

By: Sameeha Ramadhan

Table of Contents

01 Introduction

The Goal of the Project

04 Modeling

The Models & Evaluations

02 What is Skin Cancer?

A Brief Description

05 Conclusion

Summary & Recommendations

03 The Data

Obtaining & Preprocessing

Business Problem:

To reduce diagnosis timings for doctors by building an algorithm that can read images of skin lesions and determine if it is malignant (cancerous) or benign (not).

What is Skin Cancer?

2 Main Layers

Epidermis (outer) & dermis (inner) skin

Basal

Most common

Epidermis

Is where skin cancer starts

Squamous

2nd, and can be cured like basal though costly

UV Rays

From the sun and tanning beds is the most common cause

Melanoma

3rd most common but deadliest

The Data

1 Sourced

From dermascopy.org, cancer.com, & more

2 Size

Contains over 28,000 images of skin lesions

3 Structure

Contains 2 subsets "train" & "test", each with "benign" & "malignant" folders

Distribution

Is balanced w/ a near even distribution

Augmentation

4 of the 5 models were fed augmented data

Normalization

Images were scaled to 256 colors (0-255)

04 Modeling The Models & Evaluation

Convolutional Neural Network (CNN)

4 Final Models

Out of 20 tested

Pre-trained

EfficientNet-BO and ResNet50 were included. The latter performed the best.

30 Epochs

Each has at least 30 epochs

```
▶ base model= ResNet50(include top=False, weights="imagenet", input shape=(height, width,3))
model4= Sequential()
model4.add(base model)
model4.add(Conv2D(64, (3, 3), activation = 'relu'))
model4.add(Dropout(0.2))
model4.add(Conv2D(64, (3, 3), activation = 'relu'))
model4.add(MaxPooling2D(pool size = (2, 2)))
model4.add(Dropout(0.2))
model4.add(Flatten())
model4.add(Dense(512,activation='relu'))
model4.add(Dense(256,activation='relu'))
model4.add(Dropout(0.2))
model4.add(Dense(128,activation='relu'))
model4.add(Dense(64,activation='relu'))
model4.add(Dense(32,activation='relu'))
model4.add(Dense(16,activation='relu'))
model4.add(Dense(8,activation='relu'))
model4.add(Dense(2, activation='softmax'))
model4.summary()
```

ResNet50 model architecture

Model Evaluation

Model's accuracy and loss plots

1600

1400

- 1200

- 1000

- 800

600

- 400

- 200

1 out of 9 misdiagnosed as healthy 1 in 257 misdiagnosed as cancer

Conclusion

This project has shown how to classify benign or malignant diagnosis' from a skin lesion image. This tool can assist the medical industry and patients in providing quicker diagnosis.

Recommendations

- Re-run the models on larger datasets.
- Re-run some of the models with a greater number of epochs (such as 100 or more on the ones with 30)
- Fine tune and test other parameters to reduce overfitting
- Build models for more complex problems, such as determining the types of cancers, skin diseases related to Agent Orange and more.
- Output the model to a user friendly application, preferably a web app.

shramadhan@gmail.com GitHub: @samtuleen linkedin.com/in/sameeha-ramadhan-3a1bba140