Overview

- ► Solving Recurrence relation
 - ► Recursion Tree
 - Master Method
 - **▶** Substitution Method

Divide and Conquer – Recurrence

$$T(n) = \Theta(1)$$
 if $n \le c$
= $a T(n/b) + D(n) + C(n)$ otherwise

- \triangleright Number of subproblems a
- Each subproblem size is 1/b the size of the original
- \triangleright D(n) time to divide the problem into subproblems
- ightharpoonup C(n) time to combine the solutions

Divide and Conquer – Recurrence

$$T(n) = \Theta(1)$$
 if $n \le c$
= $a T(n/b) + f(n)$ otherwise

- \triangleright Number of subproblems a
- Each subproblem size is 1/b the size of the original
- > f(n): time to divide the problem into subproblems and to combine the solutions

Solving Recurrence – Substitution Method

- 1. Guess a solution
- 2. Use mathematical induction to find the constants and show that the solution works

Substitute the guessed solution for the function when applying the inductive hypothesis to smaller values.

$$T(n) = 2 T(\lfloor n/2 \rfloor) + n$$

- 1. Guess solution: $T(n) = O(n \lg n)$
- 2. Prove that $T(n) \le cn \lg n$ for some c > 0

$$T(n) = 2 T(\lfloor n/2 \rfloor) + n$$

Guessed solution: $T(n) = O(n \lg n)$

Prove that $T(n) \le cn \lg n$ for some c > 0

Assume the bound hold for all positive m < n, in particular for

$$m = \lfloor n/2 \rfloor$$

$$T(\lfloor n/2 \rfloor) \leq c \lfloor n/2 \rfloor lg (\lfloor n/2 \rfloor)$$

Assume the bound holds for all positive m < n, in particular for $m = \lfloor n/2 \rfloor$. ($T(\lfloor n/2 \rfloor) <= c \lfloor n/2 \rfloor \lg (\lfloor n/2 \rfloor)$)
Substituting,

$$T(n) \le 2 (c \lfloor n/2 \rfloor lg (\lfloor n/2 \rfloor)) + n$$

 $\le c n lg (n/2)) + n$
 $= cn lg n - cn lg 2 + n = cn lg n - cn + n$
For $c >= 1$, $cn lg n - cn + n \le cn lg n$

$$T(n) \le cn \lg n - cn + n$$

For $c \ge 1$, $T(n) \le cn \lg n$

Does it hold for n=1, T(1)?

Substitution Method – Boundary conditions

With
$$T(1) = 1$$
,

$$T(n) \le cn \ lg \ n \ \text{ yields } T(1) \le c \ 1 \ lg \ 1 = 0$$

Choosing n=1 as boundary condition for proof is problematic.

Choose n=2 or n=3 (the bound is to hold only for $n>=n_0$)

Substitution Method – Boundary conditions

From the recurrence, T(2)=4, T(3)=5

Prove that

$$T(2) \le c 2 \lg 2$$

$$T(3) \le c \ 3 \ lg \ 3$$

What should be value of c?

$$c >= 2?$$
 $n_0 = 2?$

Master Method

$$T(n) = \Theta(1)$$
 if $n \le c$
= $a T(n/b) + f(n)$ otherwise

- > Three cases
- \triangleright Based on a, b and f(n)

Master Method

$$T(n) = \Theta(1)$$
 if $n \le c$
= $a T(n/b) + f(n)$ otherwise

$$\theta$$
 ($n^{\log_b a}$)

- > Three cases
- \triangleright Based on a, b and f(n)

Total Cost = ?

Master Method

$$T(n) = \Theta(1)$$
 if $n \le c$
= $a T(n/b) + f(n)$ otherwise

Recursion tree height: $\log_b n$

Number of leaves: $n^{\log_b a}$

Total cost at leaf level = θ ($n^{\log_b a}$)

Master Theorem

Let $a \ge 1$ and $b \ge 1$ be constants, let f(n) be a function and T(n) be defined on the nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we interpret n/b to mean $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$. Then T(n) has the following asymptotic bounds:

1. If
$$f(n) = O(n^{\log a - \epsilon})$$
 for some constant $\epsilon > 0$, then $T(n) = O(n^{\log a})$

2. If
$$\xi(n) = \theta(n^{\log_b^a})$$
, then $T(n) = \theta(n^{\log_b^a})$. Ign

3. If
$$\xi(n) = \Omega$$
 $(N^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $\alpha \xi(n/b) \le c \cdot \xi(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) = \theta(\xi(n))$

1. If
$$f(n) = O(n^{\log a - \epsilon})$$
 for some constant $\epsilon > 0$,

then $T(n) = \Theta(n^{\log a})$
 $(\log a)$
 $f(n) = A(n^{\log a})$
 $f(n) = A(n^{\log a})$

2. If
$$b(n) = \theta(n^{\log a})$$
, then $T(n) = \theta(n^{\log a})$. Ign)

3. If
$$b(n) = \Omega$$
 $(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $ab(n/b) \le c \cdot b(n)$ for some constant $c < 1$ and all sufficiently large n , then

$$T(n) = \theta(\xi(n))$$

Master Method

$$T(n) = \Theta(1)$$
 if $n \le c$
= $a T(n/b) + f(n)$ otherwise
Comparing $f(n)$ with n

Larger of the two determines the solution to the recurrence.

Case 1: $n^{\log_b u}$ is larger

Case 3: f(n) is larger

Case 2: same size

Master Theorem: Case 1- Example

$$T(n) = 9T(n/3) + n$$
$$a = 9, b = 3$$

$$n^{\log_b a} = n^2 = \Theta(n^2)$$

$$f(n) = n = O(n) = O(n^{2-1}), \varepsilon = 1$$

Case 1 of Master Theorem

Solution: $T(n) = \Theta(n^2)$

Master Theorem: Case2 Example

$$T(n)=T (2n/3)+1$$

 $a=1, b=3/2, f(n)=1$
 $n^{\log_b a} = n^0 = 1$
 $f(n) = \Theta(1)$

Case 2 of Master Theorem

Solution: $T(n) = \Theta(lgn)$

Master Theorem: Merge Sort

$$T(n) = 2T(n/2) + \Theta(n)$$

$$a=2, b=2, f(n)=\Theta(n)$$

$$n^{\log_b a} = n^I = n$$

$$f(n) = \Theta(n)$$

Case 2 of Master Theorem

Solution: $T(n) = \Theta(n \lg n)$

Master Theorem: Case3 Example

$$T(n)=3T(n/4)+n \lg n$$

 $a=3, b=4, f(n)=n \lg n$
 $n^{\log_b a}=O(n^{0.793})$
 $f(n)=\Omega(n^{\log_b a+\epsilon}) \text{ for } \epsilon\approx 0.2$
Show that the regularity condition holds.
 $a f(n/b)=3(n/4) \lg(n/4)<=(3/4) n \lg n=c f(n) \text{ for } c=3/4$
Case 3 of Master Theorem
Solution: $T(n)=\Theta(n \lg n)$

Master Method - Limitations

$$T(n)=2T(n/2) + n \lg n$$

$$a=2, b=2, f(n)=n \lg n$$

$$n = O(n)$$

$$Case 3 ?$$

Falls into the gap between case 2 and case 3.

Master method does not apply.

Reference

T H Cormen, C E Leiserson, R L Rivest, C Stein *Introduction to Algorithms*, 3rd ed., PHI, 2010