

Bachelor of Science (BSc) in Informatik

Modul Advanced Software Engineering 1 (ASE1)

Software Architektur

Werkzeuge

Institut für Angewandte Informationstechnologie (InIT)

Walter Eich (eicw) / Matthias Bachmann (bacn)

https://www.zhaw.ch/de/engineering/institute-zentren/init/

- 6.1. Lernziele
- 6.2. Allgemeine Hinweise
- 6.3. Werkzeuge zum Anforderungsmanagement
- 6.4. Werkzeuge zur Modellierung
- 6.5. Werkzeuge zur Generierung
- 6.6. Werkzeuge zur statischen Codeanalyse
- 6.7. Werkzeuge zur dynamischen Analyse
- 6.8. Werkzeuge zum Build-Management
- 6.9. Werkzeuge zum Konfigurations- und Versionsmanagement
- 6.10. Werkzeuge zum Codemanagement
- 6.11. Werkzeuge zum Test
- 6.12. Werkzeuge zur Dokumentation

Lernziele

- LZ 5–1: Wichtige Werkzeugkategorien benennen und einordnen
- LZ 5–2: Werkzeuge bedarfsgerecht auswählen

- Für die Prüfung zum CPSA-F müssen keine konkreten Vertreter typischer Werkzeuge oder Produkte genannt werden.
- Es geht für die Prüfung primär um Werkzeugkategorien und Entscheidungskriterien
- Werkzeuge sollen ihre jeweiligen Aufgaben
 - funktional umfänglich und zuverlässig erledigen,
 - geringe Auswirkungen an anderen Stellen besitzen.
- Wichtig bei Werkzeugen
 - Kosten
 - Lizenzbedingungen.

Kategorien

- Werkzeuge zum Anforderungsmanagement
- Werkzeuge zur Modellierung
- Werkzeuge zur Generierung
- Werkzeuge zur statischen Codeanalyse
- Werkzeuge zur dynamischen Analyse
- Werkzeuge zum Build-Management
- Werkzeuge zum Konfigurations- und Versionsmanagement
- Werkzeuge zum Codemanagement
- Werkzeuge zum Test
- Werkzeuge zur Dokumentation

Werkzeuge zum Anforderungsmanagement

- Anforderungsmanagement wird über den gesamten Lebenszyklus der Systementwicklung durchgeführt
- Unterstützung Workflow:
 - Anforderungen erheben
 - Dokumentieren
 - abstimmen und kommunizieren
 - verwalten

Werkzeuge zum Anforderungsmanagement Anforderungen und Entscheidungskriterien

- Unterstützung bei der Erfassung und Analyse der Anforderungen
- Möglichkeit zur textuellen und grafischen Darstellung von Anforderungen
- Verwaltung der Anforderungen
- Reduktion von Redundanzen
- Unterstützung der Rückverfolgbarkeit zwischen Anforderungen und Architektur
- Teamfähigkeit
- Versions- und Konfigurationsmanagement
- Parallele Bearbeitung (durch mehrere Benutzer)

Werkzeuge zur Modellierung

- Modellierungswerkzeuge k\u00f6nnen fachliche und technische Modelle von Software sowie Anforderungs- und Problemdom\u00e4nen darstellen.
- Sie helfen dabei, meist grafische Abstraktionen der Realität zu erstellen und zu pflegen.
- Anforderungen und Entscheidungskriterien
 - Unterstützung standardisierter Modellierungsmethoden, beispielsweise UML, SysML, Entity-Relationship-Modelle, BPMN, StateCharts oder andere
 - Unterstützung freier (informeller) Modelle
 - ► Unterstützung unterschiedlicher Sichten/Modelltypen (Diagrammarten)
 - Unterstützung von statischer und dynamischer Modellierung
 - Unterstützung expliziter Metamodelle
 - Möglichkeiten zur manuellen oder programmatischen Modifikation der Metamodelle
 - ▶ Domänenspezifische Sprachen, auch grafischer Art

- Generierungswerkzeuge können auf Basis abstrakter Beschreibungen beliebige Artefakte generieren.
- Beispielsweise können sie auf Basis von
 - ► UML-Klassenmodellen die zugehörigen Klassen- und Methodenrümpfe in unterschiedlichen Programmiersprachen generieren.
 - ▶ Datenmodellen die zugehörigen SQL- oder DDL-Statements für bestimmte Datenbanksysteme generieren, Testdaten oder auch Datenzugriffsbausteine.
 - Formalen Grammatiken die zugehörigen Lexer und Parser generieren.
 - XML-Schemata (xsd's) passende Klassen oder generieren,
 - Quellcode zugehörige Dokumentation erzeugen.
- Anforderungen und Entscheidungskriterien
 - ▶ Unabhängigkeit von der Zielplattform bzw. des Formats der generierten Artefakte
 - Unabhängigkeit von Metamodellen der Eingabedaten/-artefakte
 - ► Flexibilität des Transformationsprozesse

