1. 〈보기〉는 NAND 게이트만으로 구성된 논리회로이다. 이와 동일한 기능을 수행하는 논리회로를 NOR 게이트만으로 구현한 것으로 가장 옳은 것은?

- 1
- 2
- (4)
- 2. 10진수 12.375(10)를 2진수로 변환한 값은?
 - ① 1010.011(2)
 - ② 1010.101(2)
 - ③ 1100.011(2)
 - **4** 1100.101₍₂₎
- 3. $Y = A\overline{B} + C\overline{D} + EF$ 와 같은 논리식은?
 - ① $Y = A \overline{B} C \overline{D} EF$
 - ② $Y = (\overline{A} + B)(\overline{C} + D)(\overline{E} + \overline{F})$
 - $3 Y = AC + \overline{BD} + EF$
- 4. 〈보기〉의 회로를 나타내는 논리식으로 가장 옳은 것은?

- ① Y = A + B + C + D
- ② $Y = \overline{A} + B + \overline{C} + \overline{D}$
- $3 Y = \overline{A} + B + \overline{C} + D$
- (4) $Y = A + \overline{B} + C + D$

 $5. \langle \text{보기 1} \rangle$ 과 같이 T 플립플롭 3개를 이용하여 ABC가 〈보기 2〉의 순서로 변화하는 카운터를 설계하고자 한다. T_A 의 최소식은?

- 6. 〈보기〉의 진리표와 같은 형태로 표현되는 부울함수 F를 간략화하여 표현한 것으로 가장 옳은 것은?

─────────────────────────────────────							
		출력					
	A	B	C	F			
	0	0	0	0			
	0	0	1	0			
	0	1	0	1			
	0	1	1	1			
	1	0	0	0			
	1	0	1	0			
	1	1	0	1			
	1	1	1	1			

- ① F = AB
- $\bigcirc F = B$
- $\Im F = \overline{A} + \overline{C}$
- 7. 디지털 시스템의 장점에 대한 설명으로 가장 옳지 않은
 - ① 자연계의 신호를 정확히 표현할 수 있다.
 - ② 시스템 설계가 용이하다.
 - ③ 잡음에 영향을 적게 받는다.
 - ④ 집적회로 기술의 발전으로 가격과 크기가 점차 감소한다.

8. 〈보기〉의 2의 보수로 표현된 부호가 있는 2진수를 절댓값이 큰 수부터 순서대로 바르게 나열한 것은?

7,	〈보기〉	7
¬. 11101001 ₍₂₎	└ . 10101010 ₍₂₎	
□. 00110110 ₍₂₎	ㄹ. 11111111 ₍₂₎	

- ① フーヒーレーセ
- ② レーヒーコーモ
- 4 2-7-1-5

9. 〈보기〉의 카르노맵에 대해 최소 SOP(sum of product) 형태의 부울식으로 간소화한 것으로 가장 옳은 것은?

		-〈보기〉			
AB	00	01	11	10	
00	1	0	0	1	
01	1	0	1	1	
11	1	0	1	1	
10	1	1	0	1	

- ① $\overline{A}D + A\overline{D} + BCD$
- ② $\overline{A}\overline{C}D + \overline{B}C + \overline{C}$
- \bigcirc $\boxed{A} \ \overline{D} + AD + BCD$
- (4) $A\overline{BC} + BC + \overline{D}$

10. 〈보기〉는 표준 POS(product of sum)로 표현된 부울 함수식이다. 이를 표준 SOP(sum of product)로 변환한 것으로 가장 옳은 것은?

- ① $F(A,B,C) = ABC + A\overline{B}C + \overline{A}B\overline{C} + \overline{A}\overline{B}C$
- ② $F(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + A\overline{B}C + AB\overline{C}$
- $(3) F(A,B,C) = \overline{A} \overline{B} C + \overline{A} BC + A \overline{B} \overline{C} + ABC$
- 4 $F(A,B,C) = AB\overline{C} + A\overline{B}\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$

11. 〈보기〉에 제시한 논리회로의 부울함수식을 최소항식과 최대항식으로 나타낼 때 가장 옳게 짝지은 것은?

최소항식

최대항식

- ① $F(A,B,C) = \Sigma m(1,5,7)$ $F(A,B,C) = \Pi M(0,2,3,4,6)$
- ② $F(A,B,C) = \Sigma m(0,1,5,7)$ $F(A,B,C) = \Pi M(2,3,4,6)$
- ③ $F(A,B,C) = \Sigma m(2,3,4,6)$ $F(A,B,C) = \Pi M(0,1,5,7)$
- **4** $F(A,B,C) = \Sigma m(0,2,3,4,6) F(A,B,C) = \Pi M(1,5,7)$

12. 〈보기 1〉의 $Q_3Q_2Q_1Q_0$ 는 〈보기 2〉의 (가) 시점에 0001이다. (나) 시점의 $Q_3Q_2Q_1Q_0$ 는? (단, (가, (나) 시점에 $Q_3Q_2Q_1Q_0$ 는 정상상태(steady state)이다.)

