0.1 Definition 1-Using natural transformations

Let C be a category.

A monad on C consists of:

- a functor $T: \mathcal{C} \to \mathcal{C}$ (endofunctor)
- a natural transformation η called the unit:

• a natural transformation μ called multiplication:

satisfying three properties:

• the right identity law

• the left identity law

• the associativity law

It is similar to a monoid, so the name is not a coincidence:

- set *X*
- element $e \in X$
- function $*: X^2 \to X$

Also satisfying three equations:

- $\forall x \in X.x * e = x$
- $\forall x \in X.e * x = x$
- $\forall x, y, z \in X.(x * y) * z = x * (y * z)$

0.2 Definition 2-As a Kleisli triple

Let C be a category.

A Kleisli triple on $\mathcal C$ consists of:

- for each object *A*, we have an object *TA* and a morphism $\eta_A : A \to TA$.
- for objects A, B and morphism $f: A \to TB$, we have a morphism $f*: TA \to TB$.

such that the following equations are satisfied:

• left identity law:

analogous to:

$$a:A,f:A\to TB\vdash \mathtt{return}\ a>>=f=f\ a$$
 in Haskell.

• right identity law: $\eta_B *_{B,B} = id_{TB}$ analogous to:

$$p:TB \vdash p>>= \lambda x. \text{ return } x=p:TB$$
 in Haskell.

• associativity law:

analogous to:

$$p: TA, f: A \rightarrow TB, g: B \rightarrow TC$$

 $\vdash (p >>= f) >>= g = p >>= (f >>= g)$
in Haskell.

Even though the Kleisli triple makes no mention of naturality, it is equivalent to the previous definition given.

0.3 Example: Maybe and Exception monad

$$Maybe \ X = X + 1 = \{inlx | x \in X\} \cup \{inr()\}$$

 $Exc_E X = X + E$ where E is a set of behaviours.

The *Exc* (Exception monad) generalises *Id* (Identity monad) and *Maybe* monad:

- $Id: E = \emptyset$
- *Maybe*: $E = 1 = \{()\}$

In **Set**, where morphisms are functions, let's check that Exc_E is indeed a monad.

1. First we map functions to Exc_E :

2. Unit at *X* (the return) is

$$X \longrightarrow X + E$$

$$x \longmapsto inl x$$

We can check that this is natural (as in definition 1):

therefore we have a single case

3. Multiplication $(T^2X \xrightarrow{\mu_X} TX) \mu$ is:

$$\mu_X : (X + E) + E \rightarrow X + E$$
 $inl \ inl \ x \longmapsto inl \ x$
 $inl \ inr \ e \longmapsto inr \ e$
 $inr \ e \longmapsto inr \ e$

Once again, we can check it is natural:

for
$$f$$
 $(X + E) + E \xrightarrow{\mu_X} X + E$
 $f \mapsto f$ $(f + E) + E$ $f \mapsto f \mapsto f$

we have to check 3 cases:

which all commute.

- 4. Finally, we have to check the three properties:
 - (a) left identity law:

(b) right identity law:

$$TX \xrightarrow{(T\eta)_X} T^2X$$

$$\downarrow \mu$$

$$TX$$

This can be defined using right-whiskering:

This can be defined using right-whiskering:

$$C \xrightarrow{F} D \xrightarrow{K} E$$

$$\downarrow \alpha$$
therefore $X \longmapsto KGX$

$$C \xrightarrow{G} D \xrightarrow{K} E$$

$$TX \xrightarrow{T\eta_X} T^2X$$

$$TX \xrightarrow{T} \mu$$

$$TX$$

(c) associativity law:

Now the actual proof that the properties indeed hold:

(a) There are two cases to show the left-identity law; *inl x* and *inr e*:

(b) There are two cases to show the right-identity law; *inl x* and *inr e*:

(c) There are four cases to show the associativity law; *inl inl inl x, inl inl inr e, inl inr e,* and *in e*:

With this, we have shown that the properties hold, and that Exc_E is indeed a monad.

0.4 Kleisli extension

Monads are many times implemented using the Kleisli extension. As with Haskell.

$$(-)^*: hom(X, TY) \rightarrow hom(TX, TY)$$

Given a monad $\langle T, \eta, \mu \rangle$ over category C and a morphism $f: X \to TY$:

$$f^*: TX \to TY$$
$$f^* = \mu_Y \circ Tf$$

In other words:

 $f: X \to TY$ is any function that gives us the monad type in Haskell. This also matches η , which is equivalent to the return function.

 $f^*: TX \to TY$ is analogous to the bind function in Haskell. The difference is that arguments are in different order.

For example, if we apply this to the Exc_E monad:

$$X \xrightarrow{f} Y + E$$

$$X + E \xrightarrow{f^*} Y + E$$
so

 $inl \ x \mapsto f \ x$ $inr \ e \mapsto inr \ e$

0.5 Comparison with Haskell

Monads can be defined in the standard mathematical way or through the Kleisli triple. We can either have:

- $< T, \eta, \mu >$, where T gives us the type of the monad, η is the return and μ is the join. Note that T is a functor, so in Haskell, this would be a pair (T, fmap), which maps objects and functions.
- $< T, \eta, (-)^* >$, where T gives us the type, again a pair with fmap, η is the return, and $(-)^*$ is equivalent to bind (»=).

This can be seen more clearly with the types:

join and μ (multiplication):

join :: T T A
$$\rightarrow$$
 T A $\mu: TTA \rightarrow TA$

bind and $(-)^*$ (Kleisli extension operator):

»= :: T A -> (A -> T B) -> T B
$$(-)^*: (A \to TB) \to (TA \to TB)$$

We can show that a Kleisli triple on *C* is equivalent to the standard mathematical definition of a monad on *C* because:

- μ and η give you »=, i.e. $(-)^*$
- $(-)^*$ and η give you join, i.e. μ

0.6 Exercise: State monad

Let *S* be a set (for some state, i.e. the type of the state/store).

We can define a monad on **Set** with $T A = S \rightarrow (S \times A)$

In programming, *T A* would be a stateful program that returns a value of type *A*.

For instance, if
$$A = \mathbb{N}$$
, then $T \mathbb{N} = S \to (S \times \mathbb{N})$.

We could write a program that uses this state:

```
\lambda b: bool.(not b, b): T bool
```

This program would take the original state, invert it, and then output the original state.

With that context, we can define the monad either the standard way, or as a Kleisli triple. Defining it as a Kleisli triple:

Let *State* be the monad:

- State $X = S \rightarrow (S \times X)$
- The Unit (η)

$$\eta: X \to (S \to (S \times X))$$

 $\eta = x \mapsto (s \mapsto (s, x))$ where $s: S$ and $x: X$

• The Kleisli operator (equivalent to bind):

Given
$$g: X \to (S \to (S \times Y))$$

 $g^*: (S \to (S \times X)) \to (S \to (S \times Y))$
 $g^*= f \mapsto s \mapsto (g(\pi_2 f s)) (\pi_1 f s)$

This is analogous to the Haskell state monad. Given *State* is analogous to our functor *T*:

```
newtype State s a = State runState :: s -> (a, s)
return :: a -> State s a
return x = State ( \s -> (x, s) )

(>=) :: State s a -> (a -> State s b) -> State s b
(State h) >= f
= State ( \s -> let (a,new_sate) = h s in f a new_state )
```

Alternatively:

```
type State s a = s \rightarrow (a,s) return x = \lambda s \rightarrow (x,s) f >= g = \lambda s \rightarrow case f s of (x,s') \rightarrow g x s'
```