

Kit de Desenvolvimento

Técnicas de Prototipagem

Discente: Alexandre Sales Vasconcelos

Ana Beatriz de Araújo Farias Bianca Henrique Rangel Maria Luíza Teixeira Nascimento

Dezembro de 2022

POR QUE CRIAR UM KIT DE DESENVOLVIMENTO?

- Suprir necessidades.
- Incentivar alunos.
- Solucionar problemas reais.
- Profissionais capacitados e qualificados.
- Aprendizagem diferenciada.
- Teoria e prática.

KIT DE DESENVOLVIMENTO

- Criar e desenvolver um kit de desenvolvimento.
- **Técnicas de Prototipagem**, lecionada pelo professor Alexandre Sales Vasconcelos.
- Diagrama de blocos.
- Circuito elétrico.
- Layout PCB.
- Modelo 3D.
- Técnicas de fatiamento.

SOFTWARES E MÉTODOS UTILIZADOS

SOBRE O KIT DE DESENVOLVIMENTO

Quantidade	Descrição
1	Franzininho ESP32-S2
6	Push Button
8	LEDs 5mm
2	Display 7-seg
1	LCD TFT
1	Buzzer
1	Mini Protoboard 170 Pontos
1	Conector 4 vias UART - (RX, TX, VCC e GND)
1	Conector 4 vias I2C - (SDA, SCL, VCC e GND)
1	Conector 6 vias - SPI (MISO, MOSI, GPIOx, GPIOx, VCC e GND)
1	Conector 3 vias - 1-Wire (GPIO, VCC e GND)
2	Conector 3 vias - ADC (Ax, VCC e GND)
1	Conector 10 vias - Entrada/saída (8 GPIO, VCC e GND)

MODELAGEM DE BLOCOS

CRIAÇÃO DE BIBLIOTECAS

LED Verde 5mm

Franzininho

ESQUEMÁTICO

LAYOUT DA PCB

MODELO 3D DO KIT DE DESENVOLVIMENTO.

MODELO 3D DA CASE

FATIAMENTO DO PRUSA SLICER

- Construção de objetos.
- Modelo digital em objetos.
- GCODE.
- Fusion para Prusa Slicer
- Facilitar a manipulação do kit de desenvolvimento.
- Esses arquivos constam no github do projeto.

RESULTADOS / CONCLUSÕES DO PROJETO

- Colocar em prática estudos teóricos.
- Projeto real.
- Impacto a comunidade acadêmica.
- Tornar mais fácil o aprendizado.
- Perto da realidade do mercado de trabalho.

AGRADECIMENTOS

Obrigada pela atenção e espero que tenham entendido o desenvolvimento do nosso projeto e a forma como fizemos o uso dos softwares e metodologias. Foi um projeto em que conseguimos utilizar os conhecimentos teóricos e práticos vistos ao longo do período letivo, pensando em solucionar a uma necessidade real da comunidade acadêmica.