Lösungsvorschläge

Übung 5

Logik für Informatiker

Aussagenlogik

Aufgabe 1 DPLL Algorithmus

Wende den DPLL Algorithmus um die Erfüllbarkeit der folgenden Formel zu testen:

$$(R) \land (\neg P) \land (P \lor R) \land (Q \lor \neg R \lor S) \land (\neg Q \lor \neg R \lor S) \land (P \lor \neg Q \lor \neg R \lor \neg S)$$

Lösung:

Die Formel besitzt folgende Klauseln:

$$K_1 = \{R\}, K_2 = \{\neg P\}, K_3 = \{P \lor R\}, K_4 = \{Q \lor \neg R \lor S\}, K_5 = \{\neg Q \lor \neg R \lor S\}, K_6 = \{P \lor \neg Q \lor \neg R \lor \neg S\}$$

Setze $U = \emptyset$ und rufe DPLL-Algorithmus auf:

DPLL(F,U):

```
//Unit-Klauseln: K_1, K_2 in UNIT-PROPAGATE wird U mit R und \neg P erweitert
```

// Leere Klauseln: if-Zweig in Zeile 3 wird übersprungen

//Konsistente Klauseln: Klausel K_3 ist konsistent

// (Noch) zustandslose Klauseln: K_4 , K_5 , K_6

Literal $l \leftarrow Choose - Literal(F, U) // Q \in K_4$ wird gewählt.

return $DPLL(F, U \cup \{Q\})$ oder $DPLL(F, U \cup \{\neg Q\})$

```
DPLL(F, U \cup \{Q\})
```

// Aktuelle Belegung:

$$//K_4 = \{1,0,S\}, K_5 = \{0,0,S\}, K_6 = \{0,0,0 \neg S\}$$

//Unit-Klauseln: K₅ in UNIT-PROPAGATE wird U mit S erweitert

//Leere Klauseln: K_6 Algorithmus stoppt in Zeile 4, if-Zweig in Zeile 3 ist erfüllt.

```
DPLL(F, U \cup \{ \neg Q \})
```

// Aktuelle Belegung:

$$//K_4 = \{0,0,S\}, K_5 = \{1,0,S\}, K_6 = \{0,1,0,\neg S\}$$

//Unit-Klausel K_4 in UNIT-PROPAGATE wird U mit S erweitert, alle Klauseln sind konsistent, if-Zweig in Zeile 6 ist erfüllt, return 1

Aufgabe 2 GSAT

Wende GSAT auf die obige Formel an.

Lösung:

Wir setzen tries = 5 und flips = 3

Round 1 (tries = 1, flips = 3)

Variable xi	$\rho(x_i)$	Flip(P)	Flip(Q)	Flip(R)	Flip(S)
P	0	1	0	0	0
Q	0	0	1	0	0
R	0	0	0	1	0
S	1	1	1	1	0

Klauseln Ci	$\varphi^{\tau}(C_i)$	Flip(P)	Flip(Q)	Flip(R)	Flip(S)
R	0	0	0	1	0
$\neg P$	1	0	1	1	1
$P \vee R$	0	1	0	1	0
$Q \vee \neg R \vee S$	1	1	1	1	1
$\neg Q \lor \neg R \lor S$	1	1	1	1	1
$P \vee \neg Q \vee \neg R \vee S$	1	1	1	1	1
Unerfüllte Klauseln	2	2	2	0	2
Differenz ΔC_i		0	0	2	0

Greedy-Pick wählt Flip(R) und geht in die zweite Runde. Hier aber stoppt der Algorithmus und liefert das Modell.

Aufgabe 3 Walksat

Wende Walksat auf die obige Formel an.