- सभोवताली उपलब्ध असलेले साहित्य वापरून प्रतिकृती तयार करतात व त्यांचे कार्य स्पष्ट करतात. उदा. एकतारी विद्युतदर्शक, अग्निशामक, तंतूवाद्य, पेरिस्कोप, इत्यादी.
- रचना, नियोजन, उपलब्ध स्रोतांचा वापर इत्यादी बाबींमध्ये सर्जनशीलता प्रदर्शित करतात.
- शिकत असलेल्या वैज्ञानिक संकल्पनांचा दैनंदिन जीवनात वापर करतात, उदा. पाण्याचे शुद्धीकरण, जैविक विघटनशील आणि अजैविक विघटनशील कचरा वेगळा करणे, पीक उत्पादन वाढविणे, योग्य धातू व अधातूंचा विविध कारणांसाठी वापर, घर्षण वाढविणे/कमी करणे, पौगंडावस्थेसंबधी असलेल्या दंतकथा व नकारात्मक रूढींना आव्हान देणे, इत्यादी.
- वैज्ञानिक शोधांबद्दल चर्चा आणि त्यांचे महत्त्व समजून घेतात.
- पर्यावरणाचे संरक्षण करण्यासाठी प्रयत्न करतात. उदा. संसाधन स्रोताचा विवेकाने वापर करणे, खते आणि कीटकनाशकांचा नियंत्रित वापर करणे, पर्यावरण आपत्तींना सामोरे जाण्याचे मार्ग सुचविणे, इत्यादी.
- नैसर्गिक संसाधनांच्या अतिवापराच्या परिणामांविषयी इतरांना संवेदनक्षम करतात.
- प्रामाणिकपणा, वस्तुनिष्ठता, सहकार्य, भय आणि पूर्वग्रह यांच्यापासून मुक्ती ही मूल्ये प्रदर्शित करतात.
- विश्वाची निर्मिती व अवकाश तंत्रज्ञानातील मानवाची प्रगती स्पष्ट करतात.
- माहिती संप्रेषण तंत्रज्ञानाच्या विविध साधनांचा संकल्पना समजून घेण्यासाठी वापर करतात.

अ.क्र.	पाठाचे नाव पृष्ठ क्र.
1.	सजीव सृष्टी व सूक्ष्मजीवांचे वर्गीकरण
2.	आरोग्य व रोग 6
3.	बल व दाब14
4.	धाराविद्युत आणि चुंबकत्व23
5.	अणूचे अंतरंग
6.	द्रव्याचे संघटन39
7.	धातू–अधातू49
8.	प्रदूषण
9.	आपत्ती व्यवस्थापन
10.	पेशी व पेशीअंगके67
11.	मानवी शरीर व इंद्रिय संस्था75
12.	आम्ल, आम्लारी ओळख83
13.	रासायनिक बदल व रासायनिक बंध89
14.	उष्णतेचे मापन व परिणाम95
15.	ध्वनी
16.	प्रकाशाचे परावर्तन
17.	मानवनिर्मित पदार्थ
18.	परिसंस्था
19.	ताऱ्यांची जीवनयात्रा

1. सजीव सृष्टी व सूक्ष्मजीवांचे वर्गीकरण

- 1 सजीवांच्या वर्गीकरणाचा पदानुक्रम कोणता आहे?
- 2 सजीवांना नाव देण्याची 'द्विनाम पद्धती' कोणी शोधली?
- 3 द्विनाम पद्धतीने नाव लिहिताना कोणते पदानुक्रम विचारात घेतले जातात?

जैवविविधता व वर्गीकरणाची आवश्यकता (Biodiversity and need of classification)

मागील इयत्तेत आपण पाहिले की भौगोलिक प्रदेश, अन्नग्रहण, संरक्षण अशा विविध कारणांनी पृथ्वीवरील सजीवांत अनुकूलन झालेले आढळते अनुकूलन साधताना एकाच जातीच्या सजीवांतही विविध बदल झालेले दिसतात

2011 च्या गणनेनुसार पृथ्वीवरील जमीन व समुद्र यांमधील सर्व सजीव मिळून सुमारे 87 दशलक्ष जाती ज्ञात आहेत एवढ्या प्रचंड संख्येने असणाऱ्या सजीवांचा अभ्यास करण्यासाठी त्यांची गटांत विभागणी व्हायला हवी, अशी गरज भासली सजीवांतील साम्य व फरक लक्षात घेऊन त्यांचे गट व उपगट करण्यात आले

सजीवांचे गट व उपगट बनविण्याच्या या प्रक्रियेला जैविक वर्गीकरण म्हणतात

इतिहासात डोकावताना.....

- इस 1735 मध्ये कार्ल लिनिअस यांनी सजीवांना 2 सृष्टीत विभागले वनस्पती व प्राणी (Vegetabilia & Animalia) सृष्टी
- इ.स. 1866 साली हेकेल यांनी 3 सृष्टी कल्पिल्या त्या म्हणजे प्रोटिस्टा, वनस्पती व प्राणी
- इस 1925 मध्ये चॅटन यांनी पुन्हा सजीवांचे दोनच गट केले – आदिकेंद्रकी व दृश्यकेंद्रकी
- इ स 1938 मध्ये कोपलँड यांनी सजीवांना
 4 सृष्टीमध्ये विभागले मोनेरा, प्रोटिस्टा,
 वनस्पती व प्राणी

रॉबर्ट हार्डींग व्हिटाकर (1920-1980) हे अमेरिकन परिस्थितीकी तज्ज्ञ (Ecologist) होऊन गेले त्यांनी इ स 1969 मध्ये सजीवांची 5 गटांत विभागणी केली

वर्गीकरणासाठी व्हिटाकर यांनी पुढील निकष विचारात घेतले.

- पेशीची जटिलता (Complexity of cell structure): आदिकेंद्रकी व दृश्यकेंद्रकी
- 2. सजीवांचा प्रकार / जटिलता (Complexity of organisms): एकपेशीय किंवा बहुपेशीय
- पोषणाचा प्रकार (Mode of nutrition): वनस्पती - स्वयपोषी (प्रकाश सश्लेषण), कवके - परपोषी (मृतावशेषातून अन्नशोषण), प्राणी- परपोषी (भक्षण)
- 4. जीवनपद्धती (Life style): उत्पादक वनस्पती, भक्षक प्राणी, विघटक कवके
- वर्गानुवंशिक संबंध (Phylogenetic relationship): आदिकेंद्रकी ते दृश्यकेंद्रकी, एकपेशीय ते बहुपेशीय

सृष्टी 1: मोनेरा (Monera)

कृती. एका स्वच्छ काचपट्टीवर दही किंवा ताकाचा अगदी लहान थेंब घ्या, त्यात थोडे पाणी मिसळून विरलन करा त्यावर अलगद आच्छादन काच ठेवा सूक्ष्मदर्शीखाली काचपट्टीचे निरीक्षण करा तुम्हांला काय दिसले?

यातील हालचाल करणारे, अगदी लहान काडीसारखे सूक्ष्मजीव म्हणजे लॅक्टोबॅसिलाय जीवाणू मोनेरा या सृष्टीत सर्व प्रकारच्या जीवाणूंचा व नीलहरित ऑरिअस शैवालांचा समावेश होतो

लक्षणे :

- 1 हे सर्व सजीव एकपेशीय असतात
- 2 स्वयंपोषी किंवा परपोषी असतात
- 3 हे आदिकेंद्रकी असून पटलबद्ध केंद्रक किंवा पेशीअंगके नसतात

सृष्टी 2 : प्रोटिस्टा (Protista)

कृती. एखाद्या डबक्यातील पाण्याचा एक थेंब काचपट्टीवर ठेवून सूक्ष्मदर्शीखाली निरीक्षण करा काही अनियमित आकाराचे सूक्ष्मजीव हालचाल करताना दिसतील हे सजीव अमिबा आहेत

लक्षणे :

- 1 प्रोटिस्टा सृष्टीतील सजीव एकपेशीय असून पेशीत पटलबद्ध केंद्रक असते
- 2 प्रचलनासाठी छद्मपाद किंवा रोमके किंवा कशाभिका असतात
- 3 स्वयंपोषी उदा युग्लिना, व्हॉल्व्हॉक्स पेशीत हरितलवके असतात परपोषी उदा अमिबा, पॅरामेशिअम, प्लास्मोडिअम, इत्यादी

सृष्टी 3 : कवके (Fungi)

कृती. पावाचा किंवा भाकरीचा तुकडा थोडा ओलसर करा व एका डबीत ठेवून तिला झाकण लावा दोन दिवसानंतर डबी उघडून पहा त्या तुकड्यावर कापसासारखे पांढरे तंतू वाढलेले दिसतील यातील काही तंतू काचपट्टीवर घेऊन सूक्ष्मदर्शीखाली निरीक्षण करा

1.2 मोनेरा सृष्टीतील विविध सजीव

1.3 प्रोटीस्टा सृष्टीतील सजीव

1.4 बुरशी

कार्य संस्थाचेः राष्ट्रीय विषाणू संस्था, पुणे (National Institute of Virology, Pune) ही विषाणु संदर्भातील संशोधनाचे कार्य करते भारतीय वैद्यकीय संशोधन परिषदेच्या अखत्यारित 1952 साली या संस्थेची स्थापना करण्यात आली होती

लक्षणे:

- 1 कवक सृष्टीत परपोषी, असंश्लेषी व दृश्यकेंद्रकी सजीवांचा समावेश होतो
- 2 बहुसंख्य कवके मृतोपजीवी आहेत कुजलेल्या कार्बनी पदार्थांवर जगतात
- 3 कवकांची पेशीभित्तिका 'कायटीन' या जटील शर्करेपासून बनलेली असते
- 4 काही कवके तंतुरूपी असून आतील पेशीद्रव्यात असंख्य केंद्रके असतात
- 5 कवक किण्व (बेकर्स यीस्ट) बुरशी, ॲस्परजिलस, (मक्याच्या कणसावरील बुरशी), पेनिसिलिअम, भूछत्रे (मशरूम)

व्हिटाकरनंतर वर्गीकरणाच्या काही पद्धती मांडल्या गेल्या, तरी आजही अनेक शास्त्रज्ञ व्हिटाकर यांच्या पंचसृष्टी वर्गीकरणालाच प्रमाण मानतात, हे या पद्धतीचे यश आहे

जरा डोके चालवा.

व्हिटाकर यांच्या वर्गीकरण पद्धतीचे गुणदोष स्पष्ट करा

सूक्ष्मजीवांचे वर्गीकरण (Classification of microbes)

पृथ्वीवरील एकूण सजीवांमध्ये सूक्ष्मजीव सर्वाधिक संख्येने आहेत त्यांची पुढीलप्रमाणे विभागणी करण्यात आली आहे

1.5 काही कवके

1.6 सूक्ष्मजीवांचे वर्गीकरण

सूक्ष्मजीवांच्या आकारासंदर्भात खालील प्रमाण लक्षात ठेवा. 1 मीटर = 10⁶मायक्रोमीटर (µm)

1 मीटर = 10^9 नॅनोमीटर (nm)

1. जीवाणू (Bacteria):

(आकार - 1 μm ते 10 μm)

- एकच पेशी स्वतंत्र सजीव म्हणून जगते काही वेळा बरेच जीवाणू एकत्र येऊन वसाहती (Colonies) बनवतात
- उजीवाणू पेशी आदिकेंद्रकी असते पेशीत केंद्रक व पटलयुक्त अंगके नसतात पेशीभित्तिका असते
- 3 प्रजनन बहुधा द्विखंडीभवनाने (एका पेशीचे दोन भाग होऊन) होते
- 4 अनुकूल परिस्थितीत जीवाणू प्रचंड वेगाने वाढतात व 20 मिनिटांत संख्येने दृप्पट होऊ शकतात

1.7 काही जीवाणू

2. आदिजीव (Protozoa): (आकार - सुमारे 200 μm)

- 1 माती, गोडे पाणी व समुद्रात आढळतात, काही इतर सजीवांच्या शरीरात राहतात व रोगास कारणीभूत ठरतात
- 2 दृश्यकेंद्रकी पेशी आढळणारे एकपेशीय सजीव
- 3 प्रोटोझुआंच्या पेशीरचना, हालचालींचे अवयव, पोषणपद्धती यांत विविधता आढळते
- 4 प्रजनन द्विखंडन पद्धतीने होते उदा अमिबा, पॅरामेशिअम - गढूळ पाण्यात आढळतात, स्वतंत्र जीवन जगतात एन्टामिबा हिस्टोलिटिका - आमांश होण्यास कारणीभूत प्लाज्मोडिअम व्हायवॅक्स - मलेरिया (हिवताप) होण्यास कारणीभूत यग्लीना - स्वयंपोषी

- 1 कुजणारे पदार्थ, वनस्पती व प्राण्यांची शरीरे, कार्बनी पदार्थ यांमध्ये आढळतात
- 2 दृश्यकेंद्रकी एकपेशीय सूक्ष्मजीव कवकाच्या काही प्रजाती डोळ्यांनी दिसतात
- 3 मृतोपजीवी असून कार्बनी पदार्थांपासून अन्नशोषण करतात
- 4 प्रजनन लैंगिक पद्धतीने आणि द्विखंडन व मुकुलायन अशा अलैंगिक पद्धतीने होते

उदा यीस्ट, कॅन्डीडा, आळंबी (मशरूम)

- 1 पाण्यात वाढतात
- 2 दृश्यकेंद्रकी, एकपेशीय, स्वयंपोषी सजीव
- 3 पेशीतील हरितलवकाच्या साहाय्याने प्रकाशसंश्लेषण करतात उदा क्लोरेल्ला, क्लॅमिडोमोनास

शैवालांच्या थोड्या प्रजाती एकपेशीय आहेत, तर इतर सर्व शैवाले बहुपेशीय असून न्सत्या डोळ्यांनी दिसतात

विषाणूंना साामान्यतः सजीव मानले जात नाही किंवा ते सजीव-निर्जिवांच्या सीमारेषेत आहेत असे म्हणतात मात्र त्यांचा अभ्यास सूक्ष्मजीवशास्त्रात (Microbiology) केला जातो

- 1 विषाणू अतिसूक्ष्म म्हणजे जीवाणूंच्या 10 ते 100 पटीने लहान असून फक्त इलेक्ट्रॉन सूक्ष्मदर्शीनेच दिसू शकतात
- 2 स्वतंत्र कणांच्या रूपात आढळतात विषाणू म्हणजे DNA (डीऑक्सीरायबो न्युक्लिक आम्ल) किंवा RNA (रायबो न्युक्लिक आम्ल) पासून बनलेला लांबलचक रेणू असून त्याला प्रथिनांचे आवरण असते
- 3 वनस्पती व प्राण्यांच्या जिवंत पेशीतच ते राहू शकतात व या पेशींच्या मदतीने विषाणू स्वतःची प्रथिने बनवितात व स्वतःच्या असंख्य प्रतिकृती निर्माण करतात त्यानंतर यजमान पेशींना नष्ट करून या प्रतिकृती मुक्त होतात व मुक्त विषाणू पुन्हा नव्या पेशींना संसर्ग करतात
- 4 विषाणूंमुळे वनस्पती व प्राण्यांना विविध रोग होतात

पॅरामेशिअम

एन्टामिबा

प्लास्मोडिअम

सॅकरोमायसिस

क्लोरेला

टोमॅटो - विल्ट विषाणू

1.8 काही सूक्ष्मजीव

माहीत आहे का तुम्हांला?

मानव – पोलिओ विषाणू, इन्फ्लुएंझा विषाणू, HIV – एड्स विषाणू इत्यादी गुरे – पिकोर्ना विषाणू (Picorna virus)

वनस्पती - टोमॅटो विल्ट विषाणू, तंबाखू मोझाईक विषाणू इत्यादी

जीवाणू - बॅक्टेरिओफाज हे विषाणू जीवाणूंवर हल्ला करतात

इंटरनेट माझा मित्र

विविध सूक्ष्मजीवांची चित्रे व त्यांची वैशिष्ट्ये यांबद्दल माहिती घेऊन तक्ता तथार करा

स्वाध्याय

- 1. जीवाणू, आदिजीव, कवके, शैवाल, आदिकेंद्रकी, दृश्यकेंद्रकी, सूक्ष्मजीव यांचे वर्गीकरण व्हिटाकर पद्धतीने मांडा.
- 2. सजीव, आदिकेंद्रकी, दृश्यकेंद्रकी, बहुपेशीय, एकपेशीय, प्रोटिस्टा, प्राणी, वनस्पती, कवके यांच्या साहाय्याने पंचसृष्टी वर्गीकरण पूर्ण करा.

3. माझा जोडीदार शोधा.

अ	ब
कवक	क्लोरेल्ला
प्रोटोझुआ	बॅक्टेरियोफेज
विषाणू	कॅन्डिडा
शैवाल	अमिबा
जीवाणू	आदिकेंद्रकी

- 4. दिलेली विधाने चूक की बरोबर ते लिहून त्यांचे स्पष्टीकरण लिहा.
 - अ. लॅक्टोबॅसिलाय हे उपद्रवी जीवाणू आहेत.
 - आ. कवकांची पेशीभित्तिका कायटीनपासून बनलेली असते.
 - इ. अमिबा छद्मपादाच्या साहाय्याने हालचाल करतो.
 - ई. प्लास्मोडिअममुळे आमांश होतो.
 - उ. टोमॅटोविल्ट हा जीवाणूजन्य रोग आहे.

5. उत्तरे लिहा.

- अ. व्हिटाकर वर्गीकरण पदधतीचे फायदे सांगा.
- आ. विषाणूंची वैशिष्ट्ये लिहा.
- इ. कवकांचे पोषण कसे होते?
- ई. मोनेरा या सृष्टीमध्ये कोणकोणत्या सजीवांचा समावेश होतो?

6. ओळखा पाहू मी कोण ?

- अ. मला केंद्रक, प्रद्रव्यपटल किंवा पेशीअंगके नसतात.
- आ. मला केंद्रक, प्रद्रव्यपटल युक्त पेशीअंगके असतात.
- इ. मी कुजलेल्या कार्बनी पदार्थांवर जगते.
- ई. माझे प्रजनन बहुधा दिवखंडनाने होते.
- उ. मी माझ्यासारखी प्रतिकृती निर्माण करतो.
- माझे शरीर निरावयवी आहे व मी हिरव्या रंगाचा आहे.
- 7. अचूक आकृत्या काढून नावे द्या.
 - अ. जिवाणूंचे विविध प्रकार
 - आ पॅरामेशिअम
 - इ. बॅक्टेरिओफेज
- 8. आकारानुसार पुढील नावे चढत्या क्रमाने लिहा.

जिवाणू, कवक, विषाणू, शैवाल

उपक्रम :

- 1. इंटरनेटच्या मदतीने विविध रोगकारक जीवाणू व त्यामुळे होणारे रोग यांचा माहिती तक्ता बनवा.
- तुमच्याजवळील पॅथॉलॉजी प्रयोगशाळेस भेट द्या व तेथील तज्ज्ञांकडून सूक्ष्मजीव, त्यांच्या निरीक्षण पद्धती व विविध सूक्ष्मदर्शकांविषयी सविस्तर माहिती घ्या.

2. आरोग्य व रोग

थोडे आठवा.

- 1 आजारपणामुळे तुम्ही कधी शाळेतून सुट्टी घेतली आहे का?
- 2 आपण आजारी पडतो म्हणजे नेमकं काय होतं?
- 3 आजारी पडल्यानंतर कधीकधी औषधोपचार न घेताही आपणांस काही काळानंतर बरे वाटायला लागते, तर कधीकधी डॉक्टरकडे जाऊन औषधोपचार घ्यावा लागतो असे का होते?

आरोग्य (Health)

रोगाचा नुसता अभाव म्हणजेच आरोग्य नव्हे तर शारीरिक, मानसिक आणि सामाजिकरीत्या पूर्णतः सुदृढ असण्याची स्थिती म्हणजे आरोग्य

2.1 ताप मोजणे

रोग म्हणजे काय ?

शरीरक्रियात्मक किंवा मानसशास्त्रीयरीत्या शरीरातील महत्त्वाच्या जैविक कार्यामध्ये अडथळा आणणारी स्थिती म्हणजे रोग होय प्रत्येक रोगाची विशिष्ट लक्षणे असतात

रोगांचे प्रकार : तुम्ही मधुमेह, सर्दी, दमा, डाऊन संलक्षण, हृदयविकार अशा विविध रोगांची नावे ऐकली असतील या सर्व रोगांची कारणे व लक्षणे वेगवेगळी आहेत विविध रोगांचे वर्गीकरण खालीलप्रमाणे केले जाते

THE T

सांगा पाहू!

- 1 खाली दिलेल्या रोगांचा प्रसार कोणत्या माध्यमांद्वारे होतो ? (कावीळ, मलेरिया, खरूज, क्षय, डेंग्यू, अतिसार, नायटा, स्वाईन फ्ल्यू)
- 2 रोगजंतू म्हणजे काय ?
- 3 संसर्गजन्य रोग म्हणजे काय?

अ. संसर्गजन्य रोग/संक्रामक रोग: दूषित हवा, पाणी, अन्न किंवा वाहक (कीटक व प्राणी) याद्वारे पसरणारे रोग म्हणजे संसर्गजन्य रोग होय

रोगाचे नाव	कारक	संक्रमणाचे माध्यम	लक्षणे	उपाय व उपचार
क्षय	जीवाणू	रोग्याच्या थुंकीतून,	दीर्घमुदतीचा खोकला,	बी. सी.जी. लस टोचून घ्यावी,
(Tuberculosis)	(मायकोबॅक्टेरिअम	हवेमार्फत प्रसार, रोग्याच्या	थुंकीतून रक्त पडणे, वजन	रुग्णास इतरांपासून वेगळे
	ट्युबरक्युली)	सान्निध्यात दीर्घकाळ	कमी होणे, श्वासोच्छ्वास	ठेवावे. नियमित औषध घ्यावे.
		असणे, रोग्याच्या वस्तू	प्रक्रियेत त्रास	DOT हा उपचार पूर्ण व
		वापरणे.		नियमित घ्यावा.
कावीळ	विषाणू	पाणी, रुग्णासाठी	भूक मंदावणे, गर्द पिवळी	पाणी उकळून व गाळून प्यावे,
(Hepatitis)	(हेपॅटीटीस	वापरलेल्या सुया,	लघवी, थकवा, मळमळ,	स्वच्छतागृहांचा वापर
	A,B,C,D,E)	रक्तपराधन	उलटी, राखाडी विष्ठा	करण्यापूर्वी व नंतर हात
			(मल)	साबणाने स्वच्छ धुवावेत.
अतिसार	जीवाणू, विषाणू	दूषित अन्न व पाणी	पोटदुखी, पाण्यासारखे	अन्न झाकून ठेवावे, पाणी
(हगवण)	शिगेल्ला बॅसीलस		पातळ जुलाब	उकळून व गाळून प्यावे,
(Diarrhoea)	एन्टामिबा			जलसंजीवनी (ORS) घ्यावी.
	हिस्टोलिटीका			
पटकी (Cholera)	जीवाणू	दूषित अन्न व पाणी	उलट्या व तीव्र जुलाब,	स्वच्छता राखावी,
	(व्हिब्रियो		पोट दुखणे, पायांत पेटके	उघड्यावरील अन्नपदार्थ खाऊ
	कॉलरी)		येणे.	नयेत, पाणी उकळून प्यावे,
				कॉलरा प्रतिबंधक लस घ्यावी.
विषमज्वर	जीवाणू	दूषित अन्न व पाणी	भूक मंदावणे, डोकेदुखी,	स्वच्छ व निर्जंतुक पाणी प्यावे,
(Typhoid)	(सालमोनेला		मळमळ, पोटावर पुरळ	लसीकरण करून घ्यावे,
	टायफी)		उठणे, अतिसार, 104ºF	सांडपाण्याची विल्हेवाट योग्य
			पर्यंत ताप येणे.	रीतीने करावी.

2.3 काही संसर्गजन्य रोग

🚧 तक्ता पूर्ण करा

आंत्रशोथ, हिवताप, प्लेग, कुष्ठरोग, अशा विविध रोगांची माहिती मिळवा व वरीलप्रमाणे तक्ता तयार करा

निरीक्षण करा व चर्चा करा.

2.4 परिसरातील अस्वच्छता

इंटरनेट माझा मित्र

- 1 कांजिण्या (Chicken pox) या रोगाची माहिती, कारणे, लक्षणे व उपाय शोधा
- 2 अधिक माहिती घ्या अ पल्स पोलिओ अभियान आ WHO
- 1 चित्रातील पाणी साठलेल्या वस्तू तुम्हांला कुठे-कुठे आढळतात ?
- 2 चित्रावरून तुम्हांला धोक्याची कोणती कल्पना येते?

सद्यःस्थितीतील काही महत्त्वाचे रोग

- शाळेमध्ये स्वच्छ हात उपक्रम का राबवला जातो ?
- 2 पावसाळ्यात पाणी उकळून का प्यावे ?
- 3 वैयक्तिक स्वच्छता कशी पाळता येते ?

डेंग्यू (Dengue) : साठलेल्या पाण्यात डास अंडी घालतात आणि त्यांच्या वाढीस पोषक वातावरण निर्माण होऊन त्यांची संख्या वाढते डासांच्या विविध प्रजाती वेगवेगळे रोग पसरवतात त्यांपैकी एडिस इजिप्ती प्रकारच्या डासांमार्फत डेंग्यू हा संसर्गजन्य रोग पसरतो हा आजार फ्लेवी व्हायरस या प्रकारातील डेन -1, 2 या विषाणूमुळे होतो लक्षणे

- 1 तीव्र ताप, तीव्र डोकेदुखी, उलट्या होणे
- 2 सर्वांत महत्त्वाचे म्हणजे डोळ्यांच्या खोबणीत दखणे
- उ रक्तातील रक्तिबंबिका (platelets) यांचे प्रमाण कमी होणे त्यामुळे शरीरांतर्गत रक्तस्राव होणे

निरीक्षण करा व चर्चा करा.

खालील आकृतीत दाखवलेल्या चित्रांचे निरीक्षण करून त्याचे वर्णन चौकटीत लिहा व वर्गात चर्चा करा

2.5 डेंग्यू : कारणे व प्रतिबंधात्मक उपाय

स्वाईन फ्लू: संसर्ग होण्याची कारणे

- स्वाईन फ्ल्यूचा संसर्ग डुक्कर या प्राण्याद्वारे तसेच माणसाद्वारे होतो
- स्वाईन फ्ल्यूच्या विषाणूंचा प्रसार रोग्याच्या घामातून होतो तसेच नाकातील व घशातील स्राव व थुंकीतून होतो

माहिती मिळवा.

तुमच्या परिसरातील ग्रामपंचायत, नगरपालिका, महानगरपालिका डासांच्या प्रसारास प्रतिबंध करण्यासाठी काय उपाययोजना करते ?

माहीत आहे का तुम्हांला?

हिवताप हा ॲनाफिलीस डासाच्या मादीमुळे होतो, तर हत्तीरोग हा क्युलेक्स डासाच्या मादीमुळे होतो ॲनाफिलिस व एडिस डासाचे वास्तव्य स्वच्छ पाण्यात असते, तर क्युलेक्स डास प्रदूषित पाणी/ गटारे येथे असतो

स्वाईन फ्लू ची लक्षणे

- धाप लागणे किंवा श्वसनाला अडथळा निर्माण होणे
- घसा खवखवणे, शरीर दुखणे

स्वाईन फ्लूचे निदान: स्वाईन फ्लूच्या निदानासाठी रुग्णाच्या घशातील द्रव पदार्थाचा नमुना प्रयोगशाळेत तपासणीसाठी पाठवावा लागतो 'राष्ट्रीय विषाणू विज्ञान संस्था (नॅशनल इन्स्टिट्यूट ऑफ व्हायरॉलॉजी – एन आय व्ही), पुणे' व 'राष्ट्रीय संचारी रोग संस्था (नॅशनल इन्स्टिट्यूट ऑफ कम्युनिकेबल डिसिजेस – एन आय सी डी) दिल्ली' येथील प्रयोगशाळेत तपासणीची व्यवस्था उपलब्ध आहे

माहीत आहे का तुम्हांला?

मार्च 2009 मध्ये मेक्सिको देशात या आजाराची प्रथम बाधा झाली स्वाईन फ्लू इन्फ्लुएन्सा ए (H_1N_1) या विषाणुमुळे हा रोग होतो हा रोग डुकरांमध्ये आढळणाऱ्या विषाणूंमुळे होतो डुकरांमध्ये वावरणाऱ्या व्यक्तीला या विषाणूंची बाधा होऊ शकते

एड्स (AIDS): एड्स (AIDS - Acquired Immune Deficiency Syndrome) हा रोग HIV (Human Immunodeficiency Virus) या विषाणूमुळे मानवाला होतो यामध्ये मानवाची नैसर्गिक रोगप्रतिकारशक्ती हळूहळू दुर्बल झाल्याने त्याला विविध रोगांची लागण होते वैद्यकीय प्रयोगशाळेत केलेल्या चाचणीत निष्पन्न झाल्याशिवाय एड्सचे निदान निश्चित करता येत नाही त्याचे नेमके निदान करण्यासाठी ELISA ही रक्ताची चाचणी आहे एड्सची लक्षणे

हे नेहमी लक्षात ठेवा.

- HIV बाधित व्यक्तीला स्पर्श केल्याने, सोबत जेवल्याने व HIV बाधित व्यक्तीची सेवासुश्रूषा केल्याने एडस होत नाही
- HIV बाधित व्यक्तीसोबत सर्वसामान्य व्यवहार असावा

व्यक्तिसापेक्ष असतात

माहीत आहे का तुम्हांला?

एच आय व्ही विषाणू पहिल्यांदा आफ्रिकेतील एका खास प्रजातीच्या माकडात सापडला 'नॅशनल एड्स कंट्रोल प्रोग्राम' आणि 'यू एन एड्स' यांच्यानुसार भारतात 80 ते 85 टक्के संसर्ग असुरक्षित विषम लैंगिक संबंधातून पसरत आहेत

प्राण्यांमार्फत होणारा रोगप्रसार

सांगा पाह

- 1 उंदीर, घुशींचा नायनाट करण्यासाठी तुमच्या घरी कोणते उपाय योजतात?
- 2 पाळीव कुत्रे, मांजरे, पक्षी यांच्या आरोग्याबद्दल काळजी का घ्यावी लागते?
- 3 कबुतरे, भटके प्राणी यांचा व मानवी आरोग्याचा काही संबंध आहे का?
- 4 उंदीर, घुशी, झुरळे यांचा मानवाच्या आरोग्यावर काय परिणाम होतो?

रेबीज (Rabies): रेबीज हा विषाणुजन्य रोग आहे हा रोग संसर्ग झालेल्या कुत्रा, ससा, माकड, मांजर इत्यादी चावल्यानंतर होतो या रोगाचे विषाणू मज्जातंतूवाटे मेंदूत प्रवेश करतात जलद्वेष (Hydrophobia) हे या रोगाचे महत्त्वाचे लक्षण आहे या रोगामध्ये रोगी पाण्याला घाबरत असल्याने त्यास जलसंत्रास असेही म्हणतात रेबीज प्राणघातक रोग आहे मात्र रोग होण्यापूर्वी लस देऊन त्यापासून संरक्षण करता येते कुत्रा चावल्यानंतर या आजाराची लक्षणे 90 ते 175 दिवसांत दिसू लागतात

रेबीज रोगाची लक्षणे

- 1 2 ते 12 आठवडे ताप राहतो
- 2 अतिशयोक्ती करत वागणे
- 3 पाण्याची भीती वाटणे

इंटरनेट माझा मित्र

- 1 इंटरनेटवर रेबीज या रोगासंबंधीचे विविध व्हिडीओ पहा
- 2 रेबीज रोगावरील प्रतिबंधात्मक उपचाराची माहिती मिळवा व यादी तयार करून मित्रांसोबत चर्चा करा

- 1 प्राण्यांच्या राहण्याच्या जागा, पिंजरे हे स्वयंपाकघर व जेवणाच्या ठिकाणी का असू नये?
- सांगा पाहू! 2 रेबीज हा रोग कोणत्या लक्षणांद्वारे ओळखाल?
- ब. असंसर्गजन्य रोग: जे रोग संसर्गातून किंवा संक्रमणातून पसरत नाहीत त्या रोगांना असंसर्गजन्य किंवा असंक्रामक रोग असे म्हणतात असे रोग काही विशिष्ट कारणांमुळे व्यक्तीच्या शरीरातच उद्भवतात
- 1. कर्करोग (Cancer): पेशींच्या अनियंत्रित व अपसामान्य वाढीस कर्करोग म्हणतात कर्करोगाच्या पेशीसमूहास किंवा गाठीस दुर्दम्य अर्बुद म्हणतात कर्करोग फुफ्फुस, तोंड, जीभ, जठर, स्तन, गर्भाशय, त्वचा यांसारख्या अवयवांत रक्त किंवा अन्य कोणत्याही उतीत होऊ शकतो

कारणे : अतिप्रमाणात तंबाखू, गुटखा, धूम्रपान, मद्यपान करणे, आहारात चोथायुक्त अन्नपदार्थांचा (फळे व पालेभाज्यांचा) समावेश नसणे, अति प्रमाणात जंकफूड (वडापाव,पिइझा, इत्यादी) खाणे यांसारखी अनेक कारणे असू शकतात अनुवांशिकता हेही एक कारण असू शकते

लक्षणे

- 1 दीर्घकालीन खोकला, आवाज घोगरा होणे, गिळताना त्रास होणे
- 2 उपचार करूनही बरा न होणारा व्रण किंवा सूज
- 3 स्तनात गाठी निर्माण होणे
- 4 अकारण वजन घटणे

चर्चा करा.

