Divide and Conquer

Recursively:

Divide the problem into a number of sub-problems

Conquer the sub-problems by solving them recursively

Combine the solutions to the sub-problems into the solution for the original problem

General recurrence: T(N) = aT(N/b) + f(N)

Cases solved by divide and conquer

- **The maximum subsequence sum the O(** $N \log N$ **) solution**
- \diamond Tree traversals O(N)
- **\diamond** Mergesort and quicksort $O(N \log N)$

Closest Points Problem

Given N points in a plane. Find the closest pair of points. (If two points have the same position, then that pair is the closest with distance 0.)

> Simple Exhaustive Search

Check N(N-1)/2 pairs of points. $T = O(N^2)$.

Divide and Conquer – similar to the maximum subsequence

How about f(N)?

Can you find the cross distance in *linear* time?

st like finding subsequence sum, e a = b = 2...

Recall:
$$T(N) = 2T(N/2) + cN$$

 $= 2[2T(N/2^2) + cN/2] + cN$
 $= 2^2 T(N/2^2) + 2cN$
 $=$
 $= 2^k T(N/2^k) + kcN$
 $= N + c N \log N = O(N \log N)$
if $T(N) = 2T(N/2) + cN^2$
 $= 2[2T(N/2^2) + cN^2/2^2] + cN^2$
 $= 2^2 T(N/2^2) + cN^2(1+1/2)$
 $=$
 $= 2^k T(N/2^k) + cN^2(1+1/2+...+1/2^{k-1})$
 $= O(N^2)$

Divide and Conquer

If NumPointInStrip = $O(\sqrt{N})$, we have

```
/* points are all in the strip */
for ( i=0; i<NumPointsInStrip; i++ )
  for ( j=i+1; j<NumPointsInStrip; j++ )
    if ( Dist( P_i , P_j ) < \delta )
    \delta = Dist( P_i , P_j );
```

The worst case: NumPointInStrip = N

The worst case:

For any p_i , at most 7 points are considered. f(N) = O(N)

```
/* points are all in the strip */
/* and sorted by y coordinates */
for ( i = 0; i < NumPointsInStrip; i++ )
    for ( j = i + 1; j < NumPointsInStrip; j++ )
        if ( Dist_y( P_i , P_j ) > \delta )
        break;
else if ( Dist( P_i , P_j ) < \delta )
    \delta = Dist( P_i , P_j );
```

Three methods for solving recurrences:

$$T(N) = a T(N/b) + f(N)$$

- Substitution method
 - Recursion-tree method
 - Master method
- **X** Details to be ignored:
 - \aleph if (N/b) is an integer or not
 - \aleph always assume $T(n) = \Theta(1)$ for small n

Substitution method — guess, then prove by induction

[Example]
$$T(N) = 2 T(\lfloor N/2 \rfloor) +$$

Guess: $T(N) = O(N \log N)$

Proof: Assume it is true for all m < N, in particular

for
$$m = \lfloor N/2 \rfloor$$
.

Then

Relax!

As long as we can choose sufficiently large c so that it is true for T(2) and T(3).

$$\leq c N (\log N - \log 2) + N$$

 $\leq c N \log N \text{ for } c \geq 1$

0 so that

[Example]
$$T(N) = 2 T(\lfloor N/2 \rfloor) +$$

Wrong guess: T(N) = O(N)

Proof: Assume it is true for all m < N, in particular for $m = \lfloor N/2 \rfloor$.

$$T(\lfloor N/2 \rfloor) \le c \lfloor N/2 \rfloor$$

Substituting into the recurrence:

$$T(N) = 2 T(\lfloor N/2 \rfloor) + N$$

$$\leq 2 c \lfloor N/2 \rfloor + N$$

$$\leq cN + N = O(N)$$

How to make a good guess?

Must prove the exact form

Recursion-tree method

[Example]
$$T(N) = 3 T(N/4) + \Theta(N^2)$$

$$\log_4 N \xrightarrow{c\left(\frac{N}{4}\right)^2} \xrightarrow{c\left$$

[Example]
$$T(N) = T(N/3) + T(2N/3) + cN$$

$$c(\frac{N}{3}) \qquad c(\frac{2N}{3}) \qquad > cN$$

$$c(\frac{N}{3}) \qquad c(\frac{2N}{3}) \qquad > cN$$

$$c(\frac{N}{9}) \qquad c(\frac{2N}{9}) \qquad c(\frac{4N}{9}) \qquad > cN$$

Not complete!

