

Examen du 12 Octobre 2021 (90 min)

OMG: Mathématiques Générales

La notation tiendra compte de la RIGUEUR, de la présentation et de la clarté de la rédaction.

★ Exercice 1: Limites, Limites...

▶ Question 1: Calculer deux limites parmi les limites suivantes

1)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin(x)}$$

1)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin(x)}$$
 2) $\lim_{x \to 0} \left(\frac{1+x}{1-x}\right)^{\frac{1}{x}}$ 3) $\lim_{x \to e} \frac{x^e - e^x}{(x-e)^2}$

3)
$$\lim_{x \to e} \frac{x^e - e^x}{(x - e)^2}$$

4)
$$\lim_{x \to 3} \left(\frac{x^2 + x + 3}{x^2 + x + 1} \right)^{x^2}$$
 5) $\lim_{x \to 0} \frac{\sin(x) - \sin(x^2)}{x - 1}$ 6) $\lim_{x \to 0} \frac{\sin x - \arcsin x}{\sin^3 x}$

5)
$$\lim_{x\to 0} \frac{\sin(x)-\sin(x)}{x-1}$$

6)
$$\lim_{x \to 0} \frac{\sin x - \arcsin x}{\sin^3 x}$$

\bigstar Exercice 2: L'ensemble ϵ des notes

On note \mathcal{E} l'ensemble de toutes les applications continues de \mathbb{R} dans \mathbb{R} et vérifiant :

$$\forall (x;y) \in \mathbb{R}^2, \quad f(x+y) + f(x-y) = 2f(x)f(y)$$

On note $\mathcal F$ l'ensemble des fonctions de $\mathcal E$ qui s'annulent au moins une fois dans $\mathbb R$

- ▷ Question 1: Montrer que la fonction cos() est dans \mathcal{F} et que cosh() : $x \to \frac{e^x + e^{-x}}{2}$ est dans $\mathcal{E} \setminus \mathcal{F}$
- ▶ Question 2: Soient $f \in \mathcal{E}$ et $\alpha \in \mathbb{R}^*$, montrer que $f_\alpha : x \to f(\alpha x)$ est dans \mathcal{E}
- \triangleright **Question 3:** Soit $f \in \mathcal{E}$ montrer que :

1.
$$f(0) = 0$$
 ou $f(0) = 1$

- 2. Si f(0) = 0 alors f est l'application nulle
- 3. Si f(0) = 1 alors f est paire

★ Exercice 3: (Facultatif;) Comme un air de déjà vu

Nous définissons f par $f(x) = \arctan\left(\frac{\cos(x)}{1-\sin(x)}\right)$

- ${\triangleright}$ Question 1: Simplifier l'écriture de f pour $x \in [-\frac{\pi}{2}; \frac{\pi}{2}[$
- ${\,\vartriangleright\,}$ Question 2: Étudier et représenter f sur son ensemble de définition

★ Exercice 4: Le Démon Stration

Soit u une fonction dérivable sur un intervalle I telle que pour tout x de I, u(x) appartient à un intervalle J. Soit f une fonction dérivable sur l'intervalle J. Soit g la fonction définie sur I par :

$$\forall x \in I, g(x) = f(u(x))$$

Montrer que la fonction g est dérivable sur I et que $\forall x \in I, g'(x) = u'(x) * f'(u(x))$