

CharAnimation: mocap VS physique

- Mocap
 - + Réalisme
 - Réalisme pour 1 animation
 - Système lourd
 - Edition fastidieuse (souvent intervention humaine)
- Animation physique
 - +Tout automatique
 - Tout automatique
 - → Mélanger les deux!!

MD 2

(Parenthèse : physique -cf. cours Fzara-

- Particule = 1 point animé
 - P = position = $(X(t), Y(t), Z(t)) = (X_t, Y_t, Z_t)$ au temps précédent $(X_{t-\Delta t}, Y_{t-\Delta t}, Z_{t-\Delta t})$ sous entendu temps suivant = $t+\Delta t$
 - V = vitesse = dP/dt

$$V_{t} = \frac{dP}{dt} = \lim_{\Delta t \to 0} \frac{\Delta P}{\Delta t} \approx \frac{P_{t} - P_{t - \Delta t}}{\Delta t}$$

MOR 3

Euler explicite

Particule = 1 point animé

A = accélération = dV/dt

$$\begin{split} A_t &= \frac{dV}{dt} = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} \\ &\approx \frac{V_t - V_{t - \Delta t}}{\Delta t} \\ &\approx \frac{P_t - P_{t - \Delta t} - (P_{t - \Delta t} - P_{t - 2\Delta t})}{\Delta t^2} \\ &\approx \frac{P_t - 2P_{t - \Delta t} + P_{t - 2\Delta t}}{\Delta t^2} \end{split}$$

MOR

Euler explicite

 En connaissant la position au 2 temps précédents,

$$\sum F = F = mA$$

$$A_{t} \approx \frac{P_{t} - 2P_{t-\Delta t} + P_{t-2\Delta t}}{\Delta t^{2}}$$

$$donc \Rightarrow P_{t} = \Delta t^{2} \times \frac{F}{m} + 2P_{t-\Delta t} - P_{t-2\Delta t}$$

12R 5

Euler explicite

- Approximation de A et V
 - Mise à jour suit la tangente
 - Pour être stable Δt doit être petit

M2R

Système masse-ressort Sommet = particles, arêtes = ressort Continuous object Discrete model Particle neighborhood Simple mais paramètres difficiles à régler

Position Based Dynamics

Développeur de NVIDIA Physics http://matthias-mueller-fischer.ch/

Mise à jour de V :

$$m\frac{dV}{dt} = F$$

$$m\frac{V_t - V_{t-\Delta t}}{\Delta t} = F$$

Puis mise à jour de P : $\frac{dP}{dt}$

$$\frac{dt}{\frac{P_t - P_{t - \Delta t}}{\Delta t}} = V$$

Variant: leap-frog, Stoermer-Verlet

$$P_{t} = P_{t-\Delta t} + \Delta t \times V_{t}$$

```
Position Based Dynamics

http://matthias-mueller-fischer.ch/

| Magorithm 1 Position-based dynamics | 1: for all vertices i do | 2: initialize x_i = x_i^0, v_i = 1/m_i | 3: end for | 4: loop | 5: for all vertices i do v_i \leftarrow v_i + \Delta t w_i t_{ext}(x_i) | 6: for all vertices i do v_i \leftarrow v_i + \Delta t w_i | 7: for all vertices i do genCollConstraints(x_i \rightarrow p_i) | 8: loop solverlieration times | 9: projectConstraints(x_i \rightarrow p_i) | 10: end loop | 11: for all vertices i do | 12: v_i \leftarrow (p_i - x_i)/\Delta t | 13: v_i \leftarrow p_i | 14: end for | 15: velocityUpdate(v_1, \dots, v_N) | 16: end loop
```

Contraintes, collisions

Exemple : sol en Y=0 y<0 ?

