Quantum Algorithms, Spring 2022: Lecture 6 Scribe

Rutvij Menavlikar, Abhyudit Mohla

January 25, 2022

1 Recap

1.1 Universality of Quantum Circuits

- Single qubit and *CNOT* gates together can be used to implement an arbitrary two-level unitary operation on the state space of n qubits.[?]
- The set $\{CNOT, H, R_{\frac{\pi}{4}}\}$ is universal for quantum computing, i.e. any other quantum circuit can be well approximated using quantum circuits of only these gates. And $Solovay\text{-}Kitaev\ thoerem\ states\ that\ any\ t\text{-}gate\ quantum\ circuit\ can be\ \epsilon\ approximated\ using\ \mathcal{O}\left(t\text{-}polylog\left(\frac{1}{\epsilon}\right)\right)$ gates from $\{CNOT, H, R_{\frac{\pi}{4}}\}$.

1.2 Quantum Parallelism

To estimate a function f s.t.

$$f: \{0,1\}^n \to \{0,1\}$$

we use a quantum gate U_f in the following way.

$$|x\rangle \longrightarrow |x\rangle$$

$$|y\rangle \longrightarrow |y\oplus f(x)\rangle$$
So, if $f(x) = 0$, $|x\rangle |y\rangle \xrightarrow{U_f} |x\rangle |y\rangle$
if $f(x) = 1$, $|x\rangle |y\rangle \xrightarrow{U_f} |x\rangle |\bar{y}\rangle$

$$(1)$$

Now, we can parallelise this circuit, even for n qubits by adding Hadamard's gates on input qubits before applying the U_f gate in the following way.

Thus, by applying U_f only once, we are able to obtain a quantum state that contains all possible 2^n values of f(x) in superposition.

$$|0\rangle^{\otimes n} |0\rangle \xrightarrow{H^{\otimes n} \otimes I} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |0\rangle \xrightarrow{U_f} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$$
 (2)

Note that,

- Quantum parallelism is not enough to demonstrate the power of Quantum Computing
- Quantum parallelism needs to be combined with interference, entanglement to do something better than classical computing.

1.3 Deutsch Algorithm

1.3.1 Problem

We are given a binary function $f: \{0,1\} \to \{0,1\}$ such that either f(0) = f(1) or $f(0) \neq f(1)$. We have determine which using minimum number of queries.

1.3.2 Classical Approach

We query for value of f(0) and f(1) to determine which kind of function is f. Hence, classical approach requires 2 queries.

1.3.3 Quantum Algorithm

We set up the following circuit

$$|0\rangle$$
 H U_f^{\pm} H $0/1$

The calculations are as follows

$$|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \xrightarrow{U_f^{\pm}} \frac{1}{\sqrt{2}} \left((-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle \right) \xrightarrow{H} \frac{1}{2} \left(\left((-1)^{f(0)} + (-1)^{f(1)} \right) |0\rangle + \left((-1)^{f(0)} - (-1)^{f(1)} \right) |1\rangle \right)$$
(3)

Thus, when f(0) = f(1) the measured state is $|0\rangle$, and when $f(0) \neq f(1)$ the measured state is $|1\rangle$. And hence, with quantum parallelism we can solve the problem with only 1 query to U_f .

2 Mach-Zehnder Interferometer

In physics, the Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source.[?] Essentially, Mach-Zehnder Interferometer physically captures Deutsch's problem.

Figure 1: Mach-Zehnder Interferometer set up

The set up includes the following components

- BS_1 and BS_2 are beam splitters. They split a photon into a superposition of lower path and upper path.
- PS_1 and PS_2 are phase shifters. PS_1 shifts the phase of the beam incident on it by ϕ_1 and PS_2 shifts it by ϕ_0 .
- D_0 and D_1 are detectors. D_0 detects a photon in lower path and D_1 detects a photon in upper path.

These components are arranged as shown in fig 1.

