UFPE/CIn – ENGENHARIA DA COMPUTAÇÃO IF672 – AED 2018.2 – EXERCÍCIO ESCOLAR 2 PROFESSOR: GUSTAVO CARVALHO

NOME:

1. $\{2,0 \text{ pt.}\}\$ Seja G um grafo dirigido acíclico com n nós, representado como uma matriz de adjacências (0 indica a ausência de aresta e 1 a presença de aresta), escreva um código para: void toposort (int[][] G, int n). Este código deve imprimir no final uma ordenação topológica do grafo G.

Resposta: Abaixo, o código de toposort e da função auxiliar topo_aux

Algoritmo: void toposort(int[][] G, int n)

Algoritmo: void topo_aux(int[][] G, int n, int i, Stack s, bool[] v)

```
1 v[i] \leftarrow true;

2 for j \leftarrow 0 to n-1 do

3 \lfloor \quad \text{if } G[i][j] = 1 \land \neg v[j] \text{ then } topo\_aux(G, n, j, s, v);

4 push(s, i)
```

- 2. {2,0 pt.} Considerando o algoritmo 3. {2,0 pt.} Considerando o algoritmo de Dijkstra (usando uma heap), e o grafo abaixo, calcule os menores caminhos a partir do nó A. Mostre a evolução do array de distâncias (inicialmente, com ∞ para todos os nós exceto A) e da heap como um array (inicialmente, só com o par (A, 0)) após a visita de cada nó do grafo.
 - de Kruskal (usando uma union-find: quick-union sem compressão), calcule a árvore geradora de peso mínimo para o grafo abaixo. Mostre também a evolução da union-find como um array (inicialmente, um conjunto para cada nó). Ao fazer uma união, a raiz deve ser o nó representativo lexicograficamente menor.

Resposta: A seguir, resposta da questão 2 – evolução abaixo:

Inicialmente:

	A	B	C	D	E
Dist.	0	∞	∞	∞	∞
	0	1	2	2 3	
Heap	-	(A,0)) -	- -	_

Após visitar A:

	A	B	C	D	E	=
Dist.	0	8	13	30	∞	-
	0	1	-	2		3
Heap	-	(B,	(8)	(C, 13)	(E)	D,30)

Após visitar B:

	A	B	C	D	E	
Dist.	0	8	13	12	∞	_
	0		1	2		3
Heap	-	(D,	,12)	(D,3	30)	(C,13)

Após visitar D:

	A	B	C	D	E	_
Dist.	0	8	13	12	18	_
	0	1		2		3
Heap	II _	(C,	13)	(D,3	30)	(E,18)

Após visitar C:

	A	B	C	D	E	
Dist.	0	8	13	12	17	
	0		1	2		3
Heap	-	(E,	17)	(D,3)	(0)	(E,18)

Após visitar E:

	A	В	C	D	E	
Dist.	0	8	13	12	17	_
	0		1	2		3
Heap	-	(E,	18)	(D,3	0)	_

Resposta: A seguir, resposta da questão 3 – evolução abaixo:

Inicialmente:

Após processar (C,D)

A	B	C	D	E	F
_	_	_	С	_	_

Após processar (E,F)

A	B	C	D	E	F
_	_	_	С	_	Е

Após processar (C,F)

A	В	C	D	E	F
_	_	_	С	С	Е

Após processar (D,F)

A	В	C	D	E	F
_	-	_	С	С	Е

Após processar (B,C)

A	B	C	D	E	F
_	_	В	С	С	Е

Após processar (B,F)

Após processar (A,C)

Portanto, a árvore geradora de peso mínimo é a seguinte:

4. $\{2,0 \text{ pt.}\}\ \text{Seja } A = \{3,5,6,7,8\}$, encontre todos os $A' \subseteq A$, tal que a soma de seus elementos seja igual a 15. Resolva o problema usando backtracking (filho à esquerda/direita = inclusão/exclusão do i-ésimo item, respectivamente). Desenhe a árvore de espaço de estados. Os nós devem ser rotulados com o somatório atual. Ao não continuar a busca em certo nó, explique o porquê.

Resposta: Ver abaixo a árvore de espaço de estados:

Soluções:

- 3+5+7=15
- 7 + 8 = 15

A busca não foi continuada em alguns estados pelos seguintes motivos:

•
$$\times_1 = 14 + 7 > 15$$

•
$$\times_2 = 8 + 8 > 15$$

•
$$\times_3 = 9 + 7 > 15$$

•
$$\times_4 = 10 + 8 > 15$$

•
$$\times_5 = 3 + 8 < 15$$

•
$$\times_6 = 11 + 7 > 15$$

•
$$\times_7 = 12 + 8 > 15$$

•
$$\times_8 = 5 + 8 < 15$$

$$\bullet \times_9 = 13 + 8 > 15$$

•
$$\times_{10} = 6 + 8 < 15$$

•
$$\times_{11} = 7 + 0 < 15$$

$$\bullet$$
 $\times_{12} = 0 + 8 < 15$

5. {2,0 pt.} Considerando uma mochila com capacidade de 4 kg, e os itens (peso, valor): $i_1 = (2,20), i_2 = (1,10), i_3 = (3,20), i_4 = (2,15)$, encontre o subconjunto de itens mais valioso que cabe na mochila. Use programação dinâmica (bottom-up) e apresente a matriz (item \times capacidade) construída na busca. **Resposta:** O subconjunto mais valioso que cabe na mochila é: $v_1 + v_4 = 35$.

_	0	1	2	3	4
0	0	0	0	0	0
1	0	0	20	20	20
2	0	10	20	30	30
3	0	10	20	30	30
4	0	10	20	30	35