(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3307173号 (P3307173)

(45)発行日 平成14年7月24日(2002.7.24)

(24)登録日 平成14年5月17日(2002.5.17)

(51) Int.CL'

識別配号

G01R 31/02

B60L 3/00

FΙ

G01R 31/02

B60L 3/00

S

請求項の数2(全 5 頁)

(21) 出願番号	特願平7-181287	(73)特許権者	000005821
			松下電器産業株式会社
(22)出顧日	平成7年7月18日(1995.7.18)		大阪府門真市大字門真1006番地
•		(72)発明者	横 一郎
(65)公開番号	特開平8-320352		神奈川県横浜市港北区綱島東4丁目3番
(43)公開日	平成8年12月3日(1996.12.3)		1号 松下通信工業株式会社内
審查請求日	平成10年12月9日(1998.12.9)	(72)発明者	鶴田 陽一郎
(31)優先権主張番号	特願平7-60742		神奈川県横浜市港北区綱島東4丁目3番
(32) 優先日	平成7年3月20日(1995.3,20)		1号 松下通信工業株式会社内
(33)優先權主張国	日本(JP)	(74)代理人	100097445
			弁理士 岩橋 文雄 (外2名)
		審査官	長馬 室
•		(56)参考文献	特開 平6-153301 (JP, A)
			特開 平6-308185 (JP, A)
			特開 昭56-117529 (JP, A)
			最終頁に続く

(54) 【発明の名称】 漏電検出装置

1

(57)【特許請求の範囲】

【請求項1】 車両に搭載されてその車両のボデーグランドから電気的に分離された前記車両の助力用直流電源と、前記動力用直流電源のブラス側とマイナス側との間に直列接続された2個の保護用抵抗。一端が前記保護用抵抗同士の接続部に接続され他端が前記車両のボデーグランドに接続された漏電検出抵抗と、前記2個の保護用抵抗同士の接続部でない方の前記保護用抵抗の一端と前記動力用直流電源のブラス端との間および前記2個の保護用抵抗同士の接続部でない方の前記保護用抵抗の他端と前記動力用直流電源のマイナス端との間にそれぞれ直列接続された2個の暗電流制限抵抗と、前記暗電流制限抵抗の両端にそれぞれ並列接続された2個のスイッチ手段と、前記漏電検出抵抗の両端電圧を測定する電圧測定部と、前記電圧測定部の出力より漏電しているか否か

2

を判定する漏電判定部とを備えた漏電検出装置。

【請求項2】 スイッチ手段が漏電判定部により制御されて間欠的に所定時間開閉することを特徴とする請求項1記載の漏電検出装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電気自動車、電車、トロリーバスなどの高圧直流電源を動力とする車両等に利用する漏電検出装置に関する。

10 [0002]

【従来の技術】図5は従来の漏電検出装置の構成を示している。図5において、21はバッテリー等で構成された高圧直流電源である。22、23及び24はそれぞれ抵抗値R1、R2、R5を有する抵抗であり、25は抵抗24の両端に生じる検出電圧である。

3

【0003】次に上記従来例の動作について説明する。 ―― 一般に電気自動車に使用される200~300Vの直流 電源は、人が高圧電源に触れても感電しないように、車 両のボデーグランドから電気的に分離されたフローティング状態になっている。しかしながら、絶縁破壊が起き ている場合には、人が高圧系に触れると電流が流れるバスができるため、感電してしまう。ところが、高電圧系とグランド間に絶縁破壊が発生しても、人が高圧系に触れない限り、高電圧系とグランドとが分離されているため、絶縁破壊を起こした抵抗には電流も電圧も生じない 10ため、漏電が検出できないことになる。これをできるよ*

