MODELIZACIÓN DE PATRONES NEURONALES A PARTIR DE SEÑALES EEG

"Reservoir Computing Echo State Network"

José Javier Gutiérrez Gil

jogugil@alumni.uv.es

Tutora: Yolanda Vives

VNIVERSITAT Grau en Ciència de Dades

DÖVALÈNCIA Escola Tècnica Superior d'Enginyeria (ETSE-UV)

Tabla de contenidos

4. Resultados

5. Conclusiones y Discusión

Introducción: Estado del arte

Research Area Record Count (% of 65,195) Neurosciences Neurology 51,641 (79.210%) Computer Science 33,204 (50.930%) Engineering 32,400 (49.697%) Radiology Nuclear Medicine Medical Imaging 31,437 (48.220%) Mathematical Computational Biology 27,990 (42.933%) Behavioral Sciences 23,667 (36.302%) Communication 22,608 (34.678%) 21,867 (33,541 %) Psychology Mathematics 20,288 (31.119%) Science Technology Other Topics 12,882 (19.759%) Physiology 6,735 (10.331%) Psychiatry 6.269 (9.616%) Pediatrics 6,099 (9.355%) Ophthalmology 5,694 (8.734%) Instruments Instrumentation 4,895 (7.508%) Automation Control Systems 4,438 (6.807%)

Tendencia temporal en investigaciones sobre el procesamiento y uso del EEG.

Investigaciones última década sobre el procesamiento EEG con RC-ESN

Neurociencia y Deep learning

J. Neural Eng. 16 (2019) 051001 (37pp): Deep learning-based electroencephalo-graphy analysis: a systematic review

Objetivos: EEG - RC ESN

Diagrama principal del proceso de desarrollo de RC ESN para señales EEG

Señales EEG: Datos sintéticos

Enfoque Basado en Bandas de Frecuencia

Procesos estocásticos

Incorporación de Patrones Específicos de Edad

Diferencia Amplitud y Frecuencia en onda Beta

Dinámica Temporal : Autorregresivo

20 Sujetos jóvenes Adultos 20 Sujetos Mayores

n_subjects_per_group = 20 n_samples_per_subject = 1000 n_channels = 10

Señales EEG: Datos reales

MyRC (ESN): API-Framework

MyRC (ESN): Config-API

Hiperparámetro	Relación
Cantidad de Neuronas en el Reservorio (N)	$x(t) \in R_N$
Conectividad del Reservorio	$W_{\mathrm{res}} y W_{\mathrm{f} \mathrm{b}}$
Radio espectral	ρ (rho): Magnitud máxima de los valores propios de la matriz de pesos de la capa interna del RC
Función de Activación	f (·) controla la no linealidad de las dinámicas del reservorio
Fuga (α) (leak):	Tasa a la que la actividad de las neuronas en el reservorio decaen con el tiempo.
Ruido (σ)	componente estocástica en las ecuaciones de estado de las neuronas
Dimensión PCA	Redución número neuronas en el estado del RC
Ouput RC	Salida del RC (last, mean, ridge)

MyRC (ESN): Métricas

Gráficos de recurrencia

Momentos en los que un sistema dinámico retorna a estados similares.

Para una serie temporal $(\{X_i\}_{i=1}^N)$, la gráfica recurrente se define como una matriz (R) donde cada elemento $(R_{i,i})$ se determina de la siguiente manera:

$$R_{i,i} = \Theta(\epsilon - \|x_i - x_i\|)$$

O es la función escalón de Heaviside, que es 1 si el argumento es positivo y 0 en caso contrario.

A: señal aleatoria (m = 4 y d = 1), B: determinista (m = 2 y d = 3) y C: caótica (m = 2 y d = 16). Mateos Salgado, Erik & Domínguez, Benjamín. (2011). [9]

Potencial de memoria

Instante de tiempo t en el cual la distancia euclidiana entre el estado inicial y_0 y el estado y_t de la serie temporal cae por debajo de un umbral de tolerancia ϵ

$$t = \min \{ t \in N || y_t - y_0 || < \varepsilon \}$$

t indica primer momento en el cual se detecta que el sistema retorna a un estado similar a la situación inicial. (duración de los patrones recurrentes en los datos de EEG)

RESULTADOS: RECON - PREDICCIÓN

Datos sintéticos

Resultados: No supervisado (Gr)

Matriz similitud

: Matriz de similitud de datos reales preprocesados y con eliminación de artefactos ([0-23]:Sujetos jóvenes adultos; [24-47] sujetos mayores).

Gráficos de Recurrencia

Potencial de memoria

	Valor
Mean young	8.33
Mean older	5.52
T-statistic	2.09
P-value	0.0428

Con un p-valor menor 0.05 podemos indicar que existe suficiente significancia estadística para indicar una diferencia entre las dos clases.

Resultados: No supervisado (K-means)

Métricas agrupación datos reales con eliminación artefactos mediante Kmeans (0:Grupo jóvenes adultos; 1: Grupo Mayores)

Matriz confusión datos reales con eliminación artefactos(0:Grupo jóvenes adultos; 1: Grupo Mayores).

