Titanic Survival Prediction

This project involves building a model to predict the likelihood of a passenger surviving the Titanic disaster based on various factors like age, gender, passenger class, and other features. The goal is to analyze the data and create a predictive model that can accurately classify whether a given passenger survived or not.

1.Import required libraries

```
import numpy as np #for multidimensional arrays
import pandas as pd #for data manipulation and cleaning
import matplotlib.pyplot as plt #for data visualization
import seaborn as sns #for statistical visualization

%matplotlib inline
```

2.Load the data

In [2]:	titani	c_data =	pd.read_d	csv(r'C	:\Users\919	939\Desk	top\A	I&DS\CC	DSOFT\	Γitanic-Da	tase
In [3]:	titani	c_data.h	ead(5) #re	eturns t	the first j	^c ive row	ıs fro	m the d	latafrai	me	
Out[3]:	Pas	sengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	I
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0
	4										•

3. Analyse the data

```
In [4]: titanic_data.columns #returns all the columns from the dataframe
Out[4]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
               'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
              dtype='object')
       len(titanic_data.columns) #returns the length of columns of dataframe
In [5]:
Out[5]: 12
        There are 12 columns in total
       titanic_data.info() #returns the summary of the dataframe
       <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 891 entries, 0 to 890
      Data columns (total 12 columns):
       # Column
                        Non-Null Count Dtype
          PassengerId 891 non-null
                                       int64
           Survived
                        891 non-null
                                       int64
       2
           Pclass
                        891 non-null
                                       int64
       3
          Name
                       891 non-null object
           Sex
                       891 non-null
                                       object
       5
                       714 non-null
                                       float64
           Age
           SibSp
                       891 non-null
                                       int64
       6
                       891 non-null int64
       7
           Parch
       8
           Ticket
                       891 non-null object
       9
           Fare
                        891 non-null
                                       float64
       10 Cabin
                        204 non-null
                                       object
       11 Embarked
                       889 non-null
                                        object
       dtypes: float64(2), int64(5), object(5)
      memory usage: 83.7+ KB
        There are float64(2), int64(5), object(5) datatypes.
```

```
In [7]: titanic_data.isna() #returns True if there is null value else False
```

Out[7]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ca
	0	False	False	False	False	False	False	False	False	False	False	Т
	1	False	False	False	False	False	False	False	False	False	False	Fa
	2	False	False	False	False	False	False	False	False	False	False	Т
	3	False	False	False	False	False	False	False	False	False	False	Fa
	4	False	False	False	False	False	False	False	False	False	False	Т
	•••				•••							
	886	False	False	False	False	False	False	False	False	False	False	Т
	887	False	False	False	False	False	False	False	False	False	False	Fa
	888	False	False	False	False	False	True	False	False	False	False	Т
	889	False	False	False	False	False	False	False	False	False	False	Fa
	890	False	False	False	False	False	False	False	False	False	False	T
	891 r	ows × 12 colui	nns									
	4											•
In [8]:	tita	nic_data[tit	anic data.	isna()	1							
			-			Sov	Δαο	SihSn	Parch	Ticket	Earo	Cah
Out[8]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cab
	0	PassengerId NaN	Survived NaN	Pclass NaN	Name NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nã
	1	Passengerld NaN NaN	Survived NaN NaN	Pclass NaN NaN	Name NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN	Na Na
	1 2	PassengerId NaN NaN NaN	NaN NaN NaN	Pclass NaN NaN NaN	Name NaN NaN	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN	Ne Ne Ne
	1 2 3	Passengerld NaN NaN NaN NaN	NaN NaN NaN NaN	Pclass NaN NaN NaN NaN	Name NaN NaN NaN	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN	Na Na Na Na
	1 2 3 4	Passengerld NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	Pclass NaN NaN NaN NaN NaN	Name NaN NaN	NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN	Ne Ne Ne
	1 2 3 4 	Passengerld NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	Pclass NaN NaN NaN NaN NaN	Name NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	Na Na Na Na Na
	1 2 3 4 886	Passengerld NaN NaN NaN NaN NaN NaN NaN N	NaN NaN NaN NaN NaN NaN NaN	Pclass NaN NaN NaN NaN NaN NaN	Name NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	Na Na Na Na Na
	1 2 3 4 886 887	Passengerld NaN NaN NaN NaN NaN NaN NaN N	NaN NaN NaN NaN NaN NaN NaN NaN	Pclass NaN NaN NaN NaN NaN NaN NaN	Name NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	Na Na Na Na Na Na
	1 2 3 4 886 887 888	Passengerld NaN NaN NaN NaN NaN NaN NaN N	NaN NaN NaN NaN NaN NaN NaN NaN NaN	Pclass NaN NaN NaN NaN NaN NaN NaN	Name NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	Na Na Na Na Na Na
	1 2 3 4 886 887	Passengerld NaN NaN NaN NaN NaN NaN NaN N	NaN NaN NaN NaN NaN NaN NaN NaN	Pclass NaN NaN NaN NaN NaN NaN NaN	Name NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	Na Na Na Na Na Na
	1 2 3 4 886 887 888 889	Passengerld NaN NaN NaN NaN NaN NaN NaN N	NaN	Pclass NaN NaN NaN NaN NaN NaN NaN	Name NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	Na Na Na Na Na Na Na
	1 2 3 4 886 887 888 889	PassengerId NaN NaN NaN NaN NaN NaN NaN N	NaN	Pclass NaN NaN NaN NaN NaN NaN NaN	Name NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	Na Na Na Na Na Na Na

