

Raport z badania termowizyjnego budynku mieszkalnego Zlokalizowanego

Pomiary wykonał i raport sporządził: mgr inż. Wojciech Witkiewicz

Firma BUDUJĘ DOMY PASYWNE - NIEMCZ ul. Leśnego Runa 6 04.02.2013

Spis treści

1 Zleceniodawca

2 Adres objektu

Budynek mieszkalny wykonany w latach 2012/2013

Konstrukcja

główna drewniana ryglowo-słupowa, dach pokryty gontem bitumicznym, okna z PCW 2 komorowe, wentylacja mechaniczna wymuszona (okna z nawiewnikami AERECO).

Budynek jest zwartą kompozycją dwóch brył - korpusu głównego mieszkalnego z poddaszem użytkowym przykrytego dachem dwuspadowym oraz parterowej części gospodarczej przykrytej dachem płaskim nad garażem i kotłownią.

Z uwagi na lokalizację na terenach zalewowych, wykonano fundament słupowy (budynek stoi na słupach około 1 m ponad poziomem terenu). Powierzchnia netto budynku wynosi 128 m².

3 Podstawa formalna opracowania

Podstawą opracowania jest umowa zawarta pomiędzy Inwestorem oraz firmą **Buduję Domy Pasywne** z siedzibą w Niemczu przy ul. Leśnego Runa 6.

4 Cel badania

Ocena jakości wykonania przegród zewnętrznych budynku obejmująca:

- badanie przegród zewnętrznych,
- badanie poprawności osadzenia okien i drzwi zewnętrznych,
- badanie poprawności montażu izolacji ALUFOX,
- badanie szczelności podłogi "zawieszonej" nad otaczającym terenem .

5 Zakres opracowania

Opracowanie sporządzono zgodnie z zaleceniami normy "PN-EN 13187 Właściwości cieplne budynków - Jakościowa detekcja wad cieplnych w obudowie budynku - metoda podczerwieni." W zakres opracowania wchodzi ocena stanu izolacyjności cieplnej przegród zewnętrznych budynku ze wskazaniem nieprawidłowości oraz podaniem ich prawdopodobnych przyczyn.

6 Wykorzystane dokumenty oraz dane źródłowe:

- opis techniczny budynku,
- uwagi zleceniodawcy,
- wizja lokalna z dnia 04.02.2013 roku (badanie termowizyjne),
- norma "PN-EN 13187 Właściwości cieplne budynków Jakościowa detekcja wad cieplnych w obudowie budynku - metoda podczerwieni."

7 Badanie termowizyjne

Badanie termowizyjne zostało przeprowadzone zgodnie z zaleceniami normy "PN-EN 13187 Właściwości cieplne budynków - Jakościowa detekcja wad cieplnych w obudowie budynku - metoda podczerwieni." dnia 04 lutego 2013 roku, kamerą termowizyjną firmy FLIR typu B400, numer seryjny 402003131.

Badanie wykonano w godzinach 18:30 – 20.00. Podczas wykonywania pomiarów temperatura powietrza zewnętrznego wynosiła +3°C. Wewnątrz budynku panowała temperatura 23°C. W ciągu 24 godzin poprzedzających badanie odnotowano temperaturę minimalną -1°C oraz maksymalną +5°C. Dnia 04 lutego wystąpiły przelotne opady śniegu z deszczem. Dzień był pochmurny bez promieniowania słonecznego (niebo niewidoczne -10' chmur pietra niskiego). Wpływ promieniowania słonecznego na temperaturę powierzchni budynku w momencie wykonywania badania można pominąć. Wiatr miejscami porywisty północno zachodni o prędkości 2-7 km/h.

