

Report on the Radio Testing

For

SigFox SA

on

Mini Base Station

Report no. TRA-027724-47-01-A 10/03/2016

RF916 3.0

Report Number: TRA-027724-47-01-A

Issue: A

REPORT ON THE RADIO TESTING OF A SigFox SA Mini Base Station SMBS-T WITH RESPECT TO SPECIFICATION FCC 47CFR 15.247 & IC RSS-247

TEST DATE: Test Date 10/01/2016

Written by: S Hogkinson S Hodgkinson Radio Test Engineer

Approved by:

J Charters

Department Manager Radio

Date: 10/03/2016

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

Ilac MRA

1 Revision Record

Issue Number	Issue Date	Revision History
Α	10/03/2016	Original

RF916 3.0 Page 3 of 61

Summary

TESTED BY:

TEST REPORT NUMBER: TRA-027724-47-01-A WORKS ORDER NUMBER TRA-027724-01 PURPOSE OF TEST: USA: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J. Canada: Testing of radio apparatus for TAC (technical acceptance certificate) per subsections 4(2) of the Radio communication Act and 21(1) of the Radio communication Regulations. TEST SPECIFICATION(S): 47CFR15.247 & RSS-247 EQUIPMENT UNDER TEST (EUT): Mini Base Station SMBS-T FCC IDENTIFIER: 2ACK7SMBST IC IDENTIFIER 12204A-SMBST **EUT SERIAL NUMBER:** Sample 1 MANUFACTURER/AGENT: SigFox SA ADDRESS: 425 Rue Jean Rostand Labège 31670 **CLIENT CONTACT:** Patrick Antoine □ patrick.antoine@sigfox.com 20150802330 **ORDER NUMBER:** TEST DATE: Test Date 10/01/2016

RF916 3.0 Page 4 of 61

S Hodgkinson

2.1 Test Summary

	Requirement Clause		Applicable	
Test Method and Description	RSS	47CFR15	to this equipment	Result / Note
Radiated spurious emissions (restricted bands of operation and cabinet radiation)	Gen, 8.10	15.205		Pass
AC power line conducted emissions	Gen, 8.8	15.207		Pass
Carrier frequency separation	247, 5.1 (2)	15.247(a)(1)	\boxtimes	Pass
Number of hopping channels	247, 5.1 (3), (4) and (5)	15.247(a)(1) (i), (ii) and (iii)		Pass
Average time of occupancy	247, 5.1 (3), (4) and (5)	15.247(a)(1) (i), (ii) and (iii)	\boxtimes	Pass
Maximum peak conducted output power	247, 5.4 (1), (2) and (3)	15.247 (a)(1), (b)(1) and (b)(2)		Pass
20dB emission bandwidth	247, 5.1 (1)	15.247(a)(1) (i) and (ii)		Pass
Out-of-band emissions	247, 5.5	15.247(d)		Pass
Unintentional Radiated Emissions	RSS-Gen issue 4(7.1)	15.107		Pass

Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF916 3.0 Page 5 of 61

3 Contents

1	Revision Record	
2	Summary	
	2.1 Test Summary	
3	Contents	
4	Introduction	
5	Test Specifications	
	5.1 Normative References	
	5.2 Deviations from Test Standards	9
6	Glossary of Terms	10
7	Equipment Under Test	11
	7.1 EUT Identification	11
	7.2 System Equipment	11
	7.3 EUT Mode of Operation	11
	7.3.1 Transmission	11
	7.3.2 Reception	11
	7.4 EUT Radio Parameters	12
	7.4.1 General	12
	7.4.2 Antennas	12
	7.4.3 Product specific declarations	13
	7.5 EUT Description	
8	Modifications	
9	EUT Test Setup	
	9.1 Block Diagram	
	9.2 General Set-up Photograph	
10		
	10.1 Normal Conditions	
11		
	11.1 Definitions	
	11.2 Test Parameters	
	11.3 Test Limit	
	11.4 Test Method	
	11.5 Test Set-up Photograph	
	11.6 Test Equipment	
	11.7 Test Results	
12		26
	12.1 Definition	26
	12.2 Test Parameters	
	12.3 Test Method	
	12.4 Test Set-up Photograph	
	12.5 Test Equipment	
	12.6 Test Results	
13		
_	13.1 Definition	
	13.2 Test Parameters	
	13.3 Test Limit.	
	13.4 Test Method	
	13.5 Test Equipment	
	13.6 Test Results	
14		
	14.1 Definition	
	14.2 Test Parameters	
	14.3 Test Limit.	
	14.4 Test Method	
	14.5 Test Equipment	
	14.6 Test Results	
15		
	15.1 Definition	
	15.2 Test Parameters	
	15.3 Test Limit.	
	15.4 Test Method	
	15.5 Test Equipment	
	15.6 Test Results	
16		
. 0	pos.: co.:dactor carpat portor	12

