United States CRIME ANALYSIS

Data Set Description:

There were multiple data sets used in this crime analysis. Individual crime data sets for the cities of Portland, Houston, Los Angeles, Atlanta, Seattle, Boston, and Chicago were collected from Kaggle for the years 2012 - 2017. Additionally, data sets containing weather data and weather descriptions were also obtained from Kaggle. Finally, a data set containing populations for the previously mentioned cities was used to calculate crime rates. All of this data was merged in order to find connections between weather and crime as well as day of the week and crime.

All the above datasets are merged together to result in a final dataset that contains:

Columns:

Datetime: Date and time of incident in hourly intervals

Offense_Num: Types of crime(1 = Theft, 2 = Burglary, 3 = assault , 4 = sex crimes , 5 = forgery, 6 = weapons , 7 = drug , 8 = fraud, 9 = arson , 10 = Kidnapping , 11 = Homicide , 12 = Harassment, 13 = Driving, 14 = Other

Offense_Type: Deatailed description of the crime

Temp: Temperatue in degrees Farenheit

Bins: The temperatures are classified into 10 degree bins in degrees Farenheit

TD_num: Types of weather conditions (1 = Thunderstorn, 2 = Drizzle, 3 = Rain, 4 = Snow, 5 = Atmosphere, 6 = Clear, 7 = Clouds)

Temp_des: Detailed description of the weather condition

Year: Year when crime occured

city: Name of the city where crime occured

Rows:

3,673,957 total rows

Data Preparation:

```
In [1]: # print all the outputs in a cell
    from IPython.core.interactiveshell import InteractiveShell
    InteractiveShell.ast_node_interactivity = "all"
    import seaborn as sns
    import pandas as pd
    import numpy as np
    %pylab inline

Populating the interactive namespace from numpy and matplotlib
In [2]: import warnings
```

```
In [2]: import warnings
warnings.filterwarnings("ignore")
```

```
In [3]: %autosave 0
```

Autosave disabled

CLEANING OF WEATHER DATA

Loading temperature data

Out[5]:

```
In [5]: df_temp.head(2)
```

	datetime	Portland	Seattle	Los Angeles	Houston	Chicago	Atlanta	Boston
0	2012-10-01 12:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	2012-10-01 13:00:00	282.08	281.8	291.87	288.27	284.01	294.03	287.17

Creating copy of temperature data

```
In [6]: df_temp_copy=df_temp.copy()
```

Dropping all Null Value Columns

```
In [7]:
        df temp copy = df temp copy.dropna(how='any',axis=0)
In [8]: | df temp copy.isna().any()
Out[8]: datetime
                        False
        Portland
                        False
        Seattle
                        False
        Los Angeles
                        False
        Houston
                        False
        Chicago
                        False
        Atlanta
                        False
        Boston
                        False
        dtype: bool
```

Changing Temperature into Farenheit

```
In [9]: df_temp_copy.Portland= 1.8 * (df_temp_copy['Portland'] - 273.15) +32
In [10]: df_temp_copy['Los Angeles']= 1.8 * (df_temp_copy['Los Angeles'] - 273.
15) +32
In [11]: df_temp_copy.Houston= 1.8 * (df_temp_copy['Houston'] - 273.15) +32
In [12]: df_temp_copy.Chicago= 1.8 * (df_temp_copy['Chicago'] - 273.15) +32
In [13]: df_temp_copy.Atlanta= 1.8 * (df_temp_copy['Atlanta'] - 273.15) +32
In [14]: df_temp_copy.Boston= 1.8 * (df_temp_copy['Boston'] - 273.15) +32
In [15]: df_temp_copy.Seattle= 1.8 * (df_temp_copy['Seattle'] - 273.15) +32
```

```
In [16]: df_temp_copy.head(2)
```

Out[16]:

	datetime	Portland	Seattle	Los Angeles	Houston	Chicago	Atlanta	Bosto
1	2012-10- 01 13:00:00	48.074000	47.57000	65.696000	59.216000	51.548000	69.584000	57.2360
2	2012-10- 01 14:00:00	48.079854	47.56499	65.692734	59.265636	51.628444	69.593615	57.2649

Creating Temperature bins

Adding temperature bins for all the cities

```
In [18]: df_temp_copy['Portland_bin']=pd.cut(x=df_temp_copy.Portland,bins=temp_
bins,right=True)
```

- In [19]: df_temp_copy['Los Angeles_bin']=pd.cut(x=df_temp_copy['Los Angeles'],b
 ins=temp_bins,right=True)
- In [20]: df_temp_copy['Houston_bin']=pd.cut(x=df_temp_copy.Houston,bins=temp_bi
 ns,right=True)
- In [21]: df_temp_copy['Chicago_bin']=pd.cut(x=df_temp_copy.Chicago,bins=temp_bi
 ns,right=True)
- In [22]: df_temp_copy['Atlanta_bin']=pd.cut(x=df_temp_copy.Atlanta,bins=temp_bi
 ns,right=True)
- In [24]: df_temp_copy['Seattle_bin']=pd.cut(x=df_temp_copy.Seattle,bins=temp_bi
 ns,right=True)

```
In [25]: df_temp_copy.head(2)
```

Out[25]:

	datetime	Portland	Seattle	Los Angeles	Houston	Chicago	Atlanta	Bosto
1	2012-10- 01 13:00:00	48.074000	47.57000	65.696000	59.216000	51.548000	69.584000	57.2360
2	2012-10- 01 14:00:00	48.079854	47.56499	65.692734	59.265636	51.628444	69.593615	57.2649

Loading Weather Description Data

Making a copy of weather description data

```
In [27]: df_weather_c=df_weather.copy()
In [28]: df_weather_c.head()
```

Out[28]:

	datetime	Portland	Seattle	Los Angeles	Houston	Chicago	Atlanta	Boston
0	2012-10-01 12:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	2012-10-01 13:00:00	scattered clouds	sky is clear	mist	sky is clear	overcast clouds	light rain	sky is clear
2	2012-10-01 14:00:00	scattered clouds	sky is clear	sky is clear	sky is clear	overcast clouds	overcast clouds	few clouds
3	2012-10-01 15:00:00	scattered clouds	sky is clear	sky is clear	sky is clear	overcast clouds	overcast clouds	few clouds
4	2012-10-01 16:00:00	scattered clouds	sky is clear	sky is clear	sky is clear	overcast clouds	overcast clouds	few clouds

Dropping NA values from dataset

```
In [29]: df_weather_c = df_weather_c.dropna(how='any',axis=0)
```

In [30]: df_weather_c.head(2)

Out[30]:

	datetime	Portland	Seattle	Los Angeles	Houston	Chicago	Atlanta	Boston
1	2012-10-01 13:00:00	scattered clouds	sky is clear	mist	sky is clear	overcast clouds	light rain	sky is clear
2	2012-10-01 14:00:00	scattered clouds	sky is clear	sky is clear	sky is clear	overcast clouds	overcast clouds	few clouds

In [31]: df_weather_c.isna().any()

Out[31]: datetime False

Portland False
Seattle False
Los Angeles False
Houston False
Chicago False
Atlanta False
Boston False

dtype: bool

In [32]: df_weather_c.head(2)

Out[32]:

	datetime	Portland	Seattle	Los Angeles	Houston	Chicago	Atlanta	Boston
1	2012-10-01 13:00:00	scattered clouds	sky is clear	mist	sky is clear	overcast clouds	light rain	sky is clear
2	2012-10-01 14:00:00	scattered clouds	sky is clear	sky is clear	sky is clear	overcast clouds	overcast clouds	few clouds

Categorizing the types of weather into 7 different categories

- 1.) Thunderstorn
- 2.) Drizzle
- 3.) Rain
- 4.) Snow
- 5.) Atmosphere
- 6.) Clear
- 7.) Clouds

```
def Climate des(JobString):
In [33]:
              if JobString in ('thunderstorm','thunderstorm with light rain', 't
         hunderstorm with heavy rain',\
                  'thunderstorm with rain','light thunderstorm','thunderstorm','
         heavy thunderstorm',\
                  'ragged thunderstorm', 'thunderstorm with light drizzle', 'thund
         erstorm with drizzle',\
                 'thunderstorm with heavy drizzle', 'proximity thunderstorm'):
                  return 1
             elif JobString in ('light intensity drizzle', 'drizzle', 'high inten
         sity drizzle',\
                                'light intensity drizzle', 'drizzle rain', 'heavy
         intensity drizzle',\
                                'shower rain and drizzle', 'heavy shower rain and
         drizzle',\
                                 'proximity thunderstorm with drizzle', 'shower dr
         izzle'):
                  return 2
             elif JobString in ('light rain', 'moderate rain', 'heavy intensity r
         ain','very heavy rain',\
                                 'extreme rain', 'freezing rain', 'light intensity
         shower rain', 'shower rain', \
                                'heavy intensity shower rain', 'proximity shower
         rain', 'proximity moderate rain', \
                                 'proximity thunderstorm with rain', 'ragged show
         er rain'):
                  return 3
             elif JobString in ('light snow', 'heavy snow', 'snow', 'sleet', 'showe
         r sleet', 'light rain and snow', \
                                'rain and snow', 'light shower snow', 'shower snow
          ','heavy shower snow'):
                  return 4
             elif JobString in ('mist', 'smoke', 'haze', 'sand', 'dust', 'fog', 'sand
          ,dust whirls','volcanic ash',\
                                'squalls','tornado'):
                  return 5
             elif JobString in ('sky is clear', 'Portland grouping'):
                  return 6
             elif JobString in ('overcast clouds', 'broken clouds', 'scattered cl
         ouds','few clouds'):
```

return 7

```
In [34]: df_weather_c['Portland_grouping'] = df_weather_c['Portland'].apply(Climate_des)
    df_weather_c['Seattle_grouping'] = df_weather_c['Seattle'].apply(Climate_des)
    df_weather_c['LosAngeles_grouping'] = df_weather_c['Los Angeles'].apply(Climate_des)
    df_weather_c['Houston_grouping'] = df_weather_c['Houston'].apply(Climate_des)
    df_weather_c['Chicago_grouping'] = df_weather_c['Chicago'].apply(Climate_des)
    df_weather_c['Atlanta_grouping'] = df_weather_c['Atlanta'].apply(Climate_des)
    df_weather_c['Boston_grouping'] = df_weather_c['Boston'].apply(Climate_des)
```

In [35]: df_weather_c.head(2)

Out[35]:

	datetime	Portland	Seattle	Los Angeles	Houston	Chicago	Atlanta	Boston	Portland_
1	2012-10- 01 13:00:00	scattered clouds	sky is clear	mist	sky is clear	overcast clouds	light rain	sky is clear	7
2	2012-10- 01 14:00:00	scattered clouds	sky is clear	sky is clear	sky is clear	overcast clouds	overcast clouds	few clouds	7

Merging temperature and weather description data

In [37]: df_weather_all.head()

Out[37]:

	datetime_Temp	Portland_Temp	Seattle_Temp	Los Angeles_Temp	Houston_Temp	Chic
1	2012-10-01 13:00:00	48.074000	47.570000	65.696000	59.216000	51.54
2	2012-10-01 14:00:00	48.079854	47.564990	65.692734	59.265636	51.62
3	2012-10-01 15:00:00	48.095360	47.551699	65.683120	59.331818	51.84
4	2012-10-01 16:00:00	48.110866	47.538407	65.673506	59.398000	52.07
5	2012-10-01 17:00:00	48.126372	47.525116	65.663892	59.464182	52.29

5 rows × 30 columns

Bifurcating the weather data city wise

In [45]: Portland_weather.head(2)

LosAngeles weather.head(2)

Houston_weather.head(2)

Chicago weather.head(2)

Atlanta_weather.head(2)

Boston weather.head(2)

Seattle_weather.head(2)

Out[45]:

	datetime_Temp	Portland_Temp	Portland_bin	Portland_Des	Portland_grouping
1	2012-10-01 13:00:00	48.074000	(40, 50]	scattered clouds	7
2	2012-10-01 14:00:00	48.079854	(40, 50]	scattered clouds	7

Out[45]:

	datetime_Temp	Los Angeles_Temp	Los Angeles_bin	Los Angeles_Des	LosAngeles_grouping
1	2012-10-01 13:00:00	65.696000	(60, 70]	mist	5
2	2012-10-01 14:00:00	65.692734	(60, 70]	sky is clear	6

Out[45]: _

	datetime_Temp	Houston_Temp	Houston_bin	Houston_Des	Houston_grouping
1	2012-10-01 13:00:00	59.216000	(50, 60]	sky is clear	6
2	2012-10-01 14:00:00	59.265636	(50, 60]	sky is clear	6

Out[45]:

	datetime_Temp	Chicago_Temp	Chicago_bin	Chicago_Des	Chicago_grouping
1	2012-10-01 13:00:00	51.548000	(50, 60]	overcast clouds	7
2	2012-10-01 14:00:00	51.628444	(50, 60]	overcast clouds	7

Out[45]:

	datetime_Temp	Atlanta_Temp	Atlanta_bin	Atlanta_Des	Atlanta_grouping
1	2012-10-01 13:00:00	69.584000	(60, 70]	light rain	3
2	2012-10-01 14:00:00	69.593615	(60, 70]	overcast clouds	7

Out[45]:

	datetime_Temp	Boston_Temp	Boston_bin	Boston_Des	Boston_grouping
1	2012-10-01 13:00:00	57.236000	(50, 60]	sky is clear	6
2	2012-10-01 14:00:00	57.264966	(50, 60]	few clouds	7

Out[45]:

	datetime_Temp	Seattle_Temp	Seattle_bin	Seattle_Des	Seattle_grouping
1	2012-10-01 13:00:00	47.57000	(40, 50]	sky is clear	6
2	2012-10-01 14:00:00	47.56499	(40, 50]	sky is clear	6

CLEANING OF CRIME DATA

Portland Crime Data

Loading crime data

```
In [46]:
         df_crime_2012 = pd.read_csv('P_crime_2012.csv',usecols=['Report Date',
         'Report Time', \
                                                                    'Major Offens
         e Type'])
         df crime 2013 = pd.read csv('P crime 2013.csv',usecols=['Report Date',
In [47]:
         'Report Time', \
                                                                    'Major Offens
         e Type'])
In [48]:
         df_crime_2014 = pd.read_csv('P_crime_2014.csv',usecols=['Report Date',
         'Report Time', \
                                                                    'Major Offens
         e Type'])
         df_crime_2015 = pd.read_csv('P_crime_2015.csv',usecols=['Occur Time',
In [49]:
         'Offense Type', \
                                                        'Report Date'])
```

Merging data for 2012-2014 as the column names for (2012-2014) is different from (2015-2017)

In [53]: Portland_merge_1.head(2)

Out[53]:

	Report Date		Report Time	Major Offense Type	
(0	03/09/2012	14:08:00	Assault, Simple	
	1	12/26/2012	21:41:00	Larceny	

Checking is it contains any null values

In [54]: Portland_merge_1.isna().any()

Out[54]: Report Date False
Report Time False
Major Offense Type False

dtype: bool

Renaming the columns

In [55]: Portland_merge_1.columns=['Date','Time','Offense Type']

In [56]: Portland_merge_1.head(3)

Out[56]:

	Date	Time	Offense Type
0	03/09/2012	14:08:00	Assault, Simple
1	12/26/2012	21:41:00	Larceny
2	11/03/2012	21:39:00	Larceny

```
In [57]: Portland_merge_2 = pd.concat([df_crime_2015, df_crime_2016, df_crime_2
017], join="outer")
```

```
In [58]: Portland merge 2.head(2)
```

Out[58]:

	Occur Time	Offense Type	Report Date
0	1044	Rape	5/29/15
1	1300	Sodomy	5/15/15

Checking is it contains any null values

```
In [59]: Portland_merge_2.isna().any()
Out[59]: Occur Time     False
          Offense Type     False
          Report Date     False
          dtype: bool
```

Renaming of columns to make it same as merge_1

```
In [60]: Portland_merge_2.columns=['Time','Offense Type','Date']
In [61]: Portland_merge_2.head(2)
```

Out[61]:

	Time	Offense Type	Date	
0	1044	Rape	5/29/15	
1	1300	Sodomy	5/15/15	

Time column in Portland_merge_2 is not in proper format, so we are converting it first to datetime and then padding 0's and then rounding it off to the near hour

```
In [62]: Portland_merge_2['Date']=pd.to_datetime(Portland_merge_2['Date'], form
    at='%m/%d/%y')
```

```
In [63]: merge_10 = Portland_merge_2[Portland_merge_2.Time < 10]
    merge_10.head()</pre>
```

Out[63]:

	Time	Offense Type	Date
2	0	False Pretenses/Swindle/Confidence Game	2015-05-26
3	0	Identity Theft	2015-05-26
4	1	Identity Theft	2015-05-12
8	0	Identity Theft	2015-05-19
13	0	Hacking/Computer Invasion	2015-05-26

```
In [64]: merge_10['Dummy'] = '000'
    merge_10.Time = merge_10.Dummy + merge_10.Time.map(str)
    merge_10.head()
```

Out[64]: _____

	Time	Offense Type	Date	Dummy
2	0000	False Pretenses/Swindle/Confidence Game	2015-05-26	000
3	0000	Identity Theft	2015-05-26	000
4	0001	Identity Theft	2015-05-12	000
8	0000	Identity Theft	2015-05-19	000
13	0000	Hacking/Computer Invasion	2015-05-26	000

```
In [65]: merge_10to99 = Portland_merge_2[(Portland_merge_2['Time'] >= 10) & (Po
    rtland_merge_2['Time'] <= 99)]
    merge_10to99.head()</pre>
```

Out[65]:

	Time	Offense Type	Date
433	30	Burglary	2015-05-01
576	30	Theft From Motor Vehicle	2015-05-02
605	35	Vandalism	2015-05-02
659	25	Aggravated Assault	2015-05-03
674	10	Burglary	2015-05-03

In [66]: merge_10to99['Dummy'] = '00'
 merge_10to99.Time = merge_10to99.Dummy + merge_10to99.Time.map(str)
 merge_10to99.head()

Out[66]:

	Time	Offense Type	Date	Dummy
433	0030	Burglary	2015-05-01	00
576	0030	Theft From Motor Vehicle	2015-05-02	00
605	0035	Vandalism	2015-05-02	00
659	0025	Aggravated Assault	2015-05-03	00
674	0010	Burglary	2015-05-03	00

Out[67]:

	Time	Offense Type	Date
5	700	Fondling	2015-05-11
11	825	False Pretenses/Swindle/Confidence Game	2015-05-01
12	825	Identity Theft	2015-05-01
31	100	Identity Theft	2015-05-01
32	100	Theft From Motor Vehicle	2015-05-06

```
In [68]: merge_99to999['Dummy'] = '0'
    merge_99to999.Time = merge_99to999.Dummy + merge_99to999.Time.map(str)
    merge_99to999.head(2)
```

Out[68]:

	Time	Offense Type	Date	Dummy
5	0700	Fondling	2015-05-11	0
1	0825	False Pretenses/Swindle/Confidence Game	2015-05-01	0

```
In [69]: merge_1000 = Portland_merge_2[(Portland_merge_2.Time > 999)]
merge_1000.head(2)
```

Out[69]:

	Time	Offense Type	Date
0	1044	Rape	2015-05-29
1	1300	Sodomy	2015-05-15

```
In [70]: merge_all = pd.concat([merge_10,merge_10to99,merge_99to999,merge_1000
], join="outer")
```

In [72]: merge_all.head(2)

Out[72]:

	Date	Date Dummy Offense Type		Time	
2	2015-05-26	000	False Pretenses/Swindle/Confidence Game	1900-01-01	
3	2015-05-26	000	Identity Theft	1900-01-01	

```
In [73]: merge_all['Time'] = pd.to_datetime(merge_all["Time"]).dt.time
```

In [74]: merge_all.head(2)

Out[74]:

	Date	Dummy	Offense Type	Time
2	2015-05-26	000	False Pretenses/Swindle/Confidence Game	00:00:00
3	2015-05-26	000	Identity Theft	00:00:00

```
In [75]: merge_all['Date']= merge_all['Date'].astype(str)
```

Dropping column Dummy after formating the time

Dropping the data with na values

```
In [79]: Portland_crime = Portland_crime.dropna(how='any',axis=0)
```

```
In [80]: len(Portland_crime)
Out[80]: 323488
```

In [81]: Portland_crime.head(2)

Out[81]:

	Date	Offense Type	Time
2	2015-05-26	False Pretenses/Swindle/Confidence Game	00:00:00
3	2015-05-26	Identity Theft	00:00:00

```
In [82]: Portland_crime['Time'] = Portland_crime['Time'].astype(str)
```

Concatenating Date and time together to create a datetime column

```
In [83]: Portland_crime['datetime'] = Portland_crime['Date'] +' ' + Portland_cr
ime['Time']
```

In [84]: Portland_crime['datetime'] = pd.to_datetime(Portland_crime['datetime']
)

In [85]: Portland_crime.head(2)

Out[85]:

	Date	Offense Type	Time	datetime
2	2015-05-26	False Pretenses/Swindle/Confidence Game	00:00:00	2015-05-26
3	2015-05-26	Identity Theft	00:00:00	2015-05-26

Rounding up the time values

```
In [86]: Portland_crime['Datetime'] = Portland_crime['datetime'].dt.round('1H')
```

Dropping the columns datetime, Date and Time which are not required after creating 'Datetime'

```
In [87]: Portland_crime.drop(columns='datetime',axis=1,inplace=True)
```

```
In [89]: Portland_crime.head(2)
```

Out[89]:

	Offense Type	Datetime
2	False Pretenses/Swindle/Confidence Game	2015-05-26
3	Identity Theft	2015-05-26

Changing 'Offense Type' to lowercase and cleaning up the field by replacing '/' or '-' with ' '

```
In [90]: Portland_crime['Offense Type'] = Portland_crime['Offense Type'].str.lo
    wer()
    Portland_crime['Offense Type'] = Portland_crime['Offense Type'].str.re
    place('/',' ')
    Portland_crime['Offense Type'] = Portland_crime['Offense Type'].str.re
    place('-',' ')
```

Fetching the year from datetime so as to take data from 2012-2017

```
In [91]: Portland_crime["Year"] = pd.to_datetime(Portland_crime["Datetime"]).dt
    .year
```

```
In [92]: Portland_crime= Portland_crime[Portland_crime.Year.between(2012,2017)]
```

```
In [93]: Portland_crime.sort_values('Year',ascending=True).head()
```

Out[93]:

	Offense Type	Datetime	Year
24810	larceny	2012-08-21 19:00:00	2012
7436	larceny	2012-02-24 10:00:00	2012
7435	trespass	2012-06-14 16:00:00	2012
7434	burglary	2012-07-08 00:00:00	2012
7433	larceny	2012-09-10 09:00:00	2012

Atlanta Crime data

Loading crime data and using the required columns

```
df_AT12 = pd.read_csv('AT-2012.csv',usecols=['occur_date', 'occur_time
 In [94]:
           ', \
                                                                     'UC2 Literal']
           )
          df AT13 = pd.read csv('AT-2013.csv',usecols=['occur date', 'occur time
In [95]:
           ', \
                                                                      'UC2 Literal'
           ])
          df_AT14 = pd.read_csv('AT-2014.csv',usecols=['occur_date', 'occur_time
In [96]:
                                                                      'UC2 Literal'
          ])
In [97]: df AT15 = pd.read csv('AT-2015.csv', usecols=['occur date', 'occur time
           ', \
                                                                      'UC2 Literal'
          ])
          df AT16 = pd.read csv('AT-2016.csv',usecols=['occur date', 'occur time
In [98]:
                                                                      'UC2 Literal'
          ])
          df AT17 = pd.read csv('AT-2017.csv', usecols=['occur date', 'occur time
In [99]:
           ', \
                                                                    'UC2 Literal'])
          merge AT = pd.concat([df AT12, df AT13, df AT14,df AT15,df AT16,df AT1
In [100]:
          7], join="outer")
In [101]:
          merge_AT.head(2)
Out[101]:
                                             UC2 Literal
             occur_date | occur_time
                                  LARCENY-NON VEHICLE
           0 01/14/2012
                       03:00:00
            08/22/2011
                       12:00:00
                                  LARCENY-NON VEHICLE
```

In [102]: merge_AT.columns=(['Date','Time','Offense Type'])

In [103]: merge_AT.head(2)

Out[103]:

	Date	Time	Offense Type
0	01/14/2012	03:00:00	LARCENY-NON VEHICLE
1	08/22/2011	12:00:00	LARCENY-NON VEHICLE

```
In [104]: merge_AT["Year"] = pd.to_datetime(merge_AT["Date"]).dt.year
```

```
In [105]: Atlanta_Crime= merge_AT[merge_AT.Year.between(2012,2017)]
```

In [106]: Atlanta_Crime['Date']=pd.to_datetime(Atlanta_Crime['Date'], format='%m
 /%d/%Y')

In [107]: Atlanta_Crime.head(2)

Out[107]:

	Date	Time	Offense Type	Year
0	0 2012-01-14 03:00:00		00 LARCENY-NON VEHICLE	
5	2012-01-01	00:04:00	AGG ASSAULT	2012

```
In [108]: Atlanta_Crime['Time'] = Atlanta_Crime['Time'].astype(str)
```

```
In [109]: Atlanta_Crime['Date'] = Atlanta_Crime['Date'].astype(str)
```

In [110]: Atlanta_Crime['datetime'] = Atlanta_Crime['Date'] +' ' + Atlanta_Crime
['Time']

In [111]: Atlanta_Crime.head(2)

Out[111]:

	Date	Time	Offense Type	Year	datetime
0	2012-01-14	03:00:00	LARCENY-NON VEHICLE	2012	2012-01-14 03:00:00
5	2012-01-01	00:04:00	AGG ASSAULT	2012	2012-01-01 00:04:00

```
In [112]: Atlanta_Crime.isna().any()
```

Out[112]: Date False
Time False
Offense Type False
Year False
datetime False

dtype: bool

In [116]: Atlanta_Crime['Datetime']=Atlanta_Crime['datetime'].dt.round('1H')

In [117]: Atlanta Crime.head(2)

Out[117]:

	Date	Time	Offense Type	Year	datetime	Datetime
0	2012-01- 14	03:00:00	LARCENY-NON VEHICLE	2012	2012-01-14 03:00:00	2012-01-14 03:00:00
5	2012-01- 01	00:04:00	AGG ASSAULT	2012	2012-01-01 00:04:00	2012-01-01 00:00:00

In [118]: Atlanta_Crime.drop(columns=['datetime','Date','Time'],axis=1,inplace=T
rue)

In [119]: Atlanta Crime.head(2)

Out[119]:

	Offense Type	Year	Datetime
0	LARCENY-NON VEHICLE	2012	2012-01-14 03:00:00
5	AGG ASSAULT	2012	2012-01-01 00:00:00

Changing 'Offense Type' to lowercase and cleaning data by replacing '/' or '-' with ' '

```
In [120]: Atlanta_Crime['Offense Type'] = Atlanta_Crime['Offense Type'].str.lowe
    r()
    Atlanta_Crime['Offense Type'] = Atlanta_Crime['Offense Type'].str.repl
    ace('/','')
    Atlanta_Crime['Offense Type'] = Atlanta_Crime['Offense Type'].str.repl
    ace('-','')
```

CHICAGO CRIME

Loading Chicago Data

Renaming the columns to generalize it amongst all cities

```
In [122]: Chicago_crime.columns=['Date', 'Offense Type', 'Year']
```

To check the null value existence

Changing the format to datetime

```
In [125]: Chicago_crime['Date']=pd.to_datetime(Chicago_crime['Date'], format='%m
    /%d/%y %H:%M')
```

```
In [127]: Chicago_crime.head(2)
```

Out[127]:

	Date	Offense Type	Year	Datetime
0	2016-05-03 23:40:00	battery	2016	2016-05-04 00:00:00
1	2016-05-03 21:40:00	battery	2016	2016-05-03 22:00:00

```
In [128]: Chicago_crime= Chicago_crime[Chicago_crime.Year.between(2012,2017)]
```

```
In [129]: Chicago_crime.drop(columns=['Date'],axis=1,inplace=True)
```

Changing 'Offense Type' to lowercase and cleaning data by replacing '/' or '-' with ' '

BOSTON CRIME

Loading Boston data and using the required columns

```
In [132]: Boston_crime[:2]
```

Out[132]:

	OFFENSE_CODE_GROUP	OCCURRED_ON_DATE
0	Confidence Games	2/2/18 5:00
1	Property Found	2/5/18 21:40

Renaming the columns

```
In [133]: Boston_crime.columns=['Offense Type','Date']
In [134]: Boston crime[:2]
```

Out[134]:

		Offense Type	Date
0		Confidence Games	2/2/18 5:00
	1	Property Found	2/5/18 21:40

Checking null values

Rounding off the datetime to the near hour

```
In [137]: Boston_crime['Datetime']=Boston_crime['Date'].dt.round('1H')
```

Dropping the date column as it is not required now

```
In [138]: Boston_crime.drop(columns=['Date'],axis=1,inplace=True)
```

In [139]: Boston_crime.head(2)

Out[139]:

	Offense Type	Datetime
0	Confidence Games	2018-02-02 05:00:00
1	Property Found	2018-02-05 22:00:00

```
In [140]: Boston_crime["Year"] = pd.to_datetime(Boston_crime["Datetime"]).dt.yea
r
```

```
In [141]: Boston_crime= Boston_crime[Boston_crime.Year.between(2012,2017)]
```

Changing 'Offense Type' to lowercase and cleaning data by replacing '/' or '-' with ' '

```
In [142]: Boston_crime['Offense Type'] = Boston_crime['Offense Type'].str.lower(
)
```

```
In [143]: Boston_crime['Offense Type'] = Boston_crime['Offense Type'].str.replac
e('/',' ')
Boston_crime['Offense Type'] = Boston_crime['Offense Type'].str.replac
e('-',' ')
```

SEATTLE CRIME

Loading the seattle data and use the required columns

Rounding off the time in Report Date to near hour

```
In [146]: Seattle_crime['new datetime']=Seattle_crime['Report Date'].dt.round('1
H')
```

In [147]: Seattle_crime.head(2)

Out[147]:

	Offense Type	Report Date	new datetime
0	VEH-THEFT-AUTO	2016-08-22 10:20:00	2016-08-22 10:00:00
1	THEFT-LICENSE PLATE	2016-08-27 17:25:00	2016-08-27 17:00:00

Dropping off the report Date column after creating the Datetime

```
In [148]: Seattle_crime.drop(columns='Report Date',axis=1,inplace=True)
```

In [149]: Seattle_crime.head(2)

Out[149]:

	Offense Type	new datetime
0	VEH-THEFT-AUTO	2016-08-22 10:00:00
1	THEFT-LICENSE PLATE	2016-08-27 17:00:00

Renaming the column

```
In [150]: Seattle_crime.columns=['Offense Type','Datetime']
```

Changing offense type to lower and stripping of '/' and '-'

```
In [151]: Seattle_crime["Year"] = pd.to_datetime(Seattle_crime["Datetime"]).dt.y
ear

In [152]: Seattle_crime= Seattle_crime[Seattle_crime.Year.between(2012,2017)]

In [153]: Seattle_crime['Offense Type'] = Seattle_crime['Offense Type'].str.lowe
    r()

In [154]: Seattle_crime['Offense Type'] = Seattle_crime['Offense Type'].str.repl
    ace('/','')
    Seattle_crime['Offense Type'] = Seattle_crime['Offense Type'].str.repl
    ace('-','')
```

Los Angeles Crime

loading crime data

In [156]: LA_crime.head(2)

Out[156]:

		Date Occurred	Time Occurred	Crime Code Description
(0	03/11/2013	1800	INTIMATE PARTNER - SIMPLE ASSAULT
	1	01/22/2010	2300	VEHICLE - STOLEN

Cleaning null values

```
In [159]: LA_crime.head(2)
```

Out[159]:

	Date Occurred	Time Occurred	Crime Code Description
C	03/11/2013	1800	INTIMATE PARTNER - SIMPLE ASSAULT
1	01/22/2010	2300	VEHICLE - STOLEN

Adjusting the time into datetime format

```
In [160]: LA_merge_10 = LA_crime[LA_crime['Time Occurred'] < 10]
    LA_merge_10.head(2)</pre>
```

Out[160]:

	Date Occurred	Time Occurred	Crime Code Description
244	06/30/2013	1	ROBBERY
446	10/20/2013	1	SEXUAL PENTRATION WITH A FOREIGN OBJECT

```
In [161]: LA_merge_10['dummy'] = '000'
    LA_merge_10['Time Occurred']= LA_merge_10.dummy + LA_merge_10['Time Occurred'].map(str)
    LA_merge_10.head(2)
```

Out[161]:

	Date Occurred	Time Occurred	Crime Code Description	dummy
244	06/30/2013	0001	ROBBERY	000
446	10/20/2013	0001	SEXUAL PENTRATION WITH A FOREIGN OBJECT	000

Out[162]:

	Date Occurred	Time Occurred	Crime Code Description
69	02/17/2013	25	INTIMATE PARTNER - SIMPLE ASSAULT
83	03/02/2013	50	OTHER MISCELLANEOUS CRIME

```
In [163]: LA_merge_10to99['dummy'] = '00'
    LA_merge_10to99['Time Occurred'] = LA_merge_10to99.dummy +\
    LA_merge_10to99['Time Occurred'].map(str)
    LA_merge_10to99.head(2)
```

Out[163]:

	Date Occurred Time Occurred		Crime Code Description	dummy
6	02/17/2013	0025	INTIMATE PARTNER - SIMPLE ASSAULT	00
8	83 03/02/2013 0050		OTHER MISCELLANEOUS CRIME	00

Out[164]:

		Date Occurred	Time Occurred	Crime Code Description
	9	01/15/2013	800	EMBEZZLEMENT, GRAND THEFT (\$950.01 & OVER)
ſ	15	01/01/2013	500	INTIMATE PARTNER - SIMPLE ASSAULT

```
In [165]: LA_merge_99to999['dummy'] = '0'
    LA_merge_99to999['Time Occurred'] = LA_merge_99to999.dummy + \
    LA_merge_99to999['Time Occurred'].map(str)
    LA_merge_99to999.head(2)
```

Out[165]:

	Date Occurred	Time Occurred	Crime Code Description	dummy
9	01/15/2013	0800	EMBEZZLEMENT, GRAND THEFT (\$950.01 & OVER)	0
15	01/01/2013	0500	INTIMATE PARTNER - SIMPLE ASSAULT	0

```
In [166]: LA_merge_1000 = LA_crime[(LA_crime['Time Occurred'] > 999)]
    LA_merge_1000.head(2)
```

Out[166]:

	Date Occurred	Time Occurred	Crime Code Description
C	03/11/2013	1800	INTIMATE PARTNER - SIMPLE ASSAULT
1	01/22/2010	2300	VEHICLE - STOLEN

```
In [168]: LA_crime = LA_merge_all
    LA_crime.head(2)
```

Out[168]:

	Crime Code Description	Date Occurred	Time Occurred	dummy
244	ROBBERY	06/30/2013	0001	000
446	SEXUAL PENTRATION WITH A FOREIGN OBJECT	10/20/2013	0001	000

```
In [169]: LA_crime.drop(columns='dummy',axis=1,inplace=True)
```

In [172]: LA_crime.head(2)

Out[172]:

	Crime Code Description	Date Occurred	Time Occurred
244	ROBBERY	06/30/2013	1900-01-01 00:01:00
446	SEXUAL PENTRATION WITH A FOREIGN OBJECT	10/20/2013	1900-01-01 00:01:00

```
In [174]: LA_crime['Time Occurred'] = LA_crime['Time Occurred'].astype(str)
```

```
In [176]: LA_crime['datetime'] = pd.to_datetime(LA_crime['datetime'])
```

```
In [177]: LA crime.datetime.dtype
```

