# **Curved Boundary Conditions** in lattice Boltzmann method

#### Goncalo Silva

Department of Mechanical Engineering Instituto Superior Técnico (IST) Lisbon, Portugal



### Outline

- Introduction
  - General aspects
  - Motivation
  - Possible approaches
- 2 Problem statement
  - Off-grid populations
  - Interpolated Boundary Conditions
- 3 Summary

### Outline

- Introduction
  - General aspects
  - Motivation
  - Possible approaches
- 2 Problem statement
  - Off-grid populations
  - Interpolated Boundary Conditions
- Summary

# Irregular geometries in fluid flow problems

Most practical fluid flow problems of interest in engineering or science involve:

### 1) **irregular** domains



### 2) irregular shaped objects



http://engineeringskills.wikidot.com/concepts#toc27

Yamaguchi et al. AIChE, 50(7), 1530 (2004)

# Computational Fluid Dynamics: non-orthogonal boundaries

Representing irregular domains in Computational Fluid Dynamics

**Example:** Flow in a

tube bank



Versteeg & Malalasekera, An Introduction to CFD. Prentice Hall, 1995

# Computational Fluid Dynamics: non-orthogonal boundaries

#### Cartesian grid

### Non-orthogonal body-fitted grid



 $(40 \times 15 \text{ grid})$ 





Versteeg & Malalasekera, An Introduction to CFD. Prentice Hall, 1995



Versteeg & Malalasekera, An Introduction to CFD. Prentice Hall, 1995

### Lattice Boltzmann algorithm consists of...

...stream along links and equilibrate at nodes



- ⇒ In "stream along links and equilibrate at nodes" philosophy the streaming operation is exact
  - → Advantage: No interpolations are needed → virtually no numerical dissipation is introduced in streaming
  - → Disadvantage: Lattice structure, i.e. velocity space discretization, constrains the configuration space discretization, i.e. the location of spatial nodes is prescribed by lattice



#### Conclusion:

Because the lattice Boltzmann method is an "on-grid" scheme it is restricted to **uniform cartesian grids** 

Are we limited to the stepwise representation of irregular shapes?



Ladd & Verbeg 2001, J. Stat. Phys. 104, 1191-1251

#### The fact is...

...if we intend to represent non-orthogonal shapes we have to use numerical approximations (e.g. interpolations) somewhere

#### Two different approaches:

- Interpolate: Everywhere
- Preserve: Boundary scheme
- Non-orthogonal body-fitted grids

- Interpolate: Boundary scheme
- Preserve: Everywhere
- Interpolated boundary conditions

**Example:** Flow domain containing a solid circle represented through each approach:

Non-orthogonal body-fitted grids





He & Doolen 1997, Phys. Rev. E 56, 434



Kao & Yang 2008, J. Comp. Phys. 227, 5671-5690

### Outline

- 1 Introduction
  - General aspects
  - Motivation
  - Possible approaches
- Problem statement
  - Off-grid populations
  - Interpolated Boundary Conditions
- 3 Summary

### **Example:**



Aidun & Clausen 2010, Annu. Rev. Fluid Mech. 42, 439-472

Remember: When the wall is half-way

- On-grid population at time t is propagated
- Bounces-back at the wall
- Returns to the same **on-grid** location at time  $t + \Delta t$



However: When the wall is **NOT** half-way

- Construct off-grid population at time t from where is propagated
- Bounces-back at the wall
- ullet Returns to an **on-grid** location at time  $t+\Delta t$



#### Coming back to the example:



Aidun & Clausen 2010, Annu. Rev. Fluid Mech. 42, 439-472

#### Idea of interpolating the boundary condition:

Reconstruct the **off-grid** population by interpolating the known **on-grid** data

# Linear interpolation

### Recall the linear equation formula

$$y = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) (x - x_1) + y_1$$



# Linear interpolation

- Use linear interpolation based on known populations:
  - $\rightarrow$  known:  $\tilde{f}_R(\mathbf{x}_a,t)$
  - $\rightarrow$  known:  $\tilde{f}_R(\mathbf{x}_c,t)$
  - ightarrow unknown:  $ilde{f}_R(\mathbf{x}_d,t)$



Note: 
$$\|\mathbf{x}_c - \mathbf{x}_a\| = \|\mathbf{x}_a - \mathbf{x}_b\| = \Delta \mathbf{x}$$

# Linear interpolation: Exercise

### **Question:**

Compute  $\tilde{f}_R(\mathbf{x}_d,t)$  through linear interpolation of  $\tilde{f}_R(\mathbf{x}_a,t)$  and  $\tilde{f}_R(\mathbf{x}_c,t)$ 



Note: 
$$\|\mathbf{x}_c - \mathbf{x}_a\| = \|\mathbf{x}_a - \mathbf{x}_b\| = \Delta \mathbf{x}$$

# Linear interpolation: Exercise

### Question:

Compute  $\tilde{f}_R(\mathbf{x}_d,t)$  through linear interpolation of  $\tilde{f}_R(\mathbf{x}_a,t)$  and  $\tilde{f}_R(\mathbf{x}_c,t)$ 

