2010年全国统一高考化学试卷(新课标)

一、选择题

- 1. (2010 全国新课标)下列各项表达中正确的是()
 - A. Na₂O₂的电子式为 Na:Ö::ÖNa
 - B. 106g 的乙醇和丙醇混合液完全燃烧生成的 CO₂为 112L(标准状况)
 - C. 在氮原子中, 质子数为7而中子数不一定为7

- 2. (2010 新课标)分子式为 $C_3H_6Cl_2$ 的同分异构体共有(不考虑立体异构)(
 - A. 3种
- B. 4种 C. 5种
- D. 6种
- 3. (2010 全国新课标)下列各组中的反应,属于同一反应类型的是()
 - A. 由溴丙烷水解制丙醇; 由丙烯与水反应制丙醇
 - B. 由甲苯硝化制对硝基甲苯; 由甲苯氧化制苯甲酸
 - C. 由氯代环己烷消去制环己烯; 由丙烯加溴制 1,2-二溴丙烷
 - D. 由乙酸和乙醇制乙酸乙酯; 由苯甲酸乙酯水解制苯甲酸和乙醇
- 4. (2010 全国新课标) 把 500mL 有 BaCl₂和 KCl 的混合溶液分成 5 等份,取一份加入含 amol 硫酸钠的溶液,恰好使钡离子完全沉淀; 另取一份加入含 bmol 硝酸银的溶液,恰好使氯离子完全 沉淀。则该混合溶液中钾离子浓度为(
 - A. 0.1(b-2a)mol/L
- B. 10(2a-b)mol/L
- C. 10(b-a)mol/L
- D. 10(b-2a)mol/L
- 5. (2010 全国新课标)己知:HCN(aq)与 NaOH(aq)反应的ΔH=-12.1kJ/mol;HCl(aq)与 NaOH(aq) 反应的 ΔH =-55.6kJ/mol。则 HCN 在水溶液中电离的 ΔH 等于 ()
- A. -67.7 kJ/mol B. -43.5 kJ/mol
- C. +43.5 kJ/mol
- D. +67.7kJ/mol
- 6. (2010 全国新课标)根据下图,可判断出下列离子方程式中错误的是(

- A. $2Ag(s)+Cd^{2+}(aq)==2Ag^{+}(aq)+Cd(s)$
- B. $Co^{2+}(aq)+Cd(s)==Co(s)+Cd^{2+}(aq)$
- C. $2Ag^{+}(aq)+Cd(s)==2Ag(s)+Cd^{2+}(aq)$
- D. $2Ag^{+}(aq)+Co(s)==2Ag(s)+Co^{2+}(aq)$
- 7. (2010 全国新课标)下表中评价合理的是()

选项	化学反应及其离子方程式	评价
A	Fe ₃ O ₄ 与稀硝酸反应:2Fe ₃ O ₄ +18H ⁺ =6Fe ³⁺ +H ₂ -	正确
	+8H ₂ O	
В	向碳酸镁中加入稀盐酸: CO32-+2H+==CO2+ H2O	错误,碳酸镁不应该
		写成离子形式
С	向硫酸铵溶液中加入氢氧化钡溶液:Ba ²⁺ +SO ₄ ²⁻	正确
	==BaSO ₄	
D	FeBr ₂ 溶液与等物质的量的 Cl ₂ 反应: 2Fe ²⁺ +2Br	错误,Fe ²⁺ 与Br的化
	$+2Cl_2==2Fe^{3+}+4Cl^{-}+Br_2$	学计量数之比应为 1:2

二、非选题

8. (2010 全国新课标)物质 A~G 有下图所示转化关系(部分反应物、生成物没有列出)。其 中 A 为某金属矿的主要成分,经过一系列反应可得到 B 和 C。单质 C 可与 E 的浓溶液发生反应, G为砖红色沉淀。

请回答下列问题:

(1) 写出下列物质的化学式: B 、E 、G ;

