n Numéro de publication: .

0 329 556 A1

12

DEMANDE DE BREVET EUROPEEN

(2) Numéro de dépôt: 89400437.3

(6) Int. Cl.4: A 01 N 59/00

2 Date de dépôt: 17.02.89

- 39 Priorité: 19.02.88 FR 8801985
- 43 Date de publication de la demande: 23.08.89 Builetin 89/34
- Etats contractants désignés:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- Demandeur: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE 75, Quai d'Orsay F-75321 Paris Cédex 07 (FR)
- (2) Inventeur: Jourdan-Laforte, Eric 67, rue La Fontaine F-75016 Paris (FR)

Carron, Henry 50, avenue Jean Jaurès F-93500 Pantin (FR)

Nicolle, Rémy 12, rue Martin Bernard F-75013 Paris (FR)

- Mandataire: Vesin, Jacques et al
 L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET
 L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
 75, quai d'Orsay
 F-75321 Paris Cédex 07 (FR)
- (A) Compositions désinfectantes contenant du peroxyde d'hydrogène.
- La présente invention concerne des compositions désinfectantes.

Ces compositions sont constituées par l'association d'un générateur de formaldéhyde et de peroxyde d'hydrogène.

Elles sont applicables à la désinfection terminale en milleu hospitalier, à la désinfection par trempage des instruments et matériels médicaux, dentaires, vétérinaires, thermo-sensibles, à la désinfection du linge ménager et du linge hospitalier et la désinfection par pulvérisation des milleux contaminés.

EP 0 329 556 A1

Description

10

15

20

25

30

35

45

55

60

COMPOSITIONS DESINFECTANTES CONTENANT DU PEROXYDE D'HYDROGENE

L'invention concerne des compositions désinfectantes.

Le peroxyde d'hydrogène est connu depuis plus d'un siècle pour son pouvoir oxydant, qui en fait un agent de blanchiment, un désinfectant et un antiseptique. Le peroxyde d'hydrogène trouve sont emploi en milieu industriel, par exemple dans le blanchiment de textiles, de pâtes à papier, et en milieu médical dans la désinfection et l'antisepsie. Le peroxyde d'hydrogène est notamment utilisé avec succès en blanchiment des textiles, cependant le cas des blanchisseries hospitalières est particulier, car, il convient de nettoyer le linge par un détergent approprié, le blanchir par un agent de blanchiment, le désinfecter ou le stériliser.

Le formaldéhyde et certains générateurs de formol étudiés depuis une cinquantaine d'années pour leur propriétés germicides sont bien connus de la pharmacopée et également utilisés en industrie mécanique, dans le traitement des fluides de coupes, en cosmétologie etc... pour leur pouvoir bactériostatique ou fongistatique qui en font de bons conservateurs de milieux périssables.

Il a été recherché des associations de composés ayant une action désinfectante exaltée par rapport à celle de leurs constituants.

Des essais réalisés avec une solution de formaldéhyde n'ont mis en évidence aucune synergie en présence de peroxyde d'hydrogène.

Par contre, il a été constaté de manière inattendue, que l'association d'un générateur de formaldéhyde et de peroxyde d'hydrogène se révèle beaucoup plus désinfectante que le générateur de formaldéhyde ou le peroxyde d'hydrogène pris séparément. L'existence d'une synergie entre le peroxyde d'hydrogène et les produits générant le formaldéhyde a été ainsi découverte.

La présente invention concerne donc des compositions désinfectantes caractérisées par l'association d'un générateur de formaldéhyde et de peroxyde d'hydrogène.

Par générateur de formaldéhyde on désigne les composés susceptibles de former in-situ au moins une molécule de formaldéhyde libre ou masquée. Par molécule de formaldéhyde masquée, on entend toute espèce chimique en équilibre chimique avec le formaldéhyde, comme des hydrates, hémiacétals et cétals, ainsi que ses polymères.

