Content Covered: Sections 1.1-1.3, 2.2-2.3*

Note that detailed lists of objectives from each section covered can be found on Canvas. *Specific content from 2.3 that is not included: Squeeze Theorem

Concept Check Questions:

1. Function Definitions:

- (a) What is a function? What are its domain and range?
- (b) What is the graph of a function?
- (c) How can you tell whether a given curve is a graph of a function?
- 2. Discuss four ways of representing a function. Illustrate your discussion with examples.
- 3. Without using a graphing calculator/other technology, sketch the graphs of the following functions on the same axes.
 - (a) f(x) = x
 - (b) $g(x) = x^2$
 - (c) $h(x) = x^3$
 - (d) $j(x) = x^4$
- 4. Without using a graphing calculator/other technology, draw a rough sketch of each of the following functions.
 - (a) $f(x = \sin(x))$
 - (b) $g(x) = \tan(x)$
 - (c) $h(x) = \frac{1}{x}$
 - (d) j(x) = |x|
 - (e) $k(x) = \sqrt{x}$
- 5. How is the function $f \circ g$ defined?
- 6. Suppose the graph of f is given. Write an equation for each of the graphs that are obtained by the following transformations.
 - (a) Shift 3 units up
 - (b) Shift 3 units down
 - (c) Shift 3 units left
 - (d) Shift 3 units right
 - (e) Reflect across the x-axis
 - (f) Reflect across the y-axis
 - (g) Stretch vertically by a factor of 3
 - (h) Shrink vertically by a factor of 3
 - (i) Stretch horizontally by a factor of 3
 - (j) Shrink vertically by a factor of 3
- 7. Explain what each of the following means and illustrate with a sketch.
 - (a) $\lim_{x \to a} f(x) = L$

- (b) $\lim_{x \to a^+} f(x) = L$
- (c) $\lim_{x \to a^-} f(x) = L$
- (d) $\lim_{x \to a} f(x) = \infty$
- 8. Describe several ways in which a limit can fail to exist. Illustrate with sketches.
- 9. State the following Limit Laws:
 - (a) Sum Law
 - (b) Difference Law
 - (c) Constant Multiple Law
 - (d) Product Law
 - (e) Quotient Law
 - (f) Power Law

(T/F)+E:

Answer the following questions **TRUE** or **FALSE**. You must justify your answer with a complete sentence **explaining** why the answer is either **TRUE** or **FALSE**

Note: (T/F) + E: represents a choice of either (True or False) plus an Explanation for your choice.

- 1. If f is a function, then f(a+b) = f(a) + f(b).
- 2. If f(a) = f(b), then a = b.
- 3. If f is a function, then f(2x) = 2f(x).
- 4. A vertical line intersects the graph of a function at most once.
- 5. If f and g are functions, then $f \circ g = g \circ f$.

6.
$$\lim_{x \to 4} \left(\frac{2x}{x-4} - \frac{8}{x-4} \right) = \lim_{x \to 4} \frac{2x}{x-4} - \lim_{x \to 4} \frac{8}{x-4}$$

7.
$$\lim_{x \to 1} \frac{x-3}{x^2 + 2x - 4} = \frac{\lim_{x \to 1} (x-3)}{\lim_{x \to 1} (x^2 + 2x - 4)}$$

- 8. If $\lim_{x\to 5} [f(x)g(x)]$ exists, then the limit must be f(5)g(5).
- 9. If p is a polynomial, then $\lim_{x\to c} p(x) = p(c)$.

Selected Review Problems:

Here are some additional review problems from the material covered by Test 1. **This does not represent a practice test!** There may be some types of problems on the test that are not listed below. The actual test will be shorter than this list!

- 1. Let f be the function whose graph is given in Figure 1.
 - (a) Estimate the value of f(2).

- (b) Estimate the value(s) of x such that f(x) = 3.
- (c) State the domain of f.
- (d) State the range of f.
- (e) On what interval is f increasing?

Figure 1: Graph for Review Problem 1.

2. Determine whether each cure shown in Figure 2 is the graph of a function. If it is, state the domain and range of the function.

Figure 2: Graph for Review Problem 2.

- 3. Find the domain and range of the following functions. Write your answer in interval notation.
 - (a) $g(x) = \sqrt{16 x^2}$
 - (b) $h(x) = 1 + \sin(x)$
 - (c) $k(x) = \tan(2x)$
- 4. Suppose that the graph of f is given. Describe how the graphs of the following functions can be obtained from the graph of f.
 - (a) y = f(x) + 6
 - (b) y = f(x+6)
 - (c) y = 1 + 2f(x)
 - (d) y = f(x-2) 2
- 5. The graph of f is shown in Figure 3. Draw graphs of the following functions.

- (a) y = f(x-1)
- (b) y = -f(x)
- (c) y = 1 + f(x)
- (d) $y = \frac{1}{2}f(x) 1$

Figure 3: Graph for Review Problem 5.

- 6. If $f(x) = \sqrt{x}$ and $g(x) = \cos(x)$, find the following functions:
 - (a) $f \circ g$
 - (b) $g \circ f$
 - (c) $f \circ f$
 - (d) $g \circ g$
- 7. Express the function $F(x) = \frac{1}{\sqrt{x+\sqrt{x}}}$ as a composition of three functions.
- 8. The graph of f is given in Figure 4. Find each limit, or explain why it does not exist.
 - (a) $\lim_{x \to 2^+} f(x)$
 - (b) $\lim_{x \to -3^+} f(x)$
 - (c) $\lim_{x \to -3} f(x)$
 - (d) $\lim_{x\to 4} f(x)$
 - (e) $\lim_{x\to 0} f(x)$
 - (f) $\lim_{x \to 2^{-}} f(x)$
- 9. Find the following limits.
 - (a) $\lim_{x \to 3} \frac{x^2 9}{x^2 + 2x 3}$
 - (b) $\lim_{x \to -3} \frac{x^2 9}{x^2 + 2x 3}$
 - (c) $\lim_{x\to 16} \frac{4-\sqrt{x}}{x-16}$
 - (d) $\lim_{h\to 0} \frac{(h+1)^2-1}{h}$

Figure 4: Graph for Review Problem 8.

10. Evaluate each limit, if it exists. If it does not exist, explain why.

$$f(x) = \begin{cases} \sqrt{-x}, & x < 0\\ 3 - x, & 0 \le x < 3\\ (x - 3)^2, & x > 3 \end{cases}$$

- (a) $\lim_{x \to 0^+} f(x)$
- (b) $\lim_{x\to 0^-} f(x)$
- (c) $\lim_{x\to 0} f(x)$
- (d) $\lim_{x\to 3^-} f(x)$
- (e) $\lim_{x \to 3^+} f(x)$
- (f) $\lim_{x\to 3} f(x)$