Out[177]: dtype('<M8[ns]')</pre>

```
In [178]: LA_crime['new datetime']=LA_crime['datetime'].dt.round('1H')
```

```
LA crime.drop(columns=['Date Occurred','Time Occurred','datetime'],axi
In [179]:
          s=1,inplace=True)
          LA crime["Year"] = pd.to datetime(LA crime["new datetime"]).dt.year
In [180]:
In [181]: LA crime= LA crime[LA crime.Year.between(2012,2017)]
In [182]: LA_crime['Crime Code Description'] = LA_crime['Crime Code Description'
          ].str.lower()
          LA crime['Crime Code Description'] = LA crime['Crime Code Description'
          ].str.replace('/',' ')
          LA crime['Crime Code Description'] = LA crime['Crime Code Description'
          ].str.replace('-',' ')
          LA crime.columns=['Offense Type','Datetime','Year']
In [183]:
         LA crime.head(2)
In [184]:
Out[184]:
                                 Offense Type
                                              Datetime Year
           244 robbery
                                             2013-06-30 2013
```

446 sexual pentration with a foreign object 2013-10-20 2013

Houston Crime

```
df 2015 jan= pd.read csv('2015 January.csv',usecols=['Date', 'Hour', '
In [185]:
          Offense Type'])
          df_2015_feb= pd.read_csv('2015_February.csv',usecols=['Date', 'Hour',
          'Offense Type'])
          df 2015 march= pd.read csv('2015 March.csv',usecols=['Date', 'Hour', '
          Offense Type'])
          df 2015 apr= pd.read csv('2015 April.csv',usecols=['Date', 'Hour', 'Of
          fense Type'])
          df 2015 may= pd.read csv('2015 May.csv',usecols=['Date', 'Hour', 'Offe
          nse Type'])
          df 2015 jun= pd.read csv('2015 June.csv',usecols=['Date', 'Hour', 'Off
          ense Type'])
          df 2015 jul= pd.read csv('2015 July.csv',usecols=['Date', 'Hour', 'Off
          ense Type'])
          df_2015_aug= pd.read_csv('2015_August.csv',usecols=['Date', 'Hour', 'O
          ffense Type'])
          df 2015 sep= pd.read csv('2015 September.csv',usecols=['Date', 'Hour',
          'Offense Type'])
          df 2015 oct= pd.read csv('2015 October.csv',usecols=['Date', 'Hour', '
          Offense Type'])
          df_2015_nov= pd.read_csv('2015_November.csv',usecols=['Date', 'Hour',
          'Offense Type'])
          df_2015_dec= pd.read_csv('2015_December.csv',usecols=['Date', 'Hour',
          'Offense Type'])
          df 2016 jan= pd.read csv('2016 January.csv',usecols=['Date', 'Hour', '
          Offense Type')
          df 2016 feb= pd.read_csv('2016_February.csv',usecols=['Date', 'Hour',
          'Offense Type'])
          df 2016 mar= pd.read csv('2016 March.csv',usecols=['Date', 'Hour', 'Of
          fense Type'])
          df 2016 apr= pd.read csv('2016 April.csv',usecols=['Date', 'Hour', 'Of
          fense Type'))
          df 2016 may= pd.read csv('2016 May.csv',usecols=['Date', 'Hour', 'Offe
          nse Type'])
          df 2016 jun= pd.read csv('2016 June.csv',usecols=['Date', 'Hour', 'Off
          ense Type'])
          df 2016 jul= pd.read csv('2016 July.csv',usecols=['Date', 'Hour', 'Off
          ense Type'])
          df 2016 aug= pd.read csv('2016 August.csv',usecols=['Date', 'Hour', 'O
          ffense Type'])
          df 2016 nov= pd.read_csv('2016_November.csv',usecols=['Date', 'Hour',
          'Offense Type'])
          df_2016_dec= pd.read_csv('2016_December.csv',usecols=['Date', 'Hour',
          'Offense Type'])
          df 2017 jan= pd.read csv('2017 January.csv',usecols=['Date', 'Hour', '
          Offense Type'])
          df 2017 feb= pd.read csv('2017 February.csv',usecols=['Date', 'Hour',
          'Offense Type'])
          df 2017 mar= pd.read csv('2017 March.csv',usecols=['Date', 'Hour', 'Of
          fense Type'])
```

```
In [186]:
          merge 2015 = pd.concat([df 2015 jan, df 2015 feb, df 2015 march,df 201
          5 apr, df 2015 may, df 2015 jun, \
                              df 2015 jul,df 2015 aug,df 2015 sep,df 2015 oct,df
          2015 nov, df 2015 dec], join="outer")
          merge 16 = pd.concat([df 2016 jan, df 2016 feb, df 2016 mar,df 2016 ap
          r, df 2016 may, df 2016 jun, \
                                  df 2016 jul,df 2016 aug], join="outer")
          merge 2016=pd.concat([df 2016 nov,df 2016 dec], join="outer")
          merge 2017 = pd.concat([df 2017 jan, df 2017 feb, df 2017 mar], join="
          outer")
In [187]: merge 2017['Date']=pd.to datetime(merge 2017['Date'],format='%m/%d/%Y'
          merge 2016['Date']=pd.to datetime(merge 2016['Date'],format='%m/%d/%Y'
          merge houston 1 = pd.concat([merge 2015, merge 16], join="outer")
In [188]:
          merge_houston_2= pd.concat([merge_2017, merge 2016], join="outer")
In [189]:
In [190]:
          merge houston 1.head(2)
Out[190]:
               Date | Hour | Offense Type
           0 1/24/15 8
                         Auto Theft
             1/25/15 | 13
                         Theft
```

Adjusting the time into datetime format

In [191]:	<pre>merge_houston_1_10 = merge_houston_1[merge_houston_1['Hour'] < 10] merge_houston 1 10['dummy'] = '0'</pre>
	<pre>merge_houston_1_10['Hour'] = merge_houston_1_10.dummy + merge_houston_1 _10['Hour'].map(str)</pre>
	<pre>merge_houston_1_10.head(2)</pre>

Out[191]:

		Date	Hour	Offense Type	dummy
	0	1/24/15	80	Auto Theft	0
2		1/26/15	05	Auto Theft	0

```
In [192]: merge_houston_1_10toall = merge_houston_1[merge_houston_1['Hour'] >= 1
0]
```

In [194]: merge_houston_1_all.head(2)

Out[194]:

	Date	Hour	Offense Type	dummy
0	1/24/15	08	Auto Theft	0
2	1/26/15	05	Auto Theft	0

```
In [195]: merge_houston_1_all['Hour']=merge_houston_1_all['Hour'].astype(str)
```

In [198]: merge_houston_1_all.head(2)

Out[198]:

	Date	Hour	Offense Type	dummy	datetime
0	1/24/15	08	Auto Theft	0	2015-01-24 08:00:00
2	1/26/15	05	Auto Theft	0	2015-01-26 05:00:00

In [199]: merge houston 2.head(2)

Out[199]:

		Date	Hour	Offense Type
•	0	2017-01-22	12	Theft
[1	2017-01-23	9	Theft

```
In [200]: merge_houston_2_10 = merge_houston_2[merge_houston_2['Hour'] < 10]
    merge_houston_2_10['dummy'] = '0'
    merge_houston_2_10['Hour'] = merge_houston_2_10.dummy + merge_houston_2
    _10['Hour'].map(str)
    merge_houston_2_10.head(2)</pre>
```

Out[200]:

	Date	Hour	Offense Type	dummy
1	2017-01-23	09	Theft	0
6	2017-01-27	80	Burglary	0

```
In [201]: merge_houston_2_10toall = merge_houston_2[merge_houston_2['Hour'] >= 1
0]
```

```
In [205]: merge_houston_2_all['datetime'] = merge_houston_2_all['Date'] +' ' +\
    merge_houston_2_all['Hour']
```

```
In [207]: merge_houston_2_all.head(2)
```

Out[207]:

	Date	Hour	Offense Type	dummy	datetime
1	2017-01-23	09	Theft	0	2017-01-23 09:00:00
6	2017-01-27	08	Burglary	0	2017-01-27 08:00:00

Concatinating all the files after changing them into appropriate formats

```
In [209]: Houston_crime['Offense Type'] = Houston_crime['Offense Type'].str.lowe
r()
    Houston_crime['Offense Type'] = Houston_crime['Offense Type'] .str.re
    place('/',' ')
    Houston_crime['Offense Type'] = Houston_crime['Offense Type'] .str.re
    place('-',' ')
```

Removing inappropriate Offense type descriptions

```
In [210]: Houston_crime=Houston_crime[Houston_crime['Offense Type'] != '1']
```

In [211]: Houston_crime.head(2)

Out[211]:

		Date	Hour	Offense Type	dummy	datetime
0)	1/24/15	80	auto theft	0	2015-01-24 08:00:00
2	2	1/26/15	05	auto theft	0	2015-01-26 05:00:00

```
In [212]: Houston_crime['new datetime']=Houston_crime['datetime'].dt.round('1H')
```

In [214]: Houston_crime.head(2)

Out[214]:

	Offense Type	new datetime		
0	auto theft	2015-01-24 08:00:00		
2	auto theft	2015-01-26 05:00:00		

```
In [215]: Houston_crime.columns=['Offense Type','Datetime']
```

COnsidering data from 2012 to 2017

```
In [217]: Houston_crime= Houston_crime[Houston_crime.Year.between(2012,2017)]
```

```
In [218]: Houston_crime.head(2)
```

Out[218]:

	Offense Type	Datetime	Year
C	auto theft	2015-01-24 08:00:00	2015
2	auto theft	2015-01-26 05:00:00	2015

Classifying Offenses into categories and numering them

```
string theft = ["theft", 'larceny', 'shoplifting', 'stolen', 'picking', 'ro
In [219]:
          bbery','purse','stolen','pickpocket']
          string burglary = ['burglary','home invasion']
          string assault = ['asslt','simple assault','aggravated assault','assau
          lt','agg','battery']
          string_sex_crimes = ['rape','sodomy','fondling','sexual','prostitution
          ','pornography','incest','sex','obscenity',\
                                'public indecency', 'indecent', 'incest', 'pandering
          ','lewd','pimping']
          string forgery = ['forgery']
          string_weapons = ['weapons','concealed carry license violation','firea
          rm', 'ballistics', 'explosives', 'shots', 'bomb']
          string_drug = ['drug', 'narcotic', 'narcotics', 'narc']
          string fraud = ['false pretenses','swindle','confidence game', 'confid
          ence games',\
                           'embezzlement', 'embezzle', 'fraud', 'extortion', 'imperso
          nation','deceptive','counterfeiting', \
                           'extortion', 'forgery', 'bribery', 'counterfeit']
          string arson = ['arson']
          string kidnapping=['kidnapping','abduction','kidnap','trafficking']
          string homicide=['murder','manslaughter','homicide','lynching']
          string harass = ['harassment', 'threats','threatening','stalking']
          string_driving = ['operating under the influence', 'duii', 'dui', 'lic
          ense violation','reckless driving']
```

```
def crime type(crime col):
In [220]:
               for item in string theft:
                   if item in crime col:
                       return 1
               for item in string burglary:
                   if item in crime col:
                       return 2
               for item in string assault:
                   if item in crime col:
                       return 3
              for item in string sex crimes:
                   if item in crime col:
                       return 4
               for item in string forgery:
                   if item in crime col:
                       return 5
               for item in string weapons:
                   if item in crime col:
                       return 6
               for item in string drug:
                   if item in crime col:
                       return 7
               for item in string fraud:
                   if item in crime col:
                       return 8
               for item in string arson:
                   if item in crime col:
                       return 9
               for item in string_kidnapping:
                   if item in crime col:
                       return 10
               for item in string homicide:
                   if item in crime col:
                       return 11
               for item in string harass:
                   if item in crime_col:
                       return 12
               for item in string driving:
                   if item in crime col:
                       return 13
                   else:
                       return 14
          Portland crime['Offense Num'] = Portland crime['Offense Type'].apply(c
In [221]:
          rime_type)
          Atlanta Crime['Offense Num'] = Atlanta Crime['Offense Type'].apply(cri
In [222]:
          me type)
          Chicago crime['Offense Num'] = Chicago crime['Offense Type'].apply(cri
In [223]:
          me_type)
```

In [225]: Seattle_crime['Offense_Num'] = Seattle_crime['Offense Type'].apply(crime_type)

In [226]: Houston_crime['Offense_Num'] = Houston_crime['Offense Type'].apply(crime_type)

In [227]: LA_crime['Offense Type']=LA_crime['Offense Type'].astype(str)

In [228]: LA_crime['Offense_Num'] = (LA_crime['Offense Type']).apply(crime_type)

In [229]: Portland_crime.head(2)

Out[229]:

	Offense Type	Datetime	Year	Offense_Num
2	false pretenses swindle confidence game	2015-05-26	2015	8
3	identity theft	2015-05-26	2015	1

In [230]: Atlanta_Crime.head(2)

Out[230]: _

	Offense Type	Year	Datetime	Offense_Num
0	larceny non vehicle	2012	2012-01-14 03:00:00	1
5	agg assault	2012	2012-01-01 00:00:00	3

In [231]: Chicago_crime.head(2)

Out[231]:

	Offense Type	Year	Datetime	Offense_Num
0	battery	2016	2016-05-04 00:00:00	3
1	battery	2016	2016-05-03 22:00:00	3

In [232]: Boston_crime.head(2)

Out[232]:

	Offense Type	Datetime	Year	Offense_Num
60	fraud	2017-12-01 09:00:00	2017	8
98	property lost	2016-08-01 16:00:00	2016	14

```
In [233]: Seattle_crime.head(2)
```

Out[233]:

	Offense Type	Datetime	Year	Offense_Num
0	veh theft auto	2016-08-22 10:00:00	2016.0	1
1	theft license plate	2016-08-27 17:00:00	2016.0	1

```
In [234]: Houston_crime.head(2)
```

Out[234]:

	Offense Type	Datetime	Year	Offense_Num
0	auto theft	2015-01-24 08:00:00	2015	1
2	auto theft	2015-01-26 05:00:00	2015	1

```
In [235]: LA_crime.head(2)
```

Out[235]:

	Offense Type	Datetime	Year	Offense_Num
244	robbery	2013-06-30	2013	1
446	sexual pentration with a foreign object	2013-10-20	2013	4

Merging Crime and Weather Data

Boston

In [241]: Boston_merged.head(2)

Out[241]:

	datetime_Temp	Boston_Temp	Boston_bin	Boston_Des	Boston_grouping	Offer Ty
0	2015-06-15	60.952634	(60, 70]	scattered clouds	7.0	harassm
1	2015-06-15	60.952634	(60, 70]	scattered clouds	7.0	property lost

In [242]: Boston_merged.drop('datetime_Temp',axis=1,inplace=True)

In [244]: Boston_merged['city'] = 'Boston'

In [245]: Boston_merged.head(2)

Out[245]:

	Temp	Bins	Temp_Des	TD_num	Offense_Type	Datetime	Year	Offense_Num
(60.952634	(60, 70]	scattered clouds	7.0	harassment	2015-06- 15	2015	12
-	60.952634	(60, 70]	scattered clouds	7.0	property lost	2015-06- 15	2015	14

Seattle

In [246]: Seattle_weather.datetime_Temp.dtype

Out[246]: dtype('0')

```
Seattle weather.datetime Temp.dtype
In [248]:
Out[248]: dtype('<M8[ns]')
In [249]: | Seattle_crime.Datetime.dtype
Out[249]: dtype('<M8[ns]')
In [250]:
           Seattle merged = pd.merge(Seattle weather, Seattle crime, left on = 'd
           atetime Temp',\
                                         right on = 'Datetime', how='right')
In [251]:
           Seattle merged.head(2)
Out[251]:
                                                                                  Offense
              datetime_Temp
                             Seattle_Temp | Seattle_bin |
                                                     Seattle_Des | Seattle_grouping
                                                                                    Type
              2012-10-01
                                                                                 theft
                             47.57
                                          (40, 50]
                                                     sky is clear
                                                                 6.0
              13:00:00
                                                                                 carprowl
              2012-10-01
                                                                                 theft
                                          (40, 50]
                             47.57
                                                     sky is clear
                                                                 6.0
              13:00:00
                                                                                 carprowl
           Seattle merged.drop('datetime Temp',axis=1,inplace=True)
In [252]:
           Seattle merged.columns= ['Temp', 'Bins', 'Temp Des', 'TD num', 'Offense Ty
In [253]:
           pe',\
                                        'Datetime', 'Year', 'Offense Num']
           Seattle merged['city'] = 'Seattle'
In [254]:
           Seattle merged.head(2)
In [255]:
Out[255]:
              Temp | Bins
                         Temp_Des
                                   TD_num
                                            Offense_Type | Datetime
                                                                    Year | Offense_Num
                                                         2012-10-
                    (40,
                         sky is
            0 47.57
                                    6.0
                                                         01
                                                                   2012.0 1
                                            theft carprowl
                                                                                       Sea
                    501
                         clear
                                                         13:00:00
```

(40,

50]

1 47.57

sky is

clear

6.0

2012-10-

13:00:00

01

theft carprowl

2012.0 1

Sea

Atlanta

```
In [256]: Atlanta weather.datetime Temp.dtype
Out[256]: dtype('0')
           Atlanta_weather['datetime_Temp']=pd.to_datetime(Atlanta weather['datet
In [257]:
           ime Temp'],\
                                                               format='%Y/%m/%d
           %H:%M:%S')
In [258]:
           Atlanta weather.datetime Temp.dtype
Out[258]: dtype('<M8[ns]')
In [259]:
            Atlanta Crime.Datetime.dtype
Out[259]: dtype('<M8[ns]')
           Atlanta merged = pd.merge(Atlanta weather, Atlanta Crime, left on = 'd
In [260]:
           atetime Temp',\
                                        right_on = 'Datetime', how='right')
In [261]: Atlanta merged.head(2)
Out[261]:
                                                                                Offense
              datetime_Temp | Atlanta_Temp | Atlanta_bin | Atlanta_Des | Atlanta_grouping
                                                                                  Type
                                                                               larceny
              2012-10-01
           0
                                                                3.0
                            69.584
                                         (60, 70)
                                                    light rain
                                                                               from
              13:00:00
                                                                                vehicle
                                                                               larceny
              2012-10-01
                            69.584
                                         (60, 70]
                                                    light rain
                                                                3.0
                                                                               non
              13:00:00
                                                                                vehicle
           Atlanta_merged.drop('datetime_Temp',axis=1,inplace=True)
In [262]:
In [263]:
           Atlanta merged.columns= ['Temp', 'Bins', 'Temp Des', 'TD num', 'Offense Ty
           pe',\
```

