

低価格,高精度IC 温度トランスデューサ

AD592

○主要特長

高精度:25℃における校正前誤差 0.5℃ max 優れた直線性: 0.15℃ max(0~+70℃) 広い動作温度範囲:-25~+105℃

単一電源:+4~+30 V 優れた再現性と安定性 高レベル出力: 1 µA/K

2 端子モノリシックIC:温度入力/電流出力

自己発熱による誤差は非常に微小

機能プロック図

TO-92 底面図

概要

AD 592 は 2 端子モノリシックIC温度トランスデューサで、絶対温度 に比例した電流を生成します。広い電源電圧範囲で高インピーダン ス定電流源として動作し、出力は $1\mu A/K$ です。設計を改良し、ICの 薄膜抵抗をレーザ・トリミングすることにより、同価格品よりも格 段に優れた絶対精度と非直線性誤差を達成しています。

AD 592 は、-25~+105℃の測定温度範囲で、従来の温度センサ(サー ミスタ、RTD、熱電対、ダイオード等)の代わりに使用できます。プ ラスチック・パッケージ入りICの低価格性と、周辺部品が少ないこ とによりAD 592 は現在入手可能なものの中で最もコスト/パフォー マンスの良い温度トランスデューサです。AD 592 を使うことにより 高価な直線化回路、高精度基準電圧源、ブリッジ回路、抵抗測定回 路、基準接点補償等は、いっさい不要となります。

代表的な応用例として、電気機器の温度センサ、自動車の温度測定 およびコントロール、空調システムのモニタ、産業用温度コントロー ル、熱電対の基準接点補償、ブリント基板上の温度モニタ、計測機 器の温度読取りオプション、精密電子機器の温度補償等があります。 AD 592 は、高インピーダンスの電流出力のため長い配線の電圧降下 や雑音の影響を受けないのでリモート・センシングの分野で特に有 用です。複数のAD 592 を多重化して使うことも容易に行えます。す なわち、信号電流をCMOSのマルチプレクサで切り換えたり、トラ イステート・ロジック・ゲートによって電源をイネーブルしたりで きます。

AD 592 は性能によってAN、BN、CNの 3 タイプがあります。すべ てプラスチックのTO-92 パッケージ入りで温度は−45~+125℃と規 定されています。仕様の性能は-25~+105℃で保証されています。 チップで供給することも可能です。詳細は当社までお問合せ下さい。

製品のハイライト

- 1. AD 592 は単一電源(4~30 V)で動作し、誤差 0.5℃以下の精度 で温度計測が可能です。
- 2. 動作温度範囲が広く(-25~+105°C)、出力の直線性が優れてい るため、AD 592 は旧来の限定された使い方しかできなかった温 度センサ(サーミスタ、RTD、ダイオード、熱電対等)の代替と して最適です。
- 3 AD 592 は耐圧が高く、電源電圧の異常や変動、20 Vまでの逆方 向電圧の印加によって破壊されることがありません。
- 4. AD 592 は高インピーダンスの電流出力のため、リモート・セン サとして使った場合、電圧雑音や伝送路での抵抗による電圧降 下の影響を受けません。
- 5. AD 592 は出力インピーダンスが高いため、電源電圧ドリフトや リップルに対し、0.5°C/V以上の除去能力を有しています。
- 6. レーザ・トリミングと温度試験により、AD 592 のユニット間の 互換性を保証しています。
- 7. 経時変化によってシステムの初期精度が大幅に低下してしまう ことはありません。IC構成と設計によりAD 592 は、長期にわたっ ての性能と再現性が証明されています。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。 ※日本語データシートはREVISIONが古い場合があります。最新の内容については、英語版をご参照ください。

©1993 Analog Devices, Inc. All rights reserved.

