

# RYLR890

868/915MHz LoRa®
Low Power Long Range
Transceiver Module

#### **Datasheet**



13mm\*11mm\*2.2mm



























### PRODUCT DESCRIPTION

The RYLR890 transceiver module feature the LoRa long range modem that provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.

### **FEATURES**

- Semtech SX1276 Engine
- High efficiency Power Amplifier
- Excellent blocking immunity
- Low Receive current
- High sensitivity
- 127 dB Dynamic Range RSSI

### **APPLICATIONS**

- IoT Applications
- Mobile Equipment
- Home Security
- Industrial Monitoring and Control Equipment
- Car Alarm



# **PIN DESCRIPTION**





| Pin | Name     | I/O | Condition                        |  |  |
|-----|----------|-----|----------------------------------|--|--|
| 1   | GND      | -   | Ground                           |  |  |
| 2   | NRESET   | 1/0 | Reset trigger input              |  |  |
| 3   | DIO0     | 1/0 | Digital I/O, software configured |  |  |
| 4   | DIO1     | 1/0 | Digital I/O, software configured |  |  |
| 5   | DIO2     | 1/0 | Digital I/O, software configured |  |  |
| 6   | DIO3     | 1/0 | Digital I/O, software configured |  |  |
| 7   | DIO4     | 1/0 | Digital I/O, software configured |  |  |
| 8   | DIO5     | 1/0 | Digital I/O, software configured |  |  |
| 9   | TCXO_VDD | 1   | TCXO Power Supply                |  |  |
| 10  | GND      | -   | Ground                           |  |  |
| 11  | GND      | -   | Ground                           |  |  |
| 12  | VDD      | 1   | Power Supply                     |  |  |
| 13  | VDD      | 1   | Power Supply                     |  |  |
| 14  | SCK      | I   | SPI Clock input                  |  |  |
| 15  | MISO     | 0   | SPI Data output                  |  |  |
| 16  | MOSI     | 1   | SPI Data input                   |  |  |
| 17  | NSS      | 1   | SPI Chip select input            |  |  |
| 18  | FEM_CTX  | I   | Optional RF Switch control       |  |  |
|     |          |     | Leave Unconnected.               |  |  |
| 19  | RF       | 1/0 | RF Input/Output                  |  |  |
| 20  | GND      | -   | Ground                           |  |  |



# **BLOCK DIAGRAM**





# **SPECIFICATION**

| Item                      | Min. | Typical | Max. | Unit  | Condition         |
|---------------------------|------|---------|------|-------|-------------------|
| VDD Power Supply          | 1.8  | 3.3     | 3.6  | V     |                   |
| TCXO Power Supply         | 1.7  |         | 3.3  | V     |                   |
| TCXO Accuracy             |      | ±2      |      | ppm   |                   |
| TCXO Long-term            |      | ±1      |      | ppm   |                   |
| Frequency Stability       |      |         |      | /Year |                   |
| TCXO Rise time            |      | 3       |      | ms    |                   |
| RF Output Power Range     | -4   |         | 15   | dBm   |                   |
| Filter insertion loss     | 1    | 2       | 3    | dB    |                   |
| Harmonic                  |      |         | -36  | dBm   |                   |
| RF sensitivity            | -148 |         |      | dBm   |                   |
| RF Input Level            |      |         | 10   | dBm   |                   |
| Frequency Range           | 862  | 868/915 | 1020 | MHz   |                   |
| SX1276 Transmit Current   |      | 29      |      | mA    | RFOP = +13 dBm    |
| SX1276 Receive Current    |      | 11.5    |      | mA    | LNA Boost On      |
| Sleep Current             |      | 0.2     |      | uA    |                   |
| RF Switch Current         |      | 10      |      | uA    |                   |
| TCXO Current              |      | 2.5     |      | mA    |                   |
| Communication Range       |      | 4       |      | KM    | Open Space 125KHz |
| Digital input level high  | 0.8  |         | VDD  | V     | VIH               |
| Digital input level low   |      |         | 0.2  | V     | VIL               |
| Digital output level high | 0.9  |         |      | V     | VOH Imax = 1 mA   |
| Digital output level low  |      |         | 0.1  | V     | VOL Imax = -1 mA  |
| Operating Temperature     | -40  | 25      | +85  | °C    |                   |
| Dimensions                |      |         |      |       | 13mm*11mm*2.2mm   |
| Weight                    |      | 1       |      | g     |                   |



#### **REFLOW SOLDERING**

Consider the "IPC-7530 Guidelines for temperature profiling for mass soldering (reflow and wave) processes, published 2001. **Only** single reflow soldering processes are recommended for REYAX modules. Repeated reflow soldering processes and soldering the module upside down are not recommended.

#### **Preheat phase**

Initial heating of component leads and balls. Residual humidity will be dried out. Please note that this preheat phase will not replace prior baking procedures.

- Temperature rise rate: max. 3 °C/s If the temperature rise is too rapid in the preheat phase it may cause excessive slumping.
- Time: 60 120 s If the preheat is insufficient, rather large solder balls tend to be generated.
   Conversely, if performed excessively, fine balls and large balls will be generated in clusters.
- End Temperature: 150 200 °C If the temperature is too low, non-melting tends to be caused in areas containing large heat capacity.

#### Heating/Reflow phase

The temperature rises above the liquidus temperature of 217°C. Avoid a sudden rise in temperature as the slump of the paste could become worse.

- Limit time above 217 °C liquidus temperature: 40 60 s
- Peak reflow temperature: 245 °C

#### **Cooling phase**

A controlled cooling avoids negative metallurgical effects (solder becomes more brittle) of the solder and possible mechanical tensions in the products. Controlled cooling helps to achieve bright solder fillets with a good shape and low contact angle.

 Temperature fall rate: max 4 °C/s To avoid falling off, the REYAX module should be placed on the topside of the motherboard during soldering.



Recommended soldering profile



# **DIMENSIONS**







Unit: mm



# **LAYOUT FOOTPRINT RECOMMENDATIONS**



Unit: mm



E-mail: sales@reyax.com

Website: http://reyax.com