# Sumário

| 1 | Preliminares              | 2  |
|---|---------------------------|----|
| 2 | Exercícios de conexidade  | 16 |
| 3 | Exercícios de compacidade | 21 |
| 4 | Resolução da lista 1      | 27 |
| 5 | Resolução da lista 2      | 32 |

### AULA 10

## Metrizabilidade e Axiomas de Separação

DEFINIÇÃO 10.1. Seja  $(\Omega,\tau)$ um espaço topológico não vazio. Temos as seguintes definições:

- a) Seja  $x \in \Omega$ , diremos que  $U \subset \Omega$  é uma vizinhança de x quando  $x \in U^{\circ}$ ;
- b) Dado  $x \in \Omega$  base de vizinhanças  $\mathcal{B}_x$  de x a família de vizinhanças de x com a seguinte propriedade: se U é qualquer vizinhança de x, então existe  $V \subset \mathcal{B}_x$  tal que  $V \subset U$ ;
- c) Uma cobertura aberta de  $\Omega$  é um subconjunto  $\mathscr{F} \subset \tau$  tal que  $\bigcup_{U \in \mathscr{F}} U = \Omega$ ; Uma subcobertura é um subconjunto de  $\mathscr{F}$  que ainda é uma cobertura.

DEFINIÇÃO 10.2. Seja  $(\Omega,\tau)$ um espaço topológico não vazio. Temos as seguintes definições:

- a) Diremos que  $\Omega$  satisfaz o o primeiro axioma de enumerabilidade quando todo  $x \in \Omega$  tem uma base de vizinhanças enumerável;
- b) Diremos que  $\Omega$  satisfaz o o segundo axioma de enumerabilidade quando a topologia  $\tau$  tem um base enumerável;
- c) O espaço  $\Omega$ será dito  $Lindel\"{o}f$  quando toda cobertura de  $\Omega$  possuir uma subcobertura enumerável;
- d) Finalmente, diremos que  $\Omega$  é separável sempre que  $\Omega$  admitir uma conjunto enumerável denso.

Proposição 10.3. Em espaços métricos: Separável  $\Rightarrow$  base enumerável  $\Rightarrow$  Lindelöf  $\Rightarrow$  separável.

Demonstração. Prova de: Separável  $\Rightarrow$  base enumerável: Se  $\{x_n\}_{n\in\mathbb{N}}$  é um conjunto denso em  $\Omega$  então é fácil ver que se  $\{q_m\}_{m\in\mathbb{N}}$  é uma enumeração dos racionais então  $\{B_d(x_n,q_m)\}_{n,m\in\mathbb{N}}$  é uma base enumerável para  $\tau$ .]

<u>Prova de: base enumerável  $\Rightarrow$  Lindelöf:</u> Seja  $\mathscr F$  uma cobertura de  $\Omega$  e  $\mathscr B$  uma base enumerável para  $\Omega$ . Defina

$$\mathscr{B}_{\mathscr{F}} = \{ B \in \mathscr{B} : B \subset A \text{ para algum } A \in \mathscr{F} \}.$$

Sendo  $\mathscr{B}$  uma base temos que todo elemento de  $\mathscr{F}$  pode ser escrito como uma união contável de elementos de  $\mathscr{B}$ , portanto  $\mathscr{B}_{\mathscr{F}}$  é uma cobertura enumerável de  $\Omega$ . Agora, para cada  $B_j \in \mathscr{B}_{\mathscr{F}}$  escolha  $A_j \in \mathscr{F}$  tal que  $B_j \subset A_j$ . Então temos que  $\Omega = \bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{\infty} A_j$ . Donde segue o resultado.

#### AULA 12

## Espaços Conexos

DEFINIÇÃO 12.1. Um espaço topológico  $\Omega$  é dito desconexo se existem conjuntos abertos, disjuntos e não vazios A,B tais que  $\Omega=A\cup B$ . Caso contrário diremos que  $\Omega$  é conexo. Um subconjunto  $S\subset\Omega$  é dito desconexo se com a topologia induzida S é desconexo. Caso contrário diremos que S é conexo.

Exemplo 12.2. Cada intervalo fechado e limitado de  $\mathbb{R}$  é conexo. De fato, suponha que o intervalo  $[a,b],\ a < b$  seja desconexo. Então podemos escrever  $[a,b] = A \cup B$  onde A e B são dois abertos não vazios de [a,b]. Suponha sem perda de generalidade que  $b \in B$ . Como B é aberto tem-se que  $(b-\epsilon,b] \subset B$  para algum  $\epsilon > 0$ . Seja  $c = \sup A$ , pela observação precedente devemos ter que c < b e que  $(c,b] \subset B$ . Caso  $c \in A$ , como A é aberto, deve existir  $\epsilon > 0$  tal que  $[c,c+\epsilon) \subset A$ , contrariando o fato de  $c = \sup A$ . Assim  $c \in B$ . Se a < c, sendo B aberto deve existir  $\epsilon > 0$  tal que  $(c-\epsilon,c] \subset B$ , contrariando o fato de  $c = \sup A$ . Concluímos que c = a, assim  $[a,b] = [c,b] \subset B$ , outro absurdo. Portanto [a,b] é conexo.

Proposição 12.3. Um espaço topológico  $(\Omega, \tau)$  é conexo se e semente se  $\Omega$  e  $\varnothing$  são os únicos subconjuntos de  $\Omega$  simultaneamente abertos e fechados.

Proposição 12.4. A imagem de um espaço conexo por aplicação contínua é um espaço conexo.

COROLARIO 12.5. Teorema do valor intermediário.

EXERCÍCIO 12.1. Prove que a imagem contínua de um espaço conexo é um espaço conexo.

EXERCÍCIO 12.2. a) Mostre que se S é conexo então  $\overline{S}$  também o é. b) Se S é conexo e  $S \subset D \subset \overline{S}$  então D é conexo.

PROPOSIÇÃO 12.6. Seja  $(\Omega, \tau)$  um espaço topológico. Suponha que  $\Omega = \bigcup_{\alpha \in I} S_{\alpha}$ , onde cada  $S_{\alpha}$  é conexo e  $\bigcap_{\alpha \in I} S_{\alpha} \neq \emptyset$ . Então  $\Omega$  é conexo.

Demonstração. Suponha  $\Omega = A \cup B$  onde A e B são abertos e disjuntos de  $\Omega$ . Note que para cada  $\alpha \in I$ , temos que  $S_{\alpha} \subset A$  ou  $S_{\alpha} \subset B$ , caso contrário  $S_{\alpha}$  não seria conexo. Agora seja  $x \in \bigcap_{\alpha \in I} S_{\alpha}$ , se  $x \in A$ , então devemos ter pela observação acima que  $S_{\alpha} \in A$  para todo  $\alpha \in I$  donde  $B = \emptyset$ . Um raciocínio análogo caso  $x \in B$  mostra que  $A = \emptyset$ . Logo  $\Omega$  é conexo.

Exercício 12.3. a) Mostre que  $\mathbb{R}$  é conexo. b) Mostre que  $\mathbb{R}^n$  é conexo.

EXERCÍCIO 12.4. Seja  $(\Omega, \tau)$  um espaço topológico. Suponha que cada par de pontos  $x, y \in \Omega$  pertença a um conjunto conexo  $S_{xy} \subset \Omega$ . Então  $\Omega$  é conexo.

Proposição 12.7. Sejam  $(\Omega_1, \tau_1)$  e  $(\Omega_2, \tau_2)$  espaços topológicos não vazios. Então o produto Então o produto cartesiano  $\Omega_1 \times \Omega_2$  é conexo se e somente se  $\Omega_1$  $e \Omega_2$  são conexos conexo.

Demonstração. Sendo o produto  $\Omega_1 \times \Omega_2$  conexo e as projeções  $\pi_1, \pi_2$  contínuas então pelo exercício ?? temos que  $\pi_1(\Omega_1 \times \Omega_2) = \Omega_1$  e  $\pi_2(\Omega_1 \times \Omega_2) = \Omega_2$  são conexos.

Reciprocamente suponha que  $\Omega_1$  e  $\Omega_2$  sejam conexos. Fixe  $y \in \Omega_2$  e para cada  $x \in \Omega_1$  defina  $U_x = (\{x\} \times \Omega_2) \cup (\Omega_1 \times \{y\})$ . Note que para cada  $x \in \Omega_1$ o cojunto  $U_x$  é a união dos dois conjuntos conexos  $\{x\} \times \Omega_2$  e  $\Omega_1 \times \{y\}$  e que  $(\{x\} \times \Omega_2) \cap (\Omega_1 \times \{y\}) = \{(x,y)\}$ , assim sendo seegue da proposição ?? que  $U_x$  é

Agora note que  $\Omega_1 \times \Omega_2 = \bigcup_{x \in \Omega_1} U_x$  e que  $\bigcap_{x \in \Omega_1} = \Omega_1 \times \{y\} \neq \emptyset$ . Portanto pela proposição?? segue o resultado.

Exercício 12.5. Complete a demonstração acima mostrando que  $\{x\} \times \Omega_2$ é homemorfo a  $\Omega_2$  e que  $\Omega_1 \times \{y\}$  é homeomorfo a  $\Omega_1$ .

Exercício 12.6. Mostre que  $\mathbb{R}^{\mathbb{N}}$  com a topologia das caixas não é conexo. Sugestão: Decomponha  $\mathbb{R}^{\mathbb{N}}$  no conjunto das sequências limitadas e das sequências não limitadas.

Proposição 12.8. Seja  $\{\Omega_{\alpha}\}_{{\alpha}\in I}$  uma família não vazia de espaços topológicos não vazios. Então o produto  $\prod_{\alpha \in I} \Omega_{\alpha}$  é conexo se e somente se cada  $\Omega_{\alpha}$  é conexo.

Demonstração.

### 1. Lista de exercícios

- 1. Um espaço topológico  $\Omega$  é dito ser totalmente desconexo quando os únicos subconjuntos conexos de  $\Omega$  são os conjuntos unitários. Mostre que se  $\Omega$ está equipado com a topologia discreta então  $\Omega$  é totalmente desconexo. A recíproca vale?
- 2. Mostre que se  $\{A_n\}_{n\in\mathbb{N}}$  é uma sequência de subespaços conexos de um espaço topológico  $\Omega$ , tais que  $A_n \cap A_{n+1} \neq \emptyset$  para todo n. Mostre que  $\bigcup_{n\in\mathbb{N}} A_n$  é conexo.
- 3. O espaço  $\mathbb{R}_{\ell}$  é conexo?
- 4. Mostre que um espaço topológico  $\Omega$  é contínua se e somente se as únicas funções  $f: \Omega \to \{0,1\}$  contínuas são as constantes.
- 5. Seja  $\Omega$  um espaço topológico e suponha que para cada par de pontos x, yexiste um subconjunto conexo  $S_{xy}$  de  $\Omega$  contendo x e y, então  $\Omega$  é conexo.
- 6. Mostre que para  $n \geq 2$ ,  $\mathbb{R}^n \setminus \{x_1, \dots, x_n\}$  é conexo. 7. Mostre que  $\mathbb{R}^2 \setminus \mathbb{Q}^2$ , onde  $\mathbb{Q}^2$  representa o conjunto de todos os pontos de coordenadas racionais, também é conexo.
- 8. Prove que  $\mathbb{R}^n$  e  $\mathbb{R}$  não são homeomorfos para todo  $n \geq 2$
- 9. Seja  $E \subset \mathbb{R}^n$  um subespaço de codimensão  $\geq 2$ . Mostre que  $\mathbb{R}^n \setminus E$  é conexo.

#### AULA 13

## Compacidade

Definição 13.1. Um espaço topológico  $\Omega$  é dito compacto quando toda cobertura aberta de  $\Omega$  admite uma subcobertura finita. Um subconjunto  $K \subset \Omega$  é dito um subconjunto compacto quando K com a topologia induzida for compacto.

EXERCÍCIO 13.1. Seja  $K\subset\Omega$ , então K é compacto se e somente se toda cobertura de K por abertos de  $\Omega$  admite uma subcobertura finita.

EXEMPLO 13.2. A reta  $\mathbb{R}$  não é compacta. De fato considere a cobertura  $\mathscr{F} = \{(n, n+2), n \in \mathbb{Z}\},$  é fácil ver que  $\mathscr{F}$  não tem subcobertura finita.

EXEMPLO 13.3. O seguinte subconjunto de  $\mathbb{R}$  é compacto:  $\Omega = \{0\} \cup \{\frac{1}{n}, n \in \mathbb{Z}\}.$ 

Definição 13.4. Diremos que um espaço topológico tem a propriedade da intersecção finta (p.i.f) se e somente se para qualquer família de conjuntos fechados  $\{F_{\alpha}\}_{\alpha\in I}$  como a propriedade de que:  $F_{\alpha_1}\cap\cdots\cap F_{\alpha_k}\neq\varnothing$  para todos  $\alpha_1,\ldots,\alpha_k\in I$ , tem-se que  $\bigcap_{\alpha\in I}F_{\alpha}\neq\varnothing$ .

Proposição 13.5. Um espaço topológico  $\Omega$  é compacto se e somente se tem a propriedade da intersecção finita.

Demonstração. Seja  $\{U_{\alpha}\}_{\alpha\in I}$  uma família de abertos. Associamos a essa família a seguinte família de fechados:  $\{F_{\alpha}\}_{\alpha\in I}$ , onde  $F_{\alpha}=\Omega\setminus U_{\alpha}$ . Então temos que  $F_{\alpha_1}\cap\cdots\cap F_{\alpha_i}\neq\varnothing$  se e somente se  $\{U_{\alpha_i}\}_{i=1}^k$  não é uma cobertura de  $\Omega$ , enquanto pela p.i.f  $\bigcap_{\alpha\in I}F_{\alpha}\neq\varnothing\Leftrightarrow\bigcup_{\alpha\in I}U_{\alpha}\neq\Omega$ . Portanto, a propriedade da intersecção finita diz que se nenhuma subfamília finita de  $\{U_{\alpha}\}_{\alpha\in I}$  é uma cobertura então  $\{U_{\alpha}\}_{\alpha\in I}$  também não é uma cobertura, o que é a contrapositiva da definição de compacidade.

Proposição 13.6. Seja  $\Omega$  um espaço topológico compacto. Então temos o seguinte:

- a) Todo subconjunto  $F \subset \Omega$  fechado também é compacto;
- b) Se  $\Omega$  for Hausdorff e  $K \subset \Omega$  for um subconjunto compacto então K é fechado em  $\Omega$ ;
- c) Todo espaço compacto Hausdorff é normal;

DEMONSTRAÇÃO. Prova de a): Seja  $\{V_{\alpha}\}_{\alpha\in I}$  uma cobertura aberta de F. Então existem abertos  $U_{\alpha}$  de  $\Omega$  tais que  $V_{\alpha} = F \cap U_{\alpha}$ . Note que  $\{\Omega \setminus F\} \cup \{U_{\alpha}\}$  é uma cobertura aberta de  $\Omega$ , portanto existem indíces  $\alpha_1, \ldots, \alpha_n$  tais que  $\{\Omega \setminus F\} \cup \{U_{\alpha_i}\}_{i=1}^n$  é uma subcobertura finita de  $\Gamma$ . Portanto  $\{V_{\alpha_i}\}_{i=1}^n$  é uma subcobertura finita de  $\Gamma$ .

