



## Cambridge International **A Level**

## Cambridge International Examinations Cambridge International Advanced Level

| CANDIDATE<br>NAME     |                        |                     |            |
|-----------------------|------------------------|---------------------|------------|
| CENTRE<br>NUMBER      |                        | CANDIDATE<br>NUMBER |            |
| MATHEMATICS           |                        |                     | 9709/31    |
| Paper 3 Pure Mathem   | natics 3 (P3)          | October/Nove        | ember 2018 |
|                       |                        | 1 hour              | 45 minutes |
| Candidates answer or  | the Question Paper.    |                     |            |
| Additional Materials: | List of Formulae (MF9) |                     |            |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



|   | Find the set of values of x satisfying the inequality $2 2x - a  <  x + 3a $ , where a is a positive constant. [4] |
|---|--------------------------------------------------------------------------------------------------------------------|
|   | $(2 2x- x )^2 = ( x+3a ^2)$                                                                                        |
|   | 4(17-9)(23-9) = (x+3a)(x+3a)                                                                                       |
|   | $4(4x^2-4ax+a^2) = x^2+6a+aa^2$                                                                                    |
|   | 16x2-16ax+9a2 < x2+6a+9a2                                                                                          |
|   | 5a2/+(ba/c+ba-15x° />0                                                                                             |
|   | $-(5x^2 + 16ax + 6a+5a^2 = 0$                                                                                      |
| * | , a b c                                                                                                            |
|   |                                                                                                                    |
|   | L                                                                                                                  |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |
|   |                                                                                                                    |

© UCLES 2018 9709/31/O/N/18

2

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                        | Showing all necessar<br>2 decimal places. | ,g, ser.            | <b></b>             | $e^x - e^{-x}$                               | , g-111g j | ( |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|---------------------|----------------------------------------------|------------|---|
| $e^{x} \qquad e^{x}$ $2e^{2x} + 1 \qquad 4e^{2x} - 4$ $e^{x} \qquad e^{x}$ $2e^{2x} = 5$ $e^{2x} = 6$ $2x = \ln \frac{6}{2}$ | 2 e                                       | α <sub>+</sub>      | = 4e <sup>x</sup> - | <u> 4</u>                                    |            |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                        |                                           | ex                  |                     | ex                                           |            |   |
| $e^{2\pi i} = \frac{6}{2}$ $2\pi = \ln \frac{6}{2}$                                                                          | 2                                         | ·e <sup>2</sup> × 4 | 4 و ع<br>دم         | -4                                           |            |   |
| $e^{2x} = \frac{6}{2}$ $2x = \ln \frac{6}{2}$                                                                                |                                           |                     |                     | •••••                                        |            |   |
| 2x = In =                                                                                                                    |                                           |                     | = 5                 |                                              |            |   |
| $2x = \ln \frac{2}{3}$ $x = 0.46$                                                                                            |                                           | e <sup>zz</sup>     | = 6                 |                                              |            |   |
| 2x = 10.46<br>x = 0.46                                                                                                       |                                           |                     |                     |                                              |            |   |
| x = 0.46                                                                                                                     |                                           | <u>2 x</u>          | . = \n=             | <u>,                                    </u> |            |   |
|                                                                                                                              |                                           | <b>X</b>            | · - 0.              | 46                                           |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     | •••••••••••                                  | ••••••     |   |
|                                                                                                                              |                                           |                     |                     | ••••••                                       |            |   |
|                                                                                                                              |                                           |                     |                     | •••••                                        |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |
|                                                                                                                              |                                           |                     |                     |                                              |            |   |

(i) By sketching a suitable pair of graphs, show that the equation  $x^3 = 3 - x$  has exactly one real 3 root.



(ii) Show that if a sequence of real values given by the iterative formula

$$x_{n+1} = \frac{2x_n^3 + 3}{3x_n^2 + 1}$$

| converges, then it converges to the root of the equation in part (i). | [2] |
|-----------------------------------------------------------------------|-----|
| $3x^3 + x = 2x^3 + 3$                                                 |     |
|                                                                       |     |

