Výroková a predikátová logika - X

Petr Gregor

KTIML MFF UK

ZS 2018/2019

1/16

Rozšiřování teorií

Ukážeme, že zavádění nových pojmů má "pomocný charakter".

Tvrzení Nechť T je teorie jazyka L, T' je teorie jazyka L' a $L \subseteq L'$.

- (i) T' je extenze T, právě když redukt A každého modelu A' teorie T'na jazyk L je modelem teorie T,
- (ii) T' je konzervativní extenze T, je-li T' extenze T a každý model Ateorie T lze expandovat do jazyka L' na model A' teorie T'.

Důkaz

- (i)a) Je-li T' extenze T a φ libovolný axiom T, pak $T' \models \varphi$. Tedy $\mathcal{A}' \models \varphi$ a rovněž $\mathcal{A} \models \varphi$, z čehož plyne, že \mathcal{A} je modelem T.
- (i)b) Je-li \mathcal{A} modelem T a $T \models \varphi$, kde φ je jazyka L, pak $\mathcal{A} \models \varphi$ a rovněž $\mathcal{A}' \models \varphi$. Z toho plyne, že $T' \models \varphi$ a tedy T' je extenze T.
 - (ii) Je-li $T' \models \varphi$, kde φ je nad L, a A je model T, pak v nějaké jeho expanzi $\mathcal{A}' \models \varphi$ a tedy $\mathcal{A} \models \varphi$. Z čehož $T \models \varphi$, tj. T' je konzervativní.

Extenze o definovaný relační symbol

Nechť T je teorie jazyka L, $\psi(x_1,\ldots,x_n)$ je formule jazyka L ve volných proměnných x_1,\ldots,x_n a L' je rozšíření L o nový n-ární relační symbol R.

Extenze teorie T o definici R formulí ψ je teorie T' vzniklá přidáním axiomu

$$R(x_1,\ldots,x_n) \leftrightarrow \psi(x_1,\ldots,x_n)$$

Pozorování Každý model teorie T lze jednoznačně expandovat na model T'.

Důsledek T' je konzervativní extenze T.

Tvrzení Pro každou formuli φ' nad L' existuje φ nad L, t.ž. $T' \models \varphi' \leftrightarrow \varphi$.

Důkaz Každou podformuli $R(t_1,\ldots,t_n)$ nahradíme za $\psi'(x_1/t_1,\ldots,x_n/t_n)$,

kde ψ' je vhodná varianta ψ zaručující substituovatelnost všech termů.

Např. symbol ≤ lze zavést v jazyce aritmetiky pomocí axiomu

$$x_1 \leq x_2 \leftrightarrow (\exists y)(x_1 + y = x_2)$$

Extenze o definovaný funkční symbol

Nechť T je teorie jazyka L a pro formuli $\psi(x_1,\ldots,x_n,y)$ jazyka L ve volných proměnných x_1,\ldots,x_n,y platí

$$T \models (\exists y)\psi(x_1,\ldots,x_n,y)$$
 (existence)

$$T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$$
 (jednoznačnost)

Označme L' rozšíření L o nový n-ární funkční symbol f.

Extenze teorie T o definici f formulí ψ je teorie T' vzniklá přidáním axiomu

$$f(x_1,\ldots,x_n)=y \leftrightarrow \psi(x_1,\ldots,x_n,y)$$

Poznámka Je-li ψ tvaru $t(x_1, \dots, x_n) = y$, kde x_1, \dots, x_n jsou proměnné termu t, podmínky existence a jednoznačnosti platí.

Např. binární funkční symbol – lze zavést pomocí + a unárního – axiomem

$$x_1 - x_2 = y \quad \leftrightarrow \quad x_1 + (-x_2) = y$$

Extenze o definovaný funkční symbol (pokr.)

Pozorování Každý model teorie T lze jednoznačně expandovat na model T'.

Důsledek T' je konzervativní extenze T.

Tvrzení Pro každou formuli φ' nad L' existuje φ nad L, t.ž. $T' \models \varphi' \leftrightarrow \varphi$.

extstyle ext

$$(\exists z)(\varphi^* \wedge \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)),$$

kde ψ' je vhodná varianta ψ zaručující substituovatelnost všech termů.

