

ICEG Interoperability Training

MS Teams (120min)

4 december 2020 #beinterop

Agreements

- Audience is muted and webcam is turned off.
- Recording of the session?
- Questions, comments or suggestions can be shared via the chat function of MS Teams.
 - Interaction is encouraged!+1 of -1
- A yes/no question can be answered simply and quickly via
 chat: Agree= +1 Disagree= -1

What are your **expectations**?

(reply via chat)

Agenda

10:05 - 10:50 - *plenary*

Introduction by Seth van Hooland 10' Plenary 40'

10:50 - 11:00

BREAK '10

11:00 - 11:45 - <mark>break-out</mark>

Case Saint Nicholas 45'

11:45 - 12:00 - *plenary*

Wrap-up

10:05 - 10:15 - Introduction

Introduction by Seth Van Hooland

Introduction ISA² EC (10')

- Context: why care about interoperability?
- Core Vocabularies : role and dependencies
- Bigger perspective : SDGR + Data Spaces

Interoperability: Why care?

Preparing for the SDG Regulation

The 21 procedures covered by the SDG Regulation

Annex II procedures, not listing the additional procedures of the 4 mentioned directives

BIRTH		MOV	MOVING		
1	Requesting proof of registration of birth	10	Registering a change of address		
		11	Registering a motor vehicle (EUCARIS)		
RES	RESIDENCE		Obtaining stickers for the use of the national road infrastructure		
2	Requesting proof of residence	13	Obtaining emission stickers (EUCARIS)		
STU	STUDYING		RETIRING		
3	Applying for a study grant	14	Claiming pension and pre-retirement benefits (EESSI)		
4	Initial application for admission (ECDI)	15	Requesting information on the data related to pension (EESSI)		
5	5 Academic recognition of procedures		STARTING, RUNNING AND CLOSING A BUSINESS		
wo	WORKING		Notification of business activity (BRIS)		
6	Request for determination of social security benefits (EESSI)	17	Registration of employer with compulsory pension and insurance schemes (EESSI)		
7	Changes in circumstances relating to social security (EESSI)	18	Registration of employee with compulsory pension and insurance schemes (EESSI)		
	Changes in circumstances relating to social security (EESSI)	19	Submitting a corporate tax declaration		
8	Application for European Health Insurance Card	20	Notification to the social security schemes of the end of contract (EESSI)		
9	Submitting an income tax declaration	21	Payment of social contributions for employees		

10:15 - 10:50 - Plenary

Levels of interoperability

Governance

Semantic data

Tooling

The ability of **different autonomous organizations or systems** to **communicate and collaborate** with each other.

Interoperability: Why important?

Local government

> **1000** public services

> 250 information systems

> **1500** public administrations

Semantic interoperability

Applications look at the real world from different perspectives Information is structured/ modeled from 1 perspective Authentic sources exist as silos Multiple costs to linked information Impact on quality and efficiency of service

4 levels of interoperability

Persistent Identifiers: URIs

Dereferencable HTTP URIS

Standardised Information (RDF)

Links to other information

Persistent Identifiers: URIs

http://data.vlaanderen.be/id/adres/3706808

Dereferencable HTTP URIS

Standardised Information (RDF)

Links to other information

Koningin Maria Hendrikaplein 70, 9000 Gent

Persistent Identifiers: URIs

Dereferencable HTTP URIS

http://data.vlaanderen.be/id/adres/3706808

Persistent Identifiers: URIs

Dereferencable HTTP URIS

Standardised Information (RDF)

http://data.vlaanderen.be/ns/adres

https://www.w3.org/ns/locn#adminUnitL2

Links to other information

Persistent Identifiers: URIs

Dereferencable HTTP URIS

Standardised Information (RDF)

Links to other information

data.vlaanderen.be/id/organisatie/OVO002949

Agentschap Informatie Vlaanderen

http://data.vlaanderen.be/id/adres/3706808

Koningin Maria Hendrikaplein 70 9000 Gent

Technical interoperability: URI's

Governance: ICEG process and method

Scalable process for registering, developing, changing and phasing

out data standards.

