华东师范大学数据科学与工程学院上机实践报告

课程名称: 算法设计与分析 年级: 22级 上机实践成绩:

指导教师: 金澈清 姓名: 唐健峰

上机实践名称: 散列表 学号10225501408 上机实践日期:

上机实践编号: No.7 组号: 408

一、目的

1. 熟悉散列表的基本思想。

2. 掌握各种散列表的实现方法。

二、实验内容

- 1. 设计一个数据生成器,输入参数为 N;可以生成N个不重复的随机键或键值对。设计一个操作生成器,输入参数为N', method;可以生成N'组操作method。操作包括插入和查询。
- 基于开放寻址法实现哈希表及其插入和查询操作,选择合适的数据规模,计算在不同表的大小和不同已占用数量下的所需时间。
- 3. 以顺序访问的方式实现插入和查询。选择合适的数据规模,计算在不同表的大小和 不同已占用数量下的所需的时间。
- 4. 对比散列表(哈希表)和顺序访问。
- 5. (思考题)探究不同散列函数对散列表性能的影响。

三、使用环境

推荐使用C/C++集成编译环境。

四. 实验过程

- 1. 写出数据生成器和两种算法的源代码。
- 2. 以合适的图表来表示你的实验数据。

#define RANGE 1000000 // 数字范围

#define HASH 100003 // 数组长度,即hash值

#define CIRCLE 5 // 循环取平均值

	10个数	100个数	1000个数	10000个数	100000个数
循序表	1.0815ms	15.3128ms	160.79ms	1825.25ms	32445.3ms
哈希表	0.0631ms	0.41887ms	3.74372ms	35.1656ms	354.859ms

#define RANGE 100000 // 数字范围 #define HASH 10003 // 数组长度,即hash值 #define CIRCLE 5~100 // 循环取平均值

令变量为产生的数量

	10个数	100个数	1000个数	10000个数
循序表	0.18669ms	2.13432ms	19.3807ms	455.535ms
哈希表	0.04596ms	0.28457ms	3.36533ms	34.5538ms

#define RANGE 10000 // 数字范围
#define HASH 1003 // 数组长度,即hash值
#define CIRCLE 5~1000 // 循环取平均值

	10个数	100个数	1000个数
循序表	0.0894ms	0.6322ms	5.605ms
哈希表	0.0764ms	0.4804ms	3.0994ms

五、总结

对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。

在储存数字较小规模下,二者差异不是很明显,但随着数据储存的规模变大,哈希表明显比循序表好用,因为循序表会遍历整个数组直到找到元素,而哈希表可以提前算出数据大体范围,要改进的话我的方法是设计不同的哈希算法针对不同数据,采用更好的哈希算法之类的。