O'BRIEN AND GERE ENGINEERS INC PHILADELPHIA PA F/G 13/13 NATIONAL DAM INSPECTION PROGRAM, VILLAGE TWO AT NEW HOPE DAM (N--ETC(U) FEB 81 J J WILLIAMS DACW31-81-C-0016 AD-A097 779 UNCLASSIFIED 1-1 an 3092 - sa END DATE 5-81 DTIC

DEL WAR RIVER BASIN UNNAMED TRIBUT TO OF DELAWARE RIVER

PENNSYLVANIA

NDI ID PA-00803

PA DER 9-173

VILLAGE TWO AT NEW HOPE DA

OWNED BY

CITIBANK

PHASE I INSPECTION REPORT MATIONAL DAM INSPECTION PROGRAM.

PREPARED FOR

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT CORPS OF ENGINEERS

BALTIMORE, MARYLAND

21203

BY

O'BRIEN & GERE

PHILADELPHIA, PENNSYLVANIA 19103

FEBRUARY

19881

(15 was received flow

DELAWARE RIVER BASIN

I National Dan Inspection Frage in. VILLAGE IWO AT NEW HOPE DAM (NDI ID)

PENNSYLVANIA

PR-00803, PADER 9-173), Delaware

Rue Basin Innomed Tributary of Delaware

Aver, Printsylvania. NOT I.D. PA-86883

> OWNED BY CITIBANK

PHASE I INSPECTION REPORT, NATIONAL BAM INSPECTION PROBRAM

Prepared for:

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineers Baltimore, Maryland 21203

Prepared by:

O'BRIEN & GERE ENGINEERS, INC. 1617 JF Kennedy Boulevard - Suite 1760 Philadelphia, Pennsylvania 19103

DISTRIBUTION STATEMENT A Approved for public release: Octobortion Ustrated

412063 Zu

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected, and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I REPORT

NATIONAL DAM INSPECTION PROGRAM

Name of Dam: State Located: County Located: Stream: Coordinates: Date of Inspection: Village Two at New Hope Dam Pennsylvania Bucks County Unnamed tributary of Delaware River Latitude N 40^o 21.5', Longitude W 74^o 57.3' December 15, 1980

ASSESSMENT

Village Two at New Hope Dam is a zoned earth embankment approximately 3C0 feet long with a maximum height of 34 feet which impounds a reservoir with a normal pool storage capacity of 14 acre-feet. The top of dam elevation varies 25 feet from El. 192 at the left abutment to El. 167 at the right abutment. The top width varies with the average width being about 40 feet. The normal overflow spillway consists of a 36-inch diameter steel riser pipe, 21 feet long, feeding into a 30-inch diameter steel pipe through the base of the embankment which outlets downstream of the dam. The emergency overflow spillway consists of a reinforced concrete overflow inlet structure and a 48-inch diameter reinforced concrete discharge pipe constructed through the dam and outletting on the downstream abutment close to the downstream embankment face. The dam is located at New Hope, Pennsylvania, about 0.25 miles west of the Delaware Canal.

The Spillway Design Flood (SDF) chosen for this "Small" size, "High" hazard dam is 50 percent of the Probable Maximum Flood (PMF). The spillways are capable of discharging 29 percent of the PMF without overtopping of the embankment. However, a dam breach with 50 percent of the PMF will only increase the water surface elevation at the downstream hazard area by 0.9 feet. Therefore, the spillways are classified as "Inadequate", but not "Seriously Inadequate".

Based on the visual observations and review of the information obtained from the Pennsylvania Department of Environmental Resources, Division of Dam Safety, and from Van Note-Harvey Associates, Princeton, New Jersey Village Two at New Hope Dam is considered to be in fair condition.

Recommendations and Remedial Measures are as follows:

The following recommendations and remedial measures should be initiated immediately. The Owner should retain the services of a licensed professional engineer experienced in the design and construction of dams to assist in complying with these recommendations and remedial measures.

a. Facilities.

1. The right side of the embankment should be built up to the design top of dam Elev. 170 and both the upstream and downstream faces of the embankment

should be constructed as shown on the design drawings. A hydrologic and hydraulic analysis (Appendix D) indicates that by increasing the minimum crest of the dam to Elev. 170.0 the spillway capacity would be increased to approximately 60 percent of the PMF.

- 2. An investigation should be made of the source and nature of the seepage observed along the downstream face of the dam and abutment junction below Elev. 145 around the outlet of the 30-inch diameter normal outlet pipe and beneath the outlet of the emergency overflow outlet pipe. Appropriate action should follow the investigations.
- 3. The embankment should be cleared of all trees and brush and any resulting voids should be backfilled with suitable compacted material. A grass cover should be established and maintained on the reconstructed slopes and crest of the dam.
- 4. Provisions should be made to ensure that discharge from the 48-inch diameter emergency overflow spillway outlet pipe will not damage the downstream embankment. Repairs should be made to the connection of this pipe into the downstream wall of the emergency overflow spillway inlet structure.
- 5. Boulders should be removed from the embankment surface and consideration should be given to protection of the upstream embankment face against wave action.
- 6. A trash rack should be provided on the emergency overflow spillway inlet structure as specified in the design. At least half of the steel rods should be removed from the trash rack on the normal overflow spillway riser pipe.
- 7. The reservoir drain gate valve at the bottom of the normal overflow riser pipe should be inspected and repaired if necessary.

b. Operation and Maintenance Procedures

- 1. A regular inspection and maintenance program should be developed and implemented. This program should include periodic operation of the reservoir drain gate valve of the normal overflow structure.
- 2. A system of warning downstream residents living along the east bank of the Delaware Canal in the event of an impending dam failure should be developed.

O'BRIEN & GERE ENGINEERS, INC.

John J. Williams, P.E.

Vice President

Pennsylvania Registration No. PE006

19 FEB. 1981

VI

JOHN J. WILLIAM

ENGINEER

Date: 4MARUS)

Approved

Colonel, Corps of Engineers

District Engineer

iii

UPSTREAM OVERVIEW FROM THE RIGHT ABUTMENT.

DOWNSTREAM OVERVIEW FROM THE RIGHT ABUTMENT.

TABLE OF CONTENTS

	PAGE
Preface Assessment Overview Photograph	i ji iv
SECTION 1 - PROJECT INFORMATION 1.1 General 1.2 Description of Project 1.3 Pertinent Data	1 1 3
SECTION 2 - ENGINEERING DATA 2.1 Design 2.2 Construction 2.3 Operational Data 2.4 Evaluation	6 6 6
SECTION 3 - VISUAL INSPECTION 3.1 Findings 3.2 Evaluation	7 8
SECTION 4 - OPERATIONAL PROCEDURES 4.1 Procedures 4.2 Maintenance of the Dam 4.3 Maintenance of Operating Facilities 4.4 Description of any Warning Systems in Effect 4.5 Evaluation	9 9 9 9
SECTION 5 - HYDROLOGY AND HYDRAULICS 5.1 Evaluation of Features	10
SECTION 6 - STRUCTURAL STABILITY 6.1 Evaluation of Structural Stability	12
SECTION 7 - ASSESSMENT, RECOMMENDATIONS AND PROPOSED REMEDIAL MEASURES 7.1 Dam Assessment 7.2 Recommendations and Remedial Measures	13 13
APPENDIX A Visual Inspection B Checklist, Engineering Data C Photographs D Hydrologic and Hyraulic Engineering Data E Regional Vicinity Map and Drawings F Geology	

٧

PHASE I REPORT NATIONAL DAM INSPECT!ON PROGRAM VILLAGE TWO AT NEW HOPE DAM NDI ID NO. PA-00803

SECTION 1

PROJECT INFORMATION

1.1 General

- a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. Purpose. The purpose of this inspection is to determine if Village Two at New Hope Dam constitutes a hazard to human life or property.
- 1.2 <u>Description of Project</u> (The description is based upon information obtained from the Pennsylvania Department of Environmental Resources (DER), Division of Dam Safety, Harrisburg, Pennsylvania, Van Note-Harvey Associates, Princeton, New Jersey and from this inspection.)
- a. Dam and Appurtenances. According to the design drawings (Appendix E) of Van Note-Harvey Associates, Village Two at New Hope was to have been a zoned earth embankment approximately 370 feet long with a maximum height of 37 feet. However, upon inspection the length and maximum height were found to be 300 feet and 34 feet, respectively. The top of the dam was to be 65 feet wide with the dam crest at Elev. 170, but the inspection revealed it to average only about 40 feet in width with a crest elevation that varied from Elev. 192 at the north abutment to Elev. 167.1 at the south abutment. The upstream and downstream faces of the embankment were to have been constructed on slopes of 3H:1V and protected by riprap. Both slopes are steeper than this (about 2H:1V) and have no riprap protection.

The embankment was to have been constructed in two zones. The core material was to have been a clean incrganic clay soil (70% clay by volume) protected with a decomposed shale, shale and random rock shell.

A normal overflow spillway is located at the approximate midpoint of the dam. The intake structure consists of a 36-inch diameter steel riser about 21 feet high which is constructed to normal pool Elev. 164.5. It has a steel rod trash rack and was to have been fitted with a steel anti-vortex plate which was not in place at the time of the inspection. A 30-inch diameter extra strength steel pipe is constructed from the base at riser Elev. 143.5, extends through the embankment and outlets into the discharge channel at Elev. 133.0. The joint between the riser and the discharge pipe and all joints in the discharge pipe are welded. The base of the riser is encased in concrete. The 30-inch diameter pipe is 210 feet long and placed on a five percent slope. Five foot square steel anti-seep collars are welded to the 30-inch diameter

pipe at 18-foot maximum spacings. An 8-inch diameter gate valve used to control flow through the reservoir drain is located at the base of the riser. The gate valve stem was to have been extended to the top of riser; however, it was not observed during the inspection.

An emergency overflow spillway is constructed near the right abutment. The inlet structure consists of a reinforced concrete drop box intake structure with a weir length of 40 feet (30 feet parallel to the dam axis and five feet on each side perpendicular to the axis of the dam). The weir crest elevation is 166.5 while the downstream wall of the structure is constructed two feet higher to support an aluminum trashrack which was not in place at the time of the inspection. A 48-inch diameter reinforced concrete discharge pipe is connected at the invert of the intake structure, Elev. 161.5. The reinforced concrete pipe is 100 feet long and placed on a slope of three percent. The pipe was to have been placed on undisturbed earth and projects from the abutment at approximately Elev. 158.5. Discharge from the reinforced concrete pipe was to have been directed to the downstream channel through a trapezoidal rock lined channel, but the channel was not observed at the time of the inspection.

The crest width of the dam was to have been designed to accommodate a 31-foot wide roadway. Surface drainage from the roadway was to be diverted to the emergency spillway reinforced concrete pipe through two inlets located near the right abutment, but these inlets were never installed.

- b. Location. Village Two at New Hope Dam is located on an unnamed tributary of the Delaware River in New Hope Borough, Bucks County, Pennsylvania. The dam site is located on the USGS Quadrangle entitled "Lambertville-PA-NJ" at coordinates N 40° 21.5', W 74° , 57.3'. A regional vicinity map is included as Figure 1, Appendix E.
- c. <u>Size Classification</u>. The maximum height of the dam is about 34 feet and reservoir storage to the low point of the top of the dam is approximately 20 acrefeet. Accordingly, the dam size is classified as "Small", because it is less than 40 feet high and has a maximum storage capacity of less than 1,000 acrefeet.
- d. <u>Hazard Classification</u>. Village Two at New Hope Dam is a "High" hazard structure because of more than a dozen houses and commercial establishments about 0.25 miles downstream of the dam immediately to the east of the Delaware Canal. The east bank of the canal is only about two feet above the water surface.
- e. Ownership. Village Two at New Hope is in bankruptcy. The dam is now owned by Citibank. Correspondence should be addressed Citibank, New York, New York, Attention: Mr. John Williams
- f. <u>Purpose of Dam</u>. The dam was constructed to control runoff, sediment control and to improve the aesthetics of the site. The embankment is also the roadbed for a proposed roadway.
- g. Design and Construction History. Based on available information, construction on the dam began in 1972. No application for a permit had been filed by

the Owners. In November 1972, the project was inspected by the Commonwealth of Pennsylvania, DER, Division of Dams and Encroachments and construction was stopped due to the lack of a permit. At the time, a significant portion of the embankment and the normal overflow spillway steel pipe were in place.

The Owners were directed to submit an application for a permit to construct a dam. This directive was complied with in December 1972 when a set of design drawings, and Engineering Report and Specifications were submitted to DER. An apparent revision made as a result of the application review was to change the upstream slope from 2H:1V to 3H:1V.

The permit for construction was issued in April 1973 and Van Note-Harvey Associates (the Engineer) notified DER in January 1974 that construction was again in progress. The construction during the winter months was reported to be limited to placing "excavated rock in back of the existing dam and preparation for full scale operations when the weather and field conditions are more suitable". In October 1974, the Engineer notified DER that the 48-inch emergency overflow spillway pipe had been put in place and that no other work had been done since January 1974.

In February 1976, the Owners informed DER that they had "instructed our Engineers to prepare as built drawings and other documents necessary to certify completion of the dam". In March 1976, the Engineers advised DER that they would not certify completion until "the work was completed as specified and some of the completed work repaired".

No other information relative to the construction history of the dam is available. In the last available correspondence, DER authorized extension of the construction permit to December 31, 1980.

h. Normal Operating Procedures. There are no restraints to flow through the spillways. It appears that the reservoir drain is in the closed position. No daily releases are made for downstream low flow augmentation.

1.3 Pertinent Data

Drainage Area (Acres)

b.	Discharge at Dam Site (CFS)	
	Maximum known flood at site At Emergency Spillway Crest, El. 166.5 At Existing Low Point Top of Dam, El. 167.1 At Design Top of Dam, El. 170.0	Unknown 80 185 1965
c.	Elevations (MSL)	

90

Top of Dam, Design	170.0
Top of Dam, Low Point Existing	167.1
Normal Overflow Spillway Crest	164.5
Invert Normal Overflow Spillway Riser	143.5

	Invert Normal Overflow Spillway Emergency Overflow Spillway Inl Streambed at Downstream Toe o	et Box Crest 166.5
d.	Reservoir Length (Feet)	
	Normal Pool, Elev. 164.5 Top of Dam, Low Point, Elev. 167	7.1 600 715
e.	Reservoir Storage (Acre-Feet)	
	Normal Pool, Elev. 164.5 Top of Dam, Low Point, Elev. 16	7.1 14.0 20.0
f.	Reservoir Surface (Acres)	
	Normal Pool, Elev. 164.5 Top of Dam, Low Point, Elev. 165	7.1 2.6
g.	Dam Data	
	Type Length Height (to low point top of dam, I Top Width Side Slopes Zoning Cutoff Grout Curtain	Zoned Earth Embankment 300 Feet El. 167) 34 Feet Averages 40 Feet Average 2H:1V upstream and downstream Clay core with outer rock shells To bedrock None
h.	Diversion System	None
i.	Spillway	
1.	Normal Overflow Spillway (Refer	to Sheets 3 and 4 Appendix E)
	Inlet Type	Drop inlet, 21 feet high, 36-inch diameter steel riser pipe with steel rod trash rack.
	Pipe Length and Size	210 feet long, 30-inch diameter steel pipe through base of embankment
	Control	None
	Energy Dissipator	Concrete headwall at downstream end of pipe and riprap channel protection for about 20 feet
	Downstream Channel	Natural stream channel downstream of the riprap protection.

