

Overview of X-Ray Fluorescence Analysis

AMPTEK, INC.

14 Deangelo Drive, Bedford, MA 01730 Ph: +1 781 275 2242 Fax: +1 781 275 3470 sales@amptek.com www.amptek.com

What is X-Ray Fluorescence (XRF)?

A physical process:

Emission of characteristic "secondary" (or fluorescent) X-rays from a material that has been excited by high-energy X-rays or gamma rays.

A technique in analytical chemistry:

Method to identify elements in a sample and measure their concentrations

Non-destructive, quick, and simple to carry out.

Physical Process

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

- Incoming radiation hits an atom
- Ejects an electron from an inner shell, creating a vacancy
- An electron from an outer shell "drops down" to fill the vacancy.
- The excited atom emits an X-ray with energy equal to the difference between the levels

$$E_{Xray} = \Delta E = E_K - E_L$$

 Since each element has a unique set of levels, it produces a unique set of "characteristic" X-rays

Physical Process

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

		Fe	Ni	Cu	Zn	Pb
Ato	mic Levels					
K	1s	7,112	8,333	8,979	9,659	88,005
L ₁	2s	845	1,009	1,097	1,196	15,861
L ₂	2p _{1/2}	720	870	952	1,045	15,200
L ₃	2p _{3/2}	707	853	933	1,022	13,035
M ₁	3s	91	111	122	140	3,851
M_2	3p _{1/2}	53	68	77	91	3,554
M_3	3p _{3/2}	53	66	75	89	3,066
Cha	racteristic)	(-Ray Lines				
K _{α1}	K – L ₃	6,404	7,478	8,048	8,639	74,969
K _{α2}	K – L ₂	6,391	7,461	8,028	8,616	72,804
K _{β1}	$K - M_3$	7,058	8,265	8,905	8,572	84,936
L _{α1}	L ₃ – M ₅	705	852	930	1,012	10,552
L _{a2}	L ₃ – M ₄	705	852	930	1,012	10,450
L _{β1}	L ₂ – M ₄	718	869	950	1,035	12,614

- XRF is similar to optical spectroscopy but at higher energy
- Independent of chemical state → Elemental analysis

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

- Intensity of X-ray line proportional to number of atoms → Quantitative
- X-rays pass through surface into sample
 - → Nondestructive and no sample preparation is necessary

 Best accuracy requires sample preparation
 - → Bulk measurement rather than only surface

 Notion of "bulk" vs "surface" depends on the X-ray energy

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

- Presence of Cu and Zn K lines → Elements are in sample (qualitative)
- Intensity of the lines → How much is in sample (quantitative)

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

Typical spectrum and results

- Photopeak intensity varies with concentration
- Final result is quantitative concentration

		Certified	l	XI	RF	
High	Cr	1000 <u>+</u>	20	895	<u>+</u>	198
	Br	1100 <u>+</u>	22	1089	<u>+</u>	23
	Cd	300 <u>+</u>	6	264	<u>+</u>	28
	Hg	1100 <u>+</u>	22	1050	<u>±</u>	53
	Pb	1200 <u>+</u>	24	1184	<u>+</u>	39
Low	Cr	401 <u>+</u>	8	388	<u>+</u>	167
	Br	500 <u>+</u>	10	487	<u>+</u>	13
	Cd	100 <u>+</u>	5	68	±	13
	Hg	200 <u>+</u>	5	183	<u>+</u>	27
	Pb	400 <u>+</u>	8	398	<u>+</u>	23
Blank	Cr	0 <u>+</u>	5	7	<u>+</u>	40
	Br	0 <u>+</u>	5	1	<u>+</u>	2
	Cd	0 <u>+</u>	5	9	<u>+</u>	10
	Hg	0 <u>+</u>	5	0	±	0
	Pb	0 <u>+</u>	5	10	<u>+</u>	9

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What are the main factors limiting XRF?

Counting variance

- The measurement is based on count discrete X-rays
- Arise from random processes → Inherent statistical variation in number of X-rays
- Percent uncertainty = 1/VN
 - 100 X-rays detected → 10% precision
 - 1,000 X-rays detected → 3% precision
 - 1,000,000 X-rays \rightarrow 1000 ppm precision
- Good precision means many X-rays which means high count rates or long times

Detector response

- Photopeak has some width
- There is always spectral background and overlapping peaks
- Ability to remove these depends on counting variance, energy resolution, and accuracy of software algorithms
- Better energy resolution helps but there are physical and practical limits

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

What are the main factors limiting XRF?

– Attenuation lengths

- Penetration depth depends on energy & therefore element
 - In silica, Al X-rays go 3 μm while Sn go 3 mm
- Response depends on energy/element
- Sample condition & homogeneity are critical

Measurement FAQ

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

10

How accurate is EDXRF?

- In the best case, relative accuracy ~ 0.2% (1.00% ± 20 ppm).
 Requires sample prep, a known matrix, good statistics, etc
- Nondestructive screening, relative accuracy ~ 2% (1.00 ± 0.02%)
 Requires careful optimize and setup, known sample type
- Quick check on unknown, relative accuracy ~20% (1.0 \pm 0.2 %)

What is the detection limit for EDXRF?

- <1 ppm for prepared samples in a known matrix under good conditions</p>
- 10 ppm in nondestructive screening with no interfering elements
- When elements interference or overlap, 1% of other element

What elements can be analyzed with EDXRF?

- Na to U (down to Be with EDS)
- Low Z elements (below S) are a challenge
- Need multiple measurements to cover a wide range of elements

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

XRF is one of many methods used in material analysis

Advantages of XRF

- Non-destructive
- No sample preparation
- Fast (seconds to minutes)
- Good precision and accuracy
- Measure Na to U
- Suitable for portable equipment and field use

Disadvantages of XRF

- Limits of detection modest (10 ppm typical)
- Accuracy usually modest (few % relative)
- Difficult to use for lower Z elements

Best results require

- Sample preparation (damaging)
- System optimization
- Matched calibration standards

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

XRF Applications

How is XRF used?

Hazardous Material Screening

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

- Is there cadmium on this toy?
- Is there lead in this paint?
- Does this circuit board contain Pb, Cd, or Cr?
- Nondestructive critical for screening products!

Metal Alloy Analysis

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

- Are these bolts stainless steel 316?
- Is there Ni in this scrap metal?
- Is there Cd plating on this MILSPEC connector?
- How much Au is in a white gold ring?
- Speed critical, accuracy moderate

Art and Archeology

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

- How did the artist make their paints?
- Is this an ancient or a modern pigment?
- What is the effect of cleaning on the surface of a statue?
- Nondestructive testing is vital for art!

Process Control

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

- Is there any change in spectrum?
- Absolute composition not needed but quick, real-time, non-destructive vital.

Field Measurements

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

Measuring ores in mines.

Identifying minerals on Mars.

Measuring soil contamination

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

Related Analytical Methods

Related

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

Energy Dispersive X-ray Spectroscopy

- a.k.a. EDS, EDX, XEDS, EDXA
 - Uses electron beam in vacuum chamber to excite the atoms
 - Electrons have short range in matter → Only way to measure lightest elements, down to Be (Z of 4)
 - High spatial resolution (75 um spatial, 1 um in depth)

Related

Amptek Inc. 14 Deangelo Drive Bedford, MA 01730 USA www.amptek.com

Wavelength Dispersive X-ray Spectroscopy (WDXRF)

- Crystal diffractometer disperses the X-ray wavelengths much like a prism disperses visible light.
- X-rays at a particular wavelength (energy) are recorded by a detector.
- It measures only one energy at a time; It obtains a spectrum by sweeping the wavelength over time
- Advantages of WDXRF
 - Much better energy resolution
 - Leads to much better accuracy and detection limits
- Disadvantage of WDXRF
 - Very long time to acquire whole spectrum
 - Requires destructive sample preparation
- Uses similar detectors and signal processors