Proof of the Property (cont'd)

Property 3: Let V, be an eigenvector associated with 2, Let $Z^{(n-1)} = \operatorname{Span} \{V_i\}^{\perp}$ (n-1)-dimensional subspace We want to show $Z^{(n-1)}$ is an invariant subspace for A. Pick any $z \in Z^{(n-1)}$. Then, $z^H v_i = 0$ $(Az)^{H}V_{I} = Z^{H}A^{H}V_{I} = Z^{H}(AV_{I}) = \lambda_{I}Z^{H}V_{I} = 0$ =>AZ € Z (n-1) Using the Fact, we know that there is an eigenvector $V_2 \in \mathbb{Z}^{(n-1)}$ of A.

Proof of the Property (cont'd)

Next, let $Z^{(n-2)} = \operatorname{span} \{v_1, v_2\}^{\perp}$. Lifewise, we can show $Z^{(n-2)}$ is an invariant subspace for A and thus, there is an eigenvector $V_3 \in Z$ of A.

Finite induction completes the proof.

Eigendecomposition for Hermitian Matrices

Theorem

Every $\mathbf{A} \in \mathbb{H}^n$ admits an eigendecomposition

$$\bigvee^{-(} = \bigvee^{\{\}} \mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{H},$$

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary, $\Lambda = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i. In addition, if $\mathbf{A} \in \mathbb{S}^n$, \mathbf{V} can be taken as a real orthogonal matrix.

- A special case of Schur decomposition
- No need of assuming distinct eigenvalues

Corollary: If $\mathbf{A} \in \mathbb{H}^n$, $\mu_i = \gamma_i$ for all i

Interpretation of Eigendecomposition in \mathbb{S}^n

- 2. $\Lambda(\mathbf{V}^T\mathbf{x})$: Scale the *i*th coordinate of $(\mathbf{V}^T\mathbf{x})$ by λ_i
- 3. $V(\Lambda V^T x)$: Reconstitute $(\Lambda V^T x)$ with basis v_1, \ldots, v_n

$$\forall \, \exists \, \exists \, \exists_{1} \, V_{1} + \cdots + \exists_{n} \, V_{n} \quad \forall \, (\, \wedge \, \vee^{T} \, x) = \left(2_{1} \, v_{1}^{T} \, x \right) \, V_{1} + \cdots + \left(2_{n} \, V_{n}^{T} \, x \right) \, V_{n}$$

Courant-Fischer Min-Max Theorem

For $\mathbf{A} \in \mathbb{H}^{n \times n}$, let $\lambda_k(\mathbf{A})$ denote the kth largest eigenvalue of \mathbf{A} , i.e.,

$$\lambda_n(\mathbf{A}) \leq \cdots \leq \lambda_1(\mathbf{A})$$
 yeal eigenvalues

Theorem
For any
$$\mathbf{A} \in \mathbb{H}^{n \times n}$$
 and $k = 1, ..., n$,

$$\lambda_{k}(\mathbf{A}) = \max_{\substack{S \subseteq \mathbb{C}^{n}: \\ \dim(S) = k}} \min_{\substack{y \in S, \\ y \neq 0}} \frac{y^{H} \mathbf{A} \mathbf{y}}{y^{H} \mathbf{y}}$$

$$= \min_{\substack{S \subseteq \mathbb{C}^{n}: \\ \dim(S) = n - k + 1}} \max_{\substack{y \in S, \\ y \neq 0}} \frac{y^{H} \mathbf{A} \mathbf{y}}{y^{H} \mathbf{y}}$$

$$mex$$

$$S \subseteq \mathbb{C}^{n} \quad max$$

$$y^{H} \mathbf{A} \mathbf{y}$$

$$y^{H} \mathbf{A} \mathbf{$$

$$R_{\mathbf{A}}(\mathbf{y}) = \frac{\mathbf{y}^H \mathbf{A} \mathbf{y}}{\mathbf{y}^H \mathbf{y}}, \ \mathbf{y} \neq \mathbf{0}$$
 is called the Rayleigh–Ritz quotient

- $R_{\mathbf{A}}(\mathbf{y})$ can be replaced with $\mathbf{y}^H \mathbf{A} \mathbf{y}$, $\|\mathbf{y}\|_2 = 1$
- If y is an eigenvector of A, $R_A(y)$ is its associated eigenvalue
- Consequence of theorem: $\lambda_n(\mathbf{A}) \leq R_{\mathbf{A}}(\mathbf{y}) \leq \lambda_1(\mathbf{A})$

