# $Zadanie\ projektowe\ 2.$

Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera.

PROWADZĄCY:

dr Jarosław Mierzwa

# Spis treści

| 1        | Zał   | ożenia projektowe          | 3 |
|----------|-------|----------------------------|---|
|          | 1.1   | Cel                        | 3 |
|          | 1.2   | Technologie                | 3 |
|          | 1.3   | Przebieg eksperymentu      | 3 |
| <b>2</b> | Zło   | żoności czasowe algorytmów | 3 |
|          | 2.1   | Algorytm Kruskala          | 3 |
|          | 2.2   | Algorytm Prima             | 3 |
|          | 2.3   | Algorytm Dijkstry          | 4 |
| 3        | Wy    | niki                       | 4 |
|          | 3.1   | Wykresy                    | 4 |
|          | 3.2   | Tabele                     | 6 |
| 4        | Pod   | Isumowanie                 | 7 |
| Bi       | bliog | grafia                     | 9 |

## 1 Założenia projektowe

#### 1.1 Cel

Celem projektu jest zbadanie efektywności algorytmów Kruskala, Prima, Dijkstry i Bellmana-Forda w zależności od sposobu reprezentacji grafu i wielkości instancji.

#### 1.2 Technologie

Do implementacji wymienionych struktur użyto języka *Kotlin* w wersji *Native*, która jest kompilowana do kodu maszynowego danej platformy.

#### 1.3 Przebieg eksperymentu

Badania przeprowadzone zostały dla wierzchołków w liczbie: 10, 100, 1000, 10000, 30000, dla każdej liczby w gęstościach 25%, 50%, 75%, 99% osobno dla reprezentacji macierzowej i listowej. Każdy test wykonano 50 razy, a czas uśredniono z wszystkich prób.

## 2 Złożoności czasowe algorytmów

Przy tworzeniu poniższych opisów korzystano z Wprowadzenia do algorytmów autorstwa T. Cormen, C. Leiserson, R. Rivest [1], materiałów udostępnionych na stronie dr Tomasza Kapłona [3] oraz stronie I LO w Tarnowie [5]

#### 2.1 Algorytm Kruskala

Czas działania algorytmu Kruskala dla grafu G=(V,E) zależy od sposobu implementacji struktury zbiorów rozłącznych. W tym projekcie wykorzystano implementację lasu zbiorów rozłącznych z łączeniem według rangi i z kompresją ścieżek. Całkowity czas działania algorytmu wynosi  $O(Elog_2E)$ .

#### 2.2 Algorytm Prima

Szybkość działania algorytmu Prima zależy od sposobu implementacji kolejki priorytetowej przechowującej koszty dojścia do danego wierzchołka. W tym projekcie wykorzystano kopiec stworzony w projekcie nr 1, dzięki czemu otrzymano złożoność  $O(Eloq_2V)$ .

### 2.3 Algorytm Dijkstry

Algorytm Dijkstry działa poprawnie tylko jeśli w grafie nie znajdują się ścieżki o ujemnej wadze. Szybkość algorytmu zależy od sposobu implementacji kolejki priorytetowej przechowującej koszty dojścia do danego wierzchołka. W tym projekcie wykorzystano kopiec stworzony w projekcie nr 1, dzięki czemu otrzymano złożoność  $O(Elog_2V)$ .

## 2.4 Algorytm Bellmana-Forda

## 3 Wyniki

### 3.1 Wykresy

Średni czas operacji dodawania



# Średni czas operacji szukania



Średni czas operacji usuwania





## 3.2 Tabele

Tablica 1: Wyniki operacji dodawania w milisekundach

| *    | Tablica | Lista | Kopiec | Bst | Avl |
|------|---------|-------|--------|-----|-----|
| 10   | 0       | 0     | 0      | 0   | 0   |
| 100  | 0       | 0     | 0      | 0   | 0   |
| 200  | 0       | 0     | 0      | 0   | 0   |
| 500  | 2       | 0     | 0      | 0   | 1   |
| 1000 | 9       | 0     | 0      | 1   | 2   |
| 2000 | 36      | 0     | 0      | 2   | 4   |
| 5000 | 216     | 2     | 1      | 6   | 10  |

Tablica 2: Wyniki operacji szukania w milisekundach

| *    | Tablica | Lista | Kopiec | Bst | Avl |
|------|---------|-------|--------|-----|-----|
| 10   | 0       | 0     | 0      | 0   | 0   |
| 100  | 1       | 1     | 0      | 0   | 0   |
| 200  | 5       | 6     | 0      | 0   | 0   |
| 500  | 32      | 37    | 0      | 0   | 0   |
| 1000 | 126     | 146   | 0      | 1   | 0   |
| 2000 | 482     | 561   | 0      | 2   | 1   |
| 5000 | 2671    | 3029  | 1      | 6   | 2   |

Tablica 3: Wyniki operacji usuwania w milisekundach

| *    | Tablica | Lista | Kopiec | Bst | Avl |
|------|---------|-------|--------|-----|-----|
| 10   | 0       | 0     | 0      | 0   | *   |
| 100  | 1       | 1     | 0      | 0   | *   |
| 200  | 5       | 5     | 0      | 0   | *   |
| 500  | 34      | 35    | 1      | 0   | *   |
| 1000 | 131     | 135   | 3      | 1   | *   |
| 2000 | 521     | 494   | 6      | 4   | *   |
| 5000 | 3185    | 2512  | 20     | 19  | *   |

Tablica 4: Wyniki operacji specjalnych BST

|      | Równoważenie | $oxed{ 	ext{Usuwanie} + 	ext{DSW} }$ | $oxed{f Dodawanie + DSW}$ |
|------|--------------|--------------------------------------|---------------------------|
| 10   | 0            | 0                                    | 0                         |
| 100  | 10           | 10                                   | 5                         |
| 200  | 42           | 42                                   | 21                        |
| 500  | 279          | 267                                  | 136                       |
| 1000 | 1086         | 1063                                 | 543                       |
| 2000 | 4497         | 4377                                 | 2212                      |
| 5000 | 28523        | 26293                                | 15005                     |

# 4 Podsumowanie

Zaimplementowane algorytmy nie są optymalne. W większości jednak założona złożoność obliczeniowa sprawdziła się. Najbardziej obciążające były operacje na drzewie BST z wy-

korzystaniem algorytmu DSW. Równoważenie drzewa po każdym wstawieniu węzła nie jest dobrym pomysłem. Można to robić co kilka, kilkanaście wstawień – takie niezrównoważenie nie wpłynie bardziej na złożoność w przypadku innych operacji.

# Bibliografia

- [1] T. Cormen, C. Leiserson, R. Rivest *Wprowadzenie do algorytmów*, Wydawnictwa Naukowo-Techniczne Warszawa, Wyd. IV, 2004
- [2] [1] str. 304.
- [3] tomasz.kaplon.staff.iiar.pwr.wroc.pl/, strona dr Tomasza Kapłona
- [4] kotlinlang.org/docs/reference/native-overview.html, dokumentacja języka Kotlin/Native
- [5] eduinf.waw.pl, materiały na stronie I LO w Tarnowie





