

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

~
201
CKE
\odot
graficzny
Jkład

WPISUJE ZDAJĄCY

KO	D	PESEL										

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 7 stron (zadania 1-3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2014

W	V	ĸ	IJ,	^ [M	'n.	٠
* *	1.	D.		7 T	1	ע	٠

•••••	(środowisko)
•••••	(kompilator)
•••••	(program użytkowy)

Czas pracy: 90 minut

Liczba punktów do uzyskania: 20

MIN-R1 1P-142

Zadanie 1. Korale (8 pkt)

Rozważamy następującą **rekurencyjną** procedurę *Korale*, której parametrem jest dodatnia liczba całkowita n.

Korale(n)

- 1. Jeżeli n = 1, to
 - 1.1. nawlecz czarny koralik na prawy koniec sznurka,
 - 1.2. zakończ działanie procedury.
- 2. Jeżeli *n* jest parzyste, to
 - 2.1. wykonaj *Korale(n/2)*,
 - 2.2. nawlecz biały koralik na prawy koniec sznurka,
 - 2.3. zakończ działanie procedury.
- 3. Jeżeli *n* jest nieparzyste, to
 - 3.1. wykonaj Korale((n-1)/2),
 - 3.2. nawlecz czarny koralik na prawy koniec sznurka,
 - 3.3. zakończ działanie procedury.
- a) Uzupełnij tabelę i w ten sposób przedstaw wynik działania powyższego algorytmu dla podanych argumentów *n*:

n	wynik działania Korale(n)
1	-
2	
3	
4	———
7	
8	
15	
16	

b) Ile koralików zostanie nawleczonych na sznurek w wyniku wywołania procedury *Korale* dla danej liczby *n*? Odpowiedź uzasadnij.

c) Zaprojektuj i zapisz nierekurencyjną procedurę *KoraleBis(n)*, po wykonaniu której uzyskamy taki sam efekt, jak po wykonaniu *Korale(n)*. W procedurze *KoraleBis* można nawlekać koraliki tylko na jeden, wybrany koniec sznurka.

***	Nr zadania	1.a	1.b	1.c
Wypełnia	Maks. liczba pkt	2	3	3
egzaminator	Uzyskana liczba pkt			

Zadanie 2. Bisekcja (6 pkt)

Bisekcja jest jedną z metod szukania przybliżenia miejsca zerowego funkcji rzeczywistej f(x), ciągłej w zadanym przedziale $\langle a, b \rangle$ i o wartościach mających różne znaki na końcach przedziału.

Algorytm bisekcji oblicza wartości funkcji na obu końcach przedziału, oraz w jego środku, tj. dla $x = \frac{a+b}{2}$. Jeżeli wartość funkcji w środku przedziału jest zerem, to x jest szukanym miejscem zerowym tej funkcji. W przeciwnym przypadku zawęża się przedział < a, b> do przedziału < a, x> lub < x, b> tak, aby na końcach tego nowego przedziału wartości funkcji znowu miały różne znaki.

Wszystkie opisane czynności powtarza się, aż do znalezienia miejsca zerowego lub do zmniejszenia się długości analizowanego przedziału poniżej zadanej **dokładności** d – wówczas wynikiem jest środek ostatniego przedziału.

Twoje zadania:

Dla funkcji $f(x) = x^3 - x - 2$ oraz przedziału <0, 2>:

a) Wykonaj trzy pierwsze kroki algorytmu bisekcji i uzupełnij tabelkę:

* * * J 11 O 1	iuj tizy	Pici WBZ	o Kroki aigoi	y tilla biseke	ji i uzupeninj	moency.	
krok	а	b	f(a)	f(b)	$x = \frac{a+b}{2}$	f(x)	$\operatorname{czy} f(a) \ \operatorname{i} f(x)$ mają te same znaki?
1	0	2	-2	4	1	-2	tak, więc wybieram przedział <x, b=""></x,>
2	1	2					
3							

b) Podaj, w którym **kroku** algorytmu bisekcji długość analizowanego przedziału $\langle a, b \rangle$ będzie po raz pierwszy mniejsza niż 0,1.

c) Dane są: domknięty przedział $\langle a, b \rangle$, rzeczywista funkcja f, ciągła na tym przedziale i taka, że $f(a) \cdot f(b)$ jest ujemne, oraz dodatnia liczba rzeczywista d, nie większa niż (b-a).

Zapisz algorytm, który poda przybliżenie miejsca zerowego funkcji f w przedziale $\langle a, b \rangle$, przy zadanej dokładności d.

***	Nr zadania	2.a	2.b	2.c
Wypełnia	Maks. liczba pkt	1	2	3
egzaminator	Uzyskana liczba pkt			

Zadanie 3. (6 pkt)

Przeanalizuj poniższy algorytm dla dodatniej liczby całkowitej n:

```
jeżeli n = 1, to suma \leftarrow 1

w przeciwnym przypadku

suma \leftarrow 1 + n

i \leftarrow n - 1

dopóki i > 1 wykonuj

suma \leftarrow 1 + i * suma

i \leftarrow i - 1
```

a) Podaj wartość zmiennej *suma* po zakończeniu działania algorytmu dla następujących wartości argumentu *n*:

n	suma
4	
6	

Dla kolejnych zdań zdecyduj, które z podanych odpowiedzi są prawdziwe, a które – fałszywe. **Zaznacz znakiem X** odpowiednie pola tabeli.

b) Wynikiem działania algorytmu przedstawionego na początku zadania jest

	prawda	fałsz
$1 + 2 \cdot (1 + 3 \cdot (1 + \dots (n-2) \cdot (1 + (n-1) \cdot (1 + n)) \dots))$		
$1+2^2+3^3+\ldots+n^n$		
$1! + 2! + 3! + \ldots + n!$		
1+2+3++n		

c) Liczba binarna 1010111111100 zapisana w systemie szesnastkowym ma postać

	prawda	fałsz
AEC		
CFC		
AFC		
DFC		

d) Liczba 262 to

	prawda	fałsz
wielokrotność liczby 2.		
największy wspólny dzielnik liczb: 1310 i 524.		
kwadrat liczby pierwszej.		
najmniejsza wspólna wielokrotność liczb: 31 i 42		

e) Witając się z drugą osobą, podajemy sobie ręce. Jeśli wśród *n* osób każda chce się przywitać z każdą, to ile razy nastąpi uścisk dłoni?

	prawda	fałsz
$n \cdot (n-1)/2$		
$\log_2 n$		
$n^2 - n/2$		
$n^2/2$		

Wypełnia egzaminator	Nr zadania	3.a	3.b	3.c	3.d	3.e
	Maks. liczba pkt	2	1	1	1	1
	Uzyskana liczba pkt					

BRUDNOPIS