 $\Lambda_n(A) \leq R_A(y) \leq \chi_1(A)$ A E H" => I orthonormal eifenvectors V1, ..., Vn EC" orthonormal basis Let $y \in \mathbb{C}^n$. Then, $y = \alpha_1 v_1 + \cdots + \alpha_n v_n$, $\alpha_i \in \mathbb{C}$ $y^{H}Ay = y^{H} \left(\alpha_{1} \beta_{1} V_{1} + \cdots + \alpha_{n} \beta_{n} V_{n} \right)$ $= \left(\alpha_{1} \left| \beta_{1} \right| \left| V_{1} \right| \right|^{2} + \cdots + \left| \alpha_{n} \left| \beta_{n} \right| \left| V_{n} \right| \right|^{2}$

 $= \lambda_1 |\alpha_1|^2 + \dots + \lambda_n |\alpha_n|^2, \quad \lambda_1 \geq \dots \geq \lambda_n$ Let $y \not\models \alpha$ unit vector. 11 y 1/2 = (d, v, + ··· + dn vn) H (d, v, + ··· + dn vn)

 $= \left| \left| \left| \left| \left| \left| \left| \right| \right| + \dots + \left| \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right| \right| = \right|$ y HAY achieves maximum " when | \a, 1 =]

minimum In (an)=

Proof

Poincaré's Inequality: Let S be a subspace of \mathbb{C}^n with dim(S) = k. There exist unit vectors $\mathbf{x}, \mathbf{y} \in S$ s.t. $\mathbf{x}^H \mathbf{A} \mathbf{x} \leq \lambda_k(\mathbf{A})$ and $\mathbf{y}^H \mathbf{A} \mathbf{y} \geq \lambda_{n+1-k}(\mathbf{A})$. Proof: Pick any Vk, ... , Vn orthonormel to C" V: → 7: (A) Let N = span { Vk ... , Vn } dim (N) = n-k+1. N must intersect S on at least a single line (because dim (S+N) = dim(S) + dim(N) -dim (SNN)) Pick any XESAN with 1191/2=1 $X \subseteq N \implies X = \sum_{i=p}^{n} \alpha_i V_i \qquad ||X||_{L^{-1}}, V_R, ..., V_h \text{ submod}$ $\Rightarrow \sum_{i=p}^{n} |\alpha_i|_{L^{-1}} |X|_{L^{-1}} |$ $\chi^{H}A\chi = \left(\sum_{i=1}^{n} \alpha_{i}^{*} v_{i}^{H}\right) \left(\sum_{i=1}^{n} \alpha_{i} \lambda_{i}(A) v_{i}\right) = \sum_{i=1}^{n} |\alpha_{i}| \lambda_{i}(A)$ The second part on be proved by setting A to -A.

Now let $S = Span \{V_1, \dots, V_K\}$, $V_i \rightarrow \mathcal{N}_i(A)$ VI,..., VE orthonomel $\lambda_k(A) = V_k^H \left(\lambda_k(A) V_k \right) = V_k^H A V_k = \min_{x \in S}$ $\leq \max_{S' \subseteq C'} \begin{pmatrix} m \cdot n & \chi + A \chi \\ \chi \in S' & \chi + A \chi \end{pmatrix}$ $\dim(S') = k \qquad ||\chi||_{L^{2}}$

Inequality.

On the other hand, from the Poincaré's Inequality $\pi_{K}(A) \geq \chi^{H} A \pi$ for some $\chi \in S \cap N$, $||\chi||_{2} = 1$ $\geq m_{N} \propto^{H} \Delta \chi$

Proof (cont'd)

Since S' can be any k-du subspace of In, $\Lambda_{k}(A) \geq \max_{S' \in C'} \min_{X \in S'} \chi^{H} A \chi$ $\Delta_{m(S)=k} ||X||_{l=1}$

Combining (1) and (2) gives nk (A) = mex min -The second equation can be proved similarly using the second part of Princeré's Irequolity.

Matrix Computations Chapter 4: Eigenvalues, Eigenvectors, and Eigendecomposition

Section 4.4 Power Iteration and QR Iteration

Jie Lu ShanghaiTech University

The Power Method

 A method for numerically computing an eigenvector of a given matrix

- Simple, though not the best in convergence speed
 - A comprehensive coverage of various computational methods for the eigenvalue problem can be found in Chapter 7 of textbook

• Suitable for large-scale sparse problems, e.g., PageRank

The Power Method/Power Iteration

Suppose $\mathbf{A} \in \mathbb{C}^{n \times n}$ admits an eigendecomposition $\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1}$

