$12a_{0841} (K12a_{0841})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -3u^{28} - 5u^{27} + \dots + 8b + 3, \ -29u^{28} - 15u^{27} + \dots + 32a - 23, \ u^{29} + 15u^{27} + \dots + 8u^2 - 1 \rangle \\ I_2^u &= \langle 4.83718 \times 10^{20}u^{45} + 8.97498 \times 10^{20}u^{44} + \dots + 9.64382 \times 10^{20}b + 5.08979 \times 10^{21}, \\ &\quad 5.98621 \times 10^{21}u^{45} + 8.38005 \times 10^{21}u^{44} + \dots + 2.89315 \times 10^{21}a + 6.78007 \times 10^{22}, \ u^{46} + 2u^{45} + \dots + 36u + I_3^u &= \langle b, \ u^2 + 2a - u + 3, \ u^3 + 2u + 1 \rangle \\ I_4^u &= \langle b, \ u^3 + a + u - 1, \ u^4 - u^3 + 2u^2 - 2u + 1 \rangle \\ I_5^u &= \langle au + 2b - a + 2u, \ a^2 - au + a + 2u, \ u^2 + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 86 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{28} - 5u^{27} + \dots + 8b + 3, -29u^{28} - 15u^{27} + \dots + 32a - 23, u^{29} + 15u^{27} + \dots + 8u^2 - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.906250u^{28} + 0.468750u^{27} + \dots + 8.65625u + 0.718750 \\ \frac{3}{8}u^{28} + \frac{5}{8}u^{27} + \dots - \frac{1}{8}u - \frac{3}{8} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.593750u^{28} + 0.0312500u^{27} + \dots + 7.34375u + 0.781250 \\ \frac{1}{2}u^{28} + \frac{1}{2}u^{27} + \dots - u - \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0312500u^{28} + 0.343750u^{27} + \dots + 8.78125u + 1.09375 \\ -\frac{3}{8}u^{28} - \frac{3}{8}u^{27} + \dots - \frac{3}{8}u + \frac{1}{8} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -\frac{1}{4}u^{28} - \frac{7}{2}u^{26} + \dots - \frac{29}{4}u^{3} + \frac{5}{4}u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -\frac{1}{4}u^{28} - \frac{7}{2}u^{26} + \dots - \frac{21}{4}u^{3} + \frac{5}{4}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{4}u^{27} + \frac{7}{2}u^{25} + \dots + \frac{21}{4}u^{2} - \frac{1}{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{153}{64}u^{28} \frac{5}{64}u^{27} + \dots + \frac{433}{64}u \frac{445}{64}u$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{29} - 4u^{28} + \dots + 9u - 4$
c_3,c_9	$u^{29} - 3u^{28} + \dots - 136u - 32$
<i>C</i> ₅	$u^{29} - 6u^{28} + \dots + 256u - 64$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{29} + 15u^{27} + \dots + 8u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{29} - 30y^{28} + \dots + 449y - 16$
c_3,c_9	$y^{29} + 21y^{28} + \dots + 3392y - 1024$
c_5	$y^{29} - 12y^{28} + \dots + 45056y - 4096$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^{29} + 30y^{28} + \dots + 16y - 1$

-11.18250 - 6.23241I	-15.4958 + 4.4354I
-11.18250 + 6.23241I	-15.4958 - 4.4354I
-5.29574 + 1.64756I	-6.64036 - 4.87433I
-5.29574 - 1.64756I	-6.64036 + 4.87433I
-6.47257	-15.0600
-4.34611 - 2.54689I	-14.3374 + 3.8948I
-4.34611 + 2.54689I	-14.3374 - 3.8948I
-6.72574 + 1.45946I	-13.9846 - 4.7500I
-6.72574 - 1.45946I	-13.9846 + 4.7500I
3.59611 + 4.94229I	-5.90176 - 3.25931I
	-11.18250 + 6.23241I $-5.29574 + 1.64756I$ $-5.29574 - 1.64756I$ -6.47257 $-4.34611 - 2.54689I$ $-4.34611 + 2.54689I$ $-6.72574 + 1.45946I$ $-6.72574 - 1.45946I$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.295755 - 1.326220I		
a = -0.65679 - 1.37777I	3.59611 - 4.94229I	-5.90176 + 3.25931I
b = 0.152881 - 1.337510I		
u = -0.031725 + 1.373280I		
a = 0.498676 + 0.750755I	6.88971 + 1.52242I	-3.08698 - 0.91142I
b = -0.833765 + 0.932700I		
u = -0.031725 - 1.373280I		
a = 0.498676 - 0.750755I	6.88971 - 1.52242I	-3.08698 + 0.91142I
b = -0.833765 - 0.932700I		
u = 0.334857 + 1.341710I		
a = -0.052463 - 0.514744I	2.04714 - 8.02731I	-6.19853 + 5.31620I
b = 1.363430 + 0.335492I		
u = 0.334857 - 1.341710I		
a = -0.052463 + 0.514744I	2.04714 + 8.02731I	-6.19853 - 5.31620I
b = 1.363430 - 0.335492I		
u = -0.35253 + 1.37355I		
a = 1.02044 - 1.34914I	4.85486 + 10.72890I	-4.66596 - 7.57137I
b = -0.486235 - 1.297300I		
u = -0.35253 - 1.37355I		
a = 1.02044 + 1.34914I	4.85486 - 10.72890I	-4.66596 + 7.57137I
b = -0.486235 + 1.297300I		
u = 0.24683 + 1.41814I		
a = 0.066073 + 0.309790I	8.59031 - 5.90549I	1.11192 + 5.11469I
b = -0.764350 - 0.100103I		
u = 0.24683 - 1.41814I		
a = 0.066073 - 0.309790I	8.59031 + 5.90549I	1.11192 - 5.11469I
b = -0.764350 + 0.100103I		
u = 0.07466 + 1.44080I		
a = -0.513088 - 0.364599I	10.76360 - 2.89956I	0.60665 + 2.87370I
b = 0.808356 - 0.740580I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.07466 - 1.44080I		
a = -0.513088 + 0.364599I	10.76360 + 2.89956I	0.60665 - 2.87370I
b = 0.808356 + 0.740580I		
u = -0.40528 + 1.39829I		
a = -1.16438 + 1.17876I	-1.3772 + 15.4179I	-7.45070 - 8.08574I
b = 0.73766 + 1.39230I		
u = -0.40528 - 1.39829I		
a = -1.16438 - 1.17876I	-1.3772 - 15.4179I	-7.45070 + 8.08574I
b = 0.73766 - 1.39230I		
u = -0.536309		
a = -0.494577	-1.04228	-9.21320
b = -0.458728		
u = 0.17794 + 1.53799I		
a = 0.448537 - 0.057808I	7.23806 - 6.07610I	-7.24625 + 5.96720I
b = -0.334229 + 0.884134I		
u = 0.17794 - 1.53799I		
a = 0.448537 + 0.057808I	7.23806 + 6.07610I	-7.24625 - 5.96720I
b = -0.334229 - 0.884134I		
u = -0.212154 + 0.255646I		
a = -1.010790 + 0.763833I	-0.423563 + 0.810930I	-9.27103 - 8.41081I
b = 0.130923 + 0.622392I		
u = -0.212154 - 0.255646I		
a = -1.010790 - 0.763833I	-0.423563 - 0.810930I	-9.27103 + 8.41081I
b = 0.130923 - 0.622392I		
u = 0.232774		
a = 3.58165	-2.00372	-0.355130
b = -0.412704		

$$\begin{array}{c} \text{II. } I_2^u = \\ \langle 4.84 \times 10^{20} u^{45} + 8.97 \times 10^{20} u^{44} + \cdots + 9.64 \times 10^{20} b + 5.09 \times 10^{21}, \ 5.99 \times 10^{21} u^{45} + \\ 8.38 \times 10^{21} u^{44} + \cdots + 2.89 \times 10^{21} a + 6.78 \times 10^{22}, \ u^{46} + 2u^{45} + \cdots + 36u + 9 \rangle \end{array}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2.06910u^{45} - 2.89652u^{44} + \dots - 63.4881u - 23.4350 \\ -0.501583u^{45} - 0.930646u^{44} + \dots - 17.2611u - 5.27777 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.14401u^{45} - 1.45942u^{44} + \dots - 28.8674u - 7.34206 \\ -0.0137503u^{45} - 0.130285u^{44} + \dots + 2.36181u + 3.83874 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.43328u^{45} - 2.16999u^{44} + \dots - 45.8330u - 15.7079 \\ -0.589166u^{45} - 0.982067u^{44} + \dots - 18.1174u - 7.06307 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.318055u^{45} + 0.101865u^{44} + \dots + 12.9697u + 5.31725 \\ -0.512383u^{45} - 0.773762u^{44} + \dots - 15.6515u - 5.26019 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.83572u^{45} - 2.63620u^{44} + \dots - 63.5472u - 23.3857 \\ -2.15378u^{45} - 2.73806u^{44} + \dots - 74.5169u - 28.7029 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2.15396u^{45} + 2.58331u^{44} + \dots + 66.0693u + 22.7732 \\ 1.03525u^{45} + 1.64133u^{44} + \dots + 42.7004u + 14.5215 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$(u^{23} - 3u^{22} + \dots - u + 1)^2$
c_3,c_9	$(u^{23} + u^{22} + \dots + 8u - 4)^2$
c_5	$(u^{23} + 2u^{22} + \dots + 18u + 9)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{46} + 2u^{45} + \dots + 36u + 9$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y^{23} - 23y^{22} + \dots - 7y - 1)^2$
c_3, c_9	$(y^{23} + 15y^{22} + \dots - 40y - 16)^2$
c_5	$(y^{23} - 12y^{22} + \dots - 450y - 81)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^{46} + 34y^{45} + \dots + 288y + 81$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.792003 + 0.636640I		
a = -0.464182 - 0.795612I	-0.12065 - 2.74438I	-10.00137 + 3.42075I
b = 0.107498 - 1.054050I		
u = 0.792003 - 0.636640I		
a = -0.464182 + 0.795612I	-0.12065 + 2.74438I	-10.00137 - 3.42075I
b = 0.107498 + 1.054050I		
u = -0.934455 + 0.180416I		
a = 0.01842 - 2.02427I	-6.36348 + 10.62070I	-11.02627 - 6.45650I
b = -0.63403 - 1.38420I		
u = -0.934455 - 0.180416I		
a = 0.01842 + 2.02427I	-6.36348 - 10.62070I	-11.02627 + 6.45650I
b = -0.63403 + 1.38420I		
u = -0.415847 + 1.040410I		
a = -0.783548 + 1.151140I	2.62555 - 2.00215I	-5.23588 + 3.62705I
b = -0.308169 + 0.985429I		
u = -0.415847 - 1.040410I		
a = -0.783548 - 1.151140I	2.62555 + 2.00215I	-5.23588 - 3.62705I
b = -0.308169 - 0.985429I		
u = -0.827301 + 0.173977I		
a = -0.01971 + 2.35915I	-0.03073 + 6.47771I	-8.77780 - 6.52194I
b = 0.383777 + 1.192290I		
u = -0.827301 - 0.173977I		
a = -0.01971 - 2.35915I	-0.03073 - 6.47771I	-8.77780 + 6.52194I
b = 0.383777 - 1.192290I		
u = 0.025834 + 1.168220I		
a = -1.46131 + 1.12134I	1.18777 - 0.88878I	-10.39291 - 0.92577I
b = 0.441227 + 0.551458I		
u = 0.025834 - 1.168220I		
a = -1.46131 - 1.12134I	1.18777 + 0.88878I	-10.39291 + 0.92577I
b = 0.441227 - 0.551458I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.425501 + 1.089070I		
a = -0.570025 - 0.705470I	-8.32991 + 1.64388I	-13.30470 - 0.40272I
b = -0.37388 - 1.47842I		
u = 0.425501 - 1.089070I		
a = -0.570025 + 0.705470I	-8.32991 - 1.64388I	-13.30470 + 0.40272I
b = -0.37388 + 1.47842I		
u = 0.308254 + 1.133610I		
a = -0.92194 - 1.29169I	0.502753	-6.32391 + 0.I
b = 0.969482		
u = 0.308254 - 1.133610I		
a = -0.92194 + 1.29169I	0.502753	-6.32391 + 0.I
b = 0.969482		
u = 0.472378 + 0.647473I		
a = -0.055315 + 1.183280I	4.00909 - 1.37448I	-1.29822 + 4.35124I
b = -0.494865 + 0.507562I		
u = 0.472378 - 0.647473I		
a = -0.055315 - 1.183280I	4.00909 + 1.37448I	-1.29822 - 4.35124I
b = -0.494865 - 0.507562I		
u = 0.780797 + 0.120550I		
a = -0.886569 - 0.462655I	-2.55344 - 3.99588I	-10.60901 + 3.49800I
b = -1.222080 - 0.199525I		
u = 0.780797 - 0.120550I		
a = -0.886569 + 0.462655I	-2.55344 + 3.99588I	-10.60901 - 3.49800I
b = -1.222080 + 0.199525I		
u = 0.307733 + 1.209490I		
a = 0.72001 + 1.31534I	-0.86138 - 1.33135I	-11.15950 + 0.I
b = 0.000983 + 1.149400I		
u = 0.307733 - 1.209490I		
a = 0.72001 - 1.31534I	-0.86138 + 1.33135I	-11.15950 + 0.I
b = 0.000983 - 1.149400I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.562612 + 1.118280I		
a = 0.694930 - 0.643080I	-3.51902 - 5.35900I	-8.00000 + 0.I
b = 0.51611 - 1.32552I		
u = -0.562612 - 1.118280I		
a = 0.694930 + 0.643080I	-3.51902 + 5.35900I	-8.00000 + 0.I
b = 0.51611 + 1.32552I		
u = 0.665930 + 0.330412I		
a = 0.671534 + 0.192645I	3.01275 - 2.59653I	-2.53697 + 3.78636I
b = 0.598699 + 0.195967I		
u = 0.665930 - 0.330412I		
a = 0.671534 - 0.192645I	3.01275 + 2.59653I	-2.53697 - 3.78636I
b = 0.598699 - 0.195967I		
u = -0.241954 + 1.241490I		
a = 1.62697 - 0.89642I	2.62555 + 2.00215I	-8.00000 + 0.I
b = -0.308169 - 0.985429I		
u = -0.241954 - 1.241490I		
a = 1.62697 + 0.89642I	2.62555 - 2.00215I	-8.00000 + 0.I
b = -0.308169 + 0.985429I		
u = -0.708329 + 0.156769I		
a = 0.92255 - 2.13346I	-8.32991 + 1.64388I	-13.30470 - 0.40272I
b = -0.37388 - 1.47842I		
u = -0.708329 - 0.156769I		
a = 0.92255 + 2.13346I	-8.32991 - 1.64388I	-13.30470 + 0.40272I
b = -0.37388 + 1.47842I		
u = 0.004181 + 1.278050I		
a = 0.797831 + 0.327490I	4.00909 + 1.37448I	0 4.35124I
b = -0.494865 - 0.507562I		
u = 0.004181 - 1.278050I		
a = 0.797831 - 0.327490I	4.00909 - 1.37448I	0. + 4.35124I
b = -0.494865 + 0.507562I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.694715 + 0.088611I		
a = -0.45479 - 2.70390I	-0.86138 + 1.33135I	-11.15950 - 0.67575I
b = 0.000983 - 1.149400I		
u = -0.694715 - 0.088611I		
a = -0.45479 + 2.70390I	-0.86138 - 1.33135I	-11.15950 + 0.67575I
b = 0.000983 + 1.149400I		
u = -0.186653 + 1.293090I		
a = -0.225783 + 0.453951I	3.01275 + 2.59653I	0
b = 0.598699 - 0.195967I		
u = -0.186653 - 1.293090I		
a = -0.225783 - 0.453951I	3.01275 - 2.59653I	0
b = 0.598699 + 0.195967I		
u = -0.331769 + 1.264340I		
a = 0.339428 - 0.762833I	-2.55344 + 3.99588I	0
b = -1.222080 + 0.199525I		
u = -0.331769 - 1.264340I		
a = 0.339428 + 0.762833I	-2.55344 - 3.99588I	0
b = -1.222080 - 0.199525I		
u = 0.325464 + 1.311080I		
a = -1.25782 - 1.25504I	-0.03073 - 6.47771I	0
b = 0.383777 - 1.192290I		
u = 0.325464 - 1.311080I		
a = -1.25782 + 1.25504I	-0.03073 + 6.47771I	0
b = 0.383777 + 1.192290I		
u = -0.306328 + 1.362140I		
a = -1.55159 + 0.54359I	-3.51902 + 5.35900I	0
b = 0.51611 + 1.32552I		
u = -0.306328 - 1.362140I		
a = -1.55159 - 0.54359I	-3.51902 - 5.35900I	0
b = 0.51611 - 1.32552I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.36850 + 1.37093I		
a = 1.40661 + 0.98862I	-6.36348 - 10.62070I	0
b = -0.63403 + 1.38420I		
u = 0.36850 - 1.37093I		
a = 1.40661 - 0.98862I	-6.36348 + 10.62070I	0
b = -0.63403 - 1.38420I		
u = -0.06153 + 1.44896I		
a = -0.341144 - 0.682320I	-0.12065 + 2.74438I	0
b = 0.107498 + 1.054050I		
u = -0.06153 - 1.44896I		
a = -0.341144 + 0.682320I	-0.12065 - 2.74438I	0
b = 0.107498 - 1.054050I		
u = -0.205082 + 0.466322I		
a = 0.12875 - 3.30791I	1.18777 + 0.88878I	-10.39291 + 0.92577I
b = 0.441227 - 0.551458I		
u = -0.205082 - 0.466322I		
a = 0.12875 + 3.30791I	1.18777 - 0.88878I	-10.39291 - 0.92577I
b = 0.441227 + 0.551458I		

III.
$$I_3^u = \langle b, \ u^2 + 2a - u + 3, \ u^3 + 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{2} + \frac{1}{2}u - \frac{3}{2} \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{2} + \frac{1}{2}u - \frac{1}{2} \\ u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{2} + \frac{1}{2}u - \frac{3}{2} \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -\frac{25}{4}u^2 + \frac{11}{4}u \frac{71}{4}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3,c_9	u^3
c_4	$(u+1)^3$
<i>C</i> 5	$u^3 - 3u^2 + 5u - 2$
c_6, c_7, c_8	$u^3 + 2u - 1$
c_{10}, c_{11}, c_{12}	$u^3 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3,c_9	y^3
c_5	$y^3 + y^2 + 13y - 4$
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$y^3 + 4y^2 + 4y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.22670 + 1.46771I		
a = -0.335258 + 0.401127I	7.79580 - 5.13794I	-3.98417 - 0.12290I
b = 0		
u = 0.22670 - 1.46771I		
a = -0.335258 - 0.401127I	7.79580 + 5.13794I	-3.98417 + 0.12290I
b = 0		
u = -0.453398		
a = -1.82948	-2.43213	-20.2820
b = 0		

IV.
$$I_4^u = \langle b, u^3 + a + u - 1, u^4 - u^3 + 2u^2 - 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - u + 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{3} - 3u + 1 \\ -u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - u + 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{3} + u^{2} - 3u + 3 \\ -u^{3} + u^{2} - u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ -u^{3} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^3 + 4u 9$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3,c_9	u^4
c_4	$(u+1)^4$
<i>C</i> ₅	$(u^2+u+1)^2$
c_6, c_7, c_8	$u^4 + u^3 + 2u^2 + 2u + 1$
c_{10}, c_{11}, c_{12}	$u^4 - u^3 + 2u^2 - 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3,c_9	y^4
<i>c</i> ₅	$(y^2+y+1)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^4 + 3y^3 + 2y^2 + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621744 + 0.440597I		
a = 0.500000 - 0.866025I	1.64493 - 2.02988I	-7.00000 + 3.46410I
b = 0		
u = 0.621744 - 0.440597I		
a = 0.500000 + 0.866025I	1.64493 + 2.02988I	-7.00000 - 3.46410I
b = 0		
u = -0.121744 + 1.306620I		
a = 0.500000 + 0.866025I	1.64493 + 2.02988I	-7.00000 - 3.46410I
b = 0		
u = -0.121744 - 1.306620I		
a = 0.500000 - 0.866025I	1.64493 - 2.02988I	-7.00000 + 3.46410I
b = 0		

V.
