YOLOVCAPY

Aditya Desai, Linus Fackler, Cesar Gamez, Aryan Punjabi, Muhammad Zaid

Research Lead: Abhishek Mishra

FACULTY ADVISOR DR. KAREN MAZIDI

- Nominee Best Paper, 2016
 Intelligent Tutoring Systems
 Conference
- Grace Hopper Scholar 2015
- UNT Graduate Exhibition, 1st Place 2014

NIGHTTIME DRIVING

- ½ of traffic fatalities occur at night while only ¼ of travel occurs after dark
- Why
 - Drunk driving
 - Fatigue
 - o Impaired Vision

THERMAL CAMERAS

Research Question

Can we train an AI model such that it is able to effectively detect objects in thermal images?

DATA COLLECTION

- Teledyne FLIR
 - Color photos and videos and their thermal counterpart at night.
 - Over 26,442 frames Subjects from more than 15 categories
 - People, bikes, cars, motorcycles, busses, trains, trucks, traffic lights, fire hydrants, street signs, dogs, skateboards, strollers, scooters
 - For our purposes we decreased the number of classes to 12 excluding trains, dogs, scooters, replacing them with "other vehicle" label

YOLO

- Most popular open source object detection model
- YOLOv7 is the newest iteration
- Fast and Diverse

DEVELOPMENT PROCESS FOR YOLOVCAPY

- Inductive Transfer learning
 - Using existing supervised training model on new (labeled) dataset
 - Many benefits
 - Requires lots of data, time, and resources to train and adjust a neural network from scratch
 - Transfer learning is the cheaper and faster way of adapting neural networks

YOLOVCAPY

- Inductive Train YOLOv7 on FLIR dataset with new weights
 - Computer AnalyzedPhotos with Yolo

YOLOVCAPY - DEMO

Confusion Matrix

+		+-	+		
1	Label Name	Ι	Count		
+		+-	+		
1	person		50,478		
\perp	bike		7,237		
\perp	car		73,623		
\perp	motor		1,116		
\perp	bus		2,245		
\perp	truck		829		
\perp	light		16,198		
\perp	hydrant		1,095		
\perp	sign		20,770		
\perp	skateboard		29		
\perp	scooter		15		
١	other vehicle	Ī	1,373		
т.		<u>.</u>			

F1 SCORE CURVE

+	Label Name		Count	·+ ·+
Ī	person	Ī	50,478	Ī
\perp	bike		7 , 237	1
1	car	\perp	73,623	1
1	motor		1,116	1
1	bus		2,245	1
1	truck		829	1
1	light		16,198	1
1	hydrant		1,095	1
1	sign		20,770	1
1	skateboard		29	1
1	scooter		15	1
	other vehicle		1,373	

Mean average precision

RESULTS

mAP captures the tradeoff between **precision** and **recall** and maximizes the effect of both metrics on a model

<u>Class</u>	Labels	P	R	mAP@.5	mAP@.5:.95
all	16460	0.745	0.501	0.523	0.324
person	4275	0.832	0.787	0.859	0.519
car	7106	0.851	0.856	0.903	0.652
bike	170	0.596	0.612	0.611	0.394
motor	54	0.682	0.667	0.713	0.403
bus	176	0.756	0.616	0.692	0.497
truck	46	0.55	0.478	0.425	0.292
light	1996	0.756	0.692	0.725	0.351
hydrant	94	0.739	0.436	0.486	0.275
sign	2471	0.726	0.602	0.677	0.425
skateboard	3	1	0	0	0
scooter	6	1	0	0.0156	0.0129
other vehicle	0.457	0.27	0.173	0.0716	

RESULTS

COMPARISON

- YOLOX
 - FLIR trains YOLOX, a YOLO
 based model, on the flir
 dataset
- YOLOvCAPY performs better than FLIR's YOLOX on thermal images
- Both FLIR's YOLOX and YOLOVCAPY run on thermal images outperform FLIR's YOLOX on RGB images
 - Thermal images more effective for night time object detection

Why Does Yolovcapy Yield Better Results Than Other Benchmark Models?

- YOLOX is based on an outdated model of YOLO (YOLOv5) while YOLOvCAPY is based the newer generation of YOLO (YOLOv7)
- YOLOvCAPY uses a different set of weights compared to FLIR's YOLOX when they were being trained

RELEVANCE

- Improved safety in the automotive industry
- Quicker and more accurate reaction times in driving
- Feasibility and applicability in modern technologies

FUTURE ENDEAVORS

- Diversity of Data
 - Current data does not include certain test cases and objects
- Additional Features
 - Improve a vehicles perception of their surrounding
 - Distance from objects
 - Trajectory of objects

REFERENCES

- Baheti, Pragati. "A Newbie-Friendly Guide to Transfer Learning: Everything You Need to Know." *Www.v7labs.com*, 21 Oct. 2022, www.v7labs.com/blog/transfer-learning-guide.
- Kukil, and Sovit Rath. "YOLOv7 Paper Explanation: Object Detection and YOLOv7 Pose." *LearnOpenCV*, 2 Aug. 2022, learnopencv.com/yolov7-object-detection-paper-explanation-and-inference/.
- Satterfield, Cathy. "Nighttime Visibility Safety | Federal Highway Administration." *Safety.fhwa.dot.gov*, 26 July 2022, safety.fhwa.dot.gov/roadway_dept/night_visib/general-information.cfm. Accessed 20 Nov. 2022.
- "Mazidi, Karen." UT Dallas Department of Computer Science, 12 Sept. 2022, https://cs.utdallas.edu/people/faculty/karen-mazidi/.
- Wong, Kin-Yiu. "Official YOLOv7." GitHub, 12 Sept. 2022, github.com/WongKinYiu/yolov7.
- "Download Free Adas Dataset V2 Teledyne FLIR." Teledyne FLIR, https://adas-dataset-v2.flirconservator.com/#fulldownloadsection.

THANK YOU!