

LINMA2171 Numerical Analysis

SIMON DESMIDT

Academic year 2024-2025 - Q1

Contents

1	Poly	nomials	2	
	1.1	Lagrange interpolation	2	
	1.2	Hermite interpolation	2	
	1.3	Neville's algorithm	3	
	1.4	Newton's interpolation formula	3	
	1.5	Linear algebra approach	3	
	1.6	Barycentric interpolation formula	4	
	1.7	Trigonometric interpolation	4	
	1.8	Rational interpolation	5	
2	Splines			
	2.1	Definition	6	
	2.2	B-splines	6	
	2.3	Regression with splines	7	
	2.4	Interpolation by natural cubic splines	8	
	2.5	Smoothing splines	9	
	2.6	Interpolation by natural splines	10	
	2.7	Error bounds of interpolation by natural splines	10	
	2.8		10	

Polynomials

 \mathcal{P}_n is the set of all real polynomials of degree at most n.

• The Runge phenomenon is the explosion of the polynomial near the boundary of the domain when the interpolation points are chosen to be equidistant. A solution to that is to put more points near the boundary and less in the middle of the domain, e.g. Chebyshev points.

1.1 Lagrange interpolation

Let $x_0, ..., x_n$ be distinct real numbers. The Lagrange polynomial L_k of degree n is such that it is equal to 0 for all x_i , $i \neq k$ and 1 for x_k . This serves as a base for the next interpolations. The general formula for the Lagrange polynomial is

$$L_k(x) = \prod_{i=0}^n \frac{x - x_i}{x_k - x_i} \qquad k = 0, 1, \dots, n$$
 (1.1)

• N.B.: we usually denote $L_k(x; x_0, ..., x_n)$ or let $\chi = (x_0, ..., x_n)$ and $L_k(x; \chi)$.

1.2 Hermite interpolation

Let $x_0, ..., x_n$ be distinct real numbers. Then, given two sets of real numbers $(y_0, ..., y_n)$ and $(z_0, ..., z_n)$, there is a unique polynomial $p_{2n+1} \in \mathcal{P}_{2n+1}$ such that

$$p_{2n+1}(x_i) = y_i$$
 $p'_{2n+1}(x_i) = z_i$ $i = 0, ..., n$ (1.2)

The polynomial p_{2n+1} is termed the Hermite interpolation polynomial of degree at most 2n + 1 for the data points $(x_0, y_0, z_0), \ldots, (x_n, y_n, z_n)$. The expression is

$$p_{2n+1}(x) = \sum_{k=0}^{n} (H_k(x)y_k + K_k(x)z_k) \qquad \begin{cases} H_k(x) = (L_k(x))^2 (1 - 2L'_k(x_k)(x - x_k)) \\ K_k(x) = (L_k(x))^2 (x - x_k) \end{cases}$$
(1.3)

where $L_k(x)$ is the Lagrange polynomial.

• The $H_k(x)$ are such that their derivative is zero for all x_i , and their value is zero for all x_i except x_k , where it is 1.

$$H_k(x_i) = \delta_{ik}$$
 $H'_k(x_i) = 0$ $\forall i$

• The $K_k(x)$ are such that their derivative is zero for all x_i except x_k where it is one, and their value is zero for all x_i .

$$K_k(x_i) = 0$$
 $K'_k(x_i) = \delta_{ik}$ $\forall i$

1.3 Neville's algorithm

Let us assume we are given a set of support points (x_i, y_i) , i = 0, 1, ..., n, and p_n is their Lagrange interpolation polynomial. Let us now define the notation $P_{i_0i_1...i_k} \in \mathcal{P}_k$, the polynomial for which $P_{i_0i_1...i_k}(x_{i_j}) = y_{i_j}$ for all j = 0, 1, ..., k. We work by recursion, with the following formula:

$$\begin{cases}
P_i(x) = y_i \\
P_{i_0 i_1 \dots i_k} = \frac{(x - x_{i_0}) P_{i_1 i_2 \dots i_k}(x) - (x - x_{i_k}) P_{i_0 i_1 \dots i_{k-1}}(x)}{x_{i_k} - x_{i_0}}
\end{cases}$$
(1.4)

Example:

Let us have four points $(x_0, y_0), \dots (x_3, y_3)$. We want the polynomial interpolating all of them, using Neville's algorithm.

Here,

$$P_{0123}(x) = \frac{x - x_0}{x_3 - x_0} P_{123}(x) + \frac{x_3 - x}{x_3 - x_0} P_{012}(x)$$
 (1.5)

1.4 Newton's interpolation formula

Newton's interpolation formula is used to evaluate polynomials with a computer, as it only needs to compute each operation $(x - x_i)$ one time. We write it like:

$$p_n(x) = \left(\left(\dots \left(y_{0\dots n}(x - x_n) + y_{0\dots n-1} \right) (x - x_{n-1}) + y_{0\dots n-2} \right) (x - x_{n-2}) + \dots \right) + y_0 \tag{1.6}$$

And the recursive formula is

$$P_{i_0i_1...i_k} = P_{i_0i_1...i_{k-1}}(x) + y_{i_0i_1...i_k}(x - x_{i_0})(x - x_{i_1}) \dots (x - x_{i_{k-1}})$$
(1.7)

1.5 Linear algebra approach

Let $(\phi_0, ..., \phi_n)$ ba a basis of \mathcal{P}_n , which is known to be an (n + 1)-dimensional linear space. The interpolation polynomial can thus be expressed in a unique way in the basis:

$$p_n(x) = \sum_{i=0}^{n} a_i \phi_i(x)$$
 (1.8)

and the coefficient are obtained by solving the linear system

$$\begin{bmatrix} \phi_{0}(x_{0}) & \phi_{1}(x_{0}) & \dots & \phi_{n}(x_{0}) \\ \phi_{0}(x_{1}) & \phi_{1}(x_{1}) & \dots & \phi_{n}(x_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{0}(x_{n}) & \phi_{1}(x_{n}) & \dots & \phi_{n}(x_{n}) \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{n} \end{bmatrix}$$
(1.9)

This is called a Vandermonde matrix, and its determinant is

$$\det(V) = \prod_{0 \le i < j \le n} (x_j - x_i) \tag{1.10}$$

which is always non zero, as the x_i are disinct, and the system has one unique solution.

 \rightarrow N.B.: the condition number¹ of such a matrix grows exponentially with *n*.

1.6 Barycentric interpolation formula

This formula is interesting, because it is numerically stable, contrary to the linear algebra method described before. We use the following notation, called the nodal polynomial:

$$\pi_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$$
(1.11)

We now define

$$\lambda_j = \frac{1}{\prod_{k \neq j} (x_j - x_k)} \tag{1.12}$$

The modified Lagrange formula is then

$$p_n(x) = \pi_{n+1}(x) \sum_{j=0}^{n} \frac{\lambda_j}{x - x_j} y_i$$
 (1.13)

For the polynomial $p_n(x) = 1$, we have the following expression:

$$1 = \pi_{n+1}(x) \sum_{j=0}^{n} \frac{\lambda_{j}}{x - x_{j}}$$

and thus we generally prefer to use the equivalent formula for equation (1.13):

$$p_n(x) = \sum_{j=0}^{n} \frac{\lambda_j y_j}{x - x_j} / \sum_{j=0}^{n} \frac{\lambda_j}{x - x_j}$$
 (1.14)

for all $x \notin \{x_n, \ldots, x_n\}$.

1.7 Trigonometric interpolation

Let us consider the evenly spaced points $x_j = \frac{2\pi j}{N}$, j = 0, ..., N, on the interval $[0, 2\pi]$, and the interpolation values $f_0, ..., f_N \in \mathbb{C}$, with $f_0 = f_N$. The trigonometric interpolation problem consists of finding β_k such that

$$p(x) = \sum_{k=0}^{N-1} \beta_k e^{ikx} \text{ such that } p(x_j) = f_j \qquad j = 0, \dots, N-1$$
 (1.15)

¹It is a measure of the reaction of the system to a small perturbation

 \rightarrow N.B.: the bound is N-1 because the last condition $p(x_N) = f_N$ is satisfied when the others are (periodicity).

This is equivalent to the generalization to \mathbb{C} of the polynomial interpolation problem: if we denote $\omega := e^{ix}$, the complex polynomial is

$$P(\omega) = \sum_{k=0}^{N-1} \beta_k \omega^k \tag{1.16}$$

The Vandermonde matrix in the complex case is defined as in the real case. We denote it *W*.

Theorem: $W^*W = NI$ for a complex Vandermonde matrix in an interpolation problem.

From this, the solution to the interpolation problem is solved by multiplying both sides by W^* . We get

$$\beta = \frac{1}{N} W^* f \Longrightarrow \beta_k = \frac{1}{N} \sum_{j=0}^{N-1} f_j e^{-i2\pi k j/N} \qquad k = 0, \dots, N-1$$
 (1.17)

And that is the discrete Fourier transform (DFT)

1.8 Rational interpolation

Let the interpolation points be $x_0 < x_1 < \cdots < x_{\sigma}$, with the values $y_0, \ldots, y_{\sigma} \in \mathbb{R}$. We define the polynomial

$$\Phi(x) = \frac{p_{\mu}(x)}{q_{\nu}(x)} \qquad p_{\mu} \in \mathcal{P}_{\mu}, q_{\nu} \in \mathcal{P}_{\nu}$$
(1.18)

such that
$$\Phi(x_i) = y_i$$
 $i = 0, \dots, \sigma$ (1.19)

The interpolation polynomial can be written

$$\Phi(x) = \frac{\sum_{k=0}^{\mu} a_k x^k}{\sum_{k=0}^{\nu} b_k x^k} = \frac{\lambda p_{\mu}(x)}{q_{\nu}(x)}$$
(1.20)

The number of constraints, i.e. points needed for the interpolation is then $\sigma = \mu + \nu$. This implies that

If Φ is a solution to the equation (1.18), then p_{μ} , q_{ν} are solutions of

$$p_{\mu}(x_i) - y_i q_{\nu}(x_i) = 0$$
 $i = 0, ..., \mu + \nu$ (1.21)

$$\left(\sum_{k=0}^{\mu} a_k x_i^k\right) - y_i \left(\sum_{k=0}^{\nu} b_k x_i^k\right) = 0$$
 (1.22)

The theorem of existence states that the equation (1.21) always has a non trivial solution, i.e. $(p_{\mu}, q_{\nu}) \neq (0, 0)$.

The theorem of uniqueness states that if Φ_1 and Φ_2 are non trivial solutions of (1.21), then they are equivalent, i.e. they differ only by a common polynomial factor in the numerator and denominator.

• p_{μ} , q_{ν} are relatively prime if they do not have zeros in common.

Given $\Phi = \frac{p_{\mu}}{q_{\nu}}$, let $\tilde{\Phi} = \frac{\tilde{p}\mu}{\tilde{q}_{\nu}}$ be the equivalent expression for which \tilde{p}_{μ} and \tilde{q}_{ν} are relatively prime. Φ is the solution of (1.18) $\iff \tilde{p}_{\mu}(x_i) - y_i\tilde{q}_{\nu}(x_i) = 0$, $i = 0, \ldots, \mu + \nu$.

Splines

2.1 Definition

Let $S = S(k) = S(k; x_0, ..., x_m) = \{s \in C^{k-1}[a, b] : s|_{[x_{i-1}, x_i]} \in \mathcal{P}_k, i = 1, ..., m\}$ denote the linear space of splines of degree $k \ge 1$, with knots $a = x_0 < x_1 < \cdots < x_m = b$. The conditions at the knots are the following:

$$s^{(j)}(x_i^-) = s^{(j)}(x_i^+) \quad j = 0, \dots, k-1$$
 (2.1)

 $s^{(j)}$ denoting the *j*th derivative of the spline *s*. A basis of that set S is

$$\{x^0, \dots, x^k, (x-x_1)_+^k, \dots, (x-x_{m-1})_+^k\}$$
 (2.2)

where $(x - x_j)_+^k = (\max\{0, x - x_j\})^k$.

Theorem 2.1. The dimension of the linear space $S(k; x_0, ..., x_m)$ is m + k.

2.2 B-splines

The basis defined above is not well suited for computation, we will instead use the B-splines. These are functions ϕ such that

$$\phi(x) = 0 \qquad \forall x \in [x_0, x_p] \cup [x_q, x_m] \tag{2.3}$$

with 0 and <math>q - p as small as possible. We will use ϕ of the form

$$\phi(x) = \sum_{j=p}^{q} d_j (x - x_j)_+^k, \quad a \le x \le b$$
 (2.4)

where the parameters d_i satisfy

$$r_k(x) := \sum_{j=p}^q d_j (x - x_j)^k = 0, \quad x_q \le x \le b$$
 (2.5)

Playing with arithmetics and algebra, we finally get the general formula for a B-spline:

$$B_p(x) = \sum_{j=p}^{p+k+1} \left(\prod_{l=pl \neq j}^{p+k+1} \frac{1}{x_{\ell} - x_j} \right) (x - x_j)_+^k, \qquad x \in \mathbb{R}$$
 (2.6)

It belongs to S and verifies the condition (2.3). It is well-defined for (p = 0, ..., m - k - 1) and thus gives m - k B-splines. To define a basis of S, we need 2k more functions. We are going to add k knots on the left of x_0 and on the right of x_m :

$$x_{-k} < x_{-k+1} < \dots, x_{-1} < x_0 = a < x_1 < \dots < x_m = b < x_{m+1} < \dots < x_{m+k}$$
 (2.7)

and we will now define B_{-k}, \ldots, B_{m-1} on these dots. We now have m + k linearly independent functions, and thus a basis of S.

Theorem 2.2. Let $x_{-k}, \ldots x_{m+k}$ satisfy (2.7). Then, the m+k functions B_p , $p=-k, \ldots, m-1$, given by (2.6) form a basis of the space $S(k; x_0, x_m)$, with small support, meaning that B_p is null outside the interval (x_p, x_{p+k+1}) .

The recurrence formula for B-splines is the following, for k > 1:

$$\begin{cases}
B_p^k(x) = \frac{(x-x_p)B_p^{k-1}(x) + (x_{p+k+1}-x)B_{p+1}^{k-1}(x)}{x_{p+k+1}-x_p} \\
B_p^0(x) = 1_{[x_p, x_{p+1})}
\end{cases} (2.8)$$

2.3 Regression with splines

Let B_{-k}, \ldots, B_{m-1} be a basis of the linear space of splines $S(k; u_0, \ldots, u_m)$. We have a function $f \in C[a, b]$ and sampling points w_0, \ldots, w_q , assuming $q + 1 \ge k + m$. The goal of this section is to find a spline function $s \in S$ that is the closest to the data points $(w_i, f(w_i)), i = 0, \ldots, q$, i.e.

$$\arg\min_{s \in \mathcal{S}} \sum_{i=0}^{q} |f(w_i) - s(w_i)|^2$$
 (2.9)

Using $s = \sum_{j=-k}^{m-1} c_j B_j$, we must solve the system

$$\underbrace{\begin{bmatrix} B_{-k}(w_0) & \dots & B_{m-1}(w_0) \\ \vdots & \ddots & \vdots \\ B_{-k}(w_q) & \dots & B_{m-1}(w_q) \end{bmatrix}}_{=:A} \underbrace{\begin{bmatrix} c_{-k} \\ \vdots \\ c_{m-1} \end{bmatrix}}_{=:c} = \underbrace{\begin{bmatrix} f(w_0) \\ \vdots \\ f(w_q) \end{bmatrix}}_{=:F} \tag{2.10}$$

This is solved using the normal equations: $A^TAc = A^TF$.

Theorem 2.3. Under the above assumptions, the columns of A are linearly independent iff there exists a subset of m + k sampling times $w_{i_{-k}} < \cdots < w_{i_{m-1}}$ such that

$$u_p < w_{i_p} < u_{p+k+1} \quad p = -k, \dots, m-1$$
 (2.11)

meaning that w_{i_n} must be in the support of B_p .

2.4 Interpolation by natural cubic splines

Let us define the set of cubic splines $S(k = 3; \xi_0, ..., \xi_m)$. The set of natural cubic splines with those knots is the set

$$S_N(k=3;\xi_0,\ldots,\xi_m) = \{s \in C^2[\xi_0,\xi_m] : s|_{[\xi_{i-1},\xi_i]} \in P_3, i = 1,\ldots,m \text{ and } s''(\xi_0) = s''(\xi_m) = 0\}$$
(2.12)

For an arbitrary piece $[\xi_{i-1}, \xi_i]$, we have 4 conditions:

- $s|_{[\xi_{i-1},\xi_i]}(\xi_{i-1}) = s_{i-1}$
- $s|_{[\xi_{i-1},\xi_i]}(\xi_i)=s_i$
- $s''|_{[\xi_{i-1},\xi_i]}(\xi_{i-1}) = \sigma_{i-1}$
- $s''|_{[\xi_i,\xi_i]}(\xi_{i-1}) = \sigma_i$

