Senseless Crime Modeling :Gangnam-gu, Seoul

Table of CONTENTS

Introduction

-Background of study -Literature review

Result

O3 -Running the model

Model

-Method framework-Statechart

Conclusion

-Implication -Research limit

Background of study

Numerous recent senseless crimes in Korea

->2023.07.21 Stabbing rampage at Sillim station
->2023.08.03 Unprovoked aggression at Seohyeon station AK plaza

Series of copycat crimes against an unspecified number of people suddenly increased

Olo Introduction Background of study

Features of the 'senseless crime'

- ->Randomness of choosing victims
- ->The possibility of expanding the extent of the damage region and the number of victims
- ->Normally related to social situations (e.g. the economic depression , high unemployment rate)

On Introduction Literature Review

_Recently, due to the ability to simulate spatial and temporal aspects of criminal activities, ABM based crime researches are largely increased.

*Malleson, N., Heppenstall, A., & See, L. (2010). Crime reduction through simulation: An agent-based model of burglary. Computers, environment and urban systems, 34(3), 236-250.

*Cornelius, C. V., Lynch, C. J., & Gore, R. (2017, April). Aging out of crime: Exploring the relationship between age and crime with agent based modeling. In Proceedings of the agent-directed simulation symposium (pp. 1-12).

*Escobar, H., Cuevas, E., Toski, M., Ceron, F., & Perez-Cisneros, M. (2023). An agent-based model for public security strategies by predicting crime patterns. IEEE Access.

()2 Model

Method framework

_Research area; Gangnam-gu

- ->Areas with high pedestrian traffic
- ->Numerous locations with large-scale entertainment districts and a high incidence of crime
- ->Recent frequent occurrences of senseless crimes
- ->Areas where significant damage is anticipated

police_please

- > 🔂 Criminal
- > 🔂 Main
- > 6 Police
- > 🙃 PoliceStation
- > 6 Victim
- > Simulation: Main
 - Run Configuration: Main
- > 间 Database

020 Model Statechart

Police station

	연번	х	у
	₩	•	-
1	139	127.041	37.508
2	140	127.029	37.514
3	141	127.034	37.515
4	142	127.061	37.515
5	143	127.043	37.512
6	144	127.053	37.521
7	145	127.024	37.518
8	146	127.036	37.529
9	238	127.044	37.501
10	239	127.063	37.495
11	240	127.105	37.489
12	241	127.107	37.465
13	242	127.083	37.492
14	243	127.051	37.48

Victim

① Movint toward random destination ② Killed location is traced

©2º Model Statechart

Criminal

020 Model Statechart

Police

① Alerting the nearest

Result Running the model

Conclusion

- Implication
- Research limit

_Implication

- ->Micro-Level Understanding
- ->Emergent Patterns and Trends
- ->Scenario Testing for Policy Evaluation
- ->Spatial and Temporal Dynamics
- ->Adaptability and Flexibility

_Research limit

- ->Data Requirements
- ->Sensitivity to Parameterization
- -> Validation and Calibration Complexity

Thomk you