Supplements for "Tensor denoising and completion based on ordinal observations"

1 Proofs

1.1 Estimation error for tensor denoising

Proof of Theorem 4.1. We suppress the subscript Ω in the proof, because the tensor denoising assumes complete observation $\Omega = [d_1] \times \cdots \times [d_K]$. It follows from the expression of $\mathcal{L}_{\mathcal{Y}}(\Theta)$ that

$$\frac{\partial \mathcal{L}_{\mathcal{Y}}}{\partial \theta_{\omega}} = \sum_{\ell \in [L]} \mathbb{1}_{\{y_{\omega} = \ell\}} \frac{\dot{g}_{\ell}(\theta_{\omega})}{g_{\ell}(\theta_{\omega})},$$

$$\frac{\partial^{2} \mathcal{L}_{\mathcal{Y}}}{\partial \theta_{\omega}^{2}} = \sum_{\ell \in [L]} \mathbb{1}_{\{y_{\omega} = \ell\}} \frac{\ddot{g}_{\ell}(\theta_{\omega})g_{\ell}(\theta_{\omega}) - \dot{g}_{\ell}^{2}(\theta_{\omega})}{g_{\ell}^{2}(\theta_{\omega})} \text{ and } \frac{\partial^{2} \mathcal{L}_{\mathcal{Y}}}{\partial \theta_{\omega} \theta_{\omega}'} = 0 \text{ if } \omega \neq \omega', \tag{1}$$

for all $\omega \in [d_1] \times \cdots \times [d_K]$. Define $d_{\text{total}} = \prod_k d_k$. Let $\nabla_{\Theta} \mathcal{L}_{\mathcal{Y}} \in \mathbb{R}^{d_{\text{total}}}$ denote the vector of gradient with respect to $\text{Vec}(\Theta) \in \mathbb{R}^{d_{\text{total}}}$, and $\nabla^2_{\Theta} \mathcal{L}_{\mathcal{Y}}$ the corresponding Hession matrix of size d_{total} -by- d_{total} . Here, $\text{Vec}(\cdot)$ denotes the operation that turns a tensor into a vector. By (1), $\nabla^2_{\Theta} \mathcal{L}_{\mathcal{Y}}$ is a diagonal matrix. Recall that

$$U_{\alpha} = \max_{\ell \in [L], |\alpha| \le \alpha} \frac{\dot{g}_{\ell}(\theta)}{g_{\ell}(\theta)} > 0 \quad \text{and} \quad L_{\alpha} = \max_{\ell \in [L], |\alpha| \le \alpha} \frac{\dot{g}_{\ell}^{2}(\theta) - \ddot{g}_{\ell}(\theta)g_{\ell}(\theta)}{g_{\ell}^{2}(\theta)} > 0.$$

Therefore, all entries in $\nabla_{\Theta} \mathcal{L}_{\mathcal{Y}}$ are upper bounded $U_{\alpha} > 0$, and all diagonal entries in $\nabla_{\Theta}^2 \mathcal{L}_{\mathcal{Y}}$ are upper bounded by $-L_{\alpha} < 0$.

By the second-order Taylor's expansion of $\mathcal{L}_{\mathcal{V}}(\Theta)$ around Θ^{true} , we obtain

$$\mathcal{L}_{\mathcal{Y}}(\Theta) = \mathcal{L}_{\mathcal{Y}}(\Theta^{\text{true}}) + \langle \nabla_{\Theta} \mathcal{L}_{\mathcal{Y}}, \text{ Vec}(\Theta - \Theta^{\text{true}}) \rangle + \frac{1}{2} \text{ Vec}(\Theta - \Theta^{\text{true}})^T \nabla_{\Theta}^2 \mathcal{L}_{\mathcal{Y}}(\check{\Theta}) \text{ Vec}(\Theta - \Theta^{\text{true}}),$$
(2)

 $\check{\Theta} = \gamma \Theta^{\text{true}} + (1 - \gamma)\Theta$ for some $\gamma \in [0, 1]$, and $\nabla^2_{\Theta} \mathcal{L}_{\mathcal{Y}}(\check{\Theta})$ denotes the $\prod_k d_k$ -by- $\prod_k d_k$ Hessian matrix evaluated at $\check{\Theta}$.

We first bound the linear term in (2). Note that, by Lemma 3,

$$|\nabla_{\Theta} \mathcal{L}_{\mathcal{Y}}(\Theta^{\text{true}}), \text{Vec}(\Theta - \Theta^{\text{true}})\rangle| \le ||\nabla_{\Theta} \mathcal{L}_{\mathcal{Y}}(\Theta^{\text{true}})||_{\sigma} ||\Theta - \Theta^{\text{true}}||_{*},$$
 (3)

where $\|\cdot\|_{\sigma}$ denotes the tensor spectral norm and $\|\cdot\|_{*}$ denotes the tensor nuclear norm. Define

$$s_{\omega} = \frac{\partial \mathcal{L}_{\mathcal{Y}}}{\partial \theta_{\omega}} \Big|_{\Theta = \Theta^{\text{true}}} \text{ for all } \omega \in [d_1] \times \cdots \times [d_K].$$

Based on (1) and the definition of U_{α} , $\nabla_{\Theta} \mathcal{L}_{\mathcal{Y}}(\Theta^{\text{true}}) = [\![s_{\omega}]\!]$ is a random tensor whose entries are independently distributed satisfying

$$\mathbb{E}(s_{\omega}) = 0, \quad |s_{\omega}| \le U_{\alpha}, \quad \text{for all } \omega \in [d_1] \times \dots \times [d_K]. \tag{4}$$

By lemma 5, with probability at least $1 - \exp(-C_1 \sum_k d_k)$, we have

$$\|\nabla_{\Theta} \mathcal{L}_{\mathcal{Y}}(\Theta^{\text{true}})\|_{\sigma} \le C_2 U_{\alpha} \sqrt{\sum_{k} d_k},$$
 (5)

where C_1, C_2 are two positive constants that depend only on K. Furthermore, note that $\operatorname{rank}(\Theta) \leq r$, $\operatorname{rank}(\Theta^{\operatorname{true}}) \leq r$, $\operatorname{so} \operatorname{rank}(\Theta - \Theta^{\operatorname{true}}) \leq 2r$. By lemma 2, $\|\Theta - \Theta^{\operatorname{true}}\|_* \leq (2r_{\max})^{\frac{K-1}{2}} \|\Theta - \Theta^{\operatorname{true}}\|_F$. Combining (3), (4) and (5), we have that, with probability at least $1 - \exp(-C_1 \sum_k d_k)$,

$$|\langle \nabla_{\Theta} \mathcal{L}_{\mathcal{Y}}(\Theta^{\text{true}}), \text{Vec}(\Theta - \Theta^{\text{true}}) \rangle| \le C_2 U_{\alpha} \sqrt{r_{\text{max}}^{K-1} \sum_{k} d_k} \|\Theta - \Theta^{\text{true}}\|_F.$$
 (6)

We next bound the quadratic term in (2). Note that

$$\operatorname{Vec}(\Theta - \Theta^{\operatorname{true}})^{T} \nabla_{\Theta}^{2} \mathcal{L}_{\mathcal{Y}}(\check{\Theta}) \operatorname{Vec}(\Theta - \Theta^{\operatorname{true}}) = \sum_{\omega} \left(\frac{\partial^{2} \mathcal{L}_{\mathcal{Y}}}{\partial \theta_{\omega}^{2}} \Big|_{\Theta = \check{\Theta}} \right) (\theta_{\omega} - \theta_{\operatorname{true},\omega})^{2}$$

$$\leq -L_{\alpha} \sum_{\omega} (\Theta_{\omega} - \Theta_{\operatorname{true},\omega})^{2}$$

$$= -L_{\alpha} \|\Theta - \Theta^{\operatorname{true}}\|_{F}^{2}, \tag{7}$$

where the second line comes from the fact that $\|\check{\Theta}\|_{\infty} \leq \alpha$ and the definition of L_{α} .

Combining (2), (6) and (7), we have that, for all $\Theta \in \mathcal{P}$, with probability at least $1 - \exp(-C_1 \sum_k d_k)$,

$$\mathcal{L}_{\mathcal{Y}}(\Theta) \leq \mathcal{L}_{\mathcal{Y}}(\Theta^{\text{true}}) + C_2 U_{\alpha} \left(r_{\text{max}}^{K-1} \sum_{k} d_k \right)^{1/2} \|\Theta - \Theta^{\text{true}}\|_F - \frac{L_{\alpha}}{2} \|\Theta - \Theta^{\text{true}}\|_F^2.$$

In particular, the above inequality also holds for $\hat{\Theta} \in \mathcal{P}$. Therefore,

$$\mathcal{L}_{\mathcal{Y}}(\hat{\Theta}) \leq \mathcal{L}_{\mathcal{Y}}(\Theta^{\text{true}}) + C_2 U_{\alpha} \left(r_{\text{max}}^{K-1} \sum_{k} d_k \right)^{1/2} \| \hat{\Theta} - \Theta^{\text{true}} \|_F - \frac{L_{\alpha}}{2} \| \hat{\Theta} - \Theta^{\text{true}} \|_F^2.$$

Since $\hat{\Theta} = \arg \max_{\Theta \in \mathcal{P}} \mathcal{L}_{\mathcal{Y}}(\Theta), \ \mathcal{L}_{\mathcal{Y}}(\hat{\Theta}) - \mathcal{L}_{\mathcal{Y}}(\Theta^{\mathrm{true}}) \geq 0$, which gives

$$C_2 U_{\alpha} \left(r_{\text{max}}^{K-1} \sum_{k} d_k \right)^{1/2} \| \hat{\Theta} - \Theta^{\text{true}} \|_F - \frac{L_{\alpha}}{2} \| \hat{\Theta} - \Theta^{\text{true}} \|_F^2 \ge 0.$$

Henceforth,

$$\frac{1}{\sqrt{\prod_k d_k}} \|\hat{\Theta} - \Theta^{\text{true}}\|_F \le \frac{2C_2 U_\alpha \sqrt{r_{\text{max}}^{K-1} \sum_k d_k}}{L_\alpha \sqrt{\prod_k d_k}} = \frac{2C_2 U_\alpha r_{\text{max}}^{(K-1)/2}}{L_\alpha} \sqrt{\frac{\sum_k d_k}{\prod_k d_k}}.$$

This completes the proof.

