

CHIP COIL (CHIP INDUCTORS) LQP03TG□□□□02D Reference Specification

1.Scope

This reference specification applies to LQP03TG_02 series, Chip coil (Chip Inductors).

2.Part Numbering

Ρ_ 03 Т G 0N1 (ex) LQ В D Product ID Structure Dimension Applications Category Inductance Tolerance Features Electrode Packaging $(L \times W)$ and D:Taping *B:Bulk Characteristics

*Bulk packing also available. (A product is put in the plastic bag under the taping conditions.)

3.Rating

Operating Temperature Range. -55°C to +125°C

(Ambient temperature: Rated current can be handled in this temperature range.)

•Storage Temperature Range. -55°C to +125°C

Customer Part Number	MURATA	Ind	uctance	Q	DC Resistance	Self Reso Frequ	onant uency	Rated Current
Part Number	Part Number	(nH)	Tolerance	(min)	(Ω max)		Hz)	(mA)
	LQP03TG0N1B02D	0.1	B:±0.1nH		0.07	Min.	*Тур.	
	LQP03TG0N2B02D		D.±0.IIIII		0.07	20000		
	LQP03TG0N2C02D	0.2				20000		
	LQP03TG0N3B02D		-	_				
	LQP03TG0N3C02D	0.3						
	LQP03TG0N4B02D	0.4	1		0.00			850
	LQP03TG0N4C02D	0.4			80.0			
	LQP03TG0N5B02D	0.5						
	LQP03TG0N5C02D	0.5						
	LQP03TG0N6B02D	0.6		11				
	LQP03TG0N6C02D	0.6				18000	20000	
	LQP03TG0N7B02D	0.7	1					
	LQP03TG0N7C02D	0.7			0.40		750	
	LQP03TG0N8B02D	0.0			0.10			
	LQP03TG0N8C02D	8.0					700	
	LQP03TG0N9B02D		1	12	0.40			700
	LQP03TG0N9C02D	0.9			0.12			700
	LQP03TG1N0B02D	4.0						
	LQP03TG1N0C02D	1.0	B:±0.1nH			47000		
	LQP03TG1N1B02D		C:±0.2nH			17000		
	LQP03TG1N1C02D	1.1	0.20.2					
	LQP03TG1N2B02D	4.0	1				40400	
	LQP03TG1N2C02D	1.2				18100		
	LQP03TG1N3B02D	4.0	1		0.45	15000	40000	
	LQP03TG1N3C02D	1.3			0.15	18200	600	
	LQP03TG1N4B02D					4.4000	47000	
	LQP03TG1N4C02D	1.4				14000	17800	
	LQP03TG1N5B02D					13500 16400		
	LQP03TG1N5C02D	1.5						
	LQP03TG1N6B02D	4.5	1	13		10000	40:55	1
	LQP03TG1N6C02D	1.6				13000	16100	
	LQP03TG1N7B02D		1					
	LQP03TG1N7C02D	1.7					16400	
	LQP03TG1N8B02D		1		0.20			500
	LQP03TG1N8C02D	1.8				12500	15000	
	LQP03TG1N9B02D		1			1		
	LQP03TG1N9C02D	1.9			0.25		15900	450

