```
In [1]:
                import pandas as pd
             2
                D=pd.read csv(r"C:\Users\Admin\Downloads\smart home device usage data.c
             3
  Out[1]:
                  UserID DeviceType UsageHoursPerDay EnergyConsumption UserPreferences Malfunc
                              Smart
               0
                       1
                                             15.307188
                                                                                        1
                                                                 1.961607
                             Speaker
               1
                       2
                             Camera
                                             19.973343
                                                                 8.610689
                                                                                        1
                             Security
               2
                       3
                                             18.911535
                                                                 2.651777
                                                                                        1
                             System
               3
                      4
                             Camera
                                              7.011127
                                                                 2.341653
                                                                                       0
               4
                      5
                             Camera
                                             22.610684
                                                                 4.859069
                                                                                        1
            5398
                    5399
                          Thermostat
                                              4.556314
                                                                 5.871764
                                                                                        1
            5399
                    5400
                              Lights
                                              0.561856
                                                                 1.555992
                              Smart
            5400
                    5401
                                             11.096236
                                                                 7.677779
                                                                                       0
                             Speaker
                             Security
            5401
                    5402
                                                                 7.467929
                                                                                       0
                                              8.782169
                             System
            5402
                    5403
                          Thermostat
                                             13.540381
                                                                 9.043076
                                                                                       0
            5403 rows × 8 columns
In [106]:
                D.columns
Out[106]: Index(['UserID', 'DeviceType', 'UsageHoursPerDay', 'EnergyConsumption',
                    'UserPreferences', 'MalfunctionIncidents', 'DeviceAgeMonths',
                    'SmartHomeEfficiency'],
                  dtype='object')
                D.isnull().sum()
  In [2]:
                                       0
  Out[2]:
           UserID
           DeviceType
                                       0
           UsageHoursPerDay
                                       0
            EnergyConsumption
                                       0
           UserPreferences
                                       0
                                       0
           MalfunctionIncidents
           DeviceAgeMonths
                                       0
                                       0
           SmartHomeEfficiency
           dtype: int64
```

```
In [3]:
            D.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5403 entries, 0 to 5402
        Data columns (total 8 columns):
             Column
         #
                                    Non-Null Count
                                                    Dtype
                                    5403 non-null
         0
             UserID
                                                    int64
             DeviceType
                                                    object
         1
                                    5403 non-null
         2
             UsageHoursPerDay
                                    5403 non-null
                                                    float64
         3
             EnergyConsumption
                                    5403 non-null
                                                    float64
         4
             UserPreferences
                                                    int64
                                    5403 non-null
         5
             MalfunctionIncidents 5403 non-null
                                                    int64
         6
             DeviceAgeMonths
                                    5403 non-null
                                                    int64
             SmartHomeEfficiency
                                    5403 non-null
                                                    int64
        dtypes: float64(2), int64(5), object(1)
        memory usage: 337.8+ KB
In [4]:
            import matplotlib.pyplot as plt
            import seaborn as sns
          3
            for i in D.columns:
                 sns.histplot(D[i],bins=10,kde=True)
          5
                 plt.show()
        C:\ProgramData\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: Fu
        tureWarning: use_inf_as_na option is deprecated and will be removed in
        a future version. Convert inf values to NaN before operating instead.
          with pd.option_context('mode.use_inf_as_na', True):
            500
            400
            300
            200
            D['UsageHoursPerDay'].mean()
In [5]:
Out[5]: 12.052992010466317
            D['UsageHoursPerDay'].median()
In [6]:
Out[6]: 11.903768445051607
In [7]:
            D['UsageHoursPerDay'].mode()[0]
Out[7]: 0.5012414329089748
```

```
In [8]:
           1 D['EnergyConsumption'].mean()
 Out[8]: 5.054301881355049
             D['EnergyConsumption'].median()
 In [9]:
 Out[9]: 5.007047305947374
In [10]:
           1 D['EnergyConsumption'].mode()[0]
Out[10]: 0.1015616713227616
In [11]:
          1 D['DeviceAgeMonths'].mean()
Out[11]: 30.312233944105127
In [12]:
             D['DeviceAgeMonths'].median()
Out[12]: 30.0
In [13]:
          1 D['DeviceAgeMonths'].mode()[0]
Out[13]: 13
In [14]:
           1 D['UsageHoursPerDay'].unique()
Out[14]: array([15.30718848, 19.97334329, 18.91153466, ..., 11.09623585,
                 8.78216919, 13.54038109])
```