2. Emergency Overflow Spillway (Refer to Sheets 3 and 4 Appendix E)

Inlet Type

Concrete drop box inlet, weir 40 feet

long, box 5 feet deep.

Pipe Length and Size

100 feet long, 48-inch diameter reinforced concrete pine through agreement

forced concrete pipe through embank-

ment.

Control

Energy Dissipator

None

Flow from the 48-inch diameter reinforced concrete pipe is discharged onto

the downstream abutment.

j. Outlet Works

8-inch diameter steel pipe drain extends into the reservoir and terminates at base of riser. The gate valve is inaccessible and valve stem is missing. No trashrack is shown on the design drawings at intake

in the reservoir.

SECTION 2

ENGINEERING DATA

2.1 Design

- a. Data Available. The information available in the DER main office files in Harrisburg, PA for review of Village Two at New Hope Dam includes the following:
 - 1. "Application", "Report on the Application", and "Permit" to construct Village Two at New Hope Dam.
 - 2. Complete set of design drawings.
 - 3. Inspection reports November 16, 1972, and February 27, 1973.
 - 4. Miscellaneous correspondence, memoranda, etc.
- b. Design Features. The design features are described in Section 1.2.a and shown on sheets 2 through 4 of Appendix E.

2.2 Construction

Based on the field investigation and the information available from DER, the dam appears to have not been constructed in conformance with the design drawings. No information is available relative to the construction of the dam.

2.3 Operation

Operational procedures consist of opening or closing the 8-inch diameter reservoir drain gate valve inside at the base of the 36-inch diameter normal overflow inlet riser. According to the Owner's representative, it is not known if the gate valve is operational.

2.4 Evaluation

- a. Availability. All engineering data including the complete set of design drawings were provided by DER.
- b. Adequacy. The information provided by DER, visual observations and Mr. Wayne Patterson, the Owner's representative, is considered adequate for a Phase I investigation.
- c. <u>Validity</u>. There appears to be no reason to question the validity of the information obtained from DER.

SECTION 3

VISUAL INSPECTION

3.1 Findings

- a. General. The field inspection of Village Two at New Hope Dam took place on December 15, 1980. At the time of inspection, the water surface was approximately 1.5 feet below the normal overflow spillway riser crest. The observations and comments of the field inspection team are in the checklist which is Appendix A of this report. The appearance of the facility indicates that the dam and its appurtenances are poorly maintained.
- b. <u>Dam.</u> The slope of the upstream face of the dam is very irregular. Small trees (up to 4-inch diameter trunks) and thick brush cover most of the upstream and downstream faces of the dam.

The riprap on the downstream face of the dam is randomly placed and ranges in size from four inch rock to about five foot boulders. Seepage (2 gpm in each case) was observed at the left and right embankment and abutment junctions below El. 145 and around the 30-inch normal overflow spillway outlet pipe. Seepage (5 gpm) was also observed flowing from beneath the outlet end of the 4-foot diameter emergency overflow spillway outlet pipe. Fines are apparent in the seepage flow which may indicate piping of soil particles from the embankment.

The top of the dam at the left abutment is 25 feet higher than the top of the dam at the right abutment. This was done to accommodate a dirt road along the dam crest; however, at the right abutment the top of dam is about 3 feet below design El. 170. The horizontal alignment of the dam axis appears to be satisfactory but the width of the dam crest varies considerably with the width averaging about 40 feet. The crest of the dam is essentially a dirt road with no vegetative cover.

c. Appurtenant Structures. The 36-inch diameter steel riser pipe of the normal overflow spillway appears to be in good condition. Steel rods on the trash rack are too closely spaced, thus discharge would be impeded because of trash build-up. The 8-inch diameter gate valve could not be examined because it is at the base of the 21-foot intake tower. The trash rack must be removed to gain access to the intake riser. No valve stem was observed. The 30-inch diameter steel outlet pipe and the outlet channel appear to be in satisfactory condition.

Small trees (up to 4-inch diameter trunks) and brush obstruct flow to the emergency overflow spillway inlet structure. The emergency overflow inlet structure appears to be in good condition except for some honeycombing observed in the concrete. Gaps were left around the perimeter of the 48-inch diameter reinforced concrete outlet pipe where it joins the downstream wall of the inlet structure (see Appendix C, Photographs No. 6). The invert of the four foot outlet pipe is about 26 feet above the valley floor where it outlets on the right abutment downstream within a few feet of the downstream face of the dam. Discharge from the emergency overflow spillway outlet pipe would tend to erode the downstream

face of the dam. The discharge channel is obstructed with brush, small trees and boulders.

- d. Reservoir. Area reconnaissance of the reservoir disclosed no evidence of sedimentation, slope instability or other features that would significantly affect the storage capacity of the reservoir. Slopes along the perimeter of the reservoir average about 4H:1V with grass, brush and tree coverage. Very limited areas are not covered with vegetation.
- e. <u>Downstream Channel</u>. The downstream channel flows through a narrow, wooded valley. Some fallen timber obstructs the discharge. The channel invert slope averages about 4 percent. Side slopes of the channel average about 21:11.

Approximately a dozen houses and commercial establishments, immediately downstream from the Delaware Canal (sheet 2, Appendix E), which is about 0.25 miles downstream from the dam, would be directly affected by a failure of the dam.

3.2 Evaluation. Based on the visual inspection, the Village Two at New Hope Dam and its appurtenances appear to be in fair condition; however, lack of continuous maintenance could to lead to serious problems.

SECTION 4

OPERATIONAL PROCEDURES

4.1 Procedures

The operational procedures would consist of opening or closing the 8-inch diameter reservoir drain gate valve inside at the base of the 36-inch diameter normal overflow spillway riser. The Owner's representative does not know if the gate valve is operational.

4.2 Maintenance of the Dam

According to the Owner's representative, no maintenance is presently performed on the dam.

4.3 Maintenance of Operating Facilities.

According to the Owner's representative, the gate valve is not operated on a regular basis. The gate valve was inaccessible for observation during the inspection because the valve is located inside at the base of the 36-inch diameter normal overflow riser. The riser has a closely spaced steel rod trash rack attached to its crest.

4.4 Description of Any Warning Systems in Effect

According to the Owner's representative, no system of warning residents living along the east bank of the Delaware Canal of an impending dam failure is in effect for Village Two at New Hope Dam. The Delaware Canal is about 0.25 mile downstream of the dam. Refer to Sheet 2, Appendix E for layout details of this area.

4.5 Evaluation

The bushes, small trees and debris evident on the entire dam confirm the fact that the dam is not maintained. A regular inspection and maintenance program should be established which would include periodic operation of the reservoir drain gate valve and keeping all obstructions from the entrances to the principal and emergency overflow spillways.

A system of warning downstream residents living along the east bank of the Delaware Canal in the event of an impending dam failure should be developed.

SECTION 5

HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features

a. Design Data. Village Two at New Hope Dam has a drainage area of 0.14 square miles and impounds a reservoir with a normal pool storage capacity of 14 acre-feet. The watershed has a maximum width of about 0.3 miles and a maximum length of about 0.7 miles. The ground surface ranges from El. 300 in the upper reaches of the watershed to Elev. 164.5 at normal pool. The drainage area is generally moderately sloping open areas of weeds or tall grass and some small wooded areas.

The normal overflow spillway inlet structure is a 36-inch diameter riser pipe feeding into a 30-inch diameter steel pipe through the base of the embankment. It has a capacity of 119 cfs when the reservoir pool reaches the low point of the top of the dam (Elev. 167.1). The emergency overflow spillway and 4-foot diameter outlet pipe has a capacity of 66 cfs at water surface Elev. 167.1. The combined capacity of both spillways is 185 cfs at the low point of the top of the dam, Elev. 167.1.

- b. Experience Data. According to the Owner's representative, no rainfall or reservoir level records are kept for this dam.
- c. <u>Visual Observations</u>. The steel rods on the trash rack of the normal overflow structure are too closely spaced, thus discharge would be impeded due to trash build-up.

No trash rack exists on the emergency overflow spillway inlet structure, therefore it is susceptible to clogging. Small trees (up to 4-inch diameter trunks) and brush obstruct access to the structure. Discharge from the emergency overflow spillway outlet pipe would also be impeded by brush, small trees and boulders.

d. Overtopping Potential. The overtopping potential of this dam was estimated using the HEC-1, Dam Safety Version, computer program. A brief description of the program is included in Appendix D.

According to the Guidelines, the recommended Spillway Design Flood (SDF) for a "Small" size, "High" hazard dam ranges from one-half to the full Probable Maximum Flood (PMF). The dam is in close proximity to a residential and commercial area; however, because of its limited storage capacity of 20 acre-feet at the low point of the top of the dam El. 167.1, the selected SDF is one-half of the full PMF.

Various percentages of the PMF were routed through Village Two at New Hope Dam using HEC-1 program. The peak inflow and outflow rates for the SDF were computed to the 352 cfs and 322 cfs, respectively. Based on the hydrologic and hydraulic analyses, the spillway is capable of discharging approximately 29 percent of the PMF without overtopping the low point of the crest of the embankment (See Appendix C for computations).

e. Spillway Adequacy. For this study, the embankment was assumed to fail with water flowing 0.7 feet over the low point of the top of the dam. A trapezoidal breach was assumed, 150 feet wide at the base, with side slopes of 1H:1V. It was assumed that the breach took two hours to reach its maximum extent. The breach condition was compared to the non-breach condition at the damage center, during identical storms, to assess the increased potential for damage due to dam failure over what might occur with no breach. A review of this analysis indicates that the water surface elevation at the damage center is 0.9 feet higher for the breach condition. The spillway systems are classified as "Inadequate" since they are not capable of passing the SDF; however, they are not classified as "Seriously Inadequate" since breaching of the dam does not significantly increase the downstream hazard potential. A hydrologic and hydraulic analysis (Appendix D) indicates that by increasing the minimum crest of the dam to Elev. 170.0 the spillway apacity would be increased to approximately 60 percent of the PMF.

1

SECTION 6

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations. The top of the dam, which has a variable width averaging about 40 feet, is used as a roadway and contains no vegetative cover. The slopes of the upstream and downstream faces of the embankment are very irregular and contain small trees (up to 4-inch diameter trunks) and thick brush. No riprap is present on the upstream face. The riprap on the downstream face is randomly placed and ranged in size from four inch rock to 5-foot boulders. Seepage (2 gpm in each case) was observed at the downstream embankment, abutment junctions below El. 145 and around the 30-inch diameter normal spillway outlet pipe. Seepage (5 gpm) was observed flowing from beneath the outlet end of the four foot diameter emergency overflow spillway outlet pipe.

The embankment appears to be stable under static loading conditions; however, fines are apparent in the seepage flow which may indicate piping of soil particles from within the embankment. An investigation should be made as to the source and nature of the seepage and appropriate actions should follow.

The invert of the outlet of the emergency overflow spillway four foot diameter outlet pipe is located about 26 feet above the outlet channel near the downstream face of the dam. Discharge from the outlet pipe would flow over the unprotected embankment. The fitting of this pipe into the emergency overflow spillway inlet structure's downstream wall is in poor condition.

- b. Design and Construction Data. Design drawings, application data and miscellaneous correspondences were provided by the DER. However, no design calculations were included in the provided information.
- c. Operating Records. According to the Owner's representative, no operating records are maintained for this dam.
- d. <u>Post Construction Changes</u>. No records are available for any structural changes to the dam subsequent to the termination of construction. It was evident, upon inspection of the dam site, that construction was never completed.
- e. Seismic Stability. Village Two at New Hope Dam is located in Seismic Zone 1 on the Seismic Zone Map of Contiguous States. A dam located in Seismic Zone 1 is generally considered to be safe under any expected Zone 1 earthquake loading conditions if it is stable under static loading conditions.

SECTION 7

ASSESSMENT RECOMMENDATIONS AND PROPOSED REMEDIAL MEASURES

7.1 Dam Assessment

Evaluation. Based on the visual observations and review of the available information, Village Two at New Hope Dam is considered to be in fair condition. Several deficiencies were noted during the inspection. The trash rack is missing on the emergency overflow spillway inlet structure and the bars are too closely spaced on the trash rack of the normal overflow spillway inlet structure. Riprap is needed on the upstream face of the embankment to protect against wave action. The 48inch diameter emergency overflow spillway outlet pipe discharges too closely to the downstream face of the embankment and seepage (5 gpm) is discharging from beneath the outlet of the pipe. The fitting of this pipe into the emergency overflow spillway inlet structure's downstream wall needs repair. Small trees (up to 4-inch diameter trunks) and brush are growing on both the upstream and downstream faces of the dam. Seepage (2 gpm in each case) is evident below El. 145 on both sides at the abutment, downstream face of dam junction and around the 30-inch diameter outlet pipe. A portion of the top of the dam near the right abutment is below the design elevation by nearly 3 feet. The upstream and downstream faces of the embankment are very irregular. The reservoir drain gate valve at the bottom of the riser pipe of the normal overflow structure is inaccessable and its operability is unknown. Many of the problems are related to the fact that construction of Village Two at New Hope Dam was never completed.

The SDF selected for Village Two at New Hope Dam is 50 percent of the PMF. The spillway is capable of discharging 29 percent of the PMF before the embankment is overtopped. The spillway systems are classified as "Inadequate", but not "Seriously Inadequate" because the water surface elevation at the damage center is only about 0.9 feet higher for the breach condition as compared to the non-breach condition for the same storm event.

- b. Adequacy of Information. The information obtained from DER, visual observations and discussions with the Owner's representative are considered adequate for a Phase I investigation.
- c. <u>Urgency</u>. The remedial measures recommended in Section 7.2 should be initiated immediately.
- d. Necessity for Further Investigation. Further investigation should be implemented as discussed in Section 7.2.

7.2 Recommendations and Remedial Measures

The following recommendations and remedial measures should be initiated immediately. The Owner should retain the services of a licensed professional engineer experienced in the design and construction of dams to assist in complying with these recommendations and remedial measures.

a. Facilities.

- 1. The right side of the embankment should be built up to the design top of dam Elev. 170 and both the upstream and downstream faces of the embankment should be constructed as shown on the design drawings.
- 2. An investigation should be made of the source and nature of the seepage observed along the downstream face of the dam and abutment junctions below Elev. 145, around the outlet of the normal overflow spillway pipe and beneath the outlet of the emergency overflow spillway outlet pipe. Appropriate action should follow the investigation.
- 3. The embankment should be cleared of all trees and brush and any resulting voids should be backfilled with suitable compacted material. A grass cover should be established and maintained on the reconstructed slopes and crest of the dam.
- 4. Provisions should be made to insure that discharge from the 48-inch diameter emergency overflow spillway outlet pipe will not damage the downstream embankment. Repairs should be made to the connection of this pipe into the downstream wall of the emergency overflow spillway inlet structure.
- 5. Boulders should be removed from the embankment surface and consideration should given to protection of the upstream embankment face against wave action.
- 6. A trash rack should be provided on the emergency overflow spillway inlet structure as specified in the design. At least half of the steel rods should be removed from the trash rack on the normal overflow spillway riser pipe.
- 7. The reservoir drain gate valve at the bottom of the normal overflow riser pipe should be inspected and repaired if necessary.

b. Operation and Maintenance Procedures

- 1. A regular inspection and maintenance program should be developed and implemented. This program should include periodic operation of the reservoir drain gate valve of the normal overflow structure.
- 2. A system of warning downstream residents living along the east bank of the Delaware Canal in the event of an impending dam failure should be developed.

APPENDIX A

CHECKLIST VISUAL INSPECTION

CHECK LIST VISUAL INSPECTION DHASE I

Sheet 1 of 11

ND1 ID PA-00803		1	± 133.0 M.S.L.					
State Pennsylvania	egory High	Temperature 300F	Tailwater at Time of Inspection \pm 133.0 M.S.L.					Recorder
County Bucks	Hazard Category	Weather Partly cloudy						Lee DeHeer
Name Dam Village Two	Type of Dam Earth Embankment	Date(s) Inspection 12/15/80	Pool Elevation at Time of Inspection 163.0 M.S.L.	Inspection Personnel:	Lee DeHeer	Leonard Beck	Jon Rauschkolb	

Remarks:

Wayne Patterson, Vice President, Van Note-Harvey Associates accompanied us during the inspection.

N/A

CONCRETE/MASOWRY DAMS

VIELIAL EXAMENATION OF	OBSERVATIONS REM	Sheet 2 of 11 RENARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	N/A	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	N/A	
DRAINS	N/A	·
WATER PASSAGES	N/A	•
FOURDATION		

.

N/A

CONSTRUCTION JOINTS

	REMARKS OR RECONSTRUCTION
CONCRETE/MASONRY DAMS	SMULLONG

OBSERVATIONS	N/A	N/A	N/A	N/A
VISUAL EXAMINATION OF	SURFACE CRACKS CONCRETE SURFACES	STRUCTURAL CRACKING	VERTICAL AND HORIZONTAL ALIGHMENT	MOHOLITH JOINTS

EMBANKMENT

• • • • • • • • • • • • • • • • • • • •		
Riprap should be placed at least on the upstream face of the dam for protection against wave	Even though riprap is called for on both the upstream and downstream faces of the dam on the drawings, none was in evidence. Random boulders are scattered over the dam surface.	RIPRAP FAILURES
The dam sh ould be finished to agree with the section shown on the drawings.	The elevation of the top of the dam at the north abutment is 25ft, higher than the elevation of the top of the dam at the south abutment. This was done to accommodate a road along the dam crest. The horizontal alignment of the dam axis appears to be satisfactory but the width of the dam varies.	VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST
	None observed	SLOUGHINS OR EROSION OF EMBANKIENT AND ABUTMENT SLOPES
	None observed.	UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE
	None observed.	SURFACE CRACKS
REMARKS OR RECOMMENDATIONS	OBSERVATIONS	VISUAL EXAMINATION OF

VISUAL EXAMINATION OF UNCTION OF EMBANKWENT AND ABUTMENT, SPILLNAY AND DAM AND MAN NOTICEABLE SEEPAGE (Sgpm each side) is evident at the junctions of the embankment and abutments on the downstream face. Seepage (Sgpm) is also flowing trom beneath the outlet end of the 4-foot diameter emergency spillway conduit. Fines are apparent in the seepage flow.			Sheet 5 of 11
Junction of embankment and abutment appears satisfactory from top of dam to approximately El. 145 on the downstream side. Below El. 145 seepage (2gpm each side) is evident at the junctions of the embankment and abutments on the downstream face. Seepage (5gpm) is also flowing from beneath the outlet end of the 4-foot diameter emergency spillway conduit. Fines are apparent in the seepage flow.	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	Junction of embankment and abutment appears satisfactory from top of dam to approximately El. 145 on the downstream side. Below El. 145 seepage (2gpm each side) is evident at the junctions of the embankment and abutments on the downstream face. Seepage	Investigate the source and extent of the seepage.
	ANY NOTICEABLE SEEPAGE	(Jyun) is also flowing from beneath the outlet end of the 4-foot diameter emergency spillway conduit. Fines are apparent in the seepage flow.	

DRAINS

None observed.

None observed.

(NORMAL OVERFLOW STRUCTURE) OUTLET WORKS

					Sheet	6 07 11
Sheet 6 of 11	REMARKS OR RECOMMENDATIONS	· .	Remove some of the steel rods in the trash rack.			Investigate the condition of the gate or valve and the drain pipe.
(ייסווייטרב סלבניו בסול פוויסם ומויד	OBSERVATIONS	N/A Intake riser and conduit are steel pipes.	36-inch diameter riser pipe appears to be in good condition. Steel rods on trash rack are too closely spaced thus discharge would be impeded because of trash buildup. 8-inch drain pipe and gate could not be observed.	Appears satisfactory	Appears satisfactory	8-inch diameter gate or valve could not be examined because it is at the base of the 21-foot high intake tower. Steel rod trash rack must be removed to gain access to the intake riser.
	VISUAL EXAMINATION OF	CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	INTAKE STRUCTURE	DUTLET STRUCTURE	OUTLET CHANNEL	EMERGENCY GATE

UNGATED SPILLWAY (EMERGENCY OVERFLOW STRUCTURE)

Sheet 7 of 11

	V/N	BRIDGE AND PIERS
Take corrective measures to insure that discharge will not affect downstream portion of dam.	Channel alignment is very close to the downstream face of the dam. Channel is obstructed with brush, small trees and boulders.	DISCHARGE CHAIMEL
Remove the trees and brush and backfill any resulting voids with suitable com- pacted material.	Small trees(up to 4-inch diameter trunks) and brush obstruct access to the intake structure.	АРРКОАСН СНАМИЕL
	Concrete appears to be in good condition.	CONCRETE WEIR
REMARKS OR RECOMINENDATIONS	OBSERVATIONS	VISUAL EXAMINATION OF

N/A

GATED SPILLWAY

		Sheet 8 of 11
VISUAL EXAMINATION OF	OBSERVAT104S	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	N/A	
APPROACH CHAWNEL		
	N/A	
DISCHARGE CHANNEL		
	N/A	
BRIDGE AND PIERS		
	N/A	
GATES AND OPERATION		

None

PIEZOMETERS

INSTRUMENTATION

VISUAL EXAMINATION	08SERVATIONS	Sheet 9 of 11 REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None	
OBSERVATION WELLS	None	
WEIRS	None	

OTHER

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	Sheet 10 of 11 REMARKS OR RECONTINENDATIONS
SLOPES .	Slopes along the perimeter of the reservoir average about 4H:1V and are covered with grass, brush and trees. Very limited areas are not covered with vegetation.	

SEDIMENTATION

No evidence of sedimentation was observed in the impoundment.

DOWNSTREAM CHANNEL

Sheet 11 of 11 REMARKS OR RECOMMENDATIONS			Definitely makes the dam "High" hazzard.
OBSERVATIONS	Channel flows through narrow wooded valley. Some fallen timber obstructs the discharge.	Channel invert slope averages about 4 percent. Side slopes of channel average about 2H:1V.	Approximately a dozen homes and commercial establishments immediately downstream from the Delaware Canal(about 0.25 miles downstream from the dam) would be directly affected by a failure of the dam.
VISUAL EXAMINATION OF	CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	SLOPES	APPROXIMATE NO. OF HOMES AND POPULATION

Village Two Pond Dam SHET BY 1/21/81 1841-014

SUBJECT VILL	AGE	z -	H ç H		SHEET //B	JFR	1-14-B1	1841-014
					<u> </u>		<u> </u>	_ , ,
	بار = الارد 	- 	+ +					
						Ex 4	5	7
	٦ -	• ;			† +	The state of	¥ ¥	
		: :	† † †		:		ABU	÷ + + + + + + + + + + + + + + + + + + +
0.011.4	ברכ	- -			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		. •	• • •		† †	•	RIGHT	a
	8	• •	• • • •		• •		E.	ď
	_ 🕹 . 🚽				1		1 K !	·
	242 -X		+					5
	20	•						,
۲٬۱۰۹،۲	gre	•	1		· · · · · · · · ·		£ 1	3
		•			1 .	*	- · ·	<u> </u>
· · · · · · · · · · · · · · · · · · ·		· :			: .		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
0.211.7	313				· ; <u>+</u>	7	الم الم	2 2
	6				1	A'	0 3	ורואשל
a'alı'v	יברני		<u> </u>		A	0.0	ERGENCY (2) EVE	14. OVOR
	,`o				A	D.+	<u>ī</u> '	S. Ader
	v	ii			+	, EV.	Щ (d	
0.181.v	373 -			7		3		
	- L	_		E'	- !	DESIGN		-
h'981 7						2	Č	, , , , , , , , , , , , , , , , , , ,
						1 1 1		
	50	A				2		<u>.</u>
0.2Pl x		E		1		- 1		o to
1551	E E	0		089	- 1 - 1	- 2		
7	BUTHEN			1 1 1 1	10174		.	
	4	-						
	- + +	1 1						† · † † † † †

APPENDIX B

CHECKLIST ENGINEERING DATA

CHECK LIST	ENGINEERING DATA	DESIGN, CONSTRUCTION, OPERATION	PHASF 1
------------	------------------	---------------------------------	---------

NAME OF DAM VIllage Two

ND1 1D PA-00803

Sheet 1 of 4

AS-BUILT DRAWINGS ITEM

REMARKS

Not Available

REGIONAL VICINITY MAP

Refer to Figure 1, Appendix E

CONSTRUCTION HISTORY

Construction was started in 1972 and still has not been completed. The original owner, Village II at New Hope, went bankrupt and the development is controlled by Citibank.

TYPICAL SECTIONS OF DAM

Refer to sheet 3, Appendix E for proposed final cross section of the dam.

OUTLETS - PLAN

Refer to sheet 3, Appendix D

CONSTRAINTS

DETAILS

DISCHARGE RATINGS

Refer to sheet 11, Appendix D

RAINFALL/RESERVOIR RECORDS

No records kept.

Sheet 2 of 4

Not known.

	Sheet 3 of 4
HONITORING SYSTEMS	None
MOD IFICATIONS	Original construction still not completed.
HIGH POOL RECORDS	No record available.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	Original construction still not completed
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Original construction still not completed.
MAINTENANCE OPERATION RECORDS	None available.

11EM	REMARKS	Sueer 4 or 4
SPILLWAY PLAN SECTIONS DETAILS	Refer to sheets 2 and 3, Appendix E	
OPERATING EQUIPMENT PLAMS & DETAILS	Refer to sheet 2, Appendix E	
MISCELLANEOUS	Construction of the dam is not completed and since Village Two at Kaw Hope, Inc. is bankrupt and Citibank now controls the property it is not known if the dam will ever be completed.	

APPENDIX C
PHOTOGRAPHS

APPENDIX C PHOTOGRAPH TABLE OF CONTENTS

		Page <u>No.</u>
Site	Plan	Α
PHC	TOGRAPH	
No.		
1.	View along the top of the dam from the right abutment. (12/15/80)	1
2.	Impoundment with dam in the background showing variation in top of dam elevation. (12/15/80)	1
3.	Normal overflow spillway entrance with steel rod trashrack. (12/15/80)	2
4.	Outlet of 30-inch diameter normal spillway pipe. (12/15/80)	2
5.	Entrance to emergency overflow spillway. (12/15/80)	2 3 3
6.	Upstream end of 48-inch diameter emergency spillway pipe. (12/15/80)	3
7.	Outlet of 48-inch diameter emergency spillway pipe. (12/15/80)	4
8.	Typical seepage condition at junction of downstream embankment and abutment. (12/15/80)	4
9.	Typical channel condition downstream of the dam. (12/15/80)	5
10.	Bridge over channel about 1,100 feet downstream of the dam. (12/15/80)	5 5
11.	Area where downstream channel enters Delaware Canal about 1,200 feet downstream of the dam. (12/15/80)	6
12.	Potential damage area about 1,300 feet downstream of	-
	the dam on the east bank of the Delaware Canal. (12/15/80)	6

Village Two Poind Dam SHET A BY DATE JOB NO 1841-014

1. VIEW ALONG THE TOP OF THE DAM FROM THE RIGHT ABUTMENT. (12/15/80)

2. IMPOUNDMENT WITH DAM IN THE BACKGROUND SHOWING VARIATION IN TOP OF DAM ELEVATION. (12/15/80)

3. NORMAL OVERFLOW SPILLWAY ENTRANCE WITH STEEL ROD TRASHRACK (12/15/80)

4. OUTLET OF 30-INCH DIAMETER NORMAL SPILL-WAY PIPE. (12/15/80)

5. ENTRANCE TO EMERGENCY OVERFLOW SPILLWAY. (12/15/80)

6. UPSTREAM END OF 48-INCH DIAMETER EMERGENCY SPILLWAY PIPE (12/15/80)

7. OUTLET OF 48-INCH DIAMETER EMERGENCY SPILL-WAY PIPE .(12/15/80)

8. TYPICAL SLEPAGE CONDITION AT JUNCTION OF DOWNSTREAM EMBANKMENT AND ABUTMENT. (12/15/80)

9. TYPICAL CHANNEL CONDITION DOWNSTREAM OF THE DAM.(12/15/80)

10. BRIDGE OVER CHANNEL ABOUT 1,100 FEET DOWNSTREAM OF THE DAM.(12/15/80)

11. AREA WHERE DOWNSTREAM CHANNEL ENTERS DELAWARE CANAL ABOUT 1,200 FEET DOWNSTREAM OF THE DAM.(12/15/80)

12. POTENTIAL DAMAGE AREA ABOUT 1,300 FEET DOWNSTREAM OF THE DAM ON THE EAST BANK OF THE DELAWARE CANAL (12/15/80)

APPENDIX D

HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

VILLAGE TWO POND DAM APPENDIX D HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

TABLE OF CONTENTS

	SHEET
Checklist, Hydrologic and Hydraulic Engineering Data	1
HEC-1, Revised, Flood Hydrograph Package	2
Hydrology Calculations	3 and 4
Elevation - Discharge Calculations Normal Overflow Structure	5 and 6
Elevation - Discharge Calculations Emergency Overflow Structure	7 and 8
Discharge Over the Dam	9
Composite Elevation - Discharge Data	10
Stage-Discharge and Stage-Storage Curves	11
Downstream Channel Section	12
HEC-1 Dam Safety Version, Non-Breach, Computer Output Crest of Dam El. 167.1	14 through 17
HEC-1 Dam Safety Version, Computer Output	18 through 22
HEC-1 Dam Safety Version, Non-Breach, Computer Output	23 through 26

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: RURAL, OPEN PASTURE & WOODS
ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): ELEV. 164.5 (13 ACRE-FEET)
ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): ELEV. 167.1 (18 ACRE - FEET
ELEVATION MAXIMUM DESIGN POOL: ELEV. 1700
ELEVATION TOP DAM: ELEV 1671, LOW POINT TOP OF DAM
SPILLWAY - HIGH STAGE OUTLET :
a. Elevation احاماء 5
b. Type Box INLET
c. Width 12 NCHES
d. Length 40 FEET
e. Location Spillover NEAL RIGHT ABUTMENT
f. Number and Type of Gates NONE
LOW STAGE SPILLWAY
a. Type DROP INLET CLOSED CONDUIT 36" & RISEK PIPE WITH 30" & OUTLET PIPE
b. Location NEAR CENTER OF DAM
c. Entrance inverts ELEV 164 5 (WITH STEEL ROT TRASH RACK)
d. Exit inverts ELEV. 133.0
e. Emergency draindown facilities 8" DRAIN PIPE
HYDROMETEOROLOGICAL CAGES:
a. Type Novie WITHIN WATERSHED
b. Location w/4
c. Records N/A
MAXIMUM NON-DAMAGING DISCHARGE: AND TOTAL MAKED

HEC-1, REVISED FLOOD HYDROGRAPH PACKAGE

The original "Flood Hydrograph Package" (HEC-1), developed by the Hydrologic Engineering Center, Corps of Engineers, has been modified for use under the National Dam Inspectic Program. The "Flood Hydrograph Package (HEC-1), Dam Safe / Version", hereinafter referred to as, HEC-1, Rev., has been modified to require less detailed input and to include a dam breach analysis. The required input is obtained from the field inspection of a dam, any available design/evaluation data, relatively simple hydraulic calculations, or information from the USGS Quandrangle maps. The input format is flexible in order to reflect any unique characteristics of an individual dam.

