THE UNIVERSITY OF CHICAGO Booth School of Business

Business 41914, Spring Quarter 2009, Mr. Ruey S. Tsay

Lecture 1: Transfer Function Model

1 Introduction

Transfer function model is a statistical model describing the relationship between an output variable Y and one or more input variables X. It has many applications in business and economics, especially in forecasting turning points. Examples of forecasting applications of the model include assessing the impact of monthly advertisement on the profit of a firm and the effect of monthly average daily temperature on gas bill of a household. In most applications, linear equation is used to describe the relationship, resulting in the distributed-lag model commonly known in the econometric literature. For simplicity, we focus on discrete-time linear models. By discrete-time, we meant that the data are observed at discrete time points, even though the actual process may be continuous in time. The variables Y and X are typically continuous random variables. By linear model, we mean that the relationship between Y and X is linear and both X and Y are linear processes.

Let us start with the simple case that X is a scalar variable and Y has no additional innovation. In this case, the dynamic dependence of Y_t on the current and past values of the X, namely $\{X_{t-j}\}_{j=0}^{\infty}$, can be written as

$$Y_t = v_0 X_t + v_1 X_{t-1} + v_2 X_{t-2} + v_3 X_{t-3} + \cdots,$$

= $v(B) X_t$ (1)

where v_0, v_1, \cdots are constant denoting the impact of X_{t-j} on Y_t , and $v(B) = v_0 + v_1 B + v_2 B^2 + \cdots$ with B denoting the backshift operator such that $BX_t = X_{t-1}$. In the economic literature, lag operator (L) is often used instead of the notation B. The coefficients v_0, v_1, \cdots are referred to as the *impulse response function* of the system.

For the model in Eq. (1) to be meaningful, the impulse responses must satisfy certain condition. A simple condition is that $\sum_{j=0}^{\infty} |v_j| < \infty$, i.e., the impulse responses are absolutely summable. In this case, the system is said to be *stable*. The value

$$g = \sum_{j=0}^{\infty} v_j$$

is called the *steady-state gain* as it represents the impact on Y when X_{t-j} are held constant over time.

The function v(B) determines the impact of input X_t on output Y_t . It pays to study some simple examples of v(B). See Table 10.6 of Box, Jenkins and Reinsel (1994, p. 389).

Example 1. Consider the model $Y_t = B^3 X_t$. What is the impulse response function? What is the cumulative response function?

Example 2.Consider the model $Y_t = (0.5 + 0.5B)B^3X_t$. What is the impulse response function? What is the cumulative response function?

Example 3. Consider the model $(1-0.5B)Y_t = 0.5B^3X_t$. What is the impulse response function? What is the cumulative response function?

For the model in Eq. (1) to be practical, the number of impulse response coefficients v_j must satisfy certain constraints. For instance, one can use the same idea as the univariate autoregressive integrated moving-average (ARIMA) model to describe the function v(B). That is, one assumes that v(B) is a rational polynomial in B such as

$$Y_t = \frac{\omega(B)B^b}{\delta(B)} X_t, \tag{2}$$

where b is a non-negative integer, $\omega(B) = \omega_0 + \omega_1 B + \omega_2 B^2 + \cdots + \omega_s B^s$ and $\delta(B) = 1 - \delta_1 B - \cdots - \delta_r B^r$ are finite-order polynomials in B, and $\omega_0 \neq 0$. Obviously, $\omega(B)$ and $\delta(B)$ have no common factors. The prior model says that $v(B) = \omega(B)B^b/\delta(B)$.

The parameter b is called the *time delay* (or dead time) of the system. For example, if b = 1, then $v_0 = 0$ and X_t has no impact on Y_t , but X_t will affect Y_{t+1} . In other words, the impact of X_t on the output series $\{Y_t\}$ is delayed for one time period.

Question: Under what condition that $v(B) = \omega(B)B^b/\delta(B)$ of Eq. (2) gives rise to a stable transfer function?

Question: Suppose that in Eq. (2) $v(B) = \omega(B)B^b/\delta(B)$ is stable. What is the steady-state gain of the system?

2 Transfer Function Model

In practice, the output Y_t is not a deterministic function of X_t . It is often disturbed by some noise or has its own dynamic structure. We denote the noise component as N_t . The noise may be serially correlated, and we assume that N_t follows an ARMA(p,q) model, i.e.

$$\phi(B)N_t = \theta(B)a_t,\tag{3}$$

where $\theta(B) = 1 - \theta_1 B - \dots - \theta_q B^q$ and $\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$ are polynomials in B of degree q and p, respectively, and $\{a_t\}$ is a sequence of independent and identically distributed random

variables with mean zero and variance σ_a^2 . Often we also assume that a_t is Gaussian. Note that for the ARMA model in Eq. (3), $E(N_t) = 0$ and the usual conditions of *stationarity* and *invertibility* apply.

Putting together, we obtain a simple transfer function model as

$$Y_t = c + v(B)X_t + N_t = \frac{\omega(B)B^b}{\delta(B)}X_t + \frac{\theta(B)}{\phi(B)}a_t, \tag{4}$$

where c is a constant, $\theta(B)$, $\phi(B)$, $\omega(B)$ and $\delta(B)$ are defined as before with degree q, p, s and r, respectively, and $\{a_t\}$ are Gaussian white noise series. The noise component N_t should be independent of X_t ; otherwise, the model is not identifiable.

