Goniometrische Beziehungen

$\tan x = \sin x / \cos x$	$\cot x = \cos x / \sin x$			
$\sin^2 x + \cos^2 x = 1$	$tanx \cdot cot x = 1$			
$\sec^2 x - \tan^2 x = 1$	$\sin x \cdot \csc x = 1$			
$1 + \tan^2 x = 1/\cos^2 x$	$1 + \cot^2 x = 1/\sin^2 x$			
$\sin^2 x = \tan^2 x / (1 + \tan^2 x) = 1 / (1 + \cot^2 x)$				

Addition zweier Winkel

$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y$$

$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y$$

$$\cos(x-y) = \cos x \cdot \cos y + \sin x \cdot \sin y$$

$$\tan(x+y) = (\tan x + \tan y) / (1 - \tan x \cdot \tan y)$$

$$\tan(x-y) = (\tan x - \tan y) / (1 + \tan x \cdot \tan y)$$

$$\cot(x+y) = (\cot x \cdot \cot y - 1) / (\cot x + \cot y)$$

$$\cot(x-y) = (\cot x \cdot \cot y + 1) / (\cot x - \cot y)$$

Summe und Differenz zweier Winkelfunktionen

$$\begin{aligned} &\sin x + \sin y = 2 \sin(\ (x+y)/2\) \cdot \cos(\ (x-y)/2\) \\ &\sin x - \sin y = 2 \cos(\ (x+y)/2\) \cdot \sin(\ (x-y)/2\) \\ &\cos x + \cos y = 2 \cos(\ (x+y)/2\) \cdot \cos(\ (x-y)/2\) \\ &\cos x - \cos y = -2 \sin(\ (x+y)/2\) \cdot \sin(\ (x-y)/2\) \\ &\cos x + \sin x = \sqrt{2} \cdot \sin(\ (45^\circ + x) = \sqrt{2} \cdot \cos(\ (45^\circ - x) \cos x - \sin x = \sqrt{2} \cdot \sin(\ (45^\circ - x) = \sqrt{2} \cdot \cos(\ (45^\circ + x) \cos x - \sin x = \sqrt{2} \cdot \sin(\ (x+y)\) / (\cos x \cdot \cos y) \\ &\cot x \pm \cot y = \pm \sin(\ x \pm y)\ / (\sin x \cdot \sin y) \\ &\tan x + \cot y = \cos(\ (x-y)\) / (\cos x \cdot \sin y) \end{aligned}$$

 $\cot x - \tan y = \cos (x+y) / (\sin x \cdot \cos y)$

Auflösung doppelter Winkel

$$\sin 2x = 2 \sin x \cos x = 2 \tan x / (1 + \tan^2 x)$$

 $\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1$
 $\tan 2x = 2 \tan x / (1 - \tan^2 x) = 2(\cot x - \tan x)$
 $\cot 2x = (\cot^2 x - 1) / (2 \cot x) = (\cot x - \tan x)/2$

Auflösung Vielfacher Winkel

$$\begin{aligned} &\sin 3x = 3 \sin x - 4 \sin^3 x \\ &\cos 3x = 4 \cos^3 x - 3 \cos x \\ &\sin 4x = 8 \cos^3 x \cdot \sin x - 4 \cos x \cdot \sin x \\ &\cos 4x = 8 \cos^4 x - 8 \cos^2 x + 1 \\ &\sin 5x = 16 \sin x \cos^4 x - 12 \sin x \cos^2 x + \sin x \\ &\cos 5x = 16 \cos^5 x - 20 \cos^3 x + 5 \cos x \\ &\sin nx = n \sin x \cos^{n-1} x \cdot \binom{n}{3} \sin^3 x \cos^{n-3} x + \\ &+ \binom{n}{4} \sin^4 x \cos^{n-4} x - + ... \end{aligned}$$

$$\cos nx = \cos^{n} x - (\frac{n}{2}) \sin^{2} x \cos^{n-2} x + (\frac{n}{5}) \sin^{5} x \cos^{n-5} x - + ...$$

$$\tan 3x = (3 \tan x - \tan^{3} x) / (1 - 3 \tan^{2} x)$$

$$\tan 4x = (4 \tan x - 4 \tan^{3} x) / (1 - 6 \tan^{2} x + \tan^{4} x)$$

$$\cot 3x = (-3 \cot x + \cot^{3} x) / (3 \cot^{2} x - 1)$$

$$\cot 4x = (1 - 6 \cot^{2} x + \cot^{4} x) / (-4 \cot x + 4 \tan^{3} x)$$

```
Auflösung halber Winkel \sin x/2 = \sqrt{(1-\cos x)/2} \cos x/2 = \sqrt{(1+\cos x)/2} \tan x/2 = \sqrt{(1-\cos x)/(1+\cos x)} = \sin x/(1+\cos x) = (1-\cos x)/\sin x \cot x/2 = \sqrt{(1+\cos x)/(1-\cos x)} = \sin x/(1-\cos x) = \cos x/(1+\cos x) = \sin x/(1-\cos x)
```

