Lista de Exercícios: VETORES

1) Determine as somas que se pedem:

$$a)\overrightarrow{AD} + \overrightarrow{CD} + \overrightarrow{DH} + \overrightarrow{GC} + \overrightarrow{HB} + \overrightarrow{AG}$$

b)
$$\overrightarrow{ED} + \overrightarrow{DB} + \overrightarrow{BF}$$

c)
$$\overrightarrow{BF} + \overrightarrow{BG} + \overrightarrow{BC}$$

$$d)\overrightarrow{HE} + \overrightarrow{EF} + \overrightarrow{FG} + \overrightarrow{BG} + \overrightarrow{BH}$$

$$e)\overrightarrow{AE} + \overrightarrow{EF} + \overrightarrow{FG} + \overrightarrow{GC}$$

RESP: a) \overrightarrow{AC} b) \overrightarrow{EF} c) $2\overrightarrow{BG}$ d) $2\overrightarrow{BG}$ e) \overrightarrow{AC} .

2) A figura abaixo representa um paralelepípedo retângulo de arestas paralelas aos eixos coordenados e de medidas 2,1 e 3. Determinar as coordenadas dos vértices deste sólido, sabendo que A (2, -1,2).

RESP: B(2, -3,2), C(3, -3,2), D(3, -1,2), E(3, -1,5), F(2, -1,5), G(2, -3,5) e H(3, -3,5)

- 3) Determine x para que se tenha $\overrightarrow{AB} = \overrightarrow{CD}$, sendo A (x,1), B(4,x+3), C(x,x+2) e D(2x,x+6). RESP: x=2
- **4)**Sejam os pontos M(1,-2,-2) e P(0,-1,2), determine um vetor \vec{v} colinear à \overrightarrow{PM} e tal que $|\vec{v}| = \sqrt{3}$.

RESP:
$$\vec{v} = \left(\pm \frac{1}{\sqrt{6}}, \mp \frac{1}{\sqrt{6}}, \mp \frac{4}{\sqrt{6}}\right)$$

5) Achar um vetor \vec{x} de módulo igual a 4 e de mesmo sentido que o vetor $\vec{v} = 6\vec{i} - 2\vec{j} - 3\vec{k}$.

RESP:
$$\vec{x} = \left(\frac{24}{7}, -\frac{8}{7}, -\frac{12}{7}\right)$$

6) Sejam $\vec{a} = \vec{i} + 2\vec{j} - 3\vec{k}$ e $\vec{b} = 2\vec{i} + \vec{j} - 2\vec{k}$. Determine um versor dos vetores abaixo:

$$a)\vec{a} + \vec{b}$$

B)
$$2\vec{a} - 3\vec{b}$$

c)
$$5\vec{a} + 4\vec{b}$$

RESP: a)
$$\vec{u} = \frac{1}{\sqrt{43}}(3,3,-5)$$
 b) $\vec{u} = \frac{1}{\sqrt{17}}(-4,1,0)$ c) $\vec{u} = \frac{1}{\sqrt{894}}(13,14,-23)$

b)
$$\vec{u} = \frac{1}{\sqrt{17}}(-4,1,0)$$

c)
$$\vec{u} = \frac{1}{\sqrt{894}}$$
 (13,14,-23)

PRODUTO ESCALAR (ou PRODUTO INTERNO)

7) Sendo $\vec{u} = (2,3,1) e \vec{v} = (1,4,5)$. Calcular:

b)
$$(\vec{u} - \vec{v})$$

c)
$$(\vec{u} + \vec{v})^2$$

d)
$$(3\vec{u} - 2\vec{v})^2$$

b)
$$(\vec{u} - \vec{v})$$
 c) $(\vec{u} + \vec{v})^2$ d) $(3\vec{u} - 2\vec{v})^2$ e) $(2\vec{u} - 3\vec{v}) \bullet (\vec{u} + 2\vec{v})$

RESP: a) 19

8) Determinar a, de modo que o ângulo do triângulo ABC, seja 60°. Dados: A(1,0,2), B(3,1,3) e

RESP:
$$-1$$
 ou $\frac{13}{5}$

9) Os vetores \vec{u} e \vec{v} formam um ângulo de 60° . Sabe-se que $||\vec{u}|| = 8$ e $||\vec{v}|| = 5$, calcule:

a)
$$| |\vec{u} + \vec{v} | |$$

b)
$$||\vec{u} - \vec{v}||$$
 c) $||2\vec{u} + 3\vec{v}||$ d) $||4\vec{u} - 5\vec{v}||$

RESP: a)
$$\sqrt{129}$$
 b) 7 c) $\sqrt{721}$ d) $\sqrt{849}$

10)Determinar o valor de x para que os vetores $\vec{v}_1 = x \vec{i} - 2 \vec{j} + 3 \vec{k}$ e $\vec{v}_2 = 2 \vec{i} - \vec{j} + 2 \vec{k}$, sejam

ortogonais.

