Quantum Algorithms using the Curvelet Transform

Yi-Kai Liu

Institute for Quantum Information, Caltech

January 8, 2009

Supported by an NSF Mathematical Sciences Postdoctoral Fellowship

Quantum algorithms

- The quantum Fourier transform is a key component
 - On Abelian groups => Shor's algorithm
- Attempts to generalize this approach
 - On the dihedral group => approximating the unique shortest vector in a lattice?
 - On the symmetric group => graph isomorphism?

What about other unitary transforms?

- The curvelet transform
 - A directional wavelet transform on Rⁿ
 - Does this lead to interesting quantum algorithms?

Summary of our results

- Finding the center of a ball in Rⁿ (approximately)
 - Quantum: given a single quantum-sample, can succeed with constant probability
 - "Quantum-sample" from a set S = uniform superposition over all points in S
 - Classical: given a single classical random sample, can only succeed with exponentially small probability $< 2^{-\Omega(n)}$
- Finding the center of a radial function on Rⁿ
 - Given oracle access; assume a radial step function
 - Quantum: can succeed with probability > $\Omega(1)$, using a constant number of oracle queries
 - Classical: need Ω(n) oracle queries
- These are polynomial-time quantum algorithms

What is the curvelet transform?

A directional wavelet transform (Candes & Donoho, 1999, 2002)

Γ_f(a,**b**,θ) 0 < a < 1 is a "scale" (0 = fine scale, 1 = coarse scale) **b** in **R**ⁿ is a "location"

 θ in \mathbb{R}^n , $|\theta| = 1$ is a "direction"

Intuition:

- Suppose f is discontinuous along a smooth surface S of dimension n–1
- Then Γ_f(a,b,θ) is "large" whenever:
 b lies on S and θ is normal to S at b
 - · A.k.a., the "wavefront set"
 - a measures the "sharpness" of the discontinuity

What is the curvelet transform?

- Curvelet basis functions look like plane waves, but localized in small regions of space
 - High-frequency oscillations in the θ direction, supported on a plate-like region centered at b and orthogonal to θ

 Note, this is the continuous curvelet transform, there is also a finite discrete version

The continuous curvelet transform

Window function $\chi_{a\theta}$ is supported on a sector of frequency space:

- Given f(x), a function on Rⁿ
- Take the Fourier transform: get f[^](k)
- For each scale a and direction θ, multiply by a smooth window function χ_{aθ}: get f[^](k) χ_{aθ}(k)
- Take the inverse Fourier transform: get Γ_f(a,b,θ)

A fast quantum curvelet transform

- Discrete curvelet transform
 - **b** in $(\mathbf{Z}_{M})^{n}$; a, $\boldsymbol{\theta}$ from some discrete set
 - Not unitary, but an isometric embedding: |ψ⟩ → U(|ψ⟩ tensor |0⟩)
- Quantum curvelet transform
 - Given input state + ancilla: $\Sigma_{\mathbf{x}} f(\mathbf{x}) | \mathbf{x} | [0, \mathbf{0}]$
 - Apply QFT: $\Sigma_k f^{\prime}(k) | k \rangle | 0, 0 \rangle$
 - Prepare superposition: $\Sigma_{\mathbf{k}} f^{\wedge}(\mathbf{k}) | \mathbf{k} \rangle \Sigma_{\mathbf{a}, \mathbf{\theta}} \chi_{\mathbf{a}, \mathbf{\theta}}(\mathbf{k}) | \mathbf{a}, \mathbf{\theta} \rangle$
 - Apply QFT⁻¹: $\Sigma_{\mathbf{b}} \Sigma_{\mathbf{a}, \mathbf{\theta}} \Gamma_{\mathbf{f}}(\mathbf{a}, \mathbf{b}, \mathbf{\theta}) | \mathbf{b}) | \mathbf{a}, \mathbf{\theta})$
- Can be computed efficiently
 - Takes time poly(n, log M)
 - Provided that the $\chi_{a,\theta}(\mathbf{k})$ are products of 1-D functions
 - E.g., using spherical coordinates

What can we do with this?

Finding the center of a ball

Let B be a ball in Rⁿ

- Claim: with significant probability,
 - the scale a is small
 - the line b+λθ passes near the center of the ball
- To find the center:
 - Guess some point along the line

Finding the center of a ball

Let B be a ball in Rⁿ

- To find the center:
 - Guess some u in [-1,1], uniformly at random
 - Let β be the radius of the ball, and let C be some constant
 - Return the point b + uCβθ
- Claim: for some constant κ <1, with constant probability, this point lies within distance $\beta\kappa$ of the center of the ball
 - Independent of the dimension n

Why is this interesting?

