Docket No.:

<u>P-0628</u>

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Ji-Young LEE, Yong-Seog JEON, Hyun-Jung KIM, : Joon-Sik CHOI, Yun-Chul JUNG and : Byeong-Ju PARK :

Serial No.: New U.S. Patent Application

Filed:

January 5, 2004

Customer No.: 34610

For:

LOW-OUTPUT MICROWAVE LIGHTING SYSTEM AND FLICKER

REMOVING METHOD USING THE SAME

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

U.S. Patent and Trademark Office 2011 South Clark Place Customer Window Crystal Plaza Two, Lobby, Room 1B03 Arlington, Virginia 22202

Sir:

At the time the above application was filed, priority was claimed based on the following application:

Korean Patent Appln. No. 2003/66647 filed September 25, 2003

A copy of each priority application listed above is enclosed.

Respectfully submitted, FLESHNER & KIM, LLP

John C. Eisenhart

Registration No. 38,128

P.O. Box 221200 Chantilly, Virginia 20153-1200 703 766-3701 JCE/jlg

Date: January 5, 2004

Please direct all correspondence to Customer Number 34610

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

10-2003-0066647

Application Number

Date of Application

2003년 09월 25일

SEP 25, 2003

Applicant(s)

엘지전자 주식회사 LG Electronics Inc.

2003 12 년

인 :

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0002

【제출일자】 2003.09.25

【국제특허분류】 H04N 001/00

【발명의 명칭】 마이크로웨이브 조명장치

【발명의 영문명칭】 POWER SUPPLY APPARATUS FOR PLASMA LIGHTING DEVICE

【출원인】

【명칭】 엘지전자 주식회사

【출원인코드】 1-2002-012840-3

【대리인】

【성명】 박장원

[대리인코드] 9-1998-000202-3

【포괄위임등록번호】 2002-027075-8

【발명자】

【성명의 국문표기】 이지영

【성명의 영문표기】 LEE,Ji Young

【주민등록번호】 720917-1095116

【우편번호】 423-064

【주소】 경기도 광명시 하안4동 하안주공11단지아파트 1105동 109호

【국적】 KR

【발명자】

【성명의 국문표기】 전용석

【성명의 영문표기】 JEON, Yong Seog

【주민등록번호】 640906-1522616

【우편번호】 423-064

【주소】 경기도 광명시 하안4동 주공아파트 1103동 405호

【국적】 KR

【발명자】

【성명의 국문표기】 김현정

【성명의 영문표기】 KIM,Hyun Jung

【주민등록번호】 631106-1002211

【우편번호】 139-924

【주소】 서울특별시 노원구 중계1동 청구3차아파트 107동 1302호

【국적】 KR

【발명자】

【성명의 국문표기】 최준식

【성명의 영문표기】CHOI, Joon Sik【주민등록번호】610826-1068316

【우편번호】 133-780

【주소】 서울특별시 성동구 성수2가1동 한강한신아파트 101동 1204호

【국적】 KR

【발명자】

【성명의 국문표기】 정윤철

【성명의 영문표기】JUNG, Yun Chul【주민등록번호】630208-1267911

【우편번호】 423-753

【주소】 경기도 광명시 하안2동 하안주공4단지아파트 410동 405호

【국적】 KR

【발명자】

【성명의 국문표기】 박병주

【성명의 영문표기】PARK,Byeong Ju【주민등록번호】760531-1455810

【우편번호】 153-012

【주소】 서울특별시 금천구 독산2동 378-514

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

박장원 (인)

【수수료】

【기본출원료】13면29,000원【가산출원료】0면0원

【우선권주장료】

0 건

0 원

【심사청구료】

3 항

205,000 원

【합계】

234,000 원

【첨부서류】

1. 요약서·명세서(도면)_1통

【요약서】

[요약]

