Prediciendo la contaminación del aire en Madrid

PYCONES
2018
MÁLAGA

María Medina - PiperLab @mariamedp

Hello my name is

María Medina

Data Scientist en PiperLab

Coorganizadora PyLadies Madrid

Érase una vez...

Datos de contaminación

Portal de Datos Abiertos del Ayuntamiento de Madrid

Calidad del aire: Datos en tiempo real Calidad del aire: Datos en tiempo real. El Sistema Integral de la Calidad del Aire del Ayuntamiento de Madrid permite conocer en cada momento los niveles de contaminación atmosférica en el municipio. En este conjunto de datos puede obtener la información actualizada en tiempo real, actualizándose estos datos cada hora, y... Calidad del aire: Estaciones de control Calidad del aire: Estaciones de control. El Sistema de Vigilancia está formado por 24 Estaciones Remotas automáticas que recogen la información básica para la vigilancia atmosférica. Poseen los analizadores necesarios para la medida correcta de los niveles de gases y de partículas. Las estaciones remotas son de varios tipos: Urbanas de fondo: representativas de la exposición...

@mariamedp

Cargar datos con pandas

	estacion_parte1	estacion_parte2	estacion_parte3	parametro	tecnica	periodo	уууу	mm	dd	1_medida	 20_medida	20_valido	21_medida	21_valido
0	28	079	004	01	38	02	2018	09	17	00009	 00000	N	00000	N
1	28	079	004	06	48	02	2018	09	17	000.5	 00000	N	00000	N
2	28	079	004	07	08	02	2018	09	17	00021	 00000	N	00000	N
3	28	079	004	08	08	02	2018	09	17	00100	 00000	N	00000	N
4	28	079	004	12	08	02	2018	09	17	00133	 00000	N	00000	N

@mariamedp

Procesar datos con pandas

<estación, fecha,<br="">contaminante></estación,>	1_medida	1_valido	•••	24_medida	24_valido
	xxx	V/N		ууу	V/N

<estación, contaminante="" fecha,=""></estación,>	hora	medida	valido
	1	XXX	V/N
	24	ууу	V/N

@mariamedp

Procesar datos con pandas

<estación, contaminante="" fecha,=""></estación,>	1_medida	1_valido		24_medida	24_valido
	xxx	V/N	:	ууу	V/N

<estación, contaminante="" fecha,=""></estación,>	hora	medida	valido
	1	xxx	V/N
	24	ууу	V/N

@mariamedp

Procesar datos con pandas

<estación, contaminante="" fecha,=""></estación,>	1_medida	1_valido		24_medida	24_valido
	xxx	V/N	:	ууу	V/N

df.melt()

<estación, contaminante="" fecha,=""></estación,>	variable	valor
	1_medida	XXX
	1_valido	V/N
	•••	•••
	24_medida	ууу
	24_valido	V/N

<estación, fecha,<br="">contaminante></estación,>	hora	medida	valido
:	1	XXX	V/N
::			
	24	ууу	V/N

Procesar datos con pandas

<estación, fecha,<br="">contaminante></estación,>	1_medida	1_valido		24_medida	24_valido
	xxx	V/N	:	ууу	V/N

V/N

df.melt()

str.split("_")

<estación, contaminante="" fecha,=""></estación,>	hora	variable	valor
	1	medida	XXX
	1	valido	V/N
	24	medida	ууу

valido

24

<estación, contaminante="" fecha,=""></estación,>	variable	valor
	1_medida	XXX
	1_valido	V/N
	•••	•••
	24_medida	ууу
	24_valido	V/N

<estación, contaminante="" fecha,=""></estación,>	hora	medida	valido
	1	XXX	V/N
			•••
	24	ууу	V/N

@mariamedp

ww.piperlab.

