实验报告

实验名称(多线程 FFT 程序性能分析和测试)

智能 1602 201608010609 李鹏飞

实验目标

测量多线程 FFT 程序运行时间,考察线程数目增加时运行时间的变化。

实验要求

- * 采用 C/C++编写程序,选择合适的运行时间测量方法
- *根据自己的机器配置选择合适的输入数据大小 n,保证足够长度的运行时间
- *对于不同的线程数目,建议至少选择1个,2个,4个,8个,16个线程进行测试
- *回答思考题,答案加入到实验报告叙述中合适位置

思考题

- 1. pthread 是什么? 怎么使用?
- 2. 多线程相对于单线程理论上能提升多少性能? 多线程的开销有哪些?
- 3. 实际运行中多线程相对于单线程是否提升了性能? 与理论预测相差多少? 可能的原因是什么?

实验内容

多线程 FFT 代码

多线程 FFT 的代码可以参考[这里](https://github.com/urgv/pthreads-fft2d)。

Pthread 介绍

pthread 是一个线程库,是线程的 POSIX 标准。该标准定义了创建和操纵线程的一整套 API。在类 Unix 操作系统(Unix、Linux、Mac OS X 等)中,都使用 Pthreads 作为操作系统的线程。在示例代码中采用了 pthread 库来实现多线程:

其中各个变量如下:

pthread_mutex_t:互斥变量使用的特定的数据类型

pthread_cond_t:条件变量的设定

其中各个函数含义如下:

pthread_t: 线程 ID

pthread_attr_t: 线程属性

pthread_create(): 创建一个线程pthread_exit(): 终止当前线程

pthread_cancel(): 中断另外一个线程的运行

pthread_join(): 阻塞当前的线程,直到另外一个线程运行结束

pthread_attr_init(): 初始化线程的属性 pthread_attr_destroy(): 删除线程的属性 pthread_kill(): 向线程发送一个信号

多线程 FFT 程序性能分析

在这里我们利用阿姆达尔定律进行分析:

对于固定负载情况下描述并行处理效果的加速比 s, 公式如下:

S=1/(1-a+a/n)

其中,a 为并行计算部分所占比例,n 为并行处理结点个数。这样,当 1-a=0 时,(即没有串行,只有并行)最大加速比 s=n;当 a=0 时(即只有串行,没有并行),最小加速比 s=1;当 n \to ∞ 时,极限加速比 s \to 1/(1-a),这也就是加速比的上限。例如,若串行代码占整个代码的 25%,则并行处理的总体性能不可能超过 4。

在这里我们发现在多线程 FFT 算法之中主要优化的部分为 Transform2D 函数,在这个函数之中创建相应的线程实现并行操作。所以根据阿姆达尔定律我们可以求得理论上加速比应该为 N,N 为创建的线程数。

测试

测试平台

在如下机器上进行了测试:

```
| 部件 | 配置 | 备注 |
| :------|:-------:| :-----:|
| CPU | core i5-6700U | |
| 内存 | DDR4 12GB | |
| 操作系统 | Ubuntu 18.04 LTS | 中文版 |
```

测试记录

多线程 FFT 程序的测试参数如下:

```
| 参数 | 取值 | 备注 |
| :------|:------:| :-----:|
| 数据规模 | 1024 或其它 | |
| 线程数目 | 1,2,4,8,16,32 | |
```

多线程 FFT 程序运行过程的截图如下:

在这里我们利用 perf 调用工具去进行跟踪。求得整个 FFT 运行时间,从宏观上观察分析多线程对于程序运行时间的影响。

线程个数1:

Performance counter stats for './threadDFT2d':					
5287.230517	task-clock (msec)	#	1.553	CPUs utilized	
66	context-switches	#	0.012	K/sec	
1	cpu-migrations	#	0.000	K/sec	
4,245	page-faults	#	0.803	K/sec	
14,301,493,250	cycles	#	2.705	GHz	
35,681,613,830	instructions	#	2.49	insn per cycle	
7,074,900,987	branches	# 13	38.111	M/sec	
7,967,463	branch-misses	#	0.11%	of all branches	
3.404416135 seconds time elapsed					

线程个数 2:

