PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-220458

(43)Date of publication of application: 09.08.2002

(51)Int.CI.

C08G 65/40 C08J 5/22 C25B 13/08 H01B 1/06 H01M 8/02 // H01M 8/10 C08L 71:00

(21)Application number : 2001-334882

(71)Applicant: HOECHST AG

(22)Date of filing:

14.06.1993

(70):

(72)Inventor: HELMER-METZMANN FREDDY

OSAN FRANK

SCHNELLER ARNOLD RITTER HELMUT LEDJEFF KONSTANTIN

NOLTE ROLAND THORWIRTH RALF

(30)Priority

Priority number: 1992 4219412

Priority date: 13.06.1992

Priority country: DE

1992 4242692

17.12.1992

DE

(54) POLYMER ELECTROLYTE FILM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a ion conductive film which is prepared from a polymer suitable for use as a polymer solid electrolyte, having sufficient chemical stability and soluble in a proper solvent.

SOLUTION: A crosslinkable sulfonic acid polymer represented by formula (VII) and a polymer electrolyte film obtained from the same are provided, (a is a number from 0.15 to 0.95: b is a number from 0.05 to 0.25; c is a number from 0 to 0.8; a+b is a number from 0.2 to 1.0; a+b+c is 1; R1 is a group selected from the group represented by the formula).

[Date of sending the examiner's decision of rejection]	20.02.2004
[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]	
[Date of final disposal for application]	
[Patent number]	3645851
[Date of registration]	10.02.2005
[Number of appeal against examiner's decision of rejection]	2004-10543
[Date of requesting appeal against examiner's decision of rejection]	20.05.2004

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

四公開特許公報 四

(11)特許出願公開番号

特開2002-220458

(P2002-220458A) (43)公開日 平成14年8月9日(2002.8.9)

(51) Int. Cl. 7	識別記号	FI				テーマコード (参考)
C08G 65/40		C08G	65/40		4F0	71
CO8J 5/22	101	C08J	5/22	101	4J0	05
	CEZ			CEZ	5G30	01
C25B 13/08	301	C25B	13/08	301	5H0:	26
H01B 1/06		H01B	1/06		Α	
		審査請求 有	請求項の数9	OL	(全13頁)	最終頁に続く

(21)出願番号 特願2001-334882(P2001-334882)

(62) 分割の表示 特願平5-142226の分割

(22) 出願日 平成 5 年 6 月 14 日 (1993. 6. 14)

(31)優先権主張番号 P4219412. 1

(32)優先日 平成4年6月13日(1992.6.13)

(33)優先権主張国 ドイツ (DE)

(31)優先権主張番号 P4242692:8

(32) 優先日 平成 4 年12月17日 (1992. 12. 17)

(33)優先権主張国 ドイツ (DE)

(71)出願人 590000145

ヘキスト・アクチェンゲゼルシャフト ドイツ連邦共和国、65926 フランクフル

ト・アム・マイン(番地なし)

(72) 発明者 フレディー・ヘルマー・メッツマン

ドイツ連邦共和国デーー6500 マインツ, ペーター・マイゼンベルガー・ヴェーク

2

(74)代理人 100089705

弁理士 社本 一夫 (外4名)

最終頁に続く

(54) 【発明の名称】高分子電解質膜

(57)【要約】 (修正有)

【課題】高分子固体電解質として使用するのに適し、十分な化学的安定性を有し、適当な溶剤に溶解するポリマーから製造され得るイオン導電膜を提供する。

【解決手段】下記式(VII)で表される高分子架橋性スルホン酸、及びこれから得られる高分子電解質膜。

(ここで、aは0.15から0.95までの数で、bは0.05から0.25までの数で、cは0から0.8までの数で、a+bは0.2から1.0までの数で、a+

b+cは1であり、 R^2 は下記に示す基から選ばれる)

【特許請求の範囲】

性スルホン酸。

下記式 (VII) で表される高分子架橋 【請求項1】

【化1】

(VII)

(ここで、aは0.15から0.95までの数で、bは 0.05から0.25までの数で、cは0から0.8ま b+cは1であり、R²は下記に示す基から選ばれる) 【化2】

【請求項2】 スルホン化芳香族ポリエーテルケトンか ら製造される高分子電解質膜であって、スルホン化芳香 での数で、a+bは0.2から1.0までの数で、a+20 族ポリエーテルケトンが下記式(VII)で表されるも の。

【化3】

- CH2 - CH - CH2

$$-ch_2 \sqrt{0}$$

(VII)

(ここで、aは0.15から0.95までの数で、bは 0.05から0.25までの数で、cは0から0.8ま での数で、a+bは0.2から1.0までの数で、a+ b+cは1であり、R²は下記に示す基から選ばれる)

50

【化4】

【請求項3】 燃料電池または電解槽中において、請求項1に記載の方法により製造される高分子電解質膜の使用。

【請求項4】 スルホン化芳香族ポリエーテルケトンから製造される高分子電解質膜であって、下記式 (VIII) で表されるもの。

【化5】

$$\left\{ \left\{ \left(- \bigoplus_{i=0}^{n} \left(\bigoplus_{i=0}^$$

(ここで、a、bおよびcは請求項1に定義されたとおりで、Aは付加環化により成形される二価環系である) 【請求項5】 Aが下記式(IX)で表される基であ

る、請求項4に記載の高分子電解質膜。 【化6】

(ここで、Rは水素またはメチルである)

