Algebra I (ISIM), lista 10, ćwiczenia 16.05.24, deklaracje do godz. 11:00.

Teoria: Iloczyn wektorowy w
$$\mathbb{R}^3$$
: Dla $A=\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix}, B=\begin{pmatrix}b_1\\b_2\\b_3\end{pmatrix}\in\mathbb{R}^3$ definiujemy

$$A \times B = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Przykłady izometrii liniowych: obrót w płaszczyźnie W < V, względem W^{\perp} . Odbicie względem W < V. Orientacja bazy w przestrzeni V. Klasyfikacja izometrii liniowych V: każda jest złożeniem pewnej liczby oodbić względem hiperpłaszczyzn przechodzących przez O i obrotów wokół O w pewnych płaszczyznach. Postać macierzy przekształcenia ortogonalnego w pewnej bazie o.n. Diagonalizacja przekształceń unitarnych. Przestrzeń sprzężona (dualna). Izomorfizm kanoniczny $V \cong V^{**}$.

Zadania. Znakiem — oznaczone są zadania-ćwiczenia, których nie deklaruje się (nie będą omawiane na ćwiczeniach). Wszystko dzieje się w skończeniewymiarowej przestrzeni euklidesowej $V \neq \{0\}$, chyba że treść zadania mówi inaczej. Dla W < V $P_W: V \to V$ oznacza rzut prostopady na W.

- 1. Własności iloczynu wektorowego.
 - (a) $A \times A = O$, (b) $B \times A = -A \times B$, (c) $A \times (B + C) = A \times B + A \times C$, (d) $(tA) \times B = t(A \times B)$ dla $t \in \mathbb{R}$.
- 2. (a) $E_1 \times E_2 = E_3$, $E_2 \times E_3 = E_1$, $E_3 \times E_1 = E_2$, (b) $A \times B \perp A$, $A \times B \perp B$.
- 3. (a) $\det(A, B, C) = \langle A, B \times C \rangle$ (wsk: użyć rozwinięcia Laplace'a) (b) $\langle A, B \times C \rangle = \langle B, C \times A \rangle = \langle C, A \times B \rangle$.
- 4. Niech $\Pi=\{tA+sB:0\leqslant t,s\leqslant 1\}$. Π jest równoległobokiem rozpiętym przez wektory A,B w \mathbb{R}^3 . Udowodnić, że
 - (a) Pole $\Pi = \sqrt{\|A\|^2 \|B\|^2 \langle A, B \rangle^2}$
 - (b) Pole $\Pi = |A \times B|$.
- 5. Mówimy, że baza (ponumerowana) $\{B_1, B_2, B_3\}$ przestrzeni \mathbb{R}^3 jest dodatnio zorientowana, gdy $\det(B_1, B_2, B_3) > 0$. W przeciwnym razie mówimy, że baza ta jest ujemnie zorientowana. Udowodnić, że:
 - (a) Baza $\{E_1, E_2, E_3\}$ jest dodatnio zorientowana,
 - (b) Gdy A, B są liniowo niezależne, to $\det(A, B, A \times B) > 0$ (zatem wektory $A, B, A \times B$ tworzą bazę dodatnio zorientowaną).
- 6. A, B sa liniowo zależne $\iff A \times B = O$.
- 7. Załóżmy, że $v, w \in Lin(v_1, \ldots v_k)$ oraz $\langle v, v_i \rangle = \langle w, v_i \rangle$ dla wszystkich i. Udowodnić, że v = w.

- 8. Załóżmy, że V jest unitarna. Udowodnić, że jeśli $v,w\in V$ są niezerowymi wektorami własnymi pewnego unitarnego przekształcenia $F:V\to V$ odpowiadającymi różnym wartościom własnym, to $v\perp w$.
- 9. Załóżmy, że $B = \{b_1, \ldots, b_n\}$, $C = \{c_1, \ldots, c_n\}$ są dwiema bazami ortonormalnymi przestrzeni V. Udowodnić, że bazy B i C są tak samo zorientowane \iff jedną z nich można przekształcić na drugą (tzn. $b_i \mapsto c_i$) przy pomocy pewnej liczby obrotów.
- 10. Załóżmy, że L_1, L_2 są prostymi na płaszczyźnie \mathbb{R}^2 . Opisać, kiedy istnieje izometria liniowa $f: \mathbb{R}^2 \to \mathbb{R}^2$ przekształcająca L_1 na L_2 .
- 11. Dla jakich W, U < V prawdą jest, że:
 - (a) $P_W \circ P_U = P_{W \cap U}$?
 - (b) $P_W + P_{W^{\perp}} = id_V$?
- 12. Niech α_n będzie kątem między krawędzią n-wymiarowej kostki foremnej w \mathbb{E}^n , a jej główną przekątną. Obliczyć $\lim_n \alpha_n$.
- 13. Dla jakich $z \in \mathbb{C}$ przekształcenie liniowe $f_z : \mathbb{R}^2 \to \mathbb{R}^2$ dane wzorem $f_z \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Re(z \cdot (x+iy)) \\ Im(z \cdot (x+iy)) \end{pmatrix}$ jest ortogonalne ? Rozwiązać zadanie bez rachunów, odwołując się do geommetrycznej interpretacji mnżenia liczb zespoonych na płaszczyźnie Gaussa.
- 14. * Udowodnić, że dowolną izometrię liniową przestrzeni V można przedstawić jako złożenie pewnej liczby odbić względem podprzestrzeni kowymiaru 1.
- 15. Niech n = dim(V) oraz niech W będzie podprzestrzenią V wymiaru k < n. Niech f będzie odbiciem V względem W. Dowieść, że $det(f) = (-1)^{n-k}$.
- 16. * Udowodnić, że jeśli w zadaniu poprzednim n-k jest parzyste, to f można przedstawić jako złożenie pewnej liczby obrotów.
- 17. Załóżmy, że $F:V\to V$ jest ortogonalne i diagonalizowalne. Udowodnić, że F jest odbiciem względem pewnej podprzestrzeni lub F=id.