

LEARNING FROM DATA A SHORT COURSE Yaser S. Abu-Mostafa California Institute of Technology Malik Magdon-Ismail Rensselaer Polytechnic Institute Hsuan-Tien Lin National Taiwan University

Start with $E_{\rm out}$

$$E_{\text{cut}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \Big[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \Big]$$

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[E_{\text{out}}(g^{(\mathcal{D})})\right] &= \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathbf{x}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]\right] \\ &= \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]\right] \end{split}$$

Now, let us focus on:

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

© 🕙 Oreator: Yaser Albu-Mossafa - LFD Lecture I

5/22

The average hypothesis

To evaluate
$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

we define the 'average' hypothesis $\bar{g}(\mathbf{x})$:

$$ar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\mathbf{x})
ight]$$

Imagine \mathbf{many} data sets $\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_K$

$$\bar{g}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} g^{(\mathcal{D}_k)}(\mathbf{x})$$

© ∰ Creator: Yaser Albu-Mostafa = LFD Lecture 8

6/22

Using $\bar{g}(\mathbf{x})$

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) + \bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2} + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2} + 2\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2}\right] + \left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}$$

🌀 🚮 Greator: Yaser Albu-Mostafa = LFD Lecture 8

7/22

Bias and variance

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\text{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\text{bias}(\mathbf{x})}$$

Therefore,
$$\mathbb{E}_{\mathcal{D}}\left[E_{\mathrm{Out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]\right]$$

$$= \mathbb{E}_{\mathbf{x}}[\mathsf{bias}(\mathbf{x}) + \mathsf{var}(\mathbf{x})]$$

🌣 🌃 Greator: Yaser Albu-Mostafa - LFD Lecture

8/22

Outline

Bias and Variance

Learning Curves

© © Grader: Vaer AbsAkondo - UD Leature 8

17/22

Linear regression case

Noisy target $y = \mathbf{w}^{*\mathsf{T}}\mathbf{x} + \mathsf{noise}$

Data set $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

Linear regression solution: $\mathbf{w} = (X^TX)^{-1}X^T\mathbf{y}$

In-sample error vector $= X\mathbf{w} - \mathbf{y}$

'Out-of-sample' error vector $= X\mathbf{w} - \mathbf{y}'$

© 🗺 Creator: Yasar Albu-Mostafa - LFD Lecture

21/22

Linear regression case

Noisy target $y = \mathbf{w}^{*\mathsf{T}}\mathbf{x} + \mathsf{noise}$

Data set $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

Linear regression solution: $\mathbf{w} = (X^TX)^{-1}X^T\mathbf{y}$

In-sample error vector = $X\mathbf{w} - \mathbf{y}$

'Out-of-sample' error vector $= X\mathbf{w} - \mathbf{y}'$

(5) Fill Creator: Yaser Abu-Mostafa = LFD Lecture 8

21/22

Andrew Ng

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples \rightarrow fixes high various Try smaller sets of features \rightarrow fixes high various Try getting additional features \rightarrow fixes high bias Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc}) \rightarrow$ fixes high hims Try increasing $\lambda \rightarrow$ fixes high various

