Chapter 3 Linear Models For Regression

Yue Yu

3.1 Linear Basis Function Models

(3.8)

Recall $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \beta^{-1})$. This is equivalent to

$$p(\epsilon; \beta) = \frac{\beta}{\sqrt{2\pi}} \exp\left\{-\frac{\beta}{2}\epsilon^2\right\}$$
$$= \frac{\beta}{\sqrt{2\pi}} \exp\left\{-\frac{\beta}{2}(t - y(\mathbf{x}, \mathbf{w}))^2\right\},$$

which implies that

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

(3.13)

This equation should be

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n) \right\} \phi(\mathbf{x}_n), \tag{*}$$

because

$$\nabla_{\mathbf{w}}(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)) = \boldsymbol{\phi}(\mathbf{x}_n).$$

(3.14)

According to (*), this equation should be

$$\mathbf{0} = \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) - \left(\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathrm{T}}\right) \mathbf{w}. \tag{**}$$

(3.15)

By defining a design matrix Φ in the form of (3.16), (**) can be reduced to

$$\mathbf{0} = \mathbf{\Phi} \mathbf{t} - \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \mathbf{w}.$$

Solving for \mathbf{w} , we obtain

$$\mathbf{w}_{\mathrm{ML}} = (\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}\mathbf{t}.$$

(3.19)

$$\frac{\partial}{\partial w_0} E_D(\mathbf{w}) = -\sum_{n=1}^N \left\{ t_n - w_0 - \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}_n) \right\}$$
$$= 0.$$

Solving for w_0 , we obtain

$$w_0 = \frac{1}{N} \sum_{n=1}^{N} t_n - \frac{1}{N} \sum_{j=1}^{M-1} w_j \sum_{n=1}^{N} \phi_j(\mathbf{x}_n)$$
$$= \bar{t} - \sum_{j=1}^{M-1} w_j \overline{\phi_j},$$

where

$$\overline{t} = \frac{1}{N} \sum_{n=1}^{N} t_n, \qquad \overline{\phi_j} = \frac{1}{N} \sum_{n=1}^{N} \phi_j(\mathbf{x}_n).$$

(3.23)

$$\nabla_{\mathbf{w}} E_n(\mathbf{w}) = -(t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n)$$
$$= -(t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}_n) \boldsymbol{\phi}_n,$$

where $\phi_n = \phi(\mathbf{x}_n)$. Plug it into (3.22), we obtain (3.23).

(3.28)

Recall the regularized error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
$$= \frac{1}{2} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w})^{\mathrm{T}} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}.$$

Setting the gradient with respect to \mathbf{w} to $\mathbf{0}$, we have

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \frac{1}{2} \nabla_{\mathbf{w}} (\mathbf{t}^{\mathrm{T}} \mathbf{t} - 2 \mathbf{t}^{\mathrm{T}} \mathbf{\Phi} \mathbf{w} + \mathbf{w}^{\mathrm{T}} \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \mathbf{w} + \lambda \mathbf{w}^{\mathrm{T}} \mathbf{w})$$
$$= (\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} + \lambda \mathbf{I}) \mathbf{w} - \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$
$$= \mathbf{0}.$$

Solving for \mathbf{w} , we obtain

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$