Parmi ces générateurs de formaldéhyde, on peut citer les oligomères du formaldéhyde, notamment ceux représentés par la formule générale HO-(CH₂O)_n-H, les dérivés éthers ou esters d'acides organiques ou minéraux correspondants, de formule RO-(CH₂O)_n-R' et les oligomères cycliques de formule générale (OCH₂)_n.

Dans cette première famille de générateurs de formaldéhyde de formule HO-(CH₂O)_n-H, les composés dans la formule desquels n est compris entre 1 et 8 peuvent présenter un intérêt, par exemple du méthylène glycol à l'octaoxyméthylène glycol, de même le paraformaldéhyde dans lequel n est compris entre 8 et 100.

Et, avec le composé dans la formule duquel n est égal à 3 ou supérieur, le polyoxyméthylène (POM), on a mis en évidence une synergie germicide avec le peroxyde d'hydrogène particulièrement intéressante.

Pour les dérivés éthers, dans la formule RO -(CH_2O)_n-R', R et R' peuvent être Identiques ou différents, et représentent des chaînes carbonées en C_{1-20} , linéaires, ramifiées ou cycliques, saturées ou insaturées, n étant compris entre 1 et 100. Les éthers préférés sont les éthers d'alkyle en C_{1-4} , de cyclohéxyle ou de phényle, et en particulier le méthylal, pour lequel n=1 et $R=R'=CH_3$. Pour les dérivés esters, dans la formule RO -(CH_2O)_n-R',R et R' identiques ou différents peuvent également représenter le radical COR_1 où R_1 est une chaîne carbonée en C_1 -20 linéaire, ramifiée ou cyclique, saturée ou insaturée. Les esters préférés sont ceux où R_1 représente un radical alkyle en C_{1-4} , ou un noyau aromatique, et en particulier le diacétate de polyoxyméthylène,où n>1 et $R=R'=COCH_3$. Et pour les esters d'acides minéraux, on peut aussi citer à titre de composé générateur préféré les borates omega-méthyl-polyoxyméthylène de formule R_1 -CO- $C(CH_2O)_{n-3}$ B où n>1 et R_1 défini comme précédemment.

Et parmi les oligomères cycliques de formule $(OCH_2)_n$, on peut faire mention du trioxanne et du tétroxanne. On peut aussi citer les oligomères du formaldéhyde de formule $HO-CH_2-(CHOH)_p-CHO$ où p=0,1,2,3 ou 4 obtenus par auto-condensation, par exemple, quand n=0 l'aldéhyde glycolique, quand n=1 l'aldéhyde glycérique ainsi que son tautomère "dihydroxyacétone", quand n=2 l'érythrose et quand n=3 l'arabinose, ainsi que leurs dérivés de formule $RO-CH(CHOH)_p-CHO$, R étant défini comme précédemment.

On peut citer aussi les produits obtenus par condensation de formaldéhyde avec les composés possédant un groupe dit "méthylène-activé", de formule générale HO-CH₂-CR₂₃Y, où Y représente un groupe "électro-attracteur" tel que NO₂, et R₂ et R₃ sont définis ci-après.

Tous ces composés, à titre d'exemple, constituent des générateurs de formol dont les mélanges avec le peroxyde d'hydrogène se sont révélés beaucoup plus désinfectants que le peroxyde d'hydrogène ou le composé générateur employés séparément.

Et, avec le tris-hydroxyméthylnitrométhane (TN) en association avec le peroxyde d'hydrogène, on a constaté un synergie de l'activité désinfectante particulièrement significative, de même avec le nitro-2 méthyl-2 propanediol-1,3 (NMPD).

Dans cette famille, à titre d'exemple, on peut citer les composés suivants :

Y	R ₂	R ₃		
NO ₂	Н	Н	nitro- 2-éthanol	
NO ₂	CH₂OH	н	nitro-2 propane- diol-1,3	: <i>5</i>
NO ₂	CH₂OH	CH ₂ OH	tris-hydro- xyměthyl- nitromé- thane	10
NO ₂	NO ₂	CH₂OH	dinitro-2, 2 propane- diol-1,3	
NO ₂	NO ₂	NO ₂	trinitro- 2,2,2 éthanol	15
NO ₂	CH ₂ OH	CH₃	nitro-2 méthyl-2 propane- diol-1,3	20
NO ₂	CH₂OH	C ₂ H ₅	éthyl-2 nitro-2 propane- diol	<i>2</i> 5
NO ₂	CH₃	CH₃	diméthyl- 2,2 nitroétha- nol	
CN	CN	Н	méthylol malonitrile	30
CN	Ar	H	aryl-2 glyconi- trile	<i>35</i>
CN	COOR	H	hydroxy- méthyl-2 cyanacé- tate	33
CHO	CH₂OH	CH₂OH	pentaéry- throse	40

Ainsi que les composés où Y est un groupement carbonyle, alkyloxycarbonyle, aryloxycarbonyle, aminocarbonyle, sulfone, sulfinate, sulfonate, amidosulfonate, ammonium, phosphonium, arsonium, antimonium, etc... et de façon générale tout électroattracteur. De façon générale, R₂ et R₃, identiques ou différents peuvent représenter une chaîne carbonée du type R tel que défini précédemment, un atome d'hydrogène ou v

45

50

55

65

La synergie apparaît en milieu alcalin, entre pH8 et pH12, et plus particulièrement entre pH9 et pH11.

L'action désinfectante du peroxyde d'hydrogène est fortement renforcée par l'association avec un des générateur de formol précédemment cités, notamment pour des rapports en poids des deux constituants de 10/1 à 1/10, de préférence 5/1 à 1/5, et en particulier de 2/1 à 1/2.

L'effet synergique bactéricide a été apprécié à partir de l'abaissement d'une population bactérienne. Pour mettre en évidence cette synergie on s'est placé volontairement à des concentrations telles que le peroxyde d'hydrogène seul abaisse la population bactérienne d'environ 5%, le tris-hydroxyméthylnitrométhane permet une réduction de 60% et le polyométhylène de 90%. Et, il a été observé qu'un mélange peroxyde d'hydrogène - générateur de formaldéhyde permet un abaissement de 99 % de la population bactérienne. A l'issue d'un tel traitement, on peut considérer que la population résiduelle est environ 50 fois plus faible qu'à l'issue d'un traitement par le peroxyde d'hydrogène, le tris-hydroxymethylnitrométhane ou l'α-polyoxyméthylène seuls.

Les compositions désinfectantes selon l'intention trouvent leurs applications dans la désinfection terminale en milieu h spitalier, la désinfection par trempage des Instruments et matériels m'dicaux, dentaires, vétérinaires, thermo-sensibles, la désinfection du linge ménager et hospitalier et la désinfection par pulvérisation des milieux contaminés.

Il est donné ci-après des exemples qui illustrent l'invention à titre non limitatif.

lors d'essais préliminaires à température ambiante, la souche Streptococcus faecalls CNCM 5855 a été

EP 0 329 556 A1

r tenue comme traceur le plus représentatif de l'effet bactéricide. Les souches sont préparées et testées selon les protocoles de la norme AFNOR NFT 72150 aux modifications suivantes pr`s: à l'issue du temps de contact, généralement compris entre 0 et 60 minutes, voire quatre heures dans certains cas, le dénombrement de la population bactérienne survivante est fait par dosage de l'adénosine triphosphate (ATP) bactérien en bioluminescenc. Toute bactérie vivante renferme de l'adénosine triphosphate qui Intervient dans la réaction enzymatique productrice de lumière entre la luciférine et la luciférase. La quantité de lumière étant proportionnelle à la quantité d'ATP présente pour des doses de luciférine et luciférase constantes, elle est proportionnelle au nombre de bactéries survivantes dans l'essai. L'appareil utilisé est un matériel commercialisé sous la marque "Lumac/3M Biocounter M2010A"

Les chutes de germes bactériens sont indiquées en logarithme décimal log 10 correspondant au rapport du nombre de germes initiaux aux nombres de germes finaux après désinfection au bout du temps de contact.

