Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

Práctica

Complementos de Matemática II

Autor: Arroyo, Joaquín

Contents

1	Práctica 1	2
2	Práctica 2	11
3	Práctica 3	16

1 Práctica 1

Ejercicio 1.

a)
$$R_1 = \{(x, y) \in \mathbb{Z}^2 \mid y = x^2 + 7\}$$

•
$$Dom(R_1) = \mathcal{Z}$$

•
$$Im(R_1) = \{ y \in \mathcal{Z} \mid \exists x \in \mathcal{Z} : y = x^2 + 7 \}$$

•
$$R_1^{-1} = \{(x,y) \in \mathcal{Z}^2 \mid x = y^2 + 7\}$$

•
$$R_1$$
 es una relación funcional ya que:

1. Supongamos que
$$R_1$$
 no es un funcional, i.e, $\exists y_1, y_2 \in \mathcal{Z}$ t.q $x R_1 y_1 \wedge x R_1 y_2 \implies y_1 = x^2 + 7 \wedge y_2 = x^2 + 7 \implies y_1 = y_2$
Luego, $\forall x \in Dom(R_1), \exists ! y t.q xRy$

2.
$$Dom(R_1) = \mathcal{Z}$$
,

•
$$R_1$$
 no es sobreyectiva ya que por ejemplo, dado $y=2\in\mathcal{Z},\ \nexists x\in\mathcal{Z}\ t.q\ 2=x^2+7,$ i.e, $Im(R_1)\neq\mathcal{Z}.$

• Sea
$$x_1, x_2 \in \mathcal{Z}, y \in \mathcal{Z}$$
 t.q $x_1R_1y y x_2R_1y$:

(i) Como
$$x_1R_1y \implies y = x_1^2 + 7$$

(ii) Como
$$x_2R_1y \implies y = x_2^2 + 7$$

Luego, combinando (i) y (ii) tenemos que:
$$x_1^2 + 7 = x_2^2 + 7 \Leftrightarrow x_1 = x_2$$

Luego, R_1 es inyectiva.

b)
$$R_2 = \{(x,y) \in \mathbb{R}^2 \mid y^2 = x\}$$

•
$$Dom(R_2) = \mathcal{R}_0^+$$

•
$$Im(R_2) = \mathcal{R}$$

•
$$R_2^{-1} = \{(x, y) \in \mathbb{R}^2 \mid x^2 = y\}$$

$$\bullet$$
 R_2 no es funcional ya que

(i)
$$1R_21$$
 ya que $1^2 = 1$

(ii)
$$1R_2(-1)$$
 ya que $(-1)^2 = 1$

Es decir, existen dos imágenes para un elemento del dominio.

d)
$$A = \{a_1, a_2, a_3\}, B = \{b_1, b_2, b_3, b_4\}$$
 y R_4 la relación de A en B tal que:

$$M(R_4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$M(R_4^{-1}) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

•
$$Dom(R_4) = A$$

•
$$Im(R_4) = \{b_1, b_4\}$$

$$\bullet$$
 R_4 es una relación funcional ya que en cada fila de su matriz asociada hay un único 1.

2

$$\bullet$$
 R_4 es inyectiva debido a que en cada columna hay a lo sumo un 1.

$$\bullet$$
 R_4 no es sobreyectiva debido a que existe alguna columna nula en la matriz.

e) $B = \{b_1, b_2, b_3, b_4\}, C = \{u, v, x, y, z\}$ y R_5 la relación de B en C tal que:

- $Dom(R_5) = B$
- $Im(R_4) = \{u, v, z\}$
- R_5 no es una relación funcional ya por ejemplo en la fila 4 de su matriz asociada, hay mas de un uno, i.e, $b_4R_5u \wedge b_4R_5v$.
- **f)** $R_6 = R_5 \circ R_4 \ (A \to C)$

$$M(R_6) = M(R_4).M(R_5) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$M(R_6^{-1}) = M(R_6)^t$$

- $Dom(R_6) = A$
- $Im(R_6) = \{v\}$
- ullet R_6 es una relación funcional ya que en cada fila de su matriz asociada hay un único 1.
- R_6 no es inyectiva ya que por ejemplo en la columna 2 de su matriz asociada, tiene mas de un 1.
- R₆ no es sobreyectiva ya que tiene al menos una columna nula.

Ejercicio 2. Sean $f: A \to B$ y $g: B \to C$, y sea $A' \subseteq A$

- a) Si f es inyectiva (sobreyectiva) entonces $f|_{A'}$ es inyectica (sobreyectiva).
 - VERDADERO. Sean $x_1, x_2 \in A'$, $y_1 \in B/f|_{A'}(x_1) = y \wedge f|_{A'}(x_2) = y$. Como $A' \subseteq A$, entonces vale que $f(x_1) = y \wedge f(x_2) = y$, pero como f es inyectiva, $x_1 = x_2$. Luego $f|_{A'}$ es inyectiva.
 - **FALSO.** Si f es sobreyectiva, entonces $\forall y \in B, \exists x \in A \ t.q \ f(x) = y$. Si restringimos el dominio de f a A', puede existir el caso que $\exists y \in B, \exists x \in A A' \ t.q \ f(x) = y$, por lo que el par $(x,y) \notin f|_{A'} \implies Im(f|_{A'}) \neq B$
- b) Si $f|_{A'}$ es inyectiva (sobreyectiva) entonces f es inyectica (sobreyectiva).
 - FALSO. Sea $A = \{1, 2, 3\}, A' = \{1, 2\}$ $y B = \{1, 2\}$ Sea $f : A \to B$ tal que:

$$f(x) = \begin{cases} x \text{ si } x \in A' \\ 2 \text{ caso contrario} \end{cases}$$

Luego, $f|_{A'}(x) = x$, i.e, inyectiva, pero f no es inyectiva debido a que f(2) = f(3) = 2.

• **VERDADERO.** Si $f|_{A'}$ es sobreyectiva entonces $\forall y \in B \exists x \in A'$ t.q f(x) = y. Como $A' \subseteq A$, quitar la restricción a $f|_{A'}$ no rompe con la propiedad de sobreyectividad, debido a que no estamos restringiendo el codominio, este sigue estando cubierto por completo. Luego f es sobreyectiva.

c) Si $g \circ f$ es inyectiva, entonces f es inyectiva.

