Capstone Project: The Battle of Neighbourhoods

By: Milena Shehu

Table of Contents

- 1. Introduction
- 2. Data
- 3. Methodology
- 4. Result
- 5. Discussion and Conclusion

1. Introduction

1.1 Description of the Problem

The population of London has grown considerably over the last decades. London is very diverse. It represents what is called the reflection of the old British Empire. In London, you can get fresh from food supplies from Africa. One begins to wonder the efficiency of the supply mechanism.

1.2 Discussion of the Background

Let's suppose that a successful restaurant chain in Africa is looking to expand operation into Europe through London. They want to create a high-end restaurant that comes with organic mix and healthy. Their target is not only West Africans, but they are pro-organic and healthy eating. To them every meal counts and counts as a royal when you eat.

1.3 Target Audience

Considering the diversity of London, there is a high multicultural sense. As such, in the search for an high-end African-inclined restaurant, there is a high shortage.

2. Data

2.1 Description of Data

This project will rely on public data from Wikipedia and Foursquare.

Dataset 1:

The London Area consists of 32 Boroughs and the "City of London". Our data will be from the link - Greater London Area https://en.wikipedia.org/wiki/List_of_areas_of_London) >

The web scrapped of the Wikipedia page for the Greater London Area data is provided below:

```
In [4]: # library for BeautifulSoup
        from bs4 import BeautifulSoup
        # library to handle data in a vectorized manner
        import numpy as np
        # library for data analsysis
        import pandas as pd
        pd.set option('display.max columns', None)
        pd.set_option('display.max_rows', None)
        # library to handle JSON files
        import json
        print('numpy, pandas, ..., imported...')
        !pip -q install geopy
        # conda install -c conda-forge geopy --yes # uncomment this line if you have
        n't completed the Foursquare API lab
        print('geopy installed...')
        # convert an address into latitude and longitude values
        from geopy.geocoders import Nominatim
        print('Nominatim imported...')
        # library to handle requests
        import requests
        print('requests imported...')
        # tranform JSON file into a pandas dataframe
        from pandas.io.json import json normalize
        print('json normalize imported...')
        # Matplotlib and associated plotting modules
        import matplotlib.cm as cm
        import matplotlib.colors as colors
        print('matplotlib imported...')
        # import k-means from clustering stage
        from sklearn.cluster import KMeans
        print('Kmeans imported...')
        # install the Geocoder
        !pip -q install geocoder
        import geocoder
        # import time
        import time
        # !conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if yo
        u haven't completed the Foursquare API lab
        !pip -q install folium
        print('folium installed...')
        import folium # map rendering library
        print('folium imported...')
        print('...Done')
```

```
numpy, pandas, ..., imported...
        geopy installed...
        Nominatim imported...
        requests imported...
        json normalize imported...
        matplotlib imported...
        Kmeans imported...
        folium installed...
        folium imported...
        ...Done
In [5]:
        wikipedia link = 'https://en.wikipedia.org/wiki/List of areas of London'
        headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:64.0) G
        ecko/20100101 Firefox/64.0'}
        wikipedia_page = requests.get(wikipedia_link, headers = headers)
        wikipedia page
Out[5]: <Response [200]>
In [6]: # Cleans html file
        soup = BeautifulSoup(wikipedia page.content, 'html.parser')
        # This extracts the "tbody" within the table where class is "wikitable sortabl
        table = soup.find('table', {'class':'wikitable sortable'}).tbody
In [7]: # Extracts all "tr" (table rows) within the table above
        rows = table.find all('tr')
        # Extracts the column headers, removes and replaces possible '\n' with space f
In [8]:
        or the "th" tag
        columns = [i.text.replace('\n', '')
                    for i in rows[0].find all('th')]
In [9]: # Converts columns to pd dataframe
        df = pd.DataFrame(columns = columns)
        df
Out[9]:
           Location London borough Post town Postcode district Dial code OS grid ref
```

```
In [10]: # Extracts every row with corresponding columns
         # Then appends the values to the create pd dataframe "df"
         # Please note that the first row (row[0]) is skipped because it is already the
         header
         for i in range(1, len(rows)):
             tds = rows[i].find_all('td')
             if len(tds) == 7:
                 values = [tds[0].text, tds[1].text, tds[2].text.replace('\n', ''.repla
         ce('\xa0','')), tds[3].text, tds[4].text.replace('\n', ''.replace('\xa0','')),
         tds[5].text.replace('\n', ''.replace('\xa0','')), tds[6].text.replace('\n', ''
         .replace('\xa0',''))]
             else:
                 values = [td.text.replace('\n', '').replace('\xa0','') for td in tds]
                 df = df.append(pd.Series(values, index = columns), ignore index = True
         )
                 df
```

In [12]: df.head(5)

Out[12]:

	Location	London borough	Post town	Postcode district	Dial code	OS grid ref
0	Abbey Wood	Bexley, Greenwich [7]	LONDON	SE2	020	TQ465785
1	Acton	Ealing, Hammersmith and Fulham[8]	LONDON	W3, W4	020	TQ205805
2	Addington	Croydon[8]	CROYDON	CR0	020	TQ375645
3	Addiscombe	Croydon[8]	CROYDON	CR0	020	TQ345665
4	Albany Park	Bexley	BEXLEY, SIDCUP	DA5, DA14	020	TQ478728

```
In [14]: df.head(5)
```

Out[14]:

	Location	Borough	Post-town	Postcode	Dial- code	OSGridRef
0	Abbey Wood	Bexley, Greenwich [7]	LONDON	SE2	020	TQ465785
1	Acton	Ealing, Hammersmith and Fulham[8]	LONDON	W3, W4	020	TQ205805
2	Addington	Croydon[8]	CROYDON	CR0	020	TQ375645
3	Addiscombe	Croydon[8]	CROYDON	CR0	020	TQ345665
4	Albany Park	Bexley	BEXLEY, SIDCUP	DA5, DA14	020	TQ478728

Looking the data, under the Borough, there are borough names with []. These are references extracted from the wiki page. So remove these, the following was done:

```
In [15]: | df['Borough'] = df['Borough'].map(lambda x: x.rstrip(']').rstrip('0123456789')
          .rstrip('['))
In [16]:
         df.shape
Out[16]: (533, 6)
In [17]:
         df.head(5)
```

Out[17]:

	Location	Borough	Post-town	Postcode	Dial- code	OSGridRef
0	Abbey Wood	Bexley, Greenwich	LONDON	SE2	020	TQ465785
1	Acton	Ealing, Hammersmith and Fulham	LONDON	W3, W4	020	TQ205805
2	Addington	Croydon	CROYDON	CR0	020	TQ375645
3	Addiscombe	Croydon	CROYDON	CR0	020	TQ345665
4	Albany Park	Bexley	BEXLEY, SIDCUP	DA5, DA14	020	TQ478728

