Multicycle Processor

EE309: Microprocessor

Raavi Gupta: 200070064 Siddhant Midha: 200070078 Srishti Sharma: 200070080 Vedang Gupta: 200100166

Course project of EE309 done under Prof. Virendra Singh

Electrical Engineering IIT-Bombay

1 The States

$$\begin{array}{c} S_1 \\ \hline PC \rightarrow ALU - A, iMeM_A \\ +1 \rightarrow ALU - B \\ ALU - C \rightarrow PC \\ iMeM_D \rightarrow IR, T_0 \end{array}$$

$$\begin{array}{c|c} S_5 \\ \hline \text{if}(IR_{12} \text{ OR } IR_{13} = 1): \\ IR_{3-5} \rightarrow A_3 \\ \text{else:} \\ IR_{6-8} \rightarrow A_3 \\ T_0 \rightarrow D_3 \end{array}$$

$$\begin{array}{c}
S_6 \\
IR_{6\to 8} \to A_2 \\
D_2 \to T_2 \\
IR_{0\to 5} \to SE \to T_1
\end{array}$$

$$S_3$$

$$IR_{9\rightarrow 11} \rightarrow A_1$$

$$IR_{6\rightarrow 8} \rightarrow A_2$$

$$D_1 \rightarrow T_1$$

$$D_2 \rightarrow T_2$$

$$\begin{array}{c} S_7 \\ \hline T_1 \rightarrow ALU - A \\ T_2 \rightarrow ALU - B \\ ALU - C \rightarrow T_0 \end{array}$$

$$\frac{S_{31}}{IR_{9\to 11} \to A_1}$$

$$D_1 \to T_1$$

$$IR_{0\to 5} \to SE \to T_2$$

$$\begin{array}{c} S_8 \\ \hline T_0 \rightarrow dMeM_A \\ dMeM_D \rightarrow T_0 \end{array}$$

$$\frac{S_{32}}{IR_{9\to 11} \to A_3}$$
$$IR_{0\to 8} \to SE \to shift_7 \to D_3$$

$$S_9$$

$$IR_{9\to 11} \to A_3$$

$$T_0 \to D_3$$

$$S_4$$

$$T_1 \to ALU - A$$

$$T_2 \to Shifter(IR_0ANDIR_1)$$

$$ALU - C \to T_0$$

$$\begin{array}{c} S_{10} \\ \hline T_1 \rightarrow ALU - A \\ T_2 \rightarrow ALU - B \\ ALU - C \rightarrow T_0 \\ IR_{9 \rightarrow 11} \rightarrow A_1 \\ D_1 \rightarrow T_1 \end{array}$$

$$S_{11}$$

$$T_0 \to dMeM_A$$

$$T_1 \to dMeM_D$$

$$\frac{S_{17}}{T_1 \to shift(1) \to T_1}$$

$$count + +$$

$$\begin{array}{c} S_{12} \\ \hline IR_{0\rightarrow 8} \rightarrow SE(7) \rightarrow shift(7) \rightarrow T_{1} \\ counter_{reset} \end{array}$$

$$\begin{array}{c} S_{18} \\ \hline IR_{9 \to 11} \to A_3 \\ D_3 \to T_0 \end{array}$$

$$\begin{array}{c} S_{13} \\ \hline T_1 \to ALU - A \\ \text{'}1000000000000000000' \to ALU - B \\ ALU - C \to T_0 \end{array}$$

$$S_{19}$$

$$dMem_D \rightarrow T_2$$

$$T_0 \rightarrow ALU - A, dMeM_A$$

$$+1 \rightarrow ALU - B$$

$$ALU - C \rightarrow T_0$$

$$S_{14}$$

$$count_{out} \to A_2$$

$$D_2 \to T_2$$

$$IR_{9 \to 11} \to A_3$$

$$D_3 \to T_0$$

$$\frac{S_{20}}{count_{out} \to A_3}$$
$$T_2 \to D_3$$

$$\begin{array}{c|c} S_{15} \\ \hline T_0 \rightarrow ALU - C, dMeM_A \\ T_2 \rightarrow dMeM_D \\ +1 \rightarrow ALU - B \\ ALU - C \rightarrow T_0 \\ \end{array}$$

$$S_{21}$$

$$T_0 \to ALU - A$$

$$-1 \to ALU - B$$

$$ALU - C \to T_0$$

$$IR_{0\to 5} \to SE(10) \to T_2$$

$$\begin{array}{c} S_{16} \\ \hline T_1 \rightarrow shift(1) \rightarrow T_1 \\ IR_{9\rightarrow 11} \rightarrow A_3 \\ T_0 \rightarrow D_3 \\ count + + \end{array}$$

$$\begin{array}{c}
S_{22} \\
\hline
T_0 \to ALU - A \\
T_1 \to ALU - B \\
ALU - C \to PC
\end{array}$$

$$\frac{S_{26}}{PC \rightarrow iMeM_A}$$
$$iMeM_D \rightarrow IR$$

$$S_{24}$$

$$IR_{9\rightarrow11}\rightarrow A_3$$

$$T_0\rightarrow D_3, ALU-A$$

$$-1\rightarrow ALU-B$$

$$ALU-C\rightarrow T_0$$

$$IR_{0\rightarrow8}\rightarrow SE(7)\rightarrow T_2$$

$$S_{25}$$

$$IR_{9\to 11} \to A_3$$

$$T_0 \to D_3$$

$$IR_{6\to 8} \to A_2$$

$$D_2 \to PC$$

Salient points:

- \bullet To minimise the number of states, some conditions based on the instructions are introduced as can be seen in S_4 or S_5
- An additional counter is added to keep track of the register bit to check in instruction LM or SM
- Masking is employed in state S_{13} to check whether the corresponding register bit is set or not

2 Instruction Flow

2.1 ADD

2.2 ADC

2.3 ADL

2.4 ADZ

2.5 ADI

2.6 NDU

2.7 NDC

2.8 ADZ

2.9 LHI

2.10 LW

2.11 SW

2.12 SM

The loops are executed until all the registers bits aren't checked

The loops are executed until all the registers bits aren't checked

2.14 BEQ

2.15 JAL

2.16 JLR

2.17 JRI

*Condition C = 1/0 or Z = 1/0 refers to carry or zero flag being set or not respectively

3 Pictures

3.1 Overall Design

3.2 Datapath

3.3 Controller

4 State diagram of FSM

