Norwegian University of Science and Technology

TTK4135 – Lecture 7 Active Set Method for Quadratic programming

Lecturer: Lars Imsland

Overview of lecture

- Quadratic programming used for control (MPC), in finance, …
- Recap last time Equality-constrained QPs (EQPs)
- Active set method for solving QPs
 - For medium-sized problems for large problems, interior point methods may be faster (not part of this course)
- Example 16.4

Reference: N&W Ch.15.3-15.5, 16.1-2,4-5

Quadratic programming

Solving (convex) quadratic programs, QPs

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^\top G x + \underline{c}^\top x \quad \text{subject to} \quad \begin{cases} a_i^\top x = b_i, & i \in \mathcal{E} \\ a_i^\top x \geq b_i, & i \in \mathcal{I} \end{cases}$$

$$\begin{cases} a_i^\top x = b_i, & i \in \mathcal{E} \\ a_i^\top x \ge b_i, & i \in \mathcal{I} \end{cases}$$

- Feasible set convex (as for LPs)
- The QP is convex if $G \ge 0$ (strictly convex if G > 0)

Strictly convex $x^T P x = x_1^2 + x_2^2$

Non-convex $x^T P x = x_1^2 - x_2^2$

Equality-constrained QP (EQP)

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} x^{\top} G x + c^{\top} x$$
subject to $\underline{Ax = b}, \quad A \in \mathbb{R}^{m \times n}$

Basic assumption: A full row rank

KKT-conditions (KKT system, KKT matrix):

$$Z^{\top}GZ > 0 \overset{\text{Lemma 16.1}}{\Rightarrow} K = \begin{pmatrix} G & A^{\top} \\ A & 0 \end{pmatrix} \text{ non-singular} \Rightarrow \begin{pmatrix} x^* = x + p \\ \lambda^* \end{pmatrix} \text{ unique solution of KKT system}$$

$$\overset{\text{Theorem 16.2}}{\Rightarrow} x^* \text{ is the unique solution to EQP}$$

- How to solve KKT system (KKT matrix indefinite, but symmetric):
 - Full-space: Symmetric indefinite (LDL) factorization: $P^{\top}KP = LBL^{\top}$
 - Reduced-space: Use Ax=b to eliminate m variables. Requires computation of Z, which can be costly. Reduced space method faster than full-space when many constraints (if $n-m \ll n$).

Active set method for QPs, simplified

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^{\top} G x + c^{\top} x \quad \text{subject to} \quad \begin{cases} a_i^{\top} x = b_i, & i \in \mathcal{E} \\ a_i^{\top} x \ge b_i, & i \in \mathcal{I} \end{cases}$$

- 1. Make a guess of which constraints are active at the optimal solution
- Solve corresponding EQP
- Check KKT-conditions
 - 1. IF KKT OK, then finished
 - 2. If not, update guess of active constraints in smart way, go to 2.

KKT Conditions (Thm 12.1)

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \qquad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

$$c_i(x) \ge 0, \quad i \in$$

Lagrangian:
$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

KKT-conditions (First-order necessary conditions): If x^* is a local solution and LICQ holds, then there exist λ^* such that

$$\nabla_x \mathcal{L}(x^*, \lambda^*) = 0, \qquad \text{(stationarity)}$$

$$c_i(x^*) = 0, \quad \forall i \in \mathcal{E},$$

$$c_i(x^*) \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_i^* \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_i^* c_i(x^*) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$$
 (complementarity condition/complementary slackness)

KKT for QP

 $\min_{x \in \mathbb{R}^n} \underbrace{\frac{1}{2} x^{\top} G x + c^{\top} x} \quad \text{subject to} \quad \begin{cases} a_i^{\top} x = b_i, & i \in \mathcal{E} \\ a_i^{\top} x \ge b_i, & i \in \mathcal{I} \end{cases}$ $\mathcal{L}(x,\lambda) = \frac{1}{2} x^{T} G x + C^{T} x - \frac{2}{i \in \text{EUI}} \lambda_{i} (\alpha_{i}^{T} x - b_{i})$

