DEGREE: A Data-Efficient Generation-Based Event Extraction Model

I-Hung Hsu^{*1}, Kuan-Hao Huang^{*2}, Elizabeth Boschee¹, Scott Miller¹, Premkumar Natarajan¹, Kai-Wei Chang², Nanyun Peng^{1,2}

¹ Information Science Institute, University of Southern California ² Computer Science Department, University of California, Los Angeles NAACL 2022

Event extraction

- Goal: extract events described in the given sentence
- Each event contains
 - an event trigger and its specific event type.
 - several participants (arguments) and their specific roles.

Justice:Execute	
Agent	Indonesia
Person	six convicts
Place	None

Justice: Appeal		
Plaintiff	five of them	
Prosecutor	None	
Adjudicator	Supreme Court	
Place	Indonesia	

Low-resource event extraction

- Event annotations are expensive.
 - Different event structure for different type
 - Especially in domains where annotators are hard to get, such as biomedical domain
- Can we learn an event extraction model with only a few annotations?

→ A data-efficient event extraction model!

Key factors for low-resource event extraction

- Label semantic
 - Semantic meaning of the label name

Semantic relation between roles

a *person* who brings suit in a court.

The adjudicator gives the plaintiff a chance to present their arguments and makes a final ruling.

Justice: Appeal
Plaintiff five of them
Prosecutor None
Adjudicator Supreme Court
Place Indonesia

- Dependencies of an event
 - Shared knowledge for predicting triggers and arguments
 - Consider the final prediction jointly.

It is rare that a plaintiff being the same with the adjudicator in an event.

Previous approaches

- Most classification-based models, such as DyGIE++ [Wadden+ 2019], or OneIE
 [Lin+ 2020]
 - Do not leverage label semantics.
 - Labels are represented as numerical categories.
- Recent generation-based models
 - Either do not fully incorporate label semantic, e.g. the semantic relation between roles, such as TANL [Paolini+ 2021] or Text2Struct [Lu+ 2021]
 - Or do not fully exploit event dependencies, such as BART-Gen [Li+ 2021].

We formulate event extraction as a conditional generation problem

Decode the output sequence into final predictions

Autoregressive generation considers dependencies

Output

Generative Model

Earlier Monday, a 19-year-old *Palestinian* riding a bicycle *detonated* a 30-kilo (66-pound) *bomb* near a military *jeep* in the *Gaza Strip*, injuring three *soldiers*.

How can we exploit label semantics?

Event Trigger	detonated
Attacker	Palestinian
Target	jeep, soldiers
Instrument	bomb
Place	Gaza Strip

Output

Generative Model

Earlier Monday, a 19-year-old *Palestinian* riding a bicycle *detonated* a 30-kilo (66-pound) *bomb* near a military *jeep* in the *Gaza Strip*, injuring three *soldiers*.

Prompt

Plus lab

Passage: Earlier Monday, a 19-year-old <u>Palestinian</u> riding a bicycle <u>detonated</u> a 30-kilo (66-pound) <u>bomb</u> near a military <u>jeep</u> in the <u>Gaza Strip</u>, injuring three <u>soldiers</u>.

Prompt		
Event Type Description	The event is related to conflict and some violent physical act.	
Event Keywords	Similar triggers such as war, attack, terrorism.	
E2E Template	Event trigger is < <u>Trigger></u> . \n some attacker attacked some facility, someone, or some organization by some way in somewhere.	
Output Text		
Event trigge	er is <u>detonated</u> . \n <u>Palestinian</u> attacked <u>jeep and soldiers</u> by <u>bomb</u> in <u>Gaza Strip</u> .	

Passage: Earlier Monday, a 19-year-old <u>Palestinian</u> riding a bicycle <u>detonated</u> a 30-kilo (66-pound) <u>bomb</u> near a military <u>jeep</u> in the <u>Gaza Strip</u>, injuring three <u>soldiers</u>.

Natural language style placeholder reveals label attributes

Generation-based framework provides a flexible interface to incorporate these weakly-supervision signals

Prompt

Event Type Description

Event Keywords

E2E Template

The event is related to conflict and some violent physical act.

Similar triggers such as war, attack, terrorism.

Event trigger is <Trigger>. \n

<u>some attacker</u> attacked <u>some facility, someone, or some organization</u> by <u>some way</u> in <u>somewhere.</u>

Output Text

Event trigger is <u>detonated</u>. \n <u>Palestinian</u> attacked <u>jeep and soldiers</u> by <u>bomb</u> in <u>Gaza Strip</u>.

The sentence structure depict the semantic relation between arguments.

DEGREE(Pipe) = DEGREE(ED) + DEGREE(EAE)

E2E: ♦ Event Type Description [SEP] ♣ Event Keywords [SEP] ■ E2E Template

Prompt for Event Detection (ED)		
The event is related to conflict and some violent physical act.		
Similar triggers such as war, attack, terrorism.		
Event trigger is <trigger>.</trigger>		
Output Text		
Event trigger is <u>detonated</u> .		

Prompt for Event Argument Extraction (EAE)		
Event TypeDescription	The event is related to conflict and some violent physical act.	
★ Query Trigger	The event trigger word is detonated.	
© EAE Template	<u>some attacker</u> attacked <u>some facility, someone, or</u> <u>some organization</u> by <u>some way</u> in <u>somewhere.</u>	
Output Text		
<u>Palestinian</u> at	tacked jeep and soldiers by bomb in Gaza Strip.	

Main experiments

- Experiment on the two most widely-used dataset, ACE and ERE.
 - Better end-to-end argument F1 scores than baselines.
 - Classification-based baseline: BERT_QA [Du+ 2020], OneIE [Lin+ 2020]
 - Generation-based baseline: Text2Event [Lu+ 2021], TANL [Paolini+ 2021]

Results under high-resource setting

DEGREE outperform can also outperform baselines when more data is provided

End-to-end Argument Classification F1-score

Ablation studies on the template format

Does our label semantic enriched template design help?

Yes

Ablation Studies on the Template Format

<Attacker> </Attacker> <Victim> </Victim> <Instrument> </Instrument> </Place> </Place>

<Attacker> attacked <Victim> by <Instrument> in <Place>.

<u>some attacker</u> attacked <u>some facility,</u> <u>someone, or some organization</u> by <u>some way</u> in <u>somewhere.</u>

Conclusion

- We propose DEGREE, a data-efficient generation-based event extraction model.
 - Exploits label semantics
 - Captures event dependencies
 - Flexible to incorporate weakly-supervised information
- Significant improvements over previous baselines, especially when only a few training data is available.

Code is available at https://github.com/PlusLabNLP/DEGREE

