Tarea 3: Métodos No Lineales

Juan Pablo Castillo Álvaro Rojas El Viejo XOR: Métodos No-lineales para Problemas No-lineales

En esta sección se tiene el objetivo de experimentar con algunos modelos no-lineales sobre un problema de juguete, el cual es bastante famoso en la historia del aprendizaje automático, este es el problema XOR. Se trata de un problema de clasificación linealmente inseparable. En este problema se utilizará distintos modelos no-lineales para analizar su efectividad en clasificar las clases en este problema.

 Una clase se encuentra en el cuadrante 1 y 3, mientras que la otra clase se encuentra en el cuadrante 2 y 4.

• Es similar al concepto de un "or exclusivo", donde se tiene un valor 1 sólo cuando x e y son distintos. Pero si son iguales, se tendrá un valor 0.

Clasificación con una SVM lineal

```
Mejor parámetro de regularización C: 0.01
Mejor Accuracy de Test: 0.471000
Training Accuracy SVM Lineal: 0.517273
Test Accuracy SVM Lineal: 0.471000
Detailed Analysis Testing Results ...
            precision recall f1-score
                                            support
                                     0.46
                 0.46
                           0.47
                                                489
                 0.48
                           0.48
                                     0.48
                                                511
avg / total
                 0.47
                           0.47
                                     0.47
                                               1000
```


Clasificación con SVM no-lineales (rbf)

```
Mejor parámetro de regularización C: 8
Mejor Accuracy de Test: 0.972000
Training Accuracy SVM con kernel rbf: 0.902727
Test Accuracy SVM con kernel rbf: 0.972000
Detailed Analysis Testing Results ...
            precision recall f1-score
                                           support
        -1
                           0.95
                                    0.97
                 0.99
                                               489
                 0.95
                           0.99
                                    0.97
                                               511
                 0.97
                           0.97
                                     0.97
                                              1000
avg / total
```


Clasificación con SVM no-lineales (polynomial)

```
Mejor parámetro de regularización C: 8
Mejor Accuracy de Test: 0.955000
Training Accuracy SVM con kernel Polinomial: 0.887273
Test Accuracy SVM con kernel Polinomial: 0.955000
Detailed Analysis Testing Results ...
             precision recall f1-score
                                            support
                 0.99
                           0.92
                                     0.95
                                                489
                           0.99
                                     0.96
                 0.93
                                                511
avg / total
                 0.96
                           0.95
                                     0.95
                                               1000
```


Clasificación con red neuronal artificial de 1 sola neurona

Clasificación con una red neuronal artificial de 1 capa escondida

Clasificación con un árbol de 1 nivel

Training Accuracy Arbol con 1 nivel: 0.541818 Test Accuracy Arbol con 1 nivel: 0.489000									
Detailed Analysis Testing Results									
	precision	recall	f1-score	support					
-1	0.48	0.67	0.56	489					
+1	0.50	0.32	0.39	511					
avg / total	0.49	0.49	0.47	1000					

Test Accuracy = 0.489000 1

Clasificación con un árbol de múltiples

niveles

Clasicador Tree con n_t = 3 Test Accuracy = 0.990000

Clasicador Tree con n_t = 9 Test Accuracy = 0.949000

Clasicador Tree con n_t = 15 Test Accuracy = 0.927000

2. Bike Sharing: Predicción de Demanda Horaria

- Los sistemas de intercambio de bicicletas son un medio para alquilar bicicletas en las que el proceso de obtención de membresía, alquiler y retorno de bicicletas se automatiza a través de una red de ubicaciones de quioscos en toda la ciudad.
- Utilizando estos sistemas, la gente puede alquilar una bicicleta desde una ubicación y devolverla a un lugar diferente según sea necesario.
- Se pide a los participantes que combinen los patrones de uso histórico con los datos meteorológicos para predecir la demanda de alquiler de bicicletas en el programa Capital Bikeshare en Washington, DC.