(2)利用电解可提纯 C 物质,在该电解反应中阳极物质是, 阴极物质是, 电解质溶液是; (3)反应②的化学方程式是。	所给的混合溶液分别; 积的气体所需时间。	加入到 6~	个盛有过量	Zn 粒的	反应瓶中,	收集产生	E的气体,	记录获得相同体
(4) 将 0.23 mol B 和 0.11 mol 氧气放入容积为 1 L 的密闭容器中,发生反应①,在一定温度下,反应达到平衡,得到 0.12 mol D ,则反应的平衡常数 K =。若温度不变,再加入 0.50 mol 氧	实验 混合溶液	A	В	С	D	Е	F	
气后重新达到平衡,则B的平衡浓度(填"增大"、"不变"或"减小"),氧气的转化率	4mol/L H ₂ SO ₄ /mL	30	V_1	V_2	V_3	V_4	V_5	
(填"升高"、"不变"或"降低"), D的体积分数(填"增大"、"不变"或"减小")。	饱和 CuSO ₄ 溶液/mL	0	0.5	2.5	5	V_6	20	
9. (2010 全国新课标) 某化学兴趣小组为探究 SO_2 的性质,按下图所示装置进行实验。	H ₂ O/mL	V_7	V_8	V ₉	V_{10}	10	0	
★ 浓硫酸	①请完成此实验设计	一,其中:	V ₁ =,	V ₆ =	, V ₉ =	_;		
尾 气处理	②反应一段时间后,	实验 A 中	的金属呈	色,约	实验 E 中的	J金属呈	色;	
Wind Nags 溶液 水	③该同学最后得出的	的结论为:	当加入少	量 CuSO	4溶液时,	生成氢气	的速率会力	大大提高。但当加
BE EXCHANGE FOR THE STATE OF TH	入的 CuSO4溶液超过	一定量时	,生成氢气	气的速率质	反而会下降	。请分析	氢气生成证	速率下降的主要原
A B C D	因			<u></u> ·				
请到答 F 列问题:	11. (2010 全国新课	:标)水是	一种重要同	的自然资源	原,是人类	赖以生存	不可缺少的	的物质,水质优劣
(1)装置 A 中盛放亚硫酸钠的仪器名称是,其中发生反应的化学方程式为;	直接影响人体健康。	请回答下	列问题:					
(2) 实验过程中,装置 B、C 中发生的现象分别是、、这些现象分别说明 SO_2 具有	(1)天然水中溶解的气	体主要有	`					
的性质是; 装置 B 中发生反应的离子方程式为;	(2)天然水在净化处理过程中加入的混凝剂可以是(填两种物质的名称),其净水作用的原理							
(3)装置 D 的目的是探究 SO ₂ 与品红作用的可逆性,请写出实验操作及现象;	是							
(4) 尾气可采用溶液吸收。	(3)水的净化与软化的	区别是	·					
10. (2010 全国新课标)某同学在用稀硫酸与锌制取氢气的实验中,发现加入少量硫酸铜溶液可	(4)硬度为 1°的水是指	每升水含	10mgCaC) 或与之相	当的物质	(如 7.1mg)	MgO)。若	某天然水中
加快氢气的生成速率。请回答下列问题:	c(Ca ²⁺)=1.2′10 ⁻³ mol/L,c(Mg ²⁺)=6′10 ⁻⁴ mol/L,则此水的硬度为							
(1)上述实验中发生反应的化学方程式有;	(5)若(4)中的天然水还含有 $c(HCO_3-)=8'10^{-4} mol/L$,现要软化 $10 m^3$ 这种天然水,则需先加入							
(2) 硫酸铜溶液可以加快氢气生成速率的原因是;	Ca(OH)2g,后加入	Na ₂ CO ₃ _	g.					
(3) 实验室中现有 Na ₂ SO ₃ 、MgSO ₄ 、Ag ₂ SO ₄ 、K ₂ SO ₄ 等 4 中溶液,可与实验中 CuSO ₄ 溶液起相	12. (2010 全国新课	标)主族	元素W、	X, Y, Z	的原子序	数依次増力	大,W 原子	产最外层电子数是
似作用的是;	次外层的 3 倍, X, Y	了和 Z 分属	属于不同的	力 周期,它	们的原子	字数之和是	₿₩原子/	字数的5倍。在由
(4)要加快上述实验中气体产生的速率,还可采取的措旌有(答两种);	元素 W、X、Y、Z 组	且成的所有	「二组分化	合物中,	由元素 W、	Y形成的	り化合物 №	I 的熔点最高。请
(5) 为了进一步研究硫酸铜的量对氢气生成速率的影响,该同学设计了如下一系列实验。将表中	」 回答下列问题:							
	(1) W 原子 L 层电	子排布式)	与 W	/3空间构建	肜是	·		

- (2) X 单质与水反应的主要化学方程式_____.
 (3) 化合物 M 的化学式__ 其晶体结构与 NaCl 相同,而熔点高于 NaCl。M 熔点较高
- (3) 化合物 M 的化字式___ 具晶体结构与 NaCl 相同,而熔点高于 NaCl。M 熔点较高的原因是____。将一定是的化合物 ZX 负载在 M 上可制得 ZX/M 催化剂,用于催化碳酸二甲酯与月桂酸醇酯交换合成碳酸二月桂酯。在碳酸二甲酯分子中,碳原子采用的杂化方式有_____.

____,O-C-O 的键角约______.

- (4) X、Y、Z 可形成立方晶体的化合物, 其晶胞中 X 占有棱的中心, Y 位于顶角, Z 位于体心位置,则该晶体的组成为 X:Y:Z=_____.
- (5)含有元素 Z 的盐的焰色反应为__色,许多金属盐都可以发生焰色反应,其原因是
- 13. (2010 全国新课标) PC 是一种可降解的聚碳酸酯类高分子材料,由于其具有优良的耐冲击性和韧性,因而得到了广泛的应用。以下是某研究小组开发的生产 PC 的合成路线:

己知以下信息:

- ①A可使溴的 CCl₄ 溶液褪色;
- ②B 中有五种不同化学环境的氢;
- (3)C 可与 FeCl₃ 溶液发生显色反应:
- (4)D 不能使溴的 CCl4 褪色, 其核磁共振氢谱为单峰。

请回答下列问题:

- (1) A 的化学名称是 ;
- (2) B 的结构简式为 ;
- (3) C 与 D 反应生成 E 的化学方程式为_____;
- (4) D有多种同分异构体,其中能发生银镜反应的是__(写出结构简式);
- (5) B 的同分异构体中含有苯环的还有______种,其中在核磁共振氢谱中出现丙两组峰,且峰面积之比为 3: 1 的是 (写出结构简式)。

高的原因			
甲酯与月桂			
Z位于体心			
良的耐冲击			
万组峰,且峰			
外组.Ψ¥, 且.Ψ¥			

2010年全国统一高考化学试卷(新课标)参考答案

(解析在后面)

一、选择题

1. C 2. B 3. D 4. D 5. C 6. A 7. B

二、非选题

- 8. (1) $B.SO_2$ $E.H_2SO_4$ $G.Cu_2O$
- (2) 粗铜 精铜 CuSO4溶液
- (3) $Cu+2H_2SO_4(浓)$ DCuSO₄+SO₂+2H₂O
- (4) k=23.8mol/L 减小 降低 减小
- 9. (1)蒸馏烧瓶 Na₂SO₃+H₂SO₄(浓)==Na₂SO₄+SO₂+H₂O
- (2)溶液由紫红色变为无色,无色溶液出现黄色浑浊 还原性和氧化性 5SO₂+2MnO₄-+2H₂O==2SO₄²⁻+5Mn²⁺+4H⁺
- (3)品红溶液褪色后,关闭分液漏斗活塞,点燃酒精灯加热,溶液恢复红色

(4)NaOH

- 10. (1) $Zn+CuSO_4==ZnSO_4+Cu$ $Zn+H_2SO_4==ZnSO_4+H_2$
- (2)CuSO₄与 Zn 反应产生的铜与 Zn 形成微电池,加快了氢气产生的速度
- (3)Ag₂SO₄
- (4)升高反应温度,适当增加硫酸的浓度,增加锌粒的表面积(答两个)
- $(5)(1)V_1=30$ $V_2=60$ $V_3=17.5$
- ②灰黑色,暗红色
- ③当加入一定量的 CuSO₄后,生成的单质铜会沉积在 Zn 的表面降低了 Zn 与溶液接触的表面 11. (1)氧气 二氧化碳(或氮气)
- (2)明矾、硫酸铝、硫酸铁、硫酸亚铁(填其中任意两种) 铝盐或铁盐在水中发生水解生成相应的氢氧化物胶体,它可吸附天然水中悬浮物并破坏天然水中的其他带异电的胶体,使其聚沉达到净水的目的。

(3)水的净化是用混凝剂(如明矾)将水中胶体及悬浮物沉淀下来,而水的软化是除去水中的钙离子和镁离子

 $(4)10^{\circ}$

- (5)740 1484
- 12. (1)2S²2P⁴ V形
- $(2)2F_2+2H_2O==4HF+O_2$
- (3)MgO 晶格能大 SP3和 SP2 120°
- (4)3:1:1
- (5)紫 激发态的电子从能量高的轨道跃迁到能量低的轨道时,以一定的波长(可见光区域)光的形式释放能量

(4)CH₃CH₂CHO (5)7

2010年全国统一高考化学试卷(新课标)

参考答案与试题解析

可能用到的相对原子质量: H-1 B-11 C-12 N-14 O-16 Na-23 S-32 Cl-35.5 Ca-40 Cu-64

一、选择题

- 1. (2010 全国新课标)下列各项表达中正确的是()
- A. Na₂O₂的电子式为 Na:Ö::ÖNa
- B. 106g 的乙醇和丙醇混合液完全燃烧生成的 CO_2 为 112L (标准状况)
- C. 在氮原子中, 质子数为 7 而中子数不一定为 7

D. Cl-的结构示意图为 (+17) 2 8 7

【答案】C

- 【解析】本题综合性强,考点属于化学基本概念.既考查了重要化学用语电子式、微粒结构示意图、原子组成符号和同位素的概念,同时也考查了 Vm 的概念、混合的法则和守恒思想。B 选项于扰性较强,它成立的前提是乙醇和丙醇按 1:1 的物质的量比混合。
- 2. (2010 全国新课标)分子式为 $C_3H_6Cl_2$ 的同分异构体共有(不考虑立体异构)()
- A. 3种
- B. 4种
- C. 5种
- D. 6种

【答案】B

- 【解析】考查同分异构体的书写。CH₃CH₂CH₃的氢原子环境有两种,由此可知二氯取代发生在同一碳原子上和不同谈原子上的异构体各有 2 种,即 2+2=4
- 3. (2010 全国新课标)下列各组中的反应,属于同一反应类型的是()
- A. 由溴丙烷水解制丙醇; 由丙烯与水反应制丙醇
- B. 由甲苯硝化制对硝基甲苯; 由甲苯氧化制苯甲酸
- C. 由氯代环己烷消去制环己烯; 由丙烯加溴制 1,2—二溴丙烷
- D. 由乙酸和乙醇制乙酸乙酯; 由苯甲酸乙酯水解制苯甲酸和乙醇

【答案】D

- 【解析】考查有机化学基本反应类型——取代、加成、氧化、消去。A 项前者为取代反应,后者为加成反应; B 项前者为取代反应,后者为氧化反应; C 项前者为消去反应,后者为加成反应; D 项前者为酯化反应,后者为水解反应,均属于取代反应。
- 4. (2010 全国新课标)把 500mL 含有 $BaCl_2$ 和 KCl 的混合溶液分成 5 等分,取一份加入含 a mol 硫酸钠的溶液,恰好使钡离子完全沉淀;另取一份加入含 b mol 硝酸银的溶液,恰好使氯离子完全沉淀。则该混合溶液中钾离子浓度为(
- A. 0.1 (b-2a) mol/L B. 10 (2a-b) mol/L C. 10 (b-a) mol/L D. 10 (b-2a) mol/L

【答案】D

【解析】本题属于无机综合计算,着重考查了守恒思想(电荷守恒)和物质的量浓度计算。一份 溶液中

n (K^+) = (b-2a) mol, abla c (K^+) = n/V = (b-2a) /0.1 = 10 (b-2a) mol·L⁻¹.

