Lecture 4

Organic Chemistry: Fundamentals and Applications (CSO201A)

Dr. Srinivas Dharavath

Assistant Professor
Department of Chemistry
Indian Institute of Technology, Kanpur
Kanpur- 208016

E-mail: srinivasd@iitk.ac.in

IUPAC nomenclature of organic compounds

International Union of Pure and Applied Chemistry (IUPAC)

You will be able to name simple to complex alkanes, alkenes and alkynes by the end of this class

Branched chains:

1. Choose the longest carbon chain/ the one with more substituents.

Unbranched chains:

1. Number of carbons + functional group.

Branched chains:

- 1. Choose the longest carbon chain ~
- 2. If substituents attached, choose the one with more substituents.

Branched chains:

- 4. If 2/more identical substituents: use di, tri, tetra etc.
- 5. If 2/more <u>different</u> substituents: first substituent gets lower number.

6. If 2 substituents are at the same positions from their ends:

Naming the 'branched substituents':

- 7. Assign '1' to the substituent's carbon attached to the parent chain, everything is same.
- 8. Make it right as substituent: "ane to yl".

9. Alphabetical order: <u>iso, neo</u> taken into consideration but NOT sec-, ter-, etc.

5-(1-ethylpropyl)-2,4-dimethylundecane

8-(2-ethylbutyl)-5,5-dimethylpentadecane

Alkene: C_nH_{2n}

$$C_1 \rightarrow \text{methan} C_6 \rightarrow \text{hexen}$$
 $C_2 \rightarrow \text{ethen} C_7 \rightarrow \text{hepten}$
 $C_3 \rightarrow \text{proper} C_8 \rightarrow \text{octen}$
 $C_4 \rightarrow \text{butere} C_9 \rightarrow \text{nong}$
 $C_5 \rightarrow \text{pentere} C_{10} \rightarrow \text{dec}$

- 1. Parent chain must include double bond.
- 2. Double bond gets priority over substituents and gets lower number possible.
- 3. If 2/more double bonds present, suffix= 'adiene' or 'atriene' etc.

$$C_1 \rightarrow \text{meth}$$
 $C_2 \rightarrow \text{eth}$
 $C_3 \rightarrow \text{prop}$
 $C_4 \rightarrow \text{but}$
 $C_5 \rightarrow \text{pent}$

$$C_6 \rightarrow \text{hex}$$
 $C_7 \rightarrow \text{hept}$
 $C_8 \rightarrow \text{oct}$
 $C_9 \rightarrow \text{non}$
 $C_{10} \rightarrow \text{dec}$

$$C_{2}H_{2} \longrightarrow Ethyne$$

$$C_{3}H_{4} \longrightarrow Propyne \checkmark$$

$$C_{4}H_{6} \longrightarrow Butyne$$

$$C_{5}H_{8} \longrightarrow Pentyne$$

IUPAC Basic Rules: Review

Common Rules: (alkanes, alkenes & alkynes)

- 1. Choose the longest carbon chain
- 2. If substituents attached, choose the one with more substituents.
- 3. If only one substituent: substituent gets lower number.
- 4. If 2/more identical substituents: use di, tri, tetra etc.
- 5. If 2/more <u>different</u> substituents: first substituent gets lower number.
- 6. If 2 substituents are at the same positions from their ends: assign less number to the one that comes first in alphabetical order.

Alkenes:

- 1. Parent chain must include double bond.
- 2. Double bond gets priority over substituents and gets lower number.
- 3. If 2/more double bonds present, suffix= 'adiene' or 'atriene' etc.
- 4. Usually, double and triple bonds have equal priority.

Alkynes:

- 1. Parent chain must include triple bond
- 2. If both 'db' and 'tb' at same position from either ends: double bond gets priority over triple bond and gets lower number.
- 3. If 2/more triple bonds present, suffix= 'adiyne' or 'atriyne' etc.
- 4. If both db and tb are present, name as 'en-yne'.

