

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 August 2001 (09.08.2001)

PCT

(10) International Publication Number
WO 01/57070 A1

(51) International Patent Classification⁷: **C07K 7/08, 7/52, A61K 38/00** [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(21) International Application Number: **PCT/US01/03293**

(74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(22) International Filing Date: 1 February 2001 (01.02.2001)

(25) Filing Language:

English

(81) Designated States (*national*): CA, JP, US.

(26) Publication Language:

English

(84) Designated States (*regional*): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(30) Priority Data:

60/179,967 3 February 2000 (03.02.2000) US

Published:

— with international search report

(72) Inventor; and

(75) Inventor/Applicant (for US only): **BEDNAREK, Maria**

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/57070 A1

(54) Title: MELANIN-CONCENTRATING HORMONE ANALOGS

(57) Abstract: The present invention features truncated MCH analogs active at the MCH receptor. The truncated MCH analogs are optionally modified peptide derivatives of mammalian MCH. The analogs can bind to the MCH receptor and, preferably, bring about signal transduction. MCH analogs have a variety of different uses including being used as a research tool and being used therapeutically.

TITLE OF THE INVENTION
MELANIN-CONCENTRATING HORMONE ANALOGS

CROSS-REFERENCE TO RELATED APPLICATIONS

5 The present application claims priority to provisional application U.S. Serial No. 60/179,967, filed February 3, 2000, which is hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

10 Neuropeptides present in the hypothalamus play a major role in mediating the control of body weight. (Flier, *et al.*, 1998. *Cell*, 92, 437-440.) Melanin-concentrating hormone (MCH) produced in mammals is a cyclic 19-amino acid neuropeptide synthesized as part of a larger pre-prohormone precursor in the hypothalamus which also encodes neuropeptides NEI and NGE. (Nahon, *et al.*, 1990. 15 *Mol. Endocrinol.* 4, 632-637; Vaughan, *et al.*, U.S. Patent No. 5,049,655; and Vaughan, *et al.*, 1989. *Endocrinology* 125, 1660-1665.) MCH was first identified in salmon pituitary, and in fish MCH affects melanin aggregation thus affecting skin pigmentation. In trout and eels MCH has also been shown to be involved in stress induced or CRF-stimulated ACTH release. (Kawauchi, *et al.*, 1983. *Nature* 305, 20 321-323.)

In humans two genes encoding MCH have been identified that are expressed in the brain. (Breton, *et al.*, 1993. *Mol. Brain Res.* 18, 297-310.) In mammals MCH has been localized primarily to neuronal cell bodies of the hypothalamus which are implicated in the control of food intake, including perikarya of the lateral hypothalamus and zona incerta. (Knigge, *et al.*, 1996. *Peptides* 17, 25 1063-1073.)

30 Pharmacological and genetic evidence suggest that the primary mode of MCH action is to promote feeding (orexigenic). MCH mRNA is up regulated in fasted mice and rats, in the *ob/ob* mouse and in mice with targeted disruption in the gene for neuropeptide Y (NPY). (Qu, *et al.*, 1996. *Nature* 380, 243-247 and Erickson, *et al.*, 1996. *Nature* 381, 415-418.) Injection of MCH centrally (ICV) stimulates food intake and MCH antagonizes the hypophagic effects seen with α melanocyte stimulating hormone (α MSH). (Qu, *et al.*, 1996. *Nature* 380, 243-247.) MCH deficient mice are lean, hypophagic and have increased metabolic rate. 35 (Shimada, *et al.*, 1998. *Nature* 396, 670-673.) The administration of MCH has been

indicated to useful for promoting eating, appetite or the gain or maintenance of weight. (Maratos-Flier, U.S. Patent No. 5,849,708.)

MCH action is not limited to modulation of food intake as effects on the hypothalamic-pituitary-axis have been reported. (Nahon, 1994. *Critical Rev. in Neurobiol.* 8, 221-262.) MCH may be involved in the body response to stress as MCH can modulate the stress-induced release of CRF from the hypothalamus and ACTH from the pituitary. In addition, MCH neuronal systems may be involved in reproductive or maternal function.

10 SUMMARY OF THE INVENTION

The present invention features truncated MCH analogs active at the MCH receptor. The truncated MCH analogs are optionally modified peptide derivatives of mammalian MCH. The analogs can bind to the MCH receptor and, preferably, bring about signal transduction. MCH analogs have a variety of different uses including being used as a research tool and being used therapeutically.

15 Thus, a first aspect of the present invention describes a truncated MCH analog. The truncated MCH analog is an optionally modified peptide having the structure:

20
$$\boxed{Z1-X1-X2-X3-X4-X5-X6-X7 X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-Z2}$$

wherein X₁ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, 25 glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid, or glutamic acid, or a derivative thereof;

X₂ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, 30 aspartic acid, or glutamic acid, or a derivative thereof;

X₃ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid or glutamic acid, or a derivative thereof;

X⁴ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid, glutamic acid, or norleucine, or a derivative thereof;

5 X⁵ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid or glutamic acid, or a derivative thereof;

X⁶ an optionally present amino acid that, if present is either arginine,

10 alanine, leucine, glycine, lysine, proline, asparagine, serine, histidine, nitroarginine, norleucine, or des-amino-arginine, or a derivative thereof,

X⁷ is either cysteine, homocysteine, or penicillamine, or a derivative thereof;

X⁸ is either methionine, norleucine, leucine, isoleucine, valine,

15 methioninesulfoxide, or methioninesulfone, or a derivative thereof;

X⁹ is either leucine, isoleucine, valine, alanine, methionine, or 5-aminopentanoic acid, or a derivative thereof;

X¹⁰ is either glycine, alanine, leucine, norleucine, cyclohexylalanine, 5-aminopentanoic acid, asparagine, serine, sarcosine, isobutyric, or gamma-

20 aminobutyric acid, or a derivative thereof;

X¹¹ is either arginine, lysine, citrulline, histidine, or nitroarginine, or a derivative thereof;

X¹² is either valine, leucine, isoleucine, alanine, or methionine, or a derivative thereof;

25 X¹³ is either phenylalanine, tyrosine, D-(*p*-benzoylphenylalanine), tryptophan, (1')- and (2')-naphthylalanine, cyclohexylalanine, or mono and multi-substituted phenylalanine wherein each substituent is independently selected from the group consisting of O-alkyl, alkyl, OH, NO₂, NH₂, F, I, and Br; or a derivative thereof;

30 X¹⁴ is either arginine, lysine, histidine, norarginine, or 5-aminopentanoic acid or a derivative thereof;

X¹⁵ is either proline, alanine, valine, leucine, isoleucine, methionine, sarcosine, or 5-aminopentanoic acid, or a derivative thereof;

X¹⁶ is either cysteine, homocysteine, or penicillamine, or a derivative thereof;

5 X¹⁷ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid or glutamic acid, or a derivative thereof;

Z¹ is an optionally present protecting group that, if present, is covalently joined to the N-terminal amino group;

10 Z² is an optionally present protecting group that, if present, is covalently joined to the C-terminal carboxy group;
or a labeled derivative of said peptide;
or a pharmaceutically acceptable salt of said peptide or of said labeled derivative.

15 Unless otherwise stated, those amino acids with a chiral center are provided in the L-enantiomer. Reference to "a derivative thereof" refers to the corresponding D-amino acid, N-alkyl-amino acid and β-amino acid.

20 Another aspect of the present invention describes a method of screening for a compound able to bind a MCH receptor. The method comprises the step of measuring the ability of the compound to effect binding of a truncated MCH analog to either the MCH receptor, a fragment of the receptor comprising a MCH binding site, a polypeptide comprising such a fragment, or a derivative of the polypeptide.

25 Another aspect of the present invention describes a method for increasing weight in a subject. The method comprises the step of administering to the subject an effective amount of a truncated MCH analog to produce a weight increase.

Another aspect of the present invention describes a method for increasing appetite in a subject. The method comprises the step of administering to the subject an effective amount of a truncated MCH analog to produce an appetite increase.

30 Another aspect of the present invention describes a method for measuring the ability of a compound to decrease weight or appetite in a subject. The method comprising the steps of:
a) administering to the subject an effective amount of a truncated MCH analog to produce a weight increase or appetite increase,

- b) administering the compound to the subject, and
- c) measuring the change in weight or appetite of the subject.

Other features and advantages of the present invention are apparent from the additional descriptions provided herein including the different examples.

5 The provided examples illustrate different components and methodology useful in practicing the present invention. The examples do not limit the claimed invention. Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present invention.

10 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the results of an alanine scan where different amino acid residues of human MCH were replaced with alanine. The binding assay was performed by measuring inhibition of (¹²⁵I-tyrosine, phenylalanine¹³)-MCH binding to cloned human MCH receptor (CHO clone). Cyclization sites (S-S) are indicated by 15 “*”.

DETAILED DESCRIPTION OF THE INVENTION

Truncated MCH analogs contain about 10 to about 17 groups that are amino acids or amino acid derivatives. Using the present application as a guide 20 truncated MCH analogs can be produced having significant MCH receptor activity, and in some cases having activity equal to or better than naturally occurring mammalian MCH. The smaller size of truncated MCH analogs offers advantages over longer-length MCH such as ease of synthesis and/or increased solubility in physiological buffers.

25 The MCH receptor is a G-protein coupled receptor that appears to be able to couple to Gi and Gq. Several references describe a receptor that is indicated to be a MCH receptor. (Chambers, *et al.*, 1999. *Nature* 400, 261-265; Saito, *et al.*, 1999. *Nature* 400, 265-269; Bächner, *et al.*, 1999. *FEBS Letters* 457:522-524; and Shimomura, *et al.*, 1999. *Biochemical and Biophysical Research Communications* 30 261, 622-626. These references are not admitted to be prior art to the claimed invention.)

The nucleic acid encoding for different variants of a MCH receptor is provided for by SEQ. ID. NOS. 1-3. The encoded amino acid sequences of the variants are provided by SEQ. ID. NOS. 4-6. The variants differ from each other by

the presence of additional amino acids at the N-terminal. One or more of these variants may be a physiological MCH receptor.

Significant MCH activity is preferably at least about 50%, at least about 75%, at least about 90%, or at least about 95%, the activity of mammalian

5 MCH as determined by a binding assay or MCH receptor activity assay. Examples of such assays are provided below.

MCH analogs have a variety of different uses including being used as a research tool and being used therapeutically. Research tool applications generally involve the use of a truncated MCH analog and the presence of a MCH receptor or

10 fragment thereof. The MCH receptor can be present in different environments such as a mammalian subject, a whole cell, and membrane fragments. Examples of research tool applications of truncated MCH analogs include screening for compounds active at the MCH receptor, determining the presence of the MCH receptor in a sample or preparation, examining the role or effect of MCH, and examining the role or effect of

15 MCH antagonists.

Truncated MCH analogs can be used to screen for both MCH agonists and MCH antagonists. Screening for MCH agonists can be performed, for example, by using a truncated MCH analog in a competition experiment with test compounds. Screening for MCH antagonists can be performed, for example, by using a truncated

20 MCH analog to produce MCH receptor activity and then measuring the ability of a compound to alter MCH receptor activity.

Truncated MCH analogs can be administered to a subject. A "subject" refers to a mammal including, for example, a human, a rat, a mouse, or a farm animal. Reference to subject does not necessarily indicate the presence of a disease or

25 disorder. The term subject includes, for example, mammals being dosed with a truncated MCH analog as part of an experiment, mammals being treated to help alleviate a disease or disorder, and mammals being treated prophylactically to retard or prevent the onset of a disease or disorder.

MCH agonists can be used to achieve a beneficial effect in a subject.

30 For example, a MCH agonist can be used to facilitate a weight gain, maintenance of weight and/or an appetite increase. Such effects are particularly useful for a patient having a disease or disorder, or under going a treatment, accompanied by weight loss. Examples of diseases or disorders accompanied by weight loss include anorexia, AIDS, wasting, cachexia, and frail elderly. Examples of treatments accompanied by

35 weight loss include chemotherapy, radiation therapy, and dialysis.

MCH antagonists can also be used to achieve a beneficial effect in a patient. For example, a MCH antagonist can be used to facilitate weight loss, appetite decrease, weight maintenance, cancer (*e.g.*, colon or breast) treatment, pain reduction, stress reduction and/or treatment of sexual dysfunction.

5

Truncated MCH Analogs

A truncated MCH analog is an optionally modified peptide having the structure:

10

Z1-X1-X2-X3-X4-X5-X6-X7 X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-Z2

wherein X¹ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid, or glutamic acid, or a derivative thereof; preferably, X¹ if present is aspartic acid or glutamic acid; more preferably, X¹ if present is aspartic acid; and more preferably, X¹ is not present;

X² is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid, or glutamic acid, or a derivative thereof; preferably, X² if present is phenylalanine or tyrosine; more preferably, X² if present is phenylalanine; and more preferably, X² is not present;

X³ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid or glutamic acid, or a derivative thereof; preferably, X³ if present is aspartic acid or glutamic acid; more preferably, X³ if present is aspartic acid; and more preferably, X³ is not present;

X⁴ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid, glutamic acid, or norleucine, or a derivative thereof; preferably, X⁴ if

present is methionine, leucine, isoleucine, valine, alanine or norleucine; more preferably, X⁴ if present is methionine; and more preferably, X⁴ is not present;

X⁵ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid or glutamic acid, or a derivative thereof; preferably, X⁵ if present is leucine, methionine, isoleucine, valine or alanine; more preferably, X⁵ if present is leucine; and more preferably, X⁵ is not present;

X⁶ is an optionally present amino acid that, if present is either

10 arginine, alanine, leucine, glycine, lysine, proline, asparagine, serine, histidine, nitroarginine, norleucine, or des-amino-arginine, or a derivative thereof; preferably X⁶ is not present or is either arginine, D-arginine, D-norleucine, D-proline, D-serine, or D-asparagine; more preferably X⁶ is arginine or D-arginine;

X⁷ is either cysteine, homocysteine, or penicillamine, or a derivative thereof; preferably, X⁷ is cysteine;

X⁸ is either methionine, norleucine, leucine, isoleucine, valine, methioninesulfoxide, or methioninesulfone, or a derivative thereof; preferably, X⁸ is methionine, norleucine, or N-methyl norleucine;

X⁹ is either leucine, isoleucine, valine, alanine, methionine, or 5-

20 aminopentanoic acid, or a derivative thereof; preferably, X⁹ is leucine;

X¹⁰ is either glycine, alanine, leucine, norleucine, cyclohexylalanine, 5-aminopentanoic acid, gamma-aminobutyric acid, asparagine, serine, sarcosine, or isobutyric or a derivative thereof; preferably, X¹⁰ is either glycine, alanine, leucine, norleucine, asparagine, serine, D-norleucine, D-proline, gamma-aminobutyric acid, or

25 sarcosine; more preferably X¹⁰, is either glycine, leucine, norleucine, asparagine, or serine;

X¹¹ is either arginine, lysine, citrulline, histidine, or nitroarginine, or a derivative thereof; preferably, X¹¹ is arginine;

X¹² is either valine, leucine, isoleucine, alanine, or methionine, or a

30 derivative thereof; preferably, X¹² is valine;

X¹³ is either phenylalanine, tyrosine, D-(*p*-benzoylphenylalanine), tryptophan, (1')- and (2')-naphthylalanine, cyclohexylalanine, or mono and multi-substituted phenylalanine wherein each substituent is independently selected from the group consisting of O-alkyl, alkyl, OH, NO₂, NH₂, F, I, and Br; or a derivative

thereof; preferably, X¹³ is phenylalanine, (2')naphylalanine, p-fluoro-phenylalanine, tyrosine, or cyclohexylalanine;

X¹⁴ is either arginine, lysine, histidine or norarginine, or 5-aminopentanoic acid, or a derivative thereof; preferably, X¹⁴ is arginine;

5 X¹⁵ is either proline, alanine, valine, leucine, isoleucine, methionine, sarcosine, or 5-aminopentanoic acid, or a derivative thereof; preferably, X¹⁵ is proline or sarcosine;

X¹⁶ is either cysteine, homocysteine, or penicillamine, or a derivative thereof; preferably, X¹⁶ is cysteine or D-cysteine;

10 X¹⁷ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid or glutamic acid, or a derivative thereof; preferably, X¹⁷ if present is tyrosine or tryptophan; more preferably X¹⁷ is not present;

15 Z¹ is an optionally present protecting group that, if present, is covalently joined to the N-terminal amino group;

Z² is an optionally present protecting group that, if present, is covalently joined to the C-terminal carboxy group;

or a labeled derivative of said peptide;

20 or a pharmaceutically acceptable salt of said peptide or of said labeled derivative.

The present invention is meant to comprehend diastereomers as well as their racemic and resolved enantiomerically pure forms. Truncated MCH analogs can contain D-amino acids, L-amino acids or a combination thereof. Preferably, amino acids present in a truncated MCH analog are the L-enantiomer.

In different embodiments, MCH analogs contain a preferred (or more preferred) group at one or more different locations. More preferred embodiments contain preferred (or more preferred) groups in each of the different locations.

25 A protecting group covalently joined to the N-terminal amino group reduces the reactivity of the amino terminus under *in vivo* conditions. Amino protecting groups include optionally substituted -C₁₋₁₀ alkyl, optionally substituted -C₂₋₁₀ alkenyl, optionally substituted aryl, -C₁₋₆ alkyl optionally substituted aryl, -C(O)-(CH₂)₁₋₆-COOH, -C(O)- C₁₋₆ alkyl, -C(O)-optionally substituted aryl,

-C(O)-O-C₁₋₆ alkyl, or -C(O)-O-optionally substituted aryl. Preferably, the amino terminus protecting group is acetyl, propyl, succinyl, benzyl, benzyloxycarbonyl or *t*-butyloxycarbonyl.

A protecting group covalently joined to the C-terminal carboxy group
5 reduces the reactivity of the carboxy terminus under *in vivo* conditions. The carboxy terminus protecting group is preferably attached to the α -carbonyl group of the last amino acid. Carboxy terminus protecting groups include amide, methylamide, and ethylamide.

"Alkyl" refers to carbon atoms joined by carbon-carbon single bonds.
10 The alkyl hydrocarbon group may be straight-chain or contain one or more branches or cyclic groups. Preferably, the alkyl group is 1 to 4 carbons in length. Examples of alkyl include methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, and *t*-butyl. Alkyl substituents are selected from the group consisting of halogen (preferably -F or -Cl) -OH, -CN, -SH, -NH₂, -NO₂, -C₁₋₂ alkyl substituted with 1 to 6 halogens (preferably -F or -Cl, more preferably -F), -CF₃, -OCH₃, or -OCF₃.

"Alkenyl" refers to a hydrocarbon group containing one or more carbon-carbon double bonds. The alkenyl hydrocarbon group may be straight-chain or contain one or more branches or cyclic groups. Preferably, the alkenyl group is 2 to 4 carbons in length. Alkenyl substituents are selected from the group consisting of 20 halogen (preferably -F or -Cl), -OH, -CN, -SH, -NH₂, -NO₂, -C₁₋₂ alkyl substituted with 1 to 5 halogens (preferably -F or -Cl, more preferably -F), -CF₃, -OCH₃, or -OCF₃.

"Aryl" refers to an optionally substituted aromatic group with at least one ring having a conjugated pi- electron system, containing up to two 25 conjugated or fused ring systems. Aryl includes carbocyclic aryl, heterocyclic aryl and biaryl groups. Preferably, the aryl is a 5 or 6 membered ring, more preferably benzyl. Aryl substituents are selected from the group consisting of -C₁₋₄ alkyl, -C₁₋₄ alkoxy, halogen (preferably -F or -Cl), -OH, -CN, -SH, -NH₂, -NO₂, -C₁₋₂ alkyl substituted with 1 to 5 halogens (preferably -F or -Cl, more preferably -F), -CF₃, or 30 -OCF₃.

A labeled derivative indicates the alteration of a substituent with a detectable label. Examples of detectable labels include luminescent, enzymatic, and radioactive labels. A preferred radiolabel is ¹²⁵I. Both the type of label and the position of the label can effect MCH activity. Labels should be selected so as not to 35 substantially alter the activity of the truncated MCH analog at the MCH receptor. The

effect of a particular label on MCH activity can be determined using assays measuring MCH activity and/or binding.

In naturally occurring full length MCH, alteration of the tyrosine at position 13 by labeling with ^{125}I substantially effects MCH activity. (Drozdz, *et al.*, 1995. *FEBS letters* 359, 199-202.) ^{125}I labeled analogs of full length mammalian MCH having substantial activity can be produced, for example, by replacing the tyrosine at position 13 with a different group, then replacing valine at position 19 with tyrosine, and labeling the tyrosine. Examples of such analogs include [^{125}I][Phe13, Try19]-MCH and (D-(*p*-benzoylphenylalanine)13, tyrosine19)-MCH. (Drozdz, *et al.*, 1995. *FEBS letters* 359, 199-202, 1995; and Drozdz, *et al.*, *J. Peptide Sci.* 5, 234-242, 1999.)

In preferred embodiments the optionally modified peptide has the structure:

15 Z1- x⁶-x⁷ $\overbrace{x^8-x^9-x^{10}-x^{11}-x^{12}-x^{13}-x^{14}-x^{15}-x^{16}} -x^{17}$ -z²

wherein the different groups, and preferred groups, are as described above.

20 In different embodiments the truncated MCH analog is a peptide of SEQ. ID. NOS. 7, 8, 9, or 10, a labeled derivative of said peptide or a pharmaceutically acceptable salt of said peptide or of said labeled derivative. SEQ. ID. NOS. 7-12 are made up of L-amino acids and have the following sequences ("*" indicates cyclization (S-S)):

25 * *
SEQ. ID. NO. 7: Ac-Arg-Cys-Met-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-amide;

30 SEQ. ID. NO. 8: Ac-Arg-Cys-Met-Leu-Gly-Arg-Val-Phe-Arg-Pro-Cys-Tyr-amide;

— * — *

35 SEO ID NO. 10:

Asp-Phe-Asp-Met-Leu-Arg-Cys-Met-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-amide;

* *
SEQ. ID. NO. 12: Ac-Cys-Met-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Gln-Val;

5 SEQ. ID. NO. 13:

* *
Asp-Phe-Asp-Nle-Leu-Arg-Cys-Nle-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Gln-
Val;

10 SEQ. ID. NO. 14:

* *
Asp-Phe-Ala-Met-Leu-Arg-Cys-Met-Leu-Gly-Arg-Val-Phe-Arg-Pro-Cys-Trp-Gln-
Tyr.

15 In additional embodiments the peptide has a sequence selected from
the group consisting of SEQ. ID. NOS. 7, 8, 10, 15, 24, 25, 27, 28, 30-49, 51, 52, 56,
57, 61, 62, 63, 65-67, 69-72, and 77, is a labeled derivative of said peptide or a
pharmaceutically acceptable salt of said peptide or of said labeled derivative.
Preferred sequences are those with an IC₅₀ less than 0.3 nM, preferably less than 0.1
20 nM; and/or those having a % activation greater than about 90%, preferably greater
than 100%. Examples of preferred sequences are provided in Example 4, Tables 1-7.

Truncated MCH analogs can be produced using techniques well known
in the art. For example, a polypeptide region of a truncated MCH analog can be
chemically or biochemically synthesized and, if desired modified to produce a
25 blocked N-terminus and/or blocked C-terminus. Techniques for chemical synthesis of
polypeptides are well known in the art. (See e.g., Vincent, in *Peptide and Protein*
Drug Delivery, New York, N.Y., Dekker, 1990.) Examples of techniques for
biochemical synthesis involving the introduction of a nucleic acid into a cell and
expression of nucleic acids are provided in Ausubel, *Current Protocols in Molecular*
30 *Biology*, John Wiley, 1987-1998, and Sambrook, *et al.*, in *Molecular Cloning, A*
Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989.

MCH Receptor Binding Assay

Assays measuring the ability of a compound to bind a MCH receptor
35 employ a MCH receptor, a fragment of the receptor comprising a MCH binding site, a

polypeptide comprising such a fragment, or a derivative of the polypeptide. Preferably, the assay uses the MCH receptor or a fragment thereof.

A polypeptide comprising a MCH receptor fragment that binds MCH can also contain one or more polypeptide regions not found in a MCH receptor. A 5 derivative of such a polypeptide comprises a MCH receptor fragment that binds MCH along with one or more non-peptide components.

The MCH receptor amino acid sequence involved in MCH binding can be readily identified using labeled MCH or truncated MCH analogs and different receptor fragments. Different strategies can be employed to select fragments to be 10 tested to narrow down the binding region. Examples of such strategies include testing consecutive fragments about 15 amino acids in length starting at the N-terminus, and testing longer length fragments. If longer length fragments are tested, a fragment binding MCH can be subdivided to further locate the MCH binding region. Fragments used for binding studies can be generated using recombinant nucleic acid 15 techniques.

Binding assays can be performed using individual compounds or preparations containing different numbers of compounds. A preparation containing different numbers of compounds having the ability to bind to the MCH receptor can be divided into smaller groups of compounds that can be tested to identify the 20 compound(s) binding to the MCH receptor. In an embodiment of the present invention a test preparation containing at least 10 compounds is used in a binding assay.

Binding assays can be performed using recombinantly produced MCH receptor polypeptides present in different environments. Such environments include, 25 for example, cell extracts and purified cell extracts containing the MCH receptor polypeptide expressed from recombinant nucleic acid or naturally occurring nucleic acid; and also include, for example, the use of a purified MCH receptor polypeptide produced by recombinant means or from naturally occurring nucleic acid which is introduced into a different environment.

30

Screening for MCH Receptor Active Compounds

Screening for MCH active compounds is facilitated using a recombinantly expressed MCH receptor. Using recombinantly expressed MCH receptor polypeptides offers several advantages such as the ability to express the 35 receptor in a defined cell system so that response to MCH receptor active compounds

can more readily be differentiated from responses to other receptors. For example, the MCH receptor can be expressed in a cell line such as HEK 293, COS 7, and CHO not normally expressing the receptor by an expression vector, wherein the same cell line without the expression vector can act as a control.

5 Screening for MCH receptor active compounds is facilitated through the use of a truncated MCH analog in the assay. The use of a truncated MCH analog in a screening assay provides for MCH receptor activity. The effect of test compounds on such activity can be measured to identify, for example, allosteric modulators and antagonists. Additionally, such assays can be used to identify
10 agonists.

MCH receptor activity can be measured using different techniques such as detecting a change in the intracellular conformation of the MCH receptor, Gi or Gq activity, and/or intracellular messengers. Gi activity can be measured using techniques well known in the art such as a melonaphore assay, assays measuring cAMP production, inhibition of cAMP accumulation, and binding of ^{35}S -GTP.
15 cAMP can be measured using different techniques such as radioimmunoassay and indirectly by cAMP responsive gene reporter proteins.

Gq activity can be measured using techniques such as those measuring intracellular Ca^{2+} . Examples of techniques well known in the art that can be
20 employed to measure Ca^{2+} include the use of dyes such as Fura-2 and the use of Ca^{2+} -bioluminescent sensitive reporter proteins such as aequorin. An example of a cell line employing aequorin to measure G-protein activity is HEK293/aeq17.
(Button, *et al.*, 1993. *Cell Calcium* 14, 663-671, and Feighner, *et al.*, 1999. *Science* 284, 2184-2188, both of which are hereby incorporated by reference herein.)

25 Chimeric receptors containing a MCH binding region functionally coupled to a G protein can also be used to measure MCH receptor activity. A chimeric MCH receptor contains an N-terminal extracellular domain; a transmembrane domain made up of transmembrane regions, extracellular loop regions, and intracellular loop regions; and an intracellular carboxy terminus.
30 Techniques for producing chimeric receptors and measuring G protein coupled responses are provided for in, for example, International Application Number WO 97/05252, and U.S. Patent Number 5,264,565, both of which are hereby incorporated by reference herein.

Weight or Appetite Alteration

Truncated MCH analogs can be used in methods to increase or maintain weight and/or appetite in a subject. Such methods can be used, for example, as part of an experimental protocol examining the effects of MCH antagonists, to achieve a beneficial effect in a subject and/or to further examine the physiological effects of MCH.

Experimental protocols examining the effects of MCH antagonists can be performed, for example, by using a sufficient amount of a truncated MCH analog to produce a weight or appetite increase in a subject and then examining the effect of a test compound. Changes in weight and appetite can be measured using techniques well known in the art.

Increasing weight or appetite can be useful for maintaining weight or producing a weight or appetite gain in an under weight subject, or in a patient having a disease or undergoing treatment that effects weight or appetite. In addition, for example, farm animals such as pigs, cows and chickens can be treated to gain weight.

Under weight subjects include those having a body weight about 10% or less, 20% or less, or 30% or less, than the lower end of a "normal" weight range or Body Mass Index ("BMI"). "Normal" weight ranges are well known in the art and take into account factors such as a patient age, height, and body type.

BMI measures your height/weight ratio. It is determined by calculating weight in kilograms divided by the square of height in meters. The BMI "normal" range is 19-22.

Administration

Truncated MCH analogs can be formulated and administered to a subject using the guidance provided herein along with techniques well known in the art. The preferred route of administration ensures that an effective amount of compound reaches the target. Guidelines for pharmaceutical administration in general are provided in, for example, *Remington's Pharmaceutical Sciences 18th Edition*, Ed. Gennaro, Mack Publishing, 1990, and *Modern Pharmaceutics 2nd Edition*, Eds. Banker and Rhodes, Marcel Dekker, Inc., 1990, both of which are hereby incorporated by reference herein.

Truncated MCH analogs can be prepared as acidic or basic salts. Pharmaceutically acceptable salts (in the form of water- or oil-soluble or dispersible products) include conventional non-toxic salts or the quaternary ammonium salts that

are formed, e.g., from inorganic or organic acids or bases. Examples of such salts include acid addition salts such as acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, 5 glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, and undecanoate; and base salts such as ammonium 10 salts, alkali metal salts such as sodium and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine and lysine.

Truncated MCH analogs can be administered using different routes 15 including oral, nasal, by injection, transdermal, and transmucosally. Active ingredients to be administered orally as a suspension can be prepared according to techniques well known in the art of pharmaceutical formulation and may contain microcrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, and sweeteners/flavoring 20 agents. As immediate release tablets, these compositions may contain microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and lactose and/or other excipients, binders, extenders, disintegrants, diluents and lubricants.

