Problems for midterm

Chapter 1.

• 1. (Birthday problem)

Suppose there are n students in a class, and each has birthday equally likely to be 1 of 365 days (no leap year). Write down the expression of probability that there exists at least a pair of student that share the same birthday

• 2. (Probability axiom)

(Modified from Panchenko Exercise 1.2.15) Let $\Omega = \{a, b, c, d\}$ and the probability function $P: \Omega \to [0, 1]$. Suppose $P(\{a, b\}) = 0.6, P(\{b, c\}) = 0.3, P(\{c, d\}) = 0.4$, Calculate $P(\{a\}), P(\{b\}), P(\{c\}), P(\{d\})$

• 3. (independence)

We roll a die three times. Let A_{ij} be the event that the ith and jth rolls produce the same number. Show that the events A_{12} , A_{23} , A_{13} are pairwise independent but not independent events.

Chapter 2.

- 1. (Poisson + Conditioning) In your pocket there is a random number N of coins, where N has the Poisson distribution with parameter λ . You toss each coin once, with heads showing with probability p each time.
 - (a) Compute $\mathbb{P}(H = h \mid N = n)$, where H is the total number of heads.
 - (b) Show that the total number of heads has the Poisson distribution with parameter λp .
- 2. (Refer to Homework 4.4.) You and your opponent both roll a fair die. If one get a greater number than the other one, and that number > 3, then the game ends and whoever rolls the larger number wins. Otherwise, we repeat the game.
 - (a) Let N be the number of rounds in this game. Write down the p.m.f. of N.

Solution (a).
$$\mathbb{P}(N=n) = (1-p)^{n-1}p \text{ where } p = \frac{2}{3}.$$

(b) What is P(you win)?

• 3. (Normalize constant)

Consider a function f defined on $2, 3, 4, \ldots$ such that $f(x) = C \frac{1}{x(x+1)}$, where C is a constant. Please find C such that f is a pmf.

Chapter 3.

• 1. (Birthday problem II.) Suppose there are n students in a class, and each has birthday equally likely to be 1 of 365 days (no leap year). What is the expectation of number of distinct birthday?

- 2. (Expectation and variance of matchings) Let S_n denotes the number of matchings of a random permutation of n cards. Compute $\mathbb{E}(S_n)$ and $Var(S_n)$.
- 3. (Refer to Homework 6.11.) Let $(X_i)_{1 \leq i \leq n}$ be a sequence n i.i.d. random variables with

$$\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = \frac{1}{2}.$$

Define $S_k = X_1 + X_2 + \cdots + X_k$ for $1 \le k \le n$ as the k-th partial sum.

(a) Let N be a random variable taking values from $\{1, \dots, n\}$ with equal probability, independent to $(X_i)_{1 \le i \le n}$. What is the variance of the random sum, $Var(S_N)$?

(b) Let M be a random variable that has the same distribution as N in (a), but independent to N and $(X_i)_{1 \le i \le n}$. What is $Cov(S_N, S_M)$? (You may encounter the calculation of $1^2 + 2^2 + \cdots + (k-1)^2 = \frac{k(k-1)(2k-1)}{6}$)

Solution (a). Write $S_N = S_N \mathbb{1}_{\{N=1\}} + \cdots + S_N \mathbb{1}_{\{N=n\}}$, then by linearity of expectation,

$$\mathbb{E}(S_N^2) = \sum_{k=1}^n \mathbb{E}(S_N^2 \mathbb{1}_{\{N=k\}}) = \sum_{k=1}^n \mathbb{E}(S_k^2 \mathbb{1}_{\{N=k\}})$$

Since $(X_i)_{1 \leq i \leq n}$ and N are independent, by RHS we have

$$\mathbb{E}\big(S_N^2\big) = \sum_{k=1}^n \mathbb{E}\big(S_k^2\big) \mathbb{E}(\mathbbm{1}_{\{N=k\}}) = \sum_{k=1}^n k \mathbb{P}(N=k) = \sum_{k=1}^n \frac{k}{n} = \frac{n+1}{2}.$$

It's easy to see $\mathbb{E}(S_N) = 0$ by this method. Hence $Var(S_N) = \mathbb{E}(S_N^2) = \frac{n+1}{2}$. \square **Solution (b).** Similarly, write $S_N S_M = S_N S_M \mathbb{1}_{\{N=M\}} + S_N S_M \mathbb{1}_{\{N\neq M\}}$ and compute the expectation respectively. Since N and M are i.i.d.,

$$\mathbb{E}(S_N S_M \mathbb{1}_{\{N \neq M\}}) = \mathbb{E}(S_N S_M \mathbb{1}_{\{N < M\}}) + \mathbb{E}(S_N S_M \mathbb{1}_{\{N > M\}}) = 2\mathbb{E}(S_N S_M \mathbb{1}_{\{N < M\}}),$$

and it easy to see that $\mathbb{1}_{\{N < M\}} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{1}_{\{N=i, M=j\}}$, thus

$$\mathbb{E}(S_{N}S_{M}\mathbb{1}_{\{N< M\}}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}(S_{N}S_{M}\mathbb{1}_{\{N=i, M=j\}})$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}(S_{i}S_{j}\mathbb{1}_{\{N=i, M=j\}})$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}(S_{i}S_{j})\mathbb{E}(\mathbb{1}_{\{N=i, M=j\}})$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}(S_{i}S_{j})\mathbb{P}(N=i, M=j).$$

Notice that since $(X_i)_{1 \leq i \leq n}$ is an *i.i.d.* sequence,

$$\mathbb{E}(S_i S_j) = \mathbb{E}(S_i^2) + \mathbb{E}(S_i (X_{i+1} + \dots + X_j)) = \mathbb{E}(S_i^2) + \mathbb{E}(S_i) \mathbb{E}(X_{i+1} + \dots + X_j),$$

which is $\mathbb{E}(S_i^2) + 0 = i$. So the summation above becomes

$$\mathbb{E}(S_N S_M \mathbb{1}_{\{N < M\}}) = \sum_{i=1}^{n-1} \frac{(n-i)i}{n^2} = \frac{n-1}{2} - \frac{n(n-1)(2n-1)}{6n^2} = \frac{n^2 - 1}{6n}.$$

So $\mathbb{E}(S_N S_M \mathbb{1}_{\{N \neq M\}}) = \frac{n^2 - 1}{3n}$. Together with

$$\mathbb{E}(S_N S_M \mathbb{1}_{\{N=M\}}) = \sum_{i=1}^n \mathbb{E}(S_i^2) \mathbb{P}(N=i, M=i) = \frac{n(n+1)}{2n^2},$$

we have

$$\mathbb{E}(S_N S_M) = \frac{n}{3} + \frac{1}{2} + \frac{1}{6n} = Cov(S_N, S_M).$$