SecDefender: Detecting Low-Quality Models in Multidomain Federated Learning Systems

Sameera K M, Arnaldo Sgueglia, Vinod P, Rafidha Rehiman K A, Corrado Aaron Visaggio, Andrea Di Sorbo, Mauro Conti

August 21, 2024

Additional Experimental Results

A Model Architecture Used

Table 1 presents the model architectures employed in our experiments and the respective datasets. Additionally, we provide the hyperparameters utilized for each dataset.

Table 1: Model Architecture for six different datasets

Dataset	Model Structure
HAR	FC (561x1128) FC+Relu (128/6)
Fashion-MNIST	Conv+BN+Relu (5x1x16), MaxPool (2x2) Conv+BN+Relu (5x16x32),
rasmon-winis i	MaxPool (2x2), FC (1568/10)
FEDMNIST	Conv+BN+Relu (5x1x32), MaxPool (2x2) Conv+BN+Relu (5x32x64), MaxPool(2x2)
MNIST	FC(3136/10)
GTSR	Conv+Relu (3x3x32), MaxPool (2x2), Conv+Relu (3x32x64), MaxPool (2x2)
GISI	FC+Relu (2304/128), FC (128/10)
CIC-Darknet2020	FC+Relu (79/64), FC+Relu (64/32), FC (32/4)

B Impact of the poisoning with and without SecDefender

The tables from 2 to 7 show the attack success rates (ASR) and target misclassification rates (TMR) of the model performance on the selected datasets under various attack scenarios without the SecDefender method. Similarly, the tables from 8 to 13 show the attack success rates (ASR) and target misclassification rates (TMR) of the performance effectiveness of SecDefender on the datasets under different defense scenarios.

Table 2: Evaluation of the impact of full-round targeted label flipping attacks. The table compares attack success rates (ASR) for various LF scenarios.

$nLF \rightarrow$			Single-	label			Double	-label			Triple-	label	
$Att_{ratio}\% \downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST
0	0	0.1656	2.442	0.309	0.526	0.1656	4.116	0.209	0.41	0.1656	7.407	0.308	0.314
	1	0.1633	2.941	0.372	0.526	0.1628	4.342	0.362	0.387	0.1624	7.6	0.351	0.354
10%	2	0.1644	2.812	0.397	0.626	0.1633	4.504	0.409	0.437	0.1627	7.941	0.371	0.407
	3	0.1644	3.098	0.477	0.724	0.1633	4.759	0.472	0.502	0.1629	7.801	0.403	0.442
	1	0.1633	3.215	0.395	0.603	0.1628	4.655	0.388	0.437	0.1629	7.771	0.369	0.399
20%	2	0.1644	3.206	0.474	0.748	0.1633	4.837	0.481	0.509	0.1631	7.939	0.421	0.469
	3	0.1644	3.705	0.531	0.839	0.1636	5.051	0.546	0.615	0.1631	8.265	0.496	0.583
	1	0.1633	3.25	0.419	0.606	0.1628	4.932	0.413	0.441	0.1631	8.013	0.388	0.386
30%	2	0.1644	3.581	0.493	0.847	0.1636	5.412	0.526	0.543	0.1633	8.425	0.431	0.546
	3	0.1644	4.16	0.609	1.065	0.1636	5.668	0.583	0.691	0.1633	8.272	0.517	0.748
	1	0.1633	3.49	0.433	0.71	0.1628	4.966	0.458	0.442	0.1632	8.187	0.401	0.421
40%	2	0.1644	4.382	0.524	0.968	0.1636	5.737	0.542	0.594	0.1635	8.939	0.4378	0.647
	3	0.1655	5.047	0.709	1.2	0.1636	6.549	0.659	0.72	0.1632	9.557	0.6196	1.013
	1	0.1633	3.797	0.423	0.755	0.1631	5.541	0.475	0.513	0.1634	8.498	0.419	0.445
50%	2	0.1644	4.886	0.611	1.007	0.1636	5.736	0.588	0.658	0.1632	9.286	0.529	0.711
	3	0.1655	5.825	0.838	1.245	0.1636	7.388	0.803	0.797	0.1632	10.049	0.674	1.103

Table 3: Evaluation of the impact of mid-round targeted label flipping attacks. The table compares attack success rates (ASR) for various LF scenarios.

