ETR0319 009

0.8 μ A Low Power Consumption Voltage Regulator with ON/OFF Switch

■GENERAL DESCRIPTION

The XC6215 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves very low supply current, 0.8μ A (TYP.) and consists of a reference voltage source, an error amplifier, a current foldback circuit, and a phase compensation circuit plus a driver transistor.

Ultra small packages USP-3, USP-4, USPN-4 and SSOT-24, and small package SOT-25 packages make high density mounting possible. Therefore, the series is ideal for applications where high density mounting is required such as in mobile phones.

Output voltage is selectable in 0.1V increments within a range of 0.9V ~ 5.0V by laser trimming

The series is also compatible with low ESR ceramic capacitors, which give added output stability.

The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

Furthermore, the CE function allows the output of the regulator to be turned off, resulting in greatly reduced power consumption.

APPLICATIONS

- Mobile phones
- Cordless phones, wireless communication equipment
- Portable games
- Cameras, Video recorders
- Portable AV equipment
- ●PDAs

■FEATURES

Maximum Output Current : 200mA (300mA Limit, TYP.)

@ Vout=3.0V, VIN=4.0V

Dropout Voltage : 320mV @ IOUT = 100mA

@ Vout = 3.0V

Operating Input Voltage : $1.5V \sim 6.0V$

Output Voltage Range : $0.9V \sim 5.0V$ (0.1V Increments) Highly Accurate : Set voltage accuracy $\pm 2\%$

 $(1.5V < VOUT(T) \leq 5.0V)$

Set voltage accuracy ±30mV

 $(0.9V \leq VOUT(T) \leq 1.5V)$

Low Power Consumption: $0.8 \,\mu$ A (TYP.)Stand-by Current: Less than $0.1 \,\mu$ AOperating Temperature Range: -40° C~ 85° CLow ESR Capacitor Compatible: Ceramic capacitor

Current Limiter Circuit Built-In
Packages : USP-4

SSOT-24

USP-3 (For the XC6215P series only)

SOT-25

USPN-4

Environmentally Friendly : EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT

●USP-4, SSOT-24, SOT-25,USPN-4 packages (For the USP-3 package, with no CE pin)

■TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs. Input Voltage XC6215x302

■PIN CONFIGURATION

^{*} For mounting intensity and heat dissipation, please refer to recommended mounting pattern and recommended metal mask when soldering the pad of USP-4. Mounting should be electrically isolated or connected to the VSS (No.2) pin.

■ PIN ASSIGNMENT

	F	IN NUMBE	N NUMBER PIN NAME FUNCTION				
USPN-4	USP-3	USP-4	SSOT-24	SOT-25	FIN NAIVIE	FUNCTION	
4	1	4	4	1	VIN	Power Supply	
2	3	2	2	2	Vss	Ground	
3	1	3	1	3	CE	ON / Off Switch	
1	2	1	3	5	Vout	Output	
-	-	-	-	4	NC	No Connection	

■PRODUCT CLASSIFICATION

Ordering Information

XC6215(1)(2)(3)(4)(5)(6)(*1)

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
1)	Turner of Dominators		CE logic = High active with no pull-down resistor
U	Type of Regulator	Р	3 pin regulator with no CE pin (USP-3 only)
23	Output Voltage	09 ~ 50	0.9 V ~ 5.0V, 0.1V step
23	Output Voltage	09 ~ 50	e.g. Vouт=3.0V⇔②=3, ③=0
4	Output Voltage Accuracy	2	± 2 % accuracy
4)	Output Voltage Accuracy	2	e.g. Vo∪τ=3.0V⇔②=3, ③=0, ④=2
		GR-G	USP-4
		NR	SSOT-24
		NR-G	SSOT-24
	Packages	MR	SOT-25
56-7	Taping Type (*2)	MR-G	SOT-25
			USP-3 (for the XC6215P series only)
		HR-G	USP-3 (for the XC6215P series only)
		7R-G	USPN-4

The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

^(*2) The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦)

■BLOCK DIAGRAMS

●XC6215B Series

●XC6215P Series

^{*} Diodes shown in the above circuit are ESD protection diodes and parasitic diodes

■ ABSOLUTE MAXIMUM RATINGS

PARAMETE	PARAMETER		RATINGS	UNITS	
Input Voltag	је	VIN	- 0.3 ~ + 7.0	V	
Output Curre	ent	Іоит	500 (*1)	mA	
Output Volta	ge	Vout	Vss - 0.3 ~ Vin + 0.3	V	
CE Input Voltag	je (*2)	VCE	VSS - 0.3 ~ + 7.0	V	
	SOT-25		250		
	301-25		600(PCB mounted)(*3)		
	SSOT-24		150	,	
	3301-24		500(PCB mounted)(*3)		
Power Dissipation	USP-4	Pd	120	mW	
	037-4		1000(PCB mounted)(*3)		
	USP-3		120		
	USPN-4		100		
	USPN-4		600(PCB mounted)(*3)	1	
Operating Temperat	ure Range	Topr	- 40 ~ + 85	°C	
Storage Temperatu	re Range	Tstg	- 55 ~ +125	°C	

Note:

- *1: IOUT = Pd/ (VIN-VOUT)
- *2: Except for the XC6215P series
- *3: The power dissipation figure shown is PCB mounted. Please refer to pages 33 to 35 for details.

■ELECTRICAL CHARACTERISTICS

●XC6215B Series Ta = 25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT.	CIRCUIT
Output Voltage (*2)	Vout(e)	VIN=VCE=VOUT(T) (*1) + 1.0V, IOUT=1mA		E-0(*6)		V	1
		VIN=VCE=VOUT(T) + 1.0V VOUT(T)=0.9V	50	70	-		
		VIN=VCE=VOUT(T) + 1.0V VOUT(T)=1.0V ~ 1.1V	60	80	-		
		VIN=VCE=VOUT(T) + 1.0V V VOUT(T)=1.2V ~ 1.3V	80	110	-		
Maximum Output Current	IOUTMAX	VIN=VCE=VOUT(T) + 1.0V VOUT(T)=1.4V ~ 1.6V	100	140	-	mA	1
		VIN=VCE=VOUT(T) + 1.0V VOUT(T)=1.7V \sim 2.2V	120	150	-		
		VIN=VCE=VOUT(T) + 1.0V VOUT(T)= $2.3V \sim 2.9V$	150	195	-		
		VIN=VCE=VOUT(T) + 1.0V VOUT(T)≧3.0V	200	300	-		
Load Regulation	$\Delta Vout$	$VIN=VCE=VOUT(T)+1.0V$ $VOUT(T)=0.9V$ $1mA \leq IOUT \leq 50mA$ $VIN=VCE=VOUT(T)+1.0V$ $VOUT(T)=1.0V \sim 1.1V$ $1mA \leq IOUT \leq 60mA$ $VIN=VCE=VOUT(T)+1.0V$ $VOUT(T)=1.2V\sim1.3V$ $1mA \leq IOUT \leq 80mA$ $VIN=VCE=VOUT(T)+1.0V$ $VOUT(T) \geq 1.4V$ $1mA \leq IOUT \leq 100mA$	-	15	70	mV	0
Dropout Voltage (*3)	Vdif	VCE=VIN, VOUT(T)=0.9V IOUT=50mA VCE=VIN, VOUT(T)=1.0V ~ 1.1V IOUT=60mA VCE=VIN, VOUT(T)=1.2V ~ 1.3V IOUT=80mA VCE=VIN, VOUT(T)≧1.4V IOUT=100mA	E-1(*6)		mV	0	
Supply Current	ldd	VIN=VCE=VOUT(T) + 1.0V VOUT(T)≦3.9V	-	0.8	1.5	μΑ	2
Cuppi, Culture	טטו	VIN=VCE=VOUT(T) + 1.0V VOUT(T)≧4.0V	-	1.0	1.8	, , , , , , , , , , , , , , , , , , ,	
Stand-by Current	Istby	VIN=VOUT(T) + 1.0V, VCE=VSS	-	0.01	0.10	μΑ	2

