

Micropower Operational Amplifier Single or Dual Supply

OP-20

FEATURES

•	Low Supply Current	55 µA Max
•	Single-Supply Operation	+5V to +30V
•	Dual-Supply Operation	. ±2.5V to ±15V
	Low Input Offset Voltage	
	Low Input Offset Voltage Drift	
	High Common-Mode Input Range	•
	High CMRR and PSRR	
	High Open-Loop Gain	
	M. Fotomal Comments Described	

- No External Components Required
- 741 Pinout and Nulling
- Available in Die Form

ORDERING INFORMATION †

T, = +25°C		PACKAGE		OPERATING
V _{OS} MAX (mV)	TO-99	CERDIP 8-PIN	PLASTIC 8-PIN	TEMPERATURE RANGE
250	OP20BJ*	OP20BZ	_	MIL
250	OP20FJ	OP20FZ	_	IND
250	_	_	OP20FP	COM
500	_	OP20CZ	_	MIL.
500	OP20GJ	OP20GZ	_	IND
500	_	_	OP20GP	COM
1000	OP20HJ	OP20HZ	OP20HS††	XIND
1000	***	_	OP20HP	XIND

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- † Burn-in is available on commercial and industrial temperature range parts in cerDIP, plastic DIP, and TO-can packages.
- tt For availability and burn-in information on SO and PLCC packages, contact your local sales office.

GENERAL DESCRIPTION

The OP-20 is a monolithic micropower operational amplifier that can be operated from a single power supply of +5V to +30V, or from dual supplies of $\pm 2.5V$ to $\pm 15V$. The input voltage range extends to the negative rail, therefore input signals down to zero volts can be accomodated when operating from a single supply.

Precision performance in high-gain applications is readily obtained when using the OP-20. The B/F grade features a maximum input offset voltage of $250\mu V$, minimum CMRR of 95dB, and open-loop gain of over 500,000. Quiescent supply current is a maximum of only $55\mu A$ at $\pm 2.5V$ or $80\mu A$ at $\pm 15V$. The low input offset, high gain, and low power consumption brings precision performance to portable instruments, satellites, missile control systems, and many other battery-powered applications.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

OP-20

ABSOLUTE MAXIMUM RATINGS (Note	
Supply Voltage	±18V
Differential Input Voltage	
Input Voltage	Supply Voltage
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	
J and Z Packages	65°C to +150°C
P Package	
Operating Temperature Range	
OP-20B, OP-20C (J, Z)	55°C to +125°C
OP-20F, OP-20G (J, Z)	
OP-20H (S, P, J, Z)	40°C to +85°C
OP-20FP, OP-20GP	0°C to +70°C
Lead Temperature Range (Soldering, 60 sec	c)300°C
Junction Temperature	

PACKAGE TYPE	Θ _{jA} (NOTE 2)	Θ _{jC}	UNITS
TO-99 (J)	150	18	°C/W
8-Pin Hermetic DIP (Z)	148	16	°C/W
8-Pin Plastic DIP (P)	103	43	°C/W
8-Pin SO (S)	158	43	°C/W

NOTES

- Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
- 2. $\Theta_{|\mathbf{A}}$ is specified for worst case mounting conditions, i.e., $\Theta_{|\mathbf{A}}$ is specified for device in socket for TO, CerDIP and P-DIP packages; $\Theta_{|\mathbf{A}}$ is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 2.5 V$ to $\pm 15 V$, $T_A = +25 ^{\circ} C$, unless otherwise noted.

