

STIC Search Report

Biotech-Chem Library

STIC Database Tracking Number: 152007

TO: Shailendra Kumar

Location: 5c03 / 5c18

Monday, May 02, 2005

Art Unit: 1621

Phone: 571-272-0640

Serial Number: 10 / 807206

From: Jan Delaval

Location: Biotech-Chem Library

Remsen 1a51

Phone: 571-272-22504

jan.delaval@uspto.gov

Search Notes

Jan please
FOR OFFICIAL USE ONLY

ACCESS DB # 152007
PLEASE PRINT CLEARLY

Scientific and Technical Information Center

SEARCH REQUEST FORM

Requester's Full Name: S. J. Kumar Examiner #: 695-94 Date: 4/28/05
Art Unit: 1621 Phone Number: 2-0640 Serial Number: 10/807206
Location (Bldg/Room#): REM (Mailbox #): 5C18 Results Format Preferred (circle): PAPER DISK

5C03

To ensure an efficient and quality search, please attach a copy of the cover sheet, claims, and abstract or fill out the following:

Title of Invention: Method of producing an amide

Inventors (please provide full names): Lawrence Joseph Williams

Earliest Priority Date: 3/23/04

Search Topic:

RU-0195

-33-

PATENT

What is claimed is:

1. A method for producing an amide comprising combining a thio acid and an organic azide in the presence 5 of a solvent so that an amide is produced.

SEARCHED
INDEXED
SERIALIZED
FILED
APR 28 2005
USPTO
STANFORD
UNIVERSITY LIBRARIES

STAFF USE ONLY		Type of Search	Vendors and cost where applicable
Searcher:	<u>Jam</u>	<input checked="" type="checkbox"/> NA Sequence (#)	<input checked="" type="checkbox"/> STN <input type="checkbox"/> Dialog
Searcher Phone #:	<u>22804</u>	<input checked="" type="checkbox"/> AA Sequence (#)	<input type="checkbox"/> Questel/Orbit <input type="checkbox"/> Lexis/Nexis
Searcher Location:		<input checked="" type="checkbox"/> Structure (#) <u>3</u>	<input type="checkbox"/> Westlaw <input type="checkbox"/> WWW/Internet
Date Searcher Picked Up:	<u>5/2/05</u>	<input type="checkbox"/> Bibliographic	<input type="checkbox"/> In-house sequence systems
Date Completed:	<u>5/2/05</u>	<input type="checkbox"/> Litigation	<input type="checkbox"/> Commercial <input type="checkbox"/> Oligomer <input type="checkbox"/> Score/Length <input type="checkbox"/> Interference <input type="checkbox"/> SPDI <input type="checkbox"/> Encode/Transl <input type="checkbox"/> Other (specify) _____
Searcher Prep & Review Time:	<u>20</u>	<input type="checkbox"/> Fulltext	
Online Time:	<u>+40</u>	<input type="checkbox"/> Other	

=> fil casreact

FILE 'CASREACT' ENTERED AT 09:29:39 ON 02 MAY 2005
 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
 COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT:1840 - 1 May 2005 VOL 142 ISS 18

New CAS Information Use Policies, enter HELP USAGETERMS for details.

 *
 * CASREACT now has more than 9.2 million reactions *
 *

Some CASREACT records are derived from the ZIC/VINITI database (1974-1991) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d his

(FILE 'HOME' ENTERED AT 08:56:08 ON 02 MAY 2005)
 SET COST OFF

FILE 'CASREACT' ENTERED AT 08:56:16 ON 02 MAY 2005
 E AZIDE/FG.RCT
 E AZIDE/FG.RGT
 L1 8809 S AZIDE/FG.RCT,FG.RGT
 E AMIDE/FG.PRO
 L2 3584 S E3 AND L1
 L3 21 S L2 AND (THIO OR THIOACETIC OR THIOBENZOIC) ()ACID
 L4 16 S L2 AND (THIOACETATE OR THIOBENZOATE)
 L5 34 S L3,L4

FILE 'REGISTRY' ENTERED AT 08:58:34 ON 02 MAY 2005
 L6 1 S THIOACETIC ACID/CN
 L7 1 S THIOBENZOIC ACID/CN
 L8 86 S 507-09-5/CRN
 L9 69 S 98-91-9/CRN
 L10 109 S L8,L9 NOT (MNS OR MXS OR CCS OR PMS OR IDS)/CI
 L11 23 S L10 NOT SALT
 L12 86 S L10 NOT L11

FILE 'HCAPLUS' ENTERED AT 09:00:49 ON 02 MAY 2005

FILE 'CASREACT' ENTERED AT 09:01:13 ON 02 MAY 2005
 L13 82 S L2 AND L6
 L14 4 S L2 AND L7
 L15 28 S L2 AND L12
 L16 115 S L5,L13-L15
 L17 67 S L2 AND L6/RCT
 L18 15 S L2 AND L6/RGT
 L19 4 S L2 AND L7/RCT
 L20 0 S L2 AND L7/RGT
 L21 25 S L2 AND L12/RCT

L22 6 S L2 AND L12/RGT
 L23 109 S L17-L22
 L24 6 S L16 NOT L23

FILE 'REGISTRY' ENTERED AT 09:04:10 ON 02 MAY 2005
 L25 1 S METHANOL/CN

FILE 'HCAPLUS' ENTERED AT 09:04:13 ON 02 MAY 2005

FILE 'CASREACT' ENTERED AT 09:04:16 ON 02 MAY 2005
 L26 92 S L25 AND L23
 L27 8 S (MEOH OR METHANOL OR METHYLALCOHOL OR METHYL ALCOHOL) AND L23
 L28 93 S L26,L27
 L29 16 S L23 NOT L28
 SEL DN AN 5 7 12
 L30 3 S L29 AND E1-E6
 L31 18 S L28 AND (BENZYL PROTECTED GLYCAN OR NAPHTHYRIDINE OR ASYMMETR
 L32 8 S L28 AND (CHEMOSELECTIVE OR MACROBICYCLID OR DESIGN OR THIO AC
 L33 25 S L31,L32
 L34 10 S L33 AND (GEMINI OR XXIV OR 6 SULFATE OR SPACER OR O LINKED OR
 L35 15 S L33 NOT L34
 L36 14 S L35 NOT KHAFREFUNGIN/TI
 L37 1 S L28 AND MACROBICYCLIC/TI
 L38 15 S L36,L37
 E WILLIAMS L/AU
 L39 10 S E3,E6,E9
 L40 1 S L39 AND L2
 L41 15 S L38,L40
 L42 9 S L39 NOT L41
 L43 1 S L39 AND L1
 L44 4 S L39 AND AMIDE/FG.PRO
 L45 3 S L43,L44 NOT L41
 L46 0 S L45 AND L6,L7,L12
 L47 0 S L45 AND THIO?

FILE 'CASREACT' ENTERED AT 09:29:39 ON 02 MAY 2005

=> d bib abs fhit retable tot 141

L41 ANSWER 1 OF 15 CASREACT COPYRIGHT 2005 ACS on STN
 AN 141:89339 CASREACT
 TI An o-nitrobenzyl scaffold for peptide ligation:
 synthesis and applications
 AU Marinzi, Chiara; Offer, John; Longhi, Renato; Dawson, Philip E.
 CS C. N. R., Istituto di Chimica del Riconoscimento Molecolare, Milan, 20131,
 Italy
 SO Bioorganic & Medicinal Chemistry (2004), 12(10), 2749-2757
 CODEN: BMECEP; ISSN: 0968-0896
 PB Elsevier Ltd.
 DT Journal
 LA English
 AB Chemical ligation approaches facilitate the chemoselective assembly of unprotected peptides in aqueous solution. Here, two photolabile auxiliaries are described that enlarge the applicability of native chemical ligation to non-cysteine targets. The auxiliaries, designed to allow reaction with thioester peptides, generate an amide bond between the two initial fragments. The o-nitrobenzyl tertiary benzylamide that is formed at the ligation junction can be transformed into a native amide group under mild photolysis conditions. The veratryl auxiliary was found to be excessively labile during peptide purification and ligation. However, the auxiliary based on the o-nitrobenzyl group shows all the necessary properties for a general application in routine peptide and protein synthesis. In addition,

the auxiliary linked to the N-terminus can be efficiently photolyzed, suggesting a new approach for the generation of photocaged amines. Synthesis, solid phase introduction onto peptide chains, ligation properties and photolysis in water are described, and a careful study of compatibility of the method with potentially fragile peptide side chains is reported.

RX(3) OF 58 ...F ==> I...

RX(3) RCT F 716345-77-6
 RGT J 603-35-0 PPh₃
 PRO I 716345-79-8
 SOL 7732-18-5 Water, 109-99-9 THF

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (RWK)	Referenced File
Ajayaghosh, A	1995	36	777	Tetrahedron Lett	CAPLUS
Atherton, E	1990		11	Innovation Perspect	CAPLUS
Atherton, E	1987	9	1	The Peptides	CAPLUS
Bochet, C	2002		125	J Chem Soc, Perkin T	CAPLUS
Bosques, C	2003	125	7530	J Am Chem Soc	CAPLUS
Botti, P	2001	42	1831	Tetrahedron Lett	CAPLUS
Bruice, T	1964	86	4886	J Am Chem Soc	CAPLUS
Caldon, M	1988	4	99	Proteins	
Canne, L	1996	118	5891	J Am Chem Soc	CAPLUS
Dawson, P	2000	69	923	Ann Rev Biochem	CAPLUS
Dawson, P	1994	226	776	Science	
Ellis-Davies, K	1994	91	187	Proc Acad Natl Sci U	
Guiller, F	2000	100	2019	Chem Rev	
Hackeng, T	1999	96	10068	Proc Natl Acad Sci U	CAPLUS
Hasan, A	1997	53	4247	Tetrahedron	CAPLUS
Holmes, C	1997	62	2370	J Org Chem	CAPLUS
Kalbag, S	1975	97	440	J Am Chem Soc	CAPLUS
Kawakami, T	2001	3	1403	Org Lett	CAPLUS
Kawakami, T	2003	44	6059	Tetrahedron Lett	CAPLUS
Kent, S	1992		1	Second International	CAPLUS
Marinzi, C	2001	9	2323	Biorg Med Chem	CAPLUS
Miknis, G	1993	115	536	J Am Chem Soc	CAPLUS
Mintz, M	1983	V	183	Org Synth	
Muir, T	2003	72	249	Ann Rev Biochem	CAPLUS
Nicolau, K	1997	119	449	J Am Chem Soc	
Offer, J	2002	124	4642	J Am Chem Soc	CAPLUS
Offer, J	2000	2	23	Org Lett	CAPLUS
Patchornik, A	1972	37	2281	J Org Chem	
Pillai, V	1987	9	225	Org Photochem	
Pillai, V	1980		1	Synthesis	CAPLUS
Reddy, K	1998	120	1207	J Am Chem Soc	CAPLUS

Rozwadowska, M	1997	53	10615	Tetrahedron	CAPLUS
Sarin, V	1981	117	147	Anal Biochem	CAPLUS
Schnolzer, M	1992	40	180	Int J Pept Protein R	MEDLINE
Tatsu, Y	2002	525	20	FEBS Lett	CAPLUS
Vizzavona, J	2002	12	1963	Biorg Med Chem Lett	CAPLUS
Voelker, T	1998	39	359	Tetrahedron Lett	CAPLUS
Walker, J	1988	110	7170	J Am Chem Soc	CAPLUS
Xiong, C	2002	67	1399	J Org Chem	CAPLUS
Xiong, C	2002	67	3515	J Org Chem	CAPLUS
Zuckermann, R	1992	114	10646	J Am Chem Soc	CAPLUS

L41 ANSWER 2 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 140:128580 CASREACT

TI RuCl₃-promoted amide formation from azides and thio-acids

AU Fazio, Fabio; Wong, Chi-Huey

CS Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA

SO Tetrahedron Letters (2003), 44(51), 9083-9085

CODEN: TELEAY; ISSN: 0040-4039

PB Elsevier Science B.V.

