

Service Service Service

CL 26532011_000.eps
160102

Service Manual

Contents

1 Technical Specifications and Connection Facilities	2
2 Safety Instructions, Warnings, Notes, and Service Hints	5
3 Directions for Use	7
4 Mechanical Instructions	35
5 Diagnostic Software and Faultfinding Trees	40
6 Block and Wiring Diagram	
Block Diagram DVDR990 DVIO1.8	91
Wiring Diagram	92
7 Electrical Diagrams And Print-Layouts	Diagram PWB
Power Supply	(Diagram 1)
Power Supply	(Diagram 2)
Display Panel	(Diagram 3)
Front AV Part	(Diagram 4)
IR & Standby Panel	(Diagram 5)
Analog Board: All In One 1	(Diagram 1)
Analog Board: All In One 2	(Diagram 2)
Analog Board: Tuner / Demodul.	(Diagram 3)
Analog Board: In / Out 1	(Diagram 4)
Analog Board: In / Out 2	(Diagram 5)
Analog Board: In / Out 3	(Diagram 6)
Analog Board: In / Out 4	(Diagram 7)
Analog Board: Sound Processing	(Diagram 8)
Analog Board: Follow Me	(Diagram 9)
Analog Board: VPS	(Diagram 10)
Analog Board: Power Supply	(Diagram 11)
	95
	95
	100
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	114
	115

Page

Contents

Analog Board: Audio Converter	(Diagram 12)	116
Analog Board: RGB-YUV Conv.	(Diagram 13)	117
Analog Board: Digital In / Out	(Diagram 14)	117
Analog Board: Fan Control	(Diagram 15)	118
DVIO Front Board		127
DVIO 1.8 Board: 1394 Interface	(Diagram 1)	128
DVIO 1.8 Board: Link + Codec	(Diagram 2)	129
DVIO 1.8 Board: uP Part	(Diagram 3)	130
DVIO 1.8 Board: Interface + DAC	(Diagram 4)	131
DVIO 1.8 Board: Clock	(Diagram 5)	132
Digital Board: VSM Buffer Mem.	(Diagram 1)	137
Digital Board: AV Dec. STI5508	(Diagram 2)	138
Digital Board: AV Decoder Mem.	(Diagram 3)	139
Digital Board: Video Enc. Empress	(Diagram 4)	140
Digital Board: VIP CVBS Y/C	(Diagram 5)	141
Digital Board: An.board Video I/O	(Diagram 6)	142
Digital Board: Progressive Scan	(Diagram 7)	143
Digital Board: Progressive Scan	(Diagram 8)	144
Digital Board: Power, Clock, Reset	(Diagram 9)	145
8 Alignments		155
9 Circuit-, IC Descript. and List of Abbreviations		158
List of Abbreviations		310
10 Spare Part List		314

Page

©Copyright 2002 Philips Consumer Electronics B.V. Eindhoven, The Netherlands.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise without the prior permission of Philips.

PHILIPS

1. Technical Specifications and Connection Facilities

1.1 General:

Mains voltage	: 220V-240V (198 - 264V AC) for Europe/ Asia
Mains frequency	: 50 Hz - 60Hz
Power consumption mains	: 32 W
Power consumption standby	: < 7 W
Power consumption low power stand-by	: < 3 W

1.2 RF Tuner

Test equipment: Fluke 54200 TV Signal generator
 Test streams: PAL BG Philips Standard test pattern

1.2.1 System:

PAL B/G, PAL D/K, SECAM L/L', PAL I

1.2.2 RF - Loop Through:

Frequency range : 45 MHz - 860 MHz
 Gain: (ANT IN - ANT OUT) : -4 dB /±2 dB

1.2.3 Radio Interference:

input voltage /3 tone method (+40 dB min) : typ. 80 dB μ V at 75Ω

1.2.4 Receiver:

PLL tuning with AFC for optimum reception
 Frequency range: : 45.25 MHz - 860 MHz
 Sensitivity at 40 dB S/N : ≥ 60dB μ V at 75Ω (video unweighted)

1.2.5 Video Performance:

Channel 25 / 503,25 MHz,
 Test pattern: PAL BG PHILIPS standard test pattern,
 RF Level 74 dBV
 Measured on SCART 1
 Frequency response: : 1 MHz - 4.00 MHz ± 2 dB
 Group delay (0.1 MHz - 4.4 MHz) : 0 nsec ± 30 nsec

1.2.6 Audio Performance:

Audio Performance Analogue - HiFi:
 Frequency response at SCART 1 (L+R) output: : 40 Hz - 15 kHz / ± 1.5 dB
 S/N according to DIN 45405, 7, 1967 : and PHILIPS standard test pattern
 video signal: : -50 dB unweighted
 Harmonic distortion (1 kHz, ± 25 kHz deviation): : 0.5 %

Audio Performance NICAM:
 Frequency response at SCART 1(L+R) output: : 40 Hz - 15 kHz ± 1.5 dB
 S/N according to DIN 45405, 7, 1967 : and PHILIPS standard test pattern
 video signal: : -60 dB unweighted
 Harmonic distortion (1 kHz): : 0.1 %

1.2.7 Tuning

Automatic Search Tuning

scanning time without antenna	: 2.5 min. PAL
stop level (vision carrier)	: 75 V, 75
Maximum tuning error of a recalled program	: ± 62.5 kHz
Maximum tuning error during operation	: ± 100 kHz

Tuning Principle

automatic B,G, I, DK and L/L'detection
 manual selection in "STORE" mode

1.3 Analogue Inputs

1.3.1 SCART 1 (Connected to TV)

Pin Signals:	
1 - Audio R	1.8V RMS
2 - Audio R	
3 - Audio L	1.8V RMS
4 - Audio GND	
5 - Blue/Chroma	
GND	
6 - Audio L	
7 - Blue out/	
Chroma in	0.7Vpp ± 0.1V into 75 Ohm (*)
8 - Function switch	<2V = TV >4.5V / <7V = asp. ratio 16:9 DVD >9.5V / <12V = asp. ratio 4:3 DVD
9 - Green GND	
10 - P50 control	
11 - Green	0.7Vpp ± 0.1V into 75 Ohm (*)
12 - Nc	
13 - Red/Chroma	
GND	
14 - fast switch	
GND	
15 - Red out/	
Chroma out	0.7Vpp ± 0.1V into 75 Ohm (*) ± 3dB 0.3Vpp Chroma (burst)
16 - fast switch	
RGB/ CVBS	or Y <0.4V into 75 Ohm = CVBS >1V / <3V into 75 Ohm = RGB
17 - Y/CVBS GND	
OUT	
18 - Y/CVBS GND	
IN	
19 - CVBS/Y	1Vpp ± 0.1V into 75 Ohm (*)
20 - CVBS/Y	
21 - Shield	

1.3.2 SCART 2 (Connected to AUX)

Pin Signals:	
1 - Audio R	1.8V RMS
2 - Audio R	
3 - Audio L	1.8V RMS
4 - Audio GND	
5 - Blue/Chroma	
GND	
6 - Audio L	
7 - Blue in/	
Chroma out	± 3dB 0.3Vpp Chroma (burst)
8 - Function switch	
9 - Green GND	
10 - P50 control	

11 -Green		SNR C - AM	: > -65 dB
12 -Nc		SNR C - PM	: > -65 dB
13 -Red/Chroma		Bandwidth Y	: 5 MHz ± 1 dB
GND	+		
14 -fast switch	+		
GND	+		
15 -Red in/			
Chroma in			
16 -fast switch			
RGB/ CVBS or			
Y			
17 -CVBS GND	+		
OUT	+		
18 -CVBS GND	+		
IN	+		
19 -CVBS/Y/RBG			
sync	1Vpp ± 0.1V into 75 Ohm (*)		
20 -CVBS/Y			
21 -Shield	+		

(*) for 100% white

1.3.3 Audio/Video Front Input Connectors**Audio**

Input voltage	: 2 Vrms
Input impedance	: >10kΩ

Video - Cinch

Input voltage	: 1 Vpp ± 0.1V
Input impedance	: 75 Ω

Video - YC (Hosiden)

Input voltage Y	: 1Vpp ± 0.1V
Input impedance Y	: 75 Ω
Input voltage C	: burst 300 mVpp ± {x} dB
Input impedance C	: 75 Ω

1.3.4 Cinch Audio/Video Line Input Rear**Audio (EXT1)**

Input voltage	: 2 Vrms
Input impedance	: >10k Ω

Video (EXT4)

Input voltage	: 1 Vpp ± 0.1V
Input impedance	: 75 Ω

1.3.5 YC Input Rear (Hosiden; EXT3)

1 GND	
2 GND	
3 Input voltage Y 1Vpp ± 0.1V/ 75 Ω	
4 Input voltage C Burst 300 mVpp ± {x} dB/ 75 Ω	

1.4 Video Performance

All outputs loaded with 75 Ohm
SNR measurements over full bandwidth without weighting.

1.4.1 CVBS Output Rear (EXT4)

SNR Luminance	: > -65 dB
SNR Chrominance AM	: > -65 dB
SNR Chrominance PM	: > -65 dB
Bandwidth Luminance	: 5 MHz ± 1 dB

1.4.2 YC Output Rear (Hosiden ; EXT3)

SNR	: > -65 dB
-----	------------

1.4.3 SCART (RGB)	1.5 Audio Performance
	1.5.1 Cinch Output Rear
	Output voltage 2 channel mode : 2Vrms ± 1.5dB
	Output voltage 5.1 channel Dolby : 1.41Vrms ± 1.5dB
	Channel unbalance (1kHz) : <0.85dB
	Crosstalk 1kHz : >105dB
	Crosstalk 20Hz-20kHz : > 95dB
	Frequency response 20Hz- 20kHz : ± 0.1dB max
	Signal to noise ratio : >100 dB
	Dynamic range 1kHz : >90dB
	Dynamic range 20Hz-20kHz : >88dB
	Distortion and noise 1kHz : >90dB
	Distortion and noise20Hz-20kHz : >80dB
	Intermodulation distortion : >87dB
	Phase non linearity : ± 10 max.
	Level non linearity : ± 0.5dB max.
	Mute (spin-up, pause, access) : >100dB
	Outband attenuation: : > 50dB above 25kHz

1.5.2 Scart Audio

Output voltage 2 channel mode	: 2Vrms ± 1.5dB
Output voltage 5.1 channel Dolby	: 1.41Vrms ± 1.5dB
Channel unbalance (1kHz)	: <0.85dB
Crosstalk 1kHz	: >105dB
Crosstalk 20Hz-20kHz	: > 95dB
Frequency response 20Hz- 20kHz	: ± 0.1dB max
Signal to noise ratio	: >100 dB
Dynamic range 1kHz	: >90dB
Dynamic range 20Hz-20kHz	: >88dB
Distortion and noise 1kHz	: >90dB
Distortion and noise20Hz-20kHz	: >80dB
Intermodulation distortion	: >87dB
Phase non linearity	: ± 10 max
Level non linearity	: ± 0.5dB max
Mute (spin-up, pause, access)	: >100dB
Outband attenuation:	: > 50dB above 25kHz

1.6 Digital Output**1.6.1 Coaxial**

CDDA/ LPCM (incl MPEG1)	: according IEC958
MPEG2, AC3 audio	: according IEC1937
DTS	: according IEC1937, amendment 1

1.6.2 Optical

identical to coaxial

1.7 Digital Video Input (IEEE 1394)**1.7.1 Applicable Standards**

Implementation according:
 IEEE Std 1394-1995
 IEC 61883 - Part 1
 IEC 61883 - Part 2 SD-DVCR (02-01-1997)

Specification of consumer use digital VCR's using 6.3 mm
magnetic tape - dec.1994
Mechanical connection according:
Annex A of 61883-1

1.7.2 Audio Quality

Output voltage 2 channel mode	: 2Vrms +/- 1.5dB
Channel unbalance (1kHz)	: Tbd
Crosstalk 1kHz	: > 85 dB
Crosstalk 20Hz-20kHz	: > 95 dB
Frequency response 20Hz- 12kHz	: +/- 1dB max
Signal to noise ratio	: >95 dB
Dynamic range 1kHz	: tbd
Dynamic range 20Hz-20kHz	: Tbd
Distortion and noise 1kHz	: >65dB
Distortion and noise 20Hz-20kHz	: >65dB
Intermodulation distortion	: >80dB
Phase non linearity	: tbd
Level non linearity	: tbd
Outband attenuation	: tbd

1.8 P50 System Control

Via SCART pin nr 10

1.9 Dimensions and Weight

Height of feet	: 12mm
Apparatus tray closed	: WxDxH :435 x 325 x 107
Apparatus tray open	: WxDxH :435 x 465 x 107
Weight without packaging	: 5.67 Kg
Weight accesoiries	: 1.675 Kg

1.10 Laser Output Power & Wavelength

1.10.1 DVD

Output power during reading	: 0.8mW
Output power during writing	: 20mW
Wavelength	: 660nm

1.10.2 CD

Output power	: 0.3mW
Wavelength	: 780nm

Video Plus

"Video Plus+" and "PlusCode" are registered trademarks of the Gemstar Development Corporation. The "Video Plus+" system is manufactured under licence from the Gemstar Development Corporation.

Figure 2-5

Macrovision

This product incorporates copyright protection technology that is protected by method claims of certain U.S. patents and other intellectual property rights owned by Macrovision Corporation and other rights owners.

Use of this copyright protection technology must be authorized by Macrovision Corporation, and is intended for home and other limited viewing uses only unless otherwise authorized by Macrovision Corporation. Reverse engineering or disassembly is prohibited.

3. Directions For Use

ENGLISH

Introduction

DVD Video Recorder

DVD (Digital Versatile Disc) is the new storage medium that combines the convenience of the Compact Disc with the latest advanced digital video technology.

DVDVideo uses state-of-the-art MPEG-2 data compression technology to record an entire movie on a single 4.7GB DVD disc. DVDVideo provides compressed, rawing up to 3.8Mbps per second, captures even the most complex pictures in their original quality.

The crystal clear digital pictures have a horizontal resolution of over 800 lines, with 720 pixels (picture elements) to a vertical line. This technology is more than double that of VHS tape and is better. Quality easily comparable with digital masters made in recording studios.

DVD recording is the most advanced technology. DVD-R (Write Once) DVD-RW (Rewritable) and DVD+RW (Rewritable) are the same technology that formed the basis for CD-RW/RW. A high power laser is used to change the reflectivity of the recording layer. The process can be repeated more than a thousand times. DVD+Recordable (DVD+R) uses discs based on an organic dye technology, combined with the standard CD-R Recordable format, to produce discs that keep your data for a lifetime.

Your Philips DVD recorder is a recorder and player for digital video discs with a two-way compatibility to the universal DVD video standard. This means that existing pre-recorded DVD-Video discs can be played on your Philips DVD recorder and

- recordings made on your Philips DVD recorder can be played on most DVD-Video players and DVD-ROM drives.

With it, you will be able to record TV programmes or to edit and archive your own camcorder recordings. Crystal-clear picture and sound quality, quick access to the tracks you have recorded and instant playback feature contribute to a completely new video experience.

From now on you will enjoy full-length movies with their pictures as they are, and plenty of Multi-channel sound (depending on the disc), and no pixel skipping left and you will find your recorder remarkably easy to use, by way of the On-Screen Display on your TV and the display on the DVD recorder in combination with the remote control.

Box contents

Please check and identify the contents of your DVD recorder package, as listed below:

- DVD recorder
- Remote Control Handset with separately packed batteries
- AC line power cord
- Power cable
- Stereo cable
- Antenna/terrestrial cable
- Audio cable
- Video cable
- DVD+RW disc
- User Manual
- Warranty card

If any item is damaged or missing, please inform your supplier without delay.

Keep the packaging materials you may need them to transport your recorder in the future.

Placement

- Place the recorder on a firm, flat surface.
- Keep away from direct heating equipment and direct sunlight.
- If situated above about 2.5 cm (1 inch) of free space all around the recorder for adequate ventilation.
- The lens may cloud over when the DVD recorder is suddenly moved from cold to warm surroundings. Playing a DVD is not possible then. Leave the DVD recorder in a warm environment for two hours before use, so the moisture can evaporate.
- The recorder should not be exposed to impact or striking, no objects filled with liquids, such as vases, should be placed on the recorder.

Cleaning discs

Some problems may occur because the disc inside the recorder is dirty. To avoid these problems clean your discs regularly, in the following way:

- Wipe a disc from inner to outer edge with a cleaning cloth. Wipe the disc from the center out.

Caution:

Do not use solvents such as benzene, thinner, commercially available cleaners, or anti-static spray intended for analogue discs.

Do not use commercially available cleaning discs to clean the lens, as these discs may damage the optical unit.

Remote control

Loading the batteries

- Open the battery compartment cover.
- Insert two AA (1.5V) batteries as indicated inside the battery compartment.
- Close the cover.

Caution:

Do not mix old and new batteries. Never mix different types of batteries (standard, alkaline, etc.). This may reduce the lifetime of the batteries.

Installation

Facts

Connections - back side of your DVD recorder

- Power cable to your TV set, VCR, Stereo system and any other device. You will be necessary to make the external connections.
- Do not connect the power until all other connections are made.
- Do not connect your DVD recorder to your TV set via your VCR, because the video quality could be damaged by the copy protection system.
- For better sound reproduction you can connect the recorder audio outputs to your amplifier, receiver, stereo system or A/V equipment. For details refer to "Connecting to A/V receiver or A/V amplifier".

Cautions:

Do not connect the recorder's audio output to the phono input of your audio system in order to avoid damage to your equipment.

Connecting to the antenna

- Remove the antenna (see Fig. 1) plug from your VCR and insert it into the antenna socket at the back of the DVD recorder.
- Plug one end of the antenna (coaxial) cable supplied (1) into the TV socket on the DVD recorder and another end into the antenna input socket on your TV set.

Connecting to a TV set

To obtain the highest possible picture and sound quality from your TV set it is recommended to use the direct connection between DVD recorder and TV set.

- Connect the bottom video connector (EX1) to the TV set using the coaxial cable supplied (2) as shown in the drawing. If your TV set is equipped with a plug on G, please make sure you use the correct start connector. For the refer to the user manual of your TV set.

If your TV set is not equipped with a start connector, you can connect the DVD recorder with the S-video (Y/C) sockets.

S-video (Y/C) connection

- Connect the S-video output socket to the corresponding input socket on the TV set, using the supplied S-video cable (3).
- Connect the audio Left (white) and Right (red) output sockets to the corresponding sockets on the TV set using the audio cable supplied (5).

If your TV set is not equipped with S-video sockets, then connect the DVD recorder with the CVBS sockets to your TV set.

Video (CVBS) connection

- Connect the Video (CVBS) output socket (4) to the corresponding input socket on the TV set, using the video cable supplied (4).
- Connect the audio Left (white) and Right (red) output sockets to the corresponding sockets on the TV set using the audio cable supplied (5).

INSTALLATION

Connecting to audio equipment

Connecting to A/V receiver or A/V amplifier with digital Multi-channel decoder

The best possible sound quality is obtained by connecting your DVD recorder to an A/V receiver with Multi-channel decoder, choose one of the following alternatives:

- Connecting to a receiver equipped with two channel digital stereo (PCM):**

- Connect the recorder's digital audio output to the corresponding input on your receiver, like the supplied video (CVBS) cable (1) or an optional digital optical audio cable (1).
- After installation you will need to set up PCM on the DVD recorder's digital output (see "User Preferences").

Connecting to a receiver equipped with Dolby Pro Logic

- Connect the recorder to the TV set and connect the recorder's audio Left and Right output sockets to the corresponding inputs on the Dolby Pro Logic® AudioDecoder receiver, using the audio cable supplied (4).

AMPLIFIER

AMPLIFIER

- Make the appropriate Signal settings by "Analog Output" in the user preferences menu.

Connecting to a TV set equipped with a Dolby Pro Logic decoder

- Connect the recorder to the TV set as described in chapter "Connecting to a TV set".

Connecting to a receiver with two channel analogue stereo

- If you have a receiver with two channel analogue stereo, instead of the above described sound system, connect the audio Left and Right output sockets to the corresponding sockets on your receiver, amplifier or stereo system. Use the audio cable supplied (4).

INSTALLATION

Connecting to other equipment

Use the top main connector (EXT 2) on your DVDR recorder to make connections to:

- **Satellite receiver or Set top box.**
- **VCR.**
- **DVD/VCR player.**

Note: pre-recorded VHS cassettes and DVD discs are copy protected. If you try to copy them the display shows "PROTECTED".

For instructions of a decoder, see "User Preferences" - "Decoder".

Notes:

- If the power is off or Low Power Standby is selected via the remote control, the signal from EXT 2 will not be passed on to the TV set (no EXT 1).

Picture functions will not be available to discs connected to the DVDR recorder's EXT 2 main connector.

Connections - frontside of your DVDR recorder

Camcorder connection

- If you have a DV or Digital 8 camcorder, connect the Video/CV input socket (1) to the corresponding output socket on the camcorder using the video cable of your camcorder.
- If you have a Hi8 or S-VHS/C camcorder, connect the S-video/line socket on the camcorder to the corresponding output socket on the recorder, using the S-video cable supplied (2) and connect the audio cable (4) to connect the audio cable (4).
- Otherwise connect the Video/line socket (1) to the corresponding output socket on the camcorder using the video cable supplied (2) and connect the left and right audio input sockets to the corresponding sockets on the camcorder using the audio cable supplied (4).
- If your camcorder has stereo sound, use only the left audio connector. In this case the sound will be recorded on both audio channels.

Power supply

- Make sure that all necessary connections are made before connecting the DVDR recorder to the power supply.
- Plug the power cable supplied into the Power connector at the rear of the recorder.
- Plug the main plug into an AC outlet.

Note:

When a check of the mains voltage requires the adapter 230V-240V.

After the recorder is in the Standby position, it will disconnect from power.

If you wish to disconnect your DVDR recorder completely from the mains, without to plug from the AC outlet, please the DVDR recorder chooses not from the power. This function and power data will be stored typically 1 year.

Switching on

- Switch on the TV set and enter the programme number that you have chosen for video playback (see operating manual for your TV set).
- Press (1) STANDBY/ON
 - The recorder display lights up. If you have not yet installed your DVDR recorder, it will enter Virgin mode. In this mode you will have to set your personal preferences.

First time set-up: virgin mode

After switching on the DVDR recorder for the very first time the "Virgin mode screen" will appear.

In Virgin mode you may have to set your preferences for some of the recorder functions.

If the "Virgin mode screen" does not appear your DVDR recorder has been initialled already, but may still change the settings via the menu selection.

Depending on the kind of TV set, preferences will have to be set manually or they will be taken over automatically from the TV set.

Automatic setting

When your TV set is equipped with EasyLink™, Cinema Link™, NextView™, SmartLink™, QLink™ or MagicLink™, the "TV" settings will be taken over from the TV set but they cannot be changed manually afterwards.

When preferences are taken over from your TV set, the message "EasyLink reading data from TV please wait" will appear.

Menus for which no preferences are available will be displayed. They have to be set manually.

Note:

Preferences have to be set in the order in which the user menu will appear on the screen.

If the recorder is switched off while setting user preferences, all preferences have to be re-set again after switching the recorder on again.

The "Virgin mode" will only be concluded after the preferences for the set are have been confirmed.

English

Español

Manual setting

When a menu is displayed:

- Use the TV's remote as cursor keys to go through the options in the menu. The icon of the selected option will be highlighted.
- Press **OK** to confirm your selection and to open the next menu.

The following items may have to be set in single steps:

Menu language

The on-screen menus of DVD-Videos discs will be displayed in the language you choose:

Audio language

The sound of DVD-Video discs will be in the language you choose, provided this is available on the disc in play. If not, speech will revert to the first spoken language on the disc. After an OVS, where this menu will be in the language you choose, provided that it is available on the disc:

Subtitle language

The subtitle of DVD-Video discs will be in the language you choose, provided this is available on the disc in play. If not, subtitles will revert to the first subtitle language on the disc.

TV Shape**TV shape**

Choose between:
- 16:9 if you have a wide screen (HDTV) TV set.
- 4:3 if you have a regular (4:3) TV set. In this case you can also choose between:

Letterbox for a wide screen picture with black bars at the top and bottom.

Pan Scan for a full width picture with the sides裁切ed. If a disc has Pan Scan, the picture then moves slightly horizontally to keep the main action on the screen.

Optional pictures on my TV screen**Country**

Select your country. This is used to help to know Parental Control before you Access Control will be set the searching of TV channels.

Auto-TV Channel Search

Make sure the antenna is connected. See "Connecting to the antenna". Now DVD recorder will search for all TV channels.

After the search, the sequence they are found:

- **Close menu/OK**
- Auto channel search. This can take several minutes.

► When Auto search completed, **Format search complete - XX channels found** appears on the TV screen.

After Auto channel search you can have TV channels sorted automatically in the same order as your TV set. See "User preferences Installation" chapter for it.

Time/Date

When a channel search is completed the actual Time and Date are also set automatically.

If the time is in the DVD recorder clock is not correct, the clock must be re-set manually.

- Adjust Time, Year, Month, Date if required, with the **OK** button or left/right cursor key.
- Change values with the **Up/Down cursor** or **Up/Down cursor** or **Left/Right cursor** or the right keys **0-9**.
- To end, press **OK**.

Note:
At these need only basic to be set after first start up change ready. After that they are always be adopted at the user preferences menu. When your TV is equipped with decoder the TV set priority will be taken over from the TV set but they cannot be changed manually afterwards.

User mode settings are now completed.
All settings can still be changed. See "User preferences".

Functional overview

English

Français

Front of recorder

Rear of recorder

Display**Remote control****PHILIPS**

- ON/OFF**
- discs DVD disc menu or index picture screen
- SYSTEM MENU**
- displays recorder system menu
 - for: VCR, DV, VCR
 - down/up/right/left cursor movement
- RETURN**
- returns to previous menu on DVD disc
- CLEAR**
- deletes last entry/selection
- TIMER**
- displays the timer menu
- SELECT**
- switches between different values in a menu
 - switches between record modes in the Index Picture Screen and in monitor mode
- OK**
- acknowledge menu selection
- 0-9**
- numerical key pad
- TV:**
- select title
 - select chapter
- ANCH Alternates Channel**
- switches to the previous TV channel
- SIDE SWITCH**
- enables other keys to operate the TV set (see Appendix)
- DIM**
- changes brightness setting of display
- REPEAT**
- repeat chapter, track, title, disc
- REPEAT A-B**
- repeat sequence
- SCAN**
- playback of the first 10 seconds of each chapter within a title (DVD) or the first 10 seconds of each track on a disc (VCD/CD)

Operation

Index

Index

Important notes for operation

You can switch on the DVD recorder with the **STANDBY/ON** key. Keep your DVD recorder connected to the mains at all times to ensure that programmed recordings can be made and that the television functions normally.

Both the DVD recorder and the remote control have an emergency interrupt button. You can use the **STANDBY/ON** button to interrupt a function. When you have an operating problem, you can interrupt the function and start again.

When you switch off the DVD recorder, the display will briefly show **OFF**.

Loading discs

- Press **A OPEN/CLOSE** on the front of the recorder. The disc loading tray opens.
- Lay your chosen disc in the tray, label side up. Make sure it is lying properly in the correct recess.
- Press **A OPEN/CLOSE** to close the tray. **DISC** appears in the status line and on the recorder display. If the inserted disc is pre-recorded or write-protected, playback starts automatically.

You can always unload a disc by pressing **A OPEN/CLOSE** again or pressing **STOP** on the remote control for two seconds.

Note:

If Child Lock is set to ON and the disc inserted is not in the right side of the box numbered, the RNN system will be activated. The disc has to be exchanged (see Remote Control).

Disc types

You will recognise the different types of discs that can be used in your DVD recorder by the logo. Depending on the disc type you can either use it for recording and playback or playback only. Some discs are not suitable at all to be used in the DVD recorder.

In the next table a summary is given of all existing disc types and their DVD recorder compatibility.

The following disc types can be used for recording and playback

DVD+RW

Records and plays. In case of a new blank disc, after the first recording, some more time (up to one minute) is needed to make the disc compatible with DVD+Video discs.

DVD+R

Records and plays.

The following disc type can be used for playback only:

DVD-Video

DVD-R

Only plays if it contains DVD-Video.

DVD-RAM

Only plays if it contains DVD-Video.

DVD-Audio

Only plays if it contains DVD-Audio.

DVD-RW

Only plays if it is recorded in Video mode and has been formatted.

CD Digital Audio

You can play digital audio CDs in conventional style through a stereo system, using the outputs on the remote control's audio function or via the TV set using the on-screen display (OSD).

Super Audio CD

Only plays SACDs; the CD layer can be played.

(Super) Video CD

Depending on the material on the disc, it shows video clips, a drama series, etc. If these discs may have one or more tracks, and that of course have one or more subtitles as indicated on the disc case. To make access easy and convenient, your recorder lets you move between tracks and between chapters.

CD-R/CD-RW

Only plays music CDs or MP3 material.

The following disc types cannot be used at all, neither for recording nor for playback:

DVD-ROM

DVD+R/+RW

On-screen display information

System menu bar

The system menu bar can be called up by pressing one of the following keys on the remote control: **SYSTEM MENU**, **TIC**, **ANGLE**, **SUBTITLE**, **AUDIO** and **ZOOM**.

Wide screen (16:9) TV sets may show only part of the system menu bar in certain screen modes. Select a different screen mode on the TV to see the full menu. A number of recorder functions can be controlled via the system menu bar. You can integrate between the two parts of the system menu bar with the **</>** (left/right) and the **OK** (right/center) keys.

System menu bar items

PART 1	PART 2
F1 User preference	Sound
F2 Title Track	Step motion
F3 Chapter Bridge	Show motion
F4 Audio language	Fast motion
F5 Subtitle language	Time search
F6 Angle	
F7 Zoom	

Temporary Feedback Field

The system menu bar contains a "Temporary Feedback Field" which informs about concerning push-based actions (playback, record, volume, brightness, etc.).

English

OPERATION

OPERATION

- ▶ Disc
- ▶ Scan
- ▶ Repeat All
- ▶ Repeat Title
- ▶ Repeat Track
- ▶ Repeat Chapter
- ▶ Repeat A to end
- ▶ Repeat All
- ▶ Angle
- ▶ Child Lock On
- ▶ Clear Sale
- ▶ Secure
- ▶ Action prohibited

User preference menu operation

- Press **SYSTEM MENU** on the remote control.
- Select **Tk** in the system menu bar and press **OK** (cursor key).
- ▶ The user preference menu appears.
- Use the **OK** / **Cancel** right up down cursor keys to toggle through the menus, submenus and software options.
- ▶ While a submenu is selected, the cursor keys (on the remote control) to operate the menu are displayed next to the keys.
- Press **OK** to confirm and return to the main menu.

The following functions can be operated via the user preference menu:

User preference menu icons

- 1** Picture settings
- 2** Sound settings
- 3** Language settings
- 4** Feature settings
- 5** Remote control settings
- 6** Record settings
- 7** Installation

- You can navigate between the various items of the user preferences menu with the cursor buttons and the **OK** (cursor key). To select an item, press **OK** (right cursor key).

- By pressing **SYSTEM MENU** the system menu bar will disappear from the screen.

Status box

The status box on the left hand side of the screen displays the current status of the recorder and the disc type loaded for playback/recording.

OPERATION

Disc type icon

- | | |
|--|----------------|
| | DVD-RW |
| | DVD+RW |
| | DVD Video |
| | Super Video-CD |
| | Video CD |
| | No disc |
| | Disc write |

Disc status icon

- | | |
|--|----------------|
| | Recording |
| | Stop |
| | Playing |
| | Pause play |
| | Record pausing |
| | Stopped |
| | Fast forward |
| | Fast reverse |
| | Slow motion |

Timer info box

The timer info box is located above the tuner info box and is displayed in monitor mode. It displays the current status of the timer.

When a timer is programmed it shows a timer indication and the start time or date of the first programmed recording.

When an OTR recording is in progress it shows the end time.

When no timer is programmed it displays the current time.

Note:
Tuner info box and timer info box automatically disappear after a few seconds.

Warning box

The warning box will be displayed near the bottom of the screen when appropriate. For instance **Disc locked**.

Index Picture Screen

The Index Picture Screen displays an overview of the discs recorded to the disc. Each title is represented by an index picture. Next to the index picture the programme name, duration, recording mode and recording date of the title are shown. If no name is known, the DVD recorder will fill in the source and the time of the recording instead.

- Empty spaces between titles or blank space at the end of the disc are also shown as such.
- All programmes three titles will be shown on the screen at once. If more titles are present, you can navigate to those with the **< / >** (left/right) keys.

- On the right hand side of the Index Picture Screen, you can see the disc bar. This gives an overview of all titles on the disc as well as any empty spaces. On the far left arrow - **< / >** (left/right) key - changes your current position on the bar. From this point you can resume playback of recording.
- If you navigate through the list of titles with **< / >** (left/right) key or **PREVIOUS / NEXT** the disc pointer will move along.
- Press **STOP** to reset the disc pointer to the beginning of the disc.
- To move the disc pointer to the end of the last title, press **NEXT**.
- If you navigate from an Index Picture to the last right slot via **GO/SEARCH**, the code **END** is entered. The title settings menu (see under "Changing disc content" in the section 3).

User preferences

Setting user preferences

You can set your own preferences for some of the recorder's features (see "Operation" - User preferences menu operation).

The following items can be selected:

Picture settings

TV Shape

When TV Shape you can adjust the output of your DVD recorder to optimally fit your TV screen. You can choose:

- 4:3** If you have a wide screen (16:9) TV set.
- 4:4** If you have a regular (4:3) TV set. In this case you can also choose between:
 - Letterbox** for a wide screen picture with black bars at the top and bottom.
 - Pan Scan** for a full height picture with the video framed. If a disc has Pan Scan, the picture then moves (pan) horizontally to keep the main action on the screen.

Video out

Factory setting is such that the video will be rendered in NTSC format. Use this setting to adjust the position of the picture on your TV set by turning it to the left or right.

S-VIDEO

Factory setting is RGB Select. S-VIDEO (Y/C) via S-VIDEO connecting to an S-VHS recorder.

Sound settings

Digital output

Factory setting **ALL** means that both coaxial and optical outputs are switched on, and that Dolby Digital Multichannel is fed to the outputs as such. DTS audio is converted to PCM. If your equipment doesn't include a digital multichannel decoder, set the digital output to **DTS only** (Dolby Digital Modulation). Both coaxial and optical outputs are then switched on and Dolby Digital and DTS audio are converted to PCM. If you are not connecting equipment with a digital input, change the setting to **CIN**.

Analogue output

Optimal pictures on any TV screen

Black level shift (NTSC only)

Adjusts the colour dynamics to obtain richer contrast. Select **On** or **Off**.

Select Stereo, Surround or 3D Sound. Factory setting is Stereo.

English

Español

Français

Deutsch

Surround: Select this setting when using equipment with a Dolby Surround Pro Logic decoder. In this setting the 5.1 audio channels (Dolby Digital, MP3, WMA) are downmixed to a Surround-compatible 5-channel output.

DTS Sound: In a setting without rear speakers (using a stereo output), this option removes the side elements of digital surround (Dolby Digital, MP3, WMA) while it has a two-speaker output, while retaining all of the original audio information. The result is the truest version of being surrounded by multiple speakers.

Connected audio system	Digital out	Analog out
Accessory TV with DTS decoder	Off	Stereo
Accessory stereo	On	Stereo
Accessory TV with Dolby Surround or Dolby Pro Logic	Off	Surround
Accessory with two-channel digital	PCM only	Stereo
DTS receiver with Dolby Surround	Off	Stereo
DTS receiver with Dolby Digital, MP3, WMA	Off	Stereo
Two-channel AV receiver with Dolby Surround	Off	Stereo

Night Mode

Night mode optimizes the dynamics of the sound with low volume playback for low disturbance in quiet environments. This only works for Dolby Digital audio on DVD-Video discs.

Language settings

The preferred language can be adapted via the system menu bar. (Also see "Region code".) Settings can be changed for:

- Playback audio language
- Subtitle language
- Menu language
- Country setting

Feature settings

Access Control

Access Control contains the following features:

Child lock: When Child lock is set on, a 4-digit code needs to be entered in order to play discs.

Parental lock: Allows the user to impose restrictions of DVD discs containing Parental level information.

Change country: Allows controlled presentation of DVD Video discs containing country information.

Change code: To change the disc code. See Access Control.

Adapt disc format

This option is only available when a DVD-RW or DVD+RW disc recorded in a different brand recorder is loaded. You can adapt the menu to your own recorder.

A DVD+RW/R video disc that has been recorded on a different type of brand of recorder can be played, but may not provide all features currently available to DVD+RW/R discs, such as the on-screen disc. See the disc settings menu, the title settings menu and noting if the disc is not write-protected. The disc format can be adapted to the own recorder, after which these functions are available.

Status bar

The status bar displays the current status of the recorder and the disc type loaded (see "Operate" - "On-screen display information"). You can switch it On or Off. Off = always Off.

On = displayed together with the system menu bar or displayed temporarily disappears after a short time when changing the playback or record status.

Factory setting is On.

Auto resume

The Auto resume setting only applies to pre-recorded DVD-video and Video CD discs only - not only to the disc in the recorder but also to the last twenty discs you have played.

If **Auto resume** is set to On, playback will start from the point where it was stopped the last time the disc was played.

When **AUTO RESUME** is set to Off, the recorder will start playing from the beginning of a disc. In this case you can end resume after **PF** appears or cancel by pressing **▶ PLAY**. Factory setting is On.

Low power standby

If the power standby is On, the recorder will consume minimum power in standby mode.

Factory setting is On.

Note:

When the recorder is in low power standby mode, the output of the equipment connected to L/R 2 will not be passed through to the TV set via S-VIDEO. The display will be Off.

The Standby indicator on the recorder will still light up in standby mode.

DRC

This feature is only available when a (Super) Video CD is selected. It allows you to change or enable the DRC (Dynamic Range Control) settings of VCD discs. See under "Special VCD features". Factory setting is On.

Finalise disc

This option is only available on unfinalised DVD-R discs. See "Managing the system" - "Finishing a DVD-R disc".

Remote Control settings

Key sound

The recorder makes a beep sound upon every key command given via recorder or remote control keys. Select Off to disable this sound. Factory setting is On.

Remote control used

If you want to use the remote control of a Philips DVD player instead of the standard DVD recorder remote control select **(R) player**. Factory setting is **(N) recorder**.

System information

When you move further down in the Remote Control settings menu, the system status screen will appear. Press **OK** again and go back.

Record Settings

Record mode

By selecting a recording mode you define picture quality of recording and maximum recording time for a disc.

Mode	Picture quality	Total recording time
High	best picture	60 minutes
High Quality	picture quality	100 minutes
SP	pre-recorded	110 minutes
Standard Play	DVD quality	110 minutes
LP*	pre-recorded	210 minutes
Extended Play	DVD quality	210 minutes
EP	better than	160 minutes
Long Play	DVD picture quality	210 minutes
EP*	better than	210 minutes
Extended Play*	DVD picture quality	210 minutes

In practice, the DVD recorder may record 1-2 new minutes more than indicated, for playback, the correct recording mode will automatically be selected. The HQ mode is optimum for recording via the IEEE 1394 port. For all other modes use SP, SP+ (LP or EP).

- In the recorder settings menu select **Record mode**.

- After the recording mode has been selected, press **OK**.

- Confirm with the **OK** key.

- To end, press **SYSTEM MENU**.

An alternative way to select the record mode is available in the **Info/Return Screen** and in **recorder mode**:

- Press **SELECT**.
 - The new record mode appears on the screen and this briefly.

It is not possible to switch record modes during recording.

Direct record

With the Direct Record function switched **On** and the DVD recorder being held in front of the channel number selected on your television will be automatically taken over by the DVD recorder at the moment it starts recording. This only applies to televisions connected via SCART, which have either output via SCART or which have Eurohook. Factory setting is **Off**.

- In the second settings menu, select **Direct record**.
- Select **On**. If you select **Off**, the function will be switched off.
- Confirm with **OK**.
- To end press **SYSTEM MENU**.

Sat record

You can only use this function when you have a satellite receiver, which can control other equipment by a programming function. In this mode your DVD recorder starts recording when the satellite receiver receives a signal. The start and end of the recording is controlled via one of the seven buttons.

- In the second settings menu, select **Sat record**.
- Select the sat box code: **EXT1** - **EXT2** (in which the satellite receiver is connected with **EXT1**) left-right cursor.
- Confirm with **OK**.
- Insert a recordable DVD+RW disc.
- Press **STANDBY**.
 - When this function is switched on, **SAT** appears on the display.
 - The DVD recorder is now prepared for recording.
- Factory setting is **Off**.

Auto chapters

If the function is **On**, every time an infrared chapter marker (beginning of a new chapter) is detected during recording, this creates easy navigation through a title during playback. In otherwise you can manually insert chapter markers afterwards. (See: Managing the content – **Edit a chapter mode**.)

Filter mode

In long play or extended play recording mode you can select the **Spot** setting to optimize the video recording for images that contain fast movements like sports programmes. The resulting files achieve high quality or extended play recording times. Factory setting is **Standard**.

Installation**Auto TV Channel Search**

Your DVD recorder will search for all TV channels. It stores them in the sequence they are found. (See **Installation** - **First time Set up**.)

Note:

All channels stored so far will be erased.

Follow TV

With Follow TV you can programme the same channel sequence on the DVD recorder as on the TV set. This only functions if the recorder (code: EXT1) and the TV are connected with a SCART cable. Additional equipment connected to socket EXT2 must be switched off.

Recording

Features

Before you start recording

Recordings on a DVD+RW disc are called titles. Every title consists of one or more chapters.

For more information about how to go to other titles or chapters see "Playback - general features".

Important:

Recordings on a DVD+RW disc are normally started from the position of the so-called disc pointer, i.e. the point where the last recording was stopped. From there on further recordings may be overwritten without notice, unless the disc is write protected. In this respect your DVD recorder behaves just like a Video Cassette Recorder.

If you want to make a recording without the risk of overwriting earlier recordings use the safe Record function (see Manual Recording - Safe Record).

In the Index Picture Screen you can select the point where you want to start your recording. Use the **CH** (channel up/down) and **REVERSE**/**FORWARD** keys. You can see the current location on the disc bar, indicated by the arrow.

Your DVD recorder always checks the disc that you have inserted.

- When a DVD+RW+R disc is inserted on which recordings have been made, the Index Picture Screen shows on your TV screen:
- If the inserted disc is a completely empty recordable disc, the message "TITLE 1, 2, 3..." appears on the display.
- If the inserted disc is a DVD+RW disc with a content that is not DVD Video content (longer as data files), a dialog box is displayed with the option to erase or copy the disc. You can only record on this disc after erasing it with the **RECORD** key.

Note:

- Only disc containing P41 recordings or DTS recordings can be made and vice versa. On an empty disc, other type of recordings can be made.
- No recordings can be made from selected Photo-RM or MJF-JD discs.

- A disc bar holding up to 40 titles, including empty ones. When the maximum is reached the on-screen message "Too many titles" appears. If you want to make a new recording, you have to delete a title first next to an empty title (see "Managing Disc Content").

Manual recording

Checking input

Normally, the DVD recorder displays the picture of the last recording.

- Press **HONITOR** (switches between the internal tuner or whichever other source is selected). If you want to check the image before starting a recording:
- On the TV screen, you will see the actual picture during the few seconds you record; the video has been encoded and decoded again. This is why you will see a delay of about 1.5 seconds when using a live source such as a camera.
- In monitor mode you can choose programme numbers directly with the digit keys **0-9** on the remote control.
- Press **SELECT** repeatedly to select the desired record mode.
- Press **HONITOR** again to go back to the image.

Recording

- Insert a recordable DVD+RW or DVD+R disc.
- Normally, the DVD recorder displays the contents of the disc on the screen.
- Use the **HONITOR** button to set the currently selected TV channel.
- Use **CHANNEL** **A** or **CHANNEL** **B** on the recorder or **CH** **CH** on the remote control to select the programme number (programme name) from which you want to record.
- When a TV channel number is shown, this will be played on the display.

The following programmes numbers are provided for recording from external sources:

- **EXT 1** for video camera
- **EXT 2** for recording from external sources via S-VIDEO
- **EXT 3** for S-VHS
- **EXT 4** for DAT
- **EXT 5** for VCR
- **EXT 6** for VHS (VCR)
- **EXT 7** for VHS (VCR)
- **EXT 8** for VHS (VCR)

- Press **RECORD** (on the recorder) or **REC/OTR** (on the remote control).
- **RECORD** is shown on the display.
- The status box is shown on the screen for a few seconds.

- To bring back the status box during recording press **SYSTEM MENU**. Pressing **SYSTEM MENU** now, stops all recording (status box off).
- Press **PAUSE** to pause recording. The disc continues recording by pressing **PAUSE** (one second). The DVD recorder will make a permanent connection.
- Press **STOP** to stop recording. If you are recording from a camcorder with the video output of the DVD recorder or the TV instead of the camcorder viewer, it is necessary to deactivate the right function to stop.

- The Index Picture screen is updated.
- **REC/OTR** is shown on the display.
- After a short recording on a new DVD+RW disc, a few minutes will be needed to complete the finalising of the disc.

Safe Recording

When you start recording on a DVD+RW disc by briefly pressing the **RECORD** or **REC/OTR** key, a recording on DVD+RW will be made from the current position of the disc pointer. To prevent this do the following:

- Hold the **RECORD** key (or the remote control) press for about two seconds until "REC/OTR" appears on the display.
- The recorder automatically jumps to the end of the last side on the disc and starts recording.
- If no free space is left, the display will show "TITLE 1, 2, 3...". Safe record is not possible then. Recording to DVD+R and DVD+RW automatically stops after the last title on the disc.

Direct Record

With Direct Record you can start recording immediately from the programme selection on the TV set.

- Make sure **Direct record** is selected (On). (See record settings).
- On the TV set, select the programme number you want, make the recording from:
- Make sure the DVD recorder is switched to standby.
- Press **RECORD** (on the recorder) or **REC/OTR** (on the remote control).

Note:

- Only record under programme numbers on your TV set, not the **CH** on the display of your DVD recorder display. But you can switch to any channel.

- When **REC/OTR** appears on the display, the programme number could not be found. The DVD recorder makes an automatic search.

- If your budgeter are connected (via a suitable interface) to your DVD recorder, the sound will be delayed relative to the TV picture when watching directly from the TV set.

- You can use **Direct Record** in combination with **Safe Record**.

Manual audio control

You can control the audio recording level of your DVD recorder manually.

- In recorder mode, turn **AUTO/MAN REC VOLUME** on the DVD recorder.
- The display will show the current audio level and **MUTE** (if active).

RECORDING 1

- Adjust the recording level with **MANUAL A or T** on the DVD recorder, just like DTR, each time you during the loudest parts of the recording.
- You can switch back to automatic audio level control by pressing **AUTO/HAN REC VOLUME** again.

Note:
When DV is selected, sound volume control is disabled.

Recording with automatic switch-off (DTR, One-Touch Recording)

- Insert a recording DVD+RW or DVD+R disc.
- Use **CHANNEL +** or **CHANNEL -** on the recorder or **CH+ CH-** on the remote control to select the programme number (programme name) from which you want to record.
- Press **RECORD** on the recorder or **REC/DTR** on the remote control twice.
- A recording will be made of 30 minutes.
- The recorded time of the recording is shown in the timer box on screen. The remaining recording time is shown on the display.

- Press **RECORD** or **REC/DTR** again to obtain a longer recording.
- Shortly after pressing **REC/DTR**, DTR can be cancelled by pressing **CLEAR**.

Timer programming

The DVD recorder needs the following information for every programmed recording:

- the date on which the recording is to be made;
- the channel;
- the start and stop time of the recording;
- DVDRW on or off;
- the recording mode.

The DVD recorder stores all the information mentioned above in timer blocks. Timer programming is to do timer blocks one by one in sequence.

RECORDING

When you have programmed the timer, stored on the disc (both on the display and on the Index Picture Screen), includes what part of the disc will be overwritten by the programmed recording from the current disc position (on DVD+RW) or after the last station (DVDRW).

When all timer blocks are full, the recorder stops programming and **VCR** (Not REC) status is assumed. For clearing a timer block, see "How to clear a timer block".

Mode: **VIDEO**

With **VIDEO**, the TV receiver controls the recording and the length of the programmed recording. This means that the power receiver receiver controls switch off at the right time even if a TV programme has been stopped before it was to finish from the expected.

Usually the recording time is the same as the **VIDEO** time. However, in the TV guide, in addition to a TV programme start time, a second **VIDEO** time is given (e.g. 20:05 (TV) 20:14 (VIDEO)). If you want to start recording exactly to the minute, if you want to start some time after the **VIDEO** time, you must switch off **VIDEO**.

Timer programming with the **VIDEO** Plus+ system

A PlusCode number is a number of up to nine digits printed in most TV guides next to the start time of a TV programme.

All the information required for programming is encoded in the PlusCode number.

- Select **VIDEO Plus+ system** with a single key or **VIDEO** (plus).

- Press **OK** (right cursor).

- Enter the **PlusCode** number up to nine digits printed in most TV guides next to the start time of a TV programme. If a mistake is made, you can correct it with **CLEAR**.
- Confirm with **OK**.
- If the **VIDEO** Plus+ system does not recognize the TV channel, the message **Program enter** **programme number** will appear on screen. Select the required programme number (programme number with 1000 multiplier or the digit keys 0-9) and confirm with **OK**.

- The data will appear on the TV screen.
- Press **OK** (right cursor).
- Use **SELECT** to select the programming day at daily or weekly intervals. Press **MENU** for recording at daily intervals from Monday to Friday inclusive. Select an individual day of the week for recording at weekly intervals (only one day of the week).
- Press **OK** (right cursor).
- Use **SELECT** to select **VIDEO** once off.
- When **VIDEO** is selected, the start block is marked with an asterisk.
- Press **OK** (right cursor).
- Use **SELECT** to select the recording mode.

- Confirm with **OK**.
 - The disc has been recorded in a timer block.
- To end press **TIMER**.
- Make sure that you inserted a recordable disc. If you inserted a write-protected disc, recording will be refused.
- Switch off with **STANDBY**.

Timer programming without the **VIDEO** Plus+ system

- Press **TIMER** on the remote control.
- Select **Timer programming** with a single key or **VIDEO**.

- Press **OK** (right cursor).
- Enter the date with a 1st cursor or **0** (above cursor), or with the digit keys 0-9.

RECORDING

Playback

English

Playing a DVD+RW or DVD+R disc

- Insert a DVD+RW or DVD+R disc.
- If the inserted disc is write-protected, playback starts automatically otherwise the Index Picture Screen appears.
- Press **PLAY**.
- Playback starts automatically from the point where it was stopped the last time the disc was played or recorded. If you want to start playback from the beginning of the disc, you can do so via the Index Picture Screen (see "Index Picture Screen").
- If the disc is a new blank disc, the display will show "00:00:00".
- To stop playback at any time, press **STOP**.
- The return to the Index Picture Screen.

Playing a pre-recorded DVD-Video disc

Some DVD discs are produced in a way that requires specific operation or allows only limited operation during playback. In these cases the recorder may not respond to all operating commands. When this occurs, please refer to the restrictions in the disc itself. When a "—" appears on the TV screen, the operations are not permitted by the recorder or the disc.

- Insert a pre-recorded DVD-Video disc. Make sure the title is being displayed. If the disc is two-sided, choose which the side of the title you want to play is facing up.
- When "AutoReturn" is set to "Off" (see User Preferences) playback starts automatically from the point where it was stopped, the last time the disc was played.
- When "returntime" is set to "Off", the disc will play from the start of the disc. You can however resume play from the point at which you stopped, the last time the disc was played, by pressing **PLAY** when "Off" appears on screen.
- The currently playing title and chapter number are displayed on the recorder display. The assigned titles are shown like:

Notes:

• All titles can be triggered in different times in different regions of the world, although some regions with one disc may have an up-to-region code. If you load a disc of a different region code to your recorder, you will see the region code notice on the screen. The disc will not play and should be unloaded.

- The region code is printed on a label on the back side of your recorder.
- Regional coding is not applicable for recordable DVD discs.
- The disc title will be used to select an item from a menu. If the selected item is deleted, press the appropriate numerical key. If not, use the **J**, **J**, **D**, **D** (down/up right/left) cursor keys to highlight your selection and press **OK**.
- To stop playback at any time, press **STOP**.
- The default screen will appear giving information about the current status of the recorder.

Notes:

During playback you can display and enter the menu by pressing **DISC MENU**.

Playing a (Super) Video CD disc

- Insert a Super Video CD.
- If "DISC MENU" is set to "On" (see User Preferences) playback starts automatically from the point where it was stopped, the last time the disc was played.
- When "returntime" is set to "Off", the disc will play from the start of the disc. You can however resume play from the point at which you stopped, the last time the disc was played, by pressing **PLAY** when "Off" appears on screen.
- The currently playing title and chapter number are displayed on the recorder display. The assigned titles are shown like:

General features

Notes:

When played elsewhere, all operation described are based on normal control operation. A number of operations are also carried out via the system menu bar on the screen (see "System menu bar" for operation).

Moving to another title/back

When a disc has more than one title or track, you can switch to another title as follows:

- Press **T/C**.
- Press **NEXT** during play to skip forward to the next title.
- Press **PREVIOUS** during play to return to the beginning of the current title. Rapidly press **PREVIOUS** twice to step back to the previous title.
- To go directly to any title or track, enter the title number using the numerical keys **0-9**.

Notes:

If the number has more than one digit, press the keys in order successively.
If the system menu bar is on screen, make sure the **T/C** is selected.

Moving to another chapter/track

When a disc on a disc has more than one chapter or a track has more than one index, you can move to another chapter/index as follows:

- Press **NEXT** during play to select the next chapter/index.
- Press **PREVIOUS** during play to return to the beginning of the current chapter/index. Rapidly press **PREVIOUS** twice to step back to the previous chapter/index.
- To go directly to any chapter/index, enter the chapter/index number using the numerical keys **0-9**.

Notes:

If the number has more than one digit, press the keys in order successively.
If the system menu bar is on screen, make sure the **C** is selected.

Slow Motion

- Select "Slow motion" in the system menu bar.
- Use the **↓** (down) cursor key to enter the slow motion menu.
- The respective will now go into pause mode.

- Use the **↑** (**↑**) (left/right) cursor keys to select the speed rate speed: "1", "1/2", "1/4" or "1/8" (Forward), "1/8", "1/4", "1/2" or "1" (reverse).
- Select "1" (playing at normal speed again).
- If **PAUSE** is pressed, the speed will be set to "1".
- Press **PLAY** to exit slow motion mode.
- Press **PLAY** again to delete the slow motion menu. You can also reset Slow Motion speeds by using the **SLOW** key on the remote control.

Region**Still Picture and Stop Frame**

- Select **4.8** (picture by picture) in the system menu bar.
- Use the **V** (down cursor) key to enter the picture by picture menu.
- ▶ The recorder will now go into picture mode.

- Use the **<>** (left/right cursor) keys to select previous or next picture.
- Press **▶ PLAY** to exit picture by picture mode.
- Press **C** (cancel) to exit the picture by picture menu.

To cancel step forward by using the **H.PAUSE** repeatedly on the remote control

Search

- Select **■** (fast forward) in the system menu bar.
- Use the **V** (down cursor) keys to enter the fast motion menu.

- Use the **<>** (left/right cursor) keys to select the required speed **32**, **16** or **8** (backward **4**, **3**, **32** forward).
- Select **3** (play at normal speed again).
- Press **▶ PLAY** to exit fast motion mode.
- Press **C** (cancel) to cancel the fast motion menu.
- To search forward/backward through different speeds, you can also press **REVERSE** or **FORWARD** again.

PLAYBACK**Repeat****DVD Discs - Repeat chapter/title**

- To repeat the currently playing chapter, press **REPEAT**.
 - ▶ **REPEAT** appears on screen.
- To repeat the currently playing title, press **REPEAT** a second time.
 - ▶ **REPEAT** appears on screen.
- To repeat the entire disc, press **REPEAT** a third time.
 - ▶ **REPEAT** appears on screen.
- To exit repeat mode, press **REPEAT** a fourth time.

Video CDs - Repeat track/title

- To repeat the currently playing track, press **REPEAT**.
 - ▶ **REPEAT** appears on screen.
- To repeat the entire title, press **REPEAT** a second time.
 - ▶ **REPEAT** appears on screen.
- To exit repeat mode, press **REPEAT** a third time.

Repeat A-B

- To repeat or begin a sequence in a title.
 - Press **REPEAT A-B** at your chosen starting point.
 - ▶ **REPEAT** appears on screen.
 - Press **REPEAT A-B** again at your chosen end point.
 - ▶ **REPEAT** appears on screen, and the repeat sequence begins.
 - To exit the sequence, press **REPEAT A-B**.

Scan

Stops the first 10 seconds of each chapter/title on the disc.

- Press **SCAN**.
- To continue play at your chosen chapter/title, press **SCAN** again or press **▶ PLAY**.

Time search

The Time Search function allows you to start playing at any chosen time stamp.

- Select **4.7** (Time Search) in the system menu bar.
- Press **V** (down cursor).
 - ▶ The recorder will now go into pause mode.
- A time entry box appears on screen, showing the elapsed playing time of the current disc.

- Use the digit keys **0-9** to enter the required start time (hour, minutes and seconds) in the box.
 - ▶ Each time a dot has been entered, the next item will be highlighted.
- Press **OK** to confirm the start time.
 - ▶ The time entry box will disappear and play starts from the selected time position.

Zoom

The Zoom function allows you to enlarge the video image and to pan through the enlarged image.

- Select **5.1** (Zoom) in the system menu bar.
- Press **M** (zoom) to return to screen the Zoom function and select the required zoom factor **1.5x** or **2.5x**.
 - ▶ The recorder will go into pause mode.
 - ▶ A zoomed zoom factor appears on screen, showing the elapsed playing time of the current disc.

- The picture will change accordingly.
- Press **OK** to confirm the selection.
 - ▶ The zoom icon appear on the screen.
- Use the **<>** (left/right cursor) and **OK**.
 - ▶ Use the **<>** (down/up right/left cursor) and **OK**.
- Use the **<>** (down/up right/left cursor) keys to pan all over the screen.
- When **OK** is pressed only the zoomed picture will be drawn on the screen.
- If you wish to return to any moment, press **5.1 ZOOM** and select the required zoom factor as described above.
- Press **▶ PLAY** to exit zoom mode.

PLAYBACK

Special DVD+RW/+R features

Recording date and time

If a recording was made for a digital camcorder using the DV/EX-DV input, the original recording date and time are automatically stored as DVD subtitles.

- Press **SUBTITLE** to display the recording date and time.
► The recording date and time are displayed in the right bottom corner of the screen.

Special DVD-Video features

Menus on the disc

For titles and chapters, selection menus may be included on the disc.

The DVD's menu feature allows you to make selections from these menus. Press the appropriate numerical keys on the **DIGITAL** pad (pressing up right left arrows keys to highlight your selection) and press **OK**.

Title menu

Press **DISC MENU**

- If the current title has a menu, this appears on the screen. If no menu is present in the title, the disc menu will be displayed.
- The menu can let viewers adjust spoken language and subtitle options, and chapters for the title.
- To exit the title menu, press **DISC MENU** again.

Music

Most CD discs do not have separate disc and title menus.

Disc menu

If a DVD Video disc has separate disc and title menus, you can navigate to the disc menu as follows:

- Press **T/C** to access by **DISC MENU**.
► **1 TITLE**, **2 CHAPTER**
- To reaccess the disc menu, press **DISC MENU** again.

PLAYBACK

Camera Angle

If the disc contains recorded video from different camera angles, the angle box appears, showing the number of available angles and the angle being shown. You can then change the camera angle if you wish.

- Use the **CH** keys to select the required angle in the angle box.
- To go to another angle directly, enter the angle number using the numerical keys **0-9**.
 - After a small delay, play changes to the selected angle. The angle box remains displayed until multiple angles are no longer available.

Changing the audio language

- Select **AUDIO** in the option menu bar.
- Press **AUDIO** or **CH** keys as required repeatedly to step through the different languages.
- You can enter the required language number directly using the numerical keys **0-9**.

Subtitles

- Select **SUBTITLE** in the option menu bar.
- Press **SUBTITLE** or **CH** keys as required repeatedly to step through the different subtitles, or to switch the subtitle off.
- You can enter the required subtitle number directly using the numerical keys **0-9**.

Special VCD features

Playback Control (PBC)

- Play your PBC or numbered CD. See **User Preferences** feature settings.
- Load a User Video CD with PBC and press **PLAY**.
 - The PBC menu appears on screen.
 - Go through the menu with the keys indicated on the screen and your chosen passage menu to play. A PBC menu consists of a list of titles, you can select a title directly.
 - Press your choice with the numerical keys **0-9**.
 - Press **RETURN** to go back to the previous menu.

Playing an audio CD

- Insert the disc.
 - After loading the disc, playback starts automatically.
 - If the TV set is on, the Audio CD screen appears.
 - During play, the current track number and its elapsed playing time are displayed on the screen and the recorder display.

- To stop play at any time, press **STOP**.
 - The number of tracks and the total playing time will be shown on the screen and the recorder display.

Access control

English

Child Lock (DVD and VCD)

When activating Child lock, only discs that are authorized can be played without PIN code.

The recorder memory maintains a list of 30 authorized Child lock disc codes. A disc will be placed in the list when Play Always is selected in the Child protect dialog. Each time a Child lock disc is played it will move to the top of the list. When the list is full and a new disc is added, the least recently used will be removed from the list.

Activating/deactivating the child lock

- Select **Access control** in the features menu using **▼** (down up cursor) and press **RIGHT cursor**.

- Enter a 4-digit PIN code of your own choice using the digit keys **0-9**.
- Enter the code a second time.
- Move to **Child lock** using **▼** (down up cursor).
- Move to **ON** (using the **>** & **RIGHT cursor**).

41 ACCESS CONTROL

- Select **Access control** in the features menu using **▼** (down up cursor) and press **RIGHT cursor**.
- Press **OK** or **RIGHT cursor** to confirm and press **SYSTEM MENU** again to exit the menu.
- Move to **Child lock** using **▼** (down up cursor).
- Move to **ON** (using the **>** & **RIGHT cursor**).
- Press **OK** to activate the Child lock.

Note:
Reactivation of the 4-digit PIN code is necessary when the code is erased for the very first time (see above). The code is changed via "Changing the digit code". The code is released after "Changing the digit code". Both Child lock and Parental Control are switched OFF and the code is required.

Authorizing discs when Child Lock is activated

- Insert the disc.
- The Child protect dialog will appear. You will be asked to enter your access code for **Play until** or **Play always**. If you select **Play until**, the disc can be played as long as it is in the recorder and the recorder is in the On position. If you select **Play always**, the disc will become Child lock (authorized) and can always be played even if the Child lock is set to **ON**.

Note:
Double-sided DVD discs may have different ID for each side. In order to release the disc (1st side), both sides has to be authorized.
Most standard VCD disc has just a single ID for each volume. In order to release this particular disc (Child lock), both volumes has to be authorized.

Securing discs

- Insert the disc.
- Playback starts automatically.
- Press **■ STOP** while **■** is visible.
- will appear and the disc is now secured by a new Child lock key.

Parental Level (DVD-Video only)

Access to pre-recorded DVD discs that contain scenes not suitable for children. Therefore discs may contain "Parental Control" information which applies to the complete disc or to certain scenes on the disc.

These scenes are rated from 1 to 8 and sometimes more suitable scenes are available on the disc. Ratings are country dependent. The Parental Control feature allows you to prevent discs from being played by your children or to have certain discs played with alternative ratings.

Activating/Deactivating Parental Control

- Select **Parental control** in the features menu using **▼** (down up cursor) and press **RIGHT cursor**.
- Enter your 4-digit PIN code using the digit keys **0-9**. If necessary enter the code a second time.
- Move to **Parental level** using **▼** (down up cursor).
- Move to the Value Adjustment bar using **RIGHT cursor**.

- Use the **▼** (down up cursor) keys or the numerical keys **0-9** on the remote control to select a rating from 1 to 8 for the disc inserted. Rating **Published on line** (Parental Control is not activated). The disc will be played at **1**.

Rating 1 to 8 = child safe - 8 = adult only.
The disc contains scenes not suitable for children. If you are rating for the recorder all scenes with the same rating as the disc will be object. Higher rated scenes will not be played unless an alternative is available on the disc. The alternative scene have the same rating as the one. If no suitable alternative is found, play will stop and the 4-digit code has to be entered.

- Press **OK** or **RIGHT cursor** to confirm and press **SYSTEM MENU** again to exit the menu.

Country

- Select **Region control** in the features menu using **▼** (down up cursor) and press **RIGHT cursor**.
- Enter the four digit PIN code.
- Move to **Change country** using **▼** (down up cursor).
- Press **RIGHT cursor**.

- Select **Change country** using **▼** (down up cursor).
- Press **OK** or **RIGHT cursor** to confirm and press **SYSTEM MENU** again to exit the menu.

42 ACCESS CONTROL

491002

English

Changing the 4-digit code

- Select **ACCESS CONTROL** in the Feature menu using **▼/▲** (down/up cursor) and press **RIGHT cursor**.
- Enter the old code.
- Press **OK** (right cursor).

- Press **OK** (right cursor).
- Enter the new 4-digit PIN code.
- Enter the code a second time and record with **OK**.
- Press **SYSTEM MENU** to exit the menu.

Note:

If you forget your code, press **■ STOP** four times while in the access control PIN code box and exit with **OK**. Access control is now switched off. You can then enter a new code as described above.

Managing disc content

Title settings

For each title on a DVD-RW or DVD+RW disc the default setting can be changed to your personal preference in the title settings menu.

Changing the title name

- In the Index Picture Screen, select the required title with **▼/▲** (down/up cursor).
- Press **OK** (right cursor) to enter the title settings menu.

- Press **OK** (right cursor).
- Enter the new name. A name may contain a maximum of 54 characters.
- Use **OK** (left/right cursor) for the position of the characters. Use **▼/▲** (down/up cursor) to change characters.
- Use **SELECT** to toggle between capital and lower case characters.
- Use **CLEAR** to erase a character.
- Confirm by pressing **OK**.

Play full title

- In the Index Picture Screen, select the required title with **▼/▲** (down/up cursor).
- Press **OK** (right cursor) to enter the title settings menu.
- Select **Play full title**.

When selected, the title will be played in full, including hidden chapters. Follow the instructions on the screen. [See "Managing disc content - Basic Disc Selection".]

Erasing a title

You may simply erase a title on DVD-RW by recording over it. But if you want to erase the whole title, carry out the following:

- In the Index Picture Screen, select the required title with **▼/▲** (down/up cursor).
- Press **OK** (right cursor) to enter the title settings menu.
- Select **Erase title**.
- Press **OK** to confirm. This will completely erase this title. Press **OK** to confirm again.

- Press **OK** (left/right cursor).
- **Erasing title**: A screen will tell the action is completed.
- After the title has been erased, the Index Picture Screen will show an empty space instead. If there was an empty space in front of or behind this title, then these are considered to be empty space. Empty spaces of less than one minute will not be shown.

On DVD-RW titles can also be erased but the space occupied cannot be used anymore. During deletion erased titles are removed from the Index Picture Screen.

Disc Info Screen

- While on the Index Picture Screen, press **■ STOP**.
- You are now on Title 1.
- Press **OK** (left/right cursor).
- You enter the Disc Info Screen.
- Press **▼/▲** (down/up cursor) to exit the Disc Info Screen.

The Disc Info Screen contains the following information:

Disc Settings

For each DVD+RW or DVD+R disc the settings can be changed to your personal preference in the disc settings menu:

- In the Disc Info Screen press ▶ (right cursor).
 - You will now enter the Disc settings menu.

Changing the Disc Name

- In the Disc Info Screen press ▶ (right cursor).
 - You will now enter the Disc settings menu.

- Press ▶ (right cursor).
- Enter the new name. A name may contain a maximum of 64 characters.
- Use □/◀ (left/right cursor) for the position of the character. Use △/▽, ▲/▼ (up/down cursor) to change characters.
- Use SELECT to toggle between uppercase and lowercase characters.
- Use CLEAR to erase a character.
- Confirm by pressing OK.

Protection of recordings

- In the Disc Info Screen press ▶ (right cursor).
 - You will now enter the Disc settings menu.
- Select Protection and press ▶ (right cursor).
- Select Protect and □ (down/up cursor).
- Press OK on the remote control to confirm.
 - No further changes can be made to the disc. It will take about three minutes for the settings options, as well as the complete edit, to save.
 - Future editing is only possible after releasing the Protection feature by Selecting again.

Erasing a disc

- This option is only available for DVD+RW discs that are not write-protected.
- In the Disc Info Screen press ▶ (right cursor).
 - You will now enter the Disc settings menu.
 - Select Erase disc and □ (down/up cursor).
 - Press OK.
 - The message "This will erase all data" is displayed.

- Press OK on confirmation. If the cursor is on cancel, ▶ (right cursor) is shown and the action is completed.
 - After the disc has been erased, the Index Picture Screen will show the free space on the disc.

Finalising a DVD+R disc

While a DVD+RW disc can be erased instantly on most DVD players, a DVD+R disc can only be played only on the DVDR recorder until it is finalised. After finalisation no changes can be made to the disc anymore.

- In the Disc Info Screen press ▶ (right cursor).
 - You will now enter the Disc settings menu.

- Select Finalise disc and press OK to confirm.
 - "Finalising" is shown until the action is completed.
 - After finalisation the Index Picture Screen will appear.
- If the DVD+R disc was recorded onto a different brand of DVDR recorder you may not be able to access the Disc Settings screen. In this case you can use the "Finalise" option in the Features menu of the user preferences menu.

Making your edits DVD-compatible

If one or more titles have been edited (see "Favourite Scene Selection"), then the edit will play on your DVDR recorder, but a DVD player may show the original version instead of the edit. You can prevent your DVD+RW disc from being played back as chapters and scene hidden. During playback you will then play recording without the hidden chapters as one chapter.

- Press Disc Setting menu shows the option "Make edits DVD-compatible". Press this option. If the menu does not show this option, then your DVDR990/DX1 is already compatible and no conversion is needed.

- Press OK on the remote control to confirm.
 - The message "This will take 2 and Press OK to confirm" will appear to indicate how long the action will take.

- Press OK on the remote control to confirm.
 - "Processing" and a progress bar are shown until the action is completed.

Favourite Scene Selection

The basic function of any edit operation is to improve a recording and freezing of your recordings. For instance scenes you do not want to be playing playback, e.g. commercials during a program can be marked as chapters and made hidden. During playback you will then play recording without the hidden chapters as one chapter.

Note:
in between the scenes the picture may freeze for short moments.

Each title consists of chapters. While the PSS menu some chapters can be made hidden or made visible again. Normally, during recording chapter markers are inserted automatically every five to ten minutes. This setting can be changed in the menu settings menu. After the recording is finished, you can manually add and remove chapter markers via the PSS menu. Chapter markers generated and manually inserted chapter markers can be removed.

After editing, the modified version of a title is the default playback version. The original can be selected via the "Stay full title" option in the title settings menu. Other DVDR players may still play the original. To guarantee that the edited version will play on these DVDR players, choose "Make edits DVD-compatible" in the disc settings menu (only available on DVD+RW discs).

Calling up the PSS menu

- Press the title you want to edit.
- Press the □/PSS key on the remote control.
- The video image is overlaid with a transparent edit menu. Title and chapter information appear in an information box at the top of the screen.

- Use ▲ or ▼ (up/down cursor) to toggle through the menu's functions.

Inserting chapter markers

- In play mode press F55 on the remote control to call up the F55 menu.
- Select **Insert chapter marker**.
- Press OK on the remote control to insert a marker. The remaining number of chapter markers + 39. When the function is selected the on screen message **Insert chapter marker** appears. You have to delete some before inserting new chapter markers.

During recording you can add chapter markers by pressing F55 on the remote control. The message **Chapter marker inserted** will appear on the screen.

Hiding chapters

Certain chapters are visible. You can hide chapters or make them visible again on playback. In F55 mode so-called hidden chapters are displayed in a dimmed shade.

- In play mode press F55 on the remote control to call up the F55 menu.

- Select **Current chapter** with OK or a downward cursor.
- Select **Visible or Hidden** with the right cursor key.
- You can toggle between **Visible** and **Hidden** directly from any line in the F55 menu with the **SELECT** key on the remote control.

Deleting chapter markers

You can combine a chapter with the previous chapter in the current title by deleting this chapter at the beginning of the current chapter.

- In play mode press F55 on the remote control to call up the F55 menu.
- Select **Delete chapter marker**.
- Press OK on the remote control to confirm.

You can delete all chapter markers (markedly just automatically generated) in the current title.

- In play mode press F55 on the remote control to call up the F55 menu.
- Select **Delete chapter markers**.
- Press OK on the remote control to confirm.

The message **This will delete all markers in this title** will appear.

- Press OK on the remote control to confirm.

Deleting markers will appear.

Changing the index picture

You can define the current video frame as a thumbnail picture to be used for this title's entry in the Index Picture Screen.

- In play mode press F55 on the remote control to call up the F55 menu.
- Select **How index picture**.
- You can use **R PAUSE** and **L PAUSE** to switch choose the desired picture.
- Press OK on the remote control to confirm.
- The message **This will update the index picture** will appear.
- Press OK on the remote control to confirm.

Updating menu will appear.

Dividing a title

On a DVD-RW disc you split one title into two separate titles. (On DVD+R this is not possible.)

- On the Index Picture Screen, select the title you want to divide.
- Press PLAY.
- At the point where you want to split the title, press PAUSE.
- Press F55.

The **Parental Screen Selection** menu is shown.

- Select **Divide title**.

- Press OK on the remote control to confirm.

Dividing title is shown until the action is completed. This divide operation cannot be undone.

The Index Picture Screen will show two new titles of title. Both will have the same name. If you want to change the name, you can do so in the title settings menu. For one of the two resulting titles, a new index picture is created.

If you want to divide one title into more than two titles, use the above procedure several times.

Append recording

This function is only available on DVD+RW discs.

If you want to append a video recording to an earlier recorded title, do the following:

- On the Index Picture Screen, select the title to which you want to add a video recording.
- Press PLAY.
- At the point where you want to append the title, press PAUSE.
- To record the video right, please press MONITOR.
- Press RECORD (on the recorder or RECSTR (on the remote control)).

The video recording will now be recorded from this point. Video material saved till point is overwritten. This may include other following title's current title.

Any remaining video material left, is not overwritten, which may include the last part of the original title, if recorded. You can always delete titles from the Index Picture Screen.

Troubleshooting

English

Español

If it appears that the DVD recorder is faulty, first consult this checklist. It may be that something has been overlooked. Under no circumstances attempt to repair the system yourself; this will invalidate the warranty. (Look for the specific symptoms). Then perform only the actions listed to remedy the specific symptoms.

Symptom	Remedy
The recorder does not respond to the remote control.	<ul style="list-style-type: none"> The remote control may be configured for a second DVD recorder. Hold SELECT + 1 pressed simultaneously to revert to DVD recorder 1. Aim the remote control directly at the sensor on the front of the recorder. Avoid all obstacles which may interfere with the signal path. Replace or replace the batteries.
Keys on the DVD recorder do not work.	<ul style="list-style-type: none"> The DVD recorder may still be in VHS mode. See First time setup page. Otherwise disconnect and reconnect the DVD recorder from the mains. If this does not solve the problem, check if the remote control still works. If no, the recorder is probably in trade mode. Disconnect the recorder from the mains and reconnect it while holding OPEN/CLOSE and STOP pressed.
No picture.	<ul style="list-style-type: none"> Check if the TV set is switched on. Check the video connection. While the DVD recorder is connected to the TV set via play, you may not see the picture. If the DVD recorder after selecting the correct programme number on your TV set sees a timer recording takes place, this lets you still view another device (e.g. a satellite receiver).
Distorted picture, distorted sound.	<ul style="list-style-type: none"> Check the disc for fingerprints and clean with a soft cloth, wiping from centre to edge. Sometimes a small amount of picture distortion may appear. This is not a malfunction.
Recorder does not play disc.	<ul style="list-style-type: none"> Ensure the disc label is upturned and that the right disc type is inserted. Close the disc. Check if the disc is defective by trying another disc. Check if the region code of the disc matches the region code of the recorder. (pre-recorded DVD discs only). See Picking a pre-recorded DVD Video disc. Check if Child Lock is activated.
Distorted sound from HiFi amplifier.	<ul style="list-style-type: none"> Check to make sure that no additional speakers are linked to speaker phone input. Check to make sure that analogue input of the amplifier is not connected to the digital output of the DVD recorder.
Distorted or black and white picture with DVD or Video CD disc.	<ul style="list-style-type: none"> The disc format is not according to the TV set (see FORMAT).
No audio at digital output.	<ul style="list-style-type: none"> Check the digital connection. Check the settings menu to make sure that the digital output is active. Check if the audio format of the selected audio language matches your receiver's capabilities.
Recorder does not respond to all operating commands during playback of a DVD Video disc.	<ul style="list-style-type: none"> Some operations are not permitted by the disc. Refer to the instructions in the disc's log.

The recorder does not record timer programme.

No new title can be recorded.

Service codes on the display.

'Disc warning' message on screen.

'Disc error' message on screen.

Disc errors.

Two languages are 'mixed' when recording from a stereo VCR.

The disc cannot be erased because the Index Picture Screen does not appear.

The Index Picture Screen does not appear but the titles on the disc can still be played.

A DVD player shows the Index Picture Screen but does not react to the **P.PLAY** key.

Make sure that the recorder is switched to standby before the timer starts.

Check if the maximum number of titles has been reached (message 'Too many titles' on screen). If so, delete a title next to a free space.

Check if the disc is write protected. If so, unlock the disc by the disc writing menu message 'Disc locked' on screen.

Check if the DVD-R disc has been finalized. If so, no new titles can be recorded anymore.

Clear the disc. The recording was most probably done correctly.

A write error has occurred, but it could be corrected. No user action is required.

A write error has occurred from which the recorder could not recover. Replace the disc and clean it if necessary (refer to **Cleaning disc** for cleaning instructions). Record overwriting again over the same part of the disc to see if the problem is solved.

A disc might be damaged because of dust, scratches or fingerprints. If the disc cannot be accessed anymore, use the back-up disc erase procedure to regain access. Proceed as follows:

1. Clean one disc.
2. Put one in the player. Do not close the tray.
3. Press and hold **CLEAR** for several seconds until the tray closes.

When the TV set does not automatically detect the dual-language right/left/right audio balance on the TV set to amplify the one or the other language:

1. Open the tray while having the disc in.
2. Hold **CLEAR** pressed for around 5 seconds until the tray opens. The disc is technically not yet erased but you can start a new recording like on a blank disc.

• Carefully handle the disc. Clean one day, insert the day.

• Choose Adapt to own disc format (see **User Preferences - Features**).

• Press **■ STOP** to exit the Index Picture Screen, then press **■ PLAY**.

A DVD-RW disc does not play on a certain DVD player

- There are DVD-RW discs that will not play recording mode with a DVD Recorder. With a special procedure the recorder will write the contents for some players. Proceed as follows:
 1. Put the disc in the drawer (do not close the tray).
 2. Press and hold the **I** key on the remote control for several seconds until the top display line has disappeared.
 3. After three long beeps, you may perform the same procedure with the **I** key on the remote control.

Note:

Modifying the disc can solve the problem for specific player model but playback in other DVD players is no longer possible.
It is therefore recommended to use the procedure carefully and only when needed.

- To return the disc to the original state, follow the same procedure with the **I** key on the remote control.

Note:

To achieve maximum compatibility, make sure the disc contains at least 3 minutes recorded in PQ mode, 10 minutes in D+D mode, or 120-150 minutes in LP/DLP mode in D+D mode in D+D mode, however whenever ideal compatibility with DVD player refer to 'Troubleshooting' in the user manual for tips.

Diagnosis programme

If the recorder is still faulty, you can start the Diagnosis programme in its memory.

You can operate the diagnosis programme by following the instructions step by step.

Instructions

- Unplug the power cord of the recorder.
- Press the **P** **PLAY** key and keep them pressed while you plug the recorder.
 - Once the display message **REC** appears together with a double tone, the recorder indicates the termination of the test when zero is reached.
 - After a few minutes the message on the local display changes from **REC** to **REC** or **REC**.
 - If the message **REC** appears on the display, there is apparently a fault in your recorder and your recorder should be repaired.
- Contact your dealer or call for Customer Care Centre for the nearest Service Repair Shop in your Country. The phone number is given in your warranty booklet.
- If the message **REC** appears on the display, there is apparently no fault in your recorder, in this case the failure can be caused by incorrect implementation of the operating instructions or a wrong disc is used or your recorder is not correctly connected. In this case you should contact your dealer or the Philips Customer Care Centre for further assistance in solving the problem.
- If the problem remains, then contact your Philips Customer Care Centre.

System limitations

DVD-RW and DVD-R discs may not play on some DVD video players.

A DVD-RW video file that has been recorded on a different type of hard disk recorder can be played but may not provide all functions currently available to DVD-RW discs, such as the on-screen menu, the disc setting menu, the title settings, and editing. Refer to 'Help' on screen if the file is non-compliant, the value cannot be changed.

When using manual recording, the DVD recorder will warn before changing the format of the disc or removing recorded data. When using timer recording however, the DVD recorder will always start to record, unless the disc is write-protected. Manual, off-timer and timer data recorded on a different speed (e.g. a PC), may be lost.

Because of the Variable Bit Rate, a DVD may take up less or more space than the parameters tell, even though the duration is the same. As a result, a part of the original title may remain as a part of the next title may be lost. The maximum duration is five minutes.

After a power interruption during recording, the Index Picture Screen will ring and mismatch the actual index content in the disc. The last recorded title may be lost.

Glossary

The section explains most important terms, abbreviations, and acronyms used in this document.

English

Español

Term	Explanation
AC-3	Auto Coding 3, also known as Dolby Digital. Multi-channel digital audio compression system from Dolby Labs.
AV	Audio Video.
Chapter	A part of a title.
Disc Bar	A graphical representation of the contents of a DVD+RW disc.
Disc Pointer	An arrow indicating the current playback position on the DVD+RW disc displayed on the main bar.
DTS	Digital Theater System. A high-end multi-channel audio compression format.
DV	Digital Video. A consumer format for high-quality video. It's the raw DV format that is converted into MPEG-2 Video when recorded on DVDRW discs.
DVD	Digital Versatile Disc.
DVD+R	DVD+Recordable. The write-once disc standard used by the DVD recorder.
DVD+RW	DVD+Rewritable. One of the disc standards used by the DVD recorder.
EasyLink	When two TV and your video recorder are paired with the feature, they exchange information to adjust certain settings to each other, such as the TV channel order and other user preferences.
FSS	Favorite Item Selection, see Managing disc content.
LINK	Also known as TwinView and IEEE 1394. A selective transfer of high-bandwidth digital signals, as used by Digital Video cameras.
Index Picture Screen	A screen that gives an overview of a DVD+RW disc, with index pictures for each programme recording.
MPEG	Moving Picture Experts Group. A collection of compression systems for digital audio and video.
MixTV™ Link	A system that enables easy programming of a video recorder via a TV set. Also see EasyLink.
NICAM	System for reception of digital stereo-TV sound.
NTSC	See TV system.
OSD	On-screen Display. The menu interface by which you can control the DVD recorder via the TV screen.
OTR	One-Touch Recording. With this feature you can easily start recording the passing just one button, and select the record off time in intervals of 30 minutes.

