EK 'Risikoanalysen in der IT'

Ereignisbaumanalyse

Ralf Mock, 26. Oktober 2015

Lernziele

Lernziele

Ereignisbaum

Problematik

Methodik Arbeitsschritte

Arbeitsschrit Aufbau

Beispiele

qualitativ

Bemerkungen

Literatur

Die Teilnehmenden können

- die Grundlagen der Ereignisbaumanalyse skizzieren
- einen quantitativen Ereignisbaum erstellen und berechnen
- einfache Ereignisbaumanalysen konzipieren und die Ergebnisse einschätzen.

Uscher Fachbochschule 2 / 11

Lernziele

Ereignisbaum Problematik

Arbeitsschritte Aufhau

Beispiele quantitativ qualitativ

Bemerkungen

Literatur

andere Bezeichnungen: Störfallablaufanalyse, Event Tree Analysis, ETA, Incident Sequence Analysis

Problematik

In komplexen Systemen lassen sich verkettete Ereignisabläufe, die zu unerwünschten Ereignissen führen können, über "Brainstorming" nicht mehr vollständig erfassen.

A	В	C	End State	Consequences	Probability
	User Reaction	Safety System			
		Success	- 1	OK	$P_A \overline{P}_B \overline{P}_C$
		1-P _c			
	Success				
	1-P _B				
Pa		Failure	- 2	Partial Failure	$P_A \overline{P}_B P_C$
		P_{C}			
	Failure	Failure		Failure	$P_{a}P_{b}P_{c}$
			- 3	rands	- 1- 8- C

Quelle: Delivering Advanced Engineering Solutions

the Fachbodyschule 3/1

Lernziele

Ereignisbaum

Problematik

Methodik

Arbeitsschritte Aufhau

Beispiele

quantitativ

qualitativ

Bemerkungen

Literatur

Induktiver Lösungsansatz

Erfassen von Ereignisabläufen mit einem Entscheidungsbaum, die nach einem auslösenden Ereignis durch die Reaktion nachfolgender (sicherheitstechnischer) Subsysteme oder Barrieren entstehen können ("Szenarien").

- qualitativ: Graphische Darstellung des logischen, physikalischen und zeitlichen Ineinandergreifens von Ereignissen
- ► Ermitteln von Systemzuständen, die aus einer bestimmten Ursache resultieren
- quantitativ: Berechnen der Frequenzen (oder Häufigkeiten) der resultierenden Systemendzustände.

Literatur: [2, 3, 4]

Circles Facilitations/sule

Lernziele

Ereignisbaum Problematik

Problematik Methodik

Arbeitsschritte Aufhau

Beispiele quantitativ qualitativ

Bemerkungen

Literatur

Arbeitsschritte

- 1. Auflisten eines auslösenden Ereignisses
- 2. Identifizierung der direkten (funktionellen) Systemantworten, die jeweils durch die Funktion oder Nichtfunktion eines Subsystems oder einer Barriere entstehen
- Identifizierung der Reaktionen von Hilfssystemen und Massnahmen
- 4. Definition der Ereignisketten: Jede Systemantwort hat eine zugehörige Verzweigung, die Erfolg oder Misserfolg der Antwort anzeigt. Am Ende jeder Kette steht eine Beschreibung der erwarteten Auswirkungen
- Zuweisung der Frequenz (oder Häufigkeit) für das auslösende Ereignis und der bedingten Wahrscheinlichkeiten für Funktion bzw. Ausfall
- 6. Berechnung der Frequenz (oder Häufigkeit) des Endzustandes des Gesamtsystems für jede Kette.

one Fashbornshilds 5/11

Lernziele

Ereignisbaum

Problematik Methodik

Arbeitsschritte Aufhau

Beispiele

quantitativ qualitativ

Bemerkungen

Literatur

Aufbau

20cm fastrochschulus

Lernziele

Ereignisbaum

Problematik Methodik

Arheitsschritte

Aufbau

quantitativ

qualitativ

Bemerkungen

Literatur

Quantitatives Beispiel: Brandbekämpfung

Annahmen/Erläuterungen

- P; S: Personen- und Sachschaden; Skala von 0 bis 10 (10: max. Personenbzw. Sachschaden)
 - ▶ Beispiel math. Schreibweise: $2.997E 3 = 2.997 \cdot 10^{-3} = 0.002997$
- bedingte Wahrscheinlichkeiten: Der Erfolg eines Feuerwehreinsatzes hängt davon ab, ob die Fluchtwege frei sind oder nicht
- Feuerwehreinsatz fasst Alarmierung, Anfahrt und Brandbekämpfung zusammen

7 / 11

Lernziele

Ereignisbaum

Problematik Methodik

Arbeitsschritte

Aufbau

Beispiele

qualitativ

Bemerkungen

Literatur

Berechnung

- ▶ Die Summe über alle *n* "Szenarien-Frequenzen" ergibt die Frequenz *Fr* des auslösenden Ereignisses.
- ▶ Die Frequenz Fr am Ende eines Szenarios A mit n Subsystemen berechnet sich aus:

$$Fr(Szenario A) = Fr(auslösendes Ereignis) \cdot \prod_{i=1}^{n} Pr(Subsystem i)$$

▶ Die Frequenz eines bestimmten Ausmasses C_i ist die Summe der Ketten mit demselben Systemzustand.

Anmerkung: Die DIN [3] verwendet einen andere Notation.

8/11

Lernziele

Ereignisbaum

Problematik

Methodik Arheitsschritte

Aufbau Beispiele

quantitativ qualitativ

Bemerkungen

Literatur

Qualitatives Beispiel: IT

Literatur: [1]

Konsequenzen

- A, B, C, D, G: Programm stabil
- E, F, H: Programm stürzt ab

20/cher Fashholmshule 9 / 11

Lernziele

Ereignisbaum Problematik

Methodik Arbeitsschritte

Aufbau

Beispiele quantitativ qualitativ

Bemerkungen

Literatur

Bemerkungen: Die ETA

- ▶ ist für alle Arten (technischer) Systeme geeignet
- ▶ ist besonders geeignet für grössere Systeme mit Sicherheitseinrichtungen, Barrieren usw.
- gehört zu den schwierigeren Methoden
- benötigt praktische Erfahrungen und vorausgehende Systemuntersuchungen
- ▶ benötigt einen sorgfältigen Review der Ergebnisse.

Anmerkung: ETA ist meist Teil von Fehlerbaum-Software (siehe dort).

tither Falsholmbulula

Literatur

Lernziele

Ereignisbaum Problematik

Methodik Arbeitsschritte Aufbau

Beispiele quantitativ qualitativ

Bemerkungen

Literatur

- BARTHOLOMÄUS, MATHIAS: Möglichkeiten der Visiualisierung von Risikobewertungen (Diplomarbeit).
 Technical Report, Universität Magdeburg, Dec. 2006.
- [2] CAMARINOPOULOS, L. and A. BECKER: Zuverlässigkeits— und Risikoanalysen, volume 2 of KTG-Seminar. Verlag TÜV Rheinland, Köln, 1983.
- [3] DIN-25419: Ereignisablaufanalyse: Verfahren, graphische Symbole und Auswertung. Technical Report DIN 25419:1985-11, Beuth Verlag, Berlin, November 1985.
- [4] MOSLEH, A.: Systems Reliability Assessment: Advanced and Emerging Methods. University of Maryland, 2005.

Ziocher Fachhochschule 11/1