1

A1110 Assignment 3 12.13.1.15

K.SaiTeja AI22BTECH11014

1

1

2

2

Question: Consider the experiment of throwing a die.

- If a multiple of 3 comes up, throw the die again
- If any other number comes, toss a coin.

Find the conditional probability of the event 'the coin shows a tail', given that 'at least one die shows a 3'.

Solution:

I

CONTENTS

Markov Chain States

11	States
III	Markov graph
IV	Description of Graphs and States
V	Transition Probability
VI	Transition Probability Matrix
VII	Initial Condition and Limiting State

I. MARKOV CHAIN STATES

- Let us construct a Markov chain X_t with discrete time t.
- The states e_0 , e_1 and e_2 describe the outcomes from the latest dice throw.
- The states e_3 and e_4 describe the outcomes of the latest coin toss.

II. STATES

Let $Y \in \{1, 2, 3, 4, 5, 6\}$ denote the number obtained from a die throw.

i	State (e_i)
0	Y = 3
1	Y = 6
2	$\sum (Y = k); k \in \{1, 2, 4, 5\}$
3	Obtaining heads from coin toss
4	Obtaining tails from coin toss

TABLE 1: States in Markov Chain

Fig. 1: Graph of Markov Chain

III. MARKOV GRAPH

IV. DESCRIPTION OF GRAPHS AND STATES

 $p_{j/i}$ is the probability of moving from state e_i to e_i .

$$p_{j/i} = \Pr\left(\frac{X_{t+1} = j}{X_t = i}\right) \tag{1}$$

Absorbing States States e_3 and e_4 are absorbing states because $p_{3/3} = 1$ and $p_{4/4} = 1$. Once entered, they cannot be left.

Transient States States e_0 , e_1 and e_2 are transient states, because they lead to other states which have no return path, For example, $p_{3/2} = \frac{1}{2}$ but $p_{2/3} = 0$. Their probability will reduce to 0 eventually.

V. TRANSITION PROBABILITY

State Probabilities in Next Step: State Probabilities in Next Step Let $P_i^{(t)}$ be the probability of

state i at time t. Then the state vector is,

$$\mathbf{Q_t} = \begin{pmatrix} P_0^{(t)} & P_1^{(t)} & P_2^{(t)} & P_3^{(t)} & P_4^{(t)} \end{pmatrix}$$
 (2)

The probabilities after one step in time are

$$P_0^{(t+1)} = \frac{1}{6} \times P_0^{(t)} + \frac{1}{6} \times P_1^{(t)} \tag{3}$$

$$P_1^{(t+1)} = \frac{1}{6} \times P_0^{(t)} + \frac{1}{6} \times P_1^{(t)} \tag{4}$$

$$P_2^{(t+1)} = \frac{4}{6} \times P_0^{(t)} + \frac{4}{6} \times P_1^{(t)} \tag{5}$$

$$P_3^{(t+1)} = \frac{1}{2} \times P_2^{(t)} + 1 \times P_3^{(t)} \tag{6}$$

$$P_4^{(t+1)} = \frac{1}{2} \times P_2^{(t)} + 1 \times P_4^{(t)} \tag{7}$$

VI. TRANSITION PROBABILITY MATRIX

The previous equations can be summarized as

$$Q_{t+1} = Q_t P \tag{8}$$

Where P is the transition probability matrix. Its elements are values of $p_{i/i}$

$$\mathbf{P} = \begin{pmatrix} 1/6 & 1/6 & 4/6 & 0 & 0\\ 1/6 & 1/6 & 4/6 & 0 & 0\\ 0 & 0 & 0 & 1/2 & 1/2\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \tag{9}$$

VII. INITIAL CONDITION AND LIMITING STATE

Initial Condition The given condition is that '3 occurs at least once'. Let the first occurrence of 3 be the initial state Q_0 .

$$\mathbf{Q_0} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \end{pmatrix} \tag{10}$$

Using equation (8), further states can be generated.

$$\mathbf{Q_1} = \mathbf{Q_0} \mathbf{P} = \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{4}{6} & 0 & 0 \end{pmatrix} \tag{11}$$

$$\mathbf{Q_1} = \mathbf{Q_0} \mathbf{P} = \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{4}{6} & 0 & 0 \end{pmatrix}$$
(11)
$$\mathbf{Q_2} = \mathbf{Q_1} \mathbf{P} = \mathbf{Q_0} \mathbf{P}^2 = \begin{pmatrix} \frac{1}{18} & \frac{1}{18} & \frac{2}{9} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$
(12)

$$\vdots (13)$$

$$\mathbf{Q_t} = \mathbf{Q_0} \mathbf{P}^t \tag{14}$$

Limiting Probabilities of States These can can be approximately calculated by taking large value of t,

$$\lim_{t \to \infty} \mathbf{Q_t} = \begin{pmatrix} 0 & 0 & 0 & 0.5 & 0.5 \end{pmatrix} \tag{15}$$

Required Conditional Probability Probability of the coin showing tails, given that at least one die shows a 3,

$$\lim_{t \to \infty} P_4^{(t)} = 0.5 \tag{16}$$