In [9]: titanic_data.isna().sum() #returns sum of null values in each attribute

```
Out[9]: PassengerId
         Survived
                          0
         Pclass
         Name
                          0
         Sex
                        177
         Age
         SibSp
                          0
         Parch
                          0
         Ticket
                          0
         Fare
                          0
         Cabin
                        687
         Embarked
                          2
         dtype: int64
```

There are 177 null values and 687 null values in Age and Cabin columns

4. Drop the irrelavant Attributes

```
In [10]: titanic_data.Cabin
Out[10]: 0
                  NaN
                  C85
          2
                  NaN
          3
                 C123
          4
                  NaN
                 . . .
          886
                  NaN
          887
                  B42
          888
                  NaN
          889
                 C148
          890
                  NaN
          Name: Cabin, Length: 891, dtype: object
In [11]: titanic_data = titanic_data.drop(columns='Cabin',axis=1) #drop the Cabin attrib
         titanic_data.columns
In [12]:
Out[12]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
                 'Parch', 'Ticket', 'Fare', 'Embarked'],
                dtype='object')
         titanic_data.head()
In [13]:
```

Out[13]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	I
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0
	4										•

5. Missing Value Treatment

```
In [14]: titanic_data.fillna(titanic_data['Age'].mean(),inplace=True) #fill the age attr
In [15]: titanic_data['Age'].isnull().sum() #checks whether or not there are null va
Out[15]: 0
In [16]: titanic_data.fillna(titanic_data['Embarked'].mode(),inplace=True) #fill the age
In [17]: titanic_data['Embarked'].isnull().sum() #checks whether or not there are null
Out[17]: 0
In [18]: titanic_data.isnull().sum().sum() #checks whether or not there are null values
Out[18]: 0
```

6.Check the survived Attribute

```
In [19]: titanic_data['Survived'].unique() #checks the unique values from the Survived
Out[19]: array([0, 1], dtype=int64)
In [20]: titanic_data['Survived'].nunique() #checks the no.of unique values from the Su
```

Out[20]: 2

In [21]: titanic_data['Survived'].value_counts() #Return a Series containing the frequ

Out[21]: Survived

549342

Name: count, dtype: int64

In [22]: titanic_data.describe().T #Generate descriptive statistics.

