ФГБОУ ВО

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

Кафедра РЗиАЭ

Лабораторная работа №1 «АНАЛИЗ ТИПОВЫХ ЗВЕНЬЕВ АСУ»

Выполнил:	Гулов М.С.
Группа:	Э – 13м – 23
Вариант:	4
Преподаватель:	Дегтярев Д.А.

Москва 2023

Tyrob M.C. Bapuarim 4 S.P.N.I. 9-13M-23 Tregromobra KAPNI

1. Dano:

2. 1) Lezunepynomie zbene ypaneme: $y(t) = k \cdot \chi(t)$ nepogosnovna e gynnyme: W(p) = k

2) Atherwogureckoe zbeno
ypaknemie:
$$T = \frac{dy(t)}{dt} + y(t) = k \cdot x(t)$$

nepegamornae qo: $W(p) = \frac{Y(p)}{X(p)} = \frac{k}{T_P + 1}$

3) Unemeroupyousee zbeno:
ynaborence ;
$$y(t) = k \cdot \int x(t) dt + y = \frac{1}{dt} = k \cdot x(t)$$

u) ligearishoe geographenisiyesusiee zbene ypabneniee:
$$y(\xi) = k \cdot \frac{d \times (\xi)}{d \xi}$$
nepegamounal q : $W(p) = \frac{Y(p)}{X(p)} = k p$

repegamounce φ : $W(p) = \frac{Y(p)}{X(p)} = \frac{k}{P}$

5) Tearence gerepepeneus up you gee z beno:

yrabneuse:
$$T \frac{dy(t)}{dt} + y(t) = k \cdot \frac{dx(t)}{dt}$$

nepegamounae φ : $W(p) = \frac{Y(P)}{X(p)} = \frac{KP}{Tp+1}$

3. 1) heperograe x: h(1) = 4.1(1) => h = 4

uningribence x: (v (4) = 4. E(4)

AUX: A(w) = k = 4

0+1X: A(m) = 0

APX: W(jw) = 4

1 A4X: L(w) = 20/g(4)

APUX:

Hunguschene X: $\omega(t) = \frac{dh(t)}{dt} = \frac{1}{1} \cdot e^{\frac{t}{4}} \cdot 1(t)$ $\omega = 1 \quad 0.368 \quad 0.135 \quad 0.05 \quad 0.018 \quad 0.006$ $t = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$

$$A = \frac{1}{\sqrt{1^2 \omega^2 + 1}}$$

$$A = \frac{1}{\sqrt{1^2 \omega^2 + 1}}$$

$$\omega = 0 = 1 = 2 = 3 = 4 = 0$$

$$Q_{11}X: Q(\omega) = arctg(-1.\omega)$$

$$Q = 4X : Q(w) = arctg(-7.w)$$
 $Q = 0 - 0.785 - 1.107 - 1.249 - 1.326 - 1.571$
 $Q = 0 - 0.785 - 1.107 - 1.249 - 1.326 - 1.571$

3) repescognal x: h(+)= k.t

h	0	1	2	3	4	5
t	0 -	1	2	3	4	5

unyuecnal $\chi: \omega(t) = k \cdot l(t)$

$$A4X: A(w) = \frac{k}{w}$$

			200				
A	∞	1	0,5	0,333	0,25	0	
W	0	ŀ	2	3	4	P	

	11	u	O.				
W	do	- j	-j0,5	-10,333	- j 0,25	0	
w	0	1	2	3	4	∞	

$$1A4X: L(w) = 20 |gk - 20 |gw$$

 $L \sim 0 - 6.021 - 9.542 - 12.041 - 6.14.16^3$
 $w = 0 + 2 + 3 + 4 \sim$

4) repercegnal $x : h(t) = k \cdot \delta(t)$ unique enal x': $w(t) = k \cdot \delta'(t)$

