test

Roll Number - Name

1 Matching The Following

1) Match the following: (3,0) is the pt. from which three normals are drawn to the parabola $y^2 = 4x$ which meet the parabola in the points P, Q and R. Then (2006 -6M)

Column I

- a) Area of $\triangle POR$
- b) Radius of circumcircle of $\triangle PQR$
- c) Centroid of ΔPOR
- d) Circumcentre of ΔPQR

Column II

- b) $\frac{5}{2}$ c) $(\frac{5}{2}, 0)$ d) $(\frac{2}{3}, 0)$
- 2) Match the statements in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubbles in the 4 x4 matrix given in the ORS (2007 -6 marks)

Column I

- a) Two intersecting circles
- b) Twomutually external circles
- c) Two circles, one strictly inside the other
- d) Two branches of a hyperbola

Column II

- a) have a common tangent
- b) havea common normal
- c) do not have a common tangent

1

- d) do not have a common normal
- 3) Match the conics in column 1 with the statements/expressions in column 2 (2009)

Column I

- a) Circle
- b) Parabola
- c) Ellipse
- d) Hyperbola

Column II

- a) The locus of the point (\mathbf{h}, \mathbf{k}) for which the lines hx + ky = 1 touches the circle $x^2 + y^2 = 4$
- b) Points z in the complex plane satisfy $ing |z + 2| - |z - 2| = \pm 3$
- c) Points of the conic have parametric representations $x = \sqrt{3}(\frac{1-t^2}{1+t^2})^{\frac{1}{2}}$, $y = \frac{2t}{1+t^2}$ d) The eccentricity of the conic lies in the
- interval $1 \le x < \infty$
- 4) line L: y = mx + 3 meets y- axis at E(0,3) and the arc of the arc of the parabola $y^2 = 16x, 0 \le y \le 6$ at the point $F(\mathbf{x_0}, \mathbf{y_0})$. The tangent to the parabola at $F(\mathbf{x_0}, \mathbf{y_0})$ intersects the y-axis at $G(0, y_1)$, the slope m of the line L is chosen such that the

area of the triangle EFG has a local maximum.

(JEE Adv. 2013)

Match List 1 with List 2 and select the correct answer using the code given below the list:

List 1				List	2	
a) m=				a)	$\frac{1}{2}$	
b) Maximum area of ΔEFG			b) 4			
c) $y_o =$			c) 2			
d) $y_1 =$				d)	1	
	S no	P	Q	R	S	

S no	P	Q	R	S
A	4	1	2	3
В	3	4	1	2
C	1	3	2	4
D	1	3	4	2

(Qs. 5-7): By appropriately matching the information given in the three columns of the following table. Column 1,2, and 3 contain conics and points of contact, respectively

Sno	Column 1	Column 2	Column 3
A	$x^2 + y^2 = a^2$	$my = m^2x + a$	$(\frac{a}{m^2}), \frac{2a}{m}$
В	$x^2 + a^2y^2 = a^2$	$y = mx + a\sqrt{m^2 + 1}$	$\left(\frac{-ma}{\sqrt{m^2+1}}, \frac{a}{\sqrt{m^2+1}}\right)$
C	$y^2 = 4ax$	$y = mx + \sqrt{a^2m^2 - 1}$	$\left(\frac{-a^2m}{\sqrt{a^2m^2+1}}, \frac{1}{\sqrt{a^2m^2+1}}\right)$
D	$x^2 - a^2y^2 = a^2$	$y = mx + \sqrt{a^2m^2 - 1}$	$(\frac{-a^2m}{\sqrt{a^2m^2-1}}, \frac{-1}{\sqrt{a^2m^2-1}})$

