# Lab 5. STP Configuration

TA 紀政良 (clc) Credit to cps

### What is STP?

- Spanning Tree Protocol
- A layer 2 protocol
- Runs on switches and bridges
- Switches need to be enabled for STP within the same network
- Create a loop-free network
- Track all the links and blocks the redundant link

# Types of STP

#### [1] Cisco IOS use PVST+ as default mode

| Protocol    | Standard | Resources Needed | Convergence | Tree Calculation |
|-------------|----------|------------------|-------------|------------------|
| STP         | 802.1D   | Low              | Slow        | All VLANs        |
| PVST+ [1]   | Cisco    | High             | Slow        | Per VLAN         |
| RSTP        | 802.1w   | Medium           | Fast        | All VLANs        |
| Rapid PVST+ | Cisco    | Very high        | Fast        | Per VLAN         |
| MSTP        | 802.1s   | Medium or high   | Fast        | Per Instance     |

(config) # spanning-tree mode mode

### Need for STP

- Broadcast storm
- MAC database instability
- Multiple frame transmission



[Note] In the environment of Packet Tracer, we can use **no spanning-tree vlan 1** to see the problems above

### Need for STP

- Broadcast storm
- MAC database instability
- Multiple frame transmission



[Note] In the environment of Packet Tracer, we can use **no spanning-tree vlan 1** to see the problems above

- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



### Port Roles

#### Root port

 Ports on non-root switches with the best cost path to root bridge. These ports forward data to the root bridge.

#### Designated port

Ports on root and designated switches. All ports on the root bridge will be designated.

#### Blocked port

All other ports to bridges or switches are in a blocked state. Access ports going to workstations
or PCs are not affected.

- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



# **Bridge Priority**

Bridge priority only allows to be in multiple of 4096



# **Bridge Priority**

Two ways to change bridge priority

```
(config) # spanning-tree vlan vlan-id root [ primary | secondary ]
(config) # spanning-tree vlan vlan-id priority value
```

```
switch# show spanning-tree
VLAN0001
 Spanning tree enabled protocol rstp
 Root ID Priority 32769
                                                           priority + sys-id-ext
         Address 0025.b4c1.b400
         This bridge is the root
                     2 sec Max Age 20 sec Forward Delay 15 sec
         Hello Time
                            32769 (priority 32768 sys-id-ext 1)
 Bridge ID Priority
         Address
                       0025.b4c1.b400
         Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
         Aging Time
                       300 sec
```

- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



### STP Cost

Configure interface cost

```
(config)# interface interface (config-if)# spanning-tree vlan value cost value
```

Show spanning tree cost



| Link Speed | Cost |  |
|------------|------|--|
| 10 Gb/s    | 2    |  |
| 1 Gb/s     | 4    |  |
| 100 Mb/s   | 19   |  |
| 10 Mb/s    | 100  |  |

# Root port selection

- 1. Lowest cost
- 2. Lowest neighbor bridge ID
- 3. Lowest neighbor port priority
- 4. Lowest neighbor physical port number

- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



# Designated port selection

- 1. Lowest accumulated cost to the root bridge
- 2. Lowest bridge ID

- Elect a root bridge
- Place root interface to forwarding state
- Choose root port for each non-root bridge
- Choose designated port for each remaining link
- Put all other ports into blocking state



# **Port States**

| STATUS       | Disabled             | Blocking               | Listening                      | Learning                       | Forwarding                                 |
|--------------|----------------------|------------------------|--------------------------------|--------------------------------|--------------------------------------------|
| Receive BPDU | X                    | O                      | O                              | O                              | O                                          |
| Send BPDU    | X                    | X                      | O                              | O                              | O                                          |
| Learn MAC    | X                    | X                      | X                              | О                              | O                                          |
| Forwarding   | X                    | X                      | X                              | X                              | O                                          |
| Duration     | Until no<br>shutdown | Until topology changed | Forward Delay<br>(default 15s) | Forward Delay<br>(default 15s) | Until shutdown or not root/designated port |

# Topology Change

- Send TCN (topology change notification) on its root port
- Upstream bridge responds an TCA (topology change acknowledgement)
- Root bridge send BPDU with TC bit set
- Lower their MAC table address aging time (from 300s to 15s)

### **Port States**



# STP Convergence

50 seconds for going through all state

### STP Timer

- Hello Timer (default 2 sec)
  - The frequency of sending BPDU
- Max Age Timer (default 20 sec)
  - The maximum length of time a switch saves BPDU information
- Forward Delay Timer (default 15 sec)
  - The time spent on the listening and learning states

### STP Timer

- The diameter is the maximum number of switches that data must cross to connect any two switches
- Diameter configuration (deprecated on Packet Tracer)

 $(\texttt{config}) \ \# \ \ \textbf{spanning-tree} \ \ \textbf{vlan-id} \ \ \textbf{root} \ \ \textbf{primary} \ \ \textbf{diameter} \ \ size$ 

| Diameter      | 2  | 3  | 4  | 5  | 6  | 7  |
|---------------|----|----|----|----|----|----|
| Hello Time    | 2  | 2  | 2  | 2  | 2  | 2  |
| Max Age       | 10 | 12 | 14 | 16 | 18 | 20 |
| Forward Delay | 7  | 9  | 10 | 12 | 13 | 15 |

### **STP Enhancements**

- PortFast
- BPDU Guard
- BPDU Filter
- Root Guard

### **PortFast**

- Allow a port to enter from blocking to forwarding state immediately, bypassing the listening and learning states
- You will see warning as below after configuring PortFast

```
%Warning: portfast should only be enabled on ports connected to a single host. Connecting hubs, concentrators, switches, bridges, etc... to this interface when portfast is enabled, can cause temporary bridging loops.

Use with CAUTION
```

- Need to wait for convergence to communicate with a port on which the PortFast feature is disabled (normally a port connected to another switch).
- Never enable PortFast on a Trunk port!

# PortFast Configuration

Configure PortFast on a switch port

```
(config) # interface interface
(config-if) # spanning-tree portfast
```

Enable PortFast on all nontrunking interfaces

```
(config) # spanning-tree portfast default
```



without Portfast with Portfast

### **BPDU Guard**

- If BPDU guard is enabled, it puts the port in an err-disabled state when receiving a BPDU
  - This will effectively shut down the port
- The BPDU guard feature provides a secure response to invalid configurations because you must manually put the interface back into service
  - shutdown the interface and no shutdown it back to recover
- Turn on BPDU Guard

```
(config)# interface interface
(config-if)# spanning-tree bpduguard enable
```

### **BPDU Filter**

- Similar to BPDU Guard, but just "filter" it
- Two different configuration styles, with different behaviors
  - Configure it globally
  - Configure it on the specified port

### **BPDU Filter**

- When configured globally
  - Affect all operational PortFast ports
  - If BPDUs are seen on the port
    - 1. The port loses its PortFast status
    - BPDU filtering is disabled
    - 3. STP sends and receives BPDUs as any other STP port
  - Upon startup, the port transmits ten BPDUs. If this port receives any BPDUs during that time,
     PortFast and BPDU filtering are disabled
- When configured on an individual port
  - Ignore all BPDUs received
  - Send no BPDUs

# **BPDU Filter Configuration**

Enable BPDU filtering globally (deprecated on Packet Tracer)

```
(config)# spanning-tree portfast bpdufilter default
```

Enable BPDU filtering on a specific switch port (deprecated on Packet Tracer)

```
(config) # interface interface
(config-if) # spanning-tree bpdufilter enable
```

To verify the configuration

```
# show spanning-tree summary totals
# show spanning-tree interface interface detail
```

### **Root Guard**

- Root guard is configured on a per-port basis
- If there is a superior BPDU received on the port, root guard does not take the BPDU into account and so puts the port into root inconsistent state
- Root guard configuration

```
(config) # interface interface
(config-if) # spanning-tree guard root
```

### Reference

- https://www.omnisecu.com/cisco-certified-network-associate-ccna/index.php
- https://www.youtube.com/watch?v=japdEY1UKe4&t=273s

### **VLAN STP Review**



### VLAN STP Review

• End devices x-y IP: 192.168.x0.y/24, GW: 192.168.x0.254

```
(config) # ip default-gateway x.x.x.x
```

- VLAN: 如圖所示, 啟用10 或 20, 命名為 VLAN {num}
- 請設定 Sw1-3、L3-Sw 使同 LAN 能互通
- 請設定 Gateway 在 L3-Sw 使不同 LAN 能互通
- spanning-tree mode: rapid-pvst
- 對 End devices 設定 Portfast、BPDU guard
- 2-4 被使用者接成 Switch 了, 要怎麼更改設定使它連線可以使用, 但不會搶走 root。

### Outline

- 實驗目的
- 實驗環境
- 指令介紹
- 小作業 (不算分)

### STP 的重要性

1. 在 L2 環境中, STP 的扮演著不可或缺的角色, 如果缺少 STP, 會造成 MAC database instability, broadcast storms, multiple frame transmission 等事情發生。請使用 packet tracer 的功能, 模擬並截圖說明如果下圖的拓樸缺少 STP 會發生什麼嚴重的後果。(擇二說明即可)



- 2. 下頁圖片為一簡單網路拓樸, 若此拓樸使用的協定為 PVST, 根據圖上提供的資訊回答下列問題
  - a. 請問此拓樸最有可能是 VLAN 多少?
  - b. 請找出此 Spanning 的 root, 並標示出各介面的 STP role 以及那些線路不會有流量經過



3. 假設你是交大資工某實驗室的網管,你發現牆壁上有兩個網路孔(以下稱為壁孔),如下圖所示,已知兩壁孔後端連接至同一網路設備。然而,兩個壁孔並不足以提供整間實驗室使用,於是你決定自己買一台網路設備供實驗室使用。請依照課堂所學的內容,回答下頁問題



- a. 此二壁孔後端最有可能連接至何種網路設備?請回答 Switch, Router 或 L3 switch 並敘述原因
- b. 相較於只連接一個壁孔,同時將兩個壁孔連接至你自己購買的網路設備,是否能 有效增加你所購買之網路設備與壁孔之間的頻寬?為什麼?
- c. 在你自己購買的網路設備上,除了連接壁孔的 interface 之外,是否適合在其他 interface 上設定 portfast 功能?原因為何?

4. 身為優質的實驗室網管,你獲得了成為系計中助教的機會,除了整天吸貓貓之外你還必須管理工三網路。如果有一網路拓樸如下圖,根據你強大的網路知識,請回答下頁問題



- a. 此網路拓樸有一大缺點,故通常網管人員會極力避免做出此拓樸。請問此缺點為何?應如何避免?
- b. 承(a), 若實驗室想把 PC 換成 switch, 欲讓實驗室內部的交換器也能參與工三網路 STP 選舉, 卻不希望讓 Spanning Tree 的根橋接器角色被實驗室搶走, 應在哪台機器上做哪些設定?
- c. 承(a), 若不希望實驗室內部的交換器參與工三網路 STP 選舉, 卻允許實驗室內 部自行安裝交換器, 且當 BPDU 封包進入壁孔時該 interface 不會被關閉, 應在 哪些機器上做哪些設定?