8 Wyniki badania

Przeprowadzone badania wykazały wysoką jakość prac wykończeniowych oraz równomierność wykonania warstwy elewacyjnej na której nie stwierdzono znaczących mostków punktowych i liniowych. Wskazano wszystkie miejsca wymagające poprawy lub doszczelnienia:

- Okna osadzone bez bloków pod-parapetowych należy doszczelnić w obrębie dolnej płaszczyzny specjalną taśmą uszczelniającą np. TREMCO ILLBRUCK,
- Naprawić uszkodzona elewacje od strony frontowej.
- Doszczelnić taśmami uszczelniającymi miejsca styku konstrukcji drewnianej z podłogą i z powierzchnią dachu,
- Doszczelnić miejsca styku konstrukcji drewnianej ze ścianami,
- Wyregulować zamontowane okna i drzwi wejściowe na zawiasach i na uszczelkach,
- W przypadku takiej możliwości docieplić miejsca mocowania foli paroizolacyjnej na ścianach zewnętrznych i na połaci dachowej,
- Wyregulować działanie nawiewników i układu wentylacji,
- Uzupełniająco wykonać test szczelności BLOWER DOOR.

Opracował -mgr inż. Wojciech Witkiewicz

Fragment elewacji zewnętrznej

Termogram pokazuje typowe liniowe mostki termiczne zlokalizowane na obwodzie otworów okiennych. Dla porównania zaznaczono obszar Ar1 charakteryzujący się równomierną temperaturą zbliżoną do temperatury otoczenia, co świadczy o

prawidłowym wykonaniu warstwy elewacyjnej.

Punkt pomiarowy	Temperatura [°C]
Ar1	+1,7 do +2,4 °C
Li1	+4,1 do 5,2 °C
Li2	+3,9 do 4,7 °C

Termogram 2

Fragment elewacji zewnętrznej

Termogram pokazuje typowe liniowe mostki termiczne zlokalizowane na obwodzie otworów okiennych. Dla porównania zaznaczono obszar Ar1 charakteryzujący się równomierną temperaturą zbliżoną do temperatury otoczenia, co świadczy o prawidłowym wykonaniu warstwy elewacyjnej.

Punkt pomiarowy	Temperatura [°C]
Ar1	+1,6 do +2,1 °C
Li1	+4,8 do 5,8 °C
Li2	+5,8 do 6,3 °C

Fragment elewacji zewnętrznej

Termogram pokazuje punkt ucieczki ciepła w szczycie budynku (Sp1) oraz liniowe mostki termiczne zlokalizowane wzdłuż krokwi .

Termogram 4 Pomieszczenie mieszkalne

Przy temperaturze wewnętrznej sięgającej 23'C pokazano miejsca ucieczki ciepła w narożu budynku (Sp1 i Sp2) oraz po obwodzie drzwi balkonowych (Sp3 i Sp4). Punkty widoczne wzdłuż drzwi balkonowych prawdopodobnie pokazują nieprawidłowy

Sp4

Fragment elewacji frontowej (od wewnątrz)

Termogram pokazuje mostki termiczne związane z konstrukcją drzwi wejściowych. Punkty Sp1 i Sp2 pokazują miejsce osadzenia drzwi na zawiasach. Linia Li1 pokazuje mostek termiczny liniowy powstały w miejscu nieszczelnej uszczelki obwodowej

Termogram 8 Połączenie ściany zewnętrznej z podłogą

+16,5 do 17,9 °C

Termogram pokazuje liniowe i obszarowe mostki termiczne powstałe z powodu nieszczelnego połączenia ściany zewnętrznej z podłogą.

Li1

Punkt pomiarowy	Temperatura [°C]
Ar1	+12,3 do +17,0 °C
Ar2	+15,4 do 17,3 °C
Li1	+16,0 do 22,1 °C

Termogram 7 Nawiewnik okienny Termogram pokazuje strumień zimnego powietrza zewnętrznego napływający przez otwarty nawiewnik okienny. 23.4 °C Punkt pomiarowy Punkt pomiarowy Ar1 +10,4 do +23,4 °C Li1 +4,8 do 5,8 °C

+5,8 do 6,3 °C

Termogram 8 Prawidłowe osadzenie okna

Li2

Termogram pokazuje prawidłowo osadzone okno przy zastosowaniu bloku podparapetowego firmy TREMCO ILLBRUCK. Zastosowanie ciepłego parapetu wyeliminowało największy mostek termiczny po obwodzie okna i spowodowało ograniczenie miejsc ucieczki ciepła do połączeń pomiędzy wamą okienną i wkładem szybowym.

