2 Culturing the ubiquitous freshwater actinobacterial acI lineage by supplying a 3 biochemical 'helper' catalase 4 5 Suhyun Kim*, Ilnam Kang*, Ji-Hui Seo, and Jang-Cheon Cho 6 7 Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea 8 *These authors contributed equally to this work. 9 10 (Running title: Culturing the acI lineage by catalase addition) 11 12 Corresponding author: Jang-Cheon Cho 13 Email: chojc@inha.ac.kr 14 15 This file includes: 16 Supplementary Information Text 17 Supplementary Materials and Methods 18 Supplementary Figure 1. Maximum-likelihood tree based on 16S rRNA gene sequences showing the 19 phylogenetic position of strains IMCC25003 and IMCC26103. 20 Supplementary Figure 2. Revival and transfer cultures of strains IMCC25003 and IMCC26103. 21 Supplementary Figure 3. Growth curves of strains IMCC25003 and IMCC26103 obtained from the revival 22 experiment of frozen glycerol stocks using the culture medium supplemented with catalase. 23 Supplementary Figure 4. Genome sequencing using the genomic DNA extracted from cultured and harvested 24 cell pellets of the acI strains. 25

Supplementary Information for

- Supplementary Figure 5. Growth of strains IMCC25003 and IMCC26103 in culture media supplemented with
- catalase, autoclaved catalase, or ferric chloride.
- Supplementary Figure 6. The effect of pyruvate concentration on the growth of acI strains and H₂O₂
- 29 concentration of media during cultivation.
- 30 Supplementary Figure 7. The effect of catalase plus various concentrations of pyruvate on the growth of acI
- strains and H₂O₂ concentration of media during cultivation.
- 32 Supplementary Figure 8. H₂O₂ concentration of water samples collected monthly from the surface of Lake
- Soyang and the change in H_2O_2 concentration during preparation of the basal culture medium
- FAMV+CM+AA.
- 35 Supplementary Figure 9. Increase in IMCC25003 *katG* expression with increasing concentration of H₂O₂.
- 36 Supplementary Figure 10. Expression, purification, and determination of native molecular weight of recombinant
- 37 IMCC25003 KatG.
- Supplementary Figure 11. Catalase and peroxidase activities of purified IMCC25003 KatG and bovine catalase
- 39 (KatE).
- 40 Supplementary Figure 12. Kinetic curves of H₂O₂ decomposition by IMCC25003 KatG and bovine catalase.
- 41 Supplementary Figure 13. Growth curves of strain IMCC25003 and strain IMCC26103 at different temperatures.
- Supplementary Table 1. Media used in this study and their composition.
- Supplementary Table 2. Trials to establish pure culture of strain IMCC25003.
- 44 Supplementary Table 3. Kinetic parameters of various catalase-peroxidases and bovine catalase.
- 45 Supplementary Table 4. List of acI genomes used in this study and the presence or absence of *katG* gene.
- Supplementary Table 5. Fatty acids composition (%) of two acI strains.
- 47 Supplementary References

Supplementary Information Text

49

50

78

Description of two proposed 'Candidatus' species

51 The average nucleotide identity value calculated from genome sequences between strain IMCC25003 and 'Ca. Planktophila sulfonica' MMS-IA-56 was 84% and between strains MCC26103 and 'Ca. Planktophila lacus' 52 MMS-21-148 was 78%, which were both below the 95–96% cut-off value for bacterial species demarcation [1, 53 2]. Analysis of genomic DNA-DNA relatedness and differential phenotypic characteristics indicated that strains 54 IMCC25003 and IMCC26103 each represent novel species of the genus 'Candidatus Planktophila'. However, 55 because the two strains did not grow on a defined medium or a synthetic medium but replicated only in complex 56 natural lake water media, limiting the deposition of the acI strains in culture collections, we propose the 57 58 provisional names 'Candidatus Planktophila rubra' for strain IMCC25003 and 'Candidatus Planktophila aquatilis' for strain IMCC26103. 59 60 'Candidatus Planktophila rubra' (ru'bra. L. fem. adj. rubra reddish, pertaining to the reddish color of cells) 61 Represented by a cultured bacterial strain, IMCC25003. Gram-positive, aerobic, red-pigmented, non-62 motile, and chemoheterotrophic. Cells are curved rods with biovolume of 0.041 μm³, 0.46–1.23 μm (average 63 0.68 μm) long and 0.25–0.37 μm (average 0.30 μm) wide. Grows in FAMV+CM+AA supplemented with >0.5 U 64 mL⁻¹ catalase but does not grow in any liquid medium devoid of catalase and on any solid agar medium. Growth 65 occurs at 10-30°C (optimum, 25°C). No single carbon sources enhance cellular growth. Requires sulfur-66 containing amino acids (methionine and cysteine) but prefers methionine. The major fatty acids (>10%) are 67 summed feature 3 ($C_{16:1} \omega 7c$ and/or $C_{16:1} \omega 7c$, 45.8%), $C_{16:0}$ (23.1%), and $C_{14:0}$ (18.2%). Strain IMCC25003 has 68 a genome size of 1.354 Mbp with DNA G+C content of 49.1%. The complete genome sequence of strain 69 IMCC25003 is available in GenBank (CP029557). Phylogenetically belongs to the acI-A1 tribe. 70 The representative strain IMCC25003 was isolated from a freshwater lake, Lake Soyang, Republic of 71 72 Korea, using a dilution-to-extinction culturing. 73 'Candidatus Planktophila aquatilis' (a.qua.ti'lis. L. fem. adj. aquatilis living, growing, or found, in or near 74 water, aquatic). 75 Represented by a cultured bacterial strain, IMCC26103. Gram-positive, aerobic, red-pigmented, non-76 motile, and chemoheterotrophic. Cells are curved rods with biovolume of 0.061 μm³, 0.49–1.23 μm (average 77

