Database Normalization & Functional Dependencies — Detailed Solutions

Problem 1

Relation: R1(A, B, C, D, E, F)

Functional Dependencies: $A \rightarrow BC$, $D \rightarrow E$, $BC \rightarrow D$, $A \rightarrow D$

Goal: Find candidate key(s), prime & non-prime attributes, and highest normal form. Show step-by-step closures used to find keys.

Step-by-step closures

1) A+ = {A}. From A \rightarrow BC add B, C \rightarrow A+ = {A,B,C}. From A \rightarrow D add D \rightarrow A+ = {A,B,C,D}. From D \rightarrow E add E \rightarrow A+ = {A,B,C,D,E}. (F missing) => A is not a key.

2) AF+: start with {A,F}. Using A \rightarrow BC gives {A,B,C,F}. A \rightarrow D adds D => {A,B,C,D,F}. D \rightarrow E adds E => {A,B,C,D,E,F}. All attributes obtained \rightarrow **AF is a candidate key**.

3) BC+ = {B,C}. BC \rightarrow D adds D => {B,C,D}. D \rightarrow E adds E => {B,C,D,E}. No A or F \rightarrow not a key.

Result:

Candidate Key(s): {AF} Prime attributes: {A, F}

Non-prime attributes: {B, C, D, E}

Normal form check:

- 1NF: Yes (atomic values).
- 2NF: Candidate key AF is composite. Check partial dependencies: $A \to BC$ is a dependency where A (a part of key AF) determines non-prime attributes B and C \to this is a partial dependency, so 2NF violated.
- \rightarrow Highest normal form = 1NF.

Problem 2 — Multiple relations

For each subproblem we list FDs, compute closures to find candidate keys and list prime/non-prime attributes.

Q1. Relation R(ABCD) with FDs: $AB \rightarrow C$, $C \rightarrow D$, $D \rightarrow A$

Closures

- AB+ = {A,B}. From AB \rightarrow C add C => {A,B,C}. From C \rightarrow D add D => {A,B,C,D} \rightarrow all attributes. So **AB** is a candidate key.
- Check smaller sets: $A+=\{A\}$ (no C/D without others), $B+=\{B\}$, $C+=\{C,D,A\}$ (missing B) \rightarrow not keys.

Result: Candidate key = $\{AB\}$. Prime attrs = $\{A,B\}$. Non-prime = $\{C,D\}$.

Q2. Relation R(ABCDE) with FDs: $A \rightarrow D$, $B \rightarrow A$, $BC \rightarrow D$, $AC \rightarrow BE$

Closures to find keys:

- AC+ = {A,C}. From AC \rightarrow BE add B and E => {A,B,C,E}. From B \rightarrow A already included. From A \rightarrow D add D => {A,B,C,D,E} \rightarrow all attributes. So **AC** is a candidate key.
- BC+ = {B,C}. From B \rightarrow A add A => {A,B,C}. From AC \rightarrow BE (A and C present) add B and E => E included => {A,B,C,E}. From A \rightarrow D add D => {A,B,C,D,E} \rightarrow all attributes. So **BC** is also a candidate key.

Check minimality: neither A nor C alone give all attributes, nor B alone. So keys are minimal.

Result: Candidate keys = {AC, BC}. Prime attributes = {A,B,C}. Non-prime = {D,E}.

Q3. Relation R(ABCDE) with FDs: $B \rightarrow A$, $A \rightarrow C$, $BC \rightarrow D$, $AC \rightarrow BE$

Closures:

- BC+ start: {B,C}. From B \rightarrow A add A => {A,B,C}. From A \rightarrow C nothing new. From AC \rightarrow BE (A and C present) add B (already) and E => {A,B,C,E}. From BC \rightarrow D add D => {A,B,C,D,E} \rightarrow all attributes. So **BC** is a candidate key.
- AC+ = {A,C}. From AC \rightarrow BE add B and E => {A,B,C,E}. From BC \rightarrow D (B and C present) add D => all attributes. So **AC** is also a candidate key.

Result: Candidate keys = {BC, AC}. Prime attributes = {A,B,C}. Non-prime = {D,E}.

