$ASSIGNMENT-3 \\ Python\ Programming$

Question-1:

1. Importing Required Package

Solution:

import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt %matplotlib inline

Question-2:

2. Loading the Dataset

Solution:

 $df = pd.read_csv("abalone.csv")df$

Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	- 7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
	200	554-425		1944				222	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

3. Visualizations

Question-3:

Univariate Analysis

Solution:

sns.displot(df.Sex)

Output:

Bi-Variate Analysis

Solution:

df.plot.line()

Output:

Multi - Variate Analysis

Solution:

sns.lmplot("Diameter","Length",df,hue="Length", fit_reg=False);

Output:

4. Perform descriptive statistics on the dataset.

Question-4:

Solution:

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values.

Question-5:

Solution:

```
data = pd.read_csv("abalone.csv")
pd.isnull(data["Sex"])
```

Output:

```
0
        False
        False
        False
3
        False
        False
       ...
False
4172
4173
        False
4174
        False
4175
        False
Name: Sex, Length: 4177, dtype: bool
```

Question-6:

6. Find the outliers and replace the outliers.

Solution:

```
df["Rings"] = np.where(df["Rings"] > 10, np.median, df["Rings"]) df["Rings"]
```

Output:

Question-7:

7. Check for Categorical columns and perform encoding. Solution:

pd.get_dummies(df, columns=["Sex", "Length"], prefix=["Length", "Sex"]).head()

Output:

D	iameter	Height	weight	weight	viscera weight	weight	Rings	Length_F	Length_I	Length_	м	. Sex_0.74	5 Sex_0.7	'5 Sex_0.755	Sex_0.76	Sex_0.765	Sex_0.77	Sex_0.775	Sex_0.78	Sex_0.8
0	0.365	0.095	0.5140	0.2245	0.1010	0.150	<function at<br="" median="">0x7f6c9fd64cb0></function>	0	0	19	1 ,		0	0 0	0	0	0	0	0	0
1	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	0	0	0.00	1 .	y 10	0	0 0	0	0	0	0	0	0
2	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	1	0	- 1	0 .	9	0	0 0	0	0	0	0	0	0
3	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	0	0		1 .	E 81	0	0 0	0	0	0	0	0	0
4	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	0	1	- 1	0.		0	0 0	0	0	0	0	0	0
5 rows	× 144 co	lumns																		

Question-8:

8. Split the data into dependent and independent variables Split the data into Independent variables.

Solution:

```
X = df.iloc[:, :-2].values

print(X)
```

Output:

```
[['M' 0.455 0.365 ... 0.514 0.2245 0.101]
['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]
['F' 0.53 0.42 ... 0.677 0.2565 0.1415]
...
['M' 0.6 0.475 ... 1.176 0.5255 0.2875]
['F' 0.625 0.485 ... 1.0945 0.531 0.261]
['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

Split the data into Dependent variables.

Solution:

```
Y = df.iloc[:, -1].values

print(Y)
```

Output:

Question-9:

9. Scale the independent

variables Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["Length"]] = scaler.fit_transform(df[["Length"]]) print(df)
```

```
Length Diameter Height Whole weight Shucked weight \
    Sex
     M 0.513514 0.365 0.095 0.5140 0.2245
1
     M 0.371622 0.265 0.090
                0.420 0.135 0.6770
0.365 0.125 0.5160
0.255 0.080 0.2050
                                  0.2255
                                                0.0995
                                                0.2565
2
     F 0.614865 0.420 0.135
     M 0.493243
3
                                                 0.2155
4
     I 0.344595
                                                 0.0895
                0.450 0.165 0.8870
4172 F 0.662162
                                                0.3700
4173 M 0.695946
                0.440 0.135
                                  0.9660
                                                 0.4390
4174 M 0.709459 0.475 0.205
                                  1.1760
                                                0.5255
4175 F 0.743243 0.485 0.150
                                  1.0945
                                                 0.5310
                0.555 0.195
4176 M 0.858108
                                    1.9485
                                                 0.9455
     Viscera weight Shell weight
                                                       Rings
0
                  0.1500 <function median at 0x7f6c9fd64cb0>
          0.1010
1
           0.0485
                     0.0700
                                                          9
2
           0.1415
                     0.2100
                                                         10
3
           0.1140
                      0.1550
           0.0395
                      0.0550
                     0.2490 <function median at 0x7f6c9fd64cb0>
4172
          0.2390
4173
          0.2145
                     0.2605
                                                         10
4174
          0.2875
                     0.3080
                     0.2960
4175
          0.2610
                                                         10
4176
           0.3765
                     0.4950 <function median at 0x7f6c9fd64cb0>
```