Fare 891.0 32.204208 49.693429 0.00

Out[22]:		count	mean	std	min	25%	50%	75%	max
	PassengerId	891.0	446.000000	257.353842	1.00	223.5000	446.000000	668.5	891.0000
	Survived	891.0	0.383838	0.486592	0.00	0.0000	0.000000	1.0	1.0000
	Pclass	891.0	2.308642	0.836071	1.00	2.0000	3.000000	3.0	3.0000
	Age	891.0	29.699118	13.002015	0.42	22.0000	29.699118	35.0	80.0000
	SibSp	891.0	0.523008	1.102743	0.00	0.0000	0.000000	1.0	8.0000
	Parch	891.0	0.381594	0.806057	0.00	0.0000	0.000000	0.0	6.0000

7.9104

14.454200

31.0 512.3292

In [23]: titanic_data.head()

out[23]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	I
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0
	4										•

7. Univariate analysis on Sex Attribute

```
In [24]: titanic_data.Sex.value_counts()
Out[24]: Sex
         male
                   577
         female
                   314
         Name: count, dtype: int64
In [25]: plt.figure(figsize=(5,3))
         plt.title('Histogram of Sex Feature')
         plt.xlabel('Sex')
         plt.ylabel('Count')
         plt.hist(titanic_data.Sex,bins=10) #returns the histogram of sex feature in fo
Out[25]: (array([577., 0., 0.,
                                     0., 0.,
                                                0.,
                                                     0., 0., 0., 314.]),
          array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]),
          <BarContainer object of 10 artists>)
                            Histogram of Sex Feature
           600
           500
           400
           300
           200
           100
             0
                                                                female
                male
                                         Sex
In [26]:
         plt.figure(figsize=(5,3))
         plt.title('Histogram of Sex Feature')
         plt.xlabel('Sex')
         plt.ylabel('Count')
         sns.countplot(x=titanic_data.Sex,width=0.3,hue= 'Sex',data =titanic_data, orient
Out[26]: <Axes: title={'center': 'Histogram of Sex Feature'}, xlabel='Sex', ylabel='Coun</pre>
```

t'>

There are significantly more male passengers than female passengers on the Titanic. The count of male passengers is over 500, while the count of female passengers is slightly above 300.

8. Univariate analysis on Age Attribute

```
In [27]: titanic_data.Age.value_counts()
Out[27]:
         Age
          29.699118
                       177
          24.000000
                       30
          22.000000
                        27
          18.000000
          28.000000
                        25
          36.500000
                         1
          55.500000
                         1
          0.920000
                         1
          23.500000
          74.000000
          Name: count, Length: 89, dtype: int64
In [28]:
         import warnings
         warnings.filterwarnings('ignore')
In [29]:
         plt.figure(figsize=(5,3))
         plt.title('Distribution of Age Feature')
         plt.xlabel('Age')
         plt.ylabel('Count')
         sns.distplot(titanic_data['Age'],bins=30)
Out[29]: <Axes: title={'center': 'Distribution of Age Feature'}, xlabel='Age', ylabel='C
          ount'>
```



```
In [30]: sns.displot(titanic_data['Age'],bins=30,height=4,aspect=2)
```

Out[30]: <seaborn.axisgrid.FacetGrid at 0x2923b468e00>

The majority of the Titanic passengers were in their 20s and 30s, with the most common age being around 30.