$nLF \rightarrow$			Single-	label			Double	-label			Triple-	label	
$Att_{ratio}\% \downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST
0	0	0.1656	2.442	0.309	0.526	0.1656	4.116	0.209	0.41	0.1656	7.407	0.308	0.314
	1	0.1622	2.458	0.335	0.526	0.1628	4.11	0.327	0.409	0.1624	7.275	0.324	0.377
10%	2	0.1622	2.729	0.373	0.521	0.1628	4.201	0.351	0.407	0.1624	7.364	0.344	0.371
	3	0.1622	2.519	0.399	0.553	0.1628	4.241	0.369	0.4562	0.1624	7.371	FEDMNIST 0.308 0.324 0.344 0.37 0.331 0.361 0.397 0.339 0.377 0.4102 0.348 0.393 0.448 0.354 0.406	0.389
	1	0.1622	2.552	0.350	0.537	0.1628	4.21	0.335	0.412	0.1624	7.381	0.331	0.368
20%	2	0.1622	2.608	0.390	0.554	0.1628	4.241	0.365	0.420	0.1624	7.304	0.361	0.375
	3	0.1622	2.4345	0.438	0.6495	0.1628	4.175	0.401	0.495	0.1624	7.372	0.397	0.407
	1	0.1622	2.644	0.360	0.562	0.1628	4.089	0.342	0.412	0.1624	7.280	0.339	0.362
30%	2	0.1622	2.714	0.402	0.579	0.1628	4.241	0.385	0.459	0.1624	7.408	0.377	0.385
	3	0.1622	2.598	0.463	0.708	0.1628	4.098	0.435	0.5102	0.1624	7.372	0.4102	0.436
	1	0.1622	2.593	0.368	0.536	0.1628	4.211	0.347	0.418	0.1624	7.202	0.348	0.368
40%	2	0.1622	2.574	0.424	0.655	0.1628	4.151	0.406	0.473	0.1624	7.338	0.393	0.410
	3	0.1622	2.581	0.504	0.755	0.1628	4.272	0.454	0.566	0.1624	7.357	0.448	0.481
	1	0.1622	2.626	0.374	0.555	0.1628	4.197	0.361	0.429	0.1624	7.376	0.354	0.381
50%	2	0.1622	2.583	0.449	0.707	0.1628	4.166	0.415	0.663	0.1624	7.199	0.406	0.436
	3	0.1622	2.653	0.565	0.867	0.1628	4.085	0.473	0.615	0.1624	7.378	0.481	0.513

Table 4: Evaluation of the impact of end-round targeted label flipping attacks. The table compares attack success rates (ASR) for various LF scenarios.

$nLF \rightarrow$			Single-	label			Double	-label			Triple-	label	
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST
0	0	0.1656	2.442	0.309	0.526	0.1656	4.116	0.209	0.41	0.1656	7.407	0.308	0.314
	1	0.1622	2.601	0.343	0.529	0.1628	4.098	0.323	0.43	0.1624	7.293	0.322	0.378
10%	2	0.1622	2.741	0.371	0.582	0.1628	4.158	0.354	0.458	0.1624	7.41	0.345	0.396
	3	0.1622	2.669	0.399	0.663	0.1628	4.078	0.381	0.522	0.1624	7.353	0.370	0.395
	1	0.1622	2.739	0.351	0.526	0.1628	4.203	0.334	0.438	0.1624	7.195	0.333	0.379
20%	2	0.1622	2.593	0.337	0.659	0.1628	4.115	0.374	0.475	0.1624	7.321	0.365	0.425
	3	0.1622	2.5975	0.429	0.743	0.1628	4.244	0.415	0.611	0.1624	7.35	0.397	0.460
	1	0.1622	2.599	0.354	0.534	0.1628	4.396	0.343	0.444	0.1624	7.199	0.340	0.383
30%	2	0.1622	2.568	0.406	0.681	0.1628	4.037	0.392	0.547	0.1624	7.342	0.383	0.442
	3	0.1622	2.716	0.471	0.864	0.1628	4.211	0.436	0.635	0.1624	7.243	0.428	0.487
	1	0.1622	2.493	0.358	0.582	0.1628	4.014	0.349	0.459	0.1624	7.279	0.345	0.394
40%	2	0.1622	2.501	0.422	0.764	0.1628	4.182	0.411	0.554	0.1624	7.303	0.399	0.489
	3	0.1622	2.75	0.504	0.955	0.1628	4.144	0.469	0.711	0.1624	7.247	0.452	0.585
	1	0.1622	2.598	0.366	0.619	0.1628	4.186	0.364	0.464	0.1624	7.389	0.355	0.396
50%	2	0.1622	2.589	0.458	0.828	0.1628	4.112	0.435	0.481	0.1624	7.264	0.418	0.512
	3	0.1622	2.754	0.575	1.083	0.1628	4.192	0.47	0.82	0.1624	7.391	03 0.322 1 0.345 53 0.370 05 0.333 21 0.365 5 0.397 09 0.340 12 0.383 13 0.428 79 0.345 13 0.399 17 0.452 19 0.355 14 0.418	1.013

Table 5: Evaluation of the impact of full-round targeted label flipping attacks. The table compares target misclassification rate (TMR) for various LF scenarios.

