TD Maths $\mathcal{C}i\,\mathbb{R}^2$ — Groupes

Exercice 3

Posons $\zeta = e^{\frac{2\pi i}{n}}$ et $U = \{\zeta^k \, | \, k \in \mathbb{Z}\}.$

a)

 ${\cal U}$ est un groupe:

- $1 \in U \operatorname{car} 1 = \zeta^0$
- pour $x,y\in U$: $x=\zeta^k$, $y=\zeta^\ell$ avec $k,\ell\in\mathbb{Z}$, donc $x\cdot y=\zeta^k\cdot \zeta^\ell=\zeta^{k+\ell}\in U$ puiavec sque $k+\ell\in U$
- avec la même notation: $x^{-1} = \zeta^{-k} \in U$ puisque $-k \in \mathbb{Z}$

Puisque $\zeta^n=1$, alors $U=\{1,\,\zeta,\,\zeta^2,\,\dots,\,\zeta^{n-1}\}$ (et n est le plus petit tel entier): groupe d'ordre n .

b)

Puisque $\zeta^k \zeta^\ell = \zeta^{k+\ell}$ et $\zeta^k = \zeta^\ell \iff k \equiv \ell \operatorname{mod} n$, on voit que (U,\cdot) est isomorphe à $(\mathbb{Z}/n\mathbb{Z},+)$

Explicitement: la fonction $f:\mathbb{Z}/n\mathbb{Z} o U$ définie par $f(k)=\zeta^k$ est un isomomorphisme.

- bien définie puisque $\zeta^n=1$
- surjective par définition
- ullet morphisme puisque $\zeta^{k+\ell}=\zeta^k\cdot\zeta^\ell$
- injective puisque $\zeta^k=\zeta^\ell\implies k\equiv\ell \operatorname{mod} n$ (ou alors puisqu'on a une surjection entre deux ensembles de même taille)

c)

n = 12:

élément	orbite	ordre
1	1	1
ζ	$1, \zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5, \zeta^6, \zeta^7, \zeta^8, \zeta^9, \zeta^{10}, \zeta^{11}$	12
ζ^2	$1,\zeta^2,\zeta^4,\zeta^6,\zeta^8,\zeta^{10}$	6
ζ^3	$1,\zeta^3,\zeta^6,\zeta^9$	4
ζ^4	$1,\zeta^4,\zeta^8$	3
ζ^5	$1, \zeta^5, \zeta^{10}, \zeta^3, \zeta^8, \zeta, \zeta^6, \zeta^{11}, \zeta^4, \zeta^9, \zeta^2, \zeta^7$	12
ζ^6	$1,\zeta^6$	2
ζ^7	$1, \zeta^7, \zeta^2, \zeta^9, \zeta^4, \zeta^{11}, \zeta^6, \zeta, \zeta^8, \zeta^3, \zeta^{10}, \zeta^5$	12
ζ^8	$1,\zeta^8,\zeta^4$	3
ζ^9	$1,\zeta^9,\zeta^6,\zeta^3$	4
ζ^{10}	$1,\zeta^{10},\zeta^{8},\zeta^{6},\zeta^{4},\zeta^{2}$	6
ζ^{11}	$1, \zeta^{11}, \zeta^{10}, \zeta^{9}, \zeta^{8}, \zeta^{7}, \zeta^{6}, \zeta^{5}, \zeta^{4}, \zeta^{3}, \zeta^{2}, \zeta$	12

Figure: ça ressemble fort à une horloge! (qui tourne dans le sens trigonométrique, avec l'originie à droite)

d)

En général: l'ordre de $x_k = \zeta^k$ est $rac{n}{\operatorname{PGCD}(n,k)}$.

En effet: notons $d=\mathrm{PGCD}(n,k)$ et écrivons n=dn' , k=dk' avec $\mathrm{PGCD}(n',k')=1$.

Dans un sens: $(x_k)^{n'}=\zeta^{kn'}=\zeta^{dk'n'}=(\zeta^n)^{k'}=1^{k'}=1$ donc l'ordre de x_k divise n' .

Dans l'autre sens: si $(x_k)^m=\zeta^{km}=1$ alors km=dk'm divise n=dn'. Comme k' et n' sont premiers entre eux on en conclut que m divise n'.

Conclusion: $n'=rac{n}{d}$ est l'odre de x_k .

Exercice 4

a)

Les fonctions $f_1(x)=x$, $f_2(x)=1-x$, $f_3(x)=\frac{1}{x}$ sont des bijections de $E=\mathbb{R}\setminus\{0,1\}$ dans lui-même.

(à vérifier! exercice en étude de fonctions)

On en conclut que $f_4(x)=rac{1}{1-x}=f_3\circ f_2(x)$, $f_5(x)=1-rac{1}{x}=f_2\circ f_3(x)$ et $f_6=rac{x}{x-1}=rac{1}{1-rac{1}{x}}=f_3\circ f_5(x)$ le sont également par composition.

b)

Table de l'opération (lue de gauche à droite):

0	f_1	f_2	f_3	f_4	f_5	f_6
f_1	f_1	f_2	f_3	f_4	f_5	f_6
f_2	f_2	f_1	f_5	f_6	f_3	f_4
f_3	f_3	f_4	f_1	f_2	f_6	f_5
f_4	f_4	f_3	f_6	f_5	f_1	f_2
f_5	f_5	f_6	f_2	f_1	f_4	f_3
f_6	f_6	f_5	f_4	f_3	f_2	f_1

c)

Montrer que $F=\{f_1,\,f_2,\,f_3,\,f_4,\,f_5,\,f_6\}$ est un groupe pour \circ :

- \bullet F est stable sous \circ
- associativité: propriété générale de la composée de fonctions
- ullet neutre: c'est la fonction identité f_1
- ullet symétriques: on le voit dans la table $f_1^{-1}=f_1$, $f_2^{-1}=f_2$, $f_3^{-1}=f_3$, $f_4^{-1}=f_5$, $f_5^{-1}=f_4$, $f_6^{-1}=f_6$

d)

À partir de la table on voit les sous-groupes:

ordre 1 —
$$\{f_1\}$$
 ordre 2 — $\{f_1,\,f_2\},\,\{f_1,\,f_3\}\,\{f_1,\,f_6\}$ ordre 3 — $\{f_1,\,f_4,\,f_5\}$ ordre 6 — F

e)

Isomorphisme avec S_3 : avec un petit abus de notation on peut considérer que ces 6 fonctions permutent $0, 1, \infty$ entre eux, ex. pour f_4 :

$$f_4(0) = 1$$
, $f_4(1) = \infty$, $f_4(\infty) = 0$

donc f_4 correspond à la permutation $(0, 1, \infty)$ dans $S_{\{0,1,\infty\}}$.

La fonction $\varphi:F\to S_{\{0,1,\infty\}}$ qui associe à chaque fonction f la permutation σ associée est un isomorphisme. Explicitement:

$$f_1 \longleftrightarrow \mathrm{id}$$

$$f_2 \longleftrightarrow (0,\,1)$$

$$f_3 \longleftrightarrow (0, \infty)$$

$$f_4 \longleftrightarrow (0, 1, \infty)$$

$$f_5 \longleftrightarrow (0, \infty, 1)$$

$$f_6 \longleftrightarrow (1, \infty)$$

ce qui est cohérent avec tous les calculs ci-dessus.

Exercice 5

- (E,\star) et (F,\otimes) deux groupes
- $f: E \to F$ un morphisme de groupes

a)

Pour H un sous-groupe de E, montrons que $\overrightarrow{f}(H)$ l'image de H dans F est un sous-groupe.

