

# Universidad CENFOTEC Bachillerato en Ingeniería del Software

# FIS-01 Física 1

# 1. Datos generales del curso

| Carrera:                           | Bachillerato en Ingeniería del Software                                                                                                                                                                                                                                                      |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sede:                              | Central                                                                                                                                                                                                                                                                                      |
| Nombre del curso:                  | Física 1                                                                                                                                                                                                                                                                                     |
| Código del curso                   | FIS-01                                                                                                                                                                                                                                                                                       |
| Modalidad:                         | Cuatrimestral                                                                                                                                                                                                                                                                                |
| Naturaleza del curso:              | Teórico-práctico                                                                                                                                                                                                                                                                             |
| Créditos:                          | 4                                                                                                                                                                                                                                                                                            |
| Requisitos:                        | MAT-03 Cálculo Diferencial e Integral                                                                                                                                                                                                                                                        |
| Nivel:                             | 8                                                                                                                                                                                                                                                                                            |
| Duración:                          | 15 semanas                                                                                                                                                                                                                                                                                   |
| Dedicación horaria<br>semanal:     | Horas de clase: 3<br>Horas práctica: 6<br>Horas de trabajo independiente: 3<br>Total de horas: 12                                                                                                                                                                                            |
| Sesiones por semana:               | 1 sesión de 3 horas                                                                                                                                                                                                                                                                          |
| Nombre del profesor:               | Por definir                                                                                                                                                                                                                                                                                  |
| Aspectos administrativos:          | El estudiante requiere de una conexión de internet estable y la utilización de computadora con acceso a navegación web que le permita el ingreso a la plataforma virtual de aprendizaje, a la sala de video conferencias y a la bibliografía digital de la Biblioteca Ignacio Trejos Zelaya. |
| Aula:                              | Aplicación de videoconferencia Google Meet y entorno virtual de aprendizaje Moodle                                                                                                                                                                                                           |
| Horario propuesto:                 | Por definir cada cuatrimestre                                                                                                                                                                                                                                                                |
| Vigencia:                          |                                                                                                                                                                                                                                                                                              |
| Puede presentarse por suficiencia: | Sí                                                                                                                                                                                                                                                                                           |

| Se          | permite | Sí |
|-------------|---------|----|
| convalidar: |         |    |

## 2. Descripción del curso

El curso brinda al estudiante los conocimientos básicos de cinemática, dinámica, trabajo y energía, buscando su aplicación práctica con medios informáticos, a fin de que el estudiante pueda plantear modelos físicos en ámbitos relacionados con su carrera y resolver problemas que involucren fenómenos mecánicos mediante la aplicación de técnicas computacionales y herramientas informáticas.

#### 3. Objetivos

#### Objetivo general

Usar modelos físicos que involucren conceptos fundamentales de mecánica (movimiento, masa, fuerza, trabajo y energía) para aplicarlos en contextos informáticos mediante experimentación, análisis de datos, técnicas computacionales, simulación, robótica o videojuegos.

#### Objetivos específicos

- Relacionar las ecuaciones de movimiento lineal y rotacional con aplicaciones informáticas, mediante experimentos, observaciones y programas computacionales que permitan construir simulaciones o artefactos móviles controlados por computadora.
- Aplicar los conceptos de momento lineal y angular para modelar colisiones en ambientes físicos simulados, aprovechando las facilidades de una herramienta para la graficación de sólidos en tercera dimensión.
- Experimentar con situaciones que involucren los fenómenos de trabajo y energía, empleando herramientas computacionales de análisis de datos y graficación, a fin de construir modelos físicos simulados en computadoras.

 Elaborar simulacros computacionales de sistemas mecánicos, por medio de componentes de programación y plataformas de simulación, para dar un sentido de realismo físico a animaciones y videojuegos informáticos.

#### 4. Contenidos temáticos

#### Tema 1. Introducción a la física

- Orígenes de la física
- Importancia de la física en el estudio de las ingenierías
- La física y su relación con las tecnologías de información y comunicación
- Unidades, conversiones, magnitudes físicas
- Física y su relación con la Informática

#### Tema 2. Movimiento en una dimensión

- Cinemática con vectores
- Propiedades de los vectores
- Vectores de posición, velocidad y aceleración
- Cinemática unidimensional
- Movimiento con aceleración constante
- Caída libre

#### Tema 3. Movimiento en dos y tres dimensiones

- Movimiento en tres dimensiones con aceleración constante
- Leyes de Newton en la forma vectorial tridimensional
- Movimiento de proyectiles
- Movimiento circular uniforme
- Animación de movimiento por técnicas informáticas

#### Tema 4. Fuerzas y leyes de newton

- Primera ley de Newton
- Fuerza y masa
- Segunda ley de Newton
- Peso y masa

- Tercera ley de Newton
- Aplicaciones de las leyes de Newton en una dimensión

# Tema 5. Aplicaciones de las leyes de newton

- Tensión y fuerzas normales
- Fuerza de fricción
- Dinámica del movimiento circular
- Simulación computacional de las leyes de Newton

#### Tema 6. Momento

- Colisiones
- Momento lineal
- Impulso y momento
- Conservación del momento
- Colisiones entre los cuerpos

# Tema 7. Sistemas de partículas

- Sistemas de dos partículas
- Sistemas de muchas partículas
- Centro de masa de objetos sólidos
- Conservación del momento en un sistema de partículas
- Simulación computacional: detección de colisiones, resolución de colisiones
- Un video juego simple

#### Tema 8. Cinemática rotacional

- Movimiento rotacional
- Las variables rotacionales
- Magnitudes rotacionales como vectores
- Rotación con aceleración angular constante
- Relación entre las variables rotacionales y angulares

#### Tema 9. Dinámica de la rotación

La torca

- La inercia rotacional y la segunda ley de Newton
- Inercia de la rotación de los cuerpos rígidos
- Torca debida a la gravedad
- Aplicación de las leyes del equilibrio para la rotación
- Aplicación de las leyes de no-equilibrio para la rotación
- Movimiento de traslación y rotación combinadas
- Realismo en la animación computacional del movimiento

#### Tema 10. Momento angular

- Momento angular de una partícula
- Sistemas de partículas
- Momento y velocidad angulares
- Conservación del momento angular
- Un vídeo juego con movimiento rotacional y lineal

#### Tema 11. Trabajo y energía cinética

- Trabajo y energía
- Trabajo realizado por una fuerza constante
- Potencia
- Trabajo realizado por una fuerza variable
- Energía cinética y teorema de trabajo-energía
- Trabajo de fricción
- Trabajo y energía cinética en el movimiento rotacional
- Energía cinética en colisiones
- Aplicación: juego de billar
- Aplicaciones en robótica

#### Tema 12. Energía potencial

- Fuerzas conservativas
- Energía potencial
- Conservación de la energía mecánica
- Conservación de la energía en el movimiento rotacional
- Simulación de movimiento de poleas

Aplicaciones en robótica

#### 5. Metodologías de enseñanza

En el presente curso se utilizan una serie de metodologías de enseñanza que se describen a continuación:

- La metodología de la enseñanza directa permite que el docente muestre y modele a los estudiantes los principales conceptos de la Física para la comprensión de la lógica de los fenómenos de energía, fuerza y movimiento.
- La metodología de aprendizaje autónomo fomenta que los estudiantes establezcan sus objetivos y metas personales de aprendizaje para el desarrollo progresivo de los conocimientos sobre física a lo largo del curso.
- La metodología de aprendizaje interactivo promueve la aplicación de los principios físicos de fuerza y movimiento en ambientes informáticos para el modelaje de situaciones de contexto real.
- La metodología del aprendizaje experiencial propicia que los estudiantes observen y analicen los fenómenos de su entorno para una comprensión de las leyes de la física.
- La gestión tutorial facilita la disposición de los recursos didácticos y el acompañamiento docente sincrónico y asincrónico para el estudio de los contenidos relacionados con la cinemática y la dinámica.
- Las comunidades virtuales de aprendizaje favorecen entre los estudiantes y con el docente el intercambio de experiencias relacionadas con las temáticas de la física aplicadas en los ámbitos de la informática y la computación.

