COMS12200 problem set #5

Within this problem slot, the idea is that you attempt to solve the set of pencil-and-paper, exam-style questions presented below; in doing so, you can (optionally) use an interactive system to anonymously register your solutions. More concretely, optionally start by installing the Socrative client, e.g.,

• for Chrome

http://chrome.google.com/webstore/detail/socrative-student/nblhpecglllndfihipmpdoikimcmgkha

• for Android

http://play.google.com/store/apps/details?id=com.socrative.student

• for iOS

http://itunes.apple.com/gb/app/socrative-student/id477618130

or using the web-based application at

http://www.socrative.com,

then entering the 9-character "room name" which should be displayed top-center on the projector screen. Then, we will alternate as follows:

- 1. solve the current question, and optionally register your solution using Socrative,
- 2. wait until everyone is finished (or say ~ 5 minutes elapse), at which point we will discuss the questions and solutions using any collated Socrative results as a starting point.

Q1. From the following list

- A: the design of a DRAM cell includes more transistors than an SRAM cell
- B: an SRAM cell can store more information than a DRAM cell
- C: SRAM cells can be accessed more quickly than DRAM cells
- D: DRAM cells require a mechanism to refresh their content

identify each statement that correctly describes SRAM and DRAM cells.

Q2. Consider the following waveform

which details the behaviour of three signals labelled *x*, *y* and *z*. Which of the following components *could* the behaviour illustrated relate to?

- A: an SR-type flip-flop
- B: an SR-type latch
- C: a D-type flip-flop
- D: a D-type latch
- E: a T-type flip-flop

Q3. The following diagram

illustrates a preliminary NAND-based SR-latch design, in the sense it currently lacks an enable signal. If Q and Q' denote the current and next state respectively, which of the following excitation tables

			Current		Next	
	S	R	Q	$\neg Q$	Q'	$\neg Q'$
A:	0	0	0	1	0	1
	0	0	1	0	1	0
	0	1	?	?	0	1
	1	0	?	?	1	0
	1	1	?	?	0	0
ĺ	0	0	?	?	1	1
B: {	0	1	?	?	1	0
	1	0	?	?	0	1
	1	1	0	1	0	1
- (1	1	1	0	1	0
c : {	0	0	?	?	0	1
	1	1	?		1	0
D: {	0	?	?	?	0	1
	1	?	?	?	1	0
E : {	?	0	?	?	0	1
	?	1	?	?	1	0
(

correctly captures the behaviour of this circuit?

- Q4. Consider a DRAM memory device with a capacity of 65536 addressable bytes. Of the following options
 - A: 8 address pins, 65536 cells
 - B: 16 address pins, 65536 cells
 - C: 8 address pins, 524288 cells
 - D: 16 address pins, 524288 cells

which offers the most likely description of said device?

Q5. Figure 1 illustrates the design of a DRAM memory. The labels on four components in the block diagram have been blanked-out, then replaced with the symbols α , β , γ and δ : which of the following mappings

$A: \left\{ \left[\right] \right.$	α	\mapsto	row address buffer
	β	\mapsto	row address decoder
	γ	\mapsto	column address buffer
	δ	\mapsto	column address decoder
B: {	α	\mapsto	row address buffer
	β	\mapsto	column address buffer
	γ	\mapsto	row address decoder
	δ	\mapsto	column address decoder
c : {	α	\mapsto	column address buffer
	β	\mapsto	row address buffer
	γ	\mapsto	column address decoder
	δ	\mapsto	row address decoder
D:	α	\mapsto	row address decoder
	β	\mapsto	column address decoder
	γ	\mapsto	row address buffer
	δ	\mapsto	column address buffer
E: {	α	\mapsto	column address decoder
	β	\mapsto	row address decoder
	γ	\mapsto	column address buffer
	δ	\mapsto	row address buffer

do you think is correct?

Q6. Although perhaps unusual, the following diagram

illustrates a circuit with well defined behaviour. Based on analysis of this behaviour, which of the following components

A: a flip-flopB: a latchC: a RAM cellD: a ROM cellE: a clock multiplier

does the circuit implement?

Figure 1: A 4Mbit DRAM block diagram (source: http://www.micross.com/pdf/MT4C4001J.pdf).