$nLF \rightarrow$			Single-	label			Double	-label			Triple-	label	
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST
0	0	0.8252	3.009	0.89	01.19	0.8252	10.558	0.949	1.06	0.8252	18.437	0.92	0.824
	1	0.6517	3.643	0.953	1.161	0.7135	10.87	1.009	1.017	0.7327	18.674	0.984	0.914
10%	2	0.6517	3.564	0.984	1.371	0.7146	10.911	1.076	1.294	0.7331	18.894	1.018	0.995
	3	0.6529	3.853	1.096	1.448	0.7144	11.204	1.155	1.161	0.7331	18.974	FEDMNIST 0.92 0.984 1.018 1.061 1.013 1.089 1.172 1.042 1.1 1.219 1.062 1.166 1.335 1.089 1.23	1.037
	1	0.6517	3.973	0.989	1.313	0.7133	11.144	1.055	1.078	0.7336	18.802	1.013	0.964
20%	2	0.6529	3.965	1.095	1.456	0.7143	11.328	1.102	1.141	0.7325	18.946	1.089	1.136
	3	0.654	4.472	1.173	1.629	0.7149	11.704	1.256	1.274	0.7332	19.554	1.172	1.279
	1	0.6514	4.022	1.021	1.313	0.7129	11.557	1.094	1.078	0.7338	19.281	1.042	1.033
30%	2	0.6555	4.344	1.129	1.548	0.7143	11.948	1.243	1.182	0.7319	19.592	1.1	1.252
	3	0.6547	5.124	1.28	1.806	0.715	12.435	1.306	1.373	0.7324	19.604	1.219	1.508
	1	0.6536	4.25	1.051	1.433	0.7138	11.643	1.143	1.087	0.7332	19.432	1.062	1.04
40%	2	0.6569	5.157	1.172	1.747	0.7136	12.391	1.267	1.271	0.7372	20.205	1.166	1.393
	3	0.658	6.018	1.41	2.005	0.713	13.583	1.407	1.461	0.73	20.563	1.335	1.835
	1	0.6551	4.661	1.066	1.465	0.7151	12.492	1.185	1.165	0.7323	19.618	1.089	1.107
50%	2	0.6577	5.938	1.284	1.713	0.7138	12.391	1.337	1.361	0.7298	20.576	1.23	1.466
	3	0.6599	6.859	1.567	2.073	0.7135	14.673	1.571	1.522	0.7274	21.375	1.1 1.219 1.062 1.166 1.335 1.089	1.813

Table 6: Evaluation of the impact of mid-round targeted label flipping attacks. The table compares target misclassification rate (TMR) for various LF scenarios.

$nLF \rightarrow$			Single-	label			Double	-label			Triple-	label	
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST
0	0	0.8252	3.009	0.89	01.19	0.8252	10.558	0.949	1.06	0.8252	18.437	0.92	0.824
	1	0.6506	3.015	0.908	1.195	0.7136	10.34	0.975	1.019	0.7329	18.387	0.943	0.963
10%	2	0.6506	3.345	0.944	1.216	0.7136	10.403	1.002	1.036	0.7329	18.414	0.971	0.953
	3	0.6506	3.083	0.973	1.273	0.7136	10.570	1.028	1.127	0.7329	18.374	1.001	0.976
	1	0.6506	3.181	0.923	1.234	0.7136	10.615	0.986	1.053	0.7329	18.441	0.954	0.958
20%	2	0.6506	3.213	0.964	1.259	0.7136	10.57	1.027	1.058	0.7329	18.369	0.996	0.974
	3	0.6506	3.321	1.018	1.398	0.7136	10.594	1.077	1.139	0.7329	18.401	1.042	0.979
	1	0.6506	3.222	0.934	1.252	0.7136	10.478	0.999	1.05	0.7329	18.330	0.966	0.932
30%	2	0.6506	3.306	0.975	1.304	0.7136	10.57	1.06	1.111	0.7329	18.548	1.019	0.964
	3	0.6506	3.159	1.05	1.405	0.7142	10.365	1.121	1.171	0.7329	18.401	1.064	1.021
	1	0.6506	3.152	0.945	1.223	0.7136	10.485	1.008	1.055	0.7329	18.353	0.979	0.9765
40%	2	0.6506	3.147	1.009	1.363	0.7147	10.526	1.089	1.12	0.7329	18.376	1.04	1.015
	3	0.6506	3.012	1.09	1.462	0.7142	10.542	1.156	1.212	0.7323	18.328	1.11	1.077
	1	0.6506	3.19	0.946	1.215	0.7136	10.561	1.031	1.058	0.7329	18.53	0.990	0.989
50%	2	0.6506	3.197	1.032	1.442	0.7152	10.544	1.106	1.368	0.7327	18.146	1.06	1.037
	3	0.6506	3.221	1.169	1.597	0.7149	10.427	1.176	1.273	0.7314	18.529	0.92 0.943 0.971 1.001 0.954 0.996 1.042 0.966 1.019 1.064 0.979 1.04 1.11	1.114

Table 7: Evaluation of the impact of end-round targeted label flipping attacks. The table compares target misclassification rate (TMR) for various LF scenarios.

$nLF \rightarrow$			Single-	label			Double	-label			Triple-	label	
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST
0	0	0.8252	3.009	0.89	01.19	0.8252	10.558	0.949	1.06	0.8252	18.437	0.92	0.824
	1	0.6506	3.162	0.919	1.269	0.7136	10.399	0.973	1.001	0.7329	18.441	0.943	0.967
10%	2	0.6506	3.379	0.945	1.263	0.7136	10.564	1.008	1.106	0.7329	18.373	0.977	0.985
	3	0.6506	3.216	0.976	1.407	0.7136	10.391	1.042	1.219	0.7329	18.427	1.101	0.996
	1	0.6506	3.302	0.928	1.254	0.7136	10.553	0.990	1.102	0.7329	18.262	0.957	1.006
20%	2	0.6506	3.153	0.955	1.389	0.7136	10.505	1.037	1.155	0.7329	18.348	1.004	1.018
	3	0.6506	3.159	1.013	1.496	0.7136	10.601	1.091	1.288	0.7329	18.292	1.044	1.065
	1	0.6506	3.245	0.931	1.26	0.7136	10.372	1.006	1.0937	0.7329	18.292	0.971	0.974
30%	2	0.6506	3.13	0.988	1.442	0.7136	10.322	1.068	1.234	0.7327	18.444	1.031	1.046
	3	0.6506	3.282	1.068	1.644	0.7103	10.631	1.13	1.323	0.7316	18.388	1.082	1.100
	1	0.6506	3.052	0.935	1.308	0.7136	10.381	1.015	1.118	0.7329	18.299	0.981	1.009
40%	2	0.6506	3.102	1.009	1.523	0.735	10.464	1.096	1.212	0.7305	18.391	0.995	1.016
	3	0.6506	3.306	1.103	1.75	0.7103	10.506	1.176	1.398	0.7305	18.391	1.11	1.23
	1	0.6506	3.201	0.943	1.327	0.7136	10.588	1.040	1.131	0.7329	18.307	0.995	1.016
50%	2	0.6506	3.14	1.052	1.589	0.7124	10.502	1.135	1.151	0.7306	18.411	1.072	1.142
	3	0.6506	3.307	1.188	1.881	0.7082	10.592	1.18	1.528	0.7286	18.445	1.156	1.803

Table 8: Evaluation of the effectiveness of SecDefender against full-round targeted label flipping attacks. The table compares attack success rates (ASR) for various LF scenarios.

