Сегодня мы попрактикуемся в визуализации данных. Простые графики удобно строить с помощью бибилотеки seaborn (также будет полезна matplotlib), для более "красивой"будем использовать plotly.

(Примеры можно посмотреть в файле Basic Examples)

Датасет с данными абитуриентов содержится в файле Priem.csv, остальные датасеты – в seaborn.

- 1. Построить на одном графики графики плотностей $\mathcal{N}(0,k), k=1,...,n$ (например, для n=7).
- 2. Моделировать 1000 реализаций с.в. $X \sim Bin(100,\,0.04)$ и с.в. $Y \sim Poiss(4)$. Построить столбцовые диаграммы отдельно и на одном графике, сравнить. То же для $X \sim Bin(1000,\,0.004)$ и $X \sim Bin(10,\,0.4)$.
- 3. Построить гистограммы баллов по математике и по русскому: а) по отдельности, б) на одном графике, сравнить их.
- 4. Построить диаграмму рассеяния баллов ЕГЭ по математике и по русскому.
- 5. Построить диаграмму рассеяния баллов ЕГЭ по математике и по русскому, разными цветами показав пол абитуриента.
- 6. Построить диаграмму рассеяния баллов ЕГЭ по математике и по русскому, размерами точек показав суммарный балл, цветом – пол, формой тип школы.
- 7. Для массива данных "tips" построить boxplot() для размера чаевых по дням недели.
- 8. Для массива данных "titanic" сравнить выживших и невыживших пассажиров с помощью параллельных координат, используя столбцы survived, pclass, who (нужно будет присвоить числовые значения), age. (Не стоит использовать весь массив, лучше выбрать случайным образом 30 строк).
- 9. * Решить задачу 1 с возможностью изменения n ползунком.
- 10. * Построить столбцовую диаграмму для биномиального распределения с возможностью менять параметры ползунками.
- 11. * Для массива данных "titanic" построить диаграмму "солнечные лучи расположим по слоям survived, pclass, who.
- 12. ** Построить гистограмму баллов по математике с изменяемым количеством бинов.

Тема 4. Центральная предельная теорема

Вспомогательная теория

Напомним формулировку центральной предельной теоремы.

Теорема 1. Пусть X_i - н.о.р. случайные величины, $\mathbf{E}X_i = \mu,\ 0 < \mathbf{D}X_i = \sigma^2 < \infty.$ Тогда

$$\frac{X_1 + \ldots + X_n - \mu n}{\sigma \sqrt{n}} \stackrel{d}{\to} Z \sim \mathcal{N}(0, 1).$$

То есть

$$\mathbf{P}\left(\frac{X_1 + \ldots + X_n - \mu n}{\sigma \sqrt{n}} \le x\right) \to \Phi(x), \, n \to \infty, \, \forall x,$$

где $\Phi(x)$ – функция распределения $\mathcal{N}(0,1)$.

Обратите внимание, что, вообще говоря, сходимость по распределению не гарантирует сходимости плотностей, однако, справедлив следующий замечательный результат с которым вы познакомитесь в курсе дополнительных глав теории вероятностей.

Теорема 2. Пусть X_i - н.о.р. случайные величины, причем $\int_{\mathbb{R}} |\psi_X(t)|^a dt < +\infty$ при некотором a > 0, где ψ - характеристическая функция. При этом $\mathbf{E} X_i = \mu$, $0 < \mathbf{D} X_i = \sigma^2 < \infty$. Тогда

$$f_{(S_n-\mu n)/(\sigma\sqrt{n})}(x) \stackrel{d}{\to} \phi(x),$$

где ф – плотность стандартной нормальной величины.

Помимо самого факта сходимости функций распределений центрированных нормированных сумм известны также следующие результаты.

Теорема 3 (Неравенство Берри–Эссеена.). Пусть выполнены условия ЦПТ и дополнительно $\mathbf{E}|X|^3 < \infty$. Тогда

$$\left| \mathbf{P} \left(\frac{X_1 + \dots + X_n - \mu n}{\sigma \sqrt{n}} \le x \right) - \Phi(x) \right| \le C \frac{\mathbf{E}|X_1 - \mathbf{E}X_1|^3}{(\mathbf{D}X_1)^{3/2} \sqrt{n}},$$

где C – некоторая константа, не зависящая от распределения X_i . По последним данным $C \leqslant 0.4784$.

Теорема 4. Пусть X_1, \dots, X_n н.о.р. $\mathbf{E}X = \mu, \mathbf{D}X = \sigma^2, \mathbf{E}(X - \mu)^3 = \rho_3.$

Справедливо также следующее асимптотическое разложение.

Пусть $\mathbf{E}(X-\mu)^3=\rho_3,\ a_3:=\rho_3/\sigma^3$ – коэффициент асимметрии. Тогда

$$\mathbf{P}\left(\frac{X_1 + \ldots + X_n - \mu n}{\sigma \sqrt{n}} \le x\right) - \Phi(x) = \frac{a_3}{6\sqrt{2\pi n}} (1 - x^2) \exp\left(-\frac{x^2}{2}\right) + o\left(\frac{1}{\sqrt{n}}\right)$$

 $npu \ n \to \infty$.

Теорема 4 дает более точные приближения чем теорема 3, зато теорема 3 не предельная, а верна при всех n.

Задачи

1. Моделировать выборки $X_{i,j}$, $i \leq 1000$, $j \leq n$, где i) n=20 ii) n=100 величин из распределений а) $\operatorname{Bern}(1/2)$, б) R[0,1], в) $\exp(1)$, г) Коши. Найти $S_{i,n} = \sum_{j=1}^n X_{i,j}$ и построить на одном графике ЭФР $S_{n,i}$ и ф.р. $\mathcal{N}(n\overline{X}, nS^2)$, где \overline{X} , S^2 – выборочное среднее и выборочная дисперсия всех имеющихся наблюдений. Похожи ли визуально полученные графики?

- 2. Пусть $X \sim Gamma(n,4)$ Построить на одном графике графики плотности распределения с.в. $(X \mathbf{E}X)/\sqrt{\mathbf{D}X}$ и плотности $\mathcal{N}(0,1)$ для различных n.
- 3. Построить гистограмму по набору значений с.в. $S_n = X_1 + \ldots + X_n \mu n$ (генерируем k выборок X_1, \ldots, X_n , по каждой находим одно значение суммы). На том же графике построить плотность распределения с.в. S_n (для дискретных дискретное распределение) и плотность $\mathcal{N}(0, \sigma^2 n)$.

Здесь распределения X_i рассматриваются следующие:

- 1 вариант: $Poiss(\lambda)$, 2 вариант: Geom(p),
- 1 вариант: $exp(\lambda)$, 2 вариант: Gamma(a, b).
- * Для всех вариантов R[0,1] (для поиска плотности распределения суммы можно использовать sympy.stats.UniformSum() или написать формулу самостоятельно, см. распределение Ирвина—Холла),
- 4. Обозначим $Y = (S_n n\mu)/(\sigma\sqrt{n})$. Построить на одном графике: $F_Y(x) \Phi(x)$, правую часть неравенства Берри–Эссеена, ее же, умноженную на -1, правую часть асимптотического разложения. Рассмотреть n = 5, 10, 20, 50, 100, 500. Соотнести полученные результаты с теоремами 3 и 4. Рассмотрите следующие распределения X_i : Bern(p), $exp(\lambda)$.

_

Тема 5. Генерация случайных величин.

- 1. Моделировать выборку из а) распределения exp(1) б) распределения Коши с помощью метода обратной функции. Построить гистограмму, сравнить со встроенным методом.
- 2. Моделировать выборку из равномерного распределения на единичном круге: а) методом выбора с отклонениями, б)* методом условных распределений, в) с помощью полярных координат.
- 3. Моделировать выборку с плотностью а) Лапласа б) $\exp(-x)/2$, x > 0 и $\exp(2x)$, x < 0. Построить гистограмму. (Использовать смеси распределений.)
- 4. * Моделировать выборку с плотностью

$$\frac{1}{3} \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) + \exp(-|x|) \right).$$

Построить гистограмму

5. Смоделировать с помощью алгоритма Acceptance-Rejection выборку из а) треугольного распределения (с плотностью (1-|x|) $I(x \in [-1,1])$; б)* нормального распределения с помощью распределения Лапласа.

