

Diodos

ECM305 Sistemas Eletrônicos

Sergio R. Augusto

Objetivos

- Apresentar o funcionamento do diodo;
- Modelos mais comuns: ideal, real, tensão constante e linear por trechos.
- Análise de circuitos com diodos.
- Parâmetros importantes e aplicações.

O Diodo Ideal

Simbologia:

Direção reversa:

Direção direta:

O Diodo Ideal

Característica i x v:

O Diodo Ideal

Exemplo: aplicação como Retificador:

Dispositivos Semicondutores

 Semicondutor: condutividade elétrica entre condutores e isolantes

Condutor	Semicondutor	Isolante			
Cobre: $\rho \cong 10^{-6} \Omega.cm$	Silício: $\rho \cong 50 \times 10^3 \ \Omega.cm$	Mica: $\rho \cong 10^{12} \ \Omega.cm$			

Semicondutor dopado: materias em que elétrons ou lacunas predominam, através da inserção de átomos de impurezas:

Tipo $n \rightarrow$ negativamente carregados (elétrons livres na estrutura do semicondutor))

Tipo $p \rightarrow$ positivamente carregados (falta de elétrons \rightarrow lacunas \rightarrow cargas positivas).

Diodos e junção PN

Os diodos constituem basicamente de um cristal de silício constituído de duas regiões de diferentes dopagens (regiões p e n), formando uma junção pn compactada num mesmo dispositivo e com conexões externas de metal (alumínio).

Polarização da junção PN Diodo Real

 Polarização direta: energia necessária para vencer a barreira de potencial (V_T ou Vγ).

 $V_T \cong 0,7 \text{ V para diodos silício}$

• Polarização reversa:

Aumento da região de depleção

Característica i x v – Diodo real

- A curva característica i v de diodos de silício apresenta três regiões distintas:
 - Região de polarização direta (v > 0)
 - Região de polarização inversa (v < 0)
 - Região de ruptura ou zener ($v < V_{ZK}$)

Característica i x v de Diodos

A relação entre i-v de uma junção PN, e portanto de um diodo, é dada aproximadamente por:

$$i = I_S \left(e^{v/(nV_T)} - 1 \right)$$

- I_S Corrente de saturação (da ordem de 10e⁻¹⁵A para diodos de pequenos sinais)
- o V_T − Constante de tensão térmica o 25,2 mV em 20° C;
- n Constante relacionada à estrutura física do diodo (valor entre 1 e
 2).
- Na região de polarização direta, para i >> I_S, a equação pode ser aproximada por uma exponencial:

$$i = I_S e^{v/(nV_T)}$$

0

Calculando corrente e tensão em um circuito com diodo

Considere o seguinte circuito da figura abaixo. Determine a corrente I_D e a tensão V_D para o circuito assumindo $V_{DD} = 5 \text{ V e R} = 1 \text{ K}\Omega$.

Considerando V_{DD} ≥ 0,5V , a corrente do diodo ID >> IS e podemos escrever a relação exponencial para o diodo

$$I_D = I_S \left(e^{v/(nV_T)} - 1 \right)$$

Também, a equação de malha (Kirchhoff) para o circuito é dada por:

$$I_D = \frac{V_{DD} - V_D}{R}$$

Duas equações e duas incógnitas → Sistema não linear → análise gráfica ou análise iterativa

Análise Gráfica: Reta de Carga e Ponto de Operação

Considere o circuito abaixo (bipolo B não linear, com característica $v \times i$ indicada):

Para a determinação dos valores de \mathbf{v} e \mathbf{i} no circuito, é conveniente obter a **reta de carga** definida pela fonte de tensão \mathbf{E} e pela resistência \mathbf{R} :

$$v=E-Ri$$
 ou $i=rac{E-v}{R}$

Traçando esta reta no plano $v \times i$ do bipolo não linear obtém-se o **ponto de operação** do circuito.

Análise Gráfica

 A solução pode ser obtida pelas coordenadas do ponto de intersecção entre a curva característica do diodo e a linha de carga.

Ponto Q =>
$$I_D = 4.24 \text{ mA}$$
; $v_D = 0.76 \text{V}$

OBS: Se $V_{DD} < 0 =>$ Região reversa: $I_D = 0$; $v_D = V_{DD}$

Modelos Simplificados do Diodo

- Modelo linear por trechos
 - Diodo com Vγ e R_D
- Modelo com queda de tensão constante
 - Diodo com Vγ
- Modelo Diodo ideal

Modelo Linear por Trechos

 $V_{D0} = V_{T}$ ou $V\gamma$ é aproximadamente 0,7 V (típico)

Para o modelo da figura $V_{D0}=0.65V$, $rd=(0.9V-0.65V)/(12~mA-0mA)\cong 20~\Omega$

Refazendo o problema usando o modelo linear por trechos

Determine a corrente I_D e a tensão V_D assumindo $V_{DD} = 5 \text{ V}$, $R = 1 \text{ K}\Omega$, $V_{D0} = 0.65 \text{ V}$ e $I_D = 20 \Omega$:

$$\begin{split} I_D &= (V_{DD}\text{-}V_{D0})/(R\text{+}r_D) \\ I_D &= (5\text{-}0,65)/(1\text{+}0,02) = 4,26 \text{ mA} \\ V_D &= V_{D0} \text{+}r_D * I_D = 0,65 \text{ +}4,26*0.02 = 0,74V \end{split}$$

Próximos aos valores reais usando iteração ou reta de carga

Modelo com queda de Tensão constante Vγ

 $V_D = V_T$ ou $V\gamma$ é aproximadamente 0,7 V (típico)

OBS: É o modelo mais utilizado na prática

Refazendo o problema usando o modelo com queda de tensão constante

Determine a corrente I_D e a tensão V_D assumindo $V_{DD} = 5 \text{ V e R} = 1 \text{ K}\Omega$,

$$I_D = (V_{DD}-V_D)/R$$

 $I_D = (5 - 0.7)/1 = 4.3 \text{ mA}$
 $V_D = 0.7V$

Próximos aos valores obtidos usando modelos mais elaborados!

Modelo Diodo Ideal

•Polarização direta

-curto circuito

Polarização reversa-circuito aberto

$$i > 0 \Rightarrow v = 0$$

$$v < 0 \Rightarrow i = 0$$

OBS: Usa-se aplicações que envolvem tensões muito maiores que a queda de tensão $V\gamma$ do diodo, ou para rápidas análises (por exemplo quais diodos estão conduzindo ou não).

Refazendo o problema usando o modelo ideal do diodo

Determine a corrente I_D e a tensão V_D assumindo $V_{DD} = 5 \text{ V e R} = 1 \text{ K}\Omega$,

$$I_D = V_{DD}/R$$

$$I_D = 5/1 = 5 \text{ mA}$$

$$V_D = 0 \text{ V}$$

Para uma análise rápida não é uma estimativa muito ruim

Principais Especificações

•Polarização direta

- -Tensão direta $(V_D, V_F) (V_D \ge V_Y)$
- -Corrente contínua direta máxima (I_{DM})
- Potência máxima de dissipação (contínua) (P_{DM})

$$P_{DM} = V_D * I_{DM}$$

Polarização reversa

- -Tensão reversa máxima (*breakdown*) (V_{Br})
- -Corrente reversa ou de fuga (I_R)

Exemplo Folha de dados Diodo1N4001

°C

VISHAY.

pF

PARAMETER		SYMBOL	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	UNIT
Maximum repetitive peak reverse voltage		V _{RRM}	50	100	200	400	600	800	1000	V
Maximum RMS voltage		V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC blocking voltage		V _{DC}	50	100	200	400	600	800	1000	V
Maximum average forward rectified current 0.375" (9.5 mm) lead length at T _A = 75 °C		I _{F(AV)}	1.0							Α
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load		I _{FSM}	30							Α
Non-repetitive peak forward surge current square waveform T _A = 25 °C (fig. 3)	t _p = 1 ms	I _{FSM}	45							A
	t _p = 2 ms		35							
	$t_p = 5 \text{ ms}$		30							
Maximum full load reverse current, full cycle average 0.375" (9.5 mm) lead length T _L = 75 °C		I _{R(AV)}	30							μΑ
Rating for fusing (t < 8.3 ms)		2t (1)	3.7							A ² s

TJ, TSTG

 C_J

- 50 to + 150

15

1N4001 thru 1N4007

Operating junction and

storage temperature range

Typical junction capacitance

Vishay General Semiconductor

4.0 V, 1 MHz

$$-V_F = 1.1V @ 1.0A$$

- -Corrente <u>contínua</u> direta máxima $I_{DM} = I_{F(AV)} = 1,0A$
- -Potência contínua máxima de dissipação (P_{DM}) P_{DM} = V_F * I_{DM} = 1,1W
- -Tensão reversa máxima $(breakdown) V_{Br} = V_{DC} = 50V$

-Corrente reversa ou de fuga $I_R = 5 \mu A (25 \, ^{\circ}C)$

Exemplos e Aplicações

Lógica

Supondo, v_A , v_B , v_C 0V ('0') ou 5V ('1')

OR
$$\rightarrow$$
 SE v_A OU v_B OU $v_C = 5V \rightarrow v_{\gamma} = 5V$ ('1')
AND \rightarrow SE v_A E v_B E $v_C = 5V \rightarrow v_{\gamma} = 5V$ ('1')

São circuitos a diodo cuja saída aparece como se uma parte do sinal de entrada fosse cortado, podendo incluir no circuito mais de uma fonte.

Determinar a forma de saída Vs para o sinal Ve senoidal com valor de pico 5V, considerando $V\gamma$ do diodo.

Circuitos Retificadores

- Retificador de Onda Completa em Ponte
- Dbs: forma de onda considerando diodos ideais.

Circuitos Retificadores

Retificador de Onda Completa em Ponte com Filtro Capacitivo

Diodos Emissores de Luz (LED's)

O diodo emissor de luz é um diodo tipicamente fabricado com materiais que emitem fótons suficiente para constituir uma fonte de luz visível quando em polarização direta.

Simbologia:

Display de 7 Segmentos

Tipos:

