Algebra

Riccardo Cara

2023/2024

Contents

1	Rela	azioni	2
	1.1	Relazioni di equivalenza	2
	1.2		3
	1.3		3
2	insi	emi e strutture algebriche	3
	2.1	numeri naturali	3
	2.2	numeri interi	4
	2.3	Divisibilità in \mathbb{Z}	5
	2.4		5
	2.5		5
	2.6	-	5
	2.7	•	6
	2.8		6
3	Strı	itture algebriche notevoli	6
	3.1	3	6
	3.2	9	6
	3.3	11	7
	3.4		7
	3.5	F	7
	3.6	16	8

requisiti per questo corso sarà necessario avere esperienza con la teoria degli insiemi e le sue proprietà:

- intersezione
- unione
- sottoinsieme
- insieme complementare
- proprietà associativa
- proprietà distributiva
- De Morgan

1 Relazioni

Per capire le relazioni, occorre prima introdurre il prodotto cartesiano, ossia una tupla in cui ogni elemento $a \in A$ è associato ad un elemento $b \in B$ ovvero $A \times B = (a,b)|a \in A, b \in B$ ad esempio: se $A = \{1,2,3,4\}$ e $B = \{a,b,c,d\}$ il prodotto cartesiano $A \times B = \{(1,a),(2,b),(3,c),(4,d)\}$. Una relazione (ρ) non è altro che il sottoinsieme del prodotto cartesiano ovvero $\rho \subseteq A \times B$, se $(a,b) \in \rho$ si scrive $a\rho b$. Se una relazione è definita su A ossia $a\rho a'|a \in A, a' \in A$ prende nome di **relazione di identità**. essendo la relazione un insieme, allora su essa valgono le proprietà degli insiemi. il dominio della relazione è:

```
\mathcal{D} = a \in A | \exists b \in B | a\rho b l'immagine della relazione è:
```

$$\mathcal{I} = b \in B | \exists a \in A | a \rho b$$

Se $\forall a \in A$ esiste un solo $b \in B|a\rho b$ allora ρ è una funzione, ma non è detto che il suo inverso (ρ^{-1}) lo sia. ci sono 2 differenti modi di rappresentare graficamente le relazioni,

rappresentazione tabellare diagramma 2rappresentazione con nodi e frecce.

1.1 Relazioni di equivalenza

Una relazione $\rho \in AxA$ è una relazione di equivalenza se:

- riflessiva: $a\rho a \forall a \in A$
- simmetrica: se $a\rho a'$ allora esiste anche $a'\rho a$
- transitiva: se $a\rho a'$ e $a'\rho a''$ allora $a\rho a''$

con Le relazioni di equivalenza introduciamo anche le classi di equivalenza scritte come $[a] = b \in A | a \rho b$ ovvero [a] è l'insieme contenente tutti gli elementi in relazione con a (sono equivalenti ad a), avendo 2 classi di equivalenza $[a], [b] \in A$ se le due hanno almeno un elemento c in comune allora [a] = [b] poichè, se $c \in [a]$ significa che ogni elemento in [a] è per definizione equivalente a c, stessa cosa per [b], quindi [a] e [b] sono equivalenti.

L'insieme delle classi di equivalenza in un insieme A viene detto insieme quoziente e viene scritto come $A/a = [a] \forall [a] \in A$.

1.2 Partizioni

le partizioni (A_{α}) di un insieme (A) sono collezioni **diverse** di elementi dello stesso insieme tali che l'unione di essi risulti essere tutto l'insieme $(A_{\alpha} \cup A_{\beta} = A)$ immaginare un diagramma a torta o semplicemente le partizioni di un HDD. le classi di equivalenza sono partizioni di A essendo che le classi di equivalenza o sono congiunte (sono congiunte le classi [a] = [b], nel diagramma a torta le classi [a] = [b] sono lo stesso spicchio) o disgiunte (spicchi diversi)

1.3 Relazioni di ordine parziale

una relazione è di ordine parziale quando è:

