FEATURES

- AND-Gated (enable/disable) serial inputs
- Fully buffered clock and serial inputs
- Direct clear
- Function, pin-out, speed and drive compatibility with 54/74ALS logic family
- Low power consumption characteristic of CMOS
- High-Drive-Current outputs:
 IoL = 8 mA @ Vol = 0.5V
- Inputs and outputs interface directly with TTL, NMOS and CMOS devices
- Wide operating voltage range: 4.5V to 5.5V
- Characterized for operation over industrial and military temperature ranges:
 KS74AHCT: -40°C to +85°C
 KS54AHCT: -55°C to +125°C
- Package options include plastic "small outline" packages, standard plastic and ceramic 300-mil DIPs

DESCRIPTION

These are high-speed 8-bit registers with AND-gated serial inputs and an asynchronous clear. Data is entered serially through either one of the two inputs, A and B. A high on one input enables the other one, which will then determine the state of the first flip-flop. A low at either or both inputs inhibits data entry and resets the first flip-flop to a low level at the next positive clock transition.

Data at the serial inputs may be changed while the clock is high or low, provided the minimum setup time requirements are met. Clocking occurs on the low-to-highlevel transition of their clock input.

These devices provide speeds and drive capability equivalent to their ALSTTL counterparts and yet maintain CMOS power levels. The input and output voltage levels allow direct interface with TTL, NMOS and CMOS devices without any external components.

All inputs and outputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

PIN CONFIGURATION

FUNCTION TABLE

	Inputs	Outputs					
CLR	CLK	Α	В	QA	Q _B Q _H		
L.	X	Х	X	L	L	L	
. н	L,	X	X	QAO	Q _{BO}	Q _{H0}	
Н	. 1	Н	H	н	Q _{An}	QGn	
Н	* †	L	X	L	Q _{An}	Q _{Gn}	
Н	. 1	Х	L	L	QAn	QGn	

H = high level (steady state), L = low level (steady state)

X = irretevant (any input, including transitions)

t = transition from low to high level.

 Q_{A0} , Q_{B0} , Q_{H0} =the level of Q_{A} , Q_{B} or Q_{H} , respectively, before the indicate steady-state input conditions were established.

 Q_{An} , Q_{Gn} = the level of Q_A or Q_G before the most-recent † transition of the clock; indicates a one-bit shift.

KS54AHCT **164** KS74AHCT

8-Bit Serial-In/Parallel-Out Shift Registers

LOGIC DIAGRAMS

4

T-46-09-05

KS54AHCT **164** KS74AHCT

8-Bit Serial-In/Parallel-Out Shift Registers

Absolute Maximum Ratings*

Supply Voltage Range Vcc0.5V to +7V
DC Input Diode Current, I _{IK}
$(V_1 < -0.5V \text{ or } V_1 > V_{CC} + 0.5V) \dots \pm 20 \text{ m/s}$
DC Output Diode Current, lok
$(V_0 < -0.5V \text{ or } V_0 > V_{CC} + 0.5V) \dots \pm 20 \text{ m/s}$
Continuous Output Current Per Pin, Io
$(-0.5V < V_0 < V_{CC} + 0.5V) \dots \pm 35 \text{ m/s}$
Continuous Current Through
Vcc or GND pins ±125 m/
Storage Temperature Range, T _{stg} 65°C to +150°C
Power Dissipation Per Package, Pd1 500 mV
A AL A LA MANAGE DAMAGE AND MARIA MARIAN

* Absolute Maximum Ratings are those values beyond which permanent damage to the device may occur. These are stress ratings only and functional operation of the device at or beyond them is not implied. Long exposure to these conditions may affect device reliability. † Power Dissipation temperature derating: Plastic Package (N): -12mW/°C from 65°C to 85°C Ceramic Package (J): -12mW/°C from 100°C to 125°C

Recommended Operating Conditions

Supply Voltage, Vcc 4.5V to 5.5V DC Input & Output Voltages*, V_{IN}, V_{OUT} . . OV to Vcc Operating Temperature

Range KS74AHCT: ~40°C to +85°C KS54AHCT: ~55°C to +125°C

Input Rise & Fall Times, t_r, t_f Max 500 ns

 * Unused inputs must always be tied to an appropriate logic voltage level (either V_{CC} or GND)

DC ELECTRICAL CHARACTERISTICS (V_{CC}=5V±10% Unless Otherwise Specified)

Characteristic	Symbol	Test Conditions	Ta = 25°C		KS74AHCT Ta = -40°C to +85°C	KS54AHCT T _{a=} -55°C to +125°C	Unit		
	•		Тур		Guaranteed Limits				
Minimum High-Level Input Voltage	V _{IH}			2.0	2.0	2.0	V		
Maximum Low-Level Input Voltage	VIL			0.8	0.8 、	0.8	٧		
Minimum High-Level Output Voltage	V _{ОН}	$V_{IN}=V_{IH}$ or V_{IL} $I_{O}=-20\mu A$ $I_{O}=-4m A$	V _{CC}	V _{CC} -0.1 3.98	V _{CC} -0.1 3.84	V _{CC} =0.1 3.7	v		
Maximum Low-Level Output Voltage,	Vol	V _{IN} =V _{IH} or V _{IL} I _O =20μA I _O =4mA I _O =8mA	0	0.1 0.26 0.39	0.1 0.33 0.5	0.1 0.4	v		
Maximum Input Current	I _{IN}	V _{IN} =V _{CC} or GND		±0.1	±1.0	±1.0	μА		
Maximum Quiescent Supply Current	lcc.	V _{IN} =V _{CC} or GND I _{OUT} =0μA		8.0	80.0	160.0	μА		
Additional Worst Case Supply Current	ΔΙσο	per input pin V _I =2.4V other Inputs: at V _{CC} or GND I _{OUT} =0µA		2.7	2.9	3.0	mA		

KS54AHCT **164** KS74AHCT

T-46-09-05 8-Bit Serial-In/Parallel-Out Shift Registers

AC ELECTRICAL CHARACTERISTICS (Input tr, ti≤2 ns), AHCT164

Characteristic		Symbol	Conditions [†]	T _e = 25°C V _{CC} = 5.0V	KS74AHCT T ₄ = -40°C to +85°C V _{CC} =5.0V±10%		KS54AHCT T _a = -55°C to +125°C V _{CC} =5.0V ± 10%		Unit
				Тур	Min	Max	Min	Max	
Maximum Clock Frequency		f _{max}	C _L =50pF	60	36		30		MHz
Propagation Delay, CLR to any Q		tpHL		12		20		24	ns
Propagation Delay,		tpun		11		18		21	ns
CLK to any Q		tent		11.		18	Ĺ	21	
Pulse Width	CLR Low	tw		8	12		15		ns
	CLK High or Low			8	12		15		
Setup Time before CLKf	Data	t _{su}		8	12		15	l'	ns
	CLR Inactive			8	12		15		
Hold Time Data after CLK1		t _b	•	1	4		5	6	ns
Input Capacitance	•	CiN		5					pF
Power Dissipation Capacitance*		C _{PD}	(per package)	120					pF

^{*} C_{PD} determines the no-load dynamic power dissipation: $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$. † For AC switching test circuits and timing waveforms see section 2.

PACKAGE DIMENSIONS

1. PLASTIC PACKAGES

SAMSUNG SEMICONDUCTOR

1675 A-04

PACKAGE DIMENSIONS

2. CERAMIC PACKAGES

1677

A-06