0.88 μm) long and 0.22-0.39 μm (average 0.31 μm) wide. Grows in FAMV+CM+AA supplemented with >0.5 U

mL⁻¹ catalase but does not grow in any liquid medium devoid of catalase and on any solid agar medium. Growth occurs at 10–30°C (optimum, 25°C). D-Ribose and D-glucose enhance the cellular growth. Requires sulfurcontaining amino acids (methionine and cysteine) but prefers cysteine. The major fatty acids (>10%) are C_{16:0} (28.5%), C_{18:1} ω9c (25.8%), summed feature 3 (C_{16:1} ω7c and/or C_{16:1} ω7c, 12.3%), and C_{18:0} (10.5%). Strain IMCC26103 has a genome size of 1.457 Mbp with DNA G+C content of 47.0%. The complete genome sequence of strain IMCC26103 is available in GenBank (CP029558). Phylogenetically belongs to the acI-A4 tribe.

The representative strain IMCC26103 was isolated from a freshwater lake, Lake Soyang, Republic of Korea, using a dilution-to-extinction culturing.

Supplementary Materials and Methods

Measurement of bacterial cell densities

Bacterial cell densities in all growth experiments were determined by flow cytometry (Guava easyCyte Plus, Millipore) as described previously [3, 4]. After 200 μ L of bacterial cultures were stained with SYBR Green I (5× final concentration, Invitrogen) for 1 h, each stained sample was run for 10 s or until total cell counts reached 5000. To accurately measure the cell counts in the samples with high cell density, the stained sample was diluted to contain less than 200 cells μ L⁻¹.

Measurement of katG expression by qPCR

Strain IMCC25003 was grown in triplicate in 4 L of FAMV+CM+AA supplemented with 1 U mL⁻¹ of catalase until the early stationary phase. Each 4-L bacterial culture was harvested by centrifugation at 20,000 ×*g* for 120 min. To examine the expression of IMCC25003 *katG* and compare the relative level of gene expression according to H₂O₂ concentrations, harvested cells were treated with different concentrations of H₂O₂ (10, 50, and 100 µM) for 30 min and untreated cells were used as a control. RNA was extracted using TRIzol (Sigma-Aldrich). Reverse transcription was performed with 1 µg of RNA using qPCRBIO cDNA Synthesis Kit (PCRBIO Systems) and real-time qPCR was conducted using qPCRBIO SyGreen Blue Mix Lo-ROX (PCRBIO Systems) in a real-time thermal cycler (Rotor-Gene 3000, Corbett Research). The *katG* primer set (forward, 5'-CATGGCGATGAATGAAG-3'; reverse, 5'-GCTGTTCTTCCAGCCAAGTC-3') for targeting *katG* of IMCC25003 was used to evaluate gene expression and the GAPDH gene of IMCC25003 was employed as a housekeeping gene with the GAPDH primer set (forward, 5'-GTTCAGCGACAGACCTCACA-3'; reverse, 5'-TGGTGAGCTGTGAATCGAAG-3').

