# Алгебра Линденбаума

### Теорема

Пусть  $\alpha pprox \beta$ , если  $\alpha \vdash \beta$  и  $\beta \vdash \alpha$ . Тогда (pprox) — отношение эквивалентности.

### Доказательство.

Надо доказать, что для любых  $\alpha$ ,  $\beta$ ,  $\gamma$ :

- 1.  $\alpha \approx \alpha$  (очевидно,  $\alpha \vdash \alpha$ );
- 2.  $\alpha pprox \beta$  влечёт  $\beta pprox lpha$  (очевидно из определения);
- 3.  $\alpha \approx \beta$  и  $\beta \approx \gamma$  влечёт  $\alpha \approx \gamma$ : из посылок следует  $\alpha \vdash \beta$  и  $\beta \vdash \gamma$ , соединив доказательства, получим  $\alpha \vdash \gamma$ .

 $L/_{pprox}$  — частично-упорядоченное множество. Элементы будем обозначать [lpha].

### Теорема

 $\alpha \vdash \beta$  тогда и только тогда, когда  $[\alpha] \leq [\beta]$ .

$$\mathcal{L}$$
 — решётка.

Покажем  $[\alpha] \cdot [\beta] = [\alpha \& \beta]$ . То есть,  $[\alpha \& \beta]$  — наибольшая нижняя грань  $\alpha$  и  $\beta$ .

- (... нижняя грань)  $[\alpha \& \beta] \le [\alpha]$ : заметим, что  $\alpha \& \beta \vdash \alpha$ .
- ▶ (наибольшая ...) Если  $[\sigma] \leq [\alpha]$  и  $[\sigma] \leq [\beta]$ , то  $[\sigma] \leq [\alpha \& \beta]$ :

Рассмотрим вывод в контексте  $\sigma$ :

$$\begin{array}{lll} (1..a) & \alpha & & \text{из } [\sigma] \leq [\alpha] \\ (a+1..b) & \beta & & \text{из } [\sigma] \leq [\beta] \end{array}$$

$$(b+1)$$
  $\alpha o eta o lpha \& eta$  Cx. akc

$$(b+2)$$
  $\beta \rightarrow \alpha \& \beta$  M.P. a,  $b+1$ 

$$(b+3)$$
  $\alpha \& \beta$  M.P.  $b, b+2$ 

Отсюда  $\sigma \vdash \alpha \& \beta$ .

Утверждение  $[\alpha] + [\beta] = [\alpha \vee \beta]$  показывается аналогично.

## $\mathcal{L}$ — импликативная решётка с 0, согласованная с ИИВ

- (импликативная ...) Покажем  $[\alpha] \to [\beta] = [\alpha \to \beta]$ : в самом деле,  $[\alpha] \to [\beta] =$  наиб  $\{[\sigma] \mid [\alpha \& \sigma] \le [\beta]\}$ . Покажем требуемое двумя включениями:
  - 1.  $\alpha \& (\alpha \to \beta) \vdash \beta$  (карринг + транзитивность импликации)
  - 2. Если  $\alpha$  &  $\sigma \vdash \beta$ , то  $\sigma \vdash \alpha \to \beta$  (карринг + теорема о дедукции)
- (... с нулём ...) Покажем, что  $0 = [A \& \neg A]$ : в самом деле,  $A \& \neg A \vdash \sigma$  при любом  $\sigma$ .
- (... согласованная с ИИВ)
  - 1. Из доказательства видно, что  $[\alpha \& \beta] = [\alpha] \cdot [\beta], [\alpha \lor \beta] = [\alpha] + [\beta], [\alpha \to \beta] = [\alpha] \to [\beta], [A \& \neg A] = 0.$
  - 2. [A o A] = [A] o [A] = 1 по свойствам алгебры Гейтинга
  - 3.  $[\neg \alpha] = [\alpha \rightarrow A \& \neg A] = [\alpha] \rightarrow 0 = \sim [\alpha]$

$$\Gamma(\mathcal{L})$$
 — алгебра Гейтинга, согласованная с ИИВ.

Надо учитывать существование нового элемента  $\omega$ .

Например, импликация/псевдодополнение: [lpha] o [eta] = наиб  $\{s \mid [lpha] \cdot s \leq [eta]\}.$ 

- lacktriangle (... нижняя грань)  $[lpha]\cdot [lpha oeta]\leq [eta]$  аналогично случаю для  ${\mathcal L}$
- ▶ (наибольшая ...) Если  $[\alpha] \cdot s \leq [\beta]$ , то
  - $ightharpoonup s = [\sigma]$ , то есть  $s \neq \omega$  аналогично случаю для  $\mathcal{L}$ ;
  - lacktriangleright  $s=\omega$ , тогда  $[lpha]\cdot\omega\leq [eta]$ . Но  $[lpha]
    eq\omega$  либо  $[lpha]<\omega$ , либо [lpha]=1. В обоих случаях  $[lpha]\cdot 1\leq [eta]$ . Отсюда s не наибольший.

