SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria dos Grafos Esdras Lins Bispo Jr.

13 de junho de 2016

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 05 (cinco) componentes que formarão a média final da disciplina: dois testes, duas provas e exercícios;
- ullet A média final (MF) será calculada assim como se segue

$$\begin{array}{rcl} MF & = & MIN(10,S) \\ S & = & 0, 2.T_1 + 0, 1.T_2 + 0, 4.P_1 + 0, 3.P_2 + E \end{array}$$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- $-P_i$ é a pontuação obtida na prova i, e
- E é a pontuação total dos exercícios.
- O somatório da pontuação de todas as questões desta avaliação é 11,0 (onze) pontos.
 Isto é um sinônimo de tolerância na correção. Se você por acaso perder 1,5 (um e meio), sua nota será 9,5 (nove e meio);
- O conteúdo exigido compreende os seguintes pontos apresentados no Plano de Ensino da disciplina: (1) Noções Básicas de Grafos, (2) Caminhos e Circuitos, (3) Subgrafos e (4) Grafos conexos e componentes.

Nome:		
Assinatura:		

1. (5,0 pt) [E 1.144] Sejam G e H dois grafos conexos tais que $V_G \cap V_H \neq \emptyset$. Mostre que o grafo $G \cup H$ é conexo.

Resposta: Será provado que, para qualquer par de vértices (x, y), em que $x, y \in V_{G \cup H}$, x está ligado a y. Ora, existem quatros casos, a saber:

- $x, y \in V_G$: como G é conexo, então x está ligado a y;
- $x, y \in V_H$: como H é conexo, então x está ligado a y;
- x ∈ V_G e y ∈ V_H: Como se sabe que V_G ∩ V_H ≠ ∅, então existe ao menos um vértice v que pertence, ao mesmo tempo, a V_G e a V_H. Logo, podemos dizer que x está ligado a y, pois x está ligado a v (tendo em vista que G é conexo) e v está ligado a y (tendo em vista que H é conexo);
- $x \in V_H$ e $y \in V_G$: De forma semelhante ao item anterior, podemos dizer que x está ligado a y, pois x está ligado a v (tendo em vista que H é conexo) e v está ligado a y (tendo em vista que G é conexo).

Logo, pode-se afirmar que $G \cup H$ é conexo, pois para qualquer par de vértices (x, y), em que $x, y \in V_{G \cup H}$, x está ligado a $y \blacksquare$

2. (5,0 pt) [E 1.147] Suponha que um subgrafo gerador H de um grafo G é conexo. Mostre que G é conexo.

Resposta: Se H é um subgrafo gerador de G, então $V_H = V_G$. Podese afirmar também que $E_H \subseteq E_G$, pois H é um subgrafo de G. Ora, pode-se listar dois casos, a saber:

- $E_H = E_G$: neste caso, H = G; logo, se H é conexo, G também é conexo;
- $E_H \neq E_G$: neste caso, $H \neq G$ e $m_H < m_G$. É verdade que H é diferente de G apenas em relação às arestas (pois $V_H = V_G$) e todas as arestas de H estão em G. Logo, se H é conexo, G também é conexo, pois qualquer aresta em $E_G \setminus E_H$ apenas colabora para tornar G mais fortemente conexo.

Logo, se um subgrafo gerador H de um grafo G é conexo, então G é conexo