

Introduction to Machine Learning

Outline

- The main machine learning tasks
- Good generalization
- Naïve Bayes classifier
- k-Nearest Neighbour classifier
- Classification errors (training, validation and test)

Reference

Part 5 of AIMA textbook (4th Ed) Chapter 19 "Learning from Examples"

Machine Learning Tasks

Examples of Statistical Learning Problems

- Predict whether someone will have a heart attack on the basis of demographic, diet and clinical measurements
- Customize an email spam detection system

	george	you	hp	free	!	edu	remove
spam	0.00	2.26	0.02	0.52	0.51	0.01	0.28
email	1.27	1.27	0.90	0.07	0.11	0.29	0.01

 Identify the numbers in a handwritten postcode

Identify emergency landing places for UAV's

Machine Learning Tasks

- Classification (label prediction)
- Regression (function approximation)

- Clustering
- Probability density estimation

Policy learning (learning from experience)

Manifold Learning

- Noise removal
- Classification
- Autoencoders
- Embeddings

Unsupervised Learning

- No outcome variable, just a set of predictors (features) measured on a set of samples
- Objective is more fuzzy find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation
- Difficult to know how well your are doing!
- Different from supervised learning, but can be useful as a preprocessing step for supervised learning

Supervised Learning

- Outcome measurement Y (also called dependent variable, response, target)
- Vector of p predictor measurements X (also called inputs, regressors, covariates, features, independent variables)
- In the regression problem, Y is quantitative (e.g price, blood pressure)
- In the classification problem, Y takes values in a finite, unordered set (survived/died, digit 0-9, safe for landing)
- We have training data (x1, y1), . . . , (xN, yN). These are observations (examples, instances) of these measurements

ML Objectives

Accurately predict the labels of **new** test cases

Understand which inputs affect the outcome, and how

Assess the quality of predictions and inferences

Polynomial Curve Fitting

Let's look at **generalization**!
Good generalization is
what we care about

Blue dots are our data points They are noisy measurements of hidden/unknown green data

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

E(w) measures the discrepancy between the model y(x,w) and the dataset $\{(x1, y1), \dots, (xN, yN)\}$

Oth Order Polynomial

M is the degree of the polynomial

In red, the best fit for a polynomial model of degree M=0

1st Order Polynomial

As *M* increases, the capacity of the model increases. Capacity ~ ability of the model to fit the data

In red, the best fit for a polynomial of degree M=1

3rd Order Polynomial

As *M* increases, the capacity of the model increases

9th Order Polynomial

At some point the capacity can become too large!

Over-fitting

Only the examples in the **Training Set** are used for selecting *w*. The examples of the **Test Set** are used for the evaluation of the generalization performance of the trained model.

Root-Mean-Square (RMS) Error:

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^{\star}	Weigh	t explosion as	125201.43	

Data Set Size:

$$N = 15$$

9th Order Polynomial

The appropriate capacity of the model (*M*) depends on the size of the training set

Regularization

Idea: Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

We can control the capacity of the parameterized function by imposing a penalty for large weights

Probability Refresher

Probability Theory

Apples and Oranges

2-step random process:

- (1) select randomly a bag
- (2) select randomly a fruit from that bag

Concept review:

- Random variable
- Conditional probability

Random variable examples:

B: colour of the bag

F: type of fruit

Question:

P(B|F) ?

What is the probabiliy that the fruit was picked from the blue bag given that it is an orange?

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

YX	x ₁	x ₂	х ₃	x ₄	p _y (Y)↓
y ₁	4/32	2/32	1/32	1/32	8/32
У2	2/32	4/32	1/32	1/32	8/32
у ₃	2/32	2/32	2/32	2/32	8/32
У4	8/32	0	0	0	8/32
p _X (X) →	16/32	8/32	4/32	4/32	32/32

Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior likelihood × prior

Y: class

X: measurements

Probability Densities

For non discrete random variables

$$p(x) \geqslant 0$$

$$\int_{-\infty}^{\infty} p(x) \, \mathrm{d}x = 1$$

Classification Learning

• Given a training sample, we want to predict $y \in Y$ for a new $x = (x_1, ..., x_n) \in X$

• Error minimised by $y = \underset{y}{\operatorname{argmax}} P(y|x_1, \dots, x_n)$

Can estimate probabilities using observed frequencies

$$P(W) \simeq F(W)$$

$$P(W|Z) \simeq \frac{F(W,Z)}{F(Z)}$$

Estimating Probabilities

To estimate the probability of an attribute-value A = v for a given class C we use

the relative frequency n_c / n

where n_c is the number of training instances that belong to the class C and have value v for the attribute A, and n is the number of training instances of the class C

