

1. Questions and Updates

- 2. Recap: Main Concepts of Unit 3
- 3. Example: Conditional Independence & D-Separation
- 4. Simulating 1 vs 1 TrueSkill (discrete)

Tutorial 3

PML SS 2025

Course Overview

Week	Topic Lecture	Tutorial	Exercises	
07.04. & 08.04.	1 Probability Theory	Intro Julia		
14.04. & 15.04.	2 Inference Methods and Decision-Making no tutorial Exercise 1			
21.04. & 22.04.	no lecture	Theory Unit 1 & 2	(14.04. – 05.05.)	
28.04. & 29.04.	3 Graphical Models: Independence	Theory Unit 3		
05.05. & 06.05.	4 Graphical Models: Exact Inference	Theory Unit 4	Exercise 2	
12.05. & 13.05.	5 Graphical Models: Approximate Inference	Theory Unit 5	(05.05. – 19.05.)	
19.05. & 20.05.	6 Bayesian Ranking	Theory Unit 6	Exercise 3	
26.05. & 27.05.	7 Linear Basis Function Models	Theory Unit 7	(19.05 02.06.)	
02.06. & 03.06.	8 Bayesian Regression	Theory Unit 8	Exercise 4	
09.06. & 10.06.	no lecture	9 Bayesian Classification	(02.06. – 23.06.)	Introduction to Probabilistic Machine
16.06. & 11.06.	10 Non-Bayesian Classification Learning	Theory Unit 9 & 10		Learning
23.06. & 24.06.	11 Gaussian Processes	Theory Unit 11	Exercise 5	
30.06. & 01.07.	12 Information Theory	Theory Unit 12	(23.06. – 07.07.)	3/3
07.07. & 08.07.	13 Real-World Applications			3/3

3/37

Overview

- 1. Questions and Updates
- 2. Recap: Main Concepts of Unit 3
- 3. Example: Conditional Independence & D-Separation
- 4. Simulating 1 vs 1 TrueSkill (discrete)

Tutorial 3

PML SS 2025

- a) Graphical Models & Bayesian Networks
- b) Conditional Probabilities & Chain Rule
- c) Conditional Independence
- d) D-Separation

Observation. Any joint distribution $p(x_1, ..., x_n)$ can be written as

$$p(x_1, ..., x_n) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

- Bayesian Network. Given a joint distribution as a product of conditional **distributions**, $p(x_1, ..., x_n) = \prod_{i=1}^n p(x_i | \text{parents}_i)$, a Bayesian network is a graph with a node for every variable x_i , and a **directed edge** from every variable $x \in parent_i$ to x_i . If the variable is independent of all other variables, it has no incoming edges.
- **Examples**: For 3 variables, we have these four generic Bayesian networks

$$p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2 | x_1) \cdot p(x_3 | x_1, x_2)$$
 full mesh

$$p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_1)$$

$$p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_{i-1})$$

$$p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_1) \qquad p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_{i-1}) \quad p(x_1, x_2, x_3) = p(x_3 | x_1, x_2) \cdot \prod_{i=1}^{2} p(x_i | x_i)$$

Introduction to **Probabilistic Machine** Learning

Unit 3 - Graphical Models: Independence

6/17

Joint Probabilities vs Conditional Probabilities

Joint Probabilities and short-hand notation:

$$p(x_1, x_2, x_3) = P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

$$\sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3) = 1$$

Joint Probabilities vs Conditional Probabilities

Joint Probabilities and short-hand notation:

$$p(x_1, x_2, x_3) = P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

$$\sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3) = 1$$

Representation as Conditional Probabilities via Chain Rule in some "Order"

$$p(x_1, x_2, x_3) = p(x_2, x_3 \mid x_1) \cdot p(x_1) \qquad note: p(x_2, x_3) = p(x_3 \mid x_2) \cdot p(x_2)$$
$$= p(x_3 \mid x_1, x_2) \cdot p(x_2 \mid x_1) \cdot p(x_1)$$

