

Underwriters Laboratories Inc. 1285 Walt Whitman Rd. Melville, NY 11747

www.ul.com/emc (631) 271-6200

Job Number: SR7180320-T001

UL CCS Project Number: 10U13557

Serial Number: Prototype

Revised Date: 12 Jan 2011

Model: M1000026

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Electromagnetic Compatibility Test Report

For Clam Case LLC

Copyright © 2010 Underwriters Laboratories Inc.

Underwriters Laboratories Inc. authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety.

Underwriters Laboratories Inc. 1285 Walt Whitman Rd. Melville, NY 11747 A not-for-profit organization dedicated to public safety and committed to quality service for over 100 years

Tel: (631) 271-6200 Fax: (631)439-6095

Job Number: SR7180320-T001 Project Number: 10U13557 Page 2 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Test Report Details

Tests Performed By: Underwriters Laboratories Inc.

1285 Walt Whitman Rd. Melville, NY 11747

Tests Performed For: Clam Case LLC

7095 Hollywood Blvd

Suite 444, Hollywood CA 90028

Applicant Contact: Anthony Ahee

Phone: **323-570-1142**

E-mail: anthony@clamcase.com

RevisedTest Report Date: 12 Jan 2011

Product Type: iPad Accessory with KB and BT radio

Product standards FCC Part 15 Subpart B and C, Section 15.247, RSS 210

Model Number: M1000026

Sample Serial Number: Prototype

EUT Category: Information technology equipment

Testing Start Date: 2010-12-21

Date Testing Complete: 2011-01-12

Overall Results: Compliant

Underwriters Laboratories Inc. reports apply only to the specific samples tested under stated test conditions. All samples tested were in good operating condition throughout the entire test program. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. Underwriters Laboratories Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from Underwriters Laboratories Inc. issued reports. This report shall not be used to claim, constitute or imply product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the US government.

This report may contain test results that are not covered by the NVLAP or A2LA accreditation. The scope of accreditation is limited to the specific tests that are listed on the NVLAP and/or A2LA websites referenced at the end of this report.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 3 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Report Directory

1.0	G E N E R A L - Product Description	4
1.1	Equipment Description	4
1.2	Equipment Marking Plate	4
1. 1.	Device Configuration During Test 3.1 Equipment Used During Test: 3.2 Input/Output Ports: 3.3 EUT Internal Operating Frequencies: 3.4 Power Interface:	5 6 6
1.4	Block Diagram:	7
1.5	EUT Configurations	8
1.6	EUT Operation Modes	8
2.0	Summary	8
2.1	Deviations from standard test methods	8
2.2	Device Modifications Necessary for Compliance	8
2.3	Reference Standards	9
2.4	Results Summary	9
3.0	Calibration of Equipment Used for Measurement	10
4.0	EMISSIONS TEST RESULTS	11
4.1	Test Conditions and Results – SPURIOUS EMISSIONS (Antenna Conducted and Radiated)	12
4.2	Test Conditions and Results – BAND EDGE COMPLIANCE	32
4.3	Test Conditions and Results – MAXIMUM PEAK OUTPUT POWER	40
4.4	Test Conditions and Results – Dwell Time and Duty Cycle Correction	43
4.5	Test Conditions and Results – NUMBER OF HOPPING FREQUENCIES	49
4.6	Test Conditions and Results – 20DB BANDWIDTH	54
4.7	Test Conditions and Results – Carrier Frequency Separation	58
4.8	Test Conditions and Results – MAINS TERMINAL – CONDUCTED EMISSIONS	61
4.9	Test Conditions and Results – RADIATED EMISSIONS	71
4.10	MAXIMUM PERMISSIBLE EXPOSURE	78
4.11	Operational Description : 15.247(a)(1), 15.247(g) and 15.247(h)	82
Append	A xilt	84
Accr	editations and Authorizations	84

Job Number: SR7180320-T001 Project Number: 10U13557 Page 4 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Report Revision History

Revision Date	Description	Revised By	Revision Reviewed By
10 Jan 2011	Change address to: 7095 Hollywood Blvd Suite 444, Hollywood CA 90028, and remove test set up photo's placed in separate document.	Joseph Danisi	Bob DeLisi
12 Jan 2011	Address TCB reviewer questions	Joseph Danisi	Bob DeLisi

1.0 GENERAL-Product Description

1.1 Equipment Descri	ption
----------------------	-------

The Clamcase is an all-in-one keyboard, stand, and case for the iPad. It includes a bluetooth keyboard, 360 degree hinge to accommodate various viewing configurations, and a plastic, protective case.

1.2 Equipment Marking Plate

Not provided at time of test

Job Number: SR7180320-T001 Project Number: 10U13557 Page 5 of 85

Model Number: M1000026

Client Name: Clam Case LLC FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

1.3 Device Configuration During Test

The Clamcase connects wirelessly to the iPad via Bluetooth as a human interface device. Once the user pairs the keyboard to an iPad using the pairing button, the device functions as a physical keyboard. The user can power down the device using the soft power button or just leave it idle until it enters sleep mode.

The worst-case channel is determined as the channel with the highest output power.

Radiated emission and power line conducted emission was performed with the EUT set to transmit at the channel with highest output power.

Radiated testing was performed in the normal orientation as a desktop unit.

The test utility software used during testing was Broadcom Bluetool

The antenna is specifically for Bluetooth mouse application. Its operation is in 2.4GHz band. The antenna type is meander stripe PCB antenna similar to those of the F-antenna.

The Clamcase is a Bluetooth 2.0 Device (non-EDR). The only modulation scheme used is GFSK, the data rate was evaluated for DH1 and DH3 and the worst case is reported DH5 is not an option.

1.3.1 Equipment Used During Test:

Use	Product Type	Manufacturer	Model	Comments	
EUT	iPad Accessory with KB and BT radio	Clamcase LLC	M1000026	None	
AE	Laptop	DELL	Latitude E5500	None	
AE	Laptop	HP	HP mini	None	
AE	AE AC Adaptor		FA90PE1-00	None	
AE AC Adaptor		DELL	N/A	None	
Note: EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment, or SIM - Simulator (Not Subjected to Test)					

Note: The model number throughout the report was a typographical error should be M1000026 not M10000026.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 6 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

1.3.2 Input/Output Ports:

Port #	Name	Type*	Cable Max. >3m (Y/N)	Cable Shielded (Y/N)	Comments
0	Enclosure	nclosure N/E — — None		None	
1	Mains	AC	NO	NO	AC Adaptor to charge equipment
2	Mains	DC	NO	NO	Internal Battery 3.7Volts
3	USB	I/O	NO	NO	None

Note:

AC = AC Power Port DC = DC Power Port N/E = Non-Electrical

I/O = Signal Input or Output Port (Not Involved in Process Control)

TP = Telecommunication Ports

1.3.3 EUT Internal Operating Frequencies:

Frequency (MHz)	Description
2402-2480	Fundamental

1.3.4 Power Interface:

Mode # /Rated	Voltage (V)	Curr ent (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
1	120Vac	-	-	60Hz	Single Phase	None
2	Battery Operated	-	-	DC	N/A	3.7Volts

Job Number: SR7180320-T001 Project Number: 10U13557 Page 7 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

1.4 Block Diagram:

The diagram below illustrates the configuration of the equipment above.

EUT

Job Number: SR7180320-T001 Project Number: 10U13557 Page 8 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

1.5 EUT Configurations

Mode #	Description			
	Per manufacturer Clam Case LLC utilized the laptop to set parameters then remove the USB cable and test as intended			

1.6 EUT Operation Modes

Mode #	Description			
1	Fransmit 2402MHz, low band			
2	ransmit 2440MHz, mid band			
3	Transmit 2480MHz, high band			
4	Transmit Hopping			
5	Receive			

2.0 Summary

The tests listed in the Summary of Testing section of this report have been performed and the results recorded by Underwriters Laboratories Inc. in accordance with the procedures stated in each test requirement and specification. The applicant determined the list of tests performed were applicable to the Equipment Under Test. As a result, the subject product has been verified to comply or not comply as noted in the Summary of Testing with each test specification. The test results relate only to the items tested.

2.1 Deviations from standard test methods

None

2.2 Device Modifications Necessary for Compliance

None

Job Number: SR7180320-T001 Project Number: 10U13557 Page 9 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

2.3 Reference Standards

Standard Number	Standard Name	Standard Date		
CFR 47	FCC Part 15, Subpart B, Class B	2009		
CFR 47	FCC Part 15, Subpart C, 15.207, 15.209, and 15.247	2009		
ICES-003, Issue 4	ES-003, Issue 4 Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard: Digital Apparatus			
RSS- 210, Issue 8	Low-power License-exempt Radio communications Devices (All Frequency Bands): Category I Equipment sets out certification requirements for low-power license- exempt radio communication devices that are Category I equipment.	2010		
RSS-GEN, Issue 3	General Requirements and Information for the Certification of Radio communication equipment.	2010		

2.4 Results Summary

This product is considered Class B,

Requirement – Test	Result (Compliant / Non-Compliant)*
Conducted Emissions - Mains	Compliant
Fundamental Radiated Emissions	Compliant
Occupied Bandwidth 20dB	Compliant
Occupied Bandwidth 99%	Compliant
Radiated Emissions - Unintentional	Compliant
Restricted Band Radiated Emissions	Compliant
Hopping Channels	Compliant
Channel Occupancy	Compliant
Band Edge Measurements	Compliant
Peak Power Output	Compliant
Conducted Spurious Emission antenna port	Compliant
Channel Separation	Compliant

Job Number: SR7180320-T001 Project Number: 10U13557 Page 10 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Test Engineer:

Reviewer:

Joe Danisi (Ext.23055) Lead Engineering Associate International EMC Services Conformity Assessment ServicesBob DeLisi(Ext.22452) Senior Staff Engineer International EMC Services Conformity Assessment Services

Any information and documentation involving UL Mark services are provided on behalf of Underwriters Laboratories Inc. (UL) or any authorized licensee of UL.

3.0 Calibration of Equipment Used for Measurement

All test equipment and test accessories are calibrated on a regular basis. The maximum time between calibrations is one year or the manufacturers' recommendation, whichever is less.

