

Warsztaty z R

Wprowadzenie do modelowania w R

Adam Wróbel Risk Modelling & Analytics Specialist

Krótka powtórka rzeczy z poprzednich zajęć

dplyr & ggplot2

Otwórzmy RStudio

Materiały, których będziemy używać są dostępne na github pod adresem:

github.com/AdamWrobel/AGH-R-workshops

Branch: master ▼ New pull request	Create new file	Upload files Find file	Clone or download ▼
AdamWrobel Create temp		Latest com	mit 83533bd 3 hours ago
1_introduction_and_data_processing	Add files via upload		3 hours ago
2_data_vizualization	Delete temp		5 days ago
■ 3_modelling	Create temp		3 hours ago
README.md	Update README.md		3 hours ago

otwórzmy skrypt: dplyr_and_ggplot2.R

Wprowadzenie do modelowania w R

Na przykładzie ryzyka kredytowego

Zdefiniowanie problemu:

- Portfel kredytów hipotecznych w USA
- Ile możemy stracić w przypadku spadku indeksu cen nieruchomości w USA o 18% (scenariusz zdefiniowany przez FED - regulator na rynku amerykańskim)

Dostępne informacje do policzenie oczekiwanej straty:

- Prawdopodobieństwo tego, że dany klient przestanie spłacać kredyt (zdefiniowane przez inny model)
- Obecna wartość pożyczki
- Obecna wartość nieruchomości/zabezpieczenia

$$EL = PD * LGD * EAD$$

Wprowadzenie do modelowania w R

Na przykładzie ryzyka kredytowego

Dostępne informacje do policzenie oczekiwanej straty:

- Prawdopodobieństwo tego, że dany klient przestanie spłacać kredyt (zdefiniowane przez inny model)
- Obecna wartość pożyczki
- Obecna wartość nieruchomości/zabezpieczenia

$$EL = PD * LGD * EAD$$

LGD zdefiniowane jako regresja probitowa o postaci: $LGD = \Phi(-2.2 + 1.3 * LTV)$

- Zależy od relacji pomiędzy wartością kredytu, a zabezpieczeniem (ceną nieruchomości):
 LTV (loan to value)
- Cenę nieruchomości w stresie możemy wyznaczyć zakładając, że cena każdej nieruchomość zmieni się tak samo jak index cen nieruchomości (-18%)

Przejdźmy do programowania

Otwórzmy RStudio

• Materiały, których będziemy używać są dostępne na github pod adresem:

github.com/AdamWrobel/AGH-R-workshops

Branch: master ▼ New pull request	Create new file Upload	files Find file Clone or download ▼
AdamWrobel Create temp		Latest commit 83533bd 3 hours ago
1_introduction_and_data_processing	Add files via upload	3 hours ago
2_data_vizualization	Delete temp	5 days ago
■ 3_modelling	Create temp	3 hours ago
■ README.md	Update README.md	3 hours ago

otwórzmy skrypt: expected_loss.R

Koncentracja kredytów w konkretnych stanach

Regionalizacja indeksu cen nieruchomości

- Ceny nieruchomości w poszczególnych stanach mogą mieć inną dynamikę niż średnia dla całego USA
- Omawiany portfel jest skoncentrowany w trzech stanach
- Wykorzystując historyczną relację pomiędzy indeksem cen nieruchomości dla USA, a indeksami dla poszczególnych stanów możemy wyznaczyć jak zachowają się indeksy w naszym scenariuszu na potrzeby testów stresu.

otwórzmy skrypt: index_regionalization.R

Rozkład strat z portfela hipotek

Zamiast punktowej estymacji

- Zamiast wykorzystywać punktową estymację w danym scenariuszu możemy wycenić cały portfel wykorzystując historyczne realizacja indeksów regionalnych
- Tym samym wyznaczyć oczekiwaną stratę w wielu scenariuszach

Polecana literatura/materiały do nauki R

- "Przewodnik po pakiecie R", Przemysław Biecek, 2017 (http://biecek.pl/R/)
- "R for Data Science", Hadley Wickham, Garrett Grolemund, 2017 (http://r4ds.had.co.nz/)
- "Advanced R", Hadley Wickham (http://adv-r.had.co.nz/)
- datacamp.com wiele dobrych kursów online
- r-bloggers.com interesujące artykuły
- tryr.codeschool.com wprowadzenie do R
- eRka (cykl spotkań krakowskiej społeczności skupionej wokół R): https://www.meetup.com/erkakrakow/

ubs.com/polandcareers

search for: Quantitative Risk Internship Program 2018

Zadanie domowe – dla chętnych

Project Euler

- Opis projektu na https://projecteuler.net/
- Pierwsze 5 problemów zdefiniowanych na stronie https://projecteuler.net/archives

Informacje kontaktowe

Adam Wróbel

UBS Business Solutions Center Risk Modelling & Analytics Specialist adam.wrobel@ubs.com