Исчисление предикатов

### Ограничения языка исчисления высказываний

$$\frac{{\sf Kаждый}\ {\sf человек}\ {\sf смертен}\ {\sf Сократ}\ {\sf есть}\ {\sf человек}\ {\sf Сократ}\ {\sf смертен}\ }{{\sf Сократ}\ {\sf смертен}}$$

Цель: увеличить формализованную часть метаязыка.

Мы неформально знакомы с предикатами  $(P:D \to V)$  и кванторами  $(\forall x. H(x) \to S(x)).$ 

$$\frac{\forall x. H(x) \to S(x) \qquad H(\mathsf{Cokpat})}{S(\mathsf{Cokpat})}$$

# Начнём с примера

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
  - 1.1 Предметные переменные (x).
  - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
  - 1.3 Нульместные функциональные символы «ноль» (0) и «один» (1).
- 2. Логические выражения
  - 2.1 Предикатные символы «равно» и «больше»

## Язык исчисления предикатов

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная  $\theta$ .
  - ightharpoonup Предметные переменные:  $a, b, c, \ldots$ , метапеременные x, y.
  - ightharpoonup Функциональные выражения:  $f(\theta_1, \ldots, \theta_n)$ , метапеременные  $f, g, \ldots$
  - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные  $\alpha$ ,  $\beta$ ,  $\gamma$ , ...
  - ightharpoonup Предикатные выражения:  $P(\theta_1, \dots, \theta_n)$ , метапеременная P.
    - Имена: *А. В. С.* . . .
  - $\blacktriangleright$  Связки:  $(\varphi \lor \psi)$ .  $(\varphi \& \psi)$ .  $(\varphi \to \psi)$ .  $(\neg \varphi)$ .
  - ► Кванторы:  $(\forall x. \varphi)$  и  $(\exists x. \varphi)$ .

# Сокращения записи, метаязык

- 1. Метапеременные:
  - $ightharpoonup \psi, \phi, \pi, \ldots$  формулы
  - ▶ P, Q, . . . предикатные символы
  - **▶** *θ*, . . . термы
  - $ightharpoonup f, g, \ldots$  функциональные символы
  - ightharpoonup x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

- 3. Дополнительные обозначения при необходимости:
  - $\blacktriangleright$   $(\theta_1 = \theta_2)$  вместо  $E(\theta_1, \theta_2)$
  - $(\theta_1 + \theta_2) \text{ вместо } p(\theta_1, \theta_2)$
  - ▶ 0 вместо z
  - **.** . . .

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
  - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
  - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
  - 1.2 логические связки и кванторы.

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
  - предикаты (в том числе пропозициональные переменные = нульместные предикаты);
  - 1.2 логические связки и кванторы.
- 2. Предметные значения:
  - 2.1 предметные переменные;

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
  - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
  - 1.2 логические связки и кванторы.
- 2. Предметные значения:
  - 2.1 предметные переменные;
  - 2.2 функциональные символы (в том числе константы = нульместные функциональные символы)

# Оценка исчисления предикатов

### Определение

Оценка — упорядоченная четвёрка  $\langle D, F, P, E \rangle$ , где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть  $f_n$  n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P— оценка для предикатных символов; пусть  $T_n$ — n-местный предикатный символ:

$$P_{T_n}: D^n \to V \qquad V = \{\mathcal{U}, \mathcal{J}\}$$

4. Е — оценка для предметных переменных.

$$E(x) \in D$$

# Оценка формулы

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

- 1. Правила для связок  $\lor$ , &,  $\neg$ ,  $\to$  остаются прежние;
- 2.  $\llbracket f_n(\theta_1, \theta_2, \ldots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \ldots, \llbracket \theta_n \rrbracket)$
- 3.  $\llbracket P_n(\theta_1, \theta_2, \ldots, \theta_n) \rrbracket = P_{T_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \ldots, \llbracket \theta_n \rrbracket)$

4.

