

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6 Работа с системой компьютерной вёрстки Т_ЕX Вариант 41

Выполнила: Леонтьева Арина Николаевна Р3113 Проверила: к.п.н., доцент Авксентьева Елена Юрьевна

Задачи

 $M241-M245; \Phi 253-\Phi 257$

М241. Докажите, что

$$3^{1974} + 5^{1974}$$

делится на 13.

С. И. Мейзус

M242. Пусть A_iH_i - высота и A_iM_i - медиана, проведенные из вершины A_i остроугольного треугольника A_1 A_2 A_3 (i = 1, 2, 3). Докажите, что одно из трех произведений

$$| H_1 M_1 | \cdot | A_2 A_3 |, | H_2 M_2 | \cdot | A_3 A_1 |,$$

 $| H_3 M_3 | \cdot | A_1 A_2 |$

равно сумме двух других *). Верно ли это утверждение для прямоугольного и тупоугольного треугольника?

С. Сальников, ученик 10 класса

(г. Мары)

М243. п отрезков

 $A_1B_1, A_2B_2, ..., A_nB_n$ (рис.1) расположены на плоскости так, что

*) Через |KL| обозначается длина отрезка с концами K и L.

Рис.1

каждый из них начинается на одной из двух данных прямых, оканчивается на другой прямой, и проходит через точку G (не лежащую на данных прямых) - центр тяжести единичных масс, помещенных в точках $A_1, A_2, ..., A_n$. Докажите, что

$$\frac{A_1G}{GB_1} + \frac{A_2G}{GB_2} + \dots + \frac{A_nG}{GB_n} = n .$$

А. М. Лопшии

M244. Даны два набора из n вещественных чисел:

 a_1, a_2, \ldots, a_n и b_1, b_2, \ldots, b_n Докажите, что если выполняется хотя бы одно из двух условий:

а) из
$$a_i < a_j$$
 следует, что $b_i < b_j$; б)* из $a_i < a < a_j$, где $a = \frac{a_1 + a_2 + \ldots + a_n}{n}$, следует, что $b_i \leq b_j$; то верно неравенство:

$$n(a_1b_1 + a_2b_2 + \dots + a_nb_n) \ge$$

 $\ge (a_1 + a_2 + \dots + a_n)$
 $(b_1 + b_2 + \dots + b_n).$

А.Григорян, ученик 10 класса (Баку)

M245. Предлагается построить N точек на полскости так, чтобы все попарные расстояния между ними равнлись заранее заданным числам: для каждых двух точек $M_i,\ M_j$ известно, чему должно равняться расстояние $|m_iM_j|=r_{i_j}$ (і и j - любые числа от 1 до N).

- а) Можно ли произвести построение, если расстояния r заданы так, что всякие 5 из N точек построить можно?
- б) Достаточно ли требовать, чтобы можно было построить всякие 4 из N точек?
- в)* Что изменится, если строить точки не на плоскости, а в пространстве? Каково тогда наименьшее K, для которого возможность построения любых K из данных N точек обеспечивает построение и всех N точек?

Таблица 1: Вопросы для построения точек М. Л. Гервер

сли два круга касаются друг друга, то у них уже не один и тот же центр

Действительно, пусть это возможно, и у кругов будет один центр. Из предполагаемого центра проведем

часть равна целому, что невозможно. Следовательно, выбранная точка не является центром обоих кругов и таким же образом можно показать, что так же и никакая другая.

ч.т.д