МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА № 6

"Обмен данными с ВУ по прерыванию"

по дисциплине «ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ»

Вариант №9734

Выполнил: Студент группы Р3118 Шипунов Илья Михайлович Преподаватель: Перминов Илья Валентинович

Задание и основные этапы выполнения

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BY (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на BY модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должна инкрементировать содержимое X (ячейки памяти с адресом 018₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=5X-1 на данное ВУ, а по нажатию кнопки готовности ВУ-2 вычесть утроенное содержимое РД данного ВУ из X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

1. Программа.

Метка	Мнемоника	Параметр	Описание
	ORG	0x0	
V0	WORD	\$DEFAULT, 0x180	Инициализация векторов прерываний.
V1	WORD	\$DEFAULT, 0x180	
V2	WORD	\$INT2, 0x180	
V3	WORD	\$INT3, 0x180	
V4	WORD	\$DEFAULT, 0x180	
V5	WORD	\$DEFAULT, 0x180	
V6	WORD	\$DEFAULT, 0x180	
V7	WORD	\$DEFAULT, 0x180	
	ORG	0x018	
X	WORD	0x0	
TMP	WORD	?	Инициализация переменных и констант.
MIN	WORD	0xFFE7	
MAX	WORD	0x0019	
DEFAULT	CLA		
	OUT 0x2		Подпрограмма обработчика по умолчанию
	OUT 0x18		1100программа обработчика по умолчанию
	IRET		
START	DI		
	CLA		
	OUT	0x1	
	OUT	0x3	Назначение обработчиков прерываний для каждого ВУ.
	OUT	0xB	
	OUT	0xF	
	OUT	0x13	
	OUT	0x17	

	OUT	0x1B	
	OUT	0x1F	
	LD	#0x8	
	OUT	0x3	
	OUT	0x1B	
	LD	#0xA	
	OUT	5	
	LD	#0xB	
	OUT	7	
	EI		
MAIN	DI		
	LD	X	
	INC		
	CALL	CHECK	
	ST	X	содержимого той же ячейки на соответствие ОДЗ.
	EI		
	JUMP	MAIN	
INT3	DI		
	LD	X	
	NOP		
	ASL		Обработчик прерываний для ВУ-3. Загружает
	ASL		$\overline{}$ содержимое ячейки X в аккумулятор, затем происходит умножение содержимого аккумулятора
	ADD	X	происхооит умножение сооержимого аккумуляторо на 5 (достигается двумя арифметическими сдвигами и прибавлением содержимого ячейки X), а после уменьшение содержимого аккумулятора на 1 Результат выводится в DR BУ-3.
	DEC		
	OUT	6	
	LD	X	
	EI		
	IRET		
INT2	DI		06na6ammu maarraami 2 DV 2 2
	NOP		 ─ Обработчик прерываний для ВУ-2. Загружаем содержимое DR ВУ-2 в аккумулятор, затем умножаем
	IN	4	его на 3 (арифметический сдвиг и сложение с
	SXTB		изначальным значением в ТМР) и вычитаем полученное значение из содержимого ячейки Х. После
	ST	TMP	чего выполняем проверку содержимого на соответствие ОДЗ. Результат загружаем в ячейку X.
	ASL		

	ADD	TMP	
	NEG		
	ADD	X	
	CALL	CHECK	
	ST	X	
	NOP		
	IE		
	IRET		
CHECK			
CHECK_MIN	CMP	MIN	
	BPL	CHECK_MAX	
	JUMP	SET_MIN	Подпрограмма для проверки содержимого
CHECK_MAX	CMP	MAX	аккумулятора на соответствие ОДЗ.
	BMI	RETURN	
SET_MIN	LD	MIN	
RETURN	RET		

2. Описание программы.

Программа циклически увеличивает значение ячейки памяти на 1 и обрабатывает прерывания.

Расположение в памяти БЭВМ программы, исходных данных и результатов:

Вектора прерываний: 0x0 - 0xF.

Переменные: 0x18 - 0x1C. Программа: 0x20 - 0x57.

Область представления для исходных данных:

X, TMP, MIN, MAX – знаковое 16-разрядное число.

Нахождение области допустимых значений для исходных данных и результата:

Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BУ (8-ми битное знаковое представление).

Исходя из этого получаем следующие неравенства:

$$-128 \le f(x) \le 127$$

$$-128 \le 5x - 1 \le 127$$

$$-127 \le 5x \le 128$$

$$-25 \le x \le 25$$

ОДЗ изменения Х: [-25, 25];

3. Методика проверки:

Проверка по требованию прерывания с ВУ-3:

- 1. Загрузить текст программы в БЭВМ.
- 2. Заменить NOP на HLT.
- 3. Запустить программу в режиме РАБОТА.
- 4. Установить «Готовность ВУ-3».
- 5. Дождаться останова.
- 6. Записать текущее значение X из памяти БЭВМ:
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0х018.
 - 3. Нажать «Ввод адреса».
 - 4. Нажать «Чтение».
 - 5. Записать значение регистра данных.
 - 6. Вернуть счетчик команд в исходное состояние.
- 7. Рассчитать ожидаемое значение обработки прерывания.
- 8. Нажать «Продолжение».
- 9. Записать результат обработки прерывания содержимое DR контроллера ВУ-3.

Проверка по требованию прерывания с ВУ-2:

- 1. Ввести в ВУ-2 произвольное число, записать его.
- 2. Установить «Готовность ВУ-2».
- 3. Дождаться останова.
- 4. Записать текущее значение X из памяти БЭВМ.
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0х018.
 - 3. Нажать «Ввод адреса».
 - 4. Нажать «Чтение».
 - 5. Записать значение регистра данных.
 - 6. Вернуть счетчик команд в исходное состояние.
- 5. Рассчитать ожидаемое значение обработки прерывания.
- 6. Нажать «Продолжение».
- 7. Дождаться останова.
- 8. Записать текущее значение X из памяти БЭВМ.
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0х018.
 - 3. Нажать «Ввод адреса».
 - 4. Нажать «Чтение».
 - 5. Записать значение регистра данных.
 - 6. Вернуть счетчик команд в исходное состояние.

Проверка основной программы:

- 1. Загрузить текст программы в БЭВМ.
- 2. Записать в переменную X минимальное по ОДЗ значение (-25).
- 3. Запустить программу в режиме останова.
- 4. Проследить за увеличением X до верхней границы ОДЗ, а после удостовериться, что после того, как значение X должно было пересечь верхнюю границу ОДЗ (25), оно приняло значение нижней границы.

4. Вывол

В ходе выполнения работы я ознакомился с устройством обмена по прерываниям, изучил процесс прерывания. Также закрепил знания в написании программ на ассемблере БЭВМ.