Llo

mildram solution will be posted formonow. Convolutional Newal Network (CNNs) Recoment Neuval Notwork (RNNs) y= W" (W" 6 (W problems of this picture: * Computational Cost Input: RGB images of LGOX 400 1 loyer of newrons: love newrons

One part: 10 classes

edges (weights)
= 3x40x400 X loss + loss x loss + loss x loss = 500 million Weights
PGB _ bias
- 500 million Worshits
Generally: Llayer network
O(L·d²) 18 Sample complexity
to Sample complaxity
-faquire a very large training dataset
* Loss of context
- all input is flattoned into voctor
ar i va lu spoint internation
- e.g images love special information
- erg NLP/speech
-
have long-range temporal dependencies **Confounding Jentures:
- Backgrund chaster
- illumination

Convolution Neural Network CCHNs) REFR image daugitation Two main principles: 1 Locality; The model should look at local vegions of your input image 安全保护的 越路的 那新 Shift-invariance: The model should make the same prediction to the same object in matter where it appears Communitional layous __filter/kernel /(t)= (x *w) [t] 卷积老讨 z Σχ(t-τ)w(τ) τ

Not hand to prove: yet = Z XCJW(t-Z) "Flip and dot"

[inQQY, associative, community

shift-invariance ||

14 - invariance
$$\chi(s,t)$$
 was, t]

24 - invariance $\chi(s,t)$ was, t]

24 - invariance $\chi(s,t)$ was, t]

24 - invariance $\chi(s,t)$ was, t]

25 - invariance $\chi(s,t)$ was, t]

26 - invariance $\chi(s,t)$ was, t]

27 - invariance $\chi(s,t)$ was, t]

28 - invariance $\chi(s,t)$ was, t]

29 - invariance $\chi(s,t)$ was, t]

20 - invariance $\chi(s,t)$ was, t]

20 - invariance $\chi(s,t)$ was, t]

21 - invariance $\chi(s,t)$ was, t]

22 - invariance $\chi(s,t)$ was, t]

23 - invariance $\chi(s,t)$ was, t]

24 - invariance $\chi(s,t)$ was, t]

25 - invariance $\chi(s,t)$ was, t]

26 - invariance $\chi(s,t)$ was, t]

27 - invariance $\chi(s,t)$ was, t]

28 - invariance $\chi(s,t)$ was, t]

29 - invariance $\chi(s,t)$ was, t]

20 - invariance $\chi(s,t)$ was, t]

21 - invariance $\chi(s,t)$ was, t]

22 - invariance $\chi(s,t)$ was, t]

23 - invariance $\chi(s,t)$ was, t]

24 - invariance $\chi(s,t)$ was, t]

25 - invariance $\chi(s,t)$ was, t]

26 - invariance $\chi(s,t)$ was, t]

27 - invariance $\chi(s,t)$ was, t]

28 - invariance $\chi(s,t)$ was, t]

29 - invariance $\chi(s,t)$ was, t]

29 - invariance $\chi(s,t)$ was, t]

29 - invariance $\chi(s,t)$ was, t]

20 - invariance $\chi(s,t)$ was, t]

21 - invariance $\chi(s,t)$ was, t]

22 - invariance $\chi(s,t)$ was, t]

23 - invariance $\chi(s,t)$ was, t]

24 - invariance $\chi(s,t)$ was, t]

25 - invariance $\chi(s,t)$ was, t]

26 - invariance $\chi(s,t)$ was, t]

27 - invariance $\chi(s,t)$ was, t]

28 - invariance $\chi(s,t)$ was, t]

29 - invariance $\chi(s,t)$ was, t]

20 - invariance $\chi(s,t)$ was, t]

21 - invariance $\chi(s,t)$ was, t]

21 - invariance $\chi(s,t)$ was, t]

22 - invariance

It import to understand, (oregnances: 1) spowsely connected network z) weights showing detect some part it is like a cortain bornal determined satisfy feature we to fine one feature can be used at hart. any bation of the image In practice, we have p input channels Foweput channels. hyut K, --- Xe-- X b Ougut Z1, Z2 --- ZF ZI = E X XWij hi = \$(z) Compotational benefits: (20 +1) · D· F = 0(2· p·F)
(20+1) · W

althorent (NNs: o Le Net — J o Alex Net (2012) similar but depar o VGh Net (2014) s houghe Net (2014) Training: Back propagation	<i>y</i>	20t1)².bj = 25. 3- 6= ≤ 600 ↑ ↑ ↑ — Pap origin to channel conv.
o Alex Net (2012) similar but deeper . VGh Net (2014) . Google Net (2014) . pesidual Networks	different	CMNs:
· VGh Net (2014) · Google Net (2014) · Pesidual Networks	o Le	Net -5
o Residual Networks	o Ale	x Net (2012) similar but despor
o Residual Networks	· Vah	Net (2014)
o Residual Networks	5 Koogl	, Not (2014)
Training: Back propagation		
	Training	; Back propagation

Recurrenz Nouval Networks (Usoful for Time Sovies/NLP analysis) NY o Dowment reviewal o Speech to text o language translation o sentiment prediction — Short range

dependencies eg. 57 kkz

long range Classical: Markou Models. 推剪 dependency P ([W1, W2, --, Wd]) = P(w1) P(w2/w1)+P(w3/w2) -~ P(wd/wd+) | Ch3 (W1, W2) 第三9 word 版 W1, W2 → 定義之)

dependents | Perwene neutral nets: introduce feed back into heural nets X V Y X^t indexed with time