5

NOTICE OF USE AND DISCLOSURE

Copyright © LoRa Alliance, Inc. (2017). All Rights Reserved.

The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that are made.

LoRa Alliance, Inc. 2400 Camino Ramon, Suite 375 San Ramon, CA 94583

Note: All Company, brand and product names may be trademarks that are the sole property of their respective

LoRaWAN™ 1.1 Regional Parameters

This document is a companion document to the LoRaWAN 1.1 protocol specification

Authors:

LoRa Alliance Technical Committee Regional Parameters Workgroup

Revision: B

Date: 2018 January **Status**: Released

Contents

65		duction	
66		nventions	
67	1.2 Qu	iick cross reference table	7
68		NWAN Regional Parameters	
69	2.1 Re	gional Parameter Common Names	15
70	2.2 EL	J863-870MHz ISM Band	15
71	2.2.1	EU863-870 Preamble Format	15
72	2.2.2	EU863-870 ISM Band channel frequencies	15
73	2.2.3	EU863-870 Data Rate and End-device Output Power encoding	16
74	2.2.4	EU863-870 JoinAccept CFList	17
75	2.2.5	EU863-870 LinkAdrReq command	18
76		EU863-870 Maximum payload size	
77		EU863-870 Receive windows	
78	2.2.8	EU863-870 Class B beacon and default downlink channel	19
79	2.2.9	EU863-870 Default Settings	19
80		S902-928MHz ISM Band	
81		US902-928 Preamble Format	
82		US902-928 Channel Frequencies	
83		US902-928 Data Rate and End-device Output Power encoding	
84		US902-928 JoinAccept CFList	
85		US902-928 LinkAdrReq command	
86		US902-928 Maximum payload size	
87		US902-928 Receive windows	
88		US902-928 Class B beacon	
89		US902-928 Default Settings	
90		N779-787 MHz ISM Band	
91		CN779-787 Preamble Format	
92		CN779-787 ISM Band channel frequencies	
93		CN779-787 Data Rate and End-device Output Power encoding	
94		CN779-787 JoinAccept CFList	
95		CN779-787 LinkAdrReq command	
96		CN779-787 Maximum payload size	
97		CN779-787 Receive windows	
98		CN779-787 Class B beacon and default downlink channel	
99		CN779-787 Default Settings	
100		J433MHz ISM Band	
101		EU433 Preamble Format	
102		EU433 ISM Band channel frequencies	
103		EU433 Data Rate and End-device Output Power encoding	
104		EU433 JoinAccept CFList	
105		EU433 LinkAdrReg command	
106		EU433 Maximum payload size	
107		EU433 Receive windows	
108		EU433 Class B beacon and default downlink channel	
109	2.5.9		
110		J915-928MHz ISM Band	
111		AU915-928 Preamble Format	
112		AU915-928 Channel Frequencies	
113		AU915-928 Data Rate and End-point Output Power encoding	
114		AU915-928 JoinAccept CFList	
	∠.∪. T		

115		AU915-928 LinkAdrReq command	
116	2.6.6	AU915-928 Maximum payload size	41
117	2.6.7	AU915-928 Receive windows	42
118		AU915-928 Class B beacon	
119	2.6.9	AU915-928 Default Settings	43
120	2.7 CN	I470-510MHz Band	
121	2.7.1	CN470-510 Preamble Format	
122	2.7.2	CN470-510 Channel Frequencies	44
123		CN470-510 Data Rate and End-point Output Power encoding	
124	2.7.4	CN470-510 JoinResp CFList	45
125	2.7.5	CN470-510 LinkAdrReq command	46
126	2.7.6	CN470-510 Maximum payload size	46
127	2.7.7	CN470-510 Receive windows	46
128	2.7.8	CN470-510 Class B beacon	47
129	2.7.9	CN470-510 Default Settings	48
130	2.8 AS	923MHz ISM Band	49
131		AS923 Preamble Format	
132	2.8.2	AS923 ISM Band channel frequencies	49
133	2.8.3	AS923 Data Rate and End-point Output Power encoding	50
134		AS923 JoinAccept CFList	
135	2.8.5	AS923 LinkAdrReq command	51
136		AS923 Maximum payload size	
137		AS923 Receive windows	
138	2.8.8	AS923 Class B beacon and default downlink channel	53
139	2.8.9	AS923 Default Settings	53
140		8920-923MHz ISM Band	
141	2.9.1	KR920-923 Preamble Format	54
142	2.9.2	KR920-923 ISM Band channel frequencies	
143	2.9.3	KR920-923 Data Rate and End-device Output Power encoding	
144	2.9.4	KR920-923 JoinAccept CFList	
145		KR920-923 LinkAdrReq command	
146		KR920-923 Maximum payload size	
147		KR920-923 Receive windows	
148		KR920-923 Class B beacon and default downlink channel	
149		KR920-923 Default Settings	
150		865-867 MHz ISM Band	
151		IN865-867 Preamble Format	
152	2.10.2	2 IN865-867 ISM Band channel frequencies	59
153	2.10.3	IN865-867 Data Rate and End-device Output Power Encoding	59
154	2.10.4	IN865-867 JoinAccept CFList	60
155		IN865-867 LinkAdrReq command	
156		N865-867 Maximum payload size	
157		'IN865-867 Receive windows	
158		IN865-867 Class B beacon and default downlink channel	
159		IN865-867 Default Settings	
160		J864-870 MHz ISM Band	
161		RU864-870 Preamble Format	
162		PRU864-870 ISM Band channel frequencies	
163	2.11.2	RU864-870 Data Rate and End-device Output Power encoding	8
164		RU864-870 JoinAccept CFList	
165		RU864-870 LinkAdrReq command	
166		RU864-870 Maximum payload size	
167		' RU864-870 Receive windows	
101	2.11.1	NOOUT OTO NECEIVE WINDOWS	00

168	2.11.8 RU864-870 Class B beacon and default downlink channel	
169	2.11.9 RU864-870 Default Settings	69
170	3 Revisions	71
171	3.1 Revision A	71
172	3.2 Revision B	71
173	4 Bibliography	72
174	4.1 References	72
175	5 NOTICE OF USE AND DISCLOSURE	73
176		
177	Tables	
178	Table 1: Channel Plan per Country	14
179	Table 2: EU863-870 synch words	15
180	Table 3: EU863-870 default channels	16
181	Table 4: EU863-870 JoinReq Channel List	16
182	Table 5: EU863-870 TX Data rate table	17
183	Table 6: EU863-870 TX power table	17
184	Table 7: EU863-870 ChMaskCntl value table	
185	Table 8: EU863-870 maximum payload size	18
186	Table 9 : EU863-870 maximum payload size (not repeater compatible)	
187	Table 10: EU863-870 downlink RX1 data rate mapping	19
188	Table 11: EU863-870 beacon settings	
189	Table 12: US902-928 TX Data rate table	
190	Table 13: US902-928 TX power table	
191	Table 14: US902-928 ChMaskCntl value table	
192	Table 15: US902-928 maximum payload size (repeater compatible)	24
193	Table 16: US902-928 maximum payload size (not repeater compatible)	25
194	Table 17: US902-928 downlink RX1 data rate mapping	25
195	Table 18: US902-928 beacon settings	
196	Table 19: CN779-787 synch words	27
197	Table 20: CN779-787 JoinReg Channel List	27
198	Table 21: CN779-787 Data rate and TX power table	28
199	Table 22: CN779-787 ChMaskCntl value table	
200	Table 23: CN779-787 maximum payload size	30
201	Table 24 : CN779-787 maximum payload size (not repeater compatible)	31
202	Table 25: CN779-787 downlink RX1 data rate mapping	
203	Table 26: CN779-787 beacon settings	31
204	Table 27: EU433 synch words	
205	Table 28: EU433 JoinReg Channel List	
206	Table 29: EU433 Data rate and TX power table	34
207	Table 30: EU433 ChMaskCntl value table	
208	Table 31: EU433 maximum payload size	
209	Table 32 : EU433 maximum payload size (not repeater compatible)	
210	Table 33: EU433 downlink RX1 data rate mapping	
211	Table 34: EU433 beacon settings	
212	Table 35: AU915-928 Data rate table	
213	Table 36 : AU915-928 TX power table	
214	Table 37: AU915-928 ChMaskCntl value table	
215	Table 38: AU915-928 maximum payload size	
216	Table 39: AU915-928 maximum payload size (not repeater compatible)	
217	Table 40 : AU915-928 downlink RX1 data rate mapping	
218	Table 41 : AU915-928 beacon settings	
	∵	

219	Table 42: CN470-510 Data rate and TX power table	. 45
220	Table 43: CN470-510 ChMaskCntl value table	
221	Table 44: CN470-510 maximum payload size	
222	Table 45 : CN470-510 maximum payload size (not repeater compatible)	
223	Table 46: CN470-510 downlink RX1 data rate mapping	
224	Table 47 : CN470-510 beacon settings	
225	Table 48: AS923 synch words	
226	Table 49: AS923 default channels	
227	Table 50: AS923 JoinReg Channel List	
228	Table 51: AS923 Data rate table	
229	Table 52: AS923 TxPower table	
230	Table 53: AS923 ChMaskCntl value table	
231	Table 54: AS923 maximum payload size	
232	Table 55: AS923 maximum payload size (not repeater compatible)	
233	Table 56 : AS923 beacon settings	
234	Table 57: KR920-923 Center frequency, bandwidth, maximum EIRP output power table	
235	Table 58: KR920-923 default channels	
236	Table 59: KR920-923 JoinReq Channel List	
237	Table 60: KR920-923 TX Data rate table	
238	Table 61: KR920-923 TX power table	
239	Table 62: KR920-923 ChMaskCntl value table	
240	Table 63: KR920-923 maximum payload size	
241	Table 64 : KR920-923 maximum payload size (not repeater compatible)	
242	Table 65 : KR920-923 downlink RX1 data rate mapping	
2 4 2 243	Table 66 : KR920-923 downlink KX1 data rate mapping	. 50
243 244	Table 67: IN865-867 synch words	
2 44 245	Table 68: IN865-867 default channels	
243 246	Table 69: IN865-867 JoinReq Channel List	
2 4 0 247	Table 70: IN865-867 TX Data rate table	
	Table 70: IN865-867 TX Data rate table	
248	Table 71: IN665-867 TXP0Wel table	
249 250	Table 73: IN865-867 maximum payload size	
	Table 73: IN865-867 maximum payload size (not repeater compatible)	
251 252	Table 75: RU864-870 synch words	
252 252	Table 75: R0864-870 syrich words	
253 254	Table 76. R0864-870 default channels	
254 255	·	
255 256	Table 78: RU864-870 TX Data rate table	
250 257	Table 79: RU864-870 TX power table Table 80: RU864-870 ChMaskCntl value table	
258 250	Table 81: RU864-870 maximum payload size	
259	Table 82: RU864-870 maximum payload size (not repeater compatible)	
260	Table 83: RU864-870 downlink RX1 data rate mapping	
261	Table 84: RU864-870 beacon settings	. 69
262		
263	Figures	
264	Figure 1: US902-928 channel frequencies	
265	Figure 2: AU915-928 channel frequencies	
266 267	Figure 3: CN470-510 channel frequencies	. 44

1 Introduction

This document describes the LoRaWAN™ regional parameters for different regulatory regions worldwide. This document is a companion document to the LoRaWAN 1.1 protocol specification [LORAWAN]. Separating the regional parameters from the protocol specification allows addition of new regions to the former without impacting the latter document.

