Lab01

Experiment 1:

- 1 Design and verify a binary-to-Gray-code converter for a Gray code sequence with 10 code words (input: *abcd*, output: *wxyz*, *a* and *w* are the MSB).
 - 1.1 Derive the Boolean function/logic equation.
 - 1.2 Draw the related logic diagram.
 - 1.3 Construct the Verilog RTL code for the converter and use a testbench to simulate the logic behavior for verification.

Result:

Experiment 2:

- 2 Design a signed 4-bit binary adder/subtractor with input a ($\mathbf{a}_3\mathbf{a}_2\mathbf{a}_1\mathbf{a}_0$), b ($\mathbf{b}_3\mathbf{b}_2\mathbf{b}_1\mathbf{b}_0$), \mathbf{m} as the operator control (0 for addition and 1 for subtraction); output s ($\mathbf{s}_3\mathbf{s}_2\mathbf{s}_1\mathbf{s}_0$), \mathbf{v} as overflow indicator.
 - 2.1 Derive the Boolean function/logic equation.
 - 2.2 Draw the related logic diagram.
 - 2.3 Construct the Verilog RTL code for the function and use a given testbench to simulate the logic behavior for verification.

Result:

Experiment 3:

3 (Bonus) For three 3-bit signed numbers a ($a_2a_1a_0$), b ($b_2b_1b_0$), and c ($c_2c_1c_0$), build a logic circuit to output $o(o_2o_1o_0)$ as the smallest number and use a given testbench for verification.

Result:

