为了感受 VPN 的工作过程,我们浏览图 8-27 场景中的一个简单例子。当总部中的一台主机向某旅馆中的某销售员发送一个 IP 数据报时,总部中的网关路由器将经典的 IPv4 转换成为 IPsec 数据报,然后将该 IPsec 数据报转发进因特网。该 IPsec 数据报实际上具有传统的 IPv4 首部,因此在公共因特网中的路由器处理该数据报,仿佛它对路由器而言是一个普通的 IPv4 数据报。但是如图 8-27 所示,IPsec 数据报的载荷包括了一个 IPsec 首部,该首部被用于 IPsec 处理;此外,IPsec 数据报的载荷是被加密的。当该 IPsec 数据报到达销售员的便携机时,便携机的操作系统解密载荷(并提供其他安全服务,如验证数据完整性),并将解密的载荷传递给上层协议(例如,给TCP或UDP)。

我们刚刚给出了某机构能够应用 IPsec 生成一个 VPN 的高层面的展望。为了通过局部看全局,我们已经去掉了许多重要的细节。现在我们来进行更深入的学习。

8.7.2 AH 协议和 ESP 协议

IPsec 是一个相当复杂的整体,即它被定义为 10 多个 RFC 文档。两个重要的文档是 RFC 4301 和 RFC 6071,前者描述了总体 IP 安全体系结构,后者提供了一个 IPsec 协议集 的概述。在本教科书中我们的目标与往常一样,并不只是一味重复枯燥和晦涩难解的 RFC 文档,而是采用一种更具可操作性和易于教学的方法来描述协议。

在 IPsec 协议族中,有两个主要协议: **鉴别首部** (Authentication Header, AH) 协议和**封装安全性载荷** (Encapsulation Security Payload, ESP) 协议。当某源 IPsec 实体(通常是一台主机或路由器)向一个目的实体(通常也是一台主机或路由器)发送安全数据报时,它可以使用 AH 协议或 ESP 协议来做到。AH 协议提供源鉴别和数据完整性服务,但不提供机密性服务。ESP 协议提供了源鉴别、数据完整性和机密性服务。因为机密性通常对VPN 和其他 IPsec 应用是至关重要的,所以 ESP 协议的使用比 AH 协议要广泛得多。为了讲清 IPsec 并且避免许多难题,我们将此后专门关注 ESP 协议。鼓励还想学习 AH 协议的读者研讨相关的 RFC 和其他在线资源。

8.7.3 安全关联

IPsec 数据报在网络实体对之间发送,例如两台主机之间、两台路由器之间或一台主机和一台路由器之间。在从源实体向目的实体发送 IPsec 数据报之前,源和目的实体创建了一个网络层的逻辑连接。这个逻辑连接称为安全关联(Security Association, SA)。一个SA是一个单工逻辑连接;也就是说,它是从源到目的地单向的。如果两个实体要互相发送安全数据报,则需创建两个SA,每个方向一个。

例如,再次考虑图 8-27 中那个机构的 VPN。该机构由一个总部、一个分支机构和 n 个旅行销售员组成。为了举例的缘故,我们假设在总部和分支机构之间有双向 IPsec 流量,并且总部和销售员之间也有双向 IPsec 流量。在这个 VPN 中,有多少个 SA 呢?为了回答这个问题,注意到在总部网关路由器和分支机构网关路由器之间有两个 SA (一个方向一个);对每个销售员的便携机而言,在总部网关和便携机之间有两个 SA (仍是一个方向一个)。因此,总计为 (2+2n) 个 SA。然而记住,并非从网关路由器或便携机发送进因特网的所有流量都将是 IPsec 安全的。例如,总部中的一台主机可能要访问公共因特网中的某 Web 服务器(例如 Amazon 或谷歌)。因此,该网关路由器(或该便携机)将发送经典的 IPv4 数据报和安全的 IPsec 数据报进人因特网。