LÓGICA 3061-60_57501_R_E1_20231 CONTEÚDO

Revisar envio do teste: QUESTIONÁRIO UNIDADE II

Usuário	caio.leme1 @aluno.unip.br
Curso	LÓGICA
Teste	QUESTIONÁRIO UNIDADE II
Iniciado	28/03/23 19:15
Enviado	28/03/23 19:42
Status	Completada
Resultado da tentativa	2,5 em 2,5 pontos
Tempo decorrido	
	s Todas as respostas, Respostas enviadas, Respostas corretas, Comentários, Perguntas respondidas incorretamente

Pergunta 1 0,25 em 0,25 pontos

(FUNDATEC/2022) Considere a proposição "A quantidade de vacinados aumenta ou o 🗹 número de infectados será maior". O número de linhas da tabela-verdade que corresponde à proposição é igual a:

Resposta Selecionada: ob. 4

Respostas:

a. ²

⊘ b. ⁴

c. ⁶

d. ⁸

e. 10

Resposta: B. Comentário da

resposta: Comentário: na sentença do enunciado, temos duas proposições

simples, que podem sem divididas conforme exposto a seguir:

a: a quantidade de vacinados aumenta. *b*: o número de infectados será maior.

A sentença composta, por sua vez, pode ser simbolicamente expressa

como $a \vee b$.

O número de linhas de estados em uma tabela-verdade (l) é uma função exponencial do número de proposições simples componentes

(n), dada por

 $l(n) = 2^n$

Como temos duas proposições simples, temos o que segue:

 $l(2) = 2^2 = 4$

Pergunta 2

0,25 em 0,25 pontos

(FUNDATEC/2022) Na tabela-verdade a seguir, P e Q são sentenças simples e as letras V e F🗹 indicam verdadeiro e falso, respectivamente.

P	Q	I	II	III
٧	٧	F	٧	٧
٧	F	٧	F	V
F	٧	٧	F	F
F	F	٧	V	V

As proposições que condizem com I, II e III são, respectivamente:

Resposta Selecionada:
$$\bigcirc$$
 e. \sim ($P \land Q$), $P \leftrightarrow Q$, $Q \rightarrow P$

Respostas:

a.
$$P \wedge Q$$
, $P \leftrightarrow Q$, $R \rightarrow Q$

b.
$$P \vee Q$$
, $P \rightarrow Q$, $P \leftrightarrow Q$

$$\mathsf{c.}\ P \land Q,\, P \leftrightarrow Q,\, Q \rightarrow P$$

d.
$$\sim (P \vee Q), P \wedge Q, P \rightarrow Q$$

$$\bigcirc$$
 e. \sim ($P \land Q$), $P \leftrightarrow Q$, $Q \rightarrow P$

Resposta: E. Comentário

da resposta: Comentário: a tabela-verdade de uma operação de conjunção, do tipo P A

Q, resulta em verdade apenas quando ambos os componentes são

verdadeiros. Note que a tabela do enunciado tem sua saída I falsa apenas nessa condição, com todas as outras linhas verdadeiras. Logo, a coluna I representa a negação de uma operação de conjunção, que podemos descrever simbolicamente como $\sim (P \land Q)$.

Na coluna II, temos resultado verdadeiro apenas guando o valor lógico das entradas P e Q é igual. Isso define uma operação bicondicional, que é expressa simbolicamente como $P \leftrightarrow Q$.

Na coluna III, temos resultado falso apenas na 3ª linha de estados, quando Q é verdadeiro e P é falso. Uma operação condicional tem resultado falso apenas quando o antecedente é verdadeiro e o consequente é falso. Se considerarmos Q como antecedente e P como consequente, chegamos ao formato $Q \rightarrow P$.

Pergunta 3 0,25 em 0,25 pontos

(CESPE-CEBRASPE/2022 – adaptada) Considere a proposição a seguir:

p: Fico triste quando você pensa diferente de mim.

Na tabela-verdade associada à proposição p, a quantidade de linhas que atribuem valor lógico verdadeiro a essa proposição é igual a:

Resposta Selecionada: 👩 d. 3

Respostas:

a. 0

b. ¹

c. ²

⊘ d. ³

e. 4

Comentário

Resposta: D.

da resposta:

Comentário: Note que, na sentença do enunciado, "ficar triste" é uma consequência causada por "você pensar diferente de mim". Desse modo, podemos afirmar que "você pensa diferente de mim" é uma causa (ou antecedente) e "fico triste" é uma consequência (ou consequente). A sentença, portanto, pode ser reescrita no formato condicional, como "se você pensa diferente de mim, então fico triste". Sabemos que, em uma tabela-verdade de uma operação condicional entre duas sentenças, teremos 4 linhas, das quais 3 serão verdadeiras e apenas 1 será falsa.

Pergunta 4 0,25 em 0,25 pontos

(Gestão Concurso/2018 – adaptada) Considere que temos três proposições, identificadas como p, q e r. Objetiva-se construir uma tabela-verdade para avaliar os valores lógicos que a proposição composta $p \lor \neg r \rightarrow q \land \neg r$ pode assumir.

A esse respeito, avalie as afirmações a seguir.

- I. A tabela-verdade, nesse caso, terá seis linhas.
- II. A tabela-verdade, nesse caso, terá oito linhas.
- III. Haverá apenas três linhas da tabela-verdade na coluna correspondente à proposição composta $p \lor \sim r \rightarrow q \land \sim r$, que assumirá o valor verdadeiro.

Está correto apenas o que se afirma em:

Resposta Selecionada: ob. II

Respostas:

a. I

👩 b. II

c. III

d. l e III

e. II e III

Comentário da resposta:

Resposta: B.

Comentário: a tabela-verdade da expressão composta pelas proposições simples p, q e r terá 8 linhas, já que 2^3 = 8. Se montarmos a tabela, com uma coluna para cada operação, chegamos ao demonstrado a seguir:

p	q	r	~r	$p \vee \sim r$	$q \wedge \sim r$	$p \lor \sim r \rightarrow q \land \sim r$
٧	٧	٧	F	V	F	F
٧	٧	F	V	V	V	V
٧	F	٧	F	V	F	F
٧	F	F	V	V	F	F
F	٧	٧	F	F	F	V
F	٧	F	V	V	V	V
F	F	٧	F	F	F	٧
F	F	F	V	V	F	F

Notamos que temos uma tabela-verdade de 8 linhas, das quais 4 apresentaram resultado verdadeiro (evidenciado pela última coluna da tabela). Desse modo, apenas a afirmação II, do enunciado, é correta.

Pergunta 5 0,25 em 0,25 pontos

(FUNDATEC/2022) Abaixo está apresentada a tabela verdade, incompleta, da proposição \checkmark composta $(p \lor q) \rightarrow (r \land \sim q)$.

р	q	r	~q	p∨q	r ∧~q	$(p \lor q) \to (r \land \neg q)$
V	٧	٧	F	V	F	F
٧	٧	F	F	V	F	
V	F	٧	V	V	V	V
V	F	F	V	V	F	
F	٧	٧	F	V	F	E
F	٧	F	F	V	F	
F	F	٧	V	F	V	V
F	F	F	V	F	F	

Com base na lógica proposicional, é possível dizer que, para completar a última coluna da tabela verdade, de forma correta, os valores lógicos que faltam, na ordem de cima para baixo, são:

Resposta Selecionada: 🗸 d. F - F - F - V

Respostas:

Comentário da resposta:

Resposta: D.

Comentário: ao completarmos a tabela-verdade, temos o padrão exposto a seguir:

р	q	r	~q	$p \lor q$	r ∧ ~q	$(p \lor q) \to (r \land \neg q)$
V	٧	٧	F	V	F	F
V	V	F	F	V	F	F
V	F	٧	V	V	V	V
٧	F	F	V	V	F	F
F	٧	٧	F	V	F	F
F	٧	F	F	V	F	F
F	F	V	V	F	V	V
F	F	F	V	F	F	V

De cima para baixo, a sequência que completa a tabela é F-F-F-V.

Pergunta 6

0,25 em 0,25 pontos

(FUNDATEC/2018) A tabela-verdade da fórmula $\sim (p \lor q) \rightarrow q$:

Respostas:

 $_{\bigodot}$ a. Só é falsa quando p e q são falsos.

b. É uma tautologia.

c. É uma contradição.

 $_{\sf d}$ Só é falsa quando p e q são verdadeiros.

 $_{\rm e.}$ Só é falsa quando p é verdadeiro e q é falso.

Comentário Resposta: A.

Comentário: vamos montar a tabela-verdade da expressão do enunciado. da resposta:

р	q	$p \lor q$	$\sim (p \lor q)$	$\sim (p \lor q) \rightarrow q$
٧	٧	٧	F	V
٧	F	V	F	V
F	٧	٧	F	V
F	F	F	V	F

Para termos uma tautologia, precisaríamos de apenas estados V na última coluna. Para termos uma contradição, precisaríamos de apenas estados F na última coluna. Temos, no caso, uma contingência, onde há uma mistura de estados lógicos. Analisando a tabela, $\sim (p \lor q) \to q$ só é falsa quando suas componentes, $p \in q$, são falsas.

Pergunta 7 0,25 em 0,25 pontos

(Gestão Concurso/2018 – adaptada) Considere a proposição simples p. É uma tautologia a 🚄 proposição composta descrita em:

Respostas:

a.
$$p \land \sim p$$

b.
$$p \rightarrow \sim p$$

c.
$$p \leftrightarrow \sim p$$

e.
$$p \vee p$$

Comentário Resposta: D.

Comentário: a proposição $p \land \neg p$ é uma contradição, pois, da resposta:

independentemente do valor lógico assumido por p, a sentença composta será falsa. Isso ocorre porque, em uma conjunção, ambas as componentes devem ser verdadeiras para que o resultado seja verdadeiro. Porém, essa situação nunca ocorre, já que uma componente é a negação da outra. Isso pode ser observado na tabela-verdade a seguir.

p	~p	$p \wedge \sim p$
٧	F	F
F	٧	F

Naturalmente, se $p \land \neg p$ é uma contradição, a sua negação, $\neg (p \land \neg p)$, será tautológica, como pode ser visto na tabela-verdade a seguir:

p	$\sim p$	$p \wedge \sim p$	~(p ^ ~p)
٧	F	F	٧
F	٧	F	V

Pergunta 8 0,25 em 0,25 pontos

(INSTITUTO AOCP/2018) Dada a disjunção exclusiva "Ou Carlos é advogado ou Luíza é 🛂 professora", a sua negação será dada por

Resposta Selecionada: Carlos é advogado se, e somente se, Luiza é professora".

Respostas:

a. "Se Carlos é advogado, então Luiza é advogada".

h. "Se Luiza não é advogada então Carlos é professor".

🗸 c. "Carlos é advogado se, e somente se, Luiza é professora".

d "Se Luiza é advogada, então Carlos é professor".

e. "Carlos é professor se, e somente se, Luiza é advogada".

Comentário da resposta:

Resposta: C.

Comentário: a sentença do enunciado se trata de uma disjunção exclusiva, no formato $a \vee b$, cujas componentes são:

a: Carlos é advogado.

b: Luíza é professora.

A negação da sentença do enunciado é diretamente dada por: \sim ($a \leq b$): Não é verdade que ou Carlos é advogado ou Luíza é professora.

De acordo com as equivalências notáveis bicondicionais, sabemos que é válida a relação a seguir:

 $a \leftrightarrow b \Leftrightarrow \neg(a \lor b)$

Desse modo, podemos reescrever a proposição composta negada no formato bicondicional, conforme exposto em sequência: $a \leftrightarrow b$: Carlos é advogado se, e somente se, Luíza é professora.

Pergunta 9 0,25 em 0,25 pontos

(CPCON/2021) Considere duas proposições simples p e q, uma sentença composta c e a seguinte tabela-verdade:

р	q	С
V	V	F
٧	F	٧
F	V	٧
F	F	V

Considere agora as seguintes afirmações:

I. $c \in (p \land q)$ II. $c \in p \rightarrow q$ III. *c* é ~*p* ∨ ~*q*

Neste caso:

Resposta Selecionada: Apenas I e III são verdadeiras.

Respostas:

a. Apenas I e II são verdadeiras.

🕢 _{b.} Apenas I e III são verdadeiras.

_{c.} Apenas II e III são verdadeiras.

d Apenas I é verdadeira.

ု I, II e III são falsas.

Comentário da resposta: Resposta: B. Comentário:

I. Afirmação verdadeira: a tabela-verdade de uma operação de conjunção, do tipo $p \wedge q$, resulta em verdade apenas quando ambas as componentes são verdadeiras. Note que a tabela do enunciado tem sua saída \emph{c} falsa apenas nessa condição, com todas as outras linhas verdadeiras. Logo, c representa a negação de uma operação de conjunção, que podemos descrever simbolicamente como $\sim (p \land q)$. Temos, portanto, que a afirmação I é verdadeira.

II. Afirmação falsa: uma operação condicional, do tipo $p \rightarrow q$, teria resultado falso apenas com antecedente verdadeiro e consequente falso, ou seja, na 2ª linha de estados da tabela.

III. Afirmação verdadeira: a partir da expressão da afirmação I, $\sim (p \land q)$, podemos aplicar a equivalência de De Morgan. Ela nos diz que $\sim (p \land q) \Leftrightarrow$ $\sim p \vee \sim q$. Portanto, se a expressão da afirmação I corresponde a c, a expressão da afirmação III também corresponde, já que elas são equivalentes.

Pergunta 10 0,25 em 0,25 pontos

(VUNESP/2018) Uma afirmação equivalente à afirmação Se hoje corro, então amanhã descansarei, está contida na alternativa:

Resposta Selecionada: 👩 a. Se amanhã não descansarei, então hoje não corro.

🚜 a. Se amanhã não descansarei, então hoje não corro. Respostas:

h Se hoje não corro, então amanhã não descansarei.

c. Se amanhã descansarei, então hoje corro.

d. Hoje corro ou amanhã descansarei.

e. Hoje descanso e amanhã correrei.

Comentário da resposta:

Resposta: A.

Comentário: A sentença do enunciado pode ser simbolicamente

escrita como $a \rightarrow b$, cujas componentes são:

a: Hoje corro.

b: Amanhã descansarei.

De acordo com as equivalências notáveis bicondicionais, sabemos

que é válida a relação a seguir:

$$a \rightarrow b \Leftrightarrow \sim b \rightarrow \sim a$$

Desse modo, a sentença composta do enunciado é equivalente ao formato exposto a seguir:

 $\sim b \rightarrow \sim a$: Se amanhã não descansarei, então hoje não corro.

Terça-feira, 28 de Março de 2023 19h42min15s GMT-03:00

 \leftarrow OK