

MALARIA DETECTION

A Deep Learning Model

ERMA C. A.

AGENDA

- Background
- Problem Summary
- Solution Design
- Model Comparison
- Model Selection
- Recommendations for Implementation
- Questions

BACKGROUND

- Over 400,000 people die of malaria each year worldwide
- Estimated that 2/3 of the deaths are children under five
- Leading cause of death and disease in developing countries
- Bloodborne disease caused by plasmodium parasites that infect red blood cells (RBCs)
- Curable if diagnosed and treated promptly
- Delays in diagnosis are the leading cause of death in patients
- Microscopic examination is the "gold standard" for diagnosis

3

PROBLEM SUMMARY

- What is the problem?
 - Malaria diagnosis is time-consuming process
 - Diagnosis accuracy is highly dependent on experience of lab personnel
- How are we going to help solve the problem?
 - Build an efficient computer vision model to examine RBC image
 - Model will identify the image
 - Infected with malaria and classifying as parasitized
 - Not infected and classifying as uninfected

SOLUTION DESIGN

Data Preprocessing

- Get images
- Resize images64 x 64 pixels
- Sort images
 - Train dataset
- Test dataset
- Uninfected
- Parasitized
- Normalization
- One-hot encoding

Exploratory Data Analysis

- 24,958 train images
- 2,600 test images
- Equally divided classes
- Image visualization
- Average image

Model Building

- 7 different models
- CNN architecture
- Feature learning: ReLU activation
- Classification: softmax activation
- Binary classification
- Adam optimizer
- Categorical crossentropy loss function
- Keras Tuner Hyperband
- VGG-16 pretrained model

Model Evaluation

- Accuracy
- Precision
- Recall
- f1-score
- Confusion matrix

Model Selection

- Model 4
- Highest accuracy
- Highest recall for parasitized class

IMAGE VISUALIZATION

MODEL COMPARISON: ACCURACY

MODEL COMPARISON: LOSS

MODEL COMPARISON

			Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
		Accuracy	0.91	0.93	0.94	0.95	0.88	0.94	0.95
Class	Uninfected	Precision	0.94	0.91	0.92	0.94	0.86	0.91	0.93
		Recall	0.87	0.97	0.97	0.97	0.9	0.98	0.96
		f1-score	0.9	0.94	0.95	0.96	0.88	0.94	0.95
	Parasitized	Precision	0.88	0.97	0.97	0.97	0.89	0.98	0.96
		Recall	0.94	0.9	0.92	0.94	0.85	0.9	0.93
		f1-score	0.91	0.93	0.94	0.95	0.87	0.94	0.95

MODEL SELECTION: MODEL 4

- Feature Learning: 4 CNN layers, LeakyReLU activation, dropout, max pooling
- Classification: 2 classes, softmax activation
- Adam optimizer
- Categorical cross-entropy loss function
- Accuracy: 95%
- True positive rate (TPR): 94%
- False negative rate (FNR): 6%

actual: Parasitized predicted: Normal probability: 1.0

actual: Parasitized predicted: Normal probability: 1.0

RECOMMENDATIONS FOR IMPLEMENTATION

- Model 4 is best performing model for computer vision system
- Next steps: additional computing power, data augmentation, images resized with more pixels
- Current Model Limitations: color images, single RBC image, 64 x 64 pixels
- Key Benefits:
 - ↓ diagnosis time & ↑ accuracy → reduction of the number of deaths
 - Cost avoidance regarding lab personnel \rightarrow U.S. Lab Technician \$36,710 vs Pathologist \$283,900
- Risks to consider:
 - False negative → possible **DEATH**
 - False positive → unnecessary treatment & cost

THANK YOU