【請求項6】 Aが下記式(X)で表される基である、

30 請求項4に記載の高分子電解質膜。 【化7】

(ここで、Bは二価の基である)

【請求項7】 スルホン化芳香族ポリエーテルケトンから製造される高分子電解質膜であって、

a) 下記式(XI) で表されるポリマーと、b) 下記式

(I) で表されるスルホン化ポリエーテルケトンとから 成るもの。

(X)

40 【化8】

(ここで、bは0.5から1、cは0から0.5、b+ cは1で、Aは請求項4に定義されたとおりであり、ス ルホンアミド橋を介して架橋されている) 【化9】

$$\left\{ \left\{ v_1 - 0 \right\}^k v_1 \left[\left\{ c_0 - v_1, \right\}^k D - v_1 \right] \right\}^k c_0 - v_1, \right\}^2 - - \left[0 - v_1, \right]^k - c_0 \right\}$$
 (0)

(ここで、〇一フェニレン一〇単位の少なくとも20% 20 る) がSO3H基によって置換されており、Arはpーおよ び/またはm-結合を有するフェニレン環あり、Ar' はフェニレン、ナフチレン、ビフェニレン、アントリレ ン、または他の二価の芳香族構造単位であり、X、Nお よびMはそれぞれ独立して0または1であり、Yは0、 1、2または3であり、Pは1、2、3または4であ

【請求項8】 スルホン化芳香族ポリエーテルケトンを 含むポリマー混合物であって、

下記式 (I I) のスルホン酸と下記式 (X I I) のスル ホンアミドから成るもの。

【化10】

(ここで、NH₂Rはアリルアミンまたはp-アミノ桂 は1である)

【請求項9】 上記式 (XII) の比率が 0.5-25 重量%で、上記式(II)の比率が75-99.5重量 %である、請求項8記載のポリマー混合物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、スルホン化芳香族ポリ エーテルケトンに基づく高分子電解質膜に関するもので ある。

[0002]

【従来の技術】液体電解質の代わりに高分子固体電解質 皮酸であり、aは0から1、cは0から0.5、a+c 40 をイオン導体として用いる電気化学電池では、カチオン 交換膜が用いられる。例として水電解槽や水素/酸素燃 料電池があげられる。これに用いられる膜は、化学的、 電気化学的および力学的安定性とプロトン導電率に関 し、厳しい要求に答えるものでなければならない。この ため、これまでに長期操作、例えばクロローアルカリ電 解において好適に用いられてきたものは、主にスルホン 基交換能を含むフッ化膜のみである。

> 【0003】フッ素交換膜の使用が従来技術として確立 されているものの、固体電解質として使用するには欠点 50 がある。コストが高くつく上に、上に要求した特性をも

つ物質は膜形状では限定されたパラメーター(厚さ、交 換能力) でしか入手できず、熱可塑的にも加工できず、 また溶液としても加工できない。しかし、変性可能な特 性をもち、膜の特性を電池における要求条件に最適に合 わせられるような膜を要求することが、まさに燃料電池 /電解における高分子固体電解質としての適用分野なの である。

【0004】変性可能な特性には、膜厚の変化がある。 この理由は、膜厚に比例する抵抗が、とくに高い電流密 度において、電池の電気的損失のかなりの部分を補うか 10 らである。市販のペルフッ素化膜は典型的に170-1 80μmの厚さを有する。0.1mm以下の厚さが望ま しい。熱可塑的に加工が可能なポリマーあるいは溶液と しての加工が可能なポリマーは、膜を望みの厚さで製造 することを可能にする。

【0005】変性可能な特性には膜の架橋度も含まれ る。求められている低い膜抵抗は膜の高いイオン交換能 力をもたらす。しかし、膜はとくに温度を上昇させたと きに数値を増すにつれかなり膨脹し、その力学的特性が 不適当になるので、化学的に架橋されていない膜はいず 20 れも (市販のペルフッ素化膜も含む) その実施において イオン交換能力に限りがある。しかし、膜に加工された あと原理的に化学的に架橋可能なポリマー物質は膨脹を

制限する機会を与える。

【0006】例えばスルホン化ポリスチレンのようにカ チオン交換膜に典型的に使用されるポリマーは液体モノ マーから調製され、架橋剤分子の添加後所望の厚さの膜 に重合されるが、主鎖の脂肪族鎖上の水素原子は、求め られる長期におよぶ化学的安定性を有しない。

【0007】さらには、すぐれたカチオン交換膜を見分 ける特性とは、操作中断中の不感受性、支持フィルムの 離層抵抗、および(アルカリ金属クロリド電解の場合に は)ブライン不純物にたいする不感受性である。

[0008]

【発明が解決しようとする課題】したがって、本発明の 目的は、高分子固体電解質として使用するのに適し、十 分な化学的安定性を有し、適当な溶剤に溶解するポリマ ーから製造され得るイオン導電膜を供給することであ る。好ましくは、その後の処理で膜をさらに安定させる ことができる。

