Periodic Geodesics in Compact Lorentzian Manifolds

V International Meeting on Lorentzian Geometry Martina Franca, 2009

> José Luis Flores Universidad de Málaga

• Partially based on a work in collaboration with M.A. Javaloyes and P. Piccione.

Plan of the Lecture

Results for Compact Riemannian Manifolds:

- Non-simply connected case
- Simply connected case

■ Results for Compact Lorentzian Manifolds:

- Classical results (Tipler, Galloway)
- Recent results...

Compact Lorentzian Manifolds with a Killing Field:

- Existence and multiplicity of periodic geodesics
- Topological structure
- Isometry group

Compact Riemannian Manifolds

Hadamard'1898, Cartan'28:

There exists some periodic geodesic in any compact Riemannian manifold (M, g) with non-trivial fundamental group.

Hadamard'1898, Cartan'28:

There exists some periodic geodesic in any compact Riemannian manifold (M,g) with non-trivial fundamental group.

Sketch of Proof.

- Let $C \in \pi_1(M) \setminus \{0\}$ be a non-trivial free homotopy class.
- Then $m = \text{Inf}\{\text{leng}(\gamma) : \gamma \in \mathcal{C} \text{ is piecewise smooth}\} > 0.$
- Let $\{\gamma_n\}_n \subset \mathcal{C}$ be a sequence of piecewise smooth geodesics with $\operatorname{leng}(\gamma_n) \to m$.
- Since $\{\gamma_n\}_n$ is equicontinuous and M compact, there exists some subsequence approaching to a closed curve γ_0 .
- A standard local minimization argument implies that γ_0 must be a periodic geodesic. \square

Actually, it has been proved:

Any closed curve non-freely homotopic to a constant curve can be deformed into a periodic geodesic with minimal length in its free homotopy class.

Actually, it has been proved:

Any closed curve non-freely homotopic to a constant curve can be deformed into a periodic geodesic with minimal length in its free homotopy class.

Remarks:

- \Rightarrow Every non-trivial conjugacy class of $\pi_1(M)$ admits a periodic geodesic (which minimizes the length at every class).
- \Rightarrow Existence of infinitely many periodic geodesics "geometrically distinct" if $\pi_1(M)$ admits infinitely many conjugacy classes.

Variational Principle:

Periodic Geodesic \iff Critical Point of Action Functional

Action functional: Smooth function given by

$$A:\Lambda^1(M)\subset H^1(I,M) o \mathbb{R},\quad A(y)=\int_0^1g(\dot{y},\dot{y})$$

Domain: Riemannian Hilbert manifold of free loops $\Lambda^1(M)$,

$$\Lambda^{1}(M) = \{ y \in H^{1}(I, M) : y(0) = y(1) \}$$

$$(\text{recall } H^1(I, M) = \{ y \in H^1(I, \mathbb{R}^N) : y(I) \subset M, i^{-1} \circ y \text{ cont.} \})$$

Theorem: Let F be a smooth function defined on a Hilbert manifold \mathcal{H} . Assume F is lower bounded, satisfies PS and \mathcal{H} is complete. Then, F admits a minimum.

Theorem: Let F be a smooth function defined on a Hilbert manifold \mathcal{H} . Assume F is lower bounded, satisfies PS and \mathcal{H} is complete. Then, F admits a minimum.

* F satisfies PS if any sequence $\{x_m\}$ such that $\{F(x_m)\}$ is bounded and $\nabla F(x_m) \to 0$, has a convergent subsequence.

Theorem: Let F be a smooth function defined on a Hilbert manifold \mathcal{H} . Assume F is lower bounded, satisfies PS and \mathcal{H} is complete. Then, F admits a minimum.

Application to our problem:

- If (M, g) is compact then A (which is lower bounded) satisfies PS.
- Moreover, $\Lambda^1(M)$ is complete.
- From the theorem above, A admits a minimum.
- But, again, the corresponding geodesic is constant.

Theorem: Let F be a smooth function defined on a Hilbert manifold \mathcal{H} . Assume F is lower bounded, satisfies PS and \mathcal{H} is complete. Then, F admits a minimum.

Application to our problem:

- If (M, g) is compact then A (which is lower bounded) satisfies PS.
- Moreover, $\Lambda^1(M)$ is complete.
- From the theorem above, A admits a minimum.
- But, again, the corresponding geodesic is constant.
- * Therefore, we need more sophisticated critical point theorems!

Powerful Methods (Morse'34, Ljusternik-Schnirelmann'30): Non-trivial topology for $\Lambda^1(M)$ (homology group, L-S category) forces the existence of more critical points for A.

- Powerful Methods (Morse' 34, Ljusternik-Schnirelmann' 30): Non-trivial topology for $\Lambda^1(M)$ (homology group, L-S category) forces the existence of more critical points for A.
- **Ljusternik-Fet**'51: (Dokl. Akad. Nauk SSSR **81**, 1951, 17-18)

 There exists some periodic geodesic in any compact Riemannian manifold (M, g).

- Powerful Methods (Morse' 34, Ljusternik-Schnirelmann' 30): Non-trivial topology for $\Lambda^1(M)$ (homology group, L-S category) forces the existence of more critical points for A.
- **Ljusternik-Fet**'51: (Dokl. Akad. Nauk SSSR **81**, 1951, 17-18)

 There exists some periodic geodesic in any compact Riemannian manifold (M,g).
- **Further Developments (Alber, Klingemberg...):**Existence of certain number of distinct periodic geodesics for special topological types of manifolds, partly under restrictive metric conditions...

- Powerful Methods (Morse' 34, Ljusternik-Schnirelmann' 30): Non-trivial topology for $\Lambda^1(M)$ (homology group, L-S category) forces the existence of more critical points for A.
- **Ljusternik-Fet**'51: (Dokl. Akad. Nauk SSSR 81, 1951, 17-18)

 There exists some periodic geodesic in any compact Riemannian manifold (M, g).
- **Further Developments (Alber, Klingemberg...):**Existence of certain number of distinct periodic geodesics for special topological types of manifolds, partly under restrictive metric conditions...
- * Does any compact Riemannian manifold admit infinitely many periodic geodesics?

Compact Lorentzian Manifolds

Tipler' 79 (*Proc. AMS*, **76**, 1979, 145-147)

There exists a periodic timelike geodesic in every compact Lorentzian manifold with a regular covering containing a compact Cauchy surface.

Tipler' 79 (*Proc. AMS*, **76**, 1979, 145-147)

There exists a periodic timelike geodesic in every compact Lorentzian manifold with a regular covering containing a compact Cauchy surface.

Remarks:

- ∃ compact flat Lorentz space forms without periodic timelike geodesics (Guediri: *Math. Z.* **239** 277-291 (2002)).
- Examples extended in (Guediri: *Trans. AMS* **355** *775-786* (2003)).
- A compact flat spacetime (M,g) contains a periodic timelike geodesic iff $\pi_1(M)$ contains a nontrivial timelike translation. (Guediri: *Math. Z.* **244** *577-585* (2003))

Tipler' 79 (*Proc. AMS*, **76**, 1979, 145-147)

There exists a periodic timelike geodesic in every compact Lorentzian manifold with a regular covering containing a compact Cauchy surface.

Sketch of Proof.

- There exists a periodic timelike curve α on (M, g).
- Let $\tilde{\alpha}$ be a lift of α to the regular covering space (\tilde{M}, \tilde{g}) .
- The endpoints of $\tilde{\alpha}$ are timelike related, and so, lie on two disjoint compact Cauchy surfaces S_1 , S_2 of (\tilde{M}, \tilde{g}) .
- The Lorentzian distance function d between points of S_1 , S_2 is finite and continuous.
- Let $q_1 \in S_1$, $q_2 \in S_2$ corresponding points such that d attains its maximum.

Tipler' 79 (*Proc. AMS*, **76**, 1979, 145-147)

There exists a periodic timelike geodesic in every compact Lorentzian manifold with a regular covering containing a compact Cauchy surface.

Sketch of Proof.

•

- By Avez-Seifert, there exits a maximizing timelike geodesic $\tilde{\gamma}$ joining them.
- $\tilde{\gamma}$ projects into a timelike geodesic γ in (M,g), with the same extreme points, but perhaps with different extreme velocities.
- Standard maximizing argument show that γ is a periodic geodesic. \square

Galloway' 84 (Trans. AMS, 285, 1984, 379-388)

Every stable free t-homotopy class of closed timelike curves in a compact Lorentzian manifold contains a periodic timelike geodesic.

Galloway' 84 (Trans. AMS, 285, 1984, 379-388)

Every stable free t-homotopy class of closed timelike curves in a compact Lorentzian manifold contains a periodic timelike geodesic.

* A free t-homotopy class C of closed timelike curves is *stable* if \exists another Lorentzian metric $g > g_0$ such that $\sup_{\gamma \in C} \operatorname{leng}_q(\gamma) < \infty$.

Galloway' 84 (Trans. AMS, 285, 1984, 379-388)

Every stable free t-homotopy class of closed timelike curves in a compact Lorentzian manifold contains a periodic timelike geodesic.

* A free t-homotopy class C of closed timelike curves is *stable* if \exists another Lorentzian metric $g > g_0$ such that $\sup_{\gamma \in C} \operatorname{leng}_g(\gamma) < \infty$.

Sketch of Proof.

- Let \mathcal{C} be a stable free t-homotopy class.
- Then, (1) $L_0 = \sup_{\gamma \in \mathcal{C}} \operatorname{leng}_{g_0}(\gamma) < \infty$; (2) $\sup_{\gamma \in \mathcal{C}} \operatorname{leng}_{g_r}(\gamma) < \infty$.
- From (1), $\exists \{\gamma_n\} \subset \mathcal{C} \text{ with } \operatorname{leng}_{g_0}(\gamma_n) \to L_0.$
- From (2), the curves γ_n approach to a limiting curve γ in \mathcal{C} which is a longest timelike periodic geodesic. \square

Galloway'86 (Proc. AMS, 98, 1986, 119-123)

There exists some periodic causal geodesic in any compact 2-dimensional Lorentzian manifold.

Galloway'86 (Proc. AMS, 98, 1986, 119-123)

There exists some periodic causal geodesic in any compact 2-dimensional Lorentzian manifold.

Remarks:

- There exists a 2-dimensional Lorentzian manifold without any periodic timelike geodesic (but having a causal one).

Galloway'86 (Proc. AMS, 98, 1986, 119-123)

There exists some periodic causal geodesic in any compact 2-dimensional Lorentzian manifold.

Remarks:

- There exists a 2-dimensional Lorentzian manifold without any periodic timelike geodesic (but having a causal one).
- There exists a 3-dimensional Lorentzian manifold without any periodic causal geodesic (but having a spacelike one).

Galloway'86 (Proc. AMS, 98, 1986, 119-123)

There exists some periodic causal geodesic in any compact 2-dimensional Lorentzian manifold.

Remarks:

- There exists a 2-dimensional Lorentzian manifold without any periodic timelike geodesic (but having a causal one).
- There exists a 3-dimensional Lorentzian manifold without any periodic causal geodesic (but having a spacelike one).
- The 3-dimensional example can be taken geodesically complete and admitting a regular globally hyperbolic covering.
 - (Guediri: Geom. Dedicata **126**, 2007, 126-185).

Galloway'86 (Proc. AMS, 98, 1986, 119-123)

There exists some periodic causal geodesic in any compact 2-dimensional Lorentzian manifold.

Sketch of Proof.

- Up to certain finite covering, $M^2 \cong \mathbb{T}^2$ orientable, t-orientable.
- Let α be some closed timelike for $(M^2, -g)$.
- (M^2, g) admits a smooth compact spacelike hypersurface $\Sigma \cong \alpha$, which is the image of a smooth embedding of \mathbb{S}^1 .
- Let $p: M_{\Sigma} \to M^2$ be Lorentzian regular covering.
- Every component $\tilde{\Sigma}$ of $p^{-1}(\Sigma)$ is a compact spacelike hypersurface which separates M_{Σ} . In particular, $\tilde{\Sigma}$ is acausal.

Galloway'86 (Proc. AMS, 98, 1986, 119-123)

There exists some periodic causal geodesic in any compact 2-dimensional Lorentzian manifold.

Sketch of Proof.

•

- If $\tilde{\Sigma}$ is a Cauchy hypersurface for M_{Σ} , apply Tipler's result.
- Otherwise, we can assume $H^+(\tilde{\Sigma}) \neq \emptyset$.
- Let η be the past inextendible null geodesic generator of $H^+(\tilde{\Sigma})$.
- The projection $\eta \circ p$ is a periodic null geodesic on M^2 . \square

Guediri'02 (Math. Z., 239, 2002, 277-291)

Theorem: Let (M, g) be a compact Lorentzian manifold having a globally hyperbolic regular covering.

Then, each free timelike homotopy class determined by a central deck transformation must contain a periodic timelike geodesic.

Guediri'02 (Math. Z., 239, 2002, 277-291)

- **Theorem:** Let (M,g) be a compact Lorentzian manifold having a globally hyperbolic regular covering.

 Then, each free timelike homotopy class determined by a central deck
 - Then, each free timelike homotopy class determined by a central deck transformation must contain a periodic timelike geodesic.
- **Theorem:** Any compact flat Lorentzian manifold contains some periodic causal geodesic.

Sánchez'06 (Diff. Geom. Appl., 24, 2006, 21-32)

Sánchez'06 (Diff. Geom. Appl., 24, 2006, 21-32)

Theorem: Let (M, g) be a compact Lorentzian manifold admitting a globally hyperbolic regular covering \tilde{M} .

Then, any finite conjugacy class C in the group of deck transformations of M containing a closed timelike curve admits some periodic timelike geodesic.

Sánchez' 06 (Diff. Geom. Appl., 24, 2006, 21-32)

- **Theorem:** Let (M,g) be a compact Lorentzian manifold admitting a globally hyperbolic regular covering \tilde{M} .

 Then, any finite conjugacy class C in the group of deck transformations of \tilde{M} containing a closed timelike curve admits some periodic timelike geodesic.
- **Theorem:** Any compact static spacetime admits a periodic timelike geodesic.

