# TEST REPORT

**Reference No.** : WTS17S1298632-2E

FCC ID ..... : 2AG32EG7010C

Applicant.....: Baicells Technologies Co., Ltd.

Address...... 3F, Hui Yuan Development Building, No.1 Shangdi Information

Industry Base, Haidian Dist., Beijing, China

Manufacturer .....: The same as above

Address ..... : The same as above

Product.....: LTE Outdoor CPE

**Model(s)**. ..... : EG7010C

Brand Name .....: BaiCells

**Standards**...... : FCC CFR47 Part 15.247: 2017

Date of Receipt sample .... : 2017-12-19

**Date of Test** ...... : 2017-12-20 to 2018-02-01

**Date of Issue**..... : 2018-02-02

Test Result.....: Pass

#### Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

#### Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Ford Wang / Project Engineer

Philo Zhong / Manager

## 2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.



Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

## **Test Facility:**

## A. Accreditations for Conformity Assessment (International)

| Country/Region | Accreditation Body         | Scope              | Note |
|----------------|----------------------------|--------------------|------|
| USA            |                            | FCC ID \ DOC \ VOC | 1    |
| Canada         |                            | IC ID \ VOC        | 2    |
| Japan          |                            | MIC-T \ MIC-R      | -    |
| Europe         | A2LA                       | EMCD \ RED         | -    |
| Taiwan         | (Certificate No.: 4243.01) | NCC                | -    |
| Hong Kong      |                            | OFCA               | -    |
| Australia      |                            | RCM                | -    |
| India          |                            | WPC                | -    |
| Thailand       | International Services     | NTC                | -    |
| Singapore      |                            | IDA                | _    |

#### Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

## B. TCBs and Notify Bodies Recognized Testing Laboratory.

| Recognized Testing Laboratory of         | Notify body number |
|------------------------------------------|--------------------|
| TUV Rheinland                            |                    |
| Intertek                                 |                    |
| TUV SUD                                  | Optional.          |
| SGS                                      |                    |
| Phoenix Testlab GmbH                     | 0700               |
| Element Materials Technology Warwick Ltd | 0891               |
| Timco Engineering, Inc.                  | 1177               |
| Eurofins Product Service GmbH            | 0681               |

# 3 Contents

|    |                                        | Page |
|----|----------------------------------------|------|
| 1  | COVER PAGE                             |      |
| 2  | LABORATORIES INTRODUCTION              | 2    |
| 3  | CONTENTS                               |      |
| 4  | REVISION HISTORY                       |      |
| 5  | GENERAL INFORMATION                    |      |
|    | 5.1 GENERAL DESCRIPTION OF E.U.T.      |      |
|    | 5.2 DETAILS OF E.U.T. 5.3 CHANNEL LIST |      |
|    | 5.4 Test Mode                          |      |
| 6  | TEST SUMMARY                           | 8    |
| 7  | EQUIPMENT USED DURING TEST             | 9    |
|    | 7.1 EQUIPMENTS LIST                    |      |
|    | 7.2 DESCRIPTION OF SUPPORT UNITS       |      |
|    | 7.3 MEASUREMENT UNCERTAINTY            |      |
| 8  | CONDUCTED EMISSION                     |      |
|    | 8.1 E.U.T. OPERATION                   |      |
|    | 8.2 EUT SETUP                          |      |
|    | 8.3 MEASUREMENT DESCRIPTION            |      |
| 9  | RADIATED EMISSIONS                     |      |
| ,  | 9.1 EUT OPERATION                      |      |
|    | 9.2 Test Setup                         |      |
|    | 9.3 SPECTRUM ANALYZER SETUP            |      |
|    | 9.4 Test Procedure                     |      |
|    | 9.6 SUMMARY OF TEST RESULTS            |      |
| 10 | CONDUCTED SPURIOUS EMISSIONS           | 28   |
|    | 10.1 Test Procedure                    |      |
|    | 10.2 Test Result                       |      |
| 11 | BAND EDGE MEASUREMENT                  |      |
|    | 11.1 TEST PRODUCE                      |      |
| 12 | 6 DB BANDWIDTH MEASUREMENT             |      |
|    | 12.1 Test Procedure:                   |      |
|    | 12.2 TEST RESULT:                      |      |
| 13 | MAXIMUM PEAK OUTPUT POWER              | 49   |
|    | 13.1 TEST PROCEDURE:                   |      |
|    | 13.2 TEST RESULT:                      |      |
| 14 | POWER SPECTRAL DENSITY                 |      |
|    | 14.1 TEST PROCEDURE:                   |      |
| 15 | ANTENNA REQUIREMENT                    |      |
| 16 | RF EXPOSURE                            |      |
| 17 | PHOTOGRAPHS OF TEST SETUP AND EUT.     |      |
|    | tek Services (Shenzhen) Co.,Ltd.       |      |

Reference No.: WTS17S1298632-2E Page 5 of 64

# 4 Revision History

| Test report No.      | Date of<br>Receipt<br>sample | Date of Test                    | Date of<br>Issue | Purpose  | Comment | Approved |
|----------------------|------------------------------|---------------------------------|------------------|----------|---------|----------|
| WTS17S12986<br>32-2E | 2017-12-19                   | 2017-12-20<br>to 2018-02-<br>01 | 2018-02-02       | original | 1       | Valid    |
|                      |                              |                                 |                  |          |         |          |

Reference No.: WTS17S1298632-2E Page 6 of 64

## **5** General Information

# 5.1 General Description of E.U.T.

Product: LTE Outdoor CPE

Model(s): EG7010C

Model Description: N/A

Storage Location: Internal Storage

Note: N/A

5.2 Details of E.U.T.

Type of Modulation:

LTE Band 43: 3652.5~3697.5MHz

Operation Frequency: WiFi 802.11b/g/n HT20: 2412~2462MHz

LTE: QPSK, 16QAM

WiFi: CCK, OFDM

Antenna installation: LTE: Internal antenna

WiFi: Internal antenna

LTE: 10.0dBi

WiFi: 0dBi

Ratings: DC 24V, 0.5A

## 5.3 Channel List

Antenna Gain:

## WIFI

| Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) |
|----------------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|
| 1              | 2412               | 2              | 2417               | 3              | 2422               | 4              | 2427               |
| 5              | 2432               | 6              | 2437               | 7              | 2442               | 8              | 2447               |
| 9              | 2452               | 10             | 2457               | 11             | 2462               | 12             | -                  |

#### 5.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

| Test Items                     | Mode         | Data Rate | Channel | TX/RX |
|--------------------------------|--------------|-----------|---------|-------|
|                                | 802.11b      | 1 Mbps    | 1/6/11  | TX    |
| Maximum Peak Output Power      | 802.11g      | 6 Mbps    | 1/6/11  | TX    |
|                                | 802.11n HT20 | MCS0      | 1/6/11  | TX    |
|                                | 802.11b      | 1 Mbps    | 1/6/11  | TX    |
| Power Spectral Density         | 802.11g      | 6 Mbps    | 1/6/11  | TX    |
|                                | 802.11n HT20 | MCS0      | 1/6/11  | TX    |
|                                | 802.11b      | 1 Mbps    | 1/6/11  | TX    |
| 6dB Bandwidth                  | 802.11g      | 6 Mbps    | 1/6/11  | TX    |
|                                | 802.11n HT20 | MCS0      | 1/6/11  | TX    |
|                                | 802.11b      | 1 Mbps    | 1/6/11  | TX    |
| Band Edge                      | 802.11g      | 6 Mbps    | 1/6/11  | TX    |
|                                | 802.11n HT20 | MCS0      | 1/6/11  | TX    |
|                                | 802.11b      | 1 Mbps    | 1/6/11  | TX    |
| Transmitter Spurious Emissions | 802.11g      | 6 Mbps    | 1/6/11  | TX    |
|                                | 802.11n HT20 | MCS0      | 1/6/11  | TX    |

**Note** :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

Reference No.: WTS17S1298632-2E Page 8 of 64

# 6 Test Summary

| Test Items                        | Test Requirement | Result |
|-----------------------------------|------------------|--------|
|                                   | 15.247(d)        |        |
| Radiated Spurious Emissions       | 15.205(a)        | PASS   |
|                                   | 15.209(a)        |        |
| Conducted Spurious Emissions      | 15.247(d)        | PASS   |
| Conducted Emissions               | 15.207(a)        | PASS   |
| 6dB Bandwidth                     | 15.247(a)(2)     | PASS   |
| Maximum Peak Output Power         | 15.247(b)(3),(4) | PASS   |
| Power Spectral Density            | 15.247(e)        | PASS   |
| Band Edge                         | 15.247(d)        | PASS   |
| Antenna Requirement               | 15.203           | PASS   |
| Maximum Permissible Exposure      | 1.1307(b)(1)     | PASS   |
| (Exposure of Humans to RF Fields) | 1.1337(8)(1)     | 17.00  |

# 7 Equipment Used during Test

# 7.1 Equipments List

| Condu  | Conducted Emissions Test Site 1# |                                  |                 |                     |                             |                         |  |  |
|--------|----------------------------------|----------------------------------|-----------------|---------------------|-----------------------------|-------------------------|--|--|
| Item   | Equipment                        | Manufacturer                     | Model No.       | Serial No.          | Last<br>Calibration<br>Date | Calibration<br>Due Date |  |  |
| 1.     | EMI Test Receiver                | R&S                              | ESCI            | 100947              | 2017-09-12                  | 2018-09-11              |  |  |
| 2.     | LISN                             | R&S                              | ENV216 101215   |                     | 2017-09-12                  | 2018-09-11              |  |  |
| 3.     | Cable                            | Тор                              | TYPE16(3.5M)    | -                   | 2017-09-12                  | 2018-09-11              |  |  |
| Condu  | cted Emissions Test S            | Site 2#                          |                 |                     |                             |                         |  |  |
| Item   | Equipment                        | Manufacturer                     | Model No.       | Serial No.          | Last<br>Calibration<br>Date | Calibration<br>Due Date |  |  |
| 1.     | EMI Test Receiver                | R&S                              | ESCI            | 101155              | 2017-09-12                  | 2018-09-11              |  |  |
| 2.     | LISN                             | SCHWARZBECK                      | NSLK 8128       | 8128-289            | 2017-09-12                  | 2018-09-11              |  |  |
| 3.     | Limiter                          | York                             | MTS-IMP-136     | 261115-001-<br>0024 | 2017-09-12                  | 2018-09-11              |  |  |
| 4.     | Cable                            | LARGE                            | RF300           | -                   | 2017-09-12                  | 2018-09-11              |  |  |
| 3m Ser | mi-anechoic Chamber              | for Radiation Emis               | sions Test site | 1#                  |                             |                         |  |  |
| Item   | Equipment                        | Manufacturer                     | Model No.       | Serial No.          | Last<br>Calibration<br>Date | Calibration<br>Due Date |  |  |
| 1      | Spectrum Analyzer                | R&S                              | FSP 100091      |                     | 2017-04-29                  | 2018-04-28              |  |  |
| 2      | Active Loop Antenna              | Beijing Dazhi                    | ZN30900A        | -                   | 2017-04-09                  | 2018-04-08              |  |  |
| 3      | Trilog Broadband<br>Antenna      | SCHWARZBECK                      | VULB9163        | 336                 | 2017-04-09                  | 2018-04-08              |  |  |
| 4      | Coaxial Cable<br>(below 1GHz)    | Тор                              | TYPE16(13M)     | -                   | 2017-09-12                  | 2018-09-11              |  |  |
| 5      | Broad-band Horn Antenna          | SCHWARZBECK                      | BBHA 9120 D     | 667                 | 2017-04-09                  | 2018-04-08              |  |  |
| 6      | Broad-band Horn<br>Antenna       | SCHWARZBECK                      | BBHA 9170       | 335                 | 2017-04-09                  | 2018-04-08              |  |  |
| 7      | Broadband<br>Preamplifier        | COMPLIANCE<br>DIRECTION          | PAP-1G18        | 2004                | 2017-04-13                  | 2018-04-12              |  |  |
| 8      | Coaxial Cable<br>(above 1GHz)    | Тор                              | 1GHz-25GHz      | EW02014-7           | 2017-04-13                  | 2018-04-12              |  |  |
| 3m Ser | mi-anechoic Chamber              | for Radiation Emis               | sions Test site | 2#                  |                             |                         |  |  |
| Item   | Equipment                        | Manufacturer                     | Model No.       | Serial No           | Last<br>Calibration<br>Date | Calibration<br>Due Date |  |  |
| 1      | Test Receiver                    | R&S                              | ESCI            | 101296              | 2017-04-13                  | 2018-04-12              |  |  |
| 2      | Trilog Broadband<br>Antenna      | SCHWARZBECK                      | VULB9160        | 9160-3325           | 2017-04-09                  | 2018-04-08              |  |  |
| 3      | Amplifier                        | Compliance pirection systems inc | PAP-0203        | 22024               | 2017-04-13                  | 2018-04-12              |  |  |
| 4      | Cable                            | HUBER+SUHNER                     | CBL2            | 525178              | 2017-04-13                  | 2018-04-12              |  |  |

| RF Co | RF Conducted Testing            |              |           |            |                             |                         |  |  |  |
|-------|---------------------------------|--------------|-----------|------------|-----------------------------|-------------------------|--|--|--|
| Item  | Equipment                       | Manufacturer | Model No. | Serial No. | Last<br>Calibration<br>Date | Calibration<br>Due Date |  |  |  |
| 1.    | EMC Analyzer<br>(9k~26.5GHz)    | Agilent      | E7405A    | MY45114943 | 2017-09-12                  | 2018-09-11              |  |  |  |
| 2.    | Spectrum Analyzer (9k-6GHz)     | R&S          | FSL6      | 100959     | 2017-09-12                  | 2018-09-11              |  |  |  |
| 3.    | Signal Analyzer<br>(9k~26.5GHz) | Agilent      | N9010A    | MY50520207 | 2017-09-12                  | 2018-09-11              |  |  |  |

# 7.2 Description of Support Units

| Equipment | Manufacturer | Model No. | Series No. |  |
|-----------|--------------|-----------|------------|--|
| 1         | 1            | 1         | 1          |  |

# 7.3 Measurement Uncertainty

| Parameter                               | Uncertainty                                     |  |  |  |  |
|-----------------------------------------|-------------------------------------------------|--|--|--|--|
| Conducted Emission                      | ± 3.64 dB(AC mains 150KHz~30MHz)                |  |  |  |  |
| Radiated Spurious Emissions             | ± 5.08 dB (Bilog antenna 30M~1000MHz)           |  |  |  |  |
| Radiated Spurious Emissions             | ± 5.47 dB (Horn antenna 1000M~25000MHz)         |  |  |  |  |
| Radio Frequency                         | ± 1 x 10 <sup>-7</sup> Hz                       |  |  |  |  |
| RF Power                                | ± 0.42 dB                                       |  |  |  |  |
| RF Power Density                        | ± 0.7dB                                         |  |  |  |  |
| Conducted Spurious Emissions            | ± 2.76 dB (9kHz~26500MHz)                       |  |  |  |  |
| Confidence interval: 95%. Confidence fa | Confidence interval: 95%. Confidence factor:k=2 |  |  |  |  |

# 7.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

#### 8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Frequency (MHz) Limit (dBµV)

Quasi-peak Average

0.15 to 0.5

66 to 56\*

56 to 46\*

 Quasi-peak
 Average

 0.15 to 0.5
 66 to 56\*
 56 to 46\*

 0.5 to 5
 56
 46

 5 to 30
 60
 50

## 8.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

**EUT Operation:** 

The test was performed in TX transmitting mode, the worst data were shown in the report.

#### 8.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.



#### 8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

#### 8.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Worst Mode: WIFI mode (802.11b mode low channel)

Live line:



#### Neutral line:



Reference No.: WTS17S1298632-2E Page 14 of 64

# 9 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

| Lillit.            | Field Stre   | ngth         | Field Strength Limit at 3m Measurement Dis |                                      |  |
|--------------------|--------------|--------------|--------------------------------------------|--------------------------------------|--|
| Frequency<br>(MHz) | uV/m         | Distance (m) | uV/m                                       | dBuV/m                               |  |
| 0.009 ~ 0.490      | 2400/F(kHz)  | 300          | 10000 * 2400/F(kHz)                        | 20log <sup>(2400/F(kHz))</sup> + 80  |  |
| 0.490 ~ 1.705      | 24000/F(kHz) | 30           | 100 * 24000/F(kHz)                         | 20log <sup>(24000/F(kHz))</sup> + 40 |  |
| 1.705 ~ 30         | 30           | 30           | 100 * 30                                   | 20log <sup>(30)</sup> + 40           |  |
| 30 ~ 88            | 100          | 3            | 100                                        | 20log <sup>(100)</sup>               |  |
| 88 ~ 216           | 150          | 3            | 150                                        | 20log <sup>(150)</sup>               |  |
| 216 ~ 960          | 200          | 3            | 200                                        | 20log <sup>(200)</sup>               |  |
| Above 960          | 500          | 3            | 500                                        | 20log <sup>(500)</sup>               |  |

# 9.1 EUT Operation

Operating Environment:

Temperature:  $23.5 \, ^{\circ}\text{C}$  Humidity:  $52.1 \, \% \, \text{RH}$ 

Atmospheric Pressure: 101.2kPa

**EUT Operation:** 

The test was performed in TX transmitting mode, the test data were shown in the report.