VERDADERO. Si $g \circ f$ es inyectiva, entonces dados $x_1, x_2 \in A$, si $g \circ f(x_1) = g \circ f(x_2) \implies x_1 = x_2$

Supongamos f no inyectiva, i.e, $\exists x_1, x_2 \in A, x_1 \neq x_2 \ t.q \ f(x_1) = f(x_2)$. Luego, existe una misma imagen para dos elementos distintos del dominio.

 $g \circ f(x_1) = g(y) = g(y_2) = g(f(x_2)) = g \circ f(x_2)$ lo que nos indica que $g \circ f$ no es inyectiva, ABS! Luego, necesariamente f es inyectiva.

d) Si $g \circ f$ es inyectiva, entonces g es inyectiva.

VERDADERO. Si $g \circ f$ es inyectiva, entonces dados $x_1, x_2 \in A$, si $g \circ f(x_1) = g \circ f(x_2) \implies x_1 = x_2$

Supongamos g no inyectiva, i.e, $\exists y_1, y_2 \in A, y_1 \neq y_2 \ t.q \ g(y_1) = g(y_2)$. Luego, existe una misma imagen para dos elementos distintos del dominio.

Sean $x_1, x_2 \in A, x_1 \neq x_2 \ t.q \ f(x_1) = y_1 \land f(x_2) = y_2$

 $g \circ f(x_1) = g(f(x_1)) = g(y_1) = g(y_2) = g(f(x_2)) = g \circ f(x_2)$ lo que nos indica que $g \circ f$ no es inyectiva, ABS!

Luego, necesariamente g es invectiva.

e) Si $q \circ f$ es sobrevectiva, entonces f es sobrevectiva.

FALSO. Si $g \circ f$ es sobreyectiva, entonces $\forall y \in C \exists x \in A \ t.q \ (g \circ f)(x) = y$

Sea
$$A = \{1, 2, 3\}, B = \{1, 2, 3\} \ y \ C = \{1, 2\}$$

$$f(1) = 1$$
, $f(2) = 2$ y $f(3) = 2$

$$g(x) = x$$

Veamos $g \circ f$:

$$g \circ f(1) = 1$$
, $g \circ f(2) = 2$ y $g \circ f(3) = 2$

Luego, $g \circ f$ es sobreyectiva, ya que $Im(g \circ f) = C$

Pero mirando f, vemos que no cubre todo su codominio, ya que $\nexists x \in A \ t.q \ f(x) = 3$.

f) Si $g \circ f$ es sobreyectiva, entonces g es sobreyectiva.

VERDADERO. Si $g \circ f$ es sobreyectiva, entonces $\forall y \in C \exists x \in A \ t.q \ (g \circ f)(x) = y$

Supongamos g no sobreyectiva, i.e, $\exists y \in C, \nexists x \in B \ t.q \ g(x) = y$, pero esto es absurdo debido a que como $g \circ f$ es sobreyectiva, dicho x debe existir.

Luego, g debe ser sobreyectiva.

Ejercicio 3. Sean A, B finitos. R de A en B y S de A en B.

a) $M(R \cup S) = M(R) + M(S)$

$$M(R \cup S)_{ij} = \begin{cases} 1 \text{ si } M(R)_{ij} = 1 \lor M(S)_{ij} = 1 \\ 0 \text{ caso contrario} \end{cases}$$

$$M(R)_{ij} + M(S)_{ij} = \begin{cases} 1 \text{ si } M(R)_{ij} + M(S)_{ij} = 1 \\ 0 \text{ caso contrario} \end{cases} = \begin{cases} 1 \text{ si } M(R)_{ij} = 1 \lor M(S)_{ij} = 1 \\ 0 \text{ caso contrario} \end{cases} = M(R \cup S)_{ij}$$

b) $M(R \cap S) = M(R) * M(S)$. Donde * es el producto componente a componente.

$$M(R \cap S)_{ij} = \begin{cases} 1 \text{ si } M(R)_{ij} = 1 \land M(S)_{ij} = 1 \\ 0 \text{ caso contrario} \end{cases} = M(R)_{ij} * M(S)_{ij}$$

Ejercicio 4. $M(S \circ R) = M(R)M(S)$

$$M(R \circ S)_{ij} = \begin{cases} 1 \text{ si } \exists k \mid M(R)ik = 1 \land M(S)_{kj} = 1 \\ 0 \text{ caso contrario} \end{cases}$$

$$(M(R)_{ij}.M(S))_{ij} = \begin{cases} 1 \text{ si } \sum_{k=1}^{n} M(R)_{ik} M(S)_{kj} = 1\\ 0 \text{ caso contrario} \end{cases}$$

Luego, $M(R)_{ik} = 1 \wedge M(S)_{kj} = 1 \implies M(R)_{ik}M(S)_{kj} = 1 \implies M(R)ik = 1 \wedge M(S)_{kj} = 1$ Por lo tanto, $M(S \circ R) = M(R)M(S)$. **Ejercicio 5.** Mostrar que hay una correspondencia biyectiva entre las relaciones de A en B y las funciones de A en P(B).

$$C = \mathcal{P}(A \times B), \ D = \{f' : A \to \mathcal{P}(B) : f' \ funcion\}$$

$$G : C \to D, \ R \mapsto G(R) = f_R, \ f_R(a) = \{b \in B : aRb\}$$

$$H : D \to C, \ f \mapsto H(f) = R_f, \ aR_f b \ sii \ b \in f(a)$$

$$qpq \ G \circ H = id_D \wedge H \circ G = id_C. \ \text{Igualdad de funciones, mismo dominio, codominio y ley.}$$

$$(1) \ \text{Sea} \ f : A \to \mathcal{P}(B), \ qvq \ G(H(f)) = f$$

$$G(H(f)) = G(R_f) = f_{R_f} = ? f$$

$$f_{R_f}(a) = \{b \in B : aRf_b\} = \{b \in B : b \in f(a)\} = ? f(a)$$

$$\subseteq b \in \{b \in B : b \in f(a)\} \implies b \in f(a)$$

$$\supseteq b \in \{b \in B : b \in f(a)\} \implies b \in \{b : B : b \in f(a)\}$$

$$\text{Luego, los conjuntos son iguales.}$$

$$(2) \ \text{Sea} \ R \in \mathcal{P}(B)$$

$$H(G(R)) = H(f_R) = R_{f_R} = ? f$$

$$R_{f_R} = aR_{f_R}b \ sii \ b \in f_R(a)$$

$$\supseteq b \in f_R(a) \implies b \in \{b \in B \mid aR_{f_R}b\} \implies b \in f_R(a)$$

$$\supseteq b \in f_R(a) \implies b \in \{b \in B \mid aR_{f_R}b\} \implies aR_{f_R}b$$

$$\text{Luego, los conjuntos son iguales.}$$

Por (1) y (2) QED.