Des essais comparatifs ont été réalisés dans les conditions précédemment décrites avec du peroxyde d'hydrogène seul, du tris-hydroxyméthylnitrométhane,commercialisé sous la marque "TN 100",et avec l'association des deux composés. Ces essais sur l'association ont été conduits à l'ambiante, dans ce cas aucune température n'est précisée, ou à 40°C. Les essais ont été réalisés à différents pH et temps de contact en minutes, l'effet bactéricide est indiqué en chutes de germes en log 10, et les résultats consignés dans les tableaux; les chiffres indiqués correspondent aux chutes de germes en log 10 du rapport germes initiaux/germes finaux après désinfection.

Les résultats apparaissent dans les tableaux suivants. Ces solutions contiennent les composés désinfectants (H₂O₂, "TN100", PDM ou NMPD) dans les quantités indiquées en grammes pour 100 millilitres d'eau (O correspond à l'eau pure sans désinfectant).

Exemple 1

Les essais sont réalisés à pH7

10

25

30

35

45

50

55

60

65

TEMPS (mn)	0	10	30	60	120	180	240
0	0	0	0	0	0	0	0
H ₂ O ₂ 0,25	0	0,02	0,25	0,25	0,24	0,23	0,26
TN100 0,25	0	0,01	0,04	0,03	0,04	0,05	0,04
H ₂ O ₂ 0,25 + TN 100 0,25	0	0,01	0,03	0,05	0,03	0,06	0,05
H ₂ O ₂ 0,25 + TN 100 0,25 (40°)	0	0,01	0,04	0,02	0,05	0,05	0,05

Exemple 2 :

Dans cet exemple, les essais sont réalisés à pH9, comme précédemment avec H₂O₂ et du "TN100" seuls ou en association ; les chutes de germes sont consignées dans le tableau II suivant :

pH = 9			·				
TEMPS (mn)	0	10	20	30	40	50	60
0	0	0	0	0	0	0	0
H ₂ O ₂ 0,25	0	0,05	0,26	0,22	0,25	0,25	0,27
TN 100 0,25	0	0,14	0,27	0,34	0,43	0,37	0,35
H ₂ O ₂ 0,25 + TN 100 0,25	0	1,12	1,45	1,83	1,78	1,85	1,91
H ₂ O ₂ 0,25 + TN 100 0,25 (40°)	0	1,09	1,33	1,68	1,87	1,93	1,90

La synergie apparaît pour un pH alcalin.

Exemple 3 :

Dans cet exemple, les essais sont réalisés à pH10 avec H₂O₂ et du "TN 100" seuls ou en association, les résultats obtenus pour les chutes de germes sont consignés dans le tableau III ci-après :

EP 0 329 556 A1

pH = 10	-						
TEMPS (mn)	0	10	20	30	40	50	60
0	0	0	. 0	0	0	0	0
H ₂ O ₂ 0,25	0	0,03	0,025	0,026	0,21	0,26	.0,25
TN 100 0,6	0	0,23	0,54	0,60	0,32	0,62	0,37
H ₂ O ₂ 0,25 + TN 100 0,6	. 0	2,15	2,08	2,19	2,30	2,15	2,11
H ₂ O ₂ 0,25 + TN 100 0,6 (40°)	0	1,49	2,19	2,13	2,28	2,44	2,36

La synergie apparaît pour un pH alcalin. Le peroxyde d'hydrogène seul permet d'abaisser une population bactérienne d'environ 5% et l'association H₂O₂/"TN 100" en pH alcalin permet un abaissement de 99%. A l'issue d'un tel traitement, la population résiduelle est plus de 50 fois plus faible qu'à l'Issue d'un traitement H₂O₂ ou "TN 100" seul.

