

ФИО: Иванов Иван Иванович

Дата: **21.07.2023** Возраст: **47** Пол: **М**

Инструмент: ВЭЖХ-МС/МС- Плазма крови-

Панорамный метаболомный обзор

На графике представлены функциональные группы метаболитов, которые были оценены по уровню риска на основе Ваших результатов метаболомного профилирования

Уровень риска

Индекс GSG

Ниже показано, какие классы метаболитов составляют функциональные группы, и как изменение в классе метаболитов повлияло на результат Панорамного метаболомного обзора.

Дата: 21.07.2023

MetaboScan-Test01

Пациент: Иванов Иван Иванович

Метаболизм фенилаланина	Результа	20% 40% 60% 80%	Референсные значения мкмоль/л
Фенилаланин (Phe) Незаменимая глюко-, кетогенная аминокислота	+ 10		35.8 - 76.9
Тирозин (Туг) Заменимая глюко-, кетогенная аминокислота	5		27.8 - 83.3
Индекс AAAs [Phe + Tyr] Запас ароматических аминокислот	4		60.0 - 180.0
ВСАА – аминокислоты с разветвленной цепью	Результа	20% 40% 60% 80%	Референсные значения мкмоль/л
Лейцин + Изолейцин (Leu+lle) Незаменимая глюко-, кетогенная аминокислота	24		92.6 - 310.0
Валин (Val) Незаменимая глюкогенная аминокислота	+ 40		133.0 - 317.1
Индекс BCAAs [Leu + Ile + Val] Запас аминокислот с разветвленной боковой цепью	+ 64		212 - 577
Индекс Фишера FR [BCAAs / AAAs] Отношение запаса аминокислот с разветвленной цепью к запасу ароматических аминокислот	2.		3.0 - 3.5
Метаболизм гистидина	Результа	20% 40% 60% 80%	Референсные значения мкмоль/л
Гистидин (His) Незаменимая глюкогенная аминокислота	+ 15		60 - 109
Метилгистидин (МН) Метаболит карнозина	21.		< 47.0
Треонин (Thr) Незаменимая глюкогенная аминокислота	13		67.8 - 211.6
Карнозин (Car) Дипептид, состоящий из аланина и гистидина	0.		< 6.3
Глицин (Gly) Заменимая глюкогенная аминокислота	21		122 - 322
Диметилглицин (DMG) Промежуточный продукт синтеза глицина	0.1		1.6 - 5.0
Серин (Ser) Заменимая глюкогенная аминокислота	+ 14		65 - 138
Лизин (Lys) Незаменимая кетогенная аминокислота	+ 46		119 - 233
Глутаминовая кислота (Glu) Заменимая глюкогенная аминокислота	+ 13		10 - 97

Дата: 21.07.2023

MetaboScan-Test01

Metabo**SCAN**

Пациент: Иванов Иван Иванович

Метаболизм гистидина	Рез	ультат	 20%	40%	60%	80%	Референсные значения, мкмоль/л
Глутамин (Gln) Заменимая глюкогенная аминокислота		489					373 - 701
Индекс [Gln / Glu] Активность глутаминсинтетазы	+	0.27					0.06 - 0.23
Индекс GSG [Glu / (Ser + Gly)] Запас аминокислот для синтеза глутатиона	+	0.36					0.17 - 0.31
Индекс [Gly / Ser] Активность глутаминсинтетазы	+	0.27					0.06 - 0.23
Метаболизм метионина	Рез	ультат	20%	40%	60%	80%	Референсные значения, мкмоль/л
Метионин (Met) Незаменимая глюкогенная аминокислота	+	49					16 - 34
Метионин сульфоксид (MetSO4) Продукт окисления метионина		0.9					0.5 - 5.0
Цистатионин (Cys) Серосодержащая аминокислота		0.33					0.07 - 0.55
Таурин (Tau) Заменимая глюкогенная аминокислота		64					50 - 139
Бетаин (Bet) Продукт метаболизма холина		29					21 - 71
Холин (Chi) Компонент мембран клеток, источник ацетилхолина		10.9					5.2 - 13.0
Триметиламин-N-оксид (ТМАО) Продукт метаболизма холина, бетаина и др. бактериями ЖКТ	+	12.1					< 6.2
Индекс Chl / Bet Соотношение холина к бетаину		2.8					2.6 - 7.7

2. Метаболизм триптофана

Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
62		40 - 91
+ 4.6		< 4.4
0.075		0.018 - 0.101
0.01		0.0049 - 1.1158
	62 + 4.6 0.075	62 + 4.6 0.075

3-Гидроксиантраниловая кислота

Продукт метаболизма антраниловой кислоты

 0.1
 0.04 - 0.30

 кислоты
 0.0035 - 0.7642

12

Хинолиновая кислота (Qnl) Продукт метаболизма 3-гидроксиантраниловой кислоты

Результаты данного отчета не являются диагнозом и должны быть интерпретированы лечащим врачом на основании клинико-лабораторных данных и других диагностических исследований.

