1. Derivadas parciales, rectas tangentes y planos tangentes

1.1. Interpretación de la derivada parcial

- C curva de intersección entre z = f(x, y) y y = b.
- Recta tantente a eta curva en el punto (a, b, f(a, b)):

Derivada: $f_x(x,b)$ Pendiente: $f_x(a,b)$

■ Derivadas parciales: $f_x(a, b)$ resulta ser la pendiente de la recta tangente a la curva f(x, b) en la dirección de x.

$$L = \langle a, b, f(a, b) \rangle + t \langle 1, 0, f(a, b) \rangle$$
 donde: $x = t, y = b, z = f(t, b)$

■ Para encontrar L_2 x = a:

$$x=a,y=t, x=f(z,y) \implies z_y=f_y(a,y) \implies z_y=f_y(a,b)$$
 $z_y=f(a,b)$ es la pendiente de la tangente a la curva $f(a,y)$ en la dirección de y $L_2=\langle a,b,f(a,y)\rangle+t\,\langle 0,1,f_y(a,b)\rangle$

- Estas dos rectas se utilizan para construir un plano tangente a la superficie.
- La ecuación del plano es un plano que es paralelo a $L_1 \& L_2$.

$$L_1 = \langle a, b, f(a, b) \rangle + t \underbrace{\langle 1, 0, f(a, b) \rangle}_{v_2}$$

$$L_2 = \langle a, b, f(a, b) \rangle + t \underbrace{\langle 0, 1, f(a, b) \rangle}_{v_2}$$

La ec. vectorial:

$$\hat{n} \cdot (-r_0) = 0$$
 $\vec{r_0} = \langle a, b, f(a, b) \rangle$

terminar excursión.

1.2. Ejercicios

■ Encuentre el plano tangenge a la superficie $z = \ln(x - 2y)$ en el punto (3, 1, 0):

$$f(a,b) \quad f_x(a,b) \quad f_y(a,b) \quad a = 3, \ b = 1$$

$$f(3,1) = \ln(3-2) = \ln(1) = 0$$

$$\frac{\partial f}{\partial x} = \frac{1}{x-2y} \quad \frac{\partial f}{\partial x} \Big|^{(3,1)} = \frac{1}{3-2} = 1$$

$$\frac{\partial f}{\partial y} = \frac{-2}{x-2y} \quad \frac{\partial f}{\partial y} \Big|^{(3,1)} = \frac{-2}{3-2} = -2$$

$$z = f(3,1) + f_x(x-3) + f_y(y-1)$$

La ecuación del plano tangente:

$$z = 0 + x - 3 - 2y + 2$$

$$\therefore z = x - 2y - 1$$

2. Aproximaciones lineales

- La aproximación lienal de z = f(x, y), linearización.
- ullet La aproximación lineal de z en (a,b) es el plano tangente a la superficie.

$$L(x,y) = f(a,b) + \frac{\partial}{\partial x}$$

2.1. Ejercicios

Considere la función $f(x,y) = \sqrt{2x + 2e^y}$:

■ Encuentre la aproximación lineal de f en el punto (7,0): Encuentre f(7,0) $f_y(7,0)$

$$\begin{split} f(7,0) &= \sqrt{14+2} = 4 \\ f_x(x,y) &= (2x+2e^y)^{-\frac{1}{2}} \qquad f_x(0,7) = \frac{1}{\sqrt{14+2}}?\frac{1}{4} \\ f_y(x,y) &= \frac{e^y}{\sqrt{2x+2e^y}} \qquad f_y(7,0) = \frac{1}{\sqrt{14+2}}?\frac{1}{4} \\ &\therefore \text{ La aproximación lineal o plano tangente: } L = 4 + \frac{1}{4}(x-7) + \frac{1}{4}y \end{split}$$
 Cerca de (7,0): $\sqrt{2x+2e^y} \approx \frac{9}{4} + \frac{1}{4}x + \frac{1}{4}y$

 \blacksquare Utilice la aproximación lineal para aproximar el valor de $\sqrt{8+2e}$:

$$f(4,1) = \sqrt{8+2e} \approx 3.5 \approx L(4,1)$$

$$L(4,1) = \frac{9}{4} + \frac{4}{4} + \frac{1}{4} = \frac{7}{2} = 3.5$$
 En realidad : $\sqrt{8+2e} \approx 3.665592$