Nechť $\mathcal A$ je model T', e je ohodnocení, $a=f^A(t_1,\ldots,t_n)[e]$. Díky oběma podmínkám platí $\mathcal A\models\psi'(x_1/t_1,\ldots,x_n/t_n,y/z)[e]$ právě když e(z)=a. Tedy

$$\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi'[e]$$

pro každé ohodnocení e, tj. $\mathcal{A} \models \varphi' \leftrightarrow \varphi$ a tedy $T' \models \varphi' \leftrightarrow \varphi$. \square

Extenze o definice

Teorie T' jazyka L' je *extenze* teorie T jazyka L *o definice*, pokud vznikla z T postupnou extenzí o definici relačního či funkčního symbolu.

Důsledek Nechť T' je extenze teorie T o definice. Pak

- každý model teorie T lze jednoznačně expandovat na model T',
- T' je konzervativní extenze T,
- pro každou formuli φ' nad L' existuje φ nad L taková, že $T' \models \varphi' \leftrightarrow \varphi$.

Např. v teorii $T=\{(\exists y)(x+y=0),(x+y=0)\land(x+z=0)\to y=z\}$ nad $L=\langle+,0,\leq\rangle$ s rovností lze zavést < a unární funkční symbol - axiomy

$$-x = y \leftrightarrow x + y = 0$$

$$x < y \leftrightarrow x \le y \land \neg(x = y)$$

Pak formule -x < y je v této extenzi o definice ekvivalentní formuli

$$(\exists z)((z \le y \land \neg(z = y)) \land x + z = 0).$$

6/16

Ekvisplnitelnost

Ukážeme, že problém splnitelnosti lze redukovat na otevřené teorie.

- Teorie T, T' jsou *ekvisplnitelné*, jestliže T má model $\Leftrightarrow T'$ má model.
- Formule φ je v *prenexním (normálním) tvaru (PNF)*, má-li tvar $(O_1x_1)\dots(O_nx_n)\varphi'$,

kde Q_i značí \forall nebo \exists , proměnné x_1, \ldots, x_n jsou navzájem různé a φ' je otevřená formule, zvaná *otevřené jádro*. $(Q_1x_1)\ldots(Q_nx_n)$ je tzv. *prefix*.

• Speciálně, jsou-li všechny kvantifikátory \forall , je φ *univerzální* formule.

K teorii T nalezneme ekvisplnitelnou otevřenou teorii následujícím postupem.

- (1) Axiomy teorie T nahradíme za ekvivalentní formule v prenexním tvaru.
- (2) Pomocí nových funkčních symbolů je převedeme na univerzální formule, tzv. Skolemovy varianty, čímž dostaneme ekvisplnitelnou teorii.
- (3) Jejich otevřená jádra budou tvořit hledanou teorii.

Vytýkání kvantifikátorů

Nechť Q značí kvantifikátor \forall nebo \exists a \overline{Q} značí opačný kvantifikátor.

Pro každé formule φ , ψ takové, že x není volná ve formuli ψ ,

$$\begin{array}{lll}
& \neg (Qx)\varphi \leftrightarrow (Qx)\neg\varphi \\
& \vdash & ((Qx)\varphi \wedge \psi) \leftrightarrow (Qx)(\varphi \wedge \psi) \\
& \vdash & ((Qx)\varphi \vee \psi) \leftrightarrow (Qx)(\varphi \vee \psi) \\
& \vdash & ((Qx)\varphi \rightarrow \psi) \leftrightarrow (\overline{Q}x)(\varphi \rightarrow \psi) \\
& \vdash & (\psi \rightarrow (Qx)\varphi) \leftrightarrow (Qx)(\psi \rightarrow \varphi)
\end{array}$$

Uvedené ekvivalence lze ověřit sémanticky nebo dokázat tablo metodou (*přes generální uzávěr, není-li to sentence*).

Poznámka Předpoklad, že x není volná ve formuli ψ je v každé ekvivalenci (kromě té první) nutný pro nějaký kvantifikátor Q. Např.

$$\not\models ((\exists x)P(x) \land P(x)) \leftrightarrow (\exists x)(P(x) \land P(x))$$

Převod na prenexní tvar

Tvrzení Nechť φ' je formule vzniklá z formule φ nahrazením některých výskytů podformule ψ za formuli ψ' . Jestliže $T \models \psi \leftrightarrow \psi'$, pak $T \models \varphi \leftrightarrow \varphi'$.

Důkaz Snadno indukcí dle struktury formule φ .

Tvrzení Ke každé formuli φ existuje ekvivalentní formule φ' v prenexním normálním tvaru, tj. $\models \varphi \leftrightarrow \varphi'$.