$nLF \rightarrow$			Single-	label			Double	-label			Triple-	label	
$Att_{ratio}\% \downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST
0	0	0.1656	2.442	0.309	0.526	0.1656	4.116	0.209	0.41	0.1656	7.407	0.308	0.314
	1	0.1572	2.482	0.295	0.479	0.1541	4.209	0.286	0.369	0.1508	7.6	0.308	0.336
10%	2	0.1577	2.508	0.330	0.532	0.1541	4.221	0.310	0.378	0.1514	7.435	0.316	0.35
	3	0.1578	2.758	0.346	0.571	0.1544	4.467	0.342	0.388	0.1515	7.891	FEDMNIST 0.308 0.308 0.316 0.354 0.310 0.319 0.355 0.309 0.322 0.338 0.311 0.316 0.323 0.310 0.329	0.343
	1	0.1572	2.631	0.295	0.538	0.1541	4.098	0.279	0.368	0.1510	7.473	0.310	0.329
20%	2	0.1578	2.651	0.327	0.58	0.1548	4.270	0.307	0.396	0.1516	7.722	0.319	0.355
	3	0.1577	2.697	0.358	0.549	0.1546	4.284	0.359	0.372	0.1523	7.702	0.355	0.354
	1	0.1572	2.492	0.292	0.563	0.1541	4.137	0.284	0.386	0.1511	7.45	0.309	0.353
30%	2	0.1578	2.686	0.349	0.603	0.1548	4.087	0.309	0.407	0.1516	7.797	0.322	0.344
	3	0.1578	2.875	0.392	0.537	0.1548	4.389	0.362	0.427	0.1525	7.721	FEDMNIST 0.308 0.308 0.316 0.354 0.310 0.319 0.355 0.309 0.322 0.338 0.311 0.316 0.323 0.310 0.329	0.362
	1	0.1574	2.764	0.300	0.542	0.1543	4.409	0.291	0.376	0.1488	7.41	0.311	0.351
40%	2	0.1593	2.692	0.334	0.602	0.1549	4.087	0.314	0.41	0.1491	7.496	0.316	0.358
	3	0.1584	2.904	0.324	0.699	0.1550	4.395	0.346	0.386	0.1494	7.958	0.323	0.354
	1	0.1579	2.692	0.299	0.512	0.1538	4.287	0.291	0.379	0.1488	7.526	0.310	0.358
50%	2	0.1584	2.620	0.338	0.561	0.1549	4.154	0.311	0.377	0.1486	7.352	0.329	0.360
	3	0.1583	3.04	0.363	0.619	0.1547	4.460	0.347	0.429	0.1493	7.999	0.308 0.308 0.316 0.354 0.310 0.319 0.355 0.309 0.322 0.338 0.311 0.316 0.323 0.310	0.377

Table 9: Evaluation of the effectiveness of SecDefender against mid-round targeted label flipping attacks. The table compares attack success rates (ASR) for various LF scenarios.

$nLF \rightarrow$			Single-label			Double-label	l		Triple-label	
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	HAR	Fashion-MNIST	FEDMNIST	HAR	Fashion-MNIST	FEDMNIST
0	0	0.1656	2.442	0.309	0.1656	4.116	0.209	0.1656	7.407	0.308
	1	0.156	2.391	0.29	0.1538	4.112	0.280	0.1507	7.28	0.3
10%	2	0.156	2.413	0.297	0.1538	4.099	0.288	0.1507	5.411	0.305
	3	0.1559	2.497	0.313	0.1539	4.114	0.292	0.1507	7.114	0.305
	1	0.1559	2.413	0.289	0.1538	4.067	0.280	0.1506	7.291	0.3
20%	2	0.1558	2.338	0.294	0.1539	4.064	0.284	0.1506	7.278	0.302
	3	0.1558	2.364	0.325	0.1539	4.159	0.296	0.1506	7.319	0.309
	1	0.156	2.408	0.288	0.1538	1.195	0.28	0.1506	7.222	0.3
30%	2	0.1559	2.387	0.299	0.1539	4.136	0.285	0.1506	7.264	0.303
	3	0.1558	2.422	0.32	0.1539	1.235	0.298	0.1507	7.319	0.301
	1	0.1559	2.27	0.287	0.1538	4.108	0.280	0.1508	7.266	0.309
40%	2	0.1558	2.390	0.291	0.1539	4.136	0.284	0.1508	7.362	0.304
	3	0.1558	2.326	0.324	0.1539	4.086	0.289	0.1508	7.364	0.309
	1	0.1559	2.416	0.287	0.1538	4.106	0.280	0.1508	7.305	0.301
50%	2	0.1558	2.413	0.293	0.1539	4.114	0.289	0.1508	7.173	0.303
	3	0.1558	2.384	0.314	0.154	4.145	0.293	0.1508	7.286	0.303

Table 10: Evaluation of the effectiveness of SecDefender against end-round targeted label flipping attacks. The table compares attack success rates (ASR) for various LF scenarios.

$nLF \rightarrow$			Single-label			Double-label			Triple-label	
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	HAR	Fashion-MNIST	FEDMNIST	HAR	Fashion-MNIST	FEDMNIST
0	0	0.1656	2.442	0.309	0.1656	4.116	0.209	0.1656	7.407	0.308
	1	0.1571	2.414	0.292	0.1534	4.112	0.293	0.1507	5.411	0.301
10%	2	0.157	2.404	0.305	0.1534	4.075	0.296	0.1507	7.362	0.307
	3	0.157	2.414	0.324	0.1535	4.15	0.298	0.1508	7.287	0.331
	1	0.157	2.414	0.295	0.1534	4.069	0.292	0.1507	7.145	0.303
20%	2	0.157	2.390	0.293	0.1535	4.036	0.295	0.1506	7.307	0.305
	3	0.157	2.414	0.325	0.1536	4.054	0.297	0.1508	7.312	0.337
	1	0.157	2.346	0.293	0.1534	4.058	0.293	0.1506	7.196	0.304
30%	2	0.157	2.398	0.309	0.1535	4.14	0.295	0.1506	7.286	0.303
	3	0.157	2.436	0.311	0.1537	4.087	0.298	0.1507	7.3	0.307
	1	0.156	2.397	0.239	0.1534	4.082	0.285	0.149	7.228	0.303
40%	2	0.1558	2.385	0.303	0.1535	4.19	0.299	0.1507	7.3	0.303
	3	0.1558	2.403	0.303	0.1537	4.095	0.33	0.1508	7.3	0.309
	1	0.1559	2.354	0.294	0.1534	4.11	0.291	0.1506	7.318	0.302
50%	2	0.1558	2.402	0.305	0.1536	4.080	0.298	0.1487	7.3	0.304
	3	0.1557	2.413	0.309	0.1538	4.067	0.3	0.1495	7.322	0.302

Table 11: Evaluation of the effectiveness of SecDefender against full-round targeted label flipping attacks. The table compares target misclassification rates (TMR) for various LF scenarios.

$nLF \rightarrow$			Single-	label			Double	-label			Triple-	label	
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST	HAR	Fashion-MNIST	FEDMNIST	MNIST
0	0	0.8252	3.009	0.89	1.19	0.8252	10.558	0.949	1.06	0.8252	18.437	0.92	0.824
	1	0.7617	3.148	0.868	1.24	0.7582	10.381	0.923	0.1.003	0.762	18.639	0.916	0.889
10%	2	0.7643	3.1	0.874	1.28	0.7577	10.439	0.959	1.013	0.763	18.238	0.933	0.959
	3	0.7643	3.512	0.851	1.376	0.7574	10.696	0.990	1.011	0.7615	18.538	0.985	0.909
	1	0.7621	3.405	0.865	1.3	0.7580	10.654	0.918	1.004	0.7628	18.802	0.924	0.881
20%	2	0.7645	3.501	0.853	1.328	0.7578	10.709	0.966	1.039	0.763	18.196	0.937	0.989
	3	0.7625	3.554	0.946	1.307	0.7563	10.787	0.98	0.975	0.7617	19.152	0.990	0.97
	1	0.7629	3.247	0.860	1.3	0.7565	10.622	0.922	1.023	0.7629	18.744	0.928	0.897
30%	2	0.7657	3.547	0.905	1.371	0.7584	10.448	0.964	1.032	0.7616	18.964	0.942	0.969
	3	0.7623	3.139	0.974	1.371	0.7559	10.795	1.030	1.075	0.7610	18.9505	0.961	0.978
	1	0.7634	3.581	0.868	1.311	0.7567	10.618	0.929	0.987	0.7505	18.634	0.932	0.884
40%	2	0.7621	3.367	0.896	1.331	0.7577	10.191	0.969	1.035	0.75	18.531	0.936	0.998
	3	0.7646	3.751	0.888	1.402	0.7564	10.69	1.012	1.005	0.7466	19.043	0.942	0.965
	1	0.7635	3.367	0.864	1.242	0.7549	10.401	0.934	0.990	0.7503	18.51	0.942	0.894
50%	2	0.7662	3.310	0.900	1.308	0.7581	10.134	0.961	1.015	0.7471	18.960	0.943	0.992
	3	0.7639	3.825	0.935	1.322	0.7560	10.727	1.02	1.067	0.7472	19.229	0.908	0.978

Table 12: Evaluation of the effectiveness of SecDefender against mid-round targeted label flipping attacks. The table compares target misclassification rates (TMR) for various LF scenarios.

