SN54121. SN74121 MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

MAY 1983 - REVISED MARCH 1988

- Programmable Output Pulse Width With R_{int}...35 ns Typ With R_{ext}/C_{ext}...40 ns to 28 Seconds
- Internal Compensation for Virtual Temperature Independence
- Jitter-Free Operation up to 90% **Duty Cycle**
- Inhibit Capability

SN54121 J OR W PACE SN74121 N PACKAG	
(TOP VIEW)	GE
Q 1 14 VCC NC 2 13 NC A1 3 12 NC A2 4 11 Rex B 5 10 Cex Q 6 9 Rint GND 7 8 NC	_{t/Cext}

NC - No internal connection.

FUNCTION TABLE INPUTS OUTPUTS Q ō A1 Δ2 В H L × н L Н Lt нt х L Lt нt х х L LŤ x Ηt н Ш н ч i н L 1 1 х \Box ٦

[‡]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

For explanation of function table symbols, see page

† These lines of the function table assume that the indicated steady-state conditions at the A and B inputs have been setup long enough to complete any pulse started before the setup.

description

These multivibrators feature dual negative-transition-triggered inputs and a single positive-transition-triggered input which can be used as an inhibit input. Complementary output pulses are provided.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry (TTL hysteresis) for the B input allows jitter-free triggering from inputs with transition rates as slow as 1 volt/second, providing the circuit with an excellent noise immunity of typically 1.2 volts. A high immunity to VCC noise of typically 1.5 volts is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions of the inputs and are a function only of the timing components. Input pulses may be of any duration relative to the output pulse. Output pulse length may be varied from 40 nanoseconds to 28 seconds by choosing appropriate timing components. With no external timing components (i.e., Rint connected to VCC, Cext and Rext/Cext open), an output pulse of typically 30 or 35 nanoseconds is achieved which may be used as a d-c triggered reset signal. Output rise and fall times are TTL compatible and independent of pulse length.

Pulse width stability is achieved through internal compensation and is virtually independent of VCC and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components,

Jitter-free operation is maintained over the full temperature and VCC ranges for more than six decades of timing capacitance (10 pF to 10 μ F) and more than one decade of timing resistance (2 k Ω to 30 k Ω for the SN54121 and $2 \text{ k}\Omega$ to 40 k Ω for the SN74121). Throughout these ranges, pulse width is defined by the relationship $t_{W(OUT)} =$ CextRTIn2 ≈ 0.7 CextRT. In circuits where pulse cutoff is not critical, timing capacitance up to 1000 μF and timing resistance as low as 1.4 kΩ may be used. Also, the range of jitter-free output pulse widths is extended if V_{CC} is held to 5 volts and free-air temperature is 25 °C. Duty cycles as high as 90% are achieved when using maximum recommended RT*. Higher duty cycles are available if a certain amount of pulse-width jitter is allowed.

logic diagram (positive logic)

Pin numbers shown on logic notation are for J or N packages.

NOTES: 1. An external capacitor may be connected between C_{ext} (positive) and R_{ext}/C_{ext} .

2. To use the internal timing resistor, connect R_{int} to V_{CC} . For improved pulse width accuracy and repeatability, connect an external resistor between R_{ext}/C_{ext} and V_{CC} with Rint open-circuited.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 3)	٧
Input voltage	٧
Operating free-air temperature range: SN54121	С
SN74121	С
Storage temperature range	С

NOTE 3: Voltage values are with respect to network ground terminal.

recommended operating conditions

				MIN	NOM	MAX	UNIT
Vcc	Supply voltage		54 Family	4.5	5	5.5	,,
•	Supply voltage		74 Family	4.75	5	5.25	1
^ј он	High-level output current				-0.4	mA	
JOL	Low-level output current					16	mA
dv/dt	Data of size as fall of ignut sules	Schmitt input, B		1			V/s
uv/ut	Rate of rise or fall of input pulse	Logic inputs, A1, A2		1			V/μs
tw(in)	input pulse width	input pulse width		50			ns
Rext	External timing capacitance		54 Family	1.4		30	1.0
''ext	External timing capacitance		74 Family	1.4		40	kΩ
C _{ext}	External timing capacitance			0		1000	μF
	Duty cycle	$R_T = 2 k\Omega$				67	
	Daty cycle	RT = MAX Rext	R _T = MAX R _{ext}		90		%
TA	Operating free-air temperature	-	54 Family	- 55	_	125	
'A	Operating mee-air temperature		74 Family	0		70	оC

