Semaine 10b 2022

Poutres statiquement indéterminées 2/2

PARTIE 1: (slide 3 - 12)

Poutres avec expansion thermique (pas de gradient de température)

PARTIE 2: (slide 13 - 29)

Energie de déformation

(Chapitre 9.8 + 9.10 de Gere et Goodno)

Cdml micro-200

PROGRAMME DU COURS, semaines 7-10

Sem	Date	Matière	Cours	Exos
Herbert Shea				
7		Poutre: forces internes, relation		
	mardi 01.11	différentielles, forces distribuées	x	
7		ϵ et σ _normale en flexion pure.		
	jeudi 03.11	Moment inertie de poutre	×	Série 7
8		charge axiale (et normales). poutre		
	mardi 08.11	composite		Série 7
8	jeudi 10.11	Flèche des poutres pt1	х	Série 8
9	mardi 15.11	Flèche des poutres pt 2	х	Série 8
9	jeudi 17.11	Systèmes indéterminés et thermiques	х	Série 9
10	mardi 22.11	Flambage	х	Série 9+10
10	jeudi 24.11	Energie déformation	х	Série 10

Semaine 10b – indéterminé partie 4 (slides 1-12) Objectifs d'apprentissage

- Savoir appliquer la méthode des poutres indéterminées aux cas où un des support a une expansion thermique (pas le cas où la poutre principale est chauffée)
- Trouver la flèche de poutres avec un supports avec expansion thermique

Calcul de flèche d'une poutre qui a un support avec expansion thermique

à petite échelle, les actionneurs thermiques

- haute densité d'énergie
- grande force
- faible rendement

https://youtu.be/BP1Jxj3Bxzc

Effects of temperature

Actionnement à petite échelle par expansion

https://www.youtube.com/watch?v=kS8mN5i7jGE

Expansion thermique

(Rappel du début du semestre)

Les matériaux se dilatent généralement quand chauffés, s'il n'y a pas de contraintes géométriques. Déformation relative thermique $\epsilon_{\rm T}$

$$\varepsilon_T = \alpha (T - T_0) = \alpha \Delta T$$

 α est le coefficient d'expansion thermique (linéaire). unité de 1/K ou (mm/mm)/C ou C⁻¹

$$\delta_T = \varepsilon_T L = \alpha \, \Delta T \, L$$

rappel: expansion selon x, $\varepsilon = \varepsilon_x$

Superposition

Poutre «libre»: Si on applique une force et qu'on change la température

$$\mathcal{E}_{\text{TOT}} = \mathcal{E}_{\text{mech},F} + \mathcal{E}_{\text{Therm}}$$

$$\varepsilon_{\text{mech}} = \sigma/E$$

$$\varepsilon_{Therm} = \alpha \Delta T$$

Les déformations relatives thermiques s'ajoutent aux déformations relatives dues aux forces externes

Exemple T1

- On augmente la température de la poutre verticale de ΔT .
- Trouver la flèche de la poutre bleue horizontale.

superposition: séparer le problème en "morceaux" et utiliser equ. de compatibilité

Solution T1

- Nous allons calculer la flèche de la poutre bleu, et la longueur de la poutre jaune.
- Compatibilité: ces deux déformations doivent être égales. $w_{1,L} = w_{2,L}$

(w₂ n'est pas la flèche en flexion, mais simplement le changement de longueur de la poutre jaune)

Solution T1

1. Trouver $w_1(x)$ en fonction de R par les formulaires (par ex Gere et Goodno)

$$w_1(x) = \frac{RL^3}{6EI} \left(3\left(\frac{x}{L}\right)^2 - \left(\frac{x}{L}\right)^3 \right)$$

$$w_{1,L} = w_1(L) = \frac{RL^3}{3EI}$$

2. Calculer le changement de longueur de la poutre jaune en fonction de R (attention, ici wa n'est pas une flèche d'une poutre en flexion, mais simplement un changement de longueur)

$$\varepsilon = \varepsilon_{Th} + \varepsilon_{Mec} = \alpha \Delta T - \frac{R}{EA}$$

$$w_{2,L} = \varepsilon \frac{L}{2} = \frac{L}{2} \alpha \Delta T - \frac{LR}{2EA}$$

Solution T1

• l'équation de compatibilité nous donnera R : $w_{1,L} = w_{2,L}$

$$w_{1,L} = w_{2,L}$$
 \rightarrow $\frac{RL^3}{3EI} = \frac{L}{2}\alpha\Delta T - \frac{LR}{2EA}$

$$\rightarrow R = \frac{EI \ \alpha \Delta T}{L^2 \left[\frac{2}{3} + \left(\frac{r}{L} \right)^2 \right]} \qquad \text{avec } r = \sqrt{\frac{I}{A}} = \text{radius of gyration}$$

$$w(x) = \frac{RL^3}{6EI} \left(3\left(\frac{x}{L}\right)^2 - \left(\frac{x}{L}\right)^3 \right) = \frac{L\alpha\Delta T}{\left[4 + 6\left(\frac{r}{L}\right)^2 \right]} \left(3\left(\frac{x}{L}\right)^2 - \left(\frac{x}{L}\right)^3 \right)$$

$$w(L) = \frac{L\alpha\Delta T}{\left[2 + 3\left(\frac{r}{L}\right)^2\right]}$$

Semaine 10b –(slides 13 -30)

Objectifs d'apprentissage au sujet de l'énergie de déformation

- Comprendre que l'énergie de déformation est toujours positive
- Calculer l'énergie de déformation de poutre avec des charges
- Calculer Déflection sous impacte par l'énergie

Energie de déformation (strain energy)

- Le travail fait par une force externe est stocké sous forme d'énergie élastique
- On peut résoudre certains problèmes liants force à déplacement (F-d, M-θ) en passant par l'énergie de déformation. (par exemple déplacement par impact)
- C'est un pas vers une méthode de résolution plus complète, passant par l'énergie: le théorème de Castigliano. La dérivé de l'énergie U par rapport à la force P_i donne le déplacement d_i

$$\delta_{i} = \frac{\partial U}{\partial P_{i}}$$

(pas à l'examen!)

Energie de déformation pour une poutre en flexion pure

Diagram showing linear relationship between bending moments M and the angle θ

$$W = U = \frac{M\theta}{2}$$

$$\theta = \frac{L}{\rho} = \frac{ML}{EI}$$

$$U = \frac{M^2L}{2EI} \qquad U = \frac{EI\theta^2}{2L}$$

U est toujours positif

Et plus généralement
$$U=\int \frac{M^2 dx}{2EI}$$
 $U=\int \frac{EI}{2} \left(\frac{d^2v}{dx^2}\right)^2 dx$ (on le calculera dans 2 slides)

Energie de déformation pour les poutres

Force ou Moment ponctuels

■ Force F_0 crée un déplacement δ au point d'application:

$$U_{F_0} = \frac{1}{2}F_0\delta$$

lacksquare Moment M_0 , crée un angle heta

$$U_M = \frac{1}{2}M_0\theta$$

Energie de déformation pour les poutres

■ La densité d'énergie u₀ de déformation relative est la surface sous la courbe ε - σ . On intègre sur le volume de la poutre pour trouver l'énergie de déformation.

■ Pour une poutre (longueur selon x), on peut simplifer:

Nous négligeons donc généralement l'énergie de contrainte due à la contrainte en cisaillement.

Energie de déformation pour une poutre

■ En flexion pure (M_0) , monomatériau

$$U = \int_{V} u_0 \, dV = \frac{1}{2} \int_{V} \sigma_x \varepsilon_x \, dV$$

$$U = \frac{1}{2} \int_{V} \frac{M_{z}(x)^{2}}{E I_{z,y_{0}}^{2}} (y - y_{0})^{2} dx \, dy \, dz$$

$$I_{z,y_{0}} = \int_{A} (y - y_{0})^{2} dy \, dz$$

$$U = \frac{1}{2} \int_0^L \frac{M_z(x)^2}{EI_{z,y_0}} dx = \frac{1}{2} \int_0^L EI_{z,y_0} w''(x)^2 dx$$

U toujours positif

Energie de déformation d'une poutre avec charge distribuée

Option a) par le moment de flexion

$$M_Z(x) = \frac{q}{2}(Lx - x^2)$$

$$U = \int_0^L \frac{M_Z^2}{2EI_Z} dx = \frac{q^2 L^5}{240 EI}$$

Option b), par la déflection

$$w(x) = -\frac{qx}{24EI}(L^3 - 2Lx^2 + x^3)$$

$$U = \int_0^L \frac{EI}{2} \left(\frac{d^2 w}{dx^2} \right)^2 dx = \frac{q^2 L^5}{240 EI}$$

Nous avons une poutre avec 2 charges, F_1 and F_2 .

Pouvons-nous utiliser:

$$U_{tot} = U_{F_1} + U_{F_2}$$
 ?

- A. Oui, la superposition s'applique
- B. Non, nous ne pouvons pas utiliser la superposition
- C. Oui, mais seulement si la déformation est petite

Pour une poutre avec 2 charges, F_1 and F_2 .

Pouvons-nous utiliser:

$$U_{tot} = U_{F_1} + U_{F_2}$$
 ?

NON!

