REs, FSMs, Forth, and CFGs

Part 2 of 3

Three things today

The foundations of regular expressions

(Don't need to remember details)

Introduction to grammars

(Important to get concepts)

Intro to FORTH

(You'll need this for the lab)

Regular expressions have a nice property...

If you give me a regex and a string, I can check if that string matches the regex in **linear time**

Can I cook up a regular expression that will classify any string?

(No...)

If I could, it would imply I could solve any problem in linear time!

So what's an example of a regular expression I couldn't write?

"The set of strings P such that P...?"

So what's an example of a regular expression I couldn't write?

"The set of strings P such that P...?"

(Answer: is a program that halts)

Regular expressions can be implemented using finite state machines

We won't talk too much about FSMs in this class

All regexes can "compile" (turn to, in systematic way) FSM

Transition on input

S2

<u>011</u> S2

(01*01*)*

"Any number of 1s, followed by an even number of 0s, followed by a single 1"

Idea: FSMs remember only "one state" of memory

It's kind of like programming with only one register (of unbounded width)

Theorem: for every regex, a corresponding FSM exists, and vice versa

Q: Why is this useful?

Theoretical A: Bedrock automata theory, useful in proving computational bounds

Practical A: Efficient regex implementation

Motivating CFGs

Parenthesis are **balanced** when each left matches a right

{}

{{}}

{{{}}}

{{{{}}}}}

Balancing parentheses necessary to check program syntax (e.g., for C++)

{*}* doesn't work

Here's a grammar that matches balanced parentheses

We'll talk more about grammars later today and on Friday

CFG's are more expressive than regular expressions, and commensurately more complex to check

But what programming languages can we implement **right now**

(Without needing to implement CFGs)

An introduction to modern Forth systems

OPENLIBRA

Stephen Pelc

Forth is a stack-based language

A beginner's guide to FORTH

http://galileo.phys.virginia.edu/classes/551.jvn.fall01/primer.htm

Assembly uses registers and memory, but FORTH uses a stack as its main abstraction

Words manipulate the stack

 $(x_1 --)$

drop

Drops the most recent thing on the stack

SWap

$$(X_1 X_2 -- X_2 X_1)$$
 \uparrow
Top!

nip

```
(x_1 x_2 -- x_2)
```

dup

```
(x_1 -- x_1 x_1)
```

over

```
(x_1 x_2 -- x_1 x_2 x_1)
```

tuck

```
(x_1 x_2 -- x_2 x_1 x_2)
```


: add1 1 + ;

Adding two Euclidian points

$$x1 y1 x2 y2 \rightarrow (x1 + x2) (y1 + y2)$$

Want to define addcartesian word, which does this:

1 2 3 4 ok addcartesian ok .s <2> 4 6 ok

Adding two Euclidian points

What do I do from here?

Adding two Euclidian points

So that's forth, we'll touch a bit more of it Friday

And you'll be implementing part of it in Lab 4

Back to CFGs!

Why? Because most languages use infix operators

Here's a context free grammar

```
Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr
```

Formally, a grammar is...

- A set of terminals
 - These are the things you can't rewrite any further
- A set of nonterminals
 - These are the things you can rewrite further
- A set of production rules
 - These are a bunch of rewrite rules
- A start symbol

Terminals = {number, +, *}

Nonterminals = {Expr}

Productions =

Expr -> number

Expr -> Expr + Expr

Expr -> Expr * Expr

Start symbol = Expr

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

First, start with a nonterminal and write that on the page

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

First, start with a nonterminal and write that on the page

Expr

Expr -> number

Expr -> Expr + Expr

Expr -> Expr * Expr

First, start with a nonterminal and write that on the page

Expr

To play the game: attempt to apply each production so that you arrive at your full expression

$$1 + 2$$

First, start with a nonterminal and write that on the page

First, start with a nonterminal and write that on the page

```
Expr
-> Expr + Expr
-> number + Expr
-> number + number
-> 1 + number
-> 1 + 2
```

Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr

First, start with a nonterminal and write that on the page

Some moves don't lead you to winning the game.

First, start with a nonterminal and write that on the page

Some moves don't lead you to winning the game.

This grammar is ambiguous

$$1 + 2 * 3$$

Expr -> Expr + Expr -> Expr * Expr

Exercise: complete the derivations from here

We'll define this more rigorously on Friday

```
Expr -> number
Expr -> Expr + Expr
Expr -> Expr * Expr
```

1 + 2 * 3

```
Expr
-> Expr + Expr
-> Expr + Expr * Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * Expr
-> number + number * number
-> number + number * number
```

Famous example from C, the "dangling else"

Does the else belong to the first if? Or the second? (Ans: in C, the second)

Most real languages handle these in hacky one-off ways

This parse tree is a **hierarchical representation** of the data

A parser is a program that automatically generates a parse tree

A parser will generate an abstract syntax tree for the language

Parsing is hard

And also boring

But an important problem

And there are a **ton** of different parsing algorithms We will learn one fairly useful and easy-to-code one (Recursive descent parsing, or LL(1) parsing)

Next week, we'll see how to **write** these parsers

Exercise: draw the parse trees for the following derivations

```
Expr
-> Expr + Expr
-> Expr + Expr * Expr
-> number + Expr * Expr
-> number + number * Expr
-> number + number * number
```

Here's an example of a grammar that is **not** ambiguous

```
Expr -> MExpr
Expr -> MExpr + MExpr
MExpr -> MExpr * MExpr
MExpr -> number
```

Generally, we're going to want our grammar to be **unambiguous**

Question: Why are parse trees useful?

Answer: We can use them to define the meaning of programs

First, can represent parse trees in our PL:

This allows us to write interpreters

```
(define my-tree
  '(+ 1 (* 2 3)))

(define (evaluate-expr e)
  (match e
     [`(+ ,e1 ,e2) (+ (evaluate-expr e1) (evaluate-expr e2))]
     [`(* ,e1 ,e2) (* (evaluate-expr e2) (evaluate-expr e2))]
     [else e]))
```

Next lecture, we'll dig into grammars even more

Our goal is to write parsers, but to do so, we need more intuition about grammars