Joint Probabilities vs Conditional Probabilities

Joint Probabilities and short-hand notation:

$$p(x_1, x_2, x_3) = P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

$$\sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3) = 1$$

Representation as Conditional Probabilities via Chain Rule in some "Order"

$$p(x_1, x_2, x_3) = p(x_2, x_3 \mid x_1) \cdot p(x_1) \qquad note: p(x_2, x_3) = p(x_3 \mid x_2) \cdot p(x_2)$$
$$= p(x_3 \mid x_1, x_2) \cdot p(x_2 \mid x_1) \cdot p(x_1)$$

Norm Identities:
$$\sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_3 \mid x_1, x_2) \cdot p(x_2 \mid x_1) \cdot p(x_1)$$
$$= \sum_{x_1} p(x_1) \cdot \sum_{x_2} p(x_2 \mid x_1) \cdot \sum_{x_3} p(x_3 \mid x_1, x_2) = 1$$

Joint Probabilities vs Conditional Probabilities (Variants!)

Joint Probabilities and short-hand notation:

$$p(x_1, x_2, x_3) = P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

$$\sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3) = 1$$

Representation as Conditional Probabilities via Chain Rule in some "Order"

$$p(x_1, x_2, x_3) = p(x_3 | x_1, x_2) \cdot p(x_2 | x_1) \cdot p(x_1)$$

$$= p(x_2 | x_3, x_1) \cdot p(x_1 | x_3) \cdot p(x_3)$$

$$= p(x_1 | x_2, x_3) \cdot p(x_3 | x_2) \cdot p(x_2)$$

Norm Identities:
$$\sum_{x_1} \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3) = \sum_{x_1} p(x_1) \cdot \sum_{x_2} p(x_2 \mid x_1) \cdot \sum_{x_3} p(x_3 \mid x_1, x_2) = 1$$
$$= \sum_{x_3} p(x_3) \cdot \sum_{x_1} p(x_1 \mid x_3) \cdot \sum_{x_2} p(x_2 \mid x_3, x_1) = 1$$
$$= \sum_{x_2} p(x_2) \cdot \sum_{x_3} p(x_3 \mid x_2) \cdot \sum_{x_1} p(x_1 \mid x_2, x_3) = 1$$

Recap: Conditional Independence

In modelling specific data, domain experts often know whether or not two (latent)
 measurements X & Z can affect each other or not (i.e., are independent)

Philip Dawid (1946–)

- Bayesian networks are useful to determine conditional independence.
- **Conditional Independence**. A random variable x_i is conditionally independent of a random variable x_i given the variable x_k if for all values a of x_k , b of x_i

$$p(x_i|x_j=b,x_k=a)=p(x_i|x_k=a)$$

- Equivalent definition: $p(x_i, x_j | x_k = a) = p(x_i | x_k = a) \cdot p(x_j | x_k = a)$
- □ Shorthand notation (Dawid, 1979): $x_i \perp x_j | x_k$

Introduction to Probabilistic Machine Learning

Unit 3 – Graphical Models: Independence

Question: Does one variable X affect another variable Y?

Or: When does observing Y change the distribution of X?

Problem: Influence of third variables (e.g. Confounder/Collider)

Helping Concept: Conditional Independence (CI)

Involves: Compares the probabilities of two variables X and Y

conditioned on the observation of a third variable Z

Conditional Independence

Question: Does one variable X affect another variable Y?

Or: When does observing Y change the distribution of X?

Problem: Influence of third variables (e.g. Confounder/Collider)

Helping Concept: Conditional Independence (CI)

Involves: Compares the probabilities of two variables X and Y

conditioned on the observation of a third variable Z

Question: Relation to usual Independence of 2 variables?

Question: Does one variable X affect another variable Y?

Or: When does observing Y change the distribution of X?

Problem: Influence of third variables (e.g. Confounder/Collider)

Helping Concept: Conditional Independence (CI)

Involves: Compares the probabilities of two variables X and Y

conditioned on the observation of a third variable Z

Different from: **Independence (I)** of 2 Random Variables!

 $I \not \Rightarrow CI \& CI \not \Rightarrow I$

Question: Does one variable X affect another variable Y?

