1 Geometry of Complex Variables

We first develop some geometric understanding of how the complex numbers work. Recall that there are two main ways to think of complex numbers:

- In Cartesian coordinates: z = x + iy where $x, y \in \mathbb{R}$
- In Polar coordinates: $z = re^{i\theta}$ where r > 0 and $\theta \in \mathbb{R}$.

We can relate these two forms through Euler's Formula.

Theorem 1 (Euler's Formula). $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

A full relation is done through

$$z = x + iy \to z = |z|e^{i\theta}, \text{ where } \theta = \begin{cases} \arctan y/x, & x > 0\\ \arctan y/x + \pi, & x < 0, y \ge 0\\ \arctan y/x - \pi, & x < 0, y < 0\\ \frac{\pi}{2}, & x = 0, y > 0\\ -\frac{\pi}{2}, & x = 0, y < 0 \end{cases}$$

$$z = re^{i\theta} \to r\cos\theta + ir\sin\theta$$

where we have to take limits for $\arctan(y/x)$ when x=0.

Problems

- (1) Recall the definition of the conjugate of a complex number, z = x + iy, is \overline{z} , where $\overline{z} = x iy$.
 - (a) Find and sketch the complex conjugates of the following complex numbers

- (b) Give a geometric explanation for taking the conjugate of z.
- (c) We define Re(z) as Re(x+iy)=x. Find a formula for Re(z) in terms of z and \overline{z} .
- (d) We define Im(z) as Im(x+iy)=y. Find a formula for Im(z) in terms of z and \overline{z} .
- (e) Find a formula for |z| using z and \overline{z} .
- (f) Find a polar formula for \overline{z} . Hint: Use Euler's Formula.
- (2) We look at how different rational functions affect the complex plane. For sketching the image of \mathbb{C} under different functions you can do so in two ways: (I) Draw the boundary of the new region (all of our functions will be nice enough that you can do this safely) or (II) indicate where a few key points will end up.
 - (a) Sketch the image of \mathbb{C} under z^2 .
 - (b) Sketch the image of \mathbb{C} under $z^{1/2}$.
 - (c) Sketch the image of $\mathbb C$ under z^{α} where $0 < \alpha < 1$. Give a geometric explanation for how this function affects $\mathbb C$.
 - (d) Sketch the image of \mathbb{C} under z^n where $n \in \mathbb{N}$. Give a geometric explanation for how this function affects \mathbb{C} .
 - (e) Sketch the image of $\mathbb C$ under $\frac{1}{z}$. Give a geometric explanation for how this function affects
 - (f) Sketch the image of \mathbb{C} under $z + z^2$.
 - (g) Sketch the image of \mathbb{C} under $e^{i\theta}z$ where $0 \leq \theta < 2\pi$.