Proof of Corollary 1. The result follows immediately from Theorem 4.1 and Lemma 7. \Box

1.2 Sample complexity for tensor completion

Proof of Theorem 4.2. Let $d_{\text{total}} = \prod_{k \in [K]} d_k$, and $\gamma \in [0, 1]$ be a constant to be specified later. Our strategy is to construct a finite set of tensors $\mathcal{X} = \{\Theta_i : i = 1, \ldots\} \subset \mathcal{P}$ satisfying the properties of (i)-(iv) in Lemma 8. By Lemma 8, such a subset of tensors exist. For any tensor $\Theta \in \mathcal{X}$, let \mathbb{P}_{Θ} denote the distribution of $\mathcal{Y}|\Theta$, where \mathcal{Y} is the ordinal tensor. In particular, $\mathbb{P}_{\mathbf{0}}$ is the distribution of

 \mathcal{Y} induced by the zero parameter tensor $\mathbf{0}$, i.e., the distribution of \mathcal{Y} conditional on the parameter tensor $\Theta = \mathbf{0}$. Based on the Remark for Lemma 7, we have

$$KL(\mathbb{P}_{\Theta}||\mathbb{P}_{\mathbf{0}}) \le C||\Theta||_F^2, \tag{8}$$

where $C = \frac{(4L-6)\dot{f}^2(0)}{A_{\alpha}} > 0$ is a constant independent of the tensor dimension and rank. Combining the inequality (8) with property (iii) of \mathcal{X} , we have

$$KL(\mathbb{P}_{\Theta}||\mathbb{P}_{\mathbf{0}}) \le \gamma^2 R_{\max} d_{\max}. \tag{9}$$

From (9) and the property (i), we deduce that the condition

$$\frac{1}{\operatorname{Card}(\mathcal{X}) - 1} \sum_{\Theta \in \mathcal{X}} \operatorname{KL}(\mathbb{P}_{\Theta}, \mathbb{P}_{\mathbf{0}}) \le \varepsilon \log \left\{ \operatorname{Card}(\mathcal{X}) - 1 \right\}$$
(10)

holds for any $\varepsilon \geq 0$ when $\gamma \in [0,1]$ is chosen to be sufficiently small depending on ε , e.g., $\gamma \leq \sqrt{3\varepsilon}$. By applying Lemma 10 to (10), and in view of the property (iv), we obtain that

$$\inf_{\hat{\Theta}} \sup_{\Theta^{\text{true}} \in \mathcal{X}} \mathbb{P}\left(\|\hat{\Theta} - \Theta^{\text{true}}\|_F \ge \frac{\gamma}{8} \min\left\{\alpha \sqrt{d_{\text{total}}}, C^{-1/2} \sqrt{R_{\text{max}} d_{\text{max}}}\right\}\right) \ge \frac{1}{2} \left(1 - 2\varepsilon - \sqrt{\frac{16\varepsilon}{R_{\text{max}} d_{\text{max}}}}\right). \tag{11}$$

Note that $\operatorname{Loss}(\hat{\Theta}, \Theta^{\text{true}}) = \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2 / d_{\text{total}}$ and $\mathcal{X} \subset \mathcal{P}$. By taking $\varepsilon = 1/8$ and $\gamma = 1/2$, we conclude from (11) that

$$\inf_{\hat{\Theta}} \sup_{\Theta^{\mathrm{true}} \in \mathcal{P}} \mathbb{P}\left(\mathrm{Loss}(\hat{\Theta}, \Theta^{\mathrm{true}}) \geq \frac{1}{256} \min\left\{\alpha^2, \frac{C^{-1}R_{\mathrm{max}}d_{\mathrm{max}}}{d_{\mathrm{total}}}\right\} \right) \geq \frac{1}{2} \left(\frac{3}{4} - \frac{2}{R_{\mathrm{max}}d_{\mathrm{max}}}\right) \geq \frac{1}{8}.$$

This completes the proof.

Proof of Theorem 4.3. For notational convenience, we use $\|\Theta\|_{F,\Omega} = \sum_{\omega \in \Omega} \Theta_{\omega}^2$ to denote the sum of squared entries over the observed set Ω , for a tensor $\Theta \in \mathbb{R}^{d_1 \times \cdots \times d_K}$.

Following a similar argument as in the proof of Theorem 4.1, we have

$$\mathcal{L}_{\mathcal{Y},\Omega}(\Theta) = \mathcal{L}_{\mathcal{Y},\Omega}(\Theta^{\mathrm{true}}) + \langle \nabla_{\Theta} \mathcal{L}_{\mathcal{Y},\Omega}, \ \operatorname{Vec}(\Theta - \Theta^{\mathrm{true}}) \rangle + \frac{1}{2} \operatorname{Vec}(\Theta - \Theta^{\mathrm{true}})^T \nabla_{\Theta}^2 \mathcal{L}_{\mathcal{Y},\Omega}(\check{\Theta}) \operatorname{Vec}(\Theta - \Theta^{\mathrm{true}}),$$

$$(12)$$

where

- 1. $\nabla_{\Theta} \mathcal{L}_{\mathcal{Y},\Omega}$ is a length- d_{total} vector with $|\Omega|$ nonzero entries, and each entry is upper bounded by $L_{\alpha} > 0$.
- 2. $\nabla^2_{\Theta} \mathcal{L}_{\mathcal{Y},\Omega}$ is a diagonal matrix of size d_{total} -by- d_{total} with $|\Omega|$ nonzero entries, and each entry is upper bounded by $-U_{\alpha} < 0$.

Similar to (3) and (7), we have

$$|\langle \nabla_{\Theta} \mathcal{L}_{\mathcal{Y},\Omega}, \Theta - \Theta^{\text{true}} \rangle| \leq C_2 U_{\alpha} \sqrt{r_{\text{max}}^{K-1} \sum_{k} d_k} \|\Theta - \Theta^{\text{true}}\|_{F,\Omega}$$

and

$$\operatorname{Vec}(\Theta - \Theta^{\operatorname{true}})^{T} \nabla_{\Theta}^{2} \mathcal{L}_{\mathcal{Y}}(\check{\Theta}) \operatorname{Vec}(\Theta - \Theta^{\operatorname{true}}) \leq -L_{\alpha} \|\Theta - \Theta^{\operatorname{true}}\|_{F,\Omega}^{2}. \tag{13}$$

Combining (12)-(13) with the fact that $\nabla_{\Theta} \mathcal{L}_{\mathcal{Y},\Omega}(\hat{\Theta}) \geq \nabla_{\Theta} \mathcal{L}_{\mathcal{Y},\Omega}(\Theta^{\text{true}})$, we have

$$\|\hat{\Theta} - \Theta^{\text{true}}\|_{F,\Omega} \le \frac{2C_2 U_\alpha r_{\text{max}}^{(K-1)/2}}{L_\alpha} \sqrt{\sum_k d_k}.$$
 (14)

Lastly, we invoke the result regarding the closeness of Θ to its sampled version Θ_{Ω} , under the entrywise bound condition. Note that $\|\hat{\Theta} - \Theta^{\text{true}}\|_{\infty} \leq 2\alpha$ and $\text{rank}(\hat{\Theta} - \Theta^{\text{true}}) \leq 2r$. By Lemma 1, $\|\hat{\Theta} - \Theta^{\text{true}}\|_{M} \leq 2^{3(K-1)/2} \left(\frac{\prod r_k}{r_{\text{max}}}\right)^{3/2}$. Therefore, the condition in Lemma 11 holds with $\beta = 2^{3(K-1)/2} \left(\frac{\prod r_k}{r_{\text{max}}}\right)^{3/2}$. Applying Lemma 11 to (14) gives

$$\|\hat{\Theta} - \Theta^{\text{true}}\|_{F,\Pi}^2 \le \frac{1}{m} \|\hat{\Theta} - \Theta^{\text{true}}\|_{F,\Omega}^2 + c\beta \sqrt{\frac{\sum_k d_k}{|\Omega|}}$$
$$\le C_2 r_{\text{max}}^{K-1} \frac{\sum_k d_k}{|\Omega|} + C_1 \alpha r_{\text{max}}^{3(K-1)/2} \sqrt{\frac{\sum_k d_k}{|\Omega|}},$$

with probability at least $1 - \exp(-\frac{\sum_k d_k}{\log d_k})$ over the sampled set Ω . Here $C_1, C_2 > 0$ are two constants independent of the tensor dimension and rank. Therefore,

$$\|\hat{\Theta} - \Theta^{\text{true}}\|_{F,\Pi}^2 \to 0$$
, as $\frac{|\Omega|}{\sum_k d_k} \to \infty$,

provided that $r_{\text{max}} = O(1)$.

1.3 Auxiliary lemmas

We begin with various notion of tensor norms that are useful for the proofs of the main theorems.

Definition 1 (Atomic M-norm [Ghadermarzy et al., 2019]). Define $T_{\pm} = \{ \mathcal{T} \in \{\pm 1\}^{d_1 \times \cdots \times d_K} : \operatorname{rank}(\mathcal{T}) = 1 \}$. The atomic M-norm of a tensor $\Theta \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ is defined as

$$\|\Theta\|_{M} = \inf\{t > 0 : \Theta \in t\text{conv}(T_{\pm})\}\$$

$$= \inf\left\{\sum_{\mathcal{X} \in T_{\pm}} c_{x} : \Theta = \sum_{\mathcal{X} \in T_{\pm}} c_{x} \mathcal{X}, \ c_{x} > 0\right\}.$$

Definition 2 (Spectral norm [Lim, 2005]). The spectral norm of a tensor $\Theta \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ is defined as

$$\|\Theta\|_{\sigma} = \sup \left\{ \langle \Theta, \boldsymbol{x}_1 \otimes \cdots \otimes \boldsymbol{x}_K \rangle \colon \|\boldsymbol{x}_k\|_2 = 1, \ \boldsymbol{x}_k \in \mathbb{R}^{d_k}, \text{ for all } k \in [K] \right\}.$$

Definition 3 (Nuclear norm [Friedland and Lim, 2018]). The nuclear norm of a tensor $\Theta \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ is defined as

$$\|\Theta\|_* = \inf \left\{ \sum_{i \in [r]} |\lambda_i| \colon \Theta = \sum_{i=1}^r \lambda_i \boldsymbol{x}_1^{(i)} \otimes \cdots \otimes \boldsymbol{x}_K^{(i)}, \ \|\boldsymbol{x}_k^{(i)}\|_2 = 1, \ \boldsymbol{x}_k^{(i)} \in \mathbb{R}^{d_k}, \text{ for all } k \in [K], \ i \in [r] \right\},$$

where the infimum is taken over all $r \in \mathbb{N}$ and $\|\boldsymbol{x}_k^{(i)}\|_2 = 1$ for all $i \in [r]$ and $k \in [K]$.

Lemma 1 (M-norm and infinity norm [Ghadermarzy et al., 2019]). Let $\Theta \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ be an order-K, rank- (r_1, \ldots, r_K) tensor. Then

$$\|\Theta\|_{\infty} \le \|\Theta\|_{M} \le \left(\frac{\prod_{k} r_{k}}{r_{\max}}\right)^{\frac{3}{2}} \|\Theta\|_{\infty}.$$

Lemma 2 (Nuclear norm and F-norm). Let $A \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ be an order-K tensor with Tucker $rank(A) = (r_1, \ldots, r_K)$. Then

$$\|\mathcal{A}\|_* \le \sqrt{\frac{\sum_k r_k}{\max_k r_k}} \|\mathcal{A}\|_F,$$

where $\|\cdot\|_*$ denotes the nuclear norm of the tensor.

Proof. Without loss of generality, suppose $r_1 = \min_k r_k$. Let $\mathcal{A}_{(k)}$ denote the mode-k matricization of \mathcal{A} for all $k \in [K]$. By Wang et al. [2017, Corollary 4.11], and the invariance relationship between a tensor and its Tucker core [Jiang et al., 2017, Section 6], we have

$$\|\mathcal{A}\|_{*} \le \sqrt{\frac{\prod_{k \ge 2} r_k}{\max_{k \ge 2} r_k}} \|\mathcal{A}_{(1)}\|_{*},$$
 (15)

where $\mathcal{A}_{(1)}$ is a d_1 -by- $\prod_{k\geq 2} d_k$ matrix with matrix rank r_1 . Furthermore, the relationship between the matrix norms implies that $\|\mathcal{A}_{(1)}\|_* \leq \sqrt{r_1} \|\mathcal{A}_{(1)}\|_F = \sqrt{r_1} \|\mathcal{A}\|_F$. Combining this fact with the inequality (15) yields the final claim.

Lemma 3. Let A, B be two order-K tensors of the same dimension. Then

$$|\langle \mathcal{A}, \mathcal{B} \rangle| \leq ||\mathcal{A}||_{\sigma} ||\mathcal{B}||_{*}.$$

Proof. By Friedland and Lim [2018, Proposition 3.1], there exists a nuclear norm decomposition of \mathcal{B} , such that

$$\mathcal{B} = \sum_{r} \lambda_r \boldsymbol{a}_r^{(1)} \otimes \cdots \otimes \boldsymbol{a}_r^{(K)}, \quad \boldsymbol{a}_r^{(k)} \in \mathbf{S}^{d_k - 1}(\mathbb{R}), \quad \text{for all } k \in [K],$$

and $\|\mathcal{B}\|_* = \sum_r |\lambda_r|$. Henceforth we have

$$\begin{aligned} |\langle \mathcal{A}, \mathcal{B} \rangle| &= |\langle \mathcal{A}, \sum_{r} \lambda_{r} \boldsymbol{a}_{r}^{(1)} \otimes \cdots \otimes \boldsymbol{a}_{r}^{(K)} \rangle| \leq \sum_{r} |\lambda_{r}| |\langle \mathcal{A}, \boldsymbol{a}_{r}^{(1)} \otimes \cdots \otimes \boldsymbol{a}_{r}^{(K)} \rangle| \\ &\leq \sum_{r} |\lambda_{r}| ||\mathcal{A}||_{\sigma} = ||\mathcal{A}||_{\sigma} ||\mathcal{B}||_{*}, \end{aligned}$$

which completes the proof.

The following lemma provides the bound on the spectral norm of random tensors. The result was firstly presented in Nguyen et al. [2015], and we adopt the version from Tomioka and Suzuki [2014].

Lemma 4 (Tomioka and Suzuki [2014]). Suppose that $S = [s_{\omega}] \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ is an order-K tensor whose entries are independent random variables that satisfy

$$\mathbb{E}(s_{\omega}) = 0$$
, and $\mathbb{E}(e^{ts_{\omega}}) \le e^{t^2L^2/2}$.

Then the spectral norm $\|S\|_{\sigma}$ satisfies that,

$$\|\mathcal{S}\|_{\sigma} \le \sqrt{8L^2 \log(12K) \sum_k d_k + \log(2/\delta)},$$

with probability at least $1 - \delta$.

Lemma 5. Suppose that $S = [\![s_\omega]\!] \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ is an order-K tensor whose entries are independent random variables that satisfy

$$\mathbb{E}(s_{\omega}) = 0, \quad and \quad |s_{\omega}| \le U.$$

Then we have

$$\mathbb{P}\left(\|\mathcal{S}\|_{\sigma} \ge C_2 U \sqrt{\sum_k d_k}\right) \le \exp\left(-C_1 \log K \sum_k d_k\right)$$

where $C_1 > 0$ is an absolute constant, and $C_2 > 0$ is a constant that depends only on K.

Proof. Note that the random variable $U^{-1}s_{\omega}$ is zero-mean and supported on [-1,1]. Therefore, $U^{-1}s_{\omega}$ is sub-Gaussian with parameter $\frac{1-(-1)}{2}=1$, i.e.

$$\mathbb{E}(U^{-1}s_{\omega}) = 0$$
, and $\mathbb{E}(e^{tU^{-1}s_{\omega}}) \le e^{t^2/2}$.

