YouBike Rental Data Analytics

Group 4

Agenda

- Business Problem
- Data Overview & Visualization
- Multilevel Models
- Gaussian Process Models
- Takeaway

1 Business Problem

Business Problem

- Bike-dispatching is always a problem for YouBike company. There will be excess supplies
 or demands in some rental spots that need tackling with.
- In this project, our goal is to <u>estimate rent and return counts of each station by hour</u>, in order to optimize the dispatching route.
- We achieve this goal by two steps.
 - Collect viable feature data that might influence whether people rent YouBike as a way to move in the city.
 - Use the technique of multi-level modeling as well as Gaussian Process to build models that can effectively predict future behavior.

2

Data Overview & Visualization

Data Overview

- This dataset includes YouBike rental data within January 2016.
- Features included are:
 - Number of stations
 - Date
 - Duration of that journey
 - Costs of that journey
 - Rent & Return Stations
 - Area for the YouBike Station
 - Station Name of the YouBike Station

Top 5 Popular Stations

rank	station_name	station_area	rent_count
1	MRT Gongguan Sta.(Exit 2)	大安	23550
2	Roosevelt & Xinsheng S. Intersection	大安	20111
3	MRT Taipei City Hall Stataion(Exit 3)-2	信義	19021
4	NTU Information Bldg.	大安	15554
5	N.T.U.S.T	大安	14353
rank	station_name	station_area	return_count
rank 1	station_name MRT Gongguan Sta.(Exit 2)	station_area 大安	return_count 23197
1	MRT Gongguan Sta.(Exit 2)		23197
1 2	MRT Gongguan Sta.(Exit 2) Roosevelt & Xinsheng S. Intersection	大安 大安	23197 19938

Rent Count

Return Count

Top 5 & Last 5 Stations needed dispatching

Top 5

Last 5

rank	station_name	station_area	net_in	rank	station_name	station_area	net_in
1	Taipei Medical University	信義	2440	1	MRT Zhishan Sta.(Exit 2)	士林	-2321
2	NTNU Library	大安	1774	2	MRT Taipei City Hall Stataion(Exit 3)-2	信義	-2125
3	Huajiang High School	萬華	1347	3	Xinyi Square(Taipei 101)	信義	-2081
4	Lanya Park	士林	1324	4	MRT Daan Sta.	大安	-1988
5	NTU Information Bldg.	大安	1315	5	MRT Daan Park Sta.	大安	-1632

[%] Net in = Return count - Rent count

Heatmap for each area average usage by hour

12-大安 9-信義 7-中正

Hour with high "Return Count"

8~9 & 12~19

Heatmap for each area average usage by hour

- Dark area represents excessive bikes.
 - 萬華區(6) at 5pm ~ 7pm
- Light area represents shortage.
 - 萬華區(6) at 7am ~ 8am
 - 中正區(7) at 4pm ~ 5pm

Heatmap for each area average usage by hour

- Dark area represents excessive bikes.
 - Evening (around 5pm ~ 7pm)
- Light area represents shortage.
 - Afternoon (around 2pm ~ 4pm)

Data Preprocessing 101 visualization

Before plotting, we should find out the longitude and latitude of those YouBike Stations.

```
#TO MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#TO MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN FOR EACH STATION NAME

#To MAKE SURE THIS GOOGLEMAP TO FIND THE RIGHT PLACE, I ADD TAIWAN TAIWAN
```

Used Time per YouBike Station within January

土林區 内湖區 中山區 大同區 松山區 中正區 信義區 萬華區 大安區

南港區

DigitalGlobe, Earthstar Geographic

2500

Used Time per YouBike Station within January

Net-in of each station by day.

% Net in = Return count - Rent count

Popularity of each route by day.

S

3

Multi-level Models

Model Building Strategy

Data Sources:

- Weather Data by "District" from Central Weather Bureau
- Station_id to GPS from ggmap.

Data Preprocessing:

- Calculate net flow (return_count rent_count) of every station by hour.
- Append the weather data to the hourly data.
- Pairs of rent and return for all time in the data.

Model strategy:

- Renting is a poisson process
- Hour, rain are significant factors

Easy models do not work well

Easy_m:

 $rent_count \sim possion(\lambda)$ $log(\lambda) = a + b_{hr}$

Easy_m_hr_multi:

 $rent_count \sim possion(\lambda)$ $log(\lambda) = a + b_{hr} + bF * Precp$ $b_h r[hr] \sim dnorm(\alpha, \sigma)$ $\alpha \sim dnorm(0, 10)$ $\sigma \sim dcauchy(0, 10)$

Easy_m_hr:

 $rent_count \sim possion(\lambda)$ $log(\lambda) = a + b_{hr} + bF * Precp$

Easy_m_hr_inter:

 $rent_count \sim possion(\lambda)$ $log(\lambda) = a + b_{hr} + bF * Precp + bF_{hr} * Precp$

	WAIC <dbl></dbl>	pWAIC <dbl></dbl>	dWAIC <dbl></dbl>	weight <dbl></dbl>	SE <dbl></dbl>	dSE <dbl></dbl>
easy_m_hr_inter	7870.0	302.6	0.0	1	391.39	NA
easy_m_hr	8081.8	198.9	211.8	0	437.28	140.54
easy_m_hr_multi	8088.0	199.5	218.0	0	438.46	143.10
easy_m	18857.2	40.0	10987.2	0	619.38	729.85

Plot, Plot, Plot

- Within Model Easy_m_hr_inter:
 - Overestimating when there's low rain, yet underestimating when there's much rain.
 - ---> Use log to mitigate this effect.
 - There are spikes on raining days.
 - ---> Accumulation may work.

Log and Accumulated Rain work magic.

$$rent_count \sim possion(\lambda)$$

$$log(\lambda) = a + bF * log(Precp + 1) + bhr + bw$$

$$+bphr_h * log(Precp + 1)$$

$$+bA * log(Accum + 1)$$

$$+bahr_h * log(Accum + 1)$$

$$+bwhr * bhr$$

Model improves quite a bit when applying log precipitation as well as accumulative.

	WAIC <dbl></dbl>	pWAIC <dbl></dbl>	dWAIC <dbl></dbl>	weight <dbl></dbl>	SE <dbl></dbl>	dSE <dbl></dbl>
accum_hr_inter_logP	6892.7	300.3	0.0	1	251.78	NA
easy_m_hr_inter	7870.0	302.6	977.3	0	391.39	198.70
easy_m_hr	8081.8	198.9	1189.1	0	437.28	263.23
easy_m	18857.2	40.0	11964.5	0	619.38	673.33

Plot, Plot, Plot

Model seems to fit well for known station - 45

Model seems to fit well for known station - 132

However, when tested by unknown time...

Trained with hour 1:500, test with 500:744

Why the model sucks?

$$rent_count \sim possion(\lambda)$$

$$log(\lambda) = a + bF * log(Precp + 1) + bhr + bw$$

$$+bphr_h * log(Precp + 1)$$

$$+bA * log(Accum + 1)$$

$$+bahr_h * log(Accum + 1)$$

$$+bwhr * bhr$$

Some combinations are rare, some correlation should be in a prior of hr_r and bahr_h!

However, when tested by unknown time...

It seems to cause some extreme values.

Where's the hope?

Challenges

- No clue for predicting holiday.
- Cross-Station Prediction
- Future Prediction

Adaptive Predictions

- Pre-defined correlation between stations
- More dummy variables
- More levels included in a multilevel model
- Time series!

h

Gaussian Process Model

Model Building Strategy

Time series data

- Hourly rent and return count of bikes in January 2017
- Non-stationary mean and variance
- Clear weekly periodic component

Strategy

- Application of a time series forecasting using Gaussian process to predict the future bikes rent counts.
- Use the data a station for model training and test to avoid the time consuming problems.

Method: Gaussian Process

- Implement time series forecasting using Gaussian process
- Define the kernel = kernel1 + kernel2

Kernel 1
$$k(t,t') = \sigma^2 exp\Big(-rac{(t-t')^2}{2l_1^2}\Big)$$

Capture Near-by Relations

Kernel 2
$$k(t,t')=\sigma_2^2 exp\Big(-rac{2sin^2(\pi(t-t')*1)}{l_2^2}\Big)exp\Big(-rac{(t-t')^2}{2l_3^2}\Big)$$

Capture Periodicity

Strategy 1: Simple Time Series Techniques

Use similar "hour of day" for predicting.

RMSE 0.0667

RMSE 25.1455

Strategy 1: Simple Time Series Techniques

Use similar "hour of day" for predicting.

RMSE 0.1654

RMSE 24.36

Strategy 2:

1

- Data Preprocessing
 - Derived variable weekhr: the sequence number by total hours of a week (168hr/ week)
- Train-Test Split
 - First 3 weeks for training.
 - The last week for testing.

	date [‡]	weekhr [‡]
1	2016-01-04	1
2	2016-01-04	2
3	2016-01-04	3
4	2016-01-04	4
5	2016-01-04	5
6	2016-01-04	6
7	2016-01-04	7
8	2016-01-04	8

To Avoid overfitting problem...

RMSE 14.7352

RMSE 20.6208

Recommendations for the model

Time series

- Try using multivariate time series to train the model, since time series with a single value in a period may lose important information, such as raining feature.
- Consider more on time series effect. For example, derive time-lagged variables.
- Get more data to capture the trend effect of the time series.

Gaussian Process

- Fine tune hyper-parameters of the kernel.
- Try other non-Gaussian distribution to train the model. For instance, Poisson distribution
- Add white noise to the model to capture more uncertainty.

5 Takeaway

Takeaway

• There are certain patterns with regard to the trend of the bike's net inflow. Predicting the number of inflow can help YouBike company form better dispatching plan.

 With the help of multilevel models, compared to simple single-level models, we can get a smaller WAIC.

Models are flexible and objective; as long as we can figure out how to improve the model,
 either by adding new predictor or changing the type of distribution, we can predict better.

Takeaway

- Time series can greatly improve the model, yet there is still plenty of rooms for improvement.
- To improve the performance of the model, here lists some potential ways.
 - We may improve our model using distance between stops as a covariance matrix. This matrix can be used as a predictor for the model.
 - The nature for each station might serve as a critical predictor. For example, whether or not a station is near busy bus stations, or whether the station is in a residential can be important to the pattern of net inflow.
 - Add white noise, time lagged variables, etc. to improve model performances.

Thank you for listening.