Structure learning with deep autoencoders

Network Modeling Seminar, 30/4/2013

Patrick Michl

Validation & Implementation

Model

... which makes **structural analysis** and modeling complicated!

Dataset

Model

... can not preserve **complex structures**!

Therefore the analysis of unknown structures ...

Model

... needs more considerate nonlinear techniques!

Artificial Neuronal Network

Autoencoders are artificial neuronal networks ...

Autoencoder

Artificial Neuronal Network

Autoencoders are artificial neuronal networks ...

Autoencoder

- Artificial Neuronal Network
- Multiple hidden layers

... with **multiple hidden layers**.

Autoencoder

- Artificial Neuronal Network
- Multiple hidden layers

Such networks are called **deep networks**.

Autoencoder

- Artificial Neuronal Network
- Multiple hidden layers

Definition (deep network)

Deep networks are artificial neuronal networks with multiple hidden layers

Such networks are called **deep networks**.

Deep network

Such networks are called **deep networks**.

Autoencoder

- Deep network
- Symmetric topology

Autoencoders have a symmetric topology ...

4/30/2013 | Page 17

Autoencoder

- Deep network
- Symmetric topology

... with an **odd number** of hidden layers.

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck

The small layer in the center works lika an **information bottleneck**

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck

... that creates a **low dimensional code** for each sample in the input data.

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck
- Encoder

The upper stack does the **encoding** ...

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck
- Encoder
- Decoder

... and the lower stack does the **decoding**.

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck
 - Definition (autoencoder)

Autoencoders are *deep networks* with a *symmetric topology* and an odd number of hiddern layers, containing a *encoder*, a low dimensional representation and a *decoder*.

input data X output data X'

... and the lower stack does the **decoding**.

Encoder

Autoencoder

Problem: dimensionality of data

Idea:

- 1. Train autoencoder to minimize the distance between input **X** and output **X**'
- 2. Encode X to low dimensional code Y
- 3. Decode low dimensional code Y to output X⁴
- 4. Output **X**' is low dimensional

Autoencoders can be used to reduce the dimension of data ...

Autoencoder

Problem: dimensionality of data

Idea:

- 1. Train autoencoder to minimize the distance between input **X** and output **X**'
- 2. Encode **X** to low dimensional code **Y**
- 3. Decode low dimensional code Y to output X⁴
- 4. Output **X** is low dimensional

... if we can train them!

Autoencoder

Training

Backpropagation

In feedforward ANNs backpropagation is a good approach.

Training

Backpropagation

(1) The distance (error) between current output \mathbf{X}^{\bullet} and wanted output \mathbf{Y} is computed. This gives a error function

$$X' = F(X)$$

error = $\sqrt{X'^2 - Y}$

output data X'

In feedforward ANNs backpropagation is a good approach.

Training

Backpropagation

(1) The distance (error) between current output **X**' and wanted output **Y** is computed. This gives a error function

Example (linear neuronal unit with two inputs)

Autoencoder

Training

Backpropagation

- (1) The distance (error) between current output **X**' and wanted output **Y** is computed. This gives a error function
- (2) By calculating $-\nabla error$ we get a vector that shows in a direction which decreases the error
- (3) We update the parameters to decrease the error

In feedforward ANNs backpropagation is a good approach.

4/30/2013 | Page 29

Autoencoder

Training

Backpropagation

- (1) The distance (error) between current output **X**' and wanted output **Y** is computed. This gives a error function
- (2) By calculating $-\nabla error$ we get a vector that shows in a direction which decreases the error
- (3) We update the parameters to decrease the error
- (4) We repeat that

Autoencoder

Training

Backpropagation

Problem: Deep Network

... the problem are the multiple hidden layers!

Autoencoder

Training

Backpropagation

Problem: Deep Network

Very slow training

Backpropagation is known to be slow far away from the output layer ...

Autoencoder

Training

Backpropagation

Problem: Deep Network

- Very slow training
- Maybe bad solution

... and can converge to poor **local minima**.

Autoencoder

Training

Backpropagation

Problem: Deep Network

- Very slow training
- Maybe bad solution

Idea: Initialize close to a good solution

The task is to **initialize the parameters** close to a good solution!

Autoencoder

Training

Backpropagation

Problem: Deep Network

- Very slow training
- Maybe bad solution

Idea: Initialize close to a good solution

Pretraining

Therefore the training of autoencoders has a **pretraining** phase ...

Autoencoder

Training

Backpropagation

Problem: Deep Network

- Very slow training
- Maybe bad solution

Idea: Initialize close to a good solution

- Pretraining
- Restricted Boltzmann Machines

... which uses **Restricted Boltzmann Machines** (RBMs)

Autoencoder input data X

Restricted Boltzmann Machine

Ba • RBMs are Markov Random Fields

Pr

•

•

Ide

•

•

Autoencoder

input data X

Restricted Boltzmann Machine

Ba • RBMs are Markov Random Fields

Pr Markov Random Field

Every unit influences every neighbor
The coupling is undirected

Ide

Motivation (Ising Model)

A set of magnetic dipoles (*spins*) is arranged in a graph (lattice) where neighbors are coupled with a given strengt

Autoencoders

Autoencoder

input data X

Restricted Boltzmann Machine

Ba

- RBMs are Markov Random Fields
- Bipartite topology: **visible** (v), **hidden** (h)
- Use local **energy** to calculate the probabilities of values

Pr

•

Training:

contrastive divergency

(Gibbs Sampling)

•

Ide

Autoencoders

input data X Autoencoder **Restricted Boltzmann Machine** Ba **Gibbs Sampling** W^T Pr WIde W

Autoencoder

Training

Top

 $V \coloneqq \text{set of visible units}$ $x_v \coloneqq \text{value of unit } v, \forall v \in V$ $x_v \in R, \forall v \in V$

 $H \coloneqq \text{set of hidden units}$ $x_h \coloneqq \text{value of unit } h, \forall h \in H$ $x_h \in \{\mathbf{0}, \mathbf{1}\}, \forall h \in H$

The top layer RBM transforms real value data into binary codes.

Autoencoders

Autoencoder

Training

Top

$$x_v \sim N\left(b_v + \sum_h w_{vh} x_h, \sigma_v\right)$$

 $\sigma_v := \text{std. dev. of unit } v$

 $b_v := \text{bias of unit } v$

 $w_{vh} := \text{weight of edge } (v, h)$

Therefore visible units are modeled with **gaussians** to encode **data** ...

Autoencoders

Autoencoder

Training

Top

$$x_h \sim \text{sigm}\left(b_h + \sum_v w_{vh} \frac{x_v}{\sigma_v}\right)$$

 $\sigma_v := \text{std. dev. of unit } v$

 $b_h := \text{bias of unit } h$

 $w_{vh} := \text{weight of edge } (v, h)$

... and many hidden units with **simoids** to encode **dependencies**

Autoencoder

Training

Local Energy

$$E_v := -\sum_h w_{vh} \frac{x_v}{\sigma_v} x_h + \frac{(x_v - b_v)^2}{2\sigma_v^2}$$

$$E_h := -\sum_h w_{vh} \frac{x_v}{\sigma_v} x_h + x_h b_h$$

The **objective function** is the sum of the local energies.

Autoencoders

Autoencoder

Training

Reduction

 $V \coloneqq \text{set of visible units}$ $x_v \coloneqq \text{value of unit } v, \forall v \in V$ $x_v \in \{\mathbf{0}, \mathbf{1}\}, \forall v \in V$

 $H \coloneqq \text{set of hidden units}$ $x_h \coloneqq \text{value of unit } h, \forall h \in H$ $x_h \in \{\mathbf{0}, \mathbf{1}\}, \forall h \in H$

The next RBM layer **maps** the dependency encoding...

Training

Reduction

$$x_v \sim \text{sigm}\left(b_v + \sum_h w_{vh} x_h\right)$$

 $b_v := \text{bias of unit v}$

 $w_{vh} := \text{weight of edge } (v, h)$

... from the upper layer ...

Training

Reduction

$$x_h \sim \text{sigm}\left(b_h + \sum_v w_{vh} x_v\right)$$

 $b_h := \text{bias of unit h}$

 $w_{vh} := \text{weight of edge } (v, h)$

... to a smaller number of **simoids** ...

Training

Reduction

Local Energy

$$E_v := -\sum_h w_{vh} x_v x_h + x_h b_h$$

$$E_h := -\sum_{v}^{n} w_{vh} x_v x_h + x_v b_v$$

... which can be trained faster than the top layer

Autoencoders

Autoencoder

Training

Unrolling

The **symmetric topology** allows us to skip further training.

Autoencoders

Autoencoder

Training

Unrolling

The **symmetric topology** allows us to skip further training.

Autoencoder

Training

- Pretraining
 Top RBM (GRBM)
 Reduction RBMs
 Unrolling
- Finetuning
 Backpropagation

After pretraining backpropagation usually finds good solutions

Autoencoder

Training

• **Complexity**: O(inw)

i: number of iterations

n: number of nodes

w: number of weights

• **Memory Complexity**: O(w)

The algorithmic complexity of RBM training depends on the network size

Validation & Implementation

How to model the topological structure?

Biological Model

```
# __init__ (self,
self.num_hidden =
self.num_visible =
self.learning_rate =
# Initialize a weig'
# a Gaussian distr'
self.weights = 0.
Insert weight
```

Implementation & Results

Validation of the results

- Needs information about the true regulation
- Needs information about the descriptive power of the data

Validation of the results

- Needs information about the true regulation
- Needs information about the descriptive power of the data

Without this infomation validation can only be done, using **artificial datasets**!

Artificial datasets

We simulate data in three steps:

Artificial datasets

We simulate data in three steps

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Artificial datasets

We simulate data in three steps

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Step 2

Manipulate data in a fixed order

Artificial datasets

We simulate data in three steps

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Step 2

Manipulate data in a fixed order

Step 3

Add noise to manipulated data and normalize data

Simulation

Step 1

Number of visible nodes 8 (4E, 4S)

Create random data:

Random $\{-1, +1\} + N(0, \sigma = 0.5)$

Simulation

Step 2

Manipulate data

$$e_1 = 0.25s_1 + 0.25s_2 + 0.25s_3 + 0.25s_4$$

 $e_2 = 0.5s_1 + 0.5$ Noise
 $e_3 = 0.5s_1 + 0.5$ Noise
 $e_4 = 0.5s_1 + 0.5$ Noise

Simulation

Step 3

Add noise: N(0, $\sigma = 0.5$)

We analyse the data **X**

with an RBM

Average performance: 40.3%

We train an autoencoder with 9 hidden layers and 165 nodes:

Layer 1 & 9: 32 hidden units

Layer 2 & 8: 24 hidden units

Layer 3 & 7: 16 hidden units

Layer 4 & 6: 8 hidden units

Layer 5: 5 hidden units

We transform the data from **X** to **X**⁶ And reduce the dimensionality

We analyse the transformed data **X**' with an RBM

sim42: $\sigma = 0.5$, (32,24,16,8,4) filtering

Average performance: 69.5%

Lets compare the models

sim42: $\sigma = 0.5$, no filtering

Average performance: 40.3%

sim42: $\sigma = 0.5$, (32,24,16,8,4) filtering

Average performance: 69.5%

Another Example with more nodes and larger autoencoder

sim40: $\sigma = 0.5$, no filtering

Average performance: 50.6%

sim40: $\sigma = 0.5$, (64,48,32,16,8) filtering

Average performance: 100.0%

Conclusion

Conclusion

- Autoencoders can improve modeling significantly by reducing the dimensionality of data
- Autoencoders preserve complex structures in their multilayer perceptron network. Analysing those networks (for example with knockout tests) could give more structural information
- The drawback are high computational costs
 Since the field of deep learning is getting more popular (Face recognition / Voice recognition, Image transformation). Many new improvements in facing the computational costs have been made.

Acknowledgement

eilsLABS

PD Dr. Rainer König Prof. Dr Roland Eils Network Modeling Group

