The University of Texas at Austin Department of Electrical and Computer Engineering

ECE 381V: Large-Scale Optimization II — Spring 2022

Lecture 5

Caramanis & Mokhtari

Wednesday, February 2, 2022

Goal: In this lecture, we discuss strongly convex functions and their properties. Then, we establish a lower bound for the functions class $\mathcal{F}_{\mu,L}^{\infty,1}(\mathbb{R}^n)$. Finally, we show the convergence rate of gradient descent for $\mathcal{F}_{\mu,L}^{1,1}(\mathbb{R}^n)$.

1 The Class of Strongly Convex Functions

Definition 1. If there exists a constant $\mu > 0$ such that

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2$$
 (1)

for all $\mathbf{x}, \mathbf{y} \in S$, then the function f is μ -strongly convex on S.

Figure 1: A strongly convex function with different parameter μ . The larger μ is, the steeper the function looks like.

When $\mu = 0$, we recover the basic inequality characterizing convexity; for $\mu > 0$, we obtain a better lower bound on $f(\mathbf{y})$ than that from convexity alone.

Typically as shown in Figure (1) , a small μ corresponds to a 'flat' convex function while a large μ corresponds to a 'steep' convex function.

Remark 1. We denote the class of differentiable functions that are strongly convex by $\mathcal{F}^1_{\mu}(\mathbb{R}^n, \|.\|)$.

1.1 Side results of strong convexity

Strong convexity has several interesting consequences. We will see that we can bound both $f^* - f(\mathbf{x})$ and $||\mathbf{x} - \mathbf{x}^*||_2$ in this section.

Lemma 1. If $f \in \mathcal{F}^1_{\mu}(\mathbb{R}^n)$, then

$$f(\mathbf{x}) - f(\mathbf{x}^*) \le \frac{1}{2\mu} \|\nabla f(\mathbf{x})\|_2^2$$

Proof. The righthand side of the strong convexity inequality is a convex quadratic function of \mathbf{y} (for fixed \mathbf{x}). Setting the gradient with respect to \mathbf{y} equal to zero, we can find the \tilde{y} that minimizes the right hand side.

$$\frac{\partial}{\partial x}(f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2) = 0$$
$$\nabla f(\mathbf{x}) - \mu(\mathbf{y} - \mathbf{x}) = 0$$
$$\mathbf{y} = \mathbf{x} - \frac{1}{\mu} \nabla f(\mathbf{x})$$

So $\tilde{\mathbf{y}} = \mathbf{x} - (1/\mu)\nabla f(\mathbf{x})$ minimizes the righthand side. If we minimize the left hand side with respect to \mathbf{y} we obtain $\mathbf{y} = \mathbf{x}^*$ and the left hand side becomes f^* . Hence, we have

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|^{2}$$

$$f^{*} \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \tilde{\mathbf{y}} - \mathbf{x} \rangle + \frac{\mu}{2} \|\tilde{\mathbf{y}} - \mathbf{x}\|^{2}$$

$$= f(\mathbf{x}) - \frac{1}{2\mu} \|\nabla f(\mathbf{x})\|^{2}$$

and the claim follows.

This result allows us to realize how fast you get to a minimum as a function of gradient. If the gradient is small at a point, then the point is nearly optimal. This upper bound also implies that if we find a point $\hat{\mathbf{x}}$ such that, $\|\nabla f(\hat{\mathbf{x}})\|_2 \leq \sqrt{2\mu\epsilon}$, then we can conclude that $\hat{\mathbf{x}}$ is ϵ -suboptimal, i.e., $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \leq \epsilon$.

Similarly, we can also derive an upper bound on $\|\mathbf{x} - \mathbf{x}^*\|_2$, the distance between x and any optimal point x^* , in terms of $\|\nabla f(\mathbf{x})\|_2$:

Lemma 2. If $f \in \mathcal{F}^1_{\mu}(\mathbb{R}^n)$, then

$$\|\mathbf{x} - \mathbf{x}^*\|_2 \le \frac{2}{\mu} \|\nabla f(\mathbf{x})\|_2 \tag{2}$$

where $\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x})$ is the unique minimizer of f.