Produkt trigonometrischer Funktionen

$$sin(x+y) \cdot sin(x-y) = cos^2 y - cos^2 x$$

 $cos(x+y) \cdot cos(x-y) = cos^2 y - sin^2 x$
 $sin x \cdot sin y = 1/2 [cos (x - y) - cos (x + y)]$
 $sin x \cdot cos y = 1/2 [sin (x - y) + sin (x + y)]$
 $cos x \cdot cos y = 1/2 [cos (x - y) + cos (x + y)]$
 $tan x \cdot tan y = (tan x + tan y) / (cot x + cot y)$
 $cot x \cdot cot y = (cot x + cot y) / (tan x + tan y)$
 $tan x \cdot cot y = (tan x + cot y) / (cot x + tan y)$
 $sin x \cdot cot y = (tan x + cot y) / (cot x + tan y)$
 $sin x \cdot sin y \cdot sin z = [sin(x+y-z) + cos(x+y+z)]/4$
 $cos x \cdot cos y \cdot cos z = [cos(x+y-z) + cos(x+y+z)]/4$
 $sin x \cdot sin y \cdot cos z = [-cos(x+y-z) + cos(x+y+z)]/4$
 $sin x \cdot cos y \cdot cos z = [sin(x+y-z) - cos(x+y+z)]/4$
 $sin x \cdot cos y \cdot cos z = [sin(x+y-z) - cos(x+y+z)]/4$

Potenzen trigonometrischer Funktionen

 $\sin^2 x = 1/2 (1 - \cos 2x)$

```
\cos^2 x = 1/2 (1 + \cos 2x)

\tan^2 x = (1 - \cos 2x) / (1 + \cos 2x)

\sin^3 x = 1/4 (3 \sin x - \sin 3x)

\cos^3 x = 1/4 (3 \cos x + \cos 3x)

\sin^4 x = 1/8 (\cos 4x - 4 \cos 2x + 3)

\cos^4 x = 1/8 (\cos 4x + 4 \cos 2x + 3)

\sin^5 x = 1/16 (10 \sin x - 5 \sin 3x + \sin 5x)

\cos^5 x = 1/16 (10 \cos x + 5 \cos 3x + \cos 5x)

\sin^6 x = 1/32 (10 - 15 \cos 2x + 6 \cos 4x - \cos 6x)

\cos^6 x = 1/32 (10 + 15 \cos 2x + 6 \cos 4x + \cos 6x)
```

Goniometrische Gleichung

a cos x + b sin x = c
Ansatz y = tan (x/2), d.h.
cos x = (1-y²)/(1+y²) und sin x = 2y/(1+y²)
ergibt y = tan (x/2) = 1/(a+c) [b
$$\pm \sqrt{(a^2+b^2-c^2)}$$
]
Ansatz y = tan(x/2) und
 α = (a+c)/b und β = (a-c)/b
ergibt y = 1/ α [1 $\pm \sqrt{(1 + \alpha\beta)}$]

Zahlenfolger	
zanienininer	
Zariicriioigci	ı

Eine Zahlenfolge ist eine Funktion aus der Menge der natürlichen Zahlen in die Menge der reellen Zahlen.

Symbol: $(a_k) = (a_1; a_2; ...; a_k; ...)$

Partialsumme: $s_n = a_1 + a_2 + ... + a_n = \sum a_k$

G heißt obere Grenze ⇔

⇔kleinste obere Schranke

G heißt untere Grenze ⇔

⇔größte untere Schranke

ε-Umgebung von a ⇔

 \Leftrightarrow offenes Intervall (a - ε ,a + ε)

Grenzwert

Grenzwert g von $(a_k) \Leftrightarrow F$ ür jedes positive ϵ gilt für fast alle a_n :

$$a - \varepsilon < a_n < a + \varepsilon$$
 bzw. $|a_n - g| < \varepsilon$

(a_k) heißt konvergent ⇔Grenzwert existiert

 $(a_{K}) \ heißt \ divergent \Leftrightarrow Grenzwert \ existiert \ nicht$

Nullfolge \Leftrightarrow Grenzwert = 0

Divergenz

bestimmt divergent ⇔ Grenzwert ∞ oder - ∞ unbestimmt divergent ⇔ Grenzwert existiert nicht

