

dérivation – étude des fonctions page

$oldsymbol{ ext{L}}$ Dérivabilité d'une fonction en un point $oldsymbol{ ext{x}}_{_0}$ – dérivabilité à droite et à gauche en un point $oldsymbol{ ext{x}}_{_0}$:

A. Dérivabilité :

a. Définitions :

Soit une fonction f tel que son domaine de définition contient un intervalle ouvert I et $x_0 \in I$.

• **f** est dérivable au point $x_0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell \in \mathbb{R}$. $\left(\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \ell \in \mathbb{R}\right) \ell = f'(x_0)$ s'appelle

le nombre dérivé de f en x_0 .

• f est dérivable à droite de $x_0 \Leftrightarrow \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell_d \in \mathbb{R}$. $\left(\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \ell_d \in \mathbb{R}\right)$ $\ell_d = f_d^+(x_0)$

s'appell<mark>e l</mark>e nombre dérivé à gauche de f en X₀ .

• f est dérivable à gauche de $x_0 \Leftrightarrow \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \ell_g \in \mathbb{R}$. $\left(\lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = \ell_g \in \mathbb{R}\right) \ell_g = f_g^{'}(x_0)$

s'appell<mark>e l</mark>e nombre dérivé à gauche de f en x_o.

b. Propriété :

Soit une fonction f.

f est dérivable au point $\mathbf{x}_0 \Leftrightarrow \mathbf{f}$ est dérivable à droite et à gauche et $\mathbf{f}_{d}(\mathbf{x}_0) = \mathbf{f}_{g}(\mathbf{x}_0)$.

- <u>a.</u> Interprétation géométrique du nombre dérivée f' (x_0) :
 - f est une fonction dérivable au point x_0 .
 - $ullet \left(\mathrm{C_f}
 ight)$ sa courbe représentative dans un repère $\left(\mathrm{O}, \vec{\mathrm{i}}, \vec{\mathrm{j}}
 ight)$.
 - Le nombre dérivé f' (x_0) est le coefficient directeur de la droite tangente (T) à la courbe (C_f) de f au point $A(x_0,f(x_0))$ (le point x_0).
 - Equation cartésienne de la tangente (T) à la courbe (C_f) de f au point $A(x_0, f(x_0))$ est $(T): y = (x x_0) f'(x_0) + f(x_0)$.
 - Si f'(x) = 0 alors la tangente est parallèle à l'axe des abscisse.

b. Exemple:

- 1. Trouver équation de la tangente (T) à la courbe (C_f) de f au point $x_0 = 1$ avec $f(x) = 2x^2$.
- L'équation est (T): y = (x-1)f'(1)+f(1) ou (T): $y = (x-1)\times 4+2$.

dérivation – étude des fonctions page

D'où le coefficient directeur est $\mathbf{m} = 4$ et vecteur directeur est $: \vec{\mathbf{u}}(1,4) = 1\vec{\mathbf{i}} + 4\vec{\mathbf{j}}$

A partir du point A(1,f(1)) avec f(1) = 2

- On construit le point B tel que $\overrightarrow{AB} = 1\overrightarrow{i}$ et on construit le point C tel que : $\overrightarrow{BC} = 4\overrightarrow{j}$.
- D'où la droite $\left(AC\right)$ est la tangente $\left(T\right)$ à $\left(C_f\right)$ au point A .
- ullet Pour tracer la tangente il suffit de tracer un segment dans les extrémités on met des flèches son milieu est A .
- $\underline{\mathbf{c}}$ Interprétation géométrique des nombres dérivées $\mathbf{f}_{d}'(\mathbf{x}_{0})$ et $\mathbf{f}_{g}'(\mathbf{x}_{0})$:

- lacktriangle Si f f est dérivable à droite de $f x_0$ on a une demi-tangente à droite de $f x_0$ de coefficient directeur $f f_d$ ' $f (x_0)$
- \bullet équation du demi tangente à droite de $-\mathbf{x}_0$ est (\mathbf{T}_d) : $\mathbf{y} = (\mathbf{x} \mathbf{x}_0) \mathbf{f}_d'(\mathbf{x}_0) + \mathbf{f}(\mathbf{x}_0)$ avec $\mathbf{x} \ge \mathbf{x}_0$.
- lacktriangle Si forall est dérivable à gauche de $f x_0$ on aune demi-tangente à droite de $f x_0$ de coefficient directeur $f f_g$ ' $f (x_0)$.
- \bullet équation du demi tangente à gauche de $-\mathbf{x}_0$ est $(\mathbf{T}_g): \mathbf{y} = (\mathbf{x} \mathbf{x}_0) \mathbf{f}_g'(\mathbf{x}_0) + \mathbf{f}(\mathbf{x}_0)$ avec $\mathbf{x} \le \mathbf{x}_0$.
- Si $f_d'(x_0) \neq f_g'(x_0)$ donc f n'est pas dérivable en x_0 et le point $A(x_0, f(x_0))$ est appelé point anguleux.

d. Exemple:

soit
$$\begin{cases} f(x) = (x+3)^3 + 2 & ; x \ge -2 \\ f(x) = -(x+3)^2 + 4 & ; x < -2 \end{cases}$$
 on a $f'_d(-2) = 3$ et $f'_g(-2) = -2$

- équation du demi tangente à droite de -2 est $\left(T_{d}\right)$: $y = \left(x+2\right)f_{d}'\left(-2\right)+f\left(-2\right)$ avec $x \geq x_{0}$.
- équation du demi tangente à gauche de -2 est $\left(T_{g}\right)$: $y = (x+2)f_{g}'(-2) + f(-2)$ avec $x \le x_{0}$.

dérivation – étude des fonctions page

e. Remarque:

- si f n'est pas dérivable à droite (c.à.d. $\lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$) dans ce cas on a demi tangente à droite de parallèle à l'axe des ordonnées
- si f n'est pas dérivable à gauche (c.à.d. $\lim_{x \to x_0^{||}} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$) dans ce cas on a demi tangente à gauche de parallèle à l'axe des ordonnées.
- **<u>f.</u>** Exemple: exemple $f(x) = \sqrt{(x+1)(x+2)}$.
 - $\text{$\dot{a}$ droite de $x_0 = 1$ on $a: \lim_{x \to 1^+} f\left(x\right) = f\left(1\right)$ et $\lim_{x \to 1^+} = \frac{f\left(x\right) f\left(1\right)}{x 1} = \infty$. }$ $\text{donc $\left(C_f\right)$ admet demi tangente verticale (parallèle à l'axe }$ $\text{des ordonnées) à droite du point $M\left(1, f\left(1\right)\right)$ }$

à gauche de
$$x_0 = -1$$
 on a : $\lim_{x \to (-1)^-} f(x) = f(-1)$ et $\lim_{x \to (-1)^+} = \frac{f(x) - f(-1)}{x - (-1)} = \infty$. donc (C_f) admet demi tangente verticale (parallèle à l'axe des ordonnées) à gauche du point $M(-1, f(-1))$

- g. Approximation affine d'une fonction dérivable en un point.
- II. Dérivabilité sur un intervalle fonction dérivée première dérivée seconde –dérivée n^{ième} d'une fonction :

A. Dérivabilité sur un intervalle :

- a. Définition:
- ${f f}$ est une fonction dérivable sur ${f I}={f j}a; {f b}ig[$ si et seulement si ${f f}$ est d dérivable en tout point ${f x}_{_0}$ de ${f I}$.
- f est une fonction dérivable sur [a;b[si et seulement si f est dérivable sur I=]a;b[et f est dérivable à droite du point a .
- f est dérivable sur $\left]a,b\right]\Leftrightarrow$ f est dérivable sur $\left]a,b\right[$ et f est dérivable à gauche de b
- ullet f est dé \hbox{riv} able sur $ig[a,big]\Leftrightarrow ig$ f est dérivable sur ig]a,big[et f est dérivable à droite de a et à gauche de b .
- **B.** La fonction dérivée première d'une fonction la fonction dérivée seconde dérivée n^{ième} d'une fonction:
- <u>a.</u> Définition :

f est une fonction dérivable sur un intervalle I .

• La fon<mark>cti</mark>on g qui relie chaque élément x de I par le nombre f '(x) s'appelle la fonction dérivée de f et on

note:
$$g = f'$$
. Ou encore $g: I \to \mathbb{R}$ $x \to g(x) = f'(x)$ g s'appelle la fonction dérivée de f on note: $g = f'$.

- La fonction dérivée de f'sur I s'appelle la fonction dérivée seconde (dérivée d'ordre 2) on note f'' ou ${f f}^{(2)}$
- En général : la dérivée d'ordre n de f est la fonction dérivée de $\mathbf{f}^{(n-1)}(\mathbf{x})$ (la dérivée de la fonction dérivée d'ordre $\mathbf{n} \mathbf{1}$) et on note $\mathbf{f}^{(n)}(\mathbf{x}) = (\mathbf{f}^{(n-1)})^{'}(\mathbf{x})$.

dérivation – étude des fonctions page

Les opérations sur les fonctions dérivables :

a. Propriété:

Soient f et g deux fonctions dérivables sur I . on a :

- La fonction f + g est dérivable sur I et (f+g)'(x) = f'(x) + g'(x).
- La fonction αf est dérivable sur I et $(\alpha f)'(x) = \alpha f'(x)$ avec $\alpha \in \mathbb{R}$
- La fonction $f \times g$ est dérivable sur I et $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x)$.
- La fonction $\frac{1}{g}$ est dérivable sur $I \ \forall x \in I, g(x) \neq 0$ et $\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{g^2(x)}$.
- La fonction $\frac{f}{g}$ est dérivable sur $I \ \forall x \in I, g(x) \neq 0$ et $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$.

