

Trigonométrie hyperbolique

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 ***IT

Domaine de définition et calcul des fonctions suivantes :

- 1. $x \mapsto \sin(\arcsin x)$,
- 2. $x \mapsto \arcsin(\sin x)$,
- 3. $x \mapsto \cos(\arccos x)$,
- 4. $x \mapsto \arccos(\cos x)$,
- 5. $x \mapsto \tan(\arctan x)$,
- 6. $x \mapsto \arctan(\tan x)$.

Correction ▼ [005084]

Exercice 2 ***IT

- 1. Calculer $\arccos x + \arcsin x$ pour x élément de [-1, 1].
- 2. Calculer $\arctan x + \arctan \frac{1}{x}$ pour x réel non nul.
- 3. Calculer $\cos(\arctan a)$ et $\sin(\arctan a)$ pour a réel donné.
- 4. Calculer, pour a et b réels tels que $ab \neq 1$, $\arctan a + \arctan b$ en fonction de $\arctan \frac{a+b}{1-ab}$ (on étudiera d'abord $\cos(\arctan a + \arctan b)$ et on distinguera les $\cos ab < 1$, ab > 1 et a > 0, ab > 1 et a < 0).

Correction ▼ [005085]

Exercice 3 *IT

Etablir pour ch, sh et th les formules d'addition, de duplication et de linéarisation.

Correction ▼ [005086]

Exercice 4 ***I

Existence et calcul de $\int_0^{\sin^2 x} \arcsin \sqrt{t} \ dt + \int_0^{\cos^2 x} \arccos \sqrt{t} \ dt$.

Correction ▼ [005087]

Exercice 5 **

Simplifier les expressions suivantes :

1.
$$f_1(x) = \arcsin\left(\frac{x}{\sqrt{1+x^2}}\right)$$
.

2.
$$f_2(x) = \arccos\left(\frac{1-x^2}{1+x^2}\right)$$
.

3.
$$f_3(x) = \arcsin\sqrt{1-x^2} - \arctan\left(\sqrt{\frac{1-x}{1+x}}\right)$$
.

4.
$$f_4(x) = \arctan \frac{1}{2x^2} - \arctan \frac{x}{x+1} + \arctan \frac{x-1}{x}$$
.

Correction ▼ [005088]

Exercice 6 **I

Calculer $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$.

Correction ▼ [005089]

Exercice 7 ***I

Calculer $u_n = \arctan \frac{2}{1^2} + \arctan \frac{2}{2^2} + ... + \arctan \frac{2}{n^2}$ pour n entier naturel non nul donné puis déterminer $\lim_{n \to +\infty} u_n$. (Utiliser l'exercice 2 4))

Correction ▼ [005090]

Exercice 8 *

Etudier $f: x \mapsto \ln(\operatorname{ch} x) - x$.

Correction ▼ [005091]

Exercice 9 ** Mines de DOUAI 1984

On considère la fonction numérique f telle que :

$$f(x) = (x^2 - 1) \arctan \frac{1}{2x - 1}$$

et on appelle (\mathscr{C}) sa courbe représentative dans un repère orthonormé.

- 1. Quel est l'ensemble de définition \mathcal{D} de f?
- 2. Exprimer, sur $\mathcal{D} \setminus \{0\}$, la dérivée de f sous la forme : f'(x) = 2xg(x).
- 3. Montrer que : $\forall x \in \mathbb{R}$, $2x^4 4x^3 + 9x^2 4x + 1 > 0$ et en déduire le tableau de variation de g.
- 4. Dresser le tableau de variation de f.

Correction ▼ [005092]

Exercice 10 **

Résoudre dans \mathbb{R} l'équation $\operatorname{sh}(2+x) + \operatorname{sh}(2+2x) + \dots + \operatorname{sh}(2+100x) = 0$.

Correction ▼ [005093]

Exercice 11 **I

- 1. Montrer que pour tout réel x non nul, on a : th $x = \frac{2}{\text{th}(2x)} \frac{1}{\text{th}x}$.
- 2. En déduire la valeur de $u_n = 2^0 \operatorname{th}(2^0 x) + 2^1 \operatorname{th}(2^1 x) + ... + 2^{n-1} \operatorname{th}(2^{n-1} x)$ pour n entier naturel non nul et x réel non nul donnés puis calculer la limite de (u_n) .

Correction ▼ [005094]

Exercice 12 **

Simplifier les expressions suivantes

- 1. $\sin(2\arcsin x)$,
- 2. $\cos(2\arccos x)$,
- 3. $\sin^2\left(\frac{\arccos x}{2}\right)$,
- 4. $\ln(\sqrt{x^2+1}+x) + \ln(\sqrt{x^2+1}-x)$,
- 5. $\operatorname{argsh}\left(\frac{x^2-1}{2x}\right)$,
- 6. $\operatorname{argch}(2x^2 1)$,

7.
$$\operatorname{argth}\left(\sqrt{\frac{\operatorname{ch} x - 1}{\operatorname{ch} x + 1}}\right)$$

8.
$$\frac{\operatorname{ch}(\ln x) + \operatorname{sh}(\ln x)}{x}$$
.

Correction ▼ [005095]

Exercice 13 **

 $\overline{\text{R\'e}\text{soudre}}$ dans $\mathbb R$ les équations suivantes :

- 1. ch x = 2,
- 2. $\arcsin(2x) = \arcsin x + \arcsin(x\sqrt{2})$,
- 3. $2\arcsin x = \arcsin(2x\sqrt{1-x^2})$.

Correction ▼ [005096]

Correction de l'exercice 1 A

 $\arcsin x$ existe si et seulement si x est dans [-1,1]. Donc, $\sin(\arcsin x)$ existe si et seulement si x est dans [-1,1] et pour x dans [-1,1], $\sin(\arcsin x) = x$.