$$\llbracket \forall x.\phi 
rbracket = \left\{egin{array}{ll} \mathsf{И}, & \mathsf{если} \ \llbracket \phi 
rbracket^{\mathsf{x}:=t} = \mathsf{И} \ \mathsf{при} \ \mathsf{всеx} \ t \in D \ \mathsf{Л}, & \mathsf{если} \ \mathsf{найдётся} \ t \in D, \ \mathsf{что} \ \llbracket \phi 
rbracket^{\mathsf{x}:=t} = \mathsf{Л} \end{array}\right.$$

5.

$$\llbracket\exists x.\phi
rbracket = \left\{egin{array}{ll} \mathsf{N}, & ext{если найдётся } t\in D, \ \mathsf{что}\ \llbracket\phi
rbracket^{\mathsf{x}:=t} = \mathsf{N} \ \mathsf{Л}, & ext{если}\ \llbracket\phi
rbracket^{\mathsf{x}:=t} = \mathsf{Л} \ \mathsf{при}\ \mathsf{всеx}\ t\in D \end{array}\right.$$

# Пример (очевидная интерпретация)

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

- $\triangleright D := \mathbb{N};$
- ▶  $F_1 := 1$ ,  $F_{(+)}$  сложение в  $\mathbb{N}$ ;
- ▶  $P_{(=)}$  равенство в  $\mathbb{N}$ .

Фиксируем  $a \in \mathbb{N}$ . Тогда:

$$[a+1=b]^{b:=a}=J$$

поэтому при любом  $a \in \mathbb{N}$ :

$$\llbracket \exists b. \neg a + 1 = b \rrbracket = \mathsf{V}$$

$$\llbracket orall a. \exists b. \neg a + 1 = b 
rangle = \mathsf{V}$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b 
rangle$$

Зададим интерпретацию:

$$ightharpoonup D := \{\Box\};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a:=\Box,b:=\Box}=\mathsf{M}$$

$$\llbracket orall a. \exists b. \neg a + 1 = b \rrbracket = \mathcal{J}$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b 
rangle$$

Зададим интерпретацию:

$$ightharpoonup D := \{\Box\};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a:=\Box,b:=\Box}=\mathsf{M}$$

$$\llbracket orall a. \exists b. \neg a + 1 = b \rrbracket = \mathcal{J}$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

$$ightharpoonup D := \{\Box\};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a:=\Box,b:=\Box}=\mathsf{M}$$

$$\llbracket orall a. \exists b. \neg a + 1 = b \rrbracket = \mathcal{J}$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

$$ightharpoonup D := \{\Box\};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a\in D,b\in D}=V$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket = Л$$

## Общезначимость

#### Определение

Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models \phi$$

То есть истинна при любых D, F, P и E.

# Пример: общезначимая формула

### Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

#### Доказательство.

Фиксируем D, F, P, E. Пусть  $x \in D$ . Обозначим  $P_Q(F_f(E_x))$  за t. Ясно, что  $t \in V$ . Разберём случаи.

- lacktriangle Если  $t=m{V}$ , то  $[\![Q(f(x))]\!]^{Q(f(x)):=t}=m{V}$ , потому  $[\![Q(f(x))\!] \lor \neg Q(f(x))]\!]^{Q(f(x)):=t}=m{V}$
- lacktriangle Если  $t= \Pi$ , то  $[\![ \neg Q(f(x)) ]\!]^{Q(f(x)):=t} = \emptyset$ , потому всё равно  $[\![ Q(f(x)) \lor \neg Q(f(x)) ]\!]^{Q(f(x)):=t} = \emptyset$

# Свободные вхождения

### Определение

Bхождение подформулы в формулу — это позиция первого символа этой подформулы в формуле.

Вхождения 
$$x$$
 в формулу:  $(\forall x.A(x) \lor \exists x.B(x)) \lor C(x)$ 

### Определение

Рассмотрим формулу  $\forall x.\psi$  (или  $\exists x.\psi$ ). Здесь переменная x связана в  $\psi$ . Все вхождения переменной x в  $\psi$  — связанные.

#### Определение

Вхождение x в  $\psi$  свободное, если не находится в области действия никакого квантора по x. Переменная входит свободно в  $\psi$ , если имеет хотя бы одно свободное вхождение.  $FV(\psi), FV(\Gamma)$  — множества свободных переменных в  $\psi$ , в  $\Gamma$ 

