ISYE 6501

2022-09-12

Submission HW2 | Fall 22

- Ashish Dhiman | ashish.dhiman@gatech.edu
- Abhinav Arun | aarun60@gatech.edu
- Anshit Verma | averma373@gatech.edu
- *Analysis Notes are marked with Red header: #Analysis

```
#lib imports
library(grid)
library(reshape2)
library(ggplot2)
```

Read Data

```
data = read.table('./temps.txt', sep="\t", dec=".", header = TRUE)
head(data)
##
       DAY X1996 X1997 X1998 X1999 X2000 X2001 X2002 X2003 X2004 X2005 X2006 X2007
## 1 1-Jul
                                                 84
                                                       90
                                                              73
                                                                     82
                                                                                  93
               98
                      86
                             91
                                   84
                                          89
                                                                           91
                                                                                         95
## 2 2-Jul
               97
                      90
                             88
                                   82
                                          91
                                                 87
                                                       90
                                                              81
                                                                     81
                                                                           89
                                                                                  93
                                                                                         85
                      93
                                                                                  93
## 3 3-Jul
               97
                             91
                                   87
                                          93
                                                 87
                                                       87
                                                              87
                                                                     86
                                                                           86
                                                                                         82
## 4 4-Jul
               90
                      91
                             91
                                   88
                                          95
                                                 84
                                                       89
                                                              86
                                                                     88
                                                                           86
                                                                                  91
                                                                                         86
                                                                                  90
## 5 5-Jul
               89
                      84
                             91
                                   90
                                          96
                                                 86
                                                       93
                                                              80
                                                                     90
                                                                            89
                                                                                         88
## 6 6-Jul
               93
                      84
                             89
                                   91
                                          96
                                                 87
                                                                     90
                                                                            82
                                                                                  81
                                                                                         87
     X2008 X2009 X2010 X2011 X2012 X2013 X2014 X2015
##
## 1
        85
               95
                      87
                             92
                                  105
                                          82
                                                 90
                                                       85
## 2
        87
               90
                      84
                             94
                                   93
                                          85
                                                 93
                                                       87
## 3
        91
               89
                      83
                             95
                                   99
                                          76
                                                 87
                                                       79
## 4
        90
               91
                      85
                             92
                                   98
                                          77
                                                 84
                                                       85
## 5
        88
               80
                      88
                             90
                                  100
                                          83
                                                 86
                                                       84
## 6
        82
               87
                      89
                             90
                                   98
                                          83
                                                 87
                                                       84
```

Transform Temperature data from Fahrenheit to Celsius

```
### Transform to celsius
temp_cols = names(data)[!(names(data) %in% c("DAY"))]
#Transform to celsius
data_celsius = data
data_celsius[temp_cols] <- lapply(data_celsius[temp_cols], function(f) (f-32)*5/9)</pre>
```

