日本国特許庁 JAPAN PATENT OFFICE

21.09.2004

REC'D 15 OCT 2004

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 9月24日

出 願 番 号 Application Number:

特願2003-331855

[ST. 10/C]:

[JP2003-331855]

出 願 人 Applicant(s):

NTN株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 8月11日

【書類名】 特許願 【整理番号】 KP05699-15 【提出日】 平成15年 9月24日 【あて先】 特許庁長官 【国際特許分類】 F04B 39/00 F16C 19/44 F16C 33/58 【発明者】 【住所又は居所】 静岡県磐田市東貝塚1578番地 NTN株式会社内 【氏名】 大石 真司 【特許出願人】 【識別番号】 000102692 【氏名又は名称】 NTN株式会社 【代理人】 【識別番号】 100074206 【住所又は居所】 大阪府大阪市中央区日本橋1丁目18番12号 鎌田特許事務所 【弁理士】 【氏名又は名称】 鎌田 文二 【電話番号】 06-6631-0021 【選任した代理人】 【識別番号】 100084858 【弁理士】 【氏名又は名称】 東尾 正博 【選任した代理人】 【識別番号】 100087538 【弁理士】 【氏名又は名称】 鳥居 和久 【手数料の表示】 【予納台帳番号】 009025 【納付金額】 21,000円

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1

【書類名】特許請求の範囲

【請求項1】

コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の内径面の周方向面粗度を R a $0.05\sim0.3~\mu$ mの数値範囲に規制したことを特徴とするコンプレッサ主軸の支持構造。

【請求項2】

コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の内径真円度を 10μ m以下の数値範囲に規制したことを特徴とするコンプレッサ主軸の支持構造。

【請求項3】

コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の筒部偏肉量を10μm未満の数値範囲に規制したことを特徴とするコンプレッサ主軸の支持構造。

【請求項4】

前記外輪の内径面の周方向面粗度、内径真円度および筒部偏肉量の少なくともいずれかを前記数値範囲に規制する手段が、前記シェル型外輪を形成するプレス加工にしごき工程を設け、このしごき工程における前記外輪の外径面となる外径側しごき面での潤滑条件を、略流体潤滑状態とするものである請求項1乃至3のいずれかに記載のコンプレッサ主軸の支持構造。

【請求項5】

コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、この外輪の内径面の周方向面粗度をRaO.05~0.3 μ mの数値範囲に規制したことを特徴とするコンプレッサ主軸用針状ころ軸受。

【請求項6】

コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、この外輪の内径真円度を10 μ m以下の数値範囲に規制したことを特徴とするコンプレッサ主軸用針状ころ軸受。

【請求項7】

コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、この外輪の筒部偏肉量を10 μ m未満の数値範囲に規制したことを特徴とするコンプレッサ主軸用針状ころ軸受。

【書類名】明細書

【発明の名称】コンプレッサ主軸の支持構造およびコンプレッサ主軸用針状ころ軸受 【技術分野】

[0001]

この発明は、コンプレッサ主軸の支持構造とコンプレッサ主軸用針状ころ軸受に関するものである。

【背景技術】

[0002]

エアコンディショナ用等のコンプレッサには、圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持した支持構造を採用したものがある(例えば、特許文献 1 参照。)。針状ころ軸受は軸受投影面積が小さい割に高負荷容量と高剛性が得られる利点を有しており、コンプレッサ主軸の支持構造をコンパクトに設計できる。

[0003]

前記コンプレッサ主軸の支持構造に採用される針状ころ軸受は、冷媒が混入すること等で潤滑状態が希薄となり、かつ、主軸が高速回転するので、針状ころが転走する外輪の内径面にスミアリング等の表面損傷や表面起点型の剥離が発生して、軸受寿命が短くなることがある。また、自動車のエアコンディショナ用コンプレッサでは、針状ころの転走に伴う軸受使用中の騒音を低くすることが要求される。

[0004]

一方、外輪の内径面に沿って複数の針状ころを配列した針状ころ軸受には、絞り工程を含むプレス加工で形成されたシェル型外輪を用いるものがある。このシェル型外輪を用いるシェル型針状ころ軸受は、製造コストが安価となる経済的優位性からその用途が多岐に渡っており、自動車のエアコンディショナ用を含むコンプレッサ主軸の支持構造にも採用されている。

[0005]

従来のシェル型外輪のプレス加工の概略工程は、以下の通りである。まず、絞り工程で 円形プランクをカップ状に成形し、決め押し工程でカップ底コーナ部を所定のコーナ半径 に決め押しする。こののち、底抜き工程でカップ底中央部を打ち抜いて外輪の一方の鍔を 形成し、トリミング工程でカップ上端部を均一な高さにトリミングする。絞り工程または 決め押し工程の後に、しごき工程を加える場合もある。通常、これらのプレス加工は、ト ランスファプレスや順送りプレスを用いて行われ、トランスファプレスを用いる場合は、 円形プランクの打ち抜き工程も一緒に組み込まれることが多い。なお、外輪の他方の鍔は 、熱処理後の組立て工程で、カップ上端部を内方に折り曲げることにより形成される。

[0006]

前記シェル型外輪のブランク素材には、SCM415等の肌焼鋼の鋼板が用いられ、所定の製品強度を確保するために、プレス加工後に浸炭焼入れ、焼戻し等の熱処理を施される。肌焼鋼の鋼板はSPCC等の軟鋼板に較べて炭素含有量が多く、絞り性の目安となる r 値が低いので、絞り工程での絞り回数を複数回に分けて、1回当たりの絞り比を小さく設定している。

[0007]

このように、シェル型外輪は多数のプレス加工工程を経て形成されるので、金型の精度 誤差や、加工工程ごとの不均一なひずみの累積により、筒部の真円度や偏肉量等の寸法精 度が削り加工で形成される外輪よりも劣り、軸受の寿命も短くなる。

[0008]

このようなシェル型針状ころ軸受の寿命を向上させることを目的として、シェル型外輪の熱処理を軸受組立て後に行い、かつ、この熱処理を浸炭窒化処理後に、さらに焼入れ、焼戻しするものとして、外輪の外径真円度を高めるとともに、各軸受部品の強度も高めるようにしたシェル型針状ころ軸受の製造方法がある(例えば、特許文献 2 参照。)。

[0009]

2/

【特許文献1】特許第2997047号公報(第2頁、第10-12図)

【特許文献2】特許第3073937号公報(第1-2頁、第1-3図)

【発明の開示】

【発明が解決しようとする課題】

[0010]

特許文献 2 に記載されたシェル型針状ころ軸受の製造方法は、軸受組立て後に熱処理を行うことにより、シェル型外輪の熱ひずみを低減してその外径真円度を高めることができるが、シェル型外輪のプレス加工工程は従来と同じであるので、内径真円度や筒部の偏肉量はあまり改善されない。ちなみに、従来のシェル型外輪の内径真円度は、内径が $25\,\mathrm{m}$ m程度のもので $15\sim40\,\mu$ mであり、特許文献 2 に記載された製造方法のものでも $10\,\mu$ mを超える。また、筒部偏肉量は、特許文献 2 に記載された製造方法のものも含めて、内径が $25\,\mathrm{m}$ m程度のもので $10\sim20\,\mu$ mである。

[0011]

このため、潤滑を含めた使用条件が非常に厳しいエアコンディショナ用等のコンプレッサ主軸の支持構造に用いられるシェル型針状ころ軸受では、特許文献2に記載された製造方法によるものであっても、十分に満足できる長寿命化は達成されていない。

[0012]

また、プレス加工で形成されるシェル型外輪は、削り加工で形成される外輪よりも内径面の面粗度が粗くなる。通常、削り加工で形成される外輪の内径面の面粗度はRa0.0 5μ m程度であるのに対して、シェル型外輪の内径面の面粗度はRa0.4 μ m程度である。このため、従来のシェル型針状ころ軸受は、内径面での針状ころの転走に伴う使用中の音響が大きく、特に、自動車のエアコンディショナのように騒音の発生を厳しく嫌う用途のコンプレッサ主軸の支持構造には適用できない問題がある。

[0013]

そこで、この発明の課題は、コンプレッサ主軸の支持構造に用いられるシェル型針状ころ軸受を長寿命化することと、使用中の音響レベルを低減することである。

【課題を解決するための手段】

[0014]

上記の課題を解決するために、この発明のコンプレッサ主軸の支持構造は、コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の内径面の周方向面粗度をRaO.05~0.3 μ mの数値範囲に規制した構成を採用した。

[0015]

前記外輪内径面の周方向面粗度の下限をRaO.05 μ mとしたのは、これよりも周方向面粗度が細かくなって内径面が滑らかになり過ぎると、転走する針状ころの弾性接触領域に保持される潤滑油が少なくなり、スミアリング等の表面損傷が生じやすくなるからである。周方向面粗度の上限をRaO.3 μ mとしたのは、以下の理由による。

[0016]

本発明者は、シェル型外輪の内径面の面粗度を変えたシェル型針状ころ軸受について、回転試験機を用いた音響測定試験を行い、内径面の周方向面粗度を細かくすると軸受の音響レベルが効果的に低減されることを知見し、後の図5に示すように、これをRa0.3μ m以下にすると、音響レベルを厳しく要求される用途の軸受にも十分適用できることを確認した。

[0017]

この内径面の周方向面粗度が音響レベルの低減に特に効果があるのは、つぎのように考えられる。すなわち、針状ころのころ径に対してころの回転方向の凹凸(周方向面粗度)がある程度以上に粗くなると、針状ころの上下振動が大きくなって大きな音響が発生する。針状ころのころ径は比較的小さいので、周方向面粗度がRaO.3μmを超えると、大

きな音響が発生するものと思われる。

[0018]

また、この発明のコンプレッサ主軸の支持構造は、コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の内径真円度を10μm以下の数値範囲に規制した構成も採用した。

[0019]

前記外輪の内径真円度の数値範囲を 10 μ m以下としたのは以下の理由による。本発明者は、シェル型外輪の内径真円度を変えたシェル型針状ころ軸受について軸受寿命試験を行い、後の図 6 に示すように、内径真円度と軸受寿命は良い相関関係を有し、内径真円度を 10 μ m以下にすると、厳しい使用条件下でも十分な長寿命化を達成できることを確認した。

[0020]

さらに、この発明のコンプレッサ主軸の支持構造は、コンプレッサの圧縮動作部材を主軸の回転駆動で動作させ、この主軸のラジアル荷重をコンプレッサ内に配置された針状ころ軸受で支持するコンプレッサ主軸の支持構造において、前記針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状ころを配列したシェル型針状ころ軸受とし、前記外輪の筒部偏肉量を10μm未満の数値範囲に規制した構成も採用した

[0021]

前記外輪の筒部偏肉量の数値範囲を 10μ m未満としたのは以下の理由による。本発明者は、シェル型外輪の筒部偏肉量を変えたシェル型針状ころ軸受について軸受寿命試験を行い、後の図7に示すように、外輪の筒部偏肉量と軸受寿命は良い相関関係を有し、軸方向偏肉量を 10μ m未満にすると、厳しい使用条件下でも十分な長寿命化を達成できることを確認した。

[0022]

前記シェル型外輪の内径真円度や筒部偏肉量の低減が軸受の長寿命化に効果があるのは、内径面での針状ころの転走が円滑になり、ころのスリップやがたつき等による内径面での局部的な摩耗や応力集中が抑制されるためと考えられる。

[0023]

