

Evaluating Clustering Algorithms for Prediction of Rock Type for Oil and Gas Applications Using United Kingdom Core Data

Tan Wen Xuan

Z1981074

Presentation date: 200922

Introduction

- Rock typing is the process of grouping rocks based on their characteristics
- Background
 - Oil & Gas are acquired by drilling wells in sedimentary basins
 - Rock samples are extracted to discover flow capacity and storage
 - Generalised for future drilling
- Business Problem
 - Traditional methods are time consuming
 - Require domain knowledge
 - Can be costly
- Objective
 - Compare unsupervised algorithms against a traditional method

Note. Department of Mines, Industry Regulation and Safety (n.d.).

Previous Studies

- Revolves around usage of Indices for rock typing
 - Flow Zone Indicator (FZI)

•
$$FZI = \frac{RQI}{\varphi_Z}$$

- RQI Rock Quality Index: $0.0314 \times \sqrt{\frac{k}{\varphi_z}}$
- *k* Permeability
- φ Porosity
- φ_Z Normalized Porosity: $\frac{\varphi}{1-\varphi}$
- Machine learning with indices
- Rock Typing with Machine learning (standalone)
- What I aim to do:
 - Compare the first method against the third
 - Add value due time savings

Data

- Publicly available core data from three regions (UK, USA and North Sea)
- Columns needed were derived first
- All data were min-max normalized
- Cleaned data's columns are mainly porosity and permeability
- Training of models done on UK first
- End Goal: Complete training on 2-3 regions

General Dataset Preparation Process

Select Columns Remove Derive columns Fill missing needed for Merge Separate based on problematic data Min Max values whenever **Adjust Dtypes** Remove outliers File(s) knowledge and etc null/random traditional Normalise possible method null values strings

Pre-Modelling Data Preparation

- Data preparation needed for the traditional method (using FZI)
- Calculation of RQI, Porosity Index, FZI, Log RQI and Log Porosity Index
- Recap:

•
$$FZI = \frac{RQI}{\varphi_Z}$$

- RQI Rock Quality Index: $0.0314 \times \sqrt{\frac{k}{\varphi}}$
- *k* Permeability
- φ Porosity
- φ_z Normalized Porosity: $\frac{\varphi}{1-\varphi}$ (Porosity Index)

General Dataset Preparation Process

Merge Separate File(s)

Select Columns based on knowledge and null values Remove problematic data etc null/random strings

Fill missing values whenever possible

Adjust Dtypes

Remove outliers

Derive columns needed for traditional method

Min Max Normalise

Choosing Size of Dataset

- Cleaned dataset consisted of 104,832 data points
- For computation efficiency, explore possibility to use smaller set of data
- Use Kmeans to perform clustering on different sizes of dataset
 - Random state is the same
 - Optimal cluster set to 4 using inertia plot
- Compare porosity vs log-scaled permeability plot
 - To observe cluster distribution
- Sizes include 2k, 5k, 10k, 40k, 80k, and full dataset
- 2k sized dataset selected

Modelling

- 1 Industry standard and 5 unsupervised algorithms
- Only UK core data was trained
- 2,000 samples (rows), 2 features
- Results and comparison
- Repeat the process for other datasets (as many as possible)

ANL488 Presentation Slide 7 of 26

Traditional Method Selected

- Method Iterative multi-linear regression (IMLR) (Khalid et. al., 2019)
 - 1. Plot scatter plot log normalized porosity (x-axis) against log RQI (y-axis)
 - 2. Guess intercept value based on mean FZI for each visible straight line
 - 3. Lines selected based on the points
 - 4. Line all have slope = 1
 - 5. Allocate samples to closest line
 - 6. Calculate new intercept using least square regression
 - 7. Re-adjust lines if difference is too big
- Other Methods
 - Histogram Analysis
 - Log fzi
 - Normal Probability Plot
 - Log fzi

Failure of Traditional Method

- Method Requirement
 - there must be clear separation in the log-log plot to select initial lines
- Failure method not feasible due to data too close
- Failure -> limited traditional method
- Proposed method own method (adapted from different sources)

Methods Employed

Methods Employed

ANL488 Presentation Slide 11 of 26

Methods Employed

Slide 12 of 26

- Different method's modelling and visualisation
- Scatterplots done for visualisation
- Cluster labelling are fixed with a specific colour

Cluster	1	2	3	4	5	6
Colour	Red	Blue	Green	Magenta	Yellow	Black

- Cluster 0 is fixed with gold for DBSCAN
- Clusters re-ordering was attempted for comparison
- Visualisation with 1000 sample data
- Y-axis (permeability) log scaled to remove skew

Own Implementation of Traditional Method

- Iteration 1-10
- Plot corresponding number of LR line
- Get average R^2
- Compare using R^2 vs Cluster plot
- Optimal Cluster of 6 chosen

Slide 14 of 26

KMeans

- Used Elbow plot to determine optimal clusters
- Range trained was from 1 to 11
- Based on elbow plot, optimal cluster of 6 is chosen

ANL488 Presentation Slide 15 of 26

- Trained UK data using SOM with 10 X 10 grid
- Output is 100 clusters
- Used KMeans to combine the clusters
- Optimal clusters chosen using elbow plot
- Optimal clusters of 3 was chosen

Slide 16 of 26

DBSCAN

- Find Optimal eps (epsilon) using avg distance of k-nearest neighbour
- K set to 4 at random
- Maximum curvature used as epsilon
- Dbscan initialised and fitted
- min_samples set at 25

ANL488 Presentation Slide 17 of 26

BIRCH

- Initialise BIRCH
- Set n_cluster as 4
- Trial for values of branching_factor and threshold]
- Fit predict data
- Use metrics to evaluate the braching_factor and threshold

Slide 18 of 26

GMM

- Use BIC to find optimal num_components
- Train GMM for num_components 1-6
- Get BIC
- Plot BIC Chart
- Train using optimal n_components = 3

Slide 19 of 26

R	en		h	m	2	r	k
D	CII	L			а		N

Cluster	Porosity	Permeability
1	0.120	1.888
2	0.138	12.175
3	0.140	16.426
4	0.154	591.318
5	0.157	68.599
6	0.181	278.419

KMeans

Cluster	Porosity	Permeability
1	0.093	15.225
2	0.200	152.504
3	0.243	1596.954

SOM+KMeans

Cluster	Porosity	Permeability
1	0.079	50.100
2	0.161	34.684
3	0.234	550.760

DBSCAN

Cluster	Porosity	Permeability
1	0.122	10.720
2	0.215	549.689

BIRCH

Cluster	Porosity	Permeability
1	0.095	16.812
2	0.196	87.472
3	0.238	620.094
4	0.244	1928.485

GMM

Cluster	Porosity	Permeability
1	0.113	2.424
2	0.192	138.307
3	0.227	1087.203

Comparison of the Residual Charts from Permeability Prediction

- Metrics use: Silhouette Coefficient, Calinski-Harabaz Index, Davies-Bouldin Index
- The metrics evaluates uniqueness of clusters
- For Silhouette Coefficient and Calinski-Harabaz Index, higher values are better
- For Davies-Bouldin Index, the lower the value the better
- KMeans and BIRCH has a better performance than SOM+Kmeans, DBSCAN and GMM

Algorithm	Silhouette	Calinski-Harabaz	Davis-Bouldin Index
	Coefficient	Index	
KMeans	0.529	2556.740	0.642
SQM±KMeans	0.412	1505.616	0.859
DBSCAN	0.404	1180.614	1.041
BIRCH	0.474	2170.326	0.839
GMMs	0.263	1090.622	1.032

- There are further areas that can definitely be included given time
 - Application of more algorithms
 - More sets of data to account for variability
 - Benchmarking against one or more industry standards
 - Using different methods for benchmarking
- Comparing to benchmark
 - Clustering algorithms are not similar to benchmark
- Comparing between clustering algorithms
 - KMeans and BIRCH has a better performance than SOM+Kmeans, DBSCAN and GMM
- Kmeans and BIRCH performed as well as the benchmark
- More research can be done for a better comparison

Thank You

Department of Mines, Industry Regulation and Safety. (n.d.). *Introduction to unconventional resources*. https://www.dmp.wa.gov.au/Petroleum/Introduction-to-unconventional-25621.aspx

Khalid, M. Saad, E. D., Desouky, S., Rashed, M., Shazly, T., & Sediek, K. (2019). Application of hydraulic flow units' approach for improving reservoir characterization and predicting permeability. *Journal of Petroleum Exploration and Production Technology, 10*(2). https://doi.org/10.1007/s13202-019-00758-7

Slide 26 of 26