Devoir à la maison n° 4 - MPI*

À rendre le lundi 10 novembre 2025

Étude du groupe $(\mathbb{Z}/n\mathbb{Z})^{\times}$

On cherche dans ce problème à décrire le groupe des éléments inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$.

 $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ est l'indicatrice d'Euler, qui à tout $n \in \mathbb{N}^*$ associe le nombre d'éléments dans [0, n-1] qui sont premiers à n. On rappelle que pour $n \ge 2$, $\varphi(n)$ est aussi le cardinal du groupe $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

1. Une jolie formule.

Soit $n \in \mathbb{N}^*$.

a) Soit d est un diviseur de n. Montrer que pour tout $k \in [0, n-1]$, on a

$$\overline{k}$$
 est d'ordre $d \iff \exists m \in [0, d-1], \ m \land d = 1, \ k = m \frac{n}{d}$

En déduire qu'il y a $\varphi(d)$ éléments d'ordre d dans le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$.

b) En déduire la formule :

$$\sum_{d|n} \varphi(d) = n$$

La somme portant sur l'ensemble des diviseurs de n.

2. cas de $\mathbb{Z}/p\mathbb{Z}$ avec p premier.

 $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ est alors un corps (voir cours) et on va montrer que $(\mathbb{Z}/p\mathbb{Z})^{\times} = \mathbb{F}_p^*$ est un groupe cyclique, donc isomorphe à $\mathbb{Z}/(p-1)\mathbb{Z}$.

On note $G = F_p^*$ et n = p - 1. G est donc un groupe d'ordre n.

- a) Étudier le cas de $G = \mathbb{F}_7^* = \{\overline{1}, \overline{2}, \dots, \overline{6}\}$: déterminer un élément d'ordre 6 et expliciter un isomorphisme $f : (\mathbb{Z}/6\mathbb{Z}, +) \mapsto (\mathbb{F}_7^*, \times)$.
- b) Soit d un diviseur de n. On note N(d) le nombre d'éléments de G d'ordre d.
 - (i) Montrer que si $x \in G$ est d'ordre d, et H le sous-groupe engendré par x, on a $y^d = \overline{1}$ pour tout $y \in H$.
 - (ii) En considérant le polynôme $X^d \overline{1} \in \mathbb{F}_p[X]$, en déduire que H contient tous les éléments de G d'ordre d.
 - (iii) En déduire que N(d) = 0 ou $N(d) = \varphi(d)$.
- c) En utilisant la formule obtenue à la question 1.b) en déduire qu'on a en fait $N(d) = \varphi(d)$ pour tout diviseur d de n.
- \mathbf{d}) En déduire que G est cyclique.

3. Un petit lemme

Soient a et b des élements d'ordre p et q d'un groupe G. On suppose que a et b commutent et que p et q sont premiers entre eux. Montrer que ab est d'ordre pq.

4. Cas de $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ avec $p \geqslant 3$ premier.

Soit p un nombre premier, avec $p \ge 3$, et soit $\alpha \ge 2$. On va montrer que le groupe multiplicatif $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$, de cardinal $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$ est encore cyclique, donc isomorphe au groupe additif $\mathbb{Z}/p^{\alpha-1}(p-1)\mathbb{Z}$.

- a) Montrer que pour tout $i \in [1, p-1]$, p est un diviseur de $\binom{p}{i}$.
- **b)** Montrer par récurrence que pour tout $k \in \mathbb{N}^*$, on peut écrire $(1+p)^{p^k} = 1 + \lambda p^{k+1}$, avec $\lambda \in \mathbb{N}^*$ premier à p.
- c) Déduire de la question précédente que $\overline{p+1}$ est d'ordre $p^{\alpha-1}$ dans le groupe $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$.
- d) À l'aide du résultat obtenu à la question 2, justifier de l'existence d'un élément y d'ordre p-1 dans $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$.
 - cDM Indication : considérer le sous-groupe engendré par un élément x représenté par un élément d'ordre p-1 dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$
- e) En se servant du lemme obtenu à la question 3., en déduire que $y(\overline{1+p})$ est d'ordre $p^{\alpha-1}(p-1)$ et conclure.
- f) Exemple : déterminer un générateur du groupe $(\mathbb{Z}/81\mathbb{Z})^{\times}$.

5. Cas (presque) général : $\mathbb{Z}/n\mathbb{Z}$ avec $n \notin 8\mathbb{Z}$

On écrit la décomposition de n en facteurs premiers $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ en facteurs premiers, et on suppose dans un premier temps n impair (donc tous les p_i sont premiers impairs).

- a) Montrer que $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est isomorphe au groupe produit $\mathbb{Z}/\varphi(p_1^{\alpha_1})\mathbb{Z}\times\cdots\times\mathbb{Z}/\varphi(p_r^{\alpha_r})\mathbb{Z}$
- b) En examinant les cas $(\mathbb{Z}/2\mathbb{Z})^{\times}$ et $(\mathbb{Z}/4\mathbb{Z})^{\times}$, montrer que le resultat de la question précédente persiste lorsque n est pair mais non multiple de 8.
- c) Montrer que $(\mathbb{Z}/8\mathbb{Z})^{\times} \simeq (\mathbb{Z}/2\mathbb{Z})^2$ (groupe de Klein)

On peut montrer de façon générale que pour $\alpha \geq 2$, $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{\alpha-2}\mathbb{Z}$, non cyclique.