

SEQUENCE LISTING

<110> Chan, Lia Raquel
 Gonzalez, Daniel H.
 Dezar, Carlos A.
 Gago, Gabriela Marisa
 Dunan, Claudio Marcelo

- <120> Transcription Factor Gene Induced by Water Deficit Conditions and Abscisic Acid from Helianthus Annuus, Promoter and Transgenic Plants
- <130> 2510.0040000/JAG/SAC
- <140> 10/520,333
- <141> 2003-05-02
- <150> PCT/US2003/013770
- <151> 2003-05-02
- <160> 30
- <170> PatentIn version 3.1
- <210> 1
- <211> 774
- <212> DNA
- <213> Helianthus annuus

<400> 1

tcactagtac	cataatattc	acaaacacac	acacctcaga	aacgaagctt	gcacataatg	60
tctcttcaac	aagtacccac	aacagaaaca	accaccagga	agaaccgaaa	cgaggggcgg	120
aaacgattta	ccgacaaaca	aataagtttc	ctagagtaca	tgtttgagac	acagtcgaga	180
cccgagttaa	ggatgaaaca	ccagttggca	cataaactcg	ggcttcatcc	tcgtcaagtg	240
gcgatatggt	·tccagaacaa	acgcgcgcga	tcaaagtcga	ggcagattga	gcaagagtat	300
aacgcgctaa	agcataacta	cgagacgctt	gcgtctaaat	ccgagtctct	aaagaaagag	360
aatcaggccc	tactcaatca	ggtatggttg	caaacttaca	atgttgcatt	caactattta	420
agtagttttg	aatttttgtg	acaataaaga	ttgacaaatg	ttgtttgata	attgattaac	480
agttggaggt	gctgagaaat	gtagcagaaa	agcatcaaga	gaaaactagt	agtagtggca	540
gcggtgaaga	atcggatgat	cggtttacga	actctccgga	cgttatgttt	ggtcaagaaa	600
tgaatgttcc	gttttgcgac	ggttttgcgt	actttgaaga	aggaaacagt	ttgttggaga	660
ttgaagaaca	actgccagac	cctcaaaagt	ggtgggagtt	ctaaagagta	aagaaggatg	720
tagaagtagt	agagtaaaaa	ctaaaacata	ccagatagtt	ggtttacact	ttgt	774

<210> 2 <211> 673 <212> DNA <213> Hel		ıus				
<400> 2 tcactagtac	cataatattc	acaaacacac	acacctcaga	aacgaagctt	gcacataatg	60
tctcttcaac	aagtacccac	aacagaaaca	accaccagga	agaaccgaaa	cgaggggcgg	120
aaacgattta	ccgacaaaca	aataagtttc	ctagagtaca	tgtttgagac	acagtcgaga	180
cccgagttaa	ggatgaaaca	ccagttggca	cataaactcg	ggcttcatcc	tcgtcaagtg	240
gcgatatggt	tccagaacaa	acgcgcgcga	tcaaagtcga	ggcagattga	gcaagagtat	300
aacgcgctaa	agcataacta	cgagacgctt	gcgtctaaat	ccgagtctct	aaagaaagag	360
aatcaggccc	tactcaatca	gttggaggtg	ctgagaaatg	tagcagaaaa	gcatcaagag	420
aaaactagta	gtagtggcag	cggtgaagaa	tcggatgatc	ggtttacgaa	ctctccggac	480
gttatgtttg	gtcaagaaat	gaatgttccg	ttttgcgacg	gttttgcgta	ctttgaagaa	540
ggaaacagtt	tgttggagat	tgaagaacaa	ctgccagacc	ctcaaaagtg	gtgggagttc	600
taaagagtaa	agaaggatgt	agaagtagta	gagtaaaaac	taaaacatac	cagatagttg	660
gtttacactt	tgt					673
<210> 3 <211> 1221 <212> DNA <213> Helianthus annuus						
<220> <221> promoter <222> (1)(1221) <223> Large allele						
<400> 3 gatccaattg	gaccacctgg	cacatcgtat	cttatctctt	ttgtcgtttc	caacacacca	60
caacacacct	acaaacgtgt	caattcacac	ttcaccaatt	tcatttcctt	ttagtcaatc	120
atattaaaag	tagtagcccc	cacccccatt	tgttacctac	catttcccac	tttaataatc	180
acccacgcta	tgtccacttg	tacttttgtt	tgcacacaac	tcttcccata	aaatatcaaa	240
ccaaattttt	tttagtggaa	aacaaattcc	ccaaatagaa	tactaacgaa	attcatcgca	300
tcagaataca	ctcatctctg	aacagtggcg	aagcttgacg	ttttcgacgg	ggggtcggaa	360
aacqtatqta	cccgaaattt	ctatagaatc	ggggggtcga	aaacqtatat	acccaaaatt	420