HEC-1, Rev. computes a reservoir inflow hydrograph based on individual watershed characteristics such as: area, percentage of impervious surface area, watershed shape, and hydrograph characteristics determined from regional correlation studies by the Corps of Engineers, Baltimore District. The inflow is routed through the reservoir using spillway discharge data obtained from the field inspection or design data. Flood storage capacity is determined from USGS maps or design information and verified by the field inspection. In the event a spillway cannot discharge 0.5 PMF without overtopping and failure of the dam, downstream channel characteristics obtained from the field inspection and USGS maps are inputed and flows are routed downstream to the damage center and a dam breach analysis is performed.

Included in this Appendix are the HEC-1, Rev. pertinent input values and a summary print-out.

11" High "hazard structures only

SUBJECT	N	SHEET	ВУ	DATE	JOB NO
	VILLAGE Z - H/H	3	JFR	1/13/81	<u> </u>
			JAB	1/20/81	
	HYDROLOGY CALCULATIONS .	Į į		* * *	
• • • • • • • • • • • • • • • • • • • •	The court cacco carriers	•	• •	* * * * * * * * * * * * * * * * * * * *	
		, .			• • • • • • • • • • • • • • • • • • •
,	DRAINAGE AREA (PLANIMETERED FROM	. USGS	QUAD 5	HEET.) : C	?/14 SQ:MI,
		•		 	, , , , , , , , , , , , , , , , , , ,
	STAGE - STORAGE DATA				,
• •					
• • •	ELEVATION AREA (AC	CRES)	ع د	TORAGE	_ (AC.FT) _
		· į		0.	:
				0.7	
	1.2			7.0	
	3.2		! !	28.2	
	5.8.	7 1		50.4	
	2.5.	• [83.5	
		1			
		<u> </u>	· • •	-	
		· · · · ·			<u> </u>
•	PMP CALCULATIONS (HMR	< ,5 5 ,)	• •	÷ = •	
<u>-</u>			• •		
• •	. AREA IS IN ZONE 6				
	24-HOUR , 200 50 MI . KAINE	FALL	= 23.5	INCHES	
		1 1			
	HR. 20	RAIN	FALL		
	6 113	26	. ' ' کا ر		
	12 123	. 28	.9"		
	24 132	i :	φ"		
	42 147	3 3	.4 "		
		1 - 1	-		
		1 .		7 - 7	
• •		i i			- - - - - - - - - - - - - -
		<u> </u>		-	
	* STORAGE = $\frac{H}{3}$ (A, +Az+	· VA,	A2.)		
	3	; ;			
1 !					
1					
• •					
		,		I .	

SUBJECT	V1LL	AGE	2	- 1	H c'	,—— 'Н					SHE	ET	BY	- R		DATE	3/0		JOB NO	0 	- 0		
													L	<u>~</u>			20/		, ,			1 4	<u>-</u>
		511	 	 ER		DEF	FIC	Hei	ンて	S	1	•	7	?	- •	. ′ .			· T		- 	;	· -
	•		7.0		-		-	:		-	: • ! !	•		•			1		1			1	
		INF	 اعالاا	TAN	102	PRO	314c	i Ded	! B'	, 5	ا الم	inic	Dre	ے :		E		1	j			<u> </u>	•
	•	, , , ,			1							•	• • • • • • • • • • • • • • • • • • •			· ·	1			· ·	1		1
	•	ARE	; :A	15 1	IN :	ZON	! 底	: :4 f	3⇒	•		:		!	•		į	!					• •
	-			•			-		•			•		:	•	·	1		- !			:	•
				, , ,	=	0, 1	+; +;3	•	٠ ء	. 1	0		=	O.1	0 ص	· .			;			i 	
				·			ì					<u>ا</u> =	•	-			1		- 1	1		1	
	***	TP	· ==	$\mathcal{C}_{\mathcal{A}}$. (_ ·	برجا	5:	3				•	•	1 1		. I			-	1	- *	-
• · · • · • · •	. •	· 'P	٠	~,	ر ا	·	سن∓ :	* *	•		:	i	•		• • •	, : !		•		- +	1	1	<u> </u>
• • •	•	•	: !_	≃=		טר		, ,,	•		•	- + ≃-	~. 3	: シフ_ :	وښينه	- c		į		- !	ļ	į	†
	•	•		•	. د د	. 10	Miles	<u>- ></u>	. ,		CA.		٠, ـ	. ۔ د	M	!	1		· · · •	:	- 1 -		;
	•	. Tp	· =	~ /	: .;	(-7	: '∩×	٠ ,	37	0.	è <u>:</u>		¬ ३६	ن د	: .				••	!	- +	-+	
	•	. 17		٥,٠	ρ υ.	(0.1	Ψ-	٠٠.	\$ ~		: • i	. •	<i>).</i> • •) , t	100,	. و÷	1		• •	-	•		-
	. ·		٠			٠	:	:	•				• •	f !	: :			}	•	•	: -	• -	+
		•		•	;			:	•			•	•		: :			1	:	· †		• • • • •	7
• • • • •	٠	•	;	:	•		:	•	• • •		•	4					1	1	- 4		•	Ţ	
								÷ -	i			‡	•	•	. !			-		- :	:	Ŧ ·	1
• • • • •	•	•	1	: -	1	•	:	ŧ i	‡ !		<u>.</u>	•	•	i -	!	1						. !	1
		1 1	:				f	i	•		į			1	L .						+	<u>.</u> .	
			1	-	1			:		}	;	1	7	İ	1		· · · · · · · · · · · · · · · · · · ·	į	- ‡	_ i	•		i
	; ;	+	:	;		: ;	!	•	:		+		i	1	•	: †			. = 1	-	-	į	i
		7			1 ;			!	•		:	I	- !		1 - 1	, 1	1	+		:	. }	• -	<u>:</u> -
			1		1 1		:	· i	į		;	. :	• •	•	! !	!		1	!	!	:	1	1
	!			•	: .		,	i	}	;	1	į	•	-	. ,	· ,		. ‡	Ĺ	į	1	;	•
1 1 , ,		1 1		:			ļ.	1	ī	; }	1	!			 			-	*-		± ±		•
<u>:</u> :		+ +				:	-		! !					-	1		.	:	= · •	+		!	.
	!			•	1 :		-	İ	İ	-	1		∤ -	1		1	•	. !	- :	- · · •			• •
		+ +		•			†	1	į .		;	į	+	1.				- 1	. !.	- !	- •		• -
		1 ;		: +			į	•	ł			1		-	1				†	-	†	•	4
	!	• •	į	•		,	-		į		-	ļ	}			_ 1	i	1		-		1	•
1	+	!	-	į		.	!	1	ļ			-		}				!	•		-	1	1
	. 1	1 1	! †	:		,	1			1			į						1		_	1	
				i					1]. !		į					. !		+-		_		· -
				į .	!!!	.		1] ;		İ	1					}		_			-
			ĺ	1		1	i	!					-			[]				_	_		
	ļ	1 1		•				Ī.	Ĭ ;			Ì	j	1				}					
1		* * *	!		1 1	, !			i	1 !	1	1	-	1	1 1	1			1	_		1	

VILLAGE $Z - H \not\in H$ S JFR 1-7-81 1841-014 ELEVATION - DISCHARGE CALCULATIONS NORMAL OVERFLOW STRUCTURE: Sheft spillings WEIR CONTROL Q = C_0 L H ^{3/2} ASSUME $C_0 = 3.0$ L = π D = π (3) = 9.42 . Q = (3.0)(942) H ^{3/2} = 29.3 H ^{3/2} CULVERT CONTROL INLET SU binevaged ASSUME $K_0 = 1.5 \cdot (-1.5)^2$ ASSUME $K_0 = 1.5 \cdot (-1.5)^2$ ASSUME $K_0 = 1.5 \cdot (-1.5)^2$ ASSUME $K_0 = 1.5 \cdot (-1.5)^2$ $M = 0.01 \cdot$	<u></u>		C	r		· · · · · · · · · · · · · · · · · · ·
ELEVATION - DISCHARGE CALCULATIONS NORMAL OVERFLOW STRUCTURE - Shelf spillings Weir Control Q = $C_{\omega} L H^{3/2}$ Assume $C_{\omega} = 3.0$ $L = \pi D = \pi (3) = 9.42$ $Q = (3.0)(9.42) H^{3/2} = 23.3 H^{3/2}$ CULVERT CONTROL Met submerged $Q = A = A = A + A + A + A + A + A + A + A$	SUBJECT	VILLAGE Z - HEH	SHEET	IER	1-7-81	1841-014
ELEVATION - DISCHARGE CALCULATIONS NORMAL OVERFLOW STRUCTURE - Sheft spillinging WEIR CONTROL Q = $C_{obs} L H^{3/2}$ Assume $C_{obs} = 3.0$ $L = \pi D = \pi (3) = 9.42$ $Q = (3.0)(9.42) H^{3/2} = 23.3 H^{3/2}$ Colvert Control inlet submerged $G = A = A = A + A + A + A + A + A + A + A$			L	18	1/20/81	1.0-11 017
NORMAL OVERFLOW STRUCTURE - Sheft spillings. WEIR CONTROL $Q = C_{\omega} \perp H^{3/2}$ $Assume C_{\omega} = 3.0$ $L = \pi D = \pi (3) = 9.42$ $Q = (3.0)(9.42) H^{3/2} = 23.3 H^{3/2}$ $Culvert Control - Inlet submerged$ $Q = A / 29H $			111	17.		
NORMAL OVERFLOW STRUCTURE - Sheft spillings. WEIR CONTROL $Q = C_{\omega} \perp H^{3/2}$ $Assume C_{\omega} = 3.0$ $L = \pi D = \pi (3) = 9.42$ $Q = (3.0)(9.42) H^{3/2} = 23.3 H^{3/2}$ $Culvert Control - Inlet submerged$ $Q = A / 29H $		ELEVATION - DISCHARGE CALC	ULA	TIONS	+- +	
WEIR CONTROL $Q = C_{\omega} L H^{3/2}$ Assume $C_{\omega} = 3.0$ $L = \pi D = \pi (3) = 9.42'$ $Q = (3.0)(9.42) H^{3/2} = 28.3 H^{3/2}$ CULVERT CONTROL Met submerged $C = A = \frac{23H}{1 + \text{Ke} + f(H/D)}$ and Wiggert, 1972, pp. 289 Assume $K_{e} = 1 = 185 (.01)^{2} = 0.014$ $C = \pi (2.5)^{2} = 185 (.01)^{2} = 0.014$						4
$Q = C_{W} L H^{3/2}$ Assume $C_{W} = 3.0$ $L = \pi D = \pi (3) = 9.42'$ $Q = (3.0)(9.42) H^{3/2} = 29.3 H^{3/2}$ CULVERT CONTROL Inlet submerged $Q = A / \frac{23H}{1 + K_{e} + f(L/D)} \text{ and Wiggert, 1972, pp. 289}.$ Assume $K_{e} = 1 / N = 0.01$ for welded steel pipe $f = \frac{105}{d^{3/2}} = \frac{185(.01)^{2}}{(2.5)^{3/3}} = 0.014$ $Q = \pi (2.5)^{2} / \frac{32.23}{(32.23)} H$		NORMAL OVERFLOW STRUCTURE	÷ 5	shaft is	Pillugia	
$Q = C_{W} L H^{3/2}$ Assume $C_{W} = 3.0$ $L = \pi D = \pi (3) = 9.42'$ $Q = (3.0)(9.42) H^{3/2} = 29.3 H^{3/2}$ CULVERT CONTROL Inlet submerged $Q = A / \frac{23H}{1 + K_{e} + f(L/D)} \text{ and Wiggert, 1972, pp. 289}.$ Assume $K_{e} = 1 / N = 0.01$ for welded steel pipe $f = \frac{105}{d^{3/2}} = \frac{185(.01)^{2}}{(2.5)^{3/3}} = 0.014$ $Q = \pi (2.5)^{2} / \frac{32.23}{(32.23)} H$				- · · · ·		
ASSUME $C_{\omega} = 3.0$ $L = \pi D = \pi (3) = 9.42'$ $Q = (3.0)(9.42) H^{3/2} = 25.3 H^{3/2}$ CULVERT CONTEOL - Inlet Submerged $G = A / \frac{29 H}{1 + Ke + f(L/D)}$ and Wiggert, 1972, pp. 289. Assume $K_{e} = 1 e' n = 0.01$ for welded steel pipe $f = \frac{125 n^{2}}{d^{1/2}} = \frac{185 (.01)^{2}}{(2.5)^{1/3}} = 0.014$ $Q = \pi (2.3)^{2} / \frac{32.23}{d^{1/2}} H$		WEIR CONTROL	+ :		1	
ASSUME $C_{\omega} = 3.0$ $L = \pi D = \pi (3) = 9.42'$ $Q = (3.0)(9.42) H^{3/2} = 25.3 H^{3/2}$ CULVERT CONTEOL - Inlet Submerged $G = A / \frac{29 H}{1 + Ke + f(L/D)}$ and Wiggert, 1972, pp. 289. Assume $K_{e} = 1 e' n = 0.01$ for welded steel pipe $f = \frac{125 n^{2}}{d^{1/2}} = \frac{185 (.01)^{2}}{(2.5)^{1/3}} = 0.014$ $Q = \pi (2.3)^{2} / \frac{32.23}{d^{1/2}} H$, , , , , , , , , , , , , , , , , ,	· .	1 1	4	
ASSUME $C_{\omega} = 3.0$ $L = \pi D = \pi (3) = 9.42'$ $Q = (3.0)(9.42) H^{3/2} = 25.3 H^{3/2}$ CULVERT CONTEOL - Inlet Submerged $G = A / \frac{29 H}{1 + Ke + f(L/D)}$ and Wiggert, 1972, pp. 289. Assume $K_{e} = 1 e' n = 0.01$ for welded steel pipe $f = \frac{125 n^{2}}{d^{1/2}} = \frac{185 (.01)^{2}}{(2.5)^{1/3}} = 0.014$ $Q = \pi (2.3)^{2} / \frac{32.23}{d^{1/2}} H$		Q = Cw L H3/2	• •	· · ·		
$L = \pi D = \pi (3) = 9.42'$ $Q = (3.0)(9.42) H^{3/2} = 25.3 H^{3/2}$ $CULVERT CONTROL = Inlet submeraged$ $Q = A / 29 H $				· - †		····
$L = \pi D = \pi (3) = 9.42'$ $Q = (3.0)(9.42) H^{3/2} = 25.3 H^{3/2}$ $CULVERT CONTROL = Inlet submeraged$ $Q = A / 29 H $		Assume C. = 3.0	,			· · · · · · · · · · · · · · · · · · ·
$Q = (3.0)(9.42) H^{3/2} = 23.3 + 1^{3/2}$ CULVERT CONTROL - Inlet submerged $Q = A / \frac{29H}{1 + \text{Ke} + f(L/D)} = \frac{\text{Applied Hydrantics in Engineering. Morris}}{\text{and Wiggert, 1972, pp. 289}}$ Assume $K_e = 1 \text{ of } N = 0.01 \text{ for welded steel pipe}$ $Q = \frac{13.0}{4^{1/2}} = \frac{13.3}{(2.5)^{1/3}} = 0.014$ $Q = \frac{13.0}{4^{1/2}} = \frac{13.3}{(32.2)} + \frac{13.7}{(32.2)} = 0.014$. 1.	· · · · · · · · · · · · · · · · · · ·
$Q = (3.0)(9.42) H^{3/2} = 23.3 + 1^{3/2}$ CULVERT CONTROL - Inlet submerged $Q = A / \frac{29H}{1 + \text{Ke} + f(L/D)} = \frac{\text{Applied Hydrantics in Engineering. Morris}}{\text{and Wiggert, 1972, pp. 289}}$ Assume $K_e = 1 \text{ of } N = 0.01 \text{ for welded steel pipe}$ $Q = \frac{13.0}{4^{1/2}} = \frac{13.3}{(2.5)^{1/3}} = 0.014$ $Q = \frac{13.0}{4^{1/2}} = \frac{13.3}{(32.2)} + \frac{13.7}{(32.2)} = 0.014$		$L = \pi D = \pi (3) =$	व.म	2		
CULVERT CONTROL - Inlet Submerged $G = A / \frac{29 \text{H}}{1 + \text{Ke} + f(L/D)}; \text{ Applied Hydraulics in Engineering. Mornie}$ $V = V + V + V + V + V + V + V + V + V + $					• • • • • •	
CULVERT CONTROL - Inlet Submerged $G = A / \frac{29 \text{H}}{1 + \text{Ke} + f(L/D)}; \text{ Applied Hydraulics in Engineering. Mornie}$ $V = V + V + V + V + V + V + V + V + V + $		Q = (3.0)(9.42) H" = 23.	3 4,	3/2	. !	
G = A				• •		
G = A	• •	CULVERT CONTROL - INLET SL	bund	erged.		
Assume $K_e = 1$ of $N = 0.01$ for welded steel pipe. $f = \frac{135}{0.01} = \frac{185}{(2.5)^{1/3}} = 0.014$ $Q = \pi (2.5)^2 / \frac{32.25}{4} = 0.014$,		
Assume $K_e = 1$ of $N = 0.01$ for welded steel pipe. $f = \frac{135}{0.01} = \frac{185}{(2.5)^{1/3}} = 0.014$ $Q = \pi (2.5)^2 / \frac{32.25}{4} = 0.014$		$G = A / \frac{2qH}{}$, APP	lied Hydra	wice in Er	gineering. Morris
Assume $K_e = 1$ of $N = 0.01$ for welded steel pipe. $f = \frac{135}{0.01} = \frac{185}{(2.5)^{1/3}} = 0.014$ $Q = \pi (2.5)^2 / \frac{32.25}{4} = 0.014$. 1. 1	V 1 + Ke + + (L/D)	land	. Wiggert	, 1972,	PB. 289
$\int = \frac{185}{d^{1/2}} = \frac{185(.01)^2}{(2.5)^{1/3}} = 0.014$ $Q = \pi(2.5)^2 / \frac{(32.2)}{(32.2)} + \frac{185(.01)^2}{(2.5)^{1/3}} = 0.014$			1	. : :	+ + +	
$\int = \frac{185}{d^{1/2}} = \frac{185(.01)^2}{(2.5)^{1/3}} = 0.014$ $Q = \pi(2.5)^2 / \frac{(32.2)}{(32.2)} + \frac{185(.01)^2}{(2.5)^{1/3}} = 0.014$		Assume Ke = \ & W	= 0:	oi for	welded	steel pipe
$Q = \pi (2.5)^2 / \frac{(32.2)}{(32.2)} H$						
$Q = \pi (2.5)^2 / \frac{(32.2)}{(32.2)} H$		$f = \frac{135}{135}$	5 (.0	Ds =	0 014	
$Q = \frac{\pi(2.5)^2}{4} \sqrt{\frac{(32.2)}{1+1}} + \frac{(32.2)}{1.5}$		1 d'/3 1 d	(2.5))' /3		
$Q = \frac{\pi(z.5)^{2}}{4} \sqrt{1+1.5.014(208/z.5)}$; + + -	· • · • · • · • · • · • · • · • · • · •	
H V 1+1 . >.014(20B/2.5)	. !	$Q = \pi(2.5)^{2}/2$				
		s) 410 c . 1 + 1 V	08/2	3)	· · · · · · · · · · · · · · · · · · ·	
Q = ZZ.1 H1/2		Q = 22.1 H/2	.			
					· · · · · · · · · · · · · · · · · · ·	
			_			
┇╶ [╸] ┇┋┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇┇			- + +			
			ļ. ļ.			
				_ _ _		
	1 1		1 1	1 1 1	1 (1	1 1 1 1 1 1

SUBJECT	VILLA		z -	H f	H				S	HEET	87	- R	DATE	3/81	JOB N		- 014	
 .,											V &	, -		0/81				
	ELE		T - 14C	01400	N 84	= D	474	En	اء ج		-	7	T		7	5128 E	<u> </u>	
<u></u>		1	- 1 1	0.30	7100		,,,		7	0122	<u> </u>	VEIC	FLOW	3,,		1		
		·				WEI	2						ر در در	RT			Shu	YAW
	w.	S.E		,	4 ~			Ç	ָ ע		1	٦٥		_	<u>.</u>	1	OUTE	- 1
	عا السال	4.5.	- -	0		- !	-	Φ				25.	_ _	_ 13	22,			>
	ًها ال	6 5			2			80			32	25	4		26		ع	0
······		8.0.	- + :	3	5	ļ		18	5	! + - +	33,	75,	_	17	8		12	8
	ما ااا	9.0,	·· · · ‡	<u>-</u> -	2					+ +	34	75		11.	30		1	0
	i)	0.0			.5				-		_	25.			32		! 1	25
	- j ·	1.0		ļ	5_	-	i i			+-		75			34.		1 '	34.
	-	2.0.			1 1		† - ;	1	-	+	75	i	+ -	İ	36			عالا
·· - ·		3.0	- - ·	;	5	1						.75			38.		1 1	.B_
	1 1	40.	4		2		- 1		- † -	.ii :		75.		1	39			39_ !L
). Jr. (5,O		10	5.	•	•				7.0	72	- + -		1	-		1 L
	· • • •	• •		- †		† !		-	-	1 :	1				1 1		;	
<u> </u>	;	• .			; !	٠		_		1	1	1						
			Q =	28.	3 H,	3/2 W				Ī	· · ·	2]	Q	22	1 H	1/2	ļ ļ <u>.</u>	
		1 i	W	-			-		- .	. !		_			L.	 _		-
	w	here	- H,	~ is	th	e	اونو	ht	· 67.	+1-0	. re	scrye	>ir -	oche	اک پ	erfac	e _	-
	الم الم	امرد	the	top	40	the	. V	-138	Pi	ا ا	and	He	<u> </u>	سف.	hei	-	: 1	
	- Hh	ie v	eser	rolv	ىصا	ter	اں≥	fac	ا ا	مطم	حوا ا	the.	cent	لما إين			the .	-
	ou	لمصلك	راحا	(dimit			į											-
		+			-			-	-		1			-	1			
	+ + -		+	-				-		 		1						-
		 .				.					-							<u>.</u>
•	+ .		 			. +	†	- -		1 -		 		i				:
		 	• • •	- -	- †			- -	-	j j		 - -	-		 - -			
	- 1	1 1	- +						- +	1	i		1 -		1-1	1	-	7
•								-						1				<u> </u>
- + - + - +																		
			_ _	. +			_		_]]		1 1	_ _			_ _	 	<u> </u>
							_					1			1_1			<u> </u>
.				1										1		1		

BJECT	2 - H = H	SHEET	BY	DATE	JOB NO
VICCAGE	C - A; II				1841-014
and the second s	a company of the comp	, <u></u> 4	v R	1/20/81	
EMERGENC	Y OVERFLOW	STRUCTURE			
WEIR CON	JTROL .				
Q = C.	L H 3/2				
Assume	Cu = 3.0				
D = 3.0	$0(45) H^{3/2} = 1$	20 H3/2			
CINNERT	CONTROL				
- CORVERT	- CON 1500		**	• • • •	
	c: Bureau o	TPLI D	75 de "L	مدر لمده	v Donth
Re-evenc	1		1		1 1 1
	tor Long	rete Pipe	Chwer E.	וו מדוטו כ	1 20 loc la
	Control	Momadral	عل ، رطم	ع ۱۹۱۰ ، ماد ا	s. CRefer to
			الله الله الله الله الله الله الله الله		- + - +
ELEV D	ISCHARGE DATA	for Emerg	ENCY DY	EXFLOW S	978
ELEV. D		FOR EMERG			
	WEIR		المالية المالية	ERT	SPILLW
W.S.EL.		9	CUL~		SPILLW
W.S.EL.	WEIR H*	9	CULV HW **	ERT	SPILLW
	WEIR H*		CULV HW **1 5.5	ERT Q 110 120	SPILLW OUTFLO 110 120
W. S. EL.	WEIR H*	9	CULV HW** 5.5 6.5	ERT	SPILLW
W. S. EL.	WEIR H*	9	CULV HW** 6.5 7.5 8.5	ERT Q 110 120	5711-LW OUTFLU 110 120
W. S. EL. 160700. 160. 160.	WEIR H*	9	56.5 7.5 8.5 9.5	ERT Q 1100 125	5711-LW OUTFLU 110 120
S.EL. 1970 0 0 0 0 170 0 0 170 0 0 170 0 0 170 0 0 170	WEIR H* 000 1.5 2.5 3.5 4.5 5.5	9	CULV HW** 6.5 7.5 8.5	ERT Q 710 /20 /3 -10	5311LW OUTFU 110 120 135 150 140
SEL. 1970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEIR H*	9	56.5 7.5 8.5 9.5	ERT 0 100 100 100 00 00 00 00 00 00 00 00 0	SPILLW OUTFU 100 120 135 150 140
W. S. EL. 1970 0 0 0 0 0 170 0 170 0 170 0	WEIR H* 000 1.5 2.5 3.5 4.5 5.5	9	565 6.5 7.5 8.5 9.5	100 to 00 0	531LLW OUTFU 1/0 1/20 1/35 1/50 1/40
W. S. EL. 19970 0 0 0 0 171 0 0 173 0	WEIR H* 000 1.5 2.5 3.5 4.5 5.5	9	56.5 7.5 8.5 9.5 11.5	100 K 0 0 0 5 K	571LLW OUTFU 1/0 1/20 1/35 1/50 1/40 1/25 1/95
V. S. EL. 1978.0 0 0 0 0 0 0 0 170 0 0 170 0 173 0 174 0	WEIR H* 1.5 2.5 3.5 5.5 6.5 7	9	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5	100 to 00 to 100	571LLW OUTFLU 110 120 135 150 140 120 125
V. S. EL. 1978.0 0 0 0 0 0 0 0 170 0 0 170 0 173 0 174 0	WEIR H* 1.5 2.5 3.5 5.5 6.5 7	9	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5	100 to 00 to 100	571LLW OUTFLU 110 120 135 150 140 120 125
S.EL. 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEIR * * * * * * * * * * * * *	9	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5	100 to 00 to 100	5711-LW, OUTFLO 110 120 135 150 140 120 125
S.EL. 1970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEIR HOO! 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 139	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5	100 to 00 to 100	5711-LW, OUTFLO 110 120 135 150 140 120 125
V. S. EL. 1960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEIR H* 1.5 3.5 3.5 4.5 5.7 8.5 Are reservoir	Q 1307 147	COLV HW *** 6.5 7.5 8.5 9.5 10.5 12.5 13.5	EXT 0 100 5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	5711-LW, OUTFLU 110 120 135 150 160 170 185 205
V. S. EL. 1960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEIR H* 000 1.5 3.5 3.5 3.5 3.5 4.5 3.7 4.5 4.6 7.8 6.7 8.5 6.7 8.5 6.8 6.8 6.8 6.8 6.8 6.8 6.8	200 1207 sur sur sur sur sur sur sur sur sur sur	COLV HW *** 6.5 7.5 8.5 9.5 10.5 12.5 13.5	EXT 0 100 5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	5311-LW, OUTFLO 110 120 135 150 140 120 125
V. S. EL. 1960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEIR H* 000 1.5 3.5 3.5 3.5 3.5 4.5 3.7 4.5 4.6 7.8 6.7 8.5 6.7 8.5 6.8 6.8 6.8 6.8 6.8 6.8 6.8	Q 1307 147	COLV HW *** 6.5 7.5 8.5 9.5 10.5 12.5 13.5	EXT 0 100 5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	5711-W, OUTFLO 110 120 135 150 140 120 195 205

HEADWATER SCALES 283
REVISED MAY 1964

BUREAU OF PUBLIC ROADS JAN 1963

CONCRETE PIPE CULVERTS
WITH INLET CONTROL

SUBJECT	VILLAGE Z - H F H	SHEET BY	DATE 1/9/81	1841-014
		14	1/20/81	
	DISCHARGE OVER TOP OF DAN	A - ELEV. 16	7.1	
	Q = Cw LH /2		4 4	
	. Where h is measured at	% the actual	عدس الماء	v surface
	elevation above the dam.	(Refer 3CS	, NEH-4	, Ch 14, Pg 46)
1 ;	Assume. Cw = 2.7.	- +		
	Q = 2.7 (35)(1)15 = 95 ds	Fs _ @ _ ELdv.	1168	
	Q = Z,7 (B5)(2)13 = 649	cfs @ Elev	. 169	
	Q = 27 (120)(3)"= 1684	1 CFS @ ELE	J. 172	
	Q = Z7 (155)(4)15 = 334	B CAS @ EL		
	Q = 2.7 (185)(5).5 = 55	35 cfs to E	LEV. 172	
A A A A A A A A A A A A A A A A A A A	Q = 2.7 (210)(6)"= 83	33 cfs @ E	LEV, 173	
	(D = 2.7 (230)(7)"5 = 11,	501 cts @	ELCV.	174
	(0 = 2.7 (255)(8))= 15	,379 cfs @	ELEY.	175
			1 1	
			+ + - +	
				- - - - - - - - - - - - -
				11114

SUBJECT	Vı		AGE		7	_	Н	١ نج	4				SHE	ET	BY	JF	R		ATE /9	181	JOB I		. 1 -	011	+
								<u> </u>					_			B				/81					
			205			-7	т	1		_			_T	_T		46	<u>†</u>	T	1		- -		, ,		1
	_! <u>E</u> !	-EV	ATI	<u>07</u>	- \	<u>ر</u> د	5 C Y	ANB	CE		247	_		+		†	<u>.</u> 1			- -		- -	†		
							j			- †												 L			
		·											<u>_</u>				+	+	+-	-	i	PT	:		
	i		W.S	 '		·		-	ORM	FLO	· •		ربي	OVE	2GE RFL	ow	<u> !</u>	ومی	DAY		-\-	i	FLO	<u>~</u>	+
		t	<u>با</u> خا ۱		}			0	. ;			1		}			. ÷				+-	1	0		- +
			ماطا				1	80	- 1				0			·		1 5.		+-		3.	: '		
			168	1				28	ļ				.Zq	- 1	÷	}	ţ	10. 49	— -		+	1	14		-
		. i	169	:			į	30				- 1		1		· - i	:	- 1	1	-	+-	1	صاطا	 	
++++			1,10					32	- 1		- · · · . 		150	1	 			-81 34	- 1	+	-+	1	42 42	, ,	
+-+-			171.	1				34	1			l i	160	!	·		- 1	591 58	- 1		}	طد ع⊊	1	1	
- - -	-		172					36	1	-		ī	/3d	i i				33	- T	- +	ì		, - C		
		i	173	;	· - :	{		38		{		- 1	195	1		•	_	120 20	1	- i	ł		83-	1 1	
			174	:	· · · i			39			İ		704	1				150 151	1		i	:	129	1 ;	- ,
			175.	C	•		_ 1	<u> </u>				- 4	<i>U</i> -	?			1	44	-1		1	++4-+- 			-
	-+		- 1	1										ند. ا			-			1	- +	1	!	;	
			:			_						ڊ ا		-		· · i						1	•		
				1						-													1		
	4			1		} · = · ·			. 						(1		
	1								+		-			- ;	~! 										
	-+	•	- ÷ ·	ļ																		1			
	- 1			-					-			- 1													
				1	: :				1	j															
	1																				Ĺ	1		1	
				1					1											1				<u> </u>	
- 1	-									-												!		1	
]			-		-	1	!	
					I																	1_		; +	
			_				 		[]													1_	ļ 	
	-				ì			, , ,													1	!		ļ	
						ì																1-	1		
+ + +				i																			_	ļ	
																						1		_	ļ
																						-	1	<u> </u>	
																							1_	1	
							}_	[] _		!				L].			1_		
	1 -	T1.]		}]									1			

SUBJECT	VILLAGE 2 -	H&H	SHEET BY	JFR 2/11/81	1841-01A
	STAGE - DISCHA	RE DATA	SSUMING	CREST OF	DAM MINIMUM.
• • • •	ELEVATION	1,70.0			
	· · · · · · · · · · · · · · · · · · ·			-+-+ +-+	
					· · · · · · · · · · · · · · · · · · ·
			, energi	Q, OYER	TOTAL
••	<u>W.S.E</u> .	DUTFIUM .	OUTFLOW.	DAM *	OUTFLOW.
·			+ +		
······································	ا ج. اکاری از این از این از این از این از این از این از این از این از این از این از این از این از از از از از ا این از از از از از از از از از از از از از	o	0.		. O
	168	128	120 .		248
	1. 1.70	1.32	150	0	282
		134	160 .	. 467	761
· + +	173	1.38	1.85 : .	3157	3480
		1.41	205	8181	8527
	+ - + + - +				+-+-+-+-+
			• • • • • • • • • • • • • • • • • • •		*
·				+ + + +	
+					
*	* Computation	25			
	Q = Z.7 (17	3)(171-170)(8	= 467	CFS @ E	LEV. 171
: : :					
	Q = 2.7 (22	2 (173-170)	2 = : 315.	Pets @ E	LEV. 173
			y, _		
	Q = 2.7 (27)	1)(175-170)	518	1 CFS @ E	LEV. 175
1 1 1					

STORE DISCURREE WITH STORE DISCURREE WITH STORE DISCURREE STORE DISCURR	SUBJECT		۷۱۲	LAC	5E 7		H	; +\				SHI	2	1	FR	DAT	/14	<i>)</i> B1	JOB NO 18	41-	014	
STAGE_DISCHARGE MITH STAGE_DISCHARGE MITH DAM GREST AT ELL. ITD. STAGE_DISCHARGE MITH STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE_DISCHARGE STAGE STAGE_DISCHARGE STAGE ST			<u> </u>								-			14	*	1/2	0/8	/				
STAGE_DISCHARGE_MITH STAGE_DISCHARGE_DISCHARGE_MITH STAGE_DISCHARGE_MITH STAGE_DISCHA	• ••		_		1		7 - 1	7	1				T						T - Ţ :	ाक्य क न्य !	0	:
STAGE	• • •	• •	8 -				Ŋ	· +··	-	1								i	! - !		ور	İ
20	• •	• •	:	- :		\nearrow	366	= • •	_		1			1	1	1	i				7	
115 STAGE - DISCURRAGE WITH 115 DAM GREST INT EL. 170.0 120 STAGE - STORAGE CHRVE. 130 STAGE - STORAGE CHRVE. 130 STAGE - STORAGE CHRVE. 130 STAGE - STORAGE CHRVE.	• •	• •	• .			1	1 3	- †	1	1		†		<u>+</u> -	- 	• = .	4	-	-	•	· • ·	_
STAGE - DISCUARGE WITH STAGE - DISCUARGE WITH STAGE - STAGE - STORAGE CHEVE. STAGE - STORAGE CHEVE.	• .	•	• 1		11		35/2	· - i	ţ	+ -			•	- • :		•	†	∳ ~	† -+	•	ğ	. •-
STAGE - DISCUARGE MITH STAGE - DISCUARGE MITH STAGE - DISCUARGE MITH STAGE - STAGE - STORAGE CHEVE.		•	2	1		q		Ä	÷				• •		- • -	-	 i	ļ -	1	1	آو	i
STAGE - D'SCHARGE MITH STAGE - D'SCHARGE MITH STAGE - D'SCHARGE MITH STAGE - D'SCHARGE MITH STAGE - STORAGE CHRALE STAGE - STAGE CHRALE STAGE - STAGE CHRALE STAGE - ST	•	• 7	•	1	· · //	, , , ,	200	3		+	+ -+				}	+-	- 1	1		-		:
STAGE - D'SCHARGE MITH STAGE - D'SCHARGE MITH STAGE - D'SCHARGE MITH STAGE - D'SCHARGE MITH STAGE - STORAGE CHRALE STAGE - STAGE CHRALE STAGE - STAGE CHRALE STAGE - ST	* * * *		•		-;/	1 : 6	7 7	U	•	4			+		<u> </u>	ì	• • • • • • • • • • • • • • • • • • • •	+	†	-+ -†		
STAGE - DISCURRGE WITH STAGE - DISCURRGE WITH STAGE - DISCURRGE WITH STAGE - STAGE - STAGE - STORAGE CAC. F.T.)		• • -	+ ·		* * +	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- ",				3		+		. 	 	1	 		- + 1	o	+
STAGE - DISCURRGE - WITH STAGE - DISCURRGE - WITH STAGE - STAGE - STAGE - STAGE - STORAGE (AC. F.T.) STAGE - STAGE - STAGE - STORAGE (AC. F.T.)	• •	•	- 🚜 -		* * * * * * * * * * * * * * * * * * * *	\			-	0	· ·	1			4		1	-	 	- 🕴 🖡	- ģ	-
15 STAGE - DISCURRGE WITH 15 DAM GREET AT EL. 170.0 16 DAM GREET AT EL. 170.0 16 DAM GREET AT EL. 170.0 16 DAM GREET AT EL. 170.0 16 DAM GREET AT EL. 170.0 16 DAM GREET AT EL. 170.0 17 DAM GREET AT EL. 170.0 16 DAM GREET AT EL. 170.0 16 DAM GREET AT EL. 170.0 17 DAM GREET AT EL. 170.0 18 DAM GREET AT EL. 170.0 19 DAM GREET AT EL. 170.0 19 DAM GREET AT EL. 170.0 10 DAM GREET AT EL. 1	·		ļ	-	- +	• //	ļ i			1	3	-4		ļ			†		 			+
STAGE - DISCURREGE WITH STAGE - DISCURREGE WITH STAGE - DISCURREGE WITH STAGE									-	¥) T				11			 	-	+	+	-+
STAGE - DISCURRGE WITH STAGE - DISCURRGE WITH STAGE - DISCURRGE WITH NORMAL POOL ELEV (64.5			~ - 4			- i- \		-	· · · · -	1	§			·			-	-		-1	Q	-j
STAGE - DISCURRGE WITH STAGE - DISCURRGE WITH STAGE - DISCURRGE WITH NORMAL POOL ELEV (64.5		i H	2 -			· • ·	//		 -	- 5	<u>.</u>				+ ;		<u>_i</u>		 	(3)	- <u>Q</u> -	6
STOCKGE STOCKGE STACE - DISCURRACE MITH STACE S		ับ	. ‡=	}		. ļ	$\left\{ \right\}$			1.	1					4		<u> </u>		- 10		3
TO 20 4 600 ELEV TO 20 20 20 20 20 20 20 20 20 20 20 20 20		y .					. \ <u>.</u>	• /	-+	- 4) 				- +			· 	ļ 	4		
FTORK STAGE - DISCHARGE WITH STORY NURSHAL POOL ELEV NOOD AND DAY STORY ST	• • •		1 • • •		· \	1	\	}	\land	1	-1			:					 -	2		À
DAM GREST AT EL. 170.0 NORMAL 6 OCT 30 STAGE DAM GREST AT EL. 170.0 NORMAL 6	_	- 8	- Q -	-			 	_	-\									 	ļ -	>	<mark>&</mark>	4
DAM GREST AT ELL. 170.0 NORMAL 6 OCT TO SO SO TO SO SO SO SO SO SO SO SO SO SO SO SO SO				l _ ¦_	11		1	-		\	/_	} 	<u> </u>		-			-		ū	0	7
DAM GREST AT ELL. 170.0 NORMAL 6 OCT TO SO SO TO SO SO SO SO SO SO SO SO SO SO SO SO SO	·	4	•	ļ i .				_ /		7			_		- -			<u> </u>	 	٦		N
STAGE - DISCHARGE WITTELL ITO	1 1				. [\			1		ļ`		_	1		 		_			8		4
STAGE - DISCHARGE WITT	1		· • -			\			\									ļ		4	_ Q _	_
STAGE - DISCHARGE WITT	1 1	1	6.0			<i>[</i>			\]						X	4	1
STAGE - DISCHARGE WITTELL ITO			1		¥ Ó	- 1				j.,					1_1	ĺ		<u> </u>		0 2	1	1
15 STAGE - DISCHARGE DAM CREST AT EL. 1			Ī		3 5	\							j	/		_ [İ	LT			
		• • •	6		1 -	•	\	1				Ī		Ī.]	[ŏ	
	† †	1	72		FE					1	`				7 1			1				j
		1 1			3 8	· -			1	T					1					1		
		j - †	-		S F		1-	1			1	- 1	- †		11	1	1			\checkmark		+
		1 1	- [-	 	7 3 X		†	1			-			-	+ +				 	<u> </u>	70	+
	-	- 7	<u>a</u> -		V.		 		1	 	-				-			-	1		- 0 -	+
	-	-++ -		[- [-	F &		├ 		- \	1-	-				 			 -		+-1	7	+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ - +	+			ע ם					1	<u> </u>			1	+-1			 	 	+		+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 -1			-+-+		}}		-	-+								+		-		-+
+	.	1 -	0 -		++			+		+-		-	-		†-7			_		+	— 6	+
- - - - - - - - - -	1	4	-		- 1 <u>6</u>		ļļ			. }	}	- \$	<u>-</u>					+		4	-+-	+
		1-			+	.	 			-1	7 -	, - 4	10V		<u> </u>			 	 			-
	1	. .				1				1]					}		1	1		<u> </u>	+

	VILLAC	nE.	 کے ہے	+ + + +	-			SHEET	BY	JFF	2	DATE //9	1/81	JOB NO	41.	- 01	4	
 					·			1			3			<u> </u>				
1 1					ţ			I	TI	90	7			т			i	
	Dowi	<u> 15.Te</u>	EAM	, CH	421	7 <u>F</u>	12E	حرزاد	<u>. v</u>	+-	· •			++-		+		
				-						<u>i</u> _	- +	ļļ.		<u> </u>				
		-	+- +-		+ - +		- } }		-		4			-				
<u>k</u>	1 2 =	0.07	> 	++-	M =	004	++	 -		4 =	0.0	27		++	k			
	EL. 140			- -	1				1			·	_	ا ا مزا	ĖL	14¢	. نــــــــــــــــــــــــــــــــــــ	
	· · · · · · · · · · · · · · · · · · ·			1 1 1				_			- 							
		· 4 ·	.i							ļ	- +		\Box	ļ		1		
			1 1			· 						1			 			
				120 -		į		;		ا مل ع	20-		1		Ì	! !	_1	
			100			<u>I</u>					i		İ					
					1		7 7 1		+ · → ; · ·	- !	-			1			1	
				11			بزا 🕆			T		1				1		_
		EL	.103		1		/ !	ELL			_ 4	•	- 	<u> </u>		1		
	1 -1						EL	100	.		<u>+</u>		†	1-1		$\dagger \dagger$		
					1	- +	$-\frac{1}{1} - \frac{1}{1}$			-		-+	_ + -	++		-		_
		. 7 :	5	1391	45	155	اما	i Zi	35			-		35	0			
				-	1		- 4		ļ	i +,						1		
		<u>!</u>				_ _		:	1					 -		 		
R	EACH	LEN	GTM_	= 8	50	, -					- · · · · · · · · · · · · · · · · · · ·					 		
R	EACH	LEN	GTM_	= 8	50	,												
					1						+					 		
	ELEV				1													
	ELEV		135 -	100		34/												
			135	100			<u> </u>											_
	ELEV		135 -	100		34/												
	ELEV		135	100		34/	<u> </u>											
S	ELEV		135	100		34/	<u> </u>											
S	ELEV	#	35	100		34/	<u> </u>											
S	ELEV	#	35	100		34/	<u> </u>											
S	ELEV	#	35	100		34/	<u> </u>											
S	ELEV	#	35	100		34/	<u> </u>											
S	ELEV	#	35	100		34/	<u> </u>											
5	ELEV	#	35	100		34/	<u> </u>											
S	ELEV	#	35	100		34/	<u> </u>											
5	ELEV	#	35	00		34/	<u> </u>											
S	ELEV	#	35	00		34/	<u> </u>											
S	ELEV		35	00		34/	<u> </u>											
S	ELEV		35	00		34/	<u> </u>											

!					
Ĺ	~		_		
<u> </u>	1976	80	***		
E	JULY 1978	AFR	***		
CKAG		0	* * *		
Ę	NOIS	NOIL	***	27.12	5.52
OGRAF	VERS	IF ICA	***	81/0	12.1
FLOOD HYDROGRAPH PACKAGE (HEC-1)	DAM SAFETY VERSION	LAST MUDIFICATION OI AFR 80	我的女孩都是我还在我的我们的我们也不是我们的我们就是我们的	RUN DATE# 81/02/12	TIME# 12.15.52
_001	7S HV	LASI	****	¥ 3	
Ŀ	ã		*	ē	

1. 非非效的的非常的的的的现在分词的现在分词的现在分词的现在分词

MULTI-PLAN ANALYSES TO RE PERFORMED NPLAN= 1 NRTIO= 9 LRTIO= 1.40 .50 .40

4

1.0

Φ.

..

POND

60 TWO

VILLAGE

INFLOW TO

ni o

INFLOW

23.5

2

-0.1 DUTFLO

.05

1.0

O 0 0 1 ROUTED OUTFLOW FROM VILLAGE TWO DAM

15925

174

-1 -173 8656

-164.5 172 5891

170

3642 7.5 180

1966 5.8 175

168 343 1.2 160

166.5

164.5

164.5 140

6

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

INFLOW OUTFLO

RUNDFF HYDROGRAFH AT ROUTE HYDROGRAFH TO END OF NETWORK

0

0

0

10

.Ţ...**z.**

1. 非常有效的的的的的的的的的的。

FLOOD HYDROGRAFH FACKAGE (HEC-1)

HYDROLOGIC ANALYSIS OF VILLAGE TWO DAM NATIONAL DAM SAFETY PROGRAM BALTIMORE DIVISION - CORPS OF ENGINEERS

0

RT108-

COMP 0

17.

