7 Poisson random measures

7.1 Construction and basic properties

For $\lambda \in (0, \infty)$ we say that a random variable X in \mathbb{Z}^+ is Poisson of parameter λ and write $X \sim \mathsf{Poi}(\lambda)$ if

$$P(X=n) = e^{-\lambda} \lambda^n / n!.$$

We also write $X \sim \mathsf{Poi}(0)$ to mean $X \equiv 0$ and write $X \sim \mathsf{Poi}(\infty)$ to mean $X \equiv \infty$.

Proposition 7.1.1 (Addition property) Let N_k , $k \in \mathbb{N}$, be independent random variables, with $N_k \sim \text{Poi}(\lambda_k)$ for all k. Then

$$\sum_k N_k \sim \mathsf{Poi}\Bigl(\sum_k \lambda_k\Bigr)$$
 .

Proposition 7.1.2 (Splitting property) Let $N, Y_n, n \in \mathbb{N}$, be independent random variables, with $N \sim \mathsf{Poi}(\lambda), \ \lambda < \infty$ and $\mathsf{P}(Y_n = j) = p_j$ for all $j = 1, \ldots, k$ and all n. Set

$$N_j = \sum_{n=1}^{N} \mathbb{1}_{\{Y_n = j\}}.$$

Then N_1, \ldots, N_k are independent random variables with $N_j \sim \mathsf{Poi}(\lambda p_j)$ for all j.

Let (E, \mathcal{E}, μ) be a σ -finite measure space. A Poisson random measure with intensity μ is a map

$$M: \Omega \times \mathcal{E} \to \mathbb{Z}^+$$

satisfying, for all sequences $(A_k : k \in \mathbb{N})$ of disjoint sets in \mathcal{E} ,

- (i) $M(\cup_k A_k) = \sum_k M(A_k)$,
- (ii) $M(A_k)$, $k \in \mathbb{N}$, are independent random variables,
- (iii) $M(A_k) \sim \text{Poi}(\mu(A_k))$ for all k.

Denote by E^* the set of integer-valued measures on \mathcal{E} and define

$$X: E^* \times \mathcal{E} \to \mathbb{Z}^+, \qquad X_A: E^* \to \mathbb{Z}^+, \qquad A \in \mathcal{E}$$

by

$$X(m, A) = X_A(m) = m(A).$$

Set $\mathcal{E}^* = \sigma(X_A : A \in \mathcal{E}).$

Theorem 7.1.3 There exists a unique probability measure μ^* on (E^*, \mathcal{E}^*) such that X is a Poisson random measure with intensity μ .

Proof. (Uniqueness.) For disjoint sets $A_1, \ldots, A_k \in \mathcal{E}$ and $n_1, \ldots, n_k \in \mathbb{Z}^+$, set

$$A^* = \{ m \in E^* : m(A_1) = n_1, \dots, m(A_k) = n_k \}.$$

Then, for any measure μ^* making X a Poisson random measure with intensity μ ,

$$\mu^*(A^*) = \prod_{j=1}^k e^{-\mu(A_j)} \mu(A_j)^{n_j} / n_j!.$$

Since the set of such sets A^* is a π -system generating \mathcal{E}^* , this implies that μ^* is uniquely determined on \mathcal{E}^* .

(Existence.) Consider first the case where $\lambda = \mu(E) < \infty$. There exists a probability space $(\Omega, \mathcal{F}, \mathsf{P})$ on which are defined independent random variables N and Y_n , $n \in \mathbb{N}$, with $N \sim \mathsf{Poi}(\lambda)$ and $Y_n \sim \mu/\lambda$ for all n. Set

$$M(A) \stackrel{\mathsf{def}}{=} \sum_{n=1}^{N} \mathbb{I}_{\{Y_n \in A\}}, \qquad A \in \mathcal{E}. \tag{7.1}$$

It is easy to check, by the Poisson splitting property, that M is a Poisson random measure with intensity μ .

