

Physics Higher level Paper 2

Monday	15 May	y 2017	(afternoon)	١
--------	--------	--------	-------------	---

- 27	Cal	ndidate	5 5055	1011 110	annoe	
		1		- 11		

2 hours 15 minutes

Instructions to candidates

- · Write your session number in the boxes above.
- · Do not open this examination paper until instructed to do so.
- Answer all questions.
- · Answers must be written within the answer boxes provided.
- · A calculator is required for this paper.
- · A clean copy of the physics data booklet is required for this paper.
- · The maximum mark for this examination paper is [95 marks].

28ED01

International Baccalaureate*
Baccalauréat International
Bachillerate Internacional

Answer all questions. Answers must be written within the answer boxes provided.

 A glider is an aircraft with no engine. To be launched, a glider is uniformly accelerated from rest by a cable pulled by a motor that exerts a horizontal force on the glider throughout the launch.

(a)	The glider reaches its launch speed of 27.0 m s ⁻¹ after accelerating for 11.0 s. Assume that the glider moves horizontally until it leaves the ground. Calculate the total distance travelled by the glider before it leaves the ground.	[2]
0.200		
* ***		
(b)	The glider and pilot have a total mass of $492\mathrm{kg}$. During the acceleration the glider is subject to an average resistive force of $160\mathrm{N}$. Determine the average tension in the cable as the glider accelerates.	[3]
	****** ****** ****** *** *** *** *** ****	

(Question 1 continued)

(c)	[Th De	ete	er	al m	ol ir	e ne	is e t	s th	p	u e	ll av	e ve	d	ra	10	/ je	a	p	0	el W	/E	er	tı i	n	p	n	n	o'	tc o	t	h	e	r	n	0	to	r.	to	or	r	18	as	6	ar	1	0	V	er	а	l	e	ffi	iC	le	er	ıc	У	(of	2	23	3 '	%			
																																																																			_
		•		٠	•				-555)		•	•	•	•	•	•	•	•	•	•	*	•	•		•		•			•		•	•	•	•	•	•	•	•		•	•	•	•	•			•		•	•	•	•	•	•	•	•		•	•	•	٠
					4.1				50		9772																											v		•			•	•					•					0.		•					U				•		4
				•		• 11		1	100	90		33				500		•	•	ř	•		•	•	ं	ē		9.5			ċ	675		11/2	e.	î	10	÷	٠	•	•	Ť	•	•	3 7		0	•	•	•	1		925			÷	÷	÷	1)2	÷	î	:	•	•	•	•	•
* * * *		•		•	٠	*				•	000			-00		•	•	•	•::	ě	•		٠	٠		٠	•			•		•		•	•		•	٠	٠	٠	•0		•	•				٠	٠	•01		•	0.00	•	•				•	•	×	٠	٠	٠	•	*	
				×											. ;					à					Ç.	*		-			į	-			•			•		•	•	ű	•	•			1		÷		. ,					ž	•			1	2	٠				20	ĵ.
		•														•	•	•	•		•	٠	•	•	•		•			•						2000		•	٠	•	•	•	•	•		•	•	٠	•	•			0		•		•		٠	•			•	٠	•	•	÷
	• •		• •	٠	•	•	•		•	•		- 8		500		•	•	•	•	÷	•	•	•	٠	÷	*	•	: (*	٠		ř	::		•	•		٠	*	٠	٠	•	÷	•	•			ň	•	•	٠			91 9			*	•		٠		*	٠	•	٠	٠	*	*
		1200	4004	1200	den t	20 %																																													5 15																200

(d) After takeoff the cable is released and the unpowered glider moves horizontally at constant speed. The wings of the glider provide a lift force. The diagram shows the lift force acting on the glider and the direction of motion of the glider.

Draw the forces acting on the glider to complete the free-body diagram. The dotted lines show the horizontal and vertical directions.

[2]

						-4-		IVI I / /4/	PH 131/HFZ/EING	3/142/11
(8	a)	Outline	the condi	tions nece	ssary for	simple ha	rmonic moti	ion (SHM)	to occur.	[2]
*										
(t	0)	on the s	urface of producin	the sea. \ g power.	When the When th	e buoy mov	ves up, a ca ves down, t	ble turns a	nent of water wav a generator on th s wound in by a	
						buoy			_ sea surface	
		_		cable -		tube gener	ator		_sea bed	
		The mo	tion of the	e buoy can	be assu	med to be	simple harr	monic.		
							th 35 m, mo al speed of t		a speed of	[3]
•										
ž										
*										
•						and haranted he			ente protes parte	i foot
									energe kompanya kompanya	

[2]

(Question 2 continued)

Sketch a graph to show the variation with time of the generator output power. Label the time axis with a suitable scale.

