A Novel Hybrid Learning Algorithm for Artificial Neural Networks

Ranadhir Ghosh, BE (Comp. Sc.), MIT

School of Information Technology
Faculty of Engineering and Information Technology
Griffith University - Gold Coast Campus

Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy December 2002

Abstract

Last few decades have witnessed the use of artificial neural networks (ANN) in many real-world applications and have offered an attractive paradigm for a broad range of adaptive complex systems. In recent years ANN have enjoyed a great deal of success and have proven useful in wide variety pattern recognition or feature extraction tasks. Examples include optical character recognition, speech recognition and adaptive control to name a few. To keep the pace with its huge demand in diversified application areas, many different kinds of ANN architecture and learning types have been proposed by the researchers to meet varying needs.

A novel hybrid learning approach for the training of a feed-forward ANN has been proposed in this thesis. The approach combines evolutionary algorithms with matrix solution methods such as singular value decomposition, Gram-Schmidt etc., to achieve optimum weights for hidden and output layers. The proposed hybrid method is to apply evolutionary algorithm in the first layer and least square method (LS) in the second layer of the ANN. The methodology also finds optimum number of hidden neurons using a hierarchical combination methodology structure for weights and architecture. A learning algorithm has many facets that can make a learning algorithm good for a particular application area. Often there are trade offs between classification accuracy and time complexity, nevertheless, the problem of memory complexity remains. This research explores all the different facets of the proposed new algorithm in terms of classification accuracy, convergence property, generalization ability, time and memory complexity.

Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person except where due acknowledgement is made in the thesis itself.

Signature	
	(RANADHIR GHOSH)
Date:	

Acknowledgement

I would like to express my gratitude to all those who gave me the opportunity to complete this thesis. I want to thank the School of Information Technology, Griffith University, Gold Coast Campus for giving me the opportunity to commence this thesis in the first instance, to do the necessary research work and to provide all the resources that were required.

I am deeply indebted to my supervisor Dr Brijesh Verma whose help, stimulating suggestions and encouragement helped me in all the time of research for and writing this thesis. Also I would like to thank my associate supervisor Dr Vallipuram Muthukkumarasamy and faculty member of our school Dr Michael Blumenstein for their valuable suggestions many a times.

It will be incomplete without acknowledging the guidance of my dear brother Samir whose guidance helped me to overcome all the difficult phases during the period. Also, I would like to give my special thanks to my wife, my beloved Guddi whose patient love enabled me to complete this work.

Table of Contents

L	ist of Figu	res		vii
L	ist of Tabl	es		ix
A	bbreviatio	n		xii
1	Introduc	tion		1
	1.1 Back	ground history		5
			ction	
	1.3.3		on	
		1.3.3.1 Identity fu	unction $g(x) = x$	12
			p function	
		1.3.3.3 Sigmoid f	unction	13
			gmoid function	
	1.3.4		n	
		1.3.4.1 Outline of	the basic genetic algorithm	16
			on of genetic algorithm	
		1.3.4.2.1	Genetic programming	18
			Evolving neural networks	
	1.4 Matin		Other arease research	
			sis	
•	•		515	
_				
			orithmganizing maps	
			anizing maps	
			lating weights in gradient descent algorithm	
			ent based learning	
	2.3.2		n rule	
			gorithm with ratchet	
		2.3.2.3 Delta rule	•	
		2.3.2.3.1	The μ -LMS algorithm	35
			The α-LMS algorithm	
			NE rule I	
			NE rule II	
			agation algorithm	
			ion of EBP	
		2.3.2.7.1	Adding momentum factor	
			Exponential smoothing	
			VM	
		2.3.2.8	Nonlinear backpropagation (NLEBP)	
		2.3.2.9	Successive over relaxation EBP algorithm	
		2.3.2.10	RP propagation	
		2.3.2.11	Quick propagation	
	2.3.3		dient based learning	
			gradient descent	
			/ton	
			g-Marquardt	
			Single output network	
			Small networks	58 59
		7.1111	Sum-squared effor function	19

		2.3.3.4 Radial bias Function (RBF) network	
		utionary based learning algorithm	
		Exhaustive search	
		Genetic hill climber	
		L- systems	
		Stochastic hill climber	
		Simulated annealing	
	2.4.6	Genetic algorithm	
		2.4.6.1 Comparison between GA and gradient based training	
		2.4.6.2 Evolution of architecture using GA	
		2.4.6.3 Direct encoding Scheme	
		2.4.6.4 Indirect encoding scheme	
		2.4.6.5 Evolution of node transfer function	
		2.4.6.6 Prados's GenLearn method	
		2.4.6.7GMU GANNET	
		2.4.6.8EPNet	
	2.4.7	J	
		2.4.7.1 Layer wise EBP based Kaczmarz algorithm	
		2.4.7.2 Global Extended Kalman Filter Algorithm (GEKF)	
		2.4.7.3 Decoupled extended Kalman filter algorithm (DEKF)	
		2.4.7.4 Local linearized least squares algorithm (LLLS)	
		2.4.7.5 Precise linear sigmoidal network	
		2.4.7.6 Reduced complexity based on Jacobian deficiency	
		2.4.7.7Linearly constrained least square method (LCLS)	
		2.4.7.8 Regularizer for recursive least squared algorithm	
	2.4.8	Problems still unresolved	
		2.4.8.1 Local minima	
		2.4.8.2 Computation of gradients	
		2.4.8.3 Paralysis problem	
		2.4.8.4 Generalization and convergence problem	89
		2.4.8.5 Start state 90	
3	Research	Methodology	91
		5.	
		ale details for finding weights	
		Common architecture details	
	3.1.2	Combination dynamics	
		3.1.2.1T1 connection	
		3.1.2.2T2 connection	
	212	3.1.2.3T3 connection	
	3.1.3	1	
	3.1.4	Efficiency order for the connection topology	
	215	3.1.4.1 Stopping criteria	
	3.1.5	U 1	
		3.1.5.1 Combining EALS-T3 and findArchitecture modules	
		Experiment A (LI-EALS-T3)	
		Experiment B (BT-EALS-T3)	
4	Experim	ental Results	113
	-		
		LEMENTATION DETAILS	
	4.1.1	= =====	
		Data set details	
		lts	
	4.2.1	r	
		4.2.1.1 Results with parameter variations	
		4.2.1.1.1 Results for EBP	
		4.2.1.1.2 Results for GAWES	
		4.2.1.1.4 Results for GALS-T1	
		4.2.1.1.5 Results for GALS-T2	
		4.2.1.1.6 Results for GALS-T3	
		4.2.1.1.7 Results for EALS-T1	142

		4.2.1.1.8 Results for EALS-T2	145
		4.2.1.1.9 Results for EALS-T3	148
		4.2.1.2 Results with fixed parameters	153
		4.2.1.2.1 Results from EBP	
		4.2.1.2.2 Results from EAWLS	
		4.2.1.2.3 Results from LI-EALS-T3	
		4.2.1.2.4 Results from BT-EALS-T3	
	4.2.2	Experimental results – Type II	
		4.2.2.1 Experiment 1	
		4.2.2.2 Experiment 2	
		4.2.2.3 Experiment 3	
		4.2.2.4Experiment 4	
		4.2.2.5 Experiment 5	
		4.2.2.6 Experiment 6	159
5	Analysis	and Discussion	161
		parison analysis	
		Comparison of classification accuracy	
		Comparison of time complexity	
		Comparison of required number of hidden neurons	
		Comparison of memory complexity	
		Comparison of sensitivity analysis	
		rsis of the special properties for the proposed learning algorithm	
		Analysis of convergence property for the new algorithm	
		Variations of hidden layer output for various weight range	
		Variations of inverse of R Matrix	
		Need of bias for the proposed algorithm (EALS-T3)	
	5.2.5	Is the hybrid nature of the proposed algorithm (EALS-T3) a combination	
		and local search	
	5.2.6	Analysis of fitness breaking	
	5.2.7		
	5.2.8	•	
6	Conclusio	on & Further research	187
	6.1 Conc.	usion	187
		er research	
D.	oforonco		101

