

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-29. (canceled)

30. (withdrawn, currently amended) A process for the preparation of a compound of formula (I)

in which;

- n represents an integer from 1 to 6;
- m represents an integer equal to 5, 6 or 7;
- R^1 represents either an OH group or an $-S-CH_2-$

$(CH_2)_n-Z$ group, the R^1 groups all being identical;

- z represents

a $\text{NX}-\text{C}(=\text{S})-\text{NHR}$ group,

X representing a hydrogen atom or an alkyl group comprising from 1 to 6 carbon atoms and

R representing a biorecognition element comprising an amino acid derivative, a peptide, a monosaccharide, an oligosaccharide, a multiplication element with several branchings comprising tris(2-hydroxymethyl)methyl radical, a multiplication element with several branchings comprising glucidic groups which can be identical or different, or a visualization probe or fluorescent or radioactive detection probe,

said multiplication element with several branchings comprising consisting of tris(2-hydroxymethyl)methyl radical or pentaerythritol radical, said tris(2-hydroxymethyl) radical being linked to the group Z by the quaternary carbon radical, and the pentaerythritol radical being linked to the group Z by a primary carbon radical,

said process comprising the following stages:
-reacting a compound selectively or totally halogenated in primary alcohol position, of the following formula (VII):

m being as defined above,

and Y representing a halogen atom chosen from the group consisting of chlorine, bromine, and iodine,

with an ω -aminoalkanethiol of the following formula

(VIII):

(VIII-a):

said salt being associated with a halide counter ion,
n and X being as defined above,
in order to obtain a compound of formula (I) as defined
above and having the following formulae (A-a):

and

- the reaction of the compound of formula (A-a) as obtained in the preceding stage with an isothiocyanate of the following formula (IX):

in which R is as defined above,

in order to obtain a compound of formula (I) as defined above, and corresponding to the following formula:

31. (withdrawn) The preparation process according to claim 30 of a compound having the following general formula (I-b):

said process comprising the following stages:

- reacting a per(6-deoxy-6-halo) cyclodextrin compound, of the following formula (VII-a):

with an ω -aminoalkanethiol of the following formula (VIII):

said ω -aminoalkanethiol being N-alkylated, or the corresponding salt of the following formula (VIII-a):

said salt being associated with a halide counter ion, and X being a hydrogen atom, the compound of formula (VIII) being cysteamine of formula $\text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{SH}$,

in order to obtain a compound of the following formulae (I-c),

and

- the reaction of the compound of formula (I-c) as obtained in the preceding stage with an isothiocyanate of the following formula (IX):

in order to obtain a compound of the following formula (II) or (II-a)

32. (withdrawn) The preparation process according to claim 30 of compounds having the following formula:

said process comprising the following stages:

- reacting a compound selectively halogenated in primary alcohol position, of the following formula (VII):

with an ω -aminoalkanethiol of the following formula (VIII):

said ω -aminoalkanethiol optionally being N-alkylated, or the corresponding salt of the following formula (VIII-a):

said salt being associated with halide as a counter ion, and preferably being the chloride ion,

and X being a hydrogen atom,

the compound of formula (VIII) being cysteamine of formula $\text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{SH}$,

in order to obtain a compound of formula (I-f) of the following formula:

and

- reacting the compound of formula (I-f) as obtained in the preceding stage with an isothiocyanate of the following formula (IX):

in order to obtain a compound of formula (I-h):

33. (cancelled)

34. (currently amended) A compound of the following general formula:

in which:

- n represents an integer from 1 to 6;
- m represents an integer equal to 5, 6 or 7;
- R¹ represents either an OH group or an -S-CH₂-(CH₂)_n-Z group, the R¹ groups all being identical;

- Z represents

X representing a hydrogen atom or an alkyl group comprising from 1 to 6 carbon atoms, and

R representing a biorecognition element comprising an amino acid derivative, a peptide, a monosaccharide, an oligosaccharide, a multiplication element with several branchings comprising tris(2-hydroxymethyl)methyl radical, a multiplication element with several branchings comprising glucidic groups which can be identical or different, or a visualization probe or fluorescent or radioactive detection probe,

said multiplication element with several branchings comprising consisting of tris(2-hydroxymethyl)methyl radical or pentaerythritol radical, said tris(2-hydroxymethyl) radical being linked to the group Z by the quaternary carbon radical, and the pentaerythritol radical being linked to the group Z by a primary carbon radical.

