# CS335: Compiler Design Assignment 2

Yash Gupta (190997)

### 1 Problem 1

### 1.1 Part (i)

The given grammar is not LL(1) because of the following rules:

- $Type \rightarrow Type*$  introduces left recursion
- $ArgList \rightarrow Typeid$ , ArgList and  $ArgList \rightarrow Typeid$  have common prefixes

### 1.2 Part (ii)

The nonterminals Type' and ArgList' can be introduced to make the grammar LL(1). The transformed grammar is as follows:

- Type id (Arguments) (1)Function (2)id Type' Type(3)Type'\*Type'(4)Type'Arguments (5)ArgList (6)Arguments Type id ArgList' (7)ArgList(8)ArgList' , ArgList ArgList' (9)
- 1.3 Part (iii)

| Nonterminal | FIRST             | FOLLOW |
|-------------|-------------------|--------|
| Function    | id                | \$     |
| Type        | id                | id     |
| Type'       | $^*$ , $\epsilon$ | id     |
| Arguments   | id, $\epsilon$    | )      |
| ArgList     | id                | )      |
| ArgList'    | ,, €              | )      |

# 1.4 Part (iv)

| Nonterminal | id                                         | ( | )                                | *                          | ,                              | \$ |
|-------------|--------------------------------------------|---|----------------------------------|----------------------------|--------------------------------|----|
| Function    | $Function \rightarrow Type id (Arguments)$ |   |                                  |                            |                                |    |
| Type        | $Type \rightarrow id \ Type'$              |   |                                  |                            |                                |    |
| Type'       | $Type' \rightarrow \epsilon$               |   |                                  | $Type' \rightarrow *Type'$ |                                |    |
| Arguments   | $Arguments \rightarrow ArgList$            |   | $Arguments \rightarrow \epsilon$ |                            |                                |    |
| ArgList     | $ArgList \rightarrow Type id ArgList'$     |   |                                  |                            |                                |    |
| ArgList'    |                                            |   | $ArgList' \rightarrow \epsilon$  |                            | $ArgList' \rightarrow ArgList$ |    |

# Problem 2

# 2.1 Part (i)

# 2.1.1 Augmented grammar

- (0) $\boldsymbol{S}$
- (1) (2)LM
- S S S S L Lp
- (3)qLr
- (4)sr
- (5) (6) qsp
- aMb
- (7)L
- (8)L
- (9)

### 2.1.2 FIRST and FOLLOW sets

| Nonterminal | FIRST      | FOLLOW  |
|-------------|------------|---------|
| S'          | a, s, t, q | \$      |
| S           | a, s, t, q | \$      |
| L           | a, s, t    | t, p, r |
| M           | t          | b, \$   |

#### 2.1.3 LR(0) canonical collection

$$I_{0} = \operatorname{Closure}(S' \to \cdot S)$$

$$= \{S' \to \cdot S, \\ S \to \cdot LM, \\ S \to \cdot Lp, \\ S \to \cdot qLr, \\ S \to \cdot sr, \\ S \to \cdot qsp, \\ L \to \cdot aMb, \\ L \to \cdot s, \\ L \to \cdot t,$$

$$I_{1} = \operatorname{Goto}(I_{0}, S)$$

$$= \{S' \to S \cdot \}$$

$$I_{2} = \operatorname{Goto}(I_{0}, L)$$

$$= \{S \to L \cdot M, \\ S \to L \cdot p, \\ M \to \cdot t\}$$

$$I_{3} = \operatorname{Goto}(I_{0}, q)$$

$$= \{S \to q \cdot Lr, \\ S \to q \cdot sp, \\ L \to \cdot aMb, \\ L \to \cdot s, \\ L \to \cdot t\}$$

$$I_{4} = \operatorname{Goto}(I_{0}, s)$$

$$= \{S \to s \cdot r, \\ L \to s \cdot \}$$

$$I_{5} = \operatorname{Goto}(I_{0}, a)$$

$$= \{L \to a \cdot Mb, \\ M \to \cdot t\}$$

 $I_6 = \mathsf{Goto}(I_0, t)$  $= \{L \to t \cdot \}$ 

$$I_7 = \text{Goto}(I_2, M)$$
  
=  $\{S \rightarrow LM \cdot \}$ 

$$I_8 = \text{Goto}(I_2, p)$$
$$= \{S \to Lp \cdot \}$$

$$I_9 = \mathsf{Goto}(I_2, t)$$
  
=  $\{M \to t \cdot \}$ 

$$I_{10} = \mathsf{Goto}(I_3, L)$$
  
=  $\{S \to qL \cdot r\}$ 

$$I_{11} = \text{Goto}(I_3, s)$$
$$= \{S \rightarrow qs \cdot p,$$
$$L \rightarrow s \cdot \}$$

$$I_{12} = \text{Goto}(I_4, r)$$
$$= \{S \to sr \cdot \}$$

$$I_{13} = \text{Goto}(I_5, M)$$
  
=  $\{L \rightarrow aM \cdot b\}$ 

$$I_{14} = \text{Goto}(I_{10}, r)$$
  
=  $\{S \rightarrow qLr \cdot \}$ 

$$I_{15} = \text{Goto}(I_{11}, p)$$
  
=  $\{S \rightarrow qsp\cdot\}$ 

$$I_{16} = \text{Goto}(I_{13}, b)$$
  
=  $\{L \rightarrow aMb \cdot \}$ 

$$I_5 = \mathsf{Goto}(I_3, a)$$

$$I_6 = \mathsf{Goto}(I_3, t)$$

$$I_9 = {\sf Goto}(I_5,t)$$



Figure 1: LR(0) automaton

# 2.1.4 LR(0) automaton

# 2.1.5 SLR parsing table

| State | ACTION |     |        |    |        |     |    |     |   | GOTO |    |  |
|-------|--------|-----|--------|----|--------|-----|----|-----|---|------|----|--|
|       | a      | b   | p      | q  | r      | s   | t  | \$  | S | L    | M  |  |
| 0     | s5     |     |        | s3 |        | s4  | s6 |     | 1 | 2    |    |  |
| 1     |        |     |        |    |        |     |    | acc |   |      |    |  |
| 2     |        |     | s8     |    |        |     | s9 |     |   |      | 7  |  |
| 3     | s5     |     |        |    |        | s11 | s6 |     |   | 10   |    |  |
| 4     |        |     | r7     |    | s12/r7 |     | r7 |     |   |      |    |  |
| 5     |        |     |        |    |        |     | s9 |     |   |      | 13 |  |
| 6     |        |     | r8     |    | r8     |     | r8 |     |   |      |    |  |
| 7     |        |     |        |    |        |     |    | r1  |   |      |    |  |
| 8     |        |     |        |    |        |     |    | r2  |   |      |    |  |
| 9     |        | r9  |        |    |        |     |    | r9  |   |      |    |  |
| 10    |        |     |        |    | s14    |     |    |     |   |      |    |  |
| 11    |        |     | s15/r7 |    | r7     |     | r7 |     |   |      |    |  |
| 12    |        |     |        |    |        |     |    | r4  |   |      |    |  |
| 13    |        | s16 |        |    |        |     |    |     |   |      |    |  |
| 14    |        |     |        |    |        |     |    | r3  |   |      |    |  |
| 15    |        |     |        |    |        |     |    | r5  |   |      |    |  |
| 16    |        |     | r6     |    | r6     |     | r6 |     |   |      |    |  |

# 2.1.6 Conclusion

As there are shift-reduce conflicts (in  $\mathbf{bold}$ ) in the SLR parsing table, the given CFG is not SLR(1).

### 2.2 Part (ii)

#### 2.2.1 LR(1) collection

$$I_{0} = \operatorname{Closure}(S' \rightarrow \cdot S, \$)$$

$$= \{S' \rightarrow \cdot S, \$,$$

$$S \rightarrow \cdot LM, \$,$$

$$S \rightarrow \cdot Lp, \$,$$

$$S \rightarrow \cdot qLr, \$,$$

$$S \rightarrow \cdot qsp, \$,$$

$$L \rightarrow \cdot aMb, t/p,$$

$$L \rightarrow \cdot t, t/p,$$

$$I_{1} = \operatorname{Goto}(I_{0}, S)$$

$$= \{S' \rightarrow S \cdot , \$\}$$

$$I_{2} = \operatorname{Goto}(I_{0}, L)$$

$$= \{S \rightarrow L \cdot M, \$,$$

$$S \rightarrow L \cdot p, \$,$$

$$M \rightarrow \cdot t, \$\}$$

$$I_{3} = \operatorname{Goto}(I_{0}, q)$$

$$= \{S \rightarrow q \cdot Lr, \$,$$

$$S \rightarrow q \cdot sp, \$,$$

$$L \rightarrow \cdot aMb, r,$$

$$L \rightarrow \cdot s, r,$$

$$L \rightarrow \cdot t, r\}$$

$$I_{4} = \operatorname{Goto}(I_{0}, s)$$

$$= \{S \rightarrow s \cdot r, \$,$$

$$L \rightarrow s, t/p\}$$

$$I_{5} = \operatorname{Goto}(I_{0}, a)$$

$$= \{L \rightarrow a \cdot Mb, t/p,$$

$$M \rightarrow \cdot t, b\}$$

$$I_6 = \text{Goto}(I_0, t)$$
$$= \{L \to t \cdot, t/p\}$$

$$I_7 = \operatorname{Goto}(I_2, M)$$
  
=  $\{S \to LM \cdot, \$\}$ 

$$I_8 = \mathsf{Goto}(I_2, p)$$
  
=  $\{S \to Lp \cdot, \$\}$ 

$$I_9 = \operatorname{Goto}(I_2, t)$$
$$= \{M \to t \cdot, \$\}$$

$$\begin{split} I_{10} &= \texttt{Goto}(I_3, L) \\ &= \{S \rightarrow qL \cdot r, \$\} \end{split}$$

