Determining the Noise Behaviour of the German Vehicle Fleet by Measurement

Project of the Federal Department of Environment

Determine the **noise behaviour** of the german vehicle fleet by making measurments in **30** different locations

Project aim: develop a classification method for passenger cars and heavy vehicles in order to distinguish them

Timeline

- Kick-Off
- Introduction to problem
- Project management
- Data processing: analyze data distribution & use different data features
- Machine Learning: try different models

Day 1 - 08/01

Day 2 - 09/01

- Continue with data processing
- Machine Learning: build one big model
- Continue with data processing
- Model training
- · Model testing
- Perfomance analysis
- Look into futher approaches
- Reflection meeting

Day 3 - 10/01

Day 4 - 11/01

- Look deeper into futher approaches
- Analyse results
- Documentation

- Presentation
- Poster creation

Day 5 - 12/01

Problem Approach

Captured Data

'ID':	unique ID
'MP':	measurement location number
'IDMP':	measurement location specific ID
'timestamp':	time stamp
'Lmax1':	max sound pressure level (SPL) channel 1
'Lmax2':	max SPL channel 2
'Lmax3':	max SPL channel 3
'levelTime1':	level-time-curve channel 1
'levelTime2':	level-time-curve channel 2
'levelTime3':	level-time-curve channel 3
'prominencel':	peak prominence of level-time-curve channel 1
'prominence2':	peak prominence of level-time-curve channel 2
'prominence3':	peak prominence of level-time-curve channel 3
'width1':	peak width of level-time-curve channel 1
'width2':	peak width of level-time-curve channel 2
'width3':	peak width of level-time-curve channel 3
'T6_1':	T6 time channel 1
'T6_2':	T6 time channel 2

```
'Leq1':
                     equivalent SPL channel 1
'Leq2':
                     equivalent SPL channel 2
'SEL1':
                     sound exposure level channel 1
'SEL2':
                     sound exposure level channel 2
'thirdSpectrum1':
                     third-octave band spectrum channel 1
'thirdSpectrum2':
                     third-octave band spectrum channel 2
'thirdSpectrum3':
                     third-octave band spectrum channel 3
'trajectory':
                     passby localization angle over time
'distance':
                     distance between vehicle and microphone
'temperature':
                     air temperature
'relativeHumidity':
                     air humidity
'windSpeed':
                     wind speed
'velocity':
                     vehicle speed
                     vehicle length (estimated by radar)
'radarPulses':
'timeGap':
                     time to previous vehicle
'vehicleClass':
                     vehicle category
```


Captured Data - Examples

Level of the pass-by Third spectrum Localization trajectory Solution in the pass-by and the

- 'Lmax': max sound pressure level (max in 'levelTime' curve)
 - T 6: width of the peak in 'levelTime' curve at (Lmax 6) dB
- 'thirdSpectrum': third-octave spectrum measured at a short time interval around the time point of max sound level
- 'trajectory': measure of vehicle localization (angle between mic pair axis and direction of sound)

Data Processing – Slope of trajectory as an additional data feature

time, s

Data Processing – Filtering out noise in leveltime-curves

- Cropping 'levelTime' data at T_6 interval can help to get rid of noise produced by non-target cars in audio recordings
- Should be handled carefully in case of closely following cars (the peaks might not be resolved with 6 dB criterion)

Data Processing – Deleting data features by normalization

- Max sound pressure level (Lmax) linearly increases with Ig(velocity)
- The feature 'velocity' can be discarded if the Lmax values are normalized by Ig(velocity)

Scatter plots of Lmax vs. velocity and respective regression curves

Data: Vehicle Class Distribution

Data Processing: Filter Features

'ID'

df: all datapoints, **all features** (40114 x **34**)

filtered_df: all datapoints, **suggested features** (40114 x 9)

```
'MP'
'Lmax1'
'levelTime1
'T6_1'
'thirdSpectrum1'
'trajectory'
'radarPulses'
```

'vehicleClass'

Data Processing: Adjust Class Distribution

Shuffel data table

ID	MP	Lmax1	levelTime1	T6_1	thirdSpectrum1	trajectory	radarPulses	vehicleClass
1384	MP2	0,00909	[61.68, 62.05,	1,9	[32.82, 44.63, 36.6	[-20.0, -19.0	822	LKW
3942	MP4	0,00844	[64.0, 64.22, 6	2,9	[31.4, 24.98, 30.28	[-20.0, -20.0	412	PKW
39678	MP29	0,01015	[70.915, 71.49	1,3	[34.38, 42.45, 43.5	[-1.0, -5.5, -	374	PKW

Extract equal datapoints for each class

filtered_final_df: datapoints with equal ratio 'Else': 'LKW': 'PKW' (10563x9)

Distribution over all locations of **filtered_df** (**40114** x 9)

Data Processing: Normalize Data

Normalization

Single values: find min and max values in column, normalize values as

 $new_x = (x-min)/(max-min)$

Arrays: divide each value in every array with the max value found in the column

Remove locations with special conditions

Location	Condition
MP 30, MP 5	Road surface
MP 12, MP 13	Winter

Data Processing: Datasets

Color code: designed, created, used

Name	Description	Size	
ID1	all datapoints, all features	29882 x 34	
ID2	all datapoints, selected features	39676 x 9	
ID3	all datapoints, all features, 3 classes		
ID4	all datapoints, selected features, 3 vehicle classes		
ID5	all features, 3 equally distributed vehicle classes		
ID6	selected features, 3 equally distributed vehicle classes		
ID7	all features, 3 equally distributed classes, special locations in bottom rows		
ID8	selected features, 3 equally distributed vehicle classes, special locations in bottom rows		
ID9	selected features, 3 equally distributed vehicle classes, special locations excluded	9873 x 9	
ID10	selected features, 3 equally distributed vehicle classes, additional features		

