## Variational Inference: The Basics

Philip Schulz and Wilker Aziz

### Joint Distribution

Let X and Z be random variables. A generative model is any model that defines a joint distribution over these variables.

### Joint Distribution

Let X and Z be random variables. A generative model is any model that defines a joint distribution over these variables.

### 2 Examples of Generative Models

$$p(x,z) = p(x)p(z|x)$$

$$p(x,z) = p(z)p(x|z)$$

## Likelihood and prior

From here on, x is our observed data. On the other hand. z is an unobserved outcome.

- ightharpoonup p(x|z) is the **likelihood**
- ightharpoonup p(z) is the **prior** over Z

Notice: the prior may depend on a non-random quantity  $\alpha$  (write  $p(z|\alpha)$ ). In that case, we call  $\alpha$  a hyperparameter.

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)} \tag{1}$$

$$p(z|x) = \frac{\overbrace{p(x|z)}^{\text{likelihood}} \overbrace{p(z)}^{\text{prior}}}{p(x)}$$
(2)

$$\underbrace{p(z|x)}_{\text{posterior}} = \underbrace{\frac{p(x|z)}{p(x)}}_{\text{p(x)}} \underbrace{\frac{prior}{p(z)}}_{\text{p(x)}}$$
(3)

$$\underbrace{p(z|x)}_{\text{posterior}} = \underbrace{\frac{p(x|z)}{p(x|z)}}_{\substack{p(x) \\ \text{marginal likelihood/evidence}}} (4)$$

#### The Basic Problem

We want to compute the posterior over latent variables p(z|x). This involves computing the marginal likelihood

$$p(x) = \int p(x, z) dz$$

which is often **intractable**. This problem motivates the use of **approximate inference** techniques.

## Bayesian Inference

Under the Bayesian view, model parameters  $\theta$  are also random. The generative model becomes

- ▶  $p(x, \theta)$  for fully observed data (supervised learning)
- $p(x, z, \theta)$  for observed and latent data (unsupervised learning)

## Bayesian Inference

The evidence becomes even harder to compute. This is because  $\theta$  is often high-dimensional (just think of neural nets!).

- $p(x) = \int p(x, \theta) d\theta$  (supervised learning)
- $p(x) = \int \int p(x, z, \theta) dz d\theta$  (unsupervised learning)

## Bayesian Inference

The evidence becomes even harder to compute. This is because  $\theta$  is often high-dimensional (just think of neural nets!).

- $p(x) = \int p(x, \theta) d\theta$  (supervised learning)
- $p(x) = \int \int p(x, z, \theta) dz \ d\theta$  (unsupervised learning)

Again, approximate inference is needed.









Inference network for FHHMs.



- M Markov chains over latent variables.
- L outcomes per latent variable.
- ▶ Sequence of length *T*.
- ▶ Complexity of inference:  $\mathcal{O}(L^{2M}T)$ .

FHMMs have several Markov chains over latent variables.

- M Markov chains over latent variables.
- L outcomes per latent variable.
- Sequence of length T.
- ▶ Complexity of inference:  $\mathcal{O}(L^{2M}T)$ .

This model is **intractable** because of the exponential dependence on the number of hidden Markov chains.









Inference network for LDA.





- D documents.
- ▶ N tokens and latent variables per document.
- L outcomes per latent variable.
- ▶ Complexity of inference:  $\mathcal{O}(L^{DN})$ .

Assume p(z|x) is intractable.

Assume p(z|x) is intractable.

#### Idea

Let's approximate it by an auxiliary distribution q(z) that is tractable!

Assume p(z|x) is intractable.

#### Idea

Let's approximate it by an auxiliary distribution q(z) that is tractable!

#### Requirement

Make q(z) as close as possible to p(z|x) to obtain a faithful approximation.

Assume p(z|x) is intractable.

#### Idea

Let's approximate it by an auxiliary distribution q(z) that is tractable!

#### Requirement

Make q(z) as close as possible to p(z|x) to obtain a faithful approximation.

#### **Implementation**

Minimize KL(q(z) || p(z|x)).

The Kullback-Leibler divergence (or relative entropy) measures the divergence of a distribution q from a distribution q.

- ► KL  $(q(z) || p(z|x)) = \int q(z) \log \left(\frac{q(z)}{p(z|x)}\right) dz$  (continuous)
- ► KL  $(q(z) || p(z|x)) = \sum_{z} q(z) \log \left(\frac{q(z)}{p(z|x)}\right)$  (discrete)

## **Properties**

▶  $\mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) \geq 0$  with equality iff q(z) = p(z|x).

