After creating your dashboard and becoming familiar with the search syntax, use these tools to answer the questions below:

- 1. Identify the offensive traffic.
 - o Identify the traffic between your machine and the web machine:
 - When did the interaction occur?

Answer: The interactions occurred between 7/2 at 22:45 and 7/6 at 22:00. Instances of significance were as follows:

- 9012 instances on 7/2 22:50
- 5060 instances on 7/2 at 23:25
- 48847 instances on 7/2 at 23:30
- 4020 instances on 7/3 at 1:55
- 6000 instances on 7/5 at 17:00
- 4348 instances on 7/5 at 19:00

■ What responses did the victim send back?

Answer:

- The victim sent back a 401 (Unauthorized) response code 6531 times (99.98%) for GET request queries on /company_folders/secret_folder/ location path, and a 200 (OK) response 2 times (0.02%) on this same directory.
- The victim sent back a 200 (OK) response code 35 times (66%) for GET request queries on the webdav/shell.php file, and a 206 response code 18 times (34%) on this same file.
- The victim sent back a 207 () response code 360 times (100%) for all PROPFIND queries on the webdav file path, and 49 times (100%) for all PROPFIND queries on the webdav/passwd.dav file.
- The victim sent back a 207 () response code 162 times (91%) for PROPFIND queries on the webdav/shell.php file, and a 404 response code 16 times (9%) on this same file.

What data is concerning from the Blue Team perspective?

Answer:

- A massive spike in connections (11,751) on 7/2 around 22:00, and a smaller but significant spike (1273) on 7/5 around 18:00.

Connections over time [Packetbeat Flows] ECS

- The 98.5% error rate on transactions around 7/2 at 21:00, followed by a 30.4% error rate on 7/3 at 00:00. Over 6586 HTTP transactions on 7/2 at 21:00, and 240 transactions on 7/3 at 00:00.

- 2. Find the request for the hidden directory.
 - In your attack, you found a secret folder. Let's look at that interaction between these two machines.
 - How many requests were made to this directory? At what time and from which IP address(es)?

Answer:

The company_folders/secret_folder/ directory was requested 6534 times total from 7/2-7/7, but 6531 times within the one-hour attack time frame on 7/2. The source IP address for all 6531 requests was 198.168.1.90.

■ Which files were requested? What information did they contain?

The file http://192.168.1.105/company_folders/secret_folder/ was requested. This file contains instructions on how to logon and access the company's internal, WebDav server.

- What kind of alarm would you set to detect this behavior in the future?
 - Since only 1-2 people in the company should have access to this file, an alert to flag a user's machine trying to access this file should help.
- Identify at least one way to harden the vulnerable machine that would mitigate this attack.

The directory and file should either be moved to a different location or removed altogether. Also, mentions to this file from other file paths and directories should be removed.

- 3. Identify the brute force attack.
 - After identifying the hidden directory, you used Hydra to brute-force the target server. Answer the following questions:
 - Can you identify packets specifically from Hydra?

Yes, when searching for the field "Mozilla/4.0 (Hydra)", 6529 out of the 6534 packet requests contain this Hydra reference.

How many requests were made in the brute-force attack?6531 requests were made during the brute-force attack.

Top 10 HTTP requests [Packetbeat] ECS

url.full: Descending =	Count →
http://192.168.1.105/company_folders/secret_folder/	6,531
111 1/10040044051	0

How many requests had the attacker made before discovering the correct password in this one?

6529 attempts until he/she was successful one time at 23:47 on 7/2.

Additionally, the host/victim returned the 401 Unauthorized status code for 6529 requests, then a 200 OK status for the one successful authentication hack.

HTTP status codes for the top queries [Packetbeat] ECS

Vi

			Downl
HTTP Query	Count	HTTP Status Code	Count
GET /company_folde rs/secret_folder /	6,531	401	6,529
GET /company_folde rs/secret_folder /	6,531	200	1
OPTIONS *	12	200	12

GET /company_folders/secret_folder/: HTTP Query

Also, there was a distinct spike in connection activity and errored transactions during the brute-force attack (around 23:30 on 7/2).

Connections over time [Packetbeat Flows] ECS

Errors vs successful transactions [Packetbeat] ECS

- What kind of alarm would you set to detect this behavior in the future and at what threshold(s)?
 - Set up an alert anytime one value within the user_agent.original field contains 'Hydra' or contains 'Mozilla 4.0'. Most if not all company machines run Mozilla version 5.0
 - Set up an alert anytime a large or unusual amount of 401 (Unauthorized) status codes are generated from one MAC or IP address. The alert can be set off (have a threshold) when 10 401 codes are generated within 10 minutes.
- Identify at least one way to harden the vulnerable machine that would mitigate this attack.
 - Once the threshold has been reached, block all traffic from the offending IP address for a specified period of time (30-60 minutes).

4. Find the WebDay connection.

Export: Raw 🕹 Formatted 🕹

- Use your dashboard to answer the following questions:
 - How many requests were made to this directory?

198 requests were made to this directory during the second attack period from 7/5 at 19:00 through the end of 7/7.

url.full: Descending 🗢	Count
http://192.168.1.105/company_folders/secret_folder/	6,534
http://192.168.1.105/webdav	380
http://192.168.1.105/webdav/shell.php	244
http://192.168.1.105/webdav/passwd.dav	49
http://192.168.1.105/webdav/	13

The HTTP status response codes show successful, multi-status (code 207) for the webdav requests, while returning a 404 status (Request Cannot be Found) for 8 requests to shell.php request.

Query

GET /webdav/shell.php: HTTP Query

PROPFIND /webdav/passwd.dav: HTTP...

■ Which file(s) were requested?

A file named shell.php was requested 158 times, while the passwd.dav file was requested 25 times.

- What kind of alarm would you set to detect such access in the future?
 - Set up an alert anytime any IP address outside of the company requests the webday directory.
 - An alert can also be set to notify anytime an unauthorized employee requests this directory.
- Identify at least one way to harden the vulnerable machine that would mitigate this attack.
 - Block access to the webdav directory from a web browser or other GUI interface.
 - Block access to the directory via a firewall rule to all parties other than those employees with approved access to the directory.
- 5. Identify the reverse shell and meterpreter traffic.

- To finish off the attack, you uploaded a PHP reverse shell and started a meterpreter shell session. Answer the following questions:
 - Can you identify traffic from the meterpreter session?

158 requests were made on the reverse shell (shell.php).

url.full: Descending 🕏	Count
http://192.168.1.105/company_folders/secret_folder/	6,534
http://192.168.1.105/webdav	380
http://192.168.1.105/webdav/shell.php	244
http://192.168.1.105/webdav/passwd.dav	49
http://192.168.1.105/webdav/	13

Also, traffic from the meterpreter session moved over port 4444. When searching for destination.ip of 192.168.1.90 and destination.port: 4444, we receive 366 results over the 7/5-7/7 time period

Export: Raw 🕹 Formatted 🕹

- What kinds of alarms would you set to detect this behavior in the future?
 - Set up an alert anytime traffic is moving over port 4444.
 - Set up an alert anytime a php. file is located on the webdav server.
- Identify at least one way to harden the vulnerable machine that would mitigate this attack.
 - Set up a firewall rule to block any traffic moving from port 4444.
 - Disable the ability to add or remove any files on this directory from a web browser or GUI interface.
 - Restrict access to this directory to only specific, authorized users.