DIGITÁLIS MÉRÉSTECHNIKA

Képfeldolgozás jegyzőkönyv

Mérést végezte: Koroknai Botond (AT5M0G) Mérés időpontja: 2023.12.07

Jegyzőkönyv leadásának időpontja: 2023.12.11

1. Egykép műveletek

Az első feladat részeként készítettem egy képet a terem egy olyan nézetéről, amiben egyszerre látszódtak az ablak sötétitők, és a munkaállomások polcai is.

1. kép. eredeti kép a teremről

1.1. Szürke kép

A szürke kép elkészítéséhez az eredeti kép csatornáinak valamilyen megfelelő lineáris kombinációját kellett, hogy kikeverjem. A súlyok megválasztásához azt vettem figyelembe, hogy ugyan a terem lámpái erős sárga fényt árasztanak magukból, de az ablakon pedig még dominánsabb kék fény szűrődik be. Internetről kikerestem, hogy az RGB - képalkotásban a sárga kikeveréséhez piros és zöld színekre van szükség. Ezen megfigyeléseknek eleget téve a kéknek 0.4-es súly választottam, míg a pirosnak és zöldnek egyenként 0.2-0.2-őt.

2. kép. szürke kép

1.2. Hisztogrammok

Ezt követően megvizsgáltam az eredeti kép egyes csatornáihoz tartozó hisztogrammokat is.

3. kép. A különböző csatornákhoz tartozó hisztogrammok

A sejtésem beigazolódott, míg a piros és zöld nagyjából egyenletesen oszlik meg a képen, a magas intenzítású kék jelentős mértékben van jelen.

1.3. Éldetektálás

A három különböző éldetektálás megvalósításához némi kutakodás után a következő Sobel mátrixokat talátam:

1.3.1. Vízszintes

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

1.3.2. Függőleges

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

1.3.3. Diagonális

$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

2

Ezen kernelek segítségével előállított képek a következő eredményeket adták.

4. kép. A különböző éldetektálások

1.4. Méretskálázás

Kicsinyített kép (7/13 arányban)

5. kép. Kicsinyítés

A kicsnyítést az eredeti kép pixeleinek megfelelő átlagolásval értem el, ha kicsit bele nagyítunk a képbe láthatjuk, hogy az apró részletek jelentősen torzulnak.

2. Többkép műveletek

A feladat során a mérőszalagot egy közelebb- és közelebb húztam a kamera felé. A különböző képek eltéréseinek segítségével ezt a következőképpen tudom vizualizálni.

6. kép. Egymást követő képek közti különbségek

Hogy empirikusan belássam a korreláció csökkenését az idő előrehaladtával, egy új ábrát készítettem, melyen egyszer a 1. és 2. kép különbségét láthatjuk, míg a másikon a 1. és 3. kép különbséségét. A képekre gridet szerkesztettem, hogy könyebb legyen szemmel lekövetni a különbségek nagyságának változását.

7. kép. Korreláció csökkenésének belátása

3. Kamerakalibráció

3.1. A perpektíva vizsgálata

A feladat során a munkaállomásnál található akkumulátorrol készítettem fotókat, miközben lépésről lépésre közelebb helyeztem a kamerához. A kiértékelés során az akkumulátor képének szélességét vizsgáltam és ábrázoltam a távolság függvényében.

8. kép. Akkumulátor szélessége a távolság függvényében

Őszintén szólva eleinte lineáris modellre számítottam. Amikor a közelebb készült képeket vizsgáltam, akkor tűnt fel, hogy a közeli tárgyak képe kicsit meggörbül, a kamera objektívjében található lencse kialakíításának következtében (széles látószög). Szerintem ez az oka a szélesség gyors növekedésének.

4. A kamera leképezési mátrixának meghatározása

4.1. Első kamera (jobb oldali)

Az első képet a jobb oldali kamerával készítettem, és a markereket az alábbi módon sorszámoztam

9. kép. Az első kamera felvétele a markerekről

Marker	x [cm]	y [cm]	z [cm]	v [px]	w [px]
1.	24	1	1	527	368
2.	1	3	1	374	323
3.	34	10	38	361	415
4.	2	39	2	371	35
5.	2	2	27	222	374
6.	2	32	44	86	109

4.2. A második kamera felvétele (bal oldali)

10. kép. Az második kamera felvétele a markerekről

Marker	x [cm]	y [cm]	z [cm]	v [px]	w [px]
1.	23	2	2	437	360
2.	1	3	1	288	337
3.	34	10	38	411	409
4.	2	39	2	278	79
5.	2	2	27	108	396
6.	1	32	44	57	136

Másodjára is lemértem a koordinátákat, hogy ellenőrizzem az első mérésemet, és néhány kisebb hibát leszámítva (leolvasási hiba) most is ugyan azokat az értékeket kaptam. A koordináták leolvasásához az első kameránál ismertetett koordinátarendszert használtam megint.

Számos próbálkozást követően ezt a feladatot végül nem sikerült befejeznem.