Arithmetische Zahlenfolgen

Form: a, a+d, a+2d, a+3d, ..., a+ (k-1)d,

d... Differenz

$$a_k = a_1 + (k-1) \cdot d$$
 $a_{k+1} - a_k = d$

 $s_n = n/2 \cdot (a_1 + a_n) = n \cdot a_1 + d/2 \cdot n \cdot (n-1)$

d<0 fallende, d=0 konstante,

d>0 wachsende Folge

Differenzenfolge

Zu (a_k) ist (d_k) die Differenzenfolge, wenn

$$d_k = a_{k+1} - a_k$$

Arithmetische Folge n.Ordnung

..., wenn erst die n.te Differenzfolge konstant ist Bildungsgesetz

$$a_k = b_2(k-1)^2 + b_1(k-1) + b_0 \dots 2.Ordnung$$

 $a_k = b_3(k-1)^3 + b_2(k-1)^2 + b_1(k-1) + b_0 \dots 3.0rdn.$

Geometrische Zahlenfolgen

Form: a, aq, aq², aq³, ..., a·qⁿ⁻¹, q... Quotient

$$a_k = a_1 \cdot q^{k-1}$$

 $a_{k+1} / a_k = q$

$$a_n = \sqrt{[a_{n-1} \cdot a_{n+1}]}$$

Summenformel für q<>1

$$s_n = a_1 \cdot (q^n - 1) / (q - 1) = (a_n q - a_1) / (q - 1)$$

 $q = (s_n - a_1) / (s_n - a_n)$

0<q<1 fallende, q=1 konstante, q>1 wachsende q<0 alternierende Folge

Grenzwertsätze

Alle Grenzübergänge erfolgen n $\to \infty$

$$\lim (a_n \pm b_n) = \lim a_n \pm \lim b_n$$

$$\lim (a_n \cdot b_n) = \lim a_n \cdot \lim b_n$$

$$\lim (a_n / b_n) = \lim a_n / \lim b_n,$$

falls lim b_n <>0

Grenzwerte (alle n $\rightarrow \infty$)

$$\lim_{n \to \infty} 1/n = 0 \qquad \qquad \lim_{n \to \infty} n = 1$$

$$\lim_{n \to \infty} a^n/n! = 0$$
 $\lim_{n \to \infty} (1+1/n)^n = e$

$$\lim_{n \to \infty} n^k / a^n = 0$$
, für a>1, k \in N

$$\lim k^{n} = 0 \text{ für } |k| < 1, = 1 \text{ für } k = 1,$$

divergent für |k|>1

$$\lim 1/(1+a^n) = 1 \text{ für } |a| < 1, = 1/2 \text{ für } a = 1,$$

0 für |a|>1, divergent für a= -1

Grenzwert einer Funktion

Eine Funktion f(x) hat an der Stelle x_0 einen Grenzwert $g \in R \Leftrightarrow$ für jede gegen x_0 konvergierende Folge (x_n) die Folge der Funktionswerte $(f(x_n))$ gegen g strebt.

linksseitiger Grenzw. ... Konvergenz von links rechtsseitiger Grenzw. ... Konvergenz von rechts

Grenzwertsätze für Funktionen

Alle Grenzübergänge erfolgen $x \rightarrow x_0$

$$\lim [c \cdot u(x)] = c \cdot \lim u(x)$$

$$\lim [u(x) \pm v(x)] = \lim u(x) \pm \lim v(x)$$

$$\lim [u(x) \cdot v(x)] = \lim u(x) \cdot \lim v(x)$$

$$\lim [u(x) / v(x)] = \lim u(x) / \lim v(x),$$

falls $\lim v(x) <> 0$

 $\lim [n \sqrt{u(x)}] = n \sqrt{\lim u(x)}$

 $\lim [u(x)^n] = [\lim u(x)]^n$

 $\lim_{x \to \infty} cu(x) = c\lim_{x \to \infty} u(x)$; c...reell

 $\lim \log_{\mathbf{C}} \mathbf{u}(\mathbf{x}) = \log_{\mathbf{C}} \lim \mathbf{u}(\mathbf{x})$

Spezielle Grenzwerte

Grenzübergang $x \rightarrow 0$

 $\lim \sin x/x=1$

 $\lim \tan x / x = 1$

lim arctan $1/x = \pi/2$ (rechtsseitiger Grenzwert)

lim arctan $1/x = -\pi/2$ (linksseitiger Grenzwert)

 $\lim (a^X - 1)/x = \ln a (a > 0)$

Maskelynsche Regel lim sin $x/(x\sqrt[3]{(\cos x)}) = 1$

Grenzübergang $x \rightarrow 1$

 $\lim \ln x / (x-1) = 1$

Grenzübergang $x \rightarrow a$

$$\lim (x^n - a^n)/(x - a) = na^{n-1}$$

Grenzübergang x→∞

$$\lim x^n / a^n = 0$$
; für a>1

 $\lim x^n / e^n = 0$

 $\lim (1+1/x)^X = e$

 $\lim \sin x / x = 0$

Konstante	DifferentiationsregeIn für f(x)= Konstante f(x)=c f'(x)=0			Differentiation impliziter Funktionen $f(x,y)=0$ $dy/dx = y' = -(\partial f/\partial x)/(\partial f/\partial y) = -f_X/f_Y$		
Faktor	` '	f'(x)=0 $f'(x)=c \cdot v'(x)$			•	
Summe	. , , , ,	$f'(x)=c\cdot v'(x)$ $f'(x)=v'(x)\pm u'(x)$	$y'' = -(f_{XX} f_{y^2} - 2 f_{XY} f_{X} f_{y} + f_{yY} f_{x^2}) / f_{y^3}$			
Produkt	$f(x)=v(x)\pm u(x)$ $f(x)=v(x)\cdot u(x)$	1 (∧)−v (∧)±u (λ)				
TOUUKL	., ., .,	\	Integrationsregeln		_, ,	
3erProdukt	$f'(x)=v'(x)\cdot u(x)$, , , , ,		f(x)	F(x)	
SEIFIOUUKI	$f(x)=u(x)\cdot v(x)$		Konstante	a	a·x+c	
$f'(x)=u'(x)\cdot v(x)\cdot w(x)+u(x)\cdot v'(x)\cdot w(x)+$		Faktor	` '	a⋅F(x) +c		
Quotient	$+u(x)\cdot v(x)\cdot w'(x)$ f(x)=v(x)/u(x)		Summe	$v(x)\pm u(x)$. , , , , , , , , , , , , , , , , , , ,	
Quotient		(x)-v(x)·u'(x)]/(u²(x))		$f(ax+b) \int f(x) dx = 1/a \int f(t) dt$		
Kettenregel		$f'(x)=u'[v(x)] \cdot v'(x)$			mit t = ax+b	
Retterireger	1(x)=u[v(x)]	$\Gamma(X) = U[V(X)] \cdot V(X)$	Substitution) $\int f(u) du$, mit u=g(
Ableitungsfu	nktionen			f'(x) / f(x)	In f(x) + c	
f(x)	f'(x)			$f(x) \cdot f'(x)$	f ² (x)/2	
xn	n · x ⁿ⁻¹		Partielle Integ	gration		
1/x ⁿ	- n/x ⁿ⁺¹		∫ u'(x) v (x	dx = u(x) v	$(x) - \int u(x) v'(x) dx$	
√x	1/(2 · √x)		Stammfunkti	on von Funk	ctionen	
$n_{\sqrt{X}}$	$n\sqrt{x/(nx)}$		f(x)	F(x) -	+ C	
	n/n · n√(x ^{m-n})		1	X		
χX	$x^X \cdot (\ln x + 1)$)	xn	1/(n+1) x ⁿ⁺¹ , n≠-1		
sin x	cos x	,	(ax+b) ⁿ	1/[a(n+1)] (ax+b) ⁿ⁺¹ , n ≠		
COS X	- sin x		1/x	In x		
tan x	$1/\cos^2 x = 1 + 1$	⊦ tan² x	1/(ax+b)	ln(ax+b)/a		
cot x	$-1/\sin^2 x = -1 - \cot^2 x$		1/(x⋅ln a)	$1/\ln a \cdot \ln x = \log_a x$		
e ^X	e ^X	00t X	sin x	- COS X		
a ^X	a ^X · In a		sin² x	1/2 (x - sin x cos x)		
f(x)			cos x	sin x		
In x	f'(x) 1/x		COS ² X	1/2 (x + sinx cos x)		
			1/cos² x	tan x		
log _a x arcsin x	1/(x · ln a)		1/sin²x	-cot x		
arccos x	1 / √(1- x²) - 1 / √(1- x²)		tan x	- In cos x		
arctan x	1/(1+ x²) fü	1 - ابرا	cot x	-	· ·	
	` ,	• •	a ^X	In sin x a ^x /In a		
arccot x	-1 / (1+ x²) fü	ui x < i	ex	e ^X	u	
	sh x		√x			
cosh x tanh x 1/0	$\sinh x$ $\cosh^2 x = 1 - \tan x$	h2	1/√x	2/3 √x³		
			$1/\sqrt{x^2 \pm a^2}$	2 √x		
	$/\sinh^2 x = 1 - \cos^2 x$	III X	sinh x	In $ x + \sqrt{(x^2 \pm a^2)} $		
arsinh x	1/√[1+x²]		cosh x	cosh x		
arcosh x	1/√[x²-1]	.4	tanh x	sinh x		
artanh x	1/(1-x²) für x			In cosh x		
arcoth x	1/(1-x²) für x	>1	coth x	In sinh x		
In(f(x))	f'(x)/f(x)		1/cosh² x	tanh :		
		1.4	1/sinh² x	- coth		
Differentiation der Umkehrfunktion		$1/(a^2 + x^2)$	1/a arctan			
Ist $x=g(y)$ Umkehrfunktion von $y=f(x)$		$1/(a^2 - x^2)$	1/a artanh x/a =			
\Rightarrow f'(x) · g'	(y) = 1			$= 1/(2a) \ln [(a+x) / (a-x)], $		
Logarithmica	he Differentiatio	nn	$1/(x^2 - a^2)$		rcoth x/a =	
•			. 1		a) In [(x-a) / (x+a)],	
$y = u(x)^{V(X)} \Rightarrow \ln y = v(x) \ln u(x) \Rightarrow$ $\Rightarrow y'/y = v'(x) \ln u(x) + v(x) u'(x)/u(x) \Rightarrow$			1/√(a² - x²)	arcsin x/a		
	// / / / / / / / / / / / / / / / / / /	\!/	$1/\sqrt{(a^2 + x^2)}$		$x/a = \ln [x + (a^2 +$	