All test equipment calibrations are traceable to the National Institute of Standards and Technology (NIST); therefore, all test data recorded in this report is traceable to NIST.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 11 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.0 EMISSIONS TEST RESULTS

The emissions tests were performed according to following regulations:

------ United States ------

FCC Part 15, Subpart C, 15.207, 15.209, & 15.247.	Code of Federal Regulations, Part 15, and Subpart C, Radio Frequency Devices: 2009.
FCC Part 15, Subpart B, 15.107 & 15.109	Code of Federal Regulations, Part 15, and Subpart B, Radio Frequency Devices: 2009.

------ Industry Canada ------

madely canada				
Radio Standards Specification 210, Issue 8	Low-power License-exempt Radio communications Devices (All Frequency Bands): Category I Equipment sets out certification requirements for low-power license- exempt radio communication devices that are Category I equipment. 2010			
RSS-GEN, Issue 3	General Requirements and Information for the Certification of Radio communication Equipment.			
ICES-003, Issue 4	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard: Digital Apparatus. 2004			

Unless specified otherwise in the individual Methods, the tests shall be conducted under the following ambient conditions. Confirmation of these conditions shall be verified at the time the test is conducted.

Ambient	22.5 ± 2.5	Relative	15 . 15	Barometric	950 ± 150
Temperature, °C	22.3 ± 2.3	Humidity, %	45 ± 15	Pressure, mBar	950 ± 150

Measurement Uncertainty

Test	Uncertainty
Conducted Emissions	± 3.3, K=2
Radiated Emissions 30-200 MHz, Horizontal	± 3.1, K=2
Radiated Emissions 30-200MHz, Vertical	± 3.2, K=2
Radiated Emissions, 200-1000MHz, Horizontal	± 3.3, K=2
Radiated Emissions, 200-1000MHz, Vertical	± 4.0, K=2

Sample Calculations

Radiated Field Strength and Conducted Emissions data contained within this report is calculated on the following basis:

Field Strength (dBuV/m) = Meter Reading (dBuV) + AF (dB/m) - Gain (dB) + Cable Loss (dB) Conducted Voltage (dBuV) = Meter Reading (dBuV) + Cable Loss (dB) + LISN IL (dB) Conducted Current (dBuA) = Meter Reading (dBuV) + Cable Loss (dB) - Transducer Factor (dBohms)

Job Number: SR7180320-T001 Project Number: 10U13557 Page 12 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.1 Test Conditions and Results – SPURIOUS EMISSIONS (Antenna Conducted and Radiated)

Test Description

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section15.205(c)).

Measurements were made in a 10-meter semi-anechoic chamber that complies to CISPR 16/ANSI C63.4:2003. Preliminary (peak) measurements were performed at an antenna to EUT separation distance of 3-meter below 1GHz and at 4-meter above 1GHz. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in both horizontal and vertical polarities. Final measurements (quasi-peak or average as noted) were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1 to 4-meters. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable.

Basic Standard	47 CFR Part 15.247, RSS-210, RSS-Gen				
	Frequency range Measurement Point				
Fully configured sample scanned over the following frequency range	30MHz – 1GHz	3 meter distance			
Fully configured sample scanned over the following frequency range	1GHz – 26GHz	4 meter distance			
Fully configured sample scanned over the following frequency range	30MHz – 26GHz	Conducted at antenna port			

Limits (Antenna Conducted)

All emissions must be 20dB below the level of the fundamental frequency.

Limits (Radiated - Restricted Bands Only)

Limits

Frequency (MHz)	Limit (dBµV/m)					
	Quasi-Peak	Average				
	General Emissions	Fundamental	Spurious			
30 – 88	40	-	-			
88 – 216	43.5	-	-			
216 - 960	46	-				
1000 - 10000	-	- 54				

Job Number: SR7180320-T001 Project Number: 10U13557 Page 13 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Supplementary information: Spurious limits are only applied against products of the transmitter. All other emissions must meet the general limits. The measurement points above 1GHz were extrapolated to 4-meters

Table 1 SPURIOUS EMISSIONS EUT Configuration Settings

Power Interface	EUT Configurations	EUT Operation Mode #
1	1	1-5

Supplementary information: When maximized data for Avg. measurements the resolution Bandwidth was set at 1MHz and Video Bandwidth was set at 10Hz.

Table 2 SPURIOUS CONDUCTED EMISSIONS Test Equipment

Test Equipment Used							
Description Manufacturer Model Identifier Cal date Cal due of							
EMI Receiver	Rohde & Schwarz	ESIB26	ME5B-081	2010-01-12	2011-01-12		
Spectrum Analyzer	Agilent	E7405A	19695	2010-02-01	2011-02-01		
Cable	Megaphase	TM26-S1S1	70188	NA	NA		
Attenuator	Pasternak	PE7024-20	70188	NA	NA		
Temp/Humidity/ Pressure Meter	Cole Parmer	99760-00	43734	2010-02-01	2012-02-01		
Multimeter	Fluke	83III	ME5B-305	2010-08-03	2011-08-03		

Table 3 SPURIOUS RADIATED EMISSIONS Test Equipment

Test Equipment Used								
Description	Cal Date	Cal Due Date						
30-1000MHz								
Rohde & Schwarz ESIB40 34968 22 Feb 10 22 Feb 1								
Bicon Antenna	Schaffner	VBA6106A	43441	9 Sep 2010	9 Sep 2011			
Log-P Antenna	Schaffner	UPA6109	44067	26 Apr 10	26 Apr 11			
Switch Driver	HP	11713A	ME7A-627	N/A	N/A			
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A			
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A			
RF Switch Box	UL	1	44398	N/A	N/A			
Measurement Software	UL	Version 9.3	44740	N/A	N/A			
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11			
Multimeter	Fluke	83111	ME5B-305	3 Aug 10	3 Aug 12			

Job Number: SR7180320-T001 Project Number: 10U13557 Page 14 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Test Equipment Used							
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date		
Above 1GHz (Band Optimized System)							
Spectrum Analyzer	Agilent	E7405A	19695	1 Feb 2010	1 Feb 2011		
Horn Antenna (1-2 GHz)	ETS	3161-01	51442	28 Mar 2008	See * below		
Horn Antenna (2-4 GHz)	ETS	3161-02	48107	27 Sept 2007	See * below		
Horn Antenna (4-8 GHz)	ETS	3161-03	48106	27 Sept 2007	See * below		
Horn Antenna (8-12 GHz)	ETS	3160-07	8933	24 Nov 2008	See * below		
Horn Antenna (12-18 GHz)	ETS	3160-08	8932	27 Sept 2007	See * below		
Horn Antenna (18-26.5 GHz)	ETS	3160-09	8947	26 Sept 2007	See * below		
Signal Path Controller	HP	11713A	50250	N/A	N/A		
Gain Controller	HP	11713A	50251	N/A	N/A		
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A		
System Controller	UL	BOMS2	50252	N/A	N/A		
Measurement Software	UL	Version 9.3	44740	N/A	N/A		
Temp/Humidity/Pressure Meter	Cole Parmer	ner 99760-00 4268 12-07-2010		12-07-2010	12-07-2012		
			ME5B-				
Multimeter	Fluke	83111	305	1 Feb 10	1 Feb 11		

^{*} Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

 $^{^{*}}$ Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 15 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 1: Test setup for SPURIOUS EMISSIONS - Antenna conducted

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 16 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 2: Test setup for SPURIOUS EMISSIONS - Radiated

Intentionally left blank separate document

Figure 3: Test setup for SPURIOUS EMISSIONS - Radiated continued

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 17 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 4: 30MHz-25GHz Antenna Port Spurious Emissions Plots TX Mode, Low Channel.

Table 4: Antenna Port Spurious Emissions

Clam Case LLC IPad Accessory w KB & BT Radio Model: M10000026, Low Band 2402

Job: 10U13557, Tested By: JD

4	Test 5	Meter 6	Gain/Loss	Transducer	Level	Limit:1	2	3
No.		_	Factor [dB]	Factor [dB]	dBm	dBm		
 Ran	ge 1 30 - 2	5000MHz		·				
1	2396.825	84.91 PK	20.5	-107	-1.59	-	_	-
				Margin [dE	3]	_	-	-
2	4801.02	44.68 PK	20.8	-107	-41.5	2 -	-	-
				Margin [dE	3]	-	-	-
3	7205.216	45.68 PK	20.8	-107	-40.5	2 -	-	-
				Margin [dB		_	-	-
4	14293.233	38.53 PK	20.8	-107	-47.6	7 –	-	-
				Margin [dE	3]	-	-	-
5	21368.793	38.47 PK	20.6	-107	-47.9	3 -	-	-
				Margin [dE	3]	-	-	-
6	24339.78	37.89 PK	20.9	-107	-48.2	1 -	-	-
				Margin [dE	-	-	-	-
7	1599.578	35.89 PK	20.5	-107	-50.6	1 -	-	-
				Margin [dE	3]	-	-	-
8	497.1364	34.36 PK	20.3	-107	-52.3	4 -	-	-
				Margin [dE	3]	-	-	-

LIMIT 1: -20dBc; PK - Peak detector

All emissions are greater than -20dBc

Job Number: SR7180320-T001 Project Number: 10U13557 Page 18 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 5: 30MHz-25GHz Antenna Port Spurious Emissions Plots TX Mode, Middle Channel.