- → Différentes solutions
 - Appliquer la force F_{sol} de réaction du sol proportionnelle à la distance sous le sol
 - Autorise la pénétration sous le sol mais la force va corriger le tissus au pas de temps suivant
- OU

Avec ΣF =ma on a équivalence entre F et déplacement

onnelle à la a corriger le tissus

Collisions avec retour arrière

- Détection d'une collision puis
 - Revenir en arrière au moment de la collision
 - Puis calcul de la mise à jour de V : $\Delta V = -(V.n)n$
 - = Applique un coefficient r de rebond : $V += (1+r). \Delta V$
- Problème : assez lourd de revenir en arrière quand les 2 objets sont en mouvements

Sur la figure P=q et V= q

Collisions

- Détection d'une collision puis
 - Mise à jour de P : ΔP = 2 x vecteur entre P' et le sol (symétrique de P' par rapport au sol)
 - Applique un coefficient r de rebond : P+=(1+r) ΔP
 - Mise à jour de V : symétrique par rapport au sol

+ Résolutions simultanées des collisions de tous les objets en même temps₂R

Collisions

 Cas limite de détection de collision avec pas de temps discret

Solide rigide

- Idem point
 - Physique du point : ∑F=ma
- + orientation (rotation)
 - ΣL=I.ω
 - Somme des moments des forces extérieurs = moment d'inertie du solide * Accélération angulaire

Remarque: Un mouvement au sens le plus général peut être considéré à chaque instant comme la superposition d'une translation et d'une rotation autour d'un axe.(par exemple le mouvement d'une bille sur un plan incliné) Pour résoudre les équations du mouvement, les 2 équations si dessus sont nécessaires

Fin de parenthèse : physique)

MOD 20

Ragdoll = poupée désarticulée

- Poupée désarticulée
 - Corps = ensemble de membres + articulation
 - Membre = solide rigide (cube, capsule, etc.)
 - Articulation = contrainte de liaison entre les membres
- Vidéo
- Ou démo Bullet
 - http://bulletphysics.org/

Ragdoll = poupée désarticulée

- Articulation = contraintes
- Membre = solide rigide animé

Physique : Newton + contraintes

- Un cycle de calcul physique =
 - Equation physique sur chaque partie du corps
 - Newton : ∑F=ma et ∑L=I.w
 - Résolution des contraintes
 - Connexion des articulations
 - →pour ragdoll globalement 2 méthodes :

Featherstone, R. (1987). Robot Dynamics Algorithms. Kluwer. $\underline{\sf ISBN}$ 0-89838-230-0.

ou

D. Baraff. Linear-time dynamics using Lagrange multipliers. SIGGRAPH 1996

DR 23

MoCap/Physique : graphe d'animation Graphe d'animation + physique Comporte des nœuds de sortie vers la physique Utilisable seulement dans certains cas Chute, coups, ...

Problème : trouver cette flèche pour réentrer dans le graphe

MoCap/Physique: graphe d'animation

- Graphe d'animation + physique
 - Problème : rentrer dans le graphe après la physique
 - → Anticiper quelques frames de physique et chercher les similitudes de positions
 - → Ajouter des forces « virtuelles » sur les articulations pour les diriger vers une position du graphe
 - → Demande un graphe de MoCap bien remplit avec des séquences pour se relever, rouler, etc.

VIDEO

MoCap/Physique : graphe d'animation

- Forces « virtuelles »
 - Amener chaque articulation vers l'angle désiré
 - Proportional-derivative (PD) control

$$\tau = k_p(\theta_d - \theta) - k_d \dot{\theta}$$

Respond to changes. Damp

R 26

Encore plus loin: tout physique

- Objectifs
 - Animations plus réalistes/réactives : poids, fatigue, etc.
 - Editer les effets physiques : changer gravité, etc.
- Principe
 - On part d'un ragdoll et on essaie de lui donner un contrôle moteur = un « cerveau » dédié à l'animation
 - Un graphe d'animation peu jouer le rôle de « mémoire » de mouvements
- Problèmes
 - Contrôle de l'équilibre (balance control strategy)
 - Combiner le mouvement entre la mocap et le réactif

· ···

//2R 2

Encore plus loin: tout physique

- Domaine de recherche
 - SIMBICON (SIMple Blped CONtroler) 2007
 - A bien relancé l'idée en recherche CG

- Idée très présente en robotique
 - incompatibilité entre mocap humaine et robot
 - Avec des problèmes supplémentaires
 - Contrôle/Réactivité des moteurs

Stratégie : contrôle de l'équilibre

- Stratégie qui semble marcher [мzso9,JYL09]
 - Optimisation + machine à état
 - → Problème complexe à l'état de recherche
- Optimisation : Fonction = stabilité
 - Projection du centre de gravité sur le sol
 - Comparer à la position des pieds
 - → Fournir une fonction indicateur de stabilité
 - Dépend des angles entre chaque articulation
 - → Non linéaire (demande des méthodes d'optimisation adaptée)

- Stratégie qui semble marcher [MZS09,JYL09]
 - Optimisation + machine à état
 - → Problème complexe à l'état de recherche
- Machine à état
 - 2 pieds au sol
 - Optimisation de la position des bras et du buste pour maintenir l'équilibre
 - Lève un pied
 - Optimisation des bras, du buste et de la jambe
 - Etc.
- VIDEO

Equation de Saint-Venant : intuitif

Equations de Saint-Venant (Shallow Water)

$$\frac{\partial \eta}{\partial t} + (\nabla \eta) \mathbf{v} = -\eta \nabla \cdot \mathbf{v} \qquad (1) \text{ avec } \nabla \cdot \mathbf{A} = \operatorname{div} \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
$$\frac{\partial \mathbf{v}}{\partial t} + (\nabla \mathbf{v}) \mathbf{v} = a_n \nabla h , \qquad (2)$$

- a_n: accélération verticale du fluide (gravité)=9.81
- (1) s'occupe de la variation de quantité d'eau
- (2) s'occupe de la variation de la vitesse
- Partie gauche : calculer par advection

L'advection correspond au transport d'une quantité (scalaire ou vectorielle) par un champ vectoriel.

M2R

Equation de Saint-Venant

Equation de Saint-Venant (Shallow Water)

$$\begin{split} &\partial \eta / \partial t + (\nabla \eta) \mathbf{v} = -\eta \nabla \cdot \mathbf{v} & (1) \\ &\partial v_1 / \partial t + (\nabla v_1) \mathbf{v} = a_n \nabla h & (2) \\ &\partial v_2 / \partial t + (\nabla v_2) \mathbf{v} = a_n \nabla h \;. & (3) \end{split}$$

Partie gauche: calculer par advection

```
Advect(s, v)

(1) for j = 1 to n_2 - 1

(2) for i = 1 to n_1 - 1

(3) \mathbf{x} = (i \cdot \Delta x, j \cdot \Delta x) transport d'une quantité

(4) \mathbf{x}' = \mathbf{x} - \Delta t \cdot \mathbf{v}(\mathbf{x}) (scalaire ou vectorielle)

(5) \mathbf{s}'(i, j) = \text{interpolate}(\mathbf{s}, \mathbf{x}') par un champ vectoriel.

(6) endfor

(7) endfor

(8) return(\mathbf{s}')
```

Equation de Saint-Venant : intuitif

Equations de Saint-Venant (Shallow Water)

$$\frac{\partial \eta}{\partial t} + (\nabla \eta) \mathbf{v} = -\eta \nabla \cdot \mathbf{v}$$
 (1)
$$\frac{\partial \mathbf{v}}{\partial t} + (\nabla \mathbf{v}) \mathbf{v} = a_n \nabla h ,$$
 (2)

- (1) correspond à la variation de quantité d'eau
 - Variation de la quantité d'eau = dn/dt = -n∇.v = en fonction du champ de vitesse, on fait le bilan des arrivées des départs en eau
 - Si plus d'eau part, que d'eau arrive (∇.v>0), ca descend.
 - Et inversement.

MOR 39

Equation de Saint-Venant

Equation de Saint-Venant (Shallow Water)

$$\begin{split} \partial \eta / \partial t + (\nabla \eta) \mathbf{v} &= -\eta \nabla \cdot \mathbf{v} \\ \partial v_1 / \partial t + (\nabla v_1) \mathbf{v} &= a_n \nabla h \end{split} \tag{2} \\ \partial v_2 / \partial t + (\nabla v_2) \mathbf{v} &= a_n \nabla h \end{aligned} \tag{3}$$

- Partie gauche : calculer par advection
- (1) donne variation de n donc n' = $n n \nabla v$

```
 \begin{array}{ll} \textit{Update-height}(\eta, \mathbf{v}) \\ (1) & \text{for } j = 1 \text{ to } n_2 - 1 \\ (2) & \text{for } i = 1 \text{ to } n_1 - 1 \\ (3) & \eta(i,j) - = \eta(i,j) \cdot \left( \frac{(v_1(i+1,j) - v_1(i,j))}{\Delta x} + \frac{(v_2(i,j+1) - v_2(i,j))}{\Delta x} \right) \Delta t \\ (5) & \text{endfor} \\ (6) & \text{endfor} \\ (7) & \text{return}(\eta') \end{array}
```

Equation de Saint-Venant : intuitif

Equations de Saint-Venant (Shallow Water)

$$\frac{\partial \eta}{\partial t} + (\nabla \eta) \mathbf{v} = -\eta \nabla \cdot \mathbf{v}$$
(1)
$$\frac{\partial \mathbf{v}}{\partial t} + (\nabla \mathbf{v}) \mathbf{v} = a_n \nabla h ,$$
(2)

- (2) correspond à : $m.a = m.dv/dt = \sum F$
 - Ici F=a∇h
 - le fluide subit une force dans la direction : de plus d'eau vers moins d'eau

Partie gauche : calculer par advection

Equation de Saint-Venant

= (2)(3) donnent variation de v donc (1) for $u_1 = v_1 = v_1 + a_n \nabla h_1$ avec $\nabla h_1 = dh/dx$ (2) for $u_2 = v_2 + a_n \nabla h_2$ avec $\nabla h_2 = dh/dy$ (6) end (8) for $u_2 = v_3 + a_n \nabla h_2$ (9) for $u_3 = v_3 + a_n \nabla h_3$ (9) $u_3 = v_3 + a_n \nabla h_3$ (10) $u_3 = v_3 + a_n \nabla$

Equation de Saint-Venant (Shallow Water)

 $\partial \eta / \partial t + (\nabla \eta) \mathbf{v} = -\eta \nabla \cdot \mathbf{v}$ $\partial v_1 / \partial t + (\nabla v_1) \mathbf{v} = a_n \nabla h$

 $\partial v_2/\partial t + (\nabla v_2)\mathbf{v} = a_n \nabla h .$

(2)

7

Saint-Venant : intégration

- Shallow-water-step(h,v,g)
 - (1) n = Advect(n,v)
 - (2) v1 = Advect(v1,v)
 - (3) v2 = Advect(v2,v)
 - (4) n' = Update-height(n,v)
 - (5) h = n'+g
 - (6) Update-velocities(h,v1,v2)
 - (7) n=n'

MOD (

OpenCL (wikipedia)

- OpenCL (Open Computing Language) est la combinaison d'une API et d'un langage de programmation dérivé du C, proposé comme un standard ouvert par le Khronos Group.
- OpenCL est conçu pour programmer des systèmes parallèles hétérogènes comprenant par exemple à la fois un CPU multi-cœur et un GPU.
- OpenCL propose donc un modèle de programmation se situant à l'intersection naissante entre le monde des <u>CPU</u> et des <u>GPU</u>, les premiers étant de plus en plus parallèles, les seconds étant de plus en plus programmables.