SN54121, SN74121 MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise

PARAMETER		TEST CONDITONS [†]		MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage at B input	VCC = MIN		2			V
VIL	Low-level input voltage at A input	VCC - MIN				0.8	ν
V _{T+}	Positive-going threshold voltage at B input	VCC = MIN		1	1.55	2	V
Vτ_	Negative-going threshold voltage at B input	V _{CC} = MIN		0.8	1.35		V
Vik	Input clamp voltage	V _{CC} = MIN,	I _f = -12 mA			- 1.5	V
ЮН	High-level output voltage	V _{CC} = MIN,	IOH = MAX	2.4	3.4		٧
VOL	Low-level output voltage	VCC = MIN.	IOL = MAX		0.2	0.4	V
l _l	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1	mA
	High-level input current	V _{CC} = MAX,	A1 or A2			40	
ΉН		V ₁ - 2.4 V	В			80	μА
	Low-level input current	V _{CC} = MAX, V _I = 0.4 V	A1 or A2			- 1.6	^
ΙΙL			В			- 3.2	mA
	Short-circuit output current [§]	V _{CC} = MAX	54 Family	- 20		- 55	^
los			74 Family	- 18		- 55	mA
1	Supply current	V _{CC} = MAX	Quiescent		13	25	^
ICC			Triggered		23	40	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high- level Q output from either A input				45	70	ns
^t PLH	Propagation delay time, low-to-high- level Ω output from B input	C _I = 15 pF,	C _{ext} = 80 pF,		35	55	ns
tPHL	Propagation delay time, high-to-low level Q output from either A input		R _{int} to VCC		50	80	пŝ
tPHL	Propagation delay time, high-to-low level $\overline{\Omega}$ output from 8 input	$R_L = 400 \Omega$, See Note 4			40	65	ns
tw(out)	Pulse width obtained using internal timing resistor		C _{ext} = 80 ρF, R _{int} to VCC	70	110	150	ns
tw(out)	Pulse width obtained with zero timing capacitance		C _{ext} = 0, R _{int} to V _{CC}		30	50	ns
^t w(out)	Pulse width obtained using		$C_{\text{ext}} = 100 \text{ pF},$ $R_{\text{T}} = 10 \text{ k}\Omega$	600	700	800	ns
	external timing resistor		$C_{\text{ext}} = 1 \mu\text{F},$ $R_{\text{T}} = 10 \text{k}\Omega$	6	7	8	ms

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C. † Not more than one output should be shorted at a time.

TYPICAL CHARACTERISTICS[†]

DISTRIBUTION OF UNITS

OUTPUT PULSE WIDTH

tw(out)-Output Pulse Width-ns

VARIATION IN INTERNAL TIMING RESISTOR VALUE

TA-Free-Air Temperature-°C

FIGURE 1

FIGURE 2

SCHMITT TRIGGER THRESHOLD VOLTAGE

TA-Free-Air Temperature-°C

FIGURE 3

FIGURE 4

[†]Data for temperatures below 0°C and above 70°C are applicable for SN54121.

TYPICAL CHARACTERISTICS[†] (continued)

VARIATION IN OUTPUT PULSE WIDTH FREE-AIR TEMPERATURE 1.0% Atw(out)-Variation in Output Pulse Width Vcc = 5 V CT = 60 pF +0.5% $R_T = 10 \text{ k}\Omega$ 0% t_{w(out)} = 420 ns @ T_A = 25°C 0.5% -1.0% 100

TIMING RESISTOR VALUE 10 ms 1 ms tw(out)-Output Pulse Width 100 µs 10 μs 1 μs 100 ns

Vcc = 6

10 ns

OUTPUT PULSE WIDTH

RT—Timing Resistor Value- $k\Omega$

TA-Free-Air Temperature-°C

FIGURE 5

-50

FIGURE 6

10

100

Cext —Timing Capacitance—F

FIGURE 7

NOTE 5: These values of resistance exceed the maximum recommended use over the full temperature range of the SN54121. †Data for temperatures below 0 °C and above 70 °C are applicable for SN54121.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated