Hausdorff Dimension of Metric Spaces and Lipschitz Maps Onto Cubes

Jared Holshouser

September 6, 2016

1 Introduction

We follow the work of Kelete, Mathe, and Zindulka [3].

When can a metric space be mapped onto the $[0,1]^k$? If our notion of map is too loose, the question has some bizarre answers. For instance, in 1890, Peano built a continuous function from [0,1] onto $[0,1]^2$. Later work in this direction revealed that for any k, there are continuous functions from [0,1] onto $[0,1]^k$, and they can even be taken to be $\frac{1}{k}$ -Holder continuous. To restrict the problem to a reasonable category, we will require that our maps be Lipschitz. The following proposition gives us one constraint.

Proposition 1. Let (X,d) and (Y,ρ) be metric spaces, $d \ge 0$ be a real number, and $f: X \to Y$ be Lipschitz. Then there is a constant C > 0 so that

$$\mathcal{H}^d(f[S]) \le C\mathcal{H}^d(S)$$

for all Borel $S \subseteq X$.

So it must be that $\mathcal{H}^k(X) > 0$. Does this suffice? In 1933, Kolmogorov [4] conjectured that if $X \subseteq \mathbb{R}^n$ is so that $\mathcal{H}^1(X) > 0$, then there is a Lipschitz map from X onto [0,1]. Sadly, this is false. In 1963, Vitushkin, Ivanov, and Melnikov [9] constructed a compact subset of the plane with positive 1-dimensional Hausdorff measure that cannot be mapped onto a segment by a Lipschitz map. We will show that it does suffice to assume that $\dim_H(X) > k$.

2 Preliminaries

Frostman's Lemma is useful tool for computing Hausdorff dimension.

Theorem 1 (Frostman's Lemma). Let (X, ρ) be a compact metric space, $S \subseteq X$ be Borel, and d > 0. Then the following are equivalent:

- $\mathcal{H}^d(S) > 0$, and
- there is a finite Borel measure μ with $\mu(S) > 0$ so that $\mu(E) \leq |E|^s$ for any Borel $E \subseteq S$.

Zindulka introduced the following notion in [10].

Definition 1. A metric space (X, d) is **monotone** iff there is a linear order \prec and a constant C so that

$$(\forall a, b \in X)[\operatorname{diam}([a, b]_{\prec}) \leq Cd(a, b)].$$

If this holds for a given C, we say the space is C-monotone.

Nekvinda and Zindulka [8] proved that that every ultrametic space in monotone. We can say even more for compact ultrametric spaces.

Lemma 1. Any compact ultrametric space (X, d) is 1-monotone.

Proof. Let D = |X|. If D = 0, then it is a singleton, so this is trivial. Otherwise, since d is an ultrametric, the relation d(x,y) < D is an equivalence relation. The equivalence classes are open, and X is compact, so there are only finitely many equivalence classes: X_1, \dots, X_k . These then are closed and compact as well. Since X is compact and $D \neq 0$, there are two points with distance D, so $k \geq 2$. Note also that if a and b are from distinct equivalence classes, then d(a, b) = D.

Since each equivalence class is a compact metric space, we do the same for each of them. So we get a tree of clopen sets X_{i_1,\cdots,i_m} with the property that, for a fixed m, these sets form a partition of X, and if $a\in X_{i_1,\cdots,i_m,j}$ and $b\in X_{i_1,\cdots,i_m,j'}$ and $j\neq j'$, then $d(a,b)=\dim(X_{i_1,\cdots,i_m})$. So for any $x\in X$, there is a unique $\vec{s}\in\omega^\omega$ so that $x\in X|_{\vec{s}|_m}$ for all m. Similarly, each such \vec{s} defines a unique point (This requires some argument). So define $F:X\to\omega^\omega$ by F(x) is the unique \vec{s} with $x\in X|_{\vec{s}|_m}$ for all m.

We now define the order on X. $x \prec y$ iff $F(x) <_{lex} F(y)$. We need to show that for any $x \prec y \in X$, $\operatorname{diam}([x,y]_{\prec}) = d(x,y)$. Let $\vec{s} \in \omega^{<\omega}$ so that $x,y \in X_s$. Then $d(x,y) = \operatorname{diam}(X_s)$. But also, $[x,y]_{\prec} \subseteq X_s$, so

$$d(x, y) \le \operatorname{diam}([x, y]_{\prec}) \le \operatorname{diam}(X_s) = d(x, y).$$

This completes the proof.

3 Nice Large Metric Spaces Can be Mapped Onto Cubes

Theorem 2. If (X,d) is a compact monotone metric space with positive s-dimensional Hasudorff measure, where s > 0, then X can be mapped onto a non-degenerate interval by an s-Holder function.

Proof. By Frostman's lemma, we can choose a non-zero finite Borel measure μ on X so that $\mu(E) \leq |E|^s$ for any Borel $E \subseteq X$. Since X is a monotone metric space there is a linear order \prec and a constant C so that

$$\forall a, b \in X(\operatorname{diam}([a, b]_{\prec}) \leq Cd(a, b)).$$

Claim 1. Any open interval $(a, b)_{\prec}$ is open, and thus Borel.

Reason. We proceed by contradiction. So there is an $x \in (a,b)_{\prec}$ so that for all n, there is an $x_n \in B(x,\frac{1}{n})$ so that $x_n \leq a$ or $b \leq x_n$. Let N be so that $\frac{1}{N} < \frac{1}{C} \min\{\operatorname{diam}([a,x]_{\prec}), \operatorname{diam}([x,b]_{\prec})\}$. First suppose that $x_N \leq a$. By assumption,

$$\operatorname{diam}([x_N, x]_{\prec}) \le Cd(x_N, x) \le C\frac{1}{N} < \operatorname{diam}([a, x]_{\prec}),$$

but this cannot be, as $[a,x]_{\prec} \subseteq [x_N,x]_{\prec}$. Now suppose that $b \preceq x_N$. Again,

$$\operatorname{diam}([x,x_N]_{\prec}) \leq Cd(x_N,x) \leq C\frac{1}{N} < \operatorname{diam}([x,b]_{\prec}),$$

which is a contradiction as $[x,b]_{\prec} \subseteq [x,x_N]_{\prec}$. Thus the interval is open.

For $x \in X$, let $(-\infty, x)_{\prec} = \{y \in X : y \prec x\}$, and let $g(x) = \mu((-\infty, x)_{\prec})$. Then g is s-Holder, since for any $a \prec b \in X$,

$$0 \le g(b) - g(a) = \mu([a, b)_{\prec}) \le \operatorname{diam}([a, b)_{\prec})^s \le (Cd(a, b))^s.$$

Thus g[X] is compact. Since μ is not the zero measure and X is separable, g[X] is not a singleton. We will now show that g[X] is connected. Since g[X] is closed, all we need to prove is that there are no $u, v \in g[X]$ with u < v and $(u, v) \cap g[X] = \emptyset$. Suppose otherwise, and let u and v witness it. Let $D \subseteq X$ be countable and dense. Let $D_1 = \{x \in D : g(x) \le u\}$ and $D_2 = \{x \in D : g(x) \ge v\}$. Since $(u, v) \cap g[X] = \emptyset$, $D = D_1 \cup D_2$. We also get that $\mu \left(\bigcup_{x \in D_1} (-\infty, x)\right) \le u$ and $\mu \left(\bigcap_{x \in D_2} (-\infty, x)\right) \ge v$.

$$A = \left(\bigcap_{x \in D_2} (-\infty, x)\right) - \left(\bigcup_{x \in D_1} (-\infty, x)\right).$$

Then $\mu(A) \geq v - u > 0$. On the other hand, A cannot have more than two points. For if $x \prec y \prec z \in A$, then $(x, z)_{\prec} \neq \emptyset$, but $(x, z)_{\prec} \cap D = \emptyset$, which contradicts the denseness of D. Since $\mu(E) \leq |E|^s$ for any Borel $E \subseteq X$, the singletons are measure zero. Hence $\mu(A) = 0$. This is a contradiction. \square

Corollary 1. Let X be a compact monotone metric space and let k > 0 be an integer. Then X can be mapped onto the k-dimension cube $[0,1]^k$ by a Lipschitz map iff X has positive k-dimensional Hausdorff measure.

Proof. Clearly it is necessary that $\mathcal{H}^k(X) > 0$. So suppose that $\mathcal{H}^k(X) > 0$. Then by the theorem, there is a k-Holder continuous map $g: X \to \mathbb{R}$ so that g[X] = [0,1]. It is known that there is a $\frac{1}{k}$ -Holder Peano curve $h: [0,1] \to [0,1]^k$, the classical construction works. Then the composition $h \circ g$ is a Lipschitz map from X onto $[0,1]^k$.

In 2013, Mendel and Naor [6] proved some results about approximating sets in the context of dimension. The following is a weak version of one thing they showed.

Theorem 3. (Mendel and Naor) For every compact metric space (X,d) and $\varepsilon > 0$ there is a closed subset $Y \subseteq X$ so that $\dim_H(Y) \ge (1-\varepsilon)\dim_H(X)$ and (Y,d) is bi-Lipschitz equivalent to an ultrametric space.

Theorem 4. Let A be an analytic subset of a separable complete metric space (X,d), and let k be an integer. If $\dim_H(A) > k$, then A can be mapped onto the k dimensional cube $[0,1]^k$ by a Lipschitz map.

Proof. Let $s \in (k, \dim_H(A)) \subseteq \mathbb{R}$. By the theorem of Howroyd, A has a compact subset C with finite and positive s-dimensional Hausdorff measure. Then by the Mendel-Naor theorem, C has a subset E with $\dim_H(E) > k$ that is bi-Lipschitz equivalent to an ultrametric space. Say $f: E \to (Z, \rho)$ is bi-Lipschitz. Applying the Howroyd theorem again (this time to $k \in (k-1, \dim_H(E))$), we get a compact subset B of E with positive and finite E-dimensional Hausdorff measure. E is bi-Lipschitz equivalent to a compact ultrametric space E, via E is Lipschitz and be mapped onto E by a Lipschitz map, say E is E in E is Lipschitz and E is Lipschitz and E is onto. Write E is E in E in E is a Lipschitz and real-valued. So we can extend each E is a Lipschitz E is a Lipschitz function from E onto E in E is a Lipschitz function from E onto E in E is a Lipschitz function from E onto E in E in

It was conjectured by Laczkovich [5] in 1991 that if $A \subseteq \mathbb{R}^n$ has positive Lebesgue measure, then A can be mapped onto $[0,1]^n$ with a Lipschitz map. This has been shown for $n \leq 2$ [1], but is still open for higher n.

4 Large Metric Spaces that Cannot Be Mapped Onto A Segment

Theorem 5. Assume that, in \mathbb{R}^n , less than continuum many closed sets of measure zero and a set of measure zero cannot cover \mathbb{R}^n . Then there is a non-Lebesgue-null $A \subseteq \mathbb{R}^n$ so that for any continuous function $f: \mathbb{R}^n \to \mathbb{R}$, f[A] does not contain any interval.

Proof. Let $\{f_{\alpha} : \alpha < \mathfrak{c}\}$ and $\{N_{\alpha} : \alpha < \mathfrak{c}\}$ enumerate the collection of $\mathbb{R}^n \to \mathbb{R}$ continuous functions and the collection of Lebesgue null Borel subsets of \mathbb{R}^n , respectively.

By transfinite induction, for every $\alpha < \mathfrak{c}$, we construct points $x_{\alpha} \in \mathbb{R}^n$ and $y_{\alpha} \in (0,1)$ so that

- 1. $x_{\alpha} \notin N_{\alpha}$,
- 2. $x_{\alpha} \notin \bigcup_{\beta < \alpha} f_{\beta}^{-1}(y_{\beta}),$
- 3. $y_{\alpha} \notin f_{\alpha}[\{x_{\beta} : \beta \leq \alpha\}], \text{ and }$
- 4. $f_{\alpha}^{-1}(y_{\alpha})$ is Lebesgue null.

 x_0 and y_0 can be chosen essentially arbitrarily (up to conditions 1 and 3). Suppose we have completed all steps β for $\beta < \alpha$. By our main assumption, and since $f_{\beta}^{-1}(y_{\beta})$ is a closed Lebesgue null set for each $\beta < \alpha$, we can choose an x_{α} so that conditions 1 and 2 hold. Now it cannot be that more than countably many $f_{\alpha}^{-1}(t)$ for $t \in (0,1)$ have positive measure, and $f_{\alpha}[\{x_{\beta} : \beta \leq \alpha\}]$ is null by our main assumption. So the set

$$\{y \in (0,1): f_{\alpha}^{-1}(y_{\alpha}) \text{ is Lebesgue null } \land y \notin f_{\alpha}[\{x_{\beta}: \beta \leq \alpha\}]\}$$

has full measure in (0,1). Thus we can find a y_{α} satisfying properties 3 and 4. This completes the recursive step.

Let $A = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. A cannot be Lebesgue null, as property 1 shows that A is not contained in any Borel Lebesgue null set. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is continuous. Let $h = g \circ f$, where $g : \mathbb{R} \to \mathbb{R}$ is a linear transformation. Then $h = f_{\alpha}$ for some $\alpha < \mathfrak{c}$. So $h(x_{\beta}) \neq y_{\alpha}$ for any $\beta \leq \alpha$ by property 3, and $h(x_{\beta}) \neq y_{\alpha}$ for any $\beta > \alpha$ by property 2. So $y_{\alpha} \notin h[A]$, and thus $(0,1) \not\subseteq h[A]$. Therefore $g^{-1}[(0,1)] \not\subseteq f[A]$. Since g was arbitrary, this means that no interval is contained in f[A].

The assumption we took for this work would be taken as $cov(\mathcal{M}) = \mathfrak{c}$. We will now suppose that $cov(\mathcal{M}) < \mathfrak{c}$.

Theorem 6. Suppose $cov(\mathcal{M}) < \mathfrak{c}$. For any gauge function φ , there is a separable metric space (X,d) so that $|X| = cov(\mathcal{M})$ with $\mathcal{H}^{\varphi}((X,d)) > 0$.

Proof. Fremlin and Miller [7] proved that cov(M) is the least cardinality of a subspace of (ω^{ω}, d) that is not a strong measure zero space. So there is an $H \subseteq \omega^{\omega}$ so that $|H| = cov(\mathcal{M})$ and (H, d) is not a strong measure zero space. Hence there is a gauge function φ_0 so that $\mathcal{H}^{\varphi_0}((H, d)) > 0$. Let φ be a gauge function and $g: \{1, 2, \dots\} \to (0, \infty)$ be defined by

$$g(m) = \varphi^{-1} \left(\varphi_0 \left(\frac{1}{m} \right) \right).$$

Note that $\varphi\left(\frac{1}{m}\right) = \varphi(g(m))$ for all $m \in \{1, 2, \dots\}$. Define d_g on ω^{ω} by

$$d_g(x,y) = g(|x \wedge y| + 1).$$

Then (H, d_g) is a separable metric space and $\mathcal{H}^{\varphi}((H, d_g)) = \mathcal{H}^{\varphi_0}((H, d))$. Therefore (H, d_g) is as desired.

Theorem 7 (ZFC). There is a separable metric space with arbitrarily large Hausdorff dimension than cannot be mapped onto a segment by a uniformly continuous function.

There is a model of ZFC in which every positive Hausdorff dimensional subset of a Euclidean space can be mapped onto [0,1] by a uniformly continuous function. [2]

References

- [1] Giovanni Alberti, Marianna Csornyei, and David Preiss. Structure of null sets in the plane and applications. *Eur. Math. Soc.*, 2005.
- [2] Paul Corazza. The generalized borel conjecture and strongly proper orders. *Trans. Amer. Math. Soc.*, 316, 1989.
- [3] Tamas Keleti, Andras Mathe, and Ondrej Zindulka. Hausdorff dimension of metric spaces and lipschitz maps onto cubes. *International Mathematics Research Notices*, 2012.
- [4] Andrey Kolmogorov. Beitrage zur matheorie. Math. Ann., 1, 1933.
- [5] Miklos Laczkovich. Paradoxical decompositions using lipschitz functions. *Real Anal. Exchange*, 1, 1991.
- [6] Mendel Manor and Assaf Naor. Ultrametric subsets with large hausdorff dimension. *Inventiones mathematicae*, 192, 2013.
- [7] Arnold W. Miller and David H. Fremlin. On some properties of hurewicz, menger, and roth-berger. Fund. Math., 129, 1988.
- [8] Ales Nekvinda and Ondrej Zindulka. Monotone metric spaces. Order, 2012.
- [9] A. G. Vituskina, L. D. Ivanov, and M. S. Melnikov. Incommensurability of the minimal linear measure with the length of a set. *Dokl. Akad. Nauk SSSR*, 151, 1963.
- [10] Ondrej Zindulka. Universal measure zero, large hausdorff dimension, and nearly lipschitz maps. Fund. Math., 218, 2012.