Table 5: Antenna Port Spurious Emissions

Clam Case LLC

IPad Accessory w KB & BT Radio Model: M10000026, Mid Band 2440 Job: 10U13557, Tested By: JD

4		Meter 6	Gain/Loss	Transducer	Level Li	mit:1	2	3
No.	Frequency [MHz]	Reading [dB(uV)]	[dB]	Factor dB [dB]				
1	2440.424	85.03 PK	20.6	-107	-1.37	-	-	_
				Margin [dB	3]	_	-	-
2	4888.219	46.2 PK	20.8	-107	-40	_	-	-
				Margin [dB	3]	-	-	-
3	7336.014	44.5 PK	20.8	-107	-41.7	-	-	-
				Margin [dB	-	-	-	-
4	13402.559	37.11 PK	20.8	-107	-49.09	-	-	-
				Margin [dB	3]	-	-	-
5	14990.823	37.18 PK	20.8	-107	-49.02	-	-	-
				Margin [dB	-	-	-	-
6	24470.579	38.34 PK	20.7	-107	-47.96	-	-	-
				Margin [dB	-	-	-	-
7	1630.721	34.23 PK	20.5	-107	-52.27	-	-	-
				Margin [dB	_	-	-	-
8	472.2225	33.31 PK	20.3	-107	-53.39	-	-	-
				Margin [dB	3]	-	-	-

LIMIT 1: -20dBc; PK - Peak detector All emissions are greater than -20dBc

Job Number: SR7180320-T001 Project Number: 10U13557 Page 19 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 6: 30MHz-25GHz Antenna Port Spurious Emissions Plots TX Mode, High Channel.

Table 6: Antenna Port Spurious Emissions

Clam Case LLC

IPad Accessory w KB & BT Radio Model: M10000026, High Band 2480 Job: 10U13557, Tested By: JD

4	Test 5	Meter 6	Gain/Loss	Transducer	Level Li	.mit:1	2	3
No.		Reading [dB(uV)]		Factor dB [dB]	m 			
Ran	nge 1 30 - 2	5000MHz						
1	2477.795	85.43 PK	20.5	-107	-1.07	-	-	-
				Margin [dB]	-	-	-
2	4962.961	47.97 PK	20.8	-107	-38.23	-	-	-
				Margin [dB]	-	-	-
3	7448.127	46.61 PK	20.8	-107	-39.59	-	-	-
				Margin [dB]	-	-	-
4	14374.203	37.11 PK	20.8	-107	-49.09	-	-	-
				Margin [dB]	-	-	-
5	24501.721	37.91 PK	20.7	-107	-48.39	-	-	-
				Margin [dB]	-	-	-
6	827.2462	35.22 PK	20.3	-107	-51.48	-	-	-
				Margin [dB]	-	-	-
7	17027.538	37.16 PK	20.7	-107	-49.14	-	-	-
				Margin [dB]	-	-	-

LIMIT 1: -20dBc; PK - Peak detector All emissions are greater than -20dBc

Job Number: SR7180320-T001 Project Number: 10U13557 Page 20 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 7: 30MHz-25GHz Antenna Port Spurious Emissions Plots TX Mode, Hopping

Table 7: Antenna Port Spurious Emissions

Clam Case LLC

IPad Accessory w KB & BT Radio Model: M10000026, Hopping mode

Job: 10U13557 Tested By: JD

4	Test 5	Meter 6	Gain/Loss	Transducer	Level	Limit:1	2	3	
No.		_	Factor [dB]	Factor di [dB]	Bm				
Ran	.ge 1 30 - 2	5000MHz			 				
1	1624.492	36.3 PK	20.5	-107	-50.2	_	-	_	
				Margin [di	B]	-	_	-	
2	2403.053	62.86 PK	20.6	-107	-23.54	-	-	-	
				Margin [di		-	-		
3	2440.424	66.8 PK	20.6	-107	-19.6	_	_	-	
				Margin [di	в]	_	-	-	
4	2452.881	64.17 PK	20.6	-107	-22.23	-	-	-	
				Margin [di	В]	-	-	-	
5	2480.008	67.13 PK	20.6	-107	-19.27	-	-	-	
				Margin [di		-	-	-	
6	4906.904	40.29 PK	20.8	-107	-45.91	. -	-	-	
				Margin [di		_	-	-	
7	14480.087	37.27 PK	21	-107	-48.73	-	-	-	
				Margin [di	B]	_	-	-	

LIMIT 1: -20dBc; PK - Peak detector All emissions are greater than -20dBc

Job Number: SR7180320-T001 Project Number: 10U13557 Page 21 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 8 Radiated Spurious Emissions below 1GHz, Low Channel

Figure 9 Radiated Spurious Emissions above 1GHz, Low Channel

Job Number: SR7180320-T001 Project Number: 10U13557 Page 22 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 8 Radiated Spurious Emissions below 1GHz, Low Channel

Clam Case LLC

iPad Accessory w KB and BT Radio

Model: M10000026

Job: SR718032-T001 Tested: RM

XNSMIT 2402MHz

Frequency [MHz]	Meter Gai Reading Fa [dB(uV)]	ctor Fa [dB]	actor dB[uVo [dB]		2	3	4
	200 - 1000MHz						
287.9922	28.69 QP	1	13.6 43	.29 46	-	-	
Azimuth: 1	Height:102	Horz	Margin [d	B]: -2.71	-	-	
299.9971	29.03 QP	1	13.8 43	.83 46	_	-	
Azimuth: 3	56 Height:105	Horz	Margin [d	B]: -2.17	-	-	
311.9977	28.48 QP	1	13.9 43	.38 46	-	-	
Azimuth: 1	5 Height:106	Horz	Margin [d	B]: -2.62	-	-	
323.9937	26.59 QP	1	14.4 41	.99 46	-	_	
Azimuth: 1	4 Height:104	Horz	Margin [d	B]: -4.01	-	-	
335.9953	24.41 QP	1	15 40	.41 46	_	_	_
Azimuth: 2	7 Height:110	Horz	Margin [d	B]: -5.59	-	-	

LIMIT 1: FCC Part 15 Subpart C 15.209

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 23 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 9 Radiated Spurious Emissions above 1GHz, Low Channel

Clam Case LLC

iPad Accessory w KB and BT Radio

Model: M10000026

Job: SR718032-T001 Tested: RM

XNSMIT 2402MHz

Frequency [MHz]	Meter Gai Reading Fa [dB(uV)]	ctor [dB]	Factor dB[1 [dB]	uVolts/ı	meter]	2	3	4
Horizontal	2000 - 4000MF	ĺz						
	75.35 PK		27.1	49.21	74.0	_	_	
	09 Height:220					-	-	
4804.09	72.12 Av	-53.54	27.1	45.68	54.0	_	-	
Azimuth: 3	09 Height:220	Horz	Margin	[dB]:	-8.32	-	-	
	63.89 PK					-	-	
Azimuth: 3	05 Height:244	Horz	Margin	[dB]:	-34.69	-	-	
7206.115	55.75 Av	-52.48	27.9	31.17	54.0	-	-	
Azimuth: 3	05 Height:244	Horz	Margin	[dB]:	-22.83	-	-	
Vertical 2	000 - 4000MHz							
	93.41 PK					-	-	
Azimuth: 3	6 Height:329	Vert	Margin	[dB]:	-3.07	-	-	

LIMIT 1: FCC Part 15 Subpart C 15.209

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 24 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Clam Case LLC

iPad Accessory w KB and BT Radio

Model: M10000026

Job: SR718032-T001 Tested: RM

XNSMIT 2402MHz

Test	Meter	Gain/Loss	Transducer	Level	Limit:1	2	3	4
Frequency	Reading	Factor	Factor dB[uVolts/	meter]			
[MHz]	[dB (uV)]	[dB]	[dB]					
Vertical 4	 1000 - 80001	 MHz						
4804.075	85.7 PK	-53.54	27.3	59.46	74.0	-	-	
Azimuth: 3	46 Height	:304 Vert	Margin	[dB]:	-14.54	-	-	-
*4804.075	41.3 Av	-53.54	27.3	15.06	54.0	_	_	_
Azimuth: 3	46 Height	:304 Vert	Margin	[dB]:		-38.94	-	-
7206.115	69.54 PK	-52.48	27.9	44.96	54.0	_	_	_
Azimuth: 3	13 Height	:282 Vert	Margin	[dB]:	-9.04	-	-	-
7206.115	62.9 Av	-52.48	27.9	38.32	54.0	_	_	_
Azimuth: 3	13 Height	:282 Vert	Margin	[dB]:	-15.68	-	-	_

LIMIT 1: FCC Part 15 Subpart C 15.209
*LIMIT 2: Duty cycle correction -41.5dB

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 25 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 10 Radiated Spurious Emissions below 1GHz, Middle Channel

Figure 11 Radiated Spurious Emissions above 1GHz, Middle Channel

Job Number: SR7180320-T001 Project Number: 10U13557 Page 26 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 10 Radiated Spurious Emissions below 1GHz, Middle Channel

Clam Case LLC

iPad Accessory w KB and BT Radio

Model: M10000026

Job: SR718032-T001 Tested: RM

XNSMIT 2440MHz

Frequency [MHz]	Meter Gai Reading Fa [dB(uV)]	ctor [dB]	Factor dB[u	ıVolts/	meter]	2	3	4
Horizonta	1 200 - 1000MHz							
275.9899	24.48 QP	1	13.4	38.88	46	-	-	
Azimuth:	20 Height:116	Horz	Margin	[dB]:	-7.12	-	-	
	28.51 QP						-	
Azimuth:	351 Height:106	Horz	Margin	[dB]:	-2.89	-	-	
	27.9 QP						-	
Azimuth:	24 Height:116	Horz	Margin	[dB]:	-3.3	-	-	
	27.85 QP						-	
Azimuth:	345 Height:110	Horz	Margin	[dB]:	-3.25	-	-	
323.9975	26.25 QP	1	14.4	41.65	46	-	-	
Azimuth:	20 Height:104	Horz	Margin	[dB]:	-4.35	-	-	
	24.63 QP						-	
Azimuth:	38 Height:105	Horz	Margin	[dB]:	-5.37	-	-	
479.998	16.75 QP	1.2	17.7	35.65	46	_	_	
Azimuth:	204 Height:220	Horz	Margin	[dB]:	-10.35	-	-	
Vertical	200 - 1000MHz							
936.3682	8.46 QP	1.7	23.7	33.86	46	-	-	
Azimuth:	308 Height:129	Vert	Margin	[dB]:	-12.14	-	-	

LIMIT 1: FCC Part 15 Subpart C 15.209

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 27 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 11 Radiated Spurious Emissions above 1GHz, Middle Channel

