HarrixOptimizationAlgorithms. Сборник описаний алгоритмов оптимизации. v. 1.1

А. Б. Сергиенко

4 декабря 2013 г.

Аннотация

В данном документе дано собрано множество описаний нестандартных алгоритмов, модификаций стандартных. Здесь приведено лишь описание алгоритмов, а не их исследование эффективности. Большинство алгоритмов неэффективны.

Содержание

1	Вве	дение	2
2	Усло	овные обозначения	2
3	Нек	соторая вводная информация	3
4	Мод	цификации генетического алгоритма	4
	4.1	Генетический алгоритм на бинарных строках с изменяющимся соотношением числа поколений и размера популяции	4
	4.2	Генетический алгоритм на вещественных строках с изменяющимся соотношением числа поколений и размера популяции	5
Cr	тисок	к литературы	6

1 Введение

Это своеобразная «свалка» алгоритмов оптимизации, которые используются автором. Большинство алгоритмов неэффективны. Здесь они приведены, чтобы можно было ссылаться на них.

Данный документ представляет его версию 1.0 от 4 декабря 2013 г.

Последнюю версию документа можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix.

Сайт автора, где публикуются последние новости: http://blog.harrix.org/, а проекты располагаются по адресу http://harrix.org/.

2 Условные обозначения

```
a \in A — элемент a принадлежит множеству A.
```

 \bar{x} — обозначение вектора.

 $\arg f(x)$ — возвращает аргумент x, при котором функция принимает значение f(x).

Random(X) — случайный выбор элемента из множества X с равной вероятностью.

 $Random\left(\{x^i\mid p^i\}\right)$ — случайный выбор элемента x^i из множества X, при условии, что каждый элемент $x^i\in X$ имеет вероятность выбора равную p^i , то есть это обозначение равнозначно предыдущему.

random(a,b) — случайное действительное число из интервала [a;b].

int(a) — целая часть действительного числа a.

 $\mu(X)$ — мощность множества X.

Замечание. Оператор присваивания обозначается через знак «=», так же как и знак равенства.

Замечание. Индексация всех массивов в документе начинается с 1. Это стоит помнить при реализации алгоритма на С-подобных языках программирования, где индексация начинается с нуля.

Замечание. Вызывание трех функций: Random(X), $Random(\{x_i \mid p_i\})$, random(a,b) – происходит каждый раз, когда по ходу выполнения формул, они встречаются. Если формула итерационная, то нельзя перед ее вызовом один раз определить, например, random(a,b) как константу и потом её использовать на протяжении всех итераций неизменной.

Замечание. Надстрочный индекс может обозначать как возведение в степень, так и индекс элемента. Конкретное обозначение определяется в контексте текста, в котором используется формула с надстрочным индексом.

Замечание. Если у нас имеется множество векторов, то подстрочный индекс обозначает номер компоненты конкретного вектора, а надстрочный индекс обозначает номер вектора во

множестве, например, $\bar{x}^i \in X$ $(i=\overline{1,N}), \, \bar{x}^i_j \in \{0;1\}, \, (j=\overline{1,n}).$ В случае, если вектор имеет свое обозначение в виде подстрочной надписи, то компоненты вектора проставляются за скобками, например, $(\bar{x}_{max})_j = 0$ $(j=\overline{1,n}).$

Замечание. При выводе матриц и векторов элементы могут разделяться как пробелом, так и точкой с запятой, то есть обе записи $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}^T$ и $\begin{pmatrix} 1;1;1;1;1;1;1;1 \end{pmatrix}^T$ допустимы.

Замечание. При выводе множеств элементы разделяются только точкой с запятой, то есть допустима только такая запись: $\{1; 1; 1; 1; 1; 1; 1; 1\}^{T}$.

3 Некоторая вводная информация

В каждом классе решаемых задач (задачи бинарной оптимизации, задачи вещественной оптимизации и др.) определен некий основной алгоритм. Обычно им является стандартный генетический алгоритм. И с ним сравниваются все остальные алгоритмы оптимизации, чтобы можно было выявить лучший алгоритм на множестве тестовых задач при определенных фиксированных настройках. Алгоритмы, которые ср

Алгоритмы представленные в данной работе бывают нескольких типов, которые описаны ниже.

Основной алгоритм оптимизации — некий алгоритм в классе решаемых задач (задачи бинарной оптимизации, задачи вещественной оптимизации и др.) относительно которого производится сравнение всех остальных алгоритмов.

Сравниваемый алгоритм оптимизации — некий алгоритм, который сравнивается по эффективности с основным алгоритмом и другими сравниваемыми алгоритмами по эффективности.

Добавочный алгоритм оптимизации — алгоритм оптимизации, который не сравнивается по эффективности с основным алгоритмом и другими сравниваемыми алгоритмами по эффективности. Этот алгоритм является промежуточным, и в нем проверяется эффективность какойнибудь настройки алгоритма. Например, в стандартном генетическом алгоритме есть три вида скрещивания: одноточечное, двухточечное и равномерное. А мы решили проверить трех точечное скрещивание. Для этого создает добавочный алгоритм, в котором есть только один вид скрещивания — трехточечным, и проводим полное тестирование алгоритма. И в сравнении с обычным алгоритмом можем оценить эффектность данного оператора. Если покажет эффектность, то уже можем создать сравниваемый алгоритм, который или уберет какой-то параметр или внесет трехточечное скрещивание на равноправных правах с другими видами скрещивания, или же, если на всех тестовых задачах трехточечное скрещивание покажет преимущество, то добавочный алгоритм станет сравниваемым алгоритмом. При этом отметим, что если просто добавим этот оператор в наравне с другими операторами, то нам не нужно будет пересчитывать весь алгоритм, так как просто добавим исследования из предыдущего исследования основного алгоритма.

Исследовательский алгоритм оптимизации — также алгоритм оптимизации, который не сравнивается по эффективности с основным алгоритмом и другими сравниваемыми алгоритмами по эффективности. Его особенность, что в этом алгоритме «вшито» множество разных настроек, эффективность которых мы не знаем. Мы проводим полное исследование данного

алгоритма, убираем неэффективные настройки или комбинации настроек и формируем уже сравниваемый алгоритм оптимизации.

4 Модификации генетического алгоритма

4.1 Генетический алгоритм на бинарных строках с изменяющимся соотношением числа поколений и размера популяции

Тип алгоритма: исследовательский алгоритм оптимизации.

Идентификатор: MHL_BinaryGeneticAlgorithmWDPOfNOfGPS.

Название: генетический алгоритм на бинарных строках с изменяющимся соотношением числа поколений и размера популяции.

Основан на стандартном генетическом алгоритме на бинарных строках: https://github.com/Harrix/Standard-Genetic-Algorithm.

Отличается от стандартного генетического алгоритма, тем, что размер популяции и число поколений рассчитывается из числа вычислений целевой функции не как одинаковые величины (извлечение квадратного корня), а через некоторое соотношение.

Число поколений определяется по формуле:

$$NumberOfGenerations = int \left(CountOfFitness^{Proportion} \right). \tag{1}$$

Число поколений, соответственно, определяется по формуле:

$$PopulationSize = int \left(\frac{CountOfFitness}{NumberOfGenerations} \right). \tag{2}$$

Тут CountOfFitness — максимальное число вычислений целевой функции, а Proportion — **новый** параметр в алгоритме, который обозначает «долю» числа поколений от общего числа вычислений целевой функции.

Proportion может принимать значения в интервале [0;1], а именно:

$$Proportion \in \{0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1\}.$$
(3)

To есть Proportion может принимать 11 значений.

По сравнению с стандартным генетическим алгоритмом число вариантов настроек алгоритма увеличивается в 11 раз и равно **594**.

Чем меньше Proportion, тем меньше будет число поколений.

При Proportion = 0.5 получим обычный стандартный генетический алгоритм. Число поколений будет равно $\sqrt{CountOfFitness}$ (без учета получения целой части числа).

При Proportion = 0 число поколений будет равно 1.

При Proportion = 1 число поколений будет равно CountOfFitness.

Результат исследований алгоритма можно посмотреть тут:

https://github.com/Harrix/HarrixDataOfOptimizationTesting

В библиотеке HarrixMathLibrary данный алгоритм реализован в вде функции MHL_BinaryGeneticAlgorithmWDPOfNOfGPS. Библиотеку можно найти тут:

https://github.com/Harrix/HarrixMathLibrary

4.2 Генетический алгоритм на вещественных строках с изменяющимся соотношением числа поколений и размера популяции

Тип алгоритма: исследовательский алгоритм оптимизации.

Идентификатор: MHL_RealGeneticAlgorithmWDPOfNOfGPS.

Название: генетический алгоритм на вещественных строках с изменяющимся соотношением числа поколений и размера популяции.

Основан на стандартном генетическом алгоритме на вещественных строках: https://github.com/Harrix/Standard-Genetic-Algorithm.

Отличается от стандартного генетического алгоритма, тем, что размер популяции и число поколений рассчитывается из числа вычислений целевой функции не как одинаковые величины (извлечение квадратного корня), а через некоторое соотношение.

Число поколений определяется по формуле:

$$NumberOfGenerations = int \left(CountOfFitness^{Proportion} \right). \tag{4}$$

Число поколений, соответственно, определяется по формуле:

$$PopulationSize = int \left(\frac{CountOfFitness}{NumberOfGenerations} \right). \tag{5}$$

Тут CountOfFitness — максимальное число вычислений целевой функции, а Proportion — **новый** параметр в алгоритме, который обозначает «долю» числа поколений от общего числа вычислений целевой функции.

Proportion может принимать значения в интервале [0;1], а именно:

$$Proportion \in \{0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1\}.$$

$$(6)$$

To есть Proportion может принимать 11 значений.

По сравнению с стандартным генетическим алгоритмом число вариантов настроек алгоритма увеличивается в 11 раз и равно **1188**.

Чем меньше Proportion, тем меньше будет число поколений.

При Proportion = 0.5 получим обычный стандартный генетический алгоритм. Число поколений будет равно $\sqrt{CountOfFitness}$ (без учета получения целой части числа).

При Proportion = 0 число поколений будет равно 1.

При Proportion = 1 число поколений будет равно CountOfFitness.

Результат исследований алгоритма можно посмотреть тут:

https://github.com/Harrix/HarrixDataOfOptimizationTesting

В библиотеке HarrixMathLibrary данный алгоритм реализован в вде функции MHL_RealGeneticAlgorithmWDPOfNOfGPS. Библиотеку можно найти тут:

https://github.com/Harrix/HarrixMathLibrary