Atributo	Descripción
datetime	hourly date + timestamp
season	1 = spring, 2 = summer, 3 = fall, 4 = winter
holiday	whether the day is considered a holiday
workingday	whether the day is neither a weekend nor holiday
weather	1: Clear, Few clouds, Partly cloudy, Partly cloudy
	 Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
	3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
a dell'accessor	4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
temp	temperature in Celsius
atemp	"feels like" temperature in Celsius
humidity	relative humidity
windspeed	wind speed
casual	number of non-registered user rentals initiated
registered	number of registered user rentals initiated
count	number of total rentals
casual registered	number of non-registered user rentals initiated number of registered user rentals initiated

Se desea obtener el mejor puntaje posible para la función proporcionada para el concurso:

$$E_{bikes}(y, \hat{y}) = \frac{1}{x} \sum_{i} (\ln(y_i + 1) - \ln(\hat{y}_i + 1))^2$$

En donde y e y son los valores reales y de predicción respectivamente.

Se construye un dataframe extrayendo el valor de la hora del día desde los datos de fecha y hora de registro para incorporarlos como característica numérica al problema.

Summary - dataframe completo:

	Unnamed: 0	season	holiday	workingday	weather	1
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	1
mean	5442.500000	2.506614	0.028569	0.680875	1.418427	
std	3142.661849	1.116174	0.166599	0.466159	0.633839	
min	0.000000	1.000000	0.000000	0.000000	1.000000	
25%	2721.250000	2.000000	0.000000	0.000000	1.000000	
50%	5442.500000	3.000000	0.000000	1.000000	1.000000	
75%	8163.750000	4.000000	0.000000	1.000000	2.000000	
max	10885.000000	4.000000	1.000000	1.000000	4.000000	1
	temp	atemp	humidity	windspeed	casual	1
count	10886.00000	10886.000000	10886.000000	10886.000000	10886.000000	
mean	20.23086	23.655084	61.886460	12.799395	36.021955	
std	7.79159	8.474601	19.245033	8.164537	49.960477	
min	0.82000	0.760000	0.000000	0.000000	0.000000	
25%	13.94000	16.665000	47.000000	7.001500	4.000000	
50%	20.50000	24.240000	62.000000	12.998000	17.000000	
75%	26.24000	31.060000	77.000000	16.997900	49.000000	
max	41.00000	45.455000	100.000000	56.996900	367.000000	
	registered	count				
count	10886.000000	10886.000000				
mean	155.552177	191.574132				
std	151.039033	181.144454				
min	0.000000	1.000000				
25%	36.000000	42.000000				
50%	118.000000	145.000000				
75%	222.000000	284.000000				
max	886.000000	977.000000				

Entrenar un árbol de regresión

SCORE TEST=0.703261
KAGG EVAL TRAIN =0.028516
KAGG EVAL TEST =0.574539
KAGG EVAL VALIDATION =0.553973

Mejorar el árbol (hiper-parámetros)

Mejorar el árbol (hiper-parámetros)

Mejor valor para máximo niveles: 10 Mejor valor para mínimo de datos por hoja: 9

KAGG EVAL VAL =0.451062

Mejorar el árbol de regresión (datos)

- Se extrajo mayor información desde los datos: mes y año.
- Se aplicó la función logaritmo natural a los datos de conteo de préstamos de bicicletas (count).
- Se intentó además aplicar funciones de logaritmo o raíz a la velocidad del viento y ajustar a una normal los valores de las temperaturas, pero no se obtuvo tan buenos resultados por lo que se excluyeron.

Mejorar el árbol de regresión (datos)

KAGG EVAL VALIDATION =0.402686

Entrenar SVM no lineal

- Se entrenó con parámetros por defecto (C=1, épsilon=0.1).
- Los datos anteriormente manipulados recibieron un escalamiento para hacerlos comparables.
- Los datos categóricos recibieron una transformación de tal forma que queden representados como valores binarios, trinarios u otros dependiendo de la cantidad de valores posibles a tomar.

