

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1

2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 19 pages. *Hierdie nasienriglyne bestaan uit* 19 *bladsye*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in ALL aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

1.1.1	(3x-1)(x+4)=0	
	$x = \frac{1}{3} \text{ or } x = -4$	$\checkmark x = \frac{1}{3}$ $\checkmark x = -4$ (2)
1.1.2	$2x^{2} + 9x - 14 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $9 + \sqrt{9^{2} - 4(2)(-14)}$	✓ substitution into correct
	$= \frac{-9 \pm \sqrt{9^2 - 4(2)(-14)}}{2(2)}$ $= \frac{-9 \pm \sqrt{193}}{4}$	formula ✓ simplification
	x = 1,22 or x = -5,72 OR / <i>OF</i>	$\checkmark x = 1,22$ $\checkmark x = -5,72$ OR/OF (4)
	$x^{2} + \frac{9}{2}x + \frac{81}{16} = 7 + \frac{81}{16}$ $\left(x + \frac{9}{4}\right)^{2} = \frac{193}{16}$	✓ for adding $\frac{81}{16}$ on both sides
	$x + \frac{9}{4} = \pm \frac{\sqrt{193}}{4}$ $x = \frac{-9 \pm \sqrt{193}}{4}$	✓ simplification
	x = 1,22 or $x = -5,72$	$\checkmark x = 1,22$ $\checkmark x = -5,72$ (4)
1.1.3	$\sqrt{3-26x} = 3x$ $3-26x = 9x^2$	$\checkmark 3 - 26x = 9x^2$
	$9x^{2} + 26x - 3 = 0$ $(9x - 1)(x + 3) = 0$	✓ standard form ✓ factors
	$x = \frac{1}{9} \text{ or } x = -3$ N/A	✓ answer with selection (4)

SCE/SSE – Marking Guidelines/Nasienriglyne			
1.3	x - 2y - 3 = 0		
	x = 2y + 3(1)	$\checkmark x = 2y + 3$	
	xy = 9(2)		
	Substitute (1) into (2) $(2y+3)y = 9$	✓ substitution	
	$2y^2 + 3y = 9$	Substitution	
	$2y^2 + 3y - 9 = 0$	✓ standard form	
	(2y-3)(y+3)=0		
	$y = \frac{3}{2}$ or $y = -3$	✓ y-values	
	x = 6 or x = -3	✓ x-values	(5)
	OR/OF	OR/OF	
	$y = \frac{x-3}{2}$ (1)	$\checkmark y = \frac{x-3}{2}$	
	xy = 9(2) Substitute (1) into (2)		
	$x\left(\frac{x-3}{2}\right) = 9$	✓ substitution	
	$\begin{pmatrix} x \\ 2 \end{pmatrix} = 3$ $x^2 - 3x = 18$	Substitution	
	$x^2 - 3x = 18$ $x^2 - 3x - 18 = 0$	✓ standard form	
	(x-6)(x+3)=0		
	x = 6 or x = -3	✓ <i>x</i> -values	
	$y = \frac{3}{2}$ or $y = -3$		(5)
	$ \mathbf{OR/OF} \\ x - 2y - 3 = 0 $	✓ y-values OR/OF	(5)
	x = 2y + 3 (1)		
	$y = \frac{9}{x}$ (2)	$\checkmark y = \frac{9}{}$	
	λ	$\int \int \int \frac{y}{x}$	
	Substitute (2) into (1)		
	$x = 2\left(\frac{9}{x}\right) + 3$	✓ substitution	
	$x^2 - 2(9) - 3x = 0$		
	$x^2 - 3x - 18 = 0$	✓ standard form	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$= \frac{-3 \pm \sqrt{(-3)^2 - 4(1)(-18)}}{2(1)}$		
	$=\frac{-3\pm\sqrt{81}}{2}$		
	x = 6 or x = -3	✓ x-values	
	$y = \frac{9}{6} = 1,5$ or $y = \frac{9}{-3} = -3$	✓ y-values	(5)
1		l	