nLF ightarrow			Single-label			Double-label			Triple-label	
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	HAR	Fashion-MNIST	FEDMNIST	HAR	Fashion-MNIST	FEDMNIST
0	0	0.8252	3.009	0.89	0.8252	10.558	0.949	0.8252	18.437	0.92
	1	0.7622	3.017	0.864	0.7568	10.582	0.915	0.762	18.208	0.910
10%	2	0.762	3.04	0.868	0.7566	10.355	0.926	0.7619	18.405	0.92
	3	0.7621	3.1	0.876	0.7569	10.378	0.907	0.7617	18.378	0.899
	1	0.7621	3.04	0.862	0.7568	10.287	0.916	0.7618	18.415	0.91
20%	2	0.7619	2.931	0.863	0.7569	10.347	0.921	0.7616	18.372	0.913
	3	0.762	3.084	0.89	0.7569	10.317	0.91	0.7616	18.485	0.909
	1	0.7622	3.09	0.863	0.7569	10.365	0.913	0.7617	18.297	0.91
30%	2	0.7619	2.962	0.866	0.7568	10.334	0.922	0.7615	18.362	0.914
	3	0.7619	2.958	0.887	0.757	10.438	0.936	0.7615	18.288	0.893
	1	0.7622	2.851	0.86	0.7569	10.403	0.915	0.7603	18.313	0.91
40%	2	0.7621	2.995	0.86	0.7567	10.334	0.299	0.7602	18.125	0.915
	3	0.7622	2.904	0.888	0.757	10.255	0.926	0.7601	18.405	0.92
	1	0.762	2.993	0.859	0.7569	10.219	0.916	0.7306	18.463	0.910
50%	2	0.762	3.04	0.859	0.7568	10.300	0.928	0.7602	18.136	0.916
	3	0.7622	2.956	0.88	0.7517	10.407	0.928	0.76	18.333	0.897

Table 13: Evaluation of the effectiveness of SecDefender against end-round targeted label flipping attacks. The table compares target misclassification rates (TMR) for various LF scenarios.

$nLF \rightarrow$		Single-label			Double-label			Triple-label		
$Att_{ratio}\%\downarrow$	$m\downarrow$	HAR	Fashion-MNIST	FEDMNIST	HAR	Fashion-MNIST	FEDMNIST	HAR	Fashion-MNIST	FEDMNIST
0	0	0.8252	3.009	0.89	0.8252	10.558	0.949	0.8252	18.437	0.92
10%	1	0.7617	3.04	0.861	0.7618	10.621	0.912	0.7619	18.4	0.916
	2	0.7617	3.01	0.871	0.7619	10.586	0.909	0.7618	18.409	0.894
	3	0.7616	3.04	0.862	0.7619	10.719	0.905	0.7618	18.402	0.891
20%	1	0.7621	3.04	0.863	0.7617	10.638	0.911	0.7618	18.119	0.91
	2	0.7615	2.995	0.827	0.7618	10.497	0.926	0.7616	18.258	0.901
	3	0.7615	3.04	0.864	0.7618	10.510	0.918	0.7616	18.3	0.921
30%	1	0.7616	2.981	0.864	0.7616	10.5	0.913	0.7617	18.193	0.909
	2	0.7614	2.973	0.870	0.7618	10.622	0.933	0.7616	18.4	0.929
	3	0.7616	3.133	0.843	0.7616	10.597	0.902	0.7614	18.4	0.9
	1	0.7625	3.067	0.862	0.7616	10.57	0.919	0.7526	18.44	0.901
40%	2	0.7621	3.1	0.864	0.7618	10.59	0.909	0.7613	18.4	0.911
	3	0.7621	2.987	0.838	0.7616	10.644	0.951	0.7609	18.4	0.926
50%	1	0.7624	2.924	0.862	0.7616	10.607	0.934	0.7613	18.3	0.91
	2	0.7622	3.06	0.87	0.7617	10.634	0.961	0.7523	18.4	0.914
	3	0.7622	2.99	0.855	0.7614	10.5	0.970	0.7535	18.4	0.903

C Hyperparameters

C.1 Analysis of hyperparameter MNIST

Table 14 comprehensively analyzes how batch size affects various performance metrics under non-IID MNIST conditions. Our findings indicate that while larger batch sizes generally enhance computational efficiency, they often degrade model performance metrics such as accuracy, F1-score, and precision. Furthermore, models trained with larger batch sizes exhibit increased vulnerability to poisoning attacks. Conversely, smaller batch sizes yield better global model performance in our benchmarks, as exemplified by the global model accuracy of 98.863% and source class recall of 97.614% achieved with a batch size of 10. These results highlight the critical role of batch size in balancing performance, efficiency, and security in federated learning systems.

Table 15 presents the influence of momentum on various performance metrics under non-IID MNIST conditions. Momentum, a hyperparameter that accelerates gradient descent, significantly impacts model performance. Our results indicate that a moderate momentum value of 0.5 or 0.6 generally yields optimal results for most metrics. A higher momentum of 0.9 can lead to performance degradation, particularly regarding source class recall (RecSc) and attack success rate (ASR). Table 16 shows the learning rate impact in the system for the MNIST dataset.

