Point-wise Convergence

Alvis Zhao **April 28, 2019**

Point-wise Convergence

Fourier series is defined to be

$$\sum \hat{f}(\theta)e^{in\theta}$$

with partial sums

$$S_N f = \sum_{-N}^{N} \hat{f}(\theta) e^{in\theta}$$

Where the Fourier coefficient for $f \in L^1(\mathbb{T})$, $\mathbb{T} = [-\pi, \pi]$ is defined by

$$\hat{f} = \frac{1}{2\pi} \int_{\mathbb{T}} f(\theta) e^{-in\theta} d\theta$$

To have a nicer form of the $S_N f$ to work with, we want write it as the convolution of f with Dirichlet kernel $D_N(\theta) = \sum_{-N}^N e^{in\theta}$ by next proposition. The convolution of two L^1 function is defined by

$$(f * g)(\theta) = \frac{1}{2\pi} \int_{\mathbb{T}} f(\phi)g(\theta - \phi)d\phi$$

Following discussions will use Lebesgue's Dominated Convergence Theorem which is stated here without providing proof.

Theorem. Dominated convergence theorem. Let f_n be a sequence in L^1 such that $f_n \to f$ a.e., and there exists a non-negative $g \in L^1$ such that $|f_n| \leq g$ for all n. Then $f \in L^1$ and $\int f = \lim_{n \to \infty} \int f_n$.

Proposition. Suppose that $\sum_{n\in\mathbb{Z}} |A_n| < \infty$ and we have an absolutely convergent Fourier series $K(\theta) = \sum_{n \in \mathbb{Z}} A_n e^{in\theta}$. Then for any $f \in L^1(\mathbb{T})$ we have

$$(f*K)(\theta) = \sum_{n\in\mathbb{Z}} A_n \hat{f}(n) e^{in\theta}$$

Proof.

$$f(\theta - \phi)K(\phi) = \sum A_n e^{in\phi} f(\theta - \phi)$$

To apply dominated convergence theorem, we need to check the RHS converges a.e. and bounded by a integrable function. Since $f \in L^1$, $|f| \in L^1$, K is bounded by $|\sum A_n|$, this series is bounded by $|f||\sum A_n|$ and converges by assumption. Thus,

$$\int_{\mathbb{T}} \sum A_n e^{in\phi} f(\theta - \phi) = \sum A_n \int_{\mathbb{T}} e^{in\phi} f(\theta - \phi) d\phi$$

$$= \sum A_n \int_{\mathbb{T}} e^{in\phi} f(\theta - \phi) d\phi$$

$$= \sum A_n \int_{\mathbb{T}} e^{in(\theta - \psi)} f(\psi) d\psi$$

$$= \sum A_n \int_{\mathbb{T}} e^{in\theta} e^{-in\psi} f(\psi) d\psi$$

$$= 2\pi \sum A_n \hat{f}(n) e^{in\theta}$$

Let $1_{[-N,N]}(n)$ be the indicator function, the Dirichlet Kernel $(D_N f) = \sum_{-N}^{N}$, above proposition applied to $S_N f = \sum_{N} 1_{[-N,N]}(n) \hat{f}(n) e^{in\theta}$, we have

$$S_N f(\theta) = (D_N * f)(\theta)$$

Lemma. Dirichlet kernel can be equivalently expressed as

$$D_N(heta) = rac{\sin(N+rac{1}{2})(heta)}{\sin(heta/2)} \quad heta
eq 0, \pm 2\pi...$$

Proof. This is proved by calculating the finite sum. Recall that $\sum_{0}^{N} ar^n = a \frac{1-r^{N+1}}{1-r}$ Let $r = e^{i\theta}$, $a = r^{-n}$

$$\sum_{-N}^{N} r^{n} = r^{-N} \frac{1 - r^{2N+1}}{1 - r}$$

$$= \frac{r^{-N-1/2}}{r^{-N-1/2}} r^{-N} \frac{1 - r^{2N+1}}{1 - r}$$

$$= \frac{r^{-N-1/2} - r^{N+1/2}}{r^{-1/2} - r^{1/2}}$$

Substitute $e^{i\theta}$ back, and use $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$ we have

$$\begin{split} \sum_{-N}^{N} e^{in\theta} &= \frac{e^{(-N-1/2)i\theta} - e^{(N+1/2)i\theta}}{e^{(-1/2)i\theta} - e^{(1/2)i\theta}} \\ &= \frac{-2i\sin((N+1/2)\theta)}{-2i\sin(\theta/2)} \\ &= \frac{\sin(N+1/2)(\theta)}{\sin(\theta/2)} \end{split}$$

Thus, partial sums can be rewritten as

$$S_N f = \frac{1}{2\pi} \int_{\mathbb{T}} \frac{\sin(N + \frac{1}{2})(\phi)}{\sin(\phi/2)} f(\theta - \phi) d\phi$$

A fundamental tool is given by the next theorem.

Theorem. Riemann Lebesgue Lemma. For any $f \in L^1(\mathbb{T})$, $\lim_{|n| \to \infty} \hat{f}(n) = 0$.

Proof. We first make the change of variable $\phi = \theta + \pi/n$, the interval doesn't change since for periodic functions $\int_a^{a+2\pi} f(x) dx = \int_0^{2\pi} f(x) dx$. Thus, we have

$$\begin{split} 2\pi \hat{f}(n) &= \int_{\mathbb{T}} f(\theta) e^{-in\theta} d\theta \\ &= \int_{\mathbb{T}} f(\phi - \pi/n) e^{-in\phi - \pi/n} d\phi \\ &= \int_{\mathbb{T}} f(\phi - \pi/n) e^{-in\phi} e^{-i\pi} d\phi \\ &= -\int_{\mathbb{T}} f(\phi - \pi/n) e^{-in\phi} d\phi \end{split}$$

Adding above equation to $2\pi\hat{f}(n)=\int_{\mathbb{T}}f(\phi)e^{-in\phi}d\phi$, we have

$$4\pi\hat{f}(n) = \int_{\mathbb{T}} (f(\phi - \pi/n) - f(\phi))e^{-in\phi}d\theta$$

If f is continuous on \mathbb{T} , f is uniformly continuous on \mathbb{T} . Thus $f(\phi - \pi/n) - f(\phi) \to 0$ as $|n| \to 0$ uniformly, hence $\hat{f}(n) \to 0$.

For any $f \in L^1$, we find g continuous such that $|f - g|_{L^1} = \frac{1}{2\pi} \int |f(x) - g(x)| dx < \varepsilon$ for any $\varepsilon > 0$. By linearity, we have

$$\hat{f}(n) = \hat{g}(n) + \widehat{(f-g)}(n)$$

We already showed $\hat{g}(n) \rightarrow 0$. Also

$$\begin{split} |(\widehat{f-g})(n)| &= |\frac{1}{2\pi} \int_{\mathbb{T}} (f(\theta) - g(\theta)) e^{-in\theta} d\theta| \\ &\leqslant \frac{1}{2\pi} \int_{\mathbb{T}} |f(\theta) - g(\theta)| |e^{-in\theta}| d\theta \\ &\leqslant \varepsilon \end{split}$$

Thus $\hat{f}(n) \leq \varepsilon$ completing this proof.

Now we are in the position to prove point-wise convergence theorems. First, recall that

$$S_N f = rac{1}{2\pi} \int_{\mathbb{T}} rac{\sin(N + rac{1}{2})(\phi)}{\sin(\phi/2)} f(\theta - \phi) d\phi$$

We will simplify this equation in two steps: we first replace $\sin(\phi/2)$ by the function $\phi/2$, then replace the domain of integration \mathbb{T} by a small interval around $\phi=0$. Since Dirichlet Kernel is even, we have

$$S_N f = \frac{1}{2\pi} \int_0^{\pi} \left(f(\theta - \phi) + f(\theta + \phi) \right) \frac{\sin(N + \frac{1}{2})(\phi)}{\sin(\phi/2)} d\phi$$