List of Figures

Figure 1-1	Biological neuron	9
Figure 1-2	Artificial neuron	10
Figure 1-3	Identity function	12
Figure 1-4	Binary step function	12
Figure 1-5	Sigmoid function	
Figure 1-6	Bipolar sigmoid function	
Figure 1-7	Genetic operations on genotypes	
Figure 1-8	Genetic programming as a solver	
Figure 2-1	Hebb rule architecture	
Figure 2-2	Hamming network	
Figure 2-3	Kohonen self organizing network	
Figure 2-4	Multi layer perceptron	40
Figure 2-5	Gaussian function used for RBF	
Figure 2-6	Radial bias network	
Figure 2-7	A flowchart for basic genetic algorithm	
Figure 2-8	EPNet architecture	
Figure 2-9	Local minima problem.	
Figure 2-10	Error surface considering only one-weight and bias vectors	
Figure 2-11	Training set result for a function approaximator	
Figure 2-12	Validation set result by the same network	
Figure 3-1	Combination dynamics for findArchitecture and findWeight modules	
Figure 3-2	A two layer ANN architecture for the proposed hybrid learning method	
Figure 3-3	A general T (1/2/3) connection for GA and LA methods	
Figure 3-4	T1- connection architecture	
Figure 3-5	T2-connection architecture	
Figure 3-6	T3-connection architecture	
Figure 3-7	Flowchart for EALS-T3	
Figure 5-1	Comparison of classification accuracy I	
Figure 5-2	Comparison of classification accuracy II	
Figure 5-3	Improvement of classification accuracy over EBP	
Figure 5-4	Improvement of classification accuracy over EAWLS	
Figure 5-5	Comparison of time complexity I	
Figure 5-6	Comparison of time complexity II	
Figure 5-7	Improvement of time complexity over EBP	
Figure 5-8	Improvement of time complexity over EAWLS	165
Figure 5-9	Time complexity for the proposed algorithm for increasing number of hidden	1.//
E: 5.10	neurons	
Figure 5-10	Time complexity for the proposed algorithm for increasing number of populatio	
Figure 5-11	Time complexity for the proposed algorithm for increasing number of training d	100 lata
riguic 3-11	pattern	
Figure 5-12	Comparison of hidden neuron I	
Figure 5-13	Comparison of hidden neuron II.	
Figure 5-14	Comparison of memory complexity	
Figure 5-15	Increment of memory usage	
Figure 5-16	Comparison of sensitivity analysis	
Figure 5-17	Convergence of train RMS error	
Figure 5-18	Convergence of test classification error.	
Figure 5-19	Stability of solution in local neighborhood.	
Figure 5-20	Convergence of RMS error with the lest square output	
Figure 5-21	Convergence of classification error with the LS output	
Figure 5-22	Comparisons on required # generations	
Figure 5-23	Variations of hidden layer output for various range of weight initialization	
Figure 5-24	Variations of inverse output for R Matrix with range element chosen randomly.	
Figure 5-25	Variations of inverse output for R Matrix with range element chosen was fixed.	
Figure 5-26	Effect of inverse function for number of different element	
Figure 5-27	Solution region without the bias	
Figure 5-28	Solution region with the bias	

Figure 5-29	Percentage of improvement because of LS after EA output	180
Figure 5-30	Fitness distribution before LS.	182
Figure 5-31	Fitness distribution after the LS	182
Figure 5-32	Rank profiling before/after the LS	183
Figure 5-33	Comparison of classification accuracy for different T connections	184
Figure 5-34	Comparison of time complexity for different T connections	184
Figure 5-35	Comparison of classification accuracy based on different genetic algorithm strategies	185
Figure 5-36	Comparison of classification accuracy based on different genetic algorithm strategies	

List of Tables

Table 3-1	Variations of strategies depending on the GA methods	
Table 3-2	Three different connection strategies for calling LS from GA/EA	97
Table 4-1	Description for all the algorithms	
Table 4-2	Data set information	
Table 4-3	EBP results with different #iteration and #hidden neurons for XOR dataset	
Table 4-4	EBP results with different #iteration and #hidden neurons for 10 bit odd parity dataset	
Table 4-5	EBP results with different #iteration and #hidden neurons for handwriting characters (CEDAR) dataset	
Table 4-6	EBP results with different #iteration and #hidden neurons for breast cancer (Wisconsin) dataset	
Table 4-7	EBP results with different #iteration and #hidden neurons heart disease (Clevelar dataset	nd)
Table 4-8	EBP results with different #iteration and #hidden heart disease (Hungary) dataset	
Table 4-9	EBP results with different #iteration and #hidden heart disease (Switzerland) data	aset
Table 4-10 Table 4-11	GAWLS results with different #population and #hidden neurons for XOR datase GAWLS results with different #population and #hidden neurons for 10 bit odd parity dataset	123
Table 4-12		
Table 4-13	GAWLS results with different #population and #hidden neurons for breast cance (Wisconsin) dataset	er
Table 4-14		
Table 4-15		
Table 4-16		nd)
Table 4-17	EAWLS results with different #population and #hidden neurons for XOR datase	
Table 4-18	EAWLS results with different #population and #hidden neurons for 10 bit odd parity dataset	128
Table 4-19	EAWLS results with different #population and #hidden neurons for handwriting characters (CEDAR) dataset	129
Table 4-20	EAWLS results with different #population and #hidden neurons for breast cance (Wisconsin) dataset	
Table 4-21	EAWLS results with different #population and #hidden neurons heart disease (Cleveland) dataset	130
	EAWLS results with different #population and #hidden heart disease (Hungary) dataset	130
Table 4-23	dataset	131
Table 4-24		
Table 4-25	GALS-T1 results with different #population and #hidden neurons heart disease (Cleveland) dataset	
Table 4-26	GALS-T1 results with different #population and #hidden heart disease (Hungary dataset	
Table 4-27	GALS-T1 results with different #population and #hidden heart disease (Switzerland) dataset	
Table 4-28		135
Table 4-29	(Wisconsin) dataset	135
Table 4-30	GALS-T2 results with different #population and #hidden neurons heart disease (Cleveland) dataset	136
Table 4-31	GALS-T2 results with different #population and #hidden heart disease (Hungar	y)

	dataset	.136
Table 4-32	GALS-T2 results with different #population and #hidden heart disease	
	(Switzerland) dataset	
Table 4-33	GALS-T3 results with different #population and #hidden neurons for XOR datas	
Table 4-34	GALS-T3 results with different #population and #hidden neurons for 10 bit odd	
1 autc 4-34	parity dataset	
Table 4-35	GALS-T3 results with different #population and #hidden neurons for handwriting	
14610 . 50	characters (CEDAR) dataset	
Table 4-36	GALS-T3 results with different #population and #hidden neurons for breast cane	
	(Wisconsin) dataset	
Table 4-37	GALS-T3 results with different #population and #hidden neurons heart disease	
	(Cleveland) dataset	
Table 4-38	GALS-T3 results with different #population and #hidden heart disease (Hungary	
	dataset	.141
Table 4-39	GALS-T3 results with different #population and #hidden heart disease	1 4 1
Table 4 40	(Switzerland) dataset	. 141
Table 4-40	EALS-T1 results with different #population and #hidden neurons for XOR datas	
Table 4-41	EALS-T1 results with different #population and #hidden neurons breast cancer	. 142
1 4010 7-71	(Wisconsin) dataset	143
Table 4-42	EALS-T1 results with different #population and #hidden neurons heart disease	. 173
14010 1 12	(Cleveland) dataset	143
Table 4-43	EALS-T1 results with different #population and #hidden heart disease (Hungary	
	dataset	.144
Table 4-44	EALS-T1 results with different #population and #hidden heart disease	
	(Switzerland) dataset	
Table 4-45	EALS-T2 results with different #population and #hidden neurons for XOR data	
Table 4-46	EALS-T2 results with different #population and #hidden neurons for breast can	
T-1.1. 1 17	(Wisconsin) dataset	. 146
Table 4-47	EALS-T2 results with different #population and #hidden neurons heart disease (Cleveland) dataset	147
Table 4-48	EALS-T2 results with different #population and #hidden heart disease (Hungary	
1 autc 4-40	datasetdataset	
Table 4-49	EALS-T2 results with different #population and #hidden heart disease	. 1 17
	(Switzerland) dataset	148
Table 4-50	EALS-T3 results with different #population and #hidden neurons for XOR datas	
		149
Table 4-51	EALS-T3 results with different #population and #hidden neurons for 10 bit odd	
	parity dataset	.149
Table 4-52	EALS-T3 results with different #population and #hidden neurons for handwritin	
T 11 4 50	characters (CEDAR) dataset	. 150
Table 4-53	EALS-T3 results with different #population and #hidden neurons for breast cano	
Table 4-54	(Wisconsin) dataset	. 150
1 abie 4-34	(Cleveland) dataset	151
Table 4-55	EALS-T3 results with different #population and #hidden heart disease (Hungary	
1 4010 4-33	dataset	
Table 4-56	EALS-T3 results with different #population and #hidden heart disease	. 132
14010 1 20	(Switzerland) dataset	152
Table 4-57	EBP results with fixed parameters	
Table 4-58	EAWLS results with fixed parameters (population 60)	
Table 4-59	LI-EALS-T3 results with fixed parameters	
Table 4-60	BT-EALS-T3 results with fixed parameters	
Table 4-61	Experiment 1	
Table 4-62	Experiment 2	
Table 4-63	Variation of results for different ranges with matrix element chosen randomly	
Table 4-64	Experiment 4	
Table 4-65	Experiment 5	. 158

Table 4-66	Experiment 6	160
------------	--------------	-----

Abbreviation

AI: Artificial intelligence

ANN: Artificial neural network

BT-EALS-Tx: Binary architecture search with EALS weight updating using

Tx connection; $x \in \{1,2,3\}$

BT-GALS-Tx: Binary architecture search with GALS weight updating using

Tx connection; $x \in \{1,2,3\}$

CI: Computational intelligence

EA: Evolutionary algorithm

EALS: Evolutionary algorithm with least square

EAWLS: Evolutionary algorithm without least square

EBP: Error back propagation

EP: Evolutionary programming

GA: Genetic algorithm

GALS: Genetic algorithm with least square

GAWLS: Genetic algorithm without least square

GV1: Is same as LI-EALS-T3

GV2: Is same as BT-EALS-T3

LI-EALS-Tx: Linear architecture search with EALS weight updating using

Tx connection; $x \in \{1,2,3\}$

LI-GALS-Tx: Linear architecture search with GALS weight updating using

Tx connection; $x \in \{1,2,3\}$

LS: Least square

MLP: Multi layered perceptron

NP: Non polynomial