9. Univariate analysis on Survived Attribute

```
plt.ylabel('Count')
sns.countplot(x='Survived',data=titanic_data,width=0.3,color='maroon')
```


10. Bivariate Analysis

```
In [33]: plt.figure(figsize=(5,3))
   plt.title('Sex Distribution of Pclass Feature wrt Age')
   plt.xlabel('Pclass')
   plt.ylabel('Age')
   sns.scatterplot(x ='Pclass',y='Age',hue='Sex',data=titanic_data,palette='plasma'
   plt.legend(loc=(1,1))
```

Out[33]: <matplotlib.legend.Legend at 0x2923b469ac0>

The scatter plot shows the distribution of passenger class (Pclass) with respect to age, color-coded by gender. It reveals that older passengers were more likely to be in higher-

paying classes, while younger passengers were more likely to be in lower-paying classes. Additionally, the plot suggests a slight tendency for males to be older than females, especially in Pclass 3.

```
In [34]: plt.figure(figsize=(5,3))
    plt.title('Survived Distribution of Pclass Feature wrt Fare')
    plt.xlabel('Pclass')
    plt.ylabel('Fare')
    sns.stripplot(x = 'Pclass',y='Fare',data=titanic_data,hue='Survived', palette='pa
```


There seems to be a general trend where passengers in higher-paying classes (Pclass 1 and 2) had a higher likelihood of survival compared to those in the lowest class (Pclass 3). This is suggested by the greater proportion of blue dots (survivors) associated with higher fare ranges.

```
In [35]: sns.catplot(x ='Sex',y='Age',hue='Pclass',data=titanic_data,kind='bar',height=4,
    plt.title('Pclass Distribution of Sex Feature wrt Age')
```

Out[35]: Text(0.5, 1.0, 'Pclass Distribution of Sex Feature wrt Age')

The plot shows that the average age of passengers varies across different passenger classes and sexes. Passengers in higher classes tend to be older, and males are slightly older than females.

In [36]: sns.catplot(x ='Pclass',y='Fare',hue='Sex',data=titanic_data,kind='bar',height=4
plt.title('Sex Distribution of Pclass Feature wrt Fare')

Out[36]: Text(0.5, 1.0, 'Sex Distribution of Pclass Feature wrt Fare')

The plot shows that the average fare paid varies across different passenger classes (Pclass) and sexes. Passengers in Pclass 1 generally paid higher fares compared to those in Pclass 2 and 3. Additionally, there were slight differences in average fare between males and females within each Pclass.

```
In [37]: sns.catplot(x ='Pclass',y='Survived',hue='Sex',data=titanic_data,kind='bar',heig
plt.title('Sex Distribution of Survived Feature wrt Pclass')
```

Out[37]: Text(0.5, 1.0, 'Sex Distribution of Survived Feature wrt Pclass')

Effect of Pclass on Survived: Passengers in Pclass 1 had a higher survival rate compared to those in Pclass 2 and 3.

Impact of Sex on Survived: Within each Pclass, females had a higher survival rate than males.

```
In [38]: sns.catplot(x ='SibSp',y='Parch',hue='Survived',data=titanic_data,kind='bar',hei
plt.title('Survived Distribution of SibSp Feature wrt Parch')
```

Out[38]: Text(0.5, 1.0, 'Survived Distribution of SibSp Feature wrt Parch')

Survived Distribution of SibSp Feature wrt Parch

The plot indicates that passengers with larger families (higher combined values of SibSp and Parch) might have had a slightly lower survival rate compared to those with smaller families.

11. Variable Transformation

```
In [39]: titanic_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	891 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Embarked	891 non-null	object
d+\/n	05. 4100+64/2	\ in+64(E) obi	oc+(1)

dtypes: float64(2), int64(5), object(4)

memory usage: 76.7+ KB

In [40]: titanic_data['Sex'].value_counts()

