Tutorial -3 Solution

1 (a)
$$\left| \frac{\chi^{3}y}{\chi^{4}+y^{2}} \right| \leq \left| \frac{\chi}{2} \left(\chi^{2}+y \right) \right| \leq \frac{1}{2} \left| \chi^{4}+y^{2} \right| \leq \frac{1}{2} \left| \chi^{4}+y^{2}$$

(b)

(C)

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^2} = 0.$$

$$\frac{|x^{3}-y^{3}|}{|x^{2}+y^{2}|} = \frac{(x-y)(x^{2}+xy+y^{2})}{|x^{2}+y^{2}|}$$

$$= |x-y|(x^{2}+xy+y^{2})|$$

$$\frac{x^3 - y^3}{x^2 + y^2} =$$

$$\chi^2 + y^2 = 1\chi$$

$$=) \lim_{(x,y)\to(0,0)} \frac{\chi^{3}-y^{3}}{\chi^{2}+y^{2}} = 0$$

$$\lim_{x \to y} \frac{x^2 + y^2}{x^2 + y^2}$$

$$f(x,y) = \frac{x^2 + y^2}{x^2 + y^2} = 0$$

$$f(x,y) = \frac{x^2 + y^2}{x^2 + (x^2 - y^2)^2}$$

different values of m

 $= |x-y| \frac{x^2 + xy + y^2}{x^2 + y^2}$

$$\frac{x^2+xy+y^2}{x^2+y^2}$$

choose y = mx then lumit is different

→ limit of f(xiz) down not exists.

$$\frac{x^2+y^2+y^2}{x^2+y^2}$$

(d)
$$f(x,y) = \frac{1}{y^2} e^{-\frac{|x|}{y^2}}$$

choose $x = my^2$ then limit is different
for different values of m hence limit does not
exists.

$$f(xy) = \frac{1 - (68(x^2 + y^2))}{(x^2 + y^2)^2}$$

changing to Relax form we have
$$f(x,y) = \frac{1-(\omega s)^2}{x^4}$$

So
$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{y\to 0} \frac{1-\cos x^2}{x^4}$$

$$= \frac{1}{2}$$
(apply L.H. Rule)

(e)

$$\frac{1}{2} \frac{|xy|}{|xy|}$$

(f) $f(x,y) = \sqrt{x^2y^2 + 1} - 1 = \frac{x^2y^2}{(x^2 + y^2)(\sqrt{1 + x^2y^2})}$

$$|f(x,y)| = |y+x\sin y| \leq |x|+|y|$$

$$\Rightarrow \lim_{(x,y)\to(0,0)} f(x,y) = 0$$

lim lim $f(x,y)=0 = \lim_{y\to 0} \lim_{x\to 0} f(x,y)$

Um term f(x,y) = term y = 0 $y \to 0$ $y \to 0$

(P)

tim tim
$$f(x,y) = 0$$
 f
tim tim $f(x,y) = 0$ f
 $y \to 0$ $y \to 0$ f
 $y \to 0$ $y \to 0$ f
 $y \to 0$ f

um lem f(xix) does not exists.

(C)

 $(ay) \rightarrow (ay) = 0$

(c)
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$
 $\lim_{(x,y)\to(0,0)} \lim_{(x,y)\to(0,0)} f(x,y) = 0$
 $\lim_{(x,y)\to(0,0)} \lim_{(x,y)\to(0,0)} \frac{x^2}{x^2} = 1$
 $\lim_{(x,y)\to(0,0)} \lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2}{x^2} = 1$
 $\lim_{(x,y)\to(0,0)} \lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2}{x^2} = 1$

(5) I short suffere that f is uniformly continus

 $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2}{x^2} = 1$

(5) I short suffere that f is uniformly continus

 $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2}{x^2} = 1$

(7) I short suffere that f is uniformly continus

 $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2}{x^2} = 1$

(8) I short suffere that f is uniformly continus

 $\lim_{(x,y)\to(0,0)} f(x,y) = 0$
 $\lim_{(x$

Since A is compact
$$\Rightarrow$$
 (xe) has convergent

Subsequent (xky) $\rightarrow \times$

If $3k_{p}-21|=$ $||3k_{p}-xk_{p}+xk_{p}|| \leq ||x_{p}-yk_{p}||+||x_{p}-x||$
 \Rightarrow $(3k_{p})$ $\rightarrow \times$

So $||x_{p}-yk_{p}|| \rightarrow 0$ footh $||x_{p}-yk_{p}||+||x_{p}-x||$
 $||f(x,k_{p})-f(y,k_{p})|| \rightarrow ||f(x)-f(x)|| = ||f(x)-f(x)|| = 0$

which contradicts that $||f(x_{p})-f(y_{p})|| > 6$
 \Rightarrow function continuous

 $||x_{p}-yk_{p}|| = ||(k_{p})-||x_{p}|| > 6$
 $||x_{p}-yk_{p}|| = ||(k_{p})-||x_{p}|| > 6$

Then $||x_{p}-yk_{p}|| = ||(k_{p})-||x_{p}|| > 6$

what $||f(x_{p})-||f(y_{p})|| = ||x_{p}|| + ||x_{p}|| > 6$

what $||f(x_{p})-||f(y_{p})|| = ||x_{p}|| + ||x_{p}|| > 6$

and therefore if shows that f is not uniform continual.

(6)

$$f(x) := ||x||$$

$$|f(x) - f(x)| = ||x|| - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)| = ||x|| - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||| \le ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x - ||x||$$

$$|f(x) - f(x)|^2 = ||x - ||x|||$$

$$|f(x) - f(x)|^2 = ||x -$$

take
$$x_n = \frac{1}{n}$$
 of $y_n = \frac{1}{n+1}$

Then $|x_n - y_n| = \frac{1}{n(n+1)} \longrightarrow 0$ but

 $|y_n - y_n| = |y_n - y_n|$

I have h is not uniform Continuous

Then for $y_n \in y_n = y_n$

Then $y_n \in y_n$

Then for $y_n \in y_n$

Then y_n

1x-yks => If(x)-f(x)/<E = x, y EA

choose $x \in (0,1)$ but $(x_n) \in (0,1)$ s.t. $x_n \rightarrow x$

 $\Rightarrow \frac{\times}{1\times} < K + \times \in [0, \infty)$

 $h(x_n) = \frac{1}{x_n} \longrightarrow \frac{1}{x} = h(x)$

which is not Possible.

1 (x) := x

(2K) is cauchy => 8>0 = Nothmal number N Nuch that 112x-221<8 + K, l>N $\Rightarrow |f(x)-f(x0)| < \epsilon + k,l > N$ and therefore it shows that (fack) is Cauly. $f(X) := \frac{1}{X}$ (1) is Cauly sequere but f(m) = n is not County Sequere. 2: +2 18 5 ...