Business Report PDS Coded Project

PGPDSBA

Chithira Raj

Table of Contents

List of Tables4
List of Figures4
1. Objective
2. Data Dictionary5
3. Data Overview6
3.1. Import libraries and load the data6
3.2. Check the structure of data6
3.3. Check the types of the data6
3.4. Check for and treat (if needed) missing values6
3.5. Check the statistical summary
3.6. Check for and treat (if needed) data irregularities
3.7. Percentage of categorical columns
3.8. Observations and Insights8
4. Univariate Analysis9
4.1. Age9
4.2. Gender
4.3. Profession
4.4. Marital Status
4.5. Education
4.6. Number of dependents11
4.7. Personal Loan status
4.8. House Loan Status
4.9. Working Partner Status
4.10. Individual Salary
4.11. Partner Salary
4.12. Total Salary
4.13. Price
4.14. Car Make
5. Bivariate Analysis
5.1. Correlation between numerical variables15
5.2. Relationship between numerical variables16
5.3. Explore the relationship between categorical vs numerical variables
5.4. Explore the relationship between categorical variables19
6. Key Questions
6.1. Question 1: Do men tend to prefer SUVs more compared to women?
6.2. Question 2: What is the likelihood of a salaried person buying a Sedan?
6.3. Question 3: What evidence or data supports Sheldon Cooper's claim that a salaried male is an easier target for a SUV sale over a Sedan sale?

6.4. Question 4: How does the amount spent on purchasing automobiles vary by gender?	24
6.5. Question 5: How much money was spent on purchasing automobiles by individuals who took a persor loan?	
6.6. Question 6: How does having a working partner influence the purchase of higher-priced cars?	26
7. Actionable Insights and Recommendations	27
7.1. Insights	27
7.2. Recommendations	27

List of Tables

Data Dictionary	4
-----------------	---

List of Figures

List of Figures	
Figure 1 - DataFrame	6
Figure 2 - Type of Data	6
Figure 3 - Missing values in columns	6
Figure 4 - Treat missing values	7
Figure 5 - Statistical Summary of data	7
Figure 6 - Irregularities in Gender column	7
Figure 7 - Gender column distribution after cleaning	8
Figure 8 - Percentage of Categorical Columns	8
Figure 9 - Age Distribution	9
Figure 10 - Gender Distribution	10
Figure 11 - Profession Distribution	10
Figure 12 - Marital Status	10
Figure 13 - Education	11
Figure 14 - Number of dependents	11
Figure 15 - Personal Loan status	11
Figure 16 - House Loan status	12
Figure 17 - Working Partner Status	12
Figure 18 - Individual Salary	12
Figure 19 - Partner Salary	13
Figure 20 - Partner Salary distribution after treating missing values	13
Figure 21 - Total Salary	13
Figure 22 - Price	14
Figure 23 - Car Make	14
Figure 24 - Correlation Matrix	15
Figure 25 - Pair Plot between Numerical Variables	16
Figure 26 - Gender vs Price of Cars	17
Figure 27 - Number of dependents vs Car Make	18
Figure 28 - Personal Loan Recipients vs Price of cars	18
Figure 29 - Partner's working status vs Price of cars	19
Figure 30 - Gender vs Car Make	19
Figure 31 - Car make preferences among Professions	20
Figure 32 - Profession vs Gender vs Car Make	
Figure 33 - Car make preferences across Genders	21
Figure 34 - Gender vs Car make results	21
Figure 35 - Car make preferences among Professions	22
Figure 36 - Profession vs Car make results	22
Figure 37 - Probability	22
Figure 38 - Profession vs Gender vs Car Make	23
Figure 39 - Expenditure by Genders	24
Figure 40 - Expenditure results	24
Figure 41 - Spending Patterns of Personal Loan Recipients	25
Figure 42 - Spending Pattern results	25
Figure 43 - Working Partner influence on Price of Cars	26
Figure 44 - Hypothesis Testing	26

1. Objective

Austo Motor Company aims to optimize its current marketing campaign effectiveness following discussions in a recent board meeting. The board has resolved to collaborate with analytics experts to enhance the campaign's performance. The objective is to leverage data analysis to understand customer demand better, ultimately improving the overall customer experience. The focus is on addressing key inquiries identified by the Data Science team through comprehensive data analysis. This effort aims to provide actionable insights that will support business improvement initiatives. By uncovering meaningful patterns and trends in customer behavior, we seek to refine our marketing strategies and tailor our offerings to meet customer preferences more effectively. The outcomes of this analysis will inform strategic decisions aimed at elevating customer satisfaction and driving business growth in the competitive automotive market.