Дата: 21.07.2023 MetaboScan-Test01 Metabo**SCAN** Пациент: Иванов Иван Иванович Референсные значения, 60% 80% 40% Кинурениновый путь Результат мкмоль/л Ксантуреновая кислота (Xnt) 0.008 0.002 - 0.037 Продукт метаболизма кинуренина Кинурениновая кислота (Купа) 0.098 0.032 - 0.167 Продукт метаболизма кинуренина Индекс Kyn / Qnl 1.66 0.44 - 5.00Соотношение кинуренина к хинолиновой кислоте Референсные значения, 20% 40% 60% Результат Серотониновый путь мкмоль/л Серотонин 0.57 0.18 - 1.18Нейромедиатор 5-Гидроксииндолуксусная кислота (5-НІАА) 0.36 0.04 - 0.30Метаболит серотонина Индекс Qnl / 5-HIAA 0.2 0.1 - 1.1Соотношение 5-гидроксииндолуксусной кислоты к хинолиновой кислота 5-Гидрокситриптофан (5-НТР) 0.018 0.0153 - 0.0207 Прекурсор серотонина Референсные значения, Индоловый путь Результат мкмоль/л 3-Индолуксусная кислота (I3A) 2.67 0.3 - 23Продукт катаболизма триптофана кишечной микробиотой 3-Индолмолочная кислота (I3L) Продукт катаболизма триптофана кишечной микробиотой 1.95 0.08 - 5.03-Индолкарбоксальдегид (I3AI) Продукт катаболизма триптофана кишечной микробиотой 0.095 0.01 - 0.203-Индолпропионовая кислота (I3P) Продукт катаболизма триптофана кишечной микробиотой 0.61 0.5 - 12.03-Индолмасляная кислота (I3B) 0.04 0.001 - 0.400 Продукт катаболизма триптофана кишечной микробиотой Триптамин 0.0 < 0.003 Продукт катаболизма триптофана кишечной микробиотой, прекурсор для нейромедиаторов 5-Метокситриптамин 0.148 0.048 - 0.230 Производное триптамина

3. Метаболизм аргинина

Метаболизм аргинина	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Пролин (Pro) Заменимая глюкогенная аминокислота	270		104 - 383
Гидроксипролин (Нур) Источник коллагена	30.4		4.7 - 35.2

/3

Дата: 21.07.2023

MetaboScan-Test01

циент: Иванов Иван Иванович			Merano
Метаболизм аргинина	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Асимметричный диметиларгинин (ADMA) Эндогенный ингибитор синтазы оксида азота	+ 0.84		0.23 - 0.50
Симметричный диметиларгинин (SDMA) Продукт метаболизма аргинина, выводится с почками	+ 1.32		0.20 - 0.67
Гомоаргинин Субстрат для синтазы оксида азота	+ 6.7		1.0 - 6.0
Аргинин Незаменимая глюкогенная аминокислота	+ 132		= 32 - 120
Цитруллин (Cit) Метаболит цикла мочевины	+ 55		16 - 51
Орнитин (Orn) Метаболит цикла мочевины	124		= 38 - 130
Аспарагин (Asn) Заменимая глюкогенная аминокислота	+ 312		- 29.5 - 84.5
Аспарагиновая кислота (Asp) Заменимая глюкогенная аминокислота	20.2		= 5.4 - 21.5
Индекс GABR [Arg / (Orn + Cit)] Общая биодоступность аргинина	0.74		0.2 - 1.2
Индекс AOR [Arg / Orn] Показывает активность аргиназы	1.1		0.2 - 1.5
Индекс Asn / Asp Показывает активность аспарагинсинтетазы	15.4		= < 26.0
Креатинин Продукт метаболизма аргинина	44		13 - 57
			1

4. Метаболизм жирных кислот							
Метаболизм ацилкарнитинов	Рез	ультат	20%	40%	60%	80%	Референсные значения, мкмоль/л
Аланин Заменимая глюкогенная аминокислота	+	664					209 - 516
Карнитин (СО) Основа для ацилкарнитинов, транспорт жирных кислот	+	67					19 - 48

14

|5

Metabo**SCAN**

Дата: 21.07.2023

MetaboScan-Test01

Пациент: Иванов Иван Иванович

Длинноцепочечные ацилкарнитины	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Гексадецениолкарнитин (С16-1)	0.019		< 0.1
Гидроксигексадецениолкарнитин (С16-1-ОН)	0.02		< 0.1
Гидроксигексадеканоилкарнитин (С16-ОН)	0.005		< 0.02
Стеароилкарнитин (С18)	0.026		0.03 - 0.13
Олеоилкарнитин (С18-1)	0.22		0.07 - 0.51
Гидроксиоктадеценоилкарнитин (C18-1-OH)	0.002		< 0.32
Линолеоилкарнитин (С18-2)	0.073		0.02 - 0.26
Гидроксиоктадеканоилкарнитин (С18-ОН)	0.006		0.3 - 2.3

4. Метаболизм жирных кислот Референсные значения, 80% Витамины и нейромедиаторы Результат мкмоль/л Пантотеновая кислота 0.30 - 1.80 0.23 Витамин В5 Рибофлавин 0.036 6.2 - 39.0Витамин В2 Биотин 0.0 Витамин Н (В7) < 0.00123 Мелатонин 0.012 0.0002 - 0.0204 Регулирует циркадные ритмы

Нуклеозиды	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Уридин	0.814		0.23 - 2.58
Инозин	0.14		0.13 - 0.27
Аллергия и стресс	Результат	20% 40% 60% 80%	Референсные значения, мкмоль/л
Кортизол	0.3		0.1 - 0.5
Гистамин	0.012		0.0018 - 0.1329

/6