[0009]

【課題を解決するための手段】この目的は、下記式 (I)

[0010]

【化11】

れる。

$$\left\{ \left\{ x_{1} - 0 \right\}^{2} x_{1} \left\{ \left\{ c_{0} - x_{1}, \frac{1}{2} x_{0} - y_{1} \right\}^{2} \left\{ c_{0} - y_{1}, \frac{1}{2} x_{0} - y_{1}, \frac{1}{2} x_{0} \right\} \right\}$$

$$\left\{ \left\{ x_{1} - 0 \right\}^{2} x_{1} \left\{ \left\{ c_{0} - x_{1}, \frac{1}{2} x_{0} + y_{1} \right\}^{2} \left\{ c_{0} - y_{1}, \frac{1}{2} x_{0} + y_{2} \right\} \right\} \right\}$$

【0011】 (ここで、Arはp-および/またはm-結合を有するフェニレン環であり、Ar' はフェニレ 他の二価の芳香族構成単位であり、X、NおよびMはそ れぞれ独立して0または1であり、Yは0、1、2また は3であり、Pは1、2、3または4である)で表され る芳香族ポリエーテルケトンをスルホン化し、スルホン 酸を単離して有機溶媒に溶解し、溶液がフィルムに転化 されることから成るスルホン化芳香族ポリエーテルケト ンから高分子電解質膜を製造する方法により達せられ る。

【0012】この方法は下記の工程:

- ホニルクロリド基に転化し、
- b) 該スルホニルクロリド基を少なくとも1つの架橋性 の置換基またはさらに官能基を含むアミンと反応させ、 元のスルホン酸基の5-25%をスルホンアミド基に転 化し、
- c)次いで、未反応のスルホニルクロリド基を加水分解 し、得られた芳香族スルホンアミドを単離して有機溶媒 に溶解し、溶液をフィルムに加工し、そして
- d) 該フィルム中の架橋性の置換基を架橋する、ことか らなる。

【0013】スルホン化芳香族ポリエーテルケトンから 誘導される不斉膜はEP-A-182 506の主題で ン、ナフチレン、ビフェニレン、アントリレン、または 30 ある。しかし、そこに記載されている膜は架橋性基ある いは架橋基を含まない。

【0014】上記式(I)のポリエーテルケトンのスル ホン化は94-97重量%の濃度の硫酸に溶解し、得ら れた溶液にスルホン化剤を硫酸濃度が98-99.5重 量%になるまで添加し、所望のスルホン化度に達したら すぐに反応バッチを処理する(work up)ことが 好ましい。スルホン化が実質的に抑制されるか、スルホ ン化がまだ起こらない条件下で行なうことが好ましい。 【OO15】上記式(I)に示される芳香族ポリエーテ a) スルホン酸中のスルホン基の少なくとも5%をスル 40 ルケトンは容易に得られる。それは原理的には、芳香族 二酸ジハロゲン化物が芳香族エーテルと反応するフリー デル・クラフツ法による求電子性重縮合によって構成さ

> 【0016】好ましくは、上記式(I)のポリマーにお いては、P=2-(1-X)・Mのように合わせられ る。P=1、X=0、M=1、Y=0、N=0であるポ リマーはビクトリックス(Victrex:登録商標) の名で市販されている。N=1, あるいはY=3, ある いはP=4, あるいはX=1であるポリマーは、好まし 50 くは求核反応で製造される。

【0017】ポリマー中のすべての二価の芳香族基-Arーがフェニレン、好ましくは1、4-フェニレンを含むようにスルホン化されるのが好ましい。硫酸濃度を増し、スルホン化に役立つ働きをするスルホン化剤は、好ましくは発煙硫酸、クロロスルホン酸または三酸化硫黄である。

Q,

【0018】溶解に使用される硫酸の濃度は、好ましくは96-96.5%である。溶解温度はエーテル橋とカルボニル橋の数の比率による。カルボニル基に対するエーテル基の割合が増すにつれて、求電子性置換(例えば、スルホン化)のためのポリエーテルケトンの主鎖の反応性は増す。

【0019】導入されるスルホン基の数は、酸素原子によって橋かけされる芳香族環の数による。上述の条件下ではO-フェニル-O構成単位のみがスルホン化され、O-フェニル-CO基はスルホン化されないままである。一般に、ポリマー溶解中の温度は10-60 $\mathbb C$ 、とくに20-60 $\mathbb C$ 、好ましくは30-50 $\mathbb C$ である。この溶解工程中は、主鎖のスルホン化は実質的に抑制される。本発明者らのNMR研究では、スルホン化中は分解 20 が生じないことがわかっている。

【0020】試料が完全に溶解したあとで、硫酸濃度が

98-99.9重量%、とくに98-99.5重量%、好ましくは98.2-99.5重量%になるまで、例えば発煙硫酸を添加することにより該濃度を増加させる。実際のスルホン化中の反応温度は溶解工程中よりも高くできる。一般に、スルホン化は10-100℃、とくに30-90℃、好ましくは30-80℃で行われる。温度の上昇と反応時間の延長はポリマーのスルホン化度を増加させる。典型的な反応時間は0.5-10時間、とくに1-8時間、好ましくは1.5-3時間である。10時間以上の反応時間はスルホン度を無意味に延長するにすぎない。スルホン化剤の添加後、溶剤の温度を少なくとも50℃まであげることで、スルホン化はかなり促進する。

