ECE 477 Design Review

Team15 - Social Lock

Team

System Block Diagram

PSSCs

- 1. An ability to securely determine whether a given mobile device is authorized to unlock the door.
- 2. An ability to mechanically displace the deadbolt to unlock and relock the door.
- 3. An ability to monitor the battery state and indicate a low battery condition to the user.
- 4. An ability to grant and revoke access to additional smartphones without either being physically present at the lock.
- 5. An ability to use grant temporary access to additional smartphones which expires automatically at the appointed time.

Component Selection Rationale

Microcontroller
Bluetooth Module
H Bridge
LDO Regulator
Battery Monitor

Microcontroller

TI MSP430F6659

Strong Community
Powerful
Our team is familiar
with the tools

Bluetooth Module

Bluegiga BLE112

Built in microcontroller UART Programmable Well-supported

H Bridge Toshiba TB6593FNG

Low minimum motor supply voltage (< 3V) Low ambient current draw High current capacity (1.2A)**Analog control**

LDO Regulator

Microchip Technology MCP1700T

Simple, 3 pin package
Max power consumption:
~150mW
Sleep power
consumption: ~15 uW

Battery Monitor

Maxim 6775XKA+T

Low, 0.87uA current draw
1% Accuracy
Only need to indicate low
battery warning
Simpler than coulomb counter

Packaging Design

3D printed box that fits over deadbolt Does not require any tools to install Removable adhesive affixes device to door

Schematic/Theory of Operation

Schematic broken into blocks
Each block covered in following slides

Power Block

Battery leads
LDO regulator
Battery monitor
Power switch

POWER

Bluetooth Block

BLE112A module Decoupling caps uC UART Debug UART

Bluetooth Debug Block

10-pin JTAG nRST switch Vcc sense (not supply)

Grounds Block

Fake resistors
Connect AGND,
PGND to GND

GNDS

Motor Block

H-bridge Decoupling caps uC control 20-SSOP, 5 pins **Unregulated VBATT** for motor

uC Debug Block

14-pin JTAG nRST shared with debugger **Backchannel UART** Power source selection

HW Debug Block

Power LED Voltage test points

Output LEDs for uC

Switch Block

Input switches for uC

uC Block

Isolated 8 MHz
crystal
Decoupling caps
Signal lines to
everything else

PCB Layout – 1.65"x3.95"

Power Layout

Power switch
Indicator LED
Back-voltage
protection via
Schottky diode

Pins inconveniently configured Most vias per pin of all components PGND connected to GND at R4 uC at right

JTAG-14 Layout

Most difficult routing Originally farther from uC Solution: signals from left on top; from right, bottom

Jumper Layout

Allows selection of uC UART path Includes adjacent nRST switches

Oscillator Layout

Analog circuit
Isolated analog
ground plane
Equal-length load
capacitor traces

Switch & LED Layout

8-bit I/O for debugging Switches include PU/PD resistors for safety

uC Layout

Decoupling caps on bottom layer

Bluetooth Layout

Signal planes restricted near antenna Chip near corner for minimal EMI Debug UART header

Software Structure and Status

Software Structure and Status

Software Structure and Status

iOS App: Complete

Parse Backend: Complete

Base Station: Complete

Bluetooth Chip: In Progress

MSP430: In Progress

Project Completion Timeline

Questions?