### Пример

$$\exists y.(\forall x.P(x)) \lor P(x) \lor Q(y)$$

# Подстановка, свобода для подстановки

$$\psi[\mathbf{x} := \theta] := \begin{cases} \psi, & \psi \equiv \mathbf{y}, \mathbf{y} \not\equiv \mathbf{x} \\ \psi, & \psi \equiv \forall \mathbf{x}. \pi \text{ или } \psi \equiv \exists \mathbf{x}. \pi \\ \pi[\mathbf{x} := \theta] \star \rho[\mathbf{x} := \theta], & \psi \equiv \pi \star \rho \\ \theta, & \psi \equiv \mathbf{x} \\ \forall \mathbf{y}. \pi[\mathbf{x} := \theta], & \psi \equiv \forall \mathbf{y}. \pi \text{ и } \mathbf{y} \not\equiv \mathbf{x} \\ \exists \mathbf{y}. \pi[\mathbf{x} := \theta], & \psi \equiv \exists \mathbf{y}. \pi \text{ и } \mathbf{y} \not\equiv \mathbf{x} \end{cases}$$

### Определение

Терм  $\theta$  свободен для подстановки вместо x в  $\psi$  ( $\psi[x:=\theta]$ ), если ни одно свободное вхождение переменных в  $\theta$  не станет связанным после подстановки.

| Свобода есть                           | Свободы нет                            |
|----------------------------------------|----------------------------------------|
| $(\forall x. P(y))[y := z]$            | $(\forall x. P(y))[y := x]$            |
| $(\forall y. \forall x. P(x))[x := y]$ | $(\forall y. \forall x. P(t))[t := y]$ |

# Теория доказательств

Рассмотрим язык исчисления предикатов. Возьмём все схемы аксиом классического исчисления высказываний и добавим ещё две схемы аксиом (здесь везде  $\theta$  свободен для подстановки вместо x в  $\varphi$ ):

- 11.  $(\forall x.\varphi) \to \varphi[x := \theta]$
- 12.  $\varphi[x := \theta] \to \exists x. \varphi$

Добавим ещё два правила вывода (здесь везде x не входит свободно в  $\varphi$ ):

$$\dfrac{arphi o \psi}{arphi o orall x. \psi}$$
 Правило для  $orall$   $\dfrac{\psi o arphi}{(\exists x. \psi) o arphi}$  Правило для  $\exists$ 

### Определение

Доказуемость, выводимость, полнота, корректность — аналогично исчислению высказываний.

# Важность ограничений на схемы аксиом и правила вывода

- ▶ Рассмотрим формулу  $(\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$
- Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
  $\varphi \equiv \exists y. \neg x = y$   $\theta \equiv y$ 

Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

lacktriangle Пусть  $D=\mathbb{N}$  и (=) есть равенство на  $\mathbb{N}$ . Тогда

$$[\![\exists y. \neg x = y]\!] = \mathsf{N}$$
  $[\![(\exists y. \neg x = y)[x := y]]\!] = \mathsf{J}$ 

$$\blacktriangleright \not\models (\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$$

# Теорема о дедукции для исчисления предикатов

### Теорема

Если  $\Gamma \vdash \alpha \to \beta$ , то  $\Gamma, \alpha \vdash \beta$ . Если  $\Gamma, \alpha \vdash \beta$  и в доказательстве не применяются правила для кванторов по свободным переменным из  $\alpha$ , то  $\Gamma \vdash \alpha \to \beta$ .

### Доказательство.

```
(\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.
Перестроим: \delta_1, \delta_2, \dots, \delta_n \equiv \beta в \alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n.
Дополним: обоснуем \alpha \to \delta_p, если предыдущие уже обоснованы.
Два новых похожих случая: правила для \forall и \exists. Рассмотрим \forall.
Доказываем (n) \alpha \to \psi \to \forall x. \varphi (правило для \forall), значит, доказано (k) \alpha \to \psi \to \varphi.
 (n-0.9)\dots(n-0.8) (\alpha \to \psi \to \varphi) \to (\alpha \& \psi) \to \varphi
                                                                                     Т. о полноте КИВ
 (n-0.6) (\alpha \& \psi) \rightarrow \varphi
                                                                                           M.P. k.n - 0.8
 (n-0.4) (\alpha \& \psi) \rightarrow \forall x. \varphi
                                                                                           Правило для \forall. n - 0.6
 (n-0.3)\dots(n-0.2) ((\alpha \& \psi) \to \forall x.\varphi) \to (\alpha \to \psi \to \forall x.\varphi) Т. о полноте КИВ
                             \alpha \to \psi \to \forall x. \varphi
  (n)
                                                                                           M.P. n = 0.4. n = 0.2
```

# Следование

### Определение

 $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$ , если выполнено два условия:

- $1. \ \alpha$  выполнено всегда, когда выполнено  $\gamma_1, \gamma_2, \ldots, \gamma_n$ ;
- 2.  $\alpha$  не использует кванторов по переменным, входящим свободно в  $\gamma_1, \gamma_2, \dots, \gamma_n$ .

