

JLX256128G-920-BN 使用说明书

(焊接式 FPC)

目 录

序号	内 容 标 题	页码
1	概述	2
2	特点	2
3	外形及接口引脚功能	3-5
4	电路框图	5-6
5	背光参数	6
6	时序特性	6-11
7	指令表及硬件接口、编程案例	12-末页

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX256128G-920-BN 型液晶模块由于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX256128G-920-BN 可以显示 256 列*128 行点阵单色或 4 灰度级的图片,或显示 8 个/行*4 行 32*32 点阵或显示 10 个/行*5 行 24*24 点阵的汉字,或显示 16 个/行*8 行 16*16 点阵的汉字。

2. JLX256128G-920-BN 图像型点阵液晶模块的特性

- 2.1 结构牢。
- 2.2 IC采用矽创公司 ST75256, 功能强大, 稳定性好
- 2.3 功耗低: 不带背光 3.0mW (3.3V*(0.5mA 参考值)), 带背光不大于 205mW (3.3V*62mA);
- 2.4接口简单方便:可采用4线SPI串行接口、并行接口,I²C接口。
- 2.5 工作温度宽:-20℃ 70℃;
- 2.6 储存温度宽:-30℃ 80℃;
- 2.7显示内容:
 - ●256*128 点阵单色或 4 灰度级图片:
 - ●或显示 8 个×4 行 32*32 点阵的汉字;

3. 外形尺寸及接口引脚功能:

图 1. 液晶模块外形尺寸

3.1 模块的接口引脚功能

3.1.1并行时接口引脚功能

表1

/	H 7 1777-770	ь -	W.					
引线号	符号	名 称	功 能					
1	VG	偏压电路	LCD 偏置驱动电压,VG 与 VSS 之间接一个电容					
2	VO	倍压电路	VO 与 XVO 之间接一个电容					
3	XV0	倍压电路						
4	CA1P	倍压电路	CA1P 与 CA1N 之间接一个电容					
5	CA1N	倍压电路						
6	VDD	电源电路	供电电源正极					
7	VSS	接地	OV					
8	COMSCN	COMSCN	镜像,默认接 VDD, (接 VSS 旋转 180)					
9	IF2	IF2	L:接低电平					
10	IF1	IF1	H:接高电平					
11	IF0	IF0	L:接低电平					
12	CS	片选	低电平片选					
13	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD")					
14	E (RD)	使能信号	6800 时序: 使能信号					
15	RW (WR)	读/写	6800 时序: H: 读数据 0: 写数据					
16	RST	复位	低电平复位,复位完成后,回到高电平,液晶屏开始工作					
17~24	D0~D7	I/0	并行接口时,数据总线 DBO~DB7					
25	EXTB	空脚	空脚					
26	VPP	空脚	空脚					

表 1: 模块并行接口引脚功能

3.1.2 四线串行时接口引脚功能

表 2

1.4 四级中1		がわり日と	₩ Z							
引线号	符 号	名 称	功 能							
1	VG	偏压电路	LCD 偏置驱动电压,VG 与 VSS 之间接一个电容							
2	VO	倍压电路	VO 与 XVO 之间接一个电容							
3	XV0	倍压电路								
4	CA1P	倍压电路	CA1P 与 CA1N 之间接一个电容							
5	CA1N	倍压电路								
6	VDD	电源电路	供电电源正极							
7	VSS	接地	OV							
8	COMSCN	COMSCN	镜像,默认接 VDD, (接 VSS 旋转 180)							
9	IF2	IF2	L:接低电平							
10	IF1	IF1	L:接低电平							
11	IF0	IF0	L:接低电平							
12	CS	片选	低电平片选							
13	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD")							
14	E (RD)	使能信号	串行接口,RD 接高电平							
15	RW (WR)	读、写	串行接口,RW 接高电平							
16	RST	复位	低电平复位,复位完成后,回到高电平,液晶屏开始工作							
17	DO (SCK)	I/0	串行时钟							
18~20	D1 ~ D3	I/0	串行数据(D1、D2、D3 短接一起作为 SDA)							
	(SDA)									
21~24	D4-D7	I/0	串行接口,D4-D7 引脚建议接 VDD							

25	EXTB	空脚	空脚
26	VPP	空脚	空脚

表 2: 4线 SPI 串行接口引脚功能

3.1.3 I2C 总线时接口引脚功能

表 3

1.01 6 心线	可以女口了了	アンプロト	& 3_
引线号	符号	名 称	功 能
1	VG	偏压电路	LCD 偏置驱动电压,VG 与 VSS 之间接一个电容
2	VO	倍压电路	V0 与 XV0 之间接一个电容
3	XV0	倍压电路	
4	CA1P	倍压电路	CA1P 与 CA1N 之间接一个电容
5	CA1N	倍压电路	
6	VDD	电源电路	供电电源正极
7	VSS	接地	OV
8	COMSCN	COMSCN	镜像,默认接 VDD, (接 VSS 旋转 180)
9	IF2	IF2	L:接低电平
10	IF1	IF1	L:接低电平
11	IF0	IF0	H:接低电平
12	CS	片选	I2C 接口,此引脚接 VSS
13	AO(RS)	寄存器选择信号	I2C 接口,此引脚接高电平
14	E (RD)	使能信号	I2C 接口,不用,此引脚接高电平
15	RW (WR)	读、写	I2C 接口,不用,此引脚接高电平
16	RST	复位	低电平复位,复位完成后,回到高电平,液晶屏开始工作
17	DO (SCK)	I/0	串行时钟
18~20	D1 \sim D3	I/0	串行数据 (D1、D2、D3 短接一起作为 SDA)
	(SDA)		
21-22	D4-D5	I/0	I2C 接口,D4-D5 引脚接 VDD
23-24	D6-D7	I/0	I2C 接口,D6-D7 是从属地址接 VSS
25	EXTB	空脚	空脚
26	VPP	空脚	空脚
		± 2 τ2 C	쓰셨 죠ㅋ기메뉴사

表 3: I²C 总线接口引脚功能

4. 电路框图

图 2: JLX256128G-920-BN 图像点阵型液晶模块的电路框图

4.1 背光参数

该型号液晶模块带 LED 背光源。它的性能参数如下:

工作温度:-20° C∽+70° C;

背光颜色: 白色。

正常工作电流为: (8~15)×4=32~60mA (LED 灯数共 4 颗);

工作电压: 3.0; (接 3.3V 串 10 欧电阻,接 5.0V 串 51 欧电阻,以上电阻值可加大不可减小)

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

**************************************	~ MIN > >	- 224 1 1 1 1 1 1 1 1 1	•		
名称	符号		标准值		单位
		最小	典型	最大	
电路电源	VDD - VSS	-0.3	_	3. 5	V
LCD 驱动电压	VO - XVO	-0.3	_	16	V
静电电压		_	_	100	V
工作温度		-20	_	+70	$^{\circ}$
储存温度		-30		+80	$^{\circ}\mathbb{C}$

表 4: 最大极限参数

5.2 直流(DC)参数

名 称	符号	测试条件		标准值		单位
			MIN	TYPE	MAX	Į
工作电压	VDD	_	2.6	3.3	3. 5	V
背光工作电压	VLED		2. 9	3.0		V
输入高电平	VIH		0.8VDD		VDD	V
输入低电平	VIO		0		0. 2VDD	V
输出高电平	VOH	IOH = 0.2 mA	0.8VDD		VDD	V
输出低电平	V00	100 = 1.2 mA	0		0. 2VDD	V
模块工作电流	IDD	VDD = 3.0V	1	0.3	1.0	mA
背光工作电流	ILED	VLED=3. OV	32	60	80	mA

表 5: 直流 (DC) 参数

6. 读写时序特性(AC参数)

6.1 4线 SPI 串行接口写时序特性(AC 参数)

图 3. 从 CPU 写到 ST75256(Writing Data from CPU to ST75256)

			IS			
项目	表 6. 写 数	数据到 ST75256 的时 测试条件	予要求	极限值	-	单位
			MIN	TYPE	MAX	
4线 SPI串口时钟周期 (4-line SPI Clock Period)	tSCYC		80			ns
保持SCK高电平脉宽 (SCL "H" pulse width)	tSHW	引脚: SCL	30			ns
保持SCLK低电平脉宽 (SCL "L" pulse width)	tSLW		30			ns
地址建立时间	tSAS		20			ns
(Address setup time)		己田 40				
地址保持时间	tSAH	引脚: AO	20			ns
(Address hold time)						
数据建立时间	tSDS		20			ns
(Data setup time)		引脚: SID				
数据保持时间	tSDH	ブル外: 31D	20			ns
(Data hold time)						
片选信号建立时间	tCSS		20			ns
(CS-SCL time)		引脚: CSB				
片选信号保持时间	tCSH	JIMH: COD	20			ns
(CS-SCL time)						

VDD =1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升和下降时间(TR, TF)在 15 纳秒或更少的规定。

所有的时间,用 20%和 80%作为标准规定的测定。

6.2 6800 时序并行接口的时序特性(AC 参数)

1.

从 CPU 写到 ST75256(Writing Data from CPU to ST75256)

图 4. 写数据到 ST75256 的时序要求(6800 系列 MPU) 表 7. 读写数据的时序要求 项目 符号 名称 极限值 单位 **TYPE** MIN MAX 地址保持时间 Α0 tAH6 20 ns 地址建立时间 tAW6 0 ns 系统循环时间 tCYC6 160 Е ns 使能"低"脉冲宽度 tEWLW 70 ns 使能"高"脉冲宽度 70 tEWHW ns 写数据建立时间 DB[7: 0] tDS6 15 ns 写数据保持时间 tDH6 15 ns

VDD =1.8 $^{\sim}$ 3.3V \pm 5%, Ta = -30 $^{\sim}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc6 - tewlw - tewhw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tewlw 指定为重叠的 CSB "H"和"L"。

R/W信号总是"H"

6.3 8080 时序并行接口的时序特性(AC参数)

从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 5. 写数据到 ST75256 的时序要求 (8080 系列 MPU) 表 8. 读写数据的时序要求 项目 符号 名称 极限值 单位 **TYPE** MIN MAX 地址保持时间 Α0 tAH8 20 ns 地址建立时间 tAW8 0 ns 系统循环时间 tCYC8 160 /WR ns 使能"低"脉冲宽度 tCCLW70 ns 使能"高"脉冲宽度 70 tCCHW ns 写数据建立时间 DB tDS8 15 ns 写数据保持时间 tDH8 15 ns

VDD =1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc8 - tcclw - tcchw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tcclw被指定为"L"之间的重叠 CSB 和/ WR 处于"L"级

6.3 I²C接口的时序特性(AC参数)

从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 6. 写数据到 ST75256 的时序要求(I²C 系列 MPU)

