Temperature Along Vertically Centered Horizontal Path of Data

Temperature Along Horizontally Centered Vertical Path of Data

1 PSet-3.py

```
1 import numpy as np
2 import matplotlib.pyplot as plt
4 # Grid squares values:
5 \text{ height} = 21
6 \text{ width} = 31
8 # Make set temperatures on fixed positions
          = 0 # (bottom boundary temperature)
9 T_alpha
10 T_bravo = 40 # (left boundary temperature)
11 T_charlie = 100 # (top boundary temperature)
12 T_delta = 100 # (right boundary temperature)
# Initialize matrix of zeros for that size
15 # Note: index 0,0 is bottom left
16 default_temp = (max(T_alpha, T_bravo, T_charlie, T_delta) + min(T_alpha, T_bravo,
     T_charlie, T_delta)) / 2
17 data = np.zeros((height, width)) + default_temp
19 # Set boundary conditions
20 for i in range(width):
      data[0, i] = T_alpha
      data[(height - 1), i] = T_charlie
23 for j in range(1, (height - 1)):
      data[j, 0] = T_bravo
      data[j, (width - 1)] = T_delta
27 error_flag = True
28 error_limit = 1e-4
29 while error_flag:
      large_error_term_found = False
31
      # Gauss-Seidel Iteration
```

```
for n in range(1, (height - 1)):
33
          for m in range(1, (width - 1)):
34
              data_old = data[n, m]
35
              data[n, m] = 0.25 * (data[(n + 1), m] + data[(n - 1), m] + data[n, (m + 1)]
36
     + data[n, (m - 1)])
37
              if not large_error_term_found:
38
                   error_term = abs(data[n, m] - data_old) / data_old
39
                  if (error_term <= error_limit):</pre>
40
                       error_flag = False
41
                   else:
42
                       error_flag = True
43
                       large_error_term_found = True
45
46 #print(data)
48 fig1 = plt.figure(1)
49 x = np.linspace(0, (width / height), width)
index = np.ceil(height / 2)
51 y = data[index.astype(int), :]
52 plt.plot(x, y)
53 plt.xlabel(r'$\mathrm{Position\ Along\ Width\ (Normalized\ to\ \frac{Width}{Height}))$')
54 plt.ylabel("Temperature (\N{DEGREE SIGN}C)")
55 plt.title("Temperature Along Vertically Centered Horizontal Path of Data")
56 plt.savefig("Problem-Set-3/images/pset-3-figure-1.png")
57 plt.show()
58
59 fig2 = plt.figure(2)
60 x = np.linspace(0, 1, height)
61 index = np.ceil(width / 2)
62 y = data[:, index.astype(int)]
63 plt.plot(x, y)
64 plt.xlabel(r'$\mathrm{Position\ Along\ Height\ (Normalized)}$')
65 plt.ylabel("Temperature (\N{DEGREE SIGN}C)")
66 plt.title("Temperature Along Horizontally Centered Vertical Path of Data")
```

```
67 plt.savefig("Problem-Set-3/images/pset-3-figure-2.png")
68 plt.show()
71 fig3 = plt.figure(3)
72 plt.axes().set_aspect('equal')
73 plt.style.use('classic')
74 heatmap = plt.pcolor(data)
76 plt.text(0.5, -0.02, "T = " + str(T_alpha) + "\N{DEGREE SIGN}C",
            horizontalalignment = 'center',
            verticalalignment='top',
78
            rotation=0,
            clip_on=False,
            transform=plt.gca().transAxes)
82 plt.text(0, 0.5, "T = " + str(T_bravo) + "\N{DEGREE SIGN}C",
            horizontalalignment='right',
            verticalalignment='center',
84
            rotation=90.
85
            clip_on=False,
            transform=plt.gca().transAxes)
  plt.text(0.5, 1, "T = " + str(T_charlie) + "\N{DEGREE SIGN}C",
            horizontalalignment = 'center',
            verticalalignment='bottom',
90
            rotation=0,
91
            clip_on=False,
92
            transform=plt.gca().transAxes)
93
94 plt.text(1, 0.5, "T = " + str(T_delta) + "\N{DEGREE SIGN}C",
            horizontalalignment='left',
            verticalalignment='center',
96
            rotation=270.
97
            clip_on=False,
98
            transform=plt.gca().transAxes)
99
plt.axis("off")
```

```
plt.xlim(0, width)
plt.ylim(0, height)

cbar = plt.colorbar(heatmap)
cbar.set_label("Temperature (\N{DEGREE SIGN}C)")

plt.clim(0, 100)

plt.savefig("Problem-Set-3/images/pset-3-figure-3.png")
plt.show()
```