Project1: Global Sequence Assignment

Lu Zhicong

November 25, 2022

1 Problem Discription

1.1 Problem

Given 2 nucleotide or amino acid sequences X, Y and a scoring function F.

$$X = (x_1, x_2, ..., x_m)$$

 $Y = (y_1, y_2, ..., y_n)$

Introduce a symbol '-' for gap.

Global Alignment is to give a pair (X',Y')

$$X' = (x'_1, x'_2, ..., x'_j, ...x'_N)$$

$$Y' = (y'_1, y'_2, ..., y'_j, ..., y'_N)$$

such that:

$$x'_{j} = \begin{cases} x_{i} & x_{i} \in X \\ \ddots & \text{if gap} \end{cases}$$
$$y'_{j} = \begin{cases} y_{i} & y_{i} \in Y \\ \ddots & \text{if gap} \end{cases}$$
$$x'_{i} \neq \text{'-'} \text{ OR } y'_{i} \neq \text{'-'}$$

After removing '-' from X' we must get X, from Y' we must get Y. Given Score Function that:

$$F(x'_{j}, y'_{j}) = \begin{cases} score_{match} & \text{if } x'_{j} = y'_{j} \\ score_{mismatch} & \text{if } x'_{j} \neq \text{'-'} \text{ and } y_{j} \neq \text{'-'} \text{ and } x'_{j} \neq y_{j} \\ score_{gap} & \text{if } x'_{j} = \text{'-'} \text{ or } y'_{j} = \text{'-'} \end{cases}$$

To maximize the

$$Score_{total} = \sum_{j=1,2,\dots,N} F(x'_j, y'_j).$$

1.2 Input And Output

Input 2 sequences of nucleotide or amino acid in the FASTA format.

Output Score Matrix, Optimal Alignment, Best Score

To represent the alignment in a visible way, the X' and Y' are printed with fixed length for each line and and the symbol '|' is used between the sequence of X' and Y'.

For Example:

path_0>
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPL
MALWMRLLPLLALLALWEPNPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKSRRGVEDPQVTQLELGGGPGAGDLQTL
ALEGSLQKRGIVEQCCTSICSLYQLENYCN
ALEVAQQKRGIVDQCCTSICSLYQLENYCN

2 Methods

2.1 Needleman-Wunsch algorithm

Needleman-Wunsch Algorithm is a method to find the optimal alignment with the highest score.

The Needleman-Wunsch Algorithm is based on dynamic programming.

We use a Score Matrix to calculate the optimal score and a corresponding Array Matrix for returning the optimal alignment path.

score[i][j] represents the optimal score for the (sub) global alignment X_i', Y_j' of two subsequences

$$X_i = (x_1, ..., x_i)$$

and

$$Y_i = (y_1, ..., y_j)$$

which start from x_1 , y_1 and end with x_i and y_j .

The (sub) global alignment X'_i, Y'_j of sub-sequences X_i, Y_j can be calculated from former positions in at most 3 situations:

- 1. Add both x_i and y_j to the ends of X'_{i-1} and Y'_{j-1} ; In this case, the delta score depends on if $x_i = y_j$.
- 2. Keep $X'_i = X'_{i-1}$ but add y_j to the end of Y'_{j-1} ; In this case, the delta score will be the gap punishing score.
- 3. Keep $Y'_i = Y'_{i-1}$ but add x_j to the end of X'_{j-1} ; In this case, the delta score will be the gap punishing score.

In each step, we choose the maximum score from the 3 options, and update the Score Matrix.

The X'_0 and Y'_0 are set to empty strings at the beginning.

If the score is one of the best one(s), we set an arrow into the arrow matrix for retrieving the optimal path.

2.2 Score Matrix

Initialization For (0, 0) we set score[0][0] = 0.

DP State Transition Function

$$score[i][j] = Max \begin{cases} score[i-1,j-1] + F(x_i',y_j'); & \text{if } i-1>=0 \text{ and } j-1>=0, \\ score[i-1,j] + F(x_i', \dot{}-\dot{}); & \text{if } i-1>=0, \\ score[i,j-1] + F(\dot{}-\dot{},y_j'); & \text{if } j-1>=0, \end{cases}$$

The Global Optimal Score score[m, n] is the global optimal score because in this case the subsequences are the sequences themselves.

2.3 Arrow Matrix

If the score is one of the best one(s), we set an arrow into the arrow matrix for retrieving the optimal path.

- if $score[i][j] = score[i-1,j-1] + F(x_i',y_j')$, we set arrow from (i, j) to (i-1, j-1);
- if $score[i][j] = score[i-1,j] + F(x'_i, '-')$, we set arrow from (i, j) to (i-1, j);
- if $score[i][j] = score[i, j-1] + F('-', y_i')$, we set arrow from (i, j) to (i, j-1)

After calculating the whole matrix, we retrive the optimal path from the last cell [m, n] using Deep First Search towards [0,0] until we have found enough optimal paths.

3 Results

Homologous genes alignment

seq1: NM 033034.3

Homo sapiens tripartite motif containing 5 (TRIM5), transcript variant alpha, mRNA seq2: NM 001032910.1

Macaca mulatta tripartite motif containing 5 (TRIM5), mRNA

1. match=2, mismatch=-1, gap=0

best score: 5666.0

2. match=2, mismatch=-1, gap=-2.5

best score: 4511.0

Human and hamster insulin protein alignment

seq1: AAA59172.1 insulin [Homo sapiens]

MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQV GPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

seq2: XP 003508128.1 insulin [Cricetulus griseus]

MALWMRLLPLLALLALWEPNPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKSRRGVEDPQVGPGAGDLQTLALEVAQQKRGIVDQCCTSICSLYQLENYCN

1. match=2, mismatch=-1, gap=0

best score: 190.0

2. match=2, mismatch=-1, gap=-2.5

best score: 175.0

4 Discussion

1. The complexity of this 2-dimensional dynamic programming algorithm is $O(n^2)$. However, the complexity of retrieving all the optimal paths depends on the number P of elements that have multiple arrows and brings an exponentially increasing complexity $O(2^P)$.

To control the total time complexity, we use a parameter maximum_size to restrict the number of returning paths. We do the Deep First Search until we have found maximum size paths.

2. We can represent arrow using a integer flag using bit-encode:

```
arrow to (i-1, j-1): flag +=1;
arrow to (i-1, j): flag +=2;
arrow to (i, j-1): flag +=4
so we can get:
if flag & 1: there is an arrow from (i,j) to (i-1, j-1);
if flag & 2: there is an arrow from (i,j) to (i-1, j);
if flag & 4: there is an arrow from (i,j) to (i, j-1)
```

3. In the experiments, two Score Functions are used. One of them punishes gapping stronger than mismatching, and the other does not punish gapping(score=0). 0 is the maximum score we can give gapping, because a positive score will give bonus to the bahavior of dropping the matching for prelonging the alignment sequences.

5 Conclusion

We implement the Needleman-Wunsch Algorithm for global sequence alignment and retrieve multiple optimal paths using Deep First Search.

We test it on 2 datasets for aligning nucleotide sequences or amino acid sequences.

We also test the effects of different scoring functions, which control the preferences for mismatching or gapping.