Machine Learning Lab Assignment 3

Name: Rishik Varma Roll: 001811001050

Sem: 4th yr 1st sem

Dept: Information Technology

GITHUB LINK: https://github.com/Knightrv/ML_Assignment-3

• The above github repo contains all the .ipynb files and this pdf

PART 1

1) Wine Dataset

1.1) GaussianHMM Without Tuning

1.2) GaussianHMM With Tuning

1.3) GMMHMM Without Tuning

1.4) GMMHMM With Tuning

1.5) MultinomialHMM Without Tuning

1.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was

achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

2) Ionosphere Dataset

2.1) GaussianHMM Without Tuning

2.2) GaussianHMM With Tuning

2.3) GMMHMM Without Tuning

2.4) GMMHMM With Tuning

2.5) MultinomialHMM Without Tuning

2.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

3) Breast Cancer Dataset

3.1) GaussianHMM Without Tuning

3.2) GaussianHMM With Tuning

3.3) GMMHMM Without Tuning

3.4) GMMHMM With Tuning

3.5) MultinomialHMM Without Tuning

3.6) MultinomialHMM Without Tuning

The maximum accuracy was achieved when the Train-Test split ratio was 70:30, which was achieved by using the Gaussian Model. The maximum range of accuracies was achieved by the Gaussian Model, followed by the GMMHMM model, which is followed by the MultinomialHMM model.

PART 2

1) CIFAR-10

Layer (type)	Output	Shape	Param #
conv2d_6 (Conv2D)	(None,	30, 30, 32)	896
max_pooling2d_4 (MaxPooling2	(None,	15, 15, 32)	0
conv2d_7 (Conv2D)	(None,	13, 13, 64)	18496
max_pooling2d_5 (MaxPooling2	(None,	6, 6, 64)	0
conv2d_8 (Conv2D)	(None,	4, 4, 64)	36928
flatten (Flatten)	(None,	1024)	0
dense (Dense)	(None,	64)	65600
dense_1 (Dense)	(None,	10)	650
Total params: 122,570	=====	=========	=======
Trainable params: 122,570 Non-trainable params: 0			

```
Epoch 11/20
     1563/1563 [=
Epoch 12/20
Epoch 13/20
1563/1563 [=
        ==========] - 69s 44ms/step - loss: 0.1524 - accuracy: 0.9466 - val_loss: 2.0503 - val_accuracy: 0.6936
Epoch 14/20
1563/1563 [============] - 69s 44ms/step - loss: 0.1490 - accuracy: 0.9477 - val_loss: 2.0715 - val_accuracy: 0.6861
Epoch 15/20
1563/1563 [=
       Epoch 16/20
1563/1563 [==
      Epoch 17/20
Epoch 18/20
1563/1563 [=
       Epoch 19/20
1563/1563 [===========] - 69s 44ms/step - loss: 0.1250 - accuracy: 0.9571 - val_loss: 2.3900 - val_accuracy: 0.6802
Epoch 20/20
```


