El Enfoque de Bases de Datos

Tema 1. Introducción a los Sistemas de Bases de Datos

¿Qué es una base de datos?

© Scott Adams https://es.wikipedia.org/wiki/Dilbert

Tema 1. Introducción a los Sistemas de Bases de Datos

Objetivos

- Comprender qué es una base de datos, y para qué se utiliza
- Diferenciar los conceptos "base de datos", "esquema", "sistema gestor de bases de datos" y "sistema de bases de datos"
- □ Tener un primer contacto con el concepto "metadatos"
- Conocer los diferentes tipos de sistemas de bases de datos existentes en la actualidad y los proveedores más relevantes

Tema 1. Introducción a los Sistemas de Bases de Datos

Contenidos

- □ 1.1 Qué es una base de datos
- □ 1.2 Primeras nociones
 - Esquema de Base de Datos
 - Sistema Gestor de Bases de Datos
 - Metadatos
 - Sistema de Bases de Datos
- 1.3 Panorama actual
 - Tipos de SGBD
 - Proveedores de SGBD

Tema 1. Introducción a los Sistemas de Bases de Datos

Bibliografía

- [CB 2015] Connolly, T.M.; Begg C.E.: Database Systems: A Practical Approach to Design, Implementation, and Management, 6th Edition.Pearson
- [EN 2016] Elmasri, R.; Navathe, S.B.: Fundamentals of Database
 Systems, 7th Edition. Pearson.
- [CB 2005] Connolly, T.M.; Begg C.E.: Sistemas de bases de datos.
 Un enfoque práctico para el diseño, implementación y gestión. 4°
 Edición. Pearson/Addison-Wesley. (Cap.1y2)
- [EN 2008] Elmasri, R.; Navathe, S.B. Fundamentos de Sistemas de Bases de Datos. 5° Edición. Addison-Wesley. (Cap. 1)

- Una Base de Datos (BD) es una colección organizada de información (de datos estructurados), que normalmente se almacena de forma electrónica en un sistema informático
- Un dato es un hecho conocido con significado implícito que puede ser registrado

EDITORIAL AUTOR

Ejemplo de una
base de datos
sencilla, de una
biblioteca personal,
compuesta por 5
elementos de datos

	_
nombre	•••
Ediciones B	•••
Alfaguara	•••
Planeta	
Alianza	
Anagrama	
•••	

nombre	apellidos	•••
Oscar	Wilde	•••
Tom	Wolfe	•••
Michael	Ende	•••
•••	•••	•••

PERSONA					
id	nombre	•••	telefono		
2	César		555123456		
10	Víctor		555654321		
•••	•••		•••		
3	Ainhoa		555987654		
1	Arturo		555221122		

LIBRO

isbn	titulo	autor	editorial	año
8420464988	Momo	Ende	Alfaguara	1982
8408049003	El retrato de Dorian Gray	Wilde	Planeta	2003
8477205302	Todo un hombre	Wolfe	Edicion B	2005
8420432261	La historia interminable	Ende	Alfaguara	1998
8420616524	El fantasma de Canterville	Wilde	Alianza	1996
8433931436	La hoguera de las vanidades	Wolfe	Anagrama	1988
	•••	•••	•••	

PRESTAMO

11120171110					
persona	libro	fecha			
2	8408049003	23/09/24			
10	8420432261	01/10/23			
2	8420464988	02/03/24			
1	8420432261	10/08/24			
•••	•••	•••			

□ Una BD tiene estas propiedades implícitas:

Es un conjunto de datos relacionados entre sí, almacenados de forma persistente y con un significado inherente			
Representa aspectos del mundo real (dominio)	Los cambios en el dominio "se reflejan" en la BD		
Dirigida a un grupo de usuarios	Datos INTERESANTES para "alguien"		
Se DISEÑA, se CREA y se CARGA con datos para conseguir objetivos determinados: tiene aplicaciones interesantes para los usuarios	Datos ALMACENADOS para "algo"		

- Las bases de datos y la tecnología de bases de datos tienen un impacto vital sobre el uso creciente de los ordenadores
- Juegan un papel crítico en casi todas las áreas en las que se aplica la informática:
 - Negocios
 - Comercio electrónico
 - Ingeniería
 - Medicina
 - Administración pública
 - Educación, etc.

- El uso de bases de datos permite almacenar grandes volúmenes de datos y mantenerlos organizados de forma que su manipulación sea sencilla y su consulta sea eficiente
 - Basta imaginar los datos que necesitan almacenar, manipular y administrar los sistemas usados por Amazon e Instagram, o cualquier cadena de supermercados, o un banco, una biblioteca, una universidad.
- Además, permite disponer de mecanismos que garanticen tanto la corrección de los datos (integridad) como su seguridad
 - Todos estos aspectos los iremos viendo a lo largo de la asignatura...

1.2 Primeras nociones: Esquema

- Un esquema es un conjunto de elementos de datos, al que se le da un nombre
- En una BD se suele usar los esquemas para agrupar los elementos de datos que pertenecen a un mismo contexto
 - Son propiedad de un mismo usuario, o
 - □ Tienen que ver con una misma aplicación, ...

 En general, una misma base de datos (física) puede contener varios esquemas diferentes

No hay que confundir los conceptos
 base de datos (física)
 y esquema de base de datos

1.2 Primeras nociones: Esquema

1.2 Primeras nociones: Sistema Gestor de Bases de Datos (SGBD)

1.2 Primeras nociones: Sistema Gestor de Bases de Datos (SGBD)

- "Un SGBD es un conjunto de programas que permiten definir, crear, manipular y controlar el acceso a la base de datos"
 - Definir una BD es especificar las estructuras de datos, los tipos de datos y las restricciones de los datos
 - Crear una BD es almacenar datos en algún medio de almacenamiento controlado por el SGBD
 - Manipular la BD es consultar datos, introducir/modificar/eliminar datos para reflejar cambios en el dominio, y generar informes a partir de los datos almacenados
 - Controlar el acceso es proporcionar un catálogo de descripciones de los datos (metadatos), así como seguridad, integridad, control de la concurrencia y de la recuperación después de fallos
- Interactúa por un lado con los programas de aplicación de usuario y por otro con la BD

1.2 Primeras nociones: Metadatos

- Además de los datos (autores, préstamos, libros, etc.),
 <u>la BD almacena metadatos</u>
- Los metadatos describen la estructura de la BD
 - Incluyen descripciones de los datos y de las restricciones (de integridad y de seguridad) que los datos deben cumplir
 - □ También incluyen descripciones de los esquemas de base de datos ya creados en la BD
 - Y más cosas...
 - Detalles acerca de los usuarios de la base de datos
 - Estadísticas de almacenamiento y de uso/acceso a datos
 - □ Etc.
- La existencia de los metadatos proporciona a la base de datos una naturaleza autodescriptiva

1.2 Primeras nociones: Metadatos

□ Ejemplo de (una parte de) los metadatos para el esquema de BD "MI_BIBLIOTECA"

TABLAS		
nombre_tabla	num_columnas	•
EDITORIAL	5	
AUTOR	7	
PERSONA	4	
LIBRO	6	
PRESTAMO	4	
•••	•••	

COLUMNAS			
nombre_columna	tipo_datos	nombre_tabla	•••
isbn	Caracteres(17)	LIBRO	
titulo	Caracteres(50)	LIBRO	
autor	Caracteres(70)	LIBRO	
nombre	Caracteres(60)	LIBRO	
año	Entero(4)	LIBRO	
persona	Entero(2)	PRESTAMO	
libro	Caracteres(17)	PRESTAMO	
fecha	TipoFecha	PRESTAMO	
•••	•••	•••	

1.2 Primeras nociones: Metadatos

- Los metadatos están agrupados y almacenados en SU propio esquema de la BD
 - Denominado de forma distinta según el SGBD que se utilice:
 - Data Dictionary en el SGBD Oracle
 - Information Schema en los SGBD MySQL y MariaDB
 - **...**
 - Dicho esquema está compuesto por un conjunto de elementos (tablas y vistas) que contienen los metadatos en sí:
 - En Oracle, el Data Dictionary contiene tablas y vistas como estas:
 - ALL_TABLES, ALL_TAB_COLUMNS, ALL_CONSTRAINTS, etc.
 - En $MySQL^1$ y en $MariaDB^2$ incluye estas tablas:
 - TABLES, COLUMNS, KEY_COLUMN_USAGE, TABLE_CONSTRAINTS, REFERENTIAL_CONSTRAINTS, etc.
- 1. https://dev.mysql.com/doc/mysql-infoschema-excerpt/5.7/en/information-schema.html
- 2. https://mariadb.com/kb/en/information-schema-tables/

- 17
- Así, uno de los esquemas de la base de datos será el que contiene los metadatos
 - Lo llamaremos INFORMATION_ SCHEMA
- Está
 almacenado
 junto a los
 esquemas que
 contienen los
 datos en sí