More generally, if (E, \mathcal{E}, μ) is σ -finite, then there exist disjoint sets $E_k \in \mathcal{E}$, $k \in \mathbb{N}$, such that $\bigcup_k E_k = E$ and $\mu(E_k) < \infty$ for all k. We can construct, on some probability space, independent Poisson random measures M_k , $k \in \mathbb{N}$, with M_k having intensity $\mu|_{E_k}$. Set

$$M(A) \stackrel{\mathsf{def}}{=} \sum_{k \in \mathbb{N}} M_k(A \cap E_k), \qquad A \in \mathcal{E} \ .$$

It is easy to check, by the Poisson addition property, that M is a Poisson random measure with intensity μ . The law μ^* on E^* is then a measure with the required properties.

7.2 Integrals with respect to a Poisson random measure

Theorem 7.2.4 Let M be a Poisson random measure on E with intensity μ and let g be a measurable function on E. If $\mu(E)$ is finite or g is integrable, then

$$X = \int_{E} g(y) M(dy)$$

is a well-defined random variable with

$$\mathsf{E}\!\left(e^{iuX}\right) = \exp\!\left\{\int_{E}\!\left(e^{iug(y)}-1\right)\mu(dy)\right\}.$$

Moreover, if g is integrable, then so is X and

$$\mathsf{E}(X) = \int_E g(y) \, \mu(dy), \qquad \mathsf{Var}\left(X\right) = \int_E g(y)^2 \, \mu(dy) \, .$$

Proof. Assume for now that $\lambda = \mu(E) < \infty$. Then M(E) is finite a.s. so X is well defined. If $g = \mathbb{I}_A$ for some $A \in \mathcal{E}$, then X = M(A), so X is a random variable. This extends by linearity and by taking limits to all measurable functions g.

Since the value of $\mathsf{E}(e^{iuX})$ depends only on the law μ^* of M on E^* , we can assume that M is given as in (7.1). Then

$$\mathsf{E}\left(e^{iuX}\mid N=n\right) = \mathsf{E}\big(e^{iug(Y_1)}\big)^n = \left(\int_E e^{iug(y)} \frac{\mu(dy)}{\lambda}\right)^n$$

SO

$$\begin{split} \mathsf{E}(e^{iuX}) &= \sum_{n=0}^{\infty} \mathsf{E}\left(e^{iuX} \mid N=n\right) \mathsf{P}(N=n) \\ &= \sum_{n=0}^{\infty} \Bigl(\int_{E} e^{iug(y)} \frac{\mu(dy)}{\lambda}\Bigr)^{n} e^{-\lambda} \lambda^{n}/n! = \exp\Bigl\{\int_{E} \bigl(e^{iug(y)}-1\bigr) \, \mu(dy)\Bigr\}. \end{split}$$

If g is integrable, then formulae for $\mathsf{E}(X)$ and $\mathsf{Var}(X)$ may be obtained by a similar argument.

It remains to deal with the case where g is integrable and $\mu(E)=\infty$. Assume for now that $g\geq 0$, then X is obviously well defined. We can find $0\leq g_n\uparrow g$ with $\mu(|g_n|>0)<\infty$ for all n. The conclusions of the theorem are then valid for the corresponding integrals X_n . Note that $X_n\uparrow X$ and $\mathsf{E}(X_n)\leq \mu(g)<\infty$ for all n. It follows that X is a random variable and, by dominated convergence, $X_n\to X$ in $L^1(\mathsf{P})$. Further, using the estimate $|e^{iux}-1|\leq |ux|$, we can obtain the desired formulae for X by passing to the limit. Finally, for a general integrable function g, we have

$$\mathsf{E} \int_E |g(y)| \, M(dy) = \int_E |g(y)| \, \mu(dy)$$

so X is well defined. Also $X = X_{+} - X_{-}$, where

$$X_{\pm} = \int_{\{\pm g > 0\}} g(y) M(dy)$$

and X_+ and X_- are independent. Hence the formulae for X follow from those for X_{\pm} .

We now fix a σ -finite measure space (E, \mathcal{E}, K) and denote by μ the product measure on $(0, \infty) \times E$ determined by

$$\mu((0,t]\times A) = tK(A), \quad t>0, \quad A\in\mathcal{E}.$$

Let M be a Poisson random measure with intensity μ and set $\widetilde{M} = M - \mu$. Then \widetilde{M} is a compensated Poisson measure with intensity μ .

