REFERENCES 81

- Workshop on Information Security Theory and Practices, pp. 1–21, Springer, 2011.
- [102] A. Voulimeneas, D. Song, P. Larsen, M. Franz, and S. Volckaert, "dmvx: Secure and efficient multi-variant execution in a distributed setting," in Proceedings of the 14th European Workshop on Systems Security, pp. 41–47, 2021.
- [103] R. Tsoupidi, R. C. Lozano, and B. Baudry, "Constraint-based diversification of JOP gadgets," CoRR, vol. abs/2111.09934, 2021.
- [104] J. Cabrera Arteaga, O. Floros, O. Vera Perez, B. Baudry, and M. Monperrus, "Crow: code diversification for webassembly," in *MADWeb*, *NDSS* 2021, 2021.
- [105] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, "Fine-grained and accurate source code differencing," in *Proceedings of the International Conference on Automated Software Engineering*, pp. 313–324, 2014.
- [106] H. Bostani and V. Moonsamy, "Evadedroid: A practical evasion attack on machine learning for black-box android malware detection," CoRR, vol. abs/2110.03301, 2021.
- [107] D. Yao, X. Shu, L. Cheng, S. J. Stolfo, E. Bertino, and R. Sandhu, Anomaly detection as a service: challenges, advances, and opportunities. Springer, 2018.
- [108] S. A. Hofmeyr, S. Forrest, and A. Somayaji, "Intrusion detection using sequences of system calls," *J. Comput. Secur.*, vol. 6, p. 151–180, aug 1998.
- [109] J. Cabrera Arteaga, M. Monperrus, and B. Baudry, "Scalable comparison of javascript v8 bytecode traces," in *Proceedings of the 11th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages*, VMIL 2019, (New York, NY, USA), p. 22–31, Association for Computing Machinery, 2019.
- [110] Y. Fang, C. Huang, L. Liu, and M. Xue, "Research on malicious javascript detection technology based on lstm," *IEEE Access*, vol. 6, pp. 59118–59125, 2018.
- [111] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner, T. McMullen, S. Savage, and D. Stefan, ", : Sfi safety for native-compiled wasm," *Network and Distributed Systems Security (NDSS) Symposium*.
- [112] C. Fred, "Computer viruses," in *Proceedings of the 7th DoD/NBS Computer Security Conference 1984*, pp. 240–263, 1986.

82 REFERENCES

[113] R. L. Castro, C. Schmitt, and G. D. Rodosek, "Armed: How automatic malware modifications can evade static detection?," in 2019 5th International Conference on Information Management (ICIM), pp. 20–27, 2019.

- [114] R. L. Castro, C. Schmitt, and G. Dreo, "Aimed: Evolving malware with genetic programming to evade detection," in 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 240–247, IEEE, 2019.
- [115] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani, D. Balzarotti, G. Vigna, and C. Kruegel, "When malware is packin' heat; limits of machine learning classifiers based on static analysis features," in *Proc. of NDSS*, 2020.
- [116] M. Chua and V. Balachandran, "Effectiveness of android obfuscation on evading anti-malware," in *Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy*, CODASPY '18, Association for Computing Machinery, 2018.
- [117] P. Dasgupta and Z. Osman, "A Comparison of State-of-the-Art Techniques for Generating Adversarial Malware Binaries," arXiv e-prints, Nov. 2021.
- [118] G. Lu and S. K. Debray, "Weaknesses in defenses against web-borne malware (short paper)," in *Detection of Intrusions and Malware, and Vulnerability Assessment 10th International Conference, DIMVA. Proceedings* (K. Rieck, P. Stewin, and J. Seifert, eds.), Lecture Notes in Computer Science, 2013.
- [119] M. Payer, "Embracing the new threat: Towards automatically self-diversifying malware,"
- [120] N. Loose, F. Mächtle, C. Pott, V. Bezsmertnyi, and T. Eisenbarth, "Madvex: Instrumentation-based Adversarial Attacks on Machine Learning Malware Detection," arXiv e-prints, p. arXiv:2305.02559, May 2023.
- [121] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, G. Lup, J. Taneja, and J. Regehr, "Souper: A Synthesizing Superoptimizer," arXiv preprint 1711.04422, 2017.
- [122] J. Cabrera Arteaga, P. Laperdrix, M. Monperrus, and B. Baudry, "Multi-Variant Execution at the Edge," arXiv e-prints, p. arXiv:2108.08125, Aug. 2021.
- [123] J. Lettner, D. Song, T. Park, P. Larsen, S. Volckaert, and M. Franz, "Partisan: fast and flexible sanitization via run-time partitioning," in *International Symposium on Research in Attacks, Intrusions, and Defenses*, pp. 403–422, Springer, 2018.