

Problema A Classificados para a final

Arquivo fonte: interfatecs.{ c | cpp | java }
Autor: Antonio Cesar de Barros Munari (Fatec Sorocaba)

A Maratona de Programação InterFatecs é uma competição que já mostrou sua importância para a comunidade tecnológica brasileira. Após várias edições consecutivas bem sucedidas, consolidou-se como um evento anual que aproxima as diversas Fatecs e permite experiências inesquecíveis para os participantes.

As equipes com melhor desempenho na prova da primeira fase são classificadas para a fase final, que é presencial, ou seja, essas equipes competirão entre si na escola designada como sede daquele ano. Muito interessante, por que tem a viagem com a galera, tem o contato com pessoal desconhecido das outras Fatecs que se interessam pelas mesmas coisas que você, tem a merenda também, camiseta, palestras, etc.

Este problema requer que determinemos os classificados para a fase final de uma edição da Maratona de Programação InterFatecs. A quantidade de vagas para a fase final é divulgada pela escola sede daquele ano, que considera a sua capacidade física e administrativa em acolher um certo número de equipes. A equipe melhor classificada de cada Fatec na primeira fase já está automaticamente classificada para a final. Se ainda restarem vagas a serem preenchidas, isso é feito com base no placar final da primeira fase.

Suponha que, além das equipes campeãs de cada Fatec, ainda restem 15 vagas a serem preenchidas. Então as 15 melhores equipes que não foram campeãs de sua escola serão as convidadas para preencher essas vagas. O critério de ordenação do placar final considera como elemento principal a quantidade de problemas resolvidos pela equipe naquela prova: quem resolveu mais problemas fica à frente de quem resolveu menos problemas. Se duas equipes resolveram a mesma quantidade de problemas, o desempate é pelo tempo total computado para a equipe, que é calculado automaticamente pelo ambiente de submissão usado na prova: quem gastou um tempo menor para resolver aqueles problemas ficará à frente de quem gastou mais tempo para resolver a mesma quantidade de problemas. Há ainda critérios adicionais de desempate que não serão necessários neste problema.

Sua tarefa é, dadas as quantidades de vagas disponíveis na final e de Fatecs participantes e os resultados de cada equipe na primeira fase, determinar os classificados para a fase final da competição.

Entrada

A entrada é iniciada por uma linha contendo os inteiros V ($F \leq V \leq 100$), F ($1 \leq F \leq 100$) e Q ($F \leq Q \leq 1000$) que indicam, respectivamente, a quantidade de vagas na final, a quantidade de Fatecs participantes e a quantidade de equipes que competiram na primeira fase. Seguem-se Q linhas, cada uma contendo os inteiros U ($1 \leq U \leq 1000$), E ($1 \leq E \leq 1000$), A ($0 \leq A \leq 20$) e T ($0 \leq T \leq 100000$) que informam os resultados de cada equipe participante, sendo U o número identificador da Fatec daquela equipe, E o número identificador da equipe, E a quantidade de problemas que acertou na prova e E0 o tempo total computado pela equipe. Assuma, por simplicidade, que não haverá equipes em situação de empate (ou seja, com a mesma quantidade de acertos e mesmo tempo total).

Saída

A saída deve indicar os identificadores das equipes classificadas para a fase final da competição. Os valores devem estar em ordem crescente do identificador, com uma vírgula e um espaço em branco após cada equipe, exceto a última, que deverá ser seguida apenas por um ponto final e uma quebra de linha, conforme mostra o exemplo de saída fornecido a seguir.

Exemplo de Entrada 1

Exemplo de Saída 1

10 5 20	3,	5,	6,	7,	8,	11,	16,	17,	18,	20.
2 4 0 0										
4 6 5 489										
2 5 7 728										
1 1 5 600										
4 3 6 699										
1 15 4 183										
1 17 9 1329										
2 10 3 92										
4 9 0 0										
4 14 3 205										
2 13 4 432										
3 11 8 1040										
2 16 9 1200										
3 20 6 879										
1 19 5 525										
4 8 7 824										
5 2 1 40										
3 18 7 876										
3 12 1 50										
5 7 5 592										