 $\arcsin(\sin x)$ existe pour tout réel x mais ne vaut x que si x est dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. • S'il existe un entier relatif k tel que $-\frac{\pi}{2} + 2k\pi \leqslant x < \frac{\pi}{2} + 2k\pi$, alors $-\frac{\pi}{2} \leqslant x - 2k\pi < \frac{\pi}{2}$ et donc

$$\arcsin(\sin x) = \arcsin(\sin(x - 2k\pi)) = x - 2k\pi.$$

De plus, on a $k \leqslant \frac{x}{2\pi} + \frac{1}{4} < k + \frac{1}{2}$ et donc $k = E\left(\frac{x}{2\pi} + \frac{1}{4}\right)$. • S'il existe un entier relatif k tel que $\frac{\pi}{2} + 2k\pi \leqslant x < \frac{3\pi}{2} + 2k\pi$, alors $-\frac{\pi}{2} < \pi - x + 2k\pi \leqslant \frac{\pi}{2}$ et donc

$$\arcsin(\sin x) = \arcsin(\sin(\pi - x + 2k\pi)) = \pi - x + 2k\pi.$$

De plus, $k \le \frac{x}{2\pi} - \frac{1}{4} < k + \frac{1}{2}$ et donc $k = E(\frac{x}{2\pi} - \frac{1}{4})$.

 $\arccos x$ existe si et seulement si x est dans [-1,1]. Donc, $\cos(\arccos x)$ existe si et seulement si x est dans [-1,1] et pour x dans [-1,1], $\cos(\arccos x) = x$.

 $\arccos(\cos x)$ existe pour tout réel x mais ne vaut x que si x est dans $[0,\pi]$. • S'il existe un entier relatif k tel que $2k\pi \leqslant x < \pi + 2k\pi$, alors $\arccos(\cos x) = x - 2k\pi$ avec $k = E\left(\frac{x}{2\pi}\right)$. • S'il existe un entier relatif k tel que $-\pi + 2k\pi \leqslant x < 2k\pi$ alors $\arccos(\cos x) = \arccos(\cos(2k\pi - x)) = 2k\pi - x$ avec $k = E\left(\frac{x+\pi}{2\pi}\right)$.

Pour tout réel x, tan(arctan x) = x.

 $\arctan(\tan x)$ existe si et seulement si x n'est pas dans $\frac{\pi}{2} + \pi \mathbb{Z}$ et pour ces x, il existe un entier relatif k tel que $-\frac{\pi}{2} + k\pi < x < \frac{\pi}{2} + k\pi$. Dans ce cas, $\arctan(\tan x) = \arctan(\tan(x - k\pi)) = x - k\pi$ avec $k = E\left(\frac{x}{\pi} + \frac{1}{2}\right)$.

Correction de l'exercice 2 A

1. **1ère solution**. Posons $f(x) = \arccos x + \arcsin x$ pour x dans [-1,1]. f est définie et continue sur [-1,1], dérivable sur [-1,1]. De plus, pour x dans [-1,1],

$$f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0.$$

Donc f est constante sur [-1,1] et pour x dans [-1,1], $f(x) = f(0) = \frac{\pi}{2}$.

$$\forall x \in [-1,1], \arccos x + \arcsin x = \frac{\pi}{2}.$$

2ème solution. Il existe un unique réel θ dans $[0,\pi]$ tel que $x = \cos \theta$, à savoir $\theta = \arccos x$. Mais alors,

$$\arccos x + \arcsin x = \theta + \arcsin \left(\sin(\frac{\pi}{2} - \theta)\right) = \theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}$$

 $(\operatorname{car} \frac{\pi}{2} - \theta \text{ est dans } [-\frac{\pi}{2}, \frac{\pi}{2}]).$

2. **1ère solution**. Pour x réel non nul, posons $f(x) = \arctan x + \arctan \frac{1}{x}$. f est impaire. f est dérivable sur \mathbb{R}^* et pour tout réel x non nul, $f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \frac{1}{1+\frac{1}{x^2}} = 0$. f est donc constante sur $]-\infty,0[$ et sur $]0,+\infty[$ (mais pas nécessairement sur]*). Donc, pour x>0, $f(x)=f(1)=2\arctan 1=\frac{\pi}{2}$, et puisque f est impaire, pour x<0, $f(x)=-f(-x)=-\frac{\pi}{2}$. Donc,

$$\forall x \in \mathbb{R}^*, \arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2} \operatorname{si} x > 0 \\ -\frac{\pi}{2} \operatorname{si} x < 0 \end{cases} = \frac{\pi}{2} \operatorname{sgn}(x).$$

2ème solution Pour x réel strictement positif donné, il existe un unique réel θ dans $\left]0, \frac{\pi}{2}\right[$ tel que $x = \tan \theta$ à savoir $\theta = \arctan x$. Mais alors,

$$\arctan x + \arctan \frac{1}{x} = \theta + \arctan \left(\frac{1}{\tan \theta}\right) = \theta + \arctan \left(\tan \left(\frac{\pi}{2} - \theta\right)\right) = \theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}$$

(car θ et $\frac{\pi}{2} - \theta$ sont éléments de $]0, \frac{\pi}{2}[$).

3. $\cos^2(\arctan a) = \frac{1}{1+\tan^2(\arctan a)} = \frac{1}{1+a^2}$. De plus, $\arctan a$ est dans $]-\frac{\pi}{2}, \frac{\pi}{2}[$ et donc $\cos(\arctan a) > 0$. On en déduit que pour tout réel a, $\cos(\arctan a) = \frac{1}{\sqrt{1+a^2}}$ puis

$$\sin(\arctan a) = \cos(\arctan a)\tan(\arctan a) = \frac{a}{\sqrt{1+a^2}}.$$

$$\forall a \in \mathbb{R}, \cos(\arctan a) = \frac{1}{1+a^2} \text{ et } \sin(\arctan a) = \frac{a}{\sqrt{1+a^2}}.$$

4. D'après 3),

$$\cos(\arctan a + \arctan b) = \cos(\arctan a)\cos(\arctan b) - \sin(\arctan a)\sin(\arctan b) = \frac{1 - ab}{\sqrt{1 + a^2}\sqrt{1 + b^2}},$$

ce qui montre déjà , puisque $ab \neq 1$, que $\cos(\arctan a + \arctan b) \neq 0$ et donc que $\tan(\arctan a + \arctan b)$ existe. On a immédiatement,

$$\tan(\arctan a + \arctan b) = \frac{a+b}{1-ab}.$$

Maintenant, $\arctan a + \arctan b$ est dans $]-\pi, -\frac{\pi}{2}[\cup]-\frac{\pi}{2}, \frac{\pi}{2}[\cup]\frac{\pi}{2}, \pi[.$

1er cas. Si ab < 1 alors $\cos(\arctan a + \arctan b) > 0$ et donc $\arctan a + \arctan b$ est dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Dans ce cas, $\arctan a + \arctan b = \arctan \left(\frac{a+b}{1-ab}\right)$.

