Tutorat logique : TD2 Université François Rabelais

Département informatique de Blois

Logique pour l'informatique

Problème 1

L'opérateur N and noté \uparrow est un opérateur très utilisé en électronique et dans la réalisation des microprocesseurs car il forme un système complet de connecteurs à lui seul. On rappelle que sa table de vérité est telle que :

x	y	$x \uparrow y$
0	0	1
0	1	1
1	0	1
1	1	0

Son symbole associé en électronique est :

FIGURE 1 : Porte logique NAND

- 1. Exprimer l'opérateur "ou exclusif" noté \oplus à l'aide des opérateurs classiques puis uniquement en utilisant Nand.
- 2. On considère la modélisation de l'opérateur \oplus suivante :

Figure 2 : Circuit logique de l'opérateur \oplus ou exclusif

Expliquer pourquoi cette solution n'est pas satisfaisante. Proposer un circuit logique à l'aide de Nand. Pourquoi cette modélisation est meilleure ?

Problème 2

Soit un chiffre $x \in [0, 9]$.

- 1. Donner la représentation binaire de x.
- 2. On considère un vecteur booléen (A, B, C, D) permettant de représenter x en binaire. On souhaite réaliser un affichage de calculatrice telle que :

$$(A, B, C, D) \longrightarrow \Phi \longrightarrow \Box$$

Donner la fonction associée à chaque segment de l'affichage puis l'écriture de la fonction Φ .

Problème 3

Simplifier algébriquement les expressions suivantes :

- 1. $(A \land \neg B \land C) \lor (\neg A \land C) \lor (A \land \neg B) \lor (\neg A \land B \land C)$
- 2. $(A \land B \neg C \land D) \lor (A \land B \land D) \lor (A \land C) \lor (B \land C) \lor (\neg A \land C)$
- 3. $A \lor (\neg B \land C) \lor (A \land D \neg E) \lor (A \land B \land C \land D \land E) \lor (B \land \neg C \land D \neg E) \lor (\neg A \land C \land D)$

Problème 4

Soient a,b,c et d quatre variables booléennes. On considère les formules logiques Φ et Ψ définies telles que :

- $\Phi = 1$ si et seulement si $a + b \le c + d$. Avec "+" représentant l'addition usuelle
- $\Psi = 1$ si et seulement si l'entier dont l'écriture en base 2 de *abcd* est strictement inférieur à 10.

À l'aide des tableaux de Karnaugh, donner l'expression la plus simple de Φ et Ψ .

Problème 5

On considère la formule logique suivante :

$$\varphi = [(\neg a \lor b) \land c] \Leftrightarrow [a \oplus c]$$

- 1. Exprimer φ sous forme normale disjonctive puis sous forme normale conjonctive.
- 2. À l'aide des tableaux de Karnaugh, simplifier les expressions obtenues.

Problème 6

On travaille avec un langage de programmation qui ne dispose que d'une unique instruction:

$$a \leftarrow b \oplus c$$

où a, b, c sont des variables pouvant contenir des entiers codés sur n bits.

L'instruction range dans la variable a l'entier dont la représentation binaire $a_{n-1}...a_1a_0$ est définie telle que :

$$\forall k \in \llbracket 0, n-1 \rrbracket, a_k = b_k \oplus c_k$$

Soient u et v deux variables. Donner une suite d'instructions à exécuter pour échanger les valeurs contenues dans les variables u et v sans utiliser d'autre variable.