Assignment 2

- 1. A. Sample space = s{HHHH,THHH,HHTT,THTT,HTTHH,HTTT,HTTHT,HTHT,HTHTH,HTHT,HTHTH,HTHT,HTH,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTH,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTHT,HTH,HTH,HTH,HTHT,HTHT,HTH,H
- B. Pr(A) = 1/2 (50%)
- C. Pr(B) = 6/16 = 3/8 (37.5%)
- D. Pr(A and B) = P(A) + P(B) P(AB) = 1/2 + 3/8 3/16 = 11/16(68.75%)
- E. E[X] = P(X=0) = 1/16, P(X=1) = 4/16, P(X=2) = 6/16, P(X=3) = 4/16, P(X=4) = 1/16O(1/16) + 1(4/16) + 2(6/16) + 3(4/16) + 4(1/16) = 2

We would expect 2 heads to appear in 4 fair coin flips.

- 2. A. P = 1/4, 1/p = 1/(1/4) = 4. 4 flips until heads appears. B. $P(H==T) = (n \text{ choose } n/2) (1/4)^n (3/4)^n - n/2$; n is the number of coin flips
- 3. Given that we will go through our array of unsorted a maximum of n/2 times before we get a good pivot and the run time for partitioning is O(n). This gives us a runtime of $O(n^2)$ For the recursive part of the equation we will take T(n/4) and T(3n/4), this is assuming we pick the worst good pivot and have a split of the array between 1/4 and 3/4. This gives the following recurrence equation of:

$$T(n) = T(n/4) + T(3n/4) + O(n^2)$$

 $T(n) = 2T(3n/4) + O(n^2)$

$$a= 2$$
, $b = 4/3$, $c= 2$

 $log_{4/3} 2 > 2$

Using the masters theorem this solves to $\Theta(n^{\log_{4/3}}2)$ which is the worst case time complexity for the given algorithm.

4.a

Кеу	Value
0	
1	20
2	16,5
3	44,88,11
4	94,39
5	12,23
6	

Key	Value
7	
8	
9	13
10	

b.

Кеу	Value
0	11
1	39
2	20
3	5
4	16
5	44
6	88
7	12
8	23
9	13
10	94

C.

Кеу	Value
0	16
1	11
2	88
3	20
4	23
5	44
6	94
7	12
8	39

Key	Value
9	13
10	5

d.

Кеу	Value
0	11
1	23
2	20
3	16
4	39
5	44
6	94
7	12
8	88
9	13
10	5

5. a = n/m (n keys, m slots) = load factor

Successful Search: $\Theta(1 + a)$

-this is the same as an unsorted linked list

Unsuccessful search: $\Theta(1 + a)$

-this will be slightly faster with a sorted list, but still have to factor in the load factor

Insertion: $\Theta(1+a)$

-same as a successful search

Deletion: $\Theta(1)$ (if doubly linked list) or $\Theta(1+a)$ (if singly linked list)

Professor Marley's hypothesis is incorrect, there is no substantial performance gains.