Clam Case LLC

iPad Accessory w KB and BT Radio Model: M10000026 XMT Mode

Job: SR718032-T001

Tested By: JD 2440MHz

Test Frequency [MHz]		in/Loss actor [dB]	Transducer 1 Factor dB[1 [dB]		_	2	3	4
	4000 - 8000Mi							
4880.075	72.34 PK	-53.43	27.2	46.11	74.0	_	-	-
Azimuth: 3	15 Height:398	B Horz	Margin	[dB]:	-27.89	-	-	-
4880.075	68.63 Av	-53.43	27.2	42.4	54.0	-	-	-
Azimuth: 3	15 Height:398	B Horz	Margin	[dB]:	-11.6	-	-	-
7320.375	67.83 PK	-52.31	28	43.52	74.0	_	_	_
Azimuth: 2	54 Height:361	l Horz	Margin	[dB]:	-30.48	-	-	-
7320.375	63.25 Av	-52.31	28	36.44	54.0	-	-	-
Azimuth: 2	54 Height:361	l Horz	Margin	[dB]:	-17.56	-	-	-

LIMIT 1: FCC Part 15 Subpart C 15.209

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 28 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Clam Case LLC

iPad Accessory w KB and BT Radio Model: M10000026 XMT Mode

Job: SR718032-T001

Tested By: JD 2440MHz

Test Frequency [MHz]		Gain/Loss Factor [dB]	Transducer Factor dB[_	2	3	4
Vertical 4	000 - 8000M	 Hz						
4880.0625	71.38 PK	-53.43	27.5	45.45	74.0	-	_	-
Azimuth: 6	9 Height:	362 Vert	Margin	[dB]:	-28.55	-	-	-
4880.0625	67.31 Av	-53.43	27.5	41.38	54.0	-	-	-
Azimuth: 6	9 Height:	362 Vert	Margin	[dB]:	-12.62	-	-	-
7320.4	70.57 PK	-52.31	27.9	46.16	74.0	-	-	-
Azimuth: 2	22 Height:	247 Vert	Margin	[dB]:	-27.84	-	-	-
7320.4	63.88 Av	-52.31	27.9	39.47	54.0	-	-	-
Azimuth: 2	22 Height:	247 Vert	Margin	[dB]:	-14.53	-	-	-

LIMIT 1: FCC Part 15 Subpart C 15.209

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 29 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 12 Radiated Spurious Emissions below 1GHz, High Channel

Figure 13 Radiated Spurious Emissions above 1GHz, High Channel

Job Number: SR7180320-T001 Project Number: 10U13557 Page 30 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 12 Radiated Spurious Emissions below 1GHz, High Channel

Clam Case LLC

iPod Accessory w KB and BT Radio

Model:M10000026 XMT Mode

Job:SR718032-T001

Tested By:GB 2480MHz

Frequency [MHz]	Meter Gai Reading Fa [dB(uV)]	ctor [dB]	Factor dB[[dB]			2	3	4
	. 30 - 200MHz							
33.74	17.18 QP	.3	17.2	34.68	40	-	_	
Azimuth: 2	03 Height:400	Horz	Margin	[dB]:	-5.32	-	-	
	30 - 200MHz 23.08 QP	2	15 0	20 10	40	_		
	23.06 QP 27 Height:18(_	
11211114 0111	er neighe.io	, , ,	11019111	[42].	.02			
	200 - 1000MHz							
	21.87 QP						-	
Azimuth: 2	7 Height:113	Horz	Margin	[dB]:	-9.53	-	-	
200 0007	22.24 QP	1	12 0	27 04	46			
						_	_	
Azımutn: 3	44 Height:109	HOTZ	Margin	[GB]:	-8.96	-	_	
312.0012	20.17 QP	1	13.9	35.07	46	_	_	
	43 Height:104					-	-	
	14.03 QP						-	
Azimuth: 1	.77 Height:192	Horz	Margin	[dB]:	-13.07	-	-	

LIMIT 1: FCC Part 15 Subpart C 15.209

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 31 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 13 Radiated Spurious Emissions above 1GHz, High Channel

Clam Case LLC

iPad Accessory w KB and BT Radio Model: M10000026 XMT Mode

Job: SR718032-T001

Tested By: GB 2480MHz

37			Gain/Loss		er Level		2	3
NO.	Frequency	Reading [dB(uV)]	Factor [dB]	factor [dB]	dB[uVolts	meter		
===	[MIZ]	[GB(uv)] ========	:=======		========			========
Ноз	rizontal 1000	- 2000MHz						
1	1654.182	64.26 PK	-44.45	20.9	40.71	74.0	_	-
		Height:22	23 Horz	Margin	[dB]	-33.29	-	-
Ноз	cizontal 4000	- 8000MHz						
3	4958.403	78.45 PK	-53.27	27.3	52.48	54.0	-	_
		Height:22	23 Horz	Margin	[dB]	-1.52	-	-
4	7440.932	61.89 PK	-52	28.1	37.99	54.0	-	-
		Height:22	23 Horz	Margin	[dB]	-16.01	-	-
Ve	ctical 4000 -	- 8000MHz						
5	4958.403	79.38 PK	-53.27	27.4	53.51	54.0	-	-
		Height:22	23 Vert	Margin	[dB]	-0.49	-	-
7	7440.932	68.09 PK	-52	28	44.09	54.0	_	-
		Height:22	23 Vert	Margin	[dB]	-9.91	_	-

LIMIT 1: FCC Part 15 Subpart C 15.209

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 32 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.2 Test Conditions and Results – BAND EDGE COMPLIANCE

Test Description

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section15.205(c)).

10.200(d) (000 Goodieri 10.200(d)).								
Basic Standard	47 CFR Part 15.2	47(d)						
	RSS-210, A8.	5						
	Frequency range	Measurement Point						
Fully configured sample scanned over the following frequency range	2400MHz – 2483.5MHz	Antenna Conducted						
	Limits							
Measurement Type								
Conducted	Antenna Conducted – 20dB below the fundamental							
Radiated	Radiated only required if emissions are in the restricted band							
Supplementary information: None								

Table 14 Band Edge Compliance EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #			
1	1	1-4			
Supplementary information: None					

Job Number: SR7180320-T001 Project Number: 10U13557 Page 33 of 85

Model Number: M1000026

Client Name:

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 15 Band Edge Compliance Test Equipment

Clam Case LLC

Test Equipment Used						
Description	Manufacturer	Model	Identifier	Cal date	Cal due date	
EMI Receiver	Rohde & Schwarz	ESIB26	ME5B-081	12 Jan 2010	12 Jan 2011	
Spectrum Analyzer	Agilent	E7405A	19695	1 Feb 2010	1 Feb 2011	
Cable	Megaphase	TM26-S1S1	70-188	01/04/2011	01/04/2012	
Attenuator	Pasternak	PE7024-20	70-188	01/04/2011	01/04/2012	
Temp/Humidity/ Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11	
Multimeter	Fluke	83III	ME5B-305	3 Aug 10	3 Aug 12	

Figure 14: Test setup for Band Edge Compliance - Conducted

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 34 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 15: Conducted Band Edge Compliance Graph

Low Channel

High Channel

Job Number: SR7180320-T001 Project Number: 10U13557 Page 35 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 16: Conducted Band Edge Compliance Graph Hopping

Low Channel

High Channel

Job Number: SR7180320-T001 Project Number: 10U13557 Page 36 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 17: RADIATED BAND EDGE COMPLIANCE

2402 MHz Vertical Polarity

2402 MHz Horizontal Polarity

Job Number: SR7180320-T001 Project Number: 10U13557 Page 37 of 85

Model Number: M1000026 Client Name: Clam Case LLC

2480MHz Vertical Polarity

2480 MHz Horizontal Polarity

Job Number: SR7180320-T001 Project Number: 10U13557 Page 38 of 85

Model Number: M1000026
Client Name: Clam Case LLC

2402 MHz Vertical Polarity Hopping

2402 MHz Horizontal Polarity Hopping

Job Number: SR7180320-T001 Project Number: 10U13557 Page 39 of 85

Model Number: M1000026
Client Name: Clam Case LLC

2480 MHz Vertical Polarity Hopping

2480 MHz Horizontal Polarity Hopping

Job Number: SR7180320-T001 Project Number: 10U13557 Page 40 of 85

Model Number: M1000026 Client Name: Clam Case

Client Name: Clam Case LLC FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.3 Test Conditions and Results – MAXIMUM PEAK OUTPUT POWER

Test Description	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.				
Basic Standa	ard	47 CFR Part 15.24	7(b)(2)		
RSS-210, A8.4(2)			(2)		
		Frequency range	Measurement Point		
Fully configured sample scanned over the following frequency range		2400MHz –2483.5MHz	Antenna Conducted		
		Limits			
_	(2.00.)	Limit mW			
Frequ	uency (MHz)	Peak			
240	00 – 2483.5	125			
Supplementa	Supplementary information: None				

Table 16 Maximum Peak Output Power EUT Configuration Settings

Power Interface	EUT Configurations	EUT Operation		
1	1	1-3		
Supplementary information: worst case antenna gain				

Table 17 Maximum Peak Output Power Test Equipment

Test Equipment Used					
Description	Manufacturer	Model	Identifier	Cal date	Cal due date
Spectrum Analyzer	Agilent	E7405A	19695	1 Feb 2010	1 Feb 2011
Cable	Megaphase	TM26-S1S1	70-188	01/04/2011	01/04/2012
Attenuator	Pasternak	PE7024-20	70-188	01/04/2011	01/04/2012
Temp/Humidity/ Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11
Multimeter	Fluke	83111	ME5B-305	3 Aug 10	3 Aug 12

Job Number: SR7180320-T001 Project Number: 10U13557 Page 41 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 18 Maximum Peak Output Power Results

Channel	Declared Antenna Gain (dBi)	Power dBm	Limit (dBm)	Limit (W)
Low Channel	6	-1.74	20.97	0.125
Middle Channel	6	-1,46	20.97	0.125
High Channel	6	-1.29	20.97	0.125

Figure 18: Test setup for Maximum Peak Output Power

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 42 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 19 Maximum Peak Output Power Graph

Table 19 Maximum Peak Output Power Emissions Data Points

Clam Case LLC

IPad Accessory w KB & BT Radio Model: M10000026, Low, Mid, High

Job: 10U13557 Tested By: JD

	[MHz]	Meter Reading [dB(uV)]	Factor [dB]	Factor [dB]	dBm		2	3
		00 - 2483.						
1 :	2402.296	84.76 PK	20.5	-107	-1.74	_	_	-
				Margin	[dB]	-	-	-
Mid	Channel 24	00 - 2483.	5MHz					
2 :	2440.08	84.94 PK	20.6	-107	-1.46	-	-	-
				Margin		-	-	-
Hig	h Channel 2	400 - 2483	.5MHz					
3 :	2480.16	85.21 PK	20.5	-107	-1.29	_	-	-
				Margin	[dB]	-	-	-

Job Number: SR7180320-T001 Project Number: 10U13557 Page 43 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.4 Test Conditions and Results – Dwell Time and Duty Cycle Correction

Test Description

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Basic Standard 47 CFR Part 15.247(a)(1)(i) RSS-210, A8.1(d)

Table 20 Dwell Time Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #		
1	1	1		
Supplementary information: Duty cycle also measured/calculated for use in radiated spurious measurements				

Table 21 Dwell Time Test Equipment

	Test Equipment Used					
Description	Manufacturer	Model	Identifier	Cal date	Cal due date	
EMI Receiver	Rohde & Schwarz	ESIB26	ME5B-081	12 Jan 2010	12 Jan 2011	
Cable	Megaphase	TM26-S1S1	70-188	01/04/2011	01/04/2012	
Attenuator	Pasternak	PE7024-20	70-188	01/04/2011	01/04/2012	
Temp/Humidity/						
Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11	
Multimeter	Fluke	83III	ME5B-305	3 Aug 10	3 Aug 12	

Job Number: SR7180320-T001 Project Number: 10U13557 Page 44 of 85

Model Number: M1000026

Client Name: Clam Case LLC FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 22 Dwell Time Results

Mode	Number of Channels	Maximum Time Allowed in 20s.	Measured Dwell Time in 20s.
TX Hopping	79	0.4	0.264

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 316 * (# of pulses in 100mS) * pulse width.

Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

Туре	Pulse Width	Number of pulses	limit	Margin
Hopping	76.1us	11	0.4sec	135mS

Table 23 Duty Cycle Correction Factor

Mode	Number of TX in 100mS	TX Duration in 100mS	Duty Cycle Correction (dB) $20 imes log(rac{TX(ms)}{100ms})$
TX Hopping	11	76.15us	41.5

Job Number: SR7180320-T001 Project Number: 10U13557 Page 45 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 20: Test Setup for Dwell Time

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 46 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 21 Dwell Time Graphs

Date: 6.JAN.2011 14:16:17

Time occupancy Pulse width

Job Number: SR7180320-T001 Project Number: 10U13557 Page 47 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Marker 1 [T1] RBW 1 MHz RF Att 30 dB

Ref Lvl 54.07 dByV VBW 3 MHz

Date: 6.JAN.2011 14:10:33

Number of pulses in 0.1 seconds observation period

Job Number: SR7180320-T001 Project Number: 10U13557 Page 48 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Delta 1 [T1] RBW 300 kHz RF Att 30 dB

Ref Lvl 0.41 dB VBW 1 MHz

Date: 6.JAN.2011 14:32:41

Number of pulses in 100mS

.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 49 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.5 Test Conditions and Results – NUMBER OF HOPPING FREQUENCIES

Test Description	channels. The average tim seconds within a period of employed. Frequency hopp	Frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.		
Basic Stand	c Standard 47 CFR Part 15.247(a)(1)(i)			
		RSS-210, A8.1(d)		

Table 24 Number of Hopping Frequencies Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #			
1	1	1			
Supplementary information: None					

Table 25 Number of Hopping Frequencies Test Equipment

Test Equipment Used						
Description	Manufacturer	Model	Identifier	Cal date	Cal due date	
EMI Receiver	Rohde & Schwarz	ESIB26	ME5B-081	12 Jan 2010	12 Jan 2011	
Cable	Megaphase	TM26-S1S1	70-188	01/04/2011	01/04/2012	
Attenuator	Pasternak	PE7024-20	70-188	01/04/2011	01/04/2012	
Temp/Humidity/						
Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11	
Multimeter	Fluke	83III	ME5B-305	3 Aug 10	3 Aug 12	

Table 26 Number of Hopping Frequencies Results

Mode	Number of Channels	Minimum Number Required	
TX, Hopping	79	50	

Job Number: SR7180320-T001 Project Number: 10U13557 Page 50 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 22: Test Setup for Number of Hopping Frequencies

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 51 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 23 Number of Hopping Frequencies Graphs First Segment

Date: 6.JAN.2011 13:18:33

Job Number: SR7180320-T001 Project Number: 10U13557 Page 52 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 24: Number of Hopping Frequencies Graphs Second Segment

Date: 6.JAN.2011 13:24:35

Job Number: SR7180320-T001 Project Number: 10U13557 Page 53 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 25: Number of Hopping Frequencies Graphs Third Segment

Date: 6.JAN.2011 13:32:04

Job Number: SR7180320-T001 Project Number: 10U13557 Page 54 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.6 Test Conditions and Results – 20DB BANDWIDTH

Test Description	minimum of 25 kHz or the alternatively, frequency ho hopping channel carrier free bandwidth of the hopping coutput power no greater the selected at the system hop frequencies. Each frequency system receivers shall hav	equency hopping systems shall have hopping channel carrier frequencies separated by a himum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Ernatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have oping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB andwidth of the hopping channel, whichever is greater, provided the systems operate with an put power no greater than 125 mW. The system shall hop to channel frequencies that are exceeded at the system hopping rate from a pseudorandomly ordered list of hopping quencies. Each frequency must be used equally on the average by each transmitter. The stem receivers shall have input bandwidths that match the hopping channel bandwidths of ir corresponding transmitters and shall shift frequencies in synchronization with the asmitted signals.				
Basic Standard		47 CFR Part 15.247(a)(1)(i)				

RSS-210, A8.1(b)

Table 27 20dB Bandwidth Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #			
1	1	1-3			
Supplementary information: None					

Table 28 20dB Bandwidth Test Equipment

Test Equipment Used						
Description	Manufacturer	Model	Identifier	Cal date	Cal due date	
EMI Receiver	Rohde & Schwarz	ESIB26	ME5B-081	12 Jan 2010	12 Jan 2011	
Cable	Megaphase	TM26-S1S1	70-188	01/04/2011	01/04/2012	
Attenuator	Pasternak	PE7024-20	70-188	01/04/2011	01/04/2012	
Temp/Humidity/						
Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11	
Multimeter	Fluke	83III	ME5B-305	3 Aug 10	3 Aug 12	

Table 29 20dB Bandwidth Results

Mode	Channel	20dB Bandwidth	99% Bandwidth
	Low	1.032MHz	913.8KHz
TX	Middle	1.044MHz	925.8KHz
	High	1.052MHz	919.8KHz

Job Number: SR7180320-T001 Project Number: 10U13557 Page 55 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 26: Test Setup for 20dB Bandwidth

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 56 of 85

Model Number: M1000026 Client Name: Clam Case LLC

Figure 27: 20dB Bandwidth Graphs 20dB

Job Number: SR7180320-T001 Project Number: 10U13557 Page 57 of 85

Model Number: M1000026 Client Name: Clam Case LLC

Figure 28: Bandwidth Graphs 99%

Job Number: SR7180320-T001 Project Number: 10U13557 Page 58 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.7 Test Conditions and Results – Carrier Frequency Separation

Test Description	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.					
	Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.					
Basic Standard		47 CFR Part 15.247(a)(1)				
		RSS-210, A8.1(b)				

Table 30 Carrier Frequency Separation Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #			
1	1	1			
Supplementary information: Separation frequencies were measured for each channel and then averaged.					

Table 31 Carrier Frequency Separation Test Equipment

Test Equipment Used						
Description	Manufacturer	Model	Identifier	Cal date	Cal due date	
EMI Receiver	Rohde & Schwarz	ESIB26	ME5B-081	12 Jan 2010	12 Jan 2011	
Cable	Megaphase	TM26-S1S1	70-188	01/04/2011	01/04/2012	
Attenuator	Pasternak	PE7024-20	70-188	01/04/2011	01/04/2012	
Temp/Humidity/ Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11	
Multimeter	Fluke	83III	ME5B-305	3 Aug 10	3 Aug 12	

Table 32 Carrier Frequency Separation Results

Mode	Channel	Carrier Frequency Separation Limit	Channel Separation (MHz)
TX Hopping	Overall Average	TWO-THIRDS OF THE 20 DB	1.0

Job Number: SR7180320-T001 Project Number: 10U13557 Page 59 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 29: Test Setup for Carrier Frequency Separation

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 60 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 30 Carrier Frequency Separation Graphs

Date: 6.JAN.2011 13:07:37

Job Number: SR7180320-T001 Project Number: 10U13557 Page 61 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.8 Test Conditions and Results – MAINS TERMINAL – CONDUCTED EMISSIONS

Description	througl	easurements were made on a ground plane. All power was connected to the system rough Artificial Mains Network (AMN). Conducted voltage measurements on mains lines ere made at the output of the AMN.				
Basic Standa	ard		FCC Part 15,	Subpart C,	15.207and RSS-210	
UL LPG				80-EM-S0	0026	
			Frequency range on each side of line		Measurement Point	
Fully configured sample scanned over the following frequency range		150kHz to 30MHz		Mains		
			Limits - Class B			
_			Limit (dΒμV)		
Frequency (N	ИHz)	Qua	asi-Peak		Average	
0.15-0.5	5	60	6 to 56	56 to 46		
0.5-5			56	46		
5-30			60	50		
	Supplementary information: Limits are the same as 15.107, ICES-003, Result reported for worst case configuration.					