Exemple 4:

Le même type d'essais a été conduit avec un mélange H₂O₂-polyoxyméthylène (POM) dans lequel principalement n est compris entre 3 et 10.

Les résultats obtenus sont consignés dans le tableau IV, les essais ayant été conduits à pH7. Comme précédemment les concentrations sont exprimées en grammes pour 100 millilitres.

pH = 7							
TEMPS (mn)	0	10	30	60	140	180	240
0	0	0	` 0	0	0	0	0,
H ₂ O ₂ 0,25	0	0,02	0,25	0,25	0,24	0,23	0,26
POM 0,25	0	0,07	0,05	0,05	0,07	0,06	0,07
H ₂ O ₂ 0,25 + POM 0,25	0	0,04	0,03	0,07	0,07	0,06	~ 0,06
H ₂ O ₂ 0,25 + POM 0,25 (40°C)	0	0,05	0,05	0,06	0,05	0,04	0,07

Exemple 5:

Dans cet exemple les essais avec H₂O₂, le polyoxyméthylène (POM) et l'association H₂O₂ + POM ont été mis en oeuvre à pH9.

Les résultats obtenus sont rassemblés dans le tableau V.

pH = 9							
TEMPS (mn)	0	10	20	30	40	50	60
0	0	0	0	0	0	Ö	0
H ₂ O ₂ 0,25	0	0,05	0,26	0,22	0,25	0,25	0,27
POM 0,25	0	0,21	0,58	0,81	0,75	0,79	. 0,81
H ₂ O ₂ 0,25 + POM 0,25	0	1,98	2,03	2,01	2,05	2,04	2,05
H ₂ O ₂ 0,25 + POM 0,25 (40°C)	0	2,02	2,05	2,11	2,07	2,11	2,12

La synergie apparaît à pH alcalin.

Exemple 6:

Dans cet exemple, les essais ont été conduits dans les mêmes conditions que précédemment, mais à pH 60 10. Les résultats s nt réunis dans le tableau VI.

65

10

15

20

25

30

35

40

45

50

55

EP 0 329 556 A1

pH = 10							
TEMPS (mn)	0	10	20	30	40	50	60
0	0	0	0	0	0	0	0
H ₂ O ₂ 0,25	0	0,03	0,25	0,26	0,21	0,26	0,25
POM 0,25	0	0,31	0,67	0,78	0,82	0,82	0,80
H ₂ O ₂ 0,25 + POM 0,25	. 0	2,01	1,94	2,05	2,02	1,99	2,07
H ₂ O ₂ 0,25 + POM 0,25 (40°C)	0	2,05	2,01	2,09	2,12	2,09	2,17

La synergie est très significative à pH alcalin. H₂O₂ permet d'abaisser une population bactérienne d'environ 5% en 20 mn, par contre le mélange H₂O₂ + POM permet un abaissement de 99% dès 10 mn, à l'issue d'un tel traitement la population résiduelle est environ 50 fois plus faible qu'à l'issue d'un traitement H₂O₂ ou POM seul

Exemple 7:

10

20

25

35

40

45

50

55

Dans cet exemple, les spores de Bacillus cereus CNCM 7803 ont été retenues comme traceur représentatif de l'effet germicide. Les spores de Bacillus cereus sont préparées et testées selon les protocoles de la norme AFNOR de la série 72000.

Des spores de Bacillus cereus CNCM 7803 sont mises en contact 12 minutes à 60° C avec le produit à tester en présence de lessive (4g/l). Après neutralisation du désinfectant, la suspension est dénombrée sur gélose en boite de Petri. La concentration initiale en spores est de 10° spores par ml (unités revivifiables).

Les essais sont conduits à pH12, les résultats comparatifs entre le tris-hydroxyméthylnitrométhane "TN 100" à diverses concentrations (première ligne) et l'association "TN 100" à ces mêmes concentrations + peroxyde d'hydrogène (0,7 g/I) sont résumés dans le tableau VII suivant. Les chiffres indiquent la population de spores ayant survécue au traitement.