Werkzeuge zur statischen Codeanalyse

- Bei der statischen Analyse wird der Quelltext einer Reihe formaler Prüfungen unterzogen, um die Anwendung nach Auffälligkeiten und Fehlern zu durchsuchen.
- Dies kann manuell sowie werkzeuggestützt erfolgen.
- Prüfung der Umsetzung der Architekturvorgaben
- Anforderungen der Werkzeuge
 - automatisierbar, in Build-Prozess integrierbar
 - Reporting: Aufbereitung der Ergebnisse in verschiedenen Formaten (HTML, RSS, etc.) inklusive Visualisierung
 - flexible Analysekriterien und Metriken
 - ► Unterstützung unterschiedlicher Programmiersprachen

Werkzeuge zur dynamischen Analyse

- Ziele sind unter anderem
 - Geschwindigkeitsmessung
 - Zeitmessung bestimmter Systemteile in Relation zu anderen Systemteilen
 - Messung der Speichernutzung
 - statistische Auswertung (Nutzungsmetriken)
- Anforderungen und Entscheidungskriterien
 - möglichst geringe Auswirkung auf das Laufzeitverhalten, den Speicher- oder CPU-Bedarf
 - verständliche, zielgruppengerechte Darstellung der Ergebnisse
 - ► Eignung auch für verteilte Systeme

Werkzeuge zum Build-Management

- Aufgaben der Werkzeuge
 - Management der Übersetzungs- und Transformationsaufgaben (Compile,
 - ► Link, Deploy
 - Management von Continuous Integration
 - Abhängigkeitsmanagement
 - Ausführung und Reporting automatisierter Tests
 - Prüfung auf Einhaltung struktureller Vorgaben und Programmierkonventionen
- Anforderungen und Entscheidungskriterien
 - ▶ Build-Prozess definierbar
 - minimale Auflösung transitiver Abhängigkeiten,
 - ► Integration mit Werkzeugen zur Versions- und Konfigurationsverwaltung,
 - Codeanalyse, Ausführung automatisierter Tests und deren Reporting
 - Anbindung an Continuous-Integration-Werkzeuge oder -Prozesse

- Aufgaben der Werkzeuge
 - Zuordnung und Selektion von Konfigurationselementen zu einer Konfiguration
 - Inventarisierung
 - Rekonstruktion einer Konfiguration
 - Anforderungen und Entscheidungskriterien
 - Skalierbarkeit auf große Entwicklungsteams
 - Behandlung beliebiger Varianten (Branches, Versionen)
 - Zuverlässigkeit und Robustheit
 - Integration mit anderen Werkzeugen (z. B. Versionsverwaltung, Issue- und Anforderungsmanagement, Build-Werkzeuge, Codemanagement)

Werkzeuge zum Codemanagement

- Zu dieser Kategorie von Werkzeugen zählen:
 - syntaxbezogene Editoren
 - Refactoring-Werkzeuge: Umformung von Quellcode unter Beibehaltung der funktionalen Eigenschaften
 - Debugger und integrierte Entwicklungsumgebungen
- Anforderungen und Entscheidungskriterien
 - Integration in Entwicklungsumgebung
 - einfache, ausführbare Beschreibung von Tests
 - Reporting von Testergebnissen
 - Sammlung von Testergebnissen über mehrere Testläufe hinweg zur Erkennung von Trends

Werkzeuge zum Test

- Testwerkzeuge
 - ▶ Unit-Tests, z. B. xUnit-Derivate
 - Laufzeittests, etwa Last-/Performancetests, Stresstests, Robustheitstests
 - ► Penetrationstests, Angriffsszenarien
 - Verwaltung von Testfällen, Testdaten, Testergebnissen

Anforderungen und Entscheidungskriterien

- Integration in Entwicklungsumgebung
- einfache, ausführbare Beschreibung von Tests
- Reporting von Testergebnissen
- Sammlung von Testergebnissen über mehrere Testläufe hinweg zur Erkennung von Trends

- Werkzeuge
 - Klassische Textverarbeitung (»Office-Produkte«) diverser Hersteller
 - Markup-basierte Ansätze (DocBook, DITA, SGML, MarkDown, XHTML),
 - Wikis (beispielsweise die vielen Open-Source-Wikis wie TWiki, Mediawiki), oder das kommerzielle Confluence (Firma Atlassian)
 - Viele Modellierungswerkzeuge können Dokumentation aus ihrem Datenbestand/Repository generieren.

Anforderungen

- Integration mit Versions- und Konfigurationsverwaltung
- Konformität der Ergebnisdokumente mit Unternehmens- oder
 Organisationsstandards, etwa Corporate Layout oder Corporate Design
- Möglichkeit zur Erzeugung Stakeholder-spezifischer Dokumentation
- einfache Synchronisierung der Dokumentation mit Releases oder Versionen der Software und Integration mit Bug- oder Issue-Tracking-Systemen