Naïve Bayes Classifier

Let each instance x of a training set D be described by a conjunction of n attribute values $\langle a_1, a_2, ..., a_n \rangle$ and let the target function, be such that it can take any value from a finite set V.

$$\begin{aligned} v_{\text{MAP}} &= \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j} | a_{1}, \dots, a_{n}) \\ &= \underset{v_{j} \in V}{\operatorname{argmax}} \frac{P(a_{1}, \dots, a_{n} | v_{j}) P(v_{j})}{P(a_{1}, \dots, a_{n})} \\ &= \underset{v_{j} \in V}{\operatorname{argmax}} P(a_{1}, \dots, a_{n} | v_{j}) P(v_{j}) \\ &= \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j}) \prod_{i} P(a_{i} | v_{j}) \end{aligned}$$

Example

Consider the weather data and we have to classify the instance:

< Outlook = sunny, Temp = cool, Hum = high, Wind = strong >

The task is to predict the value (*yes* or *no*) of the concept PlayTennis. We apply the Naïve Bayes rule:

$$\begin{aligned} v_{\mathit{MAP}} &= \underset{vj \in \{\mathit{yes}\,,\,\mathit{no}\}}{\operatorname{argmax}} P(v_j) \prod_i P(a_i|v_j) \\ &= \underset{vj \in \{\mathit{yes}\,,\mathit{no}\}}{\operatorname{argmax}} P(v_j) P(\mathit{Outlook} = \mathit{sunny}|v_j) P(\mathit{Temp} = \mathit{cool}|v_j) \\ &\quad P(\mathit{Hum} = \mathit{high}|v_j) P(\mathit{Wind} = \mathit{strong}|v_j) \end{aligned}$$

Example: Estimating Probabilities

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	Ν
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	Ν
overcast	cool	normal	true	Р
sunny	mild	high	false	Ν
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(yes) = 9/14$$

$$P(no) = 5/14$$

Outlook			
P(sunny yes) = 2/9	P(sunny no) = 3/5		
P(overcast yes) = 4/9	P(overcast no) = 0		
P(rain yes) = 3/9	P(rain no) = 2/5		
Temp			
P(hot yes) = 2/9	P(hot no) = 2/5		
P(mild yes) = 4/9	P(mild no) = 2/5		
P(cool yes) = 3/9	P(cool no) = 1/5		
Hum			
P(high yes) = 3/9	P(high no) = 4/5		
P(normal yes) = 6/9	P(normal no) = 1/5		
Windy			
P(true yes) = 3/9	P(true no) = 3/5		
P(false yes) = 6/9	P(false no) = 2/5		

Example

$$P(yes) P(sunny | yes) P(cool | yes) P(high | yes) P(strong | yes) = .0053$$

 $P(no) p(sunny | no) P(cool | no) P(high | no) P(strong | no) = .0206$

Thus, the naïve Bayes classifier assigns the value *no* to PlayTennis!

Nearest Neighbours Classifiers

Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - *k*-nearest neighbour approach
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation

The *k*-Nearest Neighbour Algorithm

- All instances correspond to points in the n-D space.
- The nearest neighbor are defined in terms of Euclidean distance.
- The target function could be discrete- or real- valued.
- For discrete-valued, the k-NN returns the most common value among the k training examples nearest to xq.
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples.

Discussion on the k-NN Algorithm

- The k-NN algorithm for continuous-valued target functions
 - Calculate the mean values of the k nearest neighbours
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbours according to their distance to the query point x_a $w = \frac{1}{d(x_1, x_2)^2}$
 - giving greater weight to closer neighbours
 - Similarly, for real-valued target functions
- Robust to noisy data by averaging k-nearest neighbours
- Curse of dimensionality: distance between neighbours could be dominated by irrelevant attributes.
 - To overcome it, axes stretch or elimination of the least relevant attributes.

Training, Validation and Test Errors

What is the difference between a *training* set, a validation set and a test set?

- The training set is used to select the parameter vector of the classifier
- The validation set is used to select the capacity/complexity of the classifier. For example, the capacity can be the maximum depth of a decision tree. Shallow decision trees have less discriminative power then deeper ones. But deeper decision trees might overfit the data.
- Assume that the capacity of your classifier is an integer n. In order to select the capacity of your classifier, you can train (using the training set) a number of classifiers with different capacity n, and evaluate the generalization of the classifier using the validation set. You should pick the capacity n for which the generalization error is the lowest.
- So, why do we need the test set?!
- The validation set cannot be used as a test set, because it is "tainted". It has been used to select the capacity/architecture of the classifier. So, it cannot be said that it is "unseen data". This is why, statisticians require the use of a different set (the test set) to assess the generalization error of the trained classifier).