Versuchsbericht zu

W2 - Adiabatenexponent c_p/c_v von Gasen

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 28.05.2018 betreut von Pascal Grenz

Inhaltsverzeichnis

1 Kurzfassung			3	
2	Methoden Ergebnisse und Diskussion			
3				
	3.1	Beoba	chtungen und Datenanalyse	3
		3.1.1	Unsicherheiten	. 3
		3.1.2	Bestimmung von κ nach Rüchardt-Flammersfeld	. 3
		3.1.3	Bestimmung von κ_{Luft} nach Clément-Desormes	. 4
	3.2	Diskus	ssion	5
4	Sch	lussfolg	gerung	5

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

3.1 Beobachtungen und Datenanalyse

3.1.1 Unsicherheiten

Die Unsicherheiten wurden gemäß GUM ermittelt. Außerdem wurde für Unsicherheitsrechnungen die Python Bibliothek "uncertainties" verwendet.

Waage: Die Waage zeigt das Gewicht mit einer Nachkommaselle an, woraus eine Unsicherheit von 0,03 g folgt (rechteckige WDF).

Stoppuhr: Die Zeit wurde in Sekunden mit zwei Nachkommastellen gemessen. Folglich ist die Unsicherheit 0,003 s (rechteckige WDF), jedochat die Reaktionszeit einen größeren Einfluss, wesshalb eine Unsicherheit von 0,1 s angenommen wird.

Messschieber: Die Unsicherheit des Messschiebers wurde auf 0,06 mm abgeschätzt (dreieckige WDF).

Maßstäbe: Ebenfalls eine analoge Messung, wobei die Unsicherheit 0,04 cm beträgt.

Schwingungszählung: Beim Zählen der 100 Schwingungen wird von maximal einer Schwingung zu viel bzw. zu wenig ausgegangen, sodass die Unsicherheit 0,6 beträgt (rechteckige WDF).

Luftdruck:

3.1.2 Bestimmung von κ nach Rüchardt-Flammersfeld

In der Einführung wurde folgende Formel zur Bestimmung es Adiabatenexponenten ergeleitet:

$$\kappa = \frac{4\pi^2 m V_0}{p_0 A^2 T^2} \tag{1}$$

Abbildung 1: Aufbau des Stirling-Motors.

3.1.3 Bestimmung von κ_{Luft} nach Clément-Desormes

In der Einführung wurde folgende Formel zur Bestimmung es Adiabatenexponenten ergeleitet:

$$\kappa = \frac{h_1}{h_1 - h_3} \tag{2}$$

$$u(\kappa) = \kappa^2 \cdot \sqrt{\left(\frac{h_3}{h_1}\right)^2 + 1} \cdot \frac{u(h)}{h_1} \tag{3}$$

Dabei ist h_1 die Höhe der Flüssigkeitssäule im Manometer nach der Erhöhung des Drucks im Gefäß und dessen folgender Temperaturausgleich mit der Umgebung. h_3 ist die Höhe, die sich ergibt, wenn man den Druck im Gefäß an den der Umgebung anpasst und sich, unter Druckänderung, ein (adiabatischer) Temperaturgleichgewicht einstellt.

In Tabelle 1 sind die Messwerte sowie folgende Adiabatenkoeffizienten aufgeführt. Es folgt ein Mittelwert für κ_{Luft} von 1,355 \pm 0,004.

Tabelle 1: Gemessene Höhe der Flüssigkeitssäule im Manometer und nach Gleichung (2) berechnete Adiabtenexponenten $\kappa_{\rm Luft}$ von Luft.

h_1 in cm	h_3 in cm	$\kappa_{ m Luft}$
$16,64 \pm 0,06$	$4,35 \pm 0,06$	$1,354 \pm 0,007$
$20,63 \pm 0,06$	$5,52 \pm 0,06$	$1,365 \pm 0,006$
$25,34 \pm 0,06$	$6,72 \pm 0.06$	$1,361 \pm 0,005$
$36,70 \pm 0,06$	$9,41 \pm 0,06$	$1,345 \pm 0,003$
$10,98 \pm 0,06$	$2,84 \pm 0,06$	$1,349 \pm 0,010$

3.2 Diskussion

4 Schlussfolgerung