Spec No. JELF243	<u>C-001011-01</u>	1011		100				7.2/12		
Customer	MURATA	Ind	uctance	Q	DC Resistance		onant Juency	Rated Current		
Part Number	Part Number	(nH)	Tolerance	(min)	Resistance (Ω max)	(N	lHz)	(mA)		
	LQP03TG2N0B02D	` '				Min.	*Тур.			
	LQP03TG2N0B02D	_ 70 1				12500				
	LQP03TG2N1B02D		+				14800			
	LQP03TG2N1C02D	_ / 1								
	LQP03TG2N2B02D		-			12000				
	LQP03TG2N2C02D	一 ソソ					14300			
	LQP03TG2N3B02D		-							
	LQP03TG2N3C02D	_ // /				11500	14100			
	LQP03TG2N4B02D		-							
	LQP03TG2N4C02D	74				11000	13700			
	LQP03TG2N5B02D		-							
	LQP03TG2N5C02D	一 ソム			0.25		13800	450		
	LQP03TG2N6B02D		†							
	LQP03TG2N6C02D	_ /h				11000	13900			
	LQP03TG2N7B02D		1							
	LQP03TG2N7C02D	- 7/					13100			
	LQP03TG2N8B02D		1							
	LQP03TG2N8C02D	⊣ 28								
	LQP03TG2N9B02D		1			9500 -		_	12200	
	LQP03TG2N9C02D	<u> </u>	B:±0.1nH							
	LQP03TG3N0B02D		C:±0.2nH							
	LQP03TG3N0C02D			13			11500			
	LQP03TG3N1B02D		1							
	LQP03TG3N1C02D				0.32		11800			
	LQP03TG3N2B02D							400		
	LQP03TG3N2C02D	- 37					11600			
	LQP03TG3N3B02D	G3N3B02D	1				44000			
	LQP03TG3N3C02D	_					11200			
	LQP03TG3N4B02D		1				40000			
	LQP03TG3N4C02D	- 44					10300			
	LQP03TG3N5B02D					0000	40000			
	LQP03TG3N5C02D	3.5				8000	10000			
	LQP03TG3N6B02D	2.0					0.400			
	LQP03TG3N6C02D	3.6			0.25		9400	250		
	LQP03TG3N7B02D	2.7			0.35			350		
	LQP03TG3N7C02D	3.7				7000	9600			
	LQP03TG3N8B02D	2.0				7000	8600			
	LQP03TG3N8C02D	3.8								
	LQP03TG3N9B02D	_					8100			
	LQP03TG3N9C02D	5.8					0100			
	LQP03TG4N3H02D	− 1 4.3			0.58		8000	300		
	LQP03TG4N3J02D		1		0.00	6500	5500	300		
	LQP03TG4N7H02D	- 4/				0000				
	LQP03TG4N7J02D		1		0.72		7800			
	LQP03TG5N1H02D	– 51			52		. 555	250		
	LQP03TG5N1J02D) 5.1	l							
	LQP03TG5N6H02D	- 56	H:±3%		0.88		7500			
	LQP03TG5N6J02D		J:±5%	12		6000				
	LQP03TG6N2H02D						7400			
	LQP03TG6N2J02D		4		1.15					
	LQP03TG6N8H02D	– hx				5400	6300	200		
	LQP03TG6N8J02D		4							
	LQP03TG7N5H02D	- /5			1.22	4800	5600			
	LQP03TG7N5J02D				1.22					

Customer Part Number	MURATA Part Number	Ind	uctance	Q (min)	DC Resistance	Freq	onant Juency	Rated Current
		(nH)	Tolerance	(111111)	(Ω max)	Min.	1Hz) *Typ.	(mA)
	LQP03TG8N2H02D					IVIII I.	τyp.	
	LQP03TG8N2J02D	8.2		12		4800	6200	
	LQP03TG9N1H02D				1.40			200
	LQP03TG9N1J02D	9.1						
	LQP03TG10NH02D					4500	5200	
	LQP03TG10NJ02D	10			1.52			190
	LQP03TG11NH02D					4400	4700	
	LQP03TG11NJ02D	11			1.65	4100	4700	
	LQP03TG12NH02D		1			0700	4400	180
	LQP03TG12NJ02D	12			1.78	3700	4400	
	LQP03TG13NH02D		1	11				
	LQP03TG13NJ02D	13			1.82	3400	3800	470
	LQP03TG15NH02D		H:±3%					170
	LQP03TG15NJ02D	15	J:±5%		1.90	3100	3600	
	LQP03TG16NH02D					0000	0000	
	LQP03TG16NJ02D	16			2.03	2900	3300	
	LQP03TG18NH02D				2.28	2000	2200	160
	LQP03TG18NJ02D	18			2.20	2800	3200	
	LQP03TG20NH02D							
	LQP03TG20NJ02D	20		9	2.57	2600	2900	
	LQP03TG22NH02D	22		9	2.85	2500	2000	140
	LQP03TG22NJ02D	22			2.65	2500	2900	
	LQP03TG24NH02D	24			3.17	2000	2400	
	LQP03TG24NJ02D	24			3.17	2000	2400	120
	LQP03TG27NH02D	27						120
	LQP03TG27NJ02D			7	3.65	1700	2200	
	LQP03TG33NJ02D	33		'	4.25	1600	2000	110
	LQP03TG39NJ02D	39			4.60	1500		110
	LQP03TG47NJ02D	47			5.20	1300	1700	100
	LQP03TG56NJ02D	56	J:±5%		5.60	1200	1500	100
	LQP03TG68NJ02D	68	3.1070		6.25	1100	1400	90
	LQP03TG82NJ02D	82	1	6	7.15	1000	1300	30
	LQP03TGR10J02D	100	1		8.05	900	1200	80
	LQP03TGR12J02D	120			8.75	800	1000	

^{*} Typical value is actual performance.

