CPSC 322: Introduction to Artificial Intelligence (Section 2)

Solving CSPs using arc consistency and domain splitting

Do this exercise in pairs. If there's an odd number, do it in a group of 3.

Submit the sheet before leaving.

Name of Student (last, first)	Student Number

Question1: Arc consistency

Consider the following subset of the constraint network we worked on last week. Trace the arc consistency algorithm on the network. Show at least 4 to 6 iterations. For each iteration, show TDA and domain values.

Variables:

Google (G), Facebook (F), OpenAI (O), Apple (A)

Start

TDA =

$$\{ \langle F, G \neq F \rangle, \langle F, F \neq O \rangle, \langle O, G \neq O \rangle, \langle O, F \neq O \rangle, \langle O, O \neq A \rangle, \langle A, O \neq A \rangle, \langle G, G \neq F \rangle, \langle G, G \neq O \rangle \}$$

Domains: G = {1}; F = {1,2,3}; O = {1,2,3}; A = {2}

Iteration 1

Select arc $\langle F, \text{not}(G = F) \rangle$

TDA =

$$\{ \langle F, F \neq O \rangle, \langle O, G \neq O \rangle, \langle O, F \neq O \rangle, \langle O, O \neq A \rangle, \langle A, O \neq A \rangle, \langle G, G \neq F \rangle, \langle G, G \neq O \rangle \}$$

Check $\langle F, \text{not}(G = F) \rangle$ for consistency.

1 removed from the domain of F to make arc $\langle F, \text{not}(G=F) \rangle$ consistent.

New domains: $G = \{1\}$; $F = \{2,3\}$; $O = \{1,2,3\}$; $A = \{2\}$

Affected arcs due to domain pruning: <0, not(F=0)>

Not adding the affected arcs in TDA because they are already there.

Iteration 2

Select arc $\langle F, \text{not}(F = O) \rangle$

TDA =

$$\{ < O, G \neq O >, < O, F \neq O >, < O, O \neq A >, < A, O \neq A >, < G, G \neq F >, < G, G \neq O > \}$$

Check $\langle F, \text{not}(F = O) \rangle$ for consistency.

The arc is consistent and the domains do not change.

Domains: $G = \{1\}$; $F = \{2,3\}$; $O = \{1,2,3\}$; $A = \{2\}$

Iteration 3

Select arc <O, not(G=O)>

$$TDA = \{ < O, F \neq O > , < O, O \neq A > , < A, O \neq A > , < G, G \neq F > , < G, G \neq O > \}$$

Check <O, not(G = O)> for consistency.

1 removed from the domain of O to make arc <0, not(G=O)> consistent.

New domains: $G = \{1\}$; $F = \{2,3\}$; $O = \{2,3\}$; $A = \{2\}$

Affected arcs due to domain pruning: <F, not(F=O) >, <A, not(O=A)>

TDA=

$$\{ \langle O, F \neq O \rangle, \langle O, O \neq A \rangle, \langle A, O \neq A \rangle, \langle G, G \neq F \rangle, \langle G, G \neq O \rangle, \langle F, F \neq O \rangle \}$$

Iteration 4

Select <O, not(F=O)>

TDA = {
$$< O, O \ne A >$$
, $< A, O \ne A >$, $< G, G \ne F >$, $< G, G \ne O >$, $< F, F \ne O >$ } Check $<$ O, not(F=O)> for consistency.

The arc is consistent and the domains do not change.

Domains: $G = \{1\}$; $F = \{2,3\}$; $O = \{2,3\}$; $A = \{2\}$

Iteration 5

Select <O, not(O=A)>

$$TDA = \{ \langle A, O \neq A \rangle, \langle G, G \neq F \rangle, \langle G, G \neq O \rangle, \langle F, F \neq O \rangle \}$$

Check <O, not(O=A)> for consistency.

2 removed from the domain of O to make arc <0, not(O=A)> consistent.

New domains: $G = \{1\}$; $F = \{2,3\}$; $O = \{3\}$; $A = \{2\}$

Affected arcs due to domain pruning: <F, not(F=O)>, <G, not(G=O)>

Arcs are already on TDA so not adding them.

.... continue till you get an arc-consistent network

Question 2: Domain splitting

Variables: A, B, C; Domains: $\{1,2,3,4\}$; Constraints: A = B, B = C, A = CSolve this CSP using arc consistency and domain splitting. How many solutions are there?