Here we assume that *lower path* is represented by $|0\rangle$ and *upper path* is represented by $|1\rangle$. Thus, $|0\rangle$ undergoes phase shift of ϕ_0 and $|1\rangle$ undergoes phase shift of ϕ_1 . This can be represented as

$$|0\rangle \xrightarrow{PS_2} e^{i\phi_0} |0\rangle, |1\rangle \xrightarrow{PS_1} e^{i\phi_1} |1\rangle$$

Also, it is given that $|\phi_0 - \phi_1| = 0$ or π and we have to determine which.

Thus, the calculations are as follows:

$$|0\rangle \xrightarrow{BS_1} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \xrightarrow{PS} \frac{1}{\sqrt{2}} \left(e^{i\phi_0} |0\rangle + e^{i\phi_1} |1\rangle \right) \xrightarrow{BS_2} \frac{1}{2} \left(\left(e^{i\phi_0} + e^{i\phi_1} \right) |0\rangle + \left(e^{i\phi_0} - e^{i\phi_1} \right) |1\rangle \right) \tag{4}$$

But we can see that

$$\frac{1}{2} \left(\left(e^{i\phi_0} + e^{i\phi_1} \right) |0\rangle + \left(e^{i\phi_0} - e^{i\phi_1} \right) |1\rangle \right) = \frac{e^{i\phi_0}}{2} \left(\left(1 + e^{i(\phi_1 - \phi_0)} \right) |0\rangle + \left(1 - 1 + e^{i(\phi_1 - \phi_0)} \right) |1\rangle \right) \tag{5}$$

Thus,

- When $|\phi_0 \phi_1| = 0$, $|0\rangle$ is observed, i.e. D_0 detects a photon.
- When $|\phi_0 \phi_1| = \pi$, $|1\rangle$ is observed, i.e. D_1 detects a photon.

Note that: This is a quantum phenomena. Classically, each of the detector would detect a photon 50% of the times.

3 Deutsch-Jozsa Algorithm

This algorithm is a generalisation of Deutsch problem on n qubits.

3.1 Problem

We are given a black box U_f for some Boolean function $f: \{0,1\}^n \to \{0,1\}$ where it is given that f is either constant or balanced, i.e

Either,
$$f(x) = constant$$
: $\forall x \in \{0,1\}^n, f(x) = e \text{ s.t. } e \in \{0,1\}$

$$f(x) = balanced: \begin{cases} 0, & \text{for } 2^{n-1} \text{ values of } x \\ 1, & \text{for rest of the } 2^{n-1} \text{ values of } x \end{cases}$$

We have to determine which using minimum number of queries.

3.2 Classical Approach

Serially, or randomly we input values of $x \in \{0,1\}^n$ and check their outputs.

- If f is balanced: If we observe 0 and 1 in output, then f is balanced. And by Pigeonhole principle, we would require at-most $2^{n-1} + 1$ queries to reach this conclusion.
- If f is constant: If we observe the same output after $2^{n-1} + 1$ queries, we can conclude that f is constant.

Hence, number of queries required are $2^{n-1} + 1$.

3.3 Quantum Algorithm

We set up the following circuit

This leads to the following changes,

$$|0\rangle^{\otimes n} \xrightarrow{H^{\otimes n}} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \xrightarrow{U_f^{\pm}} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle \xrightarrow{H^{\otimes n}} \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{z \in \{0,1\}^n} (-1)^{f(x)+x \cdot z} |z\rangle \quad (6)$$

Let $|\psi_f\rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{z \in \{0,1\}^n} (-1)^{f(x)+x.z} |z\rangle$

Then, we look at the amplitude of $|0\rangle^{\otimes n}$ in $|\psi_f\rangle$,

$$\langle 00..0 | \psi_f \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{z \in \{0,1\}^n} (-1)^{f(x)+x.z} \langle 00..0 | z \rangle$$

$$(7)$$

$$= \frac{1}{2^n} \sum_{x \in \{0.1\}^n} (-1)^{f(x)} \qquad (00..0|z) = \begin{cases} 1, & z = |0\rangle^{\otimes n} \\ 0, & \text{otherwise} \end{cases}, x.0 = 0$$
 (8)

Thus,

- If f is balanced: $\langle 00..0 | \psi_f \rangle = 0$
- If f is constant: $\langle 00..0 | \psi_f \rangle = 1$ or $\langle 00..0 | \psi_f \rangle = -1$

Thus, if the result of measurement is the state $|0\rangle^{\otimes n}$, then f is *constant*, and for any other result of measurement f is *balanced*.