Proof. We apply (1) with $\mathbf{y} = \mathbf{x}^*$ to obtain:

$$f^* = f(\mathbf{x}^*) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{x}^* - \mathbf{x} \rangle + \frac{\mu}{2} \|\mathbf{x}^* - \mathbf{x}\|_2^2$$
$$\geq f(\mathbf{x}) - \|\nabla f(\mathbf{x})\|_2 \|\mathbf{x}^* - \mathbf{x}\|_2 + \frac{\mu}{2} \|\mathbf{x}^* - \mathbf{x}\|_2^2,$$

Since $f^* \leq f(\mathbf{x})$, the terms following $f(\mathbf{x})$ on the righthand side must be negative. We have

$$-\|\nabla f(\mathbf{x})\|_2 \|\mathbf{x}^* - \mathbf{x}\|_2 + \frac{\mu}{2} \|\mathbf{x}^* - \mathbf{x}\|_2^2 \leq 0$$
$$\|\mathbf{x} - \mathbf{x}^*\|_2 \leq \frac{2}{\mu} \|\nabla f(\mathbf{x})\|_2$$

from which (2) follows.

One consequence of (2) is the solution locates within a ball of radius of $\frac{2}{\mu} \|\nabla f(\mathbf{x})\|_2$ around the optimal solution.

Lemma 3. If $f \in \mathcal{F}^1_{\mu}(\mathbb{R}^n)$, then for any \mathbf{x} and \mathbf{y} and $\alpha \in [0,1]$ we have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - \frac{\alpha(1 - \alpha)\mu}{2} \|\mathbf{x} - \mathbf{y}\|^{2}$$
$$\mu \|\mathbf{x} - \mathbf{y}\|^{2} \le (\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^{\top} (\mathbf{x} - \mathbf{y})$$
$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2\mu} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^{2}$$
$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^{\top} (\mathbf{x} - \mathbf{y}) \le \frac{1}{2\mu} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^{2}$$

Proof. Exercise.

Remark 2. We denote the class of twice differentiable functions that are strongly convex by $\mathcal{F}^2_{\mu}(\mathbb{R}^n)$.

Theorem 1. Consider a twice differentiable function f. Then, f is μ -strongly convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}$.

2 The class of $\mathcal{F}_{u,L}^{1,1}$ functions

This is an important class functions that are differentiable, strongly convex, and has Lipschitz continuous gradients. Basically, for $\mathcal{F}^{1,1}_{\mu,L}(\mathbb{R}^n)$ we have

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^{\top}(\mathbf{x} - \mathbf{y}) \ge \mu \|\mathbf{x} - \mathbf{y}\|^2$$

and

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|$$

We further define the value $\kappa = L/\mu$ as the condition number of the problem.

Theorem 2. If $f \in \mathcal{F}^{1,1}_{\mu,L}(\mathbb{R}^n)$, then we have

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^{\top}(\mathbf{x} - \mathbf{y}) \ge \frac{\mu L}{\mu + L} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{\mu + L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2.$$

3 The class of $\mathcal{F}^{2,1}_{\mu,L}$ functions

For this class of functions that are twice differentiable, strongly convex, and has Lipschitz continuous gradients, the most important property that we have is

$$\mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}$$
 (3)

In this case, we observe that the condition number $\kappa = L/\mu$ is a uniform (and hence upper) bound on the condition number of the matrix $\nabla^2 f(\mathbf{x})$ at any given \mathbf{x} .

Definition 2. When the ratio is close to 1, we call it **well-conditioned**. When the ratio is very large, we call it **ill-conditioned**.

4 Lower bound for $\mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$

We first formally define the class of functions, query/oracle, and the required approximation error.

Model: $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$, where $f \in \mathcal{F}_{u,L}^{\infty,1}(\mathbb{R}^n)$.