Table 33 Conducted Emissions EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #		
1	1	1		
Supplementary information: Tested in worst case configuration				

Job Number: SR7180320-T001 Project Number: 10U13557 Page 62 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 34 Conducted Emissions Test Equipment

Test Equipment Used							
Description	Manufacturer	Model	Identifier	Cal date	Cal due date		
Conducted Emissi	ons – GP 1		•				
	Rohde &						
EMI Receiver	Schwarz	ESIB26	ME5B-081	12 Jan 2010	12 Jan 2011		
LISN	Solar	9252-50-R-24-BNC	ME5A-636	3/26/2010	3/31/2011		
LISN	EMCO	3825/2R	ME5-629	N/A	N/A		
Switch Driver	HP	11713A	44397	N/A	N/A		
RF Switch Box	UL	4	44404	N/A	N/A		
Measurement							
Software	UL	Version 9.3	44736	N/A	N/A		
Temp/Humidity/							
Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11		
Multimeter	Fluke	83III	ME5B-305	3 Aug 10	3 Aug 12		

Job Number: SR7180320-T001 Project Number: 10U13557 Page 63 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 31: Test Setup for Conducted Emissions

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 64 of 85

Model Number: M1000026
Client Name: Clam Case LLC

Figure 32 Conducted Emissions Graph

Job Number: SR7180320-T001 Project Number: 10U13557 Page 65 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 35 Conducted Emissions Data Points

Clam Case LLC

iPod Accessory w KB and BT Radio

Model: M10000026,

Job#:SR718032-T001 Proj:10U13557

Tested By: JD

No.		Reading		Transducer Factor [d [dB]			2	3
Line	 e - L1 .15	- 1MHz						
23	.38975	36.46 PK	10	0	46.46	58.1	48.1	-
				Margin [dB]	-11.64	-1.64	-
24	.39519	35.61 PK	10	0	45.61	58	48	-
				Margin [dB]	-12.39	-2.39	-
25	.4717	35.01 PK	10	0	45.01	56.5	46.5	-
				Margin [dB]	-11.49	-1.49	-
26	.49245	32.4 PK	10	0	42.4	56.1	46.1	-
				Margin [dB]	-13.7	-3.7	-
27	.56369	30.89 PK	10	0	40.89	56	46	-
				Margin [dB			-5.11	-
28	. 6397	30.96 PK	10	0				
				Margin [dB			-5.04	-
29	. 69547	29.54 PK	10	0				-
				Margin [dB			-6.46	-
30	.80973	28.8 PK	10	0				-
				Margin [dB]	-17.2	-7.2	-
31	.72438	30.18 PK	10	0				-
				Margin [dB	_		-5.82	-
32	.86516	27.99 PK	10	0			_	
				Margin [dB]	-18.01	-8.01	-

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - average log detection

Av - average detection

CAV - CISPR average detection

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 66 of 85 Page

Model Number: M1000026 Client Name:

Clam Case LLC

YUG-CCM1000026 9422A-CCM1000026 FCC ID: Industry Canada ID:

Clam Case LLC

iPod Accessory w KB and BT Radio

Model: M10000026,

Job#:SR718032-T001 Proj:10U13557

Tested By: JD

No.	Frequency [MHz]	Meter Reading [dB(uV)]	Factor [dB]	Factor [dB]			2	3
Lin	e - L1 1 -							
33	1.18564	25.3 PK	10.1	0	35.4	56	46	-
				Margin [d				
34	1.55691	26.67 PK	10.1	0	36.77	56	46	-
				Margin [d	dB]	-19.23	-9.23	-
Neu	tral .15 -	1MH=						
	.2714							
_				Margin [d				
2	.39978	36.08 PK		0			47.9	
				Margin [d			-1.72	_
3	. 48633	34.66 PK		0				
				Margin [d	dB]	-11.44	-1.44	_
4	.50707	29.71 PK	10.1	0	39.81	56	46	
				Margin [d	dB]	-16.19	-6.19	-
5	.53479	27.8 PK	10.1	0	37.9	56	46	-
					dB]	-18.1	-8.1	-
6	.56633	27.22 PK	10.1	0	37.32	56	46	-
				Margin [d			-8.68	-
7	.59787	33.68 PK	10.1	0			46	-
					dB]		-2.22	
8	.69173	29.74 PK	10.1	0			46	
				Margin [d				
9	.77896	31.89 PK	10.1	0				
				Margin [d	dB]	-14.01	-4.01	-

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - average log detection

Av - average detection

CAV - CISPR average detection

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 67 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Clam Case LLC

iPod Accessory w KB and BT Radio

Model: M10000026,

Job#:SR718032-T001 Proj:10U13557

Tested By: JD

No.	Frequency	Reading		Factor [dB [dB]		t:1 2	3
10	.78015	30.44 PK		0	40.54 56	46	_
				Margin [dB]	-15	5.46 -5.46	-
11	.78763	26.66 PK	10.1			46	
						9.24 -9.24	
12	.90172	28.16 PK	10.1			46	
						7.74 -7.74	
13	. 93556	31.03 PK	10.1			46	
						4.87 -4.87	
14	. 95596	29.53 PK	10.1			46	
				Margin [dB]	-16	6.37 -6.37	-
15	.97756	29.72 PK				46	
						6.18 -6.18	
16	. 9864	28.97 PK	10.1			46	
				Margin [dB]	-10	6.93 -6.93	
17	1.09282	26.85 PK				46	
	1 01005			Margin [dB]			
18	1.24365	29.38 PK	10.1			46	
	1 05005	00 04				6.52 -6.52	
19	1.35387	29.84 PK	10.1			46	
0.0	1 20262	22 22	10.1			6.06 -6.06	
20	1.38868	30.29 PK	10.1			46	
0.1	1 50051	00 01 ===	10.1			5.61 -5.61	
21	1.53951	28.21 PK	10.1			46	
00	OF 01726	24 04 55	11 7			7.69 –7.69	
22	25.81736	34.04 PK	11.7			50	
				Margin [dB]	-14	4.26 -4.26	-

LIMIT 1: FCC Part 15C QPk LIMIT 2: FCC Part 15C Avg

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detection

Av - average detection

CAV - CISPR average detection

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 68 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Clam Case LLC

iPod Accessory w KB and BT Radio

Model: M10000026,

Job#:SR718032-T001 Proj:10U13557

Tested By: JD

	Reading		Transducer Factor [d			2	3	4
Line - L1	.15 - 1MHz							
.39017	14.41 Av	10	0	24.41	58.1	48.1	-	-
			Margin [dB]			-23.69	-	-
.3958	16.28 Av	10	0	26.28	57.9	47.9	-	
			Margin [dB]	:	-31.62	-21.62	-	
.47161	12.04 Av	10	0	22.04			-	
			Margin [dB]	:	-34.46	-24.46	-	
.49313	12.77 Av	10	0	22.77	56.1	46.1	-	
			Margin [dB]	:	-33.33	-23.33	-	-
.56343	11.63 Av	10	0	21.63	56	46	-	-
			Margin [dB]	:	-34.37	-24.37	-	-
. 63934	5.45 Av	10	0	15.45	56	46	-	-
			Margin [dB]	:	-40.55	-30.55	-	-
. 69568	11.04 Av	10	0	21.04	56	46	-	-
			Margin [dB]	:	-34.96	-24.96	-	-
.8096	9.71 Av	10	0	19.71	56	46	-	-
			Margin [dB]	:	-36.29	-26.29	-	-
.72458	4.63 Av	10	0	14.63	56	46	-	-
			Margin [dB]	:	-41.37	-31.37	-	-
.86505	9.25 Av	10	0	19.25	56	46	-	-
			Margin [dB]	:	-36.75	-26.75	-	-
Line - L1	1 - 30MHz							
1.18601	8.72 Av	10.1	0	18.82	56	46	_	-
			Margin [dB]	:	-37.18	-27.18	_	_
1.55667	8.85 Av	10.1	0	18.95	56	46	-	-
			Margin [dB]	:	-37.05	-27.05	-	-

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - average log detection

Av - average detection

CAV - CISPR average detection

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 69 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Clam Case LLC

iPod Accessory w KB and BT Radio

Model: M10000026,

Job#:SR718032-T001 Proj:10U13557

Tested By: JD

	Reading		Transducer Factor [[dB]			2	3	4
Neutral .1	.5 - 1MHz							
.27181	13.57 Av	10.1	0	23.67	61.1	51.1	-	-
			Margin [dB]:	-37.43	-27.43	-	-
.39986	20.38 Av	10.1	0	30.48	57.9	47.9	-	-
			Margin [dB			-17.42	-	-
.48621	19.48 Av	10.1	0	29.58	56.2	46.2	-	-
			Margin [dB]:	-26.62	-16.62	-	-
.5063	16.67 Av	10.1	0	26.77	56	46	-	-
			Margin [dB]:	-29.23	-19.23	-	-
.53445	8.61 Av	10.1	0	18.71	56	46	-	-
			Margin [dB]:	-37.29	-27.29	-	-
.56612	16.33 Av	10.1	0	26.43	56	46	-	-
			Margin [dB]:	-29.57	-19.57	-	-
.59798	18.4 Av	10.1	0	28.5	56	46	-	-
			Margin [dB]:	-27.5	-17.5	-	-
.69158	18.37 Av	10.1	0	28.47	56	46	-	-
			Margin [dB]:	-27.53	-17.53	-	-
.77896	14.91 Av	10.1	0	25.01	56	46	-	-
			Margin [dB]:	-30.99	-20.99	-	-
.78062	15.25 Av	10.1	0	25.35	56	46	-	-
			Margin [dB]:	-30.65	-20.65	-	-
.7877	16.05 Av	10.1	0	26.15	56	46	-	-
			Margin [dB]:	-29.85	-19.85	-	-
.90188	14.85 Av	10.1	0	24.95	56	46	-	-
			Margin [dB]:	-31.05	-21.05	-	-

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - average log detection

Av - average detection

CAV - CISPR average detection

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 70 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Clam Case LLC

iPod Accessory w KB and BT Radio

Model: M10000026,

Job#:SR718032-T001 Proj:10U13557

Tested By: JD

	Reading		Transducer Factor [d] [dB]			2	3	4
.93517	17.15 Av	10.1	0	27.25	 56	46	_	
			Margin [dB]	:	-28.75	-18.75	-	_
. 95597	17.77 Av	10.1	0	27.87	56	46	-	-
			Margin [dB]	:	-28.13	-18.13	-	-
.97787	18.73 Av	10.1	0	28.83	56	46	-	-
			Margin [dB]	:	-27.17	-17.17	-	-
. 98637	18.75 Av	10.1	0	28.85	56	46	-	-
			Margin [dB]	:	-27.15	-17.15	-	-
Neutral 1	- 30MHz							
1.09257	17.62 Av	10.1	0	27.72	56	46	-	-
			Margin [dB]	:	-28.28	-18.28	-	-
1.24405	16.01 Av	10.1	0	26.11	56	46	-	-
			Margin [dB]	:	-29.89	-19.89	-	-
1.35403	16.78 Av	10.1	0	26.88	56	46	-	-
			Margin [dB]	:	-29.12	-19.12	-	-
1.38855	17.76 Av	10.1	0	27.86	56	46	-	-
			Margin [dB]	:	-28.14	-18.14	-	-
1.53953	14.62 Av	10.1	0	24.72	56	46	-	-
			Margin [dB]	:	-31.28	-21.28	-	-
25.8171	20.95 Av	11.7	0	32.65	60	50	-	-
			Margin [dB]	:	-27.35	-17.35	-	-

NOTE: "+" - Indicates an emission level in excess of the applicable limit (s).