Performance counter stats for './threadDFT2d':					
5424.838474	task-clock (msec)	# 1.	912 CPUs utilized		
96	context-switches	# 0.	018 K/sec		
3	cpu-migrations	# 0.	001 K/sec		
4,255	page-faults	# 0.	784 K/sec		
14,596,583,155	cycles	# 2.	691 GHz		
36,776,955,610	instructions	# 2.	52 insn per cycle		
7,351,970,487	branches	# 1355.	242 M/sec		
7,714,319	branch-misses	# 0.	10% of all branches		
2.836736238 seconds time elapsed					

线程个数 4:

Performance counter stats for './threadDFT2d':					
7472.309303	task-clock (msec)	#	2.393	CPUs utilized	
2,104	context-switches	#	0.282	K/sec	
25	cpu-migrations	#	0.003	K/sec	
4,272	page-faults	#	0.572	K/sec	
20,483,090,840	cycles	#	2.741	GHz	
60,023,926,066	instructions	#	2.93	insn per cycle	
13,163,438,333	branches	# 17	61.629	M/sec	
8,297,691	branch-misses	#	0.06%	of all branches	
3.122703808	seconds time elapsed				

线程个数8:

Performance counter stats for './threadDFT2d':					
8877.812763	task-clock (msec)	# 2.607 CPUs utilized			
1,258	context-switches	# 0.142 K/sec			
36	cpu-migrations	# 0.004 K/sec			
4,303	page-faults	# 0.485 K/sec			
24,424,039,114	cycles	# 2.751 GHz			
75,680,536,866	instructions	# 3.10 insn per cycle			
17,077,131,406	branches	# 1923.574 M/sec			
10,176,926	branch-misses	# 0.06% of all branches			
3.405752972 seconds time elapsed					

线程个数 16:

Performance counter stats for './threadDFT2d':					
13944.261878	task-clock (msec)	# 2.974 CPUs utilized			
2,802	context-switches	# 0.201 K/sec			
83	cpu-migrations	# 0.006 K/sec			
4,374	page-faults	# 0.314 K/sec			
38,748,068,948	cycles	# 2.779 GHz			
132,734,230,116	instructions	# 3.43 insn per cycle			
31,343,098,737	branches	# 2247.742 M/sec			
7,905,313	branch-misses	# 0.03% of all branches			
4.688094161 seconds time elapsed					

从上面的运行结果中我们可以提取到如下信息:

线程数	时间 (s)	上下文切换(次)	丢失率	加速比(单线程/多线程中的每个线程)	理论值
1	3.40	66	0.11%	1	1
2	2.83	96	0.10%	2.25	2
4	3.12	2104	0.06%	4.25	4
8	3.40	1258	0.06%	7.55	8
16	4.68	2802	0.03%	11.33	16

分析、结论与思考题

1.从上述表格的分析结果来看,随着线程数目的增加,时间先减小后增大。上下文的切换次数增多,分支预测的丢失率降低,加速比低于预估值。当线程数为 1 和为 2 的时候加速比大于预估值,是因为我们在这里利用 perf 追踪工具,从宏观上查看其时间,所以其变量创建的时间也会包含在其中,这就使得多线程的加速比可能会大于理论值。

2.思考题:理论上提升多线程相对于单线程提升 N 倍(N 为多线程线程数目)

但是多线程的开销有线程的创建和上下文切换.都属于只能减小,不可避免的开销.所以在上述的结果之中体现为随着线程数目的增加,上下文切换次数多,开销增大,加速比就会减小。

- 3.思考题: 合适的多线程可以提升程序的性能,但是如果线程数目设置的不合理,将会导致程序的运行缓慢可能的原因:
- (1)计算机本身内核数目不够,假设计算机为 4 核,如果要运行一个 16 线程的程序。就会导致其他线程需要等待,这就使得计算机无法发挥多线程的优势
- (2)因为数据之间可能有数据纠缠关系,这就导致了线程之间的切换可能会有间隔。所以当线程数目过多时,可能效率反而会下降.
- (3)在程序执行过程之中,如果一个程序发生了阻塞,可能会导致连锁反应,影响整个程序的运行时间,这也可能会造成程序运行的缓慢。