 $D\mathring{u}kaz$ Indukcí dle struktury φ pomocí vytýkání kvantifikátorů, náhradou podformulí za jejich varianty a využitím předchozího tvrzení o ekvivalenci.

$$((\forall z)P(x,z) \land P(y,z)) \rightarrow \neg(\exists x)P(x,y)$$

$$((\forall u)P(x,u) \land P(y,z)) \rightarrow (\forall x)\neg P(x,y)$$

$$(\forall u)(P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y)$$

$$(\exists u)((P(x,u) \land P(y,z)) \rightarrow (\forall v)\neg P(v,y))$$

$$(\exists u)(\forall v)((P(x,u) \land P(y,z)) \rightarrow \neg P(v,y))$$

9/16

Skolemova varianta

Nechť φ je sentence jazyka L v prenexním normálním tvaru, y_1, \ldots, y_n jsou existenčně kvantifikované proměnné ve φ (v tomto pořadí) a pro každé $i \leq n$ nechť x_1, \ldots, x_{n_i} jsou univerzálně kvantifikované proměnné před y_i . Označme L' rozšíření L o nové n_i -ární funkční symboly f_i pro každé $i \leq n$.

Nechť φ_S je formule jazyka L', jež vznikne z formule φ odstraněním $(\exists y_i)$ z jejího prefixu a nahrazením každého výskytu proměnné y_i za term $f_i(x_1,\ldots,x_{n_i})$. Pak formule φ_S se nazývá *Skolemova varianta* formule φ .

Např. pro formuli φ

$$(\exists y_1)(\forall x_1)(\forall x_2)(\exists y_2)(\forall x_3)R(y_1, x_1, x_2, y_2, x_3)$$

je následují formule φ_S její Skolemovou variantou

$$(\forall x_1)(\forall x_2)(\forall x_3)R(f_1, x_1, x_2, f_2(x_1, x_2), x_3),$$

kde f_1 je nový konstantní symbol a f_2 je nový binární funkční symbol.

Vlastnosti Skolemovy varianty

Lemma Nechť φ je sentence $(\forall x_1) \dots (\forall x_n) (\exists y) \psi$ jazyka L a φ' je sentence $(\forall x_1) \dots (\forall x_n) \psi (y/f(x_1, \dots, x_n))$, kde f je nový funkční symbol. Pak

- (1) $\operatorname{redukt} A$ každého modelu A' formule φ' na jazyk L je modelem φ ,
- (2) každý model \mathcal{A} formule φ lze expandovat na model \mathcal{A}' formule φ' .

Poznámka Na rozdíl od extenze o definici funkčního symbolu, expanze v tvrzení (2) tentokrát nemusí být jednoznačná.

extstyle ext

- (2) Nechť $\mathcal{A} \models \varphi$. Pak existuje funkce $f^A \colon A^n \to A$ taková, že pro každé ohodnocení e platí $\mathcal{A} \models \psi[e(y/a)]$, kde $a = f^A(e(x_1), \dots, e(x_n))$, a tedy expanze \mathcal{A}' struktury \mathcal{A} o funkci f^A je modelem φ' . \square
- **Důsledek** Je-li φ' Skolemova varianta formule φ , obě tvrzení (1) a (2) pro φ , φ' rovněž platí. Tedy φ , φ' isou ekvisplnitelné.

Skolemova věta

Věta Každá teorie T má otevřenou konzervativní extenzi T*.

Důkaz Lze předpokládat, že T je v uzavřeném tvaru. Nechť L je její jazyk.

- Nahrazením každého axiomu teorie T za ekvivalentní formuli v prenexním tvaru získáme ekvivalentní teorii T°.
- Nahrazením každého axiomu teorie T° za jeho Skolemovu variantu získáme teorii T' rozšířeného jazyka L'.
- Jelikož je redukt každého modelu teorie T' na jazyk L modelem teorie T, je T' extenze T.
- Jelikož i každý model teorie T lze expandovat na model teorie T', je to extenze konzervativní.
- Jelikož každý axiom teorie T' je univerzální sentence, jejich nahrazením za otevřená jádra získáme otevřenou teorii T* ekvivalentní s T'.

Důsledek Ke každé teorii existuje ekvisplnitelná otevřená teorie.