|      | <br> | <br> |
|------|------|------|
| <br> | <br> | <br> |

| /##\          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (111)         | Use this iterative formula to determine the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (111)         | each iteration to 5 decimal places. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (III <i>)</i> | each iteration to 5 decimal places. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (III <i>)</i> | each iteration to 5 decimal places. $3(z = \frac{2(1)^3 + 3}{3(1)^2 + 1}$ 1.25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (III <i>)</i> | each iteration to 5 decimal places. $3(x = 1)$ $3(x^2 + 1)$ $3(x^2 + 1)$ $3(x^2 + 1)$ $3(x^2 + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (III)         | each iteration to 5 decimal places. $ \frac{3(1)^{2} + 1}{3(1)^{2} + 1} = \frac{2(1)^{3} + 3}{3(1)^{2} + 1} = \frac{1 \cdot 2[1 + 28]}{3(1 + 1)} $ $ \frac{3(1)^{2} + 1}{3(1 + 2)^{2} + 1} = \frac{1 \cdot 2[1 + 28]}{3(1 + 2)^{2} + 1} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (III)         | each iteration to 5 decimal places. $2(\frac{1}{2})$ $2(\frac{1}{2})$ $2(\frac{1}{2})$ $3(\frac{1}{2})$ $3(\frac{1}{2})$ $2(\frac{1}{2})$ $3(\frac{1}{2})$ $2(\frac{1}{2})$ $2(1$                                                                                                                                                                                               |
|               | each iteration to 5 decimal places. $ \frac{3(1)^{2} + 1}{3(1)^{2} + 1} = \frac{2(1)^{3} + 3}{3(1)^{2} + 1} = \frac{1 \cdot 2[1 + 28]}{3(1 + 1)} $ $ \frac{3(1)^{2} + 1}{3(1 + 2)^{2} + 1} = \frac{1 \cdot 2[1 + 28]}{3(1 + 2)^{2} + 1} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | each iteration to 5 decimal places. $ \frac{3}{3} = \frac{3}{3$ |
|               | each iteration to 5 decimal places. $ \frac{3}{3} = \frac{3}{3$ |

| 4 | The  | parametric | equations | of a | curve ar  | ·e  |
|---|------|------------|-----------|------|-----------|-----|
|   | 1110 | parametric | cquations | OI u | cui ve ui | . ~ |

$$x = 2\sin\theta + \sin 2\theta$$
,  $y = 2\cos\theta + \cos 2\theta$ ,

where  $0 < \theta < \pi$ .

| i) Obtain an expression for $\frac{dy}{dx}$ in terms of $\theta$ . $\frac{dy}{dx} = 2(540)^{0}(650) + 2(540) + 2(540) = 2(540) + 2(540) = 2(540) + 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(540) = 2(5$ | 70<br>77 | = -2 5500 - 2 500 0                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|
| -2 (550 + 5520)<br>2 (620 + 6620)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de .     | = <u>5m0+5im20</u><br>640+6020                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | in 0 - Sin 20 = 0<br>(Sin 0 + Sin 20) = 0                                        |
| -25in2 - 25in + 0 = 0<br>25in0 = -15in20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Sime $+2 \sin \theta + \cos \theta = 0$<br>$\sin \theta (1 + 2 \cos \theta) = 0$ |
| SMO = - SM 2 2<br>SMO = - 2 Sint Coso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | $\frac{1+2\log 6}{620} = 0$                                                      |
| (AD D = - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                  |

| -1 - 0            |                                                      |
|-------------------|------------------------------------------------------|
| <i>∞</i>          |                                                      |
| ٠ عامه            | $Q = (\bar{m}Q + 2C_{\bar{m}}Q) (\alpha A + \gamma)$ |
|                   | $g = \sin \theta + 2\sin \theta \cos \theta $        |
|                   |                                                      |
|                   | = - sino ( 1 + 2 6 + 0 ) = 0                         |
| (÷ 0 - 0          | (000 - 1                                             |
| 4m0 = 0           | 630 = -1<br>2                                        |
| 2 1= 0            | D OT                                                 |
|                   | 0 = 2T                                               |
|                   |                                                      |
| 2 2 Sin 2 1 + Sin | 1 TI y=2 60 2 T + 61 4                               |
|                   |                                                      |
| 15 -13            | = -1 -1                                              |
|                   | 2                                                    |
| = 13              | : -3                                                 |
|                   | 2 - Siso - 2 Sin                                     |
|                   | 2 - Sind _ 2 Sin<br>Sind (-1 - 2 Cos                 |
|                   |                                                      |
| ( )               | 3,-3)                                                |
|                   | 7 2                                                  |
|                   |                                                      |
|                   |                                                      |
|                   |                                                      |
|                   |                                                      |
|                   |                                                      |

| 5 The coordinates $(x, y)$ of a general point on a curve satisfy the differential equality | 5 | ates $(x, y)$ of a general point on | a curve satisfy the di | ifferential equation |
|--------------------------------------------------------------------------------------------|---|-------------------------------------|------------------------|----------------------|
|--------------------------------------------------------------------------------------------|---|-------------------------------------|------------------------|----------------------|

