

Universidade Estadual de Campinas

MT-624: Biomatemática I

Prova 02

Professor: Wilson Castro Ferreira Jr IMECC-UNICAMP

4 de janeiro de 2021

Sumário

Sumário	1
Lista de ilustrações	2
Lista de tabelas	2
Questão 01	3
Questão 02	4
Questão 03	5
Questão 04	Ĝ
Questão 05	19
Questão 06	25
Questão 07	26
Questão 08	27
Questão 09	29
Questão 10	32
Questão 11	34
Questão 12	34
Questão EXTRA	35
Lista de ilustrações	
Figura 1 — Interpretação geométrica das médias	
Lista de tabelas	
Tabela 1 — Sequência crescente dos primeiros 1000 números primos	35

PROVA 02: MS680-MT624- II Sem 2020

POSTADA: 22 de Dezembro de 2020 (Terça-feira)

RECEBIMENTO: 03 de Janeiro de 2021 (Domingo)

ATENÇÃO: ESCOLHA (apenas) 06 DENTRE AS 12 1 QUESTÕES DA LISTA ABAIXO.

1 - As Questões devem ser encaradas como oportunidades para demonstrar conhecimento não como perguntas.

Precisão e Concisão serão qualidades avaliadas.

- 2 A Redação de cada Prova deve apresentar a forma de um depoimento pessoal distinto. Caso ocorram, todas as cópias envolvidas serão invalidadas.
- 3 Cada Questão resolvida deve ser precedida de seu respectivo Enunciado Original completo.
- 4 A Resolução deve ser digitalizada em um único documento pdf (Manuscritos NÃO serão aceitos!)
- 5 O documento pdf da Resolução deve ser enviado no Anexo de uma mensagem com título "PROVA 02" para o endereço eletrônico: wilson@unicamp.br
- 6 Antes das 24h do dia 03 de janeiro. (Sugestão: Não deixe para a última hora e evite ser responsabilizado por acidentes)

Questão 01

A Psicologia da Matematização: Ockham (séc. 13) & Kanizsa (séc. 20), Galileo (séc. 17) & Newton (séc. 17-18)

- 1a Descreva o "Efeito de Completamento (Interpolação) Visual" ("Efeito Kanizsa") em poucas linhas e exemplifique-o com o famoso triângulo de Kanizsa e especialmente com a visualização de formas sugeridas por uma sequência de pontos.
- 1b Argumente com base no "Efeito Kanizsa" sobre a motivação cognitiva da representação contínua para dinâmicas de grandes populações. Como se explica

evolutivamente a preferência cognitiva da espécie humana por registrar informações discretas em termos (reduzidos) como "formas geométricas"?

- 1c Descreva a Metodologia funcional de Galileo e justifique-a em termos do que foi discutido em 1a-b.
- 1d Descreva o grande aperfeiçoamento da Metodologia de Galileo realizada por Newton. (Sugestão: Biblioteca de funções)
- 1e Descreva o "Princípio de Parcimônia de Ockham" e discuta a sua conexão com a cognição humana, especialmente com o item 1b.
- 1f Exemplifique os itens 1b-c com dados de mortalidade da COVID19 em 2020 para uma grande comunidade durante aproximadamente 1 ano.

Questão 02

Escala Logarítmica na Aproximação Assintótica: Princípio Sensorial ("Lei") de Weber-Fechner (séc. 19)

- 2a Descreva o "Princípio Sensorial ("Lei") de Weber-Fechner" para a percepção visual, auditiva, táctil, olfativa e de cardinalidade.
- 2b Argumente com base no "Princípio de Weber-Fechner" sobre a conveniência cognitiva da escala logarítmica para variáveis com "grandes" valores.
- 2c Aplique a escala logarítmica para o registro numérico da população do exemplo citado no item 1f acima e caracterize os períodos de tempo em que o comportamento é linear (Malthusiano).
- 2c Mostre que, para duas sequencias de números positivos, $\{a_k \to \infty\}$ e $\{b_k \to \infty\}$, então valem as seguintes implicações para a aproximação assintótica em escala logarítmica

$$\log a_k - \log b_k \to 0 \Leftrightarrow \log \frac{a_k}{b_k} \to 0 \Leftrightarrow \frac{a_k}{b_k} \to 1$$

2d - Mostre que a aproximação assintótica na escala logarítmica não implica necessariamente na aproximação assintótica em escala normal (isto é, $a_k - b_k \to 0$, mas vale a implicação inversa. (Sugestão: Analise a igualdade $a_k - b_k a_k \left(1 - \frac{a_k}{b_k}\right)$ e observe que $a_k - b_k \to 0 \Leftrightarrow \frac{a_k}{b_k}$ se aproxima de 1 com um erro de $o\left(\frac{1}{a_k}\right)$, isto é, de "ordem menor do que $\frac{1}{a_k}$ ". Assim, para sequencias que convergem para

 ∞ é mais interessante analisar a aproximação assintótica logarítmica , pois ela é mais abrangente e tem um fundo cognitivo. Além disso, para dois "trens em alta velocidade uma aproximação na escala simples é extremamente perigosa"!)

Questão 03

Linearização logarítmica Assintótica

Definições:

- 1 Diz-se que um Modelo Populacional, $P: \mathbb{N} \to \mathbb{C}$, é Malthusiano se para algum A e γ , se tem $\frac{P(k)}{Ae^{\gamma k}}=1$, para todo k, ou, equivalentemente, se $P(k)=Ae^{\gamma k}$. 2 - Diz-se que um Modelo Populacional é Assintoticamente Malthusiano se para
- 2 Diz-se que um Modelo Populacional é Assintoticamente Malthusiano se para algum A e γ , se tem $\frac{P(k)}{Ae^{\gamma k}} \to 1$, para $k \to \infty$, ou, equivalentemente, $P(k) = Ae^{\gamma k}(1+\epsilon(k)) \to 1$, para $\epsilon(k) \to 0$.
- 3 Diz-se que uma função $P: \mathbb{N} \to \mathbb{C}$, é Assintoticamente Linearizada na escala logarítmica se $\lim_{k \to \infty} \{ \log |P(k)| (\alpha + \gamma k) \} = 0$, para algum α, γ .
- 4 Diz-se que uma Relação funcional V = f(X) pode ser Linearizada (exatamente) se existirem funções inversíveis $v = \psi(V)$ e $x = \varphi(X)$ de tal forma que v = ax + b, em algum domínio.
- 5 Diz-se que uma Relação funcional v = f(x) pode ser Linearizada assintótica e localmente nas vizinhanças de x = 0 se v = a + bx + o(x) para algum a, b. (Obs: Segundo Leibniz, uma função h(x) é dita um infinitésimo de ordem menor do que x, e escreve-se, o(x) se for possível representá-la na forma $h(x) = x\epsilon(x)$, onde $\lim_{x\to 0} \epsilon(x) = 0$.
- 3a Considere uma Tabela de dados demográficos representada pela função P: $\mathbb{N} \to \mathbb{C}$, cuja população quando medida na escala logarítmica na forma $p(k) = \log(P(k))$, exibe um gráfico aproximadamente linear (isto é, $p(k) = (\alpha + \beta k) + \epsilon$, com $\epsilon \approx 0$, para alguma faixa de valores de k). Mostre como esta Dinâmica Populacional pode ser considerada aproximadamente Malthusiana nesta faixa de valores de k.
- 3b Descreva o Método Numérico de Gauss ("mínimos quadrados") comumente utilizado para determinar a reta que "melhor aproxima" uma Tabela de dados e descreva como este Método pode ser utilizado para a formulação de um Modelo Malthusiano.

3c - Considere uma População medida na escala logarítmica $\log P(k) = p(k)$. Mostre que uma aproximação linear assintótica na escala logarítmica de uma população (isto é, $\log P(k) - (\gamma k + \beta) \to 0$, para $k \to \infty$) não implica em um Modelo Malthusiano, mas apenas um Modelo Assintoticamente Malthusiano. (Sugestão: veja o próximo exercício).

3d - Mostre quando uma população P(k) descrita pelo Modelo de Fibonacci é Malthusiana e quando ela é apenas assintoticamente Malthusiana. (Sugestão: Analise as possíveis soluções a depender das condições iniciais).

3e - Considere uma função "racional bilinear" $V=\frac{AX}{CX+D}$. Mostre que é possível "linearizar exatamente" a relação entre as variáveis V e X tomando transformações $v=\frac{1}{V}$ e $x=\frac{1}{X}$, de tal forma que entre as "novas variáveis" resulte uma relação funcional de primeiro grau (v=a+bx) ("linear").

3f - Mostre que qualquer função diferenciável nas vizinhanças da origem pode ser localmente linearizada e vice-versa.

Solução:

3a

Considere a função $p(k) = \log(P(k))$, onde P(k) é, também, uma função que associa dados de uma tabela demográfica $k \mapsto P(k)$.

Como
$$p(k) = \log(P(k)) \Rightarrow P(k) = e^{p(k)}$$
.

Tomando $p(k) = \alpha + \gamma k + \epsilon$, uma função cujo gráfico é aproximadamente uma reta, temos:

$$P(k) = e^{p(k)} = e^{\alpha + \gamma k + \epsilon}$$

Fazendo $\epsilon \to 0$, temos:

$$P(k) \approx e^{\alpha + \gamma k} = e^{\alpha} \cdot e^{\gamma k} = A \cdot e^{\gamma k}$$

3b

Seja $d_k = f(x_k) - g(x_k)$ o desvio existente entre as imagens de f e g em x_k .

O método dos mínimos quadrados consiste em escolher os coeficientes α_j , $j=1,\ldots,m$ de tal forma que a soma dos quadrados dos desvios seja mínima, isto é:

$$\sum_{k=1}^{n} d_k^2 = \sum_{k=1}^{n} [f(x_k) - g(x_k)]^2 \text{ \'e m\'inimo.}$$

Assim, os coeficientes α_j , que fazem com que g(x) se aproxime ao máximo de f(x), são os que minimizam a função:

$$F(\alpha_1, \ldots, \alpha_m) = \sum_{k=1}^n [f(x_k) - g(x_k)]^2 = \sum_{k=1}^n \left[f(x_k) - \sum_{j=1}^m \alpha_j g_j(x_k) \right]^2.$$

Para isto, é necessário que as m derivadas parciais de F de primeira ordem se anulem, ou seja:

$$\frac{\partial F}{\partial \alpha_i}(\alpha_1,\ldots,\alpha_m)=0, j=1,\ldots,m,$$

ou seja,

$$\frac{\partial F}{\partial \alpha_j}(\alpha_1,\ldots,\alpha_j) = 2 \cdot \sum_{k=1}^n \left[f(x_k) - \sum_{i=1}^m \alpha_i g_i(x_k) \right] \cdot \left[-g_i(x_k) \right] = 0, \ j=1,2,\ldots,m.$$

Considere, agora,

$$N^t = \begin{bmatrix} n_1 & n_2 & \dots & n_N \end{bmatrix}^t$$
 (Pontos de entrada) e $T^t = \begin{bmatrix} t_1 & t_2 & \dots & t_N \end{bmatrix}^t$ (Pontos de saída)

Queremos obter um $Z \sim T$ e, se Z é linear, temos:

$$Z = \theta_1 N + \theta_2 = \begin{bmatrix} n_1 \theta_1 + \theta_2 \\ n_2 \theta_1 + \theta_2 \\ \vdots \\ n_N \theta_1 + \theta_2 \end{bmatrix} = \underbrace{\begin{bmatrix} n_1 & 1 \\ n_2 & 1 \\ \vdots \\ n_N & 1 \end{bmatrix}}_{\overline{N}} \underbrace{\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}}_{\overline{\Theta}}$$

Vamos minimizar a função

$$E(\Theta) = (T - Z)^2 = (T - \overline{N}\Theta)^2$$

e, para tal, determinemos:

$$\frac{\partial E}{\partial \Theta} = \frac{\partial E}{\partial Z} \frac{\partial Z}{\partial \Theta}.$$

Mas

$$\frac{\partial E}{\partial Z} = \frac{\partial}{\partial Z} (T - Z)^2 = -2 \underbrace{(T - Z)}_{N \times 1}$$

e

$$\frac{\partial E}{\partial \Theta} = \frac{\partial}{\partial \Theta} (\overline{N}\Theta) = \underbrace{\overline{N}^t}_{2 \times N}.$$

Segue que

$$0 = \frac{\partial E}{\partial \Theta} = -2\overline{N}^t(T - Z) = -2\overline{N}^t(T - \overline{N}\Theta),$$

ou seja,

$$\overline{N}^t T = \overline{N}^t \overline{N} \Theta$$

implicando em

$$\Theta = (\overline{N}^t \ \overline{N})^{-1} \overline{N}^t T.$$

Os valores de θ_1 e θ_2 , após algumas contas, são dados por:

$$\theta_1 = \frac{\sum_{k=1}^{N} n_k \sum_{k=1}^{N} t_k - N \sum_{k=1}^{N} n_k t_k}{\left(\sum_{k=1}^{N} n_k\right)^2 - N \sum_{k=1}^{N} n_k^2}$$

$$\theta_2 = \frac{\sum_{k=1}^{N} t_k - \theta_1 \sum_{k=1}^{N} n_k}{N}$$

Assim, ao tomarmos $log(Z) = \theta_1 N + \theta_2 \Rightarrow Z = A exp(\theta_1 N)$

3c

3d

3e

Seja

$$V = \frac{AX}{CX + D}.$$

Efetuando as mudanças de variáveis $V = \frac{1}{v} e X = \frac{1}{x}$, obtemos:

$$\frac{1}{v} = \frac{A\frac{1}{x}}{C\frac{1}{x} + D} \Rightarrow v = \frac{D}{A}x + \frac{C}{A}, A \neq 0 \Rightarrow v = ax + b.$$

3f

Se f é diferenciável, pelo Teorema do Valor Médio, existe $c \in V_0 = (-\delta, \delta)$ tal que

$$f'(c) = \frac{f(x) - f(0)}{x}, x \in V_0.$$

Logo,

$$f(x) = f'(c)x + f(0).$$

Por outro lado, se g é uma reta secante ao gráfico de f, com pontos de interseção $A(-\delta, f(-\delta))$ e $B(\delta, f(\delta))$, então:

$$g(x) = m(x + \delta) + f(-\delta).$$

Como f é diferenciável, portanto, contínua, e $0 \in (-\delta, \delta)$, temos:

$$\lim_{\delta \to 0} |(0, f(0)) - (0, g(0))| = \lim_{\delta \to 0} f(0) - g(0) = \lim_{\delta \to 0} f(0) - (-m\delta - f(-\delta)) = 0.$$

Como queríamos demonstrar.

Questão 04

Tempo Médio (Aritmético) de Sobrevivência

4a - Defina Média Aritmética Ponderada $M_A(a_1, \ldots, a_N)$ para uma sequência de dados numéricos $a_k > 0$. Discuta a razão de se dizer que uma Média Aritmética A é uma única informação numérica populacional que substitui (reduzindo) um conjunto (Tabela) de várias informações numéricas individuais, a_k . Argumente com base nesta distinção sobre a (usual) insensatez de se afirmar que um casal brasileiro tem em média, por exemplo, 1, 44 filhos.

4b - Segundo um Teorema de Kolmogorov-Nagumo (1933) todas as "Médias" sobre uma sequência de dados numéricos $a_k > 0$ (conceito que pode ser facilmente definido

por algumas poucas propriedades bem características) são da forma $M_{\phi}(a_1, \ldots, a_N) = \phi^{-1}(M_A(\phi(a_1), \ldots, \phi(a_N)))$, onde ϕ é uma função real estritamente convexa inversível e M_A é uma Média Aritmética. Mostre a veracidade desta afirmação com respeito às médias, Aritmética, Harmônica, Geométrica e Quadrática.

- 4c Interprete o Método de Quadrados Mínimos de Gauss em termos de uma Média Quadrática.
- 4d Dada uma sequência de números positivos $a = \{a_k\}$ obtenha, argumentando geometricamente, uma relação de ordem entre suas Médias Aritmética, $M_A(a)$, Harmônica, $M_h(a)$, Geométrica, $M_g(a)$ e Quadrática, $M_2(a)$. (Utilize uma sequência de apenas dois números para seus argumentos).
- 4e Mostre que, a depender da escolha da média de Kolmogorov-Nagumo, podese dizer que a média de filhos de um casal brasileiro pode ser qualquer número real entre $m = \min\{a_k\}$ e $M = \max\{a_k\}$, onde $a_k =$ "Número de casais com k filhos".

Solução:

4a -

Considere um conjunto de dados numéricos

$$A = \{a_i; i = 1, 2, \dots, n\},\$$

em que cada $a_i \in A$ possui frequência f_i .

Se a característica a ser mantida quando substituímos cada valor $a_i \in A$ por M_A é a soma dos elementos de A, obtemos a média aritmética.

A média aritmética M_A é um valor tal que

$$a_1 + \ldots + a_1 + a_2 + \ldots + a_2 + \ldots + a_n + \ldots + a_n = M_A + \ldots + M_A$$

$$\underbrace{a_1 + \ldots + a_1}_{\times f_1} + \underbrace{a_2 + \ldots + a_2}_{\times f_2} + \ldots + \underbrace{a_n + \ldots + a_n}_{\times f_n} = \underbrace{M_A + \ldots + M_A}_{\times (f_1 + f_2 + \ldots + f_n)},$$

ou seja,

$$f_1 \cdot a_1 + f_2 \cdot a_2 + \ldots + f_n \cdot a_n = (f_1 + f_2 + \ldots + f_n) \cdot M_A$$

Segue que

$$M_{A} = \frac{f_{1} \cdot a_{1} + f_{2} \cdot a_{2} + \ldots + f_{n} \cdot a_{n}}{f_{1} + f_{2} + \ldots + f_{n}} = \frac{\sum_{i=1}^{n} \{a_{i} \cdot f_{i}\}}{\sum_{i=1}^{n} f_{i}}.$$
 (1)

Pode-se entender a frequência f_i como um "peso" (ou ponderação) ao valor do elemento a_i , ou seja, quando os dados aparecem na forma de uma distribuição de frequências, os ponderadores são as frequências absolutas.

Observação: Esta média aritmética é também chamada aritmética ponderada. As frequências com que aparecem determinados elementos de um conjunto (pesos ou ponderações) assumem um grau de "importância" para cada valor.

Caso $f_1 = \ldots = f_n = 1$, temos que a média aritmética para o conjunto A é:

$$M_A = \frac{a_1 + a_2 + \ldots + a_n}{n} = \frac{\sum_{i=1}^n a_i}{n}$$
 (2)

Se o produto dos elementos de A é a característica a ser mantida, obtemos a média geométrica.

Seja f_i a frequência atribuída ao respectivo valor que a variável $a_i \in A$ assume, $a_i \in \mathbb{R}_+^*$. A média geométrica dos n números positivos do conjunto A é um valor positivo M_g tal que

$$a_1^{f_1} \cdot a_2^{f_2} \cdot \ldots \cdot a_k^{f_k} = M_g \cdot M_g \cdot \ldots \cdot M_g = M_g^n$$
, em que $n = \sum_i^k f_i$.

Logo,

$$M_g = \sqrt[n]{a_1^{f_1} \cdot a_2^{f_2} \cdot \ldots \cdot a_k^{f_k}} = \sqrt[n]{\prod_{i=1}^k a_i^{f_i}}$$
 (3)

Podemos entender a frequência com que cada elemento aparece, como sendo um grau de importância para a variável.

Caso $f_1=\ldots=f_n=1$, a média geométrica dos n números positivos e não nulos do conjunto A é um valor positivo M_g tal que

$$a_1 \cdot a_2 \cdot \ldots \cdot a_n = M_g \cdot M_g \cdot \ldots \cdot M_g = M_g^n$$

Logo,

$$M_g = \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n} = \sqrt[n]{\prod_{i=1}^n a_i}$$
 (4)

Se a soma dos inversos dos elementos de A é a característica a ser conservada, obteremos a média harmônica.

Seja f_i o peso atribuído ao respectivo valor que a variável positiva e não nula $a_i \in A$ assume. A média harmônica dos n números positivos do conjunto A é um valor positivo M_h tal que

$$\frac{f_1}{a_1} + \frac{f_2}{a_2} + \ldots + \frac{f_n}{a_n} = \frac{1}{M_h} + \frac{1}{M_h} + \ldots + \frac{1}{M_h} = \frac{\sum_{i=1}^n f_i}{M_h}.$$

Logo,

$$M_h = \frac{\sum_{i=1}^n f_i}{\frac{f_1}{a_1} + \frac{f_2}{a_2} + \ldots + \frac{f_n}{a_n}} = \frac{\sum_{i=1}^n f_i}{\sum_{i=1}^n \frac{f_i}{a_i}}.$$
 (5)

Observação: A possibilidade de não existirem as médias geométrica e harmônica é evitada, uma vez que estas só foram definidas para números positivos.

A média quadrática é um valor M_2 tal que

$$a_1^2 \cdot f_1 + a_2^2 \cdot f_2 + \ldots + a_n^2 \cdot f_n = \underbrace{M_2^2 + M_2^2 + \ldots + M_2^2}_{\times (f_1 + f_2 + \ldots + f_n)} = M_2^2 \cdot (f_1 + f_2 + \ldots + f_n).$$

Logo,

$$M_2^2 = rac{a_1^2 \cdot f_1 + a_2^2 \cdot f_2 + \ldots + a_n^2 \cdot f_n}{f_1 + f_2 + \ldots + f_n} = rac{\displaystyle\sum_{i=1}^n a_i^2 \cdot f_i}{\displaystyle\sum_{i=1}^n f_i}.$$

Portanto,

$$M_{2} = \sqrt{\frac{\sum_{i=1}^{n} a_{i}^{2} \cdot f_{i}}{\sum_{i=1}^{n} f_{i}}}.$$
(6)

Seja $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$, com $a_k > 0, \forall k = 1, \dots, N$. O que devemos mostrar é que existe uma função estritamente convexa inversível ϕ tal que

$$M_{\phi}(\mathcal{A}) = \phi^{-1}\left(M_{\mathcal{A}}(\phi(a_1),\ldots,\phi(a_N))\right)$$

é válida para as médias aritmética M_A , harmônica M_H , Geométrica M_G e quadrática M_2 .

Para a média aritmética M_A de A, temos:

$$M_A(A) = \frac{1}{N} \sum_{k=1}^{N} a_k = \sum_{k=1}^{N} \frac{a_k}{N}$$

Se fizermos $\phi(a_k) = a_k$, temos $\phi^{-1}(a_k) = a_k$. O que nos leva a:

$$M_{A}(A) = \sum_{k=1}^{N} \frac{a_{k}}{N}$$

$$= \sum_{k=1}^{N} \frac{\phi(a_{k})}{N}$$

$$= M_{A}(\phi(a_{1}), \dots, \phi(a_{N}))$$

$$= \phi^{-1}(M_{A}(\phi(a_{1}), \dots, \phi(a_{N}))$$

Observação: A função identidade é inversível, estritamente monótona e convexa. No caso da média harmônica M_H de \mathcal{A} , temos:

$$M_H(\mathcal{A}) = \left(\frac{1}{N}\sum_{k=1}^N \frac{1}{a_k}\right)^{-1}.$$

Se fizermos $\phi(a_k) = \frac{1}{a_k}$, temos $\phi^{-1}(a_k) = \frac{1}{a_k}$. O que nos leva a:

$$M_{H}(\mathcal{A}) = \left(\frac{1}{N}\sum_{k=1}^{N}\phi(a_{k})\right)^{-1}$$
$$= M_{A}\left(\phi(a_{1}),\ldots,\phi(a_{k})\right)^{-1}$$
$$= \phi^{-1}\left(M_{A}(\phi(a_{1}),\ldots,\phi(a_{k}))\right)$$

Observação: A função ϕ é inversível, estritamente monótona e estritamente convexa.

No caso da média geométrica M_G de \mathcal{A} , temos:

$$M_G(A) = \sqrt[N]{\prod_{k=1}^N a_k}.$$

Se fizermos $\phi(a_k) = \ln(a_k)$, temos $\phi^{-1}(a_k) = \exp(a_k)$. O que nos leva a:

$$M_G(\mathcal{A}) = \sqrt[N]{\prod_{k=1}^N \exp(\phi(a_k))}$$

$$= \exp\left(\frac{1}{N} \sum_{k=1}^N \phi(a_k)\right)$$

$$= \phi^{-1}(M_A(\phi(a_1), \dots, \phi(a_N)))$$

Observação: A função ϕ é inversível, estritamente monótona, mas não é convexa. No caso da média quadrática M_2 de \mathcal{A} , temos:

$$M_2(\mathcal{A}) = \sqrt{\frac{1}{N}\sum_{k=1}^N a_k^2}.$$

Se fizermos $\phi(a_k)=a_k^2$, temos $\phi^{-1}(a_k)=\sqrt{a_k}$. O que nos leva a:

$$M_2(A) = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \phi(a_k)}$$

$$= \sqrt{M_A(\phi(a_1), \dots, \phi(a_N))}$$

$$= \phi^{-1}(M_A(\phi(a_1), \dots, \phi(a_N)))$$

Observação: A função ϕ é inversível, estritamente monótona e estritamente convexa.

4c -

Seja $d_i = f(a_i) - g(a_i)$ o desvio existente entre as imagens de f e g em a_i .

O método dos mínimos quadrados consiste em escolher os coeficientes α_j , $j = 1, \ldots, m$, de tal forma que a soma dos quadrados dos desvios seja mínima, isto é:

$$\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} [f(a_i) - g(a_i)]^2 \text{ \'e mínimo.}$$
 (7)

Assim, os coeficientes α_j , que fazem com que g(a) se aproxime ao máximo de f(a), são os que minimizam a função:

$$F(\alpha_1,\ldots,\alpha_m)=\sum_{i=1}^n[f(a_i)-g(a_i)]^2=\sum_{i=1}^n\left[f(a_i)-\sum_{j=1}^m\alpha_jg_j(a_i)\right]^2.$$

Para isto, é necessário que as m derivadas parciais de F de primeira ordem se anulem, ou seja:

$$\frac{\partial F}{\partial \alpha_i}(\alpha_1,\ldots,\alpha_m)=0, j=1,\ldots,m, \tag{8}$$

ou seja,

$$\frac{\partial F}{\partial \alpha_j}(\alpha_1,\ldots,\alpha_j) = 2 \cdot \sum_{i=1}^n \left[f(a_i) - \sum_{i=1}^m \alpha_j g_j(a_i) \right] \cdot \left[-g_j(a_i) \right] = 0, \ j = 1,2,\ldots,m.$$

Observa-se que ao multiplicarmos o primeiro membro da equação (7) por $\left(\sum_{i=1}^{N} f_i\right)^{-1}$, em que f_i é a frequência com que a_i aparece no conjunto A, obtendo-se:

$$\frac{\sum_{i=1}^{N} d_i^2}{\sum_{i=1}^{N} f_i} = \sum_{i=1}^{N} \frac{d_i^2}{\sum_{i=1}^{N} f_i},$$
(9)

a média dos desvios quadráticos, em nada se altera a condição em (8).

4d - Relação entre as Médias

Se a_1, a_2, \ldots, a_n são n números positivos e M_h, M_g, M_A e M_2 são suas médias harmônica, geométrica, aritmética e quadrática, respectivamente, então

$$M_h \leq M_g \leq M_h \leq M_2$$
.

Além disso, duas quaisquer dessas médias serão iguais se, e somente se, $a_1 = a_2 = \ldots = a_n$.

Análise 1: Geométrica

Considere o triângulo $\triangle ABP$, inscrito numa semicircunferência de um círculo de centro na origem do sistema cartesiano e de raio r. Considere, ainda, que (sem perda da generalidade) a semicircunferência seja a que possui pontos nos I e II quadrantes, as coordenadas dos vértices sejam: A(-r,0), B(r,0) e P(x,y) um ponto arbitrário (Ver figura).