Note that when b > 0 the transfer function model is useful in predicting the turning points of Y_t given those of X_t .

When there are multiple input variables, say two, the transfer function model becomes

$$Y_t = c + \frac{\omega_1(B)B^{b_1}}{\delta_1(B)}X_{1t} + \frac{\omega_2(B)B^{b_2}}{\delta_2(B)}X_{2t} + \frac{\theta(B)}{\phi(B)}a_t,$$

where $\omega_i(B)$ and $\delta_i(B)$ are similarly defined as in Eq. (4).

3 An Example

Consider the Gas-Furnace example of Box, Jenkins and Reinsel (1994, Chapter 11). The data consist of 296 observations of (a) input gas rate in cubic feet per minute and (b) the percentage of CO_2 in outlet gas. The time interval used is 9 seconds and the actual feed rate is $Z_t = 0.6 - 0.04X_t$, where X_t is the input series. What is the dynamic relationship between the input gas rate X_t and the output CO_2 measurement Y_t ? Figure 1 gives the time plot of the data.

Given the data set, our goal is to specify an adequate model for making inference. One approach to achieve this objective is to adopt the iterated modeling procedure of Box and Jenkins (1976) which consists of the following steps:

- 1. Model specification,
- 2. Estimation,
- 3. Model checking (residual analysis).

If a fitted model is judged to be inadequate via model checking statistics, the procedure is iterated to refine the model. A model that passed rigorous model checking can then be used to make inference, e.g. forecasting or policy simulation.

4 Model Building

The task of model specification in the case of a single input variable involves

- estimation of the impulse response function v_i 's,
- specification of the noise model N_t ,

Figure 1: Time plots of Input and Output Series: Gas-Furnace Example

• identification of the rational polynomials $\omega(B)$ and $\delta(B)$ and the delay b to best approximate v(B).

We shall briefly discuss methods and statistics that are useful in specifying a transfer function model.

4.1 Preliminary estimation of v(B)

Consider the TFM in Eq. (4). Since X_t and N_t might be serially dependent, the regression

$$Y_t = c + v_0 X_t + v_1 X_{t-1} + \dots + v_h X_{t-h} + e_t,$$

where h is a large positive integer, would, in general, not provide consistent estimates of the v_i 's. In the literature, pre-whitening has been proposed as a tool to obtain consistent estimates of v_i . The idea of pre-whitening is to remove the serial dependence in X_t . Suppose that X_t follows the univariate ARMA model

$$\phi_x(B)X_t = \theta_x(B)\eta_t$$

where $\{\eta_t\}$ is a sequence of white noises (i.e. iid random variables). Applying the operator $\frac{\phi_x(B)}{\theta_x(B)}$ to Eq. (4), we obtain

$$\frac{\phi_x(B)}{\theta_x(B)}Y_t = c^* + v(B)\frac{\phi_x(B)}{\theta_x(B)}X_t + \frac{\phi_x(B)}{\theta_x(B)}N_t$$
$$= c^* + v(B)\eta_t + \frac{\phi_x(B)}{\theta_x(B)}N_t,$$

where c^* is a constant given by $c^* = \frac{\phi_x(1)}{\theta_x(1)}c$. Define

$$y_t = \frac{\phi_x(B)}{\theta_x(B)} Y_t, \quad n_t = \frac{\phi_x(B)}{\theta_x(B)} N_t.$$

The prior equation reduces to

$$y_t = c^* + v(B)\eta_t + n_t. (5)$$

Notice that $\{n_t\}$ is independent of $\{\eta_t\}$ and η_t is a white noise series. Multiplying Eq. (5) by η_{t-j} , for $j \geq 0$, we have

$$y_t \eta_{t-j} = c^* \eta_{t-j} + [v(B)\eta_t]\eta_{t-j} + n_t \eta_{t-j}.$$

Taking expectation, we obtain

$$Cov(y_t, \eta_{t-j}) = v_j Var(\eta_{t-j}).$$

Consequently, we have

$$v_j = \frac{\operatorname{Cov}(y_t, \eta_{t-j})}{\operatorname{Var}(\eta_t)}.$$

In term of cross-correlation, we have

$$v_j = \operatorname{Corr}(y_t, \eta_{t-j}) \frac{\operatorname{std}(y_t)}{\operatorname{std}(\eta_t)}.$$

In practice, the model for X_t can be specified via the univariate time series analysis (e.g., Bus 41910 or Bus 41202). One can then apply the model to obtain y_t . This process is called *pre-whitening* or *filtering* in the time series literature.

Discussion: Some comments on pre-whitening are in order.

- 1. In finite samples, the accuracy of v_i estimates might be affected by the noise term n_t .
- 2. Pre-whitening becomes complicated when there are multiple input variables.