前記外輪の内径面の周方向面粗度、内径真円度および筒部偏肉量の少なくともいずれかを前記数値範囲に規制する手段としては、前記シェル型外輪を形成するプレス加工にしごき工程を設け、このしごき工程における前記外輪の外径面となる外径側しごき面での潤滑条件を、略流体潤滑状態とする手段を採用することができる。

[0024]

. 本発明者は、プレス試験機を用いて、SCM415鋼板の絞りしごき試験を行い、カップ成形物の内外径面の面粗度、内径真円度および筒部偏肉量を調査した。この結果、ダイス側(カップ成形物の外径側しごき面)に潤滑性の優れた高粘度プレス加工油を塗布すると、シェル型外輪の内径面となるカップ成形物の内径面における面粗度が外径面よりも細かくなること、および内径真円度と筒部偏肉量が改善されることを見出した。

[0025]

まず、前記面粗度の調査結果については、図10にその一例を示すが、ブランク素材の面粗度は表裏面ともRaO.49 μ m程度であるのに対して、カップ成形物内径面の面粗度はRaO.15 μ mと非常に細かくなっている。カップ成形物外径面の面粗度はRaO.44 μ mであり、ブランク素材の面粗度とあまり変わっていない。なお、図10に示すカップ成形物内外径面の面粗度は、いずれも軸方向に測定したものであるが、周方向に測定した面粗度もこれらとほぼ同等であった。この測定結果は、通常の絞りしごき加工で観察されるものと逆であり、通常の絞りしごき加工では、ダイスでしごかれるカップ成形物外径面の方が細かい面粗度となり、内径面の面粗度はブランク素材の面粗度とあまり変わ

らない。

[0026]

これらの調査結果は、以下のように考えられる。すなわち、カップ成形物外径面の面粗度が素材の面粗度とあまり変わらなかったのは、カップ成形物の外径側しごき面では、加工される素材とダイスが殆ど接触しない略流体潤滑状態であったと考えられる。このようにダイス側の潤滑条件を略流体潤滑状態にすると、ダイスとの摩擦に起因する外径側しごき面での剪断力が殆どなくなって、ポンチとダイスの間のしごき部における応力が板厚方向で均一な圧縮応力状態となり、つぎの図11で検証されるように、素材が板厚方向で均一に減厚変形するようになる。

[0027]

図11は、前記カップ成形物の上端部の板厚断面写真を示す。上記推定を検証するように、ダイス側に潤滑性の優れたプレス加工油を塗布したカップ成形物の上端部は、板厚方向で均一に軸方向へ延伸している。このように、素材が板厚方向で均一に減厚変形して軸方向へ延伸すると、ポンチに接触するカップ成形物の内径面がポンチ表面に沿って軸方向へ相対移動し、この相対移動によるポンチ表面との摺動で内径面の面粗度が細かくなったものと考えられる。一方、通常の絞りしごき加工によるカップ成形物の上端部は、外径面側が著しく軸方向に延伸している。これは、ダイスとの摩擦に起因する剪断力でカップ成形物の外径面側が優先的に減厚変形し、内径面側があまり減厚変形しないからである。このように、内径面側があまり減厚変形しない通常の絞りしごき加工では、カップ成形物の内径面がポンチ表面と殆ど相対移動しないので、その面粗度は素材とあまり変わらない。

[0028]

前記外径側しごき面での潤滑条件を略流体潤滑状態とする加工方法では、図11に示したように、カップ成形物の上端面が板厚方向で均一になるので、ブランク径を小さくして歩留も向上させることができる。また、ブランク径を小さくすることにより、絞り加工に必要なプレス荷重も低減される。

[0029]

つぎに、前記内径真円度と筒部偏肉量については、後の表1に示すように、内径真円度は10μm以下に、筒部偏肉量は10μm未満に低減されることを確認した。これらの調査結果は、以下のように考えられる。すなわち、上述したように、しごき加工におけるダイス側の潤滑条件が略流体潤滑状態とされて素材が板厚方向で均一に減厚変形すると、カップ成形物の筒部偏肉量が低減されるとともに、ポンチに接触するカップ成形物の内径面がポンチ表面に沿って軸方向へ相対移動してポンチ外径面の形状になじみ、ポンチから離型後もカップ成形物の内径真円度が良好に保持されるものと考えられる。一方、通常の絞りしごき加工では、カップ成形物の内径面側はあまり減厚変形せず、ポンチ表面とも殆ど相対移動しないので、カップ成形物の内径真円度や筒部偏肉量はあまり改善されない。