Assumption 1: Where the Postcode are more than one, (for example, in Acton, there are 2 postcodes - W3 and W4), the postcodes are spread to multi-rows and assigned the same values from the other columns.

```
In [18]: df0 = df.drop('Postcode', axis=1).join(df['Postcode'].str.split(',', expand=Tr
         ue).stack().reset index(level=1, drop=True).rename('Postcode'))
```

```
In [19]:
           df0.head(5)
Out[19]:
                   Location
                                                 Borough
                                                          Post-town
                                                                     Dial-code
                                                                               OSGridRef Postcode
               Abbey Wood
             0
                                         Bexley, Greenwich
                                                                           020
                                                                                                SE2
                                                           LONDON
                                                                                TQ465785
             1
                      Acton
                            Ealing, Hammersmith and Fulham
                                                           LONDON
                                                                           020
                                                                                TQ205805
                                                                                                 W3
             1
                      Acton
                            Ealing, Hammersmith and Fulham
                                                           LONDON
                                                                           020
                                                                                TQ205805
                                                                                                 W4
            10
                      Angel
                                                 Islington
                                                           LONDON
                                                                           020
                                                                                TQ345665
                                                                                                EC1
            10
                                                 Islington
                                                           LONDON
                                                                           020
                                                                                TQ345665
                                                                                                 N1
                      Angel
In [20]:
           df0.shape
Out[20]: (637, 6)
```

Assumption 2: From the data, only the 'Location', 'Borough', 'Postcode', 'Post-town' will be used for this project. So they are extracted into a new data frame.

```
df1 = df0[['Location', 'Borough', 'Postcode', 'Post-town']].reset_index(drop=T
In [21]:
          rue)
In [22]:
          df1.head(5)
Out[22]:
                 Location
                                              Borough
                                                       Postcode
                                                                Post-town
              Abbey Wood
                                                                  LONDON
                                      Bexley, Greenwich
                                                            SE2
           1
                          Ealing, Hammersmith and Fulham
                                                            W3
                                                                  LONDON
                    Acton
           2
                    Acton
                          Ealing, Hammersmith and Fulham
                                                            W4
                                                                  LONDON
           3
                    Angel
                                              Islington
                                                           EC1
                                                                  LONDON
                                                                  LONDON
                    Angel
                                              Islington
                                                            N1
In [23]:
          df1.shape
Out[23]: (637, 4)
```

Assumption 3: Now, only the Boroughs with London Post-town will be used for our search of location. Therefore, all the non-post-town are dropped.

```
In [25]:
           df21.head(5)
Out[25]:
                  Location
                                               Borough Postcode
                                                                  Post-town
              Abbey Wood
                                       Bexley, Greenwich
                                                                    LONDON
                                                             SE2
                    Acton
                           Ealing, Hammersmith and Fulham
                                                              W3
                                                                    LONDON
            2
                    Acton
                           Ealing, Hammersmith and Fulham
                                                              W4
                                                                    LONDON
            3
                    Angel
                                                Islington
                                                             EC1
                                                                    LONDON
                    Angel
                                                Islington
                                                                    LONDON
                                                              N1
In [26]:
           df21.shape
Out[26]: (381, 4)
```

From assumption 3, there are now 380 instances, which is a drop from 638 because of the drop of non-London post-towns.

```
# Re-assigns the df21 to new dataframe without the Post-town
In [27]:
           df3 = df21[['Location', 'Borough', 'Postcode']].reset_index(drop=True)
In [28]:
           df3.head(10)
Out[28]:
                 Location
                                              Borough
                                                        Postcode
              Abbey Wood
                                       Bexley, Greenwich
                                                            SE2
                          Ealing, Hammersmith and Fulham
                                                             W3
                    Acton
            2
                    Acton
                          Ealing, Hammersmith and Fulham
                                                             W4
            3
                    Angel
                                               Islington
                                                            EC1
                    Angel
                                               Islington
                                                             N1
            5
               Church End
                                                  Brent
                                                           NW10
               Church End
                                                Barnet
                                                             N3
            6
            7
                 Clapham
                                    Lambeth, Wandsworth
                                                            SW4
               Clerkenwell
                                                            EC1
            8
                                               Islington
                 Colindale
                                                Barnet
                                                            NW9
            9
In [29]:
           df london = df3
           df_london.to_csv('LondonLocations.csv', index = False)
```

Assumption 4: Due to its more diverse outlook, proximity to afro-caribbean markets and accessible facilities, only the South East areas of London will be considered for our analysis. The South East areas has postcodes starting with SE.

So, first, we remove the whitesapaces at the start of some of the postcodes and then drop the other non-SE postcodes.

		Location		Postcode	
	0	Abbey Wood	Bexley, Greenwich	SE2	
	1	Acton	Ealing, Hammersmith and Fulham	W3	
	2	Acton	Ealing, Hammersmith and Fulham	W4	
	3	Angel	Islington	EC1	
	4	Angel	Islington	N1	
in [31]:	df	_london.Pos	tcode = df_london.Postcod	e.str.str	ip()
n [32].	df	london hea	nd(5)		
	df	_london.hea	nd(5)		
	df	_london.hea		Postcode	
	df 0			Postcode SE2	
	_	Location	Borough		
	0	Location Abbey Wood	Borough Bexley, Greenwich	SE2	
	0	Location Abbey Wood Acton	Bexley, Greenwich Ealing, Hammersmith and Fulham	SE2 W3	
In [32]: Out[32]:	0 1 2	Location Abbey Wood Acton Acton	Bexley, Greenwich Ealing, Hammersmith and Fulham Ealing, Hammersmith and Fulham	SE2 W3 W4	

```
In [87]: df_se.head(10)
```

Out[87]:

	Location	Borough	Postcode
0	Abbey Wood	Bexley, Greenwich	SE2
1	Crofton Park	Lewisham	SE4
2	Crossness	Bexley	SE2
3	Crystal Palace	Bromley	SE19
4	Crystal Palace	Bromley	SE20
5	Crystal Palace	Bromley	SE26
6	Denmark Hill	Southwark	SE5
7	Deptford	Lewisham	SE8
8	Dulwich	Southwark	SE21
9	East Dulwich	Southwark	SE22

Now,data is ready. df_se is the data we will focus on.

Assumption 5: This assumption will focus on the demography of London where there are predominantly more multicultural groups. The top 5 Black Africans are shown below:

```
In [88]:
         demograph link = 'https://en.wikipedia.org/wiki/Demography of London'
         headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:64.0) G
         ecko/20100101 Firefox/64.0'}
         demograph_page = requests.get(demograph_link, headers = headers)
         soup1 = BeautifulSoup(demograph_page.content, 'html.parser')
         table1 = soup1.find('table', {'class':'wikitable sortable'}).tbody
         rows1 = table1.find all('tr')
         columns1 = [i.text.replace('\n', '')
                     for i in rows1[0].find all('th')]
In [89]: columns1
Out[89]: ['Local authority', 'White', 'Mixed', 'Asian', 'Black', 'Other']
         demo london = pd.DataFrame(columns = columns1)
In [90]:
In [91]:
         demo_london.head(5)
Out[91]:
            Local authority White Mixed Asian Black Other
```

```
In [92]: for j in range(1, len(rows1)):
              tds1 = rows1[j].find all('td')
              if len(tds1) == 7:
                  values1 = [tds1[0].text, tds1[1].text, tds1[2].text.replace('\n', ''.r
          eplace('\xa0','')), tds1[3].text, tds1[4].text.replace('\n', ''.replace('\xa0'
          ,'')), tds1[5].text.replace('\n', ''.replace('\xa0',''))]
              else:
                  values1 = [td1.text.replace('\n', '').replace('\xa0','') for td1 in td
          s1]
                  demo london = demo london.append(pd.Series(values1, index = columns1),
          ignore index = True)
                  demo london
In [93]:
          demo london['Black'] = demo london['Black'].astype('float')
In [94]:
          demo_london_sorted = demo_london.sort_values(by='Black', ascending = False)
In [95]:
          demo_london_sorted.head(5)
Out[95]:
              Local authority White Mixed Asian
                                               Black Other
           22
                   Lewisham
                             53.5
                                     7.4
                                           9.3
                                                27.2
                                                        2.6
           27
                  Southwark
                             54.3
                                     6.2
                                           9.4
                                                26.9
                                                        3.3
           21
                    Lambeth
                             57.1
                                     7.6
                                           6.9
                                                25.9
                                                        2.4
                                                23.1
                                                        5.3
           11
                    Hackney
                             54.7
                                     6.4
                                          10.5
           7
                    Croydon
                             55.1
                                     6.6
                                          16.4
                                                20.2
                                                        1.8
```

Assumption 6: Our next assumption will be based on the top 5 areas will significantly high "Black", "Mixed" and other races. These leaves us with Lewisham, Southwark, Lambeth, Hackney and Croydon.

In [96]: df_se

Out[96]:

	Location	Borough	Postcode
0	Abbey Wood	Bexley, Greenwich	SE2
1	Crofton Park	Lewisham	SE4
2	Crossness	Bexley	SE2
3	Crystal Palace	Bromley	SE19
4	Crystal Palace	Bromley	SE20
5	Crystal Palace	Bromley	SE26
6	Denmark Hill	Southwark	SE5
7	Deptford	Lewisham	SE8
8	Dulwich	Southwark	SE21
9	East Dulwich	Southwark	SE22
10	Elephant and Castle	Southwark	SE1
11	Elephant and Castle	Southwark	SE11
12	Elephant and Castle	Southwark	SE17
13	Eltham	Greenwich	SE9
14	Falconwood	Bexley, Greenwich	SE9
15	Bankside	Southwark	SE1
16	Forest Hill	Lewisham	SE23
17	Gipsy Hill	Lambeth	SE19
18	Gipsy Hill	Lambeth	SE27
19	Greenwich	Greenwich	SE10
20	Grove Park	Lewisham	SE12
21	Herne Hill	Lambeth	SE24
22	Hither Green	Lewisham	SE13
23	Honor Oak	Lewisham	SE23
24	Horn Park	Greenwich, Lewisham	SE12
25	Kennington	Lambeth, Southwark	SE11
26	Kidbrooke	Greenwich	SE3
27	Ladywell	Lewisham	SE4
28	Ladywell	Lewisham	SE13
29	Lambeth	Lambeth	SE1
30	Lee	Lewisham	SE12
31	Lewisham	Lewisham	SE13
32	Beckenham	Bromley	SE20
33	Longlands	Bexley	SE9
34	Maze Hill	Greenwich	SE10

	Location	Borough	Postcode
35	Middle Park	Greenwich	SE9
36	Mottingham	Bromley	SE9
37	New Cross	Lewisham	SE14
38	New Eltham	Greenwich	SE9
39	Newington	Southwark	SE1
40	Newington	Southwark	SE17
41	Nunhead	Southwark	SE15
42	Oval	Lambeth	SE11
43	Bellingham	Lewisham	SE6
44	Peckham	Southwark	SE15
45	Penge	Bromley	SE20
46	Plumstead	Greenwich	SE18
47	Rotherhithe	Southwark	SE16
48	Selhurst	Croydon	SE25
49	Shooter's Hill	Greenwich	SE18
50	Bermondsey	Southwark	SE1
51	South Norwood	Croydon	SE25
52	Southend	Lewisham	SE6
53	St Johns	Lewisham	SE4
54	Bexleyheath (also Bexley New Town)	Bexley	SE2
55	Surrey Quays	Southwark	SE16
56	Sydenham (also Lower Sydenham, Upper Sydenham)	Lewisham, Bromley	SE26
57	Sydenham Hill	Lewisham, Southwark	SE21
58	Sydenham Hill	Lewisham, Southwark	SE26
59	Thamesmead	Bexley, Greenwich	SE28
60	Thamesmead	Bexley, Greenwich	SE2
61	Tulse Hill	Lambeth	SE24
62	Tulse Hill	Lambeth	SE27
63	Upper Norwood	Croydon	SE19
64	Walworth	Southwark	SE17
65	Well Hall	Greenwich	SE9
66	Blackheath	Lewisham	SE3
67	West Heath	Bexley	SE2
68	Blackheath Royal Standard	Greenwich	SE3
69	Blackheath Royal Standard	Greenwich	SE12
70	West Norwood	Lambeth	SE27

					Location	Borou	gh Postcode
	71			W	estcombe Park	Greenwi	ch SE3
	72	!			Woolwich	Greenwi	ch SE18
	73	}			Brixton	Lambe	th SE5
	74	ļ			Brockley	Lewisha	m SE4
	75	;			Camberwell	Southwa	rk SE5
	76	;			Catford	Lewisha	m SE6
	77	•			Charlton	Greenwi	ch SE7
	78	}			Anerley	Broml	ey SE20
	79)			Chinbrook	Lewisha	m SE12
In [45]: Out[45]:	df _.	_se_top.hea		Postcode			
	0	Crofton Park	Lewisham	SE4			
	1	Denmark Hill	Southwark	SE5			
	2	Deptford	Lewisham	SE8			
	3	Dulwich	Southwark	SE21			
	4	East Dulwich	Southwark	SE22			
In [47]:	df	_se.shape					
Out[47]:		ð, 3)					

We have our working dataframe to be df_se_top to work with.

Dataset 2:

In obtaining the location data of the locations, the Geocoder package is used with the arcgis_geocoder to obtain the latitude and longitude of the needed locations.

```
In [48]: # Geocoder starts here
# Defining a function to use --> get_latlng()'''
def get_latlng(arcgis_geocoder):

    # Initialize the Location (lat. and Long.) to "None"
    lat_lng_coords = None

# While Loop helps to create a continous run until all the Location coordinates are geocoded
    while(lat_lng_coords is None):
        g = geocoder.arcgis('{}, London, United Kingdom'.format(arcgis_geocoder))

        lat_lng_coords = g.latlng
        return lat_lng_coords
# Geocoder ends here
```

Testing the function above for a sample postcode - SE2.

```
In [49]: sample = get_latlng('SE2')
sample
Out[49]: [51.492450000000076, 0.12127000000003818]
```

And reverse geocoding this, using the geocodefarm geocoder, gives the following:

```
In [50]: gg = geocoder.geocodefarm(sample, method = 'reverse')
gg
Out[50]: <[OK] Geocodefarm - Reverse [Harrow Manor Way, London, SE2 9SW, United Kingdo m]>
```

So, we are certain that the geocoder works fine. So we proceed to applying it to our dataframe df se top.

```
In [51]: start = time.time()

postal_codes = df_se_top['Postcode']
    coordinates = [get_latlng(postal_code) for postal_code in postal_codes.tolist
    ()]

end = time.time()
    print("Time of execution: ", end - start, "seconds")
```

Then we proceed to store the location data - latitude and longitude as follows. The obtained coordinates are then joined to df_se_topto create new data frame.

Time of execution: 23.727686405181885 seconds

```
In [52]: df se loc = df se top
          # The obtained coordinates (latitude and longitude) are joined with the datafr
          ame as shown
          df se coordinates = pd.DataFrame(coordinates, columns = ['Latitude', 'Longitud')
          e'])
          df se loc['Latitude'] = df se coordinates['Latitude']
          df se loc['Longitude'] = df se coordinates['Longitude']
In [53]: df se loc.head(5)
Out[53]:
                                            Latitude Longitude
                Location
                          Borough Postcode
             Crofton Park
                         Lewisham
                                       SE4 51.46268
                                                      -0.03558
             Denmark Hill
                        Southwark
                                       SE5 51.47480
                                                      -0.09313
           2
                 Deptford
                         Lewisham
                                       SE8 51.48114
                                                      -0.02467
                                      SE21 51.44100
                                                      -0.08897
           3
                 Dulwich Southwark
            East Dulwich Southwark
                                      SE22 51.45256
                                                      -0.07076
In [54]: | df_se_loc.to_csv('SELondonLocationsCoordinates.csv', index = False)
In [55]: df_se_loc.shape
```

Dataset 3:

Out[55]: (46, 5)

Single Neighbourhood — An initial exploration of a single Neighbourhood within the London area was done to examine the Foursquare workability. The Lewisham Borough postcode SE13 and Location - Lewisham is used for this.

```
In [56]: # Resets the current index to a new
se_df = df_se_loc.reset_index().drop('index', axis = 1)
se_df.loc[se_df['Location'] == 'Lewisham']

Out[56]:
    Location Borough Postcode Latitude Longitude

20 Lewisham Lewisham SE13 51.46196 -0.00754
```

Now, let's use the Lewisham with the index location 20 as shown below:

```
In [57]: lewisham_lat = se_df.loc[20, 'Latitude']
    lewisham_long = se_df.loc[20, 'Longitude']
    lewisham_loc = se_df.loc[20, 'Location']
    lewisham_postcode = se_df.loc[20, 'Postcode']
    print('The latitude and longitude values of {} with postcode {}, are {}, {}.'.
    format(lewisham_loc, lewisham_postcode, lewisham_lat, lewisham_long))
```

The latitude and longitude values of Lewisham with postcode SE13, are 51.4619 6000000003, -0.00753999999949032.

Let's explore the top 100 venues that are within a 2000 metres radius of Lewisham. And then, let's create the GET request URL, and then the url is named. Since there is a limit to Foursquare usage → https://developer.foursquare.com/docs/api/troubleshooting/rate-limits (https://developer.foursquare.com/docs/api/troubleshooting/rate-limits)

3. Methodology

3.1 Data Exploration

An initial exploration of a single Neighbourhood within the London area was done to examine the Foursquare workability. The Lewisham Borough postcode SE13 and Location - Lewisham is used for this.

```
In [58]: # Resets the current index to a new
se_df = df_se_loc.reset_index().drop('index', axis = 1)
```

In [60]: se_df

Out[60]:

	Location	Borough	Postcode	Latitude	Longitude
0	Crofton Park	Lewisham	SE4	51.46268	-0.03558
1	Denmark Hill	Southwark	SE5	51.47480	-0.09313
2	Deptford	Lewisham	SE8	51.48114	-0.02467
3	Dulwich	Southwark	SE21	51.44100	-0.08897
4	East Dulwich	Southwark	SE22	51.45256	-0.07076
5	Elephant and Castle	Southwark	SE1	51.49960	-0.09613
6	Elephant and Castle	Southwark	SE11	51.49084	-0.11108
7	Elephant and Castle	Southwark	SE17	51.48764	-0.09542
8	Bankside	Southwark	SE1	51.49960	-0.09613
9	Forest Hill	Lewisham	SE23	51.44122	-0.04764
10	Gipsy Hill	Lambeth	SE19	51.41990	-0.08808
11	Gipsy Hill	Lambeth	SE27	51.43407	-0.10375
12	Grove Park	Lewisham	SE12	51.44759	0.01350
13	Herne Hill	Lambeth	SE24	51.45529	-0.09928
14	Hither Green	Lewisham	SE13	51.46196	-0.00754
15	Honor Oak	Lewisham	SE23	51.44122	-0.04764
16	Ladywell	Lewisham	SE4	51.46268	-0.03558
17	Ladywell	Lewisham	SE13	51.46196	-0.00754
18	Lambeth	Lambeth	SE1	51.49960	-0.09613
19	Lee	Lewisham	SE12	51.44759	0.01350
20	Lewisham	Lewisham	SE13	51.46196	-0.00754
21	New Cross	Lewisham	SE14	51.47489	-0.04038
22	Newington	Southwark	SE1	51.49960	-0.09613
23	Newington	Southwark	SE17	51.48764	-0.09542
24	Nunhead	Southwark	SE15	51.47218	-0.06779
25	Oval	Lambeth	SE11	51.49084	-0.11108
26	Bellingham	Lewisham	SE6	51.43722	-0.01868
27	Peckham	Southwark	SE15	51.47218	-0.06779
28	Rotherhithe	Southwark	SE16	51.49574	-0.05157
29	Selhurst	Croydon	SE25	51.39925	-0.07414
30	Bermondsey	Southwark	SE1	51.49960	-0.09613
31	South Norwood	Croydon	SE25	51.39925	-0.07414
32	Southend	Lewisham	SE6	51.43722	-0.01868
33	St Johns	Lewisham	SE4	51.46268	-0.03558
34	Surrey Quays	Southwark	SE16	51.49574	-0.05157

	Location	Borough	Postcode	Latitude	Longitude
35	Tulse Hill	Lambeth	SE24	51.45529	-0.09928
36	Tulse Hill	Lambeth	SE27	51.43407	-0.10375
37	Upper Norwood	Croydon	SE19	51.41990	-0.08808
38	Walworth	Southwark	SE17	51.48764	-0.09542
39	Blackheath	Lewisham	SE3	51.47138	0.02338
40	West Norwood	Lambeth	SE27	51.43407	-0.10375
41	Brixton	Lambeth	SE5	51.47480	-0.09313
42	Brockley	Lewisham	SE4	51.46268	-0.03558
43	Camberwell	Southwark	SE5	51.47480	-0.09313
44	Catford	Lewisham	SE6	51.43722	-0.01868
45	Chinbrook	Lewisham	SE12	51.44759	0.01350

```
In [61]: se_df.loc[se_df['Location'] == 'Lewisham']
```

Out[61]:

	Location	Borough	Postcode	Latitude	Longitude
20	Lewisham	Lewisham	SE13	51.46196	-0.00754

```
In [62]: se_df.loc[20, 'Location']
```

Out[62]: 'Lewisham'

The latitude and longitude values of Lewisham with postcode SE13, are 51.4619 6000000003, -0.007539999999949032.

```
In [64]: # Credentials are provided already for this part
         LIMIT = 100 # limit of number of venues returned by Foursquare API
         radius = 2000 # define radius
         url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client secre
         t={}&v={}&ll={},{}&radius={}&limit={}'.format(
              '5VE0TJS5ZJC2YCCBP5R5UE5F0ZVFBHKHM2PK1DPDNSGKAQK3',
              '2R0VDFNSWDVUWEBXPR0YMJSYJYEF1WLJKWPGZ5TIZF41QRTU',
             '20180604',
             lewisham lat,
             lewisham_long,
             radius,
             LIMIT)
         # displays URL
         url
         'https://api.foursquare.com/v2/venues/explore?&client_id=5VE0TJS5ZJC2YCCBP5R5
Out[64]:
         UE5F0ZVFBHKHM2PK1DPDNSGKAOK3&client secret=2R0VDFNSWDVUWEBXPR0YMJSYJYEF1WLJKW
         PGZ5TIZF41QRTU&v=20180604&l1=51.46196000000003,-0.007539999999949032&radius=2
         000&limit=100'
In [ ]: results = requests.get(url).json()
         results
In [66]: # function that extracts the category of the venue
         def get_category_type(row):
             try:
                  categories_list = row['categories']
             except:
                  categories list = row['venue.categories']
             if len(categories list) == 0:
                  return None
             else:
                  return categories list[0]['name']
```

The result will be structured pandas dataframe as shown below:

```
In [67]:
        venues = results['response']['groups'][0]['items']
         nearby venues = json normalize(venues) # flatten JSON
         # filter columns
         filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'v
         enue.location.lng']
         nearby_venues = nearby_venues.loc[:, filtered_columns]
         # filter the category for each row
         nearby venues['venue.categories'] = nearby venues.apply(get category type, axi
         s=1)
         # clean columns
         nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns]
         /home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/ipykernel_laun
         cher.py:3: FutureWarning: pandas.io.json.json_normalize is deprecated, use pa
         ndas.json normalize instead
           This is separate from the ipykernel package so we can avoid doing imports u
         ntil
         nearby_venues_lewisham_unique = nearby_venues['categories'].value_counts().to_
In [68]:
         frame(name='Count')
In [69]: | nearby_venues_lewisham_unique.head(5)
Out[69]:
```

	Count
Pub	13
Café	8
Gastropub	6
Park	5
Garden	4

Even though there are restaurants are the Lewisham area, they are not even in the top 5 venues. It should be noted that since we are limited by data availability, our perspectives will be on what we have.

```
In [70]: print('{} venues were returned by Foursquare.'.format(nearby_venues.shape[0]))
```

100 venues were returned by Foursquare.

3.1.2 Multiple Neighbourhoods

Now let's explore (Multiple) Neighborhoods in the South East London area.

To do this, the function getNearbyVenues is used and it's created to repeat the same process for all neighborhoods.

```
def getNearbyVenues(names, latitudes, longitudes, radius=2000):
In [71]:
             venues list=[]
             for name, lat, lng in zip(names, latitudes, longitudes):
                  print(name)
                 # create the API request URL
                 url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&clie
         nt_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
                      '5VE0TJS5ZJC2YCCBP5R5UE5F0ZVFBHKHM2PK1DPDNSGKAQK3',
                      '2R0VDFNSWDVUWEBXPR0YMJSYJYEF1WLJKWPGZ5TIZF41QRTU',
                      '20180604',
                      lat,
                      lng,
                      radius,
                      LIMIT)
                 # make the GET request
                  results = requests.get(url).json()["response"]['groups'][0]['items']
                 # return only relevant information for each nearby venue
                 venues list.append([(
                      name,
                      lat,
                      lng,
                      v['venue']['name'],
                      v['venue']['location']['lat'],
                      v['venue']['location']['lng'],
                      v['venue']['categories'][0]['name']) for v in results])
             nearby venues = pd.DataFrame([item for venue list in venues list for item
         in venue list])
             nearby_venues.columns = ['Neighbourhood',
                            'Neighbourhood Latitude',
                            'Neighbourhood Longitude',
                            'Venue',
                            'Venue Latitude',
                            'Venue Longitude',
                            'Venue Category']
             return(nearby venues)
```

The created function - getNearbyVenues is then used on each neighbourhoods. And creates a new dataframe called london venues.

Crofton Park Denmark Hill Deptford Dulwich East Dulwich Elephant and Castle Elephant and Castle Elephant and Castle Bankside Forest Hill Gipsy Hill Gipsy Hill Grove Park Herne Hill Hither Green Honor Oak Ladywell Ladywell Lambeth Lee Lewisham New Cross Newington Newington Nunhead Oval Bellingham Peckham Rotherhithe Selhurst Bermondsey South Norwood Southend St Johns Surrey Quays Tulse Hill Tulse Hill Upper Norwood Walworth Blackheath West Norwood Brixton Brockley Camberwell Catford

Chinbrook

```
In [74]:
           len(se_venues)
Out[74]: 4237
In [75]:
           se_venues['Neighbourhood'].value_counts()
           se venues.to csv('se venues.csv')
In [76]:
           se_venues.head(5)
Out[76]:
                                Neighbourhood
                                                Neighbourhood
                                                                                 Venue
                                                                                             Venue
                                                                                                        Venu
               Neighbourhood
                                                                      Venue
                                      Latitude
                                                     Longitude
                                                                                Latitude
                                                                                         Longitude
                                                                                                     Catego
            0
                   Crofton Park
                                      51.46268
                                                      -0.03558
                                                                 The Orchard
                                                                              51.463678
                                                                                          -0.035699
                                                                                                     Gastropi
                                                                                                        Fish
                                                                   Brockley's
            1
                   Crofton Park
                                      51.46268
                                                       -0.03558
                                                                              51.459457
                                                                                          -0.033868
                                                                                                         Chi
                                                                        Rock
                                                                                                         Sho
                                                                                                        Coffe
                                                                   Browns Of
                                                                                          -0.037346
            2
                   Crofton Park
                                      51.46268
                                                       -0.03558
                                                                              51.464513
                                                                     Brockley
                                                                                                         Sho
            3
                   Crofton Park
                                                                Waterintobeer
                                                                              51.463712
                                                                                                    Beer Sto
                                      51.46268
                                                       -0.03558
                                                                                          -0.038826
                                                                                                        India
                   Crofton Park
                                      51.46268
                                                      -0.03558
                                                                   Saka Maka 51.464826
                                                                                         -0.036437
                                                                                                    Restaura
```

The number of venues returned for each neighbourhoods is then explored as follows:

In [77]: se_venues.groupby('Neighbourhood').count()

Out[77]:

	Neighbourhood Latitude	Neighbourhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighbourhood						
Bankside	100	100	100	100	100	100
Bellingham	70	70	70	70	70	70
Bermondsey	100	100	100	100	100	100
Blackheath	89	89	89	89	89	89
Brixton	100	100	100	100	100	100
Brockley	100	100	100	100	100	100
Camberwell	100	100	100	100	100	100
Catford	70	70	70	70	70	70
Chinbrook	54	54	54	54	54	54
Crofton Park	100	100	100	100	100	100
Denmark Hill	100	100	100	100	100	100
Deptford	100	100	100	100	100	100
Dulwich	100	100	100	100	100	100
East Dulwich	80	80	80	80	80	80
Elephant and Castle	300	300	300	300	300	300
Forest Hill	100	100	100	100	100	100
Gipsy Hill	200	200	200	200	200	200
Grove Park	54	54	54	54	54	54
Herne Hill	100	100	100	100	100	100
Hither Green	100	100	100	100	100	100
Honor Oak	100	100	100	100	100	100
Ladywell	200	200	200	200	200	200
Lambeth	100	100	100	100	100	100
Lee	54	54	54	54	54	54
Lewisham	100	100	100	100	100	100
New Cross	100	100	100	100	100	100
Newington	200	200	200	200	200	200
Nunhead	100	100	100	100	100	100
Oval	100	100	100	100	100	100
Peckham	100	100	100	100	100	100
Rotherhithe	100	100	100	100	100	100
Selhurst	48	48	48	48	48	48
South Norwood	48	48	48	48	48	48

	Neighbourhood Latitude	Neighbourhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighbourhood						
Southend	70	70	70	70	70	70
St Johns	100	100	100	100	100	100
Surrey Quays	100	100	100	100	100	100
Tulse Hill	200	200	200	200	200	200
Upper Norwood	100	100	100	100	100	100
Walworth	100	100	100	100	100	100
West Norwood	100	100	100	100	100	100

```
In [78]: print('There are {} uniques categories.'.format(len(se_venues['Venue Category'
].unique())))
```

There are 198 uniques categories.

```
In [79]: se_venue_unique_count = se_venues['Venue Category'].value_counts().to_frame(na
    me='Count')
```

In [80]: se_venue_unique_count.head(5)

Out[80]:

	Count
Pub	433
Coffee Shop	301
Café	266
Park	198
Grocery Store	148

In [81]: | se_venue_unique_count.describe()

Out[81]:

	Count
count	198.000000
mean	21.398990
std	47.518069
min	1.000000
25%	4.000000
50%	8.000000
75%	19.000000
max	433.000000

For this section, the neighbourhoods in South East London will be clustered based on the processed data obtained above.

3.2 Clustering

Map Visualization

```
In [82]: address = 'London, United Kingdom'

geolocator = Nominatim(user_agent="ln_explorer")
    location = geolocator.geocode(address)
    latitude = location.latitude
    longitude = location.longitude
    print('The geograpical coordinate of London are {}, {}.'.format(latitude, long itude))
```

The geograpical coordinate of London are 51.5073219, -0.1276474.

```
In [99]: # df_London_coordinates
map_london = folium.Map(location = [latitude, longitude], zoom_start = 12)
map_london
```

Out[99]:

Leaflet (http://leafletjs.com)

```
In [84]: # Adding markers to map
         for lat, lng, borough, loc in zip(se_df['Latitude'],
                                            se_df['Longitude'],
                                            se df['Borough'],
                                            se df['Location']):
             label = '{} - {}'.format(loc, borough)
             label = folium.Popup(label, parse html=True)
             folium.CircleMarker(
                  [lat, lng],
                  radius=5,
                  popup=label,
                  color='blue',
                 fill=True,
                 fill color='#3186cc',
                 fill_opacity=0.7).add_to(map_london)
         display(map london)
```


Leaflet (http://leafletjs.com)

```
In [85]: type(se_df)
Out[85]: pandas.core.frame.DataFrame
In [97]: # one hot encoding
    se_onehot = pd.get_dummies(se_venues[['Venue Category']], prefix = "", prefix_
    sep = "")
In [98]: # add neighborhood column back to dataframe
    se_onehot['Neighbourhood'] = se_venues['Neighbourhood']
In [103]: # move neighborhood column to the first column
    fixed_columns = [se_onehot.columns[-1]] + list(se_onehot.columns[:-1])
    se_onehot = se_onehot[fixed_columns]
```

```
In [ ]: se_onehot.loc[se_onehot['African Restaurant'] != 0]
In [ ]: se_onehot.loc[se_onehot['Neighbourhood'] == 'Lewisham']
In [106]: se_onehot.to_csv('selondon_onehot.csv', index = False)
In [107]: se_onehot.shape
Out[107]: (4237, 199)
```

Regrouping and Category Statistics

```
In [109]: se_grouped = se_onehot.groupby('Neighbourhood').mean().reset_index()
se_grouped.head()
```

Out[109]:

	Neighbourhood	Zoo Exhibit	African Restaurant	American Restaurant	Antique Shop	Aquarium	Argentinian Restaurant	Art Gallery	N
0	Bankside	0.000000	0.00	0.000000	0.0	0.0	0.010000	0.01	
1	Bellingham	0.000000	0.00	0.000000	0.0	0.0	0.000000	0.00	
2	Bermondsey	0.000000	0.00	0.000000	0.0	0.0	0.010000	0.01	
3	Blackheath	0.011236	0.00	0.011236	0.0	0.0	0.011236	0.00	
4	Brixton	0.000000	0.01	0.000000	0.0	0.0	0.000000	0.01	
4									•

```
In [110]: print("Before One-hot encoding:", se_df.shape)
    print("After One-hot encoding:", se_grouped.shape)
```

Before One-hot encoding: (46, 5) After One-hot encoding: (40, 199)

```
In [111]: se_grouped.to_csv('london_grouped.csv', index = False)
```

```
In [112]:     num_top_venues = 5 # Top common venues needed

for hood in se_grouped['Neighbourhood']:
     print("----"+hood+"----")
     temp = se_grouped[se_grouped['Neighbourhood'] == hood].T.reset_index()
     temp.columns = ['venue', 'freq']
     temp = temp.iloc[1:]
     temp['freq'] = temp['freq'].astype(float)
     temp = temp.round({'freq': 2})
     print(temp.sort_values('freq', ascending = False).reset_index(drop = True)
     .head(num_top_venues))
     print('\n')
```

```
----Bankside----
                venue freq
          Coffee Shop 0.08
1
                  Pub
                       0.06
2
                Hotel 0.06
3
   Italian Restaurant 0.05
4
              Theater
                       0.04
----Bellingham----
           venue freq
0
   Grocery Store 0.13
            Park 0.09
1
2
    Supermarket 0.09
3
            Café
                  0.06
4
                 0.06
             Pub
----Bermondsey----
                venue freq
          Coffee Shop 0.08
0
1
                  Pub 0.06
2
                Hotel 0.06
3
   Italian Restaurant 0.05
4
              Theater
                       0.04
----Blackheath----
           venue freq
0
             Pub 0.15
1
  Grocery Store 0.07
2
            Park 0.06
3
    Coffee Shop
                 0.06
4
     Supermarket
                 0.04
----Brixton----
                       venue freq
0
                        Café 0.08
                              0.06
1
                 Coffee Shop
2
                        Park 0.06
3
                              0.05
                         Pub
  Middle Eastern Restaurant 0.04
----Brockley----
         venue freq
   Coffee Shop 0.13
0
1
           Pub
               0.12
2
          Café
               0.07
3
          Park 0.06
4
     Gastropub
               0.04
----Camberwell----
                       venue freq
```

Café

0.08

```
Coffee Shop 0.06
1
2
                        Park 0.06
3
                         Pub
                              0.05
4 Middle Eastern Restaurant 0.04
----Catford----
           venue freq
   Grocery Store 0.13
1
            Park 0.09
2
     Supermarket
                  0.09
3
            Café
                  0.06
4
             Pub
                 0.06
----Chinbrook----
                venue freq
0
                  Pub
                       0.13
1
        Grocery Store 0.13
2
                 Park
                       0.09
3
                 Café
                       0.07
  Italian Restaurant 0.06
----Crofton Park----
         venue freq
   Coffee Shop
               0.13
1
                0.12
           Pub
2
          Café 0.07
3
          Park 0.06
4
     Gastropub 0.04
----Denmark Hill----
                       venue freq
                        Café 0.08
0
1
                 Coffee Shop 0.06
2
                        Park 0.06
3
                         Pub
                             0.05
  Middle Eastern Restaurant
                              0.04
----Deptford----
         venue freq
0
           Pub
               0.13
1
   Coffee Shop
               0.06
2
          Café
               0.06
3
           Bar
                0.05
4
          Park 0.03
----Dulwich----
         venue freq
           Pub 0.14
0
1
          Café
               0.08
2
        Bakery
                0.06
3
  Coffee Shop
               0.06
```

4 Park 0.06

```
----East Dulwich----
                venue
                      freq
                       0.12
                  Pub
1
                 Café 0.09
2
          Pizza Place 0.08
          Coffee Shop 0.05
  Italian Restaurant 0.05
----Elephant and Castle----
                venue freq
0
                  Pub
                      0.08
1
                       0.08
                 Café
2
          Coffee Shop 0.07
3
                Hotel 0.05
  Italian Restaurant 0.03
----Forest Hill----
         venue freq
0
           Pub
               0.15
1
  Coffee Shop
               0.07
2
          Café
               0.06
3
          Park 0.05
   Supermarket
               0.05
----Gipsy Hill----
           venue freq
0
             Pub 0.12
1
    Coffee Shop 0.08
2
   Grocery Store
                  0.06
3
            Café 0.05
4
            Park 0.05
----Grove Park----
                venue freq
0
                  Pub 0.13
1
       Grocery Store
                       0.13
2
                 Park
                       0.09
                 Café
                       0.07
  Italian Restaurant 0.06
----Herne Hill----
         venue freq
  Coffee Shop
               0.10
               0.06
1
          Café
2
           Pub
               0.06
3
        Market 0.04
  Pizza Place 0.04
```

```
----Hither Green----
       venue freq
         Pub 0.13
0
1
        Café 0.08
2
  Gastropub 0.06
3
        Park 0.05
4
     Garden 0.04
----Honor Oak----
         venue freq
0
           Pub
               0.15
  Coffee Shop
               0.07
1
2
          Café
               0.06
3
          Park 0.05
  Supermarket 0.05
----Ladywell----
         venue freq
           Pub
               0.12
  Coffee Shop
               0.08
2
          Café 0.08
3
          Park 0.06
4
    Gastropub 0.05
----Lambeth----
                venue freq
0
          Coffee Shop 0.08
1
                  Pub
                      0.06
2
               Hotel 0.06
3
  Italian Restaurant 0.05
4
              Theater 0.04
----Lee----
                venue frea
                  Pub 0.13
1
       Grocery Store
                      0.13
2
                 Park 0.09
3
                 Café 0.07
  Italian Restaurant 0.06
----Lewisham----
       venue freq
0
        Pub 0.13
1
        Café 0.08
2
   Gastropub 0.06
3
        Park 0.05
4
     Garden 0.04
----New Cross----
                venue freq
                  Pub 0.12
```

```
Coffee Shop 0.08
1
2
                 Café
                       0.07
3
   Italian Restaurant
                       0.04
4
                  Bar
                       0.04
----Newington----
```

```
venue freq
```

- 0.08 0 Coffee Shop
- 1 Pub 0.08
- 2 0.05 Café
- 3 Theater 0.04
- 4 Hotel 0.04

----Nunhead----

- venue freq
- 0.10 0 Pub
- 1 Pizza Place 0.06
- 2 Café 0.06
- 3 Park 0.05
- Coffee Shop 0.05

----Oval----

- venue freq
- 0 Café 0.13
- 1 Pub 0.08
- 2 Hotel 0.07
- 3 Coffee Shop 0.05
- 4 Park 0.05

----Peckham----

- venue freq
- 0.10 Pub
- 1 Pizza Place 0.06
- 2 Café 0.06
- 3 Park 0.05
- Coffee Shop 0.05

----Rotherhithe----

- venue freq
- 0 Pub 0.10
- 1 Brewery 0.08
- 2 Coffee Shop 0.06
- 3 Park 0.06
- 4 Bar 0.05

----Selhurst----

- venue freq
- 0.12 Pub
- 1 **Grocery Store** 0.10
- 2 Café 0.08
- 3 Coffee Shop 0.06

4 Supermarket 0.06

```
----South Norwood----
           venue freq
             Pub
                  0.12
1
  Grocery Store
                  0.10
2
            Café
                 0.08
3
     Coffee Shop
                 0.06
4
     Supermarket 0.06
----Southend----
           venue
                  freq
   Grocery Store
                  0.13
1
                  0.09
            Park
2
                 0.09
     Supermarket
3
            Café
                  0.06
4
             Pub
                 0.06
----St Johns----
         venue freq
   Coffee Shop 0.13
1
           Pub
                0.12
2
          Café 0.07
3
          Park 0.06
4
                0.04
     Gastropub
----Surrey Quays----
         venue freq
0
                0.10
           Pub
1
       Brewery
                0.08
2
   Coffee Shop
                0.06
3
          Park
                0.06
4
           Bar
                0.05
----Tulse Hill----
         venue freq
  Coffee Shop 0.10
0
                0.10
1
           Pub
2
          Café 0.06
3
       Brewery
                0.04
  Pizza Place 0.04
----Upper Norwood----
                venue
                      freq
                       0.12
0
                  Pub
                       0.06
1
          Coffee Shop
2
                 Park
                      0.06
3
   Italian Restaurant
                       0.05
4
        Grocery Store 0.04
```

```
----Walworth----
               venue freq
                 Pub 0.11
         Coffee Shop 0.09
1
2
                Café 0.09
3 Italian Restaurant 0.04
         Pizza Place 0.03
----West Norwood----
          venue freq
0
            Pub 0.13
1
  Grocery Store 0.09
2
    Coffee Shop 0.09
3
           Café 0.06
4
          Bakery 0.04
```

