FYS4150 - Project 1

Heine H. Ness & Sindre R. Bilden*

University of Oslo h.h.ness@fys.uio.no; s.r.bilden@fys.uio.no

September 12, 2016

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

I. Introduction

His project will examinate different techniques for approximating the solution to a differential equation where a continious function is known. The equation describes an electrostatic potential Φ generated by a localized charge density $\rho(\vec{r})$ and is usually described - in three dimentions - by:

$$\nabla^2 \Phi = -4\pi \rho(\vec{r}) \tag{1}$$

If $\rho(\vec{r})$ is spherical symmetric, eq. 1 may be written in a one-dimentional manner by substituting $\phi(r) = r\Phi(r)$:

$$\frac{d^2\phi(r)}{dr^2} = -4\pi r \rho(r) \tag{2}$$

By rewriting eq. 2 to a general form it reads:

$$-u''(x) = f(x) \tag{3}$$

In this spesific case, the Poisson equation is solved by *Gaussian elimination* of a set of linear equations, both in a general manner and an optimized way of a spesific matrix. The optimized method is later compared with another general method called *LU-decomposition*.

II. Methods

The methods used in this projects are the following:

- Dirichlet boundary conditions
- Nummerical derivation
- Gaussian elimination
- LU-decomposition

i. Dirichlet boundary condition

Dirichlet boundary conditions - also refered to as fixed boundary condition - specifies the value of a given function on a surface T = f(r,t). In a one-dimentional problem it translates to defining an interval of $x - x \in [x_{min}, x_{max}]$ - and the function values $f(x_{min}) = f_l$ and $f(x_{max}) = f_h$ at the edges of the intervall.

ii. Nummerical derivarion

The derivative of a discrete funtion may be found by nummerical derivation. The principle of nummerical derivation is a result of Taylor expansion. By expanding a function from a point x with a step h, two equations form

^{*}A thank you or further information

depending on the direction:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x)\dots$$
 (4)

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x)\dots$$
 (5)

By adding eq. 5 to eq. 4, a approximation for the second derivative is achieved.

$$f'' = \frac{f_{+} - 2f + f_{-}}{h^{2}} + \frac{h^{4}}{6h^{2}}f^{IV}$$
 (6)

Where $f_+ = f(x+h)$, f = f(x), $f_- = f(x-h)$ and f^{IV} is the fourth derivative of f(x). By truncating the series at the fourth derivative a small mathematical error - \mathcal{O} - appears in the order of h^2 . If a discrete funtion is introduced where $f_i = f(x_i) = f(c_0 + ih)$, eq. 6 may be rewritten to an algorithm for the nummerical second derivative.

$$f_i'' = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} \tag{7}$$

In eq. 7 the mathematical error $\mathcal{O}(h^2)$ is neglected.

iii. Gaussian elimination

Gaussian elimination is a method for simplifying a set of linear equations. It is easly visualized through a matrix notation.

$$\begin{bmatrix} a_1 1 & a_1 2 & a_1 3 \\ a_2 1 & a_2 2 & a_2 3 \\ a_3 1 & a_3 2 & a_3 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$
(8)

iv. LU-decompostition

Text requiring further explanation¹.

III. RESULTS

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit

ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

$$e = mc^2 (9)$$

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

IV. Discussion

i. Subsection One

A statement requiring citation [Figueredo and Wolf, 2009]. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent

¹Example footnote

in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

ii. Subsection Two

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

REFERENCES

[Figueredo and Wolf, 2009] Figueredo, A. J. and Wolf, P. S. A. (2009). Assortative pairing and life history strategy - a cross-cultural study. *Human Nature*, 20:317–330.

Table 1: *Example table*

Name		
First name	Last Name	Grade
John Richard	Doe Miles	7.5