

Non-Determinism and the Lawlessness of Machine Learning Code

A. Feder Cooper, Jonathan Frankle, and Chris De Sa

The cyberlaw frame

"Code is law" (Reidenberg, Lessig)

more precisely, "code is constitutive of law" (Bamberger)

The cyberlaw frame

"Code is law" (Reidenberg, Lessig)
more precisely, "code is constitutive of law" (Bamberger)

The code in this literature is deterministic

if/else mapping of inputs to outputs (Lessig, Bamberger, Citron, Grimmelmann, etc...)

The cyberlaw frame

"Code is law" (Reidenberg, Lessig)
more precisely, "code is constitutive of law" (Bamberger)

The code in this literature is *deterministic* if/else mapping of inputs to outputs (Lessig, Bamberger, Citron, Grimmelmann, etc...)

Machine learning (ML) code is **non**-deterministic our paper gets into this in detail

1. Distinguishing types of non-determinism in ML

- 1. Distinguishing types of non-determinism in ML
- 2. Relating prior legal literature on ML stochasticity

- 1. Distinguishing types of non-determinism in ML
- 2. Relating prior legal literature on ML stochasticity
- 3. Clarifying the effects of non-determinism by reasoning about distributions over outcomes

- 1. Distinguishing types of non-determinism in ML
- 2. Relating prior legal literature on ML stochasticity
- 3. Clarifying the effects of non-determinism by reasoning about distributions over outcomes
- 4. Breaking the cyberlaw "code is law" frame with non-deterministic ML code

Non-determinism

A property of processes for which supplying the same inputs can produce different outputs.

Non-determinism

A property of processes for which supplying the same inputs can produce different outputs.

Stochasticity

A property of non-deterministic processes whose outcomes can be reasoned about using probability theory.

Non-determinism

A property of processes for which supplying the same inputs can produce different outputs.

Stochasticity

A property of non-deterministic processes whose outcomes can be reasoned about using probability theory.

Non-determinism (Non-stochastic non-determinism)

A property of processes for which supplying the same inputs can produce different outputs, and whose outcomes are non-stochastic.

Stochasticity (Stochastic non-determinism)

A property of non-deterministic processes whose outcomes can be reasoned about using probability theory.

Non-determinism (Non-stochastic non-determinism)

A property of processes for which supplying the same inputs can produce different outputs, **and whose outcomes are non-stochastic.**

Stochasticity (Stochastic non-determinism)

A property of non-deterministic processes whose outcomes can be reasoned about using probability theory.

Existing popular ML frameworks (e.g., PyTorch)

Non-determinism (Non-stochastic non-determinism)

A property of processes for which supplying the same inputs can produce different outputs, **and whose outcomes are non-stochastic.**

Stochasticity (Stochastic non-determinism)

A property of non-deterministic processes whose outcomes can be reasoned about using probability theory.

Existing legal literature

In a single model, stochasticity can cause the deterministic decision rule

In a single model, stochasticity can cause the deterministic decision rule

to exhibit big variations in outputs when there are small variations in inputs

"Small Change Makes a Big Difference" (Bambauer, et al.)

In a single model, stochasticity can cause the deterministic decision rule

to exhibit big variations in outputs when there are small variations in inputs

"Small Change Makes a Big Difference" (Bambauer, et al.)

to appear "unpredictable," "unconstrained," or "unreasonable"

Arbitrariness in ML (Creel and Hellman)

"To the extent that an algorithm governs the decision, it will produce the **same result when run on the same inputs**. If the algorithm contains a degree of **randomness** within it, ... it is **still reproducible** at a higher level of abstraction"

In a single model, stochasticity can cause the deterministic decision rule

to exhibit big variations in outputs when there are small variations in inputs

"Small Change Makes a Big Difference" (Bambauer, et al.)

to appear "unpredictable," "unconstrained," or "unreasonable"

Arbitrariness in ML (Creel and Hellman)

"To the extent that an algorithm governs the decision, it will produce the **same result when run on the same inputs**. If the algorithm contains a degree of **randomness** within it, ... it is **still reproducible** at a higher level of abstraction"

What about **non**-stochastic non-determinism?

Reasoning about distributions over outcomes

Instead of thinking about

a single model with a deterministic decision rule

(where the single rule is influenced by stochasticity in training)

Reasoning about distributions over outcomes

Instead of thinking about

a single model with a deterministic decision rule

(where the single rule is influenced by stochasticity in training)

We will think about **distributions**

over possible models with different deterministic decision rules

(where the distribution of rules is influenced by multiple types of non-determinism in training)

Reasoning about distributions over outcomes

Instead of thinking about

a single model with a deterministic decision rule

(where the single rule is influenced by **stochasticity** in training)

We will think about **distributions**

over possible models with different deterministic decision rules

(where the distribution of rules is influenced by multiple types of non-determinism in training)

Taking a distributional approach

- 1. Clarifies prior scholarship on stochasticity
- 2. Accounts for other types of non-determinism

Ex. 1: Distributions over Individual Outcomes

A distributional view of stochasticity

Ex. 1: Distributions over Individual Outcomes

A distributional view of non-stochastic non-determinism

Ex. 2: Distributions over Models

A distributional view of non-stochastic non-determinism

Takeaways from these examples

Reasoning about distributions over outcomes clarifies the importance of non-determinism

Non-stochastic non-determinism also has important normative effects on ML outcomes

Non-deterministic code is lawless

Lack of contradictions and **predictability** are key features of legal rules (Tamanaha, Fuller, Kolber, etc.)

Non-deterministic code is lawless

Lack of contradictions and **predictability** are key features of legal rules (Tamanaha, Fuller, Kolber, etc.)

Stochasticity can cause **contradictions** (Example 1), but is arguably **predictable** (in a probabilistic sense)

Non-deterministic code is lawless

Lack of contradictions and **predictability** are key features of legal rules (Tamanaha, Fuller, Kolber, etc.)

Stochasticity can cause **contradictions** (Example 1), but is arguably **predictable** (in a probabilistic sense)

Non-stochastic non-determinism can cause **contradictions** and is **unpredictable**

Takeaways and other work

The law can take care to reason about **distributions over outcomes**, to expose the effects of different types of non-determinism

ML can develop more precise tools to reason about different types of arbitrariness and to mitigate its impacts

Non-Determinism and the Lawlessness of Machine Learning Code

A. Feder Cooper, Jonathan Frankle, and Chris De Sa

Thank you!