Ejercicio 6. En cada uno de los siguientes casos, determinar si la relación \mathcal{R} en \mathcal{Z} es reflexiva, simétrica, antisimétrica, o transitiva.

- a) $xRy sii x = y^2$
- R no es reflexiva debido que, por ejemplo, dado x=2, tenemos que $2=x\neq x^2=4$, luego el par $(2,2)\notin R$.
- R no es simetrica debido que, dados x = 1 e y = -1, por un lado vale que xRy, pero no vale que yRx, luego, existe un par $(x, y) \in R$ pero no existe su contraparte $(y, x) \in R$.
- R es transitiva si xRy e yRz entonces xRz. Supongamos que R es transitiva, luego, $xRy \implies x = y^2$ y $yRz \implies y = z^2$. Reemplazando tenemos, $x = z^4$, lo cual es valido. Luego, R es transitiva.
- R es antisimétrica si cada vez que $xRy \wedge yRx \implies x=y$. Supongamos R antisimétrica, luego, $xRy \implies x=y^2$ y $yRx \implies y=x^2$. Reemplazando, tenemos $x=x^4$, lo cual es valido solo para 1 y 0, los cuales estan relacionados con si mismos. Luego, R es antisimétrica.
- **b)** xRy sii x > y
- R no es reflexiva debido que, por ejemplo, dado x=2, tenemos que 2=2, no se cumple la relación, luego el par $(2,2) \notin R$.
- R no es simetrica debido que, dados x=1 e y=-1, por un lado vale que x>y, pero no vale que y>x, luego, existe un par $(x,y)\in R$ pero no existe su contraparte $(y,x)\in R$.
- R es transitiva si xRy e yRz entonces xRz. Supongamos que R es transitiva, luego, $xRy \implies x > y$ y $yRz \implies y > z$. Reemplazando tenemos, $x > y > z \implies x > z \implies xRz$. Luego, R es transitiva.
- R es antisimétrica si cada vez que $xRy \wedge yRx \implies x = y$. Supongamos R antisimétrica, luego, $xRy \implies x > y$ y $yRx \implies y > x$. Reemplazando, tenemos x > y > x, lo cual es una contradicción. Luego, R no es antisimétrica.

- c) $xRy sii x \ge y$
- Supongamos R reflexiva, luego $\forall x \in \mathcal{Z}, xRx \implies x \geq x$, lo cual es valido para todo x, ya que x = x siempre vale. Luego R es reflexiva.
- R no es simetrica debido que, dados x=1 e y=-1, por un lado vale que $x \ge y$, pero no vale que $y \ge x$, luego, existe un par $(x,y) \in R$ pero no existe su contraparte $(y,x) \in R$.
- R es transitiva si xRy e yRz entonces xRz. Supongamos que R es transitiva, luego, $xRy \implies x \ge y$ y $yRz \implies y \ge z$. Reemplazando tenemos, $x \ge y \ge z \implies x \ge z \implies xRz$. Luego, R es transitiva.
- R es antisimétrica si cada vez que $xRy \wedge yRx \implies x = y$. Supongamos R antisimétrica, luego, $xRy \implies x \geq y$ y $yRx \implies y \geq x$. Reemplazando, tenemos $x \geq y \geq x \implies x = y$, luego R es antisimétrica.
- d) $xRy \ sii \ x + y \ es \ par$
- Supongamos R reflexiva, luego $\forall x \in \mathcal{Z}, xRx \implies x + x \ es \ par$.
 - 1. Caso x par, x=2k tq $k \in \mathbb{Z}$ $xRx \implies x+x=2k+2k=4k=2(2k)$ par.
 - 2. Caso x impar, x=2k+1 tq $k\in\mathcal{Z}$ $xRx\implies x+x=2k+1+2k+1=4k+2=2(2k+1) \text{ par.}$

Luego, por 1 y 2, vemos que siempre vale que xRx.

- R es simetrica debido a la propiedad de conmutatividad en la suma, i.e, si $xRy \Leftrightarrow x+y$ es $par \Leftrightarrow y+x$ es $par \Leftrightarrow yRx$.
- R es transitiva si xRy e yRz entonces xRz. Supongamos que R es transitiva, luego, $xRy \implies x + y = 2k, k \in \mathbb{Z}$ y $yRz \implies y + z = 2j, j \in \mathbb{Z}$.

Tenemos dos casos

- 1. x, y, z pares: x = 2k, y = 2l, z = 2j tq $k, l, j \in \mathbb{Z}$ x + z = 2k + 2j = 2(k + j) par, luego xRz
- 2. x, y, z impares: x = 2k + 1, y = 2l + 1, z = 2j + ! tq $k, l, j \in \mathbb{Z}$ x + z = 2k + 1 + 2j + 1 = 2k + 2j + 2 = 2(k + j + 1) par, luego xRz

Por 1 y 2, vale que R es transitiva.

- R no es antisimétrica debido a que, dados x=2 e y=4, vale que $xRy \wedge yRx$ pero $x\neq y$.
- e) $xRy \ sii \ x y \ es \ impar$

Luego, R es simétrica.

- Supongamos R reflexiva, luego $\forall x \in \mathcal{Z}, xRx \implies x-x \ es \ impar. R$ no es reflexiva, debido a que $\forall x \in \mathcal{Z}, x-x=0$ par.
- Supongamos R simétrica, luego si xRy entonces yRx.

$$\begin{array}{l} xRy \implies x-y \; es \; impar, \; \text{i.e,} \; x-y=2k+1, k \in \mathcal{Z} \\ yRx \implies y-x \; es \; impar, \; \text{i.e,} \; y-x=2z+1, z \in \mathcal{Z} \\ y-x=2z+1 \Leftrightarrow y-(2k+1+y)=2z+1 \Leftrightarrow y-2k-1-y=2z+1 \Leftrightarrow -2k-1=2z+1 \Leftrightarrow -2k=2z+2 \Leftrightarrow -2k=2.(z+1) \Leftrightarrow -k=z+1 \Leftrightarrow z=-k-1 \end{array}$$

• R es transitiva si xRy e yRz entonces xRz. Supongamos que R es transitiva, luego, $xRy \implies x - y = 2k + 1, k \in \mathbb{Z}$ y $yRz \implies y - z = 2j + 1, j \in \mathbb{Z}$.

$$x - y = 2k + 1 \Leftrightarrow -y = 2k + 1 - x \Leftrightarrow y = -(2k + 1) + x$$

$$y-z=2j+1 \Leftrightarrow -(2k+1)+x-z=2j+1 \Leftrightarrow -2k-1+x-z=2j+1 \Leftrightarrow$$

$$\Leftrightarrow x-z=2j+1+2k+1 \Leftrightarrow x-z=2k+2j+2 \Leftrightarrow 2(k+j+1)$$
 par.