$$I_r = +B/(r+Z)$$

となり、人体抵抗27の抵抗値Zは湿気などの環境によって異なることもあるが、Z=0とした場合に人体に流れる漏電電流 I . が最大となる。

【0005】次に、人体が高圧系に触れていないとき、 すなわち人体抵抗27の抵抗値Zが無限大のとき、絶縁 破壊によって生じる抵抗24の検出電圧25(V₁)の 値を求める。当然のことながら、絶縁破壊が起こってい※

$$i = + B / (R_1 + R_5 + r)$$

となる。したがって、抵抗24に生じる検出電圧25の値V,は、

$$V_1 = + B \times R_s / (R_1 + R_s + r)$$
 (3) となり、(1)、(3)式より漏電電流に対応した検出電圧 V_1 が求められ、これにより漏電を検出することができる。

[0006]

【発明が解決しようとする課題】しかしながら、上記従来の漏電検出装置では、漏電を検出するための漏電検出用の抵抗24を常時ボデーグランドにおとしておき、絶 30 縁破壊が起きたときに抵抗24に電流が流れるように構成されおり、漏電検出装置自身によって常時漏電状態を発生させて漏電検出をするものであり、漏電検出を行わない場合にも暗電流として、所定値以上(例えば200μA~500μA)の暗電流により漏電が常時起こっている状態にあった。よって、この暗電流により常時漏電状態を発生させているものであり、何等かの原因で高抵抗値の抵抗22、23の抵抗値が非常に小さくなった場合に、使用者が高電圧系に触れと危険領域に入るという問題が生じる。このため、上記従来の漏電検出装置では 40 高抵抗値の抵抗22、23の保護もしくは抵抗値を検出するための回路が別途必要となるものであった。

【0007】本発明は、上記従来の問題を除去するものであり、簡単な回路構成により使用者に対する安全を確保するとともに、漏電が発生した場合には漏電を確実に検出することができる優れた漏電検出装置を提供するものである。

[0008]

【課題を解決するための手段】車両に搭載されてその車両のボデーグランドから電気的に分離された<u>前記車両の</u>50

* うにしたのが、図5に示す高圧直流電源21に対し抵抗24をグランドに接地して、中性点をとる構成である。【0004】以下、この抵抗中性点にグランドをとる回路構成について図6を参照して説明する。図6において、21~25は図5と同じであり、26は絶縁破壊抵抗(r)、27は人体抵抗(Z)である。図6では高圧直流電源21のマイナス側が絶縁破壊を起としている状態である。高圧直流電源21の電圧を+Bボルト、抵抗22及び23の抵抗値R1、R2を絶縁破壊抵抗26の抵抗値(r)に比べ十分大きくとれば、人体に流れる漏電電流1.は、

(1)

※ないときの抵抗26の抵抗値rは無限大なので、検出電 E25には電圧が発生しないが、絶縁破壊が発生してい るときは、抵抗22及び23の抵抗値R₁、R₂を抵抗2 4及び26の抵抗値R₃及びrより大きく設定すると、 ボデーグランドを介して抵抗22、24及び26を流れ る帰電電流(i)は、

(2)

動力用直流電源と、前記動力用直流電源のブラス側とマイナス側との間に直列接続された2個の保護用抵抗と、一端が前記保護用抵抗同士の接続部に接続され他端が前記車両のボデーグランドに接続された漏電検出抵抗と、前記2個の保護用抵抗同士の接続部でない方の前記保護用抵抗の一端と前記動力用直流電源のブラス端との間および前記2個の保護用抵抗同士の接続部でない方の前記保護用抵抗の他端と前記動力用直流電源のマイナス端との間にそれぞれ直列接続された2個の暗電流制限抵抗と、前記暗電流制限抵抗の両端にそれぞれ並列接続された2個のスイッチ手段と、前記漏電検出抵抗の両端電圧を測定する電圧測定部と、前記電圧測定部の出力より漏電しているか否かを判定する漏電判定部とを備えたもの