2) MNIST

Layer (type)	Output	Shape	Param #
======================================	(None,	26, 26, 32)	320
max_pooling2d_10 (MaxPooling	(None,	13, 13, 32)	0
conv2d_19 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_11 (MaxPooling	(None,	5, 5, 64)	0
conv2d_20 (Conv2D)	(None,	3, 3, 64)	36928
flatten_3 (Flatten)	(None,	576)	0
dense_6 (Dense)	(None,	64)	36928
dense_7 (Dense)	(None,	10)	650
Total params: 93,322 Trainable params: 93,322 Non-trainable params: 0			

```
1875/1875 [===========] - 57s 30ms/step - loss: 0.0079 - accuracy: 0.9973 - val_loss: 0.0319 - val_accuracy: 0.9913
Epoch 12/20
1875/1875 [=
             Epoch 13/20
1875/1875 [===
           Epoch 14/20
1875/1875 [============] - 58s 31ms/step - loss: 0.0078 - accuracy: 0.9973 - val_loss: 0.0390 - val_accuracy: 0.9908
Epoch 15/20
                ==========] - 58s 31ms/step - loss: 0.0048 - accuracy: 0.9985 - val_loss: 0.0374 - val_accuracy: 0.9930
1875/1875 [==
Epoch 16/20
1875/1875 [==
                 ==========] - 58s 31ms/step - loss: 0.0069 - accuracy: 0.9980 - val_loss: 0.0336 - val_accuracy: 0.9923
Epoch 17/20
1875/1875 [============] - 57s 31ms/step - loss: 0.0049 - accuracy: 0.9985 - val_loss: 0.0430 - val_accuracy: 0.9916
Epoch 18/20
                  ==========] - 57s 31ms/step - loss: 0.0053 - accuracy: 0.9982 - val_loss: 0.0397 - val_accuracy: 0.9915
1875/1875 [=
Epoch 19/20
1875/1875 [==
                 ==========] - 58s 31ms/step - loss: 0.0048 - accuracy: 0.9986 - val_loss: 0.0540 - val_accuracy: 0.9903
Epoch 20/20
1875/1875 [==========] - 58s 31ms/step - loss: 0.0043 - accuracy: 0.9987 - val_loss: 0.0419 - val_accuracy: 0.9919
```


3) SAVEE

Model: "sequential_3"			
Layer (type)	Output	Shape	Param #
conv2d_9 (Conv2D)	(None,	155, 318, 32)	320
max_pooling2d_6 (MaxPooling2	(None,	77, 159, 32)	0
conv2d_10 (Conv2D)	(None,	75, 157, 64)	18496
max_pooling2d_7 (MaxPooling2	(None,	37, 78, 64)	0
conv2d_11 (Conv2D)	(None,	35, 76, 64)	36928
flatten_3 (Flatten)	(None,	170240)	0
dense_6 (Dense)	(None,	64)	10895424
dense_7 (Dense)	(None,	10)	650

Total params: 10,951,818

Trainable params: 10,951,818

Non-trainable params: 0

```
11/11 [========] - 27s 2s/step - loss: 2.2025e-05 - accuracy: 1.0000 - val_loss: 7.0087 - val_accuracy: 0.3056
Epoch 25/30
11/11 [===
                      Epoch 26/30
                     ======] - 27s 2s/step - loss: 1.7196e-05 - accuracy: 1.0000 - val_loss: 7.0967 - val_accuracy: 0.2986
11/11 [====
Epoch 27/30
11/11 [=====
                    ========] - 27s 2s/step - loss: 1.5431e-05 - accuracy: 1.0000 - val_loss: 7.1239 - val_accuracy: 0.3056
Epoch 28/30
                    ========] - 27s 2s/step - loss: 1.3852e-05 - accuracy: 1.0000 - val_loss: 7.1493 - val_accuracy: 0.2986
11/11 [====
Epoch 29/30
                     ========] - 27s 2s/step - loss: 1.2641e-05 - accuracy: 1.0000 - val loss: 7.2041 - val accuracy: 0.2986
11/11 [=====
Epoch 30/30
                   =========] - 27s 2s/step - loss: 1.1668e-05 - accuracy: 1.0000 - val_loss: 7.2112 - val_accuracy: 0.2986
11/11 [=====
```


4) EmoDB

Model: "sequential_4"		
Layer (type)	Output Shape	Param #
conv2d_12 (Conv2D)	(None, 155, 318, 32)	320
max_pooling2d_8 (MaxPooling2	(None, 77, 159, 32)	0
conv2d_13 (Conv2D)	(None, 75, 157, 64)	18496
max_pooling2d_9 (MaxPooling2	(None, 37, 78, 64)	0
conv2d_14 (Conv2D)	(None, 35, 76, 64)	36928
flatten_4 (Flatten)	(None, 170240)	0
dense_8 (Dense)	(None, 64)	10895424
dense_9 (Dense)	(None, 10)	650
Total params: 10,951,818 Trainable params: 10,951,818		

