es. 1.2018

$$\Sigma_i = \{\alpha, b\}$$

(i)
$$L_1 = \{ a^n b^{n+1} | n > 0 \}$$

Si assuma che L1 sia regolare, allora soddisfa il Pumping lemma. Abbia il DFA di L1 n stati, allora $a^nb^{n+1} = xyz$ con $y \neq \varepsilon$, $|xy| \leq n$ e $xy^iz \in L_1 \ \forall i \in \mathbb{N}$. $y e^i$ composizione di a, ma $x \neq L_1$, ξ . Quindi L1 non e' regolare.

$$P = \{E \rightarrow abb \mid aEb\}$$
 $G = \{\{E\}, \{a,b\}, P, E\}$ accetta L_1 , $q_0:ud: L_1$ e' libero.

Si assuma che La sia regolare, allora soddisfa il Pumping lemma. Abbia il DFA di La n stati, allora anb^m = xyz con $y \ne \varepsilon$ (manzo), $|xy| \le n$ e $xy^iz \in L_1 \ \forall i \in \mathbb{N}$. $y e^i$ composizione di a, ma xy^mz sicuramente ha piu' a che $b \Rightarrow xy^mz \not\in L_2, \not a$. Quindi La non e' regalare.

$$P = \{E \rightarrow ab \mid aEb \mid Eb\}$$
 $G = (\{E\}, \{a,b\}, P, E)$ accetta L_2 , quind; L_2 & libero.

C: some due alber: sintattic; che hanno ababab
come formo sentenziale, quindi la grammatica
e' ambigua.

$$P = \{E \rightarrow S | SE, S \rightarrow ab | aSb\}$$
 invece non è ambigua.

es. 2.2018

```
int REComissing (int A[], int p, intr) {
    if (p == r) {
       return A[p];
    if (A[p]!= p) {
       return p;
    l else :f (A[r] != r+1) {
      return r+1;
    } else {
      int c = (p+r)/2;
      if (A[c] == c) {
          return RECmissing (A, C+1, r-1);
      } else {
         return RECMissing (A, p+1, C-1);
```

(i)
$$Z = \{0, 1\}$$
 $L = L((01)^*) \Rightarrow perm(L) = \{w \in \{0, 1\}^*\}$
w abbia lo stesso numero di $0 \in d: 1\}$

S; assume the perm(L) sie regolere e the un suo DFA abbie n stati. Per : I Pumping lemme, $w = oh_{\perp}^{n} \in \text{eperm}(L)$ et t.c. $w = xy^{2} | |xy| \le n$, $y \ne \varepsilon$, $xy^{i}z \in \text{eperm}(L)$ $\forall i \in \mathbb{N}$. Tultavie $y \in \text{eperm}(L)$ won et regolere. e $x \ge \emptyset$ perm(L), \emptyset . Quind: perm(L) won et regolere.

(ii)
$$\Sigma = \{0, 1, 2\}$$
 $L = L((012)^*) \Rightarrow perm(L) = \{w \in \{0, 1, 2\} | w \in \{0, 1, 2\} \}$

S: assume the perm(L) sia libero e the una sua grammatica abbia n producioni. Per il Pumping lemma, $w = 0^n 1^n 2^n \in \text{perm}(L)$ e' t.c. $w = \text{abcde } | \text{Ibcdl} \leq n$, bd $\neq \epsilon$, $\text{ab'cd'e} \in \text{perm}(L) \; \forall i \in \mathbb{N}$. Tuttavia bcd non può contenere sia 0 che 2:

· se non contiene 2, ace & perm(L) perché

i 2 sono sicuramente in numero maggiore, \$.
· se non contiene 0, analogo, 5.
0
Quind: perm (L) non è libero.
comma, per un (2) hour e mocro,