【0009】さらに、本発明は、それぞれ前記保護用抵抗と直列接続された2個の高抵抗と、それぞれ前記高抵抗の両端に接続された2個のスイッチ手段とを備えたものである。

[0010]

【作用】したがって本発明によれば、スイッチ手段により漏電検出抵抗とボデーグランドとの接続を開閉させることにより、漏電検出装置自身による絶縁破壊を常時でなく間欠的に短時間だけ発生させるようにしているため、何等かの原因で高抵抗値の抵抗2 および3 の抵抗値が非常に小さくなった場合にも、使用者に対する安全を確保できるとともに、漏電が発生した場合にはこれを確実に検出することができる。また、漏電を検出する時のみ保護用抵抗と直列に高抵抗を接続することにより、漏電検出用の暗電流をさらに小さくすることができる。

[0011]

【実施例】以下に本発明における第1の実施例について 図1~図3を参照して説明する。図1は実施例の構成を 示すものであり、図2は漏電が発生した場合を示してい る。図1及び図2において、1は髙圧直流電源であり、 との高圧直流電源1は200~300 Vのバッテリー等 で構成されている。2及び3は抵抗であり高抵抗値 R1、R1を有する。4は漏電検出抵抗であり抵抗値R。 である。5は電圧測定部であり、漏電検出抵抗4の両端 電圧を測定する。6は漏電判定部であり、この漏電判定 部6は電圧測定部5からの出力と予め設定された基準値 10 とを比較して、電圧測定部5からの出力が基準値より大 きい場合に漏電検出出力7を出力するものである。8は スイッチであり、このスイッチ8は漏電判定部6により 制御されて間欠的に開閉するものである。9は高圧直流 電源1に対してボデーグランドに漏電した漏電抵抗

(r)であり、10は使用者が高電圧系に触れたときに 発生する人体抵抗(z)である。

【0012】次に、上記実施例の動作について説明す る。図1において、高圧直流電源1に対してボデーグラ ンドに漏電しているか否かを検出する場合には、漏電判 20 定部6の制御によりスイッチ8を閉じて、漏電検出抵抗 4の一端をボデーグランドに接地して漏電検出が可能な 状態とする。

【0013】絶縁破壊が発生していないときは、図1に 示すように、高圧直流電源1はボデーグランドに対して フローティング状態にあり、漏電検出抵抗4には電流が 流れていないため、漏電検出抵抗4の両端には電圧は発 生しない。絶縁破壊が発生した場合には、図2に示すよ うに高圧直流電源1に対して漏電抵抗9が発生しする。 図5に示す状態と同様に、ボデーグランドを介して抵抗 30 2、漏電検出抵抗4及び漏電抵抗9に漏電電流(i)が 流れ、漏電検出抵抗4の両端に検出電圧(V₁)が発生 する。

【0014】このときの、漏電電流(i)及び検出電圧 (V₁)は、上記(2)及び(3)式より求められる。 電圧測定部5 において検出電圧 (V1) が検出され、と の電圧測定部5の出力を漏電判定部6に印加する。漏電 判定部6では電圧測定部5からの出力と予め設定された 基準値とを比較して漏電を判定する。漏電が発生して電 圧測定部5からの出力が基準値より大きくなった場合に 40 は、漏電検出出力7を出力する。

【0015】スイッチ8は、漏電判定部6により制御さ れて所定時間経過後に「開」となる。スイッチ8が開放 となると、高圧直流電源1はボデーグランドに電流が流 れる径路が遮断される。当然のことながらスイッチ8が 「開」の場合には、漏電は検出できなことになる。図3 は漏電判定部6により制御されるスイッチ8の開閉状態 を示すものであり、スイッチ8の「閉時間」は約50m sec、「開時間」は約1secで制御される。