16.1	Definition	. 42
16.2	Test Parameters	. 42
16.3	Test Limit	. 42
16.4	Test Method	. 43
16.5	Test Equipment	. 43
16.6	Test Results	. 43
17	Occupied Bandwidth	. 44
17.1	Definition	. 44
17.2	Test Parameters	. 44
17.3	Test Limit	. 44
17.4	Test Method	. 45
17.5	Test Equipment	. 45
17.6		
18	Out-of-band and conducted spurious emissions	. 47
18.1	Definition	
18.2	Test Parameters	. 47
18.3	Test Limits	. 47
18.4		_
18.5	Test Equipment	. 48
18.6	Test Results	. 53
19	Radiated emissions – unintentional radiation / receiver emissions	
19.1	Definitions	. 54
19.2		_
19.3	Test Limit	. 54
19.4		
19.5	Test Set-up Photograph	. 55
19.6	Test Equipment	. 56
19.7	Test Results	. 57
20	Measurement Uncertainty	. 61

4 Introduction

This report TRA-027724-47-01-A presents the results of the Radio testing on a SigFox SA, Mini Base Station to specification 47CFR15 Radio Frequency Devices and RSS-247 Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment.

The testing was carried out for SigFox SA by Element, at the address(es) detailed below.

 \Box Element Hull \boxtimes **Element North West** Unit E Unit 1 South Orbital Trading Park Pendle Place **Hedon Road** Skemersdale West Lancashire Hull HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element Hull 3483A Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF916 3.0 Page 8 of 61

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- Industry Canada RSS-247, Issue 1, May 2015 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN)
- Industry Canada RSS-Gen, Issue 4, November 2014 General Requirements for Compliance of Radio Apparatus.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF916 3.0 Page 9 of 61

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

m metre max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format
Pt-mpt Point-to-multipoint

Pt-pt Point-to-point
RF Radio Frequency
RH Relative Humidity
RMS Root Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF916 3.0 Page 10 of 61

Report Number: TRA-027724-47-01-A

7 Equipment Under Test

7.1 EUT Identification

Name: Mini Base Station
Serial Number: Sample1
Model Number: SMBS-T
Software Revision: 0.0.3

Build Level / Revision Number: 1.0.0.A

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Sample No.	Description	Identification
S01	Vostro Laptop	N/A
S02	screened Ethernet cable	N/A
S04	Screened Ethernet Cable	N/A
S08	Screened Ethernet Cable	N/A
S09	POE +Gigabit	N/A
S15	Antenna CXL 900-3LW/H	N/A
S22	USB Memory Sick	N/A
S23	USB Memory Sick	N/A

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for Tx tests was as follows...

Test	Description of Operating Mode
All tests detailed in this report	EUT Transmitting a modulated carrier at top, middle or bottom frequency or hopping as required

Test	Description of Operating Mode:
PLCE	ETU hopping across all channels in either TX or RX mode.

7.3.2 Reception

The mode of operation for Rx tests was as follows...

Test	Description of Operating Mode:
Receiver conducted and radiated (ERP) spurious emissions	EUT active but non-transmitting.

RF916 3.0 Page 11 of 61

7.4 EUT Radio Parameters

7.4.1 General

Frequency of operation:	902MHz-928MHz
Occupied channel bandwidth(s):	178.044kHz
Channel spacing:	200kHz
Modulation:	DBPSK modulated
ITU emission designator(s):	180KB7D
Simplex/Duplex	Semi Duplex (TDD, No full duplex)
Declared output power(s):	Max +36 E.I.R.P
Nominal Supply Voltage:	40-45Vdc via POE
Location of notice for license exempt use:	Label / user manual / both.
Duty cycle:	2%

7.4.2 Antennas

Type:	CXL 900-3LW/h
Frequency range:	824-960MHz
Impedance:	50Ω
SWR:	≤1.5
Gain:	5 dBi
Polarisation:	Vertical
Beam width:	Half power beamwidth = 30°
Connector type:	N- Type
Length:	700mm
Weight:	660 g
Environmental limits:	-30°C - +70°C
Mounting:	On 16 to 54 mm dia mast tube

RF916 3.0 Page 12 of 61

7.4.3 Product specific declarations

Multiple antenna configuration(s), e.g. MIMO:	N/A
Fixed pt-pt operations (yes/no):	N/A
Installation manual advice on pt-pt operational restrictions (yes/no):	N/A
Fixed pt-mpt operations (yes/no):	N/A

7.5 EUT Description

The EUT is a FHSS device operating in the 902-928MHz band, The hopping scheme can be selected with software, hopping set1 or hopping set 2.

RF916 3.0 Page 13 of 61

8 Modifications

No modifications were performed during this assessment.

RF916 3.0 Page 14 of 61

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

RF916 3.0 Page 15 of 61

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

RF916 3.0 Page 16 of 61

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was approx. 40Vdc-45Vdc from the POE

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

RF916 3.0 Page 17 of 61

Report Number: TRA-027724-47-01-A

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Radio Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Channels / Frequencies Measured: Low / Mid / High

EUT Channel Bandwidths: 178kHz

Deviations From Standard: None

Measurement BW:

30 MHz to 1 GHz: 120 kHz
Above 1 GHz: 1 MHz
Up to 1 GHz: quasi-peak

Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 18 °C +15 °C to +35 °C (as declared)

Humidity: 50 % RH 20 % RH to 75 % RH (as declared)

Supply: 45Vdc Via POE (as declared)

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

RF916 3.0 Page 18 of 61

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in $dB\mu V/m$ at the regulatory distance, using:

Where.

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.

Figure i Test Setup

RF916 3.0 Page 19 of 61

11.5 Test Set-up Photograph

RF916 3.0 Page 20 of 61

11.6 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
L139	3115	1-18GHz Horn	EMCO	25/09/2015	24	25/09/2017
L352	ESVS10	Receiver	R&S	07/08/2015	12	07/08/2016
U093	CBL6112B	Bilog	Chase	17/06/2015	24	17/06/2017
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
REF940	ATS	Radio Chamber - PP	Rainford EMC	08/09/2014	24	08/09/2016
L572	8449B	Pre Amp	Agilent	16/02/2016	12	16/02/2017
U519	VHF-1500+	High Pass Filter	MiniCircuits	25/02/2015	24	25/02/2017

RF916 3.0 Page 21 of 61

11.7 Test Results

1 –Bottom Channel Radiated (30 MHz to 1 GHz).

Date: 12.FEB.2016 15:16:36

Date: 15.FEB.2016 08:57:48

2 –Bottom Channel Radiated (1 GHz to 1.5 GHz).

3 –Bottom Channel Radiated (1.5 GHz to 5 GHz).

Date: 15.FEB.2016 08:56:35

4 –Bottom Channel Radiated (5 GHz to 10 GHz).

RF916 3.0 Page 22 of 61

1 -Middle Channel Radiated (30 MHz to 1 GHz).

2 -Middle Channel Radiated (1 GHz to 1.5 GHz).

3 -Middle Channel Radiated (1.5 GHz to 5 GHz).

4 -Middle Channel Radiated (5 GHz to 10 GHz).

RF916 3.0 Page 23 of 61

1 –Top Channel Radiated (30 MHz to 1 GHz).

Date: 12.FEB.2016 15:23:19

2 –Top Channel Radiated (1 GHz to 1.5 GHz).

3 –Top Channel Radiated (1.5 GHz to 5 GHz).

Date: 15.FEB.2016 08:49:38

Date: 15.FEB.2016 09:02:59

4 –Top Channel Radiated (5 GHz to 10 GHz).

RF916 3.0 Page 24 of 61

Report Number: TRA-027724-47-01-A

	High Power; Channel: 902.2 MHz									
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (µV/m)	Limit (μV/m)
	No Significant emissions.									
		pk levels	≥1 GHz are b	pelow the ave	rage limit, the	refore averag	e values not n	neasured		

	High Power; Channel: 914.8 MHz									
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dBµV/m)	Field Strength (µV/m)	Limit (μV/m)
	No Significant emissions.									
		pk levels	≥1 GHz are b	pelow the aver	rage limit, the	refore averag	e values not n	neasured		

High Power; Channel: 927.7 MHz										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
				No Si	gnificant emis	sions.				
pk levels ≥1 GHz are below the average limit, therefore average values not measured										

RF916 3.0 Page 25 of 61

12 AC power-line conducted emissions

12.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

12.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: LF Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 6.2

EUT Channels / Frequencies Measured: Mid
EUT Channel Bandwidths: 200kHz
Deviations From Standard: None
Measurement BW: 10kHz

Measurement Detectors: Quasi-Peak and Average, RMS

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 45Vdc Via POE (as declared)

Test Limit

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 - AC Power Line Conducted Emission Limits

Frequency (MHz)	Conducted limit (dΒμV)				
(WITZ)	Quasi-Peak	Average ~			
0.15 to 0.5	66 to 56 [^]	56 to 46 ²			
0.5 to 5	56	46			
5 to 30	60	50			

^{*}The level decreases linearly with the logarithm of the frequency.

RF916 3.0 Page 26 of 61

^{**}A linear average detector is required.