In [264]: Atlanta_merged['city'] = 'Atlanta'

'Year', 'Datetime', 'Offense Num']

In [265]: Atlanta_merged.head(2)

Out[265]:

	Temp	Bins	Temp_Des	TD_num	Offense_Type	Year	Datetime	Offense_Num	(
0	69.584	(60, 70]	light rain	3.0	larceny from vehicle	2012	2012-10- 01 13:00:00	1	Atla
1	69.584	(60, 70]	light rain	3.0	larceny non vehicle	2012	2012-10- 01 13:00:00	1	Atla

Portland

In [271]: Portland_merged.head(2)

Out[271]:

	datetime_Temp	Portland_Temp	Portland_bin	Portland_Des	Portland_grouping	
(2012-10-01 13:00:00	48.074	(40, 50]	scattered clouds	7.0	larc
[.	2012-10-01 13:00:00	48.074	(40, 50]	scattered clouds	7.0	ag(ass

```
In [272]: Portland_merged.drop('datetime_Temp',axis=1,inplace=True)
```

In [274]: Portland_merged['city'] = 'Portland'

In [275]: Portland_merged.head(2)

Out[275]:

	Temp	Bins	Temp_Des	TD_num	Offense_Type	Datetime	Year	Offense_Num	
0	48.074	(40, 50]	scattered clouds	7.0	larceny	2012-10- 01 13:00:00	2012	1	Port
1	48.074	(40, 50]	scattered clouds	7.0	aggravated assault	2012-10- 01 13:00:00	2012	3	Porl

Los Angeles

```
In [276]: LosAngeles_weather.datetime_Temp.dtype
```

Out[276]: dtype('0')

```
In [278]: LosAngeles weather.datetime Temp.dtype
Out[278]: dtype('<M8[ns]')</pre>
In [279]: LA_crime.Datetime.dtype
Out[279]: dtype('<M8[ns]')
In [280]:
           LosAngeles merged = pd.merge(LosAngeles weather, LA crime, left on = '
           datetime Temp',\
                                        right on = 'Datetime', how='right')
In [281]:
           LosAngeles merged.head(2)
Out[281]:
                                                                                     C
                                     Los
                                                 Los
                                                             Los
              datetime_Temp
                                                                 LosAngeles_grouping
                            Angeles Temp Angeles bin Angeles Des
                                                                                     ٧
              2012-10-01
                                          (60, 70]
                                                                 5.0
                            65.696
                                                     mist
                                                                                     0
              13:00:00
                                                                                     0
              2012-10-01
                                                                                     tł
                            65.696
                                          (60, 70]
                                                     mist
                                                                 5.0
              13:00:00
                                                                                     ic
           LosAngeles merged.drop('datetime Temp',axis=1,inplace=True)
In [282]:
           LosAngeles merged.columns= ['Temp', 'Bins', 'Temp Des', 'TD num', 'Offense
In [283]:
           _Type',\
                                         'Datetime', 'Year', 'Offense_Num']
           LosAngeles merged['city'] = 'Los Angeles'
In [284]:
           LosAngeles merged.head(2)
In [285]:
Out[285]:
```

	Temp	Bins	Temp_Des	TD_num	Offense_Type	Datetime	Year	Offense_Num	
0	65.696	(60, 70]	mist	5.0	violation of court order	2012-10- 01 13:00:00	2012	14	Los Ang
1	65.696	(60, 70]	mist	5.0	theft of identity	2012-10- 01 13:00:00	2012	1	Los Ang

Houston

```
In [286]:
           Houston weather.datetime Temp.dtype
Out[286]: dtype('0')
In [287]:
           Houston weather['datetime Temp']=pd.to datetime(Houston weather['datet
           ime Temp'],\
                                                               format='%Y/%m/%d
           %H:%M:%S')
In [288]:
           Houston crime.Datetime.dtype
Out[288]: dtype('<M8[ns]')
In [289]:
           Houston merged = pd.merge(Houston weather, Houston crime, left on = 'd
           atetime Temp',\
                                        right on = 'Datetime', how='right')
In [290]:
           Houston merged.head(2)
Out[290]:
              datetime_Temp | Houston_Temp | Houston_bin | Houston_Des | Houston_grouping
              2012-10-01
                                                      scattered
                                                                                   agg
                            59.795091
                                          (50, 60]
                                                                  7.0
              22:00:00
                                                      clouds
                                                                                   ass
              2012-10-15
                            76.118000
                                          (70, 80]
                                                      broken clouds 7.0
                                                                                   rap
              14:00:00
           Houston merged['city'] = 'Houston'
In [291]:
           Houston merged.drop('datetime Temp',axis=1,inplace=True)
In [292]:
           Houston merged.columns= ['Temp', 'Bins', 'Temp Des', 'TD num', 'Offense Ty
In [293]:
           pe',\
                                      'Datetime', 'Year', 'Offense Num', 'city']
```

In [294]: Houston_merged.head(2)

Out[294]:

	Temp	Bins	Temp_Des	TD_num	Offense_Type	Datetime	Year	Offense_Num
0	59.795091	(50, 60]	scattered clouds	7.0	aggravated assault	2012-10- 01 22:00:00	2012	3
1	76.118000	(70, 80]	broken clouds	7.0	rape	2012-10- 15 14:00:00	2012	4

Chicago

In [300]: Chicago_merged.head(2)

Out[300]:

	datetime_Temp	Chicago_Temp	Chicago_bin	Chicago_Des	Chicago_grouping	Off
	2012-10-01 13:00:00	51.548	(50, 60]	overcast clouds	7.0	narc
\[\]	2012-10-01 13:00:00	51.548	(50, 60]	overcast clouds	7.0	narc

```
In [301]: Chicago_merged['city'] = 'Chicago'
```

```
In [302]: Chicago_merged.drop('datetime_Temp',axis=1,inplace=True)
```

In [304]: Chicago_merged.head(2)

Out[304]:

	Temp	Bins	Temp_Des	TD_num	Offense_Type	Year	Datetime	Offense_Num	
0	51.548	(50, 60]	overcast clouds	7.0	narcotics	2012	2012-10- 01 13:00:00	7	Chic
1	51.548	(50, 60]	overcast clouds	7.0	narcotics	2012	2012-10- 01 13:00:00	7	Chic

Merge all cities

```
In [306]: Merge_City.head()
```

Out[306]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year	
0	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
1	(40, 50]	2012-10- 01 13:00:00	3	aggravated assault	7.0	48.074	scattered clouds	2012.0	Рι
2	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
3	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Pι
4	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι

First Insight: Temperature Vs Crime

Rising temperatures in Boston seem to cause a very negative reaction in its population as there is a significant rise in average number of crimes per day; however, in Seattle, people seem to have the opposite response to rising temperatures and crime decreases.

Counting the number of days in each temperature bin for each city

	count	city
Portland_bin		
(-20, -10]	0	Portland
(-10, 0]	0	Portland
(0, 10]	0	Portland
(10, 20]	115	Portland
(20, 30]	1098	Portland

In [319]: Boston weather cnt['city'] = 'Boston'

```
In [310]: LA_weather_cnt = LosAngeles_weather.groupby('Los Angeles_bin').agg({'d
          atetime_Temp':'nunique'}).\
          rename(columns = {'datetime Temp':'count'})
In [311]: LA_weather_cnt['city'] = 'Los Angeles'
In [312]:
          Houston_weather_cnt = Houston_weather.groupby('Houston_bin').agg({'dat
          etime_Temp':'nunique'}).\
          rename(columns = {'datetime_Temp':'count'})
In [313]:
          Houston_weather_cnt['city'] = 'Houston'
          Chicago_weather_cnt = Chicago_weather.groupby('Chicago_bin').agg({'dat
In [314]:
          etime_Temp':'nunique'}).\
          rename(columns = {'datetime_Temp':'count'})
In [315]:
          Chicago_weather_cnt['city'] = 'Chicago'
In [316]:
          Atlanta_weather_cnt = Atlanta_weather.groupby('Atlanta_bin').agg({'dat
          etime_Temp':'nunique'}).\
          rename(columns = {'datetime_Temp':'count'})
In [317]:
          Atlanta_weather_cnt['city'] = 'Atlanta'
In [318]:
          Boston_weather_cnt = Boston_weather.groupby('Boston_bin').agg({'dateti
          me_Temp':'nunique'}).\
          rename(columns = {'datetime_Temp':'count'})
```

```
In [320]: Seattle_weather_cnt = Seattle_weather.groupby('Seattle_bin').agg({'dat
    etime_Temp':'nunique'}).\
    rename(columns = {'datetime_Temp':'count'})
```

```
In [321]: Seattle_weather_cnt['city'] = 'Seattle'
```

Merging all the cities count files

```
In [323]: temp_cnts = temp_cnts.reset_index().rename(columns = {'index':'Bins'})
```

```
In [324]: temp_cnts.head()
```

Out[324]:

	Bins	count	city
0	(-20, -10]	0	Portland
1	(-10, 0]	0	Portland
2	(0, 10]	0	Portland
3	(10, 20]	115	Portland
4	(20, 30]	1098	Portland

Loading Population data to calculate crime rate for each city

```
In [325]: Population = pd.read_csv('Population.csv',usecols=['CITY','population'
])
```

```
In [326]: Population
```

Out[326]:

```
        CITY
        population

        0
        Los Angeles
        3792621

        1
        Chicago
        2695598

        2
        Boston
        617594

        3
        Portland
        583776

        4
        Atlanta
        420003

        5
        Houston
        2099451

        6
        Seattle
        608660
```

```
In [327]: LA= 3792621
          Chi = 2695598
          Bos = 617594
          Hous = 2099451
          Port = 583776
          Sea = 608660
          AT = 420003
In [328]: def pops(row):
              if row == 'Chicago':
                   return Chi
               elif row == 'Los Angeles':
                   return LA
              elif row =='Houston':
                   return Hous
              elif row == 'Boston':
                   return Bos
              elif row == 'Portland':
                   return Port
              elif row == 'Seattle':
                   return Sea
              else:
                   return AT
```

Applying groupby for city and temperature bins inorder to find Offense count

```
In [329]: City_comparison_temp = Merge_City.groupby(['city','Bins']).agg({'Offen se_Num':'count'}).\
    rename(columns={'Offense_Num':'crime_count'}).reset_index()
```

Merging temperature daily count table and city offense count tables

In [332]: City_comparison_temp.head()

Out[332]:

	Bins	count	city	crime_count	total_pop
0	(10, 20]	115	Portland	567	583776
1	(20, 30]	1098	Portland	5968	583776
2	(30, 40]	5676	Portland	33328	583776
3	(40, 50]	12798	Portland	72684	583776
4	(50, 60]	12720	Portland	80748	583776

Calculating crime rate

Calculating average crime rate per day

In [335]: City_comparison_temp.head()

Out[335]:

	Bins	count	city	crime_count	total_pop	crime_rate	crime_rate_avg
0	(10, 20]	115	Portland	567	583776	97.126295	20.269835
1	(20, 30]	1098	Portland	5968	583776	1022.309927	22.345572
2	(30, 40]	5676	Portland	33328	583776	5709.039083	24.139700
3	(40, 50]	12798	Portland	72684	583776	12450.666009	23.348647
4	(50, 60]	12720	Portland	80748	583776	13832.017760	26.098147

Graph: Temperature vs. Average Daily Crime Count per 100,000 people

Out[336]: <seaborn.axisgrid.FacetGrid at 0x1alecfc518>

Managerial Insight:

Since weather is usually forecast over a 10-day period with high accuracy, police departments in cities like Boston and Seattle can more efficiently allocate police forces depending on predicted temperatures. This prevents over and under-staffing and can lead to decreased costs for the departments over time.

Machine Learning:

Decision Tree Regressor

```
In [337]: Merge_City_I1 = Merge_City.copy()
In [338]: Merge_City_I1= Merge_City_I1.dropna(how='any',axis=0)
```

Getting date from datetime

```
In [339]: Merge_City_I1 ['Date'] = pd.to_datetime(Merge_City_I1 ['Datetime']).dt
    .date
```

Getting time from datetime

In [340]: Merge_City_I1 ['Time'] = pd.to_datetime(Merge_City_I1 ['Datetime']).dt
 .time

In [341]: Merge_City_I1.head()

Out[341]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year	
0	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
1	(40, 50]	2012-10- 01 13:00:00	3	aggravated assault	7.0	48.074	scattered clouds	2012.0	Рι
2	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
3	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
4	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι

Assigning number to temperatures for every 20 degrees

```
In [342]:
          def tempseries(row):
               if (row >= -20) & (row < 0):
                   return 1
              elif (row >= 0) & (row < 21):
                   return 2
              elif (row >= 21) & (row < 40):
                   return 3
              elif (row >= 40) & (row < 60):
                   return 4
              elif (row >= 60) & (row < 80):
                   return 5
              elif (row \ge 80) \& (row < 100):
                   return 6
              elif (row >= 100) & (row < 120):
                   return 7
In [343]: Merge City I1['Temp']= Merge City I1.Temp.apply(tempseries)
```

In [345]: Merge City I1.head()

In [344]: Merge City I1.drop(['Offense Type', 'Temp Des', 'Datetime', 'Year', 'Bins'

Out[345]:

	Offense_Num	TD_num	Temp	city	Date	Time
0	1	7.0	4	Portland	2012-10-01	13:00:00
1	3	7.0	4	Portland	2012-10-01	13:00:00
2	1	7.0	4	Portland	2012-10-01	13:00:00
3	1	7.0	4	Portland	2012-10-01	13:00:00
4	1	7.0	4	Portland	2012-10-01	13:00:00

Changing the format of date and time

```
In [346]: Merge_City_I1['Time']=pd.to_datetime(Merge_City_I1['Time'],format = '%
H:%M:%S' )
In [347]: Merge_City_I1['Date']=pd.to_datetime(Merge_City_I1['Date'],format = '%
Y-%m-%d' )
```

Assigning numbers for time with an interval of 6 hours

],axis=1,inplace=True)

```
def timeseries(row):
In [348]:
              if (row >= '01') & (row < '07'):
                  return 1
              elif (row >= '07') & (row < '13'):
                  return 2
              elif (row >= '13') & (row < '19'):
                  return 3
              elif (row >= '19') & (row < '25'):
                  return 4
In [349]: Merge_City_I1['Time']=pd.to_datetime(Merge_City_I1['Time']).dt.strftim
          e('%H')
          Merge_City_I1['Month'] = pd.to_datetime(Merge_City_I1['Date']).dt.mont
In [350]:
In [351]:
          Merge_City_I1['Day'] = pd.to_datetime(Merge_City_I1['Date']).dt.day
In [352]: Merge_City_I1['Time'] = Merge_City_I1['Time'].replace('00','24')
In [353]: Merge_City_I1['Time'] = Merge_City_I1.Time.apply(timeseries)
In [354]: Merge City I1.drop(['Date'],axis=1,inplace=True)
In [355]: Merge_City_I1.head()
```

Out[355]:

	Offense_Num	TD_num	Temp	city	Time	Month	Day
0	1	7.0	4	Portland	3	10	1
1	3	7.0	4	Portland	3	10	1
2	1	7.0	4	Portland	3	10	1
3	1	7.0	4	Portland	3	10	1
4	1	7.0	4	Portland	3	10	1

```
In [356]: Merge_City_I1 = pd.get_dummies(Merge_City_I1, columns = ['city'])
```

In [357]: Merge_City_I1.head()

Out[357]:

	Offense_Num	TD_num	Temp	Time	Month	Day	city_Atlanta	city_Boston	city_Chi
0	1	7.0	4	3	10	1	0	0	0
1	3	7.0	4	3	10	1	0	0	0
2	1	7.0	4	3	10	1	0	0	0
3	1	7.0	4	3	10	1	0	0	0
4	1	7.0	4	3	10	1	0	0	0

```
In [358]: Merge City I1 = Merge City I1.dropna(how='any',axis=0)
          X=Merge_City_I1.drop(['Offense_Num'], axis=1)
In [359]:
In [360]:
          Y=Merge City I1.Offense Num
          import sklearn as sk
In [361]:
          import sklearn.tree as tree
          from IPython.display import Image
          import pydotplus
          dt = tree.DecisionTreeClassifier(max depth=2)
In [362]:
          dt.fit(X,Y)
In [363]:
Out[363]: DecisionTreeClassifier(class weight=None, criterion='gini', max dept
          h=2,
                      max_features=None, max_leaf_nodes=None,
                      min impurity decrease=0.0, min impurity split=None,
                      min samples leaf=1, min samples split=2,
                      min weight fraction leaf=0.0, presort=False, random stat
          e=None,
                      splitter='best')
```

```
# This code will visualize a decision tree dt,
In [364]:
          # trained with the attributes in X and the class labels in Y
          dt feature names = list(X.columns)
          dt_target_names = np.array(Y.unique(),dtype=np.string_)
          result = np.array([s.decode('UTF-8') for s in dt target names])
          tree.export_graphviz(dt, out_file='tree.dot',
              feature names=dt feature names, class names=result,filled=True)
          graph = pydotplus.graph from dot file('tree.dot')
          Image(graph.create png())
```

Out[364]:

Machine Learning Conclusion:

The decision tree above is split by city first, and this shows that each city has its own criminal patterns. From this information, we performed various analyses on the data based on city and found the insight shown above.

