Recap: FasterRCNN

https://kharshit.github.io/blog/2019/08/23/quick-intro-to-instance-segmentation

RPN (region proposal network)

Takes feature map as input and predict 22,500 ROIs (region of interests)

Ground-truth labels to calculate RPN classification loss

16*16 anchor points

9 anchor boxes for each anchor pt

16*16*9 = 22,500 8940 valid anchor boxes

Label the 8,940 valid anchor boxes

1: IOU > 0.7 (may contain object)

0: IOU < 0.3 (background)

-1: ignore

Sample a batch of anchor boxes to train RPN: 128 positive examples and 128 negative examples (label 0). Change the labels of all other valid anchor boxes to -1(ignore) at this mini-batch training.

RPN classification loss

$$L(p_i, t_i) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, \hat{p}_i) + \lambda \frac{1}{N_{reg}} \sum_i p_i L_{reg}(t_i, \hat{t}_i)$$

$$N_{cls} = 256$$

 \hat{p}_i Probability for class 0 and 1 predicted by RPN

$$p_i = \{ egin{array}{l} 0, negative\ label \ 1, positive\ label \ \end{array} \}$$

```
# For classification we use cross-entropy loss
rpn_cls_loss = F.cross_entropy(rpn_score, gt_rpn_score,
print(rpn_cls_loss)
```

```
rpn_loc = pred_anchor_locs[0]
rpn_score = pred_cls_scores[0]

gt_rpn_loc = torch.from_numpy(anchor_locations)
gt_rpn_score = torch.from_numpy(anchor_labels)
```

$$L_{cls}(p_i, \hat{p}_i) = CE(p_i, \hat{p}_i) = -\sum_{k=1}^{2} p_k ln(\hat{p}_k)$$

Ground-truth values to calculate RPN bounding box regression loss

For each valid anchor box, use the ground truth bbox with maximum IOU to calculate a normalized location representation

Smooth L1 loss

$$Loss_2 = \frac{1}{N} \sum_{i=1}^{N} (y^i - \hat{y}^i)^2$$

$$Loss_1 = \frac{1}{N} \sum_{i=1}^{N} |y^i - \hat{y}^i|$$

smooth Loss₁ =
$$\begin{cases} 0.5x^2 \times \frac{1}{\sigma^2} & \text{if } |x| < \frac{1}{\sigma^2} \\ |x| - 0.5 & \text{otherwise} \end{cases}$$

RPN bounding box regression loss

$$L(p_i, t_i) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, \hat{p}_i) + \lambda \frac{1}{N_{reg}} \sum_i p_i L_{reg}(t_i, \hat{t}_i)$$

$$N_{reg} = 128$$

$$t_i = \left[d_x, d_y, d_w, d_h \right]$$

$$\hat{t}_i = \left[\hat{d}_x, \hat{d}_y, \hat{d}_w, \hat{d}_h \right]$$

$$p_i = \{ egin{array}{l} 0, negative\ label \ 1, positive\ label \ \end{array} \}$$

$$L_{reg} = \{ \begin{cases} 0.5(t_i - \hat{t}_i)^2 \times \frac{1}{\sigma^2} & \text{if } |t_i - \hat{t}_i| < \frac{1}{\sigma^2} \\ |t_i - \hat{t}_i| - 0.5 & \text{otherwise} \end{cases}$$
 $\sigma = 3 \text{ for RPN training}$

RPN bounding box regression loss

$$L(p_i, t_i) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, \hat{p}_i) + \lambda \frac{1}{N_{reg}} \sum_i L_{reg}(t_i, \hat{t}_i)$$

```
# For Regression we use smooth L1 loss as defined in the Fast RCNN paper
pos = gt_rpn_score > 0
mask = pos.unsqueeze(1).expand_as(rpn_loc)
print(mask.shape)
# take those bounding boxes which have positive labels
mask_loc_preds = rpn_loc[mask].view(-1, 4)
mask_loc_targets = gt_rpn_loc[mask].view(-1, 4)
print(mask_loc_preds.shape, mask_loc_targets.shape)
x = torch.abs(mask_loc_targets.cpu() - mask_loc_preds.cpu())
rpn_loc_loss = ((x < 1).float() * 0.5 * x**2) + ((x >= 1).float() * (x-0.5))
print(rpn_loc_loss.sum())
```

Pass ROIs to FastRCNN detector

Use NMS, IOU to reduce the number of ROI from 22500 \rightarrow 2000 \rightarrow 128

Non-maximum Suppression (NMS)