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - average log detection

Av - average detection

CAV - CISPR average detection

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 71 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.9 Test Conditions and Results - RADIATED EMISSIONS

l	est	
	escription	

Measurements were made in a 10-meter semi-anechoic chamber that complies to CISPR 16/ANSI C63.4:2003. Preliminary (peak) measurements were performed at an antenna to EUT separation distance of 4-meter. The EUT was rotated 360° about its azimuth with the receive antenna located at various heights in both horizontal and vertical polarities. Final measurements (quasi-peak or average as noted) were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1 to 4-meters. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable.

Basic Standard	FCC Part 15 Subpart B/CISPRR 22				
UL LPG	80-EM-S0029				
	Frequency range Measurement Point				
Fully configured sample scanned over the following frequency range	30MHz – 1000MHz	(10 meter measurement distance)			
	1GHz -14GHz	(4 meter measurement distance)			

Limits - Class B

	Limit (dBµV/m)				
Frequency (MHz)	Quasi-Peak	Average			
30-230	30	NA			
230-1000	37	NA			
Above 1GHz.	NA	54			
Supplementary information: CISPI	R 22 limits applied below 1GHz.				

Table 36 Radiated Emissions EUT Configuration Settings

Power Interface Mode #	EUT Configurations Mode #	EUT Operation Mode #
1	1	1
Supplementary information: Radia	ted Emissions above 1GHz was test	ed in worst case configuration

Job Number: SR7180320-T001 Project Number: 10U13557 Page 72 of 85

Model Number: M1000026 Client Name: Clam Case LLC

Table 37 Radiated Emissions Test Equipment

Test Equipment Used						
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date	
30-1000MHz			•			
	Rohde &					
EMI Receiver	Schwarz	ESIB40	34968	22 Feb 10	22 Feb 11	
Bicon Antenna	Schaffner	VBA6106A	43441	9 Sep 2010	9 Sep 2011	
Log-P Antenna	Schaffner	UPA6109	44067	26 Apr 10	26 Apr 11	
Switch Driver	HP	11713A	ME7A-627	N/A	N/A	
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A	
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A	
RF Switch Box	UL	1	44398	N/A	N/A	
Measurement Software	UL	Version 9.3	44740	N/A	N/A	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734	1 Feb 10	1 Feb 11	
Multimeter	Fluke	83III	ME5B-305	3 Aug 10	3 Aug 12	
Above 1GHz (Band Optimized S	ystem)					
Spectrum Analyzer	Agilent	E7405A	19695	1 Feb 2010	1 Feb 2011	
Horn Antenna (1-2 GHz)	ETS	3161-01	51442	28 Mar 2008	See * below	
Horn Antenna (2-4 GHz)	ETS	3161-02	48107	27 Sept 2007	See * below	
Horn Antenna (4-8 GHz)	ETS	3161-03	48106	27 Sept 2007	See * below	
Horn Antenna (8-12 GHz)	ETS	3160-07	8933	24 Nov 2008	See * below	
Horn Antenna (12-18 GHz)	ETS	3160-08	8932	27 Sept 2007	See * below	
Signal Path Controller	HP	11713A	50250	N/A	N/A	
Gain Controller	HP	11713A	50251	N/A	N/A	
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A	
System Controller	UL	BOMS2	50252	N/A	N/A	
Measurement Software	UL	Version 9.3	44740	N/A	N/A	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	12-07-2010	12-07-2012	
Multimeter	Fluke	83111	ME5B-305	1 Feb 10	1 Feb 11	

^{*} Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

 $^{^{*}}$ Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 73 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 33: Test setup for Radiated Emissions Unintentional

Intentionally left blank separate document

Figure 34: Test setup for EMISSIONS - Radiated Unintentional

Intentionally left blank separate document

Job Number: SR7180320-T001 Project Number: 10U13557 Page 74 of 85

Model Number: M1000026 Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 35: Radiated Emissions Graph

Job Number: SR7180320-T001 Project Number: 10U13557 Page 75 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Table 38: Radiated Emissions Data Points

Clam Case LLC

iPad Accessory w KB and BT Radio

Model: M10000026

Job: SR718032-T001 Tested: RM

RECEIVE 2480MHz worst case

Frequency [MHz]	Meter Gai Reading Fa [dB(uV)]	ctor F [dB]	actor dB[1 [dB]	uVolts/m		2	3	4
Horizontal	200 - 1000MHz							
	48.91 QP					-	-	-
Azimuth: 2	83 Height:400	Horz	Margin	[dB]:	-4.49	-	-	-
215.9958	50.38 QP	-34.6	11	26.78	30	_	_	_
Azimuth: 9	7 Height:334	Horz	Margin	[dB]:	-3.22	-	-	-
227.9982	48.04 QP	-34.5	10.9	24.44	30	_	_	_
	01 Height:397					_	-	-
	50.0. -		10.1		0-			
	53.9 QP					_	-	-
Azimuth: I	1 Height:303	Horz	Margin	[dB]:	-4.1	_	-	-
299.997	54.47 QP	-33.9	13.1	33.67	37	-	-	_
Azimuth: 1	6 Height:318	Horz	Margin	[dB]:	-3.33	-	-	-
311 9949	54.3 QP	-33 7	13.2	33 B	37	_	_	_
	5 Height: 252					_	_	_
nzimacii. z	J Herghe. 232	11012	Hargin	[ab].	3.2			
323.9969	51.97 QP	-33.8	13.7	31.87	37	-	_	-
Azimuth: 2	6 Height:270	Horz	Margin	[dB]:	-5.13	-	-	-
455 9971	47.53 QP	-32 8	16.8	31 53	37	_	_	_
	0 Height:190					_	_	_
	g			[02].	0.1.			
	49.18 QP						-	-
Azimuth: 2	5 Height:184	Horz	Margin	[dB]:	-3.62	-	-	-
503.9965	47.42 QP	-32.5	17.5	32.42	37	_	_	_
	3 Height:169					_	_	_
	•							

LIMIT 1: CISPR22/EN55022 Class B

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 76 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Figure 36: Radiated Emissions Graph

Job Number: SR7180320-T001 Project Number: 10U13557 77 of 85 Page

Model Number: M1000026

Client Name: Clam Case LLC

YUG-CCM1000026 FCC ID: Industry Canada ID: 9422A-CCM1000026

Table 39 Radiated Emissions Data Points

Clam Case LLC

iPad Accessory w KB and BT Radio Model: M10000026 RCV Mode

Job: SR718032-T001 2480MHz worst case

Tested By: GB

No.	Frequency	Reading	Gain/Loss Factor [dB]	Factor		_		2	3
Hor	izontal 1000		z					 	
1	1322.097	63.61 PK	-45.1	20.5		36.51	54	_	-
		Height:	100 Horz	Margin	[dB]		-17.49	-	-
2	1933.833	58.67 PK	-43.9	21.8		36.57	54	_	-
		Height:	100 Horz	Margin	[dB]		-17.43	_	
Hor	rizontal 2000) - 4000MH:	z						
3	2232.21	61.55 PK	-43.94	21.4		36.51	54	_	-
				Margin	[dB]		-17.49	-	-
4	3935.081	57.93 PK	-42.82	22.7		37.81	54	-	-
				Margin	[dB]		-16.19	-	-
Hor	rizontal 8000) - 12000MI	Hz						
5	9234.609	57.28 PK	-51.03	33.4		39.65	54	-	_
				Margin	[dB]		-14.35	-	-
6	10309.484	55.07 PK	-50.05	33.4		38.42	54	-	-
				Margin	[dB]		-15.58	-	-

LIMIT 1: FCC Part 15 Subpart B Class B

PK - Peak detector

QP - Quasi-Peak detector

LnAv - Linear average detector

LgAv - Average log detector

Av - Average detector

CAV - CISPR Average detector

RMS - RMS detection

CRMS - CISPR RMS detection

Job Number: SR7180320-T001 Project Number: 10U13557 Page 78 of 85

Model Number: M1000026

Client Name: Clam Case LLC

YUG-CCM1000026 FCC ID: Industry Canada ID: 9422A-CCM1000026

4.10 MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(A) Limits for Occupational/Controlled Exposures								
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6				
(B) Limits for General Population/Uncontrolled Exposure								
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30				

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300	27.5	0.073	0.2	30	
300–1500 1500–100,000			f/1500 1.0	30 30	

f = frequency in MHz

exposure or can not exercise control over their exposure.

