Рекомендательные системы

Боровко Никита Алексеевич

8 апреля 2022 г.

Содержание

1	Введение	2
2	Постановка задачи	2
3	Инструменты	3
4	Обзор существующих методов 4.1 Факторизационная машина 4.2 SVD и SVD++ 4.3 Slope One 4.4 Alternating Least Squares	
5	Возникающие проблемы	10
6	Проблемы нейросетевого подхода	10
7	Заключение	11

1 Введение

Рекомендательные системы - это область в машинном обучении, цель которой - определить набор товаров, которые будут интересны определенному пользователю, используя информацию о большей группе пользователей. Они повсеместно используются в популярных музыкальных сервисах, интернет-магазинах, социальных медиа-платформах.

Существует два разных подхода к решению такой задачи: фильтрация на основе содержания и коллаборативная фильтрация. В первом случае используется вся информация о товаре, например, если это товар в магазине, то можно включить в модель его технические характеристики и параметры. Кроме этого мы можем использовать дополнительную информацию о пользователе: его возраст, пол. В случае коллаборативной фильтрации в расчет берется только история оценок группы пользователей рассматриваемых товаров, и на основе только этого ищется зависимость. [9] Помимо этого существуют гибридные подходы, объединяющие в себе оба метода, но они остаются вне рамок рассмотрения данной работы.

Мы сосредоточимся именно на коллаборативной фильтрации, рассматривая различные методы решения задачи, в первую очередь - факторизационные машины.

2 Постановка задачи

Пусть у нас имеются два множества: U - множество пользователей, I - множество товаров, помимо этого известен результат взаимодействия некоторых пар вида r_{ui} - оценка, поставленная пользователем u товару i. Это означает, что наша учебная выборка будет иметь вид:

$$K = \{(u, i) | \exists r_{ui}, u \in U, i \in I\}$$

Тогда смысл задачи в нахождении аппроксимирующей функции:

$$f(x,y) = \hat{r}_{ui} \approx r_{ui}$$

При этом, как правило, необходимо минимизировать функционал вида:

$$\sum_{(u,i\in K)} (r_{ui} - \hat{r}_{ui})^2 + \lambda \sum_{\theta \in \Theta} ||\theta||^2$$

Основной алгоритм в коллаборативной фильтрации - факторизационные машины и их разновидности. В этом случае аппроксимирующая матрица представляется в виде:

$$\hat{R} = PQ$$
.

где $\hat{R} \subset \mathbb{R}^{U \times I}$, $P \subset \mathbb{R}^{U \times \text{latent factors}}$, $Q \subset \mathbb{R}^{\text{latent factors} \times I}$.

3 Инструменты

В качестве набора данных для тренировки моделей мы будем использовать датасет MovieLens - оценки 600 пользователями 9000 фильмов, всего более 100000 оценок[2]. Оценки здесь имеют разброс от 0.5 до 5.0 с шагом 0.5, эти данные непрерывно собираются и обновляются.

Основной метрикой качества у нас будет RMSE - Root-mean-square deviation, рассчитываемый как среднее квадратичное отклонение, деленное на количество элементов.

4 Обзор существующих методов

4.1 Факторизационная машина

Факторизационная машина - это одна из основных идей, используемых в рассматриваемой задаче. Другие подходы, например, SVD, зачастую являются лишь частным случаем этого. Мы предполагаем, что имеет место полиномиальная регрессия 2-ого порядка, т.е. целевая функция зависит не только от рассматриваемых признаков, но еще и от результата их попарного взаимодействия[7]:

$$\hat{r}_{ui} = \omega_0 + \sum_{i=1}^n \omega_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n v_i^T v_j x_i x_j$$

где параметры модели установлены следующим образом:

$$\omega_0 \in \mathbb{R}, \omega \in \mathbb{R}, V \in \mathbb{R}^{n \times k}$$

Утварждается, что модель можно обучить достаточно быстро при помощи стохастического градиентного бустинга в силу того, что число параметров и время на настройку и обучение линейны. Важнейшим достоинством факторизационных машин является их способность предсказывания даже при очень высокой разреженности исходной матрицы. В частности, это можно обобщить и на ненаблюдаемые взаимодействия[7].

Для работы с этим методом мы воспользуемся готовой реализацией из библиотеки руFM. Рассмотрим 4 модели, учитывающие 5, 10, 15 и 20 латентных факторов соответственно, в каждой из них поставим 50 эпох для обучения.

Рис. 1: Зависимость loss от число эпох при разном числе латентных факторов

Анализируя графики, можно заметить, что факторизационные машины дают очень хороший результат в сравнении с другими подходами,

но слишком сильного улучшения за счет увеличения числа латентных факторов не происходит.