	2 /	4								
Out[15]:		UserID	DeviceType	UsageHoursPerDay	EnergyConsumption	UserPreferences	Malfund			
	131	132	Camera	23.824094	9.916783	0				
	262	263	Camera	20.689126	9.574219	1				
	273	274	Smart Speaker	22.461781	9.107254	1				
	312	313	Thermostat	20.679406	9.102111	0				
	360	361	Smart Speaker	20.213066	9.369793	0				
	5054	5055	Camera	20.010880	9.269652	1				
	5071	5072	Thermostat	21.093378	9.566639	1				
	5079	5080	Camera	21.943399	9.268205	1				
	5167	5168	Smart Speaker	22.077539	9.317121	1				
	5260	5261	Camera	21.438391	9.998071	1				
	103 rd	ows × 8 o	columns							
	4						•			
In [16]:	1 /	A['Smar	tHomeEffic	iency'].value_co	unts() #at high v	alue of UsageH	oursPer			
Out[16]:	Smart 0	HomeEff	ficiency							
	1	31								
	Name:	count	, dtype: ir	nt64						
In [17]:	1	D['Devi	ceType'].v	alue_counts()						
Out[17]:	DeviceType Smart Speaker 1108 Camera 1101 Lights 1087									
		rity Sys nostat	stem 106 103							

Name: count, dtype: int64

1 S=D.loc[(D['DeviceType']=='Smart Speaker')&(D['EnergyConsumption']>=8)&
2 S

Out[18]:		UserID	DeviceType	UsageHoursPerDay	EnergyConsumption	UserPreferences	Malfund
	50	51	Smart Speaker	15.202794	9.260120	1	
	58	59	Smart Speaker	16.163266	9.861676	0	
	136	137	Smart Speaker	9.884316	8.494920	0	
	194	195	Smart Speaker	12.572135	9.181754	0	
	286	287	Smart Speaker	7.836459	8.985337	0	
	5018	5019	Smart Speaker	22.644072	9.314185	1	
	5020	5021	Smart Speaker	5.388577	9.696368	0	
	5032	5033	Smart Speaker	11.332785	8.078466	0	
	5069	5070	Smart Speaker	16.839995	8.603232	0	
	5170	5171	Smart Speaker	21.185917	8.206446	0	
	100 ro	ws × 8 c					
	4					•	

Out[19]: SmartHomeEfficiency

85

Name: count, dtype: int64

In [20]: E=D.loc[(D['DeviceType']=='Thermostat')&(D['UsageHoursPerDay']>=22)&(D[2 Out[20]: UserID DeviceType UsageHoursPerDay EnergyConsumption UserPreferences Malfund 138 139 Thermostat 23.488186 5.951844 0 2211 2212 Thermostat 23.547888 2.386310 0 3075 3076 Thermostat 23.696852 8.010203 0 3243 3244 Thermostat 22.723328 2.994062 0 3779 3780 Thermostat 22.839250 4.432218 0 4104 4105 Thermostat 23.545233 5.931486 1 4885 4886 Thermostat 22.445682 8.366797 0 4925 4926 Thermostat 22.306454 1.926897 1 4974 4975 Thermostat 22.658449 7.914858 0 0 5117 5118 Thermostat 22.803371 6.955159 D.groupby('DeviceType')[['UsageHoursPerDay']].mean().reset_index().sort In [21]: Out[21]: DeviceType UsageHoursPerDay 0 Camera 12.113435 4 Thermostat 12.105753 1 Lights 12.052646 Security System 12.016149

In [22]:

#UsageHoursPerDay of camera on average is max as compared to others

11.979308

Smart Speaker

```
1 R=D.loc[(D['SmartHomeEfficiency']==1)&(D['UserPreferences']==1)]
2 R
```

		•									
Out[23]:		UserID	DeviceType	UsageHoursPerDay	EnergyConsumption	UserPreferences	Malfund				
	0	1	Smart Speaker	15.307188	1.961607	1					
	1	2	Camera	19.973343	8.610689	1					
	2	3	Security System	18.911535	2.651777	1					
	4	5	Camera	22.610684	4.859069	1					
	5	6	Thermostat	3.422127	5.038625	1					
	5386	5387	Security System	20.393943	3.104494	1					
	5387	5388	Lights	10.532275	5.634707	1					
	5388	5389	Thermostat	13.472427	6.728036	1					
	5393	5394	Security System	18.847219	5.649036	1					
	5396	5397	Camera	19.301279	0.792446	1					
	1838 rows × 8 columns										
	4						•				
In [24]:	1 R	R['Devi	ceType'].va	alue_counts()# f	rom SmartHomeEffic	ciency & UserP	referer				
Out[24]:	Devic	еТуре	200								

Camera 390 Smart Speaker 385 Lights 372 Security System 352 Thermostat 339 Name: count, dtype: int64

Out[25]:		Lights	Security System	Smart Speaker	Thermostat
	0	0	0	1	0
	1	0	0	0	0
	2	0	1	0	0
	3	0	0	0	0
	4	0	0	0	0
	5398	0	0	0	1
	5399	1	0	0	0
	5400	0	0	1	0
	5401	0	1	0	0
	5402	Λ	0	0	1

5403 rows × 4 columns

In [26]: 1 N=pd.concat([D,DS],axis=1)
 N

	_			r	_	_	э.	
1	1	п	+	П	ು	6	-1	•
٠,		и	_		_	u	- 1	

	UserID	DeviceType	UsageHoursPerDay	EnergyConsumption	UserPreferences	Malfunc
0	1	Smart Speaker	15.307188	1.961607	1	
1	2	Camera	19.973343	8.610689	1	
2	3	Security System	18.911535	2.651777	1	
3	4	Camera	7.011127	2.341653	0	
4	5	Camera	22.610684	4.859069	1	
5398	5399	Thermostat	4.556314	5.871764	1	
5399	5400	Lights	0.561856	1.555992	1	
5400	5401	Smart Speaker	11.096236	7.677779	0	
5401	5402	Security System	8.782169	7.467929	0	
5402	5403	Thermostat	13.540381	9.043076	0	

5403 rows × 12 columns

In [27]: 1 N.drop(columns="DeviceType",inplace=True)

```
In [28]:
               N.drop(columns="UserID",inplace=True)
In [29]:
               Ν
Out[29]:
                UsageHoursPerDay EnergyConsumption UserPreferences MalfunctionIncidents Device
              0
                        15.307188
                                            1.961607
                                                                  1
                                                                                     4
              1
                        19.973343
                                            8.610689
                                                                  1
                                                                                     0
              2
                         18.911535
                                            2.651777
              3
                          7.011127
                                            2.341653
                                                                                     3
              4
                        22.610684
                                            4.859069
                                                                                     3
                         4.556314
                                                                  1
           5398
                                            5.871764
                                                                                     0
           5399
                         0.561856
                                            1.555992
                                                                  1
                                                                                     4
           5400
                         11.096236
                                            7.677779
                                                                  0
                                                                                     0
           5401
                         8.782169
                                            7.467929
                                                                  0
                                                                                     2
           5402
                        13.540381
                                            9.043076
                                                                  0
                                                                                     0
          5403 rows × 10 columns
In [30]:
               FS=N.drop(columns='UserPreferences',axis=1)
               T=N['UserPreferences']
In [31]:
               from sklearn.model_selection import train_test_split
               X_train,X_test,y_train,y_test=train_test_split(FS,T,train_size=0.65,rar
In [47]:
               from sklearn.model selection import GridSearchCV
               from sklearn.linear_model import LogisticRegression
               Log=LogisticRegression()
               params={"C":[0.2,0.4,0.006,0.8],"penalty":["11","12"]}
               G=GridSearchCV(Log,param_grid=params,scoring="accuracy",cv=6)
```

```
In [48]:
           1 G.fit(X_train,y_train)
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.
         py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown i
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
         ikit-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
         ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
         c-regression)
           n_iter_i = _check_optimize_result(
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.
         py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown i
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
         ikit-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
         ression (https://scikit-learn.org/stable/modules/linear_model.html#logisti
         c-regression)
           n iter_i = _check_optimize_result(
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\model_selection\_valida
         tion.py:378: FitFailedWarning:
         24 fits failed out of a total of 48.
         The score on these train-test partitions for these parameters will be set
         to nan.
         If these failures are not expected, you can try to debug them by setting e
         rror score='raise'.
         Below are more details about the failures:
         24 fits failed with the following error:
         Traceback (most recent call last):
           File "C:\ProgramData\anaconda3\Lib\site-packages\sklearn\model selection
         \_validation.py", line 686, in _fit_and_score
             estimator.fit(X_train, y_train, **fit_params)
           File "C:\ProgramData\anaconda3\Lib\site-packages\sklearn\linear model\ 1
         ogistic.py", line 1162, in fit
             solver = _check_solver(self.solver, self.penalty, self.dual)
                      ^^^^^^
           File "C:\ProgramData\anaconda3\Lib\site-packages\sklearn\linear_model\_1
         ogistic.py", line 54, in _check_solver
             raise ValueError(
         ValueError: Solver lbfgs supports only '12' or 'none' penalties, got 11 pe
         nalty.
           warnings.warn(some_fits_failed_message, FitFailedWarning)
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\model_selection\_searc
         h.py:952: UserWarning: One or more of the test scores are non-finite: [
         nan 0.79236992
                               nan 0.79237041
                                                     nan 0.79180012
                 nan 0.79293972]
           warnings.warn(
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [49]:
             G.best_params_
Out[49]: {'C': 0.8, 'penalty': '12'}
In [50]:
              model=G.best estimator
           2
              model
Out[50]: LogisticRegression(C=0.8)
         In a Jupyter environment, please rerun this cell to show the HTML representation or
         trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
          with nbviewer.org.
In [51]:
              pred=model.predict(X test)
              pred
Out[51]: array([0, 0, 1, ..., 0, 1, 0], dtype=int64)
In [52]:
              model.score(X_train,y_train)
Out[52]: 0.7943605810310452
In [53]:
              model.score(X test,y test)
Out[53]:
         0.7928118393234672
In [54]:
              from sklearn.metrics import classification report, accuracy score, confus
In [55]:
              accuracy score(y test,pred)
Out[55]: 0.7928118393234672
In [56]:
              print(classification report(y test,pred))
                        precision
                                      recall f1-score
                                                          support
                     0
                              0.74
                                        0.88
                                                   0.81
                                                              927
                     1
                              0.86
                                        0.71
                                                   0.78
                                                              965
                                                   0.79
                                                             1892
              accuracy
             macro avg
                              0.80
                                        0.79
                                                   0.79
                                                             1892
```

weighted avg

0.80

0.79

0.79

1892

```
confusion_matrix(y_test,pred)
In [57]:
Out[57]: array([[815, 112],
                [280, 685]], dtype=int64)
In [58]:
             from sklearn.model selection import GridSearchCV
             from sklearn.svm import SVC
           3
             SVC=SVC()
             prm={"gamma":[0.4,0.6,0.8],"kernel":['rbf']}
             g=GridSearchCV(SVC,param_grid=prm,scoring='accuracy',cv=6)
In [59]:
           1 g.fit(X_train,y_train)
Out[59]: GridSearchCV(cv=6, estimator=SVC(),
                      param_grid={'gamma': [0.4, 0.6, 0.8], 'kernel': ['rbf']},
                      scoring='accuracy')
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [60]:
             g.best_params_
Out[60]: {'gamma': 0.4, 'kernel': 'rbf'}
In [61]:
             L=g.best_estimator_
```

Out[61]: SVC(gamma=0.4)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [62]:
              predict=L.predict(X test)
             predict
Out[62]: array([0, 1, 1, ..., 0, 1, 0], dtype=int64)
In [63]:
           1 L.score(X train, y train)
Out[63]: 0.9928795215038451
             L.score(X_test,y_test)
In [64]:
Out[64]: 0.6094080338266384
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Out[68]: KNeighborsClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [108]: 1 R1.fit(X_train,y_train)
```

Out[108]: RandomForestClassifier(n estimators=25)

AD.fit(X_train,y_train)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Out[111]: AdaBoostClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Jut[116]:		models	Train	Test
	0	Log	79.43	79.28
	1	KNN	99.28	60.94
	2	SVC	74.33	57.24
	3	R1	99.82	80.02
	4	AD	80.11	78.75

Out[76]: GaussianNB()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [81]:
              Data1=[]
           2
              for k,l in models.items():
                  1.fit(X_train,y_train)
           4
           5
                  TR=1.score(X_train,y_train)
           6
                  TE=1.score(X_test,y_test)
           7
                  pred=1.predict(X_test)
           8
           9
          10
                  Data1.append([k,TR,TE])
          11
                  print(k.upper())
                  print(classification_report(y_test,pred))
          12
          13
                  print(confusion_matrix(y_test,pred))
                  print('__'*40)
          14
```

GAUSSIAN					
	precision	recall	f1-score	support	
0	0.72	0.93	0.81	927	
1	0.90	0.65	0.76	965	
accuracy			0.79	1892	
macro avg	0.81	0.79	0.78	1892	
weighted avg	0.81	0.79	0.78	1892	
[[859 68] [336 629]]					
 BERNOULIAN					
DERNOOLIAN	precision	recall	f1-score	support	
0	0.72	0.93	0.81	927	
1	0.90	0.65	0.76	965	
accuracy			0.79	1892	
macro avg	0.81	0.79	0.78	1892	
weighted avg	0.81	0.79	0.78	1892	
[[859 68] [336 629]]					
COMPLEMENT					
COLII EELIENI	precision	recall	f1-score	support	
0	0.72	0.92	0.81	927	
1	0.89	0.65	0.76	965	
accuracy			0.78	1892	
macro avg	0.81	0.79			
weighted avg				1892	
[[852 75] [334 631]]					
 CATEGORICAL					
CATEGORICAL	precision	recall	f1-score	support	
0	0.72	0.93	0.81	927	
1	0.90		0.76	965	
accuracy			0.79	1892	
macro avg	0.81	0.79			
weighted avg	0.81	0.79	0.78	1892	
[[859 68] [336 629]]					

```
In [82]:
              Data1
Out[82]: [['Gaussian', 0.7949302193107377, 0.7864693446088795],
           ['Bernoulian', 0.7949302193107377, 0.7864693446088795],
           ['Complement', 0.7932213044716605, 0.7838266384778013],
           ['Categorical', 0.7952150384505838, 0.7864693446088795]]
In [83]:
               R=pd.DataFrame(Data1,columns=('model name','Train','Test'))
Out[83]:
             model name
                            Train
                                      Test
                Gaussian 0.794930 0.786469
           0
           1
               Bernoulian 0.794930 0.786469
           2 Complement 0.793221 0.783827
               Categorical 0.795215 0.786469
In [84]:
               plt.figure(figsize=(10,6))
               plt.bar(R['model name'],R['Train']*100,align='center',width=0.5,label=
              plt.bar(R['model name'],R['Test']*100,align='edge',width=0.3,label='Test
            4
              plt.grid()
              plt.legend()
            5
              plt.xlabel('Models')
              plt.ylabel('Accuracy')
              plt.show()
                                                                             Training Accuracy
             80
                                                                             Testing Accuracy
             70
             60
             50
             40
             30
             20
             10
              0
                     Gaussian
                                       Bernoulian
                                                         Complement
                                                                             Categorical
```

Models

#ANN

In [85]: 1 !pip install tensorflow

Defaulting to user installation because normal site-packages is not writea ble

Requirement already satisfied: tensorflow in c:\users\admin\appdata\roamin g\python\python311\site-packages (2.17.0)

Requirement already satisfied: tensorflow-intel==2.17.0 in c:\users\admin \appdata\roaming\python\python311\site-packages (from tensorflow) (2.17.0) Requirement already satisfied: absl-py>=1.0.0 in c:\users\admin\appdata\ro aming\python\python311\site-packages (from tensorflow-intel==2.17.0->tenso rflow) (2.1.0)

Requirement already satisfied: astunparse>=1.6.0 in c:\users\admin\appdata \roaming\python\python311\site-packages (from tensorflow-intel==2.17.0->te nsorflow) (1.6.3)

Requirement already satisfied: flatbuffers>=24.3.25 in c:\users\admin\appd ata\roaming\python\python311\site-packages (from tensorflow-intel==2.17.0->tensorflow) (24.3.25)

Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\u sers\admin\appdata\roaming\python\python311\site-packages (from tensorflow -intel==2.17.0->tensorflow) (0.6.0)

Requirement already satisfied: google-pasta>=0.1.1 in c:\users\admin\appda ta\roaming\python\python311\site-packages (from tensorflow-intel==2.17.0-> tensorflow) (0.2.0)

Requirement already satisfied: h5py>=3.10.0 in c:\users\admin\appdata\roam ing\python\python311\site-packages (from tensorflow-intel==2.17.0->tensorf low) (3.11.0)

Requirement already satisfied: libclang>=13.0.0 in c:\users\admin\appdata \roaming\python\python311\site-packages (from tensorflow-intel==2.17.0->te nsorflow) (18.1.1)

Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in c:\users\admin\a ppdata\roaming\python\python311\site-packages (from tensorflow-intel==2.1 7.0->tensorflow) (0.4.1)

Requirement already satisfied: opt-einsum>=2.3.2 in c:\users\admin\appdata \roaming\python\python311\site-packages (from tensorflow-intel==2.17.0->te nsorflow) (3.4.0)

Requirement already satisfied: packaging in c:\programdata\anaconda3\lib\s ite-packages (from tensorflow-intel==2.17.0->tensorflow) (23.1)

Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in c:\programdata\anaconda3\lib\sit e-packages (from tensorflow-intel==2.17.0->tensorflow) (3.20.3)

Requirement already satisfied: requests<3,>=2.21.0 in c:\programdata\anaco nda3\lib\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.31.0)

Requirement already satisfied: setuptools in c:\programdata\anaconda3\lib \site-packages (from tensorflow-intel==2.17.0->tensorflow) (68.2.2)

Requirement already satisfied: six>=1.12.0 in c:\programdata\anaconda3\lib \site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.16.0)

Requirement already satisfied: termcolor>=1.1.0 in c:\users\admin\appdata \roaming\python\python311\site-packages (from tensorflow-intel==2.17.0->te nsorflow) (2.4.0)

Requirement already satisfied: typing-extensions>=3.6.6 in c:\programdata \anaconda3\lib\site-packages (from tensorflow-intel==2.17.0->tensorflow) (4.9.0)

Requirement already satisfied: wrapt>=1.11.0 in c:\programdata\anaconda3\l ib\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.14.1)
Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\users\admin\appda ta\roaming\python\python311\site-packages (from tensorflow-intel==2.17.0->

ta\roaming\python\python311\site-packages (from tensorflow-intel==2.17.0-> tensorflow) (1.66.1)

Requirement already satisfied: tensorboard<2.18,>=2.17 in c:\users\admin\a ppdata\roaming\python\python311\site-packages (from tensorflow-intel==2.1 7.0->tensorflow) (2.17.1)

Requirement already satisfied: keras>=3.2.0 in c:\users\admin\appdata\roam ing\python\python311\site-packages (from tensorflow-intel==2.17.0->tensorf

low) (3.5.0)

Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in c:\users\admin\appdata\roaming\python\python311\site-packages (from tensor flow-intel==2.17.0->tensorflow) (0.31.0)

Requirement already satisfied: numpy<2.0.0,>=1.23.5 in c:\programdata\anac onda3\lib\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.26.4)

Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\programdata\anacon da3\lib\site-packages (from astunparse>=1.6.0->tensorflow-intel==2.17.0->t ensorflow) (0.41.2)

Requirement already satisfied: rich in c:\programdata\anaconda3\lib\site-p ackages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (13.3.5) Requirement already satisfied: namex in c:\users\admin\appdata\roaming\pyt hon\python311\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0-> tensorflow) (0.0.8)

Requirement already satisfied: optree in c:\users\admin\appdata\roaming\py thon\python311\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.12.1)

Requirement already satisfied: charset-normalizer<4,>=2 in c:\programdata \anaconda3\lib\site-packages (from requests<3,>=2.21.0->tensorflow-intel== 2.17.0->tensorflow) (2.0.4)

Requirement already satisfied: idna<4,>=2.5 in c:\programdata\anaconda3\li b\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tenso rflow) (3.4)

Requirement already satisfied: urllib3<3,>=1.21.1 in c:\programdata\anacon da3\lib\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2.0.7)

Requirement already satisfied: certifi>=2017.4.17 in c:\programdata\anacon da3\lib\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2024.2.2)

Requirement already satisfied: markdown>=2.6.8 in c:\programdata\anaconda3 \lib\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0 ->tensorflow) (3.4.1)

Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\users\admin\appdata\roaming\python\python311\site-packages (from tensor board<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (0.7.2)

Requirement already satisfied: werkzeug>=1.0.1 in c:\programdata\anaconda3 \lib\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0 ->tensorflow) (2.2.3)

Requirement already satisfied: MarkupSafe>=2.1.1 in c:\programdata\anacond a3\lib\site-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (2.1.3)

Requirement already satisfied: markdown-it-py<3.0.0,>=2.2.0 in c:\programd ata\anaconda3\lib\site-packages (from rich->keras>=3.2.0->tensorflow-intel ==2.17.0->tensorflow) (2.2.0)

Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\programdata\a naconda3\lib\site-packages (from rich->keras>=3.2.0->tensorflow-intel==2.1 7.0->tensorflow) (2.15.1)

Requirement already satisfied: mdurl~=0.1 in c:\programdata\anaconda3\lib \site-packages (from markdown-it-py<3.0.0,>=2.2.0->rich->keras>=3.2.0->ten sorflow-intel==2.17.0->tensorflow) (0.1.0)

In [86]:

- 1 import tensorflow as tf
- 2 **from** tensorflow **import** keras
- 3 **from** tensorflow.keras.models **import** Sequential
- 4 from tensorflow.keras.layers import Dense, Dropout

```
In [87]:
              model= Sequential([
           2
           3
                  Dense(60,input_shape=(X_train.shape[1],),activation='relu'),#input
           4
                  Dense(30,activation='relu'),#hidden Layer
           5
                  Dropout(0.3),
           6
                  Dense(30,activation='relu'),
           7
                  Dense(30,activation='relu'),#hidden Layer
                  Dense(1,activation='sigmoid'),#output layer
           8
           9
              ])
```

C:\Users\Admin\AppData\Roaming\Python\Python311\site-packages\keras\src\la
yers\core\dense.py:87: UserWarning: Do not pass an `input_shape`/`input_di
m` argument to a layer. When using Sequential models, prefer using an `Inp
ut(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

In [89]: 1 model.fit(X_train,y_train,epochs=25)

