弱拓扑及弱 * 拓扑

2021年2月3日

1 算子族生成的拓扑

首先回顾一个经典的结论.

Theorem 1 ([1, p.55]). 设 \mathcal{X} 是集合, $\{\mathcal{Y}_i\}_{i\in I}$ 是一族拓扑空间, $\{\varphi_i\}_{i\in I}$ 满足, 对 $\forall i \in I$, $\varphi_i: \mathcal{X} \to \mathcal{Y}_i$. 则存在 \mathcal{X} 上最小的拓扑 \mathcal{J} 使得, 对 $\forall i \in I$, φ_i 连续.

Definition 2. 设记号如定理 1, 称 \mathcal{J} 为与 $\{\varphi_i\}_{i\in I}$ 相关的拓扑.

Proof of Theorem 1. 存在性是显然的, 比如可以在 X 上定义 discrete topology,

$$\mathcal{J} := \{ \mathcal{X} \text{ 的全部子集} \},$$

则此拓扑满足定理的条件. 关键是证明最小性.

首先注意到, 若要使得, 对 $\forall i \in I$, φ_i 连续, 则

$$\Lambda := \{ \varphi_i^{-1}(\Omega_i) : i \in I, \ \Omega_i \ \not \in \mathcal{Y}_i \ \text{中的开集} \}$$

必须是拓扑 $\mathcal J$ 的子集. 注意到 Λ 是 $\mathcal X$ 的基, 故令 $\mathcal J$ 为 Λ 生成的拓扑即可: 对 Λ 取任 意有限交得到新集合族 Φ , 再对 Φ 取任意并就得到了我们想要的拓扑 $\mathcal J$, 具体证明略.

事实上, Λ 的生成拓扑还有两种等价定义:

(i) 该定义来自 [2, p.78],

 $\mathcal{J}:=\{U\subset\mathcal{X}:\ \forall\,x\in U,\ \text{there exists a}\ B\in\Lambda\ \text{such that}\ x\in B\subset U\};$

(ii) $\mathcal{J} := \bigcap \{ 包含\Lambda 的拓扑 \}.$

定理1证毕.

Remark 3. 对 $\forall x \in \mathcal{X}$, 可以证明

$$\left\{ \bigcap_{finite} \varphi_i^{-1}(V_i) : i \in I, \ V_i \not\models \varphi_i(x) \text{ in } \emptyset \right\}$$

是x的领域基.

Proposition 4 ([1, Proposition 3.1]). 设记号如定理 1, $\{x_n\}_{n\in\mathbb{N}}\subset\mathcal{X}$ 且 $x\in\mathcal{X}$. 则 $x_n\stackrel{\mathcal{J}}{\to}x$, as $n\to\infty$, 当且仅当对 $\forall i\in I$, $\varphi_i(x_n)\stackrel{\mathcal{Y}_i}{\to}\varphi_i(x)$, as $n\to\infty$.

证明. " ⇒ "是显然的, 下证 " ← ". 事实上, 对任意 x 的邻域 V, 存在领域基中的元素 U 使得 $U \subset V$. 由 Remark 3 知, U 可表示为 $\bigcap_{finite} \varphi_i^{-1}(V_i)$, 其中 V_i 是 $\varphi_i(x)$ 的邻域. 由于是有限交, 故存在 $N \in \mathbb{N}$ 使得, $\{x_n\}_{n=N}^{\infty} \subset U$, 即 $x_n \stackrel{\mathcal{J}}{\to} x$, as $n \to \infty$. Proposition 4 证毕.

Lemma 5 ([1, Proposition 3.1]). 设 \mathcal{Z} 是拓扑空间且 $\psi: \mathcal{Z} \to \mathcal{X}$. 则 ψ 连续当且仅当 对 $\forall i \in I, \varphi_i \circ \psi$ 连续.

2 弱拓扑

Definition 6. 令 $\mathcal{X}^* := \mathcal{L}(\mathcal{X}, \mathbb{K})$. 称 \mathcal{X}^* 生成的拓扑为 \mathcal{X} 上的弱拓扑.

Proposition 7. 设 \mathcal{X} 是 Banach 空间.

- (i) ([1, Proposition 3.6]) 若 X 是有限维, 则强弱收敛等价;
- (ii) ([1, Exercise 3.8]) 若 \mathcal{X} 是无穷维,则无法赋予距离使得,由距离生成的拓扑和弱拓扑一致.

Remark 8. 对于 ℓ^1 , 强弱收敛等价, 然而范数诱导的拓扑和弱拓扑不一致.

这与直观不矛盾, 因为两个度量的收敛性等价可推出拓扑一致, 但两个拓扑的收敛性等价推不出拓扑一致.

Theorem 9 ([1, Theorem 3.7]). 设 $C \in \mathcal{X}$ 中的凸集. 则 C 在弱拓扑意义下闭当且仅 当 C 在强拓扑意义下闭.

3 弱 * 拓扑

设 $\mathcal X$ 为 Banach 空间,则 $\mathcal X^*$ 上已经有两个拓扑了,一个是由 $\|\cdot\|_{\mathcal X^*}$ 生成的强拓扑,另一个是由 $\mathcal X^{**}$ 生成的弱拓扑,下面定义第三个拓扑.

Definition 10. 设 \mathcal{X} 为 Banach 空间. 对 $\forall x \in \mathcal{X}$, 定义

$$\varphi_x: \mathcal{X}^* \to \mathbb{K}, \ f \to f(x).$$

称 $\{\varphi_x\}_{x\in\mathcal{X}}$ 生成的拓扑为 \mathcal{X}^* 上的弱 * 拓扑.

参考文献

- [1] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011.
- [2] J. Munkres, Topology, Second edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.