表 9. 读写数据的时序要求

	衣	/. 读与数据的时序数	· 水		
项 目	符号	名称	极限值		单位
			MIN TYPE	MAX	
SCL时钟频率	CSL	FSCLK		400	kUZ
SCL时钟的低周期	CSL	TLOW	1.3		us
SCL时钟周期	CSL	THIGH	0.6		us
数据保持时间	SDA	TSU;Data	0.1	-	ns
数据建立时间	SDA	THD;Data	0	0.9	us
SCL, SDA 的上升时间	SCL	TR	20+0. 1Cb	300	ns
SCL, SDA 下降时间	SCL	TF	20+0. 1Cb	300	ns
每个总线为代表的电容 性负载		Cb		400	pF
一个重复起始条件设置 时间	SDA	TSU; SUA	0.6		us
启动条件的保持时间	SDA	THD;STA	0.6		us
为停止条件建立时间		TSU;STO	0.6		us
容许峰值宽度总线		TSW		50	ns
开始和停止条件之间的 总线空闲时间	SCL	TBUF	0.1		us

所有的时间,用 20%和 80%作为标准规定的测定。

这是推荐的操作 I C接口与 VDD1 高于 2.6V。

6.4 电源启动后复位的时序要求 (RESET CONDITION AFTER POWER UP):

图 7: 电源启动后复位的时序

表 10. 由源启动后复位的时序要求

	10	10: 电冰户划户支出	ינוניאנא.				
项 目	符号	测试条件		极限值			
			MIN	TYPE	MAX		
复位时间	T _{RW}				1	us	
复位保持低电平的时间	T _{RD}	引脚: RESET, WR	1			ms	

7. 指令功能:

7.1 指令表 表 11

7.1 16 2 12											12 11
指令名称					指(~ 在	4		ı		
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
(1)扩展指令1	0	0	0	0	1	1	EXT1	0	0	EXT0	扩展指令1、2、3、4
											0X30:扩展指令1
Ext[1:0]=0, 0 (Extension	Comma	ind1/扩	展指令	1) 0	X30 ±	广屏指	令 1 -	一定要	调用(OX30 ス	計能用扩展指令 1
(2)显示开/关	0	0	1	0	1	0	1	1	1	0	显示开/关:
(display on/off)										1	OXAE: 关, OXAF: 开
(3)正显/反显	0	0	1	0	1	0	0	1	1	0	显示正显/反显
(Inverse Display)										1	OXA6:正显,正常
											0XA7: 反显
(4)所有点阵开/关	0	0	0	0	1	0	0	0	1	0	0X22: 所有点阵关
(All Pixel ON/OFF)										1	0X23: 所有点阵开
(5) 控制液晶屏显示	0	0	1	1	0	0	1	0	1	0	OXCA:显示控制
(Display Control)	1	0	0	0	0	0	0	CLD	0	0	0X00:设置 CL 驱动频率: CLD=0
	1	0	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	0X7F:点空比: Duty=128
	1	0	0	0	LF4	F1	LF3	LF2	LF1	LF0	0X20:帧周期
(6)省电模式	0	0	1	0	0	1	0	1	0	SLP	0X94: SLP=0, 退出睡眠模式
(Power save)											0X95: SLP=1, 进入睡眠模式
(7)页地址设置	0	0	0	1	1	1	0	1	0	1	0X75: 页地址设置
(Set Page Address)	1	00	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	0X00: 起始页地址
	1	0	YE7	YE6	YE5	YE4	YE3	YE2	YE2	YEO	0X1F: 结束页地址,每4行为1页
(8)列地址设置	0	0	0	0	0	1	0	1	0	1	0X15: 列地址设置
(Set Column Address)	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	0X00: 起始列地址
	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XEO	OXFF: 结束列地址 XE=256
(9)行列扫描 方向	0	0	1	0	1	1	1	1	0	0	0XBC: 行列扫描方向
(Data Scan Direction)	1	0	0	0	0	0	0	MV	MX	MY	OXOO: MX, MY=Normal
(10)写数据到晶液屏	0	0	0	1	0	1	1	1	0	0	0X5C: 写数据
(Write Data)	1	0	D7	D6	D5	D4	D3	D2	D1	DO	8 位显示数据
(11)读液晶屏显示数据	0	0	0	1	0	1	1	1	0	1	OX5D: 读数据
(Read Data)	1	1	D7	D6	D5	D4	D3	D2	D1	DO	8 位显示数据
(12)指定区域显示数据	0	0	1	0	1	0	1	0	0	0	OXA8: 指定显示区域
(Partial In)	1	0	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	起始区域地址: 00h≤PTS≥A1h
	1	0	PTE7	PTE6	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	结束区域地址: 00h≤PTE≥A1h
(13) 退出指定区域显示	0	0	1	0	1	0	1	0	0	1	OXA9: 退出指定区域显示
(Partial Out)											
(14)读/改/写	0	0	1	1	1	0	0	0	0	0	OXEO: 进入读/改/写
(15)退出读/改/写	0	0	1	1	1	0	1	1	1	0	OXEE: 退出读/改/写
(16)指定显示滚动区域	0	0	1	0	1	0	1	0	1	0	OXAA: 滚动区域设置
(Scroll Area)	1	0	TL7	TL6	TL5	TL4	TL3	TL2	TL1	TLO	TL[7:0]:起始区域地址
	1	0	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0	BL[7:0]:结束区域地址
	1	0	NSL7	NLS6	NSL5	NSL4	NSL3	NSL2	NSL1	NSL0	NSL[7:0]:指定行数
	1	0	0	0	0	0	0	0	SCM1	SCMO	SCM[1:0]:显示模式
(17)显示初始行设置	0	0	1	0	1	0	1	0	1	1	OXAB: 滚动开始初始行设置

	电丁		11人日日		•	JLX2	3012	.0U-S	720-1)1N	史胡口朔:2019-06-24
(Set Start Line)	1	0	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0	00h≤SL≥A1h
(18)开振荡电路	0	0	1	1	0	1	0	0	0	1	OXD1: 开内部振荡电路
(19)关振荡电路	0	0	1	1	0	1	0	0	1	0	0XD2: 关内部振荡电路
(20)电源控制	0	0	0	0	1	0	0	0	0	0	0X20: 电源控制
(Power Control)	1	0	0	0	0	0	VB	0	VF	VR	OXOB: VB、VF、VR=1
(21)液晶内部电压设置	0	0	1	0	0	0	0	0	0	1	0X81:设置对比度
(Set Vop)	1	0	0	0	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	0X26: 微调对比度,范围 0X00-0XFF
	1	0	0	0	0	0	0	Vop7	Vop6	Vop5	0X04:粗调对比度,范围 0X00-0X07
											先微调再粗调, 顺序不能变
(22)液晶内部电压控制	0	0	1	1	0	1	0	1	1	VOL	OXD6: VOP 每格增加 0.04V
(Vop Control)											OXD7: VOP 每格减少 0.04V
(23)读寄存器模式	0	0	0	1	1	1	1	1	0	REG	OX7C: 读寄存器值 Vop[5:0]
											OX7D: 读寄存器值 Vop[8:6]
(24)空操作	0	0	0	0	1	0	0	1	0	1	0X25: 空操作
(25)读状态 (并行、IIC)	0	1	D7	D6	D5	D4	D3	D2	D1	DO	读状态字节
(26)读状态(串行接口)	0	0	1	1	1	1	1	1	1	0	读状态字节
	0	1	D7	D6	D5	D4	D3	D2	D1	DO	
(27)数据格式选择	0	0	0	0	0	0	1	DO	0	0	0X08: 数据 D7→D0
(Data Format Select)											OXOC: 数据 DO→D7
(28)显示模式	0	0	1	1	1	1	0	0	0	0	0XF0: 显示模式设置
(Display Mode)	1	0	0	0	0	1	0	0	0	DM	0X10 : 黑白模式
											0X11: 4 灰级度模式
(29)ICON设置	0	0	0	1	1	1	0	1	1	ICON	OX77: 使能 ICON RAM
(22)	-										OX76: 禁用 ICON RAM
(30)设置主/从模式	0	0	0	1	1	0	1	1	1	MS	0X6E: 主模式(使用主模式)
								L	7 77 0.0	104 1	0X6F: 从模式
D . [1 0] 0 1/D .			1.0\	0.17	مديد ٥٦	E W		क्षेत्र सम् ११			*****
Ext[1:0]=0, 1 (Extens											能用扩展指令 2
(31)灰度设置	0	0	0	0	1	0	0	0	0	0	0X20:灰度级设置
· ·	0	0	0	0	1 0	0	0	0	0	0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1	0 0 0	0 0	0 0 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0X20:灰度级设置
(31)灰度设置	0 1 1 1	0 0 0 0	0 0 0	0 0 0	1 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	0 0 0 0 GL4	0 0 0 0 GL3	0 0 0 0 0 GL2	0 0 0 0 GL1	0 0 0 0 0 GL0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 0 0 0 0	0 0 0 0 GL4 GL4	0 0 0 0 GL3 GL3	0 0 0 0 GL2 GL2	0 0 0 0 GL1 GL1	0 0 0 0 GL0 GL0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	1 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4	0 0 0 0 GL3 GL3	0 0 0 0 GL2 GL2 GL2	0 0 0 0 GL1 GL1	0 0 0 0 GL0 GL0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	1 0 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4	0 0 0 0 GL3 GL3 GL3	0 0 0 0 GL2 GL2 GL2	0 0 0 0 GL1 GL1 GL1	0 0 0 0 GL0 GL0 GL0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	1 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4 O	0 0 0 0 GL3 GL3 GL3 0	0 0 0 0 GL2 GL2 GL2 0	0 0 0 0 GL1 GL1 GL1	0 0 0 0 GL0 GL0 GL0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4 0 0 GD4	0 0 0 0 GL3 GL3 GL3 0 0	0 0 0 0 GL2 GL2 GL2 O 0	0 0 0 0 GL1 GL1 GL1 0 0	0 0 0 0 GL0 GL0 GL0 0 0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4 0 0 GD4	0 0 0 0 GL3 GL3 GL3 0 0 GD3	0 0 0 0 GL2 GL2 GL2 0 0 GD2	0 0 0 0 GL1 GL1 GL1 0 0 GD1	0 0 0 0 GL0 GL0 0 0 GD0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4 0 0 GD4	0 0 0 0 GL3 GL3 GL3 0 0 GD3	0 0 0 0 GL2 GL2 GL2 0 0 GD2	0 0 0 0 GL1 GL1 0 0 GD1	0 0 0 0 GL0 GL0 0 0 GD0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4 0 0 GD4	0 0 0 0 GL3 GL3 0 0 GD3	0 0 0 0 GL2 GL2 GL2 0 0 GD2 0 GD2	0 0 0 0 GL1 GL1 0 0 GD1 0 GD1	0 0 0 0 GL0 GL0 0 0 GD0	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4 0 0 GD4 0 GD4 GD4	0 0 0 0 GL3 GL3 0 0 GD3 0 GD3 GD3	0 0 0 0 GL2 GL2 GL2 0 0 GD2 0 GD2 GD2	0 0 0 0 GL1 GL1 0 0 GD1 0 GD1	O O O O GLO GLO O GDO O GDO GDO	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 GL4 0 0 GD4 0 GD4 GD4 GD4	0 0 0 0 GL3 GL3 GL3 0 0 GD3 0 GD3 GD3 GD3	0 0 0 0 GL2 GL2 GL2 0 0 GD2 0 GD2 GD2 GD2	0 0 0 0 GL1 GL1 0 0 GD1 0 GD1 GD1 GD1	O O O O O GLO GLO O O O GDO O GDO GDO GDO	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 0 0 GD4 0 GD4 GD4 GD4	0 0 0 0 GL3 GL3 O 0 GD3 O GD3 GD3 GD3	0 0 0 0 GL2 GL2 GL2 0 0 GD2 0 GD2 GD2 GD2	0 0 0 0 GL1 GL1 0 0 GD1 0 GD1 GD1 GD1	O O O O O GLO GLO O GDO O GDO GDO GDO GDO O O O O O O O	0X20:灰度级设置 GL[4:0]:浅灰度级设置
(31)灰度设置 Set Gray Level	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 0 0 GD4 0 GD4 GD4 GD4	0 0 0 0 GL3 GL3 0 0 GD3 0 GD3 GD3 GD3	0 0 0 0 GL2 GL2 GL2 0 0 GD2 0 GD2 GD2 GD2 GD2	0 0 0 0 GL1 GL1 0 0 GD1 0 GD1 GD1 GD1	O O O O O GLO GLO O O GDO O GDO GDO O O O O O O O O O O	OX20: 灰度级设置 GL[4:0]: 浅灰度级设置 GD[4:0]: 深灰度级设置
(31)灰度设置	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 GL4 GL4 0 0 GD4 0 GD4 GD4 GD4	0 0 0 0 GL3 GL3 O 0 GD3 O GD3 GD3 GD3	0 0 0 0 GL2 GL2 GL2 0 0 GD2 0 GD2 GD2 GD2	0 0 0 0 GL1 GL1 0 0 GD1 0 GD1 GD1 GD1	O O O O O GLO GLO O GDO O GDO GDO GDO GDO O O O O O O O	0X20:灰度级设置 GL[4:0]:浅灰度级设置

(47) 使能 OTP												EOTP=1;不使能 EOTP,一般不 使能 EOTP EOTP=0;使能 EOTP
		0	0	1	1	0	1	0	1	1	0	0xd6: 使能 OTP
Ext[1:0]=1,1(Exte	nsion		_									
(46)读 ID		0	0	1D7 0	ID6	ID5	ID4	ID3	ID2	ID1	IDO RID	RID=1: 0x7f,使能
(45) ID 设置		0	0	1	1	0	1	0	1	0	1	0xd5: ID 设置
Ext[1:0]=1,0(Exte	nsion									l .		
		1	0	MTF3	MTF2	MTF1	MTF0	MTE3	MTE2	MTE1	MTEO	110 A
		1	0	MTD3	MTD2	MTD1	MTDO	MTC3	MTC2	MTC1	MTCO	
(44)温度梯度补偿		1	0	MTB3	MTB2	MTB1	MTB0	MTA3	MTA2	MTA1	MTAO	
		1	0	MT93	MT92	MT91	MT90	MT83	MT82	MT81	MT80	
		1	0	MT73	MT72	MT71	MT70	MT63	MT62	MT61	MT60	
		1	0	MT53	MT52	MT51	MT50	MT43	MT42	MT41	MT40	
		1	0	MT33	MT32	MT31	MT30	MT23	MT22	MT21	MT20	
		0	0	1 MT13	1 MT12	1 MT11	1 MT10	O MT03	1 MT02	0 MT01	O MT00	0xf4: 温度补偿系数设置
		1	0	0	TC6	TC5	TC4	TC3	TC2	TC1	TC0	0.54 泪序针(水之水·加四
(- 0 / mi/ × 10 pr		1 -	0	0	TB6	TB5	TB4	ТВ3	TB2	TB1	TB0	
(43)温度范围		1	0	0	TA6	TA5	TA4	TA3	TA2	TA1	TA0	
(42) 帧速率		0	0	1	1	1	1	0	0	1	0	0xf2: 温度范围设置
		1	0	0	0	0	FRD4	FRD3	FRD2	FRD1	FRD0	
		1	0	0	0	0	FRC4	FRC3	FRC2	FRC1	FRC0	
	4	1	0	0	0	0	FRB4	FRB3	FRB2	FRB1	FRB0	
		1	0	0	0	0	FRA4	FRA3	FRA2	FRA1	FRAO	围
		0	0	1	1	1	1	0	0	0	0	0xf0: 帧速率设置在不同的温度范
(41)OTP程序设置		0	0	0	0	0	0	0	1	0	1	OTP 程序设置
		0	0	1	1	1	^	0	1	0	1	Ctrl=0: 0x89,使能 OTP
(40)OTP选择控制		1	0	1	Ctrl	0	0	1	0	0	1	Ctrl=1: 0xc9,不使能 OTP
		0	0	1	1	1	0	0	1	0	0	0xe4: OTP 选择控制
(39)读OTP		0	0	1	1	1	0	0	0	1	1	读 OTP
(38)写OTP		0	0	1	1	1	0	0	0	1	0	写OTP
(37)控制OTP出		0	0	1	1	1	0	0	0	0	1	控制 OTP 出
(OO)]王啊OTF 陜习		1	U	U	U	RD	U	U	U	U	U	ER/RD=1; 0x20, 使能 0TP 写
(36)控制OTP读写		0	0	0	0	1 ER/	0	0	0	0	0	Oxe0: OTP 读写 WR/RD=0; 0x00, 使能 OTP 读
		1	0	1	0	0	XARD	1	1	1	1	XARD=0:不使能自动读
(35)自动读取控制		0	0	1	1	0	1	0	1	1	1	XARD=0: 使能自动读
(34)电压驱动选择		0	0	0	1	0	0	0	0	0	DS	0X41: LCD 内部升压
(Booster Level)		1	0	0	1	1	1	1	0	1	BST	0X7B:10 倍
(33)升压倍数		0	0	0	1	0	0	0	BS2	BS1 0	BS0	0X51: 内建升压倍数设置
		1	0	0	0	0	0	0	0	BE1	BE0	0X01: 升压电容频率 0X02: 偏压比,BIAS=1/12

请详细参考 IC 资料"ST75256.PDF"。

7.2 点阵与 DD RAM 地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 256*128 点阵的屏分为 16 个"页", 从第 0 "页"到第 15 "页"。

DB7--DB0 的排列方向:数据是从下向上排列的。最低位 D0 是在最上面,最高位 D7 是在最下面。每一位(bit)数据对应一个点阵,通常"1"代表点亮该点阵,"0"代表关掉该点阵.如下图所示:

Figure 21 DDRAM Mapping (4-Level Gray Scale Mode)

下图摘自 ST75256 IC 资料,可通过 "ST75256. PDF"之第 37 页获取最佳效果。

7.3 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

点亮液晶模块的步骤

7.4.1 液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

图 8: 并行接口图

/* 液晶模块型号: JLX256128G-920

并行接口, 6800 时序!!!

驱动 IC 是:ST75256

晶联讯电子: 网址 http://www.jlxlcd.cn/

单片机型号: STC15W4K56S4, 选择使用内部 IRC 时钟, 频率: 11.0592MHZ

*

#include <STC15F2K60S2.H>

#include <intrins.h>

#include <chinese_code.h>

#include <ASCII_CODE_8X16_5X8_VERTICAL.H>

sbit CS=P3⁴; /*对应 LCD 的 CS 引脚*/

19

E=0;

```
sbit RST=P3^5;
                      /*对应 LCD 的 RST 引脚*/
                      /*对应 LCD 的 RS 引脚*/
sbit RS=P3<sup>3</sup>:
sbit E=P3^0;
                      /*对应 LCD 的 E(RD) 引脚*/
sbit RW=P2^1;
                      /*对应 LCD 的 RW(WR)引脚。另外 P1.0~1.7 对应 DB0~DB7*/
                      /*按键接口, P2.0 口与 GND 之间接一个按键*/
sbit key=P2^0;
#define uchar unsigned char
#define uint unsigned int
/*延时: 1 毫秒的 i 倍*/
void delay(int i)
{
    int j, k;
    for(j=0;j<i;j++)
         for (k=0; k<110; k++);
}
/*延时: lus 的 i 倍*/
void delay_us(int i)
    int j, k;
    for(j=0;j<i;j++)
         for (k=0; k<1; k++);
/*等待一个按键,我的主板是用 P2.0 与 GND 之间接一个按键*/
void waitkey()
 repeat:
    if (key==1) goto repeat;
    else delay(2000);
}
//=====transfer command to LCM=
void transfer_command_lcd(int data1)
{
    CS=0:
    RS=0;
    E=0;
    delay_us(1);
    RW=0;
    P1=data1:
    E=1;
    delay_us(1);
    CS=1;
```

```
--transfer data to LCM-
void transfer_data_lcd(int data1)
{
     CS=0;
     RS=1:
     E=0;
     delay us(1);
     RW=0;
     P1=data1;
     E=1;
     delay_us(1);
     CS=1;
     E=0;
}
void initial_lcd()
     RST=0;
     delay(100);
     RST=1;
     delay (100);
     transfer_command_lcd(0x30);
                                    //EXT=0
     transfer_command_lcd(0x94);
                                    //Sleep out
     transfer_command_lcd(0x31);
                                    //EXT=1
     transfer_command_lcd(0xD7);
                                    //Autoread disable
     transfer_data_lcd(0X9F);
                                    //
     transfer_command_lcd(0x32);
                                   //Analog SET
     transfer_data_lcd(0x00);
                                      //OSC Frequency adjustment
     transfer_data_lcd(0x01);
                                      //Frequency on booster capacitors->6KHz
                                      //Bias=1/11
     transfer_data_lcd(0x03);
     transfer_command_lcd(0x20);
                                   // Gray Level
     transfer_data_lcd(0x01);
     transfer_data_lcd(0x03);
     transfer_data_lcd(0x05);
     transfer_data_lcd(0x07);
     transfer_data_lcd(0x09);
     transfer_data_lcd(0x0b);
     transfer_data_lcd(0x0d);
     transfer_data_lcd(0x10);
     transfer_data_lcd(0x11);
     transfer_data_lcd(0x13);
```

```
transfer_data_lcd(0x15);
    transfer_data_lcd(0x17);
    transfer_data_lcd(0x19);
    transfer_data_lcd(0x1b);
    transfer_data_lcd(0x1d);
    transfer_data_lcd(0x1f);
    transfer_command_lcd(0x30);
                                  //EXT=0
    transfer command 1cd(0x75);
                                  //Page Address setting
                                  // XS=0
    transfer_data_lcd(0X00);
    transfer_data_lcd(0X14);
                                  // XE=159 0x28
    transfer_command_lcd(0x15);
                                  //Clumn Address setting
    transfer_data_lcd(0X00);
                                  // XS=0
    transfer_data_lcd(0Xff);
                                  // XE=256
    transfer_command_lcd(0xBC);
                                   //Data scan direction
    transfer_data_lcd(0x00);
                                      //MX. MY=Normal
     transfer_data_lcd(0xA6);
    transfer_command_lcd(0xCA);
                                    //Display Control
                                      //
    transfer_data_lcd(0X00);
                                      //Duty=160
    transfer_data_lcd(0X9F);
    transfer_data_1cd(0X20);
                                      //Nline=off
    transfer_command_lcd(0xF0);
                                    //Display Mode
                                      //10=Monochrome Mode, 11=4Gray
    transfer_data_lcd(0X10);
    transfer_command_lcd(0x81);
                                   //EV control
    transfer_data_lcd(0x36);
                                      //VPR[5-0]
                                      //VPR[8-6]
    transfer_data_lcd(0x04);
    transfer_command_lcd(0x20);
                                   //Power control
    transfer_data_lcd(0x0B);
                                      //D0=regulator; D1=follower; D3=booste,
    delay_us(100);
    transfer_command_lcd(0xAF);
                                   //Display on
}
/*写 LCD 行列地址: X 为起始的列地址, Y 为起始的行地址, x_total, y_total 分别为列地址及行地址的起点到终点的差值 */
void lcd_address(int x, int y, x_total, y_total)
{
    x=x-1:
    y=y+3;
    transfer command lcd(0x15); //Set Column Address
    transfer_data_lcd(x);
```

```
transfer_data_lcd(x+x_total-1);
     transfer_command_lcd(0x75); //Set Page Address
     transfer_data_lcd(y);
     transfer_data_lcd(y+y_total-1);
     transfer\_command\_lcd(0x30);
     transfer_command_lcd(0x5c);
}
/*清屏*/
void clear_screen()
{
     int i, j;
     lcd_address(1, 1, 256, 17);
     for(i=0;i<17;i++)
         for(j=0;j<256;j++)
              transfer_data_lcd(0x00);
     }
/*显示 32*32 点阵的汉字或等同于 32*32 点阵的图像*/
void disp_32x32(int x, int y, uchar *dp)
    int i, j;
   1cd_address(x, y, 32, 4);
     for(i=0;i<4;i++)
