PCA with FactoMineR and factoextra

Basics

PCA (Principal Component Analysis) is a dimension-reduction method. It finds principal factors - orthogonal linear combinations of original variables that explain maximum amount of variance.

$$W_{n\times q} = X_{n\times p} R_{p\times q}$$

The p dimensional input data X is projected into a q dimensional subspace by a linear transformation defined by R. New q dimensional data W has orthogonal variables. The transformation may be done through SVD decomposition or eigen value decomposition.

The Example

This example uses data about Hollywood action movies from 2015. Six quantitative variables with movie ratings scrapped from Rotten Tomato and Metacritic websites.

ı	<pre>> head(movies2015)</pre>						
ı		Rotten		Rotten	Metacritic		
ı	T	omatoes	Metacritic	Audience	Audience		
ı	Spectre	64	60	65	67		
ı	Furious 7	81	67	84	68		
ı	Terminator Genisys	25	38	59	63		
ı	San Andreas	50	43	56	55		
١	Point Break	9	38	37	22		

Use the **FactoMineR**::**PCA()** function for PCA with supplementary quantitative and categorical variables. Missing values will be replaced by

FactoMineR (for multivariate data analysis) and factoextra (for visualisation of PCA results)

Scree plot

Use the **factoextra::get_eig()** function to extract information about eigenvalues. The **factoextra::fviz_screeplot()** function will plot the percentage of variance explained by each principal factor.

> get_eig(model)							
	eigenvalue	variance.percent	<pre>cum.variance.percent</pre>				
Dim.1	4.474039e+00	8.9480e+01	89.48				
Dim.2	3.546706e-01	7.0934e+00	96.57				
Dim.3	1.313722e-01	2.6273e+00	99.20				
Dim.4	3.991824e-02	7.9836e-01	100.00				
Dim.5	5.256294e-32	1.0512e-30	100.00				
<pre>> fviz_screeplot(model)</pre>							

PCA variables' plot

Use the **factoextra::fviz_pca_var()** function to plot contribution of original variables into selected (the **axes** argument) principal components. Show variables through text labels or arrows (the **geom** argument). Result of this function is the **ggplot2** plot.

PCA individuals' plot

Use the **factoextra::fviz_pca_ind()** function to plot observations with selected (the **axes** argument) principal coordinates. With the **habillage** argument one can select a grouping variable which will be color-coded in the plot. Use **addEllipses** to plot ellipses for each group.

PCA - Biplot

Use the **factoextra::fviz_pca_biplot()** function to combine results for individuals and variables into a single bi-plot. With the **habillage** argument one can select a grouping variable which will be color-coded in the plot. Use **addEllipses** to plot ellipses for each group.

In the presented example, the first principal coordinate is highly correlated with average rating from all sources (audience and critics) while the second principal coordinate discriminate between audience and critics. Thus one can easily identify movies that are preferred by critics and these preferred by audience.

> fviz_pca_biplot(model, habillage = filmy2015\$script.type) +
theme(legend.position = "top")

