ゆらぎの定理

大上由人

2024年6月24日

1 はじめに

昔書いたゆらぎの定理 RTA を書きなおす。*1

2 考える系

図1 考える系

まわりの熱浴によって系にゆらぎが生じような系を考える。例えば、水溶液中のコロイド粒子のようなものを考える。

使う記号

- ullet w_i : ある系の状態
- p_i : 状態 w_i における系の確率分布
- ullet $P_{w
 ightarrow w'}$: 状態 w から状態 w' への遷移確率
- ullet $\overline{w_i}$: 状態 w_i の時間反転
- $P_{\overline{w'} o \overline{w}}^{\dagger}$: 逆向き遷移 (状態 $\overline{w'}$ から状態 \overline{w} への遷移確率)

^{*1} 第 1 回ゆり京で発表しようと思っていたが結局没になった。

平衡状態の性質

平衡状態においては、

$$p_w^{\text{eq}} P_{w \to w'} = p_{\bar{w'}}^{\text{eq}} P_{\bar{w'} \to \bar{w}}$$
 (2.1)

が成り立つ。

- Def: 熱 (確率的) -

系から熱浴への確率的な熱の流れを、

$$\hat{Q}_{w \to w'} = E_w - E_{w'} = \frac{1}{\beta} \ln \frac{P_{w \to w'}}{P_{\bar{w'} \to \bar{w}}}$$
 (2.2)

と定義する。

(…)(二つ目の等号)

$$p_w^{\rm eq} \propto e^{-\beta E_w}$$

より、

$$E_w - E_{w'} = -\frac{1}{\beta} \ln \frac{p_w^{\text{eq}}}{p_{w'}^{\text{eq}}}$$

である。 *2

いま、 $p_{ar{w'}}^{ ext{eq}}=p_{w'}^{ ext{eq}}$ であることを用いると、

$$E_w - E_{w'} = -\frac{1}{\beta} \ln \frac{p_w^{\text{eq}}}{p_{w'}^{\text{eq}}} = -\frac{1}{\beta} \ln \frac{P_{w \to w'}}{P_{\bar{w'} \to \bar{w}}}$$

となる。

- Def:Shanon エントロピー -

Shanon エントロピーを、

$$S = -\sum_{i} p_i \ln p_i \tag{2.3}$$

と定義する。

 st^2 若干ここ怪しい。

- Def: エントロピー生成 -

エントロピー生成を、

$$\hat{\sigma} = \beta \hat{Q} + \Delta S \tag{2.4}$$

と定義する。

- Thm:DFT -

$$\frac{P(\hat{\sigma} = \Sigma)}{P(\hat{\sigma} = -\Sigma)} = e^{\Sigma}$$
 (2.5)

が成り立つ。

 \mathbf{Prf}

- Thm:IFT -

$$\left\langle e^{-\hat{\sigma}}\right\rangle_{\text{eq}} = 1$$
 (2.6)

が成り立つ。

 \mathbf{Prf}