Ejercicio 1

Para comprobar si el tiempo de recuperación de la gripe con una nueva vacuna depende del sexo, se tomó una muestra de 236 pacientes (115 hombres y 121 mujeres) y se midió el tiempo de recuperación de cada paciente. La siguiente tabla muestra las frecuencias de los tiempos.

Tiempo (dias)	Hombres	Mujeres		
2-3	20	34		
3-4	31	27		
4-5	24	19		
5-6	5	12		
6-7	17	6		
7-8	15	17		
8-9	3	6		

Contesta justificando las respuestas:

- a) ¿En qué grupo es más representativa la media del tiempo de recuperación, de los hombres o en el de la de las mujeres? Justifica la respuesta.
- b) ¿podríamos asegurar que la muestra de mujeres proviene de una población normal considerando su asimetría y apuntamiento?
- c) Construye el diagrama de barras y bigotes para la distribución de hombres, ¿se observa algún caso atípico?
- d) Si se determina que el 20% de los hombres que más tardaron en recuperarse necesitarían un estudio posterior para encontrar la causa de su lenta recuperación, ¿a partir de qué periodo de recuperación entrarían en ese estudio?
- e) ¿Quién se recuperaría relativamente antes dentro de su grupo, un hombre en 4 días o una mujer en 5 días?

Utiliza las siguientes sumas para los cálculos:

Hombres:

$$\sum x_i n_i$$
= 542.5 dias, : $\sum x_i^2 n_i$ = 2920.75 dias²,

$$\sum (x_i - \bar{x})^3 n_i$$
= 310.015 dias³, $\sum (x_i - \bar{x})^4 n_i$ = 2238.642 dias⁴.

Mujeres:

$$\sum x_i n_i$$
= 548.5 dias, : $\sum x_i^2 n_i$ = 2934.25 dias²,

$$\sum (x_i - \bar{x})^3 n_i$$
= 559.579 dias³, $\sum (x_i - \bar{x})^4 n_i$ = 3515.069 dias⁴.

Ejercicio 2

Se analizó en un grupo de pacientes el efecto de una sustancia dopante sobre el tiempo de respuesta a un estímulo determinado. Se administró la misma cantidad de sustancia en dosis sucesivas, de 10 a 90 mg a todos los pacientes. La siguiente tabla muestra el tiempo medio de respuesta al estímulo, expresado en centésimas de segundo.

y: Tiempo									
respuesta	23	41	63	80	102	110	130	156	171
(10 ⁻² seg)									

- a) Usando las sumas proporcionadas, calcula las medias, varianzas y covarianza de la dosis (x) y el tiempo de respuesta (y).
- b) Extrae la recta de regresión lineal del tiempo de respuesta (y) en función de la dosis administrada (x). Según el modelo de regresión lineal, ¿cuánto aumentará o disminuirá el tiempo de respuesta por cada mg que aumentemos la dosis?
- c) Usa el modelo de regresión lineal para predecir el tiempo de respuesta esperado para una dosis de 100 mg
- d) Extrae la recta de regresión lineal de la dosis administrada (x) función del tiempo de respuesta (y). Si un tiempo de respuesta superior a un segundo se considera peligroso para la salud, ¿a partir de qué nivel de dosis debería regularse, o incluso prohibirse, la administración de la sustancia dopante?
- e) Calcula el coeficiente de regresión lineal e interpreta el resultado ¿Son ambas predicciones igualmente fiables? ¿Por qué?

Utiliza las siguientes sumas para los cálculos:

 $\sum x_i = 450 \text{ mg}; \quad \sum x_i^2 = 28500 \text{ mg}^2$

 $\Sigma y_j = 876 (10^{-2} \text{ seg}); \ \Sigma y_j^2 = 105560 (10^{-2} \text{ seg})^2,$

 $\sum x_i y_j = 54810 \text{ mg} \cdot (10^{-2} \text{ seg})$