Question. Consider a Markov chain with

- states $S_1, ..., S_N$ a transition matrix P• state vectors $X_0, X_1, ..., X_n = PX_{n-1} = P^n X_n$

What can we say about X_n when n is large?

Example. The weather model:

$$P = \begin{cases} R & S \\ 0.6 & 0.1 \\ 0.4 & 0.9 \end{cases}$$

$$X_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} R \qquad \text{for n large:} \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.6 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.6 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.5 \\ 0.6 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.5 \\ 0.8 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.5 \\ 0.8 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

$$X_0 = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} \qquad \qquad X_n \approx \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} R$$

Example. The gambling model:

$$P = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 1-p & 0 & 0 & 0 \\ 0 & 0 & 1-p & 0 & 0 \\ 0 & p & 0 & 1-p & 0 \\ 3 & 0 & 0 & p & 0 & 0 \\ 4 & 0 & 0 & 0 & p & 1 \end{bmatrix}$$

For p = 0.5;

$$P^{n} \approx \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0.75 & 0.5 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0.25 & 0.5 & 0.25 & 1 \end{bmatrix}$$
 (converges, different columns)

Note:

This means that $X_n = P^n X_0$ will depend on the choice of the vector X_0 :

$$X_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow X_{n} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$X_{0} = \begin{bmatrix} 0.5 \\ 0 \\ 0 \\ 0.5 \end{bmatrix}$$

$$X_{n} = \begin{bmatrix} 0.5 \\ 0 \\ 0 \\ 0.5 \end{bmatrix}$$

$$131$$

Example. Random walk on a circular network:

A random walker can return to the starting position after an even number of steps only. Thus P" will have O on the main diagonal if n is odd, and non-zero numbers if n is even.

Upshot: In this case P" does not converge.

The steady-state vector

Assume that a Markov chain that starts with some state vector Xo converges to some vector:

Line
$$X_n = Y$$

Ne have: $X_n = P^n X_0$
So: $\lim_{n \to \infty} P^n X_0 = Y$

$$\lim_{n \to \infty} P(\mathbb{P}^{n-1}X_0) = Y$$

$$\lim_{n \to \infty} P(\mathbb{P}^{n-1}X_0) = Y$$

$$\lim_{n \to \infty} P^{n-1}X_0 = Y$$

We get: PY=Y

Definition

If P is a stochastic matrix then the *steady-state vector* of P is a probability vector