4.2 SVD и SVD++

Данный метод основан на известном сингулярном разложении:

$$R = U\Sigma V^T$$

Далее мы можем сделать малоранговую аппроксимацию, оставив только k самых больших сингулярных значений:

$$R \approx \hat{R} = \hat{U} \hat{\Sigma} \hat{V}^T$$

Поскольку нам надо аппроксимировать исходную матрицу двумя другими, сделаем такой шаг:

$$R \approx \hat{R} = (\hat{U}\hat{\Sigma})(\hat{V})^T = P^T Q,$$

где

$$P = (\hat{U}\hat{\Sigma})^T, Q = \hat{V}^T$$

Следовательно:

$$R\approx P^TQ$$

Данный метод, как и другие, можно улучшить, рассмотрев еще и смещение, которое позволяет лучше реагировать на те случае, когда к товару относятся предвзято. В поэлементной записи это улучшение имеет следующий вид:

$$\hat{r}_{ui} = \mu + b_u + b_i + p_u^T q_i,$$

где

 μ - глобальное смещение, b_u - смещение для пользователя u, b_i - смещение для товара i

Рис. 2: Зависимость loss от числа латентных параметров

Следует отметить, что существует улучшенная версия данной модели - SVD++. В ней рассматривается еще и неявный отклик пользователей, это означает, что будут учитываться взаимодействия пользователя и товара такие, что мы не знаем их оценку, но знаем про сам факт их наличия[5]. Добавляя это в формулу для SVD мы получим:

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T (p_u + |N(u)|^{-\frac{1}{2}} + \sum_{j \in Nu} y_j),$$

где

N(u) - множество товаров, с которыми пользователь и провзаимодействовал неявно.

Метод SVD++ на практике несколько выигрывает у SVD, но разница RMSE остается весьма небольшой, при 50, 100 и 200 латентных факторах разница в RMSE у этих алгоритмов состовляет порядка 1%[5].

4.3 Slope One

Семейство алгоритмов Slope One[6] представляет собой иной подход к задаче, здесь вводится функция отклонения средней оценки товара ј от i:

$$\operatorname{dev}_{j,i} = \sum_{u \in S_{j,i}(R)} \frac{u_j - u_i}{|S_{j,i}(R)|},$$

где

 $S_{j,i}(R)$ - множество пользователей, оценивших товары і и ј.

Тогда предполагаемая оценка пользователем и товара і высчитывается с использованием знания о каждом другом оцененном товаре и отклонения его оценки от оценки рассматриваемого товара:

$$\hat{r}_{ui} = \frac{1}{|R_i(u)|} \sum_{j \in R_i(u)} (\text{dev}_{i,j} + u_i)$$

Исследователи выяснили, что если данные достаточно плотные, т.е. почти для каждой пары товаров существуют пользователи, оценившие их вместе, то допустима следующая аппроксимация:

$$\hat{r}_{ui} \approx \mu_u + \frac{1}{|R_i(u)|} \sum_{j \in R_i(u)} \text{dev}_{i,j},$$

где

 μ_u - средняя оценка пользователя $\mathbf{u}.$

Таким образом, в итоговой модели на результат влияет только средняя оценка пользователя, а не его оценка других предметов, что несколько облегчает расчет[6].

Этот подход отличается своей простотой и вполне приемлимым качеством, также в какой-то степени решена проблема холодного старта, когда для новых пользователей трудно делать рекомендации из-за небольшого числа их оценок. Однако Slope One может проигрывать более сложным алгоритмам, так как улавливает зависимости слишком примитивно.

4.4 Alternating Least Squares

Этот метод, пожалуй, является самым интересным из преставленных, теперь мы будем рассчитывать значения предпочетния (preference) и уверенности в нем (confidence):

$$p_{ui} = \begin{cases} 1, r_{ui} > 0 \\ 0, r_{ui} = 0 \end{cases}$$

$$c_{ui} = 1 + \alpha r_{ui}$$

Таким образом, изначально p_{ui} рассчитывается как бинарное представление оценок, а c_{ui} показывает, насколько мы уверены в достоверности наблюдения для данной пары (u,i). Экспериментально[4] было утановлено, что значение $\alpha = 40$ хорошо справляется с задачей.

Переобозначим искомые матрицы P и Q за X и Y, чтобы избежать путаницы. Тогда смысл задачи будет в нахождении векторов x_u для каждого пользователя и y_i для каждого товара, которые будут минимизировать функцию:

$$min \sum_{x^*,y^*} c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

Здесь второе слагаемое - регуляризатор, используемой для избежания переобучения на данном наборе данных. Затем путем дифференцирования находятся подходящие минимизирующие выражения для пользователей и предметов:

$$x_u = (Y^T C^u Y + \lambda I)^{-1} Y^T C^u p(u)$$

$$y_i = (X^T C^i X + \lambda I)^{-1} X^T C^i p(i)$$

Эти выражения можно оптимизировать, вынося X^TX и Y^TY , эти слагаемые не зависят от u и i, поэтому их можно найти предрасчетом, сэкономив вычислительное время:

$$x_u = (Y^T Y + Y^T (C^u - I)Y + \lambda I)^{-1} Y^T C^u p(u)$$

$$y_i = (X^T X + X^T (C^i - I)X + \lambda I)^{-1} X^T C^i p(i)$$

Тогда для вычисления RMSE на каждом шаге итерации потребуется вычисление полученной матрицы, которое с учетом вычисляемого сдвига для большей точности будет выглядеть так:

$$\hat{R} = XY^T + X_{bias} + Y_{bias}$$

Метод ALS был написан нами вручную, и были произведены настройки моделей для различного числа латентных параметров, результаты с валидацией показаны на Puc. 3.

