Representation Learning

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics in Representation Learning

- 1. Greedy Layer-Wise Unsupervised Pretraining
- 2. Transfer Learning and Domain Adaptation
- 3. Semi-supervised Disentangling of Causal Factors
- 4. Distributed Representation
- 5. Exponential Gains from depth
- Providing Clues to Discover Underlying Causes

Representation Learning Overview

- What it means to learn representations
 - Role of representation in deep architecture design
 - Sharing statistical strength across different tasks
- Shared representations useful to handle multiple modalities or domains
 - Or to transfer learned knowledge to tasks for which few or no examples are given but a task representation exists
- Reasons for success of representation learning
 - Theoretical advantages
 - Underlying principles of data generation process

Importance of Representation

- Tasks can be easy or difficult depending on how information is represented
 - Arabic or Roman numeral
 - Task of 210/6 versus CCX/VI using long division
 - Most modern people convert from Roman to Arabic
 - We can quantify asymptotic run time of various operations using appropriate or inappropriate reps.
 - Inserting a no. in a sorted list is O(n)
 - But only $O(\log n)$ if list represented as a red-black tree

Tree is traversed Left-Root-Right

What's a good representation for ML?

- Ans: It makes subsequent learning task easier
- Feedforward networks trained by supervised learning perform representation learning
 - Last layer is a linear classifier such as softmax regression classifier
 - Rest of network learns representation for classifier
 - Every hidden layer makes the classification easier
 - Ex: classes not linearly separable in input features may become linearly separable in the last layer
 - Last layer could also be another model:
 - Such as a nearest neighbor classfier

How do we specify representation?

- Supervised learning of feed-forward networks:
 - No imposition of any conditions on learned intermediate features
 - Other representation learning algorithms do so
 - Ex: to make density estimation easier
 - Distributions with more independences are easier to model, so encourage elements of representation h to be independent
- Unsupervised deep learning algorithms
 - have a main training objective, but like supervised learning they learn a representation as a side effect
- Regardless of representation was obtained, it can be used for another task

Trade-off in representation

- Representation learning involves a trade-off between:
 - 1. Preserving as much information about the input as possible
 - 2. Attaining nice properties (such as independence)

Semi-supervised Learning

- Representation learning is a way of performing unsupervised and semi-supervised learning
 - Often we have very little labeled data and very large amounts of unlabeled data
 - Training on labeled data results in severe overfitting
 - Semi-supervised learning offers a solution
- Humans learn quickly from few labeled examples
 - One hypothesis is that the brain leverages unsupervised or semi-supervised learning

Unsupervised Learning and Deep Learning

- Unsupervised learning revived deep neural networks
 - Enabling training a deep supervised network without specializations such as convolution or recurrence
- Canonical example of a representation learned for one task can be useful for another task
 - First task: unsupervised learning (trying to capture the shape of a distribution)
 - Other task: supervised learning with the same input domain

Greedy Layer-wise Unsupervised Pretraining

Relies on:

- A single-layer representation learning algorithm
- A single-layer autoencoder
- A sparse coding model
- Or another model that learns latent representations
- Each layer is pretrained using unsupervised learning
 - Taking the output of the previous layer and producing as output a new representation of data,
 - Whose distribution (or relation to categories) is simpler
- Formal algorithm is given next

Greedy layer-wise unsupervised pretraining protocol

Algorithm:

- Given unsupervised feature learning algorithm £
 - Which takes as input a training set of examples and returns an encoder or feature function *f*.
- Raw input data is X, with one row per example, $f^{(1)}(X)$ is output of the first stage encoder on X.
- In the case where fine tuning is performed we use

```
a learner \mathcal{T} which takes an initial function f, input examples \mathbf{X} (and in the supervised fine-tuning case, associated targets \mathbf{Y}) and returns a tuned function. The no of stages is m.
```

```
f \leftarrow \text{Identity function}
X = X
for k = 1, \ldots, m do
    f^{(k)} = \mathcal{L}(\tilde{X})
    f \leftarrow f^{(k)} \circ f
    \tilde{\boldsymbol{X}} \leftarrow f^{(k)}(\tilde{\boldsymbol{X}})
end for
if fine-tuning then
    f \leftarrow \mathcal{T}(f, \boldsymbol{X}, \boldsymbol{Y})
end if
Return f
```

History: layer-wise unsupervised

- Unsupervised greedy layer-wise training
 - was used to sidestep difficulty of training layers of a deep neural net for a supervised task
 - Origins in Neocognitron (Fukushima, 1975)
 - Deep learning renaissance of 2006 began with
 - Greedy learning to find initialization for all layers
 - Useful for fully connected architectures
 - Earlier, only deep CNNs or depth resulting from recurrence were feasible to train
- Today greedy layer-wise pretraining is not required to train fully connected deep networks

Greedy pretraining terminology

- Greedy layer-wise pretraining
 - Greedy because
 - It is a greedy algorithm that optimizes each piece of the solution independently
 - One piece at a time rather than jointly
 - Layer-wise because
 - Independent pieces are the layers of the network
 - Training proceeds one layer at a time
 - Training the k^{th} layer while previous ones are fixed
 - Pretraining because
 - It is only a first step before applying a joint training algorithm is applied to *fine-tune* all layers together

When/why does pretraining work?

- Greedy layer-wise unsupervised pretraining can yield substantial improvements for classification
 - However it is sometimes harmful
- Pretraining accesses new part of space:
 - With pretraining: halt in one region of function space
 - Without pretraining: another region

Visualization of functions projected into 2d space.

(Each function is an infinite-dimensional vector that associates every input x with output y). Color indicates time. Area where pretrained networks arrive is smaller.

