## **Chapter 18: System Security**







## **Chapter 18: System Security**

- The Security Problem
- Program Threats
- System and Network Threats
- Cryptography as a Security Tool
- User Authentication
- Implementing Security Defenses
- Firewalling to Protect Systems and Networks
- Computer-Security Classifications
- An Example: Windows XP





### **Objectives**

- To discuss security threats and attacks
- To explain the fundamentals of encryption, authentication, and hashing
- To examine the uses of cryptography in computing
- To describe the various countermeasures to security attacks





#### **The Security Problem**

- Security must consider external environment of the system, and protect the system resources
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse





### **Security Violations**

- Categories
  - Breach of confidentiality
  - Breach of integrity
  - Breach of availability
  - Theft of service
  - Denial of service
- Methods
  - Masquerading (breach authentication)
  - Replay attack
    - Message modification
  - Man-in-the-middle attack
  - Session hijacking





## **Standard Security Attacks**







## **Security Measure Levels**

- Security must occur at four levels to be effective:
  - Physical
  - Human
    - Avoid social engineering, phishing, dumpster diving
  - Operating System
  - Network
- Security is as week as the weakest chain





#### **Program Threats**

- Trojan Horse
  - Code segment that misuses its environment
  - Exploits mechanisms for allowing programs written by users to be executed by other users
  - Spyware, pop-up browser windows, covert channels
- Trap Door
  - Specific user identifier or password that circumvents normal security procedures
  - Could be included in a compiler
- Logic Bomb
  - Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
  - Exploits a bug in a program (overflow either the stack or memory buffers)





#### C Program with Buffer-overflow Condition

```
#include <stdio.h>
#define BUFFER SIZE 256
int main(int argc, char *argv[])
  char buffer[BUFFER SIZE];
  if (argc < 2)
      return -1;
  else {
       strcpy(buffer, argv[1]);
      return 0;
```





## **Layout of Typical Stack Frame**





#### **Modified Shell Code**

```
#include <stdio.h>
int main(int argc, char *argv[])
{
   execvp(''\bin\sh'', ''\bin \sh'', NULL);
   return 0;
}
```





#### **Hypothetical Stack Frame**



Before attack After attack



#### **Program Threats (Cont.)**

#### Viruses

- Code fragment embedded in legitimate program
- Very specific to CPU architecture, operating system, applications
- Usually borne via email or as a macro
  - Visual Basic Macro to reformat hard drive

```
Sub AutoOpen()
Dim oFS
Set oFS =
   CreateObject(''Scripting.FileSystemObject'')
   vs = Shell(''c:command.com /k format
   c:'',vbHide)
End Sub
```



15.13



### **Program Threats (Cont.)**

- Virus dropper inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses
  - File
  - Boot
  - Macro
  - Source code
  - Polymorphic
  - Encrypted
  - Stealth
  - Tunneling
  - Multipartite
  - Armored





#### **A Boot-sector Computer Virus**







### **System and Network Threats**

- Worms use **spawn** mechanism; standalone program
- Internet worm
  - Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs
  - Grappling hook program uploaded main worm program
- Port scanning
  - Automated attempt to connect to a range of ports on one or a range of IP addresses
- Denial of Service
  - Overload the targeted computer preventing it from doing any useful work
  - Distributed denial-of-service (DDOS) come from multiple sites at once





#### **The Morris Internet Worm**





## **Cryptography as a Security Tool**

- Broadest security tool available
  - Source and destination of messages cannot be trusted without cryptography
  - Means to constrain potential senders (sources) and / or receivers (destinations) of messages
- Based on secrets (keys)





#### **Secure Communication over Insecure Medium**







## **Encryption**

- Encryption algorithm consists of
  - Set of K keys
  - Set of M Messages
  - Set of C ciphertexts (encrypted messages)
  - A function  $E: K \to (M \to C)$ . That is, for each  $k \in K$ , E(k) is a function for generating ciphertexts from messages.
    - $\blacktriangleright$  Both E and E(k) for any k should be efficiently computable functions.
  - A function  $D: K \to (C \to M)$ . That is, for each  $k \in K$ , D(k) is a function for generating messages from ciphertexts.
    - ightharpoonup Both D and D(k) for any k should be efficiently computable functions.
- An encryption algorithm must provide this essential property: Given a ciphertext  $c \in C$ , a computer can compute m such that E(k)(m) = c only if it possesses D(k).
  - Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding D(k) cannot decrypt ciphertexts.
  - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive D(k) from the ciphertexts