Dérivabilité des fonctions : polynomiales – rationnelles - $f^n(x)$ - fonctions trigonométriques :

a. Propriété:

- Toute fonction polynomiale est dérivable sur son ensemble de définition $D_f = \mathbb{R}$ et $(ax^n)' = nax^{n-1}$ et $n \in \mathbb{N}$
- Toute fonction rationnelle est dérivable sur son ensemble de définition \mathbf{D}_{f} .
- f est une fonction dérivable sur un intervalle I.
 - La fonction f^n avec $n \in \mathbb{N}^*$ est dérivable sur I et on $a : (f^n)'(x) = nf^{n-1}(x)f'(x)$.
 - Si pour tout x de I; $f(x) \neq 0$ on a la fonction $f^{p}(x)$ avec $p \in \mathbb{Z}^{*}$ est dérivable sur I et $(f^{p})'(x) = pf^{p-1}(x)f'(x)$.
- La fonction $f(x) = \cos(x)$ est dérivable sur \mathbb{R} avec $f'(x) = (\cos(x))' = -\sin(x)$.
- La fonction $f(x) = \sin(x)$ est dérivable sur \mathbb{R} avec $f'(x) = (\sin(x))' = \cos(x)$.
- La fonction $f(x) = \tan(x)$ est dérivable sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi ; k \in \mathbb{Z} \right\}$ avec $f'(x) = (\tan(x))' = 1 + \tan^2(x)$ ou encore $f'(x) = (\tan(x))' = \frac{1}{\cos^2 x}$.

b. Exemple: Calculer:
$$g'(x)$$
 pour $g(x) = (-2x^4 + 5x^2 + x - 3)^7$.
On a: $g'(x) = [(-2x^4 + x - 3)^7]'$.
 $= 7(-2x^4 + x - 3)^6(-2x^4 + x - 3)'$
 $= 7(-2x^4 + x - 3)^6(-8x^3 + 1)$

dérivation – étude des fonctions page

Dérivabilité de la composée de deux fonctions :

a. Théorème :

f dérivable en x_0 et g est dérivable en $f(x_0)$ alors la fonction $g \circ f$ est dérivable en x_0 et on a : $(g \circ f)'(x_0) = f'(x_0) \times g'(f(x_0))$.

b. Application :

$$\left(\sqrt{f(x)}\right) = \frac{f'(x)}{2 \times \sqrt{f(x)}} ; x \in D_{f'} \text{ et } f(x) > 0.$$

•
$$(\sin(ax+b))' = a \times \cos(ax+b)$$
; sur \mathbb{R} .

•
$$(\cos(ax+b))' = -a \times \sin(ax+b)$$
; sur \mathbb{R} .

•
$$(\tan(ax+b))' = a \times [1 + \tan^2(ax+b)] = a \times \frac{1}{\cos^2(ax+b)}$$
 avec $ax+b \neq \frac{\pi}{2} + k\pi$; $k \in \mathbb{Z}$.

V. La fonction dérivée de la fonction réciproque :

a. Théorème:

Soit f une fonction continue et strictement monotone sur I et f(I) = J), f^{-1} est la fonction réciproque de la fonction ($(x_0 \in I)$; $x_0 \mapsto f(x_0) = y_0$; $(y_0 \in J)$)

 $\begin{cases} \mathbf{f} \text{ est dérivable en } \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0) \neq \mathbf{0} \end{cases}$ alors la fonction \mathbf{f}^{-1} est dérivable en $\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$ et $(\mathbf{f}^{-1})'(\mathbf{f}(\mathbf{x}_0)) = \frac{1}{\mathbf{f}'(\mathbf{x}_0)}$

ou encore $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y))}$.

