

Name:

KIT-Fakultät für Informatik

Prof. Dr.-Ing Uwe Hanebeck, Prof. Dr.-Ing. Jörg Henkel

Lösungsblätter zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 26. Februar 2020, 13:00 – 15:00 Uhr

Vorname:

Matrikelnummer:

Digitaltechnik und	Entwurfsverfahren (TI-1)
Aufgabe 1	von 7 Punkten
Aufgabe 2	von 8 Punkten
Aufgabe 3	von 7 Punkten
Aufgabe 4	von 15 Punkten
Aufgabe 5	von 8 Punkten
Rechnerorganisatio	
Aufgabe 6	von 12 Punkten
Aufgabe 7	von 10 Punkten
Aufgabe 8	von 12 Punkten
Aufgabe 9	von 11 Punkten
Gesamtpunktzahl:	
	Note:

2

- 1. DNF von f(c, b, a):
- 2. KV-Diagramm f(c, b, a):

Primimplikate:

KMF von f(c, b, a):

3. Schaltnetz:

4. Schaltnetz:

${\bf Aufgabe~2} \quad \textit{CMOS-Technologie}$

1. CMOS-Schaltnetz:

2. Realisierte Schaltfunktion:

Aufgabe 3 Laufzeiteffekte

1. Zeitdiagramm:

2. Hasardfehler (falls ja, Analyse):

${\bf Aufgabe}~{\bf 4}~~Schaltwerke$

- 1. Anzahl der Zustände:
- 2. Kodierte Ablauftabelle:

	Zustand	Eingabe	Folgezustand	Ausgabe
		x^t		y^t
-				

3. Eingabe-, Ausgabe-, und Zustandsfolgen:

t	L ,	1	2	3	4	5	6	7	8	9	10
Z	i	Z_0		Z_2		Z_2	Z_0		Z_2		Z_1
e(t)	1	0		1		0				1
a(t)	0	0	0				1			1

4. Verläufe der Signale x_0, x_1, x_2 und x_3 :

Aufgabe 5 Rechnerarithmetik & Codes

	-9
1.	Anzahl der Prüfbits:
2.	$21,11_3$ als Dezimalzahl:
3.	$F0, A1_{16}$ als Zahl zur Basis 8:
4.	Bereiche:
	Begründung:
5.	1001 1000 0000 0000 0000 0000 0001 0100 : (a) BCD:
	(b) Vorzeichenlose Dualzahl:
	(c) Gleitkomma-Zahl im IEEE-754-Standard in einfacher Genauigkeit:

Aufgabe 6 MIPS-Assembler

1. C-Kontrollstruktur in MIPS-Assembler:

2. Fehlerfreie Version:

3. Inhalte der Zielregister:

Befeh	ıl		Zielregister =	(z. B. \$s6 = 0x0000 F00A)
subi	\$s1,	\$zero, 0x2		
srl	\$s2,	\$s1, 4		
slti	\$s3,	\$s2, 100		
lui	\$s4,	0x40		
xor	\$s5,	\$s1, \$s4		

4. (a) Registerinhalte:

Register	Inhalt
\$t1	
\$t2	
\$t3	
\$t4	

(b) MIPS-Code zur Speicherung der Adresse von vec im Register \$s0:

Aufgabe 7 Pipelining

1. Datenabhängigkeiten:

2. Pipelinekonflikte:

3. Beseitigung der Konflikte:

4. Problem:

${\bf Aufgabe~8} \quad {\it Cache-Speicher}$

Vorname:

- 1. (a) Blockgröße in Bytes:
 - (b) Anzahl der Einträge:

(c) Cache-Organisation:

2. Speicherbedarf:

3.

Adresse	0	32	96	16	112	32	16	112	64	0
read/write	r	r	r	r	r	r	r	W	W	r
Index	0	2								
Tag	0	0								
Hit/Miss	Miss									

Aufgabe 9 Virtuelle Speicherverwaltung

1. Virtuelle und physikalische Adresse:

2. Anzahl der Seiten:

Anzahl der Einträge in der Seitentabelle:

3. Anzahl der Bits pro Eintrag:

Anzahl der benötigten Seiten für die Seitentabelle:

4. Physikalische Adresse von 5348:

Physikalische Adresse von 6484: