深圳大学实验报告

课程名称:	_	数字电路	
实验项目 名称	₹•	集成触发器	
	Y <u>•</u>	ンド/み/ルム/入 HH	
/// m.t.			
学院 <u>:</u>			
专业 <u>: </u>			
指导教师:	_	张志朋	
报告人:	学号 :		
•,·,-,-, · <u>.</u>			
今近年に		2022年12日5日	
头盔叫问:		2023年12月5日	
实验报告提交	过时间:	2023年12月5日	

教务处制

实验目的与要求:

- (1) 熟悉并掌握 RS、D、JK、T 触发器的构成、工作原理和功能测试方法。
- (2) 掌握不同逻辑功能触发器的相互转换

实验内容:

任务一 维持-阻塞型 D 触发器的功能测试

任务二 下降沿 J-K 触发器功能测试

任务三 触发器功能转换

方法、步骤:

任务一 维持-阻塞型 D 触发器的功能测试

- 1. 正确插入 74LS74 芯片, 按照要求完成接线。
- 2. (1)分别在 S_D 、 R_D 端加低电平,观察并记录 Q、Q端的状态。当 S_D 、 R_D 端同时加低电平时,输出将为高电平,但是此时如果 S_D 、 R_D 端再同时加高电平,对应的输出状态是不稳定的。
 - (2) 令 \bar{S}_D 、 \bar{R}_D 端为高电平,D 端分别接入高、低电平,同时用手动脉冲作为 CP,然后观察并记录当 CP 为 0-1 时 Q 端状态。
 - (3) 当 $S_D = R_D = 1$ 、CP = 0(或 CP = 1)时,改变 D 端信号,然后观察 Q 端的状态是否变化。整理上述实验数据,并将结果填入表 4-5 中
 - (4) 令 $\bar{S}_D = \bar{R}_D = 1$,将 D 端和 \bar{Q} 端相连,CP 加入 1kHz 连续脉冲,然后用双踪示波器观察并记录 O 相对于 CP 的波形
- 3. 打开电源,按照要求调整输入输入。
- 4. 测试功能,记录试验数据填入表格。
- 5. 分析数据,得出结论。

任务二 下降沿 J-K 触发器功能测试

- 1. 正确插入 74LS76 芯片, 按照要求完成接线。
- 2. 令 J = K = 1,且在 CP 端加入 1kHz 连续脉冲,然后用双踪示波器观察 Q-CP 波形,并与 D 触发器 D 和 Q 端相连时观察到的 Q 端的波形相比较,看看有何异同点。

- 3. 打开电源,按照要求调整输入输入。
- 4. 测试功能,记录试验数据填入表格。
- 5. 分析数据,得出结论。

任务三 触发器功能转换

- 1. 分别将 D 触发器和 J-K 触发器转换成 T 触发器,列出表达式并画出实验接线图。
- 2. 接入 1kHz 连续脉冲,观察各触发器 CP 及 Q 端波形,并比较两者关系。
- 3. 打开电源,按照要求调整输入输入。
- 4. 测试功能,记录试验数据填入表格。
- 5. 分析数据,得出结论。

实验过程及内容:

任务一 维持-阻塞型 D 触发器的功能测试

1.用到 74LS74 芯片按引脚图接线:

- 2.测试实验数据并记录结果。
- 3.得出实验结论。

任务二 下降沿 J-K 触发器功能测试

1. 插入 74LS76 芯片按引脚图接线:

- 2. 测试实验数据并记录结果。
- 3.得出实验结论。

任务三 触发器功能转换

1. (1) 设计好电路图,用到 74LS74 和 74LS86 芯片按引脚图接线:

- 1. (2) 测试实验数据并记录结果。
- 1. (3) 得出实验结论。
- 2. (1) 设计好电路图,用到 74LS76 芯片按引脚图接线:

- 2. (2) 测试实验数据并记录结果。
- 2. (3) 得出实验结论。

数据处理分析:

任务一 维持-阻塞型 D 触发器的功能测试

测试实验数据并记录结果:

$\overline{S_D}$	RD	CP	D	Qn	Qn+1
0 1	X	X	0	1	
				1)
1	0	X	X	0	٥
			1	0	
1	1 1	₹	• 0	0	0
				1	O
1 1	1	1	0	1	
				1	1

任务二 下降沿 J-K 触发器功能测试

测试实验数据并记录结果:

S _D R _D	CP J K Q ⁿ	Q ⁿ⁺¹
0 1	X X X X	
1 0	X X X X	9
1 I	→ 0 X 0	Ь
1 1	1 X 0)
1 1	X 0 1	1
1 1	x 1 1	Ь

任务三 触发器功能转换

测试实验数据并记录结果:

$\overline{S_D}$	$\overline{R_D}$	CP	T	Q ⁿ	Q^{n+1}
0	1	X	X	0	_
				1	١
1	0	X	X	0	Q
				1	0
1	1	₹	0	0	P
		7		1	1
1	1	•	1	0	1
				1	6

SD	R _D	СР	T	Qn	Q ⁿ⁺¹
0	1	X	X	0	1
				1	1
1	0	X	X	0	O
				1	0
1	1		0	0	0
		•		1	1
1	1		1	0	1
		_		1	٥

实验结论:

- 1.74LS74 芯片是上升沿 D 触发器。
- 2.当 74LS76 芯片与 74LS74 芯片使用同一个时钟信号时,分别与两者相连的电平指示灯都不断闪烁,但两者的电平指示灯是以等时间间隔交替闪烁的。
- 3.当由 74LS74 改装的 T 触发器和由 74LS76 改装的 T 触发器接入同一个时钟信号时,分别与两者相连的电平指示灯以相同时间间隔交替闪烁,说明两者的状态转换时刻不同。

指导教师批阅意见:	
成绩评定:	
	北日本になら
	指导教师签字:
	年 月 日
备注:	

- 注: 1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
 - 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。

任务一 维持-阻塞型 D 触发器的功能测试

SD	RD	CP	D	Qn	Qn+1
0	1	X	X	0	
				1	1
1	0	X	X	0	0
			_	1	0
1	1	F	0	0	0
				1	0
1	1	-	1	0	1
				1	

任务二 下降沿 J-K 触发器功能测试

CP J K Q ⁿ	Qn+1
X X X X	1
x x x x	0
7 0 X 0	0
7 1 X 0	1
7 X 0 1	1
7 X 1 1	0
	X X X X X X X X X X X X X X X X X X X

任务三 触发器功能转换

T 触发器的特性方程为: Q***! = TQ** + TQ**

D 触发器的特性方程为: Q"" = D

所以 $D = TQn + TQ^n = T \oplus Q^n$

又因为 JK 触发器的特性方程为: $\mathbf{Q}^{n+1} = \mathbf{J}\mathbf{Q}^n + \mathbf{K}\mathbf{Q}^n$

所以 J = K = T

So Ro	CP	T	Q*	Qui
0 1	X	X	0	
0 1	-		1	
1 0	×	X	0	0
1 0			1	0
	7	7 0	0	0
1 1	-		1	1
	7	1	0	1
1 1	+		1	0

