Question Number	Answer		Mark
20 (a)	A massive nucleus splits into two (or more) smaller nuclei/fragments (of roughly equal mass and some neutrons)	(1)	1
20(b)(i)	Top line correct	(1)	
	Bottom line correct	(1)	2
	$^{137}_{55}\text{Cs} \rightarrow ^{137}_{56}\text{Ba} + ^{0}_{-1}\beta^{-} + ^{0}_{0}\overline{\nu}$		
20(b)(ii)	Momentum is conserved (so the Ba nucleus recoils)	(1)	
	Energy released is shared (randomly) between the β^- and $\bar{\nu}$ Or the energy is shared between the 3 particles in the decay	(1)	2

20(c)(i)	Use of $N = \frac{\text{mass of caesium}}{\text{mass of caesium atom}}$	(1)	
	Use of 1 u = 1.66×10^{-27} kg	(1)	
	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	Use of $A = \lambda N$	(1)	
	$A = 7.7 \times 10^{16} \text{ Bq}$	(1)	
	Valid conclusion based on calculated value of activity		
		(1)	6
	Example of calculation $N = \frac{24 \text{ kg}}{(136.9 \times 1.66 \times 10^{-27}) \text{ kg}} = 1.06 \times 10^{26}$		
	$\lambda = \frac{\ln 2}{(30.2 \times 3.15 \times 10^7)\text{s}} = 7.29 \times 10^{-10} \text{ s}^{-1}$		
	$A = -7.29 \times 10^{-10} \text{ s}^{-1} \times 1.06 \times 10^{26} = -7.73 \times 10^{16} \text{ Bq}$		
	7.7×10^{16} Bq is not equal to 7.3×10^{16} Bq (so statement is incorrect) Or 7.7×10^{16} Bq is approximately equal to 7.3×10^{16} Bq (so statement is correct)		
20(c)(ii)	Use of 500 Bq per 100 g to calculate initial count rate	(1)	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	$t = 5.37 \times 10^9 \text{ s } [171 \text{ year}]$ [ecf from (i)]	(1)	3
	Example of calculation		
	$A_0 = \frac{1}{4} \times 500 \text{ Bq} = 125 \text{ Bq}$		
	$A = \frac{150}{60 \text{ s}} = 2.5 \text{ Bq}$		
	2.5 Bq = 125 Bq $e^{-7.28 \times 10^{-10} \text{ s}^{-1} \times t}$ $\therefore \ln \frac{2.5 Bq}{125 Bq} = -7.28 \times 10^{-10} \text{ s}^{-1} \times t$		
	$\therefore t = \frac{-3.91}{-7.28 \times 10^{-10} \text{ s}^{-1}} = 5.37 \times 10^9 \text{ s}$		
	Total for question 20		14