कर्करोगावर प्रतिबंध कसा करावा यावर चर्चा करा व पोस्टर तयार करून वर्गात लावा

विना साखरेचा चहा घेणारी अथवा गोड पदार्थांचे सेवन टाळणारी व्यक्ती तुम्हांला माहिती आहे का? काय कारण असेल त्यामागे ?

2. मधुमेह (Diabetes): स्वादुपिंडात निर्माण होणारे इन्सुलिन हे संप्रेरक रक्तातील ग्लुकोज शर्करेच्या प्रमाणावर नियंत्रण ठेवते इन्सुलिनचे प्रमाण कमी झाल्यास शर्करेचे प्रमाण नियंत्रित होत नाही, ह्या विकाराला मधुमेह म्हणतात

माहीत आहे का तुम्हांला?

कर्करोगावरील आधुनिक निदान व उपचार पद्धती : कर्करोगाचे निदान करण्यासाठी टिशू डायग्नोसिस, सी टी स्कॅन, एम आर आय स्कॅन, मॅमोग्राफी बायप्सी, इत्यादी तंत्राचा वापर करण्यात येतो तर उपचारांमध्ये रसायनोपचार, किरणोपचार, शल्यचिकित्सा या प्रचलित पद्धतींबरोबरच रोबोटिक सर्जरी, लॅप्रोस्कॉपिक सर्जरी अशा उपचार पद्धती वापरल्या जातात

हे नेहमी लक्षात ठेवा.

आहारावर योग्य नियंत्रण ठेवल्यास काही प्रकारच्या कर्करोगांपासून संरक्षण मिळते कर्करोगावर आधुनिक उपचारां-बरोबरच शारीरिक व्यायाम केल्यास अधिक फायदा होतो

तंबाखू सेवन, धूम्रपान यांसारख्या व्यसनांच्या आहारी जाऊ नका

या लक्षणांकडे दुर्लक्ष करणे योग्य नाही.

- रात्री मूत्रविसर्जनास वारंवार जावे लागणे, वजन खूप वाढणे किंवा कमी होणे यांसारखी लक्षणे आढळतात
 मधुमेहाची कारणे:
 अनुवंशिकता
 अतिलठठपणा
- व्यायामाचा/कष्टाचा अभाव मानसिक ताण/ तणाव

प्रतिबंधात्मक उपचार : डॉक्टरांच्या सल्ल्याने आहार, औषधे व व्यायाम याचा अवलंब करून नियंत्रण करावे.

माहीत आहे का तुम्हांला?

सध्या देशात साधारणतः सात कोटी मधुमेहाचे रुग्ण आहेत जगातील सर्वाधिक मधुमेहाचे रुग्ण भारतात आढळतात

3. हृदयविकार (Heart Diseases): हृदयाच्या स्नायूंना रक्ताचा व पर्यायाने ऑक्सिजन व पोषक द्रव्यांचा पुरवठा अपुरा पडल्यास हृदयाची कार्यक्षमता कमी होते यामुळे हृदयास जास्त कार्य करावे लागते व ताण आल्याने हृदयविकाराचा झटका येऊ शकतो हृदयविकाराचा झटका आल्यास त्वरित डॉक्टरांचा सल्ला व औषधोपचार अत्यावश्यक आहे

या लक्षणांकडे दुर्लक्ष करून चालणार नाही

छातीत असह्य वेदना होणे, छातीतील वेदनांमुळे खांदे, मान व हात दखणे, हात आखडणे, घाम येणे, अस्वस्थता कंप जाणवणे

इंटरनेट माझा मित्र

इंटरनेटवर मधुमेहाची माहिती देणारे विविध व्हिडीओ पहा महत्त्वपूर्ण माहितीची नोंद करा व गटाने वर्गात PPT सादरीकरण करा

हे नेहमी लक्षात ठेवा.

प्रत्येक रोगाला विशिष्ट असे वैज्ञानिक कारण असते दैवी प्रकोप किंवा इतर व्यक्तींच्या मत्सरामुळे रोग होत नाही योग्य वैद्यकीय उपचारांनीच रोग बरे होतात मंत्रतंत्र, जादूटोणा यांमुळे रोग बरे होत नाहीत

हृदयविकाराची कारणे : धूम्रपान करणे, मद्यपान, मधुमेह, उच्च रक्तदाब, लठ्ठपणा, शारीरिक श्रमाची कमतरता, व्यायामाचा अभाव, सतत बैठे काम करणे, अनुवंशिकता, तणाव, रागीटपणा आणि चिंता

हे नेहमी लक्षात ठेवा.

्राण्या हृदयरोगावर प्राथमिक उपचार

पहिल्यांदा 108 क्रमांकावर रूग्णवाहिकेसाठी फोन करा रूग्णाचे खांदे हलवून तो शुद्धीवर आहे का ते तपासा रूग्णाला कडक पृष्ठभागावर झोपवून शास्त्रशुद्ध पद्धतीने रूग्णाच्या छातीवर दाब द्या या पद्धतीला कॉम्प्रेशन ओन्ली लाईफ सपोर्ट (COLS) म्हणतात यामध्ये एका मिनीटाला 100 ते 120 दाब या गतीने किमान 30 वेळा छातीच्या बरोबर मध्यभागी दाब द्यावा

माहिती मिळवा.

1 तुम्ही कधी आजी, आजोबांना काढा (अर्क) घेताना किंवा काही चाटण घेताना पहिले आहे का ? त्यांच्याशी त्याबद्दल चर्चा करा 2 कोरफड, हळद, आले, लसूण यांचा वापर औषधी म्हणून कोणत्या आजारासाठी व कसा करतात त्याची माहिती आजी, आजोबांकडून मिळवा

इंटरनेट माझा मित्र

आयुर्वेदिक, होमिओपॅथी, निसर्गोपचार, ॲलोपॅथी, युनानी या वैद्यकीय उपचारपद्धतींविषयी इंटरनेटवरून माहिती मिळवा

औषधांचा गैरवापर: कधी कधी डॉक्टरांच्या सल्ल्याशिवाय परस्पर काही व्यक्ती औषधे घेतात त्यांच्या अतिवापराने आपल्या शरीरावर वाईट परिणाम घडून येतात जसे, जास्त प्रमाणात अथवा वारंवार वेदनाशामके (Pain Killers) घेतल्यास चेतासंस्था, उत्सर्जन संस्था, यकृत यावर विपरीत परिणाम होतो प्रतिजैविकांच्या (Antibiotics) अतिवापराने मळमळ, पोटदखी,पातळ जुलाब, अंगावर पुरळ येणे, जिभेवर पांढरे चट्टे पडणे इत्यादी लक्षणे तयार होतात

गरीब रुग्ण महागडी औषधे विकत घेऊ शकत नाहीत, अशा वेळी त्यांच्यासाठी काही पर्याय उपलब्ध असेल का व कोणता ?

जेनेरिक औषधे: जेनेरिक औषधे यांना सामान्य औषधे असेही म्हणतात या औषधांची निर्मिती व वितरण कोणत्याही पेटेंट शिवाय केली जाते ही औषधे ब्रॅन्डेड औषधांच्या समकक्ष व त्याच दर्जाची असतात जेनेरिक औषध तयार करताना त्या औषधातील घटकांचे प्रमाण किंवा त्या औषधांचा फॉर्मुला तयार मिळत असल्यामुळे संशोधनावरील खर्च वाचतो त्यामुळे जेनेरिक औषधांची किंमत ब्रॅन्डेड औषधांच्या किमतीपेक्षा तुलनेने खूप कमी असते

2.6 जेनेरिक औषधे

जोड माहिती संप्रेषण तंत्रज्ञानाची

जेनेरिक औषधे तुम्ही Healthkart व Jan Samadhan या मोबाईल ॲप च्या साहाय्याने सहज मिळवू शकता ते ॲप तुमच्या घरातील मोबाईलवर डाऊनलोड करा गरज पडल्यास त्याचा वापर करा

जीवनशैली आणि आजार: जीवनशैली म्हणजे आहार-विहार यामध्ये रोजच्या दिनचर्येचा आणि आहाराचा समावेश होतो आजकाल उशीरा उठणे, उशीरा झोपणे, आहाराच्या वेळा सारख्या बदलणे, व्यायाम व कष्टाची कामे यांचा अभाव असणे, जंकफूड (अरबट चरबट) खाणे अशा गोष्टींचे प्रमाणे वाढले आहे यामुळेच आजारी पडण्याचे प्रमाणे वाढले आहे

आजारी पडण्याचे प्रमाण कमी करायचे असेल तर योग्य जीवनशैली अंगीकारणे अत्यंत आवश्यक आहे यामध्ये योग्य झोप, योग्य आहार या व्यतिरिक्त योगासने, प्राणायाम आणि व्यायाम करणे आवश्यक आहे तसेच व्यायामसुद्धा आपल्या शरीराला झेपेल असाच करावा

प्राणायाम व योगासने तज्ज्ञांच्या मार्गदर्शनाखाली करावीत विविध प्राणायाम व योगासनांचे व्हिडिओ पहा लसीकरण (Vaccination): आजार होऊ नये म्हणून, त्यांचा प्रतिबंध म्हणून लसीकरण करून घेणे हेही तितकेच महत्वाचे आहे तुमच्या जवळच्या दवाखान्यातून लसीकरण तक्ता मिळवा व अभ्यासा

माहीत आहे का तुम्हांला?

- * पंतप्रधान जन औषध योजना 1 जुलै 2015 ला भारत सरकारने जाहीर केली या योजनेअंतर्गत उत्तम दर्जाची औषधे कमी किमतीत जनतेला उपलब्ध करून देण्यात येतात त्यासाठी 'जन औषधी स्टोअर्स' सुरू करण्यात आलेली आहेत
- * भारतीय कंपन्या मोठ्या प्रमाणावर जेनेरिक औषधांची निर्यात करतात; परंतु देशात मात्र ब्रॅन्डेड कंपनीच्या नावानेच जास्त किमतीला औषधे विकतात अमेरिकेत 80% जेनेरिक औषधांचा वापर केला जातो त्यामुळे औषधावरील शेकडो अब्ज रुपये तेथे वाचविले जातात

साजरे करूया आरोग्य दिनविशेष

7 एप्रिल - जागतिक आरोग्य दिन 14 जून - जागतिक स्कतदान दिन 29 सप्टेंबर - जागतिक हृदय दिन 14 नोव्हेंबर - जागतिक मधुमेह दिन

महत्त्व जाणा....

रक्तदान: रक्तदात्याचे एक युनिट रक्तदान एका वेळेला किमान तीन रुग्णांची गरज पूर्ण करते जसे की, तांबड्या पेशी, पांढऱ्या पेशी, रक्तबिंबिका एका वर्षात चारदा रक्तदान केल्यास 12 रुग्णांचे प्राण वाचवता येतात नेत्रदान: मृत्यूनंतर आपल्याला नेत्रदान करता येते त्यामुळे अंध व्यक्तींना दृष्टी मिळू शकते

स्वाध्याय

- फरक स्पष्ट करा. संसर्गजन्य व असंसर्गजन्य रोग
- 2. वेगळा शब्द ओळखा.
 - अ. हिवताप, कावीळ, हत्तीरोग, डेंग्यू
 - आ. प्लेग, एड्स, कॉलरा, क्षय
- 3. एक ते दोन वाक्यांत उत्तरे द्या.
 - अ. संसर्गजन्य रोग पसरविणारे माध्यम कोणकोणते?
 - आ. असंसर्गजन्य रोगांची पाठाव्यतिरिक्त कोणती नावे तुम्हांला सांगता येतील ?
 - इ. मधुमेह, हृदयविकार यांची मुख्य कारणे कोणती ?
- तर काय साध्य होईल /तर काय टाळता येईल /तर कोणत्या रोगांना आळा बसेल?
 - अ. पाणी उकळून व गाळून पिणे.
 - आ. धूम्रपान, मद्यपान न करणे.
 - इ. नियमित संतुलित आहार घेणे व व्यायाम करणे.
 - ई. रक्तदानापूर्वी रक्ताची योग्य प्रकारे तपासणी केली.
- 5. परिच्छेद वाचून प्रश्नांची उत्तरे द्या.

''गौरव 3 वर्षांचा आहे. तो व त्याचे कुटुंबीय साधारण वसाहतीत (झोपडपट्टीत) राहतात. सार्वजिनक शौचालय त्याच्या घराजवळच आहे. त्याच्या विडलांना मद्यपानाची सवय आहे. त्याच्या आईला संतुलित आहाराचे महत्त्व नाही.''

- अ. वरील परिस्थितीत गौरवला कोणकोणते आजार उद्भवू शकतात ?
- आ. त्याला किंवा त्याच्या पालकांना तुम्ही काय मदत कराल ?
- इ. गौरवच्या वडिलांना कोणता आजार होण्याची शक्यता आहे ?
- 6. खालील रोगांवरील प्रतिबंधात्मक उपाय लिहा.
 - अ. डेंग्यू आ. कर्करोग इ. एड्स

- 7. महत्त्व स्पष्ट करा.
 - अ. संतुलित आहार
 - आ. व्यायाम/योगासने
- 8. यादी करा.
 - अ. विषाणूजन्य रोग
 - आ. जीवाणूजन्य रोग
 - इ. कीटकांमार्फत पसरणारे रोग
 - ई. अनुवंशिकतेने येणारे रोग
- 9. कर्करोगावरील आधुनिक निदान व वैद्यकीय उपचार पद्धती विषयी माहिती लिहा.
- 10. तुमच्या घरी असणाऱ्या औषधांची नावे व त्यातील घटक लिहा व त्यांची यादी करा.

उपक्रम :

- 1. विविध आजारांवर माहिती देणारी, जनजागृती करणारी भित्तीपत्रके तयार करा व शाळेत प्रदर्शन भरवा.
- 2. जवळच्या आरोग्यकेंद्रास/दवाखान्यास भेट द्या व लसीकरणाविषयी अधिक माहिती मिळवा.
- 3. डेंग्यू, मलेरिया, स्वाईन फ्लू यांविषयी जनजागृती करणारे पथनाट्य बसवा व तुमच्या शाळेच्या जवळच्या भागात सादर करा.

3. बल व दाब

थोडे आठवा.

बल म्हणजे काय ?

स्थिर वस्तूवर बल कार्यरत नसेल तर ती स्थिरच राहते गतिमान वस्तूवर बल कार्यरत नसेल तर ती त्याच वेगाने व दिशेने सतत पुढे जात राहते हा न्यूटनचा गतिविषयक पहिला नियम आहे

निरीक्षण करा.

आकृती 3 1 व 3 2 मधील चित्रांचे निरीक्षण करा

3.1 विविध क्रिया

संपर्क व असंपर्क बले (Contact and Non contact Forces): आकृती 3 1 मध्ये मोटार ढकलणाऱ्या माणसाने मागून बल लावल्याने मोटार पुढील दिशेने ढकलली जाते तटून बसलेल्या कुत्र्याला मुलगा ओढत आहे व फुटबॉल खेळणारा मुलगा पायाने चेंडूला टोलवत आहे यावरून काय आढळते ? दोन वस्तूंमधील आंतरक्रियेमधून त्या वस्तूंवर

बल प्रयुक्त होते

आकृती 3 2 मध्ये चुंबकाच्या ध्रुवाकडे लोखंडी टाचण्या चुंबकीय बलामुळे आकर्षित होतात व चिकटतात, हे दाखवले आहे

3.2 काही घटना

ढकलणे,ओढणे,अशा कित्येक क्रियांमधून ते प्रयुक्त होते याउलट चुंबकीय बल, गुरुत्वीय बल, स्थितिक विद्युत बल यांसारखी बले कोणत्याही संपर्काशिवाय प्रयुक्त होतात म्हणून ती असंपर्क बलाची उदाहरणे आहेत

एखादा चेंडू टेबलावर ठेवून त्याला हलकासा धक्का मारला तर तो थोडा पुढे जाऊन संथ होत होत थांबतो सपाट रस्त्यावर पळणारी मोटारगाडी इंजिन बंद केल्यावर थोडे अंतर जाऊन थांबते टेबलाचा व जिमनीचा पृष्ठभाग आणि त्यावर गितमान असणारी वस्तू यांच्यामधील घर्षण बलामुळे हे घडते घर्षण बल नसते तर न्यूटनच्या पहिल्या गितविषयक नियमानुसार वस्तू गितमान राहिली असती घर्षण बल रोजच्या जीवनात अतिशय उपयुक्त आहे जिमनीवर चालताना आपण पावलाने जमीन मागे ढकलत असतो घर्षण नसेल तर आपण घसरून पडू व चालू शकणार नाही घर्षण बल हे सर्व गितमान वस्तूंवर प्रयुक्त

तसेच नारळाच्या झाडावरून नारळ खाली पडत आहे गुरुत्वीय बलामुळे वस्तू पृथ्वीकडे आकर्षित होतात केसांमध्ये घासलेल्या कंगव्याकडे टेबलावरील कागदाचे कपटे आकर्षित होतात कंगव्यावर स्थितिक विद्युतभार असल्याने व कपट्यांवर विरुद्ध प्रवर्तित भार असल्याने कंगवा व कागदाचे कपटे यांच्यात स्थितिक विद्युतबल प्रयुक्त होते व कपटे कंगव्याला चिकटतात

आकृती 3 1 मध्ये वस्तूंच्या एकमेकांशी आलेल्या थेट संपर्कामुळे किंवा आणखी एका वस्तूमार्फत आलेल्या संपर्कामुळे बल प्रयुक्त झालेले दिसते अशा बलास 'संपर्क बल' असे म्हणतात आकृती 3 2 मध्ये दोन वस्तूंमध्ये संपर्क नसला तरीही त्या दोन वस्तूंमध्ये बल प्रयुक्त होताना दिसते; अशा बलास 'असंपर्क बल' म्हणतात

स्नायूबल हे संपर्क बलाचे उदाहरण असून हे आपल्या स्नायूंच्या मदतीने वस्तूंवर प्रयुक्त केले जाते उचलणे, असते आणि ते गतीच्या दिशेच्या विरुद्ध दिशेने प्रयुक्त होत असते रस्त्यातील केळीच्या सालीवरून घसरायला होते हे तुम्ही पाहिले असेल तसेच चिखलामुळेही घसरायला होते, ही दोन्ही उदाहरणे घर्षण कमी झाल्याने घडतात

संपर्क व असंपर्क बल प्रयुक्त असण्याची आणखी काही उदाहरणांची यादी करा कोणत्या प्रकारचे बल आहे, ते लिहा

प्लॅस्टिकच्या दोन लहान चौकोनी आकाराच्या बाटल्या घ्या त्यांची झाकणे घट्ट बसवा दोन्ही बाटल्यांवर २ लहान चुंबकपट्ट्या ठेवा व त्या चिकटपट्टीच्या साहाय्याने नीट बसवा (आकृती 3 3)

3.3 असंपर्क बल

एका मोठ्या प्लॅस्टिक ट्रेमध्ये पाणी भरून त्यात ह्या बाटल्या चुंबक वरच्या बाजूस येतील अशा रितीने तरंगत सोडा. एक बाटली दुसरीच्या जवळ न्या. चुंबकाच्या विरुद्ध ध्रुवामध्ये आकर्षण असल्याने एका बाटलीवरील चुंबकपट्टीचा उत्तर ध्रुव दसऱ्या चुंबकपट्टीच्या दक्षिण ध्रुवानजीक असेल तर दोन्ही

बाटल्या एकमेकांकडे सरकू लागतील बाटल्यांच्या दिशा बदलून काय होते त्याचे निरीक्षण करा प्रत्यक्ष संपर्क न येता बाटल्यांच्या गतीत होणारे बदल आपल्याला दिसतात याचा अर्थ दोन्ही चुंबकांमध्ये असंपर्क बल कार्यरत आहे

स्थितिक विद्युत बल तुम्ही मागील इयत्तेत शिकला आहात स्थितिक विद्युत बल हे असंपर्क बल आहे हे सिद्ध करण्यासाठी कोणता प्रयोग कराल?

संतुलित आणि असंतुलित बले (Balanced and Unbalanced Forces)

3.4 संतुलित व असंतुलित बले

पुठ्ठ्याचे एक खोके घेऊन त्याच्या दोन बाजूंना सुतळी किंवा जाड दोरा बांधून आकृती 3 4 मध्ये दाखिवल्याप्रमाणे खोके सपाट पृष्ठभागाच्या टेबलावर ठेवा दोरा टेबलाच्या दोन्ही बाजूंकडे खाली घ्या त्यांच्या टोकांना पारडी बांधा दोन्ही पारड्यात एकाच वस्तुमानाच्या वस्तू (किंवा वजने) ठेवा खोके टेबलावर स्थिर रहात असल्याचे दिसेल एखाद्या पारड्यात दुसऱ्या पारड्यापेक्षा अधिक वस्तुमानाच्या वस्तू ठेवल्यास खोके त्या पारड्याच्या दिशेने सरकू लागेल पारड्यात एकसारखे वस्तुमान असताना दोन्ही पारड्यांवर समान गुरुत्वीय बल कार्यरत होते महणजेच खोक्यावर संतुलित बले लावली जातात, ती विरुद्ध दिशेने असल्याने त्यांचे परिणामी बल शून्य होते, आणि खोके हालत नाही याउलट जर एखाद्या पारड्यात अधिक वस्तुमान ठेवल्यास खोके अधिक वस्तुमानाच्या पारड्याच्या दिशेने सरकू लागते खोक्याला दोन्ही बाजूंना असमान बले लावल्याने असंतुलित बल कार्यरत होते व त्याची परिणती खोक्याला गती मिळण्यास होते

रस्सीखेच खेळणारी मुले आपआपल्या दिशेने दोर ओढतात दोन्ही बाजूंनी सारखीच ओढ म्हणजे बल असेल तर दोर हलत नाही एका बाजूचे बल अधिक झाले तर दोर त्या बाजूला सरकतो म्हणजेच आधी दोन्ही बले संतुलित असतात; ती असंतुलित झाल्यावर अधिक बलाच्या दिशेने दोर सरकतो

आणखी एक उदाहरण पाहू धान्याने भरलेला मोठा डबा जिमनीवरून सरकवताना तो एका व्यक्तीने सरकविण्यापेक्षा दोघांनी एकाच दिशेने बल लावल्यास सरकवणे सोपे जाते याचा अनुभव तुम्हीही घेतला असेल या उदाहरणावरून आपल्याला काय समजते ?

अ एखाद्या वस्तूवर एकाच दिशेने अनेक बले लावल्यास त्यांच्या बेरजेएवढे बल वस्तूंवर प्रयुक्त होते आ जर दोन बले एकाच वस्तूवर परस्पर विरुद्ध बाजूने लावली तर, त्यांचा फरकाइतके बल वस्तूवर प्रयुक्त होते इ बल हे परिमाण व दिशा यांमध्ये व्यक्त केले जाते बल ही सदिश राशी आहे

एखाद्या वस्तूवर एकापेक्षा अधिक बले प्रयुक्त असतील तर त्या वस्तूवर होणारा परिणाम हा त्यावर प्रयुक्त निव्वळ बलामुळे असतो बलामुळे स्थिर वस्तूला गती मिळते, गतिमान वस्तूची चाल व दिशा बदलते त्याचप्रमाणे गतिमान वस्तू थांबविण्यासाठीसुद्धा बल आवश्यक असते बलामुळे वस्तूचा आकारही बदलू शकतो कणीक मळताना कणकेच्या गोळ्याला बल लावले तर त्याचा आकार बदलतो कुंभार मडक्याला आकार देताना विशिष्ट दिशेने बल लावतो रबर ताणले की ते प्रसरण पावते अशी कितीतरी उदाहरणे देता येतात

जडत्व (Inertia): बलामुळे वस्तूची स्थिती बदलते हे आपण पाहिले बलाशिवाय, पदार्थांच्या वस्तू गतीच्या आहे त्याच स्थितीत राहण्याची प्रवृत्ती दाखवितात खालील उदाहरणे पाहू

कृती 1: एका काचेच्या पेल्यावर पोस्टकार्ड ठेवा त्यावर 5 रुपयांचे नाणे ठेवा आता पोस्टकार्डला जोरात टिचकी मारा नाणे सरळ पेल्यात पडते हे पाहिले आहे का ?

कृती 2: एका लोखंडी स्टॅंडला एका दोऱ्याच्या 1 साहाय्याने एक अर्धा किलोग्रॅमचे वस्तुमान लटकवा त्या वस्तुमानाला दुसरा दोरा 2 बांधून लटकवत ठेवा आता दोरा 2 झटका देऊन खाली ओढा दोरा 2 तुटतो पण वस्तुमान खाली पडत नाही जड वस्तुमान हलत नाही आता दोरा 2 हळू हळू खाली ओढा दोरा 1 तुटतो व वस्तुमान खाली पडते याचे कारण म्हणजे दोरा 1 मध्ये वस्तुमानामुळे आलेला ताण

दाब (Pressure): दुचाकी आणि चारचाकी गाड्यांच्या टायरमध्ये हवा भरताना तुम्ही पाहिले असेल हवा भरण्याच्या यंत्रावर 'दाब' दर्शविणारी तबकडी असते किंवा डिजिटल मीटर वर 'दाबाचे' आकडे दिसतात यंत्राने एका विशिष्ट मूल्यापर्यंत टायरमधील दाब वाढविला जातो सायकलच्या टायरमध्ये हातपंपाने हवा भरताना बल लावावे लागते ते तुम्हांला माहीत आहे बल लावून हवेचा दाब वाढवून ती टायरमध्ये भरली जाते बल आणि दाब यांचा काही संबंध आहे का ?

कृती 3: काही टोकदार खिळे घेऊन हातोडीच्या साहाय्याने ते एका लाकडी फळीत ठोका त्यातलाच एखादा खिळा घेऊन तो खिळचाच्या डोक्याच्या बाजूने फळीवर ठेवून टोकाच्या बाजूवर हातोडीने ठोकायचा प्रयत्न करा काय होते ? खिळा टोकाच्या बाजूने फळीत घुसतो, परंतु डोक्याच्या बाजूने घुसत नाही ड्रॉईंगबोर्डवर पिना टोचताना त्या सहज टोचल्या जातात आपल्या अंगठ्याने बल लावून आपण पिना टोचू शकतो याउलट टाचणी ड्रॉईंगबोर्डवर टोचताना अंगठ्याला इजा होण्याची शक्यता असते

हे नेहमी लक्षात ठेवा.

वस्तू आहे त्या गतीच्या स्थितीत राहण्याच्या प्रवृत्तीला त्याचे जडत्व असे म्हणतात. म्हणूनच बाहेरून बल प्रयुक्त न केल्यास स्थिर स्थितीतील वस्तू स्थिर राहते व गतिमान स्थितीतील वस्तू गतिमान स्थितीत राहते

जडत्वाचे प्रकार : 1. विराम अवस्थेतील जडत्व : वस्तूच्या ज्या स्वाभाविक गुणधर्मामुळे ती आपल्या विराम अवस्थेत बदल करू शकत नाही, त्यास विराम अवस्थेचे जडत्व म्हणतात उदाहरणार्थ, बस अचानक सुरू झाल्यास प्रवासी मागच्या दिशेने फेकले जातात 2. गतीचे जडत्व : वस्तूच्या ज्या स्वाभाविक गुणधर्मामुळे गतिमान अवस्थेत बदल होऊ शकत नाही, त्यास गतीचे जडत्व म्हणतात उदाहरणार्थ. फिरणारा विजेचा पंखा केल्यानंतरही काही वेळ फिरत राहतो, बस अचानक थांबल्यास बसमधील प्रवासी पुढच्या दिशेने फेकले जातात 3. दिशेचे जडत्व : वस्तूच्या ज्या स्वाभाविक गुणधर्मामुळे ती आपल्या गतीची दिशा बदलू शकत नाही, यास दिशेचे जडत्व म्हणतात उदाहरणार्थ, वाहन सरळ रेषेत गतिमान असताना अचानक वळण घेतल्यास प्रवासी विरुद्ध दिशेला फेकले जातात

या साध्या प्रयोगातून काय समजते ? खिळ्याच्या टोकदार भागाकडून खिळा लाकडात सहज घुसतो यावरून तुमच्या एक गोष्ट लक्षात येईल, की बल खिळ्याच्या डोक्याकडून लावल्यास खिळा फळीत ठोकणे सोपे आहे

भाजी, फळे चिरताना धारदार सुरीने कापणे सोपे जाते बोथट सुरी अशा कामी उपयोगी पडत नाही हे कशामुळे घडते?

एकक क्षेत्रफळावर लंब दिशेत प्रयुक्त असणाऱ्या बलास दाब (Pressure) असे म्हणतात

सध्या आपण केवळ एखाद्या पृष्ठभागावरील त्यास लंब असलेल्या बलाचा विचार करत आहोत दाबाचे एकक (Unit of Pressure) : बलाचे SI पद्धतीत एकक Newton (N) आहे क्षेत्रफळाचे एकक m^2 किंवा चौरस मीटर आहे

म्हणून दाबाचे एकक N/m^2 असे होईल यालाच पास्कल (Pa)असे म्हणतात हवामानशास्त्रात दाबाचे एकक bar हे आहे $1 \text{ bar} = 10^5 \text{ Pa}$, दाब ही अदिश राशी आहे

क्षेत्रफळ वाढले की त्याच बलाला दाब कमी होतो आणि क्षेत्रफळ कमी झाले की त्याच बलाला दाब वाढतो उदाहरणार्थ, उंटाच्या पायांचे तळवे पसरट असतात त्यामुळे उंटाचे वजन अधिक पृष्ठभागावर पडते आणि वाळूवर पडणारा दाब कमी होतो म्हणूनच उंटाचे पाय वाळूत घुसत नाहीत आणि त्याला चालणे सोपे जाते स्थायूवरील दाब : हवेत ठेवलेल्या सर्व स्थायू पदार्थांवर हवेचा दाब असतोच स्थायूवर एखादे वजन ठेवले तर त्या वजनामुळे स्थायूवर दाब पडतो तो त्या वजनावर व वजनाच्या स्थायूवरील संपर्काच्या क्षेत्रफळावर अवलंबून असतो

खालील आकृती 3 5 प्रमाणे कृती करा काय आढळून येते?

3.5 बल व दाब

भाजीची पाटी डोक्यावर घेऊन जाणारी भाजीवाली तुम्ही पाहिली असेल तिच्या डोक्यावर पाटीखाली ती कापडाची चुंबळ ठेवते, ह्याचा काय उपयोग होतो?

आपण जास्त वेळ एकाच ठिकाणी उभे राहू शकत नाही मग एकाच ठिकाणी आठ आठ तास झोपू कसे शकतो ?

बर्फावरून घसरण्यासाठी पसरट फळचा का वापरल्या जातात ?

द्रवाचा दाब (Pressure of liquid)

कृती 1: प्लॅस्टिकची एक बाटली घ्या रबरी फुगा ज्यावर बसेल अशा काचेच्या नळीचा साधारण $10~\mathrm{cm}$ लांबीचा तुकडा घ्या नळीचे एक टोक जरा तापवून हलकेच बाटलीच्या तळापासून $5~\mathrm{cm}$ वर बाटलीत एका बाजूने दाबून आत जाईल असे बसवा (आकृती 3~6) पाणी गळू नये म्हणून नळीच्या बाजूने मेण तापवून लावा आता बाटलीत थोडे थोडे पाणी भरून फुगा फुगत जातो ते पहा यावरून काय दिसते ? पाण्याचा दाब बाटलीच्या बाजूवरही पडतो

कृती 2: एक प्लॅस्टिकची बाटली घ्या आकृती 3 7 मध्ये दाखिवल्याप्रमाणे 1,2,3 अशा ठिकाणी प्रत्येक पातळीवर दाभणाने िकंवा जाड सुईने छिद्रे पाडा बाटलीत पूर्ण उंचीपर्यंत पाणी भरा आकृतीत दाखिवल्याप्रमाणे पाण्याच्या धारा बाहेर येताना दिसतील सर्वांत वरच्या छिद्रातून पाण्याची धार बाटलीच्या जवळ पडते, तर सर्वांत खालच्या उंचीवरील छिद्रातून धारा सर्वांत दूर पडते शिवाय एकाच पातळीतील दोन छिद्रांमधून धारा बाटलीपासून समान अंतरावर पडतात यावरून काय समजते? एकाच पातळीत द्रवाचा दाब एकच असतो तसेच द्रवाच्या खोलीप्रमाणे दाब वाढत जातो

3.7 द्रवाचा दाब व पातळी

वायूचा दाब (Gas Pressure): एखादा फुगा तोंडाने हवा भरून फुगवताना तो सर्व बाजूंनी फुगत जातो फुग्याला बारीक छिद्र पाडले तर त्यातून हवा बाहेर जात राहते आणि फुगा पूर्ण फुगत नाही ही निरीक्षणे वरील द्रवावरील प्रयोगांच्या निष्कर्षाप्रमाणे आहेत असे दिसून येते की, वायूसुद्धा द्रवाप्रमाणेच ज्या पात्रात तो बंदिस्त आहे त्या पात्राच्या भिंतीवर दाब देत असतो सर्व द्रव आणि वायू यांना द्रायू (fluid) अशी संज्ञा आहे पात्रातील द्रायू पात्राच्या सर्वच पृष्ठभागावर भिंतीवर आणि तळावर आतून दाब प्रयुक्त करतात बंदिस्त अशा दिलेल्या वस्तुमानाच्या द्रायूमध्ये असलेला दाब सर्व दिशांना समरूपाने प्रयुक्त होतो

वातावरणीय दाब (Atmospheric Pressure): पृथ्वीवर सर्व बाजूंनी हवेचे आवरण आहे ह्या आवरणालाच वातावरण असे म्हणतात पृथ्वीच्या पृष्ठभागापासून सुमारे 16 km उंचीपर्यंत हे वातावरण आहे त्यापुढेही सुमारे 400 km पर्यंत ते अतिशय विरल स्वरूपात असते हवेमुळे निर्माण झालेल्या दाबाला वातावरणीय दाब असे संबोधले जाते अशी कल्पना करा की एकक क्षेत्रफळाच्या पृथ्वीच्या पृष्ठभागावर लांबच लांब पोकळ दंडगोल उभा आहे, आणि त्यात हवा आहे (आकृती 3 8) ह्या हवेचे वजन हे पृथ्वीच्या दिशेने लावलेले बल आहे याचाच अर्थ हवेचा दाब म्हणजे हे वजन आणि पृष्ठभागाचे क्षेत्रफळ याचे गृणोत्तर

समुद्रसपाटीला असणाऱ्या हवेच्या दाबाला 1 Atmosphere म्हणतात जसजसे समुद्रसपाटीपासून वर जावू तसतसा हवेचा दाब कमी कमी होतो

1 Atmosphere = $101x10^3$ Pa = 1 bar = 10^3 mbar 1 mbar $\approx 10^2$ Pa (hectopascal)

वातावरणीय दाब mbar किंवा hectopascal (hPa) या एककामध्ये सांगितला जातो वातावरणीय दाब हवेतील एखाद्या बिंदूवर सर्व बाजूंनी असतो हा दाब कसा तयार होतो? एखाद्या बंदिस्त पात्रात हवा असल्यास हवेचे रेणू यादृच्छिक गतीने पात्राच्या बाजूंवर आदळतात या आंतरिक्रयेत पात्राच्या बाजूंवर बल प्रयुक्त होते बलामुळे दाब तयार होतो

आपणही वातावरणाचा दाब सतत डोक्यावर बाळगत असतो परंतु आपल्या शरीरातील पोकळ्चांमध्येही हवा असते आणि रक्तवाहिन्यांमध्ये रक्तही असते त्यामुळे पाणी व वातावरणीय दाबाखाली आपण चिरडले जाऊ शकत नाही, वातावरणाचा दाब संतुलित होतो पृथ्वीच्या वातावरणाचा दाब समुद्रासपाटीपासूनच्या उंचीप्रमाणे बदलतो कसा बदलतो ते आकृती 3 9 मध्ये दर्शविले आहे

3.9 वातावरणीय दाब

प्लावक बल (Buoyant Force)

3.10 संतुलित व असंतुलित प्लावक बल

1 m² पृष्ठभाग असलेल्या टेबलावर समुद्रसपाटीस 101x103 Pa इतका दाब प्रयुक्त असतो इतक्या प्रचंड दाबाने टेबलाचा पृष्ठभाग तुटून कोसळत का नाही?

प्लॅस्टिकची एक रिकामी हलकी बाटली घेऊन तिचे झाकण घट्ट बसवा आता ही बाटली पाण्यात टाकून काय होते पहा ती तरंगत राहील बाटली पाण्यात ढकलून खाली जाते का ते पहा ढकलली तरी बाटली वर येऊन तरंगत राहते प्लॅस्टिकचा पोकळ चेंडू घेऊनही असाच प्रयोग करता येईल (आकृती 3 10)

आता प्लॅस्टिकची पाण्याची बाटली काठोकाठ भरून झाकणाने घट्ट बंद करा आणि पाण्यात सोडा बाटली पाण्याच्या आत तरंगताना दिसेल, असे का होते?

प्लॅस्टिकची रिकामी बाटली व चेंड्र पाण्याच्या पृष्ठभागावर तरंगतात याउलट पाण्याने पूर्ण भरलेली बाटली पाण्याच्या आत तरंगत राहते, ती पूर्ण बुडत नाही आतील पाण्याच्या वजनाच्या मानाने रिकाम्या बाटलीचे वजन नगण्य आहे अशी बाटली पूर्ण बुडत नाही आणि वरही येत नाही याचा अर्थ पाणी भरलेल्या बाटलीवर खालच्या दिशेने प्रयुक्त गुरुत्वीय बल (f_j) त्या विरुद्ध वरच्या दिशेने प्रयुक्त अशा बलाने (f_j) संतुलित झाले असणार हे बल बाटलीच्या सभोवतालच्या पाण्यातून उद्भवलेले असणार पाण्यात किंवा अन्य द्रवात किंवा वायूत असलेल्या वस्तूवर वरच्या दिशेने प्रयुक्त बलाला प्लावक बल (f,) असे म्हणतात

विहिरीतून पाणी शेंदताना दोराला बांधलेली बादली पाण्यात पूर्ण बुडालेली असताना जितकी हलकी वाटते, त्यापेक्षा ती पाण्यातून बाहेर काढताना जड का वाटू लागते? प्लावक बल कोणत्या गोष्टीवर अवलंबून असते?

एक ॲल्युमिनिअमचा लहान पातळ पत्रा घ्या आणि एका बादलीत पाणी घेऊन हलकेच बुडवा काय आढळते? आता त्याच पत्र्याला वाकवून लहानशी बोट तयार करा व पाण्यावर सोडा बोट तरंगते ना ?

लोखंडाचा खिळा पाण्यात बुडतो पण स्टीलचे मोठे जहाज तरंगते असे का होते? द्रवात बुडविलेल्या वस्तूवर प्लावक बल प्रयुक्त होत असल्याने वस्तूचे वजन कमी झाल्याचे जाणवते

गोड्या पाण्याच्या पोहण्याच्या तलावात पोहण्यापेक्षा समुद्राच्या पाण्यात पोहणे सोपे जाते याचे मुख्य कारण म्हणजे समुद्राच्या पाण्याची घनता साध्या पाण्याच्या घनतेपेक्षा जास्त असते, कारण त्यात क्षार विरघळलेले असतात ह्या पुस्तकात तुम्ही पेल्यामध्ये पाणी भरून त्यात लिंबू सोडल्यास ते बुडते, पण पाण्यात २ चमचे मीठ टाकून ढवळल्यास त्यात मात्र लिंबू तरंगते हे अभ्यासले आहे पाण्याची घनता मिठाने वाढते येथे प्लावक बल गुरुत्वीय बलापेक्षा जास्त होते या उदाहरणांवरून काय दिसून येते ? प्लावक बल दोन गोष्टींवर अवलंबून असते :

- १ वस्तूचे आकारमान द्रवात बुडणाऱ्या वस्तूचे आकारमान जास्त असल्यास प्लावक बल जास्त असते
- २ द्रवाची घनता जितकी जास्त घनता तितके प्लावक बल जास्त असते

माहीत आहे का तुम्हांला?

एखादी वस्तू द्रवात टाकल्यास ती वस्तू द्रवात बुडेल, वर येवून तरंगेल, की द्रवाच्या आत तरंगेल हे कसे ठरते?

- 1 प्लावक बल वस्तूच्या वजनापेक्षा जास्त असेल तर वस्तू तरंगते
- 2 प्लावक बल वस्तूच्या वजनापेक्षा कमी असेल तर वस्तू बुडते
- 3 प्लावक बल वस्तूच्या वजनाएवढे असेल तर वस्तू द्रवामध्ये तरंगत राहते

वरील प्रकारात असंतुलित बले कोणती आहेत?

आर्किमिडीजचे तत्त्व :

आकृती 3 11 मध्ये दाखिवल्याप्रमाणे एक मोठा रबरबँड घेऊन तो एका बिंदूपाशी कापा त्याच्या एका टोकाला एक स्वच्छ धृतलेला लहानसा दगड किंवा 50 gm चे वजन बांधा

आता रबरबँडचे दुसरे टोक बोटांनी पकडून तेथे पेनने खूण करा दगड हवेत लटकता ठेवून वरील खुणेपासून लटकत्या दगडापर्यंत रबरबँडची लांबी मोजा आता एका पात्रात पाणी भरून दगड त्यात बुडेल अशा उंचीवर तो धरा आता पुन्हा रबराची लांबी मोजा काय दिसून आले? ही लांबी आधीपेक्षा कमी भरलेली आढळेल पाण्यात दगड बुडविताना ताणलेल्या रबराची लांबी हळूहळू कमी होते व तो पाण्यात पूर्ण बुडाला की लांबी सर्वांत कमी होते लांबी पाण्यात कमी होण्याचे काय कारण असावे ?

पाण्यात दगड बुडाल्याने त्यावर वरील दिशेने प्लावक बल प्रयुक्त होते दगडाचे वजन खालील दिशेने प्रयुक्त असते त्यामुळे खालील दिशेने प्रयुक्त असलेले एकूण बल कमी होते

3.11 प्लावक बल

ह्या प्लावक बलाचे परिमाण किती असते? ते कोणत्याही द्रवाला सारखेच असते का ? सर्व वस्तूंवर प्लावक बल सारख्याच परिमाणाचे असते का ? ह्या प्रश्नांची उत्तरे आर्किमिडीजच्या तत्त्वामध्ये अंतर्भूत आहेत हे तत्त्व असे : एखादी वस्तू द्रायूमध्ये अंशत: अथवा पूर्णतः बुडविल्यास त्यावर वरील दिशेने बल प्रयुक्त होते हे बल त्या वस्तूने बाजूस सारलेल्या द्रायूच्या वजनाइतके असते

जरा डोके चालवा.

आर्किमिडिजच्या तत्त्वानुसार मागील प्रयोगातील निरीक्षणांचे स्पष्टीकरण करा

(287 ख्रिस्तपूर्व – 212 ख्रिस्तपूर्व)

आर्किमिडिज हे ग्रीक शास्त्रज्ञ आणि प्रखर बुद्धीचे गणिती होते π चे मूल्य त्यांनी आकडेमोड करून काढले भौतिकशास्त्रात तरफा, कप्पी, चाके यासंबधीचे त्यांचे ज्ञान ग्रीक सैन्याला रोमन सैन्याशी लढताना उपयोगी ठरले भूमिती व यांत्रिकीमधील त्यांचे काम त्यांना प्रसिद्धी देऊन गेले बाथटबमध्ये स्नानासाठी उतरल्यावर बाहेर सांडणारे पाणी पाहून त्यांना वरील तत्त्वाचा शोध लागला 'युरेका, युरेका' म्हणजे 'मला सापडले, मला सापडले' असे ओरडत ते त्याच अवस्थेत रस्त्यावर धावले होते

आर्किमिडिजच्या तत्त्वाची उपयुक्तता मोठी आहे जहाजे, पाणबुड्या यांच्या रचनेत हे तत्त्व वापरलेले असते 'दृग्धतामापी' व 'आर्द्रतामापी' ही उपकरणे ह्या तत्त्वावर आधारित आहेत

पदार्थांची घनता व सापेक्ष घनता :

घनता = वस्तुमान/आकारमान घनतेचे एकक SI पद्धतीत kg/m^3 आहे पदार्थाची शुद्धता ठरवताना घनता हा गुणधर्म उपयोगी ठरतो पदार्थाची सापेक्ष घनता पाण्याच्या घनतेच्या तुलनेत व्यक्त केली जाते सापेक्ष घनता = पदार्थाची घनता/पाण्याची घनता, हे समान राशींचे गुणोत्तर प्रमाण असल्याने यास एकक नाही सापेक्ष घनतेलाच पदार्थाचे 'विशिष्ट गुरुत्व' म्हणतात

सोडविलेली उदाहरणे

उदाहरण 1. फळीवर ठेवलेल्या खाऊच्या डब्याच्या तळाचे क्षेत्रफळ 0.25m^2 असून त्याचे वजन 50 N आहे, त्या डब्याने फळीवर प्रयुक्त केलेला दाब काढा

दिलेले : क्षेत्रफळ = 0.25 m^2 , डब्याचे वजन = 50 N,

दाब =
$$\frac{\overline{\text{बल}}}{\hat{\text{क्षेत्रफळ}}} = \frac{50 \text{ N}}{0.25 \text{ m}^2} = 200 \text{ N/m}^2$$

उदाहरण 2. जर पाण्याची घनता 10^3 kg/m^3 आणि लोखंडाची घनता 7 85 x 103 kg/m3 असेल तर लोखंडाची सापेक्ष घनता काढा

दिलेले : पाण्याची घनता = 10^3 kg/m^3 , लोखंडाची

घनता = $7.85 \times 10^3 \text{ kg/m}^3$ लोखंडाची सापेक्ष घनता = ?

लोखंडाची सापेक्ष घनता = (लोखंडाची घनता) (पाण्याची घनता)

$$= \frac{7.85 \times 10^{3} \text{ kg/m}^{3}}{10^{3} \text{ kg/m}^{3}} = 7.85$$

उदाहरण 3. स्क्रूच्या टोकाचे क्षेत्रफळ 0 5 mm² असून त्याचे वजन 0 5 N आहे तर स्क्रूने लाकडी फळीवर प्रयुक्त केलेला दाब काढा (Pa मध्ये)

दिलेले : क्षेत्रफळ = $0.5 \times 10^{-6} \text{ m}^2$

स्क्रूचे वजन= 0 5 N, दाब =?

বাৰ =
$$\frac{\text{as}}{\hat{\aleph}$$
রিদক্ত = $\frac{0.5\text{N}}{(0.5\text{x}10^{-6}\text{m}^2)}$ = 10^6 N/m^2 = 10^6 Pa

उदाहरण 4 एका धातूच्या ठोकळयाचे वस्तुमान 10 kg असून त्याची लांबी 50 cm, रूंदी 10 cm व उंची 20 cm आहे (आकृती) टेबलावर धातूचा ठोकळा पुढील पृष्ठभागांवर ठेवल्यास त्याने प्रयुक्त केलेला दाब काढा ABCD, CDEF व BCFG कोणत्या स्थितीत दाब अधिकतम असेल ते सांगा

दिलेले: धातूच्या ठोकळयाचे वजन = mg

 $=10 \times 9 \ 8 = 98 \text{ N}$

पृष्ठभाग ABCD करीता, लांबी = 50 cm, उंची = 20

क्षेत्रफळ = लांबी x उंची = 50 cm x 20 cm

 $= 1000 \text{ cm}^2 = 0.1 \text{m}^2$

दाब =
$$\frac{\text{वजन}}{क्षेत्रफळ} = \frac{98}{(0\ 1)} = 980 \text{ Pa}$$

पृष्ठभाग CDEF करिता, लांबी = 50 cm रुंदी

= 10 cm

क्षेत्रफळ = लांबी $x \dot{v}$ दी = 50 cm x 10 cm

 $= 500 \text{ cm}^2 = 0.05 \text{ m}^2$

दाब =
$$\frac{\overline{\text{वज}}}{\overline{\text{क्षेत्रफळ}}} = \frac{98}{(0.05)} = \frac{9800}{5} = 1960 \text{ Pa}$$

पृष्ठभाग BCFG करिता उंची = 20 cm रुंदी = 10

क्षेत्रफळ = उंची x रुंदी = 20 cm x 10 cm

 $= 200 \text{ cm}^2 = 0.02 \text{ m}^2$

दाब = $\frac{\text{वजन}}{क्षेत्रफळ} = \frac{98 \text{ N}}{0.02 \text{ m}^2}$ = 4900 Pa : अधिकतम दाब

∴ संपर्क क्षेत्रफळ जेवढे कमी, तेवढा दाब अधिक उदाहरण 5. एका संगमरवरी फरशीच्या तुकड्याचे वजन हवेमध्ये 100 g आहे त्याची घनता 2 5g/cc इतकी असेल तर त्याचे पाण्यातले वजन किती होईल?

दिलेले: हवेतील वजन 100 g

घनता 2 5g/cc : आकारमान = (वजन)/(घनता) = 100g/(2.5 g/cc) = 40 cc

म्हणून आर्किमिडीजच्या तत्त्वानुसार पाण्यात बुडवल्यावर तुकड्याच्या आकारमानाएवढे 40 cc इतके पाणी बाजूस सारले जाईल या पाण्याच्या वजनाइतकी म्हणजे 40g इतकी तृट तुकड्याच्या वजनात येईल

 \therefore पाण्यातील वजन = 100 g - 40 g = 60 g

स्वाध्याय

1. रिकाम्या जागी योग्य शब्द लिहा.

- अ. SI पद्धतीत बलाचे एकक हे आहे. (डाईन, न्यूटन,ज्यूल)
- आ. आपल्या शरीरावर हवेचा दाब दाबा इतका असतो.
 - (वातावरणीय,समुद्राच्या तळावरील, अंतराळातील)
- इ. एखाद्या वस्तूकरिता वेगवेगळ्याद्रवात प्लावक बल असते.
 - (एकसारखे, घनतेच्या, भिन्न, क्षेत्रफळाच्या)
- ई. दाबाचे SI पद्धतीतील एककआहे. (N/m³, N/m², kg/m², Pa/m²)

2. सांगा पाहू माझा जोडीदार !

'अ' गट

'ब' गट

- 1. द्रायू अ. जास्त दाब
- 2. धार नसलेली सुरी आ. वातावरणीय दाब
- 3. अणकुचीदार सुई इ. विशिष्ट गुरुत्व
- 4. सापेक्ष घनता ई. कमी दाब
- 5. हेक्टोपास्कल 3. सर्व दिशांना सारखा दाब

3. खालील प्रश्नांची थोडक्यात उत्तरे लिहा.

- अ. पाण्याखाली प्लॅस्टिकचा ठोकळा सोडून दिला. तो पाण्यात बुडेल की पाण्याच्या पृष्ठभागावर येईल? कारण लिहा.
- आ. माल वाहून नेणाऱ्या अवजड वाहनांच्या चाकांची संख्या जास्त का असते ?
- इ. आपल्या डोक्यावर सुमारे किती हवेचा भार असतो ? तो आपल्याला का जाणवत नाही ?

4. असे का घडते ?

- अ. समुद्राच्या पाण्यापेक्षा गोड्या पाण्यात जहाज अधिक खोलीपर्यंत ब्रुडते.
- आ. धारदार चाकूने फळे सहज कापता येतात.
- इ. धरणाची भिंत तळाशी रुंद असते.
- ई. थांबलेल्या बसने अचानक वेग घेतल्यास प्रवासी मागच्या दिशेला फेकले जातात.

5. खालील सारणी पूर्ण करा.

वस्तुमान (kg)	आकारमान (m³)	घनता (kg/m³)
350	175	_
-	190	4

धातूची घनता (kg/m³)	पाण्याची घनता (kg/m³)	सापेक्ष घनता
_	10^{3}	5
8.5×10^3	10^{3}	_

वजन (N)	क्षेत्रफळ (m²)	दाब (Nm ⁻²)
_	0.04	20000
1500	500	_

- 6. एका धातूची घनता $10.8 ext{ x}10^3 ext{ kg/m}^3$ आहे, तर धातूची सापेक्ष घनता काढा. (उत्तर : 10.8)
- 7. एका वस्तूचे आकारमान $20~{\rm cm^3}$ आणि वस्तुमान $50~{\rm g}$ आहे. पाण्याची घनता $1~{\rm g}~{\rm cm}^{-3}$ तर ती वस्तू पाण्यावर तरंगेल की बुडेल? (उत्तर : बुडेल)
- 8. एका 500 g वस्तुमानाच्या, प्लॅस्टिक आवरणाने बंद केलेल्या खोक्याचे आकारमान 350 cm^3 इतके आहे. पाण्याची घनता 1 g cm^{-3} असेल तर खोके पाण्यावर तरंगेल की बुडेल ? खोक्याने बाजूस सारलेल्या पाण्याचे वस्तुमान किती असेल? (उत्तर : बुडेल, 350 g)

उपक्रम :

पाठामध्ये देण्यात आलेल्या सर्व कृतींचे मोबाईल फोनच्या मदतीने चित्रीकरण करा व इतरांना पाठवा.

4. धाराविद्युत आणि चुंबकत्व

थोडे आठवा.

अणूमध्ये कोणकोणते घटक असतात?

अणूमध्ये इलेक्ट्रॉन (ऋणप्रभारित कण) व प्रोटॉन (धनप्रभारित कण) असतात त्यामुळे एकंदरीत वस्तू विद्युतदृष्ट्या उदासीन (neutral) असते तरीही त्यात अणू असल्याने त्यात ऋणप्रभार व धनप्रभार असतोच म्हणूनच असे म्हणता येईल, की आपल्या सभोवतालच्या वस्तूंमध्ये 'विद्युतप्रभार' भरपूर प्रमाणात भरून राहिलेला असतो काचेची कांडी रेशमी कापडावर घासल्यावर काय होते ? वस्तू प्रभारित कशा होतात ? स्थिर आणि चल प्रभार कशाला म्हणतात ? चल विद्युत एका वस्तूवरून दुसऱ्या वस्तूवर स्थानांतरित होते हा ऋणप्रभार होय चल ऋणप्रभारित कणांना इलेक्ट्रॉन असे म्हणतात हा ऋणप्रभार प्रवाही करता येईल का ? पाणी जसे उंचावरून खालील भागाकडे वाहत जाते, त्याप्रमाणे विद्युत प्रवाही बनविता येईल का ? स्थिर वस्तूला गती देण्यासाठी बल लावावे लागेल हे तुम्ही शिकला आहात एखाद्या सुवाहकामधील इलेक्ट्रॉन्सना जर गती देऊन वाहते केले तर आपल्याला 'धारा विद्युत' मिळते

धाराविद्युत (Current Electricity): जेव्हा ढगातून जिमनीवर वीज पडते तेव्हा मोठा विद्युतप्रवाह वाहतो, तर कोणतीही संवेदना आपल्याला मेंदूकडे जाणाऱ्या सूक्ष्म विद्युतप्रवाहाने होते घरामध्ये तारांमधून, विजेच्या बल्बमधून, उपकरणांमधून वाहणाऱ्या विद्युत प्रवाहाचा तुम्हांला परिचय आहेच रेडिओच्या विद्युत घटांमधून (electric cells) आणि मोटारीच्या बॅटरीमधून धनप्रभारित अन् ऋणप्रभारित अशा दोन्ही कणांच्या वहनामुळे विद्युतप्रवाह निर्माण होतो विद्युतस्थितिक विभव (Electrostatic Potential): पाणी किंवा द्रव पदार्थ उंच पातळीतून खालील पातळीकडे वाहतात उष्णता नेहमी अधिक तापमानाच्या वस्तूकडून कमी तापमानाच्या वस्तूकडे वाहते त्याचप्रमाणे धनप्रभाराची प्रवृत्ती अधिक विद्युतपातळीच्या बिंदूपासून कमी विद्युतपातळीच्या बिंदूपर्यत वाहण्याची असते विद्युतप्रभाराच्या वहनाची दिशा ठरविणाऱ्या या विद्युतपातळीस विद्युतस्थितिक विभव (electrostatic potential) असे म्हणतात विभवांतर (Potential difference): 'धबधब्याची उंची', 'उष्ण व थंड' वस्तूंच्या तापमानातील फरक, याचप्रमाणे दोन बिंदूच्या विभवांमधील फरक म्हणजे 'विभवांतर' आपल्या दृष्टीने रोचक आहे

4.1 (अ) विद्युत परिपथ

4.1 (आ) विद्युत परिपथ

तांब्याची जोडणीची तार घेऊन आकृती 4 1 (अ) मध्ये दाखिवल्याप्रमाणे 'परिपथ' तयार करा बल्बमधून विद्युतप्रवाह वाहत नाही असेच दिसते आता याच परिपथात आकृती 4 1 (आ) मध्ये दाखवल्याप्रमाणे बाजारात मिळणारा एक दीड व्होल्टचा कोरडा विद्युतघट जोडा आता तारेतून विद्युतप्रवाह वाहत आहे हे बल्ब लागल्यामुळे लक्षात येईल विद्युतघटाच्या दोन टोकांमधील विभवांतरामुळे तारेतील इलेक्ट्रॉन्स प्रवाहित होतात ते विद्युतघटाच्या ऋण टोकाकडून धन टोकाकडे वाहतात सांकेतिक विद्युतप्रवाह उलट दिशेने वाहतो व तो बाणाने आकृतीत दाखविला आहे विद्युतपरिपथ म्हणजे काय ते याच पाठात पुढे पाहू

आकृती $4\ 1\ (3)$ मध्ये विद्युतघट नसल्यामुळे कोणतेही विभवांतर नाही, म्हणून विद्युतप्रवाह वाहत नाही परिपथात विद्युतघटामुळे विभवांतर निर्माण झाल्याबरोबर स्थिर विद्युतप्रवाह वाहू लागतो (आकृती $4\ 1\ (3)$) विभवांतराचे एकक SI पद्धतीत व्होल्ट (Volt) हे आहे याविषयी पुढील इयत्तेत आपण अधिक जाणून घेणार आहोत

एखाद्या नळीतून येणारा पाण्याचा प्रवाह कसा मोजायचा? विशिष्ट वेळात त्यातून किती लीटर पाणी आले, यावरून ते काढता येईल मग विद्युतप्रवाह कसा मोजाल?

विद्युतप्रवाह हा विद्युतप्रभारित कणांच्या वहनामुळे निर्माण होतो हे आपण पाहिले एखाद्या तारेतून 1 सेकंद एवढ्या वेळात वाहणाऱ्या विद्युत प्रभाराला एकक विद्युतप्रवाह म्हणता येईल विद्युतप्रवाहाचे SI एकक कूलोम प्रति सेकंद म्हणजेच ऑपिअर (Ampere) हे आहे

1 Ampere = 1A = 1 Coulomb/1 second = 1 C/s विद्युतप्रवाह ही अदिश राशी आहे विद्युतघट (Electric cell): एखाद्या परिपथामध्ये सतत विद्युतप्रभाराचा प्रवाह निर्माण करण्यासाठी एका स्त्रोताची गरज असते, असे एक सर्वसाधारण साधन म्हणजे विद्युतघट विविध तऱ्हेचे विद्युतघट आज उपलब्ध आहेत ते मनगटी घड्याळांपासून पाणबुड्यांपर्यंत अनेक यंत्रांमध्ये वापरले जातात विद्युतघटांपैकी सौरघट (solar cell) तुम्हांला माहीत असतील विविध विद्युतघटांचे मुख्य कार्य त्याच्या दोन टोकांमधील विभवांतर कायम राखणे हे होय विद्युतप्रभारावर कार्य करून विद्युतघट हे विभवांतर कायम राखतात, हे तुम्ही पुढे शिकाल

विद्युतघटांचे काही प्रकार हल्ली वापरात आहेत, त्याबद्दल आपण जाणून घेऊया

कोरडा विद्युतघट (Dry Cell) : आपल्या रेडिओ संचामध्ये, भिंतीवरील घड्याळामध्ये, विजेरीमध्ये हे कोरडे विद्युतघट बसविले जातात ते 3-4 आकारांत उपलब्ध असतात कोरड्या विद्युतघटाची रचना आकृती 4 2 मध्ये दाखविल्याप्रमाणे असते

एक निकामी झालेला कोरडा विद्युतघट घेऊन त्याचे बाहेरचे आवरण काढा त्याच्या आत एक पांढरट धातूचे आवरण दिसेल हे जस्त (Zn) धातूचे आवरण होय हेच घटाचे ऋण टोक आता हेही आवरण हलकेच फोडा जस्ताच्या आवरणाच्या आत आणखी एक आवरण असते या दोन्ही आवरणांमध्ये विद्युत अपघटनी (Electrolyte) भरलेली असते विद्युत अपघटनीमध्ये धनप्रभारित व ऋणप्रभारित आयन असतात त्यांच्यामार्फत विद्युतवहन होते ही अपघटनी म्हणजे $ZnCl_2$ (झिंक क्लोराईड) आणि NH_4Cl (अमोनिअम क्लोराईड) यांच्या ओल्या मिश्रणाचा लगदा असतो घटाच्या मध्यभागी एक ग्राफाइट कांडी असते हे घटाचे धन टोक असते कांडीच्या बाहेरील भागात MnO_2 (मँगनीज डायॉक्साइड) ची पेस्ट भरलेली असते या सर्व रासायनिक पदार्थांच्या रासायनिक अभिक्रियेद्वारा दोन्ही टोकांवर (graphite rod, zinc) विद्युतप्रभार तयार होतो व परिपथातून विद्युतप्रवाह वाहतो

या विद्युतघटात ओलसर लगदा वापरल्यामुळे रासायनिक अभिक्रिया मंदपणे चालते म्हणून मोठा विद्युतप्रवाह यातून मिळवता येत नाही द्रवपदार्थांचा वापर करणाऱ्या विद्युतघटांच्या तुलनेत त्यांची साठवण कालमर्यादा (shelf life) अधिक असते कोरडे विद्युतघट वापरायला सोयीचे असतात कारण ते उभे, आडवे, तिरपे, कसेही ठेवता येतात व चल साधनांमध्येही सहजपणे वापरता येतात

लेड-आम्ल विद्युतघट (Lead-Acid Cell) : आकृती 4 3 मध्ये लेड-आम्ल विद्युतघटाची रचना दाखविली आहे त्याचे तत्त्व पाहू ह्या प्रकारचे घट विद्युतविमोचन (Electrical discharge) झाल्यानंतर पुन्हा विद्युत प्रभारित करता येतात लेड-आम्ल विद्युतघटात शिश्याचे (Pb) एक लेड विद्युतअग्र (electrode) व लेड डायॉक्साईड (PbO₂) चे दुसरे विद्युतअग्र (electrode) विरल सल्फ्युरिक आम्लात बुडविलेले असते PbO₂ या विद्युतअग्रावर धन प्रभार, तर Pb ह्या विद्युतअग्रावर ऋणप्रभार असतो दोन्हींमधील विभवांतर सुमारे 2V इतके असते घटामधील पदार्थांच्या रासायनिक अभिक्रियेने दोन्ही विद्युतअग्रांवर विद्युतप्रभार तयार होतो व परिपथातील भारामधून (जसे की बल्बमधून) विद्युतप्रवाह

4.3 लेड-आम्ल विद्युतघट

Tile to the second

वाहतो

4.4 (अ) घटधारक

4.4 (ब) साधा विद्युत परिपथ

शोध घ्या

लिथिअम (Li) आयन विद्युत घट आधुनिक साधनांमध्ये वापरले जातात, उदाहरणार्थ स्मार्टफोन, लॅपटॉप, इत्यादी हे घट पुनःप्रभारित करता येतात ह्यामध्ये Ni-Cd घटांपेक्षा अधिक विद्युत ऊर्जा साठविली जाते ह्या प्रकारच्या विद्युतघटांची मोठा विद्युतप्रवाह पुरविण्याची क्षमता असते ह्यामुळे मोटारी, ट्रक, मोटारसायकली, अखंड विद्युतशक्ती पुरवठायंत्रे (UPS), यांमध्ये लेड-आम्ल विद्युतघट वापरले जातात निकेल-कॅडिमअम घट (Ni-Cd cell): सध्या वेगवेगळी साधने उपकरणे उपलब्ध आहेत, की जी इकडे तिकडे न्यावी लागतात अशा साधनांसाठी निकेल कॅडिमअम विद्युतघट वापरतात हे घट 1 2 V विभवांतर देतात व पुन्हा प्रभारित करता येतात

विद्युत परिपथ (Electric Circuit): आकृती 4 4 (अ) मध्ये दाखिवल्याप्रमाणे घटधारक (cell holder), विद्युत दिवा (बल्ब) व कळ जोडणीच्या विद्युतवाहक तारांनी जोडल्यावर व घट धारकामध्ये कोरडा विद्युतघट बसिवल्यास बल्ब प्रकाशतो याचा अर्थ बल्बमधून विद्युतप्रवाह वाहतो व बल्ब प्रकाशतो घट काढून घेताच बल्बमधील विद्युतप्रवाह खंडित होतो व बल्बचे प्रकाशणे बंद होते या प्रकारच्या विद्युत घटकांच्या जोडणीला विद्युत परिपथ असे म्हणतात परिपथ आकृती 4 4 (ब) मध्ये दाखविला आहे विद्युतघट अशा खुणेने दाखविला आहे : 十一

आपल्या घरातही विद्युत परिपथाची जोडणी केलेली असते, मात्र विद्युतघटाच्या ऐवजी बाहेरून तारांमार्फत विद्युतपुरवठा केला जातो याविषयी तुम्ही पुढे शिकाल घटांची जोडणी: विद्युत परिपथात काही वेळा एकापेक्षा अधिक घट जोडलेले तुम्ही पाहिले असेल (आकृती 4 5 (अ)) ट्रान्झिस्टर रेडिओमध्ये 2-3 कोरडे घट 'एकसर' जोडणीत जोडलेले दिसतात असे करण्याचा उद्देश, एका घटाच्या विभवांतरापेक्षा अधिक विभवांतर मिळविणे हा असतो त्यामुळे अधिक विद्युतप्रवाह मिळवता येतो विद्युतघट आकृती 4 5 (आ) मध्ये दाखविल्याप्रमाणे जोडल्यास त्यास घटांची बॅटरी (Battery of cells) असे म्हणतात ह्या एकसर जोडणीत एका घटाचे धन टोक दुसऱ्याच्या ऋण टोकाला व दुसऱ्याचे घनटोक तिसऱ्याच्या ऋण टोकाला जोडतात त्यामुळे जर प्रत्येक घटाचे विभवांतर 1 V असेल तर तीन घटांचे एकूण विभवांतर 3 V होईल

4.5 विद्युतघटांची जोडणी

बाजारात मिळणाऱ्या मोटारीची बॅटरी तुम्ही पाहिली असेल, तिला घट (cell) न म्हणता 'बॅटरी' (Battery) का म्हणतात?

धारा विद्युतचे चुंबकीय परिणाम : (Magnetic effects of electric current)

कृती 1: एखाद्या टाकाऊ काड्यापेटीसारख्या डबीच्या आतील ट्रे घ्या त्यात लहानशी चुंबकसूची ठेवा आता जोडणीची लांब तार घेऊन ती ट्रेभोवती गुंडाळा विद्युतघट, प्लग, कळ ही तार व बल्ब जोडून परिपथ पूर्ण करा (आकृती 4 6)

आता चुंबकसूचीची स्थिती पहा एक चुंबकपट्टी घेऊन ती चुंबकसूचीजवळ न्या काय आढळले? चुंबकसूचीकडे नजर ठेवून परिपथाची कळ दाबा बल्ब प्रकाशमान होईल, म्हणजे विद्युतप्रवाह चालू झाला हे लक्षात येईल चुंबकसूची दिशा बदलते का? आता कळ खुली करा चुंबकसूची पुन्हा मूळ दिशेत स्थिरावते का? ह्या प्रयोगातन काय निष्कर्ष काढाल?

4.6 धारा विद्युतचा चुंबकीय परिणाम

चुंबकसूची म्हणजे एक लहानसा चुंबकच असतो हे तुम्हांला माहित आहे चुंबकपट्टी चुंबकसूचीजवळ नेल्यावर चुंबकसूची दिशा बदलते हे तुम्ही पाहिले त्याचबरोबर परिपथात विद्युतप्रवाह चालू केल्यासही चुंबकसूची दिशा बदलते, हेही निरीक्षण तुम्ही केले म्हणजेच तारेतून विद्युतप्रवाह गेल्यास चुंबकीय क्षेत्र निर्माण होते हान्स ख्रिस्तिअन ओरस्टेड या वैज्ञानिकाने असे निरीक्षण प्रथम नोंदविले थोडक्यात असे म्हणता येईल, की एखाद्या तारेतून विद्युतप्रवाह गेल्यास त्या तारेभोवती चुंबकीय क्षेत्र निर्माण होते

4.7 विद्युतचुंबक

कृती 2: एखादा मीटरभर विद्युतरोधी आवरण असलेली तांब्याची लवचीक तार घेऊन एका लांब स्क्रूवर कसून गुंडाळा तारेची दोन टोके आकृती 4 7 मध्ये दाखविल्याप्रमाणे परिपथात जोडा परिपथात विद्युतघट व कळही जोडा स्क्रूच्या जवळ २-४ लोखंडी टाचण्या ठेवा आता कळ बंद करून परिपथातून विद्यतुप्रवाह सुरू करा टाचण्या स्क्रूच्या टोकाला चिकटलेले दिसतील कळ खुली करताच टाचण्या चिकटलेल्या स्थितीतच राहतील का?

तारेतून विद्युतप्रवाह वाहताना स्क्रूभोवतीच्या तारेच्या कुंतलात (Coil मध्ये) चुंबकत्व निर्माण होते व त्यामुळे स्क्रूलाही चुंबकत्व प्राप्त होते विद्युतप्रवाह खंडित होताच ते नाहिसे होते कुंतल व स्क्रू ह्या संहितेस विद्युतचुंबक म्हणतात विद्युतचुंबकाचे विविध उपयोग तुम्ही मागील इयत्तेत पाहिले आहेत विज्ञान संशोधनात उपयोगी तीव्र चुंबकीय क्षेत्र तयार करण्यासाठी विद्युतचुंबक वापरले जातात

26

विद्युतघंटा: दारावरची साधी विद्युतघंटा अनेकांनी पाहिली असेल एखादी बंद पडलेली अशी घंटा खोलून पहा आकृती ४ ८ मध्ये विद्युतघंटेचे बाह्य आवरण काढलेले आहे आपल्याला दिसते आहे की त्यात विद्युतचुंबकही आहे ह्या घंटेचे कार्य कसे चालते ते पाहूया तांब्याची तार एका लोखंडी तुकड्यावर गुंडाळलेली असते हे कुंतल विद्युतचुंबक म्हणून कार्य करते एक लोखंडी पट्टी टोलासहित विद्युतचुंबकाजवळ बसवलेली असते लोखंडी पट्टी ह्या पट्टीच्या संपर्कात संपर्क स्क्रू असतो विद्युत परिपथ आकृती ४ ८ मध्ये दाखविल्याप्रमाणे जोडलेला असतो स्क्रू पट्टीला खेटलेला असताना परिपथातून विद्युतप्रवाह वाहतो व त्यामुळे कुंतलाचा विद्युतचुंबक होतो व तो लोखंडी पट्टीला खेचून घेतो त्यामुळे घंटेवर टोला आदळून नाद होतो मात्र त्याच वेळी संपर्क स्क्रूचा लोखंडी पट्टीशी संपर्क तुटतो आणि परिपथातील विद्युतप्रवाह खंडित होतो अशा स्थितीत विद्युतचुंबकाचे चुंबकत्व नाहिसे होते व लोखंडी पट्टी पुन्हा मागे येऊन संपर्क स्क्रूला चिकटते त्यामुळे लगेच पुन्हा विद्युतप्रवाह सुरू होतो व पुन्हा वरील क्रियेने टोला घंटेवर आढळतो ही क्रिया वारंवार होते आणि घंटा खणाणते

4.8 विद्युत घंटा

स्वाध्याय

- 1. रिकाम्या जागी खालील शब्दसमूहातील योग्य शब्द लिहा. (चुंबकत्व, 4.5V, 3.0V, गुरूत्वाकर्षण, विभवांतर, विभव, अधिक, कमी, 0V)
 - अ. धबधब्याचे पाणी वरील पातळीपासून खालील पातळीवर पडते, याचे कारण
 - आ. एखाद्या परिपथात इलेक्ट्रॉन्स विभव असलेल्या बिंदूपासून विभव असलेल्या बिंद्कडे वाहतात.
 - इ. विद्युतघटाच्या धन अग्र व ऋण अग्र यांच्या विद्युत स्थितिक विभवातील फरक म्हणजे त्या घटाचे होय.
 - ई. 1.5 V विभवांतराच्या 3 विद्युतघटांची बॅटरी स्वरूपात जोडणी केली आहे. या बॅटरीचे विभवांतर V इतके असेल.
 - एखाद्या विद्युतवाहक तारेतून जाणारी विद्युतधारा तारेभोवती निर्माण करते.
- 2. 3 कोरड्या विद्युतघटांची जोडणीच्या तारांनी बॅटरी करायची आहे. तारा कशा जोडाल ते आकृतीसह स्पष्ट करा.
- 3. एका विद्युतपरिपथात एक बॅटरी व एक बल्ब जोडले असून बॅटरीत दोन समान विभवांतराचे घट बसविले आहेत. जर बल्ब प्रकाशित होत नसेल, तर ते कशामुळे याचा शोध घेण्यासाठी कोणत्या तपासण्या कराल ?

4. प्रत्येकी 2 V विभवांतराचे विद्युतघट खालीलप्रमाणे बॅटरीच्या स्वरूपात जोडले आहेत. दोन्ही जोडण्यांत बॅटरीचे एकूण विभवांतर किती असेल?

- 5. कोरड्या विद्युतघटाची रचना, कार्य व उपयुक्तता यांचे थोडक्यात वर्णन आकृतीच्या साहाय्याने करा.
- विद्युतघंटेची रचना व कार्य आकृतीच्या साहाय्याने वर्णन करा.

उपक्रम :

पाठामध्ये केलेल्या सर्व कृती नव्याने बनवून विज्ञान प्रदर्शनात सादर करा.

33.00

5. अणूचे अंतरंग

- 1 द्रव्य म्हणजे काय ? 2 अणू म्हणजे काय ?
- 3 द्रव्याचा सर्वांत लहान घटक कोणता ?

आपण पाहिले की द्रव्य हे रेणूंचे बनलेले असते रेणू हे अणूंपासून बनलेले असतात म्हणजेच अणू हे द्रव्याचे सर्वांत लहान एकक आहे सर्व भौतिक व रासायनिक बदलांमध्ये आपली रासायनिक ओळख कायम राखणारा मूलद्रव्याचा लहानात लहान कण म्हणजे अणू होय

तक्ता 5 1 मध्ये काही पदार्थांची नावे व सूत्रे दिली आहेत त्यावरून पदार्थाच्या लहानात लहान कणाची माहिती व पदार्थाचा प्रकार दर्शवणाऱ्या खुणा भरुन तक्ता पूर्ण करा

पदार्थाचे नाव	सूत्र	पद	पदार्थाचे प्रकार				
		अणू आहे (एक अणू	रेणू आहे	रेणूमधील अणू	रेणूमधील अणू	मूलद्रव्य	संयुग
		असलेला रेणू आहे)		एकाच प्रकारचे	अनेक प्रकारचे		
पाणी	H ₂ O		✓		✓		✓
ऑक्सीजन	O ₂		✓	\checkmark		✓	
हेलिअम	Не	✓		✓		✓	
हायड्रोजन	H_2						
अमोनिआ	NH ₃						
नायट्रोजन	N ₂						
मिथेन	CH ₄						
अरगॉन	Ar						
निऑन	Ne						
क्लोरीन	Cl ₂						

5.1 पदार्थाचे प्रकार

आपण मागील इयत्तेत अभ्यासले की बऱ्याच पदार्थांचे लहानात लहान कण रेणू असतात काही थोड्या पदार्थांच्या रेणूंमध्ये एकच अणू असतो रेणू हे अणूंच्या रासायनिक संयोगाने तयार होतात त्यावरून आपल्याला समजते की रासायनिक संयोगात भाग घेणारा मूलद्रव्याचा लहानात लहान कण म्हणजे अणू अणूविषयी संकल्पना 2500 वर्षांहूनही जुनी आहे पण काळाच्या ओघात ती विस्मृतीत गेली आधुनिक काळात वैज्ञानिकांनी प्रयोगांच्या आधारे अणूचे स्वरूपच नव्हे तर अंतरंग स्पष्ट केले आहे याची सुरुवात डाल्टनच्या अणुसिद्धांताने झाली

माहित आहे का तुम्हांला?

- द्रव्याचे लहान कणांमध्ये विभाजन करायला एक मर्यादा असते, असे भारतीय तत्वज्ञ कणाद (ख्रिस्तपूर्व 6 वे शतक) यांनी सांगितले द्रव्य ज्या अविभाज्य कणांचे बनलेले असते त्यांना कणाद मुनींनी परमाणू (म्हणजे लहानात लहान कण) असे नाव दिले त्यांनी असेही मत मांडले की परमाणू अनाशवंत असतो
- ग्रीक तत्ववेत्ता डेमोक्रिटस (ख्रिस्तपूर्व 5 वे शतक) यांनी असे प्रतिपादन केले की द्रव्य लहान कणांचे बनलेले असते व ह्या कणांना कापता येत नाही द्रव्याच्या लहानात लहान कणाला डेमोक्रिटसने ॲटम असे नाव दिले (ग्रीक भाषेत ॲटमॉस म्हणजे कापता न येणारा)

डाल्टनचा अणुसिद्धांत : इ स 1803 मध्ये ब्रिटिश वैज्ञानिक जॉन डाल्टन यांनी सुप्रसिद्ध अणुसिद्धांत मांडला ह्या सिद्धांतानुसार द्रव्य अणूंचे बनलेले असते व अणू हे अविभाजनीय व अनाशवंत असतात एका मूलद्रव्याचे सर्व अणू एकसमान असतात तर भिन्न मूलद्रव्यांचे अणू भिन्न असतात व त्यांचे वस्तुमान भिन्न असते

5.2 डाल्टनचे अणुप्रारूप

1 एक भरीव चेंडू व एक बुंदीचा लाडू घ्या त्या दोन्ही गोलांना हाताने दाब द्या काय दिसले ? 2 भरीव चेंडू धारदार सुरीने काळजीपूर्वक कापा काय दिसले ?

बुंदीच्या लाडवाला अंतर्गत संरचना असून तो त्याच्याहून लहान कण म्हणजे बुंदी एकमेकांना चिकटवून बनल्याचे समजते मात्र भरीव चेंडूला ढोबळमानाने अंतर्गत संरचना काहीच नाही असे समजते डाल्टनचे वर्णन केलेला अणु हा एखाद्या कडक, भरीव गोलाप्रमाणे काहीच संरचना नसलेला असा ठरतो डाल्टनच्या अणुसिद्धांतानुसार अणूमध्ये वस्तुमानाचे वितरण सर्वत्र एकसमान असते जे जे थॉमसन ह्या वैज्ञानिकाने अणूच्या आत असलेल्या ऋणप्रभारित कणांचा शोध लावला आणि डाल्टनच्या थॉमसनने प्रयोग अणुसिद्धांताला धक्का बसला करून दाखवून दिले की अणूंच्या अंतरंगात असलेल्या ऋणप्रभारित कणांचे वस्तुमान हायड्रोजन अणूपेक्षा 1800 पट कमी असते ह्या कणांना पढे इलेक्ट्रॉन असे नाव दिले गेले सर्वसाधारण पदार्थ हे निसर्गतः विद्युतप्रभारदृष्ट्या उदासीन असतात अर्थातच पदार्थांचे रेणू तसेच ते ज्यांच्या रासायनिक संयोगाने बनतात ते अणू विद्युतप्रभारदृष्ट्या उदासीन असतात

अंतरंगात ऋणप्रभारित इलेक्ट्रॉन असूनही अणू विद्युतप्रभारदृष्ट्या उदासीन कसा ? थॉमसनने अणुसंरचनेचे प्लम पुडिंग प्रारूप मांडून ह्या अडचणीतून मार्ग काढला थॉमसनचे प्लम पुडिंग अणुप्रारूप: अणुसंरचनेचे पहिले प्रारूप म्हणजे थॉमसन यांनी सन 1904 मध्ये मांडलेले प्लम पुडिंग प्रारूप होय ह्या प्रारूपानुसार अणूमध्ये सर्वत्र धनप्रभार पसरलेला असतो व त्यामध्ये ऋणप्रभारित इलेक्ट्रॉन जडवलेले असतात पसरलेल्या धनप्रभाराचे संतुलन इलेक्ट्रॉनांवरील ऋणप्रभारामुळे होते त्यामुळे अणू विद्युतप्रभारदृष्ट्या उदासीन होतो

5.3 थॉमसनचे प्लम पुडिंग अणुप्रारूप

थॉमसनच्या प्रारूपानुसार अणूच्या वस्तुमानाचे वितरण कसे असेल असे तुम्हाला वाटते ? हे वितरण डाल्टनच्या अणुसिद्धांताप्रमाणे सर्वत्र समान की असमान ?

माहित आहे का तुम्हांला?

प्लम पुडिंग किंवा प्लम केक हा गोड खाद्यपदार्थ ख्रिसमस ह्या सणात बनवतात पूर्वी पाश्चात्य देशांत ह्या पदार्थात प्लम ह्या फळाचे सुकवलेले तुकडे घालत हल्ली प्लमऐवजी बेदाणे किंवा खजूर वापरतात

- 1 तुम्ही स्ट्रायकरने सोंगटीवर धरलेला नेम चुकला तर स्ट्रायकर कोणत्या दिशेने जाईल ?
- 2 नेम बरोबर लागला तर स्ट्रायकर कोणत्या दिशेला जाईल ? सरळ पुढे की बाजूच्या अथवा उलट दिशेला ?

रूदरफोर्डचे केंद्रकीय अणूप्रारूप (1911)

अर्नेस्ट रूदरफोर्ड यांनी त्यांच्या सुप्रसिद्ध विकीरण प्रयोगाने अणूच्या अंतरंगाचा वेध घेतला व सन 1911 मध्ये अणुचे केंद्रकीय प्रारूप मांडले

रूदरफोर्ड यांनी सोन्याचा अतिशय पातळ पत्रा (जाडी: 10^{-4}mm) घेऊन त्यावर किरणोत्सारी मूलद्रव्यातून उत्सर्जित होणाऱ्या धनप्रभारित lpha - कणांचा मारा केला व कणांच्या मार्गांचा वेध घेतला (आकृती 5 4) सोन्याच्या पत्र्याभोवती लावलेल्या प्रतिदीप्तीमान पडदा लावून त्यांनी जर अणूंमध्ये धनप्रभारित वस्तुमानाचे वितरण सर्वत्र एकसमान असेल तर धन प्रभारित α - कणांचे पत्र्यावरून परावर्तन होईल अशी अपेक्षा होती अनपेक्षितपणे बहसंख्य α -कण पत्र्यातून आरपार सरळ गेले, काही थोड्या α -कणांचे मूळ मार्गापासून लहान कोनामधून विचलन झाले, आणखी थोड्या α - कणांचे मोठ्या कोनातून विचलन झाले आणि आश्चर्य म्हणजे 20000 पैकी एक lpha -कण मूळ मार्गाच्या उलट दिशेने उसळला

5.4: रूदरफोर्डचा विकीरण प्रयोग

मोठ्या संख्येने आरपार गेलेले α - कण असे दर्शवतात की त्यांच्या वाटेत कोणताच अडथळा नव्हता याचा अर्थ सोन्याच्या स्थायुरूप पत्र्यामधील अणूंच्या आत बरीचशी जागा मोकळीच असली पाहिजे ज्या थोड्या lpha - कणांचे लहान किंवा मोठ्या कोनातून विचलन झाले त्यांच्या वाटेत अडथळा आला याचा अर्थ अडथळ्यास कारण असलेला अणुचा धनप्रभारित व जड भाग अणुच्या मध्यभागी होता यावरून रूदरफोर्डने पुढीलप्रमाणे अणूचे केंद्रकीय प्रारूप मांडले

5.5 रूदरफोर्डचे केंद्रकीय अणुप्रारूप

- अणूच्या केंद्रभागी धनप्रभारित केंद्रक असते
- 2 केंद्रकात अणूचे जवळजवळ सर्व वस्तुमान एकवटलेले असते 3 केंद्रकाभोवती इलेक्ट्रॉन नावाचे ऋणप्रभारित कण परिभ्रमण करीत असतात 4 सर्व इलेक्ट्रॉनांवरील एकत्रित ऋणप्रभार हा केंद्रकावरील धनप्रभाराएवढा असल्याने विजातीय प्रभारांचे संतुलन होऊन अणू हा विद्युतदृष्ट्या उदासीन असतो 5 परिभ्रमण करणारे इलेक्ट्रॉन व अण्केंद्रक ह्यांच्या दरम्यान पोकळी असते

जरा डोके चालवा

- 1 अणूला अंतर्गत संरचना आहे हे कोणत्या शोधामुळे लक्षात आले ?
- 2 डाल्टनच्या अणुसिद्धांतामधील भरीव अणू व थॉमसनच्या प्रारूपातील भरीव अणू यांच्यात फरक
- 3 थॉमसनच्या अणुप्रारूपातील धनप्रभाराचे वितरण व रूदरफोर्डच्या अणुप्रारूपातील धनप्रभाराचे वितरण यातील फरक स्पष्ट करा
- 4 थॉमसन व रूदरफोर्ड यांच्या अणुप्रारूपांमध्ये इलेक्ट्रॉनांच्या स्थितीसंबंधात वेगळेपणा काय आहे ?
- 5 डाल्टन व थॉमसनच्या अणूप्रारूपात नसलेली कोणती गोष्ट रूदरफोर्डच्या अणूप्रारूपात आहे ?

वर्त्वळाकार कक्षेत परिभ्रमण करणाऱ्या विद्युतप्रभारित वस्तूची ऊर्जा कमी होते असा भौतिकशास्त्रातील प्रस्थापित नियम आहे ह्या नियमानुसार रूदरफोर्डने मांडलेल्या प्रारूपातील अणू अस्थायी ठरतो मात्र प्रत्यक्षात किरणोत्सारी अणू सोडून इतर सर्व अणूंना स्थायीभाव असतो रूदरफोर्डच्या अणुप्रारूपातील ही त्रुटी नील्स बोर यांनी सन 1913 मध्ये मांडलेल्या अणुप्रारूपाने द्र झाली

बोरचे स्थायी कक्षा अणुप्रारूप (1913)

सन 1913 मध्ये डॅनिश वैज्ञानिक नील्स बोर यांनी स्थायी कक्षा अणुप्रारूप मांडून अणूचा स्थायीभाव स्पष्ट केला बोरच्या अणुप्रारूपाची महत्त्वाची आधारतत्वे पुढीलप्रमाणे आहेत

(i) अणूच्या केंद्रकाभोवती परिभ्रमण करणारे इलेक्ट्रॉन केंद्रकापासून विशिष्ट अंतरावर असणाऱ्या समकेंद्री वर्तुळाकार कक्षांमध्ये असतात

- (ii) विशिष्ट कक्षेत असताना इलेक्ट्रॉनची ऊर्जा स्थिर असते
- (iii) इलेक्ट्रॉन आतील कक्षेतून बाहेरील कक्षेत उडी मारताना फरकाइतक्या ऊर्जेचे शोषण करतो, तर बाहेरील कक्षेतून आतील कक्षेत उडी मारताना फरकाइतकी ऊर्जा उत्सर्जित करतो

माहित आहे का तुम्हांला?

घरातील गॅसच्या शेगडीच्या निळ्या ज्योतीमध्ये मिठाचे (सोडिअम क्लोराइडचे) कण टाकल्यावर त्या क्षणी त्या जागी पिवळी ठिणगी दिसते पाण्यात सोडिअम धातूचा तुकडा टाकला असता तो पेटून पिवळी ज्योत दिसते रस्त्यावरील सोडिअम व्हेपर दिव्यांमधूनही त्याच पिवळ्या रंगाचा प्रकाश येतो ह्या सर्व उदाहरणांमध्ये सोडिअम अणूमधील इलेक्ट्रॉन ऊर्जा शोषून बाहेरील कक्षेमध्ये जातो व पुन्हा आतील कक्षेमध्ये उडी मारून परत येताना ती ऊर्जा उत्सर्जित करतो सोडिअम अणूच्या या दोन कक्षांच्या ऊर्जा पातळीतील फरक ठराविक असतात हा फरक पिवळ्या प्रकाशाच्या ऊर्जेइतका असतो म्हणून वरील तिन्ही उदाहरणांमध्ये तोच विशिष्ट पिवळा प्रकाश बाहेर पडल्याचे दिसते

5.6: बोरचे स्थायी कक्षा अणुप्रारूप

बोरच्या अणुप्रारूपानंतर आणखी काही अणुप्रारूपे मांडली गेली त्यानंतर उदयाला आलेल्या पुंजयांत्रिकी (quantum mechanics) ह्या नवीन विज्ञानशाखेमध्ये अणुसंरचनेचा सखोल अभ्यास करण्यात आला या सर्वांमधून अणुसंरचनेविषयी सर्वमान्य झालेली काही मूलभूत तत्त्वे पुढीलप्रमाणे आहेत

अणुची संरचना

केंद्रक व केंद्रकाबाहेरील भाग यांचा मिळून अणू बनतो यांच्यामध्ये तीन प्रकारच्या अवअणुकणांचा समावेश असतो

केंद्रक

अणूचे केंद्रक धनप्रभारित असते अणूचे जवळजवळ सर्व वस्तुमान केंद्रकात एकवटलेले असते केंद्रकामध्ये दोन प्रकारचे अवअणुकण असतात एकत्रितपणे त्यांना न्युक्लिऑन म्हणतात प्रोटॉन व न्यूट्रॉन हे न्यूक्लिऑनचे दोन प्रकार आहेत

प्रोटॉन (p)

प्रोटॉन हा अणुकेंद्रकात असणारा धनप्रभारित अवअणुकण असून केंद्रकावरील धनप्रभार हा त्याच्यातील प्रोटॉनांमुळे असतो प्रोटॉनचा निर्देश 'p' ह्या संज्ञेने करतात प्रत्येक प्रोटॉनवरील धनप्रभार +1e एवढा असतो (1e = 16 × 10⁻¹⁹ कूलॉम) त्यामुळे केंद्रकावरील एकूण धनप्रभार 'e' ह्या एककामध्ये व्यक्त केल्यास त्याचे परिमाण केंद्रकातील प्रोटॉनसंख्येएवढे असते अणूच्या केंद्रकातील प्रोटॉनसंख्या म्हणजे त्या मूलद्रव्याचा अणूअंक असून तो 'Z' ह्या संज्ञेने दर्शवतात एका प्रोटॉनचे वस्तुमान सुमारे 1u (unified mass) इतके असते (1 डाल्टन म्हणजे 1 u = 1 66 ×10⁻²⁷g) (हायड्रोजनच्या एका अणूचे वजनसुध्दा सुमारे 1 u इतके आहे)

न्यूट्रॉन (n)

न्यूट्रॉन हा विद्युतप्रभारदृष्ट्या उदासीन असलेला अवअणुकण असून त्याचा निर्देश 'n' ह्या संज्ञेने करतात केंद्रकातील न्यूट्रॉन संख्येसाठी 'n' ही संज्ञा वापरतात

1 u इतके अणुवस्तुमान असलेल्या हायड्रोजनचा अपवाद वगळता सर्व मूलद्रव्यांच्या अणुकेंद्रकांमध्ये न्यूट्रॉन असतात एका न्यूट्रॉनचे वस्तुमान सुमारे 1 u इतके आहे, म्हणजेच जवळजवळ प्रोटॉनच्या वस्तुमानाइतकेच आहे

केंद्रकाबाहेरील भाग

अणूच्या संरचनेत केंद्रकाबाहेरील भागात परिभ्रमण करणारे इलेक्ट्रॉन आणि केंद्रक व इलेक्ट्रॉन यांच्या दरम्यान असलेली पोकळी यांचा समावेश होतो

इलेक्ट्रॉन (e⁻)

इलेक्ट्रॉन हा ऋणप्रभारित अवअणुकण असून त्याचा निर्देश 'e' ह्या संज्ञेने करतात प्रत्येक इलेक्ट्रॉनवर एक एकक ऋणप्रभार (-1e) असतो इलेक्ट्रॉनचे वस्तुमान हायड्रोजन अणूच्या वस्तूमानापेक्षा 1800 पटीने कमी आहे त्यामुळे इलेक्ट्रॉनचे वस्तुमान नगण्य मानता येते

अणूच्या केंद्रकाबाहेरील भागातील इलेक्ट्रॉन हे केंद्रकाभोवती असलेल्या वेगवेगळ्या कक्षांमध्ये परिभ्रमण करतात भ्रमणकक्षेचे स्वरूप त्रिमित असल्याने 'कक्षा' ह्या पदाऐवजी 'कवच' (shell) हे पद वापरतात इलेक्ट्रॉनची ऊर्जा तो ज्या कवचात असतो त्यावरून ठरते

अणुकेंद्रकाबाहेरील इलेक्ट्रॉनांची संख्या केंद्रकामधील प्रोटॉनसंख्येइतकीच (Z) असते त्यामुळे विद्युतप्रभारांचे संतुलन होऊन अणू विद्युतदृष्ट्या उदासीन असतो

- 1 अणूत किती प्रकारचे अवअणुकण आढळतात ?
- 2 कोणते अवअणुकण प्रभारयुक्त आहेत ?
- 3 केंद्रकांत कोणते अवअणुकण आहेत ?
- 4 केंद्रकाभोवती परिभ्रमण करणारे इलेक्ट्रॉन कोठे असतात ?

इलेक्ट्रॉनचे वस्तुमान नगण्य असल्याने अणूचे वस्तुमान प्रामुख्याने त्याच्या केंद्रकातील प्रोटॉन व न्यूट्रॉन यांच्यामुळे असते अणूमधील प्रोटॉन व न्यूट्रॉन यांची एकत्रित संख्या म्हणजे त्या मूलद्रव्याचा अणुवस्तुमानांक होय अणुवस्तुमानांक 'A' ह्या संज्ञेने दर्शवितात अणुसंज्ञा, अणुअंक व अणुवस्तुमानांक हे एकत्रितपणे चिन्हांकित संकेतरूपात दर्शविण्याची पद्धत पुढे दिली आहे

 $_{Z}^{A}$ संज्ञा उदा $_{6}^{12}$ C ह्या चिन्हांकित संकेताचा अर्थ कार्बनचा अणुअंक म्हणजेच प्रोटॉनसंख्या 6 व कार्बनचा अणुवस्तुमानांक 12 आहे यावरून हे सुद्धा समजते की कार्बनच्या केंद्रकात (12-6) म्हणजे 6 न्यूट्रॉन आहेत

जरा डोके चालवा

- 1 ऑक्सीजनची संज्ञा 'O' असून त्याच्या केंद्रकात 8 प्रोटॉन व 8 न्यूट्रॉन असतात यावरून ऑक्सीजनचा अणुअंक (Z) व अणुवस्तुमानांक (A) ठरवा, तसेच त्यांची चिन्हांकित संकेताने मांडणी करा
- 2 कार्बनचा अणुअंक 6 आहे कार्बनच्या अणूत किती इलेक्ट्रॉन असतील?
- 3 सोडिअमच्या अणूत 11 इलेक्ट्रॉन आहेत सोडिअमचा अणुअंक किती ?
- 4 मॅग्नेशिअमचा अणुअंक व अणुवस्तुमानांक अनुक्रमे 12 व 24 आहे चिन्हांकित संकेतामध्ये तुम्ही ते कसे दर्शवाल ?
- 5 कॅल्शिअमचा अणुअंक व अणुवस्तुमानांक अनुक्रमे 20 व 40 आहे यावरून कॅल्शिअमच्या केंद्रकात किती न्यूट्रॉन असतील ते काढा

इलेक्ट्रॉन वितरण : बोरच्या अणुप्रारूपानुसार इलेक्ट्रॉन स्थायी कवचांमध्ये परिभ्रमण करतात या कवचांना विशिष्ट ऊर्जा असते अणुकेंद्रकाच्या सर्वात जवळ असलेल्या कवचाला पहिले कवच, त्यानंतरच्या कवचाला दुसरे कवच म्हणतात कवचांच्या क्रमांकासाठी 'n' ही संज्ञा वापरतात n=1,2,3,4, या क्रमांकानुसार कवचांना K,L,M,N, ह्या संज्ञांनी संबोधण्यात येते प्रत्येक कवचात जास्तीत जास्त ' $2n^2$ ' या सूत्राने मिळालेल्या संख्येइतके इलेक्ट्रॉन असू शकतात 'n' चे मूल्य वाढते तशी त्या कवचातील इलेक्ट्रॉनची ऊर्जा वाढते

तक्ता पूर्ण करा

कवच		कवचाची इलेक्ट्रॉन धारकता			
संज्ञा n		सूत्र : 2 n ²	इलेक्ट्रॉन संख्या		
K	1	$2 \times (1)^2$			
L					
M					
N					

वरील तक्त्यांवरून कवचातील जास्तीत जास्त इलेक्ट्रॉनांची संख्या लिहा : K कवच : , L कवच :

M कवच : , N कवच :

- 1 अणूची संरचना व सूर्यमाला यांच्यात साधर्म्य आहे सूर्यमालेतील ग्रह सूर्याभोवती गुरूत्वीय बलाम्ळे फिरतात अणुसंरचनेत कोणते बल कार्यरत असेल ?
- 2 केंद्रकात अनेक धनप्रभारित प्रोटॉन एकत्र असतात केंद्रकातील न्यूट्रॉन्सचे एक कार्य काय असेल असे तुम्हांला वाटते ?

मूलद्रव्यांचे इलेक्ट्रॉन संरूपण : आपण पाहिले की K, L, M, N या कवचांमध्ये अनुक्रमे जास्तीत जास्त, 2, 8, 18, 32 इलेक्ट्रॉन सामावू शकतात हीच कवचांची कमालधारकता होय कवचांच्या कमालधारकतेनुसार अणूमधील इलेक्ट्रॉनांचे कवचांमध्ये वितरण होते एखाद्या मूलद्रव्याच्या अणूमधील इलेक्ट्रॉनांची कवचिनहाय मांडणी म्हणजे त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण होय प्रत्येक इलेक्ट्रॉनकडे तो ज्या कवचात असतो त्यानुसार निश्चित अशी ऊर्जा असते पहिल्या कवचातील (K कवच) इलेक्ट्रॉनांची ऊर्जा सर्वांत

कमी असते त्यापुढील कवचामधील इलेक्ट्रॉनची ऊर्जा कवचक्रमांकाप्रमाणे वाढत जाते मूलद्रव्याच्या अणूचे इलेक्ट्रॉन संरूपण असे असते की त्यायोगे सर्व इलेक्ट्रॉनांची एकत्रित ऊर्जा कमीत कमी असते अणूतील इलेक्ट्रॉन कवचांच्या कमाल धारकतेप्रमाणे तसेच ऊर्जेच्या चढत्या क्रमानुसार असलेल्या कवचांमध्ये स्थान मिळवतात आता आपण काही मूलद्रव्यांच्या अणूंचे इलेक्ट्रॉन संरूपण पाहू (तक्ता 5 7) या तक्त्यामधील 1 ते 3 ओळी भरून दिलेल्या आहेत त्याप्रमाणे उरलेला तक्ता तुम्ही भरावयाचा आहे

			कव	चातील इ		त्रेतरण	
गलवला	 संज्ञा	अणूतील इलेक्ट्रॉन संख्या	कवचसंज्ञा (कमाल धारकता)				संख्या स्वरूपात इलेक्ट्रॉन संरूपण
मूलद्रव्य	स्यशा	जणूताल इलक्ट्रान संख्या	K	L	M	N	संख्या स्यरूपात इतिष्ट्रान सरूपण
			(2)	(8)	(18)	(32)	
हायड्रोजन	Н	1	1				1
हेलियम	Не	2	2				2
लिथियम	Li	3	2	1			2, 1
कार्बन	С	6					
नायट्रोजन	N	7					
ऑक्सिजन	О	8					
फ्लुओरिन	F	9					
निऑन	Ne	10					
सोडिअम	Na	11					
क्लोरिन	Cl	17					
अरगॉन	Ar	18					
ब्रोमीन	Br	35					

5.7 काही मूलद्रव्यांचे संरूपण

संख्या स्वरूपातील इलेक्ट्रॉन संरूपण स्वल्पविरामांनी विलग केलेल्या अंकांनी दर्शवितात यातील अंक ऊर्जेच्या चढत्या क्रमाने असलेल्या कवचांमधील इलेक्ट्रॉन संख्या दाखवितात उदाहरणार्थ, सोडिअमचे इलेक्ट्रॉन संरूपण 2,8,1 आहे याचा अर्थ सोडिअम अणूमध्ये 'K' कवचात 2, 'L' कवचात 8 व 'M' कवचात 1 याप्रमाणे एकूण 11 इलेक्ट्रॉन वितिरत केलेले असतात अणूचे इलेक्ट्रॉन संरूपण आकृती 5 8 प्रमाणे कवचांच्या रेखाटनानेसुद्धा दाखवितात संयुजा (Valency) व इलेक्ट्रॉन संरूपण (Electronic configuration): संयुजा म्हणजे एका अणूने तयार केलेल्या रासायनिक बंधांची संख्या हे आपण मागील पाठात पाहिले आपण हेही पाहिले की साधारणपणे मूलद्रव्याची संयुजा त्याच्या विविध संयुगांमध्ये स्थिर असते

पुढील रेणुसूत्रांचा उपयोग करून H, Cl, O, S, N, C, Br, I, Na यांच्या संयुजा ठरवा रेणुसूत्रे – H_2 , HCl, H_2O , H_2S , NH_3 , CH_4 , HBr, HI, NaH

5.8 : इलेक्ट्रॉन संरूपणाचे रेखाटन

जरा डोके चालवा

- 1 विविध अणूंमधील इलेक्ट्रॉन ज्यांच्यामध्ये सामावलेले असतात त्या कवचांच्या संज्ञा कोणत्या आहेत ?
- 2 सर्वात आतील कवचाची संज्ञा व क्रमांक काय आहे ?
- 3 फ्लुओरीन अणूमधील इलेक्ट्रॉन ज्या कवचांमध्ये वितरित झालेले असतात त्यांच्या संज्ञा लिहा
- 4 फ्लुओरीन अणूमधील सर्वांत बाहेरचे म्हणजे बाह्यतम कवच कोणते ?
- 5 सोडिअम अणूमधील बाह्यतम कवच कोणते ?
- 6 हायड्रोजन अणूमधील बाह्यतम कवच कोणते ?

मूलद्रव्याची संयुजा, संयुगांमधील रासायनिक बंध यांच्यासंबंधी संकल्पना इलेक्ट्रॉन संरूपणामुळे स्पष्ट होतात अणू आपल्या बाह्यतम कवचातील इलेक्ट्रॉन वापरून रासायनिक बंध तयार करतो अणूंची संयुजा त्याच्या बाह्यतम कवचाच्या इलेक्ट्रॉन संरूपणावरून ठरते त्यामुळे बाह्यतम कवचाला संयुजा कवच म्हणतात तसेच बाह्यतम कवचातील इलेक्ट्रॉन म्हणजे संयुजा इलेक्ट्रॉन होत

अणूच्या संयुजेचा संबंध अणूमधील संयुजा इलेक्ट्रॉनांच्या संख्येशी असल्याचे दिसून येते प्रथम हेलिअम व निऑन ह्या मूलद्रव्यांकडे पाहू ह्या दोन्ही वायुरूप मूलद्रव्यांचे अणू इतर कोणत्याही अणूबरोबर संयोग पावत नाहीत ही मूलद्रव्ये रासायनिक दृष्ट्या निष्क्रीय आहेत म्हणजेच त्यांची संयुजा 'शून्य' आहे हेलिअमच्या अणूत दोन इलेक्ट्रॉन असतात व ते 'K' ह्या

पहिल्या कवचात सामावलेले असतात पहा तक्ता 5 7 हेलिअममध्ये इलेक्ट्रॉन असलेले फक्त एकच 'K' कवच आहे व तेच बाह्यतम कवचस्ध्दा आहे 'K' कवचाची इलेक्ट्रॉन धारकता $(2n^2)$ ही 'दोन' आहे म्हणजेच हेलिअमचे बाह्यतम कवच पूर्ण भरलेले असते ह्यालाच हेलिअममध्ये इलेक्ट्रॉन द्विक असते असे म्हणतात निऑन ह्या निष्क्रीय वायूच्या इलेक्ट्रॉन संरूपणात 'K' व 'L' ही दोन कवचे असून 'L' हे संयुजा कवच आहे 'L' कवचाची इलेक्ट्रॉन धारकता 'आठ' आहे व तक्ता 5 7 वरून दिसते की निऑनचे संयुजा कवच पूर्ण भरलेले आहे ह्यालाच निऑनमध्ये इलेक्ट्रॉन अष्टक आहे असे म्हणतात K, L a M ह्या कवचांमध्ये इलेक्ट्रॉन असलेला निष्क्रीय वायू म्हणजे अरगॉन होय M ह्या कवचाची इलेक्ट्रॉन धारकता $2 \times 3^2 = 18$ आहे परंतु अरगॉनमध्ये M ह्या संयुजा कवचात फक्त 8 इलेक्ट्रॉन आहेत (पहा तक्ता 5 7) याचा अर्थ निष्क्रीय वायूंच्या संयुजा कवचात आठ इलेक्ट्रॉन असतात, म्हणजेच संयुजा कवचात इलेक्ट्रॉन अष्टक असते इलेक्ट्रॉन अष्टक (किंवा द्विक) पूर्ण असते तेव्हा संयुजा शून्य असते

निष्क्रीय वायू सोडून इतर मूलद्रव्यांचे इलेक्ट्रॉन संरूपण पाहता (तक्ता 5 7) असे दिसते की त्यांच्यामध्ये इलेक्ट्रॉन अष्टक स्थिती नाही किंवा त्यांची इलेक्ट्रॉन अष्टके अपूर्ण आहेत हायड्रोजनच्या बाबतीत असे म्हणता येईल की हायड्रोजनचे इलेक्ट्रॉन द्विक अपूर्ण आहे

निष्क्रीय वायू वगळता इतर सर्व मूलद्रव्यांच्या अणूंमध्ये इतर अणूंबरोबर संयोग पावण्याची प्रवृत्ती असते म्हणजेच त्यांची संयुजा शून्य नसते हायड्रोजनच्या संयोगाने तयार झालेल्या रेणूंच्या सूत्रांवरून (उदा H_2 , HCl) हायड्रोजनची संयुजा 'एक' असल्याचे तुम्ही पाहिले आहेच, हायड्रोजनच्या इलेक्ट्रॉन संरूपणावरून दिसते की हायड्रोजनमध्ये एक इलेक्ट्रॉन 'K' ह्या कवचात आहे म्हणजे हायड्रोजनमध्ये 'पूर्ण द्विक' स्थितीपेक्षा एक इलेक्ट्रॉन कमी आहे

ही 'एक' संख्या हायड्रोजन च्या संयुजेशी जुळते सोडिअमच्या 2, 8, 1 ह्या संरूपणावरून समजते की सोडिअमच्या संयुजा कवचात 'एक' इलेक्ट्रॉन आहे आणि NaCl, NaH अशा रेणुसूत्रांवरून समजते की सोडिअमची संयुजा 'एक' आहे याचा अर्थ असा आहे की, मूलद्रव्यांची संयुजा व त्यांच्या संयुजा कवचातील इलेक्ट्रॉन संख्या यात काहीतरी संबंध आहे

पुढील तक्त्यात (5 9) काही मूलद्रव्यांपासून बनलेल्या संयुगांची रेणुसूत्रे दिली आहेत त्यावरून ठरिवलेली त्या त्या मूलद्रव्यांची संयुजा, त्या त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण व त्याची संयुजा इलेक्ट्रॉन संख्या रिकाम्या जागी लिहा

अ.	मूलद्रव्याची	संयुगाचे रेणुसूत्र	मूलद्रव्याची	मूलद्रव्याचे	मूलद्रव्यातील संयुजा	8 - x
क्र	संज्ञा		संयुजा	इलेक्ट्रॉन संरूपण	इलेक्ट्रॉन संख्या x	(x ≥ 4 करिता)
1	Н	HC1	1	1	1	
2	Cl	HC1	1	2, 8, 7	7	8-7 = 1
3	Ne	संयुग नाही	0			
4	F	HF				
5	Na	NaH				
6	Mg	MgCl ₂				
7	С	CH ₄				
8	Al	AlCl ₃				

जरा डोके चालवा.

तक्ता क्र 5 9 मध्ये चौथ्या स्तंभात तुम्ही संयुगाच्या रेणुसूत्रावरून शोधलेली मूलद्रव्याची संयुजा लिहिली आहे

- 1 जेव्हा मूलद्रव्यातील संयुजा इलेक्ट्रॉन संख्या, x चे मूल्य 4 किंवा 4 पेक्षा कमी असेल तेव्हा x चे मूल्य मूलद्रव्याच्या संयुजेशी जुळते का ?
- 2 जेव्हा 'x' चे मूल्य 4 किंवा 4 पेक्षा अधिक असेल तेव्हा '(8-x)' चे मूल्य मूलद्रव्याच्या संयुजेशी जुळते का ? या मूलद्रव्याचे इलेक्ट्रॉन अष्टक पूर्ण होण्यासाठी किती इलेक्ट्रॉन कमी आहेत ?

यावरून तुमच्या लक्षात येईल, की मूलद्रव्यांची संयुजा व मूलद्रव्याचे इलेक्ट्रॉन संरूपण यांच्यात साधारणपणे पृढील संबंध असतो

हे नेहमी लक्षात ठेवा.

''ज्या मूलद्रव्यात संयुजा इलेक्ट्रॉन संख्या चार किंवा त्यापेक्षा कमी असते त्या मूलद्रव्याची संयुजा त्यातील संयुजा इलेक्ट्रॉन संख्येएवढी असते, याउलट ज्या मूलद्रव्यात चार किंवा त्याहून अधिक इलेक्ट्रॉन असतात तेव्हा अष्टक पूर्ण होण्यासाठी जितके इलेक्ट्रॉन कमी असतात ती उणीवेची संख्या म्हणजे त्या मूलद्रव्याची संयुजा असते ''

- 1 मूलद्रव्याचा अणुअंक (Z) म्हणजे काय ?
- 2 पुढे काही मूलद्रव्यांचे अणुअंक (Z) दिले आहेत त्या मूलद्रव्यांच्या बाह्यतमकक्षेत प्रत्येकी किती इलेक्ट्रॉन आहेत ते लिहा

मूलद्रव्य	Н	С	Li	О	N
Z	1	6	3	8	7
बाह्यतम कक्षेतील इलेक्ट्रॉन संख्या					

3 पुढे काही मूलद्रव्यांची इलेक्ट्रॉन संख्या दिली आहे त्यावरून त्या त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण, संयुजा इलेक्ट्रॉन संख्या व संयुजा लिहा

मूलद्रव्य	Na	С	Mg	Cl
इलेक्ट्रॉन संख्या	11	6	12	17
इलेक्ट्रॉन संरूपण				
संयुजा इलेक्ट्रॉन संख्या				
संयुजा				

- 4 अणुक्रमांक व अणुवस्तुमानांक नेहमी पूर्णांकातच का असतात ?
- 5 सल्फरमध्ये 16 प्रोटॉन व 16 न्यूट्रॉन असतात तर त्याचा अणुअंक व अणुवस्तुमानांक किती असेल ?

समस्थानिके (Isotopes) : मूलद्रव्यांचा अणुअंक हा मूलद्रव्याचा मूलभूत गुणधर्म व त्याची रासायनिक ओळख आहे निसर्गातील काही मूलद्रव्यांमध्ये अणुअंक समान परंतु अणुवस्तुमानांक मात्र विभिन्न असे अणू असतात एकाच मूलद्रव्याच्या अशा भिन्न अणुवस्तूमानांक असलेल्या अणूंना समस्थानिके म्हणतात उदा कार्बन कार्बनची तीन समस्थानिके आहेत ती म्हणजे उदा C-12, C-13, C-14 समस्थानिकांचा अणुवस्तुमानांक ^{12}C , ^{13}C व ^{14}C ह्या पध्दतीनेही दर्शवितात समस्थानिकांची प्रोटॉन संख्या समान असते परंतु न्यूट्रॉन संख्या भिन्न असते

समस्थानिके	अणुवस्तुमानांक A	प्रोटॉन संख्या Z (अणुअंक)	न्यूट्रॉन संख्या N = A - Z
¹² C	12	6	6
¹³ C	13	6	7
¹⁴ C	14	6	8

हायड्रोजनची एकूण तीन समस्थानिके आहेत, त्यांना हायड्रोजन, ड्युटेरिअम व ट्रीटिअम अशी स्वतंत्र नावे आहे त्यांचे अणुवस्तुमानांक शोधा जड पाणी (Heavy water) म्हणजे काय ती माहिती इंटरनेटवरून मिळवा

तक्ता पूर्ण करा

समस्थानिके	प्रोटॉन संख्या	न्यूट्रॉन संख्या
¹ H		
1	1	1
	1	2
³⁵ Cl 17		
³⁷ Cl		

समस्थानिकांचे उपयोग: काही मूलद्रव्यांची समस्थानिक किरणोत्सारी असतात त्यांचा उपयोग विविध क्षेत्रांत केला जातो उदा औद्योगिक क्षेत्र, कृषी क्षेत्र, वैद्यक क्षेत्र, संशोधन क्षेत्र

- 1 युरेनिअम 235 चा उपयोग केंद्रकीय विखंडन व ऊर्जानिर्मितीसाठी होतो
- 2 कॅन्सरसारख्या प्राणघातक आजारांवरील वैद्यकीय उपचारांमध्ये काही मूलद्रव्यांच्या किरणोत्सारी समस्थानिकांचा उपयोग होतो, उदा कोबाल्ट - 60
- 3 गॉयटर या थायरॉईड ग्रंथींच्या आजारावरील उपचारांमध्ये आयोडिन -131 चा उपयोग होतो
- 4 किरणोत्सारी मूलद्रव्यांच्या समस्थानिकांचा उपयोग जिमनीखालून गेलेल्या नळांमधील चीरा शोधण्यासाठी होतो , उदा, सोडिअम-24
- 5 अन्नपदार्थांचे सूक्ष्म जीवाणूपासून परिरक्षण करण्यासाठी किरणोत्सारी मूलद्रव्यांचा उपयोग होतो
- 6 C-14 ह्या किरणोत्सारी समस्थानिकाचा उपयोग जीवाश्मांचे वय ठरविण्यासाठी होतो

अण्भट्टी (Nuclear Reactor) : अणुऊर्जेच्या वापराने मोठ्याप्रमाणावर वीजनिर्मिती करण्याचे संयत्र म्हणजे अणुभट्टी (आकृती 5 10 पहा) अणुभट्टीमध्ये अणुइंधनावर केंद्रकीय अभिक्रिया घडवून आणतात व अणूमधील केंद्रकीय ऊर्जा मुक्त करतात संबंधित केंद्रकीय अभिक्रिया समजून घेण्यासाठी युरेनिअम - 235 ह्या अणुइंधनाचे उदाहरण घेऊ मंद गतीच्या न्यूट्रॉनांचा मारा केला असता युरेनिअम - 235 ह्या समस्थानिकाच्या केंद्रकाचे विखंडन होऊन क्रिप्टॉन — 92 व बेरिअम — 141 ह्या वेगळ्या मूलद्रव्यांची केंद्रके व 2 ते 3 न्यूट्रॉन निर्माण होतात ह्या न्यूट्रॉनांची गती कमी केल्यावर ते आणखी U - 235 केंद्रकांचे विखंडन घडवतात अशा प्रकारे केंद्रकीय विखंडनाची शृंखला अभिक्रिया होते (आकृती 5 11 पहा) यामध्ये केंद्रकातून मोठ्या प्रमाणात केंद्रकीय ऊर्जा म्हणजेच अणुऊर्जा मुक्त होते संभाव्य विस्फोट टाळण्यासाठी शुंखला अभिक्रिया नियंत्रित ठेवतात

अणुभट्टीमध्ये शृंखला अभिक्रिया नियंत्रित करण्यासाठी न्यूट्रॉन्सचा वेग व संख्या कमी करण्याची आवश्यकता असते त्यासाठी पुढील गोष्टींचा वापर केला जातो

5.10 अणुभट्टी : भाभा अणुसंशोधन केंद्र, मुंबई

5.11 युरेनिअम - 235 चे विखंडन

- 1. संचलक / मंदक (Moderator) : न्यूट्रॉन्सचा वेग कमी करण्यासाठी ग्रॅफाईट किंवा जड पाणी यांचा संचलक किंवा मंदक म्हणून वापर केला जातो
- 2. नियंत्रक (Controller) : न्यूट्रॉन शोषून घेऊन त्यांची संख्या कमी करण्यासाठी बोरॉन, कॅडिमअम, बेरिलिअम इत्यादींच्या कांड्या नियंत्रक म्हणून वापरतात

विखंडन प्रक्रियेत निर्माण झालेली उष्णता पाण्याचा शीतक (coolant) म्हणून वापर करून बाजूला काढली जाते त्या उष्णतेने पाण्याची वाफ करून वाफेच्या साहाय्याने टर्बाइन्स चालविले जातात व वीजनिर्मिती होते भारतामध्ये आठ ठिकाणच्या अणुवीजनिर्मिती केंद्रांमध्ये एकूण बावीस अणुभट्ट्या कार्यान्वित आहेत 'अप्सरा' ही मुंबईच्या भाभा अणुसंशोधन केंद्रात 4 ऑगस्ट 1956 रोजी कार्यान्वित झालेली भारतातील पहिली अणुभट्टी आहे भारतात थोरिअम- 232 ह्या मूलद्रव्याचे साठे मोठ्या प्रमाणात असल्याने भारतीय वैज्ञानिकांनी पुढील काळासाठी Th - 232 पासून U- 233 ह्या समस्थानिकाच्या निर्मितीवर आधारित अणुभट्ट्यांची योजना विकसित केली आहे

जोड षव्महिती संपरवेषण तंतरव्जवनाची:

वरून अणुभट्टीच्यकायायवची सविस्तर माहिती दयव्हिडिओद् वारे मिळवा व ती वरयायवत सवाांना दाखवा

स्वाध्याय

1. खालील प्रश्नांची उत्तरे लिहा.

- अ. थॉमसन व रूदरफोर्ड यांच्या अणुप्रारूपांत कोणता फरक आहे ?
- आ. मूलद्रव्यांची संयुजा म्हणजे काय ? संयुजा इलेक्ट्रॉन संख्या व संयुजा यांच्यातील संबंध काय ते लिहा.
- इ. अणुवस्तुमानांक म्हणजे काय ? कार्बनचा अणुअंक 6 तर अणुवस्तुमानांक 12 आहे. हे कसे ते स्पष्ट करा.
- ई. अवअणुकण म्हणजे काय? विद्युतप्रभार, वस्तुमान व स्थान ह्या संदर्भात तीन अवअणुकणांची थोडक्यात माहिती लिहा.

2. शास्त्रीय कारणे लिहा.

- अ. अणूचे सगळे वस्तुमान केंद्रकात एकवटलेले असते.
- आ. अणू विद्युतदृष्ट्या उदासीन असतो.
- इ. अणुवस्तुमानांक पूर्णांकात असते.
- ई. परिभ्रमण करणारे प्रभारित इलेक्ट्रॉन असूनही सामान्यपणे अणूंना स्थायीभाव असतो.

3. व्याख्या लिहा.

- अ. अणू ब. समस्थानिके क. अणुअंक
- ड. अणुवस्तुमानांक इ. अणुभट्टीतील मंदक

4. सुबक व नामनिर्देशित आकृती काढा.

- अ. रूदरफोर्डचा विकीरण प्रयोग
- आ. थॉमसनचे अणुप्रारूप
- इ. मॅग्नेशिअमच्या (अणुअंक 12) इलेक्ट्रॉन संरूपणाचे ग्रेग्वारन
- ई. ॲरगॉनच्या (अणुअंक 18) इलेक्ट्रॉन संरूपणाचे रेखाटन

5. रिकाम्या जागा भरा.

- अ. इलेक्ट्रॉन, प्रोटॉन, न्यूट्रॉन हे अणूमध्ये असणारेआहेत.
- आ. इलेक्ट्रॉनवरप्रभार असतो.

- इ. अणुकेंद्रकापासून सर्वांत जवळचे इलेक्ट्रॉन कवचहे आहे.
- ई. मॅग्नेशिअमचे इलेक्ट्रॉन संरूपण 2, 8, 2 आहे. यावरून असे समजते की मॅग्नेशिअमचे संयुजा कवच हे आहे.
- उ. H_2O ह्या रेणुसूत्रानुसार हायड्रोजनची संयुजा 1 आहे. त्यामुळे Fe_2O_3 ह्या सूत्रानुसार Fe ची संयुजाठरते.

6. जोड्या जुळवा.

'अ' गट

'ब' गट

अ. प्रोटॉन

i. ऋणप्रभारित

आ. इलेक्ट्रॉन

ii. उदासीन

इ. न्यूट्रॉन

iii. धनप्रभारित

7. दिलेल्या माहितीवरून शोधून काढा.

	• (
माहिती	शोधा
23 11	न्यूट्रॉन संख्या
¹⁴ ₆ C	अणुवस्तुमानांक
37 17	प्रोटॉन संख्या

उपक्रम

जुन्या सी.डी., फुगे, गोट्या इत्यादी वस्तूंचा वापर करून अणूची प्रारूपे स्पष्ट करा.

6. द्रव्याचे संघटन

- 1 द्रव्याच्या विविध अवस्था कोणत्या ?
- 2 बर्फ, पाणी व वाफ यांच्यातील फरक सांगा
- 3 द्रव्याच्या लहानात लहान कणांना काय म्हणतात?
- 4 द्रव्याचे प्रकार कोणते?

मागील इयत्तांमध्ये आपण पाहिले की आपल्या सभोवती दिसणाऱ्या तसेच दृष्टीला दिसू न शकणाऱ्या सर्वच वस्तू कोणत्या तरी द्रव्यापासून बनलेल्या असतात

- 1 द्रव्यांचे तीन गटांत वर्गीकरण करा शीतपेय, हवा, सरबत, माती, पाणी, लाकूड, सिमेंट
- 2 वरील वर्गीकरणासाठी निकष म्हणून वापरलेल्या द्रव्याच्या अवस्था कोणत्या?

एका रुंद तोंडाच्या पारदर्शी प्लॅस्टिकच्या बाटलीमध्ये मोहरीचे दाणे घ्या मोठ्या फुग्याच्या मध्यभागी सुईच्या सहाय्याने लांब दोरा ओवून पक्की गाठ मारा हा रबरी पडदा बाटलीच्या

तोंडावर रबरबँडच्या साहाय्याने ताणून बसवा दोरा बाटलीच्या बाहेर राहील हे पहा दोऱ्याच्या साहाय्याने पडदा क्रमाक्रमाने हळुवार, थोड्या जोराने, खूप जोराने, खालीवर करा व पुढील तक्त्यात निरीक्षणे नोंदवा

पडदा खालीवर	मोहरीच्या दाण्यांची हालचाल
करण्याची पद्धत	
हळुवार	जागच्या जागी
थोड्या जोराने	
खूप जोराने	

वरील प्रयोगात पडदा खालीवर करून आपण हवेमार्फत मोहरीच्या दाण्यांना कमी-अधिक ऊर्जा देतो त्यामुळे मोहरीच्या दाण्यांची जी हालचाल होताना दिसते तशीच काहीशी हालचाल स्थायू, द्रव व वायू या अवस्थांमधील द्रव्यांच्या कणांमध्ये असते

द्रव्याच्या कणांमध्ये (अणु किंवा रेणूंमध्ये) आंतररेण्वीय आकर्षण बल कार्यरत असते ह्या बलाच्या क्षमतेनुसार कणांच्या हालचालीचे प्रमाण ठरते स्थायूंमध्ये आंतररेण्वीय बल अतिशय प्रभावी असते त्यामुळे स्थायूंचे कण एकमेकांच्या अगदी जवळ असतात व ते आपापल्या ठराविक जागी स्पंद पावत राहतात यामुळे स्थायूंना ठराविक आकार व आकारमान प्राप्त होतात, तसेच उच्च घनता व असंपीड्यता (non-compressibility) हे गुणधर्म प्राप्त होतात द्रव अवस्थेमध्ये आंतररेण्वीय बलाची सक्षमता मध्यम असते ते कणांना ठराविक जागी अडकवून ठेवण्याइतके प्रभावी नसले तरी त्यांचे एकत्रित गठण करण्यासाठी पुरेसे प्रभावी असते त्यामुळे द्रवांचे आकारमान ठराविक राहते पण त्यांना प्रवाहिता प्राप्त होते तसेच द्रवांचा आकार ठराविक न राहता धारकपात्राप्रमाणे

6.1: मोहरीच्या दाण्यांची हालचाल

6.2 द्रव्याच्या भौतिक अवस्था : अतिसूक्ष्म पातळीवरील

चित्र

बदलतो, परंतु वायूंमध्ये आंतररेण्वीय बल अति क्षीण असते त्यामुळे वायूंचे घटक कण मुक्तपणे हालचाल करू शकतात व उपलब्ध असलेली सर्व जागा व्यापून टाकतात त्यामुळे वायूंना ठराविक आकार किंवा ठराविक आकारमान हे दोन्ही नसतात आकृती 6 2 मध्ये द्रव्याच्या भौतिक अवस्थांचे हे अतिसूक्ष्म पातळीवरील चित्र लाक्षणिक पद्धतीने दाखविले आहेत व तक्ता 6 3 मध्ये द्रव्याच्या अवस्थांची वैशिष्ट्ये दर्शवली आहेत

द्रव्याची	प्रवाहिता/दृढता/	आकारमान	आकार	संपीड्यता	आंतररेण्वीय	कणांमधील
भौतिक	आकार्यता/				बल	अंतर
अवस्था	स्थितिस्थापकता					
स्थायू	दृढ/ आकार्य/	ठराविक	ठराविक	नगण्य	प्रभावी	कमीत कमी
	स्थितिस्थापक					
द्रव	प्रवाही	ठराविक	अनिश्चित	खूप कमी	मध्यम	मध्यम
वायू	प्रवाही	अनिश्चित	अनिश्चित	उच्च	अति क्षीण	खूप

6.3: द्रव्याच्या अवस्थांची वैशिष्ट्ये

पुढील द्रव्यांचे संघटन रासायनिक सूत्रांच्या साहाय्याने लिहा व त्यावरून वर्गीकरण करा

द्रव्याचे नाव	रासायनिक सूत्र/संघटन	द्रव्याचा प्रकार
पाणी		
कार्बन		
ऑक्सिजन		
हवा		
अल्युमिनिअम		
पितळ		
कार्बन डायऑक्साइड		

द्रव्याचे वर्गीकरण करण्याची ही दुसरी पद्धत आहे ह्या पद्धतीत 'द्रव्याचे रासायनिक संघटन' हा निकष वापरलेला आहे द्रव्याचे लहानात लहान कण एकसारखे आहेत की वेगळे व कशापासून बनले आहेत त्यावरून द्रव्याचे 'मूलद्रव्य' (element), 'संयुग' (Compound) व 'मिश्रण' (Mixture) असे तीन प्रकार पडतात हे आपण मागील इयत्तेत पाहिले आहे एका मूलद्रव्यातील किंवा एका संयुगातील सर्वच लहानात लहान कण (अणू/रेणू) हे एकसारखे असतात, मात्र मिश्रणातील लहानात लहान कण हे दोन किंवा अधिक प्रकारांचे असतात

मूलद्रव्याच्या लहानात लहान कणांमध्ये एकाच प्रकारचे अणू असतात, जसे ऑक्सिजनच्या प्रत्येक रेणूमध्ये ऑक्सिजनचे दोन अणू जोडलेल्या स्थितीत असतात संयुगाचे लहानात लहान कण (रेणू) हे दोन किंवा अधिक प्रकारचे अणू एकमेकांना जोडून बनलेले असतात, जसे पाण्याच्या प्रत्येक रेणूमध्ये हायड्रोजनचे दोन अणू हे ऑक्सिजनच्या एका अणूला जोडलेल्या स्थितीत असतात मिश्रणाचे लहानात लहान कण म्हणजे दोन किंवा अधिक मूलद्रव्य/संयुगांचे अणू/रेणू असतात उदाहरणार्थ, हवा ह्या मिश्रणात N_2 , O_2 , Ar, H_2O , CO_2 हे प्रमुख घटक रेणू आहेत तसेच पितळ ह्या मिश्रणात (संमिश्रात) तांबे (Cu) व जस्त (Zn) तर ब्राँझमध्ये तांबे (Cu) व कथिल (Sn) ह्या मूलद्रव्यांचे अणू असतात

आकृती 6 4 मध्ये मूलद्रव्य, संयुग व मिश्रण ह्या द्रव्याच्या प्रकारांचे अतिसूक्ष्म पातळीवरील चित्र लाक्षणिक पद्धतीने दाखविले असून त्यांची वैशिष्ट्येसुद्धा सांगितलेली आहेत

मूलद्रव्य	संयुग	मिश्रण
नायट्रोजन $(N_{_2})$ रेणू	नायट्रोजन डायऑक्साईड (NO2) रेणू	N_2 व NO_2 यांचे मिश्रण
~~~ ~~~		
ऑक्सिजन $({\rm O_{_2}})$ रेणू	नायट्रिक ऑक्साइड (NO) रेणू	$N_{_2}$ व $O_{_2}$ यांचे मिश्रण
	8	
मूलद्रव्याचा घटक पदार्थ एकच व तो	संयुगाचा घटक पदार्थ एकच व तो म्हणजे	मिश्रणाचे घटक पदार्थ दोन किंवा
म्हणजे ते मूलद्रव्य स्वतः	ते संयुग स्वतः	अधिक मूलद्रव्ये व/वा संयुगे
मूलद्रव्याचे सर्व अणू/रेणू एकसमान	संयुगाचे सर्व रेणू एकसमान	मिश्रणातील रेणू/अणू दोन किंवा
		अधिक प्रकारचे
मूलद्रव्याच्या रेणूतील सर्व अणू एकसमान	संयुगाच्या रेणूतील घटक अणू दोन किंवा	मिश्रणातील घटक रेणू एकमेकांपासून
व एकमेकांना रासायनिक बंधानी जोडलेले	अधिक प्रकारचे व एकमेकांना रासायनिक	भिन्न, रासायनिक बंधाने न जोडलेले
	बंधाने जोडलेले	
वेगवेगळ्या मूलद्रव्यांचे रेणू/अणू	संयुगातील घटक मूलद्रव्यांचे प्रमाण	मिश्रणातील घटक पदार्थांचे प्रमाण
वेगवेगळे	ठराविक	बदलू शकते.
-	संयुगाचे गुणधर्म घटक मूलद्रव्यांच्या	मिश्रणामध्ये त्याच्या घटक पदार्थांचे
	गुणधर्मांपेक्षा वेगळे	गुणधर्म राखले जातात.

6.4 : मूलद्रव्य, संयुग, मिश्रण-अतिसूक्ष्म पातळीवरील चित्र व वैशिष्टये



# माहित आहे का तुम्हांला?

पाणी: एक संयुग – शुद्ध पाणी हे हायड्रोजन व ऑक्सिजन ह्या मूलद्रव्यांच्या रासायनिक संयोगाने बनलेले एक संयुग आहे पाण्याचा स्त्रोत कोणताही असला तरी त्यातील ऑक्सिजन व हायड्रोजन ह्या घटक मूलद्रव्यांचे वजनी प्रमाण 8:1 असेच असते हायड्रोजन हा ज्वलनशील वायू आहे तर ऑक्सिजन वायू ज्वलनाला मदत करतो मात्र, हायड्रोजन व ऑक्सिजन ह्या वायुरूप मूलद्रव्यांच्या रासायनिक संयोगाने बनलेले पाणी हे संयुग द्रवरूप असून ते ज्वलनशीलही नसते व ज्वलनास मदतही करत नाही; उलट पाण्यामुळे आग विझायला मदत होते

दूध: एक मिश्रण – दूध हे पाणी, दुग्धशर्करा, स्निग्ध पदार्थ, प्रथिने आणि आणखी काही नैसर्गिक पदार्थांचे मिश्रण आहे दुधाच्या स्रोताप्रमाणे दुधातील विविध घटक पदार्थांचे प्रमाण वेगवेगळे असते गाईच्या दुधात स्निग्ध पदार्थांचे प्रमाण 3-5% असते, तर म्हशीच्या दुधात हेच प्रमाण 6-9% असते दुधात निसर्गत:च पाणी हा घटकपदार्थ मोठ्या प्रमाणात असतो त्यामुळे दूध द्रव अवस्थेत आढळते दुधाची गोडी ही प्रामुख्याने त्याच्यातील दुग्धशर्करा (Lactose) ह्या घटक पदार्थामुळे असते महणजेच घटक पदार्थांचे गुणधर्म दुधात राखले जातात

# मूलद्रव्यांचे प्रकार (Types of elements)



लोखंडी खिळा/पत्रा, तांब्याची तार, ॲल्युमिनिअमची तार, कोळशाचा तुकडा ह्या वस्तू घ्या प्रत्येक वस्तू सँडपेपरने घासून मिळालेला ताजा पृष्ठभाग पहा प्रत्येक वस्तूवर हातोडीने जोराने ठोका (मात्र स्वत:ला इजा होणार नाही याची दक्षता घ्या) तुमची निरीक्षणे पुढील तक्त्यात नोंदवा



वस्तू	पृष्ठभागाला चकाकी आहे/नाही	ठोकल्यावर आकार पसरट होतो/बारीक तुकडे होतात.
लोखंडी खिळा		
तांब्याची तार		
ॲल्युमिनिअम तार		
कोळशाचा तुकडा		

वरील कृतीमधील अनुक्रमे वस्तू लोह (Fe), तांबे (Cu), ॲल्युमिनिअम (Al) व कार्बन (C) ह्या मूलद्रव्यांच्या बनलेल्या आहेत वरील दोन परीक्षा प्रत्येक वस्तूवर केल्यावर मिळालेल्या निरीक्षणांच्या आधारे पुढील तक्ता भरा

पृष्ठभागाला चकाकी असणारी मूलद्रव्ये	
ठोकल्यावर पसरट होणारी मूलद्रव्ये	
पृष्ठभाग निस्तेज असणारी मूलद्रव्ये	
ठोकल्यावर तुकडे होणारी मूलद्रव्ये	

तुम्ही पाहिले की मूलद्रव्यांना चकाकी/निस्तेजपणा, वर्धनीयता/ठिसूळपणा असे वेगवेगळे भौतिक गुणधर्म आहेत व त्यांच्या आधारे मूलद्रव्यांचे वर्गीकरण करता येते सुरुवातीच्या काळात मूलद्रव्यांचे वर्गीकरण 'धातू' व 'अधातू' ह्या दोन प्रकारांत केले जात होते काही आणखी मूलद्रव्यांचा शोध लागल्यावर 'धातुसदृश' असा मूलद्रव्यांचा आणखी एक प्रकार लक्षात आला मूलद्रव्यांच्या या प्रकाराविषयी अधिक माहिती आपण 'धातू – अधातू' या पाठात पाहणार आहोत संयुगांचे प्रकार



साहित्य : बाष्पनपात्र, तिवई, बर्नर इत्यादी रासायनिक पदार्थ : कापूर, चुनखडी, धुण्याचा सोडा, मोरचूद, साखर, ग्लुकोज, युरिआ

कृती: बाष्पनपात्र आकृतीत दाखवल्याप्रमाणे तिवईवर ठेवा बाष्पनपात्रात थोडा कापूर घ्या, बर्नरच्या साहाय्याने बाष्पनपात्रातील कापूर 5 मिनिटे तीव्रपणे तापवा बाष्पनपात्रात काय शिल्लक उरते ते पहा कापराऐवजी चुनखडी, धुण्याचा सोडा, मोरचूद, साखर, ग्लुकोज, युरिआ हे पदार्थ वापरून वरील कृती पुन्हा करा तुमची निरीक्षणे पुढीलप्रमाणे तक्त्यात नोंदवा (एखादे चूर्ण पेट घेऊ शकते त्यामुळे ही कृती शिक्षकांच्या देखरेखीखाली काळजीपूर्वक करा)



बाष्पनपात्रातील चूर्ण	बाष्पनपात्रात अवशेष उरला/उरला नाही	अवशेषाचा रंग
कापूर		
चुनखडी		
•••••		

वरील कृतीत तुम्ही पाहिले की तीव्र उष्णता दिल्यावर काही संयुगांपासून अवशेष मिळतो तर काही संयुगांपासून अवशेष मिळत नाही किंवा काळसर अवशेष मिळतो हा काळा अवशेष प्रामुख्याने कार्बनचा बनलेला असतो तसेच ही संयुगे हवेमध्ये तीव्रपणे तापवली असता त्यांचा ऑक्सिजनबरोबर संयोग होऊन काही वायुरूप पदार्थ तयार होतात व ज्वलन पूर्ण न झाल्यास खाली अवशेषरूपाने काळ्या रंगाचा कार्बन राहतो ह्या संयुगांना सेंद्रिय संयुगे किंवा कार्बनी संयुगे म्हणतात उदाहरणार्थ, कर्बोदके, प्रिथिने, हायड्रोकार्बन (उदा पेट्रोल, स्वयंपाकाचा गॅस) अशी द्रव्ये सेंद्रिय संयुगांची बनलेली आहेत वरील कृतीत कापूर, साखर, ग्लुकोज व युरिआ ही सेंद्रिय संयुगे आहेत याउलट, ज्या संयुगांचे तीव्र उष्णता दिल्यावर अपघटन होऊन मागे अवशेष उरतो ती असेंद्रिय संयुगे किंवा

अकार्बनी संयुगे असतात मीठ, सोडा, गंज, मोरचूद, चुनखडी ही असेंद्रिय संयुगे आहेत याशिवाय संयुगांचा आणखी एक प्रकार म्हणजे जिटल संयुगे जिटल संयुगाच्या रेणूंमध्ये अनेक अणूंनी तयार झालेली जिटल संरचना असते व या संरचनेच्या मध्यभागात धातूंच्या अणूंचा सुद्धा समावेश असतो मॅग्नेशिअमचा समावेश असलेले क्लोरोफिल, लोहाचा समावेश असलेले हिमोग्लोबिन व कोबाल्टचा समावेश असलेला सायनोकोबालमीन (जीवनसत्त्व B-12) ही जिटल संयुगांची काही उदाहरणे आहेत

संयुगांच्या रेणूंमध्ये वेगवेगळे अणू **रासायनिक बंधांनी जोडलेले** असतात, त्याविषयी आपण पुढे पाहणार आहोत मिश्रणांचे प्रकार



तीन चंचुपात्रे घ्या पहिल्या चंचुपात्रात थोडी वाळू व पाणी घ्या दुसऱ्या चंचुपात्रात मोरचुदाचे स्फटिक व पाणी घ्या तिसऱ्या चंचुपात्रात मोरचूद व वाळू घ्या सर्व चंचुपात्रांमधील द्रव्ये ढवळा व होणाऱ्या बदलांचे निरीक्षण करा निरीक्षणांआधारे खालील तक्ता पूर्ण करा

चंचुपात्र क्र.	घेतलेली द्रव्ये	ढवळल्यानंतर काय दिसले	मिश्रणातील प्रावस्थांची संख्या	मिश्रणाचा प्रकार
1				
2				
3				

एकसारखे संघटन असलेल्या द्रव्याच्या भागाला **प्रावस्था** (phase) म्हणतात ढवळल्यानंतर वरील कृतीमधील चंचुपात्रांमध्ये प्रत्येकी किती प्रावस्था दिसतात जेव्हा मिश्रणाच्या सर्व घटकांची मिळून एकच प्रावस्था असते तेव्हा त्याला समांगी मिश्रण म्हणतात जेव्हा मिश्रणातील घटक दोन किंवा अधिक प्रावस्थांमध्ये विभागलेले असतात तेव्हा त्याला विषमांगी मिश्रण म्हणतात



सांगा पाह !

वरील कृतीत ढवळल्यानंतर फक्त एकाच चंचुपात्रात समांगी मिश्रण तयार होते ते कोणते?



# हे नेहमी लक्षात ठेवा.

एका स्थायूचे एकत्रित असलेले (किंवा एका पात्रात असलेले) सर्व कण मिळून एकच प्रावस्था होते (उदा , दगडांचा ढीग) द्रवरूप पदार्थ व त्यात विरघळलेले सर्व द्रावणीय पदार्थ मिळून एकच प्रावस्था होते (उदा , सम्द्राचे पाणी) एका द्रवाच्या किंवा एकत्रित (किंवा एका पात्रात) असलेल्या सर्व थेंबाची मिळून एकच प्रावस्था होते (उदा , पावसाचे थेंब) एकाच पात्रात किंवा एकत्र असलेल्या; परंतु एकमेकांत न मिसळलेल्या द्रवांच्या प्रावस्था स्वतंत्र असतात (उदा , तेल व पाणी) एकत्रित असलेल्या सर्व वायुरूप पदार्थांची मिळून एकच प्रावस्था होते (उदा , हवा)



तीन चंचुपात्रे घ्या पहिल्या चंचुपात्रात 10 ग्रॅ मीठ घ्या दुसऱ्या चंचुपात्रात 10 ग्रॅ लाकडाचा भुसा घ्या तिसऱ्या चंचुपात्रात 10 मिली दूध घ्या तीनही चंचुपात्रांमध्ये 100 मिली पाणी ओतून ढवळा पाण्याची स्वतंत्र प्रावस्था कोणत्या मिश्रणात दिसते? उभ्या धरलेल्या कागदासमोर तीनही चंचुपात्रे ठेऊन विरुद्ध बाजूने लेझर किरणांचा झोत सोडा (लेझर किरणांचा वापर शिक्षकाच्या मार्गदर्शनाने करावा) त्याचवेळी चंचुपात्रासमोरील कागदावर काय दिसते ते पहा तसेच चंचुपात्राकडे बाजूच्या दिशेनेही पहा गालनक्रियेसाठी शंकूपात्र, नरसाळे व गालनकागद वापरून तीन मांडण्या जुळवा तीनही चंचुपात्रातील मिश्रणे ढवळून त्यांची गालन क्रिया करा सर्व निरीक्षणांचा खालीलप्रमाणे तक्ता बनवा

चंचुपात्र	मिश्रणाचे घटक	पाण्याची स्वतंत्र प्रावस्था	पारदर्शक/अर्धपारदर्शक/	गालन क्रियेने घटकांचे
		दिसते/दिसत नाही	अपारदर्शक	विलगीकरण होते/होत नाही

द्रावण (Solution) : दोन किंवा अधिक पदार्थांच्या समांगी मिश्रणाला द्रावण म्हणतात वरील कृतीमध्ये पहिल्या चंच्पात्रात पाणी व मीठ ह्या दोन पदार्थांचे समांगी मिश्रण तयार होते त्याला मिठाचे पाण्यातील द्रावण म्हणतात द्रावणात जो घटक पदार्थ सर्वाधिक प्रमाणात असतो त्याला द्रावक म्हणतात व द्रावकापेक्षा कमी प्रमाणात असणाऱ्या इतर घटक पदार्थांना द्वाव्य म्हणतात द्राव्य द्रावकात मिसळून द्रावण बनण्याची क्रिया म्हणजे विरघळणे द्रावणातील घटकांच्या अवस्थांप्रमाणे द्रावणांचे अनेक प्रकार होतात समुद्राचे पाणी, पाण्यात विरघळलेला मोरचूद, पाण्यात विरघळलेले मीठ, साखरेचा पाक ही द्रावणे 'द्रवामध्ये स्थायू' ह्या प्रकाराची आहेत याशिवाय 'द्रवामध्ये द्रव' (उदा व्हिनेगार, विरल सल्फ्युरिक आम्ल), 'वायुमध्ये वायु' (उदा हवा), 'स्थायूमध्ये स्थायू' (उदा पितळ, पोलाद, स्टेनलेस स्टील अशी संमिश्रे), 'द्रवामध्ये वायु' (उदा क्लोरीनयुक्त पाणी, हायड्रोक्लोरिक आम्ल) असेही द्रावणांचे प्रकार आहेत समांगी मिश्रणाचे म्हणजेच द्रावणाचे संघटन संपूर्ण राशीभर एकसारखे असते द्रावक पारदर्शक द्रव असल्यास द्रावण सुद्धा पारदर्शक असते व ते गालन कागदातून आरपार जाते

निलंबन (Suspension) : वरील कृतीमध्ये दुसऱ्या चंचुपात्रात पाणी व भुसा ह्या दोन पदार्थांचे विषमांगी मिश्रण तयार झाले हे द्रव आणि स्थायू यांचे मिश्रण आहे द्रव आणि स्थायू यांच्या विषमांगी मिश्रणाला निलंबन म्हणतात निलंबनातील स्थायूकणांचा व्यास  $10^{-4}$  मी पेक्षा जास्त असतो त्यामुळे त्यातून प्रकाशाचे संक्रमण होत नाही, तसेच सामान्य गालनकागदावर हे स्थायूकण

अवशेषी म्हणून राहतात व गालनक्रियेने निलंबनातील द्रव व स्थायू घटकांचे विलगीकरण होते

कलिल (Colloid) : वरील कृतीमध्ये तिसऱ्या चंचुपात्रातील पाणी व द्ध यांचे मिश्रण अर्धपारदर्शक आहे म्हणजेच ह्या मिश्रणाच्या पृष्ठभागावर प्रकाशाचे आपतन केले असता त्याचे काही प्रमाणात संक्रमण व काही प्रमाणात अपस्करण होते याचे कारण म्हणजे ह्या विषमांगी मिश्रणामधील पाण्याच्या प्रावस्थेमध्ये दुधाच्या प्रावस्थेचे सूक्ष्म कण सर्वत्र विखुरलेल्या स्थितीत असतात आणि ह्या कणांचा व्यास 10-5 मी च्या जवळपास असतो अशा विषमांगी मिश्रणाला कलिल म्हणतात मात्र कलिलातील कणांच्या व्यासापेक्षा गालनकागदाची छिद्रे मोठी असल्याने गालनक्रियेमुळे कलिल ह्या विषमांगी मिश्रणाचे विलगीकरण होत नाही द्ध स्वत:च एक कलिल आहे ह्यामध्ये पाणी ह्या माध्यमात प्रथिने, स्निग्ध पदार्थ इत्यादींचे स्थायूकण व द्रव थेंब यांचा व्यास 10⁻⁵ मी च्या आसपास असतो, विखुरलेले असतात याशिवाय वायूंमध्ये स्थायू (उदा,धूर) वायूमध्ये द्रव (उदा, धुके, ढग) असे व आणखी सुद्धा कलिलाचे प्रकार आहेत

समजून घेऊ संयुगांना: द्रव्याचे प्रकार अभ्यासताना आपण पाहिले की मूलद्रव्य म्हणजे सर्वांत साधे संघटन असलेला द्रव्याचा प्रकार आहे संयुग व मिश्रण ह्या प्रकारांचे संघटन तपासले असता असे लक्षात येते की ते दोन किंवा अधिक घटकांपासून बनलेले असते हे घटक एकमेकांबरोबर जोडलेल्या स्थितीत असतात की स्वतंत्र असतात त्यावरून ते द्रव्य म्हणजे संयुग आहे की मिश्रण हे ठरते



कृती: दोन बाष्पनपात्रे घ्या पहिल्या बाष्पन पात्रात 7 ग्रॅम लोहकीस घ्या दुसऱ्यामध्ये 4 ग्रॅम गंधक चूर्ण घ्या दोन्ही बाष्पनपात्रांमधील द्रव्याजवळ नालाकृती चुंबक नेऊन निरीक्षण करा पहिल्या पात्रातील सर्व लोहकीस दुसऱ्या पात्रात ओतून काचकांडीने ढवळा व नालाकृती चुंबक द्रव्याजवळ नेऊन निरीक्षण करा तसेच द्रव्याच्या रंगाचेही निरीक्षण करा आता दुसऱ्या पात्रातील हे द्रव्य थोडे तापवून थंड होऊ द्या ह्या द्रव्याच्या रंगात काही बदल झाला का ह्याचे निरीक्षण करा व त्यावर नालाकृती चुंबकाचा काय परिणाम होतो त्याचे निरीक्षण करा सर्व निरीक्षण पुढील तक्त्यात नोंदवा

कृती	द्रव्याचा रंग	नालाकृती चुंबकाचा परिणाम
बाष्पनपात्रात लोहकीस व गंधक मिसळले		
बाष्पनपात्रात लोहकीस व गंधक एकत्र तापवले		

मागील कृतीत लोहकीस व गंधकचूर्ण मिसळून मिळालेल्या द्रव्याची नालाकृती चुंबकाने परीक्षा केल्यावरअसे दिसले की तयार झालेले द्रव्य म्हणजे लोह व गंधक यांचे मिश्रण आहे व त्याला दोन्ही घटकांचे गुणधर्म होते काही कण पिवळे दिसले ते गंधकाचे होते काही कण काळे दिसले ते लोहाचे होते लोहचुंबकाकडे ओढले जाण्याचा लोहकणांचा गुणधर्म ही कायम होता म्हणजेच ह्या द्रव्यात लोह व गंधक हे घटक स्वतंत्र स्थितीमध्ये होते याउलट लोहकीस व गंधक एकत्र तापवून थंड केले असता त्यावर चुंबकाचा परिणाम झाला नाही व गंधकाचा वैशिष्ट्यपूर्ण पिवळा रंगही दिसेनासा झाला यावरून लक्षात येते की वरील कृतीत तयार झालेले द्रव्य मूळ घटकांपेक्षा वेगळे आहे

या कृतीमध्ये तापवण्याच्या क्रियेमुळे लोह व गंधक या मूलद्रव्यांमध्ये रासायनिक संयोग घडून आला लोह व गंधक यांचे अणू रासायनिक बंधाने जोडले जाऊन नव्या संयुगाचे रेणू तयार झाले

रेणुसूत्र व संयुजा (Molecular formula and valency): संयुगामध्ये घटक मूलद्रव्यांचे प्रमाण ठराविक असते संयुगाच्या रेणूमध्ये घटक मूलद्रव्यांचे अणू विशिष्ट संख्येने एकमेकांना जोडलेले असतात संयुगाच्या एका रेणूमध्ये कोणकोणत्या मूलद्रव्याचे प्रत्येकी किती अणू आहेत ते रेणुसूत्राच्या साहाय्याने दर्शवले जाते रेणुसूत्रामध्ये सर्व घटक मूलद्रव्यांच्या संज्ञा व प्रत्येक संज्ञेच्या पायाशी त्या त्या अणूंची संख्या, ही माहिती समाविष्ट असते



पुढील तक्त्यात काही संयुगांची रेणुसूत्रे दिली आहेत त्यांच्या उपयोगाने तक्त्यातील रिकाम्या जागा भरा

अ. क्र	संयुगाचे नाव	रेणूसूत्र	घटक मूलद्रव्ये	घटक मूलद्रव्यांच्या अणूंची संख्या	
1	पाणी	H ₂ O	Н	2	
			О	1	
2	हायड्रोजन क्लोराइड	HC1			
3	मिथेन	CH ₄			
4	मॅग्नेशिअम क्लोराइड	MgCl ₂			

रेणुसूत्र आणि रेणूमधील विविध मूलद्रव्यांच्या अणूंची संख्या यातील संबंध आपण पाहिला अणू एकमेकांना रासायनिक बंधाने जोडलेले असतात दुसऱ्या अणूशी रासायनिक बंधाने जोडले जाण्याची क्षमता हा प्रत्येक अणूचा रासायनिक गुणधर्म आहे ही क्षमता एका संख्येने दर्शवितात व ही संख्या म्हणजे त्या अणूची संयुजा होय एक अणू त्याच्या संयुजेइतके रासायनिक बंध इतर अणूंबरोबर करतो साधारणपणे मूलद्रव्याची संयुजा त्याच्या विविध संयुगांमधे स्थिर असते



# माहित आहे का तुम्हांला?

वैज्ञानिकांनी 18 व्या व 19 व्या शतकात संयुगांच्या संघटनासंबंधात अनेक प्रयोग केले व त्यावरून मूलद्रव्यांच्या संयुजा शोधून काढल्या हायड्रोजन हा सर्वात हलक्या मूलद्रव्याची संयुजा 1 आहे असे मानून वैज्ञानिकांनी इतर मूलद्रव्यांच्या संयुजा ठरविल्या



पुढील तक्त्यात हायड्रोजन ह्या मूलद्रव्याने इतर मूलद्रव्यांबरोबर तयार केलेल्या विविध संयुगांची रेणुसूत्रे दिलेली आहेत त्यावरून संबंधित मूलद्रव्यांच्या संयुजा शोधून काढा

अ. क्र.	संयुगाचे रेणुसूत्र	घटक	मूलद्रव्ये	'H' ची संयुजा	'X' ने 'H' तयार केलेल्या एकूण बंधांची संख्या	'X' ची संयुजा
		Н	X			
1	HCl	Н	Cl	1	1	1
2	H ₂ O	Н	0	1	2	2
3	H ₂ S			1		
4	NH ₃			1		
5	HBr			1		
6	HI			1		
7	NaH			1		
8	CH ₄			1		

संयुगाचे रेणुसूत्र माहीत असल्यास त्यावरून घटक मूलद्रव्यांच्या संयुजा ओळखता येतात यासाठी हायड्रोजनची संयुजा '1' आहे हा आधार आहे याउलट मूलद्रव्याची संयुजा माहित असल्यास त्यावरून तिरकस गुणाकार संयुगाचे रेणुसूत्र लिहिता येते ते खालीलप्रमाणे

# तिरकस गुणाकार पद्धतीने साध्या संयुगांचे रेणुसूत्र लिहिणे

पायरी 1: घटक मूलद्रव्यांच्या संज्ञा लिहिणे

पायरी 2: त्या त्या मूलद्रव्याखाली त्याची संयुजा लिहिणे

C 4 2

पायरी ३: बाणांनी दर्शविल्याप्रमाणे तिरकस गुणाकार करणे



पायरी 4: तिरकस गुणाकाराने मिळालेले सूत्र लिहिणे

 $C_2O_4$  **पायरी** 5: संयुगाचे अंतिम रेणुसूत्र लिहिणे अंतिम रेणुसूत्रामध्ये घटक अणूंची संख्या लहानात लहान व पूर्णांकी असावी यासाठी आवश्यक असल्यास पायरी 4 मधील सूत्रास योग्य त्या अंकाने भागणे )

तिरकस गुणाकाराने मिळालेले सूत्र  $\rm C_2O_4$  व 2 ने भागून मिळालेले अंतिम रेणुसूत्र  $\rm CO_2$ 

खालील तक्त्यात मूलद्रव्यांच्या जोड्या व त्यांच्या संयुजा दिलेल्या आहेत त्यांचा तर्कसंगत उपयोग करून त्या मूलद्रव्य जोड्यांपासून तयार होणाऱ्या संयुगांची रेणुसूत्रे शेवटच्या रकान्यात लिहा

मूलद्रव्य	संयुजा	संबंधित संयुगाचे रेणुसूत्र
С	4	
Н	1	
N	3	
Н	1	
Fe	2	
S	2	
С	4	
О	2	



# जरा डोके चालवा

- खालील मूलद्रव्य-जोड्यांपासून तयार होणाऱ्या संयुगांची रेणुसूत्रे तिरकस गुणाकार पद्धतीने शोधून काढा (i) H (संयुजा 1) व O (संयुजा 2), (ii) N (संयुजा 3) व H (संयुजा 1), (iii) Fe (संयुजा 2) व S (संयुजा2)
- 2 H, O a N ह्या अणूंच्या संयुजा अनुक्रमे 1, 2 a 3 आहेत तसेच हायड्रोजन, ऑक्सिजन, नायट्रोजन ह्या वायुरूप मूलद्रव्यांची रेणुसूत्रे अनुक्रमे H₂, O₂ a N₂ अशी आहेत ह्या रेणूंमध्ये प्रत्येकी किती रासायनिक बंध आहेत ?

# योग्य पर्याय निवडून खालील विधाने पुन्हा लिहा.

- अ. स्थायूच्या कणांमध्ये आंतररेण्वीय बल ....... असते.
  - (i) कमीत कमी
- (ii) मध्यम
- (iii) जास्तीत जास्त
- (iv) अनिश्चित
- आ. स्थायूंवर बाह्य दाब दिल्यावरसुद्धा त्यांचे आकारमान कायम राहते. ह्या गुणधर्माला ...... म्हणतात.
  - (i) आकार्यता (ii) असंपीड्यता
  - (iii) प्रवाहिता (iv) स्थितिस्थापकता
- इ. द्रव्यांचे वर्गीकरण मिश्रण, संयुग व मूलद्रव्य ह्या प्रकारांमध्ये करताना .... हा निकष लावला जातो.
  - (i) द्रव्याच्या अवस्था (ii) द्रव्याच्या प्रावस्था
  - (iii) द्रव्याचे रासायनिक संघटन
  - (iv) यांपैकी सर्व
- ई. दोन किंवा अधिक घटक पदार्थ असणाऱ्या द्रव्याला ...... म्हणतात.
  - (i) मिश्रण
- (ii) संयुग
- (iii) मूलद्रव्य
- (iv) धातुसदृश
- दूध हे द्रव्याच्या ...... ह्या प्रकाराचे उदाहरण आहे.
  - (i) द्रावण
- (ii) समांगी मिश्रण
- (iii) विषमांगी मिश्रण
- (iv) निलंबन
- ए. पाणी, पारा व ब्रोमीन यांच्यामध्ये साधर्म्य आहे,कारण तीनही .... आहेत.
  - (i) द्रवपदार्थ
- (ii) संयुगे
- (iii) अधात्
- (iv) मूलद्रव्ये
- ऐ. कार्बनची संयुजा 4 आहे व ऑक्सिजनची संयुजा 2 आहे. यावरून समजते, की कार्बन डाय ऑक्साइड ह्या संयुगात कार्बन अणू व एक ऑक्सिजन अणू यांच्यात ...... रासायनिक बंध असतात.
  - (i) 1 (ii) 2 (iii) 3 (iv) 4

# 2. गटात न बसणारे पद ओळखून स्पष्टीकरण द्या.

- अ. सोने, चांदी, तांबे, पितळ
- आ. हायड्रोजन, हायड्रोजन पेरॉक्साइड, कार्बन डायऑक्साइड, पाण्याची वाफ

- इ. द्ध, लिंब्रस, कार्बन, पोलाद
- ई. पाणी, पारा, ब्रोमीन, पेट्रोल
- उ. साखर, मीठ, खाण्याचा सोडा, मोरचूद
- ऊ. हायड्रोजन, सोडिअम, पोटॅशिअम, कार्बन

## 3. खालील प्रश्नांची उत्तरे लिहा.

- अ. वनस्पती सूर्यप्रकाशात क्लोरोफिलच्या मदतीने कार्बन डायऑक्साइड व पाणी यांच्यापासून ग्लूकोज तयार करतात व ऑक्सिजन बाहेर टाकतात. या प्रक्रियेतील चार संयुगे कोणती ते ओळखून त्यांचे प्रकार लिहा.
- आ. पितळ ह्या संमिश्राच्या एका नमुन्यात पुढील घटक आढळले: तांबे (70%) व जस्त (30%). यामध्ये द्रावक, द्राव्य व द्रावण कोण ते लिहा.
- इ. विरघळलेल्या क्षारांमुळे समुद्राच्या पाण्याला खारट चव असते. काही जलसाठ्यांची नोंदिविलेली क्षारता (पाण्यातील क्षारांचे प्रमाण) पुढीलप्रमाणे आहे : लोणार सरोवर : 7.9%, प्रशांत महासागर : 3.5%, भूमध्य समुद्र : 3.8%, मृत समुद्र : 33.7%. या माहितीवरून मिश्रणाची दोन वैशिष्ट्ये स्पष्ट करा.

## प्रत्येकी दोन उदाहरणे द्या.

- अ. द्रवरूप मूलद्रव्य
- आ. वायुरूप मूलद्रव्य
- इ. स्थायुरूप मूलद्रव्य
- ई. समांगी मिश्रण
- उ. कलिल
- ऊ. सेंद्रिय संयुग
- ए. जटिल संयुग
- ऐ. असेंद्रिय संयुग
- ओ. धातुसदृश
- औ. संयुजा 1 असलेले मूलद्रव्य
- अं. संयुजा 2 असलेले मूलद्रव्य
- पुढे दिलेल्या रेणुसूत्रांवरून त्या त्या संयुगातील घटक मूलद्रव्यांची नावे व संज्ञा लिहा व त्यांच्या संयुजा ओळखा.

KCl, HBr, MgBr₂, K₂O, NaH, CaCl₂, CCl₄, HI, H₂S, Na₂S, FeS, BaCl₂

## 6. काही द्रव्यांचे रासायनिक संघटन पुढील तक्त्यात दिले आहे. त्यावरून त्या द्रव्यांचा मुख्य प्रकार ठरवा.

द्रव्याचे नाव	रासायनिक संघटन	द्रव्याचा मुख्य प्रकार
समुद्राचे पाणी	$H_2O + NaCl + MgCl_2 +$	
उर्ध्वपातित पाणी	H ₂ O	
फुग्यात भरलेला हायड्रोजन वायू	$H_2$	
LPG सिलिंडरमधील वायू	$C_{4}H_{10} + C_{3}H_{8}$	
खाण्याचा सोडा	NaHCO ₃	
शुद्ध सोने	Au	
ऑक्सिजनच्या नळकांड्यातील वायू	$O_2$	
कास्य	Cu + Sn	
हिरा	С	
मोरचूद	CuSO ₄	
चुनखडी	CaCO ₃	
विरल हायड्रोक्लोरिक आम्ल	HCl + H ₂ O	

#### 7. शास्त्रीय कारणे लिहा.

- अ. हायड्रोजन ज्वलनशील आहे, ऑक्सिजन ज्वलनास मदत करतो, परंतु पाणी आग विझवण्यास मदत करते.
- आ. कलिलाचे घटक पदार्थ गाळणक्रियेने वेगळे करता येत नाहीत.
- इ. लिंबू सरबताला गोड, आंबट, खारट अशा सर्व चवी असतात व ते पेल्यामध्ये ओतता येते.
- ई. स्थायुरूप द्रव्याला निश्चित आकार व आकारमान हे गुणधर्म असतात.

# 8. पुढील मूलद्रव्यांच्या जोड्यांपासून मिळणाऱ्या संयुगांची रेणुसूत्रे तिरकस गुणाकार पद्धतीने शोधून काढा.

- अ. C (संयुजा 4) व Cl (संयुजा 1)
- आ. N (संयुजा 3) व H (संयुजा 1)
- इ. С (संयुजा 4) व 🔾 (संयुजा 2)
- ई. Ca (संयुजा 2) व ( (संयुजा 2)

#### उपक्रम :

वेगवेगळ्या तयार खाद्यपदार्थांची वेष्टने जमवा. त्यावर दिलेल्या माहितीचा उपयोग करून खाद्यपदार्थ व त्यातील घटक यांचे कोष्टक बनवा. जे घटक मिळवता येतील ते मिळवा. मित्र व शिक्षक यांच्याशी चर्चा करून तसेच शिक्षकांच्या देखरेखीखाली मिळालेल्या घटकांची ज्वलन-परीक्षा करा व हे घटक सेंद्रिय की असेंद्रिय हे ठरवा.





# 7. धातू-अधातू



- 1 सर्वसाधारणपणे मूलद्रव्यांचे वर्गीकरण कोणत्या तीन प्रकारांत करतात?
- 2 दैनंदिन जीवनात आपण कोणकोणते धातू आणि अधातू वापरतो?

जगातील सर्व वस्तू किंवा पदार्थ हे मूलद्रव्ये, संयुगे, किंवा त्यांच्या मिश्रणांपासून बनलेले आहेत शास्त्रज्ञांनी सर्व मूलद्रव्यांचे सर्वसाधारणपणे धातू, अधातू व धातुसदृश याप्रमाणे वर्गीकरण केलेले आहे

धातू (Metals) : सोने, चांदी, लोखंड, तांबे, ऑल्युमिनिअम, मॅग्नेशिअम, कॅल्शिअम, सोडिअम, प्लॅटिनम हे काही धातू आहेत धातूंना चकाकी असते ते कठीण असतात त्यांची तार किंवा पत्रे बनविता येतात धातू उष्णता व विद्युतचे सुवाहक असतात धातु त्यांचे संयुजा इलेक्ट्रॉन गमावून धनप्रभारी आयन, धन-आयन म्हणजेच कॅटायन निर्माण करतात

# धातूंचे भौतिक गुणधर्म (Physical Properties of Metals)

1. अवस्था (Physical State) : सर्वसामान्य तापमानाला धातू स्थायू अवस्थेत राहतात पण पारा व गॅलिअमसारखे काही धातू अपवाद आहेत ते कक्ष तापमानालाही द्रव अवस्थेत असतात



तुम्ही तुमच्या नातेवाइकांसोबत एखाद्या दवाखान्यात गेला असता डॉक्टरांजवळ रक्तदाबमापक पाहिला असेल त्यातील काचेच्या नळीत एक राखाडी रंगाचा द्रव पाहिला असेल तो कोणता धातू असतो?

- 2. तेज (Lustre)(चकाकी): तुमच्या घरी असणारी तांब्यांची भांडी घ्या व त्याला लिंबाने घासा व पाण्याने धुवा, धुण्यापूर्वी व धुतल्यानंतरच्या तेजाचे निरिक्षण करा धातूच्या घासलेल्या वा नुकत्याच कापलेल्या पृष्ठभागावरून प्रकाशाचे परावर्तन होते व धातू तेजस्वी दिसतो
- 3. कठीणपणा (Hardness): सर्वसाधारणपणे धातू कठीण असतात ते मऊ नसतात अपवाद सोडिअम व पोटॅशिअम मऊ असतात व ते चाकूने सहज कापता येतात

- 4. तन्यता (Ductility): तुम्ही कधी सोनाराच्या दुकानात गेलात का? सोनाराला सोने किंवा चांदीची तार बनविताना पाहिले का? छिद्रामधून धातूला ओढले असता त्याची तार बनते या गुणधर्माला धातूची तन्यता असे म्हणतात
- 5. वर्धनीयता (Malleability): एक खिळा घ्या व त्याला ओट्यावर ठेवून हातोडीने ठोकत रहा, काही वेळानंतर तुम्हांला पातळ पत्रा तयार होताना दिसेल या गुणधर्माला धातूची वर्धनीयता म्हणतात
- 6. उष्णतेचे वहन (Conduction of Heat): तांब्याची पट्टी घ्या व त्याच्या एका टोकाला मेण लावा व दुसरे टोक गरम करा काय होते त्याचे निरीक्षण करून शिक्षकांसोबत चर्चा करा

धातू उष्णतेचे सुवाहक असतात चांदी, तांबे, ॲल्युमिनिअम उष्णतेचे उत्तम वाहक आहेत

- 7. विद्युत वहन (Conduction of Electricity): विजेच्या तारा बनवण्यासाठी कोणकोणत्या धातूंचा उपयोग केला जातो? धातू विजेचे सुवाहक असतात अपवाद शिसे हा एकमेव धातू आहे जो उष्णता आणि वीज यांचा सुवाहक नाही
- 8. घनता (Density): धातूंची घनता जास्त असते अपवाद सोडिअम, पोटॅशिअम व लिथिअमची घनता पाण्यापेक्षा कमी असते लिथिअमची घनता 0 53 g/cc इतकीच आहे
- 9. द्रवणांक व उत्कलनांक (Melting & Boiling Points): सर्वसाधारणपणे धातूंचे द्रवणांक व उत्कलनांक जास्त असतात अपवाद Hg, Ga, Na, K
- 10. नादमयता (Sonority) : तुमच्या शाळेची घंटा कोणत्या धातूची आहे व ती कसे कार्य करते? धातू नादमय असतात

अधातू (Non-metals) : कार्बन, सल्फर, फॉस्फरस हे काही अधातू आहेत साधारणपणे स्थायू अधातू ठिसूळ असतात व त्यांना चकाकी नसते

# अधातूंचे भौतिक गुणधर्म (Physical Properties of nonmetals):

1. भौतिक अवस्था (Physical State): सर्वसामान्य तापमानाला अधातू स्थायू, द्रव व वायुरूपात आढळतात

स्थायू : C, S, P  $\,$  द्रवरूप :  $Br_2$  वायुरूप :  $H_2$ ,  $N_2$ ,  $O_2$ 

- 2. चकाकी (Lustre) : अधातूंना चकाकी नसते अपवाद हिरा, आयोडिनचे स्फटिक काही अधातू रंगहीन तर काहींना विविध रंग असतात कार्बन म्हणजेच कोळसा, कोणत्या रंगाचा असतो?
- 3. ठिसूळपणा (Brittleness): कोळसा (कार्बन) घ्या व त्याला हातोडीने ठोका काय होते पाहा स्थायुरूप अधातू ठिसूळ असतात काही अधातू मऊ असतात अपवाद हिरा (कार्बनचे अपरूप) सर्वांत कठीण नैसर्गिक पदार्थ
- 4. तन्यता व वर्धनीयता (Ductility & Malleability): अधातू तंतुक्षम व वर्धनीय नसतात
- 5. उष्णता व विद्युत वहन (Conduction of Heat & Electricity): अधातू उष्णतेचे व विजेचे दुर्वाहक असतात अपवाद ग्रॅफाईट (कार्बनचे अपरूप) विजेचा उत्तम सुवाहक आहे
- 6. घनता (Density): अधातूची घनता कमी असते
- 7. द्रवणांक व उत्कलनांक (Melting & Boiling Point): अधातूचे द्रवणांक व उत्कलनांक कमी असतात अपवाद कार्बन, बोरॉन हे स्थायू अधातू असून उच्च तापमानाला वितळतात



- 1 सोने, चांदी, ॲल्युमिनिअम हे उत्तम वर्धनीय धातू आहेत
- 2 सोन्याचे 1/10,000 मिलीमीटर जाडीचे पातळ पत्रे करता येतात व 1/5000 मीमी व्यासाची तार बनवता येते

धातुसदृश (Metalloids) : आर्सेनिक (As), सिलिकॉन (Si), जर्मेनिअम (Ge), ॲंटिमनी (Sb) यांसारख्या काही मूलद्रव्यांना धातू आणि अधातू यांच्या दरम्यानचे गुणधर्म असतात अशा मूलद्रव्यांना धातुसदृश असे म्हणतात

# धातूंचे रासायनिक गुणधर्म (Chemical properties of Metals)

## अ. इलेक्ट्रॉन संरूपण:

इलेक्ट्रॉन संरूपण हे सर्व मूलद्रव्यांच्या रासायनिक वर्तनाचा आधार असतो बहुसंख्य धातूंच्या अणूंच्या बाह्यतम कवचातील इलेक्ट्रॉनची संख्या कमी म्हणजे तीन पर्यंत असते

मूलद्रव्य	अणुअंक	इलेक्ट्रॉन संरूपण
₁₁ Na	11	2, 8, 1
₁₂ Mg	12	2, 8, 2
13 Al	13	2, 8, 3

आ. आयनांची निर्मिती: धातूंमध्ये त्यांचे संयुजा इलेक्ट्रॉन गमावून धनप्रभारी आयन, धन-आयन म्हणजेच 'कॅटायन' निर्माण करण्याची प्रवृत्ती असते

$$Mg \longrightarrow Mg^{++} + 2e^{-}$$
  
(2,8,2) (2,8)

मॅग्नेशिअम मॅग्नेशिअम आयन

Al 
$$\longrightarrow$$
 Al⁺⁺⁺ + 3e⁻ (2,8,3) (2,8)

ॲल्युमिनिअम ॲल्युमिनिअम आयन

इ. ऑक्सिजनबरोबर अभिक्रिया : धातूंचा ऑक्सिजनशी संयोग होऊन त्यांची ऑक्साइडे तयार होतात

धातूंची ऑक्साइडे आम्लारीधर्मी असतात धातूंच्या ऑक्साइडची अभिक्रिया आम्लासोबत होऊन क्षार आणि पाणी तयार होते

**ई. आम्लाबरोबर अभिक्रिया** : बहुतेक धातूंची विरल आम्लांबरोबर अभिक्रिया होऊन धातूंचे क्षार तयार होतात व हायड़ोजन वायू बाहेर पडतो

परीक्षानळी घ्या व त्यात विरल हायड्रोक्लोरिक आम्ल घ्या नंतर जस्ताची पूड टाका नळीच्या तोंडाशी जळती काडी न्या पेटत्या काडीचे निरीक्षण करा त्यातून आवाज आल्याचे तुम्हांला जाणवेल

3. पाण्यासोबत अभिक्रिया: काही धातूंची पाण्यासोबत अभिक्रिया होऊन हायड्रोजन वायूची निर्मिती होते काही धातूंची पाण्याबरोबर कक्ष तापमानाला, काहींची गरम पाण्यासोबत, तर काहींची पाण्याच्या वाफेसोबत अभिक्रिया होते, त्यांच्या अभिक्रियेचा दर वेगवेगळा असतो

अधातूंचे रासायनिक गुणधर्म (Chemical properties of nonmetals)

अ. इलेक्ट्रॉनी संरूपण : बहुसंख्य अधातूंच्या संयुजा कवचातील इलेक्ट्रॉनची संख्या जास्त म्हणजे 4 ते 7 पर्यंत असते

मूलद्रव्य	अणुअंक	इलेक्ट्रॉन संरूपण
₇ N	7	2, 5
₈ O	8	2, 6
Cl	17	2, 8, 7

आ. आयनांची निर्मिती: अधातूंमध्ये त्यांच्या संयुजा कवचात इलेक्ट्रॉन स्वीकारून ऋण प्रभारी आयन, ऋण-आयन म्हणजेच 'ॲनायन' निर्माण करण्याची प्रवृत्ती असते

$$Cl + e^- \longrightarrow Cl^ (2, 8, 7)$$
 $(2, 8, 8)$ 
 $4e^ 4e^ 4e^-$ 

इ. ऑक्सिजनबरोबर अभिक्रिया : अधातू ऑक्सिजनशी संयोग करून त्यांची ऑक्साइडे तयार करतात

अधातू + ऑक्सिजन — अधातूचे ऑक्साईड अधातूंची ऑक्साइडे ही आम्लधर्मी असतात ती आम्लारीशी संयोग पावून द्रावणीय क्षार व पाणी तयार करतात

$$C + O_2 \longrightarrow CO_2$$
 $CO_2 + 2NaOH \longrightarrow Na_2CO_3 + H_2O$ 
धातुंचे ऑक्साइड पाण्यासोबत अभिक्रिया करून आम्त

अधातूंचे ऑक्साइड पाण्यासोबत अभिक्रिया करून आम्ल तयार करतात

$$CO_2$$
 +  $H_2O$   $\longrightarrow$   $H_2CO_3$  कार्बोनिक आम्ल  $SO_2$  +  $H_2O$   $\longrightarrow$   $H_2SO_3$  सल्फ्युरस आम्ल  $SO_3$  +  $H_2O$   $\longrightarrow$   $H_2SO_4$  सल्फ्युरिक आम्ल

ई. अधातूंची विरल आम्लासोबत अभिक्रिया होत नाही.

# धातू व अधातूंचे उपयोग



यादी करा व चर्चा करा.

आपल्या दैनंदिन जीवनात धातू व अधातू कोठे कोठे वापरात असतात त्यांची यादी तयार करा.

धातूचे नाव	उपयोग	अधातूचे नाव	उपयोग



धातूंच्या रासायनिक गुणधर्मांचा अभ्यास करताना सोन्याची किंवा चांदीची सहजपणे अभिक्रिया होत नाही असे का आढळते? राजधातू (Nobel Metal): सोने, चांदी, प्लॅटिनम, पॅलेडिअम व ऱ्होडिअम यांसारखे काही धातू राजधातू आहेत ते निसर्गात मूलद्रव्यांच्या स्वरूपात आढळतात त्यांच्यावर हवा, पाणी, उष्णता यांचा सहजपणे परिणाम होत नाही त्यांची क्षरण व ऑक्सिडीकरण अभिक्रिया ही कक्ष तापमानाला होत नाही

# राजधातूंचे उपयोग :

- 1 सोने, चांदी व प्लॅटिनम यांचा वापर मुख्यत: अलंकार बनवण्यासाठी होतो
- 2 चांदीचा उपयोग औषधीमध्ये होतो (Antibacterial property)
- 3 सोन्या चांदीची पदकेही तयार करतात
- 4 काही इलेक्ट्रॉनिक उपकरणात चांदी, सोने ह्यांचा उपयोग होतो
- 5 प्लॅटिनम, पॅलेडिअम या धातूंचा उपयोग उत्प्रेरक (Catalyst) म्हणून सुद्धा होतो

सोन्याची शुद्धता (Purity of Gold): सोनाराच्या दुकानात सोन्याचे भाव विचारले असता ते वेगवेगळे भाव सांगतात असे का?

सोने हा एक राजधातू असून सोने निसर्गात मूलद्रव्य स्वरूपात आढळते 100 टक्के शुद्ध सोने म्हणजे 24 कॅरेट सोने शुद्ध सोने मऊ असते त्यामुळे शुद्ध सोन्याने तयार केलेले दागिने दाबामुळे वाकतात किंवा तुटतात म्हणून त्यात सोनार तांबे किंवा चांदी विशिष्ट प्रमाणात मिसळतात दागिने तयार करण्यासाठी 22 कॅरेट किंवा त्याहन कमी कॅरेटचे सोने वापरतात

# सोन्याची शुद्धता : कॅरेट व टक्केवारी

कॅरेट	टक्केवारी
24	100
22	91.66
18	75.00
14	58.33
12	50.00
10	41.66

क्षरण (Corrosion): धातूंवर ओलाव्यामुळे हवेतील वायूंची प्रक्रिया होऊन धातूंची संयुगे तयार होतात या प्रक्रियेमुळे धातूंवर परिणाम होऊन ते झिजतात यालाच क्षरण असे म्हणतात



# माहीत आहे का तुम्हांला?



अमेरिकेतील न्यूयॉर्क शहराजवळ समुद्रात स्वातंत्र्यदेवतेचा पुतळा आहे मूळ पुतळ्याचा पृष्ठभाग तांब्यापासून बनवलेला होता पण आता हिरव्या रंगाचा दिसतो त्याचे कारण असे, की हवेतील कार्बन डायऑक्साइड व आर्द्रतेची अभिक्रिया तांब्यासोबत होऊन हिरव्या रंगाचे कॉपर कार्बोनेट तयार झाले आहे हे क्षरणाचे एक उत्तम उदाहरण आहे



# यादी करा व चर्चा करा.

तुमच्या दैनंदिन जीवनातील क्षरणाच्या उदाहरणांची यादी तयार करा

लोखंडावर ऑक्सिजन वायूची अभिक्रिया होऊन तांबूस रंगाचा लेप तयार होतो तांब्यावर कार्बन डायऑक्साइड वायूची अभिक्रिया होऊन हिरवट रंगाचा लेप तयार होतो चांदीवर हायड्रोजन सल्फाइड वायूची अभिक्रिया होऊन काळ्या रंगाचा लेप तयार होतो धातूंचे क्षरण होऊ नये म्हणून त्यांच्यावर तेल, ग्रीस, वारिनश, व रंगाचे थर दिले जाते तसेच दुसऱ्या न गंजणाऱ्या धातूचा मुलामा दिला जातो लोखंडावर जस्ताचा मुलामा देऊन लोखंडाचे क्षरण थांबवता येते या क्रियांमुळे धातूंच्या पृष्ठभागाचा हवेपासून संपर्क तुटतो व त्यामुळे रासायनिक अभिक्रिया घडू न शकल्याने क्षरण होत नाही

संमिश्रे (Alloy): दोन किंवा अधिक धातूंच्या किंवा धातू व अधातूंच्या एकजीव (समांगी) मिश्रणाला संमिश्र असे म्हणतात आवश्यकतेनुसार घटक मूलद्रव्ये विविध प्रमाणात मिसळून विविध संमिश्रे तयार करता येतात उदा घरामध्ये वापरण्यात येणारी स्टेनलेस स्टीलची भांडी लोखंड व कार्बन, क्रोमिअम, निकेल यांपासून बनलेले संमिश्र आहे पितळ हे संमिश्र तांबे व जस्त यांपासून बनवतात कांस्य हे संमिश्र तांबे व कथिल यांच्यापासून बनवतात



# माहीत आहे का तुम्हांला?

दिल्लीत कुतुबमिनार परिसरात सुमारे 1500 वर्षांपूर्वी तयार करण्यात आलेला एक लोहस्तंभ आहे इतकी वर्षे होऊनही तोस्तंभ आजही चकचकीत आहे कारण आपल्या पूर्वजांनी तो संमिश्रापासून



तयार केला आहे त्या लोहामध्ये अत्यल्प प्रमाणात कार्बन, सिलीकॉन, फॉस्फरस मिसळले आहे



# माहीत आहे का तुम्हांला?

स्वस्त किंमतीचे स्टेनलेस स्टील बनवताना कधीकधी महाग निकेल ऐवजी तांब्याचा वापर करतात तुम्ही काही स्टनेलेस स्टील भांड्यांना उभ्या चिरा गेल्याचे पाहिले असेल त्यामागे हे कारण असते



## चर्चा करा.

तुमच्याकडे भंगार घेणारे येत असतील ते भंगार घेऊन काय करतात ? त्याची आवश्यकता काय?

# स्वाध्याय

तक्ता पूर्ण करा.

धातूंचे गुणधर्म	दैनंदिन जीवनात उपयोग
(i) तन्यता	
(ii) वर्धनीयता	
(iii) उष्णतेचे वहन	
(iv) विद्युतवहन	
(v) नादमयता	

- 2. गटात न बसणारा शब्द ओळखा.
  - अ. सोने, चांदी, लोह, हिरा
  - आ. तन्यता, ठिसूळता, नादमयता, वर्धनीयता
  - इ. C, Br, S, P
  - ई. पितळ, कांस्य, लोखंड, पोलाद
- शास्त्रीय कारणे लिहा.
  - अ. स्वयंपाकाच्या स्टेनलेस स्टील भांड्यांच्या खालच्या भागावर तांब्याचा मुलामा दिलेला असतो.
  - आ. तांबे व पितळेची भांडी लिंबाने का घासतात?
  - इ. सोडिअम धातूला केरोसीनमध्ये ठेवतात.
- 4. खालील प्रश्नांची उत्तरे द्या.
  - अ. धातूंचे क्षरण होऊ नये म्हणून तुम्ही काय कराल?
  - आ. पितळ व कांस्य ही संमिश्रे कोणकोणत्या धातूंपासून बनलेली आहेत?
  - इ. क्षरणांचे दुष्परिणाम कोणते?
  - ई राजधातूंचे उपयोग कोणते?

 खाली गंजणे याची क्रिया दिली आहे. या क्रियेत तीनही परीक्षानळ्यांचे निरीक्षण करून खालील प्रश्नांची उत्तरे द्या.



- अ. परीक्षानळी 2 मधील खिळ्यावर गंज का चढला नाही?
- आ. परीक्षानळी 1 मधील खिळ्यावर खूप गंज का चढला असेल?
- इ. परीक्षानळी 3 मधील खिळचावर गंज चढेल का?

#### उपक्रम:

मिठाईवरील वर्ख कसा तयार करतात ? वर्ख कोणकोणत्या धातूंपासून बनवलेला असतो त्याची माहिती मिळवा.









# निरीक्षण करा.







8.1 पर्यावरणातील विविध समस्या

- पर्यावरणातील या समस्या का निर्माण झाल्या असाव्यात?
- या समस्यांवर मात करण्यासाठी काय करावे लागेल?

माणसाच्या निसर्गातील हस्तक्षेपामुळे पृथ्वीवर अनेक समस्या निर्माण झाल्या आहेत औद्योगिकीकरण, वाढती लोकसंख्या, खाणकाम, वाहतूक, कीटकनाशकांचा आणि खतांचा वाढता वापर यांमुळे पृथ्वीवर प्रदूषण वाढलेय या प्रद्षणाचे परिणाम माणसावर सुद्धा होऊ लागलेत

प्रदृषण (Pollution): नैसर्गिक पर्यावरणाचे परिसंस्थेला हानिकारक असे दृषितीकरण म्हणजे प्रदृषण होय



- 1 तुमच्या सभोवताली कोठे कोठे प्रद्षण आढळते?
- 2 प्रदूषण कशामुळे होते ?

# प्रदूषके (Pollutants)

परिसंस्थेच्या नैसर्गिक कार्यात अडथळा आणणाऱ्या, अजैविक व जैविक घटकांवर (वनस्पती, प्राणी आणि मानवावर)घातक परिणाम घडवणाऱ्या घटकांना प्रदूषके म्हणतात प्रदूषके पर्यावरणात जास्त प्रमाणात सोडली गेल्यास पर्यावरण विषारी व अनारोग्यकारक होते

प्रदूषके नैसर्गिक तसेच मानवनिर्मित असतात नैसर्गिक प्रदूषके निसर्गनियमानुसार कालांतराने नष्ट होतात, याउलट मानवनिर्मित प्रदुषके नष्ट होत नाहीत



8.2 माझ्या लेकरांनो ! मला वाचवा !



जर नैसर्गिक पदार्थ हे प्रदूषक असतील, तर ते वापरताना त्याचे दुष्परिणाम आपल्याला का जाणवत नाहीत ? असे पदार्थ प्रद्षक कधी बनतात ?



कृती: तुमच्या परिसराचे तुम्ही स्वत: सर्वेक्षण करून तुमच्या परिसरातील प्रदृषित ठिकाणे कोणती ते ठरवा प्रदूषण आढळलेल्या प्रत्येक ठिकाणाशी संबंधित असा प्रदूषणकारी घटक (प्रदूषक) कोणता, तो ओळखण्याचा प्रयत्न करा



- 1 कोणकोणत्या प्रकारची प्रदुषके आढळून येतात ?
- 2 प्रदुषके विघटनशील असतात की अविघटनशील ?



## अ. हवा प्रदुषण (Air pollution)



- 1 पृथ्वीवरील वातावरणात असणाऱ्या विविध वायूंचे प्रमाण दर्शविणारा आलेख काढा
- 2 हवा हे वेगवेगळ्या वायूंचे/घटकांचे एकजिनसी मिश्रण आहे, असे का म्हणतात ?
- 3 इंधनांच्या ज्वलनातून हवेत कोणकोणते घातक वायू बाहेर सोडले जातात ?

विषारी वायू, धूर, धूलिकण, सूक्ष्मजीव यांसारख्या घातक पदार्थामुळे हवा दूषित होण्यास हवेचे प्रदूषण म्हणतात

# हवा प्रदूषणाची कारणे



खालील चित्रातील हवा प्रदूषण कोणत्या घटकांमुळे होते ते सांगा







8.3 विविध घटकांमुळे हवा प्रदूषण

# हवा प्रदूषणाची कारणे

# नैसर्गिक कारणे

- 1. ज्वालामुखीचा उद्रेक: उद्रेकातून घनरूप, वायुरूप व द्रवरूप पदार्थ बाहेर पडतात उदा हायड्रोजन सल्फाईड, सल्फर डायऑक्साइड, कार्बन डायऑक्साइड, अमोनिअम क्लोराइड, हायड्रोजन, बाष्प, धुलिकण
- 2. भूकंप: भूकंपामुळे पृथ्वीच्या अंतर्गत भागातील विषारी वायू व पाण्याची वाफ मोठ्या प्रमाणात हवेत मिसळली जाते
- 3. **वावटळी व धुळीची वादळे** : जिमनीवरील धूळ, केरकचरा, माती, परागकण व सूक्ष्मजीव हवेत मिसळतात
- 4. वणवे : वणव्यामुळे कार्बन डायऑक्साइड, सल्फरडाय ऑक्साइड, हायड्रोजन सल्फाइड व धूर वातावरणात मिसळतो
- 5. सूक्ष्मजीव हवेत मिसळल्यामुळे : उदा गाजरगवत, काही जीवाणू, कवकांचे बिजाणू हवेत मिसळतात

#### मानवनिर्मित कारणे

- 1. इंधनाचा वापर : I. दगडी कोळसा, लाकूड, एलपीजी, रॉकेल, डीझेल, पेट्रोल यांच्या वापरामुळे कार्बन डायऑक्साइड, कार्बन मोनाक्साइड, नायट्रोजन ऑक्साइड, सल्फर डायऑक्साइड, शिशाची संयुगे हवेत मिसळतात II घन कचरा, शेतीचा कचरा, बागेतला कचरा उघड्यावर जाळल्यामुळे हवा प्रदूषण होते
- 2. औद्योगिकीकरण : विविध कारखान्यातून प्रचंड प्रमाणात धूर बाहेर पडतो गंधकाची भस्मे, नायट्रोजन ऑक्साइड, वातावरणात मिसळतात
- 3. अणुऊर्जानिर्मिती व अणुस्फोट : अणुऊर्जानिर्मितीत युरेनिअम, थोरिअम, ग्रॅफाइट, प्लुटोनिअम या मूलद्रव्यांच्या वापरामुळे किरणोत्सर्जन होऊन हवा प्रदृषण घडून येते



1 वरील प्रमुख कारणांशिवाय हवा प्रदूषणाची कारणे कोणती आहेत ?

55

2 चार स्ट्रोक (Four Stroke) इंजिनगाड्यांपेक्षा दोन स्ट्रोक इंजिनगाड्यांमुळे हवा जास्त प्रदृषित होते का?

# इंटरनेट माझा मित्र

- जगातील मोठ-मोठ्या ज्वालामुखींची माहिती मिळवा
- य महाराष्ट्रातील मोठ्या शहरांमध्ये व गावांमध्ये वायू प्रदूषणाचा मानवी स्वास्थ्यावर काय परिणाम होतो याची माहिती मिळवा

# इतिहासात डोकावताना...

- 1 लंडनमध्ये हवा प्रदूषणामुळे 5 ते 9 डिसेंबर 1952 या कालावधीत दाट धुके पडले त्यात दगडी कोळसा ज्वलनातून बाहेर पडणारा धूर मिसळला या धुरक्याची छाया 5 दिवस राहिली लंडन शहरात 3 ते 7 डिसेंबर 1962 या कालावधीत अशीच छाया होती
- 2 इ स 1948 साली पिट्सबर्ग शहरावर धूर व धुराची काजळी यांमुळे दिवसाही रात्रच झाली, यावेळी या शहराला "काळे शहर" म्हणून ओळखले गेले

蛃.	हवा प्रदूषके	स्त्रोत	परिणाम
1	सल्फर डाय ऑक्साईड ( $SO_2$ )	कारखाने (ज्या ठिकाणी कोळसा व	डोळ्यांचा दाह, श्वसनमार्गाचा दाह,
		खनिज तेल – इंधनाचा वापर )	अतिरिक्त कफ निर्मिती, खोकला दम लागणे
2	कार्बन मोनाक्साइड (CO)	वाहन आणि कारखान्यांचा धूर	रक्ताच्या ऑक्सिजन धारणक्षमतेत घट
3	नायट्रोजनची ऑक्साइडे	वाहनांचा धूर फुफ्फुसे व श्वसन मार्गाचा दाह	
4	हवेत मिसळलेले कणरूप पदार्थ	उद्योग व वाहनांचा धूर	श्वसनरोग
5	<u> </u>	उद्योग व वाहनांचा धूर	सिलिकॉसिस व्याधी
6	कीडनाशके	कीडनाशकांची निर्मिती व वापर	मनोदौर्बल्य, दीर्घश्वसनामुळे मृत्यू
7	मिथेन (CH ₄ )	कारखान्यांतून होणारी वायुगळती	विषबाधा, त्वचेचा कर्करोग, दमा, श्वसनसंस्थेचे विकार





# माहीत आहे का तुम्हांला?

2 डिसेंबर 1984च्या रात्री भोपाळमध्ये आतापर्यंतची सर्वांत भयानक औद्योगिक दुर्घटना घडली तेथे अपघातातून घडलेल्या वायुगळतीमुळे आठ हजार लोक प्राणाला मुकले

भोपाळ गॅस दुर्घटनेबद्दल अधिक माहिती मिळवा आणि त्या आधारे पुढील मुद्दयांची चर्चा करा - दुर्घटनेचे स्वरूप, कारणे, नंतरचे परिणाम प्रतिबंधात्मक उपाय

# हवा प्रदूषणाचा वनस्पती व प्राणी यांच्यावर होणारा परिणाम

#### वनस्पती

- 1 पर्णछिद्रे बुजून जातात
- 2 प्रकाश संश्लेषणाची क्रिया मंदावते
- 3 वनस्पतीची वाढ खुंटते पाने गळतात, पिवळी पडतात

## प्राणी

- 1 श्वसनावर विपरीत परिणाम होतो
- 2 डोळ्यांचा दाह



- 1 ओझोनच्या थराचे महत्त्व काय ?
- 2 ओझोनच्या थरात घट होण्याची कारणे कोणती ?



## हवा प्रदषणाचा वातावरणावर होणारा परिणाम

ओझोन थराचा ऱ्हास/नाश : आपण पूर्वी अभ्यासले आहे की, वातावरणाच्या स्थितांबर या थराच्या खालच्या भागात ओझोनचा थर आढळतो सूर्यापासून उत्सर्जित होणाऱ्या अतिनील किरणांपासून (UV-B) ओझोन वायूचा थर पृथ्वीवरील सजीव सृष्टीचे संरक्षण करतो परंतु आता या ओझोन थराला खालील कारणांमुळे धोका निर्माण झाला आहे

