

极客大学机器学习训练营 机器学习基本概念

王然

众微科技 Al Lab 负责人 二○二—年五月十日

大纲

- 1 怎样学数学
- 2 机器学习的各种角度和建模流程
- 3 概率论和统计学复习
- 4 极大似然估计
- 5 贝叶斯估计和变分贝叶斯
- 6 矩阵和张量求导
- 7 总结

大纲

- 怎样学数学
- 机器学习的各种角度和建模流程
 - 概率论和统计学复习
- 极大似然估计
- 贝叶斯估计和变分贝叶斯
 - **矩阵和张量求导**
 - 7 总结

为什么要学数学

- ► AI 的语言 → 不理解数学,不可能理解模型
- 创新的根基 → 看起来创新不多。但是实际上有很多地方可以创新。而且创新没有那么难
- 数学锻炼思维

数学的两种学法

- ▶ 把数学当做语言:不管它的意思,严格按照要求 → 我们主要讲方法
- ▶ 数学真正的学法,是以证明为目的的

数学真正的思考方式

核心:

- Frame and Hypotheses
- Elements and Relationships
- Patterns
- Intuition
- Retrospect and Empathetic
- Bucket(In/Out/New)
- Strategic minds

怎么样上这一节课

- ▶ 一遍听懂、不现实;不论老师讲的多细、重复一百遍也没有效果;
- 必须要回去对着自己推导,如果卡住就问助教;
- ▶ 自己推过之后就会发现; 哇,这个怎么这么简单;
- ▶ 自己不推永远都是听天书;
- ▶ 如果前面概念不清楚,不可能听得懂后面的概念。

数学理论的主要内容

- 机器学习的各种角度和建模流程
- ▶ 概率论和统计学基础概念复习
- ▶ 极大似然体系和 EM 算法
- ▶ 贝叶斯体系和 Variational Bayes 算法
- ▶ 矩阵代数: 基本概念复习和 Tensor 求导

大纲

- 怎样学数学
- 2 机器学习的各种角度和建模流程
 - 概率论和统计学复习
- ◢ 极大似然估计
- 贝叶斯估计和变分贝叶斯
- **矩阵和张量求导**
- 7 总结

为什么要掌握各种角度

- ▶ 最终目的:效果好,即准确性高
- 为了达到最终目的,必须从不同角度考虑

函数逼近的视角

- ▶ 最简单的是视角
- ▶ 目标: 给定 X 预测 y
- ▶ 假设: 存在真实的 $y = f_0(X)$
- ightharpoonup 如果知道 f_0 ,那么就不需要做任工作
- ▶ 但是我们不知道,所以需要逼近

函数逼近的视角

- ▶ 观测 $\{X_i, y_i; i \in \Im\}$
- 可以假设 f ∈ F
- ▶ 目标: 给定一个损失函数 c, 最小化 $\sum_i c(f(X_i), y_i)$
- ▶ 这个估计可以称之为 Î

什么样的 \hat{f} 是好的

- ▶ 最理想状况 $\hat{f} = f_0$; 事实上(可能)不可能
- ▶ 不可能原因 (一): 没有所有的 X 和 y 的组合
- ► 不可能原因 (二): f₀ ∉ F
- ▶ 不可能原因 (三): 求解 f 时候有困难
- ▶ 但是基本启示是:要找到一个足够大的 $\mathcal F$ 使它包含 f_0 ,并且要求 $\mathcal F$ 应该足够小使得求解比较容易 \to 自相矛盾

随机的世界

- ▶ 本质上来说,世界上是随机的
- ▶ 随机的来源:
 - ▶ 缺乏信息 → 最主要问题,在表格化数据中最为明显
 - ▶ 测量误差 → 大部分信息都有误差
 - ▶ 比如说年龄 800 岁, 收入 400 万亿
 - ▶ 模型误差 → 假设模型形式和现实的差别
 - 估计误差 → 得到模型过程中造成的误差
 - 优化误差 → 求解过程中的误差
 - ▶ 评估误差 → 评估本身也存在误差

缺乏信息和过拟合问题

- ▶ 假设目标是用身高预测体重
- 为什么不可以进行插值?