^{† =} frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

Job Number: SR7180320-T001 Project Number: 10U13557 Page 79 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
280	2.19		6
280/f	2.19/f		6
28	2.19/f		6
28	0.073	2*	6
1.585 $f^{0.5}$	$0.0042f^{0.5}$	f/150	6
61.4	0.163	10	6
61.4	0.163	10	616 000 /f ^{1.2}
0.158 $f^{0.5}$	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}
	Electric Field Strength; rms (V/m) 280 280/f 28 28 1.585f ^{0.5} 61.4 61.4	Electric Field Strength; rms (V/m) 280 280/f 280 2.19 280/f 28 2.19/f 28 2.19/f 28 0.073 1.585f ^{0.5} 0.0042f ^{0.5} 61.4 0.163	Electric Field Strength; rms (V/m) Magnetic Field Strength; rms (A/m) Power Density (W/m²) 280 2.19 280/f 2.19/f 28 2.19/f 28 0.073 2* 1.585f ^{0.5} 0.0042f ^{0.5} f/150 61.4 0.163 10 61.4 0.163 10

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG). Job Number: SR7180320-T001 Project Number: 10U13557 Page 80 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Spread spectrum transmitters operating under Section 15.247 are categorically excluded from routine environmental evaluation for demonstrating RF exposure compliance with respect to MPE and/or SAR limits. These devices are not exempted from compliance. As indicated in Section 15.247(b)(4), these transmitters are required to operate in a manner that ensures that exposure to the public (users and nearby persons) does not exceed the Commission's RF exposure guidelines (see Sections 1.1307, 2.1091 and 2.1093). Unless a device operates at substantially low output power levels, with a low gain antenna(s), supporting information is generally needed to establish the various potential operating configurations and exposure conditions of a transmitter and its antenna(s), in order to determine compliance with the RF exposure guidelines.

In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed: (1) calculations that estimate the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits (defined for free-space), (2) antenna installation and device operating instructions for installers (professional and/or unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirements, (3) any caution statements and/or warning labels that are necessary in order for a device to comply with the exposure limits, and (4) any other RF exposure related issues that may affect MPE compliance.

For portable transmitters (see Section 2.1093), or devices deigned to operate next to a person's body, compliance is determined with respect to the SAR limit (defined in body tissues) for near-field exposure conditions. If the maximum average output power, operating configurations, and exposure conditions are comparable to those of existing cellular and PCS phones, an SAR evaluation may be required in order to determine if such a device complies with the SAR limit. When SAR data is not available, and the additional supporting information cannot assure compliance, the Commission may request that an SAR evaluation be performed, as provided for in Section 1.1307(d).

Installation/Operation Manual Requirements

Submit a copy of the information/instructions that will be included in the installation/operation manual pertaining to: (a) correct peak output power settings required for compliant operation for every antenna proposed for use with the EUT, (b) point-to-point operational requirements and responsibilities, (c) any RF exposure compliance requirements.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 81 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

MPE Estimate

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1.0 mW/cm₂ uncontrolled exposure limit. The formula shown in OET Bulletin 65 is used in the calculation.

Equation from page 19 of OET Bulletin 65, Edition 97-01 is:

 $S = PG / 4 \pi R_2$

where: S = power density (in appropriate units, e.g. mW/cm₂)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate

units, e.g., cm)

hence

 $R = (PG / 4 \pi S)_{1/2}$

For our device

P = 0.743 mW

G = 6.0

R = 20 cm

 $S = (0.743 * 6.0) / (4* \pi * 20^2) = 0.008873 \text{ mW/cm}^2 < 1.0 \text{ mW/cm}^2$

For complying the FCC limits for general population/uncontrolled exposure, the power density limit is 1.0 mW/cm². The calculation result of the power density at a distance of 20 cm of our device is less than the limit.

This means that according to OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), the equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR Part 15.247 (b)(5).

Job Number: SR7180320-T001 Project Number: 10U13557 Page 82 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

4.11 Operational Description: 15.247(a)(1), 15.247(g) and 15.247(h)

Hopping characteristics:

The basic piconet physical channel is characterized by a pseudo-random hopping through all 79 RF channels. The frequency hopping in the piconet physical channel is determined by the Bluetooth clock and BD_ADDR of the master. When the piconet is established, the master clock is communicated to the slaves. Each slave shall add an offset to its native clock to synchronize with the master clock. Since the clocks are independent, the offsets must be updated regularly. All devices participating in the piconet are time-synchronized and hop-synchronized to the channel.

ADAPTED PICONET PHYSICAL CHANNEL

Hopping characteristics:

The adapted piconet physical channel shall use at least Nmin RF channels (where Nmin is 20). The adapted piconet physical channel uses the adapted channel hopping sequence described in Section 2.6 on page 82. Adapted piconet physical channels can be used for connected devices that have adaptive frequency hopping (AFH) enabled. There are two distinctions between basic and adapted piconet physical channels. The first is that the same channel mechanism that makes the slave frequency the same as the preceding master transmission. The second

aspect is that the adapted piconet physical channel may be based on less than the full 79 frequencies of the basic piconet physical channel.

HOP SELECTION:

Bluetooth devices shall use the hopping kernel as defined in the following sec- tions. In total, six types of hopping sequence are defined – five for the basic hop sys- tem and one for an adapted set of hop locations used by

adaptive frequency hopping (AFH). These sequences are: A page hopping sequence with 32 wake-up frequencies distributed equally over the 79 MHz, with a period length of 32; A page response hopping sequence covering 32 response frequencies that are in a one-to-one correspondence to the current page hopping sequence. The master and slave use different rules to obtain the same sequence; An inquiry hopping sequence with 32 wake-up frequencies distributed equally over the 79 MHz, with a period length of 32; An inquiry response hopping sequence covering 32 response frequence is that are in a one-to-one correspondence to the current inquiry hopping sequence. A basic channel hopping sequence which has a very long period length, which does not show repetitive patterns over a short time interval, and which distributes the hop frequencies equally over the 79 MHz during a short time interval. An adapted channel hopping sequence derived from the basic channel hopping sequence which uses the same channel mechanism and may use fewer than 79 frequencies. The adapted channel hopping sequence is only used in place of the basic channel hopping sequence. All other hopping sequences are not affected by hop sequence adaptation.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 83 of 85

Model Number: M1000026

Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Adapted hop selection kernel:

The adapted hop selection kernel is based on the basic hop selection kernel defined in the preceding sections.

The inputs to the adapted hop selection kernel are the same as for the basic hop system kernel except that the input AFH_channel_map (defined in Link Manager Protocol [Part C] Section 5.2 on page 303) is used. The AFH_channel_map indicates which RF channels shall be used and which shall be unused. When hop sequence adaptation is enabled, the number of used RF channels may be reduced from 79 to some smaller

value N. All devices shall be capable of operating on an adapted hop sequence (AHS) with Nmin \leq N \leq 79, with any combination of used RF channels within the AFH_channel_map that meets this constraint. Nmin is defined in Section . Adaptation of the hopping sequence is achieved through two additions to the basic channel hopping sequence. Unused RF channels are re-mapped uniformly onto used RF channels. That is, if the hop selection kernel of the basic system generates an unused RF channel, an alternative RF channel out of the set of used RF channels is selected pseudo-randomly. The used RF channel generated for the master-to-slave packet is also used for the immediately following slave-to-master packet.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 84 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

Appendix A

Accreditations and Authorizations

NVLAP Lab code: 100255-0

NVLAP: The National Institute of Standards and Technology (NIST) administers the National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP is comprised of laboratory accreditation programs (LAPs) which are established on the basis of requests and demonstrated need. Each LAP includes specific calibration and/or test standards and related methods and protocols assembled to satisfy the unique needs for accreditation in a field of testing or calibration. NVLAP accredits public and private laboratories based on evaluation of their technical qualifications and competence to carry out specific calibrations or tests. Accreditation criteria are established in accordance with the U.S. Code of Federal Regulations (CFR, Title 15, Part 285), NVLAP Procedures and General Requirements, and encompass the requirements of ISO/IEC 17025. For a full scope listing see http://ts.nist.gov/ts/htdocs/210/214/scopes/1002550.htm

FCC: Details of the measurement facilities used for these tests have been filed with the Federal Communications Commission's Laboratory in Columbia, Maryland (Ref. No. 91040).

Industry of Canada: Accredited by Industry Canada for performance of radiated measurements. Our test site complies with RSP 100, Issue 7, Section 3.3. File #: IC 2181

VCCI: Accepted as an Associate Member to the VCCI. The measurement facilities detailed in this test report have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. Registration Nos.: (Radiated Emissions) R-797, (Conducted Emissions) C-832, C-83400, and C-81879 and (Conducted Emissions - Telecommunications Ports) T-1582 and T-1583.

Job Number: SR7180320-T001 Project Number: 10U13557 Page 85 of 85

Model Number: M1000026
Client Name: Clam Case LLC

FCC ID: YUG-CCM1000026 Industry Canada ID: 9422A-CCM1000026

ICASA: ICASA (Independent Communications Authority of South Africa) has appointed UL as a Designated Test Laboratory to test Telecommunications equipment for type approval in compliance with CISPR 22 to assist in fulfilling its mandate under section 54(1) of the Telecommunications Act, 1996 (Act 103 of 1996).

NIST/CAB: Validated by the European Commission as a U.S. Conformity Assessment Body (CAB) of the U.S.-EU Mutual Recognition Agreement (MRA) for the Electromagnetic Compatibility - Council Directive 2004/108/EC, Annex III (2-3). Also validated for the Telecommunication Equipment-Council Directive 99/5/EC, Annex III and IV, Identification Number: 0983.

NIST/CAB: Provisioned to act as a U.S. Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the Asia Pacific Economic Cooperation (APEC) MRA between the American Institute in Taiwan (AIT) and the United States. Our laboratory is considered qualified to test equipment subject to the applicable EMC regulations of the Chinese Taipei Bureau of Standards, Metrology and Inspection (BSMI) which require testing to CNS 13438 (CISPR 22).

NIST/CAB: Recognized by the Infocomm Development Authority of Singapore (IDA) under the Asia Pacific Economic Cooperation Mutual Recognition Agreement (APEC MRA). Our laboratory is provisionally designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC MRA. Our scope of designation includes IDA TS EMC (CISPR 22), IEC 61000-4-2, -4-3, -4-4, -4-5, and -4-6

Intentionally left blank