It must be noted here that, regardless of the specifications provided, at no time is any LoRa equipment allowed to operate in a manner contrary to the prevailing local rules and regulations where it is expected to operate. It is the responsibility of the LoRa device to insure that compliant operation is maintained without any outside assistance from a LoRa network or any other mechanism.

1.1 Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

1.2 Quick cross reference table

In order to support the identification of LoRaWAN channel plans for a given country, the table below provides a quick reference of suggested channel plans listed in priority order for each country.

Country name	Band / channels	Channel Plan
Afghanistan		None
	433.05 - 434.79 MHz	EU433
Albania	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
	870-876MHz	Other
Algeria	880-885MHz	Other
	915 - 921 MHz	Other
	925 - 926 MHz	Other
	433.05 - 434.79 MHz	EU433
Andorra	863 - 870 MHz	EU863-870
	863 - 870 MHz	EU863-870
Armenia	433.05 - 434.79 MHz	EU433
Argentina	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
	433.05 - 434.79 MHz	EU433
Austria	863 - 870 MHz	EU863-870
Australia	915 - 928 MHz	AU915-928, AS923
	433.05 - 434.79 MHz	EU433
Azerbaijan	863 - 868 MHz	Others
Bahrain	862 - 870MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	818 - 824 MHz	Other
Bangladesh	863 - 869 MHz	EU863-870
	925.0 - 927.0 MHz	Other
	433.05 - 434.79 MHz	EU433
Belarus	864.4 - 868.6 MHz	EU863-870
	869-869.2MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Belgium	863 - 870 MHz	EU863-870
	433 - 435 MHz	EU433
Burma (Myanmar)	866 - 869MHz	EU863-870
, , ,	919 - 923 MHz	Other
Bolivia	915 - 930 MHz	AU915-928, AS923
Bosnia and	433.05 - 434.79 MHz	EU433
Herzegovina	863 - 870 MHz	EU863-870
Botswana		None
	902 - 907.5 MHz	Other
Brazil	915 - 928 MHz	AU915-928
	433 - 435 MHz	EU433
	866 - 870 MHz	EU863-870
Brunei Darussalam	920 - 925 MHz	AS923

	433 - 435 MHz	EU433
	433.05 - 434.79 MHz	EU433
Bulgaria	863 - 870 MHz	EU863-870
	866 - 869 MHz	EU863-870
Cambodia	923 - 925 MHz	AS923
Cameroon		None
Canada	902 - 928 MHz	US902-928, AU915-928
01.11	902 - 928 MHz	
Chile	(915-928MHz usable)	AU915-928, AS923, US902-928
	920.5 - 924.5 MHz	AS923
	779 - 787 MHz	CN779-787
	470 - 510 MHz	CN470-510
China	433.05 - 434.79 MHz	EU433
	314-316 MHz	Other
	430 - 432 MHz	Other
	840 - 845 MHz	Other
Colombia	902 - 928 MHz	AU915-928, US902-928
Congo Rep.		None
Costa Rica	920.5 - 928 MHz	AS923
Craatia	433.05 - 434.79 MHz	EU433
Croatia	863 - 870 MHz	EU863-870
Culpa	433.05 - 434.79 MHz	EU433
Cuba	915 - 921 MHz	Other
Company	433.05 - 434.79 MHz	EU433
Cyprus	863 - 870 MHz	EU863-870
Crook Donuklio	433.05 - 434.79 MHz	EU433
Czech Republic	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Denmark	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
Dominican Republic	915 - 928 MHz	AU915-928
Ecuador	902 - 928 MHz	AU915-928, US902-928, AS923
Faunt	433.05 - 434.79 MHz	EU433
Egypt	863 - 876 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Estonia	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
Finland	433.05 - 434.79 MHz	EU433
riiiaiia	863 - 873 MHz	EU863-870
France	433.05 - 434.79 MHz	EU433
France	863 - 870 MHz	EU863-870
Georgia		None
Germany	433.05 - 434.79 MHz	EU433

	863 - 870 MHz	EU863-870
Ghana		None
6	433.05 - 434.79 MHz	EU433
Greece	868 - 870 MHz	EU863-870
Guatemala	902 - 928 MHz (915-928 MHz usable)	AU915-928, AS923, US902-928
Haiti		None
Honduras	915-928 MHz	AU915-928
	433.05 - 434.79 MHz	EU433
Hong Kong	865 - 868 MHz	Other
,	920 - 925 MHz	AS923
	433.05 - 434.79 MHz	EU433
Hungary	863 - 873 MHz	EU863-870
,	918 - 921 MHz	Other
laclored	433.05 - 434.79 MHz	EU433
Iceland	863 - 873 MHz	EU863-870
India	865 - 867 MHz	IN765-867
Indonesia	923 - 925 MHz	AS923
Iraq		None
	433.05 - 434.79 MHz	EU433
Iran	863 - 873 MHz	EU863-870
,	915 - 918 MHz	Other
	433.05 - 434.79 MHz	EU433
Ireland	863 - 873 MHz	EU863-870
,	918 - 921 MHz	Other
lava al	433.05 - 434.79 MHz	EU433
Israel	915 - 917 MHz	Other
Harla.	433.05 - 434.79 MHz	EU433
Italy	863 - 870 MHz	EU863-870
Ivory Coast		None
Jamaica	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
lana.	920.6 - 928.0 MHz (steps of 200kHz)	AS923
Japan	920.8 - 927.8 MHz (steps of 600kHz)	AS923
Jordan	865 - 868 MHz	Other
Kazakhstan	433.05 - 434.79 MHz	EU433
Kenya		None
Korea (DPR)		None
Kuwait	433.05 - 434.79 MHz	EU433
Kyrgyz Republic		None
	433 - 435 MHz	EU433
Laos	862 - 875 MHz	EU863-870
	923 - 925 MHz	AS923
l at de	433.05 - 434.79 MHz	EU433
Latvia	863 - 870 MHz	EU863-870

Lebanon	433 - 435 MHz	EU433
Lebanon	862 - 870 MHz	EU863-870
Liechtenstein	433.05 - 434.79 MHz	EU433
LICCITETISTEIII	863 - 873 MHz	EU863-870
Libya		None
Lithuania	433.05 - 434.79 MHz	EU433
Litiidailia	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Luxembourg	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
Macao		None
Massadonia EVD	433.05 - 434.79 MHz	EU433
Macedonia, FYR	863 - 870 MHz	EU863-870
Malavaia	433 - 435 MHz	EU433
Malaysia	919 – 924 MHz	AS923
Maldives		None
Malta	433.05 - 434.79 MHz	EU433
Malta	863 - 870 MHz	EU863-870
Mauritius		None
Mexico	902 - 928 MHz	US902-928, AU915-928
	433.05 - 434.79 MHz	EU433
Moldova	863 - 870 MHz	EU863-870
Mongolia		None
	433.05 - 434.79 MHz	EU433
Montenegro	863 - 870 MHz	EU863-870
N.4	433.05 - 434.79 MHz	EU433
Morocco	867.6 - 869 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Netherlands	863 - 870 MHz	EU863-870
	915 - 928 MHz	AS923, AU915-928
. <u>.</u>	819 - 824 MHz	Other
New-Zealand	864 - 870MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Nicaragua	902 - 928 MHz (915-928 MHz usable)	AU915-928, US902-928
Nigeria	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Norway	863 - 873 MHz	EU863-870
,	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Oman	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Pakistan	865 - 869 MHz	EU863-870
	900 - 925 MHz	AS923

Panama	902 - 928 MHz	AU915-928, US902-928, AS923
Davasuau	433.05 - 434.79 MHz	EU433
Paraguay	915 - 928 MHz	AU915-928, AS923
Peru	915 - 928 MHz	AU915-928, AS923
Papua New Guinea	915 - 925 MHz	AU915-928
	915 - 918 MHz	Other
Dhilinnings	868 – 869.2 MHz	EU863-870
Philippines	869.7 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	433.05 - 434.79 MHz	EU433
Poland	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
Portugal	433.05 - 434.79 MHz	EU433
Portugal	863 - 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
	868 - 868.6 MHz	EU863-870
Qatar	868.7 - 869.2 MHz	EU863-870
	869.4 - 869.65 MHz	EU863-870
	869.7 - 870 MHz	EU863-870
Domenia	433.05 - 434.79 MHz	EU433
Romania	863 - 870 MHz	EU863-870
	866 - 868 MHz (Licensed)	RU864-870
	864 - 865 MHz	RU864-870
Russian federation	868.7 - 869.2 MHz	RU864-870
	433.075 - 434.75 MHz	EU433
	916 - 921 MHz (Licensed)	Other
Salvador	915-928	AU915-928, AS923
Carrelli Arralaia	863 - 870 MHz	EU863-870
Saudi Arabia	433.05 - 434.79 MHz	EU433
Senegal		None
Caultia	433.05 - 434.79 MHz	EU433
Serbia	863 - 870 MHz	EU863-870
	920 - 925 MHz	AS923
Singapore	433.05 - 434.79 MHz	EU433
	866 - 869 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Slovak Republic	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
Slovenia	863 - 873 MHz	EU863-870
	918 - 921 MHz	Other
C. ILAC:	433.05 - 434.79 MHz	EU433
South Africa	865 – 868.6 MHz	EU863-870

