Rebuttal Material for Paper # 4515

This document contains the following items:

- A new modified Assurance game and new MANSA CL call plot
- Area under curve results for StarCraft Multi-Agent Challenge
- Area under curve results for Level-Based Foraging
- MANSA SMAC maps with extra seeds
- Win rate training curves for MANSA with restriction on CL updates and baselines in SMAC
- Return training curves for MANSA with restriction on CL updates and baselines in LBF
- Win rates for MANSA-B (MANSA with budget constraint) with restriction on CL updates and baselines
- Pseudocode for MANSA

	Up	Down
Up	$5(1+\alpha), 5(1+\alpha)$	$10\alpha, 10\alpha$
Down	$10\alpha, 10\alpha$	10, 10

Table 1: Modified reward functions of Assurance Game.

	AUC	std
MANSA	0.667676	0.013114
QMIX	0.621228	0.048804
IQL	0.3949	0.009503

Table 2: Mean and standard deviation of each algorithm at each step in each map from SMAC.

MANSA with CL training restriction (MANSA_CLR) imposes the restriction that CL updates can only occur when the Global agent makes a CL call (i.e. when g = 1). The following training plots display the results for MANSA_CLR against the baselines.

Figure 1: MANSA CL calls in Modified Assurance game in Table 1.

Figure 2: Area under the curve (normalised) results in all tested StarCraft Multi-agent Challenge maps.

	AUC	std
MANSA	0.692759	0.007762
QMIX	0.363176	0.009317
IQL	0.617038	0.006738

Table 3: Mean and standard deviation of each algorithm at each step in each map from LBF.

Figure 3: Area under the curve (normalised) results in all tested Level-Based Foraging maps.

Figure 4: MANSA and baselines with 5 seeds in the StarCraft Multi-Agent Challenge (SMAC) map Corridor.

Figure 5: End-of-training returns of MANSA with implementation with CL update restriction (MANSA_CLR) in Level-Based Foraging (LBF).

Figure 6: End-of-training win-rates of MANSA with implementation with CL update restriction (MANSA_CLR) in StarCraft Multi-Agent Challenge (SMAC).

	Original/QMIX/IQL	10%	20%	50%	75%
2m_vs_1z	98.00 ± 1.00 92.00 ± 1.63 87.00 ± 0.82	$\begin{vmatrix} 100.00 \\ \pm 0.00 \end{vmatrix}$	99.67 ± 0.57	96.67 ± 3.05	$99.00 \\ \pm 0.00$
2s3z	96.67 ± 1.24 95.67 ± 1.8 79.67 ± 6.69	82.00 ±1.41	82.33 ±5.18	81.67 ±1.69	96.33 ± 0.47

Table 4: End-of-training win-rates of MANSA-B with implementation with CL update restriction and various CL call budget constraints against baselines.

Algorithm 1 Multi Agent Network Selection Algorithm (MANSA)

```
Input: Independent policies \pi^i, centralised policies \pi^c.
          Global policy \mathfrak{g}_0, independent learning algorithm
          \Delta^i, centralised learning algorithm \Delta^c, learning al-
          gorithm for Global \Delta^g, experience buffer B
Output: Optimised policies \pi^{i^*}, \pi^{c^*}, and \mathfrak{g}^*
for t = 1, T do
     Given environment state s_t evaluate g_t \sim \mathfrak{g}(\cdot|s_t)
     if g_t = 1 then
          Sample action using global state a_t \sim \pi^c(\cdot|s_t) Use
            Central
     else
          Sample action using local observations a_t \sim
            \pi^d(\cdot|\boldsymbol{\tau}_t) Use Independent
     Apply action a_t to environment to obtain s_{t+1}, \tau_{t+1}
      and r_{t+1} := \sum_{i \in \mathcal{N}} r_{i,t+1}
     Store (s_t, \boldsymbol{\tau}_t, \boldsymbol{a}_t, r_{t+1}, s_{t+1}, \boldsymbol{\tau}_{t+1}) in \boldsymbol{B}
     if g_t = 1 then
          Sample B to obtain (s_i, a_i, r_i, s_{i+1}) and update \pi^c
            with \Delta^c (Discard \boldsymbol{\tau}_t, \boldsymbol{\tau}_{t+1})
     else
          Sample B to obtain (\tau_i, a_i, r_i, \tau_{i+1}) and update
            \pi^i with \Delta^i (Discard s_t, s_{t+1})
     Sample B to obtain (s_i, g_i, r_i, s_{i+1}) and update g with
      \Delta^g (Discard a_t, \boldsymbol{\tau}_t, \boldsymbol{\tau}_{t+1})
```

Figure 7: Pseudocode for MANSA. This includes a centralised learning update restriction.