Kontrol Noktası

Aşağıda verilen metin ve tablodan yararlanarak soruları cevaplayınız.

Ülkemizde modern anlamda demir-çelik üretimine yönelik ilk girişimler Cumhuriyet Dönemi'nde başlamış ve ilk demir-çelik tesisi 1932'de Kırıkkale'de kurulmuştur. Demirin kimyasal simgesi olan Fe, Latince "demir" anlamına gelen "ferrum" kelimesinden türetilmiştir. Demirin atom numarası 26, mol kütlesi 56'dır. Yer kabuğunda büyük miktarda bulunan birçok mineralden elde edilen demir, doğada serbest hâlde çok bulunmaz. Başlıca demir mineralleri hematit (Fe_2O_3), limonit ($\text{2Fe}_2\text{O}_3$.2 H_2O), manyetit (Fe_3O_4), siderit (FeCO_3) ve pirittir (FeS_2). Aşağıdaki tabloda bazı demir minerallerinin 1 molünün kütlesi verilmiştir.

Mineral	Mol kütlesi (g/mol)	1 molün kütlesi (g)			
Hematit (Fe ₂ O ₃)	2 x 56 + 3 x 16 = 160	160			
Manyetit (Fe ₃ O ₄)	3 x 56 + 4 x 16 = 232	232			
Siderit (FeCO ₃)	56 + 12 + 3 x 16 = 116	116			

1.	112 g saf demir elde etmek için kullanmanız gereken hematit, manyetit ve siderit miktarını ifade
	edebilecek bir hipotez kurunuz. Hipotezinizi mol kütlesi ve bileşikteki demir atomu sayısına
	dayandırarak açıklayınız.

2. Belli miktarlarda alınan hematit, manyetit ve siderit minerallerine ayrı ayrı indirgeme işlemi uygulanıyor. Her bir indirgeme işleminden sonra saf demir dikkatlice çıkarılarak hassas bir terazi ile tartılıyor. Tartım sonuçları aşağıdaki tabloda verilmiştir.

Mineral	Kullanılan miktar	Saf demir miktarı (g)		
Fe ₂ O ₃	1 mol	112		
Fe ₃ O ₄	2/3 mol	112		
FeCO ₃	2 mol	112		

a)	Birinci basamakta oluşturduğunuz nipotezinizin doğruluğunu deneysel sonuçları
	kullanarak test ediniz.

b)	Hipotezinizi	açıklarken	hangi	değişkenleri	kontrol	edeceğinizi	ve	sonuçları	nası
	değerlendire	ceğinizi yazı	nız.						

3.	Avogadro sayısı, bir elementin bir molündeki atom sayısı ya da bir bileşiğin bir molündeki molekül sayısı
	olarak tanımlanır. Avogadro sayısının sayısal değeri 6,02 •10 ²³ tür.
	Buna göre 1 mol hematit, manyetit ve siderit bileşiklerindeki demir atomu sayılarını hesaplayınız.