IB Groups, Rings and Modules

Martin von Hodenberg (mjv43@cam.ac.uk)

Last updated: March 2, 2022

These are my notes for the IB course 'Groups, Rings and Modules', which was lectured in Lent 2022 at Cambridge by Dr R.Zhou. These notes are written in LATEX for revision purposes¹. Any suggestions or feedback is welcome.

¹These notes are posted online on my website.

Contents

0	Intr	roduction	3
1	Gro	ups	4
	1.1	Recall of IA Groups	4
	1.2	Simple groups	
	1.3	Group actions	
	1.4	Alternating groups	11
	1.5	p-groups and p -subgroups	14
	1.6	The Sylow theorems	15
	1.7	Matrix groups	17
	1.8	Finite abelian groups	20
2	Rin	${f gs}$	22
	2.1	Definitions and examples	22
	2.2	Homomorphisms, ideals and quotients	24
	2.3	Integral domains, maximal ideals and prime ideals	29
	2.4	Factorisation in integral domains	33
	2.5	Factorisation in polynomial rings	40
	2.6	Algebraic integers	44

0 Introduction

This is a second course in abstract algebra that will extend our knowledge of groups and introduce other fundamental objects.

The course is divided into several sections:

- 1. Groups; this will be a continuation from IA, focusing on simple groups, p-groups, and p-subgroups. The main result in this part of the course will be the Sylow theorems.
- 2. Rings; these are sets where you can add, subtract and multiply (e.g \mathbb{Z} or $\mathbb{C}[X]$). We will study rings of integers such as $\mathbb{Z}[i], \mathbb{Z}[\sqrt{2}]$. These also generalise to polynomial rings. We will also study fields, which are rings where you can divide (e.g $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ or $\mathbb{Z}/p\mathbb{Z}$ for p prime).
- 3. Modules; these are an analogue of vector spaces where the scalars belong to a ring instead of a field. We will classify modules over certain "nice" rings. This allows us to prove Jordan Normal Form, and classify finite abelian groups.

1 Groups

1.1 Recall of IA Groups

This first subsection will just recap the results seen in IA Groups; it can be skipped by anyone with a sufficient knowledge of the course.

Definition (Group)

A group is a pair (G, \cdot) where G is a set and $\cdot : G \times G \to G$ is a binary operation satisfying:

- 1. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity)
- 2. $\exists e \in G$ such that $e \cdot g = g \cdot e = g$ for all $g \in G$ (identity)
- 3. $\forall g \in G, \exists g^{-1} \in G \text{ such that } g \cdot g^{-1} = g^{-1} \cdot g = e \text{ (inverses)}$

Remarks.

- \bullet In practice, one often needs to check closure in order to check that \cdot is well-defined.
- If using additive (respectively multiplicative) relations, we will often write 0 (or 1) for the identity.
- We write |G| for the number of elements in G.

Definition (Subgroup)

A subset $H \subseteq G$ is a subgroup (written $H \subseteq G$) if H is closed under \cdot and (H, \cdot) is a group.

Remark. A non-empty subset H of G is a subgroup if $a, b \in H \implies a \cdot b^{-1} \in H$ (see IA Groups for the proof).

Example (Examples of groups)

Groups we have already seen include:

- Additive groups $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +)$.
- Cyclic and dihedral groups C_n and D_{2n} .
- Abelian groups: those groups G such that $a \cdot b = b \cdot a$ for all $a, b \in G$.
- Symmetric and alternating groups $S_n = \text{group of all permutations of } \{1, \ldots, n\}$ and $A_n \leq S_n$, the group of all even permutations.
- Quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ where i, j, k are quaternions.
- General and special linear groups $GL_n(\mathbb{R}) = n \times n$ matrices on \mathbb{R} with det \neq 0, where the group operation is matrix multiplication. This contains the subgroup $SL_n(\mathbb{R}) \leq GL_n(\mathbb{R})$, which is the subgroup of matrices with det = 1.

Definition (Direct product)

The direct product of groups G and H is the set $G \times H$ with operation

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2).$$

Theorem 1.1 (Lagrange's theorem)

Let $H \leq G$. Then the left cosets of H in G are the sets $gH = \{gh : h \in H\}$ for $g \in G$. These partition G, and each has the same cardinality as H. From this we can deduce Lagrange's theorem:

If G is a finite group and $H \leq G$, then |G| = |H|[G:H] where [G:H] is the number of left cosets of H in G (the index of H in G).

Remark. Can also carry this out with right cosets. A corollary of Lagrange's theorem is thus that the number of left cosets = number of right cosets.

Definition (Order of an element)

Let $g \in G$. If $\exists n \geq 1$ such that $g^n = 1$, then the least such n is the order of g in G. If no such n exists, g has infinite order.

Remark. If g has order d, then

- $q^n = 1 \implies d|n$.
- $\{1, g, \dots, g^{d-1}\} \leq G$ and so if G is finite, then d||G| (Lagrange).

Definition (Normal subgroup)

A subgroup $H \leq G$ is normal if $g^{-1}Hg = H$ for all $g \in G$. We write $H \leq G$.

Proposition 1.2

If $H \subseteq G$ then the set G/H of left cosets of H in G is a group (called the quotient group) with operation

$$g_1H \cdot g_2H = g_1g_2H.$$

Proof. Check \cdot is well-defined:

Suppose $g_1H=g_1'H$ and $g_2H=g_2'H$ for some $g_1,g_1',g_2,g_2'\in G$. Then $g_1'=g_1h_1$ and $g_2'=g_2h_2$ for some $h_1,h_2\in H$. Therefore

$$g'_1 g'_2 = g_1 h_1 g_2 h_2$$

= $g_1 g_2 \underbrace{(g_2^{-1} h_1 g_2)}_{\in H} \underbrace{h_2}_{\in H}$

Therefore $g_1'g_2'H = g_1g_2H$. Associativity is inherited from G, the identity is H = eH, and the inverse of gH is $g^{-1}H$.

Definition (Homomorphism)

If G,H are groups, then a function $\phi:G\to H$ is a group homomorphism if

$$\phi(g_1g_2) = \phi(g_1g_2) = \phi(g_1)\phi(g_2)$$
. It has kernel

$$\ker \phi = \{ g \in G : \ \phi(g) = e \} \le G.$$

and image

$$\operatorname{Im} \phi = \{\phi(q): \ q \in G\} \le H.$$

Remark. If $a \in \ker \phi$ and $g \in G$, then

$$\phi(g^{-1}ag) = \phi(g^{-1})\phi(a)\phi(g)$$

= $\phi(g^{-1})\phi(g)$
= $\phi(g^{-1}g) = \phi(e) = e$.

So $g^{-1}ag \in \ker \phi$ and hence $\ker \phi$ is a normal subgroup of G.

Definition (Isomorphism)

An **isomorphism** of groups is a group homomorphism that is also a bijection. We say G and H are **isomorphic** and write $G \cong H$ if there exists an isomorphism $\phi: G \to H$. (Note it follows from the definition that ϕ^{-1} is also a group homomorphism)

Theorem 1.3 (First Isomorphism Theorem)

Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi \subseteq G$ and

$$G/\ker\phi\cong\operatorname{Im}\phi.$$

Proof. Let $K=\ker\phi.$ We have already checked K is normal. Now we define $\Phi:G/K\to\operatorname{Im}\phi$ by

$$gK \to \phi(g)$$
.

To show Φ is well defined and injective:

$$g_1K = g_2K \iff g_2^{-1}g_1 \in K$$

 $\iff \phi(g_2^{-1}g_1) = e$
 $\iff \phi(g_1) = \phi(g_2).$

To show Φ is a group hom.:

$$\Phi(g_1 K g_2 K) = \Phi(g_1 g_2 K)
= \phi(g_1 g_2) = \phi(g_1) \phi(g_2)
= \Phi(g_1 K) \Phi(g_2 K)$$

Showing Φ is surjective:

Let $x \in \text{Im } \phi$, say $x = \phi(g)$ for some $g \in G$. Then $x = \phi(gR)$.

Example (Application of First Isomorphism Theorem)

Let $\phi: \mathbb{C} \to \mathbb{C}^x = \{x \in C : x \neq 0\}$ given by $z \mapsto e^z$.

Since $e^{z+w}=e^z e^w$, this is a group homomorphism from $(\mathbb{C},+)\to (\mathbb{C}^x,\times)$. We have that

$$\ker \phi = \{z \in \mathbb{C} : e^x = 1\} = 2\pi i \mathbb{Z}$$

 $\operatorname{Im} \phi = \mathbb{C}^x \text{ by existence of log}$

Hence $\mathbb{C}/2\pi i\mathbb{Z}\cong\mathbb{C}^x$.

Theorem 1.4 (Second Isomorphism Theorem)

Let $H \leq G$, and $K \leq G$. Then $HK = \{hk : h \in H, k \in K\} \leq G$ and $H \cap K \leq H$. Moreover,

$$HK/K \cong H/(H \cap K)$$
.

Proof. Let $h_1k_1, h_2k_2 \in HK$ (so $h_1h_2 \in H$, $k_1k_2 \in K$). Now

$$h_1k_1(h_2k_2)^{-1} = \underbrace{h_1h_2^{-1}}_{\in H} \underbrace{(h_2k_1k_2^{-1}h_2^{-1})}_{\in K} \in HK.$$

Thus $HK \leq G$ (by our previous remark). Let $\phi: H \to G/K$ be given by $h \to hK$. This is the composite of $H \to G$ and the quotient map $G \to G/K$; hence ϕ is a group homomorphism. Thus

$$\ker \phi = \{ h \in H : hK = K \} = H \cap K \le H$$
$$\operatorname{Im} \phi = \{ hK : h \in H \} = HK/K$$

Now by the First Isomorphism Theorem $HK/K \cong H/(H \cap K)$.

Lemma 1.5

Suppose $K \subseteq G$. There is a bijection

{subgroups of G/K} \leftrightarrow {subgroups of G containing K},

where $X \mapsto \{g \in G : gK \in X\}$ and $H/K \leftarrow H$. This further restricts to a bijection

{normal subgroups of G/K} \leftrightarrow {normal subgroups of G containing K}.

Theorem 1.6 (Third Isomorphism Theorem)

Let $K \leq H \leq G$ be normal subgroups of G. Then

$$\frac{G/K}{H/K} \cong G/H.$$

Proof. Let $\phi: G/K \to G/K$ be defined by $gK \mapsto gH$. If $g_1K = g_2K$, then $g_2^{-1}g_1 \in K \leq H \implies g_1H = g_2H$. Thus ϕ is well-defined.

Thus ϕ is a surjective homomorphim with kernel H/K. Now just apply the First Isomorphism Theorem.

1.2 Simple groups

If $K \subseteq G$, then studying the groups K and G/K gives some information about G. However, this approach is not always available. This is the case when a group is simple.

Definition (Simple group)

A group G is simple if $\{e\}$ and G are its only normal subgroups.

Remark. It is convention to not consider the trivial group a simple group.

Lemma 1.7

Let G be an abelian group. G is simple iff $G \cong C_p$ for some prime p.

Proof. \Leftarrow : Let $H \leq C_p$. Lagrange's theorem says that $|H| ||C_p| = p$. Since p is prime, |H| = 1 or p. So H is the trivial group or C_p .

 \implies : Let $g \in G$ where $g \neq e$. Consider the subgroup generated by g:

$$\langle g \rangle = \{ \dots, g^{-2}, g^{-1}, e, g, g^2, \dots \}.$$

This is normal in G since G is abelian. Since G is simple, $\langle g \rangle = G$. If G is infinite, $G \cong (\mathbb{Z}, +)$ and $2\mathbb{Z} \leq \mathbb{Z}$ which gives a contradiction.

Otherwise, we now know $G \cong C_n$ for some n. Let g be a generator. If m|n then $g^{n/m}$ generates a subgroup of order m and so G simple \implies the only factors of n are 1 and n. Therefore n is prime.

Lemma 1.8

If G is a finite group, then G has a composition series

$$e = G_0 \unlhd G_1 \unlhd \ldots \unlhd G_m = G$$
,

with each quotient G_i/G_{i-1} simple.

