

MATH7003-00: Assignment #1

Sangman Jung

e-mail: sangmanjung@khu.ac.kr

Kyung Hee University - March 16, 2020

Problem. Apply Euler's method for the following example and generate Table 6.5 [1]. *Example* Solve the pendulum equation,

$$\theta''(t) = -\sin(\theta(t)), \quad \theta(0) = \frac{\pi}{2}, \quad \theta'(0) = 0.$$

Convert this to a system by letting $y_1=\theta$, $y_2=\theta'$, and replace the variable t by x. Then

$$y_1' = y_2$$
 $y_1(0) = \frac{\pi}{2}$

$$y_2' = -\sin(y_1)$$
 $y_2(0) = 0$

The numerical results are given in Table 6.5. Note that the error decreases by about half when h is halved.

Table 6.5 Euler's method for example (6.2.57)

.2	1.5708	1.5508	0200			
-		1.5500	0200	20000	199999	.000001
.6	1.4508	1.3910	0598	59984	59806	.00178
1.0	1.1711	1.0749	0962	99267	97550	.01717
.2	1.5608	1.5508	0100	20000	199999	.000001
.6	1.4208	1.3910	0298	59927	59806	.00121
1.0	1.1223	1.0749	0474	98568	97550	.01018
	1.0 .2 .6	1.0 1.1711 .2 1.5608 .6 1.4208	1.0 1.1711 1.0749 .2 1.5608 1.5508 .6 1.4208 1.3910	1.0 1.1711 1.0749 0962 .2 1.5608 1.5508 0100 .6 1.4208 1.3910 0298	1.0 1.1711 1.0749 0962 99267 .2 1.5608 1.5508 0100 20000 .6 1.4208 1.3910 0298 59927	1.0 1.1711 1.0749 0962 99267 97550 .2 1.5608 1.5508 0100 20000 199999 .6 1.4208 1.3910 0298 59927 59806

Solution. Prior to compute the equation using Euler method in MATLAB, we have to calculate the exact solution of Y_1 and Y_2 . According to the paper [2], our equation of the problem is generally written by

$$\frac{d^2\theta}{dt^2} + w_0^2 \sin\theta = 0, \qquad \theta(0) = \theta_0, \qquad \left(\frac{d\theta}{dt}\right)_{t=0} = 0,$$

Then the exact solution of the pendulum equation is as follows.

$$\theta(t) = 2\arcsin\left\{\sin\frac{\theta_0}{2}sn\left[K\!\!\left(\sin^2\!\frac{\theta_0}{2}\right)\!\!-w_0t\;;\sin^2\!\frac{\theta_0}{2}\right]\right\},$$

where sn is the Jacobi elliptic function, K is the complete elliptical integral of the first kind. The formal definitions of those are well documented in the paper. Let $\theta_0=\pi/2$, $w_0=1$, then the equation above is the same as our equation, and we obtain the solution as follows.

$$\theta(t) = 2\arcsin\left\{\frac{\sqrt{2}}{2} sn\left[K\left(\frac{1}{2}\right) - t; \frac{1}{2}\right]\right\}$$

The derivative of $\theta(t)$ is

$$\frac{d\theta(t)}{dt}\!=\!-\frac{2cn\!\left(\!t-K\!\!\left(\frac{1}{2}\right);\frac{1}{2}\right)\!dn\!\left(\!t-K\!\!\left(\frac{1}{2}\right);\frac{1}{2}\right)}{\sqrt{2-sn\!\left(\!t-K\!\!\left(\frac{1}{2}\right);\frac{1}{2}\right)^2}}\,,$$

where cn, dn are other Jacobi elliptic function. We can find the value of K(1/2) is $K(1/2)=8\pi^{3/2}/\Gamma(-1/4)^2$, and this term is computed 1.8540746..., using *WolframAlpha*. So we finally obtain $K(1/2)\approx 1.8540746$. This can obtain 'ellipke' in MATLAB also.

The Jacobi elliptic functions sn, cn, dn are easily computed by using Built-in function, 'ellipj' in MATLAB. Thus we can catch the exact solution $y_1=\theta$ and $y_2=\theta$ '.

