[30] Se desea estimar la facturación media de compañías de cierto rubro. Las compañías son clasificadas de acuerdo a su facturación en tres clases. Un censo muestra los siguientes datos.

Facturación en millones de Euros	Número de Compañias
desde 0 a 1	1000
desde 1 a 10	100
desde 10 a 100	10

El estudio a efectuar determina que se realizará un muestra de tamaño 111. Asumiendo que la distribución de compañias es **uniforme** dentro de cada estrato.

Ayuda: Recordar que $\mathbb{V}(X) = (b-a)^2/12$ si $X \sim U(a,b)$

- (a) (10 puntos) Obtenga la varianza del estimador de la facturación media bajo un diseño estratificado y afijación **proporcional**.
- (b) (20 puntos) Obtenga la varianza del estimador de la facturación media bajo un diseño estratificado y afijación **óptima**.

Solución: Dado que la varianza en una distribución uniforme está dada por:

$$\mathbb{V}(X) = \frac{(b-a)^2}{12}$$

se obtienen las varianzas para la población en estudio:

$$\frac{N}{N-1}\mathbb{V}(X) = S^2$$

Así, obtenemos:

$$S_{y1}^2 \approx 0.0834168$$
 $S_{y2}^2 \approx 6.81818$ $S_{y3}^2 \approx 750$

Para la afijación proporcional, es claro ver que $n_1 = 100, n_2 = 10$ y $n_3 = 1$. Luego, usando la fórmula de varianza bajo un muestreo estratificado obtenemos

$$\mathbb{V}(\hat{\overline{Y}}) \approx 0.06037$$

Bajo un muestreo óptimo, se tiene:

$$N_1 S_{y1}^2 \approx 288,82$$
 $N_2 S_{y2}^2 \approx 261,116$ $N_3 S_{y3}^2 \approx 273,861$

Así, se obtienen las afijaciones $n_1 \approx 38,9161, n_2 \approx 35,1833$ y $n_3 \approx 36,9006$. De lo anterior, es claro ver que el tercer estrato es mayor a $N_3 = 10$, por lo que seleccionamos todas las unidades desde aquel estrato, esto es, $n_3 = N_3 = 10$ y luego seleccionamos **óptimamente** 101 unidades de las restantes 1100 unidades pertenecientes a los estratos 1 y 2. Así, obtenemos: $n_1 \approx 53$ y $n_2 \approx 48$. Finalmente, al tener esta afijación obtenemos:

$$\mathbb{V}(\hat{\overline{Y}}) \approx 0.0018092$$