2ème cas. Si ab>1 alors $\cos(\arctan a + \arctan b)<0$ et donc $\arctan a + \arctan b$ est dans $\left]-\pi, -\frac{\pi}{2}\right[\cup \left]\frac{\pi}{2}, \pi\right[$. Si de plus a>0, $\arctan a + \arctan b>-\frac{\pi}{2}$ et donc $\arctan a + \arctan b$ est dans $\left]\frac{\pi}{2}, \pi\right[$. Dans ce cas, $\arctan a + \arctan b - \pi$ est dans $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et a même tangente que $\arctan \frac{a+b}{1-ab}$. Donc, $\arctan a + \arctan b = \arctan \frac{a+b}{1-ab} + \pi$. Si a<0, on trouve de même $\arctan a + \arctan b = \arctan \frac{a+b}{1-ab} - \pi$. En résumé,

$$\arctan a + \arctan b = \begin{cases} \arctan \frac{a+b}{1-ab} & \text{si } ab < 1 \\ \arctan \frac{a+b}{1-ab} + \pi & \text{si } ab > 1 \text{ et } a > 0 \\ \arctan \frac{a+b}{1-ab} - \pi & \text{si } ab > 1 \text{ et } a < 0 \end{cases}.$$

Correction de l'exercice 3 A

$$\begin{split} \operatorname{ch}(a+b) &= \operatorname{ch} a \operatorname{ch} b + \operatorname{sh} a \operatorname{sh} b & \text{ et } & \operatorname{ch}(a-b) = \operatorname{ch} a \operatorname{ch} b - \operatorname{sh} a \operatorname{sh} b, \\ \operatorname{sh}(a+b) &= \operatorname{sh} a \operatorname{ch} b + \operatorname{ch} a \operatorname{sh} b & \text{ et } & \operatorname{sh}(a-b) = \operatorname{sh} a \operatorname{ch} b - \operatorname{sh} b \operatorname{ch} a \\ \operatorname{th}(a+b) &= \frac{\operatorname{th} a + \operatorname{th} b}{1 + \operatorname{th} a \operatorname{th} b} & \text{ et } & \operatorname{th}(a-b) &= \frac{\operatorname{th} a - \operatorname{th} b}{1 - \operatorname{th} a \operatorname{th} b}. \end{split}$$

Deux démonstrations :

$$\operatorname{ch} a \operatorname{ch} b + \operatorname{sh} a \operatorname{sh} b = \frac{1}{4} ((e^a + e^{-a})(e^b + e^{-b}) + (e^a - e^{-a})(e^b - e^{-b})) = \frac{1}{2} (e^{a+b} + e^{-a-b}) = \operatorname{ch}(a+b).$$

$$\operatorname{th}(a+b) = \frac{\operatorname{sh}(a+b)}{\operatorname{ch}(a+b)} = \frac{\operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a}{\operatorname{ch} a \operatorname{ch} b + \operatorname{sh} a \operatorname{sh} b} = \frac{\operatorname{th} a + \operatorname{th} b}{1 + \operatorname{th} a \operatorname{th} b}$$

après division du numérateur et du dénominateur par le nombre non nul chachb. En appliquant à a = b = x, on obtient :

$$\forall x \in \mathbb{R}, \ \operatorname{ch}(2x) = \operatorname{ch}^2 x + sh^2 x = 2ch^2 x - 1 = 2sh^2 x + 1, \ \operatorname{sh}(2x) = 2\operatorname{sh} x \operatorname{ch} x \text{ et th}(2x) = \frac{2\operatorname{th} x}{1 + \operatorname{th}^2 x}.$$

En additionnant entre elles les formules d'addition, on obtient les formules de linéarisation :

 $\operatorname{ch} a \operatorname{ch} b = \frac{1}{2} (\operatorname{ch} (a+b) + \operatorname{ch} (a-b)), \operatorname{sh} a \operatorname{sh} b = \frac{1}{2} (\operatorname{ch} (a+b) - \operatorname{ch} (a-b)) \operatorname{et} \operatorname{sh} a \operatorname{ch} b = \frac{1}{2} (\operatorname{sh} (a+b) + \operatorname{sh} (a-b)),$ et en particulier

$$ch^2 x = \frac{ch(2x) + 1}{2}$$
 et $sh^2 x = \frac{ch(2x) - 1}{2}$.

Correction de l'exercice 4 A

Pour x réel, on pose $f(x) = \int_0^{\sin^2 x} \arcsin \sqrt{t} \ dt + \int_0^{\cos^2 x} \arccos \sqrt{t} \ dt$. La fonction $t \mapsto \arcsin \sqrt{t}$ est continue sur [0,1]. Donc, la fonction $y \mapsto \int_0^y \arcsin \sqrt{t} \ dt$ est définie et dérivable sur [0,1]. De plus, $x \mapsto \sin^2 x$ est définie et dérivable sur $\mathbb R$ à valeurs dans [0,1]. Finalement, la fonction $x \mapsto$ $\int_0^{\sin^2 x} \arcsin \sqrt{t} \ dt$ est définie et dérivable sur \mathbb{R} . De même, la fonction $t \mapsto \arccos \sqrt{t}$ est continue sur [0,1]. Donc, la fonction $y \mapsto \int_0^y \arccos \sqrt{t} \ dt$ est définie et dérivable sur [0,1]. De plus, la fonction $x \mapsto \cos^2 x$ est définie et dérivable sur \mathbb{R} , à valeurs dans [0,1]. Finalement, la fonction $x \mapsto \int_0^{\cos^2 x} \arccos \sqrt{t} \ dt$ est définie et dérivable sur \mathbb{R} . Donc, f est définie et dérivable sur \mathbb{R} et, pour tout réel x,

$$f'(x) = 2\sin x \cos x \arcsin(\sqrt{\sin^2 x}) - 2\sin x \cos x \arccos(\sqrt{\cos^2 x})$$
$$= 2\sin x \cos x (\arcsin(|\sin x|) - \arccos(|\cos x|)).$$

On note alors que f est π -pérodique et paire. Pour x élément de $\left[0,\frac{\pi}{2}\right]$, $f'(x) = 2\sin x \cos x(x-x) = 0$. f est donc constante sur $[0, \frac{\pi}{2}]$ et pour x élément de $[0, \frac{\pi}{2}]$, $f(x) = f\left(\frac{\pi}{4}\right) = \int_0^{1/2} \arcsin \sqrt{t} \ dt + \int_0^{1/2} \arccos \sqrt{t} \ dt = \int_0^{1/2} \arctan \left(\frac{\pi}{4}\right) dt$ $\int_0^{1/2} \frac{\pi}{2} dt = \frac{\pi}{4}$. Mais alors, par parité et π -périodicité,

$$\forall x \in \mathbb{R}, \ \int_0^{\sin^2 x} \arcsin \sqrt{t} \ dt + \int_0^{\cos^2 x} \arccos \sqrt{t} \ dt = \frac{\pi}{4}.$$

Correction de l'exercice 5 ▲

1. **1ère solution.** Pour tout réel x, $\sqrt{x^2+1} > \sqrt{x^2} = |x|$ et donc $-1 < \frac{x}{\sqrt{x^2+1}} < 1$. Ainsi f_1 est définie et dérivable sur \mathbb{R} , impaire, et pour tout réel x,

$$f_1'(x) = \left(\frac{1}{\sqrt{x^2 + 1}} - \frac{1}{2}x \frac{2x}{(x^2 + 1)\sqrt{x^2 + 1}}\right) \frac{1}{\sqrt{1 - \frac{x^2}{1 + x^2}}} = \frac{1}{1 + x^2} = \arctan'(x).$$

Donc il existe une constante réelle C telle que pour tout réel x, $f_1(x) = \arctan x + C$. x = 0 fournit C = 0et donc,

$$\forall x \in \mathbb{R}, \arcsin\left(\frac{x}{\sqrt{x^2+1}}\right) = \arctan x.$$

2ème solution. Pour x réel donné, posons $\theta = \arctan x$. θ est dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ et } x = \tan \theta$.

$$\frac{x}{\sqrt{x^2 + 1}} = \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}} = \sqrt{\cos^2 \theta} \tan \theta = \cos \theta \tan \theta \text{ (car } \cos \theta > 0)$$
$$= \sin \theta$$

et donc

$$f_1(x) = \arcsin(\sin \theta) = \theta \ (\cot \theta \text{ est dans }] -\frac{\pi}{2}, \frac{\pi}{2}[)$$

= arctan x.

2. **1ère solution.** Pour tout réel x, $-1 < -1 + \frac{2}{1+x^2} = \frac{1-x^2}{1+x^2} \leqslant -1 + 2 = 1$ (avec égalité si et seulement si x = 0). f_2 est donc définie et continue sur \mathbb{R} , dérivable sur \mathbb{R}^* . Pour tout réel x non nul,

$$f_2'(x) = \frac{-2x(1+x^2) - 2x(1-x^2)}{(1+x^2)^2} \frac{-1}{\sqrt{1 - \left(\frac{1-x^2}{1+x^2}\right)^2}} = \frac{4x}{1+x^2} \frac{1}{\sqrt{4x^2}} = \frac{2\varepsilon}{1+x^2}$$

où ε est le signe de x. Donc il existe une constante réelle C telle que pour tout réel positif x, $f_2(x) = 2 \arctan x + C$ (y compris x = 0 puisque f est continue en 0).

x = 0 fournit C = 0 et donc, pour tout réel positif x, $f_2(x) = 2 \arctan x$. Par parité,

$$\forall x \in \mathbb{R}, \ \arccos\left(\frac{1-x^2}{1+x^2}\right) = 2\arctan|x|.$$

2ème solution. Soit $x \in \mathbb{R}$ puis $\theta = \arctan x$. θ est dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et $x = \tan \theta$.

$$\frac{1 - x^2}{1 + x^2} = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta (1 - \tan^2 \theta) = \cos^2 \theta - \sin^2 \theta = \cos(2\theta).$$

Donc

$$f_2(x) = \arccos(\cos(2\theta)) = \begin{cases} 2\theta \text{ si } \theta \in \left[0, \frac{\pi}{2}\right[\\ -2\theta \text{ si } \theta \in \left]-\frac{\pi}{2}, 0\right] \end{cases} = \begin{cases} 2\arctan x \text{ si } x \geqslant 0\\ -2\arctan x \text{ si } x \leqslant 0 \end{cases} = 2\arctan|x|.$$

3. La fonction $x \mapsto \arcsin \sqrt{1-x^2}$ est définie et continue sur [-1,1], dérivable sur $[-1,1] \setminus \{0\}$ car pour x élément de [-1,1], $1-x^2$ est élément de [0,1] et vaut 1 si et seulement si x vaut 0. $\frac{1-x}{1+x}$ est défini et positif si et seulement si x est dans]-1,1], et nul si et seulement si x=1. f_3 est donc définie et continue sur]-1,1], dérivable sur $]-1,0[\cup]0,1[$. Pour x dans $]-1,0[\cup]0,1[$, on note ε le signe de x et on a :

$$f_3'(x) = -\frac{x}{\sqrt{1-x^2}} \frac{1}{\sqrt{1-(1-x^2)}} - \frac{-(1+x)-(1-x)}{(1+x)^2} \frac{1}{2\sqrt{\frac{1-x}{1+x}}} \frac{1}{1+\frac{1-x}{1+x}} = -\frac{\varepsilon}{\sqrt{1-x^2}} + \frac{1}{2} \frac{1}{\sqrt{1-x^2}}.$$

Si x est dans]0,1[, $f_3'(x)=-\frac{1}{2}\frac{1}{\sqrt{1-x^2}}=(-\frac{1}{2}\arcsin)'(x)$. Donc, il existe un réel C tel que, pour tout x de [0,1] (par continuité) $f_3(x)=-\frac{1}{2}\arcsin x+C$. x=1 fournit $C=\frac{\pi}{4}$. Donc,

$$\forall x \in [0,1], f_3(x) = \frac{\pi}{4} - \frac{1}{2}\arcsin x = \frac{1}{2}\arccos x.$$

