Random Walks

Tom Eichlersmith

.....

Background

ivietnoa

Questions

Random Walks on Simple Two-Dimensional Manifolds

Tom Eichlersmith

Hamline University

teichlersmith01@hamline.edu

April 19, 2018

Overview

Random Walks

Tom Eichlersmith

Introducti

Background

ethod

esults

uestions

Introduction

Background

Method

Results

Introduction

Random Walks

Tom Eichlersmith

Introduction

Backgroun

ietiiou

- ► Random
- Walk
- Simple
- ► Two-Dimensional
- Manifolds

Regular Surfaces

Random Walks
Tom Eichlersmith

Background

Method

Questions

Coordinate Patch $\mu:U o V$: continuous functions mapping from $U\subseteq\mathbb{R}^2$ to a subset of the surface V

Chart: covers entire surface

Regular Surfaces:

- ▶ Differentiable the coordinate functions of μ in \mathbb{R}^3 have continuous partial derivatives for all orders
- lacktriangle Homeomorphic μ and its inverse are continuous
- \blacktriangleright Satisfies the Regularity Condition The differential of μ is a one-to-one linear transformation

Charts

Random Walks

Tom Eichlersmith

Introduction

Background

Method

esults

$$\phi: \mathbb{R}^2 \to P$$
$$\phi(u, v) = (u, v, 0)$$

Charts

Random Walks

Tom Eichlersmith

Introduction

Background

Method

$$\sigma : \mathbb{R}^2 \to S$$

$$\sigma(u, v) = \left(\frac{2u}{1 + u^2 + v^2}, \frac{2v}{1 + u^2 + v^2}, \frac{-1 + u^2 + v^2}{1 + u^2 + v^2}\right)$$

Charts

$$\tau : [0,1) \times [0,1) \to T(R,r)$$

$$\tau(u,v) = \Big((R + r\cos(2\pi v))\cos(2\pi u),$$

$$(R + r\cos(2\pi v))\sin(2\pi u),$$

$$r\sin(2\pi v) \Big)$$

Random Walks

Tom Eichlersmith

Introduction

Background

Method

i (esuits

Geodesic Equations

Random Walks

Tom Eichlersmith

Introduction

Background

Method

- 1. Extend definition of line to other surfaces
- 2. Assume a path is a geodesic contained in a coordinate patch
- 3. Derive geodesic equations for coordinate functions of path

Geodesic Equations

Random Walks

Tom Eichlersmith

Introduction

Background

Method

$$u'' + \frac{\mu_{uu} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} (u')^{2} + \frac{\mu_{vv} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} (v')^{2} + 2 \frac{\mu_{uv} \cdot \mu_{u}}{\mu_{u} \cdot \mu_{u}} u'v' = 0$$

$$v'' + \frac{\mu_{uu} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} (u')^{2} + \frac{\mu_{vv} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} (v')^{2} + 2 \frac{\mu_{uv} \cdot \mu_{v}}{\mu_{v} \cdot \mu_{v}} u'v' = 0$$

Christoffel Symbols

Tom Eichlersmith

Background

Runge-Kutta 4th Order Method (RK4)

$$\frac{dy}{dt} = F(y) \quad y_0 = y(0)$$

Numerically solve up to t = h with N iterations.

$$\delta \leftarrow h/N$$

$$y \leftarrow y_0$$

$$loop \ N \ times:$$

$$k_1 \leftarrow F(y)$$

$$k_2 \leftarrow F(y + (\delta/2)k_1)$$

$$k_3 \leftarrow F(y + (\delta/2)k_2)$$

$$k_4 \leftarrow F(y + \delta k_3)$$

$$y \leftarrow y + (\delta/6)(k_1 + 2k_2 + 2k_3 + k_4)$$

Stepping Method

Define

$$p = \frac{du}{dt}$$
 and $q = \frac{dv}{dt}$

Then the geodesic equations become

$$\frac{du}{dt} = p$$

$$\frac{dv}{dt} = q$$

$$\frac{dp}{dt} = -\Gamma_{uu}^{u}p^{2} - 2\Gamma_{uv}^{u}pq - \Gamma_{vv}^{u}q^{2}$$

$$\frac{dq}{dt} = -\Gamma_{uu}^{v}p^{2} - 2\Gamma_{uv}^{v}pq - \Gamma_{vv}^{v}q^{2}$$

Random Walks

Tom Eichlersmith

Background

Method

Coordinate Wrapping

Random Walks

Tom Eichlersmith

Introductio

.

Method

(CSUILS

Optimizations

Random Walks
Tom Eichlersmith

Б. .

Method

Results

- Collection of every step point
- Number of steps in RK4
- Simplifications due to symmetry
 - ▶ Plane with radius representation
 - Sphere with polar angle representation
- Method of "compressing" the data

Plane

Random Walks

Tom Eichlersmith

Introduction

Backgrour

Viethod

Results

Plane

Random Walks

Tom Eichlersmith

Introduction

Packaroun

Method

Results

Sphere

Random Walks

Tom Eichlersmith

Introduction

Backgroup

1ethod

Results

Sphere

Random Walks

Tom Eichlersmith

Introduction

Background

Method

(uestions

Torus

Random Walks

Tom Eichlersmith

Introduction

Backgroup

Method

Results

Torus

Random Walks

Tom Eichlersmith

Introduction

Rackgroun

Method

Results

Overall Package

Random Walks

Tom Eichlersmith

.....

Backgroui

Results

Questions

Specific Parts

- Stepper
- Coordinate Wrappers
- Escape Checks

Package Attributes

- Versatility
- Flexibility
- Speed

Acknowledgements

Random Walks

Tom Eichlersmith

milioductio

Background

letnoa

- Dr Art Guetter
- Dr Ioannis Roussos
- Dr John Mazis
- ▶ Dr Thomas Hoft
- Math Department

Random Walks

Tom Eichlersmith

muoductio

Background

viethod

Questions