

RECORD NOTE BOOK

COURSE NAME :

COURSE CODE :

STUDENT NAME :

REGISTER NUMBER :

BRANCH :

YEAR :

SEMESTER :

CERTIFICATE

This is to certify that Mr.	
a student of	
bearing the register number	has been completed the recordnotebook
for the course	
as per the curriculum during the acader	mic year 2024 – 2025. The work submitted In this notebook has been
verified and found to be satisfactory.	
Year: III	Semester : VI
Laboratory/Course in-Charge	Head of the Department
(With date) Name:	(with date and seal)
Sumbitted for the Practical Examination	held on
Internal Examiner	External Examiner
(with Date)	(with Date)
Name:	Name:

INDEX

SI.NO	Date	Program Name	
01.	22/01/2025	LED Blinking by Interface with Arduino	
02.	29/01/2025	Interface and Control DC Motor with Arduino	
03.	05/02/2025	Interface Ultrasonic Sensor with Arduino and Write a Code to Calculate the Object Distance	
04.	12/03/2025	Raspberry Pi Setup and Working with Linux Commands	
05.	19/03/2025	LED Blinking by Interface with Raspberry Pi	
06.	23.03.2025	Interface and Control Servo Motor with Raspberry Pi	
07.	26/03/2025	Interface Ultrasonic Sensor with Arduino and Write a Code to Calculate the Object	
08.	02/04/2025	Basic Working with Database using Using SQLite	
09.	09/04/2025	Collecting Data from Sensor and Store it in Database using SQLite & Rasbpi	
10.	23/4/2025	Node Red Installation and Flow Creation in Node Red	
11.	23/4/2025	LED Control Using NodeRed via Rasbpi	
12.	30/4/2025	Data Acquisition from Sensor and Visualize in Node Red	
13.	30/4/2025	Creating a Dashboard in Node Red.	

LED Blinking by Interface with Arduino

Aim:

To interface LED with Arduino UNO

Software Requirement

Arduino IDE

Hardware Requirement

Arduino UNO

Source Code

```
#define MOTOR_IN1 8
#define MOTOR_IN2 9
#define MOTOR_IN3 10
void setup() {
  pinMode(MOTOR_IN1, OUTPUT);
  pinMode(MOTOR_IN2, OUTPUT);
  pinMode(MOTOR_IN3, OUTPUT);
void loop() {
// Turn on LED 1
 digitalWrite(MOTOR_IN1, HIGH);
 delay(500);
 digitalWrite(MOTOR_IN1, LOW);
// Turn on LED 2
 digitalWrite(MOTOR_IN2, HIGH);
 delay(500);
 digitalWrite(MOTOR_IN2, LOW);
// Turn on LED 3
 digitalWrite(MOTOR_IN3, HIGH);
 delay(500);
 digitalWrite(MOTOR_IN3, LOW);
```


Result:

Thus, the interface LED with arduino UNO has been successfully and verified.

Aim:

Interface & control DC motor with Arduino uno.

Software Requirement:

• Arduino UNO

Hardware Requirement

Arduino IDE

Source Code:

```
#define MOTOR_IN1 8
#define MOTOR_IN2 9
void setup() {
  pinMode(MOTOR_IN1, OUTPUT);
  pinMode(MOTOR_IN2, OUTPUT);
void loop() {
  // Rotate Right (Forward)
  digitalWrite(MOTOR_IN1, HIGH);
  digitalWrite(MOTOR_IN2, LOW);
  delay(3000); // rotate for 3 seconds
  // Stop
  digitalWrite(MOTOR_IN1, LOW);
  digitalWrite(MOTOR_IN2, LOW);
  delay(1000); // pause 1 second
  // Rotate Left (Reverse)
  digitalWrite(MOTOR_IN1, LOW);
  digitalWrite(MOTOR_IN2, HIGH);
  delay(3000); // rotate for 3 seconds
  // Stop
  digitalWrite(MOTOR_IN1, LOW);
  digitalWrite(MOTOR_IN2, LOW);
  delay(1000); // pause 1 second
```


Result:

Thus the Interface and Control DC Motor with Arduino has been successfully verified.

Exp: 03 Interface Ultrasonic Sensor with Arduino and Write a Code to Calculate Object Distance

Aim:

To interface ultrasonic sensor with Arduino uno &write a code to calculate object distance.

