

Ch 4.1 Definitions (Oscar)

Graph Theory Definitions

Graph: A collection of vertices, some of which are connected by edges.

Subgraph: every vertex and edge is also in the graph.

Induced subgraph: every vertex in the subgraph is a vertex in the graph and each pair of vertices in the subgraph are adjacent in the subgraph iff they are adjacent in the graph. [只要點在範圍內,連接的段也算在內]

Isomorphic: graphs that are basically the same (not equal).

An **isomorphism** between two graphs G_1 and G_2 is a bijection $f:V_1 o V_2$ between the vertices of the graphs such that $\{a,b\}$ is an edge in G_1 iff $\{f(a),f(b)\}$ is an edge in G_2 .

Two graphs are **isomorphic** if there is an isomorphism between them. In this case we write $G_1 \cong G_2$.

Simple: no pairs of vertices is connected more than once, no vertex is connected to itself. (*graphs*)

Multigraph: a graph contains multiple edges between two vertices + single edge loops.

Adjacent: Two vertices connected by an edge.

Connected: there is a path from any vertex to any other vertex

Degree of a vertex: number of edges.

Complete graph: every pair of vertices is adjacent. (K_n)

Not connected

Lemma 4.1.5 Handshake Lemma. In any graph, the sum of the degrees of vertices in the graph is always twice the number of edges.

• sometimes called degree sum formula $_{ o} \sum_{v \in V} d(v) = 2e.$

Proposition 4.1.8 In any graph, the number of vertices with odd degree must be even.

Bipartite graph: possible to divide the vertices into two disjoint sets that no edge is in the same set.

Complete bipartite graph: every vertex in the first set is adjacent to every vertex in the second set.

▼ Named Graphs

 K_n The complete graph on n vertices.

The complete bipartite graph with sets of m and n vertices. $K_{m,n}$

 C_n The cycle on n vertices, just one big loop.

 P_n The path on n + 1 vertices (so n edges), just one long path.

Ch 4.1 Definitions (Oscar)

Vertex coloring: An assignment of colors to each of the vertices of a graph.

Chromatic number: minimum number of colors required in a proper vertex coloring of the graph.

Walk: consecutive vertices are adjacent. Trial: A walk with no edge repeated.

Path: A walk has no repeated vertices (or edges).

Cycle: A path start = end, no other repeated vertices.

Euler path: A walk uses each edge exatly once.

Euler circuit: An Euler path start = end.

Planar: a graph can be drawn without any edges crossing.

Tree: A connected graph with no cycles. **Forest:** no need to be connected. **Leaves:** vertices in a tree with degree 1.

Ch 4.1 Definitions (Oscar)