Galactic Collegiate Programming Contest

One hundred years from now, in 2117, the International Collegiate Programming Contest (of which the NCPC is a part) has expanded significantly and it is now the Galactic Collegiate Programming Contest (GCPC).

This year there are n teams in the contest. The teams are numbered 1, 2, ..., n, and your favorite team has number 1.

Like today, the score of a team is a pair of integers (a, b) where a is the number of solved problems and b is the total penalty of that team. When a team solves a problem there is some associated penalty (not necessarily calculated in the same way

Picture by GuillaumePreat on Pixabay, cco

Problem ID: gcpc

CPU Time limit: 2 secon Memory limit: 1024 MB

Author: Antti Laaksonen **Source:** Nordic Collegiate

Programming Contest (N

License: (cc) BY-SA

as in the NCPC – the precise details are not important in this problem). The total penalty of a team is the sum of the penalties for the solved problems of the team.

Consider two teams t_1 and t_2 whose scores are (a_1, b_1) and (a_2, b_2) . The score of team t_1 is better than that of t_2 if either $a_1 > a_2$, or if $a_1 = a_2$ and $a_1 < a_2$. The rank of a team is $a_1 < a_2$ where $a_1 > a_2$ are $a_1 < a_2$ and $a_2 < a_2$ are $a_1 < a_2$ and $a_2 < a_2$ are $a_2 < a_2$ and $a_3 < a_2$ are $a_1 < a_2$ and $a_2 < a_2$ are $a_2 < a_2$ and $a_3 < a_2$ are $a_3 < a_2$ and $a_3 < a_2$ and $a_3 < a_2$ are $a_3 < a_2$ and $a_3 < a_2$ and $a_3 < a_2$ are $a_3 < a_2$ are $a_3 < a_2$ are $a_3 < a_2$ and $a_3 < a_2$ are $a_3 < a_2$ are $a_3 < a_2$ and $a_3 < a_2$ are $a_$

You would like to follow the performance of your favorite team. Unfortunately, the organizers of GCPC do not provide a scoreboard. Instead, they send a message immediately whenever a team solves a problem.

Input

The first line of input contains two integers n and m, where $1 \le n \le 10^5$ is the number of teams, and $1 \le m \le 10^5$ is the number of events

Then follow m lines that describe the events. Each line contains two integers t and p ($1 \le t \le n$ and $1 \le p \le 1000$), meaning that team t has solved a problem with penalty p. The events are ordered by the time when they happen.

Output

Output *m* lines. On the *i*'th line, output the rank of your favorite team after the first *i* events have happened.

Sample Input 1

Sample Output 1

3	ı
2	1
3	5
1	5
1	

Help