Zongqi Shen

Fudan University, Shanghai

Email: zqshen18@fudan.edu.cn | Homepage: physshen.com | Phone: (+86) 17721298365

Education Background

Department of Physics, Fudan University, Bachelor of Science in Physics

Sep.2018-Present

- Overall GPA: 3.75/4, Rank: top 5% in the department of physics
- On track for honor degree in the Major
- Core and Graduate Courses (with grades): Advanced QM(A), Solid State Physics(A), Statistical Physics(A), Methods of Mathematical Physics(A), Scattering Physics(A), Superconductivity and Low Temperature Physics(A)
- Standard Tests: TOEFL 104 (Reading 28+ Listening 26 + Speaking 23 + Writing 27)

Research Interests

Emergent phenomena in strongly correlated electron systems including topology, superconductivity and magnetism

- Design, craft and control material platforms on the atomic level via tear-and-stack technique or epitaxial growth
- Correlated electrons in moiré graphene and TMDC materials
- High Tc superconductors and complex oxides
- Theory: Electronic structure calculation and simulation of transport properties

Publications

- 1. Jiahui Qian, **Zongqi Shen**, Xinyuan Wei, Wei Li, "**Electronic structure of rare-earth binary oxide superconductor LaO**", *arXiv:2108.10063*, under review in *Physical Review B* as *Letter*
- 2. Lijie Wang, Huanyi Xue, Guanqun Zhang, **Zongqi Shen**, Gang Mu, Shiwei Wu, Zhenghua An, Yan Chen and Wei Li, "Two-dimensional superconductivity at heterostructure of Mott insulating titanium sesquioxide and polar semiconductor", arXiv: 2106.06948, under review in Nature Materials
- 3. Huanyi Xue*, Lijie Wang*, **Zongqi Shen***, Guanqun Zhang, Gang Mu, Wei Peng, Xinyuan Wei, Shiwei Wu, Zhenghua An, Yan Chen and Wei Li, "**Time-reversal and rotational symmetries breaking in a spinel superconductor**", *in preparation*

Research Experience

STM study of moiré graphene and TMDC materials

Aug.2021-Present

Visiting Student Researcher supervised by Prof. Michael Crommie, UC Berkeley

- Learned and mastered the use of STM/STS to image the electronic structure of materials and took charge of the Omicron LT-STM.
- Characterized twisted mono-bilayer graphene and TMDC samples (TaSe₂, NbSe₂, TaTe₂ etc.) under gating.
- Measured the Mott behavior of monolayer 1T-TaSe₂ and Kondo resonance in 1T/1H-TaSe₂ hetero-bilayers
- Discovered an exotic $\sqrt{19} \times \sqrt{19}$ charge density wave in 1T-TaTe₂.
- Currently working on nontrivial topology in twisted mono-bilayer graphene and possible Tc enhancement in NbSe₂/SrTiO₃ heterostructure.

Ab-initio study of rare-earth oxide superconductors with nontrivial topology

June.2021-Aug.2021

RA supervised by Prof. Wei Li, Artificial Interface Lab, Fudan University

- Learned and mastered first-principle calculation of electronic structures and phonon spectrum using VASP.
- Developed python codes to study the nontrivial topology of rare-earth oxide superconductor LaO and found non-zero Z₂ invariant together with topologically protected surface states.
- Analyzed the energy splitting of La orbitals in oxygen octahedron crystal fields with group theory and identified the 5d to 4f orbital transition accounts for the band inversion.
- Co-authored paper: *Electronic structure of rare-earth binary oxide superconductor LaO* now under review in *Physical Review B* as *Letter*.

Two-dimensional superconductivity at oxide interfaces

RA supervised by Prof. Wei Li, Artificial Interface Lab, Fudan University

- Grew and optimized single crystal oxide thin films layer-by-layer with pulsed-laser deposition.
- Measured the transport and magnetic properties of the heterointerface at low temperatures.
- Helped to identify the Bose metallic state with a wide range of temperature-independent resistance associated with vanishing Hall resistance.
- Co-authored paper: Two-dimensional superconductivity at heterostructure of Mott insulating titanium sesquioxide and polar semiconductor now under review in Nature Materials.

Time reversal and rotational symmetry breaking in superconductors

Sep.2020-Dec.2020

RA supervised by Prof. Wei Li, Artificial Interface Lab, Fudan University

- Analyzed the pairing symmetry in our sample with group theory and helped to explain the coexistence of ferromagnetism and superconductivity.
- Analyzed and fitted STS data and with the calculated LDOS spectrum of triplet-pairing superconductors using Green's function.
- Proposed a topological origin of the two-fold symmetry in transverse resistance, which provided a new explanation of similar results reported in *Nature* 547, 432–435 (2017).
- Gained rich experience in combining experiments with theories to better understand the interplay between magnetism and superconductivity.

Fingerprints of Majorana zero mode in topological superconductors

June.2019-Present

RA supervised by Prof. Wei Li, Artificial Interface Lab, Fudan University

- Learned nonequilibrium Green's function method (NEGF) and analytical methods to study the transport properties of p+ip and d+id superconductors.
- Developed python codes to simulate Andreev reflection spectrum of metal-superconductor junctions.
- Studied the finite-size effects of the zero-bias conductance peaks in topological superconductors and found only
 quasi-one-dimensional samples can give rise to quantized conductance at 2e²/h.

2D materials and device fabrication

Nov.2018-June.2019

RA supervised by Prof. Faxian Xiu, Nanodevice Lab, Fudan University

- Synthesized high quality Bi₂SeO₃ sample using chemical vapor deposition method (CVD).
- Peeled off single-layered graphene for heterostructure fabrication.
- Helped establish a platform for stacking layers of 2D materials controlled by LabView.
- Received technical training in device fabrication and transport measurement.

Honors & Awards

•	National Scholarship (Highest honor awarded by Chinese government, 1/115 in Department of Physics)	Dec 2020
•	National Top Talent Undergraduate Training Program	May 2021
•	Xiyuan Scholar (UROP funding at Fudan)	May 2020
•	First Prize in Chinese College Physics Competition (rank No.1 in First Prize winners)	Oct 2020
•	Excellent Student Award from Fudan University	Sep 2019

Skills

Laboratory:

- Material Growth: PLD and CVD growth of thin films and nanofabrication
- Micro- and Nano-fabrication skills: Electron Beam Lithography, Wire Bonding
- Characterization skills: STM/STS, AFM, Cryogenic Transport Measurements, X-Ray Diffraction, Raman Spectroscopy

Theory:

- Programming: python, C, Mathematica
- Simulation: ab-initio(VASP), transport simulation, STS spectrum