Computer Networks CS3001 (Section BDS-7A) Lecture 11

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science
26 September, 2023

Application Layer: Overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

Peer-to-peer (P2P) architecture

- no always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, and new service demands
- peers are intermittently connected and change IP addresses
 - complex management
- examples: P2P file sharing (BitTorrent), streaming (KanKan), VoIP (Skype)

Chapter 2: Summary

our study of network application layer is now complete!

- application architectures
 - client-server
 - P2P
- application service requirements:
 - reliability, bandwidth, delay
- Internet transport service model
 - connection-oriented, reliable: TCP
 - unreliable, datagrams: UDP

- specific protocols:
 - HTTP
 - SMTP, IMAP
 - DNS
 - P2P: BitTorrent
- video streaming, CDNs
- socket programming:TCP, UDP sockets

Chapter 2: Summary

Most importantly: learned about protocols!

- typical request/reply message exchange:
 - client requests info or service
 - server responds with data, status code
- message formats:
 - headers: fields giving info about data
 - data: info(payload) being communicated

important themes:

- centralized vs. decentralized
- stateless vs. stateful
- scalability
- reliable vs. unreliable message transfer
- "complexity at network edge"

Chapter 3 Transport Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2023 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Transport layer: overview

Our goal:

- understand principles behind transport layer services:
 - multiplexing, demultiplexing
 - reliable data transfer
 - flow control
 - congestion control

- learn about Internet transport layer protocols:
 - UDP: connectionless transport
 - TCP: connection-oriented reliable transport
 - TCP congestion control

Transport layer: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

Suggested Excluded Topics

- The Causes and the Cost of Congestion (Congestion Scenarios)
- Fairness in TCP
- TCP CUBIC, Congested Bottleneck Link, Delay-based TCP CC, ECN
- Evolving of Transport Layer
- QUIC

Transport services and protocols

- provide logical communication between application processes running on different hosts
- transport protocols actions in end systems:
 - sender: breaks application messages into segments, passes to network layer
 - receiver: reassembles segments into messages, passes to application layer
- two transport protocols available to Internet applications
 - TCP, UDP

Transport vs. network layer services and protocols

household analogy:

- 12 kids in Ann's house sending letters to 12 kids in Bill's house:
- hosts = houses
- processes = kids
- app messages = letters in envelopes

Transport vs. network layer services and protocols

- transport layer: communication between processes
 - relies on, enhances, network layer services
- network layer: communication between hosts

household analogy:

- 12 kids in Ann's house sending letters to 12 kids in Bill's house:
- hosts = houses
- processes = kids
- app messages = letters in envelopes

Transport Layer Actions

Sender:

- is passed an applicationlayer message
- determines segment header fields values
- creates segment
- passes segment to IP

Transport Layer Actions

Receiver:

- receives segment from IP
- checks header values
- extracts application-layer message
- demultiplexes message up to application via socket

Two principal Internet transport protocols

- **TCP:** Transmission Control Protocol
 - reliable, in-order delivery
 - congestion control
 - flow control
 - connection setup
- UDP: User Datagram Protocol
 - unreliable, unordered delivery
 - no-frills extension of "best-effort" IP
- services not available:
 - delay guarantees
 - bandwidth guarantees

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

Multiplexing/demultiplexing

de-multiplexing

de-multiplexing

multiplexing

multiplexing

How demultiplexing works

- host receives IP datagrams
 - each datagram has source IP address, destination IP address
 - each datagram carries one transport-layer segment
 - each segment has source, destination port number
- host uses IP addresses & port numbers to direct segment to appropriate socket

TCP/UDP segment format

Connectionless demultiplexing

Recall:

when creating socket, must specify *host-local* port #:

- when creating datagram to send into UDP socket, must specify
 - destination IP address
 - destination port #

when receiving host receives *UDP* segment:

- checks destination port # in segment
- directs UDP segment to socket with that port #

IP/UDP datagrams with same dest.

port #, but different source IP
addresses and/or source port
numbers will be directed to same
socket at receiving host

Connectionless demultiplexing: an example

```
mySocket =
                                socket(AF INET,SOCK DGRAM)
                              mySocket.bind(myaddr,6428);
mySocket =
                                                                  mySocket =
 socket(AF INET, SOCK STREAM)
                                                                    socket(AF INET,SOCK STREAM)
mySocket.bind(myaddr, 9157);
                                                                  mySocket.bind(myaddr, 5775);
                                             application
              application
                                                                            application
                                              transport
               transport
                                                                            transport
                                                                            network
               network
                 link
                                                                              lihk
                                              physical
               physical
                                                                            physical
                              source port: 6428
                                                             source port: ?
                              dest port: 9157
                                                               dest port: ?
               source port: 9157
                                                      source port: ?
                                                      dest port: ?
                 dest port: 6428
```

Connection-oriented demultiplexing

- TCP socket identified by 4-tuple:
 - source IP address
 - source port number
 - dest IP address
 - dest port number
- demux: receiver uses all four values (4-tuple) to direct segment to appropriate socket

- server may support many simultaneous TCP sockets:
 - each socket identified by its own 4-tuple
 - each socket associated with a different connecting client

Connection-oriented demultiplexing: example

Three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets

Summary

- Multiplexing, demultiplexing: based on segment, datagram header field values
- UDP: demultiplexing using destination port number (only)
- TCP: demultiplexing using 4-tuple: source and destination IP addresses, and port numbers
- Multiplexing/demultiplexing happen at all layers

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

UDP: User Datagram Protocol

- "no frills," "bare bones"
 Internet transport protocol
- "best effort" service, UDP segments may be:
 - lost
 - delivered out-of-order to app
- connectionless:
 - no handshaking between UDP sender, receiver
 - each UDP segment handled independently of others

Why is there a UDP?

- no connection establishment (which can add RTT delay)
- simple: no connection state at sender, receiver
- small header size
- no congestion control
 - UDP can blast away as fast as desired!
 - can function in the face of congestion