```
Out[40]:
         Sex
         male
                   577
         female
                   314
         Name: count, dtype: int64
In [41]: titanic_data['Embarked'].value_counts()
Out[41]: Embarked
         S
                      644
         C
                      168
         Q
                       77
         29.699118
         Name: count, dtype: int64
In [42]: titanic_data.replace({'Sex':{'male':0,'female':1},'Embarked':{'S':0,'C':1,'Q':2}
In [43]: titanic_data['Embarked'].value_counts()
Out[43]: Embarked
         0.000000
                      644
         1.000000
                      168
         2.000000
                       77
         29.699118
                        2
         Name: count, dtype: int64
In [44]: titanic_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 11 columns):
         # Column
                         Non-Null Count Dtype
         0
            PassengerId 891 non-null
                                         int64
         1
            Survived
                         891 non-null
                                         int64
         2
            Pclass
                         891 non-null
                                         int64
         3
           Name
                        891 non-null
                                         object
         4
            Sex
                        891 non-null
                                         int64
         5
            Age
                         891 non-null
                                         float64
            SibSp
                                         int64
         6
                         891 non-null
         7
             Parch
                         891 non-null int64
         8
            Ticket
                         891 non-null
                                         object
         9
             Fare
                         891 non-null
                                         float64
                         891 non-null
                                         float64
         10 Embarked
        dtypes: float64(3), int64(6), object(2)
        memory usage: 76.7+ KB
```

12. Variable Identification

```
In [45]: X = titanic_data.drop(columns=['PassengerId','Name','Ticket'],axis=1)
In [46]: X.head() #independent variables
```

Out[46]:	Survive	ed Pcl	ass	Sex	Age	SibSp	Parch	Fare	Embarked	_			
	0	0	3	0	22.0	1	0	7.2500	0.0				
	1	1	1	1	38.0	1	0	71.2833	1.0				
	2	1	3	1	26.0	0	0	7.9250	0.0				
	3	1	1	1	35.0	1	0	53.1000	0.0				
	4	0	3	0	35.0	0	0	8.0500	0.0				
In [47]:	Y = titan	ic_dat	:a['Sı	urviv	ved']	#de	epender	nt variab	Le				
In [48]:	correlati	on = X	(.corı	r()									
In [49]:	<pre>plt.figur plt.title a = sns.h a.set_xti a.set_yti plt.show(</pre>	('Corr eatmap cklabe cklabe	r <mark>elat:</mark> o(cori	ion H relat .get_	H <mark>eatma</mark> tion, _xtick	square= :labels((), rot	ation=90		.2f', 1:	inec	olor='v	whit
					C	orrelati	on He	atman				- 1.0	0
	beu											- 0.8	8
	Survived -	1.00	-0.3	34	0.54	-0.07	-0.0	4 0.08	0.26	0.10			
	Pclass -	-0.34	1.0	00	-0.13	-0.33	0.0	8 0.02	-0.55	-0.05		- 0.0	6
	get -	0.54	-0.1	13	1.00	-0.08	0.1	1 0.25	0.18	0.11		- 0.4	4
	_A ge -	-0.07	-0.3	33	-0.08	1.00	-0.2	3 -0.18	0.09	0.07		0.	•
	sib ^{SP} -	-0.04	0.0	8	0.11	-0.23	1.0	0 0.41	0.16	-0.05		- 0.:	2
	_{Parch} -	0.08	0.0)2	0.25	-0.18	0.4	1 1.00	0.22	-0.05		- 0.0	0
	Fare -	0.26	-0.5	55	0.18	0.09	0.1	6 0.22	1.00	0.07		(0.2
	Embarked -	0.10	-0.0	05	0.11	0.07	-0.0	5 -0.05	0.07	1.00			
		Survived -	Pclass -		Sex -	Age -	- dSqis	Parch -	Fare -	Embarked -		(0.4

Social Status and Survival: The strong negative correlation between Pclass and Survived suggests that social status (as indicated by passenger class) played a significant role in

survival.

Family Ties: The moderate positive correlation between SibSp and Parch indicates that passengers traveling with family members were more likely to be accompanied by others.

Gender Bias: The strong positive correlation between Sex and Survived suggests that females were more likely to survive compared to males, possibly due to societal norms and practices at the time.

In [50]:	tit	anic_data.h	ead()								
Out[50]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
	0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.250
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.283
	2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.925
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.100
	4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.050
	4										•
In [51]:		sns.pairpl	ot(X,kind=	='scatte	er',palette	e='pa:	stel',	diag_	kind='h	nist',heigh	nt = 2,

The pair plots have revealed valuable insights into the relationships between different variables in the dataset.

13. Outlier detection

