• **Def.**: Sean L_1 , $L_2 \subseteq \Sigma^*$ se dirá que L_1 se reduce a L_2 ($L_1 \alpha L_2$) si existe una función total computable (o recursiva) $f: \Sigma^* \to \Sigma^*$ tal que

$$\forall w \in \Sigma^*, w \in L_1 \Leftrightarrow f(w) \in L_2$$

$$w \in L_1 \Rightarrow f(w) \in L_2 \text{ AND } f(w) \in L_2 \Rightarrow w \in L_1$$

$$w \notin L_1 \Rightarrow f(w) \notin L_2$$

• **Def.**: Sean L_1 , $L_2 \subseteq \Sigma^*$ se dirá que L_1 se reduce a L_2 ($L_1 \alpha L_2$) si existe una función total computable (o recursiva) $f: \Sigma^* \to \Sigma^*$ tal que

$$\forall w \in \Sigma^*, w \in L_1 \Leftrightarrow f(w) \in L_2$$

Se dice que f es computable si existe una MT que la computa y que siempre se detiene. Notar la importancia de que f sea completa.

 $w \longrightarrow M_f$ munca loopea. A veces, usaremos la expresión $M_f(w)$ para referirnos a la función computada por la MT M_f

Nota: la reducibilidad es una transformación de instancias de un problema en instancias de otro problema.

Ej.:
$$L_1 = \{w \in \{a, b\}^* / w \text{ comienza con } a\}$$

 $L_2 = \{w \in \{a, b\}^* / w \text{ comienza con } b\}$

Vamos a demostrar que $(L_1 \alpha L_2)$

$$\begin{aligned} \mathbf{M}_f &= <\mathbf{Q}, \ \Sigma, \ \Gamma, \ \delta, \ q_0, \ q_d > \ \mathbf{Q} = \{q_0\} \quad \Sigma = \{a,b\} \quad \ \Gamma = \{\mathbf{B}, \ a,b\} \\ \mathbf{M}_f \text{ es una MT de/para c\'omputo} \\ \delta &: \qquad \qquad a \to (b,\mathbf{S}) \end{aligned}$$

Puede demostrarse fácilmente que:

- 1. M_f siempre se detiene
- 2. $\forall w \in \Sigma^*, w \in L_1 \Leftrightarrow f(w) \in L_2$

Ejercicio 1:

$$L_1 = \{w \in \{0, 1\}^* / \operatorname{cant}_1(w) \text{ es par}\}\$$

 $L_2 = \{w \in \{0, 1\}^* / \operatorname{cant}_1(w) \text{ es impar}\}\$

Donde $cant_1(w)$ es la cantidad de 1 que hay en w

Demostrar que $L_1 \alpha L_2$.

Se construye M_f , una MT que computa la función de reducibilidad.

$$M_f = \langle \{q_0, q_1\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, q_d \rangle, M_f : MT de/para cómputo$$

Hay que demostrar que M_f siempre se detiene y que $w \in L_1 \Leftrightarrow M_f(w) \in L_2$

1) M_f siempre se detiene: claramente sí, pues para cualquier input solamente ejecuta dos pasos de computación y se detiene.

 $L_1 = \{w \in \{0, 1\}^* / \operatorname{cant}_1(w) \text{ es par}\}\$ $L_2 = \{w \in \{0, 1\}^* / \operatorname{cant}_1(w) \text{ es impar}\}\$

Reducibilidad

2)
$$\[w \in L_1 \Leftrightarrow M_f(w) \in L_2 ? \]$$

Claramente $cant_1(M_f(w)) = cant_1(w) + 1$, por lo tanto:

- si cant₁(w) es par entonces cant₁($M_f(w)$) es impar y
- si cant₁(w) es impar entonces cant₁($M_f(w)$) es par

Entonces:

- a) Si $w \in L_1 \Rightarrow \operatorname{cant}_1(w)$ es par $\Rightarrow \operatorname{cant}_1(M_f(w))$ es impar $\Rightarrow M_f(w) \in L_2$
- b) Si $w \notin L_1 \Rightarrow \operatorname{cant}_1(w)$ es impar $\Rightarrow \operatorname{cant}_1(M_f(w))$ es $\operatorname{par} \Rightarrow M_f(w) \notin L_2$

De a) y b) se tiene que $w \in L_1 \Leftrightarrow M_f(w) \in L_2$.

Ejercicio 2: Sean
$$L_1 = \{w \in \{0, 1\}^* / \operatorname{cant}_1(w) \text{ es par}\}\$$

 $L_2 = \{w \in \{0, 1\}^* / \operatorname{cant}_1(w) = 1\}$

Demostrar que $L_1 \alpha L_2$.