$SCE/\textit{SSE}-Marking \ Guidelines/Nasienriglyne$

1.4	$x^2 + 2xy + 2y^2$	
	$= x^2 + 2xy + y^2 + y^2$	$\checkmark x^2 + 2xy + y^2 + y^2$
	$=(x+y)^2+y^2$	$\checkmark (x+y)^2$
	$(x+y)^2 \ge 0$ and $y^2 \ge 0$	$\checkmark (x+y)^2 \ge 0 \text{ and } y^2 \ge 0$
	Therefore $(x+y)^2 + y^2 \ge 0$	$\checkmark (x+y)^2 + y^2 \ge 0$
	Therefore $(x + y) + y \ge 0$	(4)
		[27]

QUEL	STIUN/VKAAG 2	1
2.1.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	37; 50	✓ 37 ✓ 50 (2)
2.1.2	$a = \frac{\text{second difference}}{2} = \frac{2}{2} = 1$ $3a + b = 5$	✓ second difference of 2 ✓ $a = 1$
	3+b=5 $b=2$	
	a+b+c=5	✓ b = 2
	$1+2+c=5$ $c=2$ $T_n = an^2 + bn + c$	✓ c = 2
	$= n^2 + 2n + 2$	(4)
2.1.3	$n^{2} + 2n + 2 = 1765$ $n^{2} + 2n - 1763 = 0$ $(n+43)(n-41) = 0$	✓ equating T_n to 1765 ✓ standard form ✓ factors
	n = -43 or $n = 41N/A OR/OF$	✓ answer with rejection (4) OR/OF
	$n^{2} + 2n + 2 = 1765$ $n^{2} + 2n - 1763 = 0$ $n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$	✓ equating T_n to 1765 ✓ standard form
	$= \frac{-2 \pm \sqrt{2^2 - 4(1)(-1763)}}{2(1)}$ $= \frac{-2 \pm \sqrt{7056}}{2}$	✓ subt in correct formula
	$= {2}$ $n = -43 \text{ or } n = 4$ N/A	✓ answer with rejection (4)

2.2	Sum of multiples of 7 from 35 to 196:	
	Som van meervoude van 7 vanaf 35 tot by 196:	
	a = 35; d = 7	
	$S_n = \frac{n}{2}[a+\ell]$ $= \frac{24}{2}[35+196]$ $= 12[231]$ $= 2772$ Sum of all natural numbers from 35 to 196: Som van alle natuurlike getalle vanaf 35 tot by 196: $a = 35$; $d = 1$; $n = 162$	✓ correct a, d and n substitution into correct formula✓ answer
	$S_n = \frac{n}{2} [a + \ell]$	
	$= \frac{162}{2} [35 + 196]$ $= 81[231]$	✓ 162
	= 18 711	✓ answer
	Sum of numbers not divisible by 7/	
	Som van getalle nie deelbaar deur 7	
	= 18711 - 2772	
	= 15 939	✓ answer (5)

3.1	r = 0.94; a = 100	$\checkmark r = 0.94$
	$T_3 = ar^2$	
	$=100(0,94)^2$	
	= 88,36 km	✓ answer (2)
3.2	$S_n = \frac{a(r^n - 1)}{r - 1}$ $750 = \frac{100(0,94^n - 1)}{0,94 - 1}$ $\frac{750(-0,06)}{100} = 0,94^n - 1$	✓ substitution into correct formula
	$0.94^{n} = 1 - \frac{9}{20} \text{or} \left(\frac{47}{50}\right)^{n} = \frac{11}{20}$ $0.94^{n} = 0.55$ $n = \frac{\log 0.55}{\log 0.94}$	✓ $0.94^n = 0.55$ ✓ use of logarithms
	= 9,66 He will pass the halfway point on the 10 th day Hy sal die halfpadmerk verbysteek op die 10 ^{de} dag	✓ answer (4)
3.3	$S_{\infty} = \frac{a}{1 - r}$ $1500 < \frac{100}{1 - r}$	✓ use of S_{∞} formula ✓ substitution
	$1 - r < \frac{100}{1500}$ $r > \frac{14}{15} \text{ or } 93,33\%$	✓ answer (3) [9]