PAL	See TV system.
PBC	Playback Control. A special feature on a VCD 1.1 or Super VCD disc that enables interactive use.
PCH	Picture Channel.
PDC	Program Delivery Control.
RGB	Red/Green/Blue. A high-quality video connection where red, green and blue components of a video signal are passed through separate wires.
scart cable	Also known as EuroAV cable. This standard cable is an easy way to connect various AV devices and televisions. It connects to audio and video & component signal signals.
SECAM	See TV system.
S-video	So-called also called S-VIDEO or Super-VHS. A high-quality video connection standard.
SVCD	Super Video Compact Disc.
TICK	It is the name given to the unit of recording on the disc. A tick typically represents one recording.
TrueSound	A system for calculating multi-channel sound reproduction via a multi-channel setup by SRS Labs, Inc.
TV system	There are various systems for transmitting television signals, for example PAL, PAL-M, SECAM, SECAM-DK, NTSC, etc. The TV system is country dependent.
VCD	Video Compact Disc.
VCR	Video Cassette Recorder.
VIDEO FILE	A system for which you can easily programme home recording by entering a single PicCode number linked to the programmed recording in your TV guides.
VPS	Video Programming System.

- 244, 063, 136
Goodmans 064, 099, 206,
..... 398, 063, 244, 401
Gorenje 397
Gradient 063, 080
Granada 064, 099, 244
Grandin 309
Grundig 097, 581, 064
Grumpy 206, 207
HCM 036, 309
Hallmark 205
Hansatic 064, 347
Harley Davidson 206
Harman/Kardon 081
Harvard 207
Hinari 036, 063, 064, 245,
..... 206
Hiawa 309, 482
Hitachi 136, 071, 172, 244,
..... 063, 063, 132
Huayu 243, 401
Hypson 291, 064, 309
ICE 244, 291, 398
ICeS 245
ITS 398
Imperial 445, 397
Indiana 064
Infinity 081
Inno Hit 099
Innova 064
Inteq 044
- 277, 677
Matsushita 039, 064
Mediator 172, 205
Megatron 205, 036, 083, 177,
..... 181, 277, 490
Memorox 064, 099, 244
Midland 044, 066, 074, 078
Minerva 097, 581
Minutec 048
Mitsubishi 063, 135, 177, 205,
..... 046, 120
Mivar 243
Motorola 120
Multitech 036, 128, 207, 243,
..... 244
NAO 183, 193, 205
NEC 057, 063, 046, 083, 482
NEI 064, 458
NTC 119
Neckermann 064, 581
Nesco 206
Netsat 064
Nikkai 064, 062, 245, 099, 243,
..... 291
Nikko 205, 057, 119
Nolike 129
Nordmende 136
Onwa 207
Optimus 277, 193, 181, 677
Optonica 120, 192
Orion 321, 490, 064, 206, 263,
..... 347, 348
- 192, 202, 057,
..... 205, 066, 181, 046,
..... 074, 083
RadioShack 064, 099
Rank Arena 063
Realistic 192, 207, 181, 057,
..... 066, 205, 046, 063
Rexox 064
Rex 233, 291
Rhapsody 243
Roadstar 036, 291, 245, 445
Runte 044, 057
SBR 039, 064
SEG 244, 063, 291
SEI 129, 037, 321
SKY 064
SSS 046, 207
Saba 136
Saito 036, 291, 458
Sambors 129
Samore 057, 066
Samsung 064, 046, 205, 244,
..... 291, 397, 036, 057,
..... 066, 083, 087, 117
Samsua 066
Sandra 243
Sansai 478
Sansui 490
Sanyo 181, 063, 099
Schneider 064, 245, 398
Scimitsu 046
- 244
Tec 244
Technema 347
Technics 078, 277, 677
Technol Ace 206
Technoskop 079, 083
Teknika 081, 206, 207, 046,
..... 066, 119, 063, 087, 177
Telefunken 136, 083
Telemaster 347
Teletech 036
Teleton 233, 063, 244
Tensai 245, 321, 347
Texet 243, 245
Thomson 136
Thorn 064, 062, 099
Tomashi 309
Toshiba 062, 183, 063, 097,
..... 087, 181
Totlevision 066
Uher 233, 347
Ultravox 129
Universum 132, 064, 291, 397
Vector Research 057
Vestel 064
Victor 080
Videotechnic 244
Vidikron 081
Vidtech 046, 063, 205
Vision 243, 347
Waltham 244
Wards 081, 192, 205, 046

Appendix

Using your DVD recorder remote control with your TV set

Your DVD recorder remote control has been designed
to work with most brands
of television sets.

Some other brands require you to use the DVD recorder's
remote control. Please refer to the following
list for details.

Some brands require you to use the DVD recorder's
remote control. Please refer to the following
list for details.

Alternate procedure

Some other brands require you to use the DVD recorder's
remote control. Please refer to the following
list for details.

Some brands require you to use the DVD recorder's
remote control. Please refer to the following
list for details.

For remote control codes by make

- | | | | | | |
|----------------|-----|---------------------|-----|-----------------|-----|
| AEG | 031 | CNC | 031 | Philips | 032 |
| Alba | 030 | Clarity | 032 | Siemens | 032 |
| Amstrad | 030 | Compaq | 033 | Sony | 033 |
| Argos | 030 | Conceptronic | 033 | Stamicor | 033 |
| Asus | 030 | Crucial | 033 | Stamford | 033 |
| BenQ | 030 | Digital | 033 | Starline | 034 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 035 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 036 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 037 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 038 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 039 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 040 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 041 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 042 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 043 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 044 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 045 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 046 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 047 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 048 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 049 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 050 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 051 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 052 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 053 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 054 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 055 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 056 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 057 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 058 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 059 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 060 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 061 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 062 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 063 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 064 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 065 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 066 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 067 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 068 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 069 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 070 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 071 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 072 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 073 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 074 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 075 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 076 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 077 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 078 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 079 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 080 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 081 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 082 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 083 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 084 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 085 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 086 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 087 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 088 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 089 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 090 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 091 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 092 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 093 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 094 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 095 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 096 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 097 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 098 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 099 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 100 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 101 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 102 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 103 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 104 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 105 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 106 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 107 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 108 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 109 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 110 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 111 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 112 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 113 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 114 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 115 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 116 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 117 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 118 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 119 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 120 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 121 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 122 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 123 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 124 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 125 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 126 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 127 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 128 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 129 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 130 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 131 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 132 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 133 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 134 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 135 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 136 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 137 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 138 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 139 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 140 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 141 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 142 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 143 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 144 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 145 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 146 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 147 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 148 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 149 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 150 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 151 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 152 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 153 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 154 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 155 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 156 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 157 |
| BenQ | 030 | Dot Matrix | 033 | Starline | 158 |
| BenQ | 030 | Dot Matrix | | | |

Notes

English

Español

Philips Customer Care Centers	
Austria tel: 43-1-38110 001 200	Luxembourg tel: 352-404081213
Belgium tel: 32-2-670 222 300	Netherlands tel: 0900-8406
Croatia tel: 008 81 814	Norway tel: 12-748 250
Finland tel: 358-09-6158 0150	Portugal tel: 352-1-4163063
France tel: 33-1-625 888 789	Spain tel: 34-302-113 384
Germany tel: 49-0-180-535 5767	Sweden tel: 08 5935 2250
Greece tel: 30-0-0800-3122 1200	Switzerland tel: 0844-800 544
Ireland tel: 351-1-7640291	United Kingdom tel: 44-0-238 663 6350
Italy tel: 800-820028 (Toll Free)	Poland tel: 48-22-571 0571

Notes

三

Specifications

4. Mechanical Instructions

4.1 Service Positions

4.1.1 Front

Front

Figure 4-1

4.1.2 DVIO board

To put the DVIO board in a service position, an extender board must be used. This extender board can be ordered with codenumber 3104 128 07770.

DVIO Extender

Figure 4-2

DVIO 1

Figure 4-3

DVIO 2

Figure 4-4

4.1.3 Digital board

After demounting of DVIO board, the top side of the digital board is in reach. To reach the bottom side of the digital board, the DVDR module must be demounted together with the digital board. Connected to each other, the assembly can be set in a service position. In this position, the bottom side of the digital board and the servo board are in reach to be serviced.

Digital 1

Figure 4-5

Digital 2

Figure 4-6

4.1.4 Analog board

To put the analog board in service position, demount the assembly of analog board and backplate as follows:

1. Remove 3 screws from the backplate to the frame
2. Remove the screw from the backplate to the mains inlet of the power supply
3. Remove the screw of the analog board to the frame
4. Release the snaps of the 4 spacers of the analog board to the frame.

Turn the assembly of the backplate and the analog board against the loader.

Analog Europe

Figure 4-7

Analog NAFTA

Figure 4-8

4.1.5 Cable Routing

4.2 Exploded View of the Front Assembly

Front EV

CL 26532011_O19.eps
160102

Figure 4-9

4.3 Dismantling Instructions

Dismantling Instructions

Figure 4-10

4.4 Exploded View of the Set

Complete Set EV

Figure 4-11

5. Diagnostic Software and Faultfinding Trees

Due to the complexity of the DVD recorder, the time to find a defect in the recorder can become long. To reduce this time, the recorder has been equipped with Diagnostic and Service software (DS). The DS offers functionality to diagnose the DVDR hardware and tests the following:

- Interconnections between components
- Accessibility of components
- Functionality of the audio and video paths

This functionality can be accessed via several interfaces:

1. End user/Dealer script interface
2. Player script interface
3. Menu and command interface

5.1 End User/Dealer Script Interface

5.1.1 Description

The End user/Dealer script interface gives a diagnosis on a stand alone DVD recorder; no other equipment is needed. During this mode, a number of hardware tests (nuclei) are automatically executed to check if the recorder is faulty. The diagnosis is simply a "fail" or "pass" message. If the message "FAIL" appears on the display, there is apparently a failure in the recorder. If the message "PASS" appears, the nuclei in this mode have been executed successfully. There can be still a failure in the recorder because the nuclei in this mode don't cover the complete functionality of the recorder.

5.1.2 Contents

Figure 5-1

The End user/Dealer script executes all diagnostic nuclei that do not need any user interaction and are meaningful on a standalone DVD recorder. The nuclei called in the End user/Dealer script are the following:

Counter	Nucleus	Name	Description
22	104	HostdSdramWrR	checks all memory locations of the 4MB SDRAM
21	106	HostdDramWrR	checks all the DRAM connected to the microprocessor of the digital board
20	123	HostdI2cNvram	checks the data line (SDA) and the clock line (SCL) of the I2C bus between the host decoder and NVRAM
19	202	SAA7118I2c	checks the interface between the Host I2C controller and the AVENC SAA7118 Video Input Processor
18	200	VideoEncI2c	checks the interface between the host I2C controller and Empress SAA6752
17	207	AudioEncI2c	checks the I2C connection between the host decoder and Empress SAA6752
16	204	AudioEncAccess	tests the HIO8 interface lines between the host decoder and the audio encoder
15	203	AudioEncSramAccess	checks the access of the SRAM by the audio encoder (address and data lines).
14	205	AudioEncSramWrR	tests the SRAM connected to the audio encoder
13	206	AudioEncInterrupt	tests the interrupt line between the host decoder and the audio encoder
12	300	VsmAccess	checks whether the VSM interrupt controllers and DRAM are accessible
11	303	VsmInterrupt	checks both interrupt lines between the VSM and the host decoder
10	302	VsmSdramWrR	tests the entire SDRAM of the VSM
9	1400	Clock11_289MHz	switches the A_CLK of the micro clock to 11.2896 MHz
8	1401	Clock12_288MHz	switches the A_CLK of the micro clock to 12.288 MHz
7	601	BeS2Bengine	checks the S2B interface with the Basic Engine by sending an echo command
6	500	DisplayEcho	checks the interface between the host processor and the slave processor on the display board
5	700	AnalogueEcho	checks the interface between the host processor and the microprocessor on the analogue board
4	711	AnalogueNvram	checks the NVRAM on the analogue board
3	706	AnalogueTuner	checks whether the tuner on the analogue board is accessible
2	901	LoopAudioUserDealer	This nucleus tests the components on the audio signal path The host decoder - The analogue board - The audio encoder - The VSM On the analogue board the audio is internally looped back to the digital board
1	906	LoopVideoUserDealer	Nucleus for testing the components on the video signal system path: - The VIP - The video encoder - The VSM - The host decoder - The analogue board On the analogue the video signal is internally routed back to the digital board.

5.2 Player Script Interface

5.2.1 Description

The Player script will give the opportunity to perform a test that will determine which of the DVD recorder's modules are faulty, to read the error log and to perform an endurance loop test. To successfully perform the tests, the DVD recorder must be connected to a TV set.

To be able to check results of certain nuclei, the player script expects some interaction of the user (i.e. to approve a test picture or a test sound). Some nuclei (e.g. nuclei that test functionality of the DVDR module) require that a DVD+RW disc is inserted.

Only tests within the scope of the diagnostic software will be executed hence only faults within this scope can be detected.

5.2.2 Structure of the Player Script

The player script consists of a set of nuclei testing the hardware modules in the DVD recorder: the Display PWB, the Digital PWB, the Analogue In/Out PWB and the DVDR module. Nuclei run by the player test need some user interaction; in the next table this interaction is described. The player test is done in two phases:

- Interactive tests: this part of the player test depends strongly on user interaction and input to determine nucleus results and to progress through the full test. Reading the error log information can be useful to determine any errors that occurred recently during normal operation of the DVD player.
- The loop test will perform the same nuclei as the dealer test, but it will loop through the list of nuclei indefinitely.

STEP	DESCRIPTION	NUCLEUS
1	Press OPEN/CLOSE and PLAY at the same time and POWER ON the recorder to start the playerscript	2
2	The local display shows FPSEGMENTS . Press PLAY to start the test. First the <i>starburst pattern</i> is lit, then the <i>horizontal segments</i> are lit, followed by the <i>vertical segments</i> and the last test is <i>light all segments</i> test. After each of the 4 tests the user has to confirm that the correct pattern was lit. Press PLAY to confirm that the correct pattern was lit (four times if the FPSEGMENTS test was successful). Press RECORD to indicate that the correct pattern was not successfully lit. Press STOP to skip this nucleus.	502
3	The local display shows FPLABELS . Press PLAY to start the test. Press PLAY to confirm that all labels are lit. Press RECORD to indicate that not all labels are lit. Press STOP to skip this nucleus.	503
4	The local display shows FPLIGHT ALL . Press PLAY to start the test. Press PLAY to confirm that everything was lit. Press RECORD to indicate that not all patterns are lit. Press STOP to skip this nucleus.	520
5	The local display shows FPLED . Press PLAY to start the test. Press PLAY to confirm that the led is lit. Press RECORD to indicate that the led is not lit. Press STOP to skip this nucleus.	504
6	The local display shows FFLAP OPEN . Press PLAY to start the test. Press PLAY to confirm that the flap has opened. Press RECORD to indicate that the flap did not open. Press STOP to skip this nucleus.	522
7	The local display shows FPKEYBOARD . Press PLAY to start the test. Attention all keys have to be pressed to get a positive result! Press PLAY for more than one second to confirm that all the keys were pressed and shown on the local display. If not all the keys were pressed, a FAIL message will appear on the local display. Press RECORD for more than one second to indicate that not all keys were pressed and shown on the local display. Press STOP for more than one second to skip this nucleus.	505
8	The local display shows FPREMOTE CONTROL . Press PLAY to start the test. Press PLAY to confirm that a key on the remote control was pressed and shown on the local display. Only one key has to be pressed to get a successful result. Press RECORD to indicate that the key on the remote control was pressed but not shown on the local display. Press STOP to skip this nucleus.	506
9	The local display shows FPDIMMER . Press PLAY to start the test. Press PLAY to confirm that the text on the local display was dimmed. Press RECORD to indicate that the text on the local display was not dimmed. Press STOP to skip this nucleus.	518
10	The local display shows FPBEEPER . Press PLAY to start the test. Press PLAY to confirm that the beeper on the front panel sounded. Press RECORD to indicate that the beeper on the front panel did not sound. Press STOP to skip this nucleus.	514
11	The local display shows FFLAP CLOSE . Press PLAY to start the test. Press STOP to skip this nucleus.	523
12	The local display shows ROUTE VIDEO . Press PLAY to start the test. Press STOP to skip this nucleus.	712
13	The local display shows ROUTE AUDIO . Press PLAY to start the test. Press STOP to skip this nucleus.	713
14	The local display shows COLOUR-BAR ON . Press PLAY to start the test. Press STOP to skip this nucleus.	120

STEP	DESCRIPTION	NUCLEUS
15	The local display shows PINK NOISE ON . Press PLAY to start the test. Press STOP to skip this nucleus.	115
16	The local display shows PINK NOISE OFF . Press PLAY to start the test. Press STOP to skip this nucleus.	116
17	The local display shows SINE ON . Press PLAY to start the test. Press STOP to stop the sine. Press STOP to skip this nucleus.	117
18	The local display shows COLOUR-BAR OFF . Press PLAY to start the test. Press STOP to skip this nucleus.	121
19	The local display shows BERESET . Press PLAY to start the test. Press STOP to skip this nucleus.	603
20	The local display shows BETRAY OPEN . Press PLAY to start the test. Press STOP to skip this nucleus.	616
21	The local display shows BETRAY CLOSE . Press PLAY to start the test. Press STOP to skip this nucleus.	615
22	The local display shows BEWRITE READ . Press PLAY to start the test. Press STOP to skip this nucleus.	617
23	The local display shows BETRAY OPEN . Press PLAY to start the test. Press STOP to skip this nucleus.	616
24	The local display shows BETRAY CLOSE . Press PLAY to start the test. Press STOP to skip this nucleus.	615
25	The local display shows READ ERRORLOG . Press PLAY to start the test. Press STOP to skip this nucleus. If the player test succeeded, the user/dealer script will start in an endless loop. If the player test failed, the local display will display FAIL and the error code	633

Remark

In case of failure, the display shows " FAIL XXXXXX ". The description of the shown error code can be retrieved in the survey of Nuclei Error Codes (paragraph 5.4). Once an error occurs, it is not possible to continue the player script. Unplug the set and restart the player script. By pressing the STOP key, it is possible to jump over the failure and to continue the player script.

Figure 5-2

Figure 5-3

5.2.3 Error Log

Explanation:

The application errors will be logged in the NVRAM. The maximum number of error bytes that will be visible is 19. The last reported error is shown as DN D0000000, the oldest visible error as D0000000 UP and the errors in between as DN D0000000 UP. DN stands for DOWN, UP stands for UPWARDS. The shown D error codes are identical to the Nuclei Error Codes (paragraph 5.4).

5.2.4 Trade Mode

TRADE MODE

When the recorder is in **Trade Mode**, the recorder cannot be controlled by means of the front key buttons, but only by means of the remote control.

Figure 5-4

5.2.5 Virgin mode

If you want that the recorder starts up in Virgin mode, follow this procedure:

- Unplug the recorder
- plug the recorder again while you keep the STAND BY/ON key pressed
- the set starts up in Virgin mode.

5.3 Menu and Command Mode Interface

5.3.1 Nuclei Numeration

Each nucleus has a unique number of four digits. This number is the input of the command mode.

Figure 5-5

The following groups are defined:

Group number	Group name
0	Basic / Scripts
1	Host decoder (Sti5505 and memory)
2	Audio / video encoder (DVDR only)
3	VSM (DVDR only)
4	NVRAM
5	Front Panel
6	Basic Engine
7	Analogue board (DVDR only)
8	DVIO (DVDR only)
9	Loop nuclei (DVDR only)
10	Library sub nuclei (I2C nuclei)
11	User interface
12	Furore (SACD only)
13	DAC (SACD only)
14	Miscellaneous

5.3.2 Error Handling

Each nucleus returns an error code. This code contains six numerals, which means:

Figure 5-6

The nucleus group numbers and nucleus numbers are the same as above.

5.3.3 Command Mode Interface

Set-Up Physical Interface Components

Hardware required:

- Service PC
 - one free COM port on the Service PC
 - special cable to connect DVD recorder to Service PC
- The service PC must have a terminal emulation program (e.g. OS2 WarpTerminal or Procomm) installed and must have a free COM port (e.g. COM1). Activate the terminal emulation program and check that the port settings for the free COM port are: 19200 bps, 8 data bits, no parity, 1 stop bit and no flow control. The free COM port must be connected via a special cable to the RS232 port of the DVD recorder. This special cable will also connect the test pin, which is available on the connector, to ground (i.e. activate test pin).

Code number of PC interface cable: 3122 785 90017

Activation

Plug the recorder to the mains and the following text will appear on the screen of the terminal (program):

Figure 5-7

The first line indicates that the Diagnostic software has been activated and contains the version number. The next lines are the successful result of the SDRAM interconnection test and the basic SDRAM test. The last line allows the user to choose between the three possible interface forms. If pressing C has made a choice for Command Interface, the prompt ("DD:>") will appear. The diagnostic software is now ready to receive commands. The commands that can be given are the numbers of the nuclei.

Command Overview

We provide an overview of the nuclei and their numbers. This overview is preliminary and subject to modifications.

Host Decoder [01]

[xx yy] Number	Nuclei
100	Checksum Flash
101	Flash Write Access 1
102	Flash Write Access 2
103	Flash Write Read
104	SdRam Write Read
105	SdRam Write Read Fast
106	Dram Write Read
107	Dram Write Read Fast
108	Hardware Version
109	Mute On
110	Mute Off
115	Pink Noise On
116	Pink Noise Off
117	Sine On
118	Sine Burst 1kHz
119	Sine Burst 12kHz
120	Colour-bar On
121	Colour-bar Off
122	NvramWrR
123	NvramI2c
130	Boot Version
131	Application Version
132	Diagnostics Version
133	Download Version
134	Write / read I2C message to / from digital board
135	Video Test Signal On
136	Video Test Signal Off
137	Macrovision Off

Audio Video Decoder [02]

[xx yy] Number	Nuclei
200	Video Encoder I2C
202	SAA7118 I2C
203	Audio Encoder SRAM Access
204	Audio Encoder Access
205	Audio Encoder SRAM Write Read
206	Audio Encoder Interrupts
207	Audio Encoder I2C
208	SAA7118 select input
209	Empress Version

VSM [03]

[xx yy] Number	Nuclei
300	Register Access
301	SDRAM Access
302	SDRAM Write Read
303	Interrupt lines
304	VSM Interconnection
305	UART

NVRAM [04]

[xx yy] Number	Nuclei
400	Reset
401	Read

[xx yy] Number	Nuclei
402	Modify
403	UniqueNr Read
404	Read Error Log
407	Reset Error Log
409	Line2 Region-Code Reset
410	UniqueNr Store

Front Panel [05]

[xx yy] Number	Nuclei
500	Echo
501	Version
502	Segment
503	Label
504	Led
505	Keyboard
506	Remote-Control
507	Segment Starburst
508	Segment Vertical
509	Segment Horizontal
514	Beeper
515	Discbar
516	Discbar Dots
517	Vu / Grid
518	Dimmer
519	Blinking
520	Light All Segments
522	Flap Open
523	Flap Close

Basic Engine [06]

[xx yy] Number	Nuclei
600	S2B Pass
601	S2B Echo
602	Version
603	Reset
604	Focus On
605	Focus Off
606	Disc Motor On
607	Disc Motor Off
608	Radial On
609	Radial Off
615	Tray In
616	Tray Out
617	Write Read
618	Write Read Endless Loop
619	Selftest
620	BE Test
621	Laser Test
622	Spindle (Disc) Motor Test
623	Focus Test
624	Sledge Motor Test
625	Sledge Motor Slow
626	Tilt
627	EEPROM Read
628	EEPROM Write
629	Optimise Jitter
630	Radial ATLS Calibration
631	Get Statistics Information
632	Reset Statistics Information

[xx yy] Number	Nuclei
633	BE Read Error Log
634	BE Reset Error Log
638	Get Self Test Result
639	Radial Initialisation
640	Get OPU info
641	Write read +R
642	Write read +R endless loop

Analog Board [07]

[xx yy] Number	Nuclei
700	Echo
703	Boot Version
704	Hardware Version
705	Clock Adjust
706	Tuner
707	Frequency Download
708	Data Slicer
709	Sound Processor
710	AV Selector
711	Nvram
712	Route Video
713	Route Audio
715	Set Slash Version
716	Application Version
717	Diagnostics Version
718	Download Version
720	Bargraph Level Adjustment
721	Clock correction
722	Clock reference
723	Re-virginise Recorder
724	Flash Checksum
725	Tuner frequency selection
727	Set virgin bit
728	Clear Virgin Bit
729	Write / read I2C message to / from analogue board
730	Store external presets
731	Get slash version
732	AFC Reference Voltage Tuner

DVIO [08]

[xx yy] Number	Nuclei
800	Check DVIO board presence
801	Reset DVIO
802	DVIO Access
803	Get DVIO error codes
804	Get DVIO module Ids
805	Execute DVIO module SelfTest
806	Set DVIO led on.
807	Set DVIO led off.

Loop Nuclei [09]

[xx yy] Number	Nuclei
900	Digital Audio Loop
901	User / Dealer Audio Loop
902	Digital Video Loop
903	Digital Video VBI Loop
904	System Video Loop
905	System Video VBI Loop

[xx yy] Number	Nuclei
906	User / Dealer Video Loop
907	User / Dealer Video VBI Loop
908	System Audio Loop SCART
909	System Audio Loop CINCH
910	Digital DVIO Video Loop
911	System Video Vip

Miscellaneous [14]

[xx yy] Number	Nuclei
1400	Clock 11.289 MHz
1401	Clock 12.288 MHz
1412	Progressive Scan I2C
1413	Progressive Scan test image on
1414	Progressive Scan test image off
1415	Progressive Scan Route Enable
1416	Progressive Scan Route Disable

Scripts [00]

[xx yy] Number	Nuclei
1	UserDealer Script
2	Player Script

5.3.4 Menu Mode Interdace

Activation

Plug the recorder to the mains and the following text will appear on the screen of the terminal (program):

```
DVD Video Recorer Diagnostic Software version 48
Basic SDRAM Data bus test passed
Basic SDRAM Address bus test passed
Basic SDRAM Device test passed

(M) enu, (C) ommand or (S) 2B-interface? [M] : @ M ↵

Main Menu

1. Digital Board      ->
2. Analogue Board    ->
3. Front Panel        ->
4. Basic Engine       ->
5. DVIO                ->
6. Progressive Scan Board ->
7. Loop tests          ->
8. Log                 ->
9. Scripts             ->

Select>
```

Figure 5-8

The first line indicates that the Diagnostic software has been activated and contains the version number. The next lines are the successful result of the SDRAM interconnection test and the basic SDRAM test. The last line allows the user to choose between the three possible interface forms. If pressing M has made a choice for Menu Interface, the Main Menu will appear.

Menu Structure

The following menu structure is given after starting up the DVD recorder in menu mode. The symbol -> indicates that the current menu choice will invoke the display of a submenu.

Main Menu

- 1.Digital Board ->
- 2.Analogue Board ->
- 3.Front Panel ->
- 4.Basic Engine ->
- 5.DVIO ->
- 6.Progressive Scan Board ->
- 7.Loop Tests ->
- 8.Log ->
- 9.Scripts ->

Digital Board Menu

- 1.Host Decoder ->
- 2.VSM ->
- 3.AVENC ->
- 4.NVRAM ->

Host Decoder Menu

- 1.Flash Checksum
- 2.Flash1 Write Access
- 3.Flash2 Write Access
- 4.Flash Write/Read
- 5.Host SDRAM Write/Read
- 6.Host SDRAM Fast Write/Read
- 7.Host DRAM Write/Read
- 8.Host DRAM Fast Write/Read
- 9.I2C NVRAM
- 10.NVRAM Write/Read
- 11.Engine S2B Echo
- 12.Versions ->
- 13.Audio Mute ->
- 14.Colourbar ->
- 15.Pink Noise ->
- 16.Sine Generate ->

Digital Board Versions Menu

- 1.Hardware Version
- 2.Bootcode version
- 3.Applications Version
- 4.Diagnostics Version
- 5.Download Version

Audio Mute Menu

- 1.Audio Mute On
- 2.Audio Mute Off

Colourbar Menu

- 1.Colourbar On
- 2.Colourbar Off

Pink Noise Menu

- 1.Pink Noise On
- 2.Pink Noise Off

Sine Generate Menu

- 1.Sine On
- 2.Sine Burst 1kHz
- 3.Sine Burst 12kHz

VSM Menu

- 1.Register Access
- 2.SDRAM Access
- 3.VSM SDRAM Write/Read
- 4.Interrupt Lines
- 5.VSM Interconnection
- 6.UART

AVENC Menu

- 1.Empress ->
- 2.Video Input Processors ->

Empress Menu

- 1.Version number

Video Input Processors Menu

- 1.SAA7118 I2C Access

NVRAM Menu

- 1.Read Error Log
- 2.Reset Error Log
- 3.Read DVIO Unique ID

Analogue Board Menu

- 1.Echo
- 2.Obsolete
- 3.Route Video Input back to Digital board
- 4.Route Audio Input back to Digital board
- 5.Flash Checksum
- 6.Versions ->
- 7.Components ->
- 8.Re-virginize Recorder ->

Analogue Board Versions Menu

- 1.Hardware Version
- 2.Bootcode version
- 3.Application version
- 4.Diagnostics version
- 5.Download version

Analogue Components Menu

- 1.Tuner
- 2.Data Slicer
- 3.Sound Processor
- 4.AV Selector
- 5.NVRAM

Analogue Board Re-virginize Menu

- 1.Re-virginize Recorder
- 2.Set Virgin-bit
- 3.Clear Virgin-bit
- 4.Store external presets

Front Panel Menu

- 1.Echo
- 2.Version
- 3.Flap Control ->
- 4.Segment Test ->
- 5.Light Labels
- 6.Led test
- 7.Keyboard test
- 8.Remote Control
- 9.Beep
- 10.Disc Bar
- 11.Disc Bar Dots
- 12.Vu Grid
- 13.Dimmer
- 14.Blink
- 15.Light All Segments

Flap Control Menu

- 1.Open Flap
- 2.Close Flap

Segment Test Menu

- 1.Starburst
- 2.Light Horizontal Segments
- 3.Light Vertical Segments
- 4.Light All Segments

Basic Engine Menu

- 1.Reset
- 2.S2B Pass-through
- 3.S2B Echo
- 4.Focus On
- 5.Focus Off
- 6.Version
- 7.Self Test
- 8.Get Self Test Result
- 9.Basic Engine Test
- 10.Laser Test
- 11.Focus Test
- 12.Tilt Test
- 13.Optimise Jitter
- 14.Statistics Info
- 15.Log >
- 16.Spindle Motor >
- 17.Radial >
- 18.Sledge >
- 19.Tray >

Basic Engine Error Log

- 1.Read Error Log
- 2.Reset Error Log

Basic Engine Spindle Motor Menu

- 1.Spindle Motor On
- 2.Spindle Motor Off
- 3.Spindle Motor Test

Basic Engine Radial Menu

- 1.Radial On
- 2.Radial Off
- 3.Radial Initialisation
- 4.Radial ATLS Calibration

Basic Engine Sledge Menu

- 1.Sledge test
- 2.Sledge test slow

Basic Engine Tray Menu

- 1.Tray In
- 2.Tray Out

DVIO Menu

- 1.Check Presence
- 2.Reset
- 3.Access
- 4.Error Codes
- 5.Module Identifiers
- 6.Led >

DVIO Led Menu

- 1.Led On
- 2.Led Off

Progressive Scan Board Menu

- 1.I2C Access
- 2.Test Image On
- 3.Test Image Off

Loop Tests Menu

- 1.Digital Board Loops >
- 2.User/Dealer Loops >
- 3.System Loops >
- 4.Basic Engine Loops >

Digital Board Loops Menu

- 1.Obsolete
- 2.Digital Video Loop
- 3.Digital Video Loop VBI

User/Dealer Loops Menu

- 1.User/Dealer Audio Loop
- 2.User/Dealer Video Loop
- 3.User/Dealer Video Loop VBI

System Loops Menu

- 1.System Video Loop
- 2.System Video Loop VBI
- 3.System Audio Loop SCART(EURO)
- 4.System Audio Loop CINCH (NAFTA)

Basic Engine Loops Menu

- 1.Basic Engine write read
- 2.Basic Engine write read endless loop

Log Menu

- 1.Read Error Log
- 2.Reset Error Log

Script Menu

- 1.User/Dealer Script
- 2.Player Script

5.4 Nuclei Error Codes

In the following table the error codes will be described.

Error Nr	Error String
10000	"Checksum is OK"
10001	"segment name Checksum doesn't match" or "segment name segment not found"
10100	" "
10101	"FLASH 1 Write access test failed"
10200	" "
10201	"FLASH 2 Write access test failed"
10300	" "
10301	"FLASH write test failed"
10302	"FLASH write command failed"
10303	"FLASH write test done max. number of times"
10400	" "
10401	"HostDec SDRAM Memory data bus test goes wrong."
10402	" HostDec SDRAM Memory address bus test goes wrong."
10403	" HostDec SDRAM Physical memory device test goes wrong."
10500	" "
10501	" HostDec SDRAM Memory data bus test goes wrong."
10502	" HostDec SDRAM Memory address bus test goes wrong."
10503	" HostDec SDRAM Physical memory device test goes wrong."
10600	" "
10601	"HostDec DRAM Memory data bus test goes wrong."
10602	"HostDec DRAM Memory address bus test goes wrong."
10603	"HostDec DRAM Physical memory device test goes wrong."
10700	" "
10701	"HostDec DRAM Memory data bus test goes wrong."
10702	"HostDec DRAM Memory address bus test goes wrong."
10703	"HostDec DRAM Physical memory device test goes wrong."

Error Nr	Error String
10800	"Host Decoder version(cut) number: version number""Digital hardware version"
10801	"Can not find version in FLASH."
10900	""
10901	"Error muting audio"
11000	""
11001	"Error demuting audio"
11500	""
11501	"Init of I2C failed"
11502	"The selection of the clock source failed"
11504	"The demute of the audio failed"
11600	""
11601	"Init of I2C failed"
11602	"The mute of the audio failed"
11700	""
11701	"Init of I2C failed"
11702	"The muting of the audio failed"
11703	"The demute of the audio failed"
11704	"The selection of the clock source failed"
11707	"Setup of Front panel failed"
11708	"Sine on Front panel keyboard failed"
11800	""
11801	"Init of I2C failed"
11802	"The muting of the audio failed"
11803	"The demute of the audio failed"
11804	"The selection of the clock source failed"
11805	"Error cannot start VSM audio in port"
11900	""
11901	"Init of I2C failed"
11902	"The muting of the audio failed"
11903	"The demute of the audio failed"
11904	"The selection of the clock source failed"
11905	"Error cannot start VSM audio in port"
12000	""
12001	"Invalid input"
12100	""
12200	""
12201	"I2C bus busy before start"
12202	"NVRAM access time-out"
12203	"No NVRAM acknowledge"
12204	"NVRAM time-out"
12205	"NVRAM Write/Read back failed"
12300	""
12301	"I2C bus busy before start"
12302	"NVRAM read access time-out"
12303	"No NVRAM read acknowledge"
12304	"NVRAM read failed"
13000	"Bootcode application version : bootversion"
13001	"Can not find version in FLASH."
13100	"Recorder application version : recorderversion"
13101	"Can not find version in FLASH."
13200	"Diagnostics application version : diagversion"
13201	"Can not find version in FLASH."
13300	"Download application version : downloadversion"
13301	"Can not find version in FLASH."
13700	""
13701	"Turning off MacroVision failed"
20000	""
20001	"I2C bus busy before start"
20002	"Video Encoder access time-out"
20003	"No acknowledge from Video Encoder"

Error Nr	Error String
20004	"No data send/received to or from Video Encoder"
20005	"SAA7118 VIP can not be initialised"
20200	""
20201	"I2C bus busy before start"
20202	"SAA7118 VIP access time-out"
20203	"No acknowledge from SAA7118 VIP"
20204	"No data received from SAA7118 VIP"
20300	""
20301	"Error audio encoder SRAM access cannot initialise I2C"
20302	"Error audio encoder SRAM access cannot reset DSP through I2C"
20303	"Error audio encoder SRAM access cannot download boot"
20304	"Error audio encoder cannot download test code"
20305	"Error audio encoder cannot obtain result of test"
20306	"Error audio encoder SRAM access stuck-at-zero data line "
20307	"Error audio encoder SRAM access stuck-at-one data line "
20308	"Error audio encoder SRAM access stuck-at-one address line "
20309	"Error audio encoder SRAM access address line address line x is connected to data line data line y"
20310	"Error audio encoder SRAM access address lines address line x and address line y are connected "
20311	"Error audio encoder SRAM access data lines data line x and data line y are connected "
20312	"Error audio encoder SRAM access illegal data received"
20400	""
20401	"Error audio encoder access cannot initialise I2C"
20402	"Error audio encoder access cannot reset DSP through I2C"
20403	"Error audio encoder accessing ICR register"
20404	"Error audio encoder access stuck-at-zero of data line "
20405	"Error audio encoder access stuck-at-one of data line "
20406	"Audio encoder access data lines data line x and data line y are interconnected "
20500	""
20501	"Error audio encoder SRAM WRR cannot initialise I2C"
20502	"Error audio encoder SRAM WRR cannot reset DSP through I2C"
20503	"Error audio encoder WRR cannot download boot"
20504	"Error audio encoder cannot download test code"
20505	"Error audio encoder SRAM WRR cannot obtain result of test"
20506	"Error audio encoder WRR SRAM stuck-at-zero data bit "
20507	"Error audio encoder WRR SRAM stuck-at-one data bit "
20508	"Error audio encoder WRR SRAM data lines data line x and data line y are connected"
20509	"Error audio encoder WRR SRAM illegal data received"
20600	""
20601	"Error audio encoder interrupt cannot initialise I2C"
20602	"Error audio encoder interrupt cannot reset DSP through I2C"
20603	"Error audio encoder cannot download test code"
20604	"Error occurred accessing VSM"
20605	"Audio encoder interrupt not received"

Error Nr	Error String
20606	"Error occurred while activating the encoder"
20607	"Error audio encoder interrupt cannot initialise em- press"
20608	"Error occurred while getting interrupt reason"
20700	""
20701	"Error audio encoder I2C cannot reset DSP through I2C"
20702	"Error audio encoder cannot download boot"
20703	"Error audio encoder cannot download TEST code"
20704	"Error audio encoder I2C bus busy"
20705	"Error audio encoder I2C cannot write slave ad- dress"
20706	"Error audio encoder I2C no acknowledge re- ceived"
20707	"Error audio encoder I2C cannot send/receive da- ta"
20708	"Error audio encoder received data through I2C was invalid"
20800	""
20801	"I2C access failed."
20802	"SAA7118 VIP can not be initialised."
20803	"Invalid input"
20900	"B1.B2. B3.B4. B5.B6. B7.B8. B9.B10. B11.B12."
20901	"Firmware download of EMPRESS failed"
20902	"I2C bus busy before start"
20903	"EMPRESS access time-out"
20904	"No acknowledge from the EMPRESS"
20905	"No data send to the EMPRESS"
20906	"No data received from the EMPRESS"
30000	""
30001	"VSM SDRAM Bank1 Memory databus test goes wrong."
30002	"VSM SDRAM Bank1 Memory addressbus test goes wrong."
30003	"VSM SDRAM Bank1 Physical memory device test goes wrong."
30004	" VSM SDRAM Bank2 Memory databus test goes wrong."
30005	" VSM SDRAM Bank2 Memory addressbus test goes wrong."
30006	" VSM SDRAM Bank2 Physical memory device test goes wrong."
30007	"VSM SDRAM Bank1 VSM interrupt register A has a -stuck at- error for value:"
30008	"VSM SDRAM Bank2 VSM interrupt register A has a -stuck at- error for value:"
30100	""
30101	"VSM SDRAM Bank1 Memory databus test goes wrong."
30102	"VSM SDRAM Bank1 Memory addressbus test goes wrong."
30103	"VSM SDRAM Bank1 Physical memory device test goes wrong."
30104	" VSM SDRAM Bank2 Memory databus test goes wrong."
30105	" VSM SDRAM Bank2 Memory addressbus test goes wrong."
30106	" VSM SDRAM Bank2 Physical memory device test goes wrong."
30200	""
30201	"VSM SDRAM Bank1 Memory databus test goes wrong."
30202	"VSM SDRAM Bank1 Memory addressbus test goes wrong."

Error Nr	Error String
30203	"VSM SDRAM Bank1 Physical memory device test goes wrong."
30204	" VSM SDRAM Bank2 Memory databus test goes wrong."
30205	" VSM SDRAM Bank2 Memory addressbus test goes wrong."
30206	" VSM SDRAM Bank2 Physical memory device test goes wrong."
30300	""
30301	"VSM interrupt register A has a -stuck at- error for value:"
30302	"VSM interrupt register B has a -stuck at- error for value:"
30303	"Interrupt A wasn't raised."
30304	"Interrupt B wasn't raised."
30305	"Interrupts A and B were raised."
30400	""
30401	"VSM SDRAM Bank1 Memory databus test goes wrong."
30402	"VSM SDRAM Bank1 Memory addressbus test goes wrong."
30403	"VSM SDRAM Bank1 Physical memory device test goes wrong."
30404	" VSM SDRAM Bank2 Memory databus test goes wrong."
30405	" VSM SDRAM Bank2 Memory addressbus test goes wrong."
30406	" VSM SDRAM Bank2 Physical memory device test goes wrong."
30500	""
30501	"Communication with the analogue board fails."
30502	"Echo test to analogue board returned wrong string."
40000	""
40001	"NVRAM Reset; I2C failed"
40100	"NVRAM address = 0xaddress -> Byte value = 0xvalue"
40101	"NVRAM Read; I2C failed"
40102	"NVRAM Read; Invalid input"
40200	""
40201	"NVRAM Modify; I2C failed"
40202	"NVRAM Modify; Invalid input"
40300	"DV Unique ID = id"
40301	"NVRAM Read DV Unique ID; I2C failed"
40400	"\r\n Error log:\r\n errorString \r\n Ö "
40401	"NVRAM error log; I2C failed"
40402	"NVRAM error log is invalid"
40403	"Front panel failed"
40700	""
40701	"NVRAM error log reset; I2C failed"
40900	"Region code Change counter is reset"
40901	"NVRAM region code reset; I2C failed"
41000	""
41001	"NVRAM Store DV Unique ID; I2C failed"
41002	"NVRAM Store DV Unique ID; Invalid input"
50000	""
50007	"Execution of the command on the a nalogue board failed."
50008	"The frontpanel could not be access ed by the ana- logue board."
50009	"The echo from the frontpanel processor was not correct."
50100	" Front panel version: FPversion "

Error Nr	Error String
50102	"Execution of the command on the analogue board failed."
50103	"The frontpanel could not be accessed by the analogue board."
50200	""
50204	"Execution of the command on the analogue board failed."
50205	"The frontpanel could not be accessed by the analogue board."
50206	"The frontpanel did not show a starburst."
50207	"The user skipped the FP-which pattern test."
50208	"The user returned an unknown confirmation: confirmation "
50209	"The frontpanel did not show horizontal segments."
50210	"The frontpanel did not show vertical segments."
50300	""
50304	"Execution of the command on the analogue board failed."
50305	"The frontpanel could not be accessed by the analogue board."
50306	"The frontpanel did not light all labels."
50307	"The user skipped the rest of the FP-label test."
50308	"The user returned an unknown confirmation: confirmation"
50400	""
50404	"Execution of the command on the analogue board failed."
50405	"The frontpanel could not be accessed by the analogue board."
50406	"The LED's could not be turned on."
50407	"The user skipped the rest of the FP-LED test."
50408	"The user returned an unknown confirmation: confirmation"
50500	""
50502	"Front panel Keyboard; test failed"
50503	"Front panel Keyboard; test aborted"
50504	"Front panel Keyboard; not all keys were pressed"
50505	"Front panel keyboard I2C connection failed"
50506	"Unable to get slashversion"
50600	""
50602	"Front panel Remote control; test failed"
50603	"Front panel Remote control; test aborted"
50604	"Front panel remote control; can not access FP"
50605	"Front panel remote control; no user input received"
50700	""
50701	"Execution of the command on the analogue board failed."
50702	"The frontpanel could not be accessed by the analogue board."
50703	"The frontpanel did not show a starburst."
50704	"The user skipped the FP-starburst test."
50705	"The user returned an unknown confirmation: confirmation "
50800	""
50801	"Execution of the command on the analogue board failed."
50802	"The frontpanel could not be accessed by the analogue board."
50803	"The frontpanel did not show vertical segments."
50804	"The user skipped the FP-vertical segments test."
50805	"The user returned an unknown confirmation: confirmation "
50900	""

Error Nr	Error String
50901	"Execution of the command on the analogue board failed."
50902	"The frontpanel could not be accessed by the analogue board."
50903	"The frontpanel did not show horizontal segments."
50904	"The user skipped the FP-horizontal segments test."
50905	"The user returned an unknown confirmation: confirmation "
51400	""
51401	"Execution of the command on the analogue board failed."
51402	"The frontpanel could not be accessed by the analogue board."
51403	"The beeper did not sound."
51404	"The user skipped the FP-Beep test."
51405	"The user returned an unknown confirmation: confirmation"
51500	""
51501	"Execution of the command on the analogue board failed."
51502	"The frontpanel could not be accessed by the analogue board."
51503	"The discbar did not display properly."
51504	"The user skipped the discbar test."
51505	"The user returned an unknown confirmation: confirmation"
51600	""
51601	"Execution of the command on the analogue board failed."
51602	"The frontpanel could not be accessed by the analogue board."
51603	"The discbar dots did not display properly."
51604	"The user skipped the discbar dots test."
51605	"The user returned an unknown confirmation: confirmation"
51700	""
51701	"Execution of the command on the analogue board failed."
51702	"The frontpanel could not be accessed by the analogue board."
51703	"The VU grid did not display properly."
51704	"The user skipped the VU gridtest."
51705	"The user returned an unknown confirmation: confirmation"
51800	""
51801	"Execution of the command on the analogue board failed."
51802	"The frontpanel could not be accessed by the analogue board."
51803	"The frontpanel could not be dimmed."
51804	"The user skipped the FP-Dim test."
51805	"The user returned an unknown confirmation: confirmation"
51900	""
51901	"Execution of the command on the analogue board failed."
51902	"The frontpanel could not be accessed by the analogue board."
51903	"The frontpanel did not show segments blinking."
51904	"The user skipped the FP-blinking test."
51905	"The user returned an unknown confirmation: confirmation"
52000	""

Error Nr	Error String
52001	"Execution of the command on the analogue board failed."
52002	"The frontpanel could not be accessed by the analogue board."
52003	"The frontpanel did not show all segments lit."
52004	"The user skipped the FP-light all segments test."
52005	"The user returned an unknown confirmation: confirmation"
52200	""
52201	"Communication with Analogue Board fails."
52202	"Frontpanel can not be accessed by the Analogue Board."
52300	""
52301	"Communication with Analogue Board fails."
52302	"Frontpanel can not be accessed by the Analogue Board."
60000	""
60100	""
60101	"Basic Engine returned error number Oxerrornumber"
60102	"Parity error from Basic Engine to Serial"
60103	"Communication time-out error"
60104	"Unexpected response from Basic Engine"
60105	"Echo loop could not be closed"
60106	"Wrong echo pattern received"
60200	"Version: nr1.nr2.nr3"
60201	"Basic Engine returned error number Oxerrornumber"
60202	"Parity error from Basic Engine to Serial"
60203	"Communication time-out error"
60204	"Unexpected response from Basic Engine"
60205	"Front Panel failed."
60300	""
60301	"Basic-Engine time-out error"
60400	""
60401	"Basic Engine returned error number Oxerrornumber"
60402	"Parity error from Basic Engine to Serial"
60403	"Communication time-out error"
60404	"Unexpected response from Basic Engine"
60405	"Focus loop could not be closed"
60500	""
60501	"Basic Engine returned error number Oxerrornumber"
60502	"Parity error from Basic Engine to Serial"
60503	"Communication time-out error"
60504	"Unexpected response from Basic Engine"
60600	""
60601	"Basic Engine returned error number Oxerrornumber"
60602	"Parity error from Basic Engine to Serial"
60603	"Communication time-out error"
60604	"Unexpected response from Basic Engine"
60700	""
60701	"Basic Engine returned error number Oxerrornumber"
60702	"Parity error from Basic Engine to Serial"
60703	"Communication time-out error"
60704	"Unexpected response from Basic Engine"
60800	""
60801	"Basic Engine returned error number Oxerrornumber"
60802	"Parity error from Basic Engine to Serial"

Error Nr	Error String
60803	"Communication time-out error"
60804	"Unexpected response from Basic Engine"
60805	"Radial loop could not be closed"
60900	""
60901	"Basic Engine returned error number Oxerrornumber"
60902	"Parity error from Basic Engine to Serial"
60903	"Communication time-out error"
60904	"Unexpected response from Basic Engine"
61500	""
61501	"Basic Engine returned error number Oxerrornumber"
61502	"Parity error from Basic Engine to Serial"
61503	"Communication time-out error"
61504	"Unexpected response from Basic Engine"
61600	""
61601	"Basic Engine returned error number Oxerrornumber"
61602	"Parity error from Basic Engine to Serial"
61603	"Communication time-out error"
61604	"Unexpected response from Basic Engine"
61700	""
61701	"BE tray-in command failed"
61702	"BE read-TOC command failed"
61703	"BE VSM interrupt initialisation failed"
61704	"BE set irq command failed"
61705	"BE no disc or wrong disc inserted"
61706	"BE rec-pause command failed"
61707	"BE VSM BE out DMA initialisation failed"
61708	"BE VSM BE out initialisation failed"
61709	"BE VSM BE out DMA start failed"
61710	"BE VSM BE out start failed"
61711	"BE rec command failed"
61712	"BE VSM out underrun error occurred"
61713	"BE record complete interrupt not raised"
61714	"BE get irq command failed"
61715	"BE no interrupt was raised by BE"
61716	"BE VSM DMA out not finished"
61717	"BE stop command after writing failed"
61718	"BE VSM Sector processor initialisation failed"
61719	"BE VSM sector processor DMA initialisation failed"
61720	"BE VSM sector processor DMA start failed"
61721	"BE VSM sector processor start failed"
61722	"BE seek command failed"
61723	"BE VSM sector processor error occurred"
61724	"BE read timeout occurred"
61725	"BE stop command after reading failed"
61726	"BE difference found in data at disc sector Oxdiscsector"
61727	"This nucleus cannot be executed because the Self-Test failed"
61800	""
61801	"BE i2c initialisation failed"
61802	"This nucleus cannot be executed because the Self-Test failed"
61900	""
61901	"The SelfTest failed with result: Oxnr1 Oxnr2 Oxnr3"
61902	"Basic Engine returned error number Oxerrornumber"
61903	"Parity error from Basic Engine to Serial"
61904	"Communication time-out error"

Error Nr	Error String
61905	"Unexpected response from Basic Engine"
62000	""
62001	"Self-Test : errorstring1 Laser-Test : errorstring2 SpindleM-Test: errorstring3 SledgeM-Test : errorstring4 Focus-Test : errorstring5"
62100	"The forward sense level is Oxlevel"
62101	"Basic Engine returned error number Oxerrornumber"
62102	"Parity error from Basic Engine to Serial"
62103	"Communication time-out error"
62104	"Unexpected response from Basic Engine"
62200	""
62201	"The BE-self-diagnostic-spindle-motor-test failed"
62202	"Basic Engine returned error number Oxerrornumber"
62203	"Parity error from Basic Engine to Serial"
62204	"Communication time-out error"
62205	"Unexpected response from Basic Engine"
62300	""
62301	"The BE-focus-test failed"
62302	"Basic Engine returned error number Oxerrornumber"
62303	"Parity error from Basic Engine to Serial"
62304	"Communication time-out error"
62305	"Unexpected response from Basic Engine"
62400	""
62401	"The BE-self-diagnostic-sledge-motor-test failed"
62402	"Basic Engine returned error number Oxerrornumber"
62403	"Parity error from Basic Engine to Serial"
62404	"Communication time-out error"
62405	"Unexpected response from Basic Engine"
62500	""
62600	""
62700	"BE EEPROM address = address -> Byte value = Oxvalue"
62701	"Basic Engine returned error number Oxerrornumber"
62702	"Parity error from Basic Engine to Serial"
62703	"Communication time-out error"
62704	"Unexpected response from Basic Engine"
62705	"BE read EEPROM; invalid input"
62800	""
62801	"Basic Engine returned error number Oxerrornumber"
62802	"Parity error from Basic Engine to Serial"
62803	"Communication time-out error"
62804	"Unexpected response from Basic Engine"
62805	"BE write EEPROM; invalid input"
62900	""
62901	"Basic Engine returned error number Oxerrornumber"
62902	"Parity error from Basic Engine to Serial"
62903	"Communication time-out error"
62904	"Unexpected response from Basic Engine"
62905	"Radial loop could not be closed"
63000	""
63001	"Basic Engine returned error number Oxerrornumber"
63002	"Parity error from Basic Engine to Serial"
63003	"Communication time-out error"
63004	"Unexpected response from Basic Engine"

Error Nr	Error String
63100	" Number of times Tray went Open/Closed : nr1"" Total hours the CD laser was on : nr2"" Total hours the DVD laser was on : nr3"" Total hours the write laser was on : nr4"
63101	"Basic Engine returned error number Oxerrornumber"
63102	"Parity error from Basic Engine to Serial"
63103	"Communication time-out error"
63104	"Unexpected response from Basic Engine"
63200	""
63201	"Basic Engine returned error number Oxerrornumber"
63202	"Parity error from Basic Engine to Serial"
63203	"Communication time-out error"
63204	"Unexpected response from Basic Engine"
63300	Momentary errors (Byte 1 - Byte 7) : 0xb1 0xb2 0xb3 0xb4 0xb5 0xb6 0xb7 Cumulative errors (Byte 1 - Byte 7) : 0xb1 0xb2 0xb3 0xb4 0xb5 0xb6 0xb7 Fatal errors (Oldest - Youngest) : : 0xb1 0xb2 0xb3 0xb4 0xb5
63301	"Basic Engine returned error number Oxerrornumber"
63302	"Parity error from Basic Engine to Serial"
63303	"Communication time-out error"
63304	"Unexpected response from Basic Engine"
63400	""
63401	"Basic Engine returned error number Oxerrornumber"
63402	"Parity error from Basic Engine to Serial"
63403	"Communication time-out error"
63404	"Unexpected response from Basic Engine"
63500	""
63501	"Basic Engine returned error number Oxerrornumber"
63502	"Parity error from Basic Engine to Serial"
63503	"Communication time-out error"
63504	"Unexpected response from Basic Engine"
63505	"errorstring ØThe basic engine will reject all player commands"
63900	""
63901	"Basic Engine returned error number Oxerrornumber"
63902	"Parity error from Basic Engine to Serial"
63903	"Communication time-out error"
63904	"Unexpected response from Basic Engine"
64000	"BE OPU number = opunumber"
64001	"Basic Engine returned error number Oxerrornumber"
64002	"Parity error from Basic Engine to Serial"
64003	"Communication time-out error"
64004	"Unexpected response from Basic Engine"
64100	"The data was successfully written on and read from a DVD disc"
64101	"The tray-in command failed"
64102	"The read-TOC command failed"
64103	"The VSM interrupt initialisation failed"
64104	"The set irq command failed"
64105	"No disc or wrong disc inserted"
64106	"The rec-pause command failed"
64107	"The VSM BE out DMA initialisation failed"
64108	"The VSM BE out initialisation failed"
64109	"The VSM BE out DMA start failed"
64110	"The VSM BE out start failed"
64111	"The rec command failed"

Error Nr	Error String
64112	"The VSM out underrun error occurred"
64113	"The record complete interrupt was not raised"
64114	"The get irq command failed"
64115	"There was no interrupt raised by BE"
64116	"The VSM DMA did not finished"
64117	"The stop command after writing failed"
64118	"The VSM Sector processor initialisation failed"
64119	"The VSM sector processor DMA initialisation failed"
64120	"The VSM sector processor DMA start failed"
64121	"The VSM sector processor start failed"
64122	"The seek command failed"
64123	"The VSM sector processor error occurred"
64124	"The read timeout occurred"
64125	"The stop command after reading failed"
64126	"There was a difference found in data at a specific disc sector"
64127	"The result of the self test contains errors"
64128	"An error interrupt was raised by BE"
64129	"The calibrate-record command failed"
64130	"To many retries"
64131	"BE update RAI command after writing failed"
64132	"BE find first recordable address command failed"
64133	"DVD+R disc is full"
64200	""
64201	"BE i2c initialisation failed"
64202	"This nucleus cannot be executed because the Self-Test failed"
70000	"Echo test OK"
70001	"Echo test returned wrong string."
70002	"Communication with Analogue Board fails"
70300	"SoftwareVersion"
70301	"Can not find segment in FLASH ROM on the Analogue Board"
70302	"Communication with Analogue Board fails"
70400	"HardwareVersion"
70401	"Can not find segment in FLASH ROM on the Analogue Board"
70402	"Communication with Analogue Board fails"
70500	"Clock adjusted OK"
70501	"Can not adjust the clock on the Analogue Board."
70502	"Wrong date/time text size."
70503	"Communication with Analogue Board fails"
70600	"Tuner accessibility test OK"
70601	"Can not access tuner on the Analogue Board."
70602	"Communication with Analogue Board fails"
70700	"Frequency download OK"
70701	"Wrong frequency table size."
70702	"Can not download the frequency table into the analogue NVRAM."
70703	"Can not download the frequency table into the analogue NVRAM."
70704	"Communication with Analogue Board fails"
70800	"Data slicer test OK"
70801	"Test of the Data slicer on the Analogue Board fails."
70802	"Communication with Analogue Board fails"
70900	"Sound Processor test OK"
70901	"Test of the Sound Processor on the Analogue Board fails."
70902	"Communication with Analogue Board fails"
71000	"AV Selector test OK"

Error Nr	Error String
71001	"Test of the AV Selector on the Analogue Board fails."
71002	"Communication with Analogue Board fails"
71100	"NVRAM test OK"
71101	"Test of the NVRAM on the Analogue Board fails."
71102	"Communication with Analogue Board fails"
71200	"Video routing on the Analogue Board OK"
71201	"Routing the video on the Analogue Board fails."
71202	"Invalid input."
71203	"Communication with Analogue Board fails"
71300	"Audio routing on the Analogue Board OK"
71301	"Routing the audio on the Analogue Board fails."
71302	"Invalid input."
71303	"Communication with Analogue Board fails"
71500	""
71501	"Invalid slash version, default slash version is set."
71502	"Setting the slash version on the Analogue Board fails."
71503	"Communication with Analogue Board fails"
71600	"ApplicationVersion"
71601	"Can not find segment in FLASH ROM on the Analogue Board"
71602	"Communication with Analogue Board fails"
71700	"DiagnosticsVersion"
71701	"Can not find segment in FLASH ROM on the Analogue Board"
71702	"Communication with Analogue Board fails"
71800	"DownloadVersion"
71801	"Can not find segment in FLASH ROM on the Analogue Board"
71802	"Communication with Analogue Board fails"
72300	""
72000	""
72001	"Adjusting BarGraphLevel failed"
72002	"Communication with Analogue Board fails"
72100	""
72101	"Storing clock correction failed"
72102	"Value out of range : default value stored "
72103	"Invalid input."
72104	"Communication with Analogue Board fails"
72200	""
72201	"Initialising the 1Hz signal on the Clock IC failed"
72202	"Communication with Analogue Board fails"
72301	"Clearing the NVRAM on the Analogue Board fails"
72302	"Communication with Analogue Board fails"
72400	"segment checksum is : checksum which is correct" for every segment
72401	"segment could not be found" or "segment checksum is : checksumC ,however it should be : checksumE" for every segment
72402	"Communication with Analogue Board fails"
72900	"Date received"
72901	"Data returned"
72902	"Communication on I2C-bus failed on the Analogue Board fails."
72903	"Communication with Analogue Board fails"
73000	""
73001	"Storing the external presets on the Analogue Board fails"
73002	"Communication with Analogue Board fails"
73100	"0xslashversion" where slashversion is the slash version read from the analogue board
73101	"Error while reading out slash version."

Error Nr	Error String
73102	"I2C Write error."
73103	"I2C Read error."
73104	"Communication with Analogue Board fails"
73200	""
73201	"Storing the Reference Voltage for the Tuner failed"
73202	"Invalid input."
73203	"Communication with Analogue Board fails"
80000	"The DVIO module is present in the system."
80001	"The DVIO module is not present in the system."
80100	"The DVIO module has been reset OK."
80101	"The DVIO module is not present in the system."
80102	"The DVIO module could not be reset."
80103	"Could not initialise I2C before Reset."
80200	"The accessibility of the DVIO module is OK."
80201	"The DVIO board is not present in this DVDR."
80202	"Could not initialise I2C."
80203	"Unable to reset the DVIO module."
80204	"Unable to receive the reset indication from the DVIO module."
80205	"Unable to send the configuration to the DVIO module."
80206	"Unable to download the chip ID to the DVIO module."
80207	"Unable to set the mode of the DVIO module to IDLE."
80208	"Software Error in function HandleStateAwaitingReply !!"
80209	"Maximal number of retries reached by HandleStateSending !!"
80210	"Maximal number of retries (NACKs) reached (HandleStateSending)"
80211	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times !!"
80212	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times !!"
80213	"We tried to receive an Ack for DVIO_MAX_RETRIES_ACK times!!"
80214	"VSM UART error timeout transmitting command"
80215	"VSM UART error timeout receiving reply"
80216	"VSM UART frame error occurred receiving from DVIO board"
80217	"VSM UART parity error occurred receiving from DVIO board"
80218	"The confirmation/indication from the DVIO module is invalid."
80300	"The accessibility of the DVIO module is OK."
80301	"The DVIO board is not present in this DVDR."
80302	"Could not initialise I2C."
80303	"Unable to reset the DVIO module."
80304	"Unable to receive the reset indication from the DVIO module."
80305	"Unable to send the configuration to the DVIO module."
80306	"Unable to download the chip ID to the DVIO module."
80307	"Unable to set the mode of the DVIO module to IDLE."
80308	"Software Error in function HandleStateAwaitingReply !!"
80309	"Maximal number of retries reached by HandleStateSending !!"
80310	"Maximal number of retries (NACKs) reached (HandleStateSending)"

Error Nr	Error String
80311	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times !!"
80312	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times !!"
80313	"We tried to receive an Ack for DVIO_MAX_RETRIES_ACK times!!"
80314	"VSM UART error timeout transmitting command"
80315	"VSM UART error timeout receiving reply"
80316	"VSM UART frame error occurred receiving from DVIO board"
80317	"VSM UART parity error occurred receiving from DVIO board"
80318	"The confirmation/indication from the DVIO module is invalid."
80400	"The accessibility of the DVIO module is OK."
80401	"The DVIO board is not present in this DVDR."
80402	"Could not initialise I2C."
80403	"Unable to reset the DVIO module."
80404	"Unable to receive the reset indication from the DVIO module."
80405	"Unable to send the configuration to the DVIO module."
80406	"Unable to download the chip ID to the DVIO module."
80407	"Unable to set the mode of the DVIO module to IDLE."
80408	"Software Error in function HandleStateAwaitingReply !!"
80409	"Maximal number of retries reached by HandleStateSending !!"
80410	"Maximal number of retries (NACKs) reached (HandleStateSending)"
80411	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times !!"
80412	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times !!"
80413	"We tried to receive an Ack for DVIO_MAX_RETRIES_ACK times!!"
80414	"VSM UART error timeout transmitting command"
80415	"VSM UART error timeout receiving reply"
80416	"VSM UART frame error occurred receiving from DVIO board"
80417	"VSM UART parity error occurred receiving from DVIO board"
80418	"The confirmation/indication from the DVIO module is invalid."
80500	""
80501	"The DVIO board is not present in this DVDR."
80502	"The I2C could not be initialised."
80503	"The DVIO module could not be reset."
80504	"Unable to receive the reset indication from the DVIO module."
80505	"Unable to send the configuration to the DVIO module."
80506	"Unable to download the chip ID to the DVIO module."
80507	"Unable to set the mode of the DVIO module to IDLE."
80508	"Software Error in HandleStateAwaitingReply function!"
80509	"Maximal number of retries reached by HandleStateSending!"
80510	"Maximal number of retries (NACK's) reached (HandleStateSending)"
80511	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times!!"

Error Nr	Error String
80512	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times!"
80513	"We tried to receive an Acknowledge for DVIO_MAX_RETRIES_ACK times!"
80514	"VSM UART error timeout transmitting command"
80515	"VSM UART error timeout receiving reply"
80516	"VSM UART frame error occurred receiving from DVIO board"
80517	"VSM UART parity error occurred receiving from DVIO board"
80518	"The confirmation/indication from the DVIO module is invalid."
80519	"Setting the DVIO module in/out diagnostics mode failed"
80520	"Invalid input"
80521	"Getting the errors of the self-test failed"
80522	"Self-test failed"
80600	""
80601	"The DVIO board is not present in this DVDR."
80602	"The I2C could not be initialised."
80603	"The DVIO module could not be reset."
80604	"Unable to receive the reset indication from the DVIO module."
80605	"Unable to send the configuration to the DVIO module."
80606	"Unable to download the chip ID to the DVIO module."
80607	"Unable to set the mode of the DVIO module to IDLE."
80608	"Software Error in HandleStateAwaitingReply function!"
80609	"Maximal number of retries reached by HandleStateSending!"
80610	"Maximal number of retries (NACK's) reached "(HandleStateSending)
80611	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times!"
80612	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times!"
80613	"We tried to receive an Acknowledge for DVIO_MAX_RETRIES_ACK times!"
80614	"VSM UART error timeout transmitting command"
80615	"VSM UART error timeout receiving reply"
80616	"VSM UART frame error occurred receiving from DVIO board"
80617	"VSM UART parity error occurred receiving from DVIO board"
80618	"The confirmation/indication from the DVIO module is invalid."
80619	"Setting the DVIO module in/out diagnostics mode failed"
80700	""
80701	"The DVIO board is not present in this DVDR."
80702	"The I2C could not be initialised."
80703	"The DVIO module could not be reset."
80704	"Unable to receive the reset indication from the DVIO module."
80705	"Unable to send the configuration to the DVIO module."
80706	"Unable to download the chip ID to the DVIO module."
80707	"Unable to set the mode of the DVIO module to IDLE."
80708	"Software Error in HandleStateAwaitingReply function!"

Error Nr	Error String
80709	"Maximal number of retries reached by HandleStateSending!"
80710	"Maximal number of retries (NACK's) reached "(HandleStateSending)
80711	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times!"
80712	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times!"
80713	"We tried to receive an Acknowledge for DVIO_MAX_RETRIES_ACK times!"
80714	"VSM UART error timeout transmitting command"
80715	"VSM UART error timeout receiving reply"
80716	"VSM UART frame error occurred receiving from DVIO board"
80717	"VSM UART parity error occurred receiving from DVIO board"
80718	"The confirmation/indication from the DVIO module is invalid."
80719	"Setting the DVIO module in/out diagnostics mode failed"
90121	"Error: audio data in host memory contains wrong frequency: frequency Hz"
90122	"Error: audio data in host memory contains silence!"
90123	"There is no correct audio frame in the buffer"
90124	"The audio frame has an illegal version bit"
90125	"The audio frame has an illegal bitrate-index"
90126	"The audio frame has an illegal sampling rate"
90127	"The CRC of the audio frame is wrong"
90128	"The audio frame is not MPEG-1 layer II!"
90129	"Error cannot de-mute DAC on analogue board"
90200	""
90201	"Initialisation of I2C failed"
90202	"Initialisation of VIP and EMPIRE failed"
90203	"Initialisation of PLL / Link failed."
90204	"Next descriptor address set wrong."
90205	"Turning on the colourbar failed"
90206	"No I2C communication possible to start video encoder."
90207	"Starting the video encoder failed."
90208	"Transfer of data from video encoder to VSM failed."
90209	"Stopping the encoder failed."
90210	"Turning off the colourbar failed."
90211	"Cannot initialize hostdecoder parallel input"
90212	"Cannot initialise VSM AV-out DMA port"
90213	"Cannot initialise VSM AV-out port"
90214	"Cannot start VSM AV-out DMA port"
90215	"Cannot start VSM AV-out port"
90216	"Transfer of data from VSM to hostdecoder failed."
90217	"VSM and Hostdec memory do not match (compared after transfer)"
90218	"Decoding of the video data in the hostdecoder memory failed"
90219	"The data in the hostdecoder is not equal to a colourbar"
90220	"The video encoder did not return the Group Of Picture count."
90221	"The video encoder did not receive data from the VIP."
90223	"Initialisation of VIP and EMPRESS failed"
90224	"The video encoder did not return the current status."

Error Nr	Error String
90225	"The video encoder timed out in BUSY mode. (no VIP input)"
90226	"The video encoder did not return the current bit-rate."
90227	"The video encoder did not switch to ENCODING mode."
90228	"The video encoder could not start from STOP/ IDLE mode."
90229	"The video encoder did not switch from IDLE to STOP mode."
90300	""
90301	"Initialisation of I2C failed"
90302	"I2C communication to VIP failed"
90303	"Initialisation of VIP failed"
90304	"Generation of Close Caption data failed"
90305	"VIP not locked to video signal"
90306	"Initialisation of VBI Extractor failed"
90307	"No CC data received"
90308	"Closed Caption data overrun"
90309	"Closed Caption data does not match"
90310	"Switch off ColourBar failed"
90400	""
90401	"Initialisation of I2C failed"
90402	"Initialisation of VIP and EMPIRE failed"
90403	"Initialisation of PLL / Link failed."
90404	"Next descriptor address set wrong."
90405	"Turning on the colourbar failed"
90406	"No I2C communication possible to start video encoder."
90407	"Starting the video encoder failed."
90408	"Transfer of data from video encoder to VSM failed."
90409	"Stopping the encoder failed."
90410	"Turning off the colourbar failed."
90411	"Cannot initialize hostdecoder parallel input"
90412	"Cannot initialise VSM AV-out DMA port"
90413	"Cannot initialise VSM AV-out port"
90414	"Cannot start VSM AV-out DMA port"
90415	"Cannot start VSM AV-out port"
90416	"Transfer of data from VSM to host decoder failed."
90417	"VSM and Hostdec memory do not match (compared after transfer)"
90418	"Decoding of the video data in the hostdecoder memory failed"
90419	"The data in the hostdecoder is not equal to a colourbar"
90420	"The video encoder did not return the Group Of Picture count."
90421	"The video encoder did not receive data from the VIP."
90422	"Execution of the command on the analogue board failed."
90423	"Initialisation of VIP and EMPRESS failed"
90424	"The video encoder did not return the current status."
90425	"The video encoder timed out in BUSY mode. (no VIP input)"
90426	"The video encoder did not return the current bit-rate."
90427	"The video encoder did not switch to ENCODING mode."
90428	"The video encoder could not start from STOP/ IDLE mode."

Error Nr	Error String
90429	"The video encoder did not switch from IDLE to STOP mode."
90500	""
90501	"Initialisation of I2C failed"
90502	"I2C communication to VIP failed"
90503	"Initialisation of VIP failed"
90504	"Generation of Close Caption data failed"
90505	"VIP not locked to video signal"
90506	"Initialisation of VBI Extractor failed"
90507	"No CC data received"
90508	"Closed Caption data overrun"
90509	"Closed Caption data does not match"
90510	"Switch off ColourBar failed"
90511	"Execution of the command on the analogue board failed."
90600	""
90601	"Initialisation of I2C failed"
90602	"Initialisation of VIP and EMPIRE failed"
90603	"Initialisation of PLL / Link failed."
90604	"Next descriptor address set wrong."
90605	"Turning on the colourbar failed"
90606	"No I2C communication possible to start video encoder."
90607	"Starting the video encoder failed."
90608	"Transfer of data from video encoder to VSM failed."
90609	"Stopping the encoder failed."
90610	"Turning off the colourbar failed."
90611	"Cannot initialize hostdecoder parallel input"
90612	"Cannot initialise VSM AV-out DMA port"
90613	"Cannot initialise VSM AV-out port"
90614	"Cannot start VSM AV-out DMA port"
90615	"Cannot start VSM AV-out port"
90616	"Transfer of data from VSM to host decoder failed."
90617	"VSM and Hostdec memory do not match (compared after transfer)"
90618	"Decoding of the video data in the hostdecoder memory failed"
90619	"The data in the hostdecoder is not equal to a colourbar"
90620	"The video encoder did not return the Group Of Picture count."
90621	"The video encoder did not receive data from the VIP."
90622	"Execution of the command on the analogue board failed."
90623	"Initialisation of VIP and EMPRESS failed"
90624	"The video encoder did not return the current status."
90625	"The video encoder timed out in BUSY mode (no VIP input)"
90626	"The video encoder did not return the current bit-rate."
90627	"The video encoder did not switch to ENCODING mode."
90628	"The video encoder could not start from STOP/ IDLE mode."
90629	"The video encoder did not switch from IDLE to STOP mode."
90700	""
90701	"Initialisation of I2C failed"
90702	"I2C communication to VIP failed"
90703	"Initialisation of VIP failed"
90704	"Generation of Close Caption data failed"

Error Nr	Error String
90705	"VIP not locked to video signal"
90706	"Initialisation of VBI Extractor failed"
90707	"No CC data received"
90708	"Closed Caption data overrun"
90709	"Closed Caption data does not match"
90710	"Switch off ColourBar failed"
90711	"Execution of the command on the analogue board failed."
90800	""
90801	"Error routing the audio back to the digital board."
90802	"Error cannot initialise I2C"
90803	"Error cannot initialise VIP"
90804	"Error cannot set ADC enable pin"
90805	"Error cannot set VSM audio clock"
90806	"Error preparing the 12kHz audio-sine"
90807	"Error cannot initialise audio encoder"
90808	"Error cannot initialise VSM audio in port"
90809	"Error cannot initialise VSM audio in DMA port"
90810	"Error cannot initialise VSM audio out DMA port"
90811	"Error cannot initialise audio VSM out port"
90812	"Error cannot initialise host decoder audio in"
90813	"Error loop audio user/dealer cannot start audio encoder"
90814	"Error cannot start VSM audio in DMA port"
90815	"Error starting the 12kHz audio-sine"
90816	"Error transfer data from audio encoder to VSM"
90817	"Error cannot start VSM AV out DMA port"
90818	"Error cannot start VSM AV out port"
90819	"Error transfer data from VSM to host decoder"
90820	"Error: audio data in host memory and VSM memory differ"
90821	"Error: audio data in host memory contains wrong frequency: frequency Hz"
90822	"Error: audio data in host memory contains silence!"
90823	"There is no correct audio frame in the buffer"
90824	"The audio frame has an illegal version bit"
90825	"The audio frame has an illegal bitrate-index"
90826	"The audio frame has an illegal sampling rate"
90827	"The CRC of the audio frame is wrong"
90828	"The audio frame is not MPEG-I layer II !"
90829	"Error cannot de-mute DAC on analogue board"
90900	""
90901	"Error routing the audio back to the digital board."
90902	"Error cannot initialise I2C"
90903	"Error cannot initialise VIP"
90904	"Error cannot set ADC enable pin"
90905	"Error cannot set VSM audio clock"
90906	"Error preparing the 12kHz audio-sine"
90907	"Error cannot initialise audio encoder"
90908	"Error cannot initialise VSM audio in port"
90909	"Error cannot initialise VSM audio in DMA port"
90910	"Error cannot initialise VSM audio out DMA port"
90911	"Error cannot initialise audio VSM out port"
90912	"Error cannot initialise host decoder audio in"
90913	"Error loop audio user/dealer cannot start audio encoder"
90914	"Error cannot start VSM audio in DMA port"
90915	"Error starting the 12KHz audio-sine"
90916	"Error transfer data from audio encoder to VSM"
90917	"Error cannot start VSM AV out DMA port"
90918	"Error cannot start VSM AV out port"

Error Nr	Error String
90919	"Error transfer data from VSM to host decoder"
90920	"Error: audio data in host memory and VSM memory differ"
90921	"Error: audio data in host memory contains wrong frequency: frequency Hz"
90922	"Error: audio data in host memory contains silence!"
90923	"There is no correct audio frame in the buffer"
90924	"The audio frame has an illegal version bit"
90925	"The audio frame has an illegal bitrate-index"
90926	"The audio frame has an illegal sampling rate"
90927	"The CRC of the audio frame is wrong"
90928	"The audio frame is not MPEG-I layer II !"
90929	"Error cannot de-mute DAC on analogue board"
140000	""
140001	"I2C to Clock failed" or "I2C initialisation failed"
140100	""
140101	"I2C to Clock failed" or "I2C initialisation failed"
141200	""
141201	"Progressive Scan Board I2C bus busy"
141211	"Progressive Scan Board I2C FLI2200 bus busy"
141212	"Progressive Scan Board I2C FLI2200 read access time-out"
141213	"Progressive Scan Board I2C FLI2200 no read acknowledge"
141214	"Progressive Scan Board I2C FLI2200 read failed"
141215	"Progressive Scan Board I2C FLI2200 write access time-out"
141216	"Progressive Scan Board I2C FLI2200 no write acknowledge"
141217	"Progressive Scan Board I2C FLI2200 write failed"
141218	"Progressive Scan Board I2C FLI2200 failed"
141221	"Progressive Scan Board I2C AD71 96 bus busy"
141222	"Progressive Scan Board I2C AD71 96 read access time-out"
141223	"Progressive Scan Board I2C AD71 96 no read acknowledge"
141224	"Progressive Scan Board I2C AD71 96 read failed"
141225	"Progressive Scan Board I2C AD71 96 write access time-out"
141226	"Progressive Scan Board I2C AD71 96 no write acknowledge"
141227	"Progressive Scan Board I2C AD71 96 write failed"
141228	"Progressive Scan Board I2C AD71 96 failed"
141300	""
141301	"Progressive Scan Route Enable failed"
141302	"Generating test image in Hostdecoder failed"
141400	""
141401	"Progressive Scan Route Disable failed"
141402	"Turning off test image in Hostdecoder failed"
141500	""
141501	"Progressive Scan Board I2C failed"
141600	""
141601	"Progressive Scan Board I2C failed"

5.5 Loop tests

The following loops can be distinguished:

- Loops performed on the digital board only
- User Dealer loops performed on the digital and analogue board
- System loops performed via an external connection: outputs are looped back to the inputs.

5.5.1 Nucleus 900: Digital Audio Loop

This nucleus tests the audio path through the digital board

CL 16532145_036.eps
031201

Figure 5-9

5.5.2 Nucleus 901: Audio User Dealer Loop

A PCM audio sine of 12kHz is generated in the Host Decoder for a while and sent to the analogue board. The signal coming from the analogue board is encoded again and sent to the memory of the host decoder for comparison. This nucleus tests the components on the audio signal path:

- Host decoder
- Flex connection between connector 1602 (digital board) and connector 1900 (analogue board)
- DAC
- Op-amp
- Scart switch IC
- ADC
- Audio Encoder
- VIP
- VSM

CL 16532145_037.eps
031201

Figure 5-10

5.5.3 Nucleus 902: Digital Video Loop

A colourbar generated in the host decoder is looped through the VIP, Empire, and VSM and checked again in the host decoder. The following components are tested on the video signal path:

- VIP
- Empire
- VSM
- Host decoder

Figure 5-11

5.5.4 Nucleus 903: Digital Video VBI Loop

Nucleus for testing the components on the video VBI signal path:

- The VIP
- The VSM
- The Host Decoder

This is done by using the internal test signal source (digital board only)

Remark: this test is only successful if nucleus 121 is carried out first.

Figure 5-12

5.5.5 Nucleus 904: System Video Loop

Nucleus for testing the components on the video signal system path:

- The VIP
- The video encoder
- The VSM
- The host decoder
- The analogue board

On the analogue board the video signal will be routed to the SCART (EUROPE) or CINCH (NAFTA). There it will be looped back externally by means of the proper cable

Figure 5-13

5.5.6 Nucleus 905: System Video VBI Loop

This nucleus tests the components on the video signal path:

- The VIP
- The VSM
- The Host Decoder

The video CVBS signal is routed to the output of the analogue board where it will be looped back by means of an external cable

Remark: this test is only successful if nucleus 121 is carried out first.

CL 16532145_041.eps
031201

5.5.7 Nucleus 906: Video User Dealer Loop

Nucleus for testing the components on the video signal system path:

- The VIP
- The video encoder
- The VSM
- The host decoder
- The analogue board

On the analogue board, the video signal is internally routed back to the digital board.

CL 1 6532145_042.eps
031201

Figure 5-14

Figure 5-15

5.5.8 Nucleus 907: Video VBI User Dealer Loop

This nucleus tests the components on the video VBI signal path:

- The VIP
- The VSM
- The Host Decoder

The signal is routed back internally on the analogue board

Remark: this test is only successful if nucleus 121 is carried out first.

5.5.9 Nucleus 908: System Audio Loop Scart (Europe)

Nucleus for testing the components on the audio signal path:

- The hostdecoder
- The analogue board
- The audio encoder
- The VSM

On the analogue board, audio is passed to the SCART connector, where a SCART cable needs to be used to loop back the audio signal to the digital board

Figure 5-16

Figure 5-17

5.5.10 Nucleus 909: System Audio Loop CINCH (Nafta)

Nucleus for testing the components on the audio signal path:

- The hostdecoder
- The analogue board
- The audio encoder
- The VSM

On the analogue board the audio is passed to the CINCH connector, where a CINCH cable needs to be used to loop back the audio signal to the digital board

CL 16532145_045.eps
031201

Figure 5-18

5.6 Faultfinding trees

5.6.1 General

PLAYBACK MODE

RECORD MODE

CL 16532095_242.eps
170801

Figure 5-20

5.6.2 Power supply

Figure 5-21

5.6.3 Digital Board

Start-up DSW

Figure 5-22

Power part check**POWER PART CHECK DIGITAL BOARD**

USE DIGITAL BOARD CIRCUIT DIAGRAMS 1 2, 3, 4, 5, 7 AND 8 AND DIGITAL BOARD BOTTOM VIEW TESTPOINTS

Figure 5-23

Reset and Clock Check

RESET & CLOCK CHECK DIGITAL BOARD

USE DIGITAL BOARD CIRCUIT DIAGRAMS 1,2,7 AND 8 AND DIGITAL BOARD BOTTOM VIEW TESTPOINTS

CL 16532145_047.eps
031201

Figure 5-24

DSW Memory Tests

DSW MEMORY TESTS

Figure 5-25

DSW VSM Tests

DSW VSM TESTS

DSW Audio Part Check

DSW AUDIO PART CHECK

Figure 5-27

DSW Video Part Check

DSW VIDEO PART CHECK

CL 1653214-5_051.eps
031201

DSW Video Part Check Progressive Scan

VIDEO PART CHECK PROGRESSIVE SCAN

Figure 5-29

DSW Basic Engine Check

DSW BASIC ENGINE TESTS

CL 16532 O95_094.eps
150801

Figure 5-30

Waveforms

Waveforms Digital Board

CL 16532145_053.eps
031201**Figure 5-31**

Waveforms Digital Board

Figure 5-32

Waveforms Digital Board

Figure 5-33

Measurement Points Overview

MP	X	Y	Signal-Name	Signal Description	Signal Type	Part	Schematics Name	Coord.
F800			F_MODE	Fact. Mode	Condition	AIO1	AIO1	C10
F3201			12V	12 V Supply	PS-IN	1932-1	PS	C1
F3202			5V	5 V Supply	PS-IN	1932-2	PS	C1
F3203			5NSTBY	-5 V Supply	PS-IN	1932-3	PS	C1
F3204			VGNSTBY	- Supply GND	PS-IN	1932-4	PS	C1
F3205			33STBY	33 V Supply	PS-IN	1932-5	PS	D1
F3206			FLYB	Controls PS	DC-Gen	1932-6	PS	D1
F3207			GNDA	Ground Analogue	GND	1932-7	PS	D1
F0017			3VD	3V3 Supply	PS-IN	1900-17	DAC	B1
F0001			GNDD	Ground Digital	GND	1900-01	DAC	E1
F803			INT Clock	Clock Adjust	Count-Out	7811-7	AIO1	H5
F900			5STBY2	5V AIO	DC-Out	7803-12	AIO2	D3
F902			IReset	Inverse Reset	DC-Out *	7803-115	AIO2	D2
F8111			5M	5 V Motor	DC-Out	1987-12	AIO1	F14
F303			5SW	5SW	DC-Out	7703-21	TU	B10
F9336			8SW	8SW	DC-Out	2321	PS	B6
F8105			SDA	IIC1	IIC-IO	1981-6	AIO1	E13
F8107			SCL	IIC1	IIC-IO	1981-8	AIO1	E13
F810			SCL1	IIC2	IIC-IO	3804	AIO1	A9
F811			SDA1	IIC2	IIC-IO	3805	AIO1	A9
F8104			IPOR1	IPOR to DC	DC-OUT	1981-5	AIO1	E13
F8101			12STBY	12 V to DC	DC-Out	1981-2	AIO1	D13
F8110			5STB	5 V to DC	DC-Out	1981-11	AIO1	F13
F5306			8SW	8 SW to FRONT	DC-Out	1953-6	IO1	11
F8102			VGNSTBY	VGN to DC	GND	1981-3	AIO1	E13
F8202			A_DATA	To DIGI	DC-IN	1982-2	AIO1	H13
F8203			D_DATA	To DIGI	DC-IN	1982-3	AIO1	H13
F8204			A_RDY	To DIGI	DC-IN	1982-4	AIO1	H13
F8205			D_RDY	To DIGI	DC-IN	1982-5	AIO1	H13
F8108			INT	TO DC	DC-IN	1981-9	AIO1	F13
F8109			RC	TO DC	DC-IN	1981-10	AIO1	F13
F8201			IRESET_DIG	TO DIGI	DC-IN	1982-1	AIO1	H13
F513			GNDA	SC1 GND A	DC-IN	1950-4A	IO1	E14
F517			ARIn_SC1	SC1 A R IN	NF-IN	1950-2A	IO1	E13
F519			ALIn_SC1	SC1 A L IN	NF-IN	1950-6A	IO1	E14
F534			YCVBSIN_SC1	SC1 Y IN	V-IN	1950-20A	IO1	I13
F525			GNDV	SC1 GND V	GND	1950-21A	IO1	H14
F5001			AROut_SC2	SC2 A R Out	NF-Out	1950-1B	IO4	C9
F5003			ALOutSC2	SC2 A L Out	NF-Out	1950-3B	IO4	C9
F5004			GNDA	SC2 GND A	GND	1950-4B	IO4	C9
F5019			YCVBSOut_SC2	SC2 Y Out	V-Out	1950-19B	IO4	C9
F5021			GNDV	SC2 GND V	GND	1950-21B	IO4	C9
F516			AROut_SC1	SC1 A R Out	NF-Out	1950-1A	IO1	E14
F518			ALOutSC1	SC1 A L Out	NF-Out	1950-3A	IO1	E14
F531			YCVBSOut_SC1	SC1 Y Out	V-Out	1950-19A	IO1	G13

CL 165339G5 097.9ps
150801

MP	X	Y	Signal-Name	Signal Description	Signal Type	Part	Schematics Name	Coord.
F5002			ARIn_SC2	SC2 A R IN	NF-IN	1950-2B	IO4	C9
F5006			ALIn_SC2	SC2 A L IN	NF-IN	1950-6B	IO4	C9
F5020			YCVBSIN_SC2	SC2 Y IN	Sin-IN	1950-20B	IO4	F9
F536			BC_SC1	SC1 BC	Sin-Out*	1950-7A	IO1	E13
F521			8_SC1	SC1 Pin 8	DC-Out	1950-8A	IO1	F13
F515			P50_SC1	SC1 P50	DC-Out	1950-10A	IO1	F14
F524			Gout_SC1	SC1 G Out	Sin-Out	1950-11A	IO1	F13
F527			RCOut_SC1	SC1 RC Out	Sin-Out	1950-15A	IO1	G14
F530			FBOut_SC1	SC1 FB Out	DC-Out	1950-16A	IO1	H13
F5007			BC_SC2	SC2 B IN C Out	Sin-In*	1950-7B	IO4	D9
F5008			8_SC2	SC2 Pin 8	DC-Out	1950-8B	IO4	D9
F5011			Gin_SC2	SC2 G In	Sin-In	1950-11B	IO4	D9
F5015			RCin_SC2	SC2 RC In	Sin-In	1950-15B	IO4	E9
F5016			FBin_SC2	SC2 FB In	DC-In	1950-16B	IO4	E9
F5401			A_V	A_V to DIGI	Sin-Out	1954-01	IO1	I3
F5402			GNDV	GNDV to DIGI	GND	1954-02	IO1	I4
F5403			A_U	A_U to DIGI	Sin-Out	1954-03	IO1	I4
F5405			A_Y	A_Y to DIGI	V-Out	1954-05	IO1	I4
F5407			A_C	A_C to DIGI	Sin-Out	1954-07	IO1	I4
F5409			A_YCVBS	AYCVBS to DIGI	V-Out	1954-09	IO1	I4
F5412			D_CVBS	D_CVBS f. DIGI	V-In	1954-12	IO1	I5
F5414			D_Y	D_Y f. DIGI	V-In	1954-14	IO1	I5
F5416			D_C	D_C f. DIGI	Sin-In	1954-16	IO1	I5
F5418			D_R	D_T f. DIGI	Sin-In	1954-18	IO1	I6
F5420			D_G	D_G f. DIGI	Sin-In	1954-20	IO1	I6
F5422			D_B	D_B f. DIGI	Sin-In	1954-22	IO1	I6
F5301			AFCRI	A R from FC	NF-In	1953-1	IO1	I1
F5303			AFCLI	A L from FC	NF-In	1953-3	IO1	I1
F5304			CVBSFIN	CVBS from FC	V-In	1953-4	IO1	I1
F5307			CFIN	C from FC	Sin-In	1953-7	IO1	I2
F5309			YFIN	Y from FC	V-In	1953-9	IO1	I2
F012			DAINOPT	A D Opt to DIGI		1900-20	DAC	A1
F013			DAINCOAX	A D Coax to DIGI		1900-21	DAC	A1
F014			DAOUT	A D from DIGI		1900-20	DAC	A1
F0002			A_BCLK	BCLK from DIGI	CLK-In	1900-2	DAC	E2
F0003			A_WCLK	WCLK from DIGI	CLK-In	1900-3	DAC	D2
F0005			A_DAT	A Data to DIGI	Data-Out	1900-5	DAC	D2
F0007			A_PCMCLK	PCMCLK from DIGI	CLK-In	1900-7	DAC	D2
F0009			D_BCLK	BCLK from DIGI	CLK-In	1900-9	DAC	D2
F0011			D_WCLK	WCLK from DIGI	CLK-In	1900-11	DAC	D2
F0012			D_DATA0	A Data from DIGI	Data-In	1900-12	DAC	C2
F0014			D_PCMCLK	PCMCLK from DIGI	CLK-In	1900-14	DAC	C2
F0016			D_KILL	A Kill from DIGI	DC-In	1900-16	DAC	C2
F010			ARDAC	A R from DAC	NF-Out	7002-1	DAC	C9
F011			ALDAC	A L from DAC	NF-Out	7002-7	DAC	E9
F331			RCALOut	A L Rear Cinch Out	NF-Out	1958-4B	IO3	E9
F334			RCAROut	A R Rear Cinch Out	NF-Out	1958-5B	IO3	E9
F336			RCVBSOut	V Rear Cinch Out	V-Out	1959-1B	IO3	C9

Figure 5-34

Measurement Point Overview for NAFTA

MP	X	Y	Signal-Name	Signal Description	Signal Type	Part	Schematics Name	Coord.
F5101			ARCRI	A L Rear Cinch In	NF-In	1958-1A	IO2	D2
F5103			ARCLI	A R Rear Cinch In	NF-In	1958-2A	IO2	E2
F5202			RCVBSIn	V Rear Cinch In	V-In	1959-2A	IO2	C2
F5503			RSVHSYIn	Y Rear SVHS In	V-In	1955-3B	IO2	B2
F5504			RSVHSCIn	C Rear SVHS In	Sin-In	1955-4B	IO2	B2
F338			RSVHSYOut	Y Rear SVHS Out	V-Out	1955-3A	IO3	A9
F337			RSVHSCOut	C Rear SVHS Out	Sin-Out	1955-4A	IO3	A9
F6001			DVAR	A R from DIGI	Sin-In	1960-1	AP	D1
F6002			GNDA	GNDA	GND	1960-2	AP	D1
F6004			DVAL	A L from DIGI	Sin-In	1960-4	AP	D1
F700			IF	IF Out	DC-Out	1705-11	TU	C3
F701			IF-In	IF In	Sin-In	1705-11	TU	C3
F702			GNDFV	GND FV	GND	1705-12	TU	C2
F703			GNDFV	GND FV	GND	1700-3	TU	B6
F704			40.4	40.4 Trap	Sin-Out	1700-1	TU	B5
F705			AGC	AGC	DC-Out	3701	TU	A4
F812			SYNC	SYNC from Sepa.	Freq-Out	7803-33	AIO1	F6
F4202			DIG OUT L	Digital Out Low	GND	1954-2	DIGI	B4
F4203			DIG OUT H	Digital Out High	Sin-Out	1945-3	DIGI	A4
F4204			OPT OUT	Optical Out	DC-Out	1943-1	DIGI	D3
F806			FAN OUT	FAN Out	DC-Out	1984-1	FACO	C5
F807			FAN IN	FAN In	DC-In	1985-1	FACO	F1
F8206			ION	ION_FAN	DC-Out	1982-6	AIO1	H13
F8208			BE_FAN	BE_FAN	DC-Out	1982-8	AIO1	I13
F8209			FB	FBIN SC2	DC-Out	1982-9	AIO1	I13
F8210			GNDD	GNDD	GNDD	1982-10	AIO1	I13

Remark:

Indicator * means more than one signal type

MP	X	Y	Signal-Name	Signal Description	Signal Type	Part	Schematics Name	Coord.
F800			F_MODE	Fact. Mode	Condition	AIO1	AIO1	C10
F3201			12V	12 V Supply	PS-IN	1932-1	PS	C1
F3202			5V	5 V Supply	PS-IN	1932-2	PS	C1
F3203			5NSTBY	-5 V Supply	PS-IN	1932-3	PS	C1
F3204			VGNSTBY	- Supply GND	PS-IN	1932-4	PS	C1
F3205			33STBY	33 V Supply	PS-IN	1932-5	PS	D1
F3206			FLYB	Controls PS	DC-Gen	1932-6	PS	D1
F3207			GNDA	Ground Analogue	GND	1932-7	PS	D1
F0017			3VD	3V3 Supply	PS-IN	1900-17	DAC	B1
F0001			GNDD	Ground Digital	GND	1900-01	DAC	E1
F803			INT Clock	Clock Adjust	Count-Out	7811-7	AIO1	H5
F900			5STBY2	5V AIO	DC-Out	7803-12	AIO2	D3
F902			iReset	Inverse Reset	DC-Out *	7803-115	AIO2	D2
F8111			5M	5 V Motor	DC-Out	1987-12	AIO1	F14
F303			5SW	5SW	DC-Out	7703-21	TU	B10
F9336			8SW	8SW	DC-Out	2321	PS	B6
F8105			SDA	IIC1	IIC-IO	1981-6	AIO1	E13
F8107			SCL	IIC1	IIC-IO	1981-8	AIO1	E13
F810			SCL1	IIC2	IIC-IO	3804	AIO1	A9
F811			SDA1	IIC2	IIC-IO	3805	AIO1	A9
F8104			IPOR1	IPOR to DC	DC-OUT	1981-5	AIO1	E13
F8101			12STBY	12 V to DC	DC-Out	1981-2	AIO1	D13
F8110			5STB	5 V to DC	DC-Out	1981-11	AIO1	F13
F5306			8SW	8 SW to FRONT	DC-Out	1953-6	IO1	I1
F8102			VGNSTBY	VGN to DC	GND	1981-3	AIO1	E13
F8202			A_DATA	To DIGI	DC_In	1982-2	AIO1	H13
F8203			D_DATA	To DIGI	DC_In	1982-3	AIO1	H13
F8204			A_RDY	To DIGI	DC_In	1982-4	AIO1	H13
F8205			D_RDY	To DIGI	DC_In	1982-5	AIO1	H13
F8108			INT	TO DC	DC_In	1981-9	AIO1	F13
F8109			RC	TO DC	DC_In	1981-10	AIO1	F13
F8201			IRESET_DIG	TO DIGI	DC_In	1982-1	AIO1	H13
F5103			ARIn_2	A R IN 2	NF-IN	1958-3A	IO3	E13
F5101			ALIn_2	A L IN 2	NF-IN	1958-1A	IO3	E14
F5906			GNDV	GND V	GND	1957-6A	IO1	H12
F5806			GNDV	GND V	GND	1956-6A	IO1	I8
F510			ARout_1	A R Out 1	NF-Out	1959-5B	IO1	E13
F509			ALout_1	A L Out 1	NF-Out	1959-4B	IO1	D13
F5201			RCVBSOut2	SC1 Y Out	V-Out	1997-1B	IO3	A8
F5105			ARIn_1	A R IN 1	NF-IN	1959-1A	IO2	E2
F5104			ALIn_1	A L IN 1	NF-IN	1959-4A	IO2	E2
F5202			RCVBSIn	Y IN	Sin-IN	1997-2A	IO2	C2
F5905			Y_OUT	Y Out	Sin-Out*	1957-5A	IO1	I12
F5801			U_IN	U IN	Sin-In*	1956-1B	IO1	I10
F5805			Y_IN	Y IN	Sin-In	1956-5A	IO1	I9
F5802			V_IN	V IN	Sin-In	1956-2B	IO1	I10

Figure 5-35

MP	X	Y	Signal-Name	Signal Description	Signal Type	Part	Schematics Name	Coord.
F4202			DIG OUT L	Digital Out Low	GND	1954-2	DIGI	B4
F4203			DIG OUT H	Digital Out High	Sin-Out	1945-3	DIGI	A4
F4204			OPT OUT	Optical Out	DC-Out	1943-1	DIGI	D3
F806			FAN OUT	FAN Out	DC-Out	1984-1	FACO	C5
F807			FAN IN	FAN In	DC-In	1985	FACO	F1
F8206			ION	ION_FAN	DC-Out	1982-6	AIO1	H13
F8208			BE_FAN	BE_FAN	DC-Out	1982-8	AIO1	I13
F8209			FB	FBIN SC2	DC-Out	1982-9	AIO1	I13
F8210			GNDD	GNDD	GNDD	1982-10	AIO1	I13

Remark:

Indicator * means more than one signal type

Figure 5-36

MP	X	Y	Signal-Name	Signal Description	Signal Type	Part	Schematics Name	Coord.
F5401			A_V	A_V to DIGI	Sin-Out	1954-01	IO1	I3
F5402			GNDV	GNDV to DIGI	GND	1954-02	IO1	I4
F5403			A_U	A_U to DIGI	Sin-Out	1954-03	IO1	I4
F5405			A_Y	A_Y to DIGI	V-Out	1954-05	IO1	I4
F5407			A_C	A_C to DIGI	Sin-Out	1954-07	IO1	I4
F5409			A_YCVBS	AYCVBS to DIGI	V-Out	1954-09	IO1	I4
F5412			D_CVBS	D_CVBS f. DIGI	V-In	1954-12	IO1	I5
F5414			D_Y	D_Y f. DIGI	V-In	1954-14	IO1	I5
F5416			D_C	D_C f. DIGI	Sin-In	1954-16	IO1	I5
F5418			D_R	D_T f. DIGI	Sin-In	1954-18	IO1	I6
F5420			D_G	D_G f. DIGI	Sin-In	1954-20	IO1	I6
F5422			D_B	D_B f. DIGI	Sin-In	1954-22	IO1	I6
F5301			AFCRI	A R from FC	NF-In	1953-1	IO1	I1
F5303			AFCLI	A L from FC	NF-In	1953-3	IO1	I1
F5304			CVBSFIN	CVBS from FC	V-In	1953-4	IO1	I1
F5307			CFIN	C from FC	Sin-In	1953-7	IO1	I2
F5309			YFIN	Y from FC	V-In	1953-9	IO1	I2
F012			DAINOPT	A D Opt to DIGI		1900-20	DAC	A1
F013			DAINCOAX	A D Coax to DIGI		1900-21	DAC	A1
F014			DAOUT	A D from DIGI		1900-20	DAC	A1
F0002			A_BCLK	BCLK from DIGI	CLK-In	1900-2	DAC	E2
F0003			A_WCLK	WCLK from DIGI	CLK-In	1900-3	DAC	D2
F0005			A_DAT	A Data to DIGI	Data-Out	1900-5	DAC	D2
F0007			A_PCMCLK	PCMCLK from DIGI	CLK-In	1900-7	DAC	D2
F0009			D_BCLK	BCLK from DIGI	CLK-In	1900-9	DAC	D2
F0011			D_WCLK	WCLK from DIGI	CLK-In	1900-11	DAC	D2
F0012			D_DATA0	A Data from DIGI	Data-In	1900-12	DAC	C2
F0014			D_PCMCLK	PCMCLK from DIGI	CLK-In	1900-14	DAC	C2
F0016			D_KILL	A Kill from DIGI	DC-In	1900-16	DAC	C2
F010			ARDAC	A R from DAC	NF-Out	7002-1	DAC	C9
F011			ALDAC	A L from DAC	NF-Out	7002-7	DAC	E9
F513			ALOut_2	A L Rear Out 2	NF-Out	1958-4B	IO1	B13
F512			AROut_2	A R Rear Out 2	NF-Out	1958-5B	IO1	C13
F5205			RCVBSOut1	V Rear Cinch Out1	V-Out	1997-5C	IO3	A8
F5503			RSVHSYIn	Y Rear SVHS In	V-In	1955-3B	IO2	B2
F5504			RSVHSCIn	C Rear SVHS In	Sin-In	1955-4B	IO2	B2
F338			RSVHSYOut	Y Rear SVHS Out	V-Out	1955-3A	IO3	A9
F337			RSVHSCOOut	C Rear SVHS Out	Sin-Out	1955-4A	IO3	A9
F6001			DVAR	A R from DIGI	Sin-In	1960-1	AP	D1
F6002			GNDA	GNDA	GND	1960-2	AP	D1
F6004			DVAL	A L from DIGI	Sin-In	1960-4	AP	D1
F700			IF	IF Out	DC-Out	1705-11	TU	C3
F701			IF-In	IF In	Sin-In	1705-11	TU	C3
F702			GNDFV	GND FV	GND	1705-12	TU	C2
F703			GNDFV	GND FV	GND	1700-3	TU	B6
F705			AGC	AGC	DC-Out	3701	TU	A4
F812			SYNC	SYNC from Sepa.	Freq-Out	7803-33	AIO1	F6
F330			RC IN	Remote Control In	DC-Out	1993-2	IO3	E2

Power Part Check

Check internal Power supply voltages

5M on testpoint F9340	NOK →	check Fuse 1327
12STBY on testpoint F810	NOK →	check Fuse 1326
8STBY on pin 3 of IC7332	NOK →	check IC 7332
8SW on testpoint F9336	NOK →	check - ISTBY HIGH? - T7329, T7324, MOSFET7321
5STBY on testpoint F9333	NOK →	check Fuse 1325
5SW on testpoint F303	NOK →	check - ISTBY HIGH? - T7329, T7324, MOSFET7323
5STBY2 on testpoint F900	NOK →	check L5901, IC7900
5STBY_uP on IC7803	NOK →	check L5903, IC7803

↓ OK

Power Part OK

CL 16532145_056.eps
031201

Figure 5-37

DSW Check Analogue Board

DSW CHECK ANALOGUE BOARD

Figure 5-38

Routing Audio and Video***Route Video***

Nucleus Number: 712

Description

This nucleus routes the video signals on the analogue board to the destination determined by the input parameters
 The paths that are available for video routing and their description(Europe version)

PATH ID	DESCRIPTION
00	Input signal is VIDEO(CVBS) from digital board and will be re-routed back to the digital board.
01	Input signal is from FRONT VIDEO(CVBS) IN and will be routed to the digital board.
02	Input signal is from REAR VIDEO(CVBS) IN and will be routed to the digital board.
03	Input signal is from FRONT S-VIDEO(Y/C) and will be routed to the digital board.
04	Input signal is from REAR S-VIDEO(Y/C) and will be routed to the digital board.
05	Input signal is CVBS from SCART1 and will be routed to the digital board.
06	Input signal is CVBS from SCART2 and will be routed to the digital board.
07	No routing.
08	Input signal is VIDEO(CVBS) from ANTENNA IN and will be routed to SCART1.
09	Input signal is VIDEO(CVBS) from SCART1 and will be routed to SCART2.
10	Input signal is VIDEO(CVBS) from SCART2 and will be routed to SCART1.
11	No routing.
12	Input signal is from REAR VIDEO(CVBS) IN and will be routed to SCART1 and SCART2.
13	Input signal is from FRONT VIDEO(CVBS) IN and will be routed to SCART1.
14	Input signals VIDEO(CVBS and Y/C) from SCART 1 will be routed to SCART2.
15	Input signal is from REAR S-VIDEO(Y/C) IN and will be routed to SCART2.
16	Input signal is from FRONT S-VIDEO(Y/C) IN and will be routed to SCART2.
17	No routing
18	No routing
19	Input signals VIDEO(RGB and FAST BLANKING) from SCART2 will be routed to the corresponding pins of SCART1.
20	Signal path is routed from digital board RGB to RGB SCART1 and from RGB SCART2 to digital board YUV and from digital board CVBS to digital board CVBS.
21	Signal path is routed from digital board YC to REAR S-VIDEO(YC) OUT and from REAR S-VIDEO(YC) IN to digital board YC.

The paths that are available for video routing and their description (Nafta region)

PATH ID	DESCRIPTION
00	Input signal is VIDEO(CVBS) from digital board and will be re-routed back to the digital board.
01	Input signal is from FRONT VIDEO(CVBS) IN and will be routed to the digital board.
02	Input signal is from REAR VIDEO(CVBS) IN and will be routed to the digital board.
03	Input signal is from FRONT S-VIDEO(Y/C) IN and the signal received will be routed to the digital board.

PATH ID	DESCRIPTION
04	Input signal is from REAR S-VIDEO(Y/C) IN and will be routed to the digital board.
05	Input signal is from YUV IN and will be routed to the digital board.
06	No routing.
07	No routing.
08	Input signal is VIDEO(CVBS) from ANTENNA IN and will be routed to VIDEO(CVBS) OUT and .
09	Input signal is from YUV IN and will be routed to YUV OUT.
10	No routing.
11	No routing.
12	Input signal is from REAR VIDEO(CVBS) IN and will be routed to REAR VIDEO(CVBS) OUT.
13	Input signal is from FRONT VIDEO(CVBS) IN and will be routed to REAR VIDEO(CVBS) OUT.
14	Input signal is from REAR S-VIDEO(Y/C) IN and will be routed to REAR S-VIDEO(Y/C) OUT.
15	Input signal is from FRONT S-VIDEO(Y/C) IN and will be routed to REAR S-VIDEO(Y/C) OUT.
16	No routing.
17	Signal path is routed from digital board RGB to REAR VIDEO(YUV) OUT and from REAR VIDEO(YUV) IN to digital board YUV and from digital board CVBS to digital board CVBS.
18	Signal path is routed from digital board CVBS to REAR VIDEO(CVBS) OUT and from REAR VIDEO(CVBS) IN to digital board CVBS.
19	Signal path is routed from digital board YC to REAR S-VIDEO(YC) OUT and from REAR S-VIDEO(YC) IN to digital board YC.

Example

DD:> 712 01

71200: Video routing on the Analogue Board OK.

Test OK @

Route Audio

Nucleus Number: 713

Description

This nucleus routes the audio on the analogue board to the destination determined by the input parameters
 The paths that are available for audio routing and their description (Europe version)

PATH ID	DESCRIPTION
00	Input signal is VIDEO(CVBS) from digital board and will be re-routed back to the digital board.
01	Input signal is from FRONT AUDIO IN and will be routed to the digital board.
02	Input signal is from REAR AUDIO IN and will be routed to the digital board.
03	Input signal is AUDIO from SCART1 and will be routed to the digital board.
04	Input signal is AUDIO from SCART2 and will be routed to the digital board.
05	No routing.
06	No routing.
07	No routing.
08	Input signal is VIDEO(CVBS) and AUDIO from ANTENNA IN and will be routed to SCART1.
09	Input signal is VIDEO(CVBS) and AUDIO from SCART1 and will be routed to SCART2.
10	Input signal is VIDEO(CVBS) and AUDIO from SCART2 and will be routed to SCART1.
11	Input signal is AUDIO from dvio board and will be routed to SCART1.

PATH ID	DESCRIPTION
12	No routing.
13	No routing.
14	No routing.
15	No routing.
16	No routing.
17	Input signal is from REAR AUDIO IN and will be routed to SCART1.
18	Input signal is from FRONT AUDIO IN and will be routed to SCART1.

The paths that are available for audio routing and their description (Nafta region)

PATH ID	DESCRIPTION
00	Input signal is VIDEO(CVBS) from digital board and will be re-routed back to the digital board.
01	Input signal is from FRONT AUDIO IN and will be routed to the digital board.
02	Input signal is from REAR AUDIO IN 2 and will be routed to the digital board.
03	Input signal is from FRONT AUDIO IN and will be routed to the digital board.
04	No routing.
05	No routing.
06	No routing.
07	No routing.
08	Input signal is VIDEO(CVBS) and AUDIO from ANTENNA IN and will be routed to VIDEO(CVBS) OUT and REAR CINCH OUT 2.
09	No routing.
10	Input signal is from REAR AUDIO CINCH IN 2 and will be routed to REAR AUDIO CINCH OUT 2.
11	Input signal is from FRONT AUDIO CINCH IN and will be routed to REAR AUDIO CINCH OUT 2.
12	No routing.
13	No routing.
14	No routing.
15	No routing.
16	Input signal is AUDIO from dvio board and will be routed to AUDIO CINCH OUT 2.
17	No routing.
18	No routing.
19	No routing.
20	Input signal is from digital board and will be routed to the REAR AUDIO OUT 1 and input signal is from REAR AUDIO IN 2 and will be routed to the digital board.
21	Input signal is from digital board and will be routed to the REAR AUDIO OUT 1 and input signal is from REAR AUDIO IN 1 and will be routed to the digital board.
22	Input signal is from digital board and will be routed to the REAR AUDIO OUT 2 and input signal is from REAR AUDIO IN 1 and will be routed to the digital board.

EXAMPLE

DD:> 713 00

71300: Audio routing on the Analogue Board OK.

Test OK @

5.6.5 Display Board

TROUBLESHOOTING DISPLAY BOARD

CL 265362011_024.eps
160102

Figure 5-39

5.6.6 DVIO Board

Waveforms

Waveforms DVIO

Figure 5-40

Personal Notes:

6. Block and Wiring Diagram.

Block Diagram DVDR990 DVIO 1.8

Wiring Diagram

8001		
1602	1900	
1	22	GNDD
2	21	SPDIF
3	20	COAX_IN
4	19	OPT_IN
5		+5V
6	17	+3V3
7	16	MUTEN
8	15	GNDD
9	14	AD_ACLK
10	13	GNDD
11	12	AD_DATA0
12	11	AD_WCLK
13	10	GNDD
14	9	AD_BCLK
15	8	GNDD
16	7	AD_ACLK
17	6	GNDD
18	5	AD_DATA1
19	4	GNDD
20	3	AE_WCLK
21	2	AE_BCLK
22	1	GNDD

002		
601	1954	
	22	B_OUT_B
	21	GND
	20	G_OUT_B
	19	GND
	18	R_OUT_B
	17	GND
	16	C_OUT_B
	15	GND
	14	Y_OUT_B
0	13	GND
1	12	CVBS_OUT_B
2	11	GND
3	10	GND
4	9	CVBS_Y_IN
5	8	GND
6	7	C_IN
7	6	GND
8	5	Y_IN
9	4	GND
0	3	U_IN
1	2	GND
2	1	V_IN

8003	
1100	1402
15	1
14	2
13	3
12	4
11	5
10	6
9	7
8	8
7	9
6	10
5	11
4	12
3	13
2	14
1	15
1101	
15	16
14	17
13	18
12	19
11	20
10	21
9	22
8	23
7	24
6	25
5	26
4	27
3	28
2	29
1	30

004		
600	1982	
	10	GNDD
	9	FB
	8	BE_FAN
	7	ANA_WE
	6	ION
	5	VSM_UART1_RTSn (D_RDY)
	4	VSM_UART1_CTSn (A_RDY)
	3	VSM_UART1_TX (D_DATA)
	2	VSM_UART1_RX (A_DATA)
0	1	IRESET_DIG

8007	+12Vstby +5Vstby -5Nstby -Vgnstby +33Vstby FLYB GND	80
------	---	----

	8009
+3V3	+3V3
+5V	+3V3
GND	+3V3
+4V6E	+3V3
GND	GNDD
-5V	+12V
GND	GNDD
+12V	GNDD
	+5V
10	ION(STBY_ctrl)
11	GNDD
12	-5V

**TR03002_001
270602**

7. Electrical Diagrams and Print-Layouts

Power Supply

0101-1 B1	6130 D7
0101-2 A1	6131 D7
0125 C6	6132 D7
0205 F12	6140 C5
0210 C8	6141 D4
0240 D8	6142 D6
0260 D8	6143 E6
0290 E9	6144 E6
1120 A2	6145 C4
1125 B4	6146 C6
2119 B4	6151 B5
2120 B3	6153 B5
2125 B6	6154 B5
2127 A4	6200 A9
2129 B6	6210 B9
2130 B7	6211 B9
2131 A7	6215 C9
2136 C7	6220 E8
2139 D3	6221 E8
2140 C4	6230 F8
2141 D4	6231 F9
2142 D2	6240 D9
2143 E3	7125 C6
2144 E4	7140 D4
2145 E4	7141 D3
2146 C5	7142 D2
2147 D5	7143 D3
2151 E5	7200 G7
2152 E7	7220 E9
2153 D5	7241 D11
2200 B9	7251 G8
2201 B10	9110 A3
2211 B10	9115 B3
2212 B9	
2214 C9	
2215 C9	
2220 E9	
2221 E10	
2222 E10	
2223 E10	
2230 F9	
2235 F10	
2240 D9	
2241 D10	
2242 D9	
2251 G9	
3120 B3	
3122 B3	
3123 B2	
3125 B5	
3126 B5	
3127 B7	
3128 B7	
3129 A5	
3131 C6	
3132 C6	
3133 D6	
3134 D6	
3135 D6	
3139 D4	
3140 C5	
3141 C4	
3142 C3	
3143 D3	
3144 D2	
3145 D4	
3146 D5	
3147 D5	
3148 E5	
3149 E7	
3150 D6	
3151 D6	
3152 D6	
3153 D6	
3154 D6	
3155 D6	
3156 D6	
3157 D6	
3158 D6	
3159 D6	
3160 D6	
3161 D6	
3162 D6	
3163 D6	
3164 D6	
3165 D6	
3166 D6	
3167 D6	
3168 D6	
3169 D6	
3170 D6	
3171 D6	
3172 D6	
3173 D6	
3174 D6	
3175 D6	
3176 D6	
3177 D6	
3178 D6	
3179 D6	
3180 D6	
3181 D6	
3182 D6	
3183 D6	
3184 D6	
3185 D6	
3186 D6	
3187 D6	
3188 D6	
3189 D6	
3190 D6	
3191 D6	
3192 D6	
3193 D6	
3194 D6	
3195 D6	
3196 D6	
3197 D6	
3198 D6	
3199 D6	
3200 A10	
3201 B10	
3220 E11	
3221 D11	
3222 D11	
3230 F9	
3233 F9	
3234 F10	
3250 G8	
3253 G9	
3254 G10	
3255 G9	
5110 A3	
5115 B3	
5120 B4	
5121 B4	
5125 C7	
5131 B7	
5210 B10	
5240 D9	
6125 B7	
6128 A4	
6129 A5	

Power Supply

0200 G10
 0201 G11
 0202 G11
 0207 B8
 0209 A10
 0221 B3
 1520 B4
 2501 D4
 2502 D5
 2506 F4
 2511 E9
 2512 E10
 2513 E11
 2515 E8
 2520 B4
 2521 B5
 3501 D3
 3502 D4
 3503 D4
 3504 E4
 3511 E9
 3512 E9
 3513 F9
 3514 E10
 3515 E7
 3516 E7
 3520 B3
 3521 C3
 3522 C3
 3523 C4
 3524 C4
 3525 B4
 5501 C4
 5505 E4
 5511 D10
 5515 D7
 5520 B4
 6505 E3
 6511 E9
 6512 D9
 6515 E7
 6520 B2
 7501 D3
 7502 E3
 7511 E9
 7512 E9
 7515 D7
 7520 B3
 7521 C3

Layout Power Supply (Top View)

0101A1	0209B6	1520B5	2130A3	2212A5	2240A5	2521B6	3128A3	3141B3	3223A6	5115A1	5501A7	6129B1	6151B2	6211A6	6505A7	7502A7	9214A4	9511A6
0125B3	0210A5	2119A2	2131A4	2214A5	2241A6	3120B1	3129B2	3146B3	3230A6	5120A2	5505A7	6130A3	6152A2	6215A5	6512A6	7520A5	9215A4	9512A6
0200A3	0221A6	2120B1	2136A3	2215A5	2242A4	3122B1	3131B3	3148B2	3250A5	5121A1	5511A6	6131A3	6153A2	6220B4	6515B7	7521A6	9220B5	9520A5
0201A7	0240A5	2125B2	2147B4	2220B5	2502B6	3123A1	3132B3	3149A3	3254A4	5125A3	5515B7	6132A3	6154A2	6221A4	7125A3	9110B1	9221A6	9521A5
0202A5	0260A5	2126B2	2200A5	2221A7	2506B7	3125B2	3133A2	3150B3	3501B7	5131A4	5520B5	6140B3	6230A4	7200B4	9115A1	9222A7		
0205A6	0290B5	2127B1	2210A5	2230A5	2512A6	3126B2	3134A3	3152B3	3514A6	5120A6	6125A3	6142B2	6201A7	6231A7	7220B5	9207B6	9250B4	
0207B6	1120B1	2129A3	2211A6	2235A7	2515B7	3127A3	3135A3	3200A6	5110A1	5240A5	6128B1	6143B2	6210A5	6240A4	7251B4	9209B6	9251B4	

1 2 3 4 5 6 7

Layout Power Supply (Overview Bottom View)

2139 A2	2143 A2	2151 A2	2222 A5	2511 B6	3140 A4	3145 A2	3220 B6	3234 B7	3502 B7	3512 B6	3520 B5	3524 B6	6145 A3	7140 A2	7241 B6	7515 B7
2140 A2	2144 A2	2152 B3	2223 B7	2513 A6	3142 A4	3147 A4	3221 B6	3253 A4	3503 B7	3513 B7	3521 B5	3525 B6	6146 B3	7141 A2	7501 A7	
2141 A3	2145 A2	2153 A3	2251 A4	2520 B6	3143 A2	3151 A2	3222 B6	3255 A4	3504 B6	3515 B7	3522 B6	6141 A3	6511 B6	7142 A2	7511 B6	
2142 A2	2146 A3	2201 B7	2501 A7	3139 A3	3144 A2	3201 B6	3233 B7	3256 A4	3511 B6	3516 A7	3523 B6	6144 A3	6520 B5	7143 A2	7512 B7	

Layout Power Supply (Part 1 Bottom View)

Layout Power Supply (Part 2 Bottom View)

Display Panel

Layout Display Panel (Top View & Overview Bottom View)

0206 A4 1156 A7 1163 B7 1170 A9 1911 B4 2140 B1 3110 B4 3156 A3 3167 A4 5153 A2 6159 A3 6167 A3 6178 A5 6182 A5 6186 A5 6190 A6 6194 A6 7140 B1 9102 A4 9106 A2 9110 A4 9114 A3
 1140 B2 1159 B9 1167 B9 1171 A7 1915 B1 2150 A3 3135 B1 3157 A2 3168 A3 6140 B2 6164 A3 6175 A5 6179 A5 6183 A5 6187 A5 6191 A6 6195 A6 7150 A4 9103 A3 9107 A4 9111 A4 9115 A2
 1150 A1 1160 A9 1168 A9 1174 A1 1916 A1 2152 A2 3152 A1 3164 A5 5150 A2 6157 A3 6165 A3 6176 A5 6184 A6 6188 A6 6196 A6 9100 A2 9104 A3 9108 A5 9112 A4 9116 A2
 1153 A5 1162 B8 1169 A8 1910 B4 1917 A1 2154 A2 3154 A1 3166 A4 5151 A1 6158 A3 6166 A3 6177 A5 6181 A5 6185 A5 6189 A6 6193 A6 6197 A6 9101 A5 9105 A3 9109 A6 9113 A3 9151 B3

2100 B6 2151 A7 2161 A9 2170 B2 2180 A8 3106 B7 3136 B8 3143 B8 3150 A8 3161 A7 3172 A8 3183 A9 3193 A8 4103 A9 4110 A8 4117 A9 4300 B9 6151 A8 6168 A7 6198 A7 7145 B8 7160 A7
 2101 B7 2155 A8 2162 A5 2171 A8 3100 B7 3107 B7 3137 B8 3144 B8 3151 A9 3162 A7 3173 A8 3186 B1 3194 A9 4104 A9 4111 A8 4118 A9 6100 B7 6152 A8 6169 A7 7100 B7 7151 A8 7164 A9
 2102 B7 2156 A9 2163 A5 2173 A3 3101 B7 3108 B7 3138 B8 3145 A9 3153 A8 3163 A8 3174 A8 3187 A1 3197 A9 4105 A9 4112 A7 4119 A9 6101 B6 6154 A8 6170 A5 7101 B6 7152 A8 7165 A7
 2103 B7 2157 A8 2165 A5 2174 A9 3102 B7 3109 B7 3139 B8 3146 A7 3155 A9 3165 A7 3177 B1 3188 A2 3999 B9 4106 A9 4113 A7 4120 A9 6102 B6 6155 A6 6171 A6 7141 B8 7153 A8 7166 A7
 2104 B7 2158 A5 2167 A8 2175 A7 3103 B7 3111 B6 3140 B9 3147 A7 3158 A8 3169 A8 3178 A1 3189 A1 4100 A7 4107 A9 4114 A6 4121 A9 6103 B6 6156 A8 6172 A6 7142 B8 7155 A7
 2105 B7 2159 A5 2168 A8 2177 A9 3104 B7 3112 B6 3141 B8 3148 A7 3159 A8 3170 A7 3180 B2 3190 A3 4101 B7 4108 A8 4115 A5 4122 A9 6104 B6 6160 A8 6173 A6 7143 B8 7156 A6
 2106 B5 2160 A8 2169 A7 2179 B3 3105 B7 3113 B5 3142 B8 3149 B9 3160 A8 3171 A9 3182 A4 3192 A9 4102 B7 4109 A8 4116 A7 4151 A7 6150 A8 6161 A7 6174 A6 7144 B8 7157 A8

Layout Display Panel (Part 1 Bottom View)

Layout Display Panel (Part 2 Bottom View)

Front AV Part

1910-A D1
1910-B B1
1910-C C1
1910-D F1
1911 D8
2100 A6
2101 A5
2102 B3
2103 C6
2104 C5
2105 D3
2106 F2
3100 A5
3101 A3
3102 B4
3103 B5
3104 B6
3105 C5
3106 C3
3107 D4
3108 D5
3109 D6
3110 D4
3111 D2
3112 E2
3113 F2
4101 B4
4102 D4
6100 A3
6101 C3
6102 D3
6103 E3
6104 F3
7100 A6
7101 C6
F200 A2
F201 B1
F202 C2
F203 D7
F204 D7
F205 D7
F206 D2
F207 D7
F208 D7
F209 D7
F210 D7
F211 E1
F212 E7
F213 E7
I300 A3
I301 A5
I302 C3
I303 C5
I304 F2

Layout Front AV Part

IR and Standby Panel

1140 D
1915 C
2140 E
3135 D
3136 A
3137 B
3138 C
3139 C
3140 D
3141 D
3142 D
3143 A
3144 A
3149 C
3999 A
6140 B
7140 D
7141 A
7142 B
7143 A
7144 C
7145 D
F300 C
F301 C
F302 C
F303 D
F304 D
F305 D
F306 D
I310 A
I311 A
I312 A
I313 B
I314 A
I315 D
I316 C
I317 C
I318 D
I319 D
I320 D

Layout IR and Standby Panel (Top View)

Layout IR and Standby Panel (Bottom View)

Analog Board: All in One 1

1802 H4	3916 F11	1887 H1
1800 A10	3917 F11	1888 H1
1802 H14	4900 G2	1891 D2
2800 A1	6802 A7	1892 F14
2801 A8	6803 B3	1894 D2
2802 A4	6805 F6	1896 F3
2803 A7	6807 F13	1897 F4
2804 A5	7800-A A2	1898 F5
2805 A6	7800-B F2	1899 F5
2806 B1	7800-C B3	1903 F11
2807 B4	7800-D A3	1945 B13
2808 D12	7801 A7	1946 C14
2810 F3	7804 D1	1970 E7
2811 G6	7805 C9	1971 D6
2812 G3	7806 E2	1972 E6
2813 G5	7807 E5	1973 E5
2814 H4	7808 F4	1974 D6
2815 H5	7810 H1	1975 D3
2816 H3	7811 H7	1976 D6
2817 H3	7812 I3	1977 C8
2818 I6	7813 B3	1981 C8
2820 I2	7815 C2	1982 C5
2821 B4	7817 B3	1981 C6
2822 C4	7800 C10	1982 A7
2823 D14	7800 A10	1983 F11
2827 F2	8002 A10	
2831 A3	F8003 A11	
2832 A4	F8004 A11	
2833 A5	F8005 A11	
2834 A7	F8007 A11	
2835 A8	F8008 A11	
2836 A9	F801 A1	
2837 A2	F802 B1	
2838 A3	F803 H5	
2839 B4	F808 H10	
2840 A2	F810 A9	
2841 A4	F8101 D13	
2842 B6	F8102 E13	
2843 A4	F8103 E13	
2844 A13	F8104 E13	
2845 B2	F8105 E13	
2846 B3	F8106 E13	
2847 B9	F8107 E13	
2848 B9	F8108 E13	
2849 B6	F8109 F13	
2850 B6	F8110 A9	
2852 A5	F8110 F13	
2853 A10	F8112 D13	
2824 C4	F8201 H3	
2825 C5	F8201 H13	
2826 A10	F8202 H13	
2827 B2	F8203 H13	
2828 B2	F8204 H13	
2830 E6	F8205 H13	
2831 B5	F8206 H13	
2832 C1	F8207 H13	
2833 B12	F8208 H13	
2834 B12	F8209 H13	
2835 B6	F8210 H13	
2836 B11	I800 A1	
2837 B2	I801 A5	
2838 A2	I802 A5	
2839 C6	I803 A5	
2840 C10	I804 B3	
2841 C11	I806 B1	
2842 B4	I807 C3	
2844 D10	I809 B2	
2845 D11	I810 B2	
2846 D11	I811 B11	
2847 D10	I815 A5	
2848 D3	I816 A5	
2849 D2	I818 A5	
2851 D4	I819 A6	
2852 D5	I820 A6	
2853 E3	I822 A7	
2855 F4	I829 B5	
2856 E1	I831 B9	
2858 E2	I832 B9	
2859 E2	I833 B9	
2861 G5	I834 C10	
2862 F3	I835 A6	
2863 F3	I836 A6	
2863 F10	I837 A5	
2864 F10	I838 D6	
2865 E5	I839 C10	
2866 E5	I841 C10	
2868 E6	I843 C10	
2869 E6	I844 C10	
2870 G9	I845 C10	
2871 B8	I846 C10	
2872 G5	I848 D10	
2873 G6	I849 D10	
2875 F10	I850 D10	
2876 H3	I854 G6	
2877 H5	I855 G6	
2878 H4	I856 G9	
2879 F6	I857 G8	
2880 H8	I858 G8	
2881 I5	I859 D7	
2882 H3	I860 D10	
2883 H3	I862 D10	
2884 G7	I863 D10	
2885 G9	I864 D10	
2886 I4	I865 D10	
2887 D6	I866 D8	
2888 H1	I867 E10	
2889 H1	I870 G5	
2890 H1	I871 G5	
2891 D6	I872 H5	
2892 D6	I874 H6	
2893 D6	I875 H5	
2894 E1	I876 H6	
2895 F2	I877 H6	
2896 F5	I878 I5	
2897 F5	I879 I5	
2898 G2	I880 I4	
2899 G2	I881 I4	
2900 D11	I882 H3	
2914 C14	I882 H2	
2915 C13	I883 G1	

Analog Board: All in One 2

CL 16532145_130.eps
121201

Analog Board: Tuner / Demodulator

1700 B5	2700 A3	2705 A9	2710 A8	2715 D7	3701 A6	3706 A8	3711 A1	3716 C1	3721 E10	3726 D9	4701 C4	5702 A5	5707 E10	7700 A10	7705 E7	F303 B10	F704 B5	I706 C5	I711 A7	I718 A10	I732 E9	I737 D10	I753 E4	I760 A1	
1701 C5	2701 A4	2706 A7	2711 C3	2716 A3	3702 A9	3707 A7	3712 D4	3717 E8	3722 E9	3727 E8	4702 E5	5703 B9	5706 E10	7701 B5	7706 E9	F700 C3	F705 A4	I707 C6	I712 B8	I719 E7	I733 E10	I739 D7	I756 B1	I761 A1	
1702 D5	2702 A4	2707 A10	2712 D3	2717 A1	3703 A2	3708 A4	3713 D5	3718 E4	3723 E7	3728 E8	5009 E9	5704 E3	5706 A1	7702 C5	7707 E4	F701 C3	I701 A6	I708 C6	I713 A8	I720 A4	I734 D10	I741 D7	I757 B1	I762 A3	
1703 E10	2703 A7	2708 A10	2713 A1	2718 E8	3704 A4	3709 A5	3714 C4	3719 C2	3724 D7	3729 E5	5700 A2	5705 A1	5706 A3	7703 B7	7708 D2	F702 C2	I703 A4	I709 A7	I714 B8	I720 A4	I730 E10	I731 E10	I751 E4	I758 B1	I763 A3
1705 B2	2704 A7	2709 A8	2714 D7	3700 A3	3705 A9	3710 D10	3715 D10	3720 B1	3725 E9	3730 E5	5701 A10	5706 E6	5707 E9	7704 D10	7709 E9	F703 B6	I704 B4	I710 B7	I717 A9	I718 A10	I731 E10	I736 D9	I752 D4	I759 A1	I764 D3

Analog Board: In / Out 1

Analog Board: In / Out 2

1951-A F1
 1952-A D1
 1955-B A1
 1958-A E1
 1959-A C1
 2400 B5
 2401 B2
 2402 C9
 2403 C9
 2404 C4
 2405 C9
 2406 E4
 2407 E8
 2408 E9
 2410 A4
 2411 F10
 3402 A3
 3403 B4
 3404 B4
 3405 B2
 3406 B2
 3407 C3
 3408 C2
 3409 E5
 3410 E2
 3411 E2
 3412 E5
 3413 E9
 3414 F9
 3415 F9
 3416 F2
 3417 F2
 3418 A5
 3419 A6
 5400 A8
 6402 B4
 6403 B3
 6405 C2
 7400 B6
 7401 D6
 F5101 D2
 F5103 E2
 F5202 C2
 F5503 B2
 I402 B5
 I404 B5
 I406 C5
 I407 C4
 I409 E4
 I410 E5
 I411 E8
 I412 E8
 I414 E9
 I416 C8
 I417 B10

Analog Board: In / Out 3

6 In / Out 3

VO 3

- 1951-B F9
1952-B C9
1955-A A9
1955-C B9
1956 D9
1958-B E9
1959-B C9
1991 F1
1992 E1
2430 B6
2431 A4
2432 A5
2433 A1
2434 A4
2436 B5
2437 C1
2438 C5
2439 B1
2440 B4
2441 B5
2442 F5
2443 F5
2444 E3
2445 F2
2446 E7
2447 F8
2448 B4
2449 C7
2450 D7
3400 D4
3401 D4
3420 E5
3421 F5
3423 C1
3424 B1
3425 B1
3426 A1
3431 B6
3432 A7
3433 B7
3434 B1
3435 A6
3436 C7
3437 B1
3438 B5
3439 E6
3440 E8
3441 E5
3442 E6
3444 D3
3445 F6
3446 F8
3447 D2
3448 D2
3450 F5
3451 F6
3452 E4
3453 E3
3454 D3
3455 A2
4404 A4
4405 D9
4406 D9
4904 F4
5430 A4
6430 A8
6431 B8
6432 C8
6436 D4
6437 D1
6438 F2
6439 E8
6440 F8
7402 D5
7403 D5
7430 A2
7431 E7
7432 D3
7433 F7
7434-A D7
7434-B D8
F330 E2
F331 E9
F334 E9

Analog Board: In / Out 4

CL 16532095_015.eps
080801

Analog Board: Sound Processing

1600 F7
 1960 D1
 2600 A6
 2601 A6
 2602 A7
 2603 A7
 2604 A9
 2605 B8
 2606 B8
 2607 C2
 2608 C9
 2609 C2
 2610 C8
 2612 D8
 2614 E1
 2615 E1
 2616 E8
 2617 E8
 2620 F7
 2621 F7
 2622 F5
 2623 F6
 2624 D2
 2625 D2
 3600 A8
 3601 B1
 3602 B9
 3603 B2
 3604 E2
 3605 E2
 3606 D2
 3607 D2
 4601 A5
 5600 A8
 5601 F5
 5602 F6
 6600 B9
 7600 B6
 C670 A3
 F6001 D1
 F6002 D1
 F6004 D1
 I600 A4
 I601 A6
 I602 A7
 I603 A7
 I604 A8
 I605 B7
 I606 B7
 I607 D8
 I609 F7
 I611 F7
 I612 F6
 I613 F5
 I614 E2
 I615 E2
 I616 E2
 I617 E2
 I618 C2
 I620 C1
 I622 C2
 I623 B2
 I624 B2

Analog Board: Follow Me

2950 A1	2954 D2	3954 A1	3954 B1	3958 C3	3962 E2	3966 E4	7950 D4	I951 B2	I955 C1	I959 D3	I963 E1
2951 B3	2955 D4	3951 A3	3955 C2	3959 D3	7951 B2	7950 A2	I952 B2	I956 D1	I960 E1		
2952 D2	2956 E1	3952 B1	3956 C1	3960 D3	3964 E3	7952 B3	I953 C2	I957 D1	I961 E3		
2953 D4	2957 E3	3953 B3	3957 C1	3961 E1	3965 E2	7950 D2	I954 C3	I958 D3	I962 C2		

Analog Board: VPS

1990 D1	2992 A3	2995 C1	3991 C4	3994 E1	5991 A3	I988 D1	I991 C4	I994 B1	I997 C1
2990 A4	2993 B1	2996 D1	3992 B2	3995 E3	7990 B1	I989 D1	I992 C4	I995 C1	I998 D1
2991 A4	2994 C1	3993 D1	5990 A4	1987 E3	I990 B4	I993 C2	I996 C1	I999 D1	

Analog Board: Power Supply

1324 E8
1325 C8
1326 B2
1327 B2
1932 C1
1996 D4
2321 C6
2322 D6
2323 D6
2324 B3
2325 B4
2328 C8
2329 E2
2330 B3
2331 B4
2332 B8
3321 C7
3322 E6
3323 F6
3325 D6
3326 D7
3335 F9
3336 F8
3337 D6
3338 D3
3339 D2
3340 E2
4320 D4
7321 C5
7322 F6
7323 D5
7324 D7
7329 F8
7330 E2
7331 E3
7332 A4
F3201 C1
F3202 C1
F3203 C1
F3204 C1
F3205 C1
F3206 D1
F3207 D1
F9330 E8
F9332 E9
F9333 E9
F9336 B6
F9338 C8
F9340 B2
F9341 C9
F9342 C9
F9343 C8
F9344 A3
F9345 B3
F9346 C2
F9347 C2
I324 C6
I325 F6
I326 F6
I337 F8
I338 F8
I339 D6
I340 E2
I341 D3
I345 A4

CL 16532095_019.eps
080801

Analog Board: Audio Converter

12

Audio Converter DAC ADC

1900 B1	5002 B3
2000 A4	5003 B1
2001 E1	5004 B1
2002 C7	6000 A1
2003 C4	7000 A6
2004 C4	7001 A4
2005 D5	7002-A B8
2006 D5	7002-B E8
2007 D8	7004 E4
2008 D7	7005 C3
2009 D4	7007 A9
2010 E8	7008 B9
2011 E6	7009 A8
2012 E6	7010 B7
2013 E1	7011 A7
2014 E8	F0001 E1
2015 F1	F0002 E2
2016 F5	F0003 D2
2017 F6	F0005 D2
2018 F8	F0007 D2
2019 E5	F0009 D2
2020 F2	F0011 C2
2021 F2	F0012 C2
2022 E3	F0014 C2
2023 D3	F0016 C2
2024 A2	F0017 B1
2025 A3	F010 C9
2026 A3	F011 E9
2027 D3	F012 A1
2028 D3	F013 A1
2029 C3	F014 A1
2030 C3	I001 A1
3000 A2	I009 B6
3001 A6	I010 C6
3002 A6	I011 D6
3003 B4	I012 D6
3004 A3	I013 D5
3005 B7	I014 F6
3006 C7	I015 E3
3007 C7	I016 E3
3008 C6	I017 F3
3009 C8	I018 F3
3010 C6	I019 F3
3011 D7	I020 F3
3012 D7	I022 E8
3013 F2	I023 F5
3014 D2	I024 B8
3015 E2	I025 C8
3016 D2	I026 D8
3017 D7	I027 E8
3018 E6	I028 A4
3019 E6	I029 C4
3020 F2	I030 C5
3021 F2	I031 A6
3022 F8	I032 A6
3023 E3	I033 A4
3024 E3	I034 A4
3025 B2	I035 A4
3026 A2	I036 B4
3027 B2	I037 E3
3028 F5	I038 F1
3029 C8	I039 F1
3030 C3	
3032 F8	
3033 A8	
3034 A8	
3035 A7	
3036 B8	
3037 B7	
3038 B7	
3039 B9	
3040 B9	
3041 A9	
3042 A9	
3043 A6	
3044 A2	
5000 B3	
5001 E1	

Analog Board: RGB-YUV-Converter

2200 A1	3202 B2	3208 C1	3214 D2	3222 E2	4203 D4	I201 A2	I207 A1	I213 D1	I226 E2
2201 A1	3203 B2	3209 C1	3215 E2	3223 D4	7200-A C3	I202 A3	I208 B3	I214 D2	
2202 A3	3204 B3	3210 C2	3218 E1	3224 E	7200-B D3	I203 A4	I209 C2	I215 D1	
2203 A3	3205 B3	3211 D1	3219 E2	3225 E4	7200-C A3	I204 A4	I210 C2	I216 D3	
3200 A4	3206 B3	3212 D1	3220 E3	4201 D4	7200-D A2	I205 A3	I211 C1	I224 E2	
3201 A1	3207 C1	3213 D1	3221 E1	4202 D4	7201 B4	I206 A2	I212 C2	I225 E2	

1 2 3 4

RGB-YUV-Conv.**Analog Board: Digital In / Out**

1941-A A4	2471 A3	2481 E2	3429 D3	3494 B3	4471 C2	7470-D A1	F4204 D3	I490 C2
1942 E4	2472 A3	2483 A1	3443 D4	3495 C2	5470 B2	7470-E C2	F4205 E4	I492 C3
1943 D4	2473 B3	2484 D3	3456 B1	3496 C1	6470 A3	7470-F D2	F4206 D4	I495 A1
1944 A4	2474 B3	2485 B4	3490 C1	3497 D2	6471 C3	F4102 A4	I485 A2	I496 A2
1948 B4	2477 D3	2486 B1	3491 A1	3498 E3	7470-B C2	F4103 A4	I486 D3	I497 B1
2470 C3	2480 B1	3427 A2	3492 A1	3499 A1	7470-B C2	F4202 B4	I487 B3	
		3428 A2	3493 A3	4470 C1	7470-C C2	F4203 A4	I489 C1	

1 2 3 4

Digital In / Out

Analog Board: Fan Control

1983 C5	2985 B3	3948 D2	3974 F1	3982 E3	3996 A4	7970-C E3	F806 C5	I924 F3	I932 B1
1984 C5	3940 C4	3967 A3	3975 F2	3983 F3	3997 A5	7970-D D2	F807 F1	I925 C3	I933 E3
2970 C2	3941 D4	3968 A3	3976 F3	3984 E5	4905 C5	7971 B5	F813 B5	I926 F2	
2980 A2	3942 B1	3969 A4	3977 A2	3985 D1	6970 C3	7972 D5	F814 C5	I927 D1	
2981 A3	3943 C1	3970 E2	3978 B5	3986 E1	6971 C4	7973 B1	I920 B2	I928 D1	
2982 C3	3944 C1	3971 E1	3979 B4	3987 C4	6972 C3	7974 C2	I921 B3	I929 D4	
2983 D4	3946 B1	3972 C3	3980 D3	3988 E1	7970-A E4	7975 C2	I922 B4	I930 E4	
2984 E1	3947 B4	3973 F2	3981 F4	3989 D5	7970-B B3	F805 B5	I923 E2	I931 D5	

Personal Notes:

Layout Analog Board (Overview Top View)

Layout Analog Board (Part 1 Top View)

Layout Analog Board (Part 2 Top View)

Layout Analog Board (Overview Bottom View)

Layout Analog Board (Part 1 Bottom View)

TR03009a_001
260602

Layout Analog Board (Part 2 Bottom View)

Layout Analog Board (Testlands Top View)

1001 A5	1024 A5	204 B5	1438 A9	1463 A7	1486 A2	517 B3	531 B6	538 B6	555 A7	566 B7	587 A7	617 C7	823 B3	837 B7	848 B2	856 A2	864 B2	876 A3	885 B3	897 B4	923 A2	929 A2	946 B2	950 B5	960 D5	982 D3
1009 A5	1025 A5	206 B5	1440 A9	1471 B7	1495 A3	518 B3	532 B6	539 B6	558 B7	570 A8	604 C8	617 C8	829 B3	841 B3	849 B2	857 A2	866 A3	877 A3	888 B4	890 D3	924 A2	929 A2	946 B2	950 B5	960 D5	980 D3
1010 A5	1026 A5	210 B5	1454 A5	1481 A7	1496 A3	526 B6	533 B6	541 A6	559 B7	572 B7	606 B8	623 C8	831 B3	843 B2	852 A2	859 A2	869 A3	878 A3	889 D4	890 D3	925 A2	929 A1	946 B2	950 B5	960 D5	980 D3
1011 A5	1027 A5	213 B5	1455 A5	1482 A7	1497 A2	528 B6	534 B6	542 B6	560 B7	575 A7	614 B7	617 B3	832 B3	845 B2	853 A2	860 A2	869 A3	875 A3	886 D4	890 D3	926 A2	929 A1	946 B2	950 B5	960 D5	980 D3
1012 A5	1031 A5	214 B5	1460 A7	1483 A7	1500 A6	529 B6	536 B6	543 A6	563 B7	586 B6	616 C7	620 B3	835 B3	847 B1	855 A2	862 D2	875 A3	882 D3	893 A4	900 A1	927 A2	929 A1	946 B2	950 B5	960 D5	980 D3
1017 A4	1032 A5	402 A8	462 A7	485 A3	515 B6	530 B6	537 B6	553 A7	563 B7	586 B6	616 C7	622 A3	835 B3	847 B1	855 A2	862 D2	875 A3	882 D3	893 A4	900 A1	927 A2	929 A1	946 B2	950 B5	960 D5	980 D3

1

2

3

4

5

6

7

8

9

A

A

B

B

C

C

CL 16532095_051.eps
100801

Layout Analog Board (Testlands Bottom View)

DVIO Front Board

0002 C3	1000 B1	1002 A1	2001 A1	2003 D2	5000 B2	6000 A2
0003 D3	1001 B2	2000 A2	2002 D2	3000 D2	5001 C2	6001 C2

Layout DVIO Front Board

0002 C1
0003 A2
1000 C1
1001 B2
1002 C2
2000 B1
2001 B1
2002 B2
2003 A1
2004 C1
2005 C2
3000 B2
5000 B2
5001 B2
6000 B1
6001 A1

DVI 1.8 Board: 1394 Interface

DVIO 1.8 Board: Link + Codec

DVIO 1.8 Board: uP Part

DVIO 1.8 Board: Interface + DAC

DVIO 1.8 Board: Clock

2600 B4
2601 C5
2602 D3
2603 D5
2604 E3
2605 E2
2606 F8
2607 A8
2608 B7
2609 A8
2610 B9
2611 A5
2612 C3
2613 E9
2614 D3
2615 F3
2616 A2
2617 B4
2618 E3
2619 B1
3600 D3
3601 A1
3602 D5
3603 B3
3604 F8
3605 F7
3606 E2
3607 F3
3608 D4
3609 F6
3610 F7
3612 E2
3613 F8
3614 E9
3615 C9
3617 A6
3618 E1
4602 F3
4603 F7
4604 A4
4605 A5
4606 B2
4608 B2
4609 C2
5600 C5
5601 A8
5602 A4
5603 A8
7600 A2
7601 A3
7602 C2
7604 D4
7605 B8
7606-A B5
7606-B D1
7608 F8
F601 D4
F603 A1
F604 F3
F605 D2
F606 F9
F609 D2
F610 B3
F611 D3
F614 D4
F615 F6
F616 F8
F617 F8
F618 B9
F619 B7
F620 B9
F621 B6
F622 C6
F623 B9
F624 F2

Layout DVIO 1.8 Board (Overview Top View)

PART 2
TR03019b_001

0003

1400	B2	2503	B5	2810	E5	3450	C3	3511	B5	3800	B6	5501	B5
1500	C6	2504	B5	2811	F5	3451	F2	3512	B5	3801	F5	5503	B4
1501	A4	2505	B5	2812	D4	3452	G3	3514	C5	3802	E6	5504	B4
1502	C5	2506	B5	2813	E6	3453	C2	3515	C6	3803	E4	5505	C5
1503	C5	2507	B4	2814	E6	3454	E2	3516	C6	3804	E4	5600	G4
1800	F5	2508	A5	2816	E4	3455	E2	3517	A4	3805	E4	5601	F4
1901	A2	2509	B6	2817	E4	3456	E2	3518	A4	3806	E4	5602	C3
1902	C5	2510	B6	2818	D4	3457	D2	3519	A4	3807	E4	5603	F5
1903	A6	2511	B6	2819	C6	3458	D2	3520	A4	3808	F5	5800	B6
1904	F6	2512	B4	2820	F5	3459	D2	3530	G3	3809	G6	5801	D5
1905	F4	2513	C6	2821	F5	3460	D2	3531	F2	3810	E4	5802	D6
1906	G5	2514	A4	2822	D6	3461	C2	3532	F2	3811	E4	6801	G5
1907	A3	2515	C6	3400	B1	3462	E2	3533	F2	3812	E4	6802	G5
1908	D1	2516	B6	3401	B2	3463	E2	3534	G3	3813	E4	6803	F6
1909	B4	2517	B6	3402	B2	3464	E2	3535	F2	3814	F5	6804	E6
2400	B1	2518	B6	3403	C1	3465	D2	3536	G3	3815	G5	7400	B2
2401	B2	2519	B6	3404	B2	3466	D2	3537	F2	3816	G5	7430	F2
2402	A2	2520	C5	3405	A2	3467	D2	3538	G3	3817	E6	7431	D3
2403	B1	2521	C5	3406	B2	3468	D2	3539	F2	3818	E6	7432	C4
2404	B2	2522	A5	3407	B2	3469	D2	3540	G3	3819	E6	7433	D1
2405	B2	2523	A4	3408	B2	3470	E4	3541	F2	3820	E6	7500	B5
2406	B1	2524	A4	3409	B2	3471	E2	3542	F3	3821	G5	7501	B4
2407	B1	2525	B4	3410	C1	3472	D4	3543	F2	3822	E5	7505	B5
2408	B2	2526	B4	3411	C1	3473	D4	3544	E3	3823	G5	7506	B4
2412	C2	2527	C4	3413	C1	3474	D4	3545	F2	3824	G5	7507	C4
2413	B2	2528	C4	3414	C1	3475	D4	3546	F3	3825	E4	7508	C4
2415	C3	2529	C5	3415	C2	3476	D4	3547	F2	3826	D5	7600	C3
2416	B1	2530	C6	3416	C2	3477	D4	3548	E3	3827	D4	7601	C2
2417	C2	2531	B6	3417	C2	3478	D4	3549	F2	3828	F5	7602	F4
2418	C2	2532	C6	3418	C2	3479	C4	3550	F3	3829	D5	7604	F4
2419	C1	2533	B6	3419	C2	3480	C4	3551	F3	3831	E5	7605	F4
2420	C2	2534	B4	3420	C2	3481	B4	3552	E3	3832	E5	7606	F4
2431	C2	2600	C2	3421	C2	3482	B4	3553	F3	3833	E4	7608	F4
2432	E2	2601	G3	3422	C2	3483	B3	3554	G3	3834	E4	7800	B6
2433	D3	2602	F3	3423	C2	3484	C3	3555	F3	3835	F6	7801	G5
2434	E4	2603	F4	3424	C2	3485	B4	3556	F3	3836	G6	7802	E5
2435	D4	2604	F4	3425	E4	3486	B4	3557	E3	3837	D5	7803	E6
2436	G2	2605	F4	3426	E3	3487	C3	3558	F3	3838	D6	7804	E6
2437	E2	2606	F4	3427	B4	3488	C3	3559	G3	3839	F6	7805	E6
2438	D2	2607	F4	3428	E3	3489	C4	3560	G3	4401	C2	7806	G6
2439	G3	2608	F5	3429	E4	3490	B4	3561	G2	4402	B2	7807	D4
2440	E3	2609	F4	3430	F2	3491	B4	3562	E2	4500	B5	7808	D5
2441	F2	2610	F4	3431	F2	3492	C3	3563	C3	4501	B5	7809	F5
2442	E3	2611	F4	3432	F2	3493	C4	3564	E4	4502	C5	7810	F6
2443	E3	2612	F4	3433	F2	3494	B4	3600	F3	4503	C5	7811	F6
2444	F2	2613	F4	3434	F2	3495	B3	3601	C3	4504	B4		
2445	D3	2614	F3	3435	F2	3496	C3	3602	F4	4507	B5		
2446	G2	2615	F3	3436	F2	3497	D4	3603	F5	4602	F3		
2447	G2	2616	C3	3437	F2	3498	D4	3604	F4	4603	F4		
2448	B4	2617	C3	3438	F2	3499	D4	3605	F4	4604	C3		
2449	D2	2618	F4	3439	F2	3500	B5	3606	F4	4605	C3		
2450	D1	2619	C3	3440	F2	3501	B5	3607	F3	4606	C3		
2451	E3	2801	F5	3441	F3	3502	C5	3608	F3	4608	E4		
2452	E4	2802	F5	3442	F3	3503	B5	3609	F4	4609	E4		
2453	D2	2803	A6	3443	F3	3504	B5	3610	F4	5400	B1		
2454	D3	2804	A6	3444	F3	3505	B5	3612	F4	5401	C2		
2455	D2	2805	F5	3445	F3	3506	B5	3613	F4	5431	D2		
2456	C3	2806	C6	3446	C2	3507	B6	3614	F4	5432	D2		
2500	A5	2807	D5	3447	F3	3508	B6	3616	F5	5433	G2		
2501	B5	2808	D5	3448	G2	3509	B6	3617	F5	5434	B3		
2502	B5	2809	F5	3449	C3	3510	B5	3618	F4	5500	A5		

TR03019_001
160702

Layout DVIO 1.8 Board (Part 1 Top View)

Layout DVIO 1.8 Board (Part 2 Top View)

Layout DVIO 1.8 Board (Testlands Bottom View)

F0101	B5	F503	B1	F565	C2
F0102	B5	F504	B2	F566	C3
F0103	B5	F505	B1	F567	C2
F0104	B5	F506	B2	F601	F4
F0106	B5	F507	B1	F603	C4
F0201	E6	F508	B2	F604	F4
F0202	D2	F509	C1	F605	F3
F0203	C2	F510	B2	F606	F3
F0204	C2	F511	B1	F609	E3
F0205	E3	F512	B1	F610	E3
F0301	A2	F513	B1	F611	F3
F0302	A1	F514	B1	F614	F3
F0401	F3	F515	B1	F615	F3
F0402	F1	F516	B1	F616	F3
F0403	F1	F517	C3	F617	G3
F0404	F1	F518	D2	F618	E5
F0405	F1	F519	B2	F619	F2
F0406	F1	F520	B2	F620	G3
F122	B5	F521	C1	F621	F2
F400	C5	F522	B2	F622	F2
F401	C5	F523	C2	F623	F2
F402	B5	F524	C2	F624	F4
F403	C5	F525	B3	F800	F2
F404	C5	F526	B2	F801	F2
F405	C5	F527	B2	F802	B1
F406	C5	F528	C2	F803	B1
F407	C5	F529	B2	F804	E2
F408	C5	F530	C2	F805	F2
F409	B6	F531	C2	F806	D2
F410	B5	F532	C2	F808	F2
F411	B5	F533	C2	F809	E2
F412	A6	F534	C1	F810	G1
F413	C5	F535	C1	F811	E2
F414	C5	F536	B3	F812	F2
F415	C6	F537	C2	F815	D2
F416	C6	F538	E2	F816	E2
F417	C6	F539	C1	F817	E3
F418	C6	F540	A3	F818	E3
F419	C6	F541	A3	F819	E2
F420	C5	F542	A3	F820	E2
F421	B5	F543	A3	F822	E2
F422	B5	F544	B3	F823	E3
F423	B5	F545	B3	F824	E2
F424	B6	F547	C1	F825	E3
F425	B6	F548	B3	F826	E3
F430	D5	F549	C1	F827	E1
F431	E5	F550	C1	F829	E1
F432	E5	F551	B2	F830	E1
F433	D4	F552	B3	F831	F1
F434	C4	F553	A3	F832	F2
F435	D5	F554	B2	F833	G2
F436	B4	F555	B2	F834	G2
F437	G5	F556	B1	F835	G1
F438	E3	F557	C1	F836	E1
F439	C5	F558	B1	F837	F1
F440	D5	F559	C1	F838	F2
F441	C4	F560	D3	F839	G1
F442	E3	F561	C3		
F443	D5	F562	G1		
F501	B2	F563	C2	TR03021_001	
F502	B2	F564	C2	090802	

Digital Board: VSM, Buffer Memory and Bit Engine Interface

1100 C1 2102 A5 2106 A5 2110 A5 2114 A5 2118 A6 2122 B14 2126 B12 2130 G15 2135 G13 2139 G13 2143 H1 2147 E1 2151 F1 3100 D11 3104 C2 3108 F3 3112 B3 3116 E3 3120 G15 3124 H13 3128 G2 3132 E2 3136 G1 4101 H4 4105 G7 4109 G12 5102 B1 7102 G13
 1101 H1 2103 A5 2107 A5 2111 A5 2115 A6 2119 A6 2123 B14 2127 B12 2131 H15 2136 F1 2140 G2 2144 E1 3101 F10 3105 D2 3109 F3 3113 B3 3117 D11 3121 H12 3125 H13 3129 H2 3133 E2 3137 F7 4102 F6 4106 G12 4110 D11 5103 F13 7103 C1
 2100 A4 2104 A5 2108 A5 2112 A5 2116 A6 2120 B15 2124 B13 2128 B3 2132 C1 2137 G4 2141 G2 2145 E1 3102 E3 3106 F2 3110 F3 3114 B2 3118 D11 3122 H13 3126 H13 3130 H12 3134 E2 3138 B2 4103 F7 4107 G12 5100 A4 7100 B4 7104 H4
 2101 A5 2105 A5 2109 A5 2113 A5 2117 A6 2121 B15 2125 B13 2129 G13 2134 D1 2138 G1 2142 G2 2146 A4 3103 D11 3107 C3 3111 B3 3115 E3 3119 F10 3123 H12 3127 G3 3131 D2 3135 F2 4100 C15 4104 G6 5101 A12 7101 B14

Digital Board: AV Decoder ST15508

Digital Board: AV Decoder Memory

Digital Board: Video Encoder, Empress

Digital Board: VIP CVBS Y/C Video Input

1500	H3
2500	C4
2501	D2
2502	D2
2503	E2
2504	E2
2505	E2
2506	E2
2507	E2
2508	E2
2509	E2
2510	H3
2511	H4
2512	F11
2513	B3
2514	A5
2515	C3
2516	B5
2517	A4
2518	B3
2519	B3
2520	B4
2521	C7
2522	B7
2523	C7
2524	B7
2525	C7
2526	B7
2527	A6
2528	C7
2529	B7
2530	C5
2531	A6
2532	C8
2533	B7
2534	A6
2535	C7
2536	B7
2537	B7
2538	A6
2539	A6
2540	B7
2541	B8
2542	C4
2543	A6
2544	C11
2545	G2
2565	C1
3500	C7
3501	C7
3502	C3
3503	C1
3504	A1
3505	E8
3506	H7
3507	F3
3508	G5
3509	G3
3513	C2
3515	H3
4500	C2
4501	C7
5500	A4
5501	A3
5502	A4
5503	B3
5504	E11
5505	B8
5506	A8
5507	A6
5508	C4
5509	G2
6500	B1
7500	C3
7501-A	F11
7501-B	B2
7501-C	H7
7501-D	H6
7502-A	C10
7502-B	D11
7503	H2
7504	B1

CL 16532145_026.eps
221101

Digital Board: Analog Board Cons. Video In / Output

1600	H14	7202-C D12
1601	D14	7600 E6
1602	C14	7601 G10
1603	E2	7602 B3
2600	E6	7603 G6
2601	E5	7604 I10
2602	E5	7605 I6
2603	C12	7606 E10
2604	C13	
2605	E10	
2606	E9	
2607	E9	
2608	A6	
2609	A6	
2610	G6	
2611	G5	
2612	G5	
2613	A9	
2614	B9	
2615	F10	
2616	G9	
2617	G9	
2618	A9	
2619	C9	
2620	H6	
2621	I5	
2622	I5	
2623	C12	
2624	C12	
2625	H10	
2626	I9	
2627	I9	
2628	C6	
2629	A6	
2630	A2	
2631	C12	
2632	B2	
2633	B9	
2634	B2	
2635	C9	
2636	H9	
3600	D13	
3601	E5	
3602	E6	
3603	F6	
3604	B12	
3605	A10	
3606	E8	
3607	E9	
3608	F10	
3609	A9	
3610	C10	
3611	G5	
3612	G6	
3613	H6	
3614	C9	
3615	B3	
3616	G8	
3617	G9	
3618	G10	
3619	B2	
3620	F1	
3621	I5	
3622	I6	
3623	A12	
3624	I6	
3625	A12	
3626	I8	
3627	I9	
3628	I10	
3629	A6	
3630	C6	
3631	B10	
3632	B6	
3633	C6	
3634	B9	
3635	B12	
3636	B2	
3637	B12	
3638	B3	
4600	G3	
4601	G1	
4602	G3	
5600	E5	
5601	G9	
5602	I5	
5603	I5	
5604	I5	
5605	I5	
5606	I5	
5607	I5	
5608	I5	
5609	I5	
5610	I5	
5611	I5	
5612	I5	
5613	I5	
5614	I5	
5615	I5	
5616	I5	
5617	I5	
5618	I5	
5619	I5	
5620	I5	
5621	I5	
5622	I5	
5623	I5	
5624	I5	
5625	I5	
5626	I5	
5627	I5	
5628	I5	
5629	I5	
5630	I5	
5631	I5	
5632	I5	
5633	I5	
5634	I5	
5635	I5	
5636	I5	
5637	I5	
5638	I5	
5639	I5	
5640	I5	
5641	I5	
5642	I5	
5643	I5	
5644	I5	
5645	I5	
5646	I5	
5647	I5	
5648	I5	
5649	I5	
5650	I5	
5651	I5	
5652	I5	
5653	I5	
5654	I5	
5655	I5	
5656	I5	
5657	I5	
5658	I5	
5659	I5	
5660	I5	
5661	I5	
5662	I5	
5663	I5	
5664	I5	
5665	I5	
5666	I5	
5667	I5	
5668	I5	
5669	I5	
5670	I5	
5671	I5	
5672	I5	
5673	I5	
5674	I5	
5675	I5	
5676	I5	
5677	I5	
5678	I5	
5679	I5	
5680	I5	
5681	I5	
5682	I5	
5683	I5	
5684	I5	
5685	I5	
5686	I5	
5687	I5	
5688	I5	
5689	I5	
5690	I5	
5691	I5	
5692	I5	
5693	I5	
5694	I5	
5695	I5	
5696	I5	
5697	I5	
5698	I5	
5699	I5	
5700	I5	
5701	I5	
5702	I5	
5703	I5	
5704	I5	
5705	I5	
5706	I5	
5707	I5	
5708	I5	
5709	I5	
5710	I5	
5711	I5	
5712	I5	
5713	I5	
5714	I5	
5715	I5	
5716	I5	
5717	I5	
5718	I5	
5719	I5	
5720	I5	
5721	I5	
5722	I5	
5723	I5	
5724	I5	
5725	I5	
5726	I5	
5727	I5	
5728	I5	
5729	I5	
5730	I5	
5731	I5	
5732	I5	
5733	I5	
5734	I5	
5735	I5	
5736	I5	
5737	I5	
5738	I5	
5739	I5	
5740	I5	
5741	I5	
5742	I5	
5743	I5	
5744	I5	
5745	I5	
5746	I5	
5747	I5	
5748	I5	
5749	I5	
5750	I5	
5751	I5	
5752	I5	
5753	I5	
5754	I5	
5755	I5	
5756	I5	
5757	I5	
5758	I5	
5759	I5	
5760	I5	
5761	I5	
5762	I5	
5763	I5	
5764	I5	
5765	I5	
5766	I5	
5767	I5	
5768	I5	
5769	I5	
5770	I5	
5771	I5	
5772	I5	
5773	I5	
5774	I5	
5775	I5	
5776	I5	
5777	I5	
5778	I5	
5779	I5	
5780	I5	
5781	I5	
5782	I5	
5783	I5	
5784	I5	
5785	I5	
5786	I5	
5787	I5	
5788	I5	
5789	I5	
5790	I5	
5791	I5	
5792	I5	
5793	I5	
5794	I5	
5795	I5	
5796	I5	
5797	I5	
5798	I5	
5799	I5	
5800	I5	
5801	I5	
5802	I5	
5803	I5	
5804	I5	
5805	I5	
5806	I5	
5807	I5	
5808	I5	
5809	I5	
5810	I5	
5811	I5	
5812	I5	
5813	I5	
5814	I5	
5815	I5	
5816	I5	
5817	I5	
5818	I5	
5819	I5	
5820	I5	
5821	I5	

Digital Board: Progressive Scan

Digital Board: Progressive Scan

1800	D15	2806	B3	2812	B3	2818	C7	2824	C14	2832	E12	3800	G4	3806	B8	3812	D14	3818	E14	3824	F14	5801	B12	5807	E12	7802	B14
2800	B14	2807	B3	2813	B3	2819	C8	2826	D11	2833	E12	3801	C14	3807	C14	3813	D13	3819	E14	3825	F14	5802	B12	5808	E12	7803-A	D14
2802	B2	2808	B2	2814	C11	2820	C9	2827	D12	2834	F14	3802	B8	3808	C14	3814	D13	3820	E10	3826	F11	5803	D12	5809	F12	7803-B	E14
2803	B2	2809	B3	2815	C12	2821	C14	2828	D12	2835	F10	3803	C13	3809	D10	3815	E10	3821	E13	3827	F11	5804	D12	5810	B8		
2804	B2	2810	B3	2816	C12	2822	C9	2829	D14	2836	G10	3804	C13	3810	D6	3816	D14	3822	E13	3828	G4	5805	D12	5806	E12	7800	B1
2805	B2	2811	B3	2817	F12	2823	C9	2831	E11	2837	B8	3805	C8	3811	D11	3817	E11	3823	F11	5800	B12	5801	C6	7801	C6		

8 Progressive Scan

Digital Board: Power, Clock, and Reset Audio Clock

TR03012_001
010702

Layout Digital Board (Overview Top View)

1100	A4	2311	A5	2707	C4	3221	B4	3909	B4
1101	A3	2403	A1	2708	C4	3222	B4	4102	A3
1200	A4	2411	A2	2709	C4	3223	B4	4103	B3
1500	C2	2412	B1	2710	C4	3224	A3	4104	A3
1600	A1	2413	B1	2711	C4	3225	A3	4105	B3
1601	A1	2417	A2	2712	B4	3226	B4	4108	B2
1602	C1	2418	A2	2713	B4	3227	A5	4109	B2
1603	C2	2419	B2	2714	B4	3228	A4	4110	B2
1800	B1	2420	A1	2715	B3	3233	B4	4501	C1
1900	A2	2421	A1	2716	B4	3234	A4	4600	C1
1901	A1	2422	A1	2717	B4	3235	A4	4601	C1
2100	B2	2423	A1	2719	B4	3236	A5	4602	C1
2101	B3	2424	B1	2720	C4	3237	A5	4700	C5
2102	B3	2425	A2	2723	C4	3242	B4	4701	C5
2103	B3	2426	B2	2724	C5	3243	B4	5100	A2
2109	A3	2427	A2	2725	C4	3244	A5	5101	A3
2110	A3	2428	A2	2726	C4	3245	A5	5102	A4
2111	A3	2429	A2	2727	C4	3400	A1	5103	B3
2112	A3	2430	A1	2800	C3	3401	A1	5200	A4
2113	A3	2431	A1	2817	C4	3403	A1	5201	A5
2114	A3	2432	A2	2821	B1	3408	B1	5202	A5
2116	A2	2433	A2	2824	C3	3409	B1	5203	A4
2117	A2	2434	A2	2829	B1	3410	B1	5205	A4
2118	A2	2437	A2	2834	B1	3500	C1	5206	B5
2119	A2	2438	A2	2837	C3	3501	C1	5209	A4
2127	A3	2439	A1	2903	A2	3601	A5	5210	A4
2129	B3	2440	A1	2904	A2	3602	A5	5212	A4
2130	B2	2441	A2	2907	B3	3603	A5	5300	B4
2131	B2	2442	A2	2908	B2	3604	B1	5302	B4
2132	A4	2444	A1	2909	A2	3605	B1	5400	A2
2134	A4	2512	C1	2912	A1	3609	B1	5402	A1
2135	B3	2513	C1	2914	B3	3610	B2	5403	A2
2136	A3	2514	C1	3100	B3	3611	A5	5404	A2
2138	A3	2515	C2	3101	B3	3612	A5	5500	B1
2139	B3	2516	C1	3102	B3	3613	A5	5501	B1
2140	A3	2517	B1	3103	B2	3614	B2	5502	B1
2141	A3	2518	B1	3104	A4	3615	A1	5503	B2
2142	A3	2519	B2	3105	A4	3619	A1	5504	C1
2143	A3	2520	B1	3106	A3	3620	C2	5505	C1
2144	A3	2530	C2	3107	A2	3621	A5	5506	C1
2145	A3	2539	C1	3108	A3	3622	A5	5507	C1
2146	A2	2540	C1	3109	A3	3623	C1	5508	B2
2147	A4	2541	C1	3110	A3	3624	A5	5509	C2
2148	A4	2542	B2	3117	A3	3625	C1	5600	A5
2149	A4	2545	C2	3118	B1	3629	B1	5602	A5
2150	A4	2600	A5	3119	B2	3630	A1	5603	A5
2151	A4	2601	A5	3120	B3	3631	B2	5606	A1
2152	A3	2602	A5	3121	B3	3632	B1	5607	A1
2153	B2	2603	C1	3122	B3	3633	A1	5700	C4
2154	B2	2604	C1	3123	B3	3634	B2	5701	C4
2200	A4	2608	B1	3124	B3	3635	C1	5702	B3
2201	A4	2609	B1	3125	B2	3636	A1	5809	C4
2203	A4	2610	A5	3126	B3	3637	C1	5810	B3
2204	B4	2611	A5	3127	A3	3638	A1	5903	B3
2205	A4	2612	A5	3128	A3	3700	B4	5904	A1
2206	A5	2613	B1	3129	A3	3701	B3	5907	B3
2207	B4	2614	B2	3130	B3	3702	B3	7100	A3
2208	A4	2618	B1	3131	A4	3704	C4	7102	B3
2209	A5	2619	B2	3132	A4	3707	B4	7103	A4
2210	A4	2620	A5	3133	A4	3708	B4	7200	A4
2211	A5	2621	A5	3134	A4	3709	C4	7203	A4
2212	A5	2622	A5	3135	A4	3711	C4	7204	B5
2213	A4	2623	C1	3136	A3	3712	C4	7403	A2
2215	A4	2624	C1	3137	B2	3713	C5	7404	A2
2216	B4	2628	A1	3138	B2	3714	B4	7500	C2
2217	B4	2629	B1	3200	A4	3715	B5	7501	C1
2218	B5	2630	A1	3202	A3	3716	B5	7503	C2
2219	B5	2631	C1	3203	A5	3717	B5	7600	A5
2220	A5	2632	A1	3204	A4	3718	B4	7602	A1
2221	A5	2633	B2	3208	A3	3719	B4	7603	A5
2222	A4	2634	A1	3209	B5	3801	C3	7605	A5
2223	A4	2635	B2	3211	A4	3807	C3	7700	B4
2225	A4	2636	A5	3213	B4	3808	C3	7703	C5
2226	B4	2700	B4	3214	B4	3812	C3	7802	C3
2227	B4	2701	B4	3215	A4	3816	C3	7803	C3
2228	A5	2702	B4	3216	B4	3818	C3		
2230	A4	2703	C4	3217	B4	3819	C3		
2231	A3	2704	C4	3218	B4	3824	C3		
2304	B4	2705	C4	3219	A4	3825	C3		
2305	B4	2706	C4	3220	A4	3907	A3		

