Ammene ton CARTable!

Luke Hayden

8 Novembre 2018

Classic modelling

Simple linear regression:

$$Age = X(marker1) + c$$

We try to find values for x & c that come as close as possible to solving the equation for each set of values for Age and marker1 we have.

Two predictors:

$$Age = X(marker1) + Y(marker2) + c$$

Many predictors

$$\label{eq:Age} \begin{aligned} \mathsf{Age} &= \mathsf{X}(\mathsf{marker1}) + \mathsf{Y}(\mathsf{marker2}) + \mathsf{Z}(\mathsf{marker3}) + \\ \mathsf{W}(\mathsf{marker4}) + \ldots + \mathsf{c} \end{aligned}$$

Where we have many different markers, we can find values of x,y,z,w, etc that solve this equation very well but don't provide predictive power: we call this overfitting

How do we avoid overfitting?

We want:

Modelling approach that can capture the signal without simply reproducing all the noise present in our dataset

To maximise predictive power

Data partitioning:

train-test split cross-validation)

Model type

Ensemble methods!

Model parameters

Exploring parameter space

Machine Learning terminology

Supervised vs unsupervised learning

Unsupervised learning: find the shape of the data (

(eg: PCA, kmeans clustering)

Supervised learning: train an algorithm to recapitulate the examples

it sees in a dataset (eg: linear regression)

Classification vs Regression

Classification: categorise examples into one of a number of discrete

categories

Regression: determine value along range

Classification and Regression Trees

Decision tree

Classify or perform regression by asking binary questions of data: whether value of marker X is above or below key value Y, whther marker Z is above or below.....

Random Forest

Ensemble of decision trees, each using a random subset of the predictors to classify/perform regression on a random subset of the data $\frac{1}{2}$

Resists overfitting

Gradient Boosting Machine

Start with simple model (eg: mean of values in training dataset) Stepwise improvement (boosting) of this model by adding decision trees to progressively build a better model

Random Forest parameters

ntree: number of trees

mtry: Number of variables randomly sampled as candidates at each

split

min.node.size: sets depth of trees

cross-validation folds: number of repartitions of data for testing

splitting model: variance or "extratrees"

GBM parameters

number of iterations, i.e. trees, (called n.trees in the gbm function) complexity of the tree, called interaction.depth learning rate: how quickly the algorithm adapts, called shrinkage the minimum number of training set samples in a node to commence splitting (n.minobsinnode)

Model tuning

Trying to manually tune every parameter by building huge numbers of real models is extremely tiresome

Caret

R package to allow optimisation of tuning parameters for model building

Can provide a tuning grid with a range of parameters to be tested Small models are built with all possible combinations of these parameters, then final model built under best-performing parameter set

My project as example

Project

Examine the effect of regeneration on the molecular age profile of *Parhyale* limbs

Designing codeset

- *Nanostring as method to quantify gene expression
- *200 genes in codeset
- -195 genes chosen on the basis of differential expression analysis
- -5 control genes: do not vary in expression between conditions

Young vs old separation: PCA old vs young

Young vs old separation: Old vs young by marker

Expression/length relationship

Initial attempts

But.

40-fold cross-validation

Tuning model parameters

Contributions to model

Marker profiles

It looks like some optimisation on the basis of these profiles may

GBM

Marker contributions

Marker contributions and profiles

GBM vs Random Forest

Does regeneration rejuvenate?

Rejuvenation Effect Model type: GBM, 55 markers used Samples with at least 1 housekeeping genes with at least 10 reads Chi-stat < 500

Does regeneration rejuvenate?