हरितगृह परिणाम व जागितक तापमान वाढ ः  $\mathrm{CO}_2$  वातावरणात अगदी कमी प्रमाणात असला तरी तो सूर्याची उत्सर्जित ऊर्जा शोषून घेण्याचे अतिशय उपयुक्त काम करतो मागील शंभर वर्षांमध्ये औद्योगिकीकरणामुळे वातावरणामधील  $\mathrm{CO}_2$  चे प्रमाण वाढले आहे या  $\mathrm{CO}_2$  चा पृथ्वीच्या तापमानावर होणारा परिणाम म्हणजेच 'हरितगृह परिणाम' होय  $\mathrm{CO}_2$  प्रमाणे नायट्रस ऑक्साइड, मिथेन वायू व  $\mathrm{CFC}$  हे पृथ्वीवरील वातावरणातील उष्णता रोखून ठेवतात एकत्रितपणे त्यांना 'हरितगृह वायू' असे म्हटले जाते



8.5 हरितगृह परिणाम

वाढत्या हरितगृह परिणामामुळे हळूहळू जागतिक तापमान वाढत चालले आहे यामुळे हवामानात बदल घडून त्यामुळे पिकांचे उत्पादन, वन्यजीवांचे वितरण ह्यात बिघाड तसेच हिमनग व हिमनद्या वितळून समुद्रपातळीमध्ये वाढ दिसून येत आहे



8.6 आम्लवर्षा

आम्लवर्षा (Acid Rain): कोळसा, लाकूड, खनिज तेले यांसारख्या इंधनाच्या ज्वलनातून सल्फर व नायट्रोजन यांची ऑक्साइडे वातावरणात सोडली जातात ही पावसाच्या पाण्यात मिसळतात व त्यापासून सल्फुरिक आम्ल, नायट्रस आम्ल व नायट्रीक आम्ल तयार होते ही आम्ले, पावसाचे थेंब किंवा हिमकणांमध्ये मिसळून जो पाऊस किंवा बर्फ पडतो त्यालाच आम्लवर्षा महणतात

#### आम्लवर्षेचे परिणाम

आम्लयुक्त पावसामुळे मृदेची व पाण्याच्या साठ्याची आम्लता वाढते यामुळे जलचर प्राणी, वनस्पती व संपूर्ण जंगलातील जीवनाची हानी होते व संपूर्ण परिसंस्थेवर विपरित परिणाम होतो

- 2 इमारती, पुतळे, ऐतिहासिक वास्तू, पूल, धातूच्या मूर्ती, तारेची कुंपणे इत्यादींचे क्षरण होते
- 3 आम्ल पर्जन्यामुळे अप्रत्यक्षपणे कॅडिमअम आणि मर्क्युरीसारखे जड धातू वनस्पतीमध्ये शोषली जाऊन अन्नसाखळीत शिरतात
- 4 जलाशयातील आणि जलवाहिन्यातील पाणी आम्लयुक्त झाल्याने जलवाहिन्यांच्या विशिष्ट धातूंचे व प्लॅस्टीकचे पेयजलात निक्षालन होऊन आरोग्याच्या गंभीर समस्या उद्भवतात



## हवा प्रदृषणावर प्रतिबंधात्मक उपाय

- 1 कारखान्यातून बाहेर पडणाऱ्या धुरात अनेक दूषित कण असतात, हवा प्रदूषण नियंत्रित करणाऱ्या यंत्रणेचा वापर बंधनकारक करावा उदा निरोधक यंत्रणा (Arresters), गाळणीयंत्र (Filters) यांचा वापर करावा
- शहरातील दुर्गंध पसरविणाऱ्या कचऱ्याची योग्य विल्हेवाट लावावी
- 3 आण्विक चाचण्या, रासायनिक अस्त्रे यांच्या वापरावर योग्य नियंत्रण असावे
- 4 CFC निर्मितीवर बंदी/बंधने आणावीत



# माहीत आहे का तुम्हांला?

हवेच्या गुणवत्तेचा निर्देशांक (Air Quality Index) : आपल्या शहरातील हवा कितपत प्रदूषित झाली आहे, ही गोष्ट नागरिकांना माहित असणे आवश्यक आहे हवेच्या गुणवत्तेचा निर्देशांक निश्चित करण्यासाठी हवेतील  $SO_2$ , CO,  $NO_2$ , भूपृष्ठाजवळील हवेत असलेला ओझोन, कणीय पदार्थ वगैरे वायूंचे प्रमाण दररोज मोजले जाते

मोठ्या शहरांमध्ये जास्त रहदारी असणाऱ्या मुख्य चौकात असे हवेच्या गुणवत्तेचे निर्देशांक दर्शविणारे फलक लावलेले आहेत



# माहीत आहे का तुम्हांला?

सल्फरयुक्त हवा प्रदूषकाचा रंगकाम, तैलचित्र, नायलॉन कापड, सुती कपडे, रेयॉन कपडे, कातडी वस्तू आणि कागद यावर परिणाम होऊन त्यांच्या रंगात बदल होतो

## आ. जल प्रदूषण (Water Pollution)



# सांगा पाहू !

- 1 वापरण्यास योग्य असे पाणी आपणांस कोणकोणत्या जलस्त्रोतापासून मिळते?
- 2 पाण्याचा वापर आपण कोणकोणत्या कारणांसाठी करतो?
- 3 पृथ्वीवर एकूण क्षेत्रफळाच्या किती टक्के पाणी आहे?
- 4 कोणकोणत्या कारणांमुळे पाणी प्रदूषित होते?
- 5 पाण्याला जीवन असे का म्हणतात?

नैसर्गिक व बाह्य घटकांच्या मिश्रणाने पाणी जेव्हा अस्वच्छ, विषारी होते, जेव्हा त्यातील ऑक्सिजन प्रमाण घटते व त्यामुळे सजीवांना अपाय होतो, साथीच्या रोगांचा फैलाव होतो तेव्हा जलप्रदूषण झाले असे म्हणतात

गोड्या किंवा समुद्राच्या पाण्यामधील प्रदूषणामध्ये भौतिक, रासायनिक व जैविक बदलांचा समावेश होतो



8.7 जल प्रद्षण

# जलप्रदूषके (Water Pollutants)

- अ जैविक जलप्रदूषके : शैवाल, जिवाणू, विषाणू व परजीवी सजीव यांच्यामुळे पाणी पिण्यायोग्य राहत नाही या जैविक अशुद्धीमुळे रोग पसरतात
- ब असेंद्रिय जलप्रदूषके : बारीक वाळू, धुलिकण, मातीचे कण असे तरंगणारे पदार्थ, क्षारांचा साका, आर्सेनिक, कॅडिमिअम, शिसे, पारा यांची संयुगे व किरणोत्सारी पदार्थांचे अंश
- क सेंद्रिय जलप्रदूषके : तणनाशके, कीटकनाशके, खते, सांडपाणी तसेच कारखान्यातील उत्सर्जके



# माहीत आहे का तुम्हांला?

तामिळनाडू राज्यात कातडी कमावण्याची अनेक केंद्रे आहेत त्यातून बाहेर टाकले जाणारे पाणी पलार या नदीत सोडले जाते, त्यामुळे या नदीला 'पझ्झर' (गटार नदी) असे म्हणतात

## पाणी प्रदुषणाची कारणे

#### अ. नैसर्गिक कारणे व परिणाम

#### 1. जलपणींची वाढ

- प्राणवायु कमी होतो
- पाण्याचा नैसर्गिक गुणधर्म बदलतो

## 2. कुजणारे पदार्थ

• प्राणी व वनस्पतीचे अवशेष सडणे व कुजणे इ मुळे

## 3. गाळामुळे

• नदीच्या प्रवाहामुळे व पात्र बदलल्यामुळे

# 4. जिमनीची धूप

• जिमनीची धूप झाल्याने जीवाणू यांसारखे सूक्ष्मजीव अनेक जैविक, अजैविक घटक पाण्यात मिसळतात

#### 5. **कवक**

 पाण्यात कुजणाऱ्या सेंद्रीय पदार्थांवर कवक व जीवाणूंची वाढ होते

#### 6. शैवाल

• जास्त वाढल्याने पाणी अस्वच्छ होते

## 7. कुमी

जिमनीवरील कृमी पावसाच्या पाण्यात वाहत जातात

#### ब. मानव निर्मित कारणे व परिणाम

#### 1. निवासी क्षेत्रातील सांडपाणी

 गावातील - शहरातील सांडपाणी - मैला नदीच्या वाहत्या पाण्यात, जलाशयात सोडले जाते

## 2. औद्यागिक सांडपाणी

 कापड, साखर, कागद, लोह, चर्मोद्योग व दुग्धप्रक्रिया उद्योगातून रंग, विरंजक रसायने, चामड्याचे तुकडे, तंतू, पारा, शिसे इत्यादी पाण्यात सोडले जातात

#### 3. खनिज तेल गळती

 वाहतूक करताना तेल सांडणे, गळती होणे, टॅंकर सफाई करताना पाण्यावर तेलाचा तवंग येतो

## 4. खते व कीटकनाशकांचा वापर

- रासायनिक, फॉस्फेटयुक्त व नायट्रोजयुक्त खते
- एन्ड्रीन, क्लोरिन, कार्बोनेटयुक्त कीटकनाशके इत्यादी पाण्याबरोबर वाहत जाऊन प्रवाहाला मिळते

#### 8. इतर कारणे

 नदीच्या पाण्यात मलमूत्र विसर्जन, कपडे धुणे, आंबाडी-घायपात पाण्यात सडविणे यांमुळे पाणी प्रदूषित होते रक्षा, अस्थि विसर्जन व निर्माल्य पाण्यात टाकणे औष्णिक विद्युत केंद्रातून सांडपाणी सोडणे

# पाणी प्रदूषणाचे परिणाम

# 1. मानवावर होणारा परिणाम

- प्रदूषित पाण्यामुळे अतिसार कावीळ, विषमज्वर, त्वचारोग, पचनसंस्थेचे विकार होतात
- यकृत, मूत्रपिंड, मेंदू विकार, हाडांमध्ये विकृती,
   उच्च रक्तदाब हे विकार होतात

# 2. परिसंस्थेवर होणारा परिणाम

- वनस्पतींची वाढ खुंटते,
- वनस्पतीं प्रजातींचा नाश होतो
- पाण्यातील क्षाराचे प्रमाण वाढते
- पाण्यात विरघळणाऱ्या ऑक्सीजनचे प्रमाणे घटते
- जलपरिसंस्थेचे संतुलन बिघडते
- जलचर मरतात
- समुद्रपक्ष्यांवरही परिणाम होतो

# 3. इतर परिणाम

- पाण्याचे नैसर्गिक व भौतिक गुणधर्म बदलतात
- पाण्याचा रंग, चव बदलते
- पाण्यातील उपयुक्त जीवजंतू नष्ट होतात
- जिमनीच्या सुपिकतेवर परिणाम होतो
- पिकात विषारी तत्त्व समाविष्ट होतात



## इ. मृदा प्रदुषण (Soil Pollution)



- 1 जिमनीची धूप म्हणजे काय ?
- 2 मृदेची सुपीकता कमी होण्याची कारणे कोणती ?

पृथ्वीवरील जिमनीने व्यापलेल्या एकूण भागांपैकी काही भाग बर्फाच्छादित आहे, काही भाग वाळवंटी तर काही भाग पर्वत व डोंगररांगानी व्यापलेला आहे मानवी वापराला उपयुक्त जमीन खूप कमी आहे

मातीतील भौतिक, जैविक व रासायनिक गुणधर्मात नैसर्गिकरीत्या व मानवी कृत्यामुळे जे बदल घडून येतात, त्यामुळे तिची उत्पादकता कमी होते तेव्हा मृदा प्रदूषण झाले असे म्हणतात



शेजारील दोन छायाचित्रांची तुलना करा





घरगुती टाकाऊ वस्तू, जैविक टाकाऊ पदार्थ शेतीतून बाहेर पडणारे पदार्थ यांची प्रत्येकी 5 उदाहरणे द्या व त्यांच्या मातीत साचण्यामुळे माती कशी प्रदूषित होते हे तुमच्या शब्दांत लिहा

"ओला कचरा सुका कचरा," तसेच "घरोघरी शौचालय" यावर वर्गमित्रांबरोबर चर्चा करून तुमच्या शब्दांत माहिती लिहा.

# मृदा प्रदूषणाचे परिणाम

- 1 कारखान्यातील क्षारयुक्त, आम्लयुक्त पाणी, मातीत मिसळल्याने माती नापीक बनते
- 2 किरणोत्सारी पदार्थ व इतर प्रदूषक मृदेमधून पिके, पाणी व मानव अशा अन्नसाखळीतून प्रवास करतात
- 3 मृदा प्रदूषणामुळे जलप्रदूषणाचा धोका वाढतो कारण विषारी द्रव्ये मृदेमधून जवळच्या पाणीसाठ्यात किंवा पाझरून भूगर्भजलात प्रवेश करतात, तसेच जीवजंतूमुळे विविध रोगांचा प्रसार होतो

# मृदा प्रदूषणाचा हवा तसेच जल प्रदूषण यांच्याशी असणारा संबंध

ओल्या कचऱ्याचे खतात रूपांतर न करता चुकीच्या पद्धतीने तो फेकून दिल्यास तो तेथे सडतो, कुजतो, त्यामध्ये हानिकारक रोगजंतूंची वाढ होते व हे वाहत्या पाण्यात मिसळले जाऊन पाणी प्रद्षण होते

शेतीसाठी कीटकनाशकांचा, रासायनिक खतांचा, तणनाशकांचा वापर केला जातो, त्यामुळे मृदा प्रदूषण होते कीटकनाशक व तणनाशकांचा जास्त प्रमाणात केलेल्या त्या फवारणीमुळे ती रसायने हवेत मिसळतात व हवा प्रदूषण होते तसेच रासायनिक खतांचा वापर जास्त प्रमाणात केल्यास ही रसायने पाण्यात मिसळतात व पाणी प्रदूषण होते

मानवी मलमूत्र, पशु, पक्षी यांची विष्ठा मातीत मिसळल्यामुळे मृदा प्रदूषण होते ही घाण तेथे तशीच राहिल्यास त्यातून वेगवेगळे वायू बाहेर पडतात व दुर्गंधी सुटते, हे वायू हवेत मिसळतात व हवा प्रदूषण होते हीच घाण पाण्यात मिसळल्यास पाणी प्रदूषण होते

प्रदूषण - प्रतिबंध व नियंत्रण : प्रदूषण नियंत्रण, नियमन व ते रोखण्यासाठी भारत सरकारने काही कायदे केले आहेत, प्रदूषण नियंत्रणाशी संबंधित कायदे पुढीलप्रमाणे आहे

- 1. जल प्रद्षण प्रतिबंध व नियंत्रण अधिनियम 1974
- 2. हवा प्रदुषण प्रतिबंध व नियंत्रण अधिनियम 1981

3. पर्यावरण संरक्षण अधिनियम 1986

जैव वैद्यकीय कचरा, धोकादायक उत्सर्ग, घनकचरा, ध्वनी प्रदूषण नियंत्रण या सर्वांबाबत विविध कायदे व नियम अस्तित्वात आहे कारखाने, औद्यागिक वसाहती, महानगरपालिका, जिल्हा परिषदा, पंचायत समित्या, ग्रामपंचायती इत्यादी संस्थांद्वारे वरील प्रदूषण नियंत्रणाशी संबंधित कायदे यांचे पालन होत आहे की नाही यावर देखरेख ठेवण्याचे काम महाराष्ट्र प्रदूषण नियामक मंडळ व केंद्रीय प्रदूषण नियामक मंडळ या शासकीय संस्थांद्वारे केले जाते



## स्वाध्याय

- 1. खाली काही वाक्ये दिली आहेत, ती कोणत्या प्रकारच्या प्रदेषणात मोडतात ते सांगा.
  - अ. दिल्लीत भरदिवसा धुके असल्याचे जाणवते.
  - आ. पाणीपुरी खाल्ल्यावर बरेचदा उलट्या व जुलाबांचा त्रास होतो.
  - इ. बरेचदा बगीच्यात फिरण्यास गेल्यावर शिंकांचा त्रास होतो.
  - ई. काही भागांतील मातीत पिकांची वाढ होत नाही.
  - जास्त वाहतूक असणाऱ्या चौकात काम करणाऱ्या बऱ्याच व्यक्तींना श्वसनाचे रोग, धाप लागणे असे त्रास होतात.
- 2. परिच्छेद वाचून त्यात कोणकोणते प्रदूषणाचे विविध प्रकार आलेत व कोणत्या वाक्यात आलेत ते नोंदवा.

निलेश शहरी भागात राहणारा व इयत्ता आठवीत शिकणारा मुलगा आहे. दररोज तो शाळेत बसने जातो, शाळेत जाण्यासाठी त्याला एक तास लागतो. शाळेत जाताना त्याला वाटेत अनेक चार चाकी, दोन चाकी गाड्या, रिक्षा, बस या वाहनांची वाहतूक लागते. काही दिवसांनी त्याला सम्याचा त्रास व्हायला लागला. डॉक्टरांनी त्याला शहरापासून लांब राहण्यास सांगितले. तेव्हा त्याच्या आईने त्याला त्याच्या मामाच्या गावाला पाठविले. निलेश जेंव्हा गावात फिरला तेंव्हा त्याला अनेक ठिकाणी कचऱ्याचे ढीग दिसले, अनेक ठिकाणी प्राणी, मानवी मलमूत्राची दुर्गंधी येत होती, काही ठिकाणी छोट्या नाल्यातून दुर्गंधी येणारे काळे पाणी वाहताना दिसले. काही दिवसांनी त्याला पोटाच्या विकारांचा त्रास व्हायला लागला.

3. 'अ' व 'ब' स्तंभाची योग्य सांगड घालून प्रदृषित घटकाचा मानवी स्वास्थ्यावर कोणता परिणाम होतो ते स्पष्ट करा.

#### 'अ'स्तंभ

#### 'ब' स्तंभ

- 1. कोबाल्टमिश्रित पाणी
- अ. मतिमंदत्व
- 2. मिथेन वायू
- ब. अर्धांग वायू
- 3. शिसेमिश्रित पाणी
- क. फुफ्फुसांवर सूज येणे
- 4. सल्फर डायऑकसाइड
- ड. त्वचेचा कॅन्सर
- 5. नायट्रोजन डायऑक्साइड
- इ. डोळे चुरचुरणे

## 4. चूक की बरोबर ठरवा.

- अ. नदीच्या वाहत्या पाण्यात कपडे धुतल्यास पाणी प्रदूषित होत नाही.
- आ. विजेवर चालणारी यंत्रे जितकी जास्त वापरावी तितके प्रदूषण जास्त होते.

## 5. खालील प्रश्नांची उत्तरे द्या.

- अ. प्रदूषण व प्रदूषके म्हणजे काय ?
- आ. आम्लपर्जन्य म्हणजे काय ?
- इ. हरितगृह परिणाम म्हणजे काय ?
- ई. दृश्य प्रदूषके व अदृश्य प्रदूषके कोणती ?

## 6. पुढील प्रश्नांची उत्तरे लिहा.

- अ. तुमच्या आसपासच्या भागात आढळलेली हवा प्रदूषण, जल प्रदूषण व मृदा प्रदूषण यांची प्रत्येकी दोन उदाहरणे द्या.
- आ. वाहनांमुळे प्रदूषण कसे घडते ? कमीत कमी प्रदूषण ज्यामुळे घडते अशा काही वाहनांची नावे सांगा.
- इ. जल प्रद्षणाची नैसर्गिक कारणे कोणती ते लिहा.
- ई. हवा प्रदूषणा वर कोणतेही चार प्रतिबंधात्मक उपाय सुचवा.
- उ. हरितगृह परिणाम व जागतिक तापमान वाढ संबंध स्पष्ट करा./परिणाम सांगा.
- ऊ. हवा प्रदूषण, मृदा प्रदूषण व पाणी प्रदूषण यावर प्रत्येकी दोन-दोन घोष वाक्ये तयार करा.
- 7. खालील प्रदूषकांचे मानवनिर्मित व निसर्गनिर्मित या गटांमध्ये वर्गीकरण करा.

सांडपाणी, धूळ, परागकण, रासायनिक खते, वाहनांचा धूर, शैवाल, किटकनाशके, पशुपक्ष्यांची विष्ठा.

#### उपक्रम :

- 1. तुमच्या भागात असणाऱ्या पाण्याच्या शुद्धतेची चाचणी करणाऱ्या प्रयोगशाळेला भेट द्या आणि पिण्याच्या पाण्याचे प्रदूषण ओळखणाऱ्या चाचण्यांची माहिती घ्या.
- 2. तुमच्या भागातील सर्वात जास्त रहदारीच्या चौकाला भेट द्या आणि तेथील वेगवेगळ्या वेळी जाणवणारे हवा प्रदूषण अनुभवा व कोणत्या वेळी सर्वांत जास्त व कोणत्या वेळी सर्वांत कमी हवा प्रदूषण आहे त्याची नोंद घ्या.





# 9. आपत्ती व्यवस्थापन



थोडे आठवा.

- 1 आपत्ती म्हणजे काय?
- 2 आपत्तीचे प्रकार कोणते?

मागील इयत्तेत आपण विविध नैसर्गिक आपत्तींची तोंडओळख / थोडक्यात माहिती घेतलेली आहे या इयत्तेत आपण भूकंप व इतर काही नैसर्गिक आपत्तींविषयी अधिक अभ्यासणार आहोत



भूकंप म्हणजे काय? भूकंपाचे कोणकोणते परिणाम होतात?

## भूकंप (Earthquake)

भूकवचामध्ये अचानक कंपन होणे अथवा भूकवच अचानक काही क्षण हादरणे यास 'भूकंप' म्हणतात भूकंपामुळे भूपृष्ठाचा काही भाग मागे-पुढे किंवा वर-खाली होतो साहजिकच त्यामुळे भूपृष्ठ हादरते

भूगर्भात निर्माण होणारे धक्के व लाटा जिमनीच्या आत आणि वरच्या पृष्ठभागावर सर्व दिशांनी पसरतात भूकंपनाभीच्या अगदी वर, भूपृष्ठावर असलेल्या बिंदूस भूकंपाचा केंद्रबिंदू म्हणतात तीव्र स्वरूपाच्या लाटा/हादरे सर्वप्रथम केंद्रालगत येऊन पोहोचतात, त्यामुळे तेथे हानीचे प्रमाण सर्वांत जास्त असते

भूकंपाचे हादरे हे सौम्य किंवा तीव्र अशा दोन्ही स्वरूपाचे अ सूश कतात पृथ्वीवर होणाऱ्या विध्वंसक भूकंपापेक्षा सौम्य भूकंपाची संख्या खूपच जास्त असते

पृथ्वीवर दररोज कुठे ना कुठे भूकंप होतो National Earthquakes information centre च्या निरीकयषणानुसार आपल्म पृथ्वीवर प्रयत्क वषायवला सुमारे 12,400-14,000 भूकंप होतात या वरून लकयषात येते, की पृथ्वी सतत कमी-अधिक प्रयमाणात कंप पावत असते



9.3 : भूकंपमापक यंत्र



9.1 इमारतींना गेलेले तडे



9.2 भूकंपनाभी व भूकंपकेंद्र

भूकंपाची नोंद घेणाऱ्या यंत्रास 'सेस्मोग्राफ अथवा 'सेस्मोमीटर' असे नाव आहे तसेच भूकंपाची 'तीव्रता' मोजण्यासाठी 'रिश्टर स्केल' या एककाचा वापर केला जातो हे एक गणिती एकक आहे

भूकंपाच्या परिणामांचे वर्णन दिले आहे या तक्त्याचा काळजीपूर्वक अभ्यास करा

इंटरनेट माझा मित्र इंटरनेटच्या साहाय्याने रिश्टर मापन पद्धती व भूकंपाचे परिणाम यांबाबत माहिती मिळवा

भूकंपाची कारणे		भूकंपाचे परिणाम	
1 ज्वालामुखीचे उद्रेक	1	मनुष्यासह वन्यजीव व पाळीव प्राणी यांची जीवित हानी	
2 मोठमोठ्या धरणांचा जिमनीवर पडणारा ताण	2	मोठ्या प्रमाणात वित्तहानी होते (विजेचे खांब, पाईप लाईन्स	
3 खाणकाम		घरे, इमारती, रस्ते, लोहमार्ग उद्ध्वस्त होतात)	
4 जिमनीच्या आत घेतल्या जाणाऱ्या अणुचाचण्या	3	जैवविविधतेचे नुकसान होऊन परिसंस्था धोक्यात येते	
5 भूपृष्ठातून अंतर्गत भागात पाणी झिरपते आतील	4	नद्या, नाले यांचे प्रवाह बदलतात	
प्रचंड उष्णतेने त्या पाण्याची वाफ होते व ती वाफ	5	शहरी भागात आग लागण्याचा धोका असतो	
कमकुवत पृष्ठभागातून बाहेर येण्याचा प्रयत्न	6	समुद्राच्या तळाशी भूकंप झाल्यास त्सुनामी लाटा निर्माण	
करते तेव्हा भूकंप होतात		होऊन किनारपट्टीच्या भागाचे खूप मोठ्या प्रमाणावर	
		नुकसान होण्याची शक्यता असते	
	7	भूमिगत जलपातळी वर-खाली जाते	

## भुकंपात घ्यायची दक्षता :

# भूकंपाच्यावेळी तुम्ही घरामध्ये असाल, तर

भूकंपाची जाणीव झाल्यास न घाबरता सैरावैरा न पळता, आहे त्याच जागी शांत उभे राहावे जिमनीवर बसा, टेबल, पलंग कोणत्याही एखाद्या फर्निचरखाली जाऊन स्वतःला झाकून घ्या आणि जिमनीची हालचाल थांबेपर्यंत तेथेच थांबा तुमच्या आसपास कुठे टेबल किंवा डेस्क नसेल, तर घराच्या एखाद्या कोपऱ्यात खाली बसून दोन्ही हात गुडघ्यांभोवती त्यात तुमचा चेहरा झाकून ठेवा

## चालत्या वाहनात असाल, किंवा घराबाहेर असाल, तर

सुरक्षित ठिकाण पाहून लगेच वाहन थांबवा आणि तुम्ही देखील वाहनाच्या आत थांबा, बाहेर येण्याचे टाळा इमारती, झाडे, विजेच्या तारांजवळ थांबू नका

# भूकंपाच्या वेळी हे करू नका.

- 1 बहुमजली इमारतीमधील लिफ्टचा वापर करू नका जिना वापरा
- एका जागी अवघडलेल्या स्थितीत जास्त वेळ बसू नका शरीराची थोडीफार हालचाल करा
- 3 भूकंपानंतर विजेच्या शॉर्टसर्किटमुळे आग लागू शकते हे टाळण्यासाठी घरातील मेन स्वीच दक्षतापूर्वक बंद करा अशा प्रसंगी मेणबत्या, कंदील, काड्यापेटी यांचा वापर करू नका बॅटरी / टॉर्चचा वापर करा





(आ)



9.4 घ्यायची काळजी

भूकंपरोधक इमारती: जिमनीची ठराविक मर्यादेपर्यंत हालचाल झाली तरी धोका होत नाही, अशा बांधकामांना भूकंपरोधक बांधकामे म्हणतात इमारतींच्या बांधकामांसाठी भारतीय मानक संस्थेने काही कोड बनवलेले आहेत आय एस 456 प्रमाणे इमारतीचे बांधकाम केले जाते तसेच भूकंपरोधक बांधकामासाठी 'आय एस 1893 (भूकंपरोधक आरेखनांच्या संरचनांचे मानदंड) आणि आय एस 13920 (भूकंप प्रभावाच्या संदर्भात सशक्त काँक्रीट संरचनाचा ताणीय विस्तार) वापरले जातात भूकंपरोधक बांधकामात प्रगत तंत्रज्ञान वापरले जाते

भूकंपाची पूर्वसूचना मिळावी यासाठी लेसर रेंजिग, व्हेरी लाँग, बेसलाईन, गायगर कौंटर, क्रीप मीटर, स्ट्रेन मीटर, टाइड गेज, टिल्ट मीटर, व्हॉल्युमेट्रिक स्ट्रेन गेज यांसारखी आधुनिक साधने वापरली जातात

#### आग (Fire)



आग ही नैसर्गिक आपत्ती आहे की मानवनिर्मित ?

# आगीचे प्रकार (Types of Fire)

- 1. 'अ' वर्गीय आग (घनरूपपदार्थ) : सर्वसाधारण ज्वालाग्राही घनपदार्थांपासूनची आग (जसे, लाकूड, कपडे, कोळसा, कागद इत्यादी) थंडावा निर्माण करून विझवली जाते
- 2. 'ब' वर्गीय आग (द्रवरूप पदार्थ): ज्वालाग्राही द्रव पदार्थापासून लागलेली आग उदा पेट्रोल, तेल, वार्निश, द्रावके, स्वयंपाकाचे तेल, रंग इत्यादी हे पदार्थ पाण्यापेक्षा हलके असतात तेथे फेस येणाऱ्या अग्निशामकामार्फत आग विझवली जाते
- 3. 'क' वर्गीय आग (वायुरूपपदार्थ) : ॲसिटीलीन घरगुती गॅस (एल पी जी गॅस) इत्यादी ज्वलनशील गॅसमधून लागणारी आग
- 4. 'ड' वर्गीय आग (रासायनिक पदार्थ): ज्वलनशील धातूपासून लागलेली आग यामध्ये पोटॅशिअम, सोडियम व कॅल्शिअम आहेत, हे सामान्य तापमानात पाण्याबरोबर क्रिया करतात, तसेच मॅग्नेशिअम, ॲल्युमिनिअम व झिंक जे उच्च तापमानात पाण्याबरोबर क्रिया करतात दोन्ही गट जेव्हा पाण्याशी संयोग पावतात, तेव्हा भडका उडतो
- 5. 'इ' वर्गीय आग (इलेक्ट्रीकल): यामध्ये इलेक्ट्रीकल सामान, फिटिंग इत्यादीं साधनांमुळे लागलेली आग कार्बन डायऑक्साइडसारख्या आग प्रतिबंधकाच्या साहाय्याने विझवली जाते

आग विझविण्याच्या पद्धती : आगीचा फैलाव होण्यावर किंवा ती पसरण्यावर नियंत्रण आणण्याच्या तीन प्रमुख पद्धती आहेत

- 1. थंड करणे आग विझविण्यासाठी पाणी हे एक प्रभावी साधन आहे व ते सर्वत्र उपलब्ध असते आगीवर अगर आगीच्या आजूबाजूस पाणी मारल्यामुळे गारवा निर्माण होतो व पुढे आगीवर नियंत्रण आणणे सोपे जाते
- 2. आगीची कोंडी करणे आग शमविण्यासाठी व विशेषतः तेलामुळे व विजेमुळे भडकलेली आग विझविण्यासाठी वाळू किंवा मातीचा चांगला वापर करता येतो फेसासारखा पदार्थ आगीवर फेकल्यास त्याचा उपयोगही पांघरूण घातल्यासारखा होतो ही आग विझविण्याची पद्धत तेलामुळे लागलेल्या आगीवर फारच परिणामकारक ठरते
- 3. ज्वलनशील पदार्थ हलवणे या पद्धतीमध्ये प्रत्यक्ष ज्वलनशील पदार्थच बाजूस करायचे असतात लाकडी सामान किंवा इतर पेट घेणाऱ्या वस्तू आगीपासून दूर केल्यास आगीचे भक्ष्यच नाहीसे होते नुकतीच लागलेली आग विझविण्यासाठी स्ट्रिरप पंप हे सर्वांत उत्तम साधन आहे त्या पंपातून आगीवर सर्व बाजूने पाण्याचा मारा करून आग विझवता येते

## काळजी व सुरक्षात्मक उपाय

- 1 गॅसचा रेग्युलेटर वापरात नसेल त्या वेळी, रात्री झोपताना व बाहेरगावी जाताना बंद करण्याची दक्षता घ्यावी घराबाहेर पडताना विजेवर चालणारी उपकरणे बंद ठेवा
- 2 'आग-आग' असे जोराने ओरडून इतरांना सावध करा व मदतीसाठी बोलवा
- 3 अग्निशामक दलाला तात्काळ फोन करून बोलावून घ्या
- 4 अग्नीशमन टाक्या कशा वापरायच्या त्याची माहिती घ्या

प्रथमोपचार : रुग्णाला आरामदायी वाटेल अशा रीतीने बसवा किंवा झोपवून ठेवा व तात्काळ डॉक्टरांची मदत घ्या

# दरड कोसळणे / भूस्खलन (Land-slide)



- 1 पुणे जिल्ह्यातील माळीण दुर्घटना कशामुळे घडली? तिचा काय परिणाम झाला ?
- 2 दरड कोसळणे म्हणजे काय?