## **Symmetric Encryption**

- Same key used to encrypt and decrypt
  - E(k) can be derived from D(k), and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
  - Encrypts a block of data at a time
- Triple-DES considered more secure
- Advanced Encryption Standard (AES), twofish up and coming
- RC4 is most common symmetric stream cipher, but known to have vulnerabilities
  - Encrypts/decrypts a stream of bytes (i.e wireless transmission)
  - Key is a input to psuedo-random-bit generator
    - Generates an infinite keystream





### **Asymmetric Encryption**

- Public-key encryption based on each user having two keys:
  - public key published key used to encrypt data
  - private key key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
  - Most common is RSA block cipher
  - Efficient algorithm for testing whether or not a number is prime
  - No efficient algorithm is know for finding the prime factors of a number





#### **Asymmetric Encryption (Cont.)**

- Formally, it is computationally infeasible to derive  $D(k_d, N)$  from  $E(k_e, N)$ , and so  $E(k_e, N)$  need not be kept secret and can be widely disseminated
  - $E(k_e, N)$  (or just  $k_e$ ) is the **public key**
  - $D(k_d, N)$  (or just  $k_d$ ) is the **private key**
  - N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
  - Encryption algorithm is  $E(k_e, N)(m) = m^{k_e} \mod N$ , where  $k_e$  satisfies  $k_e k_d \mod (p-1)(q-1) = 1$
  - The decryption algorithm is then  $D(k_d, N)(c) = c^{k_d} \mod N$





#### **Asymmetric Encryption Example**

- For example. make p = 7 and q = 13
- We then calculate N = 7\*13 = 91 and (p-1)(q-1) = 72
- We next select  $k_e$  relatively prime to 72 and < 72, yielding 5
- Finally, we calculate  $k_d$  such that  $k_e k_d$  mod 72 = 1, yielding 29
- We how have our keys
  - Public key,  $k_{e}$ , N = 5, 91
  - Private key,  $k_d$ , N = 29, 91
- Encrypting the message 69 with the public key results in the cyphertext 62
- Cyphertext can be decoded with the private key
  - Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key





# **Encryption and Decryption using RSA Asymmetric Cryptography**







#### **Cryptography (Cont.)**

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
  - Asymmetric much more compute intensive
  - Typically not used for bulk data encryption





#### **Authentication**

- Constraining set of potential senders of a message
  - Complementary and sometimes redundant to encryption
  - Also can prove message unmodified
- Algorithm components
  - A set K of keys
  - A set M of messages
  - A set A of authenticators
  - A function  $S: K \to (M \to A)$ 
    - That is, for each  $k \in K$ , S(k) is a function for generating authenticators from messages
    - ightharpoonup Both S and S(k) for any k should be efficiently computable functions
  - A function  $V: K \to (M \times A \to \{\text{true, false}\})$ . That is, for each  $k \in K$ , V(k) is a function for verifying authenticators on messages
    - Both V and V(k) for any k should be efficiently computable functions





#### **Authentication (Cont.)**

- For a message m, a computer can generate an authenticator  $a \in A$  such that V(k)(m, a) = true only if it possesses S(k)
- Thus, computer holding S(k) can generate authenticators on messages so that any other computer possessing V(k) can verify them
- Computer not holding S(k) cannot generate authenticators on messages that can be verified using V(k)
- Since authenticators are generally exposed (for example, they are sent on the network with the messages themselves), it must not be feasible to derive S(k) from the authenticators





#### **Authentication – Hash Functions**

- Basis of authentication
- Creates small, fixed-size block of data (message digest, hash value) from m
- Hash Function *H* must be collision resistant on *m* 
  - Must be infeasible to find an  $m' \neq m$  such that H(m) = H(m')
- If H(m) = H(m'), then m = m'
  - The message has not been modified
- Common message-digest functions include **MD5**, which produces a 128-bit hash, and **SHA-1**, which outputs a 160-bit hash





#### **Authentication - MAC**

- Symmetric encryption used in message-authentication code
   (MAC) authentication algorithm
- Simple example:
  - MAC defines S(k)(m) = f(k, H(m))
    - ▶ Where *f* is a function that is one-way on its first argument
      - k cannot be derived from f(k, H(m))
    - Because of the collision resistance in the hash function, reasonably assured no other message could create the same MAC
    - A suitable verification algorithm is  $V(k)(m, a) \equiv (f(k,m) = a)$
    - Note that k is needed to compute both S(k) and V(k), so anyone able to compute one can compute the other





