

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Contoh: untuk Bal

- Bal = $\{w \in \{ (,) \}^* : tanda kurung berpasangan \}$
 - Contoh: (()(())())
- Kita ingin mendapatkan string w sehingga teorema sukses menunjukkan L reguler.
 - Coba dengan $w = {k \choose k}, |w| = 2k$
- Akan sama halnya dengan pembuktian AⁿBⁿ, mengakibatkan banyaknya simbol "(" berbeda dengan simbol ")".

Contoh: untuk PalEven

- PalEven = $\{vv^R : v \in \{a, b\}^*\}$; bahasa palindrom dengan panjang string bil genap.
 - Kita ingin mendapatkan string w sehingga teorema sukses menunjukkan L reguler.
- Coba dengan $w = a^k b^k b^k a^k$, |w| = 4k
 - Akan sama halnya dengan pembuktian AⁿBⁿ, mengakibatkan banyaknya deretan simbol *a* terkiri berbeda dengan deretan simbol *a* terkanan.
- Coba dengan $w = a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil} a^{\lceil k/2 \rceil}, |w| \ge 2k$
 - Akan sama halnya dengan pembuktian AⁿBⁿ, mengakibatkan ruas kiri berbeda dengan ruas kanan.
- Bagaimana $w = a^{\lceil k/4 \rceil} b^{\lceil k/4 \rceil} b^{\lceil k/4 \rceil} a^{\lceil k/4 \rceil}, |w| \ge k$?
 - Bahkan, bisa akan mengarah kontradiksi alias pemenuhan sifat pumping. Misalnya partisi dengan y = bb

Contoh: Bahasa AⁿB^m, n > m

- Mencoba $w = a^{2k} b^k$ dengan |w| = 3k.
- Apa yang terjadi? Kegagalan menunjukkan bahasa ini nonregular.
 - Misalnya y = a, $x = \varepsilon$ dan $z = a^{2k-1}$ b^k menghasilkan pumping $a^q a^{2k-1}$ b^k yang selalu ε bahasa ini.
- Sebaiknya, $w = a^k b^{k-1}$ (atau secara umum $w = a^{k+g} b^{h+g}$ dengan k-h=1 dan $g \ge 0$).

Contoh: Bahasa *A*ⁿ dengan n Bil. Prima

- L adalah Prime_a = { $a^n : n$ bilangan prima}
- Dengan diberikan suatu $k \ge 1$, mengambil j bilangan prima terkecil yang lebih besar dari k, sehingga |w| = j > k.
- Ambil suatu y yang tidak kosong, dan x & z sisanya, sehingga $xy \le k$ maka berikutnya adalah menguji $\forall q \ge 0$, $a^{|x|}(a^{|y|})^q a^{|z|} = a^{|x|+|z|+q/y/}$ apakah selalu $\in L$,
 - Berarti memeriksa |x| + |z| + q |y| apakah selalu bilangan prima?
- Namun, |x| + |z| = q, dapat mengakibatkan sbb.
 - ∘ |x| + |z| + q |y| = q + q |y| = q(|y| + 1) bukan bil prima karena berfaktor |xz| & (/y/+1) dan keduanya > 1.

Memanfaatkan sifat Closure

- Hasil operasi yang bersifat closue L dengan suatu bahasa reguler L_R , jika L reguler maka hasil operasi L' juga harus reguler. Namun, ternyata L' bukan reguler, maka juga berarti L bukan reguler.
- Operasi irisan:

$$L = \{w \in \{a, b\}^*: \#_a(w) = \#_b(w)\}$$

Karena $L \cap A^n B^m = A^n B^n$, dan $A^n B^n$ nonreguler, maka L juga nonreguler.

• Operasi komplemen:

$$L = \{a^i b^j : i, j \ge 0 \text{ dan } i \ne j\}$$

Karena $\neg L \cap A^n B^m = A^n B^n$, dan $A^n B^n$ nonreguler,
maka $\neg L \cap A^n B^m$ juga nonreguler, lalu L nonreguler
karena $\neg L$ nonreguler.

Terkadang Manfaat Sifat Closure memang Diperlukan!