Sánchez' 06 (Diff. Geom. Appl., 24, 2006, 21-32)

- **Theorem:** Let (M,g) be a compact Lorentzian manifold admitting a globally hyperbolic regular covering \tilde{M} .

 Then, any finite conjugacy class C in the group of deck transformations of \tilde{M} containing a closed timelike curve admits some periodic timelike geodesic.
- **Theorem:** Any compact static spacetime admits a periodic timelike geodesic.
- * Additional hypothesis: $\pi_1(M)$ has some finite conjugacy class. Caponio, Masiello, Piccione: *Math. Z.*, **244**, 2003, 457-468

Guediri' 07 (Trans. AMS, 359, 2007, 2663-2673)

Let M be a compact Lorentzian manifold admitting a globally hyperbolic regular covering.

A non-trivial free timelike homotopy class C of closed timelike curves contains a longest periodic timelike geodesic iff the timelike injectivity radius of C is finite.

Guediri' 07 (Trans. AMS, 359, 2007, 2663-2673)

Let M be a compact Lorentzian manifold admitting a globally hyperbolic regular covering.

A non-trivial free timelike homotopy class C of closed timelike curves contains a longest periodic timelike geodesic iff the timelike injectivity radius of C is finite.

* The timelike injectivity radius of \mathcal{C} is $Tinj(\mathcal{C}) = \frac{1}{2} \sup_{\gamma \in \mathcal{C}} \operatorname{leng}_g(\gamma)$.

Guediri' 07 (Trans. AMS, 359, 2007, 2663-2673)

Let M be a compact Lorentzian manifold admitting a globally hyperbolic regular covering.

A non-trivial free timelike homotopy class C of closed timelike curves contains a longest periodic timelike geodesic iff the timelike injectivity radius of C is finite.

Sketch of Proof.

- Let \mathcal{C} be a non-trivial free homotopy class such that $Tinj(\mathcal{C}) < \infty$, and ϕ a deck transformation corresponding to \mathcal{C} .
- Then, $h_{\phi}(x) = \sup\{\tilde{d}(x, \psi^{-1} \circ \phi \circ \psi(x)) : \psi \in \Gamma\} < \infty \ \forall x \in \tilde{M}.$
- For each $x \in \tilde{M}$, $\exists \tilde{\psi}$ such that $h_{\phi}(x) = \tilde{d}(x, \tilde{\psi}^{-1} \circ \phi \circ \tilde{\psi}(x))$.
- $\exists x_0 \in \tilde{M} \text{ such that } h_{\phi}(x_0) = \sup\{h_{\phi}(x) : x \in \tilde{M}\} > 0.$

Guediri' 07 (Trans. AMS, 359, 2007, 2663-2673)

Let M be a compact Lorentzian manifold admitting a globally hyperbolic regular covering.

A non-trivial free timelike homotopy class C of closed timelike curves contains a longest periodic timelike geodesic iff the timelike injectivity radius of C is finite.

Sketch of Proof.

•

- Let $\tilde{\psi}_0 \in \Gamma$ such that $h_{\phi}(x_0) = \tilde{d}(x_0, \tilde{\psi}_0^{-1} \circ \phi \circ \tilde{\psi}_0(x_0))$ and let $\tilde{\gamma}$ tmlk. geod. from x_0 to $x_1 = \tilde{\psi}_0^{-1} \circ \phi \circ \tilde{\psi}_0(x_0)$, $h_{\phi}(x_0) = \operatorname{leng}_{\tilde{q}}(\tilde{\gamma})$.
- $\pi \circ \tilde{\gamma}$ is closed (perhaps broken) timelike geodesic in \mathcal{C} .
- Moreover, $\pi \circ \tilde{\gamma}$ is the longest curve in \mathcal{C} , and so, it is periodic. \square

Our Result

F, Javaloyes, Piccione: math.DG:0812.1163v2; to appear in *Math. Z*.

Killing Vector Fields and Isometries:

Let (M, g) be a semi-Riemannian manifold.

Killing Vector Fields and Isometries:

Let (M, g) be a semi-Riemannian manifold.

■ Iso(M, g) → Isometry Lie group of (M, g).

Killing Vector Fields and Isometries:

Let (M, g) be a semi-Riemannian manifold.

- Iso(M,g) → Isometry Lie group of (M,g).
- $\mathfrak{Iso}(M,g) o$ Lie algebra associated to $\overline{\mathrm{Iso}}(M,g)$. $\mathsf{Kill}(M,g) o$ algebra of Killing vector fields of (M,g).

Killing Vector Fields and Isometries:

Let (M, g) be a semi-Riemannian manifold.