12.3 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure ii Test Setup

12.4 Test Set-up Photograph

RF916 3.0 Page 27 of 61

12.5 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
UH396	ENV216	Lisn	R&S	01/07/2015	12	01/07/2016
L352	ESVS10	Receiver	R&S	07/08/2015	12	07/08/2016

RF916 3.0 Page 28 of 61

12.6 Test Results

Conducted emissions on Mains 9kHz-30MHz ESHS10 + UH396

Transmitter Mode

RF916 3.0 Page 29 of 61

Transmitter results measured using the quasi-peak detector compared to the quasi-peak limit

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
	4- 4		12.222				
0.190000	47.2	2000.0	10.000	L1	9.5	16.8	64.0
0.210000	45.3	2000.0	10.000	L1	9.5	17.9	63.2
0.555000	39.1	2000.0	10.000	L1	9.6	16.9	56.0
0.700000	38.7	2000.0	10.000	L1	9.6	17.3	56.0
1.195000	37.4	2000.0	10.000	L1	9.6	18.6	56.0
1.435000	37.4	2000.0	10.000	L1	9.6	18.6	56.0
1.690000	37.0	2000.0	10.000	L1	9.6	19.0	56.0
2.250000	36.8	2000.0	10.000	L1	9.6	19.2	56.0
20.595000	43.0	2000.0	10.000	N	9.8	17.0	60.0
20.595000	43.0	2000.0	10.000	N	9.8	17.0	60.0
21.075000	44.4	2000.0	10.000	N	9.8	15.6	60.0
21.555000	43.9	2000.0	10.000	N	9.9	16.1	60.0
21.795000	41.4	2000.0	10.000	N	9.9	18.6	60.0
22.035000	42.4	2000.0	10.000	N	9.9	17.6	60.0
22.270000	41.2	2000.0	10.000	N	9.9	18.8	60.0
22.510000	42.3	2000.0	10.000	N	9.9	17.7	60.0
22.990000	41.5	2000.0	10.000	N	9.9	18.5	60.0
23.470000	41.4	2000.0	10.000	N	9.9	18.6	60.0
24.910000	40.4	2000.0	10.000	N	9.9	19.6	60.0
25.385000	42.9	2000.0	10.000	N	9.9	17.1	60.0
25.625000	40.8	2000.0	10.000	N	9.9	19.2	60.0
26.825000	40.9	2000.0	10.000	N	9.9	19.1	60.0

Transmitter results measured using the Average detector compared to the Average limit

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
` ,	` ' '	` '	` ,		, ,	` '	` ' '
20.595000	41.6	2000.0	10.000	N	9.8	8.4	50.0
21.075000	42.7	2000.0	10.000	N	9.8	7.3	50.0
21.555000	41.9	2000.0	10.000	N	9.9	8.1	50.0
22.035000	39.7	2000.0	10.000	N	9.9	10.3	50.0
22.755000	34.8	2000.0	10.000	L1	9.8	15.2	50.0
23.230000	39.2	2000.0	10.000	N	9.9	10.8	50.0
23.710000	39.1	2000.0	10.000	N	9.9	10.9	50.0
24.190000	38.8	2000.0	10.000	N	9.9	11.2	50.0
24.430000	38.6	2000.0	10.000	N	9.9	11.4	50.0
24.670000	37.1	2000.0	10.000	N	9.9	12.9	50.0
24.910000	36.2	2000.0	10.000	N	9.9	13.8	50.0
25.150000	35.0	2000.0	10.000	L1	9.8	15.0	50.0
25.390000	34.6	2000.0	10.000	L1	9.8	15.4	50.0
25.865000	39.8	2000.0	10.000	N	9.9	10.2	50.0

RF916 3.0 Page 30 of 61

Conducted emissions on Mains 9kHz-30MHz ESHS10 + UH396

Receive Mode

RF916 3.0 Page 31 of 61

Receiver results measured using the quasi-peak detector compared to the quasi-peak limit

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.205000	43.7	2000.0	10.000	L1	9.5	19.7	63.4
0.250000	42.6	2000.0	10.000	L1	9.5	19.2	61.8
0.255000	42.5	2000.0	10.000	L1	9.5	19.1	61.6
0.325000	42.5	2000.0	10.000	L1	9.5	17.1	59.6
0.345000	42.8	2000.0	10.000	L1	9.5	16.3	59.1
0.475000	40.4	2000.0	10.000	L1	9.5	16.0	56.4
0.680000	38.9	2000.0	10.000	L1	9.6	17.1	56.0
0.890000	37.8	2000.0	10.000	L1	9.6	18.2	56.0
1.100000	37.7	2000.0	10.000	L1	9.6	18.3	56.0
1.305000	37.4	2000.0	10.000	L1	9.6	18.6	56.0

Receiver results measured using the Average detector compared to the Average limit