6 Состоятельность. Асимптотическая нормальность

На семинарах вы уже освоили такие свойства оценок, как состоятельность и асимптотическая нормальность, и научились их доказывать. Сформулируем еще некоторые полезные результаты в этой области (для более глубокого ознакомления с темой рекомендруем книгу М.Б. Лагутина "Наглядная математическая статистика").

Для начала напомним (или даже введем) некоторые понятия:

Определение 1. Выборочной медианой МЕД называют оценку

MED =
$$\begin{cases} X_{(k+1)}, & n = 2k+1, \\ \frac{X_{(k)} + X_{(k+1)}}{2}, & n = 2k, \end{cases}$$

усеченным среднем \overline{X}_{α}

$$\overline{X}_{\alpha} = \frac{1}{n-2k} (X_{(k+1)} + \dots + X_{(n-k)}), \quad k = [\alpha n].$$

Выборочная медиана оценивает теоретическую медиану $x_{1/2} = F^{-1}(1/2)$. Усеченное среднее как правило используют для оценки центра симметрии у симметричных распределений.

Теорема 1. Пусть распределение F таково, что $F(x_{1/2} + \varepsilon) > 1/2$ при всех $\varepsilon > 0$. Тогда MED будет состоятельной оценкой $x_{1/2}$.

Теорема 2. Пусть X_1, \ldots, X_n выборка из распределения с плотностью f, причем f(x) > 0 в некоторой окрестности $x_{1/2}$; здесь $x_{1/2}$ – медиана распеделения с.в. X_1 . Тогда выборочная медиана МЕD является асимтотически нормальной оценкой $x_{1/2}$:

$$\sqrt{n}(\text{MED} - x_{1/2}) \xrightarrow{d} Z \sim \mathcal{N}\left(0, \frac{1}{4f^2(x_{1/2})}\right), n \to \infty.$$

Теорема 3. Пусть $X_1, \ldots, X_n \sim F(x-\theta)$, где F обладает следующими свойствами: найдется такое $0 < c \le +\infty$, что F(-c) = 0, F(c) = 1 и на (-c, c) F(x) имеет четную, непрерывную и положительную плотность f(x).

Тогда усеченное среднее \overline{X}_{α} при $0<\alpha<1/2$ является асимптотически нормальной оценкой θ :

$$\sqrt{n}(\overline{X}_{\alpha} - \theta) \xrightarrow{d} Z \sim \mathcal{N}\left(0, \sigma_{\alpha}^{2}\right), \ n \to \infty, \quad \sigma_{\alpha}^{2} = \frac{2}{(1 - 2\alpha)^{2}} \left[\int_{0}^{x_{1-\alpha}} t^{2} f(t) \, dt + \alpha x_{1-\alpha}^{2} \right],$$

 $rde \ x_{\gamma}$ – $pewenue \ ypashenus \ F(x_{\gamma}) = \gamma.$

Задачи

- 1. $X_1, ..., X_n \sim R[0, \theta]$.
 - (a) Построить гистограммы для $X_{(n)}$ при разных n и сравнить с нормальной плотностью (с такими же математическим ожиданием и дисперсией, как у $X_{(n)}$).
 - (b) Построить гистограммы для $n(\theta X_{(n)})$ при разных n и сравнить с плотностью распределения $\exp(1)$.
 - (c) * Изобразить гистограммы $\sqrt{n}(2\overline{X} \theta)$ и $\sqrt{n}(2\overline{X}_{\alpha} \theta)$ на одном графике, сравнить разбросы (обе ли оценки асимптотически нормальны, чья асимптотическая дисперсия меньше?).
 - (d) Сравнить, какая из оценок $((n+1)/n)X_{(n)}$ и $2\overline{X}$ чаще оказывается ближе к θ при разных n. Для этого смоделировать по 1000 реализаций (для каждого n) и найти, в какой доле из этих 1000 ближе оказалась $((n+1)/n)X_{(n)}$.

- 2. X_1, \ldots, X_n имеет распределение Коши $f_{\theta}(x) = (\pi(1 + (x \theta)^2))^{-1}$.
 - (а) Построить гистограммы для \overline{X} при разных n. Является ли эта оценка состоятельной? *Сравнить гистограмму/оценку плотности с нормальной плотностью.
 - (b) Построить гистограммы $\sqrt{n}(\text{MED} \theta)$, сравнить с соответсвующей нормальной плотностью (см. теорему 1).
- 3. * $X_1,...,X_n \sim Bern(p)$, где а) p=1/3 б) p=1/2. Будет ли MED состоятельна? Асимптотически нормальна? Постройте гистограммы $\sqrt{n}(\text{MED}-1/2)$, похоже ли распределение на нормальное?
- 4. $X_1, ..., X_n \sim R([\theta-2, \theta-1] \cup [\theta+1, \theta+2])$. Будут ли выборочная медиана и усеченные средние а) состоятельны, б) асимптотически нормальны?
- 5. Смоделировать выборку из распределения Лапласа и численно сравнить асимптотическую дисперсию медианы, выборочного среднего, \overline{X}_{α} с $\alpha=0.1$ и $\alpha=0.3$. Для этого построить гистограммы или плотности каждого из распределений.

_

7 OMM, OMΠ, OMC

Мальчики получают первый вариант, а девочки – второй.

Не забудьте, что правдоподобие удобнее логарифмировать перед максимизацией.

- 1. Построить график функции логарифмического правдоподобия (в пункте б) обычного) для следующих моделей при n = 1, 5, 20, 100, 1000:
 - (a) 1 вариант $X_1, ..., X_n \sim \mathcal{N}(0, \theta)$, 2 вариант $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$.
 - (b) $X_1, ..., X_n \sim R[0, \theta]$.
 - (c) * X_1, \ldots, X_n выборка из распределения, являющегося смесью $\mathcal{N}(\theta_1, \theta_2)$ и $\mathcal{N}(0, 1)$ с весами 1/2, 1/2; здесь требуется построить графики $L(\theta_2)$ при фиксированном значении первого параметра: а) θ_1 настоящее значение (с которым генерировалась выборка), б) $\theta_1 = X_1$, в) любое число, не равное настоящему значению и не совпадающее ни с одним из элементов выборки.
- 2. X_i имеют распределение Коши, где в варианте 1 неизвестный параметр сдвиг θ , а в варианте 2 масштаб. Построить ОМП по выборке размера n=5,10,20,50,100. Для каждого n генерировать k=500 выборок X_1,\ldots,X_n , для каждой найти значение ОМП и $\widehat{\theta}$, найти выборочное среднее и выборочную дисперсию ОМП и $\widehat{\theta}$ и сравнить их. Здесь $\widehat{\theta}$ для первого варианта это выборочная медиана, а для второго половина интерквартильного размаха, то есть полуразность верхнего и нижнего выборочного квартиля.
- 3. 1 вариант $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$, 2 вариант $X_1, ..., X_n \sim \mathcal{N}(0, \theta)$, $\widehat{\theta}_1$ ОММ, $\widehat{\theta}_2$ ОМС, $\widehat{\theta}_3$ ОМП.
 - (a) Построить по выборке $\hat{\theta}_i$, i=1,2,3 (найти численно или аналитически, как удобнее).
 - (b) Сравнить, какая из оценок чаще оказывается ближе к θ при разных n, смоделировав для этого по 1000 реализаций (для каждого n).
 - (c) Построить гистограммы для $\sqrt{n}(\widehat{\theta}_i \theta)$ на одном графике, сравнить разбросы.
 - (d) * Посчитать асимтотическую дисперсию этих оценок, построить график (по θ , сравнить с выборочной дисперсией (нормированной).
- 4. * 1-й вариант: $X_1, ..., X_n \sim Beta(a, b)$, 2-й вариант: $X_1, ..., X_n \sim Gamma(a, b)$, $\theta = (a, b), \widehat{\theta}_1 = (\widehat{a}_1, \widehat{b}_1) \text{OM}\Pi, \widehat{\theta}_2 = (\widehat{a}_2, \widehat{b}_2) \text{OMC}.$
 - (a) Построить по выборке оценки $\widehat{\theta}_1$ и $\widehat{\theta}_2$ (найти численно).
 - (b) Сравнить, какая из оценок чаще оказывается ближе к θ при разных n (отдельно по каждой координате и в смысле расстояния на плоскости), смоделировав для этого по 1000 реализаций (для каждого n).
 - (c) Построить гистограммы (одномерные) для $\sqrt{n}(\hat{\theta}_i \theta)$ на одном графике, сравнить разбросы.

9 Доверительное оценивание

- 1. Построить график функции $y_{1-\alpha+\beta}-y_{\beta}$ для $\beta\in(0,\alpha),$ где y_t квантиль распределения
 - (a) N(0,1),
 - (b) Gamma(n, 1), n = 1, 2, 5, 10, 100,
 - (c) R[0,1],
 - (d) Beta(a, b), a = b = 5, a = 10, b = 2, a = 20, b = 1.

Рассмотреть одно любое значение α , например, $\alpha = 0.001, 0.05, 0.1$. Сделать вывод о выборе оптимального β для построения доверительного интервала на основе статистики с нашим распределением.

- 2. $X_1, ..., X_n \sim R[0, \theta]$.
 - (a) Построить асимптотический доверительный интервал, используя \overline{X} . Найти эмпирически доверительную вероятность этого интервала (построить 1000 выборок, подсчитать долю тех, для которых интервал накрыл истинное значение параметра, для n=20,50,100.
 - (b) Построить точный доверительный интервал, используя достаточную статистику. Сравнить средние длины точного и асимптотического интервалов при n=20,50,100.
- 3. $X_1,...,X_n \sim Bern(\theta)$. Построить асимптотический доверительный интервал двумя способами с помощью \overline{X} , сравнить средние длины полученных интервалов (генерировать 1000 выборок, по каждой строить оба интервала, посчитать и показать средние длины) для $\theta=0.1,\,0.4,\,0.5,\,0.9$ и $n=20,\,50,\,100$.
- 4. * $X_1, ..., X_n \sim Gamma(\theta, 1)$. Построить асимптотический доверительный интервал для θ на основе ОМП.
- 5. ** Построить доверительный эллипс для параметра (μ_1, μ_2) по выборке из $\mathcal{N}(\vec{\mu}, \Sigma)$ распределения, где а) $\Sigma = E$ б) Σ имеет 1 и 2 на диагонали и 0.5 вне. Для построения можно использовать confidence_ellipse из matplotlib. Как меняется эллипс при измении размера выборки: взять n = 10, 100, 500.
- 6. ** $X_1,...,X_n \sim R[\theta_1,\theta_2]$. Построить доверительное множество для (θ_1,θ_2) с помощью $X_{(1)},\,X_{(n)},\,$ изобразить для разных (θ_1,θ_2) .

11 Критерии: основные понятия

- 1. Пусть $X_i \sim Bern(\theta)$, для $H_0: \theta=1/2$ и $H_1: \theta=\theta_1$, где а) $\theta_1=1/3$, б) $\theta_1=2/3$. Рассмотрим критерий $\{\sum_{i=1}^n X_i > C\}$, n=10. Построить графики вероятностей ошибки I рода, ошибки II рода и мощности критерия в зависимости от C. Для какой альтернативы осмысленно использовать этот критерий?
- 2. График ЭФР p-value.
 - (а) Генерируем выборку, находим значение статистики критерия T ($T = X_{(1)}$ или $T = X_{(n)}$). Находим функцию распределения $F_T(x)$ нашей статистики.Вычисляем $p-value=1-F_T(T)$, для критических множеств вида $\{T>C\}$, $p-value=F_T(T)$ для критических множеств вида $\{T< C\}$. Повторяем $m \geq 100$ раз. Получился массив p_1, \ldots, p_m , упорядочиваем его по возрастанию.
 - (b) Строим график: по оси Ox значения p_1, \ldots, p_m , по оси Oy числа $1/m, 2/m, \ldots, 1$. Иными словами, мы строим график эмпирической функции распределения p-value.

Мы знаем, что если F(x) непрерывна, то $F_T(T) \sim R[0,1]$. Значит, при гипотезе точки должны быть близки к прямой y=x. При альтернативе мы ожидаем увидеть отклонение от этой прямой. Посмотрим как это работает на синтетическом наборе данных: пусть $X_i \sim \mathcal{N}(\theta,1), \ H_0: \theta=0, \ H_1: \theta=\theta_1$. Постройте а) критерий Неймана-Пирсона для $\theta_1>0$ б) для $\theta_1<0$ в) асимптотический критерий |MED-1/2|>C. Рассчитайте для них ф.р. статистик критерия, найдите p-value критериев.

- (a) Построить графики p-value всех трех критериев, выбирая данные a) при верной нулевой гипотезе б) при каждой из альтернатив ($\theta_1 = -1$ и $\theta_1 = 1$). Построить их на одном графике. В какую сторону отклоняются графики от прямой y = x?
- (b) Как влияет размер выборки на отклонение от y = x?
- (с) Какой критерий самый лучший?
- 3. $X_1, \ldots, X_n \sim Bern(\theta), H_0: \theta = 1/2, H_1: \theta = 1/3$. При каких n можно построить критическое множество вида $\{\sum_{i=1}^n X_i < C\}$ так, чтобы вероятности ошибок первого и второго рода не превышали 0.05? Построить графики вероятностей ошибок первого и второго рода (как функции от C) для разных n.
- 4. * Построить в предыдущей задаче рандомизированный критерий Неймана-Пирсона уровня значимости 0.05. Эмпирически исследовать вероятность ошибки I рода критерия и убедиться, что она действительно 0.05.

10 Байесовский анализ

- 1. $X_1, ..., X_n \sim Bern(\theta), \theta \sim R[0, 1]$. Посчитать апостериорную плотность и построить ее график.
 - а) для выборок размера n=5,10,20,50,100 для $\theta=1/2,\,\theta=1/3;$
 - б) вместо генерации выборки положите $\sum_{i=1}^{n} X_i$ равной 9n/10 или 99n/100.
- 2. Пусть $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$, $\theta \sim \mathcal{N}(\mu, \sigma^2)$. Апостериорную плотность можно не считать, а взять из таблицы. Посмотрим, как влияют параметры априорного распредления на итоговый результат. Для этого будем генерировать выборки для какого-то одного фиксированного θ (возьмите любое число из [0, 1], а также посмотрите на какое-нибудь θ , близкое к 0 или 1).
 - (а) Сравнить (визуально на графике) апостериорные плотности для нескольких разных значений (μ, σ^2) .
 - (b) Построить пример, когда при n=10000 оценка θ достаточно сильно отличается от настоящего значения несмотря на размер выборки.
 - (c) Сравнить байесовские оценки для квадратичного риска при разных (μ, σ^2) .
- 3. $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$. Построить (на листочке) байесовский криретерий для проверки $H_0: \theta = 0$ против $H_1: \theta = 1$, если априорная вероятность $\mathbf{P}(\theta = 0) = p$. Построить графики зависимости ошибок 1-го и 2-го рода от p.
- 4. * Пусть $X_i \sim \exp(\theta)$, а $\theta \sim Gamma(a,b)$. а) Построить байесовские оценки для абсолютной и квадратичной функций потерь и сравнить у таких оценок среднюю а) квадратичную б) абсолютную ошибку. б) Построить байесовский доверительный интервал уровня 95% и эмпирически исследовать ее уровень доверия.

12 Критерии хи-квадрат и отношения правдоподобий для дискретных данных

Статистика критерия хи-квадрат для простой гипотезы выглядит как

$$\sum_{i=1}^{k} \frac{(\nu_i - np_i)^2}{np_i}.$$

При верной гипотезе она сходится к χ^2_{k-1} . Статистика критерия отношения правдоподобий предлагает взамен брать

$$\sum_{i=1}^{k} \nu_i \ln \frac{\nu_i}{np_i}.$$

Наконец, более общий подход Кресси-Рида предлагает рассматривать

$$\frac{2}{\lambda(\lambda+1)} \sum_{i=1}^{k} \nu_i \left(\left(\frac{\nu_i}{np_i} \right)^{\lambda} - 1 \right),$$

где при $\lambda \in \{-1,0\}$ выражение доопределяется из соображений по непрерывности.

1. Начнем с проверки простой гипотезы.

Найдите первые 1000 цифр числа π после запятой. С помощью критерия хи-квадрат проверьте, можно ли при уровне значимости 0.05 считать эти цифры случайными равномерными?

- 2. Проверим однородность и независимость. Использовать данные из файла Priem.csv и встроенный критерий.
 - (a) Ответить на вопрос отличаются ли мальчики и девочки в плане успешности сдачи ЕГЭ? Для этого попарно проверьте на однородность суммарные баллы, баллы по русскому, баллы по математике.
 - (b) Правда ли, что оценки по математике и русскому независимы?
- 3. Построим критерий Кресси-Рида для проверки простой гипотезы о полиномиальном распределении. Давайте сравним наши критерии для различных λ . Рассмотрите λ , равные -1,0,0.5,1,2. Постройте график p-value для каждого из них и выберите наиболее удачный критерий. Используйте исходное равномерное распределение (все p_i равны) и неравномерное на свой вкус.
- 4. * Переходим к параметрической гипотезе.