- $L = \{a^i b^j c^k : i, j, k \ge 0 \text{ dan (jika } i=1, \text{ maka } j = k)\}$
- Jika lansung diuji dengan teorema pumping, maka setiap string w, dengan |w| > 0 selalu bisa dipumping.
 - Jika i = 0 (yaitu $w = b^j c^k$), untuk $j \ne 0$, dengan y = b (otherwise $k \ne 0$, dengan y = c), maka $\forall q \ge 0$, $xy^qz \in L$
 - Jika i = 1 (yaitu $w = ab^k c^k$), dengan y = a, maka $\forall q \ge 0$, $xy^q z \in L$
 - Jika i = 2 (yaitu $w = aab^{j}c^{k}$), dengan y = aa, maka $\forall q \geq 0, xy^{q}z \in L$
 - Jika i > 2, dengan y = a, maka $\forall q \ge 0$, $xy^qz \in L$
- Namun, L bukan reguler!

Terkadang Manfaat Sifat Closure memang Diperlukan! (lanjutan)

Perhatikan bahwa

$$L' = L \cap \{ab^{j}c^{k} : j, k \ge 0\} = \{ab^{j}c^{j} : j \ge 0\}$$

- $\{ab^{j}c^{k}: j, k \geq 0\}$ adalah bahasa reguler dengan ekspresi reguler $ab^{*}c^{*}$
- Jika $\{ab^jc^j: j \ge 0\}$ reguler maka L reguler menurut sifat closure.
- Tetapi $\{ab^jc^j: j \ge 0\}$ dengan teorema pumping dapat dibuktikan tidak reguler.
- Cara lain: jika L reguler, L^R juga reguler. Pemeriksaan dengan teorema pumping pada L^R dapat segera membuktikan L^R bukan reguler, maka juga L bukan reguler.

Problem-problem Dunia Nyata

- Bahasa-bahasa yang telah dibahas "cukup sederhana" sehingga sifat-sifat reguler/nonreguler cukup eksplisit.
- Bahasa-bahasa dari dunia nyata ternyata "tidak sesederhana itu."
- Contoh, apakah *L* reguler?
 - $L = \{w \in \{0, 1, ..., 7\}^* : w \text{ representasi oktal dari bilangan bulat non-negatif yang habis dibagi 7} = \{0, 7, 16, 25, ...\}.$

Teorema Pumping u/ Reguler?

- Tujuan teorema untuk menunjukkan dengan pasti suatu bahasa yang tidak memiliki sifat pumping, adalah nonreguler.
- Tetapi untuk mengetahui apa yang terjadi jika teorema digunakan untuk suatu bahasa reguler, akan dibahas dl slide berikutnya untuk bahasa A^nB^m yang sudah jelas bahasa reguler.

Contoh: untuk Bahasa AⁿB^m

- Diketahui L adalah $A^nB^m = \{a^nb^m : m, n \ge 0\}$.
 - Disini kita ingin mencari w yang akan menyebabkan teorema gagal menunjukkannya bahasa reguler.
- Periksa untuk $w = a^k b^k$, sehingga $|w| = 2k \ge k$, lalu:

$$y = a^p$$
,
 $x = a^{j-p}$ ($1 \le p \le j \le k$, untuk memenuhi $/xy/\le k$) dan
 $z = a^{k-j}b^k$,

maka $a^{j-p}a^{pq}a^{k-j}b^k = a^{k-p+pq}b^k$ yang selalu $\in L$, untuk $q \ge 0$.

• Silahkan mendapatkan w lain untuk mengujinya!

Memahami Teorema Pumping melalui suatu permainan

- 1. Lawan: mengajukan L untuk diperiksa
- 2. Anda: harus membuktikan bhw L nonreguler
- 3. Lawan: berasumsi adanya FSM dengan jumlah status *k* (*k* boleh suatu bilangan atau tetap general sebagai *k*)
- 4. Anda: menemukan suatu $w \in L$ yang tepat, $|w| \ge k$
- 5. Lawan: menemukan substring-substring x, y, z, dimana w = xyz, $/xy/ \le k$, dan $/y/ \ge 1$, untuk dapat membatalkan usaha anda
- 6. Anda: menemukan suatu q sehingga $xy^qz \notin L$. Jika gagal, ulangi langkah 4 hingga memang disadari ternyata memang reguler!