	868.7 – 869.2 MHz	EU863-870
	869.4 – 869.65 MHz	EU863-870
	869.7 – 870 MHz	EU863-870
	915 - 921 MHz	Other
South Korea	917 - 923.5 MHz	KR920-923
Consis	433.05 - 434.79 MHz	EU433
Spain	863 - 870 MHz	EU863-870
Sri Lanka	433.05 - 434.79 MHz	EU433
Sudan		None
C I	433.05 - 434.79 MHz	EU433
Sweden	868 - 870 MHz	EU863-870
C. S. Jane	433.05 - 434.79 MHz	EU433
Switzerland	863 - 873 MHz	EU863-870
Syrian Arab Rep.		None
Taiwan	920 - 925 MHz	AS923
Tajikistan		None
Tanzania		None
#1 1 I	433.05 - 434.79 MHz	EU433
Thailand	920 - 925 MHz	AS923
Trinidad and Tobago		None
	433.05 - 434.79 MHz	EU433
	868 – 868.6 MHz	EU863-870
Tunisia	868.7 – 869.2 MHz	EU863-870
	869.4 – 869.65 MHz	EU863-870
	869.7 – 870 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Turkey	863 - 870 MHz	EU863-870
Turkmenistan		None
	433.05 - 434.79 MHz	EU433
	865 - 867.6 MHz	Other
Uganda	869.25 - 869.7 MHz	Other
	923 - 925 MHz	AS923
	433.05 - 434.79 MHz	EU433
Ukraine	863 - 865 MHz	EU863-870
	868 - 868.6 MHz	EU863-870
	433.05 - 434.79 MHz	EU433
Huitad Anah Evilya	863 - 870 MHz	EU863-870
United Arab Emirates	870 - 875.8 MHz	Other
	915 - 921 MHz	Other
	433.05 - 434.79 MHz	EU433
United Kingdom	863 - 873 MHz	EU863-870
-	918 - 921 MHz	Other
United States	902 - 928 MHz	US902-928, AU915-928

LoRaWAN 1.1 Regional Parameters

Uruguay	902 - 928 MHz (915 - 928 MHz usable)	AU915-928, AS923, US902-928
Uzbekistan	433.05 - 434.79 MHz	EU433
Venezuela	922 - 928 MHz	AS923
	433.05 - 434.79 MHz	EU433
Vietnam	863 - 870 MHz	EU863-870
	918 - 923 MHz	Other
Yemen, Rep.		None
Zimbabwe		None

Table 1: Channel Plan per Country

LoRaWAN Regional Parameters

295 296

297

2.1 Regional Parameter Common Names

In order to support the identification of LoRaWAN channel plans referenced by other specification documents, the table below provides a quick reference of common channel plans listed for each formal plan name.

Channel Plan	Common Name
EU863-870	EU868
US902-928	US915
CN779-787	CN779
EU433	EU433
AU915-928	AU915
CN470-510	CN470
AS923	AS923
KR920-923	KR920
IN865-867	IN865
RU864-870	RU864

302

303

2.2 EU863-870MHz ISM Band

2.2.1 EU863-870 Preamble Format 304

305 306 The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

307

Table 2: EU863-870 synch words

308

2.2.2 EU863-870 ISM Band channel frequencies 309 This section applies to any region where the ISM radio spectrum use is defined by the ETSI [EN300.220] standard.

310 311

312

The network channels can be freely attributed by the network operator. However the three following default channels MUST be implemented in every EU868MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.10 868.30 868.50	DR0 to DR5 / 0.3-5 kbps	3	<1%

Table 3: EU863-870 default channels

In order to access the physical medium the ETSI regulations impose some restrictions such maximum time the transmitter can be on or the maximum time a transmitter can transmit per hour. The ETSI regulations allow the choice of using either a duty-cycle limitation or a so-called **Listen Before Talk Adaptive Frequency Agility** (LBT AFA) transmissions management. The current LoRaWAN specification exclusively uses duty-cycled limited transmissions to comply with the ETSI regulations.

EU868MHz end-devices SHALL be capable of operating in the 863 to 870 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 868.1, 868.3, and 868.5 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.10 868.30 868.50	DR0 – DR5 / 0.3-5 kbps	3

Table 4: EU863-870 JoinReq Channel List

2.2.3 EU863-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU863-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in EU863-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU863-870 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	

15	Defined in LoRaWAN ¹		
T-1-1- 5- 511000 070 TV D-11- (-1-1-			

Table 5: EU863-870 TX Data rate table

EIRP² refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in LoRAWAN

Table 6: EU863-870 TX power table

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve 16dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.2.4 EU863-870 JoinAccept CFList

The EU 863-870 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** SHALL replace all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

DR15 and TXPower15 are defined in the LinkADRReq MAC command of the LoRaWAN1.1 specification ² ERP = EIRP – 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

374

375

376

377

378

379380

381

382 383

384 385

386

387

388

389

2.2.5 EU863-870 LinkAdrReq command

The EU863-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to		
0	Channels 0 to 15		
1	RFU		
••			
4	RFU		
5	RFU		
6	All channels ON		
	The device SHALL enable all currently defined channels independently of the ChMask field		
	value.		
7	RFU		

Table 7: EU863-870 ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.2.6 EU863-870 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

DataRate	М	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	230	222		
5	230	222		
6	230	222		
7	230 222			
8:15	Not d	efined		

Table 8: EU863-870 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250 242		
8:15	Not defined		

Table 9: EU863-870 maximum payload size (not repeater compatible)

2.2.7 EU863-870 Receive windows

The RX1 receive window uses the same channel as the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	a rate in RX1	slot	
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

Table 10: EU863-870 downlink RX1 data rate mapping

397 398 399

390

391 392

393

394

395 396

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 869.525 MHz / DR0 (SF12, 125 kHz)

400 401

402

2.2.8 EU863-870 Class B beacon and default downlink channel

403 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	ted As opposed to normal downlink traffic which uses inverted	
		signal polarity	

Table 11: EU863-870 beacon settings

404 405 406

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

407 The beacon default broadcast frequency is 869.525MHz.

408 The Class B default downlink pingSlot frequency is 869.525MHz

409

410

2.2.9 EU863-870 Default Settings

The following parameters are recommended values for the EU863-870MHz band.

412	RECEIVE_DELAY1	1 s
413	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
414	JOIN_ACCEPT_DELAY1	5 s
415	JOIN_ACCEPT_DELAY2	6 s
416	MAX_FCNT_GAP	16384

417	ADR_ACK_LIMIT	64
418	ADR_ACK_DELAY	32
419	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)
420 421 422 423 424 425	values (for example the end RECEIVE_DELAY2 latency), those server using an out-of-band chann	mented in the end-device are different from those default device uses a longer RECEIVE_DELAY1 and e parameters MUST be communicated to the network nel during the end-device commissioning process. The imeters different from those default values.

427

428

429

430

431

432

433

434 435

436

437 438

439

440

441 442

443

446

447

448

449

450

451

452 453

454

455

456 457

458 459

460

461

2.3 US902-928MHz ISM Band

This section defines the regional parameters for the USA, Canada and all other countries adopting the entire FCC-Part15 regulations in 902-928 ISM band.

2.3.1 US902-928 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

LoRaWAN does not make use of GFSK modulation in the US902-928 ISM band.

2.3.2 US902-928 Channel Frequencies

The 915 MHz ISM Band SHALL be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly by 200 kHz to 914.9 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR4 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz
- Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13, starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

Figure 1: US902-928 channel frequencies

915 MHz ISM band end-devices are required to operate in compliance with the relevant regulatory specifications, The following note summarizes some of the current (March 2017) relevant regulations.

Frequency-Hopping, Spread-Spectrum (FHSS) mode, which requires the device transmit at a measured conducted power level no greater than +30 dBm, for a period of no more than 400 msec and over at least 50 channels, each of which occupy no greater than 250 kHz of bandwidth.

Digital Transmission System (DTS) mode, which requires that the device use channels greater than or equal to 500 kHz and comply to a conducted Power Spectral Density measurement of no more than +8 dBm per 3kHz of spectrum. In practice, this limits the conducted output power of an end-device to +26 dBm.

Hybrid mode, which requires that the device transmit over multiple channels (this may be less than the 50 channels required for FHSS mode, but is recommended to be at least 4) while complying with the

Power Spectral Density requirements of DTS mode and the 400 msec dwell time of FHSS mode. In practice this limits the measured conducted power of the end-device to 21 dBm.

Devices which use an antenna system with a directional gain greater than +6 dBi, but reduce the specified conducted output power by the amount in dB of directional gain over +6 dBi.

US902-928 end-devices MUST be capable of operating in the 902 to 928 MHz frequency band and MUST feature a channel data structure to store the parameters for 72 channels. This channel data structure contains a list of frequencies and the set of data rates available for each frequency.

471 472 473

474

475

476

483

484 485 486

487

488

489

490

491

492

462

463

464 465

466

467 468

469 470

If using the over-the-air activation procedure, the end-device SHALL transmit the Join-request message on random 125 kHz channels amongst the 64 125kHz channels defined using **DR0** and on 500 kHz channels amongst the 8 500kHz channels defined using **DR4**. The end-device SHALL change channels for every transmission.

For rapid network acquisition in mixed gateway channel plan environments, the device SHOULD follow a random channel selection sequence which efficiently probes the octet groups of eight 125 kHz channels followed by probing one 500 kHz channel each pass. Each consecutive pass SHOULD NOT select a channel that was used in a previous pass, until a Join-request is transmitted on every channel, after which the entire process can

482 restart.

Example: First pass: Random channel from [0-7], followed by [8-15]... [56-63], then 64 Second pass: Random channel from [0-7], followed by [8-15]... [56-63], then 65

U - - 1

Last pass: Random channel from [0-7], followed by [8-15]... [56-63], then 71

Personalized devices SHALL have all 72 channels enabled following a reset and shall use the channels for which the device's default data-rate is valid.

2.3.3 US902-928 Data Rate and End-device Output Power encoding

FCC regulation imposes a maximum dwell time of 400ms on uplinks. The *TxParamSetupReg* MAC command MUST not be implemented by US902-928 devices.

The following encoding is used for Data Rate (**DR**) and End-device conducted Power (**TXPower**) in the US902-928 band:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500
5:7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500

13	LoRa: SF7 / 500 kHz	21900
14	RFU	
15	Defined in LoRaWAN ¹	

Table 12: US902-928 TX Data rate table

Note: DR4 is purposely identical to DR12, DR8..13 MUST be implemented in end-devices and are reserved for future applications

TXPower	Configuration	
	(conducted power)	
0	30 dBm – 2*TXpower	
1	28 dBm	
2	26 dBm	
3:13		
14	2 dBm	
15	Defined in LoRaWAN	

Table 13: US902-928 TX power table

499

500

501 502

495

496

497 498

2.3.4 US902-928 JoinAccept CFList

503 504 505 The US902-928 LoRaWAN supports the use of the optional CFlist appended to the JoinResp message. If the CFlist is not empty then the CFListType field SHALL contain the value one (0x01) to indicate the **CFList** contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of four (4). (The first 16 bits controls the channels 0 to 15, ..)

506 507 508

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	RFU	RFU	CFListType

For the US902-928 version the ChMaskCntl field of the LinkADRReg command has the

509

511

512

510

2.3.5 US902-928 LinkAdrReq command

following meaning: 513

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	Channels 16 to 31	
4	Channels 64 to 71	
5	8LSBs controls Channel	
	Blocks 0 to 7	
	8MSBs are RFU	
6	All 125 kHz ON	
	ChMask applies to	
	channels 64 to 71	
7	All 125 kHz OFF	
	ChMask applies to	

¹ DR15 is defined in the LinkADRReq MAC command of the LoRaWAN1.1 specification

ChMaskCntl	ChMask applies to	
	channels 64 to 71	
Table 44: USOO2 020 ChMaakCatt value table		

Table 14: US902-928 ChMaskCntl value table

If **ChMaskCntl** = 5 then the corresponding bits in the ChMask enable and disable a bank of 8 125kHz channels and the corresponding 500kHz channel defined by the following calculation: [ChannelMaskBit * 8, ChannelMaskBit * 8 +7],64+ChannelMaskBit.

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

Note: FCC regulation requires hopping over at least 50 channels when using maximum output power. It is possible to have end-devices with less channels when limiting the end-device conducted transmit power to 21 dBm.

Note: A common network server action may be to reconfigure a device

through multiple LinkAdrReg commands in a contiguous block of MAC

Commands. For example to reconfigure a device from 64 channel

operation to the first 8 channels could contain two LinkAdrReg, the first

(ChMaskCntl = 7) to disable all 125kHz channels and the second

(ChMaskCntrl = 0) to enable a bank of 8 125kHz channels.

2.3.6 US902-928 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

DataRate	М	N	
0	19	11	
1	61	53	
2	133	125	
3	250	242	
4	250	242	
5:7	Not defined		
8	41	33	
9	117	109	
10	230	222	
11	230	222	
12	230	222	
13	230	222	
14:15	Not defined		

Table 15: US902-928 maximum payload size (repeater compatible)

549

550

551

552

553

554 555

556

557

558

559

560

561

562

563 564

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

If the end-device will never operate under a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	М	N	
0	19	11	
1	61	53	
2	133	125	
3	250	242	
4	250	242	
5:7	Not defined		
8	61	53	
9	137	129	
10	250	242	
11	250	242	
12	250	242	
13	250	242	
14:15	Not defined		

Table 16: US902-928 maximum payload size (not repeater compatible)

2.3.7 US902-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - o RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 16 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency.
 Default parameters are 923.3MHz / DR8

Upstream data rate	Downstream data rate			
RX1DROffset	0	1	2	3
DR0	DR10	DR9	DR8	DR8
DR1	DR11	DR10	DR9	DR8
DR2	DR12	DR11	DR10	DR9
DR3	DR13	DR12	DR11	DR10
DR4	DR13	DR13	DR12	DR11

Table 17: US902-928 downlink RX1 data rate mapping

The allowed values for RX1DROffset are in the [0:3] range. Values in the range [4:7] are reserved for future use.

2.3.8 US902-928 Class B beacon

The beacons SHALL BE transmitted using the following settings:

DR	8	Corresponds to SF12 spreading factor with 500kHz
		bw
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity
frequencies	923.3 to 927.5MHz	Beaconing is performed on the same channel that
	with 600kHz steps	normal downstream traffic as defined in the Class A
	•	specification

Table 18: US902-928 beacon settings

The downstream channel used for a given beacon is:

Channel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

577 578

565

566

567

568 569 570

571 572

573

574 575 576

576 579

The beacon frame content is:

Size (bytes)	5	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

580

581

2.3.9 US902-928 Default Settings

The following parameters are recommended values for the US902-928 band.

583 RECEIVE_DELAY1 1 s

584 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 585
 JOIN_ACCEPT_DELAY1
 5 s

 586
 JOIN_ACCEPT_DELAY2
 6 s

 587
 MAX_FCNT_GAP
 16384

 588
 ADR_ACK_LIMIT
 64

 589
 ADR_ACK_DELAY
 32

590 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

595 596

591

592

598

599

600

601

602

603

606

607

608

609

610

611

612 613

614

615

616

617

618

619 620

621 622

623

2.4 CN779-787 MHz ISM Band

2.4.1 CN779-787 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 19: CN779-787 synch words

2.4.2 CN779-787 ISM Band channel frequencies

The LoRaWAN can be used in the Chinese 779-787MHz band as long as the radio device EIRP is less than 12.15dBm.

The end-device transmit duty-cycle SHOULD be lower than 1%.

The LoRaWAN channels center frequency MAY be in the following range:

Minimum frequency: 779.5MHzMaximum frequency: 786.5 MHz

CN780MHz end-devices SHALL be capable of operating in the 779 to 787 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 779.5, 779.7 and 779.9 MHz with DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
	125	779.5	DR0 – DR5	6	<0.1%
LoRa		779.7	/ 0.3-5 kbps		
		779.9			
		780.5			
		780.7			
		780.9			

Table 20: CN779-787 JoinReg Channel List

2.4.3 CN779-787 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the CN779-787 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN779-787 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the CN780 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000

RFU

Defined in LoRaWAN

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
614	RFU
15	Defined in LoRaWAN

Table 21: CN779-787 Data rate and TX power table

8..14

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.4.4 CN779-787 JoinAccept CFList

The CN780 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListTYpe

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** SHALL replace all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

2.4.5 CN779-787 LinkAdrReq command

The CN780 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	RFU	
4	RFU	
5	RFU	
6	All channels ON	
	The device should enable all currently defined	
	channels independently of the ChMask field	
	value.	
7	RFU	

Table 22: CN779-787 ChMaskCntl value table

664 665 666

667

668

669

670

671

672

659 660

661

662 663

If the ChMask field value is one of values meaning RFU, then end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.4.6 CN779-787 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N MAY be smaller if the **FOpt** field is not empty:

S	7	3
3	7	4

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6	250	242	
7	230	222	
8:15	Not defined		

675 676

677

678

679

Table 23: CN779-787 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242

681 682

683 684

685

686

687

688

689

690

692

696

697

8:15 Not defined

Table 24 : CN779-787 maximum payload size (not repeater compatible)

2.4.7 CN779-787 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use

RX1DROffset 5 0 1 Downstream data rate in RX1 slot Upstream data rate DR0 DR0 DR0 DR0 DR0 DR0 DR0 DR1 DR0 DR0 DR0 DR0 DR1 DR₀ DR2 DR2 DR1 DR0 DR0 DR0 DR0 DR3 DR2 DR0 DR3 DR1 DR0 DR₀ DR4 DR3 DR2 DR1 DR0 DR0 DR4 DR5 DR5 DR4 DR3 DR2 DR1 DR0 DR6 DR6 DR5 DR4 DR3 DR2 DR1 DR4 DR3 DR2 DR7 DR7 DR6 DR5

Table 25: CN779-787 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 786 MHz / DR0.

2.4.8 CN779-787 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125
		kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity

Table 26: CN779-787 beacon settings

693 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 785MHz.

The class B default downlink pingSlot frequency is 785MHz

2.4.9 CN779-787 Default Settings

The following parameters are recommended values for the CN779-787MHz band.

699 RECEIVE DELAY1 1 s

700 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

701 JOIN_ACCEPT_DELAY1 5 s 702 JOIN_ACCEPT_DELAY2 6 s 703 MAX_FCNT_GAP 16384 704 ADR ACK LIMIT 64

705 ADR_ACK_DELAY 32 706 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

712 2.5 EU433MHz ISM Band

2.5.1 EU433 Preamble Format 713

The following synchronization words SHOULD be used:

714 715

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes
	T 11 0T T11400	

716

722

723 724

725 726

727

731

732 733

734

735

Table 27: EU433 synch words

2.5.2 EU433 ISM Band channel frequencies 717

The LoRaWAN can be used in the ETSI 433-434 MHz band as long as the radio device 718 719 EIRP is less than 12.15dBm.

720 The end-device transmit duty-cycle SHALL be lower than 10%¹

721 The LoRaWAN channels center frequency can be in the following range:

> Minimum frequency: 433.175 MHz Maximum frequency: 434.665 MHz

EU433 end-devices SHALL be capable of operating in the 433.05 to 434.79 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

728 The first three channels correspond to 433.175, 433.375 and 433.575 MHz with DR0 to DR5 729 and MUST be implemented in every end-device. Those default channels cannot be modified 730 through the NewChannelReq command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

736 737

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	433.175 433.375 433.575	DR0 – DR5 / 0.3-5 kbps	3	<1%

738 739 Table 28: EU433 JoinReg Channel List

¹ The EN300220 ETSI standard limits to 10% the maximum transmit duty-cycle in the 433MHz ISM band. The LoRaWAN requires a 1% transmit duty-cycle lower than the legal limit to avoid network congestion.

