# **Binary Relations**

Any set of ordered pairs defines a binary relation.

We express a particular ordered pair,  $(x, y) \in R$ , where R is a binary relation, as xRy.

## **Properties**

Properties of a binary relation R on a set X:

a. reflexive: if for every  $x \in X$ , xRx holds, i.e.  $(x, x) \in R$ .

b. symmetric: if for every x and y in X, whenever xRy holds, then yRx holds.

c. *transitive*: if for every x, y, and z in X, whenever xRy holds and yRz holds, then xRz holds.

### **Graphical Representation**

Suppose that  $X = \{A, B, C, D\}$  and that  $R = \{(A, B), (B, D), (C, C), (D, B)\}$ . We can represent the binary relation R as a set, as a graph or as a Boolean matrix. Graphically, we have



### **Boolean Matrix Representation**

As a Boolean matrix we have

|   | Α | В | С | D |
|---|---|---|---|---|
| Α | 0 | 1 | 0 | 0 |
| В | 0 | 0 | 0 | 1 |
| С | 0 | 0 | 1 | 0 |
| D | 0 | 1 | 0 | 0 |

What would a Boolean matrix look like if it represented a reflexive binary relation, a symmetric binary relation, a transitive binary relation, any combination of the above?

#### Reflexive Relation

|   | Α | В | С | D |
|---|---|---|---|---|
| Α | - | 1 | - | - |
| В | - | - | - | 1 |
| С | - | - | 1 | - |
| D | - | 1 | - | - |

### Symmetric Relation

|   | Α | В | С | D |
|---|---|---|---|---|
| Α | - | 1 | - | - |
| В | - | - | - | 1 |
| С | - | - | 1 | - |
| D | - | 1 | - | - |

#### Transitive Relation

|   | Α | В | С | D |
|---|---|---|---|---|
| Α | - | 1 | - | - |
| В | - | - | - | 1 |
| С | - | - | 1 | - |
| D | _ | 1 | - | _ |

Click <u>here</u> for Answers

### **Composition of Relations:**

Let R be a relation from X to Y, and S be a relation from Y to Z. Then a relation written as  $\mathbf{RoS}$  is called a *composite relation* of R and S where

$$R \circ S = \{ (x, z) \mid x \in X \land z \in Z \land (\exists y) (y \in Y \land (x, y) \in R \land (y, z) \in S) \}$$

We can also write the composition as

$$R \circ S = \{ (x, z) \mid x \in X \land z \in Z \land (\exists y) (y \in Y \land xRy \land ySz) \}$$

**Note:** Relational composition can be realized as matrix multiplication. For example, let  $M_R$  and  $M_S$  represent the binary relations R and S, respectively. Then R o S can be computed via  $M_R$   $M_S$ .

e.g.

The Parent Relation

means that x is the parent of y. From this binary relation we can compute: child, grandparent, sibling

child: 
$$x C y = y P x$$

We say that x is the child of y if y is the parent of x.

grandparent: 
$$x GP y = x P z \wedge z P y$$
 or  $GP = P \circ P$ 

We say that x is the grandparent of y if x is the parent of z and z is the parent of y.

sibling: 
$$x S y = z P x \wedge z P y$$
  
 $x S y = x P^{-1} z \wedge z P y$  or  $S = P^{-1} \circ P$ 

We say that x is the sibling of y if z is the parent of x and z is the parent of y.

Define the following relations: aunt/uncle, cousin

Suppose that

$$P = \{(a, b), (a, c), (b, d), (b, e), (c, f), (f, g)\}$$

Compute the children, grandparents, siblings, aunt/uncle, and cousins for this parent relation.

#### Closure

#### Reflexive Closure:

for every  $x \in X$ , then  $(x, x) \in R$ 

or

for every  $x \in X$ , then xRx holds

#### Symmetric Closure:

for every  $(x, y) \in R$ , then  $(y, x) \in R$ 

or

for every xRy, then yRx

#### Transitive Closure:

for every (x, y) and  $(y, z) \in R$ , then  $(x, z) \in R$ 

or

for every xRy and yRz, then xRz

$$R^{\prime} = R \cup R^2 \cup R^3 \cup \dots$$

Let M represent the binary relation R, R represents the transitive closure of R, and M represent the transitive closure. Then representing the transitive closure via Boolean matrices, we have

$$M^{\hat{}} = M + M^2 + M^3 + ...$$

#### e.g.

Suppose  $R = \{(1,2), (1,5), (2,3), (3,5), (4,3), (5,4)\}$ . Compute the reflexive closure, symmetric closure, and transitive closure.

#### Reflexive Closure

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | - | - | 1 |
| 2 | - | - | 1 | - | - |
| 3 | - | - | - | - | 1 |
| 4 | - | - | 1 | - | - |
| 5 | _ | _ | _ | 1 | _ |

# Symmetric Closure

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | - | - | 1 |
|   |   | - |   |   |   |
| 3 | - | - | - | - | 1 |
| 4 | - | - | 1 | - | - |
| 5 | - | - | - | 1 | - |

## Transitive Closure

|   | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 1 | - | - | 1 | - | - | - | - | - |
| 2 | - | - | 1 | - | - | - | - | - | - | - |
| 3 | - | - | - | - | 1 | - | - | - | - | - |
| 4 | - | - | 1 | - | - | - | - | - | - | - |
| 5 | _ | _ | _ | 1 | _ | _ | _ | _ | _ | _ |

Click <u>here</u> for answers

# Warshall's Algorithm:

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | - | 1 | - | - | 1 |
| 2 | - | - | 1 | - | - |
| 3 | - | - | - | - | 1 |
| 4 | - | - | 1 | - | - |
| 5 | _ | - | - | 1 | - |

Click <u>here</u> for the answer

## **ANSWERS:**

## Reflexive Binary Relation

|   | Α | В | С | D |
|---|---|---|---|---|
| Α | 1 | 1 | - | - |
| В | - | 1 | - | 1 |
| С | - | - | 1 | - |
| D | - | 1 | - | 1 |

# Symmetric Binary Relation

|   | Α | В | С | D |
|---|---|---|---|---|
| Α | - | 1 | - | - |
| В | 1 | - | - | 1 |
| С | - | - | 1 | - |
| D | _ | 1 | - | _ |

# Reflexive, Symmetric Binary Relation

|   | Α | В | С | D |
|---|---|---|---|---|
| Α | 1 | 1 | - | - |
| В | 1 | 1 | - | 1 |
| С | - | - | 1 | - |
| D | - | 1 | - | 1 |

# Return

### Reflexive Closure

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 1 | 1 | _ | - | 1 |

# Symmetric Closure

# Transitive Closure

## Warshall's Algorithm

3 - - 1 1 1

4 - - 1 1 1

5 - - 1 1 1