Homework 7 by Jingmin Sun Apr.10 2020

1. Page 153,1

(a) Since

$$(I-T)(I+T+\cdots+T^{n-1}) = I+T+\cdots+T^{n-1}-(T+T^2+\cdots T^n)$$

= $I-T^n$
= I

we get

$$(I-T)^{-1} = (I+T+\cdots+T^{n-1})$$

(b) Since we know $T^n = 0$, so we can find B such that

$$(I-T)B = 1 - T^n$$

And since the formula:

$$1 - x^n = (1 - x)(1 + x + \dots + x^{n-1})$$

we can have our guess.

2. Page 153,3 For any $v \in V$, we have

$$v = \frac{1}{2}(v - Tv) + \frac{1}{2}(v + Tv)$$

Since $T^2 = I$:

$$(T+I)\left(\frac{1}{2}(v-Tv)\right) = -\frac{1}{2}(T^2-I)v = 0$$

So we can get $\frac{1}{2}(v-Tv) \in \text{null } (T-I)$, and similarly, we can get $\frac{1}{2}(v+Tv) \in \text{null } (T+I)$.

So that we can get V = null (T - I) + null (T + I).

Since -1 is not an eigenvalue of T, $null(T+I) = \{0\}$. So V = null(T-I). So we have

$$(T - I)v = 0$$
$$v = Tv$$

for all $v \in V$, so T = I

3. **Page 153,4** For any $v \in V$,

$$v = Pv + (v - Pv)$$

Since $Pv \in \text{range } P$ and from $P^2 = P$, we can get $P(v - Pv) = Pv - P^2v = 0$, so $(v - Pv) \in \text{null } P$. So V = range P + null P.

Suppose $u \in \text{range } P \cap \text{ null } P$. So there exists Pb = u and Pu = 0, so we can get

$$0 = Pu = P(Pb) = P^2b = Pb = u$$

So range $P \cap \text{null } P = \{0\}$, and $V = \text{range } P \oplus \text{null } P$.

4. Page 153,6

Since for any $u \in U$, $T(u) \in U$, so we can easily prove by induction:

For any $p \in \mathcal{P}(\mathbb{F})$, suppose the degree of p is n:

when n = 1:

$$p(T(u)) = \lambda T(u) \in U$$

when n > 1 we can get

$$p(T)u = \left(\sum_{k=1}^{n} a_k T^k\right) u$$
$$= \left(\sum_{k=1}^{n-1} a_k T^k(u)\right) + a_n T^n(u)$$
$$\in U$$

5. Page 153,7

If 9 is an eigenvalue of T^2 , then there exists u such that

$$T^{2}u = 9u$$
$$(T^{2} - 9I)u = 0$$
$$(T + 3I)(T - 3I)u = 0$$

So that (T+3I)(T-3I) is not injective, which means one of (T+3I) and (T-3I) or both are not injective. So eigenvalue of T is 3 or -3.

And If 3 is an eigenvalue of T then there exists v such that

$$(T-3I)v = 0$$
$$(T+3I)(T-3I)v = 0$$
$$(T^2-9I)v = 0$$

So, 9 is an eigenvalue of T^2 . similar for -3 case.

6. Page 154,13

Suppose U is a subspace of W and is invariant under T, and U is finite dimensional. If $U \neq \{0\}$, we have some $v \in U$ such that $Tv = \lambda v$, and this contradict that T does not have eigenvalues, so $U = \{0\}$ or infinite dimensional.

7. Page 154,15

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

8. Page 154,18

Side: Definition of continuous function:

continuous at point p: Let $\epsilon > 0$ be given, there exists $\delta > 0$ such that if $|x - p| < \delta$, we can get $|f(x) - f(p)| < \epsilon$

And if the function is continuous at any point p on domain of f(x), then the function f(x) is continuous.

So, since we know at eigenvalues $\lambda = \lambda'$, we can get $T - \lambda' I$ is not surjective, which means $\dim(T - \lambda' I) < \dim V$, and at each other non-eigenvalue point, $\dim(T - \lambda I) = \dim V$, since there is no element $u \in V$ such that $(T - \lambda I)u = \lambda u$ if λ is not an eigenvalue.

So near point λ' , we can get for all $|\lambda - \lambda'| < \min \Delta \lambda'$, where $\Delta \lambda'$ is the difference between two eigenvalues, $|f(\lambda) - f(\lambda')| \ge 1$, so it is not continuous.

9. Page 154,20

Since by Theorem 5.27, we can have that T has an upper triangular matrix with respect to some basis of V, so let this basis to be $v_1 \cdots v_n$, and by the theorem 5.26, we can get $\operatorname{span}(v_1 \cdots v_j)$ is invariant under T for each $j = 1 \cdots n$