Errata in Stochastic Processes, Theory for Applications

The following list of typos and errata, as of 3/25/17, will be kept up to date as new errors are found. I would greatly appreciate anyone finding errors to let me know at gallager@mit.edu.

p10, line 9 and the following equation should be:

for any disjoint events, A_1, A_2, \ldots , and any event B with $Pr\{B\} > 0$,

$$\Pr\left\{\left(\bigcup_{n} A_{n}\right) \mid B\right\} = \sum_{n} \Pr\left\{A_{n} \mid B\right\}.$$

p31, Eq. 1.54: ... $\exp(-i2\pi\theta)$... should be ... $\exp(-i2\pi\theta x)$...

p31, Eq. 1.55: ...dx... should be ... $d\theta$...

p61, Exer. 1.11b: $\dots \int_{\alpha}^{\infty} \mathsf{F}_X(x) \, dx + \int_{-\infty}^{\alpha} \mathsf{F}_X^{\mathsf{c}}(x) \, dx \dots$ should be $\dots \int_{-\infty}^{\alpha} \mathsf{F}_X(x) \, dx + \int_{\alpha}^{\infty} \mathsf{F}_X^{\mathsf{c}}(x) \, dx \dots$

p64, Exer. 1.22: ... $p_Y(m) = \mu^n e^{(-\mu)}/n!$... should be ... $p_Y(n) = \mu^n e^{(-\mu)}/n!$...

p68, Exer. 1.38b:for some $\alpha < 1$... should befor some α , $0 < \alpha < 1$...

p75, line 2 of Def. 2.2.3: ...rv (=1)... should be ...rv (i.e., $Pr\{X > 0\} = 1$)...

p96, line 6: ...IID... should be ...identically distributed...

p88: line 9 of Exam. 2.3.3: ...geometricly... should be ...geometrically...

p116, line 1 of Theorem 3.4.5: ...semi-definite... should be ...positive semi-definite...

p183, Figure 4.7: At the extreme right side of the figure, p_1 should be 1; also, on the self-transition above state 1, 1 should be p_1

p207, Exer. 4.20c: ...1 + [P] + ..., $[P^{d-1}]$... should be ...1 + [P] + ... + $[P^{d-1}]$...

p221, line 1: ...Using Lemma 5.3.2... should be ...Using Lemma 5.2.1...

p227, last line, ... $lim_{t\to 0}N(t)$... should be ... $lim_{t\to \infty}N(t)$...

p238, left middle part of the top displayed equation: ...1- for p=0.5... should be ... 1 for p=0.5...

p275, line 1 of Exer. 5.14: ...(over the limiting interval $(0, \infty)$ that... should be ...(over the limiting interval $(0, \infty)$) that...

p320, last eq. in Exer. 6.5: $\Pr\{T_{ji} > \infty\}$... should be ... $\Pr\{T_{ji} = \infty\}$...

p331, line 2 of final paragraph of Sec.7.2.1: ...indentically... should be ...identically...

p339, Displayed equation 8 lines from bottom should be:

$$[P(t)] = \begin{bmatrix} \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} & \frac{\lambda}{\lambda + \mu} - \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} \\ \frac{\mu}{\lambda + \mu} - \frac{\mu}{\lambda + \mu} e^{-(\lambda + \mu)t} & \frac{\lambda}{\lambda + \mu} + \frac{\mu}{\lambda + \mu} e^{-(\lambda + \mu)t} \end{bmatrix} \qquad [Q] = \begin{bmatrix} -\lambda & \lambda \\ \mu & -\mu \end{bmatrix}.$$

p345, Eq. 7.50 ... $q_{ij}^* = \nu_j P_{ij}^*$... should be ... $q_{ij}^* = \nu_i P_{ij}^*$...

p421, the unnumbered eq. before 9.6: $...Z_i^n = \sum_{j=1}^i U_{n-j}...$ should be $...Z_i^n = \sum_{j=0}^{i-1} U_{n-j}...$

p465, first eq.: ... $\sum_{j} \lambda(j) \ln \left[\mathsf{E} \left[X(j) \right] \right] \dots$ should be ... $\ln \left[\sum_{j} \lambda(j) \mathsf{E} \left[X(j) \right] \right] \dots$

p466, line 1 of final paragraph: ...submartingale... should be ...supermartingale...

p474, line 3 of Exer. 9.2: ... $X_i - Y_{i-1}$... should be ... $Y_{i-1} - X_i$...

p486, line 1: ...log-w!ealth... should be ...log-wealth...

p486, Replace parts a, b, and c of Exer. 9.37 with: **a)** Let $Z_n = \frac{1}{n}L_n(\lambda) - \mathsf{E}[Y(\lambda)]$ and explain why $\lim_{n\to\infty} Z_n = 0$ WP1. Let $A(n_o, \epsilon) = \{\omega : |Z_n(\omega)| \le \epsilon \text{ for all } n \ge n_o\}$. Consider an ω for which $\lim_{n\to\infty} Z_n(\omega) = 0$ and explain why $\omega \in A(n_o, \epsilon)$ for some n_o . **b)** Show that $\Pr\{\bigcup_{n_o=1}^{\infty} A(n_o, \epsilon)\} = 1$. **c)** Show that for any $\delta > 0$, there is an n_o large enough that $\Pr\{A(n_o, \epsilon)\} > 1 - \delta$. Hint: Use (1.9).

p490, Eq. 10.5: ... $\mathsf{E}\left[\boldsymbol{\xi}_{\mathrm{MMSE}}\,\hat{\boldsymbol{X}}_{\mathrm{MMSE}}^{\mathsf{T}}(\boldsymbol{Y})\right]... \text{ should be } ... \\ \mathsf{E}\left[\boldsymbol{\xi}_{\mathrm{MMSE}}\,\hat{\boldsymbol{X}}_{\mathrm{MMSE}}^{\mathsf{T}}(\boldsymbol{Y})\right] = 0...$

p492, Eq. 10.9: ...[G]y... should be ...[G]y...

p501, last line of Footnote 4: ...addional... should be ...additional...

p511, Eq. 10.91: ... $\beta E[Y_i]$... should be ... $\beta E[Y_i]$...

p525, line 2 of Exer. 10.6: ... $\boldsymbol{Y} = [H]\boldsymbol{X} + \boldsymbol{Z}$ should be ... $\boldsymbol{Y} = [H]\boldsymbol{X} + \boldsymbol{Z}$ where $\boldsymbol{X}, \boldsymbol{Z}$ are independent....

p525, line 1 of Exer.10.10: ... $(X = X_1, ..., X_n)^{\mathsf{T}}$... should be ... $X = (X_1, ..., X_n)^{\mathsf{T}}$...

p526, Exer. 10.12c: ... $[K_X] = 2([K_{re} - [K_{ri}])...$ should be ... $[K_X] = 2([K_{re} - i[K_{ri}])...$

p527, line 2 of Exer.10.15: ... $V_x(y)$... should be ... $v_x(y)$...

p527, lines 1, 2 of Exer. 10.16: ... $V_x(y)$... should be ... $v_x(y)$... at each appearance.