(十) 图论: 树 (Trees)

魏恒峰

hfwei@nju.edu.cn

2021年05月13日

BLU-RAY" + DIGITAL 15TH ANNIVERSARY EDITION ROBIN WILLIAMS MATT DAMON ACADEMY AWARD NOMINATIONS BEST SUPPORTING ACTOR . BEST ORIGINAL SCREENPLAY

你, 真得, 看懂了吗?

Definition (Tree (树))

A tree is a connected acyclic undirected graph.

Definition (Tree (树))

A tree is a connected acyclic undirected graph.

Definition (Forest (森林))

A forest is a acyclic undirected graph.

3/38

In a tree T with ≥ 2 vertices, for a vertex v in T, if

$$\deg(v) = 1$$

then v is called a leaf; otherwise, v is an internal vertex.

In a tree T with ≥ 2 vertices, for a vertex v in T, if

$$\deg(v) = 1$$

then v is called a leaf; otherwise, v is an internal vertex.

In a tree T with ≥ 2 vertices, for a vertex v in T, if

$$\deg(v) = 1$$

then v is called a leaf; otherwise, v is an internal vertex.

Lemma

Any tree T with ≥ 2 vertices contains ≥ 1 leaf.

In a tree T with ≥ 2 vertices, for a vertex v in T, if

$$\deg(v) = 1$$

then v is called a leaf; otherwise, v is an internal vertex.

Lemma

Any tree T with ≥ 2 vertices contains ≥ 1 leaf.

Otherwise, $\forall v \in V. \deg(v) \geq 2 \implies T$ has cycles.

Any tree T with ≥ 2 vertices contains ≥ 2 leaves.

Any tree T with ≥ 2 vertices contains ≥ 2 leaves.

$$\sum_{v \in V} \deg(v) = 2n - 2$$

6/38

Any tree T with ≥ 2 vertices contains ≥ 2 leaves.

$$\sum_{v \in V} \deg(v) = 2n - 2$$

Consider the two endpoints of any maximal (nontrivial) path in T.

Any tree T with ≥ 2 vertices contains ≥ 2 leaves.

$$\sum_{v \in V} \deg(v) = 2n - 2$$

Consider the two endpoints of any maximal (nontrivial) path in T. They are leaves of T.

Deleting a leaf from a tree T with n vertices produces a tree with n-1 vertices.

Deleting a leaf from a tree T with n vertices produces a tree with n-1 vertices.

G' = G - v is connected and acyclic.

Deleting a leaf from a tree T with n vertices produces a tree with n-1 vertices.

G' = G - v is connected and acyclic.

A leaf does not belong to any paths connecting two other vertices.

An irreducible tree is a tree T where

$$\forall v \in V(T). \deg(v) \neq 2.$$

8/38

An irreducible tree is a tree T where

$$\forall v \in V(T). \deg(v) \neq 2.$$

An irreducible tree is a tree T where

$$\forall v \in V(T). \deg(v) \neq 2.$$

An irreducible tree is a tree T where

$$\forall v \in V(T). \deg(v) \neq 2.$$

Homeomorphically Irreducible Trees of size n = 10

8/38

Theorem ((We call it) Tree Theorem)

Let T be an undirected graph with n vertices.

Then the following statements are equivalent:

- (1) T is a tree;
- (2) T is acyclic, and has n-1 edges;
- (3) T is connected, and has n-1 edges;
- (4) T is connected, and each edge is a bridge;
- (5) Any two vertices of T are connected by exactly one path;
- (6) T is acyclic, but the addition of any edge creates exactly one cycle.

Definition (Spanning Tree (生成树))

A spanning tree T of an undirected graph G is a subgraph that is a tree with all vertices of G.

Definition (Spanning Tree (生成树))

A spanning tree T of an undirected graph G is a subgraph that is a tree with all vertices of G.

Definition (Subgraph (子图))

Definition (Subgraph (子图))

Definition (Induced Subgraph (诱导子图))

Theorem

Every connected undirected graph G admits a spanning tree.

Theorem

Every connected undirected graph G admits a spanning tree.

Repeatedly deleting vertices in cycles until the graph is acyclic.

Definition (Minimum Spanning Tree (MST; 最小生成树))

A minimum spanning tree T of an edge-weighted undirected graph G is a spanning tree with minimum total weight of edges.

Definition (Minimum Spanning Tree (MST; 最小生成树))

A minimum spanning tree T of an edge-weighted undirected graph G is a spanning tree with minimum total weight of edges.

Definition (Minimum Spanning Tree (MST; 最小生成树))

A minimum spanning tree T of an edge-weighted undirected graph G is a spanning tree with minimum total weight of edges.

Existence?

Uniqueness?

Algorithms?

Theorem

Every weighted connected undirected graph G admits a minimum spanning tree.

Theorem

Every weighted connected undirected graph G admits a minimum spanning tree.