[0030]

この発明のコンプレッサ主軸用針状ころ軸受は、コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、この外輪の内径面の周方向面粗度をRa0.05~0.3 μ mの数値範囲に規制した構成を採用した。

[0031]

また、この発明のコンプレッサ主軸用針状ころ軸受は、コンプレッサの圧縮動作部材を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形成されるシェル型外輪とし、この外輪の内径真円度を10μm以下の数値範囲に規制した構成も採用した。

[0032]

さらに、この発明のコンプレッサ主軸用針状ころ軸受は、コンプレッサの圧縮動作部材 を回転駆動する主軸のラジアル荷重をコンプレッサ内で支持するコンプレッサ主軸用針状

ころ軸受において、複数の針状ころが内径面に沿って配列される外輪を、プレス加工で形 成されるシェル型外輪とし、この外輪の筒部偏肉量を10μm未満の数値範囲に規制した 構成も採用した。

【発明の効果】

[0033]

この発明のコンプレッサ主軸の支持構造は、コンプレッサ主軸のラジアル荷重を支持す る針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の針状こ ろを配列したシェル型針状ころ軸受とし、このシェル型外輪の内径面の周方向面粗度を R a 0. 05~0. 3μmの数値範囲に規制するようにしたので、コンプレッサ運転中の騒 音を低減することができる。

[0034]

また、この発明のコンプレッサ主軸の支持構造は、コンプレッサ主軸のラジアル荷重を 支持する針状ころ軸受を、プレス加工で形成されるシェル型外輪の内径面に沿って複数の 針状ころを配列したシェル型針状ころ軸受とし、このシェル型外輪の内径真円度を10μ m以下の数値範囲に規制するか、または、筒部偏肉量を10μm未満の数値範囲に規制す るようにしたので、軸受部を長寿命化することができる。

[0035]

前記外輪の内径面の周方向面粗度、内径真円度および筒部偏肉量の少なくともいずれか を前記数値範囲に規制する手段を、シェル型外輪を形成するプレス加工にしごき工程を設 け、このしごき工程における外輪の外径面となる外径側しごき面での潤滑条件を略流体潤 滑状態とすることにより、カップ成形物の上端面が板厚方向で均一に近くなるので、ブラ ンク径を小さくして歩留を向上させるとともに、絞り加工に必要なプレス荷重も低減する ことができる。

[0036]

この発明のコンプレッサ主軸用針状ころ軸受は、複数の針状ころが内径面に沿って配列 される外輪を、プレス加工で形成されるシェル型外輪として、この外輪の内径面の周方向 面粗度を $RaO.05\sim0.3\mu m$ の数値範囲に規制するようにしたので、その使用中の 音響レベルを低減することができる。

[0037]

また、この発明のコンプレッサ主軸用針状ころ軸受は、複数の針状ころが内径面に沿っ て配列される外輪を、プレス加工で形成されるシェル型外輪として、この外輪の内径真円 度を10μm以下の数値範囲に規制するか、または、筒部偏肉量を10μm未満の数値範 囲に規制するようにしたので、その寿命を延長することができる。

【発明を実施するための最良の形態】

[0038]

以下、図面に基づき、この発明の実施形態を説明する。図1は、本発明に係る第1の実 施形態のコンプレッサ主軸の支持構造を採用した自動車のエアコンディショナ用コンプレ ッサを示す。このコンプレッサは、主軸1に固定された斜板2の回転により、斜板2上を 摺動するシュー3を介して、圧縮動作部材であるピストン4を往復動作させる両斜板タイ プのコンプレッサである。高速で回転駆動される主軸1は、冷媒が存在するハウジング5 内で、ラジアル方向を2つのシェル型針状ころ軸受6で支持され、スラスト方向をスラス ト針状ころ軸受 7 で支持されている。

