Algorithm. Super Learning for Sequential Prediction in Longitudinal Data

For each rule d:

- ★ Obtain an estimator $Q_{T+1,n}^d$ of $Q_{T+1}^d(L_{0:T})$ with super learning. For t = T + 1 to t = 1
- ★ Define $Q_{t,n}^d(L_{0:t-1})$ as the outcome in next regression and use super learning to estimate $E(Q_t^d(L_{0:t-1}) \mid A_{t-2:0} = d(L_{t-2:0}), L_{t-2:0})$. Save the final estimator $Q_{t-1,n}^d(L_0)$ as estimator of $\bar{Q}_{Y^d} = E(Y^d \mid L_0)$.

Specifically, the sequential super learner for \bar{Q}_{Y^d} is constructed as follows:

- 1. Let $Q_{T+2,n}^d = Y$.
- 2. Set t = T + 1.
- 3. For time point t, create a data set of n observations where each observation has an outcome $Q_{t+1,n}^d(L_{t+1:0})$, and covariates $A_{0:t}, L_{0:t}$. Fit the K candidate regression algorithms within V-fold cross-validation. Recall that $B_n \in \{0,1\}^n$ is a random variable that splits the data into a training set $\{i: B_n(i) = 0\}$ and validation set $\{i: B_n(i) = 1\}$. The data set is divided into a training set containing $\frac{V-1}{V}^{\text{ths}}$ of the data and a validation set containing the remaining $\frac{1}{V}^{\text{th}}$ of the data in each of V folds. For each $V = 1, \ldots, V$, for each $V = 1, \ldots, V$, the validation set is run through the fitted algorithm to obtain cross-validated predicted values. This results in a predicted value $Z_{k,t}^d$ for each algorithm V and subject V and subject V is an approximate V and subject V and subject V is a predicted value V.

4. Posit a family of weighted combinations of the K algorithms that is a convex combination indexed by α , and select the α_n that minimizes the cross-validated empirical mean of the loss function.