复杂度分析

01 / 计算程序使用时间

做题目这样的要求: 时间限制: C/C++ 1秒, 其他语言2秒 空间限制: C/C++ 262144K, 其他语言524288K 64bit IO Format: %IId

对于空间限制来说,我们可以通过计算就知道使用的空间大小。 如这里的内存限制是256MB,即你程序中申请的内存不能超过 256MB。如果使用int a[100],大致需要100 * 4 Byte 。

题目对于空间比较宽松。

一般只要满足以下要求,就可以过题又 不超空间限制。

在函数(非递归)中 一维数组大小不超过1e5.

在全局变量中. 一维数组大小不超过1e8 二维数组大小不超过1e4

8bit(位)=1Byte(字节) 1024Byte(字节)=1KB 1024KB=1MB 1024MB=1GB 1024GB=1TB

数据类型 32位字节数 64位字节数 取值范围 布尔思 true, false char 字符型 -128~127 unsigned char 天符号字符型 0~255 short 短额型 -32768~32767 unsigned short 无符号短整型 0~65535 int 860 -2147483648~2147483647 无符号整型 0~4294967295 unsigned int long 长整型 unsigned long 无符号长整型 长整型 long long 范围-2^128~2^128 精度为6~7位有效数字 float 单精度浮点数 双精度浮点数 double 精度为15~16位 范围-2^1024~2^1024 精度为15~16位 long double 扩展精度浮点数 8

02 / 算法复杂度分析

常见的算法时间复杂度由小到大依次为:

 $O(1) < O(\log_2 n) < O(n) < O(n\log_2 n) < O(n^2) < O(n^3) < ... < O(2^n) < O(n!)$

其中 $O(log_2n)$ 、O(n)、 $O(nlog_2n)$ 、 $O(n^2)$ 和 $O(n^3)$ 称为多项式时间 而 $O(2^n)$ 和O(n!)称为指数时间

计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法、把这类问题称为 P (Polynomial,多项式) 类问题,而把后者(即指数时间复杂度的算法)称为 NP(Non-Deterministic Polynomial, 非确定多项式》问题。

在一般的问题中, 多项式复杂度的算法是可以接受的算法, 而指数时间复杂度的算法则认为效率太低,

02/算法复杂度分析

问题规模n 与 可用算法的复杂度

问题规模n	可用算法的时间复杂度					
	O(log₂n)	O(n)	O(nlog₂n)	O(n²)	O(2 ⁿ)	O(n!)
n<12	√	√	√	√	√	√
n<26	√	√	√	√	√	×
n<=5e3	√	√	√	√	×	×
n<=1e6	√	√	√	×	×	×
n<=1e7	√	√	×	×	×	×
n<=1e8	√	×	×	×	×	×

进制转化

十进制: 13

二进制: 1101

$$13 = 1 * 2^0 + 0 * 2^1 + 1 * 2^2 + 1 * 2^3$$