Layout Digital Board (Part 1 Top View)

Layout Digital Board (Part 2 Top View)

Layout Digital Board (Overview Bottom View)

1 2 3 4 5

2104	A3	2802	B2	3803	C3	7702	B1
2105	A3	2803	C2	3804	C3	7800	B1
2106	A3	2804	C2	3805	C2	7801	C2
2107	A3	2805	B2	3806	B2	7900	B4
2108	A3	2806	B2	3809	C2	7901	B4
2115	B3	2807	B2	3810	B2	7902	B2
2120	A4	2808	C2	3811	C2	7904	B3
2121	A3	2809	C2	3813	C3	7905	A5
2122	A3	2810	B1	3814	C3	7906	B3
2123	A3	2811	B1	3815	C2		
2124	A3	2812	C1	3817	C2		
2125	A3	2813	C1	3820	C2		
2126	A3	2814	C2	3821	C3		
2128	A3	2815	C2	3822	C3		
2137	A3	2816	C3	3823	C2		
2202	B5	2818	C2	3826	C2		
2214	A2	2819	B3	3827	C2		
2224	A2	2820	B2	3828	B1		
2229	B3	2822	C3				
2300	A2	2823	C2	3901	B4		
2301	A2	2826	C2	3902	B4		
2302	A2	2827	C2	3903	B4		
2303	A1	2828	C3	3904	B3		
2306	A2	2831	C2	3906	B3		
2307	A2	2832	C2	3908	B3		
2308	A2	2833	C3	3910	A5		
2309	A2	2835	C2	3911	A5		
2310	A2	2836	C2	3912	A4		
2312	B3	2900	A4	3913	A5		
2402	A5	2901	A4	3914	B1		
2404	A4	2902	A4	3915	B1		
2405	B4	2906	B4	3916	A5		
2406	B4	2911	B3	3917	B3		
2407	B4	2915	B3	3918	A5		
2408	A4	2916	B2	3919	A5		
2409	A4	3111	B5	3920	B3		
2410	B4	3112	B5	3921	A5		
2414	B4	3113	B4	3922	A5		
2415	B4	3114	B4	3923	A5		
2416	B4	3115	A3	3924	B2		
2435	B4	3116	A3	3925	B2		
2436	B4	3201	B5	4100	A3		
2443	A4	3205	B5	4101	A3		
2446	A5	3206	B5	4106	B4		
2500	C5	3207	B4	4107	B3		
2501	C5	3212	B5	4300	B2		
2502	C5	3229	A2	4301	B3		
2503	C5	3230	A1	4406	B5		
2504	C4	3231	A1	4409	B4		
2505	C4	3232	A2	4500	C5		
2506	C4	3238	A1	4702	B1		
2507	C4	3239	A1	5204	A1		
2508	C4	3240	A1	5207	B5		
2509	C4	3241	A1	5208	B3		
2510	C4	3300	B2	5211	A1		
2511	C4	3301	B3	5601	A1		
2521	C5	3402	B4	5604	A1		
2522	C4	3404	A4	5605	A1		
2523	C4	3405	B4	5800	C2		
2524	C5	3406	A4	5801	C3		
2525	C5	3407	A4	5802	C3		
2526	C4	3502	C5	5803	C2		
2527	C4	3503	C5	5804	C3		
2528	C4	3504	C5	5805	C3		
2529	C4	3505	C5	5806	C2		
2531	C5	3506	C5	5807	C3		
2532	C4	3507	C5	5808	C3		
2533	C5	3508	C4	5900	A3		
2534	C5	3509	C4	5901	A4		
2535	C5	3513	C5	5905	B3		
2536	C5	3515	C4	6500	C5		
2537	C5	3600	B4	6900	B2		
2538	C4	3606	A1	7101	A3		
2543	C5	3607	A1	7104	A3		
2544	C4	3608	A1	7201	B5		
2565	C5	3616	A1	7202	B4		
2605	A1	3617	A1	7300	A2		
2606	A1	3618	A1	7301	A2		
2607	A1	3626	A1	7302	B2		
2615	A1	3627	A1	7303	B3		
2616	A1	3628	A1	7401	A5		
2617	A1	3703	C2	7402	A4		
2625	A1	3705	B2	7502	C4		
2626	A1	3706	B2	7504	C5		
2627	A1	3710	C2	7601	A1		
2718	B2	3720	C2	7604	A1		
2721	B1	3800	B1	7606	A1		
2722	B1	3802	B2	7701	B1		

Layout Digital Board (Part 1 Bottom View)

1

2

3

4

5

PART 1

Layout Digital Board (Part 2 Bottom View)

Layout Digital Board (Testlands Bottom View)

Layout Digital Board (Mapping Testlands)

F214	A3	I175	A3	I300	A2	I610	A5	I720	B3	I880	C3
F247	A2	I176	A3	I301	A2	I611	B5	I721	B2	I881	C3
F248	A2	I177	A3	I302	A2	I612	A5	I722	B3	I882	C3
F249	A2	I178	A3	I303	B2	I613	B5	I723	B2	I883	C2
F250	A2	I179	A3	I304	B3	I614	A5	I724	B2	I884	B2
F264	A2	I180	A3	I305	B3	I615	B5	I725	B3	I900	B4
F265	A3	I181	A3	I306	A3	I616	A5	I726	B2	I901	B4
F931	A4	I182	B3	I307	B3	I617	A5	I727	B2	I902	B4
F932	A4	I183	A2	I308	A3	I618	C4	I728	A1	I903	B4
F933	A5	I184	A3	I309	B3	I619	A5	I729	A1	I904	B2
F934	A4	I186	A3	I400	A4	I621	A1	I730	A1	I905	A4
F935	A4	I187	A3	I401	A4	I622	A1	I731	A1	I906	A4
I100	A4	I188	A3	I402	B4	I623	A1	I732	B2	I907	A4
I101	C5	I200	A2	I403	A4	I624	A1	I733	B2	I908	A5
I102	C5	I201	B3	I404	B4	I625	A1	I734	B1	I909	B4
I103	B4	I202	A5	I405	B4	I626	A1	I735	B1	I911	B3
I104	B4	I203	A3	I406	B4	I627	B4	I800	C4	I912	A3
I105	B3	I204	C3	I407	A4	I628	C4	I801	C3	I913	B3
I106	B3	I205	A2	I408	A5	I629	A5	I802	C3	I915	B3
I107	B3	I206	A4	I409	A4	I630	C4	I803	C3	I916	B3
I108	B3	I207	A2	I410	A4	I631	C4	I805	C3	I917	B3
I109	B4	I208	B3	I412	B4	I632	C4	I806	C3	I918	A5
I110	B3	I209	B4	I413	A4	I633	B4	I807	C3	I919	B3
I111	A2	I210	A2	I414	B4	I634	C4	I808	C2	I920	B3
I112	B5	I211	A2	I415	B4	I635	C5	I809	C2	I921	A5
I113	B5	I212	A2	I416	B4	I636	C4	I810	C3	I922	A5
I114	B5	I213	A2	I500	C5	I637	C5	I811	C3	I923	B3
I115	B5	I215	B5	I501	C5	I638	C5	I812	C2	I924	A4
I116	C3	I216	A1	I502	C5	I639	C5	I813	C2	I925	B3
I117	C3	I217	A2	I503	C5	I640	C5	I814	C1	I926	A5
I118	C4	I218	A2	I504	C5	I641	B5	I815	B2	I927	A5
I119	C4	I219	A1	I505	C5	I642	A5	I816	B2	I928	A5
I120	A4	I220	A1	I506	C5	I643	A5	I817	B2	I930	B3
I121	A3	I221	B2	I507	C5	I644	A5	I818	C2	I931	A5
I122	B3	I222	B2	I508	C5	I645	B5	I819	C3	I932	B2
I123	A2	I223	A2	I509	C5	I646	C4	I820	C3	I933	B3
I124	B4	I224	A1	I510	B5	I647	A5	I821	C3		
I125	A2	I225	A2	I511	C4	I649	C5	I822	C3		
I126	A3	I226	A2	I512	C5	I650	B4	I823	C3		
I127	A2	I227	A2	I513	B5	I651	B5	I824	B2		
I128	A4	I228	A2	I514	B4	I652	B5	I825	B2		
I129	A2	I229	B5	I515	C5	I653	B5	I826	C3		
I130	B3	I230	A2	I516	C5	I654	B4	I827	C3		
I131	A3	I231	A2	I517	C5	I655	B4	I828	C3		
I132	B1	I232	A2	I518	C4	I656	B5	I829	C3		
I133	A3	I233	A2	I519	C5	I657	C4	I830	C3		
I134	A3	I234	A4	I520	C4	I658	C4	I831	C3		
I136	A3	I235	A4	I521	C4	I659	C3	I832	C3		
I137	A2	I236	B4	I522	C4	I660	B5	I833	C3		
I138	A3	I237	A2	I523	C4	I661	B5	I834	B3		
I140	A3	I238	A2	I524	C4	I662	C5	I835	B3		
I141	A4	I239	B5	I525	C5	I663	B4	I836	B2		
I142	A3	I240	A4	I526	C5	I664	B5	I837	C3		
I143	B4	I241	B2	I527	C5	I665	C4	I838	C3		
I145	A3	I242	B1	I528	C4	I666	C5	I839	C3		
I147	B4	I243	B1	I529	C5	I667	B5	I840	C3		
I149	B3	I244	A2	I530	C5	I668	B4	I841	C3		
I152	B3	I245	A1	I531	C5	I669	B4	I842	C3		
I153	B5	I246	A2	I532	C5	I670	A5	I843	C2		
I154	B3	I251	A1	I533	C4	I671	B5	I844	C2		
I155	B3	I252	A2	I535	C5	I700	B2	I845	C2		
I156	A3	I253	A2	I536	C4	I701	B1	I846	B3		
I157	A3	I254	A1	I537	C5	I702	B1	I847	B2		
I158	B4	I255	A1	I538	C4	I703	C2	I848	B2		
I159	A5	I256	A2	I540	C5	I704	C2	I849	B2		
I160	B3	I257	C5	I543	C5	I705	C2	I850	B2		
I161	B3	I258	A2	I551	C5	I706	C2	I851	B1		
I162	C4	I259	A2	I552	C4	I707	C2	I852	B1		
I163	A3	I260	A1	I553	C4	I708	C2	I868	C2		
I164	B4	I261	A1	I555	C4	I709	C1	I869	C2		
I165	A3	I262	A1	I600	A5	I710	B3	I870	B2		
I166	B4	I263	A1	I601	A5	I711	C2	I871	C3		
I167	A3	I264	A2	I602	A5	I712	C2	I872	C3		
I168	C5	I265	B5	I603	C5	I713	A1	I873	B2		
I169	A3	I266	A2	I604	A5	I714	C2	I874	C2		
I170	A3	I267	A2	I605	A5	I715	C2	I875	C2		
I171	A3	I268	B2	I606	A5	I716	B3	I876	C3		
I172	A3	I269	B2	I607	A5	I717	B3	I877	C2		
I173	A3	I270	A2	I608	A5	I718	B3	I878	C3		
I174	A3	I271	B1	I609	B5	I719	B3	I879	C3		

Personal Notes:

Personal Notes:

Personal Notes:

8. Alignments

8.1 Alignment Instructions Analogue Board

Test equipment:

1. Dual-trace oscilloscope
Voltage range : 0.001 ~ 50 V/div
Frequency : DC ~ 50 MHz
Probe : 10:1, 1:1
2. DVM (Digital voltmeter)
3. Frequency counter
4. Sinus generator
Sinus : 0 ~ 50 MHz
5. Test pattern generator

How to read the adjustment procedures:

Front End (FV)

Service tasks after replacement of IC 7703, coil L5702 and L5703:

1 AFC Adjustment:

Purpose: Correct adjustment of demodulator AFC - circuit

Symptom, if incorrectly set:

Bad or disturbed TV channel reception.

PAL - AFC adjustment [5703]:

TP	ADJ.	MODE	INPUT
IC 7703 Pin 17 (I976)	L5703	TUNER	38,9MHz 500mV _{pp} at Tuner 1705, Pin 11 (F700, IF-out)
DISC		MEAS.EQ.	SPEC.
	DC Voltmeter Frequ. Generator		2,5V ±0,1V

Storage in NVRAM via command mode interface of DSW:

After adjustment, the AFC reference value has to be stored in the NVRAM.

This reference value is 256 * measured voltage/Ucc. Ucc is 5.0V.

Store the reference value via command 732, followed by the ref. value.

Example: DD:> 732 128

2 HF - AGC adjustment [3707]:

Service tasks after replacement of IC 7703:

Purpose: Set amplifier control.

Symptom, if incorrectly set:

Picture jitter if input level is too low and picture distortion if input level is too high.

TP	ADJ.	MODE	INPUT
Tuner 1705 Pin 11 (F700, IF-out)	R3707	Set tuned to channel 25 503.25 MHz	5mV(74dB μ V) on aerial input PAL white picture, audio IF on, no modulation
DISC		MEAS.EQ.	SPEC.
	Oscilloscope Video Pattern Generator		500mV _{pp} +/-0.5dB (use a 10:1 probe)

3 Attenuating the 40.4 MHz [5702]: (SECAM only)

Service tasks after replacement of coil 5702:

Purpose: To attenuate the band I carrier rests.

Symptom, if incorrectly set:

Bad picture quality when the filter attenuates the picture carrier (38.9MHz).

TP	ADJ.	MODE	INPUT
OFW 1700 Pin 1 (F704)	L5702	TUNER	40.4 MHz, 200mV _{ms} at Tuner 1705, Pin 1 (F700, IF-out)
DISC		MEAS.EQ.	SPEC.
	Oscilloscope, Sinus Generator, Counter		adjust minimum amplitude

If the adjustment is correct the signal at pin 1 of OFW [1700] must be smaller than the input signal amplitude by at least 6 dB.

Figure 8-1

8.2 Reprogramming Procedure of NVM on the Analogue PCB

The NVM, item 7815, on the Analogue board contains the following factory settings:

- 1. Bargraph 0dB correction factor
- 2. Clock correction factor
- 3. AFC reference value
- 4. Slash version

The settings 1,2 and 3 are stored in the NVM during the production of the analogue board.

The slash version is stored at the end of the production line of the set.

In case of failure, the NVM must be replaced by an empty device. By way of commands via the Diagnostic Software or via ComPair, the factory settings must be restored in the NVM.

8.2.1 Bargraph 0dB Alignment

For an exact functionality of the bar graph in the display, a correction factor for the left and the right channel is stored in the NVM.

Procedure:

- put the set in DSW command mode
- route Audio path from Audio front connectors to digital with the following command: DD:> 713 01
- apply a sine wave of 1kHz, 1.65 Vrms (0dB) to the front connectors, audio left and right
- store 0dB bar graph level with command 720:
DD:>720

8.2.2 Clock Correction Adjustment

To guarantee an exact function of the real time clock, an adjustment of the clock frequency is possible. The adjustment value is stored in the NVM.

Procedure:

- connect a pull up resistor of 10k between pin 7 and 8 of the clock IC PCF8593T, item 7811, on the analogue PCB
- put the set in service command mode
- execute command 722 to initiate that a 1Hz signal is available on pin 7 of the clock IC
DD:>722
- measure the frequency of the Clock Crystal with an accuracy of ± 1 us. Normally the measured frequency must be between 999902 us and 1000097 us. If the frequency is outside this range, the clock IC must be replaced.
- Execute command 721 with the measured frequency as an input parameter
example:
DD:>721 1000023

8.2.3 AFC Reference Voltage Tuner

This function stores the reference voltage for the tuner in the NVM. Before this value can be stored, the AFC adjustment, described in the adjustment instructions of the analogue board, must be carried out.

Procedure:

- Adjust AFC circuit
- Calculate the reference value
- Execute command 732 and use the calculated reference value as parameter
example:
DD:>732 128

8.2.4 Slash Version

The slash version is stored with command 715 followed by the slash version as parameter.

The slash versions used in DVDR990 are the following:

- DVDR990/001: 7
- DVDR990/021: 7
- DVDR990/051: 4

Example:

DD:>715 7

Reset of Slash Version

Use command 729 to reset the analogue board to the default setting.

Procedure:

- Put the set in DSW command mode
- Execute command 729 with the following parameters:
DD:> 729 w 0xA0 3 0x07 0xD0 0x00
- Leave the DSW command mode and start up the set in application mode No background is visible on the TV screen. The analogue board is ready to accept the appropriate slash version.

8.3 Rework Procedure IEEE Unique Number

8.3.1 Scope:

The procedure describes how to upgrade sets with a unique number after repair. This unique number is stored in the NVRAM (item 7201) of the digital board at the end of the production line.

This procedure is only valid or necessary when:

- The digital board is replaced
- NVRAM on the digital board is replaced
- NVRAM is cleared

In all other cases the repaired set retains its unique number. The procedure defines several means to re-assure the unique number depending on the possibilities of repair or the state the faulty set is in.

8.3.2 Handling:

State of Original (Defective) Board:

1. The digital board starts up in Diagnostics Mode: follow procedure A to retrieve the valid unique number
2. The digital board does NOT start up in Diagnostics Mode: follow procedure B.

8.3.3 Procedure A

1. Connect defective digital board to PC via serial cable (3122 785 90017)
2. start up hyper terminal or any other serial terminal via the correct settings (DSW command mode interface)
3. read out existing unique number via nucleus 403
example:
DD:> 403
40300: DV Unique ID = 00D7A1FC6C
Test OK @
4. note read out
5. program new digital board via nucleus 410
example: DD:> 410 00D7A1FC6C
41000:
Test OK @

The set has now the original unique number

8.3.4 Procedure B

1. Note the serial number of the set example:
AH050136130156

- AH = production centre Hasselt. According to UAW-500: A=1 and H=8
 - 05 = change code (this is not used for this calculation)
 - 01 = YEAR
 - 36 = Production WEEK
 - 130156 = Lot and SERIAL number
2. Calculate the unique number: this number always exists out of 10 hexadecimal numbers.
3. First 5 numbers: First we calculate a decimal number according to the formula below: $35828 * \text{YEAR} + 676 * \text{WEEK} + 26 * \text{A} + \text{H} + 8788$ The figures are fixed, YEAR + WEEK + factory code (A + H) are variable
Example: $35828 * 01 + 676 * 36 + 26 * 1 + 8 + 8788 = 68986$
(decimal) Then we translate the decimal number to a hexadecimal number.
example: 68986 (decimal) = 10D7A (hex)
4. Last 5 numbers: The last 5 numbers exist out of the Lot and SERIAL number. We have to translate the decimal number to the next 5 hexadecimal numbers:
Example: 130156 (decimal) = 1FC6C (hex)
5. Program new digital board via nucleus 410 Therefore we use the 10 hexadecimal numbers we calculated above:
example:
DD:> 410 10D7A1FC6C
41000:
Test OK @

The set has now its original unique number

8.4 Adjustment DVIO 1.8 PCB

1. Disconnect DVD+RW set from the mains.
2. Plug DVIO1.8 board via edge-connector onto Digital Board (DVIO board is vertically oriented, so that both sides of the PCB are accessible for measurements).
3. Connect DVD+RW set to the mains.
4. Turn DVD+RW set on and select any video input source except the DV input.
5. Check the signal at test point F611 with an oscilloscope. The signal should be 5V digital with 50% duty-cycle.
6. Measure the frequency of the signal at test point F610 and adjust the potentiometer 3605 to get a frequency of 12.288MHz ±50kHz (after removing the screwdriver from the potentiometer).
 - 6a. In case the frequency can not be increased sufficiently, replace capacitor 2618 by NP0-type capacitor with 18pF. Adjust afterwards again the frequency with the potentiometer.
 - 6b. In case the frequency can not be decreased sufficiently, add (3pF-10pF) trim-capacitor in parallel to capacitor 2618 or replace capacitor 2618 by NP0-type capacitor with 27pF. Adjust afterwards again the frequency with the potentiometer (and/or trim-capacitor).
7. Switch DVD+RW set to Stand-by mode.
8. Disconnect the DVD+RW set from the mains.
9. Plug DVIO1.8 board directly (without edge connector) onto Digital Board.
10. Connect DVD+RW set to the mains.
11. Connect a DV-source that transmits DV-video data with audio to the DVD+RW set.
12. Turn DVD+RW set on, select DV input, and switch DVD+RW set appropriately to output the decoded signal. Audio should be output without distortion.

9. Circuit-, IC Descriptions and List of Abbreviations

9.1 Multi-Mode SOPS 50PS203

9.1.1 Why Multi-Mode SOPS?

Using ordinary SOPS results in a decrease of the efficiency at low output loads due to the increase of the switching frequency. The Multi-Mode SOPS will reduce the switching frequency at low loads but still preserves valley switching.

9.1.2 Block Diagram

Figure 9-1

9.1.3 Circuit Description

Input Circuit

The input circuit consists of a lightning protection circuit and an EMI filter.

The lightning protection comprises R3120, sparkgaps 1124 and 1125. D6128, 6129, C2127 and R3129 are optional.

L5110, L5115, C2120 and L5120 form the EMI filter. It prevents inflow of noises into the mains.

Primary Rectifier/smoothing Circuit

The AC input is rectified by diodes 6151, 6152, 6153, 6154 and smoothed into C2125. The voltage over C2125 is approximately 300V. It can vary from 200V to 390V.

Start Circuit

This circuit is formed by R3125, 3126, R3141, C2140 and R3132.

When the power plug is connected to the mains voltage, the MOSFET 7125 will start conducting as soon as the gate

voltage reaches a threshold value. A current starts to flow in primary winding 2-4. The MOSFET will be fed forward via winding 7-8, R3150 and C2146.

+Vb Supply and Negative Regulation Voltage

The positive part of the voltage over winding 7-8 will be rectified via R3150, D6140 and charged via R3140 into C2140. The voltage over C2140 has a value of +30 till +40V. This value depends on the value of the mains voltage Vi and the load. The negative part of the voltage over winding 7-8 will be rectified via R3150, D6142 and charged into C2151. The voltage over C2151 has a value of -15V and is used as regulation voltage.

Control Circuit

The control circuit exists of T7140, D6141, C2144 and 2145, C2147, R3147 and 3148.

This circuit is fed by supply voltage +Vb via R 3141. This circuit controls the conduction time and the switching frequency of the power switch circuit. It switches off the MOSFET as soon as the voltage over Rsense reaches a certain value. This value

depends on the error voltage at the emitter of T7140, which can be positive or negative (+/- 0,66V). The voltage fed back by the regulation circuit defines this error voltage.

Power Switch Circuit

This circuit comprises MOSFET 7125, Rsense formed by R3133, 3134, 3135, 3136 and 3137, R3131, R3132, D6146. Diodes 6130, 6131 and 6132 protect the control circuit in case of failure of the MOSFET.

Regulation Circuit

The regulation circuit comprises opto-coupler 7200, which isolates the base voltage of transistor 7140 at the primary side from a reference component 7251 at the secondary side. The TL431(7251) can be represented by two components:

- a very stable and accurate reference diode
- a high gain amplifier

Figure 9-2

TL431 will conduct from cathode to anode when the reference is higher than the internal reference voltage of about 2.5V. If the reference voltage is lower, the cathode current is almost zero. The cathode current flows through the LED of the opto-coupler. The collector current of the opto-coupler will adjust the feedback level of the error voltage at the emitter of T7140.

Overload Protection Circuit

This circuit consists of R3145, C2143, a thyristor circuit formed by T7141 and T7143, R3143 and R3142. When the output is shortened, the thyristor circuit will start to conduct and switch off the supply voltage over C2140. This results in a switching off of the drain current of the MOSFET 7125 and the output will be disabled. The start circuit will try to start up the power supply again. If the circuit is still shortened, the complete start and stop sequence will repeat. The power supply comes in a hiccup mode (is ticking).

Oversupply Protection Circuit

This circuit consists of R3149, D6144, 6143, R3144, C2142 and T7142.

When the regulation circuit is interrupted due to an error in the control loop, the regulated output voltage will increase (oversupply). This oversupply is sensed on the primary winding 7-8.

When an oversupply is detected, the circuit will start up the thyristor circuit T7141-7143. The power supply will come in a hiccup mode as long as the error in the control loop is present.

Secondary Rectifier/Smoothing Circuit

There are 6 rectifier/smoothing circuits on the secondary side. Each voltage depends on the number of windings of the transformer.

From these circuits a lot of voltages are derived and fed to 3 connectors. The following voltages are present at the output: Connector 209

Functional use: to Digital board + Dvio board

1. +3V3(for dig pcb + DVio)
2. +3V3(for dig pcb + DVio)
3. +3V3(for dig pcb + DVio)

4. +3V3(for dig pcb + DVio)

5. GND(for dig pcb + DVio)

6. +12V(for dig pcb + DVio)

7. GND(for dig pcb + DVio)

8. GND(for dig pcb + DVio)

9. +5V(for dig pcb + DVio)

10. STBY control(for dig pcb + DVio)

11. GND(for dig pcb + DVio)

12. -5V(for dig pcb + DVio)

The +12V is switched off by the STBY_ctrl signal.

When the +12V is switched off, also the +3V3, +5V and -5V are switched off. All these voltages are low drop regulated.

Connector 0205

Functional use: to analogue board + display board + flap motor 'STBY' indicates that the voltage will not be switched off in the standby situation.

1. +12VSTBY(= +12V Standby, for display heating, 8Vstby)

2. +5VSTBY(= +5V Standby; general use)

3. -5NSTBY(= -5V Standby; neg. voltage for drivers)

4. VGNSTBY(= -32V Standby; for display grids)

5. +33STBY(= +33V Standby; for tuner)

6. FLYB(flyback pulse for power fail + measurement)

7. GNDA(Ground for the analogue board)

Connector 0207

Functional use: to engine

1. +3V3(for engine servo board)

2. +5V(for engine servo board)

3. GND(for engine servo board)

4. +4V6E(for engine analog part)

5. GND(for engine servo board)

6. -5V(for engine servo board)

7. GND(for engine motor currents)

8. +12V(for engine motor currents)

9.2 Display Board

9.2.1 Operation Unit DC (DC Part)

The core element of the operation unit DC is the microcontroller TMP88CU77ZF [7156]. The TMP88CU77ZF is an 8 bit microcontroller fitted with 96kB ROM and 3kB RAM and is responsible for following functions:

- Integrated VFD driver
- Timer
- Evaluation of the keyboard matrix
- Decoding the remote control commands from the infra-red receiver pos. 6170
- Activation of the display
- Motor driver

The system clock is generated with the 12MHz quartz (Pos. 1153).

9.2.2 Evaluation of the Keyboard Matrix

There are 15 different keys on the display board. A resistor network is used to generate a specific direct voltage value, depending on the key pressed, via the resistors 3145, 3171, 3183 and 3194 on the analog/digital (A/D) pots (7156 Pin 17, 18, 19, 20). Pressing keys simultaneously may lead to undesired functions!

9.2.3 IR Receiver and Signal Evaluation

The IR receiver [7140] contains a selectively controlled amplifier as well as a photo-diode. The photo-diode changes the received transmission (approx. 940nm) into electrical pulses, which are then amplified and demodulated. On the output of the IR receiver [7140], a pulse sequence with TTL-level, which corresponds to the envelope curve of the received IR remote control command, can be measured. This pulse sequence is input into the controller for further signal evaluation via input IRR [7156, pin 2].

9.2.4 Bi-Color LED (Standby and ON)

The STBY-LED is a red/green bi-color-LED and is controlled via the STBYLED-signal of the P (7156 Pin 10) in the following way:

Colour of STBY LED	Status of the Set
red	STBY
green	ON

9.3 Analogue Board Europe

9.3.1 Microprocessor TMP93C071F

The microcontroller „AIO“ TMP93C071F is a 16bit microcontroller with internal ROM and 8kB RAM. It includes the following functions:

- A/D converters
- composite sync input
- I²C bus interface

Following connection to the mains, a positive pulse on the reset input on the P is generated by the reset-IC TL7705 (Pos.7900). The system clock is generated with the 20MHz quartz (Pos. 1994).

9.3.2 Bus Systems

The communication between the P and the other functional groups is via the I²C-bus (SDA, SCL). The clock rate is approx. 95kHz.

Functional groups on the I²C bus:

- E²PROM ST24E16 (Pos. 7815)
- Tuner (Pos. 1705)
- Matrix-switch STV6410 (Pos. 7507)
- Audio IC / MSP (Pos. 7600)
- Display board (Pos. 1987)
- VPS-IC (Pos. 7990).

9.3.3 E²PROM

The E²PROM ST24E16 (Pos. 7815) is an electric erasable and programmable, non-volatile memory. The E²PROM stores data specific to the device, such as the AFC-reference value, clock-correction-factor, etc. The data is accessed by the P via the I²C-bus.

9.3.4 VPS, PDC, Teletext (Europe Only)

The STV5348 (Pos. 7990) is a VPS, PDC, and Teletext Decoder with an external 13,875Mhz quartz.

The following data formats are identified:

- VPS (Timer data and station name)
- PDC Format 2 (Timer data and station name)
- PDC Format 1 (station name and time)
- TXT header line (time for „time download“)

9.3.5 FOME

The FOME-circuit compares the video signal coming from the tuner and the one coming from the Scart-plug 1. If the video-signals are identical the output of the FOME-circuit is low.

9.3.6 Fan Control

The fan control circuit is necessary to control the speed of the cabinet fan (Pos. 1984) according to the requirements in temperature and noise. The temperature is measured via an NTC on the display board (Pos. 3145). When the temperature is lower than 25°C the fan-voltage is approx. 5V and will reach approx. 10V at a temperature of 40°C. It is also possible to

switch off the fan via the control line ION_FAN. The circuit generates also two control-signals: TEMP goes to the P and BE_FAN is the control-line for the basic engine fan.

9.3.7 Power Supply

The 5SW and 8SW supply are switched off in case of standby from the P via the ISTBY-line. This is possible for power-save. The ISTBY-line must be low in case of STBY. There is also a „power fail“ circuit on the PS-schematic which is necessary to mute AUDIO when IPFAIL is low.

9.3.8 Front End (TU, AP Part)

The Front End Comprises the Following Parts:

- Tuner [1705]
- IF amplifier & video demodulator IC TDA 9818 [7703]
- Sound processor MSP3415G [7600]

IF Selection

The IF frequency of the video carrier is 38.9 MHz for all systems except SECAM L' (33.9 MHz).

A quasi-split audio system is used. Separate surface-wave filters (SAW) are required. [1700], [1701] for video, [1702] for audio. [1700] is switched into the signal path for DK/I-SECAM L/L' reception, if the signal SAWS is “high”. In this case the switches [7701], [7702] are open and the diode [6700] is conducting. [1701] is switched into the signal path for BG reception, if the signal SAWS is “low”. Then the switch [7708] is open and the diode [6701] is conducting. For DK/I-SECAM L/L' reception, an additional circuit for suppressing the adjacent channel audio carrier is provided, which is set using coil [5702] to maximum suppression at 40.4MHz.

IF Demodulator

TDA 9818

The IF signal from the tuner is processed by the demodulator IC TDA 9818 [7703]. The signal PSS to pin3 switches between demodulation of positive SECAM or negative PAL modulated video carriers. A QSS-audio-IF signal SIF1 is generated for demodulation in the sound processor [7600]. The audio-IF carrier is selected in the audio SAW filter [1702]. This filter is switched for SECAM L'. If the signal SB1 is “high”, the switch [7707] is closed and the diode [6702] is not conducting. For all other standards the diode [6702] is conducting and the switch [7707] is open. The output signal from this SAW filter is first processed in the TDA 9818. Audio carriers are converted from the tuner IF level into the audio IF position and further processed in the audio demodulator [7600]. The AFC coil [5703] on the TDA 9818 is adjusted so that when a frequency of 38.90 MHz is supplied to the IF output of the tuner, the AFC voltage on pin 17 of the TDA 9818 is 2.5V. The setting of the picture carrier frequency for SECAM L in the TDA 9818 is achieved by connecting pin 7 of the IC via a resistor [3702] to earth. The switch [7700] and the signal SB1 “high” do this. The HF-AGC is set using the AGC controller [3707] so that, with a sufficiently large antenna input signal (74 dBV), the voltage at the IF output of the tuner [1705] pin 11 is 500 mVpp. This setting must be carried out, when the audio carrier is switched off. The demodulated video signal appears on pin 16 [7703]. The demodulator AGC voltage at pin4 is used to determine the antenna signal strength after a buffer [7705] with the signal AGC_MUTE. In the opposite direction this line may be used to mute the demodulator to avoid cross talk in all cases, where the tuner signal is not needed. In this case a „high“ signal is sent via AGC_MUTE and the conducting diode [6703] to pin4. The video trap [1703] reduces adjacent channel video and sound carrier remainders in the video for BG standards. For all other standards the switch [7704] and signal TS “low” bypass this trap. In this cases the selectivity of the SAW filter [1700] is sufficient. A frequency response correction is achieved by the inductance [5009] for not BG standards. This correction is not

preferred for SECAM L' and therefore shorts circuited by [7709], if the signal SB1 is "high". The demodulated video signal VFV is available after the buffer and limiting stage for noise peaks [7706]. The FM-PLL demodulator function of TDA 9818 is not used and deactivated by the resistor [3726].

Audio Demodulator

Sound processor MSP 3415G

The MSP 3415G [7600] is a multistandard sound processor which can demodulate FM Mono/Stereo, NICAM and AM signals. The incoming signal is first controlled and then digitised. The digital signal is then demodulated in 2 separate channels. In the first MSP channel, FM and NICAM (B/G/I/D/K) are demodulated, whereas in the second MSP channel, FM and are demodulated again (NICAM L corresponds to NICAM B/G). These demodulated signals are selected digitally in the I/O and switched to the D/A converter on the outputs. Amplitude and bandwidth of the demodulated audio signals can be determined in the MSP using the corresponding commands via the I2C bus. The audio signal from the tuner is available at the pins 30 AFER and 31 AFEL.

9.3.9 Input/Output Video-Routing (Europe-Version)

General Description:

The complete Video- I/O-switching is basically realised by the I/O switch STV6410A. It is controlled via IIC-Bus-0 (SDA/SCL) by the all in one C on the analogue board. The STV 6410 has three YCVBS switches, three chroma switches and one RGB switch. All switches have 6-dB amplification on the outputs. The YCVBS inputs have bottom clamp, the chroma inputs have average clamp, and the RGB inputs have bottom clamp circuits at the inputs. The R/C inputs can be switched to average clamp for chroma signals via I2C bus. The IC has also one slow blanking monitor and one fast blanking switch for fast RGB insertion (see detailed description in chapter 1.5). Two pre-selectors BA 7652 are additionally used: One for switching between Rear CVBS, Y- Rear and Front, the second for switching between Chroma- Rear and Front signal. Both pre-selectors are controlled via IS1 and IS2 from the analogue board C.

CVBS Signals:

There are four CVBS input connection possibilities: Front chinch (E6), Rear Chinch (E4), Scart 1 (E1) and Scart 2 (E2). Rear Chinch In is routed via the pre selector BA 7652; the other signals are connected direct to the STV 6410. The selected CVBS signal is routed to Rear Chinch Out (via BA 7660, 6dB amplification, 75 Ohm driver) and to Scart 1. Independent of the input signal quality (CVBS, S-Video or RGB) the digital board supplies also S-Video and RGB signals to the corresponding socket.

S-Video Signals:

There are also four S-Video input connection possibilities: Front In (E5), Rear In (E3), Scart 1 and Scart 2. For S-Video from Scart this option has to be switched on in the OSD menu. The pre-selectors and the STV 6410 do the signal selection (for detailed routing see overview). Also the video quality will be S-Video, the digital board supplies also CVBS to the corresponding sockets. The S-Video signal that is coming from the digital board is routed via BA 7660 (6-dB amplification and 75-Ohm driver) to the S-Video Rear Out socket.

RGB Signals:

The Scart 2 RGB input signal (Decoder socket) is connected to the RGB switch of STV 6410 and to the digital board in parallel. The RGB from Scart 2 is routed to Scart 1 in low power standby mode. The direct connection (not via STV 6410) is for loop through and REC. The RGB signal, which is coming from the digital board, is connected to the RGB encoder input of the STV 6410 and is routed to Scart 1 in all other modes.

As the Scart-connection can carry either RGB- or Y/C-signals it is necessary to define the available and selected signal-property. While Pin15 of Scart (Red or Chroma-upstream) is fully handled via STV6410A the Pin7 (Blue or Chroma-downstream) has to be extra set.

- Scart1: Pin42 of C (SC1YC_H-line):
 - Low (Blue-Out on SC1
 - High (Chroma-In on SC1
- Scart2: Pin41 of C (SC2RGB_H-line):
 - Low (Chroma-Out on SC2
 - High (Blue-In on SC2

Detection of Status-Information

Pin-8 (Slow-Blank):

Level-detection of Pin-8 (Scart-1 and -2) is realised by using STV6410A. It can be readout via IIC-Bus by the CC-C. To obtain the status of Scart1-Pin8, Bit 0 & 1 of register 06h must be set to 0 (Input-mode). The corresponding bits for verification of Scart2-Pin8-status are set to input-mode as default.

Meaning of Read-Register-Bits:

- Bit 7 & 6: not used
- Bit 5 & 4: Status Scart-2/Pin8:
 - 0 1 Low-level
 - 1 0 Medium-level (16:9)
 - 1 1 High-level (4:3)
- Bit 3 & 2: not used
- Bit 1 & 0: Status Scart-1/Pin8:
 - 0 1 Low-level
 - 1 0 Medium-level (16:9)
 - 1 1 High-level (4:3)

Pin-16 (Fast Blank):

Only the status/level of Scart-2/Pin16 must be detected; this is realised by using PortC3/AIN14 (Pin25) of the CC-C as an Analogue-input.

- ADC-value lower or equal 24h (Pin16 low (no RGB-signals)
- ADC-value greater 24h (Pin16 high (RGB present on Scart-2)

To avoid misdetection a "software-integration" (result is first valid if it was 3-times the same) must be implemented, determination has to be done approx. every 47 msec (no multiple of V-sync).

WSS on Y/C-Plug:

Picture-Ratio-Information (16:9 or 4:3) on SVHS-connections is coded via the average DC-level of the Chroma-signal-line, detection is realised by using an analogue-input-port of the CC-C.

- ADC- value lower or equal 40h (4:3-picture-ratio delivered
- ADC-value greater 40h (16:9-picture-ratio available on plug

Y/C-Rear is determined via Port40/AIN3 (Pin 4) of CC (WSRI-line) and Port41/AIN4 (Pin15) is used for Y/C-Front (WSFI-line).

Generation of Status-Information

Pin-8 (Slow Blank):

Only on Scart-1 the Slow-Blank-Status (Level of Pin8) must be created, which is done via IIC-Bus-register 04h (Bits 0 & 1) of the STV6410A.

Pin-16 (Fast Blank):

Only the status/level of Pin16-Scart1 must be controlled; this is realised by using the FB-switch-capabilities of the STV6410A, which are set via IIC-Bus-register 04h (bits 4 & 5).

WSS on Y/C-Plug:

The appropriate DC-level on Chroma-signal-line for Y/C-Rear-Out is produced via Port57 (Pin10) of the CC-C (WSRO-line).

- 4:3 - Picture-ratio supported on Y/C-Plug Port57 set to 0

- 16:9 - Picture-ratio supported on Y/C-Plug: Port57 set to 1

9.3.10 Audio Routing Analogue board (Europe / Nafta)

General Description:

The Audio- I/O switching is realised by the STV6410 I/O switch. By I²C Bus (SDA-0/SCL-0) it is possible to control all the Audio in- and outputs (for detailed Information we refer to the STV6410 routing overview).

Analog audio coming from DV-Board and second rear Cinch input is routed via MSP3415 to the STV 6410. After selecting the audio source via STV 6410, the signal must be transformed into the digital domain. For this, the UDA 1360TS (ADC) is responsible. An input-voltage of up to 2Vrms can be handled from the IC's. For further processing, the UDA 1360TS (ADC) delivers the data-in I²S format to the digital-board. After a certain delay the (processed) data come back from the digital board to the UDA 1328 (DAC). The UDA 1328 (DAC) transforms the I²S data back into the analog domain and feeds the signals direct to the MC33078 (OPV). From the MC33078 (OPV) the signals are delivered back to the STV 6410 and also direct to the 2nd rear out Cinch. The other outputs (Scart, Cinch) are supported by the STV 6410.

Detailed Description STV 6410:

The STV 6410 is an I²C bus controlled audio and video switch matrix, which is able to handle audio input signals up to 2 Vrms. The used outputs are equipped with internal level adjustment possibility. Low distortion and very good channel separation is a typical peculiarity of this IC. The output resistance is very low and the frequency bandwidth is up to 50 kHz.

Detailed Description UDA 1360:

The UDA 1360TS is a stereo Analog-to-Digital Converter employing bitstream conversion techniques. The UDA supports the I²S-bus data format and the MSB-justified data format with word lengths of up to 20 bits. The IC supports also 2Vrms input signals and is designed for 3V3 supply voltage.

The device is able to handle system clocks of 256fs and 384fs. Typical THD+N at 0dB is -85dB and a S/N performance up to 97dB is possible.

Detailed Description UDA 1328:

The UDA1328 is a 6 channel DAC employing bitstream conversion techniques, which can be used either in L3 microcontroller mode or in static pin mode. The UDA 1328 supports the I²S-bus data format with word lengths of up to 24 bits. Digital sound features can be controlled with the L3 interface. System clock can be set to 256fs or 384fs. The Device also provides 2 high quality differential outputs. Typical THD+N at 0dB is -95dB and a S/N of up to 106dB is possible. Supply voltage is 3V3.

Detailed Description MC 33078:

The MC33078 is a dual operational amplifier for audio applications. It offers low voltage noise (4,5nV/ $\sqrt{\text{Hz}}$) and high frequency performances (15MHz Gain Bandwidth product, 7V/s slew rate). In addition the MC33078 has a very low distortion (0,002%).

BLOCK DIAGRAM VIDEO IN/OUT EUROPE-VERSION

BLOCK DIAGRAM AUDIO IN/OUT EUROPE-VERSION

9.4 Analog Board Nafta version

9.4.1 Microprocessor TMP93C071F

The microcontroller „AIO“ TMP93C071F is a 16bit microcontroller with internal ROM and 8kB RAM. It includes the following functions:

- A/D converters
- composite sync input
- I²C bus interface

The following connection to the mains, a positive pulse on the reset input on the P is generated by the reset-IC TL7705 (Pos. 7900).

The system clock is generated with the 20MHz quartz (Pos. 1994).

9.4.2 Bus Systems

The communication between the P and the other functional groups is via the I²C-bus (SDA, SCL). The clock rate is approx. 95kHz.

Functional groups on the I²C bus:

- E²PROM ST24E16 (Pos. 7815)
- Tuner (Pos. 1705)
- Matrix-switch STV6410 (Pos. 7507)
- Audio IC / MSP (Pos. 7600)
- Display board (Pos. 1987)

9.4.3 E²PROM

The E²PROM ST24E16 (Pos. 7815) is an electric erasable and writeable, non-volatile memory. The E²PROM stores data specific to the device, such as the AFC-reference value, clock-correction-factor, etc. The data is accessed by the P via the I²C-bus.

9.4.4 FOME

The FOME (Follow Me) -circuit compares the video signal coming from the tuner and the one coming from the Scart-plug 1. If the video-signals are identical the output of the FOME-circuit is low.

9.4.5 Fan Control

The fan control circuit is necessary to control the speed of the cabinet fan (Pos. 1984) according to the requirements in temperature and noise. The temperature is measured via an NTC on the display board (Pos. 3145). When the temperature is lower than 25°C the fan-voltage is approx. 5V and will reach approx. 10V at a temperature of 40°C. It is also possible to switch off the fan via the control line ION_FAN. The circuit generates also two control-signals: TEMP goes to the P and BE_FAN is the control-line for the basic engine fan.

9.4.6 Power Supply

The 5SW and 8SW supply are switched off in case of Stby from the P via the ISTBY-line. This is possible for power-save. The ISTBY-line must be low in case of STBY. There is also a „power fail“ circuit on the PS-schematic which is necessary to mute AUDIO when IPFAIL is low.

9.4.7 Front End (TU, AP Part)

The front end comprises the following parts:

- Tuner [1705]
- IF amplifier & video demodulator IC TDA 9817 [7703]
- Sound processor MSP3445G [7600]

IF Selection

The IF frequency of the video carrier is 45.75 MHz. A quasi-split audio system is used. Separate surface-wave filters (SAW) are required. [1701] for video, [1702] for audio.

IF Demodulator

TDA 9817

The IF signal from the tuner is processed by the demodulator IC TDA 9817 [7703]. A QSS-audio-IF signal SIF1 is generated for demodulation in the sound processor [7600]. Audio carriers are converted from the tuner IF level into the audio IF position and further processed in the audio demodulator [7600]. The AFC coil [5703] on the TDA 9817 is adjusted so that when a frequency of 45.75 MHz is supplied to the IF output of the tuner, the AFC voltage on pin 17 of the TDA 9817 is 2.5V. The HF-AGC is set using the AGC controller [3707] so that, with a sufficiently large antenna input signal (74 dBV) the voltage at the IF output of the tuner [1705] pin 11 is 500 mVpp. This setting must be carried out, when the audio carrier is switched off. The demodulated video signal appears on pin 16 [7703]. The demodulator AGC voltage at pin4 is used to determine the antenna signal strength after a buffer [7705] with the signal AGC_MUTE. In the opposite direction this line may be used to mute the demodulator to avoid crosstalk in all cases, where the tuner signal is not needed. In this case a „high“ signal is sent via AGC_MUTE and the conducting diode [6703] to pin4. The video trap [1703] reduces adjacent channel video and sound carrier remainders in the video. The demodulated video signal VFV is available after the buffer and limiter stage for noise peaks [7706]. The FM-PLL demodulator function of TDA 9817 is not used and deactivated by the resistor [3726].

Audio Demodulator

Sound processor MSP 3445G

The MSP 3445G [7600] is a NTSC sound processor. Amplitude and bandwidth of the demodulated audio signals can be determined in the MSP using the corresponding commands via the I²C bus. The audio signal from the tuner is available at the pins 30 AFER and 31 AFEL.

9.4.8 Video-Routing (Nafta Version)

General Description:

The complete Video- I/O-switching is basically realised by the I/O switch STV6410A, which is controlled via I²C-Bus-0 (SDA/ SCL) by the all in one C on the analogue board. The STV 6410 has three YCVBS, three chroma, and one RGB switch which is not used in the Nafta I/O. All switches have 6-dB amplification on the outputs. The YCVBS inputs have bottom clamp, the chroma inputs have average clamp, and the RGB switch has bottom clamp circuits at the inputs. The R/C inputs can be switched to average clamp for chroma signals via I²C bus. Two pre-selectors BA 7652 are additionally used: One for switching between Y- Rear and Front, the second for switching between Chroma- Rear and Front signal. Both pre-selectors are controlled via IS1 and IS2 from the analogue board C.

CVBS Signals:

There are two CVBS input connection possibilities: Front chinch (E5) and Rear Chinch In (E3). Both CVBS sources are connected direct to the STV 6410 and routed to Rear Out 1 and Rear Out 2 via the 75-Ohm driver BA 7623. Both CVBS output sockets are connected to BA 7623 in parallel. Independent of the input signal quality (CVBS, S-Video or Y/ UV) the digital board supplies also S-Video and Y/UV signals to the corresponding sockets.

S-Video Signals:

There are also two S-Video input connection possibilities: Front (E4) and Rear (E2) S-Video In which are connected to the pre-selector IC's BA 7652. One is used for Y, the other for Chroma

switching. The output of the pre-selector switches is connected to the STV 6410, and then the signal is routed via the 75-Ohm driver BA 7623 to the Rear Out S-Video socket. Also the video quality will be S-Video, the digital board supplies also CVBS and Y/UV to the corresponding sockets.

Y/UV Signals:

The Y/UV In signal is routed direct to the digital board, there is no Y/UV IN -> Y/UV Out loop through in low power standby. As the digital board supplies only RGB signals, a RGB Y/UV matrix is used. This matrix consists of the operational amplifier TSH95 which generates the U and V signals according the formulas: $2U=B-0,338R-0,661G$, $2V=R-0,838G-0,161B$. Then the signals are routed to the UV Output sockets via the 75-Ohm driver BA 7623. The corresponding Y signal is coming from the digital board via the STV 6410. The 75 Ohm Y socket is driven by the 75-Ohm driver BA 7623 and finally connected to the of the Y/UV Output.

Detection of Status-Information

WSS on Y/C-Plug:

- Picture-Ratio-Information (16:9 or 4:3) on SVHS-connections is coded via the average DC-level of the Chroma-signal-line, detection is realised by using an analogue-input-port of the CC-C.
- ADC-value lower or equal 40h (4:3-picture-ratio delivered
- ADC-value greater 40h (16:9-picture-ratio available on plug)
- Y/C-Rear is determined via Port40/AIN3 (Pin14) of CC (WSRI-line) and Port41/AIN4 (Pin15) is used for Y/C-Front (WSFI-line).

Generation of Status-Information

WSS on Y/C-Plug:

- The appropriate DC-level on Chroma-signal-line for Y/C-Rear-Out is produced via Port57 (Pin10) of the CC-C (WSRO-line).
- 4:3 - Picture-ratio supported on Y/C-Plug: Port57 set to 0
 - 16:9 - Picture-ratio supported on Y/C-Plug: Port57 set to 1

9.4.9 Audio routing Analogue board (Europe / Nafta)

General Description:

The Audio-I/O switching is realised by the STV6410 I/O switch. By I²C Bus (SDA-0/SCL-0) it is possible to control all the Audio in- and outputs (for detailed Information we refer to the STV6410 routing overview).

Analog audio coming from DV-Board and second rear Cinch input is routed via MSP3415 to the STV 6410. After selecting the audio source via STV 6410, the signal must be transformed into the digital domain. For this, the UDA 1360TS (ADC) is responsible. An input-voltage of up to 2Vrms can be handled from the IC's. For further processing, the UDA 1360TS (ADC) delivers the data-in I²S format to the digital-board. After a certain delay the (processed) data come back from the digital board to the UDA 1328 (DAC). The UDA 1328 (DAC) transforms the I²S data back into the analog domain and feeds the signals direct to the MC33078 (OPV). From the MC33078 (OPV) the signals are delivered back to the STV 6410 and also direct to the 2nd rear out Cinch. The other outputs (Scart, Cinch) are supported by the STV 6410.

Detailed Description STV 6410:

The STV 6410 is an I²C bus controlled audio and video switch matrix, which is able to handle audio input signals up to 2 Vrms. The used outputs are equipped with internal level adjustment possibility. Low distortion and very good channel separation is a typical peculiarity of this IC. The output resistance is very low and the frequency bandwidth is up to 50 kHz.

Detailed Description UDA 1360:

The UDA 1360TS is a stereo Analog-to-Digital Converter employing bitstream conversion techniques. The UDA supports the I²S-bus data format and the MSB-justified data format with word lengths of up to 20 bits. The IC supports also 2Vrms input signals and is designed for 3V3 supply voltage. The device is able to handle system clocks of 256fs and 384fs. Typical THD+N at 0dB is -85dB and a S/N performance up to 97dB is possible.

Detailed Description UDA 1328:

The UDA1328 is a 6 channel DAC employing bitstream conversion techniques, which can be used either in L3 microcontroller mode or in static pin mode. The UDA 1328 supports the I²S-bus data format with word lengths of up to 24 bits. Digital sound features can be controlled with the L3 interface. System clock can be set to 256fs or 384fs. The Device also provides 2 high quality differential outputs. Typical THD+N at 0dB is -95dB and a S/N of up to 106dB is possible. Supply voltage is 3V3.

Detailed Description MC 33078:

The MC33078 is a dual operational amplifier for audio applications. It offers low voltage noise (4,5nV/ $\sqrt{\text{Hz}}$) and high frequency performances (15MHz Gain Bandwidth product, 7V/s slew rate). In addition the MC33078 has a very low distortion (0,002%).

BLOCK DIAGRAM VIDEO IN/OUT NAFTA-VERSION

BLOCK DIAGRAM AUDIO IN/OUT NAFTA-VERSION

CL 16532095_116.eps
150801

9.5 Digital Board

9.5.1 Record Mode

Video Part

Analog Video input signals CVBS, YC and UV(RGB for EURO and YUV for USA) are routed via the analog board to connector 1601 and sent to IC7500 SAA7118 (Video Input Processor). Digital video input signals (DV_IN_DATA(7:0)) are sent from the DIVIO board through the connector 1603 and further also to IC7500.

IC7500 (VIP) encodes the analog video to digital video and processes the digital video to a digital video stream (CCIR656 format). This output stream (VIP_YUV[7:0]) goes to IC7403 SAA6752H (EMPRESS) and to IC7100 Versatile Stream Manager. The latter uses the data for VBI (vertical blanking interval) extraction.

IC7403 (EMPRESS) encodes the digital video stream into a MPEG2 video stream that is fed to IC7100 (VSM).

Audio Part

I2S audio are sent from the analog board to IC7403 EMPRESS via connector 1602. The EMPRESS compresses I2S audio data into an AC3 audio stream which is fed to IC7100 (VSM).

Front-End I2S

IC7100 (VSM) interfaces directly to the different hardware modules such as Basic Engine, EMPRESS IC7403, MPEG decoder IC7200 (Sti5508) and buffers the data streams that are coming from or going to these hardware modules. In IC7100 (VSM), the video MPEG2 stream and the audio AC3 stream are multiplexed into a I2S packetized stream. The serial data are sent to the Basic Engine to be recorded.

Loop-Through

The multiplexed audio and video stream in the VSM is fed back via the parallel front-end interface to IC7200 (Sti5508). This IC decodes the MPEG stream into analog video and I2S audio. The video and audio signals are routed to the analog board via connectors 1601 and 1602. During recording, the recorded signal is present at the outputs of the analog board.

9.5.2 Playback Mode

During playback, the serial data from the Basic Engine is going directly to the Sti5505 via the serial front-end I2S interface. The Sti5508 is a MPEG & Audio/video decoder and has the following outputs:

- To the analog board:
 - analog video RGB, YC, CVBS
 - I2S audio (PCM format)
 - SPDIF audio (digital audio output)
- To the Progressive scan board:
 - digital video YC(7:0).

9.5.3 S2B Interface

The S2B interface between the VSM (IC7100) and the Servo processor MACE3 controls the Basic Engine during record and playback mode.

9.5.4 System Clock

System clocks(27MHz) of VSM, Sti5508, EMPRESS and Progressive Scan are generated by oscillator 7906

9.5.5 Audio Clock

During record mode, the audio clock ACLK_EMPRESS is generated by the EMPRESS IC 7403, filtered by the PLL IC 7102 and set to the VSM IC7100 as ACC_CLK_OSC. In the VSM the following clocks are generated:

- Audio decoder clock: AD_ACLK
- Audio encoder bit clock: AE_BCLK_VSM
- Audio encoder word clock: AE_WCLK_VSM

AD_CLK is sent as AE_ACLK to the ADC IC on the analogue board and via buffer 7202 as AD_ACLK to the DAC IC on the analogue board. It is also connected to the Sti5508 and used to generate internally the necessary audio clocks for audio PCM. AE_BCLK_VSM and AE_WCLK_VSM are sent to the EMPRESS and further as AE_WCLK and AE_BCLK to the analogue board.

During playback mode, the audio clock AD_ACLK is generated by the MPEG AV DECODER Sti5508 (IC 7200) and sent to the analogue board. Buffer 7202 is in tri-state and blocks AD_ACLK to avoid interference with AE_ACLK.

9.5.6 On/Off

The digital board is not powered in standby mode. Control signal ION, coming from the analog board, will enable the PSU and power the digital board.

- ION = High: the digital board is in powered down standby mode
- ION = Low: the power supply to the digital board is enabled

9.5.7 Reset

Control signal IRESET_DIG, controlled by the microprocessor on the analog board is sent to the RESET LOGIC circuit.

- IRESET_DIG = Low in standby mode
- IRESET_DIG = High: the whole system is reset and the Digital board is waked up.

9.5.8 I2C Bus

Sti5508 is master of the I2C bus. The following IC's are controlled by the I2C bus:

- IC7201 NVRAM
- IC7403 EMPRESS
- IC7500 VIP
- IC7700 FLI2200 Video Deinterlacer Line Doubler
- IC7801 ADV7196 Video Denc

9.5.9 EMI Bus

The following IC's are connected to the External Memory Interface bus (EMI) which functions as system bus:

- IC7301 and 7302: Flash memories which contain the application and diagnostic software
- IC7100: VSM
- IC7200: MPEG AV Decoder

Block Diagram Digital Board

Figure 9-7

TR03013_001
010702

9.5.10 Progressive Scan

Description

The progressive scan part is integrated in the Digital Board and built around the SAGE Fli2200 de-interlacer / line doubler (7701). This I2C controlled de-interlacer uses a 64Mbit SDRAM (32bit x 2M) to perform high quality deinterlacing (meshing). The de-interlacer gets his digital YUV input data from the STi5508 (7200). The format of the digital YUV input to the SAGE is CCIR656 with separated Hsync, Vsync and odd/even signal running on 27MHz.

Because the STi5508 doesn't have a Vsync output the odd/even output of this IC has to be translated to a Vsync signal. Some glue logic has been added to extract the vertical sync. The glue logic circuit consists of Flip-Flop IC 74HC74D (7701) and EXOR 74LVC86 (7702). The next diagram shows how the vertical sync is extracted.

Vertical Sync

Figure 9-8

The output of the de-interlacer (4:4:4 progressive video) is fed to the Analog Devices ADV71967 MacroVision compliant DENC (7801).

The YUV current output of the DENC is fed via a low pass filter to the single supply output opamps AD8061/8062 (7802-7803). The analog video is fed via a 7 poled flex to the analog board where the YUV 2FH cinch connectors are located.

9.6 Divio 1.8 Board

9.6.1 Short Description of the Module:

The DVIO Module is a decoder for DV streams. Input is a stream from a DV-camcorder via IEEE1394. Outputs are CCIR656 Video and Analog audio (L+R). A serial control interface is present.

The following picture shows the location of the DVIO Module inside the DVDR set.

Description DIVIO Module

Figure 9-9

9.6.2 Block Diagram

Block Diagram DVIO1.8

Figure 9-10

9.6.3 Functional Description

The DVIO module consists of the following blocks (see blockdiagram):

1. IEEE1394 Interface
 - uPD72852 (7400) (Phy)
 - uPD72893 (7431) (Link part)
2. Micro-controller
 - uPD78F0988 (7802)
 - Voltage regulator LM2931 for generation of 10V programming voltage (7801)
3. Reset-circuitry
 - Power-on reset
 - Reset pulse-shortener
4. DV-Decoder
 - uPD72893 (7431) (Codec part)
 - 16MBit SDRAM (7430)
 - optional Flash-Memory M29W800AT for Firmware-Update of uPD72893 (7432)
5. Clocking & Audio PLL
 - Clock oscillator FXO-31FT (7601)
 - Audio-PLL: Voltage controlled oscillator BA7082F (7604), clock generator BU2288FV (7605), and clock divider 74LV74 (7606-A)
6. Audio Format adaption (MSB justified -> I2S), option
 - 74LV74 (7507-A, -B)
7. Audio & Video output
 - Audio DAC UDA1334ATS(7602)
 - Clock delay(7500)
 - Tristate buffer(7505)

IEEE1394 Interface

The 1394 interface consists of a uPD72852 physical layer and a uPD72893 link layer IC (uPD72893 integrated also DV-Decoder).

It has the following features:

- S400 operation (400 megabit per second)
- Two i.Link ports (4 pin), only one used
- AV link port

Micro-Controller

The uPD78F0988 processor has following extra features:

- 60 kilobyte of flash memory as program memory
- 2 kilobyte of internal data memory
- watchdog timer
- On board ISP(In-System-Programming) functionality

ISP

By use of In-System-Programming, it is possible to update the software of the DVIO board that is in the uPD78F0988. ISP can be made active by resetting the processor and keeping the ISPn pin low during reset. During ISP, the ISPn signal on the board has to be kept low. A programming voltage of 10V is activated by the uPD78F0988 itself at the Vpp pin before programming procedure starts. When the ISP mode is active, the new program can be sent to the microprocessor through the serial port.

Reset-circuitry

The reset-circuitry consists of two parts.

First part (around transistor 7803) generates a reset pulse when the board is powered up.

Second part (around transistors 7804 & 7805) acts as a reset-pulse shortener, i.e. a short reset pulse (4ms) is generated from the input signal RESETn which is much longer (usually 100ms). This is required to ensure correct operation of the Micro-controller after booting-up when RESETn is again deactivated.

DV-Decoder

The uPD72893 decodes the stream into video data in 656 format and audio data in I2S format.

The microprocessor has the ability to read the status registers of the uPD72893. By reading these registers, extra data from the DV stream, that is not decoded into audio or video, can be sent to the digital board using pin TXD of the serial interface. This data includes time stamp and some more.

Clocking and Audio PLL

The FXO-31FT generates the free-running 27MHz system clock. Video part of input DV-stream is in the uPD72893 adapted to the local 27MHz clock domain (skip, repeat frame). Because audio clock (11.2896MHz [fs=44.1kHz] or 12.288MHz [fs=32kHz, 48kHz]).

The uPD72893 integrates the phase comparator that drives the VCO BA7082F to a nominal frequency of 27MHz which in turn is converted by BU2288FV and 74LV74 to 11.2896MHz or 12.288MHz, respectively.

The uPD72893 controls directly the frequency ratio of the BU2288FV.

Audio Format adaptation (MSB justified -> I2S), option

Due to a bug in 1st version of uPD72893 digital audio output is not correct in I2S mode when in 32kHz operation. As a workaround uPD72893 is generally configured in MSB justified mode and conversion to I2S mode is done externally via a 74LV74 device.

Can be disabled with later versions of uPD72893.

Audio & Video Output

The audio I2S data are sent to audio DAC UDA1334. Analog audio left and right signals are connected to the analog board. The tri-state buffer enables the digital video stream to the Video Input Processor on the digital board when the DV source is selected.

The clock delay synchronizes the AV clock with the AV data at the output.

9.7 IC's Analog Board

9.7.1 IC7001: UDA1328T

Multi-channel filter DAC

UDA1328T

1 FEATURES

1.1 General

- 2.7 to 3.6 V power supply
- 5 V tolerant TTL compatible inputs
- Selectable control via L3 microcontroller interface or via static pin control
- Multi-channel integrated digital filter plus non-inverting Digital-to-Analog Converter (DAC)
- Supports sample frequencies between 5 and 100 kHz
- Digital silence detection (output)
- Slave mode only applications
- No analog post filtering required for DAC
- Easy application.

1.2 Multiple format input interface

- I²S-bus, MSB-justified and LSB-justified format compatible (in L3 mode)
- I²S-bus and LSB-justified format compatible
- 1f_s input format data rate.

1.3 Multi-channel DAC

- 6-channel DAC with power on/off control
- Digital logarithmic volume control via L3; volume can be set for each of the channels individually
- Digital de-emphasis for 32, 44.1, 48 and 96 kHz f_s via L3 and, for 32, 44.1 and 48 kHz in static mode
- Soft or quick mute via L3
- Output signal polarity control via L3 microcontroller interface.

1.4 Advanced audio configuration

- 6-channel line output (under L3 volume control)
- A stereo differential output (channel 1 and channel 2) for improved performance
- High linearity, wide dynamic range, low distortion.

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
UDA1328T	SO32	plastic small outline package; 32 leads; body width 7.5 mm	SOT287-1

2 APPLICATIONS

This multi-channel DAC is eminently suitable for DVD-like applications in which 5.1 channel encoded signals are used.

3 GENERAL DESCRIPTION

The UDA1328 is a single-chip 6-channel DAC employing bitstream conversion techniques, which can be used either in L3 microcontroller mode or in static pin mode.

The UDA1328 supports the I²S-bus data format with word lengths of up to 24 bits, the MSB-justified data format with word lengths of up to 24 bits and the LSB-justified serial data format with word lengths of 16, 18, 20 and 24 bits.

All digital sound processing features can be controlled with the L3 interface e.g. volume control, selecting digital silence type, output polarity control and mute. Also system features such as power control, digital silence detection mode and output polarity control.

Under static pin control, via static pins, the system clock can be set to either 256f_s or 384f_s support, digital de-emphasis can be set, there is digital mute and the digital input formats can also be set.

Multi-channel filter DAC

UDA1328T

6 BLOCK DIAGRAM

Multi-channel filter DAC

UDA1328T

7 PINNING

SYMBOL	PIN	DESCRIPTION
VOUT3	1	channel 3 analog output
VOUT4	2	channel 4 analog output
V _{SSA}	3	analog ground
VOUT5	4	channel 5 analog output
VOUT6	5	channel 6 analog output
V _{DDA}	6	analog supply voltage
n.c.	7	not connected (reserved)
TEST3	8	test output 3
STATIC	9	static mode/L3 mode switch input
BCK	10	bit clock input
WS	11	word select input
DATAI12	12	data input channel 1 and 2
DATAI34	13	data input channel 3 and 4
DATAI56	14	data input channel 5 and 6
n.c.	15	not connected (reserved)
SYSCLK	16	system clock: 256f _s , 384f _s , 512f _s and 768f _s
L3MODE	17	L3 mode selection input
L3CLOCK	18	L3 clock input
L3DATA	19	L3 data input
V _{SSD}	20	digital ground
V _{DDD}	21	digital supply voltage
TEST2	22	test output 2
MUTE	23	static mute control input
DEEM1	24	DEEM control 1 input (static mode)
DEEM0	25	L3 address select (L3 mode)/DEEM control 0 input (static mode)
DS	26	digital silence detect output
TEST1	27	test input 1
VOUT1P	28	channel 1 analog output P
VOUT1N	29	channel 1 analog output N
V _{ref}	30	DAC reference voltage
VOUT2N	31	channel 2 analog output N
VOUT2P	32	channel 2 analog output P

Multi-channel Filter DAC

UDA1328T

8 FUNCTIONAL DESCRIPTION

8.1 System clock

The UDA1328 operates in slave mode only, this means that in all applications the system must provide the system clock. The system frequency is selectable. The options are $256f_s$, $384f_s$, $512f_s$ and $768f_s$ for the L3 mode and $256f_s$ or $384f_s$ for the static mode. The system clock must be frequency-locked to the digital interface signals.

It should be noted that the UDA1328 can operate from 5 to 100 kHz sampling frequency (f_s). However in $768f_s$ mode the sampling frequency must be limited to 55 kHz.

8.2 Application modes

Operating mode can be set with the STATIC pin, either to L3 mode (STATIC = LOW) or to the static mode (STATIC = HIGH). See Table 1 for pin functions in the static mode.

Table 1 Mode selection in the static mode

PIN	L3 MODE	STATIC MODE
L3CLOCK	L3CLOCK	clock select
L3MODE	L3MODE	SF1 ⁽¹⁾
L3DATA	L3DATA	SF0 ⁽¹⁾
MUTE	X ⁽²⁾	MUTE
DEEM1	X ⁽²⁾	DEEM1
DEEM0	L3ADR	DEEM0

Notes

1. SF1 and SF0 are the Serial Format inputs (2-bit).
2. X means that the pin has no function in this mode and can best be connected to ground.

8.3 Interpolation Filter (DAC)

The digital filter interpolates from 1 to $128f_s$ by cascading a half-band filter and a FIR filter, see Table 2. The overall filter characteristic of the digital filters is illustrated in Fig.3, and the pass-band ripple is illustrated in Fig.4. Both figures are with a 44.1 kHz sampling frequency.

Table 2 Interpolation Filter characteristics

ITEM	CONDITION	VALUE (dB)
Pass-band ripple	0 to $0.45f_s$	± 0.02
Stop band	$>0.55f_s$	-55
Dynamic range	0 to $0.45f_s$	>114
DC gain	-	-3.5

8.4 Digital silence detection

The UDA1328 can detect digital silence conditions in channels 1 to 6, and report this via the output pin DS. This function is implemented to allow for external manipulation of the audio signal in the absence of program material, such as muting or recorder control.

An active LOW output is produced at the DS pin if the channels selected via L3 or for all channels in static mode, carries all zeroes for at least 9600 consecutive audio samples (equals 200 ms for $f_s = 48$ kHz). The DS pin is also active LOW when the output is digitally muted either via the L3 interface or via the STATIC pin.

In static mode all channels participate in the digital silence detection. In L3 mode control each channel can be set, either to participate in the digital silence detection or not.

8.5 Noise shaper

The 3rd-order noise shaper operates at $128f_s$. It shifts in-band quantization noise to frequencies well above the audio band. This noise shaping technique enables high signal-to-noise ratios to be achieved. The noise shaper output is converted into an analog signal using a Filter Stream DAC (FSDAC).

8.6 Filter stream DAC

The FSDAC is a semi-digital reconstruction filter that converts the 1-bit data stream of the noise shaper to an analog output voltage. The filter coefficients are implemented as current sources and are summed at virtual ground of the output operational amplifier. In this way very high signal-to-noise performance and low clock jitter sensitivity is achieved. No post-filter is needed due to the inherent filter function of the DAC. On-board amplifiers convert the FSDAC output current to an output voltage signal capable of driving a line output.

The output voltage of the FSDAC scales proportionally with the power supply voltage.

8.7 Static mode

The UDA1328 is set to static mode by setting the STATIC pin HIGH. The function of 6 pins of the device now get another function as can be seen in Table 1.

8.7.1 SYSTEM CLOCK SETTING

In static mode pin 18 (L3CLOCK) is used to select the system clock setting. When pin 18 is LOW, the device is in $256f_s$ mode, when pin 18 is HIGH the device is in $384f_s$ mode.

Multi-channel filter DAC**UDA1328T****8.7.2 DE-EMPHASIS CONTROL**

In static pin mode the pins DEEM0 and DEEM1 control the de-emphasis mode; see Table 3.

Table 3 De-emphasis control

DEEM MODE	DEEM1	DEEM0
No de-emphasis	0	0
32 kHz de-emphasis	0	1
44.1 kHz de-emphasis	1	0
48 kHz de-emphasis	1	1

8.7.3 DIGITAL INTERFACE FORMATS

In static pin mode the digital audio interface formats can be selected via pin 17 (SF1) and 19 (SF0). The following interface formats can be selected (see also Table 4):

- I²S-bus with data word length of up to 24 bits
- LSB-justified format with data word length of 16, 20 or 24 bits.

Table 4 Input format selection in the static mode

INPUT FORMAT	SF1	SF0
I ² S-bus	0	0
LSB-justified 16bits	0	1
LSB-justified 20bits	1	0
LSB-justified 24bits	1	1

It should be noted that the digital audio interface holds that the BCK frequency can be 64 times the WS maximum frequency, or $f_{BCK} \leq 64 \times f_{WS}$

8.8 L3 mode

The device is set to L3 mode by setting the STATIC pin to LOW. The device can then be controlled via the L3 microcontroller interface (see Chapter 9).

8.8.1 DIGITAL INTERFACE FORMATS

The following interface formats can be selected in the L3 mode:

- I²S-bus with data word length of up to 24 bits
- MSB-justified with data word length of up to 24 bits
- LSB-justified format with data word length of 16, 18, 20 or 24 bits.

8.8.2 L3 ADDRESS

The UDA1328 can be addressed via the L3 microcontroller interface using one of two addresses. This is done in order to individually control the UDA1328 and other Philips DACs or CODECs via the same L3 bus.

The address can be selected using pin 25 (DEEM0) in L3 mode. When pin 25 is set LOW, the address is 000100. When pin 25 is set HIGH the address is 000101.

9.7.2 IC7004: UDA1360TS

Low-voltage low-power stereo audio ADC**UDA1360TS****FEATURES****General**

- Low power consumption
- 2.4 to 3.6 V power supply
- Supports 256 and 384f_s system clock
- Supports sampling frequency range of 5 to 55 kHz
- Small package size (SSOP16)
- Integrated high-pass filter to cancel DC offset
- Power-down mode
- Supports 2 V (RMS) input signals
- Easy application
- Non-inverting ADC plus decimation filter.

Multiple format output interface

- I²S-bus and MSB-justified format compatible
- Up to 20 significant bits serial output.

Advanced audio configuration

- Stereo single-ended input configuration
- High linearity, dynamic range and low distortion.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V _{DDA}	analog supply voltage		2.4	3.0	3.6	V
V _{DDD}	digital supply voltage		2.4	3.0	3.6	V
I _{DDA}	analog supply current		-	9	-	mA
I _{DDD}	digital supply current		-	3.5	-	mA
T _{amb}	operating ambient temperature		-40	-	+85	°C
ADC						
V _{i(rms)}	input voltage (RMS value)	see Table 1	-	1.0	-	V
(THD + N)/S	total harmonic distortion plus noise-to-signal ratio	at 0 dB	-	-85	-80	dB
		at -60 dB; A-weighted	-	-37	-33	dB
S/N	signal-to-noise ratio	V _I = 0 V; A-weighted	-	97	-	dB
α _{cs}	channel separation		-	100	-	dB

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
UDA1360TS	SSOP16	plastic shrink small outline package; 16 leads; body width 4.4 mm	SOT369-1

GENERAL DESCRIPTION

The UDA1360TS is a single chip stereo Analog-to-Digital Converter (ADC) employing bitstream conversion techniques. The low power consumption and low voltage requirements make the device eminently suitable for use in low-voltage low-power portable digital audio equipment which incorporates recording functions.

The UDA1360TS supports the I²S-bus data format and the MSB-justified data format with word lengths of up to 20 bits.

Low-voltage low-power stereo audio ADC

UDA1360TS

BLOCK DIAGRAM

Low-voltage low-power stereo audio ADC

UDA1360TS

PINNING

SYMBOL	PIN	DESCRIPTION
VINL	1	left channel input
V _{ref}	2	reference voltage
VINR	3	right channel input
V _{ref(n)}	4	ADC negative reference voltage
V _{ref(p)}	5	ADC positive reference voltage
SFOR	6	data format selection input
PWON	7	power control input
SYSCLK	8	system clock input 256 or 384f _s
V _{DDD}	9	digital supply voltage
V _{SSD}	10	digital ground
BCK	11	bit clock input
WS	12	word selection input
DATAO	13	data output
FSEL	14	system clock frequency select
V _{SSA}	15	analog ground
V _{DDA}	16	analog supply voltage

Fig.2 Pin configuration.

FUNCTIONAL DESCRIPTION

System clock

The UDA1360TS accommodates slave mode only, this means that in all applications the system devices must provide the system clock. The system frequency is selectable via the static FSEL pin, and the system clock must be locked in frequency to the digital interface input signals.

The options are 256f_s (FSEL = LOW) and 384f_s (FSEL = HIGH). The sampling frequency range is 5 to 55 kHz.

The BCK clock can be up to 128f_s, or in other words the BCK frequency is 128 times the Word Select (WS) frequency or less: f_{BCK} ≤ 128 × f_{WS}.

Notes:

1. The WS edge MUST fall on the negative edge of the BCK at all times for proper operation of the digital I/O data interface.
2. For MSB justified formats it is important to have a WS signal with 50% duty factor.

Analog-to-Digital Converter (ADC)

The stereo ADC of the UDA1360TS consists of two 3rd-order Sigma-Delta modulators. They have a modified Ritchie-coder architecture in a differential switched capacitor implementation. The over-sampling ratio is 128.

Input level

The overall system gain is proportional to V_{DDA}. The 0 dB input level is defined as that which gives a -1 dBFS digital output (relative to the full-scale swing). In addition, an input gain switch is incorporated with the above definitions.

The UDA1360TS front-end is equipped with a selectable 0 or 6 dB gain, in order to support 2 V (RMS) input using a series resistor of 12 kΩ.

For the definition of the pin settings for 1 or 2 V (RMS) mode given in Table 1, it is assumed that this resistor is present as a default component.

If the 2 V (RMS) signal input is not needed, the external resistor should not be used.

Low-voltage low-power stereo audio ADC

UDA1360TS

Table 1 Application modes using input gain stage

RESISTOR (12 kΩ)	INPUT GAIN SWITCH	MAXIMUM INPUT VOLTAGE
Present	0 dB	2 V (RMS)
Present	6 dB	1 V (RMS)
Absent	0 dB	1 V (RMS)
Absent	6 dB	0.5 V (RMS)

Multiple format output interface

The UDA1360TS supports the following data output formats:

- I²S-bus with data word length of up to 20 bits
- MSB-justified serial format with data word length of up to 20 bits.

The output format can be set by the static SFOR pin. When SFOR is LOW, the I²S-bus is selected, when SFOR is set HIGH the MSB-justified format is selected.

The data formats are illustrated in Fig.4. Left and right data channel words are time multiplexed.

Decimation filter

The decimation from 128f_s is performed in two stages. The first stage realizes 3rd-order sin x/x characteristic. This filter decreases the sample rate by 16. The second stage (an FIR filter) consists of 3 half-band filters, each decimating by a factor of 2.

Table 2 DC cancellation filter characteristics

ITEM	CONDITION	VALUE (dB)
Pass-band ripple		none
Pass-band gain		0
Stop band	>0.55f _s	-60
Droop	at 0.00045f _s	0.031
Attenuation at DC	at 0.00000036f _s	>40
Dynamic range	0 to 0.45f _s	>110

Mute

On recovery from power-down, the serial data output DATAO is held LOW until valid data is available from the decimation filter. This time tracks with the sampling frequency:

$$t = \frac{12288}{f_s} = 279 \text{ ms ; where } f_s = 44.1 \text{ kHz.}$$

Power-down mode

The PWON pin can control the power saving together with the optional gain switch for 2 V (RMS) or 1 V (RMS) input. When the PWON pin is set LOW, the ADC is set to power-down. When PWON is set to HIGH or to half the power supply, then either 6 dB gain or 0 dB gain in the analog front-end is selected.

Application modes

The UDA1360TS can be set to different modes using two 3-level pins and one 2-level pin. The selection of modes is given in Table 3.

Table 3 Mode selection summary

PIN	V _{ss}	½V _{DD}	V _{DD}
SFOR	I ² S-bus	test mode	MSB
PWON	power-down	0 dB gain	6 dB gain
FSEL	256f _s	—	384f _s

9.7.3 IC7430: BA7660FS

3-channel 75Ω driver

BA7660FS

The BA7660FS is a 75Ω driver with a 6dB amplifier and three internal circuits, and provides 75Ω drive of composite Y signals and C signals, as well as RGB signals. Each load is capable of driving two circuits, and a sag correction function reduces the capacitance of the output coupling capacitor.

The input voltage is within a range of 0V to 1.5V, enabling direct connection of ordinary D / A converter output. An internal power-saving circuit is also included which provides simultaneous muting on all three channels, and output pin shorting protection.

● Applications

DVDs, set top boxes and other digital video devices

● Features

- 1) Can be coupled directly to D / A converter output.
- 2) Operates at a low power consumption (115mW typ.).
- 3) Internal output muting circuit.
- 4) Internal power-saving circuit.
- 5) Internal output protection circuit.
- 6) An internal sag correction function makes it possible to reduce the capacitance of the output coupling capacitor.
- 7) Each load is capable of driving two circuits.
- 8) The compact 16-pin SSOP-A package is used.

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	8	V
Power dissipation	Pd	650	mW
Operating temperature	Topr	- 25 ~ + 75	°C
Storage temperature	Tstg	- 55 ~ + 125	°C

● Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Operating power supply voltage	Vcc	4.5	5.0	5.5	V

● Block diagram

●Pin descriptions and input / output circuits

Pin. No	Pin name	IN	OUT	Reference voltage	Equivalent circuit	Function
1	MUTE	K	—	—		Muting control If MUTE (pin 1) is set to HIGH, muting is carried out simultaneously on all three channels.
2 4 7	INA INB INC	K	—	—		Signal input Input signals consist of composite video signals, Y signals, C signals, RGB, and others. The input level is within a range of 0 to 1.3 (min.) to 1.5 (typ.).
3 5 8	GND	—	—	0V		Ground
14 12 9 15 13 10	OUTA2 OUTB2 OUTC2 OUTA1 OUTB1 OUTC1	—	K	0.9V 0.95V		Signal output The signal output level is $(0.9 + 2 \times \text{input voltage [V]})$. Pins 9, 12, and 14 are the pins for sag correction. If pins 10, 13, and 15 are set to 0.2V or less, the protective circuit is triggered and the power-saving mode is accessed.
16	Vcc	—	—	5.0V		Power supply

9.7.4 IC7507: STV6410

STV6410

AUDIO/VIDEO SWITCH MATRIX

- I²C BUS CONTROL
- STANDBY MODE

VIDEO SECTION

- 5 CVBS INPUTS, 4 CVBS OUTPUTS (ONE WITH SELECTABLE CHROMA TRAP FILTER)
- 5 Y/C INPUTS, 3 Y/C OUTPUTS
- 6dB GAIN ON ALL CVBS/Y AND C OUTPUTS
- 1 Y/C ADDER
- 2 RGB/FB INPUTS, 1 RGB/FB OUTPUT WITH 6dB ADJUSTABLE GAIN
- VIDEO MUTING ON ALL THE OUTPUTS
- 3 SLOW BLANKING INPUTS/OUTPUTS
- SYNC BOTTOM CLAMP ON ALL CVBS/Y AND RGB INPUTS, AVERAGE ON C INPUTS
- BANDWIDTH : 15MHz
- CROSSTALK : 60dB Typ.

AUDIO SECTION

- 5 STEREO INPUTS, 4 STEREO OUTPUTS (TWO WITH LEVEL ADJUSTMENT)
- MONO SOUND OUTPUT
- MONO SOUND CAPABILITY ON TV OUTPUTS
- AUDIO MUTING ON ALL THE OUTPUTS

TQFP64
(Plastic Quad Flat Pack)

ORDER CODE : STV6410D

DESCRIPTION

The STV6410 is a highly integrated I²C bus-controlled audio and video switch matrix, optimized for use in digital set-top box applications. It provides all the audio and video routings required in a full three scart set-top box design. It is also fully pin compatible with STV6411, the two scart version.

