TM Homework 8

Timur Islamov

Mar 2024

Link back to GitHub

1 Task 1

1.1 Task description

Task 1 (Coding)

A mechanical system under the gravity force moves from the rest. Define the velocity of object A if it travels distance s from the rest. The masses of the non-deformable ropes are ignored. Neglect the masses of links FK, KC and the piston K.

The task is to:

- make a plot v_A(s);
- What will change if we omit the last sentence (Neglect ...). (Explain it and show on equations). Why Yablonskii made these constraints?

Needed variables:

 $m_A = 1$, $m_B = 3$, $m_D = 20$ (kg); $R_B = 20$, $R_D = 20$, $i_{BX} = 18$ (cm), i_{BX} – radii of gyration of the

 $\psi = 0.6$ (cm), where ψ is rolling friction.

Task 1 (Yablonskii (eng) D6)

1.2 Solution

You may look HW8.1 from Leonid Novikov. If I do the homework, most probably it will be something like what he did.

1.3 Answers

HIGHLIGHTED ANSWERS ARE HERE

$2 \quad \text{Task } 2$

2.1 Task description

Task 2 (Coding)

System description

You have a a cart pole. Body 1 is a slider, mass m_1 , it moves without friction.

AB is a massless rod with length $\it I$. Body 2 with mass $\it m_{\it 2}$ is connected to AB in point $\it B$.

It's a 2 DoF system. You should take x and ϕ as a representation of this system. The origin of each coordinate should be the same as on the nicture

Initial conditions:

- 1. x = 0, $\phi = 10^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, t = 0;
- 2. x = 0.5, $\phi = 45^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, t = 0;
- 3. x = 0.5, $\phi = -135^{\circ}$, $\dot{x} = 0$, $\dot{\phi} = 0$, t = 0;

Parameters: $m_1 = 5 \text{ kg}$, $m_2 = 1 \text{ kg}$, l = 1 m.

Task 2

Task 2 (Coding)

Tasks description

You should solve this problem using Euler-Lagrange method;

Tasks

- 1. To derive a differential equation of the motion, using **Euler-Lagrange** approach.
- 2. To create plots x(t), $\phi(t)$, $\dot{x}(t)$, $\dot{\phi}(t)$.
- 3. To make a simulation of this system. Show velocities and accelerations for 1, 2 bodies (coding approach).
- 4. Compare the obtained results from previous lab (Newton-Euler and Model-oriented design).

2.2 Solution

It is not so interesting to solve. Let's move to the big homework 2.

By the way, you may see the video that explains the Euler-Lagrange method. Imagine that I rewrite the formulas from there to this file...

2.3 Answers

HIGHLIGHTED ANSWERS ARE HERE

3 MEME

Я немного тоже, поэтому потрачу это время на подготовку к файналу.

