

Patent Claims:

1 1. Flow-mechanically effective surface of a device moving in
2 a fluid, especially a flying machine, especially a lifting
3 surface of a flying machine, whereby the surface (1)
4 comprises an elastic axis (EA) extending in the span
5 direction (6) of the surface (1) and an adjustable control
6 surface (3), characterized in that the surface (1) is
7 elastically deformable in a bending direction and/or in a
8 direction about the elastic axis (EA) dependent on the
9 adjustment of the control surface (3) while changing the
10 induced flow-mechanical resistance, and that a control
11 and/or regulating arrangement (10, 11, 12; 13, 14, 15) for
12 the adjustment of the control surface (3) in the sense of
13 a minimization of the induced flow-mechanical resistance of
14 the surface (1) is provided.

1 2. Flow-mechanically effective surface according to claim 1,
2 characterized in that the control surface (3a; 3b; 3c; 3d;
3 3e; 3f) is arranged offset by a prescribed spacing distance
4 relative to the elastic axis (EA).

1 3. Flow-mechanically effective surface according to claim 1 or
2 2, characterized in that the control surface (3a; 3b; 3c;
3 3d; 3e; 3f) is arranged rotatably supported about a
4 rotation axis (4), and that the rotation axis (4) or at
5 least a component thereof extends in the direction of the
6 elastic axis (EA).

1 4. Flow-mechanically effective surface according to claim 2 or
2 3, characterized in that the control surface (3) is
3 arranged by a prescribed spacing distance behind the
4 elastic axis (EA).

1 5. Flow-mechanically effective surface according to claim 2 or
2 3, characterized in that the control surface (3a; 3b; 3c;
3 3d; 3e) is arranged by a prescribed spacing distance in
4 front of the elastic axis (EA).

1 6. Flow-mechanically effective surface according to one of the
2 claims 1 to 5, characterized in that the control surface
3 (3b; 3d) is arranged within the wing span.

1 7. Flow-mechanically effective surface according to one of the
2 claims 1 to 5, characterized in that the control surface
3 (3a; 3c; 3e; 3f) is arranged outside of the wing span.

1 8. Flow-mechanically effective surface according to claim 6 or
2 7, characterized in that the control surface (3a; 3b) is
3 arranged behind the leading edge of the surface (1).

1 9. Flow-mechanically effective surface according to claim 6 or
2 7, characterized in that the control surface (3c; 3d) is
3 arranged in front of the leading edge of the surface (1).

1 10. Flow-mechanically effective surface according to one of the
2 claims 1 to 9, characterized in that the control surface
3 (3c; 3e) is provided in addition to a wing tip surface
4 (winglet) (2) at the surface tip.

1 11. Flow-mechanically effective surface according to one of the
2 claims 1 to 9, characterized in that the control surface
3 (3f) itself is embodied as a wing tip surface.

1 12. Flow-mechanically effective surface according to claim 11,
2 characterized in that the rotation axis (4) of the control
3 surface (3f) forming the wing tip surface (2) extends
4 obliquely relative to the direction of the elastic
5 axis (EA).

1 13. Flow-mechanically effective surface according to one of the
2 claims 10 to 12, characterized that the surface (1) is a
3 lifting wing of a flying machine, whereby the wing tip
4 surface (2) continues the lifting wing at its tip obliquely
5 or vertically upwardly.

1 14. Flow-mechanically effective surface according to claim 10,
2 characterized in that the surface (1) is a lifting wing of
3 a flying machine, whereby the wing tip surface (2)
4 continues the lifting wing obliquely or vertically upwardly
5 and the control surface (3a; 3b; 3c; 3e) continues the
6 lifting wing in its direction or obliquely downwardly.

1 15. Flow-mechanically effective surface according to one of the
2 claims 1 to 14, characterized in that the surface (1) is
3 the lifting surface of an aircraft.

1 16. Flow-mechanically effective surface according to one of the
2 claims 1 to 14, characterized in that the surface (1) is
3 the lifting surface of a rotary wing aircraft.

1 17. Flow-mechanically effective surface according to one of the
2 claims 1 to 16, characterized in that there is provided a
3 control arrangement (10, 11, 12) for the generation of an
4 actuating signal for the control surface (3) from data
5 relating to the aircraft loading and the flight condition,
6 with utilization of stored nominal value data.

1 18. Flow-mechanically effective surface according to one of the
2 claims 1 to 16, characterized in that there is provided a
3 regulating arrangement (13, 14, 15) for the generation of
4 an actuating signal for the control surface (3) from
5 comparison of measured data representing the actual elastic
6 deformation of the flow-mechanically effective surface (1)
7 with nominal data representing a nominal deformation of the
8 flow-mechanically effective surface (1) prescribed for the
9 aircraft loading and the flight condition.