Consequência na Lógica Proposicional

Márcio Lopes Cornélio DSC-Poli-UPE mlc@dsc.upe.br

Implicação e equivalências tautológicas

Implicação e equivalências tautológicas Conseqüência Tautológica - Exemplo 1 Conseqüência

Tautológica -

Exemplo 2

Tablôs Semânticos

Implicação e equivalências tautológicas

Implicação e equivalências tautológicas

Implicação e equivalências tautológicas

Implicação e equivalências tautológicas

Conseqüência Tautológica -Exemplo 1 Conseqüência Tautológica -Exemplo 2

Tablôs Semânticos

- Determinar quando uma fórmula é conseqüência de algum conjunto de fórmulas
 - ♦ Definição 1: Uma fórmula H implica tautologicamente uma fórmula G (G é uma conseqüência tautológica de H) se, para toda interpretação I tal que I[H] = T, então I[G] = T
 - ♦ Definição 2:Uma fórmula H é **tautologicamente equivalente** a uma fórmula G se, qualquer que seja a interpretação I, I[H] = I[G]

Consequência Tautológica - Exemplo 1

Implicação e equivalências tautológicas

Implicação e equivalências tautológicas

Conseqüência Tautológica -Exemplo 1

Conseqüência Tautológica -Exemplo 2

Tablôs Semânticos

- Considere as fórmulas (premissas) $(A \lor B) \to C$ e $\neg B$. Vamos determinar se a fórmula $A \to C$ (conclusão) é uma conseqüência tautológica das premissas.
- Tabela verdade

A	В	C	$A \vee B$	$(A \vee B) \to C$	$\neg B$	$A \rightarrow C$
V	V	V	V	V	F	V
V	V	F	V	F	F	F
V	F	V	V	V	V	V
V	F	F	V	F	V	F
F	V	V	V	V	F	V
F	V	F	V	F	F	V
F	F	V	F	V	V	V
F	F	F	F	V	V	V

■ Em todas as situações em que as premissas são verdadeiras, a conclusão também é verdadeira. Logo, a fórmula é válida.

Consequência Tautológica - Exemplo 2

Implicação e equivalências tautológicas

Implicação e equivalências tautológicas Conseqüência Tautológica -Exemplo 1

Conseqüência Tautológica -Exemplo 2

Tablôs Semânticos

 \blacksquare $B \rightarrow A, \neg B \vdash \neg A$

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção

Regras de Construção

Regras de Construção

Exemplo 4

Regras de Construção

Regras de Construção

Provando a Validade

de Argumentos

Exemplo 5

Princípios

Tablôs Semânticos

Tablôs Semânticos

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Princípios

Tablôs

Regras de Construção Regras de Construção Regras de Construção Exemplo 4

Regras de Construção Regras de Construção Provando a Validade de Argumentos Exemplo 5

- Procedimentos ou sistema de provas
 - ◆ Correto: prova apenas as fórmulas válidas
 - Completo: prova todas as fórmulas válidas
- Método de refutação
 - Para mostrar que uma fórmula não é válida, começa-se supondo que ela não o é
 - Chegar a um absurdo indica que a suposição inicial estava errada
 - Também conhecido com "árvore de refutação"

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção Regras de Construção Regras de Construção

Exemplo 4

Regras de Construção Regras de Construção Provando a Validade de Argumentos

Exemplo 5

Princípios

Determinar se a fórmula $(A \land B) \rightarrow (A \lor B)$ é válida (tautologia). Há inconsistências neste tablô (e.g. $A \in \neg A$), o que é um absurdo. A suposição de que $(A \land B) \rightarrow (A \lor B)$ não era válida leva a uma inconsitência. Logo, a fórmula é válida.

a
$$\neg ((A \land B) \rightarrow (A \lor B))$$
 d

b

 $\checkmark \neg ((A \land B) \rightarrow (A \lor B))$
 $A \land B$
 $\neg (A \lor B)$

c

 $\checkmark \neg ((A \land B) \rightarrow (A \lor B))$
 $\checkmark A \land B$
 $\neg (A \lor B)$

R

$$\sqrt{\neg} ((A \land B) \rightarrow (A \lor B))
\sqrt{A} \land B
\sqrt{\neg} (A \lor B)
A
B
\neg A
\neg B
X$$

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção Regras de Construção Regras de Construção

Exemplo 4

Regras de Construção Regras de Construção Provando a Validade de Argumentos

Exemplo 5 Princípios

Verificar se a fórmula $(A \land B) \rightarrow C$ é válida. Não chegamos a uma inconsistência. A hipótese de que a fórmula não fosse válida estava correta, i.e., ela não é válida mesmo.