Second Insight: Offense vs Day of the week

Many crimes seem to be committed at a consistent rate over the week or tend to drop off through the weekend. However, it is interesting that homicides seems to increase over the weekend and peak on Sunday. In the US, Sunday is the day people go to church and it seems surprising that this is the day when the most homicides occur.

Creating the copy of the Merge_City

```
In [365]:
          Merge C = Merge City.copy()
```

In [366]: Merge_C[:2]

Out[366]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year	
0	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
1	(40, 50]	2012-10- 01 13:00:00	3	aggravated assault	7.0	48.074	scattered clouds	2012.0	Рι

Getting weekday from datetime

```
In [367]: Merge_C['WeekDay'] = pd.to_datetime(Merge_C['Datetime']).dt.weekday_na
    me
```

Creating individual dataframes for each crime type in order to compare each crime type over weekday

In [369]: Offense_1[:2]

Out[369]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year	
C	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
2	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι

In [371]: Offense_2[:2]

Out[371]:

		Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Yea
1	8	(40, 50]	2012-10- 01 14:00:00	2	burglary	7.0	48.079854	scattered clouds	2012.
2	:6	(40, 50]	2012-10- 01 16:00:00	2	burglary	7.0	48.110866	scattered clouds	2012.

In [373]: Offense_3[:2]

Out[373]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Yeaı
1	(40, 50]	2012-10- 01 13:00:00	3	aggravated assault	7.0	48.074000	scattered clouds	2012.0
6	(40, 50]	2012-10- 01 14:00:00	3	aggravated assault	7.0	48.079854	scattered clouds	2012.0

In [375]: Offense_4[:2]

Out[375]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Υє
37	(40, 50]	2012-10- 01 17:00:00	4	prostitution	7.0	48.126372	scattered clouds	201;
179	(40, 50]	2012-10- 02 13:00:00	4	rape	7.0	48.436494	scattered clouds	201:

In [377]: Offense_5[:2]

Out[377]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year
324	(60, 70]	2012-10- 03 06:00:00	5	forgery	6.0	63.158	sky is clear	2012.0
325	(60, 70]	2012-10- 03 06:00:00	5	forgery	6.0	63.158	sky is clear	2012.0

In [379]: Offense_6[:2]

Out[379]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Ye
54	(40, 50]	2012-10- 01 18:00:00	6	weapons	7.0	48.141878	scattered clouds	201:
274	(70, 80]	2012-10- 02 20:00:00	6	weapons	6.0	72.356000	sky is clear	201;

In [381]: Offense_7[:2]

Out[381]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Yea
55	(40, 50]	2012-10- 01 18:00:00	7	drugs	7.0	48.141878	scattered clouds	2012.
63	(40, 50]	2012-10- 01 19:00:00	7	drugs	7.0	48.157384	scattered clouds	2012.

In [383]: Offense_8[:2]

Out[383]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Yea
21	(40, 50]	2012-10- 01 14:00:00	8	fraud	7.0	48.079854	scattered clouds	2012.
35	(40, 50]	2012-10- 01 16:00:00	8	fraud	7.0	48.110866	scattered clouds	2012.

In [385]: Offense_9[:2]

Out[385]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Ye
104	(40, 50]	2012-10- 02 01:00:00	9	arson	7.0	48.250421	scattered clouds	201;
106	(40, 50]	2012-10- 02 01:00:00	9	arson	7.0	48.250421	scattered clouds	201:

In [387]: Offense_10[:2]

Out[387]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Yea
773	(50, 60]	2012-11- 13 22:00:00	10	kidnap	7.0	50.072	overcast clouds	2012.
106	(40, 50]	2012-12- 01 15:00:00	10	kidnap	3.0	46.256	light rain	2012.

In [389]: Offense_11[:2]

Out[389]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year
2634	(60, 70]	2012-10- 15 20:00:00	11	homicide	6.0	62.978	sky is clear	2012.0
3455	(60, 70]	2012-10- 20 01:00:00	11	homicide	7.0	60.458	overcast clouds	2012.C

In [391]: Offense_12[:2]

Out[391]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Ye
101	(40, 50]	2012-10- 01 17:00:00	12	harassment	6.0	47.525116	sky is clear	201;
110	(40, 50]	2012-10- 01 17:00:00	12	harassment	6.0	47.525116	sky is clear	201;

In [393]: Offense_13[:2]

Out[393]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Yea
105	7 (60, 70]	2015-06- 19 03:00:00	13	operating under the influence	6.0	64.3991	sky is clear	2015.
161	7 (60, 70]	2015-06- 21 04:00:00	13	operating under the influence	3.0	61.6622	moderate rain	2015.

```
In [395]: Offense_14[:2]
```

Out[395]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Yea
7	(40, 50]	2012-10- 01 14:00:00	14	vandalism	7.0	48.079854	scattered clouds	2012.
20	(40, 50]	2012-10- 01 14:00:00	14	trespass	7.0	48.079854	scattered clouds	2012.

Assigning numbers to weekdays

```
In [396]:
          def dayofweek(row):
              if row == 'Monday':
                   return 1
              elif row == 'Tuesday':
                  return 2
              elif row == 'Wednesday':
                   return 3
              elif row == 'Thursday':
                   return 4
              elif row == 'Friday':
                   return 5
              elif row== 'Saturday':
                  return 6
              elif row== 'Sunday':
                  return 7
```

```
In [397]: Offense_1.head()
```

Out[397]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year	
0	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
2	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
3	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
4	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Pι
5	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι

Calculating the day rate by grouping by weekday for each offense

day rate = (count per offense per weekday) / total count per offense

```
In [398]: group1=Offense_1.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

In [399]: group1.head()

Out[399]:

	WeekDay	count
0	Friday	233149
1	Monday	231050
2	Saturday	212742
3	Sunday	196107
4	Thursday	221802

```
In [400]: total_1 = group1['count'].sum()
```

 WeekDay
 count
 day_rate
 order

 1
 Monday
 231050
 0.149592
 1

 5
 Tuesday
 224822
 0.145560
 2

 6
 Wednesday
 224858
 0.145583
 3

 4
 Thursday
 221802
 0.143605
 4

 0
 Friday
 233149
 0.150951
 5

```
In [405]: group2=Offense_2.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [406]: total_2 = group2['count'].sum()
    group2['day_rate'] = group2['count'] / total_2
    group2.head()
```

Out[406]:

	WeekDay	count	day_rate
0	Friday	61602	0.157081
1	Monday	59501	0.151724
2	Saturday	50170	0.127930
3	Sunday	46729	0.119156
4	Thursday	58028	0.147968

```
In [407]: group2['order'] = group2['WeekDay'].apply(dayofweek)
In [408]: group2 = group2.sort_values('order',ascending=True)
```

In [409]: group2.head()

Out[409]:

	WeekDay	count	day_rate	order
1	Monday	59501	0.151724	1
5	Tuesday	58549	0.149296	2
6	Wednesday	57588	0.146846	3
4	Thursday	58028	0.147968	4
0	Friday	61602	0.157081	5

```
In [411]: total_3 = group1['count'].sum()
```

```
In [412]: group3['day_rate'] = group3['count'] / total_3
```

In [413]: group3.head()

Out[413]:

	WeekDay	count	day_rate
0	Friday	85614	0.055430
1	Monday	84045	0.054415
2	Saturday	95578	0.061882
3	Sunday	102232	0.066190
4	Thursday	81714	0.052905

```
In [414]: group3['order'] = group3['WeekDay'].apply(dayofweek)
```

```
In [415]: group3 = group3.sort_values('order',ascending=True)
```

In [416]: group3.head()

Out[416]:

		WeekDay	count	day_rate	order
	1	Monday	84045	0.054415	1
	5	Tuesday	81131	0.052528	2
	6	Wednesday	82433	0.053371	3
Ī	4	Thursday	81714	0.052905	4
	0	Friday	85614	0.055430	5

```
In [418]: total_4 = group4['count'].sum()
```

In [420]: group4.head()

Out[420]:

	WeekDay	count	day_rate
0	Friday	6903	0.152236
1	Monday	5787	0.127624
2	Saturday	6306	0.139070
3	Sunday	5830	0.128573
4	Thursday	6757	0.149016

```
In [421]: group4['order'] = group4['WeekDay'].apply(dayofweek)
```

```
In [422]: group4 = group4.sort_values('order',ascending=True)
```

```
In [423]: group4.head()
```

Out[423]:

	WeekDay	count	day_rate	order
1	Monday	5787	0.127624	1
5	Tuesday	6781	0.149546	2
6	Wednesday	6980	0.153934	3
4	Thursday	6757	0.149016	4
0	Friday	6903	0.152236	5

```
In [424]: group5=Offense_5.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [425]: total_5= group5['count'].sum()
    group5['day_rate'] = group5['count'] / total_5
    group5.head()
```

Out[425]:

	WeekDay	count	day_rate	
0	Friday	974	0.171117	
1	Monday	799	0.140372	
2	Saturday	531	0.093289	
3	Sunday	337	0.059206	
4	Thursday	1026	0.180253	

```
In [426]: group5['order'] = group5['WeekDay'].apply(dayofweek)
```

```
In [427]: group5 = group5.sort_values('order',ascending=True)
```

```
In [428]: group5.head()
```

Out[428]:

		WeekDay	count	day_rate	order
	1	Monday	799	0.140372	1
ţ	5	Tuesday	1008	0.177091	2
6	ć	Wednesday	1017	0.178672	3
	1	Thursday	1026	0.180253	4
)	Friday	974	0.171117	5

```
In [429]: group6=Offense_6.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [430]: total_6 = group6['count'].sum()
group6['day_rate'] = group6['count'] / total_6
group6.head()
```

Out[430]:

	WeekDay	count	day_rate
0	Friday	3122	0.143382
1	Monday	3019	0.138652
2	Saturday	3397	0.156012
3	Sunday	3087	0.141775
4	Thursday	3160	0.145127

```
In [431]: group6['order'] = group6['WeekDay'].apply(dayofweek)
```

```
In [432]: group6 = group6.sort_values('order',ascending=True)
```

```
In [433]: group6.head()
```

Out[433]:

	WeekDay	count	day_rate	order
1	Monday	3019	0.138652	1
5	Tuesday	2978	0.136769	2
6	Wednesday	3011	0.138284	3
4	Thursday	3160	0.145127	4
0	Friday	3122	0.143382	5

```
In [434]: group7=Offense_7.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [435]: total_7 = group1['count'].sum()
group7['day_rate'] = group7['count'] / total_7
group7.head()
```

Out[435]:

	WeekDay	count	day_rate
0	Friday	22960	0.014865
1	Monday	20005	0.012952
2	Saturday	19523	0.012640
3	Sunday	17126	0.011088
4	Thursday	22283	0.014427

```
In [436]: group7['order'] = group7['WeekDay'].apply(dayofweek)
```

```
In [437]: group7 = group7.sort_values('order',ascending=True)
```

```
In [438]: group7.head()
```

Out[438]:

	WeekDay	count	day_rate	order
1	Monday	20005	0.012952	1
5	Tuesday	21969	0.014224	2
6	Wednesday	22723	0.014712	3
4	Thursday	22283	0.014427	4
0	Friday	22960	0.014865	5

```
In [439]: group8=Offense_8.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [440]: total_8 = group8['count'].sum()
    group8['day_rate'] = group8['count'] / total_8
    group8.head()
```

Out[440]:

	WeekDay	count	day_rate
0	Friday	14283	0.161865
1	Monday	14504	0.164370
2	Saturday	9628	0.109112
3	Sunday	7353	0.083330
4	Thursday	13543	0.153479

```
In [441]: group8['order'] = group8['WeekDay'].apply(dayofweek)
```

```
In [442]: group8 = group8.sort_values('order',ascending=True)
```

```
In [443]: group8.head()
```

Out[443]:

	WeekDay	count	day_rate	order
1	Monday	14504	0.164370	1
5	Tuesday	14453	0.163792	2
6	Wednesday	14476	0.164053	3
4	Thursday	13543	0.153479	4
0	Friday	14283	0.161865	5

```
In [444]: group9=Offense_9.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [445]: total_9 = group9['count'].sum()
group9['day_rate'] = group9['count'] / total_9
group9.head()
```

Out[445]:

	WeekDay	count	day_rate
0	Friday	660	0.142641
1	Monday	680	0.146963
2	Saturday	687	0.148476
3	Sunday	698	0.150854
4	Thursday	610	0.131835

```
In [446]: group9['order'] = group9['WeekDay'].apply(dayofweek)
```

```
In [447]: group9 = group9.sort_values('order',ascending=True)
```

```
In [448]: group9.head()
```

Out[448]:

	WeekDay	count	day_rate	order
1	Monday	680	0.146963	1
5	Tuesday	638	0.137886	2
6	Wednesday	654	0.141344	3
4	Thursday	610	0.131835	4
0	Friday	660	0.142641	5

```
In [449]: group10=Offense_10.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [450]: total_10 = group10['count'].sum()
    group10['day_rate'] = group10['count'] / total_10
    group10.head()
```

Out[450]:

	WeekDay	count	day_rate
0	Friday	427	0.163164
1	Monday	375	0.143294
2	Saturday	382	0.145969
3	Sunday	347	0.132595
4	Thursday	368	0.140619

```
In [451]: group10['order'] = group10['WeekDay'].apply(dayofweek)
```

```
In [452]: group10 = group10.sort_values('order',ascending=True)
```

```
In [453]: group10.head()
```

Out[453]:

	WeekDay	count	day_rate	order
1	Monday	375	0.143294	1
5	Tuesday	355	0.135652	2
6	Wednesday	363	0.138708	3
4	Thursday	368	0.140619	4
0	Friday	427	0.163164	5

```
In [454]: group11=Offense_11.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [455]: total_11 = group11['count'].sum()
    group11['day_rate'] = group11['count'] / total_11
    group11.head()
```

Out[455]:

	WeekDay	count	day_rate
0	Friday	385	0.120993
1	Monday	417	0.131050
2	Saturday	532	0.167190
3	Sunday	581	0.182590
4	Thursday	399	0.125393

```
In [456]: group11['order'] = group11['WeekDay'].apply(dayofweek)
```

```
In [457]: group11 = group11.sort_values('order',ascending=True)
```

```
In [458]: group11.head()
```

Out[458]:

	WeekDay	count	day_rate	order
1	Monday	417	0.131050	1
5	Tuesday	448	0.140792	2
6	Wednesday	420	0.131992	3
4	Thursday	399	0.125393	4
0	Friday	385	0.120993	5

```
In [459]: group12=Offense_12.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [460]: total_12 = group12['count'].sum()
    group12['day_rate'] = group12['count'] / total_12
    group12.head()
```

Out[460]:

	WeekDay	count	day_rate
0	Friday	7869	0.148707
1	Monday	8065	0.152411
2	Saturday	6709	0.126786
3	Sunday	6724	0.127069
4	Thursday	7703	0.145570

```
In [461]: group12['order'] = group12['WeekDay'].apply(dayofweek)
```

```
In [462]: group12 = group12.sort_values('order',ascending=True)
```

```
In [463]: group12.head()
```

Out[463]:

	WeekDay	count	day_rate	order
1	Monday	8065	0.152411	1
5	Tuesday	7835	0.148065	2
6	Wednesday	8011	0.151391	3
4	Thursday	7703	0.145570	4
0	Friday	7869	0.148707	5

```
In [464]: group13=Offense_13.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
```

```
In [465]: total_13 = group13['count'].sum()
    group13['day_rate'] = group13['count'] / total_13
    group13.head()
```

Out[465]: _

	WeekDay	count	day_rate
0	Friday	69	0.146186
1	Monday	53	0.112288
2	Saturday	100	0.211864
3	Sunday	105	0.222458
4	Thursday	53	0.112288

Out[466]:

		WeekDay	count	day_rate	order
	1	Monday	53	0.112288	1
ļ	5	Tuesday	41	0.086864	2
(6	Wednesday	51	0.108051	3
[4	Thursday	53	0.112288	4
(0	Friday	69	0.146186	5

```
In [467]: group14=Offense_14.groupby(['WeekDay']).agg({'Offense_Num':'count'}).\
    rename(columns ={'Offense_Num':'count'}).reset_index()
In [468]: total_14 = group14['count'].sum()
group14['day_rate'] = group14['count'] / total_14
group14.head()
```

Out[468]:

	WeekDay	count	day_rate
0	Friday	113511	0.150932
1	Monday	105781	0.140654
2	Saturday	109158	0.145144
3	Sunday	104611	0.139098
4	Thursday	106279	0.141316

Graph: Crime Rate per day for various Crime Types

```
In [469]:
          import plotly.plotly as py
          import plotly.graph_objs as go
          import pandas as pd
          trace_1 = go.Scatter(
              x=group1['WeekDay'],
              y=group1['day_rate'],
              name = "Theft",
               line = dict(color = '#17BECF'),
              opacity = 0.8)
          trace_2 = go.Scatter(
              x=group2['WeekDay'],
              y=group2['day_rate'],
              name = "Burglary",
              line = dict(color = '#7F7F7F'),
              opacity = 0.8)
          trace_3 = go.Scatter(
              x=group3['WeekDay'],
              y=group3['day rate'],
              name = "Assault",
              line = dict(color = '#cf1717'),
              opacity = 0.8)
          trace_4 = go.Scatter(
              x=group4['WeekDay'],
              y=group4['day rate'],
              name = "Sex_Crimes",
```

