Profiling the XDG Constraint Solver

Ralph Debusmann

Programming Systems Lab, Saarbrücken

PS-Lab Colloquium, March 23th, 2005

- Introduction
- Profiling
- Numbers
- Interpretation
- 5 Future Work

- Introduction
- Profiling
- Numbers
- 4 Interpretation
- 5 Future Work

Extensible Dependency Grammar (XDG)

- grammar formalism for natural language (Debusmann, Duchier, Koller, Kuhlmann, Smolka, Thater 2004)
- parsing/realization as finite domain/finite set constraint solving in Mozart/Oz (Duchier 1999, Duchier 2003)
- system: XDG Development Kit (XDK) (Debusmann, Duchier, Niehren 2004)

Very expressive

- German word order (Duchier and Debusmann 2001)
- relational syntax-semantics interface (Debusmann, Duchier, Koller, Kuhlmann, Smolka, Thater 2004)
- phonology-semantics interface (information structure)
 (Debusmann, Postolache, Traat 2005)

Extensible Dependency Grammar (XDG)

Complexity

- precursor of XDG: Topological Dependency Grammar (TDG) is NP-complete (Koller, Striegnitz 2002)
- XDG is also NP-complete (Duchier p.c.), diss
- NP-hardness proof by reduction of HAMILTONIAN-PATH

Extensible Dependency Grammar (XDG)

Efficiency

- efficient for smaller-scale grammars (mostly handcrafted)
- does not yet scale up to large-scale grammars (induced from treebanks):

Examples

- Czech, Prague Dependency Treebank (Bojar 2004)
- English, Penn Treebank (Dienes, Koller, Kuhlmann 2003), (Narendranath 2004)
- German, TIGER Treebank (Korthals 2003), (Möhl 2004)

- 1 Introduction
- Profiling
- Numbers
- 4 Interpretation
- 5 Future Work

Profiling

- idea: find out reasons for efficiency breakdowns
- new XDK functionality:
 - count constraint variables (finite domain, finite set)
 - count propagators
 - average lexical ambiguity (entries per word)
 - more statistics

First Results

- handcrafted grammars: can be very efficient if propagation is complete
- induced grammars: different sources for efficiency breakdowns:

Reasons

- English, (Dienes, Koller, Kuhlmann 2003), (Narendranath 2004): too unrestricted (valency, word order)
- Czech, (Bojar 2004): too many lexical entries, therefore too many constraint variables and propagators
- German, (Korthals 2003), (Möhl 2004): not yet profiled
- 64 words barrier (Mozart)

- 1 Introduction
- Profiling
- Numbers
- 4 Interpretation
- 5 Future Work

Smaller-scale grammars

Smaller-scale grammar (2D) 1

• German, (Debusmann 2001), min, max, average:

Words	Time (s)	Sols/Fails	Lex. Amb.	Vars	Props
3	0.030	0/0	1	603	2276
64	4.950	6/2	9	14633	339121
7.9	0.169	1.14/0.36	2.12	1929	14673

Smaller-scale grammars

Smaller-scale grammar (2D) 2

• German, (Debusmann 2001), specific sentences:

Words	Time (s)	Vars	Props
11	0.21	2515	15148
20	0.46	4549	40834
29	0.99	6583	78508
38	1.49	8617	128170
50	2.00	11329	213034
63	4.63	14592	329345

Smaller-scale grammars

Smaller-scale grammar (5D)

 English, (Debusmann, Duchier, Koller, Kuhlmann, Smolka, Thater 2004), min, max, average:

Words	Time (s)	Sols/Fails	Lex. Amb.	Vars	Props
5	0.270	0/0	1	12842	41058
15	4.840	42/46	44	79680	285656
7.2	0.714	5.04/2.14	3.08	25985.8	82683.2

Large-scale grammars

Large-scale grammar (2D)

 Czech, (Debusmann, Duchier, Koller, Kuhlmann, Smolka, Thater 2004), min, max, average:

Lex. Amb.	Vars	Props
1	10085	11092
1472	734995	1005552
36.32	171259	218557

Large-scale grammars

Large-scale grammar (2D)

 Czech, (Debusmann, Duchier, Koller, Kuhlmann, Smolka, Thater 2004), specific sentences:

Words	Lex. Amb.	Vars	Props
7	21.43	43125	50697
10	20.9	60211	74506
11	28.4	89335	106335
17	56.06	270668	308770
21	62.3	371632	428442
33	54.36	511277	646483
45	24.9	326388	573398

- 1 Introduction
- Profiling
- Numbers
- 4 Interpretation
- 5 Future Work

Problems

Problems

- too many lexical entries
- too many constraint variables
- constraint variables/propagators ratio
- unconstrained induced grammars
- incomplete propagation

Possible Solutions

- optimized propagation
- polynomial fragments of XDG
- modelling: Treebank to XDG, XDG to Mozart/Oz
- search: distribution strategy, guided search (Dienes, Koller, Kuhlmann 2003), (Narendranath 2004)
- supertagging
- Gecode (Schulte, Tack)

- 1 Introduction
- Profiling
- Numbers
- Interpretation
- 5 Future Work

Future Work

- too many lexical entries: supertagging, modeling (Treebank to XDG)
- too many constraint variables: modelings (Treebank to XDG, XDG to Mozart/Oz)
- constraint variables/propagators ratio: modelings
- unconstrained induced grammars: search (distribution strategy, guided search)
- incomplete propagation: optimized propagation, polynomial fragments of XDG, modelings, search, Gecode

References

References

Problems of Inducing Large Coverage Constraint-Based Dependency Grammar.

In Proceedings of the International Workshop on Constraint Solving and Language Processing, Roskilde/DK, 2004.

Ralph Debusmann, Denys Duchier, Alexander Koller, Marco Kuhlmann, Gert Smolka, and Stefan Thater. A Relational Syntax-Semantics Interface Based on Dependency Grammar.

In Proceedings of COLING 2004, Geneva/CH, 2004.

In *Proceedings of the MOZ04 Conference*, volume 3389 of *Lecture Notes in Computer Science*, pages 190–201, Charleroi/BE, 2004. Springer.

Ralph Debusmann, Oana Postolache, and Maarika Traat. A Modular Account of Information Structure in Extensible Dependency Grammar.

In *Proceedings of the CICLING 2005 Conference*, Mexico City/MEX, 2005. Springer.

- Peter Dienes, Alexander Koller, and Marco Kuhlmann. Statistical A* Dependency Parsing. In Prospects and Advances in the Syntax/Semantics Interface, Nancy/FR, 2003.
- Denys Duchier. Axiomatizing Dependency Parsing Using Set Constraints. In *Proceedings of MOL 6*, Orlando/US, 1999.
- Denys Duchier. Configuration of Labeled Trees under Lexicalized Constraints and Principles.

Research on Language and Computation, 1(3–4):307–336. 2003.

References

- Alexander Koller and Kristina Striegnitz. Generation as Dependency Parsing. In *Proceedings of ACL 2002*, Philadelphia/US, 2002.
- Mathias Möhl. Modellierung natürlicher sprache mit hilfe von topologischer dependenzgrammatik.

Technical report, Saarland University, 2004. Forschungsprojekt.

References

References

Renjini Narendranath.

Evaluation of the Stochastic Extension of a Constraint-Based Dependency Parser.

Technical report, Saarland University, 2004. Bachelorarbeit.

Thank you!

Thank you!