- Iso(M,g) → Isometry Lie group of (M,g).
- $\mathfrak{Iso}(M,g) o$ Lie algebra associated to $\mathfrak{Iso}(M,g)$. $\mathsf{Kill}(M,g) o$ algebra of Killing vector fields of (M,g).
- The following map is an anti-isomorphism of Lie algebras:

$$\mathfrak{Iso}(M,g) \to \mathrm{Kill}(M,g), \quad \tau \mapsto K^{\tau} := d\beta_p(1)\tau, \quad p \in M,$$

where
$$\beta p : \text{Iso}(M, g) \to M, \beta_p(\Phi) = \Phi(p).$$

Killing Vector Fields and Isometries:

Let (M, g) be a semi-Riemannian manifold.

- Iso(M,g) → Isometry Lie group of (M,g).
- $\mathfrak{Iso}(M,g) o$ Lie algebra associated to $\mathfrak{Iso}(M,g)$. $\mathfrak{K}ill(M,g) o$ algebra of Killing vector fields of (M,g).
- The following map is an anti-isomorphism of Lie algebras:

$$\mathfrak{Iso}(M,g) \to \mathrm{Kill}(M,g), \quad \tau \mapsto K^{\tau} := d\beta_p(1)\tau, \quad p \in M,$$

where $\beta p : \text{Iso}(M, g) \to M, \beta_p(\Phi) = \Phi(p).$

Lemma: The following formula holds:

$$\Phi_* K^{\tau} = K^{\mathrm{Ad}_{\Phi}(\tau)} \quad \forall \Phi \in \mathrm{Iso}(M, g), \ \tau \in \mathfrak{Iso}(M, g)$$

O-Closed Killing Vector Fields:

Let K be the Killing vector field of (M, g) associated to $\tau \in \mathfrak{Iso}(M, g)$.

O-Closed Killing Vector Fields:

Let K be the Killing vector field of (M, g) associated to $\tau \in \mathfrak{Iso}(M, g)$.

K is *o-closed* if the 1-parametric subgroup of isometries $\{\exp(t\tau): t \in \mathbb{R}\} \subset \mathrm{Iso}(M,g)$ is closed.

O-Closed Killing Vector Fields:

Let K be the Killing vector field of (M,g) associated to $\tau \in \mathfrak{Iso}(M,g)$.

- K is *o-closed* if the 1-parametric subgroup of isometries $\{\exp(t\tau): t \in \mathbb{R}\} \subset \mathrm{Iso}(M,g)$ is closed.
- If K is a o-closed Killing vector field then their integral curves γ are circles or points (since $\gamma(t) = \exp(t\tau)p$, $\gamma(0) = p$).

O-Closed Killing Vector Fields:

Let K be the Killing vector field of (M,g) associated to $\tau \in \mathfrak{Iso}(M,g)$.

- K is *o-closed* if the 1-parametric subgroup of isometries $\{\exp(t\tau): t \in \mathbb{R}\} \subset \mathrm{Iso}(M,g)$ is closed.
- If K is a o-closed Killing vector field then their integral curves γ are circles or points (since $\gamma(t) = \exp(t\tau)p$, $\gamma(0) = p$).
- The converse of this result is true when (M, g) is a compact Riemannian manifold.

Theorem: Let (M, g) be a compact Lorentzian manifold with a Killing vector field K that is timelike at some point. Then, every $H \leq \text{Iso}(M, g)$ satisfying the property below is precompact:

$$(\Phi_* K)_p = \pm K_p \quad \forall \Phi \in H \ \forall p \in M. \tag{*}$$

Theorem: Let (M, g) be a compact Lorentzian manifold with a Killing vector field K that is timelike at some point. Then, every $H \leq \text{Iso}(M, g)$ satisfying the property below is precompact:

$$(\Phi_* K)_p = \pm K_p \quad \forall \Phi \in H \ \forall p \in M.$$
 (\star)

Corollary: Under the hypotheses above, the 1-parametric subgroup of isometries $H = \{exp(t \cdot \tau) : t \in \mathbb{R}\}$ generated by $K = K^{\tau}$ is precompact.

Theorem: Let (M, g) be a compact Lorentzian manifold with a Killing vector field K that is timelike at some point. Then, every $H \leq \text{Iso}(M, g)$ satisfying the property below is precompact:

$$(\Phi_* K)_p = \pm K_p \quad \forall \Phi \in H \ \forall p \in M. \tag{*}$$

Sketch of Proof.

- Let $p \in M$ such that $g(K_p, K_p) < 0$.
- Consider the following compact subsets of TM:

$$\begin{split} V &= \{ \pm K_q : q \text{ s.t. } g(K_q, K_q) = g(K_p, K_p) \} \\ V^\perp &= \{ v \in K_q^\perp : q \text{ s.t. } g(K_q, K_q) = g(K_p, K_p), \ |v| = 1 \}. \end{split}$$

- Let $b = \{v_1, \dots, v_n\} \subset T_pM$ ortn. base with $v_1 = K_p$.

Theorem: Let (M, g) be a compact Lorentzian manifold with a Killing vector field K that is timelike at some point. Then, every $H \leq \text{Iso}(M, g)$ satisfying the property below is precompact:

$$(\Phi_* K)_p = \pm K_p \quad \forall \Phi \in H \ \forall p \in M. \tag{*}$$

Sketch of Proof.

•

- From (\star) , every vector v of every base in the H-orbit of b belongs to $V \cup V^{\perp}$, which is compact.
- The subset $A \subset \mathcal{F}(M)$ formed by the ortn. basis which have all its vectors in $V \cup V^{\perp}$ is also compact.
- $\overline{\mathcal{A}}$ intersected with $\operatorname{Iso}(M, g)$ -orbit is compact in $\overline{\mathcal{F}}(M)$.

Theorem: Let (M, g) be a compact Lorentzian manifold with a Killing vector field K that is timelike at some point. Then, every $H \leq \text{Iso}(M, g)$ satisfying the property below is precompact:

$$(\Phi_* K)_p = \pm K_p \quad \forall \Phi \in H \ \forall p \in M. \tag{*}$$

Sketch of Proof.

•

- The H-orbit of b in $\mathcal{F}(M)$ is contained in this intersection.
- Therefore, the H-orbit of b is precompact in $\mathcal{F}(M)$.
- But H is homeomorph to the H-orbit of b in $\mathcal{F}(M)$.
- Hence, H is precompact in $\mathcal{F}(M)$. \square

Lemma: Let (M, g) be a semi-Riemannian manifold with a Killing vector field K. The integral curve of K through a critical point p_0 of $f(p) = g(K_p, K_p)$ is a geodesic.

- **Lemma:** Let (M,g) be a semi-Riemannian manifold with a Killing vector field K. The integral curve of K through a critical point p_0 of $f(p) = g(K_p, K_p)$ is a geodesic.
- **Corollary:** Let (M, g) a compact semi-Riemannian manifold with a Killing vector field $K \not\equiv 0$ whose integral curves are periodic. Then (M, g) admits some (non-trivial) periodic geodesic.

- **Lemma:** Let (M, g) be a semi-Riemannian manifold with a Killing vector field K. The integral curve of K through a critical point p_0 of $f(p) = g(K_p, K_p)$ is a geodesic.
- **Corollary:** Let (M, g) a compact semi-Riemannian manifold with a Killing vector field $K \not\equiv 0$ whose integral curves are periodic. Then (M, g) admits some (non-trivial) periodic geodesic.

Sketch of Proof:

- Integral curves of K through critical points of f are (perhaps constant) periodic geodesics.
- If $f \equiv 0 \Rightarrow$ any point is critical; since $K \not\equiv 0, \exists \infty$ many non-trivial periodic geodesics.
- If $f \not\equiv 0 \Rightarrow$ either min f or max $f \not\equiv 0$, and the corresponding integral curve is a non-trivial periodic geodesic. \square

- **Lemma:** Let (M, g) be a semi-Riemannian manifold with a Killing vector field K. The integral curve of K through a critical point p_0 of $f(p) = g(K_p, K_p)$ is a geodesic.
- **Corollary:** Let (M, g) a compact semi-Riemannian manifold with a Killing vector field $K \not\equiv 0$ whose integral curves are periodic. Then (M, g) admits some (non-trivial) periodic geodesic.

Moreover, if

- (a) either $\min g(K,K), \max g(K,K) \neq 0$, or
- (b) K does not vanish anywhere,

then there exist at least two (non-trivial) periodic geodesics.

- **Theorem:** Let (M, g) be a compact Lorentzian manifold with a Killing vector field K timelike at some point. Then (M, g) admits some periodic timelike geodesic. Moreover, if
 - (a) either min g(K, K), max $g(K, K) \neq 0$, or
 - (b) K does not vanish anywhere, then there are at least two (non-trivial) periodic geodesics.

- **Theorem:** Let (M, g) be a compact Lorentzian manifold with a Killing vector field K timelike at some point. Then (M, g) admits some periodic timelike geodesic. Moreover, if
 - (a) either min g(K, K), max $g(K, K) \neq 0$, or
 - (b) K does not vanish anywhere, then there are at least two (non-trivial) periodic geodesics.
- **Corollary** Any compact stationary Lorentzian manifold admits at least two (non-trivial) timelike periodic geodesics.

- **Theorem:** Let (M, g) be a compact Lorentzian manifold with a Killing vector field K timelike at some point. Then (M, g) admits some periodic timelike geodesic. Moreover, if
 - (a) either min g(K, K), max $g(K, K) \neq 0$, or
 - (b) K does not vanish anywhere, then there are at least two (non-trivial) periodic geodesics.
- **Corollary** Any compact stationary Lorentzian manifold admits at least two (non-trivial) timelike periodic geodesics.

