Binomial distribution

Parameters m, p

Discrete proba of # successes in a sequence of π independent experiments asking a yes no question, with $\Pr[success] = p$.

 $n \in \mathbb{N}$ # trials $p \in [0,1]$ success probability for each trial

= # ways to arrange x p(sucess)" x p(feature)" to k successes among n trails, with

All autromes are equiprobable

FOR k successes among on experiments

there are $\binom{n}{k}$ possible sequences SFS or FFF...

Each experiment has autrome of proba $\binom{p}{l-p}$ (if S)

Hence $\binom{n}{k}$ p^k $\binom{l-p}{l-k}$

$$\begin{cases} \langle k \rangle = n p \\ \sigma^2 = n p q \end{cases}$$

Poisson distribution

Discrete proba distribution expressing proba of a given # events occurring in a fixed sinterval of timme or space if these event occur with a constant mean rate independently of the time since last event.

Parameter: $\lambda \in]0,\infty[$ (rate)

$$Pr[k \text{ events}] = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$\langle K \rangle = \sigma = \lambda$$