MATH 407

$$5|14|18$$
 $f(x) = a_0 + a_1x^2 + ... + a_1x^n$ [RECAP]

 $0 = f(\frac{x}{5})$, $x|a_0$, $s|a_n$

Cor. If $a_1 = \pm 1$, only integer roods.

 $x^n - c^n = (x - c)(x^{n-1} + x^{-2}c + ... \times c^{n-2} + c^{n-2})$
 $= (x - c)q_1(x)$
 $f(x) - f(e) = \sum_{i=0}^n a_i(x^i - c^i)$
 $= (x - c)\sum_{i=0}^n a_iq_i(x)$
 $= (x - c)Q(x)$

If n is an integer, $f(n) - f(c) = (n - c)Q(n)$
so $(n - c)|f(n) - f(c)$

Thus $f(c) = 0 \Rightarrow (n - c)|f(n)$
 $Ex. x^3 + 15x - 3x - 6$
Possible roots $c = \pm 1$, ± 2 , ± 3 , ± 6
 $f(i) = 7$, so $c \neq 1$
 $\Rightarrow c = 2$, -6 are the only possibilities

 $2 - 1|7$, $f(z) = 56$

-6-1 \ 7, f(-6)=336

*[R[x], we know if deg (f) is odd, then I has a root. If f is non-linear then reducible.

Irreducibility = even deg.

*In C[x],

a) all non-const polynomials have roots

b) all non-const polynomials factor completely into
linear factors

Let felR[x] s ([x]

*Complex conjugate: if z = a+bi, then Z = a-bi

b> Z → Z is real linear bijection (in fact, isometry)
b|z|= [a²+b² = [Z]

 $b\overline{z}_1 + \overline{z}_2 = \overline{z}_1 + \overline{z}_2$, $b\overline{z}_1 \cdot \overline{z}_2 = \overline{z}_1 \cdot \overline{z}_2$ $b\overline{z}_1 = \overline{z}_2$ (conjugation is idempotent)

-

T> 5.5 = 1515 = 25+ps, so 5 (5)=1

so z' = 2

$$*P(z) = \left(\sum_{i=1}^{n} a_i z^i\right)$$

$$= \sum_{i=1}^{n} \overline{a_i} \left(\frac{1}{2} \right)^{n}$$

Note: 17[2]: polys in in determinant 2

Thm. If p ∈ |R[z] then all roots of p occur in conjugate pairs

=
$$(z^2 - (a+bi)z - (a+bi)z+(a^2+b^2))$$

= $(z^2 - 2az + (a^2+b^2))$

in real polynomials, irreducible ones are quadratic, negative discriminant. (Refinement of irreducibility crideria)

Thm. 4.4.5 A polynomial in Z[x] which may be witteness a(x).b(x) w/ a,b ∈ Q[x] my be witteness d(x).β(x) w/ d,β ∈ Z[x]

Cor PEZ[x] is irreducible over Ziffit is over Q

Thm 4.46 : Eisenstein irreducibility oritorion

f(x) = a x+...+ a. Let p be prime.

 $a_{n-1} \equiv a_n \equiv a_n \equiv 0 \pmod{p}$, $a_i \in \mathbb{Z}[x]$ $a_n \not\equiv 0 \pmod{p}$ $a_0 \not\equiv 0 \pmod{p^2}$

Then f is irreducible in Z[x]

 E_{x} . $\Phi_{p}(x) = x^{p-1} + x^{p-2} + ... + x + 1$ $P_{prime} = x^{p} - 1$ x - 1

Let $\Psi_p = \Phi_p(x+1)$. $T_c: f \to f(x+c)$ Then $T_c: F[x] \to F[x]$ is isomorphism. $\Psi = \frac{(x+1)^{p}-1}{x} = \sum_{k=1}^{p} \binom{p}{k} x^{k-1}$ James 1 To S I I simonyla 1 2 Dd all 11. Ha as a (2)-16) what (2 [2] m, bly with a (2) 1. (2) 1. (2) 2 [2] m, bly with a (2) 2 d me + 17 Strate of of (3) - 2/2/2/30 - 20 no water of doubles it soft DA JE DA North JS = 10 (960m) 0 = 38 (83 p x A