Kausalität in der Datenauswertung

Christoph Euler 13. Januar 2020

Datenauswertung: Statistische Aussagen, Vorhersagen und Kausalität

Datenauswertung Kausalität **Statistische Aussagen** Vorhersagen Aufgaben: Aufgaben: **Aufgaben:** Informationen über eine Information über einen Ursache-Wirkung-Population ermitteln einzelnen (unbekannten) Beziehungen zwischen Attributen ermitteln Datenpunkt Aussagen darüber ableiten, in welchem Verhältnis ein Für Variablen X und Y Lernen über Daten, die nicht Datenpunkt zu allen anderen vorliegen, aber vorliegen ermitteln, ob eine kausale steht könnten Wirkung von X auf Y existiert Werkzeug: Werkzeug: Werkzeug: ? Statistik **Korrelation/Machine Learning**

Ziel dieser Vorlesung: Einführung in Möglichkeiten, kausale Wirkungen zu beschreiben Nicht Ziel der Vorlesung: Experimentelles Design

Spricht Sie Werbung für Eis an?

 $Quelle: https://www.scoopon.com.au/deals/70390/-1-scoop-of-ice-cream-new-zealand-natural-bondi, abgerufen am 12.1.2020 \ um 14:32.$

Ursache und Wirkung grafisch dargestellt

Kausalität: Unterschied in Y (Eis-Kauf) durch X (Werbung), der nicht eingetreten wäre, wenn X (Werbung) nicht passiert wäre

→ Kausalen Effekt messen als Differenz von Kauf mit Werbung und Kauf ohne Werbung

Idee für ein Experiment: (20.000 Touristen)

Gruppe 1: Sieht keine Werbung

Gruppe 2: Sieht Werbung

ID	Aktion	Kauf ohne Werbung	Kauf mit Werbung	Effekt*
1	Werbung	Nein*	Ja	Ja
2	Werbung	Nein*	Nein	Nein
3	Keine Werbung	Nein	Ja*	Ja
4	Keine Werbung	Ja	Nein*	Ja
5	Werbung	Ja*	Ja	Nein
	•••	•••		•••

Problem: Wir können nicht jede einzelne Person beobachten.

^{*} Nicht beobachtbar ("Counterfactual") -> Daten können prinzipiell nicht erhoben werden

Lösung für Counterfactuals-Problem: Betrachte Effekt der Werbung nur "im Mittel" der Gruppen

Problem: Counterfactuals (niemand kann Daten erheben, die es nicht geben kann, da nicht jede einzelne Person beobachtbar ist)

Frage: Wie können Daten trotzdem genutzt werden?

Lösung: Betrachte kausalen Effekt nur im Mittel der Stichprobe ("durchschnittlicher Effekt")

	Ohne Werbung	Mit Werbung	Differenz (M-O)
Verkauftes Eis	500/10.000 (5%)	540/10.000 (5,4%)	0,4%

Ist Werbung erfolgreich? – Ja!

Aufteilung der Stichprobe in Untergruppen kann problematisch sein

Aufgabe: Weiterreichende Analyse nach geringem / hohem Tourismusaufkommen

Frage: Hängt der Effekt der Werbung davon ab, wie viele Touristen in der Stadt sind?

Tourismus	Ohne Werbung	Mit Werbung	Differenz (M-O)
Gesamt	500/10.000 (5%)	540/10.000 (5,4%)	0,4%
Gering	100/4000 (2,5%)	40/2000 (2%)	-0,5%
Hoch	400/6000 (6,6%)	500/8000 (6,3%)	-0,3%

Verhältnis "ohne" : "mit" = 1:1

Verhältnis

"ohne": "mit" = 2:1

Verhältnis

"ohne": "mit" = 3:4

- → Mit diesen Daten keine Aussage zu Untergruppen möglich, da Verhältnisse verzerrt
- → Im Experiment müssen die zu untersuchenden (Unter-) Gruppen gleich behandelt werden: Verzerrung der (Unter-) Stichproben ("Sampling Bias") vermeiden

Verzerrte Stichproben verfälschen kausale Aussagen.

