Exterior calculus

Alejandro Campos

March 20, 2025

Contents

Т	m-iorms	
2	Differential m-forms	

1 m-forms

- $T_p\mathbb{R}^n$: the set of all *n*-dimensional vectors whose origin is at point *p*.
- A 1-form is a linear form $w: T_p\mathbb{R}^n \to \mathbb{R}$.
- A 1-form belongs to the dual space of $T_p\mathbb{R}^n$.
- $dx(\mathbf{v})$ is a 1-form that grabs the first component of a vector \mathbf{v} . $dy(\mathbf{v})$ is a 1-form that grabs the second component of a vector \mathbf{v} , and so on.
- An example of a 1-form $w: T_p\mathbb{R}^2 \to \mathbb{R}$ would be $w(\mathbf{v}) = adx(\mathbf{v}) + bdy(\mathbf{v})$, or simply w = adx + bdy.
- A general 1-form $w: T_p\mathbb{R}^n \to \mathbb{R}$ is expressed as follows: $w = a_1 dx_1 + ... + a_n dx_n$.
- The exterior product $w_1 \wedge w_2$ of two 1-forms w_1 and w_2 is defined as

$$w_1 \wedge w_2(\mathbf{v}_1, \mathbf{v}_2) = \begin{vmatrix} w_1(\mathbf{v}_1) & w_2(\mathbf{v}_1) \\ w_1(\mathbf{v}_2) & w_2(\mathbf{v}_2) \end{vmatrix}$$
 (1)

- A 2-form is an anti-symmetric bilinear form $T_p\mathbb{R}^n \times T_p\mathbb{R}^n \to \mathbb{R}$ that is defined as the exterior product $w_1 \wedge w_2$.
- $w_1 \wedge w_2 = -w_2 \wedge w_1$, and thus $w_1 \wedge w_1 = 0$.
- The exterior product $w_1 \wedge ... \wedge w_m$ of n 1-forms w_i is defined as

$$w_1 \wedge \dots \wedge w_m(\mathbf{v}_1, \dots, \mathbf{v}_m) = \begin{vmatrix} w_1(\mathbf{v}_1) & \cdots & w_2(\mathbf{v}_1) \\ \vdots & \ddots & \vdots \\ w_1(\mathbf{v}_2) & \cdots & w_2(\mathbf{v}_2) \end{vmatrix}$$
(2)

¹See my notes on functional analysis for a definition of a linear, bilinear, and multilinear form.

- An m-form is an anti-symmetric multi-linear form¹ $w: (T_p\mathbb{R}^n)^m \to \mathbb{R}$ that is defined as the exterior product $w_1 \wedge ... \wedge w_m$.
- Examples of m-forms for n = 4 are the following:
 - 1-form: dx_1 dx_2 dx_3 dx_4
 - 2-form: $dx_1 \wedge dx_2$ $dx_1 \wedge dx_3$ $dx_1 \wedge dx_4$ $dx_2 \wedge dx_3$ $dx_2 \wedge dx_4$ $dx_3 \wedge dx_4$
 - $\text{ 3-form: } dx_1 \wedge dx_2 \wedge dx_3 \qquad dx_1 \wedge dx_2 \wedge dx_4 \qquad dx_1 \wedge dx_3 \wedge dx_4 \qquad dx_2 \wedge dx_3 \wedge dx_4$
 - 4-form: $dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$
- With the examples above as reference, it is clear to see that every m-form on $T_p \mathcal{R}^n$ can be written as

$$w = \sum_{1 \le i_1 < i_2 < \dots < i_m \le n} a_{i_1, i_2, \dots, i_m} dx_{i_1} \wedge dx_{i_2} \wedge \dots dx_{i_m}$$
(3)

- If α is a k-form and β and l-form, then $\beta \wedge \alpha = (-1)^{kl} \alpha \wedge \beta$.
- $\alpha \wedge (\beta + \gamma) = \alpha \wedge \beta + \alpha \wedge \gamma$.
- The dimensions of the space of m-forms on $T_p\mathbb{R}^n$ is

$$\binom{n}{m} = \frac{n!}{m!(n-m)!} \tag{4}$$

For the m-form examples above with n = 4, we get

- -1-form: 4!/1!(3)! = 4
- -2-form: 4!/2!(2)! = 6
- -3-form: 4!/3!(1)! = 4
- -4-form: 4!/4!(0)! = 1

2 Differential m-forms