#### 6. Estrategias de aprendizaje

Las estrategias de aprendizaje que se emplean para este curso se describen a continuación:

- La elaboración de resúmenes de las lecturas asignadas favorece en los estudiantes la caracterización de los conceptos y teorías del curso según las situaciones y objetos físicos que se presenten.
- La creación de formularios para cada tema facilita a los estudiantes el reconocimiento y aplicación de los cálculos matemáticos correspondientes a cada tipo de situación física.

# 7. Actividades de aprendizaje y sistema de evaluación

El curso se caracteriza por el desarrollo de las siguientes actividades de aprendizaje

| Actividades          | Porcentaje |
|----------------------|------------|
| Modelos físicos (3)  | 30%        |
| Prácticas (3)        | 30%        |
| Pruebas escritas (2) | 40%        |
| Total                | 100%       |

**Modelos físicos.** Los modelos físicos consisten en una simulación de un sistema mecánico por medio de componentes de programación y plataformas. Los estudiantes deben realizar una investigación previa para escoger una temática de contexto real que involucre los conceptos físicos a trabajar, utilizar herramientas computacionales y exponer el diseño desarrollado. Esta actividad de evaluación utiliza la siguiente rúbrica:

| Criterios de desempeño           | Deficiente<br>(1 punto)                                                                           | Regular<br>(2 puntos)                                                                            | Bueno<br>(3 puntos)                                                                              | Excelente<br>(4 puntos)                                                                         |  |
|----------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Temática de contexto real        | Determina una temática de contexto real relacionada con los conceptos físicos de forma inadecuada | Determina una temática de contexto real relacionada con los conceptos físicos de forma elemental | Determina una temática de contexto real relacionada con los conceptos físicos de forma admisible | Determina una temática de contexto real relacionada con los conceptos físicos de forma adecuada |  |
| Conceptos y teorías de la física | Aplica los conceptos y teorías de la física de manera escueta                                     | Aplica los conceptos y teorías de la física de manera incipiente                                 | Aplica los conceptos y teorías de la física sin profundizar                                      | Aplica los conceptos y teorías de la física de manera satisfactoria y con profundización        |  |

| Componentes de programación y plataformas | Emplea componentes de programación y plataformas de manera insuficiente | Emplea<br>componentes de<br>programación y<br>plataformas de<br>manera básica | Emplea<br>componentes de<br>programación y<br>plataformas de<br>manera regular | Emplea componentes de programación y plataformas de manera adecuada |
|-------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Simulación del sistema mecánico           | Desarrolla la simulación con múltiples limitaciones y de manera escasa  | Desarrolla la simulación con algunas limitaciones y de manera básica          | Desarrolla la simulación con alguna limitación y de manera aceptable           | Desarrolla la simulación sin limitaciones y de manera creativa      |
| Exposición del modelo físico              | Presenta el modelo físico de forma incoherente y escasa                 | Presenta el<br>modelo físico de<br>manera básica                              | Presenta el<br>modelo físico de<br>manera<br>incompleta                        | Presenta el<br>modelo físico de<br>manera clara y<br>completa       |

**Prácticas.** Las prácticas consisten en la resolución de ejercicios que modelan los diferentes contenidos sobre movimiento, leyes de newton, dinámica y trabajo. Para la compleción de las prácticas los estudiantes deben analizar las situaciones planteadas, identificar los contenidos físicos asociados, emplear cálculos matemáticos e interpretar los resultados obtenidos. Esta actividad de evaluación utiliza la siguiente rúbrica:

| Criterios de desempeño                                                                                      | Deficiente Regular<br>(1 punto) (2 puntos)                    |                                                                                        | Bueno<br>(3 puntos)                                                                                          | Excelente<br>(4 puntos)                                                                                 |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Análisis del ejercicio                                                                                      | Analiza la situación física planteada de manera confusa       | Analiza la situación física planteada con algunos errores                              | Analiza la<br>situación física<br>planteada con<br>algún error                                               | Analiza la<br>situación física<br>planteada de<br>manera precisa                                        |
| Conceptos y<br>teorías de la<br>física                                                                      | Aplica los conceptos y teorías de la física de manera escueta | Aplica los conceptos y teorías de la física de manera incipiente                       | Aplica los<br>conceptos y<br>teorías de la<br>física sin<br>profundizar                                      | Aplica los<br>conceptos y<br>teorías de la física<br>de manera<br>satisfactoria y con<br>profundización |
| Ejercicios de las prácticas  Resuelve los ejercicios de la práctica de manera muy básica y con limitaciones |                                                               | Resuelve algunos de los ejercicios de la práctica de forma adecuada y con limitaciones | Resuelve la mitad<br>de los ejercicios<br>de la práctica de<br>forma adecuada<br>y con pocas<br>limitaciones | Resuelve todos<br>los ejercicios de la<br>práctica de forma<br>satisfactoria y<br>adecuada              |

| Cálculos<br>matemáticos          | Realiza los cálculos matemáticos de manera errónea y con limitaciones | Realiza los cálculos matemáticos de forma adecuada y con limitaciones | Realiza los cálculos matemáticos de forma adecuada y con pocas limitaciones | Realiza los cálculos matemáticos de forma adecuada y sin limitaciones              |
|----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Interpretación de los resultados | Interpreta los<br>resultados<br>obtenidos de<br>manera escueta        | Interpreta los resultados obtenidos de manera elemental               | Interpreta los<br>resultados<br>obtenidos de<br>manera admisible            | Interpreta los<br>resultados<br>obtenidos de<br>manera acertada<br>y satisfactoria |

**Pruebas escritas.** Las pruebas escritas favorecen la comprobación de los conceptos teóricos sobre física y de las destrezas para el análisis de los principios del movimiento, el trabajo, la energía y la fuerza por medio de la resolución de ejercicios y problemas de diferente contexto. Estas pruebas serán habilitadas durante toda una semana en el entorno virtual de aprendizaje, según cronograma del curso, y los estudiantes contarán con cuatro horas para su realización.

#### 8. Recursos didácticos

Para promover el aprendizaje de los estudiantes, se incorporan los siguientes recursos educativos:

- El conocimiento y la experiencia previa de los estudiantes sobre cálculo diferencial e integral facilita la ejecución de procesos matemáticos necesarios para la representación de situaciones físicas en ambientes computacionales.
- El software libre FísicaLab permite la representación y simulación de problemas físicos para la profundización de los conceptos involucrados y la comprensión gráfica de los fenómenos.
- El entorno virtual de aprendizaje Moodle favorece la consulta de los materiales del curso, la realización de las actividades de aprendizaje y la interacción con el docente.

- Las aplicaciones de mensajería electrónica como Slack facilitan la comunicación con los participantes del curso para la aclaración de dudas, el intercambio de opiniones y la socialización.
- La biblioteca digital de la Universidad, Ignacio Trejos Zelaya está a disposición de la comunidad docente y estudiantil para la consulta de diferentes tipos de recursos bibliográficos relacionados con cinemática y dinámica.
- La aplicación de videoconferencia Google Meet propicia la participación del docente y los estudiantes para el desarrollo de los contenidos y la aclaración de dudas de manera sincrónica.

# 9. Bibliografía

#### Bibliografía obligatoria

- Agudelo R. J. A. Castro L. W. A. & Castro L. H. G. (2018). *Física Mecánica*.. Universidad Católica de Colombia. https://elibro.net/es/lc/ucenfotec/titulos/197046
- Arenas, F. C. (2020). *Física universitaria*.. Jorge Sarmiento Editor Universitas. https://elibro.net/es/lc/ucenfotec/titulos/174517
- Gómez López, N. & Tejada Betancourt, L. (II.). (2020). *Física general*.. Universidad Abierta para Adultos (UAPA). https://elibro.net/es/lc/ucenfotec/titulos/175894

# Bibliografía complementaria

- Aguilar, J. L. (2018). *Cuestiones de física*.. Editorial Reverté. https://elibro.net/es/lc/ucenfotec/titulos/111484
- Merino Arranz, D. Rossinyol Casals, E. & Perez-Navarro, A. (2021). *Física y programación.*Editorial