Machine Learning Model

Machine Learning Model

Model Testing

Epoch accuracy

Epochs = 15, batch_size = 64, learning_rate = 1e-2

Test Accuracy

Results

Results

- a robust classification between LKW (trucks) and PKW (cars) based on the given datasets.
- There is a noticeable limitation when identifying the 'Else' group, evidenced by its lower true positive rate.
- The model trained with data on special roads performs well on datasets, but reversely it doesn't. It is suggested using the dataset with the special road for the training process

Conventional Machine Learning Model

K Nearest Neighbors(KNN)

https://medium.com/@sachinsoni600517/k-nearest-neighbours-introduction-to-machine-learning-algorithms-9dbc9d9fb3b2

Three Classes:

PKW; LWK; Else

Input:

float array

Output:

classification index

Testing Results

Training size	Dataset	lnnut	Acquiracy		c	onfusion Matrix		
Training size	Dalasel	Input	Accuracy	9 - 6	35	1760	283	- 10000
				ů.				- 8000
		levelTime1,	all: 0.81524	rue Labels PRW -	38	10880	35	- 6000
(23243, 188)	ID4_normalized. csv	trajectory, thirdSpectrum1	LKW: 0.81905 PKW: 0.94997	,				- 4000
	03 ¥	T6_1,	Else: 0.23712	NO - 2	02	45	1118	- 2000
		Lmax1, RadarPulse		E	se	PKW Predicted Labels	LKW	
		levelTime1, trajectory, thirdSpectrum1	all: 0.69073 LKW: 0.91007			Confusion Matrix		- 1200
(6130, 188)	ID6_normalized.			WON -	1265	8	117	- 1000
•				ue Labeis PKW	22	979	356	- 800 - 600
three classes equally distributed	CSV	T6_1, Lmax1,	PKW: 0.72144 Else: 0.43209	Ē				- 400
equally distributed		RadarPulse		를 -	217	544	579	- 200
					LKW	PKW Predicted Labels	Else	
		levelTime1,				Confusion Matrix		
(=== (trajectory,	all: 0.70075	w.		14	114	- 1000
(5794, 188) remove special location	ID9_normalized. csv	thirdSpectrum1 T6_1,	LKW: 0.90214 PKW: 0.74240 Else: 0.45900	si s				- 800
		Lmax1,		True Labels PKW	20	928	302	- 600
		RadarPulse		9g -	224	482		- 200
					uśw	PKW	Else	
			_	<u>.</u> =	<u></u>	Predicted Labels Technische	77 27	

Testing Results

Training size	Dataset	Input	Accuracy		Confusion Matrix		
				M) - 1268	14	108	- 1200 - 1000
(6130, 24)	ID6_normalized. csv	thirdSpectrum1	all: 0.69195 LKW: 0.91223 PKW: 0.67797	True Labels PKW - 52	920	412	- 800
			Else: 0.47761	중 - 232	468	640	- 400 - 200
		lovelTime4		uów	PKW Predicted Labels Confusion Matrix	Else	- 1200
(6130, 188)	ID6_normalized.	levelTime1, trajectory, thirdSpectrum1	all: 0.69073 LKW: 0.91007	WH - 1265		117	- 1000 - 800
three classes equally distributed	CSV	T6_1, Lmax1, RadarPulse	PKW: 0.72144 Else: 0.43209	True Labels PKW N	979	356	- 600 - 400
				∰ - 217 LKW	544 PKW Predicted Labels	579 Else	- 200
(2043, 188)			all: 0.67813		Confusion Matrix		2500
reduced training	ID6_normalized.	_	LKW: 0.90214 PKW: 0.74240	MX- 250	27	267	- 2000 - 1500
size			Else: 0.45900 all: 0.69814	True Label PKW 45	1950	679	- 1000
(8173, 188) increase training size	ID6_normalized. csv	_	LKW: 0.91079 PKW: 0.73252	∰ - 428 UKW		1092 Else	- 500
			Else: 0.45152 MBBM MÜLLER-BBM GROUP	1.000+	Technische Universität München	ПЛ	

Results II

- Commendable performance with a small dataset. As the volume of data increases, the model shows a slight improvement
- The model is good at distinguishing between 'PKW' and 'LKW' categories. However, its ability to differentiate the 'else' category is relatively weak
- The 'thirdSpectrum' feature plays a crucial role in enhancing the model's performance

Final Results

- 2 Machine Learning approaches to classify the vehicles
- Different Data Processing steps to improve classification process
- Improvement of softskills
- Poster with overview of project week

Technische Universität München

Determining the Noise Behaviour of the German Vehicle Fleet by Measurement

Müller-BBM Industry Solutions GmbH - Project of the Federal Department of Environment

Lingfeng Gu, Xiaoheng Hu, Aleksandra Kolbasnikova, Nolwen Prat, Nathalie Schneider, Alemsah Tanriverdi

Conclusion

- Dataset contains a lot of information and measurements
- Vehicle classes are unevenly distributed
 - → wrong impression of high performing model
- In depth analysis of recorded data has much potential (sound pressure level vs velocity,..)
- Model fine-tuning has some impact
- Both models do good classification between 'LKW' and 'PKW'
- 'Else' group is difficult to classify

Outlook

- Put more focus on data processing, especially physical analyses
- Increase number of relevant features
- Investigate if some features could be excluded due to missing impact
- Determine features for distinguishing between 'LKW' and ,Else'
- Collect more data from underrepresented classes to have more data for training