Chue Zhang and Eric Mai

CSc 30400 - Theoretical Computer Science

Turing Machine (9): $a^n b^m \mid n \ge 2$, $m \ge 3$

The Turing Machine:

Test cases:

Input	Result
	Reject
а	Reject
b	Reject
ab	Reject
aab	Reject
aaab	Reject
abb	Reject
abbb	Reject
abbbb	Reject
aabbb	Accept
aabbbbb	Accept
aaaaaabb	Reject
aaaaaabbbb	Accept
aaaaabbbbb	Accept
aabbba	Reject
bbaaa	Reject

Test Case [aabbb]:

Time Complexity:

The time complexity is the maximum number of steps in any terminating computation of the Turing machine for an input.

For example:

11 steps is the smallest number of steps required for the Turing Machine to reach the accepted state "q11" for the string "aabbb".

<u>Time complexity of the Turing Machine:</u>

[Time to blank out an a and travel] + [Time to blank out an b and travel] + [Time to write a '1']

=
$$[2n] + [2m] + 1$$

time_M $(n, m) = 2n + 2m + 1 = O(n+m)$

Space Complexity:

The space complexity is the maximum number of tape squares scanned over the course of any terminating computation of the Turing machine for an arbitrary size input.

[Number of a's] + [Number of b's] + 1
=
$$[n] + [m] + 1$$

space_M $(n, m) = n + m + 1 = O(n+m)$

Because we require there be at least 2 a's and at least 3 b's, the string must have at minimum a length of 5.

Thus, we can say that

 $space_{M}(n, m) \ge 6$ for all valid inputs.