【0021】スルホン化は好ましくは下記式(IV)か(V)か(VI)のホモポリマーで行われる。本発明の別の具体例では、上記の工程は下記式(IV)、(V)および/または(VI)の少なくとも2つの異なる構成単位から構成される共重合芳香族ポリエーテルケトンのスルホン化に用いられる。

0 【0022】 【化12】

$$+\left(\bigcirc - \circ\right)_{2}\left(\bigcirc - \stackrel{\parallel}{\downarrow}\right)_{2} + \cdots$$
 (v₁)

【0023】本発明による方法のさらに好ましい具体例は、上記式(V)または(VI)の構成単位から構成さ 40れるポリエーテルケトンと非スルホン化性の構成単位を用いることから成る。上記式(IV)のモノマー構成単位と非スルホン化性のエーテルケトン構成単位からなるコポリマーのスルホン化は、EP-A-41 780とEP-A-08 895に記載されている。同じ条件下での上記式(IV)のホモポリマーを完全にスルホン化すると、室温での水中の膨脹性が非常に高く、非常に単離しにくい完全に水に溶解する生成物が得られるだろう。有意な程度にまで膜が膨脹すると膜の力学的安定性の損失をもたらすので、上記の特性は、例えば電解槽の 50

親水性イオン交換体膜としてポリスルホン酸を使用するのには好ましくない。しかし一方では、とくに高いイオン交換能力のためには高いスルホン化度が要求される。 【0024】また本発明の方法では、ポリエーテルケトンは94-97重量%の濃度の硫酸に溶解する。得られた溶液には硫酸濃度が98-99.5重量%になるまで、スルホン化剤が添加される。所望のスルホン化度に

【0025】非スルホン化性の構成単位は好ましくは下記式(XIIIa)

達したらすぐに反応バッチを処理する。

[0026]

0 【化13】

【0027】を有し、かつ正式には4ーヒドロキシベン ゾフェノンから誘導される。また、非スルホン化性の構 成単位は好ましくは下記式(XIIIb)

【0029】を有し、ついで4-ヒドロキシベンゾスル ホンから誘導される。上記式(IV)のポリマーは、最 高温度25℃で95-96.5重量%の濃度の硫酸に溶 解する。94-96重量%の濃度の硫酸に上記式(V) のポリマーを溶解するためには、30℃の温度が好まし い。上記式 (VI) のホモポリマーは、好ましくは25 -50℃で95-96.5重量%の濃度の硫酸に溶解 し、ついで60-90℃の温度でスルホン化される。上 記式 (I) のポリマーは25℃で溶解する。実際のスル 20 ホン化はそれから少なくとも50℃、少なくとも98. 5 重量%のH₂ SO₄酸濃度で行なわれる。

【0030】スルホン基のいくつかをスルホニルクロリ ド基に転化することは公知の方法を用いて行なわれる。 例えば、単離されたスルホン酸と、計算量のPC I₅又 はチオニルクロリドとを、不活性溶剤中または過剰チオ ニルクロリド中で反応させる。スルホン基と反応し且つ 架橋性置換基を導入するのに適切なアミンは、アリルア ミン、p-アミノ桂皮酸、p-アミノ桂皮酸のC₁-C₄ -アルキルエステルなどの二価の重合性基-CH=CH 30 -を含む全ての脂肪族もしくは芳香族アミンである。 S O₂C I 基と反応するアミンがさらに(非架橋性の)官 能基を含むなら、官能基Gにたいする追加の反応もさら に可能となるだろう。得られたスルホンアミドと、Eが 橋かけ単位である化合物G-E-Gとの反応は、官能基

を介して2つの高分子アリールエーテルケトンスルホン 酸に結合する。官能基を含む適切なアミンの例は2-ア ミノメチルフランであり、これは2つの非芳香族6員環 を形成するためにディールス・アルダー反応で置換無水 マレイン酸と縮合させて得られるN-フリルメチルスル ホンアミドである。もしアミンの官能基がアミノもしく はアルコール官能性ならば、二官能価エポキシドによっ て二量化が可能となる。

【0031】スルホニルクロリド基とアミンとの反応 は、不活性溶媒、例えばクルロホルムやジクロロエタン 中で行なうのが望ましい。スルホン基を置換スルホンア ミド基と置換することにより、Nーメチルピロリドンや ジメチルスルホキシドなどの有機溶媒への溶解性が増加 する。高分子芳香族アリールエーテルケトンスルホン酸 (官能基をこれ以上含まない)の有機溶媒への溶解と、 さらにその溶液のフィルムへの加工は従来技術に属す る。対応する溶媒は、例えばEP-A-0 14297 3に記載されている。

【0032】未反応スルホニルクロリド基の加水分解は 水性溶液で行なわれる。かくして調製された高分子スル ホン酸は好ましくは下記式(VII)を有する。

[0033] 【化15】

【0034】 (ここで、aは0.15から0.95まで の数、bは0.05から0.25までの数、cは0から 0.8までの数、a+bは0.2から1.0までの数、50【0035】

a+b+c=1 であり、 R^2 は下記に示す基から選ばれ

電解質膜が製造されたあとで、架橋性置換基は有利には 高エネルギー放射線または熱を介して架橋されるか、ア ミンと共に導入された官能基が適切な化合物で処理され て縮合反応、とくに付加環化反応に付される。