- **Theorem:** Let (M, g) be a compact Lorentzian manifold with a Killing vector field K timelike at some point. Then (M, g) admits some periodic timelike geodesic. Moreover, if
 - (a) either min g(K, K), max $g(K, K) \neq 0$, or
 - (b) K does not vanish anywhere, then there are at least two (non-trivial) periodic geodesics.

Sketch of Proof:

- $G = \{exp(t \cdot \tau) : K = K^{\tau}, t \in \mathbb{R}\}$ is precompact.
- $\overline{G} \leq \mathrm{Iso}(M,g)$ is abelian and compact, hence $\overline{G} \cong \mathbb{T}^n$ torus.
- Let \mathfrak{g} be the Lie algebra associated to $\overline{G} \cong \mathbb{T}^n$.
- $\exists \{\tau_n\} \subset \mathfrak{g}, \tau_n \to \tau$, with τ_n generating closed 1-parametric subgroup in \overline{G} . In particular, K^{τ_n} are o-closed Killing.

- **Theorem:** Let (M, g) be a compact Lorentzian manifold with a Killing vector field K timelike at some point. Then (M, g) admits some periodic timelike geodesic. Moreover, if
 - (a) either min g(K, K), max $g(K, K) \neq 0$, or
 - (b) K does not vanish anywhere, then there are at least two (non-trivial) periodic geodesics.

Sketch of Proof:

•

- Since $K_p^{\tau}=(d\beta_p)_1(\tau)$, $K_p^{\tau_n}=(d\beta_p)_1(\tau_n)$ and M is compact, $K_p^{\tau_n}\to K_p$ uniformly in $p\in M$.
- Therefore, K^{τ_n} are timelike at some point for n big enough.
- Apply previous corollary to K_n for n big enough. \square

- **Theorem:** Let (M, g) be a compact Lorentzian manifold with a Killing vector field K timelike at some point. Then (M, g) admits some periodic timelike geodesic. Moreover, if
 - (a) either min g(K, K), max $g(K, K) \neq 0$, or
 - (b) K does not vanish anywhere,

then there are at least two (non-trivial) periodic geodesics.

Finally, if K has at most one periodic integral curve, then there exist infinitely many (non-trivial) periodic geodesics.

Some Consequences:

- Any Lorentzian torus (\mathbb{T}^2, g) with a Killing vector field $K \not\equiv 0$ contains at least two *geometrically distinct* (non-trivial) periodic non self-intersecting geodesics.
- Any simply connected compact real-analytic Lorentzian manifold (M, g) with $\dim(\operatorname{Iso}(M, g)) > 0$ contains some (non-trivial) periodic geodesic.
- Compact semi-Riemannian manifolds of index k > 1 that admits m Killing vector fields K^1, \ldots, K^m which generate a negative definite subspace for g of dimension m at some point p, have infinitely many distinct periodic geodesics.

Proposition: A compact manifold M admits a Lorentizian metric with a nowhere vanishing Killing vector field that is timelike somewhere iff it is diffeomorphic to a generalized Seifert fibered space. In this case, the metric can be chosen to have a timelike Killing vector field.

- **Proposition:** A compact manifold M admits a Lorentizian metric with a nowhere vanishing Killing vector field that is timelike somewhere iff it is diffeomorphic to a generalized Seifert fibered space. In this case, the metric can be chosen to have a timelike Killing vector field.
- * A compact manifold M is a generalized Seifert fibered space if it admits a smooth \mathbb{S}^1 without fixed points.

- Proposition: A compact manifold M admits a Lorentizian metric with a nowhere vanishing Killing vector field that is timelike somewhere iff it is diffeomorphic to a generalized Seifert fibered space. In this case, the metric can be chosen to have a timelike Killing vector field.
- * A compact manifold M is a generalized Seifert fibered space if it admits a smooth \mathbb{S}^1 without fixed points.
- The connection between the topology of compact stationary Lorentzian manifolds and Seifert manifolds already appears in:
 - A. Romero, M. Sánchez: *Proc. AMS* **123**, 1995, 2831-2833.

Proposition: A compact manifold M admits a Lorentizian metric with a nowhere vanishing Killing vector field that is timelike somewhere iff it is diffeomorphic to a generalized Seifert fibered space. In this case, the metric can be chosen to have a timelike Killing vector field.

Sketch of Proof:

 \Rightarrow

- There exists a nowhere vanishing o-closed Killing field K.
- The 1-parameter group of isometries generated by K gives a smooth \mathbb{S}^1 -action without fixed points.
- K is tangent to the fibers of this action.

Proposition: A compact manifold M admits a Lorentizian metric with a nowhere vanishing Killing vector field that is timelike somewhere iff it is diffeomorphic to a generalized Seifert fibered space. In this case, the metric can be chosen to have a timelike Killing vector field.

