Name:
Roll No. :
Inviailator's Sianature :

2012

I.C. ENGINE & STEAM TURBINE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct all e natives for the following: $10 \times 1 = 10$
 - i) In a four strok engine, the working cycle is completed in
 - a) one revolution of the crank shaft
 - b) two re olution of the crank shaft
 - c) three revolution of the crank shaft
 - d) four revolution of the crank shaft.
 - ii) The thermodynamic cycle on which gasoline engine works, as
 - a) Otto cycle
- b) Joule cycle
- c) Rankine cycle
- d) Stirling cycle.
- iii) The theoretically correct mixture of air and petrol is
 - a) 10:1

b) 15:1

c) 20:1

d) 25:1.

5017(O) [Turn over

iv)	A petrol engine has compression ratio from				
	a)	6 to 10	b)	10 to 15	
	c)	15 to 25	d)	25 to 40.	
v)	The air and fuel ratio of the petrol engine is controlled by				
	a)	carburetor	b)	injector	
	c)	governor	d)	none of these.	
vi)		steam turbine used mal power plant is	in	modern high capacity	
	a)	impulse turbine			
	b)	reaction turbine			
	c)	c) velocity-compounded steam turbine			
	d) impulse-reaction turbin				
vii)	Compounding of impulse steam turbine is to				
	a)	reduce the speed	b)	increase the speed	
	c)	vary the speed	d)	none of these.	
viii)	The exhaust steam from a turbine discharged to				
	a)	condenser	b)	boiler	
	c)	ash handling plant	d)	none of these.	
ix)	Pure reaction turbine is				
	a)	feasible	b)	not feasible	
	c)	partially feasible	d)	none of these.	
x)	The speed of the steam turbine is controlled by				
	a)	governor	b)	fly wheel	
	c)	centrifugal pump	d)	none of these.	

GROUP - B

(Short Answer Type Questions)

Answer *all* questions.

 $3 \times 5 = 15$

- 2. With respect to air standard cycles $\eta_{otto} > \eta_{dual} > \eta_{diesel}$ explain using cycle diagram.
- 3. What is meant by supercharging in I.C. engines? State the factors which increase the output of supercharging.
- 4. Explain with necessary sketches the different types of compounding used in Impulse Steam Turbine.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following.

 $3 \times 15 = 45$

5. In a simple impulse turbine, the nozzle angle is 16° and the blade outlet angle is 25°. Inlet velocity of steam as it issues from nozzle is 720 m/sec and the blade velocity is 180 m/sec The blade velocity coefficient may be taken as 0.75. The steam flow rate is 1 kg/sec. Find:

3

- i) Energy dissipated in blades due to friction
- ii) Power developed
- iii) Diagram efficiency.

- 6. The following details were noted in a test on a four cylinder four stroke engine, diameter = 100, stroke = 120 mm, speed of the engine = 1600 rpm, fuel consumption = 0·2 kg/min, calorific value of fuel is 44000 kJ/kg, difference in tension on either side of the brake pulley = 40 kg, brake circumference = 300 cm. If the mechanical efficiency is 80%, calculate:
 - i) break thermal efficiency
 - ii) indicated thermal efficiency
 - iii) indicated mean effective pressure
 - iv) break specific fuel consumption.
- 7. a) Compute the brake mean effe tive pressure of a four cylinder, four stroke diesel engine having 150 mm bore and 200 mm stroke which develops a break power of 73.6 kW at 1200 rpm.
 - b) Find the mean piston speed of a diesel engine running at 1500 rpm. The engine has a 100 mm bore and L/d ratio is 1.5.
- 8. A 50% reaction turbine running at 500 rpm, consumes 13·6 kg/s of steam. If the adiabatic heat drop in turbine 460 kJ/kg and the turbine internal efficiency is estimated to be 0·9, what is the internal power developed by the turbine? At a certain stage off this turbine the mean steam conditions are 1·1 bar and 0·85 dry. The discharge blade tip angle is 20° and the blade to steam velocity is 0·7. If the blade is $\frac{1}{12}$ of the mean ring.

5017(O)