## 9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.



The test setup for emission measurement from 30 MHz to 1 GHz.





The test setup for emission measurement above 1 GHz.

# 9.3 Spectrum Analyzer Setup

| Below 30MHz |                      |        |
|-------------|----------------------|--------|
|             | Sweep Speed          | Auto   |
|             | IF Bandwidth         | 10kHz  |
|             | Video Bandwidth      | 10kHz  |
|             | Resolution Bandwidth | 10kHz  |
| 30MHz ~ 1GH | łz                   |        |
|             | Sweep Speed          | Auto   |
|             | Detector             | PK     |
|             | Resolution Bandwidth | 100kHz |
|             | Video Bandwidth      | 300kHz |
| Above 1GHz  |                      |        |
|             | Sweep Speed          | Auto   |
|             | Detector             | PK     |
|             | Resolution Bandwidth | 1MHz   |
|             | Video Bandwidth      | 3MHz   |
|             | Detector             | Ave.   |
|             | Resolution Bandwidth | 1MHz   |
|             | Video Bandwidth      | 10Hz   |

Reference No.: WTS17S1298632-2E Page 17 of 64

#### 9.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in Z axis,so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

### 9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS17S1298632-2E Page 18 of 64

# 9.6 Summary of Test Results

Wifi:

Test Frequency: 9KHz~30MHz

Remark: only the worst data (802.11b/g/n Low channel mode) were recorded.

| Frequency | Measurement<br>results dBµV<br>@3m | Detector<br>PK/QP | Correct<br>factor<br>dB/m | Extrapolatio<br>n factor<br>dB | Measurement results (calculated) dBµV/m @30m | Limits dBµV/m @30m | Margin<br>dB |
|-----------|------------------------------------|-------------------|---------------------------|--------------------------------|----------------------------------------------|--------------------|--------------|
| (MHz)     | Measurement results                | Detector          | Correct factor            | Extrapolatio<br>n factor       | Measurement results (calculated)             | Limits             | Margin       |
|           |                                    |                   | 802.                      | 11b                            |                                              |                    |              |
| 6.022     | 25.44                              | QP                | 21.84                     | 40.00                          | 7.28                                         | 29.54              | -22.26       |
| 8.311     | 26.35                              | QP                | 21.02                     | 40.00                          | 7.37                                         | 29.54              | -22.17       |
| 26.127    | 25.41                              | QP                | 20.55                     | 40.00                          | 5.96                                         | 29.54              | -23.58       |
|           |                                    |                   | 802.                      | 11g                            |                                              |                    |              |
| 6.022     | 25.87                              | QP                | 21.84                     | 40.00                          | 7.71                                         | 29.54              | -21.83       |
| 8.311     | 24.99                              | QP                | 21.02                     | 40.00                          | 6.01                                         | 29.54              | -23.53       |
| 26.127    | 25.92                              | QP                | 20.55                     | 40.00                          | 6.47                                         | 29.54              | -23.07       |
|           |                                    |                   | 802.11n                   | ı(HT20)                        |                                              |                    |              |
| 6.022     | 25.23                              | QP                | 21.84                     | 40.00                          | 7.07                                         | 29.54              | -22.47       |
| 8.311     | 24.59                              | QP                | 21.02                     | 40.00                          | 5.61                                         | 29.54              | -23.93       |
| 26.127    | 26.07                              | QP                | 20.55                     | 40.00                          | 6.62                                         | 29.54              | -22.92       |

Test Frequency : 30MHz ~ 18GHz

## 802.11b:

| F         | Receiver | Datastan    | Turn           | RX An   | tenna    | Corrected | Carro ata d            | FCC F<br>15.247/2 |        |
|-----------|----------|-------------|----------------|---------|----------|-----------|------------------------|-------------------|--------|
| Frequency | Reading  | Detector    | table<br>Angle | Height  | Polar    | Factor    | Corrected<br>Amplitude | Limit             | Margin |
| (MHz)     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)     | (H/V)    | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |
|           |          |             | 11b: Lo        | w Chann | el 2412ľ | ИНz       |                        |                   |        |
| 224.63    | 42.35    | QP          | 111.57         | 1.80    | Н        | 11.02     | 31.33                  | 46.00             | -14.67 |
| 224.63    | 37.52    | QP          | 299.39         | 1.48    | V        | 11.02     | 26.50                  | 46.00             | -19.50 |
| 4824.00   | 50.14    | PK          | 343.37         | 1.89    | V        | 1.08      | 49.06                  | 74.00             | -24.94 |
| 4824.00   | 44.32    | Ave         | 343.37         | 1.89    | V        | 1.08      | 43.24                  | 54.00             | -10.76 |
| 7236.00   | 41.36    | PK          | 240.28         | 1.86    | Н        | 1.33      | 42.69                  | 74.00             | -31.31 |
| 7236.00   | 41.25    | Ave         | 240.28         | 1.86    | Н        | 1.33      | 42.58                  | 54.00             | -11.42 |
| 2347.17   | 46.88    | PK          | 22.35          | 1.80    | V        | 13.11     | 33.77                  | 74.00             | -40.23 |
| 2347.17   | 38.84    | Ave         | 22.35          | 1.80    | V        | 13.11     | 25.73                  | 54.00             | -28.27 |
| 2378.69   | 43.46    | PK          | 76.44          | 1.97    | Н        | 13.06     | 30.40                  | 74.00             | -43.60 |
| 2378.69   | 36.06    | Ave         | 76.44          | 1.97    | Н        | 13.04     | 23.02                  | 54.00             | -30.98 |
| 2493.47   | 44.81    | PK          | 238.96         | 1.38    | V        | 13.00     | 31.81                  | 74.00             | -42.19 |
| 2493.47   | 38.88    | Ave         | 238.96         | 1.38    | V        | 13.00     | 25.88                  | 54.00             | -28.12 |