				OP-20B/F OP-20				OP-20C/G			OP-20H		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP'	MAX	UNITS	
Input Offset Voltage	vos	V _S = ± 15V	_	55	250	_	150	500		300	1000	μ۷	
Input Offset Current	los	V _{CM} = 0	_	0.15	1.5	_	0.2	2.5		0.3	4.0	nA	
Input Bias Current	I _B	V _{CM} = 0		12	25	_	14	30		16	40	nA	
Input Voltage Range	IVR	V+ = +5V, V- = 0V	0/3.5	_	-	0/3.5	_	_	0/3.5	_	-	v	
		V _S = ± 15V	-15/13.5			-15/13.5			-15/13.5				
Common-Mode	CMRR	V + = +5V, V - = 0V $0V \le V_{CM} \le 3.5V$	95	105	-	90	95	_	85	90	_	dB	
Rejection Ratio		$V_S = \pm 15V$ -15V $\leq V_{CM} \leq 13.5V$	100	110	-	94	105	-	90	100	_		
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.5V \text{ to } \pm 15V$ and $V = 0V$, V + = 5V to 30V	_	4	6	_	6	10	_	10	32	μV/V	
Large-Signal		V+ = +5V, V- = 0V $1V \le V_O \le 3.5V$	300	500	_	200	500	_	_	500	-	V/mV	
Voltage Gain	Avo	$V_S = \pm 15V, V_O = \pm 10V$ $R_L = 25k\Omega$	1000	2000	_	800	2000		500	1000	_		
		V+=5V, V-=0V	0.6/4.1		_	0.7/4.1		_	0.8/4.0	_	-		
Output Voltage Swing	v _o	$R_L = 10k\Omega$ $V_S = \pm 15V$, $R_L = 25k\Omega$	± 14,1	-	_	±14.1	-	_	±14.0	-	-	v 	
Closed-Loop Bandwidth	BW	$A_{VCL} = +1.0,$ $R_L = 10k\Omega$	_	100		_	100	_	_	100	_	kHz	
Slew Rate	SR	$V_S = \pm 15V$ $R_L = 25k\Omega$	_	0.05			0.05	_	_	0.05	_	V/μs	
O to O		V _S = ±2.5V, No Load	_	40	55	_	44	63	-	45	70	μΑ	
Supply Current	lsy	V _S = ±15V, No Load		55	80	_	57	85		60	95		

ELECTRICAL CHARACTERISTICS at $V_S = \pm 2.5 \text{V}$ to $\pm 15 \text{V}$, $-55^{\circ}\text{C} \le \text{T}_A \le +125^{\circ}\text{C}$ for OP-20BJ/BZ and OP-20CZ, $-25^{\circ}\text{C} \le \text{T}_A \le +85^{\circ}\text{C}$ for OP-20FJ/FZ and OP-20GJ/GZ, and $0^{\circ}\text{C} \le \text{T}_A \le +70^{\circ}\text{C}$ for OP-20FP, OP-20GP, and $-40^{\circ}\text{C} \le \text{T}_A \le +85^{\circ}\text{C}$ for OP-20HZ, OP-20HJ, and OP-20HP/HS, unless otherwise noted.

			0	P-20B	/F	0	P-20C	/G	OP-20H			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Average Input Offset Voltage Drift (Note 1)	TCV _{OS}	Unnulled	_	0.75	1.5	-	1.0	3.0	_	1.5	7.0	μV/°C
Input Offset Voltage	vos	V _S = ±15V	_	155	400	_	250	800		500	1700	μ۷
Input Offset Current	los	V _{CM} = 0		0.5	2.5	_	1.0	3.5		1.5	5.0	nA
Input Bias Current	I _B	V _{CM} = 0	_	12	27	-	14	33		16	45	nA
Input Voltage Range	IVR	V+ = +5V, V- = 0V V _S = ±15V	0/3.2 -15/13.2	_	-	0/3.2 -15/13.2	_	_	0/3.2 -15/13.2	_	_	٧
Common-Mode	CMRR	V + = +5V, V - = 0V $0V \le V_{CM} \le 3.2V$	90	100	_	85	90	_	80	85	_	dB
Rejection Ratio	OWINH	$V_S = \pm 15V$ -15V \le V _{CM} \le 13.2V	96	110	_	90	105	_	85	100	_	
Power Supply		V _S = ±2.5V to ±15V	_	4	10	_	6	18	_	10	32	μV/V
Rejection Ratio	PSRR	V- = 0V, V+ = 5V to 30V	-	4	10	-	6	18	_	10	57	μν,ν
Large-Signal Voltage Gain	A _{vo}	$V_S = \pm 15V, V_O = \pm 10V$ $R_L = 50k\Omega$	500	700	_	400	600	_	250	400	_	V/mV
Output Voltage		V+=5V, $V-=0V$, $R_L=50k\Omega$	0.8/4.0	_	_	0.9/3.9	_	_	1.0/3.8	_	-	v
Swing	v o	$V_S = \pm 15V$, $R_L = 50k\Omega$	±14.0	_	_	±13.9	_	-	±13.9			v
		V _S = ±2.5V, No Load or +5V, 0V	_	50	65	_	53	75		55	85	
Supply Current	^I sy	V _S = ±15V, No Load	_	64	95		68	100		72	115	μΑ

NOTE:

Sample tested.

OP-20

DICE CHARACTERISTICS

DIE SIZE 0.069 x 0.047 inch, 3174 sq. mils (1.75 x 1.17 mm, 2.05 sq. mm)

- 1. BALANCE
- 2. INVERTING INPUT
- 3. NONINVERTING INPUT
- 4. V-
- 5. BALANCE
- 6. OUTPUT
- 7. V+

WAFER TEST LIMITS at $V_S = \pm 15V$, $T_A = 25$ °C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-20N LIMIT	OP-20G LIMIT	OP-20GR	UNITS
Input Offset Voltage	Vos		300	600	1000	μV MAX
Input Offset Current	Ios		1.5	2.5	4.0	nA MAX
Input Bias Current	I _B		25	30	40	nA MAX
Input Voltage Range	IVB	V+=+5V, V-=0V $V_S=\pm 15V$	0/3.5 -15/13.5	0/3.5 -15/13.5	0/3.5 -15/13.5	V MIN
Common-Mode Rejection Ratio	CMRR	$V+=+5V$, $V-=0V$, $0V \le V_{CM} \le +3.5V$ $V_S=\pm 15V$, $-15V \le V_{CM} \le \pm 13.5V$	95 100	90 94	85 90	dB MIN
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.5V \text{ to } \pm 15V$ V = 0V, V + = +5V to +30V	6	10	32	μV/V MAX
Large-Signal Voltage Gain	A _{vo}	$R_L = 25k\Omega$ $V_O = \pm 10V$	1000	800	500	V/mV MIN
Output Voltage Swing	vo	$R_L = 10k\Omega, V + = +5V, V - = 0V$ $R_L = 25k\Omega, V_S = \pm 15V$	0.7/4.1 ±14.1	0.8/4.1 ±14.1	0.9/4.0 ±14.0	V MIN
Supply Current	Isy	$V_S = \pm 2.5V$, No Load $V_S = \pm 15V$, No Load	55 80	63 85	70 95	μΑ ΜΑΧ

NOTE:

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S=\pm\,15V,\, T_A=+\,25^{\circ}\,C,\, unless$ otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-20N TYPICAL	OP-20G TYPICAL	OP-20GR TYPICAL	UNITS
Average Input Offset Voltage Drift	TCV _{OS}	Unnulled Nulled, R _P = 10kΩ	1.0 1.0	1.5 1.5	2.5 2.5	μV/°C
Large-Signal Voltage Gain	A _{VO}	R _L = 25kΩ	2000	2000	1000	V/mV

2

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE VS POWER SUPPLY VOLTAGE

CLOSED-LOOP GAIN vs FREQUENCY

INPUT BIAS CURRENT vs TEMPERATURE

INPUT OFFSET CURRENT vs TEMPERATURE

SUPPLY CURRENT VS SUPPLY VOLTAGE

SMALL-SIGNAL TRANSIENT RESPONSE

LARGE-SIGNAL TRANSIENT RESPONSE

OP-20

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL APPLICATIONS

TEMPERATURE SENSOR

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.