

The effect of secondary ice process parameterizations on a simulated cold frontal rain band

Funding from NESSF (NNX13AN74H), DOE EaSM

Sylvia C. Sullivan (ssullivan37@gatech.edu)^{1,2}, Corinna Hoose¹, Athanasios Nenes^{2,3}

¹ Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany; ² School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA; ³ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA

MOTIVATION

Observed atmospheric ice number concentrations can be orders of magnitude higher than the ice nucleating particle number concentrations. This multiplication can be explained by *secondary ice processes*.

- → Limited effort has gone into modelling these processes.
- > Even less effort has been devoted to comparison of observations and simulations.

1. Rime splintering

2. Breakup upon ice hydrometeor collision

3. Droplet shattering

CASE STUDY: RAIN BAND DURING APPRAISE CAMPAIGN

We modeled a narrow cold frontal rain band, observed during the APPRAISE campaign. Embedded convection provides favorable conditions for secondary ice processes: large hydrometeors can form at higher altitudes.

FIGURE 2 Rain band intensity measured by the UK operational radar network on 3 March 2009 in (a) small and (b) large domains. Images from Crosier et al.

FIGURE 3 (a) Simulation domain and **(b)** simulated rain band in the small domain from a control run. The model underestimates precipitation intensity by a factor of 2.

RAINDROP SHATTERING AND BREAKUP PARAMETERIZATIONS

SIMULATED SECONDARY ICE PRODUCTION

FIGURE 5 Secondarily-produced ice number (panels **a** and **b**) and the ratio of $N_{i,sec}$ to nucleated ice number from 2000 UTC to 2030 UTC during rain band passage over ground site for two drop shattering parameterizations.

FIGURE 6 Comparison of simulated N_i with various secondary process parameterizations and observed N_i from the Cloud Imaging Probe-15 during Flight B434 of the APPRAISE campaign. Values are filtered for an altitude of about 7.5 km or 258 \pm 7 K.

FIGURE 7 Simulated precipitation rate time series at the ground site for a control run and with various secondary process parameterizations.

- The rate of secondarily produced ice crystals can be up to $O(10^5)$ as the nucleation rate at certain altitudes.
- 2. The temperature range over which rimesplintering is more influential than the raindrop shattering PDF or breakup fragment number.
 - → The modeled secondary processes may act as a 'trigger' to generate small ice crystals, which then begin to cycle between depositional growth and additional ice crystal generation through rime-splintering.
- Simulations still underestimate the frequency of larger ice crystal numbers $O(100 L^{-1})$ at an altitude corresponding to about -15°C.