## **Properties**

- ► KL  $(q(z) || p(z|x)) \ge 0$  with equality iff q(z) = p(z|x).
- ► KL  $(q(z) || p(z|x)) = \infty$  if  $\exists z$  s.t. p(z|x) = 0 and q(z) > 0.

## **Properties**

- ► KL  $(q(z) || p(z|x)) \ge 0$  with equality iff q(z) = p(z|x).
- ► KL  $(q(z) || p(z|x)) = \infty$  if  $\exists z$  s.t. p(z|x) = 0 and q(z) > 0.
- ▶ In general  $KL(q(z) || p(z|x)) \neq KL(p(z|x) || q(z)).$

## **Properties**

- ► KL  $(q(z) || p(z|x)) \ge 0$  with equality iff q(z) = p(z|x).
- ► KL  $(q(z) || p(z|x)) = \infty$  if  $\exists z$  s.t. p(z|x) = 0 and q(z) > 0.
- ▶ In general  $KL(q(z) || p(z|x)) \neq KL(p(z|x) || q(z)).$
- $\mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) = \int q(z) \frac{p(z|x)}{q(z)} dz \le 0.$

## VI derivation I

$$\log (p(x)) = \int \log (p(x,z)) dz$$

$$= \int \log \left( \frac{q(z)}{q(z)} \frac{p(x,z)}{q(z)} \right) dz$$

$$\geq \int \frac{q(z)}{q(z)} \log \left( \frac{p(x,z)}{q(z)} \right) dz$$

$$= \int \frac{q(z)}{q(z)} \log \left( \frac{p(z|x)p(x)}{q(z)} \right) dz + \log (p(x))$$

## VI derivation I

#### Notice that

$$\int q(z) \log \left(\frac{p(z|x)}{q(z)}\right) dz + \log (p(x))$$

$$= - KL (q(z) || p(z|x)) + \log (p(x))$$

confirming that we have derived a lower bound on the log-evidence. The gap in the bound is exactly the KL divergence between the model posterior p(z|x) and its approximation q(z).

#### VI derivation II

Recall that we want to find q(z) such that  $\mathrm{KL}\,(q(z)\mid\mid p(z|x))$  is small.

#### VI derivation II

Recall that we want to find q(z) such that KL(q(z) || p(z|x)) is small. Formal Objective

$$\min_{q(z)} \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) = \max_{q(z)} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right)$$

#### VI derivation II

$$\begin{aligned} & \max_{q(z)} - \mathsf{KL}\left(q(z) \mid\mid p(z|x)\right) \\ &= \max_{q(z)} \int q(z) \log \left(\frac{p(z|x)}{q(z)}\right) dz \\ &= \max_{q(z)} \int q(z) \log \left(\frac{p(z,x)}{p(x)q(z)}\right) dz \\ &= \max_{q(z)} \int q(z) \log \left(p(z,x)\right) dz - \int q(z) \log \left(q(z)\right) dz - \overbrace{\log(p(x))}^{\mathcal{C}} \\ &= \max_{q(z)} \mathbb{E}_{q(z)} \left[\log \left(p(x,z)\right)\right] + \mathbb{H}\left(q(z)\right) \end{aligned}$$

As before, we have derived a lower bound on the log-evidence. This **evidence lower bound** or **ELBO** is our optimisation objective.

#### **ELBO**

$$\max_{q(z)} \mathbb{E}_{q(z)} \left[ \log \left( p(x, z) \right) \right] + \mathbb{H} \left( q(z) \right)$$

## Performing VI

VI in its basic form can be performed via coordinate ascent. This can be done as a 2-step procedure.

### Performing VI

VI in its basic form can be performed via coordinate ascent. This can be done as a 2-step procedure.

1. Compute the expected log-density  $\mathbb{E}_{q(z)}[\log(p(x,z))]$ .

### Performing VI

VI in its basic form can be performed via coordinate ascent. This can be done as a 2-step procedure.

