UNIVERSIDAD DE ALCALÁ

ESCUELA POLITÉCNICA SUPERIOR

DEPARTAMENTO DE ELECTRÓNICA

Tesis Doctoral

Plantilla unificada para la generación de memorias de PFCs/TFGs/TFMs y tesis doctorales

Javier Macías-Guarasa

UNIVERSIDAD DE ALCALÁ

ESCUELA POLITÉCNICA SUPERIOR

DEPARTAMENTO DE ELECTRÓNICA

Plantilla unificada para la generación de memorias de PFCs/TFGs/TFMs y tesis doctorales

Autor

Javier Macías-Guarasa

Director

Roberto Barra-Chicote

2014

Tesis Doctoral

A nuestros alumnos pasados, presentes y futuros	
"Empieza haciendo lo necesario, luego haz lo posible y de pronto empezarás a hacer lo imposible." Francisco de Asís	

Agradecimientos

 $\label{eq:Atodos los que la presente vieren y entendieren.}$ Inicio de las Leyes Orgánicas. Juan Carlos I

Este trabajo es el fruto de muchas horas de trabajo, tanto de los autores últimos de los ficheros de la distribución como de todos los que en mayor o menor medida han participado en él a lo largo de su proceso de gestación.

Mención especial merece Manuel Ocaña, el autor de la primera versión de las plantillas de proyectos fin de carrera y tesis doctorales usadas en el Departamento de Electrónica de la Universidad de Alcalá, con contribuciones de Jesús Nuevo, Pedro Revenga, Fernando Herránz y Noelia Hernández.

En la versión actual, la mayor parte de las definiciones de estilos de partida proceden de la tesis doctoral de Roberto Barra-Chicote, con lo que gracias muy especiales para él.

También damos las gracias a Manuel Villaverde, David Casillas y Jesús Pablo Martínez, que nos han proporcionado secciones completas y ejemplos puntuales de sus proyectos fin de carrera.

Finalmente, hay incontables contribuyentes a esta plantilla, la mayoría encontrados gracias a la magia del buscador de Google. Hemos intentado referenciar los más importantes en los fuentes de la plantilla, aunque seguro que hemos omitido alguno. Desde aquí les damos las gracias a todos ellos por compartir su saber con el mundo.

Resumen

Este documento ha sido generado con una plantilla para memorias de trabajos fin de carrera, fin de máster, fin de grado y tesis doctorales. Está especialmente pensado para su uso en la Universidad de Alcalá, pero debería ser fácilmente extensible y adaptable a otros casos de uso. En su contenido se incluyen las instrucciones generales para usarlo, así como algunos ejemplos de elementos que pueden ser de utilidad. Si tenéis problemas, sugerencias o comentarios sobre el mismo, dirigidlas por favor a Javier Macías-Guarasa <macias@depeca.uah.es>.

Palabras clave: Plantillas de trabajos fin de carrera/máster/grado y tesis doctorales, IATEX, soporte de español e inglés, generación automática.

Abstract

This document has been generated with a template for Bsc and Msc Thesis (trabajos fin de carrera, fin de máster, fin de grado) and PhD. Thesis, specially thought for its use in Universidad de Alcalá, although it should be easily extended and adapted for other use cases. In its content we include general instructions of use, and some example of elements than can be useful. If you have problemas, suggestions or comments on the template, please forward them to Javier Macías-Guarasa <macias@depeca.uah.es>.

Keywords: Bsc., Msc. and PhD. Thesis template, IATEX, English/Spanish support, automatic generation.

Índice general

R	esum	ien		ix
A l	bstra	ıct		xi
Ín	dice	genera	al	xiii
Ín	dice	de fig	uras	xv
Ín	dice	de tal	olas	xvii
Ín	dice	de list	cados de código fuente	xix
Ín	dice	de alg	roritmos	xxi
Li	sta d	le acró	inimos	xxiii
Li	sta d	le síml	polos	xxv
1	Inti	oducc	ión	1
	1.1	Preser	ntación	1
	1.2	Uso d	e la plantilla	1
		1.2.1	Prerrequisitos	1
		1.2.2	Compilación	2
		1.2.3	Estructura del documento generado por la plantilla	3
		1.2.4	Definiciones específicas del tipo de documento	4
		1.2.5	Plantilla de anteproyecto	5
		1.2.6	Papeleo adicional para la defensa de los TFGs	6
		1.2.7	Problemas conocidos	6
	1.3	Ejemp	olos de elementos de utilidad	6
		1.3.1	Uso de comandos definidos	6
		1.3.2	Uso de "frases célebres"	7
		1.3.3	Inclusión de diagramas	7
		1.3.4	Definición y uso de acrónimos	7

xiv ÍNDICE GENERAL

		1.3.5 Definición y uso de símbolos	8
	1.4	Motivación y objetivos	8
	1.5	Organización de la memoria	9
2	Est	udio teórico	11
	2.1	Introducción	11
	2.2	Estado del Arte	11
	2.3	Técnicas utilizadas	12
	2.4	Conclusiones	12
3	Des	arrollo	13
	3.1	Introducción	13
	3.2	Desarrollo del sistema de experimentación	13
	3.3	Planteamiento matemático	13
	3.4	Conclusiones	13
4	Res	m ultados	15
	4.1	Introducción	15
	4.2	Entorno experimental	15
		4.2.1 Bases de datos utilizadas	15
		4.2.2 Métricas de calidad	15
		4.2.3 Estrategia y metodología de experimentación	15
	4.3	Resultados experimentales	15
	4.4	Conclusiones	19
5	Con	nclusiones y líneas futuras	21
	5.1	Conclusiones	21
	5.2	Líneas futuras	21
Bi	bliog	grafía	23
A	Mai	nual de usuario	25
	A.1	Introducción	25
	A.2	Manual	25
	A.3	Ejemplos de inclusión de fragmentos de código fuente	25
	A.4	Ejemplos de inclusión de algoritmos	27
\mathbf{B}	Her	ramientas y recursos	29

