An Analysis of Channel Estimation and Equalization Techniques Based on Affine Projection Algorithm

Yanan Xiao

Northwestern Polytechnic University

Graduation Design Thesis Presentation

Outline

- Introduction
 - Outline
 - Applications
- 2 Development
 - Performance Functions
 - Performance (Cost) Functions continued
 - Affine Projection Algorithm
 - Adaptive Filtering Applications
- Result
 - MATLAB Codes
 - Simulation Results
 - Further Work
 - Weight Error Update Equations
 - Deal with Computational Complexity
 - Instability & Memory
 - Workload
- Question & Answer
 - Open for Any Questions

Study in Noisy Environment

Judge how noisy the channel is—suitable for you to learn, or too noisy.

Tweet under Supervision

Judge whether it is safe to post something on Weibo.com.

Performance (Cost) Functions

- Mean Square Error $E[e^2(n)]$ (Most popular) Adaptive algorithms: Least Mean Square (LMS), Normalized LMS (NLMS), Affine Projection (AP), Recursive Least Squares (RLS), etc.
- Regularized MSE

$$J_{rms} = E[e^2(n)] + \alpha \|\mathbf{w}(n)\|^2$$
 (1)

Adaptive algorithm: Leaky Least Mean Square (leaky LMS)

• l_1 norm criterion

$$J_{l_1} = E[|e(n)|] \tag{2}$$

Adaptive algorithm: Sign-Error

Least Mean Fourth (LMF) criterion

$$J_{LMF} = E[e^4(n)] \tag{3}$$

Adaptive algorithm: Least Mean Fourth (LMF)

Least Mean Mixed Norm (LMMN) criterion

$$J_{LMMN} = E[\alpha e^2(n) + \frac{1}{2}(1 - \alpha)e^4(n)]$$
 (4)

Adaptive algorithm: Least Mean Mixed Norm (LMMN)

Constant Modulus criterion

$$J_{CM} = E[(\gamma - |\mathbf{x}^T(n)\mathbf{w}(n)|^2)^2]$$
 (5)

Adaptive algorithm: Constant Modulus (CM)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り<0</p>

Affine Projection Algorithm as a Projection onto an Affine Subspace

- ★ Conditions for the analysis
 - $\bullet \quad \mathbf{e}(n) = \mathbf{d}(n) \mathbf{X}^{T}(n)\mathbf{w}(n)$
 - $\mathbf{d}(n) = \mathbf{X}^T(n)\mathbf{w}^0$ defines the optimal solution in the least squares sense
 - $\mathbf{v}(n) = \mathbf{w}(n) \mathbf{w}^0$ (weight error vector)
- ★ Error vector
 - $\bullet \quad \mathbf{e}(n) = \mathbf{d}(n) = \mathbf{X}^{T}(n)[\mathbf{v}(n) + \mathbf{w}(n+1)]$
 - $\bullet \qquad = \mathbf{X}^{T}(n)\mathbf{w}(n+1) \mathbf{X}^{T}(n)[\mathbf{v}(n) + \mathbf{w}(n+1)]$
 - $\bullet = -\mathbf{X}^T(n)\mathbf{v}(n)$

$$\mathbf{e}(n) = -\mathbf{X}^T \mathbf{v}(n) \tag{6}$$

• Interpretation: To minimize the error $\mathbf{v}(n)$ should be orthogonal to all input vectors Restriction: We are going to use only $\{\mathbf{x}(n),\mathbf{x}(n-1),...,\mathbf{x}(n-P)\}\$

• Iterative solution: We can subtract from $\mathbf{v}(n)$ onto the range of $\mathbf{X}n$ at each iteration Projection onto an affine subspace

$$\mathbf{v}(n+1) = \mathbf{v}(n) - \mathbf{P}_{\mathbf{X}(n)}\mathbf{v}(n) \tag{7}$$

• Using $\mathbf{X}^T(n)\mathbf{v}(n) = -\mathbf{e}(n)$ AP algorithm

$$\mathbf{v}(n+1) = \mathbf{v}(n) + \mu \mathbf{X}(n) [\mathbf{X}^{T}(n)\mathbf{X}(n)]^{-1} \mathbf{e}(n)$$
 (8)

Yanan Xiao (NPU) CE APA Analysis Defense & Presentation 8 / 25

Basic Classes of Adaptive Filtering Applications

- System Identification
- Inverse System Modeling
- Signal Prediction
- Interference Cancelation

System Identification

Applications - System Identification

Channel Estimation

- Communication systems
- Objective: model the channel to design distortion compensation
- x(n): training sequences

Plant Identification

- Control systems
- Objective: model the plant to design a compensator
- x(n): training sequence

AffineProjection.m

API

```
function
```

```
[outputVector,...
errorVector,...
coefficientVector] =
AffineProjection(desired,input,S)
```

```
Body
```

```
for it = 1:nIterations,
    regressor(:,2:S.memoryLength+1) =
    regressor(:,1:S.memoryLength);
    regressor(:,1)
    prefixedInput(it+(nCoefficients-1):-1:it);
    outputVectorApConj(:,it)
    (regressor')*coefficientVector(:,it);
    errorVectorApConj(:,it)
    conj(prefixedDesired(it+(S.memoryLength):-1:it))...
    -outputVectorApConj(:,it);
    coefficientVector(:,it+1)
    coefficientVector(:,it)+(S.step*regressor*...
    inv(regressor'*regressor+S.gamma*...
    eye(S.memoryLength+1))*errorVectorApConj(:,it));
end
```

Learning Curve

Steady State

Weight Error Update Equations

Steepest Descent Algorithm - Stationary SOE

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu[\mathbf{p} - \mathbf{R}_{xx}\mathbf{w}(n)]$$
 (9)

Newton Algorithm

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu \mathbf{R}_{xx}^{-1}[-\mathbf{p} + \mathbf{R}_{xx}\mathbf{w}(n)]$$
 (10)

Least Mean Squares (LMS) Algorithm

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu e(n)\mathbf{x}(n) \tag{11}$$

Weight Error Update Equations - continued

Normalized Least Mean Square (NLMS) Algorithm

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu \frac{e(n)\mathbf{x}(n)}{\mathbf{x}^{T}(n)\mathbf{x}(n)}$$
(12)

Affine Projection (AP) Algorithm

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu \mathbf{X}(n) [\mathbf{X}^{T}(n)\mathbf{X}(n)]^{-1} \mathbf{e}(n)$$
(13)

Recursive Least Square (RLS) Algorithm

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \mathbf{k}(n)\mathbf{e}(n) \tag{14}$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Weight Error Update Equations - continued

For RLS algorithm,

$$\mathbf{k}(n) = \mathbf{P}(n)\mathbf{x}(n) \tag{15}$$

$$\mathbf{P}(n) = \lambda^{-1} \mathbf{P}(n-1) - \lambda^{-1} \mathbf{k}(n) \mathbf{x}^{T}(n) \mathbf{P}(n-1)$$
 (16)

Computational Complexity

- ullet Adaptive filter with N real coefficients and real signals
- For the AP algorithm, K = P + 1

Algorithm	×	+	
LMS	2N + 1	2N	
NLMS	3N + 1	3N	1
AP	$(K^2 + 2K)N + K^3 + K$	$(K^2 + 2K)N + K^3 + K$	
RLS	$N^2 + 5N + 1$	$N^2 + 3N$	1

For
$$N=100, P=2$$

$$\begin{bmatrix} \mathsf{Algorithm} & \times & + & / & \simeq \mathsf{factor} \\ \mathsf{LMS} & 201 & 200 & 1 \\ \mathsf{NLMS} & 301 & 300 & 1 & 1.5 \\ \mathsf{AP} & 1,530 & 1,536 & 7.5 \\ \mathsf{RLS} & 10,501 & 10,300 & 1 & 52.5 \\ \end{bmatrix}$$

Defense & Presentation 1

Computational Complexity - continued

Typical values for acoustic echo cancellation (N = 1024, P = 2)

Algorithm	×	+	/	\simeq factor
LMS	2,049	2,048		1
NLMS	3,073	3,072	1	1.5
AP	15,390	15,396		7.5
RLS	1,053,697	1,051,648	1	514

How to Deal with Computational Complexity?

- ★ Not an easy task!!!
- ★ There are "fast" versions for some algorithms (especially RLS)
- ★ What is usually not said is that...speed can bring
 - Instability
 - Increased need for memory

Most applications rely on simple solutions.

Instability

Memory

◆□ > ◆圖 > ◆圖 > ◆圖 > Defense & Presentation

Workload

Workload

Abraham Xiao ProfessorX

- A Harmony Research Center (Xi'an China)
- Northwestern Polytechnic University Xi'an Shaanxi Province China
- M q289196573@gmail.com
- @ http://abrahamx.com
- (b) Joined on May 03, 2012

◆ Contributions Fedit Your Profile Repositories a Public Activity Popular repositories ▼ Spoon-Knife 11 This repo is for demonstration purpose... Experimenting-MATLAB-Tuto... 1* Sduthesis 0 * SDU Thesis Template for LaTeX Algorithms 0 * Yes' I am TRULLY LEARNING algorith... Data-Structure 0 *