STV6410**PIN CONNECTIONS****PIN LIST**

Pin Number	Symbol	Description
1	RCOUT_TV	Red/chroma Output, to TV Scart
2	LOUT_TV	Audio Left Output, to TV Scart
3	YCVBSOUT_TV	Y/CVBS Output, to TV scart
4	ROUT_AUX	Audio Right Output, to AUX Scart
5	COUT_VCR	Chroma Output, to VCR Scart
6	LOUT_AUX	Audio Left Output, to AUX Scart
7	YCVBSOUT_VCR	Y/CVBS Output, to VCR Scart
8	AOUT_RF	Audio (L+R) Output to RF Modulator
9	VOUT_RF	Video (CVBS) Output to RF Modulator
10	GNDV3	Video Switches Ground 3
11	FILTER	Chroma Trap Filter
12	VCCV3	Video Switches Supply 3 (8V)
13	COUT_AUX	Chroma Output, to AUX Scart
14	GNDV2	Video Switches Ground 2
15	YCVBSOUT_AUX	Y/CVBS Output, to AUX Scart

STV6410

PIN LIST (continued)

Pin Number	Symbol	Description
16	VCCV2	Video Switches Supply 2 (8V)
17	FBOUT_TV	Fast Blanking Output, to TV Scart
18	FBIN_AUX	Fast Blanking Input, from AUX Scart
19	FBIN_ENC	Fast Blanking Input, from Encoder
20	ADD	I ₂ C Bus IC Address Programmation
21	SCL	I ₂ C Bus Clock
22	SDA	I ₂ C Bus Data
23	VCC12	Slow Blanking Power Supply (12V)
24	YCVBSIN_AUX	Y/CVBS Input from AUX Scart
25	SLB_TV	Slow Blanking Input/Ouput from TV
26	YIN_AUX	Y Input, from AUX Scart
27	SLB_VCR	Slow Blanking Input/Ouput from VCR
28	RCIN_AUX	Red/Chroma Input, from AUX Scart
29	GNDV1	Video Switches Ground 1
30	GIN_AUX	Green Input, from AUX Scart
31	SLB_AUX	Slow Blanking Input/Ouput from AUX
32	BIN_AUX	Blue Input, from AUX Scart
33	VCCV1	Video Switches Supply 1 (8V)
34	CVBSIN_STB	CVBS Input from STB
35	LIN_AUX	Audio Left Input, from AUX Scart
36	YCVBSIN_ENC	Y/CVBS Input from Encoder
37	RIN_AUX	Audio Right Input, from AUX Scart
38	YIN_ENC	Y Input, from Encoder
39	RIN_STB	Audio Right Input, from STB
40	CIN_ENC	Chroma Input, from Encoder
41	LIN_STB	Audio Left Input, from STB
42	RCIN_ENC	Red/Chroma Input, from Encoder
43	RIN_ENC	Audio Right Input, from Encoder
44	GIN_ENC	Green Input, from Encoder
45	LIN_ENC	Audio Left Input, from Encoder
46	BIN_ENC	Blue Input, from Encoder
47	RIN_VCR	Audio Right Input, from VCR Scart
48	CIN_VCR	Chroma Input, from VCR Scart
49	LIN_VCR	Audio Left Input, from VCR
50	YCVBSIN_VCR	Y/CVBS Input from VCR Scart
51	V _{REF}	Voltage Reference Decoupling
52	YCVBSIN_TV	Y/CVBS Input, from TV Scart
53	LIN_TV	Audio Left Input, from TV Scart
54	CIN_TV	Chroma Input, from TV Scart
55	V _{CCA}	Audio Switches Supply (8V)
56	RIN_TV	Audio right input, from TV Scart
57	GNDA	Audio Switches Ground
58	ROUT_CINCH	Audio Right Output, to CINCH
59	LOUT_CINCH	Audio Left Output, to CINCH
60	ROUT_VCR	Audio Right Output, to VCR sCart
61	BOUT_TV	Blue Output, to TV Scart
62	LOUT_VCR	Audio Left Output, to VCR Scart
63	GOUT_TV	Green Output, to TV Scart
64	ROUT_TV	Audio Right Output, to TV Scart

STV6410**BLOCK DIAGRAM**

9.7.5 IC7600: MSP3415D

Multistandard Sound Processor Family

Release Note: Revision bars indicate significant changes to the previous edition. The hardware and software description in this document is valid for the MSP 34x5G version B8 and following versions.

1. Introduction

The MSP 34x5G family of single-chip Multistandard Sound Processors covers the sound processing of all analog TV standards worldwide, as well as the NICAM digital sound standards. The full TV sound processing, starting with analog sound IF signal-in, down to processed analog AF-out, is performed in a single chip. Figure 1–1 shows a simplified functional block diagram of the MSP 34x5G.

These TV sound processing ICs include versions for processing the multichannel television sound (MTS) signal conforming to the standard recommended by the Broadcast Television Systems Committee (BTSC). The DBX noise reduction, or alternatively, Micronas Noise Reduction (MNR) is performed alignment free.

Other processed standards are the Japanese FM-FM multiplex standard (EIA-J) and the FM-Stereo-Radio standard.

Current ICs have to perform adjustment procedures in order to achieve good stereo separation for BTSC and

EIA-J. The MSP 34x5G has optimum stereo performance without any adjustments.

All MSP 34xxG versions are pin compatible to the MSP 34xxD. Only minor modifications are necessary to adapt a MSP 34xxD controlling software to the MSP 34xxG. The MSP 34x5G further simplifies controlling software. Standard selection requires a single I²C transmission only.

Note: The MSP 34x5G version has reduced control registers and less functional pins. The remaining registers are software-compatible to the MSP 34x0G. The pinning is compatible to the MSP 34x0G.

The MSP 34x5G has built-in automatic functions: The IC is able to detect the actual sound standard automatically (Automatic Standard Detection). Furthermore, pilot levels and identification signals can be evaluated internally with subsequent switching between mono/stereo/bilingual; no I²C interaction is necessary (Automatic Sound Selection).

The MSP 34x5G can handle very high FM deviations even in conjunction with NICAM processing. This is especially important for the introduction of NICAM in China.

The ICs are produced in submicron CMOS technology. The MSP 34x5G is available in the following packages: PSDIP64, PSDIP52, PMQFP44, PLQFP64, and PQFP80.

Fig. 1–1: Simplified functional block diagram of MSP 34x5G

2. Functional Description

Fig. 2-1: Signal flow block diagram of the MSP 34x5G (input and output names correspond to pin names).

2.1. Architecture of the MSP 34x5G Family

Fig. 2–1 on page 8 shows a simplified block diagram of the IC. The block diagram contains all features of the MSP 3455G. Other members of the MSP 34x5G family do not have the complete set of features: The demodulator handles only a subset of the standards presented in the demodulator block; NICAM processing is only possible in the MSP 3415G and MSP 3455G (see dashed block in Fig. 2–1).

2.2. Sound IF Processing

2.2.1. Analog Sound IF Input

The input pins ANA_IN1+ and ANA_IN– offer the possibility to connect sound IF (SIF) sources to the MSP 34x5G. The analog-to-digital conversion of the preselected sound IF signal is done by an A/D-converter. An analog automatic gain circuit (AGC) allows a wide range of input levels. The high-pass filter formed by the coupling capacitor at pin ANA_IN1+ (see Section 7. “Appendix D: Application Information” on page 92) is sufficient in most cases to suppress video components. Some combinations of SAW filters and sound IF mixer ICs, however, show large picture components on their outputs. In this case, further filtering is recommended.

2.2.2. Demodulator: Standards and Features

The MSP 34x5G is able to demodulate all TV sound standards worldwide including the digital NICAM system. Depending on the MSP 34x5G version, the following demodulation modes can be performed:

A2-Systems: Detection and demodulation of two separate FM carriers (FM1 and FM2), demodulation and evaluation of the identification signal of carrier FM2.

NICAM-Systems: Demodulation and decoding of the NICAM carrier, detection and demodulation of the analog (FM or AM) carrier. For D/K-NICAM, the FM carrier may have a maximum deviation of 384 kHz.

Very high deviation FM-Mono: Detection and robust demodulation of one FM carrier with a maximum deviation of 540 kHz.

BTSC-Stereo: Detection and FM demodulation of the aural carrier resulting in the MTS/MPX signal. Detection and evaluation of the pilot carrier, AM demodulation of the (L-R)-carrier and detection of the SAP subcarrier. Processing of the DBX noise reduction or Micronas Noise Reduction (MNR).

BTSC-Mono + SAP: Detection and FM demodulation of the aural carrier resulting in the MTS/MPX signal. Detection and evaluation of the pilot carrier, detection and FM demodulation of the SAP-subcarrier. Processing of the DBX noise reduction or Micronas Noise Reduction (MNR).

Japan Stereo: Detection and FM demodulation of the aural carrier resulting in the MPX signal. Demodulation and evaluation of the identification signal and FM demodulation of the (L-R)-carrier.

FM-Satellite Sound: Demodulation of one or two FM carriers. Processing of high-deviation mono or narrow bandwidth mono, stereo, or bilingual satellite sound according to the ASTRA specification.

FM-Stereo-Radio: Detection and FM demodulation of the aural carrier resulting in the MPX signal. Detection and evaluation of the pilot carrier and AM demodulation of the (L-R)-carrier.

The demodulator blocks of all MSP 34x5G versions have identical user interfaces. Even completely different systems like the BTSC and NICAM systems are controlled the same way. Standards are selected by means of MSP Standard Codes. Automatic processes handle standard detection and identification without controller interaction. The key features of the MSP 34x5G demodulator blocks are

Standard Selection: The controlling of the demodulator is minimized: All parameters, such as tuning frequencies or filter bandwidth, are adjusted automatically by transmitting one single value to the STANDARD SELECT register. For all standards, specific MSP standard codes are defined.

Automatic Standard Detection: If the TV sound standard is unknown, the MSP 34x5G can automatically detect the actual standard, switch to that standard, and respond the actual MSP standard code.

Automatic Carrier Mute: To prevent noise effects or FM identification problems in the absence of an FM carrier, the MSP 34x5G offers a configurable carrier mute feature, which is activated automatically if the TV sound standard is selected by means of the STANDARD SELECT register. If no FM carrier is detected at one of the two MSP demodulator channels, the corresponding demodulator output is muted. This is indicated in the STATUS register.

2.2.3. Preprocessing of Demodulator Signals

The NICAM signals must be processed by a deemphasis filter and adjusted in level. The analog demodulated signals must be processed by a deemphasis filter, adjusted in level, and dematrixed. The correct deemphasis filters are already selected by setting the standard in the STANDARD SELECT register. The level adjustment has to be done by means of the FM/AM and NICAM prescale registers. The necessary dematrix function depends on the selected sound standard and the actual broadcasted sound mode (mono, stereo, or bilingual). It can be manually set by the FM Matrix Mode register or automatically by the Automatic Sound Selection.

2.2.4. Automatic Sound Select

In the Automatic Sound Select mode, the dematrix function is automatically selected based on the identification information in the STATUS register. No I²C interaction is necessary when the broadcasted sound mode changes (e.g. from mono to stereo).

The demodulator supports the identification check by switching between mono-compatible standards (standards that have the same FM-Mono carrier) automatically and non-audible. If B/G-FM or B/G-NICAM is selected, the MSP will switch between these standards. The same action is performed for the standards: D/K1-FM, D/K2-FM, and D/K-NICAM. Switching is only done in the absence of any stereo or bilingual identification. If identification is found, the MSP keeps the detected standard.

In case of high bit-error rates, the MSP 34x5G automatically falls back from digital NICAM sound to analog FM or AM mono.

Table 2-1 summarizes all actions that take place when Automatic Sound Select is switched on.

To provide more flexibility, the Automatic Sound Select block prepares four different source channels of demodulated sound (Fig. 2-2). By choosing one of the four demodulator channels, the preferred sound mode can be selected for each of the output channels (loudspeaker, headphone, etc.). This is done by means of the Source Select registers.

The following source channels of demodulated sound are defined:

- “FM/AM” channel: Analog mono sound, stereo if available. In case of NICAM, analog mono only (FM or AM mono).
- “Stereo or A/B” channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains both languages A (left) and B (right).

– “Stereo or A” channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains language A (on left and right).

– “Stereo or B” channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains language B (on left and right).

Fig. 2-2 and Table 2-2 show the source channel assignment of the demodulated signals in case of Automatic Sound Select mode for all sound standards.

Note: The analog primary input channel contains the signal of the mono FM/AM carrier or the L+R signal of the MPX carrier. The secondary input channel contains the signal of the 2nd FM carrier, the L-R signal of the MPX carrier, or the SAP signal.

Fig. 2-2: Source channel assignment of demodulated signals in Automatic Sound Select Mode

2.2.5. Manual Mode

Fig. 2-3 shows the source channel assignment of demodulated signals in case of manual mode. If manual mode is required, more information can be found in Section 6.7. “Demodulator Source Channels in Manual Mode” on page 90.

Fig. 2-3: Source channel assignment of demodulated signals in Manual Mode

2.3. Preprocessing for SCART and I²S Input Signals

The SCART and I²S inputs need only be adjusted in level by means of the SCART and I²S prescale registers.

2.4. Source Selection and Output Channel Matrix

The Source Selector makes it possible to distribute all source signals (one of the demodulator source channels or SCART) to the desired output channels (loudspeaker, etc.). All input and output signals can be processed simultaneously. Each source channel is identified by a unique source address.

For each output channel, the sound mode can be set to sound A, sound B, stereo, or mono by means of the output channel matrix.

If Automatic Sound Select is on, the output channel matrix can stay fixed to stereo (transparent) for demodulated signals.

2.5. Audio Baseband Processing

2.5.1. Automatic Volume Correction (AVC)

Different sound sources (e.g. terrestrial channels, SAT channels, or SCART) fairly often do not have the same volume level. Advertisements during movies usually have a higher volume level than the movie itself. This results in annoying volume changes. The AVC solves this problem by equalizing the volume level.

To prevent clipping, the AVC's gain decreases quickly in dynamic boost conditions. To suppress oscillation effects, the gain increases rather slowly for low level inputs. The decay time is programmable by means of the AVC register (see page 30).

For input signals ranging from -24 dBr to 0 dBr, the AVC maintains a fixed output level of -18 dBr. Fig. 2-4 shows the AVC output level versus its input level. For prescale and volume registers set to 0 dB, a level of 0 dBr corresponds to full scale input/output. This is

- SCART input/output 0 dBr = 2.0 V_{rms}
- Loudspeaker output 0 dBr = 1.4 V_{rms}

Fig. 2-4: Simplified AVC characteristics

2.5.2. Loudspeaker Outputs

The following baseband features are implemented in the loudspeaker output channels: bass/treble, loudness, balance, and volume. A square wave beeper can be added to the loudspeaker channel.

2.5.3. Quasi-Peak Detector

The quasi-peak readout register can be used to read out the quasi-peak level of any input source. The feature is based on following filter time constants:

attack time: 1.3 ms
decay time: 37 ms

2.6. SCART Signal Routing

2.6.1. SCART DSP In and SCART Out Select

The SCART DSP Input Select and SCART Output Select blocks include full matrix switching facilities. To design a TV set with two pairs of SCART-inputs and one pair of SCART-outputs, no external switching hardware is required. The switches are controlled by the ACB user register (see page 34).

2.6.2. Stand-by Mode

If the MSP 34x5G is switched off by first pulling STANDBYQ low and then (after $>1\ \mu\text{s}$ delay) switching off DVSUP and AVSUP, but keeping AHVSUP (**'Stand-by'-mode**), the SCART switches maintain their position and function. This allows the copying from selected SCART-inputs to SCART-outputs in the TV set's stand-by mode.

In case of power on or starting from stand-by (switching on the DVSUP and AVSUP, RESETQ going high 2 ms later), all internal registers except the ACB register (page 34) are reset to the default configuration (see Table 3-5 on page 18). The reset position of the ACB register becomes active after the first I²C transmission into the Baseband Processing part. By transmitting the ACB register first, the reset state can be redefined.

2.7. I²S Bus Interface

The MSP 34x5G has a synchronous master/slave input/output interface running on 32 kHz.

The interface accepts two formats:

1. I²S_WS changes at the word boundary
2. I²S_WS changes one I²S-clock period before the word boundaries.

All I²S options are set by means of the MODUS and the I2S_CONFIG registers.

The I²S bus interface consists of five pins:

- I2S_DA_IN1, I2S_DA_IN2:
I²S serial data input: 16, 18...32 bits per sample
- I2S_DA_OUT:
I²S serial data output: 16, 18...32 bits per sample
- I2S_CL:
I²S serial clock
- I2S_WS:
I²S word strobe signal defines the left and right sample

If the MSP 34x5G serves as the master on the I²S interface, the clock and word strobe lines are driven by the IC. In this mode, only 16 or 32 bits per sample can be selected. In slave mode, these lines are input to the IC and the MSP clock is synchronized to 576 times the I2S_WS rate (32 kHz). NICAM operation is not possible in slave mode.

An I²S timing diagram is shown in Fig. 4-28 on page 62.

2.8. ADR Bus Interface

For the ASTRA Digital Radio System (ADR), the MSP 3405G, MSP 3415G, and MSP 3455G performs preprocessing such as carrier selection and filtering. Via the 3-line ADR-bus, the resulting signals are transferred to the DRP 3510A coprocessor, where the source decoding is performed. To be prepared for an upgrade to ADR with an additional DRP board, the following lines of MSP 34x5G should be provided on a feature connector:

- I2S_DA_IN1 or I2S_DA_IN2
- I2S_DA_OUT
- I2S_WS
- I2S_CL
- ADR_CL, ADR_WS, ADR_DA

For more details, please refer to the DRP 3510A data sheet.

2.9. Digital Control I/O Pins and Status Change Indication

The static level of the digital input/output pins D_CTR_I/O_0/1 is switchable between HIGH and LOW via the I²C-bus by means of the ACB register (see page 34). This enables the controlling of external hardware switches or other devices via I²C-bus.

The digital input/output pins can be set to high impedance by means of the MODUS register (see page 23). In this mode, the pins can be used as input. The current state can be read out of the STATUS register (see page 25).

Optionally, the pin D_CTR_I/O_1 can be used as an interrupt request signal to the controller, indicating any changes in the read register STATUS. This makes polling unnecessary; I²C-bus interactions are reduced to a minimum (see STATUS register on page 25 and MODUS register on page 23).

2.10. Clock PLL Oscillator and Crystal Specifications

The MSP 34x5G derives all internal system clocks from the 18.432 MHz oscillator. In NICAM or in I²S-Slave mode, the clock is phase-locked to the corresponding source. Therefore, it is not possible to use NICAM and I²S-Slave mode at the same time.

For proper performance, the MSP clock oscillator requires a 18.432-MHz crystal. Note, that for the phase-locked mode (NICAM, I²S slave), crystals with tighter tolerance are required.

4.2. Pin Connections and Short Descriptions

NC = not connected; leave vacant

LV = if not used, leave vacant

DVSS: if not used, connect to DVSS

X = obligatory; connect as described in circuit diagram

AHVSS: connect to AHVSS

	Pin No.					Pin Name	Type	Connection (if not used)	Short Description
PQFP 80-pin	PLQFP 64-pin	PMQFP 44-pin	PSDIP 64-pin	PSDIP 52-pin					
1	64	—	8	—	NC		LV		Not connected
2	1	12	9	7	I ² C_CL	IN/OUT	X		I ² C clock
3	2	13	10	8	I ² C_DA	IN/OUT	X		I ² C data
4	3	14	11	9	I ² S_CL		LV		I ² S clock
5	4	15	12	10	I ² S_WS		LV		I ² S word strobe
6	5	16	13	11	I ² S_DA_OUT		LV		I ² S data output
7	6	17	14	12	I ² S_DA_IN1		LV		I ² S1 data input
8	7	—	15	13	ADR_DA		LV		ADR data output
9	8	—	16	14	ADR_WS		LV		ADR word strobe
10	9	18	17	15	ADR_CL		LV		ADR clock
11	—	—	—	—	DVSUP		X		Digital power supply +5 V
12	—	—	—	—	DVSUP		X		Digital power supply +5 V
13	10	19	18	16	DVSUP		X		Digital power supply +5 V
14	—	20	—	—	DVSS		X		Digital ground
15	—	—	—	—	DVSS		X		Digital ground
16	11	—	19	17	DVSS		X		Digital ground
17	12	21	20	18	I ² S_DA_IN2		LV		I ² S2-data input
18	13	—	21	19	NC		LV		Not connected
19	14	—	22	—	NC		LV		Not connected
20	15	—	23	—	NC		LV		Not connected
21	16	22	24	20	RESETQ	IN	X		Power-on-reset
22	—	—	—	—	NC		LV		Not connected
23	—	—	—	—	NC		LV		Not connected
24	17	23	25	21	NC		LV		Not connected
25	18	24	26	22	NC		LV		Not connected

Pin No.					Pin Name	Type	Connection (if not used)	Short Description
PQFP 80-pin	PLQFP 64-pin	PMQFP 44-pin	PSDIP 64-pin	PSDIP 52-pin				
26	19	25	27	23	VREF2		X	Reference ground 2 high-voltage part
27	20	26	28	24	DACM_R	OUT	LV	Loudspeaker out, right
28	21	27	29	25	DACM_L	OUT	LV	Loudspeaker out, left
29	22	-	30	-	NC		LV	Not connected
30	23	-	31	26	NC		LV	Not connected
31	24	-	32	-	NC		LV	Not connected
32	-	-	-	-	NC		LV	Not connected
33	25	-	33	27	NC		LV	Not connected
34	26	28	34	28	NC		LV	Not connected
35	27	29	35	29	VREF1		X	Reference ground 1 high-voltage part
36	28	30	36	30	SC1_OUT_R	OUT	LV	SCART 1 output, right
37	29	31	37	31	SC1_OUT_L	OUT	LV	SCART 1 output, left
38	30	32	38	32	NC		LV	Not connected
39	31	33	39	33	AHVSUP		X	Analog power supply 8.0 V
40	32	34	40	34	CAPL_M		X	Volume capacitor MAIN
41	-	-	-	-	NC		LV	Not connected
42	-	-	-	-	NC		LV	Not connected
43	-	-	-	-	AHVSS		X	Analog ground
44	33	35	41	35	AHVSS		X	Analog ground
45	34	36	42	36	AGNDC		X	Analog reference voltage high-voltage part
46	-	-	-	-	NC		LV	Not connected
47	35	-	43	-	NC		LV	Not connected
48	36	-	44	-	NC		LV	Not connected
49	37	-	45	-	NC		LV	Not connected
50	38	-	46	37	NC		LV	Not connected
51	39	-	47	38	NC		LV	Not connected
52	40	-	48	-	NC		AHVSS	Analog Shield Ground
53	41	37	49	39	SC2_IN_L	IN	LV	SCART 2 input, left
54	42	38	50	40	SC2_IN_R	IN	LV	SCART 2 input, right

PQFP 80-pin	PLQFP 64-pin	PMQFP 44-pin	PSDIP 64-pin	PSDIP 52-pin	Pin Name	Type	Connection (if not used)	Short Description
55	43	39	51	—	ASG		AHVSS	Analog Shield Ground
56	44	40	52	41	SC1_IN_L	IN	LV	SCART 1 input, left
57	45	41	53	42	SC1_IN_R	IN	LV	SCART 1 input, right
58	46	42	54	43	VREFTOP		X	Reference voltage IF A/D converter
59	—	—	—	—	NC		LV	Not connected
60	47	43	55	44	MONO_IN	IN	LV	Mono input
61	—	—	—	—	AVSS		X	Analog ground
62	48	44	56	45	AVSS		X	Analog ground
63	—	—	—	—	NC		LV	Not connected
64	—	—	—	—	NC		LV	Not connected
65	—	—	—	—	AVSUP		X	Analog power supply +5 V
66	49	1	57	46	AVSUP		X	Analog power supply +5 V
67	50	2	58	47	ANA_IN1+	IN	LV	IF input 1
68	51	3	59	48	ANA_IN-	IN	LV	IF common
69	52	—	60	49	NC		LV	Not connected
70	53	4	61	50	TESTEN	IN	X	Test pin
71	54	5	62	51	XTAL_IN	IN	X	Crystal oscillator
72	55	6	63	52	XTAL_OUT	OUT	X	Crystal oscillator
73	56	7	64	1	TP		LV	Test pin
74	57	—	1	2	NC		LV	Not connected
75	58	—	2	—	NC		LV	Not connected
76	59	—	3	—	NC		LV	Not connected
77	60	8	4	3	D_CTR_I/O_1	IN/OUT	LV	D_CTR_I/O_1
78	61	9	5	4	D_CTR_I/O_0	IN/OUT	LV	D_CTR_I/O_0
79	62	10	6	5	ADR_SEL	IN	X	I ² C Bus address select
80	63	11	7	6	STANDBYQ	IN	X	Standby (low-active)

9.7.6 IC7703: TDA9818

Single/multistandard VIF/SIF-PLL and FM-PLL/AM demodulators

TDA9817; TDA9818

FEATURES

- 5 V supply voltage
- Applicable for IFs (Intermediate Frequencies) of 38.9 MHz, 45.75 MHz and 58.75 MHz
- Gain controlled wide band Video IF (VIF)-amplifier (AC-coupled)
- True synchronous demodulation with active carrier regeneration (very linear demodulation, good intermodulation figures, reduced harmonics, excellent pulse response)
- Robustness for over-modulation better than 105% due to gated phase detector at L/L accent standard and PLL-bandwidth control at negative modulated standards
- VCO (Voltage Controlled Oscillator) frequency switchable between L and L accent (alignment external) picture carrier frequency
- VIF AGC (Automatic Gain Control) detector for gain control, operating as peak sync detector for B/G, peak white detector for L; signal controlled reaction time for L
- Tuner AGC with adjustable TakeOver Point (TOP)
- AFC (Automatic Frequency Control) detector without extra reference circuit

- AC-coupled limiter amplifier for sound intercarrier signal
- Alignment-free FM PLL (Phase Locked Loop) demodulator with high linearity
- SIF (Sound IF) input for single reference QSS (Quasi Split Sound) mode (PLL controlled); SIF AGC detector for gain controlled SIF amplifier; single reference QSS mixer able to operate in high performance single reference QSS mode and in intercarrier mode
- AM demodulator without extra reference circuit
- Stabilizer circuit for ripple rejection and to achieve constant output signals
- ESD (Electrostatic Discharge) protection for all pins.

GENERAL DESCRIPTION

The TDA9817 is an integrated circuit for single standard vision IF signal processing and FM demodulation.

The TDA9818 is an integrated circuit for multistandard vision IF signal processing, sound AM and FM demodulation.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA9817	SDIP24	plastic shrink dual in-line package; 24 leads (400 mil)	SOT234-1
TDA9818	SDIP24	plastic shrink dual in-line package; 24 leads (400 mil)	SOT234-1

Single/multistandard VIF/SIF-PLL and FM-PLL/AM demodulators

TDA9817; TDA9818

BLOCK DIAGRAM

Fig.1 Block diagram.

Single/multistandard VIF/SIF-PLL and FM-PLL/AM demodulators

TDA9817; TDA9818

PINNING

SYMBOL	PIN	DESCRIPTION
V_i VIF1	1	VIF differential input signal voltage 1
V_i VIF2	2	VIF differential input signal voltage 2
STD ⁽¹⁾	3	standard switch
C_{VAGC}	4	VIF AGC capacitor
C_{SAGC}	5	SIF AGC capacitor
T_{PLL}	6	PLL loop filter
LADJ ⁽¹⁾	7	L/L accent switch and adjust
V_o AF	8	audio output
$V_{de\text{-}em}$	9	de-emphasis input
$C_{de\text{-}em}$	10	de-emphasis output
C_{DEC}	11	decoupling capacitor
V_o QSS	12	single reference QSS/intercarrier output voltage
V_i FM	13	sound intercarrier input voltage
TAGC	14	tuner AGC output
$C_{BL}^{(1)}$	15	black level detector
V_o (vid)	16	composite video output voltage
AFC	17	AFC output
VCO1	18	VCO1 resonance circuit
VCO2	19	VCO2 resonance circuit
GND	20	ground
V_P	21	supply voltage
TADJ	22	tuner AGC takeover point adjust
V_i SIF1	23	SIF differential input signal voltage 1
V_i SIF2	24	SIF differential input signal voltage 2

(1) Not connected for TDA9817.

Fig.2 Pin configuration.

Note

1. Not connected for TDA9817.

Single/multistandard VIF/SIF-PLL and FM-PLL/AM demodulators

TDA9817; TDA9818

FUNCTIONAL DESCRIPTION

The integrated circuit comprises the functional blocks as shown in Fig.1:

- Vision IF amplifier and VIF AGC detector
- Tuner AGC
- Frequency Phase Locked Loop detector (FPLL)
- VCO, Travelling Wave Divider (TWD) and AFC
- Video demodulator and amplifier
- SIF amplifier and SIF AGC
- Single reference QSS mixer
- AM demodulator
- FM-PLL demodulator
- AF (Audio Frequency) signal processing
- Internal voltage stabilizer.

Vision IF amplifier and VIF AGC detector

The vision IF amplifier consists of three AC-coupled differential amplifier stages. Each differential stage comprises a feedback network controlled by emitter degeneration.

The AGC detector generates the required VIF gain control voltage for constant video output by charging/discharging the AGC capacitor. Therefore for negative video modulation the sync level and for positive video modulation the peak white level of the video signal is detected. In order to reduce the reaction time for positive modulation, where a very large time constant is needed, an additional level detector increases the discharging current of the AGC capacitor (fast mode) in the event of a decreasing VIF amplitude step. The additional level information is given by the black-level detector voltage.

Tuner AGC

The AGC capacitor voltage is converted to an internal IF control signal, and is fed to the tuner AGC to generate the tuner AGC output current at pin TAGC (open-collector output). The tuner AGC takeover point can be adjusted at pin TADJ. This allows to match the tuner to the SAW filter in order to achieve the optimum IF input level.

Frequency Phase Locked Loop detector (FPLL)

The VIF-amplifier output signal is fed into a frequency detector and into a phase detector via a limiting amplifier. During acquisition the frequency detector produces a DC current proportional to the frequency difference between the input and the VCO signal. After frequency lock-in the phase detector produces a DC current proportional to the

phase difference between the VCO and the input signal. The DC current of either frequency detector or phase detector is converted into a DC voltage via the loop filter, which controls the VCO frequency. In the event of positive modulated signals the phase detector is gated by composite sync in order to avoid signal distortion for overmodulated VIF signals.

VCO, Travelling Wave Divider (TWD) and AFC

The VCO operates with a resonance circuit (with L and C in parallel) at double the PC frequency. The VCO is controlled by two integrated variable capacitors. The control voltage required to tune the VCO from its free-running frequency to actually double the PC frequency is generated by the frequency-phase detector (FPLL) and fed via the loop filter to the first variable capacitor. This control voltage is amplified and additionally converted into a current which represents the AFC output signal. At centre frequency the AFC output current is equal to zero.

For TDA9818: the VCO centre frequency can be decreased (required for L accent standard) by activating an additional internal capacitor. This is achieved by using the L accent switch. In this event the second variable capacitor can be controlled by a variable resistor at the L accent switch for setting the VCO centre frequency to the required L accent value.

The oscillator signal is divided by 2 with a TWD which generates two differential output signals with a 90° degree phase difference independent of the frequency.

Video demodulator and amplifier

The video demodulator is realized by a multiplier which is designed for low distortion and large bandwidth. The vision IF input signal is multiplied with the 'in phase' signal of the travelling wave divider output. In the demodulator stage the video signal polarity can be switched in accordance with the TV standard.

The demodulator output signal is fed via an integrated low-pass filter for attenuation of the carrier harmonics to the video amplifier. The video amplifier is realized by an operational amplifier with internal feedback and high bandwidth. A low-pass filter is integrated to achieve an attenuation of the carrier harmonics for B/G and L standard. The standard dependent level shift in this stage delivers the same sync level for positive and negative modulation. The video output signal at $V_{(vid)}$ is 1.1 V (p-p) for nominal vision IF modulation, in order to achieve 1 V (p-p) at sound trap output.

Single/multistandard VIF/SIF-PLL and FM-PLL/AM demodulators

TDA9817; TDA9818

SIF amplifier and SIF AGC

The sound IF amplifier consists of two AC-coupled differential amplifier stages. Each differential stage comprises a controlled feedback network provided by emitter degeneration.

The SIF AGC detector is related to the SIF input signal (average level of AM or FM carrier) and controls the SIF amplifier to provide a constant SIF signal to the AM demodulator and single reference QSS mixer. At L standard (AM sound) the SIF AGC reaction time is set to 'slow' for nominal video conditions. But with a decreasing VIF amplitude step the SIF AGC is set to 'fast' mode controlled by the VIF AGC detector. In FM mode this reaction time is always 'fast'.

Single reference QSS mixer

The single reference QSS mixer is realized by a multiplier. The SIF amplifier output signal is fed to the single reference QSS mixer and converted to intercarrier frequency by the regenerated picture carrier (VCO). The mixer output signal is fed via a high-pass for attenuation of the video signal components to the output pin 12. With this system a high performance hi-fi stereo sound processing can be achieved.

For a simplified application without a sound IF SAW filter the single reference QSS mixer can be switched to the intercarrier mode by connecting pin 24 to ground. In this mode the sound IF passes the vision IF SAW filter and the composite IF signal is fed to the single reference QSS mixer. This IF signal is multiplied with the 90 degree TWD output signal for converting the sound IF to intercarrier frequency. This composite intercarrier signal is fed to the output pin 12, too. By using this quadrature detection, the low frequency video signals are removed.

AM demodulator

The AM demodulator is realized by a multiplier. The modulated SIF amplifier output signal is multiplied in phase with the limited (AM is removed) SIF amplifier output signal. The demodulator output signal is fed via an integrated low-pass filter for attenuation of the carrier harmonics to the AF amplifier.

FM-PLL demodulator

The FM-PLL demodulator consists of a limiter and an FM-PLL. The limiter provides the amplification and limitation of the FM sound intercarrier signal. The result is high sensitivity and AM suppression. The amplifier

consists of 7 stages which are internally AC-coupled in order to minimize the DC offset.

Furthermore the AF output signal can be muted by connecting a resistor between the limiter input pin 13 and ground.

The FM-PLL consists of an integrated relaxation oscillator, an integrated loop filter and a phase detector. The oscillator is locked to the FM intercarrier signal, output from the limiter. As a result of locking, the oscillator frequency tracks with the modulation of the input signal and the oscillator control voltage is superimposed by the AF voltage. The FM-PLL operates as an FM demodulator.

AF signal processing

The AF amplifier consists of two parts:

1. The AF pre-amplifier for FM sound is an operational amplifier with internal feedback, high gain and high common mode rejection. The AF voltage from the PLL demodulator, by principle a small output signal, is amplified by approximately 33 dB. The low-pass characteristic of the amplifier reduces the harmonics of the intercarrier signal at the sound output terminal pin 9 at which the de-emphasis network for FM sound is applied. An additional DC control circuit is implemented to keep the DC level constant, independent of process spread.
2. The AF output amplifier (10 dB) provides the required output level by a rail-to-rail output stage. This amplifier makes use of an input selector for switching to AM, FM de-emphasis or mute state, controlled by the standard switching voltage and the mute switching voltage.

Internal voltage stabilizer

The bandgap circuit internally generates a voltage of approximately 1.25 V, independent of supply voltage and temperature. A voltage regulator circuit, connected to this voltage, produces a constant voltage of 3.6 V which is used as an internal reference voltage.

9.7.7 IC7803: TMP93C071

CMOS 16-Bit Microcontroller TMP93C071F

1. Outline and Feature

TMP93C071F is a high-speed advanced 16-bit microcontroller developed for application with VCR system control, software servo motor control and timer control.

In addition to basics such as I/O ports, the TMP93C071F has high-speed/high-precision signal measuring circuit, PWM (Pulse-Width-Modulator) and high-precision real timing pulse generator.

The device characteristics are as follows:

- (1) Original 16-bit CPU (900L_CPU)
 - TLCS-90 instruction mnemonic upward compatible
 - 16 Mbyte linear address space
 - General-purpose registers and register bank system
 - 16-bit multiplication/division and bit transfer/arithmetic instructions
 - High-speed micro DMA: 4 channels (1.6 µs / 2 byte at 20 MHz)
- (2) Minimum instruction execution time: 200 ns at 20 MHz
- (3) Internal ROM: ROMless
- (4) Internal RAM: 8 Kbyte
- (5) External memory expansion
 - Can be expanded up to 16 Mbyte (for both programs and data)
 - AM8/16 pin (select the external data bus width)
 - Can be mixed 8 and 16bit external data buses.
...Dynamic data bus sizing.
- (6) 20-bit time-base-counter (TBC)
 - free running counter
 - accuracy: 100 ns (at 20 MHz)
 - overflow: 105 ms (at 20 MHz)
- (7) 8-bit timer (TC0): 1 channel
 - for CTL linear time counter
- (8) 16-bit timer (TC1-5): 5 channels
 - C-sync count, capstan FG count, general: (3 channels)
- (9) Timing pulse generator (TPG): 2 channels
 - (16-bit timing data + 6-bit-output data) with 8-stages FIFO: 1 channel
 - (16-bit timing data + 4-bit-output data): 1 channel
 - accuracy: 400 ns (at 20 MHz)
- (10) Pulse width modulation outputs (PWM)
 - 14-bit PWM: 3 channels (for controlling capstan, drum and tuner)
 - 8-bit PWM: 9 channels (for controlling volume)
 - carrier frequency: 39.1 kHz (at 20 MHz)

980910EBP1

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

- (11) 24-bit time base counter capture circuit (Capture 0)
 - (18-bit timing data + 6-bit trigger data) with 8-stages FIFO: 1 channel
 - capture input sources: Remote-control-input (RMTIN), V-sync, CTL, Drum-PG, general (1 channel)
 - accuracy: 400 ns (at 20 MHz)
- (12) 17-bit time base counter capture circuit (Capture 1/2)
 - (16-bit timing data + 1-bit trigger data): 2 channel
 - capture input sources: Drum-FG, Capstan-FG
 - accuracy: 100 ns (at 20 MHz)
- (13) VISS/VASS detection circuit (VISS/VASS)
 - CTL duty detection
 - VASS data 16-bit latch
- (14) Composite-sync-signal (C-sync) input (C-sync In)
 - Vertical-sync-signal (V-sync) separation (V-sepa)
- (15) Head Amp switch/Color Rotary control (HA/CR)
- (16) Pseudo-V/H generator (PV/PH)
- (17) 8-bit A/D converter (ADC): 16 channels
 - Conversion speed: 95states (9.5 μ s at 20 MHz)
- (18) Serial bus I/F
 - 8-bit synchronous (SIO0, 1): 2 channels
 - UART: 1 channel
 - I²CBUS: 1 channel/2 ports
 - • • Multi - Master function/Master transfer with micro DMA.
- (19) Watch dog timer (WDT)
- (20) Interrupt controller (INTC)
 - CPU: 2 sources • • SWI instruction, and illegal instruction
 - Internal: 20 sources — 7-level priority can be set.
 - External: 5 sources —
- (21) I/O ports
 - 57 I/O ports (multiplexed functional pins)
 - 8 Input ports (P40/AIN3-P47/AIN10: These pins are used as analog input for A/D converter.)
 - 4 Output ports (P24/A20-P27/A23: These pins are also used as address bus outputs.)
- (22) Standby function: 4 halt modes (RUN, IDLE2, IDLE1, STOP)
- (23) System clock function
 - Dual clock operation 20 MHz (High-speed: normal)/32 kHz(Low-speed: slow)
 - • • 17-bit Real Time Counter built in
- (24) Operating Voltage
 - Vcc = 2.7 to 5.5 V (at 32 kHz)
 - Vcc = 4.5 to 5.5 V (at 20 MHz)
- (25) Package
 - 120 pin QFP 28 mm × 28 mm (Pin pitch: 0.8 mm)
 - Type name QFP120-P-2828-0.80A

Block Diagram of TMP93C071F

Figure 1 TMP93C071 Block Diagram

2. Pin Assignment And Functions

The assignment of input and output pins for the TMP93C071, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of the TMP93C071.

Figure 2.1.1 Pin Assignment (120-pin QFP)

2.2 Pin Names and Functions

The names of input/output pins and their functions are described below.

Table 2.2.1 Pin Names and Function (1/5)

Pin name	Number of pins	I/O	Functions
D0 to D15	16	I/O (3-state)	data: 0 to 15 for data bus
A0 to A19	20	Output	Address: 0 to 19 for address bus
A20 to A23/ P24 to P27	4	Output Output	Address: 20 to 23 for address bus Port 2: Output port
RD	1	Output	Read: strobe signal for reading external memory
AM8/16	1	Input	data bus width select input (only 8 bit or 8 bit/16 bit)
PC3, 4/16 AIN14, 15	2	I/O Input	Port C3, 4: I/O port that allows selection of I/O on a bit basis. Analog Input: Analog input signal for A/D converter
EA	1	Input	External access: Always set to _0
RESET	1	Input	Reset: Initializes LS1.(with pull-up R)
X1/X2	2	I/O	High Frequency Oscillator connecting pins (20 MHz)
PB0/ XT1	1	I/O Input	Port B0: I/O port (Open Drain Output) Low Frequency Oscillator connecting pin (32 kHz)
PB1/ XT2	1	I/O Output	Port B1: I/O port (Open drain Output) Low Frequency Oscillator connecting pin
ADREF	1	Input	A/D reference Voltage input
P40 to P47/ AIN3 to AIN10	8	Input Input	Port 4: Input ports Analog input: Analog input signal for A/D converter
PC0 to PC2/ AIN11 to AIN13	3	I/O Input	Port C: PC0 to PC2 I/O port that allows selection of I/O on a bit basis. Analog input: Analog input signal for A/D converter
P57/ TI0/ AIN2	1	I/O Input (schmitt) Input	Port 57: I/O port 8-bit timer0 (TC0) Input 0 Analog input: Analog input signal for A/D converter
P56/ TI4/ AIN1	1	I/O Input (schmitt) Input	Port 56: I/O port 16-bit timer4 (TC4) Input 4 Analog input: Analog input signal for A/D converter
P55/ TI5/ AIN0	1	I/O Input (schmitt) Input	Port 55: I/O port 16-bit timer5 (TC5) Input 5 Analog input: Analog input signal for A/D converter
P54/ INT0	1	I/O Input (schmitt)	Port 54: I/O port External Interrupt request input 0: Rising edge/ Level selectable
P53/ INT1	1	I/O Input (schmitt)	Port 53: I/O port External Interrupt request input 1: Rising edge/ Level selectable
P52/ INT2/ TI1	1	I/O Input Input (schmitt)	Port 52: I/O port External Interrupt request input 2 Rising edge/Falling edge selectable 16-bit timer1(TC1) Input 1

Table 2.2.1 Pin Names and Function (2/5)

Pin name	Number of pins	I/O	Functions
P51/ INT3/ TI2	1	I/O Input Input (schmitt)	Port 51: I/O port External Interrupt request input 3 Rising edge/Falling edge selectable 16-bit timer2 (TC2) Input 2
P50/ INT4/ TI3	1	I/O Input Input (schmitt)	Port 50: I/O port External Interrupt request input 4 Rising edge/Falling edge selectable 16-bit timer3 (TC3) Input 3
PWM0	1	Output 3-state Open Drain	PWM (14 bit) output 0: PWM0 output push/pull or open drain output selectable
PWM1	1	Output 3-state Open Drain	PWM (14 bit) output 1: PWM1 output push/pull or open drain output selectable
PA3/ PWM2	1	I/O 3-state Open Drain	Port A3: I/O port PWM (14 bit) output 2: PWM2 output push/pull or open drain output selectable
PA4/ <u>WR</u>	1	I/O 3-state Open Drain Output	Port A4: I/O port push/pull or open drain output selectable Write: Strobe signal for writing data on pins D0 to D7
PA5/ PWM3/ <u>HWR</u>	1	I/O Output 3-state Open Drain Output	Port A5: I/O port 8-bit PWM output 3: PWM3 output push/pull or open drain output selectable High write: Strobe signal for writing data on pins D8 to D15
P60/ PWM4/ <u>CS0</u>	1	I/O Output 3-state Open Drain Output	Port 60: I/O port 8-bit PWM output 4: PWM4 output push/pull or open drain output selectable Chip select0: Output _0_ when address is within specified address area.
P61/ PWM5/ <u>CS1</u>	1	I/O Output 3-state Open Drain Output	Port 61: I/O port 8-bit PWM output 5: PWM5 output push/pull or open drain output selectable Chip select1: Output _0_ when address is within specified address area.
P62/ PWM6/ <u>CS2</u>	1	I/O Output 3-state Open Drain Output	Port 62: I/O port 8-bit PWM output 6: PWM6 output push/pull or open drain output selectable Chip select2: Output _0_ when address is within specified address area.

Table 2.2.1 Pin Names and Function (3/5)

Pin name	Number of pins	I/O	Functions
P63/ PWM7	1	I/O Output 3-state Open Drain	Port 63: I/O port 8-bit PWM output7: PWM7 output push/pull or open drain output selectable
P64/ PWM8	1	I/O Output 3-state Open Drain	Port 64: I/O port 8-bit PWM output8: PWM8 output push/pull or open drain output selectable
P65/ PWM9	1	I/O Output 3-state Open Drain	Port 65: I/O port 8-bit PWM output9: PWM9 output push/pull or open drain output selectable
P66/ PWM10	1	I/O Output 3-state Open Drain	Port 66: I/O port 8-bit PWM output 10: PWM10 output push/pull or open drain output selectable
P67/ PWM11	1	I/O Output 3-state Open Drain	Port 67: I/O port 8-bit PWM output 11: PWM11 output push/pull or open drain output selectable
P73/ SDA0	1	I/O I/O (schmitt) Open Drain	Port 73: I/O port I ² CBUS SDA line 0 push/pull or open drain output selectable
P74/ SCL0	1	I/O I/O (schmitt) Open Drain	Port 74: I/O port I ² CBUS SCL line 0 push/pull or open drain output selectable
P75/ S00	1	I/O Output (schmitt) Open Drain	Port 75: I/O port SIO0 send data 0 push/pull or open drain output selectable
P76/ S10	1	I/O Input (schmitt)	Port 76: I/O port SIO0 receive data 0
P77/ SCK0	1	I/O I/O (schmitt) Open Drain	Port 77: I/O port SIO0 transfer clock input/output 0 push/pull or open drain output selectable
P70/ TXD	1	I/O Output (schmitt) Open Drain	Port 70: I/O port UART send data push/pull or open drain output selectable
P71/ RXD	1	I/O Input (schmitt)	Port 71: I/O port UART receive data
P72/ CTS	1	I/O Input (schmitt)	Port 72: I/O port UART clear to send
P80/ CTLIN	1	I/O Input (schmitt)	Port 80: I/O port Capture input for Control signal (CTL)

Table 2.2.1 Pin Names and Function (4/5)

Pin Name	Number of pins	I/O	Functions
P81/ DFGIN	1	I/O Input (schmitt)	Port 81: I/O port Capture input for Drum-FG signal (DFG)
P82/ RMTIN	1	I/O Input (schmitt)	Port 82: I/O port Capture input for Remote Control Input signal
P83/ EXT	1	I/O Input (schmitt)	Port 83: I/O port External Capture input (Rising edge only)
P84/ DPGIN	1	I/O Input (schmitt)	Port 84: I/O port Capture input for Drum-PG signal (DPG)
P85/ CFGIN	1	I/O Input (schmitt)	Port 85: I/O port Capture input for Capstan-FG signal (CFG)
P86/ CSYNC IN	1	I/O Input (schmitt)	Port 86: I/O port Capture input for C-sync
P87/ COMPIN	1	I/O Input (schmitt)	Port 87: I/O port Envelope Comparator Input (to HA/CR)
P90/ TPG12	1	I/O Output Open Drain	Port 90: I/O port TPG12: TPG output 12 push/pull or open drain output selectable
P91/ TPG01	1	I/O Output Open Drain	Port 91: I/O port TPG01: TPG output 01 push/pull or open drain output selectable
P92/ TPG02	1	I/O Output Open Drain	Port 92: I/O port TPG02: TPG output 02 (Internally connected to PV/PH Logic) push/pull or open drain output selectable
P93/ TPG03	1	I/O Output Open Drain	Port 93: I/O port TPG03: TPG output 03 push/pull or open drain output selectable
P94/ TPG04	1	I/O Output Open Drain	Port 93: I/O port TPG04: TPG output 04 (Internally connected to PV/PH Logic) push/pull or open drain output selectable
P95/ TPG13	1	I/O Output Open Drain	Port 95: I/O port TPG13: TPG output 13 push/pull or open drain output selectable
P96/ TPG10	1	I/O Output Open Drain	Port 96: I/O port TPG10: TPG output 10 push/pull or open drain output selectable
P97/ TPG11	1	I/O Output Open Drain	Port 97: I/O port TPG11: TPG output 11 push/pull or open drain output selectable
PA0/ PV-PH	1	I/O Output 3-state	Port PA0: I/O Port Pseudo-Vsync/Pseudo-Hsync (PV/PH) output (controlled by TPG02/04.)
PA1/ HA (TPG05)	1	I/O Output	Port PA1: I/O Port HA: Head amp switch output (are also used as TPG05 output.)
PA2/ CR (TPG00)	1	I/O Output	Port PA2: I/O Port CR: Colour Rotary output (are also used as TPG00 output.)

Table 2.2.1 Pin Names and Function (5/5)

Pin name	Number of pins	I/O	Functions
PB2/ S01/SI1	1	I/O I/O (schmitt) Open Drain	Port PB2: I/O Port SIO1 send data 1 and receive data 1 (Internally connected) push/pull or open drain output selectable
PB3/ SCK1	1	I/O I/O (schmitt) Open Drain	Port PB3: I/O Port SIO1 transfer clock input/output 1 push/pull or open drain output selectable
PB4/ SDA1	1	I/O I/O (schmitt) Open Drain	Port PB4: I/O Port I ² CBUS SDA line 1 push/pull or open drain output selectable
PB5/ SCL1	1	I/O I/O (schmitt) Open Drain	Port PB5: I/O Port I ² CBUS SCL line 1 push/pull or open drain output selectable
DVCC1, 2, 3	3		Power supply pins All of these pins should be connected to power source.
DGND1, DGND2 (ADGND), DGND3	3		GND pins (0 V) All of these pins should be connected to GND (0 V) line. DGND2 are also used as ADGND for A/D converter.

9.7.8 IC7990: STV5348

STV5348

- COMPLETE TELETEXT AND VPS DECODER INCLUDING AN 8 PAGE MEMORY ON A SINGLE CHIP
- UPWARD SOFTWARE COMPATIBLE WITH PREVIOUS SGS-TOMSON's MULTICHP SOLUTIONS (SAA5231, SDA5243, STV5345)
- PERFORM PDC SYSTEM A (VPS) AND PDC SYSTEM B (8/30/2) DATA STORAGE SEPARATELY
- DEDICATED "ERROR FREE" OUTPUT FOR VALID PDC DATA
- INDICATION OF LINE 23 FOR EXTERNAL USE
- SINGLE +5V SUPPLY VOLTAGE
- SINGLE 13.875MHz CRYSTAL
- REDUCED SET OF EXTERNAL COMPONENTS, NO EXTERNAL ADJUSTMENT
- OPTIMIZED NUMBER OF DIGITAL SIGNALS REDUCING EMC RADIATION
- HIGH DENSITY CMOS TECHNOLOGY
- DIGITAL DATA SLICER AND DISPLAY CLOCK PHASE LOCK LOOP
- 28 PIN DIP & SO PACKAGE

PIN CONNECTIONS

CVBS	<input type="checkbox"/>	1	<input type="checkbox"/>	28	<input type="checkbox"/>	CBLK
MA/SL	<input type="checkbox"/>	2	<input type="checkbox"/>	27	<input type="checkbox"/>	TEST
V _{DDA}	<input type="checkbox"/>	3	<input type="checkbox"/>	26	<input type="checkbox"/>	V _{SSA}
POL	<input type="checkbox"/>	4	<input type="checkbox"/>	25	<input type="checkbox"/>	V _{SSO}
STTV/LFB	<input type="checkbox"/>	5	<input type="checkbox"/>	24	<input type="checkbox"/>	XTI
FFB	<input type="checkbox"/>	6	<input type="checkbox"/>	23	<input type="checkbox"/>	XTO
V _{SSD}	<input type="checkbox"/>	7	<input type="checkbox"/>	22	<input type="checkbox"/>	V _{DDD}
R	<input type="checkbox"/>	8	<input type="checkbox"/>	21	<input type="checkbox"/>	VCR/TV
G	<input type="checkbox"/>	9	<input type="checkbox"/>	20	<input type="checkbox"/>	RESERVED
B	<input type="checkbox"/>	10	<input type="checkbox"/>	19	<input type="checkbox"/>	DV
RGB REF	<input type="checkbox"/>	11	<input type="checkbox"/>	18	<input type="checkbox"/>	L23
BLAN	<input type="checkbox"/>	12	<input type="checkbox"/>	17	<input type="checkbox"/>	SDA
COR	<input type="checkbox"/>	13	<input type="checkbox"/>	16	<input type="checkbox"/>	SCL
ODD/EVEN	<input type="checkbox"/>	14	<input type="checkbox"/>	15	<input type="checkbox"/>	Y

DESCRIPTION

The STV5348 decoder is a computer-controlled teletext device including an 8 page internal memory. Data slicing and capturing extracts the teletext information embedded in the composite video signal. Control is accomplished via a two wire serial I²C bus ®. Chip address is 22h. Internal ROM provides a character set suitable to display text using up to seven national languages. Hardware and software features allow selectable master/slave synchronization configurations. The STV5348 also supports facilities for reception and display of current level protocol data.

PIN DESCRIPTION

Pin N°	Symbol	Function	Description	Figure
1	CVBS	Input	Composite Video Signal Input through Coupling Capacitor	9
2	MA/SL	Input	Master/Slave Selection Mode	11
3	V _{DDA}	Analog Supply	+5V	-
4	POL	Input	STTV / LFB / FFB Polarity Selection	12
5	STTV/LFB	Output / Input	Composite Sync Output, Line Flyback Input	15
6	FFB	Input	Field Flyback Input	12
7	V _{SSD}	Ground	Digital Ground	-
8	R	Output	Video Red Signal	13
9	G	Output	Video Green Signal	13
10	B	Output	Video Blue Signal	13
11	RGBREF	Supply	DC Voltage to define RGB High Level	13
12	BLAN	Output	Fast Blanking Output TTL Level	15
13	COR	Output	Open Drain Contrast Reduction Output	15
14	ODD/EVEN	Output	25Hz Output Field synchronized for non-interlaced display	15
15	Y	Output	Open Drain Foreground Information Output	15
16	SCL	Input	Serial Clock Input	16
17	SDA	Input/ Output	Serial Data Input/Output	17
18	L23	Output	Line 23 Identification	15
19	DV	Output	VPS Data Valid	15
20	RESERVED	Test	To be connected to V _{SSD} through a resistor	15
21	VCR/TV	Input	PLL Time Constant Selection	15
22	V _{DDD}	Digital Supply	+5V	-
23	XTO	Crystal Output	Oscillator Output 13.875MHz	14
24	XTI	Crystal Input	Oscillator Input 13.875MHz	14
25	V _{SSO}	Ground	Oscillator Ground	-
26	V _{SSA}	Ground	Analog Ground	-
27	TEST	Test	Grounded to V _{SSA}	11
28	CBLK	Input / Output	To connect Black Level Storage Capacitor	28

5348-01.TBL

BLOCK DIAGRAM

9.7.9 Tuner1705: UV1316K

VHF/UHF television tuner**UV1336K MK3****FEATURES**

Member of UV1300 MK3 family of small-sized UHF/VHF tuners
 Integrated with passive splitter
 Covers systems M, N
 Digitally-controlled (PLL) tuning via I²C-bus
 Fast 400kHz I²C bus protocol compatible with 3.3V and 5V micro controllers
 181 channels coverage (Off-air and full cable)
 World standardized mechanical dimensions and pinning. Horizontal mounting is optionally available.

DESCRIPTION

The UV1336K MK3 splitter - tuner belongs to the UV1300 family of WSP tuners, which are designed to meet a wide range of TV applications. It is a full band tuner suitable for NTSC M, N and PAL M, N. The low IF output impedance is designed for direct drive of a wide variety of SAW filters with sufficient suppression of triple transient.

The UV1336K MK3 incorporates internal wideband-AGC with selectable TOP adjustment via I²C.

This tuner complies with the requirements of radiation, conforming with:

FCC Part 15, Subpart B

BESTS 7

CISPR13

MARKING

The following items of information are printed on a sticker that is on the top cover of the tuner:

Type number
 Code number
 Origin letter of factory
 Change code
 Year and week code

ORDERING INFORMATION

TYPE	DESCRIPTION	ORDER NUMBERS
UV1336KA F G S-3	F connector, wideband AGC, switchable FM trap	3139 147 17011

VHF/UHF television tuner**UV1336K MK3****BLOCK DIAGRAM**

** ADC option not available in NTSC versions

PINNING

SYMBOL	PIN	DESCRIPTION
AGC	1	Gain Control Voltage
TU	2	Tuning voltage
AS	3	I ² C-Bus Address Select
SCL	4	I ² C-Bus Serial Clock
SDA	5	I ² C-Bus Serial Data
n.c.	6	Not Connected
V _s	7	PLL Supply Voltage +5V
n.c	8	Not Connected
V _{ST}	9	Fixed tuning Supply Voltage +33V
n.c	10	Not connected
IF1	11	Asymmetrical IF Output
GND	M1,M2,M3,M4	Mounting Tags (Ground)

9.8 IC's Digital Board

9.8.1 IC7100: VSM

VERSATILE STREAM MANAGER

GENERAL DESCRIPTION

The Versatile Stream Manager (VSM) is an ASIC used in the first generation DVD Video Recorder. Main function of the VSM is to interface directly to the different hardware modules such as Basic Engine, MPEG encoders, MPEG decoders and buffering the data streams that are coming from or going to these hardware modules.

The VSM contains a memory interface to support one 4M*16 SDRAM device. A host interface allows a CPU to directly access this memory and the VSM's internal registers.

Handling of data streams is done using scatter / gather DMA's under software control. Hardware support is provided in the VSM to support software MPEG AV multiplexing.

FEATURES

The VSM features include:

- SDRAM memory interface to support one 4 banks*1M*16 (64Mbit) SDRAM device.
- Glueless Host Interface for STM's STi5505.
- Glueless MPEG Decoder interface for STM's STi5505
- Glueless interface to Philips SAA6750 MPEG Video Encoder or SAA6752 MPEG AV Encoder.
- Glueless interface to Motorola's DSP56362 used as MPEG Audio Encoder.
- Glueless interface to Philips HDR65 as part of Basic Engine interface including the Sector Processor as also included in the STi5505.
- Audio Clock Control providing PLL loop and clock lock detection.
- Double Extraction of VBI decoded data from extended CCIR 656 stream.
- Double UART with hardware handshake and 8 byte Rx/Tx FIFO.
- Generation of additional Host Bus to support Audio Encoder DSP56362.
- Descriptor based DMA Controllers for data stream handling.
- Hardware support for software MPEG multiplex process.
- Internal Interrupt Controller to handle internal and 4 external interrupt sources.
- Operates from single 27 MHz clock input.
- JTAG for production tests.
- 3.3V logic core.
- 3.3V / 5V toleration IO pins.
- 208 PIN LQFP Package. (CR1087)

BLOCK DIAGRAM

Figure 2.1 shows the block diagram of the VSM. The hardware blocks can be divided into three categories:

- General modules: Host Interface, Memory Interface, Interrupt Controller.
- DMA Controllers.
- Functional Interfaces; the link between the actual external hardware interface and the DMA Controller. Some Functional Interfaces have knowledge about the stream coming through in order to perform for example MPEG stream characteristics extraction and insertion.

Figure 2.1: VSM Overview

PINNING

OVERVIEW

Name	Pins	Type	Function
System			
RESETn	1	In	
SYCLK (27MHz)	1	In	
Host Interface			
HO_A(21:1)	21	In	
HO_D(15:0)	16	In/Out	
HO_BEn(1:0)	2	In	
HO_RWn	1	In	
HO_CSLn	1	In	
HO_CSHn	1	In	
HO_A22	1	In	
HO_WAIT	1	Out	
HO_PROCCLK	1	In	
Memory Interface			
M_A(13:0)	14	Out	
M_DQ(15:0)	16	In/Out	
M_RASn	1	Out	
M_CASn	1	Out	
M_WEn	1	Out	
M_LDQM	1	Out	
M_UDQM	1	Out	
M_CLKOUT	1	Out	
M_CLKEN	1	Out	
Basic Engine Interface			
BE_BCLK	1	In	
BE_DATI	1	In	
BE_WCLK	1	In	
BE_SYNC	1	In/Out	
BE_FLAG	1	In	
BE_V4	1	In	
BE_DATO	1	Out	
Video Encoder Interface			
VE_D(15:0)	16	In	
VE_DSn	1	Out	
VE_DTACKn	1	In	
VE_VIP_ERROR	1	In	Signal coming from SAA7114
Audio Encoder Interface			
AE_CSn	1	Out	
AE_BCLK	1	In/Out	(CR151,CR157)
AE_WCLK	1	In/Out	(CR151,CR157)
AE_DATA	1	In	(CR157)

Decoder Interface

D_PAR_D(7:0)	8	Out	
D_PAR_DVALID	1	Out	
D_PAR_STR	1	Out	
D_PAR_REQ	1	In	
D_PAR_SYNC	1	Out	
D_WCLK	1	Out	
D_V4	1	Out	

Audio Clock Control

ACC_FID	1	In	(CR200)
ACC_PWM	1	Out	
ACC_ACLK_OSC	1	In	
ACC_ACLK_DAI	1	In	
ACC_ACLK_PLL	1	In	
ACC_ACLK_DEC	1	Out	

VBI Extractor

VBI_IPD(7:0)	8	In	
VBI_ICLK	1	In	

UART 1

UART1_RX	1	In	
UART1_TX	1	Out (OC)	
UART1_CTSn	1	In	
UART1_RTSn	1	Out (OC)	

UART 2

UART2_RX	1	In	
UART2_TX	1	Out (OC)	
UART2_CTSn	1	In	
UART2_RTSn	1	Out (OC)	

UART 3 (vSM1B)

UART3_RX	1	In	
UART3_TX	1	Out	
UART3_CTSn	1	In	
UART3_RTSn	1	Out	

Interrupt Controller

EXTINT(3:0)	4	In	From: VEnc, AEnc, BE, VSync (STi5505)
CPUINT(1:0)	2	Out (OC)	

JTAG

TCK	1	In	Boundary Scan
TDI	1	In	
TDO	1	Out/Z	
TMS	1	In	
TRSTn	1	In	

Test

TEST0	1	In	Amsal Test
TEST1	1	In	

Power Supply

VDD	20	Power	10% of total pins package
VSS	20	Power	10% of total pins package

Total Pins	208		
------------	-----	--	--

9.8.2 IC7101; IC7306: IC 7402 SDRAM

SYNCHRONOUS DRAM

MT48LC16M4A2 – 4 Meg x 4 x 4 banks
 MT48LC8M8A2 – 2 Meg x 8 x 4 banks
 MT48LC4M16A2 – 1 Meg x 16 x 4 banks

For the latest data sheet, please refer to the Micron web site: www.micronsemi.com/datasheets/sdrams.html

FEATURES

- PC66-, PC100- and PC133-compliant
- Fully synchronous; all signals registered on positive edge of system clock
- Internal pipelined operation; column address can be changed every clock cycle
- Internal banks for hiding row access/precharge
- Programmable burst lengths: 1, 2, 4, 8 or full page
- Auto Precharge, includes CONCURRENT AUTO PRECHARGE, and Auto Refresh Modes
- Self Refresh Modes: standard and low power
- 64ms, 4,096-cycle refresh
- LVTTL-compatible inputs and outputs
- Single +3.3V ±0.3V power supply

OPTIONS

MARKING

- Configurations

16 Meg x 4 (4 Meg x 4 x 4 banks)	16M4
8 Meg x 8 (2 Meg x 8 x 4 banks)	8M8
4 Meg x 16 (1 Meg x 16 x 4 banks)	4M16
- WRITE Recovery ('WR)
 'WR = "2 CLK"
 A2

Plastic Package – OCPL²
 54-pin TSOP II (400 mil)

TG

Timing (Cycle Time)
 10ns @ CL = 2 (PC100)
 7.5ns @ CL = 3 (PC133)
 7.5ns @ CL = 2 (PC133)

TG

-8E⁴
 -75
 -7E

- Self Refresh
 Standard
 Low Power
 None
 1.
- Operating Temperature Range
 Commercial (0°C to +70°C)
 Extended (-40°C to +85°C)
 None
 IT³

NOTE: 1. Refer to Micron Technical Note TN-48-05.
 2. Off-center parting line.
 3. Consult Micron for availability.
 4. Not recommended for new designs.

Part Number Example:
MT48LC8M8A2TG-75

PIN ASSIGNMENT (Top View)

54-Pin TSOP

Note: The # symbol indicates signal is active LOW. A dash (-) indicates x8 and x4 pin function is same as x16 pin function.

Configuration	16 Meg x 4	8 Meg x 8	4 Meg x 16
Refresh Count	4 Meg x 4 x 4 banks	2 Meg x 8 x 4 banks	1 Meg x 16 x 4 banks
Row Addressing	4K (A0-A11)	4K (A0-A11)	4K (A0-A11) *
Bank Addressing	4 (BA0, BA1)	4 (BA0, BA1)	4 (BA0, BA1)
Column Addressing	1K (A0-A9)	512 (A0-A8)	256 (A0-A7)

KEY TIMING PARAMETERS

SPEED GRADE	CLOCK FREQUENCY	ACCESS TIME		SETUP TIME	HOLD TIME
		CL = 2*	CL = 3*		
-7E	143 MHz	–	5.4ns	1.5ns	0.8ns
-75	133 MHz	–	5.4ns	1.5ns	0.8ns
-7E	133 MHz	5.4ns	–	1.5ns	0.8ns
-8E ^{3,4}	125 MHz	–	6ns	2ns	1ns
-75	100 MHz	6ns	–	1.5ns	0.8ns
-8E ^{3,4}	100 MHz	6ns	–	2ns	1ns

* CL = CAS (READ) latency

64Mb SDRAM PART NUMBERS

PART NUMBER	ARCHITECTURE
MT48LC16M4A2TG	16 Meg x 4
MT48LC8M8A2TG	8 Meg x 8
MT48LC4M16A2TG	4 Meg x 16

GENERAL DESCRIPTION

The 64Mb SDRAM is a high-speed CMOS, dynamic random-access memory containing 67,108,864 bits. It is internally configured as a quad-bank DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the x4's 16,777,216-bit banks is organized as 4,096 rows by 1,024 columns by 4 bits. Each of the x8's 16,777,216-bit banks is organized as 4,096 rows by 512 columns by 8 bits. Each of the x16's 16,777,216-bit banks is organized as 4,096 rows by 256 columns by 16 bits.

Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0-A11 select the row). The address bits registered coincident with the READ or WRITE

command are used to select the starting column location for the burst access.

The SDRAM provides for programmable READ or WRITE burst lengths of 1, 2, 4, or 8 locations, or the full page, with a burst terminate option. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence.

The 64Mb SDRAM uses an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2^n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a high-speed, fully random access. Precharging one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.

The 64Mb SDRAM is designed to operate in 3.3V memory systems. An auto refresh mode is provided, along with a power-saving, power-down mode. All inputs and outputs are LVTTL-compatible.

SDRAMs offer substantial advances in DRAM operating performance, including the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks in order to hide precharge time and the capability to randomly change column addresses on each clock cycle during a burst access.

9.8.3 IC7200: STi5508

©

STi5508

DVD HOST PROCESSOR WITH ENHANCED AUDIO FEATURES

■ Integrated 32-bit host CPU @ 60MHz

- 2 Kbytes of Icache, 2 Kbytes of Dcache, and 4Kbytes of SRAM configurable as Dcache.

■ Audio decoder

- 5.1 channel Dolby Digital® /MPEG-2 multi-channel decoding, 3 X 2-channel PCM outputs
- IEC60958 -IEC61937 digital output
- SRS®/TruSurround®
- DTS digital out and MP3 decoding

■ Karaoke processor

- Echo, pitch shift, microphone inputs, voice cancellation and multiple other effects

■ Video decoder

- Supports MPEG-2 MP@ML
- Fully programmable zoom-in and zoom-out
- PAL to NTSC and NTSC to PAL conversion

■ DVD and SVCD subpicture decoder**■ High performance on-screen display**

- 2 to 8 bits per pixel OSD options
- Anti-flicker, anti-flutter and anti-aliasing filters

■ PAL/NTSC/SECAM encoder

- RGB, CVBS, Y/C and YUV outputs with 10-bit DACs
- Macrovision® 7.01/6.1 compatible

■ Shared SDRAM memory interface

- Supports 1 or 2x16Mbit, or 1x64Mbit 125MHz SDRAM

■ Programmable CPU memory interface for SDRAM, ROM, peripherals...**■ Front-end interface**

- DVD, VCD, SVCD and CD-DA compatible
- Serial, parallel and ATAPI interfaces
- Hardware sector filtering
- Integrated CSS decryption and track buffer

■ Integrated peripherals

- 2 UARTS, 2 SmartCards, I2C controller, 3 PWM outputs, 3 capture timers
- Modem support
- 38 bits of programmable I/O

■ Professional toolset support

- ANSI C compiler and libraries

■ 208 pin PQFP package

The STi5508 provides a highly integrated back-end solution for DVD applications. A host CPU handles both the general application (the user interface, and the DVD, CD-DA, VCD, SVCD navigation) and the drivers of the different embedded peripheral (audio/video, karaoke, sub-picture decoders, OSD, PAL/NTSC encoder...).

Because of its memory savings, increased number of internal peripherals, improved development platform and reference design, the STi5508 offers a cost-effective solution to DVD applications, with rapid time-to-market.

1 Architecture overview

1.1 Introduction

The figure below shows the architecture of the STi5508. This device has the same global architecture as the STi5505, with the addition of new features such as karaoke, a shared SDRAM memory interface and extra display planes. Because of this increased performance, the STi5508 and STi5505 are not pin compatible. This chapter gives a brief overview of each of the functional blocks of the STi5508.

Figure 1 Functional block diagram

1 Architecture overview

1.2 Central processor

The STi5508 Central Processing Unit is a ST20C2+ 32-bit processor core. It contains instruction processing logic, instruction and data pointers, and an operand register. It directly accesses the high-speed on-chip SRAM, which can store data or programs and uses the cache to reduce access time to off-chip program and data memory.

The processor can access memory via the Programmable CPU Interface (often referred to as the EMI) or the Shared Memory Interface (SMI), which is shared with the video, audio, sub-picture and OSD decoders.

1.3 MPEG video decoder

This is a real-time video compression processor supporting the MPEG-1 and MPEG-2 standards at video rates up to 720 x 480 x 60 Hz and 720 x 576 x 50 Hz. Picture format conversion for display is performed by vertical and horizontal filters. User-defined bitmaps can be super-imposed on the display picture by using the on-screen display function.

The display unit is part of the MPEG video decoder, it overlays the four display planes shown in the figure below. The display planes are normally overlaid in the order illustrated, with the background color at the back and the sub-picture at the front (used as a cursor plane). The sub-picture plane can alternatively be positioned between the OSD and MPEG video planes where it can be used as a second on-screen display plane.

Figure 2 Display planes

1.4 Audio decoder

The audio decoder accepts: Dolby Digital, MPEG-1 layers I and II, MPEG-2 layer II 6-channel, PCM, CDDA data formats; MPEG2 PES streams for MPEG-2, MPEG-1, Dolby Digital, MP3, and Linear PCM (LPCM). The audio decoder supports DTS digital out (DVD DTS and CDDA DTS).

S/PDIF input data (IEC-60958 or IEC-61937 standards) is accepted if an external circuitry extracts the PCM clock from the stream.

Skip frame, repeat blocks and soft mute frame features can be used to synchronize audio and video data. PTS audio extraction is also supported.

The device outputs up to 6 channels of PCM data and appropriate clocks for external digital-to-analog converters.

Programmable downmix enables 1,2,3 or 4 channel outputs. Data can be output in either I²S format or Sony format. The decoder can format output data according to IEC-60958 standard (for non compressed data: L/R channels, 16, 18, 20 and 24-bits) or IEC-61937 standard (for compressed data), for $F_S = 96\text{kHz}$, 48kHz , 44.1kHz or 32kHz .

Sampling frequencies of 96kHz , 48kHz , 44.1kHz , 32kHz and half sampling frequencies are supported. A downsampling filter ($96\text{kHz}/48\text{kHz}$) is available.

The decoder supports dual mode for MPEG and Dolby Digital. It is karaoke aware and capable in Dolby Digital and MPEG formats according to DVD specifications. It includes a Dolby surround compatible downmix and a ProLogic decoder.

A pink noise generator enables the accurate positioning of speakers for optimal surround sound setup.

In global mute mode, the decoder decodes the incoming bitstream normally but the PCM and SPdif outputs are soft muted. This mode is used to prepare a period of decoding mode, to synchronize audio and video data without hearing the audio.

Slow-forward and fast-forward trick modes are available for compressed and non-compressed data.

The control interface of the decoder is activated via memory mapped registers in the ST20 address space.

1.5 Karaoke

The karaoke processor is a post-processing module which supports the following features: 2 micro PCM input pitch shift, echo effect, reverberation, chorus, voice cancellation, level-sensitive vocal cancelling, vocal partnering, independant volume control on music and vocal channels.

1.6 Modem analog front-end interface

The Modem Analog Front-end interface is used to transfer transmit and receive DAC and ADC samples between the memory and an external modem analog front-end (MAFE), using a synchronous serial protocol. DMA is used to transfer the sample data between memory buffers and the MAFE interface module, with separate transmit and receive buffers and double buffering of the buffer pointers. FIFOs are used to take into account the access latency to memory, in a worst case system and to allow the use of bursts for memory bandwidth efficiency improvement. The V22bis standard is supported.

1.7 Memory subsystem

On-chip

The on-chip memory includes 2Kbytes of instruction cache, 2Kbytes of data cache and 4Kbytes of SRAM that can be optionally configured as data cache. The subsystem provides 240M/bytes of internal bandwidth, supporting pipeline d 2-cycle internal memory access.

1 Architecture overview

STi5508

The instruction and data caches are direct-mapped, with a write-back system for the data-cache. The caches support burst accesses to the external memories for refill and write-back. Burst access increases the performance of page-mode DRAM memories.

Off-chip

There are two off-chip memory interfaces:

- The external memory interface (EMI) accessed by the ST20 is used for the transfer of data and programs between the STi5508 and external peripherals, flash and additional SDRAM and DRAM.
- Shared memory interface (SMI) controls the movement of data between the STi5508 and 16, 32 or 64 Mbits of SDRAM. This external SDRAM stores the display data generated by the MPEG decoder and CPU and the C2+ code data.

The EMI uses minimal external support logic to support memory subsystems, and accesses a 32 Mbytes of physical address space (greater if SDRAM or DRAM is used) in four general purpose memory banks of 8 or 16 bits wide, 21 or 22 address lines, and byte select. For applications requiring extra memory, the EMI supports this extra memory with zero external support logic, even for 16-bit SDRAM devices. The EMI can be configured for a wide variety of timing and decode functions by the configuration registers. The timing of each of the four memory banks can be set separately, with different device types being placed in each bank with no need for external hardware.

1.8 Serial communication

Asynchronous serial controllers

The Asynchronous Serial Controller (ASC), also referred to as the UART interface, provides serial communication between the STi5508 and other microcontrollers, microprocessors or external peripherals. The STi5508 has four ASCs, two of which are generally used by the SmartCard controllers.

Eight or nine bit data transfer, parity generation, and the number of stop bits are programmable. Parity, framing, and overrun error detection increase data transfer reliability. Transmission and reception of data can be double-buffered, or 16-deep FIFOs can be used. A mechanism to distinguish the address from the data bytes is included for multiprocessor communication. Testing is supported by a loop-back option. A 16-bit baud-rate generator provides the ASC with a separate serial clock signal.

Each ASC supports full-duplex asynchronous communication where both the transmitter and the receiver use the same data frame format and the same baud-rate. Each ASC can be set to operate in SmartCard mode for use when interfacing to a SmartCard.

Synchronous serial control

The Synchronous Serial Controller (SSC) provides a high-speed interface to a wide variety of serial memories, remote control receivers and other microcontrollers. The SSC supports all of the features of the Serial Peripheral Interface bus (SPI) and the I²C bus. The SSC can be programmed to interface to other serial bus standards. The SSC shares pins with the parallel input/output (PIO) ports, and support full-duplex and half-duplex synchronous communication when used in conjunction with the PIO configuration.

1.9 Front-end interface

The STi5508 can be connected to a front-end through the following interfaces:

- I²S interface;
- multi-format serial interface;
- multi-format parallel interface;

- ATAPI interface (for DVD-ROMs)

1.10 On-chip PLL

The on-chip PLL accepts 27 MHz input and generates all the internal high-frequency clocks needed for the CPU, MPEG and audio subsystems.

1.11 Diagnostic controller (DCU)

The ST20 Diagnostic Controller Unit (DCU) is used to boot the CPU and to control and monitor the chip systems via the standard IEEE 1194.1 Test Access Port. The DCU includes on-chip hardware with ICE (In Circuit Emulation) and LSA (Logic State Analyzer) features to facilitate verification and debugging of software running on the on-chip CPU in real time. It is an independent hardware module with a private link from the host to support real-time diagnostics.

1.12 Interrupt subsystem

The interrupt system allows an on-chip module or external interrupt pin to interrupt an active process so that an interrupt handling process can be run. An interrupt can be signalled by one of the following: a signal on an external interrupt pin, a signal from an internal peripheral or subsystem, software asserting an interrupt in the pending register.

Interrupts are implemented by an on-chip interrupt controller and an on-chip interrupt-level controller. The interrupt controller supports eight prioritized interrupts as inputs and manages the pending interrupts. This allows the nesting of pre-emptive interrupts for real-time system design. Each interrupt can be programmed to be at a lower or higher priority than the high priority process queue.

1.13 PAL/NTSC/SECAM encoder

The integrated digital encoder converts a multiplexed 4:2:2 or 4:4:4 YCbCr stream into a standard analog baseband PAL/NTSC or SECAM signal and into RGB, YUV, Yc and CVBS components. The encoder can perform closed-caption, CGMS encoding, and allows Macrovision™ 7.01/6.1 copy protection.

1.14 SmartCard interfaces

Two SmartCard interfaces support SmartCards compliant with ISO7816-3. Each interface has a UART (ASC), a dedicated programmable clock generator, and eight bits of parallel IO port.

1.15 PWM and counter module

The PWM and counter module provides three PWM encoder outputs, three PWM decoder (capture) inputs and four programmable timers. Each capture input can be programmed to detect rising edge, falling edge, both edges or neither edge (disabled). These facilities are clocked by two independent clocks, one for PWM outputs and one for capture inputs/timers. The PWM counter is 8-bit, with 8-bit registers to set the output-high time. The capture/compare counter and the compare and capture registers are 32-bit. The module generates a single interrupt signal.

1.16 Parallel I/O module

38 bits of parallel I/O are configured in 5 ports, and each bit is programmable as output or input. The output can be configured as a totem-pole or open-drain driver. The input compare logic can generate an interrupt on any change of any input bit. Many parallel IO have alternate functions and can be connected to an internal peripheral signal such as a UART or SSC.

2 Pin data**STi5508****2 Pin data****2.1 Pin out**

STi5508**2 Pin data**

2.2 Pin list sorted by function

Alternate functions printed in *Italic* show a suggested use of the PIO; alternate functions not printed in *Italic* are multiplexed with a specific hardware.

