Why we need ER diagram

"ER diagrams are easy for non-technical people to understand, and thus are typically used by database designers before the schema ever exists"

Entity

- An entity is something that exists by itself.
- <u>Entity</u>: Real-world object distinguishable from other objects. An entity is described using a set of <u>attributes</u>.
- The entity name, a noun, is written in capital letters.

Examples of entities

- Person: EMPLOYEE, STUDENT, PATIENT
- Place: STORE, WAREHOUSE
- Object: MACHINE, PRODUCT, CAR
- Event: SALE, REGISTRATION, RENEWAL
- Concept: ACCOUNT, COURSE

Attributes

Example of entity types and associated attributes:

STUDENT: Student_ID, Student_Name, Home_Address, Phone_Number, Major

FIGURE 4.1

The attributes of the STUDENT entity: Chen and Crow's Foot

Crow's Foot Model

STU_LNAME STU_FNAME STU_INITIAL STU_EMAIL STU_PHONE

SOURCE: Course Technology/Cengage Learning

Attribute types

- Simple and composite attributes.
 - A simple attribute is an attribute that cannot be subdivided. For example, age, sex, and marital status would be classified as simple attributes
 - A composite attribute, not to be confused with a composite key is an attribute that can be further subdivided to yield additional attributes. For example,
 - the attribute ADDRESS can be subdivided into street, city, state, and zip code. Similarly,
 - the attribute PHONE_NUMBER can be subdivided into area code and exchange number.

Single-valued and multi-valued attributes

- A single-valued attribute is an attribute that can have only a single value. For example, a person can have only one Social Security number, and a manufactured part can have only one serial number
- Multivalued attributes are attributes that can have many values. For instance, a person may have several college degrees, and a household may have several different phones, each with its own number

Derived attributes

- Can be computed from other attributes
- Example: age, given date_of_birth

Connectivity and Cardinality

- Connectivity is used to describe the relationship classification.
- Cardinality expresses the minimum and maximum number of entity occurrences associated with one occurrence of the related entity.

The ninth Tiny College ERD segment

TABLE

Components of the ERM

ENTITY	RELATIONSHIP	CONNECTIVITY	ENTITY
SCHOOL	operates	1:M	DEPARTMENT
DEPARTMENT	has	1:M	STUDENT
DEPARTMENT	employs	1:M	PROFESSOR
DEPARTMENT	offers	1:M	COURSE
COURSE	generates	1:M	CLASS
PROFESSOR	is dean of	1:1	SCHOOL
PROFESSOR	chairs	1:1	DEPARTMENT
PROFESSOR	teaches	1:M	CLASS
PROFESSOR	advises	1:M	STUDENT
STUDENT	enrolls in	M:N	CLASS
BUILDING	contains	1:M	ROOM
ROOM	is used for	1:M	CLASS

Note: ENROLL is the composite entity that implements the M:N relationship "STUDENT enrolls in CLASS."