Diffie-Hellman key exchange

CHITRANG SRIVASTAVA

An Example

Source: Wikipedia

DH in TLS

```
1. Alice and Bob agree to use a prime number p = 23 and base g = 5.
2. Alice chooses a secret integer a = 6, then sends Bob A = g^a \mod p
    • A = 5^6 \mod 23
    • A = 15,625 \mod 23
    • A = 8
3. Bob chooses a secret integer b = 15, then sends Alice B = g^b \mod p
    • B = 5^{15} \mod 23
    • B = 30,517,578,125 mod 23
    • B = 19
4. Alice computes s = B^a \mod p
    • s = 19^6 \mod 23
    • s = 47,045,881 mod 23
    • s = 2
5. Bob computes s = A^b \mod p
    • s = 8^{15} \mod 23
    • s = 35,184,372,088,832 mod 23
    s = 2
6. Alice and Bob now share a secret (the number 2).
```

Math behind DH

• Alice and Bob agree on a finite <u>cyclic group</u> G of order n and a <u>generating</u> element g in G. (This is usually done long before the rest of the protocol; g is assumed to be known by all attackers.) The group <u>G is written multiplicatively</u>.

<u>Set</u>

- Natural Number(N) counted 1, 2, 3
- Whole Number includes 0
- Integer(Z) no factional component
- Rational(Q): Quotient and fractional part i.e. 3/2
- Irrational which are not rational, do not terminate, do not repeat $(\sqrt{2}, \pi, e)$
- Real Number(R): can be measured on scale √-1 is not a real.
- Fundamental Theorem of Arithmetic.
 Any number can be written as product of prime number
 1200 = 2*2*2*2 * 3 * 5 *5
- Property: Closure, Associativity, Commutative, Distributive, Identity, Inverse.

Groups

- <u>Closure</u> property: Take any two elements from set and perform binary operation, result should also be in same set, like + on Integer.
- Associative property: a+(b+c) = (a+b)+c, this is true for (I,+)
- **Identity** Element: there exists an element in e such that a + e = a, in case of I this will be 0 and 0 exists in I.
- Inverse, there exists an element in set such that a + a-1 = e (Identity element), in set I if we take 2, its invers would be 2 since 2 + (-2) = 0
- Abelian Group : Commutative law also hold i.e a+b = b+a

Multiplicative Group

- multiplicative group modulo p, $(Z_p, *)$ for example $(Z_7, *) = [1,2,3,4,5,6]$
- 2 * 4 mod 7 = 1
- $2*(3*4) \mod 7 = (2*3)*4 \mod 7$
- 2 *1 mod 7 = 2 ∴ <u>1 is identity element</u>
- 2 * 4 mod 7 = 1 , 4 is inverse of 2
- 2*4 mod 7 = 4*2 mod 7
- Hence $(Z_7, *)$ is a group under binary operation of *.
- $(Z_{10}, *) = ? [1,3,7,9]$ Why because for 2,4,etc you cant find inverse

Cyclic Groups

• Using at least one element of group we can generate all other element of group. $G = (Z_7, *)$

ı
7

<u> </u>		
3 mod 7	3 ⁰	1
3 * 3 mod 7	3 ¹	3
3*3 mod 7	3 ²	2
3*3*3 mod 7	3 ³	6
3*3*3*3 mod 7	34	4
3*3*3*3*3 mod 7	3 ⁵	5

$$g = 2$$

2 mod 7	2 ¹	2
2*2 mod 7	2 ²	4
2*2*2 mod 7	23	1
2*2*2*2 mod 7	24	2
2*2*2*2*2 mod 7	2 ⁵	4
2*2*2*2*2*2 mod 7	2 ⁶	1
	2*2 mod 7 2*2*2 mod 7 2*2*2*2 mod 7 2*2*2*2 mod 7	2*2 mod 7

Every element of $G = \{1, 2, 3, 4, 5, 6, 7\}$ can be written in form of g

 $4 => 3^4 \mod 7 => h = g \times \mod p$

Order of Group: How man element can be obtained using generator.

Cyclic Group: Generate all elements & g is called generator

Generator (Primitive Roots)

- Total Number of generator = φ (φ (p))
- Example p=19 φ (19) = 18, φ (18) = 2.3² = 18 . (1-1/2)(1-1/3)=6
- What are those **6** generator?
- Determine all the prime factors of s: p1,...,pk
- Choose any a and test if a^{(p-1)/p1} = 1 mod p?
- a= 2 p = 19 {p1=2, p2=3}
- $2^{(19-1)/2} = 2^9 \not\equiv 1 \mod 19$
- $2^{(19-1)/3} = 2^6 \neq 1 \mod 19$: 2 is generator
- All others : $a^k gcd(p-1,k) = 1$; k=[1, 5, 7, 11, 13, 17]
- Generator = [2, 13, 14, 15, 3, 10]

Generator of p = 19

Powers of Integers, Modulo 19

a	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1.	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	1.5	11	3	6	12	5	10	-1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	- 1
5	6	11	17	9	7	16	4	-1	5	6	11	17	9	7	16	4	1
6 mg	17	7	4	5	-11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	-11	12	-1	8	7	18	-11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	- 1
11	7	1	11	7	- 1	11	7	1	11	7	1	11	7	1	11	7	- 1
12	11	18	7	8	1	12	11	18	7	8	1	12	11.	18	7	8	- 1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	- 1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	- 1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	- 1
16	9	11	5	4	7	17	6	-1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	- 1	17	4	11	16	6	7	5	9	1
18	-1	18	1	18	10	18	-1	18	1	18	1	18	1	18	1	18	1

Credit: Table 8.3 in Stallings, Cryptography and Network Security, 5th Ed., Pearson 2011

Discrete Logarithm

- Logarithm: $100 = 10^x => x = \log_{10} 100 = 2$
- Discrete logarithm is of form h = g x mod p
- p is a large prime, g is generator of Cyclic Group G

• g is selected a primitive root i.e. GCD(g, p) = 1

	8 13 3CICCICA C	printite root	(6, P) I
•	h = g × mod p	х	mpāte x for carefully chosen G.
	1	0	p = 11
	2	1	
	3=2^8mod 11	8	
	4	2	
	5	?	
	6	9	
	7	7	
	8	3	
	9	6	
	10	5	

Discrete Logarithm Problem

During TLS Handshake Server communicate
 (g, p) and choose a secret x and send g^x mod p

DH parameters appear to be ok.

Diffie Hellman Key Exchange in TLS

Perfect Forward Secrecy

- With **RSA**, main problem is if private key is compromised, all previous session can also be decrypted, since pre-master secret is encrypted with public key of server.
- With DH, exchange always uses new random values *a* and *b*, it is called *Ephemeral Diffie-Hellman* (EDH or DHE). **DHE-RSA-AES128-SHA** cipher suites uses this mechanism.

Elliptic Curve Cryptography $y^2 = x^3 + \alpha x + \beta$; $4a^3 + 27b^2 \neq 0$, $a, b \in \mathbb{RQ}$ C

- Horizontal Symmetry.
- Non-vertical line intersect the curve *at-most* 3 places.
- Scalar Multiplication
- Fewer memory access & CPU resources.
- Existence of Inverse.
- Existence of Identity element(∞).
- Associativity & Closure also holds.

Elliptic Curve Discrete Logarithm Problem

• Scalar Multiplication is fast 100-P

Continued...

- Given starting point g and end point(n.g), it is not easy to compute n(ECDLP).
- Public Key: Starting Point A, Ending Point E
- Private Key: Number of hops from A to E
- Real curve : whole number, restrict to some prime.

EC in Finite Field

 $y^2=x^3-2x+1$ over Z_{89} For x = 4, y^2 = 57 mod 89, Solve using Shank Tonelli Algorithm give {71,18}

Elliptical Curve in Practice

Curves

- Domain Parameter (g_x, g_y, p, a, b, n) , Typically known by CurveID in Cryptography
- Curve can be represented in different form
 - Montgomery form
 - Edward Curve
 - Koblitz Curve

Curve Name	Equation	
Secp256k1/secp256r1	$y^2 = x^3 + 7$	Key Share Entry: Group: secp256r1, Key Exchange length: 65 Group: secp256r1 (23) Key Exchange Length: 65 Key Exchange: 04dec803344e129156958317c1e6e2c201f437141a5c1e35
Curve25519 https://tools.ietf.org/h tml/rfc7748	$y^2 = x^3 + 486662x^2 + x$ then converted to Montgomery Curve . $v^2 = u^3 + Au^2 + u$	Key Share Entry: Group: x25519, Key Exchange length: 32 Group: x25519 (29) Key Exchange Length: 32 Key Exchange: 88641a8db264c7965f0515f762da6f85bb136e35638377f2
Curve448	$y^2 + x^2 = 1 - 39081x^2y^2$	

https://safecurves.cr.yp.to/

Montgomery Curve

- http://web.math.princeton.edu/swim/SWIM%202010/Yao-Zhan%20Presentation%20SWIM%202010.pdf
- https://www.nayuki.io/page/elliptic-curve-point-addition-in-projective-coordinates

Elliptic Curve in TLS

 ClientHello specifies cipher suites like ECDHE-ECDSA-AES256-GCM-SHA384, ECDHE-RSA-AES256-GCM-SHA384 and also tells supported groups like secp256r1, x256519.

```
• Sarvar Hallo chaosa curvo id and talls nublic kov in Sarvar Vov Evchange Extension. It also signs
  TLSv1.2 Record Layer: Handshake Protocol: Certificate
  TLSv1.2 Record Layer: Handshake Protocol: Server Key Exchange
     Content Type: Handshake (22)
     Version: TLS 1.2 (0x0303)
     Length: 172

▼ Handshake Protocol: Server Key Exchange

         Handshake Type: Server Key Exchange (12)
         Length: 168

▼ EC Diffie-Hellman Server Params

            Curve Type: named curve (0x03)
            Named Curve: x25519 (0x001d)
            Pubkey Length: 32
            Pubkey: 287efb7934ca39e1cf5c404bf2e29276d210d2ce7c0bdac9...

▼ Signature Algorithm: rsa pss rsae sha256 (0x0804)
                Signature Hash Algorithm Hash: Unknown (8)
                Signature Hash Algorithm Signature: Unknown (4)
            Signature Length: 128
            Signature: 7f4141287ada8a317e3259d9addb4813739f89dc822ab375...
  TLSv1.2 Record Layer: Handshake Protocol: Server Hello Done
```

- ClientKeyExchange send its public value based on chosen curve-id.
- Both client and server now has shared secret i.e pre-master secret.

```
▼ Handshake Protocol: Client I
          Handshake Type: Client K
          Length: 33

▼ EC Diffie-Hellman Client
             Pubkey Length: 32
             Pubkey: a099aabf73afc

▼ TLSv1.2 Record Layer: Change Ci
      Content Type: Change Cipher
      Version: TLS 1.2 (0x0303)
      Length: 1
      Change Cipher Spec Message

▼ TLSv1.2 Record Layer: Handshake
      Content Type: Handshake (22)
      Version: TLS 1.2 (0x0303)
      Length: 40
```

▼ TLSv1.2 Record Layer: Handshake

Length: 37

Content Type: Handshake (22)

Version: TLS 1.2 (0x0303)

Conclusion

- Some NIST curve have backdoor.
 - https://en.wikipedia.org/wiki/Dual EC DRBG

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	521
	Table 1: NIST Recommended Key Sizes	