4. Testing Conditions

《Unless otherwise specified》

Temperature : Ordinary Temperature / 15°C to 35°C

Humidity: Ordinary Humidity / 25%(RH) to 85 %(RH)

《In case of doubt》

Temperature : 20°C ± 2°C

Humidity : 60%(RH) to 70 %(RH) Atmospheric Pressure: 86kPa to 106 kPa

5. Appearance and Dimensions

6. Marking

Polarity Marking :white

7.Electrical Performance

No.	Item	Specification	Test Method
7.1	Inductance	Inductance shall meet item 3.	Measuring Equipment: KEYSIGHT E4991A or equivalent Measuring Frequency: (0.1nH~27nH) 500MHz (33nH~120nH) 300MHz Measuring Condition: Test signal level / about 0dBm Electrical length / 10mm Measuring Fixture: KEYSIGHT 16197A Position coil under test as shown in below and contact coil with each terminal by adding weight. Coloring side should be a topside, and should be in the direction of the fixture for position of chip coil.
7.2	Q	Q shall meet item 3.	Polarity Marking Measuring Method:See P.12 <electrical inductance="" method="" of="" performance:measuring="" q=""></electrical>
7.3	DC Resistance	DC Resistance shall meet item 3.	Measuring Equipment:Digital multi meter
7.4	Self Resonant	S.R.F shall meet item 3.	Measuring Equipment:
	Frequency(S.R.F)		KEYSIGHT 8753C or equivalent
7.5	Rated Current	Self temperature rise shall be limited to 25°C max.	The rated current is applied.

Reference Only

8.Mechanical Performance

No.	Item	Specification	Test Method
8.1	Shear Test	Chip coil shall not be damaged	Substrate:Glass-epoxy substrate
		after tested as test method.	Land
			0.3
			0.3
			0.9 (in mm)
			Force:2N
			Hold Duration: 5 s±1 s
			Applied Direction: Parallel to PCB. Chip coil —
			Grillp con
			Substrate
0.0	Dan dia a Taat	Ohio asilahallaatha dagaasad	
8.2	Bending Test	Chip coil shall not be damaged after tested as test method.	Substrate:Glass-epoxy substrate (100mm × 40mm × 0.8mm)
		alter tested as test method.	Speed of Applying Force:1mm /s
			Deflection:1mm
			Hold Duration:30 s
			Pressure jig
			R340 F
			Deflection
			U The Date of the Control of the Con
			45 45 Product (in mm)
8.3	Vibration	Appearance:No damage	()
0.3	VIDIALIOII	Inductance Change: within ±10%	Substrate: Glass-epoxy substrate Oscillation Frequency:
		inductance Change, within ±10%	10Hz to 2000Hz to 10Hz for 20 min
			Total amplitude 1.5 mm or Acceleration
			amplitude 196 m/s ² whichever is smaller.
			Testing Time:
			A period of 2h in each of
0.4	Coldorob :::::	The electrode shall be at least 90%	3 mutually perpendicular directions.
8.4	Solderability		Flux: Ethanol solution of rosin 25(wt)%
		covered with new solder coating.	(Immersed for 5s to 10s)
			Solder:Sn-3.0Ag-0.5Cu
			Pre-Heating:150°C±10°C / 60s to 90s
			Solder Temperature:240°C±5°C
0.5	Danistan t	A management of	Immersion Time:3s±1s
8.5	Resistance to	Appearance:No damage	Flux: Ethanol solution of rosin 25(wt)%
	Soldering Heat	Inductance Change: within ±10%	(Immersed for 5s to 10s)
			Solder:Sn-3.0Ag-0.5Cu
			Pre-Heating:150°C±10°C / 60s to 90s
			Solder Temperature:260°C±5°C
			Immersion Time:5s±1s
			Then measured after exposure in the room
			condition for 24h±2h.

(in mm)

Reference Only

9. Environmental Performance

It shall be soldered on the substrate.

No.	Item	Specification	Test Method
9.1	Heat Resistance	Appearance:No damage	Substrate: Glass-epoxy substrate
		Inductance Change: within ±10%	Temperature:125°C
			Time:1000h (+48h,-0h)
			Then measured after exposure in the
			room condition for 24h±2h.
9.2	Cold Resistance		Substrate: Glass-epoxy substrate
			Temperature:-55°C
			Time:1000 h (+48h,-0h)
			Then measured after exposure in the
			room condition for 24h±2h.
9.3	Humidity		Substrate: Glass-epoxy substrate
			Temperature:40°C±2°C
			Humidity:90%(RH) to 95%(RH)
			Time:1000 h(+48h,-0h)
			Then measured after exposure in the
			room condition for 24h±2h.
9.4	Temperature		Substrate: Glass-epoxy substrate
	Cycle		1 cycle:
			1 step: -55°C / 30min±3 min
			2 step:Ordinary temp. / 10~15 min
			3 step: 125°C / 30min±3 min
			4 step: Ordinary temp. / 10~15 min
			Total of 10 cycles
			Then measured after exposure in the
			room condition for 24h±2h.

