

<u>Home</u> > Chemistry > Inorganic > Bonding > Covalent bonding

Covalent bonding

Part A Number of bonding electrons	^
Which of the following molecules contains six bonding electrons?	
$\bigcirc \ \ H_2S$	
$igcup NCl_3$	
$\bigcirc \ \ \mathrm{C_2H_4}$	
\bigcirc SF $_6$	
\bigcirc CO ₂	

The P-H bond energy is the mean (average) of the H-H and P-P values. Explain why the H-Cl bond energy is **not** the mean of the H-H and Cl-Cl values.

Some bond energy values are given in the table below:

bond	bond energy $/\mathrm{k}\mathrm{J}\mathrm{mol}^{-1}$	bond	bond energy $/\mathrm{kJ}\mathrm{mol}^{-1}$
Н-Н	436	$\mathrm{H}\mathrm{-H}$	436
P-P	208	Cl-Cl	244
Р-Н	322	H-Cl	431

- **1** The Cl-H bond is more polar than the P-H bond.
- **2** Cl has a smaller covalent radius than P.
- ${\bf 3}\ P$ has five valence electrons whereas Cl has seven.
 - 1, 2 and 3 are correct
 1 and 2 only are correct
 2 and 3 only are correct
 1 only is correct

3 only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, November 1992, Paper 4, Question 5; Part B adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 2, Question 2

 $\underline{\sf Home}\,$ > Chemistry > Inorganic > Bonding > Shapes of molecules and ions

Shapes of molecules and ions

art A	${ m F}_2{ m O}$	
Ву	considering the number of lone and bonding pairs of electrons, predict the shape of ${ m F_2O}.$	
art B	$ m H_3O^+$	
Ву	considering the number of lone and bonding pairs of electrons, predict the shape of $\mathrm{H_3O}^+$.	
art C	$\mathrm{ClF_4}^-$	
Bv	considering the number of lone and bonding pairs of electrons, predict the shape of ${ m ClF_4}^-$.	

Antimony, Sb, is in group 15 of the Periodic Table. It forms a series of salts which contain the SbF_5^{n-} anion, the structure of which is a square-based pyramid:

Figure 1: Structure of the ${\rm SbF_5}^{n-}$ anion

Deduce the total number of electrons around the antimony atom.

Deduce the value of n.

Adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 3, Question 2

<u>Home</u> > Chemistry > Inorganic > Bonding > Dative bond and similar shapes

Dative bond and similar shapes

Part A Me_3N and BF_3

Trimethylamine, Me_3N , reacts with boron trifluoride, BF_3 , to form a compound of formula Me_3NBF_3 .

$$[\mathrm{Me}=\mathrm{CH_3}]$$

How may this reaction be drawn in terms of the shapes of the reactants and products?

- () c
- () D

Part B Similar shapes	~
In which of the following pairs do the molecules have similar shapes?	
$igcup BF_3$ and NH_3	
\bigcirc CO $_2$ and SO $_2$	
$igcap AlCl_3$ and BCl_3	
AlCl ₃ and PCl ₃	
$igcup { m BeCl_2}$ and ${ m H_2O}$	

Part A adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 3; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 6

 $\underline{\mathsf{Home}}\,\,$ **>** Chemistry **>** Inorganic **>** Bonding **>** Shapes and angles

Shapes and angles

Part A	BCl_3 and PCl_3	^
W	hy is the molecule of BCl_3 planar, whereas the molecule of PH_3 is pyramidal?	
	The boron atom has no d-orbitals available for bonding.	
	$ \qquad \text{The boron atom in } BCl_3 \text{ has six electrons in its valency shell, whereas the phosphorus atom in } PH_3 \text{ has eight.} $	
	The repulsion between chlorine atoms is greater than that between hydrogen atoms,	
	The covalent radius of phosphorus is greater than that of boron.	
	The covalent radius of chlorine is greater than that of hydrogen.	
Part B	$\mathrm{NH_{3}}$	~
In	the ammonia molecule, what is the approximate value of the $H-N-H$ bond angle?	
	180°	
	120°	
	90°	
	○ 60°	

Part A adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 3, Question 4; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 1

Shape of ozone

Part A O₃

Predict the shape of the ozone molecule O₃.

Part B

Part B

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 1, Question 5; Part B created for isaacphysics.org by Robert Less

<u>Home</u> > Chemistry > Inorganic > Bonding > Bond angles

Bond angles

Part A Methane, ammonia and water

^

The bond lengths and bond angles in the molecules of methane, ammonia and water may be represented as follows:

Figure 1: Shapes of molecules of methane, ammonia and water.

What causes this trend in the bond angles shown, according to valence shell electron pair repulsion theory?

- 1 increasing repulsion between hydrogen atoms as the bond length decreases
- 2 the number of non-bonding electron pairs in the molecule
- 3 a nonbonding electron pair having a greater repulsive force than a bonding electron pair
 - 1, 2 and 3 are correct
 1 and 2 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 3 only is correct

Part E	${ m B} = { m SO_3}^{2-}$	~		
-	The ${ m SO_3}^{2-}$ ion may be represented as (geometry not necessarily representative):			
	$\left[\begin{array}{cc} O \longrightarrow \stackrel{\cdot}{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{\overset{\cdot}{$			
Figure 2: $\mathrm{SO_3}^{2-}$ ion				
١	What is the O-S-O bond angle?			
	\bigcirc 90 $^{\circ}$ exactly			
	\bigcirc about 107°			
	\bigcirc about 109.5°			
	120° exactly			

Part A adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 31; Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 2

 $\underline{\mbox{Home}}$ > Chemistry > Inorganic > Bonding > Shape of $SnCl_2$

Shape of $SnCl_2$

Which of the following structures represents the gaseous $\mathrm{SnCl_2}$ molecule? The orbital lobe represents a lone (unshared) pair of electrons.

Figure 1: Possible shapes of SnCl_2

A
В
С
D
Е

Adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 5

<u>Home</u> > Chemistry > Inorganic > Bonding > Shapes of fluorides

Shapes of fluorides

For each of the following, enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 1, Question 1

<u>Home</u> > Chemistry > Inorganic > Bonding > Shapes of halide compounds

Shapes of halide compounds

For each of the following, deduce the shape of the molecules and enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".

<u>Home</u> > Chemistry > Inorganic > Bonding > Shapes of xenon compounds

Shapes of xenon compounds

For each of the following, deduce the shape of the molecules and enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".

