PREVIEW

- 사람의 학습
- 수학, 과학, 역사뿐 아니라 수영, 자전거 타기 등
- 동물의 학습
- 예) 물총물고기의 목표물 맞히기 능력 향상

- 기계 학습
- 그렇다면 기계도 학습할 수 있을까?
- 경험을 통해 점점 성능이 좋아지는 기계를 만들 수 있을까?

1.1.1 기계 학습의 정의

- 기계 학습이란?
- 현대적 정의

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. 어떤 컴퓨터 프로그램이 T라는 작업을 수행한다. 이 프로그램의 성능을 P라는 척도로 평가했을 때 경험 E를 통해 성능이 개선된다면 이 프로그램은 학습을 한다고 말할 수 있다[Mitchell1997(2쪽)]."

"Programming computers to optimize a performance criterion using example data or past experience 사례 데이터, 즉 과거 경험을 이용하여 성능 기준을 최적화하도록 프로그래밍하는 작업[Alpaydin2010]"

"Computational methods using experience to improve performance or to make accurate predictions 성능을 개선하거나 정확하게 예측하기 위해 경험을 이용하는 계산학 방법들[Mohri2012]"

1.1.1 기계 학습의 정의

■ 학습이란? <표준국어대사전>

"경험의 결과로 나타나는, 비교적 지속적인 행동의 변화나 그 잠재력의 변화, 또는 지식을 습득하는 과정[국립국어원2017]"

- 기계 학습이란?
- 인공지능 초창기 아서 사무엘의 정의

"Programming computers to learn from experience should eventually eliminate the need for much of this detailed programming effort, 컴퓨터가 경험을 통해 학습할 수 있도록 프로그래밍할 수 있다면, 세세하게 프로그래밍해야 하는 번거로움에서 벗어날 수 있다[Samuel1959],"

1.1.1 기계 학습의 정의

■ 기계 학습이란?

- 인공지능의 탄생
- 컴퓨터의 뛰어난 능력
- 사람이 어려워하는 일을 아주 쉽게 함
- 80932.46789076*0.39001324와 같은 곱셈을 고속으로 수행(현재는 초당 수십억개)
- 복잡한 함수의 미분과 적분 척척
- 컴퓨터에 대한 기대감 (컴퓨터의 능력 과신)
- 사람이 쉽게 하는 일, 예를 들어 고양이/개 구별하는 일도 잘 하지 않을까
- 1950년대에 인공지능이라는 분야 등장
- 초창기는 지식기반 방식이 주류
- 예) "구멍이 2개이고 중간 부분이 홀쭉하며, 맨 위와 아래가 둥근 모양이라면 8이다"

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 인공지능의 의미
- 사전적 의미의 인공지능(Artificial Intelligence)은 인간의 지성을 갖춘 존재 또는 시스템에 의해 만들어진 인공적인 지능을 의미
- 1956년 다트머스 회의 (Dartmouth Conference)에서 처음 사용
- 여러 학자들이 추구하는 방향이 달라 의미에 대한 의견이 일치 X

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 큰 깨달음
- 지식기반의 한계
- 단추를 "가운데 구멍이 몇 개 있는 물체"라고 규정하면 많은 오류 발생

그림 1-2 인식 시스템이 대처해야 하는 심한 변화 양상(8과 단추라는 패턴을 어떻게 기술할 것인가?)

- 사람은 변화가 심한 장면을 아주 쉽게 인식하지만,
- 왜 그렇게 인식하는지 서술하지는 못함

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 인공지능을 위한 다섯 가지 주요 능력
 - 스스로 문제 해결하는 능력
- 스스로 학습하는 능력
- 시각,음성 등의 지각력
- 자연어에 대한 이해력
- 자율적으로 움직이는 능력

- 인공지능의 주도권 전환
- 지식기반 → 기계 학습 (데이터 중심 접근방식)

그림 1-3 기계 학습으로 만든 최첨단 인공지능 제품들

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 인공지능 구현방법 지식중심
- 특정분야의 전문가나 장인들이 학문 연구, 오랜 실무 경험으로 터득한 지식을 사람에게 전파
- Top-Down 방식
- 1980년대 전문가 시스템
- OLAP

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 인공지능 vs 인간
- 체커게임 1956년, 아서 사무엘이 최초 개발
- 1992년, 마리온 틴슬리 vs 앨버타대학 치눅

- 인공지능 vs 인간
- ■체스게임
- 1997년, 가리 카스파로프 vs IBM **딥블루**

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 인공지능 구현방법 데이터중심
- 데이터를 통해 직접 지식을 학습
- Botton-Up 방식
- 현재의 머신러닝/딥러닝

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 인공지능 vs 인간
- 제퍼디 퀴즈쇼
- 1997년, 켄 제닝스 & 브래드 러터 vs IBM **왓슨**

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 인공지능 vs 인간
- 바둑
- 2016년, 이세돌 vs Google **딥마인드**

- 인공지능 vs 인간
- 무제한 홀뎀 포커
- 2017년, 제이슨 레스,김동규,다니엘 맥얼루이,지미추 vs 카네기 멜론대학 **리브라투스**

1.1.2 지식기반 방식에서 기계 학습으로의 대전환

- 머신러닝이 필요한 문제
 - 명시적 문제해결 지식의 부재 (알고리듬 부재)
 - 프로그래밍이 어려운 문제 (예: 음성인식)
 - 지속적으로 변화하는 문제 (예: 자율이동로봇)
- 머신러닝 더욱 중요해지는 이유
 - 빅데이터의 존재 (학습에 필요)
 - 컴퓨팅 성능의 향상 (고난도 학습이 가능)
 - 서비스와 직접 연결 (비지니스적 효과)
 - 비즈니스 가치 창출 (회사 가치 향상)

1.1.2 지식기반 방식에서 기계 학습으로의 대전환 ■ 일반적인 컴퓨터 프로그램 ■ 사람이 알고리듬 설계 및 코딩 ■ 주어진 문제(데이터)에 대한 답 출력 ■ 머신러닝 프로그램 ■ 사람이 코딩 ■ 기계가 알고리듬을 자동 프로그래밍 (Automatic Programming) ■ 데이터에 대한 프로그램을 출력 □ 1.2 Human Programming과 Automatic Programming의 차이점

1.1.3 사람의 학습과 기계 학습

기준	사람의 학습	기계 학습
학습 과정	능동 적	수동적
데이터 형식	자연에 존재하는 그대로	일정한 형식에 맞추어 사람이 준비함
동시에 학습 가능한 과업 수	자연스럽게 여러 과업을 학습	하나의 과업만 가능
학습 원리에 대한 지식	매우 제한적으로 알려져 있음	모든 과정이 밝혀져 있음
수학 의존도	매우 낮음	매우 높음
성능 평가	경우에 따라 객관적이거나 주관적	객관적(수치로 평가, 예를 들어 정확률 99.8%
역사	수백만 년	60년 가량

■ 인공지능 창업기업 인수합병 경쟁 RACE FOR AI: MAJOR ACQUIRERS IN ARTIFICIAL INTELLIGENCE 2011 - 2016 YTD (12/1/16) ROUGH FOR AI: MAJOR ACQUIRERS IN ARTIFICIAL INTELLIGENCE 2011 - 2016 YTD (12/1/16)

CBINSIGHTS

1.1.5 인공지능의 미래

- 인공지능의 분류
- 미국의 분석철학자이자 심리철학자인 존 설(John Searle)
- 주어진 조건에서만 작동되는 약(弱) 인공지능 (Weak Al)
- => 평범한 사물의 분석이나 지시에 따라 단순히 행동하는 수준
- 자의식을 지녀 인간과 동일한 사고가 가능한 강(强) 인공지능(Strong AI)
- => 감정, 자아, 창의성 등을 가지고 명령받지 않은채 스스로 모든 것을 판단하고 행동하는 수준

1.1.5 인공지능의 미래

■ 인공지능의 분류

자료: 보스턴컨설팅·가트너·세계경제포럼

강 인공지능

- 다양한 분야에서 보편적으로 활용
- 알고리즘을 설계하면 AI가 스스로 데이터를 찾아 학습
- 정해진 규칙을 벗어나 능동적으로 학습해 창조 가능

약 인공지능

- 특정 분야에서만 활용 가능
- 알고리즘은 물론 기초 데이터·규칙을 입력해야
- 이를 바탕으로 학습 가능. 규칙을 벗어난 창조는 불가

1.1.5 인공지능의 미래

- 특이점Singularity
- 미래학자 레이 커즈와일은 강AI를 '특이점'이라는 용어로 정의
- 기술 발전이 이어지면서 AI가 인간을 뛰어넘는 순간을 의미
- 특이점 이후 AI 스스로 자신보다 더 똑똑한 AI를 만들어 지능 이

무한히 높은 존재가 출현할 것이라 예측

■ 커즈와일은 당초 2045년이면 특이점이 도래할 것이라고 주장했다가 이를 2030년으로 앞 당김임

1.1.5 인공지능의 미래

- 인공지능의 미래
- 물리학자인 스티븐 호킹 박사는 "인류는 100년 내에 AI에 의해 끝날 것" 이라 주장
- 일론 머스크 테슬라 창업자는 "AI 연구는 악마를 소환하는 것"이라며 AI의 부정적인 측면을 경고