Expression, purification, and characterization of KatG from IMCC25003

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

The gene encoding catalase-peroxidase (KatG) of IMCC25003 was amplified by PCR using the following primers: forward, 5'-CATATGATGACTCAAGAATCAACTCC-3'; reverse, 5'-CTCGAGTTACTTCTTTGAC-3'. The PCR product was inserted into the pET-15b vector (Novagen) and expressed in Escherichia coli BL21 (DE3) using 1 mM isopropyl-β-D-thiogalatoside (Sigma-Aldrich). The expressed KatG-His recombinant protein was purified using a gravity-flow Ni²⁺-nitrilotriacetic acid affinity column (Novagen). The high concentration of salts used for elution in the affinity column was removed using a PD-10 desalting column (GE Healthcare). To increase protein purity, the eluted fractions were applied to a Superose-12 FPLC column (10 × 300 mm, GE Healthcare) equilibrated with 50 mM potassium phosphate buffer (pH 7.0). The purified recombinant proteins were concentrated to approximately 10 mg mL⁻¹ in Centricon tubes (MWCO 10,000 Da; Millipore) and stored at 4°C. All purification steps were carried out at 4°C or on ice. The native molecular weight of IMCC25003 KatG was determined by size exclusion chromatography on a Superose-12 FPLC column (10 × 300 mm, GE Healthcare) equilibrated with 50 mM potassium phosphate buffer (pH 7.0). The molecular weights of the subunits were determined by discontinuous sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) according to the standard Laemmli method. Catalytic activity of recombinant IMCC25003 KatG was determined using a spectrophotometric assay by measuring the decomposition of H₂O₂ at 240 nm. Catalase-specific activity was quantified by allowing varying amounts of enzyme (0-1.0 µg for bovine catalase; 0-5.0 µg for IMCC25003 KatG) to react with 5 mM H₂O₂ in 50 mM potassium phosphate buffer (pH 7.0) at 25°C. The absorption coefficient at 240 nm, pH 7.0, and 25°C for H₂O₂ was determined to be 49.8 M⁻¹ cm⁻¹. Kinetic parameters were determined in triplicate from initial linear reaction rates of H_2O_2 ranging from 1 to 10 mM. The apparent Km (mM) and kcat (s⁻¹) values at these substrate concentrations were determined from a Lineweaver-Burk plots. Catalase from bovine liver was used as a positive control. In SDS-PAGE, staining for catalase activity was performed with the ferricyanide negative staining method using 2% (w/v) ferric chloride and 2% (w/v) potassium ferricyanide solution, and peroxidase

Phylogenetic analyses based on 16S rRNA gene, whole genome, and KatG protein

activity was detected by double-staining with 3,3',5,5'-tetramethylbenzidine [5].

The 16S rRNA gene sequences of the acI genomes [6-8] were downloaded from the IMG database and GenBank, aligned using SINA online aligner, and imported into the ARB-SILVA database (SSURef NR 99,

release 123). Multiple alignments of the imported sequences and other reference sequences of the acI lineage were exported with the 'ssuref:bacteria' filter and used to construct a maximum-likelihood tree in RAxML 8.2.7 with the GTRGAMMA model. Phylogenetic assignment of the sequences was performed as described by Newton *et al.* [9] and the recently proposed names for the two *Candidatus* genera [8].

To build phylogenomic trees, protein sequences predicted in 4 completed acI genomes [7] and single-cell genomes [6] and 16 recently published acI genomes [8] were downloaded from the IMG database and NCBI RefSeq database. Downloaded protein sequences were processed using CheckM [10], which produces concatenated alignment of 43 conserved proteins. This concatenated alignment was used to build a maximum-likelihood tree using RAxML 8.2.7 with the PROTGAMMAAUTO model.

A phylogenetic tree of KatG proteins was constructed to identify the phylogenetic positions of the KatGs found in the acI genomes. KatG proteins in the acI genomes (listed in Table S4) were searched by BLASTp using the KatG sequence of IMCC25003 as a query and acI protein sequences downloaded above as a search database, which revealed a total of 20 acI KatG proteins. Sequences collected for tree construction included the following: 20 acI KatG proteins, 16 KatG proteins showing high similarities to acI KatG proteins in BLASTp against the nr database of GenBank, 19 actinobacterial KatG proteins searched from the genomes representing diverse taxonomic groups of the phylum *Actinobacteria* [7], and >300 KatG proteins downloaded from PeroxiBase [11] (http://peroxibase.toulouse.inra.fr; Category 'Catalase peroxidase' of 'Class I peroxidase superfamily' under 'Non Animal peroxidase'). After sequence collection, several rounds of alignment and tree building were performed, and some sequences were excluded because of their short length, poor alignment, or unstable positioning. Finally, 303 KatG proteins were selected, aligned with Muscle [12] implemented in the MEGA 6 program, and used to construct a maximum likelihood tree using RAxML (version 8.2.7), with automatic model selection based on aic criterion (-m PROTGAMMAAUTO --auto-prot=aic). The selected model was LG likelihood with empirical base frequencies. Grouping of the KatG proteins was performed as described by Zamocky *et al.* [13].

Supplementary Figures

Fig. S1. Maximum-likelihood tree based on 16S rRNA gene sequences showing the phylogenetic position of strains IMCC25003 and IMCC26103. The two strains isolated in this study are marked in red. *Streptomyces sannanensis* (AB184579) and *Streptomyces griseus* (AY999909) were used as outgroup. Bootstrap supporting values (from 600 replicates) are shown at the nodes as filled circles (\geq 90%), half-filled circles (\geq 70%), and empty circles (\geq 50%). Bar, 0.10 substitutions per nucleotide position.

Fig. S2 Revival and transfer cultures of strains IMCC25003 and IMCC26103. **a** Growth curve of a revival culture of strain IMCC26103. **b** Flow cytometry plots of strain IMCC26103 obtained at the time points indicated in (**a**). Left, histograms showing the distribution of cell counts (y-axis) according to the green fluorescence (x-axis); Right, dot plots showing the distribution of cells according to side scatter (x-axis) and green fluorescence (y-axis). **c** Revival and two subsequent transfer cultures of strain IMCC25003.

