# Algebra Review Modular Arithmetic Boolean Algebra Lecture 2

## algebraic properties\* [axioms]

| property     | addition                        | multiplication             |  |
|--------------|---------------------------------|----------------------------|--|
| associative  | (a+b)+c = a+(b+c)               | (ab)c = a(bc)              |  |
| commutative  |                                 | ab = ba                    |  |
| identity     |                                 |                            |  |
| inverse      |                                 | a · a-1=1=a-1 · a if a ≠ 0 |  |
| distributive | a(b+c)=ab+ac and $ab+ac=a(b+c)$ |                            |  |

## algebraic properties\* [axioms] properties of equality and inequality (1)

| property                           | equality                              | inequality                                                             |
|------------------------------------|---------------------------------------|------------------------------------------------------------------------|
| multiplicative property<br>of zero |                                       |                                                                        |
| zero product                       | if $ab=0$ , then $a=0$ or $b=0$       |                                                                        |
| reflexive                          | a = a                                 |                                                                        |
| symmetric                          | if $a = b$ , then $b = a$             |                                                                        |
| transitive                         | if $a = b$ and $b = c$ , then $a = c$ | if a > b and b > c, then a > c<br>if a < b and b < c, then a < c       |
| addition                           | if $a=b$ , then $a+c=b+c$             | if $a < b$ , then $a + c < b + c$<br>if $a > b$ , then $a + c > b + c$ |
| subtraction                        | if $a = b$ , then $a-c = b-c$         | if a < b, then a - c < b - c<br>if a > b, then a - c > b - c           |

## algebraic properties\* [axioms] properties of equality and inequality (2)

| property                            | equality                                                                       | inequality                                                                                                                                                                       |  |
|-------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| multiplication                      | if a = b, then ac = bc                                                         | if a < b and c > 0, then ac < bc<br>if a < b and c < 0, then ac > bc<br>if a > b and c > 0, then ac > bc<br>if a > b and c < 0, then ac < bc                                     |  |
| division                            | If $a = b$ and $c \neq 0$ , then $a/b = b/c$                                   | if $a < b$ and $c > 0$ , then $a/c < b/c$<br>if $a < b$ and $c < 0$ , then $a/c > b/c$<br>if $a > b$ and $c > 0$ , then $a/c > b/c$<br>if $a > b$ and $c < 0$ , then $a/c < b/c$ |  |
| substitution                        | if $a = b$ , then $b$ can be substituted for $a$ in any equation or inequality |                                                                                                                                                                                  |  |
| *given a, b, and c are real numbers |                                                                                |                                                                                                                                                                                  |  |







# Factoring writing a polynomial as a product of polynomials • The greatest common factor (GCF): largest quantity that is a factor of all the integers or polynomials involved Example. 6,8 and 46 6 = 2 · 3 8 = 2 · 2 · 2 46 \* 2 · 2 · 3 ⇒ GCF is 2 Example. 6 of and 6x² 6x² = 2 · 3 · x · x · x 4x² = 2 · 2 · x · x · x 4x² = 2 · 2 · x · x · x Exercise 1, a²bb², a²b² and a²b² ⇒ GCF is a²b² CF is a²b²



#### factoring trinomials

First Outer Inner Last

Example,  $25x^2 + 20x + 4$ 

- try each pair of factors until we find a combination that works (or exhausts all possible pairs)

|   | Factors of $25x^2$         | Factors of | 4 Binomials                  | Outside Terms | Inside Terms | Sum of Products |  |
|---|----------------------------|------------|------------------------------|---------------|--------------|-----------------|--|
|   | {x,25x}                    | {1, 4}     | (x+1)(25x+4)<br>(x+4)(25x+1) |               | 25x<br>100x  | 29x<br>101x     |  |
|   | $\{x,25x\}$                | {2, 2}     | (x+2)(25x+2)                 |               |              | 52x             |  |
|   | $\{5x,5x\}$                | {2, 2}     | (5x+2)(5x+2)                 |               |              | (20x)           |  |
| • | Answer: $(5x + 2)(5x + 2)$ |            | check via FOIL)              |               |              |                 |  |

- Exercise 2, Factor the polynomial  $21x^2 41x + 10$

#### solving quadratic equations by factoring

quadratic equations of the standard form

 $ax^2 + bx + c = 0$ 

Zero Factor Theorem

#### solving quadratic equations by factoring

step by step for solving a quadratic equation by factoring example: solve  $x^2 - 5x = 24$ 

3. set each factor containing a variable equal to 0

Exercise 3, 4x(8x + 9) = 5



#### congruence modulo

Definition Congruence

We say that a is congruent to b modulo m if and only if m divides a-b

- Whether two integers a and b have the same remainder when divided by n
- Notation:  $a \equiv b \mod m \iff a$  is congruent to  $b \mod m$  $a \not\equiv b \mod m \leftrightarrow a$  is not congruent to  $b \mod b$
- A congruence modulo asks whether or not a and b are in the same <u>equivalence class</u>

The numbers 31 and 46 are congruent mod 3 because they differ by a multiple of 3.

We can write this as  $31 \equiv 46 \mod 3$ Since the difference between 31 and 46 is 15, then these numbers also differ by a multiple of 5; i.e.,

Exercise 4.
Find the equivalence classes of mod 3

#### rules of modular arithmetic

Addition (and subtraction)

 $a \equiv b \mod m$  and  $c \equiv d \mod m$  then  $a + c \equiv b + d \mod m$ 

Multiplication If  $a \equiv b \mod m$  and  $c \equiv d \mod m$ then  $a \times c \equiv b \times d \mod m$ 

Division The remainder after division is always congruent to the number we

are dividing.

Example,  $87 \equiv 2 \mod 17$  and

 $222 \equiv 1 \mod 17$   $\implies 87 + 222 \mod 17 \equiv 2 + 1 \mod 17 \equiv 3 \mod 17$ 

Example. 9876  $\equiv$  6 mod 10 and 17642  $\equiv$  2 mod 10  $\equiv$  6 × 2 mod 10  $\equiv$  9876 × 17642 mod 10  $\equiv$  6 × 2 mod 10  $\equiv$  2 mod 10

Example. What is the remainder of  $17 \times 18$  when it is divided by 19? We know that  $17 \equiv -2 \mod 19$  and  $18 \equiv -1 \mod 19$   $\implies 17 \times 18 \equiv (-2) \times (-1) = 2 \mod 19$ 

#### Boolean algebra

- Today is Monday AND it is raining
- Today is Monday OR today is NOT Monday
- . Today is Monday AND today is NOT Monday
- Boolean algebra allows us to formalize this sort of reasoning
- Boolean variables may take one of only two possible values: TRUE, FALSE
- an exhaustive approach to describing when some statement is true (or false): TRUTH TABLES

### Boolean algebra The three fundamental Boolean operators

True only when both A and B are true.

| A | В | A AND B |
|---|---|---------|
| F | F | F       |
|   |   |         |
|   |   |         |
| T |   | T       |

## Boolean algebra The three fundamental Boolean operators

1. Logical disjunction: OR V

True unless both A and B are false.

| A | В | A OR B |
|---|---|--------|
|   |   | F      |
|   |   |        |
|   |   |        |
|   |   |        |

#### Boolean algebra

The three fundamental Boolean operators

1. Logical negation: NOT ¬ True when A is false False when A is true.

| А | NOT A |
|---|-------|
| F | Ţ     |
|   |       |

#### Boolean algebra

| А | В | A' | B' | AB | A+B |
|---|---|----|----|----|-----|
| F | F |    |    |    |     |
| F | ī |    |    |    |     |
| ī | F |    |    |    |     |
| ī | ī |    |    |    |     |

## Boolean algebra Truth table

| A | В | A' | B' | AB | A+B |
|---|---|----|----|----|-----|
| F | F | Ţ  | Ţ  | F  | F   |
|   |   |    |    |    |     |
|   |   |    |    |    |     |
|   |   |    |    |    |     |

#### Boolean algebra

| A | В | A+B | (A+B)B |
|---|---|-----|--------|
| F | F |     |        |
|   |   |     |        |
|   | F |     |        |
|   | ī |     |        |

Truth tables can be used to prove equivalencies. What have we proved in this table?