

INTRODUCTION TO DISCRETE STRUCTURES

14 Boolean Algebra

1.1-1.2

@2021 A.D. Gunawardena

DO NOT SHARE

14.1 B

INTRODUCTION TO DISCRETE STRUCTURES

14.1 Boolean Algebra

- Boolean Functions
- Representations
- Logic Gates*
- Minimization of Circuits*

Boolean Algebra

Boolean algebra are rules for working with the Boolean numbers {0,1}

The operators on the Boolean numbers

Boolean sum (+)

Boolean Product (.)

Complement (bar ~)

+	0	1
0	0	1
1	1	1

•	0	1
0	0	0
1	0	1

-	0	1
	1	0

Slide Credits: Rosen Textbook

Examples

• Find the value of $1 \cdot 0 + \overline{(0+1)}$

• Find the value of $(1+0) + \overline{(0.1)}$

Boolean Expressions and Functions

Definition: Let $B = \{0, 1\}$. Then $B^n = \{(x_1, x_2, ..., x_n) \mid x_i \in B \text{ for } 1 \le i \le n \}$ is the set of all possible n-tuples of 0s and 1s.

Question. How many tuples exists, if n = 3?

The variable x is called a *Boolean variable* if it assumes values only from B, that is, if its only possible values are 0 and 1. A function from B^n to B is called a *Boolean function of degree n*.

Example: The function F(x, y) = x from the set of ordered pairs of Boolean variables to the set $\{0, 1\}$ is a Boolean function of degree 2.

TABLE 1						
x	у	F(x, y)				
1	1	1				
1	0	0				
0	1	0				
0	0	1				

Slide Credits: Rosen Textbook

Boolean Expressions and Boolean Functions (continued)

Exercise: Find the values of the Boolean function represented by $F(x, y, z) = xy + \bar{z}$.

TABI	TABLE 2								
x	у	z	хy	\overline{z}	$F(x, y, z) = xy + \overline{z}$				
1	1	1	1	0					
1	1	0	1	1					
1	0	1	0	0					
1	0	0	0	1					
0	1	1	0	0					
0	1	0	0	1					
0	0	1	0	0					
0	0	0	0	1					

Slide Credits: Rosen Textbook

Equality of Boolean Functions

Definition: Boolean functions F and G of n variables are equal if and only if

$$F(b_1, b_2, ..., b_n) = G(b_1, b_2, ..., b_n)$$

whenever b_1 , b_2 , ..., b_n belong to B.

Two different Boolean expressions that represent the same function are equivalent.

DO NOT SHARE

Complement of a Boolean function

Definition: The complement of the Boolean function F is the function \overline{F} ,

where
$$\overline{F}(x_1, x_2, ..., x_n) = \overline{F(x_1, x_2, ..., x_n)}$$
.

Exercise. Find the complement of $F(x, y) = (x \cdot y) + \overline{(x + y)}$

Slide Credits: Rosen Textbool

Boolean Sum and Boolean Product of Functions

Definition: Let F and G be Boolean functions of degree n.

The Boolean sum F + G and the are defined by

$$(F + G)(x_1, x_2, ..., x_n) = F(x_1, x_2, ..., x_n) + G(x_1, x_2, ..., x_n)$$

Boolean product FG is defined by

$$(FG)(x_1, x_2, ..., x_n) = F(x_1, x_2, ..., x_n)G(x_1, x_2, ..., x_n)$$

Question. How many different Boolean functions of degree n exists?

TA	TABLE 3 The 16 Boolean Functions of Degree Two.																
х	у	F_1	F_2	F ₃	F_4	F_5	F_6	<i>F</i> ₇	F ₈	F9	F_{10}	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅	F ₁₆
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

Slide Credits: Rosen Textbook

Workshop

How many Boolean functions of degree 3 exists?