Fig. S3 Growth curves of strains IMCC25003 (**a**) and IMCC26103 (**b**) obtained from the revival experiment of frozen glycerol stocks using culture medium (FAMV+CM+AA) supplemented with catalase. The triangle symbol represents growth in the medium amended with 10 U mL⁻¹ catalase, while the circle symbol represents growth in the medium without catalase.

Fig. S4 Genome sequencing using genomic DNA extracted from cultured and harvested cell pellets of the acI strains. a Cell pellets obtained by centrifugation from 4-L cultures of IMCC25003 (upper) and IMCC26103 (lower). Genomic DNA extracted from these cell pellets were used for genome sequencing. b Coverage variation across the complete genome sequences of the acI strains. The two coverage plots above red arrow were obtained from our previous study using whole genome amplification (WGA) [7]. The two coverage plots below the arrow were obtained from this study using large-scale cultures without WGA. Coverage variation was calculated using a 25-bp window based on read mapping. Bar heights were normalized in each plot and the maximum coverages are indicated at the upper left corner of each plot.

Fig. S5 Growth of strains IMCC25003 (a) and IMCC26103 (b) in culture media supplemented with catalase, autoclaved catalase, or ferric chloride. Catalase, 10 U mL⁻¹ of bovine catalase; Autoclaved catalase, 10 U mL⁻¹ of bovine catalase autoclaved for 2 hrs; Ferric chloride, 100 nM of FeCl₃; Negative control, no supplement. All experiments were performed in duplicate using the culture medium FAMV+CM+AA. Error bars indicate standard error. Note that error bars shorter than the size of the symbols are hidden.

Fig. S6 Effects of pyruvate concentration on the growth of acI strains and H₂O₂ concentration of media during cultivation. Various concentrations (0–5 mM) of pyruvate were added to the culture medium FAMV+CM+AA (without pyruvate) for experiments. **a** and **b** The growth of strains IMCC25003 (**a**) and IMCC26103 (**b**). **c-f** Changes in H₂O₂ concentration during cultivation of strains IMCC25003 (**c** and **e**) and IMCC26103 (**d** and **f**). Note that the figures **e** and **f** show the same data as the figures **e** and **d**, respectively, with different y-axis scales. All experiments were performed in duplicate. Error bars indicate standard error. Note that error bars shorter than the size of the symbols are hidden.

Fig. S7 Combined effects of catalase and various concentrations of pyruvate on the growth of acI strains and H₂O₂ concentration of media during cultivation. Various concentrations (0–5 mM) of pyruvate were added to the culture medium FAMV+CM+AA (without pyruvate) supplemented with catalase (10 U mL⁻¹) for experiments. **a** and **b** The growth of strains IMCC25003 (**a**) and IMCC26103 (**b**). **c-d** Changes in H₂O₂ concentration during cultivation of strains IMCC25003 (**c**) and IMCC26103 (**d**). All experiments were performed in duplicate. Error bars indicate standard error. Note that error bars shorter than the size of the symbols are hidden.

Fig. S8 H₂O₂ concentration of water samples collected monthly from the surface of Lake Soyang (**a**) and the change in H₂O₂ concentration during preparation of the basal culture medium FAMV+CM+AA (**b**).

Fig. S9 Increase in IMCC25003 katG expression with increasing concentration of H₂O₂. Cells of IMCC25003 were treated with 3 different H₂O₂ concentrations (10, 50, and 100 μ M) for 30 min and total RNA was used for the analysis of katG expression by qPCR. Expression level of katG in H₂O₂-treated cultures was compared with that in the control cultures (no H₂O₂ treatment). FAMV+CM+AA was used as the culture medium. Error bars indicate standard deviations (n = 3).

Fig. S10 Expression, purification, and determination of native molecular weight of recombinant IMCC25003 KatG. a Expression of IMCC25003 KatG in *E. coli* analyzed by SDS-PAGE. The bold arrow indicates a band of KatG, which is approximately 82.6 kDa. M, molecular weight size marker; control, before induction of expression; sup, supernatant; pellet, cell debris and membrane. Purified IMCC25003 KatG bound to a Ni²⁺-nitrilotriacetic acid affinity column (b) and the purified protein through a size exclusion superpose-12 column (c), confirmed by SDS-PAGE. M, molecular weight size marker; f.t., unbound flow through fraction.

Chromatograms (d) of protein-molecular-weight size markers and IMCC25003 KatG, and the molecular-weight calibration curve (e) obtained from protein-molecular-weight size markers and IMCC25003 KatG. The chromatogram colored in red and the red dot on the calibration curve represent IMCC25003 KatG.

Fig. S11 Catalase and peroxidase activities of purified IMCC25003 KatG and bovine catalase (KatE). Bovine catalase [0.005 (0.01 U), 0.05 (0.1 U), and 0.5 (1 U) μg] and IMCC25003 KatG (0.005, 0.05, 0.5, 1, 5, and 10 μg) were separated by 8% non-denaturing PAGE. The bold arrows indicate negatively stained catalase activity and the narrow arrow indicates peroxidase activity stained by 3,3′,5,5′-tetramethylbenzidine.

Fig. S12 Kinetic curves of H_2O_2 decomposition by IMCC25003 KatG and bovine catalase. The curves of absorbance at 240 nm over time were generated using varying quantities of (a) bovine catalase (0–1.0 μ g) and (b) IMCC25003 KatG (0–5.0 μ g).

Fig. S13 Growth curves of strain IMCC25003 (a) and strain IMCC26103 (b) at different temperatures.

Supplementary Tables

Table S1 Media used in this study and their composition.

Components of media				
Components (abbreviation)	Compound(s)	Final concentration		
Ammonium (N)	NH ₄ Cl 10 μM			
Phosphate (P)	KH ₂ PO ₄	10 μM		
Trace metals (TM)	FeCl ₃ ·6H ₂ O	117 nM		
	MnCl ₂ ·4H ₂ O	9 nM		
	ZnSO ₄ ·7H ₂ O	800 pM		
	CoCl ₂ ·6H ₂ O	500 pM		
	Na ₂ MoO ₄ ·2H ₂ O	300 pM		
	Na_2SeO_3	1 nM		
	NiCl ₂ ·6H ₂ O	1 nM		
Vitamin mixture (V)	Thiamine·HCl	59 nM		
	Niacin	81 nM		
	Ca-Pantothenate	84 nM		
	Pyridoxine	59 nM		
	Biotin	409 pM		
	Folic acid	453 pM		
	Vitamin B12	70 pM		
	Myo-inositol	555 nM		
	p-Aminobenzoic Acid	7 nM		
Carbon mixture (CM)	Pyruvate	50 μΜ		
	D-Glucose	5 μΜ		
	N-Acetyl-D-glucosamine	5 μΜ		
	D-Ribose	5 μΜ		
	Methyl alcohol	5 μΜ		
20 proteinogenic amino acid mixture (AA)	Each amino acid	100 nM, each		
Media definition				
Media	Definition			
FAM	0.2 μm-filtered and autoclaved freshwater			
	medium supplemented with N, P, and TM			
FAMV	FAM supplemented with V			
FAMV+CM	FAMV supplemented with CM			
FAMV+AA	FAMV supplemented with AA			
FAMV+CM+AA	FAMV supplemented with CM and AA			

Table S2 Trials to establish pure culture of strain IMCC25003.

Trial	Media composition	Additional substrate	Reference
1st attempt	FAMV		
	FAMV+CM		
	FAMV+AA	0.5×, 1×, 5×, and 10 × of CM	
	AFM ^a +V+CM+AA		
	FM ^b +V+CM+AA		
2nd attempt	FAMV+CM+AA	20 μM acetate	[14]
		20 μM oxaloacetate	[6]
		20 μM putrescine	[6, 15]
		20 μM glycerol	[6]
		20 μM xylose	[15, 16]
		1 mg L ⁻¹ proteose peptone No. 3	
		1 mg L ⁻¹ yeast extract	
3rd attempt	FAMV+CM+AA	1:20 diluted spent medium ^c	[15, 17], This study
4th attempt	FAMV+CM+AA	10 U mL ⁻¹ catalase	

^aAFM, Artificial freshwater medium [18]. ^bFM, 0.1 μm-filtered but non-autoclaved freshwater medium. ^cSpent medium, a spent medium of the genus *Limnohabitans* filtrated through 0.1 μm pore-size membrane after cultivation of *Limnohabitans* sp. IMCC26003. For the media abbreviations, refer to Supplementary Table S1.

Table S3 Kinetic parameters of various catalase-peroxidases and bovine catalase.

Source	Molecular weight	Structure	Specific activity (Units mg ⁻¹)	Km (mM)	<i>kcat</i> (s ⁻¹)	$kcat/Km (M^{-1} s^{-1})$	pΙ	Reference
IMCC25003 ^a	165,000	A2	179.3	11.7	9.05×10^{2}	7.74×10^4	7.6 ^b	This study
Archaeoglobus fulgidus ^a	NA	NA	5,280	3.8	7.77×10^3	2.04×10^{6}	5.6^{b}	[19]
Bacillus selenatarsenatis SF-1	165,000	A2	3,375	2.6	1.15×10^4	4.41×10^{6}	6.0	[20]
Burkholderia pseudomallei ^a	NA	NA	3,630	4.5	5.68×10^{3}	1.26×10^{6}	5.9^{b}	[19]
Escherichia coli K10	337,000	A4	1,486.5	3.9	1.63×10^4	4.19×10^{6}	5.1 ^b	[21]
Escherichia coli O157:H7	NA	NA	NA	4.0	1.40×10^4	3.50×10^{6}	5.1 ^b	[22]
Geobacillus stearothermophilus ^a	NA	NA	3,120	4.4	1.40×10^3	3.18×10^{5}	5.2	[23]
Halobacterium salinarum	240,000	A4	43.2	3.7	NA	NA	3.8	[24]
Mycobacterium smegmatis	NA	NA	NA	1.4	2.38×10^{3}	1.70×10^{6}	5.0^{b}	[25]
Mycobacterium tuberculosis ^a	175,000	A2	2,420	5.2	1.01×10^4	1.94×10^{6}	5.1	[26]
Rhodobacter capsulatus	236,000	A4	7,800	4.2	NA	NA	4.5	[27]
Rhodobacter capsulatus ^a	NA	NA	4,830	3.7	6.64×10^{3}	1.79×10^{6}	5.1 ^b	[19]
Synechococcus elongatus PCC 6301 ^a	165,000	A2	1,491	4.8	8.85×10^3	1.84×10^{6}	4.6	[28]
Synechococcus elongatus PCC 6301	165,000	A2	NA	4.3	7.20×10^3	1.67×10^{6}	5.1 ^b	[29]
Synechococcus elongates PCC 7942 ^a	NA	NA	NA	4.2	2.60×10^4	6.19×10^{6}	5.1 ^b	[30]
Synechocystis sp. PCC 6803 ^a	170,000	A2	5,420	4.9	3.50×10^3	7.14×10^{2}	5.4	[31]
Thermoascus aurantiacus	330,000	A4	NA	48.0	1.07×10^{5}	2.22×10^{6}	4.5	[32]
Thermus brockianus	178,000	A4	5,300	35.5	6.00×10^3	1.69×10^{5}	4.7	[33]
Bos taurus ^c	240,000	A4	1980.3	20.6	3.68×10^4	1.79×10^{6}	5.4	This study

^aBiochemical properties were determined using recombinant catalase-peroxidase. ^bTheoretical pI values were estimated based on amino acids sequences. ^cThe monofunctional bovine catalase which was amended to culture media of IMCC25003 was used as an experimental positive control. NA, not available.

Table S4 List of acI genomes used in this study and the presence or absence of *katG* gene.

Tribe	Organism name	Genome ID	Isolation site	Complete	No. of Scaffolds	Genome size (bp)	Length of KatG (aa)
A1	Actinobacteria bacterium IMCC25003	2602042019 ^a	Lake Soyang	О	1	1,353,947	746
	actinobacterium SCGC AAA278-O22	2236661007 ^a	Lake Mendota	X	43	1,138,490	X
	actinobacterium SCGC AAA027-M14	2236661003ª	Lake Mendota	X	22	822,296	725
	'Ca. Planktophila dulcis' MMS-IIA-65	CP016777 ^b	Lake Zurich	O	1	1,348,019	732
	'Ca. Planktophila dulcis' MMS-IA-53	CP016772 ^b	Lake Zurich	O	1	1,365,934	732
	'Ca. Planktophila dulcis' MMS-21-155	CP016770 ^b	Lake Zurich	O	1	1,361,776	732
	'Ca. Planktophila sulfonica' MMS-IA-56	CP016773 ^b	Lake Zurich	O	1	1,344,614	747
	'Ca. Planktophila versatilis' MMS-IIB-76	CP016778 ^b	Lake Zurich	O	1	1,325,420	733
	'Ca. Planktophila versatilis' MMS-IA-79	CP016774 ^b	Lake Zurich	O	1	1,331,009	733
	'Ca. Planktophila versatilis' MMS-IA-105	CP016775 ^b	Lake Zurich	O	1	1,326,591	733
	'Ca. Planktophila versatilis' MMS-IIB-142	CP016781 ^b	Lake Zurich	O	1	1,266,983	733
A2	'Ca. Planktophila limnetica' MMS-VB-114	CP016782 ^b	Lake Zurich	0	1	1,328,793	722
A4	Actinobacteria bacterium IMCC26103	2602042020a	Lake Soyang	0	1	1,456,516	X
	'Ca. Planktophila lacus' MMS-IIB-106	CP016780 ^b	Lake Zurich	O	1	1,384,812	721
	'Ca. Planktophila lacus' MMS-IIB-60	CP016783 ^b	Lake Zurich	O	1	1,410,107	721
	'Ca. Planktophila lacus' MMS-21-148	CP016769 ^b	Lake Zurich	O	1	1,460,061	721
A5	actinobacterium SCGC AAA044-O16	2606217200a	NA	X	17	1,313,698	718
	actinobacterium SCGC AAA028-G02	2606217191ª	NA	X	18	1,231,401	718
A6	actinobacterium SCGC AAA028-E20	2602042080a	NA	X	19	727,714	X
	actinobacterium SCGC AAA028-I14	2619618809 ^a	NA	X	11	623,569	717
A7	Actinobacteria bacterium IMCC19121	2606217181ª	Lake Soyang	O	1	1,506,415	X
	actinobacterium SCGC AAA044-N04	2236661005a	Damariscotta Lake	X	23	1,286,658	718
	actinobacterium SCGC AAA024-D14	2264265190 ^a	Sparkling Lake	X	82	778,696	X
	actinobacterium SCGC AAA023-J06	2236661001a	Sparkling Lake	X	98	695,943	X
	'Ca. Planktophila vernalis' MMS-IIA-15	CP016776 ^b	Lake Zurich	O	1	1,364,004	718
B1	actinobacterium SCGC AAA027-L06	2505679121ª	Lake Mendota	X	75	1,163,583	X
	actinobacterium SCGC AAA027-J17	2236661002a	Lake Mendota	X	81	966,755	X
	actinobacterium SCGC AAA278-I18	2236661006a	Damariscotta Lake	X	54	944,397	X

