

Blog Home » Machine Learning Tutorials » Real-Life Applications of SVM (Support Vector Machines)

 Q_{i} 0

Real-Life Applicati ons of SVM (Support Vector Machine

BY DATAFLAIR TEAM ·
PUBLISHED AUGUST 8,
2017 · UPDATED
NOVEMBER 16, 2018

ML – Introduction

ML - Softwares

ML - Applications

ML - Future

ML – Algorithms

ML – Advantages & Limitations

ML – Transfer Learning

ML - Convolutional Neural Network

ML – Recurrent Neural Network

ML – Artificial Neural Network

ML – ANN Applications

ML – ANN Learning Rules

ML - ANN Model

ML – ANN Algorithms

ML – Deep Learning

ML - DL Terminologies

ML - DL For Audio Analysis

ML – Support Vector Machine(SVM)

ML – SVM Applications

ML – SVM Kernel Functions

ML – Dimensionality Reduction

ML – Gradient Boosting Algorithm

ML - XGBoost Introduction

ML – XGBoosting Algorithm

ML - AdaBoost Algorithm

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML – Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

1.

Objective

In our previous

Machine

Learning blog, we

have discussed the

detailed

introduction of

SVM(Support

Vector

Machines). Now

we are going to
cover the real life
applications of SVM
such as face
detection,
handwriting
recognition, image
classification,

Bioinformatics etc.

Real-Life Applications of SVM (Support Vector Machines)

2.

Applications of SVM in Real World

ML – Introduction

ML – Softwares

ML - Applications

ML - Future

ML – Algorithms

ML – Advantages & Limitations

ML – Transfer Learning

ML - Convolutional Neural Network

ML – Recurrent Neural Network

ML – Artificial Neural Network

ML – ANN Applications

ML – ANN Learning Rules

ML - ANN Model

ML – ANN Algorithms

ML – Deep Learning

ML – DL Terminologies

ML - DL For Audio Analysis

ML – Support Vector Machine(SVM)

ML – SVM Applications

ML – SVM Kernel Functions

ML – Dimensionality Reduction

ML – Gradient Boosting Algorithm

ML - XGBoost Introduction

ML – XGBoosting Algorithm

ML - AdaBoost Algorithm

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML - Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

As we have seen, SVMs depends on supervised

learning

algorithms. The aim of using SVM is to correctly classify unseen data. SVMs have a number of applications in several fields.
Some common applications of SVM are-

• Face detection

- SVMc classify parts of the image as a face and non-face and create a square boundary around the face.

Text and hypertext categorization

- SVMs allow
Text and
hypertext
categorization
for both
inductive and
transductive
models. They
use training data
to classify
documents into
different

ML - Introduction

ML - Softwares

ML - Applications

ML - Future

ML – Algorithms

ML – Advantages & Limitations

ML – Transfer Learning

ML - Convolutional Neural Network

ML – Recurrent Neural Network

ML – Artificial Neural Network

ML – ANN Applications

ML – ANN Learning Rules

ML - ANN Model

ML – ANN Algorithms

ML - Deep Learning

ML - DL Terminologies

ML - DL For Audio Analysis

ML – Support Vector Machine(SVM)

ML – SVM Applications

ML – SVM Kernel Functions

ML – Dimensionality Reduction

ML – Gradient Boosting Algorithm

ML - XGBoost Introduction

ML – XGBoosting Algorithm

ML - AdaBoost Algorithm

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML – Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

categories. It categorizes on the basis of the score generated and then compares with the threshold value.

• Classification
of images –
Use of SVMs
provides better
search accuracy
for image
classification. It
provides better
accuracy in
comparison to
the traditional
query-based
searching
techniques.

• Bioinformatics

- It includes protein classification and cancer classification. We use SVM for identifying the classification of genes, patients on the basis of genes and other biological problems.

 Protein fold and remote

ML - Introduction

ML – Softwares

ML – Applications

ML - Future

ML - Algorithms

ML – Advantages & Limitations

ML – Transfer Learning

ML - Convolutional Neural Network

ML – Recurrent Neural Network

ML – Artificial Neural Network

ML – ANN Applications

ML – ANN Learning Rules

ML - ANN Model

ML – ANN Algorithms

ML – Deep Learning

ML – DL Terminologies

ML – DL For Audio Analysis

ML – Support Vector Machine(SVM)

ML – SVM Applications

ML – SVM Kernel Functions

ML – Dimensionality Reduction

ML – Gradient Boosting Algorithm

ML - XGBoost Introduction

ML – XGBoosting Algorithm

ML - AdaBoost Algorithm

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML - Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

homology detection –

Apply SVM algorithms for protein remote homology detection.

• Handwriting recognition –

We use SVMs to recognize handwritten characters used widely.

Generalized predictive control(GPC)

- Use SVM based GPC to control chaotic dynamics with useful parameters.

Let us now see the above applications of SVM in detail-

2.1. Face Detection

It classifies the parts of the image as face and non-face. It contains training data of n x n pixels with a two-class face (+1) and non-face

(-1). Then it extracts

ML-Introduction

ML – Softwares

ML – Applications

ML - Future

ML – Algorithms

ML – Advantages & Limitations

ML – Transfer Learning

ML - Convolutional Neural Network

ML – Recurrent Neural Network

ML – Artificial Neural Network

ML – ANN Applications

ML – ANN Learning Rules

ML - ANN Model

ML – ANN Algorithms

ML – Deep Learning

ML – DL Terminologies

ML - DL For Audio Analysis

ML – Support Vector Machine(SVM)

ML – SVM Applications

ML – SVM Kernel Functions

ML – Dimensionality Reduction

ML – Gradient Boosting Algorithm

ML - XGBoost Introduction

ML – XGBoosting Algorithm

ML – AdaBoost Algorithm

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML – Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

features from each pixel as face or non-face. Creates a square boundary around faces on the basis of pixel brightness and classifies each image by using the same process.

Let's discuss the learning rules in Neural Networks

2.2. TextandHypertextCategorization

Allows text and hypertext categorization for both types of models; inductive and transductive. It Uses training data to classify documents into different categories such as news articles, e-mails, and web pages

Examples:

• Classification of news articles

ML – Softwares

ML – Applications

ML - Future

ML - Algorithms

ML – Advantages & Limitations

ML – Transfer Learning

ML - Convolutional Neural Network

ML – Recurrent Neural Network

ML – Artificial Neural Network

ML – ANN Applications

ML – ANN Learning Rules

ML - ANN Model

ML – ANN Algorithms

ML – Deep Learning

ML – DL Terminologies

ML – DL For Audio Analysis

ML – Support Vector Machine(SVM)

ML – SVM Applications

ML – SVM Kernel Functions

ML – Dimensionality Reduction

ML – Gradient Boosting Algorithm

ML - XGBoost Introduction

ML – XGBoosting Algorithm

ML – AdaBoost Algorithm

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML – Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

into "business" and "Movies"

 Classification of web pages into personal home pages and others

For each document, calculate a score and compare it with a predefined threshold value. When the score of a document surpasses threshold value, then the document is classified into a definite category. If it does not surpass threshold value then consider it as a general document. Classify new instances by computing score for each document and comparing it with the learned threshold.

2.3.Classificationn of Images

SVMs can classify images with higher search accuracy. Its accuracy is higher than traditional

Machine Learning Tutorials ML - Introduction ML - Softwares ML - Applications ML - Future ML - Algorithms ML – Advantages & Limitations ML – Transfer Learning ML - Convolutional Neural Network ML – Recurrent Neural Network ML – Artificial Neural Network ML – ANN Applications ML – ANN Learning Rules ML - ANN Model ML – ANN Algorithms ML - Deep Learning ML – DL Terminologies ML - DL For Audio Analysis ML – Support Vector Machine(SVM) ML – SVM Applications ML – SVM Kernel Functions ML – Dimensionality Reduction ML – Gradient Boosting Algorithm ML - XGBoost Introduction ML – XGBoosting Algorithm ML - AdaBoost Algorithm Deep Learning vs ML Deep Learning vs ML vs AI vs DS Python ML – Tutorial Python ML – Environment Setup Python ML – Data Preprocessing Python ML – Train & Test Set

query-based refinement schemes

2.4. Bioinformati

In the field of computational biology, the protein remote homology detection is a common problem. The most effective method to solve this problem is using SVM. In last few years, SVM algorithms have been extensively applied for protein remote homology detection. These algorithms have been widely used for identifying among biological sequences. For example classification of genes, patients on the basis of their genes, and many other biological problems.

2.5. Protein Fold and

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

Machine Learning Tutorials ML - Introduction ML – Softwares ML - Applications ML - Future ML - Algorithms ML – Advantages & Limitations ML – Transfer Learning ML - Convolutional Neural Network ML – Recurrent Neural Network ML – Artificial Neural Network ML – ANN Applications ML – ANN Learning Rules ML - ANN Model ML – ANN Algorithms ML - Deep Learning ML – DL Terminologies ML - DL For Audio Analysis ML – Support Vector Machine(SVM) ML – SVM Applications ML – SVM Kernel Functions ML – Dimensionality Reduction ML – Gradient Boosting Algorithm ML - XGBoost Introduction ML – XGBoosting Algorithm ML - AdaBoost Algorithm Deep Learning vs ML Deep Learning vs ML vs AI vs DS Python ML – Tutorial Python ML – Environment Setup Python ML – Data Preprocessing Python ML – Train & Test Set Python ML – Techniques Python ML – Applications

Remote Homology Detection

Protein remote homology detection is a key problem in computational biology.

Supervised learning algorithms on

SVMs are one of the most effective methods for remote homology detection. The performance of these methods depends on how the protein sequences modeled. The method used to compute the kernel function between them.

Do you know about Kernel Functions in ML

2.6.HandwritingRecognition

We can also use SVMs to recognize

Python ML – Algorithms

ML - Introduction

ML - Softwares

ML – Applications

ML - Future

ML – Algorithms

ML – Advantages & Limitations

ML – Transfer Learning

ML - Convolutional Neural Network

ML – Recurrent Neural Network

ML – Artificial Neural Network

ML – ANN Applications

ML – ANN Learning Rules

ML - ANN Model

ML – ANN Algorithms

ML – Deep Learning

ML – DL Terminologies

ML – DL For Audio Analysis

ML – Support Vector Machine(SVM)

ML – SVM Applications

ML – SVM Kernel Functions

ML - Dimensionality Reduction

ML – Gradient Boosting Algorithm

ML - XGBoost Introduction

ML – XGBoosting Algorithm

ML - AdaBoost Algorithm

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML – Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

hand-written characters that use for data entry and validating signatures on documents.

2.7. Geo and Environmen tal Sciences

We use SVMs for geo (spatial) and spatiotemporal environmental **data analysis** and modeling series.

2.8. Generalized Predictive Control

We use SVM-based GPC to control chaotic dynamics with useful parameters. It provides excellent performance in controlling the systems. The system follows chaotic dynamics with respect to the local stabilization of the target.

ML-1	Int	roc	luc	tion
------	-----	-----	-----	------

ML - Softwares

ML – Applications

ML - Future

ML – Algorithms

ML – Advantages & Limitations

ML – Transfer Learning

ML - Convolutional Neural Network

ML – Recurrent Neural Network

ML – Artificial Neural Network

ML – ANN Applications

ML – ANN Learning Rules

ML - ANN Model

ML – ANN Algorithms

ML - Deep Learning

ML - DL Terminologies

ML – DL For Audio Analysis

ML – Support Vector Machine(SVM)

ML – SVM Applications

ML – SVM Kernel Functions

ML – Dimensionality Reduction

ML – Gradient Boosting Algorithm

ML – XGBoost Introduction

ML – XGBoosting Algorithm

ML - AdaBoost Algorithm

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML – Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms

Using SVMs for controlling chaotic systems has the following advantages-

- Allows use of relatively small parameter algorithms to redirect a chaotic system to the target.
- Reduces waiting time for chaotic systems.
- Maintains the performance of systems.

3. Conclusio n

Thus, we conclude that the SVMs can not only make the reliable prediction but also can reduce redundant information. The SVMs also obtained results comparable with those obtained by other approaches. If you like this post or have any query

	Machine Learning Tutorials
ML -	- Introduction
ML -	- Softwares
ML -	- Applications
ML -	- Future
ML -	- Algorithms
ML -	- Advantages & Limitations
ML -	- Transfer Learning
ML -	- Convolutional Neural Network
ML -	- Recurrent Neural Network
ML -	- Artificial Neural Network
ML -	- ANN Applications
ML -	- ANN Learning Rules
ML -	- ANN Model
ML -	- ANN Algorithms
ML -	- Deep Learning
ML -	- DL Terminologies
ML -	- DL For Audio Analysis
ML -	- Support Vector Machine(SVM)
ML -	- SVM Applications
ML -	- SVM Kernel Functions
ML -	- Dimensionality Reduction
ML -	- Gradient Boosting Algorithm
ML -	- XGBoost Introduction
ML -	- XGBoosting Algorithm
ML -	- AdaBoost Algorithm
Deep	Learning vs ML
Deep	Learning vs ML vs AI vs DS
Pytho	on ML – Tutorial
Pytho	on ML – Environment Setup
Pytho	on ML – Data Preprocessing
Pytho	on ML – Train & Test Set
Pytho	on ML – Techniques
Pytho	on ML – Applications
Pytho	on ML – Algorithms
//1 /	0

related to these Applications of SVM, so please let us know by leaving a comment.

See Also-

- Applications of Machine Learning
- Applications of Artificial Neural Network (ANN)

For reference

Tags:
Applications of SVM
machine learning
Machine Learning Applications
Machine Learning tutorial
SVM SVM Introduction

LEAVE A REPLY

Name * Email *
Website

Post Comment

Machine Learning Tutorials

MI. - Introduction

DataFlair

& About us

Contact us

Privacy Policy

Disclaimer

Testimonials

Spark Tutorials

Flink Tutorials

Tableau

Tutorials

Power BI

Tutorials

QlikView

Tutorials

Data Science

Tutorials

Machine

Learning Tutorials

Python

Tutorials

R Tutorials

SAS Tutorials

IoT Tutorials

SQL Tutorials

DataFlair © 2018. All Rights Reserved.

Powered by **W** - Designed with **Hueman Pro**

Deep Learning vs ML

Deep Learning vs ML vs AI vs DS

Python ML – Tutorial

Python ML – Environment Setup

Python ML – Data Preprocessing

Python ML – Train & Test Set

Python ML – Techniques

Python ML – Applications

Python ML – Algorithms