Resource Allocation and Binding

Dr. Chandan Karfa

Department of Computer Science and Engineering

High-level Synthesis Steps

IIT Guwahati

Allocation and Binding

Objectives: Maximize Resource sharing; hence, minimize resource usage

Subtasks:

- 1. FU allocation & Binding
- 2. Register Allocation & Binding

Allocation and Binding

- □ Allocation:
 - □ Identify the minimum resources or Use the available resources
- □ Binding:
 - Map the operations to FUs and
 - Variables to registers
- □ Sharing:
 - Many-to-one relation
- Optimum binding/sharing:
 - Minimize the resource usage

Optimum sharing problem

- □ Scheduled sequencing graphs
 - □ Operation concurrency is well defined
- □ Consider operation types independently
 - □ Problem decomposition

□ Perform analysis for each resource type

Compatibly and conflicts

- Operation compatibility:
 - Same type
 - Non concurrent

t1	x=a+b	y=c+d	(9	2
t2	s=x+y	t=x-y		3	4
t3	z=a+t			5	

- **◆** Compatibility graph:
 - Vertices: operations
 - Edges: compatibility relation
- **♦** Conflict graph:
 - Complement of compatibility graph

Compatibility graph

Conflict graph

Compatibility Graph

Definition 6.2.1. The resource compatibility graph $G_+(V, E)$ is a graph whose vertex set $V = \{v_i, i = 1, 2, ..., n_{ops}\}$ is in one-to-one correspondence with the operations and whose edge set $E = \{\{v_i, v_j\} | i, j = 1, 2, ..., n_{ops}\}$ denotes the compatible operation pairs.

Resource Optimization as Clique Cover Problem Constitute

- □ A group of mutually compatible operations corresponds to a subset of vertices that are all mutually connected by edges, i.e., to a clique.
- □ Therefore a *maximal* set of mutually compatible operations is represented by a *maximal clique* in the compatibility graph.
- □ An optimum resource sharing is one that minimizes the number of required resource instances.
- ■We can associate a resource instance to each clique, the problem is equivalent to partitioning the graph into a minimum number of cliques. *clique cover number* of G+(V, E), denoted by k(G+(V, E)).

Conflict Graph

- u Two operations have a conflict when they are not compatible
- u The conflict graph is the *complement* of the compatibility graph

Definition 6.2.2. The **resource conflict graph** $G_{-}(V, E)$ is a graph whose vertex set $V = \{v_i, i = 1, 2, ..., n_{ops}\}$ is in one-to-one correspondence with the operations and whose edge set $E = \{\{v_i, v_j\} | i, j = 1, 2, ..., n_{ops}\}$ denotes the conflicting operation pairs.

Resource Sharing as Graph Coloring Problem

- u A set of mutually compatible operations corresponds to a subset of vertices that are not connected by edges, also called the *independent set*
- u A proper vertex coloring of the conflict graph provides a solution to the sharing problem
- u Each color corresponds to a resource instance
- u An optimum resource sharing corresponds to a vertex coloring with a minimum number of colors. Such a number is the chromatic number of G-(V, *E*)

Example

t1	x=a+b	y=c+d	1	2
t2	s=x+y	t=x-y	3	4
t3	z=a+t		5	

Conflict

Compatibility

Coloring

ALU1: 1,3,5 ALU2: 2,4

Partitioning

Compatibility and conflicts

- □ Compatibility graph:
 - □ Partition the graph into a minimum number of cliques
 - \Box Find clique cover number $_k$ (G_+)
- □ Conflict graph:
 - Color the vertices by a minimum number of colors.
 - □ Find the chromatic number x (G_)
- □ NP-complete problems
 - Heuristic algorithms

Perfect Graph

- The first number we consider is he *clique number* $\omega(G)$, which is the cardinality of its largest clique, called *maximum clique*
- \square A **stable set** or **independent set**, $\alpha(G)$ is a subset of vertices with the property that no two vertices in the stable set are adjacent.
- \square Relation Between $\alpha(G)$ and clique cover number $\alpha(G_+)$?
- \square Relation Between $\omega(G)$ and chromatic number \times (G_{-})?

Perfect Graph

- ☐ The size of the maximum clique is a lower bound for the chromatic number, because all vertices in that clique must be colored differently
- □ the stability number is a lower bour $\omega(G) \le \chi(G)$ cover number, since each vertex of the stable set must belong to a different clique of a clique cover

 \square A graph is *perfect* when the inequalities can be replaced by equalities $\alpha(G) \le \kappa(G)$

Chordal Graph (A special set of Perfect Graph)

□ A graph is said to be *chordal*, or *triangulated*, if every cycle with more than three edges possesses a *chord*, i.e., an edge joining two non-consecutive vertices in the cycle

Interval Graph

- ☐ A subclass of chordal graphs is the one of *interval graphs*.
- □ An interval graph is a graph whose vertices can be put in one-to-one correspondence with a set of *intervals*, so that two vertices are adjacent if and only if the corresponding intervals intersect.
- □ Advantage: The graph coloring problem is polynomial time solvable
- □ How to identify a graph is an interval graph?

Comparability graph

□ A graph G(V, F) is a comparability graph if it satisfies the transitive orientation property, i.e., if it has an orientation such that in the resulting directed graph G(V, E), ((vi, vj) in E and (vj, vk) in E implies (vi, vk) in E.

Gilmore Theorem

- □ An important theorem, by Gilmore and Hoffman, relates comparability to interval graphs
- □ **Theorem:** An undirected graph is an interval graph if and only if it is chordal and its complement is a comparability graph

Data-flow graphs (flat sequencing graphs)

- The compatibility/conflict graphs have special properties:
 - Compatibility
 - □ Comparability graph
 - Conflict
 - □ Chordal
 - □ So they are perfect graph satisfying Gilmore's theorem
- Polynomial time solutions for Interval Graph
 - Left-edge algorithm

Example

Example

Thank You