

Ayudantía 7 Análisis Funcional

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

13 de octubre de 2022

Problema 1.(Teorema de Banach-Saks) Sea H espacio de Hilbert. Muestre que si $x_n \to x$ entonces existe una subsucesión $(x_{n_k})_k$ de tal modo que la sucesión de medias

$$y_k := \frac{1}{k}(x_{n_1} + \ldots + x_{n_k})$$

converge en la topología de la norma.

Definición 1 (envoltura convexa). Sea X espacio vectorial normado. Se define la envoltura convexa de $C \subseteq X$ como la intersección de todos los conjuntos convexos conteniendo a C, es decir,

$$\operatorname{conv}(C) = \bigcap_{\substack{V \text{ convexo} \\ C \subset V}} V$$

Problema 2. Sea X espacio de Banach y $(x_n) \subseteq X$. Definimos

$$K_n = \overline{\operatorname{conv}\left(\bigcup_{i=n}^{\infty} \{x_i\}\right)}$$

donde conv denota la envoltura convexa de un conjunto.

1. Demuestre que si $x_n \rightharpoonup x$ en la topología $\sigma(X, X')$ entonces

$$\bigcap_{n=1}^{\infty} K_n = \{x\}$$

2. Suponga ahora que X es reflexivo. Muestre que si (x_n) es acotada y $\bigcap_{n=1}^{\infty} K_n = \{x\}$, entonces $x_n \rightharpoonup x$.

Problema 3. (Propiedad de Schur en ℓ^1) El objetivo de este problema es analizar un ejemplo en dimensión infinita en que la convergencia débil coincide con la convergencia fuerte. Para ello consideraremos el espacio de sucesiones ℓ^1 y probaremos entonces que en este espacio toda sucesión convergente débil también converge de manera fuerte. Para ello considere $(f_k) \in \ell^1$ convergente débil, y suponiendo que esta sucesión no converge en norma siga los siguientes

- 1. Muestre que podemos suponer que $(f_k) \subseteq \ell^1$ es tal que $f_k \rightharpoonup 0$ y existe $\varepsilon > 0$ tal que $||f_k||_{\ell^1} > \varepsilon$ para todo $k \in \mathbb{N}$, y que además $f_k(n) \to 0$ para todo $n \in \mathbb{N}$.
- 2. Construya por inducción dos sucesiones crecientes $\alpha: \mathbb{N} \to \mathbb{N}, \beta: \mathbb{N} \to \mathbb{N}$ con $\alpha(1) = 1$ tales que para todo

$$\sum_{n=0}^{\alpha(k-1)} |f_{\beta(k)}(n)| \le \frac{\varepsilon}{5}, \qquad \sum_{n=\alpha(k)+1}^{\infty} |f_{\beta(k)}(n)| \le \frac{\varepsilon}{5} \qquad \forall k \ge 2$$

3. Construya ahora una sucesión $h: \mathbb{N} \to \mathbb{R}$ de tal modo que: |h(n)| = 1 y $f_{\beta(k)}(n)h(n) = |f_{\beta(k)}(n)|$ para todo ntal que $\alpha(k-1) < n \le \alpha(k)$. Muestre que para cada $j \in \mathbb{N}$

$$\sum_{n=\alpha(k-1)+1}^{\alpha(k)} f_{\beta(k)}(n)h(n) \ge \frac{3\varepsilon}{5}$$

4. Concluya el resultado probando que $(f_{\beta(k)})$ no converge débilmente a 0.