Before non-max suppression

Non-Max Suppression

After non-max suppression

Extract the feature maps of the 128 ROI samples

ROI Pooling

Extract the feature maps of the 128 ROI samples, adjust to the same size H=7, W=7 using max pooling (ROI Pooling)

https://blog.csdn.net/qq_35586657/article/details/97885290

FastRCNN detector

FastRCNN detector

torch.Size([128, 8]) torch.Size([128, 2])

```
# Reshape the tensor so that we can p
 k = output.view(output.size(0), -1)
 print(k.shape) # 25088 = 7*7*512
roi_head_classifier = nn.Sequential(*[nn.Linear(25088, 4096), nn.Linear(4096, 4096)])
cls_loc = nn.Linear(4096, 2 ) 4).to(device) # (1 classes 安全帽 + 1 background. Each i
cls_loc.weight.data.normal_(0, 0.01)
cls loc.bias.data.zero ()
                               No of object classes you want to predict + 1 (background)
score = nn.Linear(4096, 2).to(device) # (1 classes, 安全帽 + 1 background)
# passing the output of roi-pooling to ROI head
k = roi_head_classifier(k.to(device))
roi cls loc = cls loc(k)
roi cls score = score(k)
print(roi_cls_loc.shape, roi_cls_score.shape)
```

Class practice

 Prepare a training image that has at least two classes of objects to be recognized. Mark the 2 bounding boxes that represent 2 classes of objects.
 Pass the image + bbox through FasterRCNN to calculate training loss.

FastRCNN detector classification loss

$$L(p_i, t_i) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, \hat{p}_i) + \lambda \frac{1}{N_{reg}} \sum_i p_i L_{reg}(t_i, \hat{t}_i)$$

$$N_{cls} = 128$$

 \hat{p}_i Probabilities for each class

 p_i 0 or 1

$$L_{cls}(p_i, \hat{p}_i) = CE(p_i, \hat{p}_i) = -\sum_{k=1}^{C} p_k ln(\hat{p}_k)$$

FastRCNN detector bounding box regression loss

$$\begin{split} L(p_i, t_i) &= \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, \hat{p}_i) + \lambda \frac{1}{N_{reg}} \sum_i p_i L_{reg}(t_i, \hat{t}_i) \\ N_{reg} &= 128 \\ t_i &= [x_1, y_1, x_2, y_2] \end{split}$$

 $\hat{t}_i = [\hat{x}_1, \hat{y}_1, \hat{x}_2, \hat{y}_2]$

$$p_i = \{ egin{aligned} 0, negative \ label \\ 1, positive \ label \end{aligned} \}$$

$$L_{reg} = \{ \begin{cases} 0.5(t_i - \hat{t}_i)^2 \times \frac{1}{\sigma^2} & \text{if } |t_i - \hat{t}_i| < \frac{1}{\sigma^2} \\ |t_i - \hat{t}_i| - 0.5 & \text{otherwise} \end{cases}$$
 $\sigma = 1 \text{ for FastRCNN training}$

Fine tune FasterRCNN to detect our own objects

Class practice

FasterRCNN(3) Fine_tune.ipynb

Recap – Fine-tune a pre-trained image classifier

Recap – Fine-tune a pre-trained image classifier

```
In [3]: import torch.nn as nn
        # fix the weight of convolution layers
                                  Fixed
        model.features.eval()
        # modify classifier
        model.classifier = torch.nn.Sequential(
          nn.Linear(25088, 4096),
          nn.ReLU(inplace=True),
                                                 Train
          nn.Dropout(p=0.5, inplace=False),
          nn.Linear(4096, 4096),
          nn.ReLU(inplace=True),
          nn.Dropout(p=0.5, inplace=False),
          torch.nn.Linear(4096, (5)
```

Fine-tune FasterRCNN

Fine-tune FasterRCNN

```
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
# load a model pre-trained pre-trained on COCO
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# replace the classifier
num classes = 2 # 1 class (person) + background
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
               Train
```

Training performance evaluation

$$L(p_i, t_i) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, \hat{p}_i) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i L_{reg}(t_i, \hat{t}_i)$$

```
Epoch: [0] [ 0/20] eta: 0:01:04 lr: 0.000268 loss: 3.3367 (3.3367) loss_classifier: 0.7079 (0.7079) loss_box_reg: 0.1177 (0.1177) loss_mask: 2.4933 (2.4933) loss_objectness: 0.0119 (0.0119) loss_rpn_box_reg: 0.0060 (0.0060) time: 3.2353 data: 2.5175 max mem: 2483

Epoch: [0] [10/20] eta: 0:00:07 lr: 0.002897 loss: 1.3361 (1.7297) loss_classifier: 0.1779 (0.2886) loss_box_reg: 0.0578 (0.0657) loss_mask: 1.0733 (1.2952) loss_objectness: 0.0762 (0.0733) loss_rpn_box_reg: 0.0060 (0.0068) time: 0.7238 data: 0.3247 max mem: 2759

Epoch: [0] [19/20] eta: 0:00:00 lr: 0.005000 loss: 0.8906 (1.2921) loss_classifier: 0.1090 (0.2024) loss_box_reg: 0.0579 (0.0652) loss_mask: 0.6534 (0.9624) loss_objectness: 0.0416 (0.0560) loss_rpn_box_reg: 0.0045 (0.0061) time: 0.6082 data: 0.2312 max mem: 2759

Epoch: [0] Total time: 0:00:12 (0.6111 s / it)
```

