問題 1

求解電偶極子軸線和中垂面上的電場強度

解. 設 $(\hat{\mathbf{i}},\hat{\mathbf{j}},\hat{\mathbf{k}})$ 是 \mathbb{R}^3 的標準基.

1) 對於延長線上的 P 點

$$\mathbf{E}_{+} = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{\left(r - \frac{l}{2}\right)^{2}} \hat{\mathbf{i}}$$

$$\mathbf{E}_{-} = \frac{1}{4\pi\varepsilon_{0}} \frac{-q}{\left(r + \frac{l}{2}\right)^{2}} \hat{\mathbf{i}}$$

因此

$$\mathbf{E} = \mathbf{E}_{+} + \mathbf{E}_{-} = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{q}{\left(r - \frac{l}{2}\right)^{2}} - \frac{q}{\left(r + \frac{l}{2}\right)^{2}} \right] \hat{\mathbf{i}}$$

$$= \frac{q}{4\pi\varepsilon_{0}r^{2}} \left[\frac{1}{\left(1 - \frac{l}{2r}\right)^{2}} - \frac{1}{\left(1 + \frac{l}{2r}\right)^{2}} \right] \hat{\mathbf{i}}$$

$$\approx \frac{q}{4\pi\varepsilon_{0}r^{2}} \left(1 + \frac{l}{r} - 1 + \frac{l}{r} \right) \hat{\mathbf{i}}$$

$$= \frac{2ql}{4\pi\varepsilon_{0}r^{3}} \hat{\mathbf{i}}$$

定義 $\mathbf{l} = -l\hat{\mathbf{i}}$ 及電偶極距矢量 $\mathbf{p} = q\mathbf{l}$

$$\mathbf{E} \approx -\frac{1}{4\pi\varepsilon_0} \frac{2\mathbf{p}}{r^3}$$

2) 對於中軸線上的 P'點

$$\mathbf{E}_{+} = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r^{2} + \frac{l^{2}}{4}} \left(-\cos\theta \hat{\mathbf{i}} + \sin\theta \hat{\mathbf{j}}\right)$$
$$\mathbf{E}_{-} = \frac{1}{4\pi\varepsilon_{0}} \frac{-q}{r^{2} + \frac{l^{2}}{4}} \left(\cos\theta \hat{\mathbf{i}} + \sin\theta \hat{\mathbf{j}}\right)$$

所以

$$\mathbf{E} = \mathbf{E}_{+} + \mathbf{E}_{-} = -2\frac{1}{4\pi\varepsilon_{0}} \frac{q}{r^{2} + \frac{l^{2}}{4}} \cos\theta \hat{\mathbf{i}}$$

$$= -\frac{1}{2\pi\varepsilon_{0}} \frac{q}{r^{2} + \frac{l^{2}}{4}} \frac{\frac{l}{2}}{\sqrt{r^{2} + \frac{l^{2}}{4}}} \hat{\mathbf{i}}$$

$$= -\frac{1}{4\pi\varepsilon_{0}} \frac{ql}{\left(r^{2} + \frac{l^{2}}{4}\right)^{3/2}} \hat{\mathbf{i}}$$

$$= -\frac{1}{4\pi\varepsilon_{0}} \frac{ql}{r^{3} \left(1 + \frac{l^{2}}{4\pi\varepsilon^{2}}\right)^{3/2}} \hat{\mathbf{i}}$$

因爲 $r \gg \frac{l}{2}$, $\left(1 + \frac{l^2}{4r^2}\right)^{3/2} \approx 1$, 又可以定義 $\mathbf{l} = -l\hat{\mathbf{i}}$ 及電偶極距矢量 $\mathbf{p} = q\mathbf{l}$,

$$\mathbf{E} \approx \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{p}}{r^3} \qquad \Box$$

問題 2

使用馬克士威方程組 (Maxwell's equations) 推導光速 c.

$$\begin{cases}
\nabla \cdot \mathbf{E} = 0 \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{cases}$$

Hint: $\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$

解.

問題 3

庫侖定律和高斯定理互相推導過程

庫倫定律:
$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

高斯定理: $\Phi_E = \iint_{\mathbb{S}} \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \sum_{i(\mathbb{S}h)} q_i$

 \mathbf{m} . 極座標下,對於半徑為 r 的一球面面元 dA,

$$dA = (r\sin\theta \,d\varphi)(r\,d\theta)$$

可定義極小立體角爲

$$d\Omega = \frac{dA}{r^2} = \sin\theta \, d\theta \, d\varphi$$

對於更加普遍的有向面元 $dS = dS\hat{\mathbf{n}}$ 而言, 可推廣立體角定義爲

$$d\Omega = \frac{(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}) dS}{r^2} = \frac{\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}}{|\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}|} \sin \theta d\theta d\varphi$$

由立體角的推廣定義,對於任一封閉曲面 \mathbb{S} 所張之立體角也就有所定義了,當頂點在曲面内時,對於曲面上的任一立體角元 $d\Omega$,其 $\hat{\mathbf{r}}$ 和 $\hat{\mathbf{n}}$ 夾角總小於 $\pi/2$,即 $(\hat{\mathbf{r}}\cdot\hat{\mathbf{n}})/|\hat{\mathbf{r}}\cdot\hat{\mathbf{n}}|\equiv 1$

$$\iint_{\mathbb{S}} d\Omega = \iint_{\mathbb{S}} \sin \theta \, d\theta \, d\varphi = \int_{0}^{\pi} \sin \theta \, d\theta \int_{0}^{2\pi} d\varphi = [-\cos \theta]_{0}^{\pi}(2\pi) = 4\pi$$