| Frequency | Receiver | Detector    | Turn           | RX An     | tenna    | Corrected | Corrected              | FCC F<br>15.247/2 |        |
|-----------|----------|-------------|----------------|-----------|----------|-----------|------------------------|-------------------|--------|
| Frequency | Reading  | Detector    | table<br>Angle | Height    | Polar    | Factor    | Corrected<br>Amplitude | Limit             | Margin |
| (MHz)     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)       | (H/V)    | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |
|           |          |             | 11b: Mide      | dle Chani | nel 2437 | 7MHz      |                        |                   |        |
| 224.63    | 41.81    | QP          | 309.84         | 1.94      | Н        | 11.02     | 30.79                  | 46.00             | -15.21 |
| 224.63    | 36.33    | QP          | 27.68          | 1.21      | V        | 11.02     | 25.31                  | 46.00             | -20.69 |
| 4874.00   | 49.78    | PK          | 173.54         | 1.06      | V        | 1.08      | 48.70                  | 74.00             | -25.30 |
| 4874.00   | 44.91    | Ave         | 173.54         | 1.06      | V        | 1.08      | 43.83                  | 54.00             | -10.17 |
| 7311.00   | 40.57    | PK          | 300.35         | 1.64      | Н        | 2.21      | 42.78                  | 74.00             | -31.22 |
| 7311.00   | 41.02    | Ave         | 300.35         | 1.64      | Н        | 2.21      | 43.23                  | 54.00             | -10.77 |
| 2337.48   | 45.23    | PK          | 169.16         | 1.63      | V        | 13.19     | 32.04                  | 74.00             | -41.96 |
| 2337.48   | 37.43    | Ave         | 169.16         | 1.63      | V        | 13.19     | 24.24                  | 54.00             | -29.76 |
| 2370.41   | 44.95    | PK          | 21.22          | 1.43      | Н        | 13.14     | 31.81                  | 74.00             | -42.19 |
| 2370.41   | 38.33    | Ave         | 21.22          | 1.43      | Н        | 13.14     | 25.19                  | 54.00             | -28.81 |
| 2493.87   | 42.28    | PK          | 247.61         | 1.21      | V        | 13.08     | 29.20                  | 74.00             | -44.80 |
| 2493.87   | 36.95    | Ave         | 247.61         | 1.21      | V        | 13.08     | 23.87                  | 54.00             | -30.13 |

| F         | Receiver | Datastan    | Turn           | RX An    | tenna    | Corrected | Carra ata d            | FCC F<br>15.247/2 |        |
|-----------|----------|-------------|----------------|----------|----------|-----------|------------------------|-------------------|--------|
| Frequency | Reading  | Detector    | table<br>Angle | Height   | Polar    | Factor    | Corrected<br>Amplitude | Limit             | Margin |
| (MHz)     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)      | (H/V)    | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |
|           |          |             | 11b: Hig       | jh Chann | el 2462I | MHz       |                        |                   |        |
| 224.63    | 43.09    | QP          | 43.84          | 1.67     | Н        | 11.02     | 32.07                  | 46.00             | -13.93 |
| 224.63    | 37.43    | QP          | 184.08         | 1.94     | V        | 11.02     | 26.41                  | 46.00             | -19.59 |
| 4924.00   | 49.49    | PK          | 189.14         | 1.13     | V        | 1.08      | 48.41                  | 74.00             | -25.59 |
| 4924.00   | 43.55    | Ave         | 189.14         | 1.13     | V        | 1.08      | 42.47                  | 54.00             | -11.53 |
| 7386.00   | 40.41    | PK          | 276.91         | 2.00     | Н        | 2.84      | 43.25                  | 74.00             | -30.75 |
| 7386.00   | 41.75    | Ave         | 276.91         | 2.00     | Н        | 2.84      | 44.59                  | 54.00             | -9.41  |
| 2331.10   | 45.29    | PK          | 61.70          | 1.20     | V        | 13.11     | 32.18                  | 74.00             | -41.82 |
| 2331.10   | 37.75    | Ave         | 61.70          | 1.20     | V        | 13.11     | 24.64                  | 54.00             | -29.36 |
| 2377.62   | 44.78    | PK          | 223.83         | 1.60     | Н        | 13.06     | 31.72                  | 74.00             | -42.28 |
| 2377.62   | 38.63    | Ave         | 223.83         | 1.60     | Н        | 13.04     | 25.59                  | 54.00             | -28.41 |
| 2485.15   | 42.50    | PK          | 296.44         | 1.97     | V        | 13.00     | 29.50                  | 74.00             | -44.50 |
| 2485.15   | 37.58    | Ave         | 296.44         | 1.97     | V        | 13.00     | 24.58                  | 54.00             | -29.42 |