<u>b.</u> Applications :

 $\mathbf{n} \in \mathbb{N}^*$ et $\mathbf{r} \in \mathbb{Q}^*$ et \mathbf{f} est une fonction strictement positive et dérivable sur \mathbf{I}

$$\mathbf{g'(x)} = \left(\sqrt[n]{x}\right)' = \left(\left(x\right)^{\frac{1}{n}}\right)' = \frac{1}{n}x^{\frac{1}{n}-1}; \mathbf{n} \in \mathbb{N}^* \qquad \left(\sqrt[n]{f(x)}\right)' = \left(\left(f(x)\right)^{\frac{1}{n}}\right)' = \frac{1}{n}\times f'(x)\times \left(f(x)\right)^{\frac{1}{n}-1}$$

$$\mathbf{g'(x)} = (\mathbf{x^r})^{'} = \mathbf{r}\mathbf{x}^{r-1} \; ; \; \mathbf{r} \in \mathbb{Q}^* \qquad \qquad \left(\left[\mathbf{f(x)} \right]^{r} \right)' = \mathbf{r} \times \mathbf{f'(x)} \times \left[\mathbf{f(x)} \right]^{r-1} \; ; \; \mathbf{r} \in \mathbb{Q}^*$$

c. Exemple:

1. Calculer la fonction dérivée f' de f.

$$f(x) = \sqrt[5]{x}$$
 et $f(x) = \sqrt[5]{x^2 + 1}$ et $f(x) = \sqrt[5]{(x^2 + 1)^7}$

On a:

dérivation – étude des fonctions page

•
$$\mathbf{f}'(\mathbf{x}) = \left[\sqrt[5]{\mathbf{x}}\right]' = \left[\mathbf{x}^{\frac{1}{5}}\right]' = \frac{1}{5}\mathbf{x}^{\frac{1}{5}-1} = \frac{1}{5}\mathbf{x}^{\frac{-4}{5}} = \frac{1}{5} \times \frac{1}{\sqrt[5]{\mathbf{x}^4}}$$
.

•
$$f'(x) = \left[\sqrt[5]{(x^2+1)}\right]' = \left[(x^2+1)^{\frac{1}{5}}\right]' = \frac{1}{5}(x^2+1)'(x^2+1)^{\frac{1}{5}-1} = \frac{14}{7}x(x^2+1)^{\frac{4}{5}} = \frac{14}{7}x\sqrt[5]{(x^2+1)^4}$$
.

•
$$\mathbf{f}'(\mathbf{x}) = \left[\sqrt[5]{(\mathbf{x}^2 + 1)^7}\right]' = \left[(\mathbf{x}^2 + 1)^{\frac{7}{5}}\right]' = \frac{7}{5}(\mathbf{x}^2 + 1)'(\mathbf{x}^2 + 1)^{\frac{7}{5}-1} = \frac{14}{7}\mathbf{x}(\mathbf{x}^2 + 1)^{\frac{2}{5}} = \frac{14}{7}\mathbf{x}\sqrt[5]{(\mathbf{x}^2 + 1)^2}$$

Tableau des fonctions dérivées des fonctions usuelles :

Tableau des fonction	adieau des fonctions derivées des fonctions usuelles :					
La fonction f	D _f Domaine de définition de f	La fonction dérivée f'	D _{f'} Domaine de définition de f '			
f(x)=a	$\mathbf{D_f} = \mathbb{R}$	f'(x) = 0	$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$			
f(x) = x	$\mathbf{D_f} = \mathbb{R}$	f'(x)=1	$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$			
$f(\mathbf{x}) = \mathbf{x}^{n}$ $n \in \mathbb{N}^* \setminus \{1\}$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D}_{\mathbf{f}^{\prime}} = \mathbb{R}$			
$n \in \mathbb{Z}^* \setminus \{1\} : f(x) = x^n$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D_{f'}} = \mathbb{R}^*$			
$f(x) = \sqrt{x}$	$\mathbf{D_f} = \begin{bmatrix} 0, +\infty \begin{bmatrix} \\ \end{bmatrix}$	$f'(x) = \frac{1}{2\sqrt{x}}$	$\mathbf{D}_{\mathbf{f}^{\prime}} = \left]0, +\infty\right[$			
$f(x) = \frac{1}{x}$	$\mathbf{D_f} = \mathbb{R}^*$	$f'(x) = -\frac{1}{x^2}$	$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}^*$			
$f(x) = \sin x$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = \cos x$	$\mathbf{D}_{\mathbf{f}^{+}} = \mathbb{R}$			
$f(x) = \cos x$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = -\sin x$	$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$			
$f(x) = \tan x$	$\mathbf{x} \neq \frac{\pi}{2} + \mathbf{k}\pi; \mathbf{k} \in \mathbb{Z}$	$f'(x) = 1 + \tan^2 x$	$\mathbf{x} \neq \frac{\pi}{2} + \mathbf{k}\pi$			
$f(x) = \sqrt{g(x)}$	$x \in D_g / g(x) \ge 0$	$f'(x) = \frac{g'(x)}{2 \times \sqrt{g(x)}}$	$x \in D_{g'} / g(x) > 0$			
f(x)=a	$\mathbf{D_f} = \mathbb{R}$	f'(x) = 0	$\mathbf{D}_{\mathbf{f}^+} = \mathbb{R}$			
f(x) = x	$\mathbf{D_f} = \mathbb{R}$	f'(x)=1	$\mathbf{D}_{\mathbf{f}^+} = \mathbb{R}$			
$n \in \mathbb{N}^* \setminus \{1\} f(x) = x^n$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D}_{\mathbf{f}^+} = \mathbb{R}$			
$n \in \mathbb{Z}^* \setminus \{1\} : f(x) = x^n$	$\mathbf{D_f} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D_f}$, $=\mathbb{R}^*$			