5. (2010 全国新课标) 已知: HCN(aq)与 NaOH(aq)反应的 ΔH = -12.1kJ /mol; HCl(aq)与 NaOH(aq)反应的 ΔH = -55.6kJ/ mol。则 HCN 在水溶液中电离的 ΔH 等于(

A. -67.7 kJ/mol B. -43.5kJ/mol C. +43.5 kJ/mol D. +67.7 kJ/mol

【答案】C

【解析】考查了盖斯定律的应用和中和热的概念.

6. (2010 全国新课标)根据右图可判断下列离子方程式中错误的是(

- A. $2Ag(s)+Cd^{2+}(aq)=2Ag^{+}(aq)+Cd(s)$
- B. $Co^{2+}(aq)+Cd(s)=Co(s)+Cd^{2+}(aq)$
- C. $2Ag^{+}(aq)+Cd(s)=2Ag(s)+Cd^{2+}(aq)$
- D. $2Ag^{+}(aq)+Co(s)=2Ag(s)+Co^{2+}(aq)$

【答案】A

【解析】考查了原电池的概念、化学反应强弱规律和离子方程式的书写,命题角度新。

7. (2010 全国新课标)下表中评价合理的是()

选项	化学反应及其离子方程式	评价	
A	Fe ₃ O ₄ 与稀硝酸反应:	正确	
	$2Fe_3O_4+18H^+=6Fe^{3+}+H_2\uparrow+8H_2O$		
	点型	错误,碳酸镁不应写成	
В	向碳酸镁中加入稀盐酸: CO ₃ ²⁻ +2H ⁺ = _{CO2} ↑+H ₂ O	离子形式	
	向硫酸铵溶液中加入氢氧化钡溶液: Ba ²⁺ +SO ₄ ²⁻	工格	
С	=BaSO ₄ ↓	正确	

 D
 FeBr₂溶液与等物质的量的 Cl₂反应:
 错误,Fe²⁺与 Br⁻的化学

 2Fe²⁺+2Br⁻+2Cl₂=2Fe³⁺+4Cl⁻+Br₂
 计量数之比应为 1: 2

【答案】B

【解析】考查离子方程式正误判定,呈现方式新颖。A 项违反化学事实,起氧化作用的是 NO₃·而不是 H⁺; B 项正确; C 项中复杂离子方程式只写了一半,错误; D 项离子方程式正确,考虑到了反应强弱规律和电子转移守恒,评价错。

二、非选题

8. (2010 全国新课标)(14 分)物质 $A\sim G$ 有下图所示转化关系(部分反应物、生成物没有列出)。其中 A 为某金属矿的主要成分,经过一系列反应可得到 B 和 C。单质 C 可与 E 的浓溶液发生反应,G 为砖红色沉淀。

请回答下列问题:

(1)写出下列物质的化学式:	B, E	_、G;	
(2)利用电解可提纯 C 物质,	在该电解反应中阳极物质	质是, 阴极物	质是,电解质
溶液是;			
(3)反应②的化学方程式是_			;

(4)将 0.23molB 和 0.11mol 氧气放	入容积为 1L 的密闭容器中,	发生反应①,在一	定温度下,反
应达到平衡,得到 0.12molD,	则反应的平衡常数 K=	。若温度不变	,再加入
0.50mol 氧气后重新达到平衡	则 B 的平衡浓度	(填"增大"、"不变"写	戍"减小"),
氧气的转化率(填"升	高"、"不变"或"降低"),D	的体积分数	(填"增
大"、"不变"或"减小").			

【答案】(1)SO₂ H₂SO₄ Cu₂O

- (2)粗铜 精铜 CuSO₄溶液
- (3) $Cu+2H_2SO_4$ (浓) $\Delta CuSO_4+SO_2\uparrow+2H_2O$
- (4)23.8 mol⁻¹·L 减小 降低 减小

- 【解析】以无机框图推断为载体,综合考查浓硫酸的强氧化性、铜的电解精炼和化学平衡相关知识,难度适中。
 - (1) 根据已知条件走通转化关系图:

A B C D E F G (Cu_2S) SO₂ Cu SO₃ H_2SO_4 CuSO₄ Cu_2O_4 按题目要求在指定位置写出 B、E、G 的化学式。

- (2) 电解法精炼铜时,粗铜作阳极,精铜作阴极,电解质溶液为CuSO4(aq)。
- (3) 该反应中浓硫酸表现了酸性和强氧化性。

温度不变,再加入 $0.50 \text{mol } O_2$,平衡右移,重新达到平衡后, $[SO_2]_{\text{平减}}$ 小, α (SO_2) 升高,但 α (O_2) 反而降低,由于机械作用强于平衡移动,故 SO_2 体积分数 减小。

9. (2010 全国新课标)(15 分)某化学兴趣小组为探究 SO_2 的性质,按下图所示装置进行实验。

请回答下列问题:

- (1)装置 A 中盛放亚硫酸钠的仪器名称是_______,其中发生反应的化学方程式为______;
- (2)实验过程中,装置 B、C 中发生的现象分别是____、__、,这些现象分别说明

SO_2 具有的性质是和; 装置 B 中发生反应的离子方程式为	②反应一段时间后,实验 A 中的金属呈色,实验 E 中的金属呈色;				
;	③该同学最后得出的结论为: 当加入少量 CuSO4溶液时,生成氢气的速率会大大提高。但当				
(3)装置 D 的目的是探究 SO ₂ 与品红作用的可逆性,请写出实验操作及现象;	加入的 CuSO ₄ 溶液超过一定量时,生成氢气的速率反而会下降。请分析氢气生成速率下				
(4)尾气可采用溶液吸收。	的主要原因。				
【答案】(1)蒸馏烧瓶 Na ₂ SO ₃ +H ₂ SO ₄ (浓)=Na ₂ SO ₄ +SO ₂ ↑+H ₂ O	【答案】1) $Zn+CuSO_4=ZnSO_4+Cu$ $Zn+H_2SO_4=ZnSO_4+H_2$				
(2)溶液由紫红色变为无色 无色溶液中出现黄色浑浊	(2) CuSO ₄ 与 Zn 反应产生的 Cu 与 Zn 形成 Cu/Zn 微电池,加快了氢气产生的速率				
还原性 氧化性 5SO ₂ +2MnO ₄ -+2H ₂ O=2Mn ²⁺ +5SO ₄ ²⁻ +4H ⁺	$(3) Ag_2SO_4$				
(3)品红溶液褪色后,关闭分液漏斗的旋塞,点燃酒精灯加热,溶液恢复为红色	(4) 升高反应温度、适当增加硫酸的浓度、增加锌粒的比表面积等				
(4)NaOH(其他合理答案也给分)	(5) ①30 10 17.5 ②灰黑 暗红				
【解析】这是一道实验探究题,主要考查了 SO_2 的制备、性质、检验和尾气处理。很常规,学生答	③当加入一定量的 CuSO4后,生成的单质 Cu 会沉积在 Zn 的表面,降低了 Zn 与溶液				
起来非常顺手。	的接触面积				
10. (2010 全国新课标) (14 分) 某同学在用稀硫酸与锌制取氢气的实验中,发现加入少量硫酸	【解析】这是一道无机综合题,考查原电池反应原理,影响化学反应速率的因素,定量实验方法				
铜溶液可加快氢气的生成速率。请回答下列问题:	和分析解决实际问题的能力。体现了新课标高考重视对"过程与方法"的考查。				
(1)上述实验中发生反应的化学方程式有;	(1) 考生容易漏写" Zn + CuSO ₄ = ZnSO ₄ + Cu "。				
(2)硫酸铜溶液可以加快氢气生成速率的原因是;	(2) 置换出的少量 Cu 与 Zn 和稀硫酸构成原电池。				
(3)实验室中现有 Na ₂ SO ₄ 、MgSO ₄ 、Ag ₂ SO ₄ 、K ₂ SO ₄ 等 4 种溶液,可与上述实验中 CuSO ₄ 溶液起	(3)是(2)的延伸——Ag、Zn、稀硫酸也能构成原电池。				
相似作用的是;	(4) 答案有多种,只要合理均可。				
(4)要加快上述实验中气体产生的速率,还可采取的措施有(答两种);	(5)①着重考查学生对定量实验方法原理的理解和阅读图表获取信息的能力。该实验目				
(5)为了进一步研究硫酸铜的量对氢气生成速率的影响,该同学设计了如下一系列实验。将表中	的是"进一步研究硫酸铜的量对氢气生成速率的影响",所以,应控制稀硫酸的量				
所给的混合溶液分别加入到 6 个盛有过量 Zn 粒的反应瓶中,收集产生的气体,记录获得相	不变,故 $V_1 = V_2 = V_3 = V_4 = V_5 = 30$, $V_6 = 10$, $V_7 = 20$, $V_9 = 17.5$, $V_{10} = 10$ 。				
同体积的气体所需时间。	②考查单质 Zn 和 Cu 的颜色。				
实验	③考查学生分析解决实际问题的能力。				
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	11. (2010 全国新课标)[化学——选修化学与技术](15 分)				
4mol/L H ₂ SO ₄ /mL 30 V ₁ V ₂ V ₃ V ₄ V ₅	水是一种重要的自然资源,是人类赖以生存不可缺少的物质。水质优劣直接影响人体健康。请				
饱和 CuSO ₄ 溶液	回答下列问题:				
$ _{\text{mL}} 0 $	(1)天然水中溶解的气体主要有、;				
H_2O/mL V_7 V_8 V_9 V_{10} 10 0	(2)天然水在净化处理过程中加入的混凝剂可以是(填两种物质名称),其净水				
①请完成此实验设计,其中: V ₁ =, V ₆ =, V ₉ =;	作用的原理是;				

