Рекомендательные системы ШАД Весна 2025

Лекция 7: Рантаймы & Case Study

Футболки за топ-10 контеста напишите мне в личку ваш размер, пожалуйста

План

- сегодня посмотрим на примеры рексистем
- рексистемы будут поменьше и побольше
- поговорим, как они устроены, чем отличаются
- а чем не отличаются

Дисклеймер

- мы не знаем точного устройства всех приводимых рантаймов кроме лавочного (и немного дзеновского)
- вся лекция является художественным вымыслом, поэтому
- все имена функций и моделей в лекции вымышлены, любые совпадения с реальными рантаймами, живыми или мертвыми, случайны

Общее

A complex system that works is invariably found to have evolved from a simple system that worked. A complex system designed from scratch never works and cannot be patched up to make it work. You have to start over with a working simple system.

- Gall's law

Что главное в рексистеме?

Самый полезный слайд во всем курсе

(предыдущие слайды врали)

- базово:
 - логи должны быть не совсем фиговыми
 - логи надо хранить всегда, даже если дорого
- критично важно:
 - единый формат с инкапсуляцией логики парсинга
 - использовать результат в пулах, мониторах, метриках AB и так далее
- все это с некоторой солью: есть размен на дороговизну поддержки
- чем раньше проверите, что у вас нормальные логи, там раньше получите первый профит

Компактная рексистема: Лавка

- Начинаем с Лавки пример минималистичной рексистемы
- Основная сущность экшены: нормализованные логи действий пользователей
- Может по-другому называться, но у всех обычно есть что-то такое

Экшены — формат, в который преобразуются клиентские логи. Он удобен для использования в ML-пайплайне: обучение, фичи, A/B тесты, мониторы и т.д.

Профили и источники данных

- Из экшенов считаются профили пользователей и айтемов
 - Пользовательские: активность, частотности
 - Айтемные: CTR, квоты, популярность, статистики по позициям
- Дополнительные источники :
 - экшены
 - таблички со статическими фичами (регион, цена и т.д.)
 - внешние данные (анкеты, партнёрские данные)
 - предикты моделей, эмбеды и т.п.
- Профиль = агрегированная информация о сущности. Не обязательно это вектор: могут быть и категориальные признаки, и счётчики.

Как применяются профили документов

Строится индекс

- Данные перекладываются в эффективный для доступа из памяти вид
- Строятся разнообразные ANN-индексы и статические топы
- Все это собирается в кучу и сериализуется
- И едет на тачку

Иногда таких индексов нужно много. Индексы еще будем называть шардами. От английского shard -- осколок

Вспоминаем про шарды

Если вы YouTube, вам придется

- 1) Делать selection rank
- 2) Шардироваться
 - Ваши кандидаты скорее всего лучше работают на объединении множеств меньшего размера
- Ранжирование можно параллелить и заливать таким образом баблом проблему кандидатов

На практике обычно в один шард пихают что-то порядка миллиона айтемов

Случай Лавки

- Всего ~40-50k айтемов во всей Лавке
- Это где-то 4-5 секунд на поранжировать
- В одной лавке (один dark store) 3–10k
 одновременно доступных айтемов
- Candidate Generation (CG) **можно не делать**

Если пофильтроваться в правильный момент

- 0-100 мс отклик ощущается как мгновенный.
- 100-300 мс небольшая, но заметная задержка.
- 300-1000 мс пользователь чувствует, что система "думает".
- >1 сек внимание пользователя начинает рассеиваться.
- >3 сек 53% пользователей покидают сайт (по данным Google).

Как применяются профили пользователей

В случае Лавки

- Всё обсчитывается оффлайн, раз в сутки
- Загружается в KV-хранилище по user_id
- В онлайне → быстрое обращение (5–10 мс)
- Масштабируется изи: шардирование и отказоустойчивость встроены в большинство KV-хранилищ

Если пользователей немного — можно было бы засовывать профили прямо в шард. Но дальше это плохо масштабируется. Поэтому лучше использовать KV или что-то похожее даже для небольших систем.

Нюансы работы рексистемы Лавки

Много поверхностей

- Главная, категории, поиск, корзина, оплата
- Поверхности каннибализируют друг друга
- Особенно достается тем, что в конце пользовательского пути от тех, кто в начале

Информация о сессии облегчает задачу

- Начали строить рантайм-профиль пользователя
- Применяется трансформер на действия пользователя в текущей сессии
- В будущем позволит нам порешать проблему с каннибализацией, еще боремся

Приходите послушать доклад Марка на датафесте, где он расскажет, как мы везли инференс трансформера в рантайм

Холодный старт: почти не проблема

- Все пользователи залогинены
- Использование без логина невозможно (надо платить)
- Новички в меньшинстве
- Контент структурированный, легко курируется

Не банеры на порно-сайте крутим, больше думаем про персонализацию, чем про популярность

Кинопоиск — побольше, посложнее

- ~200-300k фильмов
- Влезает в один шард

Простые кандгены:

- Но уже нужна кандидатогенерация
 - популярность, досматриваемость
 - новинки
 - редакторские подборки
 - похожесть по жанру, режиссёру и т.д.

