MATH-505A: Homework # 1

Due on Friday, August 29, 2014

Saket Choudhary 2170058637

Contents

rcise # 1.5	
1)	•
2)	
3)	
4)	4
5)	4
6)	4
7)	2

Exercise # 1.5

(1)

Given: A, B are independent

To Prove: $A^C, B; A^{\hat{C}}, B^C$ are independent

Since A, B are independent:

$$P(A \cap B) = P(A)(B) \tag{1}$$

Thus,

$$P(A \cap B) = (1 - P(A^C))P(B) = P(B) - P(B)P(A^C)$$
(2)

Rearranging 2:

$$P(B)P(A^C) = P(B) - P(A \cap B)$$
(3)

$$P(B) - P(A \cap B) = P(A^C \cap B) = P(A^C)P(B) \tag{4}$$

From 3 and 4 : $A^C.B$ are independent.

Similarly to prove A^C, B^C are independent, we perform substitute B^C in $P(B \cap A^C)$

(2)

 $A_{ij} = i^{th}$ and j^{th} rolls produce the same number For any $i \neq j$, total outcome are 6*6=36 and facourable outcomes are $\binom{6}{1} * 1 = 6$, thus $p(A_{ij}) = \frac{6}{36} = \frac{1}{6}$

Consider $P(A_{ij} \cap A_{kj})$, such that $i \neq j \neq k$, then:

$$P(A_{ij} \cap A_{kj}) = \frac{\binom{6}{1}*1*1}{6*6*6} = \frac{1}{36} = P(A_{ij})P(A_{kj})$$

Thu, A_{ij} are pairwise independent.

Consider:

Consider:
$$P(A_i j \cap A_j k \cap A_k l) = \frac{\binom{6}{1} * 1 * 1 * 1}{6 * 6 * 6} = \frac{1}{36} \neq P(A_{ij}) P(A_{jk}) P(A_{kl})$$
 Since $P(A_i j \cap A_j k \cap A_k l) \neq P(A_{ij}) P(A_{jk})$, it will not be true in general consider other A_{lm} .

(3)

(4)

Given: $\omega = \{1, 2, 3, ...p\}$ where p is prime. F is set of all subsets of ω ; $P(A) = \frac{|A|}{p}$ To Prove: A 'or' B is a null set or is the set omega

$$P(A) = \frac{|A|}{p}$$

$$P(B) = \frac{|B|}{p}$$

 $P(A) = \frac{|A|}{p}$ $P(B) = \frac{|B|}{p}$ Now, by definition:

$$P(A \cap B) = \frac{|A \cap B|}{p} \tag{5}$$

Since A, B are independent:

$$P(A \cap B) = P(A)P(B) = \frac{|A \cap B|}{p} = \frac{|A|}{p} \frac{|B|}{p}$$

$$\tag{6}$$

Thus:

$$p|A \cap B| = |A||B| \implies |A||B| \mod p = 0 \tag{7}$$

and $0 \le |A|, |B| \le p \implies |A|or|B| = pOR|A|, |B| = 0 \implies A,B$ are either null or full sets.

(5)

(6)

(7)

 $A = \{$ all children of same sex $\}$

 $B = \{ \text{ there is at most one boy } \}$

 $C = \{ \text{ one boy and one girl included } \}$