Recall(Sec.2.1): Example. LP1: min $z = c^T x$, s.t. $Ax \le b$, $x \ge 0 \leftarrow \rightarrow$ std LP?

LP1 $\leftarrow \rightarrow$ LP2: min z = c^Tx , s.t. Ax + s = b, x ≥ 0 , slack variables s ≥ 0 .

←→ Std LP3: min z'=c'^Tx', s.t. A'x' = b', x'≥0, where x'=
$$\begin{bmatrix} x \\ S \end{bmatrix}$$
, A'= $\begin{bmatrix} A \cdot I \end{bmatrix}$, b'= b, c'= $\begin{bmatrix} c \\ 0 \end{bmatrix}$

Equivalence of LP1 and LP3: same x^* part, $s^* = b - Ax^*$, same z^* .

Proof. (1). x^* , z^* opt. to LP1 $\rightarrow \begin{bmatrix} x^* \\ b - Ax^* \end{bmatrix} = x'^*$, $z'^* = z^*$ opt to LP3.

(a).
$$x'^* = \begin{bmatrix} x^* \\ b - Ax^* \end{bmatrix}$$
 is feasible to LP3. \checkmark

(a). $x'^* = \begin{bmatrix} x^* \\ b - Ax^* \end{bmatrix}$ is feasible to LP3. $\sqrt{Ax^* + b}$ is feasible to LP3.

(b).
$$x'^* = \begin{bmatrix} x^* \\ b - Ax^* \end{bmatrix}$$
, z^* opt to LP3.

For any
$$\chi'$$
 featible to LP3, χ_{70} , s_{70} , $A\chi + s = b$

$$x'$$
 ferrible to LP3,
 y_0 , y_0 ,

- (2). $x'^* = \begin{bmatrix} x & * \\ S & * \end{bmatrix}$, z'^* opt. to LP3 \Rightarrow x^* opt to LP1 with $z^* = z'^*$.
- (a). x* is feasible to LP1.

$$(x^*, s^*)$$
 is feasible to $LP_3 \rightarrow Ax^* + s^* = b$, $x^* \ge 0 \rightarrow Ax^* \le b$, $x^* \ge 0$.

Thus x* is feasible to LP1.

(b). x^* is opt to LP1 with $z^*=z'^*$.

For any x feasible to LP₁, Ax \leq b, x \geq 0. Let s = b – Ax. Then Ax + s = b, x \geq 0 s \geq 0. Thus x' = (x, s) is feasible to LP₃ with w = c^Tx + 0. Since x'*=(x*, s*) is opt to LP₃, we must have w*=c^Tx* \leq c^Tx = w. Hence, z*=c^Tx* \leq c^Tx = z. So x* is opt to LP₁. #