# 802.11g:

|            | -        | -           | F             |         |                  | -         | F         | Г                 |        |
|------------|----------|-------------|---------------|---------|------------------|-----------|-----------|-------------------|--------|
| Frequency  | Receiver | Detector    | Turn<br>table | RX An   | tenna            | Corrected | Corrected | FCC F<br>15.247/2 |        |
| rrequericy | Reading  | Detector    | Angle         | Height  | Polar            | Factor    | Amplitude | Limit             | Margin |
| (MHz)      | (dBµV)   | (PK/QP/Ave) | Degree        | (m)     | (H/V)            | (dB)      | (dBµV/m)  | (dBµV/m)          | (dB)   |
|            |          |             | 11g: Lo       | w Chann | el 2412 <b>l</b> | ИНz       |           |                   |        |
| 224.63     | 42.48    | QP          | 71.34         | 1.01    | Н                | 11.02     | 31.46     | 46.00             | -14.54 |
| 224.63     | 37.23    | QP          | 118.06        | 1.92    | V                | 11.02     | 26.21     | 46.00             | -19.79 |
| 4824.00    | 50.12    | PK          | 79.51         | 1.48    | V                | 1.08      | 49.04     | 74.00             | -24.96 |
| 4824.00    | 42.72    | Ave         | 79.51         | 1.48    | V                | 1.08      | 41.64     | 54.00             | -12.36 |
| 7236.00    | 40.48    | PK          | 66.58         | 1.82    | Н                | 1.33      | 41.81     | 74.00             | -32.19 |
| 7236.00    | 42.73    | Ave         | 66.58         | 1.82    | Н                | 1.33      | 44.06     | 54.00             | -9.94  |
| 2332.08    | 46.61    | PK          | 139.44        | 1.56    | V                | 13.11     | 33.50     | 74.00             | -40.50 |
| 2332.08    | 37.74    | Ave         | 139.44        | 1.56    | V                | 13.11     | 24.63     | 54.00             | -29.37 |
| 2376.16    | 44.63    | PK          | 281.23        | 1.68    | Н                | 13.06     | 31.57     | 74.00             | -42.43 |
| 2376.16    | 38.74    | Ave         | 281.23        | 1.68    | Н                | 13.04     | 25.70     | 54.00             | -28.30 |
| 2486.68    | 44.08    | PK          | 175.66        | 1.59    | V                | 13.00     | 31.08     | 74.00             | -42.92 |
| 2486.68    | 36.64    | Ave         | 175.66        | 1.59    | V                | 13.00     | 23.64     | 54.00             | -30.36 |

| F         | Receiver | Detector    | Turn           | RX An     | tenna    | Corrected | 0                      | FCC F<br>15.247/20 |        |
|-----------|----------|-------------|----------------|-----------|----------|-----------|------------------------|--------------------|--------|
| Frequency | Reading  | Detector    | table<br>Angle | Height    | Polar    | Factor    | Corrected<br>Amplitude | Limit              | Margin |
| (MHz)     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)       | (H/V)    | (dB)      | (dBµV/m)               | (dBµV/m)           | (dB)   |
|           |          |             | 11g: Mide      | dle Chani | nel 2437 | 7MHz      |                        |                    |        |
| 224.63    | 43.06    | QP          | 124.76         | 1.26      | Н        | 11.02     | 32.04                  | 46.00              | -13.96 |
| 224.63    | 38.54    | QP          | 272.58         | 1.58      | V        | 11.02     | 27.52                  | 46.00              | -18.48 |
| 4874.00   | 48.73    | PK          | 120.00         | 1.53      | V        | 1.08      | 47.65                  | 74.00              | -26.35 |
| 4874.00   | 43.60    | Ave         | 120.00         | 1.53      | V        | 1.08      | 42.52                  | 54.00              | -11.48 |
| 7311.00   | 40.19    | PK          | 210.30         | 1.01      | Н        | 2.21      | 42.40                  | 74.00              | -31.60 |
| 7311.00   | 42.13    | Ave         | 210.30         | 1.01      | Н        | 2.21      | 44.34                  | 54.00              | -9.66  |
| 2316.29   | 45.51    | PK          | 81.62          | 1.48      | V        | 13.11     | 32.40                  | 74.00              | -41.60 |
| 2316.29   | 37.54    | Ave         | 81.62          | 1.48      | V        | 13.11     | 24.43                  | 54.00              | -29.57 |
| 2379.91   | 42.50    | PK          | 94.53          | 1.47      | Н        | 13.06     | 29.44                  | 74.00              | -44.56 |
| 2379.91   | 37.33    | Ave         | 94.53          | 1.47      | Н        | 13.04     | 24.29                  | 54.00              | -29.71 |
| 2484.04   | 42.60    | PK          | 208.07         | 1.52      | V        | 13.00     | 29.60                  | 74.00              | -44.40 |
| 2484.04   | 38.39    | Ave         | 208.07         | 1.52      | V        | 13.00     | 25.39                  | 54.00              | -28.61 |

| F         | Receiver | Detector    | Turn           | RX An    | tenna    | Corrected | 0                      | FCC F<br>15.247/2 |        |
|-----------|----------|-------------|----------------|----------|----------|-----------|------------------------|-------------------|--------|
| Frequency | Reading  | Detector    | table<br>Angle | Height   | Polar    | Factor    | Corrected<br>Amplitude | Limit             | Margin |
| (MHz)     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)      | (H/V)    | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |
|           |          |             | 11g: Hig       | ıh Chann | el 2462I | MHz       |                        |                   |        |
| 224.63    | 44.03    | QP          | 192.57         | 1.06     | Н        | 11.02     | 33.01                  | 46.00             | -12.99 |
| 224.63    | 38.65    | QP          | 347.55         | 1.83     | V        | 11.02     | 27.63                  | 46.00             | -18.37 |
| 4924.00   | 47.64    | PK          | 204.47         | 1.38     | V        | 1.08      | 46.56                  | 74.00             | -27.44 |
| 4924.00   | 43.79    | Ave         | 204.47         | 1.38     | V        | 1.08      | 42.71                  | 54.00             | -11.29 |
| 7386.00   | 39.56    | PK          | 337.35         | 1.22     | Н        | 2.84      | 42.40                  | 74.00             | -31.60 |
| 7386.00   | 43.54    | Ave         | 337.35         | 1.22     | Н        | 2.84      | 46.38                  | 54.00             | -7.62  |
| 2346.78   | 45.62    | PK          | 176.46         | 1.27     | V        | 13.11     | 32.51                  | 74.00             | -41.49 |
| 2346.78   | 39.77    | Ave         | 176.46         | 1.27     | V        | 13.11     | 26.66                  | 54.00             | -27.34 |
| 2382.93   | 43.64    | PK          | 72.65          | 1.36     | Н        | 13.06     | 30.58                  | 74.00             | -43.42 |
| 2382.93   | 37.14    | Ave         | 72.65          | 1.36     | Н        | 13.04     | 24.10                  | 54.00             | -29.90 |
| 2497.48   | 43.93    | PK          | 222.05         | 1.99     | V        | 13.00     | 30.93                  | 74.00             | -43.07 |
| 2497.48   | 37.19    | Ave         | 222.05         | 1.99     | V        | 13.00     | 24.19                  | 54.00             | -29.81 |

