The Ring Flip Causes Equatorial-Axial Exchange

The two structures are the same!

Ring Flip

Ring Flipping - Energetics

In monosubstituted (small groups) cyclohexanes the ring flipping is of the order of 10⁴ to 10⁵ inversions/second

Reaction coordinate to conformational interconversion of cyclohexane

Chair v/s Boat : Newman Projection

Chair

Staggered form

Boat

Rel E = 6.9 kcal

Relief by Twisting

But this is only part of its mobility. The molecule "flips" from one chair to another chair form.

Ring Flip - Summary

The two structures are the same.

What happens in substituted cyclohexanes?

Methylcyclohexane

$$H_2C$$
 H_3
 H_4C
 H_3
 H_4C
 H_3
 H_4C
 H_3
 H_4C
 H_3
 H_4C
 H_4C
 H_3
 H_4C
 H_4C

- 2 gauche butane interactions
- 2×0.9 kcal = 1.8 kcal

0 gauche butane interactions

1,3-Diaxial interactions are just gauche butane interactions

A-Values

Free energy difference between equatorial and axial conformer

Typical A Values

R A Value (kcal/mol)		R	A Value (kcal/mol)	
F Size CI vs Br bond length I OH OCH ₃ OCOCH ₃ NH ₂ NR ₂ CO ₂ H CO ₂ Na CO ₂ Et SO ₂ Ph	0.25 0.52 0.5-0.6 0.46 0.7 (0.9) 0.75 0.71 ca. 0.5 kcal 0.7 kcal - (2 nd atom effect very small) 1.8 (1.4) 2.1 1.2 (1.4) 2.3 1.1 2.5	CHO COCH ₃ CN C \equiv CH NO ₂ CH=CH ₂ CH ₃ CH ₂ CH ₃ n C ₃ H ₇ n C ₄ H ₉ CH(CH ₃) ₂ C(CH ₃) ₃ C ₆ H ₅	0.6–0.8 1.2 0.41	

A-Values Difference

- Note on difference between Pr and Bu A values.

Pr group can position H toward "inside,"

but ^tBu group cannot. Very serious interaction, 7.2 kcal.

Homework – Derive how A value of t-butyl is 5.4 kcal

A-Values and Equilibrium Constant

$$\Delta G = G_{ax} - G_{eq}$$

X group	A value (kcal/mol)	K	% eq
Н	0	1	50
CH_3	1.7	19	95
$CH(CH_3)_2$	2.15	42	98
$C(CH_3)_3$	5	3000	99.9

Disubstituted Cyclohexanes

1,2-disubstituted

Draw the chair form for these molecules and do the ring flip

Disubstituted cyclohexanes

1,2-disubstituted

Can we calculate the energy difference?

trans-1,2-Dimethylcyclohexane

2.7 kcal/mol more stable

$$4 \times$$
 (gauche interaction)

$$4 \times (0.9 \text{ kcal}) = 3.6 \text{ kcal}$$

$$1 \times (gauche interaction)$$

$$1 \times (0.9 \text{ kcal}) = 0.9 \text{ kcal}$$

cis-1,2-Dimethylcyclohexane

 $\Delta E = 0 \text{ kcal/mol}$

 $3 \times (gauche interaction)$

 $3 \times (gauche interaction)$

 $3 \times (0.9 \text{ kcal}) = 2.7 \text{ kcal}$

 $3 \times (0.9 \text{ kcal}) = 2.7 \text{ kcal}$

Homework: Analysis for *cis* and *trans*-1,3-dimethylcyclohexane