Índice de figuras

1.1	Clasificación de los objetos para la gramática.	7
2.1	Departamento de Electrónica	12
2.2	Departamento de Electrónica en el lateral	12
4.1	Optimal number of frames in the training data set	18

Índice de tablas

4.1	Comparativa	16
4.2	Resultados de la correlación cruzada	16
43	Resultados TEST CLEAR 2006	20

Índice de listados de código fuente

A.1	Ejemplo de código fuente con un 1stinputlisting dentro de un codefloat	26
A.2	Ejemplo de código fuente con estilo Cnice, de nuevo con un 1stinputlisting dentro	
	de un codefloat	26
A.3	Ejemplo de código fuente con estilo Cnice, modificado para que no aparezca la numeración.	27
A.4	Ejemplo con colores usando el estilo Ccolor	27

Índice de algoritmos

A.1	ow to write algorithms	28
A.2	tervalRestriction	28

Lista de acrónimos

ANN Artificial Neural Network.

DBN Dynamic Bayesian Network.

EIR Emotion Identification Rate.

EMODB Berlin Database of Emotional Speech.

ES Emotional Strength.

ETTS Emotional Text To Speech.

SIR Speaker Identification Rate.

SOC System on a Chip. SQ Speech Quality.

STRAIGHT Speech Transformation and Representation using Adaptive Interpolation

of weiGHTed spectrum.

 $\label{thm:conditional} \mbox{TD-PSOLA} \quad \mbox{Time Domain Pitch Synchronous OverLap Add.}$

Lista de símbolos

- $\rm \mathring{A}$ non-SI unit of length.
- $\perp \!\!\! \perp$ conditional independence.
- Ω unit of electrical resistance.
- x(t) Audio signal.
- $x_i(t)$ Audio signal captured at microphone i.

Capítulo 1

Introducción

Desocupado lector, sin juramento me podrás creer que quisiera que este libro [...] fuera el más hermoso, el más gallardo y más discreto que pudiera imaginarse¹.

Miguel de Cervantes, Don Quijote de la Mancha

1.1 Presentación

Esta plantilla² pretende proporcionar un conjunto de estilos consistentes y unificados para cubrir las necesidades de generación de memorias LAT_EX para cada uno de los TFCs/TFMs/TFGs y tesis doctorales que se generen en la Escuela Politécnica Superior de la Universidad de Alcalá³.

Para utilizar la plantilla se han generado algunos capítulos genéricos en los que se han incluido secciones "tutoriales", en la que se explican algunas de sus características y se muestran ejemplos de elementos típicos que pueden ser de utilidad (pero sin el objetivo de que esto sea una guía de LATEX).

Igualmente se proporciona un modelo simplificado de un anteproyecto (para el caso de los TFCs/TFM-s/TFGs), así como parte de la documentación que hay que presentar para la defensa de los TFGs de la Universidad de Alcalá.

1.2 Uso de la plantilla

1.2.1 Prerrequisitos

Para usar la plantilla tal y como está definida, hace falta disponer de una serie de paquetes de estilos LATEX (ficheros .sty), todos ellos definidos en el fichero config/preamble.tex.

No vamos a hacer un listado de todos lo necesarios (sería demasiado largo), pero en la mayoría de distribuciones GNU/Linux serán fáciles de conseguir en caso de que la compilación genere un error de fichero no encontrado. Si os sucede, buscadlos en alguno de los paquetes texlive-*. En caso de

¹Tomado de ejemplos del proyecto T_FX^IS.

²Asegúrate de compilar de nuevo el documento (como cuenta la sección 1.2.2), para verificar que todo funciona y por si ha habido algún cambio en los fuentes que no está reflejado en los pdf de ejemplo precompilados.

³También se incluye la definición para las tesis de la Escuela Técnica Superior de Ingenieros de Telecomunicación de la Universidad Politécnica de Madrid. La extensión a los TFGs de la misma es sencilla, aunque no se ha realizado por el momento.

no encontrarlos, una búsqueda en google (que con casi total seguridad referenciará a alguna página en CTAN) os dará el enlace a la descarga correspondiente. A partir de ahí, su inclusión en directorios locales será suficiente (como por ejemplo hemos tenido que hacer con el paquete background, incluido en la distribución en el directorio sty/background).

Igualmente será necesario tener instaladas una serie de utilidades y aplicaciones:

- make, si se quiere utilizar la facilidad del Makefile suministrado. Está disponible en todas las distribuciones GNU/Linux.
- rubber, si se quiere utilizar la prestación de compilación de código IATEX incluida en el Makefile. Debería estar disponible en cualquier distribución GNU/Linux, pero si no es así, puedes optar por descargarla, o bien usar la alternativa de latexmk (para el que también se incluyen targets específicos en el Makefile suministrado).
- dia, si se quiere utilizar el ejemplo proporcionado de generación de esquemas con dicha herramienta.
- epspdf, si se quiere utilizar la facilidad de la conversión automática de ficheros eps a pdf (también se usa en la conversión de ficheros .dia).
- makeglossaries, si se quiere utilizar la prestación de manejo de listas de acrónimos y variables.
 Suele estar en el paquete texlive-latex-extra en distribuciones basadas en Debian (como ubuntu y derivados).