Luego, no vale la transitividad.

• R no es antisimétrica debido a que, dados x=3 e y=2, vale que $xRy \wedge yRx$ pero $x\neq y$.

Ejercicio 7. Sea R y S relaciones en A. Determinar la validez de los siguientes enunciados:

- a) Si R y S son reflexivas, entonces:
- i) $R \cup S$ es reflexiva.
 - Si R es reflexiva, entonces $\forall x \in A, xRx$
 - Si S es reflexiva, entonces $\forall x \in A, xSx$

Luego, $R \cup S = \{(x,y) \mid xRy \lor xSy\}$, como vemos que $\forall x \in A$ vale que $xRx \land xSx$, entonces $(x,x) \in R \cup S \ \forall x \in A$. Luego, $R \cup S$ es reflexiva.

- ii) $R \cap S$ es reflexiva.
 - Si R es reflexiva, entonces $\forall x \in A, xRx$
 - Si S es reflexiva, entonces $\forall x \in A, xSx$

Luego, $R \cap S = \{(x,y) \mid xRy \land xSy\}$, como vemos que $\forall x \in A$ vale que $xRx \land xSx$, entonces $(x,x) \in R \cap S \ \forall x \in A$. Luego, $R \cap S$ es reflexiva.

- iii) $R \circ S$ es reflexiva.
 - Si R es reflexiva, entonces $\forall x \in A, xRx$
 - Si S es reflexiva, entonces $\forall x \in A, xSx$

Luego, $R \circ S = \{(x,y) \mid \exists k \in A : xRk \land kSy\}$, como vemos que $\forall x \in A$ vale que $xRx \land xSx$, tomando k = x vale que $(x,x) \in R \circ S \ \forall x \in A$. Luego, $R \circ S$ es reflexiva.

- b) Repetir pero para las propiedades: simétrica, antisimétrica y transitiva.
- 1. Simétrica
- i) $R \cup S$ es simétrica.
 - Si R es simétrica, entonces si $xRy \implies yRx$
 - Si S es simétrica, entonces $xSy \implies ySx$

Luego, $R \cup S = \{(x,y) \mid xRy \lor xSy\}$, como vemos que $\forall x,y \in A$ vale que $xRy \implies yRx \land xSy \implies ySx$, entonces si $(x,y) \in R \cup S \implies (y,x) \in R \cup S$. Luego, $R \cup S$ es simétrica.

- ii) $R \cap S$ es simétrica.
 - Si R es simétrica, entonces si $xRy \implies yRx$
 - Si S es simétrica, entonces $xSy \implies ySx$

Luego, $R \cap S = \{(x,y) \mid xRy \land xSy\}$, como vemos que $\forall x,y \in A$ vale que $xRy \implies yRx \land xSy \implies ySx$, entonces si $(x,y) \in R \cap S \implies (y,x) \in R \cap S$. Luego, $R \cap S$ es simétrica.

- iii) $R \circ S$ es simétrica.
 - Si R es simétrica, entonces si $xRy \implies yRx$
 - Si S es simétrica, entonces $xSy \implies ySx$

Luego, $R \circ S = \{(x,y) \mid \exists k \in A : xRk \land kSy\}$, como vemos que $\forall x,y \in A$ vale que $xRy \implies yRx \land xSy \implies ySx$, entonces tomando k = x vale que $(x,y) \in R \circ S \implies (y,x) \in R \circ S$. Luego, $R \circ S$ es simétrica.

2. Antisimétrica

- i) $R \cup S$ es antisimétrica.
 - Si R es antisimétrica, entonces si $xRy \wedge yRx \implies x = y$
 - Si S es antisimétrica, entonces $xSy \wedge ySx \implies x = y$

Supongamos $R \cup S$ antisimétrica, luego, $\forall x, y \in R \cup S : x(R \cup S)y \land y(R \cup S)x \implies x = y$

Si $x(R \cup S)y \wedge y(R \cup S)x$ entonces $(xRy \wedge yRx) \vee (xSy \wedge ySx) \implies x = y$, por hipotesis. Luego, $R \cup S$ es antisimétrica.

- ii) $R \cap S$ es antisimétrica.
 - Si R es antisimétrica, entonces si $xRy \wedge yRx \implies x = y$
 - Si S es antisimétrica, entonces $xSy \wedge ySx \implies x = y$

Supongamos $R \cap S$ antisimétrica, luego, $\forall x, y \in R \cap S : x(R \cap S)y \land y(R \cap S)x \implies x = y$

Si $x(R \cap S)y \wedge y(R \cap S)x$ entonces $(xRy \wedge yRx) \wedge (xSy \wedge ySx) \implies x = y$, por hipotesis. Luego, $R \cap S$ es antisimétrica.

- iii) $R \circ S$ es antisimétrica.
 - Si R es antisimétrica, entonces si $xRy \wedge yRx \implies x = y$
 - Si S es antisimétrica, entonces $xSy \wedge ySx \implies x = y$

Supongamos $R \circ S$ antisimétrica, luego, $\forall x, y \in R \circ S : x(R \circ S)y \land y(R \circ S)x \implies x = y$

Si
$$x(R \circ S)y \implies \exists k \in A : xRk \wedge kSy$$

Si
$$y(R \circ S)x \implies \exists k \in A : yRk \wedge kSx$$

3. Transitiva

- i) $R \cup S$ es transitiva. (COMPLETAR)
- ii) $R \cap S$ es transitiva. (COMPLETAR)
- iii) $R \circ S$ es transitiva. (COMPLETAR)
- c) Si R es reflexiva (resp. simétrica, antisimétrica, transitiva), entonces R^{-1} también.
- Si R reflexiva, entonces $\forall x \in A, xRx$.

Por definición de R^{-1} vale que si $xRx \Leftrightarrow xR^{-1}x$, luego R^{-1} es reflexiva.

• Si R es simétrica entonces, si $xRy \implies yRx$.

