Unveiling the Power of Attention: A Deep Dive into Attention Mechanisms

Bilal FAYE, Nicolas FLOQUET

Table of contents

Introduction

- 2 Broad Understanding of Attention Mechanisms
- 3 Categories of Attention Mechanisms

Introduction To Attention Mechanism

An attention mechanism in the context of machine learning refers to a computational model that allows a system to selectively focus on certain parts of input data while ignoring others.

Figure – Attention Visualization on Image Classification ¹

Transformers for Image Recognition, 2020

^{1.} Dosovitskiy et al., An Image is Worth 16x16 Words :

Some key points highlighting the powerful aspects of attention mechanisms:

- Resource Allocation Efficiency
- Wide Range Applications
- Interpretable Neural Architectures
- Enhanced Performance in Specific Tasks
- Intuitive Explanations for Neural Behaviors

Broad Understanding of Attention Mechanisms

Figure – Unified Attention Model²

^{2.} Zhaoyang et al., A review on the attention mechanism of deep learning, 2021

- **Keys**: This refers to the input data representations on which the model relies to identify relevant information or patterns in the sequence.
- Query: This represents what the model aims to search for or extract from the input data.
- Values: This corresponds to the actual information associated with each part of the input data (sequence).

The score function $\mathbf{e} = \mathbf{f}(\mathbf{k}, \mathbf{q})$ determines the matching or combination of keys and queries.

Additive attention ³ combines keys and queries through a summation operation :

Additive score function

$$\mathbf{f}(\mathbf{q}, \mathbf{k}) = \mathbf{v^T} \mathbf{activation}(\mathbf{W_1} \mathbf{k} + \mathbf{W_2} \mathbf{q})$$

where \mathbf{v} , $\mathbf{W_1}$ and $\mathbf{W_2}$ are learnable parameters.

^{3.} Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate, 2014

Broad Understanding of Attention Mechanisms

Multiplicative (dot-product) attention ⁴ computes the relevance between keys and queries by taking their dot product :

Multiplicative score function

$$f(q, k) = q^T k$$

In WMT'15 English \rightarrow German task⁵, authors found that parameterized additive attention slightly outperformed multiplicative attention.

^{4.} Luong et al., Effective Approaches to Attention-based Neural Machine Translation, 2015

^{5.~} Britz et al., Massive exploration of neural machine translation architectures, 2017

Broad Understanding of Attention Mechanisms

Scaled multiplicative (dot-product) attention ⁶ computes the relevance between keys and queries by taking their dot product :

Scaled multiplicative score function

$$\mathbf{f}(\mathbf{q}, \mathbf{k}) = \frac{\mathbf{q}^{\mathbf{T}} \mathbf{k}}{\sqrt{\mathbf{d}_{\mathbf{k}}}}$$

where $\mathbf{d_k}$ is the dimension of keys.

For small values of $\mathbf{d_k}$, both mechanisms perform similarly, but additive attention outperforms multiplicative attention without scaling for larger $\mathbf{d_k}$.

^{6.} Vaswani et al., Attnetion is all you need, 2017

General attention 7 extends the concept of multiplicative attention by introducing a learnable matrix parameter ${\bf W}$:

General score function

$$f(q, k) = q^T W k$$

where W is a learnable parameter.

This approach is applicable to keys and queries with distinct representations.

⁷. Luong et al., Effective Approaches to Attention-based Neural Machine Translation, 2015

Concat attention 8 aims to derive the joint representation of the keys and queries instead of comparing them :

Concat score function

$$\mathbf{f}(\mathbf{q}, \mathbf{k}) = \mathbf{v^Tactivation}(\mathbf{W}[\mathbf{k}; \mathbf{q}])$$

where \mathbf{W} is a learnable parameter.

 $^{8. \ \ \}text{Luong et al., Effective Approaches to Attention-based Neural Machine Translation, 2015}$

Location-based attention ⁹ are solely computed from the target hidden state :

Location-based score function

$$f(q, k) = f(q)$$

Energy scores (\mathbf{f}) depend solely on \mathbf{q} rather than \mathbf{K} . Conversely, self-attention is calculated solely based on \mathbf{K} , without requiring \mathbf{q} .

 $^{9. \ \ \}text{Luong et al., Effective Approaches to Attention-based Neural Machine Translation, 2015}$

Similarity attention 10 compares the similarity between **K** and **q**, which relied on cosine similarity. :

Similarity score function

$$\mathbf{f}(\mathbf{q}, \mathbf{k}) = \frac{\mathbf{q} \cdot \mathbf{k}}{\|\mathbf{q}\| \cdot \|\mathbf{k}\|}$$

Similarity attention is crucial in:

- semantic similarity assessments (in NLP)
- feature-based comparisons (in CV)

The distribution function **g** corresponds to the softmax, logistic or sigmoid, which normalize all the energy scores to a probability distribution.

After calculating attention weights and values, the context vector c is computed as follows :

Context vector

$$\mathbf{c} = \phi(\{\alpha_{\mathbf{i}}\}, \{\mathbf{v_i}\}),$$

where ϕ is a function that returns a single vector given the set of values and their corresponding weights.

$$\mathbf{z_i} = \alpha_i \mathbf{v_i},$$

and

$$\mathbf{c} = \sum_{i=1}^{n} \mathbf{z}_i,$$

where $\mathbf{z_i}$ is a weighted representation of an element in values and n is the dimension of \mathbf{Z} .

Categories of Attention Mechanisms

Figure – Unified Attention Model ¹¹

^{11.} Zhaoyang et al., A review on the attention mechanism of deep learning, 2021

 $Categorie \ 1: The \ Softness \ of \ Attention$

• Soft Attention:

• **Definition**: Soft (deterministic) attention calculates a context vector through a weighted average of all keys, facilitating differentiability with respect to inputs, thus enabling training via standard backpropagation methods.

Figure – An instance demonstrating the application of soft attention.

• Hard Attention:

• **Definition:** Hard (stochastic) attention is an attention mechanism that makes discrete decisions regarding which parts of the input sequence to focus on, resulting in non-differentiability with respect to inputs, thereby complicating training using standard backpropagation methods.

Figure – An instance demonstrating the application of hard attention.

• Global Attention:

• **Definition**: Global attention is similar to soft attention, all source words are considered at a time.

• Local Attention:

• **Definition :** In Local attention, only a subset of source words are considered at a time.

Categorie 2 : Form of Input Feature

• Item-wise attention

- **Definition:** The item-wise attention requires that the input is either explicit items or an additional preprocessing (ex. word embeddings) step is added to generate a sequence of items (vectors) from the source data.
- item-wise soft attention calculates a weight for each item,
 and then makes a linear combination of them.
- Instead of a linear combination of all items, the item-wise hard attention stochastically picks one or some items based on their probabilities.

• Location-wise attention

- **Definition**: location-wise attention is aimed at tasks that are difficult to obtain distinct input items (visual tasks).
- The location-wise soft attention accepts an entire feature map as input and generates a transformed version through the attention module.
- The location-wise hard attention stochastically picks a sub-region as input and the location of the sub-region to be picked is calculated by the attention module.

 $Categorie \ 3: Input \ Representations$

• Distinctive Attention :

• **Definition:** Distinctive attention, as defined in the mentioned context, involves attention models with a single input and corresponding output sequence, where keys and queries are derived from two independent sequences.

• Self-Attention:

• **Definition**: Self-attention is an attention mechanism in which each element in a sequence attends to all other elements in the same sequence.

Figure – Application of self-attention

• Cross-Attention:

• **Definition**: Cross-attention refers to scenarios where attention is applied between different parts of the input and output sequences.

Figure – Application of cross-attention

• Co-Attention:

• **Definition**: Co-attention refers to an attention mechanism that simultaneously considers and aligns information from multiple input sequences or modalities. co-attention can be coarse-grained ¹² or fine-grained ¹³.

^{13.} Fine-grained attention evaluates how each element of an input affects each element of the other input

^{12.} Coarse-grained attention computes attention on each input, using an embedding of the other input as a query

Figure – Application of co-attention

• Hierarchical Attention:

• **Definition:** Hierarchical attention allows the computation of attention weights not only from the original input sequence but also from different abstraction levels (ex. document classification).

Figure – Application of hierarchical attention

 $Categorie \ 4: Output \ Representations$

- Single Output Attention:
 - **Definition**: The energy scores are represented by one and only one vector at each time step.

• Multi-Head Attention :

• **Definition**: An attention mechanism that employs multiple attention heads to capture diverse features and relationships in parallel.

Figure – Application of multi-head attention

• Multi-Dimensional Attention :

• **Definition:** An approach that computes a feature-wise score vector for keys by replacing weight scores vector with a matrix. In this way, the neural network can calculate multiple attention distributions for the same data.

Figure – Application of multi-dimensional attention