Exam Hy Sum	$\sum_{i\neq 0}^{2m} x^{i} = \frac{1}{1+x} \qquad \sum_{i\neq 0}^{m} \frac{(2n+i)(n+i)^{m}}{6}$
Weak partial order IFF R is transitive, antisymmetric, and reflexive	$\sum_{i=0}^{\infty} x^i = \frac{1-x}{1-x}$ $\sum_{i=0}^{\infty} Ax^i = \frac{1-x^2}{(1-x)^2}$
Equivalence relation IFF R is reflexive, symmetric, and transitive • Reflexive - VXEA XRX (all rectives have self loops) • Inreflexive - TIXEA, XRX] no self loops	$H_n = \sum_{c>1}^{n} \frac{1}{c} N \ln(n) \sum_{c=1}^{m} x^n = \frac{n(n^m-1)}{n-1}$ $x = n + e(n) + e(n) + n = n = n = n $ $x = n + e(n) + n = n = n = n = n = n = n = n = n = n$
· symmetry [Yx,yea, xRy>yRX] if there is an edge from xt. · asymmetry [xRy> -(yRX) No self-loops + at most one directed	to y, zy to x whedge
*antisym [* X7 Y EA, XRY > 7 (YRX) Can have self loops, but o- *Innsitive [XRY & YR2 > XRZ]	HEST MADULE LABORITA
· Linear XRY or YRX when X7Y Given & remos, always an eq	dge f=o(g) lim f(x) = 0 x>00 g(x) = upper bound
Simple graph-vertices, some staf edges (can be enptr), no self loops edges are incident to its endpoints	F=OG) limsup [F(A)] LOO FCENTA, ENTERO X>00 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Complete gruph - edge 6/w every pair of values Isomorphism: Lu-V7 EECG) if (flu)-s(v) (ECH), V(G) = V(H)	$f_{2}\theta(g) \rightarrow f_{2}\theta(g)$ and $g_{2}\theta(g)$
Bipartite graph: graph was vertes can be divided into two sets -*MATCHING	Tree props - IF He tree has 2+verties, 4 has
walk-can have upont voting to there to be a matching, there must be no bottlevedor. HA' path-no upont vertices bottleveck S > N(S) > for some set S that cycle - distinct exapt beginning contains elements of the domain, the neighbors is less than the	Adding on edge blu nonadjocent nools creates a cycle
deg constrained - northing - IF every 5 maps to $\geq d$ " > no b are at least a	es on the left $\frac{1}{x}$ If $500 = \frac{5}{2}5(5)$ as large as that on the last final time $\frac{1}{x} = \frac{1}{2}5(x)dx$
tree - connected, acyclic graph -leaf is sleg 1 forest > constrained Ly degree constrained when deg (e) > leadr) for all e, r	INFINESE INFIN (INC)
MST: the gray things O start ul random colonies, draw the min weight grayelge. Turn all cornected groups the same color The gray things - vertices will specific of - or of a props + cycles	m L. A. hou
(40)	

Digraphs - 6 has morenety set V(6) & E(6) EXAM 31 can be empty · A strict B AF (NOT A surj d) · A shict BIF IAKB Valk-any inxn of edges, vertices trable > elements can be listed in order - country infinite - IFF N bis C + 21, 2, NXN, Qt, 2x2, Q -unique unices - septe path countrible ->IFF NSUNC DAG > no cycles · Power Sets vetex 134 -> topological sort -> vertex Contor >> For any set A, A strict Pow (A) beforeany Asin {a EA | a & g(a) } Machable * well defined - subset As composed of a such that a is not in gla) verties 10 por (5) if April in range g, then Ag =g(a) -> chain - set of verties that are reachable a egla.) iff a EAg iff a fola) -) anticharh-set of whites not reachable let a= ao Juhoops Theredy: tasks as soon as possible · Plan (N) is un countrible rif U is uncountable and A sury U, then A is uncountable. >depth k at step k > (ntical path = longest chain · If Cis countable and Cour; A, then A is countable. · Diagonal argument -) Adjacency matrix -Making more elements on the diagonal are different such that r.A->A 1(0)=1 along diagonal, and all changed ((1)=0 A shows H of k-leight publis from one vertex to the other Clements for m a sequence not in original settrange. alb: a diviles b ki k= 1 (mod n) Multiplicative Invese: · If al b Rale, - ale. alb Rale. alshetc, + s, + → K, Mare HI prime if a = ldmod n) -> Sn+tk=1 Enclodes Algorithm god -> Pulverizer m=p(modin) -> Use pulverizer gcd (a, 5) = gcd (b, man (a, b)) ther a meb p (mal n) a | b | \frac{1}{25 | 45|} | 35 = 125 - 2(45) | 45 | 35 | 10 = 45 - 35 = 45 - [125 - 2(45)] | 35 | 10 | 5 = 35 - 3(10) = [125 - 2(45)] - 3 [45 - [125 - 2(45)]] = 9 cd(125, 45) atm btp (moda) Linear combo of a and b stt kb=gcd(t,6) · Fundamental Thm of Anithmetici Every positive integer is a product of a unique really decreasing sequence of primes ged: ged(au, av) = a ged(u, v) or ged diviles amy internation of m, n miled: asb (mod n) lift wear Apr n (a-b) ocd (au, v) = g (d (n, v) iff rem(a, w) = vem(b, n) for a reliprime to v gcd (u-v, v) = gcd (u,v)

for pts containing gcd (a, b), consider gcd (a, b)=sa+161

Random variable total hunction whose Pr[RZX] = 5 [R] > Mahovi Bound domain is the sample space - Chebyshevs Than Indicator randomian maps every outcome to Vor = p(1-p)=E(x2)-E2(x) - variance Note: Ex[2] = Z R2(w)P(w) PDF (d):12 Pr[R=x]
O (FPC & rouge (A) EX[R]:= ZRW) PI[W] -> Expectation [x[R]= Zx.Pr[R=x]

was large robability straine xinRange R xinRanger Bhanial Dist: fn(k):=(1)2-n values in set EX[IA]=1.Pr[IA=1]+0.Pr[IA=) Expectation of an iddicator variable EX[RIA]:= Zr.Pr[R=riA] > Condidinal expectation reconge -> Law of Total Expectation EBZEK[RIA] NCA: Ex[R,+R]=Ex[R,]+Ex[R] Schearity of Expectation, for random variables R, Rz Ex[R:R]=Ex[R]. Ex[R] >R, Rz independent PrEUP = PrET+ALF for disjoint sets (no orviopping elevents) Pr[XIV] = P([XNY] > Conditional probability Pr[BIA]= Pr[AIB] · Pr[B] >> Bayes' RML