The eigenvalues of **A** are ordered as $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$

```
Algorithm: Power Method input: \mathbf{A} \in \mathbb{C}^{n \times n} and an initial guess \mathbf{v}^{(0)} \in \mathbb{C}^n for k = 1, 2, \ldots (until a termination criterion is satisfied ) \tilde{\mathbf{v}}^{(k)} = \mathbf{A}\mathbf{v}^{(k-1)} \mathbf{v}^{(k)} = \tilde{\mathbf{v}}^{(k)}/\|\tilde{\mathbf{v}}^{(k)}\|_2 \lambda^{(k)} = [\mathbf{v}^{(k)}]^H \mathbf{A}\mathbf{v}^{(k)} end output: \mathbf{v}^{(k)}, \lambda^{(k)}
```

Complexity per iteration: $O(n^2)$, or $O(nzz(\mathbf{A}))$ for sparse \mathbf{A}

Result: dist(span{ $\mathbf{v}^{(k)}$ }, span{ \mathbf{v}_1 }) \rightarrow 0 and $\lambda^{(k)} \rightarrow \lambda_1$ as $k \rightarrow \infty$

The convergence rates depend on $|\lambda_2|/|\lambda_1|$

Analysis of The Power Method

A has an eigendecomposition => I livearly independent V=[V, ··· Vn] eigenvectus

Let the initial guess

$$\mathbf{v}^{(0)} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{V}\alpha$$

bours of of We require $\alpha_1 \neq 0$ (random guess essentially works). Then,

$$\mathbf{A}^{k}\mathbf{v}^{(0)} = \mathbf{V}\Lambda^{k}\mathbf{V}^{-1}\mathbf{v}^{(0)} = \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}\mathbf{v}_{i} = \alpha_{1}\lambda_{1}^{k}\left(\mathbf{v}_{1} + \underbrace{\sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}\mathbf{v}_{i}}_{=\mathbf{r}^{(k)}}\right)$$

where $\mathbf{r}^{(k)}$ is a residual satisfying

$$\|\mathbf{r}^{(k)}\|_{2} \leq \sum_{i=2}^{n} \left| \frac{\alpha_{i}}{\alpha_{1}} \right| \left| \frac{\lambda_{i}}{\lambda_{1}} \right|^{k} \|\mathbf{v}_{i}\|_{2} \leq \left| \frac{\lambda_{2}}{\lambda_{1}} \right|^{k} \sum_{i=2}^{n} \left| \frac{\alpha_{i}}{\alpha_{1}} \right| \|\mathbf{v}_{i}\|_{2} \to 0 \text{ as } k \to \infty$$

Analysis of The Power Method (cont'd)

Note from the algorithm that $\mathbf{v}^{(k)} \in \operatorname{span}\{\mathbf{A}^k\mathbf{v}^{(0)}\}\$ In fact, it can be verified that $\mathbf{v}^{(k)} = \frac{\mathbf{A}^k\mathbf{v}^{(0)}}{\|\mathbf{A}^k\mathbf{v}^{(0)}\|_2}$

Hence, $\mathbf{v}^{(k)}$ converges to an eigenvector associated with λ_1 , i.e.,

$$\mathsf{dist}(\mathrm{span}\{\mathbf{v}^{(k)}\},\mathrm{span}\{\mathbf{v}_1\}) = O(|\tfrac{\lambda_2}{\lambda_1}|^k)$$

Accordingly,

$$\lambda^{(k)} - \lambda_1 = O(|\frac{\lambda_2}{\lambda_1}|^k)$$

The convergence is slow if $|\lambda_2|$ is closer to $|\lambda_1|$

The two conditions in red require that

- λ_1 is a dominant eigenvalue (i.e., > all the other eigenvalues in modulus)
- The initial guess has a component in the direction of the corresponding dominant eigenvector

Without these conditions, the power method does not necessarily converge

Deflation

- The power method only computes the dominant eigenvalue and eigenvector
- How can we compute all the eigenvalues with the corresponding eigenvectors?

Consider a Hermitian matrix **A** with $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$ Express **A** using the outer-product representation

$$\mathbf{A} = \sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{H} \qquad \forall \land \lor$$

Deflation: Use the power method to obtain \mathbf{v}_1 , λ_1 . Then, do the subtraction

$$\mathbf{A} - \lambda_1 \mathbf{v}_1 \mathbf{v}_1^H = \sum_{i=2}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^H + 0 \cdot \mathbf{V}_1 \mathbf{V}_1$$
 Apply the power method to the above matrix and obtain \mathbf{v}_2 , λ_2

Repeat until all the eigenvalues and eigenvectors are found

• Stop when completing the kth iteration gives the first k eigen-pairs

