Unit 5 The Network Model

- **□ 5.1 The Network Model**
- **□ 5.2 IDMS**

Data Modeling Issue

- Issue: How to represent entities and relationships?
- Two major paradigms
 - Relational
 - Graph { Hierarchical Network

S P SP

- E.g., a 'pile' of data
 - John, 25, NCTU, CS Dept, ...
 - Mary, 22, NCTU, IS Dept, ...

•

COBOL

01 data-record

02 name PIC X(6)

02 age PIC 9(2)

02 univ PIC X(4)

02 dept PIC X(3)

01						
02	02	02	2	02		
		03	03			

Model 1: Relational

- Model 1: Relational
 - Decomposition (normalization issue)

Model 2: Hierarchical

Model 3: Network

Model 3: Network proposed by CODASYL

5.1 The Network Model

Data Structure

Consider the 'supplier-and-parts' database

S

30

20

30

Smith

Jones Blake

Clark

Adams

SNAME **STATUS** 20 London 10 **Paris**

Paris

London

Athens

P

P#	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12	London
P2	Bolt	Green	17	Paris
Р3	Screw	Blue	17	Rome
P4	Screw	Red	14	London
P5	Cam	Blue	12	Paris
P6	Cog	Red	19	London

SP

S#	P#	QTY
S 1	P1	300
S 1	P2	200
S 1	P3	400
S 1	P4	200
S 1	P5	100
S 1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S 4	P2	200
S4	P4	300
S 4	P5	400

Structure

Sample values

The Network Model: Sets and Structure

■ Network Model

- two sets { a set of records (Record types): entities a set of links (Link types): relationship
- Structure
- Sample values:
 - occurrences, data, records
 - (Ref. next page)
- Note:
 - Three **record types**: S, P, SP
 - Two **link types**: S-SP, P-SP

The Network Model: Sample Values

SP|S#

S1

S1

S1

S1

P#

P1

P2

P3

P4

QTY

300

200

400

200

The Network Model: Data Manipulation

- Data Manipulation
 - locate a specific record

move from a parent to its first child

move from one child to the next

•

•

•

- create a new record
- delete a new record
- update a new record
- connect a child into a link
- Data Integrity

Rule: A child can not be inserted unless its parent already exists

5.2 IDMS: Overview

- Runs on IBM mainframes; a product of Cullinet Software
- The best known example that based on **DBTG** (The CODASYL DataBase Task Group)
- An IDMS database is defined by DMS Schema DDL (Data Definition Language)
- Schema defines:
 - (1) records in the database
 - (2) elements (i.e. fields)
 - (3) sets (i.e. links)
 - owner (parent)
 - member (child)

IDMS: Data Structure

Consider the data structure of the "suppliers-and-parts" database:

IDMS: Schema

system S-File P-File (system link) S S# S-SP \bigcirc P-SP SP QTY

- SCHEMA NAME IS SUPPLIERS-AND-PARTS
- RECORD NAME IS S.
- LOCATION MODE IS CALC USING S#
- DUPLICATES NOT ALLOWED. 4
- 02 S# PIC X(5). 5
- 02 SNAME PIC X(20). 6
- 02 STATUS PIC 999 USAGE COMP-3.
- 8 02 CITY PIC X(15).
- RECORD NAME IS P.
- 10 LOCATION MODE IS CALC USING P#
- DUPLICATES NOT ALLOWED. 11
- 12 02 P# PIC X(6).
- 13 02 PNAME PIC X(20).
- 14 02 COLOR PIC X(6).
- 15 02 WEIGHT PIC 999 USAGE COMP-3.
- 02 CITY PIC X(15). 16
- RECORD NAME IS SP.
- LOCATION MODE IS VIA S-SP SET.
- 19 02 OTY PIC 99999 USAGE COMP-3.

- 20 SET NAME IS S-SP.
- 21 ORDER IS NEXT.
- 22 OWER IS S.
- 23 MEMBER IS SP OPTIONAL MANUAL.
- 24 SET NAME IS P-SP.
- 25 ORDER IS NEXT.
- 26 OWNER IS P.
- MEMBER IS SPOPTIONAL MANUAL.
- SET NAME IS S-FILE.
- ORDER IS SORTED.
- OWER IS SYSTEM.
- MEMBER IS S MANDATORY AUTOMATIC
- 32 ASCENDING KEY IS CITY.
- SET NAME IS P-FILE.
- 34 ORDER IS SORTED.
- 35 OWNER IS SYSTEM.
- 36 MEMBER IS PMANDATORY AUTOMATIC
- ASCENDING KEY IS COLOR. 37

IDMS: Subschema "View"

Subschema name

- 1 ADD SUBSCHEMA NAME IS S-AND-P-ONLY
- 2 OF SCHEMA NAME IS **SUPPLIERS-AND-PARTS**.
- 3 ADD RECORD S.
- 4 ADD RECORD P
- 5 ELEMENTS ARE
- 6 P#
- 7 COLOR
- 8 CITY.
- 9 ADD SET **S-FILE**.
- 10 ADD SET **P-FILE**.

IDMS: Data Manipulation

• Working area:

 Currency indicator: similar to current of <u>cursor in SQL</u>, and <u>current position in IMS</u>

IDMS: Data Manipulation (cont.)

Selected commands:

- **Bind:** Associates IDMS record types and control blocks with space
- **Ready:**Prepares database areas for processing
- Commit: Effects a checkpoint for recovery procedures
- **Rollback:** Requests recovery of the database
- Finish: Releases database areas
- Find: Locates a record occurrence in the database
- **Get:** Delivers a record occurrence to variable storage
- **Store:** Adds a record occurrence to the database
- **Modify:** Rewrites a record occurrence in the database
- **Connect:** Links a record occurrence to a set
- Disconnect: Dissociates a record occurrence from the database
- **Erase:** Deletes a record occurrence from the database
- **If:** Tests whether a set is empty or whether a record occurrence is a member
- Keep: Locks a record occurrence against access or update by another run unit

:

end of unit 5