32. Die multiplikative Gruppe

Schreibweise:

$$\begin{split} g \in G, n \in \mathbb{N} \\ g^n &= g \circ \ldots \circ g \text{ (n-mal)} \\ g^\circ &= e \text{ (neutrales Element)} \\ g^{n+1} &:= g^n \circ g \\ n \in \mathbb{Z} : g^n := (g^{-n})^{-1} \quad (n < 0) \\ \mathbb{Z}_6 \to 2 \text{ hat kein Inverses} \end{split}$$

Definition: Eine Zahl $a \in \mathbb{Z}_n$ {0} heißt Nullteiler, wenn es ein $b \in \mathbb{Z}_n$ {0} gibt, sodass $a \cdot b = 0 \pmod{n}$.

Beispiel: 2 ist Nullteiler von \mathbb{Z}_6 .

Definition: Eine Zahl $a \in \mathbb{Z}_n$ heißt Einheit, wenn es eine Zahl $b \in \mathbb{Z}_n$ gibt mit $a \cdot b \equiv 1 \pmod{n}$.

Lemma: Eine Zahl $m \in \mathbb{Z}_n$ {0} ist Einheit genau dann, wenn m und n teilerfremd.

Beweis: (\Rightarrow) Es gibt ein $b \in \mathbb{Z}_n$ mit $m \cdot b \equiv 1 \mod n$

$$m \cdot b - 1 = a \cdot n$$
 für alle $a \in \mathbb{Z}$

$$1 = mb - an$$

$$\Rightarrow ggt(m,n) = 1$$

 (\Leftarrow) Seien m und n teilerfremd.

Bézout:
$$a \cdot m + b \cdot n = 1$$
 $(a, b \in \mathbb{Z})$

Behauptung: a ist multiplikatives Inverses zu m

$$m \cdot a = 1 - bn$$

$$\equiv 1 \mod n$$

Die Menge aller Einheiten bildet bzgl. der Multiplikation eine Gruppe $\mathbb{Z}_n^*(in~\mathbb{Z}_n)$

- 1. Assoziativgesetz vererbt sich
- 2. neutrales Element
- 3. inverses Element: zu a gibt es b (Inverses) mit $a \cdot b \equiv 1 \mod n$
- $4. G^2 \mapsto G$
- 5. a,b Einheiten zz.: $a \cdot b$ Einheit. Es gibt a^{-1}, b^{-1} mit $aa^{-1} = 1 = bb^{-1}$

Inverse:
$$(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = \frac{a \cdot (bb^{-1})^{-1}}{a} = aa^{-1}$$

= 1

Inverses:
$$(a \cdot b)^{-1} := b^{-1}a^{-1}$$

Eulersche Φ -Funktion

Wie groß ist die multiplikative Gruppe \mathbb{Z}_n^* von \mathbb{Z} ?

$$= |\mathbb{Z}_n^*|$$

 $= |\mathbb{Z}_n^*|$ Hat $n \in \mathbb{N}$ die Primfaktorzerlegung $n = p_1^{\alpha_1} \cdot (\dots) \cdot p_n^{\alpha_n}$ dann gilt: $\Phi(n) = (p_1 - 1)p_1^{\alpha_1 - 1} \cdot (\dots) \cdot (p_{n-1})p_n^{\alpha_n - 1}$

Beispiel:
$$n = 6 = 2 (= p_1) \cdot 3 (= p_2)$$

 $\Phi(6) = (2 - 1) \cdot 2^0 \cdot (3 - 1) \cdot 3^0 = 1 \cdot 2 \cdot 1 = 2$

Für kleine n einfache Formel. Für große n Problem, da Primfaktorzerlegung (noch) nicht berechenbar.