Problem	Tormulation 2: Criven sample points
	Tormulation 2: Criven sample points $x^{(i)} = x^{(i)} \in \mathbb{R}^{7}$, find the d-dimensional
	subspace S with the least mean
	squared ervor.
Setting:	Write {u',, u'd)} for an orthonormal

It suffices to maximize $\int_{-1}^{1} u^{(j)} T T u^{(j)}$ (a Rayleigh quotient)

derivation |

Conclusion: {u', u'd)} are eigenvectors

associated to the d largest eigenvalues

of XX

Roblem Formulation 3: Criven the sample matrix

X, find a meetrix with vanla d

that hest approximate X w.v.t.

the Frobenius norm, i.e.

min || X-A||² s.t. remb A = d.

derivation SVDs + von Neumann's in equality

Condusion: If
$$X = U \begin{pmatrix} \sigma_1 & & \\ & \sigma_{ro} \end{pmatrix} V^T$$
 where $V = rende X$

then
$$A = U \begin{pmatrix} \sigma_1 \\ \sigma_{d_0} \end{pmatrix} V^T$$

Related	topics: • def of Frobenius norm	
	· properties of trobenius norm,	
	· von Neumann's inequality.	