

Coordenadas Retardadas...

Dr. Juan Gonzalo Barajas Ramírez División de Control y Sistemas Dinámicos IPICYT

7 de julio de 2025 15:30-16:30hrs

Plan de vuelo.

I. Introducción

II. Análisis de series de tiempo

III. OGY control

IV. Comentarios finales

A. ¿Qué es caos?

*Un cambio a la visión del universo...

determinista e impredecible a largo plazo

*Un comportamiento dinámico... de un flujo... con las características:

- 1. Sensibilidad Extrema A Condiciones Iniciales
- 2. Densidad De Orbitas Periódicas
- 3. Transitividad Entre Orbitas

Sistemas caóticos desde sus medidas y mediciones

* La primera vez que vemos una señal caótica...

B. Un sistema caótico... Lorenz

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} p_1(x_1(t) - x_2(t)) \\ (p_2 - x_3(t))x_1(t) - x_2(t) \\ x_1(t)x_2(t) - p_3x_3(t) \end{bmatrix}$$

Which is chaotic for the parameter values $p_1=10$, $p_2=28$, $p_3=\frac{8}{3}$.

C. Circuito caótico Lorenz

Para evitar la saturación de los amplificadores se escalaron las ecuaciones con un factor de 10, de tal forma que las ecuaciones implementadas fueron:

$$x = \int_0^t \dot{x} = -\sigma \int_0^t (x - y) d\tau,$$

$$y = \int_0^t \dot{y} = -\left[10 \int_0^t x (z - \frac{\rho}{10}) d\tau + \int_0^t y d\tau\right],$$

$$z = \int_0^t \dot{z} = -\left[10 \int_0^t y (-x) d\tau + \beta \int_0^t z d\tau\right].$$

En el diseño del circuito se fijaron los parámetros σ y β en 10 y 8/3 respectivamente,

D. Circuito electrónico Lorenz

$$x = \int_0^t \dot{x} = -\sigma \int_0^t (x - y) d\tau,$$

$$y = \int_0^t \dot{y} = -\left[10 \int_0^t x (z - \frac{\rho}{10}) d\tau + \int_0^t y d\tau\right],$$

$$z = \int_0^t \dot{z} = -\left[10 \int_0^t y (-x) d\tau + \beta \int_0^t z d\tau\right].$$

8-Lead PDIP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	X Multiplicand Noninverting Input
2	X2	X Multiplicand Inverting Input
3	Y1	Y Multiplicand Noninverting Input
4	Y2	Y Multiplicand Inverting Input
5	-Vs	Negative Supply Rail
6	Z	Summing Input
7	w	Product Output
8	+Vs	Positive Supply Rail

D. Circuito electrónico Lorenz

E. Mediciones del circuito electrónico Lorenz

$$\begin{aligned} x &=& \int_0^t \dot{x} = -\sigma \int_0^t \left(x - y \right) d\tau, \\ y &=& \int_0^t \dot{y} = -\left[10 \int_0^t x (z - \frac{\rho}{10}) d\tau + \int_0^t y d\tau \right], \\ z &=& \int_0^t \dot{z} = -\left[10 \int_0^t y \left(-x \right) d\tau + \beta \int_0^t z d\tau \right]. \end{aligned}$$

Serie de Tiempo -caótica-

Plan de vuelo.

I. Introducción

II. Análisis de series de tiempo

III. OGY control

IV. Comentarios finales

A. Ciencia, técnica y arte...

Time	X_1(t)	X_2(t)	X_3(t)
0	0.1	0.3	0.4
0.01	0.1203	0.3273	0.3898
0.02	0.1415	0.36	0.38
0.03	0.1641	0.3984	0.3706
0.04	0.1885	0.4428	0.3616
0.05	0.2151	0.4939	0.353
0.06	0.2444	0.5521	0.3449
0.07	0.2768	0.6183	0.3373
0.08	0.3129	0.6932	0.3303
0.09	0.3531	0.7779	0.3241
0.1	0.3981	0.8735	0.3186
0.11	0.4484	0.9813	0.3141
0.12	0.5049	1.1027	0.3107
0.13	0.5683	1.2395	0.3087
0.14	0.6394	1.3933	0.3084
0.15	0.7194	1.5665	0.3102
0.16	0.8092	1.7612	0.3146
0.17	0.9102	1.9803	0.3222
0.18	1.0237	2.2265	0.3338
0.19	1.1513	2.5034	0.3504
0.2	1.2948	2.8144	0.3732
0.21	1.456	3.1639	0.4039

Considérese una serie de tiempo obtenida de la medición, a intervalos constantes de tiempo τ_s , de una variable característica de un sistema,

$$\{s(t_o+k\tau_s)\}_{k=0}^N,$$

y denótese

$$s(n) \stackrel{def}{=} s(t_0 + n\tau_s), \quad n = 0, 1, ..., N.$$

Los estados del circuito de Lorenz se muestrean cada 0.01 segundos

Suponga que solo tiene acceso a una señal escalar $\,$ por ejemplo $x_1(t)$

¿Podemos reconstruir toda la dinámica del sistema original?

B. Coordenadas Retardadas - Atractor Reconstruido-

		ı	
Time	X_1(t)	X_2(t)	X_3(t)
0	0.1	0.3	0.4
0.01	0.1203	0.3273	0.3898
0.02	0.1415	0.36	0.38
0.03	0.1641	0.3984	0.3706
0.04	0.1885	0.4428	0.3616
0.05	0.2151	0.4939	0.353
0.06	0.2444	0.5521	0.3449
0.07	0.2768	0.6183	0.3373
0.08	0.3129	0.6932	0.3303
0.09	0.3531	0.7779	0.3241
0.1	0.3981	0.8735	0.3186
0.11	0.4484	0.9813	0.3141
0.12	0.5049	1.1027	0.3107
0.13	0.5683	1.2395	0.3087
0.14	0.6394	1.3933	0.3084
0.15	0.7194	1.5665	0.3102
0.16	0.8092	1.7612	0.3146
0.17	0.9102	1.9803	0.3222
0.18	1.0237	2.2265	0.3338
0.19	1.1513	2.5034	0.3504
0.2	1.2948	2.8144	0.3732
0.21	1.456	3.1639	0.4039

$$y(n) = [s(n), s(n-T), s(n-2T), ..., s(n-(d-1)T)],$$

¿Cómo saber? retraso en el tiempo y número de dimensiones

C.1 -Average Mutial Information- *(AMI)

			T=10			
Time	x1(t)	x1(t+T)	x1(t+2T)	x1(t+3T)	x1(t+4T)	
398.09	-9.3909	-3.5906	-1.4485	-1.285	-2.1958	
398.1	-8.6747	-3.2296	-1.3708	-1.3293	-2.3544	
398.11	-7.9718	-2.9077	-1.3098	-1.3832	-2.5288	
398.12	-7.2918	-2.6225	-1.264	-1.4468	-2.7204	
398.13	-6.6423	-2.3716	-1.2323	-1.5203	-2.9306	
398.14	-6.0289	-2.1525	-1.2134	-1.604	-3.1609	
398.15	-5.4555	-1.9626	-1.2064	-1.6984	-3.413	
398.16	-4.9245	-1.7996	-1.2106	-1.804	-3.6886	
398.17	-4.4368	-1.661	-1.2254	-1.9216	-3.9896	
398.18	-3.9924	-1.5446	-1.2503	-2.0519	-4.3179	
398.19	-3.5906	-1.4485	-1.285	-2.1958	-4.6755	
398.2	-3.2296	-1.3708	-1.3293	-2.3544	-5.0644	
398.21	-2.9077	-1.3098	-1.3832	-2.5288	-5.4864	
398.22	-2.6225	-1.264	-1.4468	-2.7204	-5.9431	
398.23	-2.3716	-1.2323	-1.5203	-2.9306	-6.4361	
398.24	-2.1525	-1.2134	-1.604	-3.1609	-6.9663	
398.25	-1.9626	-1.2064	-1.6984	-3.413	-7.5339	
398.26	-1.7996	-1.2106	-1.804	-3.6886	-8.1385	
398.27	-1.661	-1.2254	-1.9216	-3.9896	-8.7783	
398.28	-1.5446	-1.2503	-2.0519	-4.3179	-9.4501	
398.29	-1.4485	-1.285	-2.1958	-4.6755	-10.1489	
398.3	-1.3708	-1.3293	-2.3544	-5.0644	-10.8675	
398.31	-1.3098	-1.3832	-2.5288	-5.4864	-11.5961	
398.32	-1.264	-1.4468	-2.7204	-5.9431	-12.3221	

$$AMI_{AB} = \sum_{a_i,b_j} P_{AB}\left(a_i,b_j
ight) \log_2\left[rac{P_{AB}\left(a_i,b_j
ight)}{P_A\left(a_i
ight)P_B\left(b_j
ight)}
ight].$$

-Para cada retardo busco el primer mínimo--

$$AMI(T) = \sum_{s(n), s(n-T)} P(s(n), s(n-T)) P_m,$$

$$P_m = \log_2 \frac{P(s(n), s(n-T))}{P(s(n)) P(s(n-T))},$$

-Para calcular AMI(T) usar MATLAB --Referencia:

Calculation of Average Mutual Information (AMI) and False-Nearest Neighbors (FNN) for the Estimation of Embedding Parameters of Multidimensional Time Series in Matlab

Sebastian Wallot, Dan Mønster

Front. Psychol., 09 September 2018 Sec. Quantitative Psychology and Measurement Volume 9 - 2018 | https://doi.org/10.3389/fpsyg.2018.01679

C.1 -Average Mutial Information- *(AMI) Matlab

-Para cada retardo busco el primer mínimo--

$$AMI(T) = \sum_{s(n), s(n-T)} P(s(n), s(n-T)) P_m,$$

$$P_m = \log_2 \frac{P(s(n), s(n-T))}{P(s(n)) P(s(n-T))},$$

-Para calcular AMI(T) usar MATLAB --Referencia:

Wallot and Mønster (2018) Calculation of Average Mutual Information (AMI)... Front. Psychol., 09

-MATLAB --Liga GitHub:

github.com/danm0nster/mdembedding

C.3 -Falsos Vecinos Más Cercanos *(FNNA) Matlab

-Para la dimensión "d" se reconstruyen vectores --

$$y(k) = [s(k), s(k-T), ..., s(k-(d-1)T)]$$

-Para la dimensión "d-1" se reconstruyen vectores-

$$y^{NN}(k) = [s^{NN}(k), ..., s^{NN}(k - (d-1)T)]$$

-Para calcular FNN(d) usar

$$\delta(k,d) = \frac{\left|s(k-dT) - s^{NN}(k-dT)\right|}{R_d(k)}$$

$$R_d^2(k) = \sum_{m=1}^d [s(k - (m-1)T) - s^{NN}(k - (m-1)T)]^2$$

$$FNNA(d) = \frac{100 \times \text{Number of false neighbors}}{\text{Total amount of reconstructed vectors}} \%$$

-Para calcular FNNA(d) usar MATLAB --Referencia:

Wallot and Mønster (2018) Calculation of Average Mutual Information (AMI)... Front. Psychol., 09

Liga GitHub:

github.com/danm0nster/mdembedding

C.4 - Atractor Reconstruido Circuito Lorenz

-Atractor Original --

-Atractor Reconstruido T=16, d=3 --

Plan de vuelo.

I. Introducción

II. Análisis de series de tiempo

III. OGY control

IV. Comentarios finales

A. -Un atractor caótico *conjunto denso de orbitas periódicas

-Ott Gregorbi Yorke @ 1990 Se puede desde una atractor Reconstruido T=16, d=3 --

-Como podemos hacerlo:

- 1. Reconstruir atractor
- 2. Un mapeo de Poincaré
- 3. Unstable Periodic Orbit (UPO)
- 4. Efecto paramétrico Supresión de Caos

B. -Un mapeo de Poincaré –Hiperplano transversal al flujo-

-Como podemos hacerlo:

- 1. Reconstruir atractor ----- [OK]
- 2. Un mapeo de Poincaré ----- [OK]
- 3. Unstable Periodic Orbit(UPO) [----]
- 4. Efecto paramétrico ----- [----] Supresión de Caos---[----]

B. -Un mapeo de Poincaré –Hiperplano transversal al flujo-

-Como podemos hacerlo:

1. Reconstruir atractor ----- [OK]

x(t+T)

- 2. Un mapeo de Poincaré ----- [OK]
- 3. Unstable Periodic Orbit(UPO) [----]
- 4. Efecto paramétrico ------ [----]
 Supresión de Caos---[----]

- -Encontrar puntos del Mapeo de Poincaré
- a. Colocamos el hiperplano transversal (Xm=[10,0,0]' además [vector normal])
- b. Si la distancia al plano pasa de + a -
- c. Se interpolan los puntos del Mapeo de Poincaré.

 $P(x)=\{xp1,xp2,xp3,...\}$ de dimensión 2.

