Probability Distribution (3)

Md. Ismail Hossain Riday

Normal Distribution

 Normal distribution is a probability distribution that is symmetric about the mean

Also known as the Gaussian distribution

Properties Normal Distribution

1. Mean is the middle value and divides the area in half

2. Mean = Median = Mode

3. Symmetric and Mesokurtic

4. Bell-shaped curve

Normal Distribution

Let, X be a continuous random variable

Then the normal distribution function can be written as

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}; -\infty < x < \infty$$

$$X \sim N(\mu, \sigma^2)$$

Normal Distribution

• Mean of normal distribution, $E(X) = \mu$

• Variance of normal distribution, $V(X) = \sigma^2$

Standard Normal Distribution

Let,
$$Z = \frac{X - \mu}{\sigma}$$

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} ; -\infty < z < \infty$$

Mean,
$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{E(X)-\mu}{\sigma} = \frac{\mu-\mu}{\sigma} = 0$$

 $Z \sim N(0,1)$

Variance,
$$V(Z) = V\left(\frac{X-\mu}{\sigma}\right) = \frac{V(X)}{\sigma^2} = \frac{\sigma^2}{\sigma^2} = 1$$

Standard Normal Distribution

$$X = 3, 11, 11, 11, 15, 15$$

a. Determine the standardize variable Z corresponding to X

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 11}{4}$$

b. Find the Z-score of an observed value of X=11

$$Z = \frac{X - \mu}{\sigma} = \frac{11 - 11}{4} = 0$$

- c. Compute all possible Z scores
- d. Find mean and standard deviation of variable Z.

Probability Calculation

- There are two methods to compute the probabilities associated with a normal variable:
 - a. Using Table (Z table)
 - b. Using Calculator

Steps

$$Z \longrightarrow Z = \frac{X - \mu}{\sigma}$$

• To find probabilities for a normal random variable X, we can transform the probability statement about X in terms of probability statement for Z

 Then calculate the probability using the standard normal distribution table/Z-table or Calculator

 The number of viewers of a TV show per week has a mean of 29 million with a standard deviation of 5 million. Assume that, the number of viewers of that show follows a normal distribution.

What is the probability that, next week's show will-

- a. Have between 30 and 34 million viewers?
- b. Have at least 23 million viewers?
- c. Exceed 40 million viewers?

Transform the probability statement in terms of Z

$$Z = \left(\frac{X - \mu}{\sigma}\right)$$

Let, X = Number of viewers of the show per week (in million)

Here, $X \sim N(\mu, \sigma^2)$; i.e., $X \sim N(29, 25)$

a. Have between 30 and 34 million viewers?
$$P\left(\frac{30-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{34-\mu}{\sigma}\right) P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P(30 \le X \le 34)$$

$$P(1) - P(0.2)$$

$$P(0.2 \le Z \le 1)$$

???-???
$$P(1) - P(0.2) \quad P(0.2 \le Z \le 1) \quad P\left(\frac{30 - 29}{5} \le Z \le \frac{34 - 29}{5}\right)$$

Ztable

TABLE A												
Standard normal probabilities (continued)												
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359		
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753		
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141		
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517		
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879		
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224		
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549		
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852		
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133		
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389		
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621		
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830		
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015		
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177		
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319		

Transform the probability statement in terms of Z

$$Z = \left(\frac{X - \mu}{\sigma}\right)$$

Let, X = Number of viewers of the show per week (in million)

Here, $X \sim N(\mu, \sigma^2)$

a. Have between 30 and 34 million viewers?
$$P\left(\frac{30-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{34-\mu}{\sigma}\right) P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P(30 \le X \le 34)$$

$$P\left(\frac{30-29}{5} \le Z \le \frac{34-29}{5}\right)$$

$$P(1) - P(0.2)$$

$$P(0.2 \le Z \le 1)$$

???-???
$$P(1) - P(0.2) \quad P(0.2 \le Z \le 1) \quad P\left(\frac{30 - 29}{5} \le Z \le \frac{34 - 29}{5}\right)$$

Transform the probability statement in terms of Z

$$Z = \left(\frac{X - \mu}{\sigma}\right)$$

Let, X = Number of viewers of the show per week (in million)

Here, $X \sim N(\mu, \sigma^2)$

a. Have between 30 and 34 million viewers?
$$P\left(\frac{30-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{34-\mu}{\sigma}\right) P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

 $P(30 \le X \le 34)$

$$P\left(\frac{30-29}{5} \le Z \le \frac{34-29}{5}\right)$$

0.8431-???
$$P(1) - P(0.2) \quad P(0.2 \le Z \le 1) \quad P\left(\frac{30 - 29}{5} \le Z \le \frac{34 - 29}{5}\right)$$

Transform the probability statement in terms of Z

$$Z = \left(\frac{X - \mu}{\sigma}\right)$$

Let, X = Number of viewers of the show per week (in million)

Here, $X \sim N(\mu, \sigma^2)$

a. Have between 30 and 34 million viewers?
$$P\left(\frac{30-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{34-\mu}{\sigma}\right) P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P(30 \le X \le 34)$$

$$P\left(\frac{30-29}{5} \le Z \le \frac{34-29}{5}\right)$$

$$0.8431 - 0.5793$$

$$P(1) - P(0.2)$$

$$P(0.2 \le Z \le 1)$$

$$0.8431 - 0.5793 \qquad P(1) - P(0.2) \qquad P(0.2 \le Z \le 1) \qquad P\left(\frac{30 - 29}{5} \le Z \le \frac{34 - 29}{5}\right)$$

