Business Case: Target

PART 1 -

Time period for which the data is given-

select min(data_period) as first_day,max(data_period) as last_day from

(select distinct extract(date from order_purchase_timestamp) as data_period from `jan23-scalersql.Target.orders` order by data_period);

Cities and States of customers ordered during the given period-

select c.customer_id,c.customer_city,c.customer_state,extract(date from o.order_purchase_timestamp) as order _date

from `jan23-scalersql.Target.customers` as c join `jan23-scalersql.Target.orders` as o on c.customer_id=o.customer_id order by order_date;

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS	EXECUTION GRAPH	PREVIEW	
Row	customer_id	le	customer_city	le	customer_s	state	order_date	11
1	08c5351a6aca1c	:1589a38f244	boa vista		RR		2016-09-04	
2	683c54fc24d40e	e9f8a6fc179f	passo fundo		RS		2016-09-05	
3	622e13439d6b5a	a0b486c4356	sao jose dos car	npos	SP		2016-09-13	
4	86dc2ffce2dfff33	36de2f386a78	sao joaquim da l	parra	SP		2016-09-15	
5	b106b360fe2ef88	849fbbd056f7	sao paulo		SP		2016-10-02	
6	7ec40b22510fdb	ea1b08921dd	panambi		RS		2016-10-03	
7	7812fcebfc5e806	55d31e1bb5f0	taubate		SP		2016-10-03	
8	dc607dc98d6a11	d5d04d9f2a7	ipatinga		MG		2016-10-03	
9	355077684019f7	f60a031656b	sao paulo		SP		2016-10-03	
10	b8cf418e97ae79	5672d326288	hortolandia		SP		2016-10-03	

<u>PART 2</u> –

Is there a growing trend on e-commerce in Brazil?

select count(order_id) number_of_orders_per_year,purchase_year from
(select order_id, extract(year from order_purchase_timestamp) as purchase_year from `jan23scalersql.Target.orders`
where order_status = "delivered")
group by purchase_year
order by purchase_year;

Query results						
JOB IN	FORMATION	RESULTS	S JSON			
Row	number_of_order	s_per_year	purchase_year			
1		267	2016			
2		43428	2017			
3		52783	2018			

Can we see some seasonality with peaks at specific months?

select count(order_id) number_of_orders_per_month,purchase_months,purchase_year from (select order_id, extract(MONTH from order_purchase_timestamp) as purchase_months, extract(year from order _purchase_timestamp) as purchase_year from `jan23-scalersql.Target.orders` where order_status = "delivered") group by purchase_months,purchase_year order by purchase_year,purchase_months;

Query results

JOB IN	IFORMATION	RESULTS J	SON EXECUTI
Row 11	number_of_orders_ 4193	purchase_months // 8	purchase_year 2017
12	4150	9	2017
13	4478	10	2017
14	7289	11	2017
15	5513	12	2017
16	7069	1	2018
17	6555	2	2018
18	7003	3	2018
19	6798	4	2018
20	6749	5	2018

What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
select count(order_id) number_of_orders,purchase_hour from (select order_id, extract(hour from order_purchase_timestamp) as purchase_hour from `jan23-scalersql.Target.orders`) group by purchase_hour order by purchase_hour;
```

Quer	y results		Query results				
JOB IN	IFORMATION	RESULTS	J	JOB IN	IFORMATION	RESULTS	J
Row //	number_of_orders_/	purchase_hour		Row	number_of_orders		
8	1231	7		13	5995	12	
9	2967	8		14	6518	13	
10	4785	9		15	6569	14	
11	6177	10		16	6454	15	
12	6578	11		17	6675	16	
13	5995	12		18	6150	17	
14	6518	13		19	5769	18	
15	6569	14		20	5982	19	
16	6454	15		21	6193	20	
17	6675	16		22	6217	21	
18	6150	17		23	5816	22	
19	5769	18		24	4123	23	

PART 3 -

Get month on month orders by states

```
select count(t1.order_id) month_on_month_orders,t1.purchase_month,t1.customer_state from