35. (previously presented) The compound of claim 34, wherein R¹ represents OH, and having the following general formula:

36. (cancelled)

37. (previously presented) The compound of claim 34,
wherein R¹ represents OH, having the formula (I-a)

and Z represents a

38. (previously presented) The compound of claim 34,
wherein R¹ represents an -S-CH₂-(CH₂)_n-Z group, and having the
following general formula:

39. (cancelled)

40. (cancelled)

41. (cancelled)

42. (cancelled)

43. (previously presented) The compound of claim 38,
wherein Z represents a $\begin{array}{c} \text{NX} \\ \diagup \\ \text{C}=\text{S} \\ \diagdown \end{array}$ group,
X represents a hydrogen atom and n is equal to 1, and having the
following formula:

44. (cancelled)

45. (cancelled)

46. (previously presented) The compound according to
claim 34, wherein R^1 represents an $-\text{S}-\text{CH}_2-(\text{CH}_2)_n-\text{Z}$ group, Z
represents a $\begin{array}{c} \text{NX} \\ \diagup \\ \text{C}=\text{S} \\ \diagdown \end{array}$ group, X represents a hydrogen atom, n

is equal to 1, and the R group is chosen from the following groups:

- the α -D-mannopyranosyl group, of the following formula (III):

- the β -lactosyl group, of the following formula (III-a):

- the group derived from Lewis X trisaccharide or from sialyl Lewis X tetrasaccharide, of the following formulae (III-b) and (III-c) respectively:

- an oligosaccharide derived from heparin, of the following formula (III-d):

47. (previously presented) The compound of claim 34, wherein R^1 represents an $-S-CH_2-(CH_2)_n-Z$ group, Z represents a group, X represents a hydrogen atom, n is equal to 1, and:

R comprises a branching element consisting in a tris(2-hydroxymethyl)methyl radical, or

R represents one of the following groups:

- the tris(α -D-mannopyranosyloxymethyl)methyl group, of the following formula (IV):

-the tris(β -lactosyloxymethyl)methyl group, of the following formula (IV-a):

48. (previously presented) The compound of claim 34, wherein Z represents a $\begin{array}{c} \text{NX} \\ \parallel \\ \text{NHR} \end{array}$ group, wherein R comprises a

branching element derived from pentaerythritol, said compound having the following formula:

in which R^2 and R^3 represent glucidic derivatives which can be different or identical or also a fluorescent or radioactive probe.

49. (previously presented) The compound of claim 48, wherein R^1 represents OH.

50. (previously presented) The compound of claim 48, wherein R^1 represents formula:

51. (previously presented) The compound of claim 48, wherein n is equal to 1, X represents a hydrogen atom and R² and R³ represent one of the following groups:

- the α -D-mannopyranosyl group, of the following formula (III):

- the β -lactosyl group, of the following formula (III-a):

- the β -D-glucopyranosyl group, of the following formula (VI):

R² and R³ being able to be identical or different.

52. (previously presented) The compound of claim 34, wherein m is equal to 6.

53. (previously presented) An inclusion complex of a compound according to claim 34 with a pharmacologically active molecule, a molar ratio between the compound and the pharmacologically active molecule being approximately 50:1 to approximately 1:1.

54. (previously presented) An inclusion complex of a compound according to claim 34 with a pharmacologically active molecule, a molar ratio between the compound and the pharmacologically active molecule being approximately 50:1 to approximately 1:1, wherein the pharmacologically active molecule is an antineoplastic agent, belonging to the taxol family.

55. (previously presented) A pharmaceutical composition comprising a compound according to claim 34 with a pharmacologically acceptable vehicle.

56. (previously presented) A pharmaceutical composition comprising an inclusion complex of a compound according to claim 34, with a pharmacologically active molecule, a molar ratio between the compound and the pharmacologically active molecule being approximately 50:1 to approximately 1:1, in association with a pharmacologically acceptable vehicle.

57. (previously presented) A pharmaceutical composition comprising a compound according to claim 34 with a pharmacologically acceptable vehicle, in the form of an aqueous solution.

58. (previously presented) A pharmaceutical composition comprising an inclusion complex of a compound according to claim 34 with a pharmacologically active molecule, a molar ratio between the compound and the pharmacologically active molecule being approximately 50:1 to approximately 1:1, in association with a pharmacologically acceptable vehicle, the pharmacological compound being in the form of an aqueous solution.

59. (previously presented) A pharmaceutical composition comprising a compound according to claim 34 with a pharmacologically acceptable vehicle, wherein the composition contains per single dose approximately 50 mg to approximately 500 mg of the compound.

60. (previously presented) A pharmaceutical composition comprising an inclusion complex of a compound according to claim 34 with a pharmacologically active molecule, a molar ratio between the compound and the pharmacologically active molecule being approximately 50:1 to approximately 1:1, in association with a pharmacologically acceptable vehicle, wherein the

composition contains per single dose approximately 100 mg to approximately 750 mg of one of said complex.