## **Principal Components – Part 2**

# Recall the main idea of Principal Component Analysis (PCA)

Starts with a data matrix of n objects by p variables, which are typically highly correlated, and summarizes it by uncorrelated axes (principal components or principal axes) that are linear combinations of the original p variables

The first k components retain/display as much as possible of the variation among objects.

## Data Reduction

Summarization of the data with many (p) variables by a smaller set of (k) derived (synthetic, composite) variables.



## Data Reduction

"Residual" variation is information in X that is not retained in the principal components Y

#### Balancing act between:

- clarity of representation, ease of understanding
- oversimplification: loss of important or relevant information.

#### The Number of Principal Components

Q: How many components to retain?

A: There is no definite answer 😂

Things to consider:

- % explained variance (e.g., you may aim for 85%)
- size of eigenvalues (e.g., when PCs are derived from the correlation matrix R, then usually we don't keep eigenvalues < 1)
- Visual inspection via a screeplot (remove eigenvalues smaller than the "elbow"/bend)
- Subject-matter interpretation
- Hypothesis test (see Rencher, Chapter 12)

### **Large Sample Inference**

Confidence intervals for  $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$  and  $e_1, e_2, ..., e_p$  can be obtained when we assume the sample  $X_1, ..., X_n$  is from a multivariate normal distribution.

Main result:

$$\sqrt{n}(\hat{\lambda} - \lambda) \approx N_p(0, 2\Lambda^2)$$

where  $\Lambda$  is the diagonal matrix with the eigenvalues on the main diagonal,  $\lambda$  is the vector of population eigenvalues and  $\hat{\lambda}$  is the vector of estimated eigenvalues from the sample.

#### Confidence Intervals for $\lambda$

#### **Result:**

A large sample  $100(1 - \alpha)\%$  CI for  $\lambda_i$  is:

$$\frac{\hat{\lambda}_i}{1 + z_{\frac{\alpha}{2}}\sqrt{\frac{2}{n}}} \le \lambda_i \le \frac{\hat{\lambda}_i}{1 - z_{\frac{\alpha}{2}}\sqrt{\frac{2}{n}}}$$

where  $z_{\alpha/2}$  is the upper  $\alpha/2$  percentile of the standard normal distribution.

### **Ellipse Charts**

It is possible to use the PCs to construct confidence ellipses for the pairs  $(\hat{y}_{i1}, \hat{y}_{i2})$ , i = 1, ... n.

Formula:

$$\frac{\hat{y}_1^2}{\hat{\lambda}_1} + \frac{\hat{y}_2^2}{\hat{\lambda}_2} \le \chi_2^2(\alpha)$$

These are used as contours to check for outliers in the dataset.