### **Network Simplex Method**

**Combinatorial Problem Solving (CPS)** 

Enric Rodríguez-Carbonell

April 26, 2019

### **Network Programs**

■ A network program is of the form

$$\min_{Ax = b} c^T x$$
$$\ell \le x \le u,$$

where  $c \in \mathbb{R}^m$ ,  $b \in \mathbb{R}^n$  and  $A \in \{-1, 0, 1\}^{n \times m}$  has the following property:

each column has exactly one 1 and one -1 (and so the remaining coefficients are 0)

lacksquare Note that n is the number of constraints and m is the number of variables

### **Network Programs**

A network program is of the form

$$\min_{Ax = b} c^T x$$
$$\ell \le x \le u,$$

where  $c \in \mathbb{R}^m$ ,  $b \in \mathbb{R}^n$  and  $A \in \{-1, 0, 1\}^{n \times m}$  has the following property:

each column has exactly one 1 and one -1 (and so the remaining coefficients are 0)

**Example:**  $\min x_1 + x_2 + 3x_3 + 10x_4$ 

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ -5 \end{pmatrix}$$

$$0 \le x_1 \le 4$$
  $0 \le x_3 \le 4$   $0 \le x_2 \le 2$   $0 \le x_4 \le 10$ 

#### Minimum Cost Flow Problems

- Network programs can be seen as minimum cost flow problems in a graph
- We associate a digraph G = (V, E) to the matrix of a network program:
  - lacktriangle Vertices V correspond to rows (constraints)
  - lacktriangle Edges E correspond to columns (variables)
  - lacktriangle A column with a 1 at row i and a -1 at row k gives an edge (i,k)

#### Minimum Cost Flow Problems

- Network programs can be seen as minimum cost flow problems in a graph
- lacktriangle We associate a digraph G=(V,E) to the matrix of a network program:
  - lacktriangle Vertices V correspond to rows (constraints)
  - lacktriangle Edges E correspond to columns (variables)
  - lacktriangle A column with a 1 at row i and a -1 at row k gives an edge (i,k)
- Then we can reinterpret the other elements of the network program:
  - lacktriangle Each variable  $x_j$  is the flow sent along the j-th edge
  - lack The cost of sending 1 unit of flow is  $c_j$
  - lacktriangle Flow cannot exceed capacity  $u_i$
  - lack There must be a minimum flow  $\ell_i$  (usually, 0)
  - lacktriangle Total production of flow at vertex i is determined by  $b_i$
- So solving the network program consists in finding the feasible flow along the graph that minimizes the cost

#### Minimum Cost Flow Problems

$$\min x_1 + x_2 + 3x_3 + 10x_4 
\begin{pmatrix}
1 & 0 & 1 & 1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & -1 & -1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix} = \begin{pmatrix}
5 \\
0 \\
-5
\end{pmatrix}$$

$$0 \le x_1 \le 4 \\
0 \le x_2 \le 2$$

$$0 \le x_4 \le 10$$

$$2 \qquad \{0\}$$

$$[1,0,4] \overset{x_1}{\leadsto} [c_j, \ell_j, u_j]$$

$$x_3 \\
[3,0,4]$$

$$x_4 \\
[10,0,10]$$

$$x_4 \\
[10,0,10]$$

$$x_4 \\
[10,0,10]$$

### **Network Simplex Method**

- Network programs satisfy Hoffman & Gale's conditions. So simplex method is guaranteed to give integer solutions (if  $\ell, u, b$  in  $\mathbb{Z}$ )
- Moreover we can specialize the simplex method for network programs
- This lecture is devoted to this specialization: the network simplex method
- In the first place we need to revisit a bit of graph theory

### Vertex-Edge Incidence Matrix

- The vertex-edge incidence matrix of digraph G = (V, E) is a matrix A s.t.:
  - Rows are labelled by vertices
  - ◆ Columns are labelled by edges
  - lacktriangle For each  $v \in V$  and  $e \in E$ , coefficient  $a_{v,e}$  of A is
    - 1 if  $e = (v, \cdot)$
    - $\bullet$  -1 if  $e = (\cdot, v)$
    - 0 otherwise
- Given a network program whose matrix is A, the vertex-edge incidence matrix of its associated digraph is precisely A

