Министерство науки и высшего образования Российской Федерации Национальный исследовательский университет «МИЭТ» Институт микроприборов и систем управления имени Л.Н. Преснухина Информатика и вычислительная техника (09.03.01) Индивидуальное домашнее задание по дисциплине «Интерфейсы вычислительных систем»

Машинка на радиоуправлении

Интерфейсы вычислительных систем Выполнил студент группы ИВТ-32 Веричев Е. О.

г. Москва

Цель задания

Спроектировать машинку на радиоуправлении, отвечающую следующим требованиям:

Вариант	Серия МК	Привод движения	Привод направления	Время автономной работы, минимум	Тип радиоканала	Устройство ввода
2	ESP32	2 коллекторных двигателя	Сервопривод	20 минут	Wi-Fi	Камера

Этапы работы

- Анализ поставленного задания и разработка структурной схемы
- Выбор электронной компонентной базы (ЭКБ)
- Разработка схемы электрической принципиальной (Э3)
- Презентация спроектированного устройства

Этап 1. Анализ задания

- Определить блоки, которые будут составлять устройство
- Проанализировать требования, выдвигаемые к ним
- Определить параметры аккумулятора (исходя из токов потребления и максимального напряжения)
- Выделить используемые интерфейсы

Этап 1. Блоки устройства

- Блок управления (МК ESP32-D0WDQ6-V3)
- Блок ввода (Камера OV7670/5642)
- Приемник радиосигнала (МХ-RM-5V)
- Блок движения (два коллекторных двигателя F130-13180 и драйвер L298N)
- Блок направления (сервопривод MS-1.3-9 и MOSFET транзистор)
- Блок питания

Этап 1. Рабочие напряжения, выбор аккумулятора

Устройство	ESP32- D0WDQ6-V3	OV7670	MX-RM-5V	F130- 13180	L298N	MS-1.3-9
Uпит/Uвых, В	3,3	2,53,3	5	56	5	5
Icons, мА (max)	240	22	4,5	211	36	500

- Таким образом, необходим аккумулятор, дающий на выходе напряжение не менее 6 В.
- Емкость аккумулятора должна удовлетворять неравенству:

$$Tp \le \frac{W}{Icons total}$$
,

где Тр – время работы (ч), Icons_total – сумма токов потребления всех устройств, W – ёмкость акк. (мАч) Icons_total = 240 + 22 + 4.5 + (211 * 2) + 36 + 500 = 1224.5 мА

Так как выдвигается требование к автономности

$$Tp = 0.333$$
 ч, то $W \ge 0.333 * 1224.5$

Следовательно $W \ge 407 \text{ мАч}$

Этап 1. Выбор аккумулятор

Для устройства подойдёт аккумулятор NiCd A-BLOCK C60.10BP, имеющий следующие параметры:

- Uпит = 6 B
- W = 1000 MA4

Ёмкости этого аккумулятора согласно формуле для времени работы Тр хватит на 48 минут автономной работы устройства, что соответствует предъявляемым требованиям.

Также потребуются ВИПы для преобразования напряжения в 5 В, а также в 3,3 В, коллекторные двигатели мы можем питать непосредственно от аккумулятора через драйвер.

Этап 1. Структурная схема, интерфейсы

Этап 2. Выбор ЭКБ. Уточнение структурной схемы

- Разъёмы и коннекторы
- Обвязка МК
- Обвязка приемника
- Камера
- Коллекторный двигатель
- Драйвер коллекторных двигателей
- Сервопривод, его обвязка
- Стабилизаторы напряжения

Этап 2. Выбор разъемов

• Разъем питания REXANT 2,1 x 5,5 мм

Разъем SWD Разъем 1-825437-2
 AMPMODU

Этап 2. Выбор коннекторов

KLS7-SS-12F19-G5, переключатель движковый, необходим для отключения устройства на время зарядки аккумулятора

Этап 2. Выбор обвязки МК

Согласно документации на модуль ESP32-S:

- Кварцевый генератор DSO321SR (3,3 B, 40 МГц)
- Супрессор PESD3V3L1BA в цепь питания
 (Uf = 3,3 B, I = 2 A)
- Реактивные элементы для РСВ-антенны (подобраны под частоту Wi-Fi 2,4МГц)
- Остальные активные и реактивные элементы

