

Figure 26.17: Case (4)

In order for our map to be defined for $0 \le x \le 1$, cx + d must have a constant sign for $0 \le x \le 1$, which means that d and c + d have the same sign. Then,

$$\frac{(ad - bc)x}{d(cx + d)}$$

and

$$\frac{(ad - bc)(x - 1)}{(c + d)(cx + d)}$$

have opposite signs when 0 < x < 1, which means that the image of [0,1] is the interval [b/d, (a+b)/(c+d)] (or [(a+b)/(c+d), b/d]).

We now consider the projective completion of an affine space. First, we introduce the notion of affine patch.

26.7 Affine Patches

Given an affine space E with associated vector space \overrightarrow{E} , we can form the vector space \widehat{E} , the homogenized version of E, and then, the projective space $\mathbf{P}(\widehat{E})$ induced by \widehat{E} . This