■ ELECTRICAL CHARACTERISTICS (Continued)

●XC6215B Series (Continued)

Ta = 25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT.	CIRCUIT
Line Regulation	△Vout △Vin •Vout	$Vout(t)=0.9V, \ Vce=Vin$ $1.5V \leqq Vin \leqq 6.0V$ $Iout=1mA$ $Vout(t)=1.0V\sim1.2V, \ Vce=Vin$ $Vout(t)+0.5V \leqq Vin \leqq 6.0V$ $Iout=1mA$ $Vout(t) \trianglerighteq 1.3V, \ Vce=Vin$ $Vout(t)+0.5V \leqq Vin \leqq 6.0V$ $Iout=30mA$		0.15	%/V	•	
Input Voltage	VIN	-	1.5	-	6.0	V	-
Output Voltage Temperature Characteristics	_∆Vouт ∆Topr∙Vouт	VN=Vα=Vαυτ(τ)+1.0V, louτ=30mA - 40°C≤ Topr ≤ 85°C	-	±100	-	ppm /°C	1
		VOUT=VOUT(E) \times 0.95 VOUT(T)=0.9V VIN=VCE= VOUT(T)+2.0V	100	300	-		
	llim	VOUT=VOUT(E) \times 0.95 VOUT(T)=1.0V \sim 1.1V VIN=VCE= VOUT(T)+2.0V	120	300	-		
Current Limit		VOUT=VOUT(E) \times 0.95 VOUT(T)=1.2V \sim 1.3V VIN=VCE= VOUT(T)+2.0V	160	300	-	mA	1
		$VOUT=VOUT(E) \times 0.95$ $VOUT(T)=1.4V \sim 2.9V$ VIN=VCE=VOUT(T)+2.0V	200	300	-		
		VOUT=VOUT(E) × 0.95 VOUT(T) ≥ 3.0V VIN=VCE= VOUT(T)+1.0V	200	300 -	-		
Short Circuit Current	Ishort	VIN=VCE=VOUT(T)+1.0V, VOUT=0V	ı	50	-	mA	1
CE 'H' Level Voltage	VCEH	VIN=VOUT(T)+1.0V	1.0	-	6.0	V	1)
CE 'L' Level Voltage	VCEL	VIN=VOUT(T)+1.0V	-	-	0.3	v	U
CE 'H' Level Current	ICEH	VIN=VCE=VOUT(T)+1.0V	- 0.1	-	0.1	μΑ	2
CE 'L' Level Current	ICEL	VIN=VOUT(T)+1.0V, VCE=VSS	- 0.1	-	0.1	μΛ	

NOTE:

(i.e. the output voltage when "Vout(T) + 1.0V" is provided at the VIN pin while maintaining a certain lout value).

^{*1:} Vout(t): Fixed output voltage

^{*2:} Vout(E) = Effective output voltage

^{*3:} $Vdif = \{ VIN1^{(*4)-} VOUT1^{(*5)} \}$

^{*4:} VIN1 = The input voltage when Vout1 appears as input voltage is gradually decreased.

 $^{^{\}star}5$: Vout1 = A voltage equal to 98% of the output voltage whenever an amply stabilized lout { Vout(T) + 1.0V } is input.

^{*6:} Refer to "VOLTAGE CHART".