Concent. en TN100" (g/l)	0	0,01	0,1	0,25	0,5	0,75	1
TN 100 seul	250 000 (1)	247 000	77000	76000	22000	2100	240
TN 100 + H ₂ O ₂ 0,7g/l	37000 (2)	20000	18000	5000	110	26	1

- (1) Témoin lessive : le lavage alcalin à 60°C fait chûter la population initiale d'environ 10 fois.
- (2) Témoin lessive + H₂O₂. L'adjonction de 0,7 g/I H₂O₂ fait chûter la population initiale d'environ 100 fois.

Une synergie apparaît pour une adjonction de "TN 100" dès 0,25 g/l au peroxyde d'hydrogène, faisant chûter la population initiale d'environ 1000 fois contre 100 fois pour H₂O₂ seul et 50 fois pour le "TN 100" seul.

Exemple 8:

Les essais comparatifs de cet exemple ont été conduits dans les mêmes conditions que précédemment sur des spores de Bacillus cereus CNCM 7803, à pH 12, entre le nitro-2 méthyl-2 propanediol-1,3 (NMPD) à diverses concentrations et l'association NMPD + H₂O₂ 0,7 g/l. Les résultats relatifs à la population de spores ayant survécue au traitement sont rassemblés dans le tableau ci-après.

			•		•	
Concent. en NMPD en g/l	0	0,01	0,25	0,5	0,75	1
NMPD seul	243 000 (1)	222 000	66000	28000	2700	220
NMPD + H2O2 0.7 g/l	35000 (2)	33000	2500	200	24	4

(1) et (2) concernent les mêmes remarques que dans l'exemple précédent.

On constate que pour le nitro-2 méthyl-2 propadeniol-1,3 une synergie apparaît nettement dès la concentration de 0,25 g/l, faisant chuter la population initiale d'environ 1000 fols contre 100 fois pour H₂O₂ seul et 50 fois pour le NMPD seul.

Rev ndicati ns

- 1. Compositions désinfectantes caractérisées par l'association d'un générateur de formaldéhyde et de peroxyde d'hydrogène.
- 2. Compositions désinfectantes selon la revendication 1, caractérisées en ce que le générateur de formaldéhyde est un composé susceptible de former in-situ au moins une molécule de formaldéhyde libre ou masquée.
- 3. Compositions désinfectantes selon la revendication 1, caractérisées en ce que le générateur de formaldéhyde est un oligomère du formaldéhyde choisi parmi les composés représentés par la formule HO-(CH₂O)_n-H, les dérivés éthers, esters d'acides organiques ou minéraux de formule RO-(CH₂O)_n-R', dans laquelle R et R', identiques ou différents, représentent des chaînes carbonées en C₁₋₂₀, linéaires, ramifiées ou cycliques, saturées ou insaturées, ou le radical COR₁ où R₁ est une chaîne carbonée en C₁₋₂₀, linéaire, ramifiée ou cyclique, saturée ou insaturée, et les oligomères cycliques de formule (OCH₂)_n, n étant compris entre 1 et 100.
- 4. Compositions désinfectantes selon la revendication 3, caractérisées en ce que n est compris entre 1 et 8, et/ou R et R' représentent les radicaux alkyle en C_{1-4} , cyclohéxyle ou phényle, et R_1 un radical alkyle en C_{1-4} ou un noyau aromatique.
- 5. Compositions désinfectantes selon l'une des revendications 1 à 3, caractérisées en ce que le générateur de formaldéhyde est le méthylène glycol ou un polyoxyméthylène glycol (n < 8), un paraformaldéhyde, un polyoxyméthylène ou le méthylal, le diacétate de polyoxyméthylène, un borate d'oméga-méthylpolyoxymethylène, le trioxanne ou le tétroxanne.
- 6. Compositions désinfectantes selon l'une des revendications 1 ou 2, caractérisées en que le générateur de formaldéhyde est un oligomère de formaldéhyde choisi parmi les composés de formule HO-CH₂-(CHOH)_P-CHO ou R-OCH₂(CHOH)_P-HO où R est une chaîne carbonée en C₁₋₂₀ linéaire, ramifiée ou cyclique, saturée ou insaturée et p est compris entre 0 et 4.
- 7. Compositions désinfectantes selon l'une des revendications 1,2 ou 6, caractérisées en ce que le composé générateur de formaldéhyde est l'aldéhyde glycolique, l'aldéhyde glycérique, le dihydroxyacétone, l'érythrose, l'arabinose, ou R-OCH₂ (CHOH)_P-CHO où R est un radical alkyle en C₁₋₄, cyclohexyle ou phényle.
- 8. Compositions désinfectantes selon la revendication 1 ou 2, caractérisées en ce que le générateur de formaldéhyde est un composé de formule HO-CH₂-CR₂R₃Y dans laquelle R₂, R₃ et Y sont des groupes électro-attracteurs, notamment R₂ et R₃ Identiques ou différents représentent H ou une chaîne carbonée en C₁₋₂₀, linéaire, ramifié ou cyclique, saturée ou insaturée, et Y un groupe NO₂.
- 9. Compositions désinfectantes selon la revendication 1 ou 2, caractérisées en ce que le générateur de formaldéhyde est un composé dé formule HO-CH₂-CR₂R₃Y dans laquelle R₂ et R₃ représentent l'hydrogène, le radical méthyle, éthyle, hydroxyméthyle, aryle, carboxylate, NO₂ ou CN, et Y représente un groupe électro-attracteur, notamment NO₂.
- 10. Compositions désinfectantes selon la revendication 1,2,8 ou 9, caractérisées en ce que le générateur de formaldéhyde est le tris-hydroxyméthylnitrométhane.
- 11. Compositions désinfectantes selon la revendication 1,2,8 ou 9, caractérisées en ce que le générateur de formaldéhyde est le nitro-2 méthyl-2 propanediol-1,3.
- 12. Compositions désinfectantes selon une quelconque des revendications 1 à 11, caractérisées en ce que le rapport en polds des deux constituants de l'association est compris en 10/1 et 1/10, de préférence 5/1 à 1/5.
- 13. Application des compositions désinfectantes selon une quelconque des revendications 1 à 8,à la désinfection terminale en milieu hospitaller, à la désinfection par trempage des instruments et matériels médicaux, dentaires, vétérinaires, thermo-sensibles et à la désinfection par pulvérisation de tout milieu contaminé, du linge ménager et hospitalier, à la désinfection par pulvérisation de tout milieu contaminé.
- 14. Application selon la revendication 13, caractérisée en ce qu'elle est réalisée en milieu alcalin.

60

55

15

25

30

35

45

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande

EP 89 40 0437

DO	CUMENTS CONSIDI			
Catégorie	Citation du document avec des parties pe	indication, en cas de besoin, rtinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.4)
A · ·	FR-A- 640 647 (M.	J.A. AMRHEIN)		A 01 N 59/00
	-			
		-	:	
				DOMAINES TECHNIQUES RECHERCHES (Int. Cl.4)
·				
,				
Le pr	ésent rapport a été établi pour to	outes les revendications		·
	I ion de la recherche	Date d'achèvement de la recherche	<u> </u>	Examinateur
L	A HAYE	28-03-1989	PELT	RE CHR.
X : part Y : part aut A : arri O : divi	CATEGORIE DES DOCUMENTS ticulièrement pertinent à lui seul ticulièrement pertinent en combinaise re document de la même catégorie ière-plan technologique ulgation non-écrite ument intercalaire	E : document de brei date de dépôt ou	vet antérieur, ma après cette date ande s raisons	is publié à la