

Infraestrutura para Sistemas de Software

Prof. Dr. Carlos Alberto da Silva

Módulo 3 - Roteamento e segurança de redes

Unidade 1 - O conceito de roteamento de pacotes e os seus algoritmos

Mapa da aula

O conceito de roteamento de pacotes e os seus algoritmos

- Conceito de Roteamento
- Tipos de Roteamento
- Protocolos de Roteamentos (algoritmos)

Protocolo de Roteamento

é o mecanismo como os roteadores encaminham pacotes.

- Para realizar esta função um roteador precisa de:
 - ter o endereço de destino do pacote;
 - conhecer os roteadores vizinhos;
 - o e manter atualizadas as tabelas de roteamento:
 - com as rotas das redes internas ou externas

Protocolos de roteamento

Fonte: Kurose, 2020, p. 250 (plataforma de leitura).

Protocolos de roteamento

Tabelas de roteamento definem as rotas para encaminhar os pacotes corretamente em direção ao destino final:

- Rotas internas atuam na rede privada (intranet);
- Rotas externas atuam na rede mundial (internet).
 - os roteadores de provedores de internet

Rotas de roteamento

Modelo abstrato de grafo de uma rede de computadores

Fonte: Barbosa, 2020, p. 118 (plataforma de leitura).

Protocolos de roteamento

Plano de controle

Algoritmo de roteamento

Plano de dados

Tabelas de roteamento

Fonte: Kurose, 2020, p. 308 (plataforma de leitura).

Tipos de roteamento

Protocolos de redes internas

Atuam dentro de uma rede privada (intranet, ou intra-domínio, ou Interior Gateway Protocol (IGP)) podendo ser:

- Vetor de distâncias:
 - Routing Information Protocol (RIP)

- Estado de enlace (*Link State*):
 - Open Shortest Path First Protocol (OSPF)

Tipos de roteamento

Protocolos de redes externas

Atuam na rede mundial (*internet*) e são utilizados entre roteadores de diferentes provedores podendo ser:

- Exterior Gateway Protocol (EGP);
- Border Gateway Protocol (BGP);

Funções básicas de um protocolo de roteamento:

- 1. Preencher as tabelas de roteamento com rotas para todas as sub-redes.
- 2. Escolher a melhor rota quando houver mais de uma.
- 3. Remover rotas da tabela de roteamento quando não forem mais válidas.
- 4. Evitar *loops* de roteamento.

Evitar *loops* de roteamento

a. Construção da spanning tree passo a passo

b. Spanning tree construída

Fonte: Kurose, 2021, p. 310 (plataforma de leitura).

- Os algoritmos de roteamento trocam informações de suas tabelas de roteamentos com os roteadores vizinhos:
 - Calculando as rotas pelos parâmetros:
 - menor custo;
 - menor distância;
 - velocidade do enlace;
 - outros.

Protocolos de Roteamentos (algoritmos)

Vetor de distâncias

Routing Information Protocol (RIP)

- É um protocolo de roteamento para determinar a rota de menor custo para uma rede de destino
 - onde os roteadores trocam informações de roteamento referente às medidas de distância dos destinos alcançáveis.

Vetor de distâncias

Routing Information Protocol (RIP)

Este protocolo atualiza uma tabela de roteamento com as rotas válidas registrando:

- um número de sub-rede;
- a interface pela qual os pacotes serão encaminhados;
- o endereço IP do próximo roteador alcançável.

Vetor de distâncias

Routing Information Protocol (RIP)

- No RIP, o cálculo das melhores rotas é baseado apenas no número de saltos entre roteadores dentro do seu domínio:
 - É limitada a 15 saltos;

⇒ Ideal para redes de pequeno a médio porte.