Proof. We induct on |G|. If |G| = 1 it's obvious. If |G| > 1, let G_{m-1} be a normal subgroup of largest possible order that isn't G itself. Lemma 1.5 implies G/G_{m-1} is simple. Then apply the induction hypothesis to G_{m-1} . \square

1.3 Group actions

Definition (Permutation group)

For X any set, let $\operatorname{Sym}(X)$ be the group of all bijections $X \to X$ under composition.

This clearly forms a group with $e = Id_X$.

A group G is a permutation group of degree n if $G \leq \text{Sym}(X)$ with |X| = n.

Example

Examples of permutation groups are:

- $S_n = \text{Sym}(\{1, 2, \dots, n\})$ is a permutation group of degree n, as is $A_n \leq S_n$.
- $D_{2n} = (\text{symmetries of a regular } n\text{-gon}) \text{ is a subgroup of Sym}(\{\text{vertices of n-gon}\})$

Definition (Group action)

An action of a group G on a set X is a function $*: G \times X \to X$ satisfying

- (i) e * x = x for all $x \in X$
- (ii) $(g_1g_2) * x = g_1 * (g_2 * x)$ for all $g_1, g_2 \in G$, $x \in X$.

Proposition 1.9

An action of a group G on a set X is equivalent to specifying a group homomorphism $\phi: G \to \operatorname{Sym}(X)$.

Proof. For each $g \in G$, let $\phi_g : X \to X$ send $x \mapsto g * x$.

We have $\phi_{q_1q_2}(x) = (g_1g_2) * x = g_1 * (g_2 * x) = \phi_{q_1} \circ \phi_{q_2}(x)$. (†)

In particular, $\phi_g \circ \phi_{g^{-1}} = \phi_{g^{-1}} \circ \phi_g = \phi_e = \mathrm{Id}_X$. Thus $\phi_g \in \mathrm{Sym}(X)$. Then the map $\phi: G \to \mathrm{Sym}(X)$ given by $g \mapsto \phi_g$ is a group homomorphism by (\dagger) .

Conversely, let $\phi: G \to \operatorname{Sym}(X)$ be a group homomorphism. Define $*: G \times X \to X$ given by $(g, x) \mapsto \phi(g)(x)$. Then

- (i) $e * x = \phi(e)(x) = \text{Id}_X(x) = x$.
- (ii) $(g_1g_2) * x = \phi(g_1g_2)(x) = \phi(g_1)(\phi(g_2)(x)) = g_1 * (g_2 * x).$

Definition

We say $\phi: G \to \operatorname{Sym}(X)$ is a permutation representation of G.

Definition (Orbit and stabiliser)

Let G act on a set X.

- (i) The orbit of $x \in X$ is $\operatorname{orb}_G(x) = \{g * x : g \in G\} \subset X$
- (ii) The stabiliser of $x \in X$ is

$$G_x = \{ g \in G : g * x = x \} \le G.$$

Recall the Orbit-Stabiliser Theorem from IA Groups: There is a bijection $\operatorname{orb}_G(x) \leftrightarrow$

the set of left cosets of G_x in G. In particular if G is finite, then

$$|G| = |\operatorname{orb}_G(x)||G_x|.$$

Example (Example of Orbit-Stabiliser)

Let G be the group of all symmetries of a cube, acting on the set of veretices X. We can reach any vertex from any other one, so $|\operatorname{orb}_G(x)| = 8$. Some basic geometry gives $|G_x| = 6$. Therefore |G| = 48.

Remark. • $\ker \phi = \bigcap_{x \in X} G_x$ is called the kernel of the group action.

- \bullet The orbits partition X. We say the action is transitive if there is only one orbit.
- $G_{g*x} = gG_xg^{-1}$, so if $x, y \in X$ belong to the same orbit, then their stabilisers are conjugate.

Later on a lot of the proofs will involve picking a nice group action. So let's look at some examples of group actions.

(i) Let G act on itself by left multiplication, i.e g * x = gx. The kernel of this action is

$$\{g \in G : gx = x \quad \forall x \in G\} = e.$$

Thus G is injective into Sym(G). This proves Cayley's theorem:

Theorem 1.10 (Cayley's theorem)

Any finite group G is isomorphic to a subgroup of the symmetric group S_n for some n. (Take n = |G|.)

Proof. As above in (i).

(ii) Let $H \leq G$; then G acts on G/H by left multiplication, i.e g*xH = gxH. This action is transitive (since $(x_2x_1^{-1})x_1H = x_2H$) with

$$G_{xH} = \{g \in G : gxH = xH\}$$
$$= \{g \in G : x^{-1}gx \in H\}$$
$$= xHx^{-1}$$

Thus $\ker(\phi) = \bigcap_{x \in G} xHx^{-1}$. This is the largest normal subgroup of G that is contained in H.

Theorem 1.11

Let G be a non-abelian simple group, and $H \leq G$ a subgroup of index n > 1. Then $n \geq 5$ and G is isomorphic to a subgroup of A_n .

Proof. Let G act on X = G/H by left multiplication, and let $\phi : G \to \operatorname{Sym}(X)$ be the associated permutation representation. As G is simple, $\ker(\phi) = e$ or G. If $\ker(\phi) = G$, then $\operatorname{Im}(\phi) = e$. This is a contradiction since G acts transitively on X and |X| > 1. Thus $\ker(\phi) = e$ and $G \cong \operatorname{Im}(\phi) \leq S_n$.

Since $G \leq S_n$ and $A_n \leq S_n$, the second isomorphism theorem gives $G \cap A_n \leq G$ and $G/(G \cap A_n) \cong GA_n/A_n \leq S_n/A_n \cong C_2$. Since G is simple, $G \cap A_n = e$ (this is impossible as $G \leq C_2$ but G isn't abelian) or G. Thus $G \leq A_n$. Finally, if $n \leq 4$, then A_n has no non-abelian simple subgroups.

(iii) Let G act on itself by conjugation, i.e $g*x = gxg^{-1}$. We define the conjugacy class of $x \in G$ to be

$$\operatorname{ccl}_G(x) = \operatorname{orb}_G(x) = \{gxg^{-1} \in G : g \in G\}.$$

We also define the centraliser of x by

$$C_G(x) = G_x = \{g \in G : gx = xg\} \le G.$$

We define the centre of G by

$$Z(G) = \operatorname{Ker}(\phi) = \{g \in G : gx = xg \ \forall x \in G\}.$$

Note that the $\phi(g): G \to G$ given by $h \mapsto ghg^{-1}$ satisfies

$$\phi(g)(h_1h_2) = gh_1h_2g^{-1} = gh_1g^{-1}gh_2g^{-1} = \phi(g)(h_1)\phi(g)(h_2).$$

Thus $\phi(g)$ is a group homomorphism, and also a bijection i.e $\phi(g)$ is an isomorphism.

Definition (Automorphism)

 $\operatorname{Aut}(G) = \{ \text{ group isomorphisms } \zeta : G \to G \}.$ Then $\operatorname{Aut}(G) \leq \operatorname{Sym}(G)$ and $\phi : G \to \operatorname{Sym}(G)$ has image in $\operatorname{Aut}(G)$.

(iv) Let X be the set of all subgroups of G. Then G acts on X by conjugation, i.e $g*H=gHg^{-1}$. The stabiliser of H is

$$\left\{g \in G: gHg^{-1} = H\right\} = N_G(H).$$

This is also called the normaliser of H in G, and is the largest subgroup of G containing H as a normal subgroup. In particular,

$$H \triangleleft G \iff N_G(H) = G.$$

1.4 Alternating groups

From IA Groups, we know that elements in S_n are conjugate iff they have the same cycle type. For example, in S_5 , we have the following:

Cycle type	Number of elements	Sign
id	1	+1
(**)	10	-1
(**)(**)	15	+1
(***)	20	+1
(**)(***)	20	-1
(****)	30	-1
(****)	24	+1
Total:	$120=5!= S_5 $	

Let $g \in A_n$. Then $C_{A_n}(g) = C_{S_n}(g) \cap A_n$. We effectively have two cases:

- If there exists an odd permutation commuting with g, then $|C_{A_n}(g)| = \frac{1}{2}|C_{S_n}(g)|$ and by Orbit-Stabiliser, $|\operatorname{ccl}_{A_n}(g)| = |\operatorname{ccl}_{S_n}(g)|$.
- Otherwise, $|C_{A_n}(g)| = |C_{S_n}(g)|$ and by Orbit-Stabiliser, $|\operatorname{ccl}_{A_n}(g)| = \frac{1}{2}|\operatorname{ccl}_{S_n}(g)|$.

Example (Conjugacy classes of A_5)

If we take n = 5, then first consider the element (12)(34), which commutes with (12). Also, (123) commutes with (45).

But if we take g = (12345), then $h \in C_{S_5}(g)$ means

$$(12345) = h(12345)h^{-1}$$

= $(h(1)h(2)h(3)h(4)h(5)) \implies h \in \langle g \rangle \leq A_5.$

In this case, the conjugacy class does split.

Thus A_5 has conjugacy classes of sizes 1,15,20,12,12.

Proposition 1.12

 A_5 is simple.

Proof. If $H \subseteq A_5$, then H is a union of conjugacy classes. Therefore

$$|H| = 1 + 15a + 20b + 12c$$
 for some $a, b \in \{0, 1\}$ and $c \in \{0, 1, 2\}$.

Since H|60, this implies H=1 or 60, i.e A_5 is simple.

Now we move on to a more general statement about A_n being simple. Before we can do that, we will need some lemmas for the proof.

Lemma 1.13

 A_n is generated by 3-cycles.

Proof. Each $\sigma \in A_n$ is a product of an even number of transpositions. Thus it suffices to write the product of any two transpositions as a product of 3-cycles. For a, b, c, d distinct, we can have

$$\begin{cases} (ab)(bc) = (abc) \\ (ab)(cd) = (acb)(acd). \end{cases}$$

Lemma 1.14

If $n \geq 5$, then all 3-cycles in A_n are conjugate.

Proof. We claim that every 3-cycle is conjugate to (123). Indeed, if (abc) is a 3-cycle, then $(abc) = \sigma(abc)\sigma^{-1}$ for some $\sigma \in S_n$. If $\sigma \notin A_n$, then replace σ by $\sigma(45)$ (using the fact that $n \geq 5$).

Theorem 1.15

 A_n is simple for all $n \geq 5$.

Proof. Let $e \neq N \subseteq A_n$. Suffices to show that N contains a 3-cycle, since by 1.13 and 1.14 we then have $N = A_n$.

Take $e \neq \sigma \in N$ and write σ in its disjoint cycle decomposition. Consider the cases:

1. σ contains a cycle of length $r \geq 4$. WLOG $\sigma = (123...r)\tau$, where τ is some product of cycles that fixes 1, 2, ..., r.

Let $\delta = (123)$. Then consider the element

$$\underbrace{\sigma^{-1}}_{\in N} \underbrace{\delta^{-1} \sigma \delta}_{\in N} = (r \dots 21)(132)(12 \dots r)(123) = (23r) \in N.$$

Note τ gets cancelled as it fixes 1 to r. Therefore N contains a 3-cycle.

2. σ contains two 3-cycles. WLOG $\sigma = (123)(456)\tau$. Let b = (124). Then

$$\sigma^{-1}\delta^{-1}\sigma\delta = (132)(465)(142)(123)(456)(124) = (12436) \in \mathbb{N}.$$

Then we are back to case 1, so N contains a 3-cycle.

3. σ contains two 2-cycles. WLOG $\sigma=(12)(34)\tau$. Let $\delta=(123)$ and consider

$$\sigma^{-1}\delta^{-1}\sigma\delta = (12)(34)(132)(12)(34)(123) = (14)(23) = \pi \in \mathbb{N}.$$

Let $\varepsilon = (235)$. Then

$$\pi^{-1}\varepsilon^{-1}\pi\varepsilon = (14)(23)(253)(14)(23)(235) = (253).$$

Thus N contains a 3-cycle.

We now consider the remaining cases:

- 1. Cycle type $(**) \implies \sigma \notin A_n$.
- 2. Cycle type (***) $\implies \sigma$ is a 3-cycle.
- 3. Cycle type $(**)(***) \implies \sigma \notin A_n$.

This concludes the proof.

1.5 p-groups and p-subgroups

Definition (*p*-group)

Let p be a prime. A finite group G is a p-group if $|G| = p^n$, $n \ge 1$.

