

PESQUISA OPERACIONAL

MINIMIZAÇÃO - Aula Vivo 02

Exercício 1

Uma empresa brasileira e produtora de sucos cítricos está interessada em otimizar os custos de transporte de seus produtos para seu mercado consumidor. A empresa possui 3 regiões produtoras no brasil e 5 regiões destinos (mercado consumidor).

A tabela a seguir as regiões produtoras, consumidoras e, também, os custos de transporte entre origens e destinos. A empresa tem interesse em escoar toda a produção, atentendo aos mercadores consumidores com custo de transporte mínimo. Com base nesses dados, desenvolva um modelo que descreva a situação problema.

				Mercado Consumidor			Produção (x 1000 m ³)
Região produtora	Unidade	Argentina	Chile	Alemanha	Japão	China	
São Paulo	US\$/m ³	52	77	145	280	267	771
Paraná	US\$/m ³	60	85	150	285	272	964
Nordeste	US\$/m ³	110	135	115	301	287	193
Demanda do Setor	1.000 m ³	18	7	1.680	159	64	1.928
Exportação do Setor	US\$ M	9	4	840	79	32	964

In []:

Solução nessa situação as variáveis de decisão devem ser relacionadas com as quantidades enviadas das regiões produtoras para os mercados consumidores. Para tal denotaremos de X_{ij} o número de milhares de metros cúbicos de suco da região produtora i (1 = São Paulo; 2 = Paraná; 3 = Nordeste) para o mercado consumidor j (1 = Argentina; 2 = Chile; 3 = Alemanha; 4 = Japão; 5 = China).

		Argentina (1)	Chile (2)	Alemanha (3)	Japão (4)	China (5)
	Saão Paulo (1)	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
	Paraná (2)	X ₂₁	X ₂₂	X ₂₃	X ₂₄	X ₂₅
	Nordeste (3)	X ₃₁	X ₃₂	X ₃₃	X ₃₄	X ₃₅

Função Objetivo:

$$Min \quad Z = 52X_{11} + 77X_{12} + 145X_{13} + 280X_{14} + 267X_{15} + 60X_{21} + 85X_{22} + 150X_{23} + 272X_{25} + 110X_{31} + 135X_{32} + 115X_{33} + 301X_{34} + 287X_{35}$$
(1)

In []:

No problema as restrições serão divididas em dois grupos:

- i) Toda a produção deve ser escoada (equações 2, 3 e 4)
- ii) Toda demanda deverá ser atendida (equações 5, 6, 7, 8 e 9).

$$X_{11} + X_{12} + X_{13} + X_{14} + X_{15} = 771 (2)$$

$$X_{21} + X_{22} + X_{23} + X_{24} + X_{25} = 964 (3)$$

$$X_{31} + X_{32} + X_{33} + X_{34} + X_{35} = 193 (4)$$

$$X_{11} + X_{21} + X_{31} = 18 (5)$$

$$X_{12} + X_{22} + X_{32} = 7 (6)$$

$$X_{13} + X_{23} + X_{33} = 1680 (7)$$

$$X_{14} + X_{24} + X_{34} = 159 (8)$$

$$X_{15} + X_{25} + X_{35} = 64 (9)$$

Além dos grupos acima, temoas a restrição de não negatividade

$$X_{11}, X_{12}, 5X_{13}, X_{14}, X15, X21, X22, X23, X24, X25, X31, X32, X33, X34, X35 \ge 0$$

In []: