1 Composantes connexes de $\mathcal{GL}_n(\mathbb{R})$

Définition 1. Une partie d'un espace topologique X est dite connexe par arcs si pour tout x, y dans X, il existe une application continue $\gamma : [0,1] \to X$ telle que $\gamma(0) = x$ et $\gamma(1) = y$.

Remarque 1. On appelera γ un chemin de x à y dans X. Sur le dessin, cela revient à montrer que l'on peut tracer un chemin continu n'importe quel couple de points.

On pourra également considérer la relation d'équivalence \longleftrightarrow sur X définie par

$$x \longleftrightarrow y \iff \exists \gamma : [0,1] \to X \text{ telle que } \gamma(0) = x \text{ et } \gamma(1) = y.$$
 (1)

Pour un $x \in X$ donné, on pourra appelé $\mathcal{C}(x)$ la composante connexe par arcs de x. Dire que X est connexe par arcs est équivalent à dire que pour un $x \in X$, $\mathcal{C}(x) = X$.

Lemme 1. Si f est une application continue de X dans Y, deux espaces topologiques, et que X est connexe par arcs, alors f(X) est connexe par arcs dans Y.

Proof. Soient $f(x_1), f(x_2) \in f(X)$. X est connexe par arcs donc il existe γ un chemin de x_1 vers x_2 . $f \circ \gamma$ est alors un chemin de $f(x_1)$ vers $f(x_2)$.

Proposition 1. $\mathcal{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

Proof. On remarquera que det est une application linéaire surjective et continue de $\mathcal{GL}_n(\mathbb{R})$ dans \mathbb{R}^* . Or, \mathbb{R}^* n'est pas connexe par arcs. Par contraposée du lemme précédent, $\mathcal{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

Nous allons en fait montrer que $\mathcal{GL}_n(\mathbb{R})$ admet deux composantes connexes par arcs.

Lemme 2. $\mathcal{O}_n\mathbb{R}$ admet deux composantes connexes par arcs, \mathcal{O}_n^+ et \mathcal{O}_n^- .

Evidemment, $\mathcal{O}_n\mathbb{R}$ n'est pas connexe par arcs. Simplement car un espace discret ne peut être connexe par arcs que s'il est réduit à un singleton, ce qui n'est pas le cas de $\det(\mathcal{O}_n(\mathbb{R}))$.

Proof. On note $R(\theta)$ une matrice de rotation θ . Soit $A \in \mathcal{O}_n^+(\mathbb{R})$. On sait qu'il existe une matrice orthogonale P telle que $A = PDP^{-1}$ où $D = \text{Diag}(I_r, R(\pi), \dots, R(\pi), R(\theta_1), \dots, R(\theta_p))$. On considère δ un chemin de $\pi \grave{a} 0$. On pose $\Delta(t) = \text{Diag}(I_r, R(\delta(t)), \dots, R(\delta(t)))$. Ensuite, on considère γ_i un chemin de θ_i à 0 dans $]-\pi,\pi[$.

On finit par poser $\Gamma(t) = P \operatorname{Diag}(\Delta(t), R(\gamma_1(t)), \dots, R(\gamma_p(t))) P^{-1}$. On a $\Gamma(0) = A$ et $\Gamma(1) = I_n$. $\theta \mapsto R(\theta)$ est continue, on en déduit que $t \mapsto \Delta(t)$ et

 $t \mapsto \Gamma(t)$ sont continues aussi. On conserve la forme de "diagonale de rotation" ce qui permet d'assurer que Γ est à valeurs dans $\mathcal{O}_n(\mathbb{R})$.

$$\det(\Gamma(t)) = \underbrace{\det(\Delta(t))}_{=1 \text{ ou } = (-1)^{2m} = 1} \prod_{i=1}^{p} \underbrace{\det(R(\gamma_i(t)))}_{=1} = 1.$$
 (2)

On a donc trouvé un chemin de A à I_n , ce qui suffit à montrer que $\mathcal{O}_n^+(\mathbb{R})$ est connexe par arcs.

La même démonstration se fait en créant un chemin vers -1, I_{n-1} .

Finalement, il ne suffit que de montrer que $\mathcal{O}_n^+(\mathbb{R})$ et $\mathcal{O}_n^-(\mathbb{R})$ forment une partition de $\mathcal{O}_n(\mathbb{R})$, ce qui est trivial. On a donc montré que $\mathcal{O}_n(\mathbb{R})$ admet deux composantes connexes par arcs, $\mathcal{O}_n^+(\mathbb{R})$ et $\mathcal{O}_n^-(\mathbb{R})$.