VI.

Applications de la fonction dérivée première :

Remarque:

- \bullet dans le reste de ce chapitre f est une fonction numérique de la variable réelle x.
- ullet (C_f) est sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}).

dérivation - étude des fonctions page

A. La monotonie d'une fonction et le signe de sa fonction dérivée :

a. Propriété:

f est une fonction dérivée sur un intervalle I.

- Si la fonction dérivée f'est strictement positive sur I alors la fonction f est strictement croissante sur I. (même si f's'annule en un points fini de I ne change pas la monotonie de f)
- Si la fonction dérivée f'est strictement négative sur I alors la fonction f est strictement décroissante sur I. (même si f's'annule en un points fini de I ne change pas la monotonie de f)
- Si la fonction f'est nulle sur I (sur I tout entier) alors f est constante.

b. Exemple :

Etudier les variations de f sur \mathbb{R} avec $f(x) = (2x+4)^2$.

• On calcule: f'.

$$f'(x) = [(2x+4)^2]'$$

$$= 2(2x+4)'(2x+4) = 2 \times 2(2x+4) = 8x+16$$

• Signe de f':

On a f'(x)
$$\geq 0 \Leftrightarrow 8x + 16 \geq 0$$

 $\Leftrightarrow x \geq -2$

Donc: f' est positive sur $[-2,+\infty[$ et négative sur $]-\infty,-2]$.

• Tableau de variation de f:

	X	∞	-2	+∞
	f'	1	0	+
	f	+∞		+∞ <i></i>
	•	$f\left(-2\right)=0$		

B. Extremums d'une fonction dérivable :

<u>a.</u> Propriété :

 ${f f}$ est une fonction dérivée sur un intervalle ouvert ${f I}$, ${f a}$ est un élément de ${f I}$.

Si f est dérivable au point a et admet un extremum au point a alors f'(a) = 0.

Remarque: Si f'(a) = 0 ne signifie pas que f(a) est un extremum de la fonction f.

<u>b.</u> Exemple :

 $f(x) = 2x^3$ on a $f'(x) = 6x^2$ d'où f'(0) = 0 mais f(0) n' est pas un extremum de la fonction f.

dérivation – étude des fonctions page

c. Propriété:

f est une fonction dérivée sur un intervalle ouvert I, a est un élément de I.

Si f' s'annule au point a et f'change de signe au voisinage de a alors f(a)

est un extremum de la fonction f

Applications de la fonction dérivée deuxième :

A. Position relative de la tangente et la courbe – la concavité :

a. Propriété et définition :

f est une fonction deux fois dérivable sur un intervalle I.

 $\forall x \in I : f''(x) > 0$ (la fonction dérivée seconde) alors :

ullet La courbe $\left(C_{_{\mathrm{f}}}
ight)$ de f $\,$ est située au dessus des tangentes des points x tel que $\,x$ \in I .

Dans ce cas on dit que la courbe (C_f) de f est convexe (ou sa concavité est dans le sens des ordonnés positives . on note \checkmark

 $\forall x \in I : f''(x) < 0$ (la fonction dérivée seconde) alors :

• La courbe $\left(C_{_{\mathrm{f}}} \right)$ de f $\,$ est située au dessous des tangentes des $\,$ x \in I $\,$.

Dans ce cas on dit que la courbe (C_f) de f est concave (ou sa concavité est dans le sens des ordonnés négatives . on note \frown .

<u>b.</u> Exemple :

Exemple 1:

La figure ci-contre représente la courbe d'une fonction f.

- Sur l'intervalle]1,+ ∞ [: la courbe (C_f) de f est convexe . (ou sa concavité est dans le sens des ordonnés positives) .
- Sur l'intervalle $]-\infty,1[$: la courbe $\Big(C_f\Big)$ de f est concave . (ou sa concavité est dans le sens des ordonnés négatives) .

