C	D	Λ	W	1		7		Λ		П	
	П	H	٧١	/ \	U	_	U	Н	\perp		

Wstęp do techniki cyfrowej

Informatyka 4i1 niestacjonarne

Semestr letni 2022

Bartłomiej Błaszczyk

236382

Spis treści

1.7 Półsumator	3
1.8 Pełny sumator jednobitowy	5
2.1. Multiplexer i demultiplexer 4-bitowy	7
2.2. Przerzutniki RS	9
2.3. Przerzutnik synchroniczny JK w układzie Master-Slave	12
2.4. Przerzutnik D, w wersji statycznej oraz transmisyjnej	14
2.5 Przerzutnik D wyzwalany zboczem	17
3.1. Trzybitowy licznik synchroniczny	19
Tabela prawdy 1 Półsumator	4
Tabela prawdy 2 Pełny sumator jednobitowy	6
Tabela prawdy 3 Multiplexer	8
Tabela prawdy 4 Demultiplexer	8
Tabela prawdy 5 Przerzutnik RS asynchroniczny	10
Tabela prawdy 6 Przerzutnik RS synchroniczny	11
Tabela prawdy 7 Przerzutnik J-K Master Slave	13
Tabela prawdy 8 Przerzutnik D statyczny	14
Tabela prawdy 9 przerzutnik D wyzwalany zboczem	18
Tabela wyników 1 Półsumator	3
Tabela wyników 2 Pełny sumator jednobitowy	6
Tabela wyników 3 Multiplexer i demultiplexer 4-bitowy	8
Tabela wyników 4 Przerzutnik RS asynchroniczny	9
Tabela wyników 5 Przerzutnik RS synchroniczny	11
Tabela wyników 6 Przerzutnik J-K Master Slave	13

Tabela wyników 7 Przerzutnik statyczny	14
Tabela wyników 8 Przerzutnik D transmisyjny	16
Tabela wyników 9 przerzutnik D wyzwalany zboczem	17
Schemat 1 Półsumator	3
Schemat 2 Pełny sumator jednobitowy	5
Schemat 3 Multiplexer	7
Schemat 4 Demultiplexer	7
Schemat 5 Przerzutnik RS asynchroniczny	9
Schemat 6 Przerzutnik RS synchroniczny	10
Schemat 7 Przerzutnik J-K Master Slave	12
Schemat 8 Przerzutnik D statyczny	14
Schemat 9 Przerzutnik D transmisyjny	15
Schemat 10 przerzutnik D wyzwalany zboczem	17

1.7 Półsumator

Funkcja SUM jest zrealizowana za pomocą bramki XOR, funkcja CARRY z wykorzystaniem bramki AND. Poprawne działanie należy zweryfikować w symulacji.

Schemat 1 Półsumator

Tabela wyników 1 Półsumator

Α	В	CARRY	SUM
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Tabela prawdy 1 Półsumator

1.8 Pełny sumator jednobitowy

Układ ten posiada trzy równoważne wejścia oraz jedno wyjście dwubitowe. Działanie tego układu polega na zliczaniu jedynek logicznych obecnych na wejściach oraz podawaniu ich liczby na wyjściu, w postaci liczby binarnej w kodzie naturalnym. Wyjście SUM to młodszy a CARRY to starszy bit tej liczby.

Schemat 2 Pełny sumator jednobitowy

Tabela wyników 2 Pełny sumator jednobitowy

Α	В	С	CARRY	SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Tabela prawdy 2 Pełny sumator jednobitowy

2.1. Multiplexer i demultiplexer 4-bitowy

Multiplekser (selektor danych) jest układem cyfrowym posiadającym n wejść danych, jedno wyjście y oraz wejścia adresowe. Na wyjściu y pojawia się stan wejścia danych, którego numer (adres) podany został na wejścia adresowe. Przykładowy projekt dotyczy układu z czterema wejściami danych D0, D1, D2, D3, z jednym wyjściem Y oraz dwoma wejściami adresowymi A i B.