- 1. $1_F=f(1_E)\in \overrightarrow{f}(H)$ car car $1_E\in H$
- 2. Pour $x,y\in \overrightarrow{f}(H)$: écrivons x=f(a) , y=f(b) , alors

$$x\otimes y=f(a)\otimes f(b)=f(a\star b)\in \stackrel{\displaystyle
ightarrow}{f}(H)$$
 puisque $a\star b\in H$

3. Avec la même notation, $x^{-1}=f(a^{-1})\in \overrightarrow{f}(H)$ puisque $a^{-1}\in H$

b)

Pour K un sous-groupe de F, montrons que la préimage $\overset{\leftarrow}{f}(K)$ de K est un sous-groupe de E

1.
$$1_E \in \stackrel{\longleftarrow}{f}(K)$$
 puisque $f(1_E) = 1_F \in K$

2. Si
$$a,b\in \overleftarrow{f}(K)$$
: $f(a\star b)=f(a)\otimes f(b)\in K$ donc $a\star b\in \overleftarrow{f}(K)$

3. Avec la même notation,
$$f(a^{-1}) = f(a)^{-1} \in K$$
 donc $a^{-1} \in \overset{\longleftarrow}{f}(K)$

c)

Pour $x \in E$, montrons que l'ordre de f(x) divise l'ordre de x.

Si $n \in \mathbb{N}$ est l'ordre de x: alors $x^n = 1_E$, donc $f(x)^n = f(1_E) = 1_K$.

Par propriété de l'ordre, on sait donc que n est un multiple de l'ordre de f(x).

d)

Si $f: \mathbb{Z}/7\mathbb{Z} \to \mathbb{Z}/13\mathbb{Z}$ est un morphisme (additif): l'ordre de f(1) divise 7 d'après c), mais divise également 13; il divise donc $\operatorname{PGCD}(7,13)$ = 1, conclusion f(1)=0 et donc f(k)=kf(1)=0 pour tout k.

Se généralise facilement: le seul morphisme $\mathbb{Z}/a\mathbb{Z} \to \mathbb{Z}/b\mathbb{Z}$ est la fonction nulle lorsque $\mathrm{PGCD}(a,b)=1$.

e)

Si $f: \mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$ est un morphisme (additif): l'ordre de f(1) divise $\operatorname{PGCD}(3,12)=3$ donc $f(1)\in\{0,4,8\}$. On vérifie que ces trois choix donnent des morphismes: f(k)=0, g(k)=4k et h(k)=-4k.

Exercice 6

a)

$$\sigma = (1, 3, 6, 9)(2, 5, 7)(4, 10, 12, 8, 11)$$

décomposition en cycles disjoints, en transpositions (non unique), par exemple:

$$\sigma = (1, 3) (3, 6) (6, 9) (2, 5) (5, 7) (4, 10) (10, 12) (12, 8) (8, 11)$$

$$sg(\sigma) = -1$$

b)

Composée de 2 cycles dont les support ont exactement 1 élément en commun:

disons
$$\sigma=(i_1,\,i_2,\,\ldots,\,i_\ell)$$
 et $\tau=(j_1,\,j_2,\,\ldots,\,j_k)$ avec sans perte de généralité $i_1=j_1=a$
On trouve alors: $\sigma\circ\tau=(a,\,j_2,\,\ldots,\,j_k,\,i_2,\,\ldots,\,i_\ell)$ — faire un dessin!

c)

Décomposition de deux cycles dont les supports on exactement 2 éléments en commun:

disons
$$\sigma = (a,\underbrace{\ldots}_A,\,b,\underbrace{\ldots}_B)$$
 et $\tau = (a,\underbrace{\ldots}_C,\,b,\underbrace{\ldots}_D)$

On trouve alors $\sigma \circ \tau = (a, \underbrace{\ldots}, \underbrace{\ldots}_{\mathcal{D}}) (b, \underbrace{\ldots}, \underbrace{\ldots})$ — faire un dessin !!

d)

$$\sigma = (a, p, k, z, r, x, g, c, l, o, q, d, w, m, t, s, n, e, i, f, h, b, v, y, j)$$

un 25-cycle (u est un poitn fixe), signature $\operatorname{sg}(\sigma) = (-1)^{24} = +1$