Epoch 1/25 110/110 ————————————————————————————————	3 c	2ms/stan		accuracy:	0 5281	_	1000	0 7537
Epoch 2/25	23	21113/3 ССР		accuracy.	0.5201		1033.	0.7557
•	00	2ms/ston		accuracy:	0 5600		1000	0 6022
	62	ziiis/step	-	accuracy.	0.5000	-	1055.	0.0923
Epoch 3/25	0-	2			0 (272		1	0 ((0)
	65	zms/step	-	accuracy:	0.62/3	-	1055:	0.6602
Epoch 4/25	•	4 / 1			0 7000		,	0 5075
	05	ıms/step	-	accuracy:	0.7022	-	TOSS:	0.59/5
Epoch 5/25	0-	2			0 7440		1	0 5005
	65	zms/step	-	accuracy:	0.7449	-	1055:	0.5085
Epoch 6/25	•	2 / 1			0.7066		,	0 4070
	05	2ms/step	-	accuracy:	0.7866	-	TOSS:	0.48/0
Epoch 7/25	•	2 / 1			0 7767		,	0 4000
	05	2ms/step	-	accuracy:	0.7767	-	TOSS:	0.4833
Epoch 8/25	•	2 / 1			0 7700		,	0.4606
	05	2ms/step	-	accuracy:	0.7793	-	TOSS:	0.4606
Epoch 9/25	0-	2			0 7700		1	0.4660
	05	2ms/step	-	accuracy:	0.7789	-	TOSS:	0.4660
Epoch 10/25	0-	2			0 7057		1	0 4242
	65	zms/step	-	accuracy:	0.7957	-	1088:	0.4342
Epoch 11/25	0-	2			0 7065		1	0 4272
	65	zms/step	-	accuracy:	0.7865	-	1088:	0.43/2
Epoch 12/25	0-	2			0.7000		1	0 4500
	65	zms/step	-	accuracy:	0.7899	-	1088:	0.4582
Epoch 13/25	0-	2			0 7014		1	0 4451
	05	zms/step	-	accuracy:	0.7914	-	1088:	0.4451
Epoch 14/25	0.0	2ms/s+on		2661122614	0 7000		1000	0 4405
110/110 ————————————————————————————————	62	zms/step	-	accuracy:	0.7882	-	1055:	0.4495
Epoch 15/25 110/110 ————————————————————————————————	00	2ms/ston		accuracy:	0 7020		10001	0 1261
Epoch 16/25	62	ziiis/step	-	accuracy.	0.7555	-	1055.	0.4304
•	00	2mc/ston		accuracy:	a 7901		1000	0 1270
-	62	ziiis/step	-	accuracy.	0.7691	-	1055.	0.43/6
Epoch 17/25 110/110 ————————————————————————————————	00	2ms/ston		2661102614	0.7004		10001	0 4172
-	62	ziiis/step	-	accuracy:	0.7994	-	1055.	0.41/2
Epoch 18/25 110/110 ————————————————————————————————	00	2mc/ston		2661102611	0 0012		1000	0 4227
Epoch 19/25	62	ziiis/step	-	accuracy.	0.0012	-	1055.	0.4237
•	00	2mc/ston		accuracy:	0 7064		1000	0 4227
Epoch 20/25	62	siis/step	-	accuracy.	0.7904	-	1055.	0.4227
•	00	2mc/ston		2661102611	0 7025		1000	0 1270
Epoch 21/25	62	ziiis/step	-	accuracy:	0.7925	-	1055.	0.4370
110/110 ————————————————————————————————	00	2ms/ston		2661102614	0 7014		10001	0 1200
	62	ziiis/step	-	accuracy.	0.7914	-	1055.	0.4300
Epoch 22/25 110/110 ————————————————————————————————	0-	2mc/c+00		accuracy:	0 7050		1000	0 4262
	05	ziiis/step	-	accuracy:	שכצו.ש	-	TO22;	v.4203
Epoch 23/25 110/110 ————————————————————————————————	00	2mc/c+00		2661122611	0 0016		1000	0 4220
	0 5	ziiis/step	-	accuracy:	0.00ID	-	TOSS:	v.4528
Epoch 24/25	0-	2mc/s+a=		2661122611	0 7075		1000	0 4266
110/110 ————————————————————————————————	95	ziiis/step	-	accuracy:	v./9/5	-	1022:	₩.4Z00
Epoch 25/25 110/110 ————————————————————————————————	0-	2mc/s+a=		2661122611	0 7000		1000	0 1111
110/110	ØS	sms/step	-	accuracy:	v./४69	-	TOSS:	v.4444