- Can get useful information from just one quantum-sample
 - "Single-shot quantum measurement"
 - For any constant κ <1, algorithm finds a point within distance $\beta \kappa$ of the center, with probability > $\Omega(\kappa^3)$, independent of n
 - Compare w/ classical sampling: if we picked a single random point in B, we would succeed with probability κⁿ, exponentially small in n
- Why? Because volume is concentrated near the surface of the ball
 - Bad for classical sampling, good for the curvelet transform!
 - But advantage disappears if we are given more than one sample
 we can take several classical samples and average them

Caveats

 To implement this algorithm, have to discretize, and use a slightly different family of curvelets

Finding the center of a radial function

- Let F be a radial function on Rⁿ, centered at some unknown point c
 - F can return values in some arbitrary set; assume that the level sets of F are concentric spherical shells of thickness δ
 - We are given oracle access to F, and we are promised that the center c lies within distance R of the origin

Finding the center of a radial function

- To find the center c:
 - Do this twice, to find two lines L and L' that pass near c
 - Then return the point on L that lies nearest to L'

Why is this interesting?

- Claim: this algorithm finds the center "exactly," when δ is sufficiently small
 - Solution is more accurate when the shell is very thin
 - For any μ , we can find a point within distance μ of the center, provided that $\delta < O(\mu^2/Rn^2)$
- This only requires O(1) oracle queries, independent of the dimension n
 - Algorithm succeeds with probability > $\Omega(1)$, independent of n
 - Compare w/ classical case: seems to require $\Omega(n)$ queries

Caveats

- Our analysis uses an approximation for the spherical shell
- To implement this algorithm, have to discretize, and use a slightly different family of curvelets

Related work

- Quantum algorithms
 - Estimating the gradient of a function on Rⁿ (Jordan, 2004)
 - Works when the function is smooth
 - Uses Fourier transform + phase kickback
 - like computing the curvelet transform at a single location
 - Quantum wavelet transform (Hoyer, 1997; Fijany & Williams, 1998)
 - Can be implemented efficiently; any applications?
 - Finding "hidden nonlinear structures" (Childs, Schulman & Vazirani, 2007)
 - Shifted subsets use the Fourier transform
 - Hidden polynomials use curvelets?
- The (classical) curvelet transform
 - Image processing, and simulating wave propagation
 - Resolving the "wavefront set" (Candes & Donoho, 2002, 2003)
 - Different formulations of the problem, for general functions, only on R²

Proof ideas

- Curvelet transform of a radial function
 - Wlog, assume the object is centered at the origin
 - The probability of observing a fine scale element corresponds to the amount of power at high frequencies
 - $\Pr[a \le \zeta] \approx \int_{|\mathbf{k}| \ge 1/(\lambda \zeta)} |f^{(\mathbf{k})}|^2 d\mathbf{k}$, we get better accuracy when a is small
 - · High-frequency components are due to the discontinuity of f
 - The direction θ is uniformly distributed, and the location b has expected value 0
 - We can upper-bound the variance of **b** in the directions orthogonal to **θ**
 - · Use Plancherel's theorem to go from spatial to frequency domain
 - Integrate using n-dimensional spherical coordinates.
 - Behavior of Bessel functions J_v(z) in the transition regime z ≈ v
 - · Lots of fun...
 - Hence the line b+λθ passes near the origin

Conclusions

- The curvelet transform
 - Suppose f is discontinuous along a smooth surface S
 - Then $|\Gamma_f|^2$ is large near the "wavefront set":
 - Points **b** that lie on S, and directions **6** that are normal to S
- The quantum curvelet transform
 - Can be computed efficiently, for a "nice" family of curvelets
- Finding the center in Rⁿ
 - Can find the center of a ball (approximately), using 1 quantum-sample
 - Can find the center of a radial function (exactly), using O(1) oracle queries
 - Future work: discretization, different families of curvelets, classical lower bounds better than $\Omega(n)$?

The big picture

- What is the quantum curvelet transform good for?
 - Can it solve some natural class of problems?
 - Like the hidden subgroup problem?
 - Exponential speed-up over classical computation?
 - Where does one get quantum states with "wavefront" features?
 - From quantum walks? Can one extract useful information?
- Generalizing our results on balls and spheres in Rⁿ
 - More complicated objects, e.g., ellipsoids, polytopes?
 - · We can efficiently quantum-sample over convex bodies
 - Surfaces over finite fields?
 - These arise in hidden polynomial problems?

Any questions?

Photo by LePetitPoulailler, CC license, http://www.flickr.com/photos/three_french_hens/2341682479/