Congestion Control in Data Center Networks

Overview

 Why is the problem different from that in the Internet?

What are possible solutions?

DC Traffic Patterns

- In-cast applications
 - Client send queries to servers
 - Responses are synchronized
- Few overlapping long flows
 - According to DCTCP's measurement

Data Center TCP (DCTCP)

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan

Microsoft Research

Stanford University

Data Center Packet Transport

- Large purpose-built DCs
 - Huge investment: R&D,
 business

- Transport inside the DC
 - TCP rules (99.9% of traffic)

How's TCP doing?

TCP in the Data Center

- We'll see TCP does not meet demands of apps.
 - Suffers from bursty packet drops, Incast [SIGCOMM '09], ...
 - Builds up large queues:
 - Adds significant latency.
 - Wastes precious buffers, esp. bad with shallow-buffered switches.

- Operators work around TCP problems.
 - Ad-hoc, inefficient, often expensive solutions
 - No solid understanding of consequences, tradeoffs

Roadmap

- What's really going on?
 - Interviews with developers and operators
 - Analysis of applications
 - Switches: shallow-buffered vs deep-buffered
 - Measurements
- A systematic study of transport in Microsoft's DCs
 - Identify impairments
 - Identify requirements
- Our solution: Data Center TCP

Case Study: Microsoft Bing

Measurements from 6000 server production cluster

- Instrumentation passively collects logs
 - Application-level
 - Socket-level
 - Selected packet-level
- More than 150TB of compressed data over a month

Partition/Aggregate Application Structure

Generality of Partition/Aggregate

- The foundation for many large-scale web applications.
 - Web search, Social network composition, Ad selection, etc.

Example: Facebook

Partition/Aggregate ~ Multiget

Aggregators: Web Servers

Workers: Memcached Servers

Workloads

Partition/Aggregate(Query)

Short messages [50KB-1MB]
 (Coordination, Control state)

Large flows [1MB-50MB]
 (Data update)

Impairments

Incast

Queue Buildup

• Buffer Pressure

Incast

Incast Really Happens

Jittering

99.9th percentile is being tracked.

ntiles.

InCast: Goodput collapses as senders increase

Figure 1: TCP Incast goodput collapse up to 20 senders for three different environments

InCast: Synchronized timeouts

Figure 2: TCP sequence numbers vs. time for two senders in a 5-to-1 setup

Queue Buildup

Data Center Transport Requirements

1. High Burst Tolerance

Incast due to Partition/Aggregate is common.

2. Low Latency

Short flows, queries

3. High Throughput

Continuous data updates, large file transfers

The challenge is to achieve these three together.

Tension Between Requirements

High Throughput
High Burst Tolerance

Low Latency

Shallow Buffers:

Deep Buffers:

Qu Inc

Objective:

Low Queue Occupancy & High Throughput

Reduced RTO_{min} (SIGCOMM '09)

Doesn't Help Latency

AQM - RED:

Avg Queue Not Fast Enough for Incast

&

The DCTCP Algorithm

Review: The TCP/ECN Control Loop

- Bandwidth-delay product rule of thumb:
 - A single flow needs $C \times RTT$ buffers for 100% Throughput.

- Bandwidth-delay product rule of thumb:
 - A single flow needs $C \times RTT$ buffers for 100% Throughput.
- Appenzeller rule of thumb (SIGCOMM '04):
 - Large # of flows: $C \times RTT/\sqrt{N}$ is enough.

- Bandwidth-delay product rule of thumb:
 - A single flow needs $C \times RTT$ buffers for 100% Throughput.
- Appenzeller rule of thumb (SIGCOMM '04):
 - Large # of flows: $C \times RTT/\sqrt{N}$ is enough.
- Can't rely on stat-mux benefit in the DC.
 - Measurements show typically 1-2 big flows at each server, at most 4.

- Bandwidth-delay product rule of thumb:
 - A single flow needs $C \times RTT$ buffers for 100% Throughput.
- Appenzeller rule of thumb (SIGCOMM '04):
 - Large # of flows: $C \times RTT/\sqrt{N}$ is enough.
- Can't rely on stat-mux benefit in the DC.
 - Measurements show typically 1-2 big flows at each server, at most 4.

Real Rule of Thumb:

Low Variance in Sending Rate → **Small Buffers Suffice**

Two Key Ideas

- 1. React in proportion to the **extent** of congestion, not its **presence**.
 - ✓ Reduces variance in sending rates, lowering queuing requirements.

ECN Marks	ТСР	DCTCP
1011110111	Cut window by 50%	Cut window by 40%
000000001	Cut window by 50%	Cut window by 5%

- 2. Mark based on instantaneous queue length.
 - ✓ Fast feedback to better deal with bursts.

Data Center TCP Algorithm

Switch side:

Mark packets when Queue Length > K.

Sender side:

– Maintain running average of **fraction** of packets marked (α) .

In each RTT:

$$F = \frac{\# of \ marked \ ACKs}{Total \ \# of \ ACKs} \qquad \alpha \leftarrow (1 - g)\alpha + gF$$

- ► Adaptive window decreases: $Cwnd \leftarrow (1 \frac{\alpha}{2})Cwnd$
 - Note: decrease factor between 1 and 2.

DCTCP in Action

Why it Works

1. High Burst Tolerance

- ✓ Large buffer headroom → bursts fit.
- ✓ Aggressive marking → sources react before packets are dropped.

2. Low Latency

✓ Small buffer occupancies → low queuing delay.

3. High Throughput

✓ ECN averaging → smooth rate adjustments, low variance.

Evaluation

- Implemented in Windows stack.
- Real hardware, 1Gbps and 10Gbps experiments
 - 90 server testbed
 - Broadcom Triumph 48 1G ports 4MB shared memory
 - Cisco Cat4948
 48 1G ports 16MB shared memory
 - Broadcom Scorpion 24 10G ports 4MB shared memory
- Numerous micro-benchmarks
 - Throughput and Queue Length
 - Multi-hop
 - Queue Buildup
 - Buffer Pressure

- Fairness and Convergence
- Incast
- Static vs Dynamic Buffer Mgmt

Cluster traffic benchmark

Cluster Traffic Benchmark

- Emulate traffic within 1 Rack of Bing cluster
 - 45 1G servers, 10G server for external traffic
- Generate query, and background traffic
 - Flow sizes and arrival times follow distributions seen in Bing

- Metric:
 - Flow completion time for queries and background flows.

We use $RTO_{min} = 10ms$ for both TCP & DCTCP.

✓ Low latency for short flows.

- ✓ Low latency for short flows.
- ✓ High throughput for long flows.

- ✓ Low latency for short flows.
- ✓ High throughput for long flows.
- ✓ High burst tolerance for query flows.

Scaled Background & Query

10x Background, 10x Query

Scalability

Figure 18: DCTCP performs better than TCP and then converges at 35 senders (log scale on Y axis; 90% confidence intervals for the means are too small to be visible).

Conclusions

- DCTCP satisfies all our requirements for Data Center packet transport.
 - ✓ Handles bursts well
 - ✓ Keeps queuing delays low
 - ✓ Achieves high throughput
- Features:
 - ✓ Very simple change to TCP and a single switch parameter.
 - ✓ Based on mechanisms already available in Silicon.

Discussion

- What if traffic patterns change?
 - E.g., many overlapping flows
- What do you like/dislike?