Por definición de R^{-1} vale que, si $xRy \Leftrightarrow yR^{-1}x$. Luego, vemos que como R es simétrica, entonces $yRx \Leftrightarrow xR^{-1}y$. Luego, vemos que $yR^{-1}x \implies xR^{-1}y$. Por lo que R^{-1} es simétrica.

• Si R es antisimétrica entonces, si $xRy \wedge yRx \implies x = y$.

Por definición de R^{-1} vale que, $xRy \wedge yRx \implies yR^{-1}x \wedge xR^{-1}y$. Luego, por hipotesis, x=y. Por lo que R^{-1} es antisimétrica.

• Si R es transitiva entonces, si $xRy \wedge yRz \implies xRz$.

Por definición de R^{-1} , $xRy \wedge yRz \implies xRz \Leftrightarrow yR^{-1}x \wedge zR^{-1}y \implies zR^{-1}x$. Vemos que se cumple que R^{-1} es transitiva.

Ejercicio 8. Sean R y S relaciones en A tal que $R \subseteq S$, y sea $A' \subseteq A$. Determinar si las siguientes afirmaciones son verdaderas o falsas:

- a) Si R es reflexiva (resp. simétrica, antisimétrica, transitiva), entonces S también lo es.
- Sea $A = \{1, 2, 3\}.$

Sea R la relación dada por:

$$M(R) =$$

(COMPLETAR)

- b) Si S es reflexiva (resp. simétrica, antisimétrica, transitiva), entonces R también lo es. (COMPLETAR)
- c) Si R es reflexiva (resp. simétrica, antisimétrica, transitiva), entonces $R_{|A'\times A'|}$ también lo es. (COMPLETAR)

Ejercicio 9. Sea A un conjunto finito de cardinal n y sea I_n la matriz identidad $n \times n$. Si $M = (M_{ij})$ y $N = N_{ij}$ son matrices $n \times n$, escribimos $M \leq N$ sii $M_{ij} \leq N_{ij} \ \forall i, j \in [1, n]$. Sea R una relación en A. Probar que:

```
a) R es reflexiva sii I_n \leq M(R)
\Longrightarrow )
Hip: R reflexiva
qvq \ I_n \leq M(R) \Leftrightarrow (I_n)_{ij} \leq (M(R))_{ij} \ \forall i,j
Sean i, j:
Caso 1: i = j
Por Hip: a_iRa_i \implies M(R)_{ij} = 1 \ge 1 = (I_n)_{ij}
Caso 2: i \neq j
(I_n)ij = 0 \implies 0 \le (M(R))_{ij}
Por lo tanto, (I_n)_{ij} \leq (M(R))_{ij}, \forall i, j
Hip: I_n \leq M(R) \Leftrightarrow (I_n)_{ij} \leq (M(R))_{ij}, \forall i, j
qvq R reflexiva
Sea i \in \{1, ..., n\}
Por Hip sabemos que I_{ii} = 1 \le (M(R))_{ii} \implies (M(R))_{ii} = 1 \ \forall i \implies a_i Ra_i
Por lo tanto, R es reflexiva.
b) R es reflexiva sii M(R) = M(R)^t
\Longrightarrow )
Hip: R reflexiva
qvq\ M(R) = M(R)^t \Leftrightarrow M(R)_{ij} = M(R)_{ji}\ \forall i,j
Sean i, j:
Caso 1: i = j
```

Por $Hip: a_iRa_i \implies M(R)_{ii} = 1 = (M(R))_{ii}^t$

Caso 2: $i \neq j$

- c) R es reflexiva sii $M(R).M(R) \leq M(R)$ (COMPLETAR)
- d) R es reflexiva sii $M(R) * M(R)^t \le I_n$ (COMPLETAR)

Ejercicio 10. Analizar en cada caso si la relación dada en el conjunto A es de equivalencia. En caso de serlo, describir su conjunto cociente:

- a) $A = \mathcal{Z}, x \sim y \ sii \ x y \ es \ par \ (COMPLETAR)$
- **b)** $A = \mathcal{R}, x \sim y \ sii \ xy > 0$

No es de equivalencia debido a que no es reflexiva:

 $0 \in \mathcal{R}, 0^2 = 0$. Luego, no se cumple que $\forall x \in \mathcal{R}, x \sim x$

c) $A = \mathcal{R}, x \sim y \ sii \ xy \geq 0$

No es de equivalencia debido a que no es transitiva:

Veamos lo siguiente:

- 1) $1 \sim 0 \implies 1.0 > 0$ lo cual vale.
- 2) $0 \sim (-1) \implies 0 \cdot (-1) \geq 0$ lo cual vale.

Tomando, x=1,y=0 y z=-1, vemos que $x\sim y\wedge y\sim z$, pero no vale que $x\sim z$ debido a que 1.(-1)=1<0.

d)
$$A = \mathcal{R} \times \mathcal{R}, (a, b) \sim (c, d) \ sii \ a + d = c + b$$

Queremos ver que \sim es reflexiva, simetrica y transitiva:

• Sea
$$x \in \mathbb{R}^2$$
 $t.q.$ $x = (a, b)$
 $a + b = a + b \Longrightarrow (a, b) \sim (a, b) \Longrightarrow x \sim x$

- Sean $x, y \in \mathbb{R}^2$ t.q. x = (a, b) e y = (c, d) $x \sim y \implies (a, b) \sim (c, d) \implies a + d = b + c \implies b + c = a + d \implies (c, d) \sim (a, b) \implies y \sim x$
- Sean $x, y, z \in \mathbb{R}^2$ t.q. x = (a, b), y = (c, d) y z = (e, f)

1)
$$x \sim y \implies (a, b) \sim (c, d) \implies a + d = b + c$$

2)
$$y \sim z \implies (c,d) \sim (e,f) \implies c+f=d+e$$

De 2) vemos que c = d + e - f, reemplazando en 1) tenemos:

$$a+d=b+c \implies a+d=b+(d+e-f) \implies a=b+e-f \implies a+f=b+e \implies (a,b) \sim (e,f) \implies x \sim z$$

Caracterizacion de \mathcal{R}^2/\sim :

$$\frac{\overline{(a,b)} = \overline{(a,b)}}{= \overline{(a,b)}} = \{(c,d) \in \mathcal{R}^2 \mid (a,b) \sim (c,d)\} = \\
= \{(c,d) \in \mathcal{R}^2 \mid a+d=c+b\} = \\
= \{(c,d) \in \mathcal{R}^2 \mid d=c+(b-a)\}$$

Luego,
$$\mathbb{R}^2 / \sim = \{ \overline{(a,b)} \mid a,b \in \mathbb{R} \} = \{ \{ (c,d) \in \mathbb{R}^2 \mid d = c + (b-a) \} \mid (a,b) \in \mathbb{R}^2 \}$$

Ejercicio 11. Dada una función $f: A \to B$, se define una relación K_f en A como:

$$K_f = \{(a, a') \in A \times A : f(a) = f(a')\}\$$

a) Probar que K_f es de equivalencia.

