Yoneda Lemma Notes

Sebastian Conybeare

February 22, 2016

1 Warm-Up: Cayley's Theorem

Before talking about the Yoneda Lemma, we have to talk about Cayley's Theorem, which we can't do without talking about groups.

Definition 1.1. A group (G, \cdot, e) consists of a set G, together with a binary operation $\cdot: G \times G \to G$ and an element $e \in G$ satisfying the following properties:

- For all $x, y, z \in G$, x(yz) = (xy)z.
- For all $x \in G$, ex = xe = x.
- For each $x \in G$, there exists $y \in G$ so that xy = yx = e.

when the operation is clear from context, we refer to (G, \cdot, e) as simply G.

Example 1.2. The group GL(n) of invertible $n \times n$ matrices is a group under matrix multiplication.

Example 1.3. GL(n) has a subgroup SO(n) which consists of those matrices which also have determinant 1.

Example 1.4. For any set X, the set S(X) of bijections $X \to X$ is a group under composition

Example 1.5. The **free group on two generators**, F_2 , is the set of reduced strings over the alphabet $\{a, a^{-1}, b, b^{-1}\}$, where a string w is **reduced** if no two adjacent symbols of w are inverses. The group operation is given by concatenation, followed by iterated removal of forbidden substrings.

Exercise 1.6. Prove that each of the above examples satisfies the group axioms.

Before continuing, we define morphisms of groups:

Definition 1.7. Let G and H be groups. A function $\phi: G \to H$ is a homomorphism if $\phi(x)\phi(y) = \phi(xy)$ for all $x, y \in G$.

Exercise 1.8. Let GRP be the class of all groups. Prove that taking GRP(G, H) to be the set of homomorphisms from G to H defines a category with composition given by function composition, which we will call the category of groups. Prove that a morphism $\phi: G \to H$ is an isomorphism iff the underlying function of sets is a bijection. (Hint: show that the function ϕ^{-1} is a homomorphism.)

Some of the example groups are given as a set of symmetries, in a sense made precise by the following definition:

Definition 1.9. A symmetry group P is a group which is isomorphic to a subgroup of S(X) for some set X.

Examples 1.2-1.4 are obviously symmetry groups, but it's less obvious whether or not Example 1.5 is. For that question, we have Cayley's Theorem.

Theorem 1.10 (Cayley's Theorem). Let G be a group. Then G is isomorphic to a subgroup of S(G). In particular, G is a symmetry group.

Proof. Let $H = \{ f \in S(G) \mid \exists g \in G . \forall x \in G . f(x) = gx \}$. We define $\phi : G \to H$ by $\phi(g)(x) = gx$. ϕ is obviously surjective, and is injective since $\phi(g)(e) = ge = g$ for all $g \in G$. Finally, ϕ is an isomorphism, since if $g, g' \in G$, then $(\phi(g) \circ \phi(g'))(x) = \phi(g)(g'x) = gg'x = \phi(gg')(x)$, and in particular, $\phi(gg') = \phi(g) \circ \phi(g')$.

The upshot here is that every group, even F_2 , is a symmetry group of **something**. The most noticeable consequence of Cayley's Theorem is that group theorists don't bother to distinguish symmetry groups from general groups; they just call them all, well, groups!

2 The Yoneda Lemma: Categorical Preliminaries

Definition 2.1. Let \mathcal{C} and \mathcal{D} be categories, and let $F : \mathcal{C} \to \mathcal{D}$ be a functor. We say that F is **full** if the induced function $f^* : \mathcal{C}(X,Y) \to \mathcal{D}(FX,FY)$ is always surjective, and we call F **faithful** if f^* is always injective. If F is both full and faithful, we say that F is **fully faithful**.

Definition 2.2. A full subcategory C' of a category C is a subcategory such that the inclusion $i: C' \hookrightarrow C$ is a full functor.

Exercise 2.3. Prove that the inclusion of a subcategory is always a faithful functor.

Definition 2.4. Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ is **essentially surjective** if it is surjective on isomorphism classes of objects. Explicitly, F is essentially surjective if for every object $Y\in\mathcal{D}$, there exists an isomorphism $\phi:F(X)\stackrel{\sim}{\to} Y$ for some object $X\in\mathcal{C}$. We say that F is a **weak equivalence of categories**, or just an equivalence if F is fully faithful and essentially surjective.

Exercise 2.5. Let $F: \mathcal{C} \to \mathcal{D}$ be a fully faithful functor. Prove that there is a full subcategory $\mathcal{D}' \subseteq \mathcal{D}$ and an equivalence $\widetilde{F}: \mathcal{C} \to \mathcal{D}'$ so that $F \cong i \circ \widetilde{F}$, where $i: \mathcal{D}' \to \mathcal{D}$ is the inclusion functor.

Consider a full subcategory \mathcal{C} of SET which contains the terminal object $1 = \{*\}$. The functor $h^1 = \mathcal{C}(1, -) : \text{SET} \to \text{SET}$ is then naturally isomorphic to the inclusion functior $i : \mathcal{C} \hookrightarrow \text{SET}$, by the transformation $\alpha : h^1 \Rightarrow i$ given by $\alpha_X(f) = f(*)$.

Exercise 2.6. Suppose that C' is a full subcategory of C, and that the terminal object $1 \in C$ is also in C'. Prove that 1 is a terminal object of C'.

Now let's stop and think about how nice this situations is. Suppose I give you a category \mathcal{D} , and I tell you that \mathcal{D} is equivalent to a full subcategory \mathcal{C} of Set which contains the terminal object, but I don't tell you which subcategory it is, or what the inclusion functor is. Then you can recover the inclusion functor up to a unique natural isomorphism by taking the hom-functor h^1 , where 1 is the terminal object of \mathcal{D} . In particular, given an object $X \in \mathcal{D}$, you can figure out which set X is! Given an arbitrary category \mathcal{C} , even if there is a terminal object $1 \in \mathcal{C}$, we've no right to expect that \mathcal{C} be equivalent to a full subcategory of Set.

Exercise 2.7. Let \mathcal{FD} be the small category whose set of objects $\{\mathbb{R}^n \mid 0 \leq n\}$ consists of one vector space of each finite dimension, and whose morphisms $\mathbb{R}^n \to \mathbb{R}^m$ are given by linear transformations, composed normally. Prove that \mathbb{R}^0 is a terminal object, and that $h_{\mathbb{R}^0}: \mathcal{FD} \to \text{Set}$ is not faithful. Conclude that \mathcal{FD} is not equivalent to any full subcategory of Set which contains the terminal object of Set.

Exercise 2.8. Suppose that $i: \mathcal{C} \to \operatorname{SET}$ is fully faithful, and that X and Y are objects of \mathcal{C} with two distinct morphisms $f \neq g: X \to Y$. Prove that any terminal object \mathcal{C} must be mapped to a terminal object of Set under i. Conclude that \mathcal{FD} is not equivalent to a full subcategory of Set.

Let \mathcal{C} be a locally small category. Then for each object $A \in \mathcal{C}$, there is a representable contravariant functor $h_A = \mathcal{C}(-,A): \mathcal{C}^{op} \to \operatorname{Set}$. h_A acts on morphisms by sending each arrow $g: X \to Y$ to the function $h_A(g) = (-\circ g): \mathcal{C}(Y,A) \to \mathcal{C}(X,A)$. Now suppose that $f: A \to B$ is a morphism in \mathcal{C} . Then f induces a natural transformation $h_f: h_A \Rightarrow h_B$. For each object $X \in \mathcal{C}$, $(h_f)_X: \mathcal{C}(X,A) \to \mathcal{C}(X,B)$ is defined by $(h_f)_X(t) = f \circ t$. Checking naturality amounts to checking that for any $g: X \to Y$, the diagram commutes:

$$\mathcal{C}(Y,A) \xrightarrow{h_A(g)=(-\circ g)} \mathcal{C}(X,A)
(h_f)_Y = (f \circ -) \downarrow \qquad \qquad \downarrow (h_f)_X = (f \circ -)
\mathcal{C}(Y,B) \xrightarrow{h_B(g)=(-\circ g)} \mathcal{C}(X,B)$$

or in other words, that for each $h \in \mathcal{C}(Y, A)$, $(f \circ h) \circ g = f \circ (h \circ g)$.