Inference algorithms

Statistical inference

- Judge the accuracy of an estimation or prediction algorithm
 - Efron & Hastie 2016
- Reliability
- Uncertainty

ISO definition of accuracy: the closeness of a measurement to the true value Two components: bias, variance

Different inference problems

Estimation

Infer a property of a population (e.g. mean) from a sample

Model selection

Infer the data generating process from among a set of candidate datagenerating processes

Hypothesis test (association)

Infer that y is associated with x

Causation

Infer that x causes y

Infer the size of an effect due to an experimental intervention (estimation) Infer that an experimental intervention had an effect (H-test)

Prediction

Predict the value of a new observation or population state (extrapolation or interpolation)

Predict the population state in the future (forecast/extrapolation)

Algorithms in data science

"Dumb" - doesn't say about reliability

Algorithms in data science

"Dumb" - doesn't say about reliability

Algorithms in data science

Inference algorithms

- Looking back: considering all the ways data could have happened
- Looking forward: predicting new data and testing against them

These are two big ideas in data science

Inference algorithms

- Looking back: considering all the ways data could have happened
 - Frequentist: sampling distribution
 - Bayesian/likelihood: P(data|model)

Sampling distribution

132 orange-spotted warblers. 1 indicates female

Take a sample: sample(f,10)

0 1 0 0 0 0 0 1 0 0sex ratio = 0.2 Our scientific observation

True sex ratio is 0.424

Sampling distribution algorithm 1

for each possible combination of n sample units sample n units from the population calculate the sample statistic plot sampling distribution (histogram) of the sample statistic

for bird sex ratio

There are 3e14 possible samples.

Too hard! It would take 100 years to compute!

Sampling distribution algorithm 2

We can invoke the law of large numbers

repeat very many times
sample n units from the population
calculate the sample statistic
plot sampling distribution (histogram) of the sample statistic

for bird sex ratio

for a large number of repeated samples
randomly sample 10 birds from the population
calculate the sex ratio in the sample
plot sampling distribution (histogram) of sex ratios

The sampling distribution for sex ratio

Confidence interval

 An interval calculated by some procedure that would contain (or cover) the true population value 95% of the time, if sampling and calculating an interval were repeated a very large number of times

Confidence = reliability of the procedure

Using the normal approx for inference

Plug in principle

- We don't know the true sampling distribution or its parameters
- Plug in the sample instead as an estimate

Coverage

repeat very many times
sample n units from the population
calculate the sample statistic
calculate the interval for the sample statistic
calculate frequency true value is in the interval

Calibrates the degree of confidence in the procedure

First 100 95% confidence intervals

95.6% of the intervals cover the true value In first 100, 6 do not cover the true value (we expect about 5/100)

Im() inference algorithms

Sampling distribution for parameters β_0 , β_1

repeat very many times
sample data from the population
fit the linear model
estimate the parameters
plot sampling distribution (histogram) of parameter estimates

Sampling distribution for any other quantities (e.g. mean of y given x) is similar

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

Population: normal distribution of errors

Sampling distribution beta_0

Sampling distribution beta_1

Plug-in principle

- We don't have access to the true sampling distribution or its parameter values
- Plug in the residual standard error from the sample to estimate the parameters (σ) of the sampling distribution

P-values

- The probability of a sample statistic as large or larger than the one observed given that some hypothesis is true
- Obtained from the sampling distribution of the parameters (t standardized)
- t is β in standard error units

Confidence vs prediction intervals

Robustness

- Normality of e_i is not that crucial
- More relevant: sampling distributions for β are Normal
 - central limit theorem says whatever the e_is,
 the sampling distribution will tend Normal
- Most problematic: when e_i is asymmetrical or heteroscedastic

R code - most common inferences

```
plot(x,y)
fit <- lm(y ~ x)
summary(fit)
confint(fit)
newd <- data.frame(x = seq(min(x), max(x), length.out=100))
pred_w_ci <- cbind(newd,predict(fit, newd, interval = "confidence"))
pred_w_pi <- cbind(newd,predict(fit, newd, interval = "prediction"))
lines(pred_w_ci[c(1,nrow(pred_w_ci)),c("x","fit")],col="#56B4E9")
lines(pred_w_ci[,c("x","lwr")],col="grey")
lines(pred_w_ci[,c("x","upr")],col="grey")
lines(pred_w_pi[,c("x","lwr")],col="grey",lty=2)
lines(pred_w_pi[,c("x","upr")],col="grey",lty=2)
plot(fit,1:6)</pre>
```