Redukce nesplnitelnosti na úroveň VL

Je-li otevřená teorie nesplnitelná, lze to "doložit na konkrétních prvcích". Např. teorie

$$T = \{ P(x, y) \lor R(x, y), \neg P(c, y), \neg R(x, f(x)) \}$$

jazyka $L=\langle P,R,f,c\rangle$ nemá model, což lze doložit nesplnitelnou konjunkcí konečně mnoha instancí (některých) axiomů teorie T v konstantních termech

$$(P(c,f(c)) \vee R(c,f(c))) \wedge \neg P(c,f(c)) \wedge \neg R(c,f(c)),$$

což je lživá formule ve tvaru výroku

$$(p \lor r) \land \neg p \land \neg r.$$

Instance $\varphi(x_1/t_1,\ldots,x_n/t_n)$ otevřené formule φ ve volných proměnných x_1,\ldots,x_n je *základní (ground) instance*, jsou-li všechny termy t_1,\ldots,t_n konstantní. Konstantní termy nazýváme také *základní (ground) termy*.

Herbrandův model

Nechť $L=\langle \mathcal{R},\mathcal{F} \rangle$ je jazyk s alespoň jedním konstantním symbolem. (Je-li třeba, do L přidáme nový konstantní symbol.)

- Herbrandovo univerzum pro L je množina všech konstantních termů z L.

 Např. pro $L = \langle P, f, c \rangle$, kde P je relační, f je binární funkční, c konstantní $A = \{c, f(c, c), f(f(c, c), c), f(c, f(c, c)), f(f(c, c), f(c, c)), \ldots\}$
- Struktura $\mathcal A$ pro L je *Herbrandova struktura*, je-li doména A Herbrandovo univerzum pro L a pro každý n-ární funkční symbol $f \in \mathcal F$ a $t_1, \ldots, t_n \in A$,

$$f^A(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

(včetně n=0, tj. $c^A=c$ pro každý konstantní symbol c). Poznámka Na rozdíl od kanonické struktury nejsou předepsané relace.

Např.
$$\mathcal{A}=\langle A,P^A,f^A,c^A\rangle$$
, kde $P^A=\emptyset$, $c^A=c$ a $f^A(c,c)=f(c,c)$, \ldots

ullet *Herbrandův model* teorie T je Herbrandova struktura, jež je modelem T.

Herbrandova věta

Věta Nechť T je otevřená teorie jazyka L bez rovnosti a s alespoň jedním konstantním symbolem. Pak

- (a) T má Herbrandův model, anebo
- (b) existuje konečně mnoho základních instancí axiomů z T, jejichž konjunkce je nesplnitelná, a tedy T nemá model.

Důkaz Nechť T' je množina všech základních instancí axiomů z T. Uvažme dokončené (např. systematické) tablo τ z T' v jazyce L (bez přidávání nových konstant) s položkou $F \perp v$ kořeni.

- Obsahuje-li tablo τ bezespornou větev V, kanonický model z větve V je Herbrandovým modelem teorie T.
- Jinak je τ sporné, tj. $T' \vdash \bot$. Navíc je konečné, tedy \bot je dokazatelný jen z konečně mnoha formulí T', tj. jejich konjunkce je nesplnitelná.

Poznámka V případě jazyka L s rovností teorii T rozšíříme na T* o axiomy rovnosti pro L a pokud T^* má Herbrandův model A, zfaktorizujeme ho dle $=^A$.

Důsledky Herbrandovy věty

Nechť *L* je jazyk obsahující alespoň jeden konstantní symbol.

Důsledek Pro každou otevřenou $\varphi(x_1,\ldots,x_n)$ jazyka L je $(\exists x_1)\ldots(\exists x_n)\varphi$ pravdivá, právě když existují konstantní termy t_{ij} jazyka L takové, že

$$\varphi(x_1/t_{11},\ldots,x_n/t_{1n})\vee\cdots\vee\varphi(x_1/t_{m1},\ldots,x_n/t_{mn})$$

je (výroková) tautologie.

 $D\mathring{u}kaz$ $(\exists x_1) \dots (\exists x_n) \varphi$ je pravdivá $\Leftrightarrow (\forall x_1) \dots (\forall x_n) \neg \varphi$ je nesplnitelná $\Leftrightarrow \neg \varphi$ je nesplnitelná. Ostatní vyplývá z Herbrandovy věty pro $\neg \varphi$.

Důsledek Otevřená teorie T jazyka L má model, právě když teorie T' všech základních instancí axiomů z T má model.

Důkaz Má-li T model \mathcal{A} , platí v něm každá instance každého axiomu z T, tedy \mathcal{A} je modelem T'. Nemá-li T model, dle H. věty existuje (konečně) formulí z T', jejichž konjunkce je nesplnitelná, tedy T' nemá model. \square

