STAT 37797: Mathematics of Data Science

Matrix concentration inequalities

Cong Ma
University of Chicago, Autumn 2021

Concentration inequalities

Let X_1, X_2, \ldots, X_n be i.i.d. random variables, law of large numbers tells us that

$$\frac{1}{n}\sum_{l=1}^{n}X_{l} - \mathbb{E}\left[\frac{1}{n}\sum_{l=1}^{n}X_{l}\right] \to 0, \quad \text{as } n \to \infty$$

Key message:

sum of independent random variables concentrate around its mean

— how fast does it concentrate?

Bernstein's inequality

Consider a sequence of independent random variables $\{X_l\} \in \mathbb{R}$

• $\mathbb{E}[X_l] = 0$

• $|X_l| \leq B$ for each l

variance statistic:

$$v := \mathbb{E}\left[\left(\sum_{l} X_{l}\right)^{2}\right] = \sum_{l=1}^{n} \mathbb{E}\left[X_{l}^{2}\right]$$

Theorem 4.1 (Bernstein's inequality)

For all
$$\tau \geq 0$$
,

$$\mathbb{P}\left\{\left|\sum_{l} X_{l}\right| \geq \tau\right\} \leq 2 \exp\left(\frac{-\tau^{2}/2}{v + B\tau/3}\right)$$

Tail behavior

$$\mathbb{P}\left\{\left|\sum_{l} X_{l}\right| \geq \tau\right\} \leq 2 \exp\left(\frac{-\tau^{2}/2}{v + B\tau/3}\right)$$

- moderate-deviation regime (τ is small):
 - sub-Gaussian tail behavior $\exp(-\tau^2/2v)$
- large-deviation regime (τ is large):
 - sub-exponential tail behavior $\exp(-3\tau/2B)$ (slower decay)
- user-friendly form (exercise): with prob. $1 O(n^{-10})$

$$\left| \sum_{l} X_{l} \right| \lesssim \sqrt{v \log n} + B \log n$$

Tail behavior (cont.)

There are exponential concentration inequalities for spectral norm of sum of independent random matrices

Matrix Bernstein inequality

Consider a sequence of independent random matrices $\{oldsymbol{X}_l \in \mathbb{R}^{d_1 imes d_2}\}$

•
$$\mathbb{E}[X_l] = \mathbf{0}$$

•
$$\|\boldsymbol{X}_l\| \leq B$$
 for each l

variance statistic:

$$v := \max \left\{ \left\| \mathbb{E}\left[\sum\nolimits_l \boldsymbol{X}_l \boldsymbol{X}_l^\top \right] \right\|, \left\| \mathbb{E}\left[\sum\nolimits_l \boldsymbol{X}_l^\top \boldsymbol{X}_l \right] \right\| \right\}$$

Theorem 4.2 (Matrix Bernstein inequality)

For all
$$\tau \ge 0$$
,
$$\mathbb{P}\left\{\left\|\sum_{l} \boldsymbol{X}_{l}\right\| \ge \tau\right\} \le (d_{1} + d_{2}) \exp\left(\frac{-\tau^{2}/2}{v + B\tau/3}\right)$$

Matrix Bernstein inequality

Consider a sequence of independent random matrices $\{m{X}_l \in \mathbb{R}^{d_1 imes d_2}\}$

•
$$\mathbb{E}[X_l] = \mathbf{0}$$

•
$$\|\boldsymbol{X}_l\| \leq B$$
 for each l

variance statistic:

$$v := \max \left\{ \left\| \mathbb{E}\left[\sum\nolimits_l \boldsymbol{X}_l \boldsymbol{X}_l^\top \right] \right\|, \left\| \mathbb{E}\left[\sum\nolimits_l \boldsymbol{X}_l^\top \boldsymbol{X}_l \right] \right\| \right\}$$

Theorem 4.2 (Matrix Bernstein inequality)

For all $\tau \geq 0$,

$$\mathbb{P}\left\{\left\|\sum_{l} \mathbf{X}_{l}\right\| \geq \tau\right\} \leq (d_{1} + d_{2}) \exp\left(\frac{-\tau^{2}/2}{v + B\tau/3}\right)$$

User-friendly form: with probability at least $1 - O((d_1 + d_2)^{-10})$

$$\left\| \sum_{l} X_{l} \right\| \lesssim \sqrt{v \log(d_{1} + d_{2})} + B \log(d_{1} + d_{2})$$
 (4.1)

ins lecture, actualed introduction to matrix Bernstein

An introduction to matrix concentration inequalities

— Joel Tropp '15

Outline

- Background on matrix functions
- Matrix Laplace transform method
- Matrix Bernstein inequality

Background on matrix functions

Matrix function

Suppose the eigendecomposition of a symmetric matrix $oldsymbol{A} \in \mathbb{R}^{d imes d}$ is

$$oldsymbol{A} = oldsymbol{U} \left[egin{array}{cccc} \lambda_1 & & & & \ & \ddots & & \ & & \lambda_d \end{array}
ight] oldsymbol{U}^ op$$

Then we can define

$$f(m{A}) := m{U} \left[egin{array}{ccc} f(\lambda_1) & & & & & & \\ & & \ddots & & & & \\ & & & f(\lambda_d) \end{array}
ight] m{U}^ op$$

— align with our intuition about A^k

Examples of matrix functions

• Let $f(a) = c_0 + \sum_{k=1}^{\infty} c_k a^k$, then

$$f(\mathbf{A}) := c_0 \mathbf{I} + \sum_{k=1}^{\infty} c_k \mathbf{A}^k$$

- matrix exponential: $e^{A} := I + \sum_{k=1}^{\infty} \frac{1}{k!} A^{k}$ • monotonicity: if $A \prec H$, then $\operatorname{tr} e^{A} < \operatorname{tr} e^{H}$
- matrix logarithm: $\log(e^{A}) := A$
 - \circ monotonicity: if $0 \leq A \leq H$, then $\log A \leq \log(H)$ (does not hold for matrix exponential)

Matrix moments and cumulants

Let X be a random symmetric matrix. Then

• matrix moment generating function (MGF):

$$M_{\boldsymbol{X}}(\theta) := \mathbb{E}[e^{\theta \boldsymbol{X}}]$$

• matrix cumulant generating function (CGF):

$$\Xi_{\boldsymbol{X}}(\theta) := \log \mathbb{E}[e^{\theta \boldsymbol{X}}]$$

— expectations may not exist for all θ

Matrix Laplace transform method

Matrix Laplace transform

A key step for a scalar random variable Y: by Markov's inequality,

$$\mathbb{P}\left\{Y \ge t\right\} \le \inf_{\theta > 0} e^{-\theta t} \,\mathbb{E}\left[e^{\theta Y}\right]$$

This can be generalized to the matrix case

Matrix Laplace transform

Lemma 4.3

Let Y be a random symmetric matrix. For all $t \in \mathbb{R}$,

$$\mathbb{P}\left\{\lambda_{\max}(\boldsymbol{Y}) \geq t\right\} \leq \inf_{\theta > 0} e^{-\theta t} \mathbb{E}\left[\operatorname{tr} e^{\theta \boldsymbol{Y}}\right]$$

- ullet can control the extreme eigenvalues of Y via the trace of the matrix MGF
- similar result holds for minimum eigenvalue

Proof of Lemma 4.3

For any $\theta > 0$,

$$\begin{split} \mathbb{P}\left\{\lambda_{\max}(\boldsymbol{Y}) \geq t\right\} &= \mathbb{P}\left\{\mathrm{e}^{\theta\lambda_{\max}(\boldsymbol{Y})} \geq \mathrm{e}^{\theta t}\right\} \\ &\leq \frac{\mathbb{E}[\mathrm{e}^{\theta\lambda_{\max}(\boldsymbol{Y})}]}{\mathrm{e}^{\theta t}} \qquad \text{(Markov's inequality)} \\ &= \frac{\mathbb{E}[\mathrm{e}^{\lambda_{\max}(\theta\boldsymbol{Y})}]}{\mathrm{e}^{\theta t}} \\ &= \frac{\mathbb{E}[\lambda_{\max}(\mathrm{e}^{\theta\boldsymbol{Y}})]}{\mathrm{e}^{\theta t}} \qquad (\mathrm{e}^{\lambda_{\max}(\boldsymbol{Z})} = \lambda_{\max}(\mathrm{e}^{\boldsymbol{Z}})) \\ &\leq \frac{\mathbb{E}[\mathrm{tr}\,\mathrm{e}^{\theta\boldsymbol{Y}}]}{\mathrm{e}^{\theta t}} \end{split}$$

This completes the proof since it holds for any $\theta > 0$

Issues of the matrix MGF

The Laplace transform method is effective for controlling an independent sum when MGF decomposes

• in the scalar case where $X = X_1 + \cdots + X_n$ with independent $\{X_l\}$:

$$M_X(\theta) = \mathbb{E}[\mathrm{e}^{\theta X_1 + \dots + \theta X_n}] = \mathbb{E}[\mathrm{e}^{\theta X_1}] \cdots \mathbb{E}[\mathrm{e}^{\theta X_n}] = \underbrace{\prod_{l=1}^n M_{X_l}(\theta)}_{\text{look at each } X_l \text{ separately}}$$

Issues in the matrix settings:

$$\mathrm{e}^{m{X}_1+m{X}_2}
eq \mathrm{e}^{m{X}_1}\mathrm{e}^{m{X}_2}$$
 unless $m{X}_1$ and $m{X}_2$ commute $\mathrm{tr}\,\mathrm{e}^{m{X}_1+\cdots+m{X}_n}
eq \mathrm{tr}\,\mathrm{e}^{m{X}_1}\mathrm{e}^{m{X}_1}\cdots\mathrm{e}^{m{X}_n}$ for $n\geq 3$

How about matrix CGF?

• in the scalar case where $X = X_1 + \cdots + X_n$ with independent $\{X_l\}$:

$$\Xi_X(\theta) = \log M_X(\theta) = \underbrace{\sum_{l=1}^n \log M_{X_l}(\theta)}_{\text{look at each } X_l \text{ separately}} = \sum_l \Xi_{X_l}(\theta)$$

In matrix case, can we hope for

$$\mathbf{\Xi}_{\sum_{l} \mathbf{X}_{l}}(\theta) = \sum_{l} \mathbf{\Xi}_{\mathbf{X}_{l}}(\theta)$$
 ?

— Nope; But...

Subadditivity of matrix CGF

Fortunately, the matrix CGF satisfies certain subadditivity rules, allowing us to decompose independent matrix components

Lemma 4.4

Consider a finite sequence $\{X_l\}_{1 \leq l \leq n}$ of independent random symmetric matrices. Then for any $\theta \in \mathbb{R}$,

$$\underbrace{\mathbb{E}\!\left[\operatorname{tr} \mathbf{e}^{\theta \sum_{l} \mathbf{X}_{l}}\right]}_{\operatorname{tr} \exp\left(\mathbf{\Xi}_{\Sigma_{l} \mathbf{X}_{l}}(\theta)\right)} \leq \underbrace{\operatorname{tr} \exp\left(\sum_{l} \log \mathbb{E}\left[\mathbf{e}^{\theta \mathbf{X}_{l}}\right]\right)}_{\operatorname{tr} \exp\left(\sum_{l} \mathbf{\Xi}_{\mathbf{X}_{l}}(\theta)\right)}$$

• this is a deep result — based on Lieb's Theorem!

Lieb's Theorem

Elliott Lieb

Theorem 4.5 (Lieb '73)

Fix a symmetric matrix $oldsymbol{H}$. Then

$$A \mapsto \operatorname{tr} \exp(H + \log A)$$

is concave on positive-definite cone

Lieb's Theorem immediately implies (exercise: Jensen's inequality)

$$\mathbb{E}[\operatorname{tr}\exp(\boldsymbol{H} + \boldsymbol{X})] \le \operatorname{tr}\exp(\boldsymbol{H} + \log \mathbb{E}[e^{\boldsymbol{X}}]) \tag{4.2}$$

Proof sketch of Lieb's Theorem

Main observation: $\operatorname{tr}(\cdot)$ admits a variational formula

Lemma 4.6

For any $M\succeq \mathbf{0}$, one has

$$\operatorname{tr} M = \sup_{T \succ 0} \operatorname{tr} \left[\underbrace{T \log M - T \log T + T}_{relative\ entropy\ is\ -T \log M + T \log T - T + M} \right]$$

Proof of Lemma 4.4

$$\mathbb{E}\left[\operatorname{tr} e^{\theta \sum_{l} \mathbf{X}_{l}}\right] = \mathbb{E}\left[\operatorname{tr} \exp\left(\theta \sum_{l=1}^{n-1} \mathbf{X}_{l} + \theta \mathbf{X}_{n}\right)\right]$$

$$\leq \mathbb{E}\left[\operatorname{tr} \exp\left(\theta \sum_{l=1}^{n-1} \mathbf{X}_{l} + \log \mathbb{E}\left[e^{\theta \mathbf{X}_{n}}\right]\right)\right] \quad \text{(by (4.2))}$$

$$\leq \mathbb{E}\left[\operatorname{tr} \exp\left(\theta \sum_{l=1}^{n-2} \mathbf{X}_{l} + \log \mathbb{E}\left[e^{\theta \mathbf{X}_{n-1}}\right] + \log \mathbb{E}\left[e^{\theta \mathbf{X}_{n}}\right]\right)\right]$$

$$\leq \cdots$$

$$\leq \operatorname{tr} \exp\left(\sum_{l=1}^{n} \log \mathbb{E}\left[e^{\theta \mathbf{X}_{l}}\right]\right)$$

Master bounds

Combining the Laplace transform method with the subadditivity of CGF yields:

Theorem 4.7 (Master bounds for sum of independent matrices)

Consider a finite sequence $\{X_l\}$ of independent random symmetric matrices. Then

$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_{l} \boldsymbol{X}_{l}\right) \geq t\right\} \leq \inf_{\theta > 0} \frac{\operatorname{tr}\exp\left(\sum_{l} \log \mathbb{E}[e^{\theta \boldsymbol{X}_{l}}]\right)}{e^{\theta t}}$$

• this is a general result underlying the proofs of the matrix Bernstein inequality and beyond (e.g., matrix Chernoff)

Matrix Bernstein inequality

Matrix CGF

$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_{l} \boldsymbol{X}_{l}\right) \geq t\right\} \leq \inf_{\theta > 0} \frac{\operatorname{tr}\exp\left(\sum_{l} \log \mathbb{E}\left[e^{\theta \boldsymbol{X}_{l}}\right]\right)}{e^{\theta t}}$$

To invoke the master bound, one needs to $\underbrace{\mathsf{control}}$ the matrix $\widehat{\mathsf{CGF}}$ main step for proving matrix Bernstein

Symmetric case

Consider a sequence of independent random symmetric matrices $\{oldsymbol{X}_l \in \mathbb{R}^{d imes d}\}$

• $\mathbb{E}[X_l] = \mathbf{0}$

- $\lambda_{\max}(\boldsymbol{X}_l) \leq B$ for each l
- ullet variance statistic: $v := \|\mathbb{E}\left[\sum_l oldsymbol{X}_l^2
 ight]\|$

Theorem 4.8 (Matrix Bernstein inequality: symmetric case)

For all
$$\tau \geq 0$$
,
$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_{l} \boldsymbol{X}_{l}\right) \geq \tau\right\} \leq d \exp\left(\frac{-\tau^{2}/2}{v + B\tau/3}\right)$$

— left as exercise to prove extension to rectangular case

Bounding matrix CGF

For bounded random matrices, one can control the matrix CGF as follows:

Lemma 4.9

Suppose
$$\mathbb{E}[X] = \mathbf{0}$$
 and $\lambda_{\max}(X) \leq B$. Then for $0 < \theta < 3/B$,
$$\log \mathbb{E}[\mathrm{e}^{\theta X}] \leq \frac{\theta^2/2}{1 - \theta B/3} \mathbb{E}[X^2]$$

Proof of Theorem 4.8

Let $g(\theta) := \frac{\theta^2/2}{1-\theta B/3}$, then it follows from the master bound that

$$\begin{split} \mathbb{P}\left\{\lambda_{\max}\big(\sum_{i}\boldsymbol{X}_{i}\big) \geq t\right\} &\leq \inf_{\theta>0} \frac{\operatorname{tr}\exp\big(\sum_{i=1}^{n}\log\mathbb{E}[\mathrm{e}^{\theta\boldsymbol{X}_{i}}]\big)}{\mathrm{e}^{\theta t}} \\ &\leq \inf_{0<\theta<3/B} \frac{\operatorname{tr}\exp\big(g(\theta)\sum_{i=1}^{n}\mathbb{E}[\boldsymbol{X}_{i}^{2}]\big)}{\mathrm{e}^{\theta t}} \\ &\leq \inf_{0<\theta<3/B} \frac{d\,\exp\big(g(\theta)v\big)}{\mathrm{e}^{\theta t}} \end{split}$$

Taking $\theta = \frac{t}{v+Bt/3}$ and simplifying the above expression, we establish matrix Bernstein

Proof of Lemma 4.9

Define $f(x) = \frac{e^{\theta x} - 1 - \theta x}{x^2}$, then for any X with $\lambda_{\max}(X) \leq B$:

$$\mathbf{e}^{\theta X} = \mathbf{I} + \theta \mathbf{X} + \left(\mathbf{e}^{\theta X} - \mathbf{I} - \theta \mathbf{X}\right) = \mathbf{I} + \theta \mathbf{X} + \mathbf{X} \cdot f(\mathbf{X}) \cdot \mathbf{X}$$

\(\times \mathbf{I} + \theta \mathbf{X} + f(B) \cdot \mathbf{X}^2

In addition, we note an elementary inequality: for any $0 < \theta < 3/B$,

$$f(B) = \frac{e^{\theta B} - 1 - \theta B}{B^2} = \frac{1}{B^2} \sum_{k=2}^{\infty} \frac{(\theta B)^k}{k!} \le \frac{\theta^2}{2} \sum_{k=2}^{\infty} \frac{(\theta B)^{k-2}}{3^{k-2}} = \frac{\theta^2/2}{1 - \theta B/3}$$

$$\implies$$
 $e^{\theta X} \leq I + \theta X + \frac{\theta^2/2}{1 - \theta B/3} \cdot X^2$

Since $oldsymbol{X}$ is zero-mean, one further has

$$\mathbb{E}\left[e^{\theta \boldsymbol{X}}\right] \leq \boldsymbol{I} + \frac{\theta^2/2}{1 - \theta B/3} \mathbb{E}[\boldsymbol{X}^2] \leq \exp\left(\frac{\theta^2/2}{1 - \theta B/3} \mathbb{E}[\boldsymbol{X}^2]\right)$$

Finish by observing \log is monotone

Appendix: asymptotic notation

• $f(n) \lesssim g(n)$ or f(n) = O(g(n)) means

$$\limsup_{n \to \infty} \frac{|f(n)|}{|g(n)|} \ \leq \ \operatorname{const}$$

• $f(n) \gtrsim g(n)$ or $f(n) = \Omega(g(n))$ means

$$\liminf_{n \to \infty} \frac{|f(n)|}{|g(n)|} \ge \text{const}$$

 $\bullet \ f(n) \asymp g(n) \ {\rm or} \ f(n) = \Theta(g(n)) \ {\rm means}$

$$f(n) \lesssim g(n) \quad \text{and} f(n) \gtrsim g(n)$$

• f(n) = o(g(n)) means

$$\lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} = 0$$