$$I_{11} = \text{Goto}(I_3, s)$$

$$= \{S \rightarrow qs \cdot p, \$,$$

$$L \rightarrow s \cdot, r\}$$

$$\begin{split} I_{12} &= \texttt{Goto}(I_3, a) \\ &= \{L \rightarrow a \cdot Mb, r, \\ M \rightarrow \cdot t, b\} \end{split}$$

$$I_{13} = \texttt{Goto}(I_3, t)$$
$$= \{L \rightarrow t \cdot, r\}$$

$$I_{14} = \text{Goto}(I_4, r)$$
$$= \{S \rightarrow sr \cdot, \$\}$$

$$I_{15} = \text{Goto}(I_5, M)$$
$$= \{L \to aM \cdot b, t/p\}$$

$$I_{16} = \text{Goto}(I_5, t)$$
$$= \{M \to t \cdot, b\}$$

$$\begin{split} I_{17} &= \texttt{Goto}(I_{10}, r) \\ &= \{S \rightarrow qLr\cdot, \$\} \end{split}$$



Figure 2: LR(1) automaton

$$I_{18} = {\sf Goto}(I_{11},p)$$
 $= \{S o qsp\cdot,\$\}$ 
 $I_{19} = {\sf Goto}(I_{12},M)$ 
 $= \{L o aM \cdot b,r\}$ 
 $I_{20} = {\sf Goto}(I_{15},b)$ 
 $= \{L o aMb\cdot,t/p\}$ 
 $I_{21} = {\sf Goto}(I_{19},b)$ 
 $= \{L o aMb\cdot,r\}$ 
 $I_{16} = {\sf Goto}(I_{12},t)$ 

#### 2.2.2 LR(1) automaton

#### 2.2.3 LALR collection

Merging sets of LR(1) items that have the same core:

$$\begin{split} I_{5,12} &= \text{Goto}(I_0, a) \\ &= \{L \to a \cdot Mb, t/p/r, \\ M \to \cdot t, b\} \\ I_{6,13} &= \text{Goto}(I_0, t) \\ &= \{L \to t \cdot, t/p/r\} \\ \\ I_{9,16} &= \text{Goto}(I_2, t) \\ &= \{M \to t \cdot, \$/b\} \\ \\ I_{15,19} &= \text{Goto}(I_{5,12}, M) \\ &= \{L \to aM \cdot b, t/p/r\} \\ \\ I_{20,21} &= \text{Goto}(I_{15,19}, b) \\ &= \{L \to aMb \cdot, t/p/r\} \end{split}$$

So, there will be 17 states  $(I_0, I_1, I_2, I_3, I_4, I_{5,12}, I_{6,13}, I_7, I_8, I_{9,16}, I_{10}, I_{11}, I_{14}, I_{15,19}, I_{17}, I_{18}, I_{20,21})$  in the LALR collection.

#### 2.2.4 LALR(1) parsing table

| State | ACTION |        |     |    |     |     |       |     | GOTO |    |       |
|-------|--------|--------|-----|----|-----|-----|-------|-----|------|----|-------|
|       | a      | b      | р   | q  | r   | s   | t     | \$  | S    | L  | M     |
| 0     | s5,12  |        |     | s3 |     | s4  | s6    |     | 1    | 2  |       |
| 1     |        |        |     |    |     |     |       | acc |      |    |       |
| 2     |        |        | s8  |    |     |     | s9,16 |     |      |    | 7     |
| 3     | s5,12  |        |     |    |     | s11 | s6,13 |     |      | 10 |       |
| 4     |        |        | r7  |    | s14 |     | r7    |     |      |    |       |
| 5,12  |        |        |     |    |     |     | s9,16 |     |      |    | 15,19 |
| 6,13  |        |        | r8  |    | r8  |     | r8    |     |      |    |       |
| 7     |        |        |     |    |     |     | r1    |     |      |    |       |
| 8     |        |        |     |    |     |     | r2    |     |      |    |       |
| 9,16  |        | r9     |     |    |     |     |       | r9  |      |    |       |
| 10    |        |        |     |    | s17 |     |       |     |      |    |       |
| 11    |        |        | s18 |    | r7  |     |       |     |      |    |       |
| 14    |        |        |     |    |     |     |       | r4  |      |    |       |
| 15,19 |        | s20,12 |     |    |     |     |       |     |      |    |       |
| 17    |        |        |     |    |     |     |       | r3  |      |    |       |
| 18    |        |        |     |    |     |     |       | r5  |      |    |       |
| 20,21 |        |        | r6  |    | r6  |     | r6    |     |      |    |       |

#### 2.2.5 Conclusion

As there are no conflicts in the LALR(1) parsing table, the given CFG is LALR(1).

# 3 Problem 3

# 3.1 Compilation commands

```
bison -d prob3.y
flex prob3.1
gcc -o prob3 lex.yy.c prob3.tab.c
```

### 3.2 Execution instructions

Let's say the input file is testcase.txt. Run prob3 using the command: ./prob3 < testcase.txt

# 3.3 Other details

• Stray opening/closing tag is reported as syntax error along with the token having the stray tag.