Structured Sparsification with Joint Optimization of Group Convolution and Channel Shuffle

Xin-Yu Zhang¹, Kai Zhao¹, Taihong Xiao², Ming-Ming Cheng¹, Ming-Hsuan Yang² ¹Nankai University, ²University of California, Merced

arXiv: https://arxiv.org/abs/2002.08127

Github: https://github.com/Sakurao3/StrucSpars

Email: xinyuzhang@mail.nankai.edu.cn

–Background -

Group convolution (GroupConv) for model compression.

- GroupConv has less parameters and lower complexity (Fig. (a));
- ► However, if multiple GroupConvs are stacked sequentially, the inter-group communication will be eliminated (Fig. (b));

ShuffleNet introduces a *channel shuffle* operation to re-arrange channels for each group, but the channel permutation still follows a pre-defined scheme (Fig. (c));

This work proposes a *learnable channel shuffle* mechanism which unifies the norm-based criteria and the learning of channel permutation.

Overview

- (b) weight norm matrix
- Learn the permutation matrices (P, Q) and use them to perform channel shuffle;
- b) Structurally regularize the convolutional weights to induce a group structure;
- Remove the sparsified weights and form the GroupConvs;
- d) Shuffle back to the original ordering and obtain a *structurally sparse* representation of the convolutional weights.

Chanllenges.

- ① Under what criteria to learn the channel shuffle (⇒ linear programming);
- ② How to induce a group structure on the convolutional weights (⇒ structured regularization).

–Learning of Connectivity–

Observations.

- \triangleright Weight norm matrix of GroupConv \rightarrow *block-diagonal* matrix;
- \triangleright Channel shuffle $\rightarrow row/column\ permutation\ of\ weight\ norm\ matrix.$

Formulation.

> Since weight norm matrix cannot be permuted to be an exact block-diagonal one, the aim of channel shuffle is to make it "as block-diagonal as possible":

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \boldsymbol{P} \boldsymbol{S} \boldsymbol{Q} \otimes \boldsymbol{R}$$
s.t. $\boldsymbol{P} \in \mathcal{P}^{\mathcal{C}_{\text{out}}}$ and $\boldsymbol{Q} \in \mathcal{P}^{\mathcal{C}_{\text{in}}}$, (1)

where **S** is the weight norm matrix, i.e., $S_{j,i} = \| \boldsymbol{W}_{j,i,:} \|$, **R** is a cost matrix, \mathcal{P}^N denotes the set of $N \times N$ permutation matrices, and \otimes denotes the operator of element-wise multiplication and summation over all entries.

Solution.

- ➤ Since problem (1) is NP-hard, we adopt two techniques to make it solvable:
 - a) the set \mathcal{P}^N of permutation matrices is relaxed to its convex hull --- the set of doubly-stochastic matrices, i.e., the Birkhoff polytope:

$$\mathcal{B}^N = \{ \boldsymbol{X} \in \mathbb{R}_+^{N \times N} : \boldsymbol{X} \, \boldsymbol{1}_N = \boldsymbol{1}_N, \, \boldsymbol{X}^T \boldsymbol{1}_N = \boldsymbol{1}_N \};$$

- b) the variables P and Q in (1) are updated alternatively, namely, the coordinate descent algorithm is used;
- \triangleright With the two tricks, problem (1) is adapted as (when updating P):

$$\min_{\mathbf{P}} \mathbf{P} \otimes \mathbf{R} \mathbf{Q}^T \mathbf{S}^T$$
s. t. $\mathbf{P} \in \mathcal{B}^{C_{\text{out}}}$; (2)

 \triangleright In (2), the objective function is linear in P, and \mathcal{B}^N is a *simplex*, so (2) is essentially a linear program, which can be solved by the network simplex method.

Discussion.

- > By linear programming theory and Birkhoff's theorem, at least one solution of (2) is exactly a permutation matrix;
- \triangleright Therefore, feasible region \mathcal{B}^N is naturally reduced to \mathcal{P}^N .

–Structured Regularization-

Despite channel shuffle, the group structure cannot be formed spontaneously.

Structured Regularization.

 \triangleright We impose structured L_1 regularization on the permuted weight norm matrix:

$$\mathcal{L}_{\mathrm{reg}} = S' \otimes R_g$$
,

where S' = PSQ is the permuted weight norm matrix (Fig. (a)), R_g denotes the structured regularization matrix (Fig. (b));

Refer to our paper for details of \mathbf{R}_q and its relationship to the cost matrix \mathbf{R} .

Grouping Criteria.

> The grouping criteria is as follows:

$$g = \max \{ g : S' \otimes U_g \ge p S' \otimes U_1, g = 1, 2, \cdots \},$$

where U_g is the relationship matrix (Fig. (c)).

Future Perspective

Data-Driven Structured Sparsification.

Can the weight norm fully represent weight importance to accuracy? How about making the sparsification process be guided by the data loss? We suggest optimization-based meta-learning techniques.

> Progressive Sparsification.

Spasified weights are removed progressively during training, leading to finetune-free training pipeline.

Combination with Filter Pruning.

Filter pruning is beneficial within a strict memory budget. In order to jointly prune filters and learn a group structure, we suggest group sparsity constraints.

Experiments

Methods	#Params. $(10^6)\downarrow$	$GFLOPs \downarrow$	Acc.(%)↑
	ResNet-50		
Baseline	25.6	4.14	77.10
Slimming-20%	17.8	2.81	75.12
Taylor-19%	17.9	2.66	75.48
StrucSpars-35%	17.2	3.12	76.82
Taylor-28%	14.2	2.25	74.50
StrucSpars-65%	10.3	1.67	75.10
Taylor-44%	7.9	1.34	71.69
Slimming-50%	11.1	1.87	71.99
StrucSpars-85%	5.6	0.90	72.47

> Impact of channel shuffle mechanism.

Config.	ResNet-50 -65%		ResNet-101 -65%	
Acc.	Top-1	Top-5	Top-1	Top-5
FINETUNE	75.10	92.52	77.62	93.72
FROMSCRATCH	75.02	92.46	77.14	93.53
SHUFFLENET	74.97	92.41	76.91	93.38
RANDOM	69.45	89.45	73.16	91.44
NoShuffle	73.30	91.39	75.31	92.64