Or: When does observing Y change the distribution of X?

Problem: Influence of third variables (e.g. Confounder)

Helping Concept: Conditional Independence (CI)

Example: Are **Gas** (X) and **Battery** (Y)

independent conditioned on

observations of **Car Dead** (Z)?

Question: Are two variables X & Y **conditionally independent**?

(for a given set of other observed variables)!

Idea: Look for paths/connections between them

To confirm CI: (1)

(2)

(3)

Question: Are two variables X & Y **conditionally independent**?

(for a given set of other observed variables)!

Idea: Look for paths/connections between them

To confirm CI: (1) determine all "paths"

(2) check all paths whether they have a "blocked node"

(3)

Question: Are two variables X & Y **conditionally independent**?

(for a given set of other observed variables)!

Idea: Look for paths/connections between them

To confirm CI: (1) determine all "paths"

(2) check all paths whether they have a "blocked node"

(3) Does **every** path have a blocked node?

If yes: then X & Y are CI If no: then X & Y are not CI

Question: Are two variables X & Y **conditionally independent**?

(for a given set of other observed variables)!

Idea: Look for paths/connections between them

To confirm CI: (1) determine all "paths"

(2) check all paths whether they have a "blocked node"

(3) Does **every** path have a blocked node?

If yes: then X & Y are CI If no: then X & Y are not CI

Left to understand: a) What is a path?

b) What is a blocked node?

a) What is a Path?

Look for: Connections from a node X to a node Y (all directions allowed)

Consider: Single routes with directed edges (without forks)

Example: Paths from G to E ??

a) What is a Path?

Look for: Connections from a node X to a node Y (all directions allowed)

Consider: Single routes with directed edges (without forks)

Example: From G to E (path 1: GDBE, path 2: GDHE)

Blocked Node: A node Z that – e.g. when observed – is such that

a considered path in the graph is such that

the distribution of X **does not** change if Y is observed

b) What is a Blocked Node?

Blocked Node: A node Z that – e.g. when observed – is such that

a considered path in the graph is such that

the distribution of X **does not** change if Y is observed

When this is the case on a route of edges? Consider 3 nodes in a row (triples):

(1) Tail-to-Tail (Fork)

x1 (obs.) is a blocking node

- (2) Head-to-Tail (Chain)
- (3) Head-to-Head (Sink)

b) What is a Blocked Node?

Blocked Node: A node Z that – e.g. when observed – is such that

a considered path in the graph is such that

the distribution of X does not change if Y is observed

When this is the case on a route of edges? Consider 3 nodes in a row (**triples**):

- (1) Tail-to-Tail (Fork)
- (2) Head-to-Tail (Chain) $(x_1) \rightarrow (x_2) \rightarrow (x_3) \times 2$ (obs.) is a blocking node
- (3) Head-to-Head (Sink)

b) What is a Blocked Node?

Blocked Node: A node Z that – e.g. when observed – is such that

a considered path in the graph is such that

the distribution of X does not change if Y is observed

When this is the case on a route of edges? Consider 3 nodes in a row (**triples**):

- (1) Tail-to-Tail (Fork)
- (2) Head-to-Tail (Chain)
- (3) Head-to-Head (Sink)

x1 (free) is a blocking node

Putting it together: D-Separation

Inactive

Check: Are X & Y CI "for a given set of observed variables"?

X & Y are CI if: All paths contain at least one inactive triple

	Active Triples		
Causal Chain	$\bigcirc\!$		
Common Cause	000		
Common Effect	000		
Common Effect (extended)	0,00		

Putting it together: D-Separation

X & Y are CI if:

Check:	Are X & \	Y CI "for a giver	n set of observed	variables"?

All paths contain at least one inactive triple

- (1) Tail-to-Tail (**Fork** with root observation)
- (2) Head-to-Tail (**Chain** with middle observation)
- (3) Head-to-Head (**Merge** with clean sink)

Active Triples

Causal Chain

Common Effect

Common Effect

(extended)

Inactive

X & Y not CI if: If **there** is an **active** path between them (without any blocking node)

e.g., if they are neighbors (child/parent)

- 1. Questions and Updates
- 2. Recap: Main Concepts of Unit 3
- 3. Example: Conditional Independence & D-Separation
- 4. Recap: Main Concepts of Unit 4
- 5. Example: Message Passing in Factor Graphs
- 6. Hints for Exercise 2 (to be handed in Monday May 13, 7:00)

Tutorial 3

PML SS 2025

Conditional Independence: Examples & Generalizations

Look for: (1) Head-to-Tail (**Chain** with middle obs.)

(2) Tail-to-Tail (**Fork** with root observation)

(3) Head-to-Head (**Merge** with clean sink)

Conditional Independence: Examples & Generalizations

Look for: (1) Head-to-Tail (**Chain** with middle obs.)

- (2) Tail-to-Tail (**Fork** with root observation)
- (3) Head-to-Head (**Merge** with clean sink)

Proof for Chain Graph (Head-to-Tail): $p(x_1, x_3) = p(x_1) \cdot p(x_3 \mid x_1) \neq p(x_1) \cdot p(x_3)$

$$p(x_1, x_3) = p(x_1) \cdot \sum_{x_2} p(x_2 | x_1) \cdot p(x_3 | x_2) = p(x_1) \cdot p(x_3 | x_1) \neq p(x_1) \cdot p(x_3)$$

Proof for Chain Graph (Head-to-Tail): $p(x_1,x_3) = p(x_1) \cdot p(x_3 \mid x_1) \neq p(x_1) \cdot p(x_3)$

Note (1)
$$p(x_1, x_2, x_3) \stackrel{general}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_1, x_2) \stackrel{chain}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$

$$\Rightarrow p(x_3 \mid x_2) \stackrel{chain}{=} p(x_3 \mid x_1, x_2)$$

Proof for Chain Graph (Head-to-Tail): $p(x_1, x_3) = p(x_1) \cdot p(x_3 \mid x_1) \neq p(x_1) \cdot p(x_3)$

Note (1)
$$p(x_1, x_2, x_3) \stackrel{general}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_1, x_2) \stackrel{chain}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$

$$\Rightarrow p(x_3 \mid x_2) \stackrel{chain}{=} p(x_3 \mid x_1, x_2)$$

Note (2)
$$p(x_3 \mid x_2) \stackrel{general}{=} \frac{p(x_3, x_2)}{p(x_2)}$$
 Does this also hold in the world "given x1"?

Proof for Chain Graph (Head-to-Tail):

$$p(x_1, x_3) = p(x_1) \cdot p(x_3 \mid x_1) \neq p(x_1) \cdot p(x_3)$$

Note (1)
$$p(x_1, x_2, x_3) \stackrel{general}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_1, x_2) \stackrel{chain}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$

$$\Rightarrow p(x_3 \mid x_2) \stackrel{chain}{=} p(x_3 \mid x_1, x_2)$$

Note (2)
$$p(x_3 \mid x_2) \stackrel{general}{=} \frac{p(x_3, x_2)}{p(x_2)}$$
 This also holds in the world "given x1"!

$$\frac{p(x_3, x_2 \mid x_1)}{p(x_2 \mid x_1)} \stackrel{general}{=} p(x_3 \mid x_2, x_1)$$

Proof for Chain Graph (Head-to-Tail):

$$p(x_1, x_3) = p(x_1) \cdot p(x_3 \mid x_1) \neq p(x_1) \cdot p(x_3)$$

Note (1)
$$p(x_1, x_2, x_3) \stackrel{general}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_1, x_2) \stackrel{chain}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$

$$\Rightarrow p(x_3 \mid x_2) \stackrel{chain}{=} p(x_3 \mid x_1, x_2) \longleftarrow$$

Note (2)
$$p(x_3 \mid x_2) \stackrel{\text{general}}{=} \frac{p(x_3, x_2)}{p(x_2)}$$
 This also holds in
$$\frac{p(x_3, x_2 \mid x_1)}{p(x_2 \mid x_1)} \stackrel{\text{general}}{=} p(x_3 \mid x_2, x_1)$$
 the world "given x1"!

