manny:

Suppose stop lights at an intersection alernately show green for one minute, and red for one minute (no yellow). Suppose a car arrives at the lights at a time distributed uniformly from 0 to 2 minutes. Let X be the delay of the car at the lights (assuming there is only one car on the road). Graph the density and the cdf \checkmark X. Also \checkmark

Let TE assivel timet car (5,0) 1!nU~T Pileture at density of T: fe let X = delay time

$$x = \begin{cases} 0 & \text{if } o < t < 1 \\ 2-t & \text{if } 1 < t < 2 \end{cases}$$

$$\text{Notice that } x \text{ takes values to, 1}$$

$$P(x=0) = \text{frow and eatgreen light}$$

$$= \frac{1}{2}$$

$$\text{lets find } f_{\chi}(x) \text{ for } o < x < 1$$

$$\text{By change of variable rule}$$

$$x = 2 - t$$

$$t = 2 - x$$

$$f_{\chi}(x) = 1 \frac{dx}{dt} | f_{\chi}(t)$$

= 1.1/2 fer 19x62

So the introd donsity of X looks like mass at X=0 prob 1/2 ren draw F(k)? F(x) E(x) = = {(\frac{1}{2})(1) = \frac{1}{4}

Last time

SEC 4.5 Expectation of a nonregative RV using CDF EXI = S(I-FX) DX ex let X 1 beam (=) $x \le 1$ $P(x=1)=\frac{1}{2}$ $P(x=1)=\frac{1}{2}$ $P(x=2)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=2)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ $P(x=3)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}$ 2 3 5 6 7 8 9 10 EXI= S(I-FIX) DX $E(x) = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = \frac{1}{1 - \frac{1}{2}} = \frac{1}{2}$ $= \stackrel{?}{\sim} P(x > i) = \stackrel{?}{\sim} (\frac{1}{2}) = \frac{1}{2} = \frac{1}{2}$ $= \stackrel{?}{\sim} P(x > i) = \stackrel{?}{\sim} (\frac{1}{2}) = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ $= \stackrel{?}{\sim} P(x > i) = \stackrel{?}{\sim} (\frac{1}{2}) = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ $= \stackrel{?}{\sim} P(x > i) = \stackrel{?}{\sim} (\frac{1}{2}) = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ $= \stackrel{?}{\sim} P(x > i) = \stackrel{?}{\sim} (\frac{1}{2}) = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ $= \stackrel{?}{\sim} P(x > i) = \stackrel{?}{\sim} (\frac{1}{2}) = \frac{1}{2} = \frac{1$

A random variable X has CDF

$$F(x) = \begin{cases} \frac{3x}{4} & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

The expectation of X is:

- 1) Overviou of what we have bouned since the milderm.
- 2 sec 4.6 order statistics
- (3) sec 4.6 Beta 21 stulbution

1) Overview	
density of althoughour ax	4 ×
change of variable family for Dans. Hos,	
some continuos distributions	
variable - uniform	
manditant - exponential/gamma calculate when the Prob NGF - useful tool identify a distribution by its mof CDF / mixed distributions	
calculating exectation from Calf.	7
order statistics / beta distribution (today	
mithie joint distributions unlable unconditional Prob	
Chap 6	
nothine & dependence variable conditional	
Prob.	

@ Sec 4,6 order statistic of U(01) 1et U,...,U, ~ Unit (0,1) 12.10,125,13 % 6 13.8 Co.17. 0 U(1) U(2) U(3) U(1) U(5) let U(r) = called the rth order statistic = rth value at U, ... U sorted smallert to pythest (assuming no Hes) U(1) = mln(U, ..., U) U(n) = mak (U, ..., Un)

Review counting
You have 3 red, 2 green and 5 blue marbles,
How many orderings at them 10 marbles are there?

Extragabbbbb

grrr abbbbb

grrr bbbbbb

10!

3!2:5!

10 (7)(5)

Next, find density of U(r).

$$= \frac{1}{(x)} \int_{x} x \left(\frac{1}{1-x} \right) \int_{x} x \left(\frac{1}{$$

Find the density of Unit (0,1)

How would this change if U, ", U, " Unit (0,6)?

Camily of densitives on the unit interval.

Picture

tinguel.com/marzo-2023

Stat 134

- 1. $x^{2}(1-x)^{4}$ for 0 < x < 1 is the variable part of the density of what random variable?
 - **a** $U_{(3)}$ of n=6 darts
 - **b** $U_{(2)}$ of n=7 darts
 - $\mathbf{c}U_{(1)}$ of n=7 darts
 - d hone of the above

(3) of 7

Overview on standard unitorm order stadistice 1et U11..., U5 is U(0,1)

U(7) 1> te rt sorted element.

Pichne

 $f(x) = (5) \times (1-x)$ for 0 < x < 1

Nothe that N= 1+5,-1 total number of davts ex Bere (5,10) has 5 gur before and 10 gaph after what RV? U(5) of 14 Let rose 2/t Beta (r,5) has r gars before and 5 gaps after? More generally! bet x > Beta (5,5) H $\mathcal{F}(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \times \frac{r-1}{(1-x)} + \frac{s-1}{0}$

or $\Gamma(r) = \int_{0}^{\infty} t^{-1} e^{-t} dt$ Gamma function for 170