DT Journal

LA English

AB Described here is the Ru(III)-promoted amide formation from sugar azides and thio-acids, (e.g., thiolacetic acid) which were shown not to form amides at room temperature in the absence of ruthenium. We believe that a complex formed by Ru(III) increases the reactivity of the thiocarbonyl species and therefore reaction with azides occurs at room temperature, even when less reactive (electron rich and/or sterically hindered) azides are employed.

RX(1) OF 7 A + B ==> C

RX(1) RCT A 20379-59-3, B 507-09-5

RGT D 108-48-5 2,6-Lutidine

PRO C 6983-36-4

CAT 10049-08-8 RuCl₃

SOL 67-56-1 MeOH

NTE yield depends on amt. of cat.

RETABLE

Referenced (RAU)	Author	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File

Alper, P	1996	37	6029	Tetrahedron Lett	CAPLUS
Brik, A	2002	9	891	Chem Biol	CAPLUS
Fazio, F	2002	124	14397	J Am Chem Soc	CAPLUS
Gothelf, K	1998	98	863	Chem Rev	CAPLUS
Nyffeler, P	2002	124	10773	J Am Chem Soc	CAPLUS
Rosen, T	1988	53	1580	J Org Chem	CAPLUS
Rostovtsev, V	2002	41	2596	Angew Chem, Int Ed	CAPLUS
Schenk, W	2002	661	129	J Organomet Chem	CAPLUS
Shangguan, N	2003	125	7754	J Am Chem Soc	CAPLUS
Tornoe, C	2002	67	3057	J Org Chem	CAPLUS

L41 ANSWER 3 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 139:213881 CASREACT

TI The Reaction of Thio Acids with Azides: A New Mechanism and New Synthetic Applications

AU Shangguan, Ning; Katukojvala, Sreenivas; Greenberg, Rachel; Williams, Lawrence J.

CS Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA

SO Journal of the American Chemical Society (2003), 125(26), 7754-7755
CODEN: JACSAT; ISSN: 0002-7863

PB American Chemical Society

DT Journal

LA English

AB A new amide synthesis strategy based on a fundamental mechanistic revision of the reaction of thio acids and organic azides is presented. It was shown that amines are not formed as intermediates in this reaction, and alternative mechanisms proceeding through a thiatriazoline intermediate are suggested. The reaction has been applied to the preparation of both simple and architecturally complex amides that are difficult to access using conventional methods. The reaction is chemoselective, effective for unprotected substrates, and compatible with aprotic and protic solvents, including water.

RX(1) OF 30 A + B ==> C

RX(1) RCT A 938-10-3, B 98-91-9
 RGT D 108-48-5 2,6-Lutidine
 PRO C 3559-04-4
 SOL 67-56-1 MeOH

RETABLE

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Backes, B	1999	64	2322	J Org Chem	CAPLUS
Beligere, G	2000	122	12079	J Am Chem Soc	CAPLUS
Canne, L	1995	36	1217	Tetrahedron Lett	CAPLUS
Chin, J	2002	124	9026	J Am Chem Soc	CAPLUS
Chou, S	1997		1691	J Chem Soc, Perkin T	CAPLUS

Cohen-Anisfeld, S	1993	115	10531	J Am Chem Soc	CAPLUS
Cornish, V	1995	34	621	Angew Chem, Int Ed E	CAPLUS
Damkaci, F	2003	125		J Am Chem Soc	CAPLUS
Elofsson, M	1997	53	369	Tetrahedron	CAPLUS
Goldstein, A	2000	41	2797	Tetrahedron Lett	CAPLUS
Hakimelahi, G	1980	21	2119	Tetrahedron Lett	CAPLUS
Humphrey, J	1997	97	2243	Chem Rev	CAPLUS
Loock, E	1973	38	2916	J Org Chem	
L'Abbe, G	1980	19	276	Angew Chem, Int Ed E	
L'Abbe, G	1990	27	1059	J Heterocycl Chem	CAPLUS
L'Abbe, G	1975	40	1728	J Org Chem	CAPLUS
Marcaurelle, L	2001	123	1587	J Am Chem Soc	CAPLUS
McKervey, M	1993		94	J Chem Soc, Chem Com	CAPLUS
Nilsson, B	2001	3	9	Org Lett	CAPLUS
Nilsson, W	2000	2	1939	Org Lett	
Offer, J	2002	124	4642	J Am Chem Soc	CAPLUS
Offer, J	2000	2	23	Org Lett	CAPLUS
Park, S	2002	43	6309	Tetrahedron Lett	CAPLUS
Paulsen, H	1994		369	Liebigs Ann Chem	CAPLUS
Rajagopalan, S	1997	27	187	Synth Commun	CAPLUS
Rakotomanomana, N	1990	197	318	Carbohydr Res	CAPLUS
Rijkers, D	2002	43	3657	Tetrahedron Lett	CAPLUS
Rosen, T	1988	53	1580	J Org Chem	CAPLUS
Saxon, E	2000	2	2141	Org Lett	CAPLUS
Saxon, E	2000	287	2007	Science	CAPLUS
Schwabacher, A	1993	34	1269	Tetrahedron Lett	CAPLUS
Scriven, E	1988	88	297	Chem Rev	CAPLUS
Suh, E	1994	116	11205	J Am Chem Soc	CAPLUS
Tam, J	2001	60	194	Biopolymers	CAPLUS
Tamura, M	1984	57	3167	Bull Chem Soc Jpn	CAPLUS

L41 ANSWER 4 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 139:180265 CASREACT

TI Synthesis of a useful anomeric thioacetate of an
N-acetyllactosamine derivative and its applicationAU Matsuoka, Koji; Ohtawa, Takumi; Hinou, Hiroshi; Koyama, Tetsuo; Esumi,
Yasuaki; Nishimura, Shin-Ichiro; Hatano, Ken; Terunuma, DaiyoCS Faculty of Engineering, Department of Functional Materials Science,
Saitama University, Saitama, 338-8570, JapanSO Tetrahedron Letters (2003), 44(18), 3617-3620
CODEN: TELEAY; ISSN: 0040-4039

PB Elsevier Science Ltd.

DT Journal

LA English

AB A novel anomeric β -thioacetate of an N-acetyllactosamine derivative was
efficiently synthesized in high yield from the known 2-azido glycosyl
chloride using thioacetic acid as a convenient reagent. The synthesis
involved not only an SN2 replacement of the chloride by a carbothiolate
anion but also a reductive acetamidation of the azide group. Applications
of the thioacetate for glycosidation were demonstrated to provide both O-
and S-glycosides in high yields. Furthermore, both intermediates gave a
new class of glycoclusters that included thioglycosidic linkages.

RX(1) OF 20 A + 2 B ===> C...

C
RX(1) RCT A 68733-23-3, B 507-09-5
PRO C 577993-52-3

SOL 110-86-1 Pyridine					
RETABLE					
Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Ball, E	1992	114	5449	J Am Chem Soc	
Bielfeldt, T	1992		857	Angew Chem, Int Ed E	
Chen, X	1998	120	7760	J Am Chem Soc	CAPLUS
Fukuda, M	1993			Glycobiology	
Garegg, P	1997	52	179	Adv Carbohydr Chem B	CAPLUS
Hasegawa, A	1986	5	11	J Carbohydr Chem	CAPLUS
Kameyama, A	1991	209	c1	Carbohydr Res	CAPLUS
Lemieux, R	1979	57	1244	Can J Chem	CAPLUS
Matsuoka, K	1998	71	2709	Bull Chem Soc Jpn	CAPLUS
Matsuoka, K	2000	329	765	Carbohydr Res	CAPLUS
Matsuoka, K	2000	57	691	Kobunshironbunshyu	CAPLUS
Matsuoka, K	1999	40	7839	Tetrahedron Lett	CAPLUS
Matsuoka, K	2001	42	3327	Tetrahedron Lett	CAPLUS
Nakahara, Y	1996	292	71	Carbohydr Res	CAPLUS
Nicolaou, K	1990	112	3693	J Am Chem Soc	CAPLUS
Nicolaou, K	1991		870	J Chem Soc, Chem Com	CAPLUS
Nishimura, S	1992		1413	Chem Lett	CAPLUS
Nishimura, S	1991	24	4236	Macromolecules	CAPLUS
Rosen, T	1988	53	1580	J Org Chem	CAPLUS
Terunuma, D	1998		59	Chem Lett	CAPLUS
Yoshino, T	1992	9	287	Glycoconjugate J	CAPLUS

L41 ANSWER 5 OF 15 CASREACT COPYRIGHT 2005 ACS on STN
 AN 139:178818 CASREACT
 TI Enzymic manufacture of chondroitin and derivatives
 IN Kobayashi, Shiro; Ohmae, Masashi
 PA Denki Kagaku Kogyo Kabushiki Kaisha, Japan
 SO PCT Int. Appl., 50 pp.
 CODEN: PIXXD2
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2003070960	A1	20030828	WO 2002-JP11576	20021106
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				

PRAI JP 2002-42907 20020220

AB The chondroitin (I) is manufactured from an oxazoline derivative with hyaluronic acid-degrading enzyme such as mammalian hyaluronidase. I and its derivs. are useful for manufacturing cosmetics, pharmaceuticals, medical goods, etc. Preparation of a chondrosin oxazoline derivative, polymerization of the oxazoline derivative with ovine testicle hyaluronidase to manufacture I were shown. Also given was chemical synthesis of several chondroitin derivs.