Vetor de distâncias: RIP

Algoritmo de vetor de distâncias (DV)

```
Para cada nó, x:
   Inicialização:
       para todos os destinos y em N:
           D_{v}(y) = c(x,y) /* se y não é um vizinho então <math>c(x,y) = \infty */
   para cada vizinho w
       D (y) = ? para todos os destinos y em N
   para cada vizinho w
       envia vetor de distâncias Dx = [D_(y): y em N] para w
8
   loop
       espere (até que ocorra uma mudança no custo do enlace ao vizinho
               w ou até a recepção de um vetor de distâncias do vizinho w)
11
       para cada y em N:
           D_{\nu}(y) = \min_{x \in \mathcal{L}} \{C(x, v) + D_{\nu}(y)\}
15
16
       se Dx(y) mudou para algum destino y
           envia vetor de distâncias D = [D(y): y em N] para todos os vizinhos
17
18
19 para sempre
```

Fonte: Kurose, 2021, p. 316 (plataforma de leitura).

Vetor de distâncias: RIP

Tabela do nó x

	Custo até	Custo até		Custo até			
122	x y z	x y z	2.5	x y z			
×	0 2 7	x 0 2 3	×	0 2 3			
å у	∞ ∞ ∞	8 y 2 0 1	ტ у	2 0 1			
z	∞ ∞ ∞	z 7 1 0	z	3 1 0			
	' 11	<i>It</i> 11	1				

Tabela do nó y

Custo até			X	Custo até				N X	Custo até						
		×	У	z	Λ	P		×	У	z	\ <i>P</i>		х	У	z
-	х	00	00	oc			х	0	2	7	W	х	0	2	3
å	У	2	0	1		å	У	2	0	1	a	У	2	0	1
10000	z	00	00	00		Γ	z	7	1	0	Λ	z	3	1	0
		1			١ı		•	1			Λ.	•			

Tabela do nó z

	Custo até	/ A \	Custo até		Custo até		
	x y z	/ 11	x y z	/ 1	x y z		
×	∞ ∞ ∞	×	0 2 7	×	0 2 3		
e y	∞ ∞ ∞	a y	2 0 1	_ В у	2 0 1		
z	7 1 0	z	3 1 0	z	3 1 0		

Fonte: Kurose, 2021, p. 318 (plataforma de leitura).

Vetor de distâncias: RIP

Fonte: Kurose, 2021, p. 319 (plataforma de leitura).

Vetor de distâncias

Routing Information Protocol (RIP)

Roteadores RIP trocam atualizações de roteamento a cada 30 segundos:

 Transmitindo a tabela de roteamento para todos os vizinhos.

Vetor de distâncias

Routing Information Protocol (RIP):

- RIPv1 é um protocolo de roteamento classful que não oferece suporte a sub-redes;
- RIPv2 suporta VLSM e CIDR (máscaras de sub-rede).

⇒ Este protocolo pode apresentar problemas de convergência.

Estado de enlace (Link State)

Open Shortest Path First Protocol (OSPF)

Definido pela RFC 2328:

Amplamente utilizado em IPv4 e IPv6.

Estado de enlace (Link State)

Protocolo OSPF

Algoritmo de caminho mais curto (algorithm shortest path first):

Algoritmo de Dijkstra, 1959.

Fonte: Kurose, 2021, p. 310 (plataforma de leitura).

Estado de enlace (Link State)

Open Shortest Path First Protocol (OSPF)

- Suporte um grande número de roteadores:
 - Utiliza o custo da largura de banda da interface para calcular as rotas mais curtas.

Estado de enlace (Link State)

Open Shortest Path First Protocol (OSPF)

Suporta Variable Length Subnet Masking (VLSM):

- Criação de sub-redes de tamanhos variáveis;
 - Melhorando a utilização dos endereços IP.
- Tempo de convergência rápido.

Estado de enlace (Link State)

Open Shortest Path First Protocol (OSPF)

É escalável:

 Preferido dos provedores de serviços de Internet e redes empresariais.

Estado de enlace (Link State)

Open Shortest Path First Protocol (OSPF)

Vantagens:

- Reduz o tamanho da base de dados das rotas;
- Minimiza o tráfego de roteamento.