■ELECTRICAL CHARACTERISTICS (Continued)

●XC6215P Series Ta = 25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT.	CIRCUIT			
Output Voltage (*2)	Vout(E)	VIN=VOUT(T) (*1) + 1.0V, IOUT=1mA		E-0 (*6)		٧	1			
		VIN=VOUT(T) + 1.0V	50	70	_					
		Vout(t)=0.9V	"							
		VIN=VOUT(T) + 1.0V	60	80	_					
		Vout(t)=1.0V ~ 1.1V								
		VIN=Vout(t) + 1.0V	80 110	80	110	_				
		Vout(t)=1.2V ~ 1.3V	- 00	110						
Maximum Output Current	IOUTMAX	VIN=VOUT(T) + 1.0V	100	140	_	mA	1			
Waximam Susper Surrent	1001111/00	Vout(t)=1.4V ~ 1.6V	100	140		,				
		VIN=VOUT(T) + 1.0V	120	150	_					
		Vout(t)=1.7V ~ 2.2V	120	100	_					
		VIN=VOUT(T) + 1.0V	150	195						
		Vout(t)=2.3V ~ 2.9V	130	190	_					
		VIN=VOUT(T) + 1.0V	200	200						
		Vout(t)≧3.0V	200 300		=					
		VIN=VOUT(T) + 1.0V								
	A.V.	Vout(t)=0.9V								
		1mA≦Io∪т≦50mA	-				0			
		VIN=VOUT(T) + 1.0V								
		VOUT(T)= 1.0V~1.1V		15						
Load Deculation		1mA≦louт≦60mA			70	mV				
Load Regulation	△Vout	VIN=VOUT(T) + 1.0V								
		Vout(t)=1.2V~1.3V								
		1mA≦louт≦80mA								
		VIN=VOUT(T) + 1.0V								
		Vout(t)≧1.4V								
		1mA≦Iou⊤≦100mA								
		Vout(t)=0.9V								
		IOUT=50mA								
		Vout(t)=1.0V ~ 1.1V								
D ()((10)	\	IOUT=60mA		E 4 (#0)		.,				
Dropout Voltage (*3)	Vdif	Vout(t)=1.2V ~ 1.3V	1	E-1 (*6)		mV	1			
		IOUT=80mA								
		Vout(t)≧1.4V	1							
		Iout=100mA								
		VIN=VOUT(T)=1.0V								
	IDD	Vout(t)≦3.9V	-	0.8	1.5					
Supply Current		VIN= VOUT(T)+1.0V			μΑ	2				
		Vout(t)≧4.0V	- 1.0 1.8	-	1.0	- 1.0 1.8	1.0	1.0 1.8		

■ ELECTRICAL CHARACTERISTICS (Continued)

●XC6215P Series (Continued)

Ta = 25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT.	CIRCUIT
Line Regulation	△Vout △Vin•Vout	VOUT(T)=0.9V 1.5V≦VIN≦6.0V IOUT=1mA VOUT(T)=1.0V~1.2V VOUT(T)+0.5V≦VIN≦6.0V IOUT=1mA VOUT(T)≧1.3V VOUT(T)+0.5V≦VIN≦6.0V IOUT=30mA	-	0.05	0.15	%/V	1
Input Voltage	VIN	-	1.5	-	6.0	V	-
Output Voltage Temperature Characteristics	△Vout △Topr•Vout	ViN=Vout(t)+1.0V, lout= 30mA - 40°C≤ Topr ≤ 85°C	-	±100	-	ppm /°C	1
		VOUT=VOUT(E) × 0.95 VOUT(T)=0.9V VIN= VOUT(T)+2.0V	100	300	-		
		VOUT=VOUT(E) × 0.95 VOUT(T)=1.0V ~ 1.1V VIN=VOUT(T)+2.0V	120	300	-		
Current Limit	llim	Vout=Vout(E) \times 0.95 Vout(T)=1.2V \sim 1.3V Vin=Vout(T)+2.0V	160	300	-	mA	1
		Vout=Vout(E) \times 0.95 Vout(T)=1.4V \sim 2.9V Vin=Vout(T)+2.0V	200	300	-		
		Vout=Vout(E) × 0.95 Vout(t) ≥ 3.0V Vin=Vout(t)+1.0V	200	300	-		
Short Circuit Current	Ishort	VIN=VOUT(T)+1.0V, VOUT=0V	-	50	-	mA	1

NOTE:

(i.e. the output voltage when "Vout(T) + 1.0V" is provided at the VIN pin while maintaining a certain IouT value).

