Otimização

PESQUISA DE EXTREMOS DE UMA FUNÇÃO

Otimização Unidimensional

Regra Aúrea

Aplicação da regra Aúrea

- 1. Definição do intervalo que contém o extremo $-x_1$ e x_2
- 2. Através da razão Aúrea geramos 2 novos pontos intermédios:

$$x3 = x1 + A \times (x2 - x1)$$
 $B = \frac{\sqrt{5} - 1}{2}$
 $x4 = x1 + B \times (x2 - x1)$ $A = B^2$

- 3. Definir o novo intervalo que contém o extremo
 - \checkmark Se f(x3)<f(x4) então x1=x1 e x2=x4
 - ✓ Se f(x3)>f(x4) então x1=x3 e x2=x2
- Controlo do erro!

NOTA: No cálculo do máximo, podemos utilizar exatamente a mesma lógica anterior, mas fazemos a inversão do sinal da função f(x)=-f(x). Outra alternativa, será trocar os sinais nas condições definidas em 2.

Otimização Multidimensional

- Método do Gradiente
- Método da Quádrica
- Método de Levenberg & Marquardt

NOTA: Nos slides seguintes são demonstrados e aplicados os métodos gradiente, quádrica e Levemberg-Marquardt a equações com duas variáveis (x,y), mas podem também ser aplicados a mais variáveis!

Método do Gradiente

Formulário
$$X_i^{n+1} = X_n - h \times \nabla f(x_i^n)$$

h – Passo dado pelo utilizador;
i – número de incógnita
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \dots \\ \frac{\partial f}{\partial x_k} \end{bmatrix}$$
k – n° total de incógnitas

Cálculo do máximo

$$x_i^{n+1} = X_n + h \times \nabla f(x_i^n)$$

Se $f_{n+1} > f_n$, o h deve ser aumentado

Caso contrário o h deve ser reduzido

Ou podemos simplesmente trocar o sinal da função (obtendo a função inversa) e calcular o mínimo, que corresponderá ao máximo da função antes de ser invertida!

Calcular o mínimo de f(x,y) - exemplo

$$f(x,y) = y^2 - 2xy - 6y + 2x^2 + 12$$

1º - Calculamos as derivadas parciais para cálculo do gradiente

$$\frac{\partial f}{\partial x} = -2y + 4x \qquad \qquad \frac{\partial f}{\partial y} = 2y - 2x - 6$$

2º - Iniciamos o calculo iterativo

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} - h \times \begin{bmatrix} -2y + 4x \\ 2y - 2x - 6 \end{bmatrix}$$

3º - Alteramos o valor de h de acordo com a proximidade ao mínimo

Se $f_{n+1} < f_n$, h deve ser aumentado (p.ex. h*2);

Caso contrário, h deve ser reduzido (p.ex. h/2) >> não efetivar o passo!

4º - Método iterativo e controlo do erro

$$x_{n+1} = x_n - h \times (-2y_n + 4x_n)$$

 $y_{n+1} = y_n - h \times (2y_n - 2x_n - 6)$

Método da Quádrica

$$X_{n+1} = X_n - H^{-1} \times \nabla f(X_n)$$

Exemplo a duas variáveis f(x,y)

$$X_{n+1} = X_n - H^{-1} \times \nabla f(X_n)$$

$$Y_{n+1} = Y_n - H^{-1} \times \nabla f(Y_n)$$

Matriz

Matriz Hessiana
$$H\left[f(x,y)
ight] = egin{bmatrix} rac{\partial^2 f}{\partial x^2} & rac{\partial^2 f}{\partial x \, \partial y} \ rac{\partial^2 f}{\partial y \, \partial x} & rac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

Calcular o mínimo de $f(x, y) = y^2 - 2xy - 6y + 2x^2 + 12$

1º - Calculamos as derivadas parciais para cálculo do gradiente

$$\nabla f(X_n) = -2y + 4x$$
 $\nabla f(Y_n) = 2y - 2x - 6$

2º - Calculamos as derivadas parciais de segunda ordem

$$\frac{\partial^2 f}{\partial x^2} = 4 \quad \frac{\partial^2 f}{\partial y^2} = 2 \quad \frac{\partial^2 f}{\partial x \partial y} = -2 \quad \frac{\partial^2 f}{\partial y \partial x} = -2$$

3º - Calculamos o inverso determinante da matriz Hessiana

$$H = \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix} \longrightarrow H^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

4º - Calculo iterativo e controlo do erro!

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -6 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Neste caso, já atingimos o mínimo logo na primeira iteração, isto acontece porque H é constante (não depende de x e y), logo dá imediatamente a direção do extremo!

