updated: 12/10/00

Hayashi Econometrics: Answers to Selected Review Questions

Chapter 5

Section 5.1

2. $\mathbf{b}_i = (1, IQ_i)', \, \boldsymbol{\beta} = (\phi_2 - \phi_1, \phi_3 - \phi_1, \beta)', \text{ and } \boldsymbol{\gamma} = (\phi_1, \gamma)'.$

3. Let \mathbf{s}_i be (S69, S80, S82)'. Then $\mathbf{QF}_i = [\mathbf{Q}; \mathbf{Qs}_i]$. So $\mathbf{QF}_i \otimes \mathbf{x}_i = [\mathbf{Q} \otimes \mathbf{x}_i; \mathbf{Qs}_i \otimes \mathbf{x}_i]$ and

$$E(\mathbf{QF}_i \otimes \mathbf{x}_i) = [E(\mathbf{Q} \otimes \mathbf{x}_i) : E(\mathbf{Qs}_i \otimes \mathbf{x}_i)]$$

$$(3K \times 4) \quad (3K \times 3) \quad (3K \times 1)$$

$$E(\mathbf{Q} \otimes \mathbf{x}_i) = \begin{bmatrix} 2/3 \operatorname{E}(\mathbf{x}_i) & -1/3 \operatorname{E}(\mathbf{x}_i) & -1/3 \operatorname{E}(\mathbf{x}_i) \\ -1/3 \operatorname{E}(\mathbf{x}_i) & 2/3 \operatorname{E}(\mathbf{x}_i) & -1/3 \operatorname{E}(\mathbf{x}_i) \\ -1/3 \operatorname{E}(\mathbf{x}_i) & -1/3 \operatorname{E}(\mathbf{x}_i) & 2/3 \operatorname{E}(\mathbf{x}_i) \end{bmatrix}.$$

The columns of this matrix are not linearly independent because they add up to a zero vector. Therefore, $E(\mathbf{QF}_i \otimes \mathbf{x}_i)$ cannot be of full column rank.

Section 5.2

- 1. No.
- **4.** Since $\tilde{\boldsymbol{\eta}}_i = \mathbf{Q}\boldsymbol{\varepsilon}_i$, $\mathrm{E}(\tilde{\boldsymbol{\eta}}_i\tilde{\boldsymbol{\eta}}_i') = \mathbf{Q}\boldsymbol{\Sigma}\mathbf{Q}$, where $\boldsymbol{\Sigma} \equiv \mathrm{E}(\boldsymbol{\varepsilon}_i\boldsymbol{\varepsilon}_i')$. This matrix cannot be nonsingular, because \mathbf{Q} is singular.

Section 5.3

1.

$$\mathbf{Q} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \end{bmatrix}.$$

Section 5.4

2(b) If $Cov(s_{im}, y_{im} - y_{i,m-1}) = 0$ for all m, then Σ_{xz} becomes

$$\boldsymbol{\Sigma}_{\mathbf{xz}} = \begin{bmatrix} 1 & 0 & \mathrm{E}(y_{i1} - y_{i0}) \\ \mathrm{E}(s_{i1}) & 0 & \mathrm{E}(s_{i1}) \, \mathrm{E}(y_{i1} - y_{i0}) \\ 0 & 1 & \mathrm{E}(y_{i2} - y_{i1}) \\ 0 & \mathrm{E}(s_{i2}) & \mathrm{E}(s_{i2}) \, \mathrm{E}(y_{i2} - y_{i1}) \end{bmatrix}.$$

This is not of full column rank because multiplication of Σ_{xz} from the right by $(E(y_{i1} - y_{i0}), E(y_{i2} - y_{i1}), 1)'$ produces a zero vector.