Si x est dans]-1,0[, $f_3'(x)=\frac{3}{2}\frac{1}{\sqrt{1-x^2}}=(\frac{3}{2}\arcsin)'(x)$. Donc il existe un réel C' tel que, pour tout x de]-1,0[(par continuité) $f_3(x)=\frac{3}{2}\arcsin x+C'$. x=0 fournit $\frac{\pi}{2}-\frac{\pi}{4}=C'$. Donc,

$$\forall x \in]-1,0], f_3(x) = \frac{3}{2}\arcsin x + \frac{\pi}{4}.$$

4. f_4 est dérivable sur $\mathcal{D} = \mathbb{R} \setminus \{-1,0\}$ et pour x élément de \mathcal{D} , on a :

$$f_4'(x) = -\frac{1}{x^3} \frac{1}{1 + \frac{1}{4x^4}} - \frac{(x+1) - x}{(x+1)^2} \frac{1}{1 + \frac{x^2}{(x+1)^2}} + \frac{x - (x-1)}{x^2} \frac{1}{1 + \frac{(x-1)^2}{x^2}}$$

$$= -\frac{4x}{4x^4 + 1} - \frac{1}{2x^2 + 1 + 2x} + \frac{1}{2x^2 + 1 - 2x} = -\frac{4x}{4x^4 + 1} + \frac{4x}{(2x^2 + 1)^2 - 4x^2} = 0.$$

 $f_4 \text{ est donc constante sur chacun des trois intervalles }] - \infty, -1[,] - 1, 0[\text{ et }] 0, + \infty[. \text{ Pour } x > 0, f(x) = f(1) = 0. \text{ Pour } -1 < x < 0, f(x) = \lim_{\substack{t \to -1 \\ t > -1}} f(t) = \arctan\frac{1}{2} - (-\frac{\pi}{2}) + \arctan2 = \frac{\pi}{2} + \frac{\pi}{2} = \pi. \text{ Pour } x < -1, f(x) = \lim_{t \to -\infty} f(t) = 0 \text{ et donc}$

$$\forall x \in \mathbb{R} \setminus \{-1; 0\}, \ f_4(x) = \begin{cases} 0 \text{ si } x \in]-\infty, -1[\cup]0, +\infty[\\ \pi \text{ si } x \in]-1, 0[\end{cases}.$$

Correction de l'exercice 6 ▲

 $0 \leqslant \arctan \frac{1}{2} + \arctan \frac{1}{5} < \arctan 1 + \arctan 1 = \frac{\pi}{2} \text{ et}$

$$\tan\left(\arctan\frac{1}{2} + \arctan\frac{1}{5}\right) = \frac{\frac{1}{2} + \frac{1}{5}}{1 - \frac{1}{2} \times \frac{1}{5}} = \frac{7}{9}.$$

Comme $\arctan \frac{1}{2} + \arctan \frac{1}{5} \in [0, \frac{\pi}{2}[$, on a donc $\arctan \frac{1}{2} + \arctan \frac{1}{5} = \arctan \frac{7}{9}$. De même, $\arctan \frac{7}{9} + \arctan \frac{1}{8} \in [0, \frac{\pi}{2}[$ et

$$\tan\left(\arctan\frac{7}{9} + \arctan\frac{1}{8}\right) = \frac{\frac{7}{9} + \frac{1}{8}}{1 - \frac{7}{9} \times \frac{1}{8}} = \frac{65}{65} = 1,$$

et donc $\arctan \frac{7}{9} + \arctan \frac{1}{8} = \arctan 1 = \frac{\pi}{4}$. Finalement,

$$\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8} = \frac{\pi}{4}.$$

Correction de l'exercice 7

(On va retrouver le résultat de l'exercice 2 dans un cas particulier)

Soient a et b deux réels positifs. Alors, $\arctan a \in \left[0, \frac{\pi}{2}\right[$, $\arctan b \in \left[0, \frac{\pi}{2}\right[$ et donc, $\arctan a - \arctan b \in \left] - \frac{\pi}{2}, \frac{\pi}{2}\right[$. De plus,

$$\tan(\arctan a - \arctan b) = \frac{\tan(\arctan a) - \tan(\arctan b)}{1 + \tan(\arctan a)\tan(\arctan b)} = \frac{a - b}{1 + ab},$$

et donc, puisque $\arctan a - \arctan b \in]-\frac{\pi}{2}, \frac{\pi}{2}[,$

$$\forall a \geqslant 0, \ \forall b \geqslant 0, \ \arctan a - \arctan b = \arctan \left(\frac{a-b}{1+ab}\right).$$

Soit alors k un entier naturel non nul. $\arctan\frac{2}{k^2}=\arctan\frac{(k+1)-(k-1)}{1+(k-1)(k+1)}=\arctan(k+1)-\arctan(k-1)$ (puisque k-1 et k+1 sont positifs). Par suite, si n est un entier naturel non nul donné,

$$u_n = \sum_{k=1}^n \arctan \frac{2}{k^2} = \sum_{k=1}^n (\arctan(k+1) - \arctan(k-1)) = \sum_{k=2}^{n+1} \arctan k - \sum_{k=0}^{n-1} \arctan k$$

= $\arctan(n+1) + \arctan n - \frac{\pi}{4}$.

La limite de u_n vaut donc $\frac{\pi}{2} + \frac{\pi}{2} - \frac{\pi}{4} = \frac{3\pi}{4}$.

$$\lim_{n\to+\infty}u_n=\frac{3\pi}{4}.$$

Correction de l'exercice 8 ▲

• Pour tout réel x, $\operatorname{ch} x > 0$. Donc f est définie, continue et dérivable sur \mathbb{R} . Pour tout réel x,

$$f'(x) = \sinh x \frac{1}{\cosh x} - 1 = \tanh x - 1 < 0.$$

f est donc strictement décroissante sur \mathbb{R} . • Etude en $-\infty$. $\lim_{x\to-\infty} \operatorname{ch} x = +\infty$ et donc $\lim_{x\to-\infty} f(x) = +\infty$. Cherchons une éventuelle droite asymptote.

$$f(x) = \ln \frac{e^x + e^{-x}}{2} - x = \ln(e^x + e^{-x}) - \ln 2 - x = \ln(e^{-x}) - x - \ln 2 + \ln(1 + e^{2x}) = -2x - \ln 2 + \ln(1 + e^{2x}).$$