1.2.2 Compilación

Para facilitar la generación del documento se incluye un Makefile relativamente sencillo. No somos expertos ni en make ni en LATEX, con lo que seguro que no es el mejor de los Makefiles del mundo, pero creemos que hace su función.

El Makefile tiene las siguientes características y prestaciones:

- Hace uso de la herramienta rubber. En caso de no disponer de ella, puede usarse latexmk (hay targets específicos de ejemplo para ese caso), pero esta última herramienta no ha sido probada intensivamente. Si no se dispone de ninguna de ellas, habría que generar la estructura típica de compilación: (al estilo pdflatex + bibtex + pdflatex + pdflatex).
- Soporta la generación automática de ficheros pdf a partir de los dia y svg (se han elegido estos a modo de ejemplo, pero se puede adaptar fácilmente a otras necesidades).
- Genera la información de listas de acrónimos y símbolos con la herramienta makeglossaries. Es imprescindible tenerla instalada si se desea usar esa capacidad.
- Soporta los targets:
 - all (que es la opción predeterminada si se ejecuta make sin más argumentos), que genera el fichero book.pdf correspondiente, usando rubber y makeglossaries. No nos hemos planteado la generación de ficheros en otros formatos.
 - all_latexmk, que genera el fichero book.pdf correspondiente, usando latexmk y makeglossaries. Si ésta es tu opción, sustituye el target all por éste, para facilitarte la compilación.

- anteproyecto, que genera el fichero anteproyecto.pdf correspondiente, usando rubber. No nos hemos planteado la generación de ficheros en otros formatos.
- anteproyecto_latexmk, que genera el fichero anteproyecto.pdf correspondiente,
 usando latexmk. Si ésta es tu opción, sustituye el target anteproyecto por éste, para facilitarte la compilación.
- tar, que genera un fichero tgz que contiene todo lo necesario para la distribución de la plantilla.
- clean, que borra todos los ficheros temporales usando rubber (para simplificar los targets, la limpieza se hace tanto para los temporales de generación del book.pdf como los del anteproyecto.pdf).
- clean_latexmk, que borra todos los ficheros temporales usando latexmk. Si ésta es tu opción, sustituye el target clean por éste, para facilitarte la compilación (para simplificar los targets, la limpieza se hace tanto para los temporales de generación del book.pdf como los del anteproyecto.pdf).

1.2.3 Estructura del documento generado por la plantilla

La plantilla definida presenta la siguiente estructura:

- Portada y página de información sobre el trabajo, que será dependiente del tipo de trabajo y la titulación. Se genera automáticamente a partir de la información definida en la sección 1.2.4
- Dedicatoria, con un ejemplo incluido en el fichero dedication/dedicatoria.tex.
- Agradecimientos, con un ejemplo incluido en el fichero dedication/agradecimientos.tex.
- Resumen en español, con un ejemplo incluido en el fichero abstract/resumen.tex.
- Resumen en inglés, con un ejemplo incluido en el fichero abstract/abstract.tex.
- Resumen extendido en español (opcional en algunos tipos de documento), con un ejemplo incluido en el fichero abstract/resumen-extendido.tex.
- Índice de contenidos, índice de figuras e índice de tablas.
- Índices adicionales, de los que se incluye un ejemplo de listado específico en el fichero cover/extralistings.tex, que incluye el listado de fragmentos de código fuente definidos en el appendix/manual.tex.
- Listado de acrónimos utilizados, que se definen en el fichero acronyms/acronymsgl.tex, y del que incluimos más información en la sección 1.3.4.
- Listado de símbolos utilizados, que se definen en el fichero symbols/symbolsgl.tex, y del que incluimos más información en la sección 1.3.5.
- Capítulos del documento, del que hay varios ejemplos que siguen la estructura típica (introducción, estudio teórico, desarrollo, resultados y conclusiones.
- Pliego de condiciones y presupuesto, opcionales (se incluyen un par de ejemplos del trabajo fin de carrera de Jesús Martínez en los ficheros pliego/pliego-ejemplo.tex y presupuesto/presupuesto-ejemplo.tex.

- Bibliografía, de la que se puede cambiar el estilo utilizado y los ficheros .bib en el fichero biblio/bibliography.tex
- Apéndices, de los que ahora se incluyen dos ejemplos en los ficheros appendix/manual.tex (que sirve de pretexto para mostrar cómo se insertan fragmentos de código fuente), y appendix/herramientas.tex.
- Contraportada, sólo para el caso de los TFGs en UAH.

Por supuesto, modificad la estructura para que encaje en las directrices que tengáis al respecto de cómo documentar vuestro trabajo.

1.2.4 Definiciones específicas del tipo de documento

Para comenzar a usar la plantilla es fundamental revisar el fichero book.tex en el que se incluyen todos los detalles genéricos de la estructura usada en el documento, con comentarios que esperamos que os ayuden a entenderlo. Si sois de los impacientes, basta con que comencéis por la parte en la que se incluyen los distintos capítulos (buscad la parte de los \input{chapters/*.tex}).

Uno de los ficheros de configuración más importantes es el config/myconfig.tex en el que se incluyen elementos para determinar la configuración específica de tu documento. El primero de ellos (para facilitar la generación de documentos en español o inglés), es el que define el idioma que vas a utilizar. Para seleccionarlo, basta con asignar spanish o english a la variable \mybooklanguage. A partir de ella, el sistema generará las cabeceras y títulos adecuados a cada una.