본 발명은 마이크로 웨이브 조명장치에 관한 것으로, 리니어 고압 트랜스를 사용시 발생하는 불안정 점등을, 하프브리지형 인버터와 역률보상회로를 이용하여 제거함으로써, 시스템의 안정성을 향상시키도록 한 것이다. 이를 위하여 본 발명은 전원부를 통해 입력되는 상용교류전원을 정류하는 정류부와; 상기 정류부를 통해 입력되는 정류신호에 의해, 역률을 보상하기 위한 제어신호를 출력하는 제어부와; 상기 제어신호에 의해, 상기 정류부를 통해 입력되는 직류전압의 역률을 보상하는 역률보상부와; 상기 역률보상부에서 출력되는 전압을, 스위청제어신호에 의해, 주파수를 가변하여 그에 따른 일정 교류전압을 출력하는 인버터부와; 상기 인버터부의 스위칭을 제어하기 위한 스위칭제어신호를 출력하는 인버터구동부와; 상기 인버터부로부터 입력되는 교류전압을 변압시켜 2차 마그네트론 필라멘트 전류 및 고압의 전압을 발생하는 구동부와; 상기 구동부에서 출력되는 고압의 전압 및 필라멘트 전류에 의해 점등되는 마그네트론을 포함하여 구성한다.

【대표도】

도 3

【명세서】

【발명의 명칭】

마이크로웨이브 조명장치{POWER SUPPLY APPARATUS FOR PLASMA LIGHTING DEVICE}

【도면의 간단한 설명】

도1은 일반적인 마이크로웨이브 조명장치의 구성을 보인 블록도.

도2는 도1에 있어서, 구동부의 출력파형을 보인도.

도3은 본 발명 마이크로웨이브 조명장치의 구성을 보인 블록도.

도4는 본 발명 마이크로웨이브 조명장치에 대한 실시시예의 회로도.

도5는 도3에 있어서, 구동부의 출력파형을 보인도.

****도면의 주요부분에 대한 부호의 설명*****

100:전원부 200:정류부

300: 역률보상부 400: 인버터부

500:구동부 600:제어부

700:인버터구동부

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 마이크로웨이브 조명장치에 관한 것으로, 특히 리니어 고압 트랜스를 사용시 발생하는 불안정 점등을, 하프 브리지형 인버터와 역률보상회로를 이용하여 제거함으로써, 시 스템의 안정성을 향상시키도록 한 마이크로 웨이브 조명장치에 관한 것이다.

- 최근에, 마이크로 웨이브를 이용한 무전극 전구를 가지는 조명장치가 개발되고 있으며, 그 무전극 조명기기는 수명이 길고 발광 효율이나 특성이 좋기 때문에 점차 사용이 증가되고 있는 추세인데, 이와같은 마이크로 웨이브 조명장치를 첨부한 도면을 참조하여 설명한다.
- 도1은 종래 무전극 조명기기에 대한 구성을 보인 블록도로서,이에 도시된 바와같이 마이크로웨이브를 발생시키는 마그네트론(10)과; 내부에 무전극전구(20)를 가지며 상기마그네트론(10)으로부터 공급되는 마이크로웨이브를 공진시키고 상기 전구에서 마이크로웨이브에너지를 빛으로 변환시 그 변환된 빛을 최대한 밖으로 배출토록 하는 메쉬(mesh) 형태로 이루어진 공진기(30)와; 상기 마그네트론(10)에서 발생된 마이크로웨이브를 상기 공진기(30)로 안내해 주는 웨이브 가이드(40)와; 외부의 전원을 고압으로 중압시켜 상기 마그네트론(10)에 공급하는 고압발생부(50)와; 상기 마그네트론(10)과 고압발생부(50)에서 자체 발생하는 열에 의해 과열되는 것을 방지하기 위하여 식혀주는 냉각부(70)와; 상기 마그네트론(10)에 고압을 인가하는 고압발생부(50)를 제어하고, 상기 냉각부(70)의 동작을 제어하는 제어부(60)와; 냉각완료이부를 기억하는 냉각완료기억부(80)로 구성하며,이와같이 구성된 종래 장치의 동작을 설명한다.
- <14> 먼저, 고압발생부(50)는 제어부(60)에서 출력되는 구동신호를 입력받아 그에 따라 외부로부터의 교류전원을 숭압시키고, 그 숭압된 고압을 마그네트론(10)으로 공급한다.
- <15> 그러면, 상기 마그네트론(10)은 상기 고압발생부(50)에서 출력되는 고압에 의해 발진하여 매우 높은 주파수를 갖는 마이크로웨이브를 웨이브가이드(40)를 통해 공진기(30)내의 무전 극전구(20)에 집중시킨다.
- <16>이에 따라, 상기 무전극전구(20)는 마이크로 웨이브 에너지를 흡수하여 빛을 발생시킨다.

