CS378: Computer Networks Lab

Topic 01: Overview

Kameswari Chebrolu
Room 402
Department of CSE, IIT Bombay
http://www.cse.iitb.ac.in/~chebrolu

Internet protocol stack

- Application: supporting network applications
 - FTP, SMTP, HTTP
- Transport: process-process data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP, routing protocols
- Link: data transfer between neighboring network elements
 - PPP, Ethernet
- Physical: bits "on the wire"

Encapsulation

- The application data is sent down
- Each layer adds a header to the data (PDU) from its higher layer.

Multiplexing and Demultiplexing

Different higher layer protocols can use the service by the

same lower laver protocol

Naming and Addressing

- Uniquely identify processes in different computers for communications.
- Domain name
- IP address
- Port number
- MAC address

Domain Name

- A user friendly name to identify a host
- Domain Name System (DNS): resolves a domain name to the corresponding IP address.
 - E.g: www.cse.iitb.ac.in -> 121.241.28.216
 - distributed database maintained by DNS servers
 - DNS query and reply exchange between client and server
 - A host first contacts its local DNS server to get the mapping

IP Address

- Each interface in a host is assigned an IP address.
- IPv4, 32 bits, dotted-decimal notation

```
128.238.42.112 means
10000000 in 1<sup>st</sup> Byte
111011110 in 2<sup>nd</sup> Byte
00101010 in 3<sup>rd</sup> Byte
011110000 in 4<sup>th</sup> Byte
```

■ IPv6, 128-bit address

IP Address Cont...

- An IP address can be divided into a subnet and host part
 - -the subnet part identifies a given network
 - the host part identifies a given host within a network
- A subnet mask specifies the number of bits that correspond to the subnet part
 - -E.g 255.255.255.192 -> /26 (26 bits)

Media Access Control Address

- Apart from IP address, each interface in a host also has a hardware address (MAC address)
- Ethernet MAC address is 48 bits long
 - E.g 00:18:F3:96:C2:A7
- ARP protocol is used to translate an IP address to MAC address

Port Numbers

- Address for the application layer user process.
- Port Number field specified in TCP or UDP header.
- Well-known port numbers
 - 1 to 255: Internet wide services
 - 256 to 1023: preserved for Unix specific services
 - 1024 and up: ephemeral port numbers

Ethernet Frame Format

- Source Ethernet (MAC) Address
- Destination Ethernet Address
- Frame Type: used to identify the payload
- CRC: used for error control

Destination Address	Source Address	Frame Type	Data	CRC
6 bytes	6 bytes	2 bytes	46–1500 bytes	4 bytes

IP Header Format

Size: 20 bytes without options.

Λ

0			16		32
Version	Hdr Len	Differentiated Services		Total Length	
Identification			Flags	Fragment Offset	
Time to Live		Protocol	Header Checksum		
Source IP Address					
Destination IP Address					
Options (if any, <= 40 bytes)					
Data					

UDP Header Format

0		16 32
	Source Port Number	Destination Port Number
	Length	Checksum

TCP Header Format

16

0

Source Port Number Destination Port Number

Sequence Number

Acknowledgement Number

Hdr Len. Reserved Flags Window Size

TCP Checksum Urgent Pointer

Options (if any)

Data (optional)

32

Example of TCP/IP

Networking Code Organization

- Most applications are implemented as user space processes.
- Protocols are implemented in the system kernel
 - Socket layer
 - Protocol layer
 - Interface layer

Network Configurations Files

- When a host is configured to boot locally, TCP/IP configuration parameters are stored in files.
- When the system boots up, parameters are read from the files and used to configure the daemons and the network interface.
- A parameter may be changed by editing the corresponding configuration file.

Diagnostic Tools

- Tcpdump
 - E.g tcpdump -enx host 10.129.5.181 -w exe3.out
- Wireshark
 - wireshark -r exe3.out

Packet Sniffer

- Sniffs messages being sent/received from/by your computer
- Store and display the contents of the various protocol fields in the messages
- Passive program
 - never sends packets itself
 - no packets addressed to it
 - receives a copy of all packets (sent/received)

Packet Sniffer Structure

Figure 1: Packet sniffer structure

Screen Shot

command

memo

listing of captured packets

details of selected packet header

content in hexadecimal and ASCII

Figure 1.22 ♦ An Ethereal screen shot