494 AUTOMATON

5.9 all_equal_valley_min

DESCRIPTION LINKS AUTOMATON

Origin Derived from valley and all_equal.

Constraint all_equal_valley_min(VARIABLES)

Argument VARIABLES : collection(var-dvar)

Restrictions |VARIABLES| > 0

required(VARIABLES, var)

A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a *valley* if and only if there exists an i $(1 < i \le k)$ such that $V_{i-1} > V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k < V_{k+1}$.

Enforce all the valleys of the sequence VARIABLES to be assigned the same value, i.e. to be located at the same altitude corresponding to the minimum value of the sequence VARIABLES.

Example ((2,5,5,4,2,2,6,2,7))

The all-equal_valley_min constraint holds since the two valleys, in bold, of the sequence 2 5 5 4 2 2 6 2 7 are located at the same altitude 2 that is also the minimum value of the sequence 2 5 5 4 2 2 6 2 7. Figure 5.18 depicts the solution associated with the example.

Note that the all_equal_valley_min constraint does not enforce that the sequence VARIABLES contains at least one valley.

Typical $|VARIABLES| \ge 5$

range(VARIABLES.var) > 1 $valley(VARIABLES.var) \ge 2$

Symmetries

Purpose

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

- Prefix-contractible wrt. VARIABLES.
- Suffix-contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	605	6707	81648	1065542	14829903

Number of solutions for all_equal_valley_min: domains 0..n

20130108 495

Figure 5.18: Illustration of the **Example** slot: a sequence of nine variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 respectively fixed to values 2, 5, 5, 4, 2, 2, 6, 2, 7 and its corresponding two valleys, in red, both located at altitude 2 that also corresponds to the minimum value of the sequence

496 AUTOMATON

Solution density for all_equal_valley_min

See also implied by: no_valley.

implies: all_equal_valley.

related: all_equal_peak_max, valley.

Keywords

characteristic of a constraint: automaton with same input symbol.

automaton,

automaton with counters,

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications

- $\bullet \verb| all_equal_valley_min(VARIABLES) |$ with valley(VARIABLES.var) > 1implies some_equal(VARIABLES).
- all_equal_valley_min(VARIABLES) with valley(VARIABLES.var) > 0 ${\bf implies} \ {\tt not_all_equal} ({\tt VARIABLES}).$

20130108 497

Automaton

Figure 5.19 depicts the automaton associated with the all_equal_valley_min constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1} \Leftrightarrow S_i = 0$) \wedge (VAR $_i$ = VAR $_{i+1} \Leftrightarrow S_i = 1$) \wedge (VAR $_i$ > VAR $_{i+1} \Leftrightarrow S_i = 2$).

Figure 5.19: Automaton for the all_equal_valley_min constraint; note the conditional transition from state k to state j testing that the counter Altitude is equal to VAR_i for enforcing that all valleys are located at the same altitude; the conditional transitions from j to k and from k to k and the final check $Altitude \leq VAR_{|VARIABLES|}$ enforce the minimum value of the sequence VARIABLES to not be located below the altitude of the eventual valleys.

Figure 5.20: Hypergraph of the reformulation corresponding to the automaton of the all_equal_valley_min constraint where A stands for the value of the counter Altitude (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})