Truncated MCH analogs may also be administered in intravenous (both 25 bolus and infusion), intraperitoneal, subcutaneous, topical with or without occlusion, or intramuscular form. When administered by injection, the injectable solution or suspension may be formulated using suitable non-toxic, parenterally-acceptable diluents or solvents, such as Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland, fixed oils, 30 including synthetic mono- or diglycerides, and fatty acids; including oleic acid.

Suitable dosing regimens are preferably determined taking into factors well known in the art including type of subject being dosed; age, weight, sex and medical condition of the subject; the route of administration; the renal and hepatic function of the subject; the desired effect; and the particular compound employed.

Optimal precision in achieving concentrations of drug within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the drug's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a drug. The daily dose for a subject is expected to be
5 between 0.01 and 1,000 mg per subject per day.

Truncated MCH analogs can be provided in kit. Such a kit typically contains an active compound in dosage forms for administration. A dosage form contains a sufficient amount of active compound such that a weight or appetite increase can be obtained when administered to a subject during regular intervals, such
10 as 1 to 6 times a day, during the course of 1 or more days. Preferably, a kit contains instructions indicating the use of the dosage form for weight or appetite increase and the amount of dosage form to be taken over a specified time period.

EXAMPLES

15 Examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not limit the claimed invention.

Example 1: Synthesis of MCH Analogs

20 MCH analogs were produced using the procedures described below and varying the stepwise addition of amino acid groups. Other procedures for producing and modifying peptides are well known in the art.

Elongation of peptidyl chains on 4-(2',4'-dimethoxyphenyl-Fmoc-
25 aminomethyl)-phenoxy resin and the acetylation of the N-terminal amino groups of the peptides was performed on a 431A ABI peptide synthesizer. Manufacturer-supplied protocols were applied for coupling of the hydroxybenzotriazole esters of amino acids in N-methylpyrrolidone (NMP). The fluorenylmethyloxycarbonyl (Fmoc) group was used as a semipermanent alpha-amino protecting group, whereas the side chains protecting groups were: *tert*-butyl for aspartic acid and tyrosine,
30 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for arginine, and trityl for cysteine.

Peptides were cleaved from the resin with TFA containing 5 % of anisole. After 2 hours at room temperature the resin was filtered, washed with TFA and the combined filtrates were evaporated to dryness in vacuo. The residue was

triturated with ether, the precipitate which formed was filtered off, washed with ether, and dried.

Crude peptides were dissolved in 5 % acetic acid in water, and the pH of the solutions were adjusted to ca. 8.2 with diluted ammonium hydroxide. The reaction mixtures were stirred vigorously while 0.05 % solution of potassium ferricyanide ($K_3Fe(CN)_6$) in water was added dropwise till the reaction mixture remained yellow for about 5 minutes. After an additional 20 minutes oxidation was terminated with ca. 1 ml of acetic acid and the reaction mixtures were lyophilized.

Crude lyophilized peptides were analyzed by analytical reverse-phase high-pressure liquid chromatography (RP HPLC) on a C18 Vydac column attached to a Waters 600E system with automatic Wisp 712 injector and 991 Photodiode Array detector. A standard gradient system of 0-100% buffer B in 30 minutes was used for analysis: buffer A was 0.1% trifluoroacetic acid in water and buffer B was 0.1% trifluoroacetic acid in acetonitrile. HPLC profiles were recorded at 210 nm and 280 nm. Preparative separations were performed on a Waters Delta Prep 4000 system with a semipreparative C18 RP Waters column. The above-described solvent system of water and acetonitrile, in a gradient of 20-80 % buffer B in 60 minutes, was used for separation. The chromatographically homogenous compounds were analyzed by electrospray mass spectrometry.

20

Example 2: Aequorin Bioluminescence Functional Assay

The aequorin bioluminescence assay is a reliable test for measuring the activity of G protein-coupled receptors that couple through the $G\alpha$ protein subunit family consisting of Gq and $G11$ and leads to the activation of phospholipase C, mobilization of intracellular calcium and activation of protein kinase C.

Measurement of MCH receptor activity in the aequorin-expressing stable reporter cell line 293-AEQ17 (Button *et al.*, *Cell Calcium* 14:663-671, 1993) was performed using a Luminoskan RT luminometer (Labsystems Inc., Gaithersburg, MD). 293-AEQ17 cells (8×10^5 cells plated 18 hours before transfection in a T75 flask) were transfected with 22 μ g of human MCH receptor plasmid using 264 μ g lipofectamine. The open reading frame cDNA (SEQ. ID. NO. 1) encoding the human MCH receptor inserted in the mammalian expression vector pcDNA-3 (Invitrogen, Carlsbad, CA) was used for expression studies. Following approximately 40 hours of expression the apo-aequorin in the cells was charged for 4 hours with coelenterazine (10 μ M) under reducing conditions (300 μ M reduced glutathione) in ECB buffer (140

mM NaCl, 20 mM KCl, 20 mM HEPES-NaOH [pH=7.4], 5 mM glucose, 1 mM MgCl₂, 1 mM CaCl₂, 0.1 mg/ml bovine serum albumin).

The cells were harvested, washed once in ECB medium and resuspended to 500,000 cells/ml. 100 µl of cell suspension (corresponding to 5x10⁴ cells) was then injected into the test plate containing MCH or MCH analogs, and the integrated light emission was recorded over 30 seconds, in 0.5 second units. 20 µL of lysis buffer (0.1% final Triton X-100 concentration) was then injected and the integrated light emission recorded over 10 seconds, in 0.5 second units. The “fractional response” values for each well were calculated by taking the ratio of the integrated response to the initial challenge to the total integrated luminescence including the Triton X-100 lysis response.

Example 3: Radiolabeled MCH-R Binding Assay

Activity of truncated MCH analogs was assayed by measuring the ability of the analog to inhibit binding of [¹²⁵I]-human MCH (Phe¹³, Tyr¹⁹ substituted) to membranes prepared from cells stably expressing the human MCH receptor. Human MCH (Phe¹³, Tyr¹⁹ substituted) used in the assay was radiolabeled with ¹²⁵I at ¹⁹Tyr to a specific activity of ~2000 Ci/mmol (NEN Life Science Products, Boston, MA).

Cell membranes were prepared on ice. Each T-75 flask was rinsed twice with 10 ml of Enzyme-free Cell Dissociation Buffer (Specialty Media, Lavallette, NJ), and the cell monolayer was detached in an additional 10 ml of Enzyme-free Cell Dissociation Buffer by incubation at room temperature for 10 minutes. Dissociated cells were centrifuged (500 x g for 10 minutes at 4°C), resuspended in 5 ml homogenization buffer (10 mM Tris-HCl, pH 7.4, 0.01 mM Pefabloc, 10 µM phosphoramidon, 40 µg/ml bacitracin) and then homogenized using a glass homogenizer (10-15 strokes). The homogenate was centrifuged for 10 minutes (1,000 x g at 4°C). The resulting supernatant was then centrifuged at 38,700 x g for 15 minutes at 4°C. Pelleted membranes were resuspended (passed through 25 gauge needle 5 times), snap-frozen on liquid nitrogen, and stored at -80°C until use.

Binding was performed in a 96-well filter assay or Scintillation Proximity Assay (SPA)-based format using cell membranes from a stable CHO or HEK-293 cell line expressing the MCH receptor. For the filter assay, reactions were performed at 20°C for 1 hour in a total volume of 0.2 ml containing: 0.05 ml of membrane suspension (~3 µg protein), 0.02 ml of [¹²⁵I]-human MCH (Phe¹³, Tyr¹⁹

substituted; 30 pM), 0.01 ml of competitor and 0.12 ml of binding buffer (50 mM Tris-HCl, pH 7.4, 10 mM MgCl₂, 2 mM EDTA, 200 µg/ml bacitracin, 1 µM phosphoramidon).

Bound radioligand was separated by rapid vacuum filtration (Packard Filtermate 96-well cell harvester) through GF/C filters pretreated for 1 hour with 1 % polyethylenimine. After application of the membrane suspension to the filter, the filters were washed 3 times with 3 ml each of ice-cold 50 mM Tris-HCl, pH 7.4, 10 mM MgCl₂, 2 mM EDTA, 0.04 % Tween 20 and the bound radioactivity on the filters was quantitated by scintillation counting (TopCount device). Specific binding (>80 % of total) is defined as the difference between total binding and non-specific binding conducted in the presence of 100 nM unlabeled human MCH.

For the SPA-based assay, WGA-PVT beads (NEN Life Sciences Products) were resuspended in Dulbecco's PBS with calcium and magnesium (500 mg beads in 4 ml PBS). For each 96-well assay plate, 0.18 ml of beads was pre-coated with MCH receptor by mixing with 0.2 ml MCH receptor CHO cell membranes (~ 0.2-4 mg protein) and 1.5 ml SPA assay buffer (50 mM Tris-HCl, pH 7.4, 10 mM MgCl₂, 2 mM EDTA, 0.1 % BSA, 12 % glycerol). The suspension was mixed gently for 20 minutes, 12.3 ml of assay buffer and protease inhibitors were added (final concentration given): 2 µg/ml leupeptin, 10 µM phosphoramidon, 40 µg/ml bacitracin, 5 µg/ml aprotinin, 0.1 mM Pefabloc.

Coated beads were kept on ice until use. For each well, 0.145 ml of beads were added to Optiplate assay plates (Packard 6005190), followed by 0.002-0.004 ml of competitor and 0.05 ml of [¹²⁵I]-human MCH (Phe¹³, Tyr¹⁹ substituted; 30 pM). Binding reactions were allowed to proceed at room temperature for 3 hours. Quantitation was performed by scintillation counting (TopCount device).

Example 4: MCH Activity

The activity of different MCH analogs was measured using the procedures described in Examples 2 and 3 above. Tables 1-7 illustrate the activity of 30 different truncated MCH analogs and mammalian MCH (SEQ. ID. NO. 11). Figure 1 illustrates the results of replacing different amino acids of mammalian MCH with alanine. Based on the guidance provided herein, additional MCH analogs active at the MCH receptor can be obtained.

TABLE 1

SEQ. ID. NO.	Binding Assay IC ₅₀ (nM)	EC ₅₀ (nM)	% Activation at 10 μM
11	0.3	36	100
7	0.12	18	123
8	0.16	36	123
9	1.6	300	74
10	0.3		99
12	6.4	492	3
13	1.5		65.9
14	0.5		62.2

IC₅₀ was determined using a SPA based assay.

EC₅₀ (nM) and % Activation at 10 μM were determined using aequorin functional assays.

5

Table 2 illustrates the affect of different D-amino acids.

TABLE 2

Activity				
SEQ. ID. NO.	Compound	IC ₅₀ (nM)	EC ₅₀ (nM)	Activation %
11		0.3	30.9	100
7		0.5	20	99
15	D-Arg ⁶	0.46	45	86
16	D-Cys ⁷	7.78	909	34
17	D-Met ⁸	>1000	Inactive	
18	D-Leu ⁹	1520	Inactive	
19	D-Arg ¹¹	>1000	Inactive	
20	D-Val ¹²	381	Inactive	
21	D-Tyr ¹³	>1000	Inactive	
22	D-Arg ¹⁴	368	Inactive	
23	D-Pro ¹⁵	584	Inactive	
24	D-Cys ¹⁶	0.8	133	76

10

Table 3 illustrates the effect of different N-methyl-amino acids.

TABLE 3

Ac-Arg ⁶ -Cys ⁷ -Met ⁸ -Leu ⁹ -Gly ¹⁰ -Arg ¹¹ -Val ¹² -Tyr ¹³ -Arg ¹⁴ -Pro ¹⁵ -Cys ¹⁶ -NH ₂				
SEQ. ID. NO.	Compound	Activity		
		IC ₅₀ (nM)	EC ₅₀ (nM)	Activation %
11		0.3	30.9	100
7		1.4	20	99
25	N-Me-Nle ⁸	0.16	20	110
26	N-Me-Leu ⁹	10%@1	>10000	3
27	Sar ¹⁰	2.3	140	95
28	N-Me-Arg ¹¹	43	10	110
29	N-Me-Arg ¹⁴	643	>1000	
30	Sar ¹⁵	0.36	25	113

Table 4 illustrates the affect of different alterations to position 6 of the
 5 SEQ. ID. NO. 7 MCH analog.

TABLE 4

X ⁶ -Cys ⁷ -Met ⁸ -Leu ⁹ -Gly ¹⁰ -Arg ¹¹ -Val ¹² -Tyr ¹³ -Arg ¹⁴ -Pro ¹⁵ -Cys ¹⁶ -NH ₂				
SEQ. ID. NO.	Position 6 modification	Activity		
		IC ₅₀ (nM)	EC ₅₀ (nM)	Activation %
11		0.3	30.9	100
7		1.4	20	99
31	Ac-Ala	27	114	135
32	Ac-Nle	40	117	107
33	Ac-Pro	3.4	59	133
34	Ac-Asn	2.6	150	96
35	Ac-Ser	4.5	207	120
36	Ac-Glu	19	935	113
37	H	12	809	120
38	Ac	1.6	144	82
39	Arg	0.13	14	106
40	Δ NH ₂ -Arg	0.48	38.5	49
41	Ac-D-Arg	0.46	45	86
42	Ac-D-Nle	1.2	110	97
43	Ac-D-Pro	0.82	60	96
44	Ac-D-Asn	3	340	94
45	Ac-D-Ser	2.3	170	93
46	Ac-D-Glu	8	820	85

Table 5 illustrates the affect of different alterations to position 10 of the SEQ. ID. NO. 7 MCH analog.

TABLE 5

5

Ac-Arg ⁶ -Cys ⁷ -Met ⁸ -Leu ⁹ -X ¹⁰ -Arg ¹¹ -Val ¹² -Tyr ¹³ -Arg ¹⁴ -Pro ¹⁵ -Cys ¹⁶ -NH ₂				
SEQ. ID. NO.	Position 10 modification	Activity		
		IC ₅₀ (nM)	EC ₅₀ (nM)	Activation %
11		0.3	30.9	100
7		0.5	20	99
47	Ala	0.59	31	104
48	Leu	0.06	23	106
49	Nle	0.04	15	106
50	Pro	700	519	4
51	Asn	0.23	23	106
52	Ser	0.32	65	104
53	Lys	110	4500	25
54	Glu	190	>10000	12
55	D-Leu	16	750	23
56	D-Nle	2.4	215	33
57	D-Pro	1.2	190	90
58	D-Glu	40%@1	>10000	
59	D-Lys	>1000	>10000	
60	β-Ala	390	>1000	3.2
61	γ-Abu	2.1	30.6	101

Table 6 illustrates the affect of different alterations to position 13 of the SEQ. ID. NO. 7 MCH analog.

TABLE 6

Ac-Arg ⁶ -Cys ⁷ -Met ⁸ -Leu ⁹ -Gly ¹⁰ -Arg ¹¹ -Val ¹² -Tyr ¹³ -Arg ¹⁴ -Pro ¹⁵ -Cys ¹⁶ -NH ₂				
SEQ. ID. NO.	Position 13 modification	Activity		
		IC ₅₀ (nM)	EC ₅₀ (nM)	Activation %
11		0.3	30.9	100
7		1.4	20	99
62	Phe	1	46	96
63	Trp	3.8	890	83
64	His	13.1	3400	66
65	(2')Nal	0.15	54	105
66	Phe(pF)	0.6	108	98
67	Phe(pNH ₂)	3.2	610	88
68	Phe(pCOOH)	>1000	>10000	
69	Cha	0.09	122	93

Table 7 illustrates the effect of some alteration combinations and some
5 alterations to position 8 of the SEQ. ID. NO. 7 MCH analog.

TABLE 7

Ac-Arg ⁶ -Cys ⁷ -Met ⁸ -Leu ⁹ -Gly ¹⁰ -Arg ¹¹ -Val ¹² -Tyr ¹³ -Arg ¹⁴ -Pro ¹⁵ -Cys ¹⁶ -NH ₂				
SEQ. ID. NO.	Compound	Activity		
		IC ₅₀ (nM)	EC ₅₀ (nM)	Activation %
11		0.3	30.9	100
7		1.4	20	99
70	Ava ^{9,10}	3.7	587	82
71	D-Arg ⁶ ,Ava ^{9,10}	3.7	1080	72
72	Ava ^{14,15}	6.2	406	75
73	D-Arg ⁶ ,Ava ^{14,15}	19.5	1300	28
74	D-Pro ¹⁰ ,Ava ^{14,15}	700	1530	3
75	ΔArg ⁶ ,Ava ^{14,15}	250	>10000	3
76	Ava ^{9,10} ,Ava ^{14,15}	50	> 10000	3
77	Nle ⁸	0.5	44	105
78	ΔArg ⁶ ,D-Nle ¹⁰	25	72	4

Other embodiments are within the following claims. While several embodiments have been shown and described, various modifications may be made without departing from the spirit and scope of the present invention.

WHAT IS CLAIMED IS:

1. An optionally substituted peptide having the structure:

5

herein X¹ is an optionally present amino acid that, if present, is either
10 alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine,
glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine,
histidine, aspartic acid, or glutamic acid, or a derivative thereof;

X² is an optionally present amino acid that, if present, is either alanine,
valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine,
15 serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine,
aspartic acid, or glutamic acid, or a derivative thereof;

X³ is an optionally present amino acid that, if present, is either alanine,
valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine,
serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine,
20 aspartic acid or glutamic acid, or a derivative thereof;

X⁴ is an optionally present amino acid that, if present, is either alanine,
valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine,
serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine,
aspartic acid, glutamic acid, or norleucine, or a derivative thereof;

X⁵ is an optionally present amino acid that, if present, is either alanine,
valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine,
serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine,
aspartic acid or glutamic acid, or a derivative thereof;

X⁶ is an optionally present amino acid that, if present is either
30 arginine, alanine, leucine, glycine, lysine, proline, asparagine, serine, histidine,
nitroarginine, norleucine, or des-amino-arginine, or a derivative thereof,

X⁷ is either cysteine, homocysteine, or penicillamine, or a derivative
thereof;

X⁸ is either methionine, norleucine, leucine, isoleucine, valine,
35 methioninesulfoxide, or methioninesulfone, or a derivative thereof;

X₉ is either leucine, isoleucine, valine, alanine, methionine, or 5-aminopentanoic acid, or a derivative thereof;

X₁₀ is either glycine, alanine, leucine, norleucine, cyclohexylalanine, 5-aminopentanoic acid, asparagine, serine, sarcosine, isobutyric, or gamma-5 aminobutyric acid, or a derivative thereof;

X₁₁ is either arginine, lysine, citrulline, histidine, or nitroarginine, or a derivative thereof;

X₁₂ is either valine, leucine, isoleucine, alanine, or methionine, or a derivative thereof;

X₁₃ is either phenylalanine, tyrosine, D-(*p*-benzoylphenylalanine), tryptophan, (1')- and (2')-naphthylalanine, cyclohexylalanine, or mono and multi-substituted phenylalanine wherein each substituent is independently selected from the group consisting of O-alkyl, alkyl, OH, NO₂, NH₂, F, I, and Br; or a derivative thereof;

X₁₄ is either arginine, lysine, histidine, norarginine, or 5-aminopentanoic acid or a derivative thereof;

X₁₅ is either proline, alanine, valine, leucine, isoleucine, methionine, sarcosine, or 5-aminopentanoic acid, or a derivative thereof;

X₁₆ is either cysteine, homocysteine, or penicillamine, or a derivative thereof;

X₁₇ is an optionally present amino acid that, if present, is either alanine, valine, leucine, isoleucine, proline, tryptophan, phenylalanine, methionine, glycine, serine, threonine, tyrosine, cysteine, asparagine, glutamine, lysine, arginine, histidine, aspartic acid or glutamic acid, or a derivative thereof;

Z₁ is an optionally present protecting group that, if present, is covalently joined to the N-terminal amino group;

Z₂ is an optionally present protecting group that, if present, is covalently joined to the C-terminal carboxy group;

or a labeled derivative of said peptide;

or a pharmaceutically acceptable salt of said peptide or of said labeled derivative.

2. The peptide of claim 1, wherein X₁, X₂, X₃, X₄, and X₅ are not present; X₆ is arginine; and X₁₇ is tyrosine or tryptophan.

3. The peptide of claim 1, wherein X₁, X₂, X₃, X₄, X₅, and X₁₇ are not present; and X₆ is arginine.

5 4. The peptide of claim 3, wherein Z₁ is -C(O)CH₃ and Z₂ is -NH₂.

