

Неравенство Чебышева. Закон больших чисел. Теорема Бернулли.

Пусть функция
$$g$$
 verticulaet и меотрицательна на R . $Ean Eg(3) < \infty$, TO $\forall x \in R$
$$P(3 > x) \in \frac{Eg(3)}{g(x)}$$

Dokazatenscibo: Поскольку
$$g$$
 we yombaet $P(z > x) \leq P(g(z) > g(x))$
T.r. $g(x) > 0$, причешим меравенство Маркова $P(g(z) > g(x)) \leq \frac{Eg(z)}{g(x)}$

Hepabeurbo le Sumeba

Conu DS cymeorbyet, to $\forall x>0$ $P(1\S-E\S|>X) \leq \frac{D\S}{X^2}$ (*) \triangle orcazatensorbo: \triangle na x>0 $|\S-E\S|>X$ pabuccunsuo $(\S-E\S)^2>X^2$ nostory $P(1\S-E\S|>X)=P((\S-E\S)^2>X^2) \leq \frac{E(\S-E\S)^2}{X^2}=\frac{D\S}{X^2}$

Barou Borbuux (ucen (b popue le Jumiba)

 $\forall \S_1, \S_2, \S_3, \dots - u.o.p.c.b.$ (herabusement ognicios pacripagenement cryz. benezum) Takux, $\forall D \in \mathbb{N}_1 < \infty$ (*)

$$\frac{S_1 + \dots + S_n}{n}$$
 \xrightarrow{P} ES_1

Доказательство:

$$S_{n} = S_{1} + \dots + S_{n}, \quad E\left(\frac{S_{n}}{n}\right) = \frac{ES_{1} + \dots + ES_{n}}{n} = \frac{n ES_{1}}{n} = ES_{1}$$

$$D_{n} = S_{1} + \dots + S_{n}, \quad E\left(\frac{S_{n}}{n}\right) = ES_{1}$$

$$D_{n} = ES_{1}$$

$$D_{n} = ES_{1}$$

$$D_{n} = ES_{1}$$

$$D_{n} = ES_{1}$$

$$ES_{n} = ES_{1}$$

$$ES_{n} = ES_{1}$$

$$ES_{n} = ES_{n}$$

Теорена Бериулли Пусть S_n - тисло услехов в п испитациях сх. Бериулли p - вероятиссть услеха. Тогда $\frac{S_n}{h}$ p р

Docazaterbolo: Orebuguoe enegetbue npouroù Teopenu