Trainable params: 10,951,818
Non-trainable params: 0

```
Epoch 14/20
Epoch 15/20
12/12 [====
         =========] - 30s 2s/step - loss: 7.0827e-04 - accuracy: 1.0000 - val_loss: 4.0446 - val_accuracy: 0.4969
Epoch 16/20
12/12 [========] - 30s 2s/step - loss: 4.9740e-04 - accuracy: 1.0000 - val_loss: 4.1150 - val_accuracy: 0.5093
Epoch 17/20
       12/12 [======
Epoch 18/20
        12/12 [=====
Epoch 19/20
12/12 [========] - 31s 3s/step - loss: 2.5256e-04 - accuracy: 1.0000 - val_loss: 4.2239 - val_accuracy: 0.5031
Epoch 20/20
```


It was observed that the more layers we add the higher accuracy we can achieve. At the same time, if we keep on adding more layers, the final accuracy will saturate. Also, the number of convolution and the pooling layers play an important role in training the model.

PART 3

1) VGG-16 1.1) CIFAR-10

1.2) MNIST

1.3) SAVEE

```
Epoch 45/50
Epoch 46/50
Epoch 47/50
Epoch 48/50
8/8 [============ - 6s 709ms/step - loss: nan - accuracy: 0.1208
Epoch 49/50
Epoch 50/50
model.evaluate(X test resized, y test)
[nan, 0.12916666269302368]
```

1.4) EmoDB

```
9/9 |========================= | - 68 /11ms/step - 10ss: nan - accuracy: 0.224/
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
model.evaluate(X test resized, y test)
[nan, 0.25]
```

The entire model can be broken down into 5 blocks, where each block contains 3 convolution and 1 max-pooling layers.

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., i have taken 2000 training data points and 2000 testing data points.

2) ResNet-50

2.1) CIFAR-10

2.2) MNIST

2.3) SAVEE

```
Epoch 5/10
Epoch 6/10
Epoch 7/10
8/8 [=============== ] - 5s 671ms/step - loss: 0.0966 - accuracy: 1.0000
Epoch 8/10
8/8 [=============== ] - 5s 668ms/step - loss: 0.0691 - accuracy: 1.0000
Epoch 9/10
Epoch 10/10
model.evaluate(X test resized, y test)
8/8 [=================== ] - 3s 215ms/step - loss: 8.7594 - accuracy: 0.0000e+00
[8.759380340576172, 0.0]
```

2.4) **EmoDB**

```
Epoch 3/10
9/9 [========== ] - 6s 663ms/step - loss: 1.1062 - accuracy: 0.6367
Epoch 4/10
9/9 [=========== ] - 6s 661ms/step - loss: 0.6534 - accuracy: 0.7678
Epoch 5/10
9/9 [========== ] - 6s 662ms/step - loss: 0.3835 - accuracy: 0.8914
Epoch 6/10
9/9 [========== ] - 6s 662ms/step - loss: 0.3716 - accuracy: 0.8689
Epoch 7/10
9/9 [=========== ] - 6s 662ms/step - loss: 0.2297 - accuracy: 0.9213
Epoch 8/10
Epoch 9/10
9/9 [========== ] - 6s 664ms/step - loss: 0.1170 - accuracy: 0.9850
Epoch 10/10
model.evaluate(X_test_resized, y_test)
[7.290168285369873, 0.0]
```

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

3) Recurrent Neural Networks (RNN)

3.1) CIFAR-10

```
Epoch 3/10
200/200 [============== ] - 111s 557ms/step - loss: 2.0085 - accuracy: 0.2645
Epoch 4/10
200/200 [============= ] - 112s 558ms/step - loss: 1.9649 - accuracy: 0.2771
Epoch 5/10
200/200 [============== ] - 111s 557ms/step - loss: 1.9583 - accuracy: 0.2816
Epoch 6/10
200/200 [=============== ] - 111s 557ms/step - loss: 1.9388 - accuracy: 0.2896
Epoch 7/10
200/200 [============== ] - 111s 557ms/step - loss: 1.9371 - accuracy: 0.2899
Epoch 8/10
200/200 [=============== ] - 111s 556ms/step - loss: 1.9254 - accuracy: 0.2989
Epoch 9/10
200/200 [=============== ] - 111s 557ms/step - loss: 1.9188 - accuracy: 0.2966
Epoch 10/10
200/200 [============= ] - 111s 556ms/step - loss: 1.9341 - accuracy: 0.2930
model.evaluate(test images, test labels)
[1.9600898027420044, 0.29120001196861267]
```

