# **Project Design Phase-II**

# **Data Flow Diagram & User Stories**

**Date:** 28 June 2025

**Team ID:** LTVIP2025TMID45560

**Project Name:** Revolutionizing Liver Care: Predicting Liver Cirrhosis using Advanced Machine

Learning Techniques

Maximum Marks: 4 Marks

### **Data Flow Diagrams:**

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

#### **Context Diagram (Level 0):**

#### **Level 1 Data Flow Diagram:**





### Level 2 Data Flow Diagram - ML Prediction Engine (Process 3.0):



## **User Stories**

Use the below template to list all the user stories for the product.

| User Type                              | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story /<br>Task                                              | Acceptance<br>Criteria | Priority | Release  |
|----------------------------------------|-------------------------------------|-------------------------|-------------------------------------------------------------------|------------------------|----------|----------|
| Healthcare<br>Professional<br>(Doctor) | Authentication & Access             |                         | can log into the<br>system using my<br>hospital<br>credentials so |                        | High     | Sprint-1 |

| User Type | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story /<br>Task                                                                                                                                         | Acceptance<br>Criteria                                                                              | Priority | Release  |
|-----------|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------|----------|
|           |                                     | USN-2                   | patient prediction tools. As a doctor, I can reset my password through a secure email link so that I can regain access if I forget my credentials.           | I receive a secure<br>reset link and can<br>successfully<br>change my<br>password                   | Medium   | Sprint-1 |
|           | Clinical Data<br>Input              | USN-3                   | As a doctor, I can input patient clinical data (age, gender, bilirubin, albumin, etc.) through a user-friendly form so that I can get cirrhosis predictions. | All required<br>clinical parameters<br>are captured with<br>proper validation<br>and range checking | High     | Sprint-1 |
|           |                                     | USN-4                   | As a doctor, I can upload patient data via CSV/Excel file so that I can process multiple patients efficiently.                                               | System accepts and<br>validates bulk data<br>uploads with error<br>reporting                        | Medium   | Sprint-2 |
|           |                                     | USN-5                   | As a doctor, I can save patient data as drafts so that I can complete entries later without losing information.                                              | Data is<br>automatically<br>saved and can be<br>retrieved for<br>completion                         | Low      | Sprint-2 |
|           | Prediction &<br>Results             | USN-6                   | As a doctor, I can get cirrhosis risk predictions within 3 seconds so that I can make timely clinical decisions.                                             | Prediction results<br>are displayed<br>quickly with<br>confidence scores<br>and risk levels         | High     | Sprint-1 |
|           |                                     | USN-7                   | As a doctor, I can view detailed                                                                                                                             | Key contributing factors are highlighted with                                                       | Medium   | Sprint-2 |

| User Type             | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story /<br>Task                                                                                                       | Acceptance<br>Criteria                                                       | Priority | Release  |
|-----------------------|-------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|----------|
|                       |                                     |                         | prediction<br>explanations so<br>that I understand<br>which factors<br>contributed to<br>the risk<br>assessment.           | their relative<br>importance                                                 |          |          |
|                       |                                     | USN-8                   | As a doctor, I can compare predictions from different ML models (XGBoost vs Random Forest) so that I can validate results. | comparison of<br>model predictions<br>with accuracy                          | Low      | Sprint-3 |
|                       | Report<br>Generation                | USN-9                   | As a doctor, I can generate comprehensive medical reports including prediction results so that I can document patient      | Professional PDF reports with patient data, predictions, and recommendations | High     | Sprint-2 |
|                       |                                     | USN-10                  | assessments. As a doctor, I can export prediction results to integrate with Electronic Health Records (EHR) systems.       | Results exported in<br>HL7 FHIR format<br>for EHR<br>integration             | Medium   | Sprint-3 |
| Medical<br>Technician | Data Entry                          | USN-11                  | As a medical technician, I can input laboratory test results so that doctors can use them for predictions.                 | Lab values are properly validated and stored with appropriate units          | High     | Sprint-1 |
|                       |                                     | USN-12                  | As a medical technician, I can verify and edit patient demographic information so that prediction                          | Data validation<br>ensures consistency<br>and completeness                   | Medium   | Sprint-1 |