Estado de enlace (Link State)

Protocol (OSPF)

 Faz Agregação de rotas para endereços IP hierárquico.

Exemplo: destino 223.1 (alcança todos).

Fonte: Kurose, 2020, p. 273 (plataforma de leitura).

Border Gateway Protocol (BGP)

• É um protocolo de roteamento escalável e flexível usado entre Sistemas Autônomos (AS-AS).

⇒ Preferido por provedores de serviços de Internet.

Border Gateway Protocol (BGP)

• É um protocolo de vetor de distâncias.

- Considera o caminho completo até o destino:
 - Não apenas o estado local do enlace (link)

Border Gateway Protocol (BGP)

- Os roteadores BGP trocam informações de roteamento:
 - Incluindo prefixos de rede;
 - Número do Sistema Autônomo (ASN) associado a cada prefixo.

Enhanced Interior Gateway Routing Protocol (EIGRP)

- É um protocolo de roteamento *Exterior Gateway Protocol* (EGP) desenvolvido pela *Cisco Systems*[®]:
 - utiliza o algoritmo de atualização por difusão.

Enhanced Interior Gateway Routing Protocol (EIGRP)

Algoritmo por Difusão

a. Construção da spanning tree passo a passo

b. Spanning tree construída

Fonte: Kurose, 2021, p. 310 (plataforma de leitura).

Enhanced Interior Gateway Routing Protocol (EIGRP)

- É um protocolo de roteamento híbrido combinando:
 - Estado de enlace (convergência rápida);
 - Vetor de distância (baixa sobrecarga de processamento e largura de banda).

Enhanced Interior Gateway Routing Protocol (EIGRP)

- Para calcular as rotas, permite o balanceamento de carga em caminhos redundantes usando:
 - Largura de banda;
 - Latência;
 - Confiabilidade;
 - Carga do enlace.

Intermediate System to Intermediate System (IS-IS)

- É um protocolo de estado de enlace para roteamento de intradomínio (IGP):
 - utiliza o algoritmo de Dijkstra para calcular as rotas de menor custo.

⇒ roteadores vizinhos trocam informações sobre o estado dos enlaces.

Intermediate System to Intermediate System (IS-IS)

- Os roteadores calculam as rotas mais curta para cada destino com base nessa topologia.
 - Registrando em um banco de dados:
 - topologia;
 - custo;
 - destino.

Intermediate System to Intermediate System (IS-IS)

- Suporta endereços IPv4 e IPv6;
- É similar ao do protocolo OSPF.

Intermediate System to Intermediate System (IS-IS)

Fonte: Kurose, 2021, p. 325 (plataforma de leitura).

Intermediate System to Intermediate System (IS-IS)

Fonte: Kurose, 2021, p. 326 (plataforma de leitura).

Referências

BARBOSA, Cynthia S.; SERPA, Matheus S.; OLIVEIRA, Diego B.; SARAIVA, Maurício O. **Arquitetura TCP/IP I**. Editora Grupo A, 2020. **p. 15-17**. ISBN 9786556900766. <u>Disponível na Biblioteca Digital da UFMS</u>.

KUROSE, Jim; ROSS, Keith W. **Redes de Computadores e a Internet:** uma Abordagem Top-down, 8 Edição. Editora Pearson, 2021. ISBN: 9788582605592. **p. 273, 303-328**. <u>Disponível na Biblioteca Digital da UFMS</u>.

TANENBAUM, Andrew S.; FEAMSTER, Nicholas; WETHERALL, David J.; **Redes de Computadores,** 6ª Edição. Editora Pearson, 2021. ISBN: 9788582605615. **p. 236-251**. <u>Disponível na Biblioteca Digital da UFMS</u>.

Licenciamento

Respeitadas as formas de citação formal de autores de acordo com as normas da ABNT NBR 6023 (2018), a não ser que esteja indicado de outra forma, todo material desta apresentação está licenciado sob uma <u>Licença Creative Commons</u> - <u>Atribuição 4.0 Internacional.</u>