Figura 1 – Interpretação geométrica das médias

Fonte – Figura elaborada pelo autor

Os triângulos $\triangle AP_1P$ e $\triangle PP_1B$ são semelhantes (Caso LAA_0). Dessa forma,

$$B\hat{P}P_1 = P\hat{A}B = \alpha \in P_1\hat{P}A = P\hat{B}A = \beta.$$

Além disso, $\alpha + \beta = 90^{\circ}$ (Pela soma dos ângulos internos de um triângulo), implicando que o triângulo $\triangle APB$ é retângulo em P.

Verifica-se, facilmente, que

$$2r = a + b \Rightarrow r = \frac{a+b}{2},$$

a média arimética entre as medidas a e b dos respectivos comprimentos das projeções dos catetos PA e PB sobre a hipotenusa do triângulo $\triangle APB$.

Da semelhança entre os triângulos $\triangle AP_1P$ e $\triangle PP_1B$, podemos também extrair:

$$\frac{\overline{AP_1}}{\overline{PP_1}} = \frac{\overline{PP_1}}{\overline{P_1B}} \Rightarrow \frac{a}{y} = \frac{y}{b} \Rightarrow y = \sqrt{a \cdot b}$$

a média geométrica entre as medidas a e b.

Considere, agora, o ponto $P_2 \in OP$ de modo que $P_2P_1 \perp OP$. Da semelhança entre os triângulos $\triangle PP_2P_1$ e $\triangle PP_1O$ (caso LAA_O), temos:

$$\frac{\overline{AP_2}}{\overline{PP_1}} = \frac{\overline{PP_1}}{\overline{OP}} \Rightarrow \frac{\overline{AP_2}}{y} = \frac{y}{r} \Rightarrow \overline{AP_2} = \frac{a \cdot b}{\frac{a+b}{2}} = \frac{1+1}{\frac{1}{a} + \frac{1}{b}}$$

a média harmônica entre as medidas \boldsymbol{a} e \boldsymbol{b} .

Já, pelo triângulo $\triangle P_1OC$, retângulo em O, as medidas dos seus catetos em função de a e b são obtidas a seguir:

$$\overline{OC} = r = \frac{a+b}{2} \in \overline{P_1O} = r-b = \frac{a+b}{2} - b = \frac{a-b}{2}$$

Aplicando em $\triangle P_1 OC$ o Teorema de Pitágoras, temos:

$$\overline{P_1C}^2 = \overline{P_1O}^2 + \overline{OC}^2$$

$$= \left(\frac{a-b}{2}\right)^2 + \left(\frac{a+b}{2}\right)^2$$

$$= \frac{a^2+b^2}{2},$$

implicando em

$$\overline{P_1C} = \sqrt{\frac{a^2 + b^2}{2}}$$

a média quadrática entre as medidas a e b.

Análise 2: Gráfica

Considere o conjunto $A = \{2, 8\}$. Suas médias harmônica, geométrica, aritmética e quadrática, respectivamente, são:

$$M_h = \frac{1+1}{\frac{1}{2} + \frac{1}{8}} = 3.2$$

$$M_g = \sqrt{2 \cdot 8} = 4$$

$$M_A = \frac{10}{2} = 5$$

$$M_2 = \sqrt{\frac{2^2 + 8^2}{1+1}} \approx 5.830951894845300381$$

Graficamente, temos:

4e

Seja $\mathcal{A} = \{a_k\}$, k = 1, 2, ..., N, onde $a_k =$ "Número de casais com k filhos". Considere, ainda, M_{ϕ} uma média de Kolmogorov-Nagumo dos elementos de \mathcal{A} onde ϕ é uma função invertível, estritamente crescente.

Suponha que, para todo k, temos $a_k < M_{\phi}$. Dessa forma,

$$\phi(a_{k}) < \phi(M_{\phi}) \implies \sum_{k=1}^{N} \phi(a_{k}) < \sum_{k=1}^{N} \phi(M_{\phi}) = N\phi(M_{\phi})$$

$$\Rightarrow \frac{1}{N} \sum_{k=1}^{N} \phi(a_{k}) < \phi(M_{\phi})$$

$$\Rightarrow \phi^{-1} \left(\frac{1}{N} \sum_{k=1}^{N} \phi(a_{k})\right) < M_{\phi}$$

$$\Rightarrow \phi^{-1} \left(M_{A}(\phi(a_{1}), \dots, \phi(a_{N}))\right) < M_{\phi}$$

$$\Rightarrow M_{\phi} < M_{\phi} \text{ (absurdo!)}$$

Logo, $\exists a_{\mathsf{max}} = \mathsf{max}\{a_k\} = M \text{ tal que } M_{\phi} < M.$

De maneira análoga, mostramos que $\exists a_{\mathsf{min}} = \mathsf{min}\{a_k\} = m \text{ tal que } m < M_\phi.$

Portanto, para M_{ϕ} podemos ter que a média de filhos de um casal brasileiro pode ser qualquer número real entre m e M.

Tempo Médio (Aritmético) de Sobrevivência de uma População

Definição: Dado um Modelo populacional especificamente de mortalidade N(t) tal que $\frac{dN}{dt} < 0$ e $\lim_{t \to \infty} N(t) = 0$, diz-se que o valor (finito ou infinito) da integral $\frac{1}{N_0} \int_0^\infty -t \frac{dN}{dt} \ dt$ é denominado Tempo Médio (Aritmético) de Sobrevivência da População.

5a - Argumente sobre a motivação para que a expressão $\frac{1}{N_0} \int_0^\infty -t \frac{dN}{dt} dt = \frac{1}{N_0} \int_0^{N_0} t \ dN$, que se refere a uma dinâmica N(t) decrescente de uma (Grande) população (sem natalidade e migração) inicialmente com $N(0) = N_0$ indivíduos, possa ser interpretada como o tempo médio (aritmético) de sobrevivência desta população.

5b - Calcule o Tempo Médio (Aritmético) de sobrevivência de uma população Malthusiana (isto é, descrita segundo o Modelo Newtoniano $\frac{1}{N}\frac{dN}{dt}=-\mu$, $N(0)=N_0$) e mostre que este valor independe de N_0 . Discuta o significado biológico deste resultado.

5c - Calcule o tempo médio (aritmético) de sobrevivência de uma população cuja dinâmica de Mortalidade é descrita por uma função quase-polinomial $N(t) = q(t)e^{-\mu t}$, onde $q(t) = N_0 + \sum_{k=1}^{m} a_k t^k$ é um polinômio e $\mu > 0$. (Sugestão: Calcule explicitamente as integrais $I(n) = \int_0^\infty t^n e^{-\mu t} dt$ recursivamente em n e utilizando integrações por partes)

5d - O mesmo para
$$N(t) = \frac{N_0}{t+1}$$
. Solução:

5a

5_b

Considere o modelo Malthusiano de Mortalidade

$$\frac{1}{N}\frac{dN}{dt} = -\mu,\tag{10}$$

com condição inicial $N(0) = N_0$.

A solução de (10) é obtida ao separar as variáveis, integrar indefinidamente o resultado e utilizar a sua condição inicial. A seguir, as passagens como citadas.

Separando as variáveis:

$$\frac{1}{N}\frac{dN}{dt} = -\mu \Rightarrow \frac{dN}{N} = -\mu dt.$$

Integrando indefinidamente:

$$\int \frac{dN}{N} = -\int \mu dt \Rightarrow \log(N) = -\mu t + C \Rightarrow N(t) = e^{-\mu t} e^{\zeta}.$$

Utilizando a condição inicial:

$$N(0) = N_0 \Rightarrow e^C = N_0$$
.

Portanto, temos:

$$N(t) = N_0 e^{-\mu t}. \tag{11}$$

O tempo médio de sobrevivência da população T_M é dado por:

$$T_M = \frac{1}{N_0} \int_0^\infty -t \frac{dN}{dt} dt$$

Para determinar T_M , substituímos em sequência, as equações (10) e (11), na fórmula de T_M , cancelamos a constante N_0 e resolvemos uma integral imprópria, ou

seja:

$$T_{M} = \frac{1}{N_{0}} \int_{0}^{\infty} -t(-\mu N) dt$$

$$= \frac{\mu}{N_{0}} \int_{0}^{\infty} t N_{0} e^{-\mu t} dt$$

$$= \mu \int_{0}^{\infty} t e^{-\mu t} dt$$

$$= \mu \lim_{a \to \infty} \int_{0}^{a} t e^{-\mu t} dt$$

$$= \mu \lim_{a \to \infty} \left(t \frac{e^{-\mu t}}{-\mu} - \frac{1}{\mu} \left(\frac{e^{-\mu t}}{-\mu} \right) \right)_{0}^{a}$$

$$= \mu \lim_{a \to \infty} \left(t + \frac{1}{\mu} \right) \frac{e^{-\mu t}}{-\mu}$$

$$= \mu \lim_{a \to \infty} \left[\left(a + \frac{1}{\mu} \right) \frac{e^{-\mu a}}{-\mu} + \frac{1}{\mu^{2}} \right]$$

$$= \mu \left(\frac{1}{\mu^{2}} \right) = \frac{1}{\mu}$$

onde a integral na quarta igualdade foi obtida utilizando o método de integração por partes.

5c

O tempo médio T_M de sobrevivência de uma população cuja dinâmica de mortalidade é dada por:

$$N(t) = \left(N_0 + \sum_{k=1}^{m} a_k t^k\right) e^{-\mu t}, \ \mu > 0$$
 (12)

é dada por:

$$T_{M} = \frac{1}{N_{0}} \int_{0}^{\infty} -t \, \frac{dN}{dt} \, dt \tag{13}$$

A seguir, mostraremos o processo do cálculo da derivada de $\ (12)$ com respeito à variável t.

$$\frac{dN}{dt} = \frac{d}{dt} \left[\left(N_0 + \sum_{k=1}^m a_k t^k \right) e^{-\mu t} \right]
= \frac{d}{dt} \left(N_0 + \sum_{k=1}^m a_k t^k \right) \cdot e^{-\mu t} + \left(N_0 + \sum_{k=1}^m a_k t^k \right) \cdot \frac{d}{dt} \left(e^{-\mu t} \right)
= \left(\sum_{k=2}^m k a_k t^{k-1} \right) \cdot e^{-\mu t} + \left(N_0 + \sum_{k=1}^m a_k t^k \right) \cdot (-\mu) e^{-\mu t}
= e^{-\mu t} \cdot \left[a_1 - \mu N_0 + \left(\sum_{k=2}^m (k a_k - \mu a_{k-1}) t^{k-1} \right) - \mu a_m t^m, \right]$$

implicando em

$$-t\frac{dN}{dt} = e^{-\mu t} \cdot \left[(\mu N_0 - a_1)t + \left(\sum_{k=2}^m (\mu a_{k-1} - k a_k)t^k \right) + \mu a_m t^{m+1} \right]$$

Portanto,

$$T_{M} = \frac{1}{N_{0}} \int_{0}^{\infty} e^{-\mu t} \cdot \left[(\mu N_{0} - a_{1})t + \left(\sum_{k=2}^{m} (\mu a_{k-1} - k a_{k})t^{k} \right) + \mu a_{m}t^{m+1} \right] dt$$

$$= \left(\mu - \frac{a_{1}}{N_{0}} \right) \int_{0}^{\infty} t e^{-\mu t} dt + \frac{1}{N_{0}} \sum_{k=2}^{m} (\mu a_{k-1} - k a_{k}) \int_{0}^{\infty} t^{k} e^{-\mu t} dt$$

$$+ \mu a_{m} \frac{1}{N_{0}} \int_{0}^{\infty} t^{m+1} e^{-\mu t} dt$$
(14)

Constatamos em $\ (14)$ que para determinar T_m é necessário encontrar integrais do tipo:

$$\mathcal{I}(n) = \int_0^\infty t^n \ e^{-\mu t} \ dt. \tag{15}$$

Vamos provar que o valor de $\mathcal{I}(n) = \frac{n!}{\mu^{n+1}}$ utilizando a indução sobre n.

Para n = 0,

$$\mathcal{I}(0) = \int_{0}^{\infty} e^{-\mu t} dt
= \lim_{b_{0} \to \infty} \int_{0}^{b_{0}} e^{-\mu t} dt
= \lim_{b_{0} \to \infty} \frac{-1}{\mu} e^{-\mu t} \Big|_{0}^{b_{0}}
= \lim_{b_{0} \to \infty} \frac{-1}{\mu} \left(e^{-\mu b_{0}} - 1 \right)
= \frac{1}{\mu} = \frac{0!}{\mu^{0+1}}.$$
(16)

Suponhamos que $\mathcal{I}(n) = \frac{n!}{\mu^{n+1}}$. Vamos provar que $\mathcal{I}(n+1) = \frac{(n+1)!}{\mu^{n+2}}$. De fato,

$$\mathcal{I}(n+1) = \int_0^\infty t^{n+1} e^{-\mu t} dt$$
 (17)

$$= \lim_{b_{n+1} \to \infty} \int_0^{b_{n+1}} t^{n+1} e^{-\mu t} dt$$
 (18)

$$= \lim_{b_{n+1} \to \infty} \left(t^{n+1} \frac{e^{-\mu t}}{-\mu} \bigg|_{0}^{b_{n+1}} - \int_{0}^{b_{n+1}} (n+1) t^{n} \frac{e^{-\mu t}}{-\mu} dt \right)$$
(19)

$$= \underbrace{\lim_{b_{n+1}\to\infty} \frac{(b_{n+1})^{n+1}}{-\mu e^{\mu b_{n+1}}}}_{tende, a, 0} + \frac{n+1}{\mu} \cdot \underbrace{\lim_{b_{n+1}\to\infty} \int_{0}^{b_{n+1}} t^{n} e^{-\mu t} dt}_{\mathcal{I}(n)}$$
(20)

$$= \frac{n+1}{\mu} \cdot \frac{n!}{\mu^{n+1}} \tag{21}$$

$$= \frac{(n+1)!}{\mu^{n+2}},\tag{22}$$

onde, na passagem de (17) para (18) utilizamos a definição de integração imprópria. Na de (18) para (19), integração por partes. Na de (19) para (20), propriedade de limites onde foi verificada a existência do limite. Na (20), constatamos que o primeiro limite tende a zero utilizando n+1 vezes a regra de L'Hospital.

Retornando ao cálculo do tempo médio de sobrevivência, temos:

$$T_{M} = \left(\mu - \frac{a_{1}}{N_{0}}\right) \frac{1}{\mu^{2}} + \frac{1}{N_{0}} \sum_{k=2}^{m} (\mu a_{k-1} - k a_{k}) \frac{k!}{\mu^{k+1}} + \mu a_{m} \frac{1}{N_{0}} \frac{(m+1)!}{\mu^{m+2}}$$

$$= \left(\frac{1}{\mu} - \frac{a_{1}}{N_{0}\mu^{2}}\right) + \frac{1}{N_{0}} \sum_{k=2}^{m} (\mu a_{k-1} - k a_{k}) \frac{k!}{\mu^{k+1}} + \frac{a_{m}}{N_{0}} \frac{(m+1)!}{\mu^{m+1}}$$
(23)

5d

A dinâmica de mortalidade da população é dada por:

$$N(t) = \frac{N_0}{t+1}$$

Portanto,

$$\frac{d}{dt}N(t) = \frac{d}{dt}\left(\frac{N_0}{t+1}\right) = \frac{-N_0}{(t+1)^2}$$

O tempo médio T_M de sobrevivência é dado por:

$$T_{M} = \frac{1}{N_{0}} \int_{0}^{\infty} -t \frac{dN}{dt} dt$$

$$= \frac{1}{N_{0}} \int_{0}^{\infty} -t \frac{-N_{0}}{(t+1)^{2}} dt$$

$$= \int_{0}^{\infty} \frac{t}{(t+1)^{2}} dt$$

Essa integral imprópria é resolvida a seguir:

$$\int_{0}^{\infty} \frac{t}{(t+1)^{2}} dt = \lim_{b \to \infty} \int_{0}^{b} \frac{t}{(t+1)^{2}} dt$$

$$= \lim_{b \to \infty} \int_{-1}^{b-1} \frac{t-1}{t^{2}} dt$$

$$= \lim_{b \to \infty} \ln|t| + \frac{1}{t} \Big|_{-1}^{b-1}$$

$$= \lim_{b \to \infty} \ln|b-1| + \frac{1}{b-1} - \ln(1) + 1$$

$$= \infty$$

Mortalidade por Predação Periférica e Efeito de Rebanho Egoísta:

(Dois "amigos" em um campo de cerrado e uma onça esfomeada. Um deles, para e toma seu tempo para amarrar bem o calçado. O outro, apressado, lhe repreende: "Vamos correr logo que a onça é mais rápida do que nós!". O Amigo (da onça): "Eu não preciso correr mais do que a onça, eu preciso correr mais do que você!". Ditado caboclo: "Mingau quente, se come pelas beiradas".

Considere uma população distribuída uniformemente em uma região delimitada no plano descrita por uma função diferenciável N(t) cuja mortalidade é causada unicamente por uma predação "periférica" da forma $p(N) = -\mu\sqrt{N}$, caracterizada matematicamente segundo a Metodologia Newtoniana pela equação diferencial: $\frac{dN}{dt} = -\mu\sqrt{N}$. (A justificativa da função de mortalidade na forma $p(N) = -\mu\sqrt{N}$ para predação "periférica" se deve ao fato de que um grupo uniformemente distribuído em uma região delimitada do plano é predado apenas na fronteira, cuja extensão tem medida da ordem da dimensão linear da região, enquanto que a área, que é proporcional à população, é da ordem do quadrado da medida linear e, portanto, a fronteira é da ordem de $N^{\frac{1}{2}}$. O formato da região pode ser considerado aproximadamente um disco (2D) ou uma esfera (3D) porque estas são as formas que apresentam menor extensão de fronteira para um mesmo conteúdo populacional. (Por exemplo, sapos na beira da lagoa diante da ameaça de cobras, ou rebanho de ovelhas diante de lobos).

Definição: Diz-se que uma Dinâmica de mortalidade apresenta o "Efeito de Rebanho Egoísta" (*) quando a mortalidade especifica ("per capita" $\frac{1}{N} \frac{dN}{dt} = f(N)$) diminui com o aumento do tamanho do grupo, em outros termos, um individuo se sente particularmente mais "protegido" em um grupo maior; por isso ele se junta aos vencedores.. (*) Termo introduzido por W. Hamilton no antológico artigo: -The Selfish Herd, J. Theor.Biol, 1970).

- 6a Argumente como o conceito de "Efeito Rebanho Egoísta" pode ser interpretado em termos do Tempo Médio de Sobrevivência.
- 6b Mostre que não há "Efeito Rebanho Egoista" em uma população cuja mortalidade é unicamente Malthusiana.

- 6c Descreva uma Dinâmica Adimensional de mortalidade por predação periférica para um grupo populacional que ocupa uma região delimitada do espaço físico tridimensional. (Por exemplo, um cardume de Sardinhas e Baleias) e verifique se esta dinâmica apresenta um "Efeito Rebanho Egoista" e é dizimada em tempo finito.
- 6d Considere uma população com predação per capita tipo Holling II: $p(N) = \frac{A}{B+N}$. Adimensionalize a equação e verifique se ocorre um "Efeito Rebanho" nesta dinâmica.
- 6e Discuta o comportamento individual das presas em termos de uma proteção por agrupamento com base na percepção de cardinalidade segundo a "Lei de Weber-Fechner".

7a – Utilizando o Método Operacional explicado no texto, obtenha uma expressão explícita (em termos de integrais) da solução da Equação de (Euler-Malthus) Verhulst $\frac{1}{N}\frac{dN}{dt}=r(t)-\lambda(t)N, \text{ onde } r(t) \text{ e } \lambda(t) \text{ são funções reais positivas. (Sugestão: Utilize a transformação linearizadora } m=\frac{1}{N} \text{ seguida pelo Método Operacional)}.$

7b - Apresente um cenário biológico que indique a utilização desta equação como Modelo Matemático para uma Dinâmica Populacional.

7c - Considere uma população cujo tamanho N(t) é regulado pelo chamado Modelo de Euler-Verhulst, $\frac{1}{N}\frac{dN}{dt}=r-\lambda N$ (isto é, com taxa de natalidade Malthusiana (per capita) r e mortalidade (per capita) λN , $r,\lambda>0$ constantes) que se inicia com uma população "colonizadora" de $N_0=N(0)$ indivíduos. Considere a decrescente população n(t) dos indivíduos colonizadores $(n(0)=N_0)$ submetidos à taxa de mortalidade ambiente. (Os descendentes de colonizadores não são colonizadores mas fazem parte da população ambiente!). Obtenha uma expressão para a dinâmica desta população n(t) de colonizadores e mostre que o tempo médio de sobrevivência neste caso, apresenta uma dependência do tamanho da população inicial N_0 , indicando um fenômeno interativo no processo de mortalidade.

Sistemas Malthusianos com Acoplamento Sequencial

$$\ldots A_1 \xrightarrow{\mu_1} A_2 \xrightarrow{\mu_2} A_3 \xrightarrow{\mu_3} \ldots A_n \xrightarrow{\mu_n} A_{n+1} \ldots$$

Considere um sistema de compartimentos sequencialmente acoplados com dinâmicas Malthusianas.

8a - Supondo uma sequencia com N compartimentos, $1 \le k \le N$, com $\mu_N = 0$, escreva o Modelo deste sistema na forma de Equações Diferenciais Ordinárias (acopladas) $\frac{dA}{dt} = DA = MA$, e Operacional (D - M)A = 0 identificando a matriz numérica M, e a matriz operacional m(D) = D - A. $\left(\frac{d}{dt} \equiv D\right)$

numérica M, e a matriz operacional m(D) = D - A. $\left(\frac{d}{dt} \equiv D\right)$ 8b - Se N = 3 e $\mu_k = \mu > 0$ obtenha as expressões analíticas elementares para as soluções $A(t) = (A_1 \ A_2 \ A_3)^t = \begin{pmatrix} A_1 \ A_2 \ A_3 \end{pmatrix}$, resolvendo antes as equações desacopladas $A(t) = (A_1 \ A_2 \ A_3)^t = \begin{pmatrix} A_1 \ A_2 \ A_3 \end{pmatrix}$

 $\det m(D)x = 0$. (Refer. Bassanezi-Ferreira).

8c - Mostre que, em geral, $A_k(t) \to 0$ exponencialmente, como $t^2 e^{-\mu t}$, isto é, $\lim_{t \to \infty} \frac{A_k(t)}{t^2 e^{-\mu t}} = c \neq 0.$

8d - Determine o tempo médio (aritmético) que estas partículas/organismos permanecem no sistema de compartimentos se inicialmente todas elas estão no primeiro no primeiro compartimento $A_1(0) = 1$, $A_k(0) = 0$, k > 1.

8e - Determine a relação entre o tempo médio (aritmético) de permanência destas partículas/organismos no sistema em termos da sua distribuição inicial, $A_k(0) = A_{k0}$. Solução:

8a-

Temos que a população total A é formada por N subpopulações sequencialmente acopladas. Então, esse modelo é regido por:

$$\frac{dA_1}{dt} = -\mu_1 A_1$$

$$\frac{dA_k}{dt} = \mu_{k-1} A_{k-1} - \mu_k A_k, \ k = 2, \dots, N$$

Se fizermos $\mathcal{A} = [A_1 \ A_2 \ \dots \ A_N]^t$ e

$$M = \begin{bmatrix} -\mu_1 & 0 & 0 & \cdots & 0 & 0 \\ \mu_1 & -\mu_2 & 0 & \cdots & 0 & 0 \\ 0 & \mu_2 & -\mu_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -\mu_{N-1} & 0 \\ 0 & 0 & 0 & \cdots & \mu_{N-1} & \mu_N \end{bmatrix}$$

teremos

$$\frac{dA}{dt} = MA \Rightarrow DA = MA \Rightarrow DA - MA = 0,$$

sendo 0 matriz nula de ordem $N \times 1$. Segue que

$$(D-M)A=0,$$

com a matriz operacional

$$m(D) = D - A = \left[\left(\frac{d}{dt} - A_1 \right) \quad \left(\frac{d}{dt} - A_2 \right) \quad \left(\frac{d}{dt} - A_3 \right) \right]^t$$

8b-

Considere o sistema

$$A_1 \xrightarrow{\mu_1} A_2 \xrightarrow{\mu_2} A_3$$

de compartimentos sequencialmente acoplados, de três subpopulações com dinâmicas malthusianas. Então, esse modelo é regido por:

$$\frac{dA_1}{dt} = -\mu A_1 \Rightarrow A_1(t) = K_1 e^{-\mu t}$$

$$\frac{dA_2}{dt} = \mu(A_1 - A_2)$$

$$\frac{dA_3}{dt} = \mu(A_2 - A_3).$$

8c-

8d-

O tempo médio T_M de sobrevivência da população total A é dado por:

$$T_{M} = \frac{1}{A_{0}} \int_{0}^{\infty} -t \frac{dA}{dt} dt$$

Uma vez que ela está concentrada na subpopulação A_1 malthusiana, com $A_1(0) = 1$, temos:

$$T_M = rac{1}{A_1(0)} \int_0^\infty -t rac{dA_1}{dt} \ dt = \int_0^\infty -t rac{dA_1}{dt} \ dt = \int_0^\infty -t \mathrm{e}^{-\mu t} \ dt = rac{1}{\mu}$$

Questão 09

Modelos Efetivos

9a - Considere uma população de indivíduos não interativos formada por uma mistura de subpopulações Malthusianas (homogêneas e não interativas) A_k , sendo T_k seu respectivo tempo médio (aritmético) de sobrevivência. Considere agora a população total $A(t) = \sum A_k(t)$ que obviamente decresce. Mostre que o tempo médio (aritmético) de sobrevivência da população misturada A é dado pela Média (aritmética) ponderada de T_k .

9b - Considere agora uma descrição da dinâmica de uma população "Malthusianamente heterogênea" por um "Modelo Malthusiano Efetivo", isto é, da forma $\frac{dA}{dt} = -\mu A$. Argumente sobre o fato de que neste caso a "melhor escolha" para o coeficiente μ do Modelo diferencial seria a média harmônica dos coeficientes μ_k .

9c - Analise a mesma questão supondo que a população total é formada por N subpopulações sequencialmente acopladas na forma

$$A_1 \xrightarrow{\mu_1} A_2 \xrightarrow{\mu_2} A_3 \dots A_{N-1} \xrightarrow{\mu_{N-1}} A_N, \ \mu_N = 0.$$

Solução:

9a-

Temos uma população A de indivíduos não interativos formada por uma mistura de subpopulações Malthusianas A_k (homogêneas e não interativas). Logo, para cada $1 \le k \le N$, temos:

$$\frac{1}{A_k} \frac{A_k}{dt} = -\mu_k, \ A_k(0) = A_{0_k} \Rightarrow A_k(t) = A_{0_k} e^{-\mu_k t}.$$

Segue que

$$A = \sum_{k=1}^{N} A_k(t) = \sum_{k=1}^{N} A_{0_k} e^{-\mu_k t} \Rightarrow \frac{dA}{dt} = \sum_{k=1}^{N} -\mu_k A_{0_k} e^{-\mu_k t}.$$

Claramente, como visto nesta última equação, é bem provável que A seja não malthusiana, uma vez que isso só ocorrerá caso $\mu_1 = \mu_2 = \dots = \mu_N$. Entretanto, o tempo médio de sobrevivência T_M pode ser calculado como a seguir:

$$T_{M} = \frac{1}{A_{0}} \int_{0}^{\infty} -t \, \frac{dA}{dt} \, dt$$

$$= \frac{1}{A_{0}} \int_{0}^{\infty} -t \, \left(\sum_{k=1}^{N} -\mu_{k} A_{0_{k}} e^{-\mu_{k} t} \right) dt$$

$$= \frac{1}{A_{0}} \left[\sum_{k=1}^{N} \mu_{k} A_{0_{k}} \left(\int_{0}^{\infty} t e^{-\mu_{k} t} \, dt \right) \right]$$

$$= \frac{1}{A_{0}} \left[\sum_{k=1}^{N} \mu_{k} A_{0_{k}} \left(\frac{1}{\mu_{k}^{2}} \right) \right]$$

$$= \frac{1}{A_{0}} \sum_{k=1}^{N} \frac{A_{0_{k}}}{\mu_{k}},$$

onde o resultado da integral $\mathcal{I}(1)$ foi o obtido na Questão 05.