```
In [52]: plt.figure(figsize=(5,4))
    plt.title('Distribution of Survived Feature wrt Age')
    plt.xlabel('Survived')
    plt.ylabel('Age')
    sns.boxplot(x ='Survived',y='Age',data=titanic_data,width=0.3,color='yellow')

Out[52]: <Axes: title={'center': 'Distribution of Survived Feature wrt Age'}, xlabel='Survived', ylabel='Age'>
```


The median age of survivors (Survived = 1) is slightly lower than that of non-survivors (Survived = 0). This suggests that Younger passengers had a better chance of survival on the Titanic. The distribution of ages among survivors and non-survivors is similar, but there are subtle differences in medians and the presence of older outliers.

In [53]:	X.head()	
----------	----------	--

Out[53]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	0	22.0	1	0	7.2500	0.0
	1	1	1	1	38.0	1	0	71.2833	1.0
	2	1	3	1	26.0	0	0	7.9250	0.0
	3	1	1	1	35.0	1	0	53.1000	0.0
	4	0	3	0	35.0	0	0	8.0500	0.0

In [54]: Y.head()

Out[54]: 0 0 1 1 2 1 3 1

Name: Survived, dtype: int64

14.Applying Machine Learning

In [55]: from sklearn.model_selection import train_test_split
 from sklearn.model_selection import cross_val_score
 from sklearn.model_selection import KFold

```
from sklearn.model_selection import RepeatedKFold
         from sklearn.model_selection import StratifiedKFold
         from sklearn.metrics import classification_report
         from sklearn.metrics import r2_score,confusion_matrix
         from sklearn.metrics import mean_squared_error
         from sklearn.linear_model import LogisticRegression
         from sklearn.linear_model import LinearRegression
         from sklearn.ensemble import RandomForestClassifier
In [56]: X=titanic_data.drop('Survived',axis=1)
In [57]: X = titanic_data.drop(columns=['PassengerId','Name','Ticket'],axis=1)
In [58]: Y = titanic_data['Survived']
In [59]: X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3,random_state=0)
In [60]: print(X.shape,X_train.shape,X_test.shape)
        (891, 8) (623, 8) (268, 8)
In [61]: X.head()
Out[61]:
            Survived Pclass Sex Age SibSp Parch
                                                       Fare Embarked
          0
                   0
                                  22.0
                                                      7.2500
                                                                   0.0
                          3
                               0
          1
                                  38.0
                                                  0 71.2833
                                                                   1.0
          2
                                                                   0.0
                   1
                               1
                                  26.0
                                           0
                                                      7.9250
          3
                                  35.0
                                                    53.1000
                                                                   0.0
                   0
                               0 35.0
                                           0
                                                      8.0500
                                                                   0.0
In [62]:
        Y.head()
Out[62]:
         0
               0
          1
               1
          2
               1
          3
               1
          Name: Survived, dtype: int64
In [63]: model=LogisticRegression()
In [64]: model.fit(X_train,Y_train)
Out[64]:
              LogisticRegression
         LogisticRegression()
In [65]: X train prediction=model.predict(X train)
In [66]: print(X_train_prediction)
```

```
1011100011001101010101010101010101000001
  101110001001001001001110110110110000
  100111100010010111111111111010]
In [67]: train_data_accuracy=r2_score(Y_train,X_train_prediction)
In [68]: print("Accuracy Score of training data: ",train_data_accuracy)
 Accuracy Score of training data: 1.0
In [69]: X test prediction=model.predict(X test)
In [70]:
  print(X_test_prediction)
 [0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1
  0000000101
```

In [71]: test_data_accuracy=r2_score(Y_test,X_test_prediction)

In [72]: print("Accuracy score of testing data:",test_data_accuracy)

Accuracy score of testing data: 1.0