【0037】膜の架橋は、とくに温度を上昇させた場合 に水中での膨脹を著しく減少する。このことは燃料電池

や電解槽で膜を使用する場合に有利である。目的によっ ては、未架橋の芳香族ポリエーテルケトンスルホン酸も 膜の材料として適する。例えば、DE-A-3 402 471とDE-A-3 321860には上記式(I V) の芳香族エーテルエーテルケトンのスルホン化で得 られるカチオン交換膜についての記載がある。したがっ て、本発明は架橋基も架橋性基も含まないスルホン化芳 香族ポリエーテルケトンに基づく高分子電解質膜の製造 法にも関するものである。この目的で、芳香族ポリエー 【0036】本発明による上記方法にしたがって高分子 10 テルケトンはスルホン化され、得られたスルホン酸が単 離され有機溶媒、とくに非プロトン性極性溶媒に溶解 し、溶液はフィルムに加工される。この方法の一具体例 では、スルホン酸は下記式(II)で表される。

> [0038] 【化17】

【0039】 (ここで、aは0.2-1.0、cは0- $0.8 \cdot a + c = 1 \cdot (a + c = 1)$

本発明の方法の別の具体例では、スルホン酸は下記式

(ІІІ) で表される。 [0040]

【化18】 (III)

[0041] (22°, at 0-1, bt 0-1, ct 0-0.5, a+b+c=1 (a+b+c)

これは上記式(V)のホモポリマーのスルホン化により 得られる。スルホン化は最初にaが0.5-1でcが0 -0.5である一置換生成物(b=0)を与え、ついで 40 a が最大限(およそ1)に達し、一方bは低いままで、 cは低い値に戻る。最後にジスルホン化が起こり、aが 減少しb値は増加する。

【0042】上述の高分子電解質膜はスルホン基を含 み、芳香族アリールエーテルケトンから誘導される。そ れが付加的に架橋もしくは未架橋スルホンアミド基を含 むか否かにかかわらず、燃料電池や電解槽におけるプロ トン導電固体電解質膜として適する。高分子スルホン酸 はさらに転化が進んだ時点では未架橋なので、ジメチル ホルムアミド、NMP、DMAc、DMSOなどの適切 50 族ポリエーテルケトンからスルホン化により得る高分子

な極性溶媒に溶解する。得られた溶液は好ましくは50 -450g/lのモル濃度を有する。それは基板上に注 がれ、ついで溶媒の蒸発により均質膜が得られる。その 代わりとして、所定の膜厚を得るために、溶液を所定の 未乾燥塗膜厚のハンドコーターで基板の上に散布するこ ともでき、例えば0.05-0.4mmの範囲の厚さが 達成できる。同じ原理で、支持用布帛や、例えばポリエ チレン、ポリプロピレン、ポリテトラフルオロエチレン ンなどで作られる微孔質から多孔質にわたる支持膜、又 はガラスも上述の溶液と接触させることができ、ついで 溶媒が蒸発させられる。一般に、使用される高分子スル ホン酸とスルホン酸誘導体は、少なくとも30,000 の分子量を有する。

【0043】得られた膜は、材料を上記式(1)の芳香

電解質膜の特別の例である。この膜は燃料電池や電解槽 用の固体電解質として用いられる。もし膜が上記式(V II) の高分子スルホン酸の溶液から製造されたものな らば、高分子電解質膜の架橋は下記式(VIII)で表

15

されるスルホン化芳香族ポリエーテルケトンを与える。 [0044] 【化19】

[0045] (22°, a = 0.15-0.95, b =0. 0.5-0.25, c=0-0.8, a+b=0.2-1. 0、a+b+c=1で、Aは付加環化により形成 20 される二価環系である)

もしパラアミノ桂皮エステルがスルホニルクロリド基の

【0047】(ここで、Rはとくに水素またはメチルで ある)

もしスルホニルクロリド基が2-アミノメチルフランと 30 反応させられ、このアミンから誘導された基の結合がビ

反応に用いられ、このエステルから誘導された反応性末 端基が光又は熱で二量化されたのならば、Aは下記式 (IX) で表される基である。

[0046] 【化20】

(DX)

スマレイミドとなされたのならば、基Aは下記式(X) を有する。

(X)

[0048] 【化21】

$$\begin{array}{c|c}
 & C & H_2 & D \\
\hline
 & 0 & N & -B & -N & 0 \\
\hline
 & 0 & C & H_2 & -
\end{array}$$

【0049】(ここで、Bは1-4の炭素原子をもつア ルキレン鎖、フェニレン基、ジフェニルエーテル基、 2, 2-ビスフェニルプロパン基、2, 2-ビスフェノ 40 組み合わせることができる。得られた混合物は膜にさ キシフェニルプロパン基などの二価の基である) また、その代わりとして、高分子架橋性スルホンアミド と高分子非架橋性芳香族スルホン酸の混合物を一緒にし て膜にすることができる。ここでもまた、架橋が水中の 膨脹を著しく減じるという利点が生じる。例えば、上記

