

ARM processor architecture

Basava Prasad S J

Contents

- Abbreviations to remember
- Introduction to ARM processor architecture
- ARM register set
- Functionalities of ARM status registers
- ARM exceptions and operating modes
- ARM instruction set
- Pipelining in ARM processor
- Applications of ARM processor
- Conclusion
- References

Abbreviations to remember

- ARM Advanced RISC Machine
- RISC Reduced Instruction Set Computer
- AMBA Advanced Micro-controller Bus Architecture
- APB **A**RM **P**eripheral **B**us
- AHB **A**RM **H**igh-performance **B**us
- ASB ARM System Bus
- CPSR Current Program Status Register
- SPSR Saved Program Status Register

Introduction to ARM processor architecture

- Originally ARM is **A**cron **R**ISC **M**achines, invented by Acron computers in 1980's.
- ARM provides core for the different micro-controllers and microprocessor companies.
- ARM core uses RISC architecture.
- ARM supports most of all the embedded OS, RTOS and mobile phone OS's.
- Presence of Thumb instruction set to increase the code density.
- Key factors for the success of ARM architecture are :
 - → Low power consumption
 - High performance
 - → Small size implementations

Introduction contd...

- ARM also incorporates following RISC features:
 - Larger uniform register file
 - Load (LD Register)/Store (ST Register) architecture
 - Simple addressing modes

ARM Register set

- ARM has 37 registers each of 32-bit.
- 31 registers including program counter (PC) are general purpose registers (R0-R15) and 6 program status registers.
- The general-purpose registers R0-R15 can be split into three groups.
 - > The unbanked registers, R0-R7
 - > The banked registers, R8-R14
 - Register 15, the PC
- Register 13 is treated as stack pointer (SP) and Register 14 as link register.
- Process status registers are :
 - CPSR Status of current execution mode of processor.
 - > SPSR To save the content of CPSR when mode switch occurs.

Functionalities of ARM status registers

Flag Field					
Ν	Negative result from ALU				
Z	Zero result from ALU				
С	ALU operation caused Carry				
V	ALU operation oVerflowed				
Q	ALU operation saturated				
J	Java Byte Code Execution				

Control bits					
I	1: disables IRQ				
F	1: disables FIQ				
Т	1: Thumb, 0: ARM				

Mode bits M[4:0}			
0b10000 User			
0b11111	System		
0b10001	FIQ		
0b10010	IRQ		
0b10011	SVC(Supervisor)		
0b10111	Abort		
0b11011	Undefined		

Exceptions handled in ARM processor

Exception type	Mode	Normal address	High vector address
Reset	Supervisor	0x00000000	0xFFFF0000
Undefined instructions	Undefined	0x00000004	0xFFFF0004
Software interrupt (SWI)	Supervisor	0x00000008	0xFFFF0008
Prefetch Abort (instruction fetch memory abort)	Abort	0x000000C	0xFFFF000C
Data Abort (data access memory abort)	Abort	0x0000010	0xFFFF0010
IRQ (interrupt)	IRQ	0x00000018	0xFFFF0018
FIQ (fast interrupt)	FIQ	0x0000001C	0xFFFF001C

Operating modes in ARM

- There are seven modes of operation in ARM processor :
 - → Unprivileged mode
 - User mode
 - → Privileged modes
 - Abort mode
 - System mode
 - Undefined mode
 - Fast interrupt request (FIQ) mode
 - Interrupt request(IRQ) mode
 - Supervisor (SVC) mode

Register organization depending on operating modes

User32 FIQ32		Supervisor32	Abort32	IRQ32	Undefined32	
R0	R0	R0	R0	R0	R0	
R1	R1	R1	R1	R1	R1	
R2	R2	R2	R2	R2	R2	
R3	R3	R3	R3	R3	R3	
R4	R4	R4	R4	R4	R4	
R5	R5	R5	R5	R5	R5	
R6	R6	R6	R6	R6	R6	
R7	R7	R7	R7	R7	R7	
R8	R8_fig	R8	R8	R8	R8	
R9	R9_fig	R9	R9	R9	R9	
R10	R10_fig	R10	R10	R10	R10	
R11	R11_fig	R11	R11	R11	R11	
R12	R12_fig	R12	R12	R12	R12	
R13	R13_fig	R13_svc	R13_abt	R13_irq	R13_und	
R14	R14_fig	R14_svc	R14_abt R14_irq		R14_und	
R15 (PC)	R15 (PC)	R15 (PC)	R15 (PC)	R15 (PC)	R15 (PC)	

Program Status Registers

		i rogium ota	as itogisters		
CPSR	CPSR	CPSR	CPSR	CPSR	CPSR
	SPSR_fig	SPSR_svc	SPSR_abt	SPSR_irq	SPSR_und

Operating modes contd...

• Example to show how mode switch occurs on exception from User mode to IRQ mode.

Changing mode on an exception.

ARM Instruction set

- All instructions are 32-bit long.
- Thumb instructions are compressed to 16-bit to increase code density.
- Most of the instructions execute in single machine cycle and can be conditionally executed.
- Depending on the operations instructions can be classified as:
 - Data processing instructions
 - Branch instructions
 - Load-Store instructions
 - Swap instructions
 - Software interrupt instruction
 - Program status register instructions

Instruction set contd...

ARMDiv	ARM code ARMDivide ; IN: r0(value),r1(divisor) ; OUT: r2(MODulus),r3(DIVide)			Thumb code ThumbDivide ; IN: r0(value),r1(divisor) ; OUT: r2(MODulus),r3(DIVide)		
loop	MOV SUBS ADDGE BGE ADD	r3,#0 r0,r0,r1 r3,r3,#1 loop r2,r0,r1	loop A S B	DD UB GE UB	r3,#0 r3,#1 r0,r1 loop r3,#1 r2,r0,r1	
5 × 4 =	$5 \times 4 = 20$ bytes		$6 \times 2 = 12$	byte	es	

Thumb instruction decoding.

Pipelining in ARM processor

Applications of ARM processor

- Smart phones
- Net-books
- eReaders
- Digital TV
- Home Gateways
- Servers and Networking
- Automotive braking systems
- Mass storage controller
- Networking & printing

Conclusion

References

- ARM system developers guide Designing and optimizing software by Andrew N.sloss, Dominic symes and Chris wright.
- ARM architecture reference manual.
- https://en.wikipedia.org/wiki/ARM_architecture

Large enough to Deliver, Small enough to Care

Global Village IT SEZ Bangalore

South Main Street Milpitas California

Raheja Mindspace IT Park Hyderabad

Thank you

Fairness

Learning

Responsibility

Innovation

Respect