Write three of those functions

Boolean Identities

TABLE 5 Boolean Identities.					
Identity	Name				
$\overline{\overline{x}} = x$	Law of the double complement				
$x + x = x$ $x \cdot x = x$	Idempotent laws				
$x + 0 = x$ $x \cdot 1 = x$	Identity laws				
$x + 1 = 1$ $x \cdot 0 = 0$	Domination laws				
x + y = y + x $xy = yx$	Commutative laws				
x + (y + z) = (x + y) + z $x(yz) = (xy)z$	Associative laws				
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws				
$\overline{(xy)} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \ \overline{y}$	De Morgan's laws				
x + xy = x $x(x + y) = x$	Absorption laws				
$x + \overline{x} = 1$	Unit property				
$x\overline{x} = 0$	Zero property				

Slide Credits: Rosen Textbook

DO NOT SHARE

Duality of Boolean Expressions

The dual of a Boolean expression is obtained by interchanging + and . and interchanging 0 and 1

E.g. Consider the identity x + 1 = 1 its dual is x.0 = 0

Exercise. Find the dual of x + xy = x

Workshop

Prove that absorption law : x + xy = x is true

x	У	x + xy	x	

Formal Definition of Boolean Algebra

Definition: A *Boolean algebra* is a set *B* with two binary operations \vee and \wedge , elements 0 and 1, and a unary operation $\bar{}$ such that for all x, y, and z in B:

xV	0	= x	
хΛ	1	= x	

identity laws

$$\begin{array}{c} x \lor \ \bar{x} = 1 \\ x \land \ \bar{x} = 0 \end{array}$$

complement laws

$$(x \lor y) \lor z = x \lor (y \lor z)$$

 $(x \land y) \land z = x \land (y \land z)$

associative laws

$$x \lor y = y \lor x$$
$$x \land y = y \land x$$

commutative laws

$$x \lor (y \land z) = (x \lor y) \land (y \lor z)$$

 $x \land (y \lor z) = (x \land y) \lor (y \land z)$

distributive laws

INTRODUCTION TO DISCRETE STRUCTURES

14.1 Boolean Algebra

- Boolean Functions
- Representations
- Logic Gates*
- Minimization of Circuits*

Sum-of-Products Expansion

Definition: A *literal* is a Boolean variable or its complement. A *minterm* of the Boolean variables $x_1, x_2, ..., x_n$ is a Boolean product $y_1y_2 \cdots y_n$, where $y_i = x_i$ or $y_i = \overline{x_i}$. Hence, a minterm is a product of n literals, with one literal for each variable.

The minterm $y_1y_2...y_n$ has value has value 1 if and only if each x_i is 1.

This occurs if and only if $x_i = 1$ when $y_i = x_i$ and $x_i = 0$ when $y_i = \overline{x}_i$.

Example. The minterm $xy\overline{z} = 1$ if and only if x = y = z = z

Definition: The sum of minterms that represents the function is called the *sum-of-products* expansion or the disjunctive normal form of the Boolean function.

DO NOT SHARE

Sum-of-Products Expansion

Example: Find Boolean expressions that represent the functions

(i)
$$F(x, y)$$

(ii) G(x, y, z)

TABLE 1								
x	у	z	F	G				
1	1	1	0	0				
1	1	0	0	1				
1	0	1	1	0				
1	0	0	0	0				
0	1	1	0	0				
0	1	0	0	1				
0	0	1	0	0				
0	0	0	0	0				

Slide Credits: Rosen Textbook

Workshop

Find the sum-of-products expansion of the Boolean function F(x,y,z) = x + y + z using a table

Sum-of-Products Expansion

Find the sum-of-products expansion of the Boolean function F(x,y,z) = x.(y + z) using Boolean identities

TABLE 5 Boolean Identities.					
Identity	Name				
$\overline{\overline{x}} = x$	Law of the double complement				
$x + x = x$ $x \cdot x = x$	Idempotent laws				
$x + 0 = x$ $x \cdot 1 = x$	Identity laws				
$x + 1 = 1$ $x \cdot 0 = 0$	Domination laws				
x + y = y + x $xy = yx$	Commutative laws				
x + (y + z) = (x + y) + z $x(yz) = (xy)z$	Associative laws				
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws				
$\overline{(xy)} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \overline{y}$	De Morgan's laws				
x + xy = x $x(x + y) = x$	Absorption laws				
$x + \overline{x} = 1$	Unit property				
$x\overline{x} = 0$	Zero property				

Slide Credits: Rosen Textbook

Example

Find the sum-of-products expansion for the function $F(x,y,z) = (x+y) \bar{z}$.

