Reverse-engineering and Exploiting Radars with EVOLUTIONARY COMPUTING

CompSci Graduate Co-Op

ThanhVu H. Nguyen

Supervisor: *Dr. James F. Smith, III*Naval Research Laboratory,
Washington, DC

GOAL: confuse the radar to approach the platform without being detected

Problem Statement

 Determine design specifications and design flaws for a system for which

i) there are no design specifications present

ii) invasive study is difficult or impossible

iii) the system may not be disassembled

Approach

 Reverse-engineer the unknown system (digital logic) with Genetic Programming

 Exploit the system with Genetic Algorithm

Evolutionary Algorithms

- Darwin's theory of evolution
 - Natural selection/survival of the fittest [Selection]
 - Reproduction by [recombination/Crossover] and [mutation]
- Formulated as the basis of almost all evolutionary algorithms: GA, GP

Reverse-Engineering with Genetic Programming

- Data mine the design specification of the system using a data base consisting of
 - Recorded system inputs and output measurements
- Incorporate rules provided by experts into the data mining process
- Use a genetic program (GP) as a symbolic data mining function to data mine the digital logic

Genetic Program Overview

functions

Sig1 Sig2 Sig3

terminals

chromosome (tree scheme)

chromosome (prefix scheme)

❖ OR2 H3 DIFF SIG1 SUM SIG2 SIG3 H2 SUM SIG2 SIG3

* Children

❖ Contains 'good' genes from parents

Digital Logic discovered by GP

Genetic Algorithm Overview

Reproduction

Recombination (crossover) – exchanges parts of two chromosomes

Point choosen randomly

Mutation – changes the gene value

Point choosen randomly

GA Based Automatic Defect Discovery

- A GA used the digital logic data mined by the GP to automatically discover defects.
- The DL plus expert rules were used to construct a fitness function for the GA
- A significant design flaw in the digital logic was discovered within 300 GA generations.

Summary

- A genetic program has been used as a data mining function to reverse engineer digital logic
- A genetic algorithm has been successfully used to automate the discovery of design defects

References

- James F. Smith, III and ThanhVu H. Nguyen "<u>Data-mining-based</u> automated reverse engineering and defect discovery", proc. SPIE vol. 5812, p. 232-242, data mining, intrusion detection, information assurance, and data networks security, 2005.
- James F. Smith, III and ThanhVu H. Nguyen "Genetic program based data mining to reverse engineer digital logic", to be submitted