Tests non-paramétriques

Michaël Genin

Université de Lille 2

EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michael.genin@univ-lille2.fr

Plan

- Introduction
- 2 Comparaison de K = 2 échantillons indépendants
- 3 Comparaison de K = 2 échantillons appariés
- 4 Corrélation de rangs
- **5** Comparaison de K > 2 échantillons indépendants

Motivations - I

Tests paramétriques nécessitent des conditions de validité :

- Hypothèses sur la distribution des observations (ex : $X \sim \mathcal{N}(\mu, \sigma)$)
- Distributions caractérisées par des paramètres (moyenne, variance, ...)
- Ces paramètres sont estimés

Question: Que faire lorsque les conditions de validité ne sont pas respectées?

⇒ Tests non-paramétriques

- Distribution free : pas d'hypothèse sur la distribution des observations
- Tests adaptés aux variables quantitatives et qualitatives (nominales et ordinales)
- La plupart du temps : tests basés sur la notion de rangs

Valeur	4	7	8	1	3	5
Rang	3	5	6	1	2	4

Motivations - II

AVANTAGES

- Pas d'hypothèse sur la distribution ⇒ champ d'application a priori plus large
- Tests adaptés aux variables ordinales (ex : degré de satisfaction)
- Robustesse par rapport aux données atypiques

Exemple:

4	5	8	7	3	38	$\bar{x}_1 = 10.8$
4	5	8	7	3	6	$\bar{x}_2 = 5.5$

Différence due à une seule observation!! La transformation en rangs permet de "gommer" cette différence

• Tests adaptés aux petits échantillons (n < 30)

Si pas d'hypothèse sur la loi, les tests paramétriques deviennent inopérants!

INCONVENIENTS

- Lorsque les conditions d'applications sont vérifiées :
 - Tests NP moins puissants que les tests paramétriques
- Diffcultés d'interprétation : on ne compare plus des paramètres (moyenne, proportion, variance, ...)

Définition

Considérons 2 groupes G_1 et G_2 de taille n_1 et n_2 sur lesquels est mesuré un caractère X

$$\begin{cases} G_1 : \{x_{11}, x_{12}, \dots, x_{1n_1}\} \\ G_2 : \{x_{21}, x_{22}, \dots, x_{2n_2}\} \end{cases}$$

Principe du rang : substituer aux valeurs leur numéro d'ordre (rang r) dans **l'ensemble des données** $(G_1 \cup G_2)$

Exemple:

$$\begin{cases} G_1 : \{10, 14, 22, 8, 5\} \\ G_2 : \{6, 9, 4, 23, 7\} \end{cases}$$

		Gro	oupe	1			G	roup	e 2	
Valeur	10	14	22	8	5	6	9	4	23	7
r_i	7	8	9	5	2	3	6	1	10	4

Conséquences de la transformation en rangs

- La distribution des rangs est symétrique
- Rôle des valeurs atypiques amoindri

Traitement des ex-aequo → **Méthode des rangs moyens**

Idée : les observations présentant des valeurs identiques se voient attribuer la moyenne de leur rangs

→ Fréquent avec des variables ordinales (Peu de modalités)

Exemple

$$\begin{cases} G_1 : \{11, 12, 12, 9, 13, 4, 17, 19\} \\ G_2 : \{12, 4, 5, 15, 22, 18, 25\} \end{cases}$$

Valeurs	4	4 5	9	11 12	12	12 13	15	17	18	19	22	25
Rangs bruts	1	2 3	4	5 6	7	8 9	10	11	12	13	14	15
Rangs moyens	1.5	1.5 3	4	5 7	7	7 9	10	11	12	13	14	15
Calculs	(1+	2)/2	-	(6 -	+7+8	8)/3			-			

Remarque : Impact sur la variance des statistiques de test \rightarrow Correction (Logiciels)

Test de Mann-Whitney-Wilcoxon - Objectif

Objectif : comparaison de K=2 échantillons indépendants par rapport à une variable X de nature :

- Quantitative
- Qualitative ordinale

Ce test regroupe 2 tests équivalents :

