Optimization

Lusine Poghosyan

YSU

October 9, 2020

Finite-Dimensional Optimization

We are going to consider the following problem

minimize
$$f(x)$$
 subject to $x \in \Omega$, (1)

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, with $n \ge 1$.

Existence of solution

Weierstrass Extreme Value Theorem

If $f \in \mathbb{C}(\Omega)$ and $\Omega \subset \mathbb{R}^n$ is compact, then the problem (1) has a solution.

A point $x \in \mathbb{R}^n$ is said to be a **limit point** of $\Omega \subset \mathbb{R}^n$, if each neighborhood of x contains a point of Ω other than x.

Example

Let $\Omega = [0,3) \cup \{4\}$. Is x a limit point of Ω ?

- **a.** x = 0
- **b.** x = 3
- **c.** x = 2
- **d.** x = 4

Example

Let $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1$ and $x_1 > 0\}$. Is x a limit point of Ω , if

- **a.** $x = [0, 0]^T$;
- **b.** $x = [1, 0]^T$.

A set $\Omega \subset \mathbb{R}^n$ is said to be **closed set** if it contains all its limit points.

Example

Check if the set Ω is a closed set, if

- **a.** $\Omega = [0,3);$
- **b.** $\Omega = [0, 3];$
- **c.** $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\};$
- **d.** $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1 \text{ and } x_1 > 0\}.$

A set $\Omega \subset \mathbb{R}^n$ is said to be **bounded** if there exists $M \in \mathbb{R}$ such that $||x|| \leq M$, for all $x \in \Omega$.

Example

Check if the set Ω is bounded, if

a.
$$\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\};$$

b.
$$\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \ge 1 \text{ and } x_1 > 0\}.$$

A set $\Omega \subset \mathbb{R}^n$ is said to be **compact** if Ω is closed and bounded.

Example

Check if the set Ω is compact, if

- **a.** $\Omega = [0,3);$
- **b.** $\Omega = [0, 3];$
- **c.** $\Omega = \{x = [x_1, x_2, x_3]^T : x_1^2 + x_2^2 + x_3^2 \le 1\};$
- **d.** $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \ge 1 \text{ and } x_1 > 0\}.$

Uniqueness of solution

Definition

A set $\Omega \subset \mathbb{R}^n$ is a **convex set** if $\alpha x + (1 - \alpha)y \in \Omega$, $\forall x, y \in \Omega$ and $\forall \alpha \in [0, 1]$.

Example

Check if the set Ω is convex, if

a.
$$\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\};$$

b.
$$\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1 \text{ and } x_1 x_2 \ge 0\}.$$

A function $f: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}^n$ is a **convex function** if Ω is a convex set and $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$, $\forall x, y \in \Omega$, $x \ne y$ and $\forall \alpha \in (0, 1)$.

If in the definition above we replace "\le " with "\le ", then we have the definition of **strictly convex function**.

A function f is a **concave function** if -f is convex.

Definition

A function f is a **strictly concave function** if -f is strictly convex.

Example

Show that the linear function $f(x) = a^T x + b$, where $a, x \in \mathbb{R}^n$ and $b \in \mathbb{R}$, is convex and concave.

Example

Let $f(x) = x_1^2 + x_2^2 + ... + x_n^2$, $x \in \mathbb{R}^n$. Show that f is a strictly convex function.

Theorem

Let $f: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}^n$. If f is a convex function and x_0 is a local minimum point of f over Ω , then x_0 is a global minimum point of f in Ω , i.e. $x_0 = arg \min_{x \in \Omega} f(x)$.

Theorem

Let $f: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}^n$. If f is a strictly convex function and x_0 is a local minimum point of f over Ω , then x_0 is the unique global minimum point of f on Ω , i.e. $x_0 = \arg\min_{x \in \Omega} f(x)$.