2장. IP주소의 이해

- IP address 를 2진수로 변환해보자.

1) 10.21.100.4

2) 165.111.17.90

3) 192.128.134.72

- IP address

→ IP는 논리적인 주소.

TCP/IP를 사용하는 네트워크 상에 연결된 장비들에게는 고유의 IP주소가 부여된다.

(주소가 같은 다른 장비가 존재한다면 IP 주소가 서로 충돌)

→ IP address는 네트워크 부분과 호스트 부분으로 구성.

(IP address = Network ID + Host ID)

ex) 교실 이름과 학생 번호

- IP address

- → IP 주소는 Network 부분과 Host 부분으로 구분
- → 하나의 네트워크란 하나의 Broadcast Domain.
- → 하나의 네트워크란 L3 장비(Router)를 거치지 않고 통신이 가능한 영역.
- → 다른 네트워크와 통신하기 위해서는 Router를 거쳐야 한다.
- → 동일 네트워크에서는 Network 부분은 모두 같고 Host 부분이 모두 달라야 한다.
- → 이렇게 IP 주소를 Network 부분과 Host 부분으로 구분해주는 역할을 하는 것이 Subnet mask 이다.

IP Address Class

- IP 주소를 효율적으로 배분하기 위해 정해진 약속

8 bits 8 bits 8 bits
Class A: Network Host Host Host

Class B: Network Network Host Host

Class C: Network Network Network Host

Class D: Multicast

Class E: Research

1) Class A (0~127)

- 0과 127은 제외되고 1~126까지 사용
 - → 0.0.0.0 은 All-zero 127.0.0.0은 Localhost
- \Diamond

둘은 일반 IP 주소로 사용하지 않는다.

- Default Subnet Mask : 255.0.0.0 (/8)
- A Class 사설주소 10.0.0.0~ 10.255.255.255
- * Network 숫자 : 128개 (2개는 예약), 네트워크 당 Host 숫자 : 16,777,214 개

2) Class B (128~191)

- 128~191까지 Class B
- Default Subnet Mask: 255.255.0.0 (/16)
- B Class 사설주소 172.16.0.0 ~ 172.31.255.255
- * Network 숫자: 16,384개, 네트워크 당 Host 숫자: 65,534개

3) Class C (192~223)

- 192~223까지 Class C
- Default Subnet Mask: 255.255.255.0 (/24)
- C Class 사설주소 192.168.0.0 ~ 192.168.255.255
- * Network 숫자: 2,097,152 개, 네트워크 당 Host 숫자: 254 개

Host IP Address	Address Class	Network Address	Host Address	Network Broadcast Address	Default Subnet Mask
216.14.55.137					
123.1.1.15					
150.127.221.244					
194.125.35.199					
175.12.239.244					

라우터의 이해

라우터의 인터페이스

- 이더넷 인터페이스 : 내부 네트워크에 연결되는 라우터의 포트
- 시리얼 인터페이스 : 외부 인터넷 쪽으로 연결되는 인터페이스

IP주소의 활용

다음 그림을 보고 질문에 답하시오.

IP주소의 활용

- 1. 이 회사의 pc의 수가 약 90대, 그리고 스위치가 2대, 라우터가 한 대 있습니다. 하지만 이 사이트는 계속 확장이 일어나서 3년 이내에 pc 가 약 200대로 늘어날 예정이라고 합니다. 이 회사에는 어떤 클래스 의 IP를 배정하는 것이 좋을까요?
- 2. 배정받은 IP주소가 203.240.100.0 네트워크 입니다. 그렇다면 그림에 있는 번호 중에서 이 네트워크에 속하지 않는 곳은 어디일까요?
- 3. 다음 중 1번의 IP주소로 적당한 것은 무엇입니까? 인터넷 쪽에서 이라우터와 연결된 상대편 라우터의 IP 주소는 210.11.2.1입니다.

가. 210.11.2.1 나. 210.11.2.2 다. 210.100.1.1

라. 150.10.1.1 마. 210.11.2.125 바. 210.11.100.2

IP주소의 활용

4. 네트워크에 부여된 주소가 203.240.100.0 입니다. 2번 라우터의 이더 넷 인터페이스의 IP주소는 203.240.100.1입니다. 또 라우터의 시리얼 인터페이스의 IP주소는 210.11.2.2입니다. 3번, 즉 스위치 1의 IP주소는 203.240.100.10입니다. 이 때 5번 PC의 IP주소와 기본 게이트웨이(Default Gateway)가 맞게 짝지어진 것은 무엇일까요?

가. IP주소: 203.240.10.100 기본 게이트웨이: 203.240.100.1

나. IP주소: 203.240.100.11 기본 게이트웨이: 203.240.100.10

다. IP주소: 203.240.100.10 기본 게이트웨이: 210.11.2.2

라. IP주소: 203.240.100.7 기본 게이트웨이: 203.240.100.2

- Subnet mask(1)

- →메인이 아닌 어떤 가공을 통한 네트워크를 만들기 위해서 씌우는 마스크
- → 총 네트워크 범위에서 Network field에 '1'을 할당하고 Host field에 '0'을 할당한 값이 Subnet mask.
- → IP 주소와 Subnet mask를 AND 연산 하면 Network ID 값을 구할 수 있다.
- → 네트워크를 할당 받으면 Host 부분은 사용자 마음대로 사용.

- Subnet mask (2)

ex) IP address : 210.5.1.7

Subnet mask: 255.255.255.0

```
11010010.00000101.00000001.000000111
& 1111111.1111111.1111111.00000000
```

11010010.00000101.00000001.000000000→ 210.5.1.0 (Network ID)
~ 11010010.00000101.00000001.111111111→ 210.5.1.255 (Broadcast)

→ Host field를 모두 '0'으로 채우면 Network ID Host field를 모두 '1'로 채우면 Broadcast 주소

Network ID와 Broadcast 주소는 IP 주소로 사용할 수 없다.

→ 사용 가능한 IP주소 : 210.5.1.1 ~ 210.5.1.254

(총 호스트의 숫자 - 2) = 2^n - 2 = 사용 가능한 IP주소의 숫자

- Subnet mask (3)

→ 2진수로 표현했을 때 1이 연속적으로 나와야 한다.

ex) 255.255.255.0 → Subnet mask 사용 가능 255.255.255.10 → Subnet mask 사용 불가능 255.255.255.128 → Subnet mask 사용 가능

→ Prefix 란 Subnet mask의 '1'이 들어간 bit의 숫자 (Subnet mask의 다른 표현 방법)

ex) 255.255.255.0 → /24 255.255.0.0 → /16 255.0.0.0 → /8 255.255.255.128 → /25

- Subnet mask (4)

ex 1) 1.1.1.1 과 1.1.2.1은 같은 네트워크에 속해 있는가?

ex 2) 128.13.4.1과 128.13.5.2는 같은 네트워크 속해 있는가?

IP Address Class

- 이렇게 Subnet mask를 각 Class별 default 값으로 사용하는 것을 Classful 하다고 표현한다.

ex) 한 사무실에서 200대의 PC를 사용할 때 어느 Class의 IP를 배정하는 것이 좋은가?

→ Class C가 적당하다. Class A 나 Class B는 사용 호스트의 수에 비해 IP를 낭비한다.

- ex) 하나의 네트워크에 10개의 PC를 사용하는데 Classful한 네트워크를 할당할 경우
- IP를 효율적으로 낭비 없이 분배하고 Broadcast Domain의 크기를 작게 나눠주는 것이 Subneting.
- Class별 default Subnet mask를 사용하지 않고 적당한 크기의 Subnet mask로 사용자의 상황에 따라 하나의 네트워크를 작게 여러 개로 나눠 사용. → Classless
- 즉, Classful Network를 여러 개의 Network로 나누는 것

- 네트워크 150.150,0.0(호스트 수 65,534개)
- 브로드캐스트 도메인이 너무 커진다.
- 실제 상황에서는 통신이 불가능하다.

- 클래스 B 네트워크 15,150,0,0을 서브넷해서 사용한다.
- 서보넷 마스크는 255,255,255,0이다.
- 이렇게 해서 나뉘어진 서브넷 간의 통신은 라우터를 거쳐야만 가능하다.