Prova de b): Para provar o desejado vamos precisar usar o seguinte fato: em um espaço Hausdorff dado um compacto K e um ponto  $x \notin K$ , existem abertos disjuntos  $U_x$  e  $V_x$  tais que  $x \in U_x$  e  $K \subset V_x$ . De fato, fixado  $x \notin K$  e  $y \in K$ , obtemos, pois  $\Omega$  é Hausdorff, abertos disjuntos  $U_{xy} \ni x$  e  $V_{xy} \ni y$ . Assim temos que  $\{V_{xy}\}_{y \in K}$  é uma cobertura aberta de K. Usando a compacidade de K obtemos  $y_1, \ldots, y_n$  tais que

$$K \subset V_{xy_1} \cup \cdots \cup V_{xy_n} \equiv V.$$

Defina  $U_x \equiv U_{xy_1} \cap \cdots U_{xy_n}$  note que  $U_x$  é aberto pois é a intersecção finita de abertos e que  $U_x \cap V_x = \emptyset$ . Provando a afirmação.

Com isso em mãos podemos proceder à prova de b). Para cada  $x \notin K$  tome  $U_x \ni x$  e  $V_x \supset K$  abertos disjuntos. Então  $\Omega \setminus K = \bigcup_{x \in \Omega \setminus K} U_x$  é aberto, donde K é fechado.

Prova de c): Sejam K e L fechados em  $\Omega$ , pelo item a) são ambos compactos. Usando o fato que provamos na prova de b) para cada  $x \in L$ , temos abertos disjuntos  $U_x \ni X \ V_x \supset K$ . Então,  $\{U_x\}_{x \in L}$  é uma cobertura de L, por compacidade existem  $x_1, \ldots x_n$  tais que  $B \subset U \equiv U_{x_1} \cup \cdots U_{x_n}$ . Tomando  $V \equiv \bigcap_{i=1}^n V_{x_i}$  temos que U e V são abertos disjuntos  $K \subset V$  e  $L \subset U$ 

DEFINIÇÃO 13.7. Um espaço topológico  $\Omega$  é dito fracamente sequencialmente compacto (f.s.c) se toda sequência em  $\Omega$  tem um ponto de acumulação. Se toda sequência tem uma subsequência convergente diremos que  $\Omega$  é sequêncialmente compacto. Note que em espaços métricos essas duas noções coincidem.

Exercício 13.2. Mostre que um espaço métrico é fracamente sequencialmente compacto se e somente se é sequêncialmente compacto. Se  $\Omega$  for apenas um espaço topológico, qual dessas noções implica a outra? Dê um exemplo de um espaço não metrizável em que essas noções não coincidem.

Proposição 13.8. Todo espaço topológico compacto é fracamente sequencialmente compacto.

DEMONSTRAÇÃO. Seja  $\{x_n\}_{n\in\mathbb{N}}$  uma sequência em um espaço compacto  $\Omega$ . Suponha que  $\{x_n\}_{n\in\mathbb{N}}$  não tenha ponto de acumulação (em particular  $\{x_n\}_{n\in\mathbb{N}}$  é não eventualmente constante). Então para cada  $x\in\Omega$  existe uma vizinhaça aberta  $U_x$  de x contendo apenas um número finito de termos de  $\{x_n\}_{n\in\mathbb{N}}$ . Veja que  $\{U_x\}_{x\in\Omega}$  é uma cobertura aberta de  $\Omega$  por compacidade deve existir  $x_1,\ldots,x_n$  em  $\Omega$  tais que  $\Omega=U_{x_1}\cup\cdots\cup U_{x_n}$ . Mas isso implica que  $\{x_n\}_{n\in\mathbb{N}}$  tem apenas um número finito de termos, o que é absurdo.

EXERCÍCIO 13.3. Seja  $\Omega = \{0,1\}$  e considere em  $\Omega$  a topologia  $\tau = \{\emptyset, \Omega\}$ . Equipe  $\mathbb{N}$  com a topologia discreta e considere o produto  $\mathbb{N} \times \Omega$ . Use esse exemplo para mostrar que a reciproca da proposição acima não é verdadeira.

DEFINIÇÃO 13.9. Um espaço merico  $(\Omega,d)$  é dito totalmente limitado se e somente se para todo  $\epsilon > 0$  existe um conjunto finito  $\{x_1,\ldots,x_n\} \subset \Omega$  tal que  $\Omega \subset \bigcup_{i=1}^n B_d(x_i,\epsilon)$ .

Proposição 13.10. Seja  $(\Omega, d)$  um espaço métrico. Então temos o seguinte:

- a) Todo espaço métrico totalmente limitado é separável;
- b) Todo espaço métrico totalmente limitado é sequencialmente compacto.

DEMONSTRAÇÃO. Prova de a): Para cada n considere o conjunto  $\{x_j^{(n)}\}_{j=1}^{N_n}$  tal que  $\Omega = \bigcup_{j=1}^{N_n} B_d(x_j^{(n)}, 1/n)$ . Afirmamos que  $\{x_j^{(n)}\}_{j=1,\dots,N_n;n\in\mathbb{N}}$  é denso em  $\Omega$ . Com efeito, seja  $x\in\Omega$  e  $U\ni x$  um aberto, então existe n tal que  $B_d(x,1/n)\subset U$ . Agora veja que pela construção de  $\{x_j^{(n)}\}_{j=1}^{N_n}$  existe j tal que  $x\in B_d(x_j^{(n)},1/n)$ , assim  $x_j^{(n)}\in B_d(x,1/n)$ . Portanto  $\{x_j^{(n)}\}=\Omega$ .

Prova de b): Seja  $\{y_m\}_{n\in\mathbb{N}}$  uma sequência em  $\Omega$ . Considere  $\{x_j^{(n)}\}_{j=1}^{N_n}$  a sequência definida no item anterior. O princípio da casa dos pombos garante que pelo menos uma das bolas  $B_d(x_j^{(1)},1),\ j=1,\ldots,N_n$ , contém infinitos termos de  $\{y_m\}_{m\in\mathbb{N}}$ , escolha uma dessas bolas e denote-a por  $B_1$ . Portanto existe uma subsequência  $\{y_n^{(1)}\}\subset B_1$ . Usando indução obtemos uma bola  $B_\ell$  de raio  $1/\ell$  e uma subsequência  $\{y_m^{(\ell)}\}$  em  $B_\ell$ . Então a subsequência  $z_\ell \equiv y_\ell^{(\ell)}$ , tem a propriedade de que  $\{z_j\}_{j=\ell}^{\infty}\subset B_\ell$ . Portanto temos que  $d(z_m,z_j)<1/\ell$  sempre que  $m,j\geq\ell$ , ou seja,  $\{z_j\}_{j\in\mathbb{N}}$  é uma sequência de Cauchy, assim existe z tal que  $z_j\to z$ . Portanto z é limite de uma subsequência de  $\{y_m\}_{n\in\mathbb{N}}$ .

Teorema 13.11. Em um espaço métrico  $(\Omega,d)$  as seguintes afirmações são equivalentes:

- a)  $\Omega$  é compacto;
- b)  $\Omega$  é sequencialmente compacto;
- c)  $\Omega$  é completo e totalmente limitado.

Demonstração. a)⇒ b): Isso é o conteúdo da Proposição 13.8.

<u>b</u>)⇒ c): Dado  $\epsilon > 0$  suponha que para quaisquer  $\{x_1, \dots, x_N\}$  tenhamos que  $\bigcup_{i=1}^N B_d(x_i, \epsilon) \neq \Omega$ . Vamos construir uma sequência  $\{x_n\}_{n \in \mathbb{N}}$  que não possui nenhuma subsequência convergente. Para, isso escolha,  $x_1$  arbitrariamente e indutivamente escolha  $x_{n+1}$  de modo que  $x_{n+1} \notin \bigcup_{i=1}^n B_d(x_n, \epsilon)$ . Assim  $d(x_n, x_m) \geq \epsilon$  para todos  $n \neq m$ . Concluímos que  $\{x_n\}_{n \in \mathbb{N}}$  não possui subsequência convergente, o que uma contradição com a hipótese.

 $\underline{\mathbf{c}})\Rightarrow \mathbf{a})$ : A proposição 13.10 garante que sendo  $\Omega$  completo e totalmente limitado então  $\Omega$  é separável. Logo, pela proposição 10.3  $\Omega$  é Lindelöf, ou seja, toda cobertura aberta de  $\Omega$  adimite uma subcobertura enumerável. Assim, seja  $\{U_n\}_{n\in\mathbb{N}}$  uma cobertura enumerável de  $\Omega$ , tal que nehuma subcoleção finita  $\{U_1,\ldots,U_n\}$  seja uma subcobertura de  $\Omega$ .

Seja  $A_n = \Omega \setminus \bigcup_{j=1}^n U_n \neq \emptyset$  é fechado e  $A_n \supset A_{n+1}$ . Para cada n escolha  $x_n \in A_n$ . isso fornece uma sequência  $\{x_j\}_{j\in\mathbb{N}}$  que pelo item b) da proposição anterior tem um ponto de acumulação x. Visto que  $\{x_j\}_{j\in\mathbb{N}} \subset A_n$  para todo n, e cada  $A_n$  é fechado, concluímos que  $x \in \bigcap_{n=1}^{\infty} A_n = \emptyset$ , absurdo. Logo  $\{U_n\}_{n\in\mathbb{N}}$  admite uma subcobertura finita.

EXERCÍCIO 13.4. Considere o cubo de Hilbert  $C = [0,1]^{\mathbb{N}}$  equipado com a métrica produto, i.e,  $d(x,y) = \sup_{n \in \mathbb{N}} \{|x_n - y_n|/n\}$ .

- a) Mostre que nessa topologia bolas  $B_d(x,r)$  são conjuntos da forma  $\prod_{n\in\mathbb{N}} B(x_n,nr)$  (aqui B sem o índice indica a bolas de [0,1] relativas ao valor absoluto);
- b) Mostre que C é completo;
- c) Verifique que C é totalmente limitado e conclua que C é compacto.

Definição 13.12. Seja  $\Omega$  um espaço topológico, diremos que  $A\subset\Omega$  é précompacto quando  $\overline{A}$  for compacto.

Proposição 13.13. Um subconjunto  $A \subset \mathbb{R}^n$  é compacto (na topologia usual) se e somente se é fechado e limitado.

Demonstração. Sendo A compacto, então pela proposição 13.6 A é fechado, e pela proposição 13.11 A é totalmente limitado. Portanto existe um conjunto finito  $\{x_1,\ldots,x_N\}$  tal que  $A\subset\bigcup_{i=1}^N B(x_i,1)$ . Assim sendo  $A\subset B(0,r)$  onde  $r=1+\max\{|x_1|,\ldots,|x_N|\}$ . Portando A é limitado e fechado.

Reciprocamente, sendo A fechado e limitado, temos em particular que A é completo (todo subconjunto fechado de um espaço métrico completo é ainda completo com a topologia induzida.)

O resultado estará provado se mostrarmos que A é totalmente limitado. Pois bem, como A é limitado existe r>0 tal que  $A\subset B(0,r)$ , em particular A está contido no cubo C de centro 0 e lado 2r. Então  $\epsilon>0$  escolha  $\delta>0$  tal que  $\delta\sqrt{n}<\epsilon$ . Considere o conjunto  $\mathcal{L}_{\delta}=\{\delta \boldsymbol{m}:\boldsymbol{m}=(m_1,m_2,\ldots,m_n)\in\mathbb{Z}^m\}$ , note que  $\mathcal{L}_{\delta}$  tem máximo  $\lfloor\frac{2r+1}{\delta}\rfloor^n$  pontos, e que centrando em cada um desses pontos um cubo de lado  $\delta$  obtemos uma cobertura de C. Para encerrar note que cada um desses cubos está contido numa bola de raio  $\epsilon$ , assim A é seguramente coberto por  $\lfloor\frac{2r+1}{\delta}\rfloor^n$  bolas de raio  $\epsilon$ . Portanto A é totalmente limitado, assim, segue do teorema 13.11 que A é compacto.

Definição 13.14. Sejam  $(\Omega_1,d_1)$  e  $(\Omega_2,d_2)$  espaços métricos. Diremos que uma função  $f:\Omega_1\to\Omega_2$  é uniformemente contínua quando dado  $\epsilon>0$  existe  $\delta>0$  tal que

$$\forall x, y \in \Omega_1, d_1(x, y) < \delta \Rightarrow d_2(f(x), f(y)) < \epsilon.$$

Proposição 13.15. Sejam  $\Omega_1$  e  $\Omega_2$  espaços métricos com  $\Omega_1$  compacto. Então qualquer função contínua  $f:\Omega_1\to\Omega_2$  é uniformemente contínua.

Teorema 13.16. Sejam  $\Omega_1$  e  $\Omega_2$  espaços topológicos com  $\Omega_1$  compacto. Então temos o seguinte:

- a) Se  $f: \Omega_1 \to \Omega_2$  é contínua então  $f(\Omega_1)$  é compacto em  $\Omega_2$ ;
- b) Se  $\Omega_2$  é Hausdorff e  $f:\Omega_1\to\Omega_2$  é contínua e bijetiva, então f é um homemorfismo.

DEMONSTRAÇÃO. Prova de a): Seja  $\{V_{\alpha}\}_{{\alpha}\in I}$  uma cobertura aberta de  $f(\Omega_1)$ . Como cada  $V_{\alpha}=U_{\alpha}\cap\overline{f(\Omega_1)}$ , onde  $U_{\alpha}$  é aberto em  $\Omega_2$ , tem-se pela continuidade de f que  $\{f^{-1}(U_{\alpha})\}_{{\alpha}\in I}$  é uma cobertura aberta do compacto  $\Omega_1$ . Extraindo uma subcobertura finita  $\{f^{-1}(U_{\alpha_1}),\ldots,f^{-1}(U_{\alpha_n})\}$  de  $\Omega_1$  concluímos que  $\{V_{\alpha_1},\ldots,V_{\alpha_n}\}$  é uma cobertura de  $f(\Omega_1)$ . Portanto  $f(\Omega_1)$  é compacto.

Prova de b): É suficiente mostrarmos que f envia fechados em fechados. Seja F fechado em  $\Omega_1$ , temos pela proposição 13.6 item a) que F é compacto, então pelo item anterior temos que f(F) é compacto em  $\Omega_2$ . Como  $\Omega_2$  é Hausdorff segue da proposição 13.6 item b) que f(F) é fechado.

TEOREMA 13.17. Seja  $f:\Omega\to\mathbb{R}$  uma função contínua onde  $\Omega$  é um espaço topológico compacto. Então f tem máximo e mínimo.

DEMONSTRAÇÃO. Pela teorema anterior,  $f(\Omega)$  é compacto em  $\mathbb{R}$  e portanto é fechado e limitado. Logo  $f(\Omega)$  contém seu supremo e seu ínfimo.

