

<u>Capítulo 2</u> cionam a modelag

Como funcionam a modelagem e a simulação discreta de sistemas

Aula 3

Métodos de Modelagem e Visão da Realidade

- ♦ Visão da realidade: forma de ver (entender) os sistemas, existentes ou não, visando sua modelagem. Existem, basicamente, três diferentes "visões" e/ou métodos de modelagem.
 - 1. Modelagem por eventos;
 - 2. Modelagem por atividades;
 - 3. Modelagem por processos.

Modelagem por Eventos

- ◆ O sistema é modelado pela identificação de seus eventos característicos (os quais são incondicionais), dependendo unicamente do tempo de simulação.
- ◆ Rotinas descrevem as mudanças de estado que podem ocorrer no sistema em pontos discretos no tempo, de acordo com a ocorrência dos eventos. Estas rotinas descrevem ações relacionados a ocorrência dos eventos.
- ◆ O processo de simulação evolui ao longo do tempo pela execução dos eventos selecionados de uma pilha ou calendário de eventos, cronologicamente ordenados. É executado o evento do topo da pilha (tempo mais próximo do tempo corrente de simulação).

Modelagem por Atividades

- ◆ A estratégia de busca do *próximo evento da lista* é baseada tanto no tempo programado de ocorrência como em testes condicionais.
 - ✓ aplicável a sistemas cujas mudanças de estado dependem da ocorrência de eventos condicionados, isto é, outras condições, além do tempo devem ser verdadeiras.
 - ✓ a busca sobre o próximo evento deve considerar ambas as situações: tempo de simulação e quaisquer outras condições favoráveis ao *disparo* de um evento.
 - ✓ A monitoração de situações de busca de condições de início de eventos é típica da modelagem por atividades.

Modelagem por Processos

- Os sistemas são vistos principalmente do ponto de vista das entidades.
- ◆ O programa monitora cada entidade, individualmente.
- ◆ Sempre haverá uma entidade controlando a sequência de eventos.
- ◆ O controle é transferido de uma entidade para outra, na medida que eventos futuros possam ser programados para cada uma delas.
- ◆ Estes procedimentos se repetem com todas as entidades que estejam no sistema até que estas o deixem, quando realizarem todas as suas atividades.

Mecanismos de Avanço do Tempo

◆ A natureza dinâmica dos modelos de simulação implica em manter um constante acompanhamento do valor do tempo simulado, enquanto a simulação avança.

◆ É necessário também que o programa de simulação possua um mecanismo para avançar o tempo simulado de um valor para outro.

♦ A variável que guarda o tempo atualizado de simulação é chamada de *relógio da simulação*.

Mecanismos de Avanço do Tempo

- ◆ Dois principais mecanismos de avanço do tempo aparecem nas diversas linguagens de simulação:
 - ✓ avanço do tempo com incremento fixo
 - ✓ avanço do tempo para o próximo evento
- ◆ O último é amplamente utilizado tanto por programas comerciais de simulação como por aqueles montados sobre uma linguagem de programação de propósito geral como C, Delphi, VB, Java, etc.
- Nossa referencia será ao avanço do tempo relacionado ao próximo evento.

Método da Programação de Eventos

◆ O método da programação de eventos considera a execução de um código que contém um laço sobre uma lista de eventos.

◆ Pode-se empregar estruturas de dados, tais como listas ou pilhas encadeadas.

◆ Um dos principais elementos dos algoritmos voltados ao método da programação de eventos é a lista de eventos futuros (LEF).

Calendário ou Lista de Eventos Futuros (LEF)

◆ O calendário de eventos, é uma lista contendo todos os eventos programados para ocorrerem no futuro, isto é, em algum momento posterior ao tempo atual do relógio da simulação.

	Estado	Entidades	Conj.	Conj.		Calendário de Eventos	Estatísticas e
<u>RELÓGIO</u>	sistema	e atributos	1	2	•••	Futuros (LEF)	Contadores
t	(x, y, z)					(E_3, t_1) - Evento tipo 3	
						no tempo t_1	
						(E_1, t_2) - Evento tipo 1	
						no tempo <i>t</i> 2	
	•					•	
	•					•	

Algoritmo de Avanço do Tempo

◆ A sequência de ações que um simulador precisa realizar para avançar o relógio da simulação e criar uma nova imagem do sistema

◆ Baseia-se no *algoritmo para avanço do tempo com base na programação de eventos*, o qual faz uso do calendário ou Lista de Eventos Futuros (LEF).

Algoritmo de Avanço do Tempo Baseado na Programação de Eventos

Imagem do sistema no tempo tRELÓGIOEstado do Sistema...Lista de Eventos Futuros - (LEF)...t(0, 0, 0) (E_3, t_1) Evento tipo 3 a ocorrer no tempo t_1
 (E_2, t_2) Evento tipo 2 a ocorrer no tempo t_2

Algoritmo para avanço do tempo com base na programação de eventos

 (E_2, t_n) Evento tipo 2 a ocorrer no

 (E_1, t_3) Evento tipo 1 a ocorrer no

1. Remova o evento iminente da LEF (evento 3, tempo t_1);

tempo t_3

tempo $t_{\rm n}$

- 2. Avance o RELÓGIO para o tempo do evento iminente (de tempo t para t_1);
- 3. Execute o evento iminente atualizando (na medida do necessário): o estado do sistema, os atributos das entidades e os membros de conjuntos;
- 4. Gere futuros eventos (se necessário) e coloque-os na LEF na posição correta. (Exemplo: Evento 1 que ocorrerá no tempo t^* , onde $t_2 < t^* < t_3$);
- 5. Atualize estatísticas acumuladas e contadores.

Imagem do sistema no tempo t

Imagem do sistema no tempo t_1						
	Estado do					
RELÓGIO	Sistema	•••	Lista de Eventos Futuros - (LEF)	•••		
t_1	(0, 1, 0)		(E_2, t_2) Evento tipo 1 a ocorrer no			
			tempo t_2			
			(E_1, t^*) Evento tipo 1 a ocorrer no			
			tempo t*			
			(E_1, t_3) Evento tipo 1 a ocorrer no			
			tempo t_3			
			(E_2, t_n) Evento tipo 2 a ocorrer no			
			tempo $t_{\rm n}$			

Simulação

Funcionamento de um Programa de Simulação (orientado a eventos)

- ◆ Na simulação discreta as mudanças de estado acontecem em pontos discretos no tempo (eventos).
- ◆ A cada mudança (evento) uma *imagem representa o* estado do sistema naquele instante.
- A sequência cronológica das imagens representa a evolução do sistema no tempo.
- ◆ Juntando-se todas as imagens produzidas, temos uma espécie de "filme" ou "histórico" dos fatos ou eventos ocorridos, assim como suas implicações sobre o sistema.

Funcionamento de um Programa de Simulação (orientado a eventos)

- ◆ Principais elementos de um programa computacional voltado a simulação de modelos de mudança discreta.
 - ✓ Rotina Principal;
 - ✓ Rotina de Inicialização;
 - ✓ Rotinas de Eventos (Ex. Evento Chegada e Saída);
 - ✓ Rotina de Avanço do Tempo;
 - ✓ Biblioteca de Funções;
 - ✓ Gerador de Relatórios.

Exemplo de um Evento Chegada

Evento Saída

Fluxograma da Rotina Principal

Exemplo Aplicação do Algoritmo de Avanço do Tempo

1	2	3	4	5	6	7	8	9	10	11	12
N°. do Cliente	Tempo no Relógio	Tipo de Evento	Estado Fila (Cliente)	Estado Operador (Cliente)	тс	LEF Lista de Eventos Futuros	Conta Clientes	Σ TF	Max. TF	Σ TS	Max TS
-	0,0	Inicio	0	Livre	-	(1; 17,5; C) (-; 240,0; FS)	0	0,00	0,00	0,00	0,00
1	17,5	Chegada	0	Ocupado (1)	17,5	(2, 25,0; C) (1; 29,0; S) (-; 240,0; FS)	0	0,00	0,00	0,00	0,00
2	25,0	Chegada	1 (2)	Ocupado (1)	25,0	(1; 29,0; S) (3, 37,5; C) (-; 240,0; FS)	0	0,00	0,00	0,00	0,00
1	29,0	Saída	0	Ocupado (2)	-	(3, 37,5; C) (2: 41,6; S) (-; 240,0; FS)	1	4,00	4,00	11,5	11,5
3	37,5	Chegada	1 (3)	Ocupado (2)	37,5	(4, 40,0; C) (2: 41,6; S) (-; 240,0; FS)	1	4,00	4,00	11,5	11,5
4	40,0	Chegada	2 (3, 4)	Ocupado (2)	40,0	(2; 41,6; S) (5; 42,5; C) (-; 240,0; FS)	1	6,50	4,00	11,5	11,5
2	41,6	Saída	1 (4)	Ocupado (3)	-	(5: 42,5; C) (3; 53,6; S) (-; 240,0; FS)	2	8,10	4,1	27,1	16,6
	•••			•••							

Cronologia dos Eventos

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio
1	17,5	17,5	11,5	17,5	0,0	29,0
2	7,5	25,0	12,6	29,0	4,0	41,6
3	12,5	37,5	12,0	41,6	4,1	53,6
4	2,5	40,0	11,5	53,6	13,6	65,1
5	2,5	42,5	12,0	65,1	22,6	77,1
6	2,5	45,0	10,4	77,1	32,1	87,5
7	2,5	47,5	11,5	87,5	40,0	99,0
8	37,5	85,0	13,1	99,0	14,0	112,1
9	17,5	102,5	10,4	112,1	9,6	122,5
10	17,5	120,0	11,5	122,5	2,5	134,0
11	32,5	152,5	11,5	152,5	0,0	164,0
12	37,5	190,0	9,8	190,0	0,0	199,8
13	7,5	197,5	10,9	199,8	2,3	210,7
14	12,5	210,0	11,5	210,7	0,7	222,2
15	12,5	222,5	10,4	222,5	0,0	232,9
			170,6		145,5	

- As mudanças de estado do sistema acontecem na medida em que os eventos ocorrem.
- Os eventos ocorrem em pontos discretos no tempo (..17,5; 25,0;..232,9; 240,0).

		Carros no	Estado do
Evento	Relógio	Sistema	Operador
Início	0,0	0	Livre
Chegada	17,5	1	Ocupado
Chegada	25,0	2	Ocupado
Saída	29,0	1	Ocupado
Chegada	37,5	2	Ocupado
Chegada	40,0	3	Ocupado
Saída	41,6	2	Ocupado
Chegada	42,5	3	Ocupado
Chegada	45,0	4	Ocupado
Chegada	47,5	5	Ocupado
Saída	53,6	4	Ocupado
Saída	65,1	3	Ocupado
Saída	77,1	2	Ocupado
Chegada	85,0	3	Ocupado
Saída	87,5	2	Ocupado
Saída	99,0	1	Ocupado
Chegada	102,5	2	Ocupado
Saída	112,1	1	Ocupado
Chegada	120,0	2	Ocupado
Saída	122,5	1	Ocupado
Saída	134,0	0	Livre
Chegada	152,5	1	Ocupado
Saída	164,0	0	Livre
Chegada	190,0	1	Ocupado
Chegada	197,5	2	Ocupado
Saída	199,8	1	Ocupado
Chegada	210,0	2	Ocupado
Saída	210,7	1	Ocupado
Saída	222,2	0	Livre
Chegada	222,5	1	Ocupado
Saída	232,9	0	Livre
Fim	240,0	0	Livre

Simulação Discreta de Sistemas - Prof. Paulo Freitas -