ANNEX I. Formulas

Value Description

Units

Of to Cmin Min Dox Oxi	the curve in accumulation situation, equivalent to the capacity the oxide (C_{ox}) . nimum capacity, obtained as the minimum value of the curve. ide thickness. $d_{ox} = \frac{\varepsilon_0 \cdot \varepsilon_{ox} \cdot S}{C_{max}}$ bstrate doping. $n\left(\frac{Na}{n_i}\right) - \frac{q2 \cdot ni \cdot W_m^2}{4 \cdot \varepsilon_S \cdot k \cdot T} \left(\frac{Na}{n_i}\right) = 0$	pF Å cm ⁻³			
Cmin Min Dox Oxi Na Sul	nimum capacity, obtained as the minimum value of the curve. ide thickness. $d_{ox} = \frac{\varepsilon_0 \cdot \varepsilon_{ox} \cdot S}{C_{max}}$ bstrate doping. $n\left(\frac{Na}{n_i}\right) - \frac{q_2 \cdot n_i \cdot W_m^2}{4 \cdot \varepsilon_S \cdot k \cdot T} \left(\frac{Na}{n_i}\right) = 0$	Å			
Dox Oxi	ide thickness. $d_{ox} = \frac{\varepsilon_0 \cdot \varepsilon_{ox} \cdot S}{C_{max}}$ bstrate doping. $n\left(\frac{Na}{n_i}\right) - \frac{q_2 \cdot n_i \cdot W_m^2}{4 \cdot \varepsilon_S \cdot k \cdot T} \left(\frac{Na}{n_i}\right) = 0$	Å			
Na Suk	$d_{ox} = \frac{\varepsilon_0 \cdot \varepsilon_{ox} \cdot S}{C_{max}}$ bstrate doping. $n\left(\frac{Na}{n_i}\right) - \frac{q_2 \cdot n_i \cdot W_m^2}{4 \cdot \varepsilon_S \cdot k \cdot T} \left(\frac{Na}{n_i}\right) = 0$				
Na Suk	bstrate doping. $n\left(\frac{Na}{n_i}\right) - \frac{q_2 \cdot n_i \cdot W_m^2}{4 \cdot \varepsilon_S \cdot k \cdot T} \left(\frac{Na}{n_i}\right) = 0$	cm ⁻³			
	$n\left(\frac{Na}{n_i}\right) - \frac{q \cdot ni \cdot W_m^2}{4 \cdot \varepsilon_S \cdot k \cdot T} \left(\frac{Na}{n_i}\right) = 0$	cm ⁻³			
lı	(4)				
	/ 1 1 \				
	$W_m = \varepsilon_S \cdot \left(\frac{1}{C_{min}^{HF}} - \frac{1}{C_{max}}\right)$				
V _{FB} Fla	Flat band voltage is the voltage for which the capacity is equal to				
the	the capacity of flat band (C_{FB}).				
C_I	$C_{FB} = \frac{1}{\frac{1}{C_{OX}} + \frac{1}{C_{S_{FB}}}}$ $C_{S_{FB}} = \sqrt{\frac{q^2 \cdot \varepsilon_S \cdot N_A}{k \cdot T}}$				
Nss Tot	Total charge density on the insulator.				
N	$V_{SS} = (\Phi_{MS} - V_{FB}) \cdot \frac{c_{ox}}{q \cdot S}$				
Rs Ser	rial resistance.	Ω			
R	$R_S = \frac{G_{acc}}{G_{acc}^2 + w^2 \cdot C_{acc}^2}$				
Gaco	c, C _{acc} = Accumulation conductance and capacitance				
The	en the measured capacitance (C_m) and the measured				
cor	nductance (G_m) are compensated for this obtained value of $R_{\rm S}$				
acc	cording to the following equations:				
C	$G_{C} = \frac{(G_{m}^{2} + w^{2} \cdot C_{m}^{2}) \cdot C_{m}}{a^{2} + w^{2} \cdot C_{m}^{2}} \qquad G_{C} = \frac{(G_{m}^{2} + w^{2} \cdot C_{m}^{2}) \cdot a}{a^{2} + w^{2} \cdot C_{m}^{2}}$ $a = G_{m} - (G_{m}^{2} + w^{2} \cdot C_{m}^{2}) \cdot R_{S}$				

ANNEX II. Layout information CNM1075

Layout capacitance chip
Chip overall dimensions are X=2790 um. Y=1950 um.

Chip	overall	dimensions	are	X = 2790	μm,	Y = 1950	μm.

CAP	Area (μm²)
A	980x980
В	480x480
C	180x180
D	120x120
E	80x80

Die CNM1075 with 6 capacitance chip, 2 diodes chip and 1 CBR metal chip Die overall dimensions are $X=8370~\mu m$, $Y=5850~\mu m$.

ANNEX III. Wafermap file

Wafermap used in cartography

Total of 141 capacitances

Home and origin detail

2790um x 1950um, DIE: 8370um x 5850um, 141 Chips , home & origin (X=8, Y=1)