Модели

- все, что вы слушали на лекциях, на широкую ногу
- в кандидатах двухбашенки
- простые кандгены с прошлого слайда
- в ранжировании скорее всего катбуст или какой-нибудь dcn-v2

Таргеты

В Лавке всё прозрачно:

- Р(покупка) × цена → GMV
- Р(покупка) * маржа → прибыль

В Кинопоиске:

- Главный КРІ подписка
- Прямая оптимизация не работает (долгий цикл)
- Делают прокси-метрики аналитически
- Таргет может быть существенно сложнее

Фильтрация

- По типу подписки (Плюс, Амедиатека,
 Плюс Про Макс и т.д.)
- По лицензии айтема
- Лицензия отличается и по гео, ну вы поняли

Интерфейс: много каруселей

- Общая персональная выдача
- Продолжить просмотр
- Похожие на...
- Жанровые блоки

Два подхода поранжировать карусели:

- 1. Выбрать блоки ранжировать внутри
- 2. Генерировать общий пул → нарезать продуктово или еще как-то

Разнородный контент

Но бывают

- продолжить просмотр
- трансляции спорта
- один огромный постер с фильмов

Куча разнородных каруселей, как их поранжировать?

Разнородный контент

Подход с профицитом

- Считаем "выигрыш" и "проигрыш" для блока
- Учитываем размер, клики ниже и т.д.
- Негативный сигнал → штраф

Проблемы

- Каскадность моделей
- Тяжело поддерживать

Бандиты

- Хорошо подходят для гетерогенных блоков
- Работают онлайн, переобучаются сами
- В гугле много используют

Минусы:

Сложно отладить и поддерживать

Холодный старт

Много пользователей с нулевой историей (бесплатный Плюс и т.д.)

Что делать:

- модель должна сходиться от пустых фичей
- балансировка в пулах
- Онбординг

Пример (Netflix):

- Показывают топ популярных фильмов
- Юзер кликает забираем фильм и удаляем все события этого юзера
- Перестраиваем топ → повторяем

Рантайм-процессинг — тоже не первые 80 процентов

- Люди редко смотрят 2 фильма подряд
- Но могут долго выбирать
- Если ничего не кликает надо менять выдачу

Яндекс Маркет – много товаров, много проблем

Что усложняет масштаб?

- Объем данных: десятки миллионов товаров
- Много сущностностей: модели, СКЮ, продавцы
- География: регионы, логистика, наличие
- Бизнес-ограничения: реклама, гарантии показов

Объем и структура айтемов

В Маркете — десятки миллионов товаров. Это выходит за пределы одного шарда, требуется масштабируемая архитектура хранения и обработки.

Кроме того, товары не всегда уникальны:

- Модель обобщённое описание товара (например, смартфон определённой серии)
- СКЮ конкретная вариация модели (объём памяти, цвет)
- Оффер сверху еще продавец + цена

Иерархическая структура позволяет уменьшить дублирование, но добавляет сложность в логике рекомендаций.

Что происходит обычно

Рекомендательный пайплайн делится на два этапа:

- 1. Определение релевантных моделей
- 2. Подбор валидных СКЮ и потом офферов с учётом региона, цены, доставки

Важно как можно раньше исключать модели без подходящих СКЮ.

Фильтрации должны выполняться до применения ML-моделей:

- Регион пользователя
- Наличие у продавца
- Условия доставки
- Бизнес-ограничения

Продавцы и гарантии показов

В системе присутствует вторая сущность — продавец, со своими интересами и ожиданиями. Продавцы рассчитывают на получение показов в рекомендациях. Их отсутствие вызывает жалобы и эскалации.