Kausalität: Unterschied in Y durch X, der nicht eingetreten wäre, wenn X nicht geändert worden wäre und alle anderen Faktoren gleich sind

Problem: Verzerrte Stichprobe

Lösung: Der Mechanismus der Zuteilung von Werbung und der Effekt müssen

unkorreliert sein!

→ Teile die Population in **zufällige Stichproben** ein, um den Sampling Bias zu vermeiden ("**stratified sampling**" mit gleichen Verhältnissen aller Untergruppen)

In randomisierten kontrollierten Studien impliziert Korrelation Kausalität! (Annahme: Keine Confounder, die nicht kontrolliert werden)

Entscheidungsbaum als Methode für Analysen bereits existierender Daten ohne randomisierte Studie

Aufgabe: Nutze historische Daten als "natürlich vorkommendes Experiment"

Frage: Gibt es einen kausalen Effekt zwischen Werbung und Kauf?

Annahme: Alle Confounder sind im Datensatz enthalten

Ein Entscheidungsbaum macht keine Aussage zur Größe des kausalen Effekts.

Strategie eines Entscheidungsbaums: Schneide den Datensatz, um möglichst "sortenreine" Bereiche zu erhalten

Entscheidungsbaum zur Untersuchung des Einflusses von Werbung (1/2)

Entscheidungsbaum zur Untersuchung des Einflusses von Werbung (2/2)

Praktische Umsetzung eines Entscheidungsbaums für kausale Interpretation: Conditional Inference Tree

Eigenschaft	Klassischer Entscheidungsbaum	Conditional Inference Tree	
Algorithmus	CART, ID3,		
Funktionsweise	 Kriterium im Datensatz berechnen Datensatz an einer Variable aufteilen, sodass Krit. reduziert ist Wiederholen, bis Konvergenz-Kriterium erfüllt ist 		
Knoten einfügen, wenn	Unterschied in der Varianz (oder anderem Kriterium) ausreichend groß ist	die Mengen in den beiden erzeugten Blättern signifikant unterschiedlich sind	
Umsetzung in R (Beispiel)	library(rpart) mdl <- rpart(class~., data=df)	library(partykit) mdl <- ctree(class~., data=df)	
Hyperparameter (Auswahl)	cp (Pruning-Parameter)	Signifikanzniveau (z.B. 0,95) für Permutations-Test	

Ein Conditional Inference Tree erzeugt einen Baum auf Basis eines Signifikanztests

Praktische Umsetzung in R: Conditional Inference Tree

```
library(partykit)
df <- read.csv("kausalitaet/data.csv")</pre>
# Daten vorbereiten
# Variable: Kauf, Werbung, Temperatur, Monat, Einwohner
# kauf und werbung als Faktor-Variable (binär, nicht 1>0)
df$kauf <- as.factor(df$kauf)</pre>
df$werbung <- as.factor(df$werbung)</pre>
# Modell trainieren
# (Random Seed für Reproduzierbarkeit, Signifikanzniveau 95%)
set.seed(-753)
mdl <- ctree(kauf~., data=df,
             control = ctree control(mincriterion = 0.95))
# Baum ausgeben
plot (mdl)
```

Visualisierung eines Conditional Inference Tree

Zusammenfassung: Kausalität in der Datenauswertung

Definition: Unterschied in Y durch X, der nicht eingetreten wäre, wenn X nicht geändert worden wäre und alle anderen Faktoren gleich sind (→ Intervention)

Randomized Controlled Trial

Eigenschaften:

- Zufällige Aufteilung in Test- und Kontrollgruppe → kein Sampling Bias
- Ausgleich von Counterfactuals
- Korrelation impliziert Kausalität!

Conditional Inference Tree (ctree in R)

Eigenschaften:

- ML-erzeugtes grafisches Modell
- Zu untersuchende Größe: letzter Knoten
- Nichtauftreten einer Variable schließt Kausalität nicht aus
- Keine Aussage über Größe des Effekts

Folien, Daten und Code: https://github.com/ChristophEuler/FrankfurtUAS

- 1. Kausale Zusammenhänge sind nur eine Interpretation von Korrelation.
- 2. Bedingungen dazu: Kontrollierte Randomisierung und Abwesenheit von Confoundern.