Cardiovascular Disease Data Analysis

Product Engineering Project 2

by Nick, Alex, Amrita, Mario

Overview

- Red Shield, a hospital in Los Angeles, wants to find patterns in patients with cardiovascular disease
- Red Shield is looking a different factors to determine common features in patients with cardiovascular disease:
 - Physical features like Age, Height, Weight, and Gender
 - Habits like Smoking, Alcohol intake, and Physical activity

The Data

Patient

 attributes about a patient's age, height, weight, and gender

Habits

 Describes patients habits such as drinking and smoking

Blood Information

information about blood such as blood pressure

variable	Data type
Age	int (days)
Height	int (cm)
Weight	float (kg)
Gender	1 = female, 2 = male
Systolic blood pressure	int
Diastolic blood pressure	int
Cholesterol	1: normal, 2: above normal, 3: far above normal
Glucose	1: normal, 2: above normal, 3: far above normal
Smoking	0 = no, 1= yes
Alcohol intake	0 = no, 1= yes
Physical activity	0 = no, 1= yes
Presence or absence of cardiovascular disease	0 = no, 1= yes

ER Diagram

To normalize the database we split them into three tables: Patient, Habits, and Blood info

- 1-1 relationship between Patient and Habits
- 1-1 relationship between Patient and Blood Information
- 2 foreign keys in Patient to make a reference between both of the tables

Database Setup

- Read data from S3 bucket
- Used pandas module to work with data
- Removed outliers
- Only able to insert about 3,000 entries due to time restrictions
- Created two foreign keys in patient to reference other tables.

```
□create table habits(
     habit id int primary key,
     smoke int,
     alcohol int.
     activ int.
     cardio int
□create table blood info(
     blood id int primary key,
     ap hi int,
     ap low int,
     cholesterol int.
     glucose int
□create table patient(
     patient_id int primary key,
     age int.
     gender int,
     height int,
     weight float,
     habit id int,
     blood id int,
     foreign key(habit id) references habits(habit id),
     foreign key(blood id) references blood info(blood id)
```

AWS Setup - IAM accounts

AWS Setup - IAM account Permissions

AWS Setup - Database

Lambda Function

```
Test_upload.py > ...
       import boto3
       s3 = boto3.client('s3')
       bucket name = 'cardiovascular-disease-bucket'
      s3.upload file('Test.txt', bucket name, 'Test-remote.txt')
# Function to import data from S3 to MySQL RDS
def import data to rds(connection, s3 bucket, s3 key):
   try:
       # Read CSV data from S3
       s3 = boto3.client('s3')
       obj = s3.get object(Bucket=s3 bucket, Key=s3 key)
       df = pd.read csv(io.BytesIO(obj['Body'].read()), delimiter=';'
```

```
ef lambda handler(event, context):
  try:
      # Establish connection to MySQL RDS instance (Insert Database Credentials)
      conn = mysql.connector.connect(
          database="",
          user="",
          password="",
          host="",
          port=""
      # Get 53 bucket and key from event
      s3 bucket = event['Records'][0]['s3']['bucket']['name']
      s3_key = event['Records'][0]['s3']['object']['key']
      # Import data from S3 to RDS
      import data to rds(conn, s3 bucket, s3 key)
       # Close connection
      conn.close()
  except Exception as e:
      print("Error:", e)
      traceback.print exc()
      raise e
  return {
       'statusCode': 200.
       'body': json.dumps('Hello from Lambda!')
```

S3 Bucket

Lambda Function Deployment

CloudWatch Logs - Failed Module Imports

CloudWatch Logs - Success

Statistics graphs

Had to clean the data when I noticed that there was a few records that made little sense such as:

- Negative blood pressure, height, and weight
- Blood pressure up to 14,000 (normally up to ~190)
- People who where over 10 feet tall
- People who were over 700 pounds

Smoking and Drinking Habits

- People who do NOT drink nor smoke are much more common than all other categories
- This matches with other data found such as those in the next slide

More Graphs

- Suggestions:
 - Added bmi, change age to years, store gender as female or male not 1 and 2
- Cholesterol seems to have a more important role than glucose when looking at people who have cardiovascular disease

Everything by gender

EC2 Website

54.183.30.121

Challenges we faced

- Connecting to AWS was an issue in the beginning
- Importing modules on AWS lambda
- Dealing with outliers in the data

Kanban Board

Any Questions?