Nous ne pouvons pas utiliser le principe de superposition pour l'énergie, car l'énergie est l'intégrale du <u>carré</u> du moment interne.

quand c'est pas linéaire : pas de superposition !

$$U = \frac{1}{2} \int_0^L \frac{M_z(x)^2}{EI_{z,y_0}} dx = \frac{1}{2} \int_0^L EI_{z,y_0} w''(x)^2 dx$$

Exemple: poutre soumise à une force F_0 et un moment M_0

Calculons l'énergie de déformation de cette poutre de deux façons:

- méthode fausse: Calculer l'énergie associée au moment M_0 , puis celle due à la force F_0 et les sommer.
- méthode juste: Calculer l'énergie du à la combinaison du moment et de la force

Exemple

■ Moment interne du seulement au moment M_0

$$M_{M_0}(x) = -M_0$$

$$U_{M_0} = \int_0^L \frac{M_z(x)^2}{2EI} dx = \frac{M_0^2}{2EI} L$$

 \blacksquare Moment interne du seulement à la force F_0

$$M_{F_0}(x) = F_0(x - L)$$

$$U_{F_0} = \int_0^L \frac{M_Z(x)^2}{2EI} dx = \frac{F_0^2}{6EI} L^3$$

Exemple

■ Moment interne du aux deux charges (F_0 et M_0) en même temps:

$$M_{interne}(x) = F_0(x - L) - M_0$$

$$U_{total} = \int_0^L \frac{M_z(x)^2}{2EI} dx = \frac{1}{2EI} \int_0^L (F_0(x - L) - M_0)^2 dx = \frac{1}{2EI} \left(\frac{F_0^2 L^3}{3} + M_0^2 L + F_0 M_0 L^2 \right)$$

$$U_{total} = U_{M_0} + U_{F_0} + \frac{F_0 M_0}{2EI} L^2$$

■ Nous ne pouvons pas utiliser le principe de superposition pour l'énergie, car l'énergie est l'intégrale du <u>carré</u> du moment interne

Déformations (élastiques) produites par impact

- La flèche maximale causée par l'impact est calculée avec l'hypothèse que toute l'énergie potentielle de la masse qui frappe la poutre est transférée à la poutre (le bloc ne rebondit pas, mais se colle à la poutre)
- donc utiliser la conservation d'énergie

Energie potentielle =
$$Mg(h + \delta_{max})$$

■ Après impact, la poutre se déforme pour une flèche maximale de δ_{max} , puis, si des pertres dans le système éventuellement arrive à la position statique δ_0

 δ_0 est la déflection statique du à la masse M (sans impact)

Déformations par impact

• énergie de déformation relative

$$U = \frac{1}{2} \int_0^L \frac{M_z(x)^2}{EI_{z,y_0}} dx$$

■ Moment de flexion du à une charge ponctuelle F_0 au milieu de la poutre:

$$M_{z}(x) = \begin{cases} \frac{F_{0}}{2}x & x \leq \frac{L}{2} \\ \frac{F_{0}}{2}(L-x) & x > \frac{L}{2} \end{cases}$$

$$\to U_{F_0} = \frac{F_0^2}{4EI_{z,y_0}} \int_0^{\frac{L}{2}} x^2 dx = \frac{F_0^2}{12EI_{z,y_0}} \left(\frac{L}{2}\right)^3$$

On verra que $F_0 > Mg$

$$\delta_{max} = \frac{F_0 L^3}{48 EI}$$

$$\delta_0 = \frac{Mg \, L^3}{48 \, EI}$$

$$v = -\frac{Px}{48EI}(3L^2 - 4x^2) \quad v' = -\frac{P}{16EI}(L^2 - 4x^2) \quad \left(0 \le x \le \frac{L}{2}\right)$$

$$\delta_{\mathcal{C}} = \delta_{\text{max}} = \frac{PL^3}{48EI} \quad \theta_{\mathcal{A}} = \theta_{\mathcal{B}} = \frac{PL^2}{16EI}$$

$$U_{F_0} = \frac{F_0^2}{12EI_{z,y_0}} \left(\frac{L}{2}\right)^3$$

$$U_{F_0} = \frac{24 EI}{L^3} \delta_{max}^2$$

Déflections par impact

$$U_0 = Mg(h + \delta_{max})$$

$$U_{F_0} = \frac{24EI_{z,y_0}}{L^3} \delta_{max}^2$$

$$U_{0} = U_{F_{0}}$$

$$\to \delta_{max} = \frac{MgL^{3}}{48EI_{z,y_{0}}} \left(1 + \sqrt{1 + h \frac{96EI_{z,y_{0}}}{MgL^{3}}} \right) = \delta_{0} \left(1 + \sqrt{1 + \frac{2h}{\delta_{0}}} \right) = \delta_{max}$$

$$et\ donc\ F_0 = Mg\left(1 + \sqrt{1 + \frac{2h}{\delta_0}}\right)$$

 δ_0 est la déflection statique du à la masse M (sans impact)

$$\frac{\delta_{max}}{\delta_0} = \left(1 + \sqrt{1 + \frac{2h}{\delta_0}}\right)$$

$$\begin{array}{ll} \text{si h>>}\delta_0 & \delta_{max} = \sqrt{2h\delta_0} \\ \text{si h=0} & \delta_{max} = 2 \; \delta_0 \end{array}$$