Рис. 3: Зависимость loss на Train и Test от числа итераций при разном числе латентных факторов

Главный недостаток этого метода связан с масштабируемостью - здесь мы дополнительно учитываем неявные (implicit) наблюдения, а значит,

надо хранить и обрабатывать гораздо больше данных, несмотря на разреженность, что будет вызывать серьезные проблемы в слишком больших системах[4].

5 Возникающие проблемы

При работе с ремендательными системами возникает несколько серьезных проблем. Во-первых, данные с оценками товаров пользователями очень разреженны. Это делает задачу предсказывания отношения пользователя к товару сложнее, однако на классические факторизационные машины это не оказывает сильного влияния из-за их способности улвливать полиномиальную регрессию высших порядков[7].

Похожая проблема - проблема холодного старта, когда появляется новый товар или пользователь, не успевший сделать достаточно числа оценок, в этом случае хорошо себя показывает алгоритм SlopeOne, который рассматривает не оценку пользователем каждого товара, а оценку в среднем[6].

Сложные алгоритмы зачастую подвержены проблеме масштабируемости, в первую очередь, это метод ALS, которому необходимо хранить и обрабатывать информацию и о неявных откликах[4], но на несложные методы типа SlopeOne эта проблема не оказывает сильного влияния.

6 Проблемы нейросетевого подхода

Существует много подходов к решению рассматриваемой задачи при помощи методов глубокого обучения, однако обычно эта технология применяется к анализу дополнительной информации о контенте, а когда дело доходит до обработки матрицы оценок, по-прежнему доминирующим инструментом остаются факторизационные машины и их разновидности. В 2017 году появился новый подход к коллаборативной фильтрации на основе нейронных сетей (NCF), использущий многослойный перцептрон[3].

Однако существует[8] обратное мнение, что в случае правильно подобранных гиперпараметров данный подход значительно уступает более простым алгоритмам без применения глубокого обучения. Также говорится, что хотя многослойный перцептрон в теории может аппроксимировать любую функцию, на практике это слишком сложно. Помимо этого был произведен анализ[1] 26 имеющихся подходов с применением глубоко обучения, и только 12 из них прошли проверку на воспроизводимость. Анализ также выявил различные методологические проблемы, исследователи пришли к выводу, что прогресс в этой области замедлился из-за неправильного подбора baseline и недостаточной работы над оптимизацией. Из-за этого часто складывается ситуация, когда даже самый простой и примитивный алгоритм либо не сильно хуже, либо даже лучше сложных нейронных сетей. Текущую ситуацию даже назвали стагнацией.

7 Заключение

В работе были рассмотрены некоторые популярные алгоритмы коллаборативной фильтрации - SlopeOne, SVD, SVD++, ALS, FMs. У каждого из этих алгоритмов есть свои достоинства и недостатки, и зачастую использование более примитивного алгоритма целесообразнее применения сложной модели. Несмотря на существование подходов с применением глубокого обучения, многие из них не являются достаточно полезными и оптимальными в условиях данной задачи, поэтому при решении реальной задачи вопрос выбора соотвутствующего метода является крайне важной задачей.

Список литературы

- [1] DACREMA, M. F., BOGLIO, S., CREMONESI, P., POLITECNICO, AND JANNACH, D. A troubling analysis of reproducibility and progress in recommender systems research.
- [2] HARPER, F. M., AND KONSTAN, J. A. The movielens datasets: History and context.
- [3] HE, X., LIAO, L., ZHANG, H., NIE, L., HU, X., AND CHUA, T.-S. Neural collaborative filtering.
- [4] Hu, Y., Koren, Y., and Volinsky, C. Collaborative filtering for implicit feedback datasets.

- [5] KOREN, Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
- [6] Lemire, D., and Maclachlan, A. Slope one predictors for online rating-based collaborative filtering.
- [7] RENDLE, S. Factorization machines.
- [8] RENDLE, S., KRICHENE, W., ZHANG, L., AND ANDERSON, J. Neural collaborative filtering vs matrix factorization revisited.
- [9] RICCI, F., ROKACH, L., AND SHAPIRA, B. Introduction to recommender systems handbook.