Bipartite Edge Prediction via Transductive Learning over Product Graphs

Hanxiao Liu, Yiming Yang

School of Computer Science, Carnegie Mellon University

July 8, 2015

Outline

- 1 Problem Description
- 2 The Proposed Framework
- 3 Formulation
 - Product Graph Construction
 - Graph-based Transductive Learning
- 4 Optimization
- 5 Experiment
- 6 Conclusion

■ Many applications involve predicting the edges of a bipartite graph.

- Recommender System
- 2 Host-Pathogen Interaction
- 3 Question-Answering Mapping
- 4 Citation Network . . .

■ Many applications involve predicting the edges of a bipartite graph.

- Recommender System
- 2 Host-Pathogen Interaction
- 3 Question-Answering Mapping
- 4 Citation Network . . .
- Sometimes, vertex sets on both sides are intrinsically structured.

Many applications involve predicting the edges of a bipartite graph.

- 1 Recommender System
- 2 Host-Pathogen Interaction
- 3 Question-Answering Mapping
- 4 Citation Network . . .
- Sometimes, vertex sets on both sides are intrinsically structured.
- Heterogeneous info: G + H + partial observations

Many applications involve predicting the edges of a bipartite graph.

- Recommender System
- 2 Host-Pathogen Interaction
- 3 Question-Answering Mapping
- 4 Citation Network . . .
- Sometimes, vertex sets on both sides are intrinsically structured.
- Heterogeneous info: G + H +partial observations
- Combine them to make better edge predictions?

- Transductive learning should be effective
 - 1 Labeled edges (red) are highly sparse
 - 2 Unlabeled edges (gray) are massively available

- Transductive learning should be effective
 - 1 Labeled edges (red) are highly sparse
 - 2 Unlabeled edges (gray) are massively available
- Assumption: similar edges should have similar labels

- Transductive learning should be effective
 - 1 Labeled edges (red) are highly sparse
 - 2 Unlabeled edges (gray) are massively available
- Assumption: similar edges should have similar labels
- Prerequisite: a similarity measure among the edges, i.e. a "Graph of Edges" (not directly provided)

- Transductive learning should be effective
 - Labeled edges (red) are highly sparse
 - 2 Unlabeled edges (gray) are massively available
- Assumption: similar edges should have similar labels
- Prerequisite: a similarity measure among the edges, i.e. a "Graph of Edges" (not directly provided)
- Can be induced from G and H via Graph Product!

The "Graph of Edges" can be induced by taking the product of G and H

- In the product graph $G \circ H$
 - lacktriangle Each Vertex \sim edge (in the original bipartite graph)
 - lacktriangle Each Edge \sim edge-edge similarity

The "Graph of Edges" can be induced by taking the product of ${\cal G}$ and ${\cal H}$

- In the product graph $G \circ H$
 - Each Vertex ~ edge (in the original bipartite graph)
 - lacktriangle Each Edge \sim edge-edge similarity
- The adjacency matrix of the product graph is defined by "o" (to be discussed later).

Problem Mapping

Edge Prediction (Original Problem)

Given G, H and labeled edges, predict the unlabeled edges

Vertex Prediction (Equivalent Problem)

Given $G \circ H$ and labeled vertices, predict the unlabeled vertices

Outline

- 1 Problem Description
- 2 The Proposed Framework
- 3 Formulation
 - Product Graph Construction
 - Graph-based Transductive Learning
- 4 Optimization
- 5 Experiment
- 6 Conclusion

Outline

- 1 Problem Description
- 2 The Proposed Framework
- 3 Formulation
 - Product Graph Construction
 - Graph-based Transductive Learning
- 4 Optimization
- 5 Experiment
- 6 Conclusion

```
Q: When should vertex (i,j) \sim (i',j') in the product graph? 
 Tensor GP i \sim i' in G AND j \sim j' in H 
 Cartesian GP \left(i \sim i' \text{ in } G \text{ AND } j = j'\right) OR \left(i = i' \text{ AND } j \sim j' \text{ in } H\right)
```

```
Q: When should vertex (i, j) \sim (i', j') in the product graph?
   Tensor GP i \sim i' in G AND j \sim j' in H
Cartesian GP (i \sim i' \text{ in } G \text{ AND } j = j') \text{ OR } (i = i' \text{ AND } j \sim j' \text{ in } H)
```

Can be trivially generalized to weighted graphs.

Q: When should vertex $(i, j) \sim (i', j')$ in the product graph? Tensor GP $i \sim i'$ in G AND $j \sim j'$ in HCartesian GP $(i \sim i' \text{ in } G \text{ AND } j = j') \text{ OR } (i = i' \text{ AND } j \sim j' \text{ in } H)$

Can be trivially generalized to weighted graphs.

