Identity 1. Let A and B be sets. Show that

$$A \cup (B - A) = A \cup B$$

Proof.

$$A \cup (B - A) = A \cup (B \cap A^c)$$
 set difference
 $= A \cup (A^c \cap B)$ commutative
 $= (A \cup A^c) \cap (A \cup B)$ distributive
 $= U \cap (A \cup B)$ complement
 $= A \cup B$ identity

Proof. Let $x \in A \cup (B - A)$. Then $x \in A$ or $x \in (B - A)$ by definition of union. So $x \in B$ and $x \notin A$ (by set difference). But $x \in A$ by previous statement, so $x \in A$ or $x \in B$. By definition of union, $x \in (A \cup B)$.

Identity 2. Let A and B be sets. Show that

$$(A \cap B^c)^c \cup B = A^c \cup B$$

Proof.

$$(A \cap B^c)^c \cup B = (A^c \cup (B^c)^c) \cup B$$
 de Morgan's
$$= (A^c \cup B) \cup B$$
 double complement
$$= A^c \cup (B \cup B)$$
 associative
$$= A^c \cup B$$
 idempotent

Identity 3. Let A, B and C be sets. Show that

$$(A - B) - C = A - (B \cup C)$$

Proof.

$$(A-B)-C=(A\cap B^c)-C \qquad \text{set difference}$$

$$=(A\cap B^c)\cap C^c \qquad \text{set difference}$$

$$=A\cap (B^c\cap C^c) \qquad \text{associative}$$

$$=A\cap (B\cup C)^c \qquad \text{de Morgan's}$$

$$=A-(B\cup C) \qquad \text{set difference}$$

Proof. Let $x \in (A - B) - C$. Then $x \in (A - B)$ and $x \notin C$ by definition of set difference. Further, $x \in A$ and $x \notin B$ also by definition of set difference. Thus $x \in A$ and $x \notin B$ and $x \notin C$, which implies $x \notin (B \circ C)$. Hence, $x \notin (B \cup C)$ by definition of union. Thus, given $x \in A$ we have $x \in A - (B \cup C)$ by definition of set difference.

1

Identity 4. Let A, B and C be sets. Show that

$$(B-A) \cup (C-A) = (B \cup C) - A$$

Proof.

$$(B-A) \cup (C-A) = (B \cap A^c) \cup (C \cap A^c)$$
 set difference
$$= (B \cup C) \cap A^c$$
 distibutive
$$= (B \cup C) - A$$
 set difference

Proof. Let $x \in (B-A) \cup (C-A)$. Then $x \in (B-A)$ or $x \in (C-A)$. If $x \in (B-A)$, then $x \in B$ and $x \notin A$ by definition of set difference. If $x \in (C-A)$, then $x \in C$ and $x \notin A$ by definition of set difference. Thus, $x \in B$ or $x \in C$ and $x \notin A$. By definition of union, $x \in (B \cup C)$. By definition of set difference, if $x \in (B \cup C)$ and $x \notin A$ then $x \in (B \cup C) - A$.