Question $\bf 4$

Pas encore répondu

Noté sur 3,00

La capacité d'un condensateur plan composé de deux disques conducteurs parallèles de rayon r est donnée par $C=rac{arepsilon_0 arepsilon_r A}{d}$, où A est l'aire des plaques.

Supposez que vous avez obtenu respectivement des incertitudes $\Delta \varepsilon_r$, Δr et Δd sur les mesures de ε_r , r et d faites au laboratoire

Quelle est l'expression correcte pour l'incertitude ΔC sur la capacité du condensateur ?

Veuillez choisir une réponse :

$$\bigcirc$$
 a. $\Delta C = rac{arepsilon_0 \Delta arepsilon_r \pi (\Delta r)^2}{\Delta d}$

$$\bigcirc$$
 b. $\Delta C = \frac{\varepsilon_0 \varepsilon_r 2\pi r}{d} \left(\frac{\varepsilon_r}{\Delta \varepsilon_r} + \frac{r}{\Delta r} + \frac{d}{\Delta d} \right)$

$$\bigcirc$$
 c. $\Delta C = \frac{\varepsilon_0 \Delta \varepsilon_r 2\pi \Delta r}{\Delta d}$

$$ullet$$
 d. $\Delta C = \frac{\varepsilon_0 \varepsilon_r \pi r^2}{d} \left(\frac{\Delta \varepsilon_r}{\varepsilon_r} + \frac{2\Delta r}{r} + \frac{\Delta d}{d} \right)$

$$\bigcirc$$
 e. $\Delta C = \frac{\varepsilon_0 \varepsilon_r \pi r^2}{d} \left(\frac{\varepsilon_r}{\Delta \varepsilon_r} + \frac{r}{2\Delta r} + \frac{d}{\Delta d} \right)$

$$\bigcirc \text{ f. } \Delta C = \frac{\varepsilon_0 \varepsilon_r 2\pi r}{d} \left(\frac{\Delta \varepsilon_r}{\varepsilon_r} + \frac{\Delta r}{r} + \frac{\Delta d}{d} \right)$$

Effacer mon choix

◀ Laboratoires - Instruments de mesure

Aller à...

Labo 1 - Remise ►