3.2) MNIST

```
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Test Accuracy of the model on the 10000 test images: 97.77 %
```

3.3) SAVEE

3.4) EmoDB

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

4) AlexNet

4.1) CIFAR-10

4.2) MNIST

4.3) SAVEE

```
LPUCII 4/10
8/8 [============= - - 56s 7s/step - loss: 2.4215 - accuracy: 0.1583
Epoch 5/10
8/8 [============= - - 56s 7s/step - loss: 2.2042 - accuracy: 0.2333
Epoch 6/10
Epoch 7/10
8/8 [=========== - - 56s 7s/step - loss: 2.1114 - accuracy: 0.2792
Epoch 8/10
8/8 [=========== - - 57s 7s/step - loss: 2.1120 - accuracy: 0.2542
Epoch 9/10
8/8 [============= - - 56s 7s/step - loss: 2.0292 - accuracy: 0.2583
Epoch 10/10
8/8 [============ - - 57s 7s/step - loss: 2.1150 - accuracy: 0.2417
model.evaluate(X test resized, y test)
[2.275780200958252, 0.23749999701976776]
```

4.4) **EmoDB**

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

5) GoogLeNet

5.1) CIFAR-10

```
output_2_loss: 2.0650 - val_output_accuracy: 0.2305 - val_auxilliary_output_1_accuracy: 0.2400 - val_auxilliary_output_2_accuracy: 0.2240

output_2_loss: 2.0244 - val_output_accuracy: 0.2470 - val_auxilliary_output_1_accuracy: 0.2630 - val_auxilliary_output_2_accuracy: 0.2585

output_2_loss: 2.0076 - val_output_accuracy: 0.2355 - val_auxilliary_output_1_accuracy: 0.2735 - val_auxilliary_output_2_accuracy: 0.2660
```

5.2) MNIST

5.3) SAVEE

5.4) **EmoDB**

Looking at the complexity of the model and the limitations of google colab, I have reduced the input size for the model,i.e., I have taken 2000 training data points and 2000 testing data points.

BELOW THE COMPARISON TABLES ARE PROVIDED:

Hidden Markov Model (HMM) Train-Test Ratio Precision

Dataset	Classifier	Train-Test Ratio	Precision	Recall	F1-Score	Support	Accuracy
	GaussianHMM(With Tuning)	70-30	0.82	0.84	0.83	106	83
	GaussianHMM(With Tuning)	60-40	0.8	0.81	0.8	141	0.8
	GaussianHMM(With Tuning)	50-50	0.74	0.75	0.74	176	0.75
	GaussianHMM(With Tuning)	40-60	0.68	0.69	0.68	211	0.69
	GaussianHMM(With Tuning)	30-70	0.49	0.5	0.49	246	57
	GaussianHMM(Without Tuning)	70-30	0.91	0.95	0.93	54	92
	GaussianHMM(Without Tuning)	60-40	0.97	0.98	0.97	72	97
	GaussianHMM(Without Tuning)	50-50	0.34	0.35	0.34	89	35
	GaussianHMM(Without Tuning)	40-60	0.95	0.95	0.95	107	94
	GaussianHMM(Without Tuning)	30-70	0.33	0.39	0.36	125	37
	GMMHMM(With Tuning)	70-30	0.82	0.84	0.83	106	83
	GMMHMM(With Tuning)	60-40	0.8	0.81	0.8	141	0.8
	GMMHMM(With Tuning)	50-50	0.74	0.75	0.74	176	0.75
	GMMHMM(With Tuning)	40-60	0.68	0.69	0.68	211	0.69
Wine Dataset	GMMHMM(With Tuning)	30-70	0.49	0.5	0.49	246	57
Wille Dalaset	GMMHMM(Without Tuning)	70-30	0.91	0.95	0.93	54	92
	GMMHMM(Without Tuning)	60-40	0.97	0.98	0.97	72	97
	GMMHMM(Without Tuning)	50-50	0.95	0.95	0.95	89	94
	GMMHMM(Without Tuning)	40-60	0.94	0.94	0.94	107	93
	GMMHMM(Without Tuning)	30-70	0.05	0.04	0.05	125	4.8
	MultinomialHMM(With Tuning)	70-30	0.82	0.84	0.83	106	83
	MultinomialHMM(With Tuning)	60-40	0.83	0.84	0.83	141	83
	MultinomialHMM(With Tuning)	50-50	0.74	0.75	0.74	176	75
	MultinomialHMM(With Tuning)	40-60	0.69	0.69	0.69	211	71
	MultinomialHMM(With Tuning)	30-70	0.52	0.51	0.43	246	43
	MultinomialHMM(Without Tuning)	70-30	0.82	0.84	0.83	106	83
	MultinomialHMM(Without Tuning)	60-40	0.83	0.84	0.83	141	83
	MultinomialHMM(Without Tuning)	50-50	0.74	0.75	0.74	176	75
	MultinomialHMM(Without Tuning)	40-60	0.69	0.69	0.69	211	71
	MultinomialHMM(Without Tuning)	30-70	0.52	0.51	0.43	246	0.43