- <17> 이때, 상기 제어부(60)는 상기 고압발생부(50)의 구동시, 그 고압발생부(50)와 마그네트론(10)의 자체 발열에 의해 과열되는 것을 방지하기 위하여, 냉각부 (70)를 구동시켜 상기 고압발생부(50)와 마그네트론(10) 및 무전극전구(20)를 식혀준다.
- (19) 따라서, 재기동시, 제어부(60)는 냉각완료기억부(80)의 내용을 판독하여 냉각이 완료되었을 경우 곧바로 재기동하고, 그렇지 않을 경우 일정시간 냉각부(70)를 구동한후 재기동하게된다.
- <20> 상술한 마이크로웨이브 조명장치는, 마그네트론을 구동하기 위하여 리니어 고전압 트랜스를 사용하는데, 이러한 리니어 고전압 트랜스는 20KHz 이하에서도 구동하게 되어, 도2와 같이 리플이 발생하여 불안정한 점등을 야기하는 문제점이 있다.
- 또한, 상용교류전원이 소정값 이상 변동하면 역률이 나빠져서 노이즈가 증가되고, 회로의 부하량이 증가되어 시스템의 안정성이 저하되는 문제점이 있다.

【발명이 이루고자 하는 기술적 과제】

<22> 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 리니어 고압 트랜스를 사용시 발생하는 불안정 점등을, 하프브리지형 인버터와 역률보상회로를 이용하여 제거함으로 써, 시스템의 안정성을 향상시키도록 한 마이크로웨이브 조명장치를 제공함에 그 목적이 있다.

【발명의 구성 및 작용】

- 상기와 같은 목적을 달성하기 위한 본 발명은, 전원부를 통해 입력되는 상용교류전원을 정류하는 정류부와; 상기 정류부를 통해 입력되는 정류신호에 의해, 역률을 보상하기 위한 제어신호를 출력하는 제어부와; 상기 제어신호에 의해, 상기 정류부를 통해 입력되는 직류전압의 역률을 보상하는 역률보상부와; 상기 역률보상부에서 출력되는 전압을, 스위칭제어신호에 의해, 주파수를 가변하여 그에 따른 일정 교류전압을 출력하는 인버터부와; 상기 인버터부의 스위칭을 제어하기 위한 스위칭제어신호를 출력하는 인버터구동부와; 상기 인버터부로부터 입력되는 교류전압을 변압시켜 2차 마그네트론 필라멘트 전류 및 고압의 전압을 발생하는 구동부와; 상기 구동부에서 출력되는 고압의 전압 및 필라멘트 전류에 의해 점등되는 마그네트론을 포함하여 구성한 것을 특징으로 한다.
- <24> 이하, 본 발명에 의한 마이크로웨이브 조명장치에 대한 작용 및 효과를 첨부한 도면을 참조하여 상세히 설명한다.
- <25> 도3은 본 발명 마이크로웨이브 조명장치에 대한 구성을 보인 블록도이다.
- 도3에 도시한 바와같이 본 발명은, 전원부(100)를 통해 입력되는 상용교류전원을 정류하는 정류부(200)와; 상기 정류부(200)를 통해 입력되는 정류신호에 의해, 역률을 보상하기 위한 제어신호를 출력하는 제어부(600)와; 상기 제어신호에 의해, 상기 정류부(200)를 통해 입력되는 직류전압의 역률을 보상하는 역률보상부(300)와; 상기 역률보상부(300)에서 출력되는 전압을, 스위칭제어신호에 의해, 주파수를 가변하여 그에 따른 일정 교류전압을 출력하는 인버터부(400)와; 상기 인버터부(400)의 스위칭을 제어하기 위한 스위칭제어신호를 출력하는 인버터 구동부(700)와; 상기 인버터부(400)로부터 입력되는 교류전압을 변압시켜 2차 마그네트론 필라멘트 전류 및 고압의 전압을 발생하는 구동부(500)와; 상기 구동부(500)에서 출력되

는 고압의 전압 및 필라멘트 전류에 의해 점등되는 마그네트론(MGT)으로 구성하며, 이와같은 본 발명의 동작을 설명한다.

- <27> 먼저, 정류부는 전원부(100)를 통해 입력되는 상용교류전원을 정류 및 평활하여 그에 따른 직류전압을 역률보상부(300)에 인가한다.
- 이때, 제어부(600)는 상기 정류부(200)를 통해 입력되는 정류신호에 의해, 역률을 보상하기 위한 제어신호를 역률보상부(300)에 인가하고, 이에 따라 상기 역률보상부(300)는, 상기제어부(600)의 제어신호에 의해, 상기 정류부(200)의 직류신호를 역률보상하여 인버터부(400)에 인가한다.
- <29> 이에 따라, 상기 인버터부(400)는 상기 역률보상부(300)를 통해 입력되는 직류신호를, 인버터 구동부(700)에서 출력되는 스위칭제어신호에 의해, 주파수를 가변하여 일정 교류전압으로 변환하여 출력한다.
- 이때 상기 인버터부(400)는, 하프 브리지형 인버터인데, 도4는 일예를 보인 회로도로서, 그 도4와 같이 LCC 공진 네트워크를 사용하여, 커플링과 공진 역활을 분담하거나 점등전과 점등후의 역활을 분담하고, 20KHz 주파수 이상에서 구동하여 리플을 제거한다.
- <31> 이후, 구동부(700)는 상기 인버터부(400)로부터 입력되는 교류전압을 변압시켜 2차 마그네트론 필라멘트 전류 및 고압의 전압을 마그네트론(MGT)에 인가하는데, 도5와 같이 종래보다리플을 현저히 줄여서 고압의 전압을 발생한다.
- <32> 이에 따라, 상기 마그네트론(MGT)은, 상기 구동부(700)에서 출력되는 고압의 전압 및 필라멘트 전류에 의해 점등된다.

<33> 다시 말해서, 본 발명은 하프브리지형 인버터와 역률보상회로를 구비하여, 리니어 고압 트랜스 사용시 발생하는 불안정 점등을 제거한다.

상기 본 발명의 상세한 설명에서 행해진 구체적인 실시 양태 또는 실시예는 어디까지나 본 발명의 기술 내용을 명확하게 하기 위한 것으로 이러한 구체적 실시예에 한정해서 협의로 해석해서는 안되며, 본 발명의 정신과 다음에 기재된 특허 청구의 범위내에서 여러가지 변경 실시가 가능한 것이다.

【발명의 효과】

<35> 이상에서 상세히 설명한 바와같이 본 발명은, 하프브리지형 인버터와 역률보상회로를 구비하여, 리니어 고압 트랜스를 사용시 발생하는 불안정 점등을 제거함으로써, 시스템의 안정성을 향상시키는 효과가 있다.

【특허청구범위】

【청구항 1】

전원부를 통해 입력되는 상용교류전원을 정류하는 정류부와;

상기 정류부를 통해 입력되는 정류신호에 의해, 역률을 보상하기 위한 제어신호를 출력하는 제어부와;

상기 제어신호에 의해, 상기 정류부를 통해 입력되는 직류전압의 역률을 보상하는 역률 보상부와;

상기 역률보상부에서 출력되는 전압을, 스위칭제어신호에 의해, 주파수를 가변하여 그에 따른 일정 교류전압을 출력하는 인버터부와;

상기 인버터부의 스위칭을 제어하기 위한 스위칭제어신호를 출력하는 인버터구동부와;

상기 인버터부로부터 입력되는 교류전압을 변압시켜 2차 마그네트론 필라멘트 전류 및 고압의 전압을 발생하는 구동부와;

상기 구동부에서 출력되는 고압의 전압 및 필라멘트 전류에 의해 점등되는 마그네트론을 포함하여 구성한 것을 특징으로 하는 마이크로웨이브 조명장치.

【청구항 2】

제1 항에 있어서, 인버터부는,

소정 주파수 이상에서 구동하여 리플을 제거하는 하프브리지형 인버터인 것을 특징으로 하는 마이크로웨이브 조명장치.

【청구항 3】

제2 항에 있어서, 소정 주파수는, 20KHz인 것을 특징으로 하는 마이크로웨이브 조명장치

【도면】