//2R 44

OpenCL

- OpenCL can accelerate code by a factor 10 or more
- OpenCL is an open standard
- OpenCL can help save power
- OpenCL can save you hardware cost
- OpenCL adoption is ramping up rapidly
- OpenCL may be used as the basis for generating custom hardware
- The OpenCL C99 language is based on C
- OpenCL can be used from a variety of host languages
- It is easy to start with OpenCL
- OpenCL is platform independent

http://www.amdahlsoftware.com/ten-reasons-why-we-love-opencl-and-why-you-might-too/

OpenGL / OpenCL : le TP

- Le code de départ
 - Carte de hauteur dans une texture 2D (GL)
 - Affichage GL avec un vertex shader
 - Vertex.glsl
 - kernel OpenCL modifie la texture
 - Texture 2D = vu comme une 'image2d'
 - CLWater.cl
 - Kernel = fonction appelée sur chaque case du tableau

/2R 4

OpenCL: un kernel

OpenCL: l'appel

 $clSetKernelArg(\ m_kernelShallowWater,\ 0,\ sizeof(Dim),\ (void^*)\&Dim); \\ clSetKernelArg(\ m_kernelShallowWater,\ 1,\ sizeof(D0),\ (void^*)\&D0); \\$

const size_t localWorkSize[] = { LocalWorkSize, LocalWorkSize };
const size_t globalWorkSize[] = { Dim, Dim };

cl_uint workDim = 2;

clEnqueueNDRangeKernel (m_queue, m_kernelShallowWaterInit, workDim, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);

M2R 48

TP animation physique de personnage avec BulletPhysics

TP

- Combiner MoCap et Ragdoll
 - Utiliser Bullet pour la physique
- Regardez le fichier Ragdoll.h/.cpp
 - Ce ragdoll doit avoir la même configuration que le squelette de la MoCap
 - Pour l'instant, c'est un squelette avec 2 membres (bras, avant-bras) qui sont entrés en dur.

2R 50

TP: Lib BulletPhysics

- Le monde physique gérés par la lib
 - btDynamicsWorld* m_dynamicsWorld;
- →Les objets physiques doivent y être ajoutés
- Dans le TP, il y a une class CAPhysics qui s'occupe du monde physique de Bullet avec
 - computePhysics() : calcul la physique depuis le dernier appel
 - renderPhysics(): affiche les objets physiques, appuyer sur 'P' dans le viewer pour les afficher
 - createRigidBody(...): ajoute un objet rigide dans le monde physique et renvoie un pointeur dessus

M2R 51

TP: Lib BulletPhysics

- Ragdoll = ensemble de
 - vector
btRigidBody*> m_bodies;
 - Solides rigides
 - vector<btCollisionShape*> m_shapes;
 - Les formes pour les collisions (optionnel)
 - vector<btTypedConstraint* > m jointsConstraint;
 - Les articulations

//2R 5

TP: Lib BulletPhysics

- Bullet gère les transformations
 - btTransform transform;
 - Rotation + translation
 - Construit avec un quaternion + un vecteurbtTransform t(q, v)
 - Construit avec une matrice 3x3 + vecteur*

...

Toutes les fonctions dont vous avez besoin sont disponibles ...

R 53

TP: Lib BulletPhysics

- Créer un corps solide btRigidBody
 - Utiliser la fonction de CAPhysics btRigidBody* CAPhysics::createRigidBody(float mass, const btTransform& startTransform, btCollisionShape* shapeForCollision)
- Créer une forme pour les collisions new btCapsuleShape(rayon, hauteur);

M2R 54

TP: Lib BulletPhysics

Créer une articulation

- coneC = new btConeTwistConstraint(A, B, localA, localB);

 A et B sont des btRigidBody

 localA et localB sont des btTransform relatif à au repère local du btRigidBody
- Articulation avec des contraintes en forme de Cone
- Il existe d'autres types d'articulation
 - btHingeConstraint : mouvement dans le plan type doude
- Ne pas oublier d'ajouter les articulations au monde physique
 - m_physics.getDynamicsWorld()->addConstraint(coneC, true);
 - rue pour ne pas calculer de colision entre 2 btRigidBody relié par l'articulation

TP : Lib BulletPhysics

Regardez les 2 exemples dans CARagdoll.h