	actinobacterium SCGC AAA028-A23	2236661004ª	Lake Mendota	X	64	833,294	X
	actinobacterium SCGC AAA023-D18	2236661009 ^a	Sparkling Lake	X	67	753,259	X
	actinobacterium SCGC AB141-P03	2236876028 ^a	Lake Stechlin	X	66	660,403	X
	'Ca. Nanopelagicus limnes' MMS-21-122	CP016768 ^b	Lake Zurich	O	1	1,238,108	X
	'Ca. Nanopelagicus hibericus' MMS-21-160	CP016771 ^b	Lake Zurich	O	1	1,223,088	X
	'Ca. Nanopelagicus abundans' MMS-IIB-91	CP016779 ^b	Lake Zurich	O	1	1,161,863	X
B4	actinobacterium SCGC AAA044-D11	2619618811ª	NA	X	18	1,095,756	719
C1	Actinobacteria bacterium IMCC26077	2602042021a	Lake Soyang	О	1	1,551,612	X

^aIMG Genome ID (IMG Taxon ID). ^bGenBank accession number. NA, not available.

Table S5 Fatty acids composition (%) of two acI strains.

Fatty acid	IMCC25003	IMCC26103
Saturated fatty acids		
C10:0		0.46
C12:0	1.64	7.93
C14:0	18.22	7.85
C16:0	23.11	28.45
C17:0		1.05
C18:0	2.14	10.49
Unsaturated fatty acids		
C15:1 ω6 <i>c</i>	1.11	
C17:1 ω8 <i>c</i>	2.31	1.35
C18:1 ω9 <i>c</i>	2.10	25.80
summed feature 3 (16:1 $\omega 7c/16:1 \omega 6c$)	45.79	12.28
summed feature 5 (18:2 ω 6,9 c /18:0 ante)		0.99
summed feature 8 (18:1 ω7 <i>c</i> , 18:1 ω6 <i>c</i>)	3.58	3.36

273 Supplementary References

- 1. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes.
- 275 *Proc Natl Acad Sci USA* 2005; **102:** 2567-2572.
- 276 2. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide
- 277 identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst
- 278 Evol Microbiol 2014; **64:** 346-351.
- 279 3. Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. SAR11 marine
- bacteria require exogenous reduced sulphur for growth. *Nature* 2008; **452**: 741-744.
- 281 4. Carini P, Steindler L, Beszteri S, Giovannoni SJ. Nutrient requirements for growth of the extreme
- oligotroph 'Candidatus Pelagibacter ubique' HTCC1062 on a defined medium. ISME J 2013; 7: 592-
- 283 602.
- 284 5. Thomas PE, Ryan D, Levin W. An improved staining procedure for the detection of the peroxidase
- activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. *Anal Biochem* 1976; **75**:
- 286 168-176.
- 6. Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT et al. Comparative single-
- cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME
- 289 J 2014; **8:** 2503-2516.
- 7. Kang I, Kim S, Islam MR, Cho J-C. The first complete genome sequences of the acI lineage, the most
- 291 abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-
- 292 extinction cultures. *Sci Rep* 2017; **7:** 42252.
- 293 8. Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined
- ubiquitous freshwater *Actinobacteria*. *ISME J* 2018; **12:** 185-198.
- 9. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of
- freshwater lake bacteria. *Microbiol Mol Biol Rev* 2011; **75:** 14-49.
- 297 10. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of
- microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015.
- 11. Fawal N, Li Q, Savelli B, Brette M, Passaia G, Fabre M et al. PeroxiBase: a database for large-scale
- evolutionary analysis of peroxidases. *Nucleic Acids Res* 2013; **41:** D441-444.