请思考

根本原因

- ▶ 缺乏信息: 人有胖有瘦, 仅仅给定身高, 不可能判断
- ▶ 导致结果;如果要求身高必须解释体重,身高就承担了非理性的要求
- ▶ 相关结果: bias 较大
- 统计学根本区别于函数逼近的原因
 - ▶ 函数逼近: y = f₀(X)
 - ▶ 统计学 $y = f_0(X) + \epsilon$

Bias 和 Variance

- ▶ Bias: 话说得很详细, 但是很不准
 - ▶ 北京明天下午两点四十分会发生里氏 2.6 级地震
- ▶ Variance: 含糊其词, 但是很准
 - 在这个世界上有一天会发生地震
- ▶ 往往存在 Bias 和 Variance 的权衡(但这不是全部,它本身的数学理论 只是针对回归的)
- ▶ Bias 大: 过拟合
- ▶ Variance 大:欠拟合

测量误差

- ▶ 往往难以处理
- ▶ 是数据预处理一个重要部分

模型假设

- ▶ 假设背景:存在一个上帝知道的真实的模型,但他不知道部分误差,所以模型一定会有损失
 - ▶ 但就该损失函数而言,这个真实的模型一定是预测最好的
- ▶ 现实情况: 因为我们不知道真实的模型,所以只能采用一些模型来逼近
- 如果模型跟真实模型很近,则效果应该是最好的
 - ▶ 一般情况下不知道真实模型,只能选择一般的模型 → 估计方差大

估计误差

- ▶ 即使对于同样的模型或问题,也有不同办法得到模型的参数
 - ▶ 极大似然估计和贝叶斯估计
 - ▶ 增强学习中的 Q-learning 和 Policy Gradient
- ▶ 好的方法可以减少其中误差

估计问题

- ▶ 求解的过程,就是迭代的过程
- 迭代是否会收敛是一个很大的问题
- ▶ 在神经网络中尤其明显,但在传统模型中也存在

评估问题

- ▶ 因为不知道真实的损失函数(除非有无限多的测试样本),所以必须评估
- ▶ 评估的越多,训练样本就越少 → 出现了交叉验证的概念
- ▶ 注意避免不公平的评估

评估误区

- ▶ 只用训练集 → 不公平
- ► 无数次的测试训练集 → 不可以(否则猜就可以了)
- ▶ 建模数据和实际场景不同: 在 2019 年建模预测 2020 年上半年旅游业情况

评估误区

- ▶ 重要原则: 一定要看评估本身的误差多大, 然后决定做法是否有提升
- ▶ 重要提示:
- ▶ 越是误差小的领域,需要概率角度越多
- ▶ 误差大的领域,概率角度可能不能帮上太多忙,更应该找可以优化的地方

理论的例外:预训练的存在

- ▶ 从概率理论上来说,预训练不应该有任何帮助: 预训练和当前任务无关
 - (?),而且模型表达力没有变
- ▶ 预训练是深度学习最重要发明之一
 - ▶ 例子: 从一个字预测出词语和预测情感没关系
 - ▶ 现实: 预测词语表示了对语义的理解,所以对预测情感有帮助
 - ▶ 从优化的角度来说: 有利于优化

还有很多角度

- ▶ 很多问题要 case-by-case 分析
- 重点: 从不同角度出发(数学思维)
- ▶ 从不同角度看同一个问题: 其他角度的进展也可以帮助解决这个问题

大纲

- 怎样学数学
- 机器学习的各种角度和建模流程
 - 3 概率论和统计学复习
- ☑ 极大似然估计
- 贝叶斯估计和变分贝叶斯
- 1 矩阵和张量求导
- 7 总结

概率论简介

- ▶ 概率论是描述随机的语言
- 概率论分为朴素概率论和公理性概率论
- ▶ 主要讲朴素概率论

最简单情况:一维离散

- ▶ 一维离散意味着可以直接讨论概率
- ▶ 一维离散意味着可以假设概率取值只是整数
- ▶ 例子: 男 =1, 女 =2, 未知 =3
 - P(X < 3) = ...
 - p(X = 1) =
 - ▶ $P(X \le x) = \sum_{i \le x} p(X = i)$, 或者用更标准的写法 $P(X \le t) = \sum_{x \le t} p(x)$

连续变量

- ▶ 连续意味着可能性至少不是有限的
- ▶ 还是可以定义 P(X ≤ x)
- ▶ 但是定义 *p*(x) 的时候就有问题了

思考: 为什么?

PDF 和 CDF

- ▶ 在给定一个连续变量时,只能定义 $P(X \le m) = \int_{-\infty}^{m} p(x) dx$
- 虽然离散和连续的定义有所不同,但是积分本身就是一种非常复杂的加法
- ▶ $F_X(t) := P(X \le t)$ 就是所谓的概率 Cumulative Distribution Function
- ▶ p(x) 就是所谓的 Probability Density Function,**不是**概率值

习题: CDF 和 PDF 的转换

指数分布的 PDF 为 $\lambda e^{-\lambda x}$, $x \ge 0$, 求其 CDF;