Среди 2020 семей, имеющих 2 детей, 527 семей, в которых 2 мальчика, и 476 - две девочки. Можно ли при уровне значимости 0.05 считать, что количество мальчиков — биномиальная случайная величина?

В этой задаче нужно сначала найти ОМП для параметрической гипотезы (формулу для нее) на листочке, затем вычислить ее значение для данных из условия задачи и воспользоваться встроенным критерием хи-квадрат.

Теперь исследуем работу получившегося критерия на модельных данных (нужно использовать ту же формулу для ОМП, что и раньше). Рассмотреть следующие распределения:

- $1) \ Binom(2,1/2), \ Binom(2,1/8),$
- 2) равномерное распределение $\mathcal{R}\{0,1,2\},$
- 3) $\mathbf{P}(X=0) = \mathbf{P}(X=2) = 3/8, \mathbf{P}(X=1) = 1/4$ (X число мальчиков).

Для каждого распределения сгенерировать по 100 выборок. К каждой выборке применить построенный критерий, получить p-value. Построить графики p-value для каждого распределения, сравнить их.

12 ЭФР, критерий Колмогорова

Определение 1. Эмпирической функцией распределения называют функцию

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I_{X_i \le x}.$$

Теорема 1 (Колмогорова). Пусть $X_i \sim F$, где F непрерывна, тогда

$$\mathbf{P}(\sqrt{n}\sup_{x}|\widehat{F}_{n}(x) - F(x)| \le y) \to K(y),$$

где

$$K(y) = \sum_{k=-\infty}^{\infty} e^{-2k^2y^2}$$

называют функцией распределения Колмогорова.

Отметим, что если распределение не непрерывно, то

$$\mathbf{P}(\sqrt{n}\sup_{x}|\widehat{F}_{n}(x) - F(x)| \le y) \to K'(y),$$

где K'(y) зависит от F, но $K'(y) \ge K(y)$ при всех y.

Теорема 2 (Неравенство Дворецкого-Кифера-Вольфовица). *Пусть* $X_i \sim F$, тогда

$$\mathbf{P}(\sup_{x} |\widehat{F}_n(x) - F(x)| \ge y) \le 2e^{-2ny^2}.$$

Отсюда мы можем узнать погрешность оценки F(x) функцией $\widehat{F}_n(x)$, построить доверительную полосу для F(x). Отметим, что непосредственно критерий не слишком мощный и на практике, как правило, используют более мощный критерий Андерсона-Дарлинга (об этом в следующем семестре).

Критерий Колмогорова реализован в пакете scipy.

- 1. Пусть $X_i \sim \mathcal{N}(0,1)$.
 - 1) Построить эмпирическую функцию распределения (ЭФР) на одном графике с теоретической функцией распределения при разных n (проиллюстрировать сходимость ЭФР к ф.р.). То же для $X_i \sim R[0,1], X_i \sim Bin(m,p)$, где m=3, m=10.
 - 2) Построить 95% доверительную полосу для ф.р., используя а) критерий Колмогорова. б) неравенство Дворецкого-Кифера-Вольфовица.
- 2. С помощью критерия Колмогорова проверить гипотезу $H_0: X_i \sim \mathcal{N}(0,1),$ если

$$X_i = (Y_i - \mathbf{E}Y_i)/\sqrt{\mathbf{D}Y_i},$$
 где

- (a) $Y_i \sim \mathcal{N}(-3, 8)$,
- (b) $Y_i \sim Bin(m, 1/2),$
- (c) Y_i имеют распределение Ирвина—Холла (сумма m независимых равномерных с.в.).

Построить графики p-value для m = 1, 2, 5, 20. Рассмотреть выборки длины n = 50, 100, 500.

3. Если выборка имеет нормальное распределение с неизвестными параметрами, то можно попробовать перейти от выборки X_i к $(X_i - \overline{X})/S$ и применить к ним критерий Колмогорова нормальности $\mathcal{N}(0,1)$. Построить график p-value при верной гипотезе и посмотреть корректно ли работает "модифицированный" критерий.