Software Requirement:

• Arduino IDE

Hardware Requirement:

Ardunio UNO

Source Code:

```
#define TRIG_PIN 6
#define ECHO_PIN 7
void setup() {
  pinMode(TRIG_PIN, OUTPUT);
  pinMode(ECHO_PIN, INPUT);
  Serial.begin(9600);
void loop() {
  long distance = getDistance();
  Serial.print("Distance: ");
  Serial.print(distance);
  Serial.println(" cm");
  delay(500); // Delay for readability
long getDistance() {
 // Trigger the sensor
  digitalWrite(TRIG_PIN, LOW);
  delayMicroseconds(2);
  digitalWrite(TRIG_PIN, HIGH);
  delayMicroseconds(10);
  digitalWrite(TRIG_PIN, LOW);
 // Read echo duration
  long duration = pulseIn(ECHO_PIN, HIGH);
 // Calculate distance in cm
  long distance = duration * 0.034 / 2;
  return distance;
```


Result:

Thus, the Interface Ultrasonic Sensor with Arduino and Write a Code to Calculate the Object Distance was successfully verified

Exp: 04 Raspberry Pi Setup and Working with Linux Commands

Aim:

To setup a raspberry pi os & working with linux commands

Software Requirement:

- Raspberry Pi Imager.
- SD Card Formater
- Raspbian OS

Hardware Requiement:

- Rashberry pi 4
- SD Card
- Card Reader

Steps For OS Installation:

Step 1: Gather Required Components

- Raspberry Pi board (e.g., Pi 4)
- microSD card (16GB+ recommended)
- Power supply (5V 3A USB-C for Pi 4)
- Monitor, keyboard, and mouse (or use SSH later)
- HDMI cable
- Internet connection (Ethernet or Wi-Fi)

Step 2: Flash the OS (Raspberry Pi OS)

- 1. Download Raspberry Pi Imager: https://www.raspberrypi.com/software/
- 2. Insert your microSD card into your computer.
- 3. Launch the Imager \rightarrow Choose OS \rightarrow Select *Raspberry Pi OS (64-bit).*
- 4. Choose Storage \rightarrow Select your microSD card.
- 5. Click Write. Wait for it to complete.

Step 3: First Boot

- 1. Insert the microSD card into the Raspberry Pi.
- 2. Connect monitor, keyboard, and mouse.
- 3. Power it on it will boot into the OS.
- 4. Complete the setup wizard (Wi-Fi, region, update).

Working with Linux Commands on Raspberry Pi

Basic File and Directory Commands

```
ls
cd /path
pwd
mkdir name
rm file
rm -r dir
cp a b
mv a b
```

System & Package Management

```
sudo apt update
sudo apt upgrade
sudo apt install name
sudo reboot
sudo shutdown now
```

Network Commands

```
ifconfig
ping google.com
hostname -I
```

Python and Script Execution

```
python3 script.py
chmod +x file.sh
./file.sh
```

Result:

Thus, the rasbian os is successfully installed & working with basic linux command on Rasbperry pi successfully.

Exp: 05 LED Blinking by Interface with Raspberry Pi

Aim:

To integrate LED blinking with Rasbperry Pi 4.

Software Requirement:

• Thonny IDE

Hardware Requirement:

- Rasbperry Pi 4
- LED
- Breadboard

Source Code:

```
import RPi.GPIO as GPIO
import time
# Setup GPIO
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(3, GPIO.OUT)
while True:
    print("LIGHT_ON")
    GPIO.output(3, GPIO.HIGH)
    time.sleep(1)
    print("LIGHT_OFF")
    GPIO.output(3, GPIO.LOW)
    time.sleep(1)
```

GPIO.cleanup

Result:

Thus,the integrate LED with raspberry pi has been successfully & verified.

Exp: 06 Interface and Control Servo Motor with Raspberry Pi

Aim:

To interface & control servo motor with raspberry pi.

Software Requirements:

• Thonny IDE

Hardware Requirements:

- Rasbperry Pi 4
- Servomotor
- Breadboard

Source Code:

```
import RPi.GPIO as GPIO
import time
#ervoPIN=11
GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)
GPIO.setup(11, GPIO.OUT)
p=GPIO.PWM(11,100)
p.start(0)
while True:
  p.ChangeDutyCycle(0)
  time.sleep(0.5)
  p.ChangeDutyCycle(10)
  time.sleep(0.5)
  p.ChangeDutyCycle(15)
  time.sleep(0.5)
  p.ChangeDutyCycle(20)
  time.sleep(0.5)
  p.ChangeDutyCycle(25)
  time.sleep(0.5)
  p.ChangeDutyCycle(30)
  time.sleep(0.5)
  p.ChangeDutyCycle(5)
  time.sleep(0.5)
  p.ChangeDutyCycle(0)
  time.sleep(0.5)
p.stop()
```

GPIO.cleanup()

Result:

Thus, the integrate & control servo motor in raspberry pi 4 has been successfully and verified.

Exp: 07 Interface Ultrasonic Sensor with Arduino and Write a Code to Calculate the Object

Aim:

To interface ultrasonic sensor with Arduino & calculate the object using raspberry pi

Software Requirement:

• Thonny IDE

Hardware Requirement:

- Rasbperry Pi 4
- Ultrasonic Sensor
- Breadboard

Source Code:

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)
TRIG = 31
ECHO = 18
i=0
GPIO.setup(TRIG,GPIO.OUT)#this for output from sensor
GPIO.setup(ECHO,GPIO.IN)#this for inout to sensor
GPIO.setup(TRIG,LOW)
print("calibring:")
time.sleep(2)
print("Place Object")
try:
  while True:
     GPIO.output(TRIG,HIGH)
     time.sleep(0.00001)
     GPIO.output(TRIG,LOW)
     while GPIO.input(ECHO)==0:
       pulse_start=time.time()
     while GPIO.input(ECHO)==1:
       pulese_end=time.time()
     pulse_duration=pulse_end-pulse_start
     distance=pulse_duration*17150
     distance=round(distance+1.15,2)
     if distance <=30 and distance >=5:
       print("distance:",distance,"cm")
       print("object is near")
     if distance >30 and i==1:
       print("place the object....")
       i=0
       time.sleep(2)
except KeyboardInterrupt:
     print("Measurement stopped by user")
finally:
  GPIO.cleanup()
```


Output:

```
calibring:
Place Object
distance: 15.8 cm
object is near
distance: 14.9 cm
object is near
distance: 15.1 cm
object is near
place the object....
distance: 27.4 cm
object is near
place the object....
distance: 38.7 cm
place the object....
distance: 11.4 cm
object is near
distance: 8.2 cm
object is near
place the object....
Measurement stopped by user
```

Result:

Thus the integrate ultrasonic sensor with raspberry pi & calulate the distance using sensor scuessfully.

Exp: 08 Basic Working with Database using Using SQLite

Aim:

To create database in raspberry and work with basic in SQLite.

Software Requirement:

- Thonny IDE
- DB Browser

Hardware Requirement:

Raspberry Pi 4

Source Code:

import sqlite3
import datetime
conn=sqlite3.connect("Temperature.db")
cursor=conn.cursor()
cursor.execute(""CREATE TABLE TempData(Temperature FLOAT,Time FLOAT,Status VARCHAR(10))")

cursor.execute("DROP TABLE IF EXISTS TempData")

currecntdatetime=datetime.datetime.now()

cursor.execute("INSERT INTO TempData(Temperature,Time,Status) VALUES(96.2,1.26,'Normal')") cursor.execute("INSERT INTO TempData(Temperature,Time,Status) VALUES(95.4,1.30,'Normal')") cursor.execute("INSERT INTO TempData(Temperature,Time,Status) VALUES(100.2,1.34,'Abnormal')") cursor.execute("INSERT INTO TempData(Temperature,Time,Status) VALUES(101.2,1.40,'Abnormal')") cursor.execute("INSERT INTO TempData(Temperature,Time,Status) VALUES(92.2,1.16,'Normal')")

var = cursor.execute("SELECT Temperature FROM TempData")
conn.commit()
conn.close()

Output:

	Temperature	Time	Status
	Filter	Filter	Filter
1	96.2	1.26	Normal
2	95.4	1.3	Normal
3	100.2	1.34	Abnormal
4	101.2	1.4	Abnormal
5	92.2	1.16	Normal

Result:

Thus the working with SQLite in raspberry pi and the database created successfully.

Exp: 09 Collecting Data from Sensor and Store it in Database using SQLite & Rasbpi

Aim:

To collect data from sensor & store it in databse using SQLite &raspberry pi

Software Requirement:

- Thonny IDE
- DB Browser

Hardware Requirement:

• Rasbperry Pi

Source Code:

```
import RPi.GPIO as GPIO
import time
import sqlite3
from datetime import datetime
GPIO.setmode(GPIO.BOARD)
TRIG = 31
ECHO = 18
GPIO.setup(TRIG, GPIO.OUT)
GPIO.setup(ECHO, GPIO.IN)
GPIO.output(TRIG, GPIO.LOW)
print("Calibrating...")
time.sleep(2)
print("Place Object")
def log_distance(distance):
  conn = sqlite3.connect('sensordata.db')
  c = conn.cursor()
  timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
  c.execute("INSERT INTO distances (timestamp, distance) VALUES (?, ?)", (timestamp, distance))
  conn.commit()
  conn.close()
try:
  while True:
     GPIO.output(TRIG, GPIO.HIGH)
     time.sleep(0.00001)
     GPIO.output(TRIG, GPIO.LOW)
     while GPIO.input(ECHO) == 0:
       pulse_start = time.time()
     while GPIO.input(ECHO) == 1:
       pulse_end = time.time()
     pulse_duration = pulse_end - pulse_start
     distance = round(pulse_duration * 17150 + 1.15, 2)
```

