My Courses / My courses / Algorithms and Data Structures, MSc (Spring 2023) / Mandatory Activities

/ Sums, relations, Thanos search, Dodo hashing

Information

These questions reiterate previous material about the analysis of algorithms.

Question 1

Answer saved

Marked out of 1.00

Compute, preferably in your head, $(\log_2(2^{1000} \cdot 8^{100}))$.

Answer: 1300

Question $\bf 2$

Answer saved

Marked out of 1.00

Whenever a new, eagerly awaited volume of the epic multi-volume young adult fantasy saga \grave{A} La Recherche du Temps Perdu hits the bookstores, young Marcel re-reads all the previous volumes in preparation. Alas, typically he falters in his resolve and only manages half of them. To be precise, when volume (i+1) arrives, he re-reads volumes $1,\ldots,\lceil i/2\rceil$.

How many books has he read (including re-reads) when the $\it n$ th volume is published? (Among the big-Oh estimates, choose the smallest one.)

- \bigcirc a. $O(\log n)$
- \bigcirc b. $O(\sqrt{n})$
- \bigcirc c. O(n)
- \bigcirc d. $O(n \log n)$
- \odot e. $O(n^2)$

Clear my choice

Question **3**Answer saved

Marked out of 1.00

Pick, for each sum, the same expression in \$\cdots\$-notation, its closed form or approximation, and a useful way to remember that closed form.

(*Correction*: The sum on the top left should say $\sum_{i=0}^n \frac{1}{2^i}$, i.e., run from i=0 rather than i=1 .)

3/9/23, 9:47 AM	Sums, relations, Thanos search, Dodo hashing (page 1 of 4)