```
line = dict(color = '#1d17cf'),
    opacity = 0.8)
trace 5 = go.Scatter(
    x=group5['WeekDay'],
    y=group5['day rate'],
    name = "Forgery",
    line = dict(color = '#57cf17'),
    opacity = 0.8)
trace 6 = go.Scatter(
    x=group6['WeekDay'],
    y=group6['day rate'],
    name = "Weapons",
    line = dict(color = '#cf17b6'),
    opacity = 0.8)
trace 7 = go.Scatter(
    x=group7['WeekDay'],
    y=group7['day rate'],
    name = "Drug",
    line = dict(color = '#d6d324'),
    opacity = 0.8)
trace 8 = go.Scatter(
    x=group8['WeekDay'],
    y=group8['day rate'],
    name = "Fraud",
    line = dict(color = '#0b681f'),
    opacity = 0.8)
trace 9 = go.Scatter(
    x=group9['WeekDay'],
    y=group9['day rate'],
    name = "Arson",
    line = dict(color = '#791fba'),
    opacity = 0.8)
trace 10 = go.Scatter(
    x=group10['WeekDay'],
    y=group10['day rate'],
    name = "Kidnapping",
    line = dict(color = '#e293b0'),
    opacity = 0.8)
trace 11 = go.Scatter(
    x=group11['WeekDay'],
    y=group11['day_rate'],
    name = "Homicide",
    line = dict(color = '#84507d'),
    opacity = 0.8)
trace 12 = go.Scatter(
    x=group12['WeekDay'],
    y=group12['day_rate'],
    name = "Harass",
    line = dict(color = '#8d8de0'),
    opacity = 0.8)
trace 13 = go.Scatter(
    x=group13['WeekDay'],
    y=group13['day rate'],
```

```
name = "Driving",
    line = dict(color = '#725959'),
    opacity = 0.8)
data = [trace 1,trace 2,trace 3,trace 4,trace 5,trace 6,trace 7,trace
8, trace 9, trace 10, trace 11, trace 12, trace 13]
layout = dict(
    title='Crime Rate per day for various Crime Types',
    xaxis= dict(
        rangeselector=dict(
            buttons=list([
                dict(count=1,
                     label='1m',
                     step=group13['WeekDay'],
                     stepmode='backward'),
                dict(count=6,
                     label='6m',
                     step=group13['WeekDay'],
                     stepmode='backward'),
                dict(step='all')
            ])
        ),
        rangeslider=dict(),
        type='weekday'
    )
)
fig = dict(data=data, layout=layout)
py.iplot(fig, filename = "Crime Rate per day for various Crime Types")
```

Crime Rate per day for various Crime Types

Managerial Insight:

This analysis can be used to promote the training and depoloyment of specialized forces depending on the day of the week. For example, over the weekend, there is a higher necessity for highway patrollers skilled in identifying erratic drivers as well as agents skilled in diffusing situations that could lead to homicide. This prevents unnecessary loss of life on both the victim's, offender's, and law enforcement's side.

Machine Learning:

Random Forest Classifier

```
In [470]: Merge_City.head(2)
```

Out[470]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year	
((40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Р
	(40, 50]	2012-10- 01 13:00:00	3	aggravated assault	7.0	48.074	scattered clouds	2012.0	Рι

```
In [471]: Merge_City_ml = Merge_City.copy()
```

Getting date from datetime

```
In [473]: Merge_City_ml ['Date'] = pd.to_datetime(Merge_City_ml ['Datetime']).dt
   .date
```

Getting weekday from datetime

```
In [474]: Merge_City_ml ['WeekDay'] = pd.to_datetime(Merge_City_ml ['Datetime'])
   .dt.weekday
```

Getting time from datetime

```
In [475]: Merge_City_ml ['Time'] = pd.to_datetime(Merge_City_ml ['Datetime']).dt
    .time
```

In [476]: Merge_City_ml.head()

Out[476]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year	
0	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Р
1	(40, 50]	2012-10- 01 13:00:00	3	aggravated assault	7.0	48.074	scattered clouds	2012.0	Рι
2	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
3	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
4	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι

Assigning number to temperatures for every 20 degrees

```
In [477]:
          def tempseries(row):
              if (row >= -20) & (row < 0):
                   return 1
              elif (row >= 0) & (row < 21):
                   return 2
              elif (row >= 21) & (row < 40):
                   return 3
              elif (row >= 40) & (row < 60):
                   return 4
              elif (row >= 60) & (row < 80):
                   return 5
              elif (row >= 80) & (row < 100):
                   return 6
              elif (row >= 100) & (row < 120):
                   return 7
```

```
In [478]: Merge_City_ml['Temp']= Merge_City_ml.Temp.apply(tempseries)
In [479]: Merge_City_ml.drop(['Offense_Type','Temp_Des','Datetime','city','Year','Bins'],axis=1,inplace=True)
```

```
In [480]: Merge_City_ml.head()
```

Out[480]:

	Offense_Num	TD_num	Temp	Date	WeekDay	Time
0	1	7.0	4	2012-10-01	0	13:00:00
1	3	7.0	4	2012-10-01	0	13:00:00
2	1	7.0	4	2012-10-01	0	13:00:00
3	1	7.0	4	2012-10-01	0	13:00:00
4	1	7.0	4	2012-10-01	0	13:00:00

Changing the format of date and time

```
In [481]: Merge_City_ml['Time']=pd.to_datetime(Merge_City_ml['Time'], format = '%
H:%M:%S' )
In [482]: Merge_City_ml['Date']=pd.to_datetime(Merge_City_ml['Date'], format = '%
Y-%m-%d' )
```

Assigning numbers for time with an interval of 6 hours

```
In [483]:
          def timeseries(row):
              if (row >= '01') & (row < '07'):
                  return 1
              elif (row >= '07') & (row < '13'):
                  return 2
              elif (row >= '13') & (row < '19'):
                  return 3
              elif (row >= '19') & (row < '25'):
                  return 4
          Merge_City_ml['Time']=pd.to_datetime(Merge_City_ml['Time']).dt.strftim
In [484]:
          e('%H')
          Merge_City_ml['Month'] = pd.to_datetime(Merge_City_ml['Date']).dt.mont
In [485]:
In [486]:
          Merge_City_ml['Day'] = pd.to_datetime(Merge_City_ml['Date']).dt.day
In [487]: | Merge_City_ml['Time'] = Merge_City_ml['Time'].replace('00','24')
          Merge_City_ml['Time'] = Merge_City_ml.Time.apply(timeseries)
In [488]:
```

```
In [489]: Merge_City_ml.drop(['Date'],axis=1,inplace=True)
```

Grouping crimes into violent, property and other:

```
1 -- Property Crimes : Theft, Burglary & Arson
```

- 2 -- Violent Crimes : Assault , Sex Crimes , Kidnapping , Homicide
- 3 -- Other Crimes: Forgery, Weapons, Drugs, Fraud, Harass, Driving

```
In [490]: def crime_cat(row):
    if (row == 1) | (row == 2) | (row == 9):
        return 1
    elif (row == 3) | (row == 4) | (row == 10) | (row == 11):
        return 2
    elif (row == 5) | (row == 6) | (row == 7) | (row == 12) | (row == 1
3) | (row == 8):
        return 3
```

```
In [491]: Merge_City_ml.head()
```

Out[491]:

	Offense_Num	TD_num	Temp	WeekDay	Time	Month	Day
0	1	7.0	4	0	3	10	1
1	3	7.0	4	0	3	10	1
2	1	7.0	4	0	3	10	1
3	1	7.0	4	0	3	10	1
4	1	7.0	4	0	3	10	1

```
In [492]: Merge_City_ml['crime_cat'] = Merge_City_ml['Offense_Num'].apply(crime_cat)
In [493]: Merge_City_dt = Merge_City_ml.copy()
In [494]: Merge_City_ml.drop(['Offense_Num'],axis=1,inplace=True)
```

```
In [496]: X = Merge_City_ml.drop('crime_cat',axis=1)
```

In [495]: Merge City ml = Merge City ml.dropna(how='any',axis=0)

```
In [497]: Y = Merge_City_ml.crime_cat
```

In [499]: train_test_split(X,Y,test_size=0.3,random_state = 0)

111 [499].	craiii_ce	sc_spiic	(A, I, C	.est_size-	·0.5,1a	iiidolii_s c	ace -
Out[499]:	[TD num	Temp	WeekDay	Time	Month	Day
	858143	 7.0	5	5	4	12	10
	643736	7.0	4	2	2	12	23
	243919	3.0	5	6	2	3	5
	11402	6.0	3	0	2	11	12
	119230	7.0	5	1	1	9	9
	77487	5.0	5	3	3	8	20
	56009	5.0	4	0	1	1	14
	47095	7.0	3	1	3	3	19
	534843	6.0	4	2	3	6	24
	223868	6.0	5	3	3	11	28
	110480	7.0	3	5	4	2	9
	798683	6.0	5	5	1	9	3
	119743	6.0	4	3	3	9	11
	991468	5.0	5	6	3	7	16
	84598	5.0	5	3	4	9	10
	613592	6.0	4	2	2	10	29
	187881	7.0	6	5	4	7	23
	98121	5.0	5	1	2	11	3
	118607	6.0	5	2	2	5	15
	391224	6.0	5	6	3	10	12
	13467	7.0	4	1	3	10	16
	148619	6.0	4	5	3	3	30
	421740	7.0	3	5	2	3	1
	251537	6.0	5	2	4	3	29
	105313	7.0	5	4	4	11	13
	998381	6.0	5	3	2	7	27
	358834	6.0	4	5	2	9	10
	93879	7.0	4	4	1	3	29
	237157	7.0	5	0	2	7	8
	132676	3.0	4	1	3	11	25
		• • •	• • •	• • •	• • •	• • •	• • •
	266607	6.0	5	4	3	8	9
	962975	5.0	5	2	3	5	31
	793983	5.0	5	4	4	8	26
	398212	7.0	4	5	3	10	25
	442668	6.0	3	2	2	1	14
	352319	6.0	5	4	2	8	26
	132408	6.0	4	2	4	2	3
	346648	6.0	5	3	2	7	24
	87308	6.0	5	4	1	7	3
	774355	5.0	5	1	2	7	26
	307951	3.0	5	5	4	6	4
	59766	3.0	5	1	1	8	12
	163023	7.0	4	1	2	4	8
	120732	6.0	5	6	4	5	19
	513129	7.0	5	4	2	6	27
	149392	6.0	5	3	3	9	7
	75775	6.0	4	4	1	2	22

531395	7.0	5	4	4	7	18			
70514	6.0	3	1	2	12	9			
18245	5.0	4	5	2	11	3			
135298	6.0	4	0	4	12	16			
144805	7.0	5	1	2	3	15			
217787	6.0	4	1	3	2	24			
162735	6.0	3	4	4	2	10			
710421	7.0	3	3	3	3	26			
749401	7.0	4	2	3	5	20			
171867	7.0	5	3	2	8	22			
704385	7.0	3	1	3	3	17			
866529	5.0	4	4	2	12	23			
128986	6.0	3	1	3	11	26			
[1596644	rows x	6 colum	ns],		TD_num	Temp	WeekDay	Time	Мо
nth Day									
243086	6.0	4	6	1	1	5			
28735	7.0	5	4	4	11	23			
815634	6.0	5	5	2	10	1			
85538	6.0	5	2	1	3	13			
237628	7.0	5	0	4	6	22			
754560	3.0	5	2	3	5	27			
663993	6.0	3	1	3	1	26			
848015	6.0	5	2	4	11	23			
611855	7.0	4	0	1	10	27			
187227	5.0	5	3	2	7	21			
121068	5.0	5	1	4	9	6			
217149	3.0	5	6	3	9	18			
309969	6.0	5	6	1	5	18			
255322	7.0	4	3	2	1	30			
31298	5.0	3	2	4	1	23			
44061	6.0	4	6	3	6	23			
54201	7.0	5	3	3	6	12			
607580	7.0	5	3	3	10	22			
51521	6.0	5	4	4	1	4			
441636	7.0	3	5	2	3	29			
316952	7.0	5	4	4	10	4			
696012	7.0	5	6	4	3	20			
568999	5.0	5	3	3	8	20			
102715	3.0	4	3	2	12	31			
61594	5.0	5	0	2	7	6			
511721	7.0	5	2	3	6	25			
189193	7.0	4	0	2	3	21			
243061	6.0	5	6	4	1	5			
642148	3.0	3	1	2	12	9			
165893	3.0	4	2	1	4	23			
• • •	• • •	• • •	• • •	• • •	• • •	• • •			
519431	7.0	5	4	3	7	4			
625306	7.0	3	4	2	11	14			
42930	3.0	4	4	4	11	20			
385067	5.0	2	3	3	1	2			
327888	6.0	4	4	3	10	18			
301423	7.0	4	5	2	5	21			

```
2
88779
              6.0
                        4
                                           4
                                                    3
                                                         12
                                    5
                                           3
                                                    3
              7.0
                        4
                                                         23
28700
                        5
                                    5
                                           4
                                                    5
729334
              7.0
                                                         14
                        5
91154
              6.0
                                    6
                                           3
                                                    8
                                                         16
              3.0
                        5
                                    6
                                           4
                                                    5
                                                         24
83648
                        5
319463
              6.0
                                    2
                                           3
                                                    6
                                                           4
                                    2
                                           4
                                                    2
                                                         25
              3.0
                        4
18573
              7.0
                                    4
                                           3
                                                    3
276561
                        4
                                                         14
                                    5
                                                    9
292802
              6.0
                        5
                                           1
                                                          7
                                    3
262715
              7.0
                        4
                                           4
                                                   11
                                                         12
              5.0
                        5
                                    0
                                           2
                                                    7
                                                         20
66588
53707
              7.0
                        5
                                    3
                                           3
                                                    8
                                                         15
              5.0
                        4
                                    3
                                           3
                                                    1
                                                         23
251977
131503
              6.0
                        3
                                    2
                                           3
                                                   12
                                                          4
                                           2
                                                    9
                                                         17
301494
              6.0
                        4
                                    1
91582
              3.0
                        4
                                    4
                                           3
                                                    3
                                                         28
606714
              6.0
                        4
                                    0
                                           3
                                                   10
                                                         20
                                    2
                                           2
676928
              6.0
                        4
                                                    2
                                                         17
246422
              5.0
                        4
                                    2
                                           3
                                                    3
                                                         15
                        4
                                    4
                                           4
                                                    3
                                                         21
436169
              7.0
                                   2
                                           3
                                                    5
                        4
                                                           8
36294
              7.0
              7.0
                        4
                                    3
                                           3
                                                   12
                                                           6
17944
                                    2
772390
              5.0
                        4
                                           2
                                                    5
                                                           4
201991
                        5
                                    3
                                           2
                                                   10
                                                         17
              6.0
[684276 rows x 6 columns], 858143
                                               1.0
             1.0
            1.0
            1.0
            3.0
```

1.0 2.0 3.0 1.0 1.0 2.0 2.0 3.0 2.0 1.0 1.0 1.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 1.0 1.0 3.0 2.0

```
237157
           1.0
132676
          1.0
          . . .
266607
          1.0
          2.0
962975
793983
          1.0
          1.0
398212
          2.0
442668
352319
          1.0
132408
           1.0
          1.0
346648
87308
           1.0
774355
           1.0
307951
           2.0
          1.0
59766
163023
          1.0
120732
          1.0
          3.0
513129
          1.0
149392
75775
           1.0
531395
          1.0
          1.0
70514
18245
          2.0
135298
          1.0
144805
           1.0
          1.0
217787
           2.0
162735
710421
          2.0
749401
          1.0
171867
          1.0
704385
          1.0
           1.0
866529
128986
           3.0
Name: crime_cat, Length: 1596644, dtype: float64, 243086
                                                                  1.0
28735
          1.0
815634
          1.0
          2.0
85538
237628
          1.0
          3.0
754560
          1.0
663993
848015
           1.0
           2.0
611855
187227
          1.0
          3.0
121068
217149
          1.0
309969
          1.0
255322
           1.0
           1.0
31298
44061
          1.0
54201
          1.0
607580
          2.0
51521
          2.0
441636
          2.0
```

```
316952
           2.0
696012
           2.0
568999
           1.0
102715
           1.0
61594
           1.0
511721
           3.0
189193
           1.0
           2.0
243061
642148
           3.0
165893
           1.0
          . . .
519431
           3.0
625306
           2.0
42930
           1.0
385067
           2.0
327888
           1.0
301423
           1.0
88779
           1.0
           1.0
28700
729334
           1.0
91154
           1.0
83648
           1.0
319463
           2.0
18573
           2.0
276561
           1.0
292802
           1.0
262715
           1.0
66588
           1.0
53707
           1.0
251977
           1.0
131503
           1.0
           1.0
301494
91582
           3.0
606714
           3.0
676928
           2.0
246422
           1.0
           2.0
436169
36294
           3.0
17944
           1.0
772390
           2.0
201991
           1.0
Name: crime cat, Length: 684276, dtype: float64]
```

This method train_test_split() return 4 things :

```
In [500]: X_train, X_test, Y_train, Y_test = \
    train_test_split(X,Y,test_size=0.3,random_state = 0)

In [501]: len(X)
Out[501]: 2280920
```

In [502]: type(X)

Out[502]: pandas.core.frame.DataFrame

In [503]: type(X_train)

Out[503]: pandas.core.frame.DataFrame

In [504]: X_train.head()

Out[504]:

	TD_num	Temp	WeekDay	Time	Month	Day
858143	7.0	5	5	4	12	10
643736	7.0	4	2	2	12	23
243919	3.0	5	6	2	3	5
11402	6.0	3	0	2	11	12
119230	7.0	5	1	1	9	9

In [505]: X_test.head()

Out[505]:

	TD_num	Temp	WeekDay	Time	Month	Day
243086	6.0	4	6	1	1	5
28735	7.0	5	4	4	11	23
815634	6.0	5	5	2	10	1
85538	6.0	5	2	1	3	13
237628	7.0	5	0	4	6	22

In [506]: len(X_train)

Out[506]: 1596644

In [507]: len(Y_train)

Out[507]: 1596644

In [508]: len(X_train) / float(len(X))

Out[508]: 0.7

In [509]: len(X_test)

Out[509]: 684276

```
In [510]: len(X_train) + len(X_test)
Out[510]: 2280920
```

Train on the trainining set

```
from sklearn.ensemble import RandomForestClassifier
In [511]:
In [512]: cl = RandomForestClassifier(random state = 0)
In [513]: cl.fit(X train, Y train)
Out[513]: RandomForestClassifier(bootstrap=True, class weight=None, criterion=
          'gini',
                      max depth=None, max features='auto', max leaf nodes=None
                      min impurity decrease=0.0, min impurity split=None,
                      min_samples_leaf=1, min_samples_split=2,
                      min weight fraction leaf=0.0, n estimators=10, n jobs=1,
                      oob score=False, random state=0, verbose=0, warm start=F
          alse)
In [514]: len(X train)
Out[514]: 1596644
In [515]: len(X test)
Out[515]: 684276
```

predict on the test set

