Homework Set #1.

Due Date: Wednesday January 16, 2019

- 1. Prove via the dual correspondence definition that the hermitian conjugate of $|\alpha \rangle \langle \beta|$ is $|\beta \rangle \langle \alpha|$. [1 point]
- 2. Prove that, in the absence of degeneracy, a sufficient condition for the following to be true

$$\sum_{b'} < c'|b'> < b'|a'> < a'|b'> < b'|c'> =$$

$$= \sum_{b',b''} \langle c'|b' \rangle \langle b'|a' \rangle \langle a'|b'' \rangle \langle b''|c' \rangle$$

(where as usual |a'| > is an eigen-ket of A etc.) is that [A, B] = 0 or that [B, C] = 0. [2 points]

- 3. Show that for the $|S_z|$ + > state of a spin $\frac{1}{2}$ system $|S_x|$ > $|S_x|$ > 2= $\hbar^2/4$. [2 points]
- 4. A two-state system is characterized by the Hamiltonian

$$H = H_{11}|1> <1| + H_{22}|2> <2| + H_{12}[|1> <2| + |2> <1|]$$

where H_{11} , H_{12} , and H_{22} are real numbers with the dimension of energy, and $|1\rangle$ and $|2\rangle$ are eigenkets of some observable $\neq H$. Find the energy eigenkets and corresponding energy eigenvalues. [3 points]

5. Construct the transformation matrix that connects the S_z diagonal basis to the S_x diagonal basis and show that your result is consistent with the general relation

$$U = \sum_{r} |b^{(r)}| > < a^{(r)}|.$$

[2 points]

6. An operator A, corresponding to an observable α , has two normalized eigenstates $|\phi_1\rangle$ and $|\phi_2\rangle$, with eigenvalues a_1 and a_2 . An operator B, corresponding to an observable β , has normalized eigenstates $|\chi_1\rangle$ and $|\chi_2\rangle$. The eigenstates are related by

$$|\phi_1> = \frac{2|\chi_1> + 3|\chi_2>}{\sqrt{13}}, \qquad |\phi_2> = \frac{3|\chi_1> - 2|\chi_2>}{\sqrt{13}}.$$

 α is measured and the value a_1 is obtained. If β is then measured and then α again, find the probability of obtaining a_1 a second time.

[5 points]