### Теорема

Если  $\Gamma \vdash \alpha$  и в доказательстве не используются кванторы по свободным переменным из  $\Gamma$ , то  $\Gamma \models \alpha$ 

## Важность второго условия

### Пример

Покажем, что  $\Gamma \models \alpha$  ведёт себя неестественно, если в  $\alpha$  используются кванторы по переменным, входящим свободно в Г.

Легко показать, что 
$$P(x) \vdash \forall x. P(x)$$
.

$$(1)$$
  $P(x)$  Гипотеза

(2) 
$$P(x) o (A o A o A) o P(x)$$
 Cx. akc. 1

(3) 
$$(A \rightarrow A \rightarrow A) \rightarrow P(x)$$
 M.P. 1, 2

$$(4) \quad (A o A o A) o orall x. P(x) \qquad \qquad$$
 Правило для  $orall$  ,  $3$ 

$$(4)$$
  $(A o A o A) o orall x.P(x)$  Правило для  $orall$  ,  $3$   $(5)$   $(A o A o A)$   $Cx.$  акс.  $1$ 

(6) 
$$\forall x.P(x)$$
 M.P. 5, 4

Пусть 
$$D=\mathbb{Z}$$
 и  $P(x)=x>0$ . Тогда не будет выполнено  $P(x)\models \forall x.P(x).$ 

# Корректность

### Теорема

Если  $\theta$  свободен для подстановки вместо x в  $\varphi$ , то  $\llbracket \varphi 
rbracket^{x:=\llbracket \theta 
rbracket} = \llbracket \varphi[x:=\theta] 
rbracket$ 

## Доказательство (индукция по структуре $\varphi$ ).

- ightharpoonup База:  $\varphi$  не имеет кванторов. Очевидно.
- ightharpoonup Переход: пусть справедливо для  $\psi$ . Покажем для  $\varphi = \forall y.\psi.$ 
  - lacktriangledown x=y либо  $x\notin FV(\psi)$ . Тогда:  $[\![\forall y.\psi]\!]^{x:=[\![\theta]\!]}=[\![\forall y.\psi]\!]=[\![(\forall y.\psi)[\![x:=\theta]]\!]$
  - ▶  $x \neq y$ . Тогда:  $[\![ \forall y.\psi ]\!]^{x:=[\![\theta]\!]} = [\![\psi]\!]^{y\in D,x:=[\![\theta]\!]} = \dots$  Свобода для подстановки:  $y \notin \theta$ .

$$\cdots = \llbracket \psi 
Vert^{\mathsf{x} := \llbracket heta 
Vert} : \mathsf{y} \in D = \cdots$$

Индукционное предположение.

$$\cdots = \llbracket \psi[\mathsf{x} := \theta] \rrbracket^{\mathsf{y} \in D} = \llbracket \forall \mathsf{y}. (\psi[\mathsf{x} := \theta]) \rrbracket = \cdots$$

Ho 
$$\forall y.(\psi[x:=\theta]) \equiv (\forall y.\psi)[x:=\theta]$$
 (как текст). Отсюда:

$$\cdots = \llbracket (\forall y.\psi)[x := \theta] \rrbracket$$

# Корректность

### Теорема

Если  $\Gamma \vdash \alpha$  и в доказательстве не используются кванторы по свободным переменным из  $FV(\Gamma)$ , то  $\Gamma \models \alpha$ 

### Доказательство.

Фиксируем D, F, P. Индукция по длине доказательства  $\alpha$ : при любом E выполнено  $\Gamma \models \alpha$  при длине доказательства n, покажем для n+1.

- Схемы аксиом (1)..(10), правило М.Р.: аналогично И.В.
- lacktriangle Схемы (11) и (12), например, схема ( $\forall x. arphi$ ) o arphi[x:= heta]:

$$\llbracket (\forall x.\varphi) \to \varphi[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi)[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi \rrbracket^{x := \llbracket \theta \rrbracket} = \mathsf{M}$$

▶ Правила для кванторов: например, введение  $\forall$ : Пусть  $\llbracket \psi \to \varphi \rrbracket = \mathsf{И}$ . Причём  $x \notin FV(\Gamma)$  и  $x \notin FV(\psi)$ . То есть, при любом x выполнено  $\llbracket \psi \to \varphi \rrbracket^{x:=x} = \mathsf{И}$ . Тогда  $\llbracket \psi \to (\forall x.\varphi) \rrbracket = \mathsf{И}$ .