Procesar datos con pandas

<estación, contaminante="" fecha,=""></estación,>	1_medida	1_valido	 24_medida	24_valido
	XXX	V/N	 ууу	V/N

str	. S	n1	it	("	(در
<i>-</i>	• •	P^{\perp}		•	,

<estación, contaminante="" fecha,=""></estación,>	variable	valor	
	1_medida	xxx	
	1_valido	V/N	
	•••		
	24_medida	ууу	
	24 valido	V/N	

<estación, contaminante="" fecha,=""></estación,>	hora	variable	valor
	1	medida	XXX
	1	valido	V/N
	24	medida	ууу
	24	valido	V/N

pd.pivot_table(df)

<estación, contaminante="" fecha,=""></estación,>	hora	medida	valido
	1	XXX	V/N
	24	ууу	V/N

@mariamedp

Datóxido de Nitrógeno

@mariamedp

Datóxido de Nitrógeno

@mariamedp

Tuitear con Twython


```
from twython import Twython
api = Twython(CONSUMER_KEY, CONSUMER_SECRET, ACCESS_KEY, ACCESS_SECRET)
```

@mariamedp

¿Podemos predecir la contaminación?

Proceso de predicción

Entrenamiento: algoritmo que detecta **patrones en los datos**

@mariamedp

Serie temporal "resumen"

Objetivo: saber cuándo se va a activar el protocolo

@mariamedp

Modelos ARIMA base

ARIMA = Autoregressive Integrated Moving Average

Modelos ARIMA base

ARIMA = Autoregressive Integrated Moving Average

1

Aprende de observaciones anteriores

Modelos ARIMA base

ARIMA = Autoregressive Integrated Moving Average

Aprende de observaciones anteriores

Aprende de las diferencias con observaciones anteriores

Modelos ARIMA base

ARIMA = Autoregressive Integrated Moving Average

Aprende de observaciones anteriores

Aprende de las diferencias con observaciones anteriores

Aprende de los errores anteriores

ARIMA = Autoregressive Integrated Moving Average

@mariamedp

Modelos ARIMA base

Entrenar modelo

	medida
fecha	
2014-01-01	57.75
2014-01-02	75.75
2014-01-03	82.75
2014-01-04	57.25
2014-01-05	67.00
2014-01-06	87.50
2014-01-07	107.25
2014-01-08	135.75
2014-01-09	188.00
	400 75

```
from statsmodels.tsa.arima_model import ARIMA

model_conf = ARIMA(seriecont, order=(2,1,3))
model_fit = model_conf.fit()
model_fit.summary()
```

ARIMA Model Results

Dep. Variable:	D.medida	No. Observations:	1460
Model:	ARIMA(2, 1, 3)	Log Likelihood	-7237.366
Method:	css-mle	S.D. of innovations	34.386
Date:	Tue, 18 Sep 2018	AIC	14488.732
Time:	16:02:10	BIC	14525.735
Sample:	01-02-2014	HQIC	14502.536
	- 12-31-2017		

@mariamedp

Modelos ARIMA base

Entrenar modelo

	medida
fecha	
2014-01-01	57.75
2014-01-02	75.75
2014-01-03	82.75
2014-01-04	57.25
2014-01-05	67.00
2014-01-06	87.50
2014-01-07	107.25
2014-01-08	135.75
2014-01-09	188.00
	400 75

```
from statsmodels.tsa.arima_model import ARIMA
model_conf = ARIMA(seriecont, order=(2,1,3))
model_fit = model_conf.fit()
model_fit.summary()
```

ARIMA Model Results

Dep. Variable:	D.medida	No. Observations:	1460
Model:	ARIMA(2, 1, 3)	Log Likelihood	-7237.366
Method:	css-mle	S.D. of innovations	34.386
Date:	Tue, 18 Sep 2018	AIC	14488.732
Time:	16:02:10	BIC	14525.735
Sample:	01-02-2014	HQIC	14502.536
	- 12-31-2017		

@mariamedp

Modelos ARIMA base

Entrenar modelo

	medida
fecha	
2014-01-01	57.75
2014-01-02	75.75
2014-01-03	82.75
2014-01-04	57.25
2014-01-05	67.00
2014-01-06	87.50
2014-01-07	107.25
2014-01-08	135.75
2014-01-09	188.00
	100 75

```
from statsmodels.tsa.arima_model import ARIMA

model_conf = ARIMA(seriecont, order=(2,1,3))
model_fit = model_conf.fit()
model_fit.summary()
```

ARIMA Model Results

Dep. Variable:	D.medida	No. Observations:	1460
Model:	ARIMA(2, 1, 3)	Log Likelihood	-7237.366
Method:	css-mle	S.D. of innovations	34.386
Date:	Tue, 18 Sep 2018	AIC	14488.732
Time:	16:02:10	BIC	14525.735
Sample:	01-02-2014	HQIC	14502.536
	- 12-31-2017		

@mariamedp

Modelos ARIMA base

Entrenar modelo

SM	StatsModels Statistics in Python
----	----------------------------------

	medida
fecha	
2014-01-01	57.75
2014-01-02	75.75
2014-01-03	82.75
2014-01-04	57.25
2014-01-05	67.00
2014-01-06	87.50
2014-01-07	107.25
2014-01-08	135.75
2014-01-09	188.00
	100 75

```
from statsmodels.tsa.arima_model import ARIMA

model_conf = ARIMA(seriecont, order=(2,1,3))
model_fit = model_conf.fit()
model_fit.summary()
```

ARIMA Model Results

Dep. Variable:	D.medida	No. Observati	1460	
Model:	ARIMA(2, 1, 3)	Log Likelil	-7237.366	
Method:	css-mle	S.D. of innovat	34.386	
Date:	Tue, 18 Sep 2018		AIC	14488.732
Time:	16:02:10		BIC	14525.735
Sample:	01-02-2014	H	HQIC	14502.536
	- 12-31-2017			

@mariamedp

Predecir todo seguido


```
ini_forecast = pd.Timestamp("2017-01-01", freq="D")
ndays = 7
end_forecast = ini_forecast + ndays - 1
```

```
SM StatsModels
Statistics in Python
```


Predecir todo seguido


```
ini_forecast = pd.Timestamp("2017-01-01", freq="D")
ndays = 7
end_forecast = ini_forecast + ndays - 1
```

```
SM StatsModels
Statistics in Python
```


Predecir todo seguido


```
ini_forecast = pd.Timestamp("2017-01-01", freq="D")
ndays = 7
end_forecast = ini_forecast + ndays - 1
```

```
SM StatsModels
Statistics in Python
```


Predecir todo seguido


```
ini_forecast = pd.Timestamp("2017-01-01", freq="D")
ndays = 7
end_forecast = ini_forecast + ndays - 1
```

```
SM StatsModels
Statistics in Python
```


@mariamedp

Predecir día a día

@mariamedp

Predecir día a día

@mariamedp

Modelos con meteorología

Global Forecast System (GFS)

Datos = **predicciones** de contaminación

Modelos con meteorología

	var4571	var9886	var8446	var5201	var3497	var11758	var6383	var3485	var8470	var16165	var8518	var3494	var8434	var8422	var72
date															
2015- 07-02	1536.03	212.7	55.0	1042.926667	5.731250	346.1	92266.2	6.925000	39.3	7987.500	37.9	10.3	45.4	47.4	35
2015- 07-03	1559.85	212.4	59.5	1136.186667	7.340625	316.2	92378.7	8.133333	49.3	11725.000	63.9	9.5	43.4	59.5	4(
2015- 07-04	1572.43	212.6	53.3	916.513333	5.209375	310.3	92408.5	5.791667	47.1	7012.500	45.2	7.9	47.4	53.3	37
2015- 07-05	1553.66	212.9	49.7	952.100000	5.243750	321.9	92323.7	6.866667	42.1	9000.000	35.3	8.5	34.7	49.7	37
2015- 07-06	1559.65	212.0	39.6	1147.200000	4.612500	308.4	92270.4	6.208333	32.5	8750.025	27.6	7.4	32.1	39.6	30