Типичные подходы:

- Встроенный item-level exploration в модель (какие-то RL-варианты)
- PID-контроллеры для стабилизации объёма показов
- Явные квоты на показы в системе

Exploration и работа с новыми товарами

Exploration необходим для:

- Холодных (новых) товаров
- Продавцов без истории
- Товаров из long-tail

Проблема: чрезмерный exploration снижает качество выдачи. Решения:

- Подмешивание ограниченного числа товаров
- Использование обобщающих моделей
- Сегментация пользователей
- А/В-контроль и аккуратная валидация

Архитектура пайплайна

- 1. Кандидатогенерация (ориентирована на полноту, быстрые методы)
- 2. Фильтрация (по региону, доступности, логистике, правилам)
- **3. Ранжирование** (оптимизация под метрику GMV, CTR, маржинальность)

Дополнительно могут использоваться:

- Дополнительные уровни переранжирования
- Постобработка (например, диверсификация, слоты под рекламу)

Реклама и сквозное ранжирование

При таком масштабе реклама — обязательный компонент . Два базовых подхода:

- 1. Фиксированные рекламные позиции + локальный аукцион
- 2. Сквозное ранжирование: органика и реклама объединяются в одном списке

Базовая формула может выглядеть так:

score = p(buy) × margin + bid

Ставка продавца учитывается наряду с вероятностью покупки и ожидаемой выгодой.

Важно: обложиться гардрейлами

Калибровка вероятностей

Ранжирующие модели часто выдают не вероятность, а скор. Чтобы использовать их в бизнес-метриках или в аукционе, требуется калибровка:

Обычно:

- Изотоническая регрессия
- Platt scaling
- Как вам по кайфу

Калиброванные значения позволяют использовать предсказания в денежно-ориентированных формулах и корректно оценивать влияние рекламы.

Влияние вертикалей

Маркет состоит из множества товарных вертикалей:

- **Электроника**
- Одежда
- Автотовары
- Строительство и ремонт

В разных вертикалях:

- Разная динамика (fast fashion vs. долгоживущая техника)
- Разный подход к эксплору
- Разные ограничения по актуальности, сезонности и цене ошибки

Архитектура должна поддерживать конфигурацию по вертикалям.

Дзен – много UGC-контента

Масштабы

- Сотни миллионов айтемов, десятки тысяч новых ежедневно
- Всё, о чём говорили до этого здесь тоже есть:
 - счастье продавца
 - счастье автора
 - наливки
 - рантайм-процессинг

Что появляется нового?

- UGC: пользовательский контент → требует объяснимости
- Объяснимость важна: нужно объяснить, почему именно этот контент
- Баланс объяснимости и релевантности становится продуктовой задачей
- Мощный пайплайн модерации:
 - автоматизация + толока
 - контент может быть токсичным/опасным

Мультимодальность

- Типы контента:
 - статьи
 - видео
 - шортсы
- Всё замешано в одном фиде

Интерфейс влияет на таргет

На больших интерфейсах (лента, подборки) можно оптимизировать на длинные сессии

На маленьких (один видос на экране или даже карусель) — скорее нет:

- длинные статьи/видео будут скипаться
- получаем артефакты (длинные видео)

Рекомендуем посмотреть

Красивая чтение Корана сура зяц аль бакара

Какой кармический урок я прохожу? I Таро онлайн I...

Полный Коран в исполнении 3 Мишари Рашид Аль Афаси 3 1 с

Рантайм-профиль пользователя

- Очень важно: оффлайн == онлайн
- Иначе: A/В тесты врут, фичи не работают

Часто решается через лямбда-архитектуру:

- key-value хранилище (день)
- Redis или что-то подобное (почасовые апдейты)
- на каждый запрос собирается свежий профиль

Вынос кандидатов и фичей

- Кандидатогенерация и фичестор становятся отдельными сервисами
- Особенно важно при:
 - тяжёлой генерации
 - экономии памяти и CPU
- Позволяет шарить генерацию между интерфейсами

Деградация моделей и свежесть

- В ZEN быстро появляются и исчезают тренды
- Модели деградируют быстрее, чем в e-commerce
- Помогает:
 - обучение в рантайме
 - online fine-tuning
 - конвейеры

Антифрод и метрики

- Авторам платят за показы → начинается фрод
- Крутят ботов, накручивают CTR
- В хорошей системе таргет антифрод-аware, как и целевая метрика
- Команды работают очень тесно

Индексы для скорости

- Обычный шард долгоживущие айтемы
- Быстрый шард живет около суток:
 - ограниченное число фич
 - загружается мгновенно
- Могут быть отдельные модели с квотированием для него

Semi-online рекомендации

Список рекомендаций хранится и пересчитывается фоном

- Обновление по триггерам
- пример
 - смотрим, сколько айтемов просмотрено
 - каждая степень двойки триггер
 - считаем и кладев резы к кв
- позволяет:
 - использовать тяжёлые модели
 - держать быстрое время ответа

Спасибо!

Даня Ткаченко, Служба ML-сервисов Лавки, Белград 2025