Entrenar SVM no lineal

KAGG EVAL VALIDATION =0.292625

Mejorar la SVM (parámetros)

Mejores valores: C= 1.600000 , epsilon = 0.050000,

KAGG EVAL TRAIN =0.220828 KAGG EVAL VAL =0.287996

Evaluar usando Cross Validation(árbol)

```
MAX depth= 9
              MIN leaf= 3
                            => kaggeval= 0.452973
MAX depth= 10
              MIN leaf= 3
                            => kaggeval= 0.437493
               MIN leaf= 3
                             => kaggeval= 0.432979
MAX depth= 11
                             => kaggeval= 0.430801
MAX depth= 12
               MIN leaf= 6
MAX depth= 13
               MIN leaf= 3
                             => kaggeval= 0.429883
MAX depth= 13
               MIN leaf= 6
                             => kaggeval= 0.427722
MAX depth= 14
               MIN leaf= 6
                             => kaggeval= 0.427608
MAX depth= 15
               MIN leaf= 6
                             => kaggeval= 0.427535
MAX depth= 16
                MIN leaf= 6
                            => kaggeval= 0.427143
```

Evaluar usando Cross Validation(SVM)

```
epsilon = 0.050000
                                  => kaggeval= 0.305019
C= 1.000000
C= 1.200000
             epsilon = 0.050000
                                      kaggeval= 0.303537
C= 1.200000
             epsilon = 0.100000
                                      kaggeval= 0.303391
             epsilon = 0.050000
                                      kaggeval= 0.302621
C= 1.400000
             epsilon = 0.100000
                                      kaggeval= 0.302329
C= 1.400000
            epsilon = 0.100000
C= 1.500000
                                      kaggeval= 0.302113
             epsilon = 0.100000
                                      kaggeval= 0.302070
C= 1.600000
```

Ensamblar dos máquinas según predicción de tipo de usuario

 Entrenando dos máquinas SVM especializadas en el conteo de personas registradas y otra que no (casuales).

 Esto mismo podría aplicarse con otros tipos de especialización, como considerar todo lo que tenga que referencia con fechas y horas, o con lo que tiene que ver con clima y dificultades físicas y prácticas para los ciclistas.

