Schwarz's Îmequality: 4,9 C R[a,b] Then 1 (+ 9) = 1 = 1 + 12 | 19P Pouf #(00 g(4) - 3(0) teg) = f(x) [2 | f(y)] - g(x) f(x) f(x) g(y) - g(x) f(y) f(x) g(y) +. | g(x)|2 | +(x)|2 0 < /presida (918)12 - 1900 Fox (918) fy - J&(x) f(x) (8(4) f(y) + S18(x)12 [1f(y)2 $2 \int |f(x)|^2 \int |g(x)|^2 - 2 \int |f(x)|^2$ => 1 (+9 1² = 51+2 51912¹.

Proposition: $f \in Q[-\pi, \pi]$ and Ero Then $g \in C[-\pi, \pi]$ such that $\|f - g\|_2 < \mathcal{E}$.

Further if $f(-\pi) = f(\pi)$, teren g may choosen so that $g(-\pi) = g(\pi)$.

Parseval's Theorem: Let f, y be in Q[-1, T] and 2T-periodic. fn Ichen, gn Ira einz $C_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} f(x) dx, \quad \int_{\pi}^{\pi} e^{inx} f(x) dx$ $\int_{N\to\infty} \lim_{N\to\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |S(x) - f(x)|^2 dx = 0$ $\frac{1}{2\pi} \int_{-\pi}^{\pi} \sqrt{q} = \int_{-\pi}^{\infty} C_n J_n$ 3) $\frac{1}{2\pi}$ $\int_{-\pi}^{\pi} tt^{2} = \sum_{N=-\infty}^{\infty} |C_{N}|^{2}$. Recall S(f)(N) = School Re-n $11 + 11^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$

Prat: Let Ero Then $\mathcal{L} \in ((T-\pi, \pi J)) \rightarrow \mathcal{H}(-\pi) = \mathcal{L}(\pi)$ Such that 114-hllz< & I tig ply P of degree No ench that

Sup / h(x) - P(x) / 3

RELATI $\frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right| \leq \frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right| \leq \frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right| \leq \frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right| \leq \frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} \left| \frac{1}{2} - \frac{1}{2} \right| \leq \frac{1}{2} = \frac{1}{2}$ 11 h - SNW 1/2 = 1/h-P1/2 $\therefore \qquad \forall N \geq N^{\circ}$ $\|S(t) - S(N)\|_{2} \leq \|S(t-t)\|_{2} \left[\frac{S(t-t)}{S(t-t)} \right]$ $\leq 11 + -11 = 43$ $11 + - S_{N}(+) 11_{2} \leq 11_{1} + 11_{1} + 11_{2} + 11_{2}$ = + 115,5h - 5,5x1 2 < 8 + 11 > 16

 $\frac{1}{2\pi} \int S(t) \overline{g} = \sum_{k=-N}^{N} C_{k2\pi} \int e^{ikx} \overline{g}(x) dx$ = \(\sum_{\chi = -N} \) Std- 25(t) 2 < 1/4 - S/4)/2 [19/2 \longrightarrow 0 as $N \longrightarrow \infty$ $\sum_{k} c^{k} s^{k} \longrightarrow \frac{3u}{1} f \underline{d}$ $\frac{1}{2\pi}\int_{1}^{1}\xi^{2}=\sum_{k=-\infty}^{\infty}|\xi^{k}|^{2}$ Take 9 = 7 Stef-function La, bJoand a=2, <2, < 2, < ... < le a pontition.

Let q be a function on [a, b]. Then P is called a step-function if p is constant on [24,2k). Q = [Qx X (xx, xx) Porposition: If $f \in R[a,b]$ and e_{70} , then there exists a step-function pon Last meh that J12-9/ < E. factition Porist: there exists a a=26 < 2, < ... < 2, = 6 $\left|\sum_{k=1}^{n}w_{k}\Delta_{k}-\int_{\xi}\xi(t)dt\right|<\xi$ mx = Ent t

m, m. [2x1) en a skap femat $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) - m_{1} \right) \right) dt$ $\int_{R=1}^{N} \int_{R=1}^{N} \sum_{k=1}^{N} \sum_{k$

Riemann-hebersque hemma Treeron. Let $f \in \mathcal{R}[a,b].$ Then for each real B, we have I'm $\int_{A}^{b} f(t) \sin(\alpha t + \beta) dt = 0$, $\alpha \to \infty$ Boot of = q - a step function $\int_{A} sen(\alpha t + B) dt = -Cog(\alpha t + B) + Cog(\alpha t + B)$ De Co as a your as a your a

Let E 70. Then I step function op huch terat $\frac{1}{12}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{3}$ 1) fch son(attB) It! $\frac{a}{a} = \frac{b}{4(x)} - \frac{cq(x)}{a} = \frac{b}{a} = \frac{cq(x)}{a} = \frac{cq(x)}{$ Etbat + E for all 2000 A Longe X Le for all large d. (fee) sin(attpldt ->0 $\infty \times \rightarrow \infty$.

lem (+(+) son at dt
d > 000 - lem (ft) count It

a > 0

T = T

2