- riflessiva $a\rho a \forall a \in A$
- antisimmetrica dato $a\rho a'$ non si ha $a'\rho a$
- Transitiva se $a\rho a'$ e $a'\rho a''$ allora $a\rho a''$

un esempio di facile comprensione è la relazione tra sottoinsiemi, avendo $\mathcal{P}(X)$ ovvero un insieme composto da tutti i possibili sottoinsiemi di X parti, definiamo la relazione $A\rho B|A\subseteq B$ abbiamo tutte le condizioni rispettate, infatti per ogni sottoinsieme di $\mathcal{P}(X)$ vale $A\rho A=A\subseteq A$, vale anche la seconda condizione, ovvero se $A\rho B$ e $B\rho C$ allora $A\rho C$ poichè se $A\subseteq B$ e $B\subseteq C$ allora $A\subseteq C$, è vera anche l'ultima condizione poichè $A\subseteq B$ implica che $B\not\subseteq A$

2 insiemi e strutture algebriche

2.1 numeri naturali

introduciamo un'astrazione dei numeri naturali ovvero la terna di Peano $(\mathbb{N}, \sigma, 0)$ e segue questi assiomi:

- esiste un numero $0 \in \mathbb{N}$
- $\bullet \ \sigma$ è una funzione $\sigma: \mathbb{N} \to \mathbb{N}$ chiamata successore
- $x \neq y$ implica $\sigma(x) \neq \sigma(y)$

- $\sigma(x) \neq 0 \forall x \in \mathbb{N}$
- se $U \subseteq \mathbb{N}$, $0 \in U$, $x \in U$ e $\sigma(x) \in U$ allora $U = \mathbb{N}$ ovvero, ogni sottoinsieme di \mathbb{N} che contiene lo 0, e il successore di ogni numero nel sottoinsieme, coincide con \mathbb{N}

una volta definiti gli assiomi di Peano, possiamo definire delle operazioni elementari:

• somma definiamo la somma come un'operazione $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ ossia un'operazione che associa una oppia di elementi appartenenti all'insieme \mathbb{N} ad un elemento dell'insieme \mathbb{N} , presi degli elementi $n, n', n'' \in \mathbb{N}$ allora $n \times n' \to n'' \equiv n + n' = n''$.

possiamo notare nella somma che:

- $-\sigma(n) + n' = \sigma(n+n')$
- -0+n=n poichè 0 nella somma è un elemento neutro¹
- **prodotto**: definiamo il prodotto come l'operazione $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, presi gli elementi $n, n', n'' \in \mathbb{N}$ allora $n \times n' \to n'' \equiv n \cdot n' = n''$ possiamo notare nel prodotto che:
 - $-0 \cdot n = 0 \forall n \in \mathbb{N}$
 - $-1 \cdot n = n$ nell'operazione prodotto, 1 è un elemento neutro
 - $\sigma(n) \cdot n' = n \cdot n' + n''$

2.2 numeri interi

Una volta definiti i numeri naturali, visti il dominio e l'immagine, notiamo che non è possibile risolvere un'equazione come x+1=0, questo perchè il risultato non appartiene ai numeri naturali, bensì ai numeri interi \mathbb{Z} . È possibile definire i numeri interi partendo dai numeri naturali utilizzando l'insieme quoziente $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$, definiamo con $n, m \in \mathbb{N}$ la relazione:

$$(n,m) \sim (n',m') \iff n+m'=m+n' \tag{1}$$

ora prendiamo le coppie (a,0), (0,a), (a,0) è in relazione con tutte le coppie n, m|n-m=a e (0,a) è in relazione con tutte le coppie n, m|n-m=-a, per rendere la situazione più familiare, si possono associare i numeri che vengono in mente quando si pensa all'insieme dei numeri interi, come $-\infty..., -2, -1, 0, 1, 2, ...\infty$ alle coppie di valori (a,0), (0,a). Associamo alla coppia (a,0) i valori $a \in \mathbb{Z}|a \geq 0$ e associamo alla coppia(0,a) i valori $a \in \mathbb{Z}|a \leq 0$. Prima si è definito \mathbb{Z} come un insieme quoziente, un insieme quoziente è l'insieme delle classi di equivalenza di un insieme e le classi di equivalenza dell'insieme che stiamo analizzando sono [(n,m)]. Definiamo le operazioni:

¹ elemento neutro: un elemento che non modifica nulla in un'operazione

- somma: [(n,m)] + [(n',m')] = [(n+n',m+m')] ad esempio, la somma [(0,2)] + [(5,0)] = [(5,2)] = [(3,0)] = 3, un modo di facile e veloce di trovare la classe di equivalenza in formato [(a,0)] o [(0,a)] è semplicemente, sostituire il valore più piccolo della coppia (min) con 0 e sostituire il valore più grande della coppia (MAX) con MAX min
- **prodotto**: $[(n, m)] \cdot [(n', m')] = [(n \cdot n' + m \cdot m', m \cdot n' + n \cdot m')]$, ad esempio, il prodotto $[(0, 2)] \cdot [(5, 0)] = [(0 \cdot 5 + 2 \cdot 0, 2 \cdot 5 + 0 \cdot 0)] = [(0, 10)] = -10$

2.3 Divisibilità in \mathbb{Z}

presi 2 numeri $a,b\in\mathbb{Z}$ con $b\neq 0$ esistono solo due numeri unici $q,r\in\mathbb{Z}$ tali che:

$$a = bq + r, 0 \le r \le |b| \tag{2}$$

diciamo che:

- a|b si dice a divide b se $\exists c \in \mathbb{Z} : b = ac$
- $a|0\forall a \in \mathbb{Z}$
- ogni $a \in \mathbb{Z}$ ha divisori $\pm 1, \pm a$
- $0|a \iff a=0$
- $a|1 \iff a = \pm 1$
- se $a|b \in a|c$ allora $a|bx + cy, \forall x, \forall y \in viceversa$

2.4 MCD

siano $a,b\in\mathbb{Z},\ d\geq 1$ si dice MCD se d|a e d|b per calcolare il MCD si utilizza l'algoritmo Euclideo:

- 1. si divide a per b, si ottengono q_1 e r_1 , se $r_1 \neq 0$ si continua
- 2. si divide b per r_1 , si ottengono q_2 e r_2 , se $r_2 \neq 0$ si continua
- 3. si divide r_1 per r_2 , si ottengono q_3 e r_3 , se $r_3 \neq 0$ si continua
- n. si divide r_{n-2} per r_{n-1} , si ottengono q_n e r_n , se $r_n \neq 0$ si continua
- n+1. si divide r_{n-1} per r_n , si ottengono q_{n+1} e r_{n+1} , a questo punto, $r_{n+1}=0$ e l' $MCD(a,b)=r_n$ ovvero l'ultimo $r\neq 0$

2.5 Equazioni diofantee

2.6 minimo comune multiplo

il minimo comune multiplo, indicato come mcm(a,b) è il valore $k \geq 0: a|h,b|h$. se $a,b \neq 0$ e $a,b \notin \mathbb{Z}$ allora $|ab| = MCD(a,b) \cdot mcm(a,b)$, ne ricaviamo $mcm = \frac{|ab|}{MCD(a,b)}$

2.7 Numeri primi

i numeri primi sono numeri natruali maggiori di 1 divisibili solo da 1 e da se stessi, dato un numero naturale maggiore di 1, si scrivono tutti i sottomultipli (o divisori) $D(5) = \{1,5\}$, $D(4) = \{1,2,4\}$, $D(15) = \{1,3,5,15\}$, $D(13) = \{1,13\}$ si può constatare che 5 e 13 sono numeri primi p

2.8 Teorema fondamentale dell'aritmentica

il teorema fondamentale del'aritmetica afferma che un numero $n \geq 2 \in \mathbb{N}$ è un numero primo o si può scrivere come prodotto di numeri primi. Il numero n è un numero composto dal prodotto:

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_n^{e_n}, p_n \ge 1, e_n \ge 1$$
(3)

 p_1,p_2,p_3 sono numeri primi diversi (2,3,5,7,9,...), ad esempio 28 = 2 * 2 * 7 = $2^2 * 7^1$

3 Strutture algebriche notevoli

enunciamo una definizione necessaria per la comprensione dei prossimi argomenti. Sia X un insieme, è possibile definire su esso un'operazione binaria $X \times X \to X$ chiamata applicazione. l'insieme $(\mathbb{Z},+)$ è un insieme composto da numeri interi con l'operazione binaria "+" definita su esso.

3.1 Semigruppo

un semigruppo è un insieme S dotato di un'operazione binaria \ast con le seguenti proprietà:

- * è associativa, (s*s')*s'' = s*s'*s''
- $\exists e \in S | s*e = s = e*s \forall s \in S$, ovvero e è un elemento nullo, l'elemento nullo è unico

esiste anche il semigruppo commutativo, ovvero un semigruppo in cui oltre alle proprietà elencate, si ha che $s*s'=s'*s\forall s\in S.$

3.2 Gruppo

un gruppo è un insieme G dotato di un operazione binaria \ast con le seguenti proprietà:

- * è associativa, (g * g') * g'' = g * g' * g''
- $\exists e \in G | g*e = g = e*g \forall g \in G$, ovvero è un elemento nullo, l'elemento nullo è unico

• $\forall g \in G \exists g' | g * g' = e = g' * g$, ovvero per ogni elemento s, vi è il suo inverso, se moltiplicati tra loro viene restituito l'elemento nullo.

un esempio di gruppo è $(\mathbb{Z}, +)$ poichè $\forall z \in \mathbb{Z} \exists -z | z + (-z) = 0$

3.3 Anello

Un anello $(A, \odot, *)$ è un insieme avente 2 operazioni binarie aventi le seguenti proprietà:

- (A, \odot) è un gruppo commutativo, l'elemento neutro è O_A
- * è associativa, ossia (a*a')*a'' = a*a'*a''
- vale la proprietà distributiva: $(a \odot a') * a'' = (a * a'') \odot (a' * a'')$

si dice anello commutativo un anello in cui anche l'operazione * è commutativa. si dice anello unitario, un anello che ha un elemento neutro anche sull'operazione *, ossia $\exists u \in A | a * u = a = u * a \forall a \in A$, u è un unità. Se un anello commutativo è unitario ed è privo di divisori dello zero (ovvero $a*b=O_a\Rightarrow a=O_a\vee b=O_A$) viene detto dominio di integrità, l'insieme dei numeri interi $(\mathbb{Z},+,\cdot,0)$ è un dominio di integrità. **proprietà**

- $\forall a \in A, a * 0 = 0$
- a * (-a') = (-aa') = (-a) * a'
- (-a)*(-a') = aa'

3.4 campo

Un campo è un Anello commutativo unitario in cui $\forall k \neq 0 \in \mathbb{K}$ ha il proprio inverso.

3.5 anello \mathbb{Z}_n

l'anello $\mathbb{Z}_n \equiv \mathbb{Z}/_{\sim_n}$ (insieme quoziente) è l'anello commutativo unitario con divisori dello zero (quindi non è un dominio di integrità). Definiamo \sim_n come la relazione

$$a \sim_n b \Leftrightarrow a - b \text{ è divisibile per } n$$
 (4)

sappiamo quindi che essendo \mathbb{Z} l'insieme quoziente è l'insieme di tutte le classi di equivalenza ovvero $\mathbb{Z}_n = \{[0], [1], ..., [n-1]\}$, su tale insieme sono definite somma e prodotto.

$$[z] + [z'] = [z + z'] e [z] \cdot [z'] = [z \cdot z']$$
 (5)

si osserva che, l'anello \mathbb{Z}_n e commutativo, unitario (poichè ha elemento neutro per la somma e=[0] e elemento neutro per il prodotto u=[1]) ed ha anche divisori

dello zero ovvero si infrange la regola $a \cdot b = 0 \Leftrightarrow a = 0 \lor b = 0$, poichè $[4] \cdot [3] = [12]$ e [12] = [0] infatti $12 \sim_{12} 0 \Leftrightarrow 12 - 0$ è divisibile per 12, siccome 12 e 0 sono in relazione, l'insieme di equivalenza è identico, quindi [12] = [0].

3.6 congruenze

Dati gli interi a,b,m si dice che a e b
 sono congruenti quando $a\equiv b \pmod m \Leftrightarrow \frac{a}{m}=\frac{b}{m}$ ovvero quando a e b
 hanno lo stesso resto se divisi per m, ad esempio $48\equiv 3 \pmod 5$ perchè
 $\frac{48}{5}=9 \text{con resto } 3$