RX(1) OF 59 ...A + B ==> C...

C
YIELD 86%

RX(1) RCT A 581814-26-8, B 507-09-5
PRO C 581814-27-9

RETABLE

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Kobayashi, S	1996	118	13113	J Am Chem Soc	CAPLUS
Kobayashi, S	2001	123	11825	J Am Chem Soc	CAPLUS
Kobayashi, S	1998	132	415	Macromol Symp	
Kobayashi, S	2002	51	901	Polymer Preprints	
Kobayashi, S	2002		817	Sen'i Jotai Analogue	
Shin-Etsu Chemical Co L	1997			JP 09-3088 A	CAPLUS
Takagaki, K	2000	12	295	Trends in Glycoscien	CAPLUS

L41 ANSWER 6 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 137:262976 CASREACT

TI Synthesis of Conformationally Constrained Analogs of Linezolid: Structure-Activity Relationship (SAR) Studies on Selected Novel Tricyclic Oxazolidinones

AU Selvakumar, Natesan; Srinivas, Deekonda; Khera, Manoj Kumar; Kumar, Magadi Sitaram; Mamidi, Rao N. V. S.; Sarnaik, Hemanth; Charavaryamath, Chandrashekhar; Rao, Bonthu Srinivasa; Raheem, Mohammed A.; Das, Jagattaran; Iqbal, Javed; Rajagopalan, Ramanujam

CS Anti-Infectives Discovery Group, Dr. Reddy's Research Foundation, Hyderabad, 500 050, India

SO Journal of Medicinal Chemistry (2002), 45(18), 3953-3962
CODEN: JMCMAR; ISSN: 0022-2623

PB American Chemical Society

DT Journal

LA English

GI

AB In an effort to discover potent antibacterials based on the entropically favored "bioactive conformation" approach, we have designed and synthesized a series of novel tricyclic mols. mimicking the conformationally constrained structure of the oxazolidinone antibacterial Linezolid. Structure I ($R = H$, $R1 = Ac$), obtained by this approach, was synthesized and found to be moderately active against a panel of Gram-pos. organisms. Further introduction of a fluorine atom in the aromatic ring of this compound, as in Linezolid, resulted in some excellent compds. possessing potent antibacterial activity. The thus obtained lead mol. I ($R = F$, $R1 = Ac$) was further fine-tuned by structure-activity relationship studies on the amide functionality leading to a number of novel tricyclic oxazolidinone derivs. Some particularly interesting compds. include the thioamides I ($R = F$; $R1 = CSMe$, $CSEt$), thiocarbamate I ($R = F$, $R1 = CSOMe$), and thiourea I ($R = F$, $R1 = CSNH2$). The in vitro activity results of amide homologs of I ($R = F$, $R1 = Ac$) revealed that compds. up to four carbon atoms on the amide nitrogen retain the activity. In general, thioamides and thiocarbamates are more potent when compared to the corresponding amides and carbamates.

RX(1) OF 402 . . . A + B ==> C

C
YIELD 63%

RX(1) RCT A 463361-54-8, B 507-09-5
PRO C 463361-50-4
SOL 507-09-5 AcSH

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (RWK)	Referenced File
Barbachyn, M	1996	39	680	J Med Chem	CAPLUS
Brickner, S	1996	2	175	Curr Pharm Des	CAPLUS
Brickner, S	1996	39	673	J Med Chem	CAPLUS
Brumfitt, W	1994		215	Drugs Exp Clin Res	CAPLUS
Cava, M	1985	41	5061	Tetrahedron	CAPLUS
Dresser, L	1998	18	456	Pharmacotherapy	CAPLUS
Gregory, W	1989	32	1673	J Med Chem	CAPLUS
Gregory, W	1990	33	2569	J Med Chem	CAPLUS
Hiramatsu, K	1997	40	135	J Antimicrob Chemoth	CAPLUS
Lin, A	1997	41	2127	Antimicrob Agents Ch	CAPLUS
National Committee For	2000	20		Approved Standard, 5	
Schmidhammer, H	1982	60	3055	Can J Chem	CAPLUS
Seneci, P	1994		2345	J Chem Soc, Perkin T	CAPLUS
Service, R	1995	270	724	Science	CAPLUS
Shinabarger, D	1997	41	2132	Antimicrob Agents Ch	CAPLUS
Spera, R	1994	48	678	Drugs	
Stinson, S	1996		75	Chem Eng News	
Swaney, S	1998	42	3251	Antimicrob Agents Ch	CAPLUS
Swartz, M	1994	91	2420	Proc Natl Acad Sci U	MEDLINE
Tokuyama, R	2001	49	347	Chem Pharm Bull	CAPLUS
Tokuyama, R	2001	49	353	Chem Pharm Bull	CAPLUS
Tokuyama, R	2001	49	361	Chem Pharm Bull	CAPLUS
Tomasz, A	1994	330	1247	N Engl J Med	MEDLINE
Vaultier, A	1983	24	763	Tetrahedron Lett	
Waldvogel, F	1999	340	556	N Engl J Med	MEDLINE

L41 ANSWER 7 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 130:167984 CASREACT

TI Formation of a **Macrobicyclic Tris(disulfide)** by Molecular Self-Assembly

AU Tam-Chang, Suk-Wah; Stehouwer, Jeffrey S.; Hao, Jinsong

CS Department of Chemistry, University of Nevada, Reno, NV, 89557, USA

SO Journal of Organic Chemistry (1999), 64(2), 334-335

CODEN: JOCEAH; ISSN: 0022-3263

PB American Chemical Society

DT Journal

LA English

AB By appropriate mol. design it is possible to enhance the stability of a dimeric tris(disulfide) carcerand which we have observed in equilibrium with the oligomer. The result is a macrobicyclic capsule having a cavity size large enough to accommodate small guest mols.

RX(3) OF 21 ...F ==> I...

RX(3) RCT F 190779-62-5
 RGT J 14044-65-6 BH3-THF
 PRO I 149525-65-5

RETABLE

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Anon				no publication given	
Anon				no publication given	
Anon				no publication given	
Anon				no publication given	
Bisson, A	1997	36	2340	Angew Chem, Int Ed E	CAPLUS
Burns, J	1990	112	6296	J Am Chem Soc	CAPLUS
Conn, M	1997	97	1647	Chem Rev	CAPLUS
Gilbert, H	1995	252	8	Methods Enzymol	
Houk, J	1987	109	6825	J Am Chem Soc	CAPLUS
Houk, J	1987	143	129	Methods Enzymol	CAPLUS
Houk, J	1989	45	91	Tetrahedron Lett	CAPLUS
Lawrence, D	1995	95	2229	Chem Rev	CAPLUS
Lees, W	1993	58	642	J Org Chem	CAPLUS
Lehn, J	1994	66	1961	Pure Appl Chem	CAPLUS
Lindsey, J	1991	15	153	New J Chem	CAPLUS
Metzger, A	1997	36	862	Angew Chem, Int Ed E	CAPLUS
Pappas, J	1979		67	J Chem Soc, Perkin T	CAPLUS
Philp, D	1996	35	1154	Angew Chem, Int Ed E	
Rosenfield, R	1977	99	4860	J Am Chem Soc	CAPLUS
Rowan, S	1997	119	2578	J Am Chem Soc	CAPLUS
Singh, R	1990	112	1190	J Am Chem Soc	CAPLUS
Stack, T	1993	115	6466	J Am Chem Soc	CAPLUS
Stang, P	1997	30	502	Acc Chem Res	CAPLUS
Tecilla, P	1995	51	435	Tetrahedron	CAPLUS
Timmerman, P	1997	3	1823	Chem Eur J	CAPLUS
Vogtle, F	1974	13	814	Angew Chem, Int Ed E	
Whitesides, G	1995	28	37	Acc Chem Res	CAPLUS
Yang, J	1993	115	5314	J Am Chem Soc	CAPLUS
Ziegler, D	1985	54	305	Annu Rev Biochem	MEDLINE

L41 ANSWER 8 OF 15 CASREACT COPYRIGHT 2005 ACS on STN
 AN 126:343855 CASREACT
 TI Solid-phase synthesis of a tumor-associated sialyl-TN antigen glycopeptide with a partial sequence of the "tandem repeat" of the MUC-1 mucin
 AU Liebe, Beate; Kunz, Horst
 CS Inst. Org. Chem. Univ., Mainz, D-55128, Germany
 SO Angewandte Chemie, International Edition in English (1997), 36(6), 618-621
 CODEN: ACIEAY; ISSN: 0570-0833
 PB VCH
 DT Journal
 LA English
 GI

AB The solid-phase preparation of undecapeptide I (R = R₁ = H, R₂ = Ac-Ala-Pro-Pro-Ala-His-Gly-Val; R₃ = Ser-Ala-Pro-OH) was achieved in 42% overall yield using a HYCRAM allylic linker on an (aminomethyl)polystyrene resin and 9-fluorenylmethoxycarbonyl (Fmoc) chemical Fmoc-sialyl-TN-threonine building block I (R = Ac, R₁ = Me, R₂ = Fmoc, R₃ = OH) was prepared in 5 steps from Fmoc-Thr-OCMe₃, 3,4,6-tri-O-acetyl-2-azido-2-deoxy- α -D-galactopyranosyl bromide, and sialyl-xanthogenate II.

RX(1) OF 15 ...A + B ==> C...

