Automated Kernel Search using Evolutionary Algorithms

Louis Schlessinger May 3rd, 2019

Introduction

Problem Setup

- The popular kernel-based, nonparametric **Gaussian process** (GP) model is able to discover patterns and structure in data.
- Covariance functions (or kernels) encode structural assumptions about which kinds of functions are likely.
- The task of selecting an appropriate kernel is crucial for generalization and nontrivial because the space of possible kernels is infinite.
- Consequently, it has been called a "black art" and is either left for experts or an off-the-shelf option is used.
- The goal here is to automatically construct a covariance function for a Gaussian Process model using Genetic Programming.

GP models can represent many types of structures

GP Regression

- Unknown latent function $f: \mathcal{X} \mapsto \mathbb{R}$
- Given dataset $\mathcal{D} = (X, y)$
- Assume additive i.i.d. Gaussian noise such that

$$y_i = f(x_i) + \mathcal{N}(0, \sigma_n^2)$$

• Place GP prior on *f* :

$$p(f \mid \theta) = \mathcal{GP}(f; \mu(x; \theta), k(x, x'; \theta))$$

Fitness Function

ullet Quality of fit of a GP to $\mathcal D$ taken to be the log marginal likelihood

$$\log p(y \mid X, \theta)$$

Where,

$$p(\mathbf{y} \mid X, \theta) = \int p(\mathbf{y} \mid \mathbf{f}, X) p(\mathbf{f} \mid X, \theta) d\mathbf{f}$$

- This balances data fit and model complexity
- Under additive i.i.d. Gaussian noise, we can compute this analytically

Objective

• However, we need to optimize θ jointly with σ_n^2 to maximize \log marginal likelihood

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} \log p(y \mid X, \theta)$$

- Typically done using quasi-Newton method (e.g. L-BFGS)
- So, the fitness of a model is naively taken to be

$$\log p(y \mid X, \theta_{MLE})$$

Compositional Kernel Space

- Context-free grammar (CFG) rules¹ are:
- 1. Any subexpression S can be replaced with S + B, where B is any base kernel family.
- 2. Any subexpression S can be replaced with $S \times B$, where B is any base kernel family.
- 3. Any base kernel ${\mathcal B}$ may be replaced with any other base kernel family ${\mathcal B}'$.

Evolutionary Algorithms

Genetic Programming

- Terminal set T
- Function set *F*
- Expression Trees
 - Composed of primitives from $T \cup F$

Related Work

- Greedy Search:
 - Structure Discovery in Nonparametric Regression through Compositional Kernel Search (Duvenaud et al., 2013)
- Bayesian Optimization:
 - Bayesian optimization for automated model selection (Malkomes et al., 2016)
- Grammatical Evolution:
 - Evolution of covariance functions for gaussian process regression using genetic programming (Kronberger & Kommenda, 2013)

Challenges

- Model evidence is expensive to estimate $\mathcal{O}(N^3)$
- Relationship between covariance functions and model evidence is complex
- Depends on structure of ${\mathcal D}$
- No gradient information

Motivation

- A sum of kernels is an OR-like operation
- A product of kernels is an AND-like operation¹
- Locality is critical for the success of evolutionary algorithms, otherwise they will degenerate to random search²
- That is, genotypic neighbors must correspond to phenotypic neighbors

Why Evolutionary Algorithms?

 Crossover operator can reduce dimensionality of search space if it's possible to search for global maximum by searching for maximum in each dimension independently

 Goal is to look at the feasibility of using genetic programming in GP kernel search

Evolutionary Kernel Construction

Evolutionary Kernel Search (EKS)

- Search for derivations of CKS grammar
- Here, $T = \{SE, RQ, PER, LIN\}$
- $F = \{+, \times\}$
- Kernels are closed under + and ×
- Therefore, we can grammatically evolve kernels
- This primitive set implies a kernel encoding

Compositional Kernel Tree

- Need to map from covariance functions to trees
- *Full* binary expression tree with *N* total nodes

$$I = \frac{N-1}{2}$$
 internal nodes (operators)

$$L = \frac{N+1}{2}$$
 leaf nodes (base kernels),

Where
$$N \in \{1,3,5...\}$$

Kernel Crossover

• Here, crossover is a mapping $\mathbb{M}^2 \mapsto \mathbb{M}^2$

- A modification of the standard sub-tree exchange crossover is used:
 - Leaf-biased sub-tree exchange crossover

Swapping sub-trees can be thought of as exchanging structural assumptions

 $(RQ_1 \times SE_2) + \mathbf{RQ_2}$

 $(RQ_1 + RQ_1) \times RQ_2$ RQ_1 RQ_1

 $(RQ_1 + RQ_1) \times SE_1$

Why Leaf-biased?

• Naïve uniform random selection of two crossover points:

$$p(\text{leaf}) = \frac{1}{2} + \frac{1}{2N}$$

$$p(\text{internal}) = \frac{1}{2} - \frac{1}{2N}$$

 Undesirable property of swapping mostly leaves, taking small steps in model space

Empirically find leaf probability of 0.1 to work well

Kernel Mutation

- Mutation is a mapping $\mathbb{M} \mapsto \mathbb{M}$
- **Subtree replacement mutation** with a *Ramped Half-n-Half* random tree generator is used up to height 2.

Implementation

- Initialization:
 - Ramped Half-n-Half
- Parent selection:
 - Exponential Ranking Selection
- Offspring selection:
 - Truncation Selection
- Duplicate removal:
 - By expanded composite kernel equivalence (and only evaluated once)

Experimental Parameters

- Population size:
 - 25
- Population-level crossover rate:
 - 0.6
- Population-level mutation rate:
 - 0.1
- Variation rate:
 - (0.6 + 0.1)

Experiments

Experimental Setup

- This method evolutionary kernel search (EKS) is compared to Bayesian optimization for automated model selection (BOMS).¹
- Same model space
- Log evidence divided by dataset size is reported
 - For BOMS, Laplace approximation is used
 - For EKS, MLE estimate is used

One-dimensional timeseries

Multidimensional Datasets

Example: Airline Dataset

Summary

- Presented a computationally inexpensive method to propose candidate models using genetic programming
- Capable of recovering structure on a variety of datasets
- High selection pressure necessary; most models give poor explanations of data

Limitations

- Sample inefficient
- No convergence guarantees
- Population dynamics empirically found to be very unstable

Future Work

Future Work

 Exploring the effectiveness of the variation operators in a surrogatebased method for candidate proposal, possibly taking larger steps in model space

 This implicit distribution over candidates by the crossover operator and mutation operators as a proposal distribution

Measuring locality of the representation proposed here

Thank you!

Questions?

Relevant Links

- Report
- Code