Schemat 3 Multiplexer

Schemat 4 Demultiplexer

Tabela wyników 3 Multiplexer i demultiplexer 4-bitowy

В	Α	D0	D1	D2	D3	Υ
0	0	0	Х	Х	Х	0
0	1	Х	0	Х	Х	0
1	0	X	X	0	X	0
1	1	X	X	X	0	0
0	0	1	Х	Х	Х	1
0	1	Х	1	Х	Х	1
1	0	X	X	1	Х	1
1	1	Х	Х	Х	1	1

Tabela prawdy 3 Multiplexer

В	Α	G	Y0	Y1	Y2	Y3
Х	Х	0	0	0	0	0
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Tabela prawdy 4 Demultiplexer

2.2. Przerzutniki RS

Przerzutnik powstaje dzięki sprzężeniu zwrotnemu wyjść z wejściami. Sprzężenie zwrotne powoduje, iż przerzutnik utrzymuje ostatni stan wyjść po przejściu stanów logicznych na wejściach w stan neutralny.

Schemat 5 Przerzutnik RS asynchroniczny

Tabela wyników 4 Przerzutnik RS asynchroniczny

R	S	Q	~Q
0	1	1	0
1	0	0	1
0	0	Q _{n-1}	~Q _{n-1}
1	1	0	0

Tabela prawdy 5 Przerzutnik RS asynchroniczny

Schemat 6 Przerzutnik RS synchroniczny

Tabela wyników 5 Przerzutnik RS synchroniczny

S	R	С	Q	~Q
X	X	0	Q _{n-1}	~Q _{n-1}
0	0	X	Q _{n-1}	~Q _{n-1}
1	0	1	1	0
0	1	1	0	1
1	1	1	1	1

Tabela prawdy 6 Przerzutnik RS synchroniczny

2.3. Przerzutnik synchroniczny JK w układzie Master-Slave

Wyzwalanie przerzutnika następuje tylko w momencie przejścia sygnału zegara ze stanu 1 na 0. Natomiast czas pomiędzy kolejnymi zboczami sygnału zegarowego może być dowolnie długi.

Schemat 7 Przerzutnik J-K Master Slave

Pamięć przerzutnika Slave, mimo wysokiego stanu przerzutnika Master.sprawia, że Slave czeka na sygnał zegara.

Utwierdzenie stanu przez przerzutnik Slave na sygnał niskiego stanu zegara.

Rozbudowanie przerzutnika o dodatkowy człon bramek skutkuje brakiem sygnału zabronionego.

W tym układzie (Master-Slave), przerzutnik na sygnał zegara będzie zmieniał stan wyjść na przemian.

Tabela wyników 6 Przerzutnik J-K Master Slave

J	K	С	Q
X	X	0	Q _{n-1}
X	X	1	Q _{n-1}
0	0	X	Q _{n-1}
1	0	1→0	1
0	1	1→0	0
1	1	1→0	~Q _{n-1}

Tabela prawdy 7 Przerzutnik J-K Master Slave

2.4. Przerzutnik D, w wersji statycznej oraz transmisyjnej

Gdy wejście zegarowe C jest w stanie nieaktywnym, przerzutnik pamięta swój poprzedni stan. Gdy wejście C przechodzi w stan aktywny, do przerzutnika zostaje wpisany stan wejścia D, tzn. na wyjściu Q pojawia się ten sam stan, który występuje na wejściu D. Gdy wejście zegarowe C powróci w stan nieaktywny, wpisany z wejścia D stan jest pamiętany w przerzutniku. Zwróć uwagę, iż w przerzutniku D nie występują stany zabronione.

Schemat 8 Przerzutnik D statyczny

Tabela wyników 7 Przerzutnik statyczny

D	С	Q	~Q
Х	С	Q _{n-1}	~Q _{n-1}
0	1	0	1
1	1	1	0

wysokim stanie zegara

Tabela prawdy 8 Przerzutnik D statyczny

Schemat 9 Przerzutnik D transmisyjny

Tabela wyników 8 Przerzutnik D transmisyjny

Czas propagacji sygnału może to sprawiać kłopoty w odpowiednio szybkim przekazywaniu sygnału wejściowego na odpowiednie wyjście bramki CMOS.

Przerzutnik D typu transmisyjnego ma początkowo niezainicjalizowane stany wyjściowe.

2.5 Przerzutnik D wyzwalany zboczem

Przerzutnik zapamiętuje stan wejścia D tylko przy odpowiedniej zmianie poziomu logicznego na wejściu zegarowym C. Architektura przypomina przerzutnik RS Master-Slave.

Schemat 10 przerzutnik D wyzwalany zboczem

Tabela wyników 9 przerzutnik D wyzwalany zboczem

D	С	Q	~Q
0	X	0	1
1	0→1	1	0
0	0→1	0	1

Tabela prawdy 9 przerzutnik D wyzwalany zboczem

3.1. Trzybitowy licznik synchroniczny