Abstract: French, Dutch

Full paper: English

INFORMATIE PROCESS AND METHOD FOR THE DEVELOPMENT OF **DATA STANDARDS** Version /// 1.0 Publication date /// 24 may 2019

W3C, IEEE, IETF, IAB en ISA, Open Stand, OSLO

Governance: ICEG mission statement and roles

The **ICEG* review group 'open standards**' has a permanent character and is responsible for the central coordination and follow-up of the work related to the standardisation of information.

Mission aligned to the **existing ICEG collaboration agreement** between the federal, regional and community authorities (dd. 2013-08-26).

The work is part of the standardisation of:

- •meaning of the information (semantic),
- •syntax (grammar) and technical standards for the exchange of the information
- metadata for discoverability ('data on data').

In addition, the working group monitors

- mutual consistency of standards,
- •international standards that impact governments in Belgium
- •generic development and the change process.

The working group on data standards gathers on a regular basis.

lt's all about the context

I want to exchange data

JSON

```
"Fietsteller-Zuid": {
    "type":
"BicycleCounter",
    "city": "Ghent",
    "today": "100"
```


But how do we understand each other?

JSON

```
"Fietsteller-Zuid": {
    "type":
"BicycleCounter",
    "city": "Ghent",
    "today": "100"
```


Table / CSV / Spreadsheet

name	type	location	number
F7 Gent-Kortrijk	BikePassageCounter	Waregem	250

We know, but machines don't


```
<Fietsteller-Zuid> <type> <BicycleCounter>
<Fietsteller-F7> <type> <BikePassageCounter>
<Fietsteller-Zuid> <today> <100>
<Fietsteller-F7> <number> <250>
```

- → BicycleCounter is the same as a BikePassageCounter
- → *Number* basically means the same as *today* in this context

```
<Fietsteller-Zuid> <type> <BicycleCounter>
  <Fietsteller-F7> <type> <BikePassageCounter>
  <Fietsteller-Zuid> <today> <100>
  <Fietsteller-F7> <number> <250>

https://wikipedia.org/BikeCounter
```

But machines only get a human readable description (HTML)

URI = Uniform **R**esource **I**dentifier

We use URIs that provide both a human and machine readable description

```
<Fietsteller-Zuid> <type> <BicycleCounter>
<Fietsteller-F7> <type> <BikePassageCounter>
<Fietsteller-Zuid> <today> <100>
<Fietsteller-F7> <number> <250>
```

https://data.vlaanderen.be/ns/example#BikeCounter

<https://data.vlaanderen.be/ns/mobiliteit#Artikel.heeftMobiliteitsmaatregel> a owl:ObjectProperty;
rdfs:label "heeft mobiliteitsmaatregel"@nl;
rdfs:comment "Mobiliteitsmaatregel die beschreven staat in het artikel."@nl;
rdfs:comment "Mobiliteitsmaatregel die beschreven staat in het artikel."@nl;
rdfs:isDefinedBy chttps://data.vlaanderen.be/ns/mobiliteit>;
rdfs:range chttps://data.vlaanderen.be/ns/mobiliteit#Mobiliteitsmaatregel> .

<https://data.vlaanderen.be/ns/mobiliteit#Bevestiging.bevestigtAan> a owl:ObjectProperty;
rdfs:label "bevestigt aan'@nl;
rdfs:domain chttps://data.vlaanderen.be/ns/mobiliteit#Bevestiging);
rdfs:domain chttps://data.vlaanderen.be/ns/mobiliteit#Bevestiging>;
rdfs:isDefinedBy chttps://data.vlaanderen.be/ns/mobiliteit*

Human readable

Machine readable

Applying context and URI's to our example, creating JSON-LD

```
"@context": {
  "BicycleCounter": "https://data.vlaanderen.be/ns/example#BikeCounter"
  "today": "https://data.vlaanderen.be/ns/example#totalNumberOfBicycles"
"@id": "https://example.org/id/Fietsteller-Zuid",
"@type": "BicycleCounter",
"today": 100
```

```
"@context": {
  "BikePassageCounter": "https://data.vlaanderen.be/ns/example#BikeCounter"
  "number": "https://data.vlaanderen.be/ns/example#totalNumberOfBicycles"
"@id": "https://example.org/id/Fietsteller-F7",
"@type": "BikePassageCounter",
"number": 250
```


Wocabularies & Application Profiles

Vocabularies contain a list of terms per domain

→ For example: address, organization, person, ...

4. Klassen

Deze sectie geeft een formele definitie aan elke klasse.