Donc, $f(x) - (-2x - \ln 2) = \ln(1 + e^{2x})$. Or, d'une part $\lim_{x \to -\infty} \ln(1 + e^{2x}) = 0$ et donc la droite (D) d'équation $y = -2x - \ln 2$ est asymptote à la courbe représentative de f en $-\infty$ et d'autre part, pour tout réel x, $\ln(1 + e^{2x}) > 0$ et la courbe représentative de f est strictement au dessus de (D) sur \mathbb{R} . \bullet Etude en $+\infty$.

$$f(x) = \ln \frac{e^x + e^{-x}}{2} - x = \ln(e^x + e^{-x}) - \ln 2 - x = \ln(e^x) - x - \ln 2 + \ln(1 + e^{-2x}) = -\ln 2 + \ln(1 + e^{-2x})$$

et f tend vers $-\ln 2$ quand x tend vers $+\infty$. • Graphe.

Correction de l'exercice 9 A

- 1. f est définie et dérivable sur $\mathscr{D} = \mathbb{R} \setminus \{\frac{1}{2}\}$.
- 2. Pour x élément de \mathcal{D} ,

$$f'(x) = 2x \arctan \frac{1}{2x - 1} + (x^2 - 1) \frac{-2}{(2x - 1)^2} \frac{1}{1 + \frac{1}{(2x - 1)^2}} = 2x \arctan \frac{1}{2x - 1} - \frac{x^2 - 1}{2x^2 - 2x + 1}.$$

De plus, pour *x* non nul : f'(x) = 2xg(x) où $g(x) = \arctan \frac{1}{2x-1} - \frac{1}{2x} \frac{x^2-1}{2x^2-2x+1}$.

3. Pour *x* élément de $\mathcal{D} \setminus \{0\}$,

$$\begin{split} g'(x) &= -\frac{1}{2x^2 - 2x + 1} - \frac{1}{2} \frac{2x(2x^3 - 2x^2 + x) - (x^2 - 1)(6x^2 - 4x + 1)}{x^2(2x^2 - 2x + 1)^2} \\ &= \frac{-2x^2(2x^2 - 2x + 1) + 2x^4 - 7x^2 + 4x - 1}{2x^2(2x^2 - 2x + 1)^2} = -\frac{2x^4 - 4x^3 + 9x^2 - 4x + 1}{2x^2(x^2 - 2x + 1)^2}. \end{split}$$

Maintenant,

$$2x^4 - 4x^3 + 9x^2 - 4x + 1 = 2x^2(x - 1)^2 + 7x^2 - 4x + 1 = 2x^2(x - 1)^2 + 7\left(x - \frac{2}{7}\right)^2 + \frac{3}{7} > 0.$$

Donc, g est strictement décroissante sur $]-\infty,0[$, sur $]0,\frac{1}{2}[$ et sur $]\frac{1}{2},+\infty[$. En $+\infty, g(x)$ tend vers 0. Donc g est strictement positive sur $]\frac{1}{2},+\infty[$. Quand x tend vers $\frac{1}{2}$ par valeurs inférieures, g tend vers $-\frac{\pi}{2}+\frac{3}{2}<0$ et quand x tend vers 0 par valeurs supérieures, g(x) tend vers $+\infty$. Donc g s'annule une et une seule fois sur l'intervalle $]0,\frac{1}{2}[$ en un certain réel x_0 de $]0,\frac{1}{2}[$. g est de plus strictement négative sur $]x_0,\frac{1}{2}[$ et strictement positive sur $]0,x_0[$. Quand x tend vers $-\infty,g(x)$ tend vers 0. Donc g est strictement

négative sur] $-\infty$,0[. Enfin, puisque f'(x) = 2xg(x) pour $x \neq 0$, on a les résultats suivants : sur] $-\infty$,0[, f' > 0, sur]0, x_0 [, f' > 0, sur] x_0 , $\frac{1}{2}$ [, f' < 0, sur] $\frac{1}{2}$, $+\infty$ [, f' > 0. Comme f'(0) = 1 > 0, on a donc : sur] $-\infty$, x_0 [, f' > 0, sur] x_0 , $\frac{1}{2}$ [, f' < 0 et sur] $\frac{1}{2}$, $+\infty$ [, f' > 0. f est strictement croissante sur] $-\infty$, x_0] et sur] $\frac{1}{2}$, $+\infty$ [et est strictement décroissante sur [x_0 , $\frac{1}{2}$ [.

Correction de l'exercice 10

Soit x un réel.

$$S = \sum_{k=1}^{100} \operatorname{sh}(2+kx) = \frac{1}{2} \left(e^2 \sum_{k=1}^{100} e^{kx} - e^{-2} \sum_{k=1}^{100} e^{-kx} \right).$$

Si x = 0 alors directement $S = 100 \, \text{sh} \, 2 \neq 0$. Si $x \neq 0$ alors $e^x \neq 1$ et $e^{-x} \neq 1$. Dans ce cas,

$$S = \frac{1}{2} \left(e^2 e^x \frac{1 - e^{100x}}{1 - e^x} - e^{-2} e^{-x} \frac{1 - e^{-100x}}{1 - e^{-x}} \right) = \frac{1}{2} \left(e^2 e^x \frac{1 - e^{100x}}{1 - e^x} + e^{-2} \frac{1 - e^{-100x}}{1 - e^x} \right).$$

après multiplication du numérateur et du dénominateur de la deuxième fraction par e^x . Pour $x \neq 0$, on a donc :

$$\begin{split} S &= 0 \Leftrightarrow e^{x+2}(1-e^{100x}) + e^{-2}(1-e^{-100x}) = 0 \Leftrightarrow e^{x+2}(1-e^{100x}) + e^{-2-100x}(e^{100x}-1) = 0 \\ &\Leftrightarrow (1-e^{100x})(e^{x+2}-e^{-100x-2}) = 0 \Leftrightarrow e^{x+2} = e^{-100x-2} \; (\operatorname{car} x \neq 0) \\ &\Leftrightarrow x+2 = -100x-2 \Leftrightarrow x = -\frac{4}{101}. \end{split}$$

$$\mathscr{S} = \left\{ -\frac{4}{101} \right\}.$$

Correction de l'exercice 11 A

On a vu au $\frac{1}{2}$ que pour tout réel x, th $(2x) = \frac{2 \operatorname{th} x}{1 + \operatorname{th}^2 x}$ ce qui s'écrit pour x non nul : $\frac{1 + \operatorname{th}^2 x}{\operatorname{th} x} = \frac{2}{\operatorname{th}(2x)}$ ou encore $\operatorname{th} x + \frac{1}{\operatorname{th} x} = \frac{2}{\operatorname{th}(2x)}$ ou finalement

$$\forall x \in \mathbb{R}^*, \text{ th } x = \frac{2}{\text{th}(2x)} - \frac{1}{\text{th } x}.$$