  UOC. https://elibro.net/es/lc/ucenfotec/titulos/188309

# 10. Cronograma

| Semana | Contenidos por desarrollar                   |   | Actividades y estrategias de aprendizaje                                                                                                                                               |
|--------|----------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Tema 1. Introducción a la física             | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                                             |
|        |                                              | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                                                |
|        |                                              | - | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora)                          |
|        |                                              | - | Realiza la presentación en el foro social compartiendo su información personal con sus compañeros (Tiempo estimado: 1 hora)                                                            |
|        |                                              | - | Selecciona el equipo de trabajo con los que le corresponde realizar el proyecto y se ponen de acuerdo para definir el trabajo colaborativo. (Tiempo estimado: 2 horas)                 |
|        |                                              | - | Ingresa a las plataformas y realiza la instalación del<br>software que será utilizado en el curso (Tiempo<br>estimado: 3 horas)                                                        |
| 2      | Tema 2. Movimiento en una dimensión          | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                                             |
|        |                                              | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                                                |
|        |                                              | - | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora)                          |
|        |                                              | - | <b>Modelos físicos:</b> Inicia la preparación del <b>primer</b> modelo físico y consulta posibles dudas al docente por medio de los canales de comunicación (Tiempo estimado: 6 horas) |
| 3      | Tema 3. Movimiento en dos y tres dimensiones | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                                             |
|        |                                              | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                                                |
|        |                                              | - | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la                                                                                     |

|   |                                             |   | comunidad virtual de aprendizaje (Tiempo estimado: 1 hora)                                                                                                    |
|---|---------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                             | - | Modelos físicos: Finaliza el primer modelo y lo entrega en el entorno virtual de aprendizaje (Tiempo estimado: 6 horas)                                       |
| 4 | Tema 4. Fuerzas y leyes de newton (parte 1) | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                    |
|   |                                             | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                       |
|   |                                             | - | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora) |
|   |                                             | - | <b>Práctica:</b> Inicia la <b>primera</b> práctica y consulta posibles dudas al docente por medio de los canales de comunicación (Tiempo estimado: 6 horas)   |
| 5 | Tema 4. Fuerzas y leyes de newton (parte 2) | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                    |
|   |                                             | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                       |
|   |                                             | - | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora) |
|   |                                             | - | <b>Práctica:</b> Finaliza la <b>primera</b> práctica y la entrega en el entorno virtual de aprendizaje. (Tiempo estimado: 6 horas)                            |
| 6 | Tema 5. Aplicaciones de las leyes de newton | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                    |
|   |                                             | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                       |
|   |                                             | - | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora) |

|   |                                | - Modelos físicos: Inicia la preparación del segundo                                                                                                                                          |
|---|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                | modelo y consulta posibles dudas al docente por medio<br>de los canales de comunicación (Tiempo estimado: 6<br>horas)                                                                         |
| 7 | Tema 6. Momento                | <ul> <li>Realiza la lectura del capítulo de la bibliografía<br/>obligatoria que indica el profesor del curso (Tiempo<br/>estimado: 2 horas)</li> </ul>                                        |
|   |                                | <ul> <li>Participa en la sesión sincrónica por medio de la<br/>aplicación de videoconferencia Google Meet (Tiempo<br/>estimado: 3 horas)</li> </ul>                                           |
|   |                                | <ul> <li>Se involucra de forma activa y responsable en la<br/>interacción con los compañeros y el docente en la<br/>comunidad virtual de aprendizaje (Tiempo estimado: 1<br/>hora)</li> </ul> |
|   |                                | <ul> <li>Modelos físicos: Finaliza el segundo modelo y lo<br/>entrega en el entorno virtual de aprendizaje (Tiempo<br/>estimado: 6 horas)</li> </ul>                                          |
| 8 | Tema 7. Sistemas de partículas | <ul> <li>Realiza la lectura del capítulo de la bibliografía<br/>obligatoria que indica el profesor del curso (Tiempo<br/>estimado: 2 horas)</li> </ul>                                        |
|   |                                | <ul> <li>Participa en la sesión sincrónica por medio de la<br/>aplicación de videoconferencia Google Meet (Tiempo<br/>estimado: 3 horas)</li> </ul>                                           |
|   |                                | <ul> <li>Se involucra de forma activa y responsable en la<br/>interacción con los compañeros y el docente en la<br/>comunidad virtual de aprendizaje (Tiempo estimado: 1<br/>hora)</li> </ul> |
|   |                                | <ul> <li>Prueba escrita: Realiza la primera prueba escrita en<br/>el entorno virtual de aprendizaje. (Tiempo estimado: 6<br/>horas).</li> </ul>                                               |
| 9 | Tema 8. Cinemática rotacional  | <ul> <li>Realiza la lectura del capítulo de la bibliografía<br/>obligatoria que indica el profesor del curso (Tiempo<br/>estimado: 2 horas)</li> </ul>                                        |
|   |                                | <ul> <li>Participa en la sesión sincrónica por medio de la<br/>aplicación de videoconferencia Google Meet (Tiempo<br/>estimado: 3 horas)</li> </ul>                                           |
|   |                                | <ul> <li>Se involucra de forma activa y responsable en la<br/>interacción con los compañeros y el docente en la<br/>comunidad virtual de aprendizaje (Tiempo estimado: 1<br/>hora)</li> </ul> |
|   |                                | <ul> <li>Práctica: Inicia la segunda práctica y consulta posibles<br/>dudas al docente por medio de los canales de<br/>comunicación (Tiempo estimado: 6 horas)</li> </ul>                     |

| 10 | Tema 9. Dinámica de la rotación (parte 1) | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                                      |
|----|-------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                           | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                                         |
|    |                                           | _ | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora)                   |
|    |                                           | - | <b>Práctica:</b> Finaliza la <b>segunda</b> práctica y la entrega en el entorno virtual de aprendizaje. (Tiempo estimado: 6 horas)                                              |
| 11 | Tema 9. Dinámica de la rotación (parte 2) |   | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                                      |
|    |                                           | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                                         |
|    |                                           | _ | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora)                   |
|    |                                           | - | <b>Modelos físicos:</b> Inicia la preparación del <b>tercer</b> modelo y consulta posibles dudas al docente por medio de los canales de comunicación (Tiempo estimado: 6 horas) |
| 12 | Tema 10. Momento angular                  | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                                      |
|    |                                           | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                                         |
|    |                                           | _ | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora)                   |
|    |                                           | - | <b>Modelos físicos:</b> Finaliza el <b>tercer</b> modelo y lo entrega en el entorno virtual de aprendizaje (Tiempo estimado: 6 horas)                                           |
| 13 | Tema 11. Trabajo y energía cinética       |   | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                                      |

|    |                               | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                       |
|----|-------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                               | - | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora) |
|    |                               | - | <b>Práctica:</b> Inicia la <b>tercera</b> práctica y consulta posibles dudas al docente por medio de los canales de comunicación (Tiempo estimado: 6 horas)   |
| 14 | Tema 12. Energía potencial    | - | Realiza la lectura del capítulo de la bibliografía obligatoria que indica el profesor del curso (Tiempo estimado: 2 horas)                                    |
|    |                               | - | Participa en la sesión sincrónica por medio de la aplicación de videoconferencia Google Meet (Tiempo estimado: 3 horas)                                       |
|    |                               | - | Se involucra de forma activa y responsable en la interacción con los compañeros y el docente en la comunidad virtual de aprendizaje (Tiempo estimado: 1 hora) |
|    |                               | - | <b>Práctica:</b> Finaliza la <b>tercera</b> práctica y la entrega en el entorno virtual de aprendizaje. (Tiempo estimado: 6 horas)                            |
| 15 |                               | - | <b>Prueba escrita:</b> Realiza la <b>segunda</b> prueba escrita en el entorno virtual de aprendizaje Moodle (Tiempo estimado: 4 horas).                       |
|    | Actividades finales del curso |   | Colinado. 4 notas).                                                                                                                                           |