Overfitting & Model Selection

Classification Errors

- Training errors: Errors committed on the training set
- Test errors: Errors committed on the test set
- Generalization errors: Expected error of a model over random selection of records from same distribution

Test Set

Example Data Set

Two class problem with two features:

- +: 5400 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - 400 noisy instances added
- o: 5400 instances
 - Generated from a uniform distribution

10 % of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better?

Model Underfitting and Overfitting

•As the model becomes more and more complex, test errors can start increasing even though training error may be decreasing

Underfitting: when model is too simple, both training and test errors are large **Overfitting**: when model is too complex, training error is small but test error is large

source: Tan et. Introduction to Data Mining

Model Overfitting – Impact of Training Data Size

Using twice the number of data instances

 Increasing the size of training data reduces the difference between training and testing errors at a given size of model

Reasons for Model Overfitting

- Not enough training data
- High model complexity
 - Multiple Comparison Procedure

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error does not provide a good estimate of how well the tree will perform on previously unseen records

Need ways for estimating generalization errors

Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
 - Using Validation Set
 - Incorporating Model Complexity

Model Selection Using Validation Set

Divide <u>training</u> data into two parts:

- Training set:
 - use for model building
- Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set

Drawback:

Less data available for training

k-Fold Cross Validation

Model Evaluation

Purpose:

 To estimate performance of classifier on previously unseen data (test set)

Holdout/Test Set

- Reserve k% for training and (100-k)% for testing
- Random subsampling: repeated holdout

Cross validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n

Overall Workflow

Model selection: M1 vs M2

In Module 1: Train/Test

- Some issues with this approach:
 - The test set is assumed to be unknown/will be encountered in future
 - Using entire train set for model fitting doesn't say much about the model's performance

In Module 2: Train/Validation/Test

- Training set: used for learning model
- Validation set: used for tuning the parameters
 - Gives an early estimation of the model performance
- Test set: used for assessing the performance of the final model

Model Selection for Decision Trees

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:

threshold

- Stop if number of instances is less than some user-specified threshold
- Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
- Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
- Stop if estimated generalization error falls below certain

Model Selection for Decision Trees

Post-pruning

- Grow decision tree to its entirety
- Subtree replacement
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree