Neural ordinary differential equations for ICU glycaemic control

Presenter

o.fitzgerald@unsw.edu

BACKGROUND

Oisin Fitzgerald

Hyperglycaemia is a marker for poor intensive care unit (ICU) outcomes. **10-30%** of ICU patients suffer from poor control (<70 mg/dL or >180 mg/dL). Treatment is insulin and other hypoglycaemic agents.

MFTHOD

Challenges:

- · Irregular time intervals
- Probabilistic forecasts

Solution: latent neural ODE

 $f_{\theta},~\mu_{\theta}$ and σ_{θ} are **neural networks**, x_t is our measurements/exogeneous inputs at time t

$$\begin{aligned} \text{glucose}_{t_1} &\sim \text{Normal}(\mu_{\theta}(z_t), \sigma_{\theta}(z_t)) \\ z_{t_1} &= ODESolve(f_{\theta}, t_0, t_1) \\ \frac{dz}{dt} &= f_{\theta}(x, z) \end{aligned}$$

We develop accurate models of patient glucose-insulin dynamics from observational data

The model has applications in clinical decision support tools aimed at reducing hyperglycaemia

DATA and TRAINING

Our dataset was constructed from the MIMIC-III dataset. It contains 12,047 ICU stays and 571,063 blood glucose measures. It was trained using minibatch gradient descent (maximum likelihood) over 30 epochs. Coded using pytorch and torchdiffeq.

RESULTS

The 95% predictions achieve near nominal coverage at 94.8% with the continuous ranked probability score demonstrated best performance in the range 100-200 mg/dL (0.10) with average of 0.13 across the whole test dataset.

Oisin Fitzgerald, Oscar Perez Concha, Blanca Gallego Luxan, Alejandro Metke Jimenez, Lachlan Rudd and Louisa Jorm