5. The peptide of claim 1, wherein said peptide is either SEQ. ID. NO. 7, SEQ. ID. NO. 8, SEQ. ID. NO. 9, SEQ. ID. NO. 10, or
10 a pharmaceutically acceptable salt thereof.

6. The peptide of claim 1, wherein said peptide is either SEQ. ID. NO. 7, SEQ. ID. NO. 8, or a pharmaceutically acceptable salt thereof.

15 7. The peptide of claim 1, wherein X₁, X₂, X₃, X₄, X₅ and X₁₇ are not present;
X₆ is either arginine, D-arginine, D-norleucine, D-proline, D-serine, or D-asparagine;
X₇ is cysteine;
X₈ is either methionine, norleucine, or N-methyl norleucine;
20 X₉ is leucine;
X₁₀ is either glycine, alanine, leucine, norleucine, asparagine, serine, D-norleucine,
D-proline, gamma-aminobutyric acid, or sarcosine;
X₁₁ is arginine;
X₁₂ is valine;
25 X₁₃ is phenylalanine, (2')naphthylalanine, p-fluoro-phenylalanine, tyrosine, or
cyclohexylalanine;
X₁₄ is arginine;
X₁₅ is either proline or sarcosine; and
X₁₆ is either cysteine or D-cysteine.

30 8. The peptide of claim 1, wherein said peptide consists of a sequence selected from the group consisting of: 7, 8, 10, 15, 24, 25, 27, 28, 30-49, 51, 52, 56, 57, 61, 62, 63, 65-67, 69-72, and 77.

9. A method of screening for a compound able to bind a MCH receptor comprising the step of measuring the ability of said compound to effect binding of the peptide of any one of claims 1-8 to either said receptor, a fragment of said receptor comprising a MCH binding site, a polypeptide comprising said fragment, or a derivative of said polypeptide.

10. The method of claim 9, wherein said method measures the ability of said peptide to bind to said receptor or said fragment thereof.

10 11. The method of claim 10, wherein said peptide is radiolabeled.

12. The method of claim 9, wherein said peptide is a radiolabeled derivative of SEQ. ID. NO. 8 or a pharmaceutically acceptable salt thereof.

15 13. A method for increasing weight in a subject comprising the step of administering to said subject an effective amount of the peptide of any one of claims 1-8 to produce a weight increase.

20 14. A method for increasing appetite in a subject comprising the step of administering to said subject an effective amount of the peptide of any one of claims 1-8 to produce an appetite increase.

15. A method for measuring the ability of a compound to decrease weight or appetite in a subject comprising the steps of:

25 a) administering to said subject an effective amount of the peptide of any one of claims 1-8 to produce a weight increase or appetite increase,
b) administering said compound to said subject, and
c) measuring the change in weight or appetite of said subject.

30 16. The method of claim 15, wherein said subject is either a rat or a mouse.

1/1

ALANINE SCAN OF HUMAN MELANIN-CONCENTRATING HORMONE (hMCH)

Asp Phe Asp Met Leu Arg Cys Met Leu Gly Arg Val Tyr Arg Pro Cys Trp Gln Val Acid

	1	3	5	*	9	11	13	15	*	17	19
BINDING IC ₅₀ (nM)	0.8	0.2	0.49	0.33	4.5	-	71	0.9	-	169	0.9
FUNCTION EC ₅₀ (nM)	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND
% ACTIVATION (100 nM)	97.7	96.3	97.7	95.7	90.8	11.4	-	0	86.5	-	3

hMCH BINDING ASSAY[†], IC₅₀ = 0.3nM

AEQORIN FUNCTIONAL ASSAY^{††}, EC₅₀ = 36nM, 100% ACTIVATION AT 10 μ M

[†] SPA ASSAY: INHIBITION OF (¹²⁵I-F13, Y19-hMCH BINDING TO THE CLONED HUMAN MCH RECEPTOR (COS-7 CELLS))
^{††} FOR AEQORIN FUNCTIONAL ASSAY, 100% ACTIVATION IS THE BIOLUMINESCENCE VALUE OBTAINED WITH 100 nM MCH.
* SITES OF CYCLIZATION (S-S)
ND - NOT DONE

FIG. 1

SEQUENCE LISTING

<110> Merck & Co., Inc.

<120> MELANIN-CONCENTRATING HORMONE ANALOGS

<130> 20590Y PCT

<150> 60/179,967

<151> 2000-02-03

<160> 78

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1062

<212> DNA

<213> Human

<400> 1		
atggacctgg aaggctcgct gctgcccact ggtcccaacg ccagcaaacac	ctctgatggc	60
cccgataacc tcacttcggc aggatcacct cctcgcaegg ggagcatctc	ctacatcaac	120
atcatcatgc ctccgggtt cgccacccatc tgcctctgg gcatcatcg	gaactccacg	180
gtcatcttcg cggtcgtaa gaagtccaaag ctgcactggt gcaacaacgt	ccccgacatc	240
tccatcatca acctctcggt agtagatctc ctctttctcc tgggcatgcc	cttcatgatc	300
caccagctca tggcaatgg ggtgtggcac tttggggaga ccatgtgcac	cctcatcacg	360
gccccatggat ccaatagtca gttcaccaggc acctacatcc tgaccggcat	ggccatttgac	420
cgctacctgg ccactgtcca ccccatctt tccacgaagt tccggaaagcc	ctctgtggcc	480
accctggta tctgcctctt gtggggccctc tccttcatca gcatcaccc	tgtgtggctg	540
tatgccagac tcatccccctt cccaggaggt gcagtgggct gccgcatacg	cctgccaac	600
ccagacactg acctctactg gttcacttgc taccagttt ttctggcctt	tgccctgcct	660
tttgtgtca tcacagccgc atacgtgagg atcctgcagc gcatgacgtc	ctcagtgcc	720
ccggccccc agcgcagcat cggcgtcgcc acaaagaggg tgacccgcac	agccatcgcc	780
atctgtctgg tcttctttgt gtgtgggca ccctactatg tgctacagct	gaccgcattg	840
tccatcagcc gcccgaccct cacccttgc tactataca atgcggccat	cagcttggc	900
tatgccaaca gtcgcctcaa ccccttgc tacatgtgc tctgtgagac	gttccgc当地	960
cgcttggtcc tgcggtaa gcctgcagcc caggggcagc ttgcgc当地	cagcaacgct	1020
cagacggctg acgaggagag gacagaaagc aaaggcacct ga		1062

<210> 2

<211> 1254

<212> DNA

<213> Human

<400> 2		
atgaagaagg gagtggggag ggcagttggg cttggaggcg gcagcggctg	ccaggctacg	60
gaggaagacc cccttccaa ctgcggggct tgcgtccgg gacaagggtgg	caggcgctgg	120
aggctgcgc agcctgcgtg gttggaggg agctcagctc gttgtggga	gcaggcgacc	180
ggcactggct ggtatggacct ggaaggctcg ctgcgtccca ctggtcccaa	cgccagcaac	240
acctctgtatg gccccgataa cctcaactcg gcaggatcac ctccctgcac	ggggagcatc	300
tcctacatca acatcatcat gccttcgggt ttcggcacca tctgcctctt	gggcacatc	360
gggaactcca cggtcatctt cgcggctgt aagaagtcca agctgcactg	gtgcacacaac	420
gtccccgaca tcttcatcat caacctctcg gtagtagatc tcctttttt	cctgggc当地	480
cccttcatga tccaccagct catggcaat ggggtgtggc actttggga	gaccatgtgc	540
accctcatca cggccatggc tgccaatagt cagttcacca gcacccat	cctgaccgc当地	600
atggccattt accgctaccc ggcactgtc cacccatctt ctccaccaa	gttccggaa	660
ccctctgtgg ccaccctggat ctgcgtccctt ctgtggggccctt	tctccttcat	720
cctgtgtggc tttatgcctag actcatcccc ttcccaaggag	gtagcactgg	780
cgcctccca acccagacac tgacccatcat tggttccat	tttcctggcc	840

tttgcctgc	cttttgtgg	catcacagcc	gcatacgtga	ggatcctgca	gcfgcatgac	900
tcctcagtgg	ccccggcctc	ccagcgac	atccggctgc	ggacaaagag	ggtgaccgc	960
acagccatcg	ccatctgtct	ggtcttcttt	gtgtgtctgg	caccctacta	tgtgtacag	1020
ctgaccagg	tgtccatcg	ccgcccggacc	ctcaccttt	tctacttata	caatcgcc	1080
atcagcttgg	gctatgcca	cagctgcctc	aaccctttt	tgtacatcgt	gctctgttag	1140
acgttccgca	aacgcttgg	cctgtcggt	aaggctgcag	cccagggca	gcttcgcgt	1200
gtcagcaacg	ctcagacggc	tgacgaggag	aggacagaaa	gcaaaggcac	ctga	1254

<210> 3
<211> 1269
<212> DNA
<213> Human

<400> 3	60					
atgtcagtgg	gagccatgaa	gaagggagtg	gggagggcag	ttgggcttgg	aggcggcagc	120
ggctgcagg	ctacggagga	agacccctt	cccaactcg	ggcttgcgc	tccggacaa	180
gggtgcaggc	gctggaggct	ggccgcaggc	gctgggggtgg	agggggagcte	agtcgggttg	240
tgggagcagg	cgacccggc	tggctggatg	gacccttgaag	cctcgctgt	gcccactgg	300
cccaacgcca	gcaaacaccc	tgtatggcccc	gataacctca	tttcggcagg	atcacctcct	360
cgcacgggaa	gcatctccta	catcaacatc	atcatgcctt	cggtgttctgg	caccatctgc	420
ctcctggca	tcatcggtt	ctccacggc	atcttcgcgg	tctgttggaa	gtccaaagctg	480
cactggtgc	acaacgtccc	cgacatctt	atcatcaacc	tctcggtatg	agatctcctc	540
tttctcttgg	gcatgccctt	catgatccac	cagctcatgg	gcaatgggt	gtggcaactt	600
ggggagacca	tgtgcaccc	catcacggcc	atggatgcca	atagtcagt	caccaggacc	660
tacatcttgc	ccgccccatggc	cattggacc	tacctggcca	ctgtccaccc	catcttcc	720
acgaagtcc	ggaagccctc	tgtggccacc	ctggatct	gcctcctgtg	ggccctctcc	780
ttcatcgca	tcacccctgt	gtggctgtat	gccagactca	tcccttcccc	aggaggtgca	840
gtgggctcg	gcatacgcct	gccccaaacca	gacactgacc	tctactgggt	caccctgtac	900
cagttttcc	tggccttgc	cctgccttt	gtggatcatca	cagccgcata	cgtgaggatc	960
ctgcagcga	tgacgtccct	agtggccccc	gcctcccagc	gcagcatccg	gcgcggaca	1020
aagagggtga	cccgacacgc	catcgccatc	tgtctgtct	tctttgtgtg	ctgggcaccc	1080
tactatgtc	tacagctgac	ccagttgtcc	atcacccg	ccacccctcac	ctttgtctac	1140
ttataacaatg	cggccatcag	cttgggcttat	gccaacagct	gcctcaaccc	ttttgtgtac	1200
atcgtcttgc	gtgagacgtt	ccgcacaaacgc	ttgttctgt	cggtgaagcc	tgcagccag	1260
gggcagcttgc	gctgtgtcag	caacgctcag	acggctgacg	aggagaggac	agaaagcaaa	1269
ggcacctga						