Pin number	Pin name	Main function	Alternate function		Type
			Input	Output	
Audio DAC					
51	DAC_SCLK	OVER SAMPLING CLK		EXT_AUD_CLK	O
52	DAC_PCMOUT0	PCM_OUT0		EXT_AUD_DATA	O
53	DAC_PCMOUT1	PCM_OUT1	EXT_AUD_REQ		I/O
54	DAC_PCMOUT2	PCM_OUT2			O
55	DAC_PCMCLK	PCM_CLOCK			I/O
56	DAC_LRCLK	LEFT/RIGHT CLK		EXT_AUD_WCLK	O
57	SPDIF_OUT	SPDIF_OUT			O
48	VDD_PCM	VDD FREQ SYNTH=2.5V			PWR 2.5V
49	VSS_PCM	VSS FREQ SYNTH=GND			PWR
Audio ADC input					
104	ADC_LRCLK	Left/Right Clock			I/O
106	ADC_PCMCLK	PCM CLOCK			I/O
105	ADC_DATA	DATA			I
103	ADC_SCLK	SAMPLING CLK			I/O
Clock & reset					
124	RESET	CHIP RESET			I
122	VDD_PLL	VDD PLL=2.5V			PWR 2.5V
123	VSS_PLL	GND PLL=GND			PWR
120	PIX_CLK	27 MHz main clock			I
PIOs and communication					
186	PIO0[0]	PIO0[0]	UART0_DATA (<i>SC0_DATA</i>)		I/O
187	PIO0[1]	PIO0[1]	ATAPI_RD		I/O
188	PIO0[2]	PIO0[2]	ATAPI_WR		I/O
189	PIO0[3]	PIO0[3]	SC0_CLOCK		I/O
190	PIO0[4]	PIO0[4]	SC0_RST		I/O
191	PIO0[5]	PIO0[5]	SC0_CMD_VCC		I/O
192	PIO0[6]	PIO0[6]	SC0_DATA_DIR		I/O
193	PIO0[7]	PIO0[7]	SC0_DETECT		I/O
194	PIO1[0]	PIO1[0]	SSC0_DATA (MTSROut/MRSTin)		I/O
195	PIO1[1]	PIO1[1]	SSC0_CLOCK		I/O
196	PIO1[2]	PIO1[2]	SC EXTERNAL CLOCK	PARA_DVALID	I/O
197	PIO1[3]	PIO1[3]		UART2_TXD	I/O
200	PIO1[4]	PIO1[4]	UART2_RXD		I/O

Table 1 Pins sorted by function

2 Pin data**STi5508**

Pin number	Pin name	Main function	Alternate function		Type
			Input	Output	
201	PIO1[5]	PIO1[5]	PARA_SYNC	UART1_TXD	I/O
202	TRIGGER_IN	TRIGGER_IN for DCU			I/O
203	TRIGGER_OUT	TRIGGER_OUT for DCU			I/O
204	PIO2[0]	PIO2[0]	UART3_DATA (SC1_DATA)		I/O
205	PIO2[1]	PIO2[1]	UART1_RXD	MAFEIF_DOUT PARA_REQ	I/O
206	PIO2[2]	PIO2[2]	PARA_STROBE	MAFEIF_HC1	I/O
207	PIO2[3]	PIO2[3]		SC1_CLOCK	I/O
208	PIO2[4]	PIO2[4]		SC1_RST	I/O
1	PIO2[5]	PIO2[5]		SC1_CMD_VCC	I/O
2	PIO2[6]	PIO2[6]		SC1_DATA_DIR	I/O
3	PIO2[7]	PIO2[7]	SC1_DETECT		I/O
6	PIO3[0]	PIO3[0]	MAFEIF_SCLK PARA_DATA[0]		I/O
7	PIO3[1]	PIO3[1]	MAFEIF_DIN PARA_DATA[1]		I/O
8	PIO3[2]	PIO3[2]	MAFEIF_FSI PARA_DATA[2]		I/O
9	PIO3[3]	PIO3[3]	CAPTURE_IN0 PARA_DATA[3]		I/O
10	PIO3[4]	PIO3[4]	CAPTURE_IN1 PARA_DATA[4]		I/O
11	PIO3[5]	PIO3[5]	CAPTURE_IN2 PARA_DATA[5]		I/O
12	PIO3[6]	PIO3[6]	PARA_DATA[6]	COMP_OUT1	I/O
13	PIO3[7]	PIO3[7]	PARA_DATA[7]	COMP_OUT0	I/O
39-46	PIO4[0:7]	PIO4[0:7]	YC[0:7]		I/O
			SSC1_DATA/ NRSS_CLOCK ¹		
			SSC1_CLOCK		
			SDAV_CLK/ P1394_Clk ²		
			SDAV_DATA ²		
			SDAV_DIR / P1394_P_CLK ²		
			OSC_IN_CLK ²		
EMI Interface					
161-170	CPU_ADR[1:10]	ADR[1:10]			O
173-183	CPU_ADR[11:21]	ADR[11:21]			O
141-148	CPU_DATA[0:7]	DATA[0:7]			I/O
151-158	CPU_DATA[8:15]	DATA[8:15]			I/O
138	CPU_RAS1	DRAM RAS		NOT_SDRAM_CS1	I/O
131	CPU_WAIT	WAIT STATE			I

Table 1 Pins sorted by function

STi5508**2 Pin data**

Pin number	Pin name	Main function	Alternate function		Type
			Input	Output	
130	CPU_RW	READ-NOT WRITE		NOT_SDRAM_WE	I/O
128	CPU_BE[0]	BYTE 0 ENABLE		DQM[0]	I/O
129	CPU_BE[1]	BYTE 1 ENABLE		DQM[1]	I/O
139	CPU_CAS0	DRAM CAS0		SDRAM_CAS/CPU_ADR[22]	I/O
140	CPU_CAS1	DRAM		NOT_SDRAM_CS0	I/O
135	CPU_CE[0]	DRAM_RAS0		SDRAM_RAS	I/O
134	CPU_CE[1]	CHIP SEL. BANK 1			I/O
133	CPU_CE[2]	CHIP SEL. BANK 2			I/O
132	CPU_CE[3]	CHIP SEL. BANK 3		CS_SUB_BANK3	I/O
118	CPU_RAM_CLK	SDRAM CLOCK			I/O
117	CPU_OE	OUTPUT ENABLE			I/O
Interrupt					
127	IRQ[0]	IRQ[0] (SERVO_IRQ)			I
126	IRQ[1]	IRQ[1] (ATAPI IRQ)			I
125	IRQ[2]	IRQ[2] (MD_IRQ)			I
Timers					
116	PWM0	Pulse Width Modula 0	H SYNC		I/O
115	PWM1	Pulse Width Modula1	BOOT FROM ROM ³		I/O
114	PWM2	Pulse Width Modula 2	V SYNC		I/O
JTAG					
113	TCK	TEST CLOCK			I
112	TDI	TEST DATA IN			I
111	TDO	TEST DATA OUT			O
110	TMS	TEST MODE SELECT			I
109	TRST ⁴	TEST RESET			I
Front-end					
16	B_DATA	I2S DATA	SER_DATA		I
17	B_BCLK	I2S BIT CLOCK	SER_BCLK		I
18	B_FLAG	I2S ERROR FLAG DVD	SER_VALID		I
19	B_SYNC	I2S SECTOR/ABS TIME	SER_SYNC		I
20	B_WCLK	I2S WORD CLOCK		NRSS CLOCK	I/O
21	B_V4	I2S VERSATILE INPUT PIN	NRSS_IN		I
22	NRSS_OUT	NRSS OUT			O
Video DAC					
27, 26, 25	R_OUT, G_OUT, B_OUT	R_OUT, G_OUT, B_OUT			O
32, 33, 34	Y_OUT, C_OUT, CV_OUT	Y_OUT, C_OUT, CV_OUT			O
29	I_REF_RGB	I_REF_DAC_RGB			I
28	V_REF_RGB	V_REF_DAC_RGB			I
36	I_REF_YCC	I_REF_DAC_YCC			I

Table 1 Pins sorted by function

2 Pin data**STi5508**

Pin number	Pin name	Main function	Alternate function		Type
			Input	Output	
35	V_REF_YCC	V_REF_DAC_YCC			I
23	VDD_RGB	VDDA_RGB=2.5V			PWR 2.5V
24	VSS_RGB	VSSA_RGB=GND			PWR
30	VDD_YCC	VDDA_YCC=2.5V			PWR 2.5V
31	VSS_YCC	VSSA_YCC=GND			PWR
Shared memory interface					
69-66	SMI_ADR[0:3]	Address bus SDRAM			O
58-63	SMI_ADR[4:9]	Address bus SDRAM			O
70-73	SMI_ADR [10:13]	Address bus SDRAM			O
84-93, 97-102	SMI_DATA[0:15]	Data bus SDRAM			I/O
74, 75	SMI_CS[0,1]	Chip select bank 0,1			O
76	SMI_RAS	RAS SDRAM			O
77	SMI_CAS	CAS SDRAM			O
78	SMI_WE	SDRAM write enable			O
79, 80	SMI_DQML, U	DQ MASK EN LOW, UP			O
82	SMI_CLKIN	SDRAM CLOCK IN			I
95	SMI_CLKOUT	SDRAM CLOCK OUT			O
Power supply					
4, 47, 81, 107, 136, 159, 184	VDD3_3	3.3 V POWER SUPPLY			PWR
14, 37, 64, 94, 119, 149, 171, 198	VDD2_5	2.5V POWER SUPPLY			PWR
5, 15, 38, 50, 65, 83, 96, 108, 121, 137, 150, 160, 172, 185, 199	VSS	GROUND			PWR

Table 1 Pins sorted by function

1. FEI_CFG bits 8 and 9 must be programmed according to the required NRSS configuration.
2. Register LNK_SDAV_CONF bit 22 (SDE) must be set to 1 to validate the output path.
3. BOOTFROMROM is active during reset.
4. Tie low whenever JTAG is not used.

STi5508

2 Pin data

2.3 Pins sorted by pin number

Pin N°	Pin name	Main function	Alternate function		Dir func.
			Input	Output	
Left Side					
1	PIO2[5]	PIO2[5]		SC1_CMD_VCC	I/O
2	PIO2[6]	PIO2[6]		SC1_DATA_DIR	I/O
3	PIO2[7]	PIO2[7]	SC1_DETECT		I/O
4	VDD3_3	3.3 V POWER SUPPLY			POWER
5	VSS	GROUND			POWER
6	PIO3[0]	PIO3[0]	MAFEIF_SCLK PARA_DATA[0]		I/O
7	PIO3[1]	PIO3[1]	MAFEIF_DIN PARA_DATA[1]		I/O
8	PIO3[2]	PIO3[2]	MAFEIF_FSI PARA_DATA[2]		I/O
9	PIO3[3]	PIO3[3]	CAPTURE_IN0 PARA_DATA[3]		I/O
10	PIO3[4]	PIO3[4]	CAPTURE_IN1 PARA_DATA[4]		I/O
11	PIO3[5]	PIO3[5]	CAPTURE_IN2 PARA_DATA[5]		I/O
12	PIO3[6]	PIO3[6]	PARA_DATA[6]	COMP_OUT1	I/O
13	PIO3[7]	PIO3[7]	PARA_DATA[7]	COMP_OUT0	I/O
14	VDD2_5	2.5V POWER SUPPLY			POWER
15	VSS	GROUND			POWER
16	B_DATA	I2S DATA	SER_DATA		I
17	B_BCLK	I2S BIT CLOCK	SER_BCLK		I
18	B_FLAG	I2S ERROR FLAG DVD	SER_VALID		I
19	B_SYNC	I2S SECTOR/ABS TIME	SER_SYNC		I
			SSC1_DATA/ NRSS_CLOCK ¹		
			SSC1_CLOCK		
			SDAV_CLK/ P1394_CLK ²		
20	B_WCLK	I2S WORD CLOCK		NRSS CLOCK	I/O
21	B_V4	I2S VERSATILE INPUT	NRSS_IN		I
22	NRSS_OUT	NRSS OUT			O
23	VDD_RGB	VDDA_RGB=2.5V			POWER
24	VSS_RGB	VSSA_RGB=GND			POWER
25	B_OUT	B_OUT			O
26	G_OUT	G_OUT			O
27	R_OUT	R_OUT			O
28	V_REF_RGB	V_REF_DAC_RGB			I

Table 2 Pins sorted by number

2 Pin data**STi5508**

Pin N°	Pin name	Main function	Alternate function		Dir func.
			Input	Output	
29	I_REF_RGB	I_REF_DAC_RGB			I
30	VDD_YCC	VDDA_YCC=2.5V			POWER
31	VSS_YCC	VSSA_YCC=GND			POWER
32	Y_OUT	Y_OUT			O
33	C_OUT	C_OUT			O
34	CV_OUT	CV_OUT			O
35	V_REF_YCC	V_REF_DAC_YCC			I
36	I_REF_YCC	I_REF_DAC_YCC			I
37	VDD2_5	2.5V POWER SUPPLY			POWER
38	VSS	GROUND			POWER
39	PIO4[0]	PIO4[0]	YC[0]		I/O
40	PIO4[1]	PIO4[1]	YC[1]		I/O
41	PIO4[2]	PIO4[2]	YC[2]		I/O
42	PIO4[3]	PIO4[3]	YC[3]		I/O
43	PIO4[4]	PIO4[4]	YC[4]		I/O
44	PIO4[5]	PIO4[5]	YC[5]		I/O
45	PIO4[6]	PIO4[6]	YC[6]		I/O
46	PIO4[7]	PIO4[7]	YC[7]		I/O
47	VDD3_3	3.3 V POWER SUPPLY			POWER
48	VDD_PCM	VDD FREQ SYNTH=2.5V			POWER
49	VSS_PCM	VSS FREQ SYNTH=GND			POWER
50	VSS	GROUND			POWER
51	DAC_SCLK	SAMPLING CLK		EXT_AUD_CLK	O
52	DAC_PCMOUT0	PCM_OUT0		EXT_AUD_DATA	O
Bottom side					
53	DAC_PCMOUT1	PCM_OUT1	EXT_AUD_REQ		I/O
54	DAC_PCMOUT2	PCM_OUT2			O
55	DAC_PCMCLK	PCM_CLOCK			I/O
56	DAC_LRCLK	LEFT/RIGHT CLK		EXT_AUD_WCLK	O
57	SPDIF_OUT	SPDIF_OUT			O
58	SMI_ADR[4]	Adress bus SDRAM			O
59	SMI_ADR[5]	Adress bus SDRAM			O
60	SMI_ADR[6]	Adress bus SDRAM			O
61	SMI_ADR[7]	Adress bus SDRAM			O
62	SMI_ADR[8]	Adress bus SDRAM			O
63	SMI_ADR[9]	Adress bus SDRAM			O
64	VDD2_5	2.5V POWER SUPPLY			POWER
65	VSS	GROUND			POWER
66	SMI_ADR[3]	Adress bus SDRAM			O
67	SMI_ADR[2]	Adress bus SDRAM			O

Table 2 Pins sorted by number

STi5508**2 Pin data**

Pin N°	Pin name	Main function	Alternate function		Dir func.
			Input	Output	
68	SMI_ADR[1]	Adress bus SDRAM			O
69	SMI_ADR[0]	Adress bus SDRAM			O
70	SMI_ADR[10]	Adress bus SDRAM			O
71	SMI_ADR[11]	Adress bus SDRAM			O
72	SMI_ADR[12]	Adress bus SDRAM			O
73	SMI_ADR[13]	Adress bus SDRAM			O
74	SMI_CS[0]	Chip select bank 0			O
75	SMI_CS[1]	Chip select bank 1			O
76	SMI_RAS	RAS SDRAM			O
77	SMI_CAS	CAS SDRAM			O
78	SMI_WE	SDRAM write enable			O
79	SMI_DQML	DQ MASK EN LOW			O
80	SMI_DQMU	DQ MASK EN UP			O
81	VDD3_3	3.3 V POWER SUPPLY			POWER
82	SMI_CLKIN	SDRAM CLOCK IN			I
83	VSS	GROUND			POWER
84	SMI_DATA[0]	Data bus SDRAM			I/O
85	SMI_DATA[1]	Data bus SDRAM			I/O
86	SMI_DATA[2]	Data bus SDRAM			I/O
87	SMI_DATA[3]	Data bus SDRAM			I/O
88	SMI_DATA[4]	Data bus SDRAM			I/O
89	SMI_DATA[5]	Data bus SDRAM			I/O
90	SMI_DATA[6]	Data bus SDRAM			I/O
91	SMI_DATA[7]	Data bus SDRAM			I/O
92	SMI_DATA[8]	Data bus SDRAM			I/O
93	SMI_DATA[9]	Data bus SDRAM			I/O
94	VDD2_5	2.5V POWER SUPPLY			POWER
95	SMI_CLKOUT	SDRAM CLOCK OUT			O
96	VSS	GROUND			POWER
97	SMI_DATA[10]	Data bus SDRAM			I/O
98	SMI_DATA[11]	Data bus SDRAM			I/O
99	SMI_DATA[12]	Data bus SDRAM			I/O
100	SMI_DATA[13]	Data bus SDRAM			I/O
101	SMI_DATA[14]	Data bus SDRAM			I/O
102	SMI_DATA[15]	Data bus SDRAM			I/O
103	ADC_SCLK	SAMPLING CLK			I/O
104	ADC_LRCLK	Left/Right Clock			I/O
			SDAV_DATA ²		
			Sdav_dir / P1394_P_CLK ²		
Right side					

Table 2 Pins sorted by number

2 Pin data**STi5508**

Pin N°	Pin name	Main function	Alternate function		Dir func.
			Input	Output	
105	ADC_DATA	DATA			I
106	ADC_PCMCLK	PCM CLOCK			I/O
			OSC_IN_CLK ²		
107	VDD3_3	3.3 V POWER SUPPLY			POWER
108	VSS	GROUND			POWER
109	TRST ³	TEST RESET			I
110	TMS	TEST MODE SELECT			I
111	TDO	TEST DATA OUT			O
112	TDI	TEST DATA IN			I
113	TCK	TEST CLOCK			I
114	PWM2	Pulse Width Modul 2	VSYNC		O
115	PWM1	Pulse Width Modul 1	BOOT_FROM_ROM ⁴		I/O
116	PWM0	Pulse Width Modul 0	Hsync		O
117	CPU_OE	OUTPUT ENABLE			I/O
118	CPU_RAM_CLK	SDRAM CLOCK			O
119	VDD2_5	2.5V POWER SUPPLY			POWER
120	PIX_CLK	27 MHz main clock			I
121	VSS	GROUND			POWER
122	VDD_PLL	VDD PLL=2.5V			POWER
123	VSS_PLL	GND PLL=GND			POWER
124	RESET	CHIP RESET			I
125	IRQ[2]	IRQ[2] (MD_IRQ)			I
126	IRQ[1]	IRQ[1] (ATAPI IRQ)			I
127	IRQ[0]	IRQ[0] (SERVO IRQ)			I
128	CPU_BE[0]	BYTE 0 ENABLE		DQM[0]	O
129	CPU_BE[1]	BYTE 1 ENABLE		DQM[1]	O
130	CPU_RW	READ-NOT WRITE		NOT_SDRAM_WE	O
131	CPU_WAIT	WAIT STATE			I
132	CPU_CE[3]	CHIP SEL. BANK 3		CS_SUB_BANK3	O
133	CPU_CE[2]	CHIP SEL. BANK 2			O
134	CPU_CE[1]	CHIP SEL. BANK 1			O
135	CPU_CE[0]	DRAM_RAS0		SDRAM_RAS	O
136	VDD3_3	3.3 V POWER SUPPLY			POWER
137	VSS	GROUND			POWER
138	CPU_RAS1	DRAM RAS		NOT_SDRAM_CS1	I/O
139	CPU_CAS0	DRAM CAS0		SDRAM_CAS/ CPU_ADR[22]	O
140	CPU_CAS1	DRAM		NOT_SDRAM_CS0	O
141	CPU_DATA[0]	DATA[0]			I/O
142	CPU_DATA[1]	DATA[1]			I/O

Table 2 Pins sorted by number

STi5508**2 Pin data**

Pin N°	Pin name	Main function	Alternate function		Dir func.
			Input	Output	
143	CPU_DATA[2]	DATA[2]			I/O
144	CPU_DATA[3]	DATA[3]			I/O
145	CPU_DATA[4]	DATA[4]			I/O
146	CPU_DATA[5]	DATA[5]			I/O
147	CPU_DATA[6]	DATA[6]			I/O
148	CPU_DATA[7]	DATA[7]			I/O
149	VDD2_5	2.5V POWER SUPPLY			POWER
150	VSS	GROUND			POWER
151	CPU_DATA[8]	DATA[8]			I/O
152	CPU_DATA[9]	DATA[9]			I/O
153	CPU_DATA[10]	DATA[10]			I/O
154	CPU_DATA[11]	DATA[11]			I/O
155	CPU_DATA[12]	DATA[12]			I/O
156	CPU_DATA[13]	DATA[13]			I/O
Top side					
157	CPU_DATA[14]	DATA[14]			I/O
158	CPU_DATA[15]	DATA[15]			I/O
159	VDD3_3	3.3 V POWER SUPPLY			POWER
160	VSS	GROUND			POWER
161	CPU_ADR[1]	ADR[1]			O
162	CPU_ADR[2]	ADR[2]			O
163	CPU_ADR[3]	ADR[3]			O
164	CPU_ADR[4]	ADR[4]			O
165	CPU_ADR[5]	ADR[5]			O
166	CPU_ADR[6]	ADR[6]			O
167	CPU_ADR[7]	ADR[7]			O
168	CPU_ADR[8]	ADR[8]			O
169	CPU_ADR[9]	ADR[9]			O
170	CPU_ADR[10]	ADR[10]			O
171	VDD2_5	2.5V POWER SUPPLY			POWER
172	VSS	GROUND			POWER
173	CPU_ADR[11]	ADR[11]			O
174	CPU_ADR[12]	ADR[12]			O
175	CPU_ADR[13]	ADR[13]			O
176	CPU_ADR[14]	ADR[14]			O
177	CPU_ADR[15]	ADR[15]			O
178	CPU_ADR[16]	ADR[16]			O
179	CPU_ADR[17]	ADR[17]			O
180	CPU_ADR[18]	ADR[18]			O
181	CPU_ADR[19]	ADR[19]			O

Table 2 Pins sorted by number

2 Pin data**STi5508**

Pin N°	Pin name	Main function	Alternate function		Dir func.
			Input	Output	
182	CPU_ADR[20]	ADR[20]			O
183	CPU_ADR[21]	ADR[21]			O
184	VDD3_3	3.3 V POWER SUPPLY			POWER
185	VSS	GROUND			POWER
186	PIO0[0]	PIO0[0]	UART0_DATA (SC0_DATA)		I/O
187	PIO0[1]	PIO0[1]		ATAPI_RD	I/O
188	PIO0[2]	PIO0[2]		ATAPI_WR	I/O
189	PIO0[3]	PIO0[3]		SC0_CLOCK	I/O
190	PIO0[4]	PIO0[4]		SC0_RST	I/O
191	PIO0[5]	PIO0[5]		SC0_CMD_VCC	I/O
192	PIO0[6]	PIO0[6]		SC0_DATA_DIR	I/O
193	PIO0[7]	PIO0[7]	SC0_DETECT		I/O
194	PIO1[0]	PIO1[0]	SSC0_DATA		I/O
195	PIO1[1]	PIO1[1]	SSC0_CLOCK		I/O
196	PIO1[2]	PIO1[2]	SC EXTERNAL CLOCK	PARA_DVALID	I/O
197	PIO1[3]	PIO1[3]		UART2_TXD	I/O
198	VDD2_5	2.5V POWER SUPPLY			POWER
199	VSS	GROUND			POWER
200	PIO1[4]	PIO1[4]	UART2_RXD		I/O
201	PIO1[5]	PIO1[5]	PARA_SYNC	UART1_TXD	I/O
202	TRIGGER_IN	TRIGGER_IN for DCU			I/O
203	TRIGGER_OUT	TRIGGER_OUT for DCU			I/O
204	PIO2[0]	PIO2[0]	UART3_DATA (SC1_DATA)		I/O
205	PIO2[1]	PIO2[1]	UART1_RXD	MAFEIF_DOUT PARA_REQ	I/O
206	PIO2[2]	PIO2[2]	PARA_STROBE	MAFEIF_HC1	I/O
207	PIO2[3]	PIO2[3]		SC1_CLOCK	I/O
208	PIO2[4]	PIO2[4]		SC1_RST	I/O

Table 2 Pins sorted by number

1. FEI_CFG bits 8 and 9 must be programmed according to the required NRSS configuration.
2. Register LNK_SDAV_CONF bit 22 (SDE) must be set to 1 to validate the output path.
3. Tie low whenever JTAG is not used
4. BOOTFROMROM is active during reset.

9.8.4 IC7201: NVRAM

M24C64

M24C32

64/32 Kbit Serial I²C Bus EEPROM

- Compatible with I²C Extended Addressing
- Two Wire I²C Serial Interface
- Supports 400 kHz Protocol
- Single Supply Voltage:
 - 4.5V to 5.5V for M24Cxx
 - 2.5V to 5.5V for M24Cxx-W
 - 1.8V to 3.6V for M24Cxx-R
- Hardware Write Control
- BYTE and PAGE WRITE (up to 32 Bytes)
- RANDOM and SEQUENTIAL READ Modes
- Self-Timed Programming Cycle
- Automatic Address Incrementing
- Enhanced ESD/Latch-Up Behavior
- 1 Million Erase/Write Cycles (minimum)
- 40 Year Data Retention (minimum)

DESCRIPTION

These I²C-compatible electrically erasable programmable memory (EEPROM) devices are organized as 8192x8 bits (M24C64) and 4096x8 bits (M24C32), and operate down to 2.5 V (for the -W version of each device), and down to 1.8 V (for the -R version of each device).

The M24C64 and M24C32 are available in Plastic Dual-in-Line, Plastic Small Outline and Thin Shrink Small Outline packages.

Table 1. Signal Names

E0, E1, E2	Chip Enable Inputs
SDA	Serial Data/Address Input/Output
SCL	Serial Clock
WC	Write Control
Vcc	Supply Voltage
Vss	Ground

Figure 1. Logic Diagram

M24C64, M24C32**Figure 2A. DIP Connections****Figure 2C. TSSOP Connections**

Note: 1. NC = Not Connected

Figure 2B. SO Connections

These memory devices are compatible with the I²C extended memory standard. This is a two wire serial interface that uses a bi-directional data bus and serial clock. The memory carries a built-in 4-bit unique Device Type Identifier code (1010) in accordance with the I²C bus definition.

The memory behaves as a slave device in the I²C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a START condition, generated by the bus master. The START condition is followed by a Device Select Code and RW bit (as described in Table 3), terminated by an acknowledge bit.

When writing data to the memory, the memory inserts an acknowledge bit during the 9th bit time, following the bus master's 8-bit transmission.

Table 2. Absolute Maximum Ratings ¹

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature	-40 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
T _{LEAD}	Lead Temperature during Soldering	PSDIP8: 10 sec SO8: 40 sec TSSOP14: t.b.c.	260 215 t.b.c. °C
V _{IO}	Input or Output range	-0.6 to 6.5	V
V _{CC}	Supply Voltage	-0.3 to 6.5	V
V _{ESD}	Electrostatic Discharge Voltage (Human Body model) ²	4000	V

Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the ST SURE Program and other relevant quality documents.

2. MIL-STD-883C, 3015.7 (100 pF, 1500 Ω)

9.8.5 IC7301; IC7302: FLASH

M29W160DT M29W160DB

16 Mbit (2Mb x8 or 1Mb x16, Boot Block)
3V Supply Flash Memory

PRELIMINARY DATA

FEATURES SUMMARY

- SINGLE 2.7 to 3.6V SUPPLY VOLTAGE for PROGRAM, ERASE and READ OPERATIONS
- ACCESS TIME: 70ns
- PROGRAMMING TIME
 - 10µs per Byte/Word typical
- 35 MEMORY BLOCKS
 - 1 Boot Block (Top or Bottom Location)
 - 2 Parameter and 32 Main Blocks
- PROGRAM/ERASE CONTROLLER
 - Embedded Program and Erase algorithms
- ERASE SUSPEND and RESUME MODES
 - Read and Program another Block during Erase Suspend
- UNLOCK BYPASS PROGRAM COMMAND
 - Faster Production/Batch Programming
- TEMPORARY BLOCK UNPROTECTION MODE
- SECURITY MEMORY BLOCK
- LOW POWER CONSUMPTION
 - Standby and Automatic Standby
- 100,000 PROGRAM/ERASE CYCLES per BLOCK
- ELECTRONIC SIGNATURE
 - Manufacturer Code: 0020h
 - Top Device Code M29W160DT: 22C4h
 - Bottom Device Code M29W160DB: 2249h

Figure 1. Packages

M29W160DT, M29W160DB**SUMMARY DESCRIPTION**

The M29W160D is a 16 Mbit (2Mb x8 or 1Mb x16) non-volatile memory that can be read, erased and reprogrammed. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. On power-up the memory defaults to its Read mode where it can be read in the same way as a ROM or EPROM.

The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased. Each block can be protected independently to prevent accidental Program or Erase commands from modifying the memory. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents.

The end of a program or erase operation can be detected and any error conditions identified. The

command set required to control the memory is consistent with JEDEC standards.

The blocks in the memory are asymmetrically arranged, see Tables 2 and 3, Block Addresses. The first or last 64 Kbytes have been divided into four additional blocks. The 16 Kbyte Boot Block can be used for small initialization code to start the microprocessor, the two 8 Kbyte Parameter Blocks can be used for parameter storage and the remaining 32K is a small Main Block where the application may be stored.

Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic.

The memory is offered in TSOP48 (12 x 20mm), SO44 and LFBGA48 (0.8mm pitch) packages and it is supplied with all the bits erased (set to '1').

Figure 2. Logic Diagram

Note: RB not available on SO44 package.

Table 1. Signal Names

A0-A19	Address Inputs
DQ0-DQ7	Data Inputs/Outputs
DQ8-DQ14	Data Inputs/Outputs
DQ15A-1	Data Input/Output or Address Input
\bar{E}	Chip Enable
\bar{G}	Output Enable
\bar{W}	Write Enable
\bar{RP}	Reset/Block Temporary Unprotect
\bar{RB}	Ready/Busy Output (Not available on SO44 package)
BYTE	Byte/Word Organization Select
Vcc	Supply Voltage
Vss	Ground
NC	Not Connected Internally
DU	Don't Use as internally connected

M29W160DT, M29W160DB**Figure 3. TSOP Connections****Figure 4. SO Connections**

9.8.6 IC7403: SAA6752H (EMPRESS)

MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer

SAA6752HS

1 FEATURES

1.1 Video input and preprocessing

- Digital YUV input according to "ITU-R BT.656" (8 bits at 27 MHz) and "ITU-R BT.601"
- Support of enhanced "ITU-R BT.656" input format containing decoded VBI data readable via I²C-bus; Closed Caption (CC), Wide Screen Signalling (WSS) and copyright information [Copy Generation Management System (CGMS)]
- Processing of non broadcast video signals from analog VCR according to IEC 756
- Two video clock input pins for switching two digital video sources
- "ITU-R BT.601" format conversion to 1/2D1, 2/3D1 and Standard Interchange Format (SIF)
- 4 : 2 : 2 to 4 : 2 : 0 colour format conversion
- Decimation filtering for all format conversions
- Adaptive median filter and motion compensated filter for input noise reduction.

1.2 Video compression

- Real time MPEG-2 encoding compliant to Main Profile at Main Level (MP@ML) for 625 and 525 interlaced line systems
- Supported resolutions: D1, 2/3D1, 1/2D1 and SIF
- IPB frame, IP frame and I frame only encoding supported at all modes
- Supported bit rates: up to 25 Mbit/s I-only encoding; up to 15 Mbit/s IP-only or IBP encoding.
- Variable video bit rate mode for constant picture quality and constant bit rate mode to gain optimum picture quality from a fixed channel transfer rate
- Access to bit rate control parameters whilst encoding to support external real-time control algorithms (e.g. constrained variable bit rate control)
- Programmable Group Of Pictures (GOP) structure
- Innovative motion estimation with wide search range
- Adaptive quantization
- Motion compensated noise filter.

1.3 Audio input

- Audio inputs: I²S format or EIAJ format (16, 18 or 20 bits), master or slave mode at 32, 44.1 and 48 kHz
- Two digital I²S input ports for selection between two digital audio sources

- Audio clock generation: 256/384 × f_s (48 kHz) locked to video frame rate (if video is present)
- Sample rate conversion to 48 kHz (locked to video frame rate) for slave mode operation in all modes except Digital Versatile Disc (DVD) compliant bypass.

1.4 Audio compression

- Dolby®⁽¹⁾ Digital Consumer Encoding (DDCE) also known as AC-3⁽²⁾ 2 channel audio encoding at 256 kbit/s or 384 kbit/s (only for SAA6752HS/01)
- MPEG-1 layer 2 audio encoding at 256 kbit/s or 384 kbit/s
- Input data bypass for Linear Pulse Code Modulation (LPCM) and compressed audio data [MPEG-1, MPEG-2, Dolby® Digital (DD) and Digital Theatre System (DTS)] according to IEC 61937
- Preamble P_c, Preamble P_d and bit stream information captured for identification of modes during bypass of compressed audio data for MPEG-1, MPEG-2, DD and DTS according to IEC 61937
- Audio mute via I²C-bus control for all modes except DVD-compliant bypass.

1.5 Stream multiplexer

- Multiplexing of video and audio streams according to the MPEG-2 systems standard ("ISO 13818-1")
- Generation and output of MPEG-2 Transport Streams (TS), MPEG-2 Program Streams (PS), Packetized Elementary Streams (PES) and Elementary Streams (ES) compliant to the DVD, D-VHS and DVB standards
- MPEG time stamp (PTS/DTS/SCR/PCR) generation and insertion (synchronization)
- Insertion of metadata
- Optional generation of empty time slots for subsequent insertion of application specific data packets
- Optional insertion of user data in the GOP header and in the picture header.

(1) Dolby is a registered trademark of Dolby Laboratories Licensing Corporation.

(2) AC-3 is a registered trademark of Dolby Laboratories Licensing Corporation.

MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer

SAA6752HS

1.6 Output interface

- Parallel interface 8-bit master/slave output
- 3-state output port
- Glueless interfacing with IEEE 1394 chip sets (for example, PDI 1394 L11)
- Data Expansion Bus Interface (DEBI) interface.

1.7 Control domain

- All control done via I²C-bus
- I²C-bus slave transceiver up to 400 kHz
- I²C-bus slave address select pin
- Host interrupt flag pin.

1.8 Other features

- Single external clock or single crystal 27 MHz
- Separate 27 MHz system clock output
- Interface voltage 3.3 V
- TTL compatible digital outputs
- Power supply voltage 3.3 and 2.5 V
- Boundary Scan Test (BST) supported
- Power-down mode
- Single SDRAM system memory (16 Mbit@16 bit or 64 Mbit@16 bit).

2 GENERAL DESCRIPTION

2.1 General

Philips Semiconductors' second generation real time MPEG-2 encoder, the SAA6752HS, is a highly integrated single chip audio and video encoding solution with very flexible multiplexing functionality. With our expertise in two critical areas for consumer video encoding, noise filtering and motion estimation, we have pushed the boundaries for video quality even further, providing enhanced quality for low bit rates and enabling increased recording times for a given storage capacity. The SAA6752HS will also enable a key driver for new consumer digital recording applications; system cost reduction. By integrating all audio encoding and multiplexing functionality we will be moving from a three chip to a one chip system, with cost efficient design and process technology, thus providing a truly low cost, high quality encoding system.

The SAA6752HS/02 is intended for customers whose application does not require the DDCE function.

The SAA6752HS gives significant advantages to customers developing digital recording applications:

- **Fast time-to-market and low development resources:** By adding a simple external video input processor IC, audio analog-to-digital converter, and an external SDRAM, analog video and audio sources are compressed into high quality MPEG-2 video and MPEG-1 layer 2 or AC-3 audio streams, multiplexed into a single program or transport stream for simple connection to various storage media or broadcast media. Hence, making design effort for our customers a minimum, as well as removing the need for in-depth experience in MPEG encoding.
- **Low system host resources:** All video and audio encoding algorithms and software are run on an internal MIPS®⁽¹⁾ processor. The SAA6752HS only requires small amount of communication from system host processor to set up and control required encoding parameters via I²C-bus.

2.2 Application fields

2.2.1 DVD BASED OPTICAL DISC RECORDERS (DVD+RW, DVD-RW, DVD-RAM)

Emerging optical disc based recording systems target to replace the existing consumer recording (VCR) and playback (DVD and VCD) products. The first generation recordable DVD based products will want to maximise recording times for the 4.7 Gbyte storage capacity. For these systems the SAA6752HS is critical, with its superior noise filtering and motion estimation, in enabling high quality at low bit rates.

Playback compatibility with existing DVD decoding solutions will also be important, which is why the SAA6752HS provides Dolby® digital consumer (AC-3) audio encoding to allow playback through existing players implementing DDCE (AC-3) decoding dominant in current DVD platforms.

The DVD stream is based on MPEG Program Stream (PS). The SAA6752HS directly outputs MPEG PS compliant to the DVD standard.

(1) MIPS is a registered trademark of MIPS Technologies.

MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer

SAA6752HS

2.2.2 HDD BASED TIME SHIFT RECORDING

Hard Disc Drive (HDD) based time-shift systems enable Personalized TV (PTV) functionality, providing consumers with new powers of control over what and when to watch broadcast content. With the audio and video content recorded digitally, identification, search and retrieval becomes a 'no brainer' task as compared to traditional VCR functionality. Combine this with electronic program guides and intelligent control, and the PTV can also analyse the viewers watching habits to search for programs likely to be of interest and automatically recorded in anticipation of the viewers preferences.

Since HDD recorders are closed systems, the recording format stream can be proprietary. SAA6752HS flexible multiplexing formats, support a number of recording stream formats for HDD including MPEG Transport Stream (TS) or MPEG Packetized Elementary Stream (PES).

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V_{DDP}	digital supply voltage (pad cells)	3.0	3.3	3.6	V
V_{DDCO}	digital supply voltage (core)	2.3	2.5	2.7	V
V_{DDA}	analog supply voltage (oscillator and PLL)	2.3	2.5	2.7	V
$I_{DD(tot)}$	analog + digital supply current	407	453	525	mA
P_{tot}	total power dissipation	1.2	1.4	1.9	W
f_{DCXO}	quartz frequency (digital controlled tuning)	$27 \times (1 - 200 \times 10^{-6})$	27	$27 \times (1 + 200 \times 10^{-6})$	MHz
f_{SDRAM}	SDRAM clock frequency	—	108	—	MHz
f_{SCL}	I ² C-bus input clock frequency	100	—	400	KHz
B	output bit-rate	1.5	—	25	Mbit/s
V_{IH}	HIGH-level digital input voltage	1.7	—	3.6	V
V_{IL}	LOW-level digital input voltage	-0.5	—	+0.7	V
V_{OH}	HIGH-level digital output voltage	$V_{DDP} - 0.4$	—	V_{DDP}	V
V_{OL}	LOW-level digital output voltage	0	—	0.4	V
T_{amb}	ambient temperature	0	—	70	°C

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
SAA6752HS/01 ⁽¹⁾	SQFP208	plastic shrink quad ?at package; 208 leads (lead length 1.3 mm); body 28 × 28 × 3.4 mm; high stand-off height	SOT316-1
SAA6752HS/02 ⁽²⁾			

Notes

1. MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer.
2. MPEG-2 video and MPEG-audio encoder with multiplexer, but without AC-3 audio encoder.

MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer

SAA6752HS

5 BLOCK DIAGRAM

Fig.1 Block diagram.

MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer

SAA6752HS

6 PINNING

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION
V _{SSP}	1	ground	—	pad ground
SDATA1	2	input	—	I ² S-bus serial data input port 1 with internal pull-down resistor
SCLK1	3	input/output	4	I ² S-bus serial clock port 1 with internal pull-down resistor
SWS1	4	input/output	4	I ² S-bus word select port 1 with internal pull-down resistor
V _{DDP}	5	supply	—	pad ring supply voltage (3.3 V)
SDATA2	6	input/output	4	I ² S-bus serial data port 2 with internal pull-down resistor
SCLK2	7	input/output	4	I ² S-bus serial clock port 2 with internal pull-down resistor
SWS2	8	input/output	4	I ² S-bus word select port 2 with internal pull-down resistor
ACLK	9	output	4	audio clock output ($256 \times f_s$ or $384 \times f_s$)
V _{SSP}	10	ground	—	pad ground
IDQ	11	input	—	reserved (recommended connect to pin V _{SSP}) with internal pull-down resistor
YUV0	12	input	—	video input signal bit 0 (LSB)
YUV1	13	input	—	video input signal bit 1
YUV2	14	input	—	video input signal bit 2
YUV3	15	input	—	video input signal bit 3
YUV4	16	input	—	video input signal bit 4
YUV5	17	input	—	video input signal bit 5
YUV6	18	input	—	video input signal bit 6
YUV7	19	input	—	video input signal bit 7 (MSB)
V _{SSP}	20	ground	—	pad ground
HSYNC	21	input	—	horizontal sync input (video) with internal pull-down resistor
VSYNC	22	input	—	vertical sync input (video) with internal pull-down resistor
FID	23	input	—	video field identification input (odd/even field) with internal pull-down resistor
VCLK1	24	input	—	video clock input 1 (27 MHz) with internal pull-down resistor
V _{SSCO}	25	ground	—	core ground
V _{SSCO}	26	ground	—	core ground
V _{DDCO}	27	supply	—	core supply voltage (2.5 V)
V _{DDCO}	28	supply	—	core supply voltage (2.5 V)
V _{DDP}	29	supply	—	pad ring supply voltage (3.3 V)
VCLK2	30	input	—	video clock input 2 (27 MHz) with internal pull-down resistor
PDOAV	31	3-state output	4	parallel stream data output for audio/video identifier
PDIDS	32	input	—	parallel stream data input for data strobe (request for packet in Data Expansion Bus Interface (DEBI) slave mode) with internal pull-up resistor
PDO_SYNC	33	3-state output	4	parallel stream data output for packet sync
V _{SSP}	34	ground	—	pad ground
PDOVAL	35	3-state output	4	parallel stream data valid output with internal pull-up resistor
PDOO	36	3-state output	4	parallel stream data output bit 0 (LSB)

**MPEG-2 video and MPEG-audio/AC-3 audio
encoder with multiplexer**

SAA6752HS

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION
PDO1	37	3-state output	4	parallel stream data output bit 1
PDO2	38	3-state output	4	parallel stream data output bit 2
V _{DDP}	39	supply	—	pad ring supply voltage (3.3 V)
PDO3	40	3-state output	4	parallel stream data output bit 3
PDO4	41	3-state output	4	parallel stream data output bit 4
PDO5	42	3-state output	4	parallel stream data output bit 5
PDO6	43	3-state output	4	parallel stream data output bit 6
V _{SSP}	44	ground	—	pad ground
PDO7	45	3-state output	4	parallel stream data output bit 7 (MSB)
PDIOCLK	46	input/output	4	parallel stream clock input/output
I ² CADDRSEL	47	input	—	I ² C-bus address select input with internal pull-up resistor
SD_DQ15	48	input/output	8	SDRAM data input/output bit 15 (MSB)
V _{DDP}	49	supply	—	pad ring supply voltage (3.3 V)
SD_DQ0	50	input/output	8	SDRAM data input/output bit 0 (LSB)
SD_DQ14	51	input/output	8	SDRAM data input/output bit 14
SD_DQ1	52	input/output	8	SDRAM data input/output bit 1
V _{SSP}	53	ground	—	pad ground
SD_DQ13	54	input/output	8	SDRAM data input/output bit 13
SD_DQ2	55	input/output	8	SDRAM data input/output bit 2
SD_DQ12	56	input/output	8	SDRAM data input/output bit 12
V _{DDP}	57	supply	—	pad ring supply voltage (3.3 V)
SD_DQ3	58	input/output	8	SDRAM data input/output bit 3
SD_DQ11	59	input/output	8	SDRAM data input/output bit 11
SD_DQ4	60	input/output	8	SDRAM data input/output bit 4
SD_DQ10	61	input/output	8	SDRAM data input/output bit 10
V _{SSP}	62	ground	—	pad ground
SD_DQ5	63	input/output	8	SDRAM data input/output bit 5
SD_DQ9	64	input/output	8	SDRAM data input/output bit 9
SD_DQ6	65	input/output	8	SDRAM data input/output bit 6
SD_DQ8	66	input/output	8	SDRAM data input/output bit 8
V _{DDP}	67	supply	—	pad ring supply voltage (3.3 V)
SD_DQ7	68	input/output	8	SDRAM data input/output bit 7
SD_DQM1	69	output	8	SDRAM data mask enable output bit 1
SD_DQM0	70	output	8	SDRAM data mask enable output bit 0 (LSB)
SD_WE	71	output	8	SDRAM write enable output (active LOW)
V _{SSP}	72	ground	—	pad ground
SD_CAS	73	output	8	SDRAM column address strobe output (active LOW)
SD_CLK	74	output	8	SDRAM clock output
SD_RAS	75	output	8	SDRAM row address strobe output (active LOW)
SD_CKE	76	output	8	SDRAM clock enable output

MPEG-2 video and MPEG-audio/AC-3 audio
encoder with multiplexer

SAA6752HS

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION
V _{SSCO}	77	ground	—	core ground
V _{SSCO}	78	ground	—	core and substrate ground
V _{DDCO}	79	supply	—	core supply voltage (2.5 V)
V _{DDCO}	80	supply	—	core supply voltage (2.5 V)
V _{DDP}	81	supply	—	pad ring supply voltage (3.3 V)
SD_CS	82	output	8	SDRAM chip select output (active LOW)
SD_A13	83	output	8	SDRAM address output bit 13 (bank selection for 64 Mbit)
SD_A9	84	output	8	SDRAM address output bit 9
SD_A8	85	output	8	SDRAM address output bit 8
V _{SSP}	86	ground	—	pad ground
SD_A11	87	output	8	SDRAM address output bit 11 (bank selection for 16 Mbit)
SD_A7	88	output	8	SDRAM address output bit 7
SD_A12	89	output	8	SDRAM address output bit 12 (bank selection for 64 Mbit)
SD_A6	90	output	8	SDRAM address output bit 6
V _{DDP}	91	supply	—	pad ring supply voltage (3.3 V)
SD_A10	92	output	8	SDRAM address output bit 10
SD_A5	93	output	8	SDRAM address output bit 5
SD_A0	94	output	8	SDRAM address output bit 0 (LSB)
SD_A4	95	output	8	SDRAM address output bit 4
V _{SSP}	96	ground	—	pad ground
SD_A1	97	output	8	SDRAM address output bit 1
SD_A3	98	output	8	SDRAM address output bit 3
SD_A2	99	output	8	SDRAM address output bit 2
SD_DQM3	100	output	8	reserved (do not connect)
V _{DDP}	101	supply	—	pad ring supply voltage (3.3 V)
SD_DQM2	102	output	8	reserved (do not connect)
SD_DQ31	103	input/output	8	reserved (do not connect)
SD_DQ16	104	input/output	8	reserved (do not connect)
V _{SSP}	105	ground	—	pad ground
SD_DQ30	106	input/output	8	reserved (do not connect)
SD_DQ17	107	input/output	8	reserved (do not connect)
SD_DQ29	108	input/output	8	reserved (do not connect)
V _{DDP}	109	supply	—	pad ring supply voltage (3.3 V)
SD_DQ18	110	input/output	8	reserved (do not connect)
SD_DQ28	111	input/output	8	reserved (do not connect)
SD_DQ19	112	input/output	8	reserved (do not connect)
SD_DQ27	113	input/output	8	reserved (do not connect)
V _{SSP}	114	ground	—	pad ground
SD_DQ20	115	input/output	8	reserved (do not connect)
SD_DQ26	116	input/output	8	reserved (do not connect)

MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer

SAA6752HS

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION
V _{SSCO}	77	ground	—	core ground
V _{SSCO}	78	ground	—	core and substrate ground
V _{DDCO}	79	supply	—	core supply voltage (2.5 V)
V _{DDCO}	80	supply	—	core supply voltage (2.5 V)
V _{DDP}	81	supply	—	pad ring supply voltage (3.3 V)
SD_CS	82	output	8	SDRAM chip select output (active LOW)
SD_A13	83	output	8	SDRAM address output bit 13 (bank selection for 64 Mbit)
SD_A9	84	output	8	SDRAM address output bit 9
SD_A8	85	output	8	SDRAM address output bit 8
V _{SSP}	86	ground	—	pad ground
SD_A11	87	output	8	SDRAM address output bit 11 (bank selection for 16 Mbit)
SD_A7	88	output	8	SDRAM address output bit 7
SD_A12	89	output	8	SDRAM address output bit 12 (bank selection for 64 Mbit)
SD_A6	90	output	8	SDRAM address output bit 6
V _{DDP}	91	supply	—	pad ring supply voltage (3.3 V)
SD_A10	92	output	8	SDRAM address output bit 10
SD_A5	93	output	8	SDRAM address output bit 5
SD_A0	94	output	8	SDRAM address output bit 0 (LSB)
SD_A4	95	output	8	SDRAM address output bit 4
V _{SSP}	96	ground	—	pad ground
SD_A1	97	output	8	SDRAM address output bit 1
SD_A3	98	output	8	SDRAM address output bit 3
SD_A2	99	output	8	SDRAM address output bit 2
SD_DQM3	100	output	8	reserved (do not connect)
V _{DDP}	101	supply	—	pad ring supply voltage (3.3 V)
SD_DQM2	102	output	8	reserved (do not connect)
SD_DQ31	103	input/output	8	reserved (do not connect)
SD_DQ16	104	input/output	8	reserved (do not connect)
V _{SSP}	105	ground	—	pad ground
SD_DQ30	106	input/output	8	reserved (do not connect)
SD_DQ17	107	input/output	8	reserved (do not connect)
SD_DQ29	108	input/output	8	reserved (do not connect)
V _{DDP}	109	supply	—	pad ring supply voltage (3.3 V)
SD_DQ18	110	input/output	8	reserved (do not connect)
SD_DQ28	111	input/output	8	reserved (do not connect)
SD_DQ19	112	input/output	8	reserved (do not connect)
SD_DQ27	113	input/output	8	reserved (do not connect)
V _{SSP}	114	ground	—	pad ground
SD_DQ20	115	input/output	8	reserved (do not connect)
SD_DQ26	116	input/output	8	reserved (do not connect)

MPEG-2 video and MPEG-audio/AC-3 audio
encoder with multiplexer

SAA6752HS

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION
SD_DQ21	117	input/output	8	reserved (do not connect)
SD_DQ25	118	input/output	8	reserved (do not connect)
V _{DDP}	119	supply	—	pad ring supply voltage (3.3 V)
SD_DQ22	120	input/output	8	reserved (do not connect)
SD_DQ24	121	input/output	8	reserved (do not connect)
SD_DQ23	122	input/output	8	reserved (do not connect)
EXTCLK	123	input	—	27 MHz external clock input with internal pull-up resistor
V _{SSP}	124	ground	—	pad ground
V _{SSA}	125	ground	—	oscillator analog ground
XTALI	126	analog input	—	crystal oscillator input (27 MHz); note 2
XTALO	127	analog output	—	crystal oscillator output (27 MHz)
V _{DDA}	128	supply	—	oscillator analog supply voltage (2.5 V)
V _{SSCO}	129	ground	—	core ground
V _{SSCO}	130	ground	—	core ground
V _{DDCO}	131	supply	—	core supply voltage (2.5 V)
V _{DDCO}	132	supply	—	core supply voltage (2.5 V)
V _{DDP}	133	supply	—	pad ring supply voltage (3.3 V)
TDI	134	input	—	boundary scan test data input; pin must float or set to HIGH during normal operating; with internal pull-up resistor; note 3
TMS	135	input	—	boundary scan test mode select; pin must float or set to HIGH during normal operating; with internal pull-up resistor; note 3
TCK	136	input	—	boundary scan test clock; pin must be set to LOW during normal operating; with internal pull-up resistor; note 3
TDO	137	3-state output	4	boundary scan test data output; pin not active during normal operating; with 3-state output; note 3
V _{SSP}	138	ground	—	pad ground
TRST	139	input	—	test reset input (active LOW), for boundary scan test (with internal pull-up); notes 3 and 4
CLKOUT	140	output	4	27 MHz system clock output
TEST0	141	input/output	4	reserved (do not connect)
TEST1	142	input/output	4	reserved (do not connect)
V _{DDP}	143	supply	—	pad ring supply voltage (3.3 V)
TEST2	144	input/output	4	reserved (do not connect)
SDA	145	input/open-drain output	—	serial data input/output (I ² C-bus)
SCL	146	input/open-drain output	—	serial clock input/output (I ² C-bus)
RESET	147	input	—	reset input (active LOW); with internal pull-up resistor
V _{SSP}	148	ground	—	pad ground
RTS	149	output	4	reserved (do not connect); Universal Asynchronous Receiver/Transmitter (UART) request to send output (active LOW)

MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer

SAA6752HS

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION
CTS	150	input	—	reserved (recommended connect to pin V _{DDP}); UART clear to send input; external static memory select input (active LOW); with internal pull-up resistor
RXD	151	input	—	reserved (recommended connect to pin V _{DDP}); UART receive data; internal boot select input; with internal pull-up resistor
TXD	152	output	4	reserved (do not connect); UART transmit data
V _{DDP}	153	supply	—	pad ring supply voltage (3.3 V)
SM_LB	154	input/output	4	reserved (do not connect)
SM_UB	155	input/output	4	reserved (do not connect)
H_IRF	156	3-state output	4	host interrupt flag output; with internal pull-up resistor
V _{SSP}	157	ground	—	pad ground
SM_OE	158	output	4	reserved (do not connect), static memory output enable output (active LOW)
SM_A9	159	output	4	reserved (do not connect), static memory address output bit 9
SM_A10	160	output	4	reserved (do not connect), static memory address output bit 10
V _{DDP}	161	supply	—	pad ring supply voltage (3.3 V)
SM_A8	162	output	4	reserved (do not connect), static memory address output bit 8
SM_A11	163	output	4	reserved (do not connect), static memory address output bit 11
SM_A7	164	output	4	reserved (do not connect), static memory address output bit 7
SM_A12	165	output	4	reserved (do not connect), static memory address output bit 12
V _{SSP}	166	ground	—	pad ground
SM_A6	167	output	4	reserved (do not connect), static memory address output bit 6
SM_A13	168	output	4	reserved (do not connect), static memory address output bit 13
SM_A5	169	output	4	reserved (do not connect), static memory address output bit 5
SM_A14	170	output	4	reserved (do not connect), static memory address output bit 14
V _{DDP}	171	supply	—	pad ring supply voltage (3.3 V)
SM_WE	172	output	4	reserved (do not connect), static memory write enable output (active LOW)
SM_D7	173	input/output	4	reserved (do not connect), static memory data input/output bit 7 with internal pull-down resistor
SM_D8	174	input/output	4	reserved (do not connect), static memory data input/output bit 8 with internal pull-down resistor
SM_D6	175	input/output	4	reserved (do not connect), static memory data input/output bit 6 with internal pull-down resistor
V _{SSP}	176	ground	—	pad ground
SM_D9	177	input/output	4	reserved (do not connect), static memory data input/output bit 9 with internal pull-down resistor
SM_D5	178	input/output	4	reserved (do not connect), static memory data input/output bit 5 with internal pull-down resistor
SM_D10	179	input/output	4	reserved (do not connect), static memory data input/output bit 10 with internal pull-down resistor

MPEG-2 video and MPEG-audio/AC-3 audio
encoder with multiplexer

SAA6752HS

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION
SM_D4	180	input/output	4	reserved (do not connect), static memory data input/output bit 4 with internal pull-down resistor
V _{SSCO}	181	ground	—	internal pre-driver and substrate ground
V _{SSCO}	182	ground	—	core ground
V _{DDCO}	183	supply	—	core supply voltage (2.5 V)
V _{DDCO}	184	supply	—	internal pre-driver supply voltage (2.5 V)
V _{DDP}	185	supply	—	pad ring supply voltage (3.3 V)
SM_D11	186	input/output	4	reserved (do not connect), static memory data input/output bit 11 with internal pull-down resistor
SM_D3	187	input/output	4	reserved (do not connect), static memory data input/output bit 3 with internal pull-down resistor
SM_D12	188	input/output	4	reserved (do not connect), static memory data input/output bit 12 with internal pull-down resistor
SM_D2	189	input/output	4	reserved (do not connect), static memory data input/output bit 2 with internal pull-down resistor
V _{SSP}	190	ground	—	pad ground
SM_D13	191	input/output	4	reserved (do not connect), static memory data input/output bit 13 with internal pull-down resistor
SM_D1	192	input/output	4	reserved (do not connect), static memory data input/output bit 1 with internal pull-down resistor
SM_D14	193	input/output	4	reserved (do not connect), static memory data input/output bit 14 with internal pull-down resistor
SM_D0	194	input/output	4	reserved (do not connect), static memory data input/output bit 0 (LSB) with internal pull-down resistor
V _{DDP}	195	supply	—	pad ring supply voltage (3.3 V)
SM_D15	196	input/output	4	reserved (do not connect), static memory data input/output bit 15 (MSB) with internal pull-down resistor
SM_CS3	197	output	4	reserved (do not connect), static memory chip select output for external ROM or RAM (active LOW)
SM_A4	198	output	4	reserved (do not connect), static memory address output bit4
SM_A3	199	output	4	reserved (do not connect), static memory address output bit3
V _{SSP}	200	ground	—	pad ground
SM_A2	201	output	4	reserved (do not connect), static memory address output bit2
SM_A15	202	output	4	reserved (do not connect), static memory address output bit15
SM_A1	203	output	4	reserved (do not connect), static memory address output bit1
SM_A16	204	output	4	reserved (do not connect), static memory address output bit16
V _{DDP}	205	supply	—	pad ring supply voltage (3.3 V)
SM_A0	206	output	4	reserved (do not connect), static memory address output bit0 (LSB)
SM_A17	207	output	4	reserved (do not connect), static memory address output bit17 (MSB)
SM_CS0	208	output	4	reserved (do not connect)

MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer

SAA6752HS

Notes

1. All input pins, input/output pins (in input mode), output pins (in 3-state mode) and open-drain output pins are limited to 3.3 V.
2. If used with external clock source the input voltage has to be limited to 2.5 V.
3. In accordance with the "IEEE 1149.1" standard.
4. Special function of pin $\overline{\text{TRST}}$:
 - a) For board designs without boundary scan implementation, pin $\overline{\text{TRST}}$ must be connected to ground.
 - b) Pin $\overline{\text{TRST}}$ provides easy initialization of the internal BST circuit. By applying a LOW it can be used to force the internal Test Access Port (TAP) controller to the Test-Logic-Reset state (normal operating) at once.

Fig.2 Pin configuration.

9.8.7 IC7500: SAA7118 (VIP)

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

1 FEATURES

The SAA7118 is a video capture device for application at the image port of VGA controller, with following feature high lights:

Video Acquisition/ Clock

Up to sixteen analog CVBS, split as desired (All of the CVBS inputs optionally can be used to convert VSB signals)

Up to eight analog Y+C inputs, split as desired

Up to four analog component inputs, with embedded or separate sync, split as desired

Four on-chip anti-aliasing filters in front of the ADC's

Automatic Clamp Control (ACC) for CVBS, Y and C (or VSB) and component signal

Switchable white Peak Control

Four 9 Bit Low Noise CMOS analog-to-digital converters at two-fold ITU-656 oversampling (27 MHz)

Digitized CVBS or Y+C-signals are available on the expansion port

Fully programmable static gain or automatic gain control, matching to the particular signal properties

On-Chip Line Locked Clock Generation according ITU601

Requires only one crystal (32.11 or 24.576 MHz) for all standards

Horizontal and vertical Sync Detection

Video Decoder

Digital PLL for Synchronization and Clock Generation from all Standards and Non- Standard Video Sources e.g. consumer grade VTR

Digital PLL for Synchronization and Clock Generation from all Standards and Non- Standard Video Sources e.g. consumer grade VTR

Automatic detection of any supported colour standard

Luminance and chrominance signal processing for PAL BGDHIN, Combination-PAL N, PAL M, NTSC M, NTSC-Japan, NTSC 4.43 and SECAM

Adaptive 2/4-line comb filter for two dimensional chrominance/luminance-separation, also with VTR signals

- Increased Luminance and Chrominance Bandwidth for all PAL and NTSC-standards
- Reduced cross colour and cross luminance artefacts
- PAL delay line for correcting PAL phase errors

Brightness Contrast Saturation (BCS)- adjustment, separately for composite and baseband signals

User programmable sharpness control

Fast Blanking between component inputs and a CVBS input through a dedicated pin

Detection of copy-protected signals acc. to the Macrovision standard, indicating level of protection

Independent Gain and Offset - adjustment for raw data path

Component Video Processing

Synchronous Component Video (RGB) input via fast blanking, YCbCr input

Digital matrix

Video Scaler

Horizontal and Vertical Down-Scaling and Up-Scaling to randomly sized windows

Horizontal and Vertical Scaling range: variable zoom to 1/64 (icon)

(Note: H and V zoom are restricted by the transfer data rates)

Anti-Alias- and Accumulating Filter for Horizontal Scaling

Vertical Scaling with Linear Phase Interpolation and Accumulating Filter for Anti-Aliasing (6 bit phase accuracy)

Horizontal Phase Correct Up- and Down-Scaling for improved signal quality of scaled data, especially for compression and video phone applications, with 6 bit phase accuracy (1.2 nsec step width)

Two independent programming sets for scaler part, to define two "ranges" per field or sequences over frames

Fieldwise switching between Decoder-part and Expansion port (X-port) input

Brightness, contrast and saturation controls for scaled outputs

VBI-Data Decoder and Slicer

versatile VBI-data decoder, slicer, clock regeneration and byte synchronization

e.g. for WST, NABST, Close Caption, WSS, etc.

Audio Clock Generation

Generation of a field locked Audio Master Clock to support a constant number of audio clocks per video field

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

Generation of an audio serial and left/right (channel) clock signal

Digital I/O Interfaces

Real Time signal port (R - port), incl. continuous line locked reference clock and real time status information supporting RTC level 3.1 (refer to external document "RTC Functional Specification" for details)

Bidirectional Expansion Port (X - port) with half duplex functionality (D1), 8-bit YCbCr

- output from Decoder part, real time and unscaled, or
- input to Scaler part, e.g. video from MPEG-decoder (extension to 16 bit possible)

Video Image port (I - port) configurable for 8 - bit data (extension to 16 bit possible) in Master Mode (own clock), or Slave Mode (external clock), with auxiliary timing and hand shake signals

Discontinuous data streams supported

32-word * 4 Byte FIFO register for video output data

28-word * 4 Byte FIFO register for decoded VBI output data

Scaled 4:2:2, 4:1:1, 4:2:0, 4:1:0 YCbCr output

Scaled 8-bit luminance only and raw CVBS data output sliced, decoded VBI data output

Miscellaneous

Power On Control

5 V tolerant digital inputs and I/O ports

Software controlled power saving stand-by modes supported

Programming via serial I²C-bus, full read-back ability by an external controller, bit rate up to 400 kbit/s

Boundary Scan Test circuit complies to the IEEE Std. 1149.b1 -1994

BGA156 package

2 APPLICATIONS

Multimedia

Digital Television

Image Processing

Video Phone

PC- Editing cards

PC- Tuner cards

3 GENERAL DESCRIPTION

Philips X-VIP is a new Multistandard Comb Filter Video Decoder chip with additional component processing, providing high quality, optionally scaled, video.

The SAA7118 is a combination of a four channel analog preprocessing circuit including source selection, anti-aliasing filter and A/D-converter, an automatic clamp and gain control, a Clock Generation Circuit (CGC), a Digital Multi Standard Decoder containing two-dimensional chrominance/luminance separation by an adaptive comb filter and a high performance scaler, including variable horizontal and vertical up and down scaling and a Brightness- Contrast- Saturation- Control circuit.

It is a highly integrated circuit for Desktop Video and similar applications. The decoder is based on the principle of line-locked clock decoding and is able to decode the colour of PAL, SECAM and NTSC signals into ITU-601 compatible colour component values. The SAA7118 accepts as analog inputs CVBS or S-Video (Y+C) from TV or VCR sources, including weak and distorted signals, as well as baseband component signals YCbCr or RGB. An expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) is also supported to connect to MPEG or video phone codec. At the so called image port (I-port) the 7118 supports 8 (16) bit wide output data with auxiliary reference data for interfacing to VGA controllers.

The target application for SAA7118 is to capture and optionally scale video images, to be provided as digital video stream through the image port of a VGA controller, for capture to system memory, or just to provide digital baseband video to any picture improvement processing.

SAA7118 also provides means for capturing the serially coded data in the vertical blanking interval (VBI-data). Two principal functions are available:

- to capture raw video samples, after interpolation to the required output data rate, via the scaler and
- a versatile data slicer (data recovery) unit.

SAA7118 incorporates also a field locked audio clock generation. This function ensures that there is always the same number of audio samples associated with a field, or a set of fields. This prevents the loss of synchronization between video and audio, during capture or playback.

All of the A/D- converters may be used to digitize a VSB signal for further decoding; a dedicated output port and a selectable VSB clock input is provided.

The circuit is controlled via I²C-bus (full write / read capability for all programming registers, bit rate up to 400 kbit/s)

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

4 QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
V_{DDx}	digital supply voltage	3.0	3.3	3.6	V
V_{DDCx}	digital core supply voltage	3.0	3.3	3.6	V
V_{DDA}	analog supply voltage	3.1	3.3	3.5	V
T_{amb}	ambient temperature	0	-	70	°C
P_{A+D}	analog and digital power dissipation ⁽¹⁾	-	t.b.d.	-	W

Note

1. Power consumption is measured in CVBS-input mode (only one ADC active) and 8 bit image port output mode, expansion port is tristated

5 ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
SAA7118	156	BGA156	Plastic	SOT 472-1(BB3)

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

6 SYSTEM BLOCK DIAGRAM

Fig.1 Blockdiagram SAA7118

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

7 PINNING AND CONFIGURATION

Bottom View

Fig.2 Package/Pinning SAA7118

7.1 Pinning List

Table 1 Pinning List SAA7118

PIN	NAME	TYPE	DESCRIPTION
A02	XTOUT	O	Crystal oscillator output signal
A03	XTAL	O	Connect output pin for quartz
A04	VXSS	P	Ground for crystal oscillator
A05	TDO	O	Test Data Output for Boundary Scan Test (2)
A06	XRDY	O	Status flag or ready signal from scaler
A07	XCLK	I/O	Clock I/O expansion port
A08	XPD0	I/O	LSB of expansion port bus
A09	XPD2	I/O	MSB-5 of expansion port bus
A10	XPD4	I/O	MSB-3 of expansion port bus
A11	XPD6	I/O	MSB-1 of expansion port bus
A12	TEST5	I/pu	Scan test input; do not connect
A13	TEST3	I/pu	Scan test input; do not connect
B01	AI41	I	Analog input #41
B02	RES1	O	Reserved pin for future extensions or testing, do not connect
B03	VXDD	P	Supply for crystal oscillator

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

PIN	NAME	TYPE	DESCRIPTION
B04	XTAL1	I	Connect input pin for quartz
B05	TDI	I/pu	Test Data Input for Boundary Scan Test (with internal pull-up) (2)
B06	TCK	I/pu	Test Clock for Boundary Scan Test (with internal pull-up) (2)
B07	XDQ	I/O	Data qualifier for expansion port
B08	XPD1	I/O	MSB-6 of expansion port bus
B09	XPD3	I/O	MSB-4 of expansion port bus
B10	XPDS	I/O	MSB-2 of expansion port bus
B11	XTRI	I	X-port output control signal; effects (XPD[7:0], XRH, XRV, XDQ and XCLK)
B12	TEST4	O	Scan test output; do not connect
B13	RES2	NC	Reserved pin for future extensions or testing, do not connect
B14	RES3	NC	Reserved pin for future extensions or testing, do not connect
C01	VSSA4	P	Ground for analog input AI4x
C02	AGND	P	Analog Signal Ground
C03	RES4	NC	Reserved pin for future extensions or testing, do not connect
C04	RES5	NC	Reserved pin for future extensions or testing, do not connect
C05	VDDE1	P	Digital supply peripheral cells
C06	TRSTN	I/pu	Test ReSeT Not for Boundary Scan Test (with internal pull-up) (1)
C07	XRH	I/O	Horizontal reference expansion-port
C08	VDDI1	P	Digital supply core
C09	VDDE2	P	Digital supply peripheral cells
C10	VDDI2	P	Digital supply core
C11	XPD7	I/O	MSB of expansion port bus
C12	RES6	NC	Reserved pin for future extensions or testing, do not connect
C13	RES7	NC	Reserved pin for future extensions or testing, do not connect
C14	TEST2	I/pu	Scan test input; do not connect
D01	AI43	I	Analog input #43
D02	AI42	I	Analog input #42
D03	AI4D	I/O	Differential input for AI4x
D04	VDDA4	P	Supply for analog input AI4x
D05	VSSE1	P	Digital ground peripheral cells
D06	TMS	I/pu	Test Mode Select for Boundary Scan Test or Scan Test (with internal pull-up) (2)
D07	VSSI1	P	Digital ground core (Substrate connection)
D08	XRV	I/O	Vertical reference for expansion-port
D09	VSSE2	P	Digital ground peripheral cells
D10	VSSI2	P	Digital ground core
D11	VSSE3	P	Digital ground peripheral cells
D12	VDDE3	P	Digital supply peripheral cells
D13	TEST1	I/pu	Scan test input; do not connect
D14	HPD0	I/O	LSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
E01	AI44	I	Analog input #44

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

PIN	NAME	TYPE	DESCRIPTION
E02	VDDA4A	P	Supply for analog input AI4x
E03	AI31	I	Analog input #31
E04	VSSA3	P	Ground for analog input AI3x
E11	HPD1	I/O	MSB-6 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
E12	HPD3	I/O	MSB-4 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
E13	HPD2	I/O	MSB-5 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
E14	HPD4	I/O	MSB-3 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
F01	AI3D	I/O	Differential input for AI3x
F02	AI32	I	Analog input #32
F03	AI33	I	Analog input #33
F04	VDDA3	P	Supply for analog input AI3x
F11	VSSI3	P	Digital ground core
F12	VDDI3	P	Digital supply core
F13	HPD5	I/O	MSB-2 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
F14	HPD6	I/O	MSB-1 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
G01	AI34	I	Analog input #34
G02	VDDA3A	P	Supply for analog input AI3x
G03	AI22	I	Analog input #22
G04	AI21	I	Analog input #21
G11	VSSE4	P	Digital ground peripheral cells
G12	IPD1	O	MSB-6 of Image port bus
G13	HPD7	I/O	MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
G14	IPD0	O	LSB of Image port bus
H01	AI2D	I/O	Differential input for AI2x
H02	AI23	I	Analog input #23
H03	VSSA2	P	Ground for analog input AI2x
H04	VDDA2	P	Supply for analog input AI2x
H11	IPD2	O	MSB-5 of Image port bus
H12	VDDE4	P	Digital supply peripheral cells
H13	IPD4	O	MSB-3 of Image port bus
H14	IPD3	O	MSB-4 of Image port bus
J01	VDDA2A	P	Supply for analog input AI2x
J02	AI11	I	Analog input #11
J03	AI24	I	Analog input #24
J04	VSSA1	P	Ground for analog input AI1x

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

PIN	NAME	TYPE	DESCRIPTION
J11	VSSI4	P	Digital ground core
J12	VDDI4	P	Digital supply core
J13	IPD6	O	MSB-1 of Image port bus
J14	IPD5	O	MSB-2 of Image port bus
K01	AI12	I	Analog input #12
K02	AI13	I	Analog input #13
K03	AI1D	I/O	Differential input for AI1x
K04	VDDA1	P	Supply for analog input AI1x
K11	IPD7	O	MSB of Image port bus
K12	IGPH	O	Multi purpose horizontal reference signal
K13	IGP1	O	General purpose signal #1
K14	IGPV	O	Multi purpose vertical reference signal
L01	VDDA1A	P	Supply for analog input AI1x
L02	AGNDA	P	Analog signal ground connection
L03	AI14	I	Analog input #14
L04	VSSE5	P	Digital ground peripheral cells
L05	VSSI5	P	Digital ground core
L06	ADP6	O	MSB-2 of Direct A/D-converted output bus (VSB)
L07	ADP3	O	MSB-5 of Direct A/D-converted output bus (VSB)
L08	VSSE6	P	Digital ground peripheral cells
L09	VSSI6	P	Digital ground core
L10	RTCO	O/st/pd (3)	RTC output; strap to LOW (4k7) for first I ² C slave address 42h strap to HIGH (4k7) for second I ² C slave address 40h
L11	VSSE7	P	Digital ground peripheral cells
L12	ITRI	I/O	Image-port control signal, effects all Image port pins
L13	IDQ	O	Data qualifier for image port
L14	IGP0	O	General purpose signal #0
M01	AOUT	O	Analog test output (not for use in application)
M02	VSSA0	P	Ground for internal clock generator
M03	VDDA0	P	Supply for internal clock generator
M04	VDDE5	P	Digital supply peripheral cells
M05	VDDI5	P	Digital supply core
M06	ADP7	O	MSB-1 of Direct A/D-converted output bus (VSB)
M07	ADP2	O	MSB-6 of Direct A/D-converted output bus (VSB)
M08	VDDE6	P	Digital supply peripheral cells
M09	VDDI6	P	Digital supply core
M10	RTSO	O	Real time status or sync information
M11	VDDE7	P	Digital supply peripheral cells
M12	AMXCLK	I	Audio Master External clock input

PAL/NTSC/SECAM Video Decoder with Adaptive Comb Filter,
Component Video Input, VBI-Data Slicer and High Performance Scaler

SAA7118

PIN	NAME	TYPE	DESCRIPTION
M13	FSW	I/pd	Fast Switch (Blanking), with internal pull-down, inserts component inputs into CVBS signal
M14	ICLK	I/O	Clock output signal for image-port, LCLK of LPB image port mode, or optional asynchronous backend clock input
N01	RES8	NC	Reserved pin for future extensions or testing, do not connect
N02	RES9	I/pu	Reserved pin for future extensions or testing, do not connect
N03	RES10	I/pd	Reserved pin for future extensions or testing, do not connect
N04	CE	I/pu	Chip Enable or Reset with internal pull-up
N05	LLC2	O	Line-locked clock at half frequency (13.5 MHz nominal)
N06	CLKEXT	I	External clock input intended for A/D-conversion of VSB signals (36 MHz)
N07	ADP5	O	MSB-3 of Direct A/D-converted output bus (VSB)
N08	ADP0	O	LSB of Direct A/D-converted output bus (VSB)
N09	SCL	I	I ² C Serial Clock
N10	RTS1	O	Real time status or sync information
N11	ASCLK	O	Audio serial clock
N12	ITRDY	I	Target Ready for image port bus
N13	RES11	NC	Reserved pin for future extensions or testing, do not connect
N14	RES12	NC	Reserved pin for future extensions or testing, do not connect
P02	RES13	I/O	Reserved pin for future extensions or testing, do not connect
P03	EXMCLR	I/pd	External Mode Clear, with internal pull-down
P04	LLC	O	Line-locked clock (27 MHz nominal)
P05	RESON	O	Reset Output Not signal
P06	ADP8	O	MSB of Direct A/D-converted output bus (VSB)
P07	ADP4	O	MSB-4 of Direct A/D-converted output bus (VSB)
P08	ADP1	O	MSB-7 of Direct A/D-converted output bus (VSB)
P09	INT_A	O/od	I ² C interrupt flag (Low if any enabled status bit has changed)
P10	SDA	I/O/od	I ² C Serial Data
P11	AMCLK	O	Audio Master clock, must be less than half the crystal clock frequency
P12	ALRCLK	O/st/pd	Audio left/right clock, strap to LOW (4k7) for 24.576 MHz crystal strap to HIGH (4k7) for 32.11 MHz crystal (3)
P13	TEST0	I/pu	Scan test input; do not connect

TYPE description:

I=input, O=output, P=power, NC=not connected, st=strapping, pu=pull-up, pd=pull-down, od=open drain

Notes

- This pin provides easy initialization of BST circuitry. TRSTN can be used to force the TAP (Test Access Port) controller to the Test-Logic-Reset state (normal operation) at once
- According to the IEEE1149.b1-1994 standard the pads TDI and TMS are input pads with a internal pull-up transistor and TDO a tri-state output pad. TCK, TRSTN are also built with internal pile-up
- Strapping remark: If the strapping pin is unused, the internal pull-down resistor is sufficient for strap function. If pin is used in an application, an external strapping resistor (4,7k) is necessary to get a certain strap function.

9.8.8 FLI2200

FLI2200

Description

The FLI2200 is a single chip implementation of Faroudja Laboratories' award winning deinterlacing and post-processing algorithms that produce the highest quality progressive video output from a variety of interlaced video inputs including 525/60 (NTSC) or 625/50 (PAL or SECAM). It uses patented and patent pending motion-adaptive deinterlacing that selects the optimal filtering on a per-pixel basis. This includes detection and proper interleaving of 3:2 and 2:2 pulldown for film-base sources, including continuous monitoring and compensation for bad edits that occur frequently in broadcast material due to poor scene cuts or insertion of commercials. Video material is processed by a set of content-sensitive spatio-temporal filters that adapt to the appropriate direction for smoothest interpolation using the patented Faroudja DCDi™ algorithm. The FLI2200 also includes motion-adaptive cross-color suppression that removes highly objectionable coloration artifacts produced by commonly used video decoders. Its internal processing uses 10 bits per channel to maintain the highest quality. Its inputs and outputs are 10 bits/channel for best quality but also supports 8 bits/channel for more cost-sensitive applications. The FLI2200 requires 4 MB of low cost SDRAM for best quality deinterlacing, but it can also be operated in an optimized intra-field mode without memory for more cost-sensitive applications. This makes possible the use of a single design for both high-end and low-end applications. The FLI2200 integrates a number of functions to provide maximum flexibility in a low cost configuration. This includes an on-chip clock generator, SDRAM controller, display controller, input and output color-space converters. It uses a standard 2-wire serial control interface for easy control and access to the registers.

The FLI2200 can be connected without glue logic to the FLI2000 video decoder and FLI2220 Enhancer and OSD Generator to produce the highest quality video pipeline for premium applications. It is also fully compatible with other decoders having a ITU-R BT 656 output format.

Applications

- Flat panel TV – LCD, PDP
- Progressive scan TVs
- Multimedia front/rear projectors
- Home Theater
- Scan Converters
- Multimedia PCs/Workstations

Features

- Motion-adaptive cross-color suppression removes artifacts produced by improper Y/C separation in low-cost video decoders
- Motion-adaptive video deinterlacing selects optimal filtering on a per-pixel basis
 - Film-mode for proper handling of 3:2 and 2:2 pulldown material
 - Bad-edit detection/correction compensates for poor scene cuts and insertions common in broadcast material
 - Motion-weighted interpolation for video sources produces maximum resolution without introducing motion artifacts
 - Directional Correlational Deinterlacing (DCDi™) minimizes jaggies on angled lines
- 8/10-bit Y/Cb/Cr (D1) (ITU-R BT 656), 16/20-bit Y Cb/Cr (ITU-R BT 601), 24/30-bit RGB or YCbCr/YPbPr interlaced input options
- ? Supports 525/60 (NTSC), 625/50 (PAL/SECAM)
- ? Accepts up to 1100 pixels/line
- 8/10-bit, 16/20-bit YUV, 24/30-bit RGB or YCbCr/YPbPr progressive output options
- Supports 8- or 10-bit inputs and outputs
- 10-bit internal processing for highest quality
- Includes color-space converters at input and output for maximum flexibility
- Auto-detection of NTSC/PAL/SECAM inputs
- High-order filtering produces smooth chroma output in 4:2:2 to 4:4:4 or 4:4:4 to 4:2:2 conversions
- Resolution recovery maximizes output signal-to-noise ratio and dynamic range
- Can be operated without glue logic with FLI2000 Video Decoder and FLI2220 Enhancer and OSD Generator ICs to produce highest quality video pipeline
- Glue-less interface to most standard video decoders
- Built-in display timing generator
- On-chip clock generator eliminates external PLLs
- On-chip SDRAM controller
- Uses low cost SDRAM as field memory – 4 MB
- Optimized intra-field operation allows memory-less configuration for lowest cost applications with same design and layout as for high-end applications
- 2-wire serial control interface for easy control
- 176-pin TQFP package

DCDi™ is a Faroudja trademark

Simplified Block Diagram

Pin description

Pin Connections and Functions

Pin #	Name	Description
See list	V _{SS}	Ground connections. Connect to the digital ground plane. Pins: 2, 17, 34, 55, 64, 74, 85, 96, 106, 115, 124, 132, 138, 145, 152, 159, 168
See list	V _{DD33}	Pad Ring digital power connections. Connect to the digital 3.3 volt power supply and decouple to the digital ground plane. Pins: 1, 33, 63, 73, 84, 95, 105, 114, 123, 137, 144, 151, 167
See list	V _{DD25}	Core Logic digital power connections. Connect to the digital 2.5 volt power supply and decouple to the digital ground plane. Pins: 16, 54, 107, 158
43	AV _{SS}	Ground connection for the clock PLL circuits. Connect to the digital ground plane
42	AV _{DD}	Analog power connections for the clock PLL circuit. Connect to a separately decoupled 2.5 volt power supply and decouple directly to the AV _{SS} pin..
49	RESETB	Reset. When this input is set low it will reset all the internal registers to the default states. Refer to the section on the control registers for details of these states. The device must be reset after it is powered-up.
53	OE	When this pin is set high the outputs of the FLI2200 will be enabled; when it is set low the outputs will be set into a high-impedance state.
56-58	I FORMAT ₂₋₀	Input signal format control. The settings of these pins set the format of the input signal. This can be overridden by the IFmtOvr bit, bit 3 in register 00 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 00 _H for details.
59-61	O FORMAT ₂₋₀	Output signal format control. The settings of these pins set the format of the output signal. This can be overridden by the OFmtOvr bit, bit 3 in register 07 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 07 _H for details.
44-45	DADDR ₁₋₀	The settings of DADDR ₁₋₀ allow the device address of the control bus to be programmed to prevent conflict with the other devices connected to the bus. DADDR ₁₋₀ allow the device address to be set to any of the following values: C0/C1 _H , C2/C3 _H , E0/E1 _H , E2/E3 _H . Please refer to the section "Control Bus Operation and Protocol" for further information.
46	MODE	When this pin is set low the control bus will operate in the slave mode; allowing the device to be programmed from an external controller. When it is set high the FLI2200 will self-program from an external I ² C memory connected to the bus. Please refer to the "Control Bus Operation and Control Protocol" section for more details.
47	SDA	2-wire serial control bus data. Data can be written to the control registers via this pin when it is in the input mode and data can be read from the status registers when it is in the output mode. Refer to the section on the serial port for timing and format details and to the section on the registers for programming information.
48	SCL	2-wire serial control bus clock. When the control port operates in slave mode this pin will be an input and when it operates in the self programming mode it will be an output.
40	PIXCLK	Pixel clock input. This clock is used to drive all the circuits in the FLI2200. An internal PLL is used to upconvert this clock to provide the master clock signal and other clocks used internally. Note that when the FLI2200 is used in the D1 input mode the PIXCLK input should run at the rate of two cycles per pixel (one for luma and one for chroma).
62	N/P/IN/OUT	NTSC/PAL input or output. The default function of this pin is NTSC/PAL signal indicator output. When the input video signal is a 525 line signal this pin will be set high and when it is a 625 line signal the pin is set low. This function of this pin can be programmed to be an input according to the setting of this pin if the NPOp ₁₋₀ bits, bits 5-4 in register 03 _H , are set to 00 _H , overriding the internal line counter. i.e., it will treat the signal as a 525 line signal when it is set high and a 625 line signal when it is set low.

Pin #	Name	Description
52	NOMEM	No Memory Mode control input. This pin controls the operation of the FLI2200 as follows: When this pin is set low the device is used with external field memories and operates in the full set of deinterlacing modes, i.e., motion adaptive video deinterlacing and full frame film source deinterlacing using 3:2 pulldown detection (2:2 pulldown for 625/50 sources). When this pin is set high the FLI2200 is forced into the intra-field only deinterlacing mode, which requires no external memories, allowing the FLI2200 to be used in low-cost applications where the ultimate video quality is not a requirement. <i>To ensure proper startup of the SDRAMs this pin should be set high during the power-up sequence.</i> This can be overridden by the NMOr bit, bit 1 in register 05 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 05 _H for details.
27-18	G/YIN ₉₋₀	10-bit green or luminance signal input bus. The mode is set by the IFORMAT ₂₋₀ pins. This can be overridden by the IFmtOvr bit, bit 3 in register 00 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 00 _H for details. This signal is sampled on the rising edge of PIXCLK.
15-6	B/CbIN ₉₋₀	10-bit blue or Cb chroma signal input bus. The mode is set by the IFORMAT ₂₋₀ pins. This can be overridden by the IFmtOvr bit, bit 3 in register 00 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 00 _H for details. Bits 6, 4 and 3 in register 08 _H specify the busses used in the multiplexed modes. In all cases the signals are sampled on the rising edges of PIXCLK. In the Y Cb Cr and Y Pb Pr modes the Cb or Pb signal is sampled on alternate rising edges of PIXCLK in 4:2:2 mode. The frequency of PIXCLK will be 27 MHz in the multiplexed Y/Cb/Cr mode and 13.5 MHz in all other modes. These pins should be tied low when not used.
39-35 32-28	R/CrIN ₉₋₀	10-bit red or Cr chroma signal input bus. The mode is set by the IFORMAT ₂₋₀ pins. This can be overridden by the IFmtOvr bit, bit 3 in register 00 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 00 _H for details. Bits 6, 4 and 3 in register 08 _H specify the busses used in the multiplexed modes. In all cases the signals are sampled on the rising edges of PIXCLK. In the Y Cb Cr mode the Cr signal is sampled on alternate rising edges of PIXCLK in 4:2:2 mode. The frequency of PIXCLK will be 27 MHz in the multiplexed Y/Cb/Cr mode and 13.5 MHz in all other modes. These pins should be tied low when not used.
3	H SYNCREFI	Horizontal sync or reference. The horizontal sync or reference of the input signal should be connected to this pin. The function is programmed with bit 4 in register 00 _H . The polarity and position of the sync or reference pulse relative to the start of active video are both programmable within a small range. When the FLI2200 is used in the ITU-R BT 601/D1 input mode with embedded syncs (IFormat = 110) this input is not used and should be tied low; in this case all sync information will be derived from the signal.
4	V SYNCREFI	Vertical sync or reference. The vertical sync or reference of the input signal should be connected to this pin. The function is programmed with bit 4 in register 00 _H . The polarity and position of the sync or reference pulse relative to the start of active video are both programmable within a small range. When the FLI2200 is used in the ITU-R BT 601/D1 input mode with embedded syncs (IFormat = 110) this input is not used and should be tied low; in this case all sync information will be derived from the signal.
5	FLDIN	Field identifier input. The field identifier output of the source signal should be connected to this pin. A low setting signifies an even field and a high level signifies an odd field. When bit 4 in register 00 _H is set low, the input timing is based on HREF and VREF and this signal is required. When this bit is set high the input timing is based on HSYNC and VSYNC and this signal is generated internally and is not required. When bit 5 in register 06 is set high this signal is also used as the frame boundary identifier for 30 Hz film sources.

