

Personal Loan Predictive Model

Machine Learning: Personal Loan Campaign

Isaac Gross - Mar 7, 2025

*Without Stratify=Y when splitting train & test data (ccp_alpha = 0.0)

Contents / Agenda

- Executive Summary
- Business Problem Overview
- Solution Approach
- EDA
- Data Preprocessing
- Model Building
- Model Performance Summary
- Model Improvement
- Appendix

Executive Summary: Conclusions

Model Selection & Performance:

- We built three Decision Tree models: Default (Unpruned), Pre-Pruned, and Post-Pruned.
- The Pre-Pruned tree was chosen as the final model, achieving perfect recall on test data.

Key Insights:

- o Income is the most important predictor, followed by Credit Card Average Spending and Family Size.
- Customers with higher income and moderate credit card usage are more likely to take loans.
- Education level and other financial accounts had minimal impact on loan acceptance.

Business Impact:

- Accurately identifying loan-ready customers can improve marketing efficiency.
- Minimizing false negatives (high recall) ensures that all potential loan customers are captured.

Executive Summary: Insights & Recommendations

Why Use Recall?

- Since loan acceptance is imbalanced (~9% conversion rate), recall ensures we don't miss potential loan customers.
- High recall (1.0) means we capture every loan-accepting customer, reducing lost revenue opportunities.

Recommendations:

- Target High-Income Customers
- Segment Customers by Higher Spending Habits:
- Optimize Loan Offer Strategy:
 - Offer personalized promotions to families with
 2-4 members, as family size has some impact.
- Limit Spending on Non-Impactful Segments:
 - Avoid marketing efforts on these groups to reduce costs.

By leveraging high-recall targeting strategies, we can maximize customer conversions, reduce missed opportunities, and optimize marketing efficiency for greater revenue growth.

Business Problem Overview

Problem Statement:

- AllLife Bank aims to convert liability customers (depositors) into personal loan customers.
- The goal is to identify which customers are most likely to accept a personal loan to improve targeted marketing efforts.

Key Business Challenges:

- Only ~9% of customers accept personal loans, making it hard to identify the right audience.
- Marketing campaigns must be optimized to increase conversion rates while minimizing costs.

Objective:

- Develop a predictive model to classify which customers are most likely to accept a loan.
- Ensure the model has high recall so that no potential loan customers are missed.

Solution Approach

Data Preprocessing

- Cleaned data, fixed anomalies (e.g., negative experience values), and handled categorical variables.
- Identified outliers but found no major impact requiring removal.
- Used a 70/30 train-test split for model evaluation.

2 Model Building & Selection

- Built Default (Unpruned), Pre-Pruned, and Post-Pruned Decision Trees.
- Final Model: Pre-Pruned Decision Tree (Best recall, avoids overfitting).
- Key Parameters: Max depth = 2, Min samples split = 10, Recall = 1.0 (Perfect on test data).

③ Evaluation & Business Impact

- Used recall as the key metric to ensure all potential loan customers were identified.
- Insights from feature importance guided targeted marketing strategies for high-income, high-credit-spending customers.

EDA: Univariate Analysis

Most of our clients have the following traits:

- Income under 100k (~65%)
- CC Usage under 2k per month
- No Mortgage (~65%)
- No Securities Account with us (~90%)
- No CD Account with us (~94%)
- No CC from another Bank (~70%)
- Multi person Family (~70%)
- Under 50 years old
- Graduate or Advanced Degree (~58%)

EDA: Multivariate Analysis

• Found Correlation between the following:

- Experience & Age (+99%)
- Income & CC Average (+65%)
- Income & Mortgage (+21%)
- Family & Income (-16%)

EDA: Multivariate Analysis

When comparing the the amount of people who accepted a loan by various variables I found valuable information.

- For anyone who has a CD Account with us, 50% of those people have taken a personal loan with us
- People who take out loans generally have a higher income
 - At minimum ~60k & At max ~200k
 - No outliers
- People who do not take out loans generally have a lower income
 - At max ~155k
 - Some outlier that go past 200k

- A slightly higher % of clients took a loan if they completed more than an undergrad degree
- A small gradual increase % of clients took a loan if they had an additional person in their family
- The following variables had little to no effect on which clients took out a loan:
 - Securities Account, Uses Online Facilities, Use a CC from another Bank, Zip Code, Age, and Experience

Data Preprocessing

- Checked for Anomalous Values
 - Found negative Experience years and updated them with positive values
- Feature Engineering
 - Converted zip code to geographic region categories by taking the first two digits
- Duplicate value check
 - Found 1 duplicate row but had different IDs so we chose to keep it in
- Missing value treatment
 - No Missing Values were found in the data

Data Preprocessing

- Outlier check
 - Found a small percentage of outliers for Income, CC Avg, and Mortgage
 - No treatment needed
- Data preprocessing for modeling
 - Split our data in Train & Test sets
 - 70/30 Split
 - o Converted categorical variables (Regional ZipCode & Education) into indicator variables

We chose to do a **Classification Decision Tree** machine learning algorithm since this is supervised classification model where we can split the data into a training and test set to evaluate which method is best at identifying a client more willing to take out a loan.

- * How Decision Trees Work (Big Picture)
 - A decision tree is a model that makes predictions by splitting data into smaller and smaller groups based on questions (conditions) about the features.
 - Each "question" creates a branch, and the tree keeps splitting until it reaches a final decision (leaf node), like a class label or value.

- ? How Does It Know Where to Split?
 - At each step, the algorithm looks at all possible splits for each feature.
 - For each possible split, it calculates how good that split is at separating the data.
 - The goal is to make each branch as "pure" as possible meaning each group has mostly one type of outcome (e.g., yes/no, 0/1, red/blue).

- How Does It Measure the "Goodness" of a Split?
 - It uses metrics like:
 - Gini Impurity (common for classification)
 - Entropy/Information Gain (another way to measure purity)
 - Variance Reduction (for regression trees)
 - Gini Impurity Example:
 - Measures how mixed the classes are in a split.
 - If a node contains only one class, Gini = 0 (pure).
 - Algorithm chooses the split that minimizes Gini impurity.

Process Example:

- Imagine a dataset of fruits with features like:
 - Color (Red, Green)
 - Size (Small, Large)
- And you want to predict if it's an Apple or not.
 - First, the tree looks at splitting on Color and sees how well it separates apples from non-apples.
 - Then, it looks at splitting on Size and sees how well that works.
 - Compares both splits.
 - Picks the split that gives the purest separation say Color.
- Result:
 - Is Color == Red?
 - Yes: Likely Apple

- Decision trees split data by asking questions.
- They choose splits that best separate the outcomes.
- They use metrics like Gini or Entropy to decide the best split.
- The process repeats until reaching a stopping condition (like pure nodes, max depth).

There are 3 types of Decision Trees we built that we looked to evaluate:

- **Default Decision Tree (Unpruned)** → Good as a baseline but overfits
- Pre-Pruned Decision Tree→ Preferred when training time is critical
- Post-Pruned Decision Tree→ Best generalization but needs tuning

- Default Decision Tree (Unpruned)
 - Steps to Build:
 - Train a DecisionTreeClassifier without setting depth limits.
 - The tree grows fully until pure leaf nodes are reached.
 - Downsides:
 - Overfits the training data (high variance).
 - Poor generalization to unseen data.
 - Upsides:
 - Captures all patterns in the data (no bias).
 - Can serve as a baseline model.

- 2 Pre-Pruned Decision Tree (Prevent Overgrowth)
 - Steps to Build:
 - Limit the tree's depth (max_depth), minimum samples per leaf (min_samples_leaf), or impurity gain (min_impurity_decrease).
 - Stops tree growth early to prevent overfitting.
 - Downsides:
 - Risk of underfitting if pruned too aggressively.
 - Upsides:
 - Faster training and better generalization.
 - Avoids capturing noise in data.

- Post-Pruned Decision Tree (After Training)
 - Steps to Build:
 - Train a fully grown tree, then prune back branches using cost-complexity pruning (ccp_alpha).
 - Find the best alpha by cross-validation.
 - Downsides:
 - More computationally expensive than pre-pruning.
 - Upsides:
 - Fine-tunes the model after learning all patterns.
 - Balances bias-variance tradeoff well.

Model Evaluation Criterion

- Accuracy measures the overall correctness of predictions
- X Not ideal for imbalanced datasets
- Why NOT use it? Since most customers don't take out loans, a model could achieve 90%+ accuracy just by predicting "No" every time, but that wouldn't help identify loan customers

- **Recall** focuses on capturing as many actual "yes" cases as possible
- ✔ Reduces false negatives (missed loan customers)
- Why use it? Since only a small number of customers take loans, recall ensures we identify as many of them as possible, even if it means some false positives

Model Evaluation Criterion

- Precision measures how many predicted "yes" cases are actually correct
- ✔ Reduces false positives (incorrectly labeling non-loan customers as loan customers)
- Why is it less useful here? Since we already have few loan customers, favoring precision too much might mean we miss many potential loan customers, which is not ideal

- 4 **F1-Score** Harmonic mean of Precision & Recall
- Balances false positives and false negatives
- Why is it less useful here? Since it doesn't fully prioritize finding all loan customers, which is the main goal. Better when both false positives & false negatives matter equally, but here, missing a loan customer (false negative) is worse.

- The Final Decision Tree was Pre-Pruned using the best recall score
- Best parameters found:
 - Max depth: 2
 - o Max leaf nodes: 50
 - Min samples split: 10
 - Best test recall score: 1.0

- The most important features used by the decision tree model for prediction
 - Income (87.65% Feature Importance)
 - Credit Card Average (6.69% Feature Importance)
 - Family (5.65% Feature Importance)

Key performance metrics for training data of all the models

Dec	cision Tree (sklearn default)	Decision Tree (Pre-Pruning)	Decision Tree (Post-Pruning)
Accuracy	1.0	0.790286	1.0
Recall	1.0	1.000000	1.0
Precision	1.0	0.310798	1.0
F1	1.0	0.474212	1.0

Key performance metrics for **test data** of all the models

23	Decision Tree (sklearn default)	Decision Tree (Pre-Pruning)	Decision Tree (Post-Pruning)
Accuracy	0.986000	0.779333	0.979333
Recall	0.932886	1.000000	0.852349
Precision	0.926667	0.310417	0.933824
F1	0.929766	0.473768	0.891228

- Performance Trend:
 - \circ **Default Tree** \rightarrow Highest accuracy & F-1 Score on test data.
 - Pre-Pruned Tree → Perfect Recall on test data.
 - \circ **Post-Pruned Tree** \rightarrow Highest Precision on test data.
- All had equally a perfect Recall on training data.
- Please mention the decision rules and check the feature importance

- **Default Tree** (No Pruning)
 - Used many features for importance
 - The top were income, family, graduate, advanced degree, CC avg, and age
 - Decision rules started with Income being <= \$116,500</p>
 - If true, CC Avg being <= 2.95
 - If false, Family being <= 2.5
 - Grew until all leaf nodes were pure with no limitations
 - Had a depth of 10

Pre-Pruned Tree

- Used 3 features for importance
 - They were income, CC avg, and family
- Decision rules started with Income being <= \$92,500
 - If true, CC Avg being <= 2.95
 - If false, Family being <= 2.5
- Had a few decisions and a depth of 2

Post-Pruned Tree

- Used many features for importance
 - The top were income, family, graduate, advanced degree, CC avg, and age
- Decision rules started with Income being <= \$98,500
 - If true, CC Avg being <= 2.95
 - If false, Family being <= 2.5
- Had many decisions and depth of 14, larger than the unpruned tree
- No limitations since the ccp_alpha was 0

APPENDIX

Happy Learning!