#### **Solution:**

$$\tilde{f}_R(\mathbf{x}_d, t) = (1 - 2q)\tilde{f}_R(\mathbf{x}_c, t) + 2q\tilde{f}_R(\mathbf{x}_a, t)$$

that yields:

$$f_L(\mathbf{x}_a, t + \Delta t) = \tilde{f}_R(\mathbf{x}_d, t)$$

When the wall is beyond the half-way location, i.e.  $q>\frac{1}{2}$ , the previous procedure leads to an extrapolation instead of an interpolation scheme



#### **Solution:**

Interpolate the post-streaming populations

• From the time evolution sketch of the populations we observe:

- $\rightarrow$  known:  $f_L(\mathbf{x}_d, t + \Delta t) = \tilde{f}_R(\mathbf{x}_a, t)$
- $\rightarrow$  known:  $f_L(\mathbf{x}_c, t + \Delta t) = \tilde{f}_L(\mathbf{x}_a, t)$
- $\rightarrow$  unknown:  $f_L(\mathbf{x}_a, t + \Delta t)$



# Linear interpolation: Exercise

#### **Question:**

Compute  $f_L(\mathbf{x}_a, t + \Delta t)$  through linear interpolation of  $f_L(\mathbf{x}_d, t + \Delta t)$  and  $f_L(\mathbf{x}_c, t + \Delta t)$ 



Note: 
$$\|\mathbf{x}_c - \mathbf{x}_a\| = \|\mathbf{x}_a - \mathbf{x}_b\| = \Delta \mathbf{x}$$

### Linear interpolation: Exercise

#### **Question:**

Compute 
$$f_L(\mathbf{x}_a, t + \Delta t)$$
 through linear interpolation of  $f_L(\mathbf{x}_d, t + \Delta t)$  and  $f_L(\mathbf{x}_c, t + \Delta t)$ 

#### **Solution:**

$$f_L(\mathbf{x}_a, t + \Delta t) = \left(\frac{2q-1}{2q}\right) f_L(\mathbf{x}_d, t + \Delta t) + \frac{1}{2q} f_L(\mathbf{x}_d, t + \Delta t)$$

or

$$f_L(\mathbf{x}_a, t + \Delta t) = \left(\frac{2q-1}{2q}\right) \tilde{f}_R(\mathbf{x}_a, t) + \frac{1}{2q} \tilde{f}_L(\mathbf{x}_a, t)$$

# Linear interpolation: 2D lattices

### **Linear interpolation bounceback:**

• 
$$q < \frac{1}{2}$$

$$f_{\bar{\alpha}}(\mathbf{x}, t + \Delta t) = 2q\tilde{f}_{\alpha}(\mathbf{x}, t) + (1 - 2q)\tilde{f}_{\alpha}(\mathbf{x} - \mathbf{c}\Delta t, t)$$

$$q \ge \frac{1}{2}$$

$$f_{\bar{\alpha}}(\mathbf{x}, t + \Delta t) = \frac{1}{2q} \tilde{f}_{\alpha}(\mathbf{x}, t) + \left(\frac{2q-1}{2q}\right) \tilde{f}_{\bar{\alpha}}(\mathbf{x}, t)$$

### Quadratic interpolation: 2D lattices

#### **Quadratic interpolation bounceback:**

•  $q < \frac{1}{2}$ 

$$f_{\bar{\alpha}}(\mathbf{x}, t + \Delta t) = q(2q + 1)\tilde{f}_{\alpha}(\mathbf{x}, t)$$
$$+(1 + 2q)(1 - 2q)\tilde{f}_{\alpha}(\mathbf{x} - \mathbf{c}\Delta t, t) - q(1 - 2q)\tilde{f}_{\alpha}(\mathbf{x} - 2\mathbf{c}\Delta t, t)$$

•  $q \ge \frac{1}{2}$ 

$$f_{\bar{\alpha}}(\mathbf{x}, t + \Delta t) = \frac{1}{q(2q+1)} \tilde{f}_{\alpha}(\mathbf{x}, t) + \frac{2q-1}{q} \tilde{f}_{\bar{\alpha}}(\mathbf{x}, t) + \frac{1-2q}{q} \tilde{f}_{\bar{\alpha}}(\mathbf{x} - \mathbf{c}\Delta t, t)$$

### Exercise IV

# **Exercise IV:**

Flow around circular cylinder

### Outline

- 1 Introduction
  - General aspects
  - Motivation
  - Possible approaches
- 2 Problem statement
  - Off-grid populations
  - Interpolated Boundary Conditions
- **3** Summary

# Curved boundary conditions in LBM

- LBM uses cartesian uniform grids
- Non-orthogonal shapes require numerical approximations, e.g. interpolations
- In order to preserve the advantages of LBM it is preferable to only interpolate the solution at boundary
- Bounceback provides a good framework to extend to curved boundaries through interpolations