4.2 A rough approximation

Experience shows that the effect of N_t on the estimation of v(B) can often be reduced when a simple model is assumed for N_t . In theory, the resulting estimates of v_j are biased. However, such estimates can often serve the purpose of model specification. The approximate models for N_t include the following:

• An AR(1) model if Y_t is not a seasonal time series. Here we use the approximate model

$$N_t = \frac{1}{1 - \phi_1 B} a_t.$$

• A seasonal ARIMA(1,0,0)(1,0,0) model if Y_t is seasonal. Here the approximate model is

$$N_t = \frac{1}{(1 - \phi_1 B)(1 - \phi_k B^k)} a_t,$$

where k is the number of periods in a year, e.g. k=4 for quarterly data.

SCA demonstration: The two methods produce close estimates of v_j for the Gas-Furnace data set.

*** Analysis of Gas-Furnace data ***

--

input x,y. file 'gasfur.dat'

X , A 296 BY 1 VARIABLE, IS STORED IN THE WORKSPACE

Y , A 296 BY 1 VARIABLE, IS STORED IN THE WORKSPACE

--

iarima x.

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 296

THE CRITICAL VALUE FOR SIGNIFICANCE TESTS OF ACF AND ESTIMATES IS 1.960

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- UTSMODEL

VARIABLE TYPE OF ORIGINAL DIFFERENCING
VARIABLE OR CENTERED

Х	RANDOM	ORIGINAL	L NO	ONE				
PARAMETER LABEL	VARIABLE NAME	NUM./ DENOM.		ORDER	CONS- TRAINT		STD ERROR	T VALUE
1	Х	D-AR	1	1	NONE	1.9755	.0549	36.01
2	X	D-AR	1	2	NONE	-1.3741	.0994	-13.82
3	X	D-AR	1	3	NONE	3430	0549	6 25

--

tsm mx. model (1,2,3)x=noise.

__

estim mx. hold resi(rx)

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 296

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- MX

VARIABLE TYPE OF ORIGINAL DIFFERENCING VARIABLE OR CENTERED

X	RANDOM	ORIGINAI		NONE					
	VARIABLE NAME								
1 2	X X								
3	X X	AR	1	3	NONE	.34	30 .0)549	6.25
R-SQUARE .	NUMBER OF OE FANDARD ERRO				0.9	969			
filter mode	l mx. old x,	y. new e	eta,fy	•					
SERIES X SERIES Y	ING ANALYSIS IS FILTEREI IS FILTEREI	USING N	10DEL	MX, TI	HE RESU	JLT IS I	N ETA		
ccf x,y. max	xl 12.								
NAMES OF THE STANDARD DE MEAN OF THE	O ANALYZED . HE SERIES . NUMBER OF OE EVIATION OF E (DIFFERENCEVIATION OF	SERVATION THE SERICED) SERI	ONS . IES . IES .		1.0	X 296 0710 0568	3 53	. 1967 . 5091	
	MEAN (AGAIN								
CORRELATIO	N BETV	/EEN	Y	ANI	D	X IS	-0.48	3	
CROSS CORR	ELATION BETV	JEEN	X(T) ANI	D	Y(T-L	.)		
	3933 - .06 .06								
CROSS CORR	ELATION BETV	/EEN	Υ(T) ANI	D	X(T-L	.)		
	6073 - .06 .06								
	-1.0 -0.8 -0								
	•	· '	•	Ī	. '	•	·	•	
-12 -0.35		XX	(XXXX+	XXI +					

```
-11 \quad -0.41
                      XXXXXXX+XXI +
-10 -0.50
                    XXXXXXXXX+XXI +
 -9 -0.60
                  XXXXXXXXXXX+XXI +
 -8 - 0.72
                XXXXXXXXXXXXX+XXI
 -7 -0.83
             -6 -0.91
           -5 -0.95
           -4 -0.92
            -3 -0.84
             -2 -0.73
                -1 -0.60
                  XXXXXXXXXXX+XXI +
  0 - 0.48
                    XXXXXXXXX+XXI +
  1 - 0.39
                      XXXXXXX+XXI +
  2 -0.33
                        XXXXX+XXI +
  3 -0.29
                        XXXX+XXI +
  4 -0.26
                        XXXX+XXI +
  5 -0.24
                         XXX+XXI +
  6 - 0.23
                         XXX+XXI +
  7 -0.21
                          XX+XXI +
  8 -0.18
                           X+XXI +
  9 -0.15
                           X+XXI +
 10 -0.12
                           XXXI +
 11 -0.09
                            +XXI +
 12 -0.08
                            +XXI +
ccf eta, fy. maxl 12. hold ccf(vb).
TIME PERIOD ANALYZED . . . . . . . 4 TO
                                       296
NAMES OF THE SERIES . . . . . . . . .
                                       ETA
                                                   FΥ
EFFECTIVE NUMBER OF OBSERVATIONS . . .
                                       293
                                                  293
STANDARD DEVIATION OF THE SERIES . . .
                                   0.1887
                                                0.3628
MEAN OF THE (DIFFERENCED) SERIES . . .
                                   -0.0038
                                                2.9778
STANDARD DEVIATION OF THE MEAN . . . .
                                    0.0110
                                                0.0212
T-VALUE OF MEAN (AGAINST ZERO) . . . .
                                    -0.3479
                                              140.5124
CORRELATION
               BETWEEN
                         FY
                                AND
                                    ETA IS 0.00
CROSS CORRELATION BETWEEN
                         ETA(T) AND
                                       FY(T-L)
  1- 12
         -.03 .01 -.05 -.02 -.00 -.12 -.03 -.09 .00 .02 .01 -.00
  ST.E.
          CROSS CORRELATION BETWEEN
                          FY(T) AND
                                      ETA(T-L)
          .05 -.02 -.28 -.33 -.46 -.27 -.17 -.02 .03 -.05 -.03 -.02
  1- 12
```

```
ST.E.
          -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
          +---+
                               Ι
-12 -0.02
                             + I +
-11 -0.03
                             + XI +
-10 -0.05
                             + XI +
                             + IX +
 -9 0.03
 -8 -0.02
                             + XI +
 -7 -0.17
                            X+XXI +
 -6 -0.27
                         XXXX+XXI +
 -5 -0.46
                      XXXXXXXX+XXI +
 -4 -0.33
                        XXXXX+XXI +
 -3 -0.28
                         XXXX+XXI +
 -2 -0.02
                             + XI +
 -1 0.05
                             + IX +
                             + I +
  0.00
                                          <=== Lag-0
  1 -0.03
                             + XI +
  2 0.01
                             + I +
                                        This part gives info
                             + XI +
  3 -0.05
                                        about unidirection.
                                        Should be also "zero".
  4 -0.02
                             + I +
  5 0.00
                             + I +
  6 - 0.12
                             XXXI +
  7 -0.03
                             + XI +
                             +XXI +
  8 -0.09
  9
    0.00
                             + I +
 10
     0.02
                             + IX +
     0.01
                             + I +
 11
     0.00
                             + I +
 12
ff=sqrt(var(fy))/sqrt(var(eta))
vhat=vb*ff
print vhat
        IS A
               25 BY
                         1 VARIABLE
VHAT
-.033
        -.063
                -.104
                         .061
                                  -.047
                                          -.322
                                                  -.515
-.876
         -.635
                 -.543
                         -.047
                                   .105
                                          -.002
                                                  -.057
 .019
         -.093
                 -.030
                         -.005
                                  -.231
                                          -.049
                                                  -.171
 .002
         .042
                  .013
                         -.009
```