1.2 Primeras nociones: Sistema de Bases de Datos (SBD)

Usuarios y

Entorno simplificado de un **Sistema de Base de Datos**

Programadores

1.2 Primeras nociones: resumen

- □ **Esquema**: conjunto de elementos de datos, dentro de una Base de Datos, pertenecientes al mismo contexto
- □ Base de Datos: Datos + Metadatos
- Metadatos: descripción o definición de los datos (qué estructura tienen, qué restricciones deben cumplir, quién los ha creado, etc.)
- Sistema Gestor de Bases de Datos (SGBD): colección de programas que permiten a los usuarios crear, mantener y administrar una base de datos
- Sistema de bases de datos (SBD): formado por la Base de Datos, el SGBD y los programas de aplicación

1.3 Panorama actual: tipos de SGBD

- Según el Modelo de Datos en el que está basado
 - Relacional, Red, Jerárquico,
 - Orientado a Objetos,
 - Objeto/Relacional,
 - NoSQL: Documentos, Clave-Valor, Columnar, Grafos...
- Según el número de usuarios simultáneos que admite
 - Monousuario
 - Multiusuario
- Según el número de lugares en que se almacenan datos
 - Centralizado
 - Distribuido (SGBDD)
 - SGBDD homogéneo: mismo software de SGBD en todos los sitios
 - SGBDD heterogéneo (ej. Multi-Base de Datos o BD Federadas)
- Según su propósito
 - de <u>propósito General</u>
 - de propósito Específico: construido para un tipo concreto de aplicaciones

1.3 Panorama actual: proveedores

- SGBD Relacionales
 - Oracle, MySQL
 - MariaDB
 - PosgreSQL
 - Microsoft SQL Server, Microsoft Access, Microsoft Azure SQL Database
 - □ IBM DB2
 - SQLite
 - Snowflake
 - □ Hive ...
- SGBD NoSQL
 - Documentos: MongoDB
 - Columnar: Cassandra
 - Clave/Valor: Redis
 - Grafos: Neo4J

diferentes en el ranking

SGBD

Hay

acuerdo a la 3BD

Ranking elaborado

popularidad de

https://db-engines.com/en/ranking

1.3 Panorama actual: proveedores 423 systems in ranking, January 2025

	Rank				Score		
Jan 2025	Dec 2024	Jan 2024	DBMS	Database Model	Jan 2025	Dec 2024	Jan 2024
1.	1.	1.	Oracle 🚹	Relational, Multi-model 🔞	1258.76	-5.03	+11.27
2.	2.	2.	MySQL 🖽	Relational, Multi-model 🔟	998.15	-5.61	-125.31
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🔟	798.55	-7.14	-78.05
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 🛐	663.41	-2.97	+14.45
5.	5.	5.	MongoDB 🔠	Document, Multi-model	402.50	+2.12	-14.98
6.	↑ 7.	1 9.	Snowflake 🖽	Relational	153.90	+6.54	+27.98
7.	4 6.	4 6.	Redis 🔠	Key-value, Multi-model 🔟	153.36	+3.08	-6.03
8.	8.	4 7.	Elasticsearch	Multi-model 🔞	134.92	+2.60	-1.15
9.	9.	4 8.	IBM Db2	Relational, Multi-model 🛐	122.97	+0.19	-9.43
10.	10.	1 11.	SQLite	Relational	106.69	+4.97	-8.51
11.	11.	1 2.	Apache Cassandra 🖽	Wide column, Multi-model 📵	99.19	+1.26	-11.84
12.	12.	4 10.	Microsoft Access	Relational	92.70	+1.88	-24.97
13.	13.	1 7.	Databricks 🖽	Multi-model 🛐	87.85	+0.16	+7.31
14.	1 5.	4 13.	MariaDB 🚦	Relational, Multi-model 🔟	85.58	+1.81	-13.65
15.	4 14.	4 14.	Splunk	Search engine	83.09	-2.27	-9.63
16.	16.	4 15.	Microsoft Azure SQL Database	Relational, Multi-model 🔞	73.78	-2.59	-7.29
17.	17.	4 16.	Amazon DynamoDB 🚦	Multi-model 🛐	73.00	+0.27	-7.94
18.	18.	18.	Apache Hive	Relational	56.87	+3.78	-10.08
19.	19.	19.	Google BigQuery 🖪	Relational	53.04	+0.75	-10.44
20.	20.	↑ 22.	Neo4j 🚻	Graph	43.69	+0.62	-4.49
21.	21.	21.	FileMaker	Relational	41.50	-1.36	-10.55
22.	↑ 23.	4 20.	Teradata	Relational, Multi-model 🔞	36.25	-1.35	-16.93
23.	4 22.	23.	SAP HANA 🔡	Relational, Multi-model 🔞	36.06	-1.59	-10.38
24.	24.	24.	Apache Solr	Search engine, Multi-model 📵	32.32	-0.15	-12.81
25.	25.	25.	SAP Adaptive Server	Relational, Multi-model 🔟	29.05	-1.26	-10.38