

Eletromagnetismo EE

MIEInformática - 2º ano

Universidade do Minho

Teste 1 (duração: 2h00)

20 Março 2018

Nome:______ N°:__

1) Preencha o cabeçalho (com o seu nome, número e curso) antes de iniciar o teste.

2) <u>Justifique todas</u> as suas respostas.

$$K = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \, N \cdot m^2 \cdot C^{-2}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} (SI)$$

 $K_m = \frac{\mu_0}{4\pi} = 10^{-7} T \cdot m \cdot A^{-1}$

Carga elementar: $e = 1.6 \times 10^{-19} \text{ C}$;

massa do protão: $m_p = 1.67 \times 10^{-27}$ kg;

massa do electrão: m_e =9.1×10⁻³¹ kg

1. (0.75 valor) Duas esferas condutoras idênticas, de cargas +4Q e -2Q, atraem-se com força F_0

Em seguida as esferas são curto-circuitadas e aproximadas entre si para metade da distância original.

A força eletrostática entre as duas esferas passa a ser:

- b) F₀/2, repulsão
- c) 2F₀, atração
- d) F₀/2, atração
- e) 4F₀, repulsão

JUSTIFIQUE

2. (2 valores) Considere a configuração de cargas indicada no diagrama ao lado. Uma carga $q_1=40~\mu C$ <u>está fixa</u> no eixo dos xx', 2 cm à esquerda da origem. Uma segunda carga Q, <u>está fixa</u> no eixo dos xx', 3 cm à direita da origem. Uma terceira carga, $q_3=20~\mu C$ é libertada do repouso no eixo dos yy', 2 cm acima da origem.

b) Calcule o campo eléctrico no ponto onde está colocada essa carga Q.

3. (1 valor) As cargas Q_1 e Q_2 criam um campo elétrico nulo na origem do referencial. Essas mesmas cargas criam também um potencial nulo no ponto:

- a) x = 0
- b) x = +1/3 m
- c) x = +2/3 m
- d) x = +13/6 m
- e) x = +8/3 m

JUSTIFIQUE

4. (1.75 valores) No interior de uma casca esférica condutora existe uma esfera isoladora, uniformemente carregada, concêntrica com a primeira. Entre as duas existe uma cavidade vazia. Os raios destas esferas são, respectivamente, a=5~cm, b=20~cm e c=25~cm, e estão assinalados na figura. Sabe-se que o campo eléctrico num ponto a 10~cm do centro tem intensidade $3.6\times10^3~N/C$, direcção radial e aponta para o centro, enquanto o campo eléctrico num ponto a 50~cm do centro aponta no sentido contrário e tem intensidade $2.0\times10^2~N/C$.

- a) <u>A partir da Lei de Gauss</u>, determine a carga distribuída na esfera isoladora.
- b) Determine a carga total na casca esférica condutora. Qual é a carga distribuída nas superfícies interna e externa desta casca?

Nome:	Nº:	Lic.:

5. (0.75 valores) Considere uma placa infinita carregada que possui uma densidade superficial de carga igual a $0.12mC/m^2$.

- a) Faça um esquema, considerando a placa como uma linha e desenhe duas superfícies equipotenciais e 3 linhas de campo.
- b) Calcule a distância entre duas superfícies cujos potenciais diferem de 48V.

6. (1.75 valores) Considere o circuito apresentado, onde $V_{ab}=100V$, $C_1=3\mu F$, $C_2=2\mu F$, $C_3=6\mu F$, $C_4=12\mu F$ e $C_5=10\mu F$ Após atingir o equilíbrio, qual a carga armazenada em cada condensador e qual a diferença de potencial aos seus terminais? Faça uma tabela usando a quadrícula anexa (Nesta, o nº de linhas disponível é aleatório). Apresente todos os cálculos.

		Ι - ,	
	C ()	Q ()	ΔV (V)
C ₁			
C ₂			
C ₃			
C ₄			
C ₅			

