

USN:

RV University

School of Computer Science and Engineering

B.Tech Degree Examination-June 2025

Semester : II

Course Code: CS1807

Course Title : Linear Algebra

Duration : 2 Hours Max. Marks: 30

Instructions to students:

• There are 3 pages in the question paper in two parts, Part-A and Part-B. Ensure that you have a complete set of question papers before answering.

• Write your USN number on the question paper as soon as you receive it.

• Do not write any part of the answers on the question papers.

• The number in square bracket [] at the end of each question indicates the marks for that question.

Basic non-scientific calculators are allowed.

· All questions are compulsory.

SI. No.	PART A – Max Marks(10)	Marks	L1-L6	со
1.	a. Determine whether the system of equations intersect at a common point, or coincide or are parallel, Justify. [3]			
	x + y + z = 2			
	2x + 3y + z = 5			
	3x + 4y + 2z = 7	5	L2	CO1
	b. Determine the values of a for which system has a unique solution. [2]			
	2x + y = 5			
	4x + ay = b			
2.	Given the matrix A and vector b:			
-	$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & -1 & 5 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$	5	L2	CO2

*	a. Is b∈Null(A)? [1]		
	b. Is b∈ Row(A)? [2]		
	c. Is b∈Col(A)? [2]		

Sl.			-			
No.	PART B – Max Marks(20)	Marks	L1-L6	СО		
3.	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by: T(x,y) = (x+y,x-y) a. Determine whether T is a linear transformation. [3]	10	L3	CO3		
	 b. Compute the inverse transformation T⁻¹, if it exists. [3] c. Obtain the eigenvalues of the matrix representation of T. [1] d. Compute the eigenvectors of the matrix representation of T. [3] 					
4.	 a. Compute the matrix associated with the quadratic form of f(x,y,z) = xy + yz + zx. [2] b. In R³, let P be the subspace generated by (1,1,1) and (3,-1,-1). Compute the orthogonal complement of P, denoted as P¹. [3] c. Compute the Singular Value Decomposition of A, given that the symmetric matrix A¹A has eigenvalues with 3 and 1, with corresponding eigenvectors v₁ = [1,1]¹, and v₂ = A =	10	L3	CO4		

Course Outcomes

- 1. Apply Gaussian elimination, LU decomposition and others to solve systems of linear equations.
- 2. Compute the span, basis and dimension of matrix subspaces to solve related problems in computer science.
- 3. Compute eigenvalues and eigenvectors of a given matrix to solve real world problems.
- 4. Apply orthogonal projections, Gram-Schmidt processes, and Singular Value Decomposition to solve approximation problems.

Marks Distribution									
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4
-	10	20	-	-	-	5	5	10	10 -