ARTIFICIAL NEURAL NETWORK

----Varsha Mali

WHAT IS A NEURAL NETWORK?

ANN models the relationship between set of input signals and output signals using a model derived from biological brain

THE GENERAL STRUCTURE OF A NEURAL NETWORK LOOKS LIKE:

- Input Layer: The training observations are fed through these neurons
- **Hidden Layers:** These are the intermediate layers between input and output which help the Neural Network learn the complicated relationships involved in data.
- **Output Layer:** The final output is extracted from previous two layers. For Example: In case of a classification problem with 5 classes, the output later will have 5 neurons.

HOW A SINGLE NEURON WORKS?

Diagram 1: Single NN Working

The different components are:

 $x_1, x_2, ..., x_N$: Inputs to the neuron

 $\mathbf{x_0}$: Bias unit. It works similar to an intercept term and typically has +1 value.

 $\mathbf{w_0}, \mathbf{w_1}, \mathbf{w_2}, \dots, \mathbf{w_N}$: Weights on each input. Note that even bias unit has a weight.

a: Output of the neuron which is calculate $a = f(\sum_{i=0}^{n} w_i x_i)$ Here **f** is known an **activation function**.

$$f(x) = \begin{cases} 0, & for \ x < 0 \\ 1, & for \ x \ge 0 \end{cases}$$

EXAMPLE 1: AND

- The AND function can be implemented as:
- ▶ The output of this neuron is:

$$a = f(-1.5 + x1 + x2)$$

The truth table for this implementation is:

X1	X2	X1 AND X2	(-1.5+X1+X2)	а
0	0	0	-1.5	0
0	1	0	-0.5	0
1	0	0	-0.5	0
1	1	1	0.5	1

WHY MULTI-LAYER NETWORKS ARE USEFUL?

• The idea behind using multiple layers is that complex relations can be broken into simpler

/	. •	7 ·	
L :	X1	X2	X1 XNOR X2
	0	0	1
	0	1	0
	1	0	0
	1	1	1

- The idea This sort of a relationship cannot be modeled using a single neuron.
- ▶ Thus we will use a multi-layer network.

GENERAL STRUCTURE OF A NEURAL NETWORK

FORWARD PROPAGATION OF LAYER 1

H1 = f(B1 + W1 * X1 + W2 * X2)

FORWARD PROPAGATION OF LAYER 2

H4 = f(B4 + W7*H1 + W8*H2 + W9*H3)

FORWARD PROPAGATION OF OUTPUT LAYER

O1 = f(B7 + W1*H4 + W17*H5 + W18*H6)

BACKPROPAGATION OF OUTPUT LAYER

BACKPROPAGATION OF HIDDEN LAYER 2

BACKPROPAGATION OF HIDDEN LAYER 1

E(H1) = f'(H1) + (W7 * E(H4) + W10 * E(H5) + W13 * E(H6))

Updating Weights of Hidden Layer 1

FORWARD PROPAGATION OF LAYER 2

$$W7 = W7 + a * E(H4) * H1$$

$$W8 = W8 + a * E(H4) * H2$$

$$W9 = W9 + a * E(H4) * H3$$

BACK-PROPAGATION

- Back-propagation (BP) algorithms works by determining the loss (or error) at the output and then propagating it back into the network.
- The back-propagation algorithm can be used to train feed forward neural networks or multilayer perceptrons.
- It is a method to minimize the cost function by changing weights and biases in the network.
- To learn and make better predictions, a number of epochs (training cycles) are executed where the error determined by the cost function is backward propagated by gradient descent until a sufficiently small error is achieved.

ERROR OPTIMIZATION

- let's sum up the entire process behind optimization of a neural network. The various steps involved in each iteration are:
 - 1. Select a **network architecture**, i.e. number of hidden layers, number of neurons in each layer and activation function
 - 2. Initialize weights randomly
 - 3. Use **forward propagation** to determine the output node
 - 4. Find the **error** of the model using the known labels

$$e_L^{(i)} = y^{(i)} - a_L^{(i)} \mid i = 1, 2,, N_L$$

Here y⁽ⁱ⁾ is the actual outcome from training data

5. **Back-propogate** the error into the network and determine the error for each node

The error for layer L-1 should be determined first using the following:

where $i = 0,1,2, \ldots, NL-1$ (number of nodes in L-1th layer)

$$e_{L-1}^{(i)} = \left(\sum_{k=1}^{N_L} W_{ik}^{(L-1)} \cdot e_L^{(i)}\right) * f'(x)^{(i)}$$

6. Update the weights to minimize gradient

Use the following update rule for weights:

$$W_{ik}^{(l)} = W_{ik}^{(l)} + a^{(i)} \cdot e_{l+1}^{(k)}$$

where,

- $i = 0,1,...., N_1$ | index of node in l^{th} layer
- $k = 1,2,..., N_{l+1}$ | index of node in l+1th layer
- ${\color{blue} \bullet} \; W_{ik}{^{(l)}} \; refers \; to \; the \; weight \; from \; the \; l^{th} \; layer \; to \; l+1^{th} \; layer \; from \; i^{th} \; node \; to \; k^{th} \; node$