Q4. Relation R(ABCDEF) with FDs: $A \rightarrow BCD$, $BC \rightarrow DE$, $B \rightarrow D$, $D \rightarrow A$

We compute closures to find keys (note attribute F must be present in any key because no FD produces F):

- A+ = {A}. From A \rightarrow BCD add B,C,D => {A,B,C,D}. From BC \rightarrow DE (B and C present) add E => {A,B,C,D,E}. Missing F \rightarrow A not key.

Test combinations with F:

- AF+ starts $\{A,F\} \rightarrow A \rightarrow B,C,D \rightarrow \{A,B,C,D,F\}$. BC \rightarrow DE adds E -> all attributes \rightarrow **AF** is a key.
- BF+ start {B,F}. From B \rightarrow D add D => {B,D,F}. From D \rightarrow A add A => {A,B,D,F}. From A \rightarrow BCD add C => {A,B,C,D,F}. From BC \rightarrow DE (B and C present) add E => all attributes \rightarrow **BF** is a key.
- DF+ start {D,F}. From D \rightarrow A add A => {A,D,F}. From A \rightarrow BCD add B,C => {A,B,C,D,F}. From BC \rightarrow DE add E => all attributes \rightarrow **DF** is a key.

No key can omit F because F is not on RHS of any FD. So any key must include F; minimal left parts that work are A, B, or D with F.

Result: Candidate keys = $\{AF, BF, DF\}$. Prime attributes = $\{A,B,D,F\}$. Non-prime = $\{C,E\}$.

Problem 3 (Student database FD redundancy)

Given FDs: $X \to Y$, $WZ \to X$, $WZ \to Y$, $Y \to W$, $Y \to X$, $Y \to Z$

Goal: Remove redundant FDs and compute a minimal cover.

Step 1: Break RHS to single attributes (already mostly single). List:

- 1) $X \rightarrow Y$
- 2) $WZ \rightarrow X$
- 3) WZ \rightarrow Y
- 4) $Y \rightarrow W$
- 5) $Y \rightarrow X$
- 6) $Y \rightarrow Z$

Step 2: Remove extraneous attributes from LHS (none here: WZ are both needed when considered alone).

Step 3: Remove redundant dependencies by checking if each FD is implied by others.

- Is WZ \rightarrow X redundant? Compute (WZ)+ using the set without WZ \rightarrow X: Using WZ \rightarrow Y (FD 3) we get Y. From Y \rightarrow X (FD 5) we get X. So WZ \rightarrow X is implied by WZ \rightarrow Y and Y \rightarrow X \rightarrow **redundant**.
- Is WZ \rightarrow Y redundant? Compute (WZ)+ without WZ \rightarrow Y but with WZ \rightarrow X and others: with WZ \rightarrow X we get X. From X \rightarrow Y (FD 1) we get Y. So WZ \rightarrow Y is implied by WZ \rightarrow X and X \rightarrow Y \rightarrow redundant.
- Is $X \to Y$ redundant? Using $Y \to X$ (FD 5) we can see $X \to Y$ is not implied by others unless $Y \leftrightarrow X$ present. But since $Y \to X$ exists, $X \to Y$ is implied only if $Y \to X$ and other allow X to derive Y; check X+ without $X \to Y$: X alone gives nothing else. However if $Y \to X$ exists, that does not give $X \to Y$. So $X \to Y$ is **not** implied by others; keep it.
- Note: There is mutual information: $X \to Y$ and $Y \to X$ together make X and Y equivalent. But one cannot be derived from the other without extra FDs.

However, because both $X \to Y$ and $Y \to X$ are present, and $Y \to W$ and $Y \to Z$ exist, we can simplify by keeping Y as the single determinant: from Y we get X, W, Z (and thus WZ and X). So WZ $\to X$ and WZ $\to Y$ are certainly redundant.

Minimal cover (concise):

One compact minimal cover is: { $Y \rightarrow X$, $Y \rightarrow W$, $Y \rightarrow Z$ }

This implies $X \to Y$ is redundant if you take $Y \to X$ and $X \to Y$ both? If you want to keep symmetry you could also keep $X \to Y$, but the minimal cover above uses Y as the single determinant and drops the WZ FDs.

Final answer: Minimal set of FDs = { $Y \rightarrow X, Y \rightarrow W, Y \rightarrow Z$ } (or combined: $Y \rightarrow XWZ$).