9

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. (Original) A compound of the formula:

wherein:

R₃₁ is a linear or branched polymer residue;

Y₁₀ and Y₁₁ are independently O, S, or NR₄₀;

X2 is O, S or NR41;

 R_{32} , R_{33} , R_{34} , R_{35} , R_{36} , R_{36} , R_{36} , R_{40} , R_{41} , R_{50} and R_{51} are ir dependently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-3} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls;

a, b and e are each independently a positive integer;

L is an amino acid residue or a bifunctional linker;

wherein Y_{12} and Y_{13} are independently O, S, or NR_{41} ;

Z is selected from the group consisting of a bond, a moiety hat is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

 D_1 and D_2 are independently selected from the group consisting of OH, a residue of a hydroxyl-containing moiety, a residue of an amine-containing moiety and a leaving group; and y_1 and y_2 are independently selected positive integers.

- 2 (Withdrawn) The compound of claim 1, wherein Y₁ and Y₂ are O.
- 3. (Withdrawn) The compound of claim 1, wherein R2, R3, R4, R1, R8 and R9 are H
- 4. (Withdrawn) The compound of claim 1, wherein m and n are both 1.
- 5. (Currently Amended) The compound of claim 1, wherein R₁ R₁ is O-(CH₂CH₂O)_x or O-(CH(CH₃)CH₂O)_x, wherein x is the degree of polymerization fix in about 10 to about 2,300.
- 6. (Withdrawn) The compound of claim 5, wherein R_1 is O-(CH₂:H₂O)_x and x is a positive integer selected so that the weight average molecular weight is at least about 20,000.
- 7. (Withdrawn) The compound of claim 6, wherein R₁ has a weight average molecular weight of from about 20,000 to about 100,000.
 - 8. (Withdrawn) The compound of claim 7, wherein R_1 has a weight average molecular weight of from about 25,000 to about 60,000.

9. (Currently Amended) The compound of claim 1 wherein L is selected from the group consisting of:

$$X_{3} = \begin{array}{c} Y_{13} \\ X_{3} = \begin{array}{c} X_{3} \\ X_{3} \end{array} \\ X_{4} = \begin{array}{c} X_{13} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{15} \\ X_{25} = \begin{array}{c} X_{15} \\ X_{36} \\ X_{36} \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{5} = \end{array} \\ X_{5} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array} \\ X_{15} = \begin{array}{c} X_{15} \\ X_{15} = \end{array}$$

<u>wherein</u>

X₅ is O, S or N R₄₃;

Y₁₅ is O. S. or NR₄₄;

R₄₃, R₄₄ and R₅₄- R₅₈ are independently selected from the 2 oup consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted lkyls, C₃₋₈ substituted

cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls; and

g is a positive integer.

10. (Withdrawn) The compound of claim 1 wherein L is an amine acid residue of the formula:

$$X_4 - C - \begin{pmatrix} R_{52} \\ C \\ R_{53} \end{pmatrix}_f$$

wherein X4 is O, S or NR42;

Y₁₄ is independently O, S, or NR₄₅;

 R_{42} , R_{45} and R_{52} - R_{53} are independently selected from the g-oup consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted a lkyls. C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and abstituted C_{1-6} heteroalkyls; and

f is a positive integer.

- 11. (Original) The compound of claim 1 wherein D₁ and D₂ are residues of an active biological agent, an anticancer prodrug, a detectable tag, and combinations thereof.
- 12. (Withdrawn) The compound of claim 11 wherein the anticancer agent or anticancer prodrug is selected from the group consisting of daunorubicin, doxorubicin p-aminoaniline mustard, melphalan, cytosine arabinoside, gemcitabine, and combinations thereof.
- 13. (Withdrawn) The compound of claim 1 wherein at least one I | moiety is a leaving group selected from the group consisting of as N-hydroxybenzotriazolyl, halogen, N-hydroxy-phthalimidyl, p- nitrophenoxy, imidazolyl, N-hydroxysuccinimidyl, thiaz olidinyl thione, and combinations thereof.