2. Data Dictionary

S.No.	Variables	Description
1	Age	The age of the individual in years.
2	Gender	The gender of the individual, categorized as male or female.
3	Profession	The occupation or profession of the individual.
4	Marital_status	The marital status of the individual, such as married &, single
5	Education	The educational qualification of the individual Graduate and Post Graduate
6	No_of_Dependents	The number of dependents (e.g., children, elderly parents) that the individual supports financially
7	Personal_loan	A binary variable indicating whether the individual has taken a personal loan "Yes" or "No"
8	House_loan	A binary variable indicating whether the individual has taken a housing loan "Yes" or "No"
9	Partner_working	A binary variable indicating whether the individual's partner is employed "Yes" or "No"
10	Salary	The individual's salary or income.
11	Partner_salary	The salary or income of the individual's partner, if applicable.
12	Total_salary	The total combined salary of the individual and their partner (if applicable).
13	Price	The price of a product or service.
14	Make	The type of automobile

Table 1

3. Data Overview

3.1. Import libraries and load the data

	Age	Gender	Profession	Marital_status	Education	No_of_Dependents	Personal_loan	House_loan	Partner_working	Salary	Partner_salary	Total_salary	Price	Make
0	53	Male	Business	Married	Post Graduate	4	No	No	Yes	99300	70700.000	170000	61000	SUV
1	53	Femal	Salaried	Married	Post Graduate	4	Yes	No	Yes	95500	70300.000	165800	61000	SUV
2	53	Female	Salaried	Married	Post Graduate	3	No	No	Yes	97300	60700.000	158000	57000	SUV
3	53	Female	Salaried	Married	Graduate	2	Yes	No	Yes	72500	70300.000	142800	61000	SUV
4	53	Male	Salaried	Married	Post Graduate	3	No	No	Yes	79700	60200.000	139900	57000	SUV

Figure 1

3.2. Check the structure of data

Shape of the dataset: 1581 rows and 14 columns

3.3. Check the types of the data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1581 entries, 0 to 1580
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype				
0	Age	1581 non-null	int64				
1	Gender	1528 non-null	object				
2	Profession	1581 non-null	object				
3	Marital_status	1581 non-null	object				
4	Education	1581 non-null	object				
5	No_of_Dependents	1581 non-null	int64				
6	Personal_loan	1581 non-null	object				
7	House_loan	1581 non-null	object				
8	Partner_working	1581 non-null	object				
9	Salary	1581 non-null	int64				
10	Partner_salary	1475 non-null	float64				
11	Total_salary	1581 non-null	int64				
12	Price	1581 non-null	int64				
13	Make	1581 non-null	object				
<pre>dtypes: float64(1), int64(5), object(8)</pre>							
memory usage: 173.0+ KB							

Figure 2

3.4. Check for and treat (if needed) missing values.

Age	0
Gender	53
Profession	0
Marital_status	0
Education	0
No_of_Dependents	0
Personal_loan	0
House_loan	0
Partner_working	0
Salary	0
Partner_salary	106
Total_salary	0
Price	0
Make	0
dtype: int64	

Figure 3

3.4.1. Gender column:

Null values in Gender column may represent non-binary gender identities, we can replace them with the label "Other".

3.4.2. Partner_salary column:

1. Fill zero in Partner_salary for all the rows with Marital_status as Single.

Age	0
Gender	0
Profession	0
Marital_status	0
Education	0
No_of_Dependents	0
Personal loan	0
House_loan	0
Partner working	0
Salary	0
Partner salary	16
Total salary	0
Price	0
Make	0
dtype: int64	

Figure 4

- 2. There are 16 missing values in Partner_salary.
- 3. We will treat these missing values after understanding the distributions of features in the data, the relationships that exist in the data. This will help us impute these values more effectively.
- 3.5. Check the statistical summary

	count	mean	std	min	25%	50%	75%	max
Age	1581.000	31.922	8.426	22.000	25.000	29.000	38.000	54.000
No_of_Dependents	1581.000	2.458	0.943	0.000	2.000	2.000	3.000	4.000
Salary	1581.000	60392.220	14674.825	30000.000	51900.000	59500.000	71800.000	99300.000
Partner_salary	1565.000	19062.428	19576.736	0.000	0.000	25000.000	38100.000	80500.000
Total_salary	1581.000	79625.996	25545.858	30000.000	60500.000	78000.000	95900.000	171000.000
Price	1581.000	35597.723	13633.637	18000.000	25000.000	31000.000	47000.000	70000.000

Figure 5

3.6. Check for and treat (if needed) data irregularities

3.6.1. Duplicates

No Duplicates, since there is no primary key, we are unable to remove rows even if there are duplicates present.

3.6.2. *Gender:*

Gender
Male 1199
Female 327
Other 53
Femal 1
Femle 1
Name: count, dtype: int64

Replace misspelled words in Gender column

Figure 7

3.7. Percentage of categorical columns

```
Married 0.913
Single 0.087
                                          Name: proportion, dtype: float64
                                          Education
                                          Post Graduate 0.623
Graduate 0.377
                                          Name: proportion, dtype: float64
                                          Personal_loan
                                          No
                                                0.499
                                          Name: proportion, dtype: float64
         0.758
                                          House_loan
Female 0.208
                                          Yes
                                                0.333
                                          Name: proportion, dtype: float64
         0.034
Name: proportion, dtype: float64
                                          Partner working
                                          No
                                                0.451
                                          Name: proportion, dtype: float64
Salaried 0.567
                                          Make
Business 0.433
                                          Hatchback 0.368
SUV 0.188
Name: proportion, dtype: float64
                                          Name: proportion, dtype: float64
```

Marital_status

Figure 8

3.8. Observations and Insights

Gender

Male

Other

Profession

- The age distribution appears relatively centered around the late 20s to late 30s, with a few individuals in their early 20s and 50s. The standard deviation suggests moderate variability in ages across the sample.
- The average number of dependents per individual is slightly above 2, with relatively low variability (standard deviation of less than 1), suggesting a consistent family size within the sample.
- The salary distribution shows a moderate spread around the mean, with a notable standard deviation indicating variability in income levels among the sample.
- There is significant variation in partner's salaries within the sample, with a sizable portion having no reported income.
- The price distribution indicates a range of expenditures or costs, with a moderate spread around the mean
- The majority of individuals in the sample identify as male, with a smaller proportion identifying as female and a small percentage identifying as non-binary or other genders.

- More than half of the sample consists of salaried individuals, while the remaining are engaged in business or entrepreneurial activities.
- The vast majority of individuals in the sample are married, with a relatively small proportion being single.
- A significant portion of the sample has completed post-graduate education, while the remainder have completed undergraduate education.
- A significant portion of the sample has completed post-graduate education, while the remainder have completed undergraduate education.
- A majority of individuals in the sample do not have a house loan, while a third have taken a house loan.
- Slightly more than half of the individuals have a partner who is employed or working.
- Sedans are the most popular type of car among the sample, followed by hatchbacks and SUVs.

4. Univariate Analysis

4.1. Age

Figure 9

Skewed towards right and 75% of the customers are under the age of 40.

4.2. Gender

Majority of the customers are male.

Figure 10

4.3. Profession

Figure 11

4.4. Marital Status

Figure 12

Majority of customers are married.

4.5. Education

A greater number of individuals who have completed post-graduate studies could suggest higher salaries.

Figure 13

4.6. Number of dependents

Figure 14

Zero dependents are labelled as outliers in the box plot, but we should retain them as such

4.7. Personal Loan status

Uniformly distributed.

4.8. House Loan Status

The majority of customers did not opt for a home loan.

Figure 16

4.9. Working Partner Status

A higher number of customers have partners who are employed.

Figure 17

4.10. Individual Salary

Figure 18

Normally distributed with no outliers.

4.11. Partner Salary

Figure 19

- Distribution is right-skewed with no outliers.
- Missing values in the column is replaced with median.

0 Age Gender 0 Profession 0 Marital_status Education 0 No_of_Dependents 0 Personal_loan 0 House_loan 0 Partner_working 0 Salary 0 Partner_salary 0 Total_salary 0 Price 0 Make 0 dtype: int64

Figure 20

4.12. Total Salary

Figure 21

Normally distributed with no outliers.

80000

4.13. Price

Figure 22

The Price column is right-skewed, a larger number of customers purchase cars priced between 20K and 30K.

4.14. Car Make

Figure 23

Customers show a preference for sedans and hatchbacks over SUVs.

5. Bivariate Analysis

5.1. Correlation between numerical variables

Figure 24

5.1.1. Insights

- The price of the car is positively correlated with the age of the person.
- The salary of a partner correlates positively with the total salary in a manner akin to the correlation between individual salary and total salary.
- The age of the person and salary show a positive correlation.
- Slight Negative correlation between salary/age and number of dependents, but this can be regarded as no relationship.
- There is a slight positive correlation between price and total salary, but it's not very high.

Figure 25

5.2.1. Insights

- Age vs Number of dependents: No relationship between Age and number of dependents
- Age vs Salary: There is a positive correlation between Age and Salary
- Age vs Partner salary: No relationship between Age and partner salary
- Age and Total salary: As expected, there is a positive correlation between Age and Total salary but it is not very high.
- Age vs Price: A positive correlation or an increasing trend can be clearly observed between Age and Price
- Number of dependents vs Salary: There is a negative correlation, but it's not high. This can be regarded as no relationship between Number of dependents and salary
- Number of dependents vs Partner Salary: No relationship between Number of dependents and partner salary

- Number of dependents vs Total Salary: No relationship between Number of dependents and total salary
- Number of dependents vs Price: No relationship between Number of dependents and price
- Salary vs Partner salary: No relationship between Salary and Partner salary
- Salary vs Total Salary: There is positive correlation between salary and total salary, it implies that higher individual salaries are associated with higher combined (total) salaries when considering both the individual's salary and their partner's salary.
- Salary vs Price: There is positive correlation between Price and Salary, but it's not very high.
- Partner Salary vs Total Salary: There is positive correlation between Partner_salary and total salary, it implies that higher partner salaries are associated with higher combined (total) salaries when considering both the individual's salary and their partner's salary.
- Partner salary vs Price: No relationship between Price and partner salary
- Total Salary vs Price: There is a slight positive correlation between price and total salary, but it's not very high.

5.3. Explore the relationship between categorical vs numerical variables

5.3.1. Gender vs Price of cars

Figure 26

There is a significant disparity between the median amount spent on cars by men and women. The median car price for men is around 30,000, whereas for women, it is approximately 50,000, indicating a substantial difference.

5.3.2. Number of dependents vs Car make

Customers may lean towards SUVs or hatchbacks when they have more dependents to accommodate.

Figure 27

5.3.3. Personal Loan Recipients vs Price of cars

Figure 28

Distribution is comparable in terms of central tendency and median.

Personal Loan do not influence negatively on car expenditure.

5.3.4. Partner's working status vs Price of car

Distribution is comparable in terms of central tendency and median.

Unemployment of Partner Does Not Negatively Impact Car Expenditure.

Figure 29

5.4. Explore the relationship between categorical variables

5.4.1. Gender vs Make

Figure 30

Women Favor SUVs, While Men Prefer Hatchbacks and Sedans.

5.4.2. Profession vs Make

Sedans Preferred by Both Salaried Employees and Business Owners

Figure 31

5.4.3. Profession vs Gender vs Make of car

Figure 32

Salaried men prefer Sedan and Hatchback over SUV.

6. Key Questions

6.1. Question 1: Do men tend to prefer SUVs more compared to women?

Figure 33

	Gender	Make	Count
1	Female	SUV	173
4	Male	SUV	118
7	Other	SUV	6

Figure 34

No, Women show a greater preference for SUVs compared to men.