(i) Using the table

(ii) Using identities

TAB	TABLE 2									
x	у	z	x + y	\overline{z}	$(x+y)\overline{z}$					
1	1	1	1	0	0					
1	1	0	1	1	1					
1	0	1	1	0	0					
1	0	0	1	1	1					
0	1	1	1	0	0					
0	1	0	1	1	1					
0	0	1	0	0	0					
0	0	0	0	1	0					

Functional Completeness

Definition: Every Boolean function can be represented using the Boolean operators \cdot , +, and $\bar{}$, we say that the set $\{\cdot, +, \bar{}\}$ is *functionally complete*.

The set $\{\cdot, \,^-\}$ is functionally complete since $x + y = \overline{x}\overline{y}$.

The set $\{+, -\}$ is functionally complete since $xy = \overline{x} + \overline{y}$.

The *nand* operator, denoted by |, is defined by 1|1 = 0, and 1|0 = 0|1 = 0|0 = 1.

The set consisting of just the one operator nand {|} is functionally complete.

Note that $\bar{x} = x \mid x$ and xy = (x|y)|(x|y).

The *nor* operator, denoted by \downarrow , is defined by $0 \downarrow 0 = 1$, and $1 \downarrow 0 = 0 \downarrow 1 = 1 \downarrow 1 = 0$.

Prove that the set consisting of just the one operator nor $\{\downarrow\}$ is functionally complete.

Slide Credits: Rosen Textboo

INTRODUCTION TO DISCRETE STRUCTURES

14.1 Boolean Algebra

- Boolean Functions
- Representations
- Logic Gates*
- Minimization of Circuits*

Logic Gates

NOT (invertor), OR, and AND gates.

NAND, NOR, and XOR gates

Each gate is a Boolean function

Boolean Circuits

These "circuit gates" act like actual gates, in a sense

- There is a trigger that "opens" a gate periodically
- The specified operation (AND, OR, NOT, ...) then happens

In modern computers, these gates open/close a few trillion times a second, giving us GHz chips.

Multiple input AND and OR gates

Boolean Circuits are not unique

A Two-way Switch

Task: Designing a two-way light switch

• Input: switches x, y, which can be on (1) or off (0)

• Output: light on/off as a Boolean function F(x, y)

Steps:

• Assume that x = 0 means switch x is off. Same for y. [different from the textbook]

• Assume when x = y = 0, F(x, y) = 0, light off.

• From here, two possibilities: x = 0, y = 1 or x = 1, y = 0, F(x, y) = 1, light on.

• From here, two possibilities: x = y = 0 or x = y = 1, light off.

• We get F(x, y) = 1 when x = 0, y = 1 or x = 1, y = 0.

• Using the sum-of-product construction, $F(x,y) = x\bar{y} + \bar{x}y$

• Circuit:

3-way Switch

Exercise. Find the circuit that is needed to design a 3-way switch

Half Adder and Full Adder

Half adder

INTRODUCTION TO DISCRETE STRUCTURES

14.1 Boolean Algebra

- Boolean Functions
- Representations
- Logic Gates*
- Minimization of Circuits*

Under construction

INTRODUCTION TO DISCRETE STRUCTURES

14.1 Boolean Algebra

- Boolean Functions
- Representations
- Logic Gates
- Minimization of Circuits

INTRODUCTION TO DISCRETE STRUCTURES

14.1 Boolean Algebra

1.1 - 1.2

@2021 A.D. Gunawardena

DO NOT SHARE