tctatacgaa aactacatat ataacactac tgagcaaaaa gttcgggggt tcg	ggcgccc 480					
ctcccggccc cttcaaagct tcgccaatgt ctctgaaccg aagaaaaccc tcac	ctcgtct 540					
actagecaat gaateeteae eagggaaaee eteaetegte ttaetggaet atte	ggcgctt 600					
ccaaatggac tacttgcgaa attcaccaca tcgggataca ctcgtctact gcgg	gtgaggt 660					
aaaacccgct tggctcaagg atcgaactag cgattgctgc ctactcgcct aatc	ctcccat 720					
catcaacagg tgccgccgaa acaaaatgct ggggggggga gttgaaccta ggto	ccagtga 780					
cgcacccatg aattttttt ctagggatgc gaacgagtgg tttaaccata ctt	ttaagag 840					
gtgcgatcgg aaattttacc tataaaatac actaaaaaag ttccaagggt cca	cccaccc 900					
cttaacctaa gtccgccttt gtctggatca cgtgaaacat caggtctctc cct	taccagt 960					
ccagctacga ctcattgaca aaatatcaaa accatatgat tttgagtttt atc	tcaaccg 1020					
aaagtgacat catgacagag aatcgacata accaaaacgt gtaaacgtac aact	tcaccat 1080					
tgcgttgaaa aggacaaaac aggtaggatt cttgtcaaat tcaacgcgta cac	ctgtgct 1140					
tcatctaaac cccatacttt aagaaccttt ataaagacca ctcactatat atac	cacatat 1200					
ataatatcac ttatcaaacc c	1221					
<pre><210> 4 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Designed oligonucleotide based on the promoter and having Hind I</pre>						
<210> 5 <211> 28 <212> DNA <213> Artificial Sequence						
<220> <223> Designed oligonucleotide based on the promoter and l	having Sal I					
<400> 5 gcggtcgaca cctggcacat cgtatctt	28					

<210> 6 <211> 27

<212> <213>	DNA Artificial Sequence							
<220> <223>	Designed oligonucleotide based on the promoter and having Bam F site	II						
<400> 6 cgcggatccg agggtttgat aagtgat 27								
<211> <212>								
<220> <223>	Designed oligonucleotide based on the promoter and having Hind II site	i I						
<400> cccaago	7 ctta acctaagtee geetttg	27						
<211> <212>								
<220> <223>	Designed oligonucleotide based on the promoter and having Hind I site	II						
<400> 8 ggcaagctta tctcaaccga aagtgac 27								
<210><211><211><212><213>	DNA							
<220> <223>	Designed oligonucleotide based on the 5' promoter							
<400> atttcgd	9 caag tagtccatt	19						
<210><211><211><212><213>	10 1015 DNA Helianthus annuus							
<400> gatccaa	10 attg gaccacctgg cacatcgtat cttatctctt ttgtcgtttc caacacacca	60						

•

caacacacct	acaaacgtgt	caattcacac	ttcaccaatt	tcatttcctt	ttagtcaatc	120
atattaaaag	tagtagcccc	cacccccatt	tgttacctac	catttcccac	tttaataatc	180
acccacgcta	tgtccacttg	tacttttgtt	tgcacacaac	tcttcccata	aaatatcaaa	240
ccaaattttt	tttaatggaa	aacaaatact	tcaaatgcac	tattggtgaa	attcaccaca	300
tcagaataca	cccgtctcta	ctcatctact	ggccaacgaa	tcttcacggg	ggaaaccctc	360
actcgtctac	tgggactact	ggcgcttcaa	aatggactac	tgacaaaatt	caccacatcg	420
ggatacactt	gtctactgcg	gtgaggtaaa	atccgccgct	cagctcaatg	atcgaactag	480
cgatcgccac	ccactcacct	tgtctcccat	catcaccagg	tgccgccaaa	acaaaatgtt	540
gggggcggga	attgaaccta	ggtccagtgg	cgcacccatg	aattttttt	ctagggatgc	600
gaacgagtga	tttaaccata	cttttaagag	gtgcgatcgg	aaattttacc	tataaaatat	660
actaaaaaaa	tttcaagggt	ccgcccaccc	accccttaac	ctaagtccgc	ctctgcctgg	720
atcacgtgaa	acatcaggtc	tctctcttac	cagttcacct	acaactcatt	gacaaaatat	780
caaaaccata	tgattttgag	ttttatctca	accgaaagtg	acatcatgac	agagaatcga	840
cataaccaaa	acgtgtaaac	gtacaactca	ccattgcgtt	gaaaaggaca	aaacaggtag	900
gattcttgtc	aaattcaacg	cgtacacctg	tgcttcatct	aaaccccata	ctttaagaac	960
ctttataaag	accactcact	atatatacac	atatataata	tcacttatca	aaccc	1015

- <210> 11 <211> 28
- <212> DNA
- <213> Artificial Sequence

<220>

<223> Designed oligonucleotide that matches nucleotides 81-100 of the H ahb-4 cDNA sequence and having Bam HI site

<400> 11

ggcggatcca acagaaacaa ccaccagg

28

- <210> 12
- <211> 29
- <212> DNA
- <213> Artificial Sequence

<220>

<223> Designed oligonucleotide for cloning 5' cDNA and having Bam HI s ite

<400> 12

ggcggatccc ctggtggttg tttctgttg

29

```
<210> 13
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> oligonucleotide based on 5' cDNA and having Xho I site
<400> 13
                                                                     34
gaggactcga gctcaagttt tttttttt tttt
<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide based on 5' cDNA and having Xho I site
<400> 14
                                                                     18
gaggactcga gctcaagc
<210> 15
<211>
      29
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the promoter and having Eco RI
       site
<400> 15
                                                                     29
gccgaattca gattgagcaa gagtataac
<210> 16
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Designed oligonucleotide based on the promoter
<400> 16
                                                                     19
acctttataa agaccactc
<210> 17
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the promoter
```

<400> acgcaat	17 tggt gagttgtac	19
	18 24 DNA Artificial Sequence	
<220> <223>	oligonucleotide to DNA-binding assays	
<400> aattcag	18 gatc tcaataattg agag	24
<212>	19 24 DNA Artificial Sequence	
<220> <223>	oligonucleotide to DNA-binding assays	
<400> gatcct	19 ctca attattgaga tctg	24
<212>	20 30 DNA Artificial Sequence	
<220> <223>	Oligonucleotide having Bam HI site	
<400> gcgggat	20 tcca ccatgtctct tcaacaagta	30
<210><211><211><212><213>	21 30 DNA Artificial Sequence	
<220> <223>	Oligonucleotide having Sac I site	
<400> gccgage	21 ctct tagaactcca accacttttg	30
<210><211><212><212><213>	22 27 DNA Artificial Sequence	

```
<223> Oligonucleotide having Bam HI site
                                                                      27
ggcggatccg tctcccagtt gttcttc
<210> 23
<211> 9
<212> DNA
<213> Helianthus annuus
<220>
<221> misc_feature
<222>
      (5)..(5)
<223> n is a or t
<400> 23
caatnattg
<210> 24
<211>
      181
<212>
      PRT
<213> Helianthus annuus
<400> 24
Met Ser Leu Gln Gln Val Pro Thr Thr Glu Thr Thr Thr Arg Lys Asn
                                    10
                                                        15
               5
Arg Asn Glu Gly Arg Lys Arg Phe Thr Asp Lys Gln Ile Ser Phe Leu
                                                    30
            20
                                25
Glu Tyr Met Phe Glu Thr Gln Ser Arg Pro Glu Leu Arg Met Lys His
       35
                            40
Gln Leu Ala His Lys Leu Gly Leu His Pro Arg Gln Val Ala Ile Trp
   50
                       55
Phe Gln Asn Lys Arg Ala Arg Ser Lys Ser Arg Gln Ile Glu Gln Glu
                   70
Tyr Asn Ala Leu Lys His Asn Tyr Glu Thr Leu Ala Ser Lys Ser Glu
               85
```

<220>

Ser Leu Lys Lys Glu Asn Gln Ala Leu Leu Asn Gln Leu Glu Val Leu

100 105 110

Arg Asn Val Ala Glu Lys His Gln Glu Lys Thr Ser Ser Gly Ser 115 120 125

Gly Glu Glu Ser Asp Asp Arg Phe Thr Asn Ser Pro Asp Val Met Phe 130 135 140

Gly Gln Glu Met Asn Val Pro Phe Cys Asp Gly Phe Ala Tyr Phe Glu 145 150 155 160

Glu Gly Asn Ser Leu Leu Glu Ile Glu Glu Gln Leu Pro Asp Pro Gln 165 170 175

Lys Trp Trp Glu Phe 180

<210> 25

<211> 99

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Hd-Zip domain of Athb-1

<400> 25

Leu Pro Glu Lys Lys Arg Arg Leu Thr Thr Glu Gln Val His Leu Leu 1 5 10 15

Glu Lys Ser Phe Glu Thr Glu Asn Lys Leu Glu Pro Glu Arg Lys Thr 20 25 30

Gln Leu Ala Lys Lys Leu Gly Leu Gln Pro Arg Gln Val Ala Val Trp 35 40 45

Phe Gln Asn Arg Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Arg Asp 50 55 60