	var4571	var9886	var8446	var5201	var3497	var11758	var6383	var3485	var8470	var16165	var8518	var3494	var8434	var8422	var72
date															
2015- 07-02	1536.03	212.7	55.0	1042.926667	5.731250	346.1	92266.2	6.925000	39.3	7987.500	37.9	10.3	45.4	47.4	35
2015- 07-03	1559.85	212.4	59.5	1136.186667	7.340625	316.2	92378.7	8.133333	49.3	11725.000	63.9	9.5	43.4	59.5	4(
2015- 07-04	1572.43	212.6	53.3	916.513333	5.209375	310.3	92408.5	5.791667	47.1	7012.500	45.2	7.9	47.4	53.3	37
2015- 07-05	1553.66	212.9	49.7	952.100000	5.243750	321.9	92323.7	6.866667	42.1	9000.000	35.3	8.5	34.7	49.7	37
2015- 07-06	1559.65	212.0	39.6	1147.200000	4.612500	308.4	92270.4	6.208333	32.5	8750.025	27.6	7.4	32.1	39.6	30

Predecir día a día

@mariamedp

Predecir día a día

@mariamedp

www.piperlab.es

Transformación de variables: PCA

www.piperlab.es

Transformación de variables: PCA

@chrisalbon

@mariamedp


```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

scaler = StandardScaler().fit(meteo_real)

meteo_real_scaled = scaler.transform(meteo_real)
meteo_pred_scaled = scaler.transform(meteo_pred)

pca = PCA(n_components=10).fit(meteo_real_scaled)

meteo_real_pca = pca.transform(meteo_real_scaled)
meteo_pred_pca = pca.transform(meteo_pred_scaled)

meteo_pred_pca = pd.DataFrame(meteo_pred_scaled)

meteo_real_pca = pd.DataFrame(meteo_real_pca, index=meteo_pred.index)
meteo_pred_pca = pd.DataFrame(meteo_pred_pca, index=meteo_pred.index)
```



```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

scaler = StandardScaler().fit(meteo_real)
meteo_real_scaled = scaler.transform(meteo_real)
meteo_pred_scaled = scaler.transform(meteo_pred)

pca = PCA(n_components=10).fit(meteo_real_scaled)
meteo_real_pca = pca.transform(meteo_real_scaled)
meteo_pred_pca = pca.transform(meteo_pred_scaled)

meteo_pred_pca = pd.DataFrame(meteo_pred_scaled)
meteo_pred_pca = pd.DataFrame(meteo_pred_pca, index=meteo_pred.index)
meteo_pred_pca = pd.DataFrame(meteo_pred_pca, index=meteo_pred.index)
```



```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

scaler = StandardScaler().fit(meteo_real)

meteo_real_scaled = scaler.transform(meteo_real)
meteo_pred_scaled = scaler.transform(meteo_pred)

pca = PCA(n_components=10).fit(meteo_real_scaled)
meteo_real_pca = pca.transform(meteo_real_scaled)
meteo_pred_pca = pca.transform(meteo_pred_scaled)

meteo_real_pca = pd.DataFrame(meteo_pred_scaled)

meteo_real_pca = pd.DataFrame(meteo_pred_scaled)

meteo_pred_pca = pd.DataFrame(meteo_pred_pca, index=meteo_pred.index)
meteo_pred_pca = pd.DataFrame(meteo_pred_pca, index=meteo_pred.index)
```



```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

scaler = StandardScaler().fit(meteo_real)

meteo_real_scaled = scaler.transform(meteo_real)
meteo_pred_scaled = scaler.transform(meteo_pred)

pca = PCA(n_components=10).fit(meteo_real_scaled)

meteo_real_pca = pca.transform(meteo_real_scaled)

meteo_pred_pca = pca.transform(meteo_pred_scaled)

meteo_pred_pca = pd.DataFrame(meteo_pred_scaled)

meteo_pred_pca = pd.DataFrame(meteo_pred_pca, index=meteo_pred.index)
meteo_pred_pca = pd.DataFrame(meteo_pred_pca, index=meteo_pred.index)
```

