

(a)Adaboost:

Algorithm:

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$. Initialize: $D_1(i) = 1/m$ for $i = 1, \dots, m$. For $t = 1, \dots, T$:

- Train weak learner using distribution D_t.
- Get weak hypothesis h_t: X → {-1,+1}.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.
- Update, for i = 1, ..., m

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

During we generate weak learners, we use maximum weighted information gain as criteria. In concrete,

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

Information Gain

$$IG(X|Y) = H(X) - H(X|Y)$$

However, when we calculate $p(x_i)$ or $p(y_j)$, we do not use $count(x_i)/sum_over_i(count(x_i))$ as $p(x_i)$. Instead, we use $p(x_i)=weight(x_i)/sum_over_i(weight_i)$, $p(j_i)=weight(x_j)/sum_over_i(weight_j)$

For each feature (other than 4th feature), we first generate split candidates by enumerating feature in percentiles. We compare the information gain respect to different split candidates (including 4th feature) to obtain the best split for each feature and then use information gain respect to best splits of different features to get best feature and split. We can use them to binary split dataset.

After each split, we obtain two sub-datesets, representing left and right nodes, which, along with their weights, can be feed into information gain generator to obtain next node(best feature and split).

When we go to leaf, we use alpha_t and h_t to obtain weighted sum and compare with 0 in order to get predicted class. Then compare the class we predict with the original target information, count the number of error then add all leaves up and divided by N = final error rate.

For boston50, B=[1,2,3,4,5,6,7,8,9,10]

bosto n50	b=1	2	3	4	5	6	7	8	9	10
folder	0.17324	0.17324	0.14692	0.14692	0.12719	0	,		J	0.11403
=0	561	561	982	982	298	0.125	0.125	0.125	0.125	509
	0.28	0.28	0.14	0.14	0.2	0.2	0.2	0.2	0.2	0.18
1	0.13157 895	0.13157 895	0.14912 281	0.13157 895						
	0.18	0.18	0.22	0.14	0.18	0.16	0.16	0.16	0.16	0.16
2	0.19298 246	0.19298 246	0.14692 982							
	0.14	0.14	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
3	0.15789 474									
	0.26	0.26	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
4	0.15350 877	0.15350 877	0.13815 789							
	0.4	0.4	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
5	0.16447 368	0.16447 368	0.16885 965							
	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
6	0.16228 07	0.16228 07	0.16228 07	0.13596 491	0.14254 386	0.13596 491	0.13377 193	0.13377 193	0.13815 789	0.13815 789
	0.28	0.28	0.28	0.26	0.38	0.38	0.34	0.34	0.4	0.4
7	0.20175 439	0.20175 439	0.14254 386							

	0.12	0.12	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
8	0.20394 737	0.20394 737	0.15570 175	0.17982 456	0.13815 789	0.13815 789	0.13815 789	0.13815 789	0.13815 789	0.13815 789
	0.08	0.08	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
9	0.18201 754	0.18201 754	0.15350 877							
	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
train set avera ge	0.17236 842	0.17236 842	0.15219 298	0.15021 93	0.14473 684	0.14385 965	0.14364 035	0.14364 035	0.14407 895	0.14298 246
test set avera ge	0.206	0.206	0.186	0.176	0.198	0.196	0.192	0.192	0.198	0.196
train set std	0.02184 633	0.02184 633	0.00883 747	0.01438 871	0.01189 074	0.01249 038	0.01264 535	0.01264 535	0.01236 85	0.01434 016
test set std:	0.09551 963	0.09551 963	0.08581 375	0.08380 931	0.09897 474	0.09951 884	0.09260 67	0.09260 67	0.10332 473	0.10346 014