Frequency (MHz)	Average (dΒμV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.330000	31.4	2000.0	10.000	L1	9.5	18.0	49.5
0.335000	31.4	2000.0	10.000	L1	9.5	18.0	49.3
19.885000	31.7	2000.0	10.000	L1	9.8	18.3	50.0
21.085000	34.6	2000.0	10.000	N	9.8	15.4	50.0
21.565000	34.6	2000.0	10.000	N	9.9	15.4	50.0
22.045000	34.1	2000.0	10.000	N	9.9	15.9	50.0
22.520000	33.8	2000.0	10.000	N	9.9	16.2	50.0
23.000000	34.0	2000.0	10.000	N	9.9	16.0	50.0
23.480000	34.4	2000.0	10.000	N	9.9	15.6	50.0
23.960000	35.1	2000.0	10.000	N	9.9	14.9	50.0
24.200000	32.4	2000.0	10.000	N	9.9	17.6	50.0
24.440000	35.0	2000.0	10.000	N	9.9	15.0	50.0
24.920000	33.7	2000.0	10.000	N	9.9	16.3	50.0
25.400000	32.6	2000.0	10.000	N	9.9	17.4	50.0
25.875000	31.6	2000.0	10.000	N	9.9	18.4	50.0

RF916 3.0 Page 32 of 61

13 Carrier frequency separation

13.1 Definition

The carrier frequency separation is the frequency separation between two adjacent hopping frequencies.

13.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Radio Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.2

EUT Channels / Frequencies Measured: All; 902 to 928MHz

EUT 20dB Bandwidth: 178kHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity:32 % RH 20 % RH to 75 % RH (as declared)

Supply: 45 Vdc Via POE (as declared)

13.3 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400 to 2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

RF916 3.0 Page 33 of 61

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iii Test Setup

Date: 12.JAN.2016 16:02:59

13.5 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
UH274	Coax cable	2mtr N-Type	Trac		Cal in use	
TRLUH225	Attenuator	100W- 20dB	Spinner		Cal in use	
TRLUH112	Attenuator	75W-10dB	Bird		Cal in use	

RF916 3.0 Page 34 of 61

Report Number: TRA-027724-47-01-A

13.6 Test Results

Power setting: Max							
$F1_c$ $F2_c$ Channel Separation, $F2_c - F1_c$ (MHz) (MHz) (kHz)							
903.1069712 903.406250 299.278846 PASS							

RF916 3.0 Page 35 of 61

14 Number of hopping frequencies

14.1 Definition

The total number of hopping frequencies (the centre frequencies defined within the hopping sequence of a FHSS equipment) which are randomly sequenced in order to spread the transmission.

14.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Radio Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.3

EUT Channels / Frequencies Measured: All; 902-928 MHz

EUT 20dB Bandwidth: 178kHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity:32 % RH 20 % RH to 75 % RH (as declared)

Supply: 45 Vdc Via POE(as declared)

14.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels;
 If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz shall use at least 15 hopping channels;
- Frequency hopping systems operating in the band 5725 to 5850 MHz shall use at least 75 hopping channels.

RF916 3.0 Page 36 of 61

With the EUT setup as per section 9 of this report and connected as per Figure iv, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iv Test Setup

14.5 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
UH274	Coax cable	2mtr N-Type	Trac	Cal in use		
TRLUH225	Attenuator	100W- 20dB	Spinner	Cal in use		
TRLUH112	Attenuator	75W-10dB Bird Cal in u		Cal in use		

14.6 Test Results

The number of hopping channels observed = 50 channels in each of the hopping sets.

RF916 3.0 Page 37 of 61

Hopping set 1

Date: 12.JAN.2016 15:38:42

Hopping set 2

Date: 12.JAN.2016 15:43:01

RF916 3.0 Page 38 of 61

15 Average channel occupancy

15.1 Definition

The channel occupancy is the total of the transmitter 'on' times, during an observation period, on a particular hopping frequency.

15.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Radio Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.4

EUT Channels / Frequencies Measured: Mid
EUT 20dB bandwidth: 178kHz
EUT Number of hopping channels: 50

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 32% RH 20 % RH to 75 % RH (as declared)

Supply: 45Vdc Via POE (as declared)

15.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 second period;
 - If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10 second period;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz: The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed;
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

RF916 3.0 Page 39 of 61

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. A number of hops were observed to confirm consistency of the dwell time / observe the worst case. All modulation schemes, data rates and power settings were used to observe the worst-case configuration.

Figure v Test Setup

15.5 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
UH274	Coax cable	2mtr N-Type	Trac	Cal in use		
TRLUH225	Attenuator	100W- 20dB	Spinner	Cal in use		
TRLUH112	Attenuator	75W-10dB	Bird	Cal in use		

15.6 Test Results

Modulation: ; Power setting: Max							
Individual occupancy time (ms)	occupancy time Observation period Number of nops occupancy Result						
389.423 21 1 389.423 PASS							

RF916 3.0 Page 40 of 61

Date: 12.JAN.2016 16:10:15

Channel occupancy Time

Date: 12.JAN.2016 16:13:48

Channel repetition time

RF916 3.0 Page 41 of 61

16 Maximum peak conducted output power

16.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

16.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Radio Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.5 EUT Channels / Frequencies Measured: Low / Mid / High – hopping disabled.

