

Counting Operations

On this worksheet, we will only count 'basic units': assignments statements (A) and comparisons (C).

1) Count the number of basic operations for the worst-case:

```
a \leftarrow 3 * n 1A

count \leftarrow 0 1A

while a > n do 2n(1C) + 1C

a \leftarrow a - 1 2n(1A)

count \leftarrow count + 1 2n(1A)

end T(n) = 2 + 2n(3) + 1 = 6n + 3
```

2) Count the number of basic operations for the worst-case:

```
s \leftarrow 0 1A

for k \leftarrow 1 to n do 1A + n(1C + 1A) + 1C

s \leftarrow s + (k * k) n(1A)

end T(n) = 2 + n(3) + 1 = 3n + 3
```

3) Count the number of basic operations for the worst-case:

Algorithm find(A, n, key):

Input: An array A storing $n \ge 1$ integers; an integer key to search for **Output**: The index of key in A

```
k \leftarrow 0 1A while k < n do n(1C + 1C + 1A) + 1C if A[k] = key do return k T(n) = 1 + n(3) + 1 + 1 = 3n + 3 end k \leftarrow k + 1 end return "not found" 1A
```

4) Count the number of basic operations for the worst-case:

for
$$k \leftarrow 0$$
 to $n-1$ do
$$1A + n(1C + 1A) + 1C$$
 for $j \leftarrow 0$ to $n-1$ do
$$n(1A + n(1C + 1A + 1C + 3A) + 1C)$$
 if $A[k] \leq A[j]$ then
$$swap(A, j, k)$$
 end
$$T(n) = 2 + 2n + 2n + 6n^2 = 6n^2 + 4n + 2$$
 end end

5) Count the number of basic operations for the worst-case:

s ← 0

for
$$i \leftarrow 1$$
 to n do

1A + n(1C + 1A) + 1C

for $j \leftarrow 1$ to i do

s ← s + i

s ← s + i

end

T(n) = 2+n(4) + $\frac{n(n+1)}{2}$ (4) + 1

T(n) = 3 + 4n + 2n² + 2n = 2n² + 6n + 3

How many times are the 4 operations in X executed?

```
when i is 1: once, when i is 2: twice, ... 1+2+3+4+5+...+n-2+n-1+n \text{ times}. If we add (1+n), (2+n-1), (3+n-2) we have n/2 pairs of (n+1). So the 4 operations are executed \frac{n(n+1)}{2} times
```