Отчет по лабораторной работе №2

Задача о погоне

Махорин Иван Сергеевич

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Моделирование с помощью Julia	10
5	Выводы	14
6	Список литературы	15

Список иллюстраций

3.1	Получение нужного номера варианта
4.1	Скачивание Julia
4.2	Запуск Julia
4.3	Процесс запуска
4.4	Скачивание необходимых для работы пакетов
4.5	Скачивание необходимых для работы пакетов
4.6	Запуск кода
4.7	Случай 1
4.8	Случай 2

1 Цель работы

Решить задачу о погоне и изучить основы языка программирования Julia.

2 Задание

- 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки

3 Выполнение лабораторной работы

Расчитаем свой вариант по формуле и получаем наш вариант №59 (рис. 3.1).

Рис. 3.1: Получение нужного номера варианта

1. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 20,3 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5,2 раза больше скорости браконьерской лодки.

- 2. Примем за момент отсчета времени момент первого рассеивания тумана. Введем полярные координаты с центром в точке нахождения браконьеров и осью, проходящей через катер береговой охраны. Тогда начальные координаты катера (20,3; 0). Обозначим скорость лодки v.
- 3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса. Только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.
- 4. Пусть время t время, через которое катер и лодка окажутся на одном расстоянии от начальной точки.

$$t = \frac{x}{v}$$

$$t = \frac{20, 3 - x}{5, 2v}$$

$$t = \frac{20, 3 + x}{5, 2v}$$

Из этих уравнений получаем объедиение двух уравнений:

$$\begin{bmatrix} \frac{x}{v} = \frac{20,3-x}{5,2v} \\ \frac{x}{v} = \frac{20,3+x}{5,2v} \end{bmatrix}$$

Решая это, получаем два значения для х:

$$x1 = 3,27419355$$

$$x2 = 4,833333333$$

 v_{τ}

– тангенциальная скорость

v

- радиальная скорость

$$v = \frac{dr}{dt}$$

$$v_{\tau} = \sqrt{((5, 2*v)^2 - v^2)} = \frac{\sqrt{651}*v}{5}$$

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = \frac{\sqrt{651}*v}{5} \end{cases}$$

$$\begin{cases} \theta_0 = 0 \\ r_0 = x_1 = 3,27419355 \end{cases}$$

или

$$\left\{ \begin{array}{c} \theta_0 = -\pi \\ r_0 = x_2 = 4,83333333 \end{array} \right.$$

Итоговое уравнение после того, как убрали производную по t:

$$\frac{dr}{d\theta} = \frac{5r}{\sqrt{651}}$$

4 Моделирование с помощью Julia

1. Скачиваем Julia (рис. 4.1).

```
Windows PowerShell
(C) Корпорация Майкрософт (Microsoft Corporation). Все права защищены.

Попробуйте новую кроссплатформенную оболочку PowerShell (https://aka.ms/pscore6)

PS C:\Windows\system32> winget install julia -s msstore
Найдено Julia [SHIJMMSPVWN] Версия Unknown
Этот пакет предоставляется через Microsoft Store. Программе winget может потребоваться получить пакет в Microsoft Store
от имени текущего пользователя.

Осглашения для Julia [SHIJMMSPVWN] Версия Unknown
Версия: Unknown
Издатель: Julia Computing, Inc.

URL-адрес издателя: https://julialang.org/
Описание: Julia is a high-level, high-performance, dynamic, open-source programming language.

//иненаия: ms-windows-store://pdp/?ProductId=9HJNMMSPVKNH

URL-адрес заявления о конфиденцияльности: https://juliacomputing.com/privacy/
Соглашения:
Сатедогу: Developer tools
Pricing: Free
Pree Trial: No
Terms of Transaction: https://aka.ms/microsoft-store-terms-of-transaction
Seizure Warning: https://aka.ms/microsoft-store-seizure-warning
Store License Terms: https://aka.ms/microsoft-store-license

Издатель требует, чтобы вы просмотрели указанную выше информацию и приняли соглашения перед установкой.
Вы согласны с условиями?

Услешно установки пакета...

100%
Успешно установки пакета...
```

Рис. 4.1: Скачивание Julia

2. Запускаем Julia (рис. 4.2).

```
PS C:\Windows\system32> echo hello > lab2.jl
PS C:\Windows\system32> Julia
Installing Julia 1.10.1+0.x64.w64.mingw32
```

Рис. 4.2: Запуск Julia

3. Процесс запуска Julia (рис. 4.3).

Рис. 4.3: Процесс запуска

4. Скачаем необходимые для работы пакеты (рис. 4.4-4.5).

Рис. 4.4: Скачивание необходимых для работы пакетов

Рис. 4.5: Скачивание необходимых для работы пакетов

5. Код для файла lab2.jl:

```
using Plots using DifferentialEquations
  const a = 20.3 const n = 5.2
  const r0 = a/(n + 1) const r0 = a/(n - 1)
  const T = (0, 2*pi) const T 2 = (-pi, pi)
  function F(u, p, t) return u / sqrt(n*n - 1) end
  problem = ODEProblem(F, r0, T)
  result = solve(problem, abstol=1e-8, reltol=1e-8) [show?] result.u [show?] result.t
  dxR = rand(1:size(result.t)[1]) rAngles = [result.t[dxR] for i in 1:size(result.t)[1]]
  plt = plot(proj=:polar, aspect ratio=:equal, dpi = 1000, legend=true, bg=:white)
  plot!(plt, xlabel="theta", ylabel="r(t)", title="Случай номер 1", legend=:outerbottom)
plot!(plt, [rAngles[1], rAngles[2]], [0.0, result.u[size(result.u)[1]]], label="Путь лод-
ки", color=:blue, lw=1) scatter!(plt, rAngles, result.u, label="", mc=:blue, ms=0.0005)
plot!(plt, result.t, result.u, xlabel="theta", ylabel="r(t)", label="Путь катера",
color=:green, lw=1) scatter!(plt, result.t, result.u, label="", mc=:green, ms=0.0005)
  savefig(plt, "lab2 01.png")
  problem = ODEProblem(F, r0 2, T 2) result = solve(problem, abstol=1e-8, reltol=1e-
8) dxR = rand(1:size(result.t)[1]) rAngles = [result.t[dxR] for i in 1:size(result.t)[1]]
  plt1 = plot(proj=:polar, aspect ratio=:equal, dpi = 1000, legend=true, bg=:white)
  plot!(plt1, xlabel="theta", ylabel="r(t)", title="Случай номер 2", legend=:outerbottom)
plot!(plt1, [rAngles[1], rAngles[2]], [0.0, result.u[size(result.u)[1]]], label="Путь
лодки", color=:blue, lw=1) scatter!(plt1, rAngles, result.u, label="", mc=:blue,
ms=0.0005) plot!(plt1, result.t, result.u, xlabel="theta", ylabel="r(t)", label="Путь
катера", color=:green, lw=1) scatter!(plt1, result.t, result.u, label="", mc=:green,
ms=0.0005)
  savefig(plt1, "lab2 02.png")
  6. Запуск кода (рис. 4.6).
```


Рис. 4.6: Запуск кода

7. Просмотр результата работы (рис. 4.7-4.8).

Рис. 4.7: Случай 1

Рис. 4.8: Случай 2

5 Выводы

Были изучены основы языка программирования Julia и его библиотеки, которые используются для построения графиков и решения дифференциальных уравнений. А также решили задачу о погоне.

6 Список литературы

- [1] Документация по Julia: https://docs.julialang.org/en/v1/
- [2] Решение дифференциальных уравнений: https://www.wolframalpha.com/