

Projekt finansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Programowanie liniowe

Badania Operacyjne Ćwiczenia II

Paweł Obszarski

Zad. 1.

Zakład produkuje dwa wyroby W_I i W_{II} , zysk ze sprzedaży tych wyrobów to odpowiednio 4 i 1. Do produkcji tych wyrobów zużywane są trzy rodzaje surowców S_1 , S_2 i S_3 , zapasy tych surowców są odpowiednio 12, 6 i 1. Do produkcji W_I potrzeba 2 jednostki S_1 , 3 jednostki S_2 i 1 S_3 . Zasób S_3 jest odpadem produkcyjnym przy produkcji W_{II} (2 jednostki na produkt), dodatkowo wiadomo, że do produkcji W_{II} trzeba 3 jednostki S_1 i jednostkę S_2 . Przedsiębiorstwo zobowiązało się przekazać swojemu kontrahentowi 3 jednostki S_3 pod koniec cyklu produkcyjnego. Jaki jest maksymalny możliwy zysk i przy jakich wielkościach produkcji można go osiągnąć

Zad. 2.

Tartak otrzymał zamówienie na wykonanie co najmniej 300 kompletów belek. Każdy komplet składa się z 7 belek o długości 0.7 m oraz 4 belek o długości 2.5 m. W jaki sposób powinny być cięte dłużyce o długości 5.2 m, aby odpad powstały w procesie cięcia był minimalny?

Zad. 3.

Plecak może pomieścić 20 kg. Posiadamy trzy rodzaje przedmiotów P_1 , P_2 i P_3 , o cenach i wagach podanych w tabeli poniżej. Chcemy przenieść w plecaku jak najcenniejszy ładunek, co powinniśmy zapakować? Rozwiązać ogólny problem plecakowy dla przykładu scharakteryzowanego tabelą?

	P_1	P_2	P_3	W
С	9	6	4	
W	7	5	3	20

Zad. 4.

Park maszynowy w przedsiębiorstwie składa się m.in. z 4 obrabiarek, na których można wykonywać trzy różne czynności. Każdą z czynności można realizować jednocześnie tylko na jednej obrabiarce oraz każda obrabiarka może wykonywać w danym momencie tylko jedną pracę. Określ najlepszy rozdział czynności między obrabiarki tak, aby łączny czas pracy maszyn był minimalny. Czas wykonywania poszczególnych czynności podany jest w poniższej tablicy.

	Obrabiarki			
Czynności	O_1	O_2	O_3	O_4
C_1	5	1	6	4
C_2	4	8	5	3
C_3	7	2	5	6

Zad. 5.

W pewien zakład dysponuje czterema maszynami (do których przypisane są zadania) i pięcioma pracownikami. Każda maszyna jest odsługiwana przez przez jednego pracownika. Pracownicy z różną sprawnością obsługują różne maszyny. Czasy wykonywania zadania na każdej maszynie podane są w tabeli. Pomóż pracodawcy przydzielić robotników do maszyn, w taki sposób, by czas pracy był minimalny. Wykorzystaj algorytm węgierski. Nie zapomnij zinterpretować wyników. Obliczenia proszę przeprowadzić na oddzielnej

		P_1	P_2	P_3	P_4	P_5
	M_1	12	3	4	3	7
kartce.	M_2	7	4	6	5	21
	M_3	4	1	2	12	5
	M_4	6	7	5	4	3