POPULAR TYPES OF ACTIVATION FUNCTIONS AND WHEN TO USE THEM

Binary Step Function

$$f(x) = 1, x > 0$$

Pros:

- Simple
- Best for binary classification

Cons:

- Not suitable for multiple classes
- Gradient is zero

Linear Function

$$of(x)=ax$$

The derivative of a linear function is constant i.e. it does not depend upon the input value v

of'(x) = a

Sigmoid

- o $f(x)=1/(1+e^{-x})$
- This is a smooth function and is continuously differentiable. The biggest advantage that it has over step and linear function is that it is non-linear.

Cons:

- The function is pretty flat beyond the +3 and -3 region.
- Gradients become very small in this region
- values only range from 0 to 1.

Tanh

- Similar to the sigmoid function. It is actually just a scaled version of the sigmoid function
- \circ tanh(x)=2sigmoid(2x)-1

• Similar to the sigmoid function it has the vanishing gradient problem.

ReLU

- f(x) = max(0,x)
- Most widely used activation
- Non linear
- It does not activate all the neurons at the same time.
- Only a few neurons are activated making the network sparse making it efficient and easy for computation.

Cons

- Gradients moving towards zero.
- Dead neurons which never

Leaky ReLU

• f(x)=ax, x<0 Here a is a small value like 0.01

$$= x, x > = 0$$

- Removal of the zero gradient.
- No longer encounter dead neurons in that region.

Softmax

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j = 1, ..., K$.

- E.g. Outputs as-[1.2, 0.9, 0.75], When we apply the softmax function we would get [0.42, 0.31, 0.27].
- So now we can use these as probabilities for the value to be in each class.
- Ideally used in the output layer of the classifier where we are actually trying to attain the probabilities to define the class of each input.

CHOOSING THE RIGHT ACTIVATION FUNCTION

- Sigmoid functions and their combinations generally work better in the case of classifiers
- Sigmoids and tanh functions are sometimes avoided due to the vanishing gradient problem
- ReLU function is a general activation function and is used in most cases these days
- If we encounter a case of dead neurons in our networks the leaky ReLU function is the best choice
- Always keep in mind that ReLU function should only be used in the hidden layers
- As a rule of thumb, you can begin with using ReLU function and then move over to other activation functions in case ReLU doesn't provide with optimum results

OPTIMIZERS

- Gradient Descent Optimizer / Vanilla Gradient
 Descent(Batchwise)
- Stochastic Gradient Descent Optimizer (one observation at a time)
- Gradient Descent with Momentum
- Adaptive Gradient Descent (Adagrad)
- **ADAM**: momentum + ADAGRAD.

GRADIENT DESCENT OPTIMIZATION

CHOOSING A STARTING POINT?

HOW TO CHOOSE LEARNING RATE?

COST FUNCTION

- There are various cost functions. Below are some examples:
- 1. Mean Squared Error Function

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

where \hat{y}_i is the predicted output y_i is the actual output

2. Cross-Entropy Function

$$H(y,\hat{y}) = \sum_i y_i \log rac{1}{\hat{y}_i} = -\sum_i y_i \log \hat{y}_i$$

REGULARIZATION TECHNIQUES IN DEEP

LEARNING O Common Problem:

Over fitting

Training Vs. Test Set Error

HOW DOES REGULARIZATION HELP REDUCE OVERFITTING?

• In deep learning - penalizes the weight matrices of the nodes.

L2 & L1 REGULARIZATION

- Cost function = Loss (say, binary cross entropy) + Regularization term
- o In L2, we have:

Cost Function = Loss +
$$\lambda * \sum ||\mathbf{w}||^2$$

- Lambda- Regularization parameter. (Hyperparameter)
- L2 is also known as weight decay as it forces the weights to decay towards zero (but not exactly zero).
- In L1, we have:

Cost Function = Loss +
$$\lambda * \sum ||\mathbf{w}||$$

HOW TO CHOOSE LAMBDA?

- If your lambda value is too high, your model will be simple, but you run the risk of *underfitting* your data. Your model won't learn enough about the training data to make useful predictions.
- If your lambda value is too low, your model will be more complex, and you run the risk of *overfitting* your data. Your model will learn too much about the particularities of the training data, and won't be able to generalize to new data

DROPOUT

At every iteration, it randomly selects some nodes and removes them along with all of their incoming and outgoing connections as shown below.

DATA AUGMENTATION

- The simplest way to reduce overfitting is to increase the size of the training data.
- ▶ If we are dealing with images rotating the image, flipping, scaling, shifting, etc. can be used for increasing the size of data.

EARLY STOPPING

- When we see that the performance on the validation set is getting worse, we immediately stop the training on the model.
- This is known as early stopping.

Thank you

Varsha Mali

varsha2087@gmail.com

in varsha-mali-200887/