Lemme 3. On note $S_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques définies postives. Alors $S_n^{++}(\mathbb{R})$ est connexe par arcs.

Proof. La preuve est plus simple. On considère $A \in \mathcal{S}_n^{++}(\mathbb{R})$. D'après le théorème spectral, il existe une matrice orthogonale P telle que $A = PDP^{-1}$ avec $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$ et $\lambda_i > 0$. (Réciproquement, une matrice d'une telle forme est symétrique définie positive).

 \mathbb{R}_{+}^{*} est connexe par arcs donc il existe un chemin γ_{i} de λ_{i}) 1 dans \mathbb{R}_{+}^{*} . On pose ensuite $\Gamma(t) = P \operatorname{Diag}(\gamma_{1}(t), \dots, \gamma_{n}(t)) P^{-1}$. Γ est continue, à valeurs dans $\mathcal{S}_{n}^{++}(\mathbb{R})$ et $\Gamma(0) = A$, $\Gamma(1) = I_{n}$. On a donc trouvé un chemin de A à I_{n} . $\mathcal{S}_{n}^{++}(\mathbb{R})$ est donc connexe par arcs.

Lemme 4 (Décomposition(s) polaire(s)). Soit $A \in \mathcal{GL}_n(\mathbb{R})$. Alors il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$ telles que

$$A = SO. (3)$$

De plus, si $\det(A) > 0$, alors $O \in \sqcup \exists \exists \sqcup \mathcal{O}_n^+(\mathbb{R})$ et si $\det(A) < 0$, alors $O \in \mathcal{O}_n^-(\mathbb{R})$.

Proof. A est inversible donc A^TA est symétrique définie positive.

$$A = AA^T A^{T-1}. (4)$$

 AA^T est symétrique définie positive donc il existe S symétrique définie positive telle que $AA^T=S^2$. D'où $A=SS(A^T)^{-1}$. En posant $O=S(A^T)^{-1}$, on a bien A=SO.

Il reste à montrer que ${\cal O}$ est orthogonale. On a

$$O^{T}O = (S(A^{T})^{-1})^{T}S(A^{T})^{-1} = A^{-1}SS(A^{T})^{-1} = I_{n}.$$
 (5)

$$OO^{T} = S(A^{T})^{-1} (S(A^{T})^{-1})^{T} = S(A^{T})^{-1} A^{-1} S = I_{n}.$$
 (6)

Pour la remarque supplémentaire du lemme, on a $\det(A) = \det(S) \det(O)$. Or, $\det(S) > 0$ et $\det(O) = \det(A)$.

Théorème 1. $\mathcal{GL}_n(\mathbb{R})$ admet deux composantes connexes par arcs, $\mathcal{O}_n^+(\mathbb{R})\mathcal{S}_n^{++}(\mathbb{R})$ et $\mathcal{O}_n^-(\mathbb{R})\mathcal{S}_n^{++}(\mathbb{R})$.

Proof. Le théorème est une utilisation de tous ces lemmes. Soit $A \in \mathcal{GL}_n(\mathbb{R})^+$, on considère sa décomposition polaire S,O, donc $O \in \mathcal{O}_n^+(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$. On note Θ un chemin de O à I_n dans $\mathcal{O}_n^+(\mathbb{R})$ et Σ un chemin de S à I_n dans $\mathcal{S}_n^{++}(\mathbb{R})$. On pose $\Gamma(t) = \Theta(t)\Sigma(t)$. Γ est continue, à valeurs dans $\mathcal{GL}_n(\mathbb{R})^+$ et $\Gamma(0) = A, \Gamma(1) = I_n$. On a donc trouvé un chemin de A à I_n . On a donc montré que $\mathcal{GL}_n(\mathbb{R})^+$ est connexe par arcs.

On fait la même preuve pour $\mathcal{GL}_n(\mathbb{R})^-$ en créant un chemin vers $\operatorname{Diag}(-1, I_{n-1})$.

Puisque $\mathcal{GL}_n(\mathbb{R})^+$ et $\mathcal{GL}_n(\mathbb{R})^-$ forment une partition de $\mathcal{GL}_n(\mathbb{R})$, on a montré que $\mathcal{GL}_n(\mathbb{R})$ admet deux composantes connexes par arcs.