Department Of Mathematics Indian Institute Of Technology Delhi MAL 390 – Statistical Methods and Algorithms Major Test – 01-05-2015

Time: Two Hour

Total Marks: 30

Q1. Consider the following bi-variate data table:

	16	b.	1	0		late	data	table	3;							
"X	4.	1	1.	3.	4 -	3	12	4	16	9	1	1	1	16	9	1 -
1.	1	1	4	1	4	2	1	2	4	3	2	1	2	14	3	1
-	4	-	4	- 3	1	Ļ		3	3	4	2	3	1	2	3	2 ->
a) Fi	tha	rivo.				ю	ď	6	12	12	1	3	1 7	10	-	A TOTAL STATE OF

- (a) Fit the two regression lines Y = a + bX and X = c + dY using the Least Square method and solving Normal equations.
- (b) What is the angle between the two lines? Justify your answer,
- (e) Use Least square theory to find the regression coefficients Y is regressed on $\alpha + \beta X$ for two non-zero constants α and β .

$$[3+1+2=6]$$

- Q2. (a) Explain the Wilcoxon Signed Rank test for comparing the central tendencies of two populations.
 - (b) Explain how Kendall's Tau is used for computing the correlation between bi-variate observations.
 - (c) Compute the value of Tau for the following data:

X	4	1	5	3	2
Y	1	3	4	2	5

- Q3. (a) Prove or Disprove: If T is the Maximum Likelihood estimator for θ , and Ψ is a strictly monotonic function, then $\Psi(T)$ is Maximum Likelihood estimator for $\Psi(\theta)$.
 - (b) Prove or Disprove: If T is sufficient for θ , then T is also Maximum Likelihood estimator for θ .
 - (e) Find the Maximum Likelihood estimate for $\frac{1}{\theta}$ from one observation on the random variable $X \sim \theta (1 \theta)^{x-1}$, x = 1, 2, 3, ...

- Q4. (a) Distinguish between Most Powerful and Uniformly Most Powerful Critical regions while testing a statistical hypothesis.
 - (b) Use Neyman-Pearson Lemma to construct the Most Powerful Critical Region for testing $H_0: \theta = \theta_0$ vs. H1: $\theta = \theta_1$ where $\theta_0 < \theta_1$, based on a sample of size n taken from N(0, θ), at 95% level of confidence. Note: θ stands for the variance.

$$[2+4=6]$$

- Q5. (a) Describe the Lehmer's algorithm for generating random numbers.
 - (b) Suppose the following 10 random numbers are generated in the range 1 100:

15, 92, 81, 23, 18, 73, 64, 95, 41 and 32.

Use the above numbers to generate 10 random numbers from N(0,1) population. Justify your answer.

$$|3+3| = 6$$