FIGURE 1A

FIGURE 1B

WO 2005/044854 PCT/US2004/037152

FIGURE 2A

FIGURE 2B

FIGURE 3A

5/16

FIGURE 3B

FIGURE 4

FIGURE 5

FIGURE 6

CD40 Molecules on Namalwa and Daudii Cells Number of CD20 and

Methods	
1. Hanest and wash cells once with PBS w/o Ca++/Mg++ plus 0.5%BSA and 0.1% Sodium Azide.	
5. Stain cells with FIIC conjugated antibodies (12.12-FITC or Rituximab-FITC) on ice for 40minutes. Cells were also stained with huld61-FITC	FITC
for non-specific binding control. Antibody concentrations were 0.01, 1, 10 and 100ug per ml. i	• • • • • • • • • • • • • • • • • • •
4. Determine Mean Channel Fluorescence (Geometric Mean) by flow cytometer using log amplifier. PI was added to exclude dead cells.	
5. Determine Mean Channel Fluorescence (Geometric Means) of Quantum 1M24FITC (3,000 to 5,000 MESF*).	
Quantum TM ²² FITC (50,000 to 2,000,000 MESF) and Quantum TM 26FITC (10,000 to 500,000 MESF)	•
MESF: Molecules of Equivalent Soluble Fluorochrome	
6. Construct calibration curve by plotting MESF (y-axis) vs. the Geometric Means (x-axis).	
7. The number of molecules per cell was determined using the following equation: y=ax/b where y is equal to MESF and	
x is equal to Mean Channel Fluorescence of the sample. Mean Channel Fluorescence used for each sample was	:
ration (12.12FTIC) or the highest concentration (rituxima	•
8. Diwding MESF of sample by the numbers of FITC molecules conjugated to each antibody (F:P ratio) to determine	• • • • • • • • • • • • • • • • • • • •
BC). ABC of hulgGFITC of respected sample was corrected	9/1
Inal antibody binding capacatiy.	16 :

Exp.CD40E09040314403.0E09100313214.9E09110313702.6E09120313278.9	CD20		
14403 13214 13702 13278		CD40	CD20
13214 13702 13278	93676.5	3296.4	6200.1
13702	108438.5	3081.5	4788.2
	3 100509.1	3165.7	3988.3
	128158.3	3164.9	4618.0
Average 13,649.9	9 107,695.6	3,177.1	4,898.7
Stdev 546.7	14915.9	88.8	933.4

FIGURE 7

FIGURE 8

PCT/US2004/037152

11/16

FIGURE 9A

CHIR 12.12 light chain:

leader:

MALPAQLLGLLMLWVSGSSG

variable:

DIVMTQSPLSLTVTPGEPASISCRSSQSLLYSNGYNYLDWYLQKPGQSPQVLISLGSNRASG **VPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQARQTPFTFGPGTKVDIR**

constant:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK **DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC**

FIGURE 9B

CHIR-12.12 heavy chain:

leader:

MEFGLSWVFLVAILRGVQC

variable:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYEESNRYHAD SVKGRFTISRDNSKITLYLQMNSLRTEDTAVYYCARDGGIAAPGPDYWGQGTLVTVSS

constant:

ASTKGPSVFPLAPASKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGK

alternative constant region:

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGK

PCT/US2004/037152

FIGURE 10A

12/16

DNA sequence of light chain of CHIR-12.12:

FIGURE 10B

DNA sequence of heavy chain of CHIR-12.12 (including introns):

ggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttcagtagctatggcatgcactgggtccgccaggctc caggcaaggggctggagtgggtggcagttatatcatatgaggaaagtaatagataccatgcagactccgtgaagggccgattcacca tctccagagacaattccaagatcacgctgtatctgcaaatgaacagcctcagaactgaggacacggctgtgtattactgtgcgagagat gggggtatagcagcacctgggcctgactactggggccagggaaccctggtcaccgtctcctcagcaagtaccaagggcccatccgt cttcccctggcgcccgctagcaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccgg tgacggtgtcgtggaactcaggcgccctgaccagcggcgtgcacaccttcccggctgtcctacagtcctcaggactctactccctcag cagcgtggtgaccgtgccctccagcagcttgggcacccagacctacatctgcaacgtgaatcacaagcccagcaacaccaaggtgg gctgggctcagacctgccaagagccatatccgggaggaccctgccctgacctaagcccaccccaaaggccaaactctccactccc tcagctcggacaccttctctccccagattccagtaactcccaatcttctctctgcagagcccaaatcttgtgacaaaactcacacatgc ccaccgtgcccaggtaagccaggcctaggcctcagctcaaggcgggacaggtgccctagagtagcctgcatccagggac aggcccagccgggtgctgacacgtccacctccatctcttcctcagcacctgaactcctgggggggaccgtcagtcttcctcttccccc aaaacccaaggacaccctcatgatctcccggacccctgaggtcacatgcgtggtggtggtggacgtgagccacgaagaccctgaggtca agttcaactggtacgtggacggcgtggaggtgcataatgccaagacaaagccgcgggaggaggagcagtacaacagcacgtaccgtgt ggtcagcgtcctcaccgtcctgcaccaggactggctgaatggcaaggagtacaagtgcaaggtctccaacaaagccctcccagccc ccatcgagaaaaccatctccaaagccaaaggtgggacccgtggggtgcgagggccacatggacagaggccggctcggccaccc tctgccctgagagtgaccgctgtaccaacctctgtccctacagggcagccccgagaaccacaggtgtacaccctgccccatcccgg gaggagatgaccaagaaccaggtcagcctgacctgcctggtcaaaggcttctatcccagcgacatcgccgtggagtgggagagcaa tgggcagccggagaacaactacaagaccacgcctcccgtgctggactccgacggctccttcttctctctatagcaagctcaccgtggac aagagcaggtggcagcaggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcagaagagcctctcc ctgtctccgggtaaatga3'

