GRANICA FUNKCJI

Przykład:

Wartości funkcji y = 2x - 1 zbliżają się dowolnie do liczby 5, gdy za zmienną niezależną x podstawiamy liczby bliskie 3. Taką liczbę 5 nazwiemy granicą funkcji y = 2x - 1, gdy x dąży do 3 (z lewej lub prawej strony). Można zapisać to symbolicznie :

$$\lim_{x\to 3} (2x-1) = 5$$

Zauważmy, że w tym przypadku granica funkcji f(x)=2x-1 przy $x\rightarrow 3$, jest równocześnie wartością tej funkcji w punkcie x=3. Tak zawsze nie jest.

<u>Przykład</u>: Oblicz granicę funkcji $g(x) = \frac{(4x-12)}{x-3}$ w punkcie x = 3.

Zauważmy, że $g(x) = \frac{(4x-12)}{x-3} = \frac{4(x-3)}{x-3} = 4$ dla $x \ne 3$, a dla x = 3, g(x) nie jest

zdefiniowane. Natomiast $\lim_{x\to 3} \frac{4(x-3)}{x-3} = 4$.

Arytmetyka granic funkcji

$$\lim_{x \to 0} c = c$$

$$\lim_{x \to a} c \cdot f(x) = c \cdot \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ gdy } g(x) \neq 0 \text{ i } \lim_{x \to a} g(x) \neq 0$$

<u>Przykład</u>: Wyznacz granicę funkcji $f(x) = \frac{3x^2 - 5x - 2}{5x^2 - 20}$ przy $x \to 2$.

Łatwo zauważyć, że w punkcie x=2 funkcja nie jest określona (licznik i mianownik są zerami). Ale należy zauważyć: $3x^2-5x-2=3(x-2)(x+\frac{1}{3})$ oraz

$$5x^2 - 20 = 5(x^2 - 4) = 5(x - 2)(x + 2)$$
. Zatem

$$f(x) = \frac{3x^2 - 5x - 2}{5x^2 - 20} = \frac{3(x - 2)(x + \frac{1}{3})}{5(x - 2)(x + 2)} = \frac{3(x + \frac{1}{3})}{5(x + 2)}$$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{3x^2 - 5x - 2}{5x^2 - 20} = \lim_{x \to 2} \frac{3(x + \frac{1}{3})}{5(x + 2)} \cdot \lim_{x \to 2} \frac{(x - 2)}{(x - 2)} = \frac{7}{20} \cdot 1 = \frac{7}{20}$$

Przykład: Obliczyć granice:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^3 - 1}{x^5 - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x^4 + x^3 + x^2 + x + 1)} = \lim_{x \to 1} \frac{(x - 1)}{(x - 1)} \cdot \lim_{x \to 1} \frac{(x^2 + x + 1)}{(x^4 + x^3 + x^2 + x + 1)} = 1 \cdot \frac{3}{5} = \frac{3}{5}$$

<u>Przykład</u>: Wyznacz granicę lewo- i prawostronną funkcji $f(x) = \frac{x^3 - 1}{|x - 1|}$ w punkcie x = 1.

$$\begin{split} D_f &= \big\{ x; \ x \in \big(-\infty, 1 \big) \cup \big(1, \infty \big) \big\}. \\ \lim_{x \to 1^-} f(x) &= \lim_{x \to 1^-} \frac{x^3 - 1}{|x - 1|} = -\lim_{x \to 1^-} \frac{x^3 - 1}{x - 1} = -\lim_{x \to 1^-} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)} = -\lim_{x \to 1^-} (x^2 + x + 1) = -3 \end{split}$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{x^{3} - 1}{|x - 1|} = \lim_{x \to 1^{+}} \frac{x^{3} - 1}{|x - 1|} = \lim_{x \to 1^{+}} \frac{(x - 1)(x^{2} + x + 1)}{(x - 1)} = \lim_{x \to 1^{+}} (x^{2} + x + 1) = 3$$

<u>Przykład</u>: Wyznacz granicę $f(x) = \frac{1}{1-x^2}$ w punkcie x = 1.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1}{1 - x^2} = \lim_{x \to 1} \left[\frac{1}{1 - x} \cdot \frac{1}{1 + x} \right] = \lim_{x \to 1} \frac{1}{1 - x} \cdot \lim_{x \to 1} \frac{1}{1 + x} = \frac{1}{2} \cdot \lim_{x \to 1} \frac{1}{1 - x}.$$

$$\lim_{x \to 1^{-}} \frac{1}{1 - x} = \frac{1}{0^{+}} = +\infty$$

$$\lim_{x \to 1^+} \frac{1}{1 - x} = \frac{1}{0^-} = -\infty$$

<u>Przykład</u>: Wyznacz granicę wielomianu $w(x) = 2x^3 - 10x^2 + 15x - 18$ gdy $x \rightarrow +\infty$ lub $x \rightarrow -\infty$.

Zauważmy, że
$$w(x) = 2x^3 \left(1 - \frac{5}{x} + \frac{15}{2x^2} - \frac{9}{x^3}\right)$$
.

$$\lim_{x \to +\infty} \left(1 - \frac{5}{x} + \frac{15}{2x^2} - \frac{9}{x^3} \right) = \lim_{x \to +\infty} 1 - \lim_{x \to +\infty} \frac{5}{x} + \lim_{x \to +\infty} \frac{15}{2x^2} - \lim_{x \to +\infty} \frac{9}{x^3} = 1, \text{ natomiast } \lim_{x \to +\infty} x^3 = +\infty, \text{ a}$$

 $\lim_{x \to -\infty} x^3 = -\infty$. Zatem ostatecznie: $\lim_{x \to +\infty} w(x) = +\infty$, a $\lim_{x \to -\infty} w(x) = -\infty$.