- Test *U* de Mann-Whitney
- Test W de Wilcoxon

→ se déduisent l'un de l'autre

Test de Mann-Whitney-Wilcoxon - Hypothèses

Soient

 $F_1(X)$ la fonction de répartition de X dans la population 1

 $F_2(X)$ la fonction de répartition de X dans la population 2

Les hypothèses de test sont :

$$\begin{cases} \mathcal{H}_0 : F_1(X) = F_2(X + \theta); \ \theta = 0 \\ \mathcal{H}_1 : F_1(X) = F_2(X + \theta); \ \theta \neq 0 \end{cases}$$
 Distributions différentes

 θ paramètre de translation : décalage entre les fonctions de répartition

Test de Mann-Whitney-Wilcoxon - Hypothèses

Exemple de décalage $\theta \neq 0$

Test de Mann-Whitney-Wilcoxon - Hypothèses

Idée:

$$\left. \begin{array}{l} G_1 \,:\, \{x_{11}, x_{12}, \ldots, x_{1n_1}\} \\ G_2 \,:\, \{x_{21}, x_{22}, \ldots, x_{2n_2}\} \end{array} \right\} = \text{ Transformation en rangs } \left(G_1 \cup G_2\right)$$

Soient

$$R(X_1) = x$$
 les rangs des valeurs du groupe 1

$$R(X_2) = o$$
 les rangs des valeurs du groupe 2

2 configurations extrêmes :

Ecart par rapport à la configuration $(1) o \mathsf{Rejet}$ de \mathcal{H}_0

Rappel : Somme de *n* premiers entiers

$$1+2+\ldots+n=\frac{n(n+1)}{2}$$

Posons S_1 la somme des rangs des observations du groupe 1 Posons U_1 le nombre de couples $\{(x_{1i},x_{2j}) \mid x_{1i}>x_{2j}\}$

$$U_1 = S_1 - \frac{n_1(n_1+1)}{2}$$

Posons S_2 la somme des rangs des observations du groupe 2 Posons U_2 le nombre de couples $\{(x_{1i}, x_{2j}) / x_{1i} < x_{2j}\}$

$$U_2 = S_2 - \frac{n_2(n_2+1)}{2}$$

Statistique de test :

$$U = \min \left(U_1, U_2 \right)$$

Interprétation de la statistique de test $\rightarrow \mathcal{H}_0$ "totalement fausse" :

$$\underbrace{ \begin{array}{c} \xrightarrow{\times \times \times \times \times \times \times \circ \circ \circ \circ \circ \circ \circ} \\ rangs \end{array} }_{rangs} \quad \left\{ \begin{array}{c} U_1 = \frac{n_1(n_1+1)}{2} - \frac{n_1(n_1+1)}{2} = 0 \\ \\ U_2 = \sum_{i=n_1+1}^{n_1+n_2} r_i - \frac{n_2(n_2+1)}{2} = n_1 n_2 \end{array} \right\} U = U_1 = 0$$

$$\frac{\sum_{i=n_2+1}^{n_1+n_2} r_i - \frac{n_1(n_1+1)}{2} = n_1 n_2}{U_2 = \frac{n_2(n_2+1)}{2} - \frac{n_2(n_2+1)}{2} = 0} dt = 0$$

Interprétation de la statistique de test $\rightarrow \mathcal{H}_0$ "Vraie" (mélange total) :

 $S_p(n) =$ Somme des n premiers entiers pairs $S_i(n) =$ Somme des n premiers entiers impairs

(2)
$$\xrightarrow{o \times o \times o} \begin{cases} U_1 = S_p(n_1) - \frac{n_1(n_1+1)}{2} \\ U_2 = S_p(n_2) - \frac{n_2(n_2+1)}{2} \end{cases}$$

On peut en déduire que \rightarrow Propriété : $U \leq \frac{n_1 n_2}{2}$

Sous \mathcal{H}_0 , on montre que

$$\mathbb{E}[U] = \frac{n_1 n_2}{2} \quad \mathbb{V}[U] = n_1 n_2 \frac{n_1 + n_2 + 1}{12}$$