Theorem 1.16

If G is a p-group, then $Z(G) \neq 1$.

Proof. For $g \in G$, we have $|\operatorname{ccl}_G(g)||C_G(g)| = |G| = p^n$. So each conjugacy class must have size that is a power of p. Since G is a dijoint union of conjugacy classes,

$$|G| \equiv \text{(number of conjugacy classes of size 1)} \mod p$$

$$\implies 0 \equiv |Z(G)| \mod p$$

$$\implies Z(G) \neq 1.$$

We have used the fact that the conjugacy classes of size 1 are precisely the elements of Z(G):

$$g \in Z(G) \iff x^{-1}gx = g \ \forall x \in G \iff \operatorname{ccl}_G(g) = \{g\}.$$

Corollary 1.17

The only simple p-group is C_p .

Proof. Let G be a simple p-group. Since $Z(G) \leq G$, we have Z(G) = 1 or G. By 1.16, we must have Z(G) = G. Therefore G is abelian. Conclude by Lemma 1.7.

Corollary 1.18

Let G be a p-group of order p^n . Then G has a subgroup of order p^r for $0 \le r \le n$.

Proof. By Lemma 1.8, G has a composition series

$$1 = G_0 \unlhd G_1 \unlhd \ldots \unlhd G_{m-1} \unlhd G_m = G.$$

with each G_i/G_{i-1} simple. Since G is a p-group, all of the G_i/G_{i-1} must be p-groups. Therefore have by Proposition 1.17 that $G_i/G_{p-1} \cong C_p$.

Thus $|G_i| = p^i$ for all $0 \le i \le m$ and m = n.

Lemma 1.19

For G a group, if G/Z(G) is cyclic, then G is abelian (so in fact G/Z(G) = 1).

Proof. Let gZ(G) be a generator for G/Z(G). Then each coset is of the form $g^rZ(G)$ for some $r \in \mathbb{Z}$. Thus

$$G = \{g^r z : r \in \mathbb{Z}, z \in Z(G)\}.$$

We now check that elements in this group always commute:

$$g^{r_1}z_1g^{r_2}z_2 = g^{r_1+r_2}z_1z_2 \quad \text{ since } z \in Z(G)$$
$$= g^{r_1+r_2}z_2z_1$$
$$= g^{r_2}z_2g^{r_1}z_1.$$

Therefore G is abelian.

Corollary 1.20

If $|G| = p^2$ then G is abelian.

Proof. We know that $|Z(G)| \in \{1, p, p^2\}$. We can't have 1 by 1.16. If we have p, then |G/Z(G)| = p and therefore is cyclic. Now applying 1.19 we have that G is abelian. If we have p^2 then Z(G) = G so G is abelian. \square

1.6 The Sylow theorems

Theorem 1.21 (Sylow theorems)

Let G be a finite group of order $p^a m$ where p is a prime with $p \nmid m$. Then

- (i) The set $\operatorname{Syl}_n(G) = \{P \leq G : |P| = p^a\}$ of Sylow *p*-subgroups is non-empty.
- (ii) All elements of $\operatorname{Syl}_p(G)$ are conjugate.
- (iii) We define $n_p = |\operatorname{Syl}_p(G)|$. This satisfies $n_p \equiv 1 \mod p$ and $n_p \mid |G|$ (and so $n_p \mid m$)

Proof. (i) Let Ω be the set of all **subsets** of G of order p^a . We know that

$$|\Omega| = \binom{p^a m}{p^a} = \left(\frac{p^a m}{p^a}\right) \left(\frac{p^a m - 1}{p^a - 1}\right) \dots \left(\frac{p^a m - p^a + 1}{1}\right).$$

For $0 \le k \le p^a$, the number $p^a m - k$ and $p^a - k$ are divisible by the same power of p.

Therefore $|\Omega|$ is coprime to p. (\dagger)

Let G act on Ω by left-multiplication, i.e for $q \in G$ and $x \in \Omega$ we have

$$g*X=\{gx:\ x\in X\}\in\Omega.$$

For any $X \in \Omega$ we have

$$|G_x| |\operatorname{orb}_G(X)| = |G| = p^a m.$$

By (†), there exists X such that $|\operatorname{orb}_G(X)|$ is coprime to p. This is because the orbits give a partition of Ω , and so they can't all divide p. Thus

$$p^a||G_x \tag{1}$$

On the other hand, if $g \in G$ and $x \in X$, then $g \in (gx^{-1}) * X$ and hence

$$G = \bigcup_{g \in G} g * X = \bigcup_{y \in \operatorname{orb}_{G}(X)} Y$$

$$\Longrightarrow |G| \le |\operatorname{orb}_{G}| \cdot |X| \quad \text{since } |Y| = |X|$$

$$\Longrightarrow |G_{x}| = \frac{|G|}{|\operatorname{orb}_{G}(X)| = |X| = p^{a}}.$$
(2)

By 1 and 2, $|G_X| = p^a$, i.e $G_x \in \text{Syl}_p(G)$.

(ii) We prove a stronger result. We claim that if $P \in \operatorname{Syl}_p(G)$ and $Q \leq G$ is a p-subgroup, then $Q \leq gP^{-1}g^{-1}$ for some $g \in G$.

The proof is as follows: let Q act on the set of left cosets (not a group!) G/P by left multiplication, i.e q * gP = qgP. By Orbit-Stabiliser, each orbit has size |Q|, so either 1 or a multiple of p. Since |G/P| = m by definition, and m is coprime to p, there must exist some orbit of size 1, i.e

$$\exists g \in G: \quad qgP = gP \quad \forall q \in Q$$
$$\Longrightarrow g^{-1}qg \in P \quad \forall q \in Q$$
$$\Longrightarrow Q \le gPg^{-1}.$$

So we are done.

(iii) Let G act on $\mathrm{Syl}_p(G)$ by conjugation. Sylow (ii) tells us this action is transitive. Thus orbit-stabiliser implies

$$n_p = |\operatorname{Syl}_p(G)| \mid |G|.$$

Now to show that $n_p \equiv 1 \mod p$, let $P \in \operatorname{Syl}_p(G)$ act on $\operatorname{Syl}_p(G)$ by conjugation. The orbits have size dividing $|P| = p^a$, so either 1 or a multiple of p. To show $n_p \equiv 1 \mod p$, it suffices to show that $\{P\}$ is the unique orbit of size 1.

If $\{Q\}$ is another orbit of size 1, then P normalises Q, i.e $P \leq N_G(Q)$. Now P,Q are both Sylow p-subgroups of $N_G(Q)$ since $|N_G(Q)| \leq p^a$. Thus by (ii), P and Q are conjugate in $N_G(Q)$ - but $Q \leq N_G(Q)$, thus P = Q. This completes the proof.

Now let's look at an application of these theorems.

Corollary 1.22

If $n_p = 1$, then the unique Sylow *p*-subgroup is normal.

Proof. Let
$$g \in G$$
 and $P \in \operatorname{Syl}_p(G)$. Then $gPg^{-1} \in \operatorname{Syl}_p(G)$, and so $gPg^{-1} = P$. Thus $P \triangleleft G$.

This is very useful to show groups of certain orders can't be simple.

Example

Let $|G| = 1000 = 2^3 \cdot 5^3$. Then $n_5 = 1 \mod 5$ and $n_5 \mid 8$ so $n_5 = 1$. Thus the unique Sylow 5-subgroup is normal and hence G is not simple.

Example

Let $|G| = 132 = 2^2 \cdot 3 \cdot 11$. We have that $n_{11} = 1 \mod 11$ and $n_{11}|12$. So $n_{11} = 1$ or 12. Suppose G is simple. Then $n_{11} \neq 1$ (otherwise the Sylow 11-subgroup is normal). Hence $n_{11} = 12$.

Now $n_3 \equiv 1 \mod 3$ and $n_3|44$. Thus $n_3 \in \{1,4,22\}$. But the case $n_3 = 1$ can't occur as before. Now suppose $n_3 = 4$. Then letting G act on $\mathrm{Syl}_3(G)$ by conjugation gives a group homomorphism $\phi: G \to S_4$. But then $\mathrm{Ker} \phi \unlhd G \Longrightarrow \mathrm{Ker} \phi = 1$ or G. But $\mathrm{Ker} \phi = 1$ would mean that G injects into S_4 , which is a contradiction as $|G| = 132 > 24 = |S_4|$, and $\mathrm{Ker} \phi = G$ would be a contradiction to Sylow (ii).

Thus $n_3 = 22$ and $n_{11} = 12$. Thus G has $22 \cdot (3-1) = 44$ elements of order 3 and $120 = 12 \cdot (11-1)$ elements of order 11. But 44 + 120 > 132 = |G| which is a contradiction. Hence G is not simple.

1.7 Matrix groups

Matrix groups provide a wealth of examples of finite groups, and are crucial in the classification of finite simple groups. First we will recap a few groups we've seen before in IA Groups.

For a field F, let $GL_n(F)$ be the set of $n \times n$ invertible matrices over F.

This contains the subgroup $SL_n = \operatorname{Ker}(GL_n(F) \xrightarrow{\det} F^{\times})$. Here $F^{\times} = F \setminus \{0\}$.

Let $Z \leq GL_n(F)$ be the normal subgroup of scalar multiples of I. This is in fact the centre of $GL_n(F)$, but we won't prove this in the course since the proof is pretty involved.

Definition

We define the projective general linear group by

$$PGL_n(F) = GL_n(F)/Z,$$

and the projective special linear group by

$$PGL_n(F) = \frac{SL_n(F)}{Z \cap SL_n(F)} \cong \frac{Z \cdot SL_n(F)}{Z} \leq PGL_n(F)$$
 by 2nd isom. theorem.

Example

Consider $G = GL_n(\mathbb{Z}/p\mathbb{Z})$. A list of n vectors in $(\mathbb{Z}/p\mathbb{Z})^n$ are the columns of some

 $A \in G$ iff they are linearly independent. Thus

$$|G| = \underbrace{(p^n - 1)}_{\text{1st col.}} \underbrace{(p^n - p)}_{\text{2nd col.}} \underbrace{(p^n - p^2)}_{\text{3rd col.}} \dots \underbrace{(p^n - p^{n-1})}_{\text{last col.}}$$

$$= p^{1+2+\dots+n-1} (p^{n-1} - 1)(p^n - 1) \dots (p-1)$$

$$= p^{n(n-1)/2} \prod_{i=1}^{n} (p^i - 1).$$

So the Sylow p-subgroups have size $p^{n(n-1)/2}$. Let

$$U = \left\{ \begin{pmatrix} 1 & * & * & * \\ & 1 & * & * \\ & & \ddots & * \\ & & & 1 \end{pmatrix} \right\} \le G$$

be the set of upper triangular matrices with 1's on the diagonal. Then $U \in \operatorname{Syl}_p(G)$, since it has n(n-1)/2 entries and each can take p values.

Just as $PGL_2(\mathbb{C})$ acts on $\mathbb{C} \cup \{\infty\}$ via Möbius transformations, $PGL_2(\mathbb{Z}/p\mathbb{Z})$ acts on $\mathbb{Z}/p\mathbb{Z} \cup \{\infty\}$ via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{az+b}{cz+d}.$$

Since scalar matrices act trivially, we obtain an action of $PGL_2(\mathbb{Z}/p\mathbb{Z})$.

Lemma 1.23

The permutation representation $PGL_2(\mathbb{Z}/p\mathbb{Z}) \to S_{p+1}$ is injective (in fact an isomorphism if p=2 or 3).

Proof. Suppose $\frac{az+b}{cz+d} = z$ for all $z \in \mathbb{Z}/p\mathbb{Z} \cup \{\infty\}$.

- Setting z = 0 gives b = 0.
- Setting $z = \infty$ gives c = 0.
- Setting z = 1 gives a = d.

So $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a scalar matrix, hence it is trivial in $PGL_2(\mathbb{Z}/p\mathbb{Z})$.

Lemma 1.24

If p is an odd prime, then

$$|PSL_2(\mathbb{Z}/p\mathbb{Z})| = p(p-1)(p+1)/2.$$

Proof. By the previous example, $|GL_2(\mathbb{Z}/p\mathbb{Z})| = p(p^2 - 1)(p - 1)$. The homomorphism $GL_2(\mathbb{Z}/p\mathbb{Z}) \xrightarrow{\text{det}} (\mathbb{Z}/p\mathbb{Z})^{\times}$ is surjective.

Thus
$$|SL_2(\mathbb{Z}/p\mathbb{Z})| = |GL_2(\mathbb{Z}/p\mathbb{Z})|/(p-1) = p(p-1)(p+1)$$
. If $\begin{pmatrix} \lambda & 0 \\ \lambda & 0 \end{pmatrix} \in SL_2(\mathbb{Z}/p\mathbb{Z})$, then $\lambda^2 \equiv 1 \mod p \implies \lambda \equiv \pm 1 \mod p$ (since p is prime).

Thus $Z \cap SL_2(\mathbb{Z}/p\mathbb{Z}) = \{\pm I\}$ which are distinct since p > 2. Therefore

$$|PSL_2(\mathbb{Z}/p\mathbb{Z})| = \frac{1}{2}|SL_2(\mathbb{Z}/p\mathbb{Z})| = p(p-1)(p+1)/2.$$

Example

Let $G = PSL_2(\mathbb{Z}/5\mathbb{Z})$. Then $|G| = \frac{4.5.6}{2} = 60$.

Let G act on $\mathbb{Z}/5\mathbb{Z} \cup \{\infty\}$ via Mobius transformations. By Lemma 1.23, the permutation representation

$$\phi: G \to \operatorname{Sym}(\{0,1,2,3,4\} \cup \infty) \cong S_6$$
 is injective..

Claim. Im $(\phi) \leq A_6$, i.e $\psi: G \to S_6 \xrightarrow{\text{sgn}} \{\pm 1\}$ is trivial.

Proof. Let $h \in G$ have order $2^n m$, m odd. If $\psi(h^m) = 1$, then $\psi(h)^m = 1 \implies \psi(h) = 1$. So suffices to show $\psi(g) = 1$ for all $g \in G$ with order a power of 2. But we know that every such g belongs to a Sylow 2-subgroup. It then suffices to show $\psi(H) = 1$, for H a Sylow 2-subgroup (since Ker ψ is normal and all Sylow 2-subgroups are conjugate). Take

$$H = \left\langle \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} (\pm I), \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (\pm I) \right\rangle.$$

We compute that $\phi\begin{pmatrix}2&0\\0&3\end{pmatrix}=(14)(23)$, since it acts as $z\mapsto -z$. Also, $\phi\begin{pmatrix}0&1\\-1&0\end{pmatrix}=(0\infty)(14)$, since it acts as $z\mapsto -\frac{1}{z}$. Thus $\psi(H)=1$. This proves the claim.

See Example Sheet 1 Q14 for a similar result: If $G \leq A_6$ and |G| = 60, then $G \cong A_5$.

Remarks. (Not proved in this course)

- $PSL_n(\mathbb{Z}/p\mathbb{Z})$ is a simple group for all $n \geq 2$ and p a prime, e.g (n, p) = (2, 2), (2, 3) (finite groups of Lie type).
- The smallest non-abelian simple groups are $A_5 \cong PSL_2(\mathbb{Z}/5\mathbb{Z})$ of order 60, and $PSL_2(\mathbb{Z}/7\mathbb{Z})$ of order 168.

1.8 Finite abelian groups

We now investigate finite abelian groups, which we can actually characterise very effectively.

Lemma 1.25

If $m, n \in \mathbb{N}$ are coprime, then $C_m \times C_n \cong C_{mn}$.

Proof. Let g and h be generators of C_n and C_m . Then $(g,h) \in C_m \times C_n$ and $(g,h)^r = (g^r,h^r)$. Hence

$$(g,h)^r = 1 \iff m|r \text{ and } n|r$$

 $\iff mn|r \text{ as } m, n \text{ coprime.}$

Thus (g,h) has order $mn = |C_m \times C_n|$. So

$$C_m \times C_n \cong C_{mn} \cong \langle (g,h) \rangle.$$

Corollary 1.26

Let G be a finite abelian group. Then

$$G \cong C_{n_1} \times C_{n_2} \times \ldots \times C_{n_k}$$

where n_i are prime powers.

Proof. If $n = p_1^{a_1} \dots p_r^{a_r}$, where p_1, \dots, p_r are distinct primes, then we just apply our previous lemma inductively to get

$$C_n \cong C_{p_1^{a_1}} \times C_{p_2^{a_2}} \times \ldots \times C_{p_r^{a_r}}.$$

Theorem 1.27

Every finite abelian group G is isomorphic to a product of cyclic groups.

Proof. Immediate by applying Corollary 1.26.

Remark. Note such an isomorphism is not unique.

Theorem 1.28

Let G be a finite abelian group. Then $G \cong C_{d_1} \times C_{d_2} \times \ldots C_{d_t}$, for some $d_1|d_2|\ldots|d_t$ (they are successively divisible).

This almost immediately shows that finite abelian groups are pretty easy to work with. Let's use our results to compute what the abelian groups of various orders are in an example.

Example (i) The abelian groups of order 8 are

$$C_8, C_2 \times C_4, C_2 \times C_2 \times C_2$$
.

(ii) For the abelian groups of order 12, using 1.27 we get that they are

$$C_2 \times C_2 \times C_3, C_4 \times C_3.$$

Using 1.28 we get

$$C_2 \times C_6, C_{12}$$
.

This isn't a problem as these are pairwise isomorphic.

Definition (Exponent of a group)

The **exponent** of a group G is the least integer $n \ge 1$ such that $g^n = 1$ for all $g \in G$, i.e the LCM of the orders of the elements of G. For example, A_4 has exponent 6.

Corollary 1.29

Every finite abelian group contains an element whose order is the exponent of the group.

Proof. If $G \cong C_{d_1} \times C_{d_2} \times \dots C_{d_t}$ with $d_1|d_2|\dots|d_t$, then every $g \in G$ has order dividing d_t , and $h \in C_{d_t}$ of order d_t , then $(1, 1, \dots, h) \in G$ has order d_t . Thus G has exponent d_t .

2 Rings

2.1 Definitions and examples

Definition (Ring)

A **ring** is a triple $(R, +, \cdot)$ consisting of a set R and two binary operations $+: R \times R \to R, \cdot: R \times R \to R$ satisfying:

- (i) Addition: (R, +) is an abelian group, with identity element 0.
- (ii) Multiplication: the operation \cdot is associative, and has an identity 1.
- (iii) Distributivity: $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$ for all $x,y,z \in R$.

We say R is a **commutative ring** if $x \cdot y = y \cdot x$ for all $x, y \in R$. In this course, we will only consider commutative rings.

Remarks.

- (i) As in the case of groups, we should check closure!
- (ii) For any $x \in R$, write -x for the inverse of x under +, and abbreviate x + (-y) as x y.
- (iii) $0 \cdot x = (0+0) \cdot x = 0 = 0 \cdot x + 0 \cdot x$. Therefore $0 \cdot x = 0$ for all $x \in R$.
- (iv) $0 = 0 \cdot x = (1-1) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x$. So $(-1) \cdot x = -x$ for all $x \in R$.

Definition (Subring)

A subset $S \subset R$ is a subring (written $S \leq R$) if it is a ring under + and \cdot , with the same identity elements 0 and 1.

Example

- (i) $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ are all rings.
- (ii) $\mathbb{Z}[i] = \{a+bi: a, b \in \mathbb{Z}\} \leq \mathbb{C}$ is a ring. This is called the ring of Gaussian integers.
- (iii) $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in Q\} \le \mathbb{R}.$
- (iv) $\mathbb{Z}/n\mathbb{Z} = (\text{integers modulo } n)$
- (v) If R, S are rings, we define the **product ring** to be the set $R \times S$ via

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$$

 $(r_1, s_1) \cdot (r_2, s_2) = (r_1 \cdot r_2, s_1 \cdot s_2)$
 $0_{R \times S} = (0_R, 0_S)$ and $1_{R \times S} = (1_R, 1_S)$.

(vi) For R a ring, a **polynomial** f over R is an expression

$$f = a_0 + a_1 X + a_2 X^2 + a_n X^n, \quad a_i \in R.$$

"X" is just a formal symbol (i.e our definition of a polynomial just means some finite sequence in R). The degree of f is the largest $n \in \mathbb{N}$ s.t $a_n \neq 0$. We write R[X] for the set of all polynomials over R.

Remark. We say f is a **monic** polynomial if $a_n = 1_R$.

If $g = b_0 + b_1 X + \ldots + b_m X^m$ is another polynomial, set

$$f + g = \sum_{i} (a_i + b_i) X^i$$

$$f + g = \sum_{i} (a_i + b_i) X^i$$
$$f \cdot g = \sum_{i} (\sum_{j=0}^{i} a_j b_{i-j}) X^i$$

Then R[X] is a ring with identities 0_R and 1_R , which are constant polynomials. We identify R with the subring of constant polynomials (i.e $a_i = 0$ for all i > 0)

Definition (Unit)

An element $r \in R$ is a **unit** if it has an inverse under multiplication, i.e $\exists s \in R$:

The units in R form an abelian group (R^{\times},\cdot) under multiplication. For example, $\mathbb{Z}^{\times} = \{\pm 1\} \text{ and } \mathbb{Q}^{\times} = \mathbb{Q} \setminus 0.$

Definition (Field)

A field is a ring with $0 \neq 1$, such that every non-zero element is a unit. It's "a ring where you can divide". Examples of rings are \mathbb{Q} and $\mathbb{Z}/p\mathbb{Z}$ for p prime.

Remark. If R is a ring where 0 = 1, then for all $x \in R$ we have

$$x = 1 \cdot x = 0 \cdot x = 0$$
.

So $R = \{0\}$ is the trivial ring. This is why we stipulate that $0 \neq 1$ for a ring to be a field.

Proposition 2.1 (Euclidean algorithm for rings)

Let $f,g \in R[X]$. Suppose the leading coefficient of g is a unit. Then there exist $q, r \in R[X]$ s.t.

$$f(X) = q(X)g(X) + r(X)$$
 where $\deg(r) < \deg(g)$.

Proof. Induction on $n = \deg(f)$. Write

$$f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0, \quad a_n \neq 0$$

$$g(X) = b_n X^n + b_{n-1} X^{n-1} + \dots + b_0, \quad b_n \neq 0$$

If n < m, then let q = 0 and r = f. Done. Otherwise, we have $n \ge m$ and we set

$$f_1(X) = f(X) - a_n b_m^{-1} g(X) X^{n-m}.$$

The coefficient of X^n is $a_n - a_n b_m^{-1} b_m = 0$. Thus $\deg(f_1) < n$.

By the inductive hypothesis, $\exists q_1, r \in R[X]$ such that $f_1(X) = q_1(X)g(X) + r(X)$ where $\deg(r) < \deg(g)$. Therefore

$$f(X) = \underbrace{q_1(X) + a_n b_m^{-1} X^{n-m}}_{q(X)} + r(X).$$

So we are done.

Example

Let's look at further examples of rings.

(i) If R is a ring and X is a set, then the set of all functions $X \to R$ is a ring under pointwise operations:

$$(f+g)(x) = f(x) + g(x)$$
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Further interesting examples appear as subrings, for example the ring of all C^1 functions from $\mathbb{R} \to \mathbb{R}$.

- (ii) Power series ring $R[[X]] = a_0 + a_1X + a_2X^2 + \ldots$, where the $a_i \in R$. We use the same operations + and \cdot as the polynomial ring. We could view this as an "infinite version" of the polynomial ring.
- (iii) Laurent polynomials:

$$R[X, X^{-1}] = \left\{ \sum_{i \in \mathbb{Z}} a_i X^i : a_i \in R, \text{ and } a_i \text{ is non-zero for finitely many } i \right\}.$$

2.2 Homomorphisms, ideals and quotients

We now define a homomorphism for rings, which similarly to the case of groups preserves the structure of a ring.

Definition (Ring homomorphism)

Let R and S be rings. a function $\phi: R \to S$ is a ring homomorphism if

(i)
$$\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$$
 for all $r_1, r_2 \in R$

(ii)
$$\phi(r_1 \cdot_R r_2) = \phi(r_1) \cdot_S \phi(r_2)$$
 for all $r_1, r_2 \in R$

(iii)
$$\phi(1_R) = 1_S$$

A ring homomorphism that is also a bijection is called an isomorphism.

The kernel of ϕ is $Ker(\phi) = \{r \in R : \phi(r) = 0\}.$

Lemma 2.2

A ring homomorphism $\phi: R \to S$ is injective iff $Ker(\phi) = 0_R$.

Proof. $\phi:(R,+)\to(S,+)$ is a group homomorphism.

Definition (Ideal)

A subset $I \subset R$ is an **ideal**, written $I \subseteq R$ if

- (i) (I, +) is a subgroup of (R, +)
- (ii) If $r \in R$ and $x \in I$, then $rx \in I$.

We say I is proper if $I \neq R$.

The point of ideals is that they should arise as the kernels of ring homomorphisms; they are analogous to normal subgroups.

Lemma 2.3

If $\phi: R \to S$ is a ring homomorphism, then $\operatorname{Ker}(\phi)$ is an ideal of R.

Proof. $\phi:(R,+)\to(S,+)$ is a group homomorphism, so $\operatorname{Ker}\phi$ is a subgroup of (R,+). If $r\in R$ and $x\in \operatorname{Ker}\phi$, then

$$\phi(rx) = \phi(r)\phi(x) = \phi(r)0_S = 0_S \implies rx \in \operatorname{Ker} \phi.$$

Remark. If I contains a unit u, then $1_R \in I$ (by multiplying by -u). Hence I = R (multiplying any element in R by 1_R). Thus if I is a proper ideal, $1_R \notin I$, so I is not a subring of R.

Lemma 2.4

The ideals in \mathbb{Z} are $n\mathbb{Z} = \{kn : k \in \mathbb{Z}\}$ for $n = 0, 1, \ldots$

Proof. Certainly $n\mathbb{Z} \subseteq \mathbb{Z}$. Let $I \subseteq \mathbb{Z}$ be a non-zero ideal and n be the smallest positive integer in I. Then $n\mathbb{Z} \subseteq I$. If $m \in I$, then write m = qn + r with $q, r \in \mathbb{Z}$ and $0 \le r \le n$. Then $r = m - qn \in I$. This contradicts the fact that n is the smallest positive integer in I unless r = 0. But then $m \in n\mathbb{Z}$, i.e $I = n\mathbb{Z}$.

Definition (Generated ideal)

For $a \in R$, write $(a) = \{ra : r \in R\} \subseteq R$. This is the **ideal generated by** a. More

generally, if $a_1, \ldots, a_n \in R$, we write

$$(a_1, \ldots, a_n) = \{r_1 a_1 + r_2 a_2 + \ldots r_n a_n : r_i \in R\} \le R.$$

Definition (Principal ideal)

Let $I \subseteq R$. We say I is a **principal ideal** if I = (u) for some $a \in R$.

Now we show the converse of Lemma 2.3.

Theorem 2.5

If $I \subseteq R$, then the set R/I of cosets of I in (R, +) forms a ring (called the **quotient** ring) with the operations

$$(r_1 + I) + (r_2 + I) = r_1 + r_2 + I$$

 $(r_1 + I) \cdot (r_2 + I) = r_1 \cdot r_2 + I$

and $0_{R/I} = 0_R + I$, $1_{R/I} = 1_R + I$. Moreover, the map $R \to \frac{R}{I}$ with $r \mapsto r + I$ is a ring homomorphism (called the quotient map) with kernel I.

Proof. Already know (R/I,+) is a group by our definition of the quotient group.

If $r_1+I=r_1'+I$ and $r_2+I=r_2'+I$, this means we can write $r_1'=r_1+a_1$, $r_2'=r_2+a_2$ for some $a_1,a_2\in I$. Then

$$r'_1 r'_2 = (r_1 + a_1)(r_2 + a_2)$$

= $r_1 r_2 + \underbrace{r_1 a_2 + r_2 a_1 + a_1 a_2}_{\in I}$.

Thus $r_1r_2 + I = r'_1 + r'_2 + I$. The remaining properties for R/I follow from those properties for R.

Example 2.6 (Examples of quotient rings) 1. $n\mathbb{Z} \subseteq \mathbb{Z}$ is an ideal, with quotient ring $\mathbb{Z}/n\mathbb{Z}$. The cosets are $0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}$. Addition and multiplication are carried out modulo n.

2. Consider $(X) \leq \mathbb{C}[X]$ be the ideal of polynomials with constant term 0.

If
$$f(X) = \underbrace{a_n X^n + \ldots + a_1 X}_{\in (X)} + a_0$$
 for $a_i \in \mathbb{C}$, then $f(X) + (X) = a_0 + (X)$.

There is a bijection $\mathbb{C}[X]/(X) \to \mathbb{C}$ given by

$$f(X) + (X) \mapsto f(0), \quad a + (X) \leftarrow a.$$

These maps are ring homomorphisms. Thus $\mathbb{C}[X]/(X) \cong \mathbb{C}$.

3. Consider $(X^2 + 1) \leq \mathbb{R}[X]$. We want to understand

$$\mathbb{R}[X]/(X^2+1) = \{f(X) + (X^2+1) : f(X) \in \mathbb{R}[X]\}.$$

By Proposition 2.1, $f(X) = g(X)(X^2+1) + r(X)$ with $\deg r < 2$, i.e. r(X) = a + bX for $a, b \in \mathbb{R}$. Thus $\mathbb{R}[X]/(X^2+1) = \{a + bX + (X^2+1) : a, b \in \mathbb{R}\}$. Now let's investigate if this representation is unique.

If $a+bX+(X^2+1)=a'+b'X+(X^2+1)$, then $(a-a')+(b-b')X=g(X)(X^2+1)$ for some $g\in R[X]$. Comparing degrees, we see g(X)=0. Thus a=a' and b=b'.

Consider the bijection $\mathbb{R}[X]/(X^2+1) \stackrel{\phi}{\to} \mathbb{C}$ defined by $a+bX+(X^2+1) \mapsto a+bi$. We show ϕ is a ring homomorphism. It preserves addition and maps $1+(X^2+1)$ to 1.

$$\phi((a+bX) + (X^{2}+1)) (c+dX + (X^{2}+1))$$

$$= \phi ((a+bX) (c+dX) (X^{2}+1))$$

$$= \phi (ac + (ad+bc) X + bd (X^{2}+1) - bd + (X^{2}+1))$$

$$= ac - bd + (ad-bc) i$$

$$= (a+bi) (c+di)$$

$$= \phi ((a+bX) + (X^{2}+1)) \phi (c+dX + (X^{2}+1)).$$

Thus $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$.

We move on to the isomorphism theorems for rings; they are closely related to those for groups.

Theorem 2.7 (First isomorphism theorem for rings)

Let $\phi: R \to S$ be a ring homomorphism, then $\operatorname{Ker} \phi \subseteq R$, $\operatorname{Im} \phi \subseteq S$ and there exists an isomorphism $R/\operatorname{Ker} \phi \cong \operatorname{Im} \phi$.

Proof. We know that by Lemma 2.3 Ker $\phi \subseteq R$, and Im ϕ is a subgroup of (S, +). To check that the image is closed:

$$\phi(r_1r_2) = \phi(r_1)\phi(r_2) \in \operatorname{Im} \phi.$$

We also note that $1_S = \phi(1_R)$. Thus Im ϕ is a subring of S.

Let $K = \operatorname{Ker} \phi$. Define

$$\Phi: R/K \to \operatorname{Im} \phi, \quad r+K \mapsto \phi(r).$$

By the first isomorphism theorem for groups, this is well-defined, a bijection, and a group homomorphism under +. So it remains to prove that Φ preserves multiplication and that it maps the identity to the identity. We have $\Phi(1_R + K) = \phi(1_R) = I_S$, and

$$\Phi((r_1 + K) (r_2 + K)) = \Phi(r_1 r_2 + K)$$
$$= \phi(r_1 r_2) = \phi(r_1) \phi(r_2)$$

$$=\Phi\left(r_{1}+K\right)\Phi\left(r_{2}+K\right).$$

Thus Φ is a ring isomorphism.

Theorem 2.8 (Second isomorphism theorem for rings)

Let $R \leq S$ and $J \subseteq S$. Then $R \cap J \subseteq R$ and $R + J \equiv \{r + j : r \in R, j \in J\} \leq S$ and

$$R/(R \cap J) \cong (R+J)/J \leq S/J$$
.

Proof. By the second isomorphism theorem for groups, R+J is a subgroup of (S,+) and we have $1_S = \underset{1_S}{\in} R + J \in R + J$. If $r_1, r_2 \in R$ and $j_1, j_2 \in J$:

$$(r_1+j_1)(r_2+j_2) = \underset{r_1r_2}{\in} R + \underset{r_1j_2+r_2j_1+r_2j_2}{\in} R+J.$$

Therefore $R + J \leq S$. Define

$$\phi: R \to S/J, \quad r \mapsto r + J.$$

This is the composite of inclusion $R \subseteq$, and the quotient $S \mapsto S/J$, hence ϕ is a ring homomorphism. We can calculate

$$\operatorname{Ker} \phi = \{ r \in R : r + J = J \} = R \cap J \le R$$

 $\operatorname{Im} \phi = \{ r + J : r \in J \} = (R + J) / J \le S / J.$

Now apply the first isomorphism theorem for rings, which concludes the proof. \Box

Remark. Let $I \triangleleft R$. There exists a bijection

{ Ideals in R/I} \leftrightarrow { Ideals of R containing I},

given by

$$K \mapsto \{r \in R : r + I \in K\}, \quad J/I \leftarrow J.$$

Theorem 2.9 (Third isomorphism theorem for rings)

Let $I \subseteq R$, $J \subseteq R$ with $I \subset S$. Then $J/I \subseteq R/I$, and

$$(R/I)/(I/J) \cong R/J.$$

Proof. Consider $\phi: R/I \to R/J$ with $r+I \mapsto r+J$. This is well-defined surjective ring homomorphism by the third isomorphism theorem for groups (Exercise). Furthermore,

$$\operatorname{Ker} \phi = \{r + I : r \in J\} = J/I \le R/I.$$

Apply the first isomorphism theorem to finish the proof.

Now we go back to Example 2.6, and reprove the last part much faster using the isomorphism theorem.

Example

There is a surjective ring homomorphism

$$\phi: \mathbb{R}[X] \to \mathbb{C}, \quad f(X) = \sum a_n X^n \mapsto f(i) = \sum a_n i^n.$$

Proposition 2.1 implies $\operatorname{Ker} \phi = (X^2 + 1)$. By the first isomorphism theorem,

$$\mathbb{R}[X]/\left(X^2+1\right) \cong \mathbb{C}.$$

If R is a ring, there exists a unique ring homomorphism $i: \mathbb{Z} \to R$, given by

$$0 \mapsto 0_R$$

$$1 \mapsto 1_R$$

$$n \mapsto \underbrace{1_R + \ldots + 1_R}_{n \text{ times}}.$$

Since Ker $(i) \subseteq \mathbb{Z}$, have Ker $(i) = n\mathbb{Z}$ for some $n \in \{0, 1, 2, ...\}$. By the first isomorphism theorem,

$$\mathbb{Z}/n\mathbb{Z} \cong \operatorname{Im}(i) \leq R.$$

This motivates our next definition:

Definition (Characteristic)

We call n the **characteristic** of R. For example,

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} have characteristic 0.
- $\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p\mathbb{Z}[X]$ has characteristic p.

2.3 Integral domains, maximal ideals and prime ideals

Definition (Integral domain/Zero-divisor)

An **integral domain** is a ring with $0 \neq 1$ such that for $a, b \in R$, $ab = 0 \implies a = 0$ or b = 0.

A **zero-divisor** in a ring R is a non-zero element $a \in R$ such that ab = 0 for some $0 \neq b \in R$. So an integral domain is a ring with no zero-divisors.

Example 1. All fields are integral domains (if ab = 0 with b = 0, multiply by b^{-1} to get a = 0).

- 2. Any subring of an integral domain is an integral domain, e.g $\mathbb{Z} \leq \mathbb{Q}$, $\mathbb{Z}[i] \leq \mathbb{C}$.
- 3. $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain since $(1,0) \cdot (0,1) = (0,0)$.

Lemma 2.10

If R is an integral domain, then R[X] is an integral domain.