- 5) For $a = \sqrt{2}$, if a tangent is drawn to a suitable conic (Column 1) at the point of contact (-1, 1), then which of the following options is the only correct combination for obtaining its equation? (2009)
 - (a) (I)(i)(P)
 - (b) (I)(ii)(Q)
 - (c) (II)(ii)(Q)
 - (d) (III)(i)(P)
- 6) If a tangent to a suitable conic (column 1) is found to be y = x + 8 and its point of contact is (8, 16), then which of the following options is the only correct combination? (JEE Adv. 2018)
 - (a) (I)(ii)(Q)
 - (b) (II)(iv)(R)
 - (c) (III)(i)(P)
 - (d) (III)(ii)(Q)
- 7) The tangent to a suitable conic(column 1) at $(\sqrt{3}, \frac{1}{2})$ is found to be $\sqrt{3}x + 2y = 4$, then which of the following options is the only correct option?
 - (a) (IV)(iii)(S)
 - (b) (IV)(iv)(S)

- (c) (II)(iii)(R)
- (d) (II)(iv)(R)
- 8) Let H: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, where a > b > 0, be a hyperbola in xy-plane whose conjugate axis LM subtends an angle of 60^0 at one of its vertices N. let the area of the triangle LMN be $4\sqrt{3}$.

List 1 List 2

- a) The length of the conjugate axis of H
- a) 8 b) $\frac{4}{\sqrt{3}}$ c) $\frac{2}{\sqrt{3}}$

b) The eccentricity of H is

- c) The distance between the foci of H is
- d) The length of the latus rectum of H is

The correct option from (A,B,C,D) is:

Sno	P	Q	R	S
A	4	2	1	3
В	4	3	1	2
С	4	1	3	2
D	3	4	2	1

2 Comprehension Based Questins

PASSAGE 1

Consider PASSAGE 3 the circle $x^2 + y^2 = 9$ and the parabola $y^2 = 8x$. They intersect at P and Q in the first and the fourth quadrants, respectively Tangents to the circle at P and Q intersect the x-axis at R and tangents to the parabola at P and Q intersect the x-axis at S

- 1) The ratio of the areas of the triangles PQS and POR is (2007 - 4 marks)
 - (a) 1:2
 - (b) 1: $\sqrt{2}$
 - (c) 1:4
 - (d) 1:8
- 2) The radius of the circumcircle of the triangle PRS is (2007 - 4 marks)
 - (a) 5
 - (b) $3\sqrt{3}$
 - (c) $3\sqrt{2}$
 - (d) $(2\sqrt{3})$
- 3) The radius of the incircle of the triangle PQR is (2007 - 4 marks)

- (a) 4
- (b) 3
- (c) $\frac{8}{3}$
- (d) 2

PASSAGE 2

The circle and Hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ - intersect at the points A,B. Then

- 4) Equation of a common tangent with positive slope to the circle as well as to the hyperbola is
 - (a) $2x \sqrt{5}y 20 = 0$
 - (b) $2x \sqrt{5}y + 4 = 0$
 - (c) 3x 4y + 8 = 0
 - (d) 4x 3y + 4 = 0
- 5) Equation of the circle with AB as its diameter is
 - (a) $x^2 + y^2 12x + 24 = 0$
 - (b) $x^2 + y^2 + 12x + 24 = 0$
 - (c) $x^2 + y^2 + 12x 24 = 0$
 - (d) $x^2 + y^2 12x 24 = 0$

PASSAGE 3

Tangents are drawn from the point P(3,4) to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ touching the ellipse at points A and B.

- 6) The coordinates of A and B are
 - (a) (3,0) and (2,0)
 - (b) $(\frac{-8}{5}, \frac{2\sqrt{161}}{15})$ and $(\frac{-9}{5}, \frac{8}{5})$
 - (c) 3x 4y + 8 = 0
 - (d) 4x 3y + 4 = 0
- 7) The orthocenter of the triangle PAB is

 - (a) $(5, \frac{8}{7})$ (b) $(\frac{7}{5}, \frac{25}{8})$ (c) $(\frac{11}{5}, \frac{8}{5})$ (d) $(\frac{8}{25}, \frac{7}{5})$