

Exercises - Section 1: Lecture 2 – Yes-No Decisions and Related Constraints - Questions

For each of the following situations, create binary variables to model the yes/no decisions, and use those binary variables to model the specified expressions (you might also need to define some notation for data).

English	Math	gurobipy
1. A law office has been offered		
eight different cases, and needs to		
choose which ones among the		
eight to take on. Each case has an		
expected profit and an expected		
amount of person-time required.		
a. Create binary variables to		
model whether or not the		
office takes each case. (If		
you have done the		
previous assignment, you		
can reuse these variables.)		
b. Let w_i be a variable		
denoting the amount of		
office paper that will be		
purchased for each case i		
(up to a maximum of 10		
reams). Write a constraint		
for each case to specify		
that if the office takes the		
case, at least 2 reams of		
paper will be purchased for		
the case.		

ware mate diffe each	manufacturer wants to rent chouses in which to store raw crials before use. There are six rent locations available for rent, with a different annual rental and a different capacity.	
a. b.	Create binary variables to model whether or not the manufacturer rents each warehouse. (If you have done the previous assignment, you can reuse these variables.) Let z_i be a variable denoting the number of forklifts purchased for each warehouse i . Write a constraint for each warehouse to specify that at least f_i forklifts will be purchased for warehouse i if it is rented.	
3. A s	supermarket chain is considering	
expa	nding by placing new stores in	
	o 100 communities next year.	
	each community, the chain has	
	a model to predict annual store	
profi	ι.	
a.	Create binary variables to model whether or not the chain puts a store in each community. (If you have done the previous assignment, you can reuse these variables.)	
b.	Let f_i be a variable denoting the fraction of each new supermarket i that will hold frozen items. Each community has a specific minimum fraction of frozen-item space that would be required. Write a constraint for each community to specify that at least the minimum fraction of frozen-items space will be created in that	

community's store if the store is built.		
4. A venture capital firm is trying to		
decide which startups to invest in this	1	
month.		
month.	1	
a Create hinamuvariables to	1	
a. Create binary variables to model whether or not the	1	
	1	
firm invests in each of the		
startups.	1	
b. Write constraints to specify		
each of the following (define		
any additional notation	1	
needed for your constraints):		
i. The firm will invest in at		
most 5 new startups.		
ii. The firm will invest in at		
least 2 startups.	1	
iii. Two entertainment-		
industry startups are being		
considered for funding. The		
firm will either invest in		
both or neither, but not just		
one or the other.		
iv. Two agriculture-related		
startups are being		
considered for funding. The		
firm would like to make		
opposite decisions for them		
(either fund the first and		
not the second, or fund the		
second and not the first).		
second and not the mist).		
v. The company is considering		
four alternative energy		
startups. If the company		
invests in any of them, then		
•		
it will invest in all four.		

location in Antarctica, it

will test all of the	
locations in Antarctica.	

For each of the following mathematical or gurobipy constraints, write the corresponding English statement.

Background: As in question 5 above, an energy company has identified a number of underground and undersea locations where they believe it is likely there is a significant amount of natural gas, and they would like to select some of those locations to test next year. Assume that you have already created the binary variables in question 5 above, to model whether or not the company will test each location next year.

English	Math	gurobipy
6. No more than seven of the		
locations in Europe can be		
tested next year.		
7. At least five locations in the		
United States should be tested		
next year.		
8. The company will make		
opposite decisions (test, not		
test) for locations 17 and 46.		
9. The company will either test		
both locations in New Zealand,		
or not test either New Zealand		
location.		
10. The company will make		
opposite decisions about the		
test location in Mexico and the		
test location in Venezuela.		
11. No more than four of the		
locations tested can be in		
communist countries.		
12. At least six locations in		
North America must be tested.		
13. The company will test either		
the location in Canada or the		
location in Greenland, but not		
both.		

For each of the following sets of constraints, write the constraints and then determine whether the red constraint is implied by the other constraints. For each question, use the following variable definitions about marketing for a new product.

English	Math	gurobipy
Dollars spent on television ads in each of ten cities	$d_i \ge 0$: dollars spent on ads in city i	<pre>#VARIABLES d = m.addVars(10, type = GRB.CONTINUOUS)</pre>
Number of influencers paid on each of five social media platforms	$n_j \ge 0$ and integer: number of influencers paid on social media platform j	<pre>#VARIABLES n = m.addVars(5, type = GRB.INTEGER)</pre>
Dollars spent on influencers on each of five social media platforms	$s_j \ge 0$: dollars spent on influencers on social media platform j	<pre>#VARIABLES s = m.addVars(5, type = GRB.CONTINUOUS)</pre>
	[Note: we can't call this d_j like two rows above, because d is already used for ad spend on each city, so something like d_1 would be ambiguous: ad spend in city 1 or influencer spend on social media platform 1.]	
Dollars spent for product placement in each of ten major new movies	$p_k \ge 0$: dollars spent on product placement in movie k	<pre>#VARIABLES p = m.addVars(10, type = GRB.CONTINUOUS)</pre>
Was money spent for product placement in each of ten major new movies? (1=yes, 0=no)	$x_k \in \{0,1\}$: where $x_k = 1$ denotes that money is spent on product placement in movie k , and $x_k = 0$ denotes that money is not spent on product placement in movie k	<pre>#VARIABLES x = m.addVars(10, type = GRB.BINARY)</pre>

English	Math	gurobipy
(1) The company will spend at		
least \$1 million on television		
ads in every city.		
(2) The second of the second		
(2) The company will spend more than \$20 million total on		
product placement in movies.		
product placement in movies.		
(3) On each social media		
platform, the company cannot		
spend more than \$5 million on		
influencers.		
(4) The total money spent on		
television ads and movie		
product placement must be at		
least as much as the money		
spent on influencers.		
Implied (yes or no)?		
(1) The company will spend at		
least \$1 million on television		
ads in any city.		
(2) The second of the second		
(2) The company will spend		
more than \$20 million total on product placement in movies.		
product placement in movies.		
(3) On each social media		
platform, the company cannot		
spend more than \$10 million on		
influencers.		
(4) The total money spent on		
television ads and movie		
product placement must be		
more than the money spent on influencers.		
mindeficers.		
Implied (yes/no)?		

(1) The number of influencers	
paid on each social media	
platform can be no more than	
two.	
(2) The company wants to have	
at least as many movies with	
product placements than it has	
social media influencers.	
Implied (yes/no)?	
(1) The number of influencers	
paid on each social media	
platform can be no less than	
two.	
(2) The company wants to have	
at least as many social media	
influencers as it has movies with	
product placements.	
Implied (yes/no)?	

NOTES:		

This is an open education course, and we encourage faculty and students to use the exercises and materials included to help meet educational and instructional goals. Gurobi Optimization, LLC ("Gurobi") is the owner of the content (all right, title, and interest) of this course ("Content"). Content is not designed or intended for commercial use or for the sale of courses. Gurobi makes this Content available at no cost for educational and instructional use via faculty and student download and use of Content in courses offered at your institution/organization; provided that such use does not scale or otherwise result in the use of Content for monetary gain including in any other online course. Content is offered as-is and all risk of use resides with you. Gurobi makes no warranties or guarantees of a particular outcome and accepts no liability, direct, consequential, or otherwise, arising from the access to or use of the course and Content contained in it.