Superpixel Merging Software User Guild

Zhongwen Hu

<u>zwhoo@szu.edu.cn</u>

Shenzhen University

Website: http://spatial.szu.edu.cn/user_details?id=15&type=教师
Blog: http://blog.csdn.net/Guzenyel/article/category/2263691

QQ 群: 217312431

Introduction

This software is designed to perform superpixel merging. It is developed using Microsoft visual studio C++. This is an academic software, and commercial use is prohibited.

There are 7 parameters:

index	Parameters	description
1	The path of	
	source image file.	
2	The path of	An int32 image file. The value of each pixel denotes the superpixel label of this pixel. This file can
	superpixel file.	be obtained using a superpixel segmentation algorithm, such as SLIC, watershed, SCoW, Seeds,
		etc.
3	The path of result	An int32 image file that storages the final merged superpixel labels. You need to visualize the
	file.	superpixels in other software.
4	The merging	Four merging criteria are provided:
	criterion	(1) Baatz &Schape:
	(0-3)	$C_{i,j} = w_{color} \cdot \Delta h_{color} + w_{shape} \cdot \Delta h_{shape}.$
		7,5
		$\Delta h_{color} = \sum_{c} w_c \cdot (n_{i \cup j} \cdot \sigma_{i \cup j}^c - n_i \cdot \sigma_i^c - n_j \cdot \sigma_j^c),$
		c
		$\Delta h_{shape} = w_{compt} \cdot \Delta h_{compt} + w_{smooth} \cdot \Delta h_{smooth},$
		$\Delta h_{smooth} = n_{i \cup j} \cdot \frac{l_{i \cup j}}{h_{i \cup j}} - n_i \cdot \frac{l_i}{h_i} - n_j \cdot \frac{l_j}{h_i},$
		$\sigma_{i \cup j}$
		$\Delta h_{compt} = n_{i \cup j} \cdot \frac{l_{i \cup j}}{\sqrt{n_{i \cup j}}} - n_i \cdot \frac{l_i}{\sqrt{n_i}} - n_j \cdot \frac{l_j}{\sqrt{n_j}},$
		$\sqrt{n_{i \cup j}}$, $\sqrt{n_i}$, $\sqrt{n_j}$
		Reference: M. Baatz and A. SchApe, "Multiresolution segmentation: an optimization approach for
		high quality multi-scale image segmentation,"Angewandte Geographische
		Informationsverarbeitung XII, pp. 12–23, 2000.
		(2) Full Lambda:
		$N_i \cdot N_i$ () 2 1
		$C_{i,j} = \frac{N_i \cdot N_j}{N_i + N_j} \left(\mu_i - \mu_j\right)^2 \cdot \frac{1}{l^{\lambda}}$
		i j
		N is the area, u is the mean spectral value, l is the shared boundary of region i and j, λ is the
		shape parameter.
		Reference:
		(3) Spectral Histogram:

		$C_{i,j} = \frac{N_i \cdot N_j}{N_i + N_j} \cdot G(i,j) \cdot \frac{1}{l^{\lambda}}$
		G(i,j) is the G-Statistic value of two spectral histograms i and j. Reference: A. Wang, S. Wang, and A. Lucieer, "Segmentation of multispectral high resolution satellite imagery based on integrated feature distribution," Int.J. Remote Sens., vol. 31, no. 6, pp. 1471–1483, Feb. 2010. (4) Glan Trutum Meddi.
		(4) Color-Texture Model: $C_{i,j} = \frac{N_i \cdot N_j}{N_i + N_j} \cdot \left(w_c G_c + w_T G_t \right) \cdot \frac{1}{l^{\lambda}}$
		Gc is the G-Statistic value of two spectral histograms, Gt is the G-Statistic value of two LBP texture
		histograms; we and wt are the corresponding weights, they are automatically estimated.
		Reference:
		(1) A Spatially-Constrained Color-Texture Model for Hierarchial VHR Image Segmentation. IEEE
		Geoscience and Remote Sensing Letters. 2013, 10(1), 120-124.
		(2) 结合光谱纹理与形状结构信息的遥感影像分割方法. 测绘学报, 2013, 42(1), 44-50.
_		(3) 基于区域的影像多尺度表达与应用研究, 胡忠文, 武汉大学博士论文, 2013.
5	The number of	
	regions after	An integer value. For example, 30 means there are about 30 regions after the region merging.
	region merging.	
6	The shape	A float value. If the Baatz&Schape criterion is used, the parameters corresponds to w _{shape} .
	parameter (0-1)	If the other three merging criteria are used, the parameter corresponds to λ .
7	The compact	A float value. This parameter is only used in Baatz & Schape merging criterion

Other reference:

parameter (0-1)

RAG-NNG:

Hybrid image segmentation using watersheds and fast region merging," IEEE Trans. Image Process, 1998

Hierarchical Region Merging:

Hierarchy in picture segmentation: A stepwise optimization approach," IEEE Trans. Pattern Anal. Mach. Intell., 1989

A Demo is provided. The usage is provided in Demo.bat. You can edit it for your work.

A float value. This parameter is only used in Baatz & Schape merging criterion.

Source image, superpixels, final results.

My other related works

- (1) Watershed Superpixel. *IEEE ICIP* 2015.
- (2) A Bi-level Scale-sets Model for Hierarchical Representation of Large Remote Sensing Images, *IEEE TGRS*, 2016.
- (3) Unsupervised Simplification of Image Hierarchies via Evolution Analysis in Scale-Sets Framework, *IEEE TIP*,2017.

Sponsor:

http://spatial.szu.edu.cn/

http://www.viswtech.com/