Since $\frac{1}{2\pi} \int_{\mathbb{T}} \frac{\sin(N+\frac{1}{2})(\phi)}{\sin(\phi/2)} d\phi = 1$, for any constant *S*,

$$S_N f - S = \frac{1}{2\pi} \int_0^{\pi} (f(\theta - \phi) + f(\theta + \phi) - 2S) \frac{\sin(N + \frac{1}{2})(\phi)}{\sin(\phi/2)} d\phi$$

First consider the function

$$\phi \to \frac{1}{\sin(\phi/2)} - \frac{2}{\phi}$$

This is bounded and continuous on $[-\pi, \pi]$. Since it is the sum of two continuous functions on $[-\pi, 0)$ and $(0, \pi]$. Also, by l'Hospital's rule, the difference tends to zero at $\phi = 0$, thus it is also continuous at $\phi = 0$. Then boundedness follows.

Proposition. The following integral goes to zero as $n \to \infty$

$$\int_{0}^{\pi} (f(\theta - \phi) + f(\theta + \phi)) (\frac{1}{\sin(\phi/2)} - \frac{2}{\phi}) (\sin(N + \frac{1}{2})) \phi d\phi$$

Proof. First since $f \in L^1$, $(\frac{1}{\sin(2/\pi)} - \frac{2}{\phi})$ is bounded, $F_{\theta}(\phi)$ is L^1 . Also notice that

$$\sin(N+\frac{1}{2})\phi = \frac{e^{i(N+\frac{1}{2})\phi} - e^{-i(N+\frac{1}{2})\phi}}{2i} = \frac{e^{iN\phi}e^{\frac{i\phi}{2}} - e^{-iN\phi}e^{\frac{i\phi}{2}}}{2i}$$

Riemann Lebesgue Lemma implies

$$2\pi \hat{F}_{\theta}(\phi) = \int_{\mathbb{T}} f(\theta - \phi) + f(\theta + \phi) \left(\frac{1}{\sin(\phi/2)} - \frac{2}{\phi}\right) e^{-iN\phi} d\phi \to 0$$

Which implies

$$\int_{\mathbb{T}} (f(\theta-\phi)+f(\theta+\phi))(\frac{1}{\sin(\phi/2)}-\frac{2}{\phi})(\sin(N+\frac{1}{2}))\phi d\phi \to 0$$

since the integrand is an odd function, it tends to zero on $[0,\pi]$, which finishes the proof.

Thus, we have reduced to proving the pointwise convergence of

$$\lim_{N} \int_{0}^{\pi} (f(\theta - \phi) + f(\theta + \phi) - 2S) \frac{\sin(N + \frac{1}{2})(\phi)}{\phi} d\phi$$

Lemma.

$$\lim_{N} \int_{\delta}^{\pi} (f(\theta - \phi) + f(\theta + \phi) - 2S) \frac{\sin(N + \frac{1}{2})(\phi)}{\phi} d\phi = 0, \quad \text{for small } \delta > 0$$

Proof. Since $\frac{f(\theta-\phi)+f(\theta+\phi)-2S}{\phi}\in L^1$, Riemann Lebesgue Lemma implies the desired result. \Box

Theorem. Let $f \in L^1(\mathbb{T})$, the partial sums $S_N f(\theta)$ converges to a limit S as $N \to \infty \Leftrightarrow$ for some $\delta \in (0, \pi)$, we have

$$\lim_{N} \int_{0}^{\delta} \left(f(\theta - \phi) + f(\theta + \phi) - 2S \right) \frac{\sin(N + \frac{1}{2})(\phi)}{\phi} d\phi = 0 \tag{*}$$

Note: if there exists one such δ_0 , then it above holds for all $\delta \in (0, \pi)$ since the integral on the interval from δ_0, δ tends to zero by Riemann Lebesgue lemma.