Guess: $O(N \log N)$

Proof by substitution:

$$T(N) = T(N/3) + T(2N/3) + cN \le d(N/3)\log(N/3) + d(2N/3)\log(2N/3) + cN$$

$$= dN\log N - dN(\log_2 3 - \frac{2}{3}) + cN \le dN\log N$$
for $d \ge c/(\log_2 3 - \frac{2}{3})$

Master method

- **Master** Theorem **1** Let $a \ge 1$ and b > 1 be constants, let f(N) be a function, and let T(N) be defined on the nonnegative integers by the recurrence T(N) = aT(N/b) + f(N). Then:
- 1. If $f(N) = O(N^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(N) = \Theta(N^{\log_b a})$
- 2. If $f(N) = \Theta(N^{\log_b a})$, then $T(N) = \Theta(N^{\log_b a} \log N)$ regularity condition
- 3. If $\underline{f(N)} = \Omega(N^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $a\underline{f(N/b)} < c\underline{f(N)}$ for some constant c < 1 and all sufficiently large N, then $\underline{T(N)} = \Theta(\underline{f(N)})$
 - [Example] Mergesort has a = b = 2, and case 2 $\longrightarrow T = O(N \log N)$
 - [Example] a = b = 2, $f(N) = N \log N$? $T = O(N) \notin N$

Proof by recursion tree: for $n = b^k$ **for some integer** k

For case 1 where $f(N) = O(N^{\log_b a - \varepsilon})$

$$\sum_{j=0}^{\log_b N-1} a^j f(N/b^j) =$$

$$= O(N^{\log_b a - \varepsilon} \sum_{j=0}^{\log_b N - 1} (b^{\varepsilon})^j) = O(N^{\log_b a - \varepsilon} \frac{b^{\varepsilon \log_b N} - 1}{b^{\varepsilon} - 1})$$

$$= O(N^{\log_b a - \varepsilon} N^{\varepsilon}) = O(N^{\log_b a})$$

$$T(N) = \Theta(N^{\log_b a}) + O(N^{\log_b a}) = \Theta(N^{\log_b a})$$

Discussion 9: Please prove case 2. Read Ch.4 of "Introduction to Algorithms" for the rest of the proof.

- Master method another form
 - **Master Theorem** The recurrence T(N) = aT(N/b) + f(N) can be solved as follows:
- 1. If $af(N/b) = \kappa f(N)$ for some constant $\kappa < 1$, then $T(N) = \Theta(f(N))$
- 2. If af(N/b) = Kf(N) for some constant K > 1, then $T(N) = \Theta(N^{\log_b a})$
- 3. If af(N/b) = f(N), then $T(N) = \Theta(f(N)\log_b N)$

Theorem The solution to the equation

 $T(N) = a \ T(N/b) + \Theta(N^k \log^p N),$ where $a \ge 1, b > 1$, and $p \ge 0$ is

$$T(N) = \begin{cases} O(N^{\log_b a}) & \text{if } a > b^k \\ O(N^k \log^{p+1} N) & \text{if } a = b^k \\ O(N^k \log^p N) & \text{if } a < b^k \end{cases}$$

[Example] Mergesort has a = b = 2, p = 0 and k = 1. $T = O(N \log N)$

Example Divide with a = 3, and b = 2 for each recursion;

Conquer with O(N) – that is, k = 1 and p = 0.

If conquer takes $O(N^2)$ then $T = O(N^2)$.

[Example]
$$a = b = 2$$
, $f(N) = N \log N T = O(N \log^2 N)$

Reference:

Introduction to Algorithms, 3rd Edition: Ch.4, p. 65-113; Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. The MIT Press. 2009

Data Structure and Algorithm Analysis in C (2nd Edition): Ch.10, p.370-375; M.A.Weiss 著、陈越改编,人民邮件出版社,2005

Lecture Notes of CS 373: Combinatorial Algorithms: Notes on Solving Recurrence Relations, p.10-13; *Jeff Erickson, University of Illinois, Urbana-Champaign, 2003*