Creating new dataframe:

```
In [113]: | def return_most_common_venues(row, num_top_venues):
              row categories = row.iloc[1:]
              row categories sorted = row categories.sort values(ascending = False)
              return row_categories_sorted.index.values[0:num_top_venues]
In [114]: | num_top_venues = 10
          indicators = ['st', 'nd', 'rd']
          # create columns according to number of top venues
          columns = ['Neighbourhood']
          for ind in np.arange(num top venues):
              try:
                  columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind
          ]))
              except:
                  columns.append('{}th Most Common Venue'.format(ind+1))
          # create a new dataframe
          neighbourhoods venues sorted = pd.DataFrame(columns=columns)
          neighbourhoods_venues_sorted['Neighbourhood'] = se_grouped['Neighbourhood']
          for ind in np.arange(se grouped.shape[0]):
              neighbourhoods venues sorted.iloc[ind, 1:] = return most common venues(se
          grouped.iloc[ind, :], num_top_venues)
          neighbourhoods_venues_sorted.to_csv('neighbourhoods_venues_sorted.csv', index
In [115]:
          = False)
In [116]:
          se_grouped_clustering = se_grouped.drop('Neighbourhood', 1)
```

Clustering of Neighbourhoods

```
In [117]: # set number of clusters
          kclusters = 5
          # run k-means clustering
          kmeans = KMeans(n clusters = kclusters, random state=0).fit(se grouped cluster
          ing)
          # check cluster labels generated for each row in the dataframe
          kmeans.labels_[0:10]
Out[117]: array([2, 1, 2, 3, 0, 0, 0, 1, 1, 0], dtype=int32)
In [118]: kmeans.labels [0:10]
Out[118]: array([2, 1, 2, 3, 0, 0, 0, 1, 1, 0], dtype=int32)
In [119]: # add clustering labels
          neighbourhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_)
In [120]:
          se_merged = se_df
In [121]: # match/merge SE London data with Latitude/Longitude for each neighborhood
          se_merged_latlong = se_merged.join(neighbourhoods_venues_sorted.set_index('Nei
          ghbourhood'), on = 'Location')
 In [ ]: | se_merged_latlong.head(3)
In [123]: | se clusters = se merged latlong
```

1. Elbow Method

```
In [125]: %matplotlib inline
   import matplotlib
   import numpy as np
```

```
In [126]:
          from sklearn.cluster import KMeans
          import matplotlib.pyplot as plt
          # SSE is initialize with empty values
          # n clusters is the "k"
          sse = \{\}
          for n cluster1 in range(2, 10):
              kmeans1 = KMeans(n_clusters = n_cluster1, max_iter = 500).fit(se_grouped_c
          lustering)
              se_grouped_clustering["clusters"] = kmeans1.labels_
              # The inertia is the sum of distances of samples to their closest cluster
           centre
              sse[n cluster1] = kmeans1.inertia
          plt.figure()
          plt.plot(list(sse.keys()), list(sse.values()))
          plt.xlabel("Number of Clusters, k")
          plt.ylabel("Sum of Squared Error, SSE")
          # vertical line
          plt.vlines(3, ymin = -2, ymax = 45, colors = 'red')
          plt.show()
```



```
In [131]: | # create map
          map clusters = folium.Map(location=[latitude, longitude], zoom start=11)
          # set color scheme for the clusters
          x = np.arange(kclusters)
          ys = [i + x + (i*x)**2  for i in range(kclusters)]
          colors array = cm.rainbow(np.linspace(0, 1, len(ys)))
          rainbow = [colors.rgb2hex(i) for i in colors array]
          # add markers to the map
          markers colors = []
          for lat, lon, poi, cluster in zip(se_clusters['Latitude'], se_clusters['Longit
          ude'], se_clusters['Location'], se_clusters['Cluster Labels']):
              label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=Tru
          e)
              folium.CircleMarker(
                   [lat, lon],
                   radius=20,
                   popup=label,
                   color=rainbow[cluster-1],
                   fill=True,
                  fill_color=rainbow[cluster-1],
                  fill_opacity=0.7).add_to(map_clusters)
          display(map_clusters)
```


Cluster 1

Out[129]:

	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th I Com V€
12	Lewisham	1	Grocery Store	Pub	Park	Café	Gym / Fitness Center	Italian Restaurant	Superma
19	Lewisham	1	Grocery Store	Pub	Park	Café	Gym / Fitness Center	Italian Restaurant	Superma
26	Lewisham	1	Grocery Store	Park	Supermarket	Pub	Café	Coffee Shop	Fast I Restai
32	Lewisham	1	Grocery Store	Park	Supermarket	Pub	Café	Coffee Shop	Fast I Restai
44	Lewisham	1	Grocery Store	Park	Supermarket	Pub	Café	Coffee Shop	Fast I Restai
45	Lewisham	1	Grocery Store	Pub	Park	Café	Gym / Fitness Center	Italian Restaurant	Superma
4									>

Cluster 2

Out[130]:

	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Mos Commo Venu
5	Southwark	2	Pub	Café	Coffee Shop	Hotel	Italian Restaurant	Theater	Par
6	Southwark	2	Pub	Café	Coffee Shop	Hotel	Italian Restaurant	Theater	Par
7	Southwark	2	Pub	Café	Coffee Shop	Hotel	Italian Restaurant	Theater	Par
8	Southwark	2	Coffee Shop	Hotel	Pub	Italian Restaurant	Theater	Seafood Restaurant	A Museur
18	Lambeth	2	Coffee Shop	Hotel	Pub	Italian Restaurant	Theater	Seafood Restaurant	A Museur
22	Southwark	2	Coffee Shop	Pub	Café	Italian Restaurant	Hotel	Theater	Pizz Plac
23	Southwark	2	Coffee Shop	Pub	Café	Italian Restaurant	Hotel	Theater	Pizz Plac
30	Southwark	2	Coffee Shop	Hotel	Pub	Italian Restaurant	Theater	Seafood Restaurant	A Museur
4									•

4. Result

The following are the highlights of the 5 clusters above:

- Pubs, Cafe, Coffee Shops are popular in the South East London.
- As for restaurants, the Italian Restaurants are very popular in the South East London area. Especially in Southwark and Lambeth areas.
- With the Lewisham area being the most condensed area of Africans in the South East Area, it is surprising to see how in the top 10 venues, you can barely see restaurants in the top 5 venues.
- Although, the Clusters have variations, a very visible presence is the predominance of pubs.

5. Discussion and Conclusion

It is very important to note that Clusters 1 and 2 (shown above) are the most viable clusters to create a brand African Restaurant. Their proximity to other amenities and accessibility to station are paramount. These 2 clusters do not have top restaurants that could rival their standards if they are created. And the proximity to resources needed is paramount as Lewisham and Lambeth are not far out from Peckham (under Southwark).

In conclusion, this project would have had better results if there were more data in terms of crime data within the area, traffic access and allowance of more venues exploration with the Foursquare (limited venues for free calls).

Also, getting the ratings and feedbacks of the current restaurants within the clusters would have helped in providing more insight into the best location.

+ F 3		
In I I:	l:	
+ [] •	J *	