Disentangling Degree-related Biases and Interest for Out-of-distribution Generalized Directed Network Embedding

2023.02.02

Hyunsik Yoo

^{*} This is a joint work with Prof. Sang-Wook Kim and Dr. Yeon-Chang Lee at Hanyang Univ., and Prof. Kijung Shin at KAIST

Background: Network Embedding (NE)

- □ Represents nodes in a given network as low-dimensional vectors that preserve the structural properties of the network
 - e.g., proximity between nodes

- ☐ The learned embeddings can be used as informative features of nodes in various downstream network mining tasks
 - Link prediction → Our focus
 - Node clustering/classification
 - Recommendation

Background: Directed Network

☐ A directed network

- \blacksquare A directed edge from node i to j expresses an asymmetric relationship (or proximities) between two nodes
- A toy example on Instagram

- ☐ To capture such asymmetric relationships accurately, various directed network embedding (DNE) methods have been proposed
 - APP [AAAI'17]
 - ATP [AAAI'19]
 - NERD [ECML-PKDD'19]
 - GVAE [CIKM'19]

- DiGCN [NeurIPS'20]
- MagNet [NeurlPS'21]
- DGGAN [AAAI'21]

Background: Directed Network (cont'd)

 \square Given a directed edge from i to j,

- \blacksquare Distinguish the source node i and the target node j according to their roles
- Learn a source embedding and a target embedding, which preserve the node's properties as sources and targets

Motivation

- □ Existing DNE methods lack out-of-distribution (OOD) generalization abilities against degree-related distributional shifts
 - They assume that, in link prediction, the degree distribution of the training and test data are identical
- □ However, in real-world scenarios, degree-related distributional shifts occur frequently → ruining the identical distribution (ID) assumption!
 - Preferential attachment
 - Fitness model: it is also common that dominant hubs are overtaken by "new kids on the block" with higher fitness
 - $\square e.g.$, Google passed established search engines, such as Alta Vista

Motivation (cont'd)

☐ Link prediction accuracy of the existing methods in ID / non-ID settings

■ The accuracies of all methods <u>significantly degrade in the non-ID settings compared</u> to the ID settings

Proposed Method

□ Our idea: model and exploit biases related to node degrees for robustness against degree-related distributional shifts in DNE

- □ Propose ODIN (Out-of-Distribution Generalized Directed Network Embedding), which is designed to answer the following questions:
 - 1. How to model the formation of each directed edge?
 - □ Define six node factors that can influence the formation of a directed edge from source to target
 - 2. How to leverage such modeled factors for learning OOD generalized embeddings?
 - ☐ Learn multiple factor embeddings, each of which preserves its desired factor

Overview of ODIN

(STAGE 1) Factor Modeling

 \square Model the formation of each directed edge (v_i, v_j) based on six node factors grouped as follows:

1. Authority factors

- \blacksquare (a) The target v_j 's authority status (a-target) and (b) the source v_i 's bias toward authorities (a-source)
- \blacksquare They together model a bias related to target v_i 's authority status (i.e., in-degree)

 \square Model the formation of each directed edge (v_i, v_j) based on six node factors grouped as follows:

2. Hub factors

- \blacksquare (a) The source v_i 's hub status (h-source) and (b) the target v_j 's bias toward hubs (h-target)
- \blacksquare They together model a bias related to source v_i 's hub status (i.e., out-degree)

 \square Model the formation of each directed edge (v_i, v_j) based on six node factors grouped as follows:

3. Interest factors

- \blacksquare (a) The source v_i 's intrinsic property as a source (i-source) and (b) the target v_j 's intrinsic property as a target (i-target)
- They together model the pure interest in forming an edge from v_i to v_j after removing degree-related biases

- \square Represent a node v_i as six factor \square Concatenate sub-embeddings sub-embeddings
 - Source role: \mathbf{a}_{i}^{src} , \mathbf{h}_{i}^{src} , \mathbf{i}_{i}^{src}
 - Target role: \mathbf{a}_{i}^{tar} , \mathbf{h}_{i}^{tar} , \mathbf{i}_{i}^{tar}

- Concatenate the three factor sub-embeddings as a source/target
 - $\blacksquare \mathbf{s}_i = a_i^{src} \oplus h_i^{src} \oplus i_i^{src},$
 - $\blacksquare \mathbf{t}_i = a_i^{tar} \oplus h_i^{tar} \oplus i_i^{tar}$

Six Node Factors

Disentangled Source/Target Embeddings

□ Compute three factor scores based on the six factor sub-embeddings

 \blacksquare Represent how much (a) the authority factor, (b) the hub factor, and (c) the interest factor affect the formation of the directed edge (v_i, v_j)

(a)
$$s_{ij}^{auth} = \mathbf{a}_i^{src} \circ \mathbf{a}_j^{tar}$$
 (b) $s_{ij}^{hub} = \mathbf{h}_i^{src} \circ \mathbf{h}_j^{tar}$ (c) $s_{ij}^{int} = \mathbf{i}_i^{src} \circ \mathbf{i}_j^{tar}$

 \blacksquare Represent the likelihood of the formation of a directed edge (v_i, v_i)

$$s_{ij}^{edge} = s_{ij}^{auth} + s_{ij}^{hub} + s_{ij}^{int} (= s_i \circ t_i)$$

Page 13 / 36

(STAGE 2) Negative Sampling

 \Box For each existent edge (v_i, v_j) , sample different types of training instances (i.e., triplets) for embedding learning

 \square Add $(v_i, v_j, v_{i'})$ to the sets $A_>$ (for type 1) or $A_<$ (for type 2)

- Aid in capturing the influence of the bias related to the target's in-degree
- $\blacksquare A = A_{>} \cup A_{<}$

target

target

(STAGE 2) Negative Sampling (cont'd)

 \Box For each existent edge (v_i, v_j) , sample different types of training instances (i.e., triplets) for embedding learning

Positive source Negative source

- \square Add $(v_i, v_i, v_{i'})$ to the sets $H_>$ (for type 3) or $H_<$ (for type 4)
 - Aid in capturing the influence of the bias related to the source's out-degree
 - $\blacksquare H = H_{>} \cup H_{<}$

(STAGE 3) Disentangled Embedding Learning

- ☐ Learn the disentangled source and target embeddings of each node based on the sampled instances via the three objectives
 - 1. L_{edge} : preserve asymmetric proximity between nodes in the input network
 - 2. L_{disA} : disentangle the authority factor from the other two factors
 - 3. L_{disH} : disentangle the hub factor from the other two factors

Loss Function: Multi-Objective Learning

$$L = L_{edge}(A \cup H) + \alpha (L_{disA}(A) + L_{disH}(H))$$

- 1 Preserving2 Disentangling the authority3 Disentangling the authority asymmetric proximities factor from the others factor from the others

However, L_{edge} alone does not contribute to preserving the desired factor in each factor sub-embedding

$$L = L_{edge}(A \cup B) + \alpha (L_{disA}(A) + L_{disH}(H))$$

- 1 Preserving 2 Disentangling the authority 3 Disentangling the authority asymmetric proximities factor from the others factor from the others

$$2 L_{disA}(A) = L_{auth}(A_{>}) + L_{auth}(A_{<}) + L_{hub+int}(A_{<})$$

$$\rightarrow \text{For} (v_i, v_j, v_{j'}) \text{ in } A_{>}, \ s_{ij}^{auth} > s_{ij'}^{auth}$$

- \square The authority status (i.e., in-degree) of v_i is higher than that of $v_{i'}$
- ☐ Thus, if authority-factor scores capture the biases towards authorities, as desired, $s_{ii}^{auth} > s_{ii'}^{auth}$ should hold!