Klasse Adreslocator

Туре	Klasse
URI	https://data.vlaanderen.be/ns/adres#Adreslocator
Definitie	Menselyk lessbare aanduiding of naam die een gebruiker of applicatie toelaat om het adres te onderscheiden van naburige adressen in de straat, de administratieve eenheid etc waarin het adres ligt.

Klasse Adresseerbaar Object

Туре	Klasse	
URI	https://data.vlaanderen.be/ns/adres#AdresseerbaarObject	
Definitie	Definitie Geografisch object dat met een adres kan worden geïdentificeerd.	
Gebruik	Is abstract, ttz het type adresseerbaar object moet altijd worden opgegeven (vb gebouweenheid, perceel).	

Klasse Adresuitbreiding

Туре	Klasse
URI	https://data.vlaanderen.be/ns/adresmAdresuitbreiding
Definitie	Bijkomende gegevens mbt. het. adres.
Gebruik	Gegevens die officieel geen deel uitmaken ve adres, by de verdieping of de provincie

Klasse Belgisch Adres

Туре	Klasse
URI	https://data.vlaanderen.be/ns/adres#Adres
Specialisatie van	http://www.w3.org/ns/prov4Entity
Definitie	Informatie die toelaat om op een gestructureerde en unieke manier te verwijzen naar een gebouweenheid, een ligplaats, een

Vocabularies & **Application Profiles**

Application profiles determine which data must be exchanged

→ For example: a street name

Straatnaam

Beschrijving

Adrescomponent met de naam die officieel werd toegekend aan een straat (baan, doorgang, plein) of aan een gehucht en waaraan adressen kunnen zijn gekoppeld.

Eigenschappen

Voor deze entiteit zijn de volgende eigenschappen gedefinieerd: <u>homoniem toevoeging</u>, <u>is toegekend door, status, straatnaam</u>.

Eigenschap	Verwacht Type	Kardinaliteit	Beschrijving	Gebruik	Codelijst
homoniem toevoeging	String	01	Toevoeging om dubbele straatnamen (straatnamen met dezelfde naam maar andere ligging in de gemeente en eigen adressen) van elkaar te onderscheiden.		
is toegekend door	Gemeente	1	Agent die de straatnaam heeft toegekend.	In België is dit de gemeente.	
status	Statuswaarde	1	Actuele toestand van de straatnaam.		<u>Link</u>
straatnaam	GeografischeNaam	1*	Naam vd straat.		

I have an API that publishes semantic data

Is my data in line with these standards? (compliance)

- → Technical contracts as SHACL* ensure this.
 - A document with a set of conditions

```
dienst:PublicServiceShape
    a sh:NodeShape;
    sh:targetClass <a href="http://purl.org/vocab/cpsv#PublicService">http://purl.org/vocab/cpsv#PublicService</a>;
    sh:property |
    sh:name "naam";
    sh:description "Officiële naam van de publieke dienstverlening.";
    sh:datatype <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#langString">http://www.w3.org/1999/02/22-rdf-syntax-ns#langString</a>;
    sh:minCount 1;
    sh:maxCount 1;
    sh:path <a href="http://purl.org/dc/terms/title">http://purl.org/dc/terms/title</a>;
    sh:path <a href="http://purl.org/dc/terms/title">http://purl.org/dc/terms/title</a>;
    sh:property |
    sh:name "heeftVerantwoordelijke";
    sh:dass
    sh:description "Publieke organisatie die verantwoordelijk is voor het aanbieden en beheren van de publieke dienstverlening.";
    sh:elass <a href="http://data.europa.eu/m8g/PublicOrganisation">http://data.europa.eu/m8g/PublicOrganisation</a>;
    sh:minCount 1;
    sh:maxCount 1;
    sh:maxCount 1;
    sh:maxCount 1;
    sh:path <a href="http://data.europa.eu/m8g/hasCompetentAuthority">http://data.europa.eu/m8g/hasCompetentAuthority</a>;
    sh:path <a href="http://data.europa.eu/m8g/hasCompetentAuthority">http://data.europa.eu/m8g/hasCompetentAuthority</a>;
```


Tooling: SHACL-validator

Europe provides tools to do this automatically: RDF validator

- Frontend
- **REST API**
- SOAP API

Flanders built its own frontend on top of the EU backend

Case "Saint Nicholas"

Exercise

- In groups (NL, FR, ENG) we will go through the exercise of making our own implementation model.
- The purpose is to get familiar with building implementation models.

