内容提要

- 1. 集合
- 2. 关系
- 3. 关系性质与闭包
- 4. 等价关系
- 5. 偏序关系
- 6. 函数
- 7. 集合基数

1、集合

概念:

集合,外延性原理,∈,⊆,⊂,空集,全集,幂集 文氏图,交,并,差,补,对称差

- 集合 一些可以明确区分的对象的整体,对象的次序无关紧要. 对象称为元素.
 - 约定: 用大写字母表示集合. 例:A; 用小写字母表示元素. 例:a
 属于: a∈A 不属于: a∉A
 - 集合表示:

```
列举法 eg. A= { a,b,c }
叙述法 eg. A={ x|x=a或x=b或x=c }
```

- 集合相等 (外延性原理): 两个集合相等,当且仅当它们有相同的元素. 例:

```
{ 1,2 } = { 2,1 }
{ 1,2,2 } = { 1,2 }
```

集合与集合之间的关系: \subseteq , =, \notin , \neq , \subset , $\not\subset$

$$A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B)$$

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

$$A \subset B \Leftrightarrow A \subseteq B \land A \neq B$$

$$A \nsubseteq B \Leftrightarrow \exists x (x \in A \land x \notin B)$$

空集 Ø 不含有任何元素的集合

实例: $\{x \mid x \in R \land x^2 + 1 = 0\}$

定理: 空集是任何集合的子集。

推论: Ø是惟一的。

全集 E 包含了所有元素的集合

注:全集具有相对性:与问题有关,不存在绝对的全集

幂集 $P(A)=\{x \mid x \subseteq A\}$

例: (1) 令 A= {1,2}, 则 P(A)={Ø,{1},{2},{1,2}}

(2) 计算 P(∅), P(P(∅)), P(P(P(∅))).

定理:如果 |A|=n,则 $|P(A)|=2^n$.

集合的基本运算

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A-B = \{x \mid x \in A \land x \notin B\}$$

$$A \oplus B = (A - B) \cup (B - A)$$

$$\sim A = E - A = \{x | x \notin A\}$$

注: 并和交运算可以推广到有穷个集合上,即

$$A_1 \cup A_2 \cup ... \cup A_n = \{ x \mid x \in A_1 \lor x \in A_2 \lor ... \lor x \in A_n \}$$

$$A_1 \cap A_2 \cap \ldots \cap A_n = \{ x \mid x \in A_1 \land x \in A_2 \land \ldots \land x \in A_n \}$$

文氏图 (Venn Diagram):将全集E看成二维的全平面上所有的 点构成的集合.而E的子集表示成平面上由封闭曲线围成的点集.

集合运算的表示

广义运算

广义并
$$\cup A = \{ x \mid \exists z (z \in A \land x \in z) \}$$

广义交 $\cap A = \{ x \mid \forall z (z \in A \rightarrow x \in z) \}$
例: $\cup \{\{1\}, \{1,2\}, \{1,2,3\}\} = \{1,2,3\}$
 $\cap \{\{1\}, \{1,2\}, \{1,2,3\}\} = \{1\}$
 $\cup \{\{a\}\} = \{a\}, \cap \{\{a\}\} = \{a\}$
 $\cup \{a\} = a, \cap \{a\} = a$

集合恒等式

集合算律

1. 只涉及一个运算的算律: 交换律、结合律、幂等律

	U	\cap	\oplus
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$	<i>A</i> ⊕ <i>B</i> = <i>B</i> ⊕ <i>A</i>
结合	$(A \cup B) \cup C$ $= A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	(A⊕B)⊕C =A⊕(B⊕C)
幂等	$A \cup A = A$	$A \cap A = A$	

集合算律

2. 涉及两个不同运算的算律:

分配律、吸收律

	∪与○	○与⊕
分配	$A \cup (B \cap C) =$ $(A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) =$ $(A \cap B) \cup (A \cap C)$	$A \cap (B \oplus C)$ $= (A \cap B) \oplus (A \cap C)$
吸收	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	

集合算律

3. 涉及补运算的算律:

DM律,双重否定律

	_	~
D.M律	$A-(B\cup C)=(A-B)\cap (A-$	~(<i>B</i> ∪ <i>C</i>)=~ <i>B</i> ∩~ <i>C</i>
	C)	~(<i>B</i> ∩ <i>C</i>)=~ <i>B</i> ∪~ <i>C</i>
	$A-(B\cap C)=(A-B)\cup (A-$	
	C)	
双重否定		~~A=A

集合算律

4. 涉及全集和空集的算律: 补元律、零律、同一律、否定律

	Ø	E
补元律	A ∩~ A =Ø	<i>A</i> ∪~ <i>A</i> = <i>E</i>
零律	A ∩Ø=Ø	<i>A</i> ∪ <i>E</i> = <i>E</i>
同一律	A ∪Ø= A	<i>A</i> ∩ <i>E</i> = <i>A</i>
否定	~∅= E	~ E =Ø