CSCC37 TUT3 WEEK4
andrewyk.leung@mail.utoronto.ca

1) Representing reals in a floating point number system
2) rounding error/relative error 3) Stability of formulae
3) stability of formulae
Difference of exponent base size of manfissa
exi Represent (72.6) in the FP# system b=3 t=8 e=[-2,+4] trange of exponent
$(72)_{10} \rightarrow (2200)_3$
numerator deganismes quotient remainder
3
$\begin{cases} 3 \\ 2 \end{cases}$
Stop when quotient is 0

$$(.6)_{10}$$
 \longrightarrow $(.1210)_{3}$

multiplier	base	product	integral	£1505 (-00
	3 3	1.8 2.4 1.2 0.6	2	traction .8 .2 .8

Stop when fraction is 0 or cycle restorts

$$(72.6)_{10} = (2200.1210)_{3}$$

$$(22001210)_{3} \times 3 \times 5$$
exponent is 2

2) Absolute error (AE) =
$$X - f(X)$$

$$X = (0.22001210)_3 \times 3^4$$

 $f(x) = (0.22001210)_3 \times 3^4$

when x > 0, cos x > 1 the formula suffers from

C37 Page

catastrophic | subtractive concellation

Alternative: 1-cOSX × 1+cosx

 $= \frac{1 - \cos^2 x}{1 + \cos x}$ $\left[\sin^2 x + \cos^2 x = 1 \right]$

 $= \frac{1+\cos x}{2!v_5 x}$ This formula is fine when x >0, but not when $\times \rightarrow 77$ (Since $(05 \times \rightarrow -1)$

I-cosx is fine as x+T

Solution: Depending on the value of x, choose a formula that doesn't suffer from cutastrophic/subtractive cancellation

> $\times \rightarrow T$ $\times \rightarrow 0$ $\begin{cases} 1 - \cos x \\ \sin^2 x \end{cases}$