$$I_5^u = \langle au + 2b - a + 2u, \ a^2 - au + a + 2u, \ u^2 + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}au + \frac{1}{2}a - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}au + \frac{1}{2}a + u \\ -\frac{1}{2}au + \frac{1}{2}a - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}au + \frac{1}{2}a - 1 \\ \frac{1}{2}au - \frac{1}{2}a + 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -\frac{1}{2}au - \frac{1}{2}a - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -\frac{1}{2}au - \frac{1}{2}a + u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ \frac{1}{2}au - \frac{1}{2}a + 2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u^2+u-1)^2$
c_3,c_9	$u^4 + 3u^2 + 1$
C4	$(u^2 - u - 1)^2$
<i>C</i> ₅	u^4
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y^2 - 3y + 1)^2$
c_3, c_9	$(y^2 + 3y + 1)^2$
c_5	y^4
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(y+1)^4$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = 0.618034 - 0.618034I	-5.59278	-8.00000
b = -1.61803I		
u = 1.000000I		
a = -1.61803 + 1.61803I	2.30291	-8.00000
b = 0.618034I		
u = -1.000000I		
a = 0.618034 + 0.618034I	-5.59278	-8.00000
b = 1.61803I		
u = -1.000000I		
a = -1.61803 - 1.61803I	2.30291	-8.00000
b = -0.618034I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$((u-1)^7)(u^2+u-1)^2(u^{23}-3u^{22}+\cdots-u+1)^2$ $\cdot (u^{29}-4u^{28}+\cdots+9u-4)$
c_3,c_9	$u^{7}(u^{4} + 3u^{2} + 1)(u^{23} + u^{22} + \dots + 8u - 4)^{2}$ $\cdot (u^{29} - 3u^{28} + \dots - 136u - 32)$
<i>c</i> ₄	$((u+1)^7)(u^2-u-1)^2(u^{23}-3u^{22}+\cdots-u+1)^2$ $\cdot (u^{29}-4u^{28}+\cdots+9u-4)$
<i>C</i> 5	$u^{4}(u^{2}+u+1)^{2}(u^{3}-3u^{2}+5u-2)(u^{23}+2u^{22}+\cdots+18u+9)^{2}$ $\cdot (u^{29}-6u^{28}+\cdots+256u-64)$
c_6, c_7, c_8	$(u^{2}+1)^{2}(u^{3}+2u-1)(u^{4}+u^{3}+2u^{2}+2u+1)$ $\cdot (u^{29}+15u^{27}+\cdots+8u^{2}-1)(u^{46}+2u^{45}+\cdots+36u+9)$
c_{10}, c_{11}, c_{12}	$(u^{2}+1)^{2}(u^{3}+2u+1)(u^{4}-u^{3}+2u^{2}-2u+1)$ $\cdot (u^{29}+15u^{27}+\cdots+8u^{2}-1)(u^{46}+2u^{45}+\cdots+36u+9)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_4	$((y-1)^7)(y^2 - 3y + 1)^2(y^{23} - 23y^{22} + \dots - 7y - 1)^2$ $\cdot (y^{29} - 30y^{28} + \dots + 449y - 16)$	
c_3, c_9	$y^{7}(y^{2} + 3y + 1)^{2}(y^{23} + 15y^{22} + \dots - 40y - 16)^{2}$ $\cdot (y^{29} + 21y^{28} + \dots + 3392y - 1024)$	
c_5	$y^{4}(y^{2} + y + 1)^{2}(y^{3} + y^{2} + 13y - 4)(y^{23} - 12y^{22} + \dots - 450y - 81)^{2}$ $\cdot (y^{29} - 12y^{28} + \dots + 45056y - 4096)$	
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(y+1)^{4}(y^{3}+4y^{2}+4y-1)(y^{4}+3y^{3}+2y^{2}+1)$ $\cdot (y^{29}+30y^{28}+\cdots+16y-1)(y^{46}+34y^{45}+\cdots+288y+81)$	