumple que $\langle w, w \rangle = \sum_{i=1}^{n} a_i^2 \quad \forall w = \sum_{i=1}^{n} a_i v_i \in V$, probar que $\{v_1, \dots, v_n\}$ una base ortonormal de V.

EJERCICIO 13. En un espacio vectorial con producto interno y considerando su norma inducida, probar que si $\{u_1, ..., u_n\}$ es una base ortogonal, entonces

1.
$$v = \frac{\langle v, u_1 \rangle}{\|u_1\|^2} u_1 + \dots + \frac{\langle v, u_n \rangle}{\|u_n\|^2} u_n$$
.

1.
$$v = \frac{\langle v, u_1 \rangle}{\|u_1\|^2} u_1 + \dots + \frac{\langle v, u_n \rangle}{\|u_n\|^2} u_n.$$
2.
$$\langle v, w \rangle = \frac{\langle v, u_1 \rangle \langle u_1, w \rangle}{\|u_1\|^2} + \dots + \frac{\langle v, u_n \rangle \langle u_n, w \rangle}{\|u_n\|^2}.$$

EJERCICIO 14. Considere $V = \mathcal{P}_2$, el espacio vectorial de los polinomios de grado menor o igual que 2, con el producto interno

$$\langle p, q \rangle = \int_{-1}^{1} p(t)q(t)dt.$$

A partir de la base $B=\{1,t,t^2\}$ construya una base ortonormal de V usando el método de Gram-Schmidt.