Lecture 2: Binary and Strings

CSE 29: Systems Programming and Software Tools

Aaron Schulman (Shalev)

Lecture 1 Overview

How to access strings and arrays in C

How does binary number representation work

String functions and how things can go wrong

https://ucsd-cse29.github.io/fa24/

Big Lesson:

- Programs can interpret and present bits (in arrays) in many ways:
 - » They can be Integers printf("%d", arr[i])
 - » They can be Characters printf("%c",arr[i])
 - » They can be Strings of Characters printf("%s",arr)
 - » There are many other ways too!
- C gives us direct access to the bit representations of data in memory!

$$1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 = 1 \times 2^6 + 1 \times 2^4$$

= $64 + 8 = 72$

Binary (Base 2) is similar to Decimal (Base 10) representation:

$$72 = 7x10^2 + 2x10^1$$

= $70 + 2 = 72$

Converting integers to/from binary arrays

1 bit
<u>0</u> =0
<u>1</u> =1
2 values: 2 ¹

	3 bits		
<u>0</u>	<u>0</u>	<u>0</u>	=0
0	0	1	=1
0	1	0	=2
0	1	1	=3
1	0	0	=4
1	0	1	=5
1	1	0	=6
1	1	1	=7

8 values: 2³

1 byte

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

MSB LSB

$$1010 = 1x2^{3} + 0x2^{2} + 1x2^{1} + 0x2^{0}$$

$$= 8 + 0 + 2 + 0 = 10$$

$$1110 = 1x^{23} + 1x^{22} + 1x^{21} + 0x^{20} = 14$$

Big Idea:

- Strings are just arrays of characters
- The string is terminated when there is a null character at the end

What is a string, an array of characters!

0	1	2	3	4	5	6		
'H'	'e'	"]"	"["	o'	6 7	'\0'		
							•	
					NU	Special char. NUL Characte End of string =		

Demo: What if we forget the NULL Char?

Big Idea:

- There are no training wheels anymore in C, this is not Java
- If you tell the computer to do something, it will do exactly what you say.

What happens if the null is not there?

0	1	0	1	2	3	4	5	6
'H'	ʻi'	'H'	'e'	17	'l'	o'	6 7	'\0'

Week 1 Announcements

Announcements:

- Lab attendance is **required** and a lot happens there, make sure to go to lab
- Submit the <u>welcome survey</u> before lab on Tuesday of week 1