

ITCS451 Artificial Intelligence

Project 1: TwitterMental

Team member

Pitchaporn	Songprakob	6288045
Kanpitcha	Assawavinijkulchai	6288064
Intr-orn	Lertsupakitsin	6288089

Faculty of Information and Communication Technology Mahidol University

Description

1. What is TwitterMental?

TwitterMental aims to determine Thai Tweets which emotion is expressed and related to mental health using supervised learning. Our focus is to categorize the message(input) into either suicidal or non-suicidal classes. The application of this model will advantage for detecting people who are at risk of self-suicide on social-media, and then give them emcourage content or filter dismal content out of their feed. For our job in this project, we only learn to do model selection, training, testing, evaluation, and error analysis which means the best model is the final outcome.

2. What is our dataset we have?

Dataset that we use to train and test models is messages from Twitter in Thai language without sentiment labels either suicidal or non-suicidal. We have 3 datasets in CSV format that we need to manually label.

3. What Machine Learning Algorithms will be used?

- a. Multinomial Naive Bayes
- b. Logistic Regression
- c. Support Vector Machine

4. Dataset files

3 unlabeled datasets suicidal 1.csv suicidal 1 labeled.csv suicidal 1 labeled balanced.csv suicidal: 300 texts suicidal: 60 texts suicidal: 60 texts non-suicidal: 300 texts non-suicidal: 296 texts non-suicidal: 73 texts manally balance assemble label dataset suicidal_2_labeled_balanced.csv suicidal_2.csv suicidal_2_labeled.csv suicidal_labeled_all.csv suicidal: 41 texts suicidal: 300 texts suicidal: 41 texts suicidal: 128 texts non-suicidal: 300 texts non-suicidal: 298 texts non-suicidal: 50 texts non-suicidal: 156 texts suicidal 3.csv suicidal 3 labeled.csv suicidal 3 labeled balanced.csv suicidal: 300 texts suicidal: 27 texts suicidal: 27 texts non-suicidal: 300 texts non-suicidal: 273 texts non-suicidal: 33 texts

Implementation Plan

To implement the model for this project, we need to complete the following process:

1. Dataset Preparation

We obtain 3 unlabeled datasets, each of which contains 300 data with keyword "ฆ่าตัวตาย" representing suicidal class and 300 data with keyword "ดีใจ" representing non-suicidal class.

เวลาอ่านข่าวคนฆ่าตัวตายทั้งที่ไม่ได้รู้จักกันว่าน่าเศร้าแล้วนะ แต่พอมาเจอกับคนที่รู้จักมันเศร้า มันดิ่งไปเลย	unclassifiable	FALSE	Suicidal
ไม่ชอบการพาดหัวข่าวหรืออ่านข่าวที่เรียกคนฆ่าตัวตาย ว่า "คนคิดสั้น"อ่ะ คือมนุษย์แม่งเป็น สัตว์ที่มีกลไกป้องกันตัวเองจากการตายเยอะมากๆ เพราะงั้นการตัดสินใจจบชีวิตของใครสักคน คือเค้าต้องคิดมาดีแล้ว หรือหมดหนทางแล้วจริงๆ	unclassifiable	FALSE	Suicidal
ชอนอสร้างโอเพ่นแชททำไม เพื่อฆ่าดัวตายหรอ หวานใจสินปินเข้ามาแล้ว กุไม่มีใคร.	unclassifiable	FALSE	Suicidal
แล้วยิ่งฝั่งไบร์ทคลาวเมาท์เทนอ่ะมึง สิ้นหวังเหี้ยๆ สิ้นหวังแบบอยากฆ่าตัวตายตรงนั้น ฟังแล้ว จิตใจกูตกต่ำขั้นสุด โอยกูแบบว่า เลี่ยงได้เลี่ยงจ่ะสถานที่นั้น อย่า หา ไป	unclassifiable	FALSE	Suicidal
กว่าจะเปิดประชบอีกคือ เด็กฆ่าตัวตายหมดละ	unclassifiable	FALSE	Suicidal
ยิ่งเราเป็นโรคซึ่มเศร้าด้วย เราคิดอยากจะฆ่าตัวตายตลอด ไม่มีใครเข้าใจเราเลย เราอยากมีคนที่ รับฟังเราปรึกษาบ้าง	unclassifiable	FALSE	Suicidal
สุดท้ายก็มีแค่กู ที่ต้องช่วยเหลือตัวเองตอนมีปัญหา ทำไมไม่มีใครยื่นมือมาช่วยอะไรกูบ้างตอนกู แย่ แล้วทำไมเวลาคนอื่นเดือนร้อน กูถึงช่วยเหลือได้ แต่กูกลับไม่มีใครเลยสักคนที่อยากมาช่วย กู ทรมาน จะตายได้เมื่อไร หรือเมื่อทีาไม่ไหว ก็ ต้องฆ่าตัวตาย สินะ สุดท้ายมันก็มีแค่นี้ ตาย	unclassifiable	FALSE	Suicidal

Some samples representing suicidal class

unclassifiable	FALSE	Non-Suicida
unclassifiable	FALSE	I Non-Suicida
unclassifiable	FALSE	I Non-Suida
unclassifiable	FALSE	I Non-Sucida
		i i kini-shirina
		Non-Suicidal
unclassifiable	FALSE	
unclassifiable	FALSE	I Non-Suicida
		T North-Still that
unclassifiable	FALSE	Non-Suicidal
		Non-Suicidal
unclassifiable	FALSE	
unclassifiable	FALSE	I I Non-Suicida
unclassifiable	FALSE	I Non-Sueda
	unclassifiable unclassifiable unclassifiable unclassifiable unclassifiable unclassifiable unclassifiable	unclassifiable FALSE

Some samples representing non-suicidal class

Then, we manually label the whole samples of each dataset based on the criteria "the samples should be labeled as suicidal class if and only if context of a message shows the sign of suicide of the message owner.". We did the same method with labeling non-suicidal, but it is more easier due to none of samples are completely not related to suicide. This leads to an unbalanced dataset which will impact on the model performance, so we solve the problem by balancing each dataset that will be explained in detail in the different setting part. This step is done on excel and gives us 7 csv(UTF-8) files.

เวลาอ่านข่าวคนฆ่าตัวตายทั้งที่ใม่ได้รู้จักกันว่าน่าเศร้าแล้วนะ แต่พอมาเจอกับคนที่รู้จักมันเศร้า มันดิ้งไปเลย	unclassifiable	FALSE	Suicidal
ไม่ชอบการพาดหัวข่าวหรืออ่านข่าวที่เรียกคนฆ่าดัวตาย ว่า "คนคิดสั้น"อ่ะ คือมนุษย์แม่งเป็น สัตว์ที่มีกลไกป้องกันตัวเองจากการตายเยอะมากๆ เพราะงั้นการตัดสินใจจบชีวิตของใครสักคน คือเค้าต้องคิดมาดีแล้ว หรือหมดหนทางแล้วจริงๆ	unclassifiable	FALSE	Suicidal
ขอนอสร้างโอเพ่นแชททำไม เพื่อฆ่าตัวตายหรอ หวานใจสิ้นปินเข้ามาแล้ว กุไม่มีใคร.	unclassifiable	FALSE	Suicidal
แล้วยิ่งฝั่งใบรัทคลาวเมาท์เทนอ่ะมึง สิ้นหวังเที้ยๆ สิ้นหวังแบบอยากฆ่าตัวตายตรงนั้น ฟังแล้ว จิตใจกูตกต่ำขึ้นสุด โอยกูแบบว่า เลี้ยงได้เลี้ยงจ่ะสถานทีนั้น อย่า หา ไป	unclassifiable	FALSE	Suicidal
กว่าจะเปิดประชมอีกคือ เด็กฆ่าตัวตายหมดละ	unclassifiable	FALSE	Suicidal
ยิ่งเราเป็นโรคชื่มเศร้าด้วย เราคิดอยากจะฆ่าตัวตายตลอด ไม่มีใครเข้าใจเราเลย เราอยากมีคน ที่รับฟังเราปรึกษาบ้าง	suicidal	TRUE	Suicidal
สุดท้ายก็มีแค่กู ที่ต้องช่วยเหลือตัวเองตอนมีปัญหา ทำไมไม่มีใครยืนมือมาช่วยอะไรกูบ้างตอนกู แย่ แล้วทำไมเวลาคนอื่นเดือนร้อน กูถึงช่วยเหลือได้ แต่กูกลับไม่มีใครเลยสักคนที่อยากมาช่วย กู ทรมาน จะตายได้เมื่อไร หรือเมื่อทีาไม่ไหว ก็ ต้องฆ่าตัวตาย สินะ สุดท้ายมันก็มีแค่นี้ ตาย	suicidal	TRUE	▼ Suicidal

Some samples were labeled as suicidal class

2. Encoding

We start our coding from here. As our text dataset is labeled with either suicidal class or non-suicidal class as the string type, we need to encode each class to integer:

- 'suicidal' = 1
- 'non-suicidal' = 0

3. Model Selection

We set 3 different algorithms and 7 different datasets to help decide which algorithm has the best performance. To select the model, we firstly train models with different algorithms and test them to get an F1-weight score. Then, we compare F1-score and select the model giving the highest score.

4. Model Training and Testing

After we get the algorithm, we start to train the model with these steps:

a. Cross-validation

Instead of splitting the dataset into 80% for training, 20% for testing, randomly picking them, we use cross-validation to help evaluate the model with different k data sets. This is more suitable for our limited data sample and helps us find a data set that will give the best performance. Then, we split the dataset using the selected index of the best data set from cross-validation.

b. Tokenization

We extract a term which is a Thai word from each message in the dataset using the Tokenization technique. As we're dealing with the Thai language, we import pythainlp which is a Python library for Thai natural language processing that enables us to do Thai word tokenization.

c. TF-IDF Weight

We will use the TF-IDF algorithm to score each message which is considered as the document in IR, so the TF-IDF weight will show the term or word that is frequently found in each class and be used as the metric in our classifier.

d. Train and Test model

We import classifiers from the scikit-learn library, train our model using fit command, and then test using predict command.

5. Model Evaluation

We evaluate the model using classification metrics including precision, recall, and F1 weight score.

6. Error Analysis

To find potential errors that impact on model performance, we investigate a confusion matrix which shows the number of correct and incorrect predictions along with misclassified texts to see what kind of text can be an error. In fact, to do experiments, we collect misclassified text and confusion matrix of all different datasets we have.

Different Settings

After labeling each dataset, we found that there is a huge gap between the number of texts in the non-suicidal class and the suicidal class. This leads to an imbalanced dataset and the model will always predict class non-suicidal with very high accuracy which is not the major class we aim to predict. We thus try to balance suicidal and non-suicidal classes by reducing the number of texts in non-suicidal classes.

To systematically balance each dataset, we calculate the number of texts in suicidal and non-suicidal classes by setting as 45% and 50% relatively. For example, in the first dataset containing 60(17%) texts for suicidal and 296(83%) texts for non-suicidal, we find the number of texts in non-suicidal that make the number of texts suicidal as 45%:

non-suicidal =
$$((60*100)/45)-60 = 73$$

Then, we firstly remove duplicated or similar contexts in non-suicidal and then randomly pick 73 texts. We repeatedly do the same with all datasets.

According to balancing, we still struggle with the problem that there are too few datasets. We thus create a new bigger dataset by combining all balanced datasets as suicidal_labeled_all. All datasets with different settings we have are shown in the table below.

No.	Dataset (csv format)	Description
1	suicidal_1_labeled	suicidal: 60 texts non-suicidal: 296 texts
2	suicidal_2_labeled	suicidal: 41 texts non-suicidal: 298 texts
3	suicidal_3_labeled	suicidal: 27 texts non-suicidal: 273 texts
4	suicidal_1_labeled_balanced	suicidal: 60 texts non-suicidal: 73 texts
5	suicidal_2_labeled_balanced	suicidal: 41 texts non-suicidal: 50 texts
6	suicidal_3_labeled_balanced	suicidal: 27 texts non-suicidal: 33 texts
7	suicidal_labeled_all	suicidal: 128 texts non-suicidal: 156 texts

Output

1. suicidal_1_labeled

– –				
	Multinomi	ial Naive H	Bayes	
	precision	recall	f1-score	support
0	a 022	1 000	0 000	60
1	0.000	0.000	0.909 0.000	
accuracy macro avg	0.417	0 500	0.833	72 72
weighted avg				
	Logisti	c Regressi	.on	
	precision	recall	f1-score	support
0	0.870	1.000	0.930	60
1			0.400	
accuracy			0.875	72
macro avg		0.625		
weighted avg	0.891	0.875	0.842	72
	Support V	/ector Mac	hine	
	precision	recall	f1-score	support
0	0.984	1.000	0.992	60
			0.957	
accuracy			0 986	72
	0.992	0.958		
weighted avg	0.986	0.986	0.986	72
2. suicidal 2 labeled				
z. surcium_z_mbereu				
	Multinomi	al Naive B	ayes	
	precision	recall	f1-score	support
0	0.882	1.000	0.938	60
1	0.000	0.000	0.000	8
accuracy			0.882	68
accuracy macro avg	0.441	0.500		68
weighted avg				
	Logisti	ic Regressi	ion	
	precision	recall	f1-score	support
0	0.882	1.000	0.938	60
1	0.000			8
2,5			0.000	
accuracy macro ave	0.441	a 5aa	0.882 0.469	68 68
weighted avg				68
		3.222	3.00	30

	Support \	/ector Mac	hine	
	precision	recall	f1-score	support
0 1	0.984 1.000	1.000 0.875	0.992 0.933	60 8
accuracy macro avg weighted avg	0.992 0.986	0.938 0.985	0.985 0.963 0.985	68 68 68

3. suicidal_3_labeled

		Multinomi	al Naive	Bayes	
		precision	recall	f1-score	support
	0	0.917	1.000	0.957	55
	1	0.000	0.000	0.000	5
ac	curacy			0.917	60
mac	ro avg	0.458	0.500	0.478	60
weight	ed avg	0.840	0.917	0.877	60
		Logistic	Regressi	on	
	ŗ	precision	recall	f1-score	support
	0	0.932	1.000	0.965	55
	1	1.000	0.200	0.333	5
accui	acy			0.933	60
		0.966	0.600	0.649	60
weighted	0	0.938	0.933		60
		-Support Ve	ctor Mach	ine	
	р	recision	recall	f1-score	support
	0	0.982	1.000	0.991	55
	1	1.000	0.800	0.889	5
accur	acv			0.983	60
macro	-	0.991	0.900		
weighted	0		0.983		60
	- 0		0	0	50

4. suicidal_1_labeled_balanced

Logistic Regression							
		precision	recall	f1-score	support		
	0 1	0.833 1.000	1.000 0.750	0.909 0.857	15 12		
accurac macro av weighted av	/g	0.917 0.907	0.875 0.889	0.889 0.883 0.886	27 27 27		

Multinomial Naive Bayes					
	precision	recall	f1-score	support	
	0 0.882	1.000	0.938	15	
			0.909	12	
	1 1.000	0.033	0.505	12	
accurac	v		0.926	27	
	g 0.941	0.917			
weighted av	g 0.935	0.517	0.925	27	
weighted dv	8 0.333	0.520	0.525	27	
	Support V	ector Mach	ine		
	precision	recall	f1-score	support	
0	0.938	1.000	0.968	15	
1			0.957		
-	2.000	0.02.	0.00.		
accuracy	,		0.963	27	
macro avg	0.969	0.958		27	
	0.965	0.953	0.963	27	
weighted dyg	0.505	0.505	0.505	27	
5. suicidal 2 labeled balance	ced				
	-Multinomial	Naive Ba	yes		
	precision	recall	f1-score	support	
0	0.909	1.000	0.952	10	
1	1.000	0.889	0.941	9	
1	1.000	0.003	0.541	,	
accuracy			0.047	19	
accuracy	0.055	0.044	0.947		
macro avg	0.955	0.944	0.947	19	
weighted avg	0.952	0.947	0.947	19	
	Logistic	Regressi	on		
	precision	recall	f1-score	support	
0	0.909	1.000	0.952	10	
1	1.000	0.889	0.941	9	
accuracy			0.947	19	
macro avg	0.955	0.944	0.947	19	
weighted avg	0.952	0.947	0.947	19	
	Support \	Vector Mad	chine		
	precision	recall	f1-score	support	
0	1.000	1.000	1.000	10	
1	1.000	1.000	1.000	9	
accuracy			1.000	19	
macro avg	1.000	1.000	1.000	19	
weighted avg	1.000	1.000	1.000	19	

${\bf 6. \ Suicidal_3_labeled_balanced}$

	Multinomial	Naiva F	Savos	
	Hartmonia	. Naive L	dycs	
	precision	recall	f1-score	support
0	0.875	1.000	0.933	7
1	1.000			5
accuracy			0.917	
macro avg	0.938	0.900	0.911	
weighted avg	0.927	0.917	0.915	12
	Logistic	Regress	ion	
	precision	recall	f1-score	support
0	0.875	1 000	0.933	7
1	1.000		0.889	
-	1,000	0.000	0.003	
accuracy			0.917	12
	0.938	0.900	0.911	12
weighted avg	0.927	0.917	0.915	12
	C			
	Support Ved	ctor Maci	nine	
	precision	recall	f1-score	support
0	0.875	1.000	0.933	7
1	1.000		0.889	
accuracy			0.917	12
macro avg	0.938	0.900	0.911	12
weighted avg	0.927	0.917	0.915	12
7. suicidal_labeled_all				
	Multinomial	Naivo E	Pavos	
	rial ciriomital	. Naive L	ayes	
	precision	recall	f1-score	support
0	1.000	0.556	0.714	18
1	0.765			26
accuracy			0.818	44
	0.882	0.778	0.790	44
weighted avg	0.861	0.818	0.804	44
	Logistic	Dognossi	on	
	Logistic	kegressi	011	
	precision	recall	f1-score	support
0	1.000	0.833	0.909	18
1	0.897	1.000	0.945	26
			0.032	4.4
accuracy	0.948	0.917	0.932	44 44
macro avg	0.948	0.917	0.927 0.931	44

weighted avg

0.939

0.932

0.931

44

	Support V	ector Mac	hine	
	precision	recall	f1-score	support
0 1	1.000 0.963	0.944 1.000	0.971 0.981	18 26
accuracy macro avg weighted avg	0.981 0.978	0.972 0.977	0.977 0.976 0.977	44 44 44

8. Support Vector Machine Model with suicidal_labeled_all

a. Cross-validation (with n=10 data sets)

index	F1_weighted_scores				
0 (selected)	1.0				
1	1.0				
2	0.95405031				
3	0.95405031				
4	1.0				
5	1.0				
6	0.95405031				
7	0.95483254				
8	1.0				
9	1.0				

b. Classification Metrics

Support Vector Machine										
	precision	recall	f1-score	support						
0	1.000	1.000	1.000	9						
1	1.000	1.000	1.000	13						
accuracy			1.000	22						
macro avg	1.000	1.000	1.000	22						
weighted avg	1.000	1.000	1.000	22						

c. Confusion Matrix (there's no error)

Testing Results and Analysis

	Multinomial Naive Bayes			Logistic Regression			Support Vector Machine		
Dataset	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
suicidal_1 _labeled	0.694	0.833	0.758	0.891	0.875	0.842	0.986	0.986	0.986
suicidal_2 _labeled	0.779	0.882	0.827	0.779	0.882	0.827	0.986	0.985	0.985
suicidal_3 _labeled	0.840	0.917	0.877	0.938	0.933	0.912	0.984	0.983	0.982
suicidal_1 _labeled_b alanced	0.935	0.926	0.925	0.907	0.889	0.886	0.965	0.963	0.963
suicidal_2 _labeled_b alanced	0.952	0.947	0.947	0.952	0.947	0.947	1.000	1.000	1.000
suicidal_3 _labeled_b alanced	0.927	0.917	0.915	0.927	0.917	0.915	0.927	0.917	0.915
suicidal_ labeled_all	0.861	0.818	0.804	0.939	0.932	0.931	0.978	0.977	0.977

According to the table above that shows the evaluation of each algorithm and dataset, we can see that the performance of the model trained by using a balanced dataset is better. Additionally, a larger dataset also improves each model's performance. The best algorithm which provides the highest performance is the Support Vector Machine. As a result, we select the Support Vector Machine algorithm to train our model, then observe and do error analysis in the next step.

For error analysis, we found the following notices:

- Most of misclassified texts are False Negative
- We are still working on it to explore error and find the solution to improve model performance