assignment_3_solutions

January 11, 2023

1 Assignment 3: SQL and Pandas

1.1 Overview

Like Assignment 2, we will be using the Chinook database, this time focusing more on the sales side of the music store.

1.1.1 Question 0

Set up your connection and cursor for sqlite3.

```
[]: import sqlite3
import pandas as pd
from pandasql import sqldf

connection = sqlite3.connect("../data/chinook.sqlite")
cursor = connection.cursor()
```

1.1.2 Question 1

Using pandas' built-in function read_sql_query(query, connection), query the entire Customer and Invoice tables, merging by CustomerId.

```
[]: customer_invoice_df = pd.read_sql_query('''
    SELECT * FROM Customer
    INNER JOIN Invoice
        ON Customer.CustomerId = Invoice.CustomerId
    ''', connection)

customer_invoice_df.head()
```

```
CustomerId FirstName LastName Company
[]:
                                                                  Address
                                                                                City
                      Leonie
                                                 Theodor-Heuss-Straße 34
                 2
                                Köhler
                                          None
                                                                           Stuttgart
                 4
                                Hansen
                                          None
                                                        Ullevålsveien 14
                                                                                Oslo
     1
                       Bjørn
     2
                 8
                        Daan Peeters
                                          None
                                                         Grétrystraat 63
                                                                            Brussels
     3
                14
                        Mark Philips
                                         Telus
                                                          8210 111 ST NW
                                                                            Edmonton
     4
                23
                                Gordon
                                          None
                                                         69 Salem Street
                         John
                                                                              Boston
```

State Country PostalCode Phone ... SupportRepId InvoiceId \

```
0
  None
         Germany
                       70174
                                +49 0711 2842222
                                                                 5
                                                                            1
                                 +47 22 44 22 22
                                                                 4
                                                                            2
1
   None
          Norway
                        0171
                                                                            3
2
   None
         Belgium
                        1000
                                +32 02 219 03 03
                                                                 4
3
                     T6G 2C7
                               +1 (780) 434-4554
                                                                 5
                                                                            4
     AB
          Canada
                                                                            5
4
     MA
             USA
                        2113
                               +1 (617) 522-1333 ...
                                                                 4
```

\	BillingCity	${ t BillingAddress}$	${\tt InvoiceDate}$	CustomerId	
	Stuttgart	Theodor-Heuss-Straße 34	2009-01-01 00:00:00	2	0
	Oslo	Ullevålsveien 14	2009-01-02 00:00:00	4	1
	Brussels	Grétrystraat 63	2009-01-03 00:00:00	8	2
	Edmonton	8210 111 ST NW	2009-01-06 00:00:00	14	3
	Boston	69 Salem Street	2009-01-11 00:00:00	23	4

	BillingState	BillingCountry	${\tt BillingPostalCode}$	Total
0	None	Germany	70174	1.98
1	None	Norway	0171	3.96
2	None	Belgium	1000	5.94
3	AB	Canada	T6G 2C7	8.91
4	MA	USA	2113	13.86

[5 rows x 22 columns]

1.1.3 Question 2

Using sqldf, query a new DataFrame containing only the CustomerId, FirstName, LastName, InvoiceDate, and Total. **Drop any invoices before 2010**. Remember, when using an existing pandas DataFrame, you're query FROM the variable name, not the tables from previously.

[]:	(CustomerId	FirstName	${\tt LastName}$	${\tt InvoiceDate}$	Total
0)	43	Isabelle	Mercier	2010-01-08 00:00:00	1.98
1		45	Ladislav	Kovács	2010-01-08 00:00:00	1.98
2	2	47	Lucas	Mancini	2010-01-09 00:00:00	3.96
3	3	51	Joakim	Johansson	2010-01-10 00:00:00	6.94
4	Ļ	57	Luis	Rojas	2010-01-13 00:00:00	17.91
		•••	•••	•••	•••	
3	324	25	Victor	Stevens	2013-12-05 00:00:00	3.96
3	325	29	Robert	Brown	2013-12-06 00:00:00	5.94
3	326	35	Madalena	Sampaio	2013-12-09 00:00:00	8.91
3	327	44	Terhi	Hämäläinen	2013-12-14 00:00:00	13.86
3	328	58	Manoj	Pareek	2013-12-22 00:00:00	1.99

1.2 Question 3

We now have a simplified list of invoices containing only name, id, date, and total. Let's figure out how much every has spent since 2010! Recall that pandas has the groupby() function (documentation here). Using this, make a new DataFrame grouping by the CustomerId, giving the total/sum for each.

