

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

Matemáticas I (MA-1111) Septiembre – Diciembre 2012

En el cuadernillo de respuestas, copie y complete:		
Nombre:		Carné:
Profesor:	Sección:	Examen tipo:

 $2^{
m do}$ Examen Parcial (40%) Examen tipo $\overline{f E}$ Duración: 1 hora 50 minutos

JUSTIFIQUE TODAS SUS RESPUESTAS

Pregunta 21. (5 ptos. c/u) Determine si los siguientes límites existen; en caso afirmativo, calcúlelos.

a.
$$\lim_{x \to 0} \frac{\tan(x) - \sin(x)}{x^3}$$

b.
$$\lim_{x \to -\infty} \frac{\sqrt[3]{2x^3 + x - 1} - \sqrt{x^2 - 3x}}{3x + 2}$$

c.
$$\lim_{x \to -1} \frac{3x^2 + x - 2}{(x+1)^2}$$

d.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 3x - 2} - x \right)$$

Pregunta 22. (6 ptos.) Dada la función

$$f(x) = \begin{cases} x^2 - ax & \text{, si } x \le 2\\ ax - b & \text{, si } x > 2 \end{cases}$$

halle los valores de a y b tales que f sea derivable en \mathbb{R} .

Pregunta 23. (6 ptos.) Halle las ecuaciones de las rectas que pasan por el punto (5,9) y son tangentes al gráfico de la función $y=x^2$.

Pregunta 24. (4 ptos. c/u) Calcule las derivadas de las siguientes funciones.

a.
$$h(x) = \frac{x \operatorname{sen}(2x)}{1 + x^2}$$

b.
$$g(x) = \cos^2(\sqrt{x} + 2x^4)$$