$0 < r \le 1$ or $(0.1]$	✓✓ answer
$0 < \lambda \le 1$ Of $(0,1]$	(2)
17	(2)
$p = \log_A \frac{16}{1}$	/14:44: - ··
$\frac{1}{3}$ 9	✓ substitution
$\left(\frac{4}{3}\right) = \frac{10}{3}$	
	2
$(4)^{p} (4)^{2}$	$\left(4\right)^{2}$
$\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)$	$\checkmark \left(\frac{4}{3}\right)^2$
	✓ answer
p-2	(3)
$f \cdot v = \log x$	
$\frac{1}{3}$	
$f^{-1}: y = \log y$	$\checkmark r = \log v$
$\int \frac{1}{3} x - \log_{\frac{4}{3}} y$	$\checkmark x = \log_{\frac{4}{3}} y$ $\checkmark y = \left(\frac{4}{3}\right)^{x}$
(4)*	$(A)^x$
$v = \begin{pmatrix} 4 \\ - \end{pmatrix}$	$\bigvee y = \left(\frac{4}{3}\right)$
(3)	` ′
	(2)
$y > 0$ or $y \in (0, \infty)$	✓✓ answer
	(2)
(2.16)	$\checkmark -2$ $\checkmark \frac{16}{9}$
$\left(-2, {9}\right)$	16
	\ \frac{1}{9}
	(2)
	[11]
	$0 < x \le 1 \text{ or } (0;1]$ $p = \log_{\frac{4}{3}} \frac{16}{9}$ $\left(\frac{4}{3}\right)^p = \frac{16}{9}$ $\left(\frac{4}{3}\right)^p = \left(\frac{4}{3}\right)^2$ $p = 2$ $f: y = \log_{\frac{4}{3}} x$ $f^{-1}: x = \log_{\frac{4}{3}} y$ $y = \left(\frac{4}{3}\right)^x$ $y > 0 \text{ or } y \in (0; \infty)$ $\left(-2; \frac{16}{9}\right)$

5.1	$x \in R$; $x \neq -1$	$\checkmark x \in R$	
		$\checkmark x \neq -1$	
			(2)
5.2	<i>x</i> -intercept of <i>f</i> :		
		✓ equating to 0	
	$0 = \frac{2}{x+1} + 4$		
	$\frac{2}{x+1} = -4$		
	2 = -4x - 4		
	4x = -6		
	$x = -\frac{3}{2}$	✓ answer	
	2	ulis W Ci	(2)
5.3	2 .		(-)
	$y = \frac{2}{x+1} + 4$		
	$\frac{14}{3} = \frac{2}{k+1} + 4$	✓ substitution	
	$\frac{2}{k+1} = \frac{14}{3} - 4$		
	$\frac{2}{k+1} = \frac{2}{3}$	Vaimplification	
		✓simplification	
	2k + 2 = 6		
	k + 1 = 3		
	k = 2	✓ answer	
			(3)
5.4	C(2;4)	√ 2	<i>ie</i> :
		√ 4	(2)
5.5	$y = a(x+p)^2 + q$		
	$=a(x-2)^2+4$	$\checkmark a(x-2)^2 + 4$	
	Substitute (0; 0): $(0, -2)^2 + 4$	✓ Substitute (0; 0)	
	$0 = a(0-2)^2 + 4$		
	0 = 4a + 4		
	a = -1	$\checkmark a = -1$	
	$y = -(x-2)^2 + 4$		(3)
	3	3	(2)
5.6	$x \le -\frac{3}{2}$ or $-1 < x < 0$ or $x > 4$	$\checkmark x \le -\frac{3}{2}$	
	2	$\checkmark \checkmark -1 < x < 0$	
		$\checkmark x > 4$	
		· ~ T	(4)
			(+)

11 SCE/SSE – Marking Guidelines/Nasienriglyne

5.7	$\frac{2}{x}$ - 5: f shifted 1 unit to the right and 9 units down. f is 1 eenheid na regs en 9 eenhede afgeskuif.	✓ both shifted 1 unit to the right
	$-(x-3)^2 - 5$: g shifted 1 unit to the right and 9 units down. g is 1 eenheid na regs en 9 eenhede afgeskuif. Therefore the shift of both graphs took place relative to each other/Dus het die skuif van die grafieke relatief tot mekaar	✓ both shifted 9 units down
	plaasgevind. They only intersect in the third quadrant. Hulle sny mekaar slegs in die derde kwadrant.	✓ relative shift
	Therefore there is only one point of intersection. Daar is dus slegs een snypunt.	✓ one real root (4) [20]

