EQUILIBRES DE COMPLEXATION

1. GENERALITES ET DEFINITIONS 1.1 Complexe

- Un complexe est une chimique ML_n dans laquelle un atome M ou un cation métallique M^{n+} est lié à un ou plusieurs anions ou molécules neutres L.
- L'atome M ou Le cation métallique M^{n+} est appelé atome central ou ion central ;
- Les anions ou molécules L sont appelés ligands ou coordinats.

- Exemples de ligands :
- Molécules minérales : CO, H_2O, NH_3, \dots
- Anions minéraux : $Cl^-, Br^-, CN^-, H_2PO_4^-, \dots$
- Exemples : $Zn(OH)_3^-$, $Ag(NH_3)_2^+$, $Fe(CO)_5$, F
- L: anion OH^- ou molécule NH_3 ou molecule CO
- ion central Zn^{2+} ou Ag^{+} ou atome central Fe

- La réaction qui conduit à la formation du complexe est appelée réaction de complexation :
- $M + nL \rightleftharpoons ML_n$
- Exemple
- $Ag^+ + 2NH_3 \rightleftharpoons Ag(NH_3)_2^+$
- $Zn^{2+} + 4 OH^- \rightleftharpoons Zn(OH)_4^{2-}$

- 1.2 Constante de stabilité ou de formation du complexe
- La constante d'équilibre qui correspond à la formation du complexe est appelée constante de stabilité ou de formation du complexe et noté β_n

•
$$Ag^+ + 2NH_3 \rightleftharpoons Ag(NH_3)_2^+$$
 $\beta_2 = \frac{[Ag(NH_3)_2^+]}{[Ag^+]*[NH_3]^2}$

•
$$Zn^{2+} + 4OH^- \rightleftharpoons Zn(OH)_4^{2-}$$
 $\beta_4 = \frac{[Zn(OH)_4^{2-}]}{[Zn^{2+}]*[OH^-]^4}$

1.3 Constante de dissociation

La réaction de dissociation du complexe a pour constante la constante

de dissociation et notée
$$K_d = \frac{1}{\beta_n}$$
.

• On définit le $pK_d = -logK_d = \log (\beta_n)$

2. COMPLEXES SUCCESSIFS

2.1 Constante de formation successive

- Lorsqu'à une solution contenant l'ion central M ou ajoute successivement le ligand L, il se forme successivement les complexes ML, ML_2 , ML_3 , ..., ML_i , ..., ML_n selon les équations-bilans
- $M + L \rightleftharpoons ML$
- $ML + L \rightleftharpoons ML_2$
- $ML_{i-1} + L \rightleftarrows ML_i$
- $ML_{n-1} + L \rightleftarrows ML_n$

• Chacune de ces réactions peut être caractérisée par une constante d'équilibre particulière, appelée constante de formation successive, notée K_{fi} .

$$\bullet K_{fi} = \frac{[ML_i]}{[ML_{i-1}] * [L]}$$

- L'inverse de cette constante est appelée constante de
- ullet dissociation successive , notée K_{di}

•
$$K_{di} = \frac{1}{K_{fi}}$$
 et $pK_{di} = -\log K_{di} = \log K_{fi}$

Remarque : En additionnant les différentes réactions successives on obtient la réaction de formation du complexe : $M + nL \rightleftharpoons ML_n$ de constante de formation β_n .

•
$$\beta_n = K_{f1} * K_{f2} * \cdots * K_{fn}$$

•
$$log\beta_n = logK_{f1} + logK_{f2} + \dots + logK_{fn}$$

2.2 Domaines de prédominance

- Comme pour les couples acides bases il est possible de tracer un diagramme de prédominance pour les couples donneur de ligands-accepteur de ligands en fonction de pL=-log[L].
- Considérons la réaction de formation du complexe ML_i selon l'équation :
- $ML_{i-1} + L \rightleftarrows ML_i$
- $K_{fi} = \frac{[ML_i]}{[ML_{i-1}]*[L]}$ soit $log K_{fi} = -\log[L] + log \frac{[ML_i]}{[ML_{i-1}]}$ qui peut s'écrire :
- $pL = log K_{fi} + log \frac{[ML_{i-1}]}{[ML_i]}$

- Si $pL > log K_{fi}$ alors $[ML_{i-1}] > [ML_i]$, ML_{i-1} prédomine .
- Si $pL < log K_{fi}$ alors $[ML_{i-1}] < [ML_i]$, ML_i prédomine.

Domaine de prédominance de ML_i $log \mathit{K}_{fi}$ pL

Domaine de prédominance de ML_{i-1}

Exercice: complexes ammoniac-cuivre (II)

On considère les complexes $\left[Cu(NH_3)_i\right]^{2+}$ avec i=1,2,3,4. On donne:

$$\log K_{f} \left(\left[Cu \left(NH_{3} \right) \right]^{2+} \right) = 4,1; \log K_{f} \left(\left[Cu \left(NH_{3} \right)_{2} \right]^{2+} \right) = 7,6$$

$$\log K_{f} \left(\left[Cu \left(NH_{3} \right)_{3} \right]^{2+} \right) = 10,5; \log K_{f} \left(\left[Cu \left(NH_{3} \right)_{4} \right]^{2+} \right) = 12,6.$$

- a) Déterminer $K_{f_1}, K_{f_2}, K_{f_3}, K_{f_4}$.
- b) Tracer le diagramme de prédominance.

Remarque

Lorsqu'un complexe appartient à deux domaines disjoints, il est instable. Il se dismute.

Exemple : Les complexes de l'ion argent (I) avec l'ammoniac, où $logK_{f1}=3.3$ et $logK_{f2}=3.9$

3. COMPLEXATIONS COMPETITIVES

3.1 Compétitions entre deux ligands

- Deux ligands différents peuvent réagir avec le même ion central.
- Exemple :
- $Fe^{3+} + SCN^- \rightleftharpoons Fe(SCN)^{2+}$ $\beta = 10^3$
- $Fe^{3+} + C_2O_4^{2-} \rightleftharpoons Fe(C_2O_4)^+$ $\beta' = 2.5.10^9$
- $Fe(C_2O_4)^+$ est un complexe plus stable que $Fe(SCN)^{2+}$.
- Si à une solution contenant l'ion $Fe(SCN)^{2+}$ on ajoute des ions $C_2O_4^{2-}$ le premier complexe est détruit et il se forme $Fe(C_2O_4)^+$ selon l'équation :
- $Fe(SCN)^{2+} + C_2O_4^{2-} \rightleftharpoons Fe(C_2O_4)^+ + SCN^-$.
- la constante de cette réaction est: $K = \frac{\beta'}{\beta}$.

3.2 Compétions entre deux ions centraux

• Deux ions centraux peuvent réagir avec le même ligand :

•
$$Fe^{3+} + SCN^- \rightleftharpoons Fe(SCN)^{2+}$$
 $\beta = 10^3$

•
$$Cu^{2+} + SCN^- \rightleftharpoons Cu(SCN)^+$$
 $\beta'' = 50$

• $Cu(SCN)^+$ est moins stable que $Fe(SCN)^{2+}$