仕 様 (特に注記のない限り, 25°C, V_s= 5 Vの時の代表値)

	AD592AN		AD592BN		AD592CN		g of the state of the			
型名	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	単 位
精度。 / / / / / / / / / / / / / / / / / / /										
校正誤差@25℃1		1.5	2.5		0.7	1.0	1	0.3	0.5	°C
$T_A = 0 \sim +70^{\circ}C$				1	•.,	2.0	1	0.5	v .5	"
温度範囲に渡る誤差		1.8	3.0		0.8	1.5	1	0.4	0.8	°C °
非直線性 ²	V- 14 45	0.15	0.35	1	0.1	0.25		0.05	0.15	\ \cdot \cdo
$T_A = -25 \sim +105^{\circ}C$				1	V.1	0.23	1	0.05	0.15	C
温度範囲に渡る誤差3		2.0	3.5		0.9	2.0		0.5	1.0	°C
非直線性 ²	1000	0.25	0.5	l	0.2	0.4		0.1	0.35	°C
出力特性				 	U.2	U.7	ļ	0.1	0.55	<u> </u>
標準電流出力				1			1			
(第字 电加山刀 @25℃ (298.2K)	4.		•	1			1			4 1 1 4 4 4 4
@25℃(296.2 K) 温度係数		298.2		1	298.2		1	298.2		μА
		. 1		1	1			1		μ A /°C
再現性4			0.1	1		0.1	1		0.1	℃
長期安定性5		1,000	0.1			0.1	e, 10	vy P	0.1	°C/月
絶対最大定格			÷							
動作温度	- 25		+ 105	- 25		+ 105	- 25		+ 105	℃
パッケージ温度6	- 45		+ 125	- 45		+ 125	-45		+ 125	l ℃
順方向電圧(+~-)			44	1		44			44	v
逆方向電圧(~+)			20	1		20			20	v
リード温度				1						
(ハンダ付け10秒)			300	1		300			300	°C
電源			·/····································	1		***************************************	1			
動作電圧範囲	4		30	4		30	4		20	.,
電源除去比			50	7		30	1 *		30	v
+4V <v<sub>S<+5V</v<sub>			0.5			0.5				607
+5V <v<sub>S<+15V</v<sub>			0.3						0.5	C/V
+ 15V <v<sub>S< + 30V</v<sub>			0.1	1 " A		0.2 0.1	1		0.2 0.1	C/V C/V

注

- 1. 25°Cにおける誤差を補正するため、外付けの校正回路を使用することもできます。
- 2. 数学的な最適直線からの最大偏差として定義されます。
- 3. このパラメータは全数に対し $+105^\circ$ Cで試験されます。Cクレードには -25° Cでの試験も行われています。
- 4. -45°Cと+125°Cの温度サイクルの後での25°Cでの読取り値の最大偏差です。 この種の誤差は累積されていくことはありません。
- 5. 125℃における動作の値です。経時変化による誤差が時間とともに累積されていくことはありません。

6.動作温度範囲外に対しては性能は規定されていませんが、パッケージ温度範囲内での変化であればデバイスが破壊することはありません。

仕様は予告なしに変更することがあります。

太字の仕様は全製品にわたり最終電気テストを行っています。これらのテスト結果は出荷の品質レベルを計算するのに利用されます。全製品にわたるテストは太字の仕様についてのみ行われています。すべてのminおよびmax仕様は保証されています。

*PIN 2 CAN BE EITHER ATTACHED OR UNCONNECTED

+423° +150°

代表的特性図

AD 592 CNの全動作温度範囲での精度

AD 592 ANの全動作温度範囲での精度

REV.I

AD 592 BNの全動作温度範囲での精度

長期安定性(温度 85℃、相対湿度 85%)

長期安定性(温度 125℃)

AD 592 オーダ・ガイド

モデル・バッ	最大校正 ケージ 誤差 @25℃	最大誤差 -25~+105℃	最大非直線性 -25~+105℃
AD592CN TO	O-92 0.5°C	1.0℃	0.35℃
AD592BN TO	O-92 1.0℃	2.0℃	0.4°C
AD592AN TO	O-92 2.5℃	3.5℃	0.5℃
AD592ACHIP	'S チップ		

動作原理

AD 592 は、次に述べるシリコン・トランジスタの基本的な特性を用いて、温度に比例する出力を得ています。二つの全く同一な特性をもつトランジスタが、一定のコレクタ電流密度比 r で動作する場合、ベース・エミッタ間電圧の差電圧は(kT/q)ln rとなります。kはボルツマン定数、qは電子の電荷で、共に定数ですから、これは絶対温度に比例する(PTAT)電圧となります。AD 592 では、温度係数の小さな薄膜抵抗を使用し、このPTAT電圧をPTAT電流に変換します。このPTAT電流を使用して出力電流が絶対温度に比例するようにします。その結果センサ温度(K)をスケール・ファクタ倍した電流源出力になります。25°Cおよび動作温度域両端での代表的なV-I特性を図1に示します。