[FR] - Thierry	[FR] - Olivier-Pascal	[ENG] - Raf/Eveline	[NL] - Dwight	[NL] - Liesbet
Raphaelle Claude (Archives de l'Etat en Belgique)	Patrick Legrand (SPF Finance)	Pieter Huybrechts (Agentschap Plantentuin Meise)	Wouter Claes (Koninklijke Musea voor Kunst en Geschiedenis)	Ann Van Camp (KBR, Koninklijke Bibliotheek van België)
Maxime Doyen (BCSS)	Stefano Tarallo (SPF Finances)	Eric Laureys (Belspo)	Kris Neyts (NBB)	Tom Bultynck (FOD BOSA)
Eric Danon (Belspo)	Olesya Lee (SPF Finances)	Levi Boey (Buza)	Valerie Vrancken (Rijksarchief)	Rudy Staelens (FOD BOSA)
Javier Sawchik (Federal agency for medicines and health products)	Antoine Bouxom (SPF Finances)	Gaetan Muyldermans (Sciensano)	Ann Pannecoucke (Regie der Gebouwen)	Goedele Hubrechts (FOD Economie)
Lidwine Do Huu (Fednot)	Sobrie Laurent (SPF Justice)	Roxanne Wyns (KuLeuven)	Nico Smets (Regie der Gebouwen)	Isabelle Arickx (FOD BOSA)
Sébastien Burick (La Régie des Bâtiments)	Régine Kiasuwa Mbengi (Sciensano)	Sharma Subhalakshmi (Sciensano)	Lieven De Tant (Regie der Gebouwen)	Johan Van der Eycken (Rijksarchief)
Alexandre Aude (Musées royaux des Beaux-Arts de Belgique)	Odile Keromnes (Musées royaux des Beaux-Arts de Belgique)	Brecht Devleesshauwer (Sciensano)	Rink W. Kruk (Nationaal Geografisch Instituut)	Patricia Mergen (Agentschap Plantentuin Meise)
Miguel Discart (SPF Economie)	Yolande Lenga (Sciensano)	Wim Bonneux (FOD Financiën)	Mieke Van Mulders (Sciensano)	Lieven Jacobs (FOD Mobiliteit en Vervoer)
Christophe Avonture (SPF BOSA)	Veronique Adam (Smals)	Chris De Loof (Belspo)	Kim Van Roey (Sciensano)	Johan Steylaerts (Car-Pass vzw)
Geraldine Boseret (Sciensano)	Joël Frankson (SPF BOSA)	Roel Heijlen (Sciensano)	Niki Van Strydocnk (FOD BOSA)	Hilde Blondeel (FOD Financien)
Isabel Sastre Cantano (Smals)		Yves Lorphelin (BOSA DG-R&O)	Bart De Buck (FOD Economie)	Nacha Van Steen (кмкG)
			Melissa Van Bossuyt (Sciensano)	Zeb Luts (FOD Financien)

5 break out rooms in MS Teams

- Group 1 [FR]: Thierry
- Group 2 [FR]: Pascal
- Group 3 [ENG]: Raf

https://bit.ly/group3iceg

- Group 4 [NL]: Dwight
- Group 5 [NL]: Liesbet

https://bit.ly/group1iceg https://bit.ly/group2iceg

https://bit.ly/group4iceg https://bit.ly/group5iceg

- 1. Define use case
- 2. List and inventarize relevant concepts
- 3. Study and look for existing vocabularies and AP's
- 4. Map your concepts on the existing vocabularies and AP's
- 5. Find a solution for unmapped concepts
- 6. Establish an implementation model

https://bit.ly/whiteboardiceg

- 1. Follow the link to the Miro Whiteboard.
- 2. Explore the board.

11:00 - 11:45 - Case "Saint Nicholas"

Illustration of the case

5 break-out rooms

1. Define use case

2. List and inventarize relevant concepts

- 3. Study and look for existing vocabularies and AP's
- 4. Map your concepts on the existing vocabularies and AP's miro
- 5. Find a solution for unmapped concepts
- 6. Establish an implementation model

Step 1: Define use case

Several stakeholders with different requirements:

- Purchase management
- Budget management

 Logistic planning so that all gifts are delivered on time

- Pass on wish list
- Receive a gift

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1: Define use case

Use case:

Child receives gift on "pakjesavond" from the Sint and his colleagues

- Child only receives a gift when he/she has been good.
- The address where the gift should be brought should have a chimney.
- The gift should be bought from a supplier.

Step 2

Step 3

Step 4

Step 5

- 1. Define use case
- 2. List and inventarize relevant concepts

miro miro

- 3. Study and look for existing vocabularies and AP's
- 4. Map your concepts on the existing vocabularies and AP's miro
- 5. Find a solution for unmapped concepts
- 6. Establish an implementation model

Step 2: List and inventarize relevant concepts

Step 2

----р -

Step 4

Step 5

Step 6

Exercise: List the information-elements needed to implement the use case.

Concept Location Concept 2 Concept 3 Concept 4 Concept 5

Our use case:

Child receives gift on "pakjesavond" from the Sint and his colleagues

- Child only receives a gift when he/she has been good.
- The address where the gift should be brought should have a chimney.
- The gift should be bought from a supplier.

An example

Use case: I want to build an application where the nearest toilet will be displayed.

Concepts or informationelements needed:

- Location (of the user, the toilets)
- .

Concepts

Sint

Piet

Kind

Gift

Pakjesavond

Address

Supplier

...

Solution

<u>Child</u> receives <u>gift</u> on "<u>pakjesavond</u>" from the "<u>Sint</u>" and his "pieten"

- Child only receives a gift when he/she has been good.
- The <u>address</u> where the gift should be brought should have a <u>chimney</u>.
- The gift should be bought from a <u>supplier</u> and has a certain <u>price</u>.

- 1. Define use case
- 2. List and inventarize relevant concepts

- 3. Study and look for existing vocabularies and AP's
- 4. Map your concepts on the existing vocabularies and AP's miro
- 5. Find a solution for unmapped concepts
- 6. Establish an implementation model

- > Browse to data.vlaanderen.be/ns/m where you can view the existing OSLO vocabularies and application profiles.
- > Explore the AP's and see what you find interesting, eg: "Persoon Basis", "Organisatie", "Dienstencataloog", ...
- > Click on the classes to jump to the vocabulary.
- Write down the classes (eg. "Adres", "Persoon", "Organisatie") that are relevant and reusable for this case.

Step 3

Step 4

Step 5

Step 6

We can re-use the following existing (OSLO) classes:

- OSLO klasse 1: Persoon
- ➤ OSLO klasse 2: Adres
- ➤ OSLO klasse 3: Geregistreerde organisatie
- OSLO klasse 4: Publieke dienstverlening

- 1. Define use case
- 2. List and inventarize relevant concepts

- 3. Study and look for existing vocabularies and AP's
- 4. Map your concepts on the existing vocabularies and AP's miro
- 5. Find a solution for unmapped concepts
- 6. Establish an implementation model

- ➤ Put the necessary concepts (identified in step 2) next to the existing (OSLO) classes (step 3) to identify the differences and similarities.
- ➤ Provide a mapping value (SKOS) to the overlap (see next slide):
 - Exact match
 - Related match
 - Broad match
 - Narrow match
 - No match

Step 4: Map on existing voc's and AP's

Exercise: Make a mapping with our concepts (see step 2) and relevant classes from existing vocabularies and application profiles.

Concept	Mapping	Class
Sint		
Piet		
Kind		
Cadeau		
Pakjesavond		
Adres		
Leverancier		
		miro miro

Step 1

Step 2

Step 3

Step 4

Step 5

Step 4: Map on existing voc's and AP's

Exercise: Make a mapping with our concepts (see step 2) and relevant classes from existing vocabularies and application profiles.