Exercice 7: Groupe des permutations

1)

a)
$$(1, 2) (1, 3) \cdots (1, i) = (1, i, i - 1, \dots 3, 2)$$

b)
$$(1, i) (1, i-1) \cdots (1, 2) = (1, 2, ..., i-1, i)$$

c)
$$(1, i) (1, j) (1, i) = (i, j)$$

d)
$$(j+1, j, j-1, \ldots, 2, 1) (1, 2, \ldots, j-1, j) = (j, j+1)$$

e)
$$(i, i+1)(i+1, i+2) \cdots (j-2, j-1)(j-1, j) = (i, i+1, i+2, \dots, j-2, j-1, j)$$

f)
$$(j, j-1)(j-1, j-2) \dots (3, 2)(2, 1) = (1, j, j-1, 3, 2)$$

g)
$$(i, i+1, \ldots, j-2, j-1)$$
 $(j, j-1, \ldots, i+1, i) = (i, j)$

2)

a) Toute permutation peut s'écrire comme composée d'éléments de A: en effet toute permutation peut s'écrire comme composée de transpositions, et par c) ci-dessus toute transposition peut s'écrire comme produit d'éléments de A.

$$\begin{split} \text{Par exemple: } \sigma &= (1,\,7,\,3)\,(2,\,5,\,6,\,4) = (1,\,7)\,(7,\,3)\,(2,\,5)\,(5,\,6)\,(6,\,4) \\ \sigma &= \underbrace{(1,\,7)\,(1,\,7)}_{\text{id}}\,(1,\,3)\,(1,\,7)\,(1,\,2)\,(1,\,5)\,(1,\,2)\,(1,\,5)\,(1,\,6)\,(1,\,5)\,(1,\,6)\,(1,\,4)\,(1,\,6) \end{split}$$

b) Toute permutation peut s'écrire comme composée d'éléments de B: en effet toute permutation peut s'écrire comme composée de transpositions, et d'après g) + e) toute transposition peut s'écrire comme composée de transpositions adjacentes — ce sont les croisements dans un diagramme sagittal.

Par exemple:

$$\sigma = (4, 5)(6, 7)(5, 6)(3, 4)(4, 5)(5, 6)(6, 7)(5, 6)(2, 3)(3, 4)(2, 3)(1, 2)(2, 3)$$

3)

Pour $\tau=(i,j),\ \tau'=(k,\ell)$ deux transpositions, regardons le cardinal n de l'ensemble $\{i,j,k,\ell\}$ support de $\tau\tau'$:

- n=2: ça signifie que au= au', donc $au\, au'=\mathrm{id}$
- n=3: disons SPDG i=k, alors au au'=(i,j) $(i,\ell)=(i,\ell,j)$ un 3-cycle, on a $(au au')^3=\mathrm{id}$
- n=4: alors au et au' commutent, on a $(au au')^2 = au^2 (au')^2 = \mathrm{id}$

Dans tous les cas, $au \, au'$ est d'ordre ≤ 3

4)

Soit σ une permutation commutant avec toutes les transpositions.

- a) Considérons $\tau=(1,\,2)$. Puisque $(\sigma\,\tau)(n)=\sigma(n)$ doit être égal à $(\tau\sigma)(n)=\tau(\sigma(n))$, on conclut que $\sigma(n)$ doit être un point fixe de τ , i.e. $\sigma(n)\neq 1,2$.
- b) Dans l'argument précédent, on utilise le fait que n>1 et n>2. En prenant $\tau=(i,\ j)$ avec i< j< n on conclut similairement que $\sigma(n)\neq i,j$. La seule possibilité est donc que $\sigma(n)=n$.
- c) Par récurrence descendante, on voit que $\sigma(j)=j$ pour tout j, i.e. $\sigma=\mathrm{id}$.

Pour $n \geq 3$, la seule permutation commutant avec toutes les autres permutations (puisqu'elles sont engendrées par les transpositions) est id. (Qu'en est-il pour $n \leq 2$?)