Graph Learning SD212 5. Heat Diffusion

Thomas Bonald

2023-2024

Motivation

Classification (semi-supervised learning)

Motivation

Contrastive ranking

Outline

- 1. Heat diffusion
- 2. Dirichlet problem
- 3. Applications
- 4. Extensions

Heat diffusion (continuous time)

Evolution of the **temperature** T_i of each node i:

$$\frac{\mathrm{d}T_i}{\mathrm{d}t} = \sum_j A_{ij} (T_j - T_i)$$

Heat equation (continuous time)

Vectorial representation:

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -\underbrace{(D-A)}_{L}T$$

Laplacian matrix

Definition

$$L = D - A$$
 with $D = diag(A1)$

Example:

$$L = \begin{bmatrix} 2 & -1 & & & -1 \\ -1 & 3 & -1 & & -1 \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 \\ -1 & -1 & & -1 & 3 \end{bmatrix}$$

Laplacian matrix

Definition

$$L = D - A$$

Properties

- Symmetric
- ► Positive semi-definite

Laplacian matrix

Definition

$$L = D - A$$

Properties

- Symmetric
- ► Positive semi-definite
- ► Discrete differential operator

$$L = \nabla^T \nabla$$

with ∇ the $m \times n$ incidence matrix of the graph

Incidence matrix

Given some arbitrary direction of the edges:

Incidence matrix

Given some arbitrary direction of the edges:

The incidence matrix applied to the vector T gives the temperature **difference** over the edges:

$$\nabla T = [T_j - T_i]_{i \to j}$$

Heat diffusion (continuous time)

Solution to the heat equation:

Heat diffusion (continuous time)

At equilibrium,

$$\frac{\mathrm{d}T}{\mathrm{d}t} = 0 \qquad \to \qquad \boxed{LT = 0}$$

This is Laplace's equation

Conservation (continuous time)

The average temperature is constant:

$$\forall t \geq 0, \quad \bar{T}(t) = \bar{T}(0)$$

where

$$\bar{T}(t) = \frac{1}{n} \sum_{i=1}^{n} T_i(t)$$

Exercise

Give the **ranking** of nodes in terms of temperatures at time $t = 0^+$ after heat diffusion in continuous time

The initial vector of temperatures is
$$T(0) = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$Hint: e^{-Lt} = I - Lt + o(t)$$

Spectral analysis

Spectral decomposition of the **Laplacian** matrix:

$$L = U \Lambda U^T$$

with $U^TU = I$, $\Lambda = diag(\lambda_1, \dots, \lambda_n)$, $\lambda_1 = 0 \le \lambda_2 \le \dots \le \lambda_n$

Convergence (continuous time)

If the graph is connected, then $0 = \lambda_1 < \lambda_2$ and the convergence is **exponential** at rate λ_2 :

$$\boxed{e^{-Lt} = Ue^{-\Lambda t}U^T \to \frac{11}{n}}$$

Heat diffusion (discrete time)

Evolution of **temperature** T_i of each node i:

$$\forall t = 0, 1, 2, \ldots \quad T_i(t+1) = (1-\alpha)T_i(t) + \frac{\alpha}{d_i} \sum_j A_{ij}T_j(t)$$

where $\alpha \in (0,1)$ is some damping factor

Heat diffusion (discrete time)

Equivalently,

$$egin{aligned} orall t = 0, 1, 2, \dots & \mathcal{T}_i(t+1) - \mathcal{T}_i(t) = rac{lpha}{d_i} \sum_j A_{ij} (\mathcal{T}_j(t) - \mathcal{T}_i(t)) \end{aligned}$$

Heat equation (discrete time)

Vectorial representation:

$$\forall t = 0, 1, 2, \dots$$
 $T(t+1) = ((1-\alpha)I + \alpha \underbrace{D^{-1}A}_{P})T(t)$

Transition matrix

Definition

$$P = D^{-1}A$$
 with $D = diag(A1)$

Example:

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Impact of damping factor

Principle: Walk with probability α , stop with probability $1 - \alpha$

New transition matrix

$$P^{(\alpha)} = (1 - \alpha)I + \alpha P$$

Example: $\alpha = \frac{1}{2}$

$$P^{(\alpha)} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{6} & & \frac{1}{6} \\ & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & & \\ \frac{1}{6} & \frac{1}{6} & & \frac{1}{6} & \frac{1}{2} \end{bmatrix}$$

Heat diffusion (discrete time)

Solution to the heat equation:

$$T(t) = ((1 - \alpha)I + \alpha P)^{t} T(0)$$

Heat diffusion (discrete time)

At equilibrium,

$$\boxed{((1-\alpha)I + \alpha P)T = T} \quad \rightarrow \quad PT = T \quad \rightarrow \quad \boxed{\nabla T = 0}$$

Conservation (discrete time)