イッチ8を間欠的に開閉することにより、漏電検出のた め漏電検出抵抗4の絶縁破壊を常時でなく間欠的に短時 間だけ発生させるようにしている。このため、何等かの 原因で高抵抗値の抵抗2および3の抵抗値が非常に小さ くなった場合にも、使用者に対する安全を確保できると ともに、漏電が発生した場合にはこれを確実に検出する **ととができるものである。**

【0017】図4は本発明の第2の実施例の構成を示す ものである。上記第1の実施例と同一の構成について は、同一符号を記して説明を省略する。図4において、 11、12は高抵抗であり、これら高抵抗11、12は それぞれ高圧直流電源1のプラス側と抵抗2との間、抵 抗3と髙圧直流電源1のマイナス側との間に直列接続さ れている。13、14はスイッチであり、これらスイッ チ13、14はそれぞれ高抵抗11、12の両端に接続 され、漏電判定部6により制御されて開閉動作を行うも のである。

【0018】次に、第2の実施例の動作について説明す る。漏電検出を行う場合には、漏電判定部6が図3に示 すような動作タイミングにて、スイッチ13及びスイッ チ14を「閉」とする。これにより高圧直流電源1のブ ラス側とマイナス側とは抵抗2、3及び高抵抗11、1 2により接続された状態となり漏電検出が可能となる。 **漏電しているか否かは、漏電検出抵抗4の両端の電圧を** 電圧測定部5にて検出し、漏電判定部6により予め設定 された基準値と電圧測定部5の出力値とを比較して漏電 を判定する。漏電検出を行わない場合には、スイッチ1 3及びスイッチ14を「開」としておくことにより、高 抵抗11、12が抵抗2、3と直列接続され、高抵抗1 1、12は任意に大きな値を選定できるものであり、暗 電流を非常に小さくすることができる。スイッチ13及 びスイッチ14は、図3に示すと同様にして間欠的に開 閉することにより、一定の頻度で漏電検出ができる。

【0019】以上のように、第2の実施例によれば、従 来のように、漏電検出を行わない場合にも暗電流として 所定値以上(例えば200μΑ~500μΑ)の暗電流 を流すことなく、暗電流を20 µA以下にも小さくする ことが可能となるものである。

[0020]

【発明の効果】本発明は、上記実施例より明らかなよう に、スイッチ手段により漏電検出抵抗とボデーグランド との接続を開閉させることにより、漏電検出装置自身に よる絶縁破壊を常時でなく間欠的に短時間だけ発生させ るようにしているため、何等かの原因で高抵抗値の抵抗 2 および3の抵抗値が非常に小さくなった場合にも、使 用者に対する安全を確保できるとともに、漏電が発生し た場合にはこれを確実に検出することができるという効 果を有する。

【0021】さらに、保護用抵抗と直列接続された2個 【0016】以上のように、上記実施例においては、ス 50 の高抵抗と、それぞれ前記高抵抗の両端に接続された2

7

個のスイッチ手段とを備えることにより、 福電検出を行わない際の暗電流を従来に比べてさらに小さくすることができるという効果を有するものである。

【図面の簡単な説明】

【図1】本発明の第1の実施例における漏電検出装置の ブロック図

【図2】同実施例において漏電が起きた場合を示すブロック図

【図3】同実施例のスイッチの動作状態を示すタイミング図

【図4】本発明の第2の実施例における漏電検出装置の ブロック図

【図5】従来の漏電検出装置のブロック図

【図6】従来の漏電検出装置において漏電が起きた場合*

*を示すブロック図【符号の説明】

- 1 高圧直流電源
- 2 抵抗
- 3 抵抗
- 4 漏電検出抵抗
- 5 電圧測定部
- 6 漏電検出部
- 7 漏電検出出力
- 10 8 スイッチ
 - 9 漏電抵抗
 - 10 人体抵抗
 - 11、12 高抵抗
 - 13、14 スイッチ

【図1】

[図2]

8

【図3】

フロントページの続き

(58)調査した分野(Int.Cl.', DB名)

G01R 31/02

B60L 3/00