Exemple 2:

Le tableau ci-contre représente le signe de la fonction dérivée seconde de f et la concavité de la courbe (C_f) de f

X	-∞ -	5 –	1 2	2 +∞
f''(x)	-	0 +	- () +
Concavité de $\left(\mathrm{C_{f}}\right)$	\wedge	\vee	\wedge	\vee

dérivation - étude des fonctions page

\mathbf{B}_{ullet} Points d'inflexions :

Propriété et définition :

f est une fonction dérivable deux fois sur un intervalle ouvert I et $x_0 \in I$.

Si la fonction dérivée seconde f''s'annule en x_0 et f'' change de signe au voisinage de x_0 alors le point <code>d'abscis</code>se $Aig(x_0^{},fig(x_0^{}ig)ig)$ est un point d' inflexion au courbe $ig(C_f^{}ig)$; dans ce cas la tangente au point $A(x_0, f(x_0))$ coupe (ou traverse) la courbe.

b. Exemple: Exemple 1:

• Soit la fonction f définie par : $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.

Le tableau suivant représente le signe de la fonction dérivée seconde de f et la concavité de la courbe $\left(C_{f}
ight)$ de f

X	-∞	-5 -	1	2 +∞	
f''(x)	_	0 +	_	0 –	
Concavité de $\left(\mathrm{C}_{\mathrm{f}} \right)$	\wedge	\vee	\wedge	\wedge	

- Le point d'abscisse $x_0 = -5$ est un point d'inflexion au courbe (C_f) de f car f''(-5) = 0 et f'' change de signe au voisinage de $x_0 = -5$.
- Le point d'abscisse $x_1 = 2$ n'est pas un point d'inflexion au courbe (C_f) de f car f' change de signe au voisinage de $x_1 = 2$

Centre de symétrie – axe de symétrie de la courbe d'une fonction :

A. Centre de symétrie de la courbe d'une fonction :

Propriété:

Soit $ig(f C_fig)$ la courbe représentative d'une fonction définie sur $f D_f$ dans un plan ig(f Pig) est rapporté à un repère orthonormé (O,\vec{i},\vec{j}) .

$$\text{Le point } I\left(a,b\right) \text{ est centre de symétrie au courbe } \left(C_f\right) \quad \Leftrightarrow \begin{cases} \forall x \in D_f \; ; \; 2a-x \in D_f \\ \forall x \in D_f \; ; \; f(2a-x)+f(x)=2b \end{cases}$$

dérivation – étude des fonctions page

b. Exemple :

B. axe de symétrie de la courbe d'une fonction :

a. Propriété :

Soit (C_f) la courbe représentative d'une fonction définie sur D_f dans un plan (P) est rapporté à un repère orthonormé (O,\vec{i},\vec{j}) .

La droite d'équation D: x = a est axe de symétrie au courbe $\begin{pmatrix} C_f \end{pmatrix} \Leftrightarrow \begin{cases} \forall x \in D_f \; ; \; 2a - x \in D_f \\ \forall x \in D_f \; ; \; f(2a - x) = f(x) \end{cases}$

b. Exemple :

Branches infinies d'une fonction :

A. Branches infinies :

dérivation – étude des fonctions page

a. Définition :

Soit $ig(f C_fig)$ la courbe représentative d'une fonction définie sur $f D_f$ dans un plan ig(Pig) est rapporté à un repère $ig(O,ec{i},ec{j}ig)$.

Si au $rac{m}{m}$ oins une des coordonnées d'un point M de la courbe de $ig(C_fig)$ tend vers l'infinie on dit que la courbe $ig(C_fig)$ admet une branche infinie .

B. Asymptote verticale:

a. Définition:

Soit (C_f) la courbe représentative d'une fonction définie sur D_f dans un plan (P) est rapporté à un repère (O,\vec{i},\vec{j}) .

Si $\lim_{x\to a^+} f(x) = \pm \infty$ et $\lim_{x\to a^-} f(x) = \pm \infty$ alors la droite d'équation x = a est une asymptote verticale à (C_f) (à droite de a ou à gauche de a).

<u>b.</u> Exemple:

Exemple: asymptote verticale d'équation x = 1.

C. Asymptote horizontale

a. Définition :

Si $\lim_{x\to +\infty} f(x) = b$ (ou $\lim_{x\to -\infty} f(x) = c$) alors la droite d'équation y = b (ou y = c) est une asymptote horizontale

 $\frac{\mathbf{a}}{\mathbf{C}_{\mathbf{f}}}$ au voisinage de $+\infty$ (ou $-\infty$).