 K_f es de equivalencia si es reflexiva, simetrica y transitiva.

- Sea $x \in A$, luego, f(x) = f(x) (trivial) $\implies (x, x) \in K_f$
- Sean $x, y \in A$.

Si
$$(x,y) \in K_f \implies f(x) = f(y) \implies f(y) = f(x) \implies (y,x) \in K_f$$

• $x, y, z \in A$.

Si
$$(x,y) \in K_f \land (y,z) \in K_f \implies f(x) = f(y) \land f(y) = f(z) \implies f(x) = f(z) \implies (x,z) \in K_f$$

b) Dar una definición alternativa para K_f en términos de f, la composición y la inversa de relaciones. (COMPLETAR)

Ejercicio 12. Sea $espar: \mathcal{N} \to Boolean$ la función que retorna true en los pares y false en los impares. Calcular $\mathcal{N}/\mathcal{K}_{espar}$.

Caracterizacion de $\mathcal{N}/\mathcal{K}_{espar}$:

$$[x] = \overline{x} = \{ y \in \mathcal{N} \mid x \sim y \} =$$

$$= \{ y \in \mathcal{N} \mid espar(x) = espar(y) \}$$

Luego,
$$\mathcal{N}/\mathcal{K}_{espar} = \{\overline{x} \mid x \in \mathcal{N}\} = \{\{y \in \mathcal{N} \mid espar(x) = espar(y)\} \mid x \in \mathcal{N}\}$$

Ejercicio 13. Mostrar que toda relación de equivalencia en un conjunto A cualquiera es \mathcal{K}_f para alguna función $f:A\to B$, para algún conjunto B adecuado.

(COMPLETAR)

Ejercicio 14. Teorema de factorización. Dada una función $f:A\to A$ y una relación de equivalencia $\sim\subseteq\mathcal{K}_f$, probar que existe una única función $f^\sim:A/\sim\to B$ tal que $f=f^\sim\circ\pi$, donde $\pi:A\to A/\sim$ se define como $\pi(a)=\overline{a}$ para todo $a\in A$. Además, probar que f^\sim es inyectiva si $\sim=\mathcal{K}_f$.

(COMPLETAR)

2 Práctica 2

Ejercicio 1 Considerar las relaciones R_1 y R_2 en $A = \{1, 2, 3, 4, 5\}$ cuyas matrices asociadas son:

$$M(R_1) = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix} \quad M(R_2) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Determinar los grafos dirigidos asociados a R1, R2 y a las relaciones $R3 = R1 \cup R2$, $R4 = R1 \cap R2$ y $R5 = R2 \circ R1$.

$$M(R_3) = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix} \quad M(R_4) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M(R_5) = M(R_1).M(R_2) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

• G_1 :

- \bullet G_2 :
- \bullet G_3 :
- \bullet G_4 :
- G_5 :

Ejercicio 2 Considerar las relaciones R_1 y R_2 cuyos grafos dirigidos asociados son los grafos G_1 y G_2 de la siguiente figura:

Determinar los grafos dirigidos asociados a las relaciones $R_3 = R_1 \circ R_2 \ y \ R_4 = R_2 \circ R_1$.

$$M(R_1) = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{pmatrix} \quad M(R_2) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M(R_3) = M(R_2).M(R_1) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$M(R_4) = M(R_1).M(R_2) = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Ejercicio 3. Sea R la relación sobre $A = \{1, 2, 3, 4, 5, 6, 7\}$ cuyo grafo dirigido asociado es:

- a) Si $R^1=R,\,R^2=R\circ R$ y $R^n=R^{n-1}\circ R$ para cada $n\in\mathcal{N},n\geq 3$, encontrar el $n\geq 2$ más pequeño tal que $R^n=R$.
 - n = 13: (Hacer demostracion)
- b) ¿Cuál es el $n \in \mathcal{N}$ más pequeño para el cual el grafo de \mathbb{R}^n contiene al menos un lazo? n=3: (Hacer demostracion)

$$M(R^3) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Vemos que los nodos 5, 6 y 7 tienen un lazo.

c) ¿Existe $n \in \mathcal{N}$ tal que el grafo de \mathbb{R}^n consta sólo de lazos? n=12: (Hacer demostracion)

Ejercicio 4. Lema de Yoneda. Sea (P,R) un conjunto preordenado. Probar que

$$xRy \Leftrightarrow (\forall z \in P, zRx \implies zRy)$$

R relación preorden en P. R es reflexiva y transitiva.

 \Rightarrow) Hip: xRy. Sea $z \in P/zRx$

Luego, $xRy \wedge zRx \implies zRy$ por transitividad.

 \Leftarrow) $Hip: \forall z \in P, zRx \implies zRy$

Como R es reflexiva, vale que dado $x \in P, xRx \implies xRy$ por Hip.

Ejercicio 5. Sea (A, R) un conjunto preordenado. Probar:

- a) Si existe un elemento máximo, entonces todos los maximales son máximos.
 - I) Si existe un elemento máximo en el conjunto, sea M dicho elemento, entonces $\forall x \in A, xRM$.
 - II) Un elemento b es maximal si para cada $x \in A$ tal que bRx, entonces xRb.

Sea m maximal, en particular, por \mathbf{I} , mRM, luego por \mathbf{II} , como m es maximal, MRm, luego por transitividad y por \mathbf{I} vale que $\forall x \in A, xRm$, luego m es maximo.

b) Sea $B \subseteq A$. Si $a \in B$ es cota superior de B, entonces a es un elemento maximal de B. ¿Vale la recíproca?

qvq si a es un elemento maximal de B entonces a es cota superior de B.

Tenemos a elemento maximal de B, luego para cada $x \in B$ tal que aRx entonces xRa.

Contraejemplo

Ejercicio 6. Decimos que un conjunto preordenado (A, R) satisface el **axioma del supremo** si todo subconjunto no vacio de A acotado superiormente tiene un supremo.

a) Mostrar que $(P(X), \subseteq)$ satisface el axioma del supremo.

Sea $S \subseteq P(X)$ no vacio, acotado superiormente.

