Маршрутизация Статическая маршрутизация Адаптивная маршрутизация Протокол RIP

Маршрутизатор

- Маршрутизатор (router) сетевое устройство, предназначенное для объединения сетей (в т.ч. различных) в составные сети
- Маршрутизатор это компьютер, выполняющий следующие функции:
 - выбор наилучшего маршрута для пакета
 - передача сетевых пакетов между сетями

Интерфейсы маршрутизатора

- Интерфейсы (маршрутизатора) физические разъёмы, предназначенные для получения и отправки сетевых пакетов
 - служат для подключения маршрутизатора к сетям
 - должны соответствовать канальным технологиям своих сетей (Fast Ethernet, FDDI, X.25 и т.д.)
 - имеют собственные физические (MAC) и логические (IP) адреса

Работа маршрутизаторов

Source	Destination	Metric	via
Connected	172.16.1.0/24	[1]	fe0
S tatic	172.16.2.0/24	[2]	sO
Connected	192.168.1.0/30	[1]	s0
Connected	192.168.1.4/30	[1]	sl
Connected	192.168.1.8/30	[1]	s2

- Выбор наилучшего маршрута для пакета
- Передача пакета по выбранному маршруту

Таблица маршрутизации

- Содержит информацию о всех известных узлу (маршрутизатору или компьютеру) сетях
- Обязательные поля:
 - IP-адрес сети назначения
 - направление (собственный интерфейс или IP следующего маршрутизатора next hop)
- Дополнительные поля:
 - источник записи
 - маска подсети
 - метрика, adm.distance
 - TTL (время жизни) и др.
- Источники записей:
 - Connected (C) непосредственно подключенные сети
 - Static (S) статически добавленные администратором
 - Dynamic (R RIP, O OSPF, D EIGRP) –
 созданные протоколом маршрутизации

```
Router#show ip route
<...>
Gateway of last resort is 194.85.37.217 to network 0.0.0.0
82.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
S 82.179.84.222/32 [1/0] via 195.209.136.34
S 82.179.84.0/27 [1/0] via 195.209.136.34
194.85.37.0/30 is subnetted, 1 subnets
C 194.85.37.216 is directly connected, FastEthernet2/0
S 195.209.137.0/24 is directly connected, Null0
S* 0.0.0.0/0 [1/0] via 194.85.37.217
S 172.16.0.0/12 [1/0] via 195.209.136.34
S 192.168.0.0/16 [1/0] via 195.209.136.34
Router#
```


Метрика

Метрика (metric) – аддитивная характеристика протяженности маршрута (напр., количество хопов, битовая скорость, задержки) – критерий выбора маршрута

AD – Administrative Distance

- Administrative Distance (AD) дополнительный субъективный критерий выбора маршрута, показывающий релевантность (надежность) источника маршрута. Используется для сравнения маршрутов, полученных из разных источников (т.к. их невозможно сравнивать по метрике).
- AD настраиваемая величина, независимо на каждом роутере.
- Примеры значений AD по умолчанию для некоторых источников см. в таблице.

Источник маршрута	AD
Directly connected interface	0
Static route	1
EIGRP Summary	5
External BGP	20
Internal EIGRP	90
IGRP	100
OSPF	110
IS-IS	115
RIP v1/v2	120
External EIGRP	170
Internal BGP	200
Unknown and unused	255

Жизненный цикл пакета (1)

- 1) у меня готов пакет для ПК В
- 2) ПК **В** <u>в другой сети</u>, отправляю **R1**
- 3) Какой MAC-адрес у **R1**? Ищу в таблице, если нет ARP-запрос
- 4) Формирую кадр, отправляю на R1

Жизненный цикл пакета (2)

Жизненный цикл пакета (3)

- 1) Я получил на **s0** пакет для 172.16.2.156
- 2) По таблице маршрутов нахожу собственный интерфейс в сети назначения: **fe1**
- 3) Какой МАС у 172.16.2.156? Поиск по ARP-таблице (ARP-запрос)
- 4) Формирую кадр и отправляю В

Source IP Destination IP

172.16.1.14 172.16.2.156 DATA

Source MAC Destination MAC

O0c0.0000.fe01 0000.2222.bbbb Пакет

Маршрутизация пакета (по шагам)

- 1. Из кадра, поступившего на входной интерфейс маршрутизатора, извлекается IPпакет, анализируется IP-адрес назначения
- 2. Если сеть назначения не достигнута, для этого адреса по таблице маршрутизации определяется маршрут: выходной интерфейс, IP-адрес следующего маршрутизатора и т.д.
- 3. Исходный пакет (при необходимости) упаковывается в кадр нижележащей технологии LAN/WAN и отправляется через выходной интерфейс на следующий маршрутизатор (или узел назначения, если сеть назначения достигнута)
- Шаги 1-3 повторяются на всех промежуточных маршрутизаторах, пока пакет не достигнет узла назначения
- МАС-адреса отправителя и получателя меняются каждый круг
- <u>IP-адреса</u> отправителя и получателя <u>не меняются никогда</u>

Принципы маршрутизации

- Каждый маршрутизатор принимает решение о продвижении пакета независимо от других, на основе своей таблицы маршрутов
- Наличие записи в таблице одного маршрутизатора <u>не гарантирует</u> её наличие в таблицах <u>других</u> узлов
- Наличие в таблице маршута из сети А в сеть В не гарантирует наличие <u>обратного</u> маршрута (асимметричность маршрутизации)

Методы маршрутизации

Статическая маршрутизация

Необходимость настройки М.

- У R1 есть интерфейсы во всех сетях
- Необходимые маршруты (типа С Connected) будут добавлены в таблицу автоматически

- У R1 нет интерфейса в сети 10.0.3.0/24– он сам не может узнать о ней
- Необходимо сообщить ему о ней вручную (статический маршрут) или заставить R2 сделать это (настроить протокольную маршрутизацию)

Маршрут по умолчанию

Суммирование маршрутов

Настройка статической М. – пример

- router#show ip route
 выводит текущую таблицу маршрутизации
- router#show ip protocols
 - выводит расширенную информацию об используемых протоколах маршрутизации
- router(config)#ip route 192.168.1.0 255.255.255.0 fe0/0
- router(config)# ip route 192.168.2.0 255.255.255.0
 10.0.0.1
 - добавляет статические маршруты до указанных сетей с указанием собственного интерфейса (а) и next-hop адреса (б)

Адаптивная маршрутизация

■ Адаптивная маршрутизация (adaptive routing) — это совокупность методов маршрутизации, при которых маршрутизаторы могут в процессе работы изменять таблицы маршрутов, подстраиваясь под изменения в сети

Протокол маршрутизации

Задачи:

- Нахождение удалённых сетей
- Актуализация маршрутной информации
- Выбор лучшего маршрута до сети назначения
- Готовность найти новый лучший маршрут в случае непригодности текущего

Компоненты:

- Структура данных (отдельные таблицы и базы данных)
- 🔼 Алгоритм (для выбора кратчайшего пути)
- Сообщения (для нахождения соседей, обмена маршрутной информацией и т.д.)

Общий принцип работы:

- Маршрутизатор передаёт и принимает маршрутные сообщения с помощью интерфейсов
- Маршрутизатор обменивается маршрутной информацией с другими маршрутизаторами,
 использующими тот же протокол маршрутизации
- Маршрутизаторы обмениваются маршрутной информацией для нахождения удалённых сетей
- Маршрутизаторы оповещают друг друга об изменениях в топологии

Статическая vs. динамическая маршрутизация

	Динамическая М.	Статическая М.
Сложность конфигурирования	Не зависит от размера сети	Возрастает с увеличением размера сети
Требования к квалификации администратора	Требуются специальные навыки и знания	Требуются базовые навыки и знания
Изменения топологии	Автоматическая адаптация к изменениям топологии	Требуется вмешательство администратора
Масштабируемость	Подходит для любых топологий	Подходит для простых топологий
Безопасность	Менее безопасна	Более безопасна
Ресурсоёмкость	Расходует пропускную способность, CPU и RAM	Не потребляет ресурсов
Предсказуемость	Маршруты переменны	Маршруты постоянны

Дистанционно-векторные протоколы маршрутизации

- В качестве характеристики маршрута используется вектор расстояний (DV) маршрутизаторы не знают полной топологии сети
- Маршрутизаторы периодически рассылают друг другу обновления маршрутной информации
 - адрес рассылки обновлений: 255.255.255.255
 - обновления содержат таблицы маршрутизации целиком

Вектор-расстояние

- Вектор-расстояние (англ. distance vector) характеристика маршрута, включающая направление, т.е. номер интерфейса и/или адрес следующего маршрутизатора (вектор), и расстояние (метрику маршрута) до удалённой сети
- **Хоп** (hop *англ*. скачок) переход пакета между двумя соседними маршрутизаторами на маршруте

Routing information protocol

- Внутренний протокол маршрутизации дистанционно-векторного типа
- Основан на математическом алгоритме Беллмана-Форда
- Использует hop count в качестве метрики
- Версии:
 - RIPv1 классовая марш. RFC 1058
 - RIPv2 бесклассовая марш. RFC 2453
 - RIPng RIPv2 с поддержкой IPv6 RFC 2080

Протокол RIP – пример (1)

распознавание подключённых сетей

Протокол RIP – пример (2)

Мне известны следующие маршруты: 201.36.14.0 [0] 132.11.0.0 [0] 194.27.18.0 [0] 2 этап – рассылка элементарных таблиц

Протокол RIP – пример (3.1)

Протокол RIP – пример (3.2)

```
132.11.0.0 = 0 (s0, connected)
```

132.11.0.0 = 1 (s0, 132.11.0.101)

C 201.36.14.0	[0]	via	fe0
C 132.11.0.0	[0]	via	s0
C 194.27.18.0	[0]	via	s1
D 132.17.0.0	[1]	via	132.11.0.101 (s0)
D 132.15.0.0	[1]	via	132.11.0.101 (s0)
D 132.11.0.0	[1]	via	132.11.0.101 (s0)
D 202.101.15.0	[1]	via	194.27.18.51 (s1)
D 194.27.18.0	[1]	via	194.27.18.51 (s1)
D 194.27.19.0	[1]	via	194.27.18.51 (s1)

Протокол RIP – пример (4.1)

Протокол RIP – пример (4.2)

C 201.36.14.0	[0]	via	fe0
C 132.11.0.0	[0]	via	sO
C 194.27.18.0	[0]	via	s1
D 132.17.0.0	[1]	via	sO
D 132.15.0.0	[1]	via	s0
D 194.27.19.0	[2]	via	132.11.0.101 (s0)
D 202.101.16.0	[2]	via	132.11.0.101 (s0)
D 202.101.15.0	[1]	via	s1
D 194.27.19.0	[1]	via	s1
D 132.15.0.0	[2]	-via	194.27.18.51 (s1)
D 202.101.16.0	[2]	via	194.27.18.51 (s1)

Обработка изменений топологии

- Причины изменения топологии
 - Выход из строя канала связи
 - Выход из строя маршрутизатора
 - Активация нового канала связи
 - Изменение параметров канала связи

- Обновления
 - Периодические (каждые 30 сек)
 - Триггерные (при изменении топологии)
- 💶 Таймеры
 - invalid (180 сек) выставление метрики [16]
 - flush (240 сек) удаление маршрута
 - holddown (180 сек) заморозка изменений

Маршрутные петли (1)

- Сеть 172.16.2.0/24 «падает»
- R2 успевает послать обновление раньше, чем R1
- Пакет от R1 в сеть 172.16.2.0/24 зацикливается между R2 и R3

Маршрутные петли (2)

Механизмы возникновения:

- Неверно настроенные статические маршруты
- Неверно настроенное взаимодействие нескольких протоколов маршрутизации
- Недостаточно частые обновления маршрутных таблиц в быстро меняющейся сети
- Неверно сконфигурированный протокол маршрутизации

- Способы предотвращения (протокол RIP):
 - Максимальная метрика (16)
 - Holddown timer (таймер заморозки)
 - Split horizon («разделение горизонта»)
 - Route poisoning или poison reverse
 - Триггерные обновления
 - IP TTL (Собственный механизм протокола IP)

Count to Infinity

- Метрика увеличивается на каждом этапе обновления – до бесконечности
 - Установим «конечную» бесконечность в RIP бесконечности соответствует метрика 16, network unreachable

Hold-down timer

- R2 получает от соседа R1 извещение о том, что сеть А недоступна
- R2 помечает сеть А как «возможно, недоступную» и запускает таймер заморозки (2)
- При получении маршрута с **лучшей** метрикой в течение таймера R1 обновит маршрут и сбросит таймер
- При получении маршрута с равной или худшей метрикой в течение таймера R1 игнорирует данное обновление (3)
- По истечении таймера «возможно, недоступные» сети помечаются как недоступные

Split horizon

 Маршрутизатор не передаёт информацию о сети на тот интерфейс, через который эта информация была получена

Split horizon with Poison reverse

 Маршрутизатор передаёт обратно на интерфейс, через который получена информация о сети, маршрут с бесконечной метрикой.

IP «Time to live» – TTL

Каждыймаршрутизатор при продвижении IP- пакета сокращает TTL на единицу

s0

s0

- При истечении TTL пакет уничтожается
- На использовании TTL основана утилита TRACEROUTE

Hастройка RIP – пример

- router#show ip rip [...] сведения о конфигурации и работе протокола RIP
- router (config) #router rip
 переход в режим конфигурирования протокола RIP
- router(config-router) #version { 1 | 2 }
 - включает протокол RIP выбранной версии
- router(config-router) #no auto-summary
 - отключает автосуммирование маршрутов (по умолчанию включено)
- router(config-router) #network 10.0.0.0
 - включает RIP на всех интерфейсах, входящих в указанную сеть
- router(config-router) #passive-interface f0/0
 - переводит интерфейс f0/0 в пассивный режим; пассивные интерфейсы не осуществляют рассылку маршрутных сообщений
- router(config-router)#default-information originate
 - включает анонсирование маршрута по умолчанию