Subneting 을 해주는 이유

- 네트워크를 체계적으로 관리 할 수 있게 한다.(나눠서..)
- 부서별로 네트워크를 나눌 수 있으므로 보안성이 좋다.
- 내부에서 브로드캐스트 문제를 줄일 수 있다.
- 밖에서는 하나로 보이므로 라우팅 정보를 줄일 수 있다. (131.108.0.0)

Default Subnet mask?

1) 210.100.100.1

2) 150.100.10.20

3) 10.1.1.100

- 디폴트 서브넷 마스크 중 호스트 비트를 사용 하되, 맨 왼쪽부터 씀

ex1) 172.16.2.160 의 경우 디폴트 서브넷 마스크는 255.255.0.0 이므로 이를 이진수로 다시 표시하면, 1111 1111.1111 1111.0000 0000. 0000 0000 가 되고, 빨간색으로 표시한 부분이 호스트 비트가 되므로, 호스트 비트의 맨 왼쪽부터 1로 바꾸어줌

-이진수 '1' 이 연속으로 나와야 함

ex) 1111 1111.1111 1111. 1100 1100 은 서브넷 마스크가 될 수 없음

ex) 255.255.10.0 ?? 255.255.199.0 ?? 255.255.240.0 ??

Subneting

Address	Subnet Mask	Class	Subnet
Addicas	Cubilet Mask	Glass	Capilet

172.16.2.10 255.255.255.0

10.6.24.20 255.255.0.0

172.30.36.12 255.255.255.0

201.222.10.60 255.255.255.248

15.18.192.6 255.255.0.0

153.70.100.2 255.255.255.192

Subneting

- 기존의 호스트 bit로 할당된 bit 중 일부를 Subnet bit로 지정 (즉, Host field의 bit를 빌려서 Network를 나눈다.)

ex1) 201.5.7.0/24 Network를 2개의 Network로 Subneting 하시오.

* 2^n > = 주어진 Network의 숫자

210.5.7.00000000 → 210.5.7. |0|0000000

210.5.7.|0|0000000 \rightarrow 210.5.7.0 /25 (0~127) 210.5.7.|1|0000000 \rightarrow 210.5.7.128 /25 (128~255)

→ 210.5.7.0/25 사용 가능한 IP 주소 210.5.7.1 ~ 210.5.7.126 210.5.7.128/25 사용 가능한 IP 주소 210.5.7.129 ~ 210.5.7.254

ex 2) 210.5.7.0/24 Network를 60개의 Host가 사용하기 적당한 크기의 Network로 Subneting 하시오.

```
* 2^n - 2 >= 주어진 Host의 숫자
```

```
210.5.7.00000000 → 210.5.7. |00|000000
```

 $210.5.7.|00|000000 \rightarrow 210.5.7.0 /26 (0~63)$ $210.5.7.|01|000000 \rightarrow 210.5.7.64 /26 (64~127)$ $210.5.7.|10|000000 \rightarrow 210.5.7.128 /26 (128~191)$ $210.5.7.|11|000000 \rightarrow 210.5.7.192 /26 (192~255)$

210.5.7.0 /26 사용 가능한 IP 주소 210.5.7.1 ~ 210.5.7.62 210.5.7.64 /26 사용 가능한 IP 주소 210.5.7.65~ 210.5.7.126 210.5.7.128 /26 사용 가능한 IP 주소 210.5.7.129 ~ 210.5.7.190 210.5.7.192 /26 사용 가능한 IP 주소 210.5.7.193 ~ 210.5.7.254

- 1) Network가 조건인 경우 → 2^n >= Network의 숫자 Host field에서 왼쪽 부터 n개 bit를 Network 부분으로 계산
- 2) Host가 조건인 경우 → 2^n 2 >= Host의 숫자
 Host field에서 오른쪽 부터 n개 bit를 잘라서 Network 부분으로 계산
- 각 Subnet의 첫번째(Host 부분이 전부 0)와 마지막 (Host 부분이 전부 1) IP 주소는 사용하지 않는다. (Network ID와 Broadcast 주소)
- Subneting으로 나눠진 Network는 이제 다른 Network이기 때문에 Router를 통해야만 통신 가능