EUT Channel Bandwidths: 178kHz

Deviations From Standard: None

Measurement BW: 1MHz

Spectrum Analyzer Video BW: 3MHz

Measurement Detector: Peak

Voltage Extreme Environment Test Range: Mains Power = 85 % and 115 % of Nominal (FCC only

requirement);

Battery Power = new battery.

Environmental Conditions (Normal Environment)

Temperature: 24 °C +15 °C to +35 °C (as declared)

Humidity: 23 % RH 20 % RH to 75 % RH (as declared)

16.3 Test Limit

- For frequency hopping systems operating in the band 902 to 928 MHz, the maximum peak conducted output power shall not exceed 1 W, and the e.i.r.p. shall not exceed 4 W, if the hopset uses 50 or more hopping channels;
 - the maximum peak conducted output power shall not exceed 0.25~W, and the e.i.r.p. shall not exceed 1 W, if the hopset uses less than 50 hopping channels.
- For frequency hopping systems operating in the band 2400 to 2483.5 MHz and employing at least
 hopping channels, the maximum peak conducted output power shall not exceed 1 W;
 for all other frequency hopping systems in the band, the maximum peak conducted output power shall
 not exceed 0.125 W. The e.i.r.p. shall not exceed 4 W.
- For frequency hopping systems operating in the band 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W.
- Point-to-point systems in the bands 2400-2483.5 MHz and 5725 to 5850 MHz are permitted to have an
 e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional
 antennas and not higher transmitter output powers.

RF916 3.0 Page 42 of 61

With the EUT setup as per section 9 of this report and connected as per Figure vi, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vi Test Setup

16.5 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
UH273	Coax cable	2mtr N-Type	Element	Cal in use		
UH274	Coax cable	2mtr N-Type	Element	Cal in use		
TRLUH225	Attenuator	100W- 20dB	Spinner	Cal in use		
TRLUH112	Attenuator	75W-10dB	Bird		Cal in use	
RFG441	D-3000A	Singal Generator	Agilent	08/10/2014	24	08/10/2016

16.6 Test Results

Channel Frequency (MHz)	Analyzer Level (dBm)	Maximum peak conducted output power (W)	Antenna gain (dBi)	E.I.R.P. (W)	Result
902.20	29.68	0.93	5	2.94	PASS
914.80	29.60	0.91	5	2.88	PASS
927.70	29.64	0.92	5	2.91	PASS

Highest Gain of any antenna to be used = 5 dBi

Software values used for the attenuator settings (with noise selected).

902.2MHz = 4

914.8MHz = 3

927.7MHz = 3

RF916 3.0 Page 43 of 61

17 Occupied Bandwidth

17.1 Definition

The emission bandwidth (-20 dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 20 dB below the maximum in-band spectral density of the modulated signal.

17.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Radio IAB

Test Standard and Clause: ANSI C63.10-2013, Clause 6.9

EUT Channels / Frequencies Measured: Low / Mid / High

EUT Channel Bandwidths: 178kHz

Modulation: DBPSK modulated

Deviations From Standard: None Measurement BW: 2kHz

(requirement: 1 % to 5 % OBW)

Spectrum Analyzer Video BW: 5kHz

(requirement at least 3x RBW)

Measurement Span: 550kHz

(requirement 2 to 5 times OBW)

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 45 Vdc Via POE (as declared)

17.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: The maximum allowed -20 dB bandwidth
 of the hopping channel is 500 kHz.
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The maximum -20 dB bandwidth
 of the hopping channel shall be 1 MHz

RF916 3.0 Page 44 of 61

With the EUT setup as per section 9 of this report and connected as per Figure vii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vii Test Setup

17.5 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
UH273	Coax cable	2mtr N-Type	Element	Cal in use		
TRLUH225	Attenuator	100W- 20dB	Spinner	Cal in use		
TRLUH112	Attenuator	75W-10dB	Bird Cal in use			

17.6 Test Results

	Modulation DBPSK modulated Power setting: Max								
Channel Frequency (MHz)	F _L (MHz)	F _H (MHz)	20dB Bandwidth (kHz)	Result					
902.20	902.110977	902.289022	178.044	PASS					
914.80	914.711856	914.88856	176.282	PASS					
927.70	927.611856	927.788141	176.282	PASS					

RF916 3.0 Page 45 of 61

20dB Bandwidth - 902.20 MHz

Date: 12.JAN.2016 15:30:54

20dB Bandwidth - 914.80 MHz

Date: 12.JAN.2016 15:06:22

20dB Bandwidth - 927.7 MHz

Date: 12.JAN.2016 15:05:16

RF916 3.0 Page 46 of 61

18 Out-of-band and conducted spurious emissions

18.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

18.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Radio Lab

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.8

EUT Channels / Frequencies Measured: Low / Mid / High

EUT Channel Bandwidths: 178kHz

Deviations From Standard: None

Measurement BW: 100 kHz

Spectrum Analyzer Video BW: 300kHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 30 MHz to 26.5 GHz