GRANICE PODSTAWOWYCH WYRAŻEŃ NIEOZNACZONYCH

$$\infty - \infty$$
, $0 \cdot \infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$, 1^{∞} , ∞^{0} , 0^{0}

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to 0} \frac{tgx}{x} = 1$$

$$\lim_{x \to 0} \frac{a^{x} - 1}{x} = \ln a, \quad a > 0 \qquad \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\log_{a} (1 + x)}{x} = \log_{a} e, \quad 0 < a \neq 1 \qquad \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$$

$$\lim_{x \to 0} (1 + \frac{a}{x})^{x} = e^{a}, \quad a \in \mathbb{R} \qquad \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = a, \quad a \in \mathbb{R}$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

TWIERDZENIA O GRANICACH NIEWŁAŚCIWYCH

$$p + \infty = \infty \qquad -\infty
$$\frac{p}{\infty} = 0 \qquad -\infty
$$p^{\infty} = 0 \qquad 0^{+} \le p < 1 \qquad p^{\infty} = \infty \qquad 1 < p \le \infty$$

$$\infty^{q} = 0 \qquad -\infty \le q < 0 \qquad \infty^{q} = \infty \qquad 0 < q \le \infty$$$$$$

CIĄGŁOŚĆ FUNKCJI

Przykład. Korzystając z definicji, uzasadnić ciągłość funkcji $f(x) = 2x^3 - 3x + 5$.

Mamy pokazać, że
$$\bigvee_{x_0 \in R} \bigvee_{(x_n)} \left[\left(\lim_{n \to \infty} x_n = x_0 \right) \Rightarrow \left(\lim_{n \to \infty} f(x_n) = f(x_0) \right) \right]$$

Niech x_0 będzie dowolną liczbą rzeczywistą i niech (x_n) będzie dowolnym ciągiem zbieżnym do x_0 , wtedy $\lim_{n\to\infty} (2x_n^3 - 3x_n + 5) = 2(\lim_{n\to\infty} x_n)^3 - 3(\lim_{n\to\infty} x_n) + \lim_{n\to\infty} 5 = 2x_0^3 - 3x_0 + 5$.

ASYMPTOTY FUNKCJI

<u>Przykład</u>. Znaleźć asymptoty pionowe i asymptotę

pozimą funkcji
$$f(x) = \frac{1}{1 - x^2}$$
.

$$D_f = \left\{ x; \ x \in \left(-\infty, -1 \right) \cup \left(-1, 1 \right) \cup \left(1, \infty \right) \right\}$$

Ponieważ f jest parzysta, wystarczy obliczyć granice

$$\lim_{x \to 1^{-}} \frac{1}{1 - x^{2}} = \frac{1}{0^{+}} = +\infty, \lim_{x \to 1^{+}} \frac{1}{1 - x^{2}} = \frac{1}{0^{-}} = -\infty \text{ oraz}$$

$$\lim_{x \to \infty} \frac{1}{1 - x^2} = \frac{1}{-\infty} = 0$$

Z powyższego i z parzystości funkcji f wynika, że proste x=1 oraz x=-1 są asymptotami pionowymi

obustronnymi, a prosta y=0 asymptota poziomą w obu nieskończonościach.

Uwaga:

Asymptoty ukośne istnieją, jeżeli x dąży do nieskończoności i wykres funkcji f(x) dąży do pewnej prostej y=ax+b ($a\neq 0$, $a\neq \infty$, $b\neq \infty$), gdzie

$$a = \lim_{x \to \infty} \frac{f(x)}{x}$$
 i $b = \lim_{x \to \infty} [f(x) - ax]$

Prosta y=ax+b jest asymptota ukośną funkcji f(x).

$$f(x) = \frac{x}{\sqrt{x} - 2} \,.$$

Ponieważ $D_f=\{x;\;x\in [0,4)\cup (4,\infty]\}$ zatem x=0 należy do dziedziny i asymptotą pionową może być tylko x=4 .

Obliczamy granice:

$$\lim_{x \to 4^{-}} \frac{x}{\sqrt{x} - 2} = \frac{4}{0^{-}} = -\infty, \text{ oraz } \lim_{x \to 4^{+}} \frac{x}{\sqrt{x} - 2} = \frac{4}{0^{+}} = +\infty$$

Asymptotą pionową obustronną jest x = 4.

Szukamy asymptoty ukośnej.

Ponieważ dziedzina funkcji jest nieograniczona tylko z góry, więc ewentualna asymptota ukośna $y = ax + b \ (a \ne 0, \ a \ne \infty, \ b \ne \infty)$ może istnieć tylko $w + \infty$.

$$a = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{1}{\sqrt{x - 2}} = 0$$

$$b = \lim_{x \to \infty} [f(x) - ax] = \lim_{x \to \infty} \left[\frac{x}{\sqrt{x - 2}} - 0 \cdot x \right] = \lim_{x \to \infty} \frac{\sqrt{x}}{1 - \frac{2}{\sqrt{x}}} = \infty$$

Badana funkcja nie posiada asymptoty ukośnej.