ELECTRÓNICA DE POTENCIA - PARCIAL 1

FACULTAD DE ING. ELÉCTRICA UNIVERSIDAD TECNOLÓGICA DE PANAMA

Cédula: 7-707-2416 Fecha: 7-5-2014

I- RESPONDA LAS SIGUIENTES PREGUNTAS (6 puntos cada una)

1. Dibuje el diagrama de un circuito de polarización que permita fijar el voltaje de encendido de un Darlington de potencia (VCE-ON) en 2.1V. (voder no

Diga una razón por la cual el valor del capacitor del snubber de bloque no debería ser 5Cs1. 199 46

3. A qué se debe que los MOSFET de potencia presenten una eleva resistencia de encendido RDS-ON, cuando son diseñados para soportar altos voltajes. Pag 24

4. Si se tiene un IGBT y un MOSFET de potencia que manejan ambos 40A y soportan el mismo voltaje, cuál usted esperaría que tenga un tiempo de bloqueo menor y por

Qué tipo de transistor de potencia recomendaría para una aplicación automotriz y por qué? Nostot

II. RESUELVA LOS SIGUIENTES PROBLEMAS

- Se quiere utilizar un MOSFET de potencia IRF1503 para conmutar una carga inductiva de 52A y 18V. La frecuencia de operación puede ser 20kHz o 75kHz y el cíclo de trabajo puede variar entre 0.2 y 0.85. La temperatura ambiente varía entre 20 y 38°C. Por razones económicas es necesario que el disipador sea lo más chico posible, siempre que permita la operación segura del transistor para las condiciones descritas.
 - a) Calcule la resistencia térmica máxima del disipador de calor y de ser posible escoja uno de la figura.
- 2. Para el circuito anterior, calcule:
 - a) Calcule los snubber de bloqueo y disparo considerando que Cs=Cs1 y que ΔVce=8V y ΔVce_{MAX}=4V y dibuje el circuito con el transistor y los snubbers.
 - b) El tamaño mínimo del disipador de calor considerando los snubber. 15 ptos

BUENA SUERTE Gracias

FORMULAS:

FORMULAS:

$$P_{ON} = DI_O^2 R_{DS(ON)} = DI_O V_{CE}$$
 $P_S = V_d I_O f_S (t_r + t_f)$ $P_{TOT} = P_S + P_{ON}$

$$P_S = V_d I_O f_S (t_r + t_f)$$

$$P_{TOT} = P_S + P_{ON}$$

$$T_{J \max} = T_{A} + P_{TOT} \left(R_{\phi JC} + R_{\phi CS} + R_{\phi SA} \right)$$

Snubber

Bloqueo
$$C_{S1} = \frac{I_O t_B}{2V_d}$$
 $\frac{V_d}{R_S} = 0.2I_O$
 $\frac{V_d}{R_S} = \frac{C_S V_d^2}{2} f_S$

$$\frac{V_d}{R} = 0.2I_0$$

$$P_{RS} = \frac{C_S V_d^2}{2} f_S$$

$$\Delta V_{CE} = \frac{L_S I_O}{t}$$

$$\Delta V_{CE, max} = R_{LS} I_C$$

Disaparo
$$\Delta V_{CE} = \frac{L_s I_o}{t_{ri}}$$
 $\Delta V_{CE,max} = R_{LS} I_o$ $P_{RLS} = \frac{L_s I_o^2}{2} f_s$

Solor Maxim

Pérdidas en el transistor con snubber

$$P_{Q} = \frac{I_{O}^{2} t_{f}^{2} f_{S}}{24C_{S}}$$

$$P_{Q} = \frac{I_{O}^{2} t_{f}^{2} f_{S}}{24C_{S}} \qquad P_{Q} = \frac{V_{CE} I_{O} t_{r}}{2} f_{S}$$

DATA DE FABRICANTE IRF1503

$$V_{DSS} = 30V$$
 $R_{DS(on)} = 3.3 m\Omega$
 $I_D = 75A$

a) Promodio

Entrade

Id = Entrado = JoD

Max. Units de b)

Thermal Resistance

Inermal	Resistance		Max.	Units
	Parameter	Тур.		Office
0	Junction-to-Case		0.45	
Revo	Case-to-Sink, Flat, Greased Surface	0.50	-	-C/W
Recs			62	
Rais	Junction-to-Ambient			

Absolute Maximum Ratings

	Parameter	Max.	Units
	Continuous Drain Current, V _{GS} @ 10V (Silicon limited)	240	
@ Tc = 25°C		170	A
@ Tc = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig.9)	75	,
@ T _C = 25°C	Continuous Drain Current, VGS & TOV (1 actuage and 7)	960	1
М	Pulsed Drain Current ①	330	W
@Tc = 25°C	Power Dissipation	2.2	MIOC
	Linear Derating Factor	± 20	1
s	Gate-to-Source Voltage	510	mJ
s	Single Pulse Avalanche Energy®	980	1
(tested)	Single Pulse Avalanche Energy Tested Value®	See Fig.12a, 12b, 15, 16	A
ARCHARD MARKET MARKET CHARLES	Avalanche Current®	388 Fig. 124, 125, 15, 15	m
	Repetitive Avalanche Energy®	55 to 1.475	
3	Operating Junction and	-55 to + 175	00
	Storage Temperature Range		-
G	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

				,		100
,	Turn-On Delay Time		17			V _{DD} = 15V
d(on)	Tum-On Delay Time	THE RESERVE OF THE PERSON NAMED IN	130			ID = 140A
	Rise Time		Company of the Control		ns	$R_{G} = 2.5\Omega$
	Turn-Off Delay Time		59	No.		V _{GS} = 10V Φ
rd(off)	THE RESIDENCE OF THE PERSON OF		48			
to(off)	Fall Time		48	_		V _{GS} = 10 V Ø

Jose Hantenagra 130 ns RE(on) = 3,3 m. D 48 % J = 52 A Vo=18 V ROJC = 0,45°C/W fs= 75 KHZ Rocs = 0,50°C/N D=0,85 Tymax = 175°C @ 1,75 Ta=38°C PON = DIO Ros (on) Pon= 10,85 (3,3m,e) (52)2 1,75 Por = 13,27 W Ps= Vd Iofs (tv++f) Ps= (18)(52)(754)(130n +48n) Ps= 12,5 W PTOT= 13,27 W + 12,5W PTOT = 25,77 W Tymax = TA + Prot (Resc + Rocs + Rosa) 175 = 38 + 25,77 (0,45 + 0,50 + ROSA) ROSA= 4,86 °C/W locogoia el 1 Rtsa = 3,2°c/w

7-707=2916