Método Levemberg and Marquardt

Formulário

$$X_{n+1} = X_n - h_{LM}$$
$$h_{LM} = \lambda \times \nabla f + H^{-1} \times \nabla f$$

λ – escolhido pelo utilizador e varia
 ao longo do método:
 se a função decresce, λ também

decresce, caso contrário λ cresce;

Calcular o mínimo de $f(x, y) = y^2 - 2xy - 6y + 2x^2 + 12$

1º - Calculamos as derivadas parciais para cálculo do gradiente

$$\nabla f(X_n) = -2y + 4x \qquad \qquad \nabla f(Y_n) = 2y - 2x - 6$$

- 2º Calculamos as derivadas parciais de segunda ordem
- 3º Calculamos o inverso determinante da matriz Hessiana
- 4º Iniciamos o calculo iterativo

 5° - Decidimos o que fazer com λ

Se
$$f_{n+1} > f_n$$
, $\lambda = \lambda + \Delta \lambda$ (não efetivamos o passo!)
Caso contrário $\lambda = \lambda - \Delta \lambda$

6° - Atualizamos o λ e continuamos o calculo iterativo até satisfazer a condição de paragem

1.a) - Calcular o mínimo de

$$f(x,y) = y^{2} - 2xy - 6y + 2x^{2} + 12$$
$$x_{0} = 1$$
$$y_{0} = 1$$

Tolerância admitida = 0.001 Critério – erro absoluto

Solução

h	X	у	dz/dx	dz/dy	f(x,y)	erro x	erro y
1	1	1	2	-6	7		
0.5	-1	7	-18	10	35	2	6
0.25	3.00061	5.999512	0.003418	-0.0022	-6	0.001099	0.00061
0.5	2.999756	6.000061	-0.0011	0.00061	-6	0.000854	0.000549

1.b) - Calcular o máximo de

$$f(x,y) = 2xy + 2x - x^{2} - 2y^{2}$$
$$x_{0} = -1$$
$$y_{0} = 1$$

Tolerância admitida = 0.001 Critério – erro absoluto

Solução

h	x	У	dz/dx	dz/dy	f(x,y)	erro x	erro y
1	-1	1	6	-6	-7		
0.5	5	-5	-18	30	-115	6	6
0.5	2.000183	0.999634	-0.0011	0.001831	2	0.000916	0.001465
0.25	1.999634	1.000549	0.001831	-0.00293	1.999999	0.000549	0.000916

Calcular o mínimo de f(x,y) recorrendo ao método da Quádrica

$$f(x,y) = \sin\frac{x}{2} + x^2 - \cos x$$
 | Tolerância admitida = 0.001 | $x_0 = -3$ | $x_0 = -3$ | Critério – erro absoluto | $x_0 = -3$

Solução

Iteração		Xn	Н		H ⁻¹		Gradiente	X	f(x,y)	errox	erroy
1	Χ	-3	2.249374	0	0.444568	0	-5.964631	-0.34831	-0.90058	2.651685	
	У	-1	0	0.540302	0	1.850816	-0.841471	0.557408	-0.70036		1.557408
2	Χ	-0.35	2.04332	0	0.4894	0	-0.204193	-0.24838	-1.06001	0.099932	
	У	0.557	0	0.848629	0	1.178371	0.5289881	-0.06594			0.623344
3	Χ	-0.25	2.030968	0	0.492376	0	-0.000616	-0.24808	-1.06218	0.000303	
	У	-0.07	0	0.997827	0	1.002178	-0.065889	9.57E-05			0.066032
4	Χ	-0.25	2.03093	0	0.492385	0	-5.71E-09	-0.24808	-1.06218	2.81E-09	
	У	1E-04	0	1	0	1	9.572E-05	-2.9E-13	-1.00210		9.57E-05

Calcular o mínimo e máximo de f(x) recorrendo à regra de Aúrea

$$f(x) = (2x+1)^2 - 5\cos(10x)$$
 | Tolerância admitida = 0.001 | $x_1 = -1$ | $x_2 = 0$

Solução xmin=-0,62644 >> f(x)=-4,9352 xmin=-0,3114 >> f(x)=5,1404

Calcular o mínimo de f(x,y) recorrendo ao método d LM

$$f(x,y) = \sin\frac{x}{2} + x^2 - \cos y$$
 | Tolerância admitida = 0.001 | $x_0 = -10$ | Critério – erro absoluto | $y_0 = -1$

Solução

	Xn	Н		H ⁻¹		Gradiente	lambda	lambda *grad	Χ	f(x,y)	
х	-3	2.249374	0	0.444568	0	-5.964631	0.01	-0.05965	-0.28867	-0.90465	
У	-1	0	0.540302	0	1.850816	-0.841471	0.01	-0.00841	0.565822	-0.70463	
х	-0.28867	2.035958	0	0.491169	0	-0.082536	0.02	-0.00165	-0.24648	1 05000	
У	0.565822	0	0.844148	0	1.184626	0.5361103	0.02	0.010722	-0.07999	-1.05898	
х	-0.24648	2.030732	0	0.492433	0	0.0032506	0.03	9.75E-05	-0.24818	1 04010	
У	-0.07999	0	0.996802	0	1.003208	-0.079905	0.03	-0.0024	0.002568	-1.06218	
х	-0.24818	2.030943	0	0.492382	0	-0.000198	0.04	-7.9E-06	-0.24807	-1.06218	
У	0.002568	0	0.999997	0	1.000003	0.0025682	0.04	0.000103	-0.0001	-1.06218	
х	-0.24807	2.030929	0	0.492385	0	1.61E-05	0.05	8.05E-07	-0.24808	1 04010	
У	-0.0001	0	1	0	1	-0.000103	0.05	-5.1E-06	5.14E-06	-1.06218	
x	-0.24808	2.030931	0	0.492385	0	-1.64E-06	0.06	-9.8E-08	-0.24808	-1.06218	
у	5.14E-06	0	1	0	1	5.137E-06	0.06	3.08E-07	-3.1E-07		