Elemplo:
$$\int_{C} \frac{52-2}{2(2-1)} d2$$
 $C = 121 = 2$ Sentido positivo Hay dos singularidades $z = 0$ $z = 1$ interiores a C Hallando el residuo en $z = 0$ $f(z) = \frac{52-2}{2(2-1)} = \left[5-\frac{2}{2}\right] \left[\frac{1}{2-1}\right] = \left[5-\frac{2}{2}\right] \left[\frac{1}{1-2}\right]$ $f(z) = \left(\frac{2}{2}-5\right) \left(\frac{1}{1-2}\right) = \left(\frac{2}{2}-5\right) \left(1+2+\frac{2}{2}+\frac{2}{2}+\cdots\right)$ $f(z) = \frac{2}{2}-3-3z-3z^2-\cdots$ $0 < |z| < 1$ $c = 1$ coeficiente de $\frac{2}{2}=2z^2$ es $\frac{2}{2}$ Hallando el rosiduo en $z = 1$ $f(z) = \frac{5z-2}{2(2-1)} = \frac{5z-2}{(2+1-1)(2-1)} = \frac{5z-2}{(2-1)(2-1+1)} = \frac{5z-2}{(2-1)(2-1)} = \frac{5z-2}{(2-1)(2-1)(2-1)} = \frac{5z-2}{(2-1)(2-1)(2-1)} = \frac{5z-2}{(2-1)(2-1)(2-1)(2-1)} = \frac{5z-2}{(2-1)(2-1)(2-1)} = \frac{5z-2}{(2-1)(2-$

Otra alternativa:

$$\int_{C} \frac{52-2}{2(2+1)} dz = \int_{C} \frac{2}{2} dz + \int_{C} \frac{3}{2-1} dz = 4\pi i + 6\pi i = 10\pi i$$