10. Specification of Packaging

10.1 Appearance and Dimensions of paper tape (8mm-wide)

10.2 Specification of Taping

- (1) Packing quantity (standard quantity)
 - 15,000 pcs. / reel
- (2) Packing Method

Products shall be packed in the cavity of the base tape and sealed by cover tape.

(3) Sprocket hole

Sprocket hole shall be located on the left-hand side toward the direction of feed.

(4) Spliced point

Base tape and Cover tape has no spliced point.

(5) Missing components number

Missing components number within 0.1 % of the number per reel or 1 pc., whichever is greater, and are not continuous. The Specified quantity per reel is kept.

10.3 Pull Strength

Cover tape	5N min

10.4 Peeling off force of cover tape

	-	Cover tape
Speed of Peeling off	300mm/min	165° to 180°
Peeling off force	0.1N to 0.6N	
reening on force	(minimum value is typical)	
		Base tape

10.5 Dimensions of Leader-tape, Trailer and Reel

There shall be leader-tape (top tape and empty tape) and trailer-tape (empty tape) as follows.

10.6 Marking for reel

Customer part number, MURATA part number, Inspection number(*1) , RoHS Marking (*2), Quantity etc \cdots

- *1) < Expression of Inspection No.>
- $\frac{\square\square}{(1)} \ \frac{OOOO}{(2)} \frac{\times \times \times}{(3)}$

- (1) Factory Code
- (2) Date First digit : Year / Last digit of year

Second digit : Month / Jan. to Sep. \rightarrow 1 to 9, Oct. to Dec. \rightarrow O,N,D

Third, Fourth digit: Day

- (3) Serial No.
- *2) <Expression of RoHS Marking >

$$ROHS - \underline{Y} (\underline{\triangle})$$

$$(1) (2)$$

- (1) RoHS regulation conformity parts.
- (2) MURATA classification number

10.7 Marking for Outside package (corrugated paper box)

Customer name, Purchasing order number, Customer part number, MURATA part number, RoHS Marking (*2) ,Quantity, etc \cdots

10.8 Specification of Outer Case

ı	Outer	Case Dim (mm)	ensions	Standard Reel Quantity in Outer Case (Reel)
	W	D	Η	III Outer Case (Reei)
	186	186	93	5

* Above Outer Case size is typical. It depends on a quantity of an order.

11. \Lambda Caution

Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- (1) Aircraft equipment
- Aerospace equipment
- (3) Undersea equipment
- Power plant control equipment
- (5) Medical equipment
- (6) Transportation equipment (vehicles, trains, ships, etc.)
- (7) Traffic signal equipment
- (8) Disaster prevention / crime prevention equipment
- (9) Data-processing equipment(10) Applications of similar complexity and /or reliability requirements to the applications listed in the above

12. Notice

Products can only be soldered with reflow.

This product is designed for solder mounting.

Please consult us in advance for applying other mounting method such as conductive adhesive.

12.1 Land pattern designing

	0.2~0.3	а
	0.8~0.9	b
	0.2~0.3	С
(in mm)		

12.2 Flux, Solder

Use rosin-based flux.

Don't use highly acidic flux with halide content exceeding 0.2(wt)% (chlorine conversion value). Don't use water-soluble flux.

- Use Sn-3.0Ag-0.5Cu solder.
- Standard thickness of solder paste : $100 \,\mu$ m~ $150 \,\mu$ m.

12.3 Reflow soldering conditions

- · Pre-heating should be in such a way that the temperature difference between solder and product surface is limited to 150°C max. Cooling into solvent after soldering also should be in such a way that the temperature difference is limited to 100°C max. Insufficient pre-heating may cause cracks on the product, resulting in the deterioration of products quality.
- Standard soldering profile and the limit soldering profile is as follows. The excessive limit soldering conditions may cause leaching of the electrode and / or resulting in the deterioration of product quality.
- · Reflow soldering profile

	Standard Profile	Limit Profile
Pre-heating	150°C~180°C 、90s±30s	
Heating	above 220°C, 30s∼60s	above 230°C, 60s max.
Peak temperature	245°C±3°C	260°C,10s
Cycle of reflow	2 times	2 times

12.4 Reworking with soldering iron

The following conditions must be strictly followed when using a soldering iron.

Pre-heating	150°C,1 min
Tip temperature	350°C max.
Soldering iron output	80W max.
Tip diameter	ϕ 3mm max.
Soldering time	3(+1,-0)s
Time	2 times

Note: Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the products due to the thermal shock.

12.5 Solder Volume

· Solder shall be used not to be exceeded the upper limits as shown below.

Accordingly increasing the solder volume, the mechanical stress to Chip is also increased. Exceeding solder volume may cause the failure of mechanical or electrical performance.

12.6 Attention regarding P.C.B. bending

The following shall be considered when designing and laying out P.C.B.'s.

(1) P.C.B. shall be designed so that products are not subject to the mechanical stress due to warping the board.

Products shall be located in the sideways direction (Length:a < b) to the mechanical stress.

(2) Products location on P.C.B. separation

Products (A,B,C,D) shall be located carefully so that products are not subject to the mechanical stress due to warping the board. Because they may be subjected the mechanical stress in order of $A>C>B \cong D$.

12.7 Cleaning Conditions

Products shall be cleaned on the following conditions.

- (1) Cleaning temperature shall be limited to 60°C max.(40°C max for IPA)
- (2) Ultrasonic cleaning shall comply with the following conditions with avoiding the resonance phenomenon at the mounted products and P.C.B.

Power: 20 W / I max. Frequency: 28kHz to 40kHz Time: 5 min max.

- (3) Cleaner
 - Alcohol type cleaner
 Isopropyl alcohol (IPA)
 - 2. Aqueous agent PINE ALPHA ST-100S
- (4) There shall be no residual flux and residual cleaner after cleaning. In the case of using aqueous agent, products shall be dried completely after rinse with de-ionized water in order to remove the cleaner.
- (5) Other cleaning Please contact us.

12.8 Resin coating

When products are coated with resin, please contact us in advance.

12.9 Handling of a substrate

(1)There is a possibility of chip cracking caused by PCBexpansion/contraction with heat, because stress on a chip is different depending on PCB material and structure.

When the thermal expansion coefficient greatly differs between the board used for mounting and the chip, it will cause cracking of the chip due to the thermal expansion and contraction.

The chip is assumed to be mounted on the PCB of glass-epoxy material, and we don't test with other PCB material which has different thermal expansion coefficient from Glass-epoxy.

When other PCB materials are considered, please be sure to evaluate by yourself.

(2)After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the product.

In case of the mounting on flexible PCB, there is a possibility of chip cracking caused by mechanical stress even from small bending or twisting.

When the flexible PCB is considered, please be sure to evaluate by yourself.

Bending Twisting

12.10 Storage and Handing Requirements

(1) Storage period

Use the products within 12 months after delivered. Solderability should be checked if this period is exceeded.

- (2) Storage conditions
 - Products should be stored in the warehouse on the following conditions.

Temperature : -10°C ~ 40°C

Humidity : 15% to 85% relative humidity No rapid change on temperature and humidity.

- Products should not be stored on bulk packaging condition to prevent the chipping of the core and the breaking of winding wire caused by the collision between the products.
- Products should be stored on the palette for the prevention of the influence from humidity, dust and so on.
- Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.
- (3) Handling Condition

Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.

13.<u></u> **∧** Note

- (1)Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- (2) You are requested not to use our product deviating from the reference specifications.
- (3)The contents of this reference specification are subject to change without advance notice. Please approve our product specifications or transact the approval sheet for product specifications before ordering.

<Electrical Performance:Measuring Method of Inductance/Q>

(1) Residual elements and stray elements of test fixture can be described by F-parameter shown in following.

(2) The impedance of chip coil Zx and measured value Zm can be described by input/output current/voltage.

$$Zm = \frac{V_1}{I_1} \qquad Zx = \frac{V_2}{I_2}$$

(3) Thus, the relation between Zx and Zm is following;

$$Zx = \alpha \frac{Zm - \beta}{1 - Zm \Gamma}$$
 where, $\alpha = D / A = 1$
 $\beta = B / D = Zsm - (1 - Yom Zsm)Zss$
 $\Gamma = C / A = Yom$

Zsm:measured impedance of short chip Zss:residual impedance of short chip(0nH) Yom:measured admittance when opening the fixture

(4) Lx and Qx shall be calculated with the following equation.

$$x = \frac{Im(Zx)}{2 \pi f}$$
, $Qx = \frac{Im(Zx)}{Re(Zx)}$ Lx:Inductance of chip coil
 $Qx:Q$ of chip coil
 f :Measuring frequency