Lógica Matemática

DEFINIÇÃO

- X Diz-se que uma proposição P(p,q,r,...) implica logicamente ou apenas implica uma proposição Q(p,q,r,...), se Q(p,q,r,...) é verdadeira (V) todas as vezes que P(p,q,r,...) é verdadeira (V).
- Dito de forma equivalente, uma proposição P(p,q,r,...) implica uma proposição Q(p,q,r,...), se não ocorrem P(p,q,r,...) e Q(p,q,r,...) com valores lógicos simultâneos V e F, respectivamente, em uma mesma linha da tabela-verdade.

X Denota-se que a proposição P(p,q,r,...) implica a proposição Q(p,q,r,...) da seguinte maneira:

$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$

X Vale observar que os símbolos → e ⇒ são distintos. O primeiro corresponde a operação lógica condicional enquanto que o segundo é de relação de implicação.

IMPLICAÇÃO LÓGICA EXEMPLOS

- X Com base na definição de implicação lógica podemos deduzir algumas implicações:
- Qualquer proposição implica em uma tautologia.
- Somente uma contradição pode implicar outra contradição.

PROPRIEDADES

* A implicação lógica é uma relação entre proposições (diferente do operador condicional) que goza das propriedades reflexiva (R) e transitiva (T), denotadas simbolicamente como:

$$(R)$$
 $P(p,q,r,...) \Rightarrow P(p,q,r,...)$

(T) se
$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$
 e
$$Q(p,q,r,...) \Rightarrow R(p,q,r,...)$$
 então
$$P(p,q,r,...) \Rightarrow R(p,q,r,...)$$

- Apenas para ilustrar o significado de relações reflexivas, simétricas e transitivas, podemos pensar nas relações entre pessoas.
- Uma relação de parentesco do tipo: "É parente de" pode ser considerada reflexiva, simétrica e transitiva.
- Já uma relação de afeto do tipo: "Gosta de" pode ser reflexiva, costuma não ser simétrica, nem transitiva.

EXEMPLO 1A

x Considere as seguintes proposições:

$$(p \land q), \qquad (p \lor q), \qquad (p \leftrightarrow q) \qquad (1)$$

x E as suas tabelas-verdade correspondentes:

p	q	$(p \land q)$	$(p \lor q)$	$(p \leftrightarrow q)$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

X Observe que $(p \land q)$ é verdadeira (V) somente na linha 1, onde $(p \lor q)$ e $(p \leftrightarrow q)$ também são verdadeiras.

X Com isso, pode-se concluir que:

$$(p \land q) \Rightarrow (p \lor q)$$

$$(p \land q) \Rightarrow (p \longleftrightarrow q)$$

- X Podemos interpretar isso, da seguinte maneira:
 - Sempre que $(p \land q)$ é verdadeira, temos que $(p \lor q)$ é verdadeira.
 - Sempre que $(p \land q)$ é verdadeira, temos que $(p \leftrightarrow q)$ é verdadeira.
- X No entanto, observe que neste caso não existe implicação no sentido inverso:

$$(p \lor q) \Rightarrow (p \land q)$$

$$(p \leftrightarrow q) \not\Rightarrow (p \land q)$$

EXEMPLO 1B

X Observando novamente a tabela anterior:

p	q	$(p \land q)$	$(p \lor q)$	$(p \leftrightarrow q)$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Podemos também mostrar as seguintes implicações lógicas que são conhecidas regras de inferência:

$$i)$$
 $p \wedge q \Rightarrow p$ e $p \wedge q \Rightarrow q$ (Simplificação)
 $ii)$ $p \Rightarrow p \vee q$ e $q \Rightarrow p \vee q$ (Adição)

EXEMPLO 2

x Considere as seguintes proposições:

$$(p \leftrightarrow q), \qquad (p \to q), \qquad (q \to p) \qquad (2)$$

x E as suas tabelas-verdade correspondentes:

p	q	$(p \leftrightarrow q)$	$(p \rightarrow q)$	$(q \rightarrow p)$
V	V	V	V	V
V	F	F	F	V
F	V	F	V	F
F	F	V	V	V

X Observe que $(p \leftrightarrow q)$ é verdadeira(V) nas linhas 1 e 4, e nestas linhas $(p \to q)$ e $(q \to p)$ também são verdadeiras. Com isso, pode-se concluir que:

$$(p \leftrightarrow q) \Rightarrow (p \to q)$$

$$(p \leftrightarrow q) \Rightarrow (q \to p)$$

Exemplo 3

x Considere a seguinte proposição:

$$(p \lor q) \land \neg p$$
 (3)

x E a sua tabela-verdade correspondente:

p	q	$(p \lor q)$	$\neg p$	$(p \lor q) \land \neg p$
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

X Observe que $(p \lor q) \land \neg p$ é verdadeira (V) somente na linha 3, onde a proposição q também é verdadeira (V). Com isso, temos a seguinte implicação lógica, denominada de Regra do Silogismo Disjuntivo:

$$(p \lor q) \land \neg p \Rightarrow q$$

Y Uma outra implicação semelhante a anterior que não aparece na tabela verdade é:

$$(p \lor q) \land \neg q \Rightarrow p$$

X Ambas implicações podem ser usadas como regras de inferência.