			1	1			
	GaussianHMM(With Tuning)	70-30	0.82	0.84	0.83	106	83
	GaussianHMM(With Tuning)	60-40	0.8	0.81	0.8	141	0.8
	GaussianHMM(With Tuning)	50-50	0.74	0.75	0.74	176	0.75
	GaussianHMM(With Tuning)	40-60	0.68	0.69	0.68	211	0.69
	GaussianHMM(With Tuning)	30-70	0.49	0.5	0.49	246	57
	GaussianHMM(Without Tuning)	70-30	0.82	0.84	0.83	106	83
	GaussianHMM(Without Tuning)	60-40	0.81	0.82	0.81	141	81
	GaussianHMM(Without Tuning)	50-50	0.74	0.75	0.74	176	75
	GaussianHMM(Without Tuning)	40-60	0.68	0.69	0.68	211	69
	GaussianHMM(Without Tuning)	30-70	0.75	0.78	0.73	246	73
	GMMHMM(With Tuning)	70-30	0.82	0.84	0.83	106	83
	GMMHMM(With Tuning)	60-40	0.83	0.84	0.83	141	83
	GMMHMM(With Tuning)	50-50	0.74	0.75	0.74	176	75
	GMMHMM(With Tuning)	40-60	0.69	0.69	0.69	211	71
lancanhara Datacat	GMMHMM(With Tuning)	30-70	0.52	0.51	0.43	246	43
lonosphere Dataset	GMMHMM(Without Tuning)	70-30	0.82	0.84	0.83	106	83
	GMMHMM(Without Tuning)	60-40	0.83	0.84	0.83	141	83
	GMMHMM(Without Tuning)	50-50	0.74	0.75	0.74	176	75
	GMMHMM(Without Tuning)	40-60	0.69	0.69	0.69	211	71
	GMMHMM(Without Tuning)	30-70	0.52	0.51	0.43	246	0.43
	MultinomialHMM(With Tuning)	70-30	0.82	0.84	0.83	106	83
	MultinomialHMM(With Tuning)	60-40	0.83	0.84	0.83	141	83
	MultinomialHMM(With Tuning)	50-50	0.74	0.75	0.74	176	75
	MultinomialHMM(With Tuning)	40-60	0.69	0.69	0.69	211	71
	MultinomialHMM(With Tuning)	30-70	0.52	0.51	0.43	246	43
	MultinomialHMM(Without Tuning)	70-30	0.82	0.84	0.83	106	83
	MultinomialHMM(Without Tuning)	60-40	0.83	0.84	0.83	141	83
	MultinomialHMM(Without Tuning)	50-50	0.74	0.75	0.74	176	75
	MultinomialHMM(Without Tuning)	40-60	0.69	0.69	0.69	211	71
	MultinomialHMM(Without Tuning)	30-70	0.52	0.51	0.43	246	0.43

