Computer Vision

2. Illumination

I-Chen Lin
College of Computer Science
National Yang Ming Chiao Tung University

Outline

- Radiometry
- Reflection model
- Photometric stereo

Textbook:

• David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, New Jersey, (1st Ed. 2003, 2nd Ed. 2012).

Some contents are from the reference lecture notes:

- Prof. D.A. Forsyth, Computer Vision, UIUC.
- Prof. J. Rehg, Computer Vision, Georgia Inst. of Tech.
- Hearn and Baker, Computer Graphics, 3rd Ed., Prentice Hall
- •E. Angel, Interactive Computer Graphics, 4th Ed., Addison Wesley

Illumination

- Factors that affect the "color" of a pixel.
 - Light sources
 - Emittance spectrum (color)
 - Geometry (position and direction)
 - Directional attenuation
 - Objects' surface properties
 - ► Reflectance spectrum (color)
 - Geometry (position, orientation, and micro-structure)
 - Absorption

Scattering

- Light strikes A
 - Some scattered
 - Some absorbed
- Some of scattered light strikes B
 - Some scattered
 - Some absorbed

Global Effects

An example of the radiosity method

Local vs. global Illumination

- Correct illumination model requires a global calculation
- However, it is quite difficult to analyze a scene by such a complex model.
- Usually using a local illumination model instead.
 - ▶ No inter-reflection, no refraction, no precise shadow

Simple light sources

- Point source
 - Model with position and color
 - Distant source = infinite distance away (parallel)
- Spotlight
 - Restrict light from ideal point source
- Ambient light
 - Same amount of light everywhere in scene
 - Can model contribution of many sources and reflecting surfaces

Surface types

- ► The smoother a surface, the more reflected light is concentrated in the direction
- A very rough surface scatters light in all directions

Distribution of reflection

Phong reflection model

- A simple model that can be computed or analyzed rapidly.
- Has three components
 - Ambient
 - Diffuse
 - Specular
- Uses four vectors
 - ightharpoonup To source l
 - To viewer *v*
 - Normal *n*
 - ► Perfect reflector *r*

$$\mathbf{r} = 2 (\mathbf{l} \cdot \mathbf{n}) \mathbf{n} - \mathbf{l}$$

Ambient light

► The result of multiple interactions between (large) light sources and the objects in the environment.

$$I_{ambient} = K_a \cdot I_a$$

Diffuse reflection

Light scattered equally in all directions

Reflected intensities vary with the direction of the light.

- Lambertian Surface
 - Perfect diffuse reflector

$$I_{diffuse} = K_d \cdot I_d (n \cdot l)$$

Specular Surfaces

- Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors)
- Incoming light being reflected in directions concentrated close to the direction of a perfect reflection

Modeling specular reflections

Phong proposed

The shininess coefficient

- ▶ Values of a between 100 and 200 correspond to metals
- ▶ Values between 5 and 10 give surface that look like plastic

Coefficients

- > 9 coefficients for each point light source
 - $ightharpoonup I_{dr}, I_{dg}, I_{db}, I_{sr}, I_{sg}, I_{sb}, I_{ar}, I_{ag}, I_{ab}$
- Material properties
 - ► Nine absorbtion coefficients
 - $ightharpoonup k_{dr}, k_{dg}, k_{db}, k_{sr}, k_{sg}, k_{sb}, k_{ar}, k_{ag}, k_{ab}$
 - ► Shininess coefficient a

Adding up the components

► A primitive virtual world with lighting can be shaded by combining the three light components .

$$I = I_{ambient} + I_{diffuse} + I_{specular}$$

$$= k_a I_a + k_d I_d (l \cdot n) + k_s I_s (v \cdot r)^a$$

Shadows

To calculate shadows, we must take into account visibility and occlusion.

Photometric stereo

Given multiple images of the same surface under different known lighting conditions, can we recover the surface shape?

Reminder: surface reflection is related to surface normal N and light source L (and view direction V in specular reflection)

- Using a local shading model
- A set of point sources that are infinitely distant
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- A Lambertian (diffuse) object for simplification

 $k_d I_d(l \cdot n)$

 (or the specular component has been identified and removed)

 \triangleright For pixel (x, y) at image i,

$$I_i(x, y) = \rho(x, y)S_i \cdot N(x, y) \qquad b(x, y) = \rho(x, y)N(x, y)$$

, where ρ is the albedo (k_d) , and S_i is the light source vector.

$$\begin{bmatrix} I_1(x, y) \\ I_2(x, y) \\ \vdots \\ I_n(x, y) \end{bmatrix} = \begin{bmatrix} S_1^T \\ S_2^T \\ \vdots \\ S_n^T \end{bmatrix} b(x, y)$$

An over-determined linear system, for *n*>3 Can be solved by pseudo-inverse or other methods.

Pre-multiplying by a thresholded weight matrix zeros the contributions from shadowed pixels

$$\begin{bmatrix} w_1(x,y) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n(x,y) \end{bmatrix} \begin{bmatrix} I_1(x,y) \\ \vdots \\ I_n(x,y) \end{bmatrix} = \begin{bmatrix} w_1(x,y) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & w_n(x,y) \end{bmatrix} \begin{bmatrix} \mathbf{s}_1^T \\ \vdots \\ \mathbf{s}_n^T \end{bmatrix} b(x,y)$$

Recovering normals and albedos by

$$N(x, y) = \frac{b(x, y)}{\|b(x, y)\|}$$

$$\rho(x,y) = ||b(x,y)||$$

Recovering the surface (depth)

Depth map:

$$z = f(x, y)$$

Recovering the surface (depth)

- The surface can be represented as (x, y, f(x,y)).
- From the surface gradient vectors, we can evaluate the surface normal as:

$$N(x,y) = \frac{\left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right)^{T}}{\sqrt{1 + \frac{\partial f}{\partial x}^{2} + \frac{\partial f}{\partial y}^{2}}}$$

► Therefore, if estimated N(x,y) is $(N_a(x,y), N_b(x,y), N_c(x,y))^T$, we get the partial derivative:

$$\frac{\partial f}{\partial x} = \frac{-N_a(x, y)}{N_c(x, y)} \qquad \frac{\partial f}{\partial y} = \frac{-N_b(x, y)}{N_c(x, y)}$$

$$\frac{\partial f}{\partial y} = \frac{-N_b(x, y)}{N_c(x, y)}$$

Check the derivatives

Since
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

We have to check whether the numerical 2nd order derivatives are close to each other

$$\left(\frac{\partial \left(\frac{-N_a(x,y)}{N_c(x,y)}\right)}{\partial y} - \frac{\partial \left(\frac{-N_b(x,y)}{N_c(x,y)}\right)}{\partial x}\right)^2$$

► Then, we can reconstruct the surface by integration along some paths, e.g:

$$f(u,v) = \int_0^v \frac{\partial f}{\partial y}(0,y)dy + \int_0^u \frac{\partial f}{\partial x}(x,v)dx + c$$

Recovering the shape

▶ Is there any problem or difficulty for real objects?

Recovering the shape (appendix)

Problems:

- Different integral paths may result in different surfaces.
- Noise from digitization, sampling, etc.
- Modern research usually formulates the problem as an optimization process for depth z with smoothness penalties.

For instance, specify z values around the image boundary, and find the depths within the image by optimization.

$$\arg\min_{z} O = \sum_{p} \left(\frac{\partial f_{p}}{\partial x} - \nabla_{x} z_{p} \right)^{2} + \sum_{p} \left(\frac{\partial f_{p}}{\partial y} - \nabla_{y} z_{p} \right)^{2} + \lambda \sum_{p} \left(z_{p} - \frac{1}{\|q\|} \sum_{q \in p_Neighbor} z_{q} \right)^{2}$$

 $\frac{\partial f_p}{\partial x}$ and $\frac{\partial f_p}{\partial y}$ are evaluated from normals.