RX(1) RCT A 120791-77-7, B 507-09-5
PRO C 120173-56-0

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (RWK)	Referenced File
Birberg, W	1991	32	7457	Tetrahedron Lett	CAPLUS
Braum, G	1991			Ph D dissertation, U	CAPLUS
Dasgupta, F	1988	177	c13	Carbohydr Res	CAPLUS
Dippold, W	1990			Ph D dissertation, U	CAPLUS
Elofsson, M	1995	36	7499	Tetrahedron Lett	CAPLUS
Gendler, S	1990	265	15286	J Biol Chem	CAPLUS
Gold, D	1988	9	137	Tumor Biol	MEDLINE
Hakomori, S	1991	43	646	Curr Opin Immunol	CAPLUS
Hanisch, F	1989	264	872	J Biol Chem	CAPLUS
Iijima, H	1988	172	183	Carbohydr Res	CAPLUS
Knorr, R	1989	30	1927	Tetrahedron Lett	CAPLUS

Kunz, H	1984	96	49	Angew Chem	CAPLUS
Kunz, H	1986	98	354	Angew Chem	CAPLUS
Kunz, H	1984	23	71	Angew Chem Int Ed En	
Kunz, H	1986	25	360	Angew Chem Int Ed En	
Kunz, H	1990	202	207	Carbohydr Res	CAPLUS
Kurosaka, A	1988	263	8724	J Biol Chem	CAPLUS
Liebe, B	1994	35	8777	Tetrahedron Lett	CAPLUS
Marra, A	1989	187	35	Carbohydr Res	CAPLUS
McLean, G	1994	4	249	Can J Oncol	
Nakahara, Y	1991	216	211	Carbohydr Res	CAPLUS
Paulsen, H	1982	109	89	Carbohydr Res	CAPLUS
Schultz, M	1993	4	1205	Tetrahedron:Asymmetr	CAPLUS
Seitz, O	1995	107	901	Angew Chem	
Seitz, O	1995	34	803	Angew Chem Int Ed En	CAPLUS
Stadie, T	1995	229	140	Eur J Biochem	CAPLUS
Toyokuni, T	1995	24	231	Chem Soc Rev	CAPLUS

L41 ANSWER 9 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 114:42807 CASREACT

TI Preparation of diarylheterocycles as drugs and cosmetics

IN Wuest, Hans Heiner; Janssen, Bernd

PA BASF A.-G., Germany

SO Ger. Offen., 22 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 3903993	A1	19900816	DE 1989-3903993	19890210
	EP 382077	A2	19900816	EP 1990-101947	19900201
	EP 382077	A3	19910731		
	EP 382077	B1	19950517		
	R: AT, BE, CH, DE, FR, GB, IT, LI, NL, SE				
	CA 2009604	AA	19900810	CA 1990-2009604	19900208
	CA 2009604	C	20010102		
	US 5061705	A	19911029	US 1990-476875	19900208
	JP 02240058	A2	19900925	JP 1990-28617	19900209
	JP 2930645	B2	19990803		
	US 5196532	A	19930323	US 1991-717264	19910618
	US 5206242	A	19930427	US 1991-753916	19910903
	US 5338749	A	19940816	US 1992-972518	19921106
	US 5475017	A	19951212	US 1994-242415	19940513
PRAI	DE 1989-3903993	19890210			
	US 1990-476875	19900208			
	US 1991-717264	19910618			
	US 1992-972518	19921106			
OS	MARPAT 114:42807				
GI					

AB The title compds. [I; R1 = H, OH, R2 = Me3C; R1R2 = Q1; A = (Me-, HO-, or O-substituted) CH2, CH2CH2; L = (HO-, HS-, alkyl-, or alkanoyl-substituted) heterocyclyl; R3 = H, OH, alkoxy; R4 = H, alkyl, halo, MeO; R5 = H, MeO, Me3C; R6 = H, Me, cyano, alkylthio, alkylsulfinyl, alkylsulfonyl, hydroxymethyl, etc.; R17, R18 = H, Me] were prepared as drugs and cosmetics (no data). Thus, 6-acetyl-1,2,3,4-tetrahydro-1,1,4,4-tetramethylnaphthalene and 4-HCOC6H4CO2Me were stirred 16 h in MeOH containing NaOH to give 3-(4-carbomethoxyphenyl)-1-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-2-propen-1-one. The latter was stirred with MeNO2 and Triton B in MeOH to give a residue which in CH2Cl2/THF at -25° was treated with NaOMe in MeOH. The resulting solution was added to a -25° solution of H2SO4 in MeOH to give 3-(4-carbomethoxyphenyl)-4-dimethoxy-1-(5,5,8,8-tetramethyl-2-naphthalenyl)-1-butanone. The latter was stirred 12 h in concentrated H2SO4 at 25° to give furan-containing title compound II. I are claimed to be useful against skin disorders, precancerous lesions, tumors, rheumatic and arthritic disease, dry eye, etc.

RX(21) OF 35 ...BB ==> BE

RGT BF 7647-01-0 HCl
 PRO BE 131331-91-4
 SOL 67-56-1 MeOH

L41 ANSWER 10 OF 15 CASREACT COPYRIGHT 2005 ACS on STN
 AN 113:59693 CASREACT
 TI Preparation of 1-(azidoaryl)amido- and 1-(azidoaryl)
)thio-1-deoxy-D-fructose analogs
 AU Goodwin, James C.
 CS North. Reg. Res. Cent., Agric. Res. Serv., Peoria, IL, 61604, USA
 SO Carbohydrate Research (1989), 195(1), 150-6
 CODEN: CRBRAT; ISSN: 0008-6215
 DT Journal
 LA English
 AB Extension of photoaffinity labeling to D-fructose resulted in the
 syntheses of 1-(4-azido-2-hydroxybenzamido)-1-deoxy- β -D-fructose and
 1-(4-azido-2-nitrophenyl)thio-1-deoxy- β -D-fructose as potential
 photoprobes to study the mechanism for transport of D-fructose in corn
 endosperm.

RX(1) OF 12 A ==> B...

B
 YIELD 91%

RX(1) RCT A 78574-36-4
 RGT C 1333-74-0 H2
 PRO B 128316-82-5
 CAT 7440-05-3 Pd
 SOL 64-17-5 EtOH

L41 ANSWER 11 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 112:139018 CASREACT
 TI Process for the préparation of enantiomerically pure (aminopyrrolidinyl) naphthyridine- and -quinolonecarboxylic acids as bactericides
 IN Chu, Daniel Tim Wo; Rosen, Terry Jay
 PA Abbott Laboratories, USA
 SO Eur. Pat. Appl., 12 pp.
 CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 331960	A2	19890913	EP 1989-102927	19890220
	EP 331960	A3	19910123		
	EP 331960	B1	19940518		
	R: BE, CH, DE, ES, FR, GB, GR, IT, LI, NL, SE				
	US 4859776	A	19890822	US 1988-167058	19880311
	ES 2056130	T3	19941001	ES 1989-102927	19890220
	JP 01316349	A2	19891221	JP 1989-57657	19890309
	CA 1338892	A1	19970204	CA 1989-593374	19890310
	US 4956475	A	19900911	US 1989-356970	19890525
	US 5099032	A	19920324	US 1990-531816	19900601
	US 5359088	A	19941025	US 1993-39545	19930329
PRAI	US 1988-167058		19880311		
	US 1989-356970		19890525		
	US 1990-531816		19900601		
	US 1992-844262		19920302		
OS	MARPAT 112:139018				
GI					

AB The title compds., specifically (I; R = R4 = H) (II), having antibacterial activity, are prepared by reaction of an enantiomerically pure N-1 protected (S)-3-aminopyrrolidine (III; R5 = H; R6 = protected NH2) with 7-chloro-1-(o,p-difluorophenyl)-1,4-dihydro-6-fluoro-4-oxo-1,8-naphthyridine-3-carboxylic acid (IV) or its ester. Thus, mesylation of (R)-3-hydroxypyrrrolidine derivative (V; R7 = H) with MeSO2Cl in CH2Cl2 containing Et3N gave V (R6 = MeSO2) which was heated 3 h at 65° with Bu4NN3 in MeCN to give III (R5 = CH2Ph, R6 = N3). Reductive acetylation of the

latter with thiolacetic acid at room temperature for 5 h gave III ($R_5 = CH_2Ph$, $R_6 = NHAc$) which was hydrogenolyzed over 20% Pd/C in MeOH to give III ($R_5 = H$, $R_6 = AcNH$). This was heated 21 h at 65° with Et ester of IV in pyridine containing Et₃N to give I ($R = Et$, $R_4 = Ac$) which was saponified 2 h at 65° with 1M aqueous NaOH-THF and then refluxed in 6M HCl to give II.HCl. This in mice showed ED₅₀ of 0.2, 8.6, and 0.4 mg/kg/day s.c. against Escherichia coli Juhl, Pseudomonas aeruginosa 5007, and Staphylococcus aureus NCTC 10649, resp., while a racemic mixture of II.HCl showed ED₅₀ of 0.3, >20, and 0.4 mg/kg/day against the same bacteria, resp. Reductive acetylation of various azide compds. with thiolacetic acid to acetamides were also described.

RX(1) RCT A 622-79-7, B 507-09-5
PRO C 588-46-5

L41 ANSWER 12 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 109:54686 CASREACT

TI Asymmetric synthesis and properties of the enantiomers of the antibacterial agent 7-(3-aminopyrrolidin-1-yl)-1-(2,4-difluorophenyl)-1,4-dihydro-6-fluoro-4-oxo-1,8-naphthyridine-3-carboxylic acid hydrochloride

AU Rosen, Terry; Chu, Daniel T. W.; Lico, Isabella M.; Fernandes, Prabhavathi B.; Shen, Linus; Borodkin, Saul; Pernet, Andre G.

CS Abbot Lab., Abbott Park, IL, 60064, USA

SO Journal of Medicinal Chemistry (1988), 31(8), 1586-90

CODEN: JMCMAR; ISSN: 0022-2623

DT Journal

LA English

GI

AB The title compound (**I**), a potent member of the quinolonecarboxylic acid class of antibacterial agents, was prepared as its enantiomers from N-benzylpyrrolidine and naphthyridine **II**. (*S*)-(+)-**I** is 1-2 log₂ dilns. more

active than (R)-(-)-I against aerobic bacteria and 1-2 or more log₂ dilns. more active against anaerobic bacteria in vitro. (S)-(+)-I shows significantly better in vivo activity in a *Pseudomonas aeruginosa* mouse protection model compared to (\pm)-I. Coupled with the improved solubility profile of (S)-(+)-I relative to racemic material, these features may be of practical significance from a clin. standpoint.

RX(3) OF 61 ...F ==> I...

RX(3) RCT F 114636-29-2
 RGT J 1333-74-0 H2
 PRO I 114715-38-7
 CAT 7440-06-4 Pt
 SOL 67-56-1 MeOH

L41 ANSWER 13 OF 15 CASREACT COPYRIGHT 2005 ACS on STN
 AN 109:54632 CASREACT
 TI Design, synthesis, and properties of (4S)-7-(4-amino-2-substituted-pyrrolidin-1-yl)quinolone-3-carboxylic acids
 AU Rosen, Terry; Chu, Daniel T. W.; Lico, Isabella M.; Fernandes, Prabhavathi B.; Marsh, Kennan; Shen, Linus; Cepa, Valerie G.; Pernet, Andre G.
 CS Med. Chem. Dep., Pfizer, Groton, CT, 06340, USA
 SO Journal of Medicinal Chemistry (1988), 31(8), 1598-611
 CODEN: JMCMAR; ISSN: 0022-2623
 DT Journal
 LA English
 GI

AB A series of enantiomerically homogeneous title compds. e.g. I (X = CH) were prepared, in an effort to utilize the 2-position of the pyrrolidine

moiety to improve upon the solubility and pharmacokinetic properties while still maintaining potent antibacterial activity. The absolute stereochem. at the 2-position of the pyrrolidine ring is critical to the maintenance of such activity. Full details of the asym. synthesis and the in vitro and in vivo structure-activity relationships of this series of compds. are reported as well as the physicochem. properties, such as water solubility and log P, associated with the structural modifications. Pharmacokinetic properties of several of these compds. in mice and the pharmacokinetics of I, which has the best overall properties of agents in this study, in dogs are discussed.