[4177 rows x 9 columns]

Question-10:

10. Split the data into training and

testing Solution:

```
from sklearn.model_selection import train_test_split
train\_size=0.8
X = df.drop(columns = ['Sex']).copy()y
= df['Sex']
X_{train}, X_{rem}, y_{train}, y_{rem} = train_{test\_split}(X, y, train_{size} = 0.8)
test\_size = 0.5
X_{valid}, X_{test}, y_{valid}, y_{test} = train_{test\_split}(X_{rem}, y_{rem}, test_{size} = 0.5)print(X_{train.shape}),
print(y train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

```
(3341, 8)
(3341,)
(418, 8)
(418,)
(418, 8)
(418,)
(None, None)
```

11. Build the Model

 $test_size = 0.33$

seed = 7

 $X_{train}, X_{test}, y_{train}, y_{test} = train_{test} split(X, y, test_{size} = test_{size}, random_{state} = seed)$

12. Train the model

 X_{train}

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4131	0.682432	0.425	0.145	0.8300	0.3790	0.1605	0.2575	<function 0x7f6c9fd64cb0="" at="" median=""></function>
3204	0.797297	0.530	0.185	1.3955	0.4560	0.3205	0.4900	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2622	0.844595	0.575	0.205	1.7975	0.7295	0.3935	0.5165	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2114	0.074324	0.095	0.035	0.0105	0.0050	0.0065	0.0035	4
1422	0.871622	0.575	0.215	2.1730	0.9515	0.5640	0.5365	<function 0x7f6c9fd64cb0="" at="" median=""></function>
		57735		100	9000	772	72	
1372	0.729730	0.475	0.165	1.0230	0.4905	0.1955	0.3035	<function 0x7f6c9fd64cb0="" at="" median=""></function>
919	0.452703	0.310	0.090	0.3335	0.1635	0.0610	0.0910	6
2550	0.277027	0.220	0.080	0.1315	0.0660	0.0240	0.0300	5
537	0.290541	0.230	0.075	0.1165	0.0430	0.0255	0.0400	7
1220	0.344595	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7

0.

2798 rows × 8 columns

y_train

```
4131 I
3204 F
2622 F
2114 I
1422 M
...
1372 F
919 I
2550 I
537 M
1220 I
Name: Sex, Length: 2798, dtype: object
```

13. Test the model:

X_{test}

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1157	0.716216	0.470	0.165	1.1775	0.6110	0.2275	0.2920	9
1125	0.641892	0.425	0.150	0.8315	0.4110	0.1765	0.2165	10
2053	0.520270	0.345	0.110	0.4595	0.2350	0.0885	0.1160	7
3591	0.777027	0.475	0.165	1.3875	0.5800	0.3485	0.3095	9
455	0.675676	0.470	0.140	0.8375	0.3485	0.1735	0.2400	<function 0x7f6c9fd64cb0="" at="" median=""></function>
		100	700	22	***	344	840	222
3150	0.783784	0.505	0.165	1.3670	0.5835	0.3515	0.3960	10
3037	0.655405	0.450	0.145	0.8940	0.3885	0.2095	0.2640	9
2050	0.506757	0.350	0.130	0.4655	0.2075	0.1045	0.1350	8
690	0.743243	0.500	0.170	1.0985	0.4645	0.2200	0.3540	9
253	0.675676	0.460	0.185	1.0940	0.4485	0.2170	0.3450	<function 0x7f8c9fd64cb0="" at="" median=""></function>

1379 rows × 8 columns

y_test

```
1157 F
1125 M
2053 M
3591 F
455 M
...
3150 F
3037 M
2050 M
1690 M
253 F
Name: Sex, Length: 1379, dtype: object
```

14. Measure the performance using Metrics

```
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_errorfrom
sklearn.metrics import mean_squared_errorX_train =
[5, -1, 2, 10]
y_test = [3.5, -0.9, 2, 9.9]
print ('R Squared =',r2_score(X_train, y_test))
print ('MAE =',mean_absolute_error(X_train, y_test))
print ('MSE =',mean_squared_error(X_train, y_test))
```

```
R Squared = 0.9656060606060606
MAE = 0.424999999999993
MSE = 0.56749999999999
```