	****	¥	*****	**	***	*******	•	*****	*	#	******
!	1	i		SUB-4	AREA RUN	SUB-AREA RUNOFF COMPUTATION	JTATION		t		1
				INFLOW	, TO VIL	INFLOW TO VILLAGE TWO POND	PONT				
	!	i i	ISTAG INFLOW	ICOMP 0	IECON O	ITAPE 0	ICOMP IECON ITAPE JPLT O O O O	JPRT INAME ISTAGE IAUTO 0	NAME I	STAGE	IAUTO
	IHYDG		IUHG TAREA		HYDROG TRSD	HYDROGRAPH DATA SNAF TRSDA TRSPC	RATIO		ISAME	700	٩L
1			.14	°.		0.0	0.000	0	0	0	0
		i i	2	à	PREC	IP DATA	PRECIP DATA		Ġ		
		0.00	23.50	113.00	123.00	132.00	142.00	0.00	0.00 0.00	!	1
TRSPC COMPUTED BY THE PROGRAM IS	BY THE PROGR	AM IS .	800								
	LROPT ST		R	10F	LOS	LOSS DATA STRKS RI	TIOK STE		I SACTI		<u> </u>
	0	0.00	0.00	1.00	00.0	0.00 0.00 1.00	1.00	1.00		00.0	0.00

RT10R= 2.00 UNIT HYDROGRAPH DATA

TP= .38 CP= .43 NTA= 0 RECESSION DATA STRTR≈ -1.50 QRCSN= -.10

.38 HOURS, CP= .43 VOL= 1.00 36. 28. 21. 3. 2. 2. UNIT HYDROGRAFH 23 END-OF-PERIOD ORDINATES, LAG* 80. 76. 59. 46. 10. 8. 6. 5. 4. O END-OF-PERIOD FLOW HO.DA HR.MN PERIOD RAIN EXCS LOSS COMP O MO.DA HR.MN PERIOD RAIN EXCS LOSS

SUM 26.70 24.29 2.40 135

	•			175.00	15925.00				· ·			-2 ; 				i	· · -	•	
				174.00	11835.00							:							
	1AUT0 0			173.00	8656.00			!			i	!				;			
	ME ISTAGE	LSTR)AA ISFRAT 551	172.00	5891,00		ı		EXFL 0.0							1			
x	JPRT IN	1PMP 0	15K STC 0.000 -14	171.00	3642.00	8,		.0.	OL CAREA	DAMWID 0.	:	ļ					!		
LAGE TWO DA	E JFLT 0 0 ATA	E 10PT 1 0	× 00000	170.00	1966.00	٠,	50, 8		U	AM DATA D EXPD 0 0.0						;		;	
LOW FROM VIL	IECON ITAP O ROUTING D	IRES ISAM	LAG AMSK 0 0.00	169.00	914.00	3.	28.	170.	EXPW 0.0	TUPEL C00 167.1 0.							•		
ROUTED OUTF	A ICOMP 0 1	S AVG	S NSTIL 1 0	168.00	343.00		7.	160.	U		50 HOURS	33 HOURS	17 HOURS	1.7 HOURS	17 HOURS	17 HOURS	00 HOURS	00 HOURS	
	ISTAL QUTFL		NSTF	166.50	80.00	•	1	150.	CREL 164.5		AT TIME 40.		4			AT TIME 40.			
		;	1	į į	00.0	ċ	• 0	140.		i	51. 6	119.	194.	258. /	322. '	•	487.	562.	
			4	STAGE 1	FLOW	SURFACE AREA=	CAFACITY=	ELEVATIONS	:	!	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	
		ROUTED OUTFLOW FROM VILLAGE TWO DAM ISTAG ICOMP IECON ITAPE JFLT JPRT INAME ISTAGE OUTFLO 1 0 0 0 0 1 0	ROUTED OUTFLOW FROM VILLAGE TWO DAM ISTAG ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE OUTFLO 1 0 0 0 1 0 ROUTING DATA ROOSS CLOSS ANG IRES ISAME IOPT IPMP LSTR 0.0 0.000 0.00 1 1 0 0 0	ISTAG ICOMP IECON ITAPE JPLI JPRT INAME ISTAGE OUTFLO 1	ISTAG ICOMP IECON ITAPE JPRT INAME ISTAGE IAUTD OUTFLO I O O O O O O O O O O O O O O O O O	ISTAO ICOMP ICON ITAPE JPRT INAME ISTAGE IAUTD ISTAO ICOMP ICON ITAPE JPRT INAME ISTAGE IAUTD IAOUTELO IAOU	STAGE 164.50 166.50 16	STAGE 164.50 166.50 170 170 170 170 170 170 170 170 170 17	ISTAG ICOMP IECOM ITAPE JPRT INAME ISTAGE IAUTO ISTAG ICOMP IECOM ITAPE JPRT INAME ISTAGE IAUTO IAUT	STAGE 164.50 166.50 166.50 166.50 166.50 166.50 170.00 17	STAGE LOUTED GUITELOU FROM VILLAGE TWO DAM LSTAGE LOUTED GUITELOU LSTAGE	STAGE	STAGE LOSS	STAGE	STAGE	STAGE LAG LOOP LECON LAG	STAGE	STAGE STAG	STATE 1947

****** ******* **** ******** ******* FEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIFLE FLAN-RATIJ ECONOMIC COMPUTATIONS FLOWS IN CURIC FEET FER SECOND (CURIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)

i			1	!	; ;			:				4		:	
1	OPERATION	STATION	AREA	PLAN R	EATIO 1	RAT10 2	RATIOS APPLIED TO FLOWS FATIO 3 RATIO 4 RATI	LIED TO PRATIO 4	0	5 RATIO 6		RAIIO 7	RATIO B	RATIO 9 1.00	
	HYDROGRAPH AT INFLOW	TINFEDM (.14-	ī	1.99)(141.	211. 5.98)(7.97)(352.	2. 422.	2.6	493.	563. 15.95)(704.	
	ROUTED TO	OUTFLO (.14	~~~	51.	3.37)(194.	258.	322.	2. 408. 2)(11.54)(9.0	487. 13.79)(562.	688.	
i					1	SUMMARY O	SUMMARY OF DAM SAFETY ANALYSIS	IY ANALYS	IS :				1	1	1
	PLAN 1			ELEVATION STORAGE	TINI .	INITIAL VALUE 164.50 14.	SPILLW.	SPILLWAY CREST 164.50	10P (TOP OF DAM 167.10 20.			1		
	•)	OUTFLOW"		• 0		0.0		185.	į.	I		i	
		RATIO OF PMF		MAXIMUM RESERVOIR W.S.ELEV	HAXIMUM DEFTH OVER DAM	N MAXIMUM I STORAGE IM AC-FT	UM MAXIMUM GE OUTFLOW T CFS		DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS		TIME OF FAILURE HOURS			
		.10		165.77	00.0				00.0	40.50		00.0		l '	
		: 0 0 4		167.15	00.4		20.	194. 258.	1.17	40.17					
		02.	-	167.88	.78			22.	1.50	40.17		00.0			
	•	09.		168.11	1.01			98.	2.00	40.17		00.0			
		. 70		168.25	1.15			97. 62.	3.67	40.00 40.00		000			
		1.00		168.60	1.50				4.83	40.00		0.00			

SHEET 17

	(AGE (HEC-1)	JULY 1978	01 AFR 80
***************************	FLOOD HYDROGRAPH FACHAGE (HEC-1)	DAM SAFETT VERSION	

A 30 NATIONAL DAN SAFETY FROGRAM B 300 0 10 NOTIONAL DAN SAFETY FROGRAM R 1	~ m ~ m ~ o			HTUKUL	Ubic AN	ALYSIS O	F VILLAG	HYDROLOGIC ANALYSIS OF VILLAGE TWO DAM	Į		
# 300 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	า ร เก จ เ	2 !		2	TATIONAL	DAN SAF	ETY PROC	RAM			
## 300 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ in •0 †			BHL : 37	יטאר מאט	- NOISI	こうない こう	たりらいかただ	S.		
1	n -d t		٥	01	0	0	0	0	0	4	0
1	-0 +	R1 5									
NETCOM	•	.,	-	-4							
K		11 .50									
K1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1		0	INFLOW	٥	0	0	0				
H 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1	6	K1			INFLOW	TO VILLA	3	QND			
F 0 23.5 113 123 132 142 1.0 .05 W .38 .43 X -1.5	0	-		. 14	0	. 14	0	٥	٥	-	
T . 38 .43	-	0	23.5	113	123	132	142				
N	N	,						1.0	.05		
K		.38									
KI 1 DUTELD 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	-1.5		7							
K1 Y1 11 Y1 Y1 Y1 Y1 Y1 Y1 Y1		1 · · · ·		0	0	0	0	-			
Y Y Y 1	9	5		ROUTE	ED DUTFL	OW FROM	VILLAGE	TWO DAM			
Y1 1 1 1 10 172 173 174 175 175 177 177 177 177 177 177 177 177	,	-			-	7					
Y 164.5 166.5 168 167 170 171 172 173 174 155 156 164.5 168 167 170 171 172 173 174 157 175 175 175 175 175 175 175 175 175		r1 _ 1						-164.5	-1		
Y5 0 80 343 914 1966 3642 5891 6656 11835 15 \$E 140 150 160 170 175 180 \$	•	74 164.5	166.5	168	169	170	171	172	173	174	175
## 140 150 160 170 175 180 ## 140 150 160 170 175 180 ## 140 150 160 170 175 180 ## 150 1 140 2 164.5 167.8 ## 150 1 140 2 164.5 175 R		75	80	343	914	1966	3642	5891	8656	11835	15925
## 140 150 160 170 175 180 ## 164.5 ## 150 1 140 2 164.5 167.8 ## 150 1 140 2 164.5 175 K 1 RREACH FOUTING TOWNSTREAM TO HAZARD AREA Y		٥ . ه	ς;	1.2	3.2	5.8	7.5		1		
## 164.5 #0 167.1 #R 150 1 140 2 164.5 167.8 #R 150 1 140 2 164.5 175 1 K 1 RREACH FOUTING TOWNSTREAM TO MAZARD AREA Y Y 1 1 100 120 850 .04 Y 7 .07 .04 .07 100 120 850 .04 Y 7 .07 .04 .07 100 350 140 155	2	SE 140		160	170	175	180				
# 1 140 2 164.5 167.8 # 150 1 140 2 164.5 175 # 1 BREACH FOUTING FOUNSTREAM TO HAZARD AREA Y 1 1 04 .07 100 120 850 .04 Y 2 140 75 120 139 145 100 155	Ē.	\$\$ 164.5									
## 150 1 140 2 164.5 167.8 ## 150 1 140 2 164.5 175 1 K. 1 BREACH FOUTING TOUNSTREAM TO HAZARD AREA Y	₹.	10 167.1									
K 1 RREACH FOUTING TOUNSTREAM TO HAZARD AREA Y 1 1 1 10 120 850 .04 Y 7 0 140 75 120 139 103 145 100 155 Y 7 0 140 75 120 350 140	ž.	6P 150	-	140	2	164.5	167.8				
K1 BREACH ROUTING DOWNSTREAM TO HAZARD AREA Y 1 1 -1. Y 1 2 -1. Y 0 140 75 120 139 103 145 100 155 X7 151 153 225 120 350 140	•	6R 150	-4	140	8	164.5	175				
K1 FOUTING DOWNSTREAM TO MAZARD AREA Y - Y1	17 - 1	~ 1	BREACH	!	,				:		
Y 1 1 1 -1	8:	Ķ1		FOUT	LING TOW	2STREAM	TO HAZA!	ID AREA			
Y6 .07 .04 .07 100 120 850 .04 Y7 0 140 75 120 139 103 145 100 155 	•	.			-	-					
Y6 .07 .04 .07 100 120 850 .04 Y7 0 140 75 120 139 103 145 100 155 Y7 103 225 120 350 140	0:	1, 1,						-1-			
77 0 140 75 120 139 103 145 100 155				.07	100	120	850	•0.			
77. 161 103 225 120 350 140	,	77 0		75	120	139	103	145	100	155	100
	,	17. 161		225	120	350	140				

INFLOW GUTFLG BREACH RUNDFF HYDROGRAPH AT ROUTE HYDROGRAPH TO ROUTE HYDROGRAPH TO END OF NETWORK

RUN DATER 81/02/13. TIMER 07.45.34.

MYDROLOGIC ANALYSIS OF VILLAGE TWO DAM NATIONAL DAM SAFETY PROGRAM PALTIMORE DIVISION - CORPS OF ENGINEERS

	NOTON	0		
	IPRT	4-		
	IPLT	٥		
¥0	METRC	0	TRACE	•
SIFICATI	Z I II I	0	LROPT	0
JOB SPE	M IHE IHIN M	0	Z	0
	IDAY	0	JOPER	'n
	NI KN	2		
	Z HZ	0		
	2	300		

MULTI-PLAN ANALYSES TO BE PERFORMED ... NPLAN- 2 NRTIO- 1 LRTIO- 1

S. R1109*

						į	!	:
**		0			ı	1		17.
****		STAGE IAU	LUCAL		ALSMX RTIMP 0.00 0.00			.38 HDURS, CP= .43 VDL= 1.00 36. 28. 21. 3. 2. 2.
***		INAME I	IOWISAME 0 1	72 R96	CNSTL AL		00.5	3+ CPm +43 28+ 2-
****	ION	JPLT JPRT INAHE ISTAGE IAUTO	RATIOISNOWISAMELOCAL 0.000 0 1 0	R48 R72	RTIOK STRTL 1.00 1.00	TA NTA= 0	RTIOR= 2.00	.38 HOURS 36.
****	SUR-AKEA RUNOFF COMPUTATION INFLOW TO VILLAGE TWO FOND		,		DATA KS RTIOK 00 1.00	UNIT HYDROGRAPH DATA .38 CP= .43 N1	RECESSION DATA	ES: LAG= 46.
****	-AREA RUNOF JW TO VILLA	ICOMP IECON ITAPE	÷	FHS R6 R12 R24 :3.50 113.00 123.00 132.00	LOSS DATA STRKS 0.00 0.00	UNIT HYDRO		123 END-OF-PERIOD ORDINATES: LAG= 96. 76. 59. 4. 8. 6. 5.
****	SUB-	į	5 TAREA SNAP	FMS R6	RTIOL E	T.	STRT0= -1.50	END-OF-PERI(76.
***		ISTAQ INFLOW	IUHGT	W O	R DLTKR		S	
***			IHYDG	SPFI 0.00 RSPC COMPUTED BY THE FROGRAM IS	LROPT STRKR 0 0.00			UNIT HYDROGRAP 27. 80. 13. 10.
*		; ; ;		PC COMPUTED	:	; ;		4 mm
• ī.		1		JRSF	t ·		:	

SUH 26.70 24.29 2.40 13558. (678.)(617.)(61.)(383.92)

COMP Q

O END-OF-PERIOD FLOW ARINN FERIOD RAIN EXCS LOSS COMP O HO.DA HR.MN PERIOD RAIN EXCS LOSS

.92) SHEET

,	3
1	

HYDROGRAFH ROUTING	ROUTED OUTFLOW FROM VILLAGE TWO DAM	ISTAO ICOMF IECOM ITAPE JPLT JPRT INAME ISTAGE IAUTO	ALL PLANS HAVE SAME ROUTING DATA	10PT 1PHP LS	NSTFS NSTDL LAG AMSKK X TSK STORA ISPRAT 1 0 0 0.000 0.000 -1651	SE 164.50 166.50 168.00 169.00 170.00 171.00 172.00 173.00 174.00 175.00	NA0.0080.00 343.00 914.00 1966.00 3642.00 5891.00 8656.00 . 11835.00 15925.00	E AREA= 0. 0. 1. 3. 6. 8.	IPACITY= 0. 1. 7. 28. 50. 84.	UATION⇒ 140 150160. 170. 175180.	CREL SPWID COOW EXPW ELEVL COOL CAREA EXPL 164.5 0.0 0.0 0.0 0.0 0.0	DAM DATA TOFEL COOD EXPD DAMWID 167.1 0.0 0.0 0.	BRWID Z ELBH TFAIL WSEL FAILEL 150. 1.00 140.00 2.00 164.50 167.80	REGIN DAM FAILURE AT 40.17 HOURS
						STAGE 164.	FLOW 0.0	SURFACE AREA≖	CAPACITY=	ELEVATION	1 ,	•		BEGIN DAM FAILURE A

PRUID 150.