RX(5) OF 348 ...J + 2 M ==> N...

N

RX(5) RCT J 113451-53-9

STAGE(1)

RGT O 16853-85-3 LiAlH₄
SOL 109-99-9 THF

STAGE(2)

RCT M 108-24-7
RGT D 121-44-8 Et₃N
PRO N 114676-50-5

L41 ANSWER 14 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

AN 108:150212 CASREACT

TI A convenient and highly **chemoselective** method for the reductive acetylation of azides

AU Rosen, Terry; Lico, Isabella M.; Chu, Daniel T. W.

CS Anti-Infect. Res. Div., Abbott Lab., Abbott Park, IL, 60064, USA

SO Journal of Organic Chemistry (1988), 53(7), 1580-2

CODEN: JOCEAH; ISSN: 0022-3263

DT Journal

LA English
GI

AB Azides, e.g. I, react with AcSH to afford the corresponding acetamides, e.g. II, in good yield. The reaction is highly chemoselective. The transformation occurs under extremely mild conditions and has been accomplished in the presence of a wide variety of functional groups including tert-butoxycarbonyl and benzyl protecting groups, olefins, carboxylic esters and a methanesulfonate ester. This rapid reductive acetylation allows the introduction of a protected amino group into a mol. possessing functionality otherwise incompatible with the free amine.

RX(1) OF 9 A + B ==> C

A

RX(1) RCT A 507-09-5, B 113451-51-7
PRO C 113451-55-1

L41 ANSWER 15 OF 15 CASREACT COPYRIGHT 2005 ACS on STN
AN 108:56453 CASREACT
TI Pseudo-sugars. Part XVIII. Synthesis of some derivatives of pseudo- α -galactopyranose [(1,2/3,4,5)-5-(hydroxymethyl)-1,2,3,4-cyclohexanetetrol]
AU Ogawa, Seiichiro; Shibata, Yasushi; Miyazawa, Keiko; Toyokuni, Tatsushi;

Iida, Tatsuo; Sumai, Tetsuo
CS Fac. Sci. Technol., Keio Univ., Yokohama, 223, Japan
SO Carbohydrate Research (1987), 163(1), 53-62
CODEN: CRBRAT; ISSN: 0008-6215
DT Journal
LA English
GI

- AB Isopropylidenation of DL-(1,2/3,4,5)-5-hydroxymethyl-1,2,3,4-cyclohexanetetrol (I; R = R1 = H) with Me2C(OMe)2 in DMF in the presence of p-toluenesulfonic acid gave the 1,2:3,4-, 1,2;4,7-, and 2,3:4,7-di-O-isopropylidene derivs. Several C-7 substituted derivs. of I (R = R1 = H) of biol. interest were prepared by nucleophilic displacement reactions of the tosylate derived from the most readily available 1,2:3,4-di-O-isopropylidene derivative (I; R2 = R12 = Me2C) (II). Condensation of II with 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide gave diastereoisomeric products, which were converted into 7-O-(β -D-glucopyranosyl)-pseudo- α -D-(III) and -L-galactopyranose (IV), the structures of which were confirmed by degradation of the octaacetate of III, yielding the known pseudo- α -D-galactopyranose pentaacetate.

RX(6) OF 83 . . . N + E ==> P . . .

P
YIELD 73%

RX(6) RCT N 112314-07-5

STAGE(1)

RGT Q 1333-74-0 H2
CAT 7440-02-0 Ni
SOL 141-78-6 AcOEt

STAGE(2)

RCT E 108-24-7
SOL 67-56-1 MeOH
PRO P 112314-08-6

=>

=> fil casreact

FILE 'CASREACT' ENTERED AT 09:30:35 ON 02 MAY 2005
 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
 COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT:1840 - 1 May 2005 VOL 142 ISS 18

New CAS Information Use Policies, enter HELP USAGETERMS for details.

 *
 * CASREACT now has more than 9.2 million reactions *
 *

Some CASREACT records are derived from the ZIC/VINITI database (1974-1991) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d browse 141
 :1-15

L41 ANSWER 1 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(3) OF 58

REF: Bioorganic & Medicinal Chemistry, 12(10), 2749-2757; 2004

L41 ANSWER 2 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 7

REF: Tetrahedron Letters, 44(51), 9083-9085; 2003
 NOTE: yield depends on amt. of cat.

L41 ANSWER 3 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 30

REF: Journal of the American Chemical Society, 125(26), 7754-7755; 2003

L41 ANSWER 4 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 20

REF: Tetrahedron Letters, 44(18), 3617-3620; 2003

L41 ANSWER 5 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 59

REF: PCT Int. Appl., 2003070960, 28 Aug 2003

L41 ANSWER 6 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 402

REF: Journal of Medicinal Chemistry, 45(18), 3953-3962; 2002

L41 ANSWER 7 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(3) OF 21

REF: Journal of Organic Chemistry, 64(2), 334-335; 1999

L41 ANSWER 8 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 15

RX(1) OF 15

REF: Angewandte Chemie, International Edition in English, 36(6), 618-621; 1997

L41 ANSWER 9 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(21) OF 35

REF: Ger. Offen., 3903993, 16 Aug 1990

L41 ANSWER 10 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 12

REF: Carbohydrate Research, 195(1), 150-6; 1989

L41 ANSWER 11 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 16

REF: Eur. Pat. Appl., 331960, 13 Sep 1989

L41 ANSWER 12 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(3) OF 61

REF: Journal of Medicinal Chemistry, 31(8), 1586-90; 1988

L41 ANSWER 13 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(5) OF 348

REF: Journal of Medicinal Chemistry, 31(8), 1598-611; 1988

L41 ANSWER 14 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(1) OF 9

REF: Journal of Organic Chemistry, 53(7), 1580-2; 1988

L41 ANSWER 15 OF 15 CASREACT COPYRIGHT 2005 ACS on STN

RX(6) OF 83

REF: Carbohydrate Research, 163(1), 53-62; 1987

:end

```
=> => fil hcaplus
FILE 'HCAPLUS' ENTERED AT 09:35:23 ON 02 MAY 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)
```

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 2 May 2005 VOL 142 ISS 19
FILE LAST UPDATED: 1 May 2005 (20050501/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d all hitstr tot

L63 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2005 ACS on STN
AN 2004:425546 HCAPLUS
DN 141:53768
ED Entered STN: 27 May 2004
TI New reaction for peptide bond formation by merely mixing. New amidation by condensation of thiocarboxylic acid and azide compounds

AU Chino, Masao
 CS Mitsubishi Well Pharma Co., Ltd., Japan
 SO Kagaku to Kogyo (Tokyo, Japan) (2004), 57(5), 531
 CODEN: KAKTAF; ISSN: 0022-7684
 PB Nippon Kagakkai
 DT Journal; General Review
 LA Japanese
 CC 21-0 (General Organic Chemistry)
 AB A review on preparation of amides by mixing thiocarboxylic acid with azides in the presence of 2,6-lutidine.
 ST review amidation thiocarboxylic acid azide; peptide bond formation thiocarboxylic acid azide review
 IT Amidation
 (amidation by mixing thiocarboxylic acids with azides)
 IT Azides
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (amidation by mixing thiocarboxylic acids with azides)
 IT Amides, preparation
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (amidation by mixing thiocarboxylic acids with azides)
 IT Carboxylic acids, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (thiocarboxylic; amidation by mixing thiocarboxylic acids with azides)

L63 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 2003:899646 HCAPLUS
 DN 140:128580
 ED Entered STN: 18 Nov 2003
 TI RuCl₃-promoted amide formation from azides and thio-acids

AU Fazio, Fabio; Wong, Chi-Huey
 CS Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
 SO Tetrahedron Letters (2003), 44(51), 9083-9085
 CODEN: TELEAY; ISSN: 0040-4039
 PB Elsevier Science B.V.
 DT Journal
 LA English
 CC 33-7 (Carbohydrates)
 Section cross-reference(s): 21, 67
 OS CASREACT 140:128580
 AB Described here is the Ru(III)-promoted amide formation from sugar azides and thio-acids, (e.g., thiolacetic acid) which were shown not to form amides at room temperature in the absence of ruthenium. We believe that a complex formed by Ru(III) increases the reactivity of the thiocarbonyl species and therefore reaction with azides occurs at room temperature, even when less reactive (electron rich and/or sterically hindered) azides are employed.
 ST sugar azide thiolacetic acid ruthenium trichloride prepn carbohydrate amide; reaction mechanism ruthenium catalyst azide thioacid prep amide
 IT Catalysts
 Reaction mechanism
 (preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as promoter)
 IT Azides
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as promoter)
 IT Carbohydrates, preparation
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as

promoter)

IT Amides, preparation
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as promoter)

IT Carboxylic acids, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (thiocarboxylic; preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as promoter)

IT 10049-08-8, Ruthenium trichloride
 RL: CAT (Catalyst use); USES (Uses)
 (preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as promoter)

IT 507-09-5, Thiolacetic acid, reactions 6205-69-2 13992-25-1
 20379-59-3, β-D-Glucopyranosyl azide 29847-23-2 140428-81-5
 165331-08-8
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as promoter)

IT 6205-71-6P 6205-72-7P 6983-35-3P 6983-36-4P 173143-13-0P
 648887-44-9P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as promoter)

RE.CNT 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Alper, P; Tetrahedron Lett 1996, V37, P6029 HCPLUS
- (2) Brik, A; Chem Biol 2002, V9, P891 HCPLUS
- (3) Fazio, F; J Am Chem Soc 2002, V124, P14397 HCPLUS
- (4) Gothelf, K; Chem Rev 1998, V98, P863 HCPLUS
- (5) Nyffeler, P; J Am Chem Soc 2002, V124, P10773 HCPLUS
- (6) Rosen, T; J Org Chem 1988, V53, P1580 HCPLUS
- (7) Rostovtsev, V; Angew Chem, Int Ed 2002, V41, P2596 HCPLUS
- (8) Schenk, W; J Organomet Chem 2002, V661, P129 HCPLUS
- (9) Shangguan, N; J Am Chem Soc 2003, V125, P7754 HCPLUS
- (10) Tornoe, C; J Org Chem 2002, V67, P3057 HCPLUS

IT 507-09-5, Thiolacetic acid, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of amides from sugar azides and thiolacetic acid using RuCl₃ as promoter)

RN 507-09-5 HCPLUS

CN Ethanethioic acid (9CI) (CA INDEX NAME)

