(Actual) Shortest Paths

Consider the following:

$$\mathrm{SP} \equiv \mathrm{AddZero}(\infty, (\mathbb{R}^+, \min, +) \overrightarrow{\times} (2^{2^E}, \cup, \hat{\cup}))$$

we combine paths by adding their weights and unioning their edge sets (thus, second component can be seen as set of paths). We choose by using min; if both have the same weight, we combine the path sets.

ref	S	\oplus	\otimes	Ō	$\bar{1}$
(1)	\mathbb{R}^+	min	+		0
(2)	2^{2^E}	U .	Û	Ø	{∅}
(3)	$\mathbb{R}^+ \times 2^{2^E}$	$\overrightarrow{\min \times} \cup$	+×Û		$(0, \{\varnothing\})$
SP	$\{\infty\} \uplus (\mathbb{R}^+ \times 2^{2^E})$	$(\min \overrightarrow{\times} \cup)^{id}_{\infty}$	$(+\overrightarrow{\times}\hat{\cup})^{\mathrm{an}}_{\infty}$	$\operatorname{inl}(\infty)$	$\operatorname{inr}((0, \{\emptyset\}))$

We show that SP is a semiring.

First, We show that (2) is \mathbb{LD} (\mathbb{RD} is similar):

$$(A \, \hat{\cup} \, B) \cup (A \, \hat{\cup} \, C) = \{a \cup b : a \in A, b \in B\} \cup \{a \cup c : a \in A, c \in C\}$$
$$= \{a \cup x : a \in A, x \in B \cup C\}$$
$$= A \, \hat{\cup} \, (B \cup C)$$

 \mathbb{LD} for (3) requires:

$$\mathbb{LD}((1) \overrightarrow{\times} (2)) \equiv \underbrace{\mathbb{LD}((1))}_{yes} \wedge \underbrace{\mathbb{LD}((2))}_{yes} \wedge (\underbrace{\mathbb{LC}(\mathbb{R}^+, +)}_{yes!} \vee \mathbb{LK}(2^{2^E}, \hat{\cup}))$$

 $\mathbb{L}\mathbb{D}$ for SP follows, since AddZero preserves $\mathbb{L}\mathbb{D}.$

 \mathbb{RD} is similar. Thus, SP is both \mathbb{LD} and \mathbb{RD} .

We need \oplus to be commutative:

$$\mathbb{CM}((\mathbb{R}^+, \min) \overset{\rightarrow}{\times} (2^{2^E}, \cup)) \equiv \underbrace{\mathbb{CM}(2^{2^E}, \cup)}_{yes!}$$

We have a zero by construction, annihilating \otimes . We show that $\operatorname{inr}((0, \{\emptyset\}))$ is a multiplicative ID. Consider (left operand inl case, as well as the case with operands switched around is trivial):

$$\operatorname{inr}((a, B)) \otimes \operatorname{inr}((0, \{\emptyset\})) = \operatorname{inr}((a + 0, B \hat{\cup} \{\emptyset\})) = \operatorname{inr}((a, B)) \square$$

It follows that SP is a semiring.

SP adjacency matrix, A for graph G = (V, E) with weights $w : E \mapsto \mathbb{R}^+$:

$$A_{ij} = \begin{cases} \inf((w(ij), \{\{ij\}\})) & \text{if } ij \in E\\ \inf(\infty) & \text{otherwise} \end{cases}$$