Table 14: Effect of local batch size in non-IID MNIST dataset

		Batch size			
$Metric \downarrow$	Method \downarrow	10	32	64	
	Baseline	98.731	98.386	98.130	
G_{Acc}	FedAvg	98.522	98.179	97.868	
G_{Acc}	SecDefender	98.863	98.458		
				98.167	
	Baseline	98.669	98.312	98.055	
$F1 ext{-}Score$	FedAvg	98.463	98.134	97.814	
	SecDefender	98.851	98.410	98.119	
	Baseline	98.786	98.416	98.141	
Precision	FedAvg	98.572	98.216	97.946	
	SecDefender	98.896	98.440	98.193	
	Baseline	98.094	97.559	97.213	
RecSc	FedAvg	95.738	94.733	94.760	
	SecDefender	97.614	95.568	95.302	
	Baseline	0.365	0.492	0.618	
ASR	FedAvg	0.857	1.432	1.624	
	SecDefender	0.449	0.621	0.820	
	Baseline	0.989	1.349	1.669	
TMR	FedAvg	1.575	2.416	2.738	
	SecDefender	1.088	1.568	1.967	

Table 15: Effect of momentum in non-IID MNIST dataset

Matria	Mathad	Momentum			
$Metric \downarrow$	Method \downarrow	0.5	0.6	0.9	
	Baseline	98.855	98.557	98.213	
G_{Acc}	FedAvg	98.820	98.557	97.774	
	SecDefender	98.930	98.845	98.128	
	Baseline	98.795	98.504	98.161	
$F1 ext{-}Score$	FedAvg	98.804	98.504	97.689	
	SecDefender	98.883	98.808	98.081	
	Baseline	98.944	98.602	98.332	
Precision	FedAvg	98.853	98.602	97.854	
	SecDefender	98.946	98.906	98.665	
	Baseline	98.355	95.753	96.831	
RecSc	FedAvg	95.984	95.753	93.234	
	SecDefender	96.317	96.040	94.009	
	Baseline	0.321	0.873	0.561	
ASR	FedAvg	1.085	0.873	1.395	
	SecDefender	0.3895	0.409	0.990	
	Baseline	0.878	1.582	1.719	
TMR	FedAvg	1.792	1.582	2.858	
	SecDefender	0.983	1.058	2.159	

Table 16: Effect of learning rate in non-IID MNIST dataset

Metric ↓	Method ↓	Learning rate				
Menic +	Memod \$	0.01	0.03	0.1		
	Baseline	98.875	98.299	98.855		
G_{Acc}	FedAvg	98.820	97.852	98.820		
	SecDefender	98.913	98.177	98.930		
	Baseline	98.816	98.200	98.795		
$F1 ext{-}Score$	FedAvg	98.815	97.733	98.804		
	SecDefender	98.862	98.118	98.883		
	Baseline	98.889	98.311	98.944		
Precision	FedAvg	98.864	97.835	98.853		
	SecDefender	98.924	98.188	98.946		
	Baseline	98.269	97.930	98.355		
RecSc	FedAvg	95.908	95.225	95.984		
	SecDefender	96.192	95.392	96.317		
	Baseline	0.321	0.490	0.321		
ASR	FedAvg	0.840	1.074	1.085		
	SecDefender	0.389	0.524	0.3895		
	Baseline	0.894	1.337	0.878		
TMR	FedAvg	1.694	2.433	1.792		
	SecDefender	1.012	1.982	0.983		

D Miscellaneous Figures

Figure 1: Visualizing the performance comparison of a malicious client (one malicious) under various experimental conditions, no attack (baseline), attack without defense (FedAvg), and attack with defense (SecDefender).

Figure 2: HAR Dataset

Figure 3: Fashion MNIST

Figure 4: FEDMNIST

Figure 5: MNIST

Figure 6: Sec Defender AUC-ROC Curve based on various datasets in the full-round attack scenario under IID conditions. In the extreme attack scenario with three malicious participants performing a triple-label flipping attack, 50% of the samples from the source class are flipped to the target class ($m=3,\,n_{LF}=3,$ and $Att_{ratio}=50$).

Figure 7: MNIST Dataset

Figure 8: GTSR

Figure 9: CIC-DARKNET2020

Figure 10: SecDefender AUC-ROC Curve based on various datasets in the full-round attack scenario under non-IID conditions. In the extreme attack scenario with three malicious participants performing a triple-label flipping attack, 50% of the samples from the source class are flipped to the target class .