EXERCÍCIO 13.5. Seja  $\Omega$  um espaço compacto Hausdorff. Seja  $f:\Omega\cup\{\infty\}$  uma função semicontínua inferiormente. Então f é limitada inferiormente, i.e,  $\inf_{x\in\Omega}f(x)>-\infty$ , e existe  $x\in\Omega$  tal que  $f(x)=\inf_{x\in\Omega}f(x)$ .

### 1. Lista de Exercícios

- 1. Considere  $[0,1]^{\mathbb{N}}$  com a topologia uniforme. Encontre nesse espaço um subconjunto infinito sem pontos de acumulação.
- 2. Mostre que [0,1] como subespaço de  $\mathbb{R}_{\ell}$  não é f.s.c.
- 3. Mostre que o círculo  $S^1 = \{(x,y) : x^2 + y^2 = 1\}$  com a topologia induzida de  $\mathbb{R}^2$  é compacto.
- 4. Mostre que [0,1] não é compacto como subespaço de  $\mathbb{R}_K$ .
- 5. Seja  $\{x_n\} \subset \mathbb{R}$ , uma sequência convergente com limite x, mostre que  $\{x, x_n, n \in \mathbb{N}\}$  é compacto.
- 5. Qualquer espaço métrico compacto  $\Omega$  é homemorfo a algum subconjunto do cubo de Hilbert. (Sugestão:  $\Omega$  é separável (justifique), então seja,  $\{x_1, x_2, \ldots\}$  um subconjunto denso em  $\Omega$ . Defina  $F: \Omega \to C$  pondo  $F(x) = (d(x, x_1), d(x, x_2), \ldots)$ , mostre que F é o homeomorfismo desejado).

Topologia Geral  $0^{\circ}/2019$  Turma A

LISTA DE EXERCÍCIOS 1 24/01/2019

PROBLEMA 1 (INFINITUDE DOS PRIMOS): Considere o conjunto dos números inteiros  $\mathbb{Z}$ . Defina para cada par de números inteiros m, n, onde  $m \neq 0$  o conjunto

$$A_{m,k} = \{mn + k, n \in \mathbb{Z}\}.$$

- a) Prove que intersecções de dois conjuntos da forma  $A_{m,k}$  é um conjunto da forma  $A_{m',k'}$ . Conclua que a família  $\{A_{m,k}, m, n \in \mathbb{Z}, m \neq 0\}$  é uma base para uma topologia em  $\mathbb{Z}$  (chamada de topologia de Furstenberg);
- b) Prove que cada  $A_{m,k}$  é simultaneamente fechado e aberto (clopen) na topologia de Furstemberg;
- c) Prove que cada conjunto aberto n\u00e3o vazio na topologia de Furstenberg \u00e9
  infinito;
- d) Considere  $P\subset Z$  o conjunto dos números primos (1 não é primo!). Seja  $B=\bigcup_{p\in P}A_{p,0},$  quem é B?
- e) Mostre que se P for finito então B é aberto
- f) Conclua que P é infinito.

## Problema 2(Axiomas de Kuratowski):

- a) Seja  $(\Omega, \tau)$  um espaço topológico. Prove que o operador fecho  $A \mapsto \overline{A}$  tem as seguintes propriedades:
  - i)  $\overline{\varnothing} = \varnothing$ , ii)  $A \subset \overline{A}$  iii)  $\overline{\overline{A}} = \overline{A}$  e iv)  $\overline{A \cup B} = \overline{A} \cup \overline{B}$ .
- b) Seja  $\Omega$  um conjunto. Suponha que uma aplicação  $F: \mathscr{P}(\Omega) \to \mathscr{P}(\Omega)$  tem as propriedades i)-iv) listadas acima, i.e. i)  $F(\varnothing) = \varnothing$ , ii)  $A \subset F(A)$  iii) F(F(A)) = F(A) e iv)  $F(A \cup B) = F(A) \cup F(B)$ . Mostre que existe uma única topologia  $\tau$  tal que F seja o operador fecho para  $\tau$ .

- c) Considere  $\Omega = \mathbb{N}$  e  $F : \mathscr{P}(\mathbb{N}) \to \mathscr{P}(\mathbb{N})$  dada por  $F(A) = \overline{A} = \{k \cdot A, k \in \mathbb{N}\}$ . Mostre que F satisfaz as propriedades i)-iv) listadas no item anterior. Sendo  $\tau$  a também a topologia referida no item anterior, descreva os conjuntos fechados e os conjuntos abertos de  $(\mathbb{N}, \tau)$ .
- d) Considere em  $\mathbb N$  a topologia dada pelo item anterior. Mostre que uma função  $f:\mathbb N\to\mathbb N$  é contínua, se e somente se, cada vez que m|n tem-se que f(m)|f(n).

PROBLEMA 3(NÚMEROS DE LIOUVILLE): Diremos que um número real  $\xi$  é de Liouville quando, para cada  $n\geq 1$  existe um racional  $p/q,\ q>1$  tal que

$$0 < \left| \frac{p}{q} - \xi \right| < \frac{1}{q^n}.$$

- a) Mostre que o conjunto L dos números de Liouville é um  $G_{\delta}$ ;
- b) Conclua que L é não enumerável.



Topologia Geral  $0^{\circ}/2019$ Turma A LISTA DE EXERCÍCIOS 2 07/02/2019

PROBLEMA 1: Seja  $K:[0,1]\times[0,1]\to\mathbb{R}$  uma função contínua. Para cada  $f\in C([0,1],\mathbb{R})$  defina

$$T(f) = \int_0^1 K(x, y) f(y) dy.$$

Mostre que  $T(f) \in C([0,1], \mathbb{R})$  e que  $\{T(f), ||f|| \leq 1\}$  é precompacto em  $C([0,1], \mathbb{R})$ .

PROBLEMA 2: Seja  $(\Omega, d)$  um espaço métrico. Uma função  $f \in C(\Omega, \mathbb{R})$  é dita  $\alpha$ -Hölder contínua  $(\alpha > 0)$  quando a quantidade abaixo é finita

$$\operatorname{Hol}_{\alpha}(f) = \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)^{\alpha}}.$$

Mostre que se o espaço métrico  $\Omega$  é compacto, então o conjunto  $\{f \in C(\Omega, \mathbb{R}) : \|f\| \le 1, \ \operatorname{Hol}_{\alpha}(f) \le 1\}$  é compacto em  $C(\Omega, \mathbb{R})$  na métrica uniforme.

### 1.2 Resultados auxiliares

Observação (O.1). Usaremos implicitamente várias vezes aqui que a união é distributiva sobre a interseção e que a interseção é distributiva sobre a união.

Definição (D.1). Uma cisão não trivial de  $\Omega$  é um par U,V de abertos não vazios e disjuntos de  $\Omega$  cuja união é igual a  $\Omega$ . Uma cisão trivial de  $\Omega$  é um par de abertos disjuntos onde um deles é vazio e o outro é o  $\Omega$ .  $\Omega$  é dito conexo se não existe nenhuma cisão não trivial de  $\Omega$  e desconexo caso contrário.

Definição (D.2). Diremos que  $\Omega$  é conexo por caminhos se para todo  $x, y \in \Omega$  existe uma função contínua  $f: [a,b] \to \Omega$  (que chamaremos de caminho) indo dum fechado da reta em  $\Omega$  tal que f(a) = x e f(b) = y.

**Definição** (D.3). Diremos que  $p \in \Omega$  é um ponto de acumulação da sequência  $\{x_n\}_{n \in \mathbb{N}} \subset \Omega$  se para toda vizinhança aberta U de p e para todo  $n_0 \in \mathbb{N}$  existe  $n_1 > n_0$  tal que  $x_{n_1} \in U$ .

Observação (O.2). Assumiremos que uma sequência  $\{x_n\}_{n\in\mathbb{N}}$  de  $\Omega$  é uma função  $f:\mathbb{N}\to\Omega$  tal que  $f(1)=x_1$  e assim por diante.

Observação (O.3). Com essa definição, um ponto de acumulação de uma sequência  $\{x_n\}_{n\in\mathbb{N}}$  não precisa ser um ponto de acumulação de  $X = \{x_1, x_2, \dots\}$  (considere a sequência que alterna entre 0 e 1 no compacto [0,1]), e a recíproca também não vale (ver a próxima observação).

Observação (O.4). Definição do Munkres: Diremos que um espaço topológico  $\Omega$  é acumuladamente compacto (limit point compact) se todo subconjunto infinito de  $\Omega$  tem ponto de acumulação.

Observação (O.5). Definição das notas de aula: Diremos que um espaço topológico  $\Omega$  é fracamente sequencialmente compacto se toda sequência  $f: \mathbb{N} \to \Omega$  tem ponto de acumulação.

Observação (O.6). A definição do Munkres é mais fraca do que a das notas de aula que exige que toda sequência em  $\Omega$  tenha ponto de acumulação: considere a sequência em  $\mathbb{N} \times \{0,1\}$  (onde o primeiro tem a topologia discreta e o segundo a indiscreta) dada por  $x_1 = (1,0), x_2 = (1,1), x_3 = (2,0), x_4 = (2,1), \cdots$ , que não tem ponto de acumulação, mas todo  $S \subset \Omega$  não vazio (em particular se S é infinito) tem ponto de acumulação (a prova disso é o mesmo argumento usado no exercício 3 das caixas de compacidade). Porém note que as duas definições são equivalentes se  $\Omega$  satisfaz o primeiro axioma de enumerabilidade (ou até mesmo se satisfaz pelo menos que subconjuntos finitos sejam fechados).

Observação (O.7). Ser fracamente sequencialmente compacto é equivalente a ser enumeravalmente compacto (i.e, toda cobertura aberta enumerável tem uma subcobertura aberta finita) e também implica em ser acumuladamente compacto (mas a recíproca só vale se o espaço satisfizer pelo menos que subconjuntos finitos sejam fechados).

Lema (L.1). Se  $C \cup D = \Omega$  é uma cisão não trivial de  $\Omega$  e Y é um subespaço conexo de  $\Omega$ , então ou  $Y \subset C$  ou  $Y \subset D$ .

**Demonstração:** Note que  $C \cap Y$  e  $D \cap Y$  são abertos disjuntos de Y cuja união é todo Y, então pela hipótese de conexidade de Y um deles é vazio e outro é todo o Y.

Lema (L.2). Qualquer conjunto conexo por caminhos é conexo.

**Demonstração:** Suponha por absurdo que  $\Omega$  é conexo por caminhos mas não é conexo. De fato, se  $\Omega = A \cup B$  é uma cisão de  $\Omega$ , então se  $f:[a,b] \to \Omega$  é um caminho arbitrário, como f([a,b]) é a imagem contínua de um conexo, também é conexo, e usando o lema (**L.1**), temos que f([a,b]) ou está contido em A ou em B, de forma que não existe nenhum caminho de um ponto de A até um ponto de B, uma contradição.

Lema (L.3). Seja  $\mathscr{A}$  uma cobertura aberta do espaço métrico  $(\Omega, d)$ . Se  $\Omega$  é sequencialmente compacto, existe  $\delta > 0$  tal que todo subconjunto de  $\Omega$  com diâmetro menor que  $\delta$  está contido em algum elemento de  $\mathscr{A}$ .

Demonstração: Suponha por absurdo que  $\Omega$  seja sequencialmente compacto mas não existe  $\delta$  nas condições do lema. Então, em particular, para cada  $n \in \mathbb{N}$ , existe um conjunto  $C_n$  de diâmetro menor que  $\frac{1}{n}$  que não está contido em nenhum elemento de  $\mathscr{A}$ . Para cada n, escolha um ponto  $x_n \in C_n$ . Por hipótese, alguma subsequência  $\{x_{n_i}\}_{i\in\mathbb{N}}$  da sequência  $\{x_n\}_{n\in\mathbb{N}}$  converge para algum ponto a. Como  $\mathscr{A}$  é cobertura, existe  $A \in \mathscr{A}$  tal que  $a \in A$ . Como A é aberto, existe  $\varepsilon > 0$  tal que  $B_d(a, \epsilon) \subset A$ . Tomando i grande o suficiente de forma que diam $(C_{n_i}) = \frac{1}{n_i} < \frac{\varepsilon}{2}$  e  $d(x_{n_i}, a) < \frac{\varepsilon}{2}$ , temos (pela desigualdade triangular) que  $C_{n_i} \subset B_d(x_{n_i}, \frac{\varepsilon}{2}) \subset B_d(a, \varepsilon) \subset A$ , uma contradição.

Lema (L.4). Seja  $(\Omega, d)$  um espaço métrico sequencialmente compacto. Então,  $\forall \varepsilon > 0$ , existe uma cobertura finita que consiste de bolas abertas de raio  $\varepsilon$ .

**Demonstração:** Iremos provar a contrapositiva da afirmação, isto é, se existe  $\varepsilon > 0$  tal que  $\Omega$  não admite nenhuma cobertura finita de bolas abertas de raio  $\varepsilon$ , então  $\Omega$  não é sequencialmente compacto. De fato, se existe tal  $\varepsilon$ , podemos construir uma sequência  $\{x_n\}_{n\in\mathbb{N}}$  que não possui nenhuma subsequência convergente da seguinte maneira: tome  $x_1 \in \Omega$  arbitrário e escolha  $x_2$  de forma que  $x_2 \notin B_d(x_1, \varepsilon)$  (por hipótese podemos fazer isso, senão  $B_d(x_1, \varepsilon)$  seria uma cobertura finita de  $\Omega$ ). Em geral, dados  $x_1, \dots, x_n$ , tome  $x_{n+1} \in \Omega$  de forma que:

$$x_{n+1} \notin B_d(x_1, \varepsilon) \cup B_d(x_2, \varepsilon) \cup \cdots \cup B_d(x_n, \varepsilon)$$

(e novamente, a hipótese garante que possamos fazer isso). É óbvio que, por construção,  $d(x_{n+1}, x_i) \ge \varepsilon$  para todo  $i \in \{1, \dots, n\}$ , e de fato nenhuma subsequência dessa sequência pode convergir: dado qualquer  $x_n, B_d(x_n, \frac{\varepsilon}{2})$  contém no máximo um termo da sequência, o próprio  $x_n$ .

Lema (L.5). Seja  $(\Omega, d)$  um espaço métrico e  $S \subset \Omega$ . Então  $x \in \Omega$  é ponto de acumulação de S se, e só se, para todo  $\varepsilon > 0$ ,  $S \setminus \{x\} \cap B(x, \varepsilon) \neq \emptyset$ , isto é, para todo  $\varepsilon > 0$ , existe  $y \neq x \in S$  tal que  $d(x, y) < \varepsilon$ .

**Demonstração:** A ida segue diretamente da definição de ponto de acumulação (pois  $B(x, \epsilon)$  é um aberto de  $\Omega$  contendo x) e a volta diretamente do fato de que dado  $x \in \Omega$  qualquer aberto  $U \ni x$  da topologia gerada por d contém alguma bola de raio  $\epsilon$ , e portanto  $U \cap S \setminus \{x\} \neq \emptyset$ .

Observação (O.8). É fácil ver que esse lema também é equivalente a: x é ponto de acumulação de  $S \iff$  toda vizinhança aberta de x intersecta S em infinitos pontos distintos.