Out[89]: <keras.src.callbacks.history.History at 0x211d416f990>

```
In [90]:
              pred=model.predict(X_test)
              pred
          60/60
                                    - 0s 3ms/step
Out[90]: array([[0.22438397],
                 [0.43660703],
                 [0.92852753],
                 [0.01154943],
                 [0.40716162],
                 [0.03224894]], dtype=float32)
In [91]:
              pred1=[]
           1
           2
              for i in pred:
           3
                  if i<=0.5:
           4
                       pred1.append(0)
           5
                  else:
           6
                       pred1.append(1)
In [92]:
              pred1
Out[92]:
          [0,
           0,
           1,
           0,
           0,
           1,
           0,
           0,
           1,
           0,
           0,
           0,
           0,
           0,
           0,
           0,
           0,
           0,
           0,
In [93]:
              from sklearn.metrics import confusion_matrix,accuracy_score,classificat
              confusion_matrix(y_test,pred1)
Out[93]: array([[849, 78],
                 [332, 633]], dtype=int64)
              accuracy_score(y_test,pred1)
In [94]:
Out[94]: 0.7832980972515856
```

```
In [95]:
              print(classification_report(y_test,pred1))
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.72
                                       0.92
                                                  0.81
                                                             927
                             0.89
                                       0.66
                                                  0.76
                     1
                                                             965
             accuracy
                                                  0.78
                                                            1892
            macro avg
                             0.80
                                       0.79
                                                  0.78
                                                            1892
         weighted avg
                             0.81
                                       0.78
                                                  0.78
                                                            1892
In [96]:
              model1=Sequential([
           1
           2
                  Dense(50,input_shape=(X_train.shape[1],),activation="elu"),
           3
                  Dense(25,activation="elu"),
           4
                  Dense(20,activation="elu"),
           5
                  Dropout(0.1),
           6
                  Dense(30,activation="elu"),
           7
                  Dense(1,activation="sigmoid"),
           8
              1)
         C:\Users\Admin\AppData\Roaming\Python\Python311\site-packages\keras\src\la
         yers\core\dense.py:87: UserWarning: Do not pass an `input_shape`/`input_di
         m` argument to a layer. When using Sequential models, prefer using an `Inp
         ut(shape)` object as the first layer in the model instead.
            super().__init__(activity_regularizer=activity_regularizer, **kwargs)
In [97]:
              model.compile(
           2
                  loss='binary_crossentropy',
           3
                  optimizer='adagrad',
           4
                  metrics=['accuracy']
           5
              )
In [98]:
              pred2=model1.predict(X_test)
           1
              pred2
         60/60 -
                                    - 0s 3ms/step
Out[98]: array([[0.864488],
                 [0.87920016],
                 [0.7097148],
                 [0.7411331],
                 [0.8166284],
                 [0.748945 ]], dtype=float32)
In [99]:
              pred3=[]
           2
              for i in pred:
           3
                  if i<=0.5:
           4
                      pred3.append(0)
           5
                  else:
           6
                      pred3.append(1)
```

```
In [100]:
               pred3
Out[100]: [0,
            0,
            1,
            0,
            1,
            0,
            1,
            0,
            0,
            0,
            0,
            0,
            0,
            0,
            0,
            0,
In [101]:
               from sklearn.metrics import confusion_matrix,accuracy_score,classificat
In [102]:
               confusion_matrix(y_test,pred3)
Out[102]:
          array([[849, 78],
                  [332, 633]], dtype=int64)
In [103]:
               accuracy_score(y_test,pred3)
Out[103]: 0.7832980972515856
               print(classification_report(y_test,pred3))
In [104]:
                                       recall f1-score
                         precision
                                                            support
                      0
                               0.72
                                         0.92
                                                    0.81
                                                                927
                      1
                               0.89
                                                    0.76
                                         0.66
                                                                965
                                                    0.78
                                                               1892
               accuracy
              macro avg
                               0.80
                                         0.79
                                                    0.78
                                                               1892
           weighted avg
                               0.81
                                         0.78
                                                    0.78
                                                               1892
```

#Project Report

#The goal is to predict the efficiency of smart home devices based on the available features like EnergyConsumption,UsageHoursPerDay, and DeviceAgeMonths.

#This helps identify underperforming devices and optimize their us e, leading to better energy consumption and user satisfaction.

#Discussion: #•Insights: The analysis shows that older devices with higher energy consumption and more malfunction incidents tend to be less efficient. #•Model Comparison: Both ML models and ANN performed well, but the ANN showed better generalization on unseen data. #The dataset could benefit from additional features such as device maintenance history,Brands or more granular usage data.

#Conclusion: #This project successfully developed predictive models to estimate smart home device efficiency. #Using machine learning and ANN, we demonstrated how energy

In []: 1