Sea $sup(S) = \bigcup_{S_i \in S} S_i$

- **O.** Probar que $sup(S) \in P(X)$
- **I.** Probar que sup(S) es cota superior de S.
- II. Probar que sup(s) es la minima cota superior de S.
- **0.** Queremos ver que $sup(S) \subseteq X$

$$sup(S) = \bigcup_{S_i \in S} S_i$$

Sabemos que $\forall S_i, S_i \in S \implies S_i \subseteq X \implies sup(S) \subseteq X$

I. Sea $s \in S$, queremos ver que $s \subseteq sup(S)$

Sea $s \in S$, luego por definicion de sup(S) vale que $s \subseteq sup(S)$

II. Supongamos que existe B cota superior de S, queremos ver que $sup(S) \subseteq B$.

Si B es cota superior de S, luego $\forall S_i \in S \implies S_i \subseteq B$.

Tomemos un elemento $s_i \in sup(S)$, luego dicho elemento pertence a algun $S_i \in S$, por hip. sabemos que $\forall S_i \in S, s \subseteq B$, luego, $s_i \in B$, por lo que $sup(S) \subseteq B$.

Luego, se verifica que sup(S) es supremo.

b) ¿El axioma del supremo es una propiedad hereditaria? Es decir, si (A, R) es un conjunto preordenado que satisface el axioma del supremo y $B \subseteq A$, ¿ $(B, R_{|B \times B})$ tambien lo satisface?

NO, encontrar contraejemplo.

- c) Sea (A, R) un conjunto preordenado. Decimos que (A, R) satisface el axioma del infimo si todo subconjunto no vacio de A acotado inferiormente tiene infimo. Probar que (A, R) satisface el axioma del supremo si y solo si (A, R) satisface el axioma del infimo.
 - \Rightarrow) Hip:(A,R) satisface el axioma del supremo.

Queremos ver que (A, R) satisface el axioma del infimo.

Sea $B \subseteq A$ t.q $B \neq \emptyset$ y B acotado inferiormente. Queremos ver que B tiene infimo.

Sea $C = \{c \in A : c \text{ cota inferior } de B\}$

Queremos ver que C tiene maximo.

Notar que:

- i. $C \neq \emptyset$ por Hip
- ii. Cualquier elemento de B es una cota superior de C

Sea $c \in C$, cRb dado que c es cota inferior de B

iii. C esta acotado superiormente.

Por $Hip\ B \neq \emptyset$, i.e, existe $b \in B$ y por ii $c \leq b, \forall c \in C$, por lo tanto, b es cota superior de C.

Por Hip, **i** y **iii** existe $s \in A$ t.q. s supremo de C.

Es decir, s es una cota superior de C, y es la minima.

Queremos ver que s es infimo de B.

iv. Tenemos que ver que s es cota inferior de B.

Sea $b \in B$, queremos ver que sRb.

Por **ii** b es cota superior de $C \implies sRb$ (s supremo)

v. Tenemos que ver que s es un maximo en C (cotas inferiores de B).

Sea $c \in C$, es decir, c es cota inferior de B.

Queremos ver que cRs

Como $c \in C \implies cRs$ (s supremo de C)

 \Leftarrow) Hip: (A, R) satisface el axioma del infimo. (Analogo)

Ejericio 7. Trivial

Ejercicio 8. ¿Cuantas relaciones posibles hay en $A = \{a, b, c\}$? Responder la misma pregunta para: preordenes, ordenes parciales, ordenes totales, y relaciones de equivalencia. ¿Y para un conjunto finito de n elementos?

Ejercicio 9 Sea (A, \preceq) un poset. Un subconjunto $B \subset A$ se denomina una anticadena si para cada $x, y \in B$ se verifica que:

$$x \preceq y \implies x = y$$

Probar que el conjunto de todos los elementos maximales(resp. minimales) de un conjunto ordenado, es una anticadena.

Supongamos que (A, \leq) es un conjunto ordenado, es decir, es reflexivo, transitivo y antisimetrico. Ademas, para cada $x, y \in A$ vale que $x \leq y \vee y \leq x$ (Si se cumplen las dos vale que x = y por antisimetria).

Tomemos el conjunto de los elementos maximales de (A, \preceq) , estos son:

$$M = \{a \in A : \forall y \in A \text{ si } a \leq y \implies y \leq a\}$$

Sea $x \in M$, luego, $\forall y \in A \text{ si } x \leq y \implies y \leq x$, pero esto implica que x = y por la antisimetria, luego $M \subset A$ es una anticadena.

Minimales analogo.

Ejercicio 10. Sean (A, \leq_1) y (A, \leq_2) posets. Determinar si las siguientes relaciones determinan un orden parcial en A:

a)
$$\leq_1 \cup \leq_2$$
 b) $\leq_1 \cap \leq_2$ c) $\leq_1 \circ \leq_2$

Ejercicio 11. Sean (A, \leq_A) y (B, \leq_B) posets. Probar que los siguientes conjuntos son posets:

- a) $(A \times B, \preceq_{prod})$ Trivial
- **b)** $(A \times B, \preceq_{lex})$

Es un poset si es reflexivo, transitivo y antisimetrico.

$$(A \times B, \preceq_{lex}) = (a, b) \preceq_{lex} (c, d) \text{ si } a \prec_A c \lor (a = c \land b \preceq_B d)$$

1. Reflexividad: Sea x = (a, b). Vale que $x \leq_{lex} x$?

$$(a,b) \preceq_{lex} (a,b) \implies a \prec_A a \lor (a = a \land b \preceq_B b) \implies$$

$$\implies a = a \land b \leq_B b$$

(Trivial que a = a, y la segunda condicion vale porque \leq_B es reflexiva)

2. Transitividad: Sean x = (a, b), y = (c, d) y z = (e, f).

Supongamos $x \leq_{lex} y \land y \leq_{lex} z$

- **i.** $x \leq_{lex} y \implies a \prec_A c \lor (a = c \land b \leq_B d)$
- ii. $y \leq_{lex} z \implies c \prec_A e \lor (c = e \land e \leq_B f)$
 - Si en **i** y **ii** vale la primer condicion, entonces $a \prec_A c \land c \prec_A e \implies a \prec_A e \implies x \preceq_{lex} z$ (Por transitividad de \prec_A)
 - Si en **i** vale la primer condicion y en **ii** vale la segunda, entonces $a \prec_A c \land c = e \implies a \prec_A e \implies x \preceq_{lex} z$
 - Si en **i** vale la segunda condicion y en **ii** vale la primera, entonces $a = c \land c \prec_A e \implies a \prec_A e \implies x \preceq_{lex} z$
 - Si en **i** y **ii** vale la segunda condicion, entonces $a = c \land c = e \implies a = e \implies x \preceq_{lex} z$ (Por transitividad de =)

Luego, vemos que en todos los casos posibles vale que $x \leq_{lex} z$.

3. Antisimetria: Sean x = (a, b) e y = (c, d), luego si $x \leq_{lex} y \land y \leq_{lex} x \implies x = y$

$$x \leq_{lex} y \wedge y \leq_{lex} x \implies ((a \prec_A c \lor (a = c \land b \leq_B d) \land (c \prec_A a \lor (c = a \land d \leq_B b)))$$

Para que esto tenga sentido, solo pueden valer las condiciones:

$$(a = c \land b \preceq_B d) \land (c = a \land d \preceq_B b) \implies a = c \land b \preceq_B d \land d \preceq_B b \implies a = c \land b = d \implies x = y$$
 (Por antisimetria de \preceq_B)

Vimos que la relacion es reflexiva, transitiva y antisimetrica, por lo que es un poset.

- c) Si (A, \leq_1) y (A, \leq_2) son totalmente ordenados, lo son tambien los conjuntos de a) y b)?
- d) Para cada uno de los siguientes posets (A, \leq_1) y (A, \leq_2) , construir los diagramas de Hasse de (A, \leq_1) , (A, \leq_2) , $(A \times B, \leq_{prod})$ y $(A \times B, \leq_{lex})$. Encontrar en cada caso los elementos maximales, minimales, maximos y minimos si los hubiera.
 - i. $A = P(\{0\}), \leq_A = \subseteq y \ B = P(\{1,2\}), \leq_B = \subseteq$
 - ii. $A = B = \{1, 2, 4, 6\}, \preceq_A = \preceq_B = |_{A \times A}$
 - e) Mostrar que $(P(\{0\}) \times P(\{1,...,n\}), \leq_{prod}) \simeq (P(\{0,...,n\}), \subseteq)$

$$f: P(\{0\}) \times P(\{1,...,n\}) \to P(\{0,...,n\})$$

$$f((A,B)) = A \cup B$$

Ver que f es biyectiva y que vale que dados (A, B), (C, D) t.q $(A, B) \preceq_{prod} (C, D) \Leftrightarrow f((A, B)) \subseteq f((C, D))$

1.

2.

3. $(A,B) \leq_{prod} (C,D) \Rightarrow f((A,B)) \subseteq f((C,D))$

$$(A,B) \preceq_{prod} (C,D) \implies A \subseteq C \land B \subseteq D \implies A \cup B \subseteq C \cup D \implies f((A,B)) \subseteq f((C,D))$$

4. $(A,B) \leq_{prod} (C,D) \Leftarrow f((A,B)) \subseteq f((C,D))$

$$f((A,B)) \subseteq f((C,D)) \implies A \cup B \subseteq C \cup D \implies$$

Ejercicio 12. (P,R) conjunto preordenado.

a) $a \sim b \sin aRb \wedge bRa$. Probar que \sim es de equivalencia.

Ver que \sim es reflexiva, simetrica y transitiva.

b) Construir un poset $(P|_{\sim}, \preceq)$ tal que la proyeccion al cociente $x: P \to P|_{\sim}$ (dada por x(p) = [p]) sea un morfismo de orden.

c)

Ejercicio 14.

Sea (A, \preceq) poset. $\forall a \in A, A_a = \{x \in A : x \preceq a\}.$

Sea $A' = \{A_a : a \in A\}$ quiero ver que $(A', \subseteq) \simeq (A, \subseteq)$, i.e, que son isomorfos.

$$f: (A', \subseteq) \to (A, \preceq)$$
 donde $f(A_a) = a \ \forall a \in A$

Debemos ver que f es biyectiva y que es un morfismo de orden, i.e, dados $A_a, A_b \in A', A_a \subseteq A_b \Leftrightarrow f(A_a) \leq f(A_b)$

1. f inyectiva. Sean $A_a, A_b \in A'$

$$f(A_a) = f(A_b) \implies a = b \implies \{x \in A : x \le a\} = \{x \in A : x \le b = a\} \implies A_a = A_b$$

2. f sobreyectiva. $\forall a \in A, \exists A_x \in A' \ t.q \ f(A_x) = a$

Basta con considerar $A_a \ \forall a \in A$.

3. $A_a \subseteq A_b \Rightarrow f(A_a) \preceq f(A_b)$

$$A_a \subseteq A_b \implies \{x \in A : x \leq a\} \subseteq \{x \in A : x \leq b\} \implies x \leq a \rightarrow x \leq b$$

En el caso particular de x=a entonces $a \leq a \rightarrow a \leq b$ y por reflexiva $a \leq b$

4. $A_a \subseteq A_b \Leftarrow f(A_a) \preceq f(A_b)$

$$f(A_a) \preceq f(A_b) \Longrightarrow a \preceq b \Longrightarrow (Yoneda) \forall x \in A, x \preceq a \to x \preceq b \Longrightarrow \{x \in A : x \preceq a\} \subseteq \{x \in A : x \preceq b\} \iff x \preceq b \iff x \preceq b \iff x \preceq a\} \subseteq \{x \in A : x \preceq a\} \subseteq \{x \in A : x \preceq b\} \iff x \preceq b \implies x \preceq b \iff x \preceq b \implies x \preceq b \implies$$

Ejercicio 15. Definir un morfismo de orden biyectivo entre $(\mathcal{N}, |)$ y (\mathcal{N}, \leq) . Son posets isomorfos? Para ver lo primero necesitamos una funcion $f: (\mathcal{N}, |) \to (\mathcal{N}, \leq)$ biyectiva y morfismo de orden.

Sea
$$f: (\mathcal{N}, \mid) \to (\mathcal{N}, \leq) \ t.q \ f(x) = x$$

Trivial que es biyectiva.

Veamos si vale que dados $x, y \in \mathcal{N}, x \mid y \Rightarrow f(x) \leq f(y)$

$$x \mid y \implies \exists k \in \mathcal{N} \ t.q \ y = kx \implies x \leq y \implies f(x) \leq f(y)$$

NO son posets isomorfos, debido a que por ejemplo, dados x=2,y=3, vale que $x\leq y$ pero no vale que $x\mid y$

3 Práctica 3