Lema (L.6). Qualquer espaço métrico compacto  $(\Omega, d)$  é separável.

**<u>Demonstração:</u>** Sabemos que todo espaço métrico compacto  $(\Omega, d)$  é totalmente limitado, de forma que para todo  $n \in \mathbb{N}$  a cobertura  $C_n = \left\{ B_d\left(x, \frac{1}{n}\right) \mid x \in \Omega \right\}$  admite uma subcobertura finita

$$F_n = \left\{ B_d\left(x_1, \frac{1}{n}\right), B_d\left(x_2, \frac{1}{n}\right), B_d\left(x_3, \frac{1}{n}\right), \cdots, B_d\left(x_k, \frac{1}{n}\right) \right\}$$

para alguns  $x_1, \dots, x_k \in \Omega$ . Para cada  $n \in \mathbb{N}$ , seja  $A_n = \{x_1, x_2, \dots, x_k\}$  o conjunto consistindo dos centros das bolas de  $F_n$ . Afirmamos que:

$$D = \bigcup_{n \in \mathbb{N}} A_n$$

é um subconjunto enumerável de  $\Omega$ . De fato,  $\Omega$  é enumerável, pois é uma união enumerável de conjuntos finitos, e também é denso, pois dado qualquer aberto U não vazio de  $\Omega$  e qualquer  $x \in U$ , então existe  $\varepsilon > 0$  tal que  $B_d(x,\varepsilon) \subset U$ , e tomando  $m \in \mathbb{N}$  tal que  $\frac{1}{m} < \varepsilon$ , então  $B_d\left(x,\frac{1}{m}\right) \subset B_d(x,\varepsilon)$ . Como  $F_m$  é uma subcobertura finita de  $\Omega$ , existe  $y \in A_m$  tal que  $x \in B_d\left(y,\frac{1}{m}\right)$ , logo  $y \in B_d\left(x,\frac{1}{m}\right)$ . Assim:

$$y \in B_d\left(x, \frac{1}{m}\right) \cap B_d(x, \varepsilon) \subset D \cap U \neq \emptyset$$

i.e, qualquer aberto não vazio de  $\Omega$  intersecta D, como desejado.

Lema (L.7). Se  $(\Omega, d)$  é um espaço métrico, então  $d: \Omega \times \Omega \to \mathbb{R}$  é contínua.

**Demonstração:** Mostraremos que a imagem inversa de todo aberto U da reta é aberta em  $\Omega \times \Omega$ . De fato, se  $U \subset \mathbb{R}$  é aberto, queremos mostrar que  $d^{-1}(U) = \mathscr{O}$  é aberto, isto é, para todo  $\mathfrak{o} \in \mathscr{O}$ , existe um aberto básico B de  $\Omega \times \Omega$  tal que  $\mathfrak{o} \in B \subset \mathscr{O}$ . Com efeito, note que se  $(x,y) \in d^{-1}(U)$ , então  $d(x,y) = c \in U$ , logo existe  $\varepsilon > 0$  tal que  $(c - \epsilon, c + \epsilon) \subset U$ . Afirmamos que  $B = B_d\left(x, \frac{\varepsilon}{2}\right) \times B_d\left(y, \frac{\varepsilon}{2}\right)$  satisfaz o desejado. É óbvio que  $(x,y) \in B$ , resta mostar que  $B \subset \mathscr{O}$ . De fato, se  $(x',y') \in B$ , então note que:

$$|d(x',y') - d(x,y)| = |d(x',y') - d(x',y) + d(x',y) - d(x,y)|$$
(1)

$$\leq |d(x',y') - d(x',y)| + |d(x',y) - d(x,y)|$$
 (2)

$$\leq d(y, y') + d(x, x') \tag{3}$$

$$<rac{arepsilon}{2}+rac{arepsilon}{2}$$
 (4)

$$=\varepsilon$$
 (5)

logo  $d(x',y') \in (c-\varepsilon,c+\varepsilon) \subset U$  e segue que  $(x',y') \in \mathcal{O}$ . Como (x,y) e (x',y') foram tomados arbitrariamente, o resultado segue.

Observação (O.9). Para ir de (2) para (3) note que novamente pela desigualdade triangular:

$$d(x',y) - d(y,y') \le d(x',y') \le d(x',y) + d(y,y')$$
  
$$d(x,y) - d(x,x') \le d(x',y) \le d(x,x') + d(x,y)$$

Lema (L.8). Se  $\{A_{\alpha}\}_{{\alpha}\in I}$  é uma coleção de subespaços conexos de  $\Omega$  e A é um subespaço conexo de  $\Omega$  tal que  $A\cap A_{\alpha}\neq\emptyset$  para todo  $\alpha\in I$ , então  $A\cup\left(\bigcup_{\alpha\in I}A_{\alpha}\right)$  é conexo.

**<u>Demonstração:</u>** Note que  $A \cup A_{\alpha}$  é conexo pela proposição (**P.1**). Então, novamente pela proposição (**P.1**),  $\bigcup_{\alpha \in I} \left( A \cup \left( \bigcup_{\alpha \in I} A_{\alpha} \right) \right) = A \cup \left( \bigcup_{\alpha \in I} A_{\alpha} \right)$  é conexo. Note que também poderíamos ter usado o lema (**L.1**) para mostrar que a única cisão é a trivial.

<u>Lema (L.9).</u> Se A e B são subconjuntos próprios de X e Y, respectivamente, então  $C = X \times Y \setminus A \times B$  é conexo.

**Demonstração:** Fixe um  $(a_1, a_2) \in C$  de forma que  $a_1 \notin A$  e  $a_2 \notin B$ . Para cada  $x \notin A$  defina  $V_x = \{x\} \times Y$  e para cada  $y \notin B$  defina  $H_y = X \times \{y\}$ . É claro que ambos são conexos pois são homeomorfos a X e Y, respectivamente. Defina  $I = \{(x, y) \in X \times Y \mid x \notin A \text{ e } y \notin B\}$ ,  $D = V_{a_1} \cup H_{a_2}$  e para cada  $\alpha \in I$  defina também  $A_{\alpha} = V_{\pi_1(\alpha)} \cup H_{\pi_2(\alpha)}$ . Note que:

- (i)  $D \cap A_{\alpha} = \{(\pi_1(\alpha), a_2), (a_1, \pi_2(\alpha))\} \neq \emptyset \ \forall \alpha \in I$
- (ii) D é obviamente a união de subespaços conexos e não disjuntos, donde segue da proposição (P.1) que D é conexo. Analogamente,  $A_{\alpha}$  é também conexo para cada  $\alpha \in I$ .

e o resultado segue do lema anterior.

# 2 Exercícios de conexidade

Questão 1. Prove que a imagem contínua de um espaço conexo é um espaço conexo.

Solução: Seja  $f: X \to Y$  contínua e suponha que X é conexo. Sem perda de generalidade, podemos supor que f é sobrejetiva (caso não fosse, bastaria restringir o contradomínio ao espaço da imagem Z = f(X), que preserva continuidade). Assim, suponha por absurdo que  $Z = f(X) = Y = A \cup B$ , i.e, é desconexo. Então, se tomarmos  $x \in X$ , ou  $f(x) \in A$  ou  $f(x) \in B$ , de onde concluímos que  $f^{-1}(A)$  e  $f^{-1}(B)$  são abertos (pela hipótese de continuidade) disjuntos cuja união  $f^{-1}(A) \cup f^{-1}(B) = X$ , ou seja, X é desconexo, um absurdo.

Questão 2. Mostre que:

- (a) se S é conexo, então  $\overline{S}$  também o é.
- (b) se S é conexo e  $S \subset D \subset \overline{S}$ , então D é conexo.

Solução:

- (a) Suponha que S seja conexo. Vamos mostrar que a única cisão de  $\overline{S}$  é a trivial, isto é, se  $\overline{S} = A \cup B$  e  $A \neq \emptyset$ , então  $B = \emptyset$ . De fato, temos  $A \cap \overline{B} = \overline{A} \cap B = \emptyset$ , e tomando  $a \in A$ , como  $a \notin \overline{B}$ , existe  $U \ni a$  aberto tal que  $U \cap B = \emptyset$ , e como  $a \in \overline{S}$ , existe  $x \in U \cap S \neq \emptyset$  com  $x \notin B$ , assim  $x \in S \cap A \neq \emptyset$ . Note que  $S = (A \cap S) \cup (B \cap S)$ , e pela hipótese de conexidade  $B \cap S = \emptyset \implies B = \emptyset$ .
- (b) Suponha por absurdo que  $D = A \cup B$  com A, B abertos disjuntos e não vazios. Pelo lema (L.1), podemos assumir sem perda de generalidade que  $S \subset A$ , assim  $\overline{S} \subset \overline{A}$ . Como  $\overline{A}$  e B são disjuntos, concluímos que  $B = \emptyset$ , uma contradição, logo D é conexo.

Questão 3. Mostre que:

- (a) com a topologia usual,  $\mathbb{R}$  é conexo.
- (b) com a topologia usual,  $\mathbb{R}^n$  é conexo.

Solução: Primeiramente, provaremos a seguinte:

**Proposição** (P.1). Seja  $(\Omega, \tau)$  um espaço topológico. Suponha que

$$\Omega = \bigcup_{\alpha \in I} S_{\alpha},$$

onde cada  $S_{\alpha}$  é conexo e  $\bigcap_{\alpha \in I} S_{\alpha} \neq \emptyset$ . Então  $\Omega$  é conexo.

**Demonstração:** Suponha que  $\Omega = A \cup B$ , onde A e B são abertos disjuntos de  $\Omega$ . Note que para cada  $\alpha \in I$ , temos que  $S_{\alpha} \subset A$  ou  $S_{\alpha} \subset B$ , pois caso contrário  $S_{\alpha}$  não seria conexo. Seja agora  $x \in \bigcap_{\alpha \in I} S_{\alpha}$ . Se  $x \in A$ , segue da observação que acabamos de fazer que  $S_{\alpha} \subset A$  seja qual for  $\alpha \in I$ , donde segue que  $B = \emptyset$ . Mutatis mutandis, vemos que se  $x \in B$  então  $A = \emptyset$ . Portanto  $\Omega$  é conexo.

- (a) Temos  $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n]$ , uma união de subespaços da reta conexos e não disjuntos. O resultado segue da proposição (P.1).
- (b) Tome  $v = (x_1, \dots, x_n) \in \mathbb{R}^n$  com ||v|| = 1 e seja  $L_v$  a reta de  $\mathbb{R}^n$  passando pela origem e com vetor direcional v. É claro que  $\mathbb{R}^n = \bigcup_{||v||=1} L_v$ , uma união de subespaços de  $\mathbb{R}^n$  não disjuntos e conexos (pois são a imagem de  $\mathbb{R}$  sob a função contínua  $f : \mathbb{R} \to \mathbb{R}^n$  dada por f(t) = tv), e o resultado segue da proposição (P.1).

Questão 4. Seja  $(\Omega, \tau)$  um espaço topológico. Suponha que cada par de pontos  $x, y \in \Omega$  pertença a um conjunto conexo  $S_{xy} \subset \Omega$ . Então  $\Omega$  é conexo.

Solução: Fixe algum  $x \in \Omega$ . Então é claro que  $\Omega = \bigcup_{x \neq y \in \Omega} S_{xy}$ , e o resultado segue da proposição (P.1).

MATHEUS A. R. M. HORÁCIO

Questão 5. Sejam  $(\Omega_1, \tau_1)$  e  $(\Omega_2, \tau_2)$  espaços topológicos não vazios. Fixe arbitrariamente  $x \in \Omega_1$  e  $y \in \Omega_2$ . Mostre que  $\{x\} \times \Omega_2$  é homeomorfo a  $\Omega_2$  e que  $\Omega_1 \times \{y\}$  é homeomorfo a  $\Omega_1$ .

**Solução:** É claro que  $f: \Omega_2 \to \{x\} \times \Omega_2$  definida por  $f(t) = (x, t) \in \{x\} \times \Omega_2$  e  $g: \Omega_1 \to \Omega_1 \times \{y\}$  definida por  $g(t) = (t, y) \in \Omega_1 \times \{y\}$  são bijeções contínuas com inversas contínuas, como desejado.

Questão 6. Mostre que  $\mathbb{R}^{\mathbb{N}}$  com a topologia das caixas não é conexo. Sugestão: decomponha  $\mathbb{R}^{\mathbb{N}}$  no conjunto das sequências limitadas e das sequências não limitadas.

**Solução:** Sejam  $A = \{x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}} \mid \exists K \in \mathbb{R} \text{ tal que } x_n \leq K \ \forall n \in \mathbb{N} \text{ ou } x_n \geq K \ \forall n \in \mathbb{N} \} \text{ e}$   $B = \{x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}} \mid \forall M \in \mathbb{R} \ \exists n_M \in \mathbb{N} \text{ tal que } x_{n_M} > M \text{ ou } \forall M \in \mathbb{R} \ \exists n_M \in \mathbb{N} \text{ tal que } x_{n_M} < M \}.$  É claro que A e B são subconjuntos de  $\mathbb{R}^{\mathbb{N}}$  não vazios cuja união é o próprio  $\mathbb{R}^{\mathbb{N}}$ . De fato também são abertos, pois dado  $x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}}$ , ou  $x \in A$  ou  $x \in B$ , e sendo U um aberto básico de  $\mathbb{R}^{\mathbb{N}}$  na topologia das caixas dado por:

$$U = (x_1 - 1, x_1 + 1) \times (x_2 - 1, x_2 + 1) \times \cdots$$

temos ou  $x \in U \subset A$  ou  $x \in U \subset B$ .

Questão 7. Um espaço topológico  $\Omega$  é dito ser totalmente desconexo quando os únicos subconjuntos conexos de  $\Omega$  são os conjuntos unitários. Mostre que se  $\Omega$  está equipado com a topologia discreta então  $\Omega$  é totalmente desconexo. A recíproca vale?

Solução: Considerando a topologia discreta, qualquer  $V \subset \Omega$  com mais de dois elementos é desconexo, pois fixado  $x \in V$ ,  $\{x\} \cup V \setminus \{x\} = V$  é uma união de abertos disjuntos cuja união é V. A recíproca não vale, um contra-exemplo é o exemplo 4 no parágrafo 23 do Munkres: os racionais com a topologia induzida da reta também são totalmente desconexos.

Questão 8. Seja  $\{A_n\}_{n\in\mathbb{N}}$  uma sequência de subespaços conexos de um espaço topológico  $\Omega$  que satisfaz  $A_n\cap A_{n+1}\neq\emptyset$  seja qual for  $n\in\mathbb{N}$ . Mostre que  $\bigcup_{n\in\mathbb{N}}A_n$  é conexo.

Solução: Primeiro provaremos que  $\bigcup_{i=1}^{n} A_i$  é conexo para todo  $n \in \mathbb{N}$ . De fato, pela proposição (P.1), temos que  $A_1 \cup A_2$  é conexo, assim  $A_1 \cup A_2 \cup A_3$  também é conexo, também pela proposição (P.1). Repetindo esse processo, temos que a união finita é conexa. Agora, afirmamos que

$$B = \bigcup_{n \in \mathbb{N}} B_n$$

é conexo, onde  $B_n = \bigcup_{i=1}^n A_i$ . De fato, usando o lema 23.2 do Munkres e supondo que haja uma cisão  $B = U \cup V$ , mostraremos que ou  $U = \emptyset$  ou  $V = \emptyset$ , isto é, B é conexo. Com efeito, como  $B_1 \in B$  é conexo e  $B_1 \subset B_n \ \forall n \in \mathbb{N}$ , então ou  $B_1 \subset U$  e  $B_n \subset U \ \forall n \in \mathbb{N} \implies U = B$  e  $V = \emptyset$  ou  $B_1 \subset V$  e  $B_n \subset V \ \forall n \in \mathbb{N} \implies V = B$  e  $U = \emptyset$ .

MATHEUS A. R. M. HORÁCIO

Questão 9. O espaço topológico  $\mathbb{R}_{\ell}$  (id est,  $\mathbb{R}$  com a topologia do limite inferior) é conexo?

**Solução:**  $\mathbb{R}_{\ell}$  não é conexo, pois  $\mathbb{R} = (-\infty, 0) \cup [0, \infty)$ , uma união de abertos disjuntos na topologia do limite inferior que dá o  $\mathbb{R}$  todo.

**Questão 10.** Mostre que um espaço topológico  $\Omega$  é conexo se, e somente se, as únicas funções  $f:\Omega\to\{0,1\}$  contínuas são as constantes.

**Solução:** Primeiro provaremos a contrapositiva de conexo  $\Longrightarrow$  únicas funcões contínuas são constantes. De fato, se  $f:\Omega\to\{0,1\}$  é não constante e contínua, então, como  $\{0,1\}$  é clopen independente de sua topologia, por hipótese  $f^{-1}(\{0,1\})$  é um clopen não vazio de  $\Omega$ , i.e,  $\Omega$  é desconexo. Reciprocamente, se  $\Omega=A\cup B$  com A e B abertos não vazios disjuntos, note que  $f:\Omega\to\{0,1\}$  definida pondo f(x)=0 se  $x\in A$  e f(x)=1 se  $x\in B$  é não constante e contínua.

Questão 11. Mostre que para cada  $n \geq 2$ ,  $\mathbb{R}^n \setminus \{x_1, \ldots, x_n\}$  é conexo.

Solução: Sem usar conexidade por caminhos: Tome:

$$A = \{(\pi_1(x_1), \dots, \pi_{n-1}(x_1)), (\pi_1(x_2), \dots, \pi_{n-1}(x_2)), \dots (\pi_1(x_k), \dots, \pi_{n-1}(x_k))\}$$
  
$$B = \{\pi_n(x_1), \dots, \pi_n(x_k)\}$$

e note que

$$(\mathbb{R}^{n-1} \times \mathbb{R}) \setminus (A \times B) \subset \mathbb{R}^n \setminus \{x_1, \cdots, x_k\} \subset \underbrace{(\mathbb{R}^{n-1} \times \mathbb{R}) \setminus (A \times B)}_{= \mathbb{R}^n, \text{ pois } A \times B \text{ \'e finito}}$$

portanto o resultado segue do lema 8 e da b) do segundo exercício das caixas de conexidade.

Usando conexidade por caminhos: Îremos mostrar a condição mais forte de que  $\mathbb{R}^n \setminus F$ , onde  $F \subset \mathbb{R}^n$  é finito, é conexo por caminhos (e é fácil ver que todo espaço conexo por caminhos é conexo). De fato, dado  $x, y \in \mathbb{R}^n$ , há uma quantidade infinita (e não enumerável) de retas passando por x que não intersectam F, escolha aleatoriamente alguma dessas retas e seja  $\alpha$  a sua inclinação. É claro que também há uma quantidade infinita (e não enumerável) de retas passando por y com inclinação  $\beta \in \mathbb{R} \setminus \{\alpha\}$  que não intersectam F, escolha também uma dessas retas e seja  $\beta$  a sua inclinação. Como  $L_{\alpha}$  e  $L_{\beta}$  tem inclinações diferentes, sua interseção é não vazia. Basta então tomar algum p nessa interseção e notar que o caminho que vai de x a p contido em  $L_{\alpha}$  e depois de p a p contido em p0 contido em p1 contido em p2 contido em p3 contido em p4 continuo. Note que poderíamos enfraquecer a condição de p5 ser finito, a prova também funciona se p6 for só enumerável.

Questão 12. Mostre que  $\mathbb{R}^2 \setminus \mathbb{Q}^2$  é conexo.

Solução: Observe que  $\mathbb{Q}^2$  é enumerável. A prova é idêntica à do exercício anterior (uma prova mais fácil é notar que dado dois pontos p,q com coordenadas irracionais, eles podem ser conectados pelo caminho que passa pelo ponto intermediário  $(\sqrt{2},\sqrt{2})$  por segmentos de retas horizontais e verticais).

**Questão 13.** Mostre que  $\mathbb{R}^n$  e  $\mathbb{R}$  não são homeomorfos para todo  $n \geq 2$ .

Solução:  $\mathbb{R} \setminus \{0\}$  é desconexo, mas para  $n \geq 2$  tirar qualquer ponto de  $\mathbb{R}^n$  ainda o deixa conexo. Como conexidade é um invariante topológico (ou seja, se dois espaços são homeomorfos ou ambos são conexos ou ambos são desconexos), o resultado segue.

Questão 14. Seja  $E \subset \mathbb{R}^n$  um subespaço de codimensão  $\geq 2$ . Mostre que  $\mathbb{R}^n \setminus E$  é conexo.

### Solução:

Sem usar conexidade por caminhos: Suponha que  $\operatorname{codim}(E) \geq 2$ , ou, equivalentemente que  $\dim(E) = j \leq n-2$ . Faça uma mudança de base\* de forma que:

$$v \in E \iff v = \left(\sum_{i=1}^{j} \phi_i e_i\right) + 0e_{j+1} + \dots + 0e_n$$

para alguns  $\phi_i, \dots, \phi_j \in \mathbb{R}$ , onde  $\{e_1, \dots, e_j\}$  é uma base de E e  $\{e_{j+1}, \dots, e_n\}$  é uma base do seu complemento ortogonal. Defina a família  $\{A_{\alpha_1, \dots, \alpha_j}\}_{\alpha_1, \dots, \alpha_j \in \mathbb{R}}$  da seguinte maneira:

Fixados 
$$\alpha_1, \dots, \alpha_j \in \mathbb{R}$$
, então  $v \in A_{\alpha_1, \dots, \alpha_j} \iff v = \left(\sum_{i=1}^j \alpha_i e_i\right) + \beta_1 e_{j+1} + \dots + \beta_{n-j} e_n$ 

onde exigiremos que  $\beta_i \neq 0$  para pelo menos algum  $i \in \{1, \dots, n-j\}$ . É claro que  $A_{\alpha_1, \dots, \alpha_j} \cong \mathbb{R}^{n-j} \setminus \{\mathbf{0}\}$ , que é conexo (note que justamente aqui que usamos a hipótese da codimensão ser pelo menos 2!). Agora, fixe  $\mathbf{0} \neq a = (a_{j+1}, \dots, a_n) \in \mathbb{R}^{n-j}$  e defina outro subespaço A homeomorfo ao  $\mathbb{R}^j$  da seguinte maneira:

$$v \in A \iff v = \left(\sum_{i=1}^{j} \gamma_i e_i\right) + a_{j+1} e_{j+1} + \dots + a_n e_n$$

(note que aqui não exigimos nada dos  $\gamma$ ). É claro que  $A \cong \mathbb{R}^j$  e que\*  $A \cap A_{\alpha_1,\dots,\alpha_j} \neq \emptyset$  para todos  $\alpha_1,\dots,\alpha_j \in \mathbb{R}$ . Note também que\*:

$$A \cup \left(\bigcup_{\alpha_1, \dots, \alpha_j \in \mathbb{R}} A_{\alpha_1, \dots, \alpha_j}\right) = \mathbb{R}^n \setminus E$$

e o resultado segue do lema 7.

Observação (O.10). Isso sempre é possível pois  $E \cong \mathbb{R}^j$ .

Observação (O.11). Note que se  $(\alpha_1, \dots, \alpha_i) \neq \mathbf{0}$  então  $(\alpha_1, \dots, \alpha_i, a_{i+1}, \dots, a_n)$  é testemunha desse fato.

Observação (O.12). A primeira inclusão é provada da seguinte maneira: se  $v \in A$  ou  $v \in \bigcup_{\alpha_1, \dots, \alpha_j \in \mathbb{R}} A_{\alpha_1, \dots, \alpha_j}$ ,

então suas j-ésimas primeiras coordenadas são combinações lineares de vetores da base de E mas há pelo menos uma coordenada das n-j restantes que não é nula, de forma que  $v \in \mathbb{R}^n \setminus E$ . Reciprocamente, se  $v \in \mathbb{R}^n \setminus E$ , então ou todas as coordenadas a partir da j+1-ésima são iguais às de a ou isso não acontece. No primeiro caso temos  $v \in A$  e no segundo temos  $v \in A$  e  $A_{\alpha_1, \dots, \alpha_j}$ .

MATHEUS A. R. M. HORÁCIO

Usando conexidade por caminhos: Seja F um subespaço complementar de E, isto é,  $\mathbb{R}^n = E \oplus F$ . Tome  $x, y \in \mathbb{R}^n \setminus E$  e denote por  $\bar{x}, \bar{y}$  as suas projeções em F. Afirmamos que o seguinte caminho liga x a y:

$$x \to \bar{x} \to_* \bar{y} \to y$$

onde cada  $\rightarrow$  denota um segmento de reta, e devemos tomar o cuidado de não passar pela origem indo de  $\bar{x}$  a  $\bar{y}$  (o que é facilmente realizado: escolha retas passando por  $\bar{x}$  e por  $\bar{y}$  que não passam pela origem se intersectam em p e tome o caminho  $\bar{x} \rightarrow p \rightarrow \bar{y}$ ).

Observação (O.13). A recíproca desse exercício também vale (e é mais fácil de provar), i.e, se E é um subespaço vetorial,  $\mathbb{R}^n \setminus E$  ser conexo implica que  $\dim(E) \leq n-2$ .

# 3 Exercícios de compacidade

Questão 15. Seja  $K \subset \Omega$ . Então K é compacto se, e somente se, toda cobertura de K por abertos de  $\Omega$  admite uma subcobertura finita.

**Solução:** Suponha que K é compacto e  $\mathscr{A} = \{A_{\alpha}\}_{{\alpha} \in J}$  é uma cobertura de Y por abertos de  $\Omega$ . Então é claro que:

$$\{A_{\alpha} \cap K \mid \alpha \in J \}$$

é uma cobertura de K por abertos de K, e por hipótese uma subcobertura finita da forma:

$$\{A_{\alpha_1}\cap K,\cdots,A_{\alpha_n}\cap K\}$$

cobre K. Segue que  $\{A_{\alpha_1}, \dots, A_{\alpha_n}\}$  é uma subcobertura de  $\mathscr{A}$  que cobre K.

Reciprocamente, se toda cobertura de K por abertos de  $\Omega$  tem uma subcobertura finita que cobre K, mostraremos que K é compacto. De fato, se  $\mathscr{A}' = \{A'_{\alpha}\}$  é uma cobertura de K por abertos de K, então, por definição de topologia induzida, temos que para cada  $A'_{\alpha}$ , existe  $A_{\alpha}$  aberto de  $\Omega$  tal que:

$$A'_{\alpha} = A_{\alpha} \cap K$$

Temos que  $\mathscr{A} = \{A_{\alpha}\}$  é uma cobertura de K por abertos de  $\Omega$ , então por hipótese existe alguma subcobertura finita  $\{A_{\alpha_1}, \cdots, A_{\alpha_n}\}$  que cobre K, segue que  $\{A'_{\alpha_1}, \cdots, A'_{\alpha_n}\}$  é uma subcobertura finita de  $\mathscr{A}'$  que cobre K.

Questão 16. Mostre que um espaço métrico é fracamente sequencialmente compacto se, e somente, se, é sequencialmente compacto. Se  $\Omega$  for apens um espaço topológico, qual dessas noções implica a outra? Dê um exemplo de um espaço não metrizável em que essas noções não coincidem.

Solução: Se toda sequência em um espaço métrico tem ponto de acumulação, então é claro que toda sequência tem uma subsequência convergente, basta usar a definição para bolas abertas de raios cada vez menores com centros todos no ponto de acumulação, identicamente ao que é feito abaixo. Para a recíproca basta usar o teorema 13.11 e a proposição 13.8 das notas de aula. Um contra-exemplo que satisfaz o pedido no final do exercício é o seguinte:

Tome I = [0, 1] e considere  $I^I$  com a topologia produto. Temos que o mesmo é compacto pelo teorema de Tychonoff e portanto fracamente sequencialmente compacto, mas a sequência de funções  $\alpha_n \in I^I$  definida por:

$$\alpha_n(x) \doteq$$
 o enésimo dígito na expansão binária de  $x$ 

não tem subsequência convergente. De fato, suponha por absurdo que  $\{\alpha_{n_k}\}_{k\in\mathbb{N}}$  é uma subsequência que converge a algum  $\alpha\in I^I$ , então para cada  $x\in I$ ,  $\alpha_{n_k}(x)$  converge a  $\alpha(x)\in I$ . Defina  $p\in I$  com a propriedade de que  $\alpha_{n_k}(p)=0$  ou 1 dependendo da paridade de k. Então a sequência  $\{\alpha_{n_k}\}_{k\in\mathbb{N}}$  é dada por  $0,1,0,1,\cdots$ , que obviamente não pode convergir.

Prova de que em espaços métricos ser acumuladamente compacto é equivalente a ser sequencialmente compacto, mas que em espaços topológicos em geral a recíproca não vale: Suponha que  $(\Omega, d)$  seja fracamente sequencialmente compacto, i.e, todo subconjunto infinito tem um ponto de acumulação. Dado uma sequência  $\{x_n\}_{n\in\mathbb{N}}$ , se a mesma só tiver uma quantidade finita de termos distintos, então trivialmente contém uma subsequência constante e portanto convergente. Caso a sequência contenha infinitos termos distintos, por hipótese tem um ponto de acumulação x, então defina a seguinte subsequência  $\{x_{n_i}\}_{i\in\mathbb{N}}$ , escolhendo  $x_{n_1}, x_{n_2}, \cdots$  de forma que:

$$x_{n_1} \in B_d(x,1)$$

e defina  $n_i$  indutivamente, em termos de  $n_{i-1}$ , tal que  $n_i > n_{i-1}$  e:

$$x_{n_i} \in B_d\left(x, \frac{1}{i}\right)$$

o que sempre podemos fazer, já que  $B_d\left(x, \frac{1}{i}\right)$  intersecta A em infinitos pontos distintos\*. Então é claro que  $x_{n_i} \to x$ . Como  $\{x_n\}_{n \in \mathbb{N}}$  foi escolhida arbitrariamente, segue que  $\Omega$  é sequencialmente compacto.

Reciprocamente, vamos provar que se  $\Omega$  é sequencialmente compacto, então é compacto (e sabemos que isso implicará que  $\Omega$  é fracamente sequencialmente compacto, como desejado). Por hipótese valem o lema 2 e 3, portanto existe uma cobertura finita de bolas abertas de raio  $\varepsilon = \frac{\delta}{3}$  (onde  $\delta$  é como no lema (L.3)) e diâmetro  $\frac{2\delta}{3}$ , de forma que cada uma está contida em algum  $A \in \mathcal{A}$ . O conjunto consistindo de todos os A dessa forma é obviamente uma subcobertura finita de  $\Omega$ , como desejado.

Um exemplo de um espaço acumuladamente compacto mas não sequencialmente compacto (e portanto não metrizável) é  $\mathbb R$  com a topologia gerada por  $\{(a,\infty)\mid a\in\mathbb R\}$ . Qualquer subconjunto  $A\subset\mathbb R$  não vazio tem pontos de acumulação, pois dado  $a\in A, a-\epsilon$  é ponto de acumulação de A, já que  $(a-\epsilon,\infty)\cap A\setminus\{a-\epsilon\}=a$ . Note que a sequência definida por  $x_n=-n$  não tem subsequência convergente nessa topologia.

Questão 17. Seja  $\Omega = \{0,1\}$  e considere em  $\Omega$  a topologia  $\tau = \{\emptyset, \Omega\}$ . Equipe  $\mathbb{N}$  com a topologia discreta e considere o produto  $\mathbb{N} \times \Omega$ . Use esse exemplo para mostrar que nem todo espaço fracamente sequencialmente compacto é compacto.

Solução: Afirmamos que nas condições do exercício, qualquer conjunto não vazio de  $\mathbb{N} \times \{0,1\}$  tem pontos de acumulação. De fato, se  $S \subset \mathbb{N} \times \{0,1\}$  é não vazio, então existe  $n \in \mathbb{N}$  tal que ou  $(n,0) \in S$  e claramente (n,1) é ponto de acumulação (qualquer aberto básico da topologia produto contendo (n,1) intersecta S em  $(n,0) \neq (n,1)$ ) ou, analogamente,  $(n,1) \in S$  e (n,0) é ponto de acumulação. Finalmente, note que  $\mathscr{U} = \{U_n\}_{n \in \mathbb{N}} = \{\{n\} \times (0,1)\}_{n \in \mathbb{N}}$  é uma cobertura aberta infinita que não admite subcobertura aberta finita.

Questão 18. Considere o cubo de Hilbert  $C = [0,1]^{\mathbb{N}}$  equipado com a métrica produto, i.e,  $d(x,y) = \sup_{n \in \mathbb{N}} \left\{ \frac{|x_n - y_n|}{n} \right\}$ .

- (a) Mostre que nessa topologia, bolas  $B_d(x,r)$  são conjuntos da forma  $\prod_{n\in\mathbb{N}} B(x_n,nr)$  (aqui B sem o índice indica a bolas de [0,1] relativas ao valor absoluto);
- (b) Mostre que C é completo;
- (c) Verifique que C é totalmente limitado e conclua que C é compacto.

## Solução:

(a) Note que, dado r > 0 e tomando  $N \in \mathbb{N}$  tal que  $\frac{1}{N} < r$ , temos:

$$y \in \prod_{n \in \mathbb{N}} B(x_n, nr) \iff \frac{|x_n - y_n|}{n} < r \ \forall n \in \mathbb{N}$$
 (6)

$$\iff \sup_{n \in \mathbb{N}} \left\{ \frac{|x_n - y_n|}{n} \right\} = \max \left\{ |x_1 - y_1|, \frac{|x_2 - y_2|}{2}, \cdots, \frac{|x_{N-1} - y_{N-1}|}{N-1}, \sup_{n \ge N} \left\{ \frac{|x_n - y_n|}{n} \right\} \right\} < r \quad (7)$$

$$\iff y \in B_d(x, r)$$

$$(8)$$

onde na penúltima igualdade que cada um dos termos dentro dos colchetes é menor que r (veja a observação seguinte), e portanto o seu máximo também é menor que r.

Observação (O.14). Para 
$$n < N$$
 isso é trivial, note que se  $n \ge N$ , temos  $\frac{|x_n - y_n|}{n} \le \frac{1}{n} \le \frac{1}{N} \Longrightarrow \sup_{n \ge N} \left\{ \frac{|x_n - y_n|}{n} \right\} \le \frac{1}{N} < r$ 

- (b) Seja  $\{x_k\}_{k\in\mathbb{N}}\subset [0,1]^{\mathbb{N}}$  uma sequência de Cauchy, com  $x_k=(x_k^{(1)},x_k^{(2)},\cdots)\in [0,1]^{\mathbb{N}}$ . Queremos mostrar que  $\{x_k\}_{k\in\mathbb{N}}$  converge, isto é, achar uma sequência  $y=(y^{(1)},y^{(2)},\cdots)=(y^{(j)})_{j\in\mathbb{N}}$  tal que  $d(x_k,y)\to 0$ . Faremos isso da seguinte forma:
  - (i) Mostraremos que se  $\{x_k\}_{k\in\mathbb{N}}$  é de Cauchy, então  $\{x_k^{(j)}\}_{k\in\mathbb{N}}=\{\pi_j(x_k)\}_{k\in\mathbb{N}}\subset[0,1]$  converge para cada  $j\in\mathbb{N}$ .
  - (ii) Usando um exercício de uma lista passada (questão 6 do parágrafo 19 do Munkres), concluíremos que  $\{x_k\}_{k\in\mathbb{N}}$  converge. A completude de  $[0,1]^{\mathbb{N}}$  segue imediatamente.

De fato, dados  $\varepsilon > 0$  e  $j_0 \in \mathbb{N}$  arbitrários, então, por hipótese, existe  $K \in \mathbb{N}$  tal que  $k_1, k_2 \geq K$  implica que:

$$d(x_{k_1}, x_{k_2}) = \sup_{n \in \mathbb{N}} \left\{ \frac{\left| x_{k_1}^{(n)} - x_{k_2}^{(n)} \right|}{n} \right\} < \frac{\varepsilon}{j_0}$$

Mas também é óbvio que:

$$\frac{\left|x_{k_1}^{(j_0)} - x_{k_2}^{(j_0)}\right|}{j_0} \le \sup_{n \in \mathbb{N}} \left\{ \frac{\left|x_{k_1}^{(n)} - x_{k_2}^{(n)}\right|}{n} \right\} < \frac{\varepsilon}{j_0} \implies \left|x_{k_1}^{(j_0)} - x_{k_2}^{(j_0)}\right| < \varepsilon$$

de onde segue que  $\{x_k^{(j)}\}_{k\in\mathbb{N}}$  é de Cauchy e portanto converge a algum  $y^{(j)}$  (logo o passo (i) foi realizado). Como desejado, concluímos que  $\pi_j(x_k) \to \pi_j(y)$  para cada  $j \in \mathbb{N}$ , onde  $y = (y^{(1)}, y^{(2)}, \cdots) = (y^{(j)})_{j \in \mathbb{N}}$ .

(c) Seja  $\varepsilon > 0$  arbitrário e tome  $n \in \mathbb{N}$  tal que  $\frac{1}{N} < \frac{\varepsilon}{2}$ . Para cada i > N, tome  $p_i = 1$ . Fixe  $i \in \{1, \dots, N\}$ . Como [0, 1] é totalmente limitado, existe um número finito de pontos  $\{x_1, x_2, \dots, x_M\} = A_0$  tal que:

$$x \in [0,1] \implies |x - x_j| < \frac{\varepsilon}{2}$$
 para algum  $j \in \{1, \dots, M\}$ 

Agora, defina  $A = \{x = (x_n)_{n \in \mathbb{N}} \in [0,1]^{\mathbb{N}} \mid x_1, x_2, \cdots, x_N \in A_0 \text{ e } x_{N+1} = x_{N+2} = \cdots = 1\}$ . Existem  $M^N$  pontos em A, portanto A é finito. Além do mais, se  $x = (x_n)_{n \in \mathbb{N}} \in [0,1]^{\mathbb{N}}$ , então para cada  $i \in \{1, \cdots, N\}$ , existem  $x_j^{(i)} \in A_0$  (o que significa que todos os  $x_j$  dependem dos i) tal que  $|x_i - x_j^{(i)}| < \frac{\varepsilon}{2}$ . Agora, se definirmos  $y_i = x_j^{(i)}$  para  $i \in \{1, \cdots, N\}$  e  $y_i = 1$  caso contrário, então por construção  $y = (y_n)_{n \in \mathbb{N}} \in A$ , e para cada  $i \in \{1, \cdots, N\}$ , temos que  $\frac{|x_i - y_i|}{n} \le |x_i - y_i| < \frac{\varepsilon}{2}$ , também para cada i > N, vale que  $\frac{|x_i - y_i|}{i} \le \frac{1}{i} < \frac{1}{N} < \frac{\varepsilon}{2}$ , logo  $\sup_{n \in \mathbb{N}} \left\{ \frac{|x_n - y_n|}{n} \right\} \le \frac{\varepsilon}{2} < \varepsilon$  e segue que  $[0, 1]^{\mathbb{N}} = \bigcup_{a \in A} B(a, \varepsilon)$ .

Questão 19. Seja  $\Omega$  um espaço compacto Hausdorff. Seja  $f:\Omega\cup\{\infty\}\to\mathbb{R}$  uma função semicontínua inferiormente. Então f é limitada inferiormente, i.e,  $\inf_{x\in\Omega}f(x)>-\infty$ , e existe  $x\in\Omega$  tal que  $f(x)=\inf_{x\in\Omega}f(x)$ .

## Solução:

Observação (O.15). Há um erro de digitação no enunciado. Apesar de não fazer diferença, a questão é:  $\overline{Seja} \Omega$  um espaço compacto Hausdorff.  $Seja f : \Omega \to \mathbb{R} \cup \{\infty\}$  semicontínua inferiormente. Então f é limitada inferiormente, i.e, o infímo da imagem de  $\Omega_1$  existe e f atinge seu ínfimo em  $\Omega_1$ .

Seja\*  $m = \inf f(\Omega)$ . Para cada n, defina  $C_n = f^{-1}(\left(-\infty, m + \frac{1}{n}\right])$ . Note que  $C = \{C_n\}$  satisfaz a propriedade da interseção finita, pois:

$$f^{-1}\left(\left(-\infty, m + \frac{1}{n_1}\right)\right) \cap f^{-1}\left(\left(-\infty, m + \frac{1}{n_2}\right)\right) \cap \cdots \cap f^{-1}\left(\left(-\infty, m + \frac{1}{n_k}\right)\right)$$

$$= f^{-1}\left(\left(-\infty, m + \frac{1}{n_1}\right) \cap \left(-\infty, m + \frac{1}{n_2}\right) \cdots \cap \left(-\infty, m + \frac{1}{n_k}\right)\right)$$

$$= f^{-1}\left(\left(-\infty, m + \frac{1}{n_j}\right)\right), \text{ onde } n_j = \max\{n_1, \cdots, n_k\}$$

$$\neq \emptyset \text{ pela definição de infímo}$$

Logo (pois  $\Omega$  é compacto),  $\bigcap_{n\in\mathbb{N}} C_n \neq \emptyset$ . Mas se  $x\in\bigcap_{n\in\mathbb{N}} C_n$ , então  $f(x)\leq m$ , e como m é infímo, f(x)=m e segue que f atinge seu ínfimo, como desejado.

Observação (O.16). O ínfimo de  $f(\Omega)$  existe, pois  $\{U_{\alpha}\}_{{\alpha}\in\mathbb{R}}$ , com  $U_{\alpha}=f^{-1}((\alpha,\infty))$  é uma cobertura aberta que admite subcobertura finita e portanto  $f(\Omega)$  é limitado por baixo.

Observação (O.17). Note que provamos algo mais forte, pois em momento algum usamos a hipótese de que  $\Omega$  é Hausdorff (só de ser compacto já basta). Note também que o  $\infty$  foi colocado no exercício sem necessidade. Caso o erro de digitação não fosse erro de digitação, teríamos que o  $\infty$  foi introduzido sem propósito algum, jogado fora depois. Se não tivesse sido jogado fora o exercício também estaria falso (pois sequer especifica a topologia de  $\Omega \cup \{\infty\}$ ), considere  $\Omega = [0,1]$  e coloque em  $\Omega \cup \{\infty\}$  a topologia  $\tau_{[0,1]} \cup \{\{\infty\}, \Omega \cup \{\infty\}\}$ , então pondo f(x) = 2 se  $x \in [0,1]$  e  $f(\infty) = 1$ , inf  $f(\Omega \cup \{\infty\})$  não é atingido em  $\Omega$ .

Questão 20. Considere  $[0,1]^{\mathbb{N}}$  com a topologia uniforme. Encontre nesse espaço um subconjunto infinito sem pontos de acumulação.

## Solução:

Observação (O.18). A métrica da topologia uniforme é dada por:

$$d(\mathbf{x}, \mathbf{y}) = \sup \{ \overline{d}(x_{\alpha}, y_{\alpha}) \mid \alpha \in J \}$$

onde  $\overline{d}$  é a métrica limitada padrão de  $\mathbb{R}$ .

Agora, para cada  $j \in \mathbb{N}$  defina  $e_j \in [0,1]^{\mathbb{N}}$  pondo  $\pi_i(e_j) = 1$  se i = j e  $\pi_i(e_j) = 0$  caso contrário. Afirmamos que  $E = \bigcup_{j \in \mathbb{N}} \{e_j\} = \{e_j\}_{j \in \mathbb{N}} \subset [0,1]^{\mathbb{N}}$  não tem pontos de acumulação. De fato, se  $p \in [0,1]^{\mathbb{N}}$  é

ponto de acumulação, então  $B = B_d\left(p, \frac{1}{3}\right)$  (onde d é a métrica da topologia uniforme), então por hipótese existem infinitos pontos distintos de E em B. Isso é um absurdo, pois B não pode conter nem mesmo dois pontos distintos de E: se  $i \neq k$ , então  $d(e_i, e_k) = 1 > \sup_{x,y \in B} d(x,y) = \dim(B) = \frac{2}{3}$ .

Prova alternativa: de fato, lembrando do lema (L.4), se pormos  $\varepsilon = \frac{1}{2}$ , por exemplo, então dado  $e_k \in E$ , para todo  $e_j \neq e_k$ , temos  $d(e_k, e_j) = 1 > \frac{1}{2}$ , por exemplo, então dado  $e_k \in E$ , para todo  $e_j \neq e_k$ , temos  $d(e_k, e_j) = 1 > \frac{1}{2}$ , e portanto nenhum ponto de E é ponto de acumulação. Mostraremos agora que também vale que nenhum ponto fora de E é ponto de acumulação, e portanto E' é vazio:

Dado  $x \in E^c$ , podemos supor que existe  $j_0 \in \mathbb{N}$  tal que  $a = d(x, e_{j_0}) \in (0, 1)$  (caso contrário teríamos  $d(x, e_n) = 1$  para todo  $n \in \mathbb{N}$  e a prova acabaria). Pela designaldade triangular, para todo  $i \neq j$ , temos;

$$d(x, e_i) + d(x, e_j) = d(e_i, x) + d(x, e_j) \ge d(e_i, e_j) = 1 \implies d(x, e_i) \ge 1 - d(x, e_j)$$

para todo  $j \neq i$ . Em particular,  $d(x, e_i) \geq 1 - a > \frac{1 - a}{2}$  para todo  $i \neq j_0$ . Assim, temos que  $d(x, e_i) > \max\{\frac{1 - a}{2}, \frac{a}{2}\}$  para todo  $i \in \mathbb{N}$  e segue que x não é ponto de acumulação.