Mathematics 2025, 13, 1818, doi.org/10.3390/math13111818 Liga GitHub: github.com/luisjavierontanonParallel BifurcationDynamicalSystem

C. -Escoger un UPO X* donde estabilizar el sistema

-De los puntos del Mapeo de Poincaré. P(x)={xp1,xp2,xp3,...}

- 1. Un punto fijo del Mapeo de Poincaré es una órbita periódica
 - 2. Identificar UPO

 a- de primer periodo

 (en un radio -Epsilon
 *Un punto de Poincaré

 regresa al siguiente)

 b- de segundo periodo

 (en un radio -Epsilon
 *Un punto de Poincaré

 regresa al segundo punto
 pero no el primero)
- 3. Se escoge X* como equilibrio a estabilizar el punto que más puntos cumplen en su vecindad

-Como podemos hacerlo:

- Reconstruir atractor ----- [OK]
 Un mapeo de Poincaré ----- [OK]
- 2. Un mapeo de Poincare ------ [UK]
- 3. Unstable Periodic Orbit(UPO) [----]
 4. Efecto paramétrico ------ [----]

Supresión de Caos---[----]

C. -Escoger un UPO X* donde estabilizar el sistema (Parte 2)

-Como podemos hacerlo:

- 1. Reconstruir atractor ----- [OK]
- 2. Un mapeo de Poincaré ----- [OK]
- 3. Unstable Periodic Orbit(UPO)[OK]
- 4. Efecto paramétrico -----[OK] Supresión de Caos--[----]

normal h = [1, 0, 0] y el punto $x_{\Sigma} = [10.75, 0, 0]$.

D. -Identificar un mapa 'local' + 'lineal' alrededor de X*

-Aproximar el mapeo como:

$$X(n+1)=A X(n) + b U(n)$$

Usamos mínimos cuadrados alrededor X*

EI UPO
$$\begin{pmatrix} 5.1580 \\ 2.4489 \end{pmatrix}$$

$$A = \begin{pmatrix} 5.3746 & -0.7094 \\ 5.1703 & -0.6816 \end{pmatrix} \text{ y } b = \begin{pmatrix} 1.5 \times 10^{-14} \\ 1.0 \times 10^{-13} \end{pmatrix}$$

-Como podemos hacerlo:

- 1. Reconstruir atractor ----- [OK]
- 2. Un mapeo de Poincaré ------ [OK]
- 3. Unstable Periodic Orbit(UPO)[OK]
- 4. Efecto paramétrico -----[OK] Supresión de Caos-- [----]

D. -Identificar un mapa 'local' + 'lineal' alrededor de X*

-Aproximar el mapeo como:

$$X(n+1)=A X(n) + b U(n)$$

Usamos mínimos cuadrados alrededor X*

EI UPO
$$\begin{pmatrix} 5.1580 \\ 2.4489 \end{pmatrix}$$

$$A = \begin{pmatrix} 5.3746 & -0.7094 \\ 5.1703 & -0.6816 \end{pmatrix} \text{ y } b = \begin{pmatrix} 1.5 \times 10^{-14} \\ 1.0 \times 10^{-13} \end{pmatrix}$$

-Como podemos hacerlo:

- 1. Reconstruir atractor ----- [OK]
- 2. Un mapeo de Poincaré ----- [OK]
- 3. Unstable Periodic Orbit(UPO)[OK]
- 4. Efecto paramétrico -----[OK] Supresión de Caos-- [----]

-Este mapa es inestable:

$$X(n+1)=A\ X(n)+b\ U(n)$$

*Diseña el cambio paramétrico \delta U(n) tal que se vuelva estable...

D. -Identificar un mapa 'local' + 'lineal' alrededor de X*

-Como podemos hacerlo:

- 1. Reconstruir atractor ----- [OK]
- 2. Un mapeo de Poincaré ----- [OK]
- 3. Unstable Periodic Orbit(UPO)[OK]
- 4. Efecto paramétrico -----[OK] Supresión de Caos-- [----]

-Este mapa es inestable:

$$X(n+1)=A X(n) + b U(n)$$

*Diseña el cambio paramétrico \delta U(n) tal que se vuelva estable...

E. -Acción de control X*

Diagrama a bloques de la implementación del control OGY, a partir de un mapeo de Poincaré obtenido del espacio reconstruido.

-Como podemos hacerlo:

- 1. Reconstruir atractor ----- [OK]
- 2. Un mapeo de Poincaré ----- [OK]
- 3. Unstable Periodic Orbit(UPO)[OK]
- 4. Efecto paramétrico -----[OK]
 Supresión de Caos--[OK]

V. Comentarios finales

A partir una serie de tiempo podemos:

- 1. Reconstruir atractor (T,d)
- 2. Con esta reconstrucción
 - * Mapeo de Poincaré
 - * Aproximación del Mapeo
- 3. Supresión de Caos (Estabilizando un punto fijo-orbita periódica)

Muchas Gracias Por Su Atención

¿Preguntas?

Gonzalo Barajas

Email: jgbarajas@ipicyt.edu.mx

Teléfono: (444) 834 20 00x 7222