Pin #	Name	Description
65-72 75-76	G/YOUT ₉₋₀	Green or luminance output bus. In the RGB mode this output is the Green signal and in the YCbCr mode it is the Y signal. The mode is set by the OFORMAT ₂₋₀ pins. This can be overridden by the OFmtOvr bit, bit 3 in register 07 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 07 _H for details. The signal is clocked out on the falling edge of YCLKO.
93-94 97-104	B/CbOUT ₉₋₀	Blue or Cb chrominance output bus. In the RGB mode this output is the Blue signal, in the Y Cb Cr mode it is the Cb signal. The mode is set by the OFORMAT ₂₋₀ pins. This can be overridden by the OFmtOvr bit, bit 3 in register 07 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 07 _H for details. The busses used in the multiplexed modes are set by means of bit 5 in register 08 _H . The signal is clocked out on the falling edge of YCLKO in the RGB and YUV 4:4:4 modes, on the falling edge of YCLKO prior to the next rising edge of CCLKO in the YUV 4:2:2 mode, and on the rising edge of MEMCLKO in the multiplexed YCbCr (pseudo D1) mode.
77-83 86-88	R/CrOUT ₉₋₀	Red or Cr chrominance output bus. In the RGB mode this output is the Red signal, in the YCbCr mode it is the Cr signal. The mode is set by the OFORMAT ₂₋₀ pins. This can be overridden by the OFmtOvr bit, bit 3 in register 07 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 07 _H for details. The busses used in the multiplexed modes are set by means of bit 5 in register 08 _H . The signal is clocked out on the falling edge of YCLKO in the RGB and YUV 4:4:4 modes, on the falling edge of YCLKO prior to the next rising edge of CCLKO in the YUV 4:2:2 mode, and on the rising edge of MEMCLKO in the multiplexed YCbCr (pseudo D1) mode.
116	CCLKO	Chroma output sampling clock. This clock is derived from PIXCLK and will be at half the frequency of YCLKO. In 30-bit 4:2:2 output mode the chroma output signals will change on the falling edge of YCLKO prior to the next rising edge this clock.
117	YCLKO	Luma output sampling clock. This clock is derived from PIXCLK and is double the frequency of PIXCLK. In 30-bit and 20-bit output modes the output signals will change on the falling edge of this clock.
89	VREFO	Start of active field or frame indicator. This signal goes high to indicate the first active line in each field or frame and goes low during the vertical blanking interval. The polarity and timing of this signal are programmable.
90	HREFO	Start of active line indicator output. This signal goes high to indicate the first active pixel in each line and goes low during the horizontal blanking interval. The polarity and timing of this signal are programmable.
91	VSYNC/ CREFO	Vertical sync output. This signal provides the vertical sync function for the outputs. Its polarity is programmable to be active high or active low. It can also be programmed to be a composite reference for applications requiring this instead of sync.
92	H/CSYNCO	Horizontal or composite sync output. This signal provides the horizontal sync function for the outputs. Its polarity is programmable to be active high or active low. This signal can also be programmed to be the composite sync output, CSYNC.
108	FSYNC	Film mode sync output. When film mode is detected this pin will toggle in sync with the 3:2 (NTSC) or 2:2 (PAL and 30 Hz film in NTSC) pulldown sequence detected in the source.
110	FILM	Film mode detector output. This pin will be set high when the FLI2200 detects that the video input was converted from 24 fps film with a telecine machine. If film mode is not detected this pin will be set low.

Pin #	Name	Description
125-131 133-136	ADDR ₁₀₋₀	SDRAM Address bus. This signal bus is used to address the external SDRAM(s) used for field memories. It should be connected to the A ₁₀₋₀ bus of the memory chip(s). Please refer to the Applications section of this data sheet for further details.
176-169 166-160 157-153 150-146 143-139	DATA ₂₉₋₀	SDRAM Data bus. This signal bus is used to transfer the data to and from the external SDRAM(s) used for field memories. It should be connected to the DQ ₂₉₋₀ bus of the memory chip when using a 64 Mbit SDRAM. When using two 16 Mbit SDRAMs this 30-bit bus may be connected to the two 16-bit data busses of the memories in two ways: either connect 16 lines to one chip and 14 to the other, or connect 15 to both. In all cases the two unused data lines on the memory chip(s) should be connected to ground via 22 k? resistors. Please refer to the Applications section of this data sheet for further details.
118	MEMCLKO	SDRAM clock and 2x output sampling clock. This clock is derived from PIXCLK and will be at double the frequency of YCLKO. This active signal should be connected to the CLK pin(s) on the SDRAM(s). When the 10-bit output mode selected the output signals will also change at this clock rate and this should then be used as the output clock..
119	WEN	SDRAM Write Enable. This active low signal should be connected to the WE pin(s) on the SDRAM(s).
120	RASN	SDRAM Row Address Select. This active low signal should be connected to the RAS pin(s) on the SDRAM(s).
121	CASN	SDRAM Column Address Select. This active low signal should be connected to the CAS pin(s) on the SDRAM(s).
122	BSEL	SDRAM Bank Select. When using two 16 Mbit SDRAMs this signal should be connected to the BA (also called BS or A ₁₁) pin on both SDRAMs. When using a 64 Mbit SDRAM this signal should be connected to the BA0 (also called BS0 or A ₁₁) pin on the SDRAM and BA1/BS1 (also called BA when BA0 is referred to as A ₁₁) should be tied low.
41, 50, 51, 109, 111	TEST ₄₋₀	These pins are used for test purposes only and should always be tied low for normal operation.
112, 113	TESTO ₁₋₀	These pins are test outputs and should be left unconnected in normal operation.

9.8.9 ADV7196

**64Mb: x32
SDRAM**

SYNCHRONOUS DRAM

MT48LC2M32B2 - 512K x 32 x 4 banks
For the latest data sheet, please refer to the Micron Web site: www.micronsemi.com/datasheets/sdramds.html

FEATURES

- PC100 functionality
- Fully synchronous; all signals registered on positive edge of system clock
- Internal pipelined operation; column address can be changed every clock cycle
- Internal banks for hiding row access/precharge
- Programmable burst lengths: 1, 2, 4, 8, or full page
- Auto Precharge, includes CONCURRENT AUTO PRECHARGE, and Auto Refresh Modes
- Self Refresh Mode
- 64ms, 4,096-cycle refresh (15.6µs/row)
- LVTTL-compatible inputs and outputs
- Single +3.3V ±0.3V power supply
- Supports CAS latency of 1, 2, and 3.

OPTIONS

MARKING

Configuration	2 Meg x 32 (512K x 32 x 4 banks)	2M32B2
Plastic Package - OCPL ¹	86-pin TSOP (400 mil)	TG
Timing (Cycle Time)		
5ns (200 MHz)	-5	
5.5ns (183 MHz)	-5.5	
6ns (166 MHz)	-6	
7ns (143 MHz)	-7	
Operating Temperature Range		
Commercial (0° to +70°C)		None
Extended (-40°C to +85°C)		IT ²

NOTE: 1. Off-center parting line

2. Available on -7

Part Number Example:
MT48LC2M32B2TG-7

KEY TIMING PARAMETERS

SPEED GRADE	CLOCK FREQUENCY	ACCESS TIME CL = 3*	SETUP TIME	HOLD TIME
-5	200 MHz	4.5ns	1.5ns	1ns
-5.5	183 MHz	5ns	1.5ns	1ns
-6	166 MHz	5.5ns	1.5ns	1ns
-7	143 MHz	5.5ns	2ns	1ns

*CL = CAS (READ) latency

PIN ASSIGNMENT (TOP VIEW)

86-PIN TSOP

Vdd	1*	Vss
DQ0	2	DQ15
VddQ	3	VssQ
DQ1	4	DQ14
DQ2	5	DQ13
VssQ	6	VddQ
DQ3	7	DQ12
DQ4	8	DQ11
VddQ	9	VssQ
DQ5	10	DQ10
DQ6	11	DQ9
VssQ	12	VddQ
DQ7	13	DQ8
NC	14	NC
Vdd	15	Vss
DQM0	16	DQM1
WEB#	17	NC
CAS#	18	NC
RAS#	19	CLK
CS#	20	CKE
NC	21	A9
BA0	22	A8
BA1	23	A7
A10	24	A6
A0	25	A5
A1	26	A4
A2	27	A3
DQM2	28	DQM3
Vdd	29	Vss
NC	30	NC
DQ16	31	DQ31
VssQ	32	VddQ
DQ17	33	DQ30
DQ18	34	DQ29
VddQ	35	VssQ
DQ19	36	DQ28
DQ20	37	DQ27
VssQ	38	VddQ
DQ21	39	DQ26
DQ22	40	DQ25
VddQ	41	VssQ
DQ23	42	DQ24
Vdd	43	Vss

Note: The # symbol indicates signal is active LOW.

Configuration	512K x 32 x 4 banks
	4K
	2K (A0-A10)
	4 (BA0, BA1)
	256 (A0-A7)

**64Mb: x32
SDRAM**

64Mb (x32) SDRAM PART NUMBER

PART NUMBER	ARCHITECTURE
MT48LC2M32B2TG	2 Meg x 32

GENERAL DESCRIPTION

The 64Mb SDRAM is a high-speed CMOS, dynamic random-access memory containing 67,108,864-bits. It is internally configured as a quad-bank DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 16,777,216-bit banks is organized as 2,048 rows by 256 columns by 32 bits.

Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0, BA1 select the bank, A0-A10 select the row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

The SDRAM provides for programmable READ or WRITE burst lengths of 1, 2, 4, or 8 locations, or the full page, with a burst terminate option. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence.

The 64Mb SDRAM uses an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the $2n$ rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a high-speed, fully random access. Precharging one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.

The 64Mb SDRAM is designed to operate in 3.3V, low-power memory systems. An auto refresh mode is provided, along with a power-saving, power-down mode. All inputs and outputs are LVTTL-compatible.

SDRAMs offer substantial advances in DRAM operating performance, including the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time and the capability to randomly change column addresses on each clock cycle during a burst access.

**64Mb: x32
SDRAM**

FUNCTIONAL BLOCK DIAGRAM 2 Meg x 32 SDRAM

**64Mb: x32
SDRAM**

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
68	CLK	Input	Clock: CLK is driven by the system clock. All SDRAM input signals are sampled on the positive edge of CLK. CLK also increments the internal burst counter and controls the output registers.
67	CKE	Input	Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal. Deactivating the clock provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), ACTIVE POWER-DOWN (row active in any bank) or CLOCK SUSPEND operation (burst/access in progress). CKE is synchronous except after the device enters power-down and self refresh modes, where CKE becomes asynchronous until after exiting the same mode. The input buffers, including CLK, are disabled during power-down and self refresh modes, providing low standby power. CKE may be tied HIGH.
20	CS#	Input	Chip Select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH. CS# provides for external bank selection on systems with multiple banks. CS# is considered part of the command code.
17, 18, 19	WE#, CAS#, RAS#	Input	Command Inputs: WE#, CAS#, and RAS# (along with CS#) define the command being entered.
16, 71, 28, 59	DQM0-DQM3	Input	Input/Output Mask: DQM is sampled HIGH and is an input mask signal for write accesses and an output enable signal for read accesses. Input data is masked during a WRITE cycle. The output buffers are placed in a High-Z state (two-clock latency) during a READ cycle. DQM0 corresponds to DQ0-DQ7; DQM1 corresponds to DQ8-DQ15; DQM2 corresponds to DQ16-DQ23; and DQM3 corresponds to DQ24-DQ31. DQM0-DQM3 are considered same state when referenced as DQM.
22, 23	BA0, BA1	Input	Bank Address Input(s): BA0 and BA1 define to which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied.
25-27, 60-66, 24	A0-A10	Input	Address Inputs: A0-A10 are sampled during the ACTIVE command (row-address A0-A10) and READ/WRITE command (column-address A0-A7 with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command.
2, 4, 5, 7, 8, 10, 11, 13, 74, 76, 77, 79, 80, 82, 83, 85, 31, 33, 34, 36, 37, 39, 40, 42, 45, 47, 48, 50, 51, 53, 54, 56	DQ0-DQ31	Input/Output	Data I/Os: Data bus.
14, 21, 30, 57, 69, 70, 73	NC	-	No Connect: These pins should be left unconnected. Pin 70 is reserved for SSTL reference voltage supply.
3, 9, 35, 41, 49, 55, 75, 81	VddQ	Supply	DQ Power Supply: Isolated on the die for improved noise immunity.
6, 12, 32, 38, 46, 52, 78, 84	VssQ	Supply	DQ Ground: Provide isolated ground to DQs for improved noise immunity.
1, 15, 29, 43	Vdd	Supply	Power Supply: +3.3V ±0.3V.
44, 58, 72, 86	Vss	Supply	Ground.

9.8.10 ADV7196

ADV7196A

INPUT FORMATS

YCrCb in 2x10-Bit (4:2:2) or 3x10-Bit (4:4:4) format compliant to SMPTE-293M (525p), ITU-R.BT1358 (625p), SMPTE274M (1080i), SMPTE296M (720p) and any other High Definition standard using Async Timing Mode
RGB in 3x10 Bit 4:4:4 format

OUTPUT FORMATS

YPrPb Progressive Scan (EIA-770.1, EIA-770.2)
YPrPb HDTV (EIA 770.3)
RGB levels compliant to RS-170 and RS-343A
11-Bit + Sync (DAC A)
11-Bit DACs (DAC B, DAC C)

PROGRAMMABLE FEATURES

Internal Testpattern Generator with Color Control
Y/C delay (+/-)
Gamma Correction
Individual DAC on/off control
54MHz Output (2xOversampling)
Sharpness filter with programmable gain/attenuation

GENERAL DESCRIPTION

The ADV7196A is a triple high speed, digital-to-analog encoder on a single monolithic chip. It includes of three high speed video D/A converters with TTL compatible inputs.

The ADV7196A has three separate 10-Bit wide input ports which accept data in 4:4:4 10-Bit YCrCb or RGB or 4:2:2 10-Bit YCrCb. This data is accepted in progressive scan format at 27MHz or HDTV format at 74.25MHz or 74.1758MHz. For any other High Definition standard but SMPTE 293M, ITU-R BT.1358, SMPTE274M or SMPTE296M the Async Timing Mode can be used to input data to the ADV7196A. For all standards, external horizontal, vertical and blanking signals or EAV/SAV codes control the insertion of appropriate synchronisation signals into the digital data stream and therefore the output signals.

The ADV7196A outputs analog YPrPb progressive scan format complying to EIA770.1, EIA 770.2 or YPrPb HDTV complying to EIA 770.3 or RGB complying to RS-170/RS 343A.

The ADV7196A requires a single 3.3V power supply, an optional external 1.235 V reference and a 27 MHz clock in Progressive Scan Mode or a 74.25MHz (or 74.1758MHz) clock in HDTV mode.

Programmable Adaptive Filter Control

Undershoot Limiter

VBI Open Control

I2C Filter

Macrovision Rev 1.0 (525p)

CGMS-A (525p)

2 Wire Serial MPU Interface

Single Supply +3.3 V Operation

52-MQFP package

APPLICATIONS

Progressive Scan / HDTV Display Devices

DVD Players

Progressive Scan/HDTV Projection Systems

MPEG2@81MHz

Digital Video Systems

High Resolution Color Graphics

Image Processing/ Instrumentation

Digital Radio Modulation/ Video Signal Reconstruction

In Progressive Scan Mode, a Sharpness Filter with programmable gain allows high frequency enhancement on the luminance signal. Programmable Adaptive Filter Control which may be used, allows removal of ringing on the incoming Y data. The ADV7196A supports CGM S-A data control generation and the Macrovision Anticopy algorithm in 525p mode.

The ADV7196A is packaged in a 52-Pin MQFP package.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

Pin	Mnemonic	Input/Output	Function
GND	G		Digital Ground
AGND	G		Analog Ground
ALSB	I		TTL Address Input. This signal sets up the LSB of the MPU address. When this pin is tied high the I2C filter is activated which reduces noise on the I2C interface. When this pin is tied low, the input bandwidth on the I2C lines is increased.
DV	I		Video Blanking Control Signal Input.
CLKIN	I		Pixel Clock Input. Requires a 27MHz reference clock for standard operation in Progressive Scan Mode or a 74.25MHz (74.1758MHz) reference clock in HDTV mode.
COMP	O		Compensation Pin for DACs. Connect 0.1μF Capacitor from COMP pin to V _{AA} .
DAC A	O		Y analog output.
DAC B	O		Color component analog output of input data on Cr 9-0 input pins.
DAC C	O		Color component analog output of input data on Cb/Cr 9-0 input pins.
<u>H SYNC/</u> <u>SYNC</u>	I		<u>H SYNC</u> , horizontal sync control signal input or SYNC input control signal in Async Timing Mode.
Cr 9-0	I		10-Bit Progressive scan/ HDTV input port for color data in 4:4:4 input mode. In 4:2:2 mode this input port is not used. Input port for R data when RGB data is input.
Cb/Cr 9-0	I		10-Bit Progressive scan/ HDTV input port for color data. In 4:2:2 mode the multiplexed CrCb data must be input on these pins. Input port for B data when RGB is input.
<u>RESET</u>	I		This input resets the on-chip timing generator and sets the ADV7196A into Default Register setting. Reset is an active low signal.
R _{SET}	I		A 2470 Ohms resistor (for input ranges 64-940 and 64-960, output standards EIA770.1-3) must be connected from this pin to AGND and is used to control the amplitudes of the DAC outputs. For input ranges 0 -1023 (RS-170,RS-343A) the R _{SET} value must be 2820 Ohms.
SCL	I		MPU Port Serial Interface Clock Input
SDA	I/O		MPU Port Serial Data Input/Output
<u>V SYNC/</u> <u>TSYNC</u>	I		<u>V SYNC</u> , vertical sync control signal input or TSYNC input control signal in AsyncTiming Mode.
V _{DD}	P		Digital power supply
V _{AA}	P		Analog power supply
V _{REF}	I/O		Optional External Voltage Reference Input for DACs or Voltage Reference Output (1.235V).
Y9 -Y0	I		10-Bit Progressive scan/ HDTV input port for Y data. Input for G data when RGB data is input.

9.9 IC's Divio 1.8

9.9.1 IC7400: uPD72852

DATA SHEET

MOS INTEGRATED CIRCUIT
μPD72852

IEEE1394a-2000 COMPLIANT 400 Mbps TWO-PORT PHY LSI

The μPD72852 is a two-port physical layer LSI that complies with the IEEE1394a-2000 specifications.

The μPD72852 supports transfers of up to 400 Mbps and consumes less power than the μPD72850B. The μPD72852 is suitable for battery systems with an IEEE1394 interface.

FEATURES

- The two-port physical layer LSI complies with IEEE1394a-2000
- Fully interoperable with IEEE1394 std 1394 Link (FireWire™, i.LINK™)
- Meets Intel™ Mobile Power Guideline 2000
- Full IEEE1394a-2000 support includes: Suspend/Resume, connection debounce, arbitrated short bus reset, multi-speed concatenation, arbitration acceleration, fly-by concatenation
- Fully compliant with OHCI requirements
- Small package: 68-pin plastic LQFP
- Super low power: 68 mA (Operating mode)
: 115 μA (Suspend mode)
- Data rate: 400/200/100 Mbps
- Supports PHY pinging and remote PHY access packets
- 3.3 V single power supply (if power not supplied via node: 3.0 V single power supply)
- 24.576 MHz crystal clock generation, 393.216 MHz PLL multiplying frequency
- 64-bit flexible register incorporated in PHY register
- Electrically isolated Link interface
- Supports LPS/Link-on as part of PHY/Link interface
- External filter capacitors for PLL not required
- Extended Resume signaling for compatibility with legacy DV devices
- System power management by signaling of node power class information
- Cable power monitor (CPS) is equipped

ORDERING INFORMATION

Part number	Package
μPD72852GB-8EU	64-pin plastic LQFP (10 x 10)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

NEC **μ PD72852****BLOCK DIAGRAM**

NEC **μ PD72852**

1. PIN FUNCTIONS

1.1 Cable Interface Pins

Name	Pin No.	I/O	Function
TpA0p	39	I/O	Port 0 twisted pair cable A positive phase I/O
TpA0n	38	I/O	Port 0 twisted pair cable A negative phase I/O
TpB0p	37	I/O	Port 0 twisted pair cable B positive phase I/O
TpB0n	36	I/O	Port 0 twisted pair cable B negative phase I/O
TpA1p	46	I/O	Port 1 twisted pair cable A positive phase I/O
TpA1n	45	I/O	Port 1 twisted pair cable A negative phase I/O
TpB1p	44	I/O	Port 1 twisted pair cable B positive phase I/O
TpB1n	43	I/O	Port 1 twisted pair cable B negative phase I/O
SUS/RES	19	I	Suspend/Resume function select 1: Suspend/Resume on (IEEE1394a-2000 compliant) 0: Suspend/Resume off (P1394a draft 1.3 compliant)
CPS	32	I	Cable power status Connect to the cable through a 390 k Ω resistor and to GND through a 100 k Ω resistor. 0: Cable power fail 1: Cable power on

1.2 Link Interface Pins

Name	Pin No.	I/O	Function
D0	8	I/O	Data input/output (bit 0)
D1	9	I/O	Data input/output (bit 1)
D2	11	I/O	Data input/output (bit 2)
D3	12	I/O	Data input/output (bit 3)
D4	14	I/O	Data input/output (bit 4)
D5	15	I/O	Data input/output (bit 5)
D6	17	I/O	Data input/output (bit 6)
D7	18	I/O	Data input/output (bit 7)
CTL0	5	I/O	Link interface control (bit 0)
CTL1	6	I/O	Link interface control (bit 1)
LREQ	63	I	Link request input
SCLK	2	O	Link control output clock LPS 1: 49.152 MHz output LPS 0: Clamp to 0 (The clock signal will be output within 25 μ sec after change to "0")
LPS	59	I	Link power status input 0: Link power off 1: Link power on (PHY/Link direct connection)
LKON	58	O	Link-on signal output Link-on signal is 6.144 MHz clock output. Please refer to 4.2 Link-on Indication.
DIRECT	50	I	PHY/Link isolation barrier control input 0: Isolation barrier 1: PHY/Link direct connection

μ PD72852

1.3 Control Pins

Name	Pin No.	I/O	Function
PC0	28	I	Power class set input This pin status will be loaded to Pwr_class bit which allocated to PHY register 4H. IEEE1394a-2000 chapter [4.3.4.1]
PC1	27	I	
PC2	28	I	
CMC	30	I	Configuration manager capable setting This pin status will be loaded to Contender bit which allocated to PHY register 4H. 0: Non contender 1: Contender
RESETB	55	I	Power-on reset input Connect to GND through a 0.1 μ F capacitor. 0: Reset 1: Normal
SPD	61	I	Speed select 0: MAX. S200 1: MAX. S400

1.4 IC

Name	Pin No.	I/O	Function
IC(AL)	29, 51	-	Internally Connected (Low Clamped) Connect to GND.
IC(DL)	3	-	Internally Connected (Low Clamped) Connect to GND.

1.5 Power Supply Pins

Name	Pin No.	I/O	Function
AVcc	25, 31, 40, 47, 54	-	Analog power
AGND	24, 33, 35, 42, 49, 52, 53	-	Analog GND
DVcc	4, 10, 20, 56, 60	-	Digital V _{DD}
DGND	1, 7, 13, 16, 21, 57, 64	-	Digital GND

1.6 Other Pins

Name	Pin No.	I/O	Function
TpBias0	41	O	Port 0 twisted pair output
TpBias1	48	O	Port 1 twisted pair output
R11	34	-	Resistor connection pin1 for reference current generator Connect to GND through a 9.1 k Ω resistor.
XI	23	-	Crystal oscillator connection XI
XO	22	-	Crystal oscillator connection XO
TEST	62	-	Test pin Internally connected (Low clamped). Connect to GND.

9.9.2 IC7431: uPD72893

PRELIMINARY DATA SHEET

MOS INTEGRATED CIRCUIT

 μ PD72893

IEEE1394 LINK LAYER CONTROLLER WITH DV CODEC

DESCRIPTION

The μ PD72893 is an IEEE1394 link layer controller developed for digital AV systems and features an on-chip 32-bit RISC CPU (V850E) for IEEE1394 processing.

This link layer controller has two stream interface channels to transmit/receive image data conforming to the IEC61883 Standard, such as MPEG and VD, and these channels can be independently used for transmission and reception. In addition, a total of 8 KB of FIFO buffer space is provided to transmit/receive isochronous signals. This buffer space can be allocated as transmit and receive FIFO buffers in 2 KB units.

The μ PD72893 supports IEEE1394 bus control and AV/C commands via the on-chip CPU, as well as external control using either a serial or a parallel interface.

FEATURES

IEC61883 functions

- Supports DVB, DSS, and DVCR formats.
- Supports AV/C commands (for D-VHS).

DV codec functions

- Supports IEEE1394 DV
 - Video signal :
 - NTSC 720 x 480 x 29.97 Hz (525-60 system)
 - PAL 720 x 576 x 25 Hz (625-50 system)
 - Audio signal :
 - 2 channels (48 kHz, 44.1 kHz, 32 kHz, 16 bits)
 - 4 channels (32 kHz, 12 bits)
- Supports digital AV signal
 - Video signal :
 - ITU-R REC656
 - 8 bits, Y/Cb/Cr 4:2:2 (Video CLK = 27 MHz)
 - Audio signal :
 - Audio PCM serial
 - Input 16-bit resolution MCK44, MCK48
 - Output LRCKO, BCKO

CPU functions

- 32-bit RISC CPU (V850E)
- Operating frequency : 27 MHz input (@54 MHz internally)
- Memory : ROM 192 KB
RAM 60 KB

Interface functions

- Stream port (MPEG-TS, DV): 2 ports
- 8-bit parallel bus/serial bus support
- Asynchronous transfer format Maximum transfer rate: 13.5 Mbyte/s
- Host interface
 - Parallel interface: 16-bit address/data separated type, ISA, 68000, and SH-1 selectable
- ROM interface
- Flash ROM interface. SRAM is also connectable.
- EEPROM™ interface
- For IEEE1394 configuration data
- General-purpose I/O ports: 11 (multiplexed with function pins)

Other functions

- Power-saving function (HALT mode and software STOP mode)
- Supply voltage: Peripheral $3.3\text{ V} \pm 0.3\text{ V}$
Internal $2.5\text{ V} \pm 0.2\text{ V}$
- Package: 208-pin plastic QFP (FP)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

μ PD72893

OVERVIEW OF FUNCTIONS

Product Name	μ PD72893
IEEE1394 Link core	Conforms to IEEE1394-1995 and IEEE1394a-2000 Standards. Supports data rates of 400 Mbps, 200 Mbps, and 100 Mbps. Two FIFOs for ASYNC transmission/reception Concatenate Isochronous transmission and asynchronous stream transmission are possible. Conforms to IEC61883. CSR's and Config_ROM (RAM) that are frequently accessed incorporated so that response_packet is automatically generated and transmitted by concatenate transfer.
CPU core	32-bit RISC CPU (V850E)
Internal ROM	192 KB
Internal RAM	60 KB
Parallel interface	- 16-bit address/data separated bus (select one mode from the following bus formats) 6800 (Motorola), ISA, SH-1
Serial interface	- Asynchronous serial interface (UART) x 1 channel - Clocked serial interface (CSI) x 1 channel
External ROM connection function	- Page ROM/ROM flash ROM interface - SRAM interface - EEPROM interface
Operating frequency	- 27 MHz clock input - On-chip CPU: 54 MHz (generated by internal PLL from 27 MHz) - IEEE1394 Link core: 49.152 MHz (operates on SCLK from PHY)
Supply voltage	- Peripheral: $V_{DD} = 3.3 \pm 0.3$ V - Internal: $V_{DD} = 2.5 \pm 0.2$ V
Package	208-pin plastic QFP (fine pitch) (28 x 28)

NEC **μ PD72893****BLOCK DIAGRAM** **μ PD72893 Block Diagram**

NEC **μ PD72893**

DV Codec Unit Block Diagram

NEC **μ PD72893****1. PIN FUNCTIONS**

(1) Link-related pins

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
LINKON	18	I	Link-on signal input. Clock input. Inputs 0 if LPS is active.	-	I	-
LPS	17	O	Link power status output Link power OFF : 0 Link power ON : 2.7 MHz pulse output (54 MHz host clock divided by 20)	-	O	-
LREQ	16	O	Link request output	-	O	-
SCLK	15	I	Clock input for Link control When LPS is active : 49.152 MHz input LPS = 0 : Fixed to 0	-	I	-
CTL[1:0]	12, 13	I/O	PHY/Link control signal I/O	-	I	-
PHY_D[7:0]	2 to 4, 6 to 8, 10, 11	I/O	Data I/O between PHY and Link	-	I	-
STREAM1[7:0]	26 to 19	I/O	ISO data bus of stream interface 1 <small>Note</small>	-	I	-
PACKETEN1	27	I/O	Packet enable signal I/O to/from stream interface 1 <small>Note</small>	H/L	I	-
TSERROR1	28	I/O	Packet error signal I/O to/from stream interface 1 <small>Note</small>	H/L	I	-
TSRW1	29	I/O	Data read/write enable signal I/O to/from stream interface 1 <small>Note</small>	-	I	-
SYNC1	30	I/O	Frame sync signal I/O to/from stream interface 1 <small>Note</small>	H/L	I	-
TSSUB1	32	I/O	I :Inputs the packet gap signal when the stream is input through the stream interface O :Not used. Connect this pin to V _{DD} or GND via a resistor.	H/L	I	-
STREAM2[7:0]	47 to 40	I/O	ISO data bus of stream interface 2 <small>Note</small>	-	I	V _D [7:0]
PACKETEN2	33	I/O	Packet enable signal I/O to/from stream interface 2 <small>Note</small>	H/L	I	VSYNC
TSERROR2	34	I/O	Packet error signal I/O to/from stream interface 2 <small>Note</small>	H/L	I	HSYNC
TSRW2	36	I/O	Data read/write enable signal I/O to/from stream interface 2 <small>Note</small>	-	I	FLD
SYNC2	37	I/O	Frame sync signal I/O to/from stream interface 2. <small>Note</small>	H/L	I	-
TSSUB2	38	O	Not used. Leave open.	-	O	-

Note When this signal is switched for transmission or reception to/from IEEE1394, it must be controlled that output does not conflict.

To prevent a floating state, connect a pull-up or pull-down resistor to this pin.

Remark Active H/L: A high or low level can be selected as the active level.

NEC **μ PD72893****(2) Video interface pins**

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
VCLKI	50	I	Video clock input (27 MHz)	-	-	-
VCLKO	51	O	Video clock output (27 MHz)	-	-	-
VD[7:0]	47 to 40	I/O	Video data signal	-	-	STREAM2[7:0]
VSYNC	33	I/O	Vertical sync video signal <small>Note</small>	L	-	PACKETEN2
H SYNC	34	I/O	Horizontal sync video signal <small>Note</small>	L	-	TSERROR2
FLD	36	I/O	Field index signal <small>Note</small>	-	-	TSRW2
VPWM	53	O	PWM signal for video PLL	-	-	-

Note When this signal is switched for transmission or reception to/from IEEE1394, it must be controlled that output does not conflict.

(3) Audio interface pins

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
AMCLK48	104	I	Audio master clock input (for 48 kHz sampling frequency)	-	-	-
AMCLK44	103	I	Audio master clock input (for 44.1 kHz sampling frequency)	-	-	-
AMCLKO	101	O	Audio master clock output	-	-	-
PCM1	96	I/O	Audio PCM serial data <small>Note</small> With 2 channels: CH1 With 4 channels: CH1 or CH1 and CH2 mixed	-	-	-
PCM2	97	I/O	Audio PCM serial data <small>Note</small> With 2 channels: Mute With 4 channels: CH2	-	-	-
AEMP1	98	O	PCM1 emphasis ON/OFF for PCM1 output	H	-	-
AEMP2	100	O	PCM2 emphasis ON/OFF for PCM2 output	H	-	-
ALRCK	93	I/O	Audio LR clock <small>Note</small> L-ch: High R-ch: Low	-	-	-
ABCK	94	I/O	Audio bit clock <small>Note</small>	-	-	-
AFS[1:2]	48, 49	O	Audio sampling frequency AFS2 AFS1 44.1 kHz 0 1 48 kHz 0 0 32 kHz 1 0	-	-	-
APWM	102	O	PWM signal for audio PLL	-	-	-

Note The input changes according to the switching of the encode/decode mode. It must be controlled so that the output does not conflict when the mode is switched.

To prevent a floating state, connect a pull-up or pull-down resistor to this pin.

NEC **μ PD72893****(4) SDRAM interface pins**

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
MCLK	77	O	CLK pin connection for SDRAM	-	-	-
MRAS	76	O	RAS pin connection for SDRAM	-	-	-
MCAS	75	O	CAS pin connection for SDRAM	-	-	-
MWE	74	O	WE pin connection for SDRAM	-	-	-
MA[11:0]	92, 90 to 83, 81 to 79	O	Address pin connection for SDRAM	-	-	-
MD[15:0]	73 to 69, 66 to 64, 62 to 57, 55, 54	I/O	Data pin connection for SDRAM These pins must be pulled up or down and then must be directly connected to the SDRAM pins.	-	-	-

(5) Host interface pins**(a) Parallel interface pins**

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
CS	117	I	Parallel interface chip select input	L	I	-
RWZ	119	I	Parallel interface read/write control input ISA bus, SH-1 bus : Write strobe 68000 bus : Read/write select signal	L	I	-
IOR	120	I	Parallel interface IO read control input ISA bus, SH-1 bus : Read strobe 68000 bus : Data strobe (DS)	L	I	-
IOCHRDY	123	O	Parallel interface ready output	L	O	-
AD[10:1]	116 to 107	I	Parallel interface address input	-	I	-
P_D[15:0]	143 to 141, 139 to 132, 130 to 128, 126, 125	I/O	Parallel interface data input/output	-	I	-
DMAREQ	122	O	DMA request output	L	O	SIO_CNT0
DMAACK	121	I	DMA acknowledge input for parallel interface	L	I	SIO_CNT1

NEC **μ PD72893**

(b) Serial interface pins

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
SO	145	O	Serial transmit data output for clocked serial interface (CSI)	-	O	P40
SI	146	I	Serial receive data input for clocked serial interface (CSI)	-	I	P41
SCK	147	O	Clock output for clocked serial interface (CSI)	-	O	P42
TXD	149	O	Serial transmit data output for asynchronous serial interface (UART)	-	O	P43
RXD	150	I	Serial transmit data input for asynchronous serial interface (UART)	-	I	P44
SCS	151	O	Chip select output for clocked serial interface (CSI)	-	O	P45
SIO_CNTI	121	I	Control input for asynchronous serial interface (UART) Externally input data is loaded in synchronization with the end of RXD of UART.	-	I	DMAACK
SIO_CNTO	122	O	Control output for asynchronous serial interface (UART)	-	O	DMAREQ

(c) Others

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
INT	124	O	Interrupt output to external device	H	O	-
PSSEL[1:0]	106, 105	I	Parallel/serial interface selection. These signals select a parallel or serial interface as the external interface. PSSEL[1:0] Selected interface 00 Serial interface (UART) 01 Parallel interface (ISA bus) 10 Parallel interface (68000 bus) 11 Parallel interface (SH-1 bus)	-	I	-

NEC **μ PD72893**

(6) Port pins

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
P30	204	I/O	Port 3. This is a 4-bit I/O port that can be set in the input or output mode in 1-bit units. P30 : Connect this pin to GND via a resistor. P32 : This pin outputs an interrupt to the external device to read the DV status. It cannot be used as a port pin when DV is used.	-	I	-
P31	152					-
P32	153					-
P33	154					-
P34	155					-
P40	145	I/O	Port 4. This is a 6-bit I/O port that can be set in the input or output mode in 1-bit units. P40 to P45 are multiplexed with the pins described under the heading Alternate Function (they cannot be used as general-purpose port pins).	-	I	SO
P41	146					SI
P42	147					SCK
P43	149					TXD
P44	150					RXD
P45	151					SCS

(7) External ROM connection pins

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
D[15:0]	196, 194 to 189, 186 to 178	I/O	External ROM data bus External ROM data bus used to access external ROM	-	I	-
A[17:1]	175, 174, 172, 171, 169 to 167, 165 to 156	O	External ROM address bus External ROM address bus used to access external ROM. A space of 256 KB can be addressed.	-	O	-
RDZ	176	O	ROM read This is a strobe signal that indicates a read cycle to the external ROM. It is inactive in the idle state.	L	O	-
WRZ	177	O	ROM write This is a strobe signal that indicates a write cycle to the external ROM.	L	O	-

NEC **μ PD72893**

(8) Clock and reset pins

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function									
RESETB	1	I	<p>Reset.</p> <p>RESETB is asynchronous input. If a signal with a specified low-level width is input to this pin independently of the operating clock, a system reset is effected, taking precedence over all the other operations.</p> <p>This signal can also be used to clear the power-saving mode (HALT or software STOP), as well as for normal initialization and starting.</p> <p>Caution RESETB is active-low.</p>	L	I	-									
HS_CLK	202	I	<p>Host clock.</p> <p>This pin inputs the clock that is to be supplied to the CPU core and internal peripheral I/O. This clock is input to the internal clock generator. An internal clock is generated according to the value of HCLKSEL and is supplied to the CPU core and internal peripheral I/O. Usually, input a clock of 27 MHz to this pin.</p>	-	I	-									
HCLKSEL	197	I	<p>Host clock selection.</p> <p>This pin inputs the clock that is to be supplied to the CPU core and internal peripheral I/O. The relationship between the clock supplied by the HS_CLK pin (27 MHz) and the clock supplied to the CPU core and internal peripheral I/O is as follows:</p> <table> <tr> <td>HCLKSEL</td> <td>Internal clock frequency</td> <td>PLL operation</td> </tr> <tr> <td>0</td> <td>54 MHz</td> <td>Multipled by 2</td> </tr> <tr> <td>1</td> <td>Clock stops.</td> <td>PLL operation stops.</td> </tr> </table>	HCLKSEL	Internal clock frequency	PLL operation	0	54 MHz	Multipled by 2	1	Clock stops.	PLL operation stops.	-	I	-
HCLKSEL	Internal clock frequency	PLL operation													
0	54 MHz	Multipled by 2													
1	Clock stops.	PLL operation stops.													

NEC***μ*PD72893**

(9) Power supply, ground, and others

Pin Name	Pin No.	I/O	Function	Active	After Reset	Alternate Function
3.3V _{DD}	5, 31, 52, 63, 78, 95, 127, 140, 166, 187	-	3.3 V power supply. Supplies a positive voltage of 3.3 V to the I/O pins of the 3.3 V interface.	-	-	-
2.5V _{DD}	14, 67, 118, 170	-	2.5 V power supply. Supplies a positive voltage of 2.5 V to the respective internal blocks.	-	-	-
2.5GND	39, 91, 144, 195	-	Ground. These are ground pins.	-	-	-
3.3GND	9, 35, 56, 68, 82, 99, 131, 148, 173, 188		Connect all GND pins to a common ground.			
PLLAV _{DD}	199	-	Analog power supply to multiplication circuit. Supplies a positive analog voltage to the PLL. Supply 2.5 V to this pin.	-	-	-
PLLAGND	200	-	Analog ground for multiplication circuit. Analog ground pin for PLL.	-	-	-
PLLDV _{DD}	198	-	Digital power supply to multiplication circuit. Supplies a positive digital voltage to the PLL. Supply 2.5 V to this pin.	-	-	-
PLLDGND	201	-	Digital ground for multiplication circuit. Digital ground pin for PLL.	-	-	-
IC(L)	203, 205 to 207	-	Internally connected pins Directly connect these pins to ground.	-	-	-
IFIROME	208	I	Internal ROM/external ROM select input 0: External ROM mode 1: Internal ROM mode	-	I	-

NEC***μ*PD72893****1.2 Connection of Unused Pins**

The following table shows how to connect unused pins.

Table 1-1. Connection of Unused Pins (1/2)

Pin Name	I/O	Interface	Recommended Connection of Unused Pin
PHY_D[7:0]	I/O	I/O Buffer (LVTTL) in 9 mA With Bus Holder	Connect these pins to Vcc or GND via a resistor.
CTL[1:0]			
SCLK	I	I/O Buffer (LVTTL) with bus holder	
LREQ	O	3-state Output Buffer (LVTTL) 9 mA	Leave open
LPS	O	Output Buffer (LVTTL) 9 mA	
LINKON	I	Input Buffer (LVTTL)	Connect these pins to Vcc or GND via a resistor.
STREAM1[7:0]	I/O	I/O Buffer (LVTTL) 6 mA	
PACKETEN1			
TSERROR1			
TSRW1			
SYNC1			
STREAM2[7:0]			
PACKETEN2			
TSERROR2			
TSRW2			
SYNC2			
TSSUB1			
TSSUB2	O	Output Buffer (LVTTL) 6 mA	Leave open
P3[4:0]	I/O	I/O Buffer (LVTTL) Schmitt in 6 mA	Connect these pins to Vcc or GND via a resistor.
P40/SO			
P41/SI			
P42/SCK			
P43/TXD			
P44/RXD			
P45/SCS			
A[17:1]	O	I/O Buffer (LVTTL) 6 mA	
RDZ	O	Output Buffer (LVTTL) 6 mA	Leave open
WRZ			
D[15:0]	I/O	I/O Buffer (LVTTL) 6 mA	Connect these pins to Vcc or GND via a resistor.
AD[10:1]	I	Input Buffer (LVTTL)	
PSSEL[1:0]			
CS			
RWZ			
IOR			
DMAACK/SIO_CNTI			

NEC **μ PD72893**

Table 1-1. Connection of Unused Pins (2/2)

Pin Name	I/O	Interface	Recommended Connection of Unused Pin
INT	O	Output Buffer (LVTTL) 6 mA	Leave open
IOCHRDY			
DMAREQ/SIO_CNTO			
P_D[15:0]	I/O	I/O Buffer (LVTTL) 9 mA	Connect these pins to VDD or GND via a resistor.
IFIROME	I	Input Buffer (LVTTL)	—
HS_CLK			
HCLKSEL			
RESETB	I	Output Buffer (LVTTL) Schmitt	

9.9.3 IC7802: uPD78F0988A

DATA SHEET

**MOS INTEGRATED CIRCUIT
μPD78F0988A, 78F0988A(A)**

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μPD78F0988A and 78F0988A(A) are products in the μPD780988 Subseries in the 78K/0 Series that have flash memory in the place of the internal ROM of the μPD780988. Flash memory can be written or erased electrically with the device mounted on the board. Therefore, the μPD78F0988A and μPD78F0988A(A) are ideal for evaluation in system development, small-scale production, or systems likely to be upgraded frequently.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780988 Subseries User's Manual: U13029E
78K/0 Series Instruction User's Manual: U12326E

FEATURES

- Pin-compatible with mask ROM version (except V_{PP} pin)
- Flash memory: 60 KB^{Note 1}
- Internal high-speed RAM: 1024 bytes
- Internal expansion RAM: 1024 bytes^{Note 2}
- Operable in the same supply voltage range as the mask ROM version (V_{DD} = 4.0 to 5.5 V)

Notes 1. The capacity of the flash memory can be changed with the internal memory size switching register (IMS).
2. The capacity of the internal expansion RAM can be changed with the internal expansion RAM size switching register (IXS).

Remark For the differences between the flash memory versions and the mask ROM versions, refer to
1. DIFFERENCES BETWEEN μPD78F0988A AND MASK ROM VERSIONS.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μPD78F0988ACW	64-pin plastic SDIP (19.05 mm (750))	Standard (for general electrical equipment)
μPD78F0988AGC-AB8	64-pin plastic QFP (14 × 14)	Standard (for general electrical equipment)
μPD78F0988AGC-8BS	64-pin plastic LQFP (14 × 14)	Standard (for general electrical equipment)
μPD78F0988AGC(A)-AB8	64-pin plastic QFP (14 × 14)	Special (for high-reliability electrical equipment)
μPD78F0988AGC(A)-8BS	64-pin plastic LQFP (14 × 14)	Special (for high-reliability electrical equipment)

For details of the quality grade and its application fields, refer to Quality Grades on NEC Semiconductor Devices (C11531E).

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

NEC **μ PD78F0988A, 78F0988A(A)****OVERVIEW OF FUNCTIONS**

Item		Function
Internal memory	Flash memory	60 KB ^{Note 1}
	High-speed RAM	1024 bytes
	Expansion RAM	1024 bytes ^{Note 2}
Memory space		64 KB
General-purpose register		8 bits × 32 registers (8 bits × 8 registers × 4 banks)
Instruction cycle		On-chip instruction execution time variable function 0.24 μ s/0.48 μ s/0.96 μ s/1.9 μ s/3.8 μ s (@ 8.38 MHz operation with system clock)
Instruction set		<ul style="list-style-type: none"> • 16-bit operation • Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) • Bit manipulation (set, reset, test, Boolean operation) • BCD adjust, etc.
I/O ports		<p>Total: 47</p> <ul style="list-style-type: none"> • CMOS inputs: 8 • CMOS I/O: 39
Real-time output ports		<ul style="list-style-type: none"> • 8 bits × 1 or 4 bits × 2 • 6 bits × 1 or 4 bits × 1
A/D converter		<ul style="list-style-type: none"> • 10-bit resolution × 8 channels • Power supply voltage: AV_{DD} = 4.0 to 5.5 V
Serial interface		<ul style="list-style-type: none"> • UART mode: 2 channels • 3-wire serial I/O mode: 1 channel
Timer		<ul style="list-style-type: none"> • 16 bit timer/event counter: 2 channels • 8-bit timer/event counter: 3 channels • 10-bit inverter control timer: 1 channel • Watchdog timer: 1 channel
Timer output		11 (general-purpose outputs: 5, inverter control outputs: 6)
Vectorized interrupt sources	Maskable	Internal: 16, external: 8
	Non-maskable	Internal: 1
	Software	1
Power supply voltage		V _{DD} = 4.0 to 5.5 V
Operating ambient temperature		T _A = -40 to +85 °C
Package		<ul style="list-style-type: none"> • 64-pin plastic SDIP (19.05 mm (750))^{Note 3} • 64-pin plastic QFP (14 × 14) • 64-pin plastic LQFP (14 × 14)

- Notes 1. The capacity of the flash memory can be changed with the internal memory size switching register (IMS).
2. The capacity of the internal expansion RAM can be changed with the internal expansion RAM size switching register (IXS).
3. Standard quality grade products only.

NEC **μ PD78F0988A, 78F0988A(A)****BLOCK DIAGRAM**

μ PD78F0988A, 78F0988A(A)

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0 4-bit I/O port Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting.	Input	INTP0/TOFF7
P01				INTP1
P02				INTP2
P03				INTP3/ADTRG
P10 to P17	Input	Port 1 8-bit input only port	Input	AN10 to AN17
P20	I/O	Port 2 7-bit I/O port Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting.	Input	RxD00
P21				TxD00
P22				RxD01
P23				TxD01
P24				TI50/T050
P25				TI51/T051
P26				TI52/T052
P30 to P37	I/O	Port 3 8-bit I/O port Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting.	Input	RTP0 to RTP7
P40 to P47	I/O	Port 4 8-bit I/O port Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting.	Input	AD0 to AD7
P50	I/O	Port 5 8-bit I/O port Input/output can be specified in 1-bit units. LEDs can be driven directly. Use of an on-chip pull-up resistor can be specified by software setting.	Input	—
P51				SCK
P52				SI
P53				SO
P54				INTP4/TI00/T000
P55				INTP5/TI010
P56				INTP6/TI011/T001
P57				INTP7/TI011
P64	I/O	Port 6 4-bit I/O port Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting.	Input	RD
P65				WR
P66				WAIT
P67				ASTB

μ PD78F0988A, 78F0988A(A)

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input	P00/TOFF7
INTP1			Input	P01
INTP2			Input	P02
INTP3			Input	P03/ADTRG
INTP4			Input	P54/TI000/TO00
INTP5			Input	P55/TI010
INTP6			Input	P56/TI001/TO01
INTP7			Input	P57/TI011
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input	P24/TO50
TI51		External count clock input to 8-bit timer/event counter 51	Input	P25/TO51
TI52		External count clock input to 8-bit timer/event counter 52	Input	P26/TO52
TI000		External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture register (CR000, CR010) of 16-bit timer/event counter 00	Input	P54/INTP4/TO00
TI010		Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00	Input	P55/INTP5
TI001		External count clock input to 16-bit timer/event counter 01 Capture trigger input to capture register (CR001, CR011) of 16-bit timer/event counter 01	Input	P56/INTP6/TO01
TI011		Capture trigger input to capture register (CR001) of 16-bit timer/event counter 01	Input	P57/INTP7
TO50	Output	8-bit timer/event counter 50 output	Input	P24/TI50
TO51		8-bit timer/event counter 51 output	Input	P25/TI51
TO52		8-bit timer/event counter 52 output	Input	P26/TI52
TO00		16-bit timer/event counter 00 output	Input	P54/INTP4/TI000
TO01		16-bit timer/event counter 01 output	Input	P56/INTP6/TI001
RTP0 to RTP7	Output	Real-time output port that outputs pulses in synchronization with trigger signals outputs from the real-time pulse unit	Input	P30 to P37
TxD00	Output	Asynchronous serial interface serial data output	Input	P21
TxD01			Input	P23
RxD00	Input	Asynchronous serial interface serial data input	Input	P20
RxD01			Input	P22
SCK	I/O	Serial interface serial clock input/output	Input	P51
SI	Input	Serial interface serial data input	Input	P52
SO	Output	Serial interface serial data output	Input	P53
ANI0 to ANI7	Input	A/D converter analog input	Input	P10 to P17
ADTRG	Input	External trigger signal input to the A/D converter	Input	P03/INTP3
TO70 to TO75	Output	Timer output for the 3-phase PWM inverter control	Hi-Z	-
TOFF7	Input	Timer output (TO70 to TO75) stop external input	Input	P00/INTP0
AD0 to AD7	I/O	Address/data bus for expanding memory externally	Input	P40 to P47
RD	Output	Strobe signal output for reading from external memory	Input	P64
WR		Strobe signal output for writing to external memory	Input	P65
WAIT	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output that externally latches address information output to ports 4 and 5 to access external memory	Input	P67
AV _{REF}	Input	A/D converter reference voltage input	-	-
AV _{DD}	-	A/D converter analog power supply	-	-

μ PD78F0988A, 78F0988A(A)

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
AV _{SS}	-	A/D converter ground potential	-	-
RESET	Input	System reset input	-	-
X1	Input	Connecting crystal resonator for system clock oscillation	-	-
X2	-		-	-
V _{DDP}	-	Positive power supply for ports	-	-
V _{GND}	-	Ground potential for ports	-	-
V _{DRI}	-	Positive power supply except for ports	-	-
V _{SSE}	-	Ground potential except for ports	-	-
V _{PP}	-	High-voltage application during program write/verify. In the normal operation mode, connect directly to V _{SSE} .	-	-

μ PD78F0988A, 78F0988A(A)

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.

For the I/O circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin I/O Circuits

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0/TOFF7	8-C	I/O	Input: Independently connect to V_{DD0} via a resistor. Output: Leave open.
P01/INTP1			
P02/INTP2			
P03/INTP3/ADTRG			
P10/ANI0 to P17/ANI7	25	Input	Independently connect to V_{DD0} or V_{SS0} via a resistor.
P20/RxD00	8-C	I/O	Input: Independently connect to V_{DD0} or V_{SS0} via a resistor. Output: Leave open.
P21/TxD00	5-H		
P22/RxD01	8-C		
P23/TxD01	5-H		
P24/TI50/TO50	8-C		
P25/TI51/TO51			
P26/TI52/TO52			
P30/RTP0 to P37/RTP7	5-H		
P40/AD0 to P47/AD7			
P50			
P51/SCK	8-C		
P52/SI	5-H		
P53/SO			
P54/INTP4/TI000/TO00			
P55/INTP5/TI010			
P56/INTP6/TI001/TO01			
P57/INTP7/TI011			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
TO70 to TO75	4	Output	Leave open.
RESET	2	Input	-
A_{VDD}	-	-	Connect to V_{DD0} .
A_{VREF}			Connect to V_{SS0} .
A_{VSS}			
V_{PP}			Connect directly to V_{SS0} .

9.9.4 IC7605: BU2288FV

Products

semiconductor IC

Type

BUZ288FV

Page

4/7

Explanation for terminal function

PIN No.	PIN NAME	FUNCTION
1	VDD2	Digital VDD for 27MHz clock output
2	VSS2	Digital GND for 27MHz clock output
3	CLK27M	27MHz clock output
4	TEST	Output for test
5	AVDD	Analog VDD
6	AVSS	Analog GND
7	XTALOUT	Standard crystal output
8	XTALIN	Standard crystal input
9	CLKA	clock output (FSEL1=Open:16.9344MHz, FSEL1=L:36.864MHz)
10	CLK512FS	clock output (FSEL1=Open:22.5792MHz, FSEL1=L:24.576MHz)
11	DVSS	Digital GND
12	DVDD	Digital VDD
13	CLK16M	16.9344MHz clock output
14	FSEL1	Output select :with pull-up Open:16.9344MHz(9pin), 22.5792MHz(10pin) L:36.864MHz(9pin), 24.576MHz(10pin)
15	CLK33M	33.8688MHz clock output
16	OE	Output enable(open:enable, L:disable) :with pull-up

Specification

Date 5/Sep./'00

Specification No.

ROHM CO., LTD.

TSZ02201-BUZ288FV-1-2

9.9.5 IC7604: BA7082F

ROHM	Product Semiconductor IC	Type BA7082F	Page 8																				
STRUCTURE Silicon Monolithic Integrated Circuits																							
TYPE	BA7082F																						
PACKAGE OUTLINE	Fig-1 (Plastic molded)																						
BLOCK DIAGRAM	Fig-2 (Block Diagram)																						
Function	VCO with sensitivity adjustment function and 1/2 Frequency demultiplier.																						
Features	<ul style="list-style-type: none"> • It is possible to set up frequency by external parts (Resistor and Capacitor). • It is possible to set up frequency sensitivity by added resistor. Because it has a built-in amplifier for sensitivity adjustment. • It is possible to change output by SW. Because it has 1/2 Frequency demultiplier. • It has a pin to adjust f_o. • Built-in three switching circuits for changing Frequency sensitivity. 																						
Absolute Maximum Ratings (Ta = 25°C)																							
<table border="1"> <thead> <tr> <th>Parameter</th><th>Symbol</th><th>Limits</th><th>Unit</th></tr> </thead> <tbody> <tr> <td>Supply voltage</td><td>V_{cc} max</td><td>7.0</td><td>V</td></tr> <tr> <td>Power dissipation</td><td>P_d</td><td>※ 500</td><td>mW</td></tr> <tr> <td>Operating temp range</td><td>T_{opr}</td><td>-20~70</td><td>°C</td></tr> <tr> <td>Storage temp range</td><td>T_{stg}</td><td>-55~125</td><td>°C</td></tr> </tbody> </table>				Parameter	Symbol	Limits	Unit	Supply voltage	V _{cc} max	7.0	V	Power dissipation	P _d	※ 500	mW	Operating temp range	T _{opr}	-20~70	°C	Storage temp range	T _{stg}	-55~125	°C
Parameter	Symbol	Limits	Unit																				
Supply voltage	V _{cc} max	7.0	V																				
Power dissipation	P _d	※ 500	mW																				
Operating temp range	T _{opr}	-20~70	°C																				
Storage temp range	T _{stg}	-55~125	°C																				
※ at put on Glass epoxy PCB (50×50mm ² , t=1.6mm) To use at temperatures higher than Ta=25°C, derate 5mW/°C.																							
<table border="1"> <tr> <td>Operating supply voltage range</td><td>V_{cc}</td><td>4.5~5.5</td><td>V</td></tr> </table>				Operating supply voltage range	V _{cc}	4.5~5.5	V																
Operating supply voltage range	V _{cc}	4.5~5.5	V																				
© This product is not designed for protection against radioactive rays.																							
<small>ROHM assumes no responsibility for the use of any circuits described herein. ROHM conveys no license under any patent or other right, and makes no representations that the circuits are free from patent infringement.</small>																							
Design <i>J. Oshiba</i>	Check <i>P. Natale</i>	Approval <i>R. Hayashi</i> 45. Mar. 6	Date '95/2/28																				
			Specification Rev. A																				
		ROHM CO., LTD.	Specification No. TSZ02201-BA7082F-1-2																				

ROHM		Products Semiconductor IC	Type	BA 7082F	Page 7/8	
No.	Symbol	IN	OUT	normal Voltage	Internal pin configuration	Description
1	SW1			L 0.1V		Pin 1-3 are output pins at LOGIC parts for adjustment frequency sensitivity.
2	SW2		O	- OPEN		These pins are open collector output.
3	SW3			5V		
4	BW					Pin 4,5 are input pins at logic parts for adjustment frequency sensitivity.
5	BWB		O	-		
6	1/2FB		O	-		Pin 6 is input pin at LOGIC parts for adjustment frequency sensitivity and changing 1/2 Frequency demultiplier. "H" is through output and "L" is 1/2 Frequency demultiplier output.
7	Fout		O	3.6V		VCO Output.
8	GND	-	-	0V	GND	GND
9	FADJ	-	-	2.5V		Pin 9 is a pin to adjust f0. It is possible to adjust f0 by added resistor(RADJ). If Value of RADJ down, oscillation frequency up. (Use to RADJ>22kΩ).
				Date '95/ 2/28	Specification	
				ROHM CO., LTD.	Specification No.	TSZ02201-BA7082F-1-2

ROHM		Products Semiconductor IC	Type BA7082F	Page 8/8		
No.	Symbol	IN	OUT	normal DC Voltage	Internal pin configuration	Description
10	VCC	-	-	5.0V	VCC	VCC
11	CT2	-	-	1.9V		Pin 11,12 are added capacitor pins for oscillation. Use to add capacitor between CT1 and CT2. If value of capacitor down, oscillation frequency up.
12	CT1	-	-			
13	VCTL	○		2.5V		Pin 13 is control pin for VCO. A regular this pin connect pin14(VO).
14	VO	○		2.5V		Pin14 is output pin at Amplifier for sensitivity adjustment. Adjustment amplifier GAIN by added resistor.
15	IN2	○		2.5V		Pin15,16 are input pins at amplifier for sensitivity adjustment. In1 : normal input In2 : inversion input
16	IN1	○				
				Date '95/ 2/28	Specification	
				ROHM CO., LTD.	Specification No.	TSZ02201-BA7082F-1-2

9.10 List of Abbreviations

Digital Board

+12V	B_IN_VIP
+12V Power Supply	Video blue input to Video Input Processor
+2V5_FLI	B_OUT
+2V5 Power Supply for FLI	Video blue output from Host Decoder
+2V5_PLL	B_OUT_B
+2V5 Power Supply for PLL	Filtered blue video output
+3V3	BA
+3V3 Power Supply	Bank Address
+3V3_ANA	BCLK_CTL_SERVICE
+3V3 Power Supply Analogue	Bitclock control Service Interface
+3V3_DD	BE_BCLK
+3V3 Power Supply Digital	Basic Engine I2S bit clock
+3V3_FLI	BE_BCLK_VSM
+3V3 Power Supply for FLI	Basic Engine I2S bit clock to VSM
+5V	BE_CPR
+5V Power Supply	Basic Engine Control Processor ready to accept data
+5V_BUFFER	BE_DATA_RD
+5V Power Supply for Video Filters	Basic Engine Data read
5508_HS	BE_DATA_WR
Horizontal Synchronisation from Host Decoder to Progressive Scan	Basic Engine Data write
5508_ODD_EVEN	BE_FAN
Odd - Even control from Host Decoder to Progressive Scan	Basic Engine FAN
-5V	BE_FLAG
-5V Power Supply	Basic Engine error flag
-5V_BUFFER	BE_IRQN
-5V Power Supply for Video Filters	Basic Engine interrupt request
A_EMPRESS(13:0)	BE_LOADN
EMPRESS address output to SDRAM	Basic Engine LOAD(LOW active)
ACC_ACLK_OSC	BE_RXD
Audio Clock PLL output sync with incoming video for record	Basic Engine S2B received data
ACC_ACLK_PLL	BE_SUR
Audio Clock PLL output for play back	Basic Engine servo unit ready to accept data (S2B)
ACLK_EMP	BE_SYNC
EMPRESS audio clock output	Basic Engine sector/abs time sync
AD_ACLK	BE_TXD
Audio Decoder Clock	Basic Engine S2B transmitted data
AD_BCLK	BE_V4
Audio Decoder I2S bit clock	Basic Engine versatile input pin
AD_DATAO	BE_WCLK
Audio Decoder Output data (PCM)	Basic Engine I2S word clock
AD_SPDIF33	C_IN
Audio digital output to the analog board	Video Chrominance input
AD_WCLK	C_IN_VIP
Audio Decoder I2S word clock	Chrominance input to Video Input Processor
AE_ACLK	C_OUT
Audio Encoder Clock	Chrominance output from Host Decoder
AE_ACLK_OEN	C_OUT_B
Audio Encoder Clock Output Enable	Filtered Chrominance output
AE_BCLK	CAS
Audio Encoder I2S bit clock	Column Address strobe
AE_BCLK_DV	CB_OUT(9:0)
Audio Encoder I2S bit clock to DVIO	Chrominance Blue out
AE_BCLK_VSM	CLK4
Audio Encoder I2S bit clock to VSM	SDRAM clock
AE_DATAI	CPUINT0
Audio Encoder Input data (PCM)	Control processor unit interrupt
AE_DATAI_DV	CPUINT1
Audio Encoder Input data (PCM) from DVIO	Control processor unit interrupt
AE_DATAO	CR_OUT(9:0)
Audio Encoder Output data (PCM)	Chrominance Red out
AE_WCLK	CTS1P
Audio Encoder I2S word clock	Clear to send (Service Interface)
AE_WCLK_DV	CVBS_OUT
Audio Encoder I2S word clock to DVIO	Composite video output out of the Host Decoder
AE_WCLK_VSM	CVBS_OUT_B
Audio Encoder I2S word clock to VSM	Filtered Composite video output
ANA_WE	CVBS_OUT_B_VIP
Analogue write enable	Composite video output to Video Input Processor(digital board video loop)
ANA_WE_LV	CVBS_Y_IN
Analogue write enable Low Voltage	Composite video/Luminance input
	CVBS_Y_IN_A
	Composite video/Luminance input to Video Input Processor
	CVBS_Y_IN_B
	Composite video/Luminance input to Video Input Processor

CVBS_Y_IN_C	Host Decoder SDRAM data mask enable(Lower)
Composite video/Luminance input to Video Input Processor	
D_ADDR(10:0)	HD_M_DQMU
Address bus	Host Decoder SDRAM data mask enable(Upper)
D_DATA(29:0)	HD_M_RASN
Data bus	Host Decoder SDRAM row address strobe
D_EMPRESS(15:0)	HD_M_WEN
SDRAM data input/output of EMPRESS	Host Decoder SDRAM write enable
D_PAR_D(7:0)	HSOUT
Front-end parallel interface data (record)	Horizontal synchronisation OUT
D_PAR_DVALID	ION
Front-end parallel interface data valid	Inverted ON: Enable the power supply for the digital board when LOW
D_PAR_REQ	IRESET_DIG
Front-end parallel interface request	Initialisation of the digital board, HIGH when power ON
D_PAR_STR	JTAG3_TCK
Front-end parallel interface strobe	JTAG Test Clock
D_PAR_SYNC	JTAG3_TD_VIP_TO_VE
Front-end parallel interface sync	JTAG Transmitted Data Video Input Processor to Video Encoder
DV_IN_CLK	JTAG3_TD_VSM_TO_VIP
Digital Video in clock from DVIO board	JTAG Transmitted Data Versatile Stream Manager to Video Input Processor
DV_IN_DATA(7:0)	JTAG3_TMS
Digital Video in data bus from DVIO board	JTAG Test Mode Select
DV_IN_HS	JTAG3_TRSTN
Digital Video in horizontal synchronisation from DVIO board	JTAG Test part ResetN
DV_IN_VS	LOAD_DVN
Digital Video in vertical synchronisation from DVIO board	LOAD Digital Video(LOW active)
EMI_A(21:1)	MUTEN
External Memory Interface Address Bus(Host Decoder)	Mute enable
EMI_BE0N	MUTEN_LV
External Memory Interface Lower byte enable(Host Decoder)	Mute enable Low Voltage
EMI_BE1N	P_SCAN_YUV(7:0)
External Memory Interface Upper byte enable(Host Decoder)	Progressive Scan digital video bus
EMI_CAS0N	R_IN_VIP
External Memory Interface SDRAM column address strobe(Host Decoder)	Video Red input to Video Input Processor
EMI_CE1N	R_OUT
External Memory Interface VSM Lower bank enable	Video Red output from Host Decoder
EMI_CE2N	R_OUT_B
External Memory Interface VSM Higher bank enable	Filtered Red Video output from Host Decoder
EMI_CE3N	RAS
External Memory Interface flash IC's enable	Row Address Strobe
EMI_D(15:0)	RESETN
External Memory Interface Data Bus(Host Decoder)	Reset Host Decoder
EMI_PROCCLK	RESETN_BE
External Memory Interface Processor Clock(Host Decoder)	System reset basic engine (buffered)
EMI_RWN	RESETN_DVIO
External Memory Interface Read/Write control signal(Host Decoder)	System reset Digital Video Input Output (buffered)
EMI_WAIT	RESETN_VE
External Memory Interface Wait state request(Host Decoder)	System reset Video Encoder
EMPRESS_BOOT	ROMH_CEN
EMPRESS BOOT select input	Flash 2 chip enable
EMPRESS_IRQN	ROML_CEN
EMPRESS Interrupt request output	Flash 1 chip enable
FLASH_OEN	RSTN_BE
FLASH output enable control signal	Reset control of basic engine
G_IN_VIP	RSTN_DVIO
Video green input to Video Input Processor	Reset control of DVIO
G_OUT	RTS1P
Video green output from Host Decoder	Ready To Send data to service serial interface
G_OUT_B	RX1P
Filtered green video output from Host Decoder	Receive data from service serial interface
GNDD	SCL
Digital Ground	I2C bus clock
HD_M_AD(13:0)	SD_CASN
Host Decoder SDRAM address bus	SDRAM Column Address strobe output (active LOW)
HD_M_CASN	SD_CLK
Host Decoder SDRAM column address strobe	SDRAM clock output
HD_M_CLK	SD_CLKE
Host Decoder SDRAM clock	SDRAM clock enable output
HD_M_CS0N	SD_CSN
Host Decoder SDRAM chip select	SDRAM
HD_M_DQ(15:0)	SD_DQM(1:0)
Host Decoder SDRAM data bus	SDRAM data mask enable output
HD_M_DQML	SD_RASN

SDRAM row address strobe output	VDDA2A_7118
SD_WEN	Power supply for analog input of VIP
SDRAM write enable output	VDDA3A_7118
SDA	Power supply for analog input of VIP
I2C bus data	VDDA4A_7118
SEL_ACLK1	Power supply for analog input of VIP
Select audio clock(playback)	VDDE_7118
SM_CS3N	Power supply digital for peripheral cells of VIP
SRAM chip select	VDDI_7118
SM_LBN	Power supply digital for core of VIP
SRAM lower bank	VDDX_7118
SM_OEN	Power supply for crystal oscillator of VIP
SRAM output enable	VE_DATA(7:0)
SM_UBN	Video Encoder data Bus
SRAM upper bank	VE_DSN
SM_WEN	Video Encoder Data Strobe
SRAM write enable	VE_DTACKN
SMA(17:0)	Video Encoder Data Transfer acknowledge
SRAM address output	VIP_ERROR
SMD(15:0)	Video Input Processor error
SRAM data input/output	VIP_FB
SYSCLK_EMPRESS	Video Input Processor Fast Blanking
System clock EMPRESS	VIP_FID_FF
SYSCLK_PROGSCAN	Video Input Processor field identifier to Flip Flop
System clock Progressive Scan	VIP_HS
SYSCLK_VSM_5508	Video Input Processor horizontal synchronisation
System clock VSM and Host decoder	VIP_ICLK
TX1P	Video Input Processor input Clock
Transmit data to service serial interface	VIP_IDQ
U_IN	Video Input Processor output data qualifier
Video U input	VIP_IGP1
U_IN_VIP	Video Input Processor input general purpose 1
Video U input to Video Input Processor	VIP_INT
V_IN	Video Input Processor interrupt
Video V input	VIP_RTS1
V_IN_VIP	Video Input Processor ready to send
Video V input to Video Input Processor	VIP_VS
VCC3_CLK_BUF	Video Input Processor vertical synchronisation
Power supply 3V3 clock buffer	VIP_YUV(7:0)
VCC3_VSM	Video Input Processor digital video(CCIR 656)
Power supply 3V3 Versatile Stream Manager	VS_IN
VCC3_VSM_MEM	Vertical synchronisation IN
Power supply 3V3 Versatile Stream Manager Memory	VSM_M_A(13:0)
VCC5_4046	Versatile Stream Manager SDRAM address bus
Power supply 5V to PLL IC	VSM_M_CASN
VDD_125	Versatile Stream Manager SDRAM column address strobe
Power supply 5V to buffer 7202	VSM_M_CLKEN
VDD_CORE	Versatile Stream Manager SDRAM clock enable
Sti5508 Core supply voltage 2.5V	VSM_M_CLKOUT
VDD_EMP	Versatile Stream Manager SDRAM clock out
Empress supply voltage 3.3V	VSM_M_D(15:0)
VDD_EMP_CORE	Versatile Stream Manager SDRAM data bus
Empress Core supply voltage 2.5V	VSM_M_LDQM
VDD_FLASH_H	Versatile Stream Manager SDRAM lower data mask enable
Flash 7301 supply voltage	VSM_M_RASN
VDD_FLASH_L	Versatile Stream Manager SDRAM row address strobe
Flash 7302 supply voltage	VSM_M_UDQM
VDD_LVC32	Versatile Stream Manager SDRAM upper data mask enable
Power supply LVC32	VSM_M_WEN
VDD_PCM	Versatile Stream Manager SDRAM write enable
Power supply Audio decoder of Sti5508	VSM_UART1_CTSN
VDD_PLL	Versatile Stream Manager UART1 clear to send to analog board (UART1 is gateway to analog board)
Power supply PLL audio decoder of Sti5508	VSM_UART1_RTSN
VDD_RGB	Versatile Stream Manager UART2 clear to send to DVIO board (UART2 is gateway to DIVIO board)
Power supply video encoder of Sti5508	VSM_UART1_RX
VDD_STI	Versatile Stream Manager UART1 ready to send to analog board
Power supply of Sti5508	VSM_UART1_TX
VDD_YCC	Versatile Stream Manager UART2 ready to send to DVIO board
Power supply video encoder of Sti5508	VSM_UART2_CTSN
VDD5_MK2703	Versatile Stream Manager UART1 received data to analog board
Power supply MK2703	
VDD5_OSC	
Power supply Oscillator	
VDDA1A_7118	
Power supply for analog input of VIP	

VSM_UART2_RTSN	Buffer Enable Video
Versatile Stream Manager UART2 received data to DVIO board	CLK27M_CON
VSM_UART2_RX	27MHz Clock to Digital Board
Versatile Stream Manager UART1 transmitted data to analog board	CS
VSM_UART2_TX	Parallel interface chip select input of Link+Codec IC7431
Versatile Stream Manager UART2 transmitted data to DVIO board	CTL(0:1)
VSOUT	Link interface control lines
Vertical synchronisation OUT	CTSN
WE	Clear to Send
Write Enable	D(0:15)
Y_IN	Flash data lines of Link+Codec IC7431
Luminance input from analog board	DV_STATUS
Y_OUT	Interrupt pin for reading DV-status
Luminance output from Host Decoder	HS_CLK
Y_OUT_B	Video clock input of Link+Codec IC7431
Filtered luminance output	INT
YY_OUT(9:0)	Interrupt request output of Link+Codec IC7431 (input to Micro-Controller)
Luminance output from FLI	IOR
Dvio 1.8 Board	Parallel interface IO read control input of Link+Codec IC7431
2V5	ISPIN
+2V5 Power supply for Link+Codec IC7431	In System Programming signal (used for programming IC7802)
3V3	LKON
+3V3 Power supply	Link-on signal output
3V3_A	LPS
+3V3 Analog power supply for PHY IC7400	Link power status input
3V3_D	LREQ
+3V3 Digital power supply for PHY IC7400	Link request input
3V3_DLY	MA(0:10)
+3V3 Power supply for IC7500	SDRAM adress lines of Link+Codec IC7431
3V3_LINK	MCAS
+3V3 Power supply for Link+Codec IC7431	SDRAM column address strobe signal
3V3_F	MCLK
+3V3 Power supply for optional Flash memory IC7432	SDRAM clock signal
3V3_RAM	MD(0:15)SDRAM data lines of Link+Codec IC7431
+3V3 Power supply for SDRAM IC7430	MRAS
3V3_uP	SDRAM row-address strobe signal
+3V3 Power supply for Micro-controller IC7802	MWE
3V3_32kHz	SDRAM write enable signal
+3V3 Power supply for audio format adaptation circuitry	PCM1
IC7507 & IC7508	Audio Serial Data Output of Link+Codec IC7431
3V3_AC	PCM1_NEW
+3V3 Power supply for audio system clock generator IC7605 & IC7606	"MSB justified" to I2S converted audio serial data; audio serial data input of audio DAC UDA1334A
+5V	PD(0:15)
+5V Power supply	Data bus lines for Host I/F of Link+Codec C7431
5V_PLL	PHY_D(0:7)
+5V Power supply for VCO of audio PLL IC7604	Data bus connection between PHY and LNK device
A(1:17)	RESETn
Flash address lines of uPD72893	DVIO board reset
A_MUTE	RESET_FM
Audio Mute	Reset signal driven by Flashmaster programming device
ABCK	RESTB
Audio Bit Clock	Reset input of Link+Codec IC7431
AD(1:10)	RTSN
Address bus lines for Host I/F of Link+Codec IC7431	Request to Send
AEMP1	RWZ
PCM1 emphasis ON/OFF for PCM1 output	Parallel interface read/write control input of Link+Codec IC7431
AFS1	RXD
Audio sampling frequency indication signal	Receive Data
ALRCLK	SCLK
Audio Word Select	Link control output clock
AMCLK44	TXD
11,2896MHz (=256*44.1kHz) audio master clock signal for 44.1kHz audio	Transmit Data
AMCLK48	VPP
12,288MHz (=256*48kHz) audio master clock signal for 32kHz and 48kHz audio	+10V switchable programming voltage of microcontroller
APWM	YUV(0:7)
PWM signal for audio PLL	Digital Video
BUFENn_AUD	
Buffer Enable Audio	
BUFENn_VID	

10. Spare parts list

Mechanical		1150	2422 086 10947	PROT DEV 65V 250MA PSC A	3156	4822 050 21003	10k 1% 0.6W	
Various		1153	5322 242 73686	CST12,00MTW-TF01	3157	4822 116 83884	47k 5% 0.5W	
0060	3104 127 13600	CONNECTOR FRONT ASSY 985/EUR	1156	2422 527 00513	BUZZER PIEZO CB13PA-X5	3158	4822 051 30223	22k 5% 0.062W
0065	3104 127 13450	TRAY FRONT ASSY COMPLETE	1159	4822 276 13732	SWITCH TACT PUSH	3159	4822 051 30562	5k 5% 0.063W 0603 RC21 RST SM
0081	9305 025 82001	BASIC ENGINE VAE8020	1160	4822 276 13732	SWITCH TACT PUSH	3160	2322 704 65608	RST SM 603 RC22H 5Ω6 PM1
0151	3104 127 13320	COVER ASSY	1162	4822 276 13732	SWITCH TACT PUSH	3161	4822 051 30683	68k 5% 0.062W
0191	3104 124 07455	FILTER AIR INLET BOTTOM	1163	4822 276 13732	SWITCH TACT PUSH	3162	4822 051 30683	68k 5% 0.062W
0197	3104 123 30002	DUST FILTER	1167	4822 276 13732	SWITCH TACT PUSH	3163	4822 051 30103	10k 5% 0.062W
0198	3104 124 07733	FILTER AIR INLET COVER	1168	4822 276 13732	SWITCH TACT PUSH	3164	4822 050 21003	10k 1% 0.6W
0199	3104 128 93031	DC BRUSHLESS FAN	1169	4822 276 13732	SWITCH TACT PUSH	3165	4822 051 30222	2k 2.5% 0.062W
0251	3104 127 10740	FOOT SILVER ASSY	1170	4822 276 13732	SWITCH TACT PUSH	3166	4822 116 83876	270Ω 5% 0.5W
0252	3104 127 10740	FOOT SILVER ASSY	1171	4822 276 13732	SWITCH TACT PUSH	3167	4822 116 83876	270Ω 5% 0.5W
0253	3104 127 10740	FOOT SILVER ASSY	1174	4822 276 13732	SWITCH TACT PUSH	3168	4822 116 52175	100Ω 5% 0.5W
0254	3104 127 10740	FOOT SILVER ASSY				3169	4822 051 30103	10k 5% 0.062W
0309▲	3104 125 24521	USER MANUAL DVDR990/EU	2140	4822 124 11946	22μF 20% 16V	3171	4822 051 30222	2k 2.5% 0.062W
0309▲	3104 125 24541	USER MANUAL DVDR990/NORDIC	2150	4822 124 80231	47μF 20% 16V	3172	4822 051 30472	4k 7.5% 0.062W
0312	3104 129 24672	QRC-ASSY DVDR980/985 NORDIC	2151	4822 126 14305	100nF 10% 16V 0603	3173	4822 051 30103	10k 5% 0.062W
0370	9307 002 60013	DVD-RW DISK DVDRW/013 B	2152	4822 121 43526	47nF 5% 250V	3174	4822 051 30475	4M7 5% 0.062W
0371	9307 002 60014	DVD +R TEST DISC	2154	4822 124 40849	330μF 20% 16V	3177	4822 051 30102	1k 5% 0.062W
1001▲	3104 128 08600	DVDR DIG. BOARD 1.5 EU MP3/6H	2155	4822 126 14305	100nF 10% 16V 0603	3178	4822 051 30222	2k 2.5% 0.062W
1002▲	3122 427 22711	POWER SUPPLY KIT	2156	2238 586 59812	0603 50V 100NP80M	3180	4822 051 30103	10k 5% 0.062W
1003▲	3103 608 50362	DVDR ANAL.BOARD E1.5 DSM	2157	5322 126 11583	10nF 10% 50V 0603	3182	4822 051 30152	1k 5% 0.062W
1005	3103 608 50260	PWB DVIO GEN.1.8 ASSY	2158	4822 126 14305	100nF 10% 16V 0603	3183	4822 051 30222	2k 2.5% 0.062W
8001	3104 157 11641	CWAS SPLIT FLEX 22 70 32S	2159	2238 586 59812	0603 50V 100NP80M	3186	4822 051 30102	1k 5% 0.062W
8002	3104 157 11641	CWAS SPLIT FLEX 22 70 32S	2160	4822 126 14305	100nF 10% 16V 0603	3187	4822 051 30222	2k 2.5% 0.062W
8003	3104 157 11790	CWAS SPLIT FLEX 30 100 32S	2161	4822 126 14305	100nF 10% 16V 0603	3188	4822 051 30472	4k 7.5% 0.062W
8004	3104 157 11531	CWAS SPLIT FLEX 10 110 32S	2165	5322 126 11583	10nF 10% 50V 0603	3189	4822 051 30103	10k 5% 0.062W
8013	3104 128 92921	CABLE IEEE1394 4P AMP	2166	4822 126 13881	470pF 5% 50V	3190	4822 117 12925	47k 1% 0.063W 0603
			2167	4822 122 31765	100pF 2% 63V 1206	3192	4822 051 30102	1k 5% 0.062W
			2168	4822 122 31765	100pF 2% 63V 1206	3193	4822 051 30103	10k 5% 0.062W
			2169	5322 126 11583	10nF 10% 50V 0603	3194	4822 051 30222	2k 2.5% 0.062W
			2170	5322 126 11583	10nF 10% 50V 0603	3197	4822 051 30472	4k 7.5% 0.062W
			2171	4822 126 13879	220nF 20% 16V	3999	4822 117 12842	
Accessories								
Various			3114	4822 116 52304	82k 5% 0.5W			
0318	3128 147 13670	RC2056/01 IRT PROD ASSY	3115	4822 116 52304	82k 5% 0.5W			
0320	4822 321 22611	CINCH CABLE GOLD PLATED	3116	4822 116 52304	82k 5% 0.5W			
0321	3104 128 92490	VIDEO CORD SET GOLD PLATED	3117	4822 116 52304	82k 5% 0.5W			
0322▲	2422 070 98133	MAINS CALBE	3118	4822 116 52304	82k 5% 0.5W			
0323	4822 321 61847	SCART CABLE	3119	4822 116 52304	82k 5% 0.5W			
0324	3111 170 21592	ANTENNA CABLE	3120	4822 116 52304	82k 5% 0.5W			
0370	3104 128 93041	S-VHS CABLE 1.5M	3121	4822 116 52304	82k 5% 0.5W			
0371	9307 002 60006	DVDRW/006 PHILIPS DISC EUROPE	3122	4822 116 52304	82k 5% 0.5W			
			3123	4822 116 52304	82k 5% 0.5W			
			3124	4822 116 52304	82k 5% 0.5W			
			3125	4822 116 52304	82k 5% 0.5W			
			3126	4822 116 52304	82k 5% 0.5W			
			3127	4822 116 52304	82k 5% 0.5W			
			3128	4822 116 52304	82k 5% 0.5W			
			3129	4822 116 52304	82k 5% 0.5W			
			3130	4822 116 52304	82k 5% 0.5W			
			3131	4822 116 52304	82k 5% 0.5W			
			3132	4822 116 52304	82k 5% 0.5W			
			3133	4822 116 52304	82k 5% 0.5W			
			3134	4822 116 52304	82k 5% 0.5W			
			3135	4822 117 12063	NTC DC 5W 10k 5%			
			3136	4822 051 30472	4k 7.5% 0.062W			
			3137	4822 051 30472	4k 7.5% 0.062W			
			3138	4822 051 30103	10k 5% 0.062W			
			3139	4822 051 30391	390Ω 5% 0.062W			
			3140	4822 051 30221	220Ω 5% 0.062W			
			3141	4822 051 30472	4k 7.5% 0.062W			
			3142	4822 117 12925	47k 1% 0.063W 0603			
			3143	4822 051 30103	10k 5% 0.062W			
			3144	4822 051 30391	390Ω 5% 0.062W			
			3145	4822 051 30103	10k 5% 0.062W			
			3146	4822 051 30103	10k 5% 0.062W			
			3147	4822 051 30103	10k 5% 0.062W			
			3148	4822 051 30222	2k 2.5% 0.062W			
			3149	4822 051 30472	4k 7.5% 0.062W			
			3150	4822 051 30562	5k 6.5% 0.063W 0603 RC21 RST SM			
			3151	4822 051 30102	1k 5% 0.062W			
			3152	4822 116 52257	22k 5% 0.5W			
			3153	2322 704 65608	RST SM 603 RC22H 5Ω6 PM1			
			3154	4822 050 21003	10k 1% 0.6W			
			3155	4822 051 30222	2k 2.5% 0.062W			

