

密级状态: 绝密() 秘密() 内部() 公开(√)

Rock-X SDK 开发指南

(技术部,图形显示平台中心)

文件状态:	当前版本:	V1. 0
[]正在修改	作 者:	HPC&AI Team
[√] 正式发布	完成日期:	2019-06-11
	审核:	熊伟 卓鸿添
	完成日期:	2019-06-11

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Semiconductor Co., Ltd (版本所有, 翻版必究)

更新记录

版本	修改人	修改日期	修改说明	核定人
V1.0	杨华聪、吴丽娟	2019-06-11	初始版本	熊伟 卓鸿添

目 录

1	主要	功能说明	. 5
2	系统	依赖说明	. 5
	2.1	RK3399Pro 系统依赖	. 5
	2.2	RK1808 系统依赖	. 5
3	示例	应用	. 6
	3.1	命令行执行程序示例	. 6
	3.2	ANDROID 程序示例	. 6
4	性能	指标	. 7
	4.1	模块精度指标	. 7
	4.1.1	目标检测	. 7
	4.1.2	人脸检测	. 7
	4.1.3	人脸识别	. 8
	4.1.4	李牌识别	. 8
	4.1.5	人脸属性分析	. 9
	4.1.6	<i>人脸特征点定位</i>	. 9
	4.1.7	/ 人体骨骼点关键点	. 9
	4.2	模块运行性能	10
5	SDK	使用说明	10
	5.1	SDK 库引入	10
	5.2	SDK 裁减说明	11
	5.3	RK1808 计算棒配置	12
	5.4	初始化和释放	12
	5.5	接口调用	13

1 主要功能说明

Rock-X SDK 是基于 RK3399Pro/RK1808 平台的一套 AI 组件库。开发者通过 Rock-X SDK 提供的 API 接口能够快速构建 AI 应用。

当前 SDK 提供的功能如表 1-1 所示。

 类别
 功能

 目标检测
 人头检测、人车物检测

 人脸
 人脸关键点、人脸属性分析、人脸识别

 车牌
 车牌检测、车牌识别

人体骨骼关键点、手指关键点

表 1-1 Rock-X SDK 主要功能

2 系统依赖说明

2.1 RK3399Pro 系统依赖

人体关键点

在 RK3399Pro 平台上,SDK 所提供的库和应用程序需要 RKNN 驱动版本为 0.9.6。在 RK3399Pro Android/Linux 平台上运行 Demo 应用以后,通过日志能够看到如下的驱动信息,请确保 DRV 版本为 0.9.6。

RKNN VERSION:

API: 0.9.5 (a949908 build: 2019-05-07 22:20:52) DRV: 0.9.6 (c12de8a build: 2019-05-06 20:10:17)

2.2 RK1808 系统依赖

在 RK1808 Linux 平台上,本 SDK 提供的库和应用程序需要 NPU 驱动版本需要 rknn runtime 版本在 0.9.8 以上,在 RK1808 平台上查看 rknn runtime 版本的方法如下所示:

\$ strings /usr/lib/librknn_runtime.so |grep "librknn_runtime version" librknn_runtime version 0.9.8 (8dcfdc7 build: 2019-05-31 11:23:34 base: 110)

3 示例应用

Rock-X SDK 中附带的示例应用能够帮助开发者评估 SDK 的基本功能和理解 SDK 接口, 开发者可以直接基于示例应用进行修改或参考开发。示例应用代码包括命令行执行程序示例 和 Android 程序示例。

3.1 命令行执行程序示例

Rock-X SDK 提供了所有接口的命令行执行程序代码示例,示例程序支持在 RK3399Pro Android/Linux 平台、RK1808 Linux 平台以及 x86-64 Linux(仅支持 RK1808 计算棒)平台上运行,编译和运行方法请参见"demo/command_line_demo"目录下的 README 文件。

3.2 Android 程序示例

Android 示例程序支持在 RK3399Pro Android 平台上运行。所有的 Android 示例程序代码位于"demo/rk3399pro_android_demo"目录下。将对应的 Android 示例程序解压,再通过 Android Studio 打开后,可以直接进行编译、运行和开发。

4 性能指标

4.1 模块精度指标

4.1.1 目标检测

表 4-1 检测类性能表

模块	数据集	性能指标
人头检测	Brainwash	mAP@IOU0.5 = 0.704
车牌检测	CCPD	mAP@IOU0.5 = 0.983
人车物检测	MSCOCO_VAL2017	mAP@IOU0.5 = 0.565

注:

- 1) mAP@IOU0.5=0.704 表示 IOU=0.5 时对应的 mAP=0.704。
- 2) Brainwash 是用于人头检测的公开数据集,主要场景为咖啡店,共 5007 张。
- 3) CCPD(Chinese City Parking Dataset)是国内车牌数据集,从中随机抽取 10000 张进行测试。
- 4) MSCOCO_VAL2017 是目标检测公开数据集,使用该数据集中的 5000 张验证集测试,共 91 类别。
- 5) 人头检测模块的最小检测尺寸为图像分辨率的 1/19。
- 6) 车牌检测模块支持检测国内蓝色、黄色和绿色车牌。

4.1.2 人脸检测

表 4-2 人脸检测性能

参数	性能指标	
	平面内人脸左右旋转±45°	
活应免度	侧脸左右偏转±60°	
适应角度	侧脸上偏转 60°	
	侧脸下偏转 45°	
最大距离	11 米(测试摄像头 FOV=60°)	
mAP	mAP@IOU0.5=0.857	

注:

1) 图像质量较差时,支持的检测角度会减小。

- 2) 最大检测距离与摄像头 FOV 等参数有关。
- 3) 检测的最小人脸尺寸为图像分辨率的 1/19。

4.1.3 人脸识别

表 4-3 人脸识别性能

参数	性能指标	
	平面内人脸左右旋转±45°	
以别角度 识别角度	侧脸左右偏转±60°	
以 利用 反	侧脸上偏转 60°	
	侧脸下偏转 45°	
识别距离	11 米(测试摄像头 FOV=60°)	
识别精度(LFW 标准数据集)	99.65%±0.00088	
参考精度	TPR=0.992@FAR=0	
少 写相	TPR=0.995@FAR=0.001	

注:

1) 实际应用中,对距离和角度稍加限制,能获得更好的识别结果,用户可根据实际情况进行质量筛选。

4.1.4 车牌识别

表 4-4 车牌识别性能表

数据集	性能指标
CCPD	83.31%(8331/10000)

注:

- 1) CCPD(Chinese City Parking Dataset)是国内车牌数据集,从中随机抽取 10000 张进行测试。
- 2) 支持识别国内蓝色、绿色和黄色车牌。
- 3) 可识别的车牌字符如表 4-5 所示。

表 4-5 车牌识别字符表

字符类别	可识别字符
省份中文字符	京沪津渝冀晋蒙辽吉黑苏浙皖闽赣鲁豫鄂湘粤
	桂 琼 川 贵 云 藏 陕 甘 青 宁 新
数字和字母	0123456789ABCDEFGHJKLMNPQRSTUV
	WXYZ
车牌用途中文字符	港学使警澳挂军北南广沈兰成济海民航空

4.1.5 人脸属性分析

表 4-6 性别年龄性能

数据集	年龄精度	性别精度
UTK_asian	4.823283	92.96%(2220/2388)

注:

- 1) UTK_asian 是 UTK 公开数据集的亚洲人部分,使用 7-70 岁数据进行测试, 共 2388 张。
- 2) 年龄精度为平均年龄偏差。

4.1.6 人脸特征点定位

表 4-7 人脸特征点定位(68点)性能

数据集	误差
300w_cropped	6.01%

注:

1) 误差计算公式如下

$$error = \frac{\sum_{j=1}^{68} [euclidean(d(j) - g(j))]}{(68*d)}$$

euclidean(d(j) - g(j)) 表是第j个检测点与标注点之间的欧式距离。

d表示左外眼角和右外眼角的欧式距离。

4.1.7 人体骨骼点关键点

表 4-8 人体骨骼关键点定位性能

数据集	性能指标
MSCOCO_VAL2017	mAP@OKS0.5=0.623

注:

- 1) mAP@OKS0.5=0.623 表示 OKS=0.5 时对应的 mAP=0.623。
- 2) MSCOCO val2017 是 COCO 2017 Keypoint Detection Task 的验证集, 共 5000 张, 其中 2000 多 张有关键点。

4.2 模块运行性能

各模块运行时间和所需内存如表 4-9 所示。

表 4-9 模块运行时间和消耗内存

模块	运行时间(ms)	消耗 NPU 内存(MB)
人车物检测	49	66
人头检测	38	43
人脸检测	41	24
人脸特征点定位(68 点)	11	34
人脸姿态	2	21
人脸矫正对齐	9	20
人脸识别特征提取	44	117
人脸属性分析	16	19
车牌检测	46	39
车牌矫正对齐	21	22
车牌识别	39	21
身体骨骼关键点	106	119
手指关键点(21 点)	153	89
手指关键点(3点)	23	21
检测目标跟踪	1	18

