Examen de Septiembre:

1. Calcule I', V' e I_o.

Q1, Q2: $V_{BE\text{-}ZAD}$ = 0,68V , β =249

M1, M2: $I_{DS} = k (V_{GS} - V_T)^2$ (Sat.) con k=4 mA/V² y V_T= 1V M3, M4: $I_{SD} = k (V_{SG} - V_T)^2$ (Sat.) con k=7/3 mA/V² y V_T= 1V

El circuito continúa por $\rm I_o$, pero no ha sido dibujado. Esta es la razón de que no se pueda comprobar el estado de Q2 y M4. Supóngalos en Z.A.D. y saturación respectivamente.

- 2. Explique cómo se puede medir la β_R (β de zona activa inversa) con un polímetro como los del laboratorio.
- 3. Halle el valor lógico de las salidas S₁, S₂, S₃, S₄ y S en función de las entradas A, B y C.

4. Calcule V₁, V₂, V₃ y V_o. La alimentación de los amplificadores operacionales es ±12V.

Puntuación aproximada: 3,6 - 0,4 - 2,7 - 3,3