EXEMPLO 4

X Considere a seguinte proposição:

$$(p \to q) \land p$$
 (4)

x E a sua tabela-verdade correspondente:

p	q	$(p \rightarrow q)$	$(p \to q) \land p$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

X Observe que $(p \rightarrow q) \land p$ é verdadeira (V) somente na linha 1, onde a proposição q também é verdadeira (V). Com isso, temos a seguinte implicação lógica, denominada de Regra Modus ponens:

$$(p \to q) \land p \Rightarrow q$$

X Outras implicações que podem ser observadas a partir da tabela-verdade são dois casos de simplificação:

$$(p \to q) \land p \Rightarrow (p \to q)$$
$$(p \to q) \land p \Rightarrow p$$

EXEMPLO 5

X Considere as seguintes proposições:

$$(p \to q) \land \neg q \quad e \quad \neg p \quad (5)$$

x E a suas tabelas-verdade correspondentes:

p	q	$(p \rightarrow q)$	$\neg q$	$(p \to q) \land \neg q$	$\neg p$
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

X Observe que $(p \rightarrow q) \land \neg q$ é verdadeira (V) somente na linha 4, onde a proposição $\neg p$ também é verdadeira (V). Com isso, temos a seguinte implicação lógica, denominada de Regra Modus tollens:

$$(p \to q) \land \neg q \Rightarrow \neg p$$

X A mesma tabela-verdade também mostra a seguinte implicação:

$$\neg p \Rightarrow (p \rightarrow q)$$

Observe que basta ter a negação do antecedente de uma condicional para provar que essa condicional é verdadeira sem importar o que é o consequente.

TAUTOLOGIAS E IMPLICAÇÃO LÓGICA TEOREMA

X Teorema.— A proposição P(p,q,r,...) implica a proposição Q(p,q,r,...), ou seja:

$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$

se e somente se a condicional:

$$P(p,q,r,...) \rightarrow Q(p,q,r,...)$$

é tautológica.

COLORARIO

X Corolário.— Se $P(p,q,r,...) \Rightarrow Q(p,q,r,...)$ então também temos que:

$$P(P_0, Q_0, R_0, ...) \Rightarrow Q(P_0, Q_0, R_0, ...)$$

quaisquer que sejam as proposições P_0, Q_0, R_0, \dots

x Este colorário é semelhante ao princípio de substituição apresentado anteriormente.

EXEMPLO 1

x Considere a seguinte condicional:

$$(p \to q) \land (q \to r) \to (p \to r)$$
 (1)

X Podemos provar que esta condicional é tautológica com base em tabelas-verdade.

(<i>p</i>	\rightarrow	q)	٨	(q	\rightarrow	r)	\rightarrow	(p	\rightarrow	r)
V	V	V	V	V	V	V	V	V	V	V
V	V	V	F	V	F	F	V	V	F	F
V	F	F	F	F	V	V	V	V	V	V
V	F	F	F	F	V	F	V	V	F	F
F	V	V	V	V	V	V	V	F	V	V
F	V	V	F	V	F	F	V	F	V	F
F	V	F	V	F	V	V	V	F	V	V
F	V	F	V	F	V	F	V	F	V	F

Com isso, temos a seguinte implicação lógica, denominada de Regra do Silogismo hipotético.

$$(p \to q) \land (q \to r) \Rightarrow (p \to r)$$

EXEMPLO 2

x Considere a seguinte proposição:

$$p \land \neg p \to q$$
 (2)

* Podemos provar que esta condicional é tautológica com base em tabelas-verdade.

p	q	$\neg p$	$p \wedge \neg p$	$p \land \neg p \rightarrow 0$		→ q
V	V	F	F		V	
V	F	F	F		V	
F	V	V	F		V	
F	F	V	F		V	

X Com isso, temos a seguinte implicação lógica:

$$p \land \neg p \Rightarrow q$$

- X Podemos concluir que de uma contradição como $p \land \neg p$ se deduz qualquer proposição q (Princípio da inconsistência).
- Colocado de outra forma, a partir de uma contradição podemos concluir qualquer coisa. Por isso, assume-se que partimos de uma afirmação sempre verdadeira.

EXEMPLO 3

- X Podemos provar que $(p \leftrightarrow q) \land p$ implica a proposição q.
- X Basta mostrar que a condicional $(p \leftrightarrow q) \land p \rightarrow q$ é tautológica. Mostra-se isso na seguinte tabela-verdade:

p	q	$(p \leftrightarrow q)$	$(p \leftrightarrow q) \land p$	$(p \leftrightarrow$	q) ^ ;	$p \rightarrow q$
V	V	V	V		V	
V	F	F	F		V	
F	V	F	F		V	
F	F	V	F		V	

Com isso, temos a seguinte implicação lógica:

$$(p \leftrightarrow q) \land p \Rightarrow q$$

REFERÊNCIAS

X <u>De Alencar Filho, Edgar</u>. Iniciação à Lógica Matemática. Capítulo 5. Editora Nobel. São Paulo. 1975. Reimpresso em 2015.