11) Determine um vetor unitário ortogonal aos vetores $\vec{a} = (2,6,-1)$ e $\vec{b} = (0,-2,1)$.

RESP:
$$\vec{c} = \left(\mp \frac{2}{3}, \pm \frac{1}{3}, \pm \frac{2}{3}\right)$$

12)Dados $\vec{a} = (2,1,-3)$ e $\vec{b} = (1,-2,1)$, determinar o vetor $\vec{v} \perp \vec{a}, \vec{v} \perp \vec{b}$ e $||\vec{v}|| = 5$.

RESP:
$$\vec{v} = \pm \frac{5\sqrt{3}}{3} (1, 1, 1)$$

RESP: $\vec{x} = (2, -3, 0)$

13) O vetor $\vec{v} = (-1,-1,-2)$ forma um ângulo de 60° com o vetor $\vec{A}\vec{B}$, onde A (0,3,4) e B(m, -1,2). **RESP:** m=-34 ou m=2 Calcular o valor de m.

PRODUTO VETORIAL

14)Determinar o vetor \vec{v} , sabendo que ele é ortogonal ao vetor $\vec{a} = (2,-3,1)$ e ao vetor $\vec{b} = (1,-2,3)$ e que satisfaz a seguinte condição; $\vec{v} \cdot (\vec{i} + 2\vec{j} - 7\vec{k}) = 10$. **RESP:** $\vec{v} = (7,5,1)$

- **15)**Determinar \vec{v} , tal que \vec{v} seja ortogonal ao eixo dos y e que $\vec{u} = \vec{v} \times \vec{w}$, sendo $\vec{u} = (1,1,-1)$ e $\vec{w} = (2,-1,1)$.
- **16)** São dados $\vec{v}_1 = (3,2,2)$ e $\vec{v}_2 = (18,-22,-5)$, determine um vetor \vec{v} , que seja ortogonal à \vec{v}_1 e a \vec{v}_2 , tal que forme com o eixo OY um ângulo obtuso e que $|\vec{v}| = 28$. **RESP:** $\vec{v} = (-8,-12,24)$
- **17)** Dados os vetores $\vec{u} = (1,-1,1)$ e $\vec{v} = (2,-3,4)$, calcular:
 - a) A área do paralelogramo de determinado por \vec{u} e \vec{v} ; **RESP:** a)A= $\sqrt{6}u$.a.
 - b) a altura do paralelogramo relativa à base definida pelo vetor \vec{u} . **RESP:** $h = \sqrt{2}u.c.$
- **18)** A área de um triângulo ABC é igual a $\sqrt{6}$. Sabe-se que A(2,1,0), B(-1,2,1) e que o vértice C pertence ao eixo OY. Calcule as coordenadas de C.RESP: (0,3,0) ou $\left(0,\frac{1}{5},0\right)$

PRODUTO MISTO

- **19)** Determinar o valor de k para que os pontos A(0,0,3),B(1,2,0), C(5,-1,-1) e D(2,2,k) sejam vértices de uma mesma face de um poliedro. **RESP:** k=- 1
- **20)** Sejam os vetores $\vec{u} = (1,1,0)$, $\vec{v} = (2,0,1)$ e $\vec{w}_1 = 3\vec{u} 2\vec{v}$, $\vec{w}_2 = \vec{u} + 3\vec{v}$ e $\vec{w}_3 = \vec{i} + \vec{j} 2\vec{k}$. Determinar o volume do paralelepípedo definido por \vec{w}_1 , \vec{w}_2 e \vec{w}_3 . **RESP:** V=44 u.v.
- 21) São dados os pontos A(1, -2,3), B(2, -1, -4), C(0,2,0) e D(-1,m,1), calcular o valor de m para que seja de 20 unidades o volume do paralelepípedo determinado pelos vetores $\overrightarrow{AB}, \overrightarrow{AC}$ e \overrightarrow{AD} .

 RESP: m=6 ou m=2

.