[]: table.groupby(["CustomerId"]).sum()

[]:		Total
	CustomerId	
	1	39.62
	2	12.87
	3	39.62
	4	28.73
	5	38.64
	6	40.71
	7	40.64
	8	30.69
	9	31.68
	10	28.71
	11	21.78
	12	36.63
	13	25.74
	14	28.71
	15	22.78
	16	36.63
	17	27.74
	18	37.62
	19	13.87
	20	39.62
	21	27.72
	22	39.62
	23	14.85
	24	43.62
	25	35.69
	26	45.64
	27	28.71
	28	27.78
	29	36.63
	30	31.68
	31	28.71
	32	21.78
	33	36.63

```
34
             27.74
             37.62
35
36
             21.78
37
             42.63
38
             25.74
39
             38.62
40
             13.87
41
             37.62
42
             28.73
43
             40.62
             32.71
44
45
             45.62
46
             38.69
47
             35.64
48
             31.71
49
             21.78
50
             36.63
51
             32.68
52
             28.71
53
             21.78
54
             36.63
             25.74
55
56
             37.62
57
             30.78
58
             38.62
59
             26.74
```

1.2.1 Question 4

Turns out, the pandas groupby() statement has an equivalent in SQL! Putting

```
GROUP BY <Table Name>. <Column Name>
```

at the end of a query plus the keyword SUM() around the column you're grouping by creates a very similar table to the one we made in pandas!

Use what we've learned to query a table with FirstName, LastName, and SUM(Total). Do the results match what we did in pandas?

[]:	FirstName	LastName	SUM(Total)
0	Luís	Gonçalves	39.62
1	Leonie	Köhler	12.87
2	François	Tremblay	39.62
3	Bjørn	Hansen	28.73
4	František	Wichterlová	38.64
5	Helena	Holý	40.71
6	Astrid	Gruber	40.64
7	Daan	Peeters	30.69
8	Kara	Nielsen	31.68
9	Eduardo	Martins	28.71
10	Alexandre	Rocha	21.78
11	Roberto	Almeida	36.63
12	Fernanda	Ramos	25.74
13	Mark	Philips	28.71
14	Jennifer	Peterson	22.78
15	Frank	Harris	36.63
16	Jack	Smith	27.74
17	Michelle	Brooks	37.62
18	Tim	Goyer	13.87
19	Dan	Miller	39.62
20	Kathy	Chase	27.72
21	Heather	Leacock	39.62
22	John	Gordon	14.85
23	Frank	Ralston	43.62
24	Victor	Stevens	35.69
25	Richard	Cunningham	45.64
26	Patrick	Gray	28.71
27	Julia	Barnett	27.78
28	Robert	Brown	36.63
29	Edward	Francis	31.68
30	Martha	Silk	28.71
31	Aaron	Mitchell	21.78
32	Ellie	Sullivan	36.63
33	João	Fernandes	27.74
34	Madalena	Sampaio	37.62
35	Hannah	Schneider	21.78
36	Fynn	Zimmermann	42.63
37	Niklas	Schröder	25.74
38	Camille	Bernard	38.62
39	Dominique	Lefebvre	13.87
40	Marc	Dubois	37.62
41	Wyatt	Girard	28.73
42	Isabelle	Mercier	40.62
43	Terhi	Hämäläinen	32.71
44	Ladislav	Kovács	45.62
45	Hugh	O'Reilly	38.69

46	Lucas	Mancini	35.64
47	Johannes	Van der Berg	31.71
48	Stanisław	Wójcik	21.78
49	Enrique	Muñoz	36.63
50	Joakim	Johansson	32.68
51	Emma	Jones	28.71
52	Phil	Hughes	21.78
53	Steve	Murray	36.63
54	Mark	Taylor	25.74
55	Diego	Gutiérrez	37.62
56	Luis	Rojas	30.78
57	Manoj	Pareek	38.62
58	Puja	Srivastava	26.74

[]:[