Kholle 6 filière MP* Jean-Louis CORNOU

- 1. Donner la définition d'un voisinage d'un point. Démontrer que l'intérieur d'une partie *A* est le plus grand ouvert inclus dans *A*.
- 2. Soit n un entier naturel non nul. On note $E = M_{n,1}(\mathbb{R})$. Il est muni d'une norme $\|\cdot\|$. Soit $A \in M_n(\mathbb{R})$.
 - (a) A quelle condition nécessaire et suffisante sur A l'application $N: E \to E, X \mapsto ||AX||$ est-elle une norme?
 - (b) Le cas échéant, N et $\|\cdot\|$ sont-elles équivalentes?
- 3. Déterminer l'adhérence de \mathbb{Z} et \mathbb{Q} dans $(\mathbb{R}, |\cdot|)$.

Kholle 6 filière MP* Jean-Louis CORNOU

- 1. Donner la définition d'une boule ouverte. Soit (E_1, N_1) et (E_2, N_2) deux espaces vectoriels normés. Construire une norme sur l'espace produit $E_1 \times E_2$.
- 2. On considère l'espace $\mathbb{R}[X]$. Pour tout $P = \sum_k a_k X^k \in \mathbb{R}[X]$, on note $\|P\| = \max_k |a_k|$. Montrer que $\|\cdot\|$ est une norme sur $\mathbb{R}[X]$. La dérivation de E dans E est-elle continue?
- 3. Soit n un entier naturel non nul. On note $E=M_n(\mathbb{R})$. Il est muni d'une norme N. On considère r un entier naturel inférieur ou égal à n, et la partie $A=\{M\in E|\operatorname{rg}(M)\leqslant r\}$. Déterminer l'intérieur et l'adhérence de A.

Kholle 6 filière MP* Jean-Louis CORNOU

- 1. Enoncer et démontrer la caractérisation séquentielle de la continuité d'une application en un point *a* adhérent à *A*.
- 2. On considère un segment réel [a,b] et $E=C([a,b],\mathbb{R})$ l'espace des fonctions continues de [a,b] dans \mathbb{R} .
 - (a) Montrer que les applications $N_1: E \to \mathbb{R}^+, f \mapsto \int_a^b |f|$ et $N_2: E \to \mathbb{R}^+, f \mapsto \sqrt{\int_a^b f^2}$ sont des normes.
 - (b) Sont-elles équivalentes? Le cas échéant, déterminer $\sup_{f \in E \setminus \{0\}} \frac{N_2(f)}{N_1(f)}$ et $\sup_{f \in E \setminus \{0\}} \frac{N_1(f)}{N_2(f)}$.
- 3. Soit A et B deux parties de E un evn. On note $A+B=\{a+b|(a,b)\in A\times B\}$. Montrer que si A est ouvert, alors A+B est ouvert. Montrer que si A et B sont fermés, alors A+B n'est pas nécessairement fermé.

Kholle 6 filière MP* Jean-Louis CORNOU

- 1. Donner la définition d'un ouvert d'un espace vectoriel normé. Montrer que l'ensemble des ouverts est stable par intersection finie, et par réunion quelconque.
- 2. Soit n un entier naturel. On note $E=M_n(\mathbb{R})$, il est muni d'une norme N. Montrer que l'ensemble $GL_n(\mathbb{R})$ est dense dans E. On pourra considérer pour cela l'application $\mathbb{R} \to \mathbb{R}$, $\lambda \mapsto \det(\lambda I_n M)$ et montrer qu'elle est polynomiale.
- 3. On considère un espace préhilbertien E dont la norme découle d'un produit scalaire. Soit A une partie de E, montrer que si A est dense dans E, alors l'orthogonal de A est nul, i.e $\{x \in E | \forall a \in A, \langle a, x \rangle = 0\} = \{0\}$. La réciproque est-elle vraie?