[0039]

前記ハウジング5には周方向に等間隔で複数のシリンダボア8が形成され、各ボア8内 に両頭形のピストン4が往復自在に収納されている。各ピストン4には斜板2の外周部を 跨ぐように凹部4aが形成され、この凹部4aの軸方向対向面に形成された球面座9に、 球状のシュー3が着座されている。このシュー3は半球状のものもあり、斜板2の回転運 動を各ピストン4の往復運動に円滑に変換する働きをする。

[0040]

前記主軸1のラジアル方向を支持する各シェル型針状ころ軸受6は、図2に示すように

、プレス加工で形成されたSCM415製シェル型外輪11の内径面12に沿って、複数の針状ころ13を配列したものであり、各針状ころ13は、同じくプレス加工で形成されたSPCC製保持器14によって保持されている。

[0041]

図3は、前記シェル型外輪 11を製造する概略の工程を示す。まずプレス加工により、SCM 415 リン酸塩皮膜処理鋼鈑の円形ブランクが、1 回の絞りしごき工程でカップ成形物とされ、決め押し工程でカップ底コーナ部が所定のコーナ半径に決め押し成形される。絞りしごき工程では、ダイス側に潤滑性の優れたプレス加工油が塗布され、外径側しごき面での潤滑条件が略流体潤滑状態とされる。つぎに、底抜き工程でカップ底中央部が打ち抜かれて外輪 11 の一方の鍔 11 a が形成され、トリミング工程でカップ上端部が均一な高さにトリミングされる。こののち、プレス加工された外輪 11 は、熱処理工程で浸炭焼入れ、焼戻し処理を施され、最後の組立て工程で、他方の鍔 11 b が内方への折り曲げ加工により形成される。

[0042]

上述した実施形態では、シェル型外輪11のプレス加工における絞り工程を1回のみとし、しごき工程をこの1回の絞り工程と同時に行う絞りしごき工程としたが、絞り工程を3回以下の複数回とし、しごき工程を最終回の絞り工程と同時に行う絞りしごき工程としてもよく、しごき工程を絞り工程または決め押し工程の後で別に行ってもよい。

【実施例1】

[0043]

図3の製造工程で製造した実施例のシェル型外輪について、内径面の面粗度、内径真円度および筒部偏肉量を測定した。測定した外輪の寸法は、外径28mm、長さ16mm、肉厚0.95mmであり、内径面の面粗度の測定は、外輪を半円筒状に2分割して行った

[0044]

前記内径面の面粗度は周方向と軸方向に測定し、周方向面粗度は、外輪の両端から各 2 mmの位置と長さ方向中央位置の 3 箇所で、軸方向面粗度は、周方向に 9 0°の位相の 4 箇所で測定した。なお、図 1 0 に示したように、ブランク素材の面粗度は表裏面とも R a 0.4 9 μ m程度、外輪の外径面の面粗度は R a 0.4 4 μ m程度である。

[0045]

図4 (a)、(b)は、上記面粗度の測定結果の一例を示す。図4 (a)は、外輪の長さ方向中央位置で測定した周方向面粗度であり、Ra0.18 μ mと非常に細かくなっている。図示は省略するが、両端から各2mmの位置で測定した周方向面粗度もRa0.05~0.3 μ mの範囲にあり、ブランク素材や外径面の面粗度よりも細かくなっている。図4 (b)は、1つの位相で測定した軸方向面粗度であり、Ra0.15 μ mとなっている。図示は省略するが、他の位相で測定した軸方向面粗度も、いずれもRa0.3 μ m以下と非常に細かくなっていた。

[0046]

