Formal Languages & Regular Languages

Exercise 1

Let the alphabet A be binary digits. $A = \{0, 1\}$

For the exercise, we consider each word of A^* to represent a number in \mathbb{N} , in the usual way:

0	represents	0
1	represents	1
110	represents	6
1010	represents	10

Note that leading zeros are ignored, and that the empty string \mathcal{E} is assigned the value 0.

```
\begin{array}{ccc} 0011 & \text{represents} & 3 \\ \epsilon & \text{represents} & 0 \end{array}
```

Question 1.1

Define a function $f: A^* \to \mathbb{N}$ that converts words over the alphabet A into numbers in \mathbb{N} according to the above specification.

Question 1.2

Let E be the language of even numbers: $E = \{ w \in A^* \mid f(w) \text{ is even } \}$

Prove that EE = E. To do so, prove that all elements of E are also elements of EE, and that all elements of EE are also elements of E.

Question 1.3

Prove that $E^* = E$. You may find the fact you have proven in question 1.2 to be useful here.

Question 1.4

Build a regular expression whose language is E.

Exercise 2

Let A be some alphabet and let $f: A^* \to \{true, false\}$ be a computable function from A^* to true or false. Let L be the language defined by f.

$$L = \{ w \in A^* \mid f(w) = true \}$$

Find an algorithm that, given a word over the alphabet A, decides whether the word is part of L*, the Kleene closure of L. Your algorithm may of course invoke f, but only a number of times polynomial in the size of the input word.