It follows from Lemma 4 that, with probability at least $1 - \delta$,

$$||U^{-1}S||_{\sigma} \le \sqrt{(c_0 \log K + c_1) \sum_k d_k + \log(2/\delta)},$$

where $c_0, c_1 > 0$ are two absolute constants. Taking $\delta = \exp(-C_1 \log K \sum_k d_k)$ yields the final claim, where $C_2 = c_0 \log K + c_1 + 1 > 0$ is another constant.

Lemma 6. Let X, Y be two discrete random variables taking values on L possible categories, with category probabilities $\{p_\ell\}_{\ell \in [L]}$ and $\{q_\ell\}_{\ell \in [L]}$, respectively. Suppose p_ℓ , $q_\ell > 0$ for all $i \in [L]$. Then, the Kullback-Leibler (KL) divergence satisfies that

$$\mathit{KL}(X||Y) \stackrel{\mathit{def}}{=} - \sum_{\ell \in [L]} \mathbb{P}_X(\ell) \log \left\{ \frac{\mathbb{P}_Y(\ell)}{\mathbb{P}_X(\ell)} \right\} \leq \sum_{\ell \in [L]} \frac{(p_\ell - q_\ell)^2}{q_\ell}.$$

Proof. Using the fact $\log x \le x - 1$ for x > 0, we have that

$$KL(X||Y) = \sum_{\ell \in [L]} p_{\ell} \log \frac{p_{\ell}}{q_{\ell}}$$

$$\leq \sum_{\ell \in [L]} \frac{p_{\ell}}{q_{\ell}} (p_{\ell} - q_{\ell})$$

$$= \sum_{\ell \in [L]} \left(\frac{p_{\ell}}{q_{\ell}} - 1\right) (p_{\ell} - q_{\ell}) + \sum_{\ell \in [L]} (p_{\ell} - q_{\ell}).$$

Note that $\sum_{\ell \in [L]} (p_{\ell} - q_{\ell}) = 0$. Therefore,

$$\mathrm{KL}(X||Y) \le \sum_{\ell \in [L]} \left(\frac{p_{\ell}}{q_{\ell}} - 1 \right) (p_{\ell} - q_{\ell}) = \sum_{\ell \in [L]} \frac{(p_{\ell} - q_{\ell})^2}{q_{\ell}}.$$

Lemma 7 (KL divergence and F-norm). Let $\mathcal{Y} \in [L]^{d_1 \times \cdots \times d_K}$ be an ordinal tensor generated from the model (1) with the link function f and parameter tensor Θ . Let \mathbb{P}_{Θ} denote the joint categorical distribution of $\mathcal{Y}|\Theta$ induced by the parameter tensor Θ , where $\|\Theta\|_{\infty} \leq \alpha$. Define

$$A_{\alpha} = \min_{\ell \in [L], |\theta| < \alpha} [f(\theta + b_{\ell}) - f(\theta + b_{\ell-1})]. \tag{16}$$

Then, for any two tensors Θ , Θ^* in the parameter spaces, we have

$$KL(\mathbb{P}_{\Theta}||\mathbb{P}_{\Theta^*}) \le \frac{2(2L-3)}{A_{\alpha}}\dot{f}^2(0)||\Theta - \Theta^*||_F^2.$$

Proof. Suppose that the distribution over the ordinal tensor $\mathcal{Y} = [\![y_\omega]\!]$ is induced by $\Theta = [\![\theta_\omega]\!]$. Then, based on the generative model (1),

$$\mathbb{P}(y_{\omega} = \ell | \theta_{\omega}) = f(\theta_{\omega} + b_{\ell}) - f(\theta_{\omega} + b_{\ell-1}),$$

for all $\ell \in [L]$ and $\omega \in [d_1] \times \cdots \times [d_K]$. For notational convenience, we suppress the subscribe in θ_{ω} and simply write θ (and respectively, θ^*). Based on Lemma 6 and Taylor expansion,

$$KL(\theta||\theta^*) \leq \sum_{\ell \in [L]} \frac{[f(\theta + b_{\ell}) - f(\theta + b_{\ell-1}) - f(\theta^* + b_{\ell}) + f(\theta^* + b_{\ell-1})]^2}{f(\theta^* + b_{\ell}) - f(\theta^* + b_{\ell-1})}$$

$$\leq \sum_{\ell=2}^{L-1} \frac{\left[\dot{f}(\eta_{\ell} + b_{\ell}) - \dot{f}(\eta_{\ell-1} + b_{\ell-1})\right]^2}{f(\theta^* + b_{\ell}) - f(\theta^* + b_{\ell-1})} (\theta - \theta^*)^2 + \frac{\dot{f}^2(\eta_1 + b_1)}{f(\theta^* + b_1)} (\theta - \theta^*)^2 + \frac{\dot{f}^2(\eta_{L-1} + b_{L-1})}{1 - f(\theta^* + b_{L-1})} (\theta - \theta^*)^2,$$

where $\eta_{\ell}, \eta_{\ell-1}$ fall between θ and θ^* , and \check{b}_{ℓ} falls between $b_{\ell-1}$ and b_{ℓ} . Therefore,