Se construye M_f tal que $w \in L_1 \Leftrightarrow M_f(w) \in L_2$

Tarea para el lector: Demostrar que:

- 1) M_f se detiene para todo w
- 2) $w \in L_1 \Leftrightarrow M_f(w) \in L_2$.

Ejercicio 3: Sea L un lenguaje recursivo ($L \in R$)

 $L_1 = \{ \langle M \rangle / \langle M \rangle \text{ es un cód. válido de MT, } L(M) = L y M \text{ siempre se detiene} \}$

$$L_2 = \{ \langle M \rangle / \langle M \rangle \text{ es un cód. válido de MT y } L(M) = \overline{L} \}$$

Demostrar que $L_1 \alpha L_2$

Hay que encontrar una MT M_f que siempre se detenga para la cual sea cierto que:

$$w \in L_1 \Leftrightarrow M_f(w) \in L_2$$

Se construye M_f que trabaja de la siguiente manera: Si w no es un código válido de MT M_f se detiene sin hacer nada. De lo contrario (w es un código M de MT válido) recorre todas las quíntuplas de w, si en la 3ra posición encuentra q_A lo reemplaza por q_A , si encuentra q_A lo reemplaza por q_A .

Nuevamente hay que demostrar que:

- 1) M_f se detiene
- 2) $w \in L_1 \Leftrightarrow M_f(w) \in L_2$.

$$L_1 = \{<\!M\!>/<\!M\!> \text{ es un cód. válido de MT, } L(M) = L \text{ y M siempre se detiene}\}$$

$$L_2 = \{<\!M\!>/<\!M\!> \text{ es un cód. válido de MT y } L(M) = \overline{L}\}$$

1) M_f siempre se detiene porque la entrada es finita.

2)
$$\[\vdots \] w \in L_1 \Leftrightarrow M_f(w) \in L_2 ? \]$$
2.a) $\[\vdots \] w \in L_1 \Rightarrow M_f(w) \in L_2 ? \]$
Si $\[w \in L_1 \Rightarrow w \]$ es un código válido de una MT M que reconoce L y siempre se detiente \Rightarrow

$$\{ si \ x \in L \Rightarrow M \ para \ en \ q_A \Rightarrow M_f(w) \ codifica \ una \ MT \ que \ para \ en \ q_R \ con \ input \ x \}$$

$$si \ x \notin L \Rightarrow M \ para \ en \ q_R \Rightarrow M_f(w) \ codifica \ una \ MT \ que \ para \ en \ q_A \ con \ input \ x \}$$

$$observar \ que \ M \ nunca \ rechaza \ loopeando \ (ver \ def. \ de \ L_1)$$

$$por \ lo \ tanto \ M_f(w) \ acepta \ \overline{L} \Rightarrow M_f(w) \in L_2$$

2.b) Se demuestra similarmente que $w \notin L_1 \Rightarrow M_f(w) \notin L_2$. Además, considérese que si w es un código inválido no pertenece a L_1 y $M_f(w)$ tampoco pertenece a L_2

Por lo tanto $w \in L_1 \Leftrightarrow M_f(w) \in L_2$.

Nota: si $L_1 \alpha L_2$ entonces se puede construir una MT que acepte L_1 a partir de la MT que acepta L_2 (si existe).

Debe quedar claro que "en cierto sentido" L_1 no puede ser más difícil computacionalmente que L_2 porque se puede utilizar L_2 para resolver L_1 .

Intuitiva y coloquialmente, la reducción establece una relación de "≤" grado de dificultad computacional entre lenguajes/problemas...

Teorema 1: L_1 , $L_2 \subseteq \Sigma^*$ y existe la reducción $L_1 \alpha L_2$, entonces:

$$\operatorname{si} L_2 \in \mathbb{R} \Rightarrow L_1 \in \mathbb{R}$$

Dem.: $L_2 \in R \Rightarrow$ existe una máquina de Turing M_2 tal que $L_2 = L(M_2)$ y M_2 siempre se detiene. Se construye M_1 que hace:

- 1) Simula M_f sobre w y obtiene f(w)
- 2) Simula M_2 sobre f(w) y acepta sii M_2 acepta

Se debe demostrar que:

- a) $L_1 = L(M_1)$
- b) M₁ siempre de detiene.


```
a.1) w \in L_1 \Rightarrow f(w) \in L_2 (porque L_1 \alpha L_2)
                   \Rightarrow M<sub>2</sub> para en q_A con input f(w)
                   \Rightarrow M<sub>1</sub> para en q_A con input w
                   \Rightarrow w \in L(M_1)
a.2) w \notin L_1 \Rightarrow f(w) \notin L_2 (porque L_1 \alpha L_2)
                   \Rightarrow M<sub>2</sub> para en q_R con input f(w)
                   \Rightarrow M<sub>1</sub> para en q_R con input w
                   \Rightarrow w \notin L(M_1)
Por a.1) y a.2) se tiene que L_1 = L(M_1)
```

Se debe demostrar que:

a)
$$L_1 = L(M_1)$$

b) M₁ siempre de detiene.

