COMP9414: Artificial Intelligence

Lecture 6c: Data Science

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW ©W. Wobcke et al. 2019

COMP9414 Data Science

Overview

- Data Science
- Bias
- Overfitting
- Human Expertise
- Slicing and Dicing
- Combining Datasets
- Validation

COMP9414 Data Science 2

Data Science

Example: Mobile Phone Data includes location of cell towers

- Location is Angkor Wat and time is 1 day \Rightarrow tourist?
- Or, journey "similar to" typical tourist trips ⇒ tourist
- Location is shopping centre \Rightarrow shopping (if not home)?
- \blacksquare Most frequent called person \Rightarrow spouse? (if married)
- Spouse \Rightarrow opposite gender (use as a check)
- Location is port and truck driver ⇒ shipment
- Destination(s) of truck \Rightarrow type of shipment?

Methodology: Emphasis on dealing with multiple levels of uncertainty

UNSW © W. Wobcke et al. 2019

COMP9414 Data Science 3

Bias

倾向、偏爱

Bias = Propensity for method to generalize (good or bad)

- Dataset not representative of population
 - ▶ Only people in areas with phone towers have phones
 - ▶ Only poorer people need "access" to phone credits
- Training data "discriminates" against certain groups
 - ► Learner trained on white male faces
- Learner generalizes "wrong" features
 - ▶ White background (only pictures of snow leopards are in winter)
- Learner "misses" relevant features
 - ► Seasonal effects of population movement (food shortages)

COMP9414 Data Science 4 COMP9414 Data Science

Overfitting

Overfitting = Fit given data too closely and not work in other contexts

Example: How not to measure wealth index (Blumenstock et al. 2015)

- Mobile phone data with 5088 features and 856 labelled examples
- Choose features based on whole dataset (not training set)
- Don't consider what is Rwanda-specific about this data
- Use non-standard methodology drawn from another paper
- Ignore sensible (human-generated) baselines
- 5-fold cross-validation produces 5 models, not one

Claim: Most neural network/deep learning models overfit

UNSW

© W. Wobcke et al. 2019

COMP9414 Data Science 5

Human Expertise

Essential when data is limited in quality, quantity (most of the time)

- Human suggests relevant features
 - ▶ Protest less likely to be violent if venue private
 - ▶ AfPak ontology of events of interest to conflict progression
- Human defines useful indicators
 - ▶ Village is safe if market is open at night
- Human validates model output
 - ▶ Check agreement with model on 15% random sample
 - Verify main features used by the model
 - ▶ Define baseline for comparative performance
 - Cross check model output with other datasets

Slicing and Dicing

- Data may only be reliable in certain contexts
 - ▶ May be able to determine event occurrence, not details
 - Sentiment analysis notoriously inaccurate
- May want to analyse subgroups by region, status, etc.
 - ▶ "Big data" can soon become "small data"
 - ▶ Need statistical methods to assess reliability
 - ► Map quality of data to quality of resulting decision

UNSW ©W. Wobcke et al. 2019

COMP9414 Data Science 7

Combining Datasets

Use of only one type of data is insufficient for many purposes

- Especially social media data (Twitter, Facebook)
- Especially with complex metrics and indicators
 - Population health using images of hospital carpark
 - ▶ Rainfall locations and amounts using satellite data
- Need triangulation/corroboration, not increased uncertainty
 - ▶ Need to "correlate" independent data sources

COMP9414 Data Science

Validation

Is data fit for (what) purpose?

- No model is ever perfect (especially learned models)
- Statistical correlations are usually very weak
- Contextualize models to local circumstances
- Cross check model outputs with other datasets
- Express uncertainty associated with conclusions/decisions
- "Big data" methods can provide "early warning" signals
- Complement traditional measures with different time scales
- Continually validate models as assumptions vary

UNSW © W. Wobcke et al. 2019