SF1625 Övning 13 Serier

Daniel Dalbom

ddalbom@kth.se

(KAN FÖREKOMMA SKRIVFEL)

Viktigt att ha koll på:

- Sats: Om serien $\sum_{n=0}^{\infty} a_n$ är konvergent så gäller att $a_n \to 0$ då $n \to \infty$.
- Geometrisk serie:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}, \quad \text{om } |x| < 1$$

• Cauchys integralkriterium: Om f är positiv, kontinuerlig och avtagande på intervallet $[N, \infty)$ så gäller att

$$\sum_{k=N}^{\infty} f(k), \mbox{ är konvergent om och endast om } \int_{N}^{\infty} f(x) dx, \mbox{ är det}.$$

• Jämförelsetest och ratiotest

Uppgifter

Uppgift 1 Avgör om nedanstående serier är konvergenta eller divergenta.

(a)
$$\sum_{k=1}^{\infty} \cos \frac{\pi}{k}$$
, (b) $\sum_{k=1}^{\infty} \frac{1}{\arctan k}$

Uppgift 2 Avgör om nedanstående serier är konvergenta eller divergenta. Beräkna dem ifall de är konvergenta.

(a)
$$\sum_{k=0}^{\infty} \frac{1}{2^k}$$
, (b) $\sum_{k=2}^{\infty} \frac{1}{2^k}$, (c) $\sum_{j=1}^{\infty} e^{-j}$

Uppgift 3 Avgör om nedanstående serier är konvergenta eller divergenta genom att jämföra med lämplig serie eller med en integral (behöver ej beräknas).

(a)
$$\sum_{k=2}^{\infty} \frac{10}{k\sqrt{k}}$$
, (b) $\sum_{k=1}^{\infty} \frac{1}{1+e^k}$, (c) $\sum_{j=4}^{\infty} \frac{1+j+\ln j}{j^2-1}$

Uppgift 4 Avgör om $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ är konvergent eller divergent

Uppgift 5 Avgör om serierna är divergenta eller konvergenta, Använd lämpligt test.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
, (b) $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$, (c) $\sum_{n=1}^{\infty} \frac{1}{\ln(n)^3}$, (d) $\sum_{n=1}^{\infty} \frac{1 + n^{4/3}}{2 + n^{5/3}}$, (e) $\sum_{n=1}^{\infty} \frac{n!}{n^2 e^n}$, (f) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^3}$

Uppgift 6* Visa att

$$\frac{1}{2} < \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(n+1)} < \frac{\pi+1}{2}$$

Uppgift 7 Bestäm Maclaurin-serierna till

(a)
$$\sin x$$
, (a) $\cos x$, (a) e^x , (a) e^{x^2}