Igualmente, tendréis que definir las siguientes variables sobre el tipo de trabajo y el autor:

- Acrónimo de la titulación correspondiente al trabajo (variable \mydegree): Que se seleccionará entre los definidos (por ahora⁴ son IT, IE, ITTSE, ITTST, ITI, GIEC, GIEAI, GIST, GITT, GIT, GIC, GII, GSI, MUSEA, PHDUAH y PHDUPM) y que automáticamente configura portadas⁵, entre otras cosas.
- Título del documento (variable \mybooktitle).
- Nombre del autor del trabajo (variable \mybookauthor).
- DNI del autor del trabajo, usado en el papeleo de los TFGs (variable \mybookDNI).
- Departamento en el que se realiza el trabajo (variable \mybookdepartment).
- Centro en el que se realiza el trabajo (variable \mybookschool, que debería ser la Escuela Politénica Superior, pero se incluye por generalidad).
- Universidad en el que se realiza el trabajo (variable \mybooksuniversidad, que debería ser la de Alcalá, pero se incluye por generalidad).
- Titulación del autor (usada en las tesis de UPM, (variable \mybookauthordegree)).
- Email del autor (variable \mybookemail).

⁴Este documento se generó a finales de 2013.

⁵Un comentario sobre el color de las bandas en la portada de los TFGs: de acuerdo con la normativa, dicho color debe ser PANTONE 160c. Yo he intentado utilizar dicho color, pero el aspecto con el que finalmente aparece no es ni de lejos similar al del modelo que proporciona la EPS, con lo que he optado por utilizar el que se ve realmente en dicho modelo. Si quieres cambiarlo, busca "PANTONE" en config/preamble.tex.

- Nombre de los directores del trabajo (variable \mybookadvisors).
- Nombre del presidente del tribunal (variable \mybookpresident).
- Nombre del primer vocal del tribunal (variable \mybookfirstvocal).
- Nombre del segundo vocal del tribunal (variable \mybooksecondvocal).
- Nombre del secretario del tribunal, en su caso (variable \mybooksecretary).
- Año del trabajo (variable \mybookyear).
- Fecha del anteproyecto, en su caso (variable \mybookanteproyectodate), en el caso de que se usen la plantilla del anteproyecto.
- Palabras clave en inglés (variable \mybookkeywords).
- Palabras clave en español (variable \mybookpalabrasclave).

Parte de esa información se utilizará para rellenar la metainformación incluida en el fichero pdf que se genera.

También se definen los colores que se usarán en los hiperenlaces del documento. En concreto⁶:

- Color de los enlaces en el índice de contenidos (variable \mytoclinkcolor).
- Color de los enlaces en el índice de figuras (variable \myloflinkcolor).
- Color de los enlaces en el índice de tablas (variable \mylotlinkcolor).
- Color de los enlaces en otros índices (variable \myothertoclinkcolor), de los que ahora se incluye un ejemplo en el fichero cover/extralistings.tex.
- Color de los enlaces (\ref) en el documento (variable \mylinkcolor).
- Color de los enlaces a URLs (variable \myurlcolor).
- Color de los enlaces a referencias bibliográficas (variable \mycitecolor).

Basta con que defináis las variables correspondientes y la plantilla generará automáticamente las portadas adecuadas a la normativa y usará las definiciones específicas que hayas seleccionado.

Por si os hace falta, en config/postamble.tex se definen algunas variables relacionadas con el tipo de trabajo. Por ejemplo las variables \mydegreefull (igual a "Estudios de Doctorado" en esta compilación), \mybookworktype (igual a "PHDUAH" en esta compilación) y \mybookworktypefull (igual a "Tesis Doctoral" en esta compilación). Otro ejemplo sería el autor de contacto: Javier Macías-Guarasa <macias@depeca.uah.es>.

Importante para las tesis de UAH: si necesitáis incluir ficheros pdf (los de autorización e informes de los tutores, por ejemplo), esta plantilla lo permite: mirad los \includepdf en el book.tex.

1.2.5 Plantilla de anteproyecto

Para el caso de los TFMs/TFGs/TFCs, se incluye una plantilla para realizar el anteproyecto.

La plantilla se encuentra en el fichero anteproyecto.tex y el Makefile genera automáticamente el anteproyecto.pdf, haciendo un make anteproyecto.

⁶Os rogamos encarecidamente que cambiéis los colores definidos actualmente, que se han usado para verificar que todo funciona correctamente.

1.2.6 Papeleo adicional para la defensa de los TFGs

Para el caso de los TFGs, se incluyen en el directorio papeleo algunos de los documentos que hay que generar en el momento de la defensa. En concreto:

- La autorización del tutor para la publicación en abierto, en el fichero autorizacionTutorPublicarRepositorio.tex
- La autorización del autor para la publicación en abierto, en el fichero autorizacionAutorPublicarRepositorio.tex
- El visto bueno del tutor para la defensa vistoBuenoTutor.tex

En el directorio se incluye un Makefile que genera los pdfs correspondientes a esos documentos.

1.2.7 Problemas conocidos

Resumimos a continuación los problemas con los que nos hemos ido encontrando tras el uso más generalizado de esta plantilla, y, en su caso, la solución propuesta/adoptada:

- Al menos en la versión 12.04 de ubuntu, se producía un fallo de compilación por un problema del option clash del paquete xcolor. La solución fue incluir las opciones [RGB, rgb] de dicho paquete en el documentclass, y eliminar la inclusión de xcolor (que ya lo incluye, al menos, listings). No es muy bonito como solución, pero funcionaba. Eso dio lugar a otro problema, que hacía que todas las página aparecieran como en color cuando se llevaba a la imprenta (con el consiguiente incremento de precio). Para intentar solucionarlo, he vuelto a eliminar las opciones [RGB, rgb] del documentclass, y se las paso con un PassOptionsToPackage, pero está pendiente de verificación. Please, confirmadme que funciona (tanto lo del color como la compilación en un ubuntu 12.04 (o posterior).
- También hemos observado en la versión 12.04 de ubuntu que evince no es capaz de visualizar la primera página de los TFGs (generada con tikz), y que xpdf genera un core cuando intenta abrir el fichero compilado. La solución es usar qpdfview o acroread.