式(VII)の架橋性スルホン酸誘導体は、上記式 (1) の化合物のスルホン化から得られるスルホン酸と れ、(VII)はのちに架橋される。非架橋性スルホン 酸は好ましくは上記式(II)を有し、架橋性スルホン 酸誘導体は好ましくは下記式(XII)を有する。

[0050] 【化22】

【0051】 (ここで、Rは架橋性置換基、NH2Rは 例えば、アリルアミンまたはp-アミノ桂皮酸で、a= 0-1, c=0-0. 5, a+c=1 (c=0)

架橋後(光、熱、または架橋剤の効果により)、上記式 10

(XII) の架橋性誘導体よりなる成分が下記式(X 1) の架橋スルホン酸誘導体に変換される。

[0052]

【化23】

$$\left\{ \left(\circ \bigoplus_{\substack{3 \text{ o}_{2} \\ 3 \text{ o}_{2}}} \circ \left(\circ \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\circ \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\circ \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\circ \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\circ \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ \left(\odot \bigoplus_{\substack{1 \text{ o}_{1} \\ 3 \text{ o}_{2}}} \circ$$

[0053] (22 σ , b=0. 5-1, c=0-0. 5、b+c=1で、Aは付加環化により形成される二価 環系である)

この場合、(XII)の割合は0.5-25重量%が有 利であり、(II) の割合は75-99.5重量%が有 利である。

料電池で固体電解質として用いるためには、触媒を膜の 表面に施さなければならない。これは例えば、セルが膜 により2つに区分されるような方法で膜をコーティング セル内に設置することにより達せられる。もし、例えば ヘキサクロロ白金酸など、容易に還元できる触媒金属塩 が一方に導入され、もう一方に還元剤が導入されると、 後者は膜を通して拡散し、触媒活性金属、例えば白金を 膜の表面に折出させる。このような方法は日本国特許出 願でH・タキナカとE・トリカイにより述べられている (ケミカルアブストラクト93(8):83677vお 40 よびケミカルアブストラクト103(26):2165 7 eを参照されたい)。

【0055】その代わりとして、触媒塗布は金属粉をプ レスして行なうこともできる。例えば、1-20mg/ cm²の白金塗布率はこのようにして達成できる。プレ ス圧力は例えば、1.1-8.8バールで、プレス時間 は5-15分である。プレス工程の一般的な記述はアッ プルベイー、イエガー、エネルギー (オクスフォード) 第11巻(1988年)、第132頁にある。

【0056】途布された膜は水電解槽中でテストされる 50 式(VI)のホモポリマーを使用して行なわれた。下記

か、または固体電解質の原理で働く水素/酸素燃料電池 中でテストされる。触媒が塗布された膜はセルを半分に 分離し、同時にイオン輸送の責任を負う。膜のあとに は、各半電池は追加的に金属性ガス及び電流分割構造、 金属性電流集電装置、ならびに水電解の場合には水供給 /ガス排出装置、水素/酸素燃料電池の場合にはガス供 【0054】架橋膜をSPE法にしたがって電解槽や燃 30 給/水排出装置を含む。電池は20-80℃の範囲の温 度に保つことができ、膜は0-1A/cm²の範囲の所 定の電流密度になる。水電解槽においては、電解槽中の 膜抵抗をインピーダンス分光分析法で決定することがで きる。膜の膨脹値Qの%は、下記のようにして求められ る。

[0057]

Q=(湿潤重量-乾燥重量)×100/乾燥重量 本発明を実施例によりさらに具体的に説明する。

[0058]

【実施例1】96%の濃度の濃硫酸を滴下漏斗と油浴つ きの4つ首攪拌装置に導入し、種々の芳香族ポリエーテ ルケトンを溶解した。次に酸濃度を発煙硫酸(SOaの 含有量20%) での滴定によりH2SO4の98.5-9 9. 5重量%に調整した。スルホン化は次工程での温度 上昇で促進される。最終温度は個々のポリマーにより決 定される。

【0059】表1の実験は上記式(IV)のホモポリマ ーを使用して行なわれた。表2の実験は上記式(V)の ホモポリマーを使用して行なわれた。表3の実験は上記

の略語が表で使用した。

- 反応温度

=溶解温度

スルホン化度=元素分析から得た硫黄含有量により決定 したスルホン化度(スルホン化〇-フェニレン-〇構造

20

時間 = 反応時間

[0060] DT

RΤ

単位の割合) [0061]

= 25℃における濃H₂SO₁で測定した内 内部粘度

【表1】

部粘度(0.1%)

	DТ	散散药	RT	時間	収率	内部	スルホン化
	(3)	義皮	(°C)	(h)	(%)	粘度	故
		(%)					(%)
	25	98, 50	25	1.00	>90	_	40
п	25	98.50	45-50	1, 25	>90		63
п	25	98, 50	45-50	1, 50	>90	0, 73	68
ΙV	40	98. 50	60	3. 00	>90	0. 54	82
v	25	98.50	50	1. 50	>90	0. 71	77
VI	25	98.50	50	1.50	>80	0.71	76

[0062]

【表2】

_	D T (°C)	融及許 測度 (为)	RT (°C)	時間 (上)	(%)	内部 粘度	スルホン化 度 (%)
1	30	98.50	30-35	1, 25	>90	Q. 77	50
П	30	98, 50	25-30	6. 0 0	>80	0. 74	60
I	30	98. 50	50	1, 00	>90	0, 76	46
ΙV	30	98.20	50	4. 00	>90	0.67	69

[0063]

【表3】

	DT (°C)	酸最終 強度 (%)	RT (℃)	時間 (h)	収率 (%)	内部 粘皮	スルホン化 度 (%)
I	45	98. 30	60	1.00	>90	0. 80	21
π	45	98. 30	70	0, 50	>90	0. 80	31
ш	45	98, 30	80	0. 50	>90	0. 71	52
IA	45	98. 30	80	1. 50	>90	0, 67	72
v	45	98. 50	60	4.00	>90	0, 80	28
٧L	45	98, 10	80	4. BO	>90	0.60	81
791	45	98. 95	60	4,00	>90	0.59	82
780	45	98. 95	80	6, 00	>80	0, 57	75
IX	45	98. 40	80	3.00	>90	0.70	91
x	45	99.10	60	1.00	>90	0. 62	76
ХI	45	98. 95	60	D. 83	>90	p. 70	57

[0064]

【実施例2:エーテルケトンのスルホン化】230ml のクロロスルホン酸をKPG(精密ガラス)攪拌機つき の1リットル3つ首丸底フラスコに入れ、窒素下にて氷 /塩化ナトリウムで-14℃まで冷却した。25.0g のポリエーテルケトンを10分以内に加え、20mlの クロロスルホン酸でリンスした。1時間後には、ポリエ 40 算した。 ーテルケトンは全部溶解しており、氷浴を除去した。反 応混合物を26℃まで温め、ついで水浴で24℃に保っ た。全反応時間中に、0.5-0.8mlの部分を間を 置いて除去し、約15mlの水に沈殿させた。フレーク を吸引により濾過し、pHが中性になるまで水で洗い、 エタノールで2度リンスし、100℃で油真空ポンプで 乾燥させた。硫黄元素分析がついで行なわれた。

【0065】約9時間におよぶ反応時間の後、約15m 1を除いてフラスコの全量を攪拌した氷/水混合物10 リットル中に注いだ。綿状の固まりになった生成物を吸 50

引により濾過し、洗液のpHが中性になるまで氷・水で 洗浄した。生成物をエタノールとエーテルでリンスし、 約80℃で真空中で乾燥した。15mlの反応溶液につ いても、約29時間後これに準じて処理を行なった。ス ルホン化度が反応時間により決定されることは表4に示 されている。スルホン化度は元素分析のS/C率から計

【0066】熱ジメチルホルムアミド、ジメチルスルホ キシド及びNーメチルピロリドンにおける溶解度はスル ホン化度の増加にともなって増加する。

[0067]

【表4】

個々の試料のスルホン化度

₽	起度	スルホン化度	確實
	(°C)	(%)	(%)
30	-20	16. 8	1.14
60	- 8	19. 7	1.34
85	13	39. 9	2, 71
110	22	61. 4	4.17
125	26	74. 5	5.06
175	24	85. 9	5. 83
200	24	85.3	5. 85
225	24	87. 2	5, 92
250	24	88.8	8, 03
280	24	86. 9	5. 90
305	24	87. 6	5. 95
335	24	89. 0	6.04
375	24	87. 2	5. 9 2
405	24	89. 4	6.07
435	24	88. 5	6.01
470	24	88. 7	6. 02
500	24	89. 1	6.05
530	24	90.0	6.11
560	24	89.5	6, 08
1760		94.6	6. 42

【0068】ポリエーテルケトンのスルホン化の後に、20【0073】 13C-NMRスペクトル測定も行なった。142.0p pmの信号はハイドロキノン単位のスルホン化を表示す る。119.0ppmの弱い信号は未置換ハイドロキノ ン単位により生じる。同じ結果が、エーテル結合を介し てハイドロキノン単位に結合する炭素により生成され、 パラ位置にケト官能性を有する159.7ppmの信号 によっても得られる。スルホン化ハイドロキノン単位に 隣接する対応する炭素原子は161.5ppmと16 2.8 p p m に信号を有する。

[0069]

【実施例3:スルホニルクロリドの調製】チオニルクロ リド250mlとDMF30滴を、2リットル3つ首丸 底フラスコに入れた実施例2で得たスルホン化ポリエー テルケトン12.5gに攪拌しながら添加する。この場 合には、活発なガスの発生が生じる。混合物をゆるやか に還流させながら2時間沸騰させ、さらに塩化ビニル1 50mlを加え、混合物をさらに14時間還流させる。 400mlのテトラクロロエタンを加え、得られた混合 物を約250mlの残留物になるまで蒸留する。冷却 後、反応混合物を2. 5リットルのエーテルに攪拌しな 40 350μmのハンドコーターによって表面に広げる。膜 がら入れる。無色のフレークを吸引により濾過し、エー テルで洗浄し、真空中で乾燥する。収率:12.4g (95%)