- 12. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic*
- 302 Acids Res 2004; **32:** 1792-1797.
- 13. Zamocky M, Gasselhuber B, Furtmuller PG, Obinger C. Molecular evolution of hydrogen peroxide
- degrading enzymes. Arch Biochem Biophys 2012; **525:** 131-144.
- 305 14. Buck U, Grossart H-P, Amann R, Pernthaler J. Substrate incorporation patterns of bacterioplankton
- populations in stratified and mixed waters of a humic lake. *Environ Microbiol* 2009; **11:** 1854-1865.
- 307 15. Garcia SL, McMahon KD, Grossart H-P, Warnecke F. Successful enrichment of the ubiquitous
- freshwater acI *Actinobacteria*. *Environ Microbiol Rep* 2014; **6:** 21-27.
- 309 16. Garcia SL, McMahon KD, Martinez-Garcia M, Srivastava A, Sczyrba A, Stepanauskas R et al.
- 310 Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater
- 311 bacterioplankton. *ISME J* 2013; **7:** 137-147.
- 17. Jezbera J, Sharma AK, Brandt U, Doolittle WF, Hahn MW. 'Candidatus Planktophila limnetica', an
- actinobacterium representing one of the most numerically important taxa in freshwater
- bacterioplankton. *Int J Syst Evol Microbiol* 2009; **59:** 2864-2869.
- 315 18. Kim S, Kang I, Cho JC. Genomic Analysis of a Freshwater Actinobacterium, "Candidatus
- Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang. *J Microbiol Biotechnol*
- 2017; **27:** 825-833.
- 19. Singh R, Wiseman B, Deemagarn T, Jha V, Switala J, Loewen PC. Comparative study of catalase-
- peroxidases (KatGs). Arch Biochem Biophys 2008; 471: 207-214.
- 20. Gudelj M, Fruhwirth GO, Paar A, Lottspeich F, Robra KH, Cavaco-Paulo A et al. A catalase-
- 321 peroxidase from a newly isolated thermoalkaliphilic *Bacillus* sp with potential for the treatment of
- textile bleaching effluents. *Extremophiles* 2001; **5:** 423-429.
- 323 21. Claiborne A, Fridovich I. Purification of the o-dianisidine peroxidase from Escherichia coli B.
- Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. *J Biol*
- 325 *Chem* 1979; **254**: 4245-4252.
- 326 22. Varnado CL, Hertwig KM, Thomas R, Roberts JK, Goodwin DC. Properties of a novel periplasmic
- catalase-peroxidase from Escherichia coli O157: H7. Arch Biochem Biophys 2004; **421:** 166-174.

- 328 23. Kobayashi C, Suga Y, Yamamoto K, Yomo T, Ogasahara K, Yutani K et al. Thermal conversion from
- low- to high-activity forms of catalase I from *Bacillus stearothermophilus*. J Biol Chem 1997; **272**:
- 330 23011-23016.
- 331 24. Brownpeterson NJ, Salin ML. Purification of a catalase-peroxidase from Halobacterium-Halobium -
- characterization of some unique properties of the halophilic enzyme. *J Bacteriol* 1993; **175:** 4197-
- 333 4202.
- 334 25. Marcinkeviciene JA, Magliozzo RS, Blanchard JS. Purification and characterization of the
- 335 Mycobacterium-Smegmatis catalase-peroxidase involved in isoniazid activation. J Biol Chem 1995;
- **270:** 22290-22295.
- 337 26. Johnsson K, Froland WA, Schultz PG. Overexpression, purification, and characterization of the
- catalase-peroxidase KatG from Mycobacterium tuberculosis. J Biol Chem 1997; 272: 2834-2840.
- 339 27. Hochman A, Shemesh A. Purification and characterization of a catalase-peroxidase from the
- photosynthetic bacterium *Rhodopseudomonas capsulata*. *J Biol Chem* 1987; **262**: 6871-6876.
- 28. Engleder M, Regelsberger G, Jakopitsch C, Furtmuller PG, Ruker F, Peschek GA et al. Nucleotide
- 342 sequence analysis, overexpression in Escherichia coli and kinetic characterization of *Anacystis*
- *nidulans* catalase-peroxidase. *Biochimie* 2000; **82:** 211-219.
- 29. Obinger C, Regelsberger G, Strasser G, Burner U, Peschek GA. Purification and characterization of a
- 345 homodimeric catalase-peroxidase from the cyanobacterium Anacystis nidulans. Biochem Biophys Res
- 346 *Commun* 1997; **235:** 545-552.
- 30. Mutsuda M, Ishikawa T, Takeda T, Shigeoka S. The catalase-peroxidase of *Synechococcus* PCC
- 348 7942: Purification, nucleotide sequence analysis and expression in *Escherichia coli. Biochem J* 1996;
- **316:** 251-257.
- 31. Jakopitsch C, Ruker F, Regelsberger G, Dockal M, Peschek GA, Obinger C. Catalase-peroxidase
- from the cyanobacterium Synechocystis PCC 6803: Cloning, overexpression in Escherichia coli, and
- kinetic characterization. *Biol Chem* 1999; **380:** 1087-1096.
- 32. Wang HX, Tokusige Y, Shinoyama H, Fujii T, Urakami T. Purification and characterization of a
- thermostable catalase from culture broth of *Thermoascus aurantiacus*. *J Ferment Bioeng* 1998; **85:**
- 355 169-173.

33. Thompson VS, Schaller KD, Apel WA. Purification and characterization of a novel thermo-alkali-

stable catalase from *Thermus brockianus*. *Biotechnol Prog* 2003; **19:** 1292-1299.