 $c_i(x^*) \ge 0, \quad \forall i \in \mathcal{I},$ $\lambda_i^* \geq 0, \quad \forall i \in \mathcal{I},$

 $c_i(x^*) = 0, \quad \forall i \in \mathcal{E},$

 $\nabla_x \mathcal{L}(x^*, \lambda^*) = 0,$

 $\lambda_i^* c_i(x^*) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$

KKT:

 $Gx^* + C - \sum_{i \in \mathcal{E}_{UT}} \lambda_i a_i = 0$

 $a_i^T x^* = b_i$, $i \in \mathcal{E}$ $a_i^T x^* > b_i$, $l \in I$

 $\lambda_i^* \geq 0$, $i \in \mathcal{I}$

Norwegian University of

Alternative formulation: $A(x^*) = \left\{ i \in \mathcal{E} \cup \mathcal{I} \mid \alpha_i^T x^* = b_i \right\}$

 $KKT: \frac{3}{GX^* + C} + \frac{5}{i} \lambda_i^* \alpha_i = 0$

 $a_i^T x = b_i \quad (\in A(x^*)$

atx*>bi, ceTVA(x*) $\rightarrow \lambda^* \geq 0$, $i \in \mathcal{I} \cap \mathcal{A}(x^*)$ **Theorem 16.4**: If x^* satisfies KKT and $G \ge 0$, then x^* is a global solution.

Proof: Assume & feasible,
$$x \neq x^*$$
.

Note: $(x-x^*)^{\top}(Gx^*+C) = (x-x^*)^{\top} \leq \lambda_1^* a_1^{\top}(x-x^*) + \sum_{i \in A(x)}^* a_i^{\top}(x-x^*) \geq 0$

$$q(x) = \frac{1}{2}(x^* + (x-x^*))^{\top} G(x^* + (x-x^*)) + c^{\top}(x^* + (x-x^*))$$

$$= \frac{1}{2}x^{*\top}(Gx^* + c^{\top}x^{\top} + \frac{1}{2}(x-x^*)^{\top}G(x-x^*) + (x-x^*)^{\top}Gx^* + c^{\top}(x-x^*)$$

$$= q(x^*) + \frac{1}{2}(x-x^*)^{\top}G(x-x^*) + (x-x^*)^{\top}(Gx^*+C)$$

$$\geq q(x^*)$$

$$\geq q(x^*)$$

$$= q(x^*$$

Degeneracy

2) Constraints linearly dependent at solution

If active set known, QP can be solved as EQP

A(x*) known:
$$m in \frac{1}{2} x^{T} G x + C^{T} x s.t. a_{i}^{T} x = h_{i}$$
, $i \in A(x^{*})$

(an be solved by solving (e.g.)

$$\begin{bmatrix} G_1 & -A \\ A & S \end{bmatrix} \begin{bmatrix} K^* \\ X^* \end{bmatrix} = \begin{bmatrix} -C \\ b \end{bmatrix}$$

One step of active set method for QP

In iteration k: Wu: Current estimate of A(x*) Xx: Current teasible estimate of x* Define $A_{k} = \begin{bmatrix} \vdots \\ \alpha \vdots \\ \vdots \end{bmatrix}$, $b_{k} = \begin{bmatrix} \vdots \\ b \vdots \\ \vdots \end{bmatrix}$ Consider Ear

i min
$$\frac{1}{2}(x_k+p)G(x_k+p)+C^T(x_k+p)$$

 $P \in \mathbb{R}^n$ $\frac{1}{2}(x_k+p)=b_k \rightarrow A_p=0$ since

$$C \Rightarrow \min_{p \in \mathbb{R}^n} \frac{1}{2} p^T G p + (G_1 \kappa_n + C)^T p \qquad s.t. \quad A_n p = 0$$

Norwegian University of Science and Technology

Call Solution PL

One step of active set method for QP, cont'd

If
$$p_k = 0$$
: Solve Z $a_i \hat{\lambda}_i = g_k$ for $\hat{\lambda}_i$
 $+ If \hat{\lambda}_i \ge 0$, KKT fulfilled!

 $+ If \hat{\lambda}_i \ne 0$: plack index of one regarive $\hat{\lambda}_i$

Remove this index from W_k .

Start over (Solve new EGP)

General QP problem

$$\min_{x} \frac{1}{2} x^{\top} G x + x^{\top} c$$
s.t. $a_i^{\top} x = b_i, \quad i \in \mathcal{E}$

$$a_i^{\top} x \ge b_i, \quad i \in \mathcal{I}$$

Lagrangian

$$\mathcal{L}(x^*, \lambda^*) = \frac{1}{2} x^\top G x + x^\top c - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i (a_i^\top x - b_i)$$

KKT conditions

General:

$$Gx^* + c - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i^* a_i = 0$$

$$a_i^\top x^* = b_i, \qquad i \in \mathcal{E}$$

$$a_i^\top x^* \ge b_i, \qquad i \in \mathcal{I}$$

$$\lambda_i^* \ge 0, \qquad i \in \mathcal{I}$$

$$\lambda_i^* (a_i^\top x^* - b_i) = 0, \qquad i \in \mathcal{E} \cup \mathcal{I}$$

Defined via active set:

$$\mathcal{A}(x^*) = \mathcal{E} \cup \left\{ i \in \mathcal{I} \middle| a_i^\top x^* = b_i \right\}$$

$$Gx^* + c - \sum_{i \in \mathcal{A}(x^*)} \lambda_i^* a_i = 0$$

$$a_i^\top x^* = b_i, \qquad i \in \mathcal{A}(x^*)$$

$$a_i^\top x^* \ge b_i, \qquad i \in \mathcal{I} \backslash \mathcal{A}(x^*)$$

$$\lambda_i^* \ge 0, \qquad i \in \mathcal{A}(x^*) \cap \mathcal{I}$$

One step of active set method for QP, cont'd

If Pn ±0: - If $x_{n+1} = x_n + p_n$ is teosible: Set $W_{n+1} = W_n$, Start over - It xn+ = xn+pn is not feasible. Find blocking constraint For $i \in \{i \mid a_i^T P_k < 0\}$:

Want $a_i^T (x_n + \alpha_k P_n) \ge b_i \implies \alpha_k \le \frac{b_i - a_i^T x_k}{a_i^T P_k}$ Set j = i with smallest α_n Kne = Kh + RK Pk, What = Wh + Siz start over 1

Norwegian University of Science and Technology

Active set method for convex QP

```
9 = 6 x + (
```

(16.39a)

(16.39b)

(16.42)

```
Algorithm 16.3 (Active-Set Method for Convex QP).
  Compute a feasible starting point (x_0;
  Set(W_0 to be a subset of the active constraints at x_0;
  for k = 0, 1, 2, ...
           Solve (16.39) to find p_k;
           if p_k = 0
                    Compute Lagrange multipliers \hat{\lambda}_i that satisfy (16.42),
                                      with \hat{\mathcal{W}} = \mathcal{W}_k;
                    if \hat{\lambda}_i > 0 for all i \in \mathcal{W}_k \cap \mathcal{I}
                              stop with solution x^* = x_k;
                    else
                              j \leftarrow \arg\min_{i \in \mathcal{W}_k \cap \mathcal{I}} \hat{\lambda}_i;
                             x_{k+1} \leftarrow x_k; \ \mathcal{W}_{k+1} \leftarrow \mathcal{W}_k \setminus \{j\};
           else (* p_k \neq 0 *)
                    Compute \alpha_k from (16.41);
                    x_{k+1} \leftarrow x_k + \alpha_k p_k;
                    if there are blocking constraints
                              Obtain W_{k+1} by adding one of the blocking
                                      constraints to W_k;
                     else
                              \mathcal{W}_{k+1} \leftarrow \mathcal{W}_k;
  end (for)
```

$$\min_{p} \quad \frac{1}{2} p^{T} G p + (g_{k}^{T}) p$$
subject to $a_{i}^{T} p = 0$, $i \in \mathcal{W}_{k}$

$$\sum_{i \in \hat{\mathcal{W}}} a_{i} \hat{\lambda}_{i} = g = G \hat{x} + c$$

$$\alpha_k \stackrel{\text{def}}{=} \min \left(1, \min_{i \notin \mathcal{W}_k, a_i^T p_k < 0} \frac{b_i - a_i^T x_k}{a_i^T p_k} \right). \tag{16.41}$$