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (2 - x^2)y.$$

The curve passes through the point (1, 1). Find the equation of the curve, obtaining an expression for y in terms of x.

| $\int_{\mathcal{Y}} \int_{\mathcal{X}} \int_{\mathcal{X}} \frac{2}{x} - 2x  dx$ |
|---------------------------------------------------------------------------------|
| ) 4 / 2                                                                         |
| $\ln y = 2 \ln x - \frac{x^2}{2} + ($                                           |
| 2                                                                               |
| (۱٫2)                                                                           |
| $0 = 0 - \frac{1}{2} + c$                                                       |
| C = 1 2                                                                         |
| 2                                                                               |
| $\ln \varphi = 2 \ln 2 - \frac{\chi^2}{2} + \frac{1}{2}$                        |
| · · · · · · · · · · · · · · · · · · ·                                           |
| y= e2/10x-====================================                                  |
| <i>V</i>                                                                        |
| $Q = \frac{e^{\ln x^2} \times e^{\frac{1}{2}}}{1 + \frac{1}{2}}$                |
| 6-1/2 × 1-1                                                                     |
| 4: x2 e 2 - 22                                                                  |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |
|                                                                                 |

© UCLES 2018 9709/31/O/N/18

|          | R= \(\begin{align*} 12++ \\ \exitte{1} \\ \e | √2 <sup>2</sup> | - (    | <u> </u> |                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|----------|-----------------|
|          | d= tom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |        | 5.264    |                 |
|          | T3 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m(5e-35.        | 26) =  |          |                 |
| <u> </u> | <u>√2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | ∇θ [[  | <u></u>  |                 |
|          | Swy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - ζ             | ₩9     |          |                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 + Cos        | 12 z   | 53 2m    | 8               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (36m 6          | ) - Co | 20 °     | \(\frac{1}{2}\) |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |          |                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |          |                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |          |                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |          |                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |          | •••••           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |          |                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |          |                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |        |          |                 |

| nce solve the equation $(\sqrt{2})$ cosec $x + \cot x = \sqrt{3}$ , for $0^{\circ} < x < 180^{\circ}$ . |  |
|---------------------------------------------------------------------------------------------------------|--|
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |
|                                                                                                         |  |



The diagram shows the curve  $y = 5 \sin^2 x \cos^3 x$  for  $0 \le x \le \frac{1}{2}\pi$ , and its maximum point M. The shaded region R is bounded by the curve and the x-axis.

| (i) | Find the x-coordinate of $M$ , giving your answer correct to 3 decimal places. [5]                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\frac{dy}{dx} = \frac{5 \sin^2 x (-3 \cos^2 x \sin x) + \cos^3 x (10 \sin x \cos^2 x)}{-16 \sin^3 x (\cos^2 x) + 10 \sin x \cos^4 x} = 0$ |
|     | $6x = -15 \sin^3 x (\cos^2 x + 10 \sin x (\cos^4 x = 0)$                                                                                   |
|     | 2-105ing (2242 = 3-15 Gin 32 Costs                                                                                                         |
|     | 2 Cost = 3 Sin23                                                                                                                           |
|     | -622 )                                                                                                                                     |
|     | $2 = 3 \sqrt{3} x^2 X$                                                                                                                     |
|     | $t_{\text{am}^2} x = \frac{2}{3}$                                                                                                          |
|     | 3                                                                                                                                          |
|     | $tan x = \sqrt{\frac{2}{3}} 	 tan x = -\sqrt{\frac{2}{3}}$                                                                                 |
|     | $\alpha = 0.6847$                                                                                                                          |
|     |                                                                                                                                            |
|     | x=0.685                                                                                                                                    |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
|     |                                                                                                                                            |
|     |                                                                                                                                            |

