Bayesian uncertainty quantification for synthesizing superheavy elements

——"粤港澳"核物理会议

报告人: 方岳平

指导老师: 祝龙

2024年11月15日-18日

广东·深圳

研究背景

超重核合成机制-误差来源

贝叶斯推断

结果与讨论

总结

合成超重新元素

自1940年以来,超铀元素合成不断取得重大突破,迄今已合成了26种化学元素已将元素周期表扩展至118号元素,取得了巨大成就!

极低的反应截面

L. C. SUN et al. PHYSICAL REVIEW C 110, 014319 (2024)

最近二十年,119和120号元素合成:

德国GSI: SHIP+TASCA

- × ²³⁸U+⁶⁴Ni → 120号元素, 2007年, σ ≤ 90 fb
- × ²⁴⁸Cm+⁵⁴Cr → 120号元素, 2011年, o≤ 560 fb
- × ²⁴⁹Bk+⁵⁰Ti → 119号元素, 2012年, 结果未发表
- × ²⁴⁹Cf+⁵⁰Ti → 120号元素, 2011年, 结果未发表

俄罗斯DUBNA: DGFRS

- × ²⁴⁴Pu+⁵⁸Fe → 120号元素, 2007年, σ ≤1.1 pb
- × ²³⁸U+⁶⁴Ni → 120号元素, 2009年, o≤ 90 fb

日本RIKEN,美国LBL......

回顾过去合成超重核的实验,超重核的合成是极具挑战的!

计算结果具有很强的模型依赖性

Ning Wang et al., Phys. Rev. C 84, 061601 (2011).

Nan Wang et al., Phys. Rev. C 84, 061601 (2011).

Z.H. Liu et al., Phys. Rev. C 84, 031602(R) (2011).

K. Siwek-Wilczynska et al., Phys. Rev. C 99, 054603 (2019).
K.P. Santhosh et al., Phys. Rev. C 96, 034610 (2017).

K. Siwek-Wilczynska et al., Phys. Rev. C 86, 014611 (2012).
A.N. Kuzmina et al., Phys. Rev. C 85, 014319 (2012).
Jinjuan Zhang et al., Nucl. Phys. A 909, 36 (2013).
Z.H. Liu, J.D. Bao, Phys. Rev. C 87, 034616 (2013).
V.I. Zagrebaev, W. Greiner, Nucl. Phys. A 944, 257 (2015).
G. G. Adamian et al., Phys. Part. Nucl. 47, 387 (2016).
A. Ansari et al., Int. J. Mod. Phys. E 26, 1750050 (2017).

截面误差达到了2-3个数量级!

最佳能量有10 MeV的差异!!

模型依赖问题!

J. M. Gates et al., PRL 133, 172502 (2024)

口 弥散参数
$$\rho_1(\mathbf{r}, \theta_1) = \frac{\rho_0}{1 + \exp[(\mathbf{r} - \mathbf{R}_1(\theta_1))/a_I]}$$

口 裂变位垒阻尼因子
$$B_f(E^*) = B_{mac}^0 (1 - x_{ld}^2 T^2) - E_{sh}^0 e^{-E^*/E_d}$$

口 能级密度参数
$$\rho_f(E^*,J) = K_{coll} \frac{(2J+1)\sqrt{a_f}}{24(E^*-\delta-E_{rot})^2} (\frac{h^2}{\zeta})^{3/2} \exp[2\sqrt{a_f(E^*-\delta-E_{rot})}]$$
 $a_n = \frac{A}{12}, \frac{a_f}{a_n}$

参数不确定性

- $\Box a, a_f/a_n, E_d$ 如何影响 σ_{ER} 与 最佳能量?
- 口如何约束参数范围?
- 口参数之间存在何种关联?

贝叶斯推断

贝叶斯定理:
$$P(X \mid M) = \frac{P(M \mid X)P(X)}{\int P(M \mid X)P(X)dX} \propto P(M \mid X)P(X)$$

 $P(X \mid M)$: 给定观测数据集M的模型参数X的后验概率

 $P(M \mid X)$: 给定理论模型参数X正确预测数据M的似然函数

P(X):基于先验知识的先验概率

先验概率: 模型参数均匀分布在经验区间

Posterior $P(X|M) \propto P(M|X) \times P(X)$

Gaussian process (GP) – 预测DNS模型输出
$$\longrightarrow$$
 $P(M^{\text{exp}}|X) \propto \exp\left\{-\frac{1}{2}(M^{\text{emu}}-M^{\text{exp}})^T \Sigma_M^{-1}(M^{\text{emu}}-M^{\text{exp}})\right\}.$