Turn over

(Question 2	continued)
-------------	------------

(c)	Wate	er can be used in other ways to generate energy.	
	(i)	Outline, with reference to energy changes, the operation of a pumped storage hydroelectric system.	[2]
0.5%			
* ***			
	(ii)	The water in a particular pumped storage hydroelectric system falls a vertical distance of 270 m to the turbines. Calculate the speed at which water arrives at the turbines. Assume that there is no energy loss in the system.	[2]
2 12 1			
* • •			
2 1/2			
	(iii)	The hydroelectric system has four 250 MW generators. Determine the maximum time for which the hydroelectric system can maintain full output from the stored energy when a mass of $1.5\times10^{10}\mathrm{kg}$ of water passes through the turbines.	[2]
* * *		************************************	
0.00			
0.50			
* 60*			
8.89			
	• • • • •		

(Question 2 continued)

	(iv)	Not all the stored energy can be retrieved because of energy losses in the system. Explain two such losses.	[2]
1.			
	0/202		
2.	wasa	Pa	

3. The electrical circuit shown is used to investigate the temperature change in a wire that is wrapped around a mercury-in-glass thermometer.

A power supply of emf (electromotive force) 24 V and of negligible internal resistance is connected to a capacitor and to a coil of resistance wire using an arrangement of two switches. Switch S_1 is closed and, a few seconds later, opened. Then switch S_2 is closed.

(a)	The capacitance of the capacitor is 22 mF. Calculate the energy stored in the capacitor when it is fully charged.	[1]
* ***		
0.00		
(b)	The resistance of the wire is 8.0Ω . Determine the time taken for the capacitor to discharge through the resistance wire. Assume that the capacitor is completely discharged when the potential difference across it has fallen to 0.24 V.	[3]
* ***	CERTOR REPORTED TO A RESIDENCE FOR THE RESIDENCE FOR THE FOR T	
* * *		
* • •		
65. 8765		

(Question 3 continued)

(c)	(i)	The mass of the resistance wire is 0.61 g and its observed temperature rise is 28 K. Estimate the specific heat capacity of the wire. Include an appropriate unit for your answer.	[2]
		010000000000000000000000000000000000000	

* **			
	(ii)	Suggest one other energy loss in the experiment and the effect it will have on the value for the specific heat capacity of the wire.	[2]
* * *			
0.7%			

4. A student investigates how light can be used to measure the speed of a toy train.

Light from a laser is incident on a double slit. The light from the slits is detected by a light sensor attached to the train.

The graph shows the variation with time of the output voltage from the light sensor as the train moves parallel to the slits. The output voltage is proportional to the intensity of light incident on the sensor.

Question 4	continued)
- Augustion	- oonicinaoa,

(a)	Explain, with reference to the light passing through the slits, why a series of voltage peaks occurs.	[3]
	BEATH BEATH SEATH OF BEET OF REAL MEATH SEATH SEATH OF DEATH AND DEATH SEATH SEATH SEATH	
* **		
(b)	(i) The slits are separated by 1.5 mm and the laser light has a wavelength of 6.3×10^{-7} m. The slits are 5.0 m from the train track. Calculate the separation between two adjacent positions of the train when the output voltage is at a maximum.	[1]
9 404 N 404		
	(ii) Estimate the speed of the train.	[2]

Turn over

(Question 4 continued)

(c) As the train continues to move, the first diffraction minimum is observed when the light sensor is at a distance of 0.13 m from the centre of the fringe pattern.

(not to scale)

(i)	Determine the width of one of the slits.	[2]
a tha thatha dea		

* * * * * * * *		
(ii)	Suggest the variation in the output voltage from the light sensor that will be observed as the train moves beyond the first diffraction minimum.	[2]

a to analys		
* ** * * * * *		

(Question 4 continued)

(d) In another experiment the student replaces the light sensor with a sound sensor. The train travels away from a loudspeaker that is emitting sound waves of constant amplitude and frequency towards a reflecting barrier.

The graph shows the variation with time of the output voltage from the sounds sensor.

Explain how this effect arises.

Turn over

[2]

Please do not write on this page.

Answers written on this page will not be marked.