Häufig vorkor	mmende Substitutionen	9. ∫f(e ^x) dx			
t = ax+b	dx = 1/a dt	Substitution $e^{X} = t$	dx = dt/t		
t = ax+b t = x/a	dx = 1/a dt dx = a dt	$\Rightarrow \int f(t) dt$	an av		
t = x/a t = a/x	$dx = -a/t^2 dt$				
t = a/x $t = a^X$		10. ∫f(x, ^k √(ax+b)) dx	1.4		
t = ax $t = \sqrt{x}$	$dx = dt/(t \ln a)$	Substitution ax+b = t	$dx = kt^{k-1}/a /t$		
	dx = 2t dt	$\Rightarrow \int f(t) dt$			
$t = e^{X}$	dx = 1/t dt				
	$dx = e^{t} dt$	Integration durch Partialbi	uchzerlegung		
	dx = dx = 1/b dt	Partialbruchzerlegung vor	f(x)/g(x)		
	$dx = dt/[2\sqrt{(t-a^2)}]$	1. $g(x) = 0$ hat nur einfach	e reelle Wurzeln x _i		
$t = \sqrt{(a+bx)} dx$		$f(x)/g(x) = A/(x-x_1) + B/($	$x-x_2$) + C/($x-x_3$) +		
	$dx = dt/[2 \sqrt{(bt - ab)}]$	mit A = $f(x_1)/g'(x_1)$, B =	f(x ₂)/g'(x ₂),		
	$x = t dt / \sqrt{(t^2 - a^2)}$	2 reelle aber mehrfach	ne auftretende Wurzeln		
` '	$x = -t dt / \sqrt{(a^2 - t^2)}$	$x_1 \propto mal, x_2 \beta mal, x_3 \gamma$	mal		
$t = \sqrt{(x^2 - a^2)} dx$	$x = t dt / \sqrt{(t^2 + a^2)}$	$f(x)/g(x) = A_1/(x-x_1)^{\alpha} + A_2/(x-x_1)^{\alpha-1} + +$			
Integration du	urch Substitution	$+ A_{0}/(x-x_{1}) + B_{1}/(x-x_{2})^{\beta}$	$+ + B_{0/}/(x-x_2) +$		
	$\phi(t)$ • $\phi(t)$ dt mit $x = \phi(x)$ und	3 neben reellen auch	einfache konjugiert		
$dx = \phi^{\bullet}(t) dt$	(4)	komplex auftretende Wurzeln			
R(x) sei ration	nale Funktion	x ₁ und x ₂ sind zueinand	der konjugiert komplex		
1. ∫R(x, √(a² -		$\Rightarrow f(x)/g(x) = (Px + Q) /$			
Substitution x	• •	$= (Px + Q) / (x^2 + px + q)$			
_	t, a cos t) a cos t dt	$\Rightarrow \int (Px+Q)/(x^2+px+q) dx$	<i>'</i>		
•	and $\cos t = \sqrt{(a^2 - x^2)/a}$	4 neben reellen auch r			
2. ∫R(x, √(a² -		Wurzeln, z.B. bei einer dreifachen reellen			
Substitution x	**	und zweifach auftreten	den konjugiert		
	th t, a/cosh t) a dt/cosh²t	komplexen Wurzeln			