【0070】 [実施例4:スルホニルクロリドポリエー テルケトンと第一または第二アミンとの反応(一般的手 順)] 実施例3で得たスルホニルクロリドポリエーテル ケトン1. 60g (32. 6mmol) を窒素下にて2 5mlのクロロホルムに溶解する。ついで25-70m molのアミンを約0°Cで滴下させながら加える。反 応混合物を室温で約16時間攪拌した後、750mlの 50 185mohmだった。

メタノール中に徐々に注ぎ入れる。フレーク状の生成物 を吸引により濾過し、600mlのエーテルで処理す る。生成物を約80°Cで真空中で乾燥する。収率:5 6 - 86%

[0071]

【実施例5:膜の製造】実施例2に記載されるようにし て調製されたスルホン化ポリエーテルケトン(スルホン 化度90%)をDMF(濃度:100-300g/1) に溶解し、溶液を0.2mmハンドコーターを用いてガ 10 ラス板に流延させた。DMFは15時間以内に蒸発し た。つぎにガラス板を水中に入れた。ポリマーフィルム がガラス板から分離した。KCI水溶液中での平衡後、 フィルム厚さは27μm以上だった。

【0072】フィルムの水吸収能は室温では50%以下 で、80℃では約1900%である。しかし、膜は水吸 収中も安定である。膜のパーム(perm)選択性は約 90%である。膜は700W水銀低圧蒸気ランプで(3 0分) 照射後でもジメチルホルムアミドに溶解する。水 吸収能は照射でha変化しない。

【実施例6:膜の製造】NHR基がメチルpーアミノシ ンナメートから誘導したものである上記式(XII) (aは約0.95、cは約0.05) のスルホンアミド を、実施例4の方法により調製した。実施例2のスルホ ンアミド20gとスルホン酸80gをDMF1リットル に溶解し、フィルムを溶液から実施例5の方法により製 造した。KC1溶液中での平衡後、フィルム厚さは約3 μmだった。

【0074】300WのUVランプで2時間、およそ5 cmの距離から照射したところ、桂皮酸二重結合の [2] +2]付加環化が部分的に生じた。フィルムの(80℃ における) 水吸収能は照射前は約1800%だったが、 照射後は400%に落ちた。膜のパーム選択性は約90 %である。

[0075]

【実施例7】カチオン交換膜を製造するために、スルホ ン化度90%のスルホン化ポリエーテルエーテルケトン ケトン25gを100mlのジメチルホルムアミドに溶 解する。均質溶液をガラス板に流延し、未乾燥塗膜厚さ を室温で24時間乾燥させた後、水浴で分離可能になっ た。室温で蒸留水中での平衡後、膜の平均厚さは65μ mだった。

【0076】5mg/cm²の白金コーティング率で、 触媒を130℃でホットプレスにより施す。この膜を1 cm²の膜面積を有する水電解テストセルに設置した。 測定では、膜は80℃まで安定した挙動を示した。セル の電位は温度80℃、電流負荷1A/cm²で2.15 ボルトだった。80℃での電解操作における内部抵抗は

【0077】 80 \mathbb{C} 、負荷1 A/c m^2 での長期テスト のあいだ、膜は191 時間の期間にわたって安定である ことが証明された。

[0078]

(51) Int. Cl. 7

【実施例8】実施例7に記載されるようにして製造・触

識別記号

媒が施された膜を、 $12\,\mathrm{cm}^2$ の膜面積を有する水素/酸素燃料電池に設置した。膜は $80\,\mathrm{C}$ の温度まで熱安定性があることが証明された。水素と酸素の両側で1バールの過剰圧力での操作では、 $700\,\mathrm{mV}$ の電池電圧が $175\,\mathrm{mA/cm}^2$ の負荷で生じた。

24

フロントページの続き

H O 1 M 8/02

// H O 1 M 8/10
C O 8 L 71:00

(72)発明者 フランク・オーサン
ドイツ連邦共和国デーー6233 ケルクハイ
ム/タウヌス, ハッテルスハイマー・シュ
トラーセ 27-29

(72)発明者 アルノルト・シュネラー
ドイツ連邦共和国デーー6500 マインツ,
アウバッハシュトラーセ 9アー

ドイツ連邦共和国デーー5600 ヴッペルタ ル,ロトドルンヴェーク 37

(72) 発明者 ヘルムート・リッター

(72)発明者 コンスタンティン・レドイェフ ドイツ連邦共和国デーー7812 クロツィン ゲン, クラインビュールヴェーク 6 F I デーマコート'(参考)

H 0 1 M 8/02 P H 0 1 M 8/10 C 0 8 L 71:00 Y

(72)発明者 ローラント・ノルテ ドイツ連邦共和国デーー7800 フライブル ク,シュヴァーベンシュトラーセ 28

(72)発明者 ラルフ・トルヴィルス ドイツ連邦共和国デー-5600 ヴッペルタ ル 1,シュレスヴィゲルシュトラーセ 33

F ターム(参考) 4F071 AA51 AA78 AG05 AH15 BA02 BB02 BC01 BC12 4J005 AA24 BD05 BD06 5G301 CD01 CE01

5H026 AA06 CX05 EE00 EE18 HH05