Resultados: Supervisado

Readaout:mlp (Multi-Layer Perceptron Classifier)

Clase	Precisión	Recall	F1-score	Soporte
0	0.80	0.57	0.67	7
1	0.79	0.92	0.85	12
Exactitud	0.79			
Promedio macro	0.79	0.74	0.76	19
Promedio ponderado	0.79	0.79	0.78	19

0: Jóvenes adultos 1: Adultos mayores

Readaout:lin (Regresión ridge)

Clase	Precisión	Recall	F1-score	Soporte
0	0.67	0.86	0.75	7
1	0.90	0.75	0.82	12
Exactitud	0.79			
Promedio macro	0.78	0.80	0.78	19
Promedio ponderado	0.81	0.79	0.79	19

Readaout: svm

	Precisión	Recall	F1-Score	Soporte 🗒	
0	0.37	1.00	0.54	71	
1 Exactitud	0.00	0.00	0.00 0.37	12	
Promedio macro	0.18	0.50	0.27	19	
Promedio ponderad	0.14	0.37	0.20	19	
					0

Conclusiones

			•
Ron	OTI		
Ben	CII		U3
	<u> </u>	•	

Robustez ante ruido.
Obtención dinámica temporal series temporales.
☐ No se necesita obtención de características(Temporales/Frecuenciales).
Menor capacidad computo
☐ Facilidad de implementación

<u>Desventajas</u>

- ☐ Gran sensibilidad ante valores hiperparámetros.
- ☐ Dependencia al tipo de dato y a las características de los mismos.

Discusión: RC-ESN y EEG

- Desafíos en la integración de datos multidimensionales
- Caracterización de la actividad cerebral según la edad
- ☐ Impacto del envejecimiento en la funcionalidad cognitiva

- ☐ Perspectivas futuras y desarrollo del framework
- ☐ Implicaciones clínicas y potencial terapéutico
- ☐ Consideraciones sobre la variabilidad y reproducibilidad del modelo

Discusión: Trabajo futuro

Estudio extensivo basado en los resultados y teorías de neurociencia sobre la distinción entre jóvenes adultos y mayores
Búsqueda automática de hiperparámetros óptimos del Reservoir Computing ESN
Importancia de hiperparámetros en la resolución del problema neurocientífico
Pruebas con la implementación de DeepMyRC para la resolución de este problema u otros similares
Técnicas de extracción características del estado interno del RC-ESN como entrada al readout.
Utilización de la implementación del API del RC para la resolución de otro tipo de problemas asociados al procesado de señales EEG

Bibliografía

- [1] H. Jaeger, "The" echo state" approach to analysing and training recurrent neural networks-with an erratum note'," Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, vol. 148, 01 2001
- [2] G. Tanaka, T. Yamane, J.-B. Heroux, R. Nakane, N. Kanazawa, S. Takeda, and A. Hirose, "Recent advances in physical reservoir computing: A review," Neural Networks, vol. 115, pp. 100-123, 201
- [3] M. Luko sevi cius and H. Jaeger, "Reservoir computing approaches to recurrent neural network training," Computer science review, vol. 3, no. 3, pp. 127–149, 2009.
- [4] L. Lin, C. Jin, Z. Fu, B. Zhang, G. Bin, and S. Wu, "Predictinghealthy older adult's brain age based on structural connectivity networks using artificial neural networks," Computer Methods and Programs in Biomedicine, vol. 125, 12 2015
- [5] A. B. Arrieta, S. Gil-Lopez, I. L. na, M. N. Bilbao, and J. D. Ser, "On the post-hoc explainability of deep echo state networks for timeseries forecasting, image and video classification," in Proceedings of the International Conference on Deep Learning Applications. Location, Country: TECNALIA, Basque Research and Technology Alliance (BRTA), University of the Basque Country (UPV/EHU), 2024
- [6] C. L. Webber Jr and J. P. Zbilut "Recurrence quantification analysis of nonlinear dynamical systems," Tutorials in contemporary nonlinearmethods for the behavioral sciences, vol. 94, no. 2005, pp. 26–94, 200
- [7] Claudio Gallicchio, Alessio Micheli, Luca Pedrelli, Design of deep echo state networks, Neural Networks, Volume 108, 2018, Pages 33-47, ISSN 0893-6080,
- https://doi.org/10.1016/j.neunet.2018.08.002.(https://www.sciencedirect.com/science/article/pii/S0893608018302223)
- [8] Claudio Gallicchio, Alessio Micheli, Luca Pedrelli, Deep reservoir computing: A critical experimental analysis, Neurocomputing, Volume 268, 2017, Pages 87-99, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2016.12.089.
- (https://www.sciencedirect.com/science/article/pii/S0925231217307567)
- [9] Mateos Salgado, Erik & Dominguez, Benjamin. (2011). Análisis de recurrencia visual de temperatura periférica en la evaluación de un tratamiento psicológico del dolor basado en un diseño N = 1. Psicología y Salud. 21. 111-117.