Calculator

Calculator

Transform the probability statement in terms of Z

$$Z = \left(\frac{X - \mu}{\sigma}\right)$$

Let, X = Number of viewers of the show per week (in million)

Here, $X \sim N(\mu, \sigma^2)$

a. Have between 30 and 34 million viewers?
$$P\left(\frac{30-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{34-\mu}{\sigma}\right) P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P\left(\frac{30-\mu}{\sigma} \le Z \le \frac{34-\mu}{\sigma}\right)$$

$$P(30 \le X \le 34)$$

$$P\left(\frac{30-29}{5} \le Z \le \frac{34-29}{5}\right)$$

$$0.8431 - 0.5793$$

$$P(1) - P(0.2)$$

$$P(0.2 \le Z \le 1)$$

$$0.8431 - 0.5793 \qquad P(1) - P(0.2) \qquad P(0.2 \le Z \le 1) \qquad P\left(\frac{30 - 29}{5} \le Z \le \frac{34 - 29}{5}\right)$$

Transform the probability statement in terms of Z

$$Z = \left(\frac{X - \mu}{\sigma}\right)$$

b. Have at least 23 million viewers?

$$P(X \ge 23)$$

$$1 - P(X < 23)$$

$$1 - P\left(\frac{X - \mu}{\sigma} \le \frac{23 - \mu}{\sigma}\right)$$

$$1 - P\left(Z \le \frac{23 - 29}{5}\right)$$

$$1 - 0.1151$$

$$1 - P(-1.2)$$

$$1 - P(Z \le -1.2)$$

Normal Distribution

Transform the probability statement in terms of Z

$$Z = \left(\frac{X - \mu}{\sigma}\right)$$

c. Exceed 40 million viewers?

$$1 - P(X \le 40)$$

$$1 - P\left(\frac{X - \mu}{\sigma} \le \frac{40 - 29}{5}\right)$$

$$1 - P(Z \le 2.2)$$

$$1 - P(2.2)$$

0.0139

- Suppose that the average temperature in July in a certain region is a normal random variable with parameters $\mu=90^{\circ}F$ and $\sigma=5^{\circ}F$. Find the probability that in a given year the average temperature in July in that region will be,
 - a. Above $100^{\circ}F$ (Ans: 0.00228)
 - b. Below 95°F (Ans: 0.8413)
 - c. Between $85^{\circ}F$ and $95^{\circ}F$ (Ans: 0.6826)

30 Rules

 $P(\mu - \sigma < X < \mu + \sigma) = 0.68$

• The IQ score of students follows normal distribution with mean 100 and standard deviation 16. In what interval would you expect the central 95% of IQ scores to be found?

Here, $\mu = 100$, $\sigma = 16$

It is expected that 95% of students have an IQ between 68 and 132

We know that, $P(\mu - 2\sigma < X < \mu + 2\sigma) = 0.95$

$$\mu - 2\sigma = 100 - (2 \times 16) = 68$$

$$\mu + 2\sigma = 100 + (2 \times 16) = 132$$

• For what value of "c", P(X > c) = 0.01

$$P\left(\frac{X-\mu}{\sigma} > \frac{c-100}{16}\right) = 0.01$$

$$P\left(Z > \frac{c-100}{16}\right) = 0.01$$

$$-1 - P\left(Z \le \frac{c - 100}{16}\right) = 0.01$$

$$P\left(Z \le \frac{c-100}{16}\right) = 0.99$$

$$P(Z \le 2.33) = 0.99$$

$$\frac{c - 100}{16} = 2.33$$
 $c = ???$

$$c = ???$$

Standard normal probabilities (continued)

bearing a riorritar probabilities (continued)											
z	.00	.01	.02	.03							
0.0	.5000	.5040	.5080	.5120							
0.1	.5398	.5438	.5478	.5517							
0.2	.5793	.5832	.5871	.5910							
0.3	.6179	.6217	.6255	.6293							
0.4	.6554	.6591	.6628	.6664							
0.5	.6915	.6950	.6985	.7019							
0.6	.7257	.7291	.7324	.7357							
0.7	.7580	.7611	.7642	.7673							
0.8	.7881	.7910	.7939	.7967							
0.9	.8159	.8186	.8212	.8238							
1.0	.8413	.8438	.8461	.8485							
1.1	.8643	.8665	.8686	.8708							
1.2	.8849	.8869	.8888	.8907							
1.3	.9032	.9049	.9066	.9082							
1.4	.9192	.9207	.9222	.9236							
1.5	.9332	.9345	.9357	.9370							
1.6	.9452	.9463	.9474	.9484							
1.7	.9554	.9564	.9573	.9582							
1.8	.9641	.9649	.9656	.9664							
1.9	.9713	.9719	.9726	.9732							
2.0	.9772	.9778	.9783	.9788							
2.1	.9821	.9826	.9830	.9834							
2.2	.9861	.9864	.9868	.9871							
2.3	.9893	.9896	.9898	.9901							
2.4	.9918	.9920	.9922	.9925							

Mathematical exercise

To access additional mathematical problems,

please refer to the PDF lecture notes.

OTHANK You