Technische Universität Dortmund Fakultät Statistik

Jun.-Prof. Dr. Andreas Groll M.Sc. Hendrik van der Wurp

Übungen zur Vorlesung Wahrscheinlichkeitsrechnung und Mathematische Statistik (für Informatiker)

Blatt 3 - Lösungsvorschlag

Aufgabe 8:

(a) Geben Sie alle Werte für x_3 an, für die der Variationskoeffizient den Wert 1 hat.

$$x_1 = 0, \qquad x_2 = 2, \qquad x_3 = ?$$

Lösungsvorschlag:

Seien $x_1=0,\ x_2=2$ und $x_3=y$. Damit gilt $\bar{x}=\frac{0+2+y}{3}$. Der Variationskoeffizient $V_x=\frac{s_x}{\bar{x}}$ ist genau dann eins, wenn $s_x=\bar{x}$ gilt. Bestimme also s_x über s_x^2 :

$$\frac{1}{3-1} \left(\left(0 - \frac{2+y}{3} \right)^2 + \left(2 - \frac{2+y}{3} \right)^2 + \left(y - \frac{2+y}{3} \right)^2 \right)$$

$$= \frac{1}{2} \left(\left(\frac{-2-y}{3} \right)^2 + \left(\frac{6-2-y}{3} \right)^2 + \left(\frac{3y-2-y}{3} \right)^2 \right)$$

$$= \frac{1}{2} \left(\frac{(-y-2)^2}{9} + \frac{(-y+4)^2}{9} + \frac{(2y-2)^2}{9} \right)$$

$$= \frac{1}{2} \frac{(y^2+4y+4) + (y^2-8y+16) + (4y^2-8y+4)}{9}$$

$$= \frac{1}{18} (6y^2 - 12y + 24) = s_x^2$$

Mit $s_x = \bar{x} \iff s_x^2 = \bar{x}^2$:

$$\frac{1}{18}(6y^2 - 12y + 24) = \left(\frac{2+y}{3}\right)^2$$

$$\Leftrightarrow \frac{1}{18}(6y^2 - 12 + 24) = \frac{1}{9}(y^2 + 4y + 4)$$

$$\Leftrightarrow 6y^2 - 12y + 24 = 2y^2 + 8y + 8$$

$$\Leftrightarrow 4y^2 - 20y + 16 = 0$$

$$\Leftrightarrow y^2 - 5y + 4 = 0$$

$$\Leftrightarrow \dots$$

$$\Rightarrow y \in \{1, 4\}$$

Kurze Probe: Sei $x_3 = 1$, d.h. die Daten (0, 2, 1). $\bar{x} = 1$ und $s_x^2 = \frac{1}{2}(1 + 1 + 0) = 1$. Somit $V_x = \frac{1}{1} = 1$. Für $x_3 = 4$, d.h. Daten (0, 2, 4). $\bar{x} = 2$ und $s_x^2 = \frac{1}{2}(4 + 4 + 0) = 4$. Somit $V_x = \frac{\sqrt{4}}{2} = \frac{2}{2} = 1$.

- (b) Betrachten Sie eine beliebige Stichprobe $(x_1, x_2, x_3, x_4, x_5)$ mit $x_i \in \mathbb{R}, i = 1, \dots, 5$ mit bekannten Werten. Wie viele Werte der Stichprobe müssten Sie verändern, um
 - (i) das arithmetische Mittel,
 - (ii) den Median,
 - (iii) den Variationskoeffizienten,
 - (iv) die mittlere absolute Medianabweichung MD bzw.
 - (v) die mediane absolute Medianabweichung MAD

beliebig groß werden zu lassen? Zeigen Sie je ein möglichst einfaches Beispiel.

Lösungsvorschlag:

- (i) Nur einen. $x = (1, 2, 3, 4, 10^6), \bar{x} = 200002$
- (ii) Drei. $x = (1, 2, 3, 4, 10^6)$, $x_{\text{median}} = 3$. Und mit $x = (1, 2, 3, 10^6, 10^6)$ noch immer $x_{\text{median}} = 3$. Erst $x = (1, 2, 10^6, 10^6, 10^6, 10^6)$ führt zu explodierendem Median.
- (iii) Nur einen, da \bar{x} bereits bei einer einzelnen Änderung explodieren kann und V_x direkt von \bar{x} abhängt.
- (iv) Nur einen, da MD die Distanz von allen Werten zum Median berechnet. $x=(1,2,3,4,10^6)$ mit $x_{\rm median}=3$ führt zu einem MD = $\frac{1}{5}(|1-3|+|2-3|+|3-3|+|4-3|+|10^6-3|)=\frac{1}{5}(1+10^6)$
- (v) Drei, mit äquivalenter Begründung wie in (ii). Sobald der Median explodiert, explodiert folglich auch der MAD.

Aufgabe 9: (per Hand)

Betrachten Sie folgende Umfrageergebnisse zur Landtagswahl 2018 in Hessen:

Wählergruppe	CDU	SPD	Grüne	Linke	FDP	AfD
Frauen	270	200	230	60	60	90
Männer	260	190	170	70	80	170

Tabelle 1: Umfrageergebnisse zur Landtagswahl in Hessen

(Um den Faktor 10 abgewandelt aus: Forschungsgruppe Wahlen, ZDF. https://www.zdf.de/nachrichten/heute/landtagswahl-in-hessen-im-ueberblick-100.html, Slides 23-24)

- (a) Berechnen Sie Randsummen und stellen Sie die obenstehenden Daten als Kontingenztafeln (mit Randsummen) mit absoluten und relativen Werten dar.
- (b) Berechnen Sie bedingten Verteilungen auf *Geschlecht* sowie auf *Partei* und stellen Sie diese als Kontingenztafeln dar.

Lösungsvorschlag:

Zuerst mit absoluten Werten:

	Partei							
	CDU	SPD	Grüne	Linke	FDP	AfD	\sum	
Frauen	270	200	230	60	60	90	910	
Männer	260	190	170	70	80	170	940	
Σ	530	390	400	130	140	260	1850	

Und anschließend mit relativen, d.h. jeweils von 1850. Bspw. $\frac{270}{1850} = 0.146$

	Partei							
	CDU	SPD	Grüne	Linke	FDP	AfD	\sum	
Frauen	0.146	0.108	0.124	0.032	0.032	0.049	0.492	
Männer								
Σ	0.286	0.211	0.216	0.070	0.076	0.141	1	

Bedinge zuerst auf das Geschlecht: Bspw: $\frac{0.124}{0.492}=0.253$

	Partei							
	CDU	SPD	Grüne	Linke	FDP	AfD	\sum	
Frauen	0.297	0.220	0.253	0.066	0.066	0.099	1	
Männer	0.277	0.202	0.181	0.074	0.085	0.181	1	

Bedinge dann auf die Parteien: Bspw: $\frac{0.038}{0.070} = 0.538$

	Partei							
	CDU	SPD	Grüne	Linke	FDP	AfD		
Frauen Männer	0.509	0.513	0.575	0.462	0.429	0.346		
Männer	0.491	0.487	0.425	0.538	0.571	0.654		
\sum	1	1	1	1	1	1		