^{*1:} Vout(t): Fixed output voltage

^{*2:} Vout(E) = Effective output voltage

^{*3:} Vdif = { VIN1 (*4) - VOUT1 (*5)}

^{*4:} VIN1 = The input voltage when Vout1 appears as input voltage is gradually decreased.

^{*5:} Vout1 = A voltage equal to 98% of the output voltage whenever an amply stabilized Iout { Vout(t) + 1.0V } is input.

^{*6:} Refer to "VOLTAGE CHART".

■VOLTAGE CHART

● Dropout Voltage Chart

Ta = 25°C

Dropout voltage (1a = 25 C	
SETTING OUTPUT		-0	E-		
VOLTAGE		VOLTAGE	DROPOUT VOLTAGE		
		V)	(m		
Vout(t)		DUT		dif	
()	MIN.	MAX.	TYP.	MAX.	
0.9	0.870	0.930	870	1000	
1.0	0.970	1.030	860	1000	
1.1	1.070	1.130	780	950	
1.2	1.170	1.230	800	1000	
1.3	1.270	1.330	720	900	
1.4	1.370	1.430	750	960	
1.5	1.470	1.530	700	890	
1.6	1.568	1.632	680	860	
1.7	1.666	1.734	650	830	
1.8	1.764	1.836	630	800	
1.9	1.862	1.938	610	780	
2.0	1.960	2.040	580	740	
2.1	2.058	2.142	580	740	
2.2	2.156	2.244	580	740	
2.3	2.254	2.346	510	650	
2.4	2.352	2.448	510	650	
2.5	2.450	2.550	450	580	
2.6	2.548	2.652	450	580	
2.7	2.646	2.754	450	580	
2.8	2.744	2.856	450	580	
2.9	2.842	2.958	450	580	
3.0	2.940	3.060	320	420	
3.1	3.038	3.162	320	420	
3.2	3.136	3.264	320	420	
3.3	3.234	3.366	320	420	
3.4 3.5	3.332	3.468	320 320	420 420	
3.6	3.430 3.528	3.570	320	420	
3.7	3.626	3.672 3.774	320	420	
3.8	3.724	3.876	320	420	
3.9	3.822	3.978	320	420	
4.0	3.920	4.080	290	380	
4.1	4.018	4.182	290	380	
4.2	4.116	4.284	290	380	
4.3	4.214	4.386	290	380	
4.4	4.312	4.488	290	380	
4.5	4.410	4.590	290	380	
4.6	4.508	4.692	290	380	
4.7	4.606	4.794	290	380	
4.8	4.704	4.896	290	380	
4.9	4.802	4.998	290	380	
5.0	4.900	5.100	230	310	
- · v		5.700	=30	- · •	

■TEST CIRCUITS

●Circuit ①

●Circuit ②

■OPERATIONAL EXPLANATION

●XC6215B Series (As for the XC6215P Series, with no CE pin)

<Output Voltage Control>

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET, which is connected to the Vout pin, is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be operated or shutdown via the CE pin's signal.

<Short Protection Circuit>

The XC6215 series' regulator offers circuit protection by means of a built-in foldback circuit. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, the output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

<CE Pin>

The IC's internal circuitry can be operated or shutdown via the signal from the CE pin with the XC6215B series. In shutdown mode, output at the VouT pin will be pulled down to the Vss level via R1 & R2. Note that the XC6215 series' regulator is "High Active/No Pull-Down", operations will become unstable with the CE pin open. We suggest that you use this IC with either a VIN voltage or a Vss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.

