COM-440, Introduction to Quantum Cryptography, Fall 2025

Exercise Solution # 2

1. Composing quantum maps

Suppose that we perform the following sequence of operations, starting with n qubits in state ρ : (a) add n_1 qubits in state $|0\rangle$; apply U_1 on $n+n_1$ qubits; trace out k_1 qubits, and (b) add n_2 qubits in state $|0\rangle$; apply U_2 on $n+n_1+n_2-k_1$ qubits; trace out k_2 qubits. Then we make the following observations. Firstly, the n_2 qubits at step (b) could have been added at the start of step (a); as long as they are not used until step (b) this does not make a difference. Secondly, the k_1 qubits can be traced out at the end of step (b); as long as they are not touched throughout step (b) then it does not make a difference when we trace them out. As a result, the combination of (a) and (b) can be described as (c) add $n_1 + n_2$ qubits in state $|0\rangle$; apply U_1 on the first $n + n_1$ qubits, and U_2 on all qubits except the k_1 that will be traced out; trace out $k_1 + k_2$ qubits. Since the middle part of (c) can be described as the application of a single, bigger unitary U (that is the composition of U_1 and U_2), we have obtained the required description.

2. A cloning map

(a) Since each of the four matrices is expressed as a linear combination, with positive coefficients, of rank-1 projections, it is positive. It only remains to check that each of them has trace 1. For example, for ρ_+ the trace is

$$\operatorname{Tr}(\rho_{+}) = \frac{1}{12} (\|2 |00\rangle + \sqrt{2} |\psi_{11}\rangle \|^{2} + \|2 |11\rangle + \sqrt{2} |\psi_{11}\rangle \|^{2})$$
$$= \frac{1}{12} (6+6) = 1.$$

Here for the second line we used that $|00\rangle$ and $|\psi_{11}\rangle$, and $|11\rangle$ and $|\psi_{11}\rangle$, are pairs of orthonormal vectors.

- (b) Using that $\langle 00|\psi_{11}\rangle = \langle 11|\psi_{11}\rangle = 0$ we verify that $\langle v_0|v_1\rangle = 0$, and moreover $||v_0\rangle|| = ||v_1\rangle|| = 1$.
- (c) Let's do the verification for the case $|\psi\rangle = |+\rangle$. Then,

$$T(|+\rangle\langle+|_{A}) = \operatorname{Tr}_{C}\left(V\left(|+\rangle\langle+|_{A}\otimes|00\rangle\langle00|_{BC}\right)V^{\dagger}\right)$$

$$= \operatorname{Tr}_{C}\left(\frac{1}{2}\left(|v_{0}\rangle+|v_{1}\rangle\right)\left(\langle v_{0}|+\langle v_{1}|\right)\right)$$

$$= \frac{1}{2}\left(\left(\frac{2}{\sqrt{6}}|00\rangle+\frac{1}{\sqrt{3}}|\psi_{11}\rangle\right)\left(\frac{2}{\sqrt{6}}\langle00|+\frac{1}{\sqrt{3}}\langle\psi_{11}|\right)$$

$$+\left(\frac{1}{\sqrt{3}}|\psi_{11}\rangle+\frac{2}{\sqrt{6}}|11\rangle\right)\left(\frac{1}{\sqrt{3}}\langle\psi_{11}|+\frac{2}{\sqrt{6}}\langle11|\right)\right).$$

Here, for the third line we expanded using the definition of $|v_0\rangle$ and $|v_1\rangle$, and used that $\mathrm{Tr}_C(|0\rangle\langle 1|_C)=\mathrm{Tr}_C(|1\rangle\langle 0|_C)=0$ to eliminate the cross terms. By re-arranging the constant coefficients you can verify that this equals ρ_+ .