

Master Thesis

2D Tracking in Climbing

Using Temporal Smoothing

André Oskar Andersen (wpr684) wpr684@alumni.ku.dk

2023

Supervisor

Kim Steenstrup Pedersen kimstp@di.ku.dk

Abstract

Preface

Acknowledgement

Contents

1	Introduction	7
	1.1 Related Work	7
	1.2 Problem Definition	7
	1.3 Reading Guide	7
2	Deep Learning Theory	8
	2.1 Feedforward Neural Networks	8
	2.2 Convolutional Neural Networks	
	2.3 Recurrent Neural Networks	8
	2.3.1 Long Short-Term Memory Unit	
	2.3.2 Gated Recurrent Unit	8
3	Models	9
4	Dataset	10
5	Experiments	11
6	Discussion	12
7	Conclusion	13
8	References	14

Notation

1 Introduction

1.1 Related Work

2-dimensional pose estimation can be divided into either being image-based or video-based. Image-based methods [MANGLER]... Video-based methods commonly use the correlating information among the frames of the video to perform the pose estimation. Early video-based methods used 3-dimensional convolutions to capture the correlating information between neighboring frames [5, 2]. Other methods use LSTM's [3] to capture the correlating information among the frames [4, 1]. Recently, transformers have started to being used as a way of capturing the correlating information among the frames [6].

1.2 Problem Definition

1.3 Reading Guide

- 2 Deep Learning Theory
- 2.1 Feedforward Neural Networks
- 2.2 Convolutional Neural Networks
- 2.3 Recurrent Neural Networks
- 2.3.1 Long Short-Term Memory Unit
- 2.3.2 Gated Recurrent Unit

3 Models

4 Dataset

5 Experiments

6 Discussion

7 Conclusion

8 References

- [1] Bruno Artacho and Andreas Savakis. *UniPose: Unified Human Pose Estimation in Single Images and Videos*. 2020. DOI: 10.48550/ARXIV.2001.08095. URL: https://arxiv.org/abs/2001.08095.
- [2] Rohit Girdhar, Georgia Gkioxari, Lorenzo Torresani, Manohar Paluri, and Du Tran. *Detect-and-Track: Efficient Pose Estimation in Videos*. 2017. DOI: 10.48550/ARXIV.1712.09184. URL: https://arxiv.org/abs/1712.09184.
- [3] Sepp Hochreiter and Jürgen Schmidhuber. "Long Short-Term Memory". In: *Neural Computation* 9.8 (1997), pp. 1735–1780.
- [4] Yue Luo, Jimmy Ren, Zhouxia Wang, Wenxiu Sun, Jinshan Pan, Jianbo Liu, Jiahao Pang, and Liang Lin. *LSTM Pose Machines*. 2017. DOI: 10.48550/ARXIV.1712.06316. URL: https://arxiv.org/abs/1712.06316.
- [5] Tomas Pfister, James Charles, and Andrew Zisserman. Flowing ConvNets for Human Pose Estimation in Videos. 2015. DOI: 10.48550/ARXIV.1506.02897. URL: https://arxiv.org/abs/1506.02897.
- [6] Ailing Zeng, Xuan Ju, Lei Yang, Ruiyuan Gao, Xizhou Zhu, Bo Dai, and Qiang Xu. *Deci-Watch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation*. 2022. DOI: 10.48550/ARXIV.2203.08713. URL: https://arxiv.org/abs/2203.08713.