■ Ejercicio 3: Encuentre la aproximación lineal de $g(x,y) = 1 + \ln(xy - 5)$ en el punto (2,3):

$$g(2,3) = 1 + 2\ln(6-5) = 1 + 0 = 1$$

$$g_x(x,y) = 0 + 1 \cdot \ln(xy-5) + \frac{xy}{xy-5}$$

$$g_x(2,3) = \ln(1) + \frac{6}{6-5} = 0 + \frac{6}{1} = 6$$

$$g_y(x,y) = 0 + \frac{x \cdot x}{xy-5}$$

$$g_y(2,3) = \frac{4}{6-5} = 4$$

La aproximación lineal entonces es:

$$L(x,y) = 1 + 6(x-2) + 4(y-3)$$
$$L(x,y) = -23 + 6x + 4y$$

3. 12.4 Derivadas implicitas y 12.5 Regla de la cadena

- Funciones 2 variables z = f(x, y)
- \blacksquare Explícita: z no está sólo en función de x & y.
- Ejemplos: $x^2 + y^2 + z^2 = 16, \sqrt{z^2 x^2} = y + z$
- ¿Cómo se encuet
nran $\frac{\partial z}{\partial x}$ & $\frac{\partial z}{\partial y}$?:
 - Implicita $x^2 + y^2 + z^2 = 16$ es una esfera de 4 (rango [-4,4]) en dos hemisferios:

$$z = +\sqrt{16 - x^2 - y^2}$$

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{1}{2}(16 - x^2 - y^2)^{-\frac{1}{2}}(-2x) = \frac{-x}{\sqrt{16 - x^2 - y^2}} = -\frac{x}{z} \\ \frac{\partial z}{\partial y} &= -\frac{y}{z} \end{split}$$

lacktriangle Derivación implicita, se pueden encontrar $z_x\ \&\ z_y$ sin necesidad de resolver para z.

$$x^{2} + y^{2} + z^{2} = 16 z & y \text{ son independientes}$$

$$\frac{\partial}{\partial x}(x^{2} + y^{2} + z^{2}(x, y)) = \frac{\partial}{\partial x}(16)$$

$$2x + 0 + 2z\frac{\partial z}{\partial x} = 0$$

$$2z\frac{\partial z}{\partial x} = -2x \implies \frac{\partial z}{\partial x}?\frac{-x}{z}$$

$$\frac{\partial}{\partial y}(x^{2} + y^{2} + z^{2}) = \frac{\partial}{\partial y}(0)$$

$$0 + 2y + 2z\frac{\partial z}{\partial y} = 0 \implies \frac{\partial z}{\partial y} = \frac{-y}{z}$$

3

3.1. Derivación parcial implícita abreviada

- $x^2 + y^2 + z^2 = 16$ como $x \ln(y) + x^2 \sqrt{1 + x + z} = k$
- \blacksquare Forma implícita: F(x,y,z(x,y))= constante. $\frac{\partial z}{\partial x}$ use la regla de la cadena.

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0 \quad \Longrightarrow \quad z_x = -\frac{f_x}{f_z}$$

$$\frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} = 0 \quad \Longrightarrow \quad z_y = -\frac{f_y}{f_z}$$

3.2. Ejercicios

Encuentre las primeras derivadas parciales de z.

1. $\ln(zy) + 9z - xyz = 1$:

$$\begin{array}{ccc} F_x = -yz & \frac{\partial z}{\partial x} = -\frac{F_x}{F_y} = \frac{yz}{z^{-1} + 9 - xy} \\ F_y = y^{-1} + 0 - xy & \frac{\partial z}{\partial y} = \frac{xz - y^{-1}}{z^{-1} + 9 - xy} \\ F_z = z^{-1} + 9 - xy & \frac{\partial z}{\partial y} = \frac{xz - y^{-1}}{z^{-1} + 9 - xy} \end{array}$$

- # Sin derivación parcial implícita
- # z(x,y) agregue z_x cada vez que aparece z.

$$\frac{yz_x}{z_y} + 9z_x - y_x$$