$$p(x_1, x_3) = p(x_1) \cdot \sum_{x_2} p(x_2 \mid x_1) \cdot p(x_3 \mid x_2) \stackrel{\text{(1)}}{=} p(x_1) \cdot \sum_{x_2} p(x_2 \mid x_1) \cdot p(x_3 \mid x_1, x_2)$$

Hence:

Proof for Chain Graph (Head-to-Tail):

$$p(x_1, x_3) = p(x_1) \cdot p(x_3 \mid x_1) \neq p(x_1) \cdot p(x_3)$$

Note (1)
$$p(x_1, x_2, x_3) \stackrel{general}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_1, x_2) \stackrel{chain}{=} p(x_1) \cdot p(x_2 \mid x_1) \cdot p(x_3 \mid x_2)$$

$$\Rightarrow p(x_3 \mid x_2) \stackrel{chain}{=} p(x_3 \mid x_1, x_2)$$

Note (2)
$$p(x_3 \mid x_2) \stackrel{general}{=} \frac{p(x_3, x_2)}{p(x_2)}$$
 This also holds in

the world "given x1"!

$$\frac{p(x_3, x_2 | x_1)}{p(x_2 | x_1)} \stackrel{general}{=} p(x_3 | x_2, x_1)$$

$$p(x_{1}, x_{3}) = p(x_{1}) \cdot \sum_{x_{2}} p(x_{2} \mid x_{1}) \cdot p(x_{3} \mid x_{2}) = p(x_{1}) \cdot \sum_{x_{2}} p(x_{2} \mid x_{1}) \cdot p(x_{3} \mid x_{1}, x_{2})$$

$$\stackrel{(2)}{=} p(x_{1}) \cdot \sum_{x_{2}} p(x_{2} \mid x_{1}) \cdot \frac{p(x_{3}, x_{2} \mid x_{1})}{p(x_{2} \mid x_{1})} = p(x_{1}) \cdot \sum_{x_{2}} p(x_{3}, x_{2} \mid x_{1}) = p(x_{1}) \cdot p(x_{3} \mid x_{1})$$

- 1. Questions and Updates
- 2. Recap: Main Concepts of Unit 3
- 3. Example: Conditional Independence & D-Separation
- 4. Simulating 1 vs 1 TrueSkill (discrete)

Tutorial 3

PML SS 2025

Simulating TrueSkill (cp. Unit 2, slide 11-12)

Consider TrueSkill 1 vs 1 with discrete variables!

Simulate Skills:

$$P(s_i) := 1/N,$$
 $s_i = 1,...,N, i = 1,2, N = 20$

Simulate Performances:

$$P(p_i | s_i) \propto N - |s_i - p_i|, \quad s_i, p_i = 1,...,N, i = 1,2$$

Evaluate Differences:

$$d = p_1 - p_2$$

Evaluate Outcomes:

$$y \coloneqq 1_{\{d>0\}}$$

Without match outcome

(a) Simulate e.g. 1000 vectors $(s_1^{(k)}, s_2^{(k)}, p_1^{(k)}, p_2^{(k)}, d^{(k)}, y^{(k)}), k = 1,...,1000$

Simulating TrueSkill (cp. Unit 2, slide 11-12)

Consider TrueSkill 1 vs 1 with discrete variables!

Simulate Skills:

$$P(s_i) := 1/N,$$
 $s_i = 1,...,N, i = 1,2, N = 20$

Simulate Performances:

$$P(p_i | s_i) \propto N - |s_i - p_i|, \quad s_i, p_i = 1,...,N, i = 1,2$$

Evaluate Differences:

$$d = p_1 - p_2$$

Evaluate Outcomes:

$$y \coloneqq 1_{\{d>0\}}$$

With match outcome (y = 1)

(b) Evaluate Skills & Performances conditioned on y=1! Doable?

Summary

- Recap I: Conditional Probabilities
- Recap II: Conditional Independence in Bayesian Networks
- Recap III: Simulation of Networks

Tutorial 3

PML SS 2025

See you next Week!