

MLT

Machine Learning Tokyo (MLT) is an award-winning nonprofit organization 一般社団法人 based in Japan.

MLT is dedicated to democratizing Machine Learning through open education, open source and open science.

We support an international research- and engineering community of more than 9,500 members.

MLT EdgeAl Lab

MLT Agritech team visiting Hacker Farm in Chiba

EdgeAl Lab Hardware Working Session

Signate 3rd Al Edge

Jetson Nano deployment on bicycle

Join **#edge_ai_lab** on MLT Slack https://machinelearningtokyo.slack.com

Introduction of Series

Goal is to help you build your Edge Al application by end of the series

- Build / Document / Share / Learn

Overview of entire Series

- → Session #1 : Overview of Edge Al Applications
- → Session #2 : Motion Based Application using IMU
- → Session #3 : Audio Based Application using Microphone
- → Session #4 : Wrap-up session

Today's Agenda (Session #3)

- → 05:00 05:15: Introduction
- → 05:15 05:45: Presentation, Walkthrough, and Demo of Audio Based Edge Application
- → 05:45 06:15: Brainstorming
- → 06:15 06:30: Sharing / QA

Join **#edge_ai_lab** on MLT Slack https://machinelearningtokyo.slack.com

Introduction of Organizers

- Watching movies
- Nature photography
- Playing with microcontrollers

My Edge Al projects at hackster.io/naveenbskumar

Introduction of Organizers

Yoovraj Shinde

- Love Eating Food
- Playing with robots

Past Projects

Personal Plen Robot

- 3d printed parts
- Arduino
- iOS App

Robot Car for Kids

- Tamiya Kits
- Raspberry Pi
- Scratch

Blocks of Edge Al Pipeline

Example Edge Al Applications using Microphone

- → Detect Audio Events
- → Detect Human Voice
- → Keyword Recognition
- → Detect Respiratory Sound

Running Faucet Alarm

Snoring Guardian

Voice Recognition Using PSoC6 BLE Pioneer Kit

Speech Recognition at the Edge

hackster.io/naveenbskumar

Arduino Nano 33 BLE Sense on-board Microphone

Omnidirectional, digital MEMS microphone STMicroelectronics MP34DT05 Pulse-density modulation (PDM) output Microphone

Project: Snoring Sound Detection

- → Snoring is caused by the rattling and vibration of tissues near the airway in the back of the throat.
- → The aim of this project is to detect the snoring sound during sleep.
- → Understanding data collection process and Digital Signal Processing to extract features
- → Coding is not required for simple working demo but advanced users may customize the source code
- → Rapid prototyping using Edge Impulse Studio

Image credit: Mayo Foundation for Medical Education and Research

What is Pulse Density Modulation (PDM)?

- → From Sound Pressure to PDM, represent an analog signal with a binary signal
- → PDM is the '3rd' kind of microphone interface we can integrate with microcontroller, apart from analog or I2S.
- → PDM is a little like 1-bit PWM.

Image credit: learn.adafruit.com

Hardware Setup

- → Requires soldering skills
- → A vibration motor is used as an output and it starts vibrating if snoring sound is detected.
- → To power it using 5V pin we need to make a solder bridge on the two pads marked as VUSB.

Data Collection

- → Download Snoring and other nature sounds which may occur during night from Audioset, a large-scale dataset of manually annotated audio events.
- → AudioSet consists of an expanding ontology of 632 audio event classes and a collection of human-labeled 10-second sound clips drawn from YouTube videos.
- → The audio are extracted from the YouTube videos of the select events and converted into Waveform Audio file format (wav) with 16-bit depth mono channel at 16KHz sample rate.

Snoring Dog Sneeze Vehicle Cough Toilet flush Sniff Rain Walk, footsteps Wind Humming **Television** Squeak Radio Traffic noise Silence roadway noise Insect **Human Voice** Tick-tock Chirp, tweet Baby cry, infant cry Music

http://research.google.com/audioset

Data Storage

- → Register a free account at edgeimpulse.com and create a new project.
- → Install Edge Impulse CLI on your local computer. https://docs.edgeimpulse.com/docs/cli-installation
- → Upload all wav files to Edge Impulse Studio using the command line:
 - edge-impulse-uploader --clean
 - edge-impulse-uploader --label snoring --category split snoring/ *.wav
- → The datasets are automatically split into training and testing sets by using command above.

What is Spectrogram?

- → Visual representation of the spectrum of frequencies of a non-periodic signal
- Extracts time and frequency features from a signal
- → Performs well on audio data for non-voice recognition

Spectrogram

Digital Signal Processing

Audio raw data (16000 samples/sec)

[61, 204, 303, 198, 98, 178, 259, 307, 371, 279, -6, -208, -253, -320, -348, -251, -130, -42, 43, 10, -169, -277, -236, -251, -358, -261, -65, -63, -134, -151, -321, -577, -551, -312, -178, -75, -6, -186, -334, -186, -67, -157, -158, -22, 105, 207, 248, 126, -145, -320, -223, -14, 43, 30, 63, 30, -78, -164, -220, -175, -44, 2, ...]

Split into segments to remove background noise

Signal to Spectrogram

2000 ms Window size 1000 ms Window Increase

Demo: Data Collection/DSP/Training

Demo: On-Device Inferencing

All code and material of the session

→ Walkthrough of the Arduino Inferencing sketch

- → Github repository for the project source code and documentation
 - https://github.com/Machine-Learning-Tokyo/edgeai-lab-microcontroller-series

Brainstorming Session

WhiteBoards for Brainstorming

Project Push Up Classification (and Counting)

https://app.mural.co/t/mltedgeailab3396/m/mltedgeailab3396/1629005216375/3e7cd6437df6ba9b5392b66fa2c490ab27c36a34?sender=u95ce3da66ee17f1954ba5414

Project Cat Activity Detection

https://app.mural.co/t/mltedgeailab3396/m/mltedgeailab3396/1629005197838/c71484addd603e0de284da41e7329682aafea500?sender=u95ce3da66ee17f1954ba5414

Motion Based Applications

https://app.mural.co/t/mltedgeailab3396/m/mltedgeailab3396/1629005207313/cfdd36833f34ff6db2cd9aaa5c2b76043c947933?sender=u95ce3da66ee17f1954ba5414

Audio Based Application

https://app.mural.co/t/mltedgeailab3396/m/mltedgeailab3396/1629005225173/1d56c2b023c5fde1dfeb6ee8a8a978f66287fa38?sender=u95ce3da66ee17f1954ba5414

Next Session

- → Session #4 : Wrap up session September 19 (5:00 PM 6:30 PM JST)
 - ◆ 2 weeks for all of us to create exciting projects
 - ◆ Sharing of projects you have worked on during this entire series
 - Will be announced soon on MLT Meetup page.

END