To compute the adjacency matrices of PG

$$\bullet \ G \circ_{Tensor} H = \underbrace{G \otimes H}_{}$$

Kronecker (a.k.a. Tensor) Product

$$\blacksquare \ G \circ_{Cartesian} H = G \otimes I + I \otimes H = \underbrace{G \oplus H}_{\text{Kronecker Sum}}$$

Both GPs can be written in the form of spectral decomposition

$$G \circ_{Tensor} H = \sum_{i,j} (\lambda_i \times \mu_j) (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (1)

$$G \circ_{Cartesian} H = \sum_{i,j} (\lambda_i + \mu_j) (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (2)

Both GPs can be written in the form of spectral decomposition

$$G \circ_{Tensor} H = \sum_{i,j} \underbrace{(\lambda_i \times \mu_j)}_{\text{soft AND}} (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (1)

$$G \circ_{Cartesian} H = \sum_{i,j} \underbrace{(\lambda_i + \mu_j)}_{\text{soft OR}} (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (2)

The interplay of graphs is captured by the interplay of their spectrum!

Both GPs can be written in the form of spectral decomposition

$$G \circ_{Tensor} H = \sum_{i,j} \underbrace{(\lambda_i \times \mu_j)}_{\text{soft AND}} (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (1)

$$G \circ_{Cartesian} H = \sum_{i,j} \underbrace{(\lambda_i + \mu_j)}_{\text{soft OR}} (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (2)

The interplay of graphs is captured by the interplay of their spectrum!

Generalization: Spectral Graph Product

$$G \circ H \stackrel{def}{=} \sum_{i,j} (\lambda_i \circ \mu_j) (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (3)

where " \circ " can be arbitrary binary operator (" \times ", "+", ...)

Both GPs can be written in the form of spectral decomposition

$$G \circ_{Tensor} H = \sum_{i,j} \underbrace{(\lambda_i \times \mu_j)}_{\text{coff AND}} (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (1)

$$G \circ_{Cartesian} H = \sum_{i,j} \underbrace{(\lambda_i + \mu_j)}_{\text{soft OR}} (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (2)

The interplay of graphs is captured by the interplay of their spectrum!

Generalization: Spectral Graph Product

$$G \circ H \stackrel{def}{=} \sum_{i,j} (\lambda_i \circ \mu_j) (u_i \otimes v_j) (u_i \otimes v_j)^{\top}$$
 (3)

where " \circ " can be arbitrary binary operator (" \times ", "+", ...)

Commutative Property: $G \circ H$ and $H \circ G$ are isomorphic. Bipartite Edge Prediction via Transductive Learning over Product Graphs

Outline

- 1 Problem Description
- 2 The Proposed Framework
- 3 Formulation
 - Product Graph Construction
 - Graph-based Transductive Learning
- 4 Optimization
- 5 Experiment
- 6 Conclusion

With the product graph $A\stackrel{def}{=} G\circ H$ constructed, we solve a standard graph-based transductive learning problem over A

With the product graph $A \stackrel{def}{=} G \circ H$ constructed, we solve a standard graph-based transductive learning problem over A

Learning Objective

- f_i system-predicted value for vertex i in A
- $\ell(f)$ quantifies the gap between f and partially observed labels.
- $\lambda f^{\top} A^{-1} f$ quantifies the smoothness over graph
 - Underlying assumption: $f \sim \mathcal{N}(0, A)$

The enhanced learning objective

to incorporate a variety of graph transduction patterns:

The enhanced learning objective

to incorporate a variety of graph transduction patterns:

$$k\text{-step}$$
 Random Walk $\ \kappa(A)=A^k$ Regularized Laplacian $\ \kappa(A)=(\epsilon I-A)^{-1}=I+A+A^2+A^3+\dots$ Diffusion Process $\ \kappa(A)=\exp(A)\equiv I+A+\frac{1}{2!}A^2+\frac{1}{3!}A^3+\dots$

The enhanced learning objective

to incorporate a variety of graph transduction patterns:

$$k$$
-step Random Walk $\kappa(A)=A^k$ Regularized Laplacian $\kappa(A)=(\epsilon I-A)^{-1}=I+A+A^2+A^3+\dots$ Diffusion Process $\kappa(A)=\exp(A)\equiv I+A+\frac{1}{2!}A^2+\frac{1}{2!}A^3+\dots$

All can be viewed as to transform the spectrum of $A := \sum_i \theta_i u_i u_i^{\mathsf{T}}$

$$A^k = \sum_i \theta_i^k u_i u_i^\top \quad (\epsilon I - A)^{-1} = \sum_i \frac{1}{\epsilon - \theta_i} u_i u_i^\top \quad \exp(A) = \sum_i \frac{e^{\theta_i}}{u_i u_i^\top}$$