Claramente M_1 siempre de detiene pues M_f y M_2 se detienen siempre por hipótesis.

Se debe demostrar que:

a)
$$L_1 = L(M_1)$$

b) M₁ siempre de detiene.

Por lo tanto, de a) y b) se tiene que $L_1 \in \mathbb{R}$.

Teorema 2: L_1 , $L_2 \subseteq \Sigma^*$ y existe la reducción $L_1 \alpha L_2$, entonces:

$$L_2 \in RE \Rightarrow L_1 \in RE$$

Dem.: Se demuestra de manera similar a la demostración del teorema anterior

Corolario: Sean L_1 , $L_2 \subseteq \Sigma^*$ y la reducción L_1 α L_2 , por las respectivas contrarecíprocas del teorema 1 y del teorema 2, se cumple que:

$$L_1 \notin R \Rightarrow L_2 \notin R$$

 $L_1 \notin RE \Rightarrow L_2 \notin RE$

El Lenguaje *Halting Problem* se define como:

 $HP = \{(\langle M \rangle, w) \text{ tal que } M \text{ se detiene con input } w\}$

Ejercicio: demostrar que $HP \in (RE-R)$.

I) $HP \in RE$.

Se construye una MT M_{HP} tal que $L(M_{HP}) = HP$. M_{HP} chequea sintácticamente la entrada (<M>, w), si es un par inválido para en q_R , si es un par válido pero <M> es un código de MT inválido para en q_A , si ambos son válidos simula M sobre w, si M para (en q_A o en q_R) M_{HP} para en q_A , si M no para, M_{HP} no para.

II) HP \notin R.

Se puede probar que existe la reducción $L_u \alpha HP$, y como $L_u \notin R$ será cierto $HP \notin R$.

Dem. Sea la siguiente MT M_f que computa la función f de reducibilidad

$$M_f((,w)) = (,w)$$

 M_f trabaja de la siguiente manera:

Si (<M>,w) no es un par válido o <M> no es un código válido de MT borra la cinta (deja λ como salida), de lo contrario busca en las quíntuplas de <M> el estado q_R y lo reemplaza por un nuevo estado q. Luego agrega las quíntuplas (q,x,q,x,S) por cada símbolo x del alfabeto de la cinta de M. Así la máquina M' construida por M_f entra en loop cuando M para en q_R .

Hay que demostrar que M_f es una máquina que computa la función de reducibilidad, es decir se debe probar que:

- -1) f es computable?
- 2) $(\langle M \rangle, w) \in L_u \iff (\langle M' \rangle, w) \in HP$?

Claramente f es computable pues M_f siempre se detiene pues la entrada es finita y luego de recorrerla agrega un número finito de quíntuplas y se detiene \checkmark

Hay que demostrar que M_f es una máquina que computa la función de reducibilidad, es decir se debe probar que:

1) f es computable \bigvee

Hay que demostrar que M_f es una máquina que computa la función de reducibilidad, es decir se debe probar que:

1) f es computable \bigvee

Hay que demostrar que M_f es una máquina que computa la función de reducibilidad, es decir se debe probar que:

1) f es computable \bigvee

2)
$$(\langle M \rangle, w) \in L_u \Leftrightarrow (\langle M' \rangle, w) \in HP$$
?

2.a)
$$(\langle M \rangle, w) \in L_u \Rightarrow (\langle M' \rangle, w) \in HP ? \checkmark$$

2.b) $(\langle M \rangle, w) \notin L_u \Rightarrow (\langle M' \rangle, w) \notin HP ? \checkmark$

$$(M>,w)\notin L_u \Longrightarrow (M'>,w)\notin HP?$$

Hay que demostrar que M_f es una máquina que computa la función de reducibilidad, es decir se debe probar que:

- 1) f es computable \checkmark
- 2) $(\langle M \rangle, w) \in L_u \Leftrightarrow (\langle M' \rangle, w) \in HP \bigvee$

De 1) y 2) se tiene que M_f computa la función de reducibilidad buscada y por lo tanto queda demostrado que $L_\mu \propto HP$.

Como
$$L_{ij} \notin R \Rightarrow HP \notin R$$

De I) y II)
$$HP \in (RE-R)$$

<u>Ejercicio</u>: Probar que $L_{\Sigma^*} = \{ \langle M \rangle / L(M) = \Sigma^* \}$ no es recursivo.

