Tema 3 la algebră --seria 1321.12.2016¹

Problema 1. Fie $a \in \mathbb{R}$ și o lege de compoziție pe \mathbb{R} definită astfel:

$$x * y = x + y - xy - ax - ay + a.$$

- (1) Pentru ce valori ale lui $a \in \mathbb{R}$, $(\mathbb{R} \setminus \{1\}, *)$ este grup?
- (2) Pentru ce valori ale lui $a \in \mathbb{R}$ mulțimea H = [0, 1] este parte stabilă a lui \mathbb{R} față de operația *?
- (3) În condițiile de la (1) să se calculeze $\underbrace{x*x*...*x}_{n\ ori}$ pentru orice $x\in\mathbb{R}\setminus\{1\}$ şi $n\in\mathbb{N}^*$.

Problema 2. Pe intervalul real (0,1) definim legea "*" astfel:

$$x * y = \frac{xy}{2xy - x - y + 1}.$$

Arătați că mulțimea (0,1) împreună cu operația * formează un grup. Demonstrați apoi că pe orice interval deschis și mărginit de numere reale se poate defini o operație algebrică "o" ce determină pe intervalul respectiv o structură de grup.

Problema 3. Fie grupul $G = (\mathbb{Z}_2 \times \mathbb{Z}_2, +)$. Determinați mulțimea tuturor morfismelor de grupuri

$$\operatorname{Hom}_{ar}(G,G) = \{ \phi : G \mapsto G, \phi \text{ morfism de grupuri} \}.$$

Fie U submulţimea lui $\operatorname{Hom}_{gr}(G,G)$ formată din izomorfisme. Demonstraţi că (U,\circ) este un grup izomorf cu (S_3,\circ) .

Problema 4. Fie grupul $(\mathbb{Z}_9 \times \mathbb{Z}_{18}, +)$. Determinați elementele de ordin 3, 4, respectiv 9 din acest grup. Este mulțimea $\{(\bar{4}, \hat{3}), (\bar{3}, \hat{5})\}$ un sistem de generatori pentru grupul $\mathbb{Z}_9 \times \mathbb{Z}_{18}$?

i

¹Primele 4 probleme pot fi redactate în vederea corecturii. Celelalte sunt opționale, dar utile pentru pregătirea examenului final.

Problema 5. Fie

$$A = \begin{pmatrix} 0 & 0 & 0 & x \\ x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}), \ x \in \mathbb{R}^*.$$

- a) Dacă $G = \{A^n, n \in \mathbb{N}^*\}$ să se determine $x \in \mathbb{R}^*$ astfel încât (G, \cdot) să fie un grup finit.
- b) Să se determine cu cine este izomorf grupul finit (G,\cdot) , determinat anterior.

Problema 6. Fie G = (-1, 1) și operația algebrică $*: G \times G \to G$ definită prin

$$x * y = \frac{x+y}{1+xy}$$
, pentru orice $x, y \in G$.

Arătați că (G,*) este grup abelian și $(G,*)\cong (\mathbb{R}_+^*,\cdot)$.

Problema 7. Să se arate că mulțimea izomorfismelor de grup $\phi : (\mathbb{Q}, +) \mapsto (\mathbb{Q}, +)$ formează un grup izomorf cu grupul (\mathbb{Q}^*, \cdot) .

Problema 8. Fie G un grup cu proprietatea că aplicațiile $f,g:G\mapsto G$ definite prin $f(x)=x^4$ și $g(x)=x^8$ sunt izomorfisme de grupuri. Să se arate că G este grup abelian.