## Vertex-Edge Incidence Matrix



- A path is a finite sequence  $P=(v_1,e_1,v_2,\ldots,v_K,e_K,v_{K+1})$  such that either  $e_k=(v_k,v_{k+1})$  or  $e_k=(v_{k+1},v_k)$  for all  $1\leq k\leq K$
- Note that paths can invert the orientation of edges
- The orientation sequence of a path P is  $(O_P(e_1), \ldots, O_P(e_k))$ , where

$$O_P(e_k) \begin{cases} +1 & \text{if } e_k = (v_k, v_{k+1}) \\ -1 & \text{if } e_k = (v_{k+1}, v_k) \\ 0 & \text{otherwise} \end{cases}$$

A cycle is a path such that the initial and the final vertices are the same



(3,4,1,1,2) is a path with orientation sequence (-1,1)

■ **Prop.** Let  $P = (v_1, e_1, v_2, \dots, v_K, e_K, v_{K+1})$  be a path. Then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}},$$

where  $a_e$  is the column of e in the vertex-edge incidence matrix A, and  $e_v$  is the v-th unit vector, i.e., all zeroes except for a 1 at index v

■ **Prop.** Let  $P = (v_1, e_1, v_2, \dots, v_K, e_K, v_{K+1})$  be a path. Then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}},$$

where  $a_e$  is the column of e in the vertex-edge incidence matrix A, and  $e_v$  is the v-th unit vector, i.e., all zeroes except for a 1 at index v

*Proof.* Let k be s.t.  $1 \le k \le K$ . There are two cases:

1. If 
$$e_k = (v_k, v_{k+1})$$
 then  $a_{e_k} = e_{v_k} - e_{v_{k+1}}$  and  $O_P(e_k) = 1$ 

2. If 
$$e_k = (v_{k+1}, v_k)$$
 then  $a_{e_k} = \mathbf{e}_{v_{k+1}} - \mathbf{e}_{v_k}$  and  $O_P(e_k) = -1$ 

In any case 
$$O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_k} - \mathbf{e}_{v_{k+1}}$$
. So

$$\sum_{k=1}^{K} O_{P}(e_{k}) \cdot a_{e_{k}} = (\mathbf{e}_{v_{1}} - \mathbf{e}_{v_{2}}) + (\mathbf{e}_{v_{2}} - \mathbf{e}_{v_{3}}) + \ldots + (\mathbf{e}_{v_{K}} - \mathbf{e}_{v_{K+1}}) = \mathbf{e}_{v_{1}} - \mathbf{e}_{v_{K+1}}$$

**Prop.** Let  $P=(v_1,e_1,v_2,\ldots,v_K,e_K,v_{K+1})$  be a path. Then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}},$$

where  $a_e$  is the column of e in the vertex-edge incidence matrix A, and  $e_v$  is the v-th unit vector, i.e., all zeroes except for a 1 at index v

**Cor.** If  $C = (v_1, e_1, v_2, \dots, v_K, e_K, v_{K+1})$  is a cycle, the columns  $a_{e_1}, a_{e_2}, \dots, a_{e_K}$  of A are linearly dependent.

**Prop.** Let  $P=(v_1,e_1,v_2,\ldots,v_K,e_K,v_{K+1})$  be a path. Then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}},$$

where  $a_e$  is the column of e in the vertex-edge incidence matrix A, and  $e_v$  is the v-th unit vector, i.e., all zeroes except for a 1 at index v

**Cor.** If  $C = (v_1, e_1, v_2, \dots, v_K, e_K, v_{K+1})$  is a cycle, the columns  $a_{e_1}, a_{e_2}, \dots, a_{e_K}$  of A are linearly dependent.

*Proof.* If  $v_1 = v_{K+1}$  then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}} = 0$$



Path P = (3, 4, 1, 1, 2) has orientation sequence (-1, 1)

$$\sum_{k=1}^{K} O_{P}(e_{k}) \cdot a_{e_{k}} = (-1) \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + (1) \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \mathbf{e}_{3} - \mathbf{e}_{2}$$

#### **Trees**

- A graph is
  - acyclic if it has no cycles
  - lacktriangle connected if for any pair of vertices u, v there is a path from u to v
  - ◆ a tree if it is acyclic and connected
- **Thm.** For a graph T with at least one vertex the following are equivalent:
  - lack T is a tree
  - lacktriangle For any pair of vertices u, v there is a unique path from u to v
  - ◆ T has one less edge than vertices and is connected
  - lacktriangle T has one less edge than vertices and is acyclic
- lacktriangle A subgraph S of G is spanning if it covers all vertices in G
- **Thm.** Every connected graph has a subgraph that is a spanning tree.

#### **Trees**

**Thm.** For any T subgraph of G that is a tree with at least two vertices, the columns  $\{a_e \mid e \in T\}$  of A are linearly independent.

#### **Trees**

**Thm.** For any T subgraph of G that is a tree with at least two vertices, the columns  $\{a_e \mid e \in T\}$  of A are linearly independent.

*Proof.* By contradiction.

Let T be a tree with the minimum number of vertices N such that  $\{a_e \mid e \in T\}$  are linearly dependent, i.e., there are  $\lambda_e$  not all null s.t.

$$\sum_{e \in T} \lambda_e a_e = 0$$

If N=2 then T would have one edge, say e, and  $a_e\neq 0$ 

So N>2. Let v be a leaf of T and let  $e_v$  be the only edge in T that has v as an endpoint. Let T' be the tree obtained from T by removing  $e_v$ . From

$$\lambda_{e_v} a_{e_v} + \sum_{e \in T, e \neq e_v} \lambda_e a_e = 0$$

by projecting onto the row of v we have  $\lambda_{e_v} = 0$ .

Hence the tree T' is a subgraph of G with  $N-1\geq 2$  vertices whose columns are linearly dependent. Contradiction!



Edges  $\{4,1\}$  induce a subgraph that is a tree, and

$$\operatorname{rank} \left( \begin{array}{cc} 1 & 1 \\ 0 & -1 \\ -1 & 0 \end{array} \right) = 2$$

**Thm.** If G is a connected graph with n>0 nodes then  $\operatorname{rank}(A)=n-1$ 

■ Thm. If G is a connected graph with n>0 nodes then rank(A)=n-1

*Proof.* G has a spanning tree T, which has n-1 edges.

Its columns are linearly independent, so  $rank(A) \ge n - 1$ .

But since adding all rows of A we get 0, finally rank(A) = n - 1.

- Thm. If G is a connected graph with n > 0 nodes then rank(A) = n 1
- Let us assume graphs of network programs are connected, so  $m \ge n-1$  (otherwise, work independently on the connected components)
- So the matrix of a network program has rank n-1. But the simplex method requires to have a full-rank matrix!
- We add an extra variable w with a unit column  $e_r$ , where r is taken arbitrarily from  $\{1, \ldots, n\}$ , and such that it is forced to have value 0:

$$\begin{aligned} & \min \ c^T x \\ & Ax + \mathbf{e}_r \, w = b \\ & \ell \leq x \leq u, \\ & 0 < w < 0 \end{aligned}$$

- Thm. If G is a connected graph with n > 0 nodes then rank(A) = n 1
- Let us assume graphs of network programs are connected, so  $m \ge n-1$  (otherwise, work independently on the connected components)
- So the matrix of a network program has rank n-1. But the simplex method requires to have a full-rank matrix!
- We add an extra variable w with a unit column  $e_r$ , where r is taken arbitrarily from  $\{1, \ldots, n\}$ , and such that it is forced to have value 0:

$$\min_{ c \in X} c = b$$

$$\ell \le x \le u,$$

$$0 \le w \le 0$$

We associate to such a reformulated network program a rooted graph with root vertex r and root edge w ("going nowhere")

Here we choose as a root vertex r=2

**Thm.** Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then  $B = e_r \cup \{a_e \mid e \in T\}$  is basis of  $(A \mid e_r)$ 

**Thm.** Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then  $B = \mathbf{e}_r \cup \{a_e \mid e \in T\}$  is basis of  $(A \mid \mathbf{e}_r)$ 

*Proof.* Let n be the number of vertices of G. As T is a spanning tree, T has n-1 edges. Hence  $B=\mathbf{e}_r\cup\{a_e\mid e\in T\}$  has n columns.

Let us prove that B spans  $\mathbb{R}^n$ , i.e., that for any  $1 \leq i \leq n$  we can write  $\mathbf{e}_i$  as linear combination of columns of B Two cases:

- lacktriangle If i=r: trivial
- If  $i \neq r$ , let  $P = (v_1 = i, e_1, v_2, \dots, v_K, e_K, v_{K+1} = r)$  be a path in T from vertex i to vertex r. As

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_i - \mathbf{e}_r$$

we have

$$\mathbf{e}_r + \sum_{k=1}^K O_P(e_k) \cdot a_{e_k} = \mathbf{e}_i$$

Altogether B is a basis for  $(A \mid \mathbf{e}_r)$ 

**Thm.** Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then  $B = \mathbf{e}_r \cup \{a_e \mid e \in T\}$  is basis of  $(A \mid \mathbf{e}_r)$ 

*Proof.* Let n be the number of vertices of G. As T is a spanning tree, T has n-1 edges. Hence  $B=\mathbf{e}_r\cup\{a_e\mid e\in T\}$  has n columns.

Let us prove that B spans  $\mathbb{R}^n$ , i.e., that for any  $1 \leq i \leq n$  we can write  $\mathbf{e}_i$  as linear combination of columns of B Two cases:

- lacktriangle If i=r: trivial
- If  $i \neq r$ , let  $P = (v_1 = i, e_1, v_2, \dots, v_K, e_K, v_{K+1} = r)$  be a path in T from vertex i to vertex r. As

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_i - \mathbf{e}_r$$

we have

$$\mathbf{e}_r + \sum_{k=1}^K O_P(e_k) \cdot a_{e_k} = \mathbf{e}_i$$

Altogether B is a basis for  $(A \mid e_r)$ 

lacksquare Cor.  $\operatorname{rank}(A \mid \mathbf{e}_r) = n$ 

**Thm.** Let A be the matrix of a rooted graph G with root vertex r. If B is basis of  $(A \mid e_r)$  then  $e_r \in B$  and  $\{e \mid a_e \in B\}$  is spanning tree of G

**Thm.** Let A be the matrix of a rooted graph G with root vertex r. If B is basis of  $(A \mid e_r)$  then  $e_r \in B$  and  $\{e \mid a_e \in B\}$  is spanning tree of G

*Proof.* Let n be the number of vertices of G as usual.

Since  $\operatorname{rank}(A) = n - 1$  and  $\operatorname{rank}(A \mid \mathbf{e}_r) = n$  we have that  $\mathbf{e}_r \in B$ . So the graph T induced by  $\{e \mid a_e \in B\}$  has n - 1 edges.

Moreover, by linear independence, T cannot contain cycles.

Hence T has at least (n-1)+1=n vertices. But G has n vertices.

Thus T has exactly n vertices, and so is spanning.

Since T has one less edge than vertex and is acyclic, it must be a tree.

All in all, T is a spanning tree.







$$B = \left(\begin{array}{rrr} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right)$$





$$B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{array}\right)$$

## Specializing the Simplex Method

■ Where do we use the basis inverse in the simplex method?

## Specializing the Simplex Method

- 1. Initialization: Find an initial feasible basis B Compute  $B^{-1}, \beta = B^{-1}b, z = c_B^T\beta$
- 2. Pricing: Compute  $\pi^T = c_{\mathcal{B}}^T B^{-1}$  and  $d_j = c_j \pi^T a_j$ . If for all  $j \in \mathcal{R}, d_j \geq 0$  then return OPTIMAL Else let q be such that  $d_q < 0$ . Compute  $\alpha_q = B^{-1} a_q$
- 3. Ratio test: Compute  $\mathcal{I} = \{i \mid 1 \leq i \leq m, \alpha_q^i > 0\}$ . If  $\mathcal{I} = \emptyset$  then return UNBOUNDED Else compute  $\theta = \min_{i \in \mathcal{I}}(\frac{\beta_i}{\alpha_q^i})$  and p such that  $\theta = \frac{\beta_p}{\alpha_q^p}$

Go to 2.

### Specializing the Simplex Method

- Where do we use the basis inverse in the simplex method?
  - In pricing: we compute the multipliers  $\pi^T = c_{\mathcal{B}}^T B^{-1}$
  - In ratio test: we compute the q-th column of the tableau  $\alpha_q = B^{-1}a_q$
  - In initialization: we compute the initial basic solution  $\beta = B^{-1}b$

#### ■ Equivalently:

- In pricing: we solve the equation  $y^TB = c_B^T$  (and then set  $\pi = y$ )
- In ratio test: we solve the equation  $Bx = a_q$  (and then set  $\alpha_q = x$ )
- In initialization: we solve the equation Bx = b (and then set  $\beta = x$ )
- These equations can be efficiently solved with the graph representation
- So the network simplex method doesn't require to maintain basis inverses

# Solving $y^T B = c^T$

- Let A be the matrix of a rooted graph G with root vertex r. Let B be a basis for  $(A \mid e_r)$ .
- We know that  $\mathbf{e}_r \in B$  and  $T = \{e \mid a_e \in B\}$  is a spanning tree for G.
- In the system of equations  $y^T B = c^T$ :
  - ullet each column (= edge) of B corresponds to one equation
  - lacktriangle each row (= vertex) of B corresponds to one variable
- Each equation either involves 1 variable (column  $e_r$ ) or 2 (otherwise)



$$B = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$



$$B = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Let us solve  $y^TB=c^T$ , where  $y^T=(y_1 \quad y_2 \quad y_3)$  and  $c^T=(1 \quad 10 \quad 0)$ 

$$\begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} y_1 - y_2 & y_1 - y_3 & y_2 \end{pmatrix}$$

$$\begin{cases} y_1 - y_2 &= 1 & \rightsquigarrow 1 \\ y_1 - y_3 &= 10 & \rightsquigarrow 4 \\ y_2 &= 0 & \rightsquigarrow 5 \end{cases}$$

Note that by doing a preorder traversal from root node 2 we can solve the equations



$$B = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Let us solve  $y^TB=c^T$ , where  $y^T=(y_1 \quad y_2 \quad y_3)$  and  $c^T=(1 \quad 10 \quad 0)$ 

$$\begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} y_1 - y_2 & y_1 - y_3 & y_2 \end{pmatrix}$$

$$\begin{cases} y_1 - y_2 &= 1 & \leadsto 1 \\ y_1 - y_3 &= 10 & \leadsto 4 \\ y_2 &= 0 & \leadsto 5 \end{cases} \qquad \begin{aligned} y_2 &= 0 \\ y_1 - y_2 &= 1 & \Longrightarrow y_1 &= y_2 + 1 = 1 \\ y_1 - y_2 &= 10 & \Longrightarrow y_3 &= y_1 - 10 = -9 \end{aligned}$$

- $\blacksquare$  Let us take the root vertex r as the root of T. Let w be the root edge.
- To solve  $y^T B = c^T$  call  $solve(\bot,T)$ , where

```
solve (Vertex p, Tree S) { // p is the parent of the root of S 
 Vertex \ v = root(S); 
 if (v == r) \ y[r] = c[w]; 
 else if ((p, v) \in E) \ y[v] = y[p] - c[(p, v)]; 
 else y[v] = y[p] + c[(v, p)];
```

solve(v, S. left ());
solve(v, S. right ()); }

It is a preorder traversal of T.

At each recursive call (except 1st one) we handle a new equation (= column = edge) with 2 vars  $y_p$  and  $y_v$  in which one is already assigned  $(y_p)$  and the other is not  $(y_v)$ .



- $\blacksquare$  Let us take the root vertex r as the root of T. Let w be the root edge.
- To solve  $y^T B = c^T$  call  $solve(\bot,T)$ , where

```
solve (Vertex p, Tree S) { // p is the parent of the root of S 
 Vertex \ v = root(S); 
 if (v == r) \ y[r] = c[w]; 
 else if ((p, v) \in E) \ y[v] = y[p] - c[(p, v)]; 
 else y[v] = y[p] + c[(v, p)]; 
 solve(v, S. \ left ()); 
 solve(v, S. \ right ()); }
```

If v=r then the equation is  $y^T \mathbf{e}_r = c_w$ , i.e.,  $y_r = c_w$ .

- $\blacksquare$  Let us take the root vertex r as the root of T. Let w be the root edge.
- To solve  $y^T B = c^T$  call solve  $(\bot, T)$ , where

```
solve (Vertex p, Tree S) { // p is the parent of the root of S 
 Vertex \ v = root(S); 
 if (v == r) \ y[r] = c[w]; 
 else if ((p, v) \in E) \ y[v] = y[p] - c[(p, v)]; 
 else y[v] = y[p] + c[(v, p)];
```

solve(v, S. left ());
solve(v, S. right ()); }

If  $e=(p,v)\in E$  then the equation is  $y^T(\mathbf{e}_p-\mathbf{e}_v)=y_p-y_v=c_e,$  i.e.,  $y_v=y_p-c_e.$ 



- $\blacksquare$  Let us take the root vertex r as the root of T. Let w be the root edge.
- To solve  $y^T B = c^T$  call solve  $(\bot, T)$ , where

```
solve (Vertex p, Tree S) { // p is the parent of the root of S 
 Vertex \ v = root(S); 
 if (v == r) \ y[r] = c[w]; 
 else if ((p, v) \in E) \ y[v] = y[p] - c[(p, v)]; 
 else y[v] = y[p] + c[(v, p)];
```

solve(v, S. left ());
solve(v, S. right ()); }

If  $e=(v,p)\in E$  then the equation is  $y^T(\mathbf{e}_v-\mathbf{e}_p)=y_v-y_p=c_e,$  i.e.,  $y_v=y_p+c_e.$ 



- Let A be the matrix of a rooted graph G with root vertex r. Let B be a basis for  $(A \mid e_r)$ .
- lacktriangle We know that  $\mathbf{e}_r \in B$  and  $T = \{e \mid a_e \in B\}$  is a spanning tree for G.
- For any  $1 \le i \le n$  there is a path  $P_i$  from i to r, i.e.,  $P_i = (v_1 = i, e_1, ..., e_K, v_{K+1} = r)$  in T. But recall that

$$\mathbf{e}_i = \mathbf{e}_r + \sum_{k=1}^K O_{P_i}(e_k) \cdot a_{e_k}$$

lacktriangle Let us assume B is of the form  $(a_{k_1}, a_{k_2}, \ldots, a_{k_{n-1}}, \mathbf{e}_r)$ . Then

$$\mathbf{e}_i = \mathbf{e}_r + \sum_{j=1}^{n-1} O_{P_i}(k_j) \cdot a_{k_j}$$

as edges  $k_j$  not in  $P_i$  will have a 0 coefficient by definition of  $O_{P_i}$ . So

$$c = \sum_{i=1}^{n} c_i e_i = \left(\sum_{i=1}^{n} c_i\right) e_r + \sum_{j=1}^{n-1} \left(\sum_{i=1}^{n} c_i O_{P_i}(k_j)\right) \cdot a_{k_j}$$

Let  $x_n = \sum_{i=1}^n c_i$ ,  $x_j = \sum_{i=1}^n c_i O_{P_i}(k_j)$  for  $1 \le j < n$ . Then Bx = c!

lacksquare Solving Bx=c amounts to traverse T keeping track of edge orientation



$$B = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$



$$B = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Let us solve Bx = c, where  $x^T = (x_1 \ x_4 \ x_5)^T$ , and  $c^T = (c_1 \ c_2 \ c_3)^T = (0 \ 1 \ -1)^T = \mathbf{e}_2^T - \mathbf{e}_3^T$ 

There is no need to consider the path  $P_1$  from 1 to 2, as  $c_1 = 0$ .

Moreover  $P_2 = (2)$ , and hence  $O_{P_3}(\cdot) = 0$ .

Path from 3 to 2:  $P_3 = (3, 4, 1, 1, 2)$  with orientation sequence (-1, 1).

- $x_1 = c_3 \cdot O_{P_3}(1) = (-1) \cdot 1 = -1$
- $x_4 = c_3 \cdot O_{P_3}(4) = (-1) \cdot (-1) = 1$
- $x_5 = c_1 + c_2 + c_3 = 0 + 1 + (-1) = 0$

- Let A be the matrix of rooted graph G with root vertex r. Let B be a basis for  $(A \mid e_r)$ .
- We know that  $\mathbf{e}_r \in B$  and  $T = \{e \mid a_e \in B\}$  is a spanning tree for G.
- $\blacksquare$  In the ratio test, c will be one of the columns of A.
- If c is of the form  $e_i e_j$ , let P be the path in T going from vertex i to vertex j. Then recall that

$$\sum_{e \in P} O_P(e) \cdot a_e = \mathbf{e}_i - \mathbf{e}_j$$

Hence the orientation sequence gives us already the solution.



