

IIC1253 — Matemáticas Discretas

Tarea 6 – Respuesta Pregunta 1

Sea $\Sigma = \{a, b\}$ un alfabeto y Σ^* todas las palabras finitas sobre Σ . Para una letra $x \in \Sigma$ y $w \in \Sigma^*$ se define $|w|_x$ como el número de x en w. Por último, se define el conjunto R inductivamente como el menor conjunto de palabras en Σ^* que satisface las siguientes propiedades:

- $\bullet \ \epsilon \in R$
- si $w \in R$, entonces $a \cdot w \cdot b \in R$.
- si $u, v \in R$, entonces $u \cdot v \in R$.

Pregunta 1

1. Demuestre por inducción sobre R que para toda palabra $w \in R$ se tiene que:

$$|w|_a = |w|_b \tag{1}$$

2. Demuestre por inducción sobre R que para toda palabra $w \in R$ se tiene que:

si
$$u$$
 es un prefijo de w , entonces $|u|_a \ge |u|_b$. (2)

IIC1253 — Matemáticas Discretas

Tarea 6 – Respuesta Pregunta 2

Pregunta 2

Demuestre por inducción sobre el largo de $w \in \Sigma^*$, que si w satisface (1) y (2), entonces $w \in R$.