

TMA4145 Linear

Methods

Fall 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 11

Please justify your answers! The most important part is *how* you arrive at an answer, not the answer itself.

1 Let $L^2[-1,1]$ be the closure of C[-1,1] with respect to the innerproduct

$$\langle f, g \rangle = \int_{-1}^{1} f(t) \overline{g(t)} dt.$$

Apply Gram-Schmidt to the monomial basis $\{1, x, x^2, x^3, ...\}$ up to degree 3.

Consider the exponential basis $\{e^{2\pi int}: n \in \mathbb{Z}\}$ in $(L^2[0,1], \langle .,. \rangle)$. Verify Parseval's relation for this particular case directly. Try to explain how Fourier series and some of their properties fit into this problem.

 $\boxed{\bf 3}$ We define the cyclic shift matrix T_1 and the modulation matrix M_1 by

$$T_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{2\pi i/3} & 0 \\ 0 & 0 & e^{4\pi i/3} \end{pmatrix}.$$

- a) Show that
 - 1. $T_1 M_1 = e^{2\pi i/3} M_1 T_1$.
 - 2. $T_1^3 = I_3$ and $M_1^3 = I_3$.
 - 3. M_1 and T_1 are unitary matrices.
- b) Show that $\{\frac{1}{\sqrt{3}}M_1^kT_1^l: k,l \in \{1,2,3\}\}$ is an orthonormal basis of the space of complex 3×3 matrices $M_3(\mathbb{C})$ with respect to the innerproduct $\langle A,B\rangle = \operatorname{tr}(AB^*)$.

4 Let $\{e_n : n \in \mathbb{N}\}$ be the standard basis in the ℓ^p -spaces.

- a) Show that $\sum_{n=0}^{\infty} \alpha_n e_n$ converges in ℓ^p for $1 \leq p < \infty$ if and only if $(\alpha_n)_{n \in \mathbb{N}} \in \ell^p$.
- **b)** Show that $\sum_{n=0}^{\infty} \alpha_n e_n$ converges in ℓ^{∞} if and only if $(\alpha_n)_{n \in \mathbb{N}}$ converges to zero.