注:

1) 图中所测的内存值为峰值内存。

5 SDK 使用说明

5.1 SDK 库引入

各平台的 Rock-X SDK 库位于 sdk 目录下,如下所示:

开发者只需要在自己工程的 CMakeLists.txt 中引入对应平台的库即可,下面以 RK3399Pro Android 平台为例:

```
# Find RockX Package
set(RockX_DIR <path-to-rockx-sdk>/sdk/rockx-rk3399pro-Android)
find_package(RockX REQUIRED)

# Include RockX Header
include_directories(${RockX_INCLUDE_DIRS})

# Link RockX Libraries
target_link_libraries(target_name ${RockX_LIBS})
```

5.2 SDK 裁减说明

SDK 提供的库文件并不需要完全导入,开发者可以根据自己所用到的模块来引入所需的库,这样可以减少应用的体积。表 5-1 列出了 SDK 库文件说明,除了 librockx.so 和 librknn_api.so 两个库文件,对于没有使用的模块,可以直接移除相应的库文件。

库文件名	对应模块	可裁剪
libcarplate_align.so	ROCKX_MODULE_CARPLATE_ALIGN	是
libcarplate_detection.so	ROCKX_MODULE_CARPLATE_DETECTION	是
libcarplate_recognition.so	ROCKX_MODULE_CARPLATE_RECOG	是
libface_attribute.so	ROCKX_MODULE_FACE_ANALYZE	是
libface_detection.so	ROCKX_MODULE_FACE_DETECTION	是
libface_landmark5.so	ROCKX_MODULE_FACE_LANDMARK_5	是
libface_landmarks68.so	ROCKX_MODULE_FACE_LANDMARK_68	是
libface_recognition.so	ROCKX_MODULE_FACE_RECOGNIZE	是
libhead_detection.so	ROCKX_MODULE_HEAD_DETECTION	是
libobject_detection.so	ROCKX_MODULE_OBJECT_DETECTION	是
libpose_body.so	ROCKX_MODULE_POSE_BODY	是
libpose_finger.so	ROCKX_MODULE_POSE_FINGER_3	是
libpose_hand.so	ROCKX_MODULE_POSE_FINGER_21	是
librockx.so	SDK 基础库	否
librknn_api.so	SDK 依赖库	

5.3 RK1808 计算棒配置

当需要在 x86-64 Linux 平台上使用 RK1808 计算棒运行 RockX SDK 的程序时,首次需要 安装通信代理服务。

1) 安装通信代理服务

首次运行需要安装通信代理服务,命令如下所示:

./sdk/rockx-x86-64-Linux/bin/npu_transfer_proxy/install.sh

2) 卸载通信代理服务

如果需要将通信代理服务卸载,可以执行以下命令:

./sdk/rockx-x86-64-Linux/bin/npu_transfer_proxy/uninstall.sh

5.4 初始化和释放

Rock-X 各个模块都通过 rockx_create 函数进行初始化,通过传入不同的 rockx_module_t

枚举值来初始化不同的模块,示例代码如下所示:

创建完成之后将得到一个 rockx_handle_t 类型的句柄,后面可以使用该句柄来调用相应的接口函数。

如果不再需要使用该模块,可以通过调用 rockx_destroy 函数来释放掉该句柄,示例代码如下所示:

```
rockx_destroy(face_det_handle);
```

5.5接口调用

Rock-X SDK 所包含模块的接口函数如表 5-2 所示。

表 5-2 RockX 各模块接口函数

类别	函数名	函数功能
目标检测	rockx_object_detect	人车物检测
	rockx_head_detect	人头检测
人脸	rockx_face_detect	人脸检测
	rockx_face_landmark	人脸特征点定位
	rockx_face_pose	人脸姿态
	rockx_face_align	人脸矫正对齐
	rockx_face_recognize	人脸识别特征提取
	rockx_face_feature_similarity	人脸特征对比
	rockx_face_attribute	人脸属性分析
车牌	rockx_carplate_detect	车牌检测
	rockx_carplate_recognize	车牌识别
	rockx_carplate_align	车牌矫正对齐
人体关键点	rockx_pose_body	身体骨骼关键点定位
	rockx_pose_finger	手指关键点定位
其他	rockx_object_track	检测目标跟踪

模块接口函数示例代码如下:

5.6 API 参考指南

详细的接口描述请参考 API 文档(doc\rockx api doc\html\index.html)。