■NOTES ON USE

- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current.
- 3. As for the XC6215 series, internally achieved phase compensation makes a stable operation of the IC possible even when there is no output capacitor (CL). In order to stabilize the VIN's voltage level, we recommend that an input capacitor (CIN) of about 0.1 to $1.0 \,\mu$ F be connected between the VIN pin and the Vss pin. Moreover, during transient response, so as to prevent an undershoot or overshoot, we recommend that the output capacitor (CL) of about 0.1 to $1.0 \,\mu$ F be connected between the Vout pin and the Vss pin. However, please wire the input capacitor (CIN) and the output capacitor (CL) as close to the IC as possible.

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

0

0

10

20

Output Current IOUT (mA)

30

40

50

(3) Dropout Voltage vs. Output Current (Continued)

(4) Supply Current vs. Input Voltage

XC6215x302

XC6215x502

XC6215x152

VIN=VCE=2.5V

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(5) Output Voltage vs. Ambient Temperature

XC6215x092

XC6215x302

(6) Supply Current vs. Ambient Temperature XC6215x092

XC6215x152

XC6215x152

(6) Supply Current vs. Ambient Temperature (Continued)

(7) CE Threshold Voltage vs. Ambient Temperature

Ambient Temperature Ta (°C)

(8) Input Transient Response

Time (200µsec/div)

(8) Input Transient Response (Continued)

(8) Input Transient Response (Continued)

4.0

(8) Input Transient Response (Continued)

Time (400µsec/div)

1

(9) Load Transient Response

XC6215x152

XC6215x152

XC6215x092

XC6215x152

(9) Load Transient Response (Continued)

XC6215x302

XC6215x502

XC6215x302

XC6215x302

(9) Load Transient Response (Continued)

(10) Rising Response Time

(10) Rising Response Time (Continued)

(10) Rising Response Time (Continued)

(11) CE Rising Response Time (For XC6215B Type)

XC6215B092

XC6215B092

XC6215B152

(11) CE Rising Response Time (Continued)

XC6215B302

XC6215B302

XC6215B152

XC6215B302

XC6215B502

(11) CE Rising Response Time (For XC6215 Type)

XC6215B502

XC6215B502

(12) Ripple Rejection Rate

XC6215x152

XC6215x502

■PACKAGING INFORMATION

●USP-4

Reference pattern Layout

Reference metal mask design

●USP-3

Reference pattern Layout

Reference metal mask design

■ PACKAGING INFORMATION (Continued)

●SOT-25

●SSOT-24

(Unit: mm)

●USPN-4

Reference pattern Layout

Reference metal mask design

XC6215 Series

■MARKING RULE

●SSOT-24

① represents type of regulator and output voltage range

MARK	TYPE	OUTPUT VOLTAGE RANGE	PRODUCT SERIES
Т	CE pin, High Active with no	0.9V ~ 3.0V	VCC04EDaggar
U	pull-down resistor built in	3.1V ~ 5.0V	XC6215Bxxxxx

2 represents decimal point of output voltage

MARK	OUTP	JT VOLTA	GE (V)	MARK	OUTP	UT VOLTA	GE (V)
0	-	3.1	-	F	1.6	4.6	ı
1	-	3.2	-	Н	1.7	4.7	1
2	-	3.3	-	K	1.8	4.8	ı
3	-	3.4	-	L	1.9	4.9	ı
4	-	3.5	-	M	2.0	5.0	ı
5	-	3.6	-	N	2.1	-	ı
6	-	3.7	-	Р	2.2	-	-
7	-	3.8	-	R	2.3	-	1
8	0.9	3.9	-	S	2.4	-	ı
9	1.0	4.0	-	Т	2.5	-	-
Α	1.1	4.1	-	U	2.6	-	1
В	1.2	4.2	-	V	2.7	-	ı
С	1.3	4.3	-	X	2.8	-	ı
D	1.4	4.4	-	Y	2.9	-	-
Е	1.5	4.5	-	Z	3.0	-	-

③ represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

NOTE: No character inversion used.

●USP-4, USP-3

① represents product series

MARK	PRODUCT SERIES
E	XC6215xxxxxx

② represents type of regulator and output voltage range

MARK	TYPE	OUTPUT VOLTAGE RANGE	PRODUCT SERIES
Т	CE pin, High Active with no	0.9V ~ 3.0V	XC6215xxxxxx
U	pull-down resistor built in	3.1V ~ 5.0V	ACUZ IOXXXXXX

3 represents output voltage

© Tepreseriis output voltage							
MARK	OUTP	UT VOLTA	GE (V)	MARK	OUTP	UT VOLTA	GE (V)
0	1	3.1	-	F	1.6	4.6	-
1	-	3.2	-	Н	1.7	4.7	-
2	1	3.3	-	K	1.8	4.8	-
3	1	3.4	-	Ь	1.9	4.9	-
4	-	3.5	-	М	2.0	5.0	-
5	1	3.6	-	N	2.1	-	-
6	1	3.7	-	Р	2.2	-	-
7	ı	3.8	-	R	2.3	-	-
8	0.9	3.9	-	S	2.4	-	-
9	1.0	4.0	-	T	2.5	-	-
Α	1.1	4.1	-	U	2.6	-	-
В	1.2	4.2	-	V	2.7	-	-
С	1.3	4.3	-	X	2.8	-	-
D	1.4	4.4	-	Y	2.9	-	-
E	1.5	4.5	-	Z	3.0	-	-

4 represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

NOTE: No character inversion used.

■MARKING RULE (Continued)

●SOT-25

●USPN-4

USPN-4 (TOP VIEW)

① represents product series

MARK	PRODUCT SERIES	
E	XC6215xxxxxx	

② represents type of regulators and output voltage range

MARK	TYPE	OUTPUT VOLTAGE RANGE	PRODUCT SERIES
T	CE pin, High Active with no	0.9V~3.0V	XC6215xxxxxx
U	pull-down resistor built in	3.1V~5.0V	AC0213XXXXX

③ represents output voltage

MARK	OUTF	PUT VOLTAG	SE (V)	MARK	OUTF	PUT VOLTAG	GE (V)
0	-	3.1	-	F	1.6	4.6	-
1	-	3.2	-	Н	1.7	4.7	-
2	-	3.3	-	K	1.8	4.8	-
3	-	3.4	ı	L	1.9	4.9	-
4	-	3.5	1	М	2.0	5.0	-
5	-	3.6	ı	N	2.1	ı	-
6	-	3.7	ı	Р	2.2	ı	-
7	-	3.8	ı	R	2.3	ı	-
8	0.9	3.9	ı	S	2.4	ı	-
9	1.0	4.0	-	Т	2.5	-	-
Α	1.1	4.1	ı	U	2.6	ı	-
В	1.2	4.2	ı	V	2.7	ı	-
С	1.3	4.3	-	Χ	2.8	ī	-
D	1.4	4.4	-	Υ	2.9	ī	-
Е	1.5	4.5	-	Z	3.0	-	-

45 represents production lot number

0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded) NOTE: No character inversion used.

XC6215 Series

SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used.)

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)	
25	600	166.67	
85	240	100.07	

SSOT-24 Power Dissipation

Power dissipation data for the SSOT-24 is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)
25	500	200.00
85	200	200.00

XC6215 Series

USP-4 Power Dissipation

Power dissipation data for the USP-4 is shown in this page.

The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125° C)

Ambient Temperature (°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)	
25	1000	100.00	
85	400	- 100.00	

USPN-4 Power Dissipation

Power dissipation data for the USPN-4 is shown in this page.

The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.

1.Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the front and 50%

of the back.

The copper area is divided into four block,

one block is 12.5% of total.

The USPN-4 package has for terminals.

Each terminal connects one copper block in the front and

one in the back.

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)	
25	600	166.67	
85	240	100.07	

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.

 (e.g., Atomic, energy: generate: transport: combustion, and associated safety.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.