上記実施例の外輪内径面の周方向面粗度を $Ra0.05\sim0.3\mu$ mとしたシェル型針状ころ軸受と、同一軸受寸法で、外輪内径面の周方向面粗度が $Ra0.3\mu$ mを超える比較例のシェル型針状ころ軸受を用意し、これらを回転試験機に取り付けて、音響測定試験を行った。試験条件は、以下の通りである。

- ·回転速度: 4800 r p m
- ・ラジアル荷重:180N
- ·潤滑:粘度2cSt油塗布
- ・音響測定位置:軸受から45°方向で距離100mmの位置

[0047]

図5は、上記音響測定試験における音響レベルの測定結果を示す。この測定結果より、 内径面の周方向面粗度をRaO.05~0.3 μ mとした実施例のものは、いずれも音響 レベルが60dB以下となり、比較例のものに較べて音響レベルが著しく低減されている

【実施例2】

[0048]

表1は、図3の製造工程で製造したシェル型外輪(実施例A~F)と、従来の製造工程で製造したシェル型外輪(比較例A~F)について、その内径真円度と簡部偏肉量を測定した結果を示す。測定した外輪の寸法は、外径28mm、長さ16mm、肉厚0.95mmである。内径真円度と簡部偏肉量の軸方向での測定位置は、前記内径面の周方向面粗度の測定位置と同じ3箇所とし、筒部偏肉量については、これらの各軸方向位置で周方向に90°の位相で4箇所、合計12箇所で測定した。実施例のものは、いずれも内径真円度が10μm以下、筒部偏肉量が10μm未満となっている。なお、比較例Aは、特許文献2に記載された製造方法で製造したものである。

[0049]

【表1】

····	,	
シェル型外輪	内径真円度	筒部偏肉量
	(μm)	(μm)
実施例A	9	3
実施例B	8	4
実施例C	1 0	3
実施例D	9	5
実施例E	8	7
実施例F	1 0	9
比較例A	1 2	1 1
比較例B	1 8	1 8
比較例C	1 9	1 4
比較例D	2 0	1 7
比較例E	2 2	1 5
比較例F	2 3	1 9

[0050]

表1に示した実施例および比較例のシェル型針状ころ軸受について、軸受寿命試験を行った。各実施例および比較例のサンプル数は8個とし、軸受寿命はL10寿命(サンプルの90%が破損しないで使える時間)で評価した。試験条件は、以下の通りである。

·アキシアル荷重:9.81kN

·回転速度:5000rpm

・潤滑油:スピンドル油VG2

[0051]

図6は、上記軸受寿命試験における内径真円度とL10寿命の関係を示す。シェル型外輪の内径真円度が10μm以下である各実施例のものは、いずれもL10寿命が200時間を超え、軸受寿命が大幅に延長されていることが分かる。なお、内径真円度が10μmを超える比較例のものは、最も優れた比較例AでもL10寿命が200時間に満たない。

[0052]

図7は、上記軸受寿命試験における筒部偏肉量とL10寿命の関係を示す。筒部偏肉量についても、 10μ m未満である各実施例のものはいずれもL10寿命が200時間を超え、軸受寿命が大幅に延長されている。

[0053]

図8は、第2の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す。このコンプレッサは片斜板タイプのコンプレッサであり、主軸21に連結された連結部材22の回転により、連結部材22の傾斜面22aにボール23とスラスト針状ころ軸受24で支持された斜板25を揺動運動させ、この斜板25の揺動運動をピストンロッド26を介して、片頭形のピストン27の往復運動に変換するものである。この主軸21はハウジング28内で、ラジアル方向を1つのシェル型針状ころ軸受29で支持され、スラスト方向を連結部材22を介してスラスト針状ころ軸受30で支持されている。シェル型針状ころ軸受29は、第1の実施形態のものと同様に、図3に示した製造工程で製造されたシェル型外輪を用いている。

[0054]

