Задание 3 "Графы 3"

Дедлайн 30 апреля 2018 г.

Ссылка на контест:

https://contest.yandex.ru/contest/7947/enter/

Ведомость:

https://drive.google.com/open?id=1MdLZz4PrPxBJUzY8pkqUCGSLVoTdz7AB 7ChwrjJvBaU

Задача 1. «Минимальное остовное дерево» (5 баллов)

Задача 1 в контесте.

Дан неориентированный связный граф. Требуется найти вес минимального остовного дерева в этом графе.

Вариант 1. С помощью алгоритма Прима.

Вариант 2. С помощью алгоритма Крускала.

Вариант 3. С помощью алгоритма Борувки.

Ваш номер варианта прописан в ведомости.

Формат входного файла.

Первая строка содержит два натуральных числа n и m — количество вершин и ребер графа соответственно (1 $\leq n \leq$ 20000, 0 $\leq m \leq$ 100000).

Следующие m строк содержат описание ребер по одному на строке.

Ребро номер i описывается тремя натуральными числами b_i , e_i и w_i — номера концов ребра и его вес соответственно (1 $\leq b_i$, $e_i \leq n$, 0 $\leq w_i \leq$ 100000).

Формат выходного файла.

Выведите единственное целое число - вес минимального остовного дерева.

in	out
4 4	7
1 2 1 2 3 2 3 4 5 4 1 4	
2 3 2	
3 4 5	
4 1 4	

Задача 2а). Приближенное решение метрической неориентированной задачи коммивояжера. (4 балла)

Задачи в контесте нет.

Найдите приближенное решение метрической неориентированной задачи коммивояжера в полном графе (на плоскости) с помощью минимального остовного дерева, построенного в первой задаче.

Оцените качество приближения на случайном наборе точек, нормально распределенном на плоскости с дисперсией 1. Нормально распределенный набор точек получайте с помощью преобразования Бокса-Мюллера.

При фиксированном N, количестве вершин графа, несколько раз запустите оценку качества приближения. Вычислите среднее значение и среднеквадратичное отклонение качества приближения для данного N.

Запустите данный эксперимент для всех N в некотором диапазоне, например, [2, 10]. Автоматизируйте запуск экспериментов.

В решении требуется разумно разделить код на файлы. Каждому классу - свой заголовочный файл и файл с реализацией.

Задача 2б). Приближенное решение задачи коммивояжера. (3 балла)

Задачи в контесте нет.

То же, что и задача 2а), но сделать приближение не хуже, чем в 1,5 раза от идеального. Предлагается использовать лучшее паросочетание на подграфе из нечетных вершин минимального остовного дерева.

http://chekuri.cs.illinois.edu/teaching/fall2006/lect2.pdf

Задача 3. Максимальный поток в неориентированном графе. (4 балла)

Задача в контесте - 3.

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n.

Формат входного файла.

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100$, $1 \le m \le 1000$). Следующие m строк содержат по три числа: номера вершин, которые соединяет соответствующее ребро графа и его пропускную способность. Пропускные способности не превосходят 10^5 .

Формат выходного файла.

В выходной файл выведите одно число — величину максимального потока из вершины с номером 1 в вершину с номером n.

in	out
4 5	3
1 2 1	
1 3 2	
3 2 1	
3 2 1 2 4 2	
3 4 1	

Задача 4. Расстояние Хэмминга. (4 балла)

Задача в контесте - С.

Расстояние Хэмминга между двумя строками равной длины — это количество индексов, в которых символы этих строк не равны.

Определим расстояние от шаблона р до строки s как суммарное расстояние Хэмминга от р до всех подстрок s, имеющих длину |p|. В строке и в шаблоне некоторые символы стёрты. Нужно восстановить стёртые символы так, чтобы расстояние от р до s было минимально возможным.

Формат входного файла.

В первой строке дана строка s, во второй — шаблон p. Обе строки не пусты, имеют длину не более 1000 и состоят из символов `0', `1' и `?'. `?' обозначает стёртые символы, которые нужно восстановить. Длина строки p не превосходит длины строки s.

Формат выходного файла.

В первой строке выведите минимальное расстояние от р до s после восстановления всех стёртых символов. Во второй и третьей строках соответственно выведите s и p, в которых символы `?' заменены на `0' и `1'.

in	out
00?	2
• •	000
	10