2.5.3 EU433 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU433 PHY layer. The TxParamSetupReg MAC 741 command is not implemented by EU433 devices. 742

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU433 band:

7	4	4
7	4	5

743

740

DataRate	Configuration	Indicative physical bit rate [bit/s]		TXPower	Configuration (EIRP)
0	LoRa: SF12 / 125 kHz	250		0	Max EIRP
1	LoRa: SF11 / 125 kHz	440		1	Max EIRP – 2dB
2	LoRa: SF10 / 125 kHz	980		2	Max EIRP – 4dB
3	LoRa: SF9 / 125 kHz	1760		3	Max EIRP – 6dB
4	LoRa: SF8 / 125 kHz	3125		4	Max EIRP – 8dB
5	LoRa: SF7 / 125 kHz	5470		5	Max EIRP – 10dB
6	LoRa: SF7 / 250 kHz	11000		614	RFU
7	FSK: 50 kbps	50000			
814	RFU		Ī		
15	Defined in LoRaWAN			15	Defined in LoRaWAN

Table 29: EU433 Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve

out-of-band channel during the end-device commissioning process.

12.15dBm EIRP, the Max EIRP SHALL be communicated to the network server using an

746 747 748

749

750 751 752

753 754 755

756

757

758

759 760

761 762 763

764 765

766

767

768 769

770

771

772

2.5.4	EU433	JoinAccept	CFList
-------	-------	-------------------	---------------

gain is expressed in dBi.

The EU433 ISM band LoRaWAN implements an optional channel frequency list (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the join-accept message. If present, the CFList MUST replace all the previous channels stored in the end-device apart from the three default channels.

777

778

779

780

781

782 783

784

785

786 787

788

789

790

791 792

793

773 The newly defined channels are immediately enabled and usable by the end-device for communication.

2.5.5 EU433 LinkAdrReq command

The EU433 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	RFU	
4	RFU	
5	RFU	
6	All channels ON	
	The device SHOULD enable all currently	
	defined channels independently of the	
	ChMask field value.	
7	RFU	

Table 30: EU433 ChMaskCntl value table

If the ChMask field value is one of the values meaning RFU, then end-device SHALL reject the command and unset the "Channel mask ACK" bit in its response.

2.5.6 EU433 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	230	222
7	230	222
8:15	Not defined	

Table 31: EU433 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242

7	250	242
8:15	Not defined	

Table 32: EU433 maximum payload size (not repeater compatible)

794 795

796 797

798

799

2.5.7 EU433 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

800 801

RX1DROffset	0	1	2	3	4	5		
Upstream data rate	Downstream data rate in RX1 slot							
DR0	DR0	DR0	DR0	DR0	DR0	DR0		
DR1	DR1	DR0	DR0	DR0	DR0	DR0		
DR2	DR2	DR1	DR0	DR0	DR0	DR0		
DR3	DR3	DR2	DR1	DR0	DR0	DR0		
DR4	DR4	DR3	DR2	DR1	DR0	DR0		
DR5	DR5	DR4	DR3	DR2	DR1	DR0		
DR6	DR6	DR5	DR4	DR3	DR2	DR1		
DR7	DR7	DR6	DR5	DR4	DR3	DR2		

802

Table 33: EU433 downlink RX1 data rate mapping

803 804 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 434.665MHz / DR0 (SF12, 125kHz).

805

806

807

2.5.8 EU433 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125	
		kHz BW	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses	
		inverted signal polarity	

Table 34: EU433 beacon settings

808 809

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 434.665MHz.

The class B default downlink pingSlot frequency is 434.665MHz

812

813

811

2.5.9 EU433 Default Settings

The following parameters are recommended values for the EU433band.

815 RECEIVE DELAY1 1 s

816 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

817 JOIN_ACCEPT_DELAY1 5 s

JOIN_ACCEPT_DELAY2

818

828 829

819	MAX_FCNT_GAP	16384				
820	ADR_ACK_LIMIT	64				
821	ADR_ACK_DELAY	32				
822	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)				
823						
824	If the actual parameter values imple	mented in the end-device are different from those default				
825	· •	uses a longer RECEIVE_DELAY1 & 2 latency), those				
826	parameters MUST be communicate	d to the network server using an out-of-band channel				
827	during the end-device commissioning process. The network server may not accept					
828	parameters different from those defa	ault values.				

6 s

2.6 AU915-928MHz ISM Band

832 833

830 831

This section defines the regional parameters for Australia and all other countries whose ISM band extends from 915 to 928MHz spectrum.

834

2.6.1 AU915-928 Preamble Format

The following synchronization words SHOULD be used:

836 837

835

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

838

839 840

841

842

843

844

845

LoRaWAN does not make use of GFSK modulation in the AU915-928 ISM band.

2.6.2 AU915-928 Channel Frequencies

The AU ISM Band SHALL be divided into the following channel plans.

 Upstream – 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 915.2 MHz and incrementing linearly by 200 kHz to 927.8 MHz

 Upstream – 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR6 starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1 MHz

 Downstream – 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13) starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

846 847 848

849 850

851

852

853

854 855

856

857

858 859

860

Figure 2: AU915-928 channel frequencies

AU ISM band end-devices may use a maximum EIRP of +30 dBm.

AU915-928 end-devices SHALL be capable of operating in the 915 to 928 MHz frequency band and SHALL feature a channel data structure to store the parameters of 72 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device SHALL broadcast the JoinReq message alternatively on a random 125 kHz channel amongst the 64 channels defined using **DR2** and a random 500 kHz channel amongst the 8 channels defined using **DR6**. The end-device SHOULD change channel for every transmission.

Personalized devices SHALL have all 72 channels enabled following a reset.

861 862

863

864

865

The default JoinReq Data Rate is DR2 (SF10/125KHz), this setting ensures that end-devices are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified to the end-device by the network server via the MAC command *TxParamSetupReq*.

AU915-928 end-devices MUST consider UplinkDwellTime = 1 during boot stage until reception of the *TxParamSetupReq* command.

AU915-928 end-devices MUST always consider DownlinkDwellTime = 0, since downlink channels use 500KHz bandwidth without any dwell time limit.

2.6.3 AU915-928 Data Rate and End-point Output Power encoding

The "TxParamSetupReq/Ans" MAC commands MUST be implemented by AU915-928 devices.

If the field UplinkDwellTime is set to 1 by the network server in the *TxParamSetupReq* command, AU915-928 end-devices SHALL adjust the time between two consecutive uplink transmissions to meet the local regulation. Twenty seconds (20s) are recommended between 2 uplink transmissions when UplinkDwellTime = 1 but this value MAY be adjusted depending on local regulation.

There is no such constraint on time between two consecutive transmissions when UplinkDwellTime = 0.

The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the AU915-928 band:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF8 / 500 kHz	12500
7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14	RFU	
15	Defined in LoRaWAN	

 Table 35: AU915-928 Data rate table

 DR6 is identical to DR12, DR8...13 MUST be implemented in end-devices and are reserved for future applications.

TXPower	Configuration (EIRP)
0	Max EIRP
1:14	Max EIRP – 2*TXPower
15	Defined in LoRaWAN

Table 36: AU915-928 TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MaxEIRP is considered to be +30dBm. The Max EIRP can be modified by the network server through the *TxParamSetupReq* MAC command and SHOULD be used by both the end-device and the network server once *TxParamSetupReq* is acknowledged by the device via *TxParamSetupAns*.

2.6.4 AU915-928 JoinAccept CFList

The AU915-928 LoRaWAN supports the use of the optional **CFlist** appended to the JoinResp message. If the **CFlist** is not empty then the CFListType field SHALL contain the value one (0x01) to indicate the CFList contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of four(4). (The first 16 bits controls the channels 1 to 16, ..)

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	RFU	RFU	CFListType

2.6.5 AU915-928 LinkAdrReq command

ChMaskCntl

For the AU915-928 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

Ollinaskoliti	Orimask applies to			
0	Channels 0 to 15			
1	Channels 16 to 31			
•••				
4	Channels 64 to 71			
5	8LSBs controls Channel Blocks 0 to 7			
	8MSBs are RFU			
6	All 125 kHz ON			
	ChMask applies to channels 64 to 71			
7	All 125 kHz OFF			
	ChMask applies to channels 64 to 71			
Table 37: AU915-928 ChMaskCntl value table				

If **ChMaskCntI** = 5 then the corresponding bits in the ChMask enable and disable a bank of 8 125kHz channels and the corresponding 500kHz channel defined by the following calculation: [ChannelMaskBit * 8, ChannelMaskBit * 8 +7],64+ChannelMaskBit.

ChMask applies to

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

2.6.6 AU915-928 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for both uplink dwell time configurations: No Limit and 400ms. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might be smaller if the **FOpt** field is not empty:

DataRate	UplinkDwe	IITime=0	UplinkDwellTime=1		
	M	N	М	N	
0	59	51	N/A	N/A	
1	59	51	N/A	N/A	
2	59	51	19	11	
3	123	115	61	53	
4	230	222	133	125	
5	230	222	250	242	
6	230	222	250	242	
7	Not de	fined	Not defined		
8	41	33	41	33	
9	117	109	117	109	
10	230	222	230	222	
11	230	222	230	222	
12	230	222	230	222	
13	230	222	230	222	
14:15	Not de	fined	Not c	defined	

Table 38: AU915-928 maximum payload size

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

For AU915-928, DownlinkDwellTime MUST be set to 0 (no limit). The 400ms dwell time MAY only apply to uplink channels depending on the local regulations.