1.3 Ejemplos de elementos de utilidad

1.3.1 Uso de comandos definidos

A modo de ejemplo, hemos definido el comando \texten{} en config/myconfig.tex para usarlo, por ejemplo, para marcar palabras escritas en inglés (aka *English*). Sigue el ejemplo para definir aquellos que utilices con frecuencia.

Si quieres escribir el símbolo backslash puedes usar el comando \backlash{}: \.

Lo mismo aplica para el símbolo tilde, para lo que puedes usar el comando \textasciitilde{}:~.

1.3.2 Uso de "frases célebres"

Respecto a la frase célebre del inicio de los capítulos: todas las que hemos usado y las definiciones que las generen están sacadas del excelente trabajo de Marco Antonio Gomez-Martín y Pedro Pablo Gomez-Martín en el proyecto TEXIS, una plantilla para la creación de tesis y otros documentos y disponible en [1].

1.3.3 Inclusión de diagramas

Para incluir gráficos, la compilación que utilizamos permite usar ficheros png, jpg y pdf, en el comando \includegraphics. Si queréis ahorraros incluir el path a cada fichero, podéis definir todos aquellos en los que haya ficheros gráficos en el \graphicspath del book.tex.

En la figura 1.1 se muestra un ejemplo de gráfico generado automáticamente a partir de un fichero .dia⁷: diagrams/Esquema_objetos.dia (podéis generalizar su generación en el Makefile).

Figura 1.1: Clasificación de los objetos para la gramática.

1.3.4 Definición y uso de acrónimos

El uso del paquete glossaries permite definir los acrónimos y el sistema automáticamente gestiona su inclusión completa la primera vez que se usa. Los acrónimos de ejemplo están en el fichero acronyms/acronymsgl.tex.

Así, si nos referimos a *Emotional Text To Speech (ETTS)* o bien a *Berlin Database of Emotional Speech (EMODB)*, veremos como aparecen expandidas la primera vez. A partir de ahí, sólo se usará el acrónimo como puede verse al volver a hablar de ETTS y EMODB.

Tiene también soporte para resetear todos los acrónimos como si no estuvieran usados. Vuelvo a incluir el párrafo anterior tras un reset:

 $^{^7\}mathrm{Tomadas}$ de los proyectos fin de carrera de David Casillas y Manuel Villaverde.

El uso del paquete acronym permite definir los acrónimos y el sistema automáticamente gestiona su inclusión completa la primera vez que se usa. Así, si nos referimos a *Emotional Text To Speech (ETTS)* o bien a *Berlin Database of Emotional Speech (EMODB)*, veremos como aparecen expandidas la primera vez. A partir de ahí, sólo se usará el acrónimo como puede verse al volver a hablar de ETTS y EMODB.

Y permite también forzar que se vuelva a citar completo aunque ya se haya utilizado (con el acrónimo entre paréntesis), como puede verse en Emotional Text To Speech (equivalente a Emotional Text To Speech que vale para cualquier glosario), y también a usar forzosamente el acrónimo. Primero reseteamos de nuevo.

Y ahora forzamos el acrónimo: EMODB (eqivalente a EMODB que vale para cualquier glosario). También podemos forzar a que lo ponga todo, con Berlin Database of Emotional Speech (EMODB).

Podemos seguir definiendo entradas de acrónimos, referirnos a *Dynamic Bayesian Network (DBN)* por primera vez, y las siguientes aparecerá como DBN. Pongo ahora el resto de acrónimos *Speech Quality (SQ)*, *Emotion Identification Rate (EIR)*, *Speaker Identification Rate (SIR)* y *Emotional Strength (ES)*. Finalmente los repito para que se vea el efecto: SQ, EIR, SIR y ES.

Y gestiona bien los plurales, ponemos el plural como *Systems on a Chip (SOCs)* la primera vez, y luego la segunda como SOCs. Y podemos volver al singular con SOC.

1.3.5 Definición y uso de símbolos

Los símbolos definidos están incluidos en el fichero symbols/symbolsgl.tex y en esta sección mostramos algunos ejemplos.

El Å se usa en biología estructural, mientras que el Ω se usa en electrónica. También podemos poner x(t).

$$x(t) (1.1)$$

Y finalmente la que nos falta: $x_i(t)$, también dentro de fórmulas (otra cosa es que sea conveniente o útil):

$$x_i(t) = \sqrt{i} \tag{1.2}$$

Acabamos con un par de acrónimos: Time Domain Pitch Synchronous OverLap Add (TD-PSOLA) y Speech Transformation and Representation using Adaptive Interpolation of weiGHTed spectrum (STRAIGHT).

1.4 Motivación y objetivos

La motivación de este proyecto...

Los objetivos principales de este trabajo son (ejemplo utilizando "enumerate"):

1. Primer objetivo...

- 2. Segundo objetivo...
 - (a) Objetivo 2.1...
 - (b) Objetivo 2.2...
- 3. Tercer objetivo...