6.1	$A = P(1-i)^{n}$ $0.5P = P(1-0.15)^{n}$ $(1-0.15)^{n} = 0.5$ $(0.85)^{n} = 0.5$ $n = \frac{\log 0.5}{\log 0.85} \text{ or } \log_{0.85} 0.5$ $= 4.27 \text{ years}$	 ✓ A = 0,5P ✓ substitution into correct formula ✓ use of logs ✓ answer 	(4)
6.2	In account one month before his 55 th birthday: In rekening een maand voor sy 55 ^{ste} verjaardag: $F = \frac{x[(1+i)^n - 1]}{i}$ $= \frac{1500\left[\left(1 + \frac{0,092}{12}\right)^{384} - 1\right]}{\frac{0,092}{12}}$ $= 3478620,49$ In account on his 55 th birthday: In rekening op sy 55 ^{ste} verjaardag: $A = P(1+i)^n$	 ✓ value of i ✓ value of n ✓ substitution into correct formula 	
	$= 3478620,49 \left(1 + \frac{0,092}{12}\right)^{1}$ $= R3505289,91$ OR/OF $F = \frac{x(1+i)[(1+i)^{n} - 1]}{i}$ $= \frac{1500 \left(1 + \frac{0,092}{12}\right) \left[\left(1 + \frac{0,092}{12}\right)^{384} - 1\right]}{\frac{0,092}{12}}$ $= R3505289,91$	 ✓ adding last month's interest ✓ answer OR/OF ✓ value of i ✓ value of n ✓ substitution into correct formula ✓ adding last month's interest ✓ answer 	(5)

6.3 Invest Rx in account A paying 8,4% p.a. compounded quarterly./Belê Rx in rekening A wat 8,4% p.a rente betaal, kwartaalliks saamgestel.

$$A = P(1+i)^n$$

$$= x \left(1 + \frac{0,084}{4}\right)^{48}$$

$$= 2,711662406 x$$

$$\checkmark \left(1 + \frac{0,084}{4}\right)^{48}$$

Invest (R150 000 – x) in Account B paying 9.6% compounded monthly./Belê (R150 000 - x in rekening A wat 9,6% p.a rente betaal, maandeliks saamgestel.

After 12 years, the amounts are equal:

$$x\left(1+\frac{0{,}084}{4}\right)^{48} = \left(150\,000 - x\right)\left(1+\frac{0{,}096}{12}\right)^{144}$$
2,711662406 x = 3,150044027 (150000 - x)

$$2,711662406 x = 472506,6041 - 3,150044027 x$$

$$5,861706433 x = 472506,6041$$

 $x = R80609,05$

✓ R80609,05

OR/OF

✓ equation

Invest R80 609 in Account A and $R150\ 000 - R80\ 609,05 = R69\ 390,95$ in Account B

✓ R69 390,95 (6)

 $(150000-x)\left(1+\frac{0{,}096}{12}\right)^{142}$

OR/OF

a = amount invested at 8,4% p.a. compounded quarterly bedrag belê teen 8,4% p.a. kwartaalliks saamgestel

b = amount invested at 9,6% p.a. compounded monthly bedrag belê teen 9,6% p.a. maandeliks saamgestel

$$a + b = 150\ 000$$

 $a = 150\ 000 - b$

$$(150\,000 - b)\left(1 + \frac{0,084}{4}\right)^{48} = b\left(1 + \frac{0,096}{12}\right)^{144}$$

$$150000 \left(1 + \frac{0,084}{4}\right)^{48} = b \left[\left(\left(1 + \frac{0,096}{12}\right)^{144} + \left(1 + \frac{0,084}{4}\right)^{48} \right) \right] \checkmark (150000 - b) \left(1 + \frac{0,084}{4}\right)^{48}$$
 \times equation

$$\checkmark \left(1 + \frac{0,096}{12}\right)^{144}$$

$$\checkmark \checkmark \left(150000 - b\right) \left(1 + \frac{0,084}{4}\right)^{48}$$

$$b = R69 390,95$$

 $a = R80 609,05$

Penalize 1 mark for incorrect notation in the whole question.