Theorem. Dini's theorem. Suppose that f satisfies a Dini condition at θ , meaning that for some $\delta > 0$ and some real number S

$$\int_0^{\delta} \frac{|f(\theta+\phi)+f(\theta-\phi)-2S|}{\phi} d\phi < \infty$$

Proof. If Dini's condition is satisfied, we apply Riemann Lebesgue lemma to $\frac{|f(\theta+\phi)+f(\theta-\phi)-2S|}{\phi}$ to get

$$\lim_{N} \int_{0}^{\delta} \left(f(\theta - \phi) + f(\theta + \phi) - 2S \right) \frac{\sin(N + \frac{1}{2})(\phi)}{\phi} d\phi = 0$$

which by previous theorem implies the pointwise convergence of $S_N f$.

Corollary. Suppose that f satisfies a symmetric Hölder condition at θ , meaning

$$|f(\theta - \phi) + f(\theta + \phi) - 2f(\theta)| \le C|\phi|^{\alpha}$$

for $0 < \phi < \delta$, where $0 < \alpha < 1$. Then $\lim_N S_N f(\theta) = f(\theta)$.

Proof.

$$\int_{0}^{\delta} \frac{|f(\theta - \phi) + f(\theta + \phi) - 2f(\theta)|}{\phi} d\phi \leqslant \int_{0}^{\delta} C\phi^{\alpha - 1} d\phi$$

$$= \frac{C}{\alpha} \phi^{\alpha} |_{0}^{\delta}$$

$$= \frac{C}{\alpha} \delta^{\alpha}$$

$$\leqslant \frac{C\pi}{\alpha}$$

This shows that Hölder condition implies Dini condition.

Before stating the main theorem, we need to introduce some tools.

Sine Integral

Sine integral is defined to be

$$Si(x) = \frac{2}{\pi} \int_0^x \frac{\sin t}{t} dt \quad 0 \leqslant x < \infty$$

Sine integral has three properties:

- Si(0) = 0, $\lim_{x \to \infty} Si(x) = 1$.
- $Si(x) \le Si(\pi) = 1.18...$ for all $x \ge 0$.

• Si(x) has local maxima at π , 3π , ... and local minima at 2π , 4π , ...

Proof. First note that $\lim_{n\to\infty} Si(x)$ exists since

$$\frac{\pi}{2} \lim_{n \to \infty} Si(x) = \sum_{0}^{\infty} \int_{n\pi}^{(n+1)\pi} \frac{\sin t}{t} \quad \text{converges}$$

To find its value, by Riemann Lebesgue Lemma

$$\lim_{n \to \infty} \int_{\mathbb{T}} \left(\frac{1}{\sin(\phi/2)} - \frac{2}{\phi} \right) \sin(n + \frac{1}{2}) \phi d\phi = 0$$

And since

$$\lim_{n \to \infty} \int_{\mathbb{T}} \frac{\sin(n + \frac{1}{2})\phi}{\sin(\phi/2)} d\phi = \lim_{n \to \infty} \int_{\mathbb{T}} D_n(\phi) d\phi = 2\pi$$

Also, since the integrand is even, we have

$$\frac{2}{\pi} \lim_{n \to \infty} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})\phi}{\phi} d\phi = 1$$

The left hand side is equivalent to $Si(n\pi + \frac{\pi}{2})$ by a change of variable $t = x\sin(n+1/2)$, and thus $\lim_{n\to\infty} Si(n\pi + \frac{\pi}{2}) = 1$.

The second and third properties is simply proved by finding where the derivative equals zero and compare local maxima values. \Box

Facts on Measure Theory

We consider half intervals and one side continuous functions in the following discussion. Let hintervals denote the half intervals. Here we choose to use (a,b] and right continuous functions. Note that the whole theory is the same if we choose to use [a,b] and left continuous functions.

Definition. We define **Lebesgue-Stieltjes measure** associated to F, usually denote this by μ_F , to be

$$\mu(E) = \inf\{\sum_{1}^{n} [F(b_j) - F(a_j)] : E \subset \bigcup_{1}^{\infty} (a_j, b_j]\}$$

An important measure, **Lebesgue measure** is the complete measure μ_F associated to the function F(x) = x.

Definition. If $F : \mathbb{R} \to \mathbb{C}$ and $x \in \mathbb{R}$. The **total variation function** of f is defined to be

$$T_F(x) = \sup \sum_{i=1}^{N} |F(x_i) - F(x_{i-1})| \quad -\infty = x_0 < x_1 < \dots < x_n = x \ n \in \mathbb{N}$$

If $T_F(\infty) = \lim_{N \to \infty} T_F(x)$ is finite, we say f is of **bounded variation** (on \mathbb{R}). We denote the space of all such F by BV. $\sup_{i=1}^N |F(x_i) - F(x_{i-1})|$ $a = x_0 < x_1 < ... < x_n = b$ $n \in \mathbb{N}$ is called the **total variation** of F on [a,b].

Theorem. If $F : \mathbb{R} \to \mathbb{R}$ $F \in BV \Leftrightarrow F$ is the difference of two bounded increasing functions; in particular if $F \in BV$, $F = \frac{1}{2}(T_F + F) - \frac{1}{2}(T_F - F)$

Since the discontinuities of increasing functions is at most countable, thus we have the following proposition.

Proposition. If $F \in BV$, then the discontinuity of F is at most countable.

For F of bounded variations, $F = f^+ + f^-$, we assign a signed measure to F by $\mu_F = \mu_{f^+} + \mu_{f^-}$. We denote the integral of a function g with respect to the measure μ_F by $\int g dF$ or $\int g(x) dF(x)$; such integrals are called **Lebesgue-Stieltjes** integrals.

Theorem. Integral by part formula. If F and G are in NBV and at least on of them is continuous, then for $-\infty < a < b < infty$,

$$\int_{(a,b]} FdG + \int_{(a,b]} GdF = F(b)G(b) - F(a)G(a)$$

Main Theorem

Theorem. Suppose that f is of bounded variation on $[\theta - \delta, \theta + \delta]$ for some $\delta > 0$. Then $\lim_{N} S_N f(\theta) = \frac{1}{2} [f(\theta + 0) + f(\theta - 0)].$ $(f(\theta + 0) \equiv \lim_{x \to \theta^+} f(\theta)).$

Proof. We write $m = N + \frac{1}{2}$, $F(\phi) = \frac{1}{2}(f(\theta + \phi) + f(\theta - \phi))$. S = F(0 + 0); from equation (*) we have

$$S_N - S = \frac{2}{\pi} \int_0^{\delta} \left(\frac{f(\theta + \phi) + f(\theta - \phi)}{2} - S \right) \frac{\sin m\phi}{\phi} d\phi + o$$

Where o denotes the error term when we performed reductions. Also $\frac{2}{\pi} \frac{\sin m\phi}{\phi} d\phi = dSi(m\phi)$, above equation becomes

$$S_N - S = \int_0^{\delta} (F(\phi) - S) dSi(m\phi) + o$$

On the interval $[0, \delta]$ Si(x) and f is of bounded variation, and Si(x) is continuous. We set $F(\phi) = F(\phi - 0)$ where F is discontinuous at ϕ . This makes F left continuous. We could do this because F is of bounded variation, and we only redefined countable many points, so set of redefined points has measure zero in $\mu_{Si(m\phi)} = \frac{\sin m\phi}{\phi} \mu_{\phi}$. Integral by part implies:

$$S_N - S = [F(\delta - 0) - S]Si(m\delta) - \int_0^{\delta} Si(m\phi)dF(\phi) + o$$

 $Si(\infty) = 1$ and Si(x) bounded by $Si(\pi)$, so dominated convergence theorem implies:

$$\lim_{N} \int_{0}^{\delta} Si(m\phi) dF(\phi) = \int_{0}^{\delta} dF(\theta) = F(\delta) - F(0)$$

Since $F(\phi)$ is continuous at $\phi = 0$, F(0) = F(0+0) = S, $\lim_{N} o = 0$.

$$\lim_{N} S_{N} - S = [F(\delta - 0) - S] - [F(\delta - 0) - S] = 0$$