Lab Assignment #5 Teo Patrosio

EE-126/COMP-46: Computer Engineering w/lab Professor: Mark Hempstead TA:Parnian Mokri Tufts University, Fall 2021

Introduction + Purpose

In this lab, the hazard detection and forwarding modules were built on top of the last lab which was the pipelined cpu.

Components built

Figure 1: Overall system diagram of the Hazard detection and Forwarding Units

Figure 2: System block diagram (Created by https://blog.eowyn.net/netlistsvg/)

```
vcom -quiet -2008 *.vhd tb/*.vhd imem/*.vhd
vsim -quiet -c work.pipelinedcpu1_tb -do "log -r /*; run 500ns; exit" -wlf
pipelinedcpu1.wlf && wlf2vcd pipelinedcpu1.wlf -o pipelinedcpu1.vcd
```

Figure 3: Commands to analyze and run the code

Cycle	PC			
0	0	LDUR X9, [XZR, 0]	1111100001000000000001111101001	f8 40 03 e9
1	4	ADD X9, X9, X9	10001011000010010000000100101001	8b 09 01 29
2	8	ADD X10, X9, X9	10001011000010010000000100101010	8b 09 01 2a
3	8			
4	12	SUB X11, X10, X9	11001011000010010000000101001011	cb 09 01 4b
5	16	STUR X11, [XZR, 8]	111110000000000001000001111101011	f8 00 83 eb
6	20	STUR X11, [XZR, 12]	11111000000000001100001111101011	f8 00 c3 eb
7	24			
8	28			
	32			

Figure 4: Test program in Assembly, Binary, and Hex along with the associated cycles and PC counter

Cycle	1	2	3	4	5	6	7	8	9		
PC	0	4	8	8	12	16	20	24	10	32	36
LDUR X9, [XZR, 0]	IF	ID	EX	MEM	WB						
ADD X9, X9, X9		IF	ID	ID*	EX	MEM	WB				
ADD X10, X9, X9				IF	ID	EX	MEM	WB			
SUB X11, X10, X9					IF	ID	EX	MEM	WB		
STUR XII, [XZR, 8]						IF	ID	EX	MEM	WB	
STUR X11, [XZR, 12]							IF	ID	EX	MEM	WB

Figure 5: Test program and instructions with their associated pipeline phase for each clock cycle.

Figure 6: Output waveforms from test program on pipelinedcpul.vhd

Figure 7: Annotated Output waveforms from test program on pipelinedcpul.vhd

As seen in Figure 7, there several main events;

- The stall at PC 8 at cycle 8 on the ADD X10, X9, X9/8b 09 01 2a
 - This stall occurs because X9 is being calculated by the instruction before.
- Otherwise events such as the Add and Sub with forwarding results directly from the output of ALU and the output of the MEM phase.
- A final thing to note is that data memory does not get updated fully as expected because there is a hazard that occurs that cannot be remedied by forwarding and the instructed hazard detection.