14. (Withdrawn) A compound of the formula:

(XI)
$$R_{31}$$
 R_{32}
 R_{33}
 R_{35}
 R_{35}
 R_{35}
 R_{38}
 R_{39}
 R_{31}
 R_{32}
 R_{31}

wherein:

R₃₁ is a linear or branched polymer residue;

Y₁₀ and Y₁₁ are independently O, S, or NR₄₀;

 X_1 is O, S or NR_{41} ;

 R_{32} , R_{33} , R_{34} , R_{35} , R_{36} , R_{37} , R_{38} , R_{40} and R_{41} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, a_{-12} branched alkyls, a_{-8} cycloa kyls, a_{-6} substituted alkyls, a_{-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, a_{-6} heteroalkyls and substituted a_{-6} heteroalkyls; and

a and b are each independently a positive integer.

15. (Original) A method of preparing a polymeric conjugate, com prising reacting a compound of the formula (XII)

(XII)
$$\begin{array}{c} R_{31} - C \\ R_{33} - C - R_{34} \\ R_{35} - C - R_{38} \\ R_{37} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{31} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{32} - C - R_{38} \\ R_{33} - C - R_{38} \\ R_{34} - C - R_{38} \\ R_{34} - C - R_{38} \\ R_{35} - C - R_{3$$

wherein

R₃₁ is a linear or branched polymer residue;

Y₁₀ and Y₁₁ are independently O, S, or NR₄₀;

L is an amino acid residue or a bifunctional linker;

R₃₂, R₃₃, R₃₄, R₃₅, R₃₇, R₃₈, and R₄₀ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls,

C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substitute 1 aryls, aralkyls,

C₁₋₆ heteroalkyls and substituted C₁₋₆ heteroalkyls;

a and b are each independently a positive integer, and

B is a leaving group;

with a compound of the formula (XIII)

(XIII)
$$\begin{pmatrix} X_3 - Z - \left\{ D_1 \right\}_{y_1} \\ \left(R_{50} - C - R_{51} \right)_{\Theta} \\ HX_2 C - R_{30} \\ X_3 - Z - \left\{ D_2 \right\}_{y_2}$$

wherein

X2 is O, S or NR41;

 R_{39} , R_{41} , R_{50} and R_{51} are independently selected from the g-oup consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls;

$$X_3 \text{ is } - C - C - C - C$$
;

wherein Y₁₂ and Y₁₃ are independently O, S, or NR₄₁;

Z is selected from the group consisting of a bond, a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

 D_1 and D_2 are independently selected from the group consilting of OH, a residue of a hydroxyl, a residue of an amine-containing moiety and a leaving group;

e is a positive integer; and

 y_1 and y_2 are independently selected positive integers; under conditions sufficient to cause a substitution reaction in which the compound of formula (X) is formed.

- 16. (Original) A method of treating mammals with polymeric con ugates, comprising administering an effective amount of the compound of claim 1.
- 17. (New) The compound of claim 9 wherein g is 1 or 2.
- 18. (New) The compound of claim 5, wherein x is the degree of p dymerization, from about 10 to about 2,300.
- 19. (New) The compound of claim 5, wherein R_{31} is a polymer having a weight average molecular weight ranging from about 2,000 to about 100,000.
- 20. (New) The compound of claim 5, wherein R_{31} is a polymer having a weight average molecular weight from about 5,000 to about 50,000.
- 21. (New) The compound of claim 5, wherein R_{31} is a polymer having a weight average molecular weight of from about 20,000 to about 40,000.
- 22. (New) The compound of claim 1, having the formula:

- 23 (New) The compound of claim 1, wherein Y_{11} and Y_{12} are both).
- 24 (New) The compound of claim 1, wherein $R_{22}\text{-}R_{40}$, R_{50} , and R_5 are each hydrogen.
- 25 (New) The compound of claim 1, wherein a and b are each 1.
- 26 (New) The compound of claim 1, wherein y_1 and y_2 are both or ϕ .