(4)硬度为 1°的水是指每升水含 10mgCaO 或与之相当的物质(如 7.1mgMgO)。若某天然水中
c(Ca ²⁺)=1.2×10 ⁻³ mol/L, c(Mg ²⁺)=6×10 ⁻⁴ mol/L,则此水的硬度为。
(5)若(4)中的天然水中还含有 $c(HCO_3^-)=8\times10^{-4} mol/L$,现要软化 $10m^3$ 这种天然水,则需先加
入 Ca(OH) ₂ g,后加入 Na ₂ CO ₃ g。
【答案】1)氧气 (O_2) 二氧化碳 (CO_2) (或氮气)
(2) 明矾、硫酸铝、硫酸铁、硫酸亚铁(填其中任何两种)
铝盐或铁盐在水中发生水解生成相应氢氧化物胶体,它可吸附天然水中悬浮物并破坏
天然水中的其他带异电的胶体,使其聚沉,达到净化目的
(3) 水的净化是用混凝剂(如明矾等)将水中胶体及悬浮物沉淀下来,而水的软化是除
去水中的钙离子和镁离子
(4) 10°
(5) 740 1484
【解析】题干精练,设问明确。
(2) 中学生对混凝剂的提法也许不熟悉,但只要理解净水原理这个问题便可迎刃而解。
(4) 以新情境给出水的硬度的概念,理解了这个概念,计算就很轻松。此水的硬度为:
$\frac{(1.2 \times 10^{-3} + 6 \times 10^{-3}) \times 56 \times 10^{3}}{10} = 10^{\circ}$
(5) 注意 Mg(HCO ₃) ₂ 溶液与 Ca(OH) ₂ 反应时 OH-的双重作用——沉淀 Mg ²⁺ ,中和 HCO ₃ -。
∴ m[Ca(OH) ₂] = $\left[6 \times 10^{-4} + \frac{1}{2} (8 \times 10^{-4})\right] \times 10^{4} \times 74 = 740 \text{ g}$
$M[Na2CO3] = (1.2 \times 10^{-3} + 1 \times 10^{-3} - 0.8 \times 10^{-3}) \times 10^{4} \times 106 = 1484 g$
2. (2010 全国新课标)[化学——选修物质结构与性质](15 分)
主族元素 W、X、Y、Z的原子序数依次增大,W的原子最外层电子数是次外层电子数的3倍。
$X \times Y$ 和 Z 分属不同的周期,它们的原子序数之和是 W 原子序数的 5 倍。在由元素 $W \times X$
Y、Z组成的所有可能的二组分化合物中,由元素 W 与 Y 形成的化合物 M 的熔点最高。请回答
下列问题:
(1)W 元素原子的 L 层电子排布式为
(2)X 单质与水发生主要反应的化学方程式为;

(3)水的净化与软化的区别

(3)化合物 M 的化学式为, 其	晶体结构与 NaCl 相同,	而熔点高于 NaC	l。M 熔点轴	校高
的原因是。将一定量的化合物	勿ZX 负载在 M 上可制	得 ZX/M 催化剂,	用于催化矿	碳酸
二甲酯与月桂醇酯交换合成碳酸二月槽	圭酯。在碳酸二甲酯分	子中,碳原子采用	的杂化方式	式有
,O—C—O 的键角约为	;			
(4)X、Y、Z可形成立方晶体结构的化合物	勿, 其晶胞中 X 占据所	有棱的中心,Y位	五于顶角,Z	乙处
于体心位置,则该晶体的组成为 X: Y	7: Z=	;		
(5)含有元素 Z 的盐的焰色反应为	色。许多金属盐都	了可以发生焰色反应	立, 其原因是	是

【答案】1) 2S²2P⁴ V形

- $(2) 2F_2+2H_2O=4HF+O_2$
- (3) MgO 晶格能大(MgO 为 2-2 价态化合物) SP³和 SP² 120°
- (4) 3:1:1
- (5)紫 激发态的电子从能量较高的轨道跃迁到能量较低的轨道时,以一定波长(可见光区域)光的形式释放能量
- 【解析】先依据题设条件推出 W、X、Y、Z 各是什么元素,然后依据题目要求填空。 W 的原子最外层电子数是次外层的 3 倍,可知 W 是氧 (O); X、Y、Z 分属不同周期,它们的原子序数之和为 40,在由元素 W、X、Y、Z 组成的所有可能的二组分化合物中,由元素 W 与 Y 形成的化合物 M (即 YW)的熔点最高可以推出 Y 为镁 (Mg),M 为 MgO, X 为氢 (H), Z 为钾 (K)。
- 13. (2010 全国新课标)[化学——选修有机化学基础](15分) PC 是一种可降解的聚碳酸酯类高分子材料,由于其具有优良的耐冲击性和韧性,因而得到了广泛的应用。以下是某研究小组开发的生产 PC 的合成路线:

$$\begin{array}{c}
A \\
(C_3H_6)
\end{array} +
\begin{array}{c}
H^+ \\
C_9H_{12}
\end{array} \xrightarrow{B}
\begin{array}{c}
1) O_3 \\
C_6H_6O
\end{array} +
\begin{array}{c}
C \\
C_6H_6O
\end{array} +
\begin{array}{c}
D \\
C_3H_6O
\end{array} \xrightarrow{B}
\begin{array}{c}
C \\
C_15H_16O_2
\end{array} + H_2O$$

$$\begin{array}{c}
CH_3 \\
CH_3
\end{array} \xrightarrow{O}
\begin{array}{c}
O \\
C$$

已知以下信息: ①A 可使溴的 CCl4 溶液褪色; ②B 中有五种不同化学环境的氢;

③C 可与 FeCl ₃ 溶液发生显色反应; ④D 不能使溴的 CCl ₄ 溶液褪色, 其核磁共振氢谱为单峰。
请回答下列问题:
(1)A 的化学名称是; (2)B 的结构简式为;
(3)C 与 D 反应生成 E 的化学方程式为;
(4)D 有多种同分异构体,其中能发生银镜反应的是(写出结构简式);
(5)B 的同分异构体中含有苯环的还有种,其中在核磁共振氢谱中出现两组峰,且峰
面积之比为 3:1 的是(写出结构简式)。
【答案】(1)丙烯
(2) CH-CH ₃ CH ₃
(3) 2 OH + CH_3 CH ₃ H + CH_3 CH ₃ OH + H_2 O
(4) CH ₃ CH ₂ CHO (5) 7

【解析】这是一道传统的有机合成题,与无机推断题解法一样,先走通转化关系(合成路线),再按要求抄写答案。

其中(4)、(5)两问设置条件书写同分异构体,实现了本题的选拔功能。

其核磁共振氢谱为单峰。		
, , , , , , , , , , , , , , , , , , , ,		
;		
;		
出结构简式);		
氢谱中出现两组峰,且峰		
专化关系(合成路线) ,		
· 化八尔(日风町以),		
≫ он		
44 44 44 44 44 44 44 44 44 44 44 44 44		
的选拔功能。		