

# CNN-LSTM based Image Captioning

Mohith Damarapati md4289@nyu.edu

## Introduction

- Describing an image is an easy and obvious task for humans
- But, is it so for machines?
- No! Because they lack commonsense and intelligence
- They cannot understand the meaning of context and content in the image
- The problem of making machines to automatically describe an image in a natural language is referred as "Image Captioning"
- It is an interesting problem because making machines understand the visual scene is an important sub goal of True AI

#### **Artificial Intelligence**

#### **Computer Vision**

Aims to make machines understand the visual scenes
Like an 'eye' to AI machine

#### **Natural Language Processing**

Aims to make machines understand and generate natural language

To converse with humans



#### **Image Captioning Problem**

Connects CV and NLP, two sub fields of AI

A baseball player swinging a bat at a ball

Generated by my model

# Dataset (MSCOCO)

- MSCOCO dataset has a total of 82783 train images and 40592 test images
- Each image has 5 captions on an average
- Caption lengths vary from 7 to 57







- Candles, pumpkins and skull decorations on table
- A table topped with Halloween decorations and food
- A table decorated with skulls, apples and oranges



## CNN – LSTM Framework

- CNNs provide a rich representation of the features which can be used for various vision tasks like classification, localization and detection
- We also call the process of extraction of rich image features as learning disentangled representations
- These disentangled representations are given as input to sequence models like RNN
- In this project, I used the ResNet-101, which is pre-trained on the ImageNet data to capture image features
- Features in the last layer of ResNet-101 after removing the fully connected layer are given as inputs to an LSTM, which is a modified version of an RNN
- LSTM architecture is similar to the architecture used in NIC



# Experiments

- LSTM architecture is similar to NIC. Dimension of LSTM hidden states is 512 and word embedding is 256
- Trained the model for LSTM layers ranging from 1 to 4
- LSTM layers above 2 gave almost similar results, but there is a comparable difference in the results when compared to 1 layer
- Batch size and learning rate are set as 64 and 0.001 respectively
- Also, investigated the effect of minimum word frequencies of vocabulary set on the model
- Minimum word frequency of 4 in the vocabulary set gave better results than 2 and

## Results

| MODEL    | BLEU1 | BLEU2 | BLEU3 | BLEU4 |
|----------|-------|-------|-------|-------|
| LSTM - 4 | 74.22 | 57.28 | 36.18 | 20.61 |
| LSTM - 3 | 74.3  | 57.32 | 36.42 | 20.98 |
| LSTM - 2 | 74.14 | 57.24 | 36.26 | 20.7  |
| LSTM - 1 | 72.82 | 55.43 | 34.12 | 19.99 |

### Baseline Results

| Model            | BLEU4 |
|------------------|-------|
| Random Forest    | 4.6   |
| Nearest Neighbor | 9.9   |
| Human            | 21.7  |
| NIC              | 27.7  |







## Results – Sample Captions generated by my model



A kitchen with a sink and a microwave BLEU4: 0.397
Successful example



A couple of cows standing next to each other BLEU4: 7.8Xe^-15 Failed example

## Problems in the current captioning models

- Lack distinctiveness: Images with similar kind of objects but different interactions between them are not captured accurately
- Cannot do basic arithmetic: If model is trained with 2 cats playing, and if we test an image with 4 cats playing, current captioning models still caption it as 2 cats as they cannot understand arithmetic
- Cannot capture deep meaning: Humans can infer deep meanings, but current captioning models cannot. For instance, if an image consists of a man petting a cat, humans can infer the love shown towards the cat, but machine can only describe that a man is rubbing cat's fur