Тема: Ознаки подібності трикутників. Розв'язування задач. Самостійна робота

Мета:

- Навчальна: поглибити знання учнів про ознаки подібності трикутників;
- *Розвиваюча:* розвивати здатність логічно обгрунтовувати та доводити математичні твердження, застосовувати математичні методи у процесі розв'язування навчальних і практичних задач;
- *Виховна:* виховувати наполегливість, вміння охайно оформлювати розв'язок задачі у конспекті;

І. Актуалізація опорних знань

- Сформулюйте першу ознаку подібності трикутників
- Сформулюйте другу ознаку подібності трикутників
- Сформулюйте третю ознаку подібності трикутників

II. Розв'язування типових вправ

<mark>Задача 1</mark>

Продовження бічних сторін *AB і CD* трапеції *ABCD* перетинаються в точці *O*. **Доведіть, що** $\Delta AOD \sim \Delta BOC$

Дано:

ABCD – трапеція

AB, *CD* – бічні сторони

 $AB \cap CD = 0$

Довести:

 $\Delta AOD \sim \Delta BOC$

Доведення:

Розглянемо $\triangle ADO$ і $\triangle BCO$:

$$\angle O$$
 — спільний $\angle ADO = \angle BCO$ (як відповідні, $BC \parallel AD$, OC — січна) $\Rightarrow \Delta ADO \sim \Delta BCO$ (за двома кутами)

Задача 2

Два рівнобедрені трикутники мають рівні кути при основах. Основа одного трикутника дорівнює 8 см, а бічна сторона 6 см. Знайдіть периметр другого трикутника, якщо його основа дорівнює 4 см.

Дано:

 $\Delta MAT\ i\ \Delta M_1A_1T_1$ – рівнобедрені MT, M_1T_1 — основи *MA* – бічна сторона

MA = 6 cm

MT = 8 cm

 $M_1 T_1 = 4 \text{ cm}$

 $\angle M = \angle T = \angle M_1 = \angle T_1$

Знайти:

 $P_{\Delta M_1 A_1 T_1} - ?$

Розв'язок:

$$\Delta MAT \sim \Delta M_1 A_1 T_1$$
 (за двома кутами) $\Rightarrow \begin{vmatrix} \frac{MT}{M_1 T_1} = k \\ k = \frac{MT}{M_1 T_1} = \frac{8}{4} = 2 \end{vmatrix}$

$$P_{\Delta MAT} = 20 \text{ cM}$$
 $\frac{P_{\Delta MAT}}{P_{\Delta M_1 A_1 T_1}} = k$
 $\Rightarrow P_{\Delta M_1 A_1 T_1} = \frac{P_{\Delta MAT}}{k} = \frac{20}{2} = 10 \text{ (cm)}$

Відповідь: 10 см

Задача 3

У трикутник ABC вписано ромб AKLM. Знайдіть периметр ромба, якщо BK = 4cm, MC = 9 cm

Дано:

 ΔABC

АКLM – ромб

BK = 4 cm

MC = 9 cm

Знайти:

C $P_{KLMC}-?$

Розв'язок:

Розглянемо ΔBLK *i* ΔLCM :

$$AKLM$$
 — ромб $\angle MLC = \angle ABC$ (як відповідні, $ML \parallel AB, BC$ — січна) $\angle BAC = \angle LMC$ (як відповідні, $ML \parallel AB, AC$ — січна) $\angle BKL = \angle BAC$ (як відповідні, $KL \parallel AC, BA$ — січна)

Так як $\Delta BLK \sim \Delta LCM$:

$$\frac{KB}{ML} = \frac{KL}{MC}$$

$$AK = KL = ML = AM \; (AKLM - pom6)$$

$$\Rightarrow \frac{KB}{KL} = \frac{KL}{MC}$$

Тоді:

$$KL^2 = KB \cdot MC = 4 \cdot 9 = 36$$

 $KL = 6 \text{ cm}$
 $P_{AKLM} = 4KL = 4 \cdot 6 = 24 \text{ cm}$

Відповідь: $P_{AKLM} = 24$

Домашне завдання:

Повторити §13-15.

Виконати завдання самостійної роботи.

Самостійна робота

- 1. $\triangle ABC$ ∞ $\triangle A_1B_1C_1$, AC=8 см, $A_1B_1=12$ см, $B_1C_1=14$ см, $A_1C_1=16$ см. Знайдіть сторони AB і BC.
 - а) 24 см, 28 см;
- б) 6 см, 7 см; в) 14 см, 16 см.
- 2. $\triangle ABC \otimes \triangle A_1B_1C_1$, AB = 7 см, BC = 6 см, AC = 5 см. Знайдіть периметр трикутника $A_1B_1C_1$, якщо $B_1C_1=2$ см.
 - а) 6 см; б) 24 см; в) 36 см.
- 3. У трикутнику АВС пряма МК, паралельна стороні ВС, перетинає сторону АВ в точці М, а сторону АС в точці К. Знайти МК, якщо АК=12см, КС=4 см, $BC=24c_{M}$.
- 4. Продовження бічних сторін AB і CD трапеції ABCD перетинаються в точці M, DC: CM = 3:5, EC — менша основа трапеції. Знайдіть основи трапеції, якщо їх сума дорівнює 26 см.

Відправити на Human або електронну пошту smartolenka@gmail.com