The **weighted average** temperature is constant:

$$orall t \geq 0, \quad ilde{\mathcal{T}}(t) = ilde{\mathcal{T}}(0)$$

where

$$\tilde{T}(t) = \frac{\sum_i d_i T_i(t)}{\sum_i d_i}$$

Exercise

Give the **ranking** of nodes in terms of temperatures at time t=1 after heat diffusion in discrete time, with $\alpha=\frac{1}{2}$

The initial vector of temperatures is
$$T(0) = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Spectral analysis

Spectral decomposition of the transition matrix:

$$P = V\Gamma V^T D$$

with $V^TDV = I$, $\Gamma = \text{diag}(\gamma_1, \dots, \gamma_n)$, $\gamma_1 = 1 \ge \gamma_2 \ge \dots \ge \gamma_n$

Convergence (discrete time)

If the graph is connected and not bipartite,

 $\gamma_1=1>\gamma_2\geq\ldots\geq\gamma_n>-1$ and the convergence is **geometric** at rate $\max_{k\geq 2}|1-\alpha+\alpha\gamma_k|$:

$$((1-\alpha)I + \alpha P)^t = V((1-\alpha)I + \alpha \Gamma)^t V^T D \propto_{t\to\infty} 11^T D$$

Outline

- 1. Heat diffusion
- 2. Dirichlet problem
- 3. Applications
- 4. Extensions

Diffusion with a boundary

Heat equation with **boundary** conditions:

$$\forall i \text{ free}, \quad \frac{\mathrm{d}T_i}{\mathrm{d}t} = (LT)_i$$

Dirichlet problem

Equilibrium with **boundary** conditions:

$$\forall i \text{ free}, \quad (LT)_i = 0$$

Dirichlet problem

At equilibrium, the temperature of each free node is the **average** of the temperatures of its neighbors:

$$\forall i \text{ free}, \quad T_i = (PT)_i$$

Note: Same solution in discrete time

Exercise

Solve the Dirichlet problem with $T_1 = 0$ and $T_4 = 1$.

Random walk

Random walk

Consider a random walk starting from free node i

$$T_i = \sum_j P_{i \to j} T_j$$

where $P_{i \rightarrow j}$ is the probability to reach the boundary in j first

Regression

The solution to a **regression** problem for the **Dirichlet energy**:

$$E = \frac{1}{2}T^TLT = \frac{1}{2}||\nabla T||^2$$

Computation

Power iteration with boundary condition:

$$\forall i \text{ free}, \quad T_i \leftarrow (PT)_i$$

Outline

- 1. Heat diffusion
- 2. Dirichlet problem
- 3. Applications
- 4. Extensions

Classification

Given some nodes with **known labels**, how to **predict** the labels of the other nodes?

Binary classification

Binary classification

Binary classification by diffusion

- 1. Solve the **Dirichlet problem** with boundary given by nodes with known labels
- 2. Classify nodes by some suitable **threshold** θ

Threshold

1. Fixed threshold

$$\theta = \frac{1}{2}$$

2. Adaptive threshold

$$\theta = \bar{T} \equiv \frac{1}{n} \sum_{i=1}^{n} T_{i}$$

Exercise

Give the labels of nodes 2, 3, 5 as predicted by diffusion.

General case

General case

Classification by diffusion

- 1. Solve one Dirichlet problem **per label** (one-against-others)
- 2. Classify nodes by selecting the solution of **highest** temperature

Centering

1. Without centering

$$arg \max_{k} T_i^{(k)}$$

2. With centering

$$\boxed{ \mathop{\mathsf{arg\,max}}_k(T_i^{(k)} - \bar{T}^{(k)}) }$$

Exercise

Give the labels of nodes 2, 5 as predicted by diffusion.

Contrastive ranking

How to rank nodes in the presence of **hot** nodes and **cold** nodes? \rightarrow solution to the Dirichlet problem

Exercise

Give the ranking of nodes with 1 hot source (node 4) and 1 cold source (node 1).

Outline

- 1. Heat diffusion
- 2. Dirichlet problem
- 3. Applications
- 4. Extensions

Case of weighted graphs

Evolution of **temperature** T_i of each node i:

$$\frac{\mathrm{d}T_i}{\mathrm{d}t} = \sum_j A_{ij} (T_j - T_i)$$

Case of directed graphs

Evolution of **temperature** T_i of each node i:

$$\frac{\mathrm{d}T_i}{\mathrm{d}t} = \sum_j A_{ij} (T_j - T_i)$$

Note: Heat is propagated in backward direction

Heat equation (continuous time)

Evolution of the **vector** of temperatures:

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -(D^+ - A)T$$

Note: The temperatures of **sinks** are constant.

Case of bipartite graphs

Summary

Heat diffusion

- ► Heat diffusion $\frac{dT}{dt} = -LT$ or $T \leftarrow PT$
- ► The Dirichlet problem
- Application to classification and ranking
- ► Applicable to **weighted**, **directed** and **bipartite** graphs

