UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Solución Listado 7 (Funciones Circulares I)

1.
$$P(\frac{5\pi}{6}) = (-\sqrt{3}2, \frac{1}{2})$$
 (II); $P(\frac{2\pi}{3}) = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$ (II); $P(-\frac{\pi}{6}) = (\frac{\sqrt{3}}{2}, -\frac{1}{2})$ (IV); $P(3\pi) = (-1, 0)$ (eje X).

- 2. a) I o IV, b) I o II, c) III o IV, d) II o III.
- 5. a) $\{\frac{\pi}{3} + 2k\pi : k \in \mathbb{Z}\} \cup \{\frac{2\pi}{3} + 2k\pi : k \in \mathbb{Z}\}$ b) $\{\frac{\pi}{4} + k\pi : k \in \mathbb{Z}\}$
- 6. $tan(x_1 + x_2) = \frac{3\sqrt{5} 8}{6 + 4\sqrt{5}}$
- 7. El periodo de f_1 es π , el de f_2 es $2\sqrt{3}\pi$ y el de f_3 es 2π .
- 8. $(\cos(x), \sin(x)) = (\frac{3}{5}, \frac{4}{5}).$

10. a)
$$\operatorname{sen}(\alpha + \beta) = \frac{49}{125}$$
, $\operatorname{sen}(\alpha - \beta) = \frac{123}{125}$
b) $\operatorname{cos}(\alpha + \beta) = -\frac{44}{125}$, $\operatorname{cos}(\alpha - \beta) = \frac{100}{125}$
c) $\operatorname{tan}(\alpha + \beta) = -\frac{49}{44}$, $\operatorname{tan}(\alpha - \beta) = \frac{123}{100}$

12.
$$S_n = \cot(\frac{\alpha}{2}) - \cot(2^{n-1}\alpha)$$

13. a)
$$\operatorname{sen}(\alpha) \cos(\frac{\pi}{4} - \alpha) + \cos(\alpha) \cos(\frac{\pi}{4} + \alpha) = \frac{\sqrt{2}}{2}$$

b) $\cos(\alpha) \cos(\frac{\pi}{6} + \alpha) + \operatorname{sen}(\alpha) \cos(\frac{\pi}{3} - \alpha) = \frac{\sqrt{3}}{2}$

RRS/RNG/JMS/AGS/LNB/JSA/BBM/LRS/ags semestre otoño 2006.