# Completely Randomized Designs - Lab

# Blake Pappas

# December 17, 2023

The dataset PlantGrowth contains results from an experiment to compare yields (as measured by dried weight of plants) obtained under a control and two different treatment conditions.

Data Source: Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall. Let's load the data first:

#### Code:

```
data(PlantGrowth)
str(PlantGrowth)

## 'data.frame': 30 obs. of 2 variables:
## $ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
## $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...
```

1. Compute the treatment means and standard deviations.

#### Code:

Code:

```
(means <- tapply(PlantGrowth$weight, PlantGrowth$group, mean))

## ctrl trt1 trt2
## 5.032 4.661 5.526

(vars <- tapply(PlantGrowth$weight, PlantGrowth$group, sd))

## ctrl trt1 trt2
## 0.5830914 0.7936757 0.4425733</pre>
```

2. Make side-by-side boxplots by treatment.

```
boxplot(weight ~ group, data = PlantGrowth, las = 1)
```



boxplot(weight ~ group, data = PlantGrowth, las = 1, horizontal = T)



3. Write down the effects model and explain each term in the model (including the model assumptions regarding the random error).

Answer:  $Y_{ij}: \mu + \alpha_i + \epsilon_{ij}$ ,  $\mathbf{i} = 1, \dots, \mathbf{g}$ ,  $\mathbf{j} = 1, \dots, n_i$ ,  $\epsilon_{ij} \sim \mathbf{N}(\mathbf{0}, \sigma^2)$ .  $Y_{ij}$  is the random variable that represents the response for the jth experimental unit to treatment i.  $\mu_i$  is the mean response time for the ith treatment.  $\epsilon_{ij}$  is the random error, which is assumed to be normal.

4. Perform an overall F-test using ANOVA. State the hypotheses, p-value, decision, and conclusion.

### Code:

Answer: The null hypothesis is  $H_0: \alpha_i = 0$ , the alternative hypothesis is  $H_a: \alpha_i \neq 0$ , the  $\alpha$  is 0.05, the F-statistic is 4.846, the p-value is 0.0159, and the decision is to reject the null hypothesis. The data shows evidence of differences the three treatment groups.

5. Conduct pairwise comparisons using Tukey's HSD procedure.

#### Code:

```
# HSD
HSD <- TukeyHSD(AOV, conf.level = 0.95)
HSD$group</pre>
```

```
## diff lwr upr p adj

## trt1-ctrl -0.371 -1.0622161 0.3202161 0.39087114

## trt2-ctrl 0.494 -0.1972161 1.1852161 0.19799599

## trt2-trt1 0.865 0.1737839 1.5562161 0.01200642
```

Answer: The trt2-trt1 groups have statistically significant differences.

6. Use applot to examine the normality assumption on error.

#### Code:

```
mod1 <- lm(weight ~ group, data = PlantGrowth)

qqnorm(mod1$resid, cex = 0.8)
qqline(mod1$resid, col = "red", lwd = 1.5)</pre>
```

# Normal Q-Q Plot



Answer: Based on the plot, the modeling assumption of normality appears to be reasonable. The pattern of the plot runs very close to the trend line.

7. Make a residual plot to assess equal variance assumption.

# Code:

```
plot(mod1$fitted, mod1$resid, las = 1, xlab = "Fitted Value", ylab = "Residual", cex = 0.75, col = "blu
abline(h = 0)
```



```
plot(mod1$resid, col = "blue", las = 1, cex = 0.75, pch = 16, ylab = "Residual")
abline(h = 0, lty = 2, lwd = 1.5)
```





Answer: Based on the residual plots, the assumption of equal variances seems to be reasonable.

8. Perform a Levene's test for equal variance.

## Code:

```
# Levene's Test for Equal Variance
# install.packages("lawstat")
library("lawstat")
levene.test(PlantGrowth$weight, PlantGrowth$group, location = "mean")
##
##
    Classical Levene's test based on the absolute deviations from the mean
    ( none not applied because the location is not set to median )
##
## data: PlantGrowth$weight
## Test Statistic = 1.237, p-value = 0.3062
# Brown-Forsythe Test
levene.test(PlantGrowth$weight, PlantGrowth$group, location = "median")
##
    Modified robust Brown-Forsythe Levene-type test based on the absolute
    deviations from the median
##
```

## data: PlantGrowth\$weight
## Test Statistic = 1.1192, p-value = 0.3412