Computer Graphics

Tutorial for Exercise Sheet 03

a) Rasterization vs Ray-tracing

Rasterization:

- Projects 3D objects onto a 2D Image
- All pixels that are affected by the object are searched
- Pixel values are calculated accordingly
- Fast but inaccurate

Ray-Tracing:

- Other way around: Casting a ray for each pixel
- All object are tested against each ray to identify nearest object hit
- Ray may be absorbed or (partially) reflected
 - may require further rays to be cast
- Each object a ray hits influences its pixels color value
 - until ray is either full absorbed or ends in light source
- Slow but photorealistic

https://www.youtube.com/watch?v=bUX3u1iD0jM

a) Rasterization vs Ray-tracing

c) Image-Based vs Object-Based

Image-Based:

- E.g.: Raster Graphics
- Consider pixels sequentially
- Determine which object is visible at the position
- Determine pixel color

-

Object-Based:

- Eg.: Vector Graphics
- Consider objects/surfaces sequentially
- Determine which pixels are covered by the object
- Determine pixel color

b) Implicit vs Parametric Representation

Implicit Representation:

- Of the form F(x)=0
- Points are described by an equation / condition that has to be met
- Only solvable in certain areas around points

Parametric Representation

- Points are described by function with arbitrary parameters
- All points can be calculated by evaluating function for all valid parameter values
- Complicated surfaces must be glued together by patches

b) Implicit vs Parametric Representation

b) Implicit vs Parametric Representation

Example: Sphere of radius r

Implicit:

$$F(x, y, z) = x^2 + y^2 + z^2 - r^2 = 0$$

Parametric:

$$x(r,\theta,\varphi) = \begin{pmatrix} r\sin\theta\cos\varphi\\ r\sin\theta\sin\varphi\\ r\cos\theta \end{pmatrix}$$

$$r \in \mathbb{R}, \theta \in [0, \pi], \varphi \in [0, 2\pi)$$

- c) Barycentric Coordinates
 - Barycentric coordinates of a point Q respective to the Points $P_1, ..., P_k$ are expressed by

$$Q = \lambda_1 P_1 + \dots + \lambda_k P_k \qquad \sum_{i=1}^{\infty} \lambda_i = 1$$

- A point Q lies in a triangle with vertices $P_1,...,P_k$ if $\lambda_i \geq 0$ $i \in \{1,...,k\}$ and $\sum_k \lambda_i = 1$

c) Barycentric Coordinates: Computation for Triangle

Barycentric Coordinates

 A coordinate system in which the location of a point of a simplex

a) How many barycentric coordinates does one need for an n-simplex?

For an n-simplex one needs n+1 barycentric coordinates.

b) Diagonal between P1 and P3

From P0 to Intersection: Blue to Red

From P2 to intersection: Green to Red

From P0 to P2: Blue to Red to Green

c) Diagonal between P0 and P2

Interpolation between P0 and P2 would then be shift from blue to green without containing any red

d) Direct calculation of barycentric coordinates for a rectangle

- Idea: Use bilinear interpolation
 - Calculate area of the small rectangles and normalize with full area
 - Problem: Only rectangles
- For arbitrary quadrangles:
 - Newton Method

Exercise 3: Ray Tracing

Determination of Intersection

Ray-sphere intersection

- Ray equation (parametric) $\mathbf{r}(t) = \mathbf{e} + t\mathbf{d}$
- Sphere (implicit representation) $\|\mathbf{x} \mathbf{c}\|^2 r^2 = 0$
- Plug in:

$$||\mathbf{r}(t) - \mathbf{c}||^2 - r^2 = 0$$

•
$$\|\mathbf{e} + t\mathbf{d} - \mathbf{c}\|^2 - r^2 = 0$$
 ($\|\mathbf{x}\|^2 = \mathbf{x} \cdot \mathbf{x}$)

•
$$(\mathbf{e} + t\mathbf{d} - \mathbf{c}) \cdot (\mathbf{e} + t\mathbf{d} - \mathbf{c}) - r^2 = 0$$

$$\underbrace{(\mathbf{e} - \mathbf{c}) \cdot (\mathbf{e} - \mathbf{c}) - r^2}_{const.} + \underbrace{2(t\mathbf{d} \cdot (\mathbf{e} - \mathbf{c}))}_{t(2\mathbf{d} \cdot (\mathbf{e} - \mathbf{c}))} + \underbrace{(t\mathbf{d}) \cdot (t\mathbf{d})}_{t^2(\mathbf{d} \cdot \mathbf{d})} = 0$$

Computer Graphics, WS 2022/23

Filip Sadlo

Exercise 3: Ray Tracing

Determination of Intersection

Ray-sphere intersection

$$\underbrace{(\mathbf{e} - \mathbf{c}) \cdot (\mathbf{e} - \mathbf{c}) - r^2}_{const.} + \underbrace{2(t\mathbf{d} \cdot (\mathbf{e} - \mathbf{c}))}_{t(2\mathbf{d} \cdot (\mathbf{e} - \mathbf{c}))} + \underbrace{(t\mathbf{d}) \cdot (t\mathbf{d})}_{t^2(\mathbf{d} \cdot \mathbf{d})} = 0$$

Quadratic equation:

•
$$t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

with $a = \mathbf{d} \cdot \mathbf{d}$, $b = 2\mathbf{d} \cdot (\mathbf{e} - \mathbf{c})$, $c = (\mathbf{e} - \mathbf{c}) \cdot (\mathbf{e} - \mathbf{c}) - r^2$

• Discriminant $b^2 - 4ac$

 $\begin{array}{l} \text{discriminant} < 0 \\ \rightarrow \text{no solution} \\ \text{Computer Graphics, WS 2022/23} \end{array}$

discriminant = 0 $\rightarrow one solution$ Filip Sadlo

 $\mathbf{r}(t_1)$

discriminant > 0

→ two solutions