Mostraremos que existe una reducción $L_u \alpha L_{\Sigma^*}$

Hay que encontrar una función total computable tal que

$$(\langle M \rangle, w) \in L_u \iff f(\langle M \rangle, w) \in L_{\Sigma^*}$$

Sea M_f la máquina de Turing que computa la función f (<M>,w) = <M'> y trabaja de la siguiente manera:

Si (<M>,w) no es un par válido o <M> no es un código de MT válido, M_f borra la cinta (deja λ como salida), de lo contrario M_f construye <M'> escribiendo las quíntuplas necesarias para que M' borre la entrada y escriba w en la cinta, posicione el cabezal y simule M sobre w. Así M' para en q_A para cualquier input \Leftrightarrow M acepta w

Para cualquier x de Σ^* la máquina M' ejecuta M sobre w

- 1) f((<M>,w)) es computable? Claramente sí, pues M_f se detiene luego de realizar una cantidad finita de acciones.
- 2) $\xi(\langle M \rangle, w) \in L_u \Leftrightarrow \langle M' \rangle \in L_{\Sigma^*}$?
 - a) Sea $(<M>,w)\in L_u \Rightarrow M$ para en q_A con entrada $w\Rightarrow M'$ para en q_A con cualquier entrada $\Rightarrow <M'>\in L_{\Sigma^*}$
 - b) Sea $(<M>,w) \notin L_u \Rightarrow$
 - i. Si (<M>,w) no es un par válido o <M> no es un código de MT válido \Rightarrow <M'> = λ \Rightarrow <M'> $\not\in$ L $_{\Sigma^*}$
 - ii. M rechaza $w \Rightarrow M'$ rechaza toda entrada $\Rightarrow \langle M' \rangle \not\in L_{\Sigma^*}$
 - De a) y b) se tiene que $(\langle M \rangle, w) \in L_u \Leftrightarrow \langle M' \rangle \in L_{\Sigma^*}$
- De 1) y 2) se tiene que $L_u \alpha L_{\Sigma^*}$
- Por lo tanto $L_{\Sigma^*} \notin a R$ (porque $L_u \notin a R$)

Nota: Puede demostrarse también que existe una reducción $\overline{L}_u \propto L_{\Sigma^*}$ y como $\overline{L}_u \notin RE$ se tiene que $L_{\Sigma^*} \notin aRE$

Para practicar. Demostrar que existe una reducción de \overline{L}_u α L_\varnothing con $L_\varnothing = \{ <M > / L(M) = \varnothing \}$

Lenguaje L_{EQ}

Teorema. $L_{EQ} = \{(\langle M_1 \rangle, \langle M_2 \rangle) / L(M_1) = L(M_2)\} \notin RE$

Prueba: $L_{\Sigma^*} \alpha L_{EQ}$

La función f de reducibilidad que computa M_f es

f (<M>)=(<M>,<M_{\Sigma^*}>) Siendo <M_{\Sigma^*}> el código de una máquina de Turing que acepta L_{Σ^*}

Por ejemplo si $\Sigma = \{a,b\}$, la δ de transición de M_{Σ^*} puede ser la siguiente:

$$\delta(q_0,a) = (q_A,a,S); \delta(q_0,b) = (q_A,b,S); \delta(q_0,B) = (q_A,B,S)$$

Claramente M_f se detiene, por lo tanto f es computable

Además:

$$<\!\!M\!\!>\in L_{\Sigma^*} \Leftrightarrow L(M) = \Sigma^* \Leftrightarrow L(M) = L(M_{\Sigma^*}) \Leftrightarrow (<\!\!M\!\!>,<\!\!M_{\Sigma^*}\!\!>) \in L_{EO}$$

Lenguaje L_{EQ}

Teorema. $L_{EQ} = \{(\langle M_1 \rangle, \langle M_2 \rangle) / L(M_1) = L(M_2)\} \notin RE$

Prueba: $L_{\Sigma^*} \alpha L_{EQ}$

La función f de reducibilidad que computa M_f es

f (<M>)=(<M>,<M_{\Sigma^*}>) Siendo <M_{\Sigma^*}> el código de una máquina de Turing que acepta Σ^*

Por ejemplo si $\Sigma = \{a,b\}$, la δ de transición de M_{Σ^*} puede ser la siguiente:

$$\delta(q_0,a)=(q_A,a,S); \delta(q_0,b)=(q_A,b,S); \delta(q_0,B)=(q_A,B,S)$$

Claramente M_f se detiene, por lo tanto f es computable

Además:

$$<\!\!M> \in L_{\Sigma^*} \Leftrightarrow L(M) = \Sigma^* \Leftrightarrow L(M) = L(M_{\Sigma^*}) \Leftrightarrow (<\!\!M>, <\!\!M_{\Sigma^*}>) \in L_{EO}$$

Por lo tanto, f es una función de reducibilidad y queda probado que L_{Σ^*} α L_{EQ}

Entonces $L_{EQ} \notin RE$