1.5 Organización de la memoria

Esta memoria se organiza en cinco grandes capítulos. El primero \dots

Estudio teórico

Y así, del mucho leer y del poco dormir, se le secó el cerebro de manera que vino a perder el juicio 1 .

Miguel de Cervantes Saavedra

2.1 Introducción

En este capítulo se cuenta tal y tal.

El capítulo se estructura en n apartados...

2.2 Estado del Arte

En el estado del arte se enumeran los trabajos más relevantes de otros grupos de investigación. A continuación se muestra un ejemplo del uso de viñetas que nos proporciona itemize:

- En el trabajo
- En el siguiente trabajo.....

O citas en un párrafo real: Sin embargo, hay entornos acústicos donde las tasas de error conseguidas son todavía demasiado altas. En concreto, las aplicaciones en las que la captura de la señal de habla se hace usando micrófonos alejados del locutor (típicamente para distancias superiores a un metro) muestran una fuerte sensibilidad a los problemas de reverberación, ruido aditivo y baja relación señal a ruido ([2],[3]). En estos entornos, se ha propuesto el uso de arrays de micrófonos como un método para mejorar la calidad del habla capturada [4][5].

Existen múltiples formas de insertar figuras en Latex. A continuación, se muestra un ejemplo del uso de figure. Como se puede ver en la Figura 2.1 también se pueden poner referencias a las figuras por medio de ref y la etiqueta label de la figura en particular.

Y ahora un ejemplo en el que ponemos el caption en el lateral:

 $^{^1\}mathrm{Tomado}$ de ejemplos del proyecto TeXIS.

Figura 2.1: Departamento de Electrónica.

Figura 2.2: Departamento de Electrónica en el lateral.

2.3 Técnicas utilizadas

Blah, blah, blah...

2.4 Conclusiones

Blah, blah, blah...

Desarrollo

A fuerza de construir bien, se llega a buen arquitecto¹.

Aristóteles

3.1 Introducción

En este capítulo se incluirá la descripción del desarrollo del trabajo.

El capítulo se estructura en n apartados:...

3.2 Desarrollo del sistema de experimentación

Blah, blah, blah...

3.3 Planteamiento matemático

También resulta útil poder introducir ecuaciones que se encuentran tanto en línea con el texto (como por ejemplo $\sigma = 0.75$), como en un párrafo aparte (como en la ecuación 3.1). Al igual que ocurre con las figuras, también se pueden referenciar las ecuaciones.

$$p[q_t = \sigma_t | q_{t-1} = \sigma_{t-1}] \tag{3.1}$$

3.4 Conclusiones

Blah, blah, blah...

 $^{^1\}mathrm{Tomado}$ de ejemplos del proyecto TeXIS.

Resultados

Rem tene, verba sequentur (Si dominas el tema, las $palabras\ vendr\'an\ solas)^1.$ Catón el Viejo

4.1 Introducción

En este capítulo se introducirán los resultados más relevantes del trabajo.

La estructura del capítulo es...

4.2 Entorno experimental

Blah, blah, blah.

4.2.1 Bases de datos utilizadas

Blah, blah, blah.

4.2.2 Métricas de calidad

Blah, blah, blah.

4.2.3 Estrategia y metodología de experimentación

Blah, blah, blah.

4.3 Resultados experimentales

A continuación, se muestra un ejemplo de tabla simple (ver tabla 4.1).

 $^{^1\}mathrm{Tomado}$ de ejemplos del proyecto TeXIS.

 ${\bf Tabla~4.1:~Comparativa.}$

Method	Training Time	Man-Work (%)
Propagation model	< 30 sec	5
Manual	9 h 30 min	24
Automatic	2 h	10 8

Cuando las tablas ocupan más de un página se debe utilizar un tipo especial de tablas denominado longtable. A continuación, se muestra un ejemplo del mismo (ver tabla 4.2).

Tabla 4.2: Resultados de la correlación cruzada.

Posición Real	Posición estimada	Coef. Correlación	Acierto/Fallo	
2P0	2P0	0,004954	A	
2P1	2P4	0,005752	F	
2P2	2P2	0,005461	A	
2P3	2P0	0,004634	F	
2P5	2P4	0,005991	F	
2P6	2P16	0,004410	F	
2P7	3P9	0,008038	F	
2P8	3P9	0,003753	F	
2P9	2P7	0,004908	F	
2P10	2P10	0,007273	A	
2P14	2P16	0,006485	F	
2P15	2P15	0,004932	A	
2P16	2P16	0,006237	A	
2P17	2P15	0,005110	F	
2P18	3P18	0,006235	F	
2P19	3P18	0,004827	F	
2P20	2P20	0,006877	A	
2P22	3P18	0,003048	F	
2P24	2P24	0,006833	A	
2P25	2P25	0,004875	A	
2P26	2P31	0,005511	F	
2P27	2P28	0,004590	F	
2P30	2P31	0,005576	F	
2P31	2P31	0,007213	A	
2P32	2P35	0,003340	F	
2P34	2P34	0,004128	A	
2P36	2P35	0,003329	F	
2P37	2P37	0,003468	A	
2P39	2P38	0,002577	F	
2P40	2P43	0,004303	F	
2P41	2P41	0,001573	A	
Continúa en la página siguiente				

