CLOSEST

Trong mặt phẳng tọa độ, khoảng cách Manhattan giữa hai điểm $A(x_A, y_A)$ và $B(x_B, y_B)$ được định nghĩa như sau:

$$d(A, B) = |x_A - x_B| + |y_A - y_B|$$

Cho hai tập điểm S_1 và S_2 , trong đó:

- Tất cả các điểm trong tập S_1 đôi một phân biệt và đều nằm trên đường thẳng $y = c_1$.
- Tất cả các điểm trong tập S_2 đôi một phân biệt và đều nằm trên đường thẳng $y = c_2$.

Hãy xác định khoảng cách Manhattan ngắn nhất giữa hai điểm (p,q) với $p \in S_1$ và $q \in S_2$ và đếm số cặp (p,q) phân biệt có khoảng cách Manhattan là ngắn nhất. Cặp (p,q) và cặp (p',q') được gọi là phân biệt nếu $p \neq p'$ hoặc $q \neq q'$.

Dữ liệu

- Dòng đầu tiên: chứa hai số nguyên dương $N, M \ (1 \le N, M \le 500,000)$ trong đó N là số phần tử của S_1, M là số phần tử của S_2 .
- Dòng thứ hai: chứa hai số nguyên c_1 , c_2 ($-10^8 \le c_1$, $c_2 \le 10^8$).
- Dòng thứ ba: chứa N số nguyên phân biệt nằm trong khoảng -10^8 đến 10^8 của tập S_1 .
- Dòng thứ tư: chứa M số nguyên phân biệt nằm trong khoảng -10^8 đến 10^8 của tập S_2 .

Kết quả

• Một dòng duy nhất chứa hai số nguyên theo thứ tự: khoảng cách Manhattan ngắn nhất giữa hai điểm và số cặp có khoảng cách như vậy.

Ví dụ

Sample Input	Sample Output
3 4	5 3
1 -3	
3 0 6	
-2 5 4 2	