tsm m1. model y=c+(0 to 12)x+1/(1)noise.

--

estim m1. hold resi(r1)

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 296

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- M1

VARIABLE TYPE OF ORIGINAL DIFFERENCING

VIIIVIIIDAA	VARIABLE	OR CENTE	RED		.01114			
Y X	RANDOM RANDOM	ORIGINA: ORIGINA:						
PARAMETI LABEL	ER VARIABL NAME	E NUM./ DENOM.				VALUE		T VALUE
1 C		CNST	1	0	NONE	53.8882	.7899	68.22
2	X	NUM.	1	0	NONE	0482	.0958	50
3	X	NUM.	1	1	NONE	.0987	.1321	.75
4	X	NUM.	1	2	NONE	0345	.1341	26
5	X	NUM.	1	3	NONE	5262	.1340	-3.93
6	X	NUM.	1	4	NONE	6371	.1360	-4.69
7	X	NUM.	1	5	NONE	8301	.1360	-6.10
8	X	NUM.	1	6	NONE	4935	.1358	-3.63
9	Х	NUM.	1	7	NONE	3267	.1360	-2.40
10	Х	NUM.	1	8	NONE	0544	.1359	40
11	X	NUM.	1	9	NONE	.0257	.1340	.19
12	X	NUM.	1	10	NONE	0910	.1340	68
13	X	NUM.	1	11	NONE	0598	.1321	45
14	X	NUM.	1	12	NONE	0051	.0954	05
15	Y	D-AR	1	1	NONE	.9769	.0216	45.25

stop <== quit SCA.

4.3 Specification of model for N_t

Construct the estimate of N_t by

$$\hat{N}_t = Y_t - \hat{c} - \hat{v}(B)X_t.$$

Apply the usual univariate time series methods to identify a model for N_t using \hat{N}_t as the observed series.

4.4 Specification of transfer function

The goal is to find a rational form for v(B). To this end, we can use the *Corner method*, which is based on the Pade approximation of a polynomial. From

$$v(B) = \frac{\omega(B)B^b}{\delta(B)},$$

we obtain

$$v_0 + v_1 B + v_2 B^2 + \dots = \frac{\omega_0 B^b + \omega_1 B^{b+1} + \dots + \omega_s B^{b+s}}{1 - \delta_1 B - \dots - \delta_r B^r}.$$

By equating the coefficients of B^{j} , it is easy to see that

- $v_j = 0$ for j < b if b is positive.
- $v_b, v_{b+1}, \dots, v_{b+s-r}$ follow no fixed pattern (no such values occur if s < r),
- v_j with $j \ge b + s r + 1$ follows a rth order difference equation

$$v_j = \delta_1 v_{j-1} + \dots + \delta_r v_{j-r}, \quad \text{or} \quad \delta(B) v_j = 0,$$
 (6)

with starting values $v_{b+s}, \dots, v_{b+s-r+1}$.

