Lecture 10: Decision Trees and Random Forests

STATS 202: Data Mining and Analysis

Linh Tran

tranlm@stanford.edu

Department of Statistics Stanford University

July 28, 2021

Announcements

- ► Homework 3 due in 9 days.
- ► Course survey is (still) up
 - ▶ Up to 10 bonus points (as a percentage of class participation)
 - Closes on Friday.
- Should I move next Friday's section to this Friday?

Outline

- Decision trees
 - ► Regression trees
 - ► Classification trees
 - Advantages / disadvantages
 - Misc details
- Bagging
- Random Forests

Decision trees, 10,000 foot view

- 1. Find a partition of the space of predictors.
- 2. Predict a constant in each set of the partition.
- 3. The partition is defined by splitting the range of one predictor at a time.

Decision trees, 10,000 foot view

- 1. Find a partition of the space of predictors.
- 2. Predict a constant in each set of the partition.
- The partition is defined by splitting the range of one predictor at a time.
 - → Not all partitions are possible.

Example: Predicting a baseball player's salary

117.5

The prediction for a point in R_i is the average of the training points in R_i .

How is a decision tree built?

Using a *greedy* approach:

- ▶ Start with a single region R_1 , and iterate:
 - ▶ Select a region R_k , a predictor X_j , and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

- Redefine the regions with this additional split.
- ► Terminate when there are 5 observations or fewer in each region.
- ▶ This grows the tree from the root towards the leaves.

How is a decision tree built?

▶ **Idea 1:** Find the optimal subtree by cross validation.

- ▶ **Idea 1:** Find the optimal subtree by cross validation.
 - ightarrow There are too many possibilities, so we would still over fit.

- ▶ Idea 1: Find the optimal subtree by cross validation.
 - \rightarrow There are too many possibilities, so we would still over fit.
- ▶ **Idea 2:** Stop growing the tree when the RSS doesn't drop by more than a threshold with any new cut.

- ▶ Idea 1: Find the optimal subtree by cross validation.
 - \rightarrow There are too many possibilities, so we would still over fit.
- ▶ **Idea 2:** Stop growing the tree when the RSS doesn't drop by more than a threshold with any new cut.
 - \rightarrow In our greedy algorithm, it is possible to find good cuts after bad ones.

How do we control overfitting? Solution:

Prune a large tree from the leaves to the root.

▶ Weakest link pruning:

▶ Starting with T_0 , substitute a subtree with a leaf to obtain T_1 , by minimizing:

$$\frac{RSS(T_1) - RSS(T_0)}{|T_0| - |T_1|}.$$

- ▶ Iterate this pruning to obtain a sequence $T_0, T_1, T_2, ..., T_m$ where T_m is the null tree.
- ightharpoonup Select the optimal tree T_i by cross validation.

... or an equivalent procedure

- ► Cost complexity pruning:
 - ► Solve the problem:

minimize
$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

- ▶ When $\alpha = \infty$, we select the null tree.
- When $\alpha = 0$, we select the full tree.
- ▶ The solution for each α is among $T_1, T_2, ..., T_m$ from weakest link pruning.
- ▶ Choose the optimal α (the optimal T_i) by cross validation.

Cross validation

- 1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α .
- 2. Split the training points into 10 folds.
- 3. For k = 1, ..., 10,
 - ► For each tree *T_i*, use every fold except the *k*th to estimate the averages in each region.
 - \blacktriangleright For each tree T_i , calculate the RSS in the test fold.
- 4. For each tree T_i , average the 10 test errors, and select the value of α that minimizes the error.

Cross validation

- 1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α .
- 2. Split the training points into 10 folds.
- 3. For k = 1, ..., 10,
 - ▶ For each tree T_i , use every fold except the kth to estimate the averages in each region.
 - \blacktriangleright For each tree T_i , calculate the RSS in the test fold.
- 4. For each tree T_i , average the 10 test errors, and select the value of α that minimizes the error.

THIS IS THE WRONG WAY TO DO CROSS VALIDATION!

Cross validation, the right way

- 1. Split the training points into 10 folds.
- 2. For k = 1, ..., 10, using every fold except the kth:
 - ▶ Construct a sequence of trees $T_1, ..., T_m$ for a range of values of α , and find the prediction for each region in each one.
 - \blacktriangleright For each tree T_i , calculate the RSS on the test set.
- 3. For each tree T_i , average the 10 test errors, and select the value of α that minimizes the error.

Cross validation, the right way

- 1. Split the training points into 10 folds.
- 2. For k = 1, ..., 10, using every fold except the kth:
 - ▶ Construct a sequence of trees $T_1, ..., T_m$ for a range of values of α , and find the prediction for each region in each one.
 - \blacktriangleright For each tree T_i , calculate the RSS on the test set.
- 3. For each tree T_i , average the 10 test errors, and select the value of α that minimizes the error.

Note: We are doing all fitting, including the construction of the trees, using only the training data.

Example. Predicting baseball salaries

Unpruned tree (size=12)

Example. Predicting baseball salaries

Short tree (size=3)

Classification trees

Work much like regression trees.

- ▶ We predict the response by **majority vote**, i.e. pick the most common class in every region.
- ▶ Instead of trying to minimize the RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

we minimize a classification loss function.

Multiple losses to choose from

► The 0-1 loss or misclassification rate:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} \mathbf{1}(y_i \neq \hat{y}_{R_m})$$

► The 0-1 loss or misclassification rate:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} \mathbf{1}(y_i \neq \hat{y}_{R_m})$$

▶ The Gini index:

$$\sum_{m=1}^{|T|} q_m \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}),$$

where $\hat{p}_{m,k}$ is the proportion of class k within R_m , and q_m is the proportion of samples in R_m .

