Crypto refresher

Secrecy of noise for IND-CPA security

- \mathscr{A} obtains n linearly independent encryptions $(\overrightarrow{a_i},b_i=\langle \overrightarrow{a_i},\overrightarrow{s}\rangle+\Delta m_i+e_i)$ from \mathscr{O}
- Let $\overrightarrow{a_i}=(a_{i,1},...a_{i,n})$ and $\overrightarrow{s}=(s_1,...,s_n)$, we can form the following system of equations

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \times \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \Delta \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

• Since $\overrightarrow{a_i}$, b_i , Δ and m_i are already public, revealing e_i allows us to re-write the system as

$$As = b - \Delta m - e \times =$$

ullet This system can be solved in $oldsymbol{s}$ using e.g. Gaussian elimination, compromising the secret key

IND-CPAD

A new security notion for homomorphic encryption