L63 ANSWER 3 OF 6 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2003:505304 HCPLUS
 DN 139:213881
 ED Entered STN: 03 Jul 2003
 TI The Reaction of Thio Acids with Azides: A New Mechanism and New Synthetic Applications
 AU Shangguan, Ning; Katukojvala, Sreenivas; Greenberg, Rachel; Williams, Lawrence J.
 CS Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
 SO Journal of the American Chemical Society (2003), 125(26), 7754-7755
 CODEN: JACSAT; ISSN: 0002-7863
 PB American Chemical Society

DT Journal
 LA English
 CC 21-2 (General Organic Chemistry)
 OS CASREACT 139:213881
 AB A new amide synthesis strategy based on a fundamental mechanistic revision of the reaction of thio acids and organic azides is presented. It was shown that amines are not formed as intermediates in this reaction, and alternative mechanisms proceeding through a thiatriazoline intermediate are suggested. The reaction has been applied to the preparation of both simple and architecturally complex amides that are difficult to access using conventional methods. The reaction is chemoselective, effective for unprotected substrates, and compatible with aprotic and protic solvents, including water.
 ST amide prepn; sulfonamide acyl prepn; acid thio coupling azide
 IT Sulfonamides
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (acyl; preparation of amides, carbamates and N-acyl and α -aminoacyl sulfonamides via coupling of thio acids with azides)
 IT Azides
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of amides, carbamates and N-acyl and α -aminoacyl sulfonamides via coupling of thio acids with azides)
 IT Amides, preparation
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of amides, carbamates and N-acyl and α -aminoacyl sulfonamides via coupling of thio acids with azides)
 IT Carboxylic acids, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (thiocarboxylic; preparation of amides, carbamates and N-acyl and α -aminoacyl sulfonamides via coupling of thio acids with azides)
 IT 98-91-9, Thiobenzoic acid 507-09-5,
 Thioacetic acid, reactions 622-79-7, Benzyl azide
 938-10-3, Phenylsulfonyl azide 941-55-9, Tosyl azide 3422-03-5
 16722-99-9, β -Azido styrene 17202-49-2 20379-59-3,
 β -D-Glucopyranosyl azide 28166-06-5, 4-Fluoro-3-nitrophenyl azide
 30516-87-1 33639-93-9 77422-70-9 106531-68-4, Dansyl azide
 263764-96-1 586957-49-5
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of amides, carbamates and N-acyl and α -aminoacyl sulfonamides via coupling of thio acids with azides)
 IT 351-32-6P 588-46-5P 1485-70-7P 3559-04-4P 5661-14-3P 6983-36-4P
 15354-97-9P 15355-08-5P 18793-44-7P 35922-92-0P 38091-74-6P
 58379-67-2P 69261-50-3P 70465-85-9P 75893-06-0P 78007-47-3P
 103324-91-0P 131098-83-4P 228425-41-0P 329775-56-6P 586957-47-3P
 586957-48-4P 586957-50-8P 586957-51-9P 586957-55-3P 586957-56-4P
 586957-57-5P 586957-58-6P 586957-59-7P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of amides, carbamates and N-acyl and α -aminoacyl sulfonamides via coupling of thio acids with azides)
 IT 586957-52-0 586957-53-1 586957-54-2
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (thioester cleavage; preparation of amides, carbamates and N-acyl and α -aminoacyl sulfonamides via coupling of thio acids with azides)
 RE.CNT 35 THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD
 RE
 (1) Backes, B; J Org Chem 1999, V64, P2322 HCPLUS

- (2) Beligere, G; J Am Chem Soc 2000, V122, P12079 HCPLUS
 (3) Canne, L; Tetrahedron Lett 1995, V36, P1217 HCPLUS
 (4) Chin, J; J Am Chem Soc 2002, V124, P9026 HCPLUS
 (5) Chou, S; J Chem Soc, Perkin Trans 1 1997, P1691 HCPLUS
 (6) Cohen-Anisfeld, S; J Am Chem Soc 1993, V115, P10531 HCPLUS
 (7) Cornish, V; Angew Chem, Int Ed Engl 1995, V34, P621 HCPLUS
 (8) Damkaci, F; J Am Chem Soc 2003, V125 HCPLUS
 (9) Elofsson, M; Tetrahedron 1997, V53, P369 HCPLUS
 (10) Goldstein, A; Tetrahedron Lett 2000, V41, P2797 HCPLUS
 (11) Hakimelahi, G; Tetrahedron Lett 1980, V21, P2119 HCPLUS
 (12) Humphrey, J; Chem Rev 1997, V97, P2243 HCPLUS
 (13) Loock, E; J Org Chem 1973, V38, P2916
 (14) L'Abbe, G; Angew Chem, Int Ed Engl 1980, V19, P276
 (15) L'Abbe, G; J Heterocycl Chem 1990, V27, P1059 HCPLUS
 (16) L'Abbe, G; J Org Chem 1975, V40, P1728 HCPLUS
 (17) Marcaurelle, L; J Am Chem Soc 2001, V123, P1587 HCPLUS
 (18) McKervey, M; J Chem Soc, Chem Commun 1993, P94 HCPLUS
 (19) Nilsson, B; Org Lett 2001, V3, P9 HCPLUS
 (20) Nilsson, W; Org Lett 2000, V2, P1939
 (21) Offer, J; J Am Chem Soc 2002, V124, P4642 HCPLUS
 (22) Offer, J; Org Lett 2000, V2, P23 HCPLUS
 (23) Park, S; Tetrahedron Lett 2002, V43, P6309 HCPLUS
 (24) Paulsen, H; Liebigs Ann Chem 1994, P369 HCPLUS
 (25) Rajagopalan, S; Synth Commun 1997, V27, P187 HCPLUS
 (26) Rakotomanomana, N; Carbohydr Res 1990, V197, P318 HCPLUS
 (27) Rijkers, D; Tetrahedron Lett 2002, V43, P3657 HCPLUS
 (28) Rosen, T; J Org Chem 1988, V53, P1580 HCPLUS
 (29) Saxon, E; Org Lett 2000, V2, P2141 HCPLUS
 (30) Saxon, E; Science 2000, V287, P2007 HCPLUS
 (31) Schwabacher, A; Tetrahedron Lett 1993, V34, P1269 HCPLUS
 (32) Scriven, E; Chem Rev 1988, V88, P297 HCPLUS
 (33) Suh, E; J Am Chem Soc 1994, V116, P11205 HCPLUS
 (34) Tam, J; Biopolymers 2001, V60, P194 HCPLUS
 (35) Tamura, M; Bull Chem Soc Jpn 1984, V57, P3167 HCPLUS

IT 98-91-9, Thiobenzoic acid 507-09-5,

Thioacetic acid, reactions 941-55-9, Tosyl azide 30516-87-1

RL: RCT (Reactant); RACT (Reactant or reagent)

(preparation of amides, carbamates and N-acyl and α -aminoacyl sulfonamides via coupling of thio acids with azides)

RN 98-91-9 HCPLUS

CN Benzenecarbothioic acid (9CI) (CA INDEX NAME)

RN 507-09-5 HCPLUS

CN Ethanethioic acid (9CI) (CA INDEX NAME)

RN 941-55-9 HCPLUS

CN Benzenesulfonyl azide, 4-methyl- (9CI) (CA INDEX NAME)

RN 30516-87-1 HCAPLUS

CN Thymidine, 3'-azido-3'-deoxy- (7CI, 8CI, 9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L63 ANSWER 4 OF 6 HCAPLUS COPYRIGHT 2005 ACS on STN

AN 2003:437855 HCAPLUS

DN 139:323413

ED Entered STN: 09 Jun 2003

TI Esters and amides from activated alcohols using manganese(IV) dioxide: Tandem oxidation processes

AU Foot, Jonathan S.; Kanno, Hisashi; Giblin, Gerard M. P.; Taylor, Richard J. K.

CS Department of Chemistry, University of York, York, YO10 5DD, UK

SO Synthesis (2003), (7), 1055-1064

CODEN: SYNTBF; ISSN: 0039-7881

PB Georg Thieme Verlag

DT Journal

LA English

CC 27-16 (Heterocyclic Compounds (One Hetero Atom))

Section cross-reference(s): 23, 24, 25, 26

OS CASREACT 139:323413

AB Manganese(IV) dioxide can be used in conjunction with sodium cyanide in THF-methanol or in methanol alone for the direct conversion of activated alcs. into Me esters. Et and iso-Pr esters can also be prepared. Similarly, use of manganese(IV) dioxide and sodium cyanide in THF containing ammonia or primary amines can be used to convert alcs. into the corresponding amides. Several activated alcs. and one non-activated alc. example are reported. For example, reaction of (2E,4E)-2,4-dodecadien-1-ol in the presence of 2-methyl-1-propanamine gave (2E,4E)-N-(2-methylpropyl)-2,4-dodecadienamide in 51% yield.

ST ester amide prepn oxidn alc manganese dioxide sodium cyanide; amide prepn oxidn alc manganese dioxide sodium cyanide; oxidizing agent manganese dioxide sodium cyanide oxidn alc amine

IT Alcohols, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(activated alcs.; preparation of esters and amides from activated alcs.)

using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Amines, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(alicyclic; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Amines, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(alkenyl; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Alicyclic compounds
RL: RCT (Reactant); RACT (Reactant or reagent)
(amines; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Alcohols, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(aralkyl; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Carboxylic acids, preparation
RL: SPN (Synthetic preparation); PREP (Preparation)
(aromatic, esters; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

using
manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Amides, preparation
RL: SPN (Synthetic preparation); PREP (Preparation)
(aryl; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Amines, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(cyclic; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Carboxylic acids, preparation
RL: SPN (Synthetic preparation); PREP (Preparation)
(esters, alkynyl; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Oxidation
Oxidation
Oxidizing agents
(preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Amines, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Amides, preparation
RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Esters, preparation
RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Alcohols, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(unsatd.; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Amides, preparation
RL: SPN (Synthetic preparation); PREP (Preparation)
(unsatd.; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT Carboxylic acids, preparation
RL: SPN (Synthetic preparation); PREP (Preparation)
(α, β -unsatd., esters; preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem

oxidation processes)

IT 112-30-1, 1-Decanol 544-92-3, Copper cyanide (Cu(CN)) 5188-07-8,
 Methanethiol sodium salt 26628-22-8, Sodium azide (NaN₃)
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (failed reaction; preparation of esters and amides from activated alcs.
 using manganese dioxide and sodium cyanide via tandem oxidation processes)

IT 1885-38-7P, (2E)-3-Phenyl-2-propenenitrile 14371-10-9P,
 (2E)-3-Phenyl-2-propenal
 RL: BYP (Byproduct); PREP (Preparation)
 (preparation of esters and amides from activated alcs. using manganese
 dioxide and sodium cyanide via tandem oxidation processes)