3P66

3P67

Posición Real Posición estimada Coef. Correlación Acierto/Fallo 2P422P41 0,000846 2P44 2P440,002732 A 2P45 23P45F 0,001958 2P47 2P340,002869 F 2P482P43F 0,004569 F 2P49 3P510,001374 F 2P502P34 0,002274 2P63F 2P510,003931 2P55 F 2P520,003537 2P533P56F 0,003126 2P67 F 2P540,005560 2P56 2P55 0,002817 F 2P572P67 0,006168 F 2P58 2P580,005278 Α 2P603P660,004966 F 2P61 3P61 0,004748 Α F 2P64 2P67 0,005342 2P4 F 2P66 0,004172 2P672P67 0,005706 A 3P03P00,003674 Α F 3P61 2P610,003263 F 3P64 2P67 0,003484 3P652P67 0,002975 F

Tabla 4.2 – continúa en la página anterior

En algunas ocasiones, también resulta útil emplear el entorno subfloat (del paquete subfig) para añadir múltiples imágenes dentro de la misma figura. A continuación, se muestra un ejemplo del uso en la figura 4.1. También se pueden referenciar las sub-figuras de forma individual, por ejemplo la sub-figura 4.1b (usando un método de cita), o bien la sub-figura 4.1(b) (usando otro alternativo).

0,005029

0,003714

F

Α

2P58

3P67

Incluso podemos poner una tabla "apaisada", como en la 4.3, donde se muestra un resumen de los resultados obtenidos en una serie de experimentos de localización de locutores.

Figura 4.1: Optimal number of frames in the training data set.

4.4 Conclusiones 19

4.4 Conclusiones

Blah, blah, blah.

_	_	_		_	-	_
Loc. frames	Fine+gross [mm]	AEE fine $[mm] = MOTP$	Bias fine+gross (x,y,z) [mm]	Bias fine (x:y:z) [mm]	Pcor	
5035	1201	210	735:-93:-258	20:-42:-75	$57,0 \pm 1,4\%$	UKA
22	632	130	67:439:-134	45:27:-41	$84.0 \pm 3.3 \%$	ITC
995	1006	266		-27:-77:-40	$47,0 \pm 3,1 \%$	AIT
977	1188	344	-141:255:39	-59:112:52	$20,0 \pm 2,5\%$	UPC
1023	884	228	474:-141:-14	91:-69:-38	$67,0 \pm 2,9 \%$	IBM
	5035 22 995 977	1201 632 1006 1188 5035 22 995 977	EMOTP 210 130 266 344 1 1201 632 1006 1188 1 1201 22 995 977	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ l c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Tabla 4.3: Resultados TEST CLEAR 2006.

Conclusiones y líneas futuras

En este apartado se resumen las conclusiones obtenidas y se proponen futuras líneas de investigación que se deriven del trabajo.

La estructura del capítulo es...

5.1 Conclusiones

Para añadir una referencia a un autor, se puede utilizar el paquete cite. En el trabajo [6], se muestra un trabajo...

Y podemos usar de nuevo algún acrónimo, como por ejemplo TD-PSOLA, o uno ya referenciado como $Artificial\ Neural\ Network\ (ANN).$

5.2 Líneas futuras

Pues eso.

Bibliografía

- [1] "Texis: Una plantilla de latex para tesis y otros documentos," http://gaia.fdi.ucm.es/projects/texis/ [Último acceso 1/diciembre/2013].
- [2] D. Gelbart and N. Morgan, "Double the trouble: Handling noise and reverberation in far-field automatic speech recognition," in *International Conference on Spoken Language Processing (ICSLP)*, 2002.
- [3] S. Kochkin and T. Wickstrom, "Headsets, far field and handheld microphones: Their impact on continuous speech recognition," EMKAY, a division of Knowles Electronics, Tech. Rep., 2002.
- [4] M. L. Seltzer, "Microphone array processing for robust speech recognition," Ph.D. dissertation, Carnegie Mellon University, 2003.
- [5] W. Herbordt, Sound capture for human/machine interfaces Practical aspects of microphone array signal processing. Springer, Heidelberg, Germany, March 2005.
- [6] L. Armani, M. Matassoni, M. Omologo, and P. Svaizer, "Use of a csp-based voice activity detector for distant-talking asr," in *European Conference on Speech Communication and Technology*, 2003, pp. 501–504.
- [7] "Información sobre gnu/linux en wikipedia," http://es.wikipedia.org/wiki/GNU/Linux [Último acceso 1/noviembre/2013].
- [8] "Página de la aplicación emacs," http://savannah.gnu.org/projects/emacs/ [Último acceso 1/no-viembre/2013].
- [9] "Página de la aplicación kdevelop," http://www.kdevelop.org [Último acceso 1/noviembre/2013].
- [10] L. Lamport, LaTeX: A Document Preparation System, 2nd edition. Addison Wesley Professional, 1994.
- [11] "Página de la aplicación octave," http://www.octave.org [Último acceso 1/noviembre/2013].
- [12] "Página de la aplicación cvs," http://savannah.nongnu.org/projects/cvs/ [Último acceso 1/noviembre/2013].
- [13] "Página de la aplicación gcc," http://savannah.gnu.org/projects/gcc/ [Último acceso 1/noviembre/2013].
- [14] "Página de la aplicación make," http://savannah.gnu.org/projects/make/ [Último acceso 1/noviembre/2013].

Apéndice A

Manual de usuario

A.1 Introducción

Blah, blah, blah...

A.2 Manual

Pues eso.

A.3 Ejemplos de inclusión de fragmentos de código fuente

Para la inclusión de código fuente se utiliza el paquete listings, para el que se han definido algunos estilos de ejemplo que pueden verse en el fichero config/preamble.tex y que se usan a continuación.