| User Type               | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story /<br>Task                                                                                                                 | Acceptance<br>Criteria                                                  | Priority | Release  |
|-------------------------|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|----------|
|                         | Quality<br>Control                  | USN-13                  | accuracy is maintained. As a medical technician, I can flag unusual lab values for doctor review so that data quality is maintained. | Outlier detection<br>with notification<br>system for<br>abnormal values | Medium   | Sprint-2 |
| System<br>Administrator | User<br>Management                  | USN-14                  | As an administrator, I can manage user accounts (create, modify, deactivate) so that system access is properly controlled.           | Complete user lifecycle management with role-based permissions          | High     | Sprint-1 |
|                         |                                     | USN-15                  | As an administrator, I can audit user activities so that system security and compliance are maintained.                              | audit logs with<br>search and<br>reporting                              | High     | Sprint-1 |
|                         | System<br>Monitoring                | USN-16                  | As an administrator, I can monitor system performance and model accuracy so that service quality is maintained.                      | 0 5                                                                     | Medium   | Sprint-2 |
|                         |                                     | USN-17                  | As an administrator, I can update ML models so that prediction accuracy remains current with latest research.                        | Version-controlled<br>model deployment<br>with rollback<br>capabilities | Low      | Sprint-3 |
|                         | Data<br>Management                  | USN-18                  | As an administrator, I can backup and restore patient                                                                                | Automated backup<br>systems with point-<br>in-time recovery<br>options  | High     | Sprint-1 |

| User Type               | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story /<br>Task                                                                                                                                                           | Acceptance<br>Criteria                                                              | Priority | Release  |
|-------------------------|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|----------|
| Hospital IT<br>Manager  | Integration                         | USN-19                  | data so that information is protected against loss. As an IT manager, I can integrate the system with existing hospital information systems so that workflows are streamlined. | API endpoints for<br>seamless<br>integration with<br>HIS/EHR systems                | Medium   | Sprint-3 |
|                         |                                     | USN-20                  | As an IT manager, I can configure system security settings so that HIPAA compliance is maintained. As an IT                                                                    | Comprehensive security configuration with encryption and access controls            | High     | Sprint-1 |
| Research<br>Coordinator | Analytics                           | USN-21                  | manager, I can<br>generate usage<br>analytics and<br>prediction<br>statistics so that<br>system value<br>can be<br>measured.                                                   | Dashboard<br>showing utilization<br>metrics and clinical<br>outcome<br>improvements | Low      | Sprint-3 |
|                         | Data Analysis                       | USN-22                  | As a research coordinator, I can export anonymized prediction data so that clinical research can be conducted.                                                                 | De-identified data<br>export with<br>statistical<br>summaries for<br>research       | Low      | Sprint-3 |
|                         |                                     | USN-23                  | As a research coordinator, I can analyze prediction trends and model performance so that clinical insights can be derived.                                                     | Analytical tools for<br>trend analysis and<br>model performance<br>evaluation       | Low      | Sprint-3 |

### **Data Flow Narrative:**

#### **Process 1.0 - Data Input & Validation:**

Healthcare professionals input patient clinical and laboratory data through web forms. The system validates data ranges, handles missing values, and stores validated information in the Patient Database. Invalid inputs trigger error messages with guidance for correction.

#### **Process 2.0 - Data Preprocessing:**

Raw patient data undergoes preprocessing including normalization, feature scaling, and encoding of categorical variables. The system handles missing values using appropriate imputation techniques and prepares feature vectors for ML model consumption.

#### **Process 3.0 - ML Prediction Engine:**

The core prediction engine loads trained models (XGBoost, Random Forest) and processes feature vectors to generate cirrhosis risk predictions. The system provides confidence scores and risk level categorization.

#### **Process 4.0 - Results Generation & Reporting:**

Prediction results are formatted into comprehensive medical reports, stored for future reference, and presented to healthcare professionals through interactive dashboards and exportable formats.

### **Data Stores:**

| <b>Data Store</b>          | Description                                | Content                                                         |
|----------------------------|--------------------------------------------|-----------------------------------------------------------------|
| D1: Patient<br>Database    | Secure storage of patient clinical data    | Demographics, lab results, medical history, clinical parameters |
| D2: ML Model<br>Repository | Storage of trained machine learning models | Serialized XGBoost and Random Forest models, model metadata     |
| D3: Trained Models         | Active models used for predictions         | Current production models with version information              |
| D4: Results<br>Repository  | Storage of prediction results and reports  | Historical predictions, generated reports, audit trails         |

## **External Entities:**

- 1. **Healthcare Professional (Doctor):** Primary user who inputs patient data and interprets prediction results
- 2. Medical Technician: Supports data entry and quality control processes
- 3. **System Administrator:** Manages system operations, security, and maintenance
- 4. **Hospital IT Manager:** Oversees integration and compliance requirements
- 5. **Research Coordinator:** Utilizes system data for clinical research purposes
- 6. **Patient Data Repository:** External systems providing patient information
- 7. **Electronic Health Records (EHR):** Integration target for prediction results

# **Data Flow Summary:**

The system follows a structured data flow from clinical data input through machine learning prediction to results delivery, ensuring data integrity, security, and clinical utility throughout the process. Each process is designed to support healthcare workflows while maintaining HIPAA compliance and medical data standards.