Ensamblar dos máquinas según predicción de tipo de usuario

KAGG EVAL TEST =0.307498

Evaluar algoritmo genérico de ensamblado

```
Para 5 Máquinas se obtiene KAGG EVAL TRAIN = 0.273225
Para 6 Máquinas se obtiene KAGG EVAL TRAIN = 0.271616
Para 7 Máquinas se obtiene KAGG EVAL TRAIN = 0.270044
Para 8 Máquinas se obtiene KAGG EVAL TRAIN = 0.268881
Para 9 Máquinas se obtiene KAGG EVAL VAL = 0.335720
Para 9 Máquinas se obtiene KAGG EVAL TRAIN = 0.267157
Para 10 Máquinas se obtiene KAGG EVAL VAL = 0.334814
Para 10 Máguinas se obtiene KAGG EVAL TRAIN = 0.265822
Para 12 Máguinas se obtiene KAGG EVAL VAL = 0.334478
Para 14 Máguinas se obtiene KAGG EVAL VAL = 0.334191
Para 14 Máguinas se obtiene KAGG EVAL TRAIN = 0.265456
Para 15 Máguinas se obtiene KAGG EVAL VAL = 0.334136
Para 16 Máquinas se obtiene KAGG EVAL VAL = 0.333387
Para 16 Máguinas se obtiene KAGG EVAL TRAIN = 0.264784
Para 17 Máguinas se obtiene KAGG EVAL TRAIN = 0.264611
Para 18 Máguinas se obtiene KAGG EVAL VAL = 0.332804
Para 18 Máquinas se obtiene KAGG EVAL TRAIN = 0.263571
Para 19 Máguinas se obtiene KAGG EVAL TRAIN = 0.263400
Para 20 Máquinas se obtiene KAGG EVAL VAL = 0.332268
Para 20 Máquinas se obtiene KAGG EVAL TRAIN = 0.262958
```

```
Para 25 Máguinas se obtiene KAGG EVAL VAL = 0.330871
Para 25 Máguinas se obtiene KAGG EVAL TRAIN = 0.262782
Para 26 Máguinas se obtiene KAGG EVAL VAL = 0.330431
Para 26 Máguinas se obtiene KAGG EVAL TRAIN = 0.262662
Para 27 Máguinas se obtiene KAGG EVAL VAL = 0.330087
Para 27 Máguinas se obtiene KAGG EVAL TRAIN = 0.262518
Para 29 Máguinas se obtiene KAGG EVAL VAL = 0.328972
Para 29 Máguinas se obtiene KAGG EVAL TRAIN = 0.262024
Para 30 Máguinas se obtiene KAGG EVAL VAL = 0.328946
Para 31 Máguinas se obtiene KAGG EVAL VAL = 0.328942
Para 32 Máguinas se obtiene KAGG EVAL VAL = 0.328493
Para 32 Máguinas se obtiene KAGG EVAL TRAIN = 0.262004
Para 33 Máguinas se obtiene KAGG EVAL TRAIN = 0.261951
Para 35 Máguinas se obtiene KAGG EVAL VAL = 0.328041
Para 35 Máguinas se obtiene KAGG EVAL TRAIN = 0.261687
Para 36 Máguinas se obtiene KAGG EVAL VAL = 0.327956
Para 38 Máguinas se obtiene KAGG EVAL VAL = 0.327935
Para 55 Máquinas se obtiene KAGG EVAL VAL = 0.327548
Para 55 Máquinas se obtiene KAGG EVAL TRAIN = 0.261574
```

Evaluar algoritmo genérico de ensamblado

3. Reconocimiento de Imágenes en CIFAR10

Contexto

El dataset CIFAR10 está compuesto por 60.000 imágenes RGB de 32x32 pixeles el cual contiene 10 clases de objetos (6.000 ejemplos por clase). Las clases corresponden a: Gato, Perro, Rana, Caballo, Pájaro, Ciervo, Avión, Automóvil, Camión y Barco.

El conjunto de datos de entrenamiento corresponde a 50.000 imagenes, el de prueba a 10.000 imágenes y el de validación a 10.000 imágenes.

Carga de datos y escalamiento

Se carga los datos de CIFAR10 en 2 matrices de entrenamiento (50.000x32x32), 2 matrices de prueba (10.000x32x32) y 2 matrices de validación (10.000x32x32). Luego se escalan estas matrices dividiendo los valores RGB en 255.

Red Neuronal para clasificación de CIFAR10

Se entrena una red neuronal con 1 capa oculta de 100 neuronas el cual utiliza una función de activación rectificadora (reLU):

$$f(x) = \left\{egin{array}{ll} 0 & ext{for} & x < 0 \ x & ext{for} & x \geq 0 \end{array}
ight.$$

El resultado de esta red neuronal fue el siguiente:

```
9952/10000 [==============>.] - ETA: 0s
Accuracy de train: 0.819920
Accuracy de validacion: 0.820320
Accuracy de test: 0.820000
```

Red neuronal con Histograma de Color

Red neuronal con HOG

```
9824/10000 [==========>.] - ETA: 0s
```

Accuracy de train: 0.939097

Accuracy de validacion: 0.923510

Accuracy de test: 0.923050

Red neuronal con Histograma de Color y HOG

```
9536/10000 [============>..] - ETA: 0s
Accuracy de train: 0.941872
Accuracy de validacion: 0.926120
Accuracy de test: 0.924690
```

SVM no lineal y árbol de clasificación