BAYESIAN ESTIMATION

EXTENSIONS

Tools for Macroeconomists: The essentials

Petr Sedláček

Extensions

EXTENSIONS

- Bayesian inference and model comparison
- Dealing with trends
- More on priors

Extensions

BAYESIAN INFERENCE AND MODEL COMPARISON

BAYESIAN VS. FREQUENTIST INFERENCE

- Bayesian inference cannot use frequentist principles
 - t-test, F-test, LR-test etc.
 - they have a frequentist justification of repeated sampling
- · instead, there are two common Bayesian principles:
 - · Highest Posterior Density (HPD) interval
 - Bayes factors (posterior odds)

HIGHEST POSTERIOR DENSITY INTERVALS

A $100(1-\alpha)\%$ posterior interval for Ψ is given by

$$P(\underline{b} < \Psi < \overline{b}) = \int_{\underline{b}}^{\overline{b}} P(\Psi | \mathcal{Y}^{\mathsf{T}}) d\Psi = 1 - \alpha$$

- there exists many such intervals
- the HPD interval is the smallest one of them

HPD "TESTS"

- \cdot the HPD test amounts to checking whether $\Psi_i \in \mathit{HPD}_{1-lpha}$
- \cdot this is an informal way of comparing nested models
 - · i.e. different parameter values
- Bayesians can also compare non-nested models
- more on this below

BAYES FACTORS

$$B = \frac{P(\mathcal{Y}^{\mathsf{T}}|\Psi_1)P(\Psi_1)}{P(\mathcal{Y}^{\mathsf{T}}|\Psi_2)P(\Psi_2)}$$

- · where Ψ_1 and Ψ_2 are two different sets of parameter values
- if $B>1 \rightarrow \Psi_1$ is a posteriori more likely than Ψ_2
- · important to use "proper" priors!

MODEL COMPARISON

- · posterior densities can be used to evaluate
 - conditional probabilities of particular parameter values
 - conditional probabilities of different model specifications
- use Bayes factors (posterior odds ratio) to compare models
 - · advantage is that all models are treated symmetrically
 - there is no "null" model compared to an alternative

MODEL COMPARISON

$$B_{A|B} = \frac{P_A(\mathcal{Y}^T | \Psi_A) P_A(\Psi_A)}{P_B(\mathcal{Y}^T | \Psi_B) P_B(\Psi_B)}$$

- · it is also possible to assign priors on models
- the posterior odds ratio is then

$$PO_{A|B} = \frac{P(A|\mathcal{Y}^{T})}{P(B|\mathcal{Y}^{T})} = B_{A|B} \frac{P(A)}{P(B)}$$

HOW MUCH INFORMATION IN BAYES FACTOR?

Kass and Raftery (1995), if the value of $B_{A|B}$ is

- between 1 and 3 \rightarrow barely worth mentioning
- between 3 and 20 \rightarrow positive evidence
- between 20 and 150 \rightarrow strong evidence
- over 150 \rightarrow very strong evidence

Extensions

Problem:

- methodology works for stationary environments
- · data has trends
- · not clear which trend the model represents?

- · we could build in a trend within the model
- e.g. productivity is trending
- "stationarize" non-stationary variables within the model
- i.e. inspect variables relative to productivity
- · however, not clear that data satisfies balanced growth

Solutions:

- · use differenced data
 - \cdot highlights high-frequency movements (measurement error)
- · detrend prior to estimation

ESTIMATION ON DETRENDED DATA

• use e.g. quadratic trend:

$$y_t = a_0 + a_1 t + a_2 t^2 + u_t$$

- · each variable can have its own trend
- using HP or Band Pass filter:

$$y_t^{obs-filtered} = B(L)y_t^{obs}$$

- B(L) is a 2-sided filter!
- $\cdot \, o$ creates artificial serial correlation in the filtered data
- $\cdot \, o$ apply filter also to model data

ESTIMATION ON DETRENDED DATA

- the above implies that the model is fitted to low(er) frequencies only
- · Canova (2010) points out that the above can lead to:
 - underestimated volatility of shocks
 - persistence of shocks is overestimated
 - · less perceived noise \rightarrow policy rules imply higher predictability
 - substitution and income effects may be distorted due to above
- proposes to estimate flexible trend specifications within model