WO 2005/044854 PCT/US2004/037152

13/16

FIGURE 11A

CHIR-5.9 light chain:

leader:

MALLAQLIGLLMLWVPGSSG

variable:

AIVMTQPPLSSPVTLGQPASISCRSSQSLVHSDGNTYLNWLQQRPGQPPRLLIYKFFRRLSG VPDRFSGSGAGTDFTLKISRVEAEDVGVYYCMQVTQFPHTFGQGTRLEIK

constant:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

FIGURE 11B

CHIR-5.9 heavy chain:

leader:

MGSTAILALLLAVLQGVCA

variable:

EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSP SFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARGTAAGRDYYYYYGMDVWGQGTTVTVS S

constant:

ASTKGPSVFPLAPASKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGK

alternative constant region:

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVF LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV MHEALHNHYTQKSLSLSPGK

PCT/US2004/037152

FIGURE 12A

14/16

Coding sequence for short isoform of human CD40:

- 1 atggttcgtc tgcctctgca gtgcgtcctc tggggctgct tgctgaccgc tgtccatcca
- 61 gaaccaccca ctgcatgcag agaaaaacag tacctaataa acagtcagtg ctgttctttg
- 121 tgccagccag gacagaaact ggtgagtgac tgcacagagt tcactgaaac ggaatgcctt
- 181 ccttgcggtg aaagcgaatt cctagacacc tggaacagag agacacactg ccaccagcac
- 241 aaatactgcg accccaacct agggcttcgg gtccagcaga agggcacctc agaaacagac
- 301 accatctgca cctgtgaaga aggctggcac tgtacgagtg aggcctgtga gagctgtgtc
- 361 etgeaceget eatgetegee eggetttggg gteaageaga ttgetaeagg ggtttetgat
- 421 accatctgcg agccctgccc agtcggcttc ttctccaatg tgtcatctgc tttcgaaaaa
- 481 tgtcaccctt ggacaaggtc cccaggatcg gctgagagcc ctggtggtga tccccatcat
- 541 cttcgggatc ctgtttgcca tcctcttggt gctggtcttt atcaaaaagg tggccaagaa
- 601 gccaaccaat aa

FIGURE 12B

Encoded short isoform of human CD40:

- 1 mvrlplqcvl wgclltavhp epptacrekq ylinsqccsl cqpgqklvsd cteftetecl
- 61 pcgesefldt wnrethchqh kycdpnlglr vqqkgtsetd tictceegwh ctseacescv
- 121 lhrscspgfg vkqiatgvsd ticepcpvgf fsnvssafek chpwtrspgs aespggdphh
- 181 lrdpvchplg aglyqkggqe anq

FIGURE 12C

15/16

Coding sequence for long isoform of human CD40:

- 1 atggttcgtc tgcctctgca gtgcgtcctc tggggctgct tgctgaccgc tgtccatcca
- 61 gaaccaccca ctgcatgcag agaaaaacag tacctaataa acagtcagtg ctgttctttg
- 121 tgccagccag gacagaaact ggtgagtgac tgcacagagt tcactgaaac ggaatgcctt
- 181 cettgeggtg aaagegaatt cetagacace tggaacagag agacacactg ceaceageac
- 241 aaatactgcg accccaacct agggcttcgg gtccagcaga agggcacctc agaaacagac
- 301 accatctgca cctgtgaaga aggctggcac tgtacgagtg aggcctgtga gagctgtgtc
- 361 ctgcaccgct catgctcgcc cggctttggg gtcaagcaga ttgctacagg ggtttctgat
- 421 accatctgcg agccctgccc agtcggcttc ttctccaatg tgtcatctgc tttcgaaaaa
- 481 tgtcaccctt ggacaagctg tgagaccaaa gacctggttg tgcaacaggc aggcacaaac
- 541 aagactgatg ttgtctgtgg tccccaggat cggctgagag ccctggtggt gatccccatc
- 601 atcttcggga tcctgtttgc catcctcttg gtgctggtct ttatcaaaaa ggtggccaag
- 661 aagccaacca ataaggcccc ccacccaag caggaacccc aggagatcaa ttttcccgac
- 721 gatetteetg geteeaacae tgetgeteea gtgeaggaga etttacatgg atgeeaaceg
- 781 gtcacccagg aggatggcaa agagagtcgc atctcagtgc aggagagaca gtga

FIGURE 12D

Encoded long isoform of human CD40:

- 1 mvrlplqcvl wgclltavhp epptacrekq ylinsqccsl cqpgqklvsd cteftetecl
- 61 pcgesefldt wnrethchqh kycdpnlglr vqqkgtsetd tictceegwh ctseacescv
- 121 lhrscspgfg vkqiatgvsd ticepcpvgf fsnvssafek chpwtscetk dlvvqqagtn
- 181 ktdvvcgpqd rlralvvipi ifgilfaill vlvfikkvak kptnkaphpk qepqeinfpd
- 241 dlpgsntaap vqetlhgcqp vtqedgkesr isvqerq

FIGURE 13

