Analiza Matematyczna Praca domowa

J. de Lucas

Zadanie 1. Pokazać, że dla wszystkich n naturalnych

$$\int_{(0,1)^n} \exp\left(\sum_{k=1}^n k x_k\right) dx_1 \cdots dx_n = \frac{1}{n!} \prod_{k=1}^n (e^k - 1).$$

Zadanie 2. Obliczyć

$$\int_{(0,1)^n} (x_1 + \ldots + x_n) dx_1 \cdots dx_n$$

dla dowolnego n.

Zadanie 3. Obliczyć

$$\int_{(0,1)^n} (x_1 \cdot \ldots \cdot x_n) dx_1 \cdots dx_n$$

na *n*-wymiarowej kostce $(0,1)^n$.

Zadanie 4. Obliczyć

$$\int \int_{D} f(x,y) dx dy,$$

gdzie:

1.
$$f(x,y) = y + 1$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 9, x \ge 0, y \ge \sqrt{3}x\}$.

2.
$$f(x,y) = 2y + 1$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 + 2x \le 0, y \ge 0\}$.

3.
$$f(x,y) = xy, D = \{(x,y) \in \mathbb{R}^2 \mid 1 \leqslant x^2 + y^2 \leqslant 4, x \geqslant 0, y \leqslant 0\}.$$

4.
$$f(x,y) = \frac{(x-y)^2}{y^2} + 1$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid 1 \leqslant x^2 + y^2 \leqslant 4, x \geqslant 0, y \leqslant 0\}$.

5.
$$f(x,y) = \frac{(x+y)^2}{x^2+y^2}$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 6x, y \le 0\}$.

Zadanie 5. Obliczyć

$$\int \int_{P} r^2 \sin \theta dr d\theta$$

po zbiorze P ograniczone kardioidą o równaniu biegunowym $r(\theta)=2(1+\cos\theta),$ gdzie $0\leqslant\theta\leqslant2\pi.$

Zadanie 6. Oblicz

$$\int \int_D \frac{dA}{y+x},$$

gdzie $D = \{(x, y) \in \mathbb{R}^2 \mid x + y < 4, x \geqslant 2, y \leqslant 0\}.$

Zadanie 7. Obliczyć $\int \int_D \sin(x+y) dx dy$, gdzie $D \subset \mathbb{R}^2$ jest zbiorem zawartym między prostymi $y=0,\ y=x$ i $y+x=\pi/2$.

Zadanie 8. Oblicz

$$\int \int_{R} (x^2 + y^2) dx dy dz$$

gdzie $R = \{(x, y, z) : \sqrt{x^2 + y^2} \le z \le 1\}.$

Zadanie 9. Oblicz

$$\int \int_{R} xy dx dy dz$$

gdzie
$$R = \{(x, y, z) : 0 \le z \le 9 - x^2 - y^2, x, y \ge 0, y \le x\}.$$

Zadanie 10. Obliczyć miarę zbioru

$$A = \{ f(x, y, z) \in \mathbb{R}^3 \mid y > 2x, z > 0; x + y + z < 1 < 2x + y + z \}.$$

Zadanie 11. Oblicz objętość bryły

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 \mid 1 \leqslant x^2 + y^2 \leqslant z^2, 2 \leqslant z < 3\}.$$

Zadanie 12. Obliczyć pole figury płaskiej ograniczonej rozetą trójlistną o równaniu biegunowym $r(\theta) = a \sin(3\theta)$, gdzie a > 0.

Zadanie 13. Obliczyć pole figury płaskiej ograniczonej linią o równaniu uwikłanym $(x^2 + y^2)^3 = a^2(x^4 + y^4)$, gdzie a > 0.

 $(\mathrm{R}: \frac{3}{4}\pi a^2).$

Zadanie 14. Obliczyć pole figury płaskiej ograniczonej linią o równaniu uwikłanym $(x^2+y^2)^2=2y^3$.

 $(R:\frac{5}{8}\pi).$

Zadanie 15. Obliczyć pole figury płaskiej ograniczonej linią o równaniu uwikłanym $(x^2+y^2)^2=2x^3$.

 $(R:\frac{5}{8}\pi).$

Zadanie 16. Cisoida $y^2 = \frac{x^3}{a-x}$, gdzie $a \neq 0$, dzieli zbiór ograniczony krzywą $x^2 + y^2 = ax$ na trzy cześci. Obliczyć ich pola.

Zadanie 17. Oblicz pole tego obszaru ograniczonego krzywą $y = x^3$ i parabolą $y = -x^2 + 2x$, który znajduje się w I ćwiartce układu współrzędnych.

2

$$(R:\frac{5}{12}).$$

Zadanie 18. Obliczyć pole obszaru ograniczonego krzywymi $y = \sin x$ oraz $y = \cos x$ pomiędzy x = 0 oraz $x = \pi/2$.

Zadanie 19. Oblicz pole obszaru ograniczonego krzywymi: y = x + 1, $y = 2^{-x}$ i y = 8.

Zadanie 20. Oblicz objętość bryły między sferą $x^2+y^2+z^2=4$, walcem $\rho=\cos(2\theta),\ \theta\in[-\pi/4,\pi/4].$

Zadanie 21. Oblicz objętość bryły Ω między sferą $x^2+y^2+z^2=a^2$, gdzie a>0, i stożkiem $z^2=\operatorname{tg}^2\alpha(x^2+y^2)$, gdzie $0<\alpha<\pi/2$, i $z\geqslant 0$.

Zadanie 22. Oblicz pole ograniczone krzywymi $z = x^2 + y$, z = 0, xy = 4 oraz x + y = 5.

 $(R:\frac{53}{4}).$

Zadanie 23. Oblicz całkę podwójną z funkcji $f(x,y) = xy^2$ po obszarze

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4, x \ge 0\}.$$

 $(R:\frac{64}{15}).$

Zadanie 24. Oblicz objętość bryły ograniczonej powierzchnią o równaniu

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

 $(R: \frac{4}{3}abc\pi).$

Zadanie 25. Wyznaczyć położenie środka ciężkości figury płaskiej ograniczonej parabolą $y=kx^2$ oraz prostymi $x=b,\,y=0.$

$$(R:x_{sc} = 3b/4, y_{sc} = 3kb^2/5).$$

Zadanie 26. Znaleźć położenie środka ciężkości jednorodnego stożka kołowego o wysokości H, gęstość ρ i promieniu podstawy R.

$$(R:x_{sc}=0, y_{sc}=0, z_{sc}=H/4)$$

Zadanie 27. Wyznaczyć środek ciężkości wycinka okręgu o promieniu R, gęstość ρ , kącie β i kącie położenia α .

Zadanie 28. Wyznaczyć środek ciężkości stożka ściętego

gęstości ρ .

$$z_{sc} = \frac{1}{4} H \frac{R_D^2 + 2R_D R_G + 3R_G^2}{R_D^2 + R_D R_G + R_G^2}.$$

Zadanie 29. Wyznaczyć środek ciężkości wycinka kuli.

gęstości $\rho.$

$$z_{sc} = \frac{3R\cos^2\alpha}{8(1-\sin\alpha)}.$$

Zadanie 30. Oblicz momenty bezwładności następujących brył

 \bullet Cylindryczna rura o wewnętrznym promieniu $r_1,$ zewnętrznym promieniu $r_2,$ długości hi gęstości $\rho.$

• Wypełniona kula o promieniu r, gęstości ρ i masie m

$$(\mathbf{R} = \frac{2}{5}mr^2).$$

Zadanie 31. Oblicz moment bezwładności względem osi OX jednorodnego trójkąta o masie m i wierzchołkach w punktach: $p_1 = (0,0), p_2 = (a,0)$ i $p_3 = (a,a)$

$$\left(\mathrm{R}:\frac{ma^2}{6}\right).$$

Zadanie 32. Oblicz

$$\int \int \int_{V} (x^2 + y^2 + z^2) dx dy dz$$

po obszarze Vograniczonym powierzchnią o równaniu $3(x^2+y^2)+z^2=3$

 $(R: \frac{4}{3}\pi\sqrt{3})$

Zadanie 33. Obliczyć

$$\int \int \int \frac{z}{x^2 + y^2} dx dy dz$$

po obszarze V zawartym w $\mathbb{R} \times \mathbb{R} \times (0, \infty)$ ograniczonym powierzchniami $x^2 + y^2 + z^2 = 2$, $x^2 - y^2 - z^2 = 0$, położonym na zewnątrz walca $x^2 + y^2 = 1/4$.

Zadanie 34. Oblicz objętości i masy podanych brył:

- $R = \{(x, y, z) : \sqrt{1 x^2 y^2} \le z \le \sqrt{4 x^2 y^2}, x \ge 0, y \ge x\}$ i gęstość $\rho(x, y, z) = x + y$.
- R stworzono poprzez wycięcie stożka $z^2=x^2+y^2$ z kuli $x^2+y^2+z^2=1$ i gęstość $\rho(x,y,z)=z$.
- R stworzono przez wycięcie górnej połowy stożka z górnej półkuli o promieniu 1, stożek był nachylony względem płaszczyzny OXY pod kątem 30° i gęstość $\rho(x,y,z)=(x^2+y^2+z^2)^{-1}$.