 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	UplinkDwe	IITime=0	UplinkDwellTime=1		
	М	N	М	N	
0	59	51	N/A	N/A	
1	59	51	N/A	N/A	
2	59	51	19	11	
3	123	115	61	53	
4	250	242	133	125	
5	250	242	250	242	
6	250	242	250	242	

959
960
961
962
963
964
965
966
967
968

970

971

972 973

974

975

976

977 978 Table 39: AU915-payload size (not

7	Not def	fined	Not defined		
8	61 53		61	53	
9	137	129	137	129	
10	250 242		250	242	
11	250 242		250	242	
12	250 242		250	242	
13	250 242		250 242		
14:15	Not def	fined	Not defined		

928 maximum repeater

compatible)

2.6.7 AU915-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - o RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 16 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 923.3Mhz / DR8

Upstream data rate	Downstream data rate						
RX1DROff set	0	1	2	3	4	5	
DR0	DR8	DR8	DR8	DR8	DR8	DR8	
DR1	DR9	DR8	DR8	DR8	DR8	DR8	
DR2	DR10	DR9	DR8	DR8	DR8	DR8	
DR3	DR11	DR10	DR9	DR8	DR8	DR8	
DR4	DR12	DR11	DR10	DR9	DR8	DR8	
DR5	DR13	DR12	DR11	DR10	DR9	DR8	
DR6	DR13	DR13	DR12	DR11	DR10	DR9	

Table 40 : AU915-928 downlink RX1 data rate mapping

979 980 981

982

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

983

984

985

2.6.8 AU915-928 Class B beacon

The beacons are transmitted using the following settings:

DR	8	Corresponds to SF12 spreading factor with		
		500kHz bw		
CR	1	Coding rate = 4/5		
Signal polarity	Non-inverted	As opposed to normal downlink traffic which		
		uses inverted signal polarity		
frequencies	923.3 to 927.5MHz	Beaconing is performed on the same channel		
	with 600kHz steps	that normal downstream traffic as defined in		
		the Class A specification		

Table 41 : AU915-928 beacon settings

986 987

988

The downstream channel used for a given beacon is:

Channel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
 - whereby beacon_period is the periodicity of beacons, 128 seconds
 - whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

998 999 1000

991

992 993 994

995 996 997

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1001

1002

2.6.9 AU915-928 Default Settings

The following parameters are recommended values for the AU915-928 band.

1004 RECEIVE_DELAY1 1 s

1005 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 1006
 JOIN_ACCEPT_DELAY1
 5 s

 1007
 JOIN_ACCEPT_DELAY2
 6 s

 1008
 MAX_FCNT_GAP
 16384

 1009
 ADR_ACK_LIMIT
 64

 1010
 ADR_ACK_DELAY
 32

1011 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

1016 1017

1012

1013

1014

1019 1020

1021

1022 1023 1024

1025

1026

1027

1028

10291030

1031

1032 1033

1034

1035

1036 1037

1040 1041

1042 1043

1048

1049

1050

1051 1052

1053

2.7 CN470-510MHz Band

2.7.1 CN470-510 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.7.2 CN470-510 Channel Frequencies

In China, this band is defined by SRRC to be used for civil metering applications.

The 470 MHz ISM Band SHALL be divided into the following channel plans:

 Upstream – 96 channels numbered 0 to 95 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 470.3 MHz and incrementing linearly by 200 kHz to 489.3 MHz.

Channel Index 6 to 38 and 45 to 77 are mainly used by China Electric Power. In the areas where these channels are used by China Electric Power, they should be disabled.

 Downstream – 48 channels numbered 0 to 47 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 500.3 MHz and incrementing linearly by 200 kHz to 509.7 MHz

Figure 3: CN470-510 channel frequencies

The LoRaWAN can be used in the Chinese 470-510MHz band as long as

- The radio device EIRP is less than 19.15dBm
- The transmission never lasts more than 5000 ms.

CN470-510 end-devices SHALL be capable of operating in the 470 to 510 MHz frequency band and SHALL feature a channel data structure to store the parameters of 96 uplink channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device SHALL broadcast the JoinReq message on a random 125 kHz channel amongst the 96 uplink channels defined using **DR5** to **DR0**.

1054 Personalized devices SHALL have all 96 channels enabled following a reset.

2.7.3 CN470-510 Data Rate and End-point Output Power encoding

There is no dwell time limitation for the CN470-510 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN470-510 devices.

The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the CN470-510 band:

1	061
1	061

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa:SF7 / 125 kHz	5470
6:14	RFU	
15	Defined in LoRaWAN	

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in LoRaWAN

Table 42: CN470-510 Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MaxEIRP is considered to be +19.15dBm. If the end-device cannot achieve 19.15dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.7.4 CN470-510 JoinResp CFList

The CN470-510 LoRaWAN supports the use of the optional **CFlist** appended to the JoinResp message. If the **CFlist** is not empty then the CFListType field SHALL contain the value one (0x01) to indicate the CFList contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of five (5). (The first 16 bits controls the channels 1 to 16, ...)

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	ChMask5	RFU	CFListType

2.7.5 CN470-510 LinkAdrReq command

For the CN470-510 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

1083 1084

1081

1082

ChMaskCntl	ChMask applies to		
0	Channels 0 to 15		
1	Channels 16 to 31		
2	Channels 32 to 47		
3	Channels 48 to 63		
4	Channels 64 to 79		
5	Channels 80 to 95		
6	All channels ON		
	The device SHOULD enable all currently defined		
	channels independently of the ChMask field value.		
7	RFU		

Table 43: CN470-510 ChMaskCntl value table

10851086

1087

1088

1089

1090

1091

1092 1093 If the ChMask field value is one of the values meaning RFU, then end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.7.6 CN470-510 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might be smaller if the **FOpt** field is not empty:

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6:15	Not defined		

Table 44: CN470-510 maximum payload size

1095 1096

1094

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

1097

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6:15	Not defined		

Table 45 : CN470-510 maximum payload size (not repeater compatible)

1098 1099

1100

1101

1102

2.7.7 CN470-510 Receive windows

 The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.

1108

- RX1 Channel Number = Uplink Channel Number modulo 48, for example, when transmitting channel number is 49, the rx1 channel number is 1.
- The RX1 window data rate depends on the transmit data rate (see Table below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 505.3 MHz / DR0

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Downstream data rate in RX1 slot				
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
Table 46: CN470-510 downlink RX1 data rate mapping						

1109 1110

1111 1112

1113

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

2.7.8 CN470-510 Class B beacon

1114 The beacons are transmitted using the following settings:

DR	2	Corresponds to SF10 spreading factor with 125kHz	
		bw	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses	
		inverted signal polarity	
frequencies	508.3 to 509.7MHz		
	with 200kHz steps		
Table 47 : CN470-510 beacon settings			

1115

1116

1117

1118

1119 1120 1121

1123 1124

1122

1125 1126 1127

The downstream channel used for a given beacon is:

BeaconChannel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 508.3Mhz, the second on 508.5MHz, the 9^{th} beacon will be on 508.3Mhz again.

Beacon channel nb	Frequency [MHz]
0	508.3
1	508.5
2	508.7
3	508.9
4	509.1
5	509.3
6	509.5

7 509.7

1128

1129 1130

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1131

1132 **2.7.9 CN470-510 Default Settings**

1133 The following parameters are recommended values for the CN470-510 band.

1134 RECEIVE_DELAY1 1 s

1135 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 1136
 JOIN_ACCEPT_DELAY1
 5 s

 1137
 JOIN_ACCEPT_DELAY2
 6 s

 1138
 MAX_FCNT_GAP
 16384

 1139
 ADR_ACK_LIMIT
 64

 1140
 ADR_ACK_DELAY
 32

1141 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1142 If the actual parameter values implemented in the end-device are different from those default

values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those

1144 parameters MUST be communicated to the network server using an out-of-band channel

1145 during the end-device commissioning process. The network server may not accept

parameters different from those default values.

1147 2.8 AS923MHz ISM Band

2.8.1 AS923 Preamble Format

The following synchronization words SHOULD be used:

1149 1150

1148

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 48: AS923 synch words

1151

1152

2.8.2 AS923 ISM Band channel frequencies

1153 This section applies to regions where the frequencies [923...923.5MHz] are comprised in the 1154 ISM band.

The network channels can be freely attributed by the network operator. However the two following default channels MUST be implemented in every AS923MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on.

1157 1158

1159

1163 1164

1165

1166

1167

1155

1156

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle	
LoRa	125	923.20 923.40	DR0 to DR5 / 0.3-5 kbps	2	< 1%	

Table 49: AS923 default channels

Those default channels MUST be implemented in every end-device and cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

AS923MHz ISM band end-devices should use the following default parameters

Default EIRP: 16 dBm

AS923MHz end-devices SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Frequency [MHz]	or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR2 to DR5	2	< 1%

Table 50: AS923 JoinReq Channel List

1170 1171 1172

1173 1174

1175

The default JoinReq Data Rate utilizes the range DR2-DR5 (SF10/125 kHz – SF7/125 kHz), this setting ensures that end-devices are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified to the end-device by the network server via the MAC command "TxParamSetupReq".

1176 The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter 1177 "Retransmissions back-off" of the LoRaWAN specification document.

1178

1179

2.8.3 AS923 Data Rate and End-point Output Power encoding

The "TxParamSetupReg/Ans" MAC command MUST be implemented by the AS923 1180 1181 devices.

The following encoding is used for Data Rate (DR) in the AS923 band:

1182 1183

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN	

1184

1185 1186

The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

Table 51: AS923 Data rate table

1187 1188

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in
	LoRaWAN

1189 1190

1191

1192

1193

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

Table 52: AS923 TxPower table

By default Max EIRP SHALL be 16dBm. The Max EIRP can be modified by the network 1194 1195 server through the *TxParamSetupReq* MAC command and SHOULD be used by both the 1196 end-device and the network server once TxParamSetupReq is acknowledged by the device 1197 via TxParamSetupAns,

2.8.4 AS923 JoinAccept CFList

The AS923 LoRaWAN implements an optional channel frequency list (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels two to six whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 KHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch2	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 915 and 928MHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the join-accept message. If present, the CFList replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.8.5 AS923 LinkAdrReq command

The AS923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	RFU
4	RFU
5	RFU
6	All channels ON
	The device SHOULD enable all currently
	defined channels independently of the
	ChMask field value.
7	RFU

Table 53: AS923 ChMaskCntl value table

 If the ChMask field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.8.6 AS923 Maximum payload size

The maximum MACPayload size length (M) is given by the following table for both dwell time configurations: No Limit and 400ms. It is derived from the PHY layer limitation depending on the effective modulation rate used taking into account a possible repeater encapsulation layer.