AHX: A(w)= KW

A	0	1	2	3	4	0
W	O	l	2	3	4	00

- $\mathcal{P}_{4}X'$: $\mathcal{Q}(\omega) = apodg \frac{\Im \omega}{2}$

APX: W(jw)= 0+ kjw

114X: L(w) = 2019k +2019w

5) represengence x; h(t)= k.e==

7			T.	1	1	190	
h	1	0,368	0,135	0,05	0,018	6,738-10-3	
t	0	1	2	3	4	5	

International X', $co(t) = \frac{k}{T} \delta(t) - \frac{k}{T^2} \cdot e^{\frac{t}{T}} I(t)$

	0		ř.	,	1	i.	
W	-1	-0,368	-0,135	-0.05	-0,018	-6,738-10-3	
t	6	1	2	3	ч	5	

 $A4X: A(w) = \frac{kw}{\sqrt{(Tw)^2+1}}$

A	0	0,707	0,894	0,949	0,97	1		
W	O	l.	2	3	4	2		

qux: y(w) = 5 - arctg (T.w)

P	1,571	0,785	6	0,322		0	
W	0	1	2	3	4	00	

$$APX: W(j\omega) = \frac{k\omega j}{T \cdot j\omega + 1}$$

$$W \quad D \quad 0.5 + 0.5 j \quad 0.8 + 0.4 j \quad 0.9 + j0.3 \quad 0.94 + 0.23 \hat{z} j \quad 1$$

$$\omega \quad O \quad 1 - 2 \quad 3 \quad u \quad \infty$$

$$A4X: L(\omega) = 20.\log(k\omega) - 20\log(\sqrt{27} \frac{2\omega^2 + 1}{2\omega^2 + 1})$$

$$L \quad -\infty \quad -3.01 \quad -0.969 \quad -0.458 \quad -0.263 \quad \omega$$

Характеристики безынерционного звена при k = 1 и k = 2.

1) Переходная характеристика

W

4) ФЧХ

Характеристики апериодического звена при $k=1,\,T=1$ и $k=2,\,T=2.$

1) Переходная характеристика

4) ФЧХ

Характеристики интегрирующего звена при T = 3 и T = 6.

1) Переходная характеристика

4) ФЧХ

Характеристики идеального дифференцирующего звена при k=1 и k=2.

1) Переходная характеристика

4) ФЧХ

Характеристики реального дифференцирующего звена

при k = 3, T = 4 и k = 6, T = 8.

1) Переходная характеристика

2) Импульсная характеристика

3) A4X

4) ФЧХ

Вывод:

Безынерционное звено: При увеличении параметра k в два раза переходная, импульсная и AЧX характеристики увеличились в два раза. ФЧХ не изменилась, точка на AФX сместилась по действительной оси на единицу. ЛАЧХ увеличилась не пропорционально увеличению k.

Апериодическое звено: Переходная характеристика с увеличением параметров становится более ровной. У импульсной характеристики такие же изменения, как и у переходной. АЧХ и ФЧХ с увеличением параметров в 2 раза имеют резкий спад в начале. АФЧХ увеличила высоту по мнимой оси. ЛАЧХ не изменилось.

Интегрирующее звено: Произошло уменьшение угла наклона переходной характеристики. Импульсная уменьшилась в два раза. АЧХ более стремительнее

падает. ФЧХ остались без изменений. АФЧХ уменьшилась в два раза по мнимой оси. ЛАЧХ стала более стремительно приближаться к нулю в начале.

Идеальное дифференцирующее звено: Переходная и импульсная характеристика увеличились в два раза. У АЧХ уменьшился угол наклона. ФЧХ осталась без изменений. АФЧХ увеличилась в два раза по мнимой оси. ЛАЧХ стала более резко подниматься при малых значениях ω.

Реальное дифференцирующее звено: Переходная и импульсная характеристики с увеличением параметров стали выравниваться. АЧХ быстрее достигает установившегося значения, как и ФЧХ. АФЧХ при одновременном увеличении параметров не меняется, но если их увеличивать по отдельности, то характеристика будет сужаться или вытягиваться. ЛАЧХ стала быстрее приходить в установившийся режим.