■ MLflow and DagsHub

MLflow is an open-source platform for managing the ML lifecycle, including experimentation, reproducibility, and deployment.

Key Components

Component	Description
Tracking	Logs parameters, metrics, artifacts, and models during experiments.
Projects	Packaging format for reproducible runs using MLproject file.
Models	Standard format for packaging ML models for diverse deployment tools.
Registry	Central hub for managing model lifecycle (staging, production, archiving).

MLflow Tracking Basics

```
import mlflow
with mlflow.start_run():
    mlflow.log_param("learning_rate", 0.01)
    mlflow.log_metric("rmse", 0.78)
    mlflow.log_artifact("model.pkl")
```

Artifacts can be model files, plots, or other outputs.

MLflow UI

• Launch via: mlflow ui

• Default at: http://localhost:5000

MLflow Project Structure

```
# MLproject
```

name: MyProject

conda_env: conda.yaml

```
entry_points:
 main:
    parameters:
      alpha: {type: float, default: 0.5}
    command: "python train.py --alpha {alpha}"
```

MLflow Model Registry Lifecycle

- 1. Register a model version
- 2. Assign Stages: Staging, Production, Archived
- 3. Track model metadata and transitions

DagsHub

DagsHub is a web-based platform built on top of Git, DVC, and MLflow for collaborative ML development and reproducible research.

Key Features

Feature	Description
Git & DVC	Version control for code and data via Git and DVC.
MLflow UI	Integrated MLflow tracking dashboard.
Data Lineage	Track changes and connections across code, models, and datasets.
Experiment Comparison	Visual diff of runs, metrics, parameters.

🔧 Basic Setup with DagsHub

1. Initialize Git + DVC

```
git init
dvc init
dvc remote add origin https://dagshub.com/<user>/<repo>.dvc
```

2. Add and Push Data

dvc add data/train.csv

```
git add data/train.csv.dvc .gitignore
git commit -m "Add training data"
dvc push
```

3. Integrate MLflow

Set tracking URI:

mlflow.set_tracking_uri("https://dagshub.com/<user>/<repo>.mlflow")

Set DagsHub credentials:

export MLFLOW_TRACKING_USERNAME=<your_username>
export MLFLOW_TRACKING_PASSWORD=<your_token>

When to Use MLflow + DagsHub Together

Scenario	Tool(s)
Experiment tracking	MLflow
Model versioning & registry	MLflow Registry
Data and model version control	DVC (via DagsHub)
Team collaboration & review	DagsHub UI

📌 Tips

- Use **MLflow Autologging** for quick integration with libraries like sklearn, keras, etc.
- Use **DVC pipelines** to version and automate ML workflows.
- DagsHub is ideal for open-source and team projects needing version control + tracking.

BentoML is an open-source framework for building, packaging, and deploying machine learning models as scalable APIs or services.

Feature	Benefit
Easy API serving	Turn ML models into REST/gRPC APIs in minutes
Model packaging	Version-controlled and reproducible model storage
Multiple framework support	Works with sklearn, xgboost, transformers, PyTorch, etc.
Deployment ready	Supports Docker, Kubernetes, AWS Lambda, and more

BentoML Workflow

1. Model Training (anywhere)

Train your model using your preferred framework.

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier().fit(X_train, y_train)
```

2. Save Model using BentoML

```
import bentoml
bentoml.sklearn.save_model("rf_classifier", model)
```

This saves the model along with metadata and dependencies.

3. Define a Service

Create a file like service.py:

```
# service.py
```

```
import bentoml
from bentoml.io import NumpyNdarray

model_ref = bentoml.sklearn.get("rf_classifier:latest")
model_runner = model_ref.to_runner()

svc = bentoml.Service("rf_service", runners=[model_runner])
@svc.api(input=NumpyNdarray(), output=NumpyNdarray())
async def predict(input_data):
    return await model_runner.predict.async_run(input_data)
```

4. Run the Service Locally

bentoml serve service:svc

Runs the service at http://localhost:3000

5. Build a Bento (package)

bentoml build

Creates a .bento package in the bentos/ directory.

6. Containerize and Deploy

Docker

bentoml containerize rf_service:latest

DVC is an open-source tool for **data versioning**, **experiment tracking**, and **reproducible ML pipelines**. It works alongside Git.

New Section 4 New York Why Use DVC?

Feature	Purpose
Version control for data	Like Git, but for large data files
Reproducible pipelines	Track data + code + metrics together
Remote storage	Store datasets/models in cloud/local remotes
Team collaboration	Share data without bloating the Git repo

Core Workflow

1. Initialize DVC in a Git repo

git init dvc init

2. Track a dataset or model

```
dvc add data/train.csv
git add data/train.csv.dvc .gitignore
git commit -m "Add training data with DVC"
```

3. Push data to remote storage

```
dvc remote add -d myremote <remote-url>
dvc push
```

Supports S3, GCS, Azure, SSH, etc.

4. Pull data

dvc pull

Downloads data from remote storage (e.g., in CI or on a teammate's machine).