东南大学电工电子实验中心 实验报告

课程名称:	数字逻辑电路实验 C
MN1エ1コ1小 ■	从丁足将七叫大独○

第 7 次实验

实验名称:	门电路组合逻辑									
院 (系):	<u> </u>									
姓 名:	<u>王之畅</u> 学号:js319325									
实验室:	实验组别:									
同组人员:	实验时间: <u>2020 年 5 月 13 日</u>									
评定成绩:										

实验目的:

- 1. 综合前面所学的各项内容
- 2. 了解掌握数字系统设计的流程和方法
- 3. 掌握原理图输入方式设计数字系统的方法和流程
- 4. 掌握复杂电路连接和调试技能
- 5. 搭建可以运行的 4 位串行乘法器

设计流程:

将乘法分为控制单元、数据处理单元、计数单元

控制单元: 两个触发器 7474, 74139 译码器

数据处理单元: 寄存器 A 使用 74161, 寄存器 Y 使用 74161, 寄存器 B 使用 74194,

全加器使用 74283 计数器使用 74191

控制端:

S0 为初始输入为 1 即 start 开始进行乘法运算, zero 判断是否要停止加数操作, 当操作数是 4 位的时候就运行 4 次, 然后出 1 回到初始状态。

因为采用 one-hot 编码,所以要求可以在 s0s1=10 进行自启动。就有当输入为 11 的时候,输出 S0S1=10。

Initialize 输出信号用于初始化各种寄存器,该清零的清零,计数器复位到 4,。

执行端:

	累加器				4位寄存器Y				4位移位寄存器B				
序号	Cout	S3	S2	S1	S0	Y3	Y2	Y1	Y0	В2	В2	В1	ВО
0	0	0	0	0	0	0	0	0	0	1	0	0	1
1	0	1	1	0	1	0	1	1	0	1	1	0	0
2	0	0	1	1	0	0	0	1	1	0	1	1	0
3	0	0	0	1	1	0	0	0	1	1	0	1	1
4	0	1	1	1	0	0	1	1	1	0	1	0	1

这里是执行的算法, 其中 Y,B 为寄存器, 随着程序开始执行, YB 由于 initialize 清零, 然后 B 读取乘数, 乘数的最后一位也就是 B0 决定了要不要与被乘数相乘再加的运算。如果是1, 累加后向右一位, B0 由 B1 替代, 重复四次完成计算。

仿真模拟:

控制端 (要求自启动)

仿真结果:

- 1. Start 出 1, 上升沿, Initialize 出 1, 初始化成功, 再次 start 的时候 zero 为 0 可以自启动。
- 2. 在运算周期内 Q0 为一时, adder 为一, 实现累加控制。
- 3. 在初始化之后,移位信号一直为1,可以实现移位,并在下一次初始化时重新归零

执行端:

详细讲解: 按照流程

- 1. 首先 74194 与 74161 分别输,1001 与 1101, start=1, zero=0 开始执行.
- 2. 1001 与 1101 分别被送数,根据 Q0 的控制信号为 1 (1001 的最后一位),进入 74283 累加, 1101。
- 3. Cout 为 0, 1101 往右移一位。1101 的最后一位输给 si, 进行右移。
- 4. 同时 74191 的减法计数器减一, 当其为 00 时 zero=1, 停止运算。

测试数据集:

测试用例 1: 运行 1101*1001 移位相加过程中没有溢出;

测试用例 2: 运行 1101*1101 移位相加过程中有溢出;

测试用例 3: 先运行 1101*1001, 再运行 1101*1101

(本次测试直接实现测试三)

仿真模拟:

- 1. 1101*1001 =91 (不知道为什么显示的是 u)
- 2. 1101*1101=169
- 3. 每一步的运算步骤与预计的一致。