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC	Payload Size (M)
	UplinkDwellTime	UplinkDwellTime	DownlinkDwellTime	DownlinkDwellTime
	= 0	= 1	= 0	= 1
0	59	N/A	59	N/A
1	59	N/A	59	N/A
2	59	19	59	19
3	123	61	123	61
4	230	133	230	133
5	230	250	230	250
6	230	250	230	250
7	230	250	230	250
8:15	RF	₹U	RF	-U

1229

Table 54: AS923 maximum payload size

1230 If the end-device will never operate with a repeater then the maximum MAC payload length should be:

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC Payload Size (M)		
	UplinkDwellTime	UplinkDwellTime	DownlinkDwellTime	DownlinkDwellTim	
	= 0	= 1	= 0	e = 1	
0	59	N/A	59	N/A	
1	59	N/A	59	N/A	
2	59	19	59	19	
3	123	61	123	61	
4	250	133	250	133	
5	250	250	250	250	
6	250	250	250	250	
7	250	250	250	250	
8:15	RI	=U	RF	·U	

12321233

Table 55: AS923 maximum payload size (not repeater compatible)

1234 1235 1236 The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is eight bytes lower than the MACPayload value in the above table. The value of N might be smaller if the **FOpt** field is not empty.

1237

1244

2.8.7 AS923 Receive windows

- The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as following:
- Downstream data rate in RX1 slot = MIN (5, MAX (MinDR, Upstream data rate Effective_RX1DROffset))
- MinDR depends on the DownlinkDwellTime bit sent to the device in the *TxParamSetupReq* command:
 - Case DownlinkDwellTime = 0 (No limit): MinDR = 0
- Case DownlinkDwellTime = 1 (400ms): MinDR = 2

1246 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 923.2 MHz / DR2 (SF10/125KHz).

1251

1252

2.8.8 AS923 Class B beacon and default downlink channel

1253 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125
		kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity

Table 56: AS923 beacon settings

1254 1255

The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

- 1256 The beacon default broadcast frequency is 923.4MHz.
- 1257 The class B default downlink pingSlot frequency is 923.4MHz

1258

1259

2.8.9 AS923 Default Settings

1260 The following parameters are recommended values for the AS923MHz band.

RECEIVE_DELAY1 1261 RECEIVE_DELAY2 1262 2 s (MUST be RECEIVE_DELAY1 + 1s) 1263 JOIN_ACCEPT_DELAY1 5 s 1264 JOIN_ACCEPT_DELAY2 6 s 1265 MAX_FCNT_GAP 16384 ADR ACK LIMIT 1266 64 ADR ACK DELAY 1267 32

1268 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

2.9 KR920-923MHz ISM Band

2.9.1 KR920-923 Preamble Format

The following synchronization words SHOULD be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.9.2 KR920-923 ISM Band channel frequencies

The center frequency, bandwidth and maximum EIRP output power for the South Korea RFID/USN frequency band are already defined by Korean Government. Basically Korean Government allocated LPWA based IoT network frequency band from 920.9 to 923.3MHz.

Center frequency	Bandwidth	Maximum EIRP output power (dBm)		
(MHz)	(kHz)	For end-device	For gateway	
920.9	125	10	23	
921.1	125	10	23	
921.3	125	10	23	
921.5	125	10	23	
921.7	125	10	23	
921.9	125	10	23	
922.1	125	14	23	
922.3	125	14	23	
922.5	125	14	23	
922.7	125	14	23	
922.9	125	14	23	
923.1	125	14	23	
923.3	125	14	23	

 Table 57: KR920-923 Center frequency, bandwidth, maximum EIRP output power table

The three following default channels (922.1, 922.3 and 922.5MHz / DR0 to DR5) determined by the network operator from the set of available channels as defined by the South Korean regulation MUST be implemented in every KR920-923MHz end-device, and cannot be alterable by the *NewChannelReq* command. Those channels are the minimum set that all network gateways SHOULD always be listening on to guarantee a minimal common channel set between end-devices and network gateways.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10 922.30 922.50	DR0 to DR5 / 0.3-5 kbps	3

Table 58: KR920-923 default channels

In order to access the physical medium the South Korea regulations impose some restrictions. The South Korea regulations allow the choice of using either a duty-cycle limitation or a so-called Listen Before Talk Adaptive Frequency Agility (LBT AFA) transmissions management. The current LoRaWAN specification for the KR920-923 ISM

band exclusively uses LBT channel access rule to maximize MACPayload size length and comply with the South Korea regulations.

1298 KR920-923MHz ISM band end-devices SHALL use the following default parameters

- Default EIRP output power for end-device(920.9~921.9MHz): 10 dBm
- Default EIRP output power for end-device(922.1~923.3MHz): 14 dBm
- Default EIRP output power for gateway: 23 dBm

KR920-923MHz end-devices SHALL be capable of operating in the 920 to 923MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10	DR0 to DR5	3
		922.30	/ 0.3-5 kbps	
		922.50		

Table 59: KR920-923 JoinReg Channel List

2.9.3 KR920-923 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the KR920-923 PHY layer. The *TxParamSetupReq* MAC command is not implemented by KR920-923 devices.

The following encoding is used for Data Rate (DR), and EIRP Output Power (TXPower) in the KR920-923 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
614	RFU	
15	Defined in LoRAWAN	

Table 60: KR920-923 TX Data rate table

1	31	5
1	31	6
1	31	7

1299

1300 1301

1302

1303

1304 1305

1308

1309

1310 1311

1312

TXPower	Configuration (EIRP)	
0	Max EIRP	
1	Max EIRP – 2dB	
2	Max EIRP – 4dB	
3	Max EIRP – 6dB	
4	Max EIRP – 8dB	
5	Max EIRP – 10dB	
6	Max EIRP – 12dB	
7	Max EIRP – 14dB	
814	RFU	
15	Defined in LoRAWAN	

1318 Table 61: KR920-923 TX power table 1319

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1323

1330

1320

1321

1322

- By default MaxEIRP is considered to be +14dBm. If the end-device cannot achieve 14dBm EIRP, the MaxEIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.
- When the device transmits in a channel whose frequency is <922MHz, the transmit power SHALL be limited to +10dBm EIRP even if the current transmit power level set by the network server is higher.

2.9.4 KR920-923 JoinAccept CFList

The KR920-923 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation.

The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

13381339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1336

1337

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.9.5 KR920-923 LinkAdrReq command

The KR920-923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to		
0	Channels 0 to 15		
1	RFU		
4	RFU		
5	RFU		
6	All channels ON		
	The device SHOULD enable all currently defined channels independently of the ChMask field value.		

ChMaskCntl	ChMask applies to	
7	RFU	

Table 62: KR920-923 ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "**Channel mask ACK**" bit in its response.

2.9.6 KR920-923 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for the regulation of dwell time; less than 4 sec with LBT. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6:15	Not defined		

 Table 63: KR920-923 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6:15	Not defined	

 Table 64: KR920-923 maximum payload size (not repeater compatible)

.

2.9.7 KR920-923 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	a rate in RX1	slot	
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0

RX1DROffset	0	1	2	3	4	5
Upstream data rate	Downstream data rate in RX1 slot					
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0

Table 65: KR920-923 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 921.90MHz / DR0 (SF12, 125 kHz).

2.9.8 KR920-923 Class B beacon and default downlink channel

1379 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted As opposed to normal downlink traffic which uses	
		inverted signal polarity

Table 66: KR920-923 beacon settings

13801381

1375

1376

1377

1378

1382 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1383 The beacon default broadcast frequency is 923.1MHz.

The class B default downlink pingSlot frequency is 923.1MHz

1384 1385

1386

2.9.9 KR920-923 Default Settings

1387 The following parameters are recommended values for the KR920-923Mhz band.

1388	RECEIVE_DELAY1	1 s
1389	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
1390	JOIN_ACCEPT_DELAY1	5 s
1391	JOIN_ACCEPT_DELAY2	6 s
1392	MAX_FCNT_GAP	16384
1393	ADR_ACK_LIMIT	64
1394	ADR_ACK_DELAY	32
1395	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 s

1396 If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

1401

seconds)

2.10 IN865-867 MHz ISM Band

2.10.1 IN865-867 Preamble Format

The following synchronization words SHOULD be used:

1404 1405

1406

1407

1402

1403

Modul	ation	Sync word	Preamble length
L	.ORA	0x34	8 symbols
	SFSK	0xC194C1	5 bytes

Table 67: IN865-867 synch words

2.10.2 IN865-867 ISM Band channel frequencies

1408 This section applies to the Indian sub-continent.

The network channels can be freely attributed by the network operator. However the three following default channels MUST be implemented in every India 865-867MHz end-device.

Those channels are the minimum set that all network gateways SHOULD always be

1412 listening on.

1413

1411

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	865.0625	DR0 to DR5	3
		865.4025	/ 0.3-5 kbps	
		865.985		

Table 68: IN865-867 default channels

1414 1415

1416

1417

1418

End-devices SHALL be capable of operating in the 865 to 867 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 865.0625, 865.4025, and 865.985 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

1426 1427

1423

1424

1425

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
	125	865.0625	DR0 – DR5	3
LoRa		865.4025	/ 0.3-5 kbps	
		865.9850	-	

Table 69: IN865-867 JoinReq Channel List

1428

1429

2.10.3 IN865-867 Data Rate and End-device Output Power Encoding

There is no dwell time or duty-cycle limitation for the INDIA 865-867 PHY layer. The TxParamSetupReq MAC command is not implemented by INDIA 865-867 devices.

The following encoding is used for Data Rate (DR) and End-device Output Power (TXPower) in the INDIA 865-867 band:

1434

DataRate Configuration		Indicative physical bit rate [bit/s]		
0	LoRa: SF12 / 125 kHz	250		
1 LoRa: SF11 / 125 kHz		440		
2	LoRa: SF10 / 125 kHz	980		
3	LoRa: SF9 / 125 kHz	1760		
4	LoRa: SF8 / 125 kHz	3125		
5 LoRa: SF7 / 125 kHz		5470		
6	RFU	RFU		
7	FSK: 50 kbps	50000		
814 RFU				
15 Defined in LoRaWAN				
Table 70: IN865-867 TX Data rate table				

1435

1436

1437 1438 1439 The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
8	Max EIRP – 16dB
9	Max EIRP – 18dB
10	Max EIRP – 20dB
1114	RFU
15	Defined in

1440 1441

1442

1443

1444

1445

1446

Table 71: IN865-867 TxPower table

LoRAWAN

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MaxEIRP is considered to be 30dBm. If the end-device cannot achieve 30dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

1447 1448

1449

1450

1451

2.10.4 IN865-867 JoinAccept CFList

The India 865-867 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation.

The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.10.5 IN865-867 LinkAdrReg command

The INDIA 865-867 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	RFU
••	
4	RFU
5	RFU
6	All channels ON
	The device SHOULD enable all currently
	defined channels independently of the
	ChMask field value.
7	RFU

Table 72: IN865-867 ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.10.6 IN865-867 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115

1482

1483

1484

1485

1486

1487

1488

1489

1490

1496

1497

1498

4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

Table 73: IN865-867 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload

length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	250	242		
5	250	242		
6	250	242		
7	250	242		
8:15	Not defined			

Table 74: IN865-867 maximum payload size (not repeater compatible)

2.10.7 IN865-867 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:7] range. Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

1491 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective RX1DROffset	0	1	2	3	4	5	-1	-2

1492 Downstream data rate in RX1 slot = *MIN* (5, *MAX* (0, Upstream data rate – 1493 Effective RX1DROffset))

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 866.550 MHz / DR2 (SF10, 125 kHz).

2.10.8 IN865-867 Class B beacon and default downlink channel

The beacons are transmitted using the following settings

THE BEACOND AND WANTER	tod doning the renown	19 00 til 190
DR	4	Corresponds to SF8 spreading factor with
		125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted signal polarity

1499 The beacon frame content is:

Size (bytes)	1	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1500 The beacon default broadcast frequency is 866.550MHz.

1501 The class B default downlink pingSlot frequency is 866.550MHz

1502

1503 **2.10.9 IN865-867 Default Settings**

1504 The following parameters are recommended values for the INDIA 865-867MHz band.

1505

1506	RECEIVE_DELAY1	1 s
1507	RECEIVE_DELAY2	2 s (MUST be RECEIVE_DELAY1 + 1s)
1508	JOIN_ACCEPT_DELAY1	5 s
1509	JOIN_ACCEPT_DELAY2	6 s
1510	MAX_FCNT_GAP	16384
1511	ADR_ACK_LIMIT	64
1512	ADR_ACK_DELAY	32
4540	ACK TIMEOUT	2 1/ 1 a (random dalay between 1 and 2 a

1513 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1514 If the actual parameter values implemented in the end-device are different from those default 1515 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1516 RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network 1517 server using an out-of-band channel during the end-device commissioning process. The 1518 network server may not accept parameters different from those default values.

1519

2.11 RU864-870 MHz ISM Band

2.11.1 RU864-870 Preamble Format

The following synchronization words SHOULD be used:

1525		

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 75: RU864-870 synch words

2.11.2 RU864-870 ISM Band channel frequencies

The network channels can be freely attributed by the network operator in compliance with the allowed sub-bands defined by the Russian regulation. However the two following default channels MUST be implemented in every RU864-870 MHz end-device. Those channels are the minimum set that all network gateways SHOULD always be listening on.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.9 869.1	DR0 to DR5 / 0.3-5 kbps	2	<1%

Table 76: RU864-870 default channels

RU864-870 MHz end-devices SHALL be capable of operating in the 864 to 870 MHz frequency band and SHALL feature a channel data structure to store the parameters of at least 8 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first two channels correspond to 868.9 and 869.1 MHz / DR0 to DR5 and MUST be implemented in every end-device. Those default channels cannot be modified through the **NewChannelReq** command and guarantee a minimal common channel set between end-devices and network gateways.

The following table gives the list of frequencies that SHALL be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle SHALL follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.9 869.1	DR0 – DR5 / 0.3-5 kbps	2

1548

1549 1550

1551 1552

1553

1554

1555 1556

1557

1558

1564

1565

1566

Table 77: RU864-870 JoinReq Channel List

2.11.3 RU864-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the RU864-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in RU864-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the RU864-870 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN ¹	

Table 78: RU864-870 TX Data rate table

EIRP² refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in LoRAWAN

Table 79: RU864-870 TX power table

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve +16dBm EIRP, the Max EIRP SHOULD be communicated to the network server using an out-of-band channel during the end-device commissioning process.

¹ DR15 and TXPower15 are defined in the LinkADRReq MAC command of the LoRaWAN1.1 specification

² ERP = EIRP – 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

2.11.4 RU864-870 JoinAccept CFList

1567 1568 1569

1570

1571

1572

The RU 864-870 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels two to six

1573 1574 1575 whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType SHALL be equal to zero (0) to indicate that the CFList contains a list of frequencies.

1576

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch2	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.11.5 RU864-870 LinkAdrReq command

The RU864-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

1586 1587

1584 1585

ChMaskCntl	ChMask applies to				
0	Channels 0 to 15				
1	RFU				
••					
4	RFU				
5	RFU				
6	All channels ON				
	The device SHOULD enable all currently				
	defined channels independently of the				
	ChMask field value.				
7	RFU				

1588

Table 80: RU864-870 ChMaskCntl value table

1589 1590

1591

1592

1593 1594

1595

If the ChMaskCntl field value is one of values meaning RFU, the end-device SHOULD reject the command and unset the "Channel mask ACK" bit in its response.

2.11.6 RU864-870 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51

1599

1600

1601

1602

1603 1604

1605

1606 1607

1608

1609

1610 1611

16121613

1614 1615

1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

Table 81: RU864-870 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field SHOULD be:

DataRate	M	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	250	242		
5	250 242			
6	250	242		
7	250	242		
8:15	Not defined			

Table 82: RU864-870 maximum payload size (not repeater compatible)

2.11.7 RU864-870 Receive windows

The RX1 receive window uses the same channel as the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset Upstream data rate	0	0 1 2 3 4 5 Downstream data rate in RX1 slot					
DR0	DR0	DR0	DR0	DR0	DR0	DR0	
DR1	DR1	DR0	DR0	DR0	DR0	DR0	
DR2	DR2	DR1	DR0	DR0	DR0	DR0	
DR3	DR3	DR2	DR1	DR0	DR0	DR0	
DR4	DR4	DR3	DR2	DR1	DR0	DR0	
DR5	DR5	DR4	DR3	DR2	DR1	DR0	
DR6	DR6	DR5	DR4	DR3	DR2	DR1	
DR7	DR7	DR6	DR5	DR4	DR3	DR2	

Table 83: RU864-870 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 869.1MHz / DR0 (SF12, 125 kHz)

2.11.8 RU864-870 Class B beacon and default downlink channel

The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5

Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted			
		signal polarity			

Table 84: RU864-870 beacon settings

1617

1616

1618 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1619 The beacon default broadcast frequency is 869.1 MHz.

The class B default downlink pingSlot frequency is 868.9 MHz.

1620 1621

1622

2.11.9 RU864-870 Default Settings

The following parameters are recommended values for the RU864-870 MHz band.

1624 RECEIVE_DELAY1 1 s

1625 RECEIVE_DELAY2 2 s (MUST be RECEIVE_DELAY1 + 1s)

 1626
 JOIN_ACCEPT_DELAY1
 5 s

 1627
 JOIN_ACCEPT_DELAY2
 6 s

 1628
 MAX_FCNT_GAP
 16384

 1629
 ADR_ACK_LIMIT
 64

 1630
 ADR_ACK_DELAY
 32

1631 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1632 If the actual parameter values implemented in the end-device are different from those default 1633 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1634 RECEIVE_DELAY2 latency), those parameters MUST be communicated to the network 1635 server using an out-of-band channel during the end-device commissioning process. The

network server may not accept parameters different from those default values.

1639 3 Revisions

1665

3.1 Revision A 1640 1641 Initial 1.1 revision, the regional parameters were extracted from the LoRaWANV1.0.2 1642 Modified meaning of ChMaskCntl=5 for the US900 region and AU900 (TC11 1643 1644 CR1274) 1645 DR=15 and TXPower=15 are now reserved for all regions, meaning is defined in LoRaWAN1.1 1646 1647 Added Latin America draft language 1648 Added Russia draft language Fixed AU beacon data rate 1649 1650 General cleanup of table names, etc. 3.2 Revision B 1651 Moved to Revision B in anticipation of next release 1652 First pass at standardizing regional names using standard country 2 letter 1653 abbreviations where applicable 1654 First pass at capitalizing all normative text 1655 Added statement to require LoRa devices to always act in compliance with local rules 1656 and regulations. 1657 1658 Added section 1.1 Conventions 1659 Added Country to channel plan cross reference table 1660 Updated as per LoRaWANv1.1 CR TC19.00002.000.20170614 Updated AS923 JoinReg data rates to reflect a range of DR2-DR5 1661 1662 Added in Region Names for use by Back-End specification as per CR TC19.00016.001 1663 1664 Added changes as per CR TC20 00006.001

1666 4 Bibliography

1667 4.1 References

1668

1669 [LORAWAN] LoRaWAN Specification, V1.1, the LoRa Alliance, May 2017.

1670 5 NOTICE OF USE AND DISCLOSURE

- 1671 Copyright © LoRa Alliance, Inc. (2015). All Rights Reserved.
- The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and
- 1674 Membership Agreements.
- 1675 Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including
- 1676 without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa
- Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing
- to identify any or all such third party intellectual property rights.
- 1679 This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE
- 1680 DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY
- 1681 WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD
- 1682 PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING
- 1683 PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF
- 1684 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.
- 1685 IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS
- 1686 OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR
- 1687 EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR
- 1688 IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF
- 1689 ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.
- 1690 The above notice and this paragraph must be included on all copies of this document that are made.
- 1691 LoRa Alliance, Inc.
- 1692 2400 Camino Ramon, Suite 375
- 1693 San Ramon, CA 94583
- Note: All Company, brand and product names may be trademarks that are the sole property of their respective
- 1695 owners.