ASM Homework 2

Generalized Linear Model for JYB data

$Maria\ Gkotsopoulou\ \mathcal{E}\ Ricard\ Monge\ Calvo\ \mathcal{E}\ Amalia\ Vradi$ 22/10/2019

Exploratory Data Analysis

We check for any missing values or attributes without a value and find none nor NAs.

Table 1: Numerical variables

Table 2: Categorical variables

variable	class	min	mean	median	max
age	integer	17.00	39.98	38.00	98.00
campaign	integer	1.00	2.56	2.00	43.00
pdays	integer	0.00	962.63	999.00	999.00
previous	integer	0.00	0.17	0.00	7.00
emp.var.rate	numeric	-3.40	0.08	1.10	1.40
cons.price.idx	numeric	92.20	93.58	93.80	94.77
cons.conf.idx	numeric	-50.80	-40.48	-41.80	-26.90
euribor3m	numeric	0.63	3.62	4.86	5.04
nr.employed	numeric	4963.60	5167.00	5191.00	5228.10

attribute	# levels
job	12
marital	4
education	8
default	3
housing	3
loan	3
contact	2
month	10
day_of_week	5
poutcome	3
у	2

attribute	$level_1$	$level_2$	level_3	$level_4$	level_5	level_6	level_7	$level_8$	$level_9$	$level_10$	$level_11$	$level_12$
job marital	admin. divorced	blue-collar married	entrepreneur single	housemaid unknown	management	retired	self-employed	services	student	technician	unemployed	unknown
education default housing	basic.4y no no	basic.6y unknown unknown	basic.9y yes yes	high.school	illiterate	professional.course	university.degree	unknown				
loan contact month day_of_week poutcome	no cellular apr fri failure	unknown telephone aug mon nonexistent	yes dec thu success	jul tue	jun wed	mar	may	nov	oct	sep		
y	no	yes										

We are interested in predicting whether the customer subscribed to the deposit, so our target variable y is a binary one.

We now look closer into the relation between y and all the numerical variables.

Furthermore, we look into the relation between y and all the factor variables.

Table 3: description by categorical variables

	p.value	df
month	0.000000e+00	9
poutcome	0.000000e+00	2
contact	0.000000e+00	1
job	0.000000e+00	11
default	0.0000000e+00	2
education	6.666612 e-26	7
marital	5.822164e-15	3
$_{\rm day_of_week}$	2.940879e-02	4

Table 4: description by continuous variables

	Eta2	P-value
pdays previous emp.var.rate euribor3m nr.employed	0.101421477 0.051869032 0.089296876 0.094811061 0.124452342	0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
cons.price.idx campaign cons.conf.idx age	0.019873250 0.004582956 0.003391874 0.001232525	0.000000e+00 1.860000e-30 5.907421e-23 2.791189e-09

Complete Model

Evaluation First Order Interactions

Automatic Variable Selection process

Model comparison

Model validation

Model interpretation