Considerando que $\sum_{k=1}^{N} A_{0_k} = A_0$, temos:

$$T_M = \frac{1}{\sum_{k=1}^{N} \mu_k}.$$

Por outro lado, a média aritmética (ponderada) de T_{M_k} é:

$$M(T_{M_k}) = \frac{1}{N} \sum_{k=1}^{N} T_{M_k} = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{\mu_k} = \frac{1}{N} \frac{\sum_{k=1}^{N} 1}{\sum_{k=1}^{N} \mu_k} = \frac{1}{N} \frac{N}{\sum_{k=1}^{N} \mu_k} = \frac{1}{N} \frac{1}{\sum_{k=1}^{N} \mu_k} = T_M.$$

Como queríamos mostrar.

9b-

Seja
$$\bar{A}(t) = \sum_{k=1}^{N} A_{0_k} e^{-\mu_k t}$$
 e $A(t) = A_0 e^{-\mu t}$, com $\mu = \frac{N}{\sum_{k=1}^{N} \frac{1}{\mu_k}}$.

Considerando a norma euclidiana, analisemos a proximidade entre esses modelos de população.

$$|A(t) - \bar{A}(t)| = \left| \sum_{k=1}^{N} A_{0_k} e^{-\mu_k t} - A_0 e^{-\mu t} \right|$$

$$= \left| \sum_{k=1}^{N} A_{0_k} e^{-\mu_k t} - e^{-\mu t} \sum_{k=1}^{N} A_{0_k} \right|$$

$$= \left| \sum_{k=1}^{N} A_{0_k} (e^{-\mu_k t} - e^{-\mu t}) \right|$$

$$\leq \sum_{k=1}^{N} A_{0_k} |e^{-\mu_k t} - e^{-\mu t}|.$$

Considere, agora, $\min\{\mu_k\} = \mu_{\min}$ e $\max\{\mu_k\} = \mu_{\max}$. Pelo Teorema do Valor Médio, temos que: $|e^{-\mu_k t} - e^{-\mu t}| \le t e^{-\mu_{\min} t} |\mu - \mu_k|$.

Como μ é a média harmônica dos μ_k , temos:

$$|\mu - \mu_k| \le \mu_{\mathsf{max}} - \mu_{\mathsf{min}}, \ \forall \ k.$$

Portanto,

$$egin{array}{ll} ig|A(t)-ar{A}(t)ig| &\leq & \displaystyle\sum_{k=1}^N A_{0_k}t \; e^{-\mu_{\min}t}(\mu_{\max}-\mu_{\min}) \ &= & A_0t \; e^{-\mu_{\min}t}(\mu_{\max}-\mu_{\min}). \end{array}$$

Sendo assim

$$\lim_{t \to \tau} \left| A(t) - \bar{A}(t) \right| \leq A_0 (\mu_{\mathsf{max}} - \mu_{\mathsf{min}}) \lim_{t \to \tau} \frac{t}{e^{\mu_{\mathsf{min}} t}},$$

e, portanto, teremos uma boa aproximação entre os modelos se:

(a) τ crescem indefinidamente; (b) os valores de τ são pequenos e a amplitude entre os tempos médios de sobrevivência máximo e mínimo for pequeno e; (c) o tempo médio de sobrevivência mínimo for grande.

Temos que a população total A é formada por N subpopulações sequencialmente acopladas. Então, esse modelo é regido por:

$$\frac{dA_1}{dt} = -\mu_1 A_1$$

$$\frac{dA_k}{dt} = \mu_{k-1} A_{k-1} - \mu_k A_k, \ k = 2, \dots, N$$

Se fizermos $\mathcal{A} = [A_1 \ A_2 \ \dots \ A_N]^t, \ 1 = (1 \ 1 \ \dots \ 1)_{1 \times N}$ e

$$\Phi = \begin{bmatrix}
-\mu_1 & 0 & 0 & \cdots & 0 & 0 \\
\mu_1 & -\mu_2 & 0 & \cdots & 0 & 0 \\
0 & \mu_2 & -\mu_3 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -\mu_{N-1} & 0 \\
0 & 0 & 0 & \cdots & \mu_{N-1} & \mu_N
\end{bmatrix}$$

teremos

$$\sum_{k=1}^{N} \frac{dA_k}{dt} = 1 \cdot \Phi \cdot \mathcal{A} = -\mu_N \frac{dA_N}{dt}.$$

O tempo médio de sobrevivência da população total é então dado por:

$$T_M = \frac{1}{A_0} \int_0^\infty -t \sum_{k=1}^N \frac{dA_k}{dt} dt = \frac{1}{A_0} \int_0^\infty t \, \mu_N \, \frac{dA_N}{dt} dt = 0,$$

uma vez que $\mu_N = 0$.

Dessa forma, se cada subpopulação A_k , $k=1,\ldots,N$ de uma população A segue um modelo malthusiano com tempo médio de sobrevivência muito pequeno, o modelo da população total formada por N subpopulações sequencialmente acopladas possui o tempo médio de sobrevivência muito próximos.

Questão 10

Sistemas Malthusianos com Acoplamentos Multilaterais (Difusivos)

Considere um sistema de N compartimentos $\{A_k\}_{1 \leq k \leq N}$ conectados sequencialmente e simetricamente por dinâmicas Malthusianas bilaterais como no seguinte esquema

 $A_0 \xrightarrow{\mu} A_1 \xrightarrow{\mu} A_2 \xrightarrow{\mu} A_3 \xrightarrow{\mu} \dots A_{N-1} \xrightarrow{\mu} A_N \xrightarrow{\mu_N} A_{N+1}$

10a - Mostre que um compartimento interior $A_k, 2 \leq k \leq N-1$, é regido pela seguinte equação: $\frac{dA_k}{dt} = -2\mu A_k + \mu A_{k-1} + \mu A_{k+1}$. 10b - Obtenha a dinâmica do compartimento A_N que está obstruído à direita

(isto é, não perde nem ganha população de A_{N+1}). Diz-se também que é reflexivo, ou que $\mu_N = 0$.

 $10\mathrm{c}$ - Obtenha a dinâmica do compartimento A_1 que somente perde indivíduos para o compartimento A_0 e não recebe nada do mesmo, isto é, $\mu_0=0$, Interprete este fato como a existência de um "deserto" em A_0 .

10d - Escreva a dinâmica de todo o sistema acoplado na forma matricial $\frac{dA}{dt}$ $S\ A,\ A=A_1,\ldots,A_N)^t$ e mostre que a matriz S é simétrica e tridiagonal.

10d - Mostre que $n(t) = \sum_{k} NA_k$ é monotonicamente decrescente, isto é, $\frac{dn}{dt} < 0$.

Sugestão: $\frac{dn}{dt} = \frac{d}{dt} \langle A, 1 \rangle = \langle \frac{dA}{dt}, 1 \rangle = \langle S A, 1 \rangle < 0.$ 10f - Na verdade, mostre que n(t) é exponencialmente decrescente, isto é, existe $\lambda>0$ tal que $\lim_{t\to\infty}\frac{n(t)}{e^{-\lambda t}}=c>0$. 10g - Utilize o Método de Fourier para mostrar que a solução geral do sistema

acima pode ser escrito na forma: $A(t) = \sum_{k=1}^{N} c_k e^{\lambda_k t}$, verificando como determinar algebricamente os coeficientes c_k e os parâmetros λ_k e mostrando que $\lambda_k < 0, 1 \le$ $k \leq N$.

10h - Argumente sobre a propriedade "homogeneizadora" desta dinâmica no sentido de que todos $A_k(t)$ convergem para uma média.

Obs: O Método de Fourier resolve completamente o Sistema de EDOs utilizando combinações lineares de soluções básicas $e^{\lambda t}v$ para o Sistema, onde λ é autovalor da matriz simétrica S e ν o seu autovetor correspondente, $S\nu=\lambda\nu$. Lembre-se do Teorema Espectral para matrizes simétricas que garante a expansão de qualquer vetor u na forma, $u = \sum a_k v^{(k)}$ onde $v^{(k)}$ é base ortonormal de autovetores de S.

Acoplamento Difusivo de Dinâmicas Malthusianas

Considere um Grafo com 4 vértices, 3 localizados nas quinas de um triângulo e 1 deles, A_0 , no seu centro. Cada vértice A_k das quinas é conectado bilateralmente aos seus dois adjacentes, A_{k-1} e A_{k+1} e todos, da mesma forma, ao centro A_0 por uma dinâmica Malthusiana com o mesmo parâmetro μ em todas as direções.

11a - Escreva a dinâmica do sistema $A=(A_1,A_2,A_3,A_0)^t$ na forma matricial, $\frac{dA}{dt}=S\ A$

11b - Mostre que S é simétrica e tem autovalor nulo com autovetor $1=(1,\ldots,1)$.

11c - Mostre que
$$n(t) = \sum_{k=0}^{4} A_k(t)$$
 é constante e que $\lim_{t\to\infty} A(t) = n(0)(1,\ldots,1)$.

Questão 12

12a - Mostre que em uma dinâmica Malthusiana com parâmetros μ, ν constantes a operação funcional "Multiplicação de N(t) por $e^{-\mu T}$ " produz um resultado (função) que representa "O número de sobreviventes dos indivíduos N(t) após um intervalo de tempo T". Interprete analogamente as operações funcionais "Multiplicação por $1 - e^{-\mu T}$ " e "Multiplicação por $e^{\nu T}$ ".

12b - Interprete probabilisticamente a operação sobre uma dinâmica Malthusiana N(t) definida pela operação funcional resultante da multiplicação por $\frac{(1-e^{-\mu T})}{N(t)}$

12c - Considere uma população estruturada em duas faixas etárias, como no problema de Fibonacci, uma delas imatura, $A_1(t)$ com dinâmica contínua de mortalidade Malthusiana e outra reprodutiva, $A_2(t)$, com dinâmica contínua de mortalidade e reprodutividade também Malthusiana.

Argumente convincentemente sobre o significado da expressão de cada termo e parâmetro do Modelo Matemático para a Dinâmica desta população expresso segundo o sistema de Equações Diferenciais Ordinárias com retardamento:

$$\frac{dA_1(t)}{dt} = \nu A_2(t) - \mu_1 A_1(t) - e^{-\mu_1 T_0} \nu A_2(t - T_0)
\frac{dA_2(t)}{dt} = e^{-\mu_1 T_0} \nu A_2(t - T_0) - \mu_2 A_2(t)$$

12d - Suponha que T_0 seja "muito pequeno" comparado com as outras unidades intrínsecas de tempo $\left(\frac{1}{\nu},\frac{1}{\mu_k}\right)$ do Modelo Malthusiano com retardamento e substitua a expressão $A_2(t-T_0)$ por sua aproximação de Taylor: $A_2(t-T_0)=A_2(t)-T_0A_2'(t)+\frac{T_0^2}{2}A_2''(t)$ obtendo um sistema de equações diferenciais ordinárias (não retardadas). 12e - Utilize o Método Operacional e reescreva o Sistema de EDO obtido anteriormente na forma matricial operacional $P(D)\left(\frac{A_1}{A_2}\right)=0$ e obtenha expressões elementares gerais para as funções $A_i(t)$ soluções do Sistema.

Questão EXTRA

Hipótese (Gauss - Legendre 1796) - Teorema (Hadamard - de la Vallé-Poussin 1896) sobre a densidade dos Números Primos.

A - Considere o Teorema de Distribuição Assintótica (da densidade da População) de Números Primos em \mathbb{N} , descrita pela função $\rho(n)=\frac{\pi(n)}{n}$, onde $\pi(n)=\#\{$ Números primos $p\leq n\}$ em termos de uma linearização logarítmica assintótica utilizando uma Tabela de Números Primos (encontrada, por exemplo, no valioso M. Abramowitz & I. Stegun - Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables - online). (Sugestão: Como é fácil ver pela tabela que $\frac{1}{\rho(n)}=\frac{n}{\pi(n)}\to\infty$ mais "lentamente" do que $n\to\infty$ re-escale a variável "independente" n "logaritmizando-a" e analise o gráfico de $\frac{1}{\rho(n)}$ em função de $\log n$). B - Interprete a questão em termos do Princípio Sensorial ("Lei") de Weber-Fechner.