Así se inserta código fuente, usando el estilo CppExample que hemos definido en el preamble, escribiendo el código directamente :

```
#include <stdio.h>

// Esto es una función de prueba
void funcionPrueba(int argumento)
{
   int prueba = 1;
   printf("Esto_es_una_prueba_[%d][%d]\n", argumento, prueba);
}
```

O bien insertando directamente código de un fichero externo, como en el ejemplo A.1, usando \lstinputlisting y cambiando el estilo a Cbluebox (además de usar el entorno codefloat para evitar pagebreaks, etc.).

Listado A.1: Ejemplo de código fuente con un 1stinputlisting dentro de un codefloat

```
#include <stdio.h>

// Esto es una función de prueba
void funcionPrueba(int argumento)
{
    int prueba = 1;
    printf("Esto_es_una_prueba_[%d][%d]\n", argumento, prueba);
}
```

O por ejemplo en matlab, definiendo settings en lugar de usar estilos definidos:

```
% add_simple.m - Simple matlab script to run with condor
% a = 9;
b = 10;
c = a+b;
fprintf(1, 'La_suma_de_%d_y_%d_es_igual_a_%d\n', a, b, c);
```

O incluso como en el listado A.2, usando un layout más refinado (con los settings de http://www.rafalinux.com/?p=599 en un lststyle Cnice).

Listado A.2: Ejemplo de código fuente con estilo Cnice, de nuevo con un lstinputlisting dentro de un <math>codefloat

```
#include <stdio.h>

#define LOOP_TIMES 5

int main(int arge, char* argv[])

{
   int i;

   for (i = 1; i < LOOP_TIMES; i++)
       puts("Hola mundo!");
}</pre>
```

Y podemos reutilizar estilos cambiando algún parámetro, como podemos ver en el listado A.3, en el que hemos vuelto a usar el estilo Cnice eliminando la numeración.

Listado A.3: Ejemplo de código fuente con estilo Cnice, modificado para que no aparezca la numeración.

```
#include <stdio.h>
#define LOOP_TIMES 5

int main(int argc, char* argv[])
{
  int i;

  for (i = 1; i < LOOP_TIMES; i++)
    puts("Hola mundo!");
}</pre>
```

Ahora compila usando gcc:

```
$ gcc -o hello hello.c
```

Y también podemos poner ejemplos de código coloreado, como se muestra en el A.4.

Listado A.4: Ejemplo con colores usando el estilo Ccolor

```
#include <stdio.h>
#define LOOP_TIMES 5

int main(int argc, char* argv[])
{
   int i;

   for (i = 1; i < LOOP_TIMES; i++)
     puts("Hola mundo!");
}</pre>
```

Finalmente aquí tenéis un ejemplo de código shell, usando el estilo BashInputStyle:

```
#!/bin/sh

HOSTS_ALL="gc000 gc001 gc002 gc003 gc004 gc005 gc006 gc007"

for h in $HOSTS_ALL

do

echo "Running [$*] in $h..."

echo -n " "

ssh root@$h $*

done
```

A.4 Ejemplos de inclusión de algoritmos

En la versión actual (abril de 2014), empezamos a usar el paquete algorithm2e para incluir algoritmos, y hay ajustes específicos y dependientes de este paquete tanto en config/preamble.tex como en cover/extralistings.tex (editadlos según vuestras necesidades).

end

Hay otras opciones disponibles (por ejemplo las descritas en http://en.wikibooks.org/wiki/LaTeX/Algorithm), y podemos abordarlas, pero por el momento nos quedamos con algorithm2e.

Incluimos dos ejemplos directamente del manual: uno sencillo en el algoritmo A.1, y otro un poco más complicado en el algoritmo A.2.

```
Data: this text
      Result: how to write algorithm with LATEX2e
      initialization;
      while not at end of this document do
          read current;
         if understand then
             go to next section;
             current section becomes this one;
         else
           go back to the beginning of current section;
                                  Algoritmo A.1: How to write algorithms
      Data: G = (X, U) such that G^{tc} is an order.
      Result: G' = (X, V) with V \subseteq U such that G'^{tc} is an interval order.
      begin
          V \longleftarrow U
          S \longleftarrow \emptyset
          for x \in X do
             NbSuccInS(x) \longleftarrow 0
             NbPredInMin(x) \longleftarrow 0
             NbPredNotInMin(x) \longleftarrow |ImPred(x)|
             if NbPredInMin(x) = 0 and NbPredNotInMin(x) = 0 then
                AppendToMin(x)
           while S \neq \emptyset do
   1
             remove x from the list of T of maximal index
REM
             while |S \cap ImSucc(x)| \neq |S| do
                 for y \in S - ImSucc(x) do
                     { remove from V all the arcs zy : }
                     for z \in ImPred(y) \cap Min do
                        remove the arc zy from V
                         NbSuccInS(z) \leftarrow NbSuccInS(z) - 1
                        move z in T to the list preceding its present list
                        {i.e. If z \in T[k], move z from T[k] to T[k-1]}
                     NbPredInMin(y) \longleftarrow 0
                     NbPredNotInMin(y) \longleftarrow 0
                     S \longleftarrow S - \{y\}
                     AppendToMin(y)
             RemoveFromMin(x)
```

Algoritmo A.2: IntervalRestriction

Apéndice B

Herramientas y recursos

Las herramientas necesarias para la elaboración del proyecto han sido:

- PC compatible
- Sistema operativo GNU/Linux [7]
- Entorno de desarrollo Emacs [8]
- Entorno de desarrollo K Develop [9]
- \bullet Procesador de textos $\LaTeX[10]$
- Lenguaje de procesamiento matemático Octave [11]
- Control de versiones CVS [12]
- Compilador C/C++ gcc [13]
- Gestor de compilaciones make [14]