			1	1 00-	1 001		
	GaussianHMM(With Tuning)	70-30	0.94	0.95	0.94	171	94
	GaussianHMM(With Tuning)	60-40	0.94	0.95	0.94	228	94
	GaussianHMM(With Tuning)	50-50	0.07	0.06	0.06	285	6
	GaussianHMM(With Tuning)	40-60	0.85	0.84	0.84	342	86
	GaussianHMM(With Tuning)	30-70	0.91	0.91	0.91	399	91
	GaussianHMM(Without Tuning)	70-30	0.94	0.96	0.95	171	95
	GaussianHMM(Without Tuning)	60-40	0.92	0.93	0.92	228	92
	GaussianHMM(Without Tuning)	50-50	0.93	0.94	0.93	285	93
	GaussianHMM(Without Tuning)	40-60	0.85	0.84	0.84	342	86
	GaussianHMM(Without Tuning)	30-70	0.91	0.91	0.91	399	91
	GMMHMM(With Tuning)	70-30	0.92	0.93	0.92	171	92
	GMMHMM(With Tuning)	60-40	0.91	0.91	0.91	228	91
	GMMHMM(With Tuning)	50-50	0.91	0.92	0.91	285	91
	GMMHMM(With Tuning)	40-60	0.89	0.91	0.9	342	90
Breast Cancer Dataset	GMMHMM(With Tuning)	30-70	0.9	0.78	0.8	399	0.83
Dieasi Calicei Dalasei	GMMHMM(Without Tuning)	70-30	0.92	0.93	0.92	171	92
	GMMHMM(Without Tuning)	60-40	0.91	0.91	0.91	228	91
	GMMHMM(Without Tuning)	50-50	0.91	0.92	0.91	285	91
	GMMHMM(Without Tuning)	40-60	0.89	0.91	0.9	342	90
	GMMHMM(Without Tuning)	30-70	0.9	0.91	0.9	399	90
	MultinomialHMM(With Tuning)	70-30	0.51	0.51	0.51	171	57
	MultinomialHMM(With Tuning)	60-40	0.54	0.54	0.54	228	59
	MultinomialHMM(With Tuning)	50-50	0.54	0.54	0.54	285	57
	MultinomialHMM(With Tuning)	40-60	0.53	0.53	0.53	342	58
	MultinomialHMM(With Tuning)	30-70	0.54	0.54	0.54	399	57
	MultinomialHMM(Without Tuning)	70-30	0.51	0.51	0.51	171	57
	MultinomialHMM(Without Tuning)	60-40	0.54	0.54	0.54	228	59
	MultinomialHMM(Without Tuning)	50-50	0.54	0.54	0.54	285	57
	MultinomialHMM(Without Tuning)	40-60	0.53	0.53	0.53	342	58
	MultinomialHMM(Without Tuning)	30-70	0.54	0.54	0.54	399	57

Convolutional Neur	al Networks(CNN)
Dataset	Accuracy
CIFAR-10	68
MNIST	99
SAVEE	29
EmoDB	50

		•
Other Deep	Learning Mode	els
Models	Dataset	Accuracy
	CIFAR-10	9.8
VGG-16	MNIST	10.95
VGG-16	SAVEE	12.92
	EmoDB	25
	CIFAR-10	27
DooNet 50	MNIST	99
ResNet-50	SAVEE	99
	EmoDB	92
	CIFAR-10	29
Pagurrant Naural Naturarka (DNN)	MNIST	97
Recurrent Neural Networks (RNN)	SAVEE	43
	EmoDB	55
	CIFAR-10	7.5
Alexalist	MNIST	11.69
AlexNet	SAVEE	23.74
	EmoDB	23.36
	CIFAR-10	26.6
Coorl oNot	MNIST	99
GoogLeNet	SAVEE	38
	EmoDB	36