28ED1/

5.	They	first scientists to identify alpha particles by a direct method were Rutherford and Royds. $_{88}^{\prime}$ knew that radium-226 ($_{88}^{226}$ Ra) decays by alpha emission to form a nuclide known as n (Rn).	
	(a)	Write down the nuclear equation for this decay.	[2]

Turn over

(Question 5 continued)

At the start of the experiment, Rutherford and Royds put 6.2×10^{-4} mol of pure radium-226 in a small closed cylinder A. Cylinder A is fixed in the centre of a larger closed cylinder B.

The experiment lasted for 6 days. The decay constant of radium-226 is $1.4 \times 10^{-11} \, \text{s}^{-1}$.

(i)	Deduce that the activity of the radium-226 is almost constant during the experiment.	[2]

* * * * *			
0.71.01			
	none.		
(ii)	Show that about 3×10^{15} alpha particles are emitted by the radium-226 in 6 days.	[3]
95. 895. VE-40.	WATERWES I		
8 101 187	Alter I		
* ***			
36. W/S \$6545			
* * * * * *			

(Question 5 continued)

(i)

(c) At the start of the experiment, all the air was removed from cylinder B. The alpha particles combined with electrons as they moved through the wall of cylinder A to form helium gas in cylinder B.

•			•		• •		• •	• (•				٠	•	• •	•				•		• •	• ((•		• •		•	•					• •		• •	• •
*	• •	• •		• •		• •	• •	***	•	• •	•	***	•	• :	*.s.*	9 .	•	• •	3. T. S. S.				***		• •	100	• •		502	• •	• •			• •	#S1 * 33	• •	
*							٠.							• •		•					٠.			•								٠.	• •		 		
	•	• • •	* * * * *																																		

The wall of cylinder A is made from glass. Outline why this glass wall had to be

(ii) The experiment was carried out at a temperature of 18 °C. The volume of cylinder B was $1.3 \times 10^{-5} \, \text{m}^3$ and the volume of cylinder A was negligible. Calculate the pressure of the helium gas that was collected in cylinder B over the 6 day period. Helium is a monatomic gas.

[3]

[1]

(Question 5 continued)

(d)		Ru em em	is	si	or	1	S	06	9(ct	rı	ır	n.	i i	C)(ιt	lir	16	Э,	١,	W																																														
0.2%			•		٠						•						2											•				11.						<i>2</i> 111						2														31)			Į.						-	
	5545		e.		٠		•	î.	•	•	•		•	÷	•	•	•		•	•	•	•	•			•	•	•	•	•	: T		503	•	٠		553						:: ·	7		•	•	•	•	•	•	SUR	N.			57 .		375	• 22	÷	•	•	•	•	•	ŕ		
* * *	•		:	•				•		•	•				٠	٠	•	æ.	٠	٠	٠		•	,	•	•	٠	•	•		•			•	*	•		•	• 33			•	•	•		*	•	•	٠		•	•		681	,	•			•		•		٠	•	•		•	
							٠	•		•						•	ě		•				•	. ;					•		•			•		•										2				•						•			•		•		•		•			
			٠			٠	•	•		•	•		٠	•	•	٠	•	٠	•	٠	٠	٠	٠		•	•	•		٠		•			•		•						•	٠	•	•	•	٠	•	٠	•	•	0			•	•			•		•		•	٠	٠		•	
* * *						٠	×	•		:0	•		ः		٠	٠	1		•	•	•	٠	i i		•	•	٠	٠	•	ā	•	23		•	1	•	: 19	:00					: T	Ť	•	7	•	•	•		•	533				:			•	ž	•	•	•	٠	٠	5		
* *>	• []		٠			٠		•	•				·	8	٠	•		839		٠	٠	٠	-		•			٠	•		•			•		•(0)		()))		-(1)			•	•				٠	•08	-	•	0.00	•			•	00	-(3)	•		•		٠	٠		-	·	
			•		٠		•				•				•		2	74	ě	•							٠		•	•							17	911						2																					•		•	
(e)		Th Ru																																														ıl.		С)u	tl	ir	ıe) \	W	'n	ıy	,									
			•				٠							¥			2		÷			÷					٠		•				302		•			211					- ·										10.									•			•	٥		
					٠	•	•	1	•	•	•		•	÷	•	•	*		ň	•	•	•	•			•	•	•	•	•	: T.		303	•	٠		57.2	all.			ř		8	*		ň	•	•	•	•	•	W.			•		1,6		•	ė	•	•		٠		·	•	
	*00		•	•			٠	•	•	•	•		•		•	٠	•		٠	٠	٠	٠	٠	,	•	•	٠	٠	•	٠	•	•		•	٠	•		533				•	٠	٠	٠	٠	٠	٠	٠	٠	•	•		68.	•	•			•	×	•	٠	٠	•	•	٠	•	

6. A cable consisting of many copper wires is used to transfer electrical energy from an alternating current (ac) generator to an electrical load. The copper wires are protected by an insulator.

(a)	The copper wires and insulator are both exposed to an electric field. Discuss,
51 51	with reference to charge carriers, why there is a significant electric current only in
	the copper wires.

•	•			W.		•	• 37	, le				i		•	•		•		1		•	•	•	•	1		925		÷	•	• 10	ः	î	• 7/	•	•	Ť	•		•	•	•		•	•		9.5		•			112		ie	• 5/1	•	•		
٠			•	•	•	٠	•			•	•	•	٠	•	٠	•	•	• :		•	*	٠	٠	•	. ,	•	•	٠	•	٠	•	 •	٠		•	 ٠). •	•		٠	٠	•		٠	٠	• •	• •	٠	•	•	•	٠	:•	•	•	٠	•		•
			•66	• : :			•				889		•	•	٠	•		•		•	٠			•		•	6) (e		•	•				٠	•	 ٠	•			•		•					• •	٠					•	•			•		
٠			•			•	•						٠	٠	•	•	•	•		٠	•	٠		•					٠				200		•	 •	•	•		•	٠	•		٠	•				•				•	•		٠	•		• (•
	•		•		٠	•	•			233			(·	ં	*		•	•	:		***	•	•	•	. :	•	838	٠	•	*	•			٠	•10	 *		•	•	•		•	•	•	•	•	915	٠	•	•	•	٠		**	٠	•	•	· ·	
			•			٠	•		•		•										•			•00	. ,	•		•		•		 •	×	٠												•:						•		*					

(This question continues on the following page)

Turn over

[3]

(Question 6 continued)

(b) The cable consists of 32 copper wires each of length 35 km. Each wire has a resistance of 64 Ω . The cable is connected to the ac generator which has an output power of 110 MW when the peak potential difference is 150 kV. The resistivity of copper is $1.7 \times 10^{-8} \, \Omega \, \text{m}$.

output power = 110 MW

ac generator electrical load

cable

return path for current

(i) Calculate the radius of each wire.	[2]
(ii) Calculate the peak current in the cable.	[1]
(iii) Determine the power dissipated in the cable per unit length.	[3]

(Question 6 continued)

(c) To ensure that the power supply cannot be interrupted, two identical cables are connected in parallel.

	(Са	alc	ul	at	te	th	ne	r	00	ot	m	ea	ar	S	qı	ua	are	е	(rı	m	s)	C	u	rre	en	t i	n	е	ac	h	C	ak	ole) .																[1]
* ***		•	•	*33			•		•			•	•	•					¥.•	•	•	٠									*33*	•		•		•			•		٠					•				• • •		
(d)	ı	Th ma	ag	ne	eti	ic	fc	rc	e	s	ac	cti	ng	j Ì																											2000	•									[2]
			• •	¥556					·							***			E A			O.					-83			234		(4 (2)							**	• •			(S.S.)	•		•00			33. 4			
		•		•		٠	•		٠		٠	٠	٠	٠		•		٠	٠								•			•		•		٠	•		•		•			•				•			1.	• (•		
	•		•	***		•	*	• 1•		• •	*	•	•	•	•	***		•	ं	• •		٠		•	٠	• •	**	•		S.	•	•	• •			•	•	•	*:	• •	٠			•	• •	*	•		33 .	•		
* **	• •	•		•		٠		• •	٠		*		٠	٠	• •	٠		•				٠			٠		×		• •	06	•	٠		٠		•	٠	•00•	٠		٠	•		٠		K	• •	•	•			

(This question continues on page 23)

Turn over

Please do not write on this page.

Answers written on this page will not be marked.

(Question 6 continued from page 21)

(e) The energy output of the ac generator is at a much lower voltage than the 150 kV used for transmission. A step-up transformer is used between the generator and the cables.