#### **Authentication – Digital Signature**

- Based on asymmetric keys and digital signature algorithm
- Authenticators produced are digital signatures
- In a digital-signature algorithm, computationally infeasible to derive  $S(k_s)$  from  $V(k_v)$ 
  - V is a one-way function
  - Thus,  $k_{\nu}$  is the public key and  $k_{s}$  is the private key
- Consider the RSA digital-signature algorithm
  - Similar to the RSA encryption algorithm, but the key use is reversed
  - Digital signature of message  $S(k_s)(m) = H(m)^{k_s} \mod N$
  - The key  $k_s$  again is a pair d, N, where N is the product of two large, randomly chosen prime numbers p and q
  - Verification algorithm is  $V(k_v)(m, a) \equiv (a^{k_v} \mod N = H(m))$ 
    - Where  $k_{\nu}$  satisfies  $k_{\nu}k_{s} \mod (p-1)(q-1)=1$





#### **Authentication (Cont.)**

- Why authentication if a subset of encryption?
  - Fewer computations (except for RSA digital signatures)
  - Authenticator usually shorter than message
  - Sometimes want authentication but not confidentiality
    - Signed patches et al
  - Can be basis for non-repudiation





### **Key Distribution**

- Delivery of symmetric key is huge challenge
  - Sometimes done out-of-band
- Asymmetric keys can proliferate stored on key ring
  - Even asymmetric key distribution needs care man-in-themiddle attack





## Man-in-the-middle Attack on Asymmetric Cryptography







### **Digital Certificates**

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party their public keys included with web browser distributions
  - They vouch for other authorities via digitally signing their keys, and so on





#### **Encryption Example - SSL**

- Insertion of cryptography at one layer of the ISO network model (the transport layer)
- SSL Secure Socket Layer (also called TLS)
- Cryptographic protocol that limits two computers to only exchange messages with each other
  - Very complicated, with many variations
- Used between web servers and browsers for secure communication (credit card numbers)
- The server is verified with a **certificate** assuring client is talking to correct server
- Asymmetric cryptography used to establish a secure **session key** (symmetric encryption) for bulk of communication during session
- Communication between each computer theb uses symmetric key cryptography





#### **User Authentication**

- Crucial to identify user correctly, as protection systems depend on user ID
- User identity most often established through passwords, can be considered a special case of either keys or capabilities
  - Also can include something user has and /or a user attribute
- Passwords must be kept secret
  - Frequent change of passwords
  - Use of "non-guessable" passwords
  - Log all invalid access attempts
- Passwords may also either be encrypted or allowed to be used only once





#### **Implementing Security Defenses**

- Defense in depth is most common security theory multiple layers of security
- Security policy describes what is being secured
- Vulnerability assessment compares real state of system / network compared to security policy
- Intrusion detection endeavors to detect attempted or successful intrusions
  - Signature-based detection spots known bad patterns
  - Anomaly detection spots differences from normal behavior
    - Can detect zero-day attacks
  - False-positives and false-negatives a problem
- Virus protection
- Auditing, accounting, and logging of all or specific system or network activities





#### **Firewalling to Protect Systems and Networks**

- A network firewall is placed between trusted and untrusted hosts
  - The firewall limits network access between these two security domains
- Can be tunneled or spoofed
  - Tunneling allows disallowed protocol to travel within allowed protocol (i.e. telnet inside of HTTP)
  - Firewall rules typically based on host name or IP address which can be spoofed
- Personal firewall is software layer on given host
  - Can monitor / limit traffic to and from the host
- Application proxy firewall understands application protocol and can control them (i.e. SMTP)
- System-call firewall monitors all important system calls and apply rules to them (i.e. this program can execute that system call)





#### **Network Security Through Domain Separation Via Firewall**





## **Computer Security Classifications**

- U.S. Department of Defense outlines four divisions of computer security: **A**, **B**, **C**, and **D**.
- D Minimal security.
- C Provides discretionary protection through auditing. Divided into C1 and C2. C1 identifies cooperating users with the same level of protection. C2 allows user-level access control.
- B All the properties of **C**, however each object may have unique sensitivity labels. Divided into **B1**, **B2**, and **B3**.
- A Uses formal design and verification techniques to ensure security.





#### **Example: Windows XP**

- Security is based on user accounts
  - Each user has unique security ID
  - Login to ID creates security access token
    - Includes security ID for user, for user's groups, and special privileges
    - Every process gets copy of token
    - System checks token to determine if access allowed or denied
- Uses a subject model to ensure access security. A subject tracks and manages permissions for each program that a user runs
- Each object in Windows XP has a security attribute defined by a security descriptor
  - For example, a file has a security descriptor that indicates the access permissions for all users



## **End of Chapter 15**