IT 74-89-5, Methanamine, reactions 75-31-0, 2-Propanamine, reactions
 75-64-9, 2-Methyl-2-propanamine, reactions 78-81-9, 2-Methyl-1-
 propanamine 97-99-4, Tetrahydrofuran-2-methanol 98-00-0,
 2-Furanmethanol 100-51-6, Benzenemethanol, reactions 100-55-0,
 3-Pyridinemethanol 105-13-5, 4-Methoxybenzenemethanol 107-11-9,
 2-Propen-1-amine 107-19-7, 2-Propyn-1-ol 108-91-8, Cyclohexanamine,
 reactions 109-89-7, Diethylamine, reactions 123-75-1, Pyrrolidine,
 reactions 124-40-3, Dimethylamine, reactions 143-33-9, Sodium cyanide
 151-50-8, Potassium cyanide (KCN) 333-20-0, Thiocyanic acid potassium
 salt 586-95-8, 4-Pyridinemethanol 586-98-1, 2-Pyridinemethanol
 590-28-3, Cyanic acid potassium salt 619-73-8, 4-Nitrobenzenemethanol
 636-72-6, 2-Thiophenemethanol 764-01-2, 2-Butyn-1-ol 873-75-6,
 4-Bromobenzinemethanol 928-94-9, (2Z)-2-Hexen-1-ol 928-95-0,
 (2E)-2-Hexen-1-ol 1313-13-9, Manganese oxide (MnO₂), reactions
 1504-58-1, 3-Phenyl-2-propyn-1-ol 2408-36-8, Lithium cyanide (Li(CN))
 4407-36-7, (2E)-3-Phenyl-2-propen-1-ol 4412-91-3, 3-Furanmethanol
 4568-71-2, 5-(2-Hydroxyethyl)-4-methyl-3-(phenylmethyl)thiazolium chloride
 7664-41-7, Ammonia, reactions 7677-24-9, Trimethylsilyl cyanide
 7681-82-5, Sodium iodide (NaI), reactions 7758-19-2, Chlorous acid
 sodium salt 10442-39-4, Tetrabutylammonium cyanide 18485-38-6,
 (2E,4E)-2,4-Dodecadien-1-ol 34832-35-4, Ethanethioic acid sodium
 salt 71637-34-8, 3-Thiophenemethanol
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of esters and amides from activated alcs. using manganese
 dioxide and sodium cyanide via tandem oxidation processes)

IT 55-21-0P, Benzamide 64-17-5P, Ethanol, preparation 67-63-0P,
 2-Propanol, preparation 93-58-3P, Benzoic acid methyl ester 93-60-7P,
 3-Pyridinecarboxylic acid methyl ester 121-98-2P, 4-Methoxybenzoic acid
 methyl ester 611-13-2P, 2-Furancarboxylic acid methyl ester 611-74-5P,
 N,N-Dimethylbenzamide 613-93-4P, N-Methylbenzamide 619-42-1P,
 4-Bromobenzoic acid methyl ester 619-50-1P, 4-Nitrobenzoic acid methyl
 ester 925-55-3P, (2Z)-3-Cyano-2-propenoic acid methyl ester
 1696-17-9P, N,N-Diethylbenzamide 1754-62-7P, (2E)-3-Phenyl-2-propenoic
 acid methyl ester 1759-68-8P, N-(Cyclohexyl)benzamide 2459-07-6P,
 2-Pyridinecarboxylic acid methyl ester 2459-09-8P, 4-Pyridinecarboxylic
 acid methyl ester 2585-25-3P, N-(2-Methylpropyl)-4-nitrobenzamide
 3389-54-6P, 1-Benzoylpiperidone 4192-77-2P, (2E)-3-Phenyl-2-propenoic
 acid ethyl ester 4891-38-7P, 3-Phenyl-2-propenoic acid methyl ester
 5440-69-7P, N-(1-Methylethyl)benzamide 5705-57-7P, Benzamide
 N-(2-methylpropyl) 5894-65-5P, N-(1,1-Dimethylethyl)benzamide
 7464-51-9P, 4-Methoxy-N-(2-methylpropyl)benzamide 10283-95-1P,
 N-(2-Propenyl)benzamide 13894-63-8P, (2E)-2-Hexenoic acid methyl ester
 13894-64-9P, (2Z)-2-Hexenoic acid methyl ester 23326-27-4P, 2-Butynoic
 acid methyl ester 24738-51-0P, (2E,4E)-N-(2-Methylpropyl)-2,4-
 Dodecadienamide 26218-50-8P, N,N-Dimethyl-3-phenyl-2-Propynamide
 60512-85-8P, (2E)-3-Phenyl-2-propenoic acid 1-methylethyl ester
 74210-18-7P, N-(2-Methylpropyl)-3-Furancarboxylic acid 78114-53-1P,
 N-(2-Methylpropyl)-3-Pyridinecarboxamide 92449-52-0P,
 (2E)-N-(2-Methylpropyl)-3-phenyl-2-propenamide 192988-94-6P,
 N-(2-Methylpropyl)-2-Thiophenecarboxamide 192988-97-9P,
 N-(2-Methylpropyl)-3-Thiophenecarboxamide 479352-34-6P,
 N-(2-Methylpropyl)-4-Pyridinecarboxamide 479352-35-7P,

Tetrahydro-N-(2-methylpropyl)-2-Furancarboxamide 612846-73-8P,
 (2E)-N-(2-Methylpropyl)-2-hexenamide 612846-75-0P, (2Z)-N-(2-Methylpropyl)-2-hexenamide 612846-77-2P, N-(2-Methylpropyl)-2-Pyridinecarboxamide

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of esters and amides from activated alcs. using manganese dioxide and sodium cyanide via tandem oxidation processes)

RE.CNT 55 THERE ARE 55 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Abarbri, M; Synth Commun 1998, V28, P239 HCPLUS
- (2) Abramovitch, R; J Am Chem Soc 1981, V103, P4558 HCPLUS
- (3) Agwanda, V; J Chem Eng Data 1984, V29, P235
- (4) Alonso, E; Tetrahedron 1998, V54, P13629 HCPLUS
- (5) Anderson, B; J Am Chem Soc 1958, V80, P992
- (6) Anker, L; Helv Chim Acta 1984, V67, P706 HCPLUS
- (7) Anon; cat no 00554
- (8) Auzeil, N; J Chem Soc, Perkin Trans 2 1999, P1703 HCPLUS
- (9) Avila-Zarraga, J; Synth Commun 2001, V31, P2177 HCPLUS
- (10) Batori, S; Tetrahedron 1994, V50, P4699 HCPLUS
- (11) Bauer, R; Phytochemistry 1989, V28, P505 HCPLUS
- (12) Blackburn, L; Chem Commun 1999, P1337 HCPLUS
- (13) Blackburn, L; Org Lett 2001, V3, P1637 HCPLUS
- (14) Blackburn, L; Synlett 2002, P215 HCPLUS
- (15) Blackburn, L; Tetrahedron Lett 2003, V44, P115 HCPLUS
- (16) Breslow, R; Tetrahedron Lett 1996, V37, P8241 HCPLUS
- (17) Carloni, P; J Chem Soc, Perkin Trans 2 1996, P1297 HCPLUS
- (18) Corey, E; J Am Chem Soc 1968, V90, P5616 HCPLUS
- (19) Degani, I; Synthesis 1999, P1200 HCPLUS
- (20) Dietz, B; Pharm Biol 2001, V39, P11 HCPLUS
- (21) Foot, J; Synlett 2002, P1293 HCPLUS
- (22) Gajida, T; Synthesis 1981, P1005
- (23) Gilman, N; J Chem Soc, Chem Commun 1971, P733 HCPLUS
- (24) Hans, J; J Org Chem 2000, V65, P2114 HCPLUS
- (25) Hecht, K; Tetrahedron Lett 1973, P1397
- (26) Herbst, R; J Org Chem 1952, V17, P262 HCPLUS
- (27) Hoberg, H; J Organomet Chem 1983, V241, P245 HCPLUS
- (28) Holland, H; Tetrahedron: Asymmetry 1993, V4, P1353 HCPLUS
- (29) Huang, Z; Synth Comm 1990, V20, P2579 HCPLUS
- (30) Huisgen, R; Justus Liebigs Ann Chem 1956, V599, P177
- (31) Kanno, H; Synlett 2002, P1287 HCPLUS
- (32) Kanno, H; Tetrahedron Lett 2002, V43, P7337 HCPLUS
- (33) Keck, G; Tetrahedron 2000, V56, P9875 HCPLUS
- (34) Krapcho, A; Synth Commun 1997, V27, P781 HCPLUS
- (35) Kuhn, G; J Am Chem Soc 1948, V70, P3370
- (36) Lai, G; Synth Commun 1997, V27, P1281 HCPLUS
- (37) Lluch, A; Tetrahedron 1996, V52, P3973 HCPLUS
- (38) McAllister, G; Synlett 2002, P1291 HCPLUS
- (39) Moulines, F; J Organomet Chem 1988, V340, PC13 HCPLUS
- (40) Nilsson, K; J Am Chem Soc 1996, V118, P4194 HCPLUS
- (41) Noureldin, N; J Org Chem 1997, V62, P8767 HCPLUS
- (42) Padwa, A; Tetrahedron 1996, V52, P3247 HCPLUS
- (43) Papaioannou, D; Acta Chem Scand 1990, V44, P90 HCPLUS
- (44) Patil, V; Tetrahedron Lett 1996, V37, P1281 HCPLUS
- (45) Qian, C; Tetrahedron 2000, V51, P7193
- (46) Raghavan, S; Tetrahedron Lett 2002, V43, P5181
- (47) Rhee, H; Tetrahedron Lett 1998, V39, P1365 HCPLUS
- (48) Runcie, K; Chem Commun 2002, V9, P974
- (49) Shono, T; J Org Chem 1986, V51, P546 HCPLUS
- (50) Stohr, J; Planta Med 1999, V65, P175
- (51) Suezawa, H; Bull Chem Soc Jpn 1987, V60, P3973 HCPLUS
- (52) Thiele, R; Justus Liebigs Ann Chem 1899, V306, P215
- (53) Wei, X; J Org Chem 2000, V65, P616 HCPLUS
- (54) Wei, X; Tetrahedron Lett 1998, V39, P3815 HCPLUS

(55) Whitehouse, D; Bioorg Med Chem 1998, V6, P1273 HCPLUS
 IT 26628-22-8, Sodium azide (NaN₃)
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (failed reaction; preparation of esters and amides from activated alcs.
 using manganese dioxide and sodium cyanide via tandem oxidation processes)
 RN 26628-22-8 HCPLUS
 CN Sodium azide (Na(N₃)) (9CI) (CA INDEX NAME)