► The 0-1 loss or misclassification rate:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} \mathbf{1}(y_i \neq \hat{y}_{R_m})$$

▶ The Gini index:

$$\sum_{m=1}^{|T|} q_m \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}),$$

where $\hat{p}_{m,k}$ is the proportion of class k within R_m , and q_m is the proportion of samples in R_m .

► The entropy:

$$-\sum_{m=1}^{|T|} q_m \sum_{k=1}^{K} \hat{p}_{mk} \log(\hat{p}_{mk}).$$

Losses for 2-class classication, as a function of the proportion p. Entropy has been scaled to pass through (0.5, 0.5).

Remarks:

Motivation for the Gini index:

If instead of predicting the most likely class, we predict a random sample from the distribution $(\hat{p}_{1,m}, \hat{p}_{2,m}, \dots, \hat{p}_{K,m})$, the Gini index is the expected misclassification rate.

- The Gini index and entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.
- ▶ It is typical to use the Gini index or entropy for growing the tree, while using the misclassification rate when pruning the tree.

Example. Heart dataset.

Decision tree advantages

- Very easy to interpret!
- Closer to human decision-making.
- Can capture complex interactions between variables.
- Easy to visualize graphically.
- ► Easily handle qualitative predictors and missing data.

Decision tree disadvantages

- ▶ Doesn't capture simple (e.g. linear) relationships well.
- Less accurate than other ML methods.
- Can have high variance.

Example. Heart dataset.

Question: How do we deal with categorical predictors?

Categorical predictors

- ▶ If there are only 2 categories, then the split is obvious. We don't have to choose the splitting point *s*, as for a numerical variable.
- ▶ If there are more than 2 categories:
 - ▶ Order the categories according to the average of the response:

```
ChestPain: a > ChestPain: c > ChestPain: b
```

- ► Treat as a numerical variable with this ordering, and choose a splitting point s.
- This is the optimal way of partitioning.

Missing data

Problem: If a sample is missing variable X_j , and a tree contains a split according to $X_j > s$, then we may not be able to assign the sample to a region.

Missing data

Problem: If a sample is missing variable X_j , and a tree contains a split according to $X_j > s$, then we may not be able to assign the sample to a region.

Solution:

- ▶ When choosing a new split with variable X_i (growing the tree):
 - Only consider the samples which have the variable X_j.
 - ▶ In addition to choosing the best split, choose a second best split using a different variable, and a third best, ...
- To propagate a sample down the tree, if it is missing a variable to make a decision, try the second best decision, or the third best, etc...

Bagging

Recall:

- ▶ Bagging = Bootstrap Aggregating
- ▶ We replicate our dataset by sampling with replacement:
 - ▶ Original dataset: x = c(x1, x2, ..., x100)
 - Bootstrap samples: boot1 = sample(x, 100, replace = True), ..., bootB = sample(x, 100, replace = True).
- We average the predictions of a model fit to many Bootstrap samples:

$$\hat{f}_n^{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^B \hat{f}_n^b(x).$$

When does Bagging make sense?

When a regression method or a classifier has a tendency to overfit, Bagging reduces the variance of the prediction.

- ▶ When *n* is large, the empirical distribution is similar to the true distribution of the samples.
- Bootstrap samples are like independent realizations of the data.
- ▶ Bagging amounts to averaging the fits from many independent datasets, which would reduce the variance by a factor 1/B, i.e. $\frac{1}{B}\sigma^2$.

Bagging decision trees

- ▶ **Disadvantage:** Every time we fit a decision tree to a bootstrap sample, we get a different tree T^b .
 - \rightarrow Loss of interpretability

Bagging decision trees

- ▶ **Disadvantage:** Every time we fit a decision tree to a bootstrap sample, we get a different tree T^b .
 - \rightarrow Loss of interpretability

Variable importance:

- ► For each predictor, add up the total by which the RSS (or Gini index) decreases every time we use the predictor in T^b .
- ▶ Average this total over each Boostrap estimate $T^1, ..., T^B$.

Out-of-bag (OOB) error

To estimate the test error of a bagging estimate, we *could* use cross-validation.

Or instead, could just use observations that weren't sampled

- ► Each time we draw a Bootstrap sample, we only use 63% of the observations.
- ▶ Idea: use the rest of the observations as a test set.

OOB error:

- For each sample x_i , find the prediction \hat{y}_i^b for all bootstrap samples b which do not contain x_i . There should be around 0.37B of them. Average these predictions to obtain \hat{y}_i^{oob} .
- Compute the error $(y_i \hat{y}_i^{\text{oob}})^2$.
- ▶ Average the errors over all observations i = 1, ..., n.

Out-of-bag (OOB) error

The test error decreases as we increase B (dashed line is the error for a plain decision tree).

Random Forests

In general, bagging has a problem:

ightarrow The trees produced by different Bootstrap samples can be very similar.

Specifically: The variance from bagging is

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

Lowering ρ can lower our variance

Random Forests:

- ▶ We fit a decision tree to different Bootstrap samples.
- ▶ When growing the tree, we select a random sample of *m* < *p* predictors to consider in each step.
- ► This will lead to very different (or "uncorrelated") trees from each sample.
- ► Finally, average the prediction of each tree.

Random Forests algorithm

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

Random Forests vs. Bagging

Random Forests vs. KNN

Random forest can be thought of as weighted voting of the closest points.

Random Forests, choosing m

The optimal m is usually around \sqrt{p} , but this can be used as a tuning parameter.

Overfitting with Random Forests

Yes, we can overfit using Random Forests!

References

- [1] ISL. Chapter 8
- [2] ESL. Chapter 9.2,15