Nuclear Magnetic Resonance CHEM 361B: Introduction to Physical Chemistry

Dr. Michael Groves

Department of Chemistry and Biochemistry California State University, Fullerton

Lecture 18

Table of contents

- QM Considerations
- 2 NMR

Learning Objectives:

Qualitatively interpret NMR spectroscopy

References:

- Atkins and de Silva Topic 13A and 13B
- LibreText §5.1 to 5.5

Nuclei Have Spin

- Nuclei are charged entities
- Like electrons, they have intrinsic spin
- The magnitude of this spin depends on the number of protons and neutrons in the nucleus:

Spin
0
Integer (1, 2, 3,)
Half-Integer $(\frac{1}{2}, \frac{3}{2}, \dots)$
Half-Integer $(\frac{1}{2}, \frac{3}{2}, \dots)$ Half-Integer $(\frac{1}{2}, \frac{3}{2}, \dots)$

Nuclei In Magnetic Fields

 Spinning charges have magnetic moments. For a hydrogen nucleus (a proton):

$$\mu_{N} = \frac{e\hbar}{2m_{p}}$$

$$= 5.051 \times 10^{-27} \text{ J T}^{-1}$$

 Just like electrons, nuclei in a magnetic fields split the 2I + 1 degenerate states into discrete energy levels given by

$$E_{m_I} = -\gamma_N \hbar B_0 m_I$$

Energy Splitting in Hydrogen

 An alternative way to express this is

$$E_{m_I} = -g_I \mu_N B_0 m_I$$

where

$$g_I = \frac{\gamma_N h}{\mu_N}$$

• Nuclear g-factors are experimentally determined dimensionless quantities with values typically between -6 and 6.

Nuclear Spin Properties

Nucleus	Natural abundance/ (per cent)	Spin, I	$\gamma_{\rm N}/(10^7{\rm T}^{-1}{\rm s}^{-1})$
¹H	99.98	1/2	26.752
² H (D)	0.0156	1	4.1067
12C	98.99	0	-
13C	1.11	1/2	6.7272
14N	99.64	1	1.9328
¹⁶ O	99.96	0	-
¹⁷ O	0.037	5 2	-3.627
19F	100	1 2	25.177
³¹ P	100		10.840
35CI	75.4	$\frac{1}{2}$ $\frac{3}{2}$	2.624
37CI	24.6	3 2	2.184

Larmor Precession Frequency

- If the magnetic moment is not aligned with the B-field, the nucleus precesses.
- The frequency of that precession (for spin-¹/₂ particles) is given by

$$\Delta E = -\gamma_N \hbar B_0 \left(-\frac{1}{2} - \frac{1}{2} \right)$$

$$h\nu = \gamma_N \hbar B_0$$

$$\nu = \frac{\gamma_N B_0}{2\pi}$$

Nuclear Magnetic Resonance

Fourier Transform NMR is a technique where a sample

- Is placed in a strong B-field and
- Exposed to brief bursts of radio frequency radiation

The RF bursts changes the orientation of the nuclear spins in a controlled way

- The radiation that is emitted by the sample as it returns to equilibrium is monitored and analysed
- The analysis includes applying a Fourier Transform to extract all frequencies simultaneously

Illustration of FT-NMR Procedure

Where the Fourier Transform Comes In

A Sample NMR Spectra

Question: Why do we get peak shifts?

The Local Magnetic Field is Key

The shifts in peaks (called the chemical shift) is due to

- The applied B-Field inducing a circulation of electrons in a molecule
- This gives rise to an additional B-field that either adds or subtracts from the externally applied one

Therefore, the local B-Field seen by a given nuclei is

$$B_{local} = B_0 + B_{induced} = (1 - \sigma)B_0$$

The shielding constant, σ , takes into account effects on the local magnetic field from

- The atom's electrons
- The atom's neighbours
- The solvent

Range of Typical Chemical Shifts

The δ -scale

Chemical shifts are reported on the δ -scale

$$\delta = \frac{\nu - \nu_0}{\nu_0} \times 10^6$$

where

$$\nu = \frac{\gamma_N(1-\sigma)B_0}{2\pi}$$

 ν_0 comes from a reference. Typically this is from tetramethylsilane.

Range of Typical Chemical Shifts

A Sample NMR Spectra

Question: Why do we get multiple peaks in each chemical shift?

Chemical Equivalence

$$H_a$$
 H_a
 H_a

Nuclei in the same bonding environment are generally considered to be chemically equivalent

Spin-Spin Coupling - Ha

The spins of adjacent chemically inequivalent nuclei affect each other

Spin-Spin Coupling - H_b

The spins of adjacent chemically inequivalent nuclei affect each other

Spin-Spin Coupling Notes

Pascal's Triangle

N equivalent spin- $\frac{1}{2}$ nuclei split the resonance of a nearby group of equivalent spins into

- N + 1 lines
- With an intensity distribution given by Pascal's triangle

Summary

- Nuclei have spins and those spins are affected by B-fields
- By measuring how the magnetic moments relax when perturbed we can learn about the chemical make-up of a sample (NMR spectroscopy)
- Peak shifts relative to a reference are based on the local B-field at each nuclei. This is affected by
 - The chemical group around it and their electrons
 - The spin-spin coupling of nearby nuclei