Soient n un entier naturel non nul et x un réel non nul. D'après ce qui précède,

$$u_n = \sum_{k=0}^n 2^k \operatorname{th}(2^k x) = \sum_{k=0}^n \left(\frac{2^{k+1}}{\operatorname{th}(2^{k+1} x)} - \frac{2^k}{\operatorname{th}(2^k x)} \right) = \sum_{k=1}^{n+1} \frac{2^k}{\operatorname{th}(2^k x)} - \sum_{k=0}^n \frac{2^k}{\operatorname{th}(2^k x)} = \frac{2^{n+1}}{\operatorname{th}(2^{n+1} x)} - \frac{1}{\operatorname{th} x}.$$

Ensuite, pour x > 0, th $(2^{n+1}x)$ tend vers 1 quand n tend vers l'infini. Donc u_n tend vers $+\infty$ quand n tend vers $+\infty$ si x > 0 et vers $-\infty$ quand n tend vers $+\infty$ si x < 0.

Correction de l'exercice 12

- 1. Pour tout réel x de [-1,1], $\sin(2\arcsin x) = 2\sin(\arcsin x)\cos(\arcsin x) = 2x\sqrt{1-x^2}$.
- 2. Pour tout réel x de [-1, 1], $\cos(2\arccos x) = 2\cos^2(\arccos x) 1 = 2x^2 1$.
- 3. Pour tout réel *x* de [-1, 1], $\sin^2(\frac{1}{2}\arccos x) = \frac{1}{2}(1 \cos(\arccos x)) = \frac{1-x}{2}$.
- 4. Soit $x \in \mathbb{R}$.

$$\sqrt{x^2+1} > \sqrt{x^2} = |x| = \text{Max}\{x, -x\}.$$

Donc, $\sqrt{x^2+1}+x>0$ et $\sqrt{x^2+1}-x>0$. L'expression proposée existe pour tout réel x. De plus,

$$\ln(\sqrt{x^2+1}+x) + \ln(\sqrt{x^2+1}-x) = \ln\left((\sqrt{x^2+1}+x)(\sqrt{x^2+1}-x)\right) = \ln(x^2+1-x^2) = \ln 1 = 0.$$

5. L'expression proposée est définie sur \mathbb{R}^* et impaire. Soit alors x > 0.

$$\operatorname{argsh}\left(\frac{x^2 - 1}{2x}\right) = \ln\left(\frac{x^2 - 1}{2x} + \sqrt{\frac{(x^2 - 1)^2}{(2x)^2} + 1}\right) = \ln\left(\frac{1}{2x}(x^2 - 1 + \sqrt{x^4 - 2x^2 + 1 + 4x^2})\right)$$
$$= \ln\left(\frac{1}{2x}(x^2 - 1 + \sqrt{(x^2 + 1)^2})\right) = \ln\left(\frac{1}{2x}(x^2 - 1 + x^2 + 1)\right) = \ln x$$

Par imparité, si x < 0, argsh $\left(\frac{x^2-1}{2x}\right) = -\ln(-x)$. En résumé, en notant ε le signe de x,

$$\forall x \in \mathbb{R}^*, \operatorname{argsh}\left(\frac{x^2-1}{2x}\right) = \varepsilon \ln|x|.$$

6. L'expression proposée existe si et seulement si $2x^2 - 1 \in [1, +\infty[$ ou encore $x^2 \in [1, +\infty[$ ou enfin $x \in]-\infty, -1] \cup [1, +\infty[$. Cette expression est paire. Soit donc $x \in [1, +\infty[$.

$$\begin{split} \operatorname{argch}(2x^2-1) &= \ln(2x^2-1+\sqrt{(2x^2-1)^2-1}) = \ln(2x^2-1+2x\sqrt{x^2-1}) = \ln\left(\left(x+\sqrt{x^2-1}\right)^2\right) \\ &= 2\ln\left(x+\sqrt{x^2-1}\right) = 2\operatorname{argch}x \end{split}$$

Par parité, on en déduit que

$$\forall x \in]-\infty, -1] \cup [1, +\infty[, \operatorname{argch}(2x^2 - 1) = 2 \operatorname{argch}|x|.]$$

7. Soit $x \in \mathbb{R}$.

$$\operatorname{argth} \sqrt{\frac{\operatorname{ch} x - 1}{\operatorname{ch} x + 1}} \text{ existe} \Leftrightarrow \operatorname{ch} x + 1 \neq 0 \text{ et } \frac{\operatorname{ch} x - 1}{\operatorname{ch} x + 1} \geqslant 0 \text{ et } \sqrt{\frac{\operatorname{ch} x - 1}{\operatorname{ch} x + 1}} \in]-1,1[$$
$$\Leftrightarrow \frac{\operatorname{ch} x - 1}{\operatorname{ch} x + 1} \in [0,1[$$

Mais, d'une part, $\frac{\text{ch}x-1}{\text{ch}x+1} \geqslant 0$ et d'autre part, $\frac{\text{ch}x-1}{\text{ch}x+1} = \frac{\text{ch}x+1-2}{\text{ch}x+1} = 1 - \frac{2}{\text{ch}x+1} < 1$. L'expression proposée existe donc pour tout réel x et est paire. Ensuite, pour x réel positif, on a

$$\frac{1 + \sqrt{\frac{\text{ch}x - 1}{\text{ch}x + 1}}}{1 - \sqrt{\frac{\text{ch}x - 1}{\text{ch}x + 1}}} = \frac{\sqrt{\text{ch}x + 1} + \sqrt{\text{ch}x - 1}}{\sqrt{\text{ch}x + 1} - \sqrt{\text{ch}x - 1}} = \frac{(\sqrt{\text{ch}x + 1} + \sqrt{\text{ch}x - 1})^2}{(\text{ch}x + 1) - (\text{ch}x - 1)} = \frac{2 \text{ch}x + 2\sqrt{\text{ch}^2x - 1}}{2}$$
$$= \text{ch}x + \sqrt{\text{sh}^2x} = \text{ch}x + |\text{sh}x| = \text{ch}x + \text{sh}x = e^x$$

