University of Massachusetts Lowell — Comp 3010: Organization of Programming Languages Assignment 8

Name: Ashish Kosana

UML ID: 02148256

Collaborators: NONE

Make sure that the remaining pages of this assignment do not contain any identifying information.

1 Type Inference (30 points)

- (a) Inference rules for pairs and projection
 - **1. Pair Expression** (e_1, e_2) : To infer the type of a pair expression, we must:
 - i. Infer the type of the first element e_1 , resulting in type τ_1 with constraints C_1 .
 - ii. Infer the type of the second element e_2 , resulting in type τ_2 with constraints C_2 .
 - iii. Combine the two into a pair type $(\tau_1 \times \tau_2)$ with combined constraints $C_1 \cup C_2$.

$$\frac{\Gamma \vdash e_1 : \tau_1 \ \nabla \ C_1 \quad \Gamma \vdash e_2 : \tau_2 \ \nabla \ C_2}{\Gamma \vdash (e_1, e_2) : (\tau_1 \times \tau_2) \ \nabla \ C_1 \cup C_2}$$

- **2. First Projection** #1e: For the projection #1e, we must:
 - i. Ensure *e* is of pair type $(\tau_1 \times \tau_2)$, with constraints *C*.
 - ii. Infer the type of the first element as τ_1 .

$$\frac{\Gamma \vdash e : (\tau_1 \times \tau_2) \ \nabla \ C}{\Gamma \vdash \# 1e : \tau_1 \ \nabla \ C}$$

- **3. Second Projection** #2e: For the projection #2e, we must:
 - i. Ensure *e* is of pair type $(\tau_1 \times \tau_2)$, with constraints *C*.
 - ii. Infer the type of the second element as τ_2 .

$$\frac{\Gamma \vdash e : (\tau_1 \times \tau_2) \ \nabla \ C}{\Gamma \vdash \# 2e : \tau_2 \ \nabla \ C}$$

- (b) Inference rules for conditionals and integer inequality
 - **1. Conditional Expression if** e_1 **then** e_2 **else** e_3 **:** To type-check a conditional expression:
 - i. Ensure the condition e_1 has type bool with constraints C_1 .
 - ii. Ensure both branches e_2 and e_3 have the same type τ , with constraints C_2 and C_3 , respectively.
 - iii. Combine all constraints into $C_1 \cup C_2 \cup C_3$.

$$\frac{\Gamma \vdash e_1 : \mathsf{bool} \ \bigtriangledown \ C_1 \quad \Gamma \vdash e_2 : \tau \ \bigtriangledown \ C_2 \quad \Gamma \vdash e_3 : \tau \ \bigtriangledown \ C_3}{\Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 : \tau \ \bigtriangledown \ C_1 \cup C_2 \cup C_3}$$

- **2.** Integer Equality Expression $e_1 = e_2$: To type-check $e_1 = e_2$:
 - i. Ensure e_1 and e_2 both have type int, with constraints C_1 and C_2 , respectively.
 - ii. The result type is bool, with combined constraints $C_1 \cup C_2$.

$$\frac{\Gamma \vdash e_1 : \mathsf{int} \ \bigvee \ C_1 \quad \Gamma \vdash e_2 : \mathsf{int} \ \bigvee \ C_2}{\Gamma \vdash e_1 = e_2 : \mathsf{bool} \ \bigvee \ C_1 \cup C_2}$$

(c) Inference rules for let

Let Expression let $x = e_1$ in e_2 : For a let expression:

- i. Infer the type of e_1 as τ_1 , with constraints C_1 .
- ii. Extend the typing context Γ by adding $x : \tau_1$.
- iii. Infer the type of the body e_2 as τ_2 , with constraints C_2 .
- iv. The overall type is τ_2 , and the combined constraints are $C_1 \cup C_2$.

$$\frac{\Gamma \vdash e_1 : \tau_1 \ \bigtriangledown \ C_1 \quad \Gamma, x : \tau_1 \vdash e_2 : \tau_2 \ \bigtriangledown \ C_2}{\Gamma \vdash \operatorname{let} x = e_1 \text{ in } e_2 : \tau_2 \ \bigtriangledown \ C_1 \cup C_2}$$