1.1.6 기계 학습 - 얼굴인식

■ 데이터 취득

1.1.7 기계 학습 - 얼굴인식

1.1.8 인공지능 활용 사례

- 자율 운전
- 음악 작곡
- 소설 쓰기
- 음성 문자 자동 변환
- 자연어 처리
- 음성 인식
- 감성 분석
- 기계 번역
- 챗봇을 이용한 대화

1.2.1 머신러닝 알고리즘 분류

- 지도 학습(Supervised learning)
- 한 세트의 사례들을(examples) 기반으로 예측을 수행
- 비지도(자율) 학습(Unsupervised learning)
- 미분류 데이터만을 기반으로 유사도에 의한 군집을 수행
- 준지도 학습(Semi-supervised learning)
- 학습 정확성을 개선하기 위해 미분류 사례와 함께 소량의 분류(labeled) 데이터를 이용
- 강화 학습(Reinforcement learning)
- 환경으로부터의 피드백을 기반으로 행위자의 행동을 분석하고 최적화함

1.2.1 머신러닝 알고리즘 분류

1.2.2 지도학습

- 기존에 이미 분류된 학습용 데이터(labeled training data)로 구성된 입력 변수와 그것에 반응하는 출력 변수(레이블)가 함께 제공
- 알고리즘을 이용해 학습용 데이터를 분석함으로써 입력 변수를 출력 변수와 매핑시키는 함수를 찾을 수 있음
- 이렇게 추론된 함수는 학습용 데이터로부터 일반화(generalizing)를 통해 알려지지 않은 새로운 사례들을 매핑하고, 눈에 보이지 않는 상황 (unseen situations) 속에서 결과를 예측함

1.2.2 지도학습

■ 분류(Classification)

- 데이터가 범주형(categorical) 변수를 예측하기 위해 사용될 때 지도 학습을 '분류'라고 부름
- 이미지에 강아지나 고양이와 같은 레이블 또는 지표(indicator)를 할당하는 경우가 해당
- 레이블이 두 개인 경우를 '이진 분류' (binary classification), 범주가 두 개 이상인 경우는 '다중 클래스 분류' (multi-class classification)라고 함

1.2.2 지도학습

■ 회귀(Regression)

- 데이터가 연속형 변수를 예측할 때 지도학습은 '회귀'라 함
- 과거 및 현재 데이터를 기반으로 미래를 예측하는 과정
- 동향(trends)을 분석하기 위해 가장 많이 사용

1.2.2 지도학습

- 회귀분석 또는 범주 분류를 위한 예측분석
- 스팸 탐지
- 패턴 감지
- 자연어 처리
- 감정 분석
- 자동 이미지 분류
- 자동 시퀀스 처리 (음성, 음악)

1.2.3 비지도학습

- 데이터에 레이블이 없기 때문에 답을 맞히는 목적으로 학습하지는 않음
- 어떤 데이터들이 서로 비슷한 지 그룹 지어 주거나, 어떤 성질이 데이터를 잘 정의하는 지를 판단하는 등 답이 필요 없는 문제에 대해 나름대로 유용한 정보를 제공해주는 역할을 함
- 절대 오차 측정법을 기반으로 유사도/거리측정법에 따라 요소 집합을 그룹화 함

1.2.3 비지도학습

■ 클러스터링(Clustering)

- 특정 기준에 따라 유사한 데이터 사례들을 하나의 세트로 그룹화함
- 이 과정은 종종 전체 데이터 세트를 여러 그룹으로 분류하기 위해 사용
- 사용자는 고유한 패턴을 찾기 위해 개별 그룹 차원에서 분석을 수행

1.2.3 비지도학습

■ 차원 축소(Dimension Reduction)

- 고려 중인 변수의 개수를 줄이는 작업
- 종종 원시 데이터(raw data)는 아주 높은 차원의 특징feature을 지님
- 이때 일부 특징들은 중복되거나 작업과 아무 관련이 없을 수 있음
- 따라서 차원수(dimensionality)를 줄이면 잠재된 진정한 관계를 도출하기 쉬워짐

1.2.4 강화학습

- 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한 행동들 중 보상을 최대화하는 행동 혹은 행동 순서를 선택하는 방법
- 학습의 주체가 상황에 가장 적합한 행동을 찾기까지는 수 많은 시행착오가 필요
- 지도학습과 달리 Target은 성과(Reward)이고 예측값은 정책 혹은 수행 전략(Action)임

1.2.3 비지도학습

- 개체 세분화(사용자, 제품, 영화, 노래)
- 유사성 검출
- 자동 레이블링

1.2.4 강화학습

■ 의사결정 과정을 확률과 그래프를 이용하여 모델링한 Markov decision process (MDP)라는 확률 모델로 표현