當頂點在曲面外時,對於曲面上的任一立體角元 d Ω 皆存在一個互爲相反數立體角元 d Ω ,使得積分結果爲 0

$$\iint_{\mathbb{S}} d\Omega = 0$$

1) 庫倫定律 → 高斯定理

電通量 Φ_E 乃電場在高斯面各處的法向分量的總和.

a) q 在高斯面内的情況

$$\begin{split} \Phi_E &= \oiint_{\mathbb{S}} \mathbf{E} \cdot \mathrm{d}\mathbf{S} \\ &= \oiint_{\mathbb{S}} \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{\mathbf{r}} \cdot \mathrm{d}\mathbf{S} \\ &= \oiint_{\mathbb{S}} \frac{q}{4\pi\varepsilon_0} \, \mathrm{d}\Omega \\ &= \frac{q}{\varepsilon_0} \end{split}$$

c) 數個點電荷組成電荷系的情況

b) q 在高斯面外的情況

$$\Phi_{E} = \iint_{\mathbb{S}} \mathbf{E} \cdot d\mathbf{S}$$

$$= \iint_{\mathbb{S}} \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} \cdot d\mathbf{S}$$

$$= \iint_{\mathbb{S}} \frac{q}{4\pi\varepsilon_{0}} d\Omega$$

$$= 0$$

電荷系可分為面内和面外兩個部分,由 a)、b)的結論和場強疊加原理得

$$\begin{split} \Phi_E &= \oiint_{\mathbb{S}} \left(\sum_{i(\mathbb{S}|\mathcal{H})} \mathbf{E}_i + \sum_{j(\mathbb{S}|\mathcal{H})} \mathbf{E}_j \right) \cdot d\mathbf{S} \\ &= \sum_{i(\mathbb{S}|\mathcal{H})} \oiint_{\mathbb{S}} \mathbf{E}_i \cdot d\mathbf{S} + \sum_{j(\mathbb{S}|\mathcal{H})} \oiint_{\mathbb{S}} \mathbf{E}_j \cdot d\mathbf{S} \\ &= \sum_{i(\mathbb{S}|\mathcal{H})} \frac{q_i}{\varepsilon_0} + \sum_{j(\mathbb{S}|\mathcal{H})} 0 \\ &= \frac{1}{\varepsilon_0} \sum_{i(\mathbb{S}|\mathcal{H})} q_i \end{split}$$

2) 高斯定理 → 庫倫定律

設一點電荷 q, 以其爲球心, r 爲半徑假設球形高斯面, 則有

$$\iint_{\mathbb{S}} \mathbf{E} \cdot d\mathbf{S} = \frac{q}{\varepsilon_0}$$

$$\iint_{\mathbb{S}} \mathbf{E} \cdot \hat{\mathbf{r}} \, \mathrm{d}S = \frac{q}{\varepsilon_0}$$

因爲 \mathbf{E} 和 $\hat{\mathbf{r}}$ 處處平行, 場強大小在球面上處處相等, 故

$$\mathbf{E} \cdot \hat{\mathbf{r}} \oiint_{\mathbb{S}} \mathrm{d}S = \frac{q}{\varepsilon_0}$$

又因爲 $\hat{\mathbf{r}}^2 = 1$, $\hat{\mathbf{r}}$ 自反, 所以

$$\mathbf{E} = \frac{\hat{\mathbf{r}}}{4\pi r^2} \frac{q}{\varepsilon_0} = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

符號	物理意義	單位 (MKSA)
q	電荷	С
${f E}$	電場	N/C($ otin V/m)$
\mathbf{B}	磁場	${ m T}$
Φ_E	電通量	$J\cdot m/C$
Φ_B	磁通量	Wb
$\mathbb S$	積分曲面	m^2
\mathbb{L}	積分環路	m
$\mathrm{d}\mathbf{S}$	面元	m^2
$\mathrm{d} \boldsymbol{\ell}$	線元	m
c	光速	m/s
ε_0	真空電容率	F/m
μ_0	真空磁導率	H/m

 符號 數學意義 ▽· 散度算符 ▽× 旋度算符 ③ 虚部 ④ 實部 a 純量 v 向量 v 的單位向量 v 範數 ℝⁿ и維歐幾里得空間 			
 ∇× 旋度算符 電部 飛 實部 a 純量 v 向量 ŷ v 的單位向量 v 範數 	符號	數學意義	
□ 虚部 □ 實部 □ 編量 □ 本量 □ v 中量 □ v 中量位向量 □ v 中單位向量 □ v 中數	$ abla\cdot$	散度算符	
般 實部 a 純量 v 向量 v v iv v w b iv i	abla imes	旋度算符	
a 純量 v 向量 ŷ v 的單位向量 v 範數	3	虚部	
v 向量 v v 的單位向量 v 範數	\Re	實部	
v v p v 範數	a	純量	
v	\mathbf{v}	向量	
11 11 12 22 7	$\hat{\mathbf{v}}$	v 的單位向量	
\mathbb{R}^n n 維歐幾里得空間	$\ \mathbf{v}\ $	範數	
	\mathbb{R}^n	n 維歐幾里得空間	