Tyr Asp Leu Leu Lys Ser Thr Tyr Asp Gln Leu Leu Ser Asn Tyr Asp 65 70 75 80

Ser Ile Val Met Asp Asn Asp Lys Leu Arg Ser Glu Val Thr Ser Leu 85 90 95

Thr Glu Lys

<210> 26

<211> 99

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Hd-Zip domain of Athb-6

<400> 26

Leu Ser Glu Lys Lys Arg Arg Leu Ser Ile Asn Gln Val Lys Ala Leu 1 5 10 15

Glu Lys Asn Phe Glu Leu Glu Asn Lys Leu Glu Pro Glu Arg Lys Val 20 25 30

Lys Leu Ala Gln Glu Leu Gly Leu Gln Pro Arg Gln Val Ala Val Trp 35 40 45

Phe Gln Asn Arg Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Lys Asp 50 55 60

Tyr Gly Val Leu Lys Thr Gln Tyr Asp Ser Leu Arg His Asn Phe Asp 65 70 75 80

Ser Leu Arg Arg Asp Asn Glu Ser Leu Leu Gln Glu Ile Ser Lys Leu 85 90 95

Lys Thr Lys

<210> 27

<211> 99

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Hd-Zip domain of Athb-7

<400> 27

Asn Lys Asn Asn Gln Arg Arg Phe Ser Asp Glu Gln Ile Lys Ser Leu 1 5 10 15

Glu Met Met Phe Glu Ser Glu Thr Arg Leu Glu Pro Arg Lys Lys Val

20 25 30

Gln Leu Ala Arg Glu Leu Gly Leu Gln Pro Arg Gln Val Ala Ile Trp 35 40 45

Phe Gln Asn Lys Arg Ala Arg Trp Lys Ser Lys Gln Leu Glu Thr Glu 50 55 60

Tyr Asn Ile Leu Arg Gln Asn Tyr Asp Asn Leu Ala Ser Gln Phe Glu 65 70 75 80

Ser Leu Lys Lys Glu Lys Gln Ala Leu Val Ser Glu Leu Gln Arg Leu 85 90 95

Lys Glu Ala

<210> 28

<211> 99

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Hd-Zip domain of Athb-12

<400> 28

Lys Ser Asn Asn Gln Lys Arg Phe Asn Glu Glu Gln Ile Lys Ser Leu 1 5 10 15

Glu Leu Ile Phe Glu Ser Glu Thr Arg Leu Glu Pro Arg Lys Lys Val 20 25 30

Gln Val Ala Arg Glu Leu Gly Leu Gln Pro Arg Gln Met Thr Ile Trp 35 40 45

Phe Gln Asn Lys Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Lys Glu 50 55 60

Tyr Asn Thr Leu Arg Ala Asn Tyr Asn Asn Leu Ala Ser Gln Phe Glu 65 70 75 80

Ile Met Lys Lys Glu Lys Gln Ser Leu Val Ser Glu Leu Gln Arg Leu 85 90 95

Asn Glu Glu

<210> 29
<211> 99
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Hd-Zip domain of Hahb-4
<400> 29

Arg Asn Glu Gly Arg Lys Arg Phe Thr Asp Lys Gln Ile Ser Phe Leu 1 5 10 15

Glu Tyr Met Phe Glu Thr Gln Ser Arg Pro Glu Leu Arg Met Lys His $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gln Leu Ala His Lys Leu Gly Leu His Pro Arg Gln Val Ala Ile Trp 35 40 45

Phe Gln Asn Lys Arg Ala Arg Ser Lys Ser Arg Gln Ile Glu Gln Glu 50 55 60

Tyr Asn Ala Leu Lys His Asn Tyr Glu Thr Leu Ala Ser Lys Ser Glu 65 70 75 80

Ser Leu Lys Lys Glu Asn Gln Ala Leu Leu Asn Gln Leu Glu Val Leu 85 90 95

Arg Asn Val

<210> 30 <211> 66 <212> PRT

<213> Artificial Sequence

<220> 30

<223> Synthetic fragment of Hahb-4

Ala Glu Lys His Gln Glu Lys Thr Ser Ser Ser Gly Ser Gly Glu Glu 1 5 10 15

Ser Asp Asp Arg Phe Thr Asn Ser Pro Asp Val Met Phe Gly Gln Glu 20 25 30

Met Asn Val Pro Phe Cys Asp Gly Phe Ala Tyr Phe Glu Glu Gly Asn 35 40 45

Ser Leu Leu Glu Ile Glu Glu Gln Leu Pro Asp Pro Gln Lys Trp Trp 50 55 60

Glu Phe 65