Par suite, x étant toujours positif,

$$\operatorname{argth} \sqrt{\frac{\operatorname{ch} x - 1}{\operatorname{ch} x + 1}} = \frac{1}{2} \ln(e^x) = \frac{x}{2}.$$

Par parité, on a alors

$$\forall x \in \mathbb{R}, \operatorname{argth}\left(\sqrt{\frac{\operatorname{ch} x - 1}{\operatorname{ch} x + 1}}\right) = \frac{|x|}{2}.$$

(Remarque. Pour 5), 6) et 7), on peut aussi dériver chaque expression)

8. Pour x > 0,

$$\frac{\operatorname{ch}(\ln x) + \operatorname{sh}(\ln x)}{x} = \frac{1}{2x} \left(x + \frac{1}{x} + x - \frac{1}{x} \right) = 1.$$

Correction de l'exercice 13 A

- 1. $\operatorname{ch} x = 2 \Leftrightarrow x = \pm \operatorname{argch} 2 = \pm \ln(2 + \sqrt{2^2 1}) = \pm \ln(2 + \sqrt{3})$. Les solutions sont $\ln(2 + \sqrt{3})$ et $-\ln(2 + \sqrt{3})$ (ou encore $\ln(2 \sqrt{3})$ car $(2 + \sqrt{3})(2 \sqrt{3}) = 1$).
- 2. Une solution est nécessairement dans $\left[-\frac{1}{2},\frac{1}{2}\right]$. Soit donc $x \in \left[-\frac{1}{2},\frac{1}{2}\right]$.

$$\arcsin(2x) = \arcsin x + \arcsin(x\sqrt{2}) \Rightarrow \sin(\arcsin(2x)) = \sin(\arcsin x + \arcsin(x\sqrt{2}))$$

$$\Leftrightarrow 2x = x\sqrt{1 - (x\sqrt{2})^2} + x\sqrt{2}\sqrt{1 - x^2} \Leftrightarrow x = 0 \text{ ou } \sqrt{1 - 2x^2} + \sqrt{2 - 2x^2} = 2$$

$$\Leftrightarrow x = 0 \text{ ou } 1 - 2x^2 + 2 - 2x^2 + 2\sqrt{(1 - 2x^2)(2 - 2x^2)} = 4$$

$$\Leftrightarrow x = 0 \text{ ou } 2\sqrt{(1 - 2x^2)(2 - 2x^2)} = 1 + 4x^2$$

$$\Leftrightarrow x = 0 \text{ ou } 4(4x^4 - 6x^2 + 2) = (4x^2 + 1)^2$$

$$\Leftrightarrow x = 0 \text{ ou } 32x^2 = 7 \Leftrightarrow x = 0 \text{ ou } x = \sqrt{\frac{7}{32}} \text{ ou } x = -\sqrt{\frac{7}{32}}$$

Réciproquement, pour chacun des ces trois nombres x, la seule implication écrite est une équivalence si x est dans $\left[-\frac{1}{2},\frac{1}{2}\right]$ (ce qui est le cas puisque $\left(\pm\sqrt{\frac{7}{32}}\right)^2=\frac{14}{64}\leqslant\frac{16}{64}=\left(\frac{1}{2}\right)^2$) et $\arcsin x+\arcsin(x\sqrt{2})$ est dans $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Mais,

$$0\leqslant\arcsin\sqrt{\frac{7}{32}}+\arcsin(\sqrt{\frac{7}{32}}\sqrt{2})=\arcsin\sqrt{\frac{7}{32}}+\arcsin\sqrt{\frac{7}{16}}\leqslant2\arcsin\sqrt{\frac{8}{16}}=2\arcsin\frac{1}{\sqrt{2}}=\frac{\pi}{2}$$
 et donc $\arcsin\sqrt{\frac{7}{32}}+\arcsin(\sqrt{\frac{7}{32}}\sqrt{2}\in[0,\frac{\pi}{2}].$ De même, par parité, $\arcsin(-\sqrt{\frac{7}{32}})+\arcsin(-\sqrt{\frac{7}{32}}\sqrt{2})\in[-\frac{\pi}{2},0]$ ce qui achève la résolution.

$$\mathscr{S} = \left\{0, \frac{\sqrt{14}}{8}, -\frac{\sqrt{14}}{8}\right\}.$$

3. Soit $x \in \mathbb{R}$. arcsin x existe si et seulement si $x \in [-1, 1]$. Ensuite,

$$\begin{split} \arcsin(2x\sqrt{1-x^2}) \text{ existe } &\Leftrightarrow x \in [-1,1] \text{ et } 2x\sqrt{1-x^2} \in [-1,1] \\ &\Leftrightarrow x \in [-1,1] \text{ et } 4x^2(1-x^2) \in [0,1] \Leftrightarrow x \in [-1,1] \text{ et } 4x^2(1-x^2) \leqslant 1 \\ &\Leftrightarrow x \in [-1,1] \text{ et } 4x^4-4x^2+1 \geqslant 0 \Leftrightarrow x \in [-1,1] \text{ et } (2x^2-1)^2 \geqslant 0 \\ &\Leftrightarrow x \in [-1,1] \end{split}$$

Pour $x \in [-1,1]$, $\sin(2\arcsin(x)) = 2\sin(\arcsin x)\cos(\arcsin x) = 2x\sqrt{1-x^2} = \sin(\arcsin(2x\sqrt{1-x^2}))$, et de plus, $\arcsin(2x\sqrt{1-x^2}) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Par suite,

$$x ext{ solution} \Leftrightarrow x \in [-1, 1] ext{ et } 2 rcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\Leftrightarrow x \in [-1, 1] ext{ et } \arcsin(x) \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \Leftrightarrow x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right].$$

$$\mathscr{S} = \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right].$$