- ① 0010
- 2 0101
- 3 0111
- 4 1000
- 13. 2진수 10101011.00101(2)을 8진수로 변환한 값은?
 - ① 153.11₍₈₎
- ② 153.12(8)
- ③ 253.12₍₈₎
- **4** 643.10₍₈₎
- 14. 부호가 있는 10진수로 표현된 A = +15(10)와, 부호가 있는 2의 보수로 표현된 $B=10000_{(2)}$ 일 때 'A-B'의 결과를 부호가 있는 2의 보수로 표현한 값은?
- ① 101101₍₂₎
- ② 111101₍₂₎
- ③ 11111₍₂₎
- 4 011111₍₂₎

15. \langle 보기 1 \rangle 은 액티브-로우(active low) 인에이블(enable) $\overline{E_n}$ 이 포함된 2×4 디코더(decoder)이다. \langle 보기 2 \rangle 와 같이 입력 A, B에 대해서 $D_0 \sim D_3$ 가 출력된 경우, 액티브-로우 인에이블($\overline{E_n}$)의 파형으로 가장 옳은 것은? (단, 게이트에서의 지연은 고려하지 않는다.)

$$\underbrace{E_n \quad }_{t_1 \ t_2 \ t_3 \ t_4 \ t_5 \ t_6 \ t_7 \ t_8 \ t_9}$$

 $16. \langle \pm 7 1 \rangle$ 은 1-of-4 멀티플렉서(multiplexer)의 논리기호와 논리식을 나타낸다. 입력 $D_0 \sim D_3$, S_0 , S_1 이 $\langle \pm 7 2 \rangle$ 와 같이 순차적으로 입력되었을 때 출력 Y는?

<보기 2>──							
	$t_1 \sim t_2$	$t_2 \sim t_3$	$t_3 \sim t_4$	$t_4 \sim t_5$	$t_5 \sim t_6$	$\boxed{t_6\!\sim\!t_7}$	
D_0	1	1	0	0	1	1	
D_1	1	0	0	1	1	0	
D_2	1	0	1	0	1	0	
D_3	0	1	1	0	0	1	
S_0	1	1	0	0	1	1	
S_1	0	1	0	1	0	1	
Y	(7))	(4)	(대)	(라)	(u)·)	(H)	

	(z))	(L)	(대)	(라)	(¤})	(H))
1	0	0	1	0	0	0
2	0	0	1	1	0	0
3	1	1	0	0	1	1
(4)	1	1	0	1	1	1

17. 〈보기〉의 상태 다이어그램처럼 동작하는 무어 모델의 순차회로를 상태 테이블로 표현한 것으로 가장 옳은 것은?

1	현재 상태	입력	다음 상태	출럭
	00	0	00	1
	00	1	01	1

2	현재 상태	입력	다음 상태	출력
	01	0	00	1
	01	1	11	1

3	현재 상태	입력	다음 상태	출력
	10	0	10	0
	10	1	11	0

4	현재 상태	입력	다음 상태	출력
	11	0	00	1
	11	1	00	0

18. $\langle \mbox{보기} \rangle$ 와 같이 세 개의 D 플립플롭을 연결했을 때 클록신호(CLK)의 주파수(f_{CLK})와 출력신호(OUT)의 주파수(f_{OUT})의 관계식으로 가장 옳은 것은?

- ① $f_{C\!L\!K} = f_{O\!U\!T} \times 8$
- ② $f_{\mathit{CLK}} = f_{\mathit{OUT}} \times 4$
- \bigcirc $f_{CLK} = f_{OUT} \times 1/4$
- (4) $f_{CLK} = f_{OUT} \times 1/8$

19. 〈보기 1〉의 주종형(master-slave) *SR* 플립플롭에 〈보기 2〉와 같이 입력을 인가하였을 때, 출력 *Q*의 파형으로 가장 옳은 것은? (단, *Y*, *Q*는 0으로 초기화되어 있으며, 게이트에서의 지연은 고려하지 않는다.)

20. 〈보기 1〉의 $Q_2Q_1Q_0$ 는 〈보기 2〉의 (가 시점에서 101이다. (나) 시점에서 $Q_2Q_1Q_0$ 로 가장 옳은 것은? (단, (가와 (나) 시점에서 $Q_2Q_1Q_0$ 는 정상상태(steady state)이다.)

- ① 000
- ② 001
- 3 110
- **4** 111