Distribution sous \mathcal{H}_0 de la statistique de test

Distribution non connue mais tabulée (probabilités exactes et quantiles)

ightarrow Table des valeurs critiques de U

Cas particulier si n_1 et $n_2 > 10$:

$$Z = rac{U - \mathbb{E}[U]}{\sqrt{\mathbb{V}[U]}} \sim \mathcal{N}(0,1)$$

Test de Mann-Whitney-Wilcoxon - Région critique

n_1 ou $n_2 < 10$

Valeur de U_{lim} lue dans la table

Cas particulier si n_1 et $n_2 > 10$

$$Z = rac{U - rac{n_1 n_2}{2}}{\sqrt{rac{n_1 n_2 (n_1 + n_2 + 1)}{12}}} \sim \mathcal{N}(0, 1)$$

$$R.C. : |Z| \ge z_{1-\alpha/2}$$

Exemple

$$G_1: n_1 = 7: \{11, 21, 21, 25, 52, 71, 79\}$$

 $G_2: n_2 = 5: \{22, 43, 72, 91, 100\}$

Passage aux rangs

Valeurs 11	21	21	22	25	43	52	71	72	79	91	100
Rangs 1	2.5	2.5	4	5	6	7	8	9	10	11	12
Groupe 1	1	1	2	1	2	1	1	2	1	2	2

② Calcul de U_1 et U_2

$$U_1 = S_1 - \frac{n_1(n_1+1)}{2}$$

$$U_1 = 1 + 2.5 + 2.5 + 5 + 7 + 8 + 10 - \frac{7(7+1)}{2} = 8$$

$$U_2 = S_2 - \frac{n_2(n_2+1)}{2}$$

$$U_2 = 4 + 6 + 9 + 11 + 12 - \frac{5(5+1)}{2} = 27$$

- $0 U = \min(U_1, U_2) = U_1 = 8$
- $U_{lim} = 5$ (Table) et $U > U_{lim}$ donc non rejet de \mathcal{H}_0

Remarques - I

- Equivalence entre les tests de Mann-Whitney et Wilcoxon
 - ullet Test de Wilcoxon o basé sur la somme des rangs S
 - $S = S_1$ si $n_1 < n_2$ sinon $S = S_2$
 - si $n_1 = n_2$ alors $S = S_1$ si $S_1 < S_2$ sinon $S = S_2$
 - Les deux tests sont équivalents :

$$U = \underbrace{n_1 n_2 + \frac{n(n+1)}{2}}_{\text{Non aléatoire}} - S$$

- Test Mann-Whitney-Wilcoxon plus puissant que test de Student si les distributions ne sont pas gaussiennes
 - Si les distributions sont gaussiennes \to Test de MWW présente une puissance proche de celle du test de Student (efficacité relative = $3/\pi \approx 0.95$)

Remarques - II

- Problème de Behrens Fisher
 - ullet \mathcal{H}_1 stipule un décalage de tendance centrale entre les distributions (heta
 eq 0)
 - Cela sous-tend l'hypothèse que les dispersions des distributions sont relativement homogènes

• Analogie au test paramétrique de Student $(\sigma_1^2 = \sigma_2^2)$

Remarques - III

Problème de Behrens - Fisher

• Si cette hypothèse n'est plus assumée \to rejet de \mathcal{H}_0 n'est plus uniquement imputable à un écart de tendance centrale

- Dans ce cas de figure le test de MWW n'est plus applicable
- ⇒ Solution : test de rang robuste de Fligner-Policello
 - Equivalent non-paramétrique du test d'Aspin-Welsh.

Objectif : Comparaison de 2 échantillons appariés par rapport à une variable

- Quantitative
- Qualitative ordinale

Exemple:

Remarque : Equivalent non-paramétrique du test de Student pour échantillons appariés.