Sketch of Proof:

- Consider a smooth action of \mathbb{S}^1 on \overline{M} without fixed points.
- By a standard averaging argument, there exists a Riemannian metric g_R which makes the action \mathbb{S}^1 isometric
- Consider the Lorentzian metric g associated to g_R and K.
- Then K is timelike and g-Killing. \square

- **Proposition:** A compact manifold M admits a Lorentizian metric with a nowhere vanishing Killing vector field that is timelike somewhere iff it is diffeomorphic to a generalized Seifert fibered space. In this case, the metric can be chosen to have a timelike Killing vector field.
- **Corollary:** Let (M,g) be a compact Lorentzian manifold with a nowhere vanishing o-closed Killing vector field on M. Consider the \mathbb{S}^1 -action on M determined by K. Then, there are at least $cat_{\mathbb{S}^1}(M)$ distinct periodic non self-intersecting geodesics in M.

- **Proposition:** A compact manifold M admits a Lorentizian metric with a nowhere vanishing Killing vector field that is timelike somewhere iff it is diffeomorphic to a generalized Seifert fibered space. In this case, the metric can be chosen to have a timelike Killing vector field.
- **Corollary:** Let (M,g) be a compact Lorentzian manifold with a nowhere vanishing o-closed Killing vector field on M. Consider the \mathbb{S}^1 -action on M determined by K. Then, there are at least $\operatorname{cat}_{\mathbb{S}^1}(M)$ distinct periodic non self-intersecting geodesics in M.
- * Let χ be a G-space, i.e. a topological space on which a compact group G is acting continuously. Then, $cat_G(\chi)$ is the cardinality of minimal family of G-categorical (defined by using G-invariant homotopy) open sets covering χ .

Proposition: Let (M,g) be a compact Lorentzian manifold with a nowhere vanishing o-closed Killing vector field which is timelike at some point. Let $\pi: M \to M_0$ canonical projection with

$$M_0 := M/\mathbb{S}^1$$
 space of orbits of the \mathbb{S}^1 -action.

Then, the group $\operatorname{Iso}(M,g;\pi)$ of the isometries of (M,g) preserving the fibration is compact.

Proposition: Let (M,g) be a compact Lorentzian manifold with a nowhere vanishing o-closed Killing vector field which is timelike at some point. Let $\pi: M \to M_0$ canonical projection with

$$M_0 := M/\mathbb{S}^1$$
 space of orbits of the \mathbb{S}^1 -action.

Then, the group $\operatorname{Iso}(M,g;\pi)$ of the isometries of (M,g) preserving the fibration is compact.

Sketch of Proof:

- $\phi \in \text{Iso}(M, g; \pi)$ iff $\phi_* K = \lambda K, \lambda : M \to \mathbb{R}$ smooth function.
- ϕ isometry $\Rightarrow \phi_* K = \lambda K$ Killing (and K Killing) $\Rightarrow \lambda \equiv$ cte.
- $\min_p |K_p|^2 = \min_p |K_{\phi^{-1}(p)}|^2 = \min_p |(\phi_* K)_p|^2 = \lambda^2 \min_p |K_p|^2$.
- Hence $\lambda \equiv \pm 1$, and so, $\phi_* K = \pm K$ for all $\phi \in \text{Iso}(\overline{M}, g; \pi)$.

Proposition: Let (M,g) be a compact Lorentzian manifold with a nowhere vanishing o-closed Killing vector field which is timelike at some point. Let $\pi: M \to M_0$ canonical projection with

$$M_0 := M/\mathbb{S}^1$$
 space of orbits of the \mathbb{S}^1 -action.

Then, the group $\operatorname{Iso}(M,g;\pi)$ of the isometries of (M,g) preserving the fibration is compact.

Sketch of Proof:

•

- In particular, $H = \text{Iso}(M, g; \pi)$ verifies criterium (*).
- From our technical result, $\operatorname{Iso}(M, g; \pi)$ is precompact.
- Since $\operatorname{Iso}(M, g; \pi)$ is closed in $\operatorname{Iso}(M, g)$, it is compact. \square

Corollary: Let (M, g) be a compact Lorentzian manifold with a Killing vector field that is timelike somewhere and assume that Iso(M, g) is abelian. Then, Iso(M, g) is compact.

Sketch of Proof:

- Since Iso(M, g) is abelian, $Ad_{\phi} = Id$ for all $\phi \in Iso(M, g)$.
- From previous formula,

$$\phi_* K^{\tau} = K^{Ad_{\phi(\tau)}} = K^{\tau} \quad \forall \phi \in \text{Iso}(M, g).$$

In particular, H = Iso(M, g) verifies the criterium (\star)

- Therefore, $\operatorname{Iso}(M,g)$ must be compact. \square

Fundamental Open Question

Does any compact Lorentzian manifold admit some periodic geodesic?

GRAZIE!!