Extensions

MORE ON PRIORS

MORE ON SELECTING PRIORS

- · so far selecting (independent) priors about deep parameters
- however, this may not be the best way to go
 - often we have priors about observables
 - \cdot good independent priors may still cause weird model properties
- solutions proposed in the literature:
 - · Del Negro, Schorfheide (2008)
 - · Andrle, Benes (2013)
 - Jarocinsky, Marcet (2013)

- more guidance for eliciting priors
- · issues with (independent) priors on deep parameters:
 - may lead to probability mass on unrealistic model properties
 - most exogenous shock processes are latent \rightarrow what priors?
 - priors are often transfered to different models

- they group parameters into three categories:
 - those determining the steady state
 - those determining exogenous shocks
 - $\boldsymbol{\cdot}$ those determining the endogenous propagation mechanism

Parameters related to steady state relationships

- · discount rate, depreciation, returns to scale etc.
- · let $S_D(\Psi_{SS})$ be a vector of steady state relationships
 - Ψ_{ss} : set of parameters
- then $\widehat{S} = S_D(\Psi_{SS}) + \eta$ are their measurements
 - η : measurement error
- \cdot \hat{S} has a probabilistic interpretation and therefore
- using Bayes' rule, one can write $P(\Psi_{ss}|\widehat{S}) \propto \mathbb{L}(\widehat{S}|\Psi_{ss})P(\Psi_{ss})$
- · allows for overidentification

Exogenous processes

- volatility and persistence parameters
- · use implied moments of endog. variables to "back out" priors
- the above is given values for Ψ_{ss} and Ψ_{endo}
- $\cdot
 ightarrow ext{valid}$ for a particular model
- i.e. should not be directly transfered across models

Endogenous propagation mechanisms

- price rigidity, labor supply elasticity etc.
- one could use similar principle as above
- authors suggest independent priors
 - researchers often have a relatively good idea
- joint prior induces non-linear relationships between parameters
- joint prior becomes

$$P(\Psi|\widehat{S}) \propto \mathbb{L}(\widehat{S}|\Psi_{SS})P(\Psi_{SS})P(\Psi_{endo})$$

· requires an additional step in MCMC algorithm

- do not distinguish between groups of parameters
- \cdot their "system priors" are priors about concepts such as
 - impulse response functions
 - · conditional correlations etc.

- good independent priors may still cause weird model properties
- estimation can assign substantial mass on such regions
- call for careful prior-predictive analysis:
 - · IRFs, second moments ...
 - · compare with posterior results
 - is it the data or the model driving the results?

Candidates for system priors:

- steady states
 - sensible values in levels or growth rates
- · (un-)conditional moments
 - cross-correlations (conditional on shocks)
- impulse response properties
 - · peak impacts, duration, horizon of MP effectiveness etc.

Implementation:

- · use Bayes' rule again
- specify model properties you care about $Z = h(\Psi)$
- these can be characterized by a probabilistic model $Z \sim D(Z^s)$
 - $D(Z^s)$ is a distribution function
 - \cdot Z^{s} are parameters of that function (hyper-parameters)
- its likelihood function (the system prior): $P(Z^s|\Psi,h)$
- composite joint prior: $P(\Psi|Z^s,h) \propto P(Z^s|\Psi,h)P(\Psi)$

Andrle, Benes (2013)

The posterior becomes

$$P(\Psi|\mathbb{Y}^T, Z^s) \propto \mathbb{L}(\mathbb{Y}^T|\Psi)P(Z^s|\Psi, h)P(\Psi)$$

- evaluation is in principle the same as before
- · use of MCMC methods
- \cdot additional step in evaluating the system prior
- slows things down have to run MCMC on prior

JAROCINSKY, MARCET (2013)

- · similar ideas as above, but in the context of Bayesian VARs
 - their point is that widely used priors about parameters
 - · can lead to behavior of observables that is counterfactual
 - $\boldsymbol{\cdot} \to \text{always}$ a good to do prior-predictive analysis of you model!