Concept	Mapping	Class
Sint	Exact match	OSLO-Persoon::Persoon
Piet	Exact match	OSLO-Persoon::Persoon
Kind	Exact match	OSLO-Persoon::Persoon
Cadeau	??	??
Pakjesavond	Exact match	OSLO-PubliekeDienstverlening::Dienst
Adres	Narrow match	OSLO-Adres::Adres
Leverancier	Exact match	OSLO-Organisatie::GeregistreerdeOrganisatie

Step 1

Step 2

Step 3

Step 4

Step 5

-

tep 6

- 1. Define use case
- 2. List and inventarize relevant concepts

- 3. Study and look for existing vocabularies and AP's
- 4. Map your concepts on the existing vocabularies and AP's miro
- 5. Find a solution for unmapped concepts
- 6. Establish an implementation model

> Look at international standards and vocabularies.

tip: https://lov.linkeddata.es/

- DC terms
- schema.org
- dbpedia.org
- ➤ Legislation and other official documents at Flemish, Belgian and European level.
- Models that are already in use by other public administrations in Flanders, Belgium or Europe. An example is the INSPIRE data models.

- > Check whether there are already international data standards that define the necessary.
- Only in last instance define something completely yourself.
- > For these new entities:
 - Check whether these are also relevant in a different context, for other parties, in the context of information exchange and whether an alignment process should be started around this.
- For things that don't seem to match completely:
 - See if your information model cannot be adjusted.
 - If not: OSLO and other data standards can be changed. Feel free to send a comment!
 - If alignment is not possible in one of these 2 ways, please rename it.

Step 5: Find a solution for unmapped concepts

Exercise: Find a solution for unmapped concepts by looking at international standards.

Concept	Mapping	Class
Sint	Exact match	
Piet	Exact match	
	Exact match	
Cadeau		
Pakjesavond	Exact match	OSLO-PubliekeDienstverlening::Dienst
Adres	Narrow match	OSLO-Adres::Adres
Leverancier	Exact match	

Step 1

Step 2

Step 3

Step 4

Step 5

Step 5: Find a solution for unmapped concepts

Exercise: Find a solution for unmapped concepts by looking at international standards.

	Concept	Mapping	Class
	Sint	Exact match	
	Piet	Exact match	
		Exact match	
\longrightarrow	Cadeau	Related match	http://purl.org/cerif/frapo/Gift
	Pakjesavond	Exact match	OSLO-PubliekeDienstverlening::Dienst
	Adres	Narrow match	c dres
	Leverancier	Exact match	satie
			http://purl.org/cerif/frapo/Gift
		Ag	ft, donation, benefaction or legacy, typically of money.

Step 1

Step 2

Step 3

Step 4

Step 5

- 1. Define use case
- 2. List and inventarize relevant concepts

- 3. Study and look for existing vocabularies and AP's
- 4. Map your concepts on the existing vocabularies and AP's miro
- 5. Find a solution for unmapped concepts
- 6. Establish an implementation model

A few guidelines for establishing an implementation model:

- > Start from the **entities** we have listed.
 - An entity= concepts/information elements that make up the information model
- Add attributes to the model
 - An attribute= a property of a particular entity
- Add relationships to the model:
 - A relationship= the relationships between the entities
- > Add cardinalities to the model.
 - Showing how many times a relationship can occur (see example next slide)
- (Make definitions more concrete).

Cardinalities explained with an example:

Step 1

Step 2

Step 3

Step 4

Step 5

Step 1

Step 2

Step 3

Step 4

Step 5

An example:

Step 1

Step 2

Step 3

Step 4

Step 5

OSLO::Publieke
Dienstverlening

Pakjesavond

beschrijving: tekst[0..1]

Step 1

Step

Step 3

Step 1

Step 2

Step 3

Step 4

Step 5

Sinterklaas

FRAPO::Gift

Cadeau

- fabrikant [0..1]

- beschrijving [0..1]

- model [0..1]

OSLO::Persoon

woont op

Prijs

- waarde

vakúta [1]

[1]

Kind

- leeftijd: getal

- stout: ja/nee [1]

[0..1]

aangeboden door

Persoon

Piet

|**∢**| wilt

- voornaam: tekst [1]

- achternaam: tekst [1]

OSLO::Publieke

Dienstverlenina

heeft

verantw. |►

heeft uitvoerder | ▶ |

Pakjesavond

produceert | > |

- beschrijving: tekst

[0..1]

Adres

- land [1]

- gemeente [1]

heeft

maatsch.

zetel

- naam [1]

- straatnaam [1] - huisnummer [1] - busnummer [0..1]

Back to the plenary meeting

https://bit.ly/plenaryiceg

11:45 - 12:00 - Wrap-up

- Future trainings for C-level and for developers
- Other upcoming initiatives
- Feedback Did we meet the expectations? Please give feedback in the chat.

Thank you!