Hence, only 1 query is required to classify the function. And hence, there is an exponential optimization in query complexity.

3.4 Randomized Deutsch-Jozsa Algorithm

Now, we require our algorithm to classify f with a probability $\geq 1 - \epsilon$ ($\epsilon > 0$)

3.4.1 Classical Approach

We choose d values of $x \in \{0,1\}^n$ to query.

Let values of
$$x$$
: $S = \{x_1, x_2, ..., x_d\}$ $x_i \in \{0, 1\}^n$

Thus, by making the d queries, we get $f(S) = \{f(x_1), f(x_2), ..., f(x_d)\}$ Then the following scenarios are possible,

- Case 1: $\forall x_i \in S, f(x_i) = 0$ or $\forall x_i \in S, f(x_i) = 1$ In this case, if $d < 2^{n-1} + 1$, then we still cannot be sure is f is balanced or constant. And hence, there is an uncertainty in classification. But the probability of observing this case is $\frac{1}{2^d} + \frac{1}{2^d} = \frac{1}{2^{d-1}}$
- Case 2: $\exists x_i, x_j \in S$, s.t. $f(x_i) \neq f(x_j)$ In this case, we can definitely conclude that f is balanced.

Thus, we can choose d in a way that we reduce the probability of observing the case where we are not certain about the outcome. That is,

$$\frac{1}{2^{d-1}} < 1 - (1 - \epsilon) \Rightarrow d > \log_2\left(\frac{2}{\epsilon}\right) \tag{9}$$

Hence, the query complexity for the classical approach to the randomised Deutsch-Jozsa Problem is $\mathcal{O}\log\left(\frac{1}{\epsilon}\right)$

4 Bernstein-Vazirani Algorithm

A related problem was given by Ethan Bernstein and Umesh Vazirani.

4.1 Problem

We are given a black box U_f for some Boolean function $f: \{0,1\}^n \to \{0,1\}$ where it is given that $\forall x \in \{0,1\}^n f(x) = s.x \pmod{2}$ for some unknown string $s \in \{0,1\}^n$. i.e.,

$$\forall x \in \{0,1\}^n f(x) = s_1 x_1 \oplus s_2 x_2 \oplus \dots \oplus s_n x_n$$

We have to determine s using minimum number of queries.

4.2 Classical Approach

We pass a set of inputs $I = \{x_1, x_2, ..., x_n\}$ such that

$$\forall x_i \in I, x_i(j) = \begin{cases} 1, & j = i \\ 0, & \text{otherwise} \end{cases}$$

Thus, the output of each input x_i looks like

$$f(x_i) = s_1 x_i(1) \oplus s_2 x_i(2) \oplus \dots \oplus s_n x_i(n)$$

$$\tag{10}$$

$$= 0 \oplus 0 \oplus .. \oplus 0 \oplus s_i \oplus 0 \oplus .. \oplus 0 \tag{11}$$

$$= s_i \tag{12}$$

Hence, n queries are required to determine s.

4.3 Quantum Algorithm

We set up the circuit in the same way as we did for Deutsch-Jozsa Algorithm.

The calculations are as follows,

$$|0\rangle^{\otimes n} \xrightarrow{H^{\otimes n}} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \xrightarrow{U_f^{\pm}} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle \tag{13}$$

and

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot s \pmod{2}} |x\rangle \tag{14}$$

$$= \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x,s} |x\rangle \tag{15}$$

But note that
$$|s\rangle \xrightarrow{H^{\otimes n}} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot s} |x\rangle$$
 and $H^{\otimes n} \times H^{\otimes n} = \mathbb{I}_n \Rightarrow (H^{\otimes n})^{-1} = H^{\otimes n}$
Thus,
$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle \xrightarrow{H^{\otimes n}} |s\rangle$$
(16)

Hence, the measured output is the string s.

And hence, we are able to determine s in 1 query, which gives us a linear speed up in query complexity.