```
if 5 <= distance <= 100: # Adjust max distance as needed
    print("Distance:", distance, "cm")
    log_distance(distance)
    time.sleep(1) # Adjust sampling rate
except KeyboardInterrupt:
    print("Measurement stopped by user")
finally:
    GPIO.cleanup()</pre>
```

Output:

times	distance	
Filter		Filter
2025-05-03	10:00:01	18.46
2025-05-03	10:00:02	22.73
2025-05-03	10:00:03	15.39
2025-05-03	10:00:04	98.25
2025-05-03	10:00:05	12.81
2025-05-03	10:00:06	19.63
2025-05-03	10:00:07	24.1
2025-05-03	10:00:08	31.95
2025-05-03	10:00:09	17.42
2025-05-03	10:00:10	45.7
2025-05-03	10:00:11	5.2
2025-05-03	10:00:12	38.61
2025-05-03	10:00:13	11.48
2025-05-03	10:00:14	49.99
2025-05-03	10:00:15	29.0
2025-05-03	10:00:16	9.86
2025-05-03	10:00:17	21.55
2025-05-03	10:00:18	33.87
2025-05-03	10:00:19	14.44
2025-05-03	10:00:20	27.77

Result:

Thus the collecting data from sensor & store it in databse using SQLite &raspberry pi successfully.

Exp: 10 Node Red Installation and Flow Creation in Node Red

Aim:

To install node red installation & flow creation in node red

Software Requirement:

Node Red

Hardware Requirement:

• Rasbperry Pi

Steps:

Step 1: Install Node-RED on Raspberry Pi

bash <(curl -sL https://raw.githubusercontent.com/node-red/linux-installers/master/deb/update-nodejs-and-nodered)

Step 2: Enable and Start Node-RED

sudo systemctl enable nodered.service node-red-start

Step 3: Check the status of Node-Red

node-red-stop node-red-start

Step 4: Access Node-RED

http://127.0.0.1:1880/

Flow Diagram:

Output:

Result:

Thus, the Node Red Installation and Flow Creation in Node Red has been successfully.

Exp: 11 LED Control Using NodeRed via Rasbpi

Aim:

To control LED using NodeRed in Rasbperry Pi

Software Requiremnt:

Node-Red

Hardware Requirement:

- Rasbperry Pi
- LED
- Breadboard

Steps:

Step 1: Open Node-RED:

http://<raspberry_pi_ip>:1880

Step 2: Drag these nodes:

- Inject Node (set payload to "on")
- Inject Node (set payload to "off")
- Exec Node

Step 3: Deploy Work Flow

Flow Creation:

Select GPIO.OUT PIN NUMBER

3.3V Power - 1	2 - 5V Power
SDA1 - GPIO02 - 3 🔘	 4 - 5V Power
	○ 6 - Ground
GPI004 - 7 🥷	○ 8 - GPIO14 - TxD
Ground - 9	10 - GPIO15 - RxD
GPI017 - 11 🔾	○ 12 - GPIO18
GPIO27 - 13 🔾	14 - Ground
GPIO22 - 15 🔾	○ 16 - GPIO23
3.3V Power - 17 🔘	○ 18 - GPIO24
MOSI - GPIO10 - 19 🔘	 20 - Ground
MISO - GPIO09 - 21)	O 22 - GPIO25
SCLK - GPIO11 - 23 🔘	O 24 - GPIO8 - CE0
Ground - 25 🔾	O 26 - GPIO7 - CE1
SD - 27 🔘	28 - SC
GPIO05 - 29 🔾	 30 - Ground
GPIO06 - 31 🔾	O 32 - GPIO12
GPIO13 - 33 🔾	34 - Ground
GPIO19 - 35 🔾	○ 36 - GPIO16
GPIO26 - 37 🔾	○ 38 - GPIO20
Ground - 39	○ 40 - GPIO21

Flow Diagram:

Result:

Thus the control LED with Node-Red in Rasbperry Pi was successfully.

Exp: 12 Data Acquisition from Sensor and Visualize in Node Red

Aim:

To get data from sensor and visualize in Node red using raspberry pi

Software Requirement:

Node-Red

Hardware Requirement

Rasbperry Pi 4

Steps:

Step 1: Conect Ultrasonic Sensor with raspberry Pi 4

Step 2:

Step3:Add debug and connect

Step4:Add dashboard

Double Click on gauge and create group and add into this.

Step5: Deploy the Flow

Flow Diagram:

Output:

Result:

Thus, the data aqusition from sensor and visualize in node-red using raspberry pi was successfully.

Exp: 13

Creating a Dashboard in Node Red.

Aim:

To create dashboard in node red using raspberry pi

Software Requirement:

Node-Red

Hardware Requirement:

Rasbperry pi

Steps:

Step 1:Install Prerequiresites

Step2 : Drag & Drop Need

Step 3: Deploy The Flow:

Step4:View Dashboard: http://127.0.0.1:1880/ui

Output:

Resullt:

Thus,creating the dashboard in node red using raspberry pi has been successfully.