Этап 2. Обвязка приемника МХ-RM-5V

- Нам необходимо считывать сигнал приемника на GPIO, значит необходимо согласовать уровни (5 В на выходе приёмника и 3,3 В на входе МК)
- Для этого нам необходим делитель с коэффициентом Uin/Uout = 5 / 3,3 = 1,5
- Возьмем резисторы номиналом 10 кОм и 20 кОм

Этап 2. Камера OV7670

- Разрешение 640х480
- Требуется один источник питания 3,3 В
- Потребление 22 мА
- Пластиковый корпус
- Интерфейс SCCB (полностью совместим с I2S)
- Число выводов: 18
- Максимальная частота кадров: 30 fps
- Форматы вывода (1 байт):
 - Raw RGB
 - RGB (GRB 4:2:2, RGB565/555/444)
 - YUV (4:2:2)
 - YCbCr (4:2:2)

Выбранный нами МК обладает 2МБ ОЗУ, чего достаточно для буферизации изображения, так как модуль задействует: 640 * 480 = 307200 Б ≈ 300кБ ОЗУ

Этап 2. Коллекторный двигатель F130-13180

Диаметр Вала - 2 мм

Диаметр корпуса 20.4 мм

Диапазон рабочего

напряжения

1...6 B

Дополнительно момент остановки - 60 гс см; ток остановки - 0.81 А

КПД 57.9%

Мощность 0.61 Вт

Номинальное напряжение 5 В

Под нагрузкой Скорость - 4800 об/мин; ток - 0.211 А;

Тип коллекторный электродвигатель постоянного тока

Холостой ход 6050 об/мин; ток х.х.- 0.055 А

Вес, г 69

Этап 2. Драйвер L298N

Обозначение	Параметр	Значение	
Us, B	Напряжение питания	до 50	
Uss, B	Напряжение питание логики	5 7	
Uin, Uen, B	Входное напряжение, разрешающее напряжение	-0,3 7	
Icons, мА	Ток потребления (логики)	0 36	

Подключение будем осуществлять согласно спецификации. Необходимо использовать указанные реактивные элементы, а так же диоды (Uпр ≤ 1,2, Iпр = 2 A).

Этап 2. Сервопривод MS-1.3-9, его обвязка

- Диапазон вращения: 180°;
- Напряжение питания: 4,8 ... 6 В;
- Ток потребления: до 0,5 А
- Крутящий момент: 1,3 кг.см (4,8 В);
- Скорость вращения: 60° за 0.12 (4.8 В);
- Направление: CCW (против часовой стрелки);
- Материал шестерней: нейлон;
- Материал корпуса: пластик;
- Длина проводов: 20 см;
- Габариты: 23,2 х 12,5 х 22 мм;

Для управления двигателем в цепи 5 В будем использовать AO3480A N-MOSFET 30B.

- Пороговое Ug = 1,5 В (взято с запасом в 2 раза 3,3 В на выходе GPIO),
- Максимальный Ids = 5,7 A (взят с запасом 11,4 раза, так как максимальный ток в цепи двигателя достигает 0,5 A)

Этап 2. Стабилизаторы напряжения

TPS54202		
Вх. напр., В	4,5 28	
Вых. напр., В	до 12	
Выходной ток, А	до 2	
к⊓д, %	90±5	

Данный стабилизатор будет использоваться для питания МК и камеры, поэтому значение допустимого тока нагрузки не превышено (262 мА)

LM317			
Разница вх. и вых. Напр., В	40		
Вых. напр., В	1,2 37		
Выходной ток, А	до 2,2		
КПД, %	83		

Данный стабилизатор будет использоваться для питания драйвера, приемника и сервопривода, здесь мы также укладываемся в ограничение тока нагрузки (540 мA)

Этап 2. Уточненная структурная схема

Этап 3. Разработка схемы Э3

- Подключение обвязки МК, определение допустимых задействованных пинов
- Расчет и подключение ВИПа 5 В
- Расчет и подключение ВИПа 3,3 В
- Подключение камеры и SWD-разъема
- Подключение двигателей
- Подключение ресивера MX-RM-5V
- Подключение аккумулятора

Этап 3. Подключение обвязки МК, выбор пинов

ESP32 pins	Connected Device	Device pins	
MTDI		MTDI	
MTCK	CIMID	MTCK	
MTMS	SWD	MTMS	
MTDO		MTDO	
GPIO22		SIO C	
GPIO21		SIO D	
VDET_1 (GPIO34, input-only)		VSYNC (output-only)	
VDET_2 (GPIO35, input-only)		HREF (output-only)	
32K_XN (GPIO33)		PCLK	
32K_XP (GPIO32)		XCLK	
GPIO4	OV7670 (camera)	D7	
SD_DATA_0 (GPIO7)	Ov7670 (camera)	D6	
SD_DATA_1 (GPIO8)		D5	
SD_DATA_2 (GPIO9)		D4	
GPIO16		D3	
GPIO17		D2	
GPIO18		D1	
GPIO19		D0	
GPIO23		IN1	
GPIO25	L298N (driver)	IN2	
GPIO23	LZ30IN (UIIVEI)	IN3	
GPIO25		IN4	
GPIO26	GPIO26 MS-1.3-9 (servo motor)		
GPIO27	GPIO27 MX-RM-5V (radio-reciever)		
CHIP_PU		+3.3V, кнопка на GND (+джампер)	
GPIO0	W	+3.3V, джампер на GND	
GPIO2	Конфигурационные пины	GND	
GPIO5			

- **1)** Подключим (по спецификации ESP32-S) кварцевый генератор, антенну (номиналы элементов подобраны под частоту 2,4 ГГц), аналогичные реактивные элементы.
- **2)** Подключим SWD и конфигурационные пины для выбора режима работы МК:
- IO0 low(0), IO2 low(0) загрузка прошивки.
- IO0 high(1), IO2 any использование загруженной прошивки.

T.e. подключим GPIO0 через кнопку к 3,3 B, поставим джампер на GND.

- IO5 high(1) и MTDO low(0) SDIO fall-in/rise-out
- IO5 high(1) и MTDO high(1) SDIO rise-in/rise-out Т.е. подтянем IO5 к +3,3 В.

Добавим два джампера в цепь EN – один для возможности установки значения с SWD-разъема, другой – для возможности перезагрузки при отладке.

3) Выбираем любые свободные для камеры, сервопривода и двигателей, так как все GPIO поддерживают I2S интерфейс и ШИМ.

Этап 3. Подключение обвязки МК

Этап 3. Расчет и подключение ВИПа 5 В

- Uref = 0,596 B
- R11 = 100 кОм
- Uin = 6 B
- Uout = 3,3 B

•
$$R12 = \frac{R11*Uref}{Uout-Uref} = \frac{100*10^3*0,596}{3,3-0,596} \approx 21.1 \text{ kOm}$$

(из номиналов Е96)

Остальные компоненты выберем согласно пользовательскому сопровождению для выходного напряжения 3,3 В.

Этап 3. Расчет и подключение ВИПа 3 В

- Uref = 1,25 B
- R1 = 240 Om
- Uin = 6 B
- Uout = 5 B
- ladj = 100 мкА
- $Uout = Uref\left(1 + \frac{R2}{R1}\right) + Iadj *$ R2
- R2 = 715 Ом (из номиналов E96)
- Для фильтрации конденсаторы

Этап 3. Подключение камеры и SWD-разъема

Этап 3. Подключение двигателей

Этап 3. Подключение ресивера

Подключение ресивера произведем через делитель напряжения для согласования уровня его выходного сигнала с уровнем входного сигнала на GPIO МК:

$$U_{IO27} = U_{\Pi \Pi T} * R_{16} / (R_{15} + R_{16})$$

$$U_{1027} = 5 * 20 * 10^3 / ((10 + 20) * 10^3) = 3.3 B$$

Этап 3. Подключение аккумулятора

Аккумулятор подключим через подвижный переключатель, для выбора режима зарядки (устройство отключено) и режима питания устройства (устройство включено).

Заключение

Было разработано электронное устройство машинка на радиоуправлении, отвечающее всем выдвинутым требованиям.

Характеристики:

- Время автономной работы до 40 минут
- Передача изображения по Wi-Fi в разрешении 640х480 с частотой до 30 fps
- Дальность передачи радиосигнала до 100 м
- Возможность заряда аккумулятора при исчерпании заряда, отказ от использования щелочных батареек

Благодарю за внимание!