Otimização de desempenho do esquema de assinatura digital Winternitz

Gustavo Zambonin

Universidade Federal de Santa Catarina Departmento de Informática e Estatística

gustavo.zambonin@grad.ufsc.br

Motivação

- ► Segurança de esquemas de assinatura digital baseada em problemas da teoria de números
 - ► Insuficiente no âmbito de algoritmos quânticos
 - Criptografia pós-quântica é independente destes problemas
- ► Funções de mão única são necessárias e suficientes para assinatura digital [Rom90]
 - ► Base teórica de funções de resumo criptográfico
 - Construção de esquemas baseados apenas nestas funçõess

Primitivas criptográficas

Função de resumo criptográfico

- ► SHA-2, SHA-3, BLAKE: $n \in \{224, 256, 384, 512\}$
- ► Keccak: qualquer *n*
- ► Resistência à pré-imagem, segunda pré-imagem, colisões

Primitivas criptográficas

Assinatura digital

- ► Provê autenticação, integridade e não-repúdio
- Baseada em criptografia de chaves públicas
- ► Tripla de algoritmos probabilísticos de tempo polinomial [Gol04]

Existem esquemas onde o par de chaves é de uso único

Esquema de assinatura única Winternitz

Etapa de geração de chaves

Tome uma mensagem M, $w \in \mathbb{N}$, w > 1, $f: \{0,1\}^n \longrightarrow \{0,1\}^n$ e $\mathcal{H}: \{0,1\}^* \longrightarrow \{0,1\}^n$. Então,

$$t_1 = \left\lceil rac{n}{w}
ight
ceil$$
 , $t_2 = \left\lceil rac{\lfloor log_2 t_1
floor + 1 + w}{w}
ight
ceil$ e $t = t_1 + t_2$.

As chaves privada e pública são, respectivamente,

$$S_k = (x_{t-1}, \dots, x_0) \stackrel{\$}{\longleftarrow} \{0, 1\}^n \text{ e}$$
 $\mathcal{P}_k = (f^{2^w-1}(x_{t-1}), \dots, f^{2^w-1}(x_0))$
 $= (y_{t-1}, \dots, y_0).$

Esquema de assinatura única Winternitz

Etapa de geração da assinatura

Os valores $\epsilon_i \in \{0,1\}^w$ são obtidos como a seguir:

$$\mathcal{H}(M) = \epsilon_{t-1} || \dots || \epsilon_{t-t_1}, \qquad c = \sum_{i=t-t_1}^{t-1} 2^w - 1 - \epsilon_i,$$

 $\mathcal{B}_1 = (\epsilon_{t-1}, \dots, \epsilon_{t-t_1}), \qquad \mathcal{B}_2 = (\epsilon_{t_2-1}, \dots, \epsilon_0).$

Finalmente, a assinatura de uso único é construída:

$$\sigma = (f^{\epsilon_{t-1}}(x_{t-1}), \ldots, f^{\epsilon_0}(x_0)).$$

Esquema de assinatura única Winternitz

Etapa de verificação da assinatura

Os elementos ϵ_i são também utilizados na verificação de σ :

$$\forall \sigma_i \in \sigma, f^{2^w-1-\epsilon_i}(\sigma_i) = y_i.$$

Resumidamente,

Esquemas baseados em árvores de Merkle

- Nó construído a partir da concatenação dos resumos de seus filhos
- ► Instância de esquema de assinatura única em cada folha da árvore
- ► Chaves públicas iniciarão a construção da árvore
- Winternitz e suas variantes disseminados em esquemas desta família

Panorama de esquemas baseados em funções de resumo criptográfico

- ► Introdução de um parâmetro de compensação no Winternitz
 - ► Pode ser aplicada em qualquer variante deste esquema
 - ► Afeta todo esquema baseado em árvores de Merkle

Melhora do desempenho da geração ou verificação de σ

- ▶ Busca de resumos cujo processamento é mais eficiente para um dos passos
- ► Escolher a mensagem $M' \leftarrow \lambda_i$ cuja $\mu(\mathcal{B}_1^i)$ é afastada da média
 - ▶ Limite de buscas codificado em $1 \le i \le R$
 - ► Amplitude de valores para $\mu(\mathcal{B}_1^i)$ cresce com R
- lacktriangle Minimização de $\mu(\mathcal{B}_1^i)$ traduz-se na otimização da geração de σ
- lacktriangle Maximização de $\mu(\mathcal{B}_1^i)$ permite a verificação eficiente de σ
 - lacktriangle Modificação de \mathcal{B}_2 para atingir ainda melhores resultados

Critérios para escolha de R

- ► Definição de limites para amplitude de $\mu(\mathcal{B}_1^i)$
 - ► Assegurar que *R* buscas criarão um valor bem-posicionado
 - Utilização da distribuição binomial
- ► $R \in \{25, 200, 3500\}$

Resultados

Parâmetros		Winternitz $(\#f)$		XMSS (ms)	
W	R	argmax	argmin	argmax	argmin
4	25 200 3500	16.71% 22.05% 27.64%	16.03% 21.41% 27.12%	13.22% 16.08% 21.94%	9.48% -3.60% -249.4%
8	25 200 3500	23.76% 30.96% 38.45%	19.32% 26.83% 34.83%	22.22% 28.62% 35.45%	14.67% 17.23% -8.55%
16	25 200 3500	34.35% 43.41% 52.23%	26.53% 36.48% 46.56%	_	

Aumento de eficiência do esquema com modificações em $\mu(\mathcal{B}_1^i)$.

Referências bibliográficas

Oded Goldreich.

Foundations of Cryptography: Volume 2, Basic Applications.
1st edition, 2004.

J. Rompel.

One-way functions are necessary and sufficient for secure signatures.

In Harriet Ortiz, editor, *Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing*, pages 387–394, May 1990.