CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No : **6.3.1**

Lecture: Orthogonality

Topic: Gram-Schmidt Process

Concept: Motivation and Review of Concepts

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: 29th June 2020

Motivation

Consider the problem of solving:

Interpretation:

$$A's Rows \Rightarrow M$$
 Examples or Equations
 $A's Columns \Rightarrow N$ Features or Unknowns
 $x \Rightarrow Model$ or Weights
 $b \Rightarrow Target Values$

Based on M & N, there exist three cases:

 $M \gg N$

Hence, over-determined!

$$M \ll N$$

Less equations, more unknowns.

Hence, under-determined!

Goal: Solve x or find appropriate model

Motivation

What does Gram-Schmidt Process Do?

It orthogonalises a set of vectors!

Note:Q spans the same k-dimensional subspace of \mathbb{R}^n as that of A

Applications for Gram-Schmidt Process

1. QR Factorisation:

Ref: https://www.quora.com/Why-is-QR-factorization-useful-and-important

For large M and N, the system of equations of the form Ax = b can be solved efficiently if A can be rewritten as:

$$A = QR$$

where,

Q is an orthogonal matrix (having same col. space of A, i.e, span (Q) = span (A)) and R is an upper triangular matrix.

2. Feature Selection:

Ref: https://qr.ae/pNKiO5

...

When $M \ll N$, i.e, when there are more features than examples, features/columns most representative of b can be identified.

$$M \ll N$$

2

Reviewing finding the solution of x for Ax=b

Chapter 3. Vector Spaces and Subspaces

Matrix A is of dimension $M \times N$. M Rows, N Columns

 $A = \begin{bmatrix} 1 & 0 \\ 4 & 3 \\ 2 & 3 \end{bmatrix}$

Plane = C(A) = all vectors Ax

Figure 3.2: The column space C(A) is a plane containing the two columns. Ax = b is solvable when b is on that plane. Then b is a combination of the columns.

In the example above, Matrix $\it A$ is of dimension 3×2 3 Rows, $\it 2$ Columns

If Ax = b, then $x \in \mathbb{R}^2$, and $b \in \mathbb{R}^3$

By b being in a linear combination of columns of A, b lies in the span of column vectors of A.

QR factorisation, which makes use of GS process, helps decompose A:

$$A = QR$$

where,

 ${\it Q}$ is an orthogonal matrix (having same col. space of ${\it A}$)

R is an upper triangular matrix.

The problem to find x can then be easily solved by:

$$Ax = b$$

$$QRx = b$$

$$Q^{T}QRx = Q^{T}b$$

$$Rx = Q^{T}b$$

Since R is upper triangle, x can be quickly found by back-substitution.

Note: if b is not in C(A), then the found x will only result in the orthogonal projection of b onto C(A).

Ref: https://www.mathwords.com/b/back substitution.htm

Ref: Strang, Introduction to Linear Algebra

Note: solving for x is not trivial when If A does not have orthogonal columns.

Reviewing Span

Linear Combinations

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

is called a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_p$ with weights c_1, \dots, c_p .

One of the key ideas in linear algebra is to study the set of all vectors that can be generated or written as a linear combination of a fixed set $\{v_1, \ldots, v_p\}$ of vectors.

If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ and is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v}_1, \dots, \mathbf{v}_p$. That is, Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p$$

with c_1, \ldots, c_p scalars.

Note that Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ contains every scalar multiple of \mathbf{v}_1 (for example), since $c\mathbf{v}_1 = c\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_p$. In particular, the zero vector must be in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

A Geometric Description of Span {v} and Span {u, v}

Let \mathbf{v} be a nonzero vector in \mathbb{R}^3 . Then Span $\{\mathbf{v}\}$ is the set of all scalar multiples of \mathbf{v} , which is the set of points on the line in \mathbb{R}^3 through \mathbf{v} and $\mathbf{0}$. See Fig. 10.

If \mathbf{u} and \mathbf{v} are nonzero vectors in \mathbb{R}^3 , with \mathbf{v} not a multiple of \mathbf{u} , then Span $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^3 that contains \mathbf{u} , \mathbf{v} , and $\mathbf{0}$. In particular, Span $\{\mathbf{u}, \mathbf{v}\}$ contains the line in \mathbb{R}^3 through \mathbf{u} and $\mathbf{0}$ and the line through \mathbf{v} and $\mathbf{0}$. See Fig. 11.

FIGURE 10 Span $\{v\}$ as a line through the origin.

FIGURE 11 Span $\{\mathbf{u}, \mathbf{v}\}$ as a plane through the origin.

30 CHAPTER 1 Linear Equations in Linear Algebra

1.3 Vector Equations **27**

Lay, Linear Algebra and its Applications (4th Edition)

4.5 The Dimension of a Vector Space 227

Reviewing Span

EXAMPLE 2 A single linear equation can be treated as a very simple system of equations. Describe all solutions of the homogeneous "system"

$$10x_1 - 3x_2 - 2x_3 = 0 (1)$$

SOLUTION There is no need for matrix notation. Solve for the basic variable x_1 in terms of the free variables. The general solution is $x_1 = .3x_2 + .2x_3$, with x_2 and x_3 free. As a vector, the general solution is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} .3x_2 + .2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} .3x_2 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} .2x_3 \\ 0 \\ x_3 \end{bmatrix}$$

$$= x_2 \begin{bmatrix} .3 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} .2 \\ 0 \\ 1 \end{bmatrix} \quad \text{(with } x_2, x_3 \text{ free)}$$

$$\uparrow$$

This calculation shows that every solution of (1) is a linear combination of the vectors \mathbf{u} and \mathbf{v} , shown in (2). That is, the solution set is Span $\{\mathbf{u}, \mathbf{v}\}$. Since neither \mathbf{u} nor \mathbf{v} is a scalar multiple of the other, the solution set is a plane through the origin. See Fig. 2.