		1	
7.1	$f(x+h) = 2 - 3(x+h)^2$		
	$= 2 - 3(x^2 + 2xh + h^2)$		
	$= 2 - 3x^2 - 6xh - 3h^2$	$\checkmark 2-3x^2-6xh-3h^2$	
	$f(x+h) - f(x) = 2 - 3x^2 - 6xh - 3h^2 - (2 - 3x^2)$		
	$=-6xh-3h^2$	$\checkmark -6xh -3h^2$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$=\lim_{h\to 0}\frac{-6xh-3h^2}{h}$	✓subst. into formula	
	$=\lim_{h\to 0}\frac{h(-6x-3h)}{h}$	✓ factorisation	
	$=\lim_{h\to 0} (-6x-3h)$		
	=-6x	✓answer	(5)
	OR/OF	OR/OF	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{2 - 3(x+h)^2 - (2 - 3x^2)}{h}$ $= \lim_{h \to 0} \frac{2 - 3x^2 - 6xh - 3h^2 - (2 - 3x^2)}{h}$ $= \lim_{h \to 0} \frac{-6xh - 3h^2}{h}$ $= \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$ $= \lim_{h \to 0} (-6x - 3h)$ $= -6x$	✓ subst. into formula ✓ simplification $ \checkmark -6xh - 3h^2 $	
		\checkmark common factor	
		✓ answer	(5)

7.2.1	$D_x [(4x+5)^2]$ = $D_x (16x^2 + 40x + 25)$ = $32x + 40$	$ \begin{array}{c} \checkmark 16x^2 + 40x + 25 \\ \checkmark 32x \\ \checkmark + 40 \end{array} $ (3)
7.2.2	$y = \sqrt[4]{x} + \frac{x^2 - 8}{x^2}$ $y = x^{\frac{1}{4}} + 1 - 8x^{-2}$ $\frac{dy}{dx} = \frac{1}{4}x^{-\frac{3}{4}} + 16x^{-3}$	$\sqrt{x^{\frac{1}{4}}} $ $\sqrt{1-8x^{-2}} $ $\sqrt{\frac{1}{4}x^{-\frac{3}{4}}} $ $\sqrt{16x^{-3}} $ (4) [12]

8.1	C(0;12)	✓ C(0;12)	(1)
8.2	$-x^3 + 13x + 12 = 0$	$\checkmark f(x) = 0$	/
	$x^3 - 13x - 12 = 0$		
	$(x+1)(x^2-x-12)=0$	$\checkmark (x+1)$ $\checkmark (x^2 - x - 12)$	
	(x+1)(x-4)(x+3) = 0	$(x^2 - x - 12)$	
	A(-3;0)	$\checkmark x = -3 \text{ or } 4$	
	B(4;0)	✓ clearly indicating A and	В
0.2			(5)
8.3	$f'(x) = -3x^2 + 13$	$f'(x) = -3x^2 + 13$	
	f''(x) = -6x	$\checkmark f''(x) = -6x$	
	-6x=0	✓ equating to zero	
	x = 0	equating to Zero	
	For $f(x)$, point of inflection will be at $(0; 12)$. Vir $f(x)$, sal buigpunt wees by $(0; 12)$		
	For $g(x)$, point of inflection will be at $(0; -12)$.		
	Vir $g(x)$, sal buigpunt wees by $(0; -12)$.	√ (0;-12)	(4)
			()
	OR/OF	OF/OR	
	$g(x) = x^3 - 13x - 12$		
	$g'(x) = 3x^2 - 13$	$\checkmark g'(x) = 3x^2 - 13$	
		$\checkmark g''(x) = 6x$	
	g''(x) = 6x $6x = 0$	✓ equating to zero	
	0x = 0 $x = 0$		
	$ \begin{array}{c} x = 0 \\ (0; -12) \end{array} $	√ (0;-12)	(4)
	(0,-12)	(*, 12)	(.)
	OR/OF	OR/OF	
	$f'(x) = -3x^2 + 13$	$f'(x) = -3x^2 + 13$	
	TP's where	$f'(x) = -3x^2 + 13$ $4x^2 - 3x^2 + 13 = 0$	
	$-3x^2 + 13 = 0$	-3x +13 = 0	
	$x^2 = \frac{13}{3}$		
	_		
	$x = \pm \sqrt{\frac{13}{3}}$		
	$= \pm 2.08$	✓ x-values of TPs	
	x-value of point of inflection: $\frac{-2,08+2,08}{2} = 0$		
	For $f(x)$, point of inflection will be at $(0; 12)$.		
	Vir $f(x)$, sal buigpunt wees by $(0; 12)$	✓ (0;-12)	(4)
	For $g(x)$, point of inflection will be at $(0; -12)$.	(-,,	(.)
	Vir $g(x)$, sal buigpunt wees by $(0; -12)$.		

