Quiz 1– Linear Algebra (Mar 8, 2022)

- 1. (1) True or False: If \mathbf{A} is an $n \times n$ matrix, then $(\mathbf{A}^2)^n = (\mathbf{A}^n)^2$. $(A^2)^n = A^2 A^2 \cdots A^2 = A A \cdots A = A^n A^n = (A^n)^2$
 - (2) True or False: If \mathbf{A} is an $n \times n$ symmetric matrix, and \mathbf{B} is an $n \times n$ skewsymmetric matrix, then $(AB)^2$ is a skew-symmetric matrix. $(\ \ \ \)$

$$(AB)^{T} = (ABAB)^{T} = B^{T}A^{T}B^{T}A^{T} = (-B)A(-B)A$$

$$= BABA \neq -ABAB$$
(3) True or False: If $A^{2} = A$, then $A = 0$ or $A = I$. (F)

$$A=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $A^2=A$, $A \neq 0$, $A \neq I$.

- (4) Let $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{Q}$, where $\mathbf{A} = \begin{bmatrix} 3 & 2 & 1 \\ -2 & -1 & 0 \\ 5 & 4 & 3 \end{bmatrix}$, $\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\mathbf{Q} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, then $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ $A = PBQ \implies P^{\dagger}AQ^{\dagger} = B$
- (5) If **A** is an $n \times n$ matrix which satisfies the equation $A^2 A 7I = 0$, then $(A-3I)^{-1} = A+2I$

$$A^{2}-A-7I=0 \implies (A-3I)(A+2I)=A^{2}-A-6I=I$$

 $A^{2}-A-7I=0 \implies (A-3I)(A+2I)=A^{2}-A-6I=I$

- 2. Suppose that A, B are square matrices of order n. Show that I + AB is invertible if and only if I + BA is invertible.
- (1) I+AB 可连、网有: (I+AB) T(I+AB) = I

$$\Rightarrow (I+AB)^{T} + (I+AB)^{T}AB = I \Rightarrow (I+AB)^{T}A + (I+AB)^{T}ABA = A$$

$$\Rightarrow$$
 $(I + AB)^{+}A(I + BA) = A \Rightarrow $B(I + AB)^{+}A(I + BA) = BA$$

$$\Rightarrow B(I+AB)^{-1}A(I+BA) + I = BA+I$$

$$\Rightarrow I = -B(I + AB)^{+}A(I + BA) + I + BA$$

$$\Rightarrow I = (I - B(I + AB)^{-1}A)(I + BA)$$

$$\Rightarrow$$
 A(I+BATB(I+AB)+I = AB+I

3. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
, and $\mathbf{A}^2 - \mathbf{A}\mathbf{B} = \mathbf{I}$, where \mathbf{I} is a 3×3 identity matrix.

Find **B**.

$$AB = A - I, \Rightarrow f A \int A \int A \int A \int A = A - A \int A = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A' = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow B = A - A^{-1} = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

4. Let
$$\mathbf{A} = \begin{bmatrix} 1 & a & a^2 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 2 & 5 & 4 \\ 1 & 2 & 2 \\ 2 & 4 & 5 \end{bmatrix}$

(1) Find A^{-1} and B^{-1} .

(2) Let
$$C = \begin{bmatrix} \mathbf{0} & A \\ B & \mathbf{0} \end{bmatrix}$$
, find C^{-1} .

(1)
$$(I A) = \begin{pmatrix} I & 0 & 0 & I & 0 & 0 \\ 0 & I & 0 & 0 & I & 0 \\ 0 & 0 & I & 0 & 0 & I \end{pmatrix} \rightarrow \begin{pmatrix} I & 0 & -\alpha^2 & I & 0 & 0 \\ 0 & I & -\alpha & 0 & I & 0 \\ 0 & 0 & I & 0 & 0 & I \end{pmatrix} \rightarrow A^{-1} = \begin{pmatrix} I & -\alpha & 0 & 0 \\ 0 & I & -\alpha & 0 & I \\ 0 & 0 & I & 0 & I \end{pmatrix}$$

$$(I B) = \begin{pmatrix} 1 & 0 & 0 & 2 & 5 & 4 \\ 0 & 1 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 1 & 2 & 2 \\ 1 & 0 & 0 & 2 & 5 & 4 \\ 0 & 0 & 1 & 2 & 4 & 5 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 0 & 1 & 0 & 1 & 2 & 2 \\ 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & -2 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 5 & -2 & 1 & 2 & 0 \\ 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & -2 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$(2). \quad C^{\dagger} = \begin{pmatrix} 0 & B^{\dagger} \\ A^{\dagger} & 0 \end{pmatrix}$$

5. Let
$$\mathbf{X} = \mathbf{A}\mathbf{X} + \mathbf{B}$$
, where $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{bmatrix}$. Find \mathbf{X} . $\mathbf{X} = \mathbf{A}\mathbf{X} + \mathbf{B}$

$$\Rightarrow X - AX = B \Rightarrow (I - A)X = B$$

$$\chi = (I - A)^{\dagger} B$$

$$(I-A B) = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 2 & 0 \\ 1 & 0 & 2 & 5 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 4 & -2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 4 & 0 & 1 & 4 \\ 0 & 1 & -1 & 1 & 1 \\ 0 & 0 & 3 & 3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & 1 & 4 \\ 0 & 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 3 & -1 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}.$$