図9は、第3の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す。このコンプレッサは片斜板タイプの可変容量コンプレッサであり、主軸31に連結された連結部材32の傾斜角度が、主軸31に嵌めこまれたスリーブ33を軸方向へスライドさせることにより、変更可能とされている。連結部材32にスラスト針状ころ軸受34で支持された斜板35の揺動運動は、第2の実施形態のものと同様に、ピストンロッド36を介して、片頭形のピストン37の往復運動に変換される。この主軸31はハウジング38内で、ラジアル方向を2つのシェル型針状ころ軸受39も、第1の実施形態のものと同様に、図3に示した製造工程で製造されたシェル型外輪を用いている。

【図面の簡単な説明】

[0055]

- 【図1】第1の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す縦断面図
- 【図2】図1のシェル型針状ころ軸受を示す縦断面図
- 【図3】図2のシェル型針状ころ軸受の概略の製造工程を示す工程図
- 【図4】 a、bは、それぞれ図3の製造工程で製造したシェル型外輪内径面の周方向と軸方向の面粗度を示すグラフ
- 【図 5 】シェル型針状ころ軸受の音響測定試験における外輪内径面の周方向面粗度と音響レベルの関係を示すグラフ
- 【図 6 】シェル型針状ころ軸受の軸受寿命試験におけるシェル型外輪の内径真円度と L 1 0 寿命の関係を示すグラフ
- 【図7】シェル型針状ころ軸受の軸受寿命試験におけるシェル型外輪の筒部偏肉量と L10寿命の関係を示すグラフ
- 【図8】第2の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す縦断面図
- 【図9】第3の実施形態のコンプレッサ主軸の支持構造を採用したエアコンディショナ用コンプレッサを示す縦断面図
- 【図10】絞りしごき試験におけるカップ成形物内外径面の面粗度とプランク素材の面粗度を示すグラフ
- 【図11】絞りしごき試験におけるカップ成形物上端部の板厚断面写真

【符号の説明】

[0056]

- 1 主軸
- 2 斜板

- 3 シュー
- 4 ピストン
- 4 a 凹部
- 5 ハウジング
- 6 シェル型針状ころ軸受
- 7 スラスト針状ころ軸受
- 8 ボア
- 9 球面座
- 11 シェル型外輪
- 11a、11b 鍔
- 12 内径面
- 13 針状ころ
- 1 4 保持器
- 2 1 主軸
- 22 連結部材
- 2 2 a 傾斜面
- 23 ボール
- 24 スラスト針状ころ軸受
- 2 5 斜板
- 26 ピストンロッド
- 27 ピストン
- 28 ハウジング
- 29 シェル型針状ころ軸受
- 30 スラスト針状ころ軸受
- 3 1 主軸
- 32 連結部材
- 33 スリーブ
- 34 スラスト針状ころ軸受
- 3 5 斜板
- 36 ピストンロッド
- 37 ピストン
- 38 ハウジング
- 39 シェル型針状ころ軸受
- 40 スラスト針状ころ軸受

【図3】

【図4】

【図6】

【図7】

【図11】

内径側 外径側 内径側 外径側

【書類名】要約書

【要約】

【課題】コンプレッサ主軸の支持構造に用いられるシェル型針状ころ軸受を長寿命化する ことと、使用中の音響レベルを低減することである。

【解決手段】ピストン4を往復動作させるコンプレッサ主軸1をラジアル方向に支持するシェル型針状ころ軸受6のシェル型外輪11を、しごき工程を設けたプレス加工で形成し、このしごき工程における外輪11の外径面となる外径側しごき面での潤滑条件を、略流体潤滑状態とすることにより、その内径面の周方向面粗度、内径真円度および筒部偏肉量を所定の数値範囲に規制し、シェル型針状ころ軸受6を長寿命化するとともに、使用中の音響レベルを低減できるようにした。

【選択図】図1

ページ: 1/E

特願2003-331855

出願人履歴情報

識別番号

[000102692]

1. 変更年月日

2002年11月 5日

[変更理由]

名称変更

住 所

大阪府大阪市西区京町堀1丁目3番17号

氏 名 NTN株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.