CMPSC 465 Data Structures and Algorithms Spring 2022

Instructor: Chunhao Wang

Greedy algorithms

Greedy algorithms

Set Cover (Textbook Section 5.4)

Problem (Set Cover)

Problem (Set Cover)

Input:

Problem (Set Cover)

Input:

a set B

Problem (Set Cover)

Input:

- a set B
- subsets $S_1, \ldots, S_m \subseteq B$

Problem (Set Cover)

Input:

- a set B
- subsets $S_1, \ldots, S_m \subseteq B$

Output: a collection of subsets S_{i_1}, \ldots, S_{i_k} s.t. $\bigcup_{j=1}^k S_{i_j} = B$

Problem (Set Cover)

Input:

- a set B
- subsets $S_1, \ldots, S_m \subseteq B$

Output: a collection of subsets S_{i_1}, \ldots, S_{i_k} s.t. $\bigcup_{j=1}^k S_{i_j} = B$

Goal: minimize the number of selected subsets

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, \dots, k\}$$

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, ..., k\}$$

 $S_a = \{a, b, d, e, h, i, k\}$

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, ..., k\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_b = \{b, c, a, d\}$$

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, ..., k\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_b = \{b, c, a, d\}$$

$$\vdots$$

$$S_k = \{k, a, h, i, j\}$$

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, ..., k\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_b = \{b, c, a, d\}$$

$$\vdots$$

$$S_k = \{k, a, h, i, j\}$$

 S_x : the towns within 30 miles of x

Greedy heuristic: choose the next subset with the most number of uncovered items, until *B* gets covered

Mar 31, 2022

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_f = \{f, g, e\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$
 $S_c = \{c, b, d\}$

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$
 $S_c = \{c, b, d\}$
 $S_j = \{i, k, j, h\}$

Greedy heuristic: choose the next subset with the most number of uncovered items, until *B* gets covered

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$
 $S_c = \{c, b, d\}$
 $S_j = \{i, k, j, h\}$

Is this optimal?

Greedy heuristic: choose the next subset with the most number of uncovered items, until *B* gets covered

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$
 $S_c = \{c, b, d\}$
 $S_j = \{i, k, j, h\}$

Is this optimal?

Optimal solution: S_b, S_e, S_i

Although the greedy solution is not optimal, but it's not off by much

Although the greedy solution is not optimal, but it's not off by much

Theorem

Assume |B| = n and the optimal solution uses k subsets.

Although the greedy solution is not optimal, but it's not off by much

Theorem

Assume |B| = n and the optimal solution uses k subsets. Then the greedy algorithm uses at most $k \ln(n)$ subsets

Although the greedy solution is not optimal, but it's not off by much

Theorem

Assume |B| = n and the optimal solution uses k subsets. Then the greedy algorithm uses at most $k \ln(n)$ subsets

ln(n): approximation ratio

Although the greedy solution is not optimal, but it's not off by much

Theorem

Assume |B| = n and the optimal solution uses k subsets. Then the greedy algorithm uses at most $k \ln(n)$ subsets

ln(n): approximation ratio

More about approximation algorithms: CSE 565

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations.

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations. These remaining n_t elements are covered by the optimal k subsets.

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations. These remaining n_t elements are covered by the optimal k subsets. So some subsets has $\geq \frac{n_t}{k}$ of these uncovered elements.

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations. These remaining n_t elements are covered by the optimal k subsets. So some subsets has $\geq \frac{n_t}{k}$ of these uncovered elements, and the greedy algorithm will pick a set of size at least $\frac{n_t}{k}$.

Repeatedly applying this:

Repeatedly applying this:

$$n_t \le n_{t-1} \left(1 - \frac{1}{k}\right) \le n_{t-2} \left(1 - \frac{1}{k}\right)^2 \le \dots \le n_0 \left(1 - \frac{1}{k}\right)^t = n \left(1 - \frac{1}{k}\right)^t$$

Repeatedly applying this:

$$n_t \le n_{t-1} \left(1 - \frac{1}{k} \right) \le n_{t-2} \left(1 - \frac{1}{k} \right)^2 \le \dots \le n_0 \left(1 - \frac{1}{k} \right)^t = n \left(1 - \frac{1}{k} \right)^t$$

Using the fact: $1 - x \le e^{-x}$ (equality when x = 0)

$$n_t \le n \left(1 - \frac{1}{k}\right)^t \le n e^{-t/k}$$

Repeatedly applying this:

$$n_t \le n_{t-1} \left(1 - \frac{1}{k} \right) \le n_{t-2} \left(1 - \frac{1}{k} \right)^2 \le \dots \le n_0 \left(1 - \frac{1}{k} \right)^t = n \left(1 - \frac{1}{k} \right)^t$$

Using the fact: $1 - x \le e^{-x}$ (equality when x = 0)

$$n_t \le n \left(1 - \frac{1}{k}\right)^t \le n e^{-t/k}$$

Greedy algorithm terminates when $n_t < 1$. Let's find out what t makes $n_t < 1$

Mar 31, 2022

Since $n_t < ne^{-t/k},$ it suffices to make $ne^{-t/k} \leq 1$ Solving $ne^{-t/k} \leq 1$

Solving
$$ne^{-t/k} < 1$$

$$\iff e^{-t/k} \le \frac{1}{n} \iff -\frac{t}{k} \le \ln(\frac{1}{n}) \iff t \ge -k \ln(\frac{1}{n}) = k \ln(n)$$

Solving
$$ne^{-t/k} \leq 1$$

$$\iff e^{-t/k} \leq \frac{1}{n} \iff -\frac{t}{k} \leq \ln(\frac{1}{n}) \iff t \geq -k \ln(\frac{1}{n}) = k \ln(n)$$

At $t = k \ln(n)$, $n_t < 1$. Everything is covered

Solving
$$ne^{-t/k} \leq 1$$

$$\iff$$
 $e^{-t/k} \le \frac{1}{n} \iff -\frac{t}{k} \le \ln(\frac{1}{n}) \iff t \ge -k \ln(\frac{1}{n}) = k \ln(n)$

At $t = k \ln(n)$, $n_t < 1$. Everything is covered

Proof of the fact $1 - x \le e^{-x}$ (equality when x = 0):

Solving
$$ne^{-t/k} \leq 1$$

$$\iff$$
 $e^{-t/k} \le \frac{1}{n} \iff -\frac{t}{k} \le \ln(\frac{1}{n}) \iff t \ge -k \ln(\frac{1}{n}) = k \ln(n)$

At $t = k \ln(n)$, $n_t < 1$. Everything is covered

Proof of the fact $1 - x \le e^{-x}$ (equality when x = 0):

Consider
$$f(x) = e^{-x} - (1 - x) \ge 0$$

Solving
$$ne^{-t/k} \leq 1$$

$$\iff e^{-t/k} \le \frac{1}{n} \iff -\frac{t}{k} \le \ln(\frac{1}{n}) \iff t \ge -k \ln(\frac{1}{n}) = k \ln(n)$$

At $t = k \ln(n)$, $n_t < 1$. Everything is covered

Proof of the fact $1 - x \le e^{-x}$ (equality when x = 0):

Consider
$$f(x) = e^{-x} - (1 - x) \ge 0$$

$$f'(x) = -e^{-x} + 1$$
. Critical point at $x = 0$, achieving minimum