DAM BREACH DATA Z ELBH TFAIL WSEL FAILEL 1.00 140.00 2.00 164.50 175.00

		IAUTO		· ;	l	-	
	ı	JPRT INAME ISTAGE 0 1 0		LSTR	ISPRAT 0	!	
		INAME			STORA -1.	Þ	
	∢		1	IPMP	1SK 0.000	;	
TING	ZARD ARE	JPLT 0	SAME	1001	AMSKK X TSK 0.0000.0000.000		1
HYBROGRAPH ROUTING	AH TO HA	ITAFE 0	NS HAVE	ROUTING DATA IRES ISAME I		:	SEL
HYDROG	ROUTING DOWNSTREAM TO HAZARD AREA	ICOMP IECON ITARE JPLT 1 0 0 0	ALL PLA	ROU IRES	LAG	1	RLNTH SEL
	ROUTING			AVG 0.00	NSTDL	!	ELHAX
		ISTAU		00000	NSTFS	1	ELNUT
	:	1	;	GL055	:	TING	GN(3)
	!	:		!		ANNEL ROL	QN(1) QN(2)
	:	: : :		:		NORMAL DEPTH CHANNEL ROUTING	QN(1)

i

6.79

5.42

4.21

3.17

2.28

1.56

1.01

.58

.25

0.00

STORAGE

145.00 100.00 155.00 100.00

CROSS SECTION COORDINATES---57A.ELEY.5TA.ELEV--ETC 0.00 140.00 75.00 120.00 139.00 103.00 161.00 103.00 225.00 120.00 350.00 140.00

7173.46

5516.84 35572.73

4108.61

2933.66

1976.42

1220.58 19683.71

648.39 16571.98

297.34 13778.60

86.27 11290.21

9093.15

OUTFLOW

109.47

108.42

107.37

106.32

105.26

104.21

103.16 113.68

102.11

101.05

100.00

STAGE

7173.46

5516.84 35572.73

4108.61 31058.88

2933.66

1976.42

1220.58

648.39 16571.98

297.34 13778.60

86.27

0.00

FLOW

HAXIMUM STAGE IS

103.1

PEAK FLOW AND STORAGE (END OF FERIOD) SUMMARY FOR MULTIFLE FLAN KATIS ECONOMIC COMPUTATIONS FLOW STORD) FLOWS IN CURIC FEET FER SECOND (CUBIC METERS FER SFTOND) AREA IN SQUARE MILES (SOUAKE NIIOMETERS)

i

RATIOS AFPLIEN TO FLOWS FLAN RATIO 1 .50	1 352. (9.97)(-2 352.	1 626. (17.22) 2 322. (9.12)(1 630. (17.85)(2 323.
AREA	.36)	.36)	.36)
STATION	T INFLOW	OUTFLO	BREACH
OPERATION	HYDROGRAPH AT	ROUTED TO	ROUTED TO

S
H
YS
-
ANAL
≖
z
⋖
>
-
Ē
ū
◂
SAF
DAM
9
>-
α
₹
I
SUMMAR
\supset
ú

7								NOTE: THE PARTIES OF THE BAN ASSUMED TO ME	BEGALED IS BASED ON THE SECRETARY OF THE SITE. THE DEFINE OF THE THE OF THE DAY AT MAKEN AS FALLED AS INVESTED.	TO CONDECTE PAINTE ACT DATES OF THE CONDECTE OF THE PROPERTY OF THE STRUCKES O	6.0.E. PERIORMON BALL COLCEDS OF DAN BEARS.
	TIME OF FAILURE HOURS	40.17		TIME OF FAILURE HOURS	0.00			ة كل إ	20 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FALLY CONTROL	י בישורים
ТОР ОF DAM 167.10 20. 185.	TIME OF MAX OUTFLOW HOURS	40.58	TOP OF DAM 167.10 20. 185.	TIME OF MAX OUTFLOW. HOURS	40.17			* NOTE: THE	BECALLED IS THE DEPTH OF	TO COMPLET	C.O.E. PURI
	DURATION OVER TOP .HOURS	.71		DURATION OVER TOP HOURS	1.50	.	11ME HOURS	40.67	ž	TIME	40.17
SPILLWAY CREST 164.50 14.	MAXIMUM OUTFLOW CFS	645.	SPILLWAY CREST 164.50 14.		322.	STATION BREACH	HAXIMUM STAGE . FT	103.1	STATION BREACH	MAXIMUM STAGE . FT	102.2
	HAXIMUM STORAGE AC-FT	22,		MAXINUM STORAGE AC-FT	22.	PLAN 1	MAXIMUM FLOW,CFS	630.	2 X4	MAXINUM FLOW,CFS	323.
INITIAL VALUE 164.50 14.	MAXIMUM DEFTH DVER DAM.	.78	INITIAL VALUE 164.50 14.	HAXIHUH DEPTH OVER DAH	.78	PL	RATIO	95.	PLAN	RATIO	0
ELEVATION Storage Outflow	MAXIMUM RESERVOIR WASSELEV	167,88	ELEVATION STORAGE QUIFLOW	HAXIMUH RESERVOIR W.S.ELEV	167.88		8 P. 30 P. 3		/-	<u> -</u>	T ::
PLAN 1	RATIO OF PHF	08.	PLAN 2	RATIO OF		BREACH CONFIGURATION	TOP OF TAM			Cook April	100000000000000000000000000000000000000

PREVIEW OF SERUENCE OF STREAM NETWORK CALCULATIONS HYDROLDGIC ANALYSIS OF VILLAGE TWO DAM NATIONAL DAM SAFETY PROGRAM BALTIMORE DIVISION - CORPS OF ENGINEERS 10 0 0 -164.5 175 8527 TWO DAM POND 1NFLOW OUTFLO O VILLAGE 6. 0 TWO 173 3480 7.5 VILLAGE .14 132 FROM 171 761 5.8 175 RUNGFF HYDROGRAPH AT ROUTE HYDROGRAPH TO END OF NETWORK OUTFLOW : 2 INFLOW 170 282 3.2 170 2 0 ROUTED (168 248 1.2 160 20 .2 INFLOW 1 23.5 -0.1 OUTFLO 170.0 19

0:1

œ

0 00

RUN DATE# 81/02/11. TIME# 19.03.35. HYDROLOGIC ANALYSIS OF VILLAGE TWO DAM NATIONAL DAM SAFETY PROGRAM BALTIMORE DIVISION - CORPS OF ENGINEERS

	KSTAN	0		
	IPRI	•		
	IPLT	0		
ž	METRC	0	TRACE	•
JOB SPECIFICATIO	z I K I	0	LROPT	•
JOB SPEC	HR	0	-32	•
	IDAY	0	JOPER	
	ZIEZ	01		
	NHR	0		
	C)	300		

MULTI-PLAN ANALYSES TO BE PERFORMED

COMP 0

1038

O HO.DA HR.HN PERIOD RAIN EXCB LOSS COMP O HO.DA HR.HN PERIOD RAIN EXCS

•		1 1 1	;			1			17.
******			JPLT JPRT INAME ISTAGE IAUTO 0	LDCAL 0		HX RTIMP 00 0.00	i	:	UOL= 1.00 21. 2.
i		:	AAME IS	ISAME 1	R96 0.00	CNSTL ALSHX		i :	28. 28. 2.
*******			JPRT IN	ISNOW	R72 0.00			RTIOR= 2.00	.43 36, 28, 31, 28,
	ATION	OND	JPLT 0 =	RA110	R48	OK STRTL 00 1.00	TA TATE O	!	• •
*******	SUR-AREA RUNOFF COMPUTATION	INFLOW TO VILLAGE TWO POND	TAPE	FH DATA TRSPC 0.00	R6 R12 R24 R48 113.00 123.00 132.00 142.00	DATA KS RTIOK 00 1.00	UNIT HYDROGRAPH DATA	RECESSION DATA GRESN*10	SRAPH 23 END-OF-PERIOD ORDINATES, LAG- 96. 76. 59. 4. 8. 6. 5.
***	EA RUNDF	TO VILLA	ICOMP IECON ITAPE 0	HYDROGRAFH DATA TRSDA TRSPC .14 0.00	PRECIP DATA R12 R2- 123.00 132.00	LOSS DATA	IT HYDRO 38 CP	RECESSION GRCSN*	ORDINAT
•	SUR-AR	INFLOW	COMP I	SNAP 0.00	R6 113.00	OC COO	ND = 4T	-1.50)F-PERIOD 76. 6.
*****		1	ISTAN I	IUHG TAREA 1 .14	FMS 23.50 11	DLTKR RT10L 0.00 1.00		STRTG=	23 END-C 96. 8.
:		1	1 1	ZUHG 1	3.7.6 1.5	1	•		
*****				IHYDG	THE PROGR	LROPI STRKE 0 0.00			UNIT HYDROG 80. 10.
****		i i		; ;	JTED BY	רנו	•		27.13.13.13.13.13.13.13.13.13.13.13.13.13.
		i i		. !	TRSFC COMPUTED BY THE PROGRAM			;	
1					TR			1	

								4				1						!		SHEET 25
	1	GE IAUTO	!	AT -1				,												•
	•	INAME ISTAGE	1	STORA ISPRAT -1651	175.00	8527.00	:	,		EXPL 0.0	•			:						
	# # # # # # # # # # # # # # # # # # #	JPRT I	į	1SK 9	173.00	3480.00		84.	180.	COUL CAREA	DAMWID 0.	 				: :		:	! !	i
ROUTING	ROUTED GUTFLOW FROM VILLAGE TWO DAM	ITAPE JPLT	į	AMSKK X 0.000 0.000	171.00	761.00	• •	50.	175.	ELEVL 0.0	DAM DATA COOD EXPD 0.0 0.0					!				
HYDROGRAPH ROUTING	TFLOW FROM I	IECON I	: [LAG AP	170.00	282.00	3:	28.	170.	COGW EXPW	TOFEL 170.0	!	,							
		TAR ICOMP		PS NSTEL 1 0	168.00	248.00	11.1	7.	160.	SPWID C		0.50 HOURS		40.33 HOURS	10.33 HOURS	40.50 HOURS	10.50 HOURS	40.33 HOURS	40.17 HOURS	10.17 HOURS
	:	181	0.0000 0.000	NSTFS 1	166.50	80.00	0	1	150.	CREL 164.5		51. AT TIME 40	114. AT TIME 40	180. AT TIME 40	240. AT TINE 40	262. AT TIME 40	281. AT TIME 40	420. AT TIME 40	535. AT TIME 40	671. AT TIME 40
					164.50	00.0	0	•	140.	1	; ;	51.	114.	180.	240.	262.	281.	420.	533.	671.
	1				STAGE	FLOW	SURFACE AREA=	CAPACITY=	ELEVATION			PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW IS	PEAK OUTFLOW 19	PEAK OUTFLOW IS
- <u>i</u> -	· -	ر،			;	. 11	 - -				- , <u>}.</u>	াল্য	i	<u>i</u>		i				

.1

		RATIO 9 1.00	704.	671.			!	i			7
		RATIO 8	563.	535. 15.16)(SHEET
	. ONS	RATIO 7	493.	420.			TINE OF FAILURE HOURS	0000	0000	000 000	
	C COMPUTATIONS	RATIO 6	422. 11.96)(281.		282.	TINE OF HAX OUTFLOW HOURS	40.50 40.33	40.33 00.00 00.00	40.33 40.17 40.17	
	PEAK FLOW AND STORAGE (END OF FERIOD) SUMMARY FOR MULTIPLE FLAN-RATIO ECONOMIC FLOWS IN CURIC FEET FER SECOND (CURIC METERS FER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)	FLOWS	352.	262.	1	10P OF DAM 170.00 28. 282.	DURATION OVER TOP HAY HOURS	00.0	00.00	1.33 2.00	1
	ND OF FERIOD) SUMMARY FOR MULTIPLE FLAN-RATIO IS IN CUBIC FEET PER SECOND (CUBIC METERS PER AREA IN SQUARE MILES (SQUARE KILOMETERS)	05 APPLIED TO FI 0 3 RATIO 4 •30	282. 7.97)(240.	IY ANALYSIS	SPILLERAT CREST 164.50 14.	1	51. 0 114. 0		535. 1 671. 2	
	R MULTIPLE ND (CUBIC (SQUARE KI	RATIOS APPRATIO 3	211.	180.	Ā.	SPILL	H HAXIMUM E OUTFLOW CFS		;		
	SUMMARY FO T PER SECO ARE MILES	RATIO 2	141.	114.		164.50 164.50 14.	MAXIMUM STORAGE AC-FT	17. 19. 21.	22. 25.	30.	
	FERIOD) (CURIC FEET (EA IN SQUA	RATIO 1 1	70.	51.		164	MAXIMUM DEPTH OVER DAM	00.00	00.0	9.53	
,	GE (END OF FLOWS IN AF	PLAN F	.	Ţ		ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV	165.77 166.80 167.39	167.93 168.82 169.97	170.53 170.53 170.81	
	AND STORA	AREA	.14	.14			RATIO H OF TRE	!		 	######################################
i	PEAK FLOW	STATION	I INFLOW	OUTFLO (à T				RAPH PACKAL RASION O
; ,	!	OPERATION	HYDROGRAFH AT	ROUTED TO	- 1	¥ 1	:	f			14444444444444444444444444444444444444

APPENDIX E
REGIONAL VICINITY MAP
&
DRAWINGS

VILLAGE TWO DAM APPENDIX E DRAWINGS TABLE OF CONTENTS

	SHEET
Figure 1, Regional Vicinity Map	1
Location and Drainage Area Plan	2
General Plan and Details	3
Longitudinal Section and Typical Section	4

NOTE

 \boxtimes

INHABITABLE STRUCTURES WHICH COULD BE ADVERS
BREACH OF THE DAM OR A STORM APPROACHING THE

THE DEER PATH

MOSS HAPT WAY

GECTION B.B.

LONGITUDINAL SECTION OF PROPOSED EMEANKMENT SCALE 1: 20:

SECTION A.A.

APPENDIX F

GEOLOGY

SITE GEOLOGY

VILLAGE TWO POND DAM

Village Two Pond Dam is located in the Lowland section of the Piedmont Physiographic Province. As shown in Figure 1, the damsite and surrounding region is underlain by Brunswick Lithofacies of the Triassic age. The Brunswick Lithofacies are lithologically the most uniform of the three major sedimentary units of the Newark Group in Bucks County. The rock is a weak bright-red argillaceous shale that readily crumbles into thin flakes or ragged fragments. Bedding is wavy and irregular, ripple marks are found at many places and mud cracks are common. The Brunswick Lithofacies are much more easily eroded than the underlying Lockatong agrillite or the intruding diabase. It, therefore, forms a low, gently rolling terraine with shallow valleys and low ridges parallel to the strike of the beds.