MCMC method – 获得后验的近似分布
$$\Rightarrow$$
 接受新值的概率 $P = \min\left(1, \frac{P(X^{t+1})P(M \mid X^{t+1})}{X^tP(M \mid X^t)}\right), \quad \left\{\begin{array}{c} u < p,$ 接受新值 (Metropolis-Hastings algorithm) $u \geq U[0,1] \end{array}\right.$

舍去预热阶段的抽样 分析达到平衡分布后的样本

a, E_d 和 a_f/a_n 与最佳能量的关联

OEE = OIE + Q-value

OEE: optimal excition energy

OIE: optimal incident energy

Q value: use Myers mass table

参数	下限	上限
<i>a</i> (fm)	0.50	0.62
$E_{\rm d}$ (MeV)	12	32
$a_{\mathrm{f}}/a_{\mathrm{n}}$	0.95	1.20

- 口 a 与 OEE 存在强关联(负相关)
- DE_d 和 a_f/a_n 与 OEE 关联不大
- 口 a 对 OEE 是十分敏感的

贝叶斯推断的观测量

实验数据丰富,最佳能量清晰 (Dubna)

口弥散参数 a

口裂变位垒阻尼因子 E_d

口能级密度 $a_{\rm f}/a_{\rm n}$

a, E_d 和 a_f/a_n 之间的关联

Probability density $E_{\rm d}$ (MeV) 1.095

贝叶斯推断的末态信息, a, E_d , a_f/a_n 的后验分布

	平均值	1σ置信区间	2σ置信区间
<i>a</i> (fm)	0.586	0.586~0.587	0.585~0.589
$E_{\mathbf{d}}$ (MeV)	25.65	23.93~27.38	22.24~29.08
$a_{\mathrm{f}}/a_{\mathrm{n}}$	1.081	1.070~1.092	1.059~1.102

2σ 置信区间:

$$a = 0.586^{+0.002}_{-0.002} \text{ fm}, \quad E_d = 25.65^{+3.43}_{-3.41} \text{ MeV} \ \ a_f/a_n = 1.081^{+0.021}_{-0.021}$$

口 物理参数之间是有关联的, E_d 与 a_f/a_n 正相关, 皮尔逊系数=0.97

Y. P. Fang, Z. P. Gao, ..., L. Zhu et al., Phys. Lett. B 858 (2024) 139069

贝叶斯推断得到的末态信息,

 $^{48}\text{Ca} + ^{243}\text{Am} \rightarrow 115$

ERCS 与 OEE 的 2σ 置信区间:

- 口在 2σ 置信区间下,各n蒸发道的 ERCS 的置信区间都在1个数量级之内
- □ OIE 置信区间为199.5 ~ 200.9 MeV
- 口 将参数之间关联视为独立是不合理的

Y. P. Fang, Z. P. Gao, ..., L. Zhu et al., Phys. Lett. B 858 (2024) 139069

预测 54 Cr + 243 Am \rightarrow $^{297-xn}119$ + xn (IMP)

在参数分布中随机抽取50组参数, DNS 模型计算得到的截面与

Excitation energy (MeV)

OEE 的 1σ 和 2σ 置信区间:

OIE定率: 弱模型依赖的结果 **OIE** = 241.6 MeV

Y. P. Fang, Z. P. Gao, ..., L. Zhu et al., Phys. Lett. B 858 (2024) 139069

- 口 在 2σ 置信区间下,各n蒸发道的 ERCS 的置信区间都在1个数量级之内
- □ ⁵⁰Ti + ²⁴⁹Bk→119 OIE 置信区间为222.8 ~ 225.1 MeV
- □ ⁵¹V + ²⁴⁸Cm→119 OIE 置信区间为227.1 ~ 229.3 MeV

- 在2 σ 置信区间下,关键参数 a, E_d , a_f/a_n 范围分别为 $a = 0.586^{+0.002}_{-0.002}$ fm, $E_d = 25.65^{+3.43}_{-3.41}$ MeV 和 $a_f/a_n = 1.081^{+0.021}_{-0.021}$
- 最佳入射能量 (OIE) 弱依赖于裂变过程,对 E_d , a_f/a_n 不敏感,随 a 增大而降低
- 关键参数之间存在关联($E_{\rm d}$ 与 $a_{\rm f}/a_{\rm n}$ 呈正相关),视参数之间为独立的去传播模型的不确定性是不合理的
- 在2σ置信区间下, ⁵⁴Cr+²⁴³Am, ⁵⁰Ti+²⁴⁹Bk 和 ⁵¹V+²⁴⁹Cm反应体系, OIE的置信区间分别为238.1 ~ 240.2, 222.8 ~ 225.1和227.1 ~ 229.3 MeV

谢谢大家!