Autonomic Networks

Arthur Escriou

Lecture 10

Swarm algorithms

Swarm algorithms

- Separation

All agents are isolated

- Alignment

All agents share the same goal

Cohesion

All agents move towards the goal together

Swarm algorithms example

- ant colony optimization

- evolutionary algorithm

particle swarm optimization

Birds flock simulation

Separation

Alignment

Cohesion

Birds flock simulation

Agent behavior:

- get the 3 nearest birds

compute the mean angle of those birds

- change your own angle to look like the other birds

Birds flock simulation

Grafcet norm 60848.

- actions

conditions

SVB Simulation

- Separation

All ship have their own code and don't share memory

- Alignment

In a team all ship goal are the same (destroy enemy ships)

Cohesion

To work together ships can communicate through radio

SVB Simulation - algorithm idea

With all the same ships:

- thrust to a speed of 10%

 when a enemy ship is detected in radar range turn to aim it and communicate its position in the radio

when another ship send an enemy position turn to aim it

SVB Simulation - algorithm idea

pro:

our ships out number other ships in fight

con:

- you have to verify to be in range
- what happened when our swarm detect more than one ship?

SVB Simulation - some ideas

- split your swarm in different area to be sure to cover all the space

- give different role to ships (some can for example go forward to scout)

communicate only to the N nearest ships when you detect enemies

Some additional resources

- https://www.youtube.com/watch?v=GOFws_hhZs8
- https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
- https://en.wikipedia.org/wiki/Boids
- https://www.youtube.com/watch?v=5CaVhGTG8eA (fr)