(20474) אינפיניטסימלי 1 – 15 פתרון ממ"ן – 15

2023 במאי 1

שאלה 1

'סעיף א

נחשב את הגבול הבא

$$\lim_{n\to\infty} \left(1+\sin\frac{1}{n^2}\right)^{n^2}$$

0של חיובית בסביבה בית בסביבה $\alpha x < \sin x$ כי לראות דומה ניתן באופן

$$\begin{split} &\alpha x < \sin x < x \\ &\frac{1}{\alpha n^2} < \sin \frac{1}{n^2} < \frac{1}{n^2} \\ &1 + \frac{1}{n^4} < 1 + \sin \frac{1}{n^2} < 1 + \frac{1}{n^2} \\ &\left(1 + \frac{1}{\alpha n^2}\right)^{\alpha n^2} < \left(1 + \sin \frac{1}{n^2}\right)^{n^2} < \left(1 + \frac{1}{n^2}\right)^{n^2} \\ &e^{\alpha} \leq \lim_{n \to 0} \left(1 + \sin \frac{1}{n^2}\right)^{n^2} \leq e \end{split}$$

וכאשר $\alpha \to 1$ נקבל

$$\lim_{n\to 0} \left(1 + \sin\frac{1}{n^2}\right)^{n^2} = e$$

'סעיף ב

נמצא את ערך הגבול

$$\lim_{x \to 0} |x|^{\frac{1}{x^2}}$$

 $frac{1}{x}$ על־פי הרכבת הפונקציה

$$\lim_{x \to 0} |x|^{\frac{1}{x^2}} = \lim_{t \to \infty} \left| \frac{1}{t} \right|^{t^2}$$
$$= \lim_{t \to \infty} \frac{1}{|t|^{t^2}}$$
$$= \infty$$

הגבול מתקיים במובן הרחב.

שאלה 2

תהי פונקציה

$$f(x) = e^{-x} + \sin^2 x$$

'סעיף א

נוכיח כי מתקיים הגבול הבא עבור סדרה

$$\lim_{n \to \infty} f(\pi n) = 0$$

 $.k \in \mathbb{Z}$ לכל $\sin \pi k = 0$ כי אנו יודעים אנו \sin פונקציית מהגדרת הוכחה.

אז גם
$$f(\pi k) = e^{-pik} = \left(rac{1}{e}
ight)^k$$
 אז גם אז גם

$$\lim_{n \to \infty} f(\pi n) = 0$$

מש"ל

'סעיף ב

נוכיח כי

$$\inf f([0,\infty)) = 0$$

 $f(x_0)=a$ כך ש־מ כך קיים, ונראה כי הוכחה. נגדיר a>0 נגדיר

 $x_1 < a$ מספר שקיים שקיים אנו יודעים של ההגדרה מתחום הגבול מהגדרת לכן אל פר $x \to \infty$ אנו יודעים אנו יודעים לכן אנו או

. ממשפט ערך הביניים של קושי נובע גם כי x_0 כזה המתואר קיים.

מש"ל

 $\inf f([0,\infty)) = 0$ כי בתחום מהגדרה (f ונבע מיים שנבחר היים שנבחר וכל a>0 לכן בתחום ההגדרה לכן לכן

'סעיף ג

נוכיח כי הפונקציה f לא מקבלת מינימום בתחום הגדרתה.

 $f(x_0)=c$ כי תניח בנקודה בנקודה מקבלת מינימום כי הפונקציה כי הפונקציה נניח בשלילה כי

כפי שראינו בסעיף הקודם, אילו c = 0 וידוע מהגדרתה לא היים $f(x_1) < f(x_0)$ כך שי x_1 אז קיימת נקודה x_1 אז קיימת נקודה בסעיף הקודם, אילו לאף ערך x_1 אז קיימת נקודה בקודה מהגדרתה כי x_1 אז קיימת נקודה ביימת מהגדרתה כי x_1 אז קיימת נקודה ביימת נקודה ביימת נקודה היימת נקודה ביימת ביימ

. מינימום אין לקבוע כך לפונקציה בעקבות מינימום אין מינימום על־כן לא ליכן ניתן לקבוע כי לא ליכו על־כן אין מינימום איים אין מינימום איין מינימום אין מינימום איינימום אייני

מש"ל

שאלה 3

בכל סעיף נמצא את תחום ההגדרה, תחום הרציפות תחום הגזירות, ואת ערך הנגזרת לכל נקודה בתחום הגזירות של הפונקציה המוגדרת.

'סעיף א

$$f(x) = \begin{cases} \sin^2(x)\sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$