Aula 5 - Amortização

Amortização é a redução do saldo devedor.

Notação

- $S_t = \text{Saldo devedor na data } t$
- $P_t = \text{Prestação paga na data } t$
- $J_t = \text{Juros pago na data } t$
- $A_t = \text{Amortização na data } t$

$$P_t = J_t + A_t$$

$$S_t = S_{t-1} - A_t$$

$$J_t = S_{t-1} \cdot i$$

Exemplo

Um empréstimo de R\$ 10000.00 será pago em 4 prestações mensais com taxa de juros de 1% a.m, sendo as parcelas:

• 1^a prestação: R\$ 2000.00 • 2^a prestação: R\$ 2500.00

- 3^a prestação: R\$ 3500.00

• 4^a prestação: Quitado o saldo devedor

Tabela de amortização

Data	Saldo devedor	Juros	Amortização	Prestação
0	10000			
1	8100	100	1900	2000
2	5681	81	2419	2500
3	2237.81	56.81	3443.19	3000
4	0	22.38	2237.81	2260.19

Calculando o valor presente desse fluxo de caixa, temos:

```
r = 1.01
vp <- 2000 / r + 2500 / (r ** 2) + 3500 / (r ** 3) + 2260.19 / (r ** 4)
vp
```

[1] 10000

Podemos ver empiricamente que o valor presente desse fluxo de caixa é igual ao da dívida, como deveria ser.

Sistemas de Amortização

Sistema de Amortização Constante (SAC)

Nesse sistema a amortização, constante, é calculada por:

$$A = \frac{S_0}{n}$$

, onde n é o número de prestações.

Exemplo

Vamos refazer o exemplo anterior usando agora o ${\bf SAC}$ para calcular as prestações.

Tive que sair da aula :(