Environmental Conditions (Normal Environment)

Temperature:23 °C +15 °C to +35 °C (as declared)

Humidity:32 % RH 20 % RH to 75 % RH (as declared)

Supply: 45Vdc Via POE (as declared)

18.3 Test Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.

RF916 3.0 Page 47 of 61

With the EUT setup as per section 9 of this report and connected as per Figure viii, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure viii Test Setup

18.5 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
UH274	Coax cable	2mtr N-Type	Element	Cal in use		
TRLUH225	Attenuator	100W- 20dB	Spinner	Cal in use		
TRLUH112	Attenuator	75W-10dB Bird Cal i		Cal in use		

RF916 3.0 Page 48 of 61

Conducted Spurious emissions 902.2MHz

9kHz - 150kHz

150kHz to 30 MHz

Date: 12.JAN.2016 14:30:22

Date: 12.JAN.2016 14:30:48

30 MHz to 1 GHz

1 GHz to 5 GHz

Date: 12.JAN.2016 14:29:43

Date: 12.JAN.2016 14:32:17

5 GHz to 10 GHz

Date: 12.JAN.2016 14:32:37

RF916 3.0 Page 49 of 61

Conducted Spurious emissions 914.8MHz

9kHz - 150kHz

150kHz to 30 MHz

Date: 12.JAN.2016 14:43:29

Date: 12.JAN.2016 14:43:57

30 MHz to 1 GHz

1 GHz to 5 GHz

Date: 12.JAN.2016 14:42:52

Date: 12.JAN.2016 14:44:23

5 GHz to 10 GHz

Date: 12.JAN.2016 14:44:46

RF916 3.0 Page 50 of 61

Conducted Spurious emissions 927.7MHz

Date: 12.JAN.2016 14:26:17

Date: 12.JAN.2016 14:26:47

30 MHz to 1 GHz

1 GHz to 5 GHz

Date: 12.JAN.2016 14:25:36

Date: 12.JAN.2016 14:27:09

5 GHz to 10 GHz

Date: 12.JAN.2016 14:27:27

RF916 3.0 Page 51 of 61

Conducted Bandedge Compliance

Date: 12.JAN.2016 14:54:57

Lower Bandedge

Date: 12.JAN.2016 14:59:24

Upper Bandedge

RF916 3.0 Page 52 of 61

Report Number: TRA-027724-47-01-A

18.6 Test Results

The worst case conducted emission measurements at the antenna port are listed below:

902.2MHz

Ref No.	Measured Freq (MHz)	Det.	Within Restricted bands (Y/N)	Emission Level (dBc)	Limit (dBc)	Summary
1.	917.612179	Pk	N	33.93dBc	-20dBc	Pass

914.8MHz

Ref No.	Measured Freq (MHz)	Det.	Within Restricted bands (Y/N)	Emission Level (dBc)	Limit (dBc)	Summary
1.		No Emis	-20dBc	Pass		

927.7MHz

Ref No.	Measured Freq (MHz)	Det.	Within Restricted bands (Y/N)	Emission Level (dBc)	Limit (dBc)	Summary
1.	917.612179	Pk	N	32.68dBc	-20dBc	Pass

RF916 3.0 Page 53 of 61

19 Radiated emissions – unintentional radiation / receiver emissions

19.1 Definitions

Receiver spurious emissions

The radio frequency signals generated within the receiver, which may cause interference to other equipment. This includes the period during which the equipment is scanning or switching channels.

Unintentional radiator

A device that generates RF energy which is not intended to be radiated for reception by a radio receiver.

19.2 Test Parameters

Test Location: Element North West / Element Hull

Test Chamber: Radio

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Channels / Frequencies Measured: Low / Mid / High

EUT Channel Bandwidths: 178kHz

Deviations From Standard: None

Environmental Conditions (Normal Environment)

Measurement BW: 30 MHz to 1 GHz: 120 kHz

Above 1 GHz: 1 MHz Up to 1 GHz: quasi-peak

Above 1 GHz: Peak

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity:32 % RH 20 % RH to 75 % RH (as declared)

Supply:45 Vdc Via POE (as declared)

19.3 Test Limit

Measurement Detector:

Note:

Only radio communication receivers operating in stand-alone mode within the band 30 to 960 MHz, as well as scanner receivers, are subject to requirements, as described above. All other receivers are exempted from any certification, testing, labelling and reporting requirements.

However, all receivers in all frequency bands shall comply with the limits set forth in FCC 47CFR15B / IC RSS-Gen even in cases where testing, reporting and/or certification are not required.