bosto n75	b=1	2	3	4	5	6	7	8	9	10
folder =0	0.08333 333	0.08333	0.08333	0.08333	0.09868 421	0.09868 421	0.09868 421	0.09868 421	0.09868 421	0.09868 421
	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1	0.09210 526									
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
2	0.09649 123									
	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
3	0.08991 228	0.08991 228	0.07894 737							
	0.2	0.2	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
4	0.08771 93									
	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
5	0.09210 526	0.09210 526	0.09210 526	0.09210 526	0.09210 526	0.09649 123	0.09210 526	0.09210 526	0.09210 526	0.09210 526
	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
6	0.07894 737	0.07894 737	0.07894 737	0.07894 737	0.06359 649	0.07456 14	0.07456 14	0.07456 14	0.07456 14	0.07456 14
	0.18	0.18	0.18	0.18	0.2	0.2	0.2	0.2	0.2	0.2
7	0.08114 035									
	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
8	0.09210 526	0.09210 526	0.09210 526	0.08552 632	0.08552 632	0.08771 93	0.08771 93	0.08771 93	0.08771 93	0.08771 93
	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
9	0.08991 228	0.08991 228	0.08991 228	0.08333 333	0.08333 333	0.08552 632	0.08114 035	0.08333 333	0.08114 035	0.08114 035
	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
train set avera	0.08837	0.08837	0.08728	0.08596	0.08596	0.08793	0.08706	0.08728	0.08706	0.08706
ge	719	719	0.00720	491	491	86	14	0.00720	14	14

test set avera										
ge	0.116	0.116	0.114	0.114	0.116	0.116	0.116	0.116	0.116	0.116
train set std	0.00528 595	0.00528 595	0.00594 941	0.00570 175	0.00964 912	0.00768 796	0.00753 633	0.00739 136	0.00753 633	0.00753 633
test set std:	0.05782 733	0.05782 733	0.05517 246	0.05517 246	0.05782 733	0.05782 733	0.05782 733	0.05782 733	0.05782 733	0.05782 733

Discussion:

Test set average error is higher than train set, which is normal, since test set is unseen dataset. When we increase the number of base classifier, the average error rate goes down at first. Because more base classifiers can compensate existing base classifiers' shortcoming and . However, because each weak learner is restricted as two layer tree, we may can only five two layer trees that can help compensating the shortcoming. when we increase the number of base classifiers, the last base classifier has virtually zero weight and make little contribution or even noise direction. So the right part of curve remains the same or goes up.

(b)

Random Forest:

Algorithm:

- Create k bootstrap samples S¹,..., S^k
- Learn an un-pruned decision tree on each sample
- · Learning: At each internal node
 - Randomly select m < d features
 - Determine the best split using only these features
- Prediction: Use output from all trees in the forest
 - Classification: Majority vote

If we have dataset X, bootstrap samples are samples of size N drawing from X with replacement.

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

Information Gain

$$IG(X|Y) = H(X) - H(X|Y)$$

When we calculate $p(x_i)$ or $p(y_j)$, we use $count(x_i)/sum_over_i(count(x_i))$ as $p(x_i)$ and $p(y_j)=count(x_j)/sum_over_j(count(y_j))$.

For each bootstrap sample, we generate a bunch of trees.

For each tree, we generated nodes layer by layer. For each node, we enumerate features into multiple split and calculate information gain using foregoing formula. And compare information gain of best split of different features

After we have forest, we can classify it by equal weighted vote of different trees. For boston50,

bost on50	m=1	2	3	4	5	6	7	8	9	10	11	12	13
				0.203 94737					0.195 17544			0.210 52632	

	0.56	0.46	0.54	0.48	0.38	0.26	0.38	0.38	0.38	0.36	0.48	0.46	0.4
	0.203	0.192	0.186	0.210	0.208	0.184	0.208	0.203	0.184	0.206	0.190	0.212	0.199
1	94737	98246	40351	52632	33333	21053	33333	94737	21053	14035	78947	7193	5614
	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
2	0.217 10526	0.219 29825	0.217 10526	0.212 7193	0.228 07018	0.219 29825	0.217 10526	0.210 52632	0.217 10526	0.223 68421	0.219 29825	0.214 91228	0.223 68421
	0.26	0.12	0.2	0.14	0.36	0.3	0.16	0.2	0.36	0.36	0.24	0.22	0.32
3	0.201 75439	0.184 21053	0.214 91228	0.212 7193	0.212 7193	0.199 5614	0.221 49123	0.206 14035	0.203 94737	0.221 49123	0.199 5614	0.214 91228	0.208 33333
	0.28	0.32	0.26	0.28	0.28	0.3	0.28	0.3	0.28	0.24	0.28	0.3	0.3
4	0.208 33333	0.214 91228	0.201 75439	0.219 29825	0.228 07018	0.228 07018	0.208 33333	0.208 33333	0.206 14035	0.214 91228	0.212 7193	0.217 10526	0.225 87719
	0.16	0.12	0.32	0.12	0.26	0.16	0.24	0.26	0.16	0.18	0.26	0.16	0.16
5	0.223 68421	0.195 17544	0.212 7193	0.214 91228	0.225 87719	0.217 10526	0.217 10526	0.225 87719	0.230 26316	0.208 33333	0.214 91228	0.208 33333	0.208 33333
	0.18	0.12	0.16	0.16	0.1	0.14	0.12	0.1	0.16	0.16	0.16	0.14	0.16
6	0.192 98246	0.188 59649	0.192 98246	0.186 40351	0.192 98246	0.173 24561	0.188 59649	0.190 78947	0.186 40351	0.190 78947	0.188 59649	0.195 17544	0.199 5614
	0.38	0.44	0.4	0.38	0.42	0.44	0.44	0.44	0.36	0.42	0.42	0.4	0.36
7	0.206 14035	0.192 98246	0.201 75439	0.199 5614	0.179 82456	0.199 5614	0.179 82456	0.186 40351	0.199 5614	0.195 17544	0.201 75439	0.210 52632	0.192 98246
	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
8	0.210 52632	0.225 87719	0.230 26316	0.230 26316	0.230 26316	0.212 7193	0.217 10526	0.210 52632	0.221 49123	0.234 64912	0.214 91228	0.214 91228	0.208 33333
	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
9	0.210 52632	0.186 40351	0.214 91228	0.203 94737	0.201 75439	0.199 5614	0.212 7193	0.195 17544	0.210 52632	0.201 75439	0.186 40351	0.199 5614	0.210 52632
	0.28	0.26	0.2	0.28	0.26	0.26	0.24	0.24	0.26	0.24	0.26	0.18	0.22
train set aver age	0.208 99123	0.199 12281	0.208 11404		0.210 96491	0.202 19298		0.205 04386	0.205 48246	0.209 21053	0.202 85088	0.209 86842	0.209 42982
test set aver age	0.274	0.248	0.272	0.248	0.27	0.25	0.25	0.256	0.26	0.26	0.274	0.252	0.256
train set std	0.008 14952	0.014 2392	0.012 10916	0.011 27841	0.016 28723	0.016 31673	0.012 91628	0.011 0196	0.014 11197	0.013 56107	0.011 40562	0.006 79825	0.010 01355

test														
set	0.132	0.137	0.131	0.126	0.113	0.106	0.114	0.115	0.104	0.108	0.117	0.122	0.105	
std:	07574	17143	20976	87001	9298	67708	62984	16944	69002	44353	32008	37647	37552	

For boston75,

bost on75	m=1	2	3	4	5	6	7	8	9	10	11	12	13
folde r=0	0.245 61404	0.175 4386	0.214 91228	0.258 77193	0.214 91228	0.258 77193	0.258 77193	0.212 7193	0.212 7193	0.254 38596	0.243 42105	0.263 15789	0.171 05263
	0.18	0.14	0.14	0.18	0.16	0.18	0.18	0.16	0.14	0.18	0.18	0.18	0.16
1	0.153 50877	0.175 4386	0.252 19298	0.142 54386	0.168 85965	0.164 47368	0.146 92982	0.135 96491	0.186 40351	0.201 75439	0.177 63158	0.197 36842	0.192 98246
	0.18	0.22	0.26	0.16	0.18	0.18	0.2	0.18	0.22	0.2	0.22	0.2	0.2
2	0.247 80702	0.254 38596	0.245 61404	0.236 84211	0.243 42105	0.247 80702	0.217 10526	0.228 07018	0.276 31579	0.241 22807	0.274 12281	0.252 19298	0.219 29825
	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
3	0.223 68421	0.223 68421	0.223 68421	0.223 68421	0.221 49123	0.223 68421	0.223 68421	0.214 91228	0.221 49123	0.221 49123	0.219 29825	0.223 68421	0.223 68421
	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
4	0.225 87719	0.179 82456	0.192 98246	0.175 4386	0.195 17544	0.127 19298	0.155 70175	0.190 78947	0.219 29825	0.188 59649	0.127 19298		

	0.44	0.38	0.38	0.38	0.42	0.38	0.38	0.42	0.42	0.38	0.38	0.42	0.38
	0.203	0.217	0.203	0.203	0.210	0.217	0.212	0.179	0.217	0.214	0.210	0.217	0.186
5	94737	10526	94737	94737	52632	10526	7193	82456	10526	91228	52632	10526	40351
	0.62	0.64	0.6	0.58	0.62	0.64	0.64	0.62	0.64	0.64	0.64	0.64	0.62
	0.206	0.245	0.258	0.219	0.195	0.219	0.201	0.214	0.223	0.184	0.153	0.199	0.179
6	14035	61404	77193		17544	29825	75439	91228	68421	21053	50877	5614	82456
	0.14	0.2	0.2	0.14	0.12	0.18	0.18	0.18	0.2	0.16	0.08	0.14	0.18
7	0.217 10526	0.245 61404	0.263 15789	0.203 94737	0.208 33333	0.254 38596	0.221 49123	0.166 66667	0.160 08772	0.265 35088	0.214 91228	0.239 03509	0.258 77193
7													
	0.14	0.16	0.16	0.14	0.14	0.16	0.14	0.14	0.14	0.16	0.14	0.14	0.14
8	0.155 70175	0.236 84211	0.179 82456	0.241 22807	0.232 45614	0.260 96491	0.274 12281	0.258 77193	0.228 07018	0.245 61404	0.228 07018	0.212 7193	0.252 19298
	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
9	0.203 94737	0.190 78947	0.210 52632	0.201 75439	0.274 12281	0.239 03509	0.265 35088	0.190 78947	0.199 5614	0.280 70175	0.263 15789	0.212 7193	0.269 73684
	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
train													
set													
aver	0.208	0.214	0.224	0.210	0.216	0.221	0.217	0.199	0.214	0.229	0.211	0.221	0.210
age	33333	47368	5614	74561	44737	27193	76316	34211	47368	82456	18421	05263	74561
test													
set aver													
age	0.242	0.246	0.246	0.23	0.236	0.244	0.244	0.242	0.248	0.244	0.236	0.244	0.24
train													
set	0.030	0.029	0.027	0.031	0.027	0.041	0.040	0.032	0.028	0.031	0.044	0.022	0.038
std	63903	88899	53394	98223	58367	47521	4015	60767	53912	13417	2423	44569	02723
test set	0.214	0.211	0.204	0.203	0.214	0.211	0.211	0.212	0.215	0.211	0.216	0.216	0.208
std:	74636	4805	1666		62525	24393	62231	12261	25798	4332	48095	11108	61448

Discussion:

Test set has a higher average error rate then train set which is normal, since test set are unseen date set.

When the size of feature set is very small, there are very limited choice we can make to decide best feature and split, then a related high error rate. When the feature set is very larger, the variance of trees can be appropriately reduced, since trees generated are more correlated. Sometimes, we see error rate fluctuates a bit, because all trees make equal weighted votes and including more feature candidates have to balance variance between trees and performance of each tree, which is hard to capture.