Asymptote horizontale d'équation y = 2 au voisinage de $\pm \infty$.

dérivation – étude des fonctions page

D. Asymptote oblique :

a. Définition :

• Soit $(\mathbf{C}_{\mathrm{f}})$ la courbe représentative d'une fonction définie sur \mathbf{D}_{f} (tel que

 $\left(\left[\mathbf{a}, +\infty \right[\subset \mathbf{D}_{\mathbf{f}} \text{ ou } \right] -\infty, \mathbf{a} \left[\subset \mathbf{D}_{\mathbf{f}} \right)$ dans un plan $\left(\mathbf{P} \right)$ est rapporté à un repère $\left(\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}} \right)$.

• $\mathbf{a} \in \mathbb{R}^*$ ($\mathbf{a} \neq \mathbf{0}$ et $\mathbf{a} \neq \pm \infty$) et $\mathbf{b} \in \mathbb{R}$

Si $\lim_{x\to\pm\infty} f(x) - (ax+b) = 0$ alors la droite d'équation y = ax+b est une asymptote oblique à (C_f) au voisinage de $\pm\infty$.

b. Exemple:

Soit
$$f(x) = x + 3 - \frac{(x+7)}{(x-1)}$$
.

 (C_f) admet une asymptote oblique la droite d'équation y = x + 3 voisinage de $\pm \infty$

c. Propriété:

Si la droite d'équation y = ax + b est une asymptote oblique à $\left(C_f\right)$ au voisinage de $\pm\infty$, donc pour déterminer a et b on calcule les limites suivantes :

- Pour déterminer a on calcule : $\lim_{x\to\pm\infty}\frac{f\left(x\right)}{x}=a\in\mathbb{R}^{*}$ (c.à.d. $a\neq0$ et $a\neq\pm\infty$), donc on a deux cas particulières.
- Pour déterminer a on calcule : $\lim_{x\to\pm\infty} (f(x)-ax) = b \in \mathbb{R}$ (c.à.d. $b \neq \pm\infty$). donc on a la troisième cas particulière.
- Les cas particulières
- > 1^{ere} cas particulière : $a = \pm \infty$ on dit que (C_f) admet une branche parabolique de direction (B.P.D)
- > 2^{ieme} cas particulière : a = 0 on dit que (C_f) admet une branche parabolique de direction (B.P.D.)

 l'axe des abscisses .
- > $3^{\text{lème}}$ cas particulière : $\mathbf{b} = \pm \infty$ avec $\mathbf{a} \in \mathbb{R}^*$, on dit que (\mathbf{C}_f) admet une branche parabolique de direction (B.P.D) la droite d'équation $\mathbf{y} = \mathbf{a}\mathbf{x}$.

dérivation – étude des fonctions page

les cas particuliers (Remarque : B.P.D= branche parabolique de direction)

cas particulier 3:
$$a \in \mathbb{R}^*$$
 et $b = \pm \infty$

 $\begin{pmatrix} C_f \end{pmatrix}$ admet une B.P.D la droite y = ax au voisinage de $\pm \infty$

cas particulier
$$2 : a = 0$$

 $\left(\mathbf{C}_{\mathbf{f}} \right)$ admet une B.P.D l'axe des abscisses

Exemple
$$f(x) = \sqrt{x}$$

cas particulier 1 :
$$a = \pm \infty$$

 $\left(\mathbf{C}_{\mathbf{f}} \right)$ admet une B.P.D l'axe des ordonnés

Exemple
$$f(x) = x^3$$

Approximation affine d'une fonction dérivable en un point .(complément)

a. Définition:

f est une fonction dérivable au point a

- La fonction u tel que : $u: x \to f(a) + (x-a)f'(a)$ (ou encore (x-a=h); $v: h \to f(a) + hf'(a)$) est appelée la fonction affine tangente à la fonction f au point a.
- Quand x est très proche de a le nombre f(a) + (x-a)f'(a) est une approximation affine de f(x) au voisinage de a on écrit : $f(x) \approx f(a) + (x-a)f'(a)$.
- Ou encore le nombre f(a)+hf'(a) est approximation affine de f(a+h) au voisinage de zéro on écrit $f(a+h) \approx f(a)+hf'(a)$ avec x-a=h.

C. Exemple:

Exemple 1:

1. Trouver une approximation affine du nombre f(1+h) avec $f(x) = x^2$ et a = 1.

Correction :

f est une fonction dérivable au point 1 avec f'(1) = 2 approximation affine de f(1+h) est :

$$f(1+h) \approx hf'(1)+f(1) \approx 2h+1$$
.