Solução:

13A

A análise tem como ponto de partida a Tabela 1:

Tabela 1 – Sequência crescente dos primeiros 1000 números primos

n	$\pi(n)$	$\log(n)$	$\pi(n)/n$
1	0	0	0
2	0	0,301029996	0
3	1	0,477121255	0,333333333
4	2	0,602059991	0,5
5	2	0,698970004	0,4
6	3	0,77815125	0,5
7	3	0,84509804	0,428571429
8	4	0,903089987	0,5
9	4	0,954242509	0,44444444
10	4	1	0,4
11	4	1,041392685	0,363636364
12	5	1,079181246	0,416666667
13	5	1,113943352	0,384615385
14	6	1,146128036	0,428571429
15	6	1,176091259	0,4
16	6	1,204119983	0,375
17	6	1,230448921	0,352941176
18	7	1,255272505	0,38888889
19	7	1,278753601	0,368421053
20	8	1,301029996	0,4
21	8	1,322219295	0,380952381
22	8	1,342422681	0,363636364
23	8	1,361727836	0,347826087
24	9	1,380211242	0,375
25	9	1,397940009	0,36
26	9	1,414973348	0,346153846
27	9	1,431363764	0,333333333
28	9	1,447158031	0,321428571
29	9	1,462397998	0,310344828
30	10	1,477121255	0,333333333
31	10	1,491361694	0,322580645
32	11	1,505149978	0,34375
33	11	1,51851394	0,333333333
34	11	1,531478917	0,323529412
35	11	1,544068044	0,314285714
36	11	1,556302501	0,30555556
37	11	1,568201724	0,297297297
38	12	1,579783597	0,315789474
39	12	1,591064607	0,307692308
40	12	1,602059991	0,3
41	12	1,612783857	0,292682927
42	13	1,62324929	0,30952381
43	13	1,633468456	0,302325581
44	14	1,643452676	0,318181818
45	14	1,653212514	0,311111111
46	14	1,662757832	0,304347826
47	14	1,672097858	0,29787234
48	15	1,681241237	0,3125
49	15	1,69019608	0,306122449
50	15	1,698970004	0,3
			

n	$\pi(n)$	log(n)	$\frac{\pi(n)/n}{}$
51	15	1,707570176	0,294117647
52	15	1,716003344	0,288461538
53	15	1,72427587	0,283018868
54	16	1,73239376	0,296296296
55	16	1,740362689	0,290909091
56	16	1,748188027	0,285714286
57	16	1,755874856	0,280701754
58	16	1,763427994	0,275862069
59	16	1,770852012	0,271186441
60	17	1,77815125	0,283333333
61	17	1,785329835	0,278688525
62	18	1,792391689	0,290322581
63	18	1,799340549	0,285714286
64	18	1,806179974	0,28125
65	18	$1,\!812913357$	0,276923077
66	18	1,819543936	0,272727273
67	18	1,826074803	0,268656716
68	19	1,832508913	0,279411765
69	19	1,838849091	0,275362319
70	19	1,84509804	0,271428571
71	19	1,851258349	0,267605634
72	20	1,857332496	0,27777778
73	20	1,86332286	0,273972603
74	21	1,86923172	0,283783784
75	21	1,875061263	0,28
76	21	1,880813592	0,276315789
77	21	1,886490725	0,272727273
78	21	1,892094603	0,269230769
79	21	1,897627091	0,265822785
80	22	1,903089987	0,275
81	22	1,908485019	0,271604938
82	22	1,913813852	0,268292683
83	22	1,919078092	0,265060241
84	23	1,924279286	0,273809524
85	23	1,929418926	0,270588235
86	23	1,934498451	0,26744186
87	23	1,939519253	0,264367816
88	23	1,944482672	0,261363636
89	23	1,949390007	0,258426966
90	24	1,954242509	0,266666667
91	24	1,959041392	0,263736264
92	24	1,963787827	0,260869565
93	24	1,968482949	0,258064516
94	24	1,973127854	0,255319149
95	24	1,977723605	0,252631579
96	24	1,982271233	0,25
97	24	1,986771734	0,24742268
98	25	1,991226076	0,255102041
99	25	1,995635195	0,252525253
100	25	2	0,25
100	-0		0,20

n	$\pi(n)$	$\log(n)$	$\pi(n)/n$	 n	$\pi(n)$	$\log(n)$	$\pi(n)/n$
101	25	2,004321374	0,247524752	151	35	2,178976947	0,231788079
102	26	$2,\!008600172$	$0,\!254901961$	152	36	2,181843588	$0,\!236842105$
103	26	$2,\!012837225$	$0,\!252427184$	153	36	$2,\!184691431$	$0,\!235294118$
104	27	2,017033339	$0,\!259615385$	154	36	$2,\!187520721$	$0,\!233766234$
105	27	2,021189299	0,257142857	155	36	2,190331698	0,232258065
106	27	2,025305865	0,254716981	156	36	2,193124598	0,230769231
107	27	2,029383778	0,252336449	157	36	2,195899652	0,229299363
108	28	2,033423755	0,259259259	158	37	2,198657087	0,234177215
109	28	2,037426498	0,256880734	159	37	2,201397124	0,232704403
110	29	2,041392685	0,263636364	160	37	2,204119983	0,23125
111	29	2,045322979	0,261261261	161	37	2,206825876	0,229813665
112	29	2,049218023	0,258928571	162	37	2,209515015	0,228395062
113	29	2,053078443	0,256637168	163	37	2,212187604	0,226993865
114	30	2,056904851	0,263157895	164	38	2,214843848	0,231707317
115	30	2,06069784	0,260869565	165	38	2,217483944	0,23030303
116	30	2,064457989	0,25862069	166	38	2,220108088	0,228915663
117	30	2,068185862	0,256410256	 167	38	2,222716471	0,22754491
118	30	2,071882007	0,254237288	168	39	2,225309282	0,232142857
119	30	2,075546961	0,25210084	169	39	2,227886705	0,230769231
120	30	2,079181246	0,25	 170	39	2,230448921	0,229411765
121	30	2,08278537	0,247933884	171	39	2,23299611	0,228070175
122	30	2,086359831	0,245901639	172	39	2,235528447	0,226744186
123	30	2,089905111	0,243902439	173	39	2,238046103	0,225433526
124	30	2,093421685	0,241935484	174	40	2,240549248	0,229885057
125	30	2,096910013	0,24	175	40	2,243038049	0,228571429
126	30	2,100370545	0,238095238	176	40	2,245512668	0,227272727
127	30	2,103803721	0,236220472	177	40	2,247973266	0,225988701
128	31	2,10720997	0,2421875	178	40	2,250420002	0,224719101
129	31	2,11058971	0,240310078	179	40	2,252853031	0,223463687
130	31	2,113943352	0,238461538	180	41	2,255272505	0,227777778
131	31	2,117271296	0,236641221	181	41	2,257678575	0,226519337
132	32	2,120573931	0,242424242	182	42	2,260071388	0,230769231
133	32	2,123851641	0,240601504	183	42	2,26245109	0,229508197
134	32	2,127104798	0,23880597	184	42	2,264817823	0,22826087
135	32	2,130333768	0,237037037	185	42	2,267171728	0,227027027
136	32	2,133538908	0,235294118	186	42	2,269512944	0,225806452
137	32	2,136720567	0,233576642	 187	42	2,271841607	0,22459893
138	33	2,139879086	0,239130435	188	42	2,274157849	0,223404255
139	33	2,1430148	0,237410072	189	42	2,276461804	0,22222222
140	34	2,146128036	0,242857143	 190	42	2,278753601	0,221052632
141	34	2,149219113	0,241134752	191	42	2,281033367	0,219895288
142	34	2,152288344	0,23943662	192	43	2,283301229	0,223958333
143	34	2,155336037	0,237762238	193	43	2,285557309	0,222797927
144	34	2,158362492	0,236111111	194	44	2,28780173	0,226804124
$\frac{144}{145}$	34	2,161368002	0,234482759	 $\frac{194}{195}$	44	2,290034611	0,225641026
$\frac{145}{146}$	34	2,161308002	0,234482739	 196	44	2,290034011	0,224489796
$\frac{140}{147}$	34	2,167317335	0,232870712	 $\frac{190}{197}$	44	2,292230071	0,223350254
$\frac{147}{148}$	34	2,170261715	0,231292317	 197	45	2,294400220	
	34				45	-	0,227272727
149		2,173186268	0,228187919	199		2,298853076	0,226130653
150	35	2,176091259	0,233333333	200	46	2,301029996	0,23

	()	1 ()	() (-		()		
<u>n</u>	$\frac{\pi(n)}{n}$	log(n)	$\frac{\pi(n)/n}{}$		n	$\frac{\pi(n)}{\pi(n)}$	log(n)	
201	46	2,303196057	0,228855721		251	53	2,399673721	
202	46	2,305351369	0,227722772		252	54	2,401400541	
203	46	2,307496038	0,226600985		253	54	2,403120521	
204	46	2,309630167	0,225490196		254	54	2,404833717	
205	46	2,311753861	0,224390244		255	54	2,40654018	
206	46	2,31386722	0,223300971	_	256	54	2,408239965	
207	46	2,315970345	0,22222222	_	257	54	2,409933123	
208	46	2,318063335	$0,\!221153846$		258	55	2,411619706	
209	46	$2,\!320146286$	$0,\!220095694$		259	55	$2,\!413299764$	
210	46	$2,\!322219295$	0,219047619		260	55	2,414973348	
211	46	2,324282455	0,218009479		261	55	2,416640507	
212	47	2,326335861	0,221698113	-	262	55	2,418301291	
213	47	2,328379603	0,220657277	-	263	55	2,419955748	
214	47	2,330413773	0,219626168	-	264	56	2,421603927	
215	47	2,33243846	0,218604651		265	56	2,423245874	
216	47	2,334453751	0,217592593	-	266	56	2,424881637	
217	47	2,336459734	0,216589862	-	267	56	2,426511261	
218	47	2,338456494	0,21559633	-	268	56	2,428134794	
219	47	2,340444115	0,214611872		269	56	2,42975228	_
220	47	2,342422681	0,213636364		270	57	2,431363764	
221	47	2,344392274	0,213659504		271	57	2,431909704	
222	47	2,346352974	0,211711712	-	272	58	2,434568904	
223	47	2,348304863	0,211711712		273	58	2,436162647	
224	48	2,350248018	0,210702332		274	58	2,437750563	
225	48	2,352182518	0,214283714		275	58	2,437730303	_
226	48	2,352102310	0,213333333		276	58	2,440909082	
227	48	2,356025857	0,212389381		277	58	2,442479769	
228	49	2,357934847	0,214912281		278	59	2,444044796	
229	49	2,359835482	0,213973799		279	59	2,445604203	
230	50	2,361727836	0,217391304		280	59	2,447158031	_
231	50	2,36361198	0,216450216		281	59	2,44870632	
232	50	2,365487985	0,215517241		282	60	2,450249108	_
233	50	2,367355921	0,214592275		283	60	2,451786436	_
234	51	2,369215857	0,217948718		284	61	2,45331834	
235	51	2,371067862	0,217021277		285	61	2,45484486	_
236	51	2,372912003	0,216101695		286	61	2,456366033	
237	51	2,374748346	0,215189873		287	61	2,457881897	
238	51	2,376576957	0,214285714		288	61	2,459392488	
239	51	2,378397901	0,213389121		289	61	2,460897843	
240	52	2,380211242	0,216666667	_	290	61	2,462397998	
241	52	2,382017043	0,215767635	_	291	61	2,463892989	
242	53	2,383815366	0,219008264		292	61	2,465382851	
243	53	2,385606274	0,218106996	-	293	61	2,46686762	
244	53	2,387389826	0,217213115		294	62	2,46834733	
245	53	2,389166084	0,216326531		295	62	2,469822016	
246	53	2,390935107	0,215447154	-	296	62	2,471291711	
247	53	2,392696953	0,214574899	-	297	62	2,472756449	
248	53	2,394451681	0,213709677		298	62	2,474216264	
249	53	2,396199347	0,212851406		299	62	2,475671188	
250	53	2,397940009	0,212		300	62	2,477121255	
200		2,001040000	0,212	-	500	- 02	2,11,121200	

	$\pi(n)$	$\log(n)$	$\pi(n)/n$		$\pi(n)$	$\log(n)$	$\pi(n)/n$
301	62	2,478566496	0,205980066	351	70	2,545307116	0,199430199
302	62	2,480006943	0,205298013	352	70	2,546542663	0,198863636
303	62	2,481442629	0,204620462	353	70	2,547774705	0,198300283
304	62	2,482873584	0,203947368	354	71	2,549003262	0,200564972
305	62	2,484299839	0,203278689	355	71	2,550228353	0,2
306	62	2,485721426	0,202614379	356	71	2,551449998	0,199438202
307	62	2,487138375	0,201954397	357	71	2,552668216	0,198879552
308	63	2,488550717	0,204545455	358	71	2,553883027	0,198324022
309	63	2,489958479	0,203883495	359	71	2,555094449	0,197771588
310	63	2,491361694	0,203225806	360	72	2,556302501	0,2
311	63	2,492760389	0,202572347	361	72	2,557507202	0,199445983
312	64	2,494154594	0,205128205	362	72	2,558708571	0,198895028
313	64	2,495544338	0,204472843	363	72	2,559906625	0,198347107
314	65	2,496929648	0,207006369	364	72	2,561101384	0,197802198
315	65	2,498310554	0,206349206	365	72	2,562292864	0,197260274
316	65	2,499687083	0,205696203	366	72	2,563481085	0,196721311
317	65	2,501059262	0,205047319	367	72	2,564666064	0,196185286
318	66	2,501033202	0,20754717	368	73	2,565847819	0,198369565
319	66	2,503790683	0,206896552	369	73	2,567026366	0,197831978
$\frac{319}{320}$	66	2,505149978	0,20625	$\frac{309}{370}$	73	2,568201724	0,197831978
$\frac{320}{321}$	66	2,506505032	0,205607477	371	73	2,56937391	0,197237237
$\frac{321}{322}$	66	2,507855872	0,203007477	$\frac{371}{372}$	73	2,57054294	0,196236559
323	66	2,509202522	0,204334365	373	73	2,571708832	0,195710456
$\frac{323}{324}$	66	2,51054501	0,204334303	$\frac{373}{374}$	74	, , , , , , , , , , , , , , , , , , ,	0,193710430
$\frac{324}{325}$	66	2,511883361	0,203076923	$\frac{374}{375}$	74	2,572871602 2,574031268	0,197800903
$\frac{326}{326}$	66	2,5132176	0,203070923	376	74	2,575187845	0,196808511
$\frac{320}{327}$	66	2,514547753	0,202433368	377	74	2,57634135	0,196286472
$\frac{327}{328}$	66	2,514547755	0,201334302	378	74	2,5774918	0,195767196
329	66	2,517195898	0,201213312	379	74	2,57863921	0,195767196
$\frac{329}{330}$	66	2,51851394	0,200007903	$\frac{379}{380}$	75	2,579783597	0,197368421
331	66	2,519827994	0,19939577	381	75	2,580924976	0,197308421
332	67	2,521138084		382	75	2,580924970	
333	67	2,522444234	0,201807229 0,201201201	$\frac{382}{383}$	75	2,582003303	$0,196335079 \\ 0,195822454$
334				$\frac{383}{384}$	76		
	67	2,523746467	0,200598802			2,584331224	0,197916667
$\frac{335}{336}$	67 67	2,525044807 2,526339277	$0,2 \\ \hline 0,199404762$	$\frac{385}{386}$	76 76	2,58546073 2,586587305	0,197402597 0,196891192
$\frac{330}{337}$	67	2,527629901	0,199404762	$\frac{380}{387}$	76	2,580387303	0,196382429
$\frac{337}{338}$	68	2,527629901	0,198813030	$\frac{388}{388}$	76	2,588831726	0,196382429
339		2,530199698		389	76		
$\frac{339}{340}$	68 68	2,530199698	$0,200589971 \\ \hline 0,2$	$\frac{389}{390}$	77	2,589949601 2,591064607	0,195372751 0,197435897
$\frac{340}{341}$	68	2,532754379	0,19941349	391	77	2,591004007	0,197455897
342	68	2,534026106	0,19941349	$\frac{391}{392}$	77	2,592170737	0,196428571
$\frac{342}{343}$	68	2,53529412	0,198850409	$\frac{392}{393}$	77	2,593280007	0,196428571
344	68	2,536558443	0,198250729	394	77	2,59439255	0,195928755
$\frac{344}{345}$	68	2,536558443	0,197674419	$\frac{394}{395}$	77	2,595496222	
$\frac{345}{346}$	68	2,537819095	0,197101449 $0,196531792$	396	77		0,194936709 0,194444444
			-		77	2,597695186	
$\frac{347}{348}$	68	2,540329475	0,195965418	$\frac{397}{308}$		2,598790507	0,19395466
348	69	2,541579244	0,198275862	398	78	2,599883072	0,195979899
349	69 70	2,542825427	0,197707736	399	78	2,600972896	0,195488722
350	70	2,544068044	0,2	400	78	2,602059991	0,195

	()	1 ()	() (-		()	1 ()	
n	$\pi(n)$	$\log(n)$	$\pi(n)/n$		n	$\pi(n)$	$\log(n)$	$\pi(n)/n$
401	78	2,603144373	0,194513716		451	87	2,654176542	0,192904656
402	79	2,604226053	0,196517413		452	87	2,655138435	0,192477876
403	79	2,605305046	0,196029777		453	87	2,656098202	0,19205298
404	79	2,606381365	0,195544554	<u>.</u>	454	87	2,657055853	0,191629956
405	79	2,607455023	0,195061728		455	87	2,658011397	0,191208791
406	79	2,608526034	0,194581281		456	87	2,658964843	0,190789474
407	79	2,609594409	0,194103194		457	87	2,6599162	0,190371991
408	79	2,610660163	0,193627451		458	88	2,660865478	0,192139738
409	79	2,611723308	$0,\!193154034$	_	459	88	2,661812686	0,191721133
410	80	$2,\!612783857$	$0,\!195121951$		460	88	$2,\!662757832$	0,191304348
411	80	$2,\!613841822$	$0,\!194647202$		461	88	2,663700925	0,190889371
412	80	2,614897216	0,194174757		462	89	2,664641976	0,192640693
413	80	2,615950052	0,1937046		463	89	2,665580991	0,192224622
414	80	2,617000341	0,193236715	•	464	90	2,666517981	0,193965517
415	80	2,618048097	0,192771084	-	465	90	2,667452953	0,193548387
416	80	2,619093331	0,192307692	•	466	90	2,668385917	0,193133047
417	80	2,620136055	0,191846523	•	467	90	2,669316881	0,192719486
418	80	2,621176282	0,19138756	-	468	91	2,670245853	0,19444444
419	80	2,622214023	0,190930788		469	91	2,671172843	0,194029851
420	81	2,62324929	0,192857143		470	91	2,672097858	0,193617021
421	81	2,624282096	0,19239905	•	471	91	2,673020907	0,193205945
422	82	2,625312451	0,194312796		472	91	2,673941999	0,19279661
423	82	2,626340367	0,193853428	-	473	91	2,674861141	0,192389006
424	82	2,627365857	0,193396226		474	91	2,675778342	0,191983122
425	82	2,62838893	0,192941176		475	91	2,67669361	0,191578947
426	82	2,629409599	0,192488263	•	476	91	2,677606953	0,191176471
427	82	2,630427875	0,192037471	•	477	91	2,678518379	0,190775681
428	82	2,631443769	0,192037471	-	478	91	2,679427897	0,190376569
429	82	2,632457292	0,191142191		479	91	2,680335513	0,189979123
$\frac{429}{430}$	82	-	-	-	480	92	-	-
		2,633468456	0,190697674				2,681241237	0,191666667
431	82	2,63447727	0,19025522	•	481	92	2,682145076	0,191268191
432	83	2,635483747	0,19212963		482	92	2,683047038	0,190871369
433	83	2,636487896	0,191685912		483	92	2,683947131	0,19047619
434	84	2,63748973	0,193548387	<u>.</u>	484	92	2,684845362	0,190082645
435	84	2,638489257	0,193103448	•	485	92	2,685741739	0,189690722
436	84	2,639486489	0,19266055	•	486	92	2,686636269	0,189300412
437	84	2,640481437	0,19221968		487	92	2,687528961	0,188911704
438	84	2,641474111	0,191780822		488	93	2,688419822	0,19057377
439	84	2,64246452	0,191343964	-	489	93	2,689308859	0,190184049
440	85	2,643452676	0,193181818		490	93	2,69019608	0,189795918
441	85	2,644438589	0,192743764		491	93	2,691081492	0,189409369
442	85	2,645422269	0,192307692		492	94	2,691965103	0,191056911
443	85	2,646403726	0,191873589		493	94	2,692846919	0,190669371
444	86	2,64738297	0,193693694	-	494	94	2,693726949	0,190283401
445	86	2,648360011	$0,\!193258427$		495	94	2,694605199	0,18989899
446	86	2,649334859	$0,\!192825112$		496	94	2,695481676	0,189516129
447	86	2,650307523	0,192393736	_	497	94	2,696356389	0,189134809
448	86	2,651278014	0,191964286		498	94	2,697229343	0,18875502
449	86	2,652246341	0,191536748	•	499	94	2,698100546	0,188376754
450	87	2,653212514	0,193333333	•	500	95	2,698970004	0,19
				•				

n	$\pi(n)$	$\log(n)$	$\pi(n)/n$		n	$\pi(n)$	$\log(n)$	$\pi(n)/n$
501	95	2,699837726	0,189620758		551	101	2,741151599	0,183303085
502	95	2,700703717	0,189243028		552	101	2,741939078	0,182971014
503	95	2,701567985	0,188866799		553	101	2,742725131	0,182640145
504	96	2,702430536	0,19047619		554	101	2,743509765	0,182310469
505	96	2,703291378	0,19009901		555	101	2,744292983	0,181981982
506	96	2,704150517	0,18972332		556	101	2,745074792	0,181654676
507	96	2,705007959	0,189349112		557	101	2,745855195	0,181328546
508	96	2,705863712	0,188976378		558	102	2,746634199	0,182795699
509	96	2,706717782	0,188605108		559	102	2,747411808	0,182468694
510	97	2,707570176	0,190196078		560	102	2,748188027	0,182142857
511	97	2,7084209	0,189823875		561	102	2,748962861	0,181818182
512	97	2,709269961	0,189453125		562	102	2,749736316	0,181494662
513	97	2,710117365	0,189083821		563	102	2,750508395	0,181172291
514	97	2,710963119	0,188715953		564	103	2,751279104	0,182624113
515	97	2,711807229	0,188349515		565	103	2,752048448	0,182300885
516	97	2,712649702	0,187984496		566	103	2,752816431	0,181978799
517	97	2,713490543	0,18762089		567	103	2,753583059	0,181657848
518	97	2,71432976	0,187258687		568	103	2,754348336	0,181338028
519	97	2,715167358	0,186897881		569	103	2,755112266	0,181019332
520	97	2,716003344	0,186538462		570	104	2,755874856	0,18245614
521	97	2,716837723	0,186180422		571	104	2,756636108	0,182136602
522	98	2,717670503	0,187739464		572	105	2,757396029	0,183566434
523	98	2,718501689	0,187380497		573	105	2,758154622	0,183246073
524	99	2,719331287	0,188931298		574	105	2,758911892	0,182926829
525	99	2,720159303	0,188571429		575	105	2,759667845	0,182608696
526	99	2,720985744	0,188212928		576	105	2,760422483	0,182291667
527	99	2,721810615	0,187855787		577	105	2,761175813	0,181975737
528	99	2,722633923	0,1875		578	106	2,761927838	0,183391003
529	99	2,723455672	0,187145558		579	106	2,762678564	0,183074266
530	99	2,72427587	0,186792453		580	106	2,763427994	0,182758621
531	99	2,725094521	0,186440678		581	106	2,764176132	0,182444062
532	99	2,725911632	0,186090226		582	106	2,764922985	0,182130584
533	99	2,726727209	0,185741088		583	106	2,765668555	0,181818182
534	99	2,727541257	0,185393258		584	106	2,766412847	0,181506849
535	99	2,728353782	0,185046729		585	106	2,767155866	0,181196581
536	99	2,72916479	0,184701493		586	106	2,767897616	0,180887372
537	99	2,729974286	0,184357542		587	106	2,768638101	0,180579216
538	99	2,730782276	0,18401487		588	107	2,769377326	0,181972789
539	99	2,731588765	0,183673469	,	589	107	2,770115295	0,181663837
540	99	2,73239376	0,183333333		590	107	2,770852012	0,181355932
541	99	2,733197265	0,182994455		591	107	2,771587481	0,181049069
542	100	2,733999287	0,184501845	,	592	107	2,772321707	0,180743243
543	100	2,73479983	0,184162063		593	107	2,773054693	0,180438449
544	100	2,7355989	0,183823529		594	108	2,773786445	0,181818182
545	100	2,736396502	0,183486239	•	595	108	2,774516966	0,181512605
546	100	2,737192643	0,183150183	•	596	108	2,77524626	0,181208054
547	100	2,737987326	0,182815356		597	108	2,775974331	0,180904523
548	101	2,738780558	0,184306569		598	108	2,776701184	0,180602007
549	101	2,739572344	0,183970856		599	108	2,777426822	0,180300501
550	101	2,740362689	0,183636364		600	109	2,77815125	0,181666667

n	$\pi(n)$	$\log(n)$	$\pi(n)/n$	n	$\pi(n)$	$\log(n)$	$\pi(n)/n$
601	109	2,778874472	0,181364393	651	118	2,813580989	0,181259601
602	110	2,779596491	0,182724252	652	118	2,814247596	0,180981595
603	110	2,780317312	0,182421227	653	118	2,814913181	0,180704441
604	110	2,781036939	0,182119205	654	119	2,815577748	0,181957187
605	110	2,781755375	0,181818182	655	119	2,8162413	0,181679389
606	110	2,782472624	0,181518152	656	119	2,816903839	0,181402439
607	110	2,783188691	0,18121911	657	119	2,81756537	0,181126332
608	111	2,783903579	0,182565789	658	119	2,818225894	0,180851064
609	111	2,784617293	0,18226601	659	119	2,818885415	0,180576631
610	111	2,785329835	0,181967213	 660	120	2,819543936	0,181818182
611	111	2,78604121	0,181669394	661	120	2,820201459	0,181543116
612	111	2,786751422	0,181372549	662	121	2,820857989	0,182779456
613	111	2,787460475	0,181076672	663	121	2,821513528	0,182503771
614	112	2,788168371	0,182410423	664	121	2,822168079	0,182228916
615	112	2,788875116	0,182113821	665	121	2,822821645	0,181954887
616	112	2,789580712	0,181818182	666	121	2,823474229	0,181681682
617	112	2,790285164	0,181523501	667	121	2,824125834	0,181409295
618	113	2,790988475	0,182847896	668	121	2,824776462	0,181137725
619	113	2,791690649	0,182552504	669	121	2,825426118	0,180866966
620	114	2,792391689	0,182332304	670	121	2,826074803	0,180597015
621	114	2,7930916	0,183574879	671	121	2,82672252	0,180327869
622	114	2,793790385	0,183279743	672	121	2,827369273	0,180059524
623	114	2,794488047	0,182985554	673	121	2,828015064	0,179791976
624	114	2,79518459	0,182692308	674	122	2,828659897	0,181008902
$\frac{624}{625}$	114	2,795880017	0,1824	 675	122		0,181008302
626	114	2,796574333	0,182108626	676	122	2,829303773 2,829946696	0,180473373
627	114	2,797267541	0,182108020	677	122	2,830588669	0,180206795
628	114	2,797207341	0,181528662	678	123	2,830388009	0,180200793
629	114	2,798650645	0,181240064	679	123	2,831869774	0,181148748
630	114	2,798030043	0,181240004	680	123	2,832508913	0,181148748
631	114	2,800029359	0,18066561	681	123	2,832306313	0,18061674
632	115	2,800717078	0,181962025	682	123	2,833784375	0,180351906
633	115	2,800717078	0,181674566	683	123	2,8334420704	0,180087848
634	115	2,802089258	0,181388013	684	124	2,835056102	
635	115	2,802083238	0,181303013	 685	124	2,835690571	$\frac{0,18128655}{0,181021898}$
636	115	2,802773725	0,181102302	686	124	2,836324116	0,181021898
637	115	2,803437110	0,180533752	687	124	2,836956737	0,180494905
638	115	2,804139432	0,180250784	688	124	2,837588438	0,180232558
639	115	2,805500858	0,179968701	689	124	2,837368438	0,180232338 $0,179970972$
640	115	2,805300838	0,1796875	690	124	2,838219222	0,179970972 $0,179710145$
641	115	2,80685803	0,179407176	691	124	2,839478047	0,179450072
642	116			692	125	-	
643	116	2,807535028	0,180685358	693	125	2,840106094	0,180635838
	117	2,808210973	0,180404355		125	2,840733235	0,18037518
644		2,808885867	0,181677019	 694		2,84135947	0,180115274
645	117	2,809559715	0,181395349	695	125	2,841984805	0,179856115
646	117	2,810232518	0,181114551	696	125	2,84260924	0,179597701
647	117	2,810904281	0,180834621	697	125	2,843232778	0,179340029
648	118	2,811575006	0,182098765	698	125	2,843855423	0,179083095
649	118	2,812244697	0,181818182	 699	125	2,844477176	0,178826896
650	118	2,812913357	0,181538462	 700	125	2,84509804	0,178571429

	$\pi(n)$	$\log(n)$	$\frac{\pi(n)/n}{\pi(n)}$	_	n	$\pi(n)$	$\log(n)$	$\frac{\pi(n)/n}{\pi(n)}$
701	125	2,845718018	0,17831669	_	751	132	2,875639937	0,175765646
702	126	2,846337112	0,179487179	_	752	133	2,876217841	0,176861702
703	126	2,846955325	0,179231863	_	753	133	2,876794976	0,176626826
704	126	2,847572659	0,178977273	_	754	133	2,877371346	0,176392573
705	126	2,848189117	0,178723404	_	755	133	2,877946952	0,17615894
706	126	2,848804701	0,178470255	_	756	133	2,878521796	0,175925926
707	126	2,849419414	0,178217822	_	757	133	2,87909588	0,175693527
708	126	2,850033258	0,177966102	_	758	134	2,879669206	0,176781003
709	126	2,850646235	0,177715092	_	759	134	2,880241776	0,17654809
710	127	2,851258349	0,178873239	_	760	134	2,880813592	0,176315789
711	127	2,851869601	0,17862166	_	761	134	2,881384657	0,1760841
712	127	2,852479994	0,178370787	_	762	135	2,881954971	0,177165354
713	127	2,85308953	0,178120617	_	763	135	2,882524538	0,176933159
714	127	2,853698212	0,177871148	_	764	135	2,883093359	0,176701571
715	127	2,854306042	0,177622378	_	765	135	2,883661435	0,176470588
716	127	2,854913022	0,177374302	_	766	135	2,88422877	0,176240209
717	127	2,855519156	0,177126918	_	767	135	2,884795364	0,17601043
718	127	2,856124444	0,176880223	_	768	135	2,88536122	0,17578125
719	127	2,85672889	0,176634214	_	769	135	2,88592634	0,175552666
720	128	2,857332496	0,17777778	_	770	136	2,886490725	0,176623377
721	128	2,857935265	0,177531207	_	771	136	2,887054378	0,176394293
722	128	2,858537198	0,177285319	_	772	136	2,8876173	0,176165803
723	128	2,859138297	0,177040111	_	773	136	2,888179494	0,175937904
724	128	2,859738566	0,17679558	_	774	137	2,888740961	0,177002584
725	128	2,860338007	0,176551724	_	775	137	2,889301703	0,176774194
726	128	2,860936621	0,17630854	_	776	137	2,889861721	0,176546392
727	128	2,861534411	0,176066025	_	777	137	2,890421019	0,176319176
728	129	2,862131379	0,177197802		778	137	2,890979597	0,176092545
729	129	2,862727528	0,176954733	_	779	137	2,891537458	0,175866496
730	129	2,86332286	0,176712329	_	780	137	2,892094603	0,175641026
731	129	2,863917377	0,176470588		781	137	2,892651034	0,175416133
732	129	2,864511081	0,176229508	_	782	137	2,893206753	0,175191816
733	129	2,865103975	0,175989086		783	137	2,893761762	0,174968072
734	130	2,86569606	0,177111717	_	784	137	2,894316063	0,174744898
735	130	2,866287339	0,176870748	_	785	137	2,894869657	0,174522293
736	130	2,866877814	0,176630435		786	137	2,895422546	0,174300254
737	130	2,867467488	0,176390773		787	137	2,895974732	0,17407878
738	130	2,868056362	$0,\!176151762$		788	138	2,896526217	0,175126904
739	130	2,868644438	0,175913396		789	138	2,897077003	0,174904943
740	131	2,86923172	$0,\!177027027$		790	138	2,897627091	0,174683544
741	131	2,869818208	0,176788124		791	138	2,898176483	$0,\!174462705$
742	131	2,870403905	0,176549865	_	792	138	2,898725182	0,174242424
743	131	2,870988814	0,176312248	_	793	138	2,899273187	0,174022699
744	132	2,871572936	0,177419355	_	794	138	2,899820502	0,173803526
745	132	2,872156273	0,177181208	_	795	138	2,900367129	0,173584906
746	132	2,872738827	0,1769437	_	796	138	2,900913068	0,173366834
747	132	2,873320602	0,176706827	_	797	138	2,901458321	0,17314931
748	132	2,873901598	0,176470588	_	798	139	2,902002891	0,174185464
749	132	2,874481818	0,17623498	_	799	139	2,902546779	0,173967459
750	132	2,875061263	0,176	_	800	139	2,903089987	0,17375

n	$\pi(n)$	$\log(n)$	$\pi(n)/n$	n	$\pi(n)$	$\log(n)$	$\pi(n)/n$
801	139	2,903632516	0,173533084	851	146	2,92992956	0,171562867
802	139	2,904174368	0,173316708	852	146	2,930439595	0,171361502
803	139	2,904715545	0,173100872	853	146	2,930949031	0,17116061
804	139	2,905256049	0,172885572	854	147	2,931457871	0,172131148
805	139	2,90579588	0,172670807	855	147	2,931966115	0,171929825
806	139	2,906335042	0,172456576	856	147	2,932473765	0,171728972
807	139	2,906873535	0,172242875	857	147	2,932980822	0,171528588
808	139	2,907411361	0,172029703	858	148	2,933487288	0,172494172
809	139	2,907948522	0,171817058	859	148	2,933993164	0,172293364
810	140	2,908485019	0,172839506	860	149	2,934498451	0,173255814
811	140	2,909020854	0,172626387	861	149	2,935003151	0,173054588
812	141	2,909556029	0,17364532	862	149	2,935507266	0,172853828
813	141	2,910090546	0,173431734	863	149	2,936010796	0,172653534
814	141	2,910624405	0,173218673	864	150	2,936513742	0,173611111
815	141	2,911157609	0,173006135	865	150	2,937016107	0,173410405
816	141	2,911690159	0,172794118	866	150	2,937517892	0,173210162
817	141	2,912222057	0,172582619	867	150	2,938019097	0,173010381
818	141	2,912753304	0,172371638	868	150	2,938519725	0,17281106
819	141	2,913283902	0,172161172	869	150	2,939019776	0,172612198
820	141	2,913813852	0,17195122	870	150	2,939519253	0,172413793
821	141	2,914343157	0,171741778	871	150	2,940018155	0,172215844
822	142	2,914871818	0,172749392	872	150	2,940516485	0,172018349
823	142	2,915399835	0,17253949	873	150	2,941014244	0,171821306
824	143	2,915927212	0,173543689	874	150	2,941511433	0,171624714
825	143	2,916453949	0,173333333	875	150	2,942008053	0,171428571
826	143	2,916980047	0,173123487	876	150	2,942504106	0,171232877
827	143	2,91750551	0,172914148	877	150	2,942999593	0,171037628
828	144	2,918030337	0,173913043	878	151	2,943494516	0,171981777
829	144	2,918554531	0,173703257	879	151	2,943988875	0,171786121
830	145	2,919078092	0,174698795	880	151	2,944482672	0,171590909
831	145	2,919601024	0,174488568	881	151	2,944975908	0,171396141
832	145	2,920123326	0,174278846	882	152	2,945468585	0,172335601
833	145	2,920645001	0,174069628	883	152	2,945960704	0,17214043
834	145	2,921166051	0,173860911	884	153	2,946452265	0,173076923
835	145	2,921686475	0,173652695	885	153	2,946943271	0,172881356
836	145	2,922206277	0,173444976	886	153	2,947433722	0,17268623
837	145	2,922725458	0,173237754	887	153	2,94792362	0,172491545
838	145	2,923244019	0,173031026	888	154	2,948412966	0,173423423
839	145	2,923761961	0,172824791	889	154	2,948901761	0,173228346
840	146	2,924279286	0,173809524	890	154	2,949390007	0,173033708
841	146	2,924795996	0,173602854	891	154	2,949877704	0,172839506
842	146	2,925312091	0,173396675	892	154	2,950364854	0,17264574
843	146	2,925827575	0,173190985	893	154	2,950851459	0,172452408
844	146	2,926342447	0,172985782	894	154	2,951337519	0,172259508
845	146	2,926856709	0,172781065	895	154	2,951823035	0,172067039
846	146	2,927370363	0,172576832	896	154	2,95230801	0,171875
847	146	2,92788341	0,172373081	897	154	2,952792443	0,171683389
848	146	2,928395852	0,172169811	898	154	2,953276337	0,171492205
849	146	2,92890769	0,17196702	899	154	2,953759692	0,171301446
850	146	2,929418926	0,171764706	900	154	2,954242509	0,171111111

	n	π(n)	log(p)	$\sigma(n)/n$
	901	$\frac{\pi(n)}{154}$	$\log(n)$ 2,954724791	$\frac{\pi(n)/n}{0,170921199}$
	902	154	2,955206538	0,170731707
	903	154	2,95568775	0,170731707
	904	154	2,95616843	0,170353982
	905	154	2,956648579	0,170165746
	906	154	2,957128198	0,169977925
	907	154	2,957607287	0,169790518
	908	155	2,958085849	0,170704846
	909	155	2,958563883	0,170517052
	910	155	2,959041392	0,170317032
	911	155	2,959518377	0,17032307
	912	156		
	913		2,959994838	0,171052632
		156	2,960470778	0,170865279
	914	156	2,960946196	0,170678337
	915	156	2,961421094	0,170491803
	916	156	2,961895474	0,170305677
	917	156	2,962369336	0,170119956
99 99 99 99 99 99 99 99 99 99 99 99 99	918	156	2,962842681	0,169934641
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 998 999 999	919	156	2,963315511	0,169749728
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997	920	157	2,963787827	0,170652174
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997	921	157	2,96425963	0,170466884
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998	922	157	2,964730921	0,170281996
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997	923	157	2,965201701	0,170097508
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997	924	157	2,965671971	0,16991342
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997	925	157	2,966141733	0,16972973
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998	926	157	2,966610987	0,169546436
979 1 980 1 981 1 982 1 983 1 984 1 985 1 986 1 987 1 988 1 990 1 991 1 992 1 993 1 994 1 995 1 996 1 997 1 998 1	927	157	2,967079734	0,169363538
980 16 981 16 982 16 983 16 984 16 985 16 986 16 987 16 988 16 990 16 991 16 992 16 993 16 994 16 995 16 996 16 997 16 998 16	928	157	2,967547976	0,169181034
981 163 982 163 983 163 984 166 985 166 986 166 987 166 989 166 990 166 991 166 992 167 993 167 994 167 995 167 996 167 998 168	929	157	2,968015714	0,168998924
982 165 983 165 984 166 985 166 986 166 987 166 988 166 989 166 990 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	930	158	2,968482949	0,169892473
983 165 984 166 985 166 986 166 987 166 988 166 989 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	931	158	2,968949681	0,169709989
984 166 985 166 986 166 987 166 988 166 989 166 990 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	932	158	2,969415912	0,169527897
985 166 986 166 987 166 988 166 989 166 990 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	933	158	2,969881644	0,169346195
986 166 987 166 988 166 989 166 990 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168	934	158	2,970346876	0,169164882
987 166 988 166 989 166 990 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	935	158	2,970811611	0,168983957
988 166 989 166 990 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	936	158	2,971275849	0,168803419
989 166 990 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	937	158	2,971739591	0,168623266
990 166 991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	938	159	2,972202838	0,169509595
991 166 992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	939	159	2,972665592	0,169329073
992 167 993 167 994 167 995 167 996 167 997 167 998 168 999 168	940	159	2,973127854	0,169148936
993 167 994 167 995 167 996 167 997 167 998 168 999 168	941	159	2,973589623	0,168969182
994 167 995 167 996 167 997 167 998 168 999 168	942	160	2,974050903	0,16985138
995 167 996 167 997 167 998 168 999 168	943	160	2,974511693	0,169671262
996 167 997 167 998 168 999 168	944	160	2,974971994	0,169491525
996 167 997 167 998 168 999 168	945	160	2,975431809	0,169312169
997 167 998 168 999 168	946	160	2,975891136	0,169133192
998 168 999 168	947	160	2,976349979	0,168954593
999 168	948	161	2,976808337	0,169831224
	949	161	2,977266212	0,169652266
1000 100	950			
	950	161	2,977723605	0,169473684

Observação: (a) Os valores na segunda coluna (valores da função $\pi(n)$) foram obtidos mediante ao uso de uma fórmula do Excel (a saber CONT.SES()). (b) À medida que os valores de n crescem, os valores de $\rho(n)$ tendem a zero (deforma lenta)

Gráfico de dispersão da função $\rho(n)=\frac{\pi(n)}{n}$ com valores de n logaritmizados

Figura 2 – Gráfico de dispersão de $\rho(n)$

Fonte – Elaborado pelo autor

13B

A lei de Weber-Fechner tenta descrever a relação existente entre a magnitude física de um estímulo e a intensidade do estímulo que é percebida. Pode ser enunciada como: "a resposta a qualquer estímulo é proporcional ao logaritmo da intensidade do estímulo". Esta lei aplica-se aos 5 sentidos, mas as suas implicações são mais bem entendidas quando se refere aos estímulos provocados pela luz e pelo som. É decorrente do fenômeno assim descrito, que as medidas de percepção da intensidade sonora pelo ouvido humano, e luminosa pelos órgãos de visão, são feitas por gran-

dezas logarítmicas. É o caso do Decibel (dB) definido como 10 vezes o logaritmo decimal da intensidade sonora. A mesma grandeza logarítmica descreve também a intensidade luminosa percepcionada, sendo genericamente usada em óptica e engenharia. (WIKIPEDIA)

Ernst Heinrich Weber (1795–1878) foi um dos primeiros a fazer uma aproximação ao estudo da resposta do ser humano a um estímulo físico de uma maneira quantitativa. Gustav Theodor Fechner (1801–1887) mais tarde elaborou uma interpretação teórica elaborada sobre as descobertas de Weber. (Encyclopædia Britannica Online)

Com base nas afirmações anteriores, no que Gauss já havia constatado em suas observações feitas na tabela por ele construída (onde relacionava os valores de n= "posição de um número na sequência crescente de primos" e a densidade média $\rho(n)=\frac{\pi(n)}{n}$, onde:

 $\pi(n)$ = "quantidade de números primos existentes no intervalo [0, n]''

e, posteriormente, substituindo os valores de n por log(n)), e verificando-se, tabuladamente (tabela construída no Excel), constatamos que:

$$\lim_{n\to\infty}\frac{\rho(n)}{\frac{1}{\log(n)}}=\lim_{n\to\infty}\frac{\pi(n)}{n}\log(n)=1.$$