a
$$\neg ((A \land B) \rightarrow C)$$

b $\checkmark \neg ((A \land B) \rightarrow C)$
 $A \land B$
 $\neg C$
c $\checkmark \neg ((A \land B) \rightarrow C)$
 $\checkmark A \land B$
 $\neg C$
 $A \land B$
 $\neg C$
 $A \land B$
 $\neg C$

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção Regras de Construção Regras de Construção

Exemplo 4

Regras de Construção Regras de Construção Provando a Validade de Argumentos

C

Exemplo 5

Princípios

Demonstrar que a fórmula $(A \lor B) \to (A \land B)$ é válida (tautologia). Há ramos abertos que não podem ser fechados, pois não há fórmulas moleculares a serem reduzidas. Logo, a fórmula não é válida.

d

a
$$\neg ((A \lor B) \to (A \land B))$$

b $\checkmark \neg ((A \lor B) \to (A \land B))$
 $A \lor B$
 $\neg (A \land B)$

$$\checkmark \neg ((A \lor B) \to (A \land B))
\checkmark A \lor B
\neg (A \land B)
\widehat{A B}$$

Tablôs

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Exemplo 5 Princípios

Tablôs

Regras de Construção Regras de Construção Regras de Construção Exemplo 4 Regras de Construção Regras de Construção Provando a Validade de Argumentos

- Um tablô para uma fórmula α , começa com $\neg \alpha$
- Um ramo é **fechado** se contém, para alguma fórmula α , tanto α quanto \neg α
- Um ramo é dito completo ou finalizado se é fechado ou todas as fórmulas moleculares encontradas nele foram reduzidas (possuem √)
- Um tablô é **completo** se cada um dos ramos é completo
- Um tablô é **fechado** se cada um dos seus ramos é fechado
- \blacksquare Um tablô fechado para uma fórmula α é uma *prova por tablôs* de α

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção

Regras de Construção Regras de Construção Exemplo 4

Regras de Construção Regras de Construção Provando a Validade de Argumentos Exemplo 5

Princípios

Negação Se um ramo aberto contém uma fórmula e sua negação, escreva X no final do ramo

Negação Negada Se um ramo aberto contém uma fórmula não-reduzida da forma $\neg \neg \alpha$, marque-a como reduzida e escreva α no final de todo ramo que contém a nova fórmula reduzida

Conjunção Se um ramo aberto contém uma fórmula não-reduzida da forma $\alpha \wedge \beta$, marque-a como reduzida e escreva α e β no final de cada ramo que contém a nova fórmula reduzida

Conjunção Negada Se um ramo aberto contém uma fórmula não-reduzida da forma \neg ($\alpha \land \beta$), marque-a como reduzida e bifurque cada ramo que contém a nova fórmula em dois novos ramos, no final do primeiro escreva \neg α e, no final do segundo, escreva \neg β

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção

Regras de Construção

Regras de Construção Exemplo 4

Regras de Construção

Regras de Construção

Provando a Validade

de Argumentos

Exemplo 5 Princípios

Disjunção Se um ramo aberto contém uma fórmula não-reduzida da forma $\alpha \vee \beta$, marque-a como reduzida e bifurque o final de cada ramo que contém a nova fórmula reduzida em dois novos ramos, no final do primeiro escreva α e, no final do segundo, escreva β

Disjunção Negada Se um ramo aberto contém uma fórmula não-reduzida da forma $\neg (\alpha \lor \beta)$, marque-a como reduzida e escreva tanto $\neg \alpha$ quanto $\neg \beta$ no final de todo ramo aberto que contém esta nova fórmula reduzida.

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção

Regras de Construção

Regras de Construção

Exemplo 4

Regras de Construção

Regras de Construção

Provando a Validade

de Argumentos

Exemplo 5

Princípios

Implicação Se um ramo aberto contém uma fórmula não-reduzida da forma $\alpha \to \beta$, marque-a como reduzida e bifurque cada ramo que contém a nova fórmula e dois novos ramos, no final do primeiro escreva $\neg \alpha$ e, no final do segundo, escreva β Implicação Negada Se um ramo aberto contém uma fórmula não-reduzida da forma $\neg (\alpha \to \beta)$, marque-a como reduzida e escreva tanto α quanto $\neg \beta$ no final de todo ramo aberto que contém esta nova fórmula reduzida

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção

Regras de Construção

Regras de Construção

Exemplo 4

Regras de Construção Regras de Construção Provando a Validade de Argumentos

Exemplo 5
Princípios

 $\neg (Q \rightarrow (P \land \neg P))$ não é válida, pois há um ramo aberto e não podemos continuar com reduções. Logo, a fórmula não é válida.