Soient

 $F(X_1)$ la fonction de répartition de X_1 (mesure avant)

 $F(X_2)$ la fonction de répartition de X_2 (mesure après)

Les hypothèses de test sont :

$$\begin{cases} \mathcal{H}_0 \ : \ F(X_1) = F(X_2 + \theta) \ ; \ \theta = 0 \\ \mathcal{H}_1 \ : \ F(X_1) = F(X_2 + \theta) \ ; \ \theta \neq 0 \end{cases} \quad \text{Distributions différentes (AVANT/APRES)}$$

heta paramètre de translation : décalage entre les fonctions de répartition

ldée

$$\frac{G_1 : \{x_{11}, x_{12}, \dots, x_{1n}\}}{G_2 : \{x_{21}, x_{22}, \dots, x_{2n}\}}$$
 = Transformation en rangs $(G_1 \cup G_2)$

Posons

$$|D|=|X_1-X_2|.$$

- **1** Calcul des $|d_i| = |x_{1i} x_{2i}|, \forall i \in \{1, ..., n\}$
- ② Elimination des observations telles que $|d_i| = 0$
- 3 Prise en compte du signe de chaque $|d_i|$
- Transformation en rang des $|d_i|$ $(r(\min_i |d_i|) = 1, r(\max_i |d_i|) = n)$

Exemple: n = 10

Avant	Après	D	signe
2	1	1	+
4	6	2	-
7	3	4	+
8	7	1	+
9	11	2	-
10	8	2	+
12	13	1	+
15	14	1	+
16	16	0	?
14	14	0	?

Calcul des rangs de |D| et du signe :

Valeurs	1	1	1	1	2	2	2	4
Rangs bruts	1	2	3	4	5	6	7	8
Rangs finaux	2.5	2.5	2.5	2.5	6	6	6	8
Signes	+	+	-	+	-	-	+	+

Exemple: n = 10

2 configurations extrêmes :

Ecart par rapport à la configuration (1) ightarrow Rejet de \mathcal{H}_0

Statistique de test

Soit T^+ la somme des rangs des observations pour lesquelles $d_i > 0$:

$$T^+ = \sum_{i:d_i>0} r_i$$

Soit T^- la somme des rangs des observations pour lesquelles $d_i < 0$:

$$T^{-} = \sum_{i:d_{i} < 0} r_{i}$$

Remarque : On peut déduire T^- grâce à T^+ :

$$T^{-}=\frac{n(n+1)}{2}-T^{+}$$

Statistique de test

- T^+ grand par rapport à $T^- \to \text{Les}$ valeurs de X_1 sont stochastiquement plus élevées que celles de X_2
- T^- grand par rapport à $T^+ \to \text{Les}$ valeurs de X_1 sont stochastiquement plus faibles que celles de X_2

Si
$$\mathcal{H}_0$$
 est vraie alors $T^+ = T^- = \frac{1}{2}(\frac{n(n+1)}{2})$

Aussi, la statistique de test a pour expression

$$T = \min \left(T^-; T^+ \right)$$

$$\mathbb{E}[T] = \frac{n(n+1)}{4}$$

$$\mathbb{V}[T] = \frac{n(n+1)(2n+1)}{24}$$

Distribution de la statistique de test sous \mathcal{H}_0

Distribution non connue mais tabulée (probabilités exactes et quantiles)

ightarrow Table des valeurs critiques de T

Cas particulier si n > 20:

$$Z = rac{T - \mathbb{E}[T]}{\sqrt{\mathbb{V}[T]}} \sim \mathcal{N}(0, 1)$$

Test des rangs signés de Wilcoxon - Région critique

$n \le 20$

Valeur de T_{lim} lue dans la table

Cas particulier si n > 20

$$Z = \frac{U - \frac{n_1 n_2}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} \sim \mathcal{N}(0,1)$$

$$R.C. : |Z| \ge z_{1-\alpha/2}$$

Test des rangs signés de Wilcoxon - Région critique

Retour à l'exemple

Valeurs	1	1	1	1	2	2	2	4
Rangs bruts	1	2	3	4	5	6	7	8
Rangs finaux	2.5	2.5	2.5	2.5	6	6	6	8
Signes	+	+	-	+	-	-	+	+

$$T^{+} = 2.5 + 2.5 + 2.5 + 6 + 8 = 21.5$$
 $T^{-} = 2.5 + 6 + 6 = 14.5$
 $T = \min(T^{-}; T^{+}) = 14.5$

Lecture dans la table : $T_{lim} = 4 \rightarrow N.S.$

Rappel - I

Soient X et Y deux variables quantitatives.

Coefficient de corrélation théorique

$$\rho(X,Y) = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sigma_X \sigma_Y} \in [-1,1]$$

Si $\rho(X, Y) = |1|$ alors lien linéaire parfait entre X et Y Si X et Y indépendantes alors $\rho(X, Y) = 0$.

Estimé par le coefficient de Bravais-Pearson :

$$r = \frac{s_{xy}}{s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Rappel - II

Test de nullité de ρ .

$$\begin{cases} \mathcal{H}_0 \ : \ \rho = 0 & \text{Pas de corrélation linéaire entre X et Y} \\ \mathcal{H}_1 \ : \ \rho \neq 0 & \text{Corrélation linéaire entre X et Y} \end{cases}$$

Sous \mathcal{H}_0

$$T = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}} \sim \mathcal{T}_{n-2}$$

Conditions d'application :

• X et Y distribuées selon une loi normale

ou

• n > 30 et V.A. continues

L'absence de lien linéaire n'implique pas l'absence de lien fonctionnel!!

Coefficient de corrélation de Spearman

⇒ Pas d'hypothèse de loi

Indications

- Petits échantillons (si on ne peut pas supposer X et Y distribuées normalement)
- Variables avec peu de valeurs différentes
- Présence de valeurs extrêmes
- Variables ordinales
- La relation n'est pas forcément linéaire (exponentiel, puissance,...)
- Utile lorsque la distribution des variables est asymétrique

Coefficient de corrélation de Spearman - Principe

- Transformation des données de X et Y en rangs, séparément Soient $R=(r_1,\ldots,r_n),\ S=(s_1,\ldots,s_n)$ respectivement les rangs de X et Y. Remarque importante : Le coefficient de corrélation de Spearman calculé entre X et Y est égal au coefficient de corrélation de Pearson calculé entre R et S.
- Quality de Calcul du coefficient de Spearman en utilisant le coefficient de corrélation de Bravais-Pearson entre R et S

$$r_{s} = \frac{s_{rs}}{s_{r}s_{s}} = \frac{\sum_{i=1}^{n} (r_{i} - \overline{r})(s_{i} - \overline{s})}{\sqrt{\sum_{i=1}^{n} (r_{i} - \overline{r})^{2} \sum_{i=1}^{n} (s_{i} - \overline{s})^{2}}}$$

Expression simplifiée :

$$r_s = \frac{12\sum_{i=1}^n R_i S_i}{n(n^2 - 1)} - \frac{3n + 1}{n - 1}$$

Coefficient de corrélation de Spearman - Principe

1 Test de la nullité de ρ

Sous \mathcal{H}_0

$$T = \frac{R_s \sqrt{n-2}}{\sqrt{1-R_s^2}} \sim \mathcal{T}_{n-2}$$

- Interprétation :
 - Si $r_s = 1$ les classements sont identiques
 - Si $r_s = -1$ les classements sont opposés
 - Si $r_s \neq 0$ (statistiquement significatif) les classements sont liés
 - Si X et Y sont indépendantes alors $\rho = 0$

Coefficient de corrélation de Spearman - Exemple

Relation Poids - Taille (n = 15)

Tailla(ana)	Daida(ama)	R	S
Taille(cm)	Poids(cm)	К	3
1.697	77.564	15	14
1.539	55.000	3	1
1.629	76.657	10	12
1.633	62.596	11	6
1.500	58.068	2	3
1.679	72.575	14	11
1.643	82.000	13	15
1.626	76.667	9	13
1.543	58.060	5	2
1.542	71.668	4	10
1.621	68.039	8	8
1.577	70.060	7	9
1.557	61.689	6	5
1.496	67.585	1	7
1.637	59.874	12	4

Calcul du coefficient de Bravais-Pearson entre R et S: $r_s = 0.61786$

Statistique de test : t = 2.83320, p = 0.01410

Test de Kruskal-Wallis

Objectif : comparer la distribution d'une variable quantitative X entre K groupes indépendants (Extension à plus de 2 groupes du test de Mann-Whitney-Wilcoxon).

Equivalent non paramétrique de l'ANOVA à un facteur.