Precision and recall

Table 3 Confusion matrix

	Reference (high-risk)	Reference (low-risk)	_	TP
Predicted (high-risk)	True positive (TP)	False positive (FP)	Recall =	
Predicted (low-risk)	False negative (FN)	True negative (TN)		TP + FP

```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95
                                           area=
                                                  all
                                                        maxDets=100 ] = 0.000
                                                  all
                                                        maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50
                                           area=
Average Precision (AP) @[ IoU=0.75
                                                   all |
                                                        maxDets=100 ] = 0.000
                                           area=
Average Precision
                   (AP) @[ IoU=0.50:0.95 | area= small |
                                                        maxDets=100 \ ] = -1.000
Average Precision
                   (AP) @[ IoU=0.50:0.95 |
                                           area=medium
                                                        maxDets=100 \ 1 = 0.000
Average Precision
                   (AP) @[IoU=0.50:0.95] area= large
                                                        maxDets=100 ] = 0.000
                                                  all
                                                        maxDets = 1 = 0.000
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                           area=
                   (AR) @[ IoU=0.50:0.95
                                                  all
Average Recall
                                           area=
                                                        maxDets= 10 ] = 0.000
                                                  all
Average Recall
                  (AR) @[ IoU=0.50:0.95
                                                        maxDets=100 ] = 0.000
                                           area=
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                                        maxDets=100 \ ] = -1.000
                                           area= small
Average Recall
                   (AR) @[ IoU=0.50:0.95
                                           area=medium
                                                        maxDets=100 ] = 0.000
Average Recall
                                                        maxDets=100 ] = 0.000
                   (AR) @[ IoU=0.50:0.95
                                           area= large
```

IOU vs precision

IOU	Precision	Recall
0.8	66.67% (4/6)	
0.5	83.33% (5/6)	
0.2	100% (6/6)	

mAP (mean average precision)

$$mAP = \frac{1}{n} \sum_{k=1}^{n} AP_k$$

n = number of classes

pip install labelme in your Anaconda environment

```
C:\Windows\system32\cmd.exe in instanta
                                                                                                                                                                                X
                                                                                              pip install labelme
(base) C:\Users\ADY<mark>(</mark>IN>pip install labelme
Collecting labelme
Downloading labelme 1 5.7.tar.gz (1.5 MB)
                                                       1.5 MB 1.7 MB/s
Collecting imgviz>=0.11.0
Downloading imgviz-1.2.6.tar.gz (7.7 MB)
                                                           7.7 MB 6.8 MB/s
Installing build dependencies ... done

Getting requirements to build wheel ... done

Preparing wheel metadata ... done

Requirement already satisfied: matplotlib<3.3 in c:\users\admin\anaconda3\lib\site-packages (from labelme) (3.1.3)
```

Run labelme

Load an image and draw boundary

Save label

Saved label

Save boundary to json file

Saved json file

Convert json file to mask image

cd to the folder where you save the *.json file Labelme_json_to_dataset *.json

```
(base) C:\Users\ADMIN\coogle 雲端硬碟\Image folders\train\surprised\( \) (base) C:\Users\ADMIN\coogle 雲端硬碟\Image folders\train\surprised\( \) labelme_json_to_dataset frame23.json [WARNING] json_to_dataset;main:16 - This script is aimed to demonstrate how to convert the JSON file to a sin gle image dataset.

[WARNING] json_to_dataset:main:20 - It won't handle multiple JSON files to generate a real-use dataset.

[INFO ] json_to_dataset:main:77 - Saved to: irame23_json

(base) C:\Users\ADMIN\Google 雲端硬碟\Image folders\train\surprised>
```

Mask images are saved in a folder

Mask image

|le 雲端硬碟 > Image folders > train > surprised > frame23_json

Save RGB and mask images on your Google drive

Save RGB and mask images on your Google drive

Fine tune FasterRCNN

FasterRCNN(3) Fine_tune.ipynb

HW4 – Object detector

Fine-tune pre-trained FasterRCNN to detect your own objects.

Automatically labelled photo-realistic images

Accelerate computer vision model training with the synthetic image data generated using Unity's perception package

2D bounding boxes

3D bounding boxes

Class segmentation

Instance segmentation

Unity perception package

https://github.com/Unity-Technologies/com.unity.perception