(select o.order_id,o.customer_id,c.customer_state, extract(month from o.order_purchase_timestamp) as purchas e_month

from Target.orders as o
join Target.customers as c
on o.customer_id=c.customer_id
order by purchase_month) as t1
group by t1.purchase_month,t1.customer_state
order by t1.purchase_month;
```


Distribution of customers across the states in Brazil

select count(customer_id) as customer_per_state,customer_state
from Target.customers
group by customer_state
order by customer_state;

Query results

JOB IN	FORMATION	RESULTS	JSON	EXE
Row	customer_per_state	customer_s	tate	11
1	81	AC		
2	413	AL		
3	148	AM		
4	68	AP		
5	3380	BA		
6	1336	CE		
7	2140	DF		
8	2033	ES		
9	2020	GO		
10	747	MA		

Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
select *, round(((cost_2018-cost_2017)/(cost_2017))*100) as percent_increase
(select round(sum(case when purchase_year=2018 and purchase_month between 1 and 8 then payment_value
end)) as cost_2018,
round(sum(case when purchase_year=2017 and purchase_month between 1 and 8 then payment_value end)) a
s cost_2017
from
(select extract(month from o.order_purchase_timestamp) as purchase_month,extract(year from order_purchase_
timestamp) as purchase_year,p.payment_value
from 'jan23-scalersql.Target.orders' as o
join Target.payments as p
on o.order_id = p.order_id
order by purchase_year,purchase_month) as t1);
   Query results
   JOB INFORMATION
                                                               EXE
                               RESULTS
                                                 JSON
```

percent_increase

137.0

Mean & Sum of price and freight value by customer state

cost_2017

3669022.0

Row

1

8694734.0

```
select round((sum(price)/count(price))) as price_mean,
round((sum(freight_value)/count(freight_value))) as freight_mean,round(sum(price)) as price_sum,round(sum(frei
ght_value)) as freight_sum,customer_state
from
(select oi.price,oi.freight_value,c.customer_state
from `jan23-scalersql.Target.order_items` as oi
left join Target.orders as o
on oi.order_id = o.order_id
left join `jan23-scalersql.Target.customers` as c
on o.customer_id = c.customer_id
order by c.customer_state) t1
group by t1.customer_state
order by t1.customer_state;
```

JOB INFORMATION		RESULTS JSON		EXECUTION DET	AILS EXECU
Row	price_mean //	freight_mean //	price_sum	freight_sum //	customer_state
1	174.0	40.0	15983.0	3687.0	AC
2	181.0	36.0	80315.0	15915.0	AL
3	135.0	33.0	22357.0	5479.0	AM
4	164.0	34.0	13474.0	2789.0	AP
5	135.0	26.0	511350.0	100157.0	ВА
6	154.0	33.0	227255.0	48352.0	CE
7	126.0	21.0	302604.0	50625.0	DF
8	122.0	22.0	275037.0	49765.0	ES
9	126.0	23.0	294592.0	53115.0	GO
10	145.0	38.0	119648.0	31524.0	MA

PART 5 -

Calculate days between purchasing, delivering and estimated delivery

```
SELECT
t1.order_id,
 DATE_DIFF(delivery_date,purchase_date,day) AS actual_delivery_days,
 DATE_DIFF(estimated_delivery_date,purchase_date,day) AS estimated_delivery_days,
 DATE_DIFF(estimated_delivery_date,delivery_date,day) AS days_betw_actual_estimated
FROM (
 SELECT
  order_id,
  EXTRACT(date
  FROM
  order_purchase_timestamp) AS purchase_date,
  EXTRACT(date
  FROM
   order_delivered_customer_date) AS delivery_date,
  EXTRACT(date
  FROM
   order_estimated_delivery_date) AS estimated_delivery_date
 FROM
  Target.orders
 ORDER BY
  purchase_date) t1
WHERE
 purchase_date IS NOT NULL
 AND delivery_date IS NOT NULL
 AND estimated_delivery_date IS NOT NULL;
```

Query results JOB INFORMATION **RESULTS** JSON **EXECUTION DETAILS EXECUTION GRAPH PREVIEW** Row order_id actual_delivery_days estimated_delivery_days days_betw_actual_estimated_ bfbd0f9bdef84302105ad712db... 55 1 19 -36 2 65d1e226dfaeb8cdc42f66542... 36 53 17 3 be5bc2f0da14d8071e2d45451... 24 35 11 4 31 59 ae8a60e4b03c5a4ba9ca0672c... 28 5 cd3b8574c82b42fc8129f6d50... 11 51 40 6 d207cc272675637bfed0062ed... 28 51 23 7 31 57 a41c8759fbe7aab36ea07e038... 26 ef1b29b591d31d57c0d733746... 29 53 24 8 9 3b697a20d9e427646d925679... 23 24 1 10 22 77 35d3a51724a47ef1d0b89911e... 55

Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

time_to_delivery = order_purchase_timestamp-order_delivered_customer_date

diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

```
SELECT
 DATE_DIFF(delivery_date,purchase_date,day) AS time_to_delivery,
 DATE_DIFF(estimated_delivery_date,delivery_date,day) AS diff_estimated_delivery
FROM (
 SELECT
  EXTRACT(date
  FROM
   order_purchase_timestamp) AS purchase_date,
  EXTRACT(date
  FROM
   order_delivered_customer_date) AS delivery_date,
  EXTRACT(date
  FROM
   order_estimated_delivery_date) AS estimated_delivery_date
 FROM
  Target.orders
 ORDER BY
  purchase_date)
WHERE
 purchase_date IS NOT NULL
 AND delivery_date IS NOT NULL
 AND estimated_delivery_date IS NOT NULL;
```

Query results						
JOB IN	IFORMATION	RESULTS JSON				
Row	time_to_delivery	diff_estimated_delivery				
1	55	-36				
2	36	17				
3	24	11				
4	31	28				
5	11	40				
6	28	23				
7	31	26				
8	29	24				
9	23	1				
10	22	55				

Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT
t1.customer_state,
 ROUND(AVG(freight_value)) AS mean_freight,
 ROUND(AVG(DATE\_DIFF(t1.delivery\_date,purchase\_date,day))) \ AS \ avg\_time\_to\_delivery,
 ROUND(AVG(DATE_DIFF(estimated_delivery_date,delivery_date,day))) AS avg_diff_estimated_delivery
FROM (
 SELECT
  customer_state,
  freight_value,
  EXTRACT(date
   order_purchase_timestamp) AS purchase_date,
  EXTRACT(date
   order_delivered_customer_date) AS delivery_date,
  EXTRACT(date
  FROM
   order_estimated_delivery_date) AS estimated_delivery_date
 FROM
  Target.order_items AS oi
 JOIN
  Target.orders AS o
  oi.order_id = o.order_id
 JOIN
  Target.customers AS c
 ON
  o.customer_id=c.customer_id) AS t1
GROUP BY t1.customer_state;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row	customer_state	h	mean_freight //	avg_time_to_delivery	avg_diff_estimated_delivery
1	MT		28.0	18.0	15.0
2	MA		38.0	22.0	10.0
3	AL		36.0	24.0	9.0
4	SP		15.0	9.0	11.0
5	MG		21.0	12.0	13.0
6	PE		33.0	18.0	13.0
7	RJ		21.0	15.0	12.0
8	DF		21.0	13.0	12.0
9	RS		22.0	15.0	14.0
10	SE		37.0	21.0	10.0

Sort the data to get the following:

Making a view named state_freights of the above code to perform sorting and limit.

```
create view Target.state_freights as
SELECT
t1.customer_state,
 ROUND(AVG(freight_value)) AS mean_freight,
 ROUND(AVG(DATE_DIFF(t1.delivery_date,purchase_date,day))) AS avg_time_to_delivery,
 ROUND(AVG(DATE_DIFF(estimated_delivery_date,delivery_date,day))) AS avg_diff_estimated_delivery
FROM (
 SELECT
  customer_state,
  freight_value,
  EXTRACT(date FROM order_purchase_timestamp) AS purchase_date,
  EXTRACT(date FROM order_delivered_customer_date) AS delivery_date,
  EXTRACT(date FROM order_estimated_delivery_date) AS estimated_delivery_date
 FROM
  Target.order_items AS oi
 JOIN
  Target.orders AS o
 ON oi.order_id = o.order_id
 JOIN
  Target.customers AS c
  o.customer_id=c.customer_id) AS t1
GROUP BY
t1.customer_state;
```

Now performing the required sorting.