         for(j=0;j<32;j++)
          {
              transfer_data_lcd(*dp);
              dp++;
         }
     }
}
void disp_256x128(int x, int y, char *dp)
     int i, j;
     1cd_address(x, y, 256, 16);
     for(i=0;i<16;i++)
         for(j=0; j<256; j++)
          {
```

```
transfer_data_lcd(*dp);
              dp++;
          }
     }
}
void display_string_16x16(uchar column, uchar page, uchar *text)
{
     uchar i, j, k;
     uint address;
     j=0;
     while(text[j]!= '\0')
     {
          i=0;
          address=1;
          while(Chinese_text_16x16[i]> 0x7e)
               if(Chinese_text_16x16[i] == text[j])
                    if(Chinese_text_16x16[i+1] == text[j+1])
                    {
                        address=i*16;
                        break;
               i +=2:
          if(column>255)
          {
               column=0;
              page+=2;
          }
          if(address !=1)
              lcd_address(column, page, 16, 2);
               for (k=0; k<2; k++)
                    for (i=0; i<16; i++)
                    {
                        transfer_data_lcd(Chinese_code_16x16[address]);
                        address++;
                   }
               j +=2;
          }
          else
```

```
for (k=0; k<2; k++)
                    lcd_address(column, page, 16, 2);
                    for(i=0;i<16;i++)
                         transfer_data_lcd(0x00);
                    }
               }
               j++;
          }
          column+=16;
     }
}
void display_string_32x32(uchar column, uchar page, uchar *text)
     uchar i, j, k;
     uint address;
     j=0;
     while(text[j]!= '\0')
     {
          i=0;
          address=1;
          while (Chinese_text_32x32[i]> 0x7e)
               if(Chinese_text_32x32[i] == text[j])
                    if(Chinese\_text\_32x32[i+1] == text[j+1])
                         address=i*64;
                         break;
                    }
               }
               i+=2;
          }
          if(column>255)
          {
               column=0;
               page+=4;
          }
          if (address !=1)
               1cd_address(column, page, 32, 4);
               for (k=0; k<4; k++)
```

```
for(i=0;i<32;i++)
                  {
                       transfer_data_lcd(Chinese_code_32x32[address]);
                      address++;
                 }
             }
             j +=2;
        }
        else
         {
             for (k=0; k<4; k++)
                  lcd_address(column, page, 32, 4);
                  for (i=0; i<32; i++)
                  {
                      transfer_data_lcd(0x00);
                  }
             j++;
         column+=32;
    }
//显示 8x16 的点阵的字符串,括号里的参数分别为(页,列,字符串指针)
void display_string_8x16(uint column, uint page, uchar reverse, uchar *text)
   uint i=0, j, k, n;
    if(column>248)
         column=1;
        page+=2;
    while(text[i]>0x00)
    {
         if((text[i]>=0x20)&&(text[i]<=0x7e))
             j=text[i]-0x20;
             for (n=0; n<2; n++)
                  lcd_address(column, page+n, 8, 2); //(column, page+n, 256, 16);
                  for (k=0: k<8: k++)
             if (reverse==1)
            transfer_data_lcd(~ascii_table_8x16[j][k+8*n]);//写数据到LCD,每写完1字节的数据后列地址自动加1
```

```
}
                        else
                           {
                                transfer_data_lcd(ascii_table_8x16[j][k+8*n]); //写数据到 LCD, 每写完 1 字节的数据后
列地址自动加1
                           }
                  }
             }
             i++;
             column+=8;
         }
         else
         i++;
    }
}
//显示一串 5x8 点阵的字符串
//括号里的参数分别为(页,列,是否反显,数据指针)
void display_string_5x8(uint column, uint page, uchar reverse, uchar *text)
    uchar i=0, j, k, data1;
    while(text[i]>0x00)
         if((text[i]>=0x20)&&(text[i]<=0x7e))
         {
             j=text[i]-0x20;
             lcd_address(column, page, 7, 1);
             for(k=0;k<5;k++)
                  if (reverse==1)
                                    data1=~ascii_table_5x8[j][k];
                  else datal=ascii_table_5x8[j][k];
                  transfer_data_lcd(data1);
             if(reverse==1)
                               transfer_data_lcd(0xff);
             else transfer_data_lcd(0x00);
             i++;
             column+=6;
         }
         else
         i++;
    }
}
void main ()
```

```
P1M1=0x00;
    P1M0=0x00:
                //P1 配置为准双向
    P2M1=0x00;
    P2M0=0x00;
                //P2 配置为准双向
    P3M1=0x00;
    P3M0=0x00:
                //P3 配置为准双向
                                                       //对液晶模块进行初始化设置
    initial_lcd();
    while(1)
        transfer_command_lcd(0x08);
                                      //数据格式,如果设为 0x0C: 表示选择 LSB (DB0)在顶,如果设为 0x08:表示选择
LSB(DB0)在底
        clear_screen();
                                                       //清屏
        disp_256x128(1, 1, bmp8);
                                          //显示一幅 240*160 点阵的黑白图。
        waitkey();
        clear_screen();
                                                       //清屏
        disp_256x128(1, 1, bmp1);
                                          //显示一幅 240*160 点阵的黑白图。
        waitkey();
                                                       //清屏
        clear_screen();
        disp_32x32(49, 1, jing2);
        disp_32x32((32*1+49), 1, 1ian2);
        disp_32x32((32*2+49), 1, xun2);
        disp_32x32((32*3+49), 1, dian2);
        disp_32x32((32*4+49), 1, zi2);
   display_string_16x16(33, 6, "深圳市晶联讯电子有限公司");
   display_string_32x32(49, 13, "晶联讯电子");
        transfer_command_1cd(0x0C);   //数据格式,如果设为 0x0C; 表示选择 LSB (DB0)在顶,如果设为 0x08:表示选择
LSB(DBO)在底
        display_string_8x16(73, 9, 1, "JLX256128G-920");
        display_string_5x8(73, 12, 0, "JLX256128G-920");
        waitkey();
    }
}
```

