Science Behind Sudoku

	9		1			3		
	1			6			2	4
7			3	8				
						4		6
	8	3				1	9	
2		7						
				9	3			5
6	7			2			8	
		9			4		6	

Palash Badjatya and Vipul Singh

Single Position Technique

 A cell must be assigned a digit if in its row/ column/ block, that is the only position available to the digit.

3 in C6; 4 in R2

6	4		5		9	8		
				3			7	
3		8		1				4
					7			
4			9	6	5			7
			3					
8				9		4		3
	2			5				
		3	6		4		9	2

Single Candidate Technique

 If there is only one possible candidate for a cell, it must be assigned.

R1C5; then R6C5

6	4						8	
2	1							
3	8			1			6	7
7	5	8	6	2	1	3	4	9
9	2	3	4	5	7	8	1	6
4	6	1				7	5	2
1		4	2	7	8	6		5
5	7	6	1	3			2	8
8		2					7	

Candidate Lines Technique

 If cells accepting a digit in a block are localized to a row (column), remove that digit from rest of the row (column)

 If cells accepting a digit in a row (column) are localized to a block, remove digit from rest of the block.

6 in B7 (localized to line)

4	5 8	9	1 6	7	1 2 6	3	5 6	2 6 8
3	1	7 8	5	9	6	4	7 8	8
6	5	2	4	8	3	1	5	9
5	3	4	7	6	8	9	2	1
2	9	6	3	1	4	7	8	5
7	6	1	2	5	9	6	4	3
1 8 9	4	5	1 6 8 9	3	7	2	1 6 8 9	8
1 8 9	6 7 8	6 7 8	1 6 8 9	2	5	6	3	4
1 8 9	2	3	1 6 8 9	4	1 6	5	1 6 8 9	7

3 in C5 (localized to block)

8 9	6	3	5	2	1	2 8 9	4	7
4 9	7	5	8	6	2 3	2 3	1 3	1 2
4 8 9	1	2	4 9	7	4	3 6 8 9	5	6 9
5	4	8	2	1	9	7	6	3
1	2	6	3	4	7	5	9	8
3	9	7	6	8	5	1	2	4
2	3	9	7	5	6	4	1 8	1 6
6	8	4	1	2 3	2 3	2 3	7	5
7	5	1	4 9	2 3	2 3 4 6 8	2 3 6 8 9	8	2 6 9

Multiple Lines Technique

 If two blocks at the same level have a digit confined to two lines, the third block must have the digit in the remaining line.

5 in B1 and B3

2 5 6	1	4	5 6 7 8	3 5 6 7 8	3 5 6 7 8	9	3 5 8	2 3 5 6 8
2 5 6	3	2 5 6	4	9	1	6 8	7	2 5 6 8
7	8	9	2	3 5 6	3 5 6	3 6	4	1
3 5 9	4	1	5 6 7 8	3 5 6 7 8	3 5 6 7 8 9	2	3 5 8	3 5 8
8	6	2 3 5	1 5	2 3 5	5	4	9	7
2 3 5 9	2 5 9	7	5 8	2 3 4 5 8	3 4 5 8 9	1	6	3 5 8
1	7	3 5 6	9	5 6	2	3 6 8	8	4
4 5 6 9	5 9	5 6	3	1	4 5 6	7	2	6 8 9
2 3 4 6 9	2 9	8	7 6	4 6 7	4 6	5	1	3 6 9

Naked Pair/Tuples Technique

 If for a group of k inter-dependent cells, the set of all candidates is of size k, remove those k digits from everywhere else in the line or block.

Usually look for k=2,3.

{1,4} in C5 as well as B5

9	7	3	4 8	5	1	2	4 8	6
2	5	4	8	3 6	9	1 3	7	1 3
1	8	6	4	2 3	7	5	4	9
4	1 9	7 8	4 5 7 9	1 4	6	1 3 4 8	3 4 5 8	2
6	2	5	4 7	8	3	1 4	9	7
4	1 9	7 8	4 5 7 9	1 4	2	1 3 4 8	6	5 7
5	6	1	3	7	4	9	2	8
7	4	2	1	9	8	6	5	5
8	3	9	2 6	2 6	5	7	1	4

