Universidade Federal De Campina Grande Departamento De Engenharia Elétrica Laboratório De Arquitetura De Sistemas Digitais – LASD Prof. Rafael B. C. Lima

Aluno:	
Matrícula:	Data:

Sprint 8 – Entrada e saída paralela – processador RISC-V

Descrição geral do problema: Incluir uma entrada e uma saída paralela mapeada em memória, de 8bits. Isso finalizará o conjunto mínimo de funcionalidades do processador.

Requisitos mínimos:

Abra o projeto da Sprint7 e edite-o para incluir as funcionalidades dessa sprint. **Obs: "File > Open Project"** e NÃO "File > Open".

- 1. Até esse momento, o processador v0.3 não tinha nenhuma forma de trocar dados com o mundo externo. Além das interfaces de debug, as únicas entradas externas da montagem eram o clock e o reset. A fim de completar a versão v1.0 do processador, inclua uma porta de entrada e uma de saída paralela, mapeada em memória.
 - O endereço 8'hFF da memória de dados será inutilizado e ressignificado para as portas de entrada e saída paralelas, mapeadas em memória.
 - Ao armazenar o conteúdo de algum registrador \$X no endereço 8'hFF da memória de dados, \$B \$X, FF(\$0), o bloco ParallelOUT redirecionará o conteúdo de \$X para a saída paralela w_DataOut. A especificação lógica do circuito de saída está ilustrada na Figura 2
 - Ao carregar o conteúdo do endereço 8'hFF da memória de dados, para um registrador \$X, LB \$X, FF(\$0), o bloco ParallelIN redirecionará o conteúdo da entrada paralela w_DataIn para o registrador \$X. A especificação lógica do circuito de saída está ilustrada na Figura 3
 - A sugestão de montagem final da CPU v1.0 está representada na Figura 1.

Perceba que não foi necessário criar mais nenhuma instrução para manipular as portas. Somente SB e LB

Figura 1 – CPU V1.0, memórias e porta de IO paralela de 8bits

Figura 2 – Saída paralela mapeada no endereço 8'hFF da memória

Figura 3 – Entrada paralela mapeada no endereço 8'hFF da memória

- 2. Ligações auxiliares para Debug:
 - Conecte a saída paralela (DataOut) no display w_d1x4,
 - Conecte a entrada paralela (DataIn) nas chaves SW[7:0]
- 3. Roteiro de testes:
 - Rode o programa da Tabela 1

```
init:
lb x1, 0xFF(x0)  #Carrega a entrada paralela no registrador 1
sb x1, 0xFF(x0)  #Salva o registrador 1 na saída paralela
beq x0, x0, init  #Reinicia o laço
```

Tabela 1 – Programa de testes A

• Escreva e rode na sua CPU, **um programa em assembly** que receba um número de 8bits na entrada paralela e calcule se ele é PAR ou ÍMPAR. Retorne, na saída paralela, **1** caso o número seja PAR e **0** caso seja ÍMPAR. Resolva esse problema por software, não é necessário nenhum hardware extra, que não tenha sido descrito previamente. Aumente o clock principal da CPU para 10Hz.

Re	lembrand	o o cor	ijunto (de ins	struções	suporta	adas pe	la CPl	J
----	----------	---------	----------	--------	----------	---------	---------	--------	---

Instrução	Descrição	Algoritmo		
ADD \$X, \$Y, \$Z	Adicionar	\$X = \$Y + \$Z		
SUB \$X, \$Y, \$Z	Subtrair	\$X = \$Y - \$Z		
AND \$X, \$Y, \$Z	AND Bit a bit	\$X = \$Y & \$Z		
OR \$X, \$Y, \$Z	OR Bit a bit	\$X = \$Y \$Z		
SLT \$X, \$Y, \$Z	Menor que	\$X = 1 se \$Y < \$Z e 0 c.c.		
LB \$X, i(\$Y)	Carregar da memória	\$X ← end[\$Y+ i]		
SB \$X, i(\$Y)	Armazenar na memória	End[\$Y+ i] ← \$X		
ADDi \$X, \$Y, i	Adicionar Imediato	\$X = \$Y + i		
BEQ \$X, \$Y, i	Desviar se igual	Se \$X == \$Y, PC = PC + i		

Tabela 2 – Conjunto de instruções RISC-V suportadas pela CPU do LASD

Desafio 1 (Valendo +0,2 na média geral)

- Escreva um código, em assembly, para gerar um sinal PWM de 8bits no pino menos significativo da saída paralela;
- Configure o *t_on* (0-255) do PWM através da entrada paralela;
- Conecte as chaves SW[7:0] na entrada paralela, um LED na saída paralela e aumente o clock do processador para 5kHz.
- Altere o valor do *t_on* e veja o brilho do LED variar!