Домашнее задание (листок) 2 Анализ, 2 курс, весенний семестр ДЕДЛАЙН: 31.03.2021

Задача 1. Пусть числовой ряд $\sum_{n=1}^{\infty} |d_n|$ сходится. Доказать, что функциональный ряд $\sum_{n=1}^{\infty} d_n \sin(nx)$ сходится равномерно при $x \in \mathbb{R}$ и его сумма является непрерывной периодической функцией. Чему равны коэффициенты Фурье этой функции по системе $\{\sin(nx)\}\$ на $(0,\pi)$?

Задача 2. Пусть $f \in L^2(-\pi;\pi)$ и a_n, b_n $(n=1,2,\dots)$ – коэффициенты Фурье f по стандартной тригонометрической системе. Доказать равномерную сходимость рядов $\sum_{n=1}^{\infty} \frac{a_n}{n} \sin nx$ и $\sum_{n=1}^{\infty} \frac{b_n}{n} \cos nx$ при $x \in \mathbb{R}$.

Задача 3. Пусть функция $f \in L^1(0,\pi)$. Рассмотрим ее коэффициенты Фурье $\{c_n\}$ по тригонометрической системе $\{\sin(nx)\}$ или $\{1,\cos(nx)\}$.

- а) Доказать, что $c_n \to 0 \ (n \to \infty)$. (Указание: использовать лемму Римана).
- b) Обязательно ли сходится ряд $\sum_{n=1}^{\infty} |c_n|$? c) При каком условии сходится ряд $\sum_{n=1}^{\infty} c_n^2$?

Задача 4. Зная коэффициенты Фурье $a_0, a_n, b_n (n = 1, 2, \dots)$ интегрируемой функции f(x), имеющей период 2π , вычислите коэффициенты Фурье $\tilde{a}_0, \tilde{a}_n, \tilde{b}_n$ "усредненной" функции $f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt$.

Задача 5. Показать, что функция $f(x) = \ln |2 \sin \frac{x}{2}|$ лежит в $L^2(-\pi,\pi)$. Разложить в ее в ряд Фурье на интервале $(-\pi, \pi)$.

Задача 6. Пусть функции $f,g\in L^2((-\pi;\pi);\mathbb{C})$. Рассмотрим соответствующие им ряды Фурье $\sum_{n\in\mathbb{Z}}c_ne^{inx},\sum_{n\in\mathbb{Z}}d_ne^{inx}$, где $c_n=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}dx,\ d_n=\frac{1}{2\pi}\int_{-\pi}^{\pi}g(x)e^{-inx}dx,\ n\in\mathbb{Z}$. Докажите, что $fg\in L^1((-\pi;\pi);\mathbb{C})$ и коэффициенты Фурье произведения fg могут быть получены при перемножении формальных рядов Φ урье функций f и g. Обоснуйте полученные формулы.

Задача 7. Пусть вещественная функция f непрерывна на отрезке $[0,\pi]$, удовлетворяет соотношению $\int_0^\pi f(x)\,dx=0$ и имеет на $(0,\pi)$ производную f', которая принадлежит $L^2(0,\pi)$. Доказать неравенство Пуанкаре-Виртингера (ср. с неравенством Стеклова с семинара):

$$\int_0^{\pi} (f(x))^2 dx \le \int_0^{\pi} (f'(x))^2 dx,$$

в котором равенство достигается лишь при $f(x) = a \cos x$.

Задача 8. Пусть функция $f \in C[0,\pi], f(0) = f(\pi) = 0$, причем для ее коэффициентов Фурье $\{c_n\}$ по системе $\{\sin(nx)\}$ выполнено условие $c_n = o(1/n)$. Доказать, что ряд Фурье сходится к f равномерно на $[0,\pi]$. (Указание: применить теорему Фейера.)

Задача 9. Пусть $f \in L^1(-\pi,\pi)$. Доказать, что суммы Фейера $\sigma_n(x)$ функции fсходятся к f по норме пространства $L^{1}(-\pi,\pi)$. Следствие: Всякая функция из пространства $L^{1}(-\pi,\pi)$ однозначно определяется своими коэффициентами Фурье.

Задача 10. а)(*) Доказать, что функциональный ряд $\sum_{n=1}^{\infty} \frac{\sin(nx)}{\sqrt{n}}, \ x \in [0, 2\pi], \text{ схо-$

дится, его сумма f(x) непрерывна при $x \in (0,2\pi)$, и $f \in L^1(0,2\pi)$, но $f \notin L^2(0,2\pi)$. b)(*) Доказать, что функциональный ряд $\sum_{n=2}^{\infty} \frac{\sin(nx)}{\ln n}$ сходится при $x \in (0,2\pi)$ к некоторой непрерывной функции f(x) на этом интервале, но $f \notin L^1(0,2\pi)$.