$$KL(\theta||\theta^*) \le \left(\frac{4(L-2)}{A_{\alpha}} + \frac{2}{A_{\alpha}}\right)\dot{f}^2(0)(\theta - \theta^*)^2 = \frac{2(2L-3)}{A_{\alpha}}\dot{f}^2(0)(\theta - \theta^*)^2,\tag{17}$$

where we have used Taylor expansion, the bound (16), and the fact that $f(\cdot)$ peaks at zero for an unimodal and symmetric function. Now summing (17) over the index set $\omega \in [d_1] \times \cdots \times [d_K]$ gives

$$\mathrm{KL}(\mathbb{P}_{\Theta}||\mathbb{P}_{\Theta^*}) = \sum_{\omega \in [d_1] \times \dots \times [d_K]} \mathrm{KL}(\theta_\omega||\theta_\omega^*) \le \frac{2(2L-3)}{A_\alpha} \dot{f}^2(0) \|\Theta - \Theta^*\|_F^2.$$

Remark 1. In particular, let \mathbb{P}_0 denote the distribution of $\mathcal{Y}|0$ induced by the zero parameter tensor. Then we have

$$\mathrm{KL}(\mathbb{P}_{\Theta}||\mathbb{P}_{\mathbf{0}}) \le \frac{2(2L-3)}{A_{\alpha}}\dot{f}^{2}(0)||\Theta||_{F}^{2}.$$

Lemma 8. Assume the same setup as in Theorem 4.2. Without loss of generality, suppose $d_1 = \max_k d_k$. Define $R = \max_k r_k$ and $d_{total} = \prod_{k \in [K]} d_k$. For any constant $0 \le \gamma \le 1$, there exist a finite set of tensors $\mathcal{X} = \{\Theta_i : i = 1, \ldots\} \subset \mathcal{P}$ satisfying the following four properties:

(i) $Card(\mathcal{X}) \geq 2^{Rd_1/8} + 1$, where Card denotes the cardinality;

(ii) \mathcal{X} contains the zero tensor $\mathbf{0} \in \mathbb{R}^{d_1 \times \cdots \times d_K}$;

(iii)
$$\|\Theta\|_{\infty} \leq \gamma \min \left\{ \alpha, \ C^{-1/2} \sqrt{\frac{Rd_1}{d_{total}}} \right\}$$
 for any element $\Theta \in \mathcal{X}$;

(iv)
$$\|\Theta_i - \Theta_j\|_F \ge \frac{\gamma}{4} \min \left\{ \alpha \sqrt{d_{total}}, \ C^{-1/2} \sqrt{Rd_1} \right\}$$
 for any two distinct elements $\Theta_i, \ \Theta_j \in \mathcal{X}$,

Here $C = C(\alpha, L, f, \mathbf{b}) = \frac{(4L-6)\dot{f}^2(0)}{A_{\alpha}} > 0$ is a constant independent of the tensor dimension and rank.

Proof. Given a constant $0 \le \gamma \le 1$, we define a set of matrices:

$$C = \left\{ \boldsymbol{M} = (m_{ij}) \in \mathbb{R}^{d_1 \times R} : a_{ij} \in \left\{ 0, \gamma \min \left\{ \alpha, C^{-1/2} \sqrt{\frac{Rd_1}{d_{\text{total}}}} \right\} \right\}, \ \forall (i,j) \in [d_1] \times [R] \right\}.$$

We then consider the associated set of block tensors:

$$\mathcal{B} = \mathcal{B}(\mathcal{C}) = \{ \Theta \in \mathbb{R}^{d_1 \times \dots \times d_K} : \Theta = \mathbf{A} \otimes \mathbf{1}_{d_3} \otimes \dots \otimes \mathbf{1}_{d_K},$$
where $\mathbf{A} = (\mathbf{M}| \dots | \mathbf{M} | \mathbf{O}) \in \mathbb{R}^{d_1 \times d_2}, \ \mathbf{M} \in \mathcal{C} \},$

where $\mathbf{1}_d$ denotes a length-d vector with all entries 1, \mathbf{O} denotes the $d_1 \times (d_2 - R \lfloor d_2/R \rfloor)$ zero matrix, and $\lfloor d_2/R \rfloor$ is the integer part of d_2/R . In other words, the subtensor $\Theta(\mathbf{I}, \mathbf{I}, i_3, \ldots, i_K) \in \mathbb{R}^{d_1 \times d_2}$ are the same for all fixed $(i_3, \ldots, i_K) \in [d_3] \times \cdots \times [d_K]$, and furthermore, each subtensor $\Theta(\mathbf{I}, \mathbf{I}, i_3, \ldots, i_K)$ itself is filled by copying the matrix $\mathbf{M} \in \mathbb{R}^{d_1 \times R}$ as many times as would fit.

