

Technische Hochschule Rosenheim

Fakultät für Informatik

Seminararbeit

im Masterstudiengang Informatik - Schwerpunkt Software Engineering

Thema: Optimisierungsmethoden neuronaler Netze

Autor: Victor Wolf victorwolf@outlook.de

MatNr. 845615

Version vom: 8. November 2019

Betreuer: Prof. Dr. Holaubek

Zusammenfassung

Diese Arbeit wird sich mit verschiedenen Optimisierungsmethoden neuronaler Netze beschäftigen und Sie auf Basis von Beispiel Datensätze evaluieren, wie dem Boston House Price Datensatz.

Eine Optimisierungsmethode ist eine Möglichkeit die Fehlerfunktion E(X) des neuronalen Netzes zu verbessern.

Hierbei wird auf den Lern Prozess des Neuronalen Netzes eingegangen. Besonderen Fokus wird der 'Gradient Descent' einnehmen, da dies die Grundlage des Lernens darstellt. Dieser sucht im mehrdimensionalen Raum die Minima der nichtlinearen Fehlerfunktion und es gibt verschiedene Möglichkeiten diese Suche zu verbessern. Nach der theoretischen Aufarbeitung, werden wir ein paar Eigenschaften über diese Optimisierungsmethoden annehmen und diese anhand der Test Daten überprüfen.

Abstract

This work will focus on explaning the different optimization methods of neural networks and evaluating them on example datasets like the boston house price data. An optimization method is a way to improve the performance of the error function E(X) of the neural network.

Furthermore this work will give a detailed explanation of the learning process of Neural Networks especially focusing on the Gradient Descent, which is the foundation of learning in neural networks. This algorithm aims to find local minima in the Hyperplane of the non-linear error function and there are multiple ways to improve its search. After the Theory, we will assume some properties about those optimization methods and test those assumptions by evaluating the metrics of these neural networks.

Inhaltsverzeichnis 3

Inhaltsverzeichnis

1	Einleitung					4		
2	The	oretisc	che Grundlagen			4		
	2.1	Neuro	onale Netze			4		
	2.2	Gradie	ient Descent			4		
	2.3	Optim	misierungsmethoden			4		
		2.3.1	Stochastic Gradient Descent			4		
		2.3.2	Adagrad			4		
		2.3.3	Adam			4		
3	Eva	luation	n			4		
4	Fazi	it				4		
Lit	terat	urverze	eichnis			5		
Ei	desst	attliche	ne Erklärung			5		

4 Fazit 4

1 Einleitung

2 Theoretische Grundlagen

- 2.1 Neuronale Netze
- 2.2 Gradient Descent
- 2.3 Optimisierungsmethoden
- 2.3.1 Stochastic Gradient Descent
- 2.3.2 Adagrad
- 2.3.3 Adam
- 3 Evaluation
- 4 Fazit

Eidesstattliche Erklärung

Eidesstattliche Erklärung zur Seminararbeit

Ich versichere, die von mir vorgelegte Arbeit selbstständig verfasst zu haben. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Arbeiten anderer entnommen sind, habe ich als entnommen kenntlich gemacht. Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit benutzt habe, sind angegeben. Die Arbeit hat mit gleichem Inhalt bzw. in wesentlichen Teilen noch keiner anderen Prüfungsbehörde vorgelegen.

Unierschrift: Ori, Datum	Unterschrift:	Ort, Datum
--------------------------	---------------	------------