0	1	2	3	4	5	6	7	8	9
-0.504376	2.798512	-0.852335	-0.780081	-0.895056	-0.257762	-0.308637	0.076789	0.334893	-0.353400
0.082084	3.036624	1.045996	-1.167916	-0.607475	-0.472422	0.669803	0.270863	-0.188384	-0.172179
-1.604054	1.966525	0.330712	-0.998042	-0.176281	-0.312145	0.350273	0.609419	-0.170290	0.277479
-1.451573	2.818816	-0.033557	-0.860587	-0.102741	-0.229093	0.357474	0.695917	-0.199327	-0.123499
-1.815973	3.705881	-0.157315	-1.223369	-0.006324	-1.004604	0.717226	0.359217	-0.540903	-0.190084
	-0.504376 0.082084 -1.604054 -1.451573	-0.504376 2.798512 0.082084 3.036624 -1.604054 1.966525 -1.451573 2.818816	-0.504376 2.798512 -0.852335 0.082084 3.036624 1.045996 -1.604054 1.966525 0.330712 -1.451573 2.818816 -0.033557	-0.504376 2.798512 -0.852335 -0.780081 0.082084 3.036624 1.045996 -1.167916 -1.604054 1.966525 0.330712 -0.998042 -1.451573 2.818816 -0.033557 -0.860587	-0.504376 2.798512 -0.852335 -0.780081 -0.895056 0.082084 3.036624 1.045996 -1.167916 -0.607475 -1.604054 1.966525 0.330712 -0.998042 -0.176281 -1.451573 2.818816 -0.033557 -0.860587 -0.102741	-0.504376 2.798512 -0.852335 -0.780081 -0.895056 -0.257762 0.082084 3.036624 1.045996 -1.167916 -0.607475 -0.472422 -1.604054 1.966525 0.330712 -0.998042 -0.176281 -0.312145 -1.451573 2.818816 -0.033557 -0.860587 -0.102741 -0.229093	-0.504376 2.798512 -0.852335 -0.780081 -0.895056 -0.257762 -0.308637 0.082084 3.036624 1.045996 -1.167916 -0.607475 -0.472422 0.669803 -1.604054 1.966525 0.330712 -0.998042 -0.176281 -0.312145 0.350273 -1.451573 2.818816 -0.033557 -0.860587 -0.102741 -0.229093 0.357474	-0.504376 2.798512 -0.852335 -0.780081 -0.895056 -0.257762 -0.308637 0.076789 0.082084 3.036624 1.045996 -1.167916 -0.607475 -0.472422 0.669803 0.270863 -1.604054 1.966525 0.330712 -0.998042 -0.176281 -0.312145 0.350273 0.609419 -1.451573 2.818816 -0.033557 -0.860587 -0.102741 -0.229093 0.357474 0.695917	-0.504376 2.798512 -0.852335 -0.780081 -0.895056 -0.257762 -0.308637 0.076789 0.334893 0.082084 3.036624 1.045996 -1.167916 -0.607475 -0.472422 0.669803 0.270863 -0.188384 -1.604054 1.966525 0.330712 -0.998042 -0.176281 -0.312145 0.350273 0.609419 -0.170290 -1.451573 2.818816 -0.033557 -0.860587 -0.102741 -0.229093 0.357474 0.695917 -0.199327

@mariamedp

Predecir día a día

@mariamedp

Proyecto

www.piperlab.es

Proyecto

Resultados

¡Gracias!

@mariamedp

