Progetto 2

Si vuole definire un modello a parametri concentrati che descriva l'evoluzione della temperatura in una casa. La base della pianta della casa è un quadrato di lato L=8 m. È poi suddivisa in tre ambienti (Figura 1):

- un piano interrato di altezza $H_I = 2.4$ m;
- un piano abitabile di altezza $H_A = 2.7$ m;
- un sottotetto con colmo di altezza $H_T = 4$ m.

Figure 1: Schema geometrico dell'abitazione.

Si consideri l'aria un gas ideale a densità e capacità termica costanti di valori $\rho=1.225~{\rm Kg/m^3}$ e $c=1000~{\rm J/Kg^\circ C}$.

L'evoluzione della temperatura in ciascuna stanza i è modellata tramite la seguente equazione differenziale:

$$\rho V_i c \frac{\mathrm{d}T_i}{\mathrm{d}t} = -\sum_{j=1}^n q_{i,j},\tag{1}$$

dove T_i è la temperatura della stanza i, V_i è il volume della stanza i e $q_{i,j}$ è il flusso conduttivo uscente dalla stanza i attraverso la parete j. Il flusso è descritto dalla seguente legge:

$$q_{i,j} = -h_j S_j (T_j - T_i), \tag{2}$$

dove h_j è la trasmittanza della parete j, S_j è la sua superficie e T_j è la temperatura dell'ambiente all'esterno della parete j.

Le pareti dell'abitazione sono caratterizzate dalle seguenti trasmittanze:

- tetto: $h_T = 0.3 \text{ W/m}^2\text{K}$;
- muri: $h_M = 0.35 \text{ W/m}^2\text{K}$;

• pavimenti e solette: $h_S = 0.4 \text{ W/m}^2\text{K}$.

Durante una giornata invernale, la variazione delle temperature esterne è stimata attraverso la seguente funzione:

$$T_{ex} = T_0 - C_1 \cos(C_2(t - t_0)), \tag{3}$$

dove t_0 è il tempo iniziale in secondi e T_0, C_1, C_2 sono delle costanti.

Si consideri la finestra temporale di un'intera giornata, a partire da mezzanotte. Per la temperatura esterna T_{E_1} si considerino $T_0=C_1=5^{\circ}\mathrm{C}$; per la temperatura esterna T_{E_2} si considerino $T_0=5^{\circ}\mathrm{C}$, $C_1=1^{\circ}\mathrm{C}$. In entrambi i casi $C_2=\frac{2\pi}{24\cdot 60\cdot 60}$ e $t_0=0$.

- 1. Calcolare l'andamento della temperatura nei tre ambienti durante la giornata sapendo che a mezzanotte $T_T=T_A=T_I=18$ °C.
- 2. Con le stesse condizioni iniziali, calcolare l'andamento della temperatura considerando che all'interno della zona abitabile è presente una sorgente di calore sempre accesa che eroga energia per 0.8 kW.
- 3. Considerando la presenza della sorgente di calore, come devono variare i coefficienti di isolamento dei muri esterni in modo tale che la temperatura della zona abitabile non scenda mai sotto i 17°C?