Hypothèses du test

Soit $F_i(X)$ la fonction de répartition de X dans la population i, $1 \le i \le K$

Les hypothèses de test sont :

$$\begin{cases} \mathcal{H}_0 : F_1(X) = F_2(X + \theta) = \ldots = F_K(X + \theta) ; \ \theta = 0 & \text{Distributions identiques} \\ \mathcal{H}_1 : \exists i \neq j/F_i(X) = F_j(X + \theta); \ \theta \neq 0 & \text{Distributions différentes} \end{cases}$$

 θ paramètre de translation : décalage entre les fonctions de répartition

Test de Kruskal-Wallis - Statistique de test et région critique

• Transformation en rangs (r_{ij} rang de l'observation x_{ij} parmi les n observations)

$$\left. \begin{array}{l} G_1 : \{x_{11}, x_{12}, \dots, x_{1n_1}\} \\ G_2 : \{x_{21}, x_{22}, \dots, x_{2n_2}\} \\ \vdots \\ G_K : \{x_{K1}, x_{K2}, \dots, x_{Kn_K}\} \end{array} \right\} = \text{Transformation en rangs } (G_1 \cup G_2 \cup \dots \cup G_K)$$

Calcul de la moyenne des rangs pour chaque groupe :

$$\bar{w}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} r_{ij}$$

3 Calcul de la moyenne globale des rangs :

$$\bar{w} = \frac{1}{K} \sum_{i=1}^{K} \bar{w}_i$$

Test de Kruskal-Wallis - Statistique de test

Statistique de test sous \mathcal{H}_0 :

$$KW = \frac{12}{n(n+1)} \sum_{i=1}^{K} n_i (\bar{w}_i - \bar{w})^2 \sim \chi_{k-1}^2$$

Remarque : approximation du χ^2 valable si $n_i \geq 5, \forall i \in \{1, \dots, K\}$

- Si \mathcal{H}_0 vraie alors les \bar{w}_i sont proches de $\bar{w} \to KW$ tend vers 0
- ullet Plus KW s'écarte de 0, plus on aura tendance à rejeter \mathcal{H}_0

Région critique : $kw > \chi^2_{k-1}$ au seuil $1-\alpha$

Test de Kruskal-Wallis - Exemple

Mesure de la teneur en calcium de l'eau de 3 zones géographiques.

$$n_1 = 6$$
, $n_2 = 5$, $n_3 = 6$; $n = n_1 + n_2 + n_3$.

Zone 1	Zone 2	Zone 3
18	15	15
20	16	20
22	17	21
25	21	25
23	20	16
19		19

Transformation en rangs sur n

Valeurs	15	15	16	16	17	18	19	19	20	20	20	21	21	22	23	25	25
Rgs bruts	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Rgs finaux	1.5	1.5	3.5	3.5	5	6	7.5	7.5	10	10	10	12.5	12.5	14	15	16.5	16.5

Test de Kruskal-Wallis - Exemple

Transformation en rangs sur n

Zone 1	(Rang)	Zone 2	(Rang)	Zone 3	(Rang)
18	(6)	15	(1.5)	15	(1.5)
20	(10)	16	(3.5)	20	(10)
22	(14)	17	(5)	21	(12.5)
25	(16.5)	21	(12.5)	25	(16.5)
23	(15)	20	(10)	16	(3.5)
19	(7.5)			19	(7.5)

Calcul des moyennes des rangs par zones et moyenne globale des rangs

$$\bar{w}_1 = 11.5 \quad \bar{w}_2 = 6.5 \quad \bar{w}_3 = 8.58$$
 $\bar{w} = 9$

Calcul de la statistique de test

$$KW = \frac{12}{n(n+1)} \sum_{i=1}^{K} n_i (\bar{w}_i - \bar{w})^2$$

$$KW = \frac{12}{17(18)} \left[6 \times (11.5 - 9)^2 + 5 \times (6.5 - 9)^2 + 6 \times (8.58 - 9)^2 \right] = 2.74$$

Test de Kruskal-Wallis - Exemple

• Région critique et conclusion Les $n_i \ge 5$, $1 \le i \le 3$, donc

$$KW \sim \chi^2_{K-1}$$

Le quantile de la loi du $\chi^2_{2ddl} = 5.99$.

- 2.74 < 5.99 donc on ne rejette pas \mathcal{H}_0 .
- \rightarrow Les teneurs en calcium sont distribuées de la même manière parmi les 3 zones géographiques.