$$B = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$



$$B = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Let us solve Bx = c, where  $x^T = (x_1 \ x_4 \ x_5)$ , and  $c^T = (c_1 \ c_2 \ c_3) = (0 \ 1 \ -1) = \mathbf{e}_2^T - \mathbf{e}_3^T$ 

Path from 2 to 3:  $P_3 = (2, 1, 1, 4, 3)$  with orientation sequence (-1, 1). So:

- $x_1 = -1$
- $x_4 = 1$
- $x_5 = 0$

Let us apply one iteration of the simplex method to



Let us consider the basis B corresponding to variables  $(x_1, x_4, x_5)$ 





Moreover, let us assume that:

- $\blacksquare$  non-basic variable  $x_2$  is set to its lower bound 0
- $\blacksquare$  non-basic variable  $x_3$  is set to its upper bound 4





- $\blacksquare$   $x_2$ : lower bound 0
- $\blacksquare$   $x_3$ : upper bound 4

Let us compute the initial basic solution:  $x_{\mathcal{B}} = B^{-1}b - B^{-1}R x_{\mathcal{R}}$ 

So 
$$x_{\mathcal{B}} = B^{-1}(5\mathbf{e}_1 - 5\mathbf{e}_3) - B^{-1}a_2 \, 0 - B^{-1}a_3 \, 4 = 5B^{-1}(\mathbf{e}_1 - \mathbf{e}_3) - 4B^{-1}a_3 = B^{-1}(\mathbf{e}_1 - \mathbf{e}_3)$$

The path from 1 to 3 is  $P=(1,x_4,3)$  with orientation sequence (1) So the only non-zero value for a basic variable is for  $x_4$ , with value 1

Hence the basis is feasible and its solution is  $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 4, 1, 0)$ 





- $\blacksquare$   $x_2$ : lower bound 0
- $\blacksquare$   $x_3$ : upper bound 4

Let us do the pricing, i.e., compute  $d_j=c_j-c_{\mathcal{B}}^TB^{-1}a_j=c_j-\pi^Ta_j$  for each non-basic variable  $x_j$ . The solution to  $\pi^TB=c_{\mathcal{B}}^T$  is  $(\pi_1,\pi_2,\pi_3)=(1,0,-9)$ , and so:

for 
$$x_2$$
:  $d_2 = c_2 - \pi^T(e_2 - e_3) = c_2 - \pi_2 + \pi_3 = -8$ 

for 
$$x_3$$
:  $d_3 = c_3 - \pi^T(\mathbf{e}_1 - \mathbf{e}_3) = c_3 - \pi_1 + \pi_3 = -7$ 

Only variable  $x_2$  is candidate for entering the basis





- $\blacksquare$   $x_2$ : lower bound 0
- $\blacksquare$   $x_3$ : upper bound 4
- $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 4, 1, 0)$

Let us do the ratio test.

We need to compute  $\alpha_2 = B^{-1}a_2$ , and we get  $\alpha_2^T = (-1, 1, 0)$ . Then

$$\theta = \min(u_q - \ell_q, \min\{\frac{\beta_i - \lambda_i}{\alpha_q^i} \mid \alpha_q^i > 0\}, \min\{\frac{\beta_i - \mu_i}{\alpha_q^i} \mid \alpha_q^i < 0\})$$
$$= \min(2, \frac{1 - 0}{1}, \frac{0 - 4}{-1}) = 1$$

The outgoing basic variable is  $x_4$ .





- $\blacksquare$  Non-basic variable  $x_2$  enters the basis
- $\blacksquare$  Basic variable  $x_4$  leaves the basis with value 0
- lacksquare New basis  $ar{B}$  corresponds to  $(x_1, x_2, x_5)$
- lacksquare New basic solution:  $ar{eta}_p=x_q+ heta$ ,  $ar{eta}_i=eta_i- hetalpha_q^i$  if i
  eq p
  - $\bullet$   $\bar{x}_2 = 0 + 1 = 1$
  - $\bullet$   $\bar{x}_1 = 0 1(-1) = 1$
  - $\bullet$   $\bar{x}_5 = 0 1(0) = 0$
- The basic solution for the new basis is  $(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4, \bar{x}_5) = (1, 1, 4, 0, 0)$ And the process continues...