# 802.11n (HT20):

| <b></b>   | Receiver | Datastan    | Turn           | RX An   | tenna    | Corrected | Composto d             | FCC F<br>15.247/2 |        |
|-----------|----------|-------------|----------------|---------|----------|-----------|------------------------|-------------------|--------|
| Frequency | Reading  | Detector    | table<br>Angle | Height  | Polar    | Factor    | Corrected<br>Amplitude | Limit             | Margin |
| (MHz)     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)     | (H/V)    | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |
|           |          |             | 11n20: L       | ow Chan | nel 2412 | 2MHz      |                        |                   |        |
| 224.63    | 45.08    | QP          | 29.17          | 1.80    | Н        | 11.02     | 34.06                  | 46.00             | -11.94 |
| 224.63    | 39.36    | QP          | 186.85         | 1.41    | V        | 11.02     | 28.34                  | 46.00             | -17.66 |
| 4824.00   | 47.11    | PK          | 204.51         | 1.08    | V        | 1.08      | 46.03                  | 74.00             | -27.97 |
| 4824.00   | 44.93    | Ave         | 204.51         | 1.08    | V        | 1.08      | 43.85                  | 54.00             | -10.15 |
| 7236.00   | 38.71    | PK          | 22.36          | 1.43    | Н        | 1.33      | 40.04                  | 74.00             | -33.96 |
| 7236.00   | 43.44    | Ave         | 22.36          | 1.43    | Н        | 1.33      | 44.77                  | 54.00             | -9.23  |
| 2329.71   | 45.79    | PK          | 82.29          | 1.93    | V        | 13.11     | 32.68                  | 74.00             | -41.32 |
| 2329.71   | 38.18    | Ave         | 82.29          | 1.93    | V        | 13.11     | 25.07                  | 54.00             | -28.93 |
| 2377.94   | 43.87    | PK          | 77.77          | 1.80    | Н        | 13.06     | 30.81                  | 74.00             | -43.19 |
| 2377.94   | 36.82    | Ave         | 77.77          | 1.80    | Н        | 13.04     | 23.78                  | 54.00             | -30.22 |
| 2497.07   | 44.73    | PK          | 283.15         | 1.20    | V        | 13.00     | 31.73                  | 74.00             | -42.27 |
| 2497.07   | 36.79    | Ave         | 283.15         | 1.20    | V        | 13.00     | 23.79                  | 54.00             | -30.21 |

| F         | Receiver | Datastan    | Turn           | RX An    | tenna    | Corrected | 0                      | FCC F<br>15.247/2 |        |
|-----------|----------|-------------|----------------|----------|----------|-----------|------------------------|-------------------|--------|
| Frequency | Reading  | Detector    | table<br>Angle | Height   | Polar    | Factor    | Corrected<br>Amplitude | Limit             | Margin |
| (MHz)     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)      | (H/V)    | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |
|           |          | ,           | 11n20: Mi      | ddle Cha | nnel 243 | 37MHz     |                        |                   |        |
| 224.63    | 46.53    | QP          | 242.09         | 1.77     | Н        | 11.02     | 35.51                  | 46.00             | -10.49 |
| 224.63    | 39.37    | QP          | 88.62          | 1.74     | V        | 11.02     | 28.35                  | 46.00             | -17.65 |
| 4874.00   | 47.42    | PK          | 92.10          | 1.68     | V        | 1.08      | 46.34                  | 74.00             | -27.66 |
| 4874.00   | 43.83    | Ave         | 92.10          | 1.68     | V        | 1.08      | 42.75                  | 54.00             | -11.25 |
| 7311.00   | 37.51    | PK          | 349.44         | 1.85     | Н        | 2.21      | 39.72                  | 74.00             | -34.28 |
| 7311.00   | 43.76    | Ave         | 349.44         | 1.85     | Н        | 2.21      | 45.97                  | 54.00             | -8.03  |
| 2332.09   | 45.27    | PK          | 213.64         | 1.41     | V        | 13.11     | 32.16                  | 74.00             | -41.84 |
| 2332.09   | 38.53    | Ave         | 213.64         | 1.41     | V        | 13.11     | 25.42                  | 54.00             | -28.58 |
| 2362.92   | 42.25    | PK          | 46.53          | 1.79     | Н        | 13.06     | 29.19                  | 74.00             | -44.81 |
| 2362.92   | 38.90    | Ave         | 46.53          | 1.79     | Н        | 13.04     | 25.86                  | 54.00             | -28.14 |
| 2491.28   | 42.95    | PK          | 324.61         | 1.66     | V        | 13.00     | 29.95                  | 74.00             | -44.05 |
| 2491.28   | 38.22    | Ave         | 324.61         | 1.66     | V        | 13.00     | 25.22                  | 54.00             | -28.78 |

