

ブラシレスDCモーター (永久磁石同期モーター) のベクトル制御の設計

MathWorks Japan アプリケーションエンジニアリング部(制御) シニアアプリケーションエンジニア 福井 慶一

負荷

(メカ)

例題: ブラシレスDCモーター (永久磁石同期モーター) の速度制御システム

目的: 以下の制御仕様を満たすように、ベクトル制御ロジックの構築と速度制御パラメータの調整を行う。

制御仕様	目標速度1,000[rpm]のステップ。信号に対する応答指標
立ち上がり時間	20[msec]
オーバーシュート	5[%] (=1,000 + 50[rpm])

(電流、速度、角度)

構成部品

モデル① 電気系:簡易

<mark>テスト条件</mark>

- 1[sec]の間の速度制御システムの挙動を確認する。
- t=0.05[sec]で、目標速度1,000[rpm]のステップ信号を入力する。
- t=0.5[sec]で、負荷トルク0.2[Nm]を入力する。

サンプルモデルの実行手順

- #1) ブラシレスDCモーターのベクトル制御の各種パラメータを設定した foc_controlsystem_param.m を実行する。
- #2) foc_controlsystem_average.slx を開いて、「Start Values」をクリックしてシミュレーションを実行する。その後、p.6の結果が得られることを確認する。

コントローラ

プラント

シミュレーション結果 (電気系:簡易、速度制御のPIゲインの調整前)

N_{m_ref} [rpm] モーター速度

N_m [rpm]

オーバーシュートが発生して、目標速度に追従する。・・・(※) t=0.5[sec]で負荷トルクの外乱が発生したときも、 上記(※)と同様な振舞いをする。

モーター速度 N_m [rpm]

モータートルク T_m [Nm]

モーター相電圧 $V_a V_b V_c [V]$

モーター相電流 $I_a I_b I_c [A]$

速度制御のPIゲインの調整

サンプルモデルの実行手順

- #1) PID Controllerブロックから、[調整]をクリックして、PID調整器の専用UIを立ち上げる。
- #2) [パラメーターの表示]をクリックして、PIゲインや立ち上がり時間などの制御性能の指標を表示させる。
- #3) 領域: [周波数]を選択して、帯域幅や位相余裕のゲージをマウス操作で調整する。
- #4) PIゲインの調整が終われば、[ブロックの更新]をクリックする。

- - X

シミュレーション結果 (電気系:簡易、速度制御のPIゲインの調整後)

オーバーシュートせずに、目標速度に追従する。・・・(※) t=0.5[sec]で負荷トルクの外乱が発生したときも、 上記(※)と同様な振舞いをする。

 $I_a I_b I_c [A]$

Vabc

サンプルモデルの実行手順

#1) 速度制御のPIゲインの調整後に、p.3のモデルのシミュレーションを実行し、本ページの結果が得られることを確認する。

|サンブル ベース |T=1.000

モデル2

電気系:詳細

サンプルモデルの実行手順

#1) foc_controlsystem_pwm.slx を開いて、シミュレーションを実行する。(「Final Values」をクリックすると、p.7で調整が完了したPIゲインの値を設定できる。)
シミュレーションの結果として、p.11の結果が得られることを確認する。

負荷トルク

ダンパー

プラント

高万 ()

シミュレーション結果 (電気系:詳細、速度制御のPIゲインの調整後)

モーター速度 N_m [rpm]

 T_{m} [Nm]

 $I_a I_b I_c [A]$

N_{m ref} [rpm]

モーター速度

 N_{m} [rpm]

オーバーシュートせずに、目標速度に追従する。・・・(※) t=0.5[sec]で負荷トルクの外乱が発生したときも、 上記(※)と同様な振舞いをする。

補足資料

- スイッチング制御 (例: PWM制御) を含むモデルにおける制御パラメータの自動調整
- Simscape Power Systems™ の2種類のライブラリ
 - Specialized Technology (Simulinkベースで構築されたライブラリ)
 - Simscape Components (Simscape Languageベースで構築されたライブラリ)

<注意事項>

R2018bから、Simscape Power Systems™とSimscape Electronics™が1つの電気系モデリング ツールとして統合されました。新しいツールの名前は、Simscape Electrical™です。

モデル

サンプルモデルの実行手順

- #1) ブラシレスDCモーターのベクトル制御の各種パラメータを設定した foc_controlsystem_param.m を実行する。
- #2) foc_controlsystem_pwm_Plopt.slx を開いて、「Start Values」、「Optimize」の順にクリックして、パラメータ最適化の専用UIを起動する。
- #3) 以降の手順は、p.14-17を参照。

時間応答 (モーター速度) に制約条件を与える

調整するパラメータの設定と確認をして、調整前のモーター速度の時間応答を確認する

時間応答 (左側)、調整するパラメータ (右側) をグラフ表示する

制御パラメータの自動調整を実行する

RESPONSE OPTIMIZATION

W New ▼

- - X

Options

Optimize

₽ ? •

パラメータ推定作業を高速化させるために、「高速リスタートを有効」にする設定をしているので、 もし本モデルを編集したい場合は、右図のボタンをクリックして、「高速リスタートを無効」にした状態で編集を行う。

TIME PLOT

表示 Design Variables Set:

☐ DesignVars ▼ //

Data to Plot:

Sensitivity

♠ Response Optimization* - foc_controlsystem_pwm_PIopt - Time plot 1

補足資料

- スイッチング制御 (例: PWM制御) を含むモデルにおける制御パラメータの自動調整
- Simscape Power Systems™ の2種類のライブラリ
 - Specialized Technology (Simulinkベースで構築されたライブラリ)
 - Simscape Components (Simscape Languageベースで構築されたライブラリ)

<注意事項>

R2018bから、Simscape Power Systems™とSimscape Electronics™が1つの電気系モデリングツールとして統合されました。新しいツールの名前は、Simscape Electrical™です。

Simscape Power Systems™ - 2種類のライブラリを提供

- 1 は、R2013bからリリースされたライブラリ
- 2 は、従来からあるライブラリ

1 Simscape Components

- 物理モデリング言語(Simscape Language)で構築された 電気系コンポーネントを提供
- Simscape™、Simscape Electronics™に提供されている様々な種類・詳細度の電気系コンポーネントと組合せた解析用途で推奨(電気・熱・機械などのマルチドメインの解析)

R2013b

2 Specialized Technology

- Simulinkベースで構築された電気系コンポーネントを提供
- パワーエレクトロニクス、電力系統の高速な解析用途で推奨
- #1) パワーエレクトロニクスの解析に有効な計算手法を提供 (理想スイッチングモード、連続時間モード、離散時間モード)
- #2) 電力系統の解析に有効な計算手法、解析機能を提供 (フェーザー法による電力系統の初期値・潮流計算、長時間の解析)

Simscape Electrical™ - 2種類のライブラリを提供

- 1 は、R2013bからリリースされたライブラリ
- 2 は、従来からあるライブラリ

- 1 Simscape Components
- 物理モデリング言語(Simscape Language)で構築された 電気系コンポーネントを提供
- 様々な種類・詳細度の電気系コンポーネントと組合せた解析 用途で推奨 (電気・熱・機械などのマルチドメインの解析)

R2013b

- 2 Specialized Power Systems
- Simulinkベースで構築された電気系コンポーネントを提供
- パワーエレクトロニクス、電力系統の高速な解析用途で推奨
- #1) パワーエレクトロニクスの解析に有効な計算手法を提供 (理想スイッチングモード、連続時間モード、離散時間モード)
- #2) 電力系統の解析に有効な計算手法、解析機能を提供 (フェーザー法による電力系統の初期値・潮流計算、長時間の解析)

Simscape Electrical™ - 2種類のライブラリを提供

- 1 Simscape Components
- 物理モデリング言語(Simscape Language)で構築された 電気系コンポーネントを提供
- 様々な種類・詳細度の電気系コンポーネントと組合せた解析 用途で推奨 (電気・熱・機械などのマルチドメインの解析)

R2013b

- 2 Specialized Power Systems
- Simulinkベースで構築された電気系コンポーネントを提供
- パワーエレクトロニクス、電力系統の高速な解析用途で推奨
- #1) パワーエレクトロニクスの解析に有効な計算手法を提供 (理想スイッチングモード、連続時間モード、離散時間モード)
- #2) 電力系統の解析に有効な計算手法、解析機能を提供 (フェーザー法による電力系統の初期値・潮流計算、長時間の解析)

- 1 は、R2013bからリリースされたライブラリ
- 2 は、従来からあるライブラリ

Simscape Electrical™ - 2種類のライブラリの使い分けの指針

Specialized Technology (Specialized Power Systems)

- パワーエレクトロニクス、電力系統システムの高速な解析
- 半導体デバイスの数が多い大規模なパワエレシステムの解析
- フェーザー法による電力系統の初期値・潮流計算、長時間の解析

STATCOM (Detailed MMC Model with 22 Power Modules per Phase)

1.5e-05 s. Learn more about this example

This example shows a 12 MVA, 34.5 kV Static Synchronous Compensator

STATCOM (1相につき22個の電力モジュールを持つMMCの詳細モデル)

https://www.mathworks.com/help/physmod/sps/examples/statcom-detailed-mmcmodel-with-22-power-modules-per-phase.html

Simscape Components

- マルチドメインシステム (例: 電気、熱、機械) の解析
- 電気系コンポーネント (例: 半導体デバイス)の詳細度を変えた解析
- モーター、半導体デバイスの電力損失、熱の解析

Simscape Electrical は、

- ・詳細な半導体デバイスモデル
- ・詳細なPMSMモデル (FEMのテーブルデータを設定) などを提供。

IPMSM トルク制御

https://www.mathworks.com/help/physmod/sps/examples/ipmsm-torque-control.html

foc_controlsystemフォルダ

次の2つのフォルダがある。「English」フォルダ、「Japanese」フォルダ。 オリジナルバージョンは日本語で作成したもので、「Japanese」フォルダに保存。 また、それを英語に翻訳したものを、「English」フォルダに保存。

- Simscape Components を使って作成したサンプルモデル 「sps_sc」のファイル一式を参照。
 P.2-17の内容のサンプルモデルを保存。
- Specialized Technology (Specialized Power Systems) を使って作成したサンプルモデル
 「sps_st」のファイル一式を参照。
 P.2-17と同じ内容のサンプルモデルを保存。

本資料で使用したMATLAB製品

- 基本環境
 - MATLAB®, Simulink®
- 物理モデリング
 - Simscape[™], Simscape Power Systems[™]
- 制御設計
 - Simulink Control Design™、Control System Toolbox™
- パラメータ最適化
 - Simulink Design Optimization[™], Optimization Toolbox[™]

<注意事項>

R2018bから、Simscape Power Systems™とSimscape Electronics™が1つの電気系モデリングツールとして統合されました。新しいツールの名前は、Simscape Electrical™です。

© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.