<u>Dashboard</u> / <u>My courses</u> / <u>PSPP/PUP</u> / <u>Experiments based on Tuples, Sets and its operations</u> / <u>Week7 Coding</u>

Started on	Monday, 10 June 2024, 10:13 PM
State	Finished
Completed on	Monday, 10 June 2024, 11:02 PM
Time taken	49 mins 32 secs
Marks	5.00/5.00
Grade	100.00 out of 100.00

Question 1

Correct

Mark 1.00 out of 1.00

Coders here is a simple task for you, Given string str. Your task is to check whether it is a binary string or not by using python set.

Examples:

Input: str = "01010101010"

Output: Yes

Input: str = "REC101"

Output: No

For example:

Input	Result
01010101010	Yes
010101 10101	No

Answer: (penalty regime: 0 %)

```
1
2
3 v
4
5 v
6
else:
    print("No")
```

	Input	Expected	Got	
~	01010101010	Yes	Yes	~
~	REC123	No	No	~
~	010101 10101	No	No	~

Passed all tests! 🗸

Correct

```
Question 2
Correct
Mark 1.00 out of 1.00
```

Given a tuple and a positive integer k, the task is to find the count of distinct pairs in the tuple whose sum is equal to K.

Examples:

```
Input: t = (5, 6, 5, 7, 7, 8), K = 13

Output: 2

Explanation:

Pairs with sum K( = 13) are {(5, 8), (6, 7), (6, 7)}.

Therefore, distinct pairs with sum K( = 13) are { (5, 8), (6, 7) }.

Therefore, the required output is 2.
```

For example:

Input	Result
1,2,1,2,5	1
1,2	0

Answer: (penalty regime: 0 %)

```
t=tuple(map(int,input().split(','
2
  k=int(input())
3
   s=set(t)
4
   count=0
5 🔻
   for x in s:
       if k-x in s:
6 ₹
7
           count+=1
  result=count//2
8
9 print(result)
```

	Input	Expected	Got	
~	5,6,5,7,7,8 13	2	2	~
~	1,2,1,2,5	1	1	~
~	1,2 0	0	0	~

Passed all tests! 🗸


```
Question 3
Correct
Mark 1.00 out of 1.00
```

There is a malfunctioning keyboard where some letter keys do not work. All other keys on the keyboard work properly.

Given a string text of words separated by a single space (no leading or trailing spaces) and a string brokenLetters of all distinct letter keys that are broken, return the number of words in text you can fully type using this keyboard.

Example 1:

```
Input: text = "hello world", brokenLetters = "ad"
```

Output:

1

Explanation: We cannot type "world" because the 'd' key is broken.

For example:

Input	Result
hello world ad	1
Faculty Upskilling in Python Programming ak	2

Answer: (penalty regime: 0 %)

```
1 * def count_words(t,b):
2
        broken=set(b.lower())
3
        words=t.split()
4
        count=<mark>0</mark>
5 🔻
        for word in words:
6 •
             if all(letter.lower() no
7
                 count+=1
8
        return count
9
    t=input()
10
   b=input()
   result=count_words(t,b)
11
12 print(result)
```

	Input	Expected	Got	
~	hello world ad	1	1	✓
~	Welcome to REC e	1	1	~
~	Faculty Upskilling in Python Programming ak	2	2	✓

Passed all tests! 🗸

Question **4**Correct

Mark 1.00 out of 1.00

Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive. There is only **one repeated number** in nums, return this repeated number. Solve the problem using <u>set</u>.

Example 1:

```
Input: nums = [1,3,4,2,2]
```

Output: 2

Example 2:

```
Input: nums = [3,1,3,4,2]
```

Output: 3

For example:

Input	Result
1 3 4 4 2	4

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
~	1 3 4 4 2	4	4	~
~	1 2 2 3 4 5 6 7	2	2	~

Passed all tests! ✓

Correct

```
Question 5
Correct
Mark 1.00 out of 1.00
```

The **DNA sequence** is composed of a series of nucleotides abbreviated as 'A', 'C', 'G', and 'T'.

• For example, "ACGAATTCCG" is a **DNA sequence**.

When studying **DNA**, it is useful to identify repeated sequences within the DNA.

Given a string s that represents a **DNA sequence**, return all the **10-letter-long** sequences (substrings) that occur more than once in a DNA molecule. You may return the answer in **any order**.

Example 1:

```
Input: s = "AAAAACCCCCAAAAAACCCCCCAAAAAAGGGTTT"
Output: ["AAAAACCCCC", "CCCCCAAAAA"]
```

Example 2:

```
Input: s = "AAAAAAAAAAA"
Output: ["AAAAAAAAAAA"]
```

For example:

Input	Result
AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT	AAAAACCCCC
	CCCCCAAAAA

Answer: (penalty regime: 0 %)

```
s=input()
result=[]
for i in range(len(s)-9):
    a=s[i:i+10]
    if a in s[i+1:]:
        if a not in result:
            result.append(a)

print(*result,sep="\n")
```

	Input	Expected	Got	
~	AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT	AAAAACCCCC	AAAAACCCCC	~
		CCCCCAAAAA	CCCCCAAAAA	

	Input	Expected	Got		
~	АААААААААА	АААААААА	АААААААА	~	

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

■ Week7_MCQ

Jump to...

Dictionary ►