$$L = L_{edge}(A \cup B) + \alpha (L_{disA}(A) + L_{disH}(H))$$

- 1 Preserving 2 Disentangling the authority 3 Disentangling the authority asymmetric proximities factor from the others factor from the others

2
$$L_{disA}(A) = L_{auth}(A_{>}) + L_{auth}(A_{<}) + L_{hub+int}(A_{<})$$

$$\rightarrow \text{For}\left(v_i, v_j, v_{j'}\right) \text{ in } A_{<}, \ s_{ij}^{auth} < s_{ij'}^{auth}$$

- \square The authority status (i.e., in-degree) of v_i is lower than that of $v_{i'}$
- ☐ Thus, if authority-factor scores capture the biases towards authorities, as desired, $s_{ii}^{auth} < s_{ii'}^{auth}$ should hold!

$$L = L_{edge}(A \cup B) + \alpha (L_{disA}(A) + L_{disH}(H))$$

- 1 Preserving 2 Disentangling the authority 3 Disentangling the authority asymmetric proximities factor from the others factor from the others

$$2 L_{disA}(A) = L_{auth}(A_{>}) + L_{auth}(A_{<}) + L_{hub+int}(A_{<})$$

$$ightharpoonup$$
 For $\left(v_i,v_j,v_{j'}\right)$ in $A_{<}$,
$$s_{ij}^{hub}+s_{ij}^{int}>s_{ij'}^{hub}+s_{ij'}^{int}$$

- \square Even though $s_{ij}^{auth} < s_{ii'}^{auth}$ holds, s_{ii}^{edge} should become higher than $s_{ii'}^{edge}$
- \Box Thus, we can imply the following inequality $s_{ij}^{hub} + s_{ij}^{int} > s_{ij}^{hub} + s_{ij}^{int}!$

- Preserving
 Disentangling the authority
 Disentangling the hub asymmetric proximities factor from the others
 - factor from the others

For
$$(v_i, v_j, v_{i'})$$
 in $H_{<}$,
$$s_{ij}^{auth} + s_{ij}^{int} > s_{i'j}^{auth} + s_{i'j}^{int}$$

Final Embeddings

- ☐ Sub-embeddings capture degree-related biases and interest separately
- ☐ Thus, final embeddings are robust to the shifts in degree distributions

Experimental Settings

□ Datasets

Datasets	GNU	Wiki	JUNG	Ciao
Nodes	6,301	7,115	6,120	4,658
Edges	20,777	103,689	50,535	40,133
Reciprocity	0.00%	5.64%	0.90%	34.90%
Types	P2P	Election	Software	Trust

☐ Nine competitors

- 2 undirected NE methods
 - □ DeepWalk [KDD'14]
 - □Node2Vec [KDD'16]
- 7 directed NE methods
 - □ APP [AAAI'17]
 - □ATP [AAAI'19]
 - □ NERD [ECML-PKDD'19]

- ☐GVAE [CIKM'19]
- □ DiGCN [NeurIPS'20]
- ☐ MagNet [NeurlPS'21]

Non-ID Settings

- □ Design two types of non-ID settings by splitting the edges in an input network into training and test sets with different degree distributions
 - 1. Non-ID (in), where in-degree distributions are different
 - \square Each edge (v_i,v_j) is sampled into the test set with $p_{ij}^{in} \propto d_{in}(v_j)^k$
 - 2. Non-ID (out), where out-degree distributions are different
 - \square Each edge (v_i,v_j) is sampled into the test set with $p_{ij}^{out} \propto d_{out}(v_i)^k$
- \square Control the level of distributional shifts by using k
 - \blacksquare When k is 0, test edges are randomly sampled (i.e., ID setting)
 - When k is -1, test edges are sampled inversely proportional to the out-degree of the source nodes or in-degree of the target nodes (i.e., Shifts are strong)

Evaluation Task: Link Prediction (LP)

☐ How accurately we can predict the directed edges removed from the input directed network?

□ Evaluation protocol

- Consider the existent edges as positive examples
- Perform two LP tasks, which depend on how we sample the negative examples
 - □ Uniform LP (U-LP): consider the non-existent edges sampled uniformly at random as negative examples
 - □ Biased LP (B-LP): consider the edges with the opposite directions to (unidirectional) positive examples as negative examples
- Measure classification accuracy using area under curve (AUC)

Questions to Be Answered

- □ RQ1: Does ODIN outperform its competitors under distributional shifts in degree distributions?
- □ RQ2: How robust is ODIN under various levels of distributional shifts in degree distributions?

□ RO3: Is factor disentanglement effective in ODIN?

□ RQ4: How sensitive is ODIN to its hyperparameters?

Note: k is fixed to -1 for RQ1, RQ3, and RQ4 (in $p_{ij}^{in} \propto d_{in}(v_j)^k$ or $p_{ij}^{out} \propto d_{out}(v_i)^k$)

Results for RQ1

☐ Comparison with nine competitors

(a)	Non	-ID	(in))
٠,				\	۲.

					. ,	. ,					
Datasets	Tasks	Undire DeepWalk	cted NE Node2Vec	APP	GVAE	NERD	Directed NE ATP	DiGCN	MagNet	DGGAN	ODIN
GNU	U-LP	0.593±0.005	0.587±0.004	0.675±0.003	0.675±0.003	0.683±0.008	0.731±0.003	0.729±0.001	0.742±0.001	0.722±0.003	0.760±0.004
	B-LP	0.648±0.006	0.621±0.010	0.700±0.006	0.748±0.013	0.838±0.004	0.910±0.002	0.878±0.003	0.900±0.004	0.901±0.003	0.924±0.001
Wiki	U-LP	0.806±0.001	0.804±0.002	0.795±0.001	0.820±0.005	0.828±0.001	0.827±0.002	0.729±0.002	0.865±0.001	0.890±0.001	0.905±0.001
	B-LP	0.852±0.002	0.855±0.007	0.637±0.008	0.901±0.012	0.915±0.002	0.954±0.001	0.862±0.002	0.928±0.001	0.963±0.001	0.973±0.001
JUNG	U-LP	0.725±0.005	0.777±0.006	0.741±0.002	0.820±0.003	0.784±0.006	0.864±0.001	0.817±0.004	0.816±0.002	0.879±0.003	0.884 ± 0.002
	B-LP	0.810±0.005	0.861±0.005	0.772±0.005	0.902±0.006	0.883±0.005	0.961±0.001	0.926±0.001	0.891±0.003	0.964±0.002	0.969 ± 0.001
Ciao	U-LP	0.776±0.004	0.778±0.002	0.846±0.001	0.841±0.002	0.857±0.002	0.846±0.002	0.641±0.004	0.847±0.001	0.886±0.001	0.892±0.001
	B-LP	0.688±0.005	0.725±0.006	0.768±0.002	0.797±0.004	0.869±0.006	0.887±0.003	0.751±0.006	0.873±0.004	0.912±0.003	0.914±0.003
(b) Non-ID (out)											
		TT., 42	-4 - 4 NTC	1			D:4 - 4 NIE				

Undirected NE Directed NE

- Best competitors change depending on tasks, datasets, and non-ID settings
- ODIN is effective compared to all the competitors in addressing the OOD generalization problem against degree-related distributional shifts on directed NE

B-LP	0.635±0.011	0.695 ± 0.004	0.597±0.004	0.684 ± 0.008	0.750 ± 0.004	0.867 ± 0.003	0.836 ± 0.003	0.827 ± 0.003	0.871 ± 0.002	0.883 ± 0.003

Results for RQ2

\square Effect of k on the link prediction performance

- In the ID setting (i.e., k=0), the AUCs of ODIN are comparable to or higher than that of the strongest competitors
- ODIN shows the smallest accuracy degradation and, accordingly, the accuracy gain
 of ODIN against competitors steadily increases
- The results indicate that ODIN obtains OOD generalized embeddings robust to degree-related distributional shifts

Results for RQ3-1

□ RQ3-1: Is each of two disentanglement losses effective in ODIN?