7.5 程序举例:

7.5.1 串行接口

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

图 9. 串行接口

显示方向按图纸,COM接3.3V 显示方向旋转180度,COM接VSS

并行程序与串行只是接口定义、写数据和命令不一样,其它都一样

```
串行接口程序
sbit 1cd cs1 = P3^2://CS
sbit lcd_reset= P1^1;//RST
sbit lcd_sclk = P1^2;//串行时钟
sbit lcd_rs = P3^1;//RS
sbit lcd_sid = P1^3;//串行数据
sbit kev
             = P2^0://按键
//写指令到 LCD 模块
void transfer_command_lcd(int data1)
    char i;
    1cd cs1=0;
    1cd rs=0;
    for (i=0; i<8; i++)
        lcd sc1k=0;
        if (data1&0x80) lcd sid=1;
        else lcd sid=0;
        lcd sclk=1;
        data1<<=1;
    1cd cs1=1;
//写数据到 LCD 模块
void transfer_data_lcd(int datal)
    char i;
    1cd cs1=0;
    1cd rs=1:
    for (i=0; i<8; i++)
        1cd sc1k=0;
        if (data1&0x80) lcd sid=1;
        else lcd sid=0;
        lcd sclk=1;
        data1<<=1;
    1cd cs1=1;
```

7.6、IIC 接口

图 10. IIC

7.6.1、以下为 I2C 接口方式范例程序

与串行方式相比较,只需改变接口顺序以及传送数据、传送命令这两个函数即可:

```
液晶模块型号: JLX256128G-920
    IIC 接口
    驱动 IC 是:ST75256
    版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;
#include <reg52.H>
#include <intrins.h>
#include <chinese code.h>
sbit reset=P1^1;
     sc1=P1^3;
sbit
sbit sda=P1^2;
sbit key=P2^0;
void transfer(int data1)
    int i;
    for (i=0; i<8; i++)
        sc1=0;
        if (data1&0x80) sda=1;
        else sda=0;
        sc1=1;
        sc1=0;
        data1=data1<<1;
        sda=0;
        sc1=1;
        sc1=0;
void start_flag()
    sc1=1;
                /*START FLAG*/
    sda=1;
                /*START FLAG*/
    sda=0;
                /*START FLAG*/
void stop flag()
    sc1=1;
                /*STOP FLAG*/
                /*STOP FLAG*/
    sda=0;
    sda=1;
               /*STOP FLAG*/
//写命令到液晶显示模块
void transfer command(uchar com)
    start flag();
    transfer(0x78);
    transfer(0x80);
    transfer(com);
    stop_flag();
```

液晶模块

```
//写数据到液晶显示模块
void transfer_data(uchar dat)
    start_flag();
    transfer (0x78);
transfer (0xC0);
    transfer(dat);
    stop_flag();
```

-END-