```
In [516]: cl.predict(X_test)
Out[516]: array([1., 1., 1., 1., 1., 1.])
In [517]: (cl.predict(X_test) == Y_test).mean()
Out[517]: 0.6681616774517884
```

Predict on the test set

```
In [518]: y_pred = cl.predict(X_test)
```

Every classifier will also give a prediction output with probability

```
In [520]: cl.predict proba(X test)
Out[520]: array([[0.62818507, 0.28777759, 0.08403735],
                 [0.52970784, 0.28045478, 0.18983738],
                 [0.78577775, 0.1923034, 0.02191885],
                 [0.73888687, 0.12540546, 0.13570767],
                 [0.62984586, 0.21299841, 0.15715572],
                 [0.85475484, 0.14524516, 0.
                                                     11)
In [521]: cl.predict proba(X test)[1:10,:]
Out[521]: array([[0.52970784, 0.28045478, 0.18983738],
                 [0.78577775, 0.1923034, 0.02191885],
                 [0.5225509, 0.44251912, 0.03492997],
                 [0.71845488, 0.17617855, 0.10536658],
                 [0.60940578, 0.27874562, 0.1118486],
                 [0.62571401, 0.37428599, 0.
                 [0.7540502, 0.20497528, 0.04097452],
                 [0.40780381, 0.47068657, 0.12150962],
                 [0.90874368, 0.09125632, 0.
                                                     11)
In [522]: y pred proba = cl.predict proba(X test)[:,1]
In [523]: y pred proba[:20]
Out[523]: array([0.28777759, 0.28045478, 0.1923034, 0.44251912, 0.17617855,
                 0.27874562, 0.37428599, 0.20497528, 0.47068657, 0.09125632,
                 0.13246808, 0.22007281, 0.45142857, 0.15581088, 0.02957295,
                 0.25175874, 0.11331148, 0.24236982, 0.25163827, 0.21964148)
```

```
In [524]: X_test.head()
Out[524]: ______
```

	TD_num	Temp	WeekDay	Time	Month	Day
243086	6.0	4	6	1	1	5
28735	7.0	5	4	4	11	23
815634	6.0	5	5	2	10	1
85538	6.0	5	2	1	3	13

Importance of features

237628 7.0

6

22

Machine Learning Conclusion:

Using the Random Forest Classifier as a prediction model, it can be concluded that the day of the week is the strongest factor in predicting what types of crime will occur given all the data used in this project. We explored the relationship between day of the week and crime as shown above.

Third Insight: Temperature Spike vs Crime Spike

It is is apparent that when there is a large spike in temperature over a three day period, there is a corresponding jump in the number of assaults committed. For a large fall in temperature, assaults drop as well.

Boston and Chicago seem to show a similar relation between the size of the temperature spike and the increase in total crimes.

```
In [526]: Merge_City.head()
```

Out[526]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Year	
0	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
1	(40, 50]	2012-10- 01 13:00:00	3	aggravated assault	7.0	48.074	scattered clouds	2012.0	Рι
2	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
3	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι
4	(40, 50]	2012-10- 01 13:00:00	1	larceny	7.0	48.074	scattered clouds	2012.0	Рι

Performed groupby on date and offense_Num to get crime count and average temperature on that date

```
In [534]: merge_all_offense.head()
```

Out[534]:

	Date	Offense_Num	Temp	Offense_count
0	2012-10-01	1	56.488792	516
1	2012-10-01	2	58.498376	130
2	2012-10-01	3	56.767782	243
3	2012-10-01	4	60.843079	27
4	2012-10-01	6	52.225473	6

Split date based on Offense_Num and performed a 3-day shift on average temperature and offense_count. Then subtracted the shifted data from original data to find the temperature and crime count differences over the 3-day period

Offense 1 Shifted:

```
Offense 1 shifted = merge all offense[merge all offense['Offense Num']
In [535]:
          ==1.01
          Offense 1 shifted['temp shift'] = Offense 1 shifted['Temp'].shift(3)
In [536]:
In [537]:
          Offense 1 shifted['Offense shift'] = Offense 1 shifted['Offense count'
          ].shift(3)
In [538]:
          Offense 1 shifted['temp diff'] = Offense 1 shifted['Temp'] - Offense 1
          shifted['temp shift']
          Offense 1 shifted['Offense diff'] = Offense 1 shifted['Offense count']
In [539]:
          - Offense 1 shifted['Offense shift']
          Offense 1 shifted = Offense 1 shifted.sort values('temp diff', ascendi
In [540]:
          ng=True)
```

In [541]: Offense_1_shifted.head()

Out[541]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	ten
5768	2014- 01-21	1	37.956993	769	64.555507	692.0	-26.5
22624	2017- 11-09	1	47.972117	103	66.581774	124.0	-18.6
22271	2017- 10-01	1	60.675145	110	77.396449	95.0	-16.7
1293	2013- 01-15	1	31.997512	785	46.354335	674.0	-14.3
1508	2013- 02-02	1	34.255408	690	48.434466	739.0	-14.1

Offense 2 Shifted:

In [545]:

_shifted['temp_shift']

Offense_2_shifted['temp_diff'] = Offense_2_shifted['Temp'] - Offense 2

In [547]: Offense_2_shifted.head()

Out[547]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_di
1	2012- 10-01	2	58.498376	130	NaN	NaN	NaN
13	2012- 10-02	2	66.135756	187	NaN	NaN	NaN
24	2012- 10-03	2	65.629290	207	NaN	NaN	NaN
36	2012- 10-04	2	64.263662	195	58.498376	130.0	5.76528
49	2012- 10-05	2	62.593766	231	66.135756	187.0	-3.54199

In [548]: Offense_2_shifted = Offense_2_shifted.sort_values('temp_diff', ascendi
ng=True)

Offense 3 Shifted:

```
In [550]: Offense_3_shifted['temp_shift'] = Offense_3_shifted['Temp'].shift(3)
```

- In [551]: Offense_3_shifted['Offense_shift'] = Offense_3_shifted['Offense_count'
].shift(3)

In [554]: Offense_3_shifted.head()

Out[554]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_di
2	2012- 10-01	3	56.767782	243	NaN	NaN	NaN
14	2012- 10-02	3	64.074979	408	NaN	NaN	NaN
25	2012- 10-03	3	67.536539	347	NaN	NaN	NaN
37	2012- 10-04	3	64.884070	345	56.767782	243.0	8.116287
50	2012- 10-05	3	66.803309	349	64.074979	408.0	2.72833 ⁻

```
In [555]: Offense_3_shifted = Offense_3_shifted.sort_values('temp_diff', ascendi
ng=True)
```

Offense 4 Shifted:

```
In [557]: Offense_4_shifted['temp_shift'] = Offense_4_shifted['Temp'].shift(3)
```

- In [558]: Offense_4_shifted['Offense_shift'] = Offense_4_shifted['Offense_count'
].shift(3)

In [561]: Offense_4_shifted.head()

Out[561]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_di
3	2012- 10-01	4	60.843079	27	NaN	NaN	NaN
15	2012- 10-02	4	68.775897	24	NaN	NaN	NaN
26	2012- 10-03	4	68.663300	20	NaN	NaN	NaN
38	2012- 10-04	4	69.711500	24	60.843079	27.0	8.86842
51	2012- 10-05	4	63.087452	31	68.775897	24.0	-5.68844

```
In [562]: Offense_4_shifted = Offense_4_shifted.sort_values('temp_diff', ascendi
ng=True)
```

Offense 5 Shifted:

```
In [564]: Offense_5_shifted['temp_shift'] = Offense_5_shifted['Temp'].shift(3)
```

```
In [565]: Offense_5_shifted['Offense_shift'] = Offense_5_shifted['Offense_count'
].shift(3)
```

```
In [566]: Offense_5_shifted['temp_diff'] = Offense_5_shifted['Temp'] - Offense_5
    _shifted['temp_shift']
```

In [568]: Offense_5_shifted.head()

Out[568]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_d
27	2012- 10-03	5	63.158000	2	NaN	NaN	NaN
39	2012- 10-04	5	48.525636	11	NaN	NaN	NaN
52	2012- 10-05	5	53.474000	6	NaN	NaN	NaN
76	2012- 10-07	5	72.230000	1	63.158000	2.0	9.072000
87	2012- 10-08	5	59.936000	2	48.525636	11.0	11.41036

```
In [569]: Offense_5_shifted = Offense_5_shifted.sort_values('temp_diff', ascendi
ng=True)
```

Offense 6 Shifted:

```
In [571]: Offense_6_shifted['temp_shift'] = Offense_6_shifted['Temp'].shift(3)
```

- In [572]: Offense_6_shifted['Offense_shift'] = Offense_6_shifted['Offense_count'
].shift(3)
- In [573]: Offense_6_shifted['temp_diff'] = Offense_6_shifted['Temp'] Offense_6
 _shifted['temp_shift']

In [575]: Offense_6_shifted.head()

Out[575]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_d
4	2012- 10-01	6	52.225473	6	NaN	NaN	NaN
16	2012- 10-02	6	62.116455	17	NaN	NaN	NaN
28	2012- 10-03	6	66.146000	9	NaN	NaN	NaN
40	2012- 10-04	6	69.573200	5	52.225473	6.0	17.34772
53	2012- 10-05	6	67.067273	11	62.116455	17.0	4.950818

In [576]: Offense_6_shifted = Offense_6_shifted.sort_values('temp_diff', ascendi
ng=True)

Offense 7 Shifted:

```
In [578]: Offense_7_shifted['temp_shift'] = Offense_7_shifted['Temp'].shift(3)
```

- In [579]: Offense_7_shifted['Offense_shift'] = Offense_7_shifted['Offense_count'
].shift(3)

In [582]: Offense_7_shifted.head()

Out[582]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_di
5	2012- 10-01	7	51.684050	68	NaN	NaN	NaN
17	2012- 10-02	7	59.747168	119	NaN	NaN	NaN
29	2012- 10-03	7	61.944973	111	NaN	NaN	NaN
41	2012- 10-04	7	61.623046	109	51.684050	68.0	9.93899{
54	2012- 10-05	7	63.853732	112	59.747168	119.0	4.106564

In [583]: Offense_7_shifted = Offense_7_shifted.sort_values('temp_diff', ascendi
ng=True)

Offense 8 Shifted:

```
In [585]: Offense_8_shifted['temp_shift'] = Offense_8_shifted['Temp'].shift(3)
```

```
In [586]: Offense_8_shifted['Offense_shift'] = Offense_8_shifted['Offense_count'
].shift(3)
```

```
In [587]: Offense_8_shifted['temp_diff'] = Offense_8_shifted['Temp'] - Offense_8
_shifted['temp_shift']
```

In [589]: Offense_8_shifted.head()

Out[589]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_di
6	2012- 10-01	8	50.199380	42	NaN	NaN	NaN
18	2012- 10-02	8	57.776437	78	NaN	NaN	NaN
30	2012- 10-03	8	57.703870	92	NaN	NaN	NaN
42	2012- 10-04	8	57.045714	70	50.199380	42.0	6.846334
55	2012- 10-05	8	60.407214	56	57.776437	78.0	2.630777

```
In [590]: Offense_8_shifted = Offense_8_shifted.sort_values('temp_diff', ascendi
ng=True)
```

Offense 9 Shifted:

```
In [592]: Offense_9_shifted['temp_shift'] = Offense_9_shifted['Temp'].shift(3)
```

```
In [593]: Offense_9_shifted['Offense_shift'] = Offense_9_shifted['Offense_count'
].shift(3)
```

```
In [594]: Offense_9_shifted['temp_diff'] = Offense_9_shifted['Temp'] - Offense_9
_shifted['temp_shift']
```

In [596]: Offense_9_shifted.head()

Out[596]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_d
7	2012- 10-01	9	59.611368	2	NaN	NaN	NaN
19	2012- 10-02	9	54.175356	5	NaN	NaN	NaN
31	2012- 10-03	9	55.778000	1	NaN	NaN	NaN
43	2012- 10-04	9	64.004000	1	59.611368	2.0	4.392632
56	2012- 10-05	9	74.570000	1	54.175356	5.0	20.39464

```
In [597]: Offense_9_shifted = Offense_9_shifted.sort_values('temp_diff', ascendi
ng=True)
```

Offense 10 Shifted:

```
In [598]: Offense_10_shifted = merge_all_offense[merge_all_offense['Offense_Num'
]==10.0]
```

```
In [599]: Offense_10_shifted['temp_shift'] = Offense_10_shifted['Temp'].shift(3)
```

- In [600]: Offense_10_shifted['Offense_shift'] = Offense_10_shifted['Offense_coun
 t'].shift(3)

In [603]: Offense_10_shifted.head()

Out[603]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_c
8	2012- 10-01	10	52.953833	1	NaN	NaN	NaN
20	2012- 10-02	10	62.060000	1	NaN	NaN	NaN
32	2012- 10-03	10	75.650000	2	NaN	NaN	NaN
44	2012- 10-04	10	64.832000	2	52.953833	1.0	11.87816
68	2012- 10-06	10	47.660000	2	62.060000	1.0	-14.4000

```
In [604]: Offense_10_shifted = Offense_10_shifted.sort_values('temp_diff', ascen ding=True)
```

Offense 11 shifted:

```
In [605]: Offense_11_shifted = merge_all_offense[merge_all_offense['Offense_Num'
]==11.0]
```

```
In [606]: Offense_11_shifted['temp_shift'] = Offense_11_shifted['Temp'].shift(3)
```

- In [607]: Offense_11_shifted['Offense_shift'] = Offense_11_shifted['Offense_coun
 t'].shift(3)
- In [608]: Offense_11_shifted['temp_diff'] = Offense_11_shifted['Temp'] Offense
 _11_shifted['temp_shift']
- In [609]: Offense_11_shifted['Offense_diff'] = Offense_11_shifted['Offense_count
 '] Offense_11_shifted['Offense_shift']

In [610]: Offense_11_shifted.head()

Out[610]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_di
9	2012- 10-01	11	65.625437	1	NaN	NaN	NaN
45	2012- 10-04	11	73.436000	1	NaN	NaN	NaN
57	2012- 10-05	11	74.093000	2	NaN	NaN	NaN
69	2012- 10-06	11	68.288000	3	65.625437	1.0	2.662560
93	2012- 10-08	11	76.280000	1	73.436000	1.0	2.84400(

In [611]: Offense_11_shifted = Offense_11_shifted.sort_values('temp_diff', ascen ding=True)

Offense 12 Shifted:

```
In [612]: Offense_12_shifted = merge_all_offense[merge_all_offense['Offense_Num'
]==12.0]
```

```
In [613]: Offense_12_shifted['temp_shift'] = Offense_12_shifted['Temp'].shift(3)
```

- In [614]: Offense_12_shifted['Offense_shift'] = Offense_12_shifted['Offense_coun
 t'].shift(3)

In [617]: Offense_12_shifted.head()

Out[617]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	temp_c
10	2012- 10-01	12	59.504697	20	NaN	NaN	NaN
21	2012- 10-02	12	71.317838	31	NaN	NaN	NaN
33	2012- 10-03	12	78.857000	18	NaN	NaN	NaN
46	2012- 10-04	12	65.195938	32	59.504697	20.0	5.69124(
58	2012- 10-05	12	61.083950	40	71.317838	31.0	-10.2338

In [618]: Offense_12_shifted = Offense_12_shifted.sort_values('temp_diff', ascen ding=True)

Offense 13 Shifted:

```
In [619]: Offense_13_shifted = merge_all_offense[merge_all_offense['Offense_Num'
]==13.0]
```

```
In [620]: Offense_13_shifted['temp_shift'] = Offense_13_shifted['Temp'].shift(3)
```

- In [621]: Offense_13_shifted['Offense_shift'] = Offense_13_shifted['Offense_coun
 t'].shift(3)
- In [623]: Offense_13_shifted['Offense_diff'] = Offense_13_shifted['Offense_count
 '] Offense_13_shifted['Offense_shift']

In [624]: Offense_13_shifted.head()

Out[624]:

	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	tem
11959	2015- 06-19	13	64.399100	1	NaN	NaN	NaN
11984	2015- 06-21	13	61.662200	1	NaN	NaN	NaN
11998	2015- 06-22	13	66.206600	1	NaN	NaN	NaN
12034	2015- 06-25	13	60.648800	1	64.3991	1.0	-3.75
12073	2015- 06-28	13	62.114232	1	61.6622	1.0	0.452

```
In [625]: Offense_13_shifted = Offense_13_shifted.sort_values('temp_diff', ascen ding=True)
```

Split date based on city and performed a 3-day shift on average temperature and offense_count. Then subtracted the shifted data from original data to find the temperature and crime count differences over the 3-day period

```
In [626]: merge_all_shift = Merge_City.copy()
In [627]: merge_all_shift['Datetime'] = pd.to_datetime(Merge_City['Datetime'])
In [628]: merge_all_shift["year"] = merge_all_shift['Datetime'].dt.year
In [629]: merge_all_shift = merge_all_shift[merge_all_shift.year.between(2012,20 17)]
In [630]: merge_all_shift = merge_all_shift[merge_all_shift.Temp.isna()==False]
In [631]: merge_all_shift['date'] = merge_all_shift['Datetime'].dt.date
```

Houston Shifted:

```
In [632]: Houston_shifted = merge_all_shift[(merge_all_shift['city'] == 'Houston
')].sort_values('Datetime',ascending=True)
```