 \blacksquare ODIN_A vs ODIN_{dis_A}

Datasets Tasks		$ODIN_A$	$ODIN_{disA}$
GNU	U-LP	0.632±0.005	0.763±0.004
	B-LP	0.704±0.010	0.927±0.001
Wiki	U-LP	0.842±0.002	0.896±0.001
	B-LP	0.918±0.001	0.965±0.001
JUNG	U-LP	0.825±0.004	0.878±0.003
	B-LP	0.929±0.003	0.966±0.002
Ciao	U-LP	0.820±0.003	0.890±0.001
	B-LP	0.788±0.009	0.912±0.002

ODIN_A: only uses the edge loss based on A
ODIN_{disA}: additionally uses the disA loss based on A

 \blacksquare ODIN_H vs ODIN_{dish}

Datasets	Tasks	$ODIN_H$	$ODIN_{disH}$	
GNU	U-LP	0.604±0.010	0.678±0.001	
	B-LP	0.669±0.015	0.820±0.010	
Wiki	U-LP	0.793±0.007	0.898±0.001	
	B-LP	0.863±0.011	0.968±0.001	
JUNG	U-LP	0.714±0.006	0.884±0.002	
	B-LP	0.830±0.004	0.970±0.001	
Ciao	U-LP	0.853±0.001	0.886±0.001	
	B-LP	0.867±0.005	0.909±0.002	

 $ODIN_H$: only uses the edge loss based on H

 $ODIN_{disH}$: additionally uses the disH loss based on H

■ Each of the disentanglement losses is effective in obtaining embeddings robust to distributional shifts in degree distributions

Results for RQ3-2

□ RQ1-2: Is jointly using the both losses effective in ODIN?

(a) Non-ID (in)

Datasets	Tasks	Tasks $ODIN_A$ $ODIN_{disA}$		$ODIN_H$	$ODIN_{disH}$	ODIN
GNU	U-LP	0.632±0.005	0.763±0.004	0.604±0.010	0.678±0.001	0.760±0.004
GNU	B-LP	0.704±0.010	0.927±0.001	0.669±0.015	0.820±0.010	0.924±0.001
Wiki	U-LP	0.842±0.002	0.896±0.001	0.793±0.007	0.898±0.001	0.905±0.001
WIKI	B-LP	0.918±0.001	0.965 ± 0.001	0.863±0.011	0.968±0.001	0.973±0.001
HING	U-LP	0.825±0.004	0.878±0.003	0.714±0.006	0.884±0.002	0.884±0.002
JUNG	B-LP	0.929±0.003	0.966±0.002	0.830±0.004	0.970±0.001	0.969±0.001
	U-LP	0.820±0.003	0.890±0.001	0.853±0.001	0.886±0.001	0.892±0.001
Ciao	B-LP	0.788±0.009	0.912±0.002	0.867±0.005	0.909 ± 0.002	0.914±0.003

- \blacksquare Superiority between $ODIN_{disA}$ and $ODIN_{disH}$ varies depending on datasets
- \blacksquare ODIN outperforms ODIN_{disA} and ODIN_{disH} in most cases
 - □That is, ODIN can selectively adopt the factor(s) beneficial in each dataset, thereby improving the robustness of embeddings in all datasets

Results for RQ4

\square How the parameter α affects the accuracy of ODIN

- \blacksquare AUCs of ODIN steadily increase until α reaches 0.4 and then the AUCs converge
- ODIN is not highly sensitive to the weight for factor disentanglement

Conclusions

- □ We pointed out that the existing directed NE methods face difficulties in effectively addressing the OOD generalization problem
- ☐ We proposed ODIN, which models multiple factors in the formation of directed edges and learns nodes' multiple factor sub-embeddings

☐ Through extensive experiments, we showed clearly the effectiveness of our strategies for factor modeling and disentangled embedding learning