Status of the W + jets & $t\bar{t}$ Working Group

Classical Lost-Lepton Method H_T Extrapolation Approach τ_{Had} Estimation Method Lepton/Isolated Track Efficiencies

Arne-Rasmus Dräger(Uni Hamburg)

June 10, 2015

Classical Lost-Lepton Method

Arne, Christian & Simon

Classical Lost-Lepton Procedure

Efficiencies parametrization

- Choise of Efficiencies parametrization is very crutial for the sucess not only of the classical lost-lepton method but also for extrapolation (varification) and τ_{Had} estimation method.
- Isolation, reconstruction of electron & muon and also isolated electron, muon & pion tracks are parametrizated in p_T and Activity
- Activity has the beaty to be directly transferable from varificatino topology DY \rightarrow t \bar{t} & W + jets signal region (see isolation in backup)
- ullet Acceptance needs to come from MC parametrizated in $\mbox{\it H}_{T}$, $\mbox{\it \&}\ N({\rm jets})$
- Small corrections: $m_T \text{cut } H_T$, N(jets)... etc updated me

Closure Test

Control-Sample vs Expectation

- Overall good closure observed in all search bins.
- We expect about two single lepton control sample events for each lost lepton!
- In extreme phase-space low statistics of control-sample expected for

To do for classical lost-lepton method

- Lost-lepton method is in good shape. Classical lepton veto, and isolated track veto incorporated
- Plan is: Use Efficiencies from MC for prediction. Use Tag and probe in MC and Data to obtain uncertainties and if necessary scale factors.
- Muon and electron isolation Efficiencies in good shape (see backgup) as well as ID check.
- Reco under study but can be taken from POG see backup for non dependency on H_T , H_T ,N(jets),B(tags) UPDATE ME
- Isolated tracks: This is under heacy study right now. If i get some
 decent results we should show them if not make the statement: Tag
 and probe method shows first promising results enableing us direct
 validation in data using DY events. (Note details that we plan to do
 this probably only for iso e and mu tracks and will study similarities to
 pion tracks for indirect validation)

Backup

Concept

Comparison $t\bar{t}$ & W + jets vs DY Tag & Probe μ Iso Efficiencies

- Efficiencies obtained (using truth information) from $t\bar{t} \& W + jets$ and DY are in good agreement
- Lepton p_T and activity are sufficient topology independent to be transfered from DY to signal region! (Confirm Florent)
- Overall the efficiencies from DY are slightly higher. (No cuts applied to DY tt & W + iets baseline applied)

Comparison $t\bar{t} \& W + jets vs DY Tag \& Probe e Iso Efficiencies$

- \bullet Efficiencies obtained (using truth information) from $t\bar{t}~\&~W+jets$ and DY are in good agreement
- Lepton p_T and activity are sufficient topology independent to be transfered from DY to signal region! (Confirm Florent)
- Overall the efficiencies from DY are higher. (No cuts applied to DY $t\bar{t}$ & W + jets baseline applied)

Isolated Elec & Muon Tracks

- Muon, Electron Tracks:
 - ▶ Charged PFCand, $p_T > 5 GeV$, $m_T < 100 GeV$ ask for pdgID=11,13
 - ▶ Iso: $\Sigma(p_T(Tracks)\Delta R < 0.3)/(p_TTrack) < 0.2$ (with dz < 0.05)
- Tag & Probe:
 - ▶ Tag: Isolated μ /e (high purity RA2b definition)
 - Probe:
 - **★** Desirable Probe: chargedPFCands \rightarrow iso Mu/Elec Track (not possible too high background)
 - Instead Probe: chargedPFCands with pdgID=11,13 (cant test for pdgID)
 - Still small statistics due to deriving efficiencies of isolated tracks to failing isolated leptons (not applied yet)
 - * Problem: No $m_T < 100 \, GeV$ applicable (maybe treat tag lepton as neutrino emulate W \rightarrow I ν)

- Tag&Probe on chargedPFCands has too high bkg
- Idea: Use similarities of isolated $\mu/e \ \& \ \pi$ tracks (to be evaluated)

- $au o \pi^- +
 u (17\%)$ These should behave like μ/e tracks!? If so, give us rough idea on track eff. uncertainty
- $au o \pi^- + 1/2\pi 0 +
 u(53\%)$ Still only one charged track. Similar to $au o \pi^- +
 u$? If so same approach, inflated uncertainty.
- What fraction of 3 prong τ get selected by isolated track? Rather small (10%), if so, assigning high uncertainty would be practical.