<210> 4
<211> 353
<212> PRT
<213> Human

<400> 4			
Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn			
1	5	10	15
Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg			
20	25	30	
Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly			
35	40	45	
Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala			
50	55	60	
Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile			
65	70	75	80
Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met			
85	90	95	
Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly			
100	105	110	
Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe			
115	120	125	
Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala			
130	135	140	

Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala
 145 150 155 160
 Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr
 165 170 175
 Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val
 180 185 190
 Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe
 195 200 205
 Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile
 210 215 220
 Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala
 225 230 235 240
 Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg
 245 250 255
 Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr
 260 265 270
 Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr
 275 280 285
 Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser
 290 295 300
 Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys
 305 310 315 320
 Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala
 325 330 335
 Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly
 340 345 350
 Thr

<210> 5
 <211> 417
 <212> PRT
 <213> Human

<400> 5
 Met Lys Lys Gly Val Gly Arg Ala Val Gly Leu Gly Gly Ser Gly
 1 5 10 15
 Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asn Cys Gly Ala Cys Ala
 20 25 30
 Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro Gln Pro Ala Trp Val
 35 40 45
 Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala Thr Gly Thr Gly Trp
 50 55 60
 Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn
 65 70 75 80
 Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg
 85 90 95
 Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly
 100 105 110
 Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala
 115 120 125
 Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile
 130 135 140
 Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met
 145 150 155 160
 Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly
 165 170 175
 Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe
 180 185 190
 Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala
 195 200 205

Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala
 210 215 220
 Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr
 225 230 235 240
 Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val
 245 250 255
 Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe
 260 265 270
 Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile
 275 280 285
 Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala
 290 295 300
 Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg
 305 310 315 320
 Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr
 325 330 335
 Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr
 340 345 350
 Phe Val Tyr Leu Tyr Asn Ala Ala Ser Leu Gly Tyr Ala Asn Ser
 355 360 365
 Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys
 370 375 380
 Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala
 385 390 395 400
 Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly
 405 410 415
 Thr

<210> 6
 <211> 422
 <212> PRT
 <213> Human

<400> 6
 Met Ser Val Gly Ala Met Lys Lys Gly Val Gly Arg Ala Val Gly Leu
 1 5 10 15
 Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asn
 20 25 30
 Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro
 35 40 45
 Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala
 50 55 60
 Thr Gly Thr Gly Trp Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly
 65 70 75 80
 Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala
 85 90 95
 Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met
 100 105 110
 Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser
 115 120 125
 Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Asn
 130 135 140
 Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu
 145 150 155 160
 Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly
 165 170 175
 Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp
 180 185 190
 Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile
 195 200 205

Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg
210 215 220
Lys Pro Ser Val Ala Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser
225 230 235 240
Phe Ile Ser Ile Thr Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe
245 250 255
Pro Gly Gly Ala Val Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr
260 265 270
Asp Leu Tyr Trp Phe Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu
275 280 285
Pro Phe Val Val Ile Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met
290 295 300
Thr Ser Ser Val Ala Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr
305 310 315 320
Lys Arg Val Thr Arg Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val
325 330 335
Cys Trp Ala Pro Tyr Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser
340 345 350
Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu
355 360 365
Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys
370 375 380
Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln
385 390 395 400
Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg
405 410 415
Thr Glu Ser Lys Gly Thr
420

<210> 7
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<223> MCH Analog

<400> 7
Arg Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 8
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (12)...(12)

<221> DISULFID
<222> (2)...(11)

<223> MCH Analog

<400> 8
Arg Cys Met Leu Gly Arg Val Phe Arg Pro Cys Tyr
1 5 10

<210> 9
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (10)...(10)

<221> DISULFID
<222> (1)...(10)

<223> MCH Analog

<400> 9
Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 10
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<221> AMIDATION
<222> (16)...(16)

<221> DISULFID
<222> (7)...(16)

<223> MCH Analog

<400> 10
Asp Phe Asp Met Leu Arg Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10 15

<210> 11
<211> 19
<212> PRT
<213> Human

<220>
<221> DISULFID
<222> (7)...(16)

<400> 11
Asp Phe Asp Met Leu Arg Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10 15
Trp Gln Val

<210> 12
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (1)...(10)

<221> ACETYLATION
<222> (1)...(1)

<400> 12
Cys Met Leu Gly Arg Val Tyr Arg Pro Cys Trp Gln Val
1 5 10

<210> 13
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (7)...(16)

<221> MOD_RES
<222> (4)...(4)
<223> Xaa = Norleucine

<221> MOD_RES
<222> (8)...(8)
<223> Xaa = Norleucine

<400> 13
Asp Phe Asp Xaa Leu Arg Cys Xaa Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10 15
Trp Gln Val

<210> 14
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (7)...(16)

<400> 14
Asp Phe Ala Met Leu Arg Cys Met Leu Gly Arg Val Phe Arg Pro Cys
1 5 10 15
Trp Gln Tyr

<210> 15

<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analogs

<221> DISULFID
<222> (2)...(11)

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = D-Arginine

<221> AMIDATION
<222> (11)...(11)

<400> 15
Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 16
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (2)...(11)

<221> MOD_RES
<222> (2)...(2)
<223> Xaa = D-Cysteine

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<400> 16
Arg Xaa Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 17
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (2)...(11)

<221> MOD_RES
<222> (3)...(3)

<223> Xaa = D-Methionine

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<400> 17
Arg Cys Xaa Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 18
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (2)...(11)

<221> MOD_RES
<222> (4)...(4)
<223> Xaa = D-Leucine

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<400> 18
Arg Cys Met Xaa Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 19
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (2)...(11)

<221> MOD_RES
<222> (6)...(6)
<223> Xaa = D-Arginine

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<400> 19
Arg Cys Met Leu Gly Xaa Val Tyr Arg Pro Cys
1 5 10

<210> 20
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (2)...(11)

<221> MOD_RES
<222> (7)...(7)
<223> Xaa = D-Valine

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<400> 20
Arg Cys Met Leu Gly Arg Xaa Tyr Arg Pro Cys
1 5 10

<210> 21
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> DISULFID
<222> (2)...(11)

<221> MOD_RES
<222> (8)...(8)
<223> Xaa = D-Tyrosine

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<400> 21
Arg Cys Met Leu Gly Arg Val Xaa Arg Pro Cys
1 5 10

<210> 22
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES

<222> (9)...(9)
<223> Xaa = D-Arginine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 22
Arg Cys Met Leu Gly Arg Val Tyr Xaa Pro Cys
1 5 10

<210> 23
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (10)...(10)
<223> Xaa = D-Proline

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 23
Arg Cys Met Leu Gly Arg Val Tyr Arg Xaa Cys
1 5 10

<210> 24
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (11)...(11)
<223> Xaa = D-Cysteine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 24
Arg Cys Met Leu Gly Arg Val Tyr Arg Pro Xaa
1 5 10

<210> 25
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (3)...(3)
<223> Xaa = N-Me-Norleucine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 25
Arg Cys Xaa Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 26
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (4)...(4)
<223> Xaa = N-Me-Leucine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 26
Arg Cys Met Xaa Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 27
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = MeGly

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 27
Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 28
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (6)...(6)
<223> Xaa = N-Me-Arginine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 28
Arg Cys Met Leu Gly Xaa Val Tyr Arg Pro Cys
1 5 10

<210> 29
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (9)...(9)
<223> Xaa = N-Me-Arginine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 29

Arg Cys Met Leu Gly Arg Val Tyr Xaa Pro Cys
1 5 10

<210> 30
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (10)...(10)
<223> Xaa = MeGly

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 30
Arg Cys Met Leu Gly Arg Val Tyr Arg Xaa Cys
1 5 10

<210> 31
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 31
Ala Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 32
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = Norleucine

<221> DISULFID

<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<221> ACETYLATION
<222> (1)...(1)

<400> 32
Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 33
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 33
Pro Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 34
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 34
Asn Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 35
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 35
Ser Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 36
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 36
Glu Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 37
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> AMIDATION
<222> (10)...(10)

<221> DISULFID
<222> (1)...(10)

<400> 37
Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 38
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> DISULFID
<222> (1)...(10)

<221> AMIDATION
<222> (10)...(10)

<400> 38
Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 39
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 39
Arg Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 40
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = Des-Amino-Arginine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 40
Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 41
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = D-Arginine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<221> ACETYLATION
<222> (1)...(1)

<400> 41
Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 42
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = D-Norleucine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<221> ACETYLATION
<222> (1)...(1)

<400> 42
Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 43
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = D-Proline

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<221> ACETYLATION
<222> (1)...(1)

<400> 43

Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 44
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = D-Asparagine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<221> ACETYLATION
<222> (1)...(1)

<400> 44
Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 45
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = D-Serine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<221> ACETYLATION
<222> (1)...(1)

<400> 45
Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 46
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> MOD_RES

<222> (1)...(1)
<223> Xaa = D-Glutamic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<221> ACETYLATION
<222> (1)...(1)

<400> 46
Xaa Cys Met Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 47
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<221> ACETYLATION
<222> (1)...(1)

<400> 47
Arg Cys Met Leu Ala Arg Val Tyr Arg Pro Cys
1 5 10

<210> 48
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 48
Arg Cys Met Leu Leu Arg Val Tyr Arg Pro Cys
1 5 10