Oracle: First-order Black Box.

Approximation Solution: Find $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that $f(\hat{\mathbf{x}}) - f^* \leq \epsilon$

Assumption on the class of algorithms. We define the class of algorithms A_{lin} as methods that generate a sequence of test points $\{\mathbf{x}_k\}$ according to the following condition:

$$\mathbf{x}_k \in \mathbf{x}_0 + \mathbf{Span}\{\nabla f(\mathbf{x}_0), \dots, \nabla f(\mathbf{x}_{k-1})\}$$
 $k \ge 1$

Our lower bound will depend on the problem condition number $\kappa = L/\mu$. Note that infinite dimensional problems also belongs to the class of problems that we consider, as we don't have any restrictions on problem dimension. A similar argument can be shown for the finite dimension, but for our lower bound we focus on infinite dimensional problems to make our reasoning simpler.

Theorem 3. For any $\mathbf{x}_0 \in \mathbb{R}^n$, there exists a function $f \in \mathcal{F}_{\mu,L}^{\infty,1}(\mathbb{R}^n)$ such that for any algorithm in \mathcal{A}_{lin} we have

$$\|\mathbf{x}_k - \mathbf{x}^*\|^2 \ge \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$

and

$$f(\mathbf{x}_k) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$

Proof. Consider the following function

$$f(\mathbf{x}) = \frac{L - \mu}{8} \left[\left(x(1)^2 + \sum_{i=1}^{\infty} (x(i) - x(i+1))^2 + x(k)^2 \right) - 2x(1) \right] + \frac{\mu}{2} ||\mathbf{x}||^2$$

where x(j) is the j-th coordinate of \mathbf{x} . It can also be seen that this is quadratic function and its Hessian is given by $\nabla^2 f(\mathbf{x}) = \frac{L-\mu}{4}\mathbf{A} + \mu\mathbf{I}$ where

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 0 & \cdots \\ -1 & 2 & -1 & 0 & \cdots \\ 0 & -1 & 2 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Hence, we can easily show that this function is μ -strongly convex and L-smooth. It can be also verified that the gradient of $f(\mathbf{x})$ is given by

$$\nabla f(\mathbf{x}) = \frac{L - \mu}{4} (\mathbf{A}\mathbf{x} - \mathbf{e}_1) + \mu \mathbf{x}$$

By setting the gradient to zero we obtain that the optimal solution of $f(\mathbf{x})$ is

$$\frac{L-\mu}{4}(\mathbf{A}\hat{\mathbf{x}} - \mathbf{e}_1) + \mu \mathbf{x} = \mathbf{0} \iff \left(\frac{L-\mu}{4}\mathbf{A} + \mu \mathbf{I}\right)\hat{\mathbf{x}} = \frac{L-\mu}{4}\mathbf{e}_1 \iff \left(\mathbf{A} + \frac{4}{\kappa - 1}\mathbf{I}\right)\hat{\mathbf{x}} = \mathbf{e}_1$$

Hence, the coordinates of the optimal solution should satisfy the following conditions:

$$2\frac{\kappa+1}{\kappa-1}\hat{x}(1) - \hat{x}(2) = 1$$

and for $k \geq 2$ we have

$$\hat{x}(k+1) - 2\frac{\kappa+1}{\kappa-1}\hat{x}(k) + \hat{x}(k-1) = 0$$

If we assume that the solution for the above system of equations has the form $\hat{x}(k) = cq^k$ then we obtain that

$$q^2 - 2\frac{\kappa + 1}{\kappa - 1}q + 1 = 0$$

and, hence, the smaller root that makes the norm finite has the form

$$q^* = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$$

To figure out c we can use the first equation which implies that

$$2c \times \frac{\kappa + 1}{\kappa - 1} \times \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} - c \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^2 = 1$$

It can be easily verified that c = 1 and hence

$$\hat{x}(k) = \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k$$

Now if (WLOG) we set $\mathbf{x}_0 = \mathbf{0}$, then we have

$$\|\mathbf{x}_0 - \mathbf{x}^*\|^2 = \|\mathbf{x}^*\|^2 = \sum_{k=1}^{\infty} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} = \frac{\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^2}{1 - \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^2}$$

Moreover, since all coordinates of \mathbf{x}_k are nonzero for indices larger than k we can show that

$$\|\mathbf{x}_{k} - \mathbf{x}^{*}\|^{2} \ge \sum_{i=k+1}^{\infty} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2i} = \frac{\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2(k+1)}}{1 - \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2}} = \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|^{2}$$

and the proof for the first statement is complete. To prove the second claim, we simply use the fact that

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \frac{\mu}{2} ||\mathbf{x} - \mathbf{x}^*||^2.$$

Hence, the proof is complete.

5 Gradient Descent for $\mathcal{F}_{u,L}^{1,1}(\mathbb{R}^n)$

In the gradient descent method we follow the update

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla f(\mathbf{x}_k)$$

where η is the stepsize or learning rate.

In the following theorem, we characterize the convergence rate of gradient descent for $\mathcal{F}_{u,L}^{1,1}(\mathbb{R}^n)$.

Theorem 4. Let $f \in \mathcal{F}_{\mu,L}^{1,1}(\mathbb{R}^n)$ and $0 < \eta \leq \frac{2}{\mu + L}$. Then, the iterates of GD satisfy

$$\|\mathbf{x}_k - \mathbf{x}^*\|^2 \le \left(1 - \frac{2\eta\mu L}{\mu + L}\right)^2 \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$

Proof. We can simply show that

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 = \|\mathbf{x}_k - \mathbf{x}^*\|^2 - 2\eta \nabla f(\mathbf{x}_k)^{\top} (\mathbf{x}_k - \mathbf{x}^*) + \eta^2 \|\nabla f(\mathbf{x}_k)\|^2$$

$$= \|\mathbf{x}_k - \mathbf{x}^*\|^2 - 2\eta (\nabla f(\mathbf{x}_k) - \nabla f(\mathbf{x}^*))^{\top} (\mathbf{x}_k - \mathbf{x}^*) + \eta^2 \|\nabla f(\mathbf{x}_k)\|^2$$

$$\leq \|\mathbf{x}_k - \mathbf{x}^*\|^2 - 2\eta \frac{\mu L}{\mu + L} \|\mathbf{x}_k - \mathbf{x}^*\|^2 - 2\eta \frac{1}{\mu + L} \|\nabla f(\mathbf{x})\|^2 + \eta^2 \|\nabla f(\mathbf{x}_k)\|^2$$

$$= \left(1 - 2\eta \frac{\mu L}{\mu + L}\right) \|\mathbf{x}_k - \mathbf{x}^*\|^2 - \eta \left(\frac{2}{\mu + L} - \eta\right) \|\nabla f(\mathbf{x}_k)\|^2$$

$$\leq \left(1 - 2\eta \frac{\mu L}{\mu + L}\right) \|\mathbf{x}_k - \mathbf{x}^*\|^2$$

where the first inequality holds due to

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^{\top}(\mathbf{x} - \mathbf{y}) \ge \frac{\mu L}{\mu + L} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{\mu + L} \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|^2.$$

and the second one holds since $0 < \eta \le \frac{2}{\mu + L}$.

Corollary 1. If we set $\eta = 2/(\mu + L)$ we obtain the best rate which is

$$\|\mathbf{x}_k - \mathbf{x}^*\|^2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$

and hence

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$

Remark 3. Our lower bound shows a linear convergence rate of $\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2k}$ while our upper bound scales with $\left(\frac{\kappa-1}{\kappa+1}\right)^{2k}$. Indeed, there is a gap between these two bounds. Now the question is, can we improve the lower bound or the upper bound? In other words, which one is possible? Deriving a harder instance to improve our lower bound? Or presenting an algorithm that converges faster and improves our upper bound? We will answer this question later.