EDA of Temperature Data

summary(data_celsius)

```
X1996
                                                                X1998
                                              X1997
##
        DAY
##
    Length: 123
                         Min.
                                :15.56
                                          Min.
                                                  :12.78
                                                            Min.
                                                                   :17.22
                         1st Qu.:26.11
                                                            1st Qu.:26.39
##
    Class : character
                                          1st Qu.:25.83
##
    Mode :character
                         Median :28.89
                                          Median :28.89
                                                            Median :30.00
##
                         Mean
                                :28.73
                                          Mean
                                                  :27.60
                                                            Mean
                                                                   :29.03
##
                         3rd Qu.:32.22
                                          3rd Qu.:31.39
                                                            3rd Qu.:31.67
##
                                 :37.22
                         Max.
                                          Max.
                                                  :35.00
                                                            Max.
                                                                   :35.00
##
        X1999
                          X2000
                                           X2001
                                                             X2002
##
    Min.
            :13.89
                     Min.
                             :12.78
                                       Min.
                                               :10.56
                                                        Min.
                                                                :13.89
                                                        1st Qu.:25.56
    1st Qu.:23.89
                     1st Qu.:25.00
                                       1st Qu.:25.56
##
    Median :30.00
                     Median :30.00
                                       Median :28.89
                                                        Median :30.56
                                       Mean
##
    Mean
            :28.53
                     Mean
                             :28.91
                                                                :28.66
                                               :27.53
                                                        Mean
##
    3rd Qu.:32.78
                     3rd Qu.:32.78
                                       3rd Qu.:30.56
                                                        3rd Qu.:32.78
##
            :37.22
    Max.
                     Max.
                             :38.33
                                       Max.
                                               :33.89
                                                        Max.
                                                                :36.11
##
        X2003
                          X2004
                                           X2005
                                                             X2006
##
            :13.89
    Min.
                     Min.
                             :16.67
                                       Min.
                                               :12.22
                                                        Min.
                                                                :11.67
    1st Qu.:25.56
                     1st Qu.:25.56
                                       1st Qu.:27.50
                                                        1st Qu.:26.11
    Median :28.89
                                       Median :29.44
##
                     Median :27.78
                                                        Median :29.44
##
    Mean
            :27.49
                     Mean
                             :27.65
                                       Mean
                                               :28.53
                                                        Mean
                                                                :28.36
##
    3rd Qu.:30.56
                     3rd Qu.:30.56
                                       3rd Qu.:31.11
                                                        3rd Qu.:32.78
                                               :34.44
##
    Max.
            :32.78
                     Max.
                             :35.00
                                       Max.
                                                        Max.
                                                                :36.67
        X2007
                          X2008
                                           X2009
                                                             X2010
##
##
    Min.
            :15.00
                     Min.
                             :10.00
                                       Min.
                                               :10.56
                                                                :19.44
                                                        Min.
##
    1st Qu.:27.22
                      1st Qu.:26.39
                                       1st Qu.:23.89
                                                         1st Qu.:27.78
    Median :30.00
                     Median :29.44
                                       Median :28.33
                                                        Median :32.22
##
    Mean
            :29.67
                     Mean
                             :28.06
                                       Mean
                                               :27.22
                                                        Mean
                                                                :30.67
##
    3rd Qu.:31.94
                     3rd Qu.:31.39
                                       3rd Qu.:31.11
                                                        3rd Qu.:33.89
##
    Max.
            :40.00
                     Max.
                             :35.00
                                               :35.00
                                                                :36.11
                                       Max.
                                                        Max.
                                           X2013
        X2011
                          X2012
                                                             X2014
##
##
            :15.00
                             :13.33
                                               :13.33
    Min.
                     Min.
                                       Min.
                                                        Min.
                                                                :17.22
##
    1st Qu.:26.11
                     1st Qu.:26.39
                                       1st Qu.:25.00
                                                        1st Qu.:27.50
    Median :31.67
                     Median :29.44
                                       Median :28.89
                                                        Median :30.00
    Mean
            :29.60
                                               :27.59
##
                     Mean
                             :29.25
                                       Mean
                                                        Mean
                                                                :28.86
    3rd Qu.:34.44
                     3rd Qu.:32.50
##
                                       3rd Qu.:31.11
                                                        3rd Qu.:31.67
##
    Max.
            :37.22
                     Max.
                             :40.56
                                       Max.
                                               :33.33
                                                                :35.00
                                                        Max.
        X2015
##
##
    Min.
            :13.33
##
    1st Qu.:25.00
    Median :29.44
##
    Mean
            :28.50
    3rd Qu.:32.22
##
    Max.
            :36.11
```

Visualize the temperature series with a boxplot

```
data_celsius$month = unlist(
  lapply(data_celsius$DAY, function(x) substr(x,start = nchar(x)-3+1,stop = nchar(x)+1)))
```


#Analysis

Question 6.1

Question 6.2

Part 1: Start of Winter through cusum

```
CUSUM_ad = function(x, year, days = data$DAY ,C = 0.30,T = 4, if_c_relative = FALSE){
  mean_x = mean(x)
  sd_x = sd(x)
  if (if_c_relative) {
    C = C * sd_x
}
#apply cusum
  x1 = lapply(x, function(xi) (mean_x - xi - C))
```

```
st_df = data.frame(st=double())
  st = 0
  for(i in 1:length(x)){
    #print (paste(i,class(st),class(x1[[i]])))
   st = max(0, st + x1[[i]])
   st_df[i,] = c(st)
  #Find index where St > T
  st_df$Day = days
  st_df["anamoly"] = 0
  st_df\anamoly[st_df\st > T] = 1
  st_dfxt = x
  #plot x with T and if decrease see
  par(mfrow=c(2,1))
  plot(st_df$x,type='o')
  title(paste("Temperature (in Celsius) and S_t (bottom) for year", year), line = -1, outer = TRUE)
  plot(st_df$st,type='o')
  pushViewport(viewport())
  grid.lines(x = c(0,1), y = grconvertY(T, "user", "ndc"), gp = gpar(col = "red"))
  change_detected = which.max(st_df$st>T)
  #for zero true, which max returns 1
  if (sum(st_df\$st>T) == 0){
   print ("No value greater than T")
   change_detected = NaN
  grid.lines(x = grconvertX(change_detected, "user", "ndc"), y = c(0,1), gp = gpar(col = "red"))
 popViewport()
  #return first point where St touches T
  change_length = length(days)-change_detected
 return (c(as.numeric(year),as.numeric(change_detected),as.numeric(change_length)))
}
```

Function for Cusum Test the function for 1996

```
CUSUM_ad(data$X1996,"1996", C= 5, T = 10)
```


[1] 1996 91 32

C_effect = lapply(seq(1,20,2),function(x) CUSUM_ad(data\$X1996,"1996", C= x, T = 10))

Temperature (in Celsius) and S_t (bott

Understanding the effect of ${\bf C}$ on ${\bf St}$ calculation

[1] "No value greater than T"

C is like the margin for noise built into the model. From the above graphs it is apparent that increasing C, makes the end part (>90) of St more grainy and abrupt. This is intuitive since St = max(0,St-1 + (mean - x - C)), therefore any drop in xt (relative to mean) lower than C would be marginalised. This further warrants that St would be increasing only when we see a sustained drop in xt beyond C.

```
C_effect = as.data.frame(do.call(rbind, C_effect))
colnames(C_effect) = c("year","winter_start","winter_length")
C_effect$C = seq(1,20,2)
plot(x=C_effect$C,y=C_effect$winter_start,type='o')
```


Increasing the effect of C thus makes the model less sensitive, and delays the resolution of change, winter_start increases.

```
T_effect = lapply(seq(1,30,3),function(x) CUSUM_ad(data$X1996,"1996", C= 3, T = x))
```

Temperature (in Celsius) and S_t (bott


```
T_effect = as.data.frame(do.call(rbind, T_effect))
colnames(T_effect) = c("year", "winter_start", "winter_length")
T_effect$C = seq(1,20,2)
plot(x=T_effect$C,y=T_effect$winter_start,type='o')
```


Increasing the effect of T too thus makes the model less sensitive, and delays the resolution of change, winter_start increases.

Basis the above inferences we have picked C= and T= (basis hit and trial)

```
winter_start_days = lapply(temp_cols, function(col)
  CUSUM_ad(x=data_celsius[,col], year = substr(col,2,5), C = 4, T = 25)
)
```


Analyse the effect of Model over the years

```
change_df <- as.data.frame(do.call(rbind, winter_start_days))
colnames(change_df) = c("year", "winter_start", "winter_length")
change_df["year_bucket"] = "a.1996_2000"
change_df[change_df$year>=2000, "year_bucket"] = "b.2000_2004"
change_df[change_df$year>=2004, "year_bucket"] = "c.2004_2008"
change_df[change_df$year>=2008, "year_bucket"] = "d.2008_2012"
change_df[change_df$year>=2012, "year_bucket"] = "e.2012_2016"
change_df
```

```
##
      year winter_start winter_length year_bucket
## 1
      1996
                      98
                                     25 a.1996_2000
## 2
      1997
                                     13 a.1996_2000
                     110
## 3
      1998
                                      7 a.1996_2000
                     116
## 4
      1999
                     105
                                     18 a.1996_2000
## 5
      2000
                     101
                                     22 b.2000_2004
## 6
      2001
                                     12 b.2000_2004
                     111
## 7
      2002
                     108
                                     15 b.2000 2004
## 8
      2003
                     120
                                      3 b.2000_2004
## 9
      2004
                     108
                                     15 c.2004_2008
                                      6 c.2004_2008
## 10 2005
                     117
## 11 2006
                     108
                                     15 c.2004_2008
                                      7 c.2004_2008
## 12 2007
                     116
```

13	2008	115 8	d.2008_2012
14	2009	109 14	d.2008_2012
15	2010	97 26	d.2008_2012
16	2011	104 19	d.2008_2012
17	2012	108 15	e.2012_2016
18	2013	115 8	e.2012_2016
19	2014	123 0	e.2012_2016
20	2015	97 26	e.2012_2016
	14 15 16 17 18 19	13 2008 14 2009 15 2010 16 2011 17 2012 18 2013 19 2014 20 2015	14 2009 109 14 15 2010 97 26 16 2011 104 19 17 2012 108 15 18 2013 115 8 19 2014 123 0

Part 2: Has Atlanta become warmer over the years ?