Knowledge Engineering

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Picking Variables
- Determining Structure
- Determining Probabilities

Knowledge Engineering

- Going from given distribution to Bayesian network is more complex
- We have a vague model of the world
 - Need to crystallize it into network structure and parameters
- Task has several components
 - Each is subtle
 - Mistakes have consequences in quality of answers

Three tasks in model building

- All three tasks are hard:
 - 1. Picking variables
 - Many ways to pick entities and attributes
 - 2. Determining structure
 - Many structures hold
 - 3. Determining probabilities
 - Eliciting probabilities from people is hard

1. Picking Variables

- Model should contain variables
 - we can observe or that we will query
- Choosing variables is one of the hardest tasks
 - There are implications throughout the model
- Common problem: ill-defined variables
 - In medical domain: variable "Fever"
 - Temperature at time of admission?
 - Over prolonged period?
 - Thermometer or internal temperature?
 - Interaction of fever with other variables depend on specific interpretation

Need for Hidden Variables

There are several Cholestorol Tests

For accurate answers:

Nothing to eat after 10:00pm

If person eats, all tests become correlated

Hidden variable: willpower

- Including it will render:
 - cholestorol tests conditionally independent given true cholestorol level and willpower
- Hidden variables: to avoid all variables being correlated

Some variables not needed

- Not necessary to include every variable
 - SAT score may depend on partying previous night
 - Probability already accounts for poor score despite intelligence

Picking Domain for Variables

- Reasonable domain of values to be chosen
- If partitions not fine enough conditional independence assumptions may be false
- Task of determining cholestorol level (C)
 - Two tests A and B
 - $-(A \perp B/C)$
 - *C*: Normal if ≤ 200, High if > 200
 - Both tests fail if chol level has a marginal value(say 210)
 - Conditional independence assump. is false!
 - Introduce marginal value

2. Picking Structure

- Many structures are consistent if we pick same set of independences
- Choose structure that reflects causal order and dependencies
 - Causes are parents of the effect
 - Causal graphs tend to be sparser
- Backward Construction Process
 - Lung cancer should have smoking as a parent
 - Smoking should have gender as a parent

Modeling weak influences

- Reasoning in a Bayesian network strongly depends on connectivity
- Adding edges can make it expensive to use
- Make approximations to decrease complexity

3. Picking Probabilities

- Zero Probabilities
 - Common mistake
 - Event extremely unlikely but not impossible
 - Can never condition away: irrecoverable errors
- Orders of Magnitude
 - Small diffs in low probs can make large differences in conclusions
 - 10⁻⁴ is very different from 10⁻⁵
- Relative Values
 - Probability of fever higher with pneumonia than with flu

Disease \Fever	High	Lo
Pneum	0.9	0.1
Flu	0.6	0.4

Sensitivity Analysis

- Useful tool for estimating network parameters
- Determine extent to which a given probability parameter affects outcome
- Allows us to determine whether it is important to get a particular CPD entry right
- Helps figure out which CPD entries are responsible for an answer that does not match our intuition