

UNIVERSITY OF GHANA

(All rights reserved)

B.Sc. ENGINEERING/FIRST SEMESTER EXAMINATIONS: 2018/2019

DEPARTMENT OF COMPUTER ENGINEERING

CPEN 205: DISCRETE MATHEMATICAL STRUCTURES (2 CREDITS)

INSTRUCTIONS:

ANSWER ALL QUESTIONS

EACH QUESTION CARRIES 25 MARKS

TIME ALLOWED: TWO (2) HOURS

Q1.

- a) How many license plates can be made using either two or three letters followed by either two or three digits and contain no letter or digit twice? [4 marks]
- b) The sixth permutation of the lexicographic permutations of the 24 elements of the set {1, 2, 3, 4} is 1432. Find the next ten permutations in lexicographic order after 1432. [5marks]
- c) Suppose that a department contains 10 men and 15 women. How many ways are there to select a committee with six members if it must have

i. At most three women? [3 marks]ii. At least 1 woman and at least 1 man? [4 marks]

d) Use the binomial theorem to expand $(x + y)^5$. Hence, find the value of $\frac{32}{243}(1+\frac{1}{2})^5$ using the expression obtained from the expansion of $(x+y)^5$.

[3 marks]

e) Prove that $\binom{n}{2} + \binom{n+1}{2} = n^2$, where n is a positive integer. [4 marks]

f) A test contains 100 true/false questions. How many different ways can a student answer the questions on the test, if answers may be left blank? [2 marks]

a) Given the sets $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 4, 6\}$, calculate the following sets:

i.	A ∪ (B ∩ A)	[1 mark]
ii.	(A ∩ B) ∪ B	[1 mark]
iii.	A - B	[1 mark]
iv.	$(B - A) \cap B$	[1 mark]
v.	A ∪ (B – A)	[1 mark]

b) Prove the following using Venn diagrams:

i.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 [4 marks]
ii. $(A \cap B)' = A' \cup B'$ [3 marks]

c) In propositional logic, a *contradiction* is a compound proposition that is always *false*, no matter what the truth values of the propositional variables that occur in it are. Show by means of a truth table that $p \land \neg (q \lor p)$ is a contradiction.

[6 marks]

d)

i. Define a relation and hence a function.

[2 marks]

ii. Consider the functions

$$f = \{(1,3), (2,5), (3,3), (4,1), (5,2)\}$$

 $g = \{(1,4), (2,1), (3,1), (4,2), (5,3)\}$
from $X = \{1, 2, 3, 4, 5\}$ into X .

State the ranges of f and g and also find the composite function fg. [5 marks]

Q3.

a)

i. Define a recurrence relation.

[1 mark]

ii. What is the solution of the linear homogeneous recurrence relation? $a_n = -2a_{n-1} + 15a_{n-2}$

with
$$a_0 = 0$$
, and $a_1 = 1$ [4 marks]

iii. What is the solution of the linear homogeneous recurrence relation?

$$a_n = 8a_{n-1} - 16a_{n-2}$$

with $a_0 = 1$ and $a_1 = 7$ [4 marks]

b) The Lucas numbers satisfy the linear homogeneous recurrence relation

$$L_n = L_{n-1} + L_{n-2}$$
 with initial conditions $L_0 = 2$ and $L_1 = 1$.

Prove that the solution (explicit formula) to the Lucas numbers is

$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$

[5 marks]

- c) A bank pays 6 % interest annually on savings, compounding the interest yearly. If we deposit \$1000, how much will this deposit be worth 12 years later? [4 marks]
- d) A model for the number of lobsters caught per year is based on the assumption that the number of lobsters caught in a year is the average of the number caught in the two previous years.
 - i. Find a recurrence relation for $\{Ln\}$, where Ln is the number of lobsters caught in year n, under the assumption for this model. [2 marks]
 - ii. Find Ln if 100,000 lobsters were caught in year 1 and 300,000 were caught in year 2. [5 marks]

Q4.

a) Let Q(x, y) be the statement "Student x has taken class y," where the domain for x consists of all students in your class and for y consists of all computer science courses at your school. Express each of these quantifications in English.

i.	$\exists x \exists y Q(x, y)$	[1 mark]
ii.	$\exists x \forall y Q(x, y)$	[1 mark]
iii.	$\forall x \exists y Q(x, y)$	[1 mark]
iv.	$\exists y \forall x Q(x, y)$	[1 mark]
٧.	$\forall y \exists x Q(x, y)$	[1 mark]
vi.	$\forall x \forall y Q(x, y)$	[1 mark]

b) Let W(x, y) mean that student x has visited website y, where the domain for x consists of all students in your school and the domain for y consists of all websites. Express each of these statements by a simple English sentence.

i.	W(Sarah Smith, <u>www.att.com</u>)	[1 mark]
ii.	$\exists x \mathcal{W}(x, \underline{\text{www.imdb.org}})$	[1 mark]
iii.	$\exists y W(\text{José Orez}, y)$	[1 mark]
iv.	$\exists y (W(Ashok Puri, y) \land W(CindyYoon, y))$	[1 mark]

c) Let F(x, y) be the statement "x can fool y," where the domain consists of all people in the world. Use quantifiers to express each of these statements.

i.	Everybody can fool Kanga.	[1 mark]
ii.	Amadou can fool everybody.	[1 mark]
iii.	Everybody can fool somebody.	[1 mark]
iv.	Everyone can be fooled by somebody.	[1 mark]

d) Let P(x), Q(x), and R(x) be the statements "x is a professor," "x is ignorant," and "x is vain," respectively. Express each of these statements in symbolic form using quantifiers; logical connectives; and P(x), Q(x), and R(x), where the domain consists of all people.

i,	No professors are ignorant.	[1 mark]
ii.	All ignorant people are vain.	[1 mark]
iii.	No professors are vain.	[1 mark]
ίv.	There is a professor who is vain	[1 mark]
٧.	Some ignorant people are not vain	[1 mark]
vi.	Prof. Agbotui is both ignorant and vain	[2 marks]

e) Let A(x), C(x), S(x) and GP(x) be the statements "x is an animal," "x is a cat," "x is small," and "x is a good pet," respectively. Express each of these quantifications in English where the universe consists of all animals.

i.	$\forall x \ (C(x) \to A(x))$	[1 mark]
ii.	$-\exists x(C(x) \land \neg S(x))$	[1 mark]
iii.	$\forall x \ (C(x) \to S(x) \land A(x))$	[1 mark]
iν.	$\forall x \ (S(x) \land A(x) \rightarrow GP(x))$	[1 mark]