And we thus write

$$s|_{[\xi_{i-1},\xi_i]} = s_{i-1}A(x) + s_iB(x) + \sigma_{i-1}C(x) + \sigma_iD(x)$$
(2.13)

where all functions are $\in \mathcal{P}_3$ and satisfy 4 conditions themselves:

$$\begin{array}{c|ccccc} A(\xi_{i-1}) = 1 & B(\xi_{i-1}) = 0 & C(\xi_{i-1}) = 0 & D(\xi_{i-1}) = 0 \\ \hline A(\xi_i) = 0 & B(\xi_i) = 1 & C(\xi_i) = 0 & D(\xi_i) = 0 \\ \hline A''(\xi_{i-1}) = 0 & B''(\xi_{i-1}) = 0 & C''(\xi_{i-1}) = 1 & D''(\xi_{i-1}) = 0 \\ \hline A''(\xi_i) = 0 & B''(\xi_i) = 0 & C''(\xi_i) = 0 & D''(\xi_i) = 1 \\ \hline \end{array}$$

Defining $h_i = \xi_i - \xi_{i-1}$, the final formula is

$$s(x) = \frac{(x - \xi_{i-1})s_i + (\xi_i - x)s_{i-1}}{h_i}$$

$$(2.14)$$

$$-\frac{1}{6}(x-\xi_{i-1})(\xi_{i}-x)\left[\left(1+\frac{x-\xi_{i-1}}{h_{i}}\right)\sigma_{i}+\left(1+\frac{\xi_{i}-x}{h_{i}}\right)\sigma_{i-1}\right] \qquad x \in [\xi_{i-1},\xi_{i}]$$
(2.15)

Now, we have the additional conditions that $s'(\xi_j^-) = s'(\xi_j^+)$, j = 1, ..., m-1, which we write in the following matrix form:

$$Q^T s = R\sigma (2.16)$$

where the matrices are:

$$Q^{T} = \begin{pmatrix} h_{1}^{-1} & -h_{1}^{-1} - h_{2}^{-1} & h_{2}^{-1} & 0 & \dots & 0 \\ 0 & h_{2}^{-1} & -h_{2}^{-1} - h_{3}^{-1} & h_{3}^{-1} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & h_{m-1}^{-1} & -h_{m-1}^{-1} - h_{m}^{-1} & h_{m}^{-1} \end{pmatrix}$$
(2.17)

$$R = \begin{pmatrix} \frac{1}{3}(h_1 + h_2) & \frac{h_2}{6} & 0 & \dots & 0\\ \frac{h_2}{6} & \frac{1}{3}(h_2 + h_3) & \frac{h_3}{6} & \dots & 0\\ \vdots & \ddots & \ddots & \ddots & \vdots\\ 0 & \dots & 0 & \frac{h_{m-1}}{6} & \frac{1}{3}(h_{m-1} + h_m) \end{pmatrix}$$
(2.18)

Theorem 2.4. $s \in \mathcal{S}_N(k=3;\xi_0,\ldots,\xi_m)$ iff $Q^Ts=R\sigma$.

Theorem 2.5. Consider $\xi_0 \dots, x_m$ distinct and y_0, \dots, y_m . The interpolation at the knots

$$s \in \mathcal{S}_N(k=3;\xi_0,\ldots,\xi_m)$$
 such that $s(\xi_i)=y_i$ $i=0,\ldots,m$ (2.19)

exists and is unique.

Theorem 2.6. Let *s* be a natural cubic spline. Then,

$$\int_{\xi_0}^{\xi_m} (s''(x))^2 dx = s^T K s \qquad K = Q R^{-1} Q^T$$
 (2.20)

Theorem 2.7. Let s be the function in $S_N(k=3;\xi_0,\ldots,\xi_m)$ such that $s(\xi_i)=y_i,$ $i=0,\ldots,m$. Let v be any function in $H^2[a,b]$ that satisfiers the same interpolation conditions. Then

$$\int_{\xi_0}^{\xi_m} (v''(x))^2 dx \ge \int_{\xi_0}^{\xi_m} (s''(x))^2 dx \tag{2.21}$$

with equality iff v = s.