Conclusion:
$$f(1+h) = (1+h)^2 \approx 2h+1$$
.

Application du résultat :

On prend
$$h = 0.001$$
 d'où : $f(1.001) = f(1+0.001) \approx 2 \times 0.001 + 1$ donc $f(1+0.001) \approx 1.002$.

On vérifie :
$$f(1,001) = (1,001)^2 = 1,002001$$
 donc $1,002 \approx 1,002001$.

dérivation – étude des fonctions page

Technique de calcule : $(1+h)^2$ avec h très proche de zéro on calcule 2h+1.

Exemple 2:

1. Trouver une approximation affine du nombre $\sqrt{9,002}$.

Correction:

On pose
$$f(x) = \sqrt{x}$$
 et $a = 9$ et $h = 0{,}002$ d'où $\sqrt{9{,}002} = f(9+0{,}002)$.

On calcule le nombre dérivé de f en 9 on a :

$$\lim_{h \to 0} \frac{f(9+h) - f(9)}{h} = \lim_{x \to 9} \frac{f(x) - f(9)}{x - 9} = \lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{\sqrt{x} - 3}{\left(\sqrt{x} + 3\right)\left(\sqrt{x} + 3\right)} = \lim_{x \to 9} \frac{1}{\left(\sqrt{x} + 3\right)} = \frac{1}{6} \in \mathbb{R}$$

D'où : f est dérivable au point 9 et le nombre dérivée en 9 est $f'(9) = \frac{1}{6}$.

On trouve une approximation affine du nombre $\sqrt{9,002}$.

On a:
$$f(a+h) \approx f(a) + hf'(a) d'où f(9+0,002) \approx f(9) + 0,002 \times f'(9)$$
.

Donc: $f(9+0,002) \approx \sqrt{9} + 0,002 \times \frac{1}{6}$ par suite $f(9+0,002) \approx 3,000333333$.

On remarque que $\sqrt{9,002}\approx 3,000333333$ la calculatrice donne : $\sqrt{9,002}\approx 3,000333315$ d'où la précision est 3×10^{-8} .

l. Remarque :

- Pour la fonction: $f(x) = x^2$ et a = 1 on a: $f(1+h) = (1+h)^2 \approx 1+2h$.
- Pour la fonction: $f(x) = x^3$ et a = 1 on a: $f(1+h) = (1+h)^3 \approx 1 + 3h$.
- Pour la fonction: $f(x) = \sqrt{x}$ et a = 1 on a: $f(1+h) = \sqrt{1+h} \approx 1 + \frac{h}{2}$.
- Pour la fonction: $f(x) = \frac{1}{x}$ et a = 1 on a: $f(1+h) = \frac{1}{1+h} \approx 1-h$.

Résumer des branches infinies :

dérivation - étude des fonctions

Les branches infinies

Asymptote horizontale

$$\lim_{x\to\pm\infty} f(x) = \pm\infty$$

Asymptote verticale

$$\lim_{x\to a^{\pm}} f(x) = \pm \infty$$

 (C_f) admet une asymptote horizontale c'est la droite d'équation y = aau voisinage de ±∞

> Exemple : asymptote horizontale d'équation y = 2 au voisinage de $\pm \infty$

Asymptote oblique et les trois cas particuliers

 $(C_{\scriptscriptstyle{\mathrm{f}}})$ admet une asymptote verticale c'est la droite d'équation $\mathbf{x} = \mathbf{a}$

Exemple: asymptote verticale d'équation x = 1

$$\lim_{x\to\pm\infty}f(x)-(ax+b)=0$$

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \in \mathbb{R}^*$$

$$\lim_{x\to\pm\infty}\frac{f\left(x\right)}{x}=0$$

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \pm \infty$$

 $f(x)-ax = b \in \mathbb{R}$

$$\lim_{x\to\pm\infty} (f(x)-ax) = \pm\infty$$

 (C_f) admet une asymptote oblique la droite d'équation y=ax+b voisinage de ±∞

Rq: position relative de (C_f) et (D) on étudie le signe de f(x)-(ax+b) cas particulier 3:

 $\mathbf{a} \in \mathbb{R}^* \text{ et } \mathbf{b} = \pm \infty$

 (C_f) admet une B.P.D la droite y = ax au voisinage de ±∞

cas particulier 2: a = 0

(${f C}_{\!_{
m f}}$) admet une B.P.D l'axe des abscisses

Exemple $f(x) = \sqrt{x}$

cas particulier 1: $a = \pm \infty$

 (C_f) admet une B.P.D l'axe des ordonnés

Exemple $f(x) = x^3$

les cas particuliers (Remarque : B.P.D= branche parabolique de direction)