FOR PU-19 U.S. DEPARTMENT OF COMMERCE ATTORNEY DOCKET NO.: 436/13 APPL. NO.: 10/735,988

APPL PU-19 U.S. DEPARTMENT OF COMMERCE ATTORNEY DOCKET NO.: 436/13 APPL. NO.: 10/735,988

APPLICANT: Somenath Mitra et al.

FILING DATE: December 15, 2003 GROUP ART UNIT: 3753—1724

U.S. PATENT DOCUMENTS

EXAMINER INITIAL		DOCUMENT NUMBER	DATE	NAME	CLASS	SUBCLASS	FILING DATE IF APPROPRIATE
	AA			·			

FOREIGN PATENT DOCUMENTS

							TRANSLATI	ЮИ
		DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	YES	NO
В	BA							

OTHER DOCUMENTS (including Author, Title, Date, Pertinent Pages, Etc.)

	CA	A. Friedberger et al.; A Versatile And Modularizable Micromachining Process For The Fabrication			
H FF		Of Thermal Microsensors And Microactuators; Journal of Micromechanics and Microengineering;			
	<u> </u>	9/7/2001; pp. 623-629.			
PHF	CB				
		Silicon Chip Thermocycler; Institute of Physical High Technology; 8/9/2001; pp. 1-16.			
₽#J	CC	John S. Suehle, et al.; Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In-Situ			
		Processing; IEEE Electron Device Letters; Vol. 14, No. 3, March, 1993; pp. 118-120.			
PH5	CD	*Yukikio Hosoda et al.; Fabrication And Applications Of Polymer-Based Microchannel-Heater			
		Chip As Microreactor; Micro Total Analysis Systems, 2002.			
	CE	*J. Laconte et al.; SOI CMOS Compatible Low-Power Microheater Optimization And Fabrication			
₽HZ		For Smart Gas Sensor Implementations; IEEE International Conference on Sensors; 2002.			
RH	CF	*Gwiy-Sang Chung et al.; The Fabrication Of Micro-Heaters With Low-Power Consumption			
		Using SOI And Trench Structures; Metals and Materials International; 2002.			
	CG	*V. Guarnieri et al.; Low-Power Silicon Microheaters On A Thin Dielectric Membrane With			
BAR		Thick-Film Sensing Layer For Gas Sensor Applications; Microelectronics, Microsystems and			
		Nanotechnology; 2000.			
Duc	CH	*Yaowu Mo et al.; Low-Voltage And Low-Power Optimization Of Micro-Heater And Its On-Chip			
RHE		Drive Circuitry For Gas Sensor Array; Sensors and Actuators, A: Physical, 2002.			

^{*}ABSTRACT ONLY

EXAMINER Robert H. Spitar

DATE CONSIDERED Ochober 3, 2005

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

OTHER DOCUMENTS (including Author, Title, Date, Perlinent Pages, Etc.)

Als	CI	*W. C. Tian et al.; Freestanding Microheaters In Si With High Aspect Ratio Microstructures; Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer Structures; 2002.		
RHS	CJ	*Tailian Chen et al.; Coalescence Of Bubbles In Nucleate Boiling On Microheaters; International Journal of Heat and Mass Transfer; 2002.		
P16	CK	*A. V. Korlyakov et al.; Infrared Microradiator Based On SiC-on Insulator Thin-Film Structures; Journal of Optical Technology; 2001.		
PUF	CL	*Y. Mo. et al.; Micro-Machined Gas Sensor Array Based On Metal Film Micro-Heater; Sensors and Actuators, B: Chemical; 2001.		
PHS	СМ	*Gwiy-Sang Chung et al.; Fabrication Of Pt Microheater Using Aluminum Oxide As A Medium Layer And Its Characteristics; Sensors and Materials; 1998.		
24s	CN	*Carole Rossi et al.; Realization And Performance Of Thin SiO2/SiNx Membrane For Microheater Applications; Sensors and Actuators, A: Physical; 1998.		

*ABSTRACT ONLY

EXAMINER Robert H. Spitzer

DATE CONSIDERED October 3, 2005

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.