| F         | Receiver | Datastan    | Turn           | RX An    | tenna    | Corrected | Camantad               | FCC F<br>15.247/2 |        |
|-----------|----------|-------------|----------------|----------|----------|-----------|------------------------|-------------------|--------|
| Frequency | Reading  | Detector    | table<br>Angle | Height   | Polar    | Factor    | Corrected<br>Amplitude | Limit             | Margin |
| (MHz)     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)      | (H/V)    | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |
|           |          |             | 11n20: H       | igh Chan | nel 2462 | 2MHz      |                        |                   |        |
| 224.63    | 47.17    | QP          | 350.85         | 1.03     | Н        | 11.02     | 36.15                  | 46.00             | -9.85  |
| 224.63    | 40.36    | QP          | 40.76          | 1.86     | V        | 11.02     | 29.34                  | 46.00             | -16.66 |
| 4924.00   | 48.82    | PK          | 98.36          | 1.05     | V        | 1.08      | 47.74                  | 74.00             | -26.26 |
| 4924.00   | 44.66    | Ave         | 98.36          | 1.05     | V        | 1.08      | 43.58                  | 54.00             | -10.42 |
| 7386.00   | 36.58    | PK          | 205.85         | 1.49     | Н        | 2.84      | 39.42                  | 74.00             | -34.58 |
| 7386.00   | 44.00    | Ave         | 205.85         | 1.49     | Н        | 2.84      | 46.84                  | 54.00             | -7.16  |
| 2320.69   | 45.58    | PK          | 333.53         | 1.29     | V        | 13.11     | 32.47                  | 74.00             | -41.53 |
| 2320.69   | 37.77    | Ave         | 333.53         | 1.29     | V        | 13.11     | 24.66                  | 54.00             | -29.34 |
| 2364.09   | 44.24    | PK          | 92.77          | 1.55     | Н        | 13.06     | 31.18                  | 74.00             | -42.82 |
| 2364.09   | 38.35    | Ave         | 92.77          | 1.55     | Н        | 13.04     | 25.31                  | 54.00             | -28.69 |
| 2497.66   | 42.04    | PK          | 16.00          | 1.76     | V        | 13.00     | 29.04                  | 74.00             | -44.96 |
| 2497.66   | 36.87    | Ave         | 16.00          | 1.76     | V        | 13.00     | 23.87                  | 54.00             | -30.13 |

# Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS17S1298632-2E Page 28 of 64

# 10 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04 April 5, 2017

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

#### 10.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

Above 1GHz:

For WIFI mode

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

## 10.2 Test Result

#### 9KHz - 30MHz

802.11b

## Low Channel









802.11g







802.11n HT20

#### Low Channel







#### **Above 30MHz**

802.11b

## Low Channel







802.11g







802.11n HT20





# 



Reference No.: WTS17S1298632-2E Page 39 of 64

# 11 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04 April 5, 2017

Test Limit: Regulation 15.247 (d),In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

#### 11.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

#### 11.2 Test Result

Test result plots shown as follows:













Reference No.: WTS17S1298632-2E Page 43 of 64

# 12 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04 April 5, 2017

### 12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

#### 12.2 Test Result:

| Operation mode | Test Channel | 6dB Bandwidth (MHz) | 99% Bandwidth (MHz) |
|----------------|--------------|---------------------|---------------------|
|                | Channel 1    | 10.060              | 12.391              |
| TX 11b         | Channel 6    | 10.060              | 12.519              |
|                | Channel 11   | 10.060              | 12.519              |
|                | Channel 1    | 16.467              | 16.517              |
| TX 11g         | Channel 6    | 16.467              | 16.517              |
|                | Channel 11   | 16.467              | 16.517              |
| TX 11n HT20    | Channel 1    | 17.623              | 17.677              |
|                | Channel 6    | 17.623              | 17.677              |
|                | Channel 11   | 17.623              | 17.677              |

#### Test result plot:



















Reference No.: WTS17S1298632-2E Page 49 of 64

# 13 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04 April 5, 2017

#### 13.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v04 April 5, 2017

section 9.1.2 (For WIFI)

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a)Set the RBW = 1 MHz.
- b)Set the VBW ≥ 3 RBW
- c)Set the span  $\geq$  1.5 x DTS bandwidth.
- d)Detector = peak.
- e)Sweep time = auto couple.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.
- h)Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

Reference No.: WTS17S1298632-2E Page 50 of 64

# 13.2 Test Result:

| Operation mode  | Channel Frequency<br>(MHz) | Maximum Peak Output Power (dBm) |
|-----------------|----------------------------|---------------------------------|
|                 | Low-2412                   | 16.09                           |
| TX 11b          | Middle-2437                | 16.42                           |
|                 | High-2462                  | 16.03                           |
|                 | Low-2412                   | 14.94                           |
| TX 11g          | Middle-2437                | 14.95                           |
|                 | High-2462                  | 14.67                           |
| TX 11n HT20     | Low-2412                   | 14.59                           |
|                 | Middle-2437                | 14.34                           |
|                 | High-2462                  | 14.92                           |
| Limit: 1W/30dBm |                            |                                 |

**Test Plot** 



















Reference No.: WTS17S1298632-2E Page 56 of 64

# 14 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v04 April 5, 2017

#### 14.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v04 April 5, 2017 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

#### 14.2 Test Result:

| Low-2412<br>Middle-2437 | -10.16<br>-9.99                            |
|-------------------------|--------------------------------------------|
|                         | -9.99                                      |
|                         |                                            |
| High-2462               | -10.38                                     |
| Low-2412                | -17.43                                     |
| Middle-2437             | -18.20                                     |
| High-2462               | -18.58                                     |
| Low-2412                | -19.85                                     |
| Middle-2437             | -19.26                                     |
| High-2462               | -18.96                                     |
| ·                       | Middle-2437 High-2462 Low-2412 Middle-2437 |



















# 15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna fulfill the requirement of this section.

Reference No.: WTS17S1298632-2E Page 63 of 64

# 16 RF Exposure

Remark: refer to test report: WTS17S1298632-3E.

Reference No.: WTS17S1298632-2E Page 64 of 64

# 17 Photographs of Test Setup and EUT.

Note: Please refer to appendix: WTS17S1298632E\_Photo.

=====End of Report=====