

preing2 - promo 2024_2025

Présentation physique moderne

Manfred WALLOT
Tom MONTEIRO-ALVES
Antoine RENAUD

Sommaire

- 01. Notre organisation
- 02. L'effet Raumsauer Townsend
- 03. Notre démarche pour le cas d'une onde
- 04. Comparaison des Résultats (code)
- 05. Cas d'un paquet d'onde
- 06. Conclusion

Notre organisation

Comprendre le sujet

Répartion du travail

Comprendre les notions clés

- effet Raumsauer townsend
- puit fini
- tranche efficace

recherches sur internet , cours magistraux, exercices du TD

Comprendre les consignes

- comprendre le lien entre les questions
- puit fini
- tranche efficace

échanges avec les professeurs de physique et d'autres étudiants

La partie code

- comprendre le code
- se familiariser avec le python
- modeliser nos résultats

calculatoire et théorique

- résolutions des équations differentielles pour une onde
- pour un paquet d'onde
- exploiter les résulats pour les modelisations

L'Effet Raumsauer-Townsend

L'effet Ramsauer-Townsend désigne la diminution surprenante de la probabilité de collision entre des électrons lents et des atomes nobles, comme le xénon, à certaines énergies, ce qui se traduit par une transparence inhabituelle du gaz à ces énergies.

Carl Ramsauer

John Townsend

Notre démarche pour le cas d'une onde

Équation de Schrödinger et régions

on determine les équations d'onde pour chauqe régions, les états stationnaires

la continuité au point 0 et a

Déterminer le coefficient de transmission T

Déterminer les niveaux d'énergie

partie code et comparaison des résultats

Équation de Schrödinger et régions

cé: Equation de Johnsödinger indépendante du temps:
$$V(x) = \{0 \text{ si } x < 0 \text{ et } x > 0 \}$$

$$\frac{d^2 \phi(x)}{d^2 x^2} + \frac{2m}{\hbar^2} (E - V_0) \phi(x) = 0$$

Schéma : puit de portentiel fini

On cherhe à determiner T le coefficient de transmission

$$T = |A3/A1|**2$$

graphique : puit de potentielle fini

On determine les équations d'onde pour chaque région, les états stationnaires

comme aucune onde est reflechit dabns la région 3 B3 = 0

On remarque que k1 = k3 donc on pose : k = k1 = k3 q = k2

=> \$\phi_3(\pi) = A_3 e i k 3 =.

Continuité au point 0 et a

Bassons maintenant à la continuité en o et en a:

$$\phi_1(0) = \phi_2(0) \implies A_1 + B_1 = A_2 + B_2$$

$$\frac{\partial \phi_1}{\partial x} \Big|_{x=0} = \frac{\partial \phi_2}{\partial x} \Big|_{x=0} \implies A_1 k_1 - B_1 k_2 + B_2 k_3$$

· 6n == a:

$$\phi_{2}(\alpha) = \phi_{3}(\alpha) \Rightarrow A_{2}e^{ik_{1}\alpha} + B_{2}e^{ik_{2}\alpha} = A_{3}e^{ik_{3}\alpha}$$

$$\frac{\partial \phi_{2}}{\partial x}\Big|_{x=\alpha} = \frac{\partial \phi_{3}}{\partial x}\Big|_{x=\alpha} \Rightarrow ik_{1}(A_{2}e^{ik_{2}\alpha} + B_{2}e^{ik_{2}\alpha}) = ik_{3}A_{3}e^{ik_{3}\alpha}$$

$$\Rightarrow k_{1}(A_{2}e^{ik_{1}\alpha} + B_{2}e^{-ik_{1}\alpha}) = k_{3}A_{3}e^{ik_{3}\alpha}$$

Comme $k_1 = k_3$, notons $k = k_1 = k_3$ et $q = k_2$ pour faciliter la lecture.

Om a:

$$\begin{pmatrix}
A_1 + B_1 = A_2 + B_2 \\
k (A_1 + B_1) = q (A_2 - B_2) \\
A_2 e^{iq a_1} D_2 e^{iq a_2} = A_3 e^{ik a_2} \\
q (A_2 e^{iq a_2} D_2 e^{iq a_2}) = k A_3 e^{ik a_2}$$

ici nous etudions le cas de l'efffet Raumsauer - Tausend, donc il n'y a pas d'onde réfléchie

$$R = \left| \frac{D_1}{A_1} \right|^{\frac{1}{2}} \Rightarrow D_1 = 0$$
Propriété du cours

Déterminer le coefficient de transmission T

$$R = \left| \frac{D_1}{A_1} \right|^2 = 0 \implies |D_1| = 0 \implies |D_{1}| = 0$$