<210> 49
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = Norleucine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 49
Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 50
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 50
Arg Cys Met Leu Pro Arg Val Tyr Arg Pro Cys
1 5 10

<210> 51
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 51
Arg Cys Met Leu Asn Arg Val Tyr Arg Pro Cys
1 5 10

<210> 52
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 52
Arg Cys Met Leu Ser Arg Val Tyr Arg Pro Cys
1 5 10

<210> 53
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 53
Arg Cys Met Leu Lys Arg Val Tyr Arg Pro Cys
1 5 10

<210> 54
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 54

Arg Cys Met Leu Glu Arg Val Tyr Arg Pro Cys
1 5 10

<210> 55
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = D-Leucine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 55

Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 56
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = D-Norleucine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 56

Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 57
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION

<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = D-Proline

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 57
Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 58
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = D-Glutamic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 58
Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 59
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = D-Lysine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 59
Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 60
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = bAla

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 60
Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 61
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = Gamma-Aminobutyric Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 61
Arg Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 62
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 62
Arg Cys Met Leu Gly Arg Val Phe Arg Pro Cys
1 5 10

<210> 63
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 63
Arg Cys Met Leu Gly Arg Val Trp Arg Pro Cys
1 5 10

<210> 64
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> AMIDATION
<222> (11)...(11)

<221> DISULFID
<222> (2)...(11)

<400> 64
Arg Cys Met Leu Gly Arg Val His Arg Pro Cys
1 5 10

<210> 65
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (8)...(8)
<223> Xaa = (2')Naphthylalanine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 65
Arg Cys Met Leu Gly Arg Val Xaa Arg Pro Cys
1 5 10

<210> 66
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (8)...(8)
<223> Xaa = P-Fluoro-Phenylalanine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 66
Arg Cys Met Leu Gly Arg Val Xaa Arg Pro Cys
1 5 10

<210> 67
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (8)...(8)
<223> Xaa = P-Amino-Phenylalanine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION

<222> (11)...(11)

<400> 67
Arg Cys Met Leu Gly Arg Val Xaa Arg Pro Cys
1 5 10

<210> 68
<211> 11
<212> PRT
<213> Artificial Sequence

<220>

<223> MCH Analog

<221> ACETYLATION

<222> (1)...(1)

<221> MOD_RES
<222> (8)...(8)
<223> Xaa = P-Carboxy-Phenylalanine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 68
Arg Cys Met Leu Gly Arg Val Xaa Arg Pro Cys
1 5 10

<210> 69
<211> 11
<212> PRT
<213> Artificial Sequence

<220>

<223> MCH Analog

<221> ACETYLATION

<222> (1)...(1)

<221> MOD_RES
<222> (8)...(8)
<223> Xaa - Cyclohexylalanine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 69
Arg Cys Met Leu Gly Arg Val Xaa Arg Pro Cys
1 5 10

<210> 70
<211> 11
<212> PRT
<213> Artificial Sequence

<220>

<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (4)...(5)
<223> Xaa = 5-Aminopentanoic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 70
Arg Cys Met Xaa Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 71
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = D-Arginine

<221> MOD_RES
<222> (4)...(5)
<223> Xaa = 5-Aminopentanoic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 71
Xaa Cys Met Xaa Xaa Arg Val Tyr Arg Pro Cys
1 5 10

<210> 72
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (9)...(10)
<223> Xaa = 5-Aminopentanoic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 72
Arg Cys Met Leu Gly Arg Val Tyr Xaa Xaa Cys
1 5 10

<210> 73
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = D-Arginine

<221> MOD_RES
<222> (9)...(10)
<223> Xaa = 5-Aminopentanoic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 73
Xaa Cys Met Leu Gly Arg Val Tyr Xaa Xaa Cys
1 5 10

<210> 74
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = D-Proline

<221> MOD_RES
<222> (9)...(10)
<223> Xaa = 5-Aminopentanoic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 74
Arg Cys Met Leu Xaa Arg Val Tyr Xaa Xaa Cys
1 5 10

<210> 75
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = Des-Amino-Arginine

<221> MOD_RES
<222> (9)...(10)
<223> Xaa = 5-Aminopentanoic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 75
Xaa Cys Met Leu Gly Arg Val Tyr Xaa Xaa Cys
1 5 10

<210> 76
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (4)...(5)
<223> Xaa = 5-Aminopentanoic Acid

<221> MOD_RES
<222> (9)...(10)
<223> Xaa = 5-Aminopentanoic Acid

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 76

Arg Cys Met Xaa Xaa Arg Val Tyr Xaa Xaa Cys
1 5 10

<210> 77
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (3)...(3)
<223> Xaa = Norleucine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 77
Arg Cys Xaa Leu Gly Arg Val Tyr Arg Pro Cys
1 5 10

<210> 78
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> MCH Analog

<221> ACETYLATION
<222> (1)...(1)

<221> MOD_RES
<222> (1)...(1)
<223> Xaa = Des-Amino-Arginine

<221> MOD_RES
<222> (5)...(5)
<223> Xaa = D-Norleucine

<221> DISULFID
<222> (2)...(11)

<221> AMIDATION
<222> (11)...(11)

<400> 78
Xaa Cys Met Leu Xaa Arg Val Tyr Arg Pro Cys
1 5 10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/03293

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : C07K 7/08, 7/52; A61K 38/00
US CL : 514/13, 14; 530/317

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 514/13, 14; 530/317, 300

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DROZDZ et al. Melanin-Concentrating Hormone Binding to Mouse Melanoma Cells in Vitro. FEBS Letters. 1995, Vol. 359, pages 199-202. See pages 200-202, Figure 1	1, 9-11
X	DROZDZ et al. (D-(p-Benzoylphenylalanine)13Tyrosin19)-Melanin-Concentrating Hormone, a Potent Analogue for MCH Receptor Crosslinking. J. Peptide Science. 1999, Vol. 5, pages 234-242. See pages 236-239, Figure 1.	1, 9-11
X	HINTERMANN et al. Synthesis and Characterization of New Radioligands for the Mammalian Melanin-Concentrating Hormone (MCH) Receptor. J. Receptor & Signal Transduction Research. 1999, Vol. 19, pages 411-422. See pages 414-418, Figures 1-3.	1, 9-11
X	BAKER et al. Structure-Activity Studies with Fragments and Analogues of Salmonid Melanin-Concentrating Hormone. Peptides (Fayetteville, N. Y.) 1990, Vol. 16, pages 1103-1108. See pages 1104-1106, Table 1.	1
X	LEBL et al. Melanin Concentrating Hormone Analogues: Contraction of the Cyclic Structure.1. Agonist Activity. J. Med. Chem. 1988, Vol. 31, pages 949-954. See Figures 1 and 2.	1
X	WO 90/11295 A1 (THE SALK INSTITUTE FOR BIOLOGICAL STUDIES) 04 October 1990 (04,10,1990). See pages 3, 6 and 16, Example 1.	1

Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone
"&"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
	document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
04 May 2001 (04.05.2001)	24 MAY 2001
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer <i>Jayne Bridges</i> Chih-Min Kwon
Facsimile No. (703)305-3230	Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/03293

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Please see Continuation Sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-12, SEQ ID NO:8

Remark on Protest The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/03293

Continuation of B. FIELDS SEARCHED Item 3: STN search on CAPLUS, MEDLINE, EMBASE, BIOSIS and SCISEARCH; EAST search on USPAT, DERWENT, EPO, JPO. Search term used: melanin concentrating hormone, MCH, melanin concentrating hormone receptor, MCH receptor, binding, inhibiting, agonist antagonist. Amino acid sequence search on SEQ ID NO:7, 8, 9, 10.

BOX II Observations where unity of invention is lacking

This International Searching Authority found multiple inventions in this international application, as follows:

This International Search Authority has found 176 inventions claimed in the International Application covered by the claims indicated below:

Group 1-44, claims 1-8 and 9-12, in part drawn to one of peptides SEQ ID NO: 7, 8, 9, 10, 15, 24, 25, 27, 28, 30-49, 51, 52, 56, 61, 62, 63, 65-67, 69-72 and 77, respectively and a method of screening for a compound able to bind a MCH receptor using such. For group 1, the claims will be searched to extent that they read upon SEQ ID NO: 7. If group 2 is elected, the claims will be searched to extent that they read upon SEQ ID NO: 8.

Group 45-88, claim 13, in part drawn to a method for increasing weight in a subject comprising the step of administering one of peptides SEQ ID NO: 7, 8, 9, 10, 15, 24, 25, 27, 28, 30-49, 51, 52, 56, 61, 62, 63, 65-67, 69-72 and 77, respectively. For group 45, the claims will be searched to extent that they read upon SEQ ID NO: 7. If group 46 is elected, the claims will be searched to extent that they read upon SEQ ID NO: 8.

Group 89-132, claim 14, in part drawn to a method for increasing appetite in a subject comprising the step of administering one of peptides SEQ ID NO: 7, 8, 9, 10, 15, 24, 25, 27, 28, 30-49, 51, 52, 56, 61, 62, 63, 65-67, 69-72 and 77, respectively. For group 89, the claims will be searched to extent that they read upon SEQ ID NO: 7. If group 90 is elected, the claims will be searched to extent that they read upon SEQ ID NO: 8.

Group 133-176, claims 15, and 16, in part drawn to a method for measuring the ability of a compound to decrease weight or appetite in a subject comprising the step of administering one of peptides SEQ ID NO: 7, 8, 9, 10, 15, 24, 25, 27, 28, 30-49, 51, 52, 56, 61, 62, 63, 65-67, 69-72 and 77, respectively. For group 133, the claims will be searched to extent that they read upon SEQ ID NO: 7. If group 134 is elected, the claims will be searched to extent that they read upon SEQ ID NO: 8.

The International Search Authority considers that the international application does not comply with the requirements of unity of invention (Rules 13.1, 13.2 and 13.3) for the reasons indicated below:

The inventions listed as Groups 1-176 do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The peptides of SEQ ID NO: 7, 8, 9, 10, 15, 24, 25, 27, 28, 30-49, 51, 52, 56, 61, 62, 63, 65-67, 69-72 and 77 are unrelated, each to the other. Each peptide is distinct and does not share a special technical feature with the other. Additionally, the claimed methods produce different results which are not coextensive and which do not share the same technical feature.