

Ouick start

import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 100) Y = np.cos(X)

fig, ax = plt.subplots() ax.plot(X, Y, color='green')

fig.savefig("figure.pdf") fig.show()

Anatomy of a figure

Subplots layout

subplot[s](rows,cols,...) fig, axs = plt.subplots(3, 3)G = gridspec(rows,cols,...) API ax = G[0,:]ax.inset_axes(extent) d=make axes locatable(ax) API ax = d.new_horizontal('10%')

Getting help

matplotlib.org

github.com/matplotlib/matplotlib/issues

• discourse.matplotlib.org

stackoverflow.com/questions/tagged/matplotlib | gitter.im/matplotlib

¥ twitter.com/matplotlib

✓ Matplotlib users mailing list

scatter(X,Y,...) X, Y, [s]izes, [c]olors, marker, cmap

Advanced plots

API

plt.get_cmap(name)

Tick locators

from matplotlib import ticker ax.[xy]axis.set [minor|major] locator(locator)

ticker.NullLocator()

Tick formatters

ticker.NullFormatter()

from matplotlib import ticker ax.[xy]axis.set_[minor|major]_formatter(formatter)

ticker.FixedFormatter(['zero', 'one', 'two', ...]) ticker.FuncFormatter(lambda x, pos: "[%.2f]" % x)

ticker.FormatStrFormatter('>%d<') ticker.ScalarFormatter()

ticker.StrMethodFormatter('{x}') ticker.PercentFormatter(xmax=5)

Ornaments

ax.legend(...) handles, labels, loc, title, frameon

Event handling

fig, ax = plt.subplots() def on_click(event): print(event) fig.canvas.mpl_connect('button_press_event', on_click)

Animation

import matplotlib.animation as mpla

```
T = np.linspace(0, 2*np.pi, 100)
S = np.sin(T)
line, = plt.plot(T, S)
def animate(i):
    line.set_ydata(np.sin(T+i/50))
anim = mpla.FuncAnimation(
    plt.gcf(), animate, interval=5)
```

Styles

API

plt.show()

plt.style.use(style)

Quick reminder

ax.grid() ax.set_[xy]lim(vmin, vmax) ax.set_[xy]label(label) ax.set_[xy]ticks(list) ax.set_[xy]ticklabels(list) ax.set title(title) ax.tick_params(width=10, ...) ax.set_axis_[on|off]()

fig.suptitle(title) fig.tight_layout() plt.gcf(), plt.gca()
mpl.rc('axes', linewidth=1, ...) [fig|ax].patch.set_alpha(0) text=r'\$\frac{-e^{i\pi}}{2^n}\$'

Keyboard shortcuts

ctrl + s Save ctrl + w Close plot f Fullscreen 0/1

y Y pan/zoom

r Reset view f View forward

b View back p Pan view O Zoom to rect

x X pan/zoom

g Minor grid 0/1

G Major grid 0/1

X axis log/linear L Y axis log/linear

Ten simple rules

1. Know Your Audience

2. Identify Your Message

3. Adapt the Figure

4. Captions Are Not Optional

5. Do Not Trust the Defaults 6. Use Color Effectively

7. Do Not Mislead the Reader

8. Avoid "Chartiunk"

9. Message Trumps Beauty 10. Get the Right Tool

ļ	<u>_</u>	(1,1) top
∐N∕I ⊃	tolot	
ILAIC	$\mathbf{I} \cup \mathbf{D} \cup \mathbf{U}$	■ LID baseli
(0,0)		bottoi
left	center	right

Text parameters

ax.text(, fontproperties=)	Ü	,	
The quick brown fox		xx-large	(1.73)
The quick brown fox		x-large	(1.44)
The quick brown fox		large	(1.20)
The guick brown fox		medium	(1.00)
The guick brown fox		small	(0.83)
The quick brown fox		x-small	(0.69)
The quick brown fox		xx-small	(0.58)

ax.text(..., family=..., size=..., weight=...)

AA 31110 (0.50)
black (900)
bold (700)
semibold (600)
normal (400)
ultralight (100)

The quick brown fox jumps over the lazy dog	monospace
The quick brown fox jumps over the lazy dog	serif
The quick brown fox jumps over the lazy dog	sans
The quick brown fox jumps over the lazy dog	cursive
The quick brown fox jumps over the lazy dog	italic
The quick brown fox jumps over the lazy dog	normal
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG The quick brown fox jumps over the lazy dog	small-caps normal

sinc

mitchell

Legend placement

2: upper left

10: center 6: center left 7: center right 3: lower left 8: lower center 4: lower right A: upper right / (-0.1,0.9) B: center right / (-0.1,0.5) C: lower right / (-0.1,0.1) D: upper left / (0.1,-0.1) E: upper center / (0.5,-0.1) F: upper right / (0.9, -0.1)

9: upper center 1: upper right

G: lower left / (1.1,0.1) H: center left / (1.1.0.5) I: upper left / (1.1,0.9) J: lower right / (0.9,1.1) K: lower center / (0.5,1.1) L: lower left / (0.1,1.1)

Annotation connection styles arc3, rad=0 arc3, rad=0.3 angle3, angleA=0, angleB=90

How do I ...

... resize a figure? \rightarrow fig.set_size_inches(w, h) ... save a figure? → fig.savefig("figure.pdf") ... save a transparent figure? → fig.savefig("figure.pdf", transparent=True) ... clear a figure/an axes? \rightarrow fig.clear() \rightarrow ax.clear() ... close all figures? → plt.close("all")

> ... remove ticks? \rightarrow ax.set_[xy]ticks([]) ... remove tick labels?

→ ax.set_[xv]ticklabels([]) ... rotate tick labels?

 \rightarrow ax.set_[xv]ticks(rotation=90)

... hide top spine? → ax.spines['top'].set_visible(False)

... hide legend border? → ax.legend(frameon=False)

... show error as shaded region? → ax.fill_between(X, Y+error, Y-error)

... draw a rectangle?

 \rightarrow ax.add_patch(plt.Rectangle((0, 0), 1, 1) ... draw a vertical line?

 \rightarrow ax.axvline(x=0.5) ... draw outside frame?

 \rightarrow ax.plot(..., clip_on=False)

... use transparency?

 \rightarrow ax.plot(..., alpha=0.25)

... convert an RGB image into a gray image? \rightarrow grav = 0.2989*R + 0.5870*G + 0.1140*B

... set figure background color?

→ fig.patch.set_facecolor("grey") ... get a reversed colormap?

→ plt.get_cmap("viridis_r")

... get a discrete colormap? \rightarrow plt.get_cmap("viridis", 10)

... show a figure for one second?

 \rightarrow fig.show(block=False), time.sleep(1)

Performance tips

scatter(X, Y)slow plot(X, Y, marker="o", ls="") fast for i in range(n): plot(X[i]) slow plot(sum([x+[None] for x in X],[]))fast cla(), imshow(...), canvas.draw() slow im.set_data(...), canvas.draw() fast

Beyond Matplotlib

Seaborn: Statistical Data Visualization Cartopy: Geospatial Data Processing yt: Volumetric data Visualization mpld3: Bringing Matplotlib to the browser Datashader: Large data processing pipeline plotnine: A Grammar of Graphics for Python

Matplotlib Cheatsheets Copyright (c) 2021 Matplotlib Development Team Released under a CC-BY 4.0 International License