図Ⅰ V-I特性

スケール・ファクタは、工場でウエハ状態で $1\mu A/K$ にトリミングされ、表示温度(出力電流)が実際の温度に一致するように調整されています。調整はデバイスに5Vを印加し、25°Cの数度以内の周囲温度で行われます。次にデバイスを封入し、温度に対する精度を自動的にテストします。

AD 592 を使ったシステムの精度に影響を与える要因

AD 592 の仕様書に精度限界が示されているので、広範な用途に容易に使用できます。所定のシステムに対して全誤差の推定を行うためには、精度に関係する仕様、非直線性誤差、電源電圧変動に対する回路の応答、周囲の熱的環境の影響等を正しく理解することが重要です。他の電子回路設計と同様に、精度は周辺部品の選定の影響を受けます。

校正誤差、絶対精度および非直線性の仕様

総合的な要求精度レベルに応じて、適当なグレードの製品が容易に選定できるように、AD592には三つの主要な誤差の限界が与えられています。これは25°Cでの校正誤差、0~+70°Cの温度での誤差、-25°C~+105°Cの温度での誤差です。これらの仕様はAD592の電流出力を高精度抵抗によって電圧に変換した場合に実際に観測される誤差に相当します。室温、商用、ICの温度範囲、水の沸点を含むより広い温度範囲の各々の最大誤差は、それぞれ仕様から直接読み取れます。この三つの誤差限界はすべて初期誤差、スケール・ファクタの変動、 1μ A/Kの理想出力からの非直線性の偏差が組み合わされたものです。図 2 はAD 592 CN に対して保証された精度を図示したものです。

図.2 誤差仕様(AD 592 CN)

AD 592 は従来の温度センサ(サーミスタ、RTD、熱電対等)と比較して極めて直線性が優れています。そして非直線性の仕様は、全温度範囲での絶対精度とは別に示しています。ベスト・ストレートからの最大偏差として定められるこの仕様は調整によって除くことのできない唯一の誤差です。図3は仕様の全温度範囲に対するAD 592 CNの代表的な非直線性をプロットしたものです。

図3 非直線性(AD 592 CN)

より高い精度を得るためのトリミング

25℃における校正誤差は、温度に対する調整トリムを1個付加する ことによって除去できます。図4に基本的な電圧出力回路のAD 592 のスケール・ファクタの調整法を示します。

図 4 基本的な電圧出力(一点温度調整)

REV.

回路を調整するために、基準温度センサで温度を測定し、Rの値を出力(V_{OUT})が 1 mV/Kとなるように調整します。調整は最も高い精度が必要な温度において、その値を可能な限りの精度で合わせるようにします。通常、一点で調整を行いたい時には、電流から出力電圧への変換をする所(例えば、出力抵抗とかオペアンプのオフセット)で調整を行います。図 5 はこの調整を用いた場合の精度に対する影響を示したものです。

図5 スケール・ファクタ調整の精度に対する影響

さらに高い精度が要求される場合、図6の回路により校正誤差およびスケール・ファクタ誤差の両方をともに取り除くことができます。

図6 二点(温度)調整

R1を調整して、0℃における出力電圧を 0 Vにすることによって初期校正誤差をゼロにするとともに、出力を絶対温度(K)から摂氏(℃)に変換します。さらに高い温度で、R2を調整して回路のゲインを調整することによってスケール・ファクタ誤差も除去できます。以上の調整をした後に残る誤差は非直線性のみです。図7に、二点調整の精度の代表的なプロットを示します。

電源電圧と周囲温度の効果

AD 592 は、そのすぐれた電源変動除去特性によって電源電圧変動、リップル、雑音等の影響が抑えられます。5 V(工場内のトリミングを行う電圧)以外の電源を使用する場合、電源による誤差は一点調整によって除去することができます。AD 592 のPTATの特性はこの場合も変化しません。電源電圧の出力に対する感度が低いため、低価

図7 二点調整の場合の精度

格の安定化されていない電源を使用することが可能です。また、デバイスと直列に数百Ωの抵抗(例えばCMOSのマルチプレクサ、メータのコイルなどの抵抗)等を挿入しても全体の性能が低下することはありません。

AD 592 が使用される熱的な環境条件により、次の二つの特性が影響されます。つまり、自己発熱の精度に与える影響および温度が急に変化した場合のセンサの応答時間です。前者の周囲温度に対するIC接合温度の上昇は、回路の消費電力およびチップと周囲との熱抵抗(θ_{JA})の二つの関数となります。 °C単位の自己発熱による誤差は、消費電力と θ_{JA} をかけ合わせることによって得られます。自己発熱の誤差は、周囲のヒート・シンク能力によって大幅に変わってきますので、いくつかの条件に対して θ_{JA} を規定する必要があります。表1は、周囲条件で自己発熱誤差がどう変化するかを示しています。通常の使用環境における応用において、温度 25°C、電源 5 V時の自己発熱による誤差は 0.2°C以下です。高温・高電圧電源の限界で使用する場合、通常のクリップ・オン型のヒート・シンクを使用することにより誤差を 25%以上減らすことができます。

媒体	θ _{1Λ} (°C/W)	τ(秒)*	
静止空気			
ヒート・シンクなし	175	60	
ヒート・シンク付き	130	55	
動きのある空気			
ヒート・シンクなし	60	12	
ヒート・シンク付き	40	10	
液体フッ素	35	5	
アルミ・プロック**	30	2.4	

★τは時定数の5倍(最終値の99.3%)の平均です。熱的応答が単純な指数関数に ならない時、実際の応答はここに示した値よりも良くなることがあります。

★★熱伝導性のグリースつき。

表 | 熱抵抗および時定数

周囲温度の急変に対するAD 592 出力の応答は一つの時定数でを有する指数関数で表わすことができます。図8に、いくつかの媒体に対する代表的な応答時間のプロットを示します。

図8 時間応答

時定数では、 θ_{IA} とチップおよびパッケージの熱容量によって決まります。いくつかの異なる媒体に対する実効的なで(最終値の63.2%に達するまでの時間)を表 1 に示します。ここでの解析では無視してありますが、プリント基板の銅箔パターンに接続されている場合、AD 592のハンダ付けされたコバールリードを通して直接熱が伝導します。熱に対する応答速度を速くする必要がある場合、AD 592と温度を計測する面の間に熱伝導性の良いグリースなどを使用して下さい。通常の使用環境の場合、クリップ・オン型のヒート・シンクを使用することにより、安定するまでの時間を $10\sim20\%$ 減らすことができます。

実装上の注意

AD592は、熱的に接触されており、また適切に保護されていれば -25~+105°Cの範囲内の温度測定に使用することができます。プラスチック・パッケージを使用していますので、デバイスを放熱板に 固定する際に、過度の機械的なストレスを印加することは避けて下さい。通常の取付け条件下では、熱伝導性の良いエポキシなどを使用することをお勧めします。高湿の環境下では、電気的に絶縁された金属やセラミックの容器に封入することによって AD 592 を保護することが可能です。低温で結露すると漏れ電流による誤差が発生しますので、非導電性のエポキシ・ペイントを塗るなどして防湿して下さい。

アプリケーション

数個のAD 592 を並列に接続すると、各デバイスの出力が加算され、

図 9 平均および最小温度計測のための接続

平均温度に比例した出力が得られます。AD 592 を直列に接続すると、 最も温度の低いデバイスが直列回路の電流を制限するため、最低温 度を表示できます。これらの回路を図9に示します。

図10は、温度差別測定の回路図を示します。

図 10 温度差測定

R1を使って二つのデバイス固有のオフセットを調整できます。ゲイン抵抗($10 \, \mathrm{k}\Omega$)を大きくすることによって温度計測の分解能を向上できます。 V_+ と V_- が等しくない場合、二つのデバイス間の消費電力の違いによる自己発熱の差により誤差が発生することがあります。 図 $11 \, \mathrm{t}$ 、 AD $592 \, \mathrm{e}$ 整電対の基準接点補償(CJC)に使用した例です。 高価なシミュレート・アイス・バス、むずかしい調整、精度が悪いブリッジ回路はもはや必要ありません。

図 | 熟電対の基準接点補償

この回路を用いた場合、任意の周囲温度範囲、任意の型の熱電対に対してスケーリングの抵抗Rを正しい値に選べば回路の最適化が可能です。AD592の出力 $(1\mu A/K)$ にRをかけ合わせた値が周囲温度範囲内での熱電対の特性曲線(傾き $V/^{\circ}C$)に最もよく合うようにします。さらに、出力感度は抵抗 R_{G1} , R_{G2} を選ぶことによって選択することができます。図中のオフセット調整は単にAD592 の出力を $^{\circ}C$ に変換するためのものです。そのリファレンスと抵抗の温度係数は主要な誤差要因となります。この技術を使用することにより温度変動除去比 40:1 は容易に達成できます。

