ESPACE VECTORIEL \mathbb{R}^n

EXEMPLES D'APPLICATIONS LINÉAIRES

1 Applications linéaires

Soit application

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

 $(x_1, x_2, ..., x_n) \mapsto f(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n).$

On dit que l'application f est une **application linéaire** si

$$\begin{cases} y_1 = a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p \\ y_2 = a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p \\ \dots \\ \dots \\ y_1 = a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p, \end{cases}$$

où $\forall (i, j) \in [1, n] \times [1, p], a_{i,j} \in \mathbb{R}$.

linéaire $\mathbb{R}^n \to \mathbb{R}^n$ peut s'écrire $X \to AX$.

La matrice $A \in M_{n,p}(\mathbb{R})$ est appelée la **matrice de l'application linéaire asoociée** f de la base canonique de \mathbb{R}^p vers la base canonique de \mathbb{R}^n .

Remarque 1 1.
$$f(0,...,0) = (0,...,0)$$
.

2. Une translation de vecteur non nul n'est pas une application linéaire.

2 Exemples d'applications linéaires

Transformation	Application linéaire			Forme matricielle		
Identité	f	:	\mathbb{R}^n $(x_1,,x_n)$	$\overset{\rightarrow}{\mapsto}$	\mathbb{R}^n $(x_1,,x_n)$	I_n (matrcie identité)
Application nulle	f	:	$ \begin{array}{c} \mathbb{R}^n \\ (x_1,, x_n) \end{array} $	$\overset{\rightarrow}{\mapsto}$	\mathbb{R}^n $(0,,0)$	0_n (matrice nulle)

1 IONISX

ESPACE VECTORIEL \mathbb{R}^n

EXEMPLES D'APPLICATIONS LINÉAIRES

Transformation	Application linéaire	Matrice associé
Réflexion par rapport à $(0y)$	$ \begin{array}{cccc} f & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto & \begin{pmatrix} -x \\ y \end{pmatrix} \end{array} $	$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)$
Réflexion par rapport à $(0x)$	$ \begin{array}{cccc} f & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto & \begin{pmatrix} x \\ -y \end{pmatrix} \end{array} $	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$
Réflexion par rapport à $y=x$	$ \begin{array}{cccc} f & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto & \begin{pmatrix} y \\ x \end{pmatrix} \end{array} $	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$
$Homoth\acute{etie}H(0,\lambda)$	$ \begin{array}{cccc} f & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto & \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix} \end{array} $	$\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$
Projection orthogonale sur $(0x)$	$ \begin{array}{cccc} f & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto & \begin{pmatrix} x \\ 0 \end{pmatrix} \end{array} $	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$
Projection orthogonale sur $(0y)$	$ \begin{array}{cccc} f & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto & \begin{pmatrix} 0 \\ y \end{pmatrix} \end{array} $	$\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$
Rotation $R\left(0,\theta\right)$	$ \begin{array}{ccc} f & : & \mathbb{R}^2 & \to \mathbb{R}^2 \\ \begin{pmatrix} x \\ y \end{pmatrix} \mapsto & \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix} \end{array} $	$ \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right) $
Réflexion par rapport au plan $(0xy)$	$ \begin{array}{cccc} f & : & \mathbb{R}^3 & \to & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto & \begin{pmatrix} x \\ y \\ -z \end{pmatrix} \end{array} $	$ \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right) $
Réflexion par rapport au plan $(0xz)$	$ \begin{array}{cccc} f & : & \mathbb{R}^3 & \to & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto & \begin{pmatrix} x \\ -y \\ z \end{pmatrix} \end{array} $	$ \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right) $

2 IONISX