Aprendizaje profundo

REDES RECURRENTES

Gibran Fuentes-Pineda Octubre 2021

Motivación: secuencias de palabras

Unidad recurrente básica

- Capas con retro-alimentación en sus conexiones
 - 1. Entradas en tiempo t $(\mathbf{x}^{[t]})$
 - 2. Estado en tiempo $t(\mathbf{h}^{[t]})$

$$\begin{split} \mathbf{h}^{[t+1]} &= \phi \left(\mathbf{W}_h \cdot \underbrace{\left[\mathbf{h}^{[t]}, \mathbf{x}^{[t]} \right]}_{\text{\tiny concatenación}} + \mathbf{b}_h \right) \\ &= \phi \left(\mathbf{W}_{hh} \cdot \mathbf{h}^{[t]} + \mathbf{W}_{hx} \cdot \mathbf{x}^{[t]} + \mathbf{b}_h \right) \end{split}$$

Unidad recurrente básica: diagrama de celda

Unidad recurrente básica: despliegue

Unidad recurrente básica: despliegue de celdas

Modelando dependencias a corto plazo

- En teoría una red recurrente básica puede modelar dependencias a corto y largo plazo
 - Siegelmann y Sontag mostraron que las redes recurrentes son Turing completas¹

¹Siegelmann and Sontag. On The Computational Power Of Neural Nets, 1995.

El problema de la memoria a largo plazo

 En práctica es muy difícil entrenarlas para tareas con dependencias a largo plazo debido al problema del desvanecimiento/explosión de los gradientes

Long-short term memory (LSTM)²

 Agregan elementos internos a la celda básica que permiten capturar dependencias a corto y largo plazo

²Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*. 9 (8): 1735–1780, 1997.

Long-short term memory (LSTM): salida de la capa anterior

 Agrega o elimina información del estado C^[t] a partir de la entrada actual x^[t+1] y la salida anterior h^[t]

Long-short term memory (LSTM): compuerta de olvido

 Determina qué olvidar del estado C^[t] y en qué proporción a partir de la entrada actual x^[t+1] y la salida anterior h^[t]

$$\mathbf{f}^{[t+1]} = \sigma\left(\mathbf{W}_f \cdot \left[\mathbf{h}^{[t]}, \mathbf{x}^{[t+1]}\right] + \mathbf{b}_f\right)$$

Long-short term memory (LSTM): computerta de entrada

 Determina qué agregar al estado C^[t] y en qué proporción a partir de la entrada actual x^[t+1] y el estado oculto anterior h^[t]

$$\begin{split} & i^{[t+1]} = \sigma \left(W_i \cdot \left[h^{[t]}, x^{[t+1]} \right] + b_i \right) \\ & \hat{C}^{[t+1]} = tanh \left(W_C \cdot \left[h^{[t]}, x^{[t+1]} \right] + b_C \right) \\ & e^{[t+1]} = i^{[t+1]} \odot \hat{C}^{[t+1]} \end{split}$$

Long-short term memory (LSTM): nuevo estado

El nuevo estado C^[t+1] se obtiene como una combinación del estado C^[t+1], la salida f^(t) de la compuerta de olvido y la salida e^[t+1] de la compuerta de entrada

$$C^{[t+1]} = f^{[t+1]} \odot C^{[t]} + e^{[t+1]}$$

donde ⊙ denota el producto de Hadamard

Long-short term memory (LSTM): computerta de salida

• El siguiente estado oculto $\mathbf{h}^{[t+1]}$ se obtiene como una combinación de la entrada actual $\mathbf{x}^{[t+1]}$, el estado oculto anterior $\mathbf{h}^{[t]}$ y el nuevo estado $\mathbf{C}^{[t+1]}$

$$\begin{split} o^{[t+1]} &= \sigma\left(W_{o} \cdot \left[h^{[t]}, x^{[t+1]}\right] + b_{o}\right) \\ h^{[t+1]} &= o^{[t+1]} \odot tanh\left(C^{[t+1]}\right) \end{split}$$

Gated recurrent unit (GRU)3

· Combina compuertas de olvido y entrada en una sóla

$$\begin{split} \boldsymbol{z}^{[t+1]} &= \sigma\left(\boldsymbol{W}_{z} \cdot \left[\boldsymbol{h}^{[t]}, \boldsymbol{x}^{[t+1]}\right] + \boldsymbol{b}_{z}\right) \\ \boldsymbol{r}^{[t+1]} &= \sigma\left(\boldsymbol{W}_{r} \cdot \left[\boldsymbol{h}^{[t]}, \boldsymbol{x}^{[t+1]}\right] + \boldsymbol{b}_{r}\right) \\ \boldsymbol{\tilde{h}}^{[t+1])} &= \tanh\left(\boldsymbol{W}_{h} \cdot \left[\boldsymbol{r}^{[t+1]} \odot \boldsymbol{h}^{[t]}, \boldsymbol{x}^{[t+1]}\right] + \boldsymbol{b}_{h}\right) \\ \boldsymbol{h}^{[t+1]} &= \left(1 - \boldsymbol{z}^{[t+1]}\right) \odot \boldsymbol{h}^{[t]} + \boldsymbol{z}^{[t+1]} \odot \boldsymbol{\tilde{h}}^{[t+1]} \end{split}$$

³K. Cho et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. *arXiv:1406.1078*, 2014.

Arquitecturas de redes recurrentes

- · Contienen celdas recurrentes en conjunto con otras capas
- · La salida de una celda alimenta otras capas u otras celdas
- Por ejemplo, para predecir el siguiente símbolo en un texto con una celda recurrente básica, a la salida podemos agregar una capa densa con función de activación softmax

$$\hat{\mathbf{y}}^{[t+1]} = softmax\left(\mathbf{W}_y \cdot \mathbf{h}^{[t+1]} + \mathbf{b}_y\right)$$

Arquitecturas de redes recurrentes: ejemplo

Imagen tomada de Karpathy 2015 (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

Arquitecturas de redes recurrentes: tareas de uno a uno

Arquitecturas de redes recurrentes: tareas de uno a muchos

Arquitecturas de redes recurrentes: tareas de muchos a uno

Arquitecturas de redes recurrentes: tareas de muchos a muchos

Arquitecturas de redes recurrentes: LSTM/GRU bidireccional

Arquitecturas de redes recurrentes: celdas apiladas

Retropropagación en el tiempo

· Pérdida en el tiempo

Retropropagación

$$\mathcal{L}\left(\hat{\mathbf{y}},\mathbf{y}\right) = \sum_{t=1}^{T} \mathcal{L}\left(\hat{\mathbf{y}}^{[t]},\mathbf{y}^{[t]}\right)$$

$$\frac{\partial \mathcal{L}^{[T]}}{\partial \boldsymbol{\theta}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}^{[t]}}{\partial \boldsymbol{\theta}}$$

Retropropagación en el tiempo para una celda básica (1)

· Para la matriz de pesos **W**_y y un tiempo *T*

$$\begin{split} \frac{\partial \mathcal{L}}{\partial W_y} &= \sum_{t=1}^{T} \left[\frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}^{[t]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[t]}}{\partial W_y} \right] = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\hat{\mathbf{y}}^{[t]}} \mathbf{h}^{[t]\top} \\ \frac{\partial \mathcal{L}}{\hat{\mathbf{y}}^{[t]}} &= \frac{1}{T} \cdot \frac{\partial \mathcal{L}(\hat{\mathbf{y}}^{[t]}, \mathbf{y}^{[t]})}{\partial \hat{\mathbf{y}}^{[t]}} \end{split}$$

· Para el tiempo T

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}^{[T]}} = \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}^{[T]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[T]}}{\partial \mathbf{h}^{[t]}} = \mathbf{W}_{\mathbf{y}}^{\top} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}^{[T]}}$$

Retropropagación en el tiempo para una celda básica (2)

• Para los tiempos $T-1,\ldots,1$, la función de pérdida se ve afectada por $\mathbf{h}^{[t]}$ a través de $\mathbf{h}^{[t+1]}$ y $\hat{\mathbf{h}}^{[t]}$

$$\begin{split} \frac{\partial \mathcal{L}}{\partial h^{[t]}} &= \frac{\partial \mathcal{L}}{\partial h^{[t+1]}} \cdot \frac{\partial h^{[t+1]}}{\partial h^{[t]}} + \frac{\partial \mathcal{L}}{\partial \hat{y}^{[t]}} \cdot \frac{\partial \hat{y}^{[t]}}{\partial h^{[t]}} \\ &= W_{hh}^{\top} \frac{\partial \mathcal{L}}{\partial h^{[t+1]}} + W_{y}^{\top} \frac{\partial \mathcal{L}}{\partial \hat{y}^{[t]}} \end{split}$$

Para la matriz de pesos W_{hh} y un tiempo T

$$\frac{\partial \mathcal{L}}{\partial W_{hh}} = \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}} \cdot \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{h}^{[t]}} \cdot \left[\sum_{t=1}^{T} \frac{\partial \mathbf{h}^{[T]}}{\partial \mathbf{h}^{[t]}} \cdot \frac{\partial \mathbf{h}^{[t]}}{\partial W_{hh}} \right]$$
$$\frac{\partial \mathbf{h}^{[T]}}{\partial \mathbf{h}^{[t]}} = \prod_{i=t+1}^{T} \frac{\partial \mathbf{h}^{[i]}}{\partial \mathbf{h}^{[i-1]}}$$

Retropropagación en el tiempo para una celda básica (3)

· Para la matriz de pesos **W**_{hx} y un tiempo *T*

$$\frac{\partial \mathcal{L}}{\partial W_{hx}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{[t]}} \cdot \frac{\partial \mathbf{h}^{[t]}}{\partial W_{hx}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\mathbf{h}^{[t]}} \cdot \mathbf{x}^{[t]\top}$$

· Para la matriz de pesos W_{hx} y un tiempo T

$$\frac{\partial \mathcal{L}}{\partial W_{hh}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\partial h^{[t]}} \cdot \frac{\partial h^{[t]}}{\partial W_{hh}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{h^{[t]}} \cdot h^{[t-1]T}$$