| ii) Using the substitution $u = \sin x$ and showing all necess          | sary working, find the exact area of $R$ . [4] |
|-------------------------------------------------------------------------|------------------------------------------------|
| 4 = SSin2x (B33x                                                        |                                                |
|                                                                         | ų= sin α                                       |
| 5 Sim <sup>2</sup> 71 (23 x dx                                          | du ; Gs×                                       |
|                                                                         | dx                                             |
| 5 \ u 3 633 x du                                                        | क्र = स्म                                      |
| Case                                                                    | Con 2                                          |
| دا دی ای                                                                |                                                |
| 5) 43 (1-42) du<br>5) 43 - 45 du                                        |                                                |
| 5) u - u - du                                                           |                                                |
| Γ 4 /1±1                                                                |                                                |
| $5\left[\frac{u^{4}}{4}-\frac{u^{6}}{6}\right]_{0}^{2}$                 |                                                |
| , <u> </u>                                                              |                                                |
| ······                                                                  | <u>. † . F</u>                                 |
| Let $f(\omega) = 5\left(\frac{\sin^4 x}{4} - \frac{\sin^6 x}{6}\right)$ |                                                |
| Let $f(\omega) = 5\left(\frac{\sin^4 x}{4} - \frac{\sin^6 x}{6}\right)$ | 0                                              |
| $4(2\pi) = 5$                                                           |                                                |
| 12                                                                      |                                                |
| 子(o) = 0                                                                |                                                |
|                                                                         |                                                |
|                                                                         |                                                |
| :. area = <u>5</u><br>12                                                |                                                |
|                                                                         |                                                |
|                                                                         |                                                |
|                                                                         |                                                |
|                                                                         |                                                |
|                                                                         |                                                |
|                                                                         |                                                |

| ( <b>u</b> ) | Showing all necessary working, express the complex number $\frac{2+3i}{1-2i}$ in the form $re^{i\theta}$ , where $a$ and $-\pi < \theta \le \pi$ . Give the values of $r$ and $\theta$ correct to 3 significant figures. |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | (2+3i)(1+2i)                                                                                                                                                                                                             |
|              | (1-2)/1421)                                                                                                                                                                                                              |
|              | 2 + 7i + 6(-1)                                                                                                                                                                                                           |
|              | 1 - 4(-1) 5                                                                                                                                                                                                              |
|              | -4 +1 11 1 10 0<br>5 9 6                                                                                                                                                                                                 |
|              | : Q=J-1.05=2                                                                                                                                                                                                             |
|              | $V = \sqrt{\left(\frac{4}{5}\right)^2 + \left(\frac{7}{5}\right)^2}$ $V = \sqrt{(5)^2 + \left(\frac{7}{5}\right)^2}$                                                                                                     |
|              | <u> </u>                                                                                                                                                                                                                 |
|              | $\theta = \tan^{-1}\left(\frac{7/5}{-4/5}\right) = -1.05$                                                                                                                                                                |
|              | :(-1.05)                                                                                                                                                                                                                 |
|              | 1.61 m; (-1.05)                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                          |
|              |                                                                                                                                                                                                                          |

| <b>(b)</b> | On an Argand diagram sketch the locus of points representing complex numbers z satisfy            | ing the |
|------------|---------------------------------------------------------------------------------------------------|---------|
|            | equation $ z - 3 + 2i  = 1$ . Find the least value of $ z $ for points on this locus, giving your |         |
|            | in an exact form.                                                                                 | [4]     |

Z-(3-21)



| least value = \(\sigma^{2^2} + 2^2 - 1\) |
|------------------------------------------|
| = \sqrt{13} - 1                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |

Let  $f(x) = \frac{6x^2 + 8x + 9}{(2 - x)(3 + 2x)^2}$ . =  $\frac{A}{2 - 2} + \frac{B}{3 + 2x} = \frac{C}{3 + 2x^2}$ 



(i) Express f(x) in partial fractions.

| $6x^{2} + 8x + 9 = A (3 + 2x)^{2} + B(3 + 2x)(2 - x) + ((2 - x))^{2}$ $= A (9 + 12x + 4x^{2}) + B(6 + x - 2x^{2}) + 2(-6x^{2})$ $= 9A + 12Ax + 4Ax^{2} + 6B + Bx - 2Bx^{2} + 2(-6x^{2})$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 = 44 - 28                                                                                                                                                                              |
| 8= 12A+B-C                                                                                                                                                                               |
| 9= 9 A + 6B +2L                                                                                                                                                                          |
|                                                                                                                                                                                          |
| A=1                                                                                                                                                                                      |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |

| <b>-</b> /                                                                                                       |       |
|------------------------------------------------------------------------------------------------------------------|-------|
| (ii) Hence, showing all necessary working, show that $\int_{-1}^{0} f(x) dx = 1 + \frac{1}{2} \ln(\frac{3}{4}).$ | [5]   |
| $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$                                                          |       |
| $(3+2x)^2$                                                                                                       | ••••• |
| -1                                                                                                               |       |
| $-\ln(2-x)$ - $1\ln(2+2x)$ . $3(3+2x)^{-1}$                                                                      | ••••• |
| $-\ln(2-x) - \frac{1}{2}\ln(3+2x) + \frac{3(3+2x)^{-1}}{-1(2)}$                                                  | ••••• |
| Let $f(x) = -\ln(2-x) - \frac{1}{2}\ln(3+2x) - \frac{3}{2(3+2x)}$                                                |       |
| $f(0) = -\ln 2 - \frac{1}{2} \ln 3 - \frac{3}{6}$                                                                |       |
| <u> </u>                                                                                                         |       |
| _                                                                                                                |       |
| ((a) b.(a)                                                                                                       | ••••• |
| $\frac{f(-1)}{2} = -\ln(3) - \frac{1}{2} \ln(1 - \frac{3}{2})$                                                   |       |
| $= -\ln 3 - 0 - \frac{3}{2}$                                                                                     |       |
|                                                                                                                  |       |
| = -ln3 - <u>3</u>                                                                                                |       |
| l. 2 \ 1 2 L 2                                                                                                   |       |
| $-\ln 2 - \ln 3 - 2 - \ln 3 + 3$                                                                                 |       |
| 1 - In4 + 1 143                                                                                                  |       |
| 1 - 107 - 101/                                                                                                   | ••••• |
| 1 + 1 ln 3 - 1 In 4                                                                                              |       |
| 1                                                                                                                |       |

|               | Show that $l$ is parallel to $m$ .                                   |        |
|---------------|----------------------------------------------------------------------|--------|
| `             | Show that t is partitle to m                                         |        |
|               |                                                                      |        |
|               |                                                                      |        |
|               |                                                                      | •••••  |
|               |                                                                      |        |
|               |                                                                      | •••••• |
|               |                                                                      | •••••  |
|               |                                                                      |        |
|               |                                                                      | •••••  |
|               |                                                                      |        |
|               |                                                                      |        |
|               |                                                                      |        |
|               |                                                                      |        |
|               |                                                                      | •••••  |
|               |                                                                      |        |
|               |                                                                      |        |
|               |                                                                      | •••••  |
|               |                                                                      |        |
|               |                                                                      |        |
|               |                                                                      |        |
| <b>/</b> \    |                                                                      |        |
| (ii)          | Calculate the acute angle between the planes $m$ and $n$ .           |        |
| (ii)          | Calculate the acute angle between the planes $m$ and $n$ .           |        |
| (ii)          | Calculate the acute angle between the planes $m$ and $n$ .           |        |
| (ii)          | Calculate the acute angle between the planes <i>m</i> and <i>n</i> . |        |
| (ii)          |                                                                      |        |
| ( <b>ii</b> ) |                                                                      |        |
| ( <b>ii</b> ) |                                                                      |        |
| ( <b>ii)</b>  |                                                                      |        |
| (ii)          |                                                                      |        |
| ( <b>ii</b> ) |                                                                      |        |
| (ii)          |                                                                      |        |

© UCLES 2018 9709/31/O/N/18

| the position vectors | s of the two possi | ibic positions ( | O1 F.  |       | (     |
|----------------------|--------------------|------------------|--------|-------|-------|
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       | ••••• |
|                      |                    |                  |        |       |       |
| •••••                | ••••••             | ••••••           | •••••• | ••••• |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
| •••••                | ••••••             | ••••••           | •••••• | ••••• |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
| •••••                | ••••••             | ••••••           | •••••• | ••••• |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      | •••••              | •••••            | •••••• | ••••• |       |
|                      |                    |                  |        | ••••  |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       | ••••• |
|                      |                    |                  |        |       |       |
|                      | •••••              | •••••            | •••••• | ••••• | ••••• |
|                      |                    |                  |        | ••••  |       |
|                      |                    |                  |        |       |       |
|                      | •••••              |                  |        | ••••• |       |
|                      |                    |                  |        |       |       |
| ••••••               | •••••              |                  | •••••  | •     |       |
|                      |                    |                  |        | ••••  |       |
|                      |                    |                  |        |       |       |
|                      | •••••              |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |
|                      |                    |                  |        |       |       |

## **Additional Page**

| must be clearly shown. |
|------------------------|
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.