Questão 21. Mostre que [0,1] como subespaço de  $\mathbb{R}_{\ell}$  não é f.s.c.

<u>Solução</u>: Aqui mostraremos que [0,1] como subespaço de  $\mathbb{R}_l$  não é acumuladamente compacto. O resultado seguirá imediatamente, pois se fosse fracamente sequencialmente compacto, seria acumuladamente compacto, como já observado anterioremente.

Mostraremos que  $A = \left\{1 - \frac{1}{n}\right\}_{n \in \mathbb{N}}$  não tem pontos de acumulação. De fato, se  $x = 1 - \frac{1}{n} \in A$ , então temos

$$1 - 1/n \in \left[1 - \frac{1}{n}, 1 - \frac{1}{n+1}\right)$$

mas  $\left[1-\frac{1}{n},1-\frac{1}{n+1}\right)\cap A\setminus\{x\}=\emptyset$ , logo x não é ponto de acumulação. Caso  $x\in(0,1)$  com  $x\notin A$ , então  $x\in\left[1-\frac{1}{j},1-\frac{1}{j+1}\right)=U_x$  para algum  $j\in\mathbb{N}$  mas  $\left[x,1-\frac{1}{j+1}\right)\cap A=\emptyset$  e então x não é ponto de acumulação. Trivialmente se x>1 ou x<0 então x não é ponto de acumulação, então resta mostrar que 1 não é ponto de acumulação. Isto é claro, pois  $[1,2)\cap[0,1]=\{1\}$ .

Observação (O.19). Uma solução mais direta e elegante é notar que todo ponto de acumulação numa topologia mais fina é necessariamente ponto de acumulação na topologia mais grossa, portanto se A tivesse pontos de acumulação em  $\mathbb{R}_l$  eles teriam de ser pontos de acumulação de A em  $\mathbb{R}$  também, mas o único ponto de acumulação de A em  $\mathbb{R}$  é 1, que não é ponto de acumulação de A em  $\mathbb{R}_l$  pois  $\{1\} = [0,1] \cap [1,2)$  é um aberto de [0,1] que não intersecta A.

Questão 22. Mostre que o círculo  $\mathbb{S}^1$  com a topologia induzida de  $\mathbb{R}^2$  é compacto.

**Solução:** Mostraremos que  $\mathbb{S}^1$  é fechado e limitado, seguirá que é compacto. De fato  $\mathbb{S}^1$  é fechado, pois  $\mathbb{S}^1 = f^{-1}(\{1\})$ , imagem inversa de fechado e portanto fechado, onde  $f(x,y) = x^2 + y^2$ . É limitado pois está contido na bola aberta (com a topologia padrão de  $\mathbb{R}^2$ ) de centro (0,0) e raio 2.

Questão 23. Mostre que [0,1] não é compacto como subespaço de  $\mathbb{R}_K$ .

**Solução:** É fácil ver que  $\{U_n\}_{n\in\mathbb{N}}$ , onde:

$$U_n = \left\{ \left(\frac{1}{n}, 2\right) \right\}_{n \in \mathbb{N}} \bigcup (-1, 1) - K$$

é uma cobertura aberta que não admite subcoobertura aberta finita.

Questão 24. Seja  $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$  uma sequência convergente com limite x. Mostre que  $\{x\}\cup\{x_n\}_{n\in\mathbb{N}}$  é compacto.

Solução: Seja  $\mathscr{A}$  uma cobertura aberta de  $\Omega = \{x\} \cup \{x_n \mid n \in \mathbb{N}\}$ . Como  $\mathscr{A}$  é cobertura, existe  $A_0 \in \mathscr{A}$  contendo x. Como  $A_0$  é uma vizinhança aberta de x e por hipótese  $x_n \to x$ ,  $A_0$  contém todos termos da sequência a partir de certo  $N \in \mathbb{N}$ , isto é, existe  $N \in \mathbb{N}$  tal que  $\{x_N, x_{N+1}, \cdots\} \in A_0$ . Para cada  $x_i$  com  $1 \le i \le N-1$ , usaremos que  $\mathscr{A}$  é cobertura e escolheremos  $A_1, \cdots, A_{N-1} \in \mathscr{A}$  tal que  $x_i \in A_i$  para todo  $1 \le i \le N-1$ . Então é claro que:

$$\{A_0,A_1,\cdots,A_{N-1}\}$$

é uma subcobertura aberta finita de  $\Omega$ .

Questão 25. Mostre que qualquer espaço métrico compacto  $\Omega$  é homeomorfo a algum subconjunto do cubo de Hilbert. (Sugestão  $\Omega$  é separável (justifique), então seja  $\{x_1, x_2, \ldots\}$  um subconjunto denso em  $\Omega$ . Defina  $F: \Omega \to C$  pondo  $F(x) = (d(x, x_1), d(x, x_2), \ldots)$  e mostre que F é um homeomorfismo).

Solução: Já provamos que  $(\Omega, d)$  é separável no lema (L.6) e sabemos que qualquer função contínua e bijetora de um espaço compacto num espaço Hausdorff é um homeomorfismo. Note que, sem perda de generalidade, podemos assumir que  $d(x, y) \leq 1$  para todo  $x, y \in \Omega$  (se isso não acontecesse poderíamos simplesmente usar a métrica limitada padrão, que é equivalente). Sendo  $A = \{x_1, x_2, \dots\}$  um subconjunto denso de  $\Omega$ , então afirmamos que o homemomorfismo desejado é:

$$F: (\Omega, d) \to F(\Omega) \subset C = [0, 1]^{\mathbb{N}}$$
$$x \mapsto (d(x, x_1), d(x, x_2), \cdots)$$

onde a topologia em  $F(\Omega)$  é a induzida de C. De fato, como F é por construção sobrejetiva e  $F(\Omega)$  é Hausdorff (pois  $[0,1]^{\mathbb{N}}$  é Hausdorff e obviamente qualquer subespaço de um espaço Hausdorff é Hausdorff também), tudo que nos resta é provar que F é injetora (já que - pelo lema 6 - as funções coordenadas de F são contínuas e portanto F é contínua). Ora, se f(x) = f(y) para  $x, y \in \Omega$ , então:

$$d(x, x_1) = d(y, x_1)$$

$$d(x, x_2) = d(y, x_2)$$

$$\vdots$$

$$d(x, x_n) = d(y, x_n) \ \forall n \in \mathbb{N}$$

e note que, como A é denso, então para todo  $\varepsilon > 0$ , existe  $x_k \in A$  tal que  $d(x, x_k) = d(y, x_k) < \frac{\varepsilon}{1332}$ . Segue que para todo  $\varepsilon > 0$ , temos:

$$d(x,y) \le d(x,x_k) + d(y,x_k) < \frac{\varepsilon}{1332} + \frac{\varepsilon}{1332} = \frac{\varepsilon}{666} < \varepsilon$$

e concluímos que x = y.

MATHEUS A. R. M. HORÁCIO

## 1 INFINITUDE DOS PRIMOS

a) Tome  $m, k, s, t \in \mathbb{Z}$  e note que se  $A_{m,k} \cap A_{s,t} = (m\mathbb{Z} + k) \cap (s\mathbb{Z} + t) \neq \emptyset$ , então contém algum  $c \in \mathbb{Z}$ , e então afirmamos que:

$$(m\mathbb{Z} + k) \cap (s\mathbb{Z} + t) = \text{mmc}(m, s)\mathbb{Z} + c$$

De fato, se c pertence à interseção, então c somado de qualquer múltiplo comum de m e s também pertencem (para garantir que não deixemos de incluir nenhum, começamos do mínimo múltiplo comum). A inclusão contrária é um pouco menos trivial: dado  $x \in (m\mathbb{Z} + k) \cap (s\mathbb{Z} + t)$ , note que  $x - c \equiv 0 \pmod{m}$  e  $x - c \equiv 0 \pmod{s}$  (é fácil ver que a subtração de quaisquer dois elementos de  $m\mathbb{Z}$  ou  $s\mathbb{Z}$  é divísivel por m ou s, respectivamente - em particular, para s e s0 isso também vale), donde segue que s0 (mod mmc(s0)), como desejado.

Dado qualquer  $x \in \mathbb{Z}$ , temos  $x \in A_{1,0}$ , de forma que a primeira condição para ser base é facilmente satisfeita. Como já provamos a segunda, concluímos que  $\mathscr{B} = \{A_{m,k} \mid m,k \in \mathbb{Z}, m \neq 0\}$  é de fato uma base para uma topologia em  $\mathbb{Z}$ .

b) Por definição, elementos da base são abertos, de forma que só precisamos provar agora que  $A_{m,k}$  é fechado. Note que:

$$\mathbb{Z} \setminus A_{m,k} = \bigcup_{i=1}^{m-1} A_{m,k+i}$$

pois  $A_{m,k}$  é a união de todas as progressões aritméticas  $\{a_n\}_{n\in\mathbb{N}}$  de razão k tal que  $a_1$  é congruente a k módulo m. Seu complementar é, portanto, a união de todas as progressões aritméticas de razão k tal que  $a_1$  é congruente a k+1, k+2,  $\cdots$ , k+m-1 módulo m. Como o lado direito da igualdade é uma união de abertos, segue que  $A_{m,k}$  é fechado.

- c) Por definição, abertos não vazios de qualquer topologia em qualquer conjunto sempre contém elementos da base. Nesse caso, notamos que, por construção, elementos de  $\mathscr{B}$  sempre contém uma progressão aritmética infinita, de forma que qualquer aberto não vazio não pode ser finito.
- d) Sabemos pelo teorema fundamental da aritmética que os únicos inteiros que não são múltiplos inteiros de algum número primo são -1 e 1, de onde segue imediatamente que:

$$\mathbb{Z}\setminus\{-1,1\}=B=\bigcup_{p\in P}A_{p,0}=2\mathbb{Z}\cup 3\mathbb{Z}\cup 5\mathbb{Z}\cdots$$

- e) A cardinalidade de *P* não importa para que *B* seja aberto, pois *B* é, por definição, uma união de abertos. A observação pertinente à prova da infinitude dos primos que será usada no próximo item é a seguinte: se *P* for finito, o lado direito da igualdade acima é uma união finita de fechados (já provamos que todos elementos de *B* são clopen), isto é, *B* é fechado.
- f) Provamos em c) que nenhum conjunto finito pode ser aberto, ou, equivalentemente, que o complemento de um conjunto finito não pode ser fechado. Em e) também notamos que se P for finito, então B é fechado, o que é uma contradição, pois B é o complementar de  $\{-1,1\}$ , um conjunto finito! Concluímos que P é infinito.

## 2 AXIOMAS DE KURATOWSKI

- a) Primeiro observemos que um conjunto F é fechado se, e somente se,  $F=\overline{F}$ . De fato, se F é fechado, F é necessariamente o menor conjunto fechado contendo F, e, por definição, segue que  $F=\overline{F}$ . Reciprocamente, se  $F=\overline{F}$ , temos que F é fechado, pois  $\overline{F}$  é, por definição, uma interseção de conjunto fechados e portanto também fechado. Tendo isso em mente, note que:
  - i)  $\Omega \setminus \emptyset = \Omega$ , que é aberto por definição de topologia. Assim,  $\emptyset$  é fechado e segue que  $\overline{\emptyset} = \emptyset$ .
  - ii) O fecho de A é definido como a interseção de todos os fechados que contém A, ou, equivalentemente, como o menor conjunto fechado que contém A. Portanto segue diretamente da definição que  $A \subset \overline{A}$ .
  - iii) O fecho de A é fechado, e pela nossa observação inicial, segue que  $\overline{\overline{A}} = \overline{A}$ .
  - iv) Observe que  $A \subset B \implies \overline{A} \subset \overline{B}$ , pois  $\overline{B}$  é fechado e contém B, que contém A. Como  $\overline{B}$  é um fechado que contém A, segue por definição que  $\overline{A} \subset \overline{B}$ . Dito isso, notemos que  $A \subset A \cup B$  e  $B \subset A \cup B$ , de onde segue que  $\overline{A} \subset \overline{A \cup B}$  e  $\overline{B} \subset \overline{A \cup B}$ , logo  $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$ . Para provar a inclusão reversa, note também que  $\overline{A} \cup \overline{B}$  é fechado e contém  $A \cup B$ , e como definimos o fecho como o *menor* fechado que contém o conjunto, segue que  $\overline{A} \cup \overline{B} \supset \overline{A \cup B}$ . Concluímos que  $\overline{A} \cup \overline{B} = \overline{A \cup B}$ .
- b) Usaremos o seguinte resultado (cuja prova é muito fácil e não convém aqui, só envolve as leis de deMorgan):

Seja  $\mathscr{C} \subset \mathscr{P}(\Omega)$  tal que:

- i)  $\emptyset$  e  $\Omega$  estão em  $\mathscr{C}$
- ii) uniões finitas de elementos de  $\mathscr C$  ainda estão em  $\mathscr C$
- iii) interseções arbitrárias de elementos de  $\mathscr C$  ainda estão em  $\mathscr C$

Então  $\{\Omega \setminus C \mid C \in \mathscr{C}\}$  é uma topologia em  $\Omega$ . Defina  $\mathscr{F} = \{A \subset X \mid A = F(A) = \overline{A}\}$ . Afirmamos que  $\mathscr{F}$  satisfaz i), ii) e iii). De fato:

- i) Temos  $F(\emptyset)=\emptyset$ . Note que  $F(\Omega)=\Omega$  , pois  $\Omega\subset F(\Omega)$  por definição e  $F(\Omega)\subset\Omega$  pois F é uma função de  $\mathscr{P}(\Omega)$  em  $\mathscr{P}(\Omega)$ .
- ii) Se  $A_1, A_2, \cdots, A_n \in \mathscr{F}$ , então  $A_1 \cup A_2 = \overline{A_1} \cup \overline{A_2} = \overline{A_1 \cup A_2} \in \mathscr{F}$  e segue por indução que  $A_1 \cup A_2 \cup \cdots \cup A_n = \overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n} = \overline{A_1 \cup A_2 \cup \cdots \cup A_n} \in \mathscr{F}$ .
- iii) Pelo segundo axioma, sendo  $\mathcal{I}$  um conjunto arbitrário de indíces, então  $\bigcap_{i\in\mathcal{I}}C_i\subset F\left(\bigcap_{i\in\mathcal{I}}C_i\right)$ . Observe também que uma consequência imediata do terceiro axioma é que F preserva inclusões, de forma que:

$$\bigcap_{i\in\mathcal{I}}C_{i}\subset C_{i}\forall i\in\mathcal{I}\Rightarrow F\left(\bigcap_{i\in\mathcal{I}}C_{i}\right)\subset F\left(C_{i}\right)=C_{i}\forall i\in\mathcal{I}\Rightarrow F\left(\bigcap_{i\in\mathcal{I}}C_{i}\right)\subset\bigcap_{i\in\mathcal{I}}C_{i}$$

e, como desejado, a interseção arbitrária é fechada e portanto pertence a  $\mathscr{F}$ . A topologia induzida por F é, então,  $\tau = \{\Omega \setminus A \mid A = F(A)\}$ . A mesma também é única, pois dado qualquer  $A \subset \Omega$ , o conjunto F(A) é o fecho de A no espaço topológico  $(\Omega, \tau)$ : de fato, dado  $A \subset \Omega$ , como F(F(A)) = F(A), sabemos que  $F(A) \in \mathscr{F}$ , e do primeiro axioma sabemos que  $A \subset F(A)$ . Se K é qualquer outro elemento de  $\mathscr{F}$  contendo A, então  $F(A) \subset F(K) = K$ , e concluímos que

F(A) é o menor elemento de  $\mathscr F$  contendo A, como desejado. Segue que todo operador fecho de Kuratowski determina e é determinado por uma única topologia.

- c) Observemos que nesse caso  $F(A) = \overline{A} = \bigcup_{n \in \mathbb{N}} nA$ . Assim:
  - i) é satisfeita trivialmente, pois  $\bigcup_{n\in\mathbb{N}} n\emptyset = \emptyset$
  - ii) segue diretamente do fato de que  $A \subset \bigcup_{n \in \mathbb{N}} nA = A \cup 2A \cup \cdots$
  - iii) por definição, temos que  $F(A) = A \iff A$  contém todos os múltiplos de elementos de A. F(A) satisfaz essa condição pela sua própria definição, de forma que F(F(A)) = F(A), como desejado.

iv) 
$$\overline{A} \cup \overline{B} = \bigcup_{n \in \mathbb{N}} nA \bigcup \bigcup_{n \in \mathbb{N}} nB = \bigcup_{n \in \mathbb{N}} nA \cup nB = \bigcup_{n \in \mathbb{N}} n(A \cup B) = \overline{A \cup B}$$

Pela observação em iii), os fechados dessa topologia são os conjuntos  $k\mathbb{N}$  com  $k \in \mathbb{N}$  ou uniões ou interseções finitas dos mesmos. Os abertos são os complementares desses fechados. Defina  $B_n$  da seguinte maneira:  $a \in \mathbb{N} \in B_n \iff a|n$ , isto é,  $B_n$  é o conjunto contendo n e todos os seus divisores. Afirmamos que:

$$\mathscr{B} = \{B_n \mid n \in \mathbb{N}\}$$

é uma base para  $\tau$ . De fato, dado qualquer aberto U de  $\mathbb{N}$  e  $x \in U$  temos  $x \in B_x \subset U$ , pois se  $B_x \not\subset U$ , então  $a \in B_x \implies a \in U^c$ , que é fechado, daí, como a divide x e  $U^c$  é fechado e contém todos os múltiplos de seus elementos, segue que  $x \in U^c$ , um absurdo! Para verificar a segunda condição de base, note que se  $x \in B_{k_1} \cap B_{k_2}$ , então  $x|k_1$  e  $x|k_2$ , donde segue que  $x|mdc(k_1,k_2) = k_3$  e portanto  $x \in B_{k_3} \subset B_{k_1} \cap B_{k_2}$ .

d) Suponha que f é contínua e m|n, isto é, n=km para algum  $k\in\mathbb{N}$ . Então:

$$f(n) \in f(m\mathbb{N}) = f(\overline{\{m\}}) \subset \overline{f(\{m\})} = \overline{\{f(m)\}} = f(m)\mathbb{N}$$

e concluímos que f(m)|f(n). Reciprocamente, se  $m|n \implies f(m)|f(n)$ , mostraremos que dado qualquer  $A \subset \mathbb{N}$ , temos  $f(\overline{A}) \subset \overline{f(A)}$ , i.e, f é contínua. De fato, se  $y \in f(\overline{A}) = f\left(\bigcup_{n \in \mathbb{N}} nA\right)$ , então  $y \in f(n_0A)$  para algum  $n_0 \in \mathbb{N}$ . Daí  $y = f(n_0a)$  para algum  $a \in A$ . Como  $a|n_0a$ , temos, por hipótese, que  $f(a)|f(n_0a)$ , logo existe  $k \in \mathbb{N}$  tal que  $y = f(n_0a) = kf(a) \in kf(A) \subset \overline{f(A)}$ , como desejado.

# 3 NÚMEROS DE LIOUVILLE

a) Pela definição dos números de Liouville, note que podemos escrever

$$\mathbb{L} = \{ x \in \mathbb{R} \mid x \text{ \'e um n\'umero de Liouville} \} = \bigcap_{n=1}^{\infty} U_n$$

onde:

$$U_n = \bigcup_{q=2}^{\infty} \bigcup_{p=-\infty}^{\infty} \left\{ x \in \mathbb{R} : 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n} \right\} = \bigcup_{q=2}^{\infty} \bigcup_{p=-\infty}^{\infty} \left( \frac{p}{q} - \frac{1}{q^n}, \frac{p}{q} + \frac{1}{q^n} \right) \setminus \left\{ \frac{p}{q} \right\}$$

Observe que  $\overline{U_n}\supset \mathbb{Q}$  pois os  $\overline{U_n}$  contém cada  $\frac{p}{q}\in \mathbb{Q}$ . De fato, se  $\frac{p}{q}\in \mathbb{Q}$ , então temos

$$\frac{p}{q} \in \overline{\left(\frac{p}{q} - \frac{1}{q^n}, \frac{p}{q} + \frac{1}{q^n}\right) \setminus \left\{\frac{p}{q}\right\}} \subset \overline{U_n} \implies \overline{\overline{U_n}} = \overline{U_n} \supset \overline{\mathbb{Q}} = \mathbb{R} \implies \overline{U_n} = \mathbb{R}$$

Assim, escrevemos  $\mathbb{L}$  (é fácil ver, pela nossa própria construção dos  $U_n$  e pela definição de números de Liouville, que se x é número de Liouville, então  $x \in U_n \ \forall n \in \mathbb{N}$  e, vice versa, se x está na interseção, então por definição é número de Liouville) como uma interseção enumerável de abertos (pois cada  $U_n$  é a união de abertos) densos de  $\mathbb{R}$ . Segue que  $\mathbb{L}$  é um  $G_\delta$ .

b) Provaremos o seguinte corolário do Teorema de Baire, donde o resultado segue imediatamente:

Seja X um espaço métrico completo (não vazio) sem pontos isolados e  $D \subset X$  um subconjunto  $G_{\delta}$  de X. Então D é não enumerável.

Suponha que  $D = \bigcap_{n \in \mathbb{N}} U_n$ , onde cada  $U_n$  é um aberto denso. Podemos escrever  $X \setminus D = \bigcap_{x \in D} X \setminus \{x\}$ .

Note que cada  $X \setminus \{x\}$  é um aberto denso, pois  $x \in D$  não é ponto isolado. Então, supondo por absurdo que D é enumerável, temos que

$$\emptyset = D \cap (X \setminus D) = \left(\bigcap_{n \in \mathbb{N}} U_n\right) \cap \left(\bigcap_{x \in D} X \setminus \{x\}\right)$$

ou seja, exibimos uma interseção enumerável de abertos densos que é vazia, contradizendo o Teorema de Baire. Segue que D é não enumerável.

De fato podemos concluir que  $\mathbb{L}$  é não enumerável, pois, como provamos anteriormente,  $\mathbb{L}$  é um subconjunto  $G_{\delta}$  de  $\mathbb{R}$ , um espaço métrico completo sem pontos isolados.

**Lema 1.** Seja  $(\Omega_1, d_1)$  um espaço métrico compacto e  $(\Omega_2, d_2)$  um espaço métrico arbitrário e suponha que  $f: \Omega_1 \to \Omega_2$  é contínua. Então f é uniformemente contínua.

**Demonstração**: Dado  $\varepsilon > 0$ , pela hipótese de continuidade de f, para cada  $x \in \Omega_1$  existe  $\delta_x$  tal que  $f(B_{d_1}(x,\delta_x)) \subset B_{d_2}\left(f(x),\frac{\varepsilon}{2}\right)$ . Como  $\Omega_1$  é compacto, a cobertura aberta  $\left\{B_{d_1}\left(x,\frac{\delta_x}{2}\right)\right\}_{x\in\Omega_1}$  admite uma subcobertura finita  $\left\{B_{d_1}\left(x_i,\frac{\delta_{x_i}}{2}\right)\right\}_{i=1}^n$ . Agora, tomando  $\delta \doteq \min_{1\leq i\leq n} \frac{\delta_{x_i}}{2}$ , afirmamos que:

$$d_1(x,y) < \delta \implies d_2(f(x),f(y)) < \varepsilon$$

De fato, isso acontece pois:

$$d_2(f(x), f(y)) \le d_2(f(x), f(x_i)) + d_2(f(x_i), f(y)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

onde usamos que  $x_i \in B_{d_1}\left(x_i, \frac{\delta_{x_i}}{2}\right) \subset B_{d_1}(x_i, \delta_{x_i}) \implies f(x_i) \in B_{d_2}\left(f(x), \frac{\varepsilon}{2}\right)$  e também que:

$$d(y,x_i) \le d(y,x) + d(x,x_i) < \frac{\delta_{x_i}}{2} + \frac{\delta_{x_i}}{2} = \delta_{x_i} \implies f(y) \in B_{d_2}\left(f(x_i), \frac{\varepsilon}{2}\right)$$

Notação. Pondo  $||f|| = \sup_{x \in \Omega} |f(x)|$  induzimos uma métrica em  $\mathscr{C}(\Omega, \mathbb{R})$  (o espaço das funções contínuas de  $\Omega$  para  $\mathbb{R}$ ) dada por  $d(f,g) = \sup_{x \in \Omega} |f(x) - g(x)|$ .

## 1 PROBLEMA 1

Usando algumas desigualdades bem conhecidas do Cálculo e a definição de supremo, temos que:

$$|T(f(x))| = \left| \int_0^1 K(x,y) f(y) \, \, \mathrm{d}y \right| \leq \int_0^1 |K(x,y)| |f(y)| \, \, \mathrm{d}y \leq \sup_{x,y \in [0,1]^2} |K(x,y)| \cdot \sup_{y \in [0,1]} |f(y)| = \|K\| \cdot \|f\| \leq \|K\| \cdot \|f\| \cdot \|f\| \leq \|K\| \cdot \|f\| \cdot \|f\| \leq \|K\| \cdot \|f\| \cdot \|f$$

de forma que  $\{T(f) \mid \|f\| \leq 1\}$  é pontualmente limitada. Para aplicar Arzelà-Ascoli e terminarmos o exercício, resta mostrar que é também equicontínua. De fato, pelo lema 1, dado  $\varepsilon > 0$ , existe  $\delta > 0$  tal que  $x, x' \in [0,1]$  com  $|x-x'| < \delta \implies |K(x,y)-K(x',y)| < \frac{\varepsilon}{2\|f\|}$  para todo  $y \in [0,1]$ , e assim:

$$|T(f(x)) - T(f(x'))| = \left| \int_0^1 K(x, y) f(y) \, dy - \int_0^1 K(x', y) f(y) \, dy \right|$$

$$= \left| \int_0^1 (K(x, y) - K(x', y)) f(y) \, dy \right|$$

$$\leq \int_0^1 |K(x, y) - K(x', y)| |f(y)| \, dy$$

$$\leq \sup_{y \in [0, 1]} |K(x, y) - K(x', y)| \cdot ||f||$$

$$\leq \frac{\varepsilon}{2||f||} \cdot ||f||$$

$$= \frac{\varepsilon}{2}$$

como desejado (note que, em particular, isso implica que  $T(f) \in C([0,1],\mathbb{R})$ ). O resultado segue pelo teorema de Arzelà-Ascoli.

## 2 PROBLEMA 2

Primeiramente, notemos que  $\mathscr{F} = \{ f \in \mathscr{C}(\Omega, \mathbb{R}) \mid ||f|| \le 1 \text{ e Hol}_{\alpha}(f) \le 1 \}$  é equicontínua. De fato, dado  $f \in \mathscr{F}$  e  $\varepsilon > 0$ , então é claro que para todos  $x, y \in \Omega$  com  $d(x, y) < \delta \doteq \varepsilon^{\frac{1}{\alpha}}$ , temos que:

$$|f(x) - f(y)| \le \operatorname{Hol}_{\alpha}(f)d(x, y)^{\alpha}$$

$$\le d(x, y)^{\alpha}$$

$$< \delta^{\alpha}$$

$$= \varepsilon$$

É óbvio também que  $\mathscr{F}$  é pontualmente limitada, pois dado  $x \in \Omega$  e  $f \in \mathscr{F}$ , temos  $|f(x)| \leq ||f|| \leq 1$ . Por Arzelà-Ascoli segue que  $\mathscr{F}$  é compacto, de forma que só resta mostrarmos que  $\mathscr{F} = \mathscr{F}$ .

Com efeito, note que basta mostrarmos que todo limite de uma sequência de  $\mathscr{F}$  também pertence a  $\mathscr{F}$  (isso é consequência do lema 21.2 do Munkres, visto em sala). De fato, se  $\{f_n\}_{n\in\mathbb{N}}\in\mathscr{F}^{\mathbb{N}}$  converge a algum  $f\in\mathscr{C}(\Omega,\mathbb{R})$ , então dado  $\varepsilon>0$  podemos escolher  $n\in\mathbb{N}$  de forma que  $\|f_n-f\|<\frac{\varepsilon}{2}$ , e segue que:

$$\frac{|f(x) - f(y)|}{d(x,y)^{\alpha}} \le \frac{|f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|}{d(x,y)^{\alpha}} \tag{1}$$

$$\leq \frac{\varepsilon}{d(x,y)^{\alpha}} + \frac{|f_n(x) - f_n(y)|}{d(x,y)^{\alpha}} \tag{2}$$

$$\leq 1 + \frac{\varepsilon}{d(x,y)^{\alpha}} \tag{3}$$

e como isso é válido para todo  $\varepsilon > 0$ , temos que:

$$\frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} \le 1$$

donde concluímos que  $\operatorname{Hol}_{\alpha}(f) \leq 1$ , como desejado. Resta mostrar que  $||f|| \leq 1$ . De fato isso é verdade, pois dado  $x \in \Omega$  arbitrário, temos que  $\{f_n(x)\}_{n \in \mathbb{N}}$  é uma sequência em [-1,1] que converge para f(x), portanto  $|f(x)| \leq 1$  e segue que  $||f|| \leq 1$ .

**Observação.** Para ir de (2) para (3) note que por hipótese temos  $\operatorname{Hol}_{\alpha}(f_n) \leq 1$ . Também não foi explicitada a hipótese frequentemente usada de que  $x \neq y$  pois a mesma é auto evidente.