Nieprawidłowe osadzenie okna

Zaznaczony obszar Ar1 pokazuje "schłodzenie" parapetu wewnętrznego związane z osadzeniem okna bez zastosowania bloku pod-parapetowego.

Punkt pomiarowy	Temperatura [°C]
Ar1	+13,7 do +21,2 °C

Termogram 11

Elementy szkieletu drewnianego

Termogram pokazuje mostki termiczne powstałe na styku szkieletu drewnianego z wypełnieniem ścian kostkami słomianymi. Punktowe mostki cieplne wskazują błędne zamocowanie folii za pomocą łączników mechanicznych (gwoździ, zszywek). Takie połączenia powodują rozszczelnienie warstwy folii i możliwość zawilgocenia ścian.

Punkt pomiarowy	Temperatura [°C]
Li1	+22,6 do +23,5 °C
Li2	+22,6 do 23,0 °C
Li3	+23,2 do 23,7 °C

Elementy szkieletu drewnianego

Termogram pokazuje mostki powstałe na połączeniach szkieletu drewnianego z elementami wypełnienia ścian. Miejsca te powinny być doszczelnione specjalną taśmą izolacyjną.

Punkt pomiarowy	Temperatura [°C]
Sp1	+22,3 °C
Sp2	+22,5 °C
Sp3	+22,7 °C

Termogram 13

Więźba dachowa

Na termogramie pokazano mostki liniowe powstałe w wyniku nieprawidłowego montażu folii paroizolacyjnej do krokwi dachowych.

Punkt pomiarowy	Temperatura [°C]
Sp1	+22,2 °C
Sp2	+22,7 °C
Sp3	+22,2 °C
Li1	+22,4 do +23,4 °C
Li2	+22,4 do +23,5 °C

Przyłącza wod-kan

Na termogramie pokazano miejsce przejścia przyłącza wodociągowego i głównego pionu kanalizacyjnego przez warstwę podłogi. Miejsca te powinny być w specjalny sposób doszczelnione np. przez zastosowanie kołnierzy uszczelniających.

Punkt pomiarowy	Temperatura [°C]
Ar1	+3,0 do +6,5 °C

Termogram 20

Elewacja - strona frontowa

Na termogramie pokazano mostki punktowe powstałe w miejscach nieszczelności

zewnętrznej warstwy elewacyjnej (siding).

	Punkt pomiarowy	Temperatura [°C]
	Sp1	+5,8 °C
ĺ	Sp2	+10,8 °C

Zewnętrzna warstwa podłogi

Na termogramie pokazano mostki punktowe powstałe w miejscach niedokładnego

ułożenia izolacji podłogi budynku.

Punkt pomiarowy	Temperatura [°C]
Sp1	+10,4 °C
Sp2	+13,7 °C

Termogram 22

Elewacja boczna

Na termogramie pokazano miejsca ucieczki ciepła na elewacji bocznej, są one związane zarówno z konstrukcją i montażem okien (Li1) jak i z niedokładnością wykonania elewacji (Sp3,Sp4,Sp5) oraz nieszczelnościami na stykach ścian i dachu (Sp1,Sp2,Sp6).

Punkt pomiarowy	Temperatura [°C]
Sp1	+4,9 °C
Sp2	+4,7 °C
Sp3	+5,3 °C
Sp4	+7,7 °C
Sp5	+6,1 °C
Sp6	+4,6 °C
Li1	+5,1 do +6,1°C

