1 Метод динамического программирования. Задача управления (общая схема многошагового процесса). Условия, которым должна удовлетворять задача, решаемая методом ДП. Принцип оптимальности Беллмана.

Уравнения Беллмана.

Определение 1. Динамическое программирования — это раздел математического программирования, посвященный исследованию многошаговых задач принятия оптимальных решений. При этом многошаговость задачи:

- либо отражает реальное протекание принятия решений во времени;
- либо вводится в эту задачу искусственно за счет расчленения процесса принятия однократного решения на отдельные этапы, шаги.

Цель такого представления состоит в сведении исходной задачи высокой размерности к решению на каждом шаге задачи небольшой размерности (часто одномерной).

Методы ДП могут применяться к разнообразным задачам планирования и управления, например, управление запасами, замены и ремонта оборудования и др.

1.1 Задача управления (общая схема многошагового процесса)

Пусть имеется некоторая система S. В результате управления эта система переводится из некоторого состояния S_0 в конечное состояние S_n . Предположим, что управление можно разбить на n шагов, т.е. решение принимается последовательно на любом шаге, а управление, переводящие систему S из состояния S_0 в S_n , представляет собой совокупность n пошаговых управлений.

 $X=(X_1,\dots,X_n)$ – управление (политика), переводящее систему S из S_0 в S_n , где X_k – управление на к-ом шаге.

 $X=(X_1,\dots,X_n)$ — управление (политика), переводящее систему S из S_0 в S_n , где X_k — управление на k-ом шаге.

Переменные X_k удовлетворяют некоторым ограничениям: как исходным, так и ограничениям,

возникающим за счет ранее сделанных выборов X_1, \ldots, X_{k-1} . Каждое решение приносит определенный выигрыш (доход), при этом качество каждого из управлений X характеризуется соответствующим значением функции $W = F(S_0, X)$ — показатель эффективности.

1.2 Условия, которым должна удовлетворять задача, решаемая методом ДП

1. Состояние S_k системы после k-ого шага зависит только от предшествующего состояния S_{k-1} и управления на k-ом шаге X_k и не зависит от предшествующих состояний и управлений. Это требование называется "отсутствием последействия".

$$S_k = \varphi_k(S_{k-1}, X_k),$$

уравнение состояний k = 1, n (1)

2. Целевая функция $W = F(S_0, X)$ является аддитивной от показателя эффективности каждого шага:

$$W_k = f_k(S_{k-1}, X_k), \quad k = 1, n$$

$$\Rightarrow W = \sum_{k=1}^{n} W_k = \sum_{k=1}^{n} f_k(S_{k-1}, X_k) \quad (2)$$

Определение 2. Последовательность $X = (X_1, \dots, X_n)$ допустимых управлений X_k на отдельных шагах называется политикой.

Задача управления состоит в поиске такой оптимальной стратегии управления (оптимальной политики) $X^* = (X_1^*, \dots, X_n^*)$, в результате реализации которой система S переходит из начального состояния S_0 в конечное S_n и при этом функция (2) принимает оптимальное значение (например, max), т.е. $W \to \max$. Сформулированная задача является многоэтапной. В целом ряде задач многоэтапность не следует из их условий. Однако в целях нахождения решения методом ДП их следует рассматривать как многоэтапные.

Теорема 1 (Принцип оптимальности Беллмана). Оптимальная политика обладает тем свойством, что каковы бы ни были решение, принятое на первом

шаге и состояние системы после первого шага, последующие решения должны составлять оптимальное относительно этого состояния поведение. Любое оптимальное решение может быть образовано только оптимальными частными решениями.

Для применения принципа оптимальности в конкртеных задачах пользуются приемом, часто называемым погружением. Он состоит в том, что вместо решения исходной задачи с данным начальным состоянием S_0 и данным числом шагов n решается целое семейство задач с произвольным начальным состоянием и с произвольным числом шагов.

Формализация принципа оптимальности приводит к некоторым функциональным уравнениям, решение которых и составляет основу вычислительных схем.

Во многих случаях функциональные уравнения ДП представляют собой систему рекуррентных соотношений. Их называют уравнениями Беллмана.

Вместо исходной задачи с фиксированным числом шагов n и начальным состоянием S_0 рассматривается последовательность задач. Полагая последовательно $n=1,2,\ldots$, при различных S_i получаем одношаговую, двухшаговую и т.д. задачи.

На каждом шаге любого состояния системы S_{k-1} решение X_k нужно выбирать "с оглядкой т.к. этот выбор влияет на последующее состояние системы S_k и дальнейший процесс управления, зависящий от S_k .

Но! На последнем шаге можно для любого состояния S_{n-1} планировать локально-оптимально, исходя из соображений этого шага.

Уравнения Беллмана

Согласно принципу оптимальности X_n нужно выбирать так, чтобы для любого состояния S_{n-1} получить максимум целевой функции на этом шаге. Обозначим $W_n^*(S_{n-1})$ — максимум целевой функции — показатель эффективности n-го шага при условии, что к началу последного шага система S была в произвольном состоянии S_{n-1} , а на последнем шаге управление было оптимальным. $W_n^*(S_{n-1})$ называется условным максимум целевой функции на n-м шаге.

$$W_n^*(S_{n-1}) = \max_{\{X_n\}} f_n(S_{n-1}, X_n)$$

Максимум берется по всем допустимым управлениям X_n .

Решение X_n , при котором достигается $W_n^*(S_{n-1})$, также зависит от S_{n-1} и называется условным оптимальным управлением на n-ом шаге. Обозначим его $X_n^*(S_{n-1})$.

Решив одномерную задачу локальной оптимизации для всех возможных состояний S_{n-1} , получим две последовательности значений: $W_n^*(S_{n-1})$ и $X_n^*(S_{n-1})$.

Рассмотрим теперь двухшаговую задачу: присоединим к n-ому шагу (n —

$$f_{n-1}(S_{n-2},X_{n-1})$$
 $W_N^*(S_{n-1})$ $X_n^*(S_{n-1})$ $X_n^*(S_{n-1})$ S_n 1)-ый.

Для любого состояния S_{n-2} и любых произвольных управлений X_{n-1} и оптимальном управлении на n-ом шаге значение целевой функции на двух последних шагах равно:

$$f_{n-1}(S_{n-2}, X_{n-1}) + W_n^*(S_{n-1}) \to \max$$
 (4)

Тогда по принципу оптимальности для любого S_{n-2} решение нужно выбирать так, чтобы оно вместе с оптимальным управлением на последнем n-ом шаге приводило бы к максимуму целевой функции на двух последних шагах. \Rightarrow , ищем максимум (4) по всем допустимым X_{n-1} .

$$W_{n-1}^*(S_{n-2}) = \max_{\{X_{n-1}\}} \{ f_{n-1}(S_{n-2}, X_{n-1}) + W_N^*(S_{n-1}) \}$$
 (5)

Максимум этой сумы зависит от S_{n-2} и равен $W_{n-1}^*(S_{n-2})$, называется условным максимумом целевой функции при оптимальном управлении на двух последних шагах. Соответствующее $X_{n-1}^*(S_{n-2})$ называется условным оптимальным управлением на (n-1)-м шаге.

 $W_{n-1}^*(S_{n-2})$ зависит только от S_{n-2} и X_{n-1} , т.к. S_{n-1} можно найти из уравнения состояния (1):

$$S_k = \varphi_k(S_{k-1}, X_k)$$
 при $k = n - 1$:

$$S_{n-1}=\varphi_{n-1}(S_{n-2},X_{n-1}),$$
 подставим вместо S_{n-1} в функцию $W_n^*(S_{n-1}).$

В результате максимизируя только по одной переменной X_{n-1} , вновь получаем две последовательности:

$$W_{n-1}^*(S_{n-2})$$
 и $X_{n-1}^*(S_{n-2})$.

Далее рассматривается трехшаговая задача: к двум последним шагам присоединяется (n-2)-ой шаг и т.д.

Обозначим $W_k^*(S_{k-1})$ — условный максимум целевой функции, получаемый при оптимальном управлении на n-k+1 шагах, начиная с k-ого до конца, при условии, что к началу k-ого шага система находилась в состоянии S_{k-1} :

$$W_k^*(S_{k-1}) = \max_{\{(X_k, \dots, X_n)\}} \sum_{i=k}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{i=k+1}^n f_i(S_{i-1}, X_i) \Rightarrow W_{k+1}^*(S_k) = \max_{\{(X_{k+1}, \dots, X_n)\}} \sum_{\{(X_{k+1}, \dots, X_n)\}} \sum$$

Целевая функция на (n-k) последних шагах при любом X_k и оптимальном управлении на последних (n-k) шагах равна:

$$f_k(S_{k-1}, X_k) + W_{k+1}^*(S_k) \to \max$$

По принципу оптимальности X_k выбирается из условия максимума, т.е.

$$W_k^*(S_{k-1}) = \max_{\{X_k\}} \left\{ f_k(S_{k-1}, X_k) + W_{k+1}^*(S_k) \right\}$$
 (6)

Управление X_k на k-ом шаге, при котором достигается максимум, обозначим $X_k^*(S_{k-1})$ — условное оптимальное управление на k-ом шаге.

Вместо S_k из уравнения состояния подставим $S_k = \varphi_k(S_{k-1}, X_k)$. Уравнение (6) называется уравнением Беллмана.

Это рекуррентное соотношение, позволяющее найти предыдущее значение, зная последующее.

$$W_n^*(S_{n-1}) = \max_{\{X_n\}} f_n(S_{n-1}, X_n)$$

$$W_k^*(S_{k-1}) = \max_{\{X_k\}} \left\{ f_k(S_{k-1}, X_k) + W_{k+1}^*(S_k) \right\}, \quad k = n - 1, n - 2, \dots, 1$$

Этот процесс называется условной оптимизацией.

Мы описали способ решения задачи динамического программирования, начинающийся с последнего шага. Можно также поменять местами n-ый и 1-ый шаги.

1.3 Нахождение решения

В результате условной оптимизации получаются две последовательности:

1. $W_n^*(S_{n-1}), W_{n-1}^*(S_{n-2}), \dots, W_2^*(S_1), W_1^*(S_0)$ — условные максимумы целевой функции на последнем, на двух последних, …, на n шагах.

2. $X_n^*(S_{n-1}), X_{n-1}^*(S_{n-2}), \dots, X_2^*(S_1), X_1^*(S_0)$ — условные оптимальные управления на n-ом, (n-1)-ом, ..., 1-ом шагах.

Используя эти последовательности, можно найти решение задачи при данных n и S_0 следующим образом: по определению $W_1^*(S_0)$ — условный максимум целевой функции за n шагов при условии, что к началу 1-ого шага система была в состоянии S_0 , т.е. $W_{\max} = W_1^*(S_0)$.

Далее следует использовать последовательность условных оптимальных управлений и уравнения состояний.

При фиксированном S_0 получаем $X_1^* = X_1^*(S_0)$. Далее из уравнения состояний находим $S_1^* = \varphi_1(S_0, X_1^*)$ и подставляем это выражение в последовательность условных оптимальных управлений:

$$X_2^* = X_2^*(S_1^*)$$
 и т.д. по следующей цепочке:

$$X_1^* = X_1^*(S_0) \to S_1^* = \varphi_1(S_0, X_1^*) \Rightarrow X_2^* = X_2^*(S_1^*) \to S_2^* = \varphi_2(S_1^*, X_2^*) \Rightarrow$$
$$X_3^* = X_3^*(S_2^*) \to \cdots \to S_{n-1}^* = \varphi_{n-1}(S_{n-2}^*, X_{n-1}^*) \Rightarrow X_n^* = X_n^*(S_{n-1}^*)$$

⇒ получаем оптимальное решение задачи динамического программирования:

$$X^* = (X_1^*, X_2^*, \dots, X_n^*)$$