

Model Development Phase Template

Date	15 March 2024
Team ID	738305
Project Title	Machine Learning Approach For Employee Performance Prediction
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

Random Forest Regression model is the best fit for the employee performance prediction model.

Initial Model Training Code:

```
#splitting data into features and target column
x = data.drop(columns=['actual_productivity', 'wip'], axis=1)
y = data['actual_productivity']

print(x)

print(y)

#splitting data into train test split
#import train_test_split dependency
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)

x.shape,x_train.shape,x_test.shape
```


Model Validation and Evaluation Report:

Note: Machine Learning Approach For Emplyee Performance Prediction is a regression model . It is not possible to create or fit a confusion matrix for regression models.

So we cannot create confusion matrix for this project.

Model	Regression Report	MSE	Confus	Confusion Matrix		
Linear regression model	#model building #importing linear regression dependency from sklearn.linear model import LinearRegression linear-linearRegression() linear.linearRegression() linear.linear model mean squared error score_train=linear.predict(x_train) mse_train=mean_squared_error(y_train,score_train) print("mean_squared_error in training data in linear regression is:",mse_train) score_test=linear.predict(x_test) mse_test=mean_squared_error(y_test,score_test) print("mean_squared_error(y_test,score_test) print("mean_squared_error(y_test,score_test) #linear model r2_score score_train=linear.predict(x_train) mse_train=r2_score(y_train,score_train) print("r2_score in training data in linear regression is:",mse_train) score_test=linear.predict(x_test) mse_test=r2_score(y_test,score_test) print("r2_score in test data in linear regression is:",mse_test) #linear model mean_absolute_error score_train=linear.predict(x_train) mse_train=mean_absolute_error(y_train,score_train) print("mean_absolute_error in training data in linear regression is:",mse_train) score_test=linear.predict(x_test) mse_test=mean_absolute_error in training data in linear regression is:",mse_train) score_test=linear.predict(x_test) mse_test=mean_absolute_error in training data in linear regression is:",mse_test) print("mean_absolute_error in testing data in linear regression is:",mse_test)	0.021	Actual V6 921 0.268 321 0.800 101 0.681 920 0.325 58 0.667 790 0.800 948 0.768 969 0.768 410 0.650 1079 0.750	0.432858 0.799398 0.61 0.671121 000 0.591028 604 0.593638 980 0.735931 847 0.549655 847 0.526311 417 0.631047		

Random forest model	#Random Forest Regressor from sklearn.ensemble import RandomForestRegressor RandomForest = RandomForestRegressor() RandomForest = RandomForestRegressor() RandomForest.fit(x_train, y_train) #Random Forest Regressor mean squared error score_train=RandomForest.predict(x_train) mse_train=mean_squared_error(y_train,score_train) print("mean squared error in training data in Random Forest Regressor is:",mse_train) score_test=RandomForest.predict(x_test) mse_test=mean_squared_error(y_test,score_test) print("mean squared error in testing data in Random Forest Regressor is:",mse_test) #Random Forest Regressor r2_score score_train=RandomForest.predict(x_train) mse_train=r2_score(y_train,score_train) print("r2_score in training data in Random Forest Regressor is:",mse_train) score_test=RandomForest.predict(x_test) mse_test=r2_score(y_test,score_test) print("r2_score in test data in Random Forest Regressor is:",mse_test) #Random Forest Regressor mean_absolute_error score_train=linear.predict(x_train) mse_train=mean_absolute_error(y_train,score_train) print("mean_absolute_error in training data in Random Forest Regressor is:",mse_train) score_test=linear.predict(x_test) mse_test=mean_absolute_error in training data in Random Forest Regressor is:",mse_train) score_test=linear.predict(x_test) mse_test=mean_absolute_error in testing data in Random Forest Regressor is:",mse_test) print("mean_absolute_error in testing data in Random Forest Regressor is:",mse_test)	0.0120	921 321 101 920 58 790 948 969 410 1079	0.268214 0.800359 0.681061 0.325000 0.667604 0.800980 0.768847 0.768847 0.650417 0.750396	predicted_value 0.432858 0.799398 0.671121 0.591028 0.593638 0.735931 0.549655 0.526311 0.631047 0.750391
Xgboost	<pre>#Xgboost regression import xgboost as xgb model_xgb=xgb.XGBRegressor(n_estimators=200,max_depth=5,learning_rate=0.1) model_xgb.fit(x_train,y_train) #Xgboost mean squared error score_train=model_xgb.predict(x_train) mse_train=mean_squared_error(y_train,score_train) print("mean squared error in training data in Xgboost regression is:",mse_train) score_test=model_xgb.predict(x_test) mse_test=mean_squared_error(y_test,score_test) print("mean squared error in testing data in Xgboost regressionr is:",mse_test) #Xgboost Regressor r2_score score_train=model_xgb.predict(x_train) mse_train=r2_score(y_train,score_train) print("r2_score in training data in Xgboost regression is:",mse_train) score_test=model_xgb.predict(x_test) mse_test=r2_score(y_test,score_test) print("r2_score in test data in Random Xgboost regressionr is:",mse_test) #Xgboost regression mean_absolute_error score_train=linear.predict(x_train) mse_train=mean_absolute_error(y_train,score_train) print("mean_absolute_error in training data in Xgboost regression is:",mse_train) score_test=linear.predict(x_test) mse_test=mean_absolute_error(y_test,score_test) print("mean_absolute_error in testing data in Xgboost regression is:",mse_test) print("mean_absol</pre>	0.0133	921 321 101 920 58 790 948 969 410 1079	0.268214 0.800359 0.681061 0.325000 0.667604 0.800980 0.768847 0.768847 0.650417 0.750396	predicted_value