

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI OG INFORMATIONS- OG KOMMUNIKATIONSTEKNOLOGI BACHELORPROJEKT

AUTOMATISK ULTRALYDSSCANNER

Sætningsliste

Charlotte Søgaard Kristensen (201371015) Mathias Siig Nørregaard (201270810) Marie Kirkegaard (201370526)

Vejleder Associate Professor Michael Alrøe Aarhus School of Engineering

Indholdsfortegnelse

Indhol	dsfortegnelse	1
Kapite	el 1 Forkortelser	2
1.1	Forkortelser til dokumentation	2
1.2	Forkortelser til Medicinsk Godkendelse	3
Kapite	el 2 Forklaringer	4
2.1	Forklaringer på tegn	4
2.2	Forklaring på forsøgsopstilling	4
2.3	Robotarm positurer	5

Forkortelser

Dette dokument indeholder liste over forkortelser og forklaringer til projektets dokumenter.

1.1 Forkortelser til dokumentation

Nedenfor er en tabel, med alle de forkortelser der er blevet brugt i projektets dokumenter.

Forkortelse	Forklaring		
BDD	Block Definition Diagram		
CC	Code Coverage		
CSK	Charlotte Søgaard Kristensen		
DTO	Data Transfer Objekter		
FURPS+	Funkctionality, Usability, Reliability, Performance, Supportability		
	and Ekstra		
GUI	Graphical User Interface, Grafisk brugergrænseflade		
IBD	Internal Block Diagram		
IKT	Informtions- og kommunkationsteknologi		
MDD	Medical Device Direktive		
MK	Marie Kirkegaard		
MoSCoW	Must, Should, Could and Would		
MSN	Mathias Siig Nørregaard		
OS	Operativsystem		
ST	Sundhedsteknologi		
SysML	System Modeling Language		
TCP	Tool Center Point		
TCP/IP	Transmission Control Protocol/IP-protokollen		
UC	Use Case		
UML	Unified Modeling Language		

Tabel 1.1: Forkortelser

1.2 Forkortelser til Medicinsk Godkendelse

Forkortelse	Forklaring	
EMC	Elektromagnetisk kompatibilitet	
ESD	Elektrostatiske sensitive enheder	
FMECA	Failure Mode, Effects og Criticality Analysis	
GUI	Grafiskbrugergrænseflade	
MDD	Medical Device Directive 93/42/EØF	
PMS	Post market surveillance	
QMS	Kvalitetsstyringssystem	
63204:2006	DS/EN 63204:2006 - Software for medicinsk udstyr - Livscykluspro-	
	cesser for software	
ISO	DS/EN ISO 13485:2012 - Medicinsk udstyr – Kvalitetsledelsessyste-	
13485:2012	mer – Krav til lovmæssige formål	
ISO	DS/EN ISO 14971 – medicinsk udstyr – Anvendelse af risikoledelse i	
14971:2012	forbindelse med medicinsk udstyr.	

Tabel 1.2: Forkortelser til medicinsk godkendelse

Forklaringer 2

Nedenfor findes der forklaringen på de tegn, opstillinger og standardindstillinger, som der er blevet anvendt i projektet.

2.1 Forklaringer på tegn

Tegn	Forklaring
	Tekst markeret med [] betyder at det er en knap

Tabel 2.1: Forklaringer

2.2 Forklaring på forsøgsopstilling

Detaljeret forsøgsopstilling til accepttesten.

- Robotarm er tilsluttet: Sæt Universal Robots' UR10 strømkabel til en stikkontakt og tryk på dens 'On/Off' knap i højre øverste hjørne af skærmrammen. Tilslut et ethernetkabel af typen RJ45 fra Robotarm til access point. Sæt access points strømkabel til en stikkontakt. På computeren forbindes der på WiFi til 'opentele'.
- 3D kamera er tilsluttet: Sæt Microsoft Kinect 2.0s strømkabel til en stikkontakt. Sæt Microsoft Kinect 2.0s USB-kabel i computerens USB 3.0 port.
- PC Appliaktion er startet: Gennemførsel af samtlige tests i tabel 5.1 i dokumentet Accepttest
- Ultralydsscanner er tændt: Gøres ved at trykker på start-knappen på ultralydsscanneren
- Robotarm står i Ikke-standard positur: Sæt Universal Robots' UR10 strømkabel til en stikkontakt og tryk på dens [On/Off] knap i højre øverste hjørne af skærmrammen. Når den har bootet færdig tryk på 'Go to initialization screen' på UR10s touchskærm. Tryk på [On]. Tryk på [START]. Tryk på [OK] i højre nederste hjørne. Tryk på [Play]-knappen nederst på skærmen. Tryk på fanen [Move] øverst på skærmen. Tryk på [Feature]-dropdownen, og vælg [Base]. Tryk på en af tekstboksene i [TCP]-rammen. Indtast de koordinater der findes i posituren 'Ikke-standard Positur'. Tryk på [OK]. Hold [Auto] nede indtil 'Auto' bliver greyed out. Tryk [OK]. Tryk på [On/Off]-knappen i højre øverste hjørne af skærmrammen. Tryk på [Shutdown Robot] på touchskærmen.

• Testobjekt er placeret inden for afgrænsning Gøres ved, at Testobjektet ligger inden for bordet under 3D kamera.

2.3 Robotarm positurer

En positur er en definition for den position og rotation som Robotarm kan have. Til accepttesten er der defineret nogle positurer til at tjekke at softwaren virker som den skal.

- Standard Positur: Er angivet ved disse koordinater:
 - Position X: 160 mm
 - Position Y: 268 mm
 - Position Z: + 500 mm
 - Rotation X: + 1.09 radianer
 - Rotation Y: + 1.7 radianer
 - Rotation Z: 1.9 radianer
- Ikke-standard Positur: Er angivet ved disse koordinater:
 - − Position X: − 130.00 mm
 - Position Y: 250.00 mm
 - Position Z: + 900.00 mm
 - Rotation X: + 0.8 radianer
 - Rotation Y: + 1.5 radianer
 - Rotation Z: 1.7 radianer
- 3D Scan Positur: Er angivet ved disse koordinater:
 - Position X: 100.00 mm
 - Position Y: 650.00 mm
 - Position Z: + 600.00 mm
 - Rotation X: + 3.1416 radianer
 - Rotation Y: \pm 0 radianer
 - Rotation Z: + 3.1416 radianer