6.2. Question 2: What is the likelihood of a salaried person buying a Sedan?

Figure 35

	Profession	Make	Count
0	Business	Hatchback	290
1	Business	SUV	89
2	Business	Sedan	306
3	Salaried	Hatchback	292
4	Salaried	SUV	208
5	Salaried	Sedan	396

Figure 36

Number of Salaried People: 896

Number of People who buys Sedan: 396

Percentage of Salaried person buying a Sedan: 44.2 %

Figure 37

A salaried person has a 44% probability of purchasing a sedan.

6.3. Question 3: What evidence or data supports Sheldon Cooper's claim that a salaried male is an easier target for a SUV sale over a Sedan sale?

Figure 38

According to the data visualization, salaried men tend to prefer sedans and hatchbacks over SUVs. Targeting men for SUV sales could be effective, given their preference for sedans and hatchbacks according to the plot.

6.4. Question 4: How does the amount spent on purchasing automobiles vary by gender?

Figure 39

Expenditure by Male: 39348000 Expenditure by Female: 15695000 Expenditure by Other: 1237000

Figure 40

Women tend to spend more money on cars compared to men and individuals of other genders.

6.5. Question 5: How much money was spent on purchasing automobiles by individuals who took a personal loan?

Figure 41

Sum of money spent on cars by Personal loan recipient

Personal_loan No 28990000 Yes 27290000

Name: Price, dtype: int64

Figure 42

Personal loan recipients spend 27290000 on cars.

6.6. Question 6: How does having a working partner influence the purchase of higher-priced cars?

Figure 43

6.6.1. t-test

- Null Hypothesis (H0): The mean price of cars bought by individuals with working partners is equal to the mean price of cars bought by individuals without working partners.
- Alternative Hypothesis (H1): The mean price of cars bought by individuals with working partners is different from the mean price of cars bought by individuals without working partners.

The study examined the spending on cars among individuals with a working partner versus those with a non-working partner. It calculated the t-statistic and p-value to substantiate the hypothesis.

t_statistic: -1.063364944753348 p-value: 0.28777907676113346

Figure 44

p-value is greater than the significance level i.e., 0.05. So, we can't reject the null hypothesis. Distribution is comparable in terms of central tendency and median. No negative or positive impact on expenditure on cars based on partner's working status.

7. Actionable Insights and Recommendations

7.1. Insights

We analysed a dataset containing information from 1,500 customers regarding their car types and expenditures. Several factors influence car purchases, such as age, gender, profession, and loan status. Additionally, individual and partner salaries, as well as the number of dependents, can also play significant roles in these purchasing decisions. Therefore, we identified the factors that can have a positive impact on the marketing campaign.

- 1. The preferred car type among customers is sedan, followed by hatchback and then SUV.
- 2. The majority of customers purchase cars priced under 50,000.
- 3. Most customers are married and customers may lean towards SUVs or hatchbacks when they have more dependents to accommodate.
- 4. There is a positive correlation between customer age and car price.
- 5. Women tend to spend more on cars compared to men.
- 6. The working status of the partner or personal loan status does not impact car purchases.
- 7. Women prefer SUVs while men prefer hatchbacks.
- 8. Customers who own businesses prefer hatchbacks and sedans.
- 9. Salaried males prefer sedans followed by hatchbacks.
- 10. Men who own businesses prefer hatchbacks over sedans while salaried or businesswomen prefer SUVs.

7.2. Recommendations

- 1. Given the demand for sedans, it would be beneficial to focus more marketing efforts on promoting this car type.
- 2. Since women tend to spend more on cars, a targeted marketing campaign highlighting specific car features that appeal to women could be effective in attracting this demographic.
- 3. The marketing campaign could focus on targeting married individuals, who make up the majority of the customer base. However, the campaign can also include strategies to attract the minority of single individuals.
- 4. Given that customers with more dependents tend to prefer SUVs or hatchbacks, it would be strategic to concentrate marketing efforts on this demographic.
- 5. Additional data on the timeline of purchases should be acquired to facilitate trend analysis and the development of a predictive model.