IT 34832-35-4, Ethanethioic acid sodium salt
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of esters and amides from activated alcs. using manganese
 dioxide and sodium cyanide via tandem oxidation processes)
 RN 34832-35-4 HCPLUS
 CN Ethanethioic acid, sodium salt (9CI) (CA INDEX NAME)

● Na

L63 ANSWER 5 OF 6 HCPLUS COPYRIGHT 2005 ACS on STN
 AN 2002:640915 HCPLUS
 DN 138:137001
 ED Entered STN: 26 Aug 2002
 TI A new type of amide formation from thiocarboxylic acid and alkyl azide
 AU Park, Sang-Don; Oh, Jung-Hee; Lim, Dongyeol
 CS Department of Applied Chemistry, Sejong University, Seoul, 143-747, S.
 Korea
 SO Tetrahedron Letters (2002), 43(36), 6309-6311
 CODEN: TELEAY; ISSN: 0040-4039
 PB Elsevier Science Ltd.
 DT Journal
 LA English
 CC 25-19 (Benzene, Its Derivatives, and Condensed Benzenoid Compounds)
 Section cross-reference(s): 23
 OS CASREACT 138:137001
 AB The coupling of thiocarboxylic acid and alkyl azide using various triaryl phosphines was studied. Amide formation greater than 95% was achieved when the free-formation of Staudinger intermediate with electron deficient triaryl phosphines was employed. The coupling of benzenecarbothioic acid with (azidomethyl)benzene in the presence of triphenylphosphine gave N-(phenylmethyl)benzamide in 91% yield. The coupling of (azido)acetic acid Me ester with benzenecarbothioic acid or ethanethioic acid in the presence of arylphosphines gave N-benzoylglycine Me ester and N-acetylglycine Me ester, resp.
 ST thiocarboxylic acid azide arylphosphine coupling amide prepn;
 furanylphosphine thiocarboxylic acid azide coupling amide prepn;
 phenylphosphine thiocarboxylic acid azide coupling amide prepn;
 chemoselective coupling thiocarboxylic acid azide arylphosphine amide prepn; benzenecarbothioic acid azide arylphosphine coupling amide prepn;
 ethanethioic acid azide arylphosphine coupling amide prepn; benzoylglycine prepn benzenecarbothioic acid azidoacetate coupling phenylphosphine;

acetylglycine prepn ethanethioic acid azidoacetate coupling
 phenylphosphine
 IT Phosphines
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (aryl; preparation of amides from thiocarboxylic acid and alkyl azides)
 IT Coupling reaction
 (chemoselective; preparation of amides from thiocarboxylic acid and alkyl azides)
 IT Azides
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of amides from thiocarboxylic acid and alkyl azides)
 IT Amides, preparation
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of amides from thiocarboxylic acid and alkyl azides)
 IT Carboxylic acids, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (thiocarboxylic; preparation of amides from thiocarboxylic acid and alkyl azides)
 IT 98-91-9, Benzenecarbothioic acid 507-09-5, Ethanethioic acid, reactions 603-35-0, Triphenylphosphine, reactions 622-79-7, (Azidomethyl)benzene 855-38-9, Tris(4-methoxyphenyl)phosphine 998-40-3, Tributylphosphine 1816-92-8, (Azido)acetic acid methyl ester 5518-52-5, Tri-(2-furanyl)phosphine 18437-78-0, Tris(4-fluorophenyl)phosphine 23039-94-3, Tris(3-fluorophenyl)phosphine 56602-33-6, (Benzotriazol-1-yloxy)tris(dimethylamino) hexafluorophosphate 128625-52-5, (1-Hydroxy-1H-benzotriazolato-O)tri-1-pyrrolidinylphosphorus(1+) hexafluorophosphate(1-)
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of amides from thiocarboxylic acid and alkyl azides)
 IT 588-46-5P, N-(Phenylmethyl)acetamide 1117-77-7P, N-Acetylglycine methyl ester 1205-08-9P, N-Benzoylglycine methyl ester 1485-70-7P, N-(Phenylmethyl)benzamide
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of amides from thiocarboxylic acid and alkyl azides)
 RE.CNT 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS RECORD
 RE
 (1) Ariza, X; Tetrahedron Lett 1998, V39, P9101
 (2) Bosch, I; J Chem Soc, Chem Commun 1995, P91 HCPLUS
 (3) Bosch, I; J Org Chem 1996, V61, P5638 HCPLUS
 (4) Bosch, I; Tetrahedron Lett 1993, V34, P4671 HCPLUS
 (5) Boullanger, P; Carbohydr Res 2000, V324, P97 HCPLUS
 (6) Garcia, J; Tetrahedron Lett 1984, V25, P4841 HCPLUS
 (7) Garcia, J; Tetrahedron Lett 1984, V27, P639
 (8) Gololobov, Y; Tetrahedron 1992, V48, P1353 HCPLUS
 (9) Inazu, T; Synlett 1993, P869 HCPLUS
 (10) Malkinson, J; J Org Chem 2000, V65, P5249 HCPLUS
 (11) Mizuno, M; J Am Chem Soc 1999, V121, P284 HCPLUS
 (12) Mizuno, M; Synthesis-Stuttgart 1999, P162 HCPLUS
 (13) Nilsson, B; Org Lett 2000, V2, P1939 HCPLUS
 (14) Nilsson, B; Org Lett 2001, V3, P9 HCPLUS
 (15) Saxon, E; Org Lett 2000, V2, P2141 HCPLUS
 (16) Saxon, E; Science 2000, V287, P2007 HCPLUS
 (17) Shalev, D; J Org Chem 1996, V61, P1689 HCPLUS
 (18) Staudinger, H; Helv Chim Acta 1919, V2, P635 HCPLUS
 (19) Tang, Z; Tetrahedron Lett 1998, V39, P4773 HCPLUS
 (20) Urpi, F; Tetrahedron Lett 1986, V27, P4623 HCPLUS
 IT 98-91-9, Benzenecarbothioic acid 507-09-5, Ethanethioic acid, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of amides from thiocarboxylic acid and alkyl azides)
 RN 98-91-9 HCPLUS
 CN Benzenecarbothioic acid (9CI) (CA INDEX NAME)

RN 507-09-5 HCAPLUS
 CN Ethanethioic acid (9CI) (CA INDEX NAME)

L63 ANSWER 6 OF 6 HCAPLUS COPYRIGHT 2005 ACS on STN
 AN 1993:255276 HCAPLUS
 DN 118:255276
 ED Entered STN: 26 Jun 1993
 TI Reductive acylation of α -keto azides derived from L-amino acids using N-protected L-aminothiocarboxylic S-acids
 AU McKervey, M. Anthony; O'Sullivan, Michael B.; Myers, Peter L.; Green, Richard H.
 CS Sch. Chem., Queen's Univ., Belfast, BT9 5AG, UK
 SO Journal of the Chemical Society, Chemical Communications (1993), (1), 94-6
 CODEN: JCCCAT; ISSN: 0022-4936
 DT Journal
 LA English
 CC 34-2 (Amino Acids, Peptides, and Proteins)
 OS CASREACT 118:255276
 GI

AB Several homochiral N-protected α -amino carboxylic S-acids, e.g. I and II, have been synthesized from natural amino acids and used for reductive acylation of homochiral α,α' -amino keto azides, e.g. III (Pht = phthaloyl), also derived from natural amino acids. Thus, the reductive acylation of III with I gave 72% amide IV.
 ST reductive acylation keto azide aminothiocarboxylic acid; thio amino acid reductive acylation
 IT Reduction
 (acylation and, of amino keto azides with protected thioamino acids)
 IT Azides

RL: RCT (Reactant); RACT (Reactant or reagent)
 (keto, reductive acylation of, with protected thioamino acids)

IT Amides, preparation
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (amino, preparation of, by reductive acylation of amino keto azides with
 protected thioamino acids)

IT Acylation
 (reductive, of amino keto azides with protected thioamino acids)

IT Amino acids, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (thio-, reductive acylation by, of amino keto azides)

IT 2419-38-7 3160-59-6 5123-55-7 29588-88-3
 RL: PROC (Process)
 (conversion of, to diazo ketone)

IT 1161-13-3 5700-74-3 5700-77-6 13734-34-4 16639-86-4 19887-31-1
 122389-46-2
 RL: PROC (Process)
 (conversion of, to thio acid)

IT 28116-94-1P 96813-23-9P 114715-76-3P 147224-26-8P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation and conversion of, to keto azide)

IT 92507-06-7P 147224-23-5P 147224-24-6P 147255-21-8P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (preparation and reaction of, with benzyl azide)

IT 81000-39-7P 147224-21-3P 147224-22-4P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (preparation and reductive acylation by, of amino keto azides)

IT 147224-27-9P 147224-28-0P 147224-29-1P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (preparation and reductive acylation of, with protected thioamino acids)

IT 21171-97-1P 84235-32-5P 147224-25-7P 147224-30-4P 147224-35-9P
 147224-36-0P 147224-37-1P 147255-22-9P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)

IT 147224-31-5P 147224-32-6P 147224-33-7P 147224-34-8P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of, by reductive acylation of amino keto azide with protected
 thioamino acid)

IT 622-79-7, Benzyl azide
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with protected thioamino acids)

=> d his l48-

(FILE 'CASREACT' ENTERED AT 09:29:39 ON 02 MAY 2005)

FILE 'CASREACT' ENTERED AT 09:30:35 ON 02 MAY 2005

FILE 'HCAPLUS' ENTERED AT 09:30:59 ON 02 MAY 2005

E AZIDE/CT

L48 21244 S E4,E5+OLD,NT,PFT,RT
 E E3+ALL

L49 35908 S E3,E11+NT

L50 35912 S L48,L49
 E AZIDE/CW

L51 35967 S E3,E4,L50
 E AMIDE/CT

L52 173 S L51 AND AMIDE?/CW,CT

L53 3 S L52 AND (THIO OR THIOACETIC OR THIOBENZOIC) ()ACID

L54 0 S L52 AND (THIOACETATE OR THIOBENZOATE)
L55 4 S L52 AND L6,L7,L12
L56 5 S L53,L55
E THIO/CT
E E4+ALL
L57 4 S L52 AND E2
L58 6 S L56,L57
E WILLIAMS L/AU
L59 101 S E3,E24,E25
E WILLIAMS LARRY/AU
L60 15 S E3,E9
L61 39 S E47,E55,E56
L62 1 S L52 AND L59-L61
L63 6 S L58,L62

FILE 'HCAPLUS' ENTERED AT 09:35:23 ON 02 MAY 2005

=>

kumar - 10 / 807206

Page 1

=> fil casreact