Analog PWB			
Various			
1324▲	2422 086 10954	PROT DEV 65V 1A PSC	2440 4822 124 40207 100µF 20% 25V
1325▲	2422 086 10951	PROT DEV 65V 500MA PSC	2441 4822 124 81151 22µF 50V
1326▲	2422 086 10954	PROT DEV 65V 1A PSC	2442 4822 124 11947 10µF 20% 16V
1327▲	2422 086 10951	PROT DEV 65V 500MA PSC	2443 4822 124 11947 10µF 20% 16V
1600	4822 242 10434	L1101-95263-0E1(18.432MHz)	2446 4822 126 13881 470pF 5% 50V
1700	4822 242 81436	OFWK3953M	2447 4822 126 13881 470pF 5% 50V
1701	4822 242 10307	OFWG3956M	2450 4822 124 40433 47µF 20% 25V
1702	2422 549 44341	FIL SAW 38MHz 9	2461 4822 124 40769 4.7µF 20% 100V
		OFWK9656M	2462 4822 124 40433 47µF 20% 25V
1703	4822 242 72586	TPS5.5MB-TF20	2463 4822 124 40769 4.7µF 20% 100V
1705	3139 147 17001	TUNER UV1316MK3(NON EURO)	2464 2238 586 59812 0603 50V 100NP80M
1802	4822 242 70938	TA252E00 (32,768KHZ)	2465 2238 586 59812 0603 50V 100NP80M
1900	4822 265 11154	52030-2210 (22P)	2466 5322 126 11583 10nF 10% 50V 0603
1932	2422 025 11244	CON BM V 07P M 2.50 EH B	2467 4822 126 13881 470pF 5% 50V
1945	2422 026 05197	CON BM CINCH H 1P F BK	2468 4822 126 13881 470pF 5% 50V
1950	2422 033 00334	CON BM EURO H 42P F BK GRND-L	2469 3198 017 41050 0603 10V 1µF COL R
1953	2422 025 10769	CON BMT 9P VERT PH-B	2470 2238 586 59812 0603 50V 100NP80M
1954	4822 265 11154	52030-2210 (22P)	2473 4822 122 33753 150pF 5% 50V
1955	2422 026 05046	CON BM MDIN 8P F	2474 2238 586 59812 0603 50V 100NP80M
		TCX0310B	2477 2238 586 59812 0603 50V 100NP80M
1958	2422 026 05093	CON BM CINCH 4P F	2481 2222 867 15339 0603 50V 33P PM5
		2*WHRD	2483 3198 017 41050 0603 10V 1µF COL R
1959	2422 026 05096	CON BM CINCH H 2P F YEYE	2484 5322 126 11578 1nF 10% 50V 0603
1960	4822 267 10565	4P	2500 2238 586 59812 0603 50V 100NP80M
1983▲	2422 086 10919	PROT DEV 65V 125MA	2501 2238 586 59812 0603 50V 100NP80M
		MP13	2502 4822 124 40769 4.7µF 20% 100V
1984	2412 020 00724	CON BM V 2P M 2.50 EH B	2503 4822 124 40769 4.7µF 20% 100V
1987	2422 025 10772	CON BM V 12P M 2.00 PH B	2505 2238 586 59812 0603 50V 100NP80M
1990	4822 242 73552	13,875 000 MHz	2506 2238 586 59812 0603 50V 100NP80M
1994	4822 242 10956	20MHz 20P AT-49	2508 4822 124 40433 47µF 20% 25V
			2509 4822 124 40769 4.7µF 20% 100V
			2510 4822 124 40433 47µF 20% 25V
2511	4822 126 11785	0603 50V 47P PM5	2511 4822 126 11785 0603 50V 47P PM5
2512	4822 126 11785	0603 50V 47P PM5	2513 2238 586 59812 0603 50V 100NP80M
2514	2238 586 59812	0603 50V 100NP80M	2514 2238 586 59812 0603 50V 100NP80M
2515	4822 124 40769	4.7µF 20% 100V	2515 4822 124 40769 4.7µF 20% 100V
2516	3198 017 41050	0603 10V 1µF COL R	2516 3198 017 41050 0603 10V 1µF COL R
2517	3198 017 41050	0603 10V 1µF COL R	2517 3198 017 41050 0603 10V 1µF COL R
2518	3198 017 41050	0603 10V 1µF COL R	2518 3198 017 41050 0603 10V 1µF COL R
2519	3198 017 41050	0603 10V 1µF COL R	2519 3198 017 41050 0603 10V 1µF COL R
2520	4822 124 41584	100µF 20% 10V	2520 4822 124 41584 100µF 20% 10V
2521	2238 586 59812	0603 50V 100NP80M	2521 2238 586 59812 0603 50V 100NP80M
2522	3198 017 41050	0603 10V 1µF COL R	2522 3198 017 41050 0603 10V 1µF COL R
2523	2238 586 59812	0603 50V 100NP80M	2523 2238 586 59812 0603 50V 100NP80M
2524	3198 017 41050	0603 10V 1µF COL R	2524 3198 017 41050 0603 10V 1µF COL R
2525	3198 017 41050	0603 10V 1µF COL R	2525 3198 017 41050 0603 10V 1µF COL R
2526	2238 586 59812	0603 50V 100NP80M	2526 2238 586 59812 0603 50V 100NP80M
2527	2238 586 59812	0603 50V 100NP80M	2527 2238 586 59812 0603 50V 100NP80M
2528	3198 017 41050	0603 10V 1µF COL R	2528 3198 017 41050 0603 10V 1µF COL R
2529	2238 586 59812	0603 50V 100NP80M	2529 2238 586 59812 0603 50V 100NP80M
2530	3198 017 41050	0603 10V 1µF COL R	2530 3198 017 41050 0603 10V 1µF COL R
2531	2238 586 59812	0603 50V 100NP80M	2531 2238 586 59812 0603 50V 100NP80M
2532	4822 124 11947	10µF 20% 16V	2532 4822 124 11947 10µF 20% 16V
2533	4822 124 11947	10µF 20% 16V	2533 4822 124 11947 10µF 20% 16V
2534	2238 586 59812	0603 50V 100NP80M	2534 2238 586 59812 0603 50V 100NP80M
2535	4822 124 11947	10µF 20% 16V	2535 4822 124 11947 10µF 20% 16V
2536	3198 017 41050	0603 10V 1µF COL R	2536 3198 017 41050 0603 10V 1µF COL R
2537	3198 017 41050	0603 10V 1µF COL R	2537 3198 017 41050 0603 10V 1µF COL R
2538	3198 017 41050	0603 10V 1µF COL R	2538 3198 017 41050 0603 10V 1µF COL R
2539	4822 124 11947	10µF 20% 16V	2539 4822 124 11947 10µF 20% 16V
2540	5322 126 11578	1nF 10% 50V 0603	2540 5322 126 11578 1nF 10% 50V 0603
2541	2238 586 59812	0603 50V 100NP80M	2541 2238 586 59812 0603 50V 100NP80M
2542	4822 126 13879	220nF 20% 16V	2542 4822 126 13879 220nF 20% 16V
2543	2238 586 59812	0603 50V 100NP80M	2543 2238 586 59812 0603 50V 100NP80M
2544	2238 586 59812	0603 50V 100NP80M	2544 2238 586 59812 0603 50V 100NP80M
2545	4822 126 13881	470pF 5% 50V	2545 4822 126 13881 470pF 5% 50V
2546	4822 126 13881	470pF 5% 50V	2546 4822 126 13881 470pF 5% 50V
2547	3198 017 41050	0603 10V 1µF COL R	2547 3198 017 41050 0603 10V 1µF COL R
2548	3198 017 41050	0603 10V 1µF COL R	2548 3198 017 41050 0603 10V 1µF COL R
2549	4822 124 11947	10µF 20% 16V	2549 4822 124 11947 10µF 20% 16V
2550	5322 126 11578	1nF 10% 50V 0603	2550 5322 126 11578 1nF 10% 50V 0603
2551	3198 017 41050	0603 10V 1µF COL R	2551 3198 017 41050 0603 10V 1µF COL R
2552	2238 586 59812	0603 50V 100NP80M	2552 2238 586 59812 0603 50V 100NP80M
2553	4822 124 11947	10µF 20% 16V	2553 4822 124 11947 10µF 20% 16V
2554	2238 586 59812	0603 50V 100NP80M	2554 2238 586 59812 0603 50V 100NP80M
2555	4822 124 11947	10µF 20% 16V	2555 4822 124 11947 10µF 20% 16V
2556	3198 017 41050	0603 10V 1µF COL R	2556 3198 017 41050 0603 10V 1µF COL R
2557	3198 017 41050	0603 10V 1µF COL R	2557 3198 017 41050 0603 10V 1µF COL R
2558	4822 124 11947	10µF 20% 16V	2558 4822 124 11947 10µF 20% 16V
2559	5322 126 11578	1nF 10% 50V 0603	2559 5322 126 11578 1nF 10% 50V 0603
2560	4822 124 40248	10µF 20% 6.3V	2560 4822 124 40248 10µF 20% 6.3V
2561	5322 126 11583	10nF 10% 50V 0603	2561 5322 126 11583 10nF 10% 50V 0603
2562	4822 124 40248	10µF 20% 6.3V	2562 4822 124 40248 10µF 20% 6.3V
2563	2238 586 59812	0603 50V 100NP80M	2563 2238 586 59812 0603 50V 100NP80M
2564	5322 126 11583	10nF 10% 50V 0603	2564 5322 126 11583 10nF 10% 50V 0603
2565	4822 126 14228	56pF 5% 50V 0603	2565 4822 126 14228 56pF 5% 50V 0603
2566	4822 124 40248	10µF 20% 6.3V	2566 4822 124 40248 10µF 20% 6.3V
2567	4822 126 14228	56pF 5% 50V 0603	2567 4822 126 14228 56pF 5% 50V 0603
2568	4822 126 14228	56pF 5% 50V 0603	2568 4822 126 14228 56pF 5% 50V 0603
2569	4822 126 14228	56pF 5% 50V 0603	2569 4822 126 14228 56pF 5% 50V 0603
2570	4822 124 40769	4.7µF 20% 100V	2570 4822 124 40769 4.7µF 20% 100V
2571	4822 124 40769	4.7µF 20% 100V	2571 4822 124 40769 4.7µF 20% 100V
2572	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2572 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2573	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2573 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2574	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2574 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2575	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2575 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2576	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2576 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2577	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2577 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2578	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2578 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2579	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2579 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2580	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2580 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2581	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2581 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2582	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2582 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2583	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2583 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2584	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2584 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2585	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2585 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2586	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2586 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2587	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2587 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2588	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2588 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2589	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2589 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2590	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2590 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2591	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2591 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2592	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2592 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2593	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2593 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2594	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2594 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2595	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2595 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2596	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2596 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2597	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2597 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2598	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2598 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2599	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2599 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2600	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2600 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2601	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2601 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2602	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2602 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2603	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2603 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2604	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2604 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2605	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2605 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2606	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2606 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2607	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2607 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2608	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2608 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2609	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2609 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2610	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2610 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2611	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2611 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2612	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2612 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2613	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2613 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2614	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2614 3198 030 82280 EL SM 50V 2U2 PM20 COL R
2615	3198 030 82280	EL SM 50V 2U2 PM20 COL R	2615

2625	3198 030 82280	EL SM 50V 2U2 PM20 COL R	3009	2322 704 65102	RST SM 0603 RC22H 5k1 PM1	3446	4822 051 30101	100Ω 5% 0.062W
2700	4822 124 81151	22μF 50V	3010	2120 108 94006	RST SM 0603 ERJ3G 1Ω5 PM5	3450	4822 117 13632	100k 1% 0603 0.62W
2701	5322 122 33861	120pF 10% 50V	3011	5322 117 13026	4k7 1% 0.063W 0603 RC22H	3451	4822 051 30472	4k7 5% 0.062W
2702	4822 126 13883	220pF 5% 50V	3012	5322 117 13026	4k7 1% 0.063W 0603 RC22H	3455	4822 117 13632	100k 1% 0603 0.62W
2703	5322 124 41379	2.2μF 20% 50V	3013	4822 117 12139	22Ω 5% 0.062W	3459	4822 051 30472	4k7 5% 0.062W
2704	4822 126 13881	470pF 5% 50V	3014	4822 117 12139	22Ω 5% 0.062W	3460	4822 051 30471	470Ω 5% 0.062W
2705	2238 586 59812	0603 50V 100NP80M	3015	4822 117 12139	22Ω 5% 0.062W	3461	4822 051 30472	4k7 5% 0.062W
2706	2238 586 59812	0603 50V 100NP80M	3016	4822 117 12139	22Ω 5% 0.062W	3462	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR
2707	5322 126 11583	10nF 10% 50V 0603	3017	5322 117 13026	4k7 1% 0.063W 0603 RC22H	3463	4822 117 13632	100k 1% 0603 0.62W
2708	4822 124 40248	10μF 20% 63V	3018	2120 108 94006	RST SM 0603 ERJ3G 1Ω5 PM5	3464	4822 117 13632	100k 1% 0603 0.62W
2709	4822 126 13879	220nF 20% 16V				3465	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR
2710	2020 552 94523	0603 50V 8P2 PM0P5	3019	2120 108 94006	RST SM 0603 ERJ3G 1Ω5 PM5	3466	4822 051 30471	470Ω 5% 0.062W
2711	5322 126 11578	1nF 10% 50V 0603	3020	5322 117 13028	12k 1% 0.063W 0603 RC22H	3467	4822 051 30472	4k7 5% 0.062W
2712	5322 126 11578	1nF 10% 50V 0603	3021	5322 117 13028	12k 1% 0.063W 0603 RC22H	3468	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR
2713	3198 024 44730	47nF 50V 0603	3022	2322 704 65102	RST SM 0603 RC22H 5k1 PM1	3469	4822 117 13632	100k 1% 0603 0.62W
2714	4822 124 22652	2.2μF 20% 50V	3023	4822 117 12925	47k 1% 0.063W 0603	3470	4822 117 13632	100k 1% 0603 0.62W
2715	5322 126 11578	1nF 10% 50V 0603	3024	4822 117 12925	47k 1% 0.063W 0603	3471	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR
2716	4822 124 41584	100μF 20% 10V	3025	4822 117 12139	22Ω 5% 0.062W	3472	4822 051 30471	470Ω 5% 0.062W
2717	4822 124 22652	2.2μF 20% 50V	3026	4822 117 12139	22Ω 5% 0.062W	3473	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM
2800	3198 017 44740	0603 10V 470nF COL	3027	4822 117 12139	22Ω 5% 0.062W	3474	4822 051 30471	470Ω 5% 0.062W
2801	4822 126 14238	0603 50V 2N2 COL R	3028	4822 117 13608	4.7Ω 5% 0.0603 0.0016W	3475	4822 051 30102	1k 5% 0.062W
2802	4822 126 13482	470nF 80/20% 16V	3029	4822 051 30008	0Ω jumper	3476	5322 117 13068	82Ω 1% 0.063W 0603 RC21 21VR
2803	4822 126 13883	220pF 5% 50V	3030	4822 117 12139	22Ω 5% 0.062W	3477	4822 117 12925	47k 1% 0.063W 0603
2806	3198 017 44740	0603 10V 470nF COL	3031	4822 051 30008	0Ω jumper	3478	4822 051 30759	75Ω 5% 0.062W
2807	4822 126 13482	470nF 80/20% 16V	3032	4822 051 30008	0Ω jumper	3479	4822 051 30472	4k7 5% 0.062W
2810	5322 126 11578	1nF 10% 50V 0603	3033	4822 051 30472	4k7 5% 0.062W	3480	4822 051 30759	75Ω 5% 0.062W
2811	4822 124 11968	220mF 20% 5.5V	3034	4822 051 30472	4k7 5% 0.062W	3481	4822 051 30759	75Ω 5% 0.062W
2812	2238 586 59812	0603 50V 100NP80M	3035	4822 051 30223	22k 5% 0.062W	3482	4822 051 30101	100Ω 5% 0.062W
2814	5322 126 11583	10nF 10% 50V 0603	3036	4822 051 30472	4k7 5% 0.062W	3483	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM
2815	4822 126 14507	18pF 5% 50V 0603	3037	4822 117 13632	100k 1% 0603 0.62W	3484	4822 051 30759	75Ω 5% 0.062W
2816	3198 017 41050	0603 10V 1μF COL R	3038	4822 117 13632	100k 1% 0603 0.62W	3485	4822 051 30102	1k 5% 0.062W
2817	5322 126 11578	1nF 10% 50V 0603	3039	4822 051 30223	22k 5% 0.062W	3486	4822 051 30151	150Ω 5% 0.062W
2818	5322 126 11583	10nF 10% 50V 0603	3040	4822 117 13632	100k 1% 0603 0.62W	3487	4822 051 30101	100Ω 5% 0.062W
2819	3198 017 44740	0603 10V 470nF COL	3041	4822 051 30223	22k 5% 0.062W	3488	4822 051 30759	75Ω 5% 0.062W
2820	3198 017 44740	0603 10V 470nF COL	3042	4822 117 13632	100k 1% 0603 0.62W	3489	4822 051 30102	1k 5% 0.062W
2821	2020 552 96305	4U7 20% 10V	3043	4822 051 30472	4k7 5% 0.062W	3490	4822 051 30471	470Ω 5% 0.062W
2822	2020 552 96305	4U7 20% 10V	3044	4822 051 30472	4k7 5% 0.062W	3492	4822 117 13632	100k 1% 0603 0.62W
2823	2238 586 59812	0603 50V 100NP80M	3045	4822 117 12891	220k 1% ERJ3Ω	3494	4822 051 30759	75Ω 5% 0.062W
2824	2238 586 59812	0603 50V 100NP80M	3046	4822 117 12891	220k 1% ERJ3Ω	3495	4822 051 30222	2k2 5% 0.062W
2900	5322 126 11583	10nF 10% 50V 0603	3047	4822 117 12891	220k 1% ERJ3Ω	3497	4822 051 30101	100Ω 5% 0.062W
2901	4822 124 80151	47μF 16V	3048	4822 117 12891	220k 1% ERJ3Ω	3499	4822 051 30331	330Ω 5% 0.062W
2902	2238 586 59812	0603 50V 100NP80M	3049	4822 051 30472	4k7 5% 0.062W	3500	4822 051 30272	2k7 5% 0.062W
2903	4822 126 13879	220nF 20% 16V	3050	4822 051 30472	4k7 5% 0.062W	3501	4822 051 30272	2k7 5% 0.062W
2904	3198 017 41050	0603 10V 1μF COL R	3051	4822 117 13632	100k 1% 0603 0.62W	3503	4822 051 30221	220Ω 5% 0.062W
2905	4822 124 40433	47μF 20% 25V	3052	4822 051 30101	100Ω 5% 0.062W	3504	4822 051 30222	2k2 5% 0.062W
2906	2238 586 59812	0603 50V 100NP80M	3053	4822 051 30101	100Ω 5% 0.062W	3505	4822 051 30222	2k2 5% 0.062W
2907	5322 126 11583	10nF 10% 50V 0603	3054	4822 051 30759	75Ω 5% 0.062W	3506	4822 051 30221	220Ω 5% 0.062W
2909	2238 586 59812	0603 50V 100NP80M	3055	4822 051 30472	4k7 5% 0.062W	3515	4822 117 13632	100k 1% 0603 0.62W
2910	4822 126 11669	27pF	3056	4822 051 30472	4k7 5% 0.062W	3516	4822 051 30471	470Ω 5% 0.062W
2911	2222 867 15339	0603 50V 33P PM5	3057	4822 051 30472	4k7 5% 0.062W	3517	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR
2914	2238 586 59812	0603 50V 100NP80M	3058	4822 051 30472	4k7 5% 0.062W	3518	4822 051 30472	4k7 5% 0.062W
2915	2238 586 59812	0603 50V 100NP80M	3059	4822 051 30472	4k7 5% 0.062W	3519	4822 117 13632	100k 1% 0603 0.62W
2916	2238 586 59812	0603 50V 100NP80M	3060	4822 051 30759	75Ω 5% 0.062W	3520	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR
2917	2238 586 59812	0603 50V 100NP80M	3061	4822 051 30759	75Ω 5% 0.062W	3521	4822 051 30102	1k 5% 0.062W
2918	2238 586 59812	0603 50V 100NP80M	3062	4822 051 30759	75Ω 5% 0.062W	3522	4822 051 30471	470Ω 5% 0.062W
2950	2238 586 59812	0603 50V 100NP80M	3063	4822 051 30103	10k 5% 0.062W	3523	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR
2951	4822 124 40248	10μF 20% 63V	3064	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR	3524	4822 051 30101	100Ω 5% 0.062W
2952	4822 126 14238	0603 50V 2N2 COL R	3065	4822 117 13632	100k 1% 0603 0.62W	3525	4822 051 30101	100Ω 5% 0.062W
2953	4822 126 14238	0603 50V 2N2 COL R	3066	4822 051 30103	10k 5% 0.062W	3526	4822 117 13632	100k 1% 0603 0.62W
2954	4822 126 14508	180pF 5% 50V 0603	3067	4822 051 30103	10k 5% 0.062W	3527	4822 051 30472	4k7 5% 0.062W
2955	4822 126 14508	180pF 5% 50V 0603	3068	4822 117 13632	100k 1% 0603 0.62W	3528	4822 051 30471	470Ω 5% 0.062W
2956	3198 017 41050	0603 10V 1μF COL R	3069	4822 051 30221	220Ω 5% 0.062W	3529	4822 117 13632	100k 1% 0603 0.62W
2957	3198 017 41050	0603 10V 1μF COL R	3070	4822 051 30221	220Ω 5% 0.062W	3530	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR
2970	4822 124 11947	10μF 20% 16V	3071	4822 117 13632	100k 1% 0603 0.62W	3531	4822 051 30471	470Ω 5% 0.062W
2980	4822 124 40207	100μF 20% 25V	3072	4822 117 13632	100k 1% 0603 0.62W	3532	4822 051 30471	470Ω 5% 0.062W
2981	2238 586 59812	0603 50V 100NP80M	3073	4822 117 13632	100k 1% 0603 0.62W	3533	4822 117 12925	47k 1% 0.063W 0603
2982	4822 124 40207	100μF 20% 25V	3074	4822 117 13632	100k 1% 0603 0.62W	3534	4822 051 30101	100Ω 5% 0.062W
2983	5322 126 11583	10nF 10% 50V 0603	3075	4822 051 30472	4k7 5% 0.062W	3535	4822 051 30471	470Ω 5% 0.062W
2984	3198 016 31026	0603 25V 1nF	3076	4822 051 30472	4k7 5% 0.062W	3536	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM
2990	2238 586 59812	0603 50V 100NP80M	3077	4822 051 30472	4k7 5% 0.062W	3537	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM
2991	4822 124 40433	47μF 20% 25V	3078	4822 051 30474	470k 5% 0.062W	3538	4822 051 30102	1k 5% 0.062W
2992	2238 586 59812	0603 50V 100NP80M	3079	4822 051 30474	470k 5% 0.062W	3539	4822 051 30102	1k 5% 0.062W
2993	2238 586 59812	0603 50V 100NP80M	3080	4822 051 30474	470k 5% 0.062W	3540	5322 117 13068	82Ω 1% 0.063W 0603 RC21 21VR
2994	2238 586 59							

3546	4822 051 30102	1k 5% 0.062W	3833	4822 051 30222	2k2 5% 0.062W	3959	3198 021 31060	RST SM 0603 10M PM5COL R
3547	4822 051 30151	150Ω 5% 0.062W	3834	4822 051 30222	2k2 5% 0.062W	3960	3198 021 31060	RST SM 0603 10M PM5COL R
3548	4822 051 30101	100Ω 5% 0.062W	3835	4822 051 30103	10k 5% 0.062W	3961	4822 051 30333	33k 5% 0.062W
3549	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM	3837	4822 117 13632	100k 1% 0603 0.62W	3962	4822 051 30333	33k 5% 0.062W
3550	4822 051 30102	1k 5% 0.062W	3838	4822 051 30472	4k7 5% 0.062W	3963	4822 051 30333	33k 5% 0.062W
3551	4822 051 30101	100Ω 5% 0.062W	3839	4822 051 30103	10k 5% 0.062W	3964	4822 051 30333	33k 5% 0.062W
3552	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM	3840	4822 051 30101	100Ω 5% 0.062W	3965	4822 051 30333	33k 5% 0.062W
3553	4822 051 30102	1k 5% 0.062W	3841	4822 051 30101	10k 5% 0.062W	3966	4822 051 30333	33k 5% 0.062W
3554	4822 051 30759	75Ω 5% 0.062W	3842	4822 051 30684	680k 5% 0.062W	3967	4822 051 30109	10Ω 5% 0.062W
3555	4822 051 30103	10k 5% 0.062W	3843	4822 051 30103	10k 5% 0.062W	3968	4822 051 30109	10Ω 5% 0.062W
3556	4822 117 12925	47k 1% 0.063W 0603	3844	4822 051 30102	1k 5% 0.062W	3969	4822 051 30109	10Ω 5% 0.062W
3557	4822 117 12925	47k 1% 0.063W 0603	3845	4822 051 30472	4k7 5% 0.062W	3970	4822 117 12891	220k 1% ERJ3Ω
3558	4822 051 30223	22k 5% 0.062W	3846	4822 051 30102	1k 5% 0.062W	3971	5322 117 13024	33k 1% 0.063W 0603 RC22H
3559	4822 051 30392	3k9 5% 0.063W 0603	3847	4822 051 30332	3k3 5% 0.062W	3972	4822 051 30471	470Ω 5% 0.062W
3560	4822 117 12891	220k 1% ERJ3Ω	3848	4822 051 30103	10k 5% 0.062W	3973	4822 051 30102	1k 5% 0.062W
3561	4822 051 30332	3k3 5% 0.062W	3849	4822 051 30472	4k7 5% 0.062W	3975	4822 051 30563	56k 5% 0.062W
3562	4822 051 30101	100Ω 5% 0.062W	3850	4822 051 30103	10k 5% 0.062W	3976	4822 051 30393	39k 5% 0.062W
3563	4822 051 30101	100Ω 5% 0.062W	3851	4822 051 30223	22k 5% 0.062W	3977	4822 051 30223	22k 5% 0.062W
3567	4822 051 30103	10k 5% 0.062W	3852	4822 051 30223	22k 5% 0.062W	3978	4822 051 30109	10Ω 5% 0.062W
3568	4822 051 30472	4k7 5% 0.062W	3853	4822 051 30103	100k 1% 0603 0.62W	3979	4822 051 30102	1k 5% 0.062W
3570	4822 117 13632	100k 1% 0603 0.62W	3854	4822 051 30223	22k 5% 0.062W	3980	4822 051 30333	33k 5% 0.062W
3600	4822 051 30103	10k 5% 0.062W	3855	4822 051 30103	100k 1% 0603 0.62W	3981	4822 051 30153	15k 5% 0.062W
3601	4822 051 30101	100Ω 5% 0.062W	3856	4822 051 30223	22k 5% 0.062W	3982	4822 051 30183	18k 5% 0.062W
3602	4822 051 30472	4k7 5% 0.062W	3857	4822 051 30103	10k 5% 0.062W	3983	4822 051 30563	56k 5% 0.062W
3603	4822 051 30101	100Ω 5% 0.062W	3858	4822 051 30223	22k 5% 0.062W	3984	4822 051 30102	1k 5% 0.062W
3604	4822 051 30102	1k 5% 0.062W	3859	4822 051 30223	22k 5% 0.062W	3985	4822 051 30562	5k6 5% 0.063W 0603 RC21 RST SM
3605	4822 051 30102	1k 5% 0.062W	3860	4822 051 30223	22k 5% 0.062W	3986	4822 051 30103	10k 5% 0.062W
3606	4822 051 30102	1k 5% 0.062W	3861	4822 051 30103	10k 5% 0.062W	3987	4822 051 30102	1k 5% 0.062W
3607	4822 051 30102	1k 5% 0.062W	3862	4822 051 30223	22k 5% 0.062W	3988	4822 051 30273	27k 5% 0.062W
3700	4822 051 30333	33k 5% 0.062W	3863	4822 117 12925	47k 1% 0.063W 0603	3989	4822 051 30103	10k 5% 0.062W
3701	4822 051 30681	68Ω 5% 0.062W	3864	4822 051 30101	100Ω 5% 0.062W	3990	4822 117 12925	47k 1% 0.063W 0603
3702	4822 051 30562	5k6 5% 0.063W 0603 RC21 RST SM	3865	4822 051 30101	100Ω 5% 0.062W	3991	4822 117 12925	47k 1% 0.063W 0603
3703	4822 051 30154	150k 5% 0.062W	3866	4822 051 30103	10k 5% 0.062W	3992	4822 117 12925	47k 1% 0.063W 0603
3704	4822 051 30472	4k7 5% 0.062W	3867	4822 051 30332	3k3 5% 0.062W	3993	4822 051 30101	100Ω 5% 0.062W
3705	4822 051 30183	18k 5% 0.062W	3868	4822 051 30101	100Ω 5% 0.062W	3994	4822 051 30101	100Ω 5% 0.062W
3706	4822 051 30331	330Ω 5% 0.062W	3869	4822 051 30101	100Ω 5% 0.062W	3995	4822 051 30103	10k 5% 0.062W
3707	4822 100 12158	22k 30%	3870	4822 051 30101	100Ω 5% 0.062W	3996	4822 051 30109	10Ω 5% 0.062W
3708	4822 051 30101	100Ω 5% 0.062W	3871	4822 051 30472	4k7 5% 0.062W	3997	4822 051 30109	10Ω 5% 0.062W
3709	4822 051 30183	18k 5% 0.062W	3872	4822 051 30103	10k 5% 0.062W			
3710	4822 051 30101	100Ω 5% 0.062W	3873	4822 051 30103	10k 5% 0.062W			
3711	4822 051 30008	0Ω jumper	3874	4822 051 30123	12k 5% 0.062W			
3712	4822 051 30222	2k2 5% 0.062W	3875	4822 051 30102	1k 5% 0.062W			
3713	4822 051 30682	6k8 5% 0.062W	3876	4822 051 30331	330Ω 5% 0.062W			
3714	4822 051 30472	4k7 5% 0.062W	3877	4822 051 30101	100Ω 5% 0.062W			
3715	4822 051 30101	100Ω 5% 0.062W	3878	4822 051 30101	100Ω 5% 0.062W			
3716	4822 051 30101	100Ω 5% 0.062W	3879	4822 051 30103	10k 5% 0.062W			
3717	4822 051 30102	1k 5% 0.062W	3880	4822 051 30103	10k 5% 0.062W			
3718	4822 051 30472	4k7 5% 0.062W	3881	4822 051 30103	10k 5% 0.062W			
3719	4822 051 30472	4k7 5% 0.062W	3882	4822 117 13632	100k 1% 0603 0.62W			
3720	4822 051 30101	100Ω 5% 0.062W	3883	4822 051 30331	330Ω 5% 0.062W			
3721	4822 051 30271	270Ω 5% 0.062W	3884	4822 051 30223	22k 5% 0.062W			
3722	4822 051 30332	3k3 5% 0.062W	3885	4822 051 30102	1k 5% 0.062W			
3723	4822 117 13632	100k 1% 0603 0.62W	3886	4822 051 30101	100Ω 5% 0.062W			
3724	4822 051 30681	68Ω 5% 0.062W	3887	4822 051 30103	10k 5% 0.062W			
3725	4822 051 30472	4k7 5% 0.062W	3888	4822 051 30223	22k 5% 0.062W			
3726	4822 051 30562	5k6 5% 0.063W 0603 RC21 RST SM	3889	4822 051 30101	100Ω 5% 0.062W			
3727	4822 051 30272	2k7 5% 0.062W	3890	4822 051 30103	10k 5% 0.062W			
3728	4822 051 30331	330Ω 5% 0.062W	3891	4822 117 12925	47k 1% 0.063W 0603			
3729	4822 051 30562	5k6 5% 0.063W 0603 RC21 RST SM	3892	4822 051 30472	4k7 5% 0.062W			
3730	4822 051 30562	5k6 5% 0.063W 0603 RC21 RST SM	3893	4822 051 30102	1k 5% 0.062W			
3800	4822 051 30103	10k 5% 0.062W	3894	4822 051 30333	33k 5% 0.062W			
3801	4822 051 30273	27k 5% 0.062W	3895	4822 051 30101	100Ω 5% 0.062W			
3803	4822 051 30682	6k8 5% 0.062W	3896	4822 051 30103	100Ω 5% 0.062W			
3804	4822 051 30222	2k2 5% 0.062W	3897	4822 051 30101	100Ω 5% 0.062W			
3805	4822 051 30222	2k2 5% 0.062W	3898	4822 051 30102	1k 5% 0.062W			
3807	4822 051 30008	0Ω jumper	3899	4822 051 30472	4k7 5% 0.062W			
3808	4822 051 30333	33k 5% 0.062W	3900	4822 051 30103	10k 5% 0.062W			
3809	4822 051 30103	10k 5% 0.062W	3901	4822 117 13632	100k 1% 0603 0.62W			
3810	4822 117 13632	100k 1% 0603 0.62W	3902	4822 051 30472	4k7 5% 0.062W			
3811	4822 051 30472	4k7 5% 0.062W	3903	4822 051 30102	1k 5% 0.062W			
3812	4822 051 30221	220Ω 5% 0.062W	3904	4822 051 30102	1k 5% 0.062W			
3813	4822 051 30684	680k 5% 0.062W	3905	4822 051 30102	1k 5% 0.062W			
3814	4822 051 30008	0Ω jumper	3906	4822 051 30472	4k7 5% 0.062W			
3815	4822 051 30103	10k 5% 0.062W	3907	4822 051 30101	100Ω 5% 0.062W			
3816	4822 051 30101	100Ω 5% 0.062W	3908	4822 051 30103	100Ω 5% 0.062W			
3817	4822 051 30102	1k 5% 0.062W	3909	4822 051 30101	100Ω 5% 0.062W			
3818	4822 051 30101	100Ω 5% 0.062W	3910	4822 051 30102	1k 5% 0.062W			
3819	4822 051 30101	100Ω 5% 0.062W	3911	4822 051 30472	4k7 5% 0.062W			
3820	4822 051 30472	4k7 5% 0.062W	3912	4822 051 30103	10k 5% 0.062W			
3821	4822 051 30103	10k 5% 0.062W	3913	4822 117 13632	100k 1% 0603 0.62W			
3822	4822 117 13632	100k 1% 0603 0.62W	3914	4822 051 30101	100Ω 5% 0.062W			
3823	4822 051 30103	10k 5% 0.062W	3915	4822 051 30101	100Ω 5% 0.062W			
3824	4822 051 30103	10k 5% 0.062W	3916	4822 051 30103	10k 5% 0.062W			
3825	4822 051 30103	10k 5% 0.062W	3917	4822 117 12925	220k 5% 0.062W			
3826	4822 051 30008	0Ω jumper	3918	4822 051 30103	10k 5% 0.062W			
3827	4822 051 30472	4k7 5% 0.062W	3919	4822 051 30103	10k 5% 0.062W			
3828	4822 0							

6461	9322 129 42685	DIO REG SM BZM55-C15 (TEGO) R	7514	3198 010 42320	BC857BW	2147	4822 124 40248	10µF 20% 63V
6462	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7515	4822 130 42804	BC817-25	2151	2222 580 15649	100nF 10% 50V
6463	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7516	3198 010 42310	BC847BW	2152	4822 126 14241	0603 50V 330P COL R
6464	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7517	3198 010 42320	BC857BW	2153	4822 126 13694	68pF 1% 63V
6465	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7600	9322 167 63668	IC SM MSP3415G-QG-B8 (MIAS) R	2200	4822 124 11566	47µF 20% 50V
6466	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7700	4822 130 61553	DTC124EU	2201	2222 580 15649	100nF 10% 50V
6468	4822 130 83757	MCL4148	7701	4822 130 61553	DTC124EU	2210	2020 021 91657	EL YXG 16V S 680µF PM20 B
6501	9322 129 42685	DIO REG SM BZM55-C15 (TEGO) R	7702	4822 130 61553	DTC124EU	2211	4822 124 40255	100µF 20% 63V
6502	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7703	9352 606 11118	IC SM TDA9818T/V1(PHSE) R	2214	4822 124 12285	2200µF 20% 16V YXG EL
6503	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7704	3198 010 42320	BC857BW	2220	4822 124 80144	220µF 20% 25V
6504	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7705	5322 130 42755	BC847C	2221	4822 124 40255	100µF 20% 63V
6505	9322 146 61685	DIO REG SM DF3A6.8FU TOSJ	7706	3198 010 42320	BC857BW	2230	2222 580 15649	100nF 10% 50V
6507	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7707	3198 010 42310	BC847BW	2235	2020 012 93762	EL YK 50V S 330µF PM20 B
6508	9322 129 38685	DIO REG SM BZM55-C6V8 (TEGO)	7709	3198 010 42310	BC847BW	2240	2020 021 91664	EL YXG 16V S 1000µF PM20 B
6509	9322 150 38685	DIO SIG SM BAS385(VISH)R	7800	9322 015 84668	IC SM TL074CD (ST00) R	2241	4822 124 40255	100µF 20% 63V
6600	4822 130 83757	MCL4148	7801	3198 010 42310	BC847BW	2251	4822 126 14494	22nF 10% 25V 0603
6700	4822 130 11525	1SS356	7803	4822 209 16884		2501	4822 126 14494	22nF 10% 25V 0603
6701	4822 130 11525	1SS356	7804	3198 010 42320	BC857BW	2502	4822 124 40255	100µF 20% 63V
6702	4822 130 11525	1SS356	7805	3198 010 42310	BC847BW	2506	4822 124 40255	100µF 20% 63V
6703	4822 130 83757	MCL4148	7806	3198 010 42320	BC857BW	2511	4822 126 14305	100nF 10% 16V 0603
6801	9322 150 38685	DIO SIG SM BAS385(VISH)R	7807	4822 130 60854	DTC124EU-W	2512	4822 124 40255	100µF 20% 63V
6802	4822 130 83757	MCL4148	7809	3198 010 42310	BC847BW	2513	2222 580 15649	100nF 10% 50V
6803	4822 130 83757	MCL4148	7900	4822 130 61553	DTC124EU	2515	4822 124 40255	100µF 20% 63V
6804	4822 130 10654	BAT254	7905	4822 209 60177	LM339D	2520	4822 126 14494	22nF 10% 25V 0603
6805	9322 150 38685	DIO SIG SM BAS385(VISH)R	7951	3198 010 42310	BC847BW	2521	4822 124 40255	100µF 20% 63V
6807	4822 130 83757	MCL4148	7952	3198 010 42310	BC847BW			
6970	4822 130 83757	MCL4148	7970	4822 209 63709	LM324D			
6971	4822 130 83757	MCL4148	7971	4822 130 41087	BC638			
6972	4822 130 83757	MCL4148	7972	3198 010 42310	BC847BW			
			7974	3198 010 42310	BC847BW			
			7975	9340 560 36235	BSH111			
			7990	4822 209 17505	STV5348D			

Tray Front**Various**

0002 3104 120 00272 RW BADGE

PSU PWB**Various**

0010	4822 492 63066	
0021	4822 492 63066	
0025	4822 492 63524	FIX. TRANSISTOR
0040	4822 492 63066	
0060	4822 492 63066	
0090	4822 492 63066	
0101▲	4822 265 31015	
0120▲	4822 265 11253	FUSE HOLDER 2P
1120▲	4822 253 30383	19181 (2,5A)
1520▲	4822 252 11144	19398E1(3,150A)

-II-

2119▲	2020 554 90186	CERSAF KX 250V S 1nF PM20 A
2120▲	4822 121 10697	220nF 20% 275V
2125	2222 151 90053	EL 151 400V S 68µF PM20
2129	4822 121 70162	10nF 5% 400V
2130	4822 126 14525	47pF 5% 1KV
2131▲	2020 554 90186	CERSAF KX 250V S 1nF PM20 A
2136	4822 126 12263	220pF 10% 1KV
2139	2222 580 15649	100nF 10% 50V
2140	2222 580 15649	100nF 10% 50V
2141	4822 126 13881	470pF 5% 50V
2142	4822 122 33575	220pF 5% 63V CASE
2143	4822 126 14305	100nF 10% 16V 0603
2144	4822 126 14583	470nF 10% 16V XTR
2145	4822 126 14583	470nF 10% 16V XTR
2146	5322 122 34099	470pF 10% 63V

5110 2422 535 94634 IND FXD LHL08 S 2U2 PM20 A

5115	2422 535 94634	IND FXD LHL08 S 2U2 PM20 A	1602	2422 025 16389	CON BM V 22P F 1.00 FFC 0.3 R	2307	2238 586 59812	0603 5V 100NP80M
5120▲	4822 157 11846		1603	2422 025 16939	CON BM V 60P F 0.80 84616 R	2308	2238 586 59812	0603 5V 100NP80M
5125	4822 157 70826	2.4μH				2309	2238 586 59812	0603 5V 100NP80M
5131▲	4822 146 10402	TRAFO CT395FANF/PVF				2310	2238 586 59812	0603 5V 100NP80M
5210	2422 535 94639	IND FXD LHL08 S 10U PM20				2311	3198 030 74780	EL SM 35V 4U7 PM20 COL R
5240	2422 535 94632	IND FXD LHL08 S 1U PM30 A				2312	2238 586 59812	0603 5V 100NP80M
5501	2422 535 94634	IND FXD LHL08 S 2U2 PM20 A	2100	2238 586 59812	0603 5V 100NP80M	2402	2238 586 59812	0603 5V 100NP80M
5505	2422 535 94639	IND FXD LHL08 S 10U PM20	2101	2238 586 59812	0603 5V 100NP80M	2403	3198 030 74780	EL SM 35V 4U7 PM20 COL R
5511	2422 535 94639	IND FXD LHL08 S 10U PM20	2102	2238 586 59812	0603 5V 100NP80M	2404	2238 586 59812	0603 5V 100NP80M
5515	2422 535 94639	IND FXD LHL08 S 10U PM20	2103	2238 586 59812	0603 5V 100NP80M	2405	2238 586 59812	0603 5V 100NP80M
5520	2422 535 94634	IND FXD LHL08 S 2U2 PM20 A	2104	2238 586 59812	0603 5V 100NP80M	2406	2238 586 59812	0603 5V 100NP80M
			2105	2238 586 59812	0603 5V 100NP80M	2407	2238 586 59812	0603 5V 100NP80M
			2106	2238 586 59812	0603 5V 100NP80M	2408	2238 586 59812	0603 5V 100NP80M
			2107	2238 586 59812	0603 5V 100NP80M	2409	2238 586 59812	0603 5V 100NP80M
			2108	2238 586 59812	0603 5V 100NP80M	2410	2238 586 59812	0603 5V 100NP80M
			2109	2238 586 59812	0603 5V 100NP80M	2411	3198 030 74780	EL SM 35V 4U7 PM20 COL R
			2110	2238 586 59812	0603 5V 100NP80M	2412	2238 586 59812	0603 5V 100NP80M
6125	4822 130 42606	BYD33J	2111	2238 586 59812	0603 5V 100NP80M	2413	2238 586 59812	0603 5V 100NP80M
6130	5322 130 34574	1N4004G	2112	2238 586 59812	0603 5V 100NP80M	2414	2238 586 59812	0603 5V 100NP80M
6131	5322 130 34574	1N4004G	2113	2238 586 59812	0603 5V 100NP80M	2415	2238 586 59812	0603 5V 100NP80M
6132	5322 130 34574	1N4004G	2114	2238 586 59812	0603 5V 100NP80M	2416	2238 586 59812	0603 5V 100NP80M
6140	4822 130 30842	BAV21	2115	2238 586 59812	0603 5V 100NP80M	2417	2238 586 59812	0603 5V 100NP80M
6141	4822 130 83757	MCL4148	2116	2238 586 59812	0603 5V 100NP80M	2418	2238 586 59812	0603 5V 100NP80M
6142	4822 130 30842	BAV21	2117	2238 586 59812	0603 5V 100NP80M	2419	2238 586 59812	0603 5V 100NP80M
6143	4822 130 30842	BAV21	2118	2238 586 59812	0603 5V 100NP80M	2420	2238 586 59812	0603 5V 100NP80M
6144	9340 387 30115	DIO REG SM BZX284-C16 (PHSE) R	2119	3198 030 74780	EL SM 35V 4U7 PM20 COL R	2421	2238 586 59812	0603 5V 100NP80M
6145	4822 130 83757	MCL4148	2120	2238 586 59812	0603 5V 100NP80M	2422	2238 586 59812	0603 5V 100NP80M
6146	4822 130 83757	MCL4148	2121	2238 586 59812	0603 5V 100NP80M	2423	2238 586 59812	0603 5V 100NP80M
6151	4822 130 31603	1N4006	2122	2238 586 59812	0603 5V 100NP80M	2424	2238 586 59812	0603 5V 100NP80M
6152	4822 130 31603	1N4006	2123	2238 586 59812	0603 5V 100NP80M	2425	2238 586 59812	0603 5V 100NP80M
6153	4822 130 31603	1N4006	2124	2238 586 59812	0603 5V 100NP80M	2426	2238 586 59812	0603 5V 100NP80M
6154	4822 130 31603	1N4006	2125	2238 586 59812	0603 5V 100NP80M	2427	2238 586 59812	0603 5V 100NP80M
6200	4822 130 42606	BYD33J	2126	2238 586 59812	0603 5V 100NP80M	2428	2238 586 59812	0603 5V 100NP80M
6201	4822 130 34142	BZX79-B33	2127	3198 030 74780	EL SM 35V 4U7 PM20 COL R	2429	2238 586 59812	0603 5V 100NP80M
6210	4822 130 11596	BYW29EX-200				2430	2238 586 59812	0603 5V 100NP80M
6211	5322 130 34574	1N4004G	2128	3198 016 31020	0603 25V 1nF	2431	3198 030 74780	EL SM35V 4U7 PM20 COL R
6215	9322 161 46687	DIO REC STPS745FP (ST00) L	2129	4822 126 13956	68pF 5% 63V CASE 0603			
6220	5322 130 31938	BYV27-200	2132	2238 586 59812	0603 5V 100NP80M	2432	2238 586 59812	0603 5V 100NP80M
6221	4822 130 30842	BAV21	2135	3198 030 74780	EL SM 35V 4U7 PM20 COL R	2433	2238 586 59812	0603 5V 100NP80M
6230	4822 130 42606	BYD33J	2136	4822 126 11785	0603 5V 47P PM5	2434	2238 586 59812	0603 5V 100NP80M
6231	4822 130 34142	BZX79-B33	2137	2238 586 59812	0603 5V 100NP80M	2435	2238 586 59812	0603 5V 100NP80M
6240	4822 130 11596	BYW29EX-200	2139	2238 586 59812	0603 5V 100NP80M	2436	2238 586 59812	0603 5V 100NP80M
6505	4822 130 32245	BYV10-40	2141	4822 126 11785	0603 5V 47P PM5	2437	2238 586 59812	0603 5V 100NP80M
6511	4822 130 11666	BZX284-C8V2	2146	2238 586 59812	0603 5V 100NP80M	2438	2238 586 59812	0603 5V 100NP80M
6512	5322 130 34574	1N4004G	2153	4822 126 13879	220nF 20% 16V	2439	2238 586 59812	0603 5V 100NP80M
6515	4822 130 34278	BZX79-B6V8	2154	4822 126 14494	22nF 10% 25V 0603	2440	2238 586 59812	0603 5V 100NP80M
6520	4822 130 83757	MCL4148	2200	3198 016 31020	0603 25V 1nF	2441	3198 030 74780	EL SM35V 4U7 PM20 COL R
			2201	4822 126 14494	22nF 10% 25V 0603	2442	2238 586 59812	0603 5V 100NP80M
			2202	2238 586 59812	0603 5V 100NP80M	2443	4822 122 33741	10pF 1% 50V
			2203	3198 030 74780	EL SM 35V 4U7 PM20 COL R	2444	2238 586 59812	0603 5V 100NP80M
7125	9322 126 65687	STP5NB60FP	2204	2222 867 15339	0603 5V 33P PM5	2446	3198 016 31020	0603 25V 1nF
7140	5322 130 60159	BC846B	2205	2238 586 59812	0603 5V 100NP80M	2500	3198 016 31020	0603 25V 1nF
7141	4822 130 60373	BC856B	2206	2238 586 59812	0603 5V 100NP80M	2501	2238 586 59812	0603 5V 100NP80M
7142	5322 130 60159	BC846B	2207	2222 867 15339	0603 5V 33P PM5	2502	2238 586 59812	0603 5V 100NP80M
7143	5322 130 60159	BC846B	2208	2238 586 59812	0603 5V 100NP80M	2503	2238 586 59812	0603 5V 100NP80M
7200▲	9322 149 04682	OPT CP TCET1102(G) (VISH) L	2209	2238 586 59812	0603 5V 100NP80M	2504	2238 586 59812	0603 5V 100NP80M
7220	4822 209 72684	L7905CV	2210	2238 586 59812	0603 5V 100NP80M	2505	2238 586 59812	0603 5V 100NP80M
7241	4822 130 60373	BC856B	2211	2238 586 59812	0603 5V 100NP80M	2506	2238 586 59812	0603 5V 100NP80M
7251	4822 209 81397	TL431CLPST	2212	2238 586 59812	0603 5V 100NP80M	2507	2238 586 59812	0603 5V 100NP80M
7501	9322 163 53685	FET POW SM IRLML2502 (INR0) R	2213	2238 586 59812	0603 5V 100NP80M	2508	2238 586 59812	0603 5V 100NP80M
7502	4822 209 81397	TL431CLPST	2214	2238 586 59812	0603 5V 100NP80M	2509	2238 586 59812	0603 5V 100NP80M
7511	9322 163 53685	FET POW SM IRLML2502 (INR0) R	2215	2238 586 59812	0603 5V 100NP80M	2510	4822 122 33761	22pF 5% 50V
7512	5322 130 60159	BC846B	2216	2238 586 59812	0603 5V 100NP80M	2511	4822 122 33741	10pF 1% 50V
7515	9322 163 53685	FET POW SM IRLML2502 (INR0) R	2217	2238 586 59812	0603 5V 100NP80M	2512	2238 586 59812	0603 5V 100NP80M
7518	4822 130 11336	STP16NE06FP	2218	3198 030 74780	EL SM 35V 4U7 PM20 COL R	2513	2238 586 59812	0603 5V 100NP80M
7520	4822 209 81397	TL431CLPST	2219	2238 586 59812	0603 5V 100NP80M	2514	2238 586 59812	0603 5V 100NP80M
7521	4822 130 11336	STP16NE06FP	2220	2238 586 59812	0603 5V 100NP80M	2515	2238 586 59812	0603 5V 100NP80M
			2221	2238 586 59812	0603 5V 100NP80M	2516	2238 586 59812	0603 5V 100NP80M
			2222	2238 586 59812	0603 5V 100NP80M	2517	3198 030 74780	EL SM35V 4U7 PM20 COL R
			2223	2238 586 59812	0603 5V 100NP80M	2518	3198 030 74780	EL SM35V 4U7 PM20 COL R
			2224	2238 586 59812	0603 5V 100NP80M	2519	3198 030 74780	EL SM35V 4U7 PM20 COL R
			2225	2238 586 59812	0603 5V 100NP80M	2520	3198 030 74780	EL SM35V 4U7 PM20 COL R
			2226	2238 586 59812	0603 5V 100NP80M			
			2227	2238 586 59812	0603 5V 100NP80M			
			2228	2238 586 59812	0603 5V 100NP80M			
			2229	2238 586 59812	0603 5V 100NP80M			
			2230	3198 030 74780	EL SM 35V 4U7 PM20 COL R			
			2231	2238 586 59812	0603 5V 100NP80M			
			2300	2238 586 59812	0603 5V 100NP80M			
			2301	2238 586 59812	0603 5V 100NP80M			
			2302	2238 586 59812	0603 5V 100NP80M			
			2303	2238 586 59812	0603 5V 100NP80M			
			2304	3198 030 74780	EL SM 35V 4U7 PM20 COL R			
			2305	3198 030 74780	EL SM 35V 4U7 PM20 COL R			
			2306	2238 586 59812	0603 5V 100NP80M			
						2521	2238 586 59812	0603 5V 100NP80M
						2522	2238 586 59812	0603 5V 100NP80M
						2523	2238 586 59812	0603 5V 100NP80M

2535	2238 586 59812	0603 50V 100NP80M	3126	4822 117 12891	220k 1% ERJ3Q	3611	5322 117 13059	560Ω 1% 0.063W 0603
2536	2238 586 59812	0603 50V 100NP80M	3127	4822 051 30479	47Ω 5% 0.062W	3612	5322 117 13059	560Ω 1% 0.063W 0603
2537	2238 586 59812	0603 50V 100NP80M	3128	4822 051 30479	47Ω 5% 0.062W	3613	4822 051 30102	1k 5% 0.062W
2538	2238 586 59812	0603 50V 100NP80M	3129	4822 051 30479	47Ω 5% 0.062W	3615	4822 051 30101	100Ω 5% 0.062W
2539	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3130	2120 611 00019	NTC SM 0603 0W1 4k7 PM5 R	3616	5322 117 13059	560Ω 1% 0.063W 0603
2540	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3131	4822 117 12917	1Ω 5% 0.062W CASE0603	3617	5322 117 13059	560Ω 1% 0.063W 0603
2541	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3132	4822 117 12917	1Ω 5% 0.062W CASE0603	3618	4822 051 30102	1k 5% 0.062W
2542	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3133	4822 117 12917	1Ω 5% 0.062W CASE0603	3619	4822 051 30561	560Ω 5% 0.062W
2543	2238 586 59812	0603 50V 100NP80M	3134	4822 117 12917	1Ω 5% 0.062W CASE0603	3620	4822 051 30222	2k2 5% 0.062W
2544	2238 586 59812	0603 50V 100NP80M	3135	4822 117 12917	1Ω 5% 0.062W CASE0603	3621	5322 117 13059	560Ω 1% 0.063W 0603
2545	4822 122 33753	150pF 5% 50V	3136	4822 051 30472	4k7 5% 0.062W	3622	5322 117 13059	560Ω 1% 0.063W 0603
2600	2238 586 59812	0603 50V 100NP80M	3137	4822 051 30472	4k7 5% 0.062W	3623	4822 051 30101	100Ω 5% 0.062W
2601	4822 126 11785	0603 50V 47P PM5	3138	4822 051 30472	4k7 5% 0.062W	3624	4822 051 30102	1k 5% 0.062W
2602	4822 126 11785	0603 50V 47P PM5	3139	4822 051 30101	100Ω 5% 0.062W	3625	4822 051 30101	100Ω 5% 0.062W
2603	2238 586 59812	0603 50V 100NP80M	3140	4822 051 30103	10k 5% 0.062W	3626	5322 117 13059	560Ω 1% 0.063W 0603
2609	2238 586 59812	0603 50V 100NP80M	3141	4822 117 12139	22Ω 5% 0.062W	3627	5322 117 13059	560Ω 1% 0.063W 0603
2610	2238 586 59812	0603 50V 100NP80M	3142	4822 051 30103	10k 5% 0.062W	3628	4822 051 30102	1k 5% 0.062W
2611	4822 126 11785	0603 50V 47P PM5	3143	4822 051 30222	2k2 5% 0.062W	3629	4822 051 30181	180Ω 5% 0.062W
2612	4822 126 11785	0603 50V 47P PM5	3144	4822 051 30152	1k5 5% 0.062W	3630	4822 051 30181	180Ω 5% 0.062W
2613	2238 586 59812	0603 50V 100NP80M	3145	4822 051 30103	10k 5% 0.062W	3631	4822 117 12917	1Ω 5% 0.062W CASE0603
2614	2238 586 59812	0603 50V 100NP80M	3146	4822 051 30103	10k 5% 0.062W	3632	4822 051 30561	560Ω 5% 0.062W
2615	2238 586 59812	0603 50V 100NP80M	3147	4822 051 30103	10k 5% 0.062W	3633	4822 051 30561	560Ω 5% 0.062W
2616	4822 126 11785	0603 50V 47P PM5	3148	4822 051 30103	10k 5% 0.062W	3634	4822 051 30101	100Ω 5% 0.062W
2617	4822 126 11785	0603 50V 47P PM5	3149	4822 051 30101	100Ω 5% 0.062W	3635	4822 051 30101	100Ω 5% 0.062W
2618	2238 586 59812	0603 50V 100NP80M	3150	4822 051 30101	100Ω 5% 0.062W	3636	4822 051 30181	180Ω 5% 0.062W
2619	2238 586 59812	0603 50V 100NP80M	3151	4822 051 30103	10k 5% 0.062W	3637	4822 051 30101	100Ω 5% 0.062W
2620	2238 586 59812	0603 50V 100NP80M	3152	4822 051 30103	10k 5% 0.062W	3638	4822 051 30222	2k2 5% 0.062W
2621	4822 126 11785	0603 50V 47P PM5	3153	4822 051 30103	10k 5% 0.062W	3902	4822 051 30472	4k7 5% 0.062W
2622	4822 126 11785	0603 50V 47P PM5	3154	4822 051 30103	10k 5% 0.062W	3903	4822 051 30472	4k7 5% 0.062W
2625	2238 586 59812	0603 50V 100NP80M	3155	4822 051 30103	10k 5% 0.062W	3906	4822 051 30479	47Ω 5% 0.062W
2626	4822 126 11785	0603 50V 47P PM5	3156	4822 051 30103	10k 5% 0.062W	3908	4822 117 12139	22Ω 5% 0.062W
2627	4822 126 11785	0603 50V 47P PM5	3157	4822 051 30103	10k 5% 0.062W	3910	4822 051 30101	100Ω 5% 0.062W
2628	2238 586 59812	0603 50V 100NP80M	3158	4822 117 12139	22Ω 5% 0.062W	3911	4822 051 30103	10k 5% 0.062W
2629	2238 586 59812	0603 50V 100NP80M	3159	4822 117 12139	22Ω 5% 0.062W	3913	4822 051 30682	6k8 5% 0.062W
2630	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3160	2322 704 61303	RST SM 0603 RC22H 13k PM1 R	3914	4822 051 30479	47Ω 5% 0.062W
2632	2238 586 59812	0603 50V 100NP80M	3161	2322 704 61303	RST SM 0603 RC22H 13k PM1 R	3915	4822 051 30479	47Ω 5% 0.062W
2633	2238 586 59812	0603 50V 100NP80M	3162	2322 704 61303	RST SM 0603 RC22H 13k PM1 R	3916	4822 117 13632	100k 1% 0603 0.62W
2634	4822 126 14494	22nF 10% 25V 0603	3163	2322 704 61303	RST SM 0603 RC22H 13k PM1 R	3917	4822 117 12139	22Ω 5% 0.062W
2635	2238 586 59812	0603 50V 100NP80M	3164	5322 117 13042	3k9 1% 0.063W 0603 RC22H	3918	4822 117 13632	100k 1% 0603 0.62W
2636	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3165	5322 117 13042	3k9 1% 0.063W 0603 RC22H	3919	4822 051 30101	100Ω 5% 0.062W
2722	2238 586 59812	0603 50V 100NP80M	3166	3198 031 14720	RST NETW 1206 4X4K7 PM5	3920	4822 117 12139	22Ω 5% 0.062W
2900	2238 586 59812	0603 50V 100NP80M	3167	2322 704 61303	RST SM 0603 RC22H 13k PM1 R	3921	4822 051 30103	10k 5% 0.062W
2901	2238 586 59812	0603 50V 100NP80M	3168	4822 051 30479	47Ω 5% 0.062W	3922	4822 051 30682	6k8 5% 0.062W
2902	2238 586 59812	0603 50V 100NP80M	3169	4822 051 30479	47Ω 5% 0.062W	3923	4822 117 13632	100k 1% 0603 0.62W
2903	2238 586 59812	0603 50V 100NP80M	3170	4822 051 30103	10k 5% 0.062W	3924	4822 051 30152	1k5 5% 0.062W
2904	2238 586 59812	0603 50V 100NP80M	3171	4822 051 30103	10k 5% 0.062W	3925	4822 051 30472	4k7 5% 0.062W
2909	4822 126 14247	0603 50V 1N5 COL R	3172	4822 051 30103	10k 5% 0.062W	~~~	~~~	~~~
2911	2238 586 59812	0603 50V 100NP80M	3173	4822 051 30479	47Ω 5% 0.062W	5100	4822 157 11717	BLM31P500SPT
2912	4822 126 14247	0603 50V 1N5 COL R	3174	4822 051 30479	47Ω 5% 0.062W	5101	4822 157 11717	BLM31P500SPT
2914	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3175	4822 051 30101	100Ω 5% 0.062W	5102	4822 157 11499	BLM11P600SPT
2915	2238 586 59812	0603 50V 100NP80M	3176	4822 051 30101	100Ω 5% 0.062W	5103	4822 157 11499	BLM11P600SPT
2916	4822 126 14494	22nF 10% 25V 0603	3177	4822 051 30008	0Ω jumper	5200	4822 157 11499	BLM11P600SPT
3100	4822 051 30103	10k 5% 0.062W	3178	4822 051 30332	3k3 5% 0.062W	5201	4822 157 11499	BLM11P600SPT
3101	4822 051 30222	2k2 5% 0.062W	3179	4822 051 30479	47Ω 5% 0.062W	5202	4822 157 11499	BLM11P600SPT
3102	4822 051 30103	10k 5% 0.062W	3180	4822 051 30101	100Ω 5% 0.062W	5203	4822 157 11499	BLM11P600SPT
3103	4822 051 30103	10k 5% 0.062W	3181	4822 051 30101	100Ω 5% 0.062W	5204	4822 157 11499	BLM11P600SPT
3104	4822 051 30479	47Ω 5% 0.062W	3182	4822 051 30222	2k2 5% 0.062W	5205	4822 157 11499	BLM11P600SPT
3105	4822 051 30479	47Ω 5% 0.062W	3183	4822 051 30102	1k 5% 0.062W	5206	4822 157 11499	BLM11P600SPT
3106	4822 051 30479	47Ω 5% 0.062W	3184	4822 051 30681	680Ω 5% 0.062W	5207	4822 157 11499	BLM11P600SPT
3107	4822 051 30109	10Ω 5% 0.062W	3185	4822 117 12139	22Ω 5% 0.062W	5208	4822 157 11499	BLM11P600SPT
3108	4822 051 30479	47Ω 5% 0.062W	3186	4822 051 30222	2k2 5% 0.062W	5300	4822 157 11499	BLM11P600SPT
3109	4822 051 30479	47Ω 5% 0.062W	3187	4822 051 30472	47k 5% 0.062W	5302	4822 157 11499	BLM11P600SPT
3110	4822 051 30479	47Ω 5% 0.062W	3188	4822 051 30103	10k 5% 0.062W	5400	4822 157 11499	BLM11P600SPT
3111	4822 051 30472	47k 5% 0.062W	3189	4822 051 30681	680Ω 5% 0.062W	5402	4822 157 11499	BLM11P600SPT
3112	4822 051 30472	47k 5% 0.062W	3190	4822 117 12917	1Ω 5% 0.062W CASE0603	5403	4822 157 11499	BLM11P600SPT
3113	4822 051 30472	47k 5% 0.062W	3191	4822 051 30600	RST SM 0603 RC22H 56Ω	5404	4822 157 11499	BLM11P600SPT
3114	4822 051 30472	47k 5% 0.062W	3192	5322 117 13059	560Ω 1% 0.063W 0603	5500	4822 157 11499	BLM11P600SPT
3115	4822 051 30103	10k 5% 0.062W	3193	5322 117 13059	560Ω 1% 0.063W 0603	5501	4822 157 11499	BLM11P600SPT
3116	4822 051 30103	10k 5% 0.062W	3194	5322 117 13059	560Ω 1% 0.063W 0603	5502	4822 157 11499	BLM11P600SPT
3117	4822 117 12139	22Ω 5% 0.062W	3195	5322 117 13059	560Ω 1% 0.063W 0603	5503	4822 157 11499	BLM11P600SPT
3118	4822 117 12139	22Ω 5% 0.062W	3196	5322 117 13059	560Ω 1% 0.063W 0603	5504	4822 157 11499	BLM11P600SPT
3119	4822 051 30222	2k2 5% 0.062W	3197	4822 051 30102	1k 5% 0.062W	5505	4822 157 11499	BLM11P600SPT
3120	4822 051 30181	180Ω 5% 0.062W	3198	4822 051 30101	100Ω 5% 0.062W	5506	4822 157 11499	BLM11P600SPT
3121	4822 117 12917	1Ω 5% 0.062W CASE0603	3199	4822 117 12917	1Ω 5% 0.062W CASE0603	5507	4822 157 11499	BLM11P600SPT
3122	4822 051 30123	12k 5% 0.062W	32					

5901	4822 157 11717	BLM31P500SPT	
5904	4822 157 11717	BLM31P500SPT	
5905	4822 157 11499	BLM11P600SPT	
5907	4822 157 11499	BLM11P600SPT	
			►
6500	4822 130 80622	BAT54	
6900	4822 130 80622	BAT54	
			↔
7100	9352 692 48557	IC SM SAA7333HL/M1 (PHSE) Y	
7101	9322 166 67668	IC SM MT48LC4M16A2TG- 7E(MRNO)R	
7102	5322 209 16384	PC74HCT9046AD	
7103	9322 170 16685	IC SM NC7SZ58 (FSC0) R	
7104	9352 456 50115	HC1G04	
7200	9322 169 81671	STI5508EVB	
7201	9322 130 41668	IC SM M24C64-WMN6 (ST00) R	
7202	4822 209 30212	PC74HCT125T	
7203	9322 142 88668	IC SM LF25CDT (ST00) R	
7204	9322 142 88668	IC SM LF25CDT (ST00) R	
7300	9322 166 67668	IC SM MT48LC4M16A2TG- 7E(MRNO)R	
7301	3104 123 96771	FL.2 DVDR 1.5 VIEN.EU DIG2.BIN	
7302	3104 123 96761	FL.1 DVDR 1.5 VIEN.EU DIG1.BIN	
7303	9352 499 60118	IC SM 74LVC00AD (PHSE) R	
7402	9322 166 67668	IC SM MT48LC4M16A2TG- 7E(MRNO)R	
7403	9352 701 80557	IC SM SAA6752HS/V101 (PHSE) Y	
7404	9322 142 88668	IC SM LF25CDT (ST00) R	
7500	9352 673 95518	IC SM SAA7118EV1 (PHSE) R	
7501	9352 500 60118	IC SM 74LVC32AD (PHSE) R	
7502	5322 209 71589	74HC74D	
7504	5322 130 60159	BC846B	
7600	5322 130 60159	BC846B	
7601	5322 130 60159	BC846B	
7602	5322 130 60159	BC846B	
7603	5322 130 60159	BC846B	
7604	5322 130 60159	BC846B	
7605	5322 130 60159	BC846B	
7606	5322 130 60159	BC846B	
7702	9352 501 00118	IC SM 74LVC86ADB (PHSE) R	
7902	9322 165 15685	IC SM NCP303LSN30 (ONSE) R	
7904	4822 209 16399	74LVC04AD	
7905	5322 209 71568	PC74HCT14T	
7906	4822 242 10838	27MHZ 120P FX0-31FT	
			↔
			▼
			DVIO Front
			▼
			Various
1000	2422 033 00363	CON BM H 4P F 0.8 B	
1001	2422 025 17106	CON BM H 4P F 0.8 IEEE R	
			↔
2000	5322 126 10511	1nF 5% 50V	
2001	5322 126 10511	1nF 5% 50V	
2002	2020 557 90732	250V 4N7 PM10 R	
2002	2222 580 19815	50V 330nF P8020 R	
2003	2020 557 90732	250V 4N7 PM10 R	
2003	2222 580 19815	50V 330nF P8020 R	
2004	2020 557 90732	250V 4N7 PM10 R	
2005	2020 557 90732	250V 4N7 PM10 R	
2204	2222 867 15339	0603 50V 33P PM5	
2205	2222 867 15339	0603 50V 33P PM5	
			↔
3000	4822 051 20105	1M 5% 0.1W	
			▼
5000	2422 549 44768	IND FXD SM EMI 100mH z 90R R	
5001	2422 549 44768	IND FXD SM EMI 100mH z 90R R	
			▼
6000	4822 130 11395	TLMH3100	
6001	9322 172 97668	DIO SUP SM6T39CA (ST00) R	
			▼
			DVIO 1.8 PWB
			▼
			Various
1400	2422 543 01115	RES XTL SM 24M576 12P CX-11F R	
1500	2422 025 17084	CON BM V 60P F 0.80 179161 R	
1501	2422 025 16543	CON BM H 4P M 2.00 PH SMD R	
1502	2422 086 11075	FUSE SM F 750MA 125V UL R	
1800	2422 543 89022	RES XTL SM 6M000 20P CX-5F R	
1901	2422 025 17106	CON BM H 4P F 0.8 IEEE R	
1903	2422 025 16542	CON BM H 2P M 2.00 PH SMD R	
			↔
2400	2238 586 59812	0603 50V 100NP80M	
2401	3198 017 41050	0603 10V 1μF COL R	
2402	4822 126 14506	270pF 5% 50V 0603	
2403	4822 124 80151	47μF 16V	
2404	2238 586 59812	0603 50V 100NP80M	
2405	2238 586 59812	0603 50V 100NP80M	
2406	2238 586 59812	0603 50V 100NP80M	
2407	2238 586 59812	0603 50V 100NP80M	
2408	2238 586 59812	0603 50V 100NP80M	
2412	4822 122 33741	10pF 10% 50V	
2413	4822 122 33741	10pF 10% 50V	
2415	4822 124 80151	47μF 16V	
2416	2238 586 59812	0603 50V 100NP80M	
2417	2238 586 59812	0603 50V 100NP80M	
2418	2238 586 59812	0603 50V 100NP80M	
2419	2238 586 59812	0603 50V 100NP80M	
2420	2238 586 59812	0603 50V 100NP80M	
2431	4822 124 80151	47μF 16V	
2432	2238 586 59812	0603 50V 100NP80M	
2433	2238 586 59812	0603 50V 100NP80M	
2434	2238 586 59812	0603 50V 100NP80M	
2435	2238 586 59812	0603 50V 100NP80M	
2436	2238 586 59812	0603 50V 100NP80M	
2437	2238 586 59812	0603 50V 100NP80M	
2438	2238 586 59812	0603 50V 100NP80M	
2439	2238 586 59812	0603 50V 100NP80M	
2440	2238 586 59812	0603 50V 100NP80M	
2441	2238 586 59812	0603 50V 100NP80M	
2442	2238 586 59812	0603 50V 100NP80M	
2443	2238 586 59812	0603 50V 100NP80M	
2444	2238 586 59812	0603 50V 100NP80M	
2445	2238 586 59812	0603 50V 100NP80M	
2446	2238 586 59812	0603 50V 100NP80M	
2447	2238 586 59812	0603 50V 100NP80M	
2449	2238 586 59812	0603 50V 100NP80M	
2450	4822 124 23002	10μF 16V	
2451	2238 586 59812	0603 50V 100NP80M	
2452	2238 586 59812	0603 50V 100NP80M	
2453	2238 586 59812	0603 50V 100NP80M	
2454	2238 586 59812	0603 50V 100NP80M	
2455	2238 586 59812	0603 50V 100NP80M	
2456	2238 586 59812	0603 50V 100NP80M	
2501	2238 586 59812	0603 50V 100NP80M	
2502	2238 586 59812	0603 50V 100NP80M	
2503	2238 586 59812	0603 50V 100NP80M	
2504	2238 586 59812	0603 50V 100NP80M	
2505	2238 586 59812	0603 50V 100NP80M	
2506	4822 124 80151	47μF 16V	
2507	4822 124 80151	47μF 16V	
2508	2238 586 59812	0603 50V 100NP80M	
2512	2238 586 59812	0603 50V 100NP80M	
2513	2238 586 59812	0603 50V 100NP80M	
2514	4822 124 80151	47μF 16V	
2520	2238 586 59812	0603 50V 100NP80M	
2521	4822 124 80151	47μF 16V	
2522	4822 124 80151	47μF 16V	
2523	5322 126 11583	10nF 10% 50V 0603	
2524	5322 126 11583	10nF 10% 50V 0603	
2525	4822 124 80151	47μF 16V	
2526	2238 586 59812	0603 50V 100NP80M	
2527	2238 586 59812	0603 50V 100NP80M	
2528	2238 586 59812	0603 50V 100NP80M	
2529	2238 586 59812	0603 50V 100NP80M	
2534	2238 586 59812	0603 50V 100NP80M	
2600	2238 586 59812	0603 50V 100NP80M	
2601	4822 124 23002	10μF 16V	
2602	3198 017 44740	0603 10V 470nF COL	
2603	2238 586 59812	0603 50V 100NP80M	
2605	2238 586 59812	0603 50V 100NP80M	
2606	3198 016 31020	0603 25V 1nF	
2607	2238 586 59812	0603 50V 100NP80M	
2608	2238 586 59812	0603 50V 100NP80M	
2609	2238 586 59812	0603 50V 100NP80M	
2610	2238 586 59812	0603 50V 100NP80M	
2611	2238 586 59812	0603 50V 100NP80M	
2612	2238 586 59812	0603 50V 100NP80M	
2613	2238 586 59812	0603 50V 100NP80M	
2614	3198 017 44740	0603 10V 470nF COL	
2617	2238 586 59812	0603 50V 100NP80M	
2618	2238 861 18229	50V 22P PM1 R	
2801	4822 126 11669	27pF	
2802	4822 126 11669	27pF	
2803	2238 586 59812	0603 50V 100NP80M	
2804	2238 586 59812	0603 50V 100NP80M	
2805	4822 124 80151	47μF 16V	
2806	2238 586 59812	0603 50V 100NP80M	
2807	4822 124 80151	47μF 16V	
2808	2238 586 59812	0603 50V 100NP80M	
2809	2238 586 59812	0603 50V 100NP80M	
2810	2238 586 59812	0603 50V 100NP80M	
2812	2238 586 59812	0603 50V 100NP80M	
2813	2238 586 59812	0603 50V 100NP80M	
2814	5322 124 41945	22μF 20% 35V	
2816	2238 586 59812	0603 50V 100NP80M	
2818	2238 586 59812	0603 50V 100NP80M	
2820	2238 586 59812	0603 50V 100NP80M	
2822	3198 016 31020	0603 25V 1nF	
3400	4822 051 30103	10k 5% 0.062W	
3401	2322 734 65609	RST SM 0805 RC12H 56Ω	
3402	2322 734 65609	RST SM 0805 RC12H 56Ω	
3403	4822 117 12139	22Ω 5% 0.062W	
3404	2322 734 65609	RST SM 0805 RC12H 56Ω	
3405	2322 734 65609	RST SM 0805 RC12H 56Ω	
3406	2322 704 65102	RST SM 0603 RC22H 5k1 PM1	
3407	4822 051 30103	10k 5% 0.062W	
3408	4822 117 13632	100k 1% 0.063 0.62W	
3409	4822 117 12902	8k2 1% 0.063W 0.063	
3410	4822 117 12139	22Ω 5% 0.062W	
3413	4822 117 12139	22Ω 5% 0.062W	
3414	4822 117 12139	22Ω 5% 0.062W	
3415	4822 117 12139	22Ω 5% 0.062W	
3416	4822 117 12139	22Ω 5% 0.062W	
3417	4822 117 12139	22Ω 5% 0.062W	
3418	4822 117 12139	22Ω 5% 0.062W	
3419	4822 117 12139	22Ω 5% 0.062W	
3420	4822 117 12139	22Ω 5% 0.062W	
3421	4822 117 12139	22Ω 5% 0.062W	
3422	4822 117 12139	22Ω 5% 0.062W	
3423	4822 117 12139	22Ω 5% 0.062W	
3424	4822 117 12139	22Ω 5% 0.062W	
3425	4822 051 30103	10k 5% 0.062W	
3426	4822 051 30103	10k 5% 0.062W	
3427	4822 051 30103	10k 5% 0.062W	
3428	4822 051 30103	10k 5% 0.062W	
3429	4822 051 30103	10k 5% 0.062W	
3430	4822 051 30103	10k 5% 0.062W	
3431	4822 051 30103	10k 5% 0.062W	
3432	4822 051 30103	10k 5% 0.062W	
3433	4822 051 30103	10k 5% 0.062W	
3434	4822 051 30103	10k 5% 0.062W	
3435	4822 051 30103	10k 5% 0.062W	
3436	4822 051 30103	10k 5% 0.062W	
3437	4822 051 30103	10k 5% 0.062W	
3438	4822 051 30103	10k 5% 0.062W	
3439	4822 051 30103	10k 5% 0.062W	
3440	4822 051 30103	10k 5% 0.062W	
3441	4822 051 30103	10k 5% 0.062W	
3442	4822 051 30103	10k 5% 0.062W	
3443	4822 051 30103	10k 5% 0.062W	
3444	4822 051 30103	10k 5% 0.062W	
3445	4822 051 30103	10k 5% 0.062W	
3446	4822 051 30103	10k 5% 0.062W	
3447	4822 051 30103	10k 5% 0.062W	
3448	4822 051 30103	10k 5% 0.062W	
3449	4822 051 30103	10k 5% 0.062W	
3450	4822 051 30103	10k 5% 0.062W	
3451	4822 051 30103	10k 5% 0.062W	
3452	4822 051 30103	10k 5% 0.062W	
3453	4822 051 30102	1k 5% 0.062W	

3454	4822 051 30103	10k 5% 0.062W	3564	4822 117 12139	22Ω 5% 0.062W	7430	9322 144 59668	IC SM MT48LC1M16A1TG-7S (MRN)R
3455	4822 051 30103	10k 5% 0.062W	3600	4822 117 12891	220k 1% ERJ3Ω	7431	9322 184 70671	IC SM UPD72893GD-LML (NEC0) Y
3456	4822 051 30103	10k 5% 0.062W	3601	4822 117 12917	1Ω 5% 0.062W CASE0603	7433	9322 142 88668	IC SM LF25CDT (ST00) R
3457	4822 051 30103	10k 5% 0.062W	3602	4822 051 30103	10k 5% 0.062W	7501	9352 685 96115	IC SM 74LVC1GU04GW (PHSE) R
3458	4822 051 30103	10k 5% 0.062W	3603	4822 117 12917	1Ω 5% 0.062W CASE0603	7505	9352 029 90118	IC SM 74LVT16244BDGG (PHSE) R
3459	4822 051 30103	10k 5% 0.062W	3605	2120 358 90533	RTRM CER SM 22H RH03ADC R	7506	9352 668 39118	IC SM UDA1334ATS/N2 (PHSE) R
3460	4822 051 30103	10k 5% 0.062W	3606	4822 117 12706	10k 1% 0.063W CASE0603	7507	9351 751 40118	IC SM 74LV74PW (PHSE) R
3461	4822 117 12925	47k 1% 0.063W 0603	3607	2322 702 60184	RST SM 0603 RC21 180k PM5 R	7508	9352 685 96115	IC SM 74LVC1GU04GW (PHSE) R
3462	4822 051 30103	10k 5% 0.062W	3608	4822 117 12891	220k 1% ERJ3Ω	7601	2722 171 08709	OSC XTL SM 27MHZ 120P FXO-31 R
3463	4822 051 30103	10k 5% 0.062W	3609	2322 704 65604	RST SM 0603 RC22H 560k PM1 R	7602	9352 456 40115	IC SM 74HCT1G04GW (PHSE) R
3464	4822 051 30103	10k 5% 0.062W	3610	2322 704 62003	RST SM 0603 RC22H 20k PM1 R	7604	9322 186 60668	IC SM BA7082F (RHMO) R
3465	4822 051 30103	10k 5% 0.062W	3610	5322 117 13024	33k 1% 0.063W 0603 RC22H	7605	9322 186 59668	IC SM BU2288FV (RHMO) R
3466	4822 051 30103	10k 5% 0.062W	3612	4822 117 12706	10k 1% 0.063W CASE0603	7606	9351 751 40118	IC SM 74LV74PW (PHSE) R
3467	4822 051 30103	10k 5% 0.062W	3613	2322 704 65102	RST SM 0603 RC22H 5k1 PM1	7608	9352 685 96115	IC SM 74LVC1GU04GW (PHSE) R
3468	4822 051 30103	10k 5% 0.062W	3614	4822 117 13632	100k 1% 0603 0.62W	7800	9340 310 30215	PDTG144ET (
3469	4822 051 30103	10k 5% 0.062W	3617	4822 051 30103	10k 5% 0.062W	7801	9322 186 70668	IC SM LM2931D (ST00) R
3470	4822 051 30103	10k 5% 0.062W	3618	4822 051 30103	10k 5% 0.062W	7802	3103 607 40011	IC SM UPD78F0988AGC DV91XX0105
3471	4822 051 30103	10k 5% 0.062W	3618	4822 051 30103	10k 5% 0.062W	7803	3198 010 42310	BC847BW
3472	4822 051 30102	1k 5% 0.062W	3619	4822 051 30103	10k 5% 0.062W	7804	3198 010 42310	BC847BW
3473	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W	7805	3198 010 42310	BC847BW
3474	4822 051 30102	1k 5% 0.062W	3620	4822 051 30223	22k 5% 0.062W	7806	9340 310 30215	PDTG144ET (
3475	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W	7807	9352 683 81115	IC SM 74LVC1G32GW (PHSE) R
3476	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W	7808	9340 560 36235	BSH111
3477	4822 051 30103	10k 5% 0.062W	3620	5322 117 13047	330Ω 1% 0.063W 0603	7809	9352 683 81115	IC SM 74LVC1G32GW (PHSE) R
3478	4822 051 30102	1k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W	7810	3198 010 42320	BC857BW
3481	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W	7811	3198 010 42310	BC847BW
3482	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3483	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3484	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3485	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3486	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3487	4822 051 30103	10k 5% 0.062W	3620	4822 051 30008	4Ω jumper			
3488	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3489	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3490	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3491	4822 051 30103	10k 5% 0.062W	3620	4822 051 30472	4k7 5% 0.062W			
3492	4822 051 30103	10k 5% 0.062W	3620	5322 117 13047	330Ω 1% 0.063W 0603			
3493	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3494	4822 051 30103	10k 5% 0.062W	3620	5322 117 13018	1k0 1% 0.063W 0603 RC22H			
3495	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3496	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3497	4822 051 30103	10k 5% 0.062W	3620	4822 051 30102	1k 5% 0.062W			
3498	4822 051 30103	10k 5% 0.062W	3620	4822 117 12925	47k 1% 0.063W 0603			
3499	4822 051 30103	10k 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3502	4822 051 30479	47Ω 5% 0.062W	3620	4822 117 13632	100k 1% 0.063W 0.62W			
3503	4822 051 30479	47Ω 5% 0.062W	3620	5322 117 13018	1k0 1% 0.063W 0603 RC22H			
3504	4822 051 30479	47Ω 5% 0.062W	3620	5322 117 13042	3k9 1% 0.063W 0603 RC22H			
3505	4822 051 30479	47Ω 5% 0.062W	3620	4822 051 30101	100Ω 5% 0.062W			
3506	4822 051 30479	47Ω 5% 0.062W	3620	4822 051 30101	100Ω 5% 0.062W			
3507	4822 051 30479	47Ω 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3508	4822 051 30479	47Ω 5% 0.062W	3620	4822 051 30101	100Ω 5% 0.062W			
3509	4822 051 30479	47Ω 5% 0.062W	3620	4822 117 12925	47k 1% 0.063W 0603			
3510	4822 051 30479	47Ω 5% 0.062W	3620	4822 117 13632	100k 1% 0.063W 0.62W			
3514	4822 051 30479	47Ω 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3515	4822 051 30479	47Ω 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3516	4822 051 30479	47Ω 5% 0.062W	3620	4822 051 30103	10k 5% 0.062W			
3517	4822 051 30101	100Ω 5% 0.062W	3620	4822 051 30102	1k 5% 0.062W			
3518	4822 051 30101	100Ω 5% 0.062W	3620	4822 051 30472	4k7 5% 0.062W			
3519	4822 117 12891	220k 1% ERJ3Ω	3620	4822 051 30103	10k 5% 0.062W			
3520	4822 117 12891	220k 1% ERJ3Ω	3620	4822 051 30102	1k 5% 0.062W			
3530	4822 117 12139	22Ω 5% 0.062W	3620	4822 051 30222	2k2 5% 0.062W			
3531	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3532	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3533	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3534	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3535	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3536	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3537	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3538	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3539	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3540	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3541	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3542	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3543	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3544	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3545	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3546	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3547	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3548	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3549	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3550	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3551	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3552	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3553	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3554	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3555	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3556	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3557	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3558	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3559	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3560	4822 117 12139	22Ω 5% 0.062W	3620	4822 157 11499	BLM11P600SPT			
3561	4822 117 12139	22Ω 5						