	(a^2-x^2) und cosh t = $a/\sqrt{(a^2-x^2)}$	$f(x)/g(x) = A_1/(x-x_1)^3 + A_1$	$A_2/(x-x_1)^2 + A_2/(x-x_1) +$		
3. $R(x, \sqrt{a^2})$	· · · · · · · · · · · · · · · · · · ·	$+ (P_1x + Q_1) / (x^2 + px + q^2)$	2 \ 1' \ 2 \ 1'		
Substitution x		$+ (P_2x + Q_2) / (x^2 + px + q^2)$			
_	nt, a/cos²t) a/cos²t dt	Standardfälle	,		
`	$x^2 + x^2$) und cos t = $a/\sqrt{(a^2 + x^2)}$	Bezeichnung X=a+bx und	l Y=f+ax		
,	, ,	1/(XY) = 1/(fb-ag) (b/X - g)			
4. ∫R(x, √(a² -		Bezeichnung X=a+x, Y=b	•		
Substitution x		1/(XYZ) = A/X + B/Y + C/Z			
•	th t, a cosh t) a cosh t dt	A = 1/[(b-a)(c-a)], B =			
sinn t = X/a	und cosh $t = \sqrt{(a^2+x^2)/a}$	C = 1/[(a-c)(b-c)]	1/[(a-b)(c-b)] di1d		
5. $\int R(x, \sqrt{x^2} -$	a²)) dx	Bezeichnung X=a+bx² un	d V_f i av2		
Substitution x	$x = a/\cos t$ $dx = a \sin t dt/\cos^2 t$	1/(XY) = 1/(fb-ag) (b/X - g)	_		
⇒∫ R(a/co	os t, a tan t) a sin t/cos² t dt	$I/(\Lambda I) = I/(Ib-ag)(b/\Lambda - g)$	<i>(</i> 1 <i>)</i>		
$\sin t = \sqrt{(x^2 + x^2)^2}$	2 -a ²)/x und cos t = a/x				
6. $\int R(x, \sqrt{x^2} -$	a²)) dx				
Substitution x	$t = a \cosh t$ $dx = a \sinh t dt$				
⇒∫R(a co	osh t, a sinh t) a sinh t dt				
$sinh t = \sqrt{(}$	x^2 - a^2)/a und cosh t = x /a				
7.∫ R(sin x, co	os x, tan x, cot x) dx	Arkusfunktionen			
Substitution ta	an $x/2 = t$ $dx = 2/(1+t^2) dt$	Zusammenhang zu tr	igonometrischen		
_	$1+t^2$, $(1-t^2)/(1+t^2)$, $2t/(1-t^2)$, $(1-t^2)/(2t)$)	Funktionen			
2 dt/(1	, , , , , , , , , , , , , , , , , , , ,	sin (arccos x) = cos (arccos x)	$\arcsin x) = \sqrt{(1 - x^2)}$		
•	cosh x, tanh x, coth x) dx	tan (arccot x) = cot (a	rctan x) = 1/x		
Substitution to	·	arctan (cot x) = arcco	$t (tan x) = \pi/2 - x$		
	4 +2) (4 +2)/(4 +2) Ot/(4 +2) (4 +2)/(Ot/)	$\cos (\arctan x) = 1/\sqrt{1}$	⊥ v2\		

 $\Rightarrow \int R(2t/(1-t^2),\,(1+t^2)/(1-t^2),\,2t/(1+t^2),\,(1+t^2)/(2t))$

2 dt/(1-t²)

 $\cos (\arctan x) = 1/\sqrt{(1 + x^2)}$

 $\sin (\arctan x) = x/\sqrt{(1 + x^2)}$