AD 592 は雑音に強い電流出力を有していますが、プロセス・コントロールやオートメーション用のカレント・ループの標準コンパチブルではありません。図 12 は、40 V、1 $k\Omega$ のシステムで用いられる温度の $4\sim20$ mAの電流トランスミッタの例です。

この回路ではAD 592 の $1\,\mu$ A/Kの出力を $1\,m$ A/°Cに増幅し、 $4\,m$ A で 1°C、 $20\,m$ Aで 33°Cになるようオフセットを調整しています。中間の基準温度での読みが正しくなるように R_t を調整します。抵抗の適切な選定によりAD 592 の動作温度内での任意の温度範囲に選ぶことができます。

REV.I

図 12 温度を 4~20 mAの電流に変換するトランスミッタ

図 13 は、マイクロプロセッサをベースにしたシステムにおいてAD 592 を使い温度を測定する回路の例です。

図 13 温度のディジタル出力化

差動入力型のA/Dコンバータを使い、電流を電圧に変換する抵抗を正しい値に選ぶことによって、最も少ない部品数で任意の温度を中心にして任意の温度範囲(上限は動作温度が規定されている 130℃)の測定が可能です。この図の回路の場合、温度の分解能は1℃です。図 14 は、AD 592 を使った可変温度コントロール(サーモスタット)回路の例です。

 R_{HIGH} と R_{Low} は、ポテンショメータ R_{SET} によって設定温度のリミットを定めています。この回路はAD592の動作温度範囲($-25\sim+105^{\circ}$ C)で動作します。リファレンスは一定のセットポイント電圧を維持し、センサの両端が約 $7\,V$ になるように制御します。また必要な場合、出力と R_{Low} の接地されていない側の端子に抵抗を接続することによって、外来雑音に対するガード・バンドとしてヒステリシスを持たせることができます。

図 14 可変温度コントロール回路

デバイスの出力が電流モードであり、電源電圧がコンプライアンスの範囲内なので、複数個のAD 592 とCMOSマルチプレクサおよび 5 Vのロジック・ゲート・シリーズを使うことによって複数の遠隔点の温度計測が可能です。トランスデューサの両端に 4 V以上の電圧が印加される条件が満足される限り、FETスイッチのオン抵抗やゲートの出力インピーダンスは精度に影響しません。マルチプレクサとロジックのドライブ回路は漏れ電流による誤差を最小にするものを選定します。図 15 は、いくつかの遠隔地にあるAD 592 からの信号電流をローカル制御されたマルチプレクサでスイッチ切換えする回路の例です。AD592の供給電源をスイッチするためにCMOSやTTLゲートを使用し、多重化された信号を一つのツイストペア線で負荷へ伝送することも可能です。

図 15 遠隔温度測定の多重化

多数のAD 592 を使用する時にマルチプレクサの数を減らすため、回路をマトリクス構成にすることも可能です。どの列のAD 592 に電源を供給するかはデコーダによってスイッチ切換えし、どの行のセンサを測定するかはマルチプレクサによって制御します。AD 592 は最高デコーダのチャネル数とマルチプレクサのチャネル数の積の個数まで使用できます。

図 16 に 80 個のAD 592 を制御する回路の例を示します。1 個のセンサを選択するのに必要なのは 7 ピットのワードだけです。アイドリング中は節電のため、マルチプレクサのイネーブル入力によりすべてのセンサをオフにします。

図 16 マトリクス・マルチプレクサ

AD 592 の出力の℃から下への変換は、図 17 に示したような安価なりファレンス電圧とオペアンプを 1 個ずつ使用することによって実現できます。この回路は図 6 の 2 点調整回路と同等ですが、次の 2 点が異なっています。第 1 に、高温での調整の必要性を少なくしてゲイン設定用の抵抗は固定になっています。正しい公差の安価な抵抗を選ぶことによって許容できる精度が得られます。第 2 に、AD 592の校正誤差は既知の都合の良い温度(例えば室温)で、ポテンショメータ 1 個を使って調整できます。このステップはゲインの設定とは無関係です。

図 17 摂氏または華氏温度計