Receiver Radiated Limits

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

RF916 3.0 Page 54 of 61

With the EUT setup as per section 9 of this report and connected as per Figure viii, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver. The EUT was rotated in three orthogonal planes and the measurement antenna height scanned (below 1 GHz, from 1 to 4 m; above 1 GHz as necessary) in order to maximise emissions.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration at each frequency. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

Figure viii Test Setup

19.5 Test Set-up Photograph

RF916 3.0 Page 55 of 61

19.6 Test Equipment

Element No	Equipment Type	Equipment Description	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
L139	3115	1-18GHz Horn	EMCO	25/09/2015	24	25/09/2017
L352	ESVS10	Receiver	R&S	07/08/2015	12	07/08/2016
U093	CBL6112B	Bilog	Chase	17/06/2015	24	17/06/2017
U281	FSU46	Spectrum Analyser	R&S	24/04/2015	12	24/04/2016
REF940	ATS	Radio Chamber - PP	Rainford EMC	08/09/2014	24	08/09/2016
L572	8449B	Pre Amp	Agilent	16/02/2016	12	16/02/2017

RF916 3.0 Page 56 of 61

19.7 Test Results

Unintentional Radiated Spurious emissions 902.2 MHz

1 –Bottom Rx Channel Radiated (30 MHz to 1 GHz).

Date: 15.FEB.2016 10:41:01

1 —Bottom Rx Channel Radiated 2 (1 GHz to 5 GHz).

3 –Bottom Rx Channel Radiated (5 GHz to 10 GHz).

Date: 15.FEB.2016 10:42:54

RF916 3.0 Page 57 of 61

Unintentional Radiated Spurious emissions 914.8 MHz

1 –Middle Rx Channel Radiated (30 MHz to 1 GHz).

Date: 15.FEB.2016 10:32:54

2 –Middle Rx Channel Radiated (1 GHz to 5 GHz).

Date: 15.FEB.2016 10:47:20

3 –Middle Rx Channel Radiated (5 GHz to 10 GHz).

RF916 3.0 Page 58 of 61

Unintentional Radiated Spurious emissions 927.7 MHz

1 –Top Rx Channel Radiated (30 MHz to 1 GHz).

Date: 15.FEB.2016 10:28:18

2 –Top Rx Channel Radiated (1 GHz to 5 GHz).

Date: 15.FEB.2016 10:48:32

3 –Top Rx Channel Radiated (5 GHz to 10 GHz).

RF916 3.0 Page 59 of 61

Ref No.	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	HP Filter	FIELD ST'GH (dBµV/m)	FIELD ST'GH (µV/m)	LIMIT (µV/m)
1	30.66	11.8	0.7	18.6	N	N	31.0	35.65	100
2	43.80	13.2	0.8	11.5	N	N	25.5	18.77	100
3	550.02	6.13	2.7	19.8	N	N	28.7	27.13	200
4	750.00	9.0	3.3	21.9	N	N	34.2	50.99	200
5	850.20	0.3	3.5	22.5	N	N	26.3	20.54	200
6	874.98	5.8	3.5	22.3	N	N	31.6	37.98	200
7	899.82	4.0	3.6	22.9	N	N	30.4	33.27	200
8	959.76	13.0	3.7	24.0	N	N	40.70	108.27	200
9	960.12	15.1	3.7	24.0	N	N	42.80	137.88	500
10	960.20	18.80	3.7	24.0	N	N	46.50	211.11	500
11	1583.96	55.72	2.5	26.0	35.30	-1.6	47.30pk	231.7	5011
12	1583.96	46.66	2.5	26.0	35.30	-1.6	38.24Av	81.70	500
13	1919.12	56.03	3.3	27.5	35.40	-0.7	50.77pk	345.5	5011
14	1919.12	46.82	3.3	27.5	35.4	-0.7	41.56Av	119.7	500
15	2400.18	54.14	3.0	28.2	35.5	-0.4	49.49pk	298.2	5011
16	2400.18	47.61	3.0	28.2	35.5	-0.4	45.65Av	140.6	500
17	2878.35	49.98	3.3	29.4	35.6	-0.4	46.73pk	217.0	5011
18	2878.35	37.66	3.3	29.4	35.6	-0.4	34.41Av	52.50	500

Radiated emissions listed above are worse case, all emissions ≥1GHz are the same frequencies

1583.96MHz

1919.12MHz

2400.18MHz

2878.35MHz

Regardless of the selected receiver frequency.

RF916 3.0 Page 60 of 61

20 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

[2] AC power line conducted emissions

Uncertainty in test result = 3.4 dB

[3] Occupied bandwidth

Uncertainty in test result = 15.5 %

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = 1.08 dB

[5] Conducted / radiated RF power out-of-band

Uncertainty in test result – up to 8.1 GHz = **3.31 dB** Uncertainty in test result – 8.1 GHz to 15.3 GHz = **4.43 dB** Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

[6] Frequency separation

Uncertainty in test result (Spectrum Analyser) = 3.6 kHz

[7] Accumulated channel occupancy time

Uncertainty in test result = 7.98 %

RF916 3.0 Page 61 of 61