MTH 101-Calculus

Spring-2021

Assignment-9:Functions of several variables (Continuity and Differentiability

1. Identify the points, if any, where the following functions fail to be continuous:

(i)
$$f(x,y) = \begin{cases} xy & \text{if } xy \ge 0 \\ -xy & \text{if } xy < 0 \end{cases}$$
 (ii) $f(x,y) = \begin{cases} xy & \text{if } xy \text{ is rationnal} \\ -xy & \text{if } xy \text{ is irrational.} \end{cases}$

2. Consider the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2y^2 + (x-y)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if}(x,y) = (0,0) \end{cases}$$

Show that the function satisfy the following:

- (a) The iterated limits $\lim_{x \to 0} \left[\lim_{y \to 0} f(x, y) \right]$ and $\lim_{y \to 0} \left[\lim_{x \to 0} f(x, y) \right]$ exist and equals 0;
- (b) $\lim_{(x,y)\longrightarrow(0,0)} f(x,y)$ does not exist;
- (c) f(x,y) is not continuous at (0,0);
- (d) the partial derivatives exist at (0,0).
- 3. Let $f(x,y) = (x^2+y^2)\sin\frac{1}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and 0, otherwise. Show that f is differentiable at every point of \mathbb{R}^2 but the partial derivatives are not continuous at (0,0).
- 4. Let f(x,y) = |xy| for all $(x,y) \in \mathbb{R}^2$. Show that
 - (a) f is differentiable at (0,0.)
 - (b) $f_x(0, y_0)$ does not exist if $y_0 \neq 0$.
- 5. Suppose f is a function with $f_x(x,y) = f_y(x,y) = 0$ for all (x,y). Then show that f(x,y) = c, a constant.