 									•		200			•													20		120				 		 						
 0.1				100	• •	2.5	100	• 10	•	•	200		1441	ē.	• •	•				• •	(* ii)	:::	100	(15)		•	**	•	***	1.00		•	 •	100	 10 P.	•	::•	189	5/,750	• •	•
	٠	•	•	• •	٠.	•	• •		•	• •	•	•	•::•	•	٠.	٠	 •	• •	:: •	• •	•	• •		•		•	٠		•00		• •	٠	 • •	•	 •		•	• .	•	٠.	• ::
 	•	•	•			: ·			٠		•	•	• •	٠		٠	 ٠			• •		• •		0.400	• •		*		•88			•	 • •		 • •		•	•	0.40		*33

																																																									_
3	63	•	•	٠		•		ž	•	٠	•	•	•	() <u>*</u>		-8	•	•	•		90.		633			•	•	•	•	•	•	•	á	0.19	(3)		. ·	•	ाः	•	•	•	•	•		•	•	•	•	:	•	•	() <u>•</u>	::	- 8		
3	03		•	٠	•		•				•	•			00		•	•	•		•	:0	00	. 1	•10	•		•	•	•	•			• 0		• •	· · ·		٠	•	٠	•	•	•00			•				•	•	•		 0		

7. (a) Yellow light of photon energy $3.5 \times 10^{-19} \, \text{J}$ is incident on the surface of a particular photocell.

light

	(i)	Calculate the wavelength of the light.	[1]
,			
	(ii)	Electrons emitted from the surface of the photocell have almost no kinetic energy. Explain why this does not contradict the law of conservation of energy.	[2]
(diation of photon energy $5.2\times10^{-19}\text{J}$ is now incident on the photocell. Calculate the ximum velocity of the emitted electrons.	[2]

(Question 7 continued)

(i)

(c) The photocell is connected to a cell as shown. The photoelectric current is at its maximum value (the saturation current).

Radiation with a greater photon energy than that in (b) is now incident on the photocell. The intensity of this radiation is the same as that in (b).

Describe the change in the number of photons per second incident on the

565,47	surface of the photocell.	[1]

(ii)	State and explain the effect on the maximum photoelectric current as a result of increasing the photon energy in this way.	[3]

* * * * * * * *		

Turn over

8.	The gravitational potential due to the Sun at its surface is -1.9×10^{11} J kg ⁻¹ .	The following
	data are available.	

Mass of Earth $= 6.0 \times 10^{24} \text{ kg}$ Distance from Earth to $\text{Sun} = 1.5 \times 10^{11} \text{ m}$ Radius of Sun $= 7.0 \times 10^8 \text{ m}$

(a)	Outline why the gravitational potential is negative.
1		comme in grantitation percention to meganite

[2]

[1]

 •		•	• •	•	•	• •	*3	٠	•	•000		•	٠		• •	•	•	 •	•	• •	•	•	•	•	• : : :	*	•	 ٠	•	•	٠	 •	٠	٠	•	•	٠		•	•		•	•
 	٠.	• 6	 		•		*3			•	 			*		•		•			•	•					•	 ٠			٠	 		٠					•	٠	٠	•	•
 			 				•	 ٠		•		•	٠	٠		•								٠	•			 •			٠	 						•		 ٠	٠	•	•
 • • •		***					:0		•	•			•			•	•	 ••	•	• •	50			•	•		•		•	•	•	 	::::::::::::::::::::::::::::::::::::::	٠			•		•	٠	: ::	•	·

(b) (i) The gravitational potential due to the Sun at a distance r from its centre is $V_{\rm S}$. Show that

a tel between tel telephone tel	A DA DE MAIO DE MORA DE MORA DE MORA DE MORA DE	beton bet notes for beton that beton that help his fact

(ii) Calculate the gravitational potential energy of the Earth in its orbit around the Sun.

Give your answer to an appropriate number of significant figures. [2]

 $rV_{\rm S}$ = constant.

******	*** ** *** ** *** ** *** ** *** ***	

(Question 8 continued)

(iii) Calculate th	ne total energy of the Earth in its orbit.	[2]

	I strikes the Earth and causes the orbital speed of the Earth to ecrease. Suggest the ways in which the orbit of the Earth will change.	[2]
* ** *** *** *** ***		
The black where were	THE REAL PROPERTY SHARE	
(c) Outline, in terms of around the Sun.	of the force acting on it, why the Earth remains in a circular orbit	[2]
************	63 FFR 63 FFF 63 FFF 64 FFFF 64 FFFF 64 FFF 63 FFF 63 FFF 64 FFF 64 FFF 64 FFF 64 FFF 64 FFFF 64 FFFF 64 FFFF	

Please do not write on this page.

Answers written on this page will not be marked.