2.5 Smoothing splines

The problem studied in this section is

$$\arg\min_{s \in H^2[a,b]} F_{\lambda}(s) := \sum_{i=0}^{m} (y_i - s(x_i))^2 + \lambda \int_a^b (s''(x))^2 dx$$
 (2.22)

where $a = x_0 < x_1 < \cdots < x_m = b$, $y_i \in \mathbb{R}$ are given and $\lambda > 0$ is a parameter. The first term is the data-attachment and the second is the roughness penalty.

Theorem 2.8. If \hat{s} is a solution of (2.22), then $\hat{s} \in \mathcal{S}_N(k=3;x_0,\ldots,x_m)$.

To find the solution of (2.22), we can rewrite the function to minimize:

$$F_{\lambda}(s) = (y - s)^{T}(y - s) + \lambda s^{T} K s$$
(2.23)

This function is strictly convex and quadratic and thus s is the solution of the linear system

$$(I + \lambda K)s = y \tag{2.24}$$

Meaning that (2.22) has one and only one solution. The easiest way to compute *s* is

$$s = y - \lambda Q\sigma \tag{2.25}$$

- When $\lambda \to 0$, we get a simple interpolation problem and there is an infinity of solutions.
- When $\lambda \to \infty$, we find the linear regression solution.

2.6 Interpolation by natural splines

We define the linear space of natural splines as follows:

$$S_N(2\kappa+1) = \{ s \in S(2\kappa+1) : s^{(j)}(a) = s^{(j)}(b) = 0, j = \kappa+1, \dots, 2\kappa \} \qquad \kappa \ge 1$$
(2.26)

Provided that $m \ge \kappa$, the dimension of $S_N(2\kappa + 1)$ is m + 1. Given a function $f \in C[a,b]$, the set of interpolatory natural splines is

$$I_f S_N(2\kappa + 1) = \{ s \in S_N(2\kappa + 1) : s(x_i) = f(x_i), i = 0, \dots, m \}$$
 (2.27)

Theorem 2.9. If $m \ge \kappa$, then $I_f \mathcal{S}_N(2\kappa + 1)$ is a singleton, meaning that the interpolating natural spline exists and is unique.

Theorem 2.10. Let $m \ge \kappa$ and let s ne the unique element of $I_f S_N(2\kappa + 1)$. Then, for all $v \in H^{\kappa+1}(a,b)$ that also interpolate f at x_0, \ldots, x_m , it holds that

$$||s^{(\kappa+1)}||_2 \le ||v^{(\kappa+1)}||_2 \tag{2.28}$$

with equality iff v = s. In particular, the interpolating natural cubic spline, i.e. $\kappa = 1$, is the unique minimizer of the mean square acceleration under the interpolation conditions.

2.7 Error bounds of interpolation by natural splines

Theorem 2.11. Let s be the natural cubic spline interpolant of $f \in C^4[a,b]$, where the interpolation is at equally spaced knots. Then,

$$\|(f-s)^{(r)}\|_{\infty} \le C_r \|f^{(4)}\|_{\infty} h^{4-r} \qquad r = 0, 1, 2, 3$$
 (2.29)

with $C_0 = 5/384$, $C_1 = 1/24$, $c_2 = 3/8$, $C_3 = 1$ and h the space between two knots. This means that the error between the interpolation and the function tends to 0 as the number of interpolation points goes to infinity.

2.8 Vector-valued splines

Vector-valued splines just work component-wise:

$$\mathbf{s}(x) = \sum_{j=-k}^{m-1} \mathbf{c}_j B_j(x)$$
 (2.30)

where x and $B_j(x)$ are real and scalar, but \mathbf{s} and \mathbf{c}_j are in \mathbb{R}^n for all j. We deifne the Bernstein polynomials of degree n as

$$b_i^n(x) = \binom{n}{i} x^i (1-x)^{n-i} \qquad i = 0, \dots, n$$
 (2.31)

They form a basis of \mathcal{P}_n and a partition of unity, i.e. $\sum_{i=0}^n b_i^n(x) = 1$. We can thus write any polynomial piece $\mathbf{s}|_{[x_i,x_{i+1}]} \in \mathcal{P}_k$ in the Bernstein form:

$$\mathbf{s}|_{[x_j,x_{j+1}]} = \sum_{i=0}^k \mathbf{c}_i^j b_i^k \frac{x - x_j}{x_{j+1} - x_j}$$
 (2.32)

aka the BÃl'zier curve on $[x_j, x_{j+1}]$ with control points $\mathbf{c}_0^j, \dots, \mathbf{c}_k^j$.