Joseph Kruskal (1928 $\sim 2010)$

Robert C. Prim (1921 \sim)

Cut Property

Cut Property (Version I)

X: A part of some MST T_1 of G

 $(S, V \setminus S)$: A *cut* such that X does *not* cross $(S, V \setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Cut Property (Version I)

X: A part of some MST T_1 of G

 $(S, V \setminus S)$: A *cut* such that X does *not* cross $(S, V \setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is a part of some MST T_2 of G.

Cut Property (Version I)

X: A part of some MST T_1 of G

 $(S, V \setminus S)$: A *cut* such that X does *not* cross $(S, V \setminus S)$

e: A lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is a part of some MST T_2 of G.

Correctness of Prim's and Kruskal's algorithms.

$$T' = \underbrace{T}_{X \subseteq T} + \{e\} - \{e'\}$$
if $e \notin T$

$$T' = \underbrace{T}_{X \subseteq T} + \{e\} - \{e'\}$$
if $e \notin T$

"a" \rightarrow "the" \Longrightarrow "some" \rightarrow "all"

Cut Property (Version II)

A cut $(S, V \setminus S)$

Let e = (u, v) be <u>a</u> lightest edge across $(S, V \setminus S)$

 \exists MST T of $G: e \in T$

Cut Property (Version II)

A cut
$$(S, V \setminus S)$$

Let e = (u, v) be <u>a</u> lightest edge across $(S, V \setminus S)$

\exists MST T of $G: e \in T$

$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$

Cut Property (Version II)

A cut
$$(S, V \setminus S)$$

Let e = (u, v) be a lightest edge across $(S, V \setminus S)$

\exists MST T of $G: e \in T$

$$T' = \underbrace{T + \{e\}}_{\text{if } e \notin T} - \{e'\}$$

"a"
$$\rightarrow$$
 "the" \Longrightarrow " \exists " \rightarrow " \forall "

- ightharpoonup Let C be any cycle in G
- ▶ Let e = (u, v) be **a** maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

- \blacktriangleright Let C be any cycle in G
- ▶ Let e = (u, v) be **a** maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

$$T' = \underbrace{T - \{e\}}_{\text{if } e \in T} + \{e'\}$$

- \blacktriangleright Let C be any cycle in G
- Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

$$T' = \underbrace{T - \{e\}}_{\text{if } e \in T} + \{e'\}$$

"a"
$$\rightarrow$$
 "the" \Longrightarrow " \exists " \rightarrow " \forall "

Joseph Kruskal (1928 $\sim 2010)$

Anti-Kruskal Algorithm

 $Reverse-delete\ algorithm\ (wiki;\ clickable)$

Anti-Kruskal Algorithm

Reverse-delete algorithm (wiki; clickable)

Cycle Property

$$T \subseteq F \implies \exists T' : T' \subseteq F - \{e\}$$

Anti-Kruskal Algorithm

Reverse-delete algorithm (wiki; clickable)

Cycle Property

$$T \subseteq F \implies \exists T' : T' \subseteq F - \{e\}$$

"On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem"

— Kruskal, 1956.

Otakar Borůvka (1899 $\sim 1995)$

 $Let \ G \ be \ an \ edge\text{-}weighted \ undirected \ graph.$

If each edge has a distinct weight, then there is a unique MST of G.

Let G be an edge-weighted undirected graph. If each edge has a distinct weight, then there is a unique MST of G.

Let G be an edge-weighted undirected graph. If each edge has a distinct weight, then there is a unique MST of G.

By Contradiction.

 $\exists \ \mathrm{MSTs} \ T_1 \neq T_2$

 $Let \ G \ be \ an \ edge\text{-}weighted \ undirected \ graph.$

If each edge has a distinct weight, then there is a unique MST of G.

$$\exists \text{ MSTs } T_1 \neq T_2$$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

 $Let \ G \ be \ an \ edge\text{-}weighted \ undirected \ graph.$

If each edge has a distinct weight, then there is a unique MST of G.

$$\exists \text{ MSTs } T_1 \neq T_2$$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

$$e = \min \Delta E$$

Let G be an edge-weighted undirected graph.

If each edge has a distinct weight, then there is a unique MST of G.

$$\exists$$
 MSTs $T_1 \neq T_2$

$$\Delta E = \{ e \mid e \in T_1 \setminus T_2 \lor e \in T_2 \setminus T_1 \}$$

$$e = \min \Delta E$$

$$e \in T_1 \setminus T_2 \ (w.l.o.g)$$

$$T_2 + \{e\} \implies C$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$T_2 + \{e\} \implies C$$

$$\exists (e' \in C) \notin T_1 \implies e' \in T_2 \setminus T_1 \implies e' \in \Delta E \implies w(e') > w(e)$$

$$T' = T_2 + \{e\} - \{e'\} \implies w(T') < w(T_2)$$

Condition for Uniqueness of MST

Unique MST \implies Distinct weights

Condition for Uniqueness of MST

Unique MST \implies Distinct weights

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn