Mahavier Limits

Yuki Maehara

Macquarie University

14 December 2017

Example: the Bucket-handle Continuum

Let $f\colon I\to I$ be given by

Example: the Bucket-handle Continuum

Let $f: I \to I$ be given by

then $\operatorname{Lim}(\ I \xleftarrow{f} I \xleftarrow{f} I \longleftarrow \dots)$ looks like

Examples of Mahavier limits

Definition of ordinary limit

Given a sequence of continuous functions between compact Hausdorff spaces

$$X_0 \xleftarrow{f_1} X_1 \xleftarrow{f_2} X_2 \longleftarrow \dots$$

its limit can be constructed as

$$\operatorname{Lim}\langle \boldsymbol{X}, \boldsymbol{f} \rangle = \left\{ (x_n)_{n \in \omega} \in \prod_{n \in \omega} X_n : \forall n [x_n = f_{n+1}(x_{n+1})] \right\}.$$

Definition of Mahavier limit

Given a sequence of upper semi-continuous, multi-valued functions between compact Hausdorff spaces

$$X_0 \stackrel{f_1}{\hookleftarrow} X_1 \stackrel{f_2}{\hookleftarrow} X_2 \hookleftarrow \dots$$

its Mahavier limit is

$$\operatorname{MahLim}\langle \boldsymbol{X}, \boldsymbol{f} \rangle = \left\{ (x_n)_{n \in \omega} \in \prod_{n \in \omega} X_n : \forall n [x_n \in f_{n+1}(x_{n+1})] \right\}.$$

The (2-)category CompHausMult

Definition

The category CompHausMult has

- objects: compact Hausdorff spaces
- morphisms: upper semi-continuous functions
- partial order on hom-sets: point-wise inclusion.

SCON's and Mahavier limits

The canonical projections form a single-valued-component oplax natural transformation (SCON).

SCON's and Mahavier limits

The canonical projections form a single-valued-component oplax natural transformation (SCON).

Proposition

There is an adjunction

$$\begin{array}{c} \overset{constant}{\overbrace{ \text{CompHaus}}} \\ \text{CompHaus} & \overset{constant}{\underbrace{ \text{SCON}}} (\omega^{\text{op}}, \text{CompHausMult}) \\ \end{array}$$

Mahavier limits as enriched weighted limits

Mahavier limits should be \mathscr{V} -enriched weighted limits where...

Mahavier limits as enriched weighted limits

Mahavier limits should be \mathscr{V} -enriched weighted limits where...

Definition

The category ${\mathscr V}$ has

- objects: pairs (A,A') consisting of a poset A and a subset $A'\subseteq A$
- morphisms: order preserving functions $f \colon A \to B$ satisfying $f(A') \subseteq B'$.

Mahavier limits as enriched weighted limits

Mahavier limits should be \mathscr{V} -enriched weighted limits where...

Definition

The category ${\mathscr V}$ has

- objects: pairs (A,A') consisting of a poset A and a subset $A'\subseteq A$
- morphisms. order preserving functions $f: A \to B$ satisfying $f(A') \subseteq B'$.

WRONG!!!!!

Definition

The double category $\mathbb{C}\mathbf{ompHaus}$ has

- objects: compact Hausdorff spaces
- horizontal arrows: continuous functions
- vertical arrows: upper semi-continuous functions

Definition

The double category $\mathbb{C}\mathbf{ompHaus}$ has

- objects: compact Hausdorff spaces
- horizontal arrows: continuous functions
- vertical arrows: upper semi-continuous functions

Then $\mathbf{SCON}(\omega^{\mathrm{op}}, \mathbf{CompHausMult})$ is the horizontal part of the functor double category $[\mathbb{V}\omega^{\mathrm{op}}, \mathbb{CompHaus}]$.

Definition

The double category CompHaus has

- objects: compact Hausdorff spaces
- horizontal arrows: continuous functions
- vertical arrows: upper semi-continuous functions

Then $SCON(\omega^{op}, CompHausMult)$ is the horizontal part of the functor double category $[V\omega^{op}, CompHaus]$.

Proposition

The Mahavier limit of $\langle X, f \rangle$ is the regular (horizontal) double limit of the corresponding double functor $\mathbb{V}\omega^{\mathrm{op}} \to \mathbb{C}\mathbf{ompHaus}$.

Corollary

The adjunction of ordinary categories

can be upgraded to an adjunction of double categories (of strict/lax type)

Thank you!

Thank you for listening!