```
In [633]: Houston_shifted['city'] = 'Houston'
```

In [634]: Houston_shifted.head()

Out[634]:

	Bins	Datetime	Offense_Num	Offense_Type	TD_num	Temp	Temp_Des	Yeaı
0	(50, 60]	2012-10- 01 22:00:00	3	aggravated assault	7.0	59.795091	scattered clouds	2012.0
1	(70, 80]	2012-10- 15 14:00:00	4	rape	7.0	76.118000	broken clouds	2012.0
2	NaN	2012-10- 20 22:00:00	1	theft	7.0	82.004000	few clouds	2012.0
3	(60, 70]	2012-11- 01 02:00:00	4	rape	7.0	63.662000	scattered clouds	2012.0
4	(70, 80]	2012-11- 01 18:00:00	2	burglary	7.0	78.872000	scattered clouds	2012.0

```
In [635]: Houston_shifted = Houston_shifted.groupby(['date', 'city']).agg({'Temp
':'mean', 'Offense_Num':'count'}).\
    rename(columns={'Offense_Num':'Offense_count'})
```

- In [636]: Houston_shifted['temp_shift'] = Houston_shifted['Temp'].shift(3)
- In [637]: Houston_shifted['Offense_shift'] = Houston_shifted['Offense_count'].sh
 ift(3)
- In [638]: Houston_shifted['temp_diff'] = Houston_shifted['Temp'] -Houston_shifte
 d['temp_shift']
- In [640]: Houston_shifted = Houston_shifted.sort_values('temp_diff', ascending=T
 rue)

In [641]: Houston_shifted.head()

Out[641]:

		Temp	Offense_count	temp_shift	Offense_shift	temp_diff	Offer
date	city						
2012- 11-29	Houston	42.566000	1	82.004000	1.0	-39.438000	0.0
2014- 11-14	Houston	33.547864	11	69.154850	4.0	-35.606986	7.0
2014- 02-27	Houston	36.140000	1	70.898000	1.0	-34.758000	0.0
2015- 12-28	Houston	44.237877	333	76.348285	213.0	-32.110409	120.0
2016- 12-20	Houston	43.062225	338	74.787350	402.0	-31.725126	-64.0

Boston Shifted:

```
Boston shifted = merge all shift[(merge all shift['city'] == 'Boston')
In [642]:
          ].sort_values('Datetime',ascending=True)
In [643]:
          Boston shifted['city'] = 'Boston'
In [644]:
          Boston_shifted = Boston_shifted.groupby(['date', 'city']).agg({'Temp':
          'mean', 'Offense Num':'count'}).\
          rename(columns={'Offense Num':'Offense count'})
          Boston shifted['temp_shift'] = Boston_shifted['Temp'].shift(3)
In [645]:
          Boston shifted['Offense shift'] = Boston shifted['Offense count'].shif
In [646]:
          t(3)
In [647]:
          Boston shifted['temp diff'] = Boston shifted['Temp'] - Boston shifted[
           'temp shift']
          Boston_shifted['Offense_diff'] = Boston_shifted['Offense count'] - Bos
In [648]:
          ton shifted['Offense shift']
In [649]:
          Boston_shifted = Boston_shifted.sort_values('temp_diff', ascending=Tru
          e)
```

In [650]: Boston_shifted.head()

Out[650]:

		Temp	Offense_count	temp_shift	Offense_shift	temp_diff	Offens
date	city						
2016- 04-04	Boston	26.612356	242	63.713273	350.0	-37.100917	-108.0
2017- 03-04	Boston	19.254029	210	52.712857	308.0	-33.458829	-98.0
2017- 03-11	Boston	18.920469	256	51.133935	277.0	-32.213466	-21.0
2017- 03-12	Boston	17.911119	218	46.099040	275.0	-28.187921	-57.0
2017- 03-05	Boston	19.646488	209	47.445343	268.0	-27.798855	-59.0

Chicago Shifted:

```
In [651]: Chicago_shifted = merge_all_shift[(merge_all_shift['city'] == 'Chicago
')].sort_values('Datetime',ascending=True)
```

```
In [652]: Chicago_shifted['city'] = 'Chicago'
```

```
In [653]: Chicago_shifted = Chicago_shifted.groupby(['date', 'city']).agg({'Temp
':'mean', 'Offense_Num':'count'}).\
    rename(columns={'Offense_Num':'Offense_count'})
```

```
In [654]: Chicago_shifted['temp_shift'] = Chicago_shifted['Temp'].shift(3)
```

- In [655]: Chicago_shifted['Offense_shift'] = Chicago_shifted['Offense_count'].sh
 ift(3)
- In [656]: Chicago_shifted['temp_diff'] = Chicago_shifted['Temp'] Chicago_shift
 ed['temp_shift']
- In [658]: Chicago_shifted = Chicago_shifted.sort_values('temp_diff', ascending=T
 rue)

In [659]: Chicago_shifted.head()

Out[659]:

		Temp	Offense_count	temp_shift	Offense_shift	temp_diff	Offer
date	city						
2013- 02-02	Chicago	7.642741	740	49.976703	855.0	-42.333963	-115.
2014- 01-21	Chicago	9.804061	594	51.732674	657.0	-41.928614	-63.0
2016- 01-18	Chicago	2.129773	7	39.490382	10.0	-37.360609	-3.0
2016- 01-11	Chicago	3.762351	3	38.799339	8.0	-35.036988	-5.0
2013- 12-07	Chicago	15.343603	650	49.887032	866.0	-34.543429	-216.

Atlanta Shifted:

rue)

```
Atlanta shifted = merge all shift[(merge all shift['city'] == 'Atlanta
In [660]:
          ')].sort values('Datetime',ascending=True)
In [661]:
          Atlanta shifted['city'] = 'Atlanta'
          Atlanta shifted = Atlanta_shifted.groupby(['date', 'city']).agg({'Temp
In [662]:
          ':'mean', 'Offense Num':'count'}).\
          rename(columns={'Offense Num':'Offense count'})
          Atlanta shifted['temp shift'] = Atlanta shifted['Temp'].shift(3)
In [663]:
          Atlanta shifted['Offense shift'] = Atlanta shifted['Offense count'].sh
In [664]:
          ift(3)
In [665]:
          Atlanta shifted['temp diff'] = Atlanta shifted['Temp'] -Atlanta shifte
          d['temp shift']
          Atlanta_shifted['Offense_diff'] = Atlanta_shifted['Offense count'] - A
In [666]:
          tlanta shifted['Offense shift']
In [667]:
          Atlanta shifted = Atlanta shifted.sort values('temp diff', ascending=T
```

In [668]: Atlanta_shifted.head()

Out[668]:

		Temp	Offense_count	temp_shift	Offense_shift	temp_diff	Offens
date	city						
2014- 01-22	Atlanta	21.872492	61	52.240220	90.0	-30.367728	-29.0
2013- 12-25	Atlanta	32.388957	46	61.571614	83.0	-29.182658	-37.0
2017- 01-07	Atlanta	25.921564	55	52.155114	70.0	-26.233551	-15.0
2015- 01-07	Atlanta	32.972805	57	58.919956	86.0	-25.947151	-29.0
2013- 12-09	Atlanta	44.607541	95	70.410141	92.0	-25.802600	3.0

Los Angeles Shifted:

```
LA shifted = merge all shift[(merge all shift['city'] == 'Los Angeles'
In [669]:
          )].\
          sort_values('Datetime',ascending=True)
In [670]: LA shifted['city'] = 'Los Angeles'
          LA_shifted = LA_shifted.groupby(['date', 'city']).agg({'Temp':'mean',
In [671]:
          'Offense Num': 'count'}).\
          rename(columns={'Offense Num':'Offense count'})
In [672]: LA shifted['temp shift'] = LA shifted['Temp'].shift(3)
In [673]: LA shifted['Offense shift'] = LA shifted['Offense count'].shift(3)
          LA shifted['temp diff'] = LA shifted['Temp'] - LA shifted['temp shift'
In [674]:
          LA shifted['Offense diff'] = LA shifted['Offense count'] - LA shifted[
In [675]:
          'Offense shift']
In [676]: LA_shifted = LA_shifted.sort_values('temp_diff', ascending=True)
```

In [677]: LA shifted.head()

Out[677]:

		Temp	Offense_count	temp_shift	Offense_shift	temp_diff	Offen
date	city						
2014- 01-21	Los Angeles	62.349024	492	82.191600	499.0	-19.842576	-7.0
2013- 01-29	Los Angeles	39.683273	531	59.176386	533.0	-19.493113	-2.0
2013- 10-10	Los Angeles	51.601575	508	70.352429	549.0	-18.750854	-41.0
2014- 01-20	Los Angeles	60.450708	506	77.402863	517.0	-16.952155	-11.0
2015- 04-07	Los Angeles	44.330755	513	60.788547	524.0	-16.457792	-11.0

In [685]:

=True)

```
Portland Shifted:
          Portland_shifted = merge_all_shift[(merge_all_shift['city'] == 'Portla
In [678]:
          nd')].\
          sort_values('Datetime', ascending=True)
In [679]:
          Portland shifted['city'] = 'Portland'
          Portland_shifted = Portland_shifted.groupby(['date', 'city']).agg({'Te
In [680]:
          mp':'mean', 'Offense_Num':'count'}).\
          rename(columns={'Offense Num':'Offense count'})
In [681]:
          Portland shifted['temp shift'] = Portland shifted['Temp'].shift(3)
In [682]:
          Portland_shifted['Offense_shift'] = Portland_shifted['Offense_count'].
          shift(3)
          Portland shifted['temp diff'] = Portland shifted['Temp'] - Portland sh
In [683]:
          ifted['temp shift']
In [684]:
          Portland_shifted['Offense_diff'] = Portland_shifted['Offense_count'] -
          Portland shifted['Offense shift']
          Portland shifted = Portland shifted.sort values('temp diff', ascending
```

In [686]: Portland_shifted.head()

Out[686]:

		Temp	Offense_count	temp_shift	Offense_shift	temp_diff	Offer
date	city						
2014- 11-30	Portland	27.115610	133	53.112179	98.0	-25.996569	35.0
2014- 12-01	Portland	26.726891	174	51.759751	160.0	-25.032860	14.0
2014- 01-21	Portland	35.339874	175	59.727474	175.0	-24.387600	0.0
2013- 12-04	Portland	27.740482	193	50.943837	147.0	-23.203355	46.0
2015- 09-15	Portland	55.204408	157	76.968050	160.0	-21.763642	-3.0

Seattle Shifted:

rue)

```
Seattle shifted = merge all shift[(merge all shift['city'] == 'Seattle
In [687]:
          ')].sort values('Datetime',ascending=True)
In [688]:
          Seattle shifted['city'] = 'Seattle'
          Seattle shifted = Seattle_shifted.groupby(['date', 'city']).agg({'Temp
In [689]:
          ':'mean', 'Offense Num':'count'}).\
          rename(columns={'Offense Num':'Offense count'})
          Seattle_shifted['temp_shift'] = Seattle_shifted['Temp'].shift(3)
In [690]:
          Seattle shifted['Offense shift'] = Seattle shifted['Offense count'].sh
In [691]:
          ift(3)
          Seattle shifted['temp diff'] = Seattle shifted['Temp'] - Seattle shift
In [692]:
          ed['temp shift']
          Seattle_shifted['Offense_diff'] = Seattle_shifted['Offense count'] - S
In [693]:
          eattle shifted['Offense shift']
In [694]:
          Seattle shifted = Seattle shifted.sort values('temp diff', ascending=T
```

```
In [695]: Seattle_shifted.head()
```

Out[695]:

		Temp	Offense_count	temp_shift	Offense_shift	temp_diff	Offens
date	city						
2014- 11-30	Seattle	26.873927	133	54.623825	108.0	-27.749898	25.0
2014- 12-01	Seattle	26.065167	174	51.633077	112.0	-25.567910	62.0
2014- 01-21	Seattle	36.323896	425	57.556192	266.0	-21.232295	159.0
2013- 12-04	Seattle	28.972966	356	49.633715	295.0	-20.660749	61.0
2015- 11-20	Seattle	34.157897	196	52.408345	162.0	-18.250449	34.0

Graphs:

In [697]:

1) Crime spikes due to Temperature spikes over 3 day period by Offense Types

2) Crime spikes due to Temperature spikes over 3 day period by city

shift merge = shift merge.reset index()

```
In [698]: shift_merge.head()
```

Out[698]:

	index	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	t
0	5768	2014- 01-21	1	37.956993	769	64.555507	692.0	-2
1	22624	2017- 11-09	1	47.972117	103	66.581774	124.0	-1
2	22271	2017- 10-01	1	60.675145	110	77.396449	95.0	-1
3	1293	2013- 01-15	1	31.997512	785	46.354335	674.0	-1
4	1508	2013- 02-02	1	34.255408	690	48.434466	739.0	-1

Temperature spikes vs. Offense spikes per Offense Type:

Out[701]: <seaborn.axisgrid.FacetGrid at 0x1b2dbac4e0>

Temperature spikes vs. Offense spikes per City:

```
In [702]: f=sns.lmplot(y='Offense_diff', data = shift_merge_cities, x='temp_diff
' , hue = 'city', size = 10, aspect = 1)
f.set(xlabel = 'Temperature Spike',ylabel ='Crime Spike',title='Crime spikes due to \
Temperature spikes over 3 day period by city')
```

Out[702]: <seaborn.axisgrid.FacetGrid at 0x1b5b461ef0>

Managerial Insight:

Police departments can use this insight to focus their monitoring efforts in impoverished areas where air conditioning or heating may not be a standard feature in homes, due to which sudden temperature spikes may have a more dramatic effect. This is also an area in which the government can step in to provide water or facilities where people can shelter themselves from the heat or cold in order to prevent the emotional responses that lead to the increase in assaults.

Machine Learning:

```
shift merge clean = shift merge.dropna(how='any', axis=0)
In [703]:
In [704]:
          def posneg(row):
              if (row \le -100) & (row > -200):
                  return 1
              elif (row \leq 0) & (row > -100):
                  return 2
              elif (row > 0) & (row <= 100):
                  return 3
              elif (row > 100) & (row <= 200):
                  return 4
In [705]: def tempseries(row):
              if (row >= -60) & (row < -40):
                  return 1
              elif (row >= -40) & (row < -20):
                  return 2
              elif (row >= -20) & (row < 0):
                  return 3
              elif (row >= 0) & (row < 21):
                  return 4
              elif (row >= 21) & (row < 40):
                  return 5
              elif (row >= 40) & (row < 60):
                  return 6
              elif (row >= 60) & (row < 80):
                  return 7
In [706]: | shift_merge_clean['temp_bin'] = shift_merge_clean.temp_diff.apply(temp
          series)
In [707]:
          shift_merge_clean['pos/neg_off'] = shift_merge_clean.Offense_diff.appl
          y(posneg)
```

In [708]: shift_merge_clean.head()

Out[708]:

	index	Date	Offense_Num	Temp	Offense_count	temp_shift	Offense_shift	t
0	5768	2014- 01-21	1	37.956993	769	64.555507	692.0	-2
1	22624	2017- 11-09	1	47.972117	103	66.581774	124.0	-1
2	22271	2017- 10-01	1	60.675145	110	77.396449	95.0	-1
3	1293	2013- 01-15	1	31.997512	785	46.354335	674.0	-1
4	1508	2013- 02-02	1	34.255408	690	48.434466	739.0	-1

Build the tree

```
In [715]:
                  len(shift merge clean)
Out[715]: 20777
In [716]:
                  # This code will visualize a decision tree dt,
                  # trained with the attributes in X and the class labels in Y
                  dt feature names = list(X.columns)
                  dt_target_names = np.array(Y.unique(),dtype=np.string_)
                  result = np.array([s.decode('UTF-8') for s in dt target names])
                  tree.export graphviz(dt, out file='tree.dot',
                         feature names=dt feature names, class names=result,filled=True)
                  graph = pydotplus.graph from dot file('tree.dot')
                  Image(graph.create png())
Out[716]:
                                                                                              temp bin \leq 4.5
                                                                                                gini = 0.52
                                                                                              samples = 20777
                                                                                          value = [277, 11267, 8945, 288]
                                                                                                class = 2.0
                                                                                    True
                                                                        temp\_bin \le 2.5
                                                                                                          temp_bin \le 6.5
                                                                         gini = 0.521
                                                                                                           gini = 0.445
                                                                        samples = 20427
                                                                                                          samples = 350
                                                                   value = [277, 11034, 8828, 288]
                                                                                                        value = [0, 233, 117, 0]
                                                                         class = 2.0
                                                                                                           class = 2.0
                                       temp_bin <= 1.5
                                                                        temp bin \leq 3.5
                                                                                                          temp_bin \le 5.5
                                                                                                                              gini = 0.0
                                       gini = 0.475
                                                                         gini = 0.522
                                                                                                           gini = 0.444
                                                                                                                             samples = 1
                                                                        samples = 19999
                                       samples = 428
                                                                                                          samples = 349
                                                                                                                           value = [0, 0, 1, 0]
                                                                   value = [277, 10772, 8662, 288]
                                                                                                        value = [0, 233, 116, 0]
                                    value = [0, 262, 166, 0]
                                                                                                                             class = 4.0
                                        class = 2.0
                                                                         class = 2.0
                                                                                                           class = 2.0
                      gini = 0.43
                                                             gini = 0.523
                                                                                     gini = 0.52
                                                                                                           gini = 0.44
                                                                                                                             gini = 0.486
                                        gini = 0.476
                     samples = 16
                                       samples = 412
                                                            samples = 9871
                                                                                    samples = 10128
                                                                                                          samples = 325
                                                                                                                             samples = 24
                   value = [0, 11, 5, 0]
                                    value = [0, 251, 161, 0]
                                                       value = [134, 5279, 4306, 152]
                                                                               value = [143, 5493, 4356, 136]
                                                                                                        value = [0, 219, 106, 0]
                                                                                                                           value = [0, 14, 10, 0]
                                                                                                                              class = 2.0
                      class = 2.0
                                        class = 2.0
                                                              class = 2.0
                                                                                     class = 2.0
                                                                                                           class = 2.0
```

Machine Learning Conclusion:

The decision tree above predicts the amount that crimes will increase or decreases given different spikes in temperature over a three day period. It does not seem to be consistent with the findings in our charts. It can be concluded that temperature spikes alone are not a good predictor of changes in criminal activity.

THANK YOU