- 1. Compute the expected log-density  $\mathbb{E}_{q(z)}[\log(p(x,z))]$ .
- 2. Maximize with respect to q(z) and while trying to keep q(z) as broad as possible (through entropy regularisation):

$$\max_{q(z)} \mathbb{E}_{q(z)} \left[ \log \left( p(x, z) \right) \right] + \mathbb{H} \left( q(z) \right) \tag{5}$$

# What if q(z) = p(z|x)?

If q(z) = p(z|x) then KL(q(z) || p(z|x)) = 0 and thus we are directly optimising the log-evidence.

- 1. Compute the expected log-density  $\mathbb{E}_{p(z|x)}[\log(p(x,z))].$
- 2. Maximize with respect to p(z|x) and while trying to keep p(z|x) as broad as possible (through entropy regularisation):

$$\max_{p(z|x)} \mathbb{E}_{p(z|x)} \left[ \log \left( p(x,z) \right) \right] + \mathbb{H} \left( p(z|x) \right) \quad (6)$$

# What if q(z) = p(z|x)?

If q(z) = p(z|x) then KL(q(z) || p(z|x)) = 0 and thus we are directly optimising the log-evidence.

E-step 
$$\mathbb{E}_{p(z|x)}[\log(p(x,z))].$$

M-step Maximize with respect to p(z|x) and while trying to keep p(z|x) as broad as possible (through entropy regularisation):

$$\max_{p(z|x)} \mathbb{E}_{p(z|x)} \left[ \log \left( p(x,z) \right) \right] + \mathbb{H} \left( p(z|x) \right) \quad (7)$$

### Relationship to EM

- ▶ Variational Inference where q(z) = p(z|x) is EM!
- ► The implementation of the M-step does not change.
- ▶ The implementation of the E-step changes when  $q(z) \neq p(z|x)$  because the expectation term changes.

$$\mathbb{E}_{q(z)}\left[\log\left(p(x,z)\right)\right] \neq \mathbb{E}_{p(z|x)}\left[\log\left(p(x,z)\right)\right]$$

### Designing a tractable approximation

- Recall: The approximation q(z) needs to be tractable.
- ▶ Common solution: make **all** latent variables independent under q(z).

### Designing a tractable approximation

- Recall: The approximation q(z) needs to be tractable.
- ▶ Common solution: make **all** latent variables independent under q(z).
- ▶ Formal assumption:  $q(z) = \prod_{i=1}^{N} q(z_i)$

### Designing a tractable approximation

- Recall: The approximation q(z) needs to be tractable.
- ▶ Common solution: make **all** latent variables independent under q(z).
- Formal assumption:  $q(z) = \prod_{i=1}^{N} q(z_i)$

This approximation strategy is commonly known as **mean field** approximation.

### Original FHHM Inference



Exact posterior p(s, z|x)

#### Mean field FHHM Inference



Approximate posterior q(s, z) = q(s)q(z)

#### Original LDA Inference





Exact posterior  $p(z, \theta|w, \alpha, \beta)$ 

#### Mean field LDA Inference



Approximate posterior  $q(z, \theta|w, \alpha, \beta) = q(z|w, \beta)q(\theta|w, \alpha)$ 

### Summary

- Posterior inference is often **intractable** because the marginal likelihood (or **evidence**) p(x) cannot be computed efficiently.
- Variational inference approximates the posterior p(z|x) with a simpler distribution q(z).
- The variational objective is the evidence lower bound (ELBO):

$$\mathbb{E}_{q(z)}\left[\log\left(p(x,z)\right)\right] + \mathbb{H}\left(q(z)\right) \tag{8}$$

#### Summary

- ► The **ELBO** is a lower bound on the log-evidence.
- ▶ When q(z) = p(z|x) we recover EM.
- A common approximation is the **mean field** approximation which assumes that all latent variables are independent:

$$q(z) = \prod_{i=1}^{N} q(z_i)$$

#### Literature I

```
David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3(4-5): 993–1022, 2003. ISSN 1532-4435. doi: 10.1162/jmlr.2003.3.4-5.993. URL http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993.
```

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe.

Variational inference: A review for statisticians. 01 2016.

URL https://arxiv.org/abs/1601.00670.

#### Literature II

Zoubin Ghahramani and Michael I Jordan. Factorial hidden markov models. In Advances in Neural Information Processing Systems, pages 472–478, 1996. URL http://papers.nips.cc/paper/1144-factorial-hidden-markov-models.pdf.

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. In *Learning in graphical models*, pages 355–368. Springer, 1998. URL

http://www.cs.toronto.edu/~fritz/absps/emk.pdf.