

Concurso Nacional

Oaxtepec, Morelos, septiembre 19-22, 2024

Examen Individual

Nivel II

Estado:	
Nombre:	

Instrucciones:

- El examen consta de dos partes:
 - Parte A
 - $\ast\,$ Consta de 12 problemas con un valor de 5 puntos cada una.
 - * En estos problemas, sólo se toma en cuenta la respuesta final, que debe ser claramente escrita en el espacio correspondiente a cada problema en la **Hoja de Respuestas**.
 - * No se darán puntos parciales y no hay penalizaciones por respuestas incorrectas.
 - * Para las preguntas con varias respuestas, se darán los 5 puntos sólo si todas las respuestas correctas están escritas y sólo ellas.
 - Parte B
 - * Consta de 3 problemas de redacción libre y con un valor de 20 puntos cada uno.
 - * En estos problemas es posible acumular puntos parciales.
 - * Sólo se tomará en cuenta lo escrito dentro del margen.
- En caso de que las respuestas a los problemas no sean enteras, estas deben ser aproximadas a dos decimales tomando en cuenta los siguientes valores:

$$\pi = 3.14, \qquad \sqrt{2} = 1.41, \qquad \sqrt{3} = 1.73, \qquad \sqrt{5} = 2.23.$$

- Las figuras mostradas, podrían no estar a escala.
- No está permitido el uso de calculadoras, transportadores y aparatos electrónicos.
- La duración del examen es 2 horas.

Examen Individual – PARTE A

Hoja de Respuestas

Nivel II

Estado:	
Nombre:	

1.	7.
2.	8.
3.	9.
4.	10.
5.	11.
6.	12.

Problema 1. La figura muestra un cuadrado de lado 4cm tal que E y H son los puntos medios de \overline{AB} y \overline{AD} respectivamente ¿Cuál es, en cm², el valor del área sombreada?

.

Problema 2. Abigaíl salió a cenar por su cumpleaños con 6 de sus amigas. Inicialmente habían dividido la cuenta entre 7 personas en partes iguales, pero luego decidieron que Abigaíl no pagara ya que era su cumpleaños; entonces dividieron la cuenta entre 6 personas en partes iguales y, por esto, cada amiga terminó pagando 37 pesos más. ¿De cuántos pesos había sido originalmente la cuenta?

Problema 3. Kara el capibara se alimenta de sandías con un posible peso de 1, 2, 4 u 8 kg. Si Kara decide consumir 40 kg de sandía en una semana, de tal forma que cada día come 3 sandías, y en la semana consume al menos 1 sandía de cada peso, ¿Cuál es la máxima cantidad de sandiás de 1 kg que puede digerir?

Problema 4. En una sucesión de enteros positivos, cada término, excepto el primero y el segundo, es la suma de todos los términos anteriores a él. Si el primer término es 1 y el décimo primer término es 1024, ¿cuál es el segundo término?

Problema 5. Sea ABC un triángulo con $\angle BAC = 60^{\circ}$. Se traza la altura de ABC que pasa por A y choca con BC en D. E es un punto en AC tal que DE es paralelo a AB. F es un punto en BC tal que EF es bisectriz del $\angle DEC$. M es un punto en AC tal que FM es paralelo a AB. Si M es punto medio de AC y AB = 2. Calcule el valor de EF.

Problema 6. Un postre carbonifero se hace con 4 bolas de helado. En la nevería de la esquina venden 3 sabores de helado de fruta (fresa, mango y limón) y 3 sabores que no son de fruta (chocolate, vainilla y menta). Un postre carbonifero es superfrutal si lleva más bolas de helado de fruta que de las que no son de fruta. ¿Cuántos postres carboniferos superfrutales diferentes se pueden hacer? (Nota: los postres pueden llevar más de una bola del mismo sabor y no importa el orden de los sabores en el postre.)

Problema 7. ¿Cuántas parejas de enteros positivos a y b menores que 10 cumplen que 5a divide a $(a+b)^2$?

Problema 8. Un rectángulo de $13 \times 11 \text{ y}$ uno de $21 \times 11 \text{ se pegaron sobre los lados de un cuadrado de <math>11 \times 11$. ¿A qué distancia pasa la línea punteada del vértice del cuadrado?

.

Problema 9. Sea S(n) la suma de dígitos del entero positivo n. Un año $n \ge 2017$ se dice azulado si en ese año se realiza la edición k de la OMMEB y S(n) = k. Por ejemplo, 2024 es azulado ya que 2 + 0 + 2 + 4 = 8. Si la OMMEB se hace 1 vez por año y se hizo por primera vez en 2017, ¿cuántos años son azulados?

Problema 10. Dani tiene 10 cartas: una con el número 1, dos con el número 2, tres con el número 3 y cuatro con el número 4. Si elegirá solamente 4 cartas para formar un número de 4 dígitos, ¿cuántos números diferentes puede formar Dani?

Problema 11. Sean ABC, BDE y EFG triángulos equiláteros cuyos lados miden 4, 2 y 1 cm, respectivamente. Determina el área, en cm², del pentágono ABEGC.

.

Problema 12. ¿Cuántas parejas de enteros positivos (n,m) cumplen que 11n + 23m = 2024?

Estado:	 Nivel II	
T 1		

Problema 13. En la figura, los cuadrados ABCD y DEFG tienen lados de la misma medida. Sea P el punto de intersección de las diagonales AC y EG. Si $\angle CDE = 33^{\circ}$, calcula la medida, en grados, de $\angle APG$.

Estado:	 Nivel II	
Nombre:	 	
Problema 13. (Continuación)		

Estado:		
Nombre:Problema 14. Un número de 4 dígitos \overline{abcc}	\overline{d} es $prencial$ si el número de 3 dígitos \overline{bcd} o	divide a \overline{abcd} . Por
jemplo, 5100 es prencial porque 100 divide a	5100. ¿Cuántos números prenciales menore	s a 2024 existen?

Estado:	Nivel II	
Nombre:		
Problema 14. (Continuación)		

Estado:	 Nivel II	
Nombro		

Problema 15. Beto está eligiendo un número de 2 dígitos para su nueva casa. En la tienda, hay dos cajas con dígitos. La primera caja tiene los dígitos 2, 3, 4, 5, 7, 9 y de ahí saca las decenas. La segunda tiene los dígitos 1, 6, 8 y de ahí saca las unidades. Además, Beto quiere elegir un número de 2 dígitos tal que sí mismo y el número que se obtiene al voltear el orden de sus cifras, sean ambos primos o ambos compuestos. ¿De cuántas formas puede hacer esto?

Estado:	Nivel II	
Nombre:		
Problema 15. (Continuación)		