Input impedance, reflections and the quarter wave length formula

Leif Rune Hellevik

Department of Structural Engineering Norwegian University of Science and Technology Trondheim, Norway

September 18, 2017

Outline

Poiseuille flow in compliant tube

Simplified momentum equation:

$$\frac{dp}{dx} = -\frac{8\mu}{\pi a^4} Q = -\frac{8\pi\mu}{A^2} Q$$

Constitutive model: $A(p) = A_0 + C(p - p_0)$

$$\frac{dp}{dx} = \frac{\partial p}{\partial A} \frac{dA}{dx} = \frac{1}{C} \frac{dA}{dx} = -\frac{8\pi\mu}{A^2} Q$$

$$A^2 \frac{dA}{dx} = \frac{1}{3} \frac{d}{dx} \left(A^3 \right) = -8\pi\mu CQ$$

Integration

$$A(x)^3 = A(0)^3 - 24\pi\mu CQx$$

Pressure and flow for stationary flow in compliant tube

$$Q(x) = \frac{A(0)^3 - A(x)^3}{24\pi\mu Cx}, \quad p(x) = p_0 + \frac{A(x) - A(0)}{C}$$

Progressive waves superimposed on steady flow

Perturbations

$$A^* = A_0 + A$$
, $u^* = u_0 + u$, $Q^* = Q_0 + Q$

- ▶ Variable transformation: $x' = x u_o t$, t' = t
- Transformed governing equations

$$\frac{\partial A}{\partial t'} = -\frac{\partial Q}{\partial x'}$$
$$\frac{\partial u}{\partial t'} = -\frac{1}{\rho} \frac{\partial p}{\partial x'}$$

Solutions on the form

$$p = p_0 f(x' - ct') + p_0' g(x' + ct')$$

Wave speeds in Eulerian reference frame

$$c_f = c + u_0$$
 $c_b = c - u_0$

Characteristic impedance

Governing equations

$$C\frac{\partial p}{\partial t} = -\frac{\partial Q}{\partial x} \qquad \qquad Q$$

$$\frac{\partial Q}{\partial t} = -\frac{A}{\rho}\frac{\partial p}{\partial x}$$

$$C\frac{\partial p}{\partial t} = -\frac{\partial Q}{\partial x} \qquad p = p_0 f(x - ct) + p_0^* g(x + ct)$$

$$Q = Q_0 f(x - ct) + Q_0^* g(x + ct)$$

By subst in momentum equation and collection of terms

$$\left(rac{\mathsf{A}}{
ho}\,\mathsf{p}_0-c\mathsf{Q}_0
ight)f'+\left(rac{\mathsf{A}}{
ho}\,\mathsf{p}_0^*+c\mathsf{Q}_0^*
ight)g'=0$$

Must hold for arbitrary f' and g'

$$Z_c = \frac{p_0}{Q_0} = -\frac{p_0^*}{Q_0^*} = \frac{\rho c}{A}$$

Practical estimation of Z_c

- ► Average of Z_i
 - Higher frequencies cancel and are damped
 - Average between 4th and 10th harmonic
- Slope of p and Q
 - In early part of systole/ejection phase

$$Z_c = \frac{\Delta p/\Delta t}{\Delta Q/\Delta t}$$

- ▶ Both methods rely on the fact that Z_c is a p-Q relation in absence of reflections
- Reflections are small in early systole and at high frequencies

Arterial input impedance

- Provides a (complete) and comprehensive description of the arterial system ^a
- Impedance
 - A measure of oppostion to flow
 - Frequency dependent resistance
 - Resistance for non-oscillatory or steady motion
- Definition
 - The ratio of harmonic terms of pressure and corresponding harmonic terms of flow

$$p = |\hat{p}|e^{j(\omega t + \phi)}, \quad q = |\hat{q}|e^{j(\omega t + \beta)}$$
 $Z_i = \frac{|\hat{p}|}{|\hat{q}|}e^{j\theta}, \qquad \theta = \phi - \beta$

Applicability of Fourier analysis

- Used to relate hemodynamic variables such as pressure and flow
- Not meaningful to relate time signals
 - Diastolic pressure and flow
 - Division of pressure by zero flow does not provide meaningful information
- Produce a mean and multiples of the heart rate
- Each harmonic has an amplitude and a phase angle
- Impedance
 - Relate pressure and flow
 - Ohm's law is applied for each frequency
 - Only valid for a linear relation between pressure and flow
- Aortic input impedance
 - Venous pressure may be neglected
 - Aortic pressure and flow gives a sufficiently accurate approximation of the input impedance

Limitations to the use of Fourier analysis

- May only be used for periodic signals. The value of the signal at start and end should be the same
- The relation of two signals should be linear
- Despite nonlinear pressure-flow relation, the nonlinearity is not so strong in many cases that large errors result
- The scatter in modulus and phase has been attributed to nonlinearities
- Higher harmonics with smaller amplitudes are more exposed to noise than lower harmonics
- High frequency information should be considered with care.

Reflection factor

- Occur at any point where there is an abrupt change in characteristic impedance (mismatch in impedance)
- Oscillations at origin: the reflections will mix with the original pulse
- Spatial variations in amplitude and different wave pattern in flow and pressure are indicators for reflections
- Wave separation

$$p = p_f + p_b$$

Reflection factor

$$\Gamma \equiv rac{
ho_b}{
ho_f} = -rac{Q_b}{Q_f}$$

Easy to show

$$\Gamma = \frac{Z_{in} - Z_c}{Z_{in} + Z_c}$$

The quarter wavelength formula

Forward waves

$$p_f = p_0 e^{j\omega t}, \quad Q_f = \frac{p_0}{Z_c} e^{j\omega t}$$

Reflected waves (Γ = 1)

$$p_b=p_0~e^{j\omega(t-2L/c)},~~Q_b=-rac{p_0}{Z_c}~e^{j\omega(t-2L/c)}$$

Input impedance

$$Z_{in} = rac{p_f + p_b}{Q_f + Q_b} = Z_c \; rac{e^{j\omega t} + e^{j\omega(t - 2L/c)}}{e^{j\omega t} - e^{j\omega(t - 2L/c)}}$$

$$ightharpoonup Z_{in} = 0 \Rightarrow \frac{2\omega L}{C} = \pi \Rightarrow L = \frac{\lambda}{4}$$

Example: The quarter wavelength formula and Z_{in}

Summary