Отчет по лабораторной работе №6

Модель эпидемии - вариант 53

Шаян Фаисал НФИбд-02-19

Содержание

1	Цель работы 1.1 Цель лабораторной работы	4	
2	Задание	5	
3	Выполнение лабораторной работы $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	6 6 7 8 8 9 10	
4	Выводы	11	
Сп	Список литературы		

List of Figures

3.1	Графики численности в случае $I(0) \leq I^*$	9
	Графики численности в случае $I(0) > I^*$	

1 Цель работы

1.1 Цель лабораторной работы

Изучаем простейшую модель эпидемии SIR. Для этого мы используем условия из варианты. После задаем начальные условия и коэффициенты в уравнение. Далее нам необходимо построить графики изменения численностей трех групп в двух случаях, которые были представленны в лабораторной работе.

2 Задание

- 1. Изучить теоритические сведения о простейшей модели эпидемии SIR.
- 2. Построить графики изменения числа особей в каждой из трех групп для двух случаев используя начальные данные из варианта.
- 3. Рассмотреть, как будет протекать эпидемия в двух случаях: $I(0) \leq I^*$, $I(0) > I^*$

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Рассмотрим простейшую модель эпидемии. Сделаем предположением, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа – это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & ext{,ecли } I(t) > I^* \ 0 & ext{,ecли } I(t) \leq I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится. Т.е.:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,ecли } I(t) > I^* \ -eta I & ext{,ecли } I(t) \leq I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α,β - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

3.2 Задача

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=6159) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=173, А число здоровых людей с иммунитетом к болезни R(0)=61. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в двух случаях: 1. $I(0) \leq I^*$ 2. $I(0) > I^*$

3.3 Код программы

```
model Project
  parameter Real a=0.18;
  parameter Real b=0.01;

Real S(start=5925);
  Real I(start=173);
  Real R(start=61);

equation
    der(S) = 0;
    der(I) = -b*I;
    der(R) = b*I;

annotation(experiment(StartTime=0, StopTime=200, Tplerance=1e-06,Interval=0.05));
end Project;
```

3.4 Код программы

```
model Project
  parameter Real a=0.18;
  parameter Real b=0.01;

Real S(start=5925);
```

```
Real I(start=173);
Real R(start=61);

equation
   der(S) = -a*S;
   der(I) = a*S-b*I;
   der(R) = b*I;

annotation(experiment(StartTime=0, StopTime=200, Tplerance=1e-06,Interval=0.05));
end Project;
```

3.5 Результаты работы программы в случае $I(0) \leq I^*$

Figure 3.1: Графики численности в случае $I(0) \leq I^*$

3.6 Результаты работы программы в случае $I(0) > I^{st}$

Figure 3.2: Графики численности в случае $I(0)>I^{st}$

4 Выводы

В ходе выполнения лабораторной работы была изучена простейшая модель эпидемии и построены графики для двух случаев: $I(0) \leq I^*$, $I(0) > I^*$.

Список литературы

- 1. SIR models of epidemics
- 2. Конструирование эпидемиологических моделей