Done:

$$\begin{cases} A_1 = A_1 + D_1 \\ A_2 = q \quad (A_2 - B_2) \end{cases} \quad L_1 \leftarrow \frac{L_1}{q}$$

$$\Leftrightarrow \begin{cases} A_1 = A_1 + D_1 \\ A_2 = A_1 - A_2 \end{cases} \quad \Leftrightarrow \begin{cases} B_2 = A_1 - A_1 \\ A_2 = \frac{A_1}{q} \quad A_1 + A_1 - A_2 \Rightarrow A_2 = \frac{A_1}{2} \left(\frac{A}{q} + 1\right) \end{cases}$$

$$\Rightarrow B_2 = A_1 - \left[\frac{A_1}{2} \left(\frac{A}{q} + 1\right)\right] \Rightarrow B_2 = \frac{A_1}{2} \left[2 - 1 \cdot \left(\frac{A}{q} + 1\right)\right] \Rightarrow B_2 = \frac{A_1}{2} \left(1 - \frac{A}{q}\right) \end{cases}$$

$$\Rightarrow A_3 = \frac{A_1}{2} \left(\frac{A}{q} + 1\right)$$

$$\Rightarrow A_3 = \frac{A_1}{2} \left(\frac{A}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A}{q}\right) e^{-iq\alpha} \right]$$

$$\Rightarrow A_3 = \frac{A_1}{2} \left[\frac{A_1}{q} + 1\right] e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right]$$

$$\Rightarrow A_3 = \frac{A_1}{2} \left[\frac{A_1}{q} + 1\right] e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right]$$

$$\Rightarrow A_4 = \frac{A_1}{2} \left[\frac{A_1}{q} + 1\right] e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} + \left(1 - \frac{A_1}{q}\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} + \frac{A_1}{2} \left(\frac{A_1}{q} + 1\right) e^{-iq\alpha} \right] \left[\frac{A_1}{2} + \frac{A_1}{2} \left(\frac{A_1}{q}$$

On distribut le 2 dans les parenthèses:
$$\begin{vmatrix} A_3 \\ A_4 \end{vmatrix}^2 = \begin{vmatrix} 1 \\ e^{\frac{1}{4}} & \frac{1}{4} \\ e^{\frac{1}{4}} & \frac{1}{4} \end{vmatrix}$$

$$= \begin{vmatrix} 1 \\ e^{\frac{1}{4}} & \frac{1}{4} & \frac{1}{4} \\ e^{\frac{1}{4}} & \frac{1}{4} & \frac{1}{4} \end{vmatrix}$$

$$= \begin{vmatrix} 1 \\ e^{\frac{1}{4}} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ e^{\frac{1}{4}} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{vmatrix}$$

$$= \begin{vmatrix} 1 \\ e^{\frac{1}{4}} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ e^{\frac{1}{4}} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ e^{\frac{1}{4}} & \frac{1}{4} & \frac{$$

formule d'Euler

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

Déterminer les niveaux d'énergie

On suit que
$$1-\sin^2(qa) = \cos^2(qa)$$
, olone on a:

$$\frac{|A_2|^2}{|A_1|^2} = \left(\frac{A}{q}\right)^2 \sin^2(qa) + 1 - \sin^2(qa) = \sin^2(qa) \left[\left(\frac{A}{q}\right)^2 - 1\right] + 1 = 1$$

$$\Rightarrow \sin^2(qa) \left[\left(\frac{A}{q}\right)^2 - 1\right] = 0$$

$$\Rightarrow \sin^2(qa) = 0 \quad \text{ou} \quad \left(\frac{A}{q}\right)^2 - 1 = 0$$

$$\Rightarrow \sin^2(qa) = 0 \quad \text{ou} \quad \left(\frac{A}{q}\right)^2 - 1 = 0$$

$$\Rightarrow a = nT \quad \text{propriété trigonométrie}$$

$$\Rightarrow q = \frac{nT}{a} \quad \Rightarrow a = \frac{nT}{a} \quad \Rightarrow a$$

Expression du coefficient de transmissions T Quand T = 1, l'onde n'est pas diffusée → elle n'est pas réfléchie. Ce cas correpond à l'effet de Raumsauer Tausend.

on trouve la forme de l'ensemble des niveaux d'énergie pour lesquelles la transmission est totale

Prévision des résultats après démarche analytique

$$E_{m} = \frac{1}{2m} \left(\frac{m \pi k}{a} \right)^{2} \sqrt{a}$$

m et ħ ont été approximé à 1

n	E
0	4000
1	4474.32
2	5897.27
3	8268.86
4	11589.08
5	15857.94

Partie code

les États stationnaires

n	E
0	-3900.3
1	-3602.27
2	-3109.34
3	-2429.34
4	-1577.7
5	-598.23

Divergence des résultats entre le code et la démarche analytique

n	E
0	4000
1	4474.32
2	5897.27
3	8268.86
4	11589.08
5	15857.94

n	E
0	-3900.3
1	-3602.27
2	-3109.34
3	-2429.34
4	-1577.7
5	-598.23

Visualisation de l'effet Ramsauer-Townsend (vidéo)

Notre démarche pour le cas d'un paquet d'onde

Comprendre ce qu'est un paquet d'onde mathematiquement et physiquement

paquet d'onde = superposition d'onde plane

Conclusion

- <u>Équation de Schrödinger dans des potentiels constants par morceaux :</u>

 <u>MQ2%20-%20Schrodinger%20dans%20potentiels%20uniforme%20par%20morceau.pdf</u>
- <u>Couche "anti-reflet" quantique- Effet Ramsauer- simulation/explication :</u>
 https://1309846271531417611/1309846272408162348/1381307941688180766
- Corrigé exercice prépa: https://cpge-paradise.com/MP4Phys/TD/TD11%20meca%20q.pdf
- <u>Simulation University of Colorado:</u> https://phet.colorado.edu/sims/cheerpj/quantum-tunneling/latest/quantum-tunneling.html?simulation=quantum-tunneling&locale=fr
- <u>M.Piguet</u>