Proof. Write

$$f(X) = a_m X^m + \dots + a_1 X + a_0, \quad a_m \neq 0$$

 $g(X) = b_n X^m + \dots + b_1 X + b_0, \quad b_n \neq 0.$

Then
$$f(X) g(X) = \underbrace{a_m b_n}_{\neq 0 \text{ as } R \text{ integral domain}} + \dots$$

and $\deg(fg) = m + n = \deg f + \deg g$ and $f \cdot g \neq 0$.

Lemma 2.11

Let R be an integral domain and $0 \neq f \in R[X]$. Let the set of roots of f be

$$\mathcal{R} = \{ a \in R : f(a) = 0 \}.$$

Then $|R| \leq \deg(f)$.

Proof. Uses Proposition 2.1; see Example Sheet 1.

Theorem 2.12 (Subgroups of a field are cyclic)

Let F be a field. Then any finite subgroup $G \leq (F^{\times}, \cdot)$ is cyclic.

Proof. G is a finite abelian group. If G is not cyclic, then by Theorem , there exists $H \leq G$ such that $H \cong C_{d_1} \times C_{d_1}$ for some $d_1 \geq 2$. But then the polynomial

$$f(X) = X^{d_1} - 1 \in F[X]$$

has degree d_1 , and $\geq d_1^2$ roots which contradicts our previous lemma.

Example

This theorem tells us that the field $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.

Proposition 2.13

Any finite integral domain is a field.

Proof. Let R be a finite integral domain. Let $a \in R$, $a \neq 0$.

Consider the map $\phi: R \to R$: $x \mapsto ax$.

If $\phi(x) = \phi(y)$ then a(x-y) = 0. Since R is an integral domain and $a \neq 0$, this gives x-y=0. So x=y. Thus ϕ is injective, and hence surjective since R is finite. Therefore

$$\exists b \in R : a \cdot b = 1 \implies a \text{ is a unit. }.$$

Thus R is a field.

The next theorem tells us about the converse of this statement.

Theorem 2.14 (Field of fractions)

Let R be an integral domain. Then there exists a field F such that:

- (i) $R \leq F$.
- (ii) Every element of F can be written in the form $a \cdot b^{-1}$ where $a, b \in R$ and $b \neq 0$.

Remark. Condition (ii) guarantees our field is the "smallest" field with $R \leq F$. F is called the **field of fractions** of R.

Proof. Consider the set $S = \{(a,b) \in R : b \neq 0\}$, and the equivalence relation \sim on S given by

$$(a,b) \sim (c,d) \iff ad - bc = 0.$$

Clearly this is reflexive and symmetric. For transitivity, if $(a,b) \sim (c,d) \sim (e,f)$, then

$$(ad)f = (bc)f = b(cf) = b(de)$$

 $\implies d(af - be) = 0$

Since R is integral and $d \neq 0$, this gives af - be = 0, i.e $(a, b) \sim (e, f)$.

Let $F = S/\sim$ be the set of equivalence classes and (somewhat suggestively) write $\frac{a}{b}$ for [(a,b)]. Define

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

It can easily be checked that these operations are well-defined and make F into a ring with $0_F = \frac{0_R}{1_R}$ and $1_F = \frac{1_R}{1_R}$. If $\frac{a}{b} \neq 0_F$, then $a \neq 0_R$, and $\frac{a}{b} \cdot \frac{b}{a} = \frac{1_R}{1_R} = 1_F$. So F is a field. Now let's check the conditions we gave.

- (i) Identify R with the subring $\left\{\frac{r}{1_R:r\in R}\right\} \leq F$.
- (ii) $\frac{a}{b} = a \cdot b^{-1}$.

This concludes the proof.

Remark. In this proof, we have essentially just mimicked the construction of the rationals. This leads on to our first example.

Example 1. \mathbb{Z} is an integral domain with field of fractions \mathbb{Q} .

2. $\mathbb{C}[X]$ has field of fractions

 $\mathbb{C}(X) \equiv \text{ field of rational functions in } X.$

Now we move on to discussing maximal and prime ideals, which we will use extensively in the next section.

Definition (Maximal ideal)

An ideal $I \subseteq R$ is **maximal** if $I \neq R$ and if $I \subseteq J \subseteq R$, then J = I or R. This is the biggest *proper* ideal in R.

Lemma 2.15

A (non-zero) ring R is a field iff its only ideals are $\{0\}$ and R.

Proof. If R is a field and $I \subseteq R$ is nontrivial, then I contains a unit and hence I = R.

Conversely, suppose the only ideals in R are $\{0\}$ and R. Take $x \in R$, $x \neq 0$, then the ideal (x) is non-zero, hence (x) = R. So $\exists y \in R : x \cdot y = 1$. So x is a unit.

Proposition 2.16

Let $I \subseteq R$ be an ideal. I is maximal iff R/I is a field.

Proof. R/I is a field $\iff I/I$ and R/I are the only ideals in R/I

 \iff I and R are the only ideals in R which contain I

 $\iff I \subseteq R \text{ is maximal.}$

Definition (Prime ideal)

An ideal $I \subseteq R$ is prime if $I \neq R$ and whenever $a, b \in R$ with $ab \in I$, we have $a \in I$ or $b \in I$.

Example

The ideal $n\mathbb{Z} \leq \mathbb{Z}$ is a prime ideal iff n = 0 or n = p is prime.

Checking: If $ab \in p\mathbb{Z}$, then p|ab, so p|a or p|b, i.e $a \in p\mathbb{Z}$ or $b \in p\mathbb{Z}$.

Conversely, if n = uv with u, v > 1, then $uv \in n\mathbb{Z}$, but $u \notin n\mathbb{Z}$, but $u \notin n\mathbb{Z}$, $v \notin n\mathbb{Z}$.

Remark. The motivation of a prime ideal is to generalise the notion of prime numbers to arbitrary rings.

Proposition 2.17

Let $I \subseteq R$ be an ideal. Then I is prime iff R/I is an integral domain.

Proof. I is prime

 \iff Whenever $a, b \in R$ with $ab \in I$, we have $a \in I$ or $b \in I$.

 \iff Whenever $a+I, b+I \in R/I$ with (a+I)(b+I)=0+I, we have a+I=0+I or b+I=0+I.

 $\iff R/I$ is an integral domain.

Remark. Proposition 2.16 and Proposition 2.17 show that if I is a maximal ideal, it is also a prime ideal (since all fields are integral domains).

Remark. If char(R) = n, then $\mathbb{Z}/n\mathbb{Z} \leq R$. So if R is an integral domain, then $\mathbb{Z}/n\mathbb{Z}$ is

an integral domain. This implies that $n\mathbb{Z} \subseteq \mathbb{Z}$ is a prime ideal, so n = 0 or n = p prime.

In particular, a field has characteristic 0 (and so contains \mathbb{Q}) or has characteristic p, in which case it contains $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$.

2.4 Factorisation in integral domains

In this section we investigate the following property: we know that in \mathbb{N} we can factorise any number as a product of prime factors, and we want to know to which extent this is true in integral domains.

Remark. In this section we will always take R to be an integral domain.

Definition

We will quickly establish some key definitions that will help us work with the objects of this chapter.

- (i) Recall that $a \in R$ is a unit if there exists $b \in R$ with ab = 1 (equivalently (a) = R).
- (ii) $a \in R$ divides $b \in R$ (written a|b) if there exists $c \in R$ such that b = ac (equivalently (b) = (a)).
- (iii) $a, b \in R$ are associates if a = bc for some unit $c \in R$.
- (iv) $r \in R$ is **irreducible** if $r \neq 0$, r is not a unit, and $r = ab \implies a$ or b is a unit.
- (v) $r \in R$ is **prime** if $r \neq 0$, r is not a unit and $r|ab \implies r|a$ or r|b.

Remark. These properties of an element depend on the ambient ring R: for example 2 is prime and irreducible in \mathbb{Z} , but not in \mathbb{Q} .

Another example is that 2X is irreducible in $\mathbb{Q}[X]$, but not in $\mathbb{Z}[X]$ (since then we can factor it as $2 \cdot X$, and 2 is a unit in \mathbb{Z}).

Now we want to chase some definitions to make sure our definitions of prime element and prime ideal agree.

Lemma 2.18

Consider $(r) \leq R$. This is a prime ideal iff r = 0 or r is a prime element.

Proof. Suppose (r) is prime and $r \neq 0$. Since prime ideals are proper, $(r) \neq R$. Therefore r is not a unit. If r|ab, then $ab \in (r)$, so $a \in (r)$ or $b \in (r)$. Thus r|a or r|b. So r is prime.

Conversely, $\{0\} \subseteq R$ is a prime ideal since R is an integral domain. Let $r \in R$ be a prime. $(r) \neq R$ since $r \in R^{\times}$. If $ab \in (r)$ then r|ab.

$$\implies r|a \text{ or } r|b$$

 $\implies r \in (a) \text{ or } r \in (b), \text{ i.e } r \text{ is a prime ideal.}$

Lemma 2.19

If $r \in R$ is prime, then it is irreducible.

Proof. Since r is a prime, $r \neq 0$ and $r \notin R^{\times}$. Suppose r = ab. Then r|ab so r|a or r|b. WLOG assume r|a, so a = rc for some element $c \in R$.

Then $r = ab = rbc \implies r(1 - bc) = 0 \implies bc = 1$. This uses the fact that R is an integral domain and $r \neq 0$. So b is a unit.

The converse of this lemma does not hold in general.

Example

Let

$$R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\} \le C, \quad R \cong \mathbb{Z}[X]/(X^2 + 5).$$

R is a subring of a field, so it's an integral domain. Define a function (called the **norm**)

$$N: R \to \mathbb{Z}_{>0}, \quad a + b\sqrt{-5} \mapsto a^2 + 5b^2.$$

Note that $N(z_1z_2) = N(z_1)N(z_2)$.

Claim.
$$R^{\times} = \{\pm 1\}.$$

Proof. If $r \in \mathbb{R}^{\times}$, i.e rs = 1 for some $s \in \mathbb{R}$, then

$$N(r)N(s) = N(1) = 1 \implies N(r) = 1$$
 WLOG.

But the only integer solutions to $a^2 + 5b^2 = 1$ are (a, b) = (1, 0) or (-1, 0).

Claim. $2 \in R$ is irreducible.

Proof. Suppose 2 = rs where $r, s \in R$. We want to show one of these elements is a unit. Then

$$4 = N(2) = N(r)N(s).$$

Since $a^2 + 5b^2 = 2$ has no integer solutions, R has no elements of norm 2. Thus N(r) = 1 and N(s) = 4 WLOG. But if N(r) = 1, this implies that r is a unit.

Similarly 3, $1+\sqrt{-5}$, $1-\sqrt{-5}$ are all irreducible (as there are no elements of norm 3). Now $(1+\sqrt{-5})(1-\sqrt{-5})=6=2\cdot 3$. Thus $2|(1+\sqrt{-5})(1-\sqrt{-5})$, but $2\nmid 1+\sqrt{-5}$ or $1-\sqrt{-5}$ (check by taking norms).

So 2 is irreducible but not prime in R.

Remarks. We now know that being irreducible does not imply being prime. Importantly, in the above example $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ gives two distinct factorisations into irreducibles. Since $R^{\times} = \{\pm 1\}$, these irreducibles are not associates.

This example tells us if we want to have a good definition of factorisation in a ring, we should impose some extra properties.

Definition (Principal ideal domain)

An integral domain R is a **principal ideal domain** (PID) if any ideal $I \subseteq R$ is principal. In other words, any ideal $I \subseteq R$ is generated by some element $r \in R$.

For example, \mathbb{Z} is a PID by Lemma 2.4.

Proposition 2.20

Let R be a PID. Then every irreducible element of R is prime.

Proof. Let $r \in R$ be irreducible. We already know that $r \neq 0$ and r is not a unit. Assume r|ab and $r \nmid a$.

Since R is a PID, (a, r) = (d) for some $d \in R$. In particular, r = cd for some $c \in R$. Since r is irreducible, either c or d is a unit. If c is a unit, then (a, r) = (r). So r|a. Contradiction. If d is a unit, then (a, r) = R.

So there exists $s, t \in R$ such that sa + tr = 1. Then b = sab + trb. So r|b since r|ab. Thus r is prime. \Box

Lemma 2.21

Let R be a PID, and $0 \neq r \in R$. Then r is irreducible iff (r) is a maximal ideal.

Proof. If r is irreducible, $r \notin R^{\times}$ so $(r) \neq R$. Suppose $(r) \subset J \subset R$ where $J \subseteq R$. Since R is a PID, J = (a) for some $a \in R$. Therefore r = ab for some $b \in R$. Since r is irreducible, either $a \in R^{\times} \implies J = R$ or $b \in R^{\times} \implies J = (r)$. Thus (r) is maximal.

Conversely, suppose (r) is maximal. So $r \notin R^{\times}$. Suppose r = ab. Then $(r) \subset (a) \subset R$. Since (r) is maximal, either (a) = (r) or R. If (a) = (r), then a and r are associates and so b is a unit. If (a) = R then a is a unit. Thus r is irreducible.

Remark. This proof of the converse implication actually holds for a general integral domain R; it doesn't assume R is a PID.

Remark. Let R be a PID, and take a nonzero $r \in R$. Then (r) is maximal iff r is irreducible, which is equivalent to r being prime. This is again equivalent to (r) being prime. We can use this to deduce that there exists a bijection

 $\{ \text{ non-zero prime ideals } \} \leftrightarrow \{ \text{ non-zero maximal ideals } \}.$

This is a nice property of PIDs. We can cook up some examples of PIDs using th following definition.

Definition (Euclidean domain)

An integral domain is a **Euclidean domain** (ED) if there is a function $\phi : R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ (a Euclidean function) such that

- (i) If a|b, then $\phi(a) \leq \phi(b)$.
- (ii) If $a, b \in R$ with $b \neq 0$, then there exist $q, r \in R$ with a = bq + r and either

$$r = 0$$
, or $\phi(r) < \phi(b)$.

Example

 \mathbb{Z} is a Euclidean domain with Euclidean function $\phi(n) = |n|$.

Proposition 2.22

If R is a Euclidean domain, then it is a principal ideal domain.

Proof. Let R have Euclidean function ϕ . Let $I \subseteq R$ be non-zero. Choose $b \in I \setminus \{0\}$ with $\phi(b)$ minimal. Then $(b) \in I$.

For $a \in I$, write a = bq + r with $q, r \in R$ and either r = 0 or $\phi(r) < \phi(b)$. Since $r = bq - a \in I$, cannot have $\phi(r) < \phi(b)$ as we chose b to be minimal. So r = 0, and a = bq. Hence I = (b).

Remark. We only used property (ii) of Euclidean domains in this proof. We include property (i) in the definition as it allows us to describe the units in R as

$$R^{\times} = \{ u \in R \setminus \{0\} : \phi(a) = \phi(1) \}.$$

Example 1. Let F be a field. F[X] is an ED with Euclidean function $\phi(f) = \deg f$ for $f \in F[X]$. ϕ is Euclidean by Proposition 2.1.

2. $R = \mathbb{Z}[i]$ is an ED with Euclidean function

$$\phi(a+ib) = N(a+ib) = |a+ib|^2 = a^2 + b^2.$$
 (†)

Since N is multiplicative, this tells us that property (i) is satisfied.

For property (ii), let $z_1, z_2 \in \mathbb{Z}[i]$ with $z_2 \neq 0$. Consider $\frac{z_1}{z_2} \in \mathbb{C}$. This has distance less than 1 from the nearest element of $\mathbb{Z}[i]$, i.e there exists $q \in \mathbb{Z}[i]$ such that $\left|\frac{z_1}{z_2} - q\right| < 1$.

Figure 1: Every point in \mathbb{C} is at most $1/\sqrt{2}$ away from a lattice point.

Set
$$r = z_1 - z_2 q \in \mathbb{Z}[i]$$
. Then $z_1 = qz_2 + r$ and

$$\phi(r) = |r|^2 = \underbrace{|z_1 - z_2 q|^2 < |z_2|^2}_{\text{by (†)}} = \phi(z_2).$$

Thus Proposition 2.22 implies that both $\mathbb{Z}[i]$ and F[X] for F a field are PIDs.

The first application we will see involves the construction of the minimal polynomial of a matrix.

Example

Let A be an $n \times n$ matrix over a field F. Let $I = \{ f \in F[X] : f(A) = 0 \}$.

Claim. I is an ideal in F.

Proof. If $f, g \in I$, then $(f - g)(A) = f(A) - g(A) = 0 \implies f - g \in I$. So $(I, +) \leq (F, +)$.

If
$$f \in F[X]$$
 and $g \in I$, then $(f \cdot g)(A) = f(A) \cdot g(A) = 0$. So $f \cdot g \in I$.

So I = (f) for some $f \in F[X]$ since F[X] is a PID. Of course, this f isn't unique. We may assume f is monic by multiplying by a unit in F. Then for $g \in F[X]$,

$$g(A) = 0 \iff g \in I \iff g \in (f) \iff f|g.$$

So f is the minimal polynomial of A; we've derived it using rings (see IB Linear Algebra)

The next example will be of interest to those who want to study Part II Galois Theory.

Example (Field of order 8)

Let $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$. Now let $f(X) = X^3 + X + 1 \in \mathbb{F}_2[X]$. If f(X) = g(X)h(X) with $g, h \in \mathbb{F}_2[X]$ and deg g, deg h > 0, then deg $g + \deg h = 3$. Thus either deg g = 1 or deg h = 1, and so f has a root.

But $f(0) \neq 0$ and $f(1) \neq 0$ in \mathbb{F}_2 . Thus f is irreducible. Since \mathbb{F}_2 is a PID, Lemma 2.21 implies $(f) \subseteq \mathbb{F}_2[X]$ is a maximal ideal. Hence

$$\mathbb{F}_2[X]/(f) = \{aX^2 + bX + c : a, b, c \in \mathbb{F}_2\}$$

is a field of order 8.

Example

 $\mathbb{Z}[X]$ is not a PID. Consider I=(2,X). Then

$$I = \{2f_1(X) + Xf_2(X) : f_1, f_2 \in \mathbb{Z}[X]\}$$

= \{f \in \mathbb{Z}[X] : f(0) \text{ is even }\}

Suppose I=(f) for some $f\in\mathbb{Z}[X]$. Thus 2=fg for some $g\in\mathbb{Z}[X]$. Thus $\deg f=\deg g=0$, and $f\in\mathbb{Z}$. So $f=\pm 1$ or ± 2 . Therefore $I=\mathbb{Z}[X]$ or $I=2\mathbb{Z}$. Both these cases can't happen: if $I=\mathbb{Z}[X]$ we get a contradiction since $1\notin I$, and in the other case we get a contradiction since $X\in I$.

Definition (Unique factorisation domain)

An integral domain is a unique factorisation domain (UFD) if

- (i) Every non-zero, non-unit element is a product of irreducible elements.
- (ii) If $p_1, \ldots, p_m = q_1 q_2 \ldots q_m$ where p_i, q_i are irreducible, then m = n and we can reorder so that p_i is an associate of q_i for all $i = 1, \ldots, n$.

Goal. We want to show that PIDs are UFDs, i.e that PIDs have a nice factorisation as we are familiar with from \mathbb{N} .

Proposition 2.23

Let R be an integral domain satisfying (i) in the definition of UFD. Then R is a UFD \iff every irreducible is prime.

Proof. Suppose R satisfies (i). Suppose $p \in R$ is irreducible and p|ab. Then ab = pc for some $c \in R$. Writing a, b, c as products of irreducibles, it follows from (i) that p|a or p|b.

Conversely, suppose $p_1
ldots p_m = q_1
ldots q_n$ with each p_i and q_i irreducible. Since p_1 is prime and $p_1|q_1
ldots q_n$, we have $p_1|q_i$ for some i. Upon reordering, may assume that $p_1|q_1$, i.e $q_1 = p_1u$ for some u
ldots R. But q_1 is irreducible, and p_1 is irreducible, so u has to be a unit. Thus p_1 and q_1 are associates. So we can cancel p_1 , which gives $p_2
ldots p_m = (uq_2)
ldots q_n$. We now repeat the process and the result follows by induction.

Lemma 2.24

Let R be a PID and let $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ be a nested sequence of ideals. Then there exists $N \in \mathbb{N}$ such that $I_n = I_{n+1}$ for all $n \geq N$.

Remark. Rings satisfying this "ascending chain condition" are called **Noetherian** rings. More on this later.

Proof. Let $I = \bigcup_{i=1}^{\infty} I_i$. This is an ideal in R (see Example Sheet 2). Since R is a PID, we have that I = (a) for some $a \in R$. Then $a \in \bigcup_{i=1}^{\infty} I_i$, so $a \in I_N$ for some N. Consequently for any $n \geq N$ we have

$$(a) \subseteq I_N \subseteq I_n \subseteq I = (a).$$

So these inclusions are equalities and $I_n = I$.

Theorem 2.25 (PIDs are UFDs)

If R is a principal ideal domain, then it is a unique factorisation domain.

Proof. Check (i) and (ii) in the definition of UFD.

(i) Let $x \in R$ be a nonzero unit. We proceed by contradiction: suppose x is not a product of irreducibles. Then x is not irreducible, so we can write $x = x_1y_1$ where x_1, y_1 are not units. Then either x_1 or y_1 is not a product of irreducibles, say x_1 WLOG. We have $(x) \subseteq (x_1)$ and this inclusion is strict because y_1 is not a unit. Now we write $x_1 = x_2y_2$ where x_2, y_2 are not units. Repeat this procedure to get

$$(x) \subset (x_1) \subset (x_2) \subset \dots$$

with each inclusion strict. This contradicts Lemma 2.24.

(ii) By Proposition [todo], it suffices to show irreducibles are primes. We conclude by Proposition [todo].

Remark. We now know that for a general ring,

$$\mathrm{ED} \implies \mathrm{PID} \implies \mathrm{UFD} \implies \mathrm{Integral\ domain}.$$

There are a few useful examples we can give to illustrate the differences between these categories:

Definition (gcd/lcm)

Let R be an integral domain.

- 1. We say $d \in R$ is a **greatest common divisor** (gcd) of the elements $a_1, \ldots, a_n \in R$ if $d|a_i$ for all i and if $d'|a_i$ for all i, then d'|d.
- 2. $m \in R$ is a **lowest common multiple** (lcm) of a_1, \ldots, a_n if $a_i | m$ for all i and if $a_i | m'$ for all i, then m | m'.

Both gcd and lcm (when they exist) are unique up to associates.

Proposition 2.26

In a UFD, both gcd's and lcm's exist.

Proof. Write $a_i = u_i \prod_j p_j^{n_{ij}}$ where $1 \le i \le n$, where u_i is a unit, the p_j are irreducible which are not associates of each other, and $n_{ij} \in \mathbb{Z}_{\ge 0}$.

Claim.
$$d = \prod_i p_i^{m_i}$$
 where $m_i = \min_{1 \le i \le n} n_{ij}$ is the gcd of a_1, \ldots, a_n .

Proof. Certainly $d|a_i$ for all i. If $d'|a_i$ for all i, then writing $d' = u \prod_j p_j^{t_j}$, we find that $t_j \leq n_{ij}$ for all i. So $t_i \leq m_j$. Therefore d'|d.

The argument for lcm's is similar (just replacing min by max).

2.5 Factorisation in polynomial rings

Goal. Our first goal in this section is to prove the following theorem:

Theorem 2.27

If R is a UFD then R[X] is also a UFD.

In this section, R is a UFD with field of fractions F. We have $R[X] \leq F[X]$. Moreover F[X] is a ED, hence a PID and UFD. Note this isn't yet enough to show that R[X] is a UFD- since it's just a subring of a UFD, which isn't necessarily a UFD. However, we will show that today.

First we will prove some preliminary results.

Definition (Content)

The **content** of $f = a_n X^n + \ldots + a_1 X + a_0 \in R[X]$ is

$$c(f) = \gcd(a_0, a_1, \dots, a_n).$$

Note this is well-defined up to multiplication oby a unit. We say f is **primitive** if c(f) is a unit.

Remark. It might be easier to view R as \mathbb{Z} if you are seeing this for the first time, in order to more intuitively understand the definitions.

Lemma 2.28 (i) If $f, g \in R[X]$ are primitive, then fg is primitive.

(ii) If $f, g \in R[X]$, then c(fg) = c(f)c(g) (up to multiplication by a unit).

There are quite a few different proofs of this lemma, but we will give a concrete one that involves directly computing the coefficients of fg.

Proof. (i) Let

$$f = a_n X^n + \ldots + a_1 X + a_0$$

$$g = b_m X^m + \ldots + b_1 X + b_0$$

If fg is not primitive, c(fg) is not a unit, so there is some prime p such that p|c(fg) (since it factors into irreducibles, but in a UFD irreducibles are primes). Since f, g primitive, $p \nmid c(f)$ and $p \nmid c(g)$.

Suppose $p|a_0, p|a_1...$ but $p \nmid a_k$ (it is the smallest such k). Let b_l be defined similarly. Then the coefficient of X^{k+l} in fg is

$$\sum_{i+j=k+l} a_i b_j = \underbrace{\dots + a_{k-1} b_{l+1}}_{\text{div. by } p} + a_k b_l + \underbrace{a_{k+1} b_{l-1} + \dots}_{\text{div. by } p}.$$

Thus $p|a_kb_l \implies p|a_k$ or $p|b_l$ since p is prime. Contradiction. So fg is primitive.

(ii) Write $f = c(f) \cdot f_0$ and $g = c(g) \cdot g_0$, where $f_0, g_0 \in R[x]$ are primitive. Then $fg = c(f)c(g)f_0g_0$, where f_0g_0 is primitive by (i). Taking the content, c(fg) = c(f)c(g) up to units.

Corollary 2.29

Let $p \in R$ be prime. Then p is prime in R[X].

Proof. $R[X]^{\times} = R^{\times}$ as R is an integral domain, so p is not a unit in R[X]. Let $f \in R[X]$. Then p|f in R[X] iff p|c(f) in R. Thus if p|gh in R[X], then p|c(gh) = c(g)c(h). Thus p|c(g) or p|c(h), so p|g or p|h. So p is prime in R[X].

Lemma 2.30

Let $f, g \in R[X]$ with g primitive. If g|f in F[X], then g|f in R[X].

Proof. Let f=gh where $h\in F[X]$. Let $a\in R, a\neq 0$ such that $ah\in R[X]$. (We are "cancelling the denominators".) Write $ah=c(ah)h_0$ with h_0 primitive. Then $af=c(ah)\underbrace{h_0g}$. Taking contents, we find a|c(ah). We can get rid of primitive

the a's since R is an integral domain, so h|R[X] and g|f in R[X].

Lemma 2.31 (Gauss' Lemma)

Let $f \in R[X]$ be primitive. Then f irreducible in $R[X] \implies f$ irreducible in F[X].

Proof. Since $f \in R[X]$ is irreducible and primitive, we have $\deg(f) > 0$ (else it would be a unit in R), and so f is not a unit in F[X].

Suppose that f is not irreducible in F[X], say f = gh where $g, h \in F[X]$ with $\deg(g), \deg(h) > 0$. Let $\lambda \in F^{\times}$ such that $\lambda^{-1}g \in R[X]$ is primitive. (For example, let $0 \neq b \in R$ such that $bg \in R[X]$, then $bg = c(bg)g_0$ with g_0 primitive, so $\lambda = c(bg)/b \in F^{\times}$.) Upon replacing g by $\lambda^{-1}g$ and h by λh , we may assume $g \in R[X]$ is primitive. Then Lemma 2.30 implies $h \in R[X]$ and so f = gh in R[X], with $\deg g, \deg h > 0$. This is a contradiction and we are done.

Remark. We'll see that the reverse implication also holds.

Lemma 2.32

Let $g \in R[X]$ be primitive. Then g prime in $F[X] \implies g$ is prime in R[X].

Proof. Suppose $f_1, f_2 \in R[X]$ and $g|f_1f_2$ in R[X]. g prime in F[X] implies that $g|f_1$ or $g|f_2$ in F[X]. Lemma 2.30 implies $g|f_1$ or $g|f_2$ in R[X]. So g is prime in R[X].

We now have all the tools necessary to prove our theorem.

Proof of Theorem 2.27. Let $f \in R[X]$. Write $f = c(f)f_0$, with $f_0 \in R[X]$ primitive. Since R is a UFD, c(f) is a product of irreducibles in R (which are also irreducible in R[X]). If f_0 is not irreducible, say $f_0 = gh$, then $\deg g, \deg h > 0$ since f is primitive, and g, h are also primitive. By induction on degree, f_0 is a product of irreducibles in R[X]. This establishes (i) in the definition of a UFD.

By Proposition [todo], it suffices to show that if $f \in R[X]$ is irreducible, then f is prime. Write $f = c(f)f_0$ as before. Since f is irreducible, this means f is a constant or primitive.

Case. If f is constant, f is irreducible in R[X] (hence also in R). So f is prime in R since R is a UFD. We showed in Corollary 2.29 that this implies f is prime in R[X].

Case. If f is primitive, then f is irreducible in R[X] and by Gauss' Lemma also in F[X]. Since F[X] is a UFD, f is prime in F[X]. By Lemma 2.32, f is prime in R[X].

This concludes the proof.

Remark. By Lemma [todo], the last three implications are equivalences.

Example

Let's give some applications of Theorem 2.27.

- $\mathbb{Z}[X]$ is a UFD.
- Let $R[X_1, ..., X_n]$ be the polynomial ring in n variables $X_1, ..., X_n$ with coefficients in R. We can also define it inductively by $R[X_1, ..., X_n] = R[X_1, ..., X_{n-1}][X_n]$. Then applying the theorem, this is a UFD.

Lemma 2.33 (Eisenstein's criterion)

Let R be a UFD and $f(X) = a_n X^n + \ldots + a_1 X + a_0 \in R[X]$ be primitive. Suppose there exists an irreducible element $p \in R$ (=prime) such that

- (i) $p \nmid a_n$,
- (ii) $p|a_i$ for all $0 \le i \le n-1$,
- (iii) $p^2 \nmid a_0$.

Thn f is irreducible in R[X].

Proof. Suppose f = gh, with $g, h \in R[X]$ not units. Since f is primitive, $\deg(g), \deg(h) > 0$. Let

$$g = r_k X^k + \ldots + r_1 X + r_0$$

 $h = s_1 X^l + \ldots + s_1 X + s_0$

with k+l=n. Then $p \nmid a_n = r_k s_l \implies p \nmid r_k$ and $p \nmid s_l$. $p|a_0 = r_0 s_0 \implies p|r_0$ or $p|s_0$. Let $p|r_0$ WLOG.

Then $\exists j \leq k \text{ such that } p | r_0, \dots, p | r_{i-1} \text{ but } p \nmid r_j$. Consider

$$\underbrace{a_j}_{\text{div. by } p \text{ by (ii)}} = \underbrace{r_0 s_j + r_1 s_{j-1} + \ldots + r_{j-1} s_0}_{\text{div. by } p} + r_j s_0.$$

So $p|r_is_0$. Thus $p|s_0$, so $p^2|r_0s_0=a_0$. Contradiction.

Example (i) Consider $f(X) = X^3 + 2X + 5 \in \mathbb{Z}[X]$. If f is not irreducible in $\mathbb{Z}[X]$, then

$$f(X) = (X+a)(X^2+bX+c)$$
 for $a, b, c \in \mathbb{Z}$.

Thus ac = 5. But $\pm 1, \pm 5$ are not roots of f. Contradiction. By Gauss' Lemma, f is irreducible in $\mathbb{Q}[X]$. Thus $\mathbb{Q}[X]/(f)$ is a field.

- (ii) Let $p \in \mathbb{Z}$ be prime. Apply Eisenstein's criterion to $X^n p$, which satisfies all three conditions and is therefore irreducible in $\mathbb{Z}[X]$. By Gauss' Lemma, it is irreducible in $\mathbb{Q}[X]$.
- (iii) Let $f(X) = X^{p-1} + X^{p-2} + \ldots + X + 1 \in \mathbb{Z}[X]$, where $p \in \mathbb{Z}$ is prime. Eisenstein's criterion does not apply directly to f. But note that $f(X) = \frac{X^{p-1}}{X-1}$, and substituting Y = X 1 gives

$$f(Y+1) = \frac{(Y+1)^p - 1}{Y} = Y^{p-1} + \binom{p}{1}Y^{p-2} + \ldots + \binom{p}{p-2}Y + \binom{p}{p-1}.$$

Now $p|\binom{p}{i}$ for all $1 \leq i \leq p-1$ and $p^2 \nmid \binom{p}{p-1} = p$. Thus f(Y+1) is irreducible in $\mathbb{Z}[Y]$, so f(X) is irreducible in $\mathbb{Z}[X]$. This is because if we had $f(X) = g(X)h(X) \implies f(Y+1) = g(Y+1)h(Y+1)$.

2.6 Algebraic integers

Recall $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} \leq C$. This is the subring of Gaussian integers. We have equipped them with the norm function

$$N: \mathbb{Z}[i] \to \mathbb{N}_0, \quad a+bi \mapsto a^2+b^2t.$$

This satisfies $N(z_1z_2) = N(z_1)N(z_2)$, so is a Euclidean function. Thus $\mathbb{Z}[i]$ is an ED, hence a PID and UFD, and so the primes in $\mathbb{Z}[i]$ are the irreducibles in $\mathbb{Z}[i]$. The units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$ (only elements of norm 1).

Goal. We would like to know the primes/irreducibles in $\mathbb{Z}[i]$.

Example • 2 = (1+i)(1-i) and 5 = (2+i)(2-i) are not primes in $\mathbb{Z}[i]$ (even though they are primes in \mathbb{Z}).

• 3 is prime: we know N(3) = 9. So if 3 = ab in $\mathbb{Z}[i]$, N(a)N(b) = 9. But $\mathbb{Z}[i]$ has no elements of norm 3. Thus either a or b is a unit.

Similarly 7 is prime in $\mathbb{Z}[i]$.

Proposition 2.34

Let $p \in \mathbb{Z}$ be a prime number. Then the following are equivalent:

- (i) p is not prime in $\mathbb{Z}[i]$
- (ii) $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$
- (iii) p = 2, or $p \equiv 1 \mod 4$.

Proof of $(i) \Longrightarrow (ii)$. Let p = xy, for $x, y \in \mathbb{Z}[i]$ not units. Then $p^2 = N(p) = N(x)N(y)$. Thus N(x) = N(y) = p. Writing x = a + bi gives $p = N(x) = a^2 + b^2$.

Proof of (ii) \Longrightarrow (iii). The squares mod 4 are 0 and 1. Thus if $p=a^2+b^2$, then $p\not\equiv 3\mod 4$.

Proof of $(iii) \Longrightarrow (i)$. Already saw 2 is not prime in $\mathbb{Z}[i]$. By Theorem [todo], $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic of order p-1. So if $p \equiv 1 \mod 4$, then $(\mathbb{Z}/p\mathbb{Z})$ contains an element of order 4, i.e $\exists x \in \mathbb{Z}$ with $x^4 \equiv 1 \mod p$ but $x^2 \not\equiv 1 \mod p$. So $x^2 \equiv -1 \mod p$.

Now $p|x^2+1=(x-i)(x+i)$ but $p\nmid x+i$ and $p\nmid x-i$, so p is not prime in $\mathbb{Z}[i]$.

Remark. In the course of this proof, we showed (iii) \Longrightarrow (ii): the statement that given a prime number p: p=2, or $p\equiv 1\mod 4$ is equivalent to p being expressible as the sum of two squares.

This is difficult to prove with elementary number theory, and shows the power of the techniques we have developed.

Theorem 2.35

The primes in $\mathbb{Z}[i]$ (up to associates) are

- 1. a+bi, where $a,b\in\mathbb{Z}$ and $a^2+b^2=p$ is a prime number with p=2, or $p\equiv 1$ mod 4.
- 2. Prime numbers $p \in \mathbb{Z}$ with $p \equiv 3 \mod 4$.

Proof. First we check these are primes:

- 1. N(a+bi)=p. If a+bi=uv, then either N(u)=1 or N(v)=1. Thus a+bi is irreducible and hence prime.
- 2. Immediate by the previous proposition.

Now let $z \in \mathbb{Z}[i]$ be a prime (irreducible). Then $\overline{z} \in \mathbb{Z}[i]$ is also irreducible and $N(z) = z\overline{z}$ is a factorisation into irreducibles.