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

JOB IN	IFORMATION	RES	SULTS JS0	ON EXECUTION	N DETAILS EXECUTIO
Row	customer_state	h	mean_freight //	avg_time_to_delivery	avg_diff_estimated_delivery
1	SP		15.0	9.0	11.0
2	DF		21.0	13.0	12.0
3	RJ		21.0	15.0	12.0
4	SC		21.0	15.0	12.0
5	PR		21.0	12.0	13.0

 $Top\ 5\ states\ with\ lowest\ average\ freight\ value.$

select * from Target.state_freights
order by mean_freight desc
limit 5;

Query results

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE
Row /	customer_state	le	mean_freight //	avg_time_to_deli	avg_diff_estimat
1	PB		43.0	21.0	13.0
2	RR		43.0	28.0	18.0
3	RO		41.0	20.0	20.0
4	AC		40.0	21.0	21.0
5	PI		39.0	19.0	12.0

Top 5 states with highest average freight value.

• Top 5 states with highest/lowest average time to delivery.

select * from Target.state_freights
order by avg_time_to_delivery asc
limit 5;

JOB IN	IFORMATION	RESULTS .	JSON EXECUTION	ON DETAILS EXECUTIO
Row	customer_state	mean_freight	avg_time_to_delivery	avg_diff_estimated_delivery
1	SP	15.0	9.0	11.0
2	MG	21.0	12.0	13.0
3	PR	21.0	12.0	13.0
4	DF	21.0	13.0	12.0
5	SC	21.0	15.0	12.0

Top 5 states with lowest average time to delivery

select * from Target.state_freights
order by avg_time_to_delivery desc
limit 5;

Query results								
JOB IN	IFORMATION R	ESULTS J	SON EXECUTION	ON DETAILS EXECUTION				
Row	customer_state	mean_freight //	avg_time_to_delivery	avg_diff_estimated_delivery				
1	AP	34.0	28.0	18.0				
2	RR	43.0	28.0	18.0				
3	AM	33.0	26.0	20.0				
4	AL	36.0	24.0	9.0				
5	PA	36.0	24.0	14.0				

Top 5 states with highest average time to delivery.

• Top 5 states where delivery is really fast/ not so fast compared to estimated date

select * from Target.state_freights
order by avg_diff_estimated_delivery desc
limit 5;

Query results							
JOB IN	IFORMATION	RE	SULTS J	SON	EXECUTIO	N DETAILS	EXECUTIO
Row	customer_state	/,	mean_freight	avg_t	ime_to_delivery	avg_diff_esti	mated_delivery
1	AC		40.0		21.0		21.0
2	AM		33.0		26.0		20.0
3	RO		41.0		20.0		20.0
4	RR		43.0		28.0		18.0
5	AP		34.0		28.0		18.0

Top 5 states with fastest delivery.

```
select * from Target.state_freights
order by avg_diff_estimated_delivery
limit 5;
```

Query results							
JOB IN	IFORMATION	RESULT	S JSON	EXECUTION DE	TAILS EXECUTION GF		
Row	customer_state	le	mean_freight //	avg_time_to_delivery	avg_diff_estimated_delivery		
1	AL		36.0	24.0	9.0		
2	SE		37.0	21.0	10.0		
3	MA		38.0	22.0	10.0		
4	SP		15.0	9.0	11.0		
5	BA		26.0	19.0	11.0		

Top 5 states with fastest delivery

PART 6 –

Month over Month count of orders for different payment types

```
select Months,count(payment_type) no_of_orders,payment_type from (select extract(month from order_purchase_timestamp) as Months, payment_type from Target.orders as o join Target.payments as p on o.order_id=p.order_id) group by Months,payment_type order by Months;
```

Query results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	
Row	Months	no_of_orders	payment_type	le	
1	1	6103	credit_card		
2	1	1715	UPI		
3	1	477	voucher		
4	1	118	debit_card		
5	2	1723	UPI		
6	2	6609	credit_card		
7	2	424	voucher		
8	2	82	debit_card		
9	3	7707	credit_card		
10	3	1942	UPI		

Count of orders based on the no. of payment installments

select count(order_id) as no_of_orders,payment_installments from `jan23-scalersql.Target.payments` group by payment_installments;

Query results

JOB IN	IFORMATION	RESULTS JS
Row	no_of_orders	payment_installments
1	2	0
2	52546	1
3	12413	2
4	10461	3
5	7098	4
6	5239	5
7	3920	6
8	1626	7
9	4268	8
10	644	9