Сферическая геометрия №3

Расстояние между точками, углы между прямыми, сферические окружности.

№ 1

Докажите, что сумма смежных углов между сферическими прямыми равна 180° Решение

- 1) $\angle TOC = \angle TBC$, $\angle COD = \angle CBD$ как линейные углы.
- 2) $\angle TOC$ и $\angle COD$ смежные в плоскости (TOC), тогда $\angle TOC + \angle COD = 180^\circ$
- 3) Таким образом,

$$\angle TOC + \angle COD = 180^{\circ} = \angle TBCC + \angle CBD$$
 - что и требовалось доказать.

№ 2

Докажите, что вертикальные углы между сферическими прямыми равны **Решение**

- 1) $\angle TOC = \angle TBC$, $\angle POD = \angle PBD$ как линейные углы.
- 2) $\angle TOC = \angle POD$ как вертикальные углы в плоскости (TOP).
- 3) Таким образом:

$$\angle TOC = \angle POD = \angle TBC = \angle PBD$$
 - что и требовалось доказать.

№ 3

Радиус сферы равен R, евклидово расстояние между двумя точками сферы равно h, чему равно сферическое расстояние между этими точками.

Решение

- 1) AO = BO = R, AB = h
- 2) По теореме косинусов:

$$AB^{2} = OB^{2} + OA^{2} - 2OB * OA * \cos BOA$$

$$\cos BOA = -\frac{AB^{2} - OB^{2} - OA^{2}}{2OB * OA} = -\frac{h^{2} - 2R^{2}}{2R^{2}} = 1 - \frac{h^{2}}{2r^{2}}$$

$$\angle BOA = \arccos\left(1 - \frac{h^{2}}{2r^{2}}\right)$$

3)
$$\cup AB = R \angle BOA = R \arccos \left(1 - \frac{h^2}{2r^2}\right)$$

Otbet: $R \arccos \left(1 - \frac{h^2}{2r^2}\right)$

№ 4

Угол между двумя сферическими прямыми равен $\frac{\pi}{4}$, радиус сферы равен 7 см. Из центра сферы в плоскостях сечений восстановили перпендикуляры так, что получилось 4 точки пересечения со сферой. Найдите сферическое расстояние между всеми этими точками.

Решение

1)
$$\angle TOC = \frac{\pi}{4}$$
, $TO = CO = PO = DO = 7$ cm.

2)
$$\cup CT = \cup PD = 7\frac{\pi}{4} \text{ cm}$$

3)
$$\cup CD = \cup TP = 7\left(\pi - \frac{\pi}{4}\right) = 7 * \frac{3\pi}{4} \text{ cm}$$

4)
$$\cup TD = \cup CP = 6\pi \text{ см}$$

Ответ: $\cup CT = \cup PD = 7\frac{\pi}{4}$ см; $\cup CD = \cup TP = 7*\frac{3\pi}{4}$ см; $\cup TD = \cup CP = 6\pi$ см

№ 5

На сфере радиуса R построена сферическая окружность радиусом r. Чему равен радиус малой окружности, совпадающей с данной?

Решение

1)
$$OO' = OA = R$$
, $AP \perp OO'$

2)

$$r = R * \angle O'OA \rightarrow \angle O'OA = \frac{r}{R}$$

3)

$$AP = OA * \sin POA = R * \sin \frac{r}{R}$$

Otbet: $R \sin \frac{r}{R}$

№ 6

Большая и малые окружности имеют одну общую точку. Чему равен угол между образующими их плоскостями, если радиус сферической окружности, совпадающей с малой окружностью, равен r, а радиус сферы равен R.

Решение

1) OP перпендикулярно плоскости малой окружности, тогда касательная α , проведенная к сфере в плоскости большой окружности через точку A перпендикулярна проведенному к ней радиусу OA, что по обратной теореме о трех перпендикулярах означает $\alpha \bot PA$, то есть $\alpha \bot (OPA)$ по признаку. Следовательно, $OA\bot\alpha$ и $PA\bot\alpha$, значит $\angle OAP$ - равен искомому углу.

2)

$$r = \angle AOP * R \rightarrow \angle AOP = \frac{r}{R} \rightarrow \angle OAP = \frac{\pi}{2} - \frac{r}{R}$$

Otbet: $\frac{\pi}{2} - \frac{r}{R}$

№ 7

Чему равно сферическое расстояние между полярно сопряженными точками, если радиус сферы равен R?

Решение

- 1) $\angle COA = \frac{\pi}{2}$
- $2) \cup AC = R\frac{\pi}{2}$

Otbet: $R^{\frac{\pi}{2}}$

№ 8

Проведены две сферические прямые, пересекающиеся под углом α , перпендикулярно к ним проведена третья сферическая прямая. Чему равен радиус сферы, если сферическое расстояние между точками пересечения двух прямых третьей равно h?

Решение

- 1) BC = h, $\angle BOC = \alpha$
- 2)

$$h = \alpha * R \to R = \frac{h}{\alpha}$$

Otbet: $\frac{h}{\alpha}$

№ 9

Может ли сферическая окружность быть сферической прямой?

Решение

Сферическая окружность может стать сферической прямой только при радиусе $\frac{\pi}{2}R$. Ответ: Да.

Сколько существует перпендикуляров к данной прямой, проведенных через точку, не лежащую на данной прямой.

Решение

1) Данная точка является полюсом прямой, тогда перпендикулярных прямых бесконечно много.

2) Данная точка не является полюсом прямой, тогда через нее и полюс к данной прямой проходит единственная прямая, перпендикулярная к данной.

№ 11

Пусть дана прямая, точка на ней и число $d < \pi R$, R - радиус сферы. Сколько существует точке, удаленных от данной на сферическое расстояние d? А если $d = \pi$?

Ответ: две; одна

№ 12

Город A расположен на северном полюсе, а города B и C на экваторе, траектории авиарейсов из A в B и из A в C взаимно перпендикулярны. Оцените расстояние между B и C, если радиус земли R=6400км.

Решение

$$ho(B,C)=rac{\pi}{2}R=10053$$
 км

Ответ 10053км