Example. Consider the case $\omega(B) = \omega_0 + \omega_1 B + \omega_2 B^2$, b = 1, and $\delta(B) = 1 - \delta_1 B$. Here (r, s, b) = (1, 2, 1). We have

$$v_0 + v_1 B + v_2 B^2 + \dots = \frac{\omega_0 B + \omega_1 B^2 + \omega_2 B^3}{1 - \delta_1 B}.$$

Therefore,

$$v_0 + v_1 B + v_2 B^2 + \dots = (\omega_0 B + \omega_1 B^2 + \omega_2 B^2)(1 + \delta_1 B + \delta_1^2 B^2 + \dots).$$

By equating coefficients, we have

- $v_0 = 0$,
- $v_1 = \omega_0$ and $v_2 = \delta_1 \omega_0 + \omega_1 = \delta_1 v_1 + \omega_1$,
- $v_3 = \delta_1^2 \omega_0 + \delta_1 \omega_1 + \omega_2 = \delta_1 v_2 + \omega_2$, (starting value)
- $v_4 = \delta_1^3 \omega_0 + \delta_1^2 \omega_1 + \delta_1 \omega_2 = \delta_1 v_3$, and $v_5 = \delta_1 v_4$, etc.

The last result can be written as $(1 - \delta_1 B)v_j = 0$ for $j \ge 4$ with starting value v_3 .

In general, any polynomial v(B) can be approximated as accurately as possible by some ratio of two finite-order polynomials by increasing the orders of the two finite-order polynomials. In practice, we seek to find suitable (r, s, b) so that the approximation is adequate. The property that the coefficients v_j satisfy a rth order difference equation is used in the Corner Method to specify (r, s, b).

Corner Method. Corner method is a two-way table designed to show the pattern of v_j . The rows are numbered 0, 1, 2, ... and the columns 1,2,3,.... Also, for numerical purpose, one uses

 $u(B) = v(B)/v_{max}$, where $v_{max} = \max_{j} \{|v_j|\}$. The (i, j)-th element of the two-way table is the determinant of the $j \times j$ matrix

$$M(i,j) = \begin{bmatrix} u_i & u_{i-1} & \cdots & u_{i-j+1} \\ u_{i+1} & u_i & \cdots & u_{i+j+2} \\ \vdots & \cdots & & \vdots \\ u_{i+j-1} & u_{i+j-2} & \cdots & u_i \end{bmatrix},$$

where $u_h = 0$ if h < 0. From the pattern of v_j discussed earlier, the table should exhibit the following pattern to show (r, s, b):

(i,j)	1	2	 r-1	r	r+1	r+2	
0	0	0	 0	0	0	0	
1	0	0	 0	0	0	0	
:	:	:	:	:	:	÷	
b-1	0	0	 0	0	0	0	
b	X	X	 X	X	X	X	
:	:	÷	:	:	:	:	
s+b	X	X	 X	X	X	X	
s + b + 1	*	*	 *	X	0	0	
s+b+2	*	*	 *	X	0	0	
:	:	:	:	:	:	:	

Discussion: The variance of the determinant of a random matrix is not available. As such, no statistics are available to judge the significance of the elements in the two-way table. This is a drawback of the Corner method. The reading of the two-way table is rather subjective.

Demonstration continued. Gas-Furnace data set. Output edited to simplify handout.

```
tsm m1. model y=c+(0 to 12)x+1/(1)noise.
--
estim m1. hold disturb(nt). <== Store the noise term in ''nt''.
--
ccf fy, eta. maxl 12. hold ccf(vb). <== fy & eta are filtered series.
--
sele old vb. new vhat. span (13,25). <== select the relevant v-hat.
--
corner vhat. size nrows(8), ncols(6).</pre>
```

CORNER TABLE FOR THE TRANSFER FUNCTION WEIGHTS IN VB

```
1
    0.12
          0.01 0.00
                      0.00 0.00
                                   0.00
2
                      0.02 - 0.01
    -0.04
          0.08 - 0.04
                                   0.00
3
   -0.63
          0.37 - 0.22
                      0.16 - 0.12
                                   0.08
4
   -0.77 -0.04 0.26 -0.05 -0.06
                                   0.03
5
   -1.00 0.54 -0.29 0.11 -0.04
                                  0.00
6
   -0.60 -0.04 0.10 0.00 -0.03
                                  0.00
7
    -0.39 0.12 -0.04 0.02 -0.02 0.01
```

__

iarima nt. <== For the noise term.

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 296

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- UTSMODEL

VARIABLE	TYPE OF	ORIGINAL	DIFFERENCING
	VARIABLE	OR CENTERED	

NT	RANDOM	ORIGINA	L NO	ONE				
PARAMETER LABEL	VARIABLE NAME	NUM./ DENOM.	FACTOR	ORDER	CONS- TRAINT		STD ERROR	T VALUE
1	NT	D-AR	1	1	NONE	1.5283	.0484	31.57
2	NT	D-AR	1	2	NONE	5907	.0496 -	-11.92

--

The results indicate that (r, s, b) = (1,2,3) and N_t follows an AR(2) model. A transfer function model is then specified.

5 Estimation

Conditional or exact maximum likelihood method is used to perform a joint estimation of all the parameters of a specified transfer function model. Typically, the innovations a_t is assumed to be Gaussian

The difference between conditional and exact likelihhod methods will be discussed later in vector ARMA models.

6 Model Checking

Check for possible outliers and serial correlations in the residuals of a fitted model. The Box-Ljung statistics of the residuals can be used to check the serial correlations.

Demonstration continued. Gas-Furnace data set. Conditional likelihood method is used in the estimation.

```
tsm mm. model y=c+(w0*b**3+w1*b**4+w2*b**5)/(1-d1*b)x + 1/(1,2)noise.
estim mm. hold resi(r1)
THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN
                                                    THRU
                                                         296
 SUMMARY FOR UNIVARIATE TIME SERIES MODEL --
                                                 MM
 VARIABLE
            TYPE OF
                       ORIGINAL
                                     DIFFERENCING
                      OR CENTERED
           VARIABLE
    Υ
            RANDOM
                       ORIGINAL
                                     NONE
    Х
            RANDOM
                       ORIGINAL
                                     NONE
              VARIABLE NUM./ FACTOR ORDER CONS-
                                                       VALUE
                                                               STD
                                                                       Τ
 PARAMETER
    LABEL
                NAME
                        DENOM.
                                             TRAINT
                                                              ERROR VALUE
        С
                        CNST
                                              NONE 53.3581
   1
                                         0
                                                              .1456 366.36
   2
        WO
                 Х
                        NUM.
                                   1
                                         3
                                              NONE
                                                     -.5269
                                                              .0748 -7.04
   3
                                                     -.3793
        W1
                 Х
                        NUM.
                                   1
                                         4
                                              NONE
                                                              .1022 - 3.71
   4
        W2
                 Х
                        NUM.
                                   1
                                         5
                                              NONE
                                                     -.5234
                                                              .1076 -4.86
  5
                 Х
                                         1
                                              NONE
                                                              .0384 14.27
        D1
                        DENM
                                   1
                                                      .5481
   6
                 Y
                        D-AR
                                   1
                                         1
                                              NONE
                                                     1.5301
                                                              .0476 32.15
  7
                 Y
                                                     -.6295
                        D-AR
                                   1
                                              NONE
                                                              .0501 - 12.55
EFFECTIVE NUMBER OF OBSERVATIONS . .
                                                 283
R-SQUARE . . . . . . . . . . . . . . . .
                                               0.994
RESIDUAL STANDARD ERROR. . . . . . 0.241633E+00
acf r1. maxl 12
NAME OF THE SERIES . . . . . . . . . . .
                                                   R1
 TIME PERIOD ANALYZED . . . . . . . . . 14
                                                  296
MEAN OF THE (DIFFERENCED) SERIES . . .
                                               0.0000
 STANDARD DEVIATION OF THE SERIES . . .
                                               0.2416
T-VALUE OF MEAN (AGAINST ZERO) . . . .
                                              -0.0003
```

AUTOCORRELATIONS

```
1- 12
         .02 .05 -.07 -.06 -.06 .13 .03 .03 -.08 .05 .03 .10
ST.E.
         .06 .06 .06 .06
                             .06 .06
                                     .06 .06 .06 .06
                                                     .06
 Q
         .2 1.0 2.6 3.5 4.4 9.2 9.6 9.8 11.9 12.7 12.9 15.9
       -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
         +---+---+
                             Ι
1
   0.02
                           + IX +
2
   0.05
                           + IX +
3 -0.07
                           +XXI +
4 -0.06
                           + XI +
5 -0.06
                           + XI +
6
  0.13
                           + IXXX
7
   0.03
                           + IX +
8
  0.03
                           + IX +
9 -0.08
                           +XXI +
10
   0.05
                           + IX +
                           + IX +
11
   0.03
12
   0.10
                           + IXX+
```