{2,7,9} in R2

1	2 5	6	2 5	8	9	7	3	4
8	4	7 9	3	5 6	7	1 2 5 9	2 9	1 6 9
5 9	3	7 9	1	4 5 6	2 4 7	2 5 9	8	6 9
3	8	5	4	9	1	6	7	2
7	6	4	8	2	3	1 9	5	1 9
2	1 9	1 9	6	7	5	3	4	8
6	7	8	2 5 9	4 5	4	2 9	1	3
5 9	1 2 5 9	1 2	2 5 9	3	8	4	6	7
4	2 9	3	7	1	6	8	2 9	5

Find a naked tuple in B9

8	9	1	5	7	6	2	3	4
6	5	4 5	1	2 3	4	9	7	8
2	7	3 4 7	9	8	4 8	5	1	6
7	8	6	2 3	2 3 5	2 4 5	4	9	1
5	1	2 9	2 3	6	2 4 8 9	3 4 7 8	4 8	2 3
3	4	2	7	2 5 8 9	1	6	5 8	2 5
9	2 3 5	8	2 6	1 2 5	7	1 3	4 5 6	5
4	2 5 7	2 5 7	2 6	1 2 5 9	3	7 8	5 6 8	5 7 9
1	6	3 5 7	8	4	5 9	7	2	3 5 7 9

Hidden Subsets Technique

 If for a group of k digits, the set of all locations in a block or line is of size k, remove all other candidates in those k locations.

Duality with naked tuple technique.

C7 – {7,9} form hidden subset while {4,6,8} form naked tuple

8	3 6	3 6	9	4	5	1	7	2
9	4	2	1	7	6	3	5 8	5 8
1	5	7	2	8	3	4 6	4 6	9
5	9	4	7	1 2 6	1 2	6 8	3 6 8	8
7	1	8	3	6 9	4	2	5 6 9	5
3 6 7	2	3 6	5	6 9	8	6 7 9	1	4
3 4 6 7	3 6 7	1	8	2 3	2 9	5	3 4 9	7
4	3	9	6	5	7	4 8	2	1
2	7 8	5	4	1 3	1 9	7 8 9	8 9	6

R5 – find a hidden subset

4 7	2	8	7 6	1 6	1 4 6 7	3	9	5
3	4 5	6	2 9	5 9	4 5	1	7	8
7 9	1	5 9	8	3	5	6	4	2
1	3	7	5	2	9	8	6	4
4 9	4 5	2 5 9	3 6 7	8	3 6 7	2.	1	7 9
6	8	2 9	1	4	7	5	2 3	7 9
5	6	1	2 3	7	8	4	2 3	3
2	9	3	4	1 5	1 5	7	8	6
8	7	4	2 3 6 9	6 9	2 3 6	2 9	5	1

XWing Technique

1 digit: 2 cells/column for 2 columns

 If these 4 cells form vertices of a rectangle, remove the digit from other cells in those rows.

7 in C5 and C9

4	3	1 7 8	7	6	9	5	1 8	2
9	7 8	6	1 4 5 7	5	2	3	1 4 8	4 7
1 7	5	2	1 4 7	8	3	1 4 7	9	6
2	6	4 5 7 9	3	5	8	1 4 7 9	1 4	4 7 9
3	1	5 7 9	5	4	6	7 9	2	8
8	4 7	4 7	9	2	1	6	3	5
1 7	2	1 3	6	9	4	8	5	1 3
6	9	1 4	8	3	5	2	7	1 4
5	4 8	4 8	2	1	7	4 9	6	3 4 9

Figure 4.1. Rule 4.1 at work. In gray, candidates that have been eliminated by other techniques

Swordfish Technique

Generalize XWing to k lines.

Digit occurs in 2 cells/line for k lines.

Edge-parallel path between the 2k cells.

Digit 1 in rows 4,5 and 9

6	4	5	7	1 2	9	1 2 3	8	1 2 3
8	1 3	1 2 3	4	1 2	5	6	7	9
1 2	9	1 2	3	6	8	1 2	5	1 2 4 7
3	7	9	1 5	8	2	1 4	6	4 5
4	8	1 2	1 5	7	6	9	3	1 2 5
1 2	5	6	9	1 3	3 4	8	7	1 2 4 7
7	2	8	6	4 3	1 3	5	9	1 3
9	1 3	4	8	5	1 3	7	2	6
5	6	1 3	2	9	7	1 3	4	8

References

 Examples from "A to Z of Sudoku" by Narendra Jussien

 "Logical World of Puzzles", blog by ex-National Champion Rohan Rao (~World Rank 15)