Engineering Design and Graphics 1C03 McMaster Engineering 1 Cornerstone Project

Instructor: Dr. Doyle

Part 1 – Mechanical Design Research Report

Group 115

Prakhar Garg – 1204351 Eric Daigle – 1223513 Jonathan Boddie – 1227316

As a future member of the engineering profession, the student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University and the Code of Conduct of the Professional Engineers of Ontario. Submitted by [Prakhar Garg, 1204351]

As a future member of the engineering profession, the student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University and the Code of Conduct of the Professional Engineers of Ontario. Submitted by [Eric Daigle, 1223513]

As a future member of the engineering profession, the student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University and the Code of Conduct of the Professional Engineers of Ontario. Submitted by [Jonathan Boddie, 1227316]

Table of Contents

Introduction page ?
Description of Mechanisms page
Calculations for Gear Train Design page
Gear Train Design page
Final MapleSim 2-D Schematic Model page
Final MapleSim 3-D Graphical Model page 9
Probe Graphs page 10
Table of Member Contributions page 1
Record of Team Meetings page 12
Project Gantt Chart page 13
Index of Engineering Drawings page 14
mack of Engineering Diawingspage 1

Introduction

As a small team of engineers, we were hired by XYZ Mechanisms. This is a company whose sole purpose is to develop novel ways to accomplish a diverse set of mechanical engineering-related tasks. We were given our first assignment of modifying one of the company's product designs due to a lack of availability of the original motor mechanism. Our job as an engineering team was quite straightforward: we had to develop a different way of controlling the read-head mechanism of a computer CD-ROM drive given an alternate motor with orientation and drive characteristics.

Assigned a modeling and validation modality of Simulation and Prototyping (SAP), it was our job as a team to arrive at a solution to the problem at hand and present it to our clients through the use of various hard modelling and simulation programs as well as constructing a slightly larger scale gear train with all of the necessary parameters. The prototype was to be used simply to demonstrate the final gear ratio and the fact that the components (including gears and worms) worked as expected from the information gathered in the simulations completed.

The task given to our engineering team was done to a high degree of effectiveness. All needs were met and accuracy was maintained. Achieving an exact gear ratio of 0.8282 (400/483) is a simple demonstration of the great attention that this small team had to detail.

Description of Mechanisms

One of the main purposes of the computer CD-ROM drive, and the one focused on for this project, was the control the movement of the read-head. This is accomplished through the use of a mechanism to control the read-head. This mechanism quite often contains various spur gears, worms and worm gears that work in tandem to attain, for one, a particular pre-determined gear ratio. This gear ratio is attained by using ratios of pitch diameters or number of teeth of gears. The use of diverse components also allows for the change of axis of rotation and direction of motion, both of which could not be attained through the use of a simple spur gear train.

In simple terms, the mechanism to control the read-head converts the initial rotational speed of a motor of 120.75 RPS into a final rotational speed of 100RPS which translates to a constant linear speed of 0.1875m/s that will be transferred to the read-head. This constant linear velocity is critical in how accurately information from the disc is gathered and converted. The gear train design presented in this report is a good example of this process from input to output. But, between the initial and final steps of this gear train, there are many crucial interstitial stages.

A worm coming out directly from the motor is then meshed with a worm gear to greatly lower the rotational speed and to change the axis of rotation of the following gears by 90°. A worm gear can only be attached axially to a spur gear, giving them both the same rotational speed (any two gears attached coaxially have the same rotational speed). The spur gear then meshes with another spur gear, changing the direction of rotation and increasing the gear ratio. This type of gearing pattern is followed for two more stages. An odd number of meshes means that the final gear will be rotating in the opposite direction to the first gear. From the final spur gear in the train, an output worm is attached coaxially. Combined with a rack, as the worm turns, it will cause a linear movement of the rack (or read-head, in this case) along the length of the worm.

Calculations for Gear Train Design

Motor input speed = 115*63 = 7245 RPM /60s = 120.75 RPS $W_{in} = 120.75$ RPS, $W_{out} = 100$ RPS

 $W_{out} = W_{in}/(Gear Ratio)$ Gear Ratio = 100/120.75 = 0.8282

Gear Ratio= D2/D1 * D3/D2 * D4/D3 * D5/D4 * D6/D5

Gear Ratio = (16/12) * 1 * (20/14) * 1 * (10/23)

= 400/483

= 0.8282

	Pitch Diameter (mm)	Module (mm)	Number of Teeth
Worm 1	N/A	Tan mod =1	1
		ACP = pi= 3.14	
Worm Gear 1	10	1	10
Gear 1	12	1	12
Gear 2	16	1	16
Gear 3	14	1	14
Gear 4	20	1	20
Gear 5	23	1	23
Gear 6	10	1	10
Worm 2	N/A	Tan mod = 0.0597	1
		ACP = 0.1875	

Gear Train Design (Photos and Assembly)

Final MapleSim 2-D Schematic Model

Conventional CD-ROM Simulation

CD-ROM Simulation with test block

Final MapleSim 3-D Graphical Model

Generic View

View showing which gears are coaxial

Probe Graphs

Input and Output Graphs for Gear Train

Table of Member Contributions

Task\\Group Member	Eric	Prakhar	Jonathan	Date Completed
Secretary/ keeper of minutes	✓			N/A
Gear Ratio Calculation	✓	✓	✓	March 10
Gear Placement	✓	✓	✓	March 10
Input/ Output Gear speeds	✓	✓	✓	March 10
Gear sizes, module, and diameter	✓	✓	✓	March 10
Gear Diagrams	✓	✓	✓	March 10
CAD models of gears		✓		March 16
Review CAD models	✓	✓	✓	March 20
Print Parts (day 1)	✓	✓	✓	March 21
Print Parts (day 2)	✓	✓		March 25
Assemble Gear Train	✓			March 25
Print Parts (day 3)	✓	✓	✓	March 27
Multi View drawings, assembly drawing		✓		March 28-29
Maple-sim representation		✓		March 28-29
Organise record of meetings, and all completed work	✓			March 28-29
Final report file			✓	March 29-31

Records of Team Meetings

Date	Attendance	Topic	Result
March	Jonathan	Milestone 1	-Successfully completed all topics on the
10	Eric	-Gear Ratio/Input-Output speeds	agenda, within a few hours. Submitted the
	Prakhar	-Gear placement in tray	milestone 1 project.
		-Table of gear information	
		-Gear diagrams	
March	Jonathan	-What's next?	-Discussed what to do next for the project. 3-D
13	Eric		CAD models of the gears must be made.
	Prakhar		
March	Prakhar	-Make CAD models of all gears, and a	-Accurate CAD models created to be printed.
16		mounting bracket (gears made from	
		milestone 1 data)	
March	Jonathan	-Review the CAD models, and improve the	-All CAD models are correct. Mounting bracket
20	Eric	mounting bracket (make sure all gears are	is well designed, and needs no changes. (Good
	Prakhar	right, make improvements if necessary)	job Prakhar!)
March	Jonathan	-Printing Day 1	-Had some minor printer difficulties. Only
21	Eric	-Print all the parts (mounting bracket,	managed to print the mounting bracket
	Prakhar	axles, gears) to make the gear train	pieces. Printer left printing overnight, parts to
			be picked up the following day.
March	Jonathan	-Printing Day 2	-Spent a long time working with a broken
25	Eric	-Print all gears, and re-print parts of the	printer. Eventually changed to a new printer,
	Prakhar	frame	and printed all remaining parts.
March	Eric	-Assembly of the gear train	-Successfully made all parts fit together.
25		-Smooth out axles, and make parts fit	Gears all turn freely on their axles; mounting
		together. Make the gear train run smoothly	bracket holds gears in place.
March	Jonathan	-Realised we forgot the final (output)	-Set the printer up to print, and left for class.
27	Eric	worm.	Came back a few hours later and the worm
	Prakhar	-Make a CAD model and print the final	printed successfully.
		worm	·
March	Prakhar	-Create multi view drawings of all gears	-Required more time and caused more
28-29		and mounting bracket pieces.	difficulty than initially expected.
		- Create assembly drawings of the gear	-Took a few tries to get files into a format that
		train and mounting bracket	can be shared with other computers
		-Make a MapleSim 2-D and 3-D model of	·
		the gear train	
March	Eric	-Attach the final output worm, and input	-The final output worm did not print well,
28-29		worm to the gear train.	causing it to not be attached smoothly.
		-Organise and update all meeting records	-The starting worm (out of the motor) does
			not mesh perfectly with its worm gear, making
			the gear train not run smoothly
March	Jonathan	-Take all technical drawings, calculations,	-Took multiple tries to transfer all files
30-31		meeting records, etc and compile them	properly between computers.
		into 1 tidy PDF document to be submitted	

Gantt Chart

Index of Engineering Drawings

Isometric Drawing of Assembly page 15
3-Profile Drawing of Assembly with Rear-facing Isometric
Exploded Assembly Drawing page 17
Detailed Drawings of Gears and Worms page 18
Detailed Drawing of Left Mounting Plate page 19
Detailed Drawing of Right Mounting Plate page 20
Detailed Drawings of Side Mounting Plate and Nut page 21

Isometric Drawing of Assembly

3-Profile Drawing of Assembly with Rear-facing Isometric

Exploded Assembly Drawing

Detailed Drawings of Gears and Worms

Figure 5

Detailed Drawing of Left Mounting Plate

Detailed Drawing of Right Mounting Plate

Detailed Drawings of Side Mounting Plate and Nut