Now, the result of this problem and MATLAB code are attached below.

[h]	×_{n}	y_{1,n}	Y_{1}(x_{n})) Error	y_{2,n}	Y_{2}(x_{r	n}) Error
0.2	0.0	1.5708	1.5708	0.0000	0.00000	-0.000000	-0.000000
0.2	0.2	1.5708	1,5508	-0.0200	-0.20000	-0.199992	0.000008
0.2	0.4	1.5308	1.4908	-0.0400	-0.40000	-0.399744	0.000256
0.2	0.6	1.4508	1.3910	-0.0598	-0.59984	-0.598061	0.001779
0.2	0.8	1.3308	1.2519	-0.0789	-0.79840	-0.791877	0.006524
0.2	1.0	1,1711	1.0749	-0.0962	-0.99267	-0.975510	0.017161
 0.1	0.0	1.5708	1.5708	0.0000	0.00000	-0.000000	-0.000000
0.1	0.1	1.5708	1.5658	-0.0050	-0.10000	-0.100000	0.000000
0.1	0.2	1.5608	1.5508	-0.0100	-0.20000	-0.199992	0.000008
0.1	0.3	1.5408	1.5258	-0.0150	-0.30000	-0.299939	0.000056
0.1	0.4	1.5108	1.4908	-0.0200	-0.39995	-0.399744	0.000206
0.1	0.5	1.4708	1.4459	-0.0249	-0.49977	-0.499220	0.000550
0.1	0.6	1.4208	1,3910	-0.0298	-0.59927	-0.598061	0.001209
0.1	0.7	1.3609	1.3263	-0.0346	-0.69815	-0.695819	0.002329
0.1	0.8	1.2911	1.2519	-0.0392	-0.79595	-0.791877	0.004076
0.1	0.9	1.2115	1.1680	-0.0435	-0.89207	-0.885437	0.006630
0.1	1.0	1.1223	1.0749	-0.0474	-0.98568	-0.975510	0.010171

Eulers_method_HW1.m

```
%% MATH7003-00: Assignment #1, 2019310290 Sangman Jung
clear,clc
% parameters, initial conditions
K = ellipke(1/2); % the complete elliptical integral of the first kind
h = [0.2 \ 0.1]; % step size
y1(1) = pi/2; % initial value of y1
y2(1) = 0; % initial value of y2
% Euler method for the pendulum equation
fprintf("Table 6.5 Euler's method for example (6.2.57)\n");
fprintf("----\n");
 \texttt{fprintf("| h | x_{n} | y_{1,n} | y_{1,n} | y_{1,n} | y_{1,n} | y_{2,n} 
fprintf("-----
for h iter = 1:2
       x = 0:h(h iter):1;
       for n = 1: length(x)
               y1(n+1) = y1(n)+h(h iter)*y2(n);
                y2(n+1) = y2(n)-h(h iter)*sin(y1(n));
                [SN(n),CN(n),DN(n)] = ellipj(K-x(n),1/2); % the Jacobi elliptic functions
                Y1(n) = 2*asin(sqrt(2)/2*SN(n)); % the exact solution of y1
                Y2(n) = -2*CN(n)*DN(n)/sqrt(2-SN(n)^2); % the exact solution of y2
                Error1(n) = Y1(n) - y1(n);
                Error2(n) = Y2(n) - y2(n);
                fprintf('%1.1f %1.1f %1.4f %1.4f %1.4f %1.5f %1.6f %1.6f\n',...
                         [h(h_iter) x(n) y1(n) Y1(n) Error1(n) y2(n) Y2(n) Error2(n)]);
        fprintf("----\n");
end
```

References.

- [1] Atkinson, K. E. (2008). An introduction to numerical analysis. John wiley & sons.
- [2] Beléndez, A., Pascual, C., Méndez, D. I., Beléndez, T., & Neipp, C. (2007). Exact solution for the nonlinear pendulum. Revista brasileira de ensino de física, 29(4), 645-648.