Outline

- 1 Problem Description
- 2 The Proposed Framework
- 3 Formulation
 - Product Graph Construction
 - Graph-based Transductive Learning
- 4 Optimization
- 5 Experiment
- 6 Conclusion

Transductive Learning over Product Graph

$$\min_{f} \quad \ell(f) + \lambda \underbrace{f^{\top} \kappa(A)^{-1} f}_{r(f)} \tag{6}$$

Transductive Learning over Product Graph

$$\min_{f} \quad \ell(f) + \lambda \underbrace{f^{\top} \kappa(A)^{-1} f}_{r(f)} \tag{6}$$

Transductive Learning over Product Graph

$$\min_{f} \quad \ell(f) + \lambda \underbrace{f^{\top} \kappa(A)^{-1} f}_{r(f)} \tag{6}$$

- Prohibitive to load it into memory
- Prohibitive to compute its inverse
- Even if $\kappa(A)^{-1}$ is given, it is expensive to compute $\nabla r(f)$ naively

Transductive Learning over Product Graph

$$\min_{f} \quad \ell(f) + \lambda \underbrace{f^{\top} \kappa(A)^{-1} f}_{r(f)} \tag{6}$$

- Prohibitive to load it into memory No need to store $\kappa(A)$
- Prohibitive to compute its inverse
- Even if $\kappa(A)^{-1}$ is given, it is expensive to compute $\nabla r(f)$ naively

Transductive Learning over Product Graph

$$\min_{f} \quad \ell(f) + \lambda \underbrace{f^{\top} \kappa(A)^{-1} f}_{r(f)} \tag{6}$$

- Prohibitive to load it into memory No need to store $\kappa(A)$
- Prohibitive to compute its inverse No need of matrix inverse
- lacksquare Even if $\kappa(A)^{-1}$ is given, it is expensive to compute $\nabla r(f)$ naively

Transductive Learning over Product Graph

$$\min_{f} \quad \ell(f) + \lambda \underbrace{f^{\top} \kappa(A)^{-1} f}_{r(f)} \tag{6}$$

- Prohibitive to load it into memory No need to store $\kappa(A)$
- Prohibitive to compute its inverse No need of matrix inverse
- Even if $\kappa(A)^{-1}$ is given, it is expensive to compute $\nabla r(f)$ naively Can be performed much more efficiently

Keys for complexity reduction

- Instead of matrices
 - lacksquare κ only manipulates eigenvalues
 - only manipulates the interplay of eigenvalues

Optimization

Keys for complexity reduction

- Instead of matrices
 - lacksquare κ only manipulates eigenvalues
 - only manipulates the interplay of eigenvalues
- 2 The "vec" trick:
 - Bottleneck: multiplication $(X \otimes Y)f$

Optimization

Keys for complexity reduction

- Instead of matrices
 - lacksquare κ only manipulates eigenvalues
 - only manipulates the interplay of eigenvalues
- 2 The "vec" trick:
 - Bottleneck: multiplication $(X \otimes Y)f$
 - f = vec(F), where $F_{ij} \stackrel{def}{=}$ system-predicted score for edge (i,j)

Optimization

Keys for complexity reduction

- Instead of matrices
 - lacksquare κ only manipulates eigenvalues
 - only manipulates the interplay of eigenvalues
- 2 The "vec" trick:
 - Bottleneck: multiplication $(X \otimes Y)f$
 - $f = vec(F), \text{ where } F_{ij} \stackrel{def}{=} \text{ system-predicted score for edge } (i,j)$ $\underbrace{(X \otimes Y)f}_{O(m^2n^2) \text{ time/space}} = (X \otimes Y)vec(F)$ $\equiv \underbrace{vec(XFY^\top)}_{O(mn(m+n)) \text{ time, } O((m+n)^2) \text{ space}}$ (7)

Further speedup is possible by factorizing ${\cal F}$ into two low-rank matrices

Further speedup is possible by factorizing F into two low-rank matrices

 \blacksquare The cost of each alternating gradient step is proportional to $rank(F) \cdot rank(\Sigma)$

Further speedup is possible by factorizing F into two low-rank matrices

- The cost of each alternating gradient step is proportional to $rank(F) \cdot rank(\Sigma)$
- Σ : a "Characteristic Matrix" where $\Sigma_{ij} = \frac{1}{\kappa(\lambda_i \circ \mu_j)}$

Further speedup is possible by factorizing F into two low-rank matrices

- The cost of each alternating gradient step is proportional to $rank(F) \cdot rank(\Sigma)$
- Σ : a "Characteristic Matrix" where $\Sigma_{ij} = \frac{1}{\kappa(\lambda_i \circ \mu_i)}$
 - An interesting observation: $rank(\Sigma)$ is usually a small constant!

Further speedup is possible by factorizing F into two low-rank matrices

- The cost of each alternating gradient step is proportional to $rank(F) \cdot rank(\Sigma)$
- Σ : a "Characteristic Matrix" where $\Sigma_{ij} = \frac{1}{\kappa(\lambda_i \circ \mu_j)}$
 - An interesting observation: $rank(\Sigma)$ is usually a small constant!
 - Example: Diffusion process over the Cartesian PG

$$\Sigma = \begin{bmatrix} e^{-(\lambda_1 + \mu_1)} & \dots & e^{-(\lambda_1 + \mu_n)} \\ \vdots & \ddots & \vdots \\ e^{-(\lambda_m + \mu_1)} & \dots & e^{-(\lambda_m + \mu_n)} \end{bmatrix} = \begin{bmatrix} e^{-\lambda_1} \\ \vdots \\ e^{-\lambda_m} \end{bmatrix} \begin{bmatrix} e^{-\mu_1} & \dots & e^{-\mu_n} \end{bmatrix}$$

$$\implies rank(\Sigma) = 1$$

Outline

- 1 Problem Description
- 2 The Proposed Framework
- 3 Formulation
 - Product Graph Construction
 - Graph-based Transductive Learning
- 4 Optimization
- 5 Experiment
- 6 Conclusion

Datasets and Baselines

Datasets

Dataset	G	\mid H	
Movielens-100K	Users	Movies	
Cora	Publications	Publications	
Courses	Courses	Prerequisite Courses	

Baselines

MC Matrix Completion.

■ Ignores the info of *G* and *H*.

TK Tensor Kernel.

■ Implicitly construct PG, no transduction

GRMC Graph Regularized Matrix Completion.

■ Transduction over G and H, no PG constructed

Results

Performance of several interesting combinations of \circ and κ

Dataset	Graph Transduction	Graph Product	MAP	AUC	ndcg@3
Courses	Random Walk	Tensor	0.488	0.827	0.461
	Diffusion	Cartesian	0.518	0.872	0.500
	von-Neumann	Tensor	0.472	0.861	0.449
	von-Neumann	Cartesian	0.366	0.531	0.359
	Sigmoid	Cartesian	0.443	0.617	0.431
Cora	Random Walk	Tensor	0.222	0.764	0.205
	Diffusion	Cartesian	0.256	0.884	0.232
	von-Neumann	Tensor	0.230	0.853	0.211
	von-Neumann	Cartesian	0.218	0.633	0.212
	Sigmoid	Cartesian	0.192	0.443	0.188
MovieLens	Random Walk	Tensor	-	-	0.7695
	Diffusion	Cartesian	-	-	0.7702
	von-Neumann	Tensor	-	-	0.7720
	von-Neumann	Cartesian	-	-	0.7624
	Sigmoid	Cartesian	-	-	0.7650

Results

Proposed method (Diff + Cartesian GP) v.s. Baselines

Dataset	Method	MAP	AUC	ndcg@3	
	MC	0.319	0.758	0.294	
Courses	GRMC	0.366	0.777	0.343	
	TK	0.449	0.810	0.446	
	Proposed	0.490	0.838	0.473	
Cora	МС	0.101	0.697	0.086	
	GRMC	0.115	0.702	0.101	
	TK	0.248	0.872	0.231	
	Proposed	0.268	0.894	0.243	
MovieLens	МС	-	-	0.748	
	GRMC	-	-	0.752	
	TK	-	-	0.718	
	Proposed	-	-	0.765	

Outline

- 1 Problem Description
- - Product Graph Construction
 - Graph-based Transductive Learning

- 6 Conclusion

Conclusion

Summary

Problem Predicting the missing edges of a bipartite graph with graph-structured vertex sets on both sides.

Contribution A novel approach via transductive learning over product graph, efficient algorithmic solution and good results.

Conclusion

Summary

Problem Predicting the missing edges of a bipartite graph with graph-structured vertex sets on both sides.

Contribution A novel approach via transductive learning over product graph, efficient algorithmic solution and good results.

On-going Work

- Extend to k Graphs (k > 2)
 - lacksquare Bipartite Graph o k-partite Graph
 - $\blacksquare \ \mathsf{Edge} \to \mathsf{Hyperedge}$
- Determine the "optimal" graph product for any given problem.

Thanks!

hanxiaol@cs.cmu.edu