Proposition 7.2.5 Let g be an integrable function on E. Set

$$X_t \stackrel{\mathsf{def}}{=} \int_{(0,t] \times E} g(y) \, \widetilde{M}(ds, dy).$$

Then $(X_t)_{t\geq 0}$ is a cadlag martingale with stationary independent increments. Moreover,

$$\begin{split} \mathsf{E}(e^{iuX_t}) &= \exp\Bigl\{t\int_E \bigl(e^{iug(y)} - 1 - iug(y)\bigr)\,K(dy)\Bigr\}, \\ \mathsf{E}(X_t^2) &= t\int_E g(y)^2\,K(dy). \end{split}$$

Theorem 7.2.6 Let $g \in L^2(K)$ and let $(g_n : n \in \mathbb{N})$ be a sequence of integrable functions such that $g_n \to g$ in $L^2(K)$. Set

$$X_t^n \stackrel{\text{def}}{=} \int_{(0,t]\times E} g_n(y) \, \widetilde{M}(ds, dy).$$

Then there exists a cadlag martingale $(X_t)_{t\geq 0}$ such that

$$\mathsf{E}\Big(\sup_{s \le t} |X_s^n - X_s|^2\Big) \to 0$$

for all $t \geq 0$. Moreover, $(X_t)_{t \geq 0}$ has stationary independent increments and

$$\mathsf{E}(e^{iuX_t}) = \exp\left\{t \int_E \left(e^{iug(y)} - 1 - iug(y)\right) K(dy)\right\}.$$

The notation $\int_{(0,t]\times E} g(y) \widetilde{M}(ds,dy)$ is used for X_t even when g is not integrable with respect to K. Of course $(X_t)_{t\geq 0}$ does not depend on the choice of approximating sequence (g_n) . This is a simple example of a *stochastic integral*. *Proof.* Fix t>0. By Doob's L^2 -inequality and Proposition 7.2.5,

$$\mathsf{E}\Big(\sup_{s \le t} |X^n_s - X^m_s|^2\Big) \le 4\mathsf{E}\big((X^n_t - X^m_t)^2\big) = 4t \int_E (g_n - g_m)^2 \, K(dy) \to 0$$

as $n, m \to \infty$. Hence X_s^n converges in L^2 for all $s \le t$. For some subsequence we have

$$\sup_{s \le t} |X_s^{n_k} - X_s^{n_j}| \to 0 \qquad \text{a.s.}$$

as $j, k \to \infty$. The uniform limit of cadlag functions is cadlag, so there is a cadlag process $(X_s)_{s \le t}$ such that

$$\sup_{s < t} |X_s^{n_k} - X_s| \to 0 \qquad \text{a.s.}$$

Since X_s^n converges in L^2 for all $s \leq t$, $(X_s)_{s \leq t}$ is a martingale and so by Doob's L^2 -inequality

$$\mathsf{E}\Big(\sup_{s < t} |X_s^n - X_s|^2\Big) \le 4\mathsf{E}\big((X_t^n - X_t)^2\big) \to 0.$$

Note that $|e^{iug} - 1 - iug| \le u^2 g^2/2$. Hence, for s < t we have

$$\begin{split} \mathsf{E}\left(e^{iu(X_t-X_s)}\mid \mathcal{F}_s^M\right) &= \lim_n \mathsf{E}\left(e^{iu(X_t^n-X_s^n)}\mid \mathcal{F}_s^M\right) \\ &= \lim_n \exp\Bigl\{(t-s)\int_E \bigl(e^{iug_n(y)}-1-iug_n(y)\bigr)\,K(dy)\Bigr\} \\ &= \exp\Bigl\{(t-s)\int_E \bigl(e^{iug(y)}-1-iug(y)\bigr)\,K(dy)\Bigr\} \end{split}$$

which shows that $(X_t)_{t\geq 0}$ has stationary independent increments with the claimed characteristic function. \Box