a
$$\sqrt{\neg \neg (Q \rightarrow (P \land \neg P))}$$

 $Q \rightarrow (P \land \neg P)$

h

$$\sqrt{\neg \neg (Q \rightarrow (P \land \neg P))}$$

$$\sqrt{Q \rightarrow (P \land \neg P)}$$

$$\neg Q P \land \neg P$$

$$\sqrt{\neg \neg (Q \rightarrow (P \land \neg P))}$$

$$\sqrt{Q \rightarrow (P \land \neg P)}$$

$$\neg Q \qquad \sqrt{P \land \neg P}$$

$$P$$

$$\neg P$$

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção Regras de Construção Regras de Construção Exemplo 4

Regras de Construção

Regras de Construção Provando a Validade de Argumentos Exemplo 5 Princípios **Bi-implicação** Se um ramo aberto contém uma fórmula não-reduzida da forma $\alpha \leftrightarrow \beta$, marque-a como reduzida e bifurque o final de cada ramo que contém a nova fórmula em dois novos ramos, no final do primeiro escreva α e β e, no final do segundo, escreva $\neg \alpha$ e $\neg \beta$

Bi-implicação Negada Se um ramo aberto contém uma fórmula não-reduzida da forma $\neg (\alpha \leftrightarrow \beta)$, marque-a como reduzida e bifurque o final de cada ramo que contém a nova fórmula em dois novos ramos, no final do primeiro escreva α e $\neg \beta$ e, no final do segundo, escreva $\neg \alpha$ e β

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção

Regras de Construção

Regras de Construção

Exemplo 4

Regras de Construção

Regras de Construção

Provando a Validade de Argumentos

Exemplo 5

Princípios

1
$$\neg \neg \alpha$$

lpha

2 $\alpha \wedge \beta$

 α

B

3 $\alpha \vee \beta$

$$\widehat{\alpha}$$
 β

4 $\alpha \rightarrow \beta$

$$\neg \widehat{\alpha} \beta$$

5 $\alpha \leftrightarrow \beta$

$$\alpha \neg \alpha$$

$$\begin{array}{ccc}
 & \neg (\alpha \wedge \beta) \\
 & \neg \alpha & \neg \beta
\end{array}$$

$$\begin{array}{ccc}
7 & \neg (\alpha \lor \beta) \\
& \neg \alpha \\
& \neg \beta
\end{array}$$

$$8 \qquad \neg \ (\alpha \to \beta)$$

$$\begin{array}{ccc}
 & \neg \beta \\
 & \neg (\alpha \leftrightarrow \beta)
\end{array}$$

Provando a Validade de Argumentos

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção

Regras de Construção

Regras de Construção

Exemplo 4

Regras de Construção

Regras de Construção

Provando a Validade de Argumentos

Exemplo 5

Princípios

 Construímos uma lista que consiste das premissas e da negação da conclusão

 Qualquer atribuição de verdade ou falsidade às fórmulas atômicas que torna as premissas verdadeiras, então temos premissas verdadeiras e conclusão falsa. Conseqüentemente, o argumento não é válido

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção

Regras de Construção

Regras de Construção

Exemplo 4

Regras de Construção

Regras de Construção

Provando a Validade

de Argumentos

Exemplo 5

Princípios

■ Determine se a forma $P \rightarrow Q, Q \rightarrow R, P \vdash R$ é válida

a
$$P \rightarrow Q$$
 $Q \rightarrow R$

$$\neg R$$

b
$$\sqrt{P} \rightarrow Q$$
 $Q \rightarrow R$
 P
 $\neg R$

c
$$\sqrt{P} \rightarrow Q$$
 $\sqrt{Q} \rightarrow R$
 P
 $\neg R$
 $\sqrt{P} \rightarrow Q$
 $\sqrt{Q} \rightarrow R$
 Q
 $\sqrt{Q} \rightarrow R$
 Q
 Q
 Q

Princípios

Implicação e equivalências tautológicas

Tablôs Semânticos

Tablôs Semânticos

Exemplo 1

Exemplo 2

Exemplo 3

Tablôs

Regras de Construção Regras de Construção

Regras de Construção

Exemplo 4

Regras de Construção Regras de Construção Proyando a Validade

de Argumentos

Exemplo 5

Princípios

- As regras para construir árvores devem ser aplicadas apenas a fórmulas como um todo e não a sub-formulas
- 2. A ordem em que regras são aplicadas não faz diferença para a respostas final, porém é mais eficiente aplicar primeiramente as que não levam a bifurcações
- 3. Os ramos abertos de uma árvore finalizada para uma forma de argumento exibe todos os contra-exemplos para tal forma