No degeneracy and G>0: Active set method converges in finite number of iterations.

$$\min_{x} q(x) = (x_1 - 1)^2 + (x_2 - 2.5)^2$$

subject to
$$x_1 - 2x_2 + 2 \ge 0$$

$$-x_1 - 2x_2 + 6 \ge 0$$

$$-x_1 + 2x_2 + 2 \ge 0$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$Xample 10.4$$

$$X = \begin{pmatrix} 2 \\ 8 \end{pmatrix}, \quad W_0 = \underbrace{3,5}, \quad g_0 = 6 \times_0 + c = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

min
$$\frac{1}{2}p^{7}(ap+g_{n}^{T}p)$$
 min $p_{1}^{2}+p_{1}^{2}+2p_{1}-5p_{2}$
 $p_{1}p_{2}$ $\Rightarrow p_{1}p_{2}$ $\Rightarrow p_{1}p_{2}$ $\Rightarrow p_{2}p_{3}-p_{4}+p_{2}=0$
 $p_{2}p_{3}-p_{4}+p_{2}=0$

Then
$$Z = 3$$
 $Z = -2$ $Z = -2$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$x^{1} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}, \quad W_{1} = \{ 5 \}, \quad g_{1} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

min $\rho_{1}^{2} + \rho_{2}^{2} + 2\rho_{1} - 5\rho_{2}$

min $\rho_{1}^{2} + \rho_{2}^{2} + 2\rho_{1} - 5\rho_{2}$
 $\rho_{1}^{2} + \rho_{2}^{2} + 2\rho_{1} - 5\rho_{2}$
 $\rho_{2}^{2} + \rho_{3}^{2} + 2\rho_{1}^{2} - 5\rho_{2}$
 $\rho_{3}^{2} + \rho_{4}^{2} = 0$
 $\rho_{4}^{2} = 0$
 $\rho_{5}^{2} = 0$
 $\rho_{7}^{2} = 0$
 $\rho_{7}^{2} = 0$
 $\rho_{7}^{2} = 0$
 $\rho_{8}^{2} = 0$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$\chi^2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad W_2 = \begin{cases} 5 \\ 5 \end{cases}, \quad \mathcal{G}_2 = \langle 0, \chi^2 + (-1) \rangle$$

min
$$p_1^2 + p_2^2 - 5p_2$$
 \Rightarrow $p = \begin{pmatrix} 0 \\ \delta \end{pmatrix}$
S.t. $p_2 = 0$

$$\begin{bmatrix} 6 \\ 1 \end{bmatrix} \hat{\lambda}_{5} = \begin{bmatrix} 0 \\ -5 \end{bmatrix} \Rightarrow \hat{\lambda}_{5} = -5$$

$$a_{5}$$

$$g^{2}$$

$$W_3 = W_2 - \{53 = \emptyset$$

Norwegian University of Science and Technology

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$\chi^{3} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}, \quad W_{3} = 0, \quad y_{3} = 6 \quad x_{3} + c = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$$

$$\min_{p} \left(\rho_{i}^{2} + \rho_{z}^{2} \right) - \left[-\frac{1}{5} \right] = \left[\frac{0}{2,5} \right]$$

But: x3+p3 not feasible!

Chuch
$$i \notin W_3$$
: $a_1 T p^3 = -5 : X_3 = \frac{b_1 - a_1 T x^3}{a_1 T p^3} = 0$

$$a_{2}^{\dagger} p^{3} = -5 : \alpha_{3}^{2} = \dots = 1.4$$

$$= 3$$
 $= 6.6$ $= 8$ $= 6.6$ $= 6.6$ $= 6.6$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = [0 \ 1]^\mathsf{T}, b_5 = 0$$

$$x^{4} = \begin{pmatrix} 1 \\ 1/1 \end{pmatrix}, \quad w^{4} = \begin{cases} 13 \\ 1/2 \end{pmatrix}, \quad g^{4} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

Min
$$P_1^2 + P_2^2 - 2P_2$$

1

5.t. $P_1 - 2P_2 = 0$
 $P_2^4 = (0.4)$

$$X^{5} = x^{4} + \rho^{4} = \begin{pmatrix} 1.4 \\ 1.7 \end{pmatrix}$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$\chi^{5} = \begin{pmatrix} 1.4 \\ 1.7 \end{pmatrix}, W_{5} = \begin{cases} 1.8 \\ -1.6 \end{pmatrix}$$

min
$$P_1^2 + P_2^2 + 0.8P_1 - 1.6P_2$$
 $\Rightarrow P_3^2 = 0$

$$\alpha_{i}^{T} \hat{\lambda} = g_{i}^{T} \Rightarrow \begin{bmatrix} 1 \\ -2 \end{bmatrix} \hat{\lambda}_{i} = \begin{bmatrix} 0.8 \\ -1.6 \end{bmatrix} \Rightarrow \hat{\lambda}_{i} = 0.8 > 8$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$\min_{x} q(x) = (x_1 - 1)^2 + (x_2 - 2.5)^2$$

$$-x_1 - 2x_2 + 6 \ge 0 \tag{2}$$

$$-x_1 + 2x_2 + 2 \ge 0 \tag{3}$$

$$x_1 \ge 0 \tag{4}$$

$$x_2 \ge 0 \tag{5}$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

Another example (N. Gould)

$$\min(x_1 - 1)^2 + (x_2 - 0.5)^2$$
subject to $x_1 + x_2 \le 1$

$$3x_1 + x_2 \le 1.5$$

$$(x_1, x_2) \ge 0$$

- 0. Starting point
- 0'. Unconstrained minimizer
- 1. Encounter constraint A
- 1'. Minimizer on constraint A
- 2. Encounter constraint B, move off constraint A
- 3. Minimizer on constraint B
 = required solution

How to find feasible initial point?

- Same way as for LP:
 - Phase I: Define a LP with known feasible initial point, where solution is feasible for original QP.
 - Phase II: Solve original QP.

- Alternative method: "Big M"
 - Relax all constraints; penalize constraint violations in objective

Initialization methods

Phase 1

$$\min_{(x,z)} e^{T} z$$
subject to $a_i^T x + \gamma_i z_i = b_i$, $i \in \mathcal{E}$,
$$a_i^T x + \gamma_i z_i \ge b_i$$
, $i \in \mathcal{I}$,
$$z \ge 0$$
,
$$e = (1, 1, \dots, 1)^T$$
, $\gamma_i = -\operatorname{sign}(a_i^T \tilde{x} - b_i)$ for $i \in \mathcal{E}$

$$\gamma_i = 1$$
 for $i \in \mathcal{I}$

Feasible initial guess for LP problem:

$$x = \tilde{x}$$

$$z_i = |a_i^T \tilde{x} - b_i| \ (i \in \mathcal{E})$$

$$z_i = \max(b_i - a_i^T \tilde{x}, 0) \ (i \in \mathcal{I})$$

Big M

$$\min_{(x,\eta)} \frac{1}{2} x^T G x + x^T c + M \eta,$$
subject to
$$(a_i^T x - b_i) \le \eta, \quad i \in \mathcal{E},$$

$$-(a_i^T x - b_i) \le \eta, \quad i \in \mathcal{E},$$

$$b_i - a_i^T x \le \eta, \quad i \in \mathcal{I},$$

$$0 \le \eta,$$

- Feasible initial guess for Big M: Whatever.
- η nonzero? Increase M and try again.

Concluding remarks

- Solves similar EQPs iteratively: recalculate only what's needed
- Active set method: Potentially slow, but with good initial guess will be FAST
- Alternative to Active Set: Interior Point (not curriculum)

Figure 16.1 in Nocedal & Wright.