17 SCE/SSE – Marking Guidelines/Nasienriglyne

8.4	$f'(x) = -3x^2 + 13$	
	$-3x^2 + 13 = -14$	✓ equating derivative to – 14
	$-3x^2 = -27$	✓ simplification
	$x^2 = 9$	
	x = 3 or $x = -3$	✓✓ answers (4)
		[14]

QUE	STION/VRAAG 9		
9.1.1	AC = t - 30	✓answer	(1)
9.1.2	$30^2 = (t - 30)^2 + p^2$ [Pythagoras]		`
	$p^2 = 900 - (t - 30)^2$	$p^2 = 900 - (t - 30)^2$	
	$p^2 = 900 - \left(t^2 - 60t + 900\right)$	$\checkmark \left(t^2 - 60t + 900\right)$	
	$p^2 = 900 - t^2 + 60t - 900$	$\checkmark p^2 = 60t - t^2$	
	$p^2 = 60t - t^2$	$\checkmark p^2 = 60t - t^2$	(3)
9.2	$V(t) = \frac{1}{3}\pi r^2 t$		
	$=\frac{1}{3}\pi(60t-t^2)t$	✓ substitution	
	$=20\pi t^2 - \frac{1}{3}\pi t^3$		(1)
9.3	$V(t) = 20\pi t^2 - \frac{1}{3}\pi t^3$		
	$V'(t) = 40\pi t - \pi t^2$	$\checkmark 40\pi t$ $\checkmark -\pi t^2$	
	$40\pi t - \pi t^2 = 0$	$ \mathbf{v} - \pi t^2$	
	$t(40\pi - t\pi) = 0$		
	t = 0 OR $t = 40$ cm	✓ answer with selection	(3)
0.4	N/A		
9.4	Volume of cone/keël		
	$=20(\pi)(40)^2-\frac{1}{3}\pi(40)^3$		
	$=10\ 666,67\pi$ or $33510,33211$	✓ volume of cone	
	Volume of sphere/sfeer		
	$= \frac{4}{3}\pi r^3$		
	$=\frac{4}{3}\pi(30)^3$		
	$=36000\pi$ or $113097,3355$	✓ volume of sphere	
	$10666,67\pi$	1066677-	
	36000π	$\checkmark \frac{10666,67\pi}{36000\pi}$	
	= 0.296296	30000/1	
	≈ 29,63%	✓ % cut out	(4) [12]

10.1	10!	√ 10!
	=3 628 800	✓ answer
		(2)
10.2	4! × 7!	√ 4!
	= 120 960	√ 7!
		✓ 4! × 7! or 120 960
		(3)
	OR/OF	OR/OF
	$4! \times 6! \times 7$	√ 4!
	= 120 960	✓ 6!×7
	120 700	✓ 4! × 6!×7 or 120 960
		(3)
10.3	6!	✓ 6!
	$\overline{10!}$	
	1 0000100	6! 1 2 0 000109
	$=\frac{1}{5040}$ or 0,000198	$\checkmark \frac{6!}{10!}$ or $\frac{1}{5040}$ or 0,000198
		(2)
		[7]

QUESTION/VRAAG 11

11.1	$P(\text{tennis}) \times P(\le 35 \text{ years}) = P(\text{tennis and } \le 35 \text{ years})$	✓ statement
	$\frac{21}{140} \times \frac{80}{140} = \frac{a}{140}$	✓ substitution
	a = 12	✓ answer (3)
11.2	$P(\text{gym or } \le 35 \text{ years})$	✓ statement
	$= P(gym) + P(\le 35 \ years) - P(gym \ and \le 35 \ years)$ $= \frac{70}{140} + \frac{80}{140} - \frac{40}{140}$ $= \frac{110}{140}$ $= \frac{11}{14} \text{or} 0.79$	$ √ \frac{70}{140} $ $ √ \frac{80}{140} $ $ √ \frac{40}{140} $ $ √ \frac{110}{140} \text{ or } \frac{11}{14} \text{ or } 0,79 $
		(5) [8]

TOTAL/TOTAAL: 150