R demonstration: Gas-Furnace example, including the two R scripts "ccm.R" and "tfm.R".

```
> setwd("C:/Users/rst/teaching/mts/sp2009") <== Set working directory on my pc.
> da=read.table("gasfur.dat") <== Load data into R.
> dim(da)
                <== Find the size of the data.
[1] 296
> x=da[,1]
> y=da[,2]
> acf(x)
               <== identify a simple model for x</pre>
> pacf(x)
> m1=arima(x,order=c(3,0,0))
> m1
Call:
arima(x = x, order = c(3, 0, 0))
Coefficients:
                 ar2
                          ar3
                              intercept
      1.9691 -1.3651 0.3394
                                 -0.0606
s.e. 0.0544 0.0985 0.0543
                                  0.1898
```

```
sigma^2 estimated as 0.03530: log likelihood = 72.57, aic = -135.14
> tsdiag(m1)
                    <=== Model checking
                      <== Load the command ''ccm''.</pre>
> source("ccm.R")
> ccm(da,lags=20)
                      <=== Plot is omitted from the output. You should read the plot.
[1] "Covariance matrix:"
      V1
            V2
V1 1.15 -1.66
V2 -1.66 10.25
[1] "CCM at lag:" "0"
       [,1]
            [,2]
[1,] 1.000 -0.484
[2,] -0.484 1.000
> f1=c(1,-m1$coef[1:3]) <=== Create a filter to transform ''y'.</pre>
> f1
                  ar1
                             ar2
                                        ar3
1.0000000 -1.9690658 1.3651431 -0.3394045
> yf=filter(y,f1,method=c("convo"),sides=1)
                                             <== Obtain filtered y-series</pre>
                                             <== Residuals of ''x', is the filtered x-series.</pre>
> xf=m1$residuals
> z=cbind(xf[4:296],yf[4:296]) <== The first 3 data in "yf" are missing due to filtering
> ccm(z,lags=20)
[1] "Covariance matrix:"
          [,1]
[1,] 0.035737 -0.000229
[2,] -0.000229 0.132980
[1] "CCM at lag:" "0"
         [,1]
                  [,2]
[1,] 1.00000 -0.00332
[2,] -0.00332 1.00000
> source("tfm.R") <== Load the command ''tfm'' to estimate transfer function models in R.
> mm = tfm(y,x,3,4,1)
[1] "ARMA coefficients & s.e."
             ar1
coef.arma 0.9730
se.arma
          0.0175
[1] "Transfer function coefficients & s.e."
     intercept
                     Х
         53.73 -0.4845 -0.637 -0.839 -0.428 -0.378
          0.62 0.0929 0.130 0.132 0.130 0.093
> acf(mm$residuals) <=== Residuals ACF indicates the model is not adequate.
```

```
> names(mm)
[1] "coef"
                "se.coef"
                             "coef.arma" "se.arma"
                                                      "nt"
                                                                  "residuals"
> pacf(mm$nt)
                <=== Identifies Nt as an AR(2) process.
> mm = tfm(y,x,3,4,2)
[1] "ARMA coefficients & s.e."
             ar1
                      ar2
coef.arma 1.5379 -0.6291
          0.0470 0.0509
[1] "Transfer function coefficients & s.e."
     intercept
                     Х
        53.376 -0.5558 -0.6445 -0.860 -0.484 -0.3633
v
         0.155  0.0778  0.0812  0.081  0.081  0.0773
se.v
> acf(mm$residuals)
                                             <== Indicates the model is ok.
```

7 Forecasting

The fitted model, if adequate, can be used to produce forecast of Y_t provided that the needed X values are given. In practice, if some X values are not available, then they can be predicted using the univariate time series model for X_t . For the Gas-Furnace data set, X_t follows a zero-mean AR(3) model.

Similarly to other time series analysis, the minimum mean squared error criterion is commonly used to produce point forecasts in transfer function modeling.

In time-series forecasting, the fitted model is often treated as the "true" model. As such, the variability in parameter estimation is not considered in producing forecasts. For large samples, this simplication is not a major issue. However, it can underestimate the interval forecasts. This comment also applies to transfer function forecasts.

Demonstration: Gas-Furnace data set. Use the first 290 data points to perform estimation and the last 6 data points for forecasting evaluation.

```
estim mm. span 1,290. <== estimation command.

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 290

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- MM

VARIABLE TYPE OF ORIGINAL DIFFERENCING

VARIABLE OR CENTERED

Y RANDOM ORIGINAL NONE
```

X	F	RANDOM	ORIGINA	L NO	ONE						
		VARIABLE NAME									
1	С		CNST	1	0	NONE	53.2550	.0709	750.90		
		Х					5437				
3		X					3708				
4	W2	Х	NUM.	1	5	NONE	5227	.1059	-4.93		
5		Х									
6		Y									
7		Y	D-AR	1	2	NONE	6505	.0491	-13.26		
R-SQU	EFFECTIVE NUMBER OF OBSERVATIONS										
fore mm. orig 290. nofs 2.											
V/ V/ 2 I	** NO ARIMA MODEL IS SPECIFIED FOR THE STOCHASTIC INPUT VARIABLE X ; IT IS TREATED AS A NON-STOCHASTIC VARIABLE 2 FORECASTS, BEGINNING AT 290 TIME FORECAST STD. ERROR ACTUAL IF KNOWN										
291	l 57	7.8077	0.2315	58.	.6000						
		5.8137									
	nm. orig ıt edite	g 290, 291, ed)	, 292, 29	93,294,2	295. no	ofs 1.					
1 F	FORECAST	ΓS, BEGINN]	ING AT	290							
TIME	E FOR	RECAST ST	rd. Erroi	R ACTU	JAL IF	KNOWN					
291	L 57	7.8077	0.2315	58.	.6000						
1 I	FORECAST	rs, beginni	ING AT	291							
TIME	E FOR	RECAST ST	rd. Erroi	R ACTU	JAL IF	KNOWN					
292	2 57	7.9695	0.2315	58.	. 5000						

1	FORECAS	STS,	BEGIN	NING	AT	292			
TIN	ME FO	RECA	ST	STD.	ERR	OR	ACTUAL	IF	KNOWN
29	93 5	57.37	99	0.	. 231	5	58.300	00	
1	FORECAS	STS,	BEGIN	NING	AT	293			
TIN	ME FO	RECA	ST	STD.	ERR	OR	ACTUAL	IF	KNOWN
29	94 5	7.18	58	0.	. 231	5	57.800	00	
1	FORECAS	STS,	BEGIN	NING	AT	294			
TIN	ME FO	RECA	ST	STD.	ERR	OR	ACTUAL	IF	KNOWN
29	95 5	6.61	36	0.	. 231	5	57.300	00	
1	FORECAS	STS,	BEGIN	NING	AT	295			
TIN	ле FC	RECA	ST	STD.	ERR	OR	ACTUAL	IF	KNOWN
29	96 5	6.22	60	0.	. 231	5	57.000	00	

8 Granger Causality

In using transfer function models, one assumes that X_t is the input that does not depend on the output variable Y_t . This means X_t is an exogenous variable and Y_t is an endogenous variable. Care must be exercised in practice because the exogenous assumption might not be valid. Thus, certain tests are often used to verify the unidirectional relationship from X_t to Y_t before using a transfer function model. This is related to the well-known $Granger\ Causality$ test.

From the transfer function model, Y_t depends on the current and/or past values of X_t , but X_t does not depend on any past value of Y_t . The issue then is how to conduct such a test.

A straightforward approach is to test v(B) being zero in the model

$$X_t = c + v(B)Y_t + \frac{\theta(B)}{\phi(B)}a_t,$$

where the noise term denotes a model for X_t .

Another approach is to analyze the bivariate process $(X_t, Y_t)'$ jointly and perform the unidirectional test based on the fitted bivariate model. This latter approach also applies to the case of multiple input variables.

Remark: The CCF of fitlered series can also be used to check the unidirectional relation.

Demonstration: Gas-Furnace data set. The output shows that X_t indeed does not depend on the past values of Y_t .

tsm m1. model x=(0,1,2,3,4,5)y+1/(1,2,3)noise. -- estim m1.

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 296

SUMMARY FOR UNIVARIATE TIME	SEKIES	MODEL		М1
-----------------------------	--------	-------	--	----

VARIABLE		ORIGINAL OR CENTERED	DIFFERENCING
X	RANDOM	ORIGINAL	NONE
Y	RANDOM	ORIGINAL	NONE

PARAMETER	VARIABLE	NUM./	FACTOR	ORDER	CONS-	VALUE	STD	T
LABEL	NAME	DENOM.			TRAINT		ERROR	VALUE
1	Y	NUM.	1	0	NONE	.0048	.0356	.13
2	Y	NUM.	1	1	NONE	0055	.0328	17
3	Y	NUM.	1	2	NONE	.0155	.0361	.43
4	Y	NUM.	1	3	NONE	0255	.0360	71
5	Y	NUM.	1	4	NONE	0042	.0329	13
6	Y	NUM.	1	5	NONE	.0136	.0318	.43
7	X	D-AR	1	1	NONE	1.9772	.0573	34.50
8	Х	D-AR	1	2	NONE	-1.3755	.1103	-12.48
9	Х	D-AR	1	3	NONE	.3421	.0630	5.43

Review of matrix operations useful in multivariate time series analysis

Vectorization: Let $A_{p\times q}=[a_1,\ldots,a_q]$ be a $p\times q$ matrix with columns a_i . Then, $\text{vec}(A)=[a'_1,a'_2,\ldots,a'_q]'$ is a pq-dimensional column vector.

Kronecker product: Let $A = [a_{ij}]$ and C are $p \times q$ and $m \times n$ matrices. Then, $A \otimes C$ is an $(pm) \times (qn)$ matrix given by

$$m{A}\otimes m{C} = \left[egin{array}{cccc} a_{11}m{C} & a_{12}m{C} & \cdots & a_{1q}m{C} \ a_{21}m{C} & a_{22}m{C} & \cdots & a_{2q}m{C} \ dots & dots & dots & dots \ a_{p1}m{C} & a_{p2}m{C} & \cdots & a_{pq}m{C} \end{array}
ight].$$

Some propertities: (Assume dimensions are proper.)

1.
$$(\mathbf{A} \otimes \mathbf{C})' = \mathbf{A}' \otimes \mathbf{C}'$$
.

2.
$$A \otimes (C + D) = A \otimes C + A \otimes D$$
.

3.
$$(A \otimes C)(F \otimes G) = (AF) \otimes (CG)$$
.

4. If **A** and **C** are invertible, then
$$(\mathbf{A} \otimes \mathbf{C})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{C}^{-1}$$
.

5. For square matrices
$$\boldsymbol{A}$$
 and \boldsymbol{C} , $tr(A \otimes \boldsymbol{C}) = tr(\boldsymbol{A})tr(\boldsymbol{C})$.

6.
$$\operatorname{vec}(\boldsymbol{A} + \boldsymbol{C}) = \operatorname{vec}(\boldsymbol{A}) + \operatorname{vec}(\boldsymbol{C}).$$

7.
$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C}) = (\boldsymbol{C}' \otimes \boldsymbol{A})\operatorname{vec}(\boldsymbol{B}).$$

8.
$$tr(\mathbf{AC}) = \text{vec}(\mathbf{C}')'\text{vec}(\mathbf{A}) = \text{vec}(\mathbf{A}')'\text{vec}(\mathbf{C}).$$

9.
$$tr(ABC) = vec(A')'(C' \otimes I)vec(B)$$
.

See the appendix of Lütkpohl (2005).