By construction, any element of \mathcal{B} , as well as the difference of any two elements of \mathcal{B} , has Tucker rank at most $\max_k r_k \leq R$, and the entries of any tensor in \mathcal{B} take values in $[0, \alpha]$. Thus, $\mathcal{B} \subset \mathcal{P}$. By Lemma 9, there exists a subset $\mathcal{X} \subset \mathcal{B}$ with cardinality $\operatorname{Card}(\mathcal{X}) \geq 2^{Rd_1/8} + 1$ containing the zero $d_1 \times \cdots \times d_K$ tensor, such that, for any two distinct elements Θ_i and Θ_j in \mathcal{X} ,

$$\|\Theta_i - \Theta_j\|_F^2 \ge \frac{Rd_1}{8} \gamma^2 \min\left\{\alpha, \frac{C^{-1}Rd_1}{d_{\text{total}}}\right\} \lfloor \frac{d_2}{R} \rfloor \prod_{k \ge 3} d_k \ge \frac{\gamma^2 \min\left\{\alpha^2 d_{\text{total}}, C^{-1}Rd_1\right\}}{16}.$$

In addition, each entry of $\Theta \in \mathcal{X}$ is bounded by $\gamma \min \left\{ \alpha, C^{-1/2} \sqrt{\frac{Rd_1}{d_{\text{total}}}} \right\}$. Therefore the Properties (i) to (iv) are satisfied.

Lemma 9 (Varshamov-Gilbert bound). Let $\Omega = \{(w_1, \ldots, w_m) : w_i \in \{0, 1\}\}$. Suppose m > 8. Then there exists a subset $\{w^{(0)}, \ldots, w^{(M)}\}$ of Ω such that $w^{(0)} = (0, \ldots, 0)$ and

$$||w^{(j)} - w^{(k)}||_0 \ge \frac{m}{8}, \quad \text{for } 0 \le j < k \le M,$$

where $\|\cdot\|_0$ denotes the Hamming distance, and $M \geq 2^{m/8}$.

Lemma 10 (Theorem 2.5 in Tsybakov [2009]). Assume that a set \mathcal{X} contains element $\Theta_0, \Theta_1, \dots, \Theta_M$ $(M \geq 2)$ such that

- $d(\Theta_j, \ \Theta_j) \ge 2s > 0, \ \forall 0 \le j \le k \le M;$
- $\mathbb{P}_j \ll \mathbb{P}_0$, $\forall j = 1, \dots, M$, and

$$\frac{1}{M} \sum_{j=1}^{M} KL(\mathbb{P}_j || \mathbb{P}_0) \le \alpha \log M$$

where $d: \mathcal{X} \times \mathcal{X} \mapsto [0, +\infty]$ is a semi-distance function, $0 < \alpha < 1/8$ and $P_j = P_{\Theta_j}$, $j = 0, 1, \ldots, M$.

Then

$$\inf_{\hat{\Theta}} \sup_{\Theta \in \mathcal{X}} \mathbb{P}_{\Theta}(d(\hat{\Theta}, \Theta) \geq s) \geq \frac{\sqrt{M}}{1 + \sqrt{M}} \left(1 - 2\alpha - \sqrt{\frac{2\alpha}{\log M}}\right) > 0.$$

Lemma 11 (Lemma 28 in Ghadermarzy et al. [2019]). Define $\mathbb{B}_M(\beta) = \{\Theta \in \mathbb{R}^{d_1 \times \cdots \times d_K} : \|\Theta\|_M \leq \beta\}$. Let $\Omega \subset [d_1] \times \cdots \times [d_K]$ be a random set with $m = |\Omega|$, and assume that each entry in Ω is drawn with replacement from $[d_1] \times \cdots \times [d_K]$ using probability Π . Define

$$\|\Theta\|_{F,\Pi}^2 = \frac{1}{m} \mathbb{E}_{\Omega \in \Pi} \|\Theta\|_{F,\Omega}^2.$$

Then, there exists a universal constant c > 0, such that, with probability at least $1 - \exp\left(-\frac{\sum_k d_k}{\sum_k \log d_k}\right)$ over the sampled set Ω ,

$$\frac{1}{m} \|\Theta\|_{F,\Omega}^2 \ge \|\Theta\|_{F,\Pi}^2 - c\beta \sqrt{\frac{\sum_k d_k}{m}}$$

holds uniformly for all $\Theta \in \mathbb{B}_M(\beta)$.

References

Shmuel Friedland and Lek-Heng Lim. Nuclear norm of higher-order tensors. *Mathematics of Computation*, 87(311):1255–1281, 2018.

Navid Ghadermarzy, Yaniv Plan, and Özgür Yilmaz. Near-optimal sample complexity for convex tensor completion. *Information and Inference: A Journal of the IMA*, 8(3):577–619, 2019.

Bo Jiang, Fan Yang, and Shuzhong Zhang. Tensor and its Tucker core: the invariance relationships. Numerical Linear Algebra with Applications, 24(3):e2086, 2017.

Lek-Heng Lim. Singular values and eigenvalues of tensors: a variational approach. In 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005., pages 129–132. IEEE, 2005.

Nam H Nguyen, Petros Drineas, and Trac D Tran. Tensor sparsification via a bound on the spectral norm of random tensors. *Information and Inference: A Journal of the IMA*, 4(3):195–229, 2015.

Ryota Tomioka and Taiji Suzuki. Spectral norm of random tensors. arXiv preprint arXiv:1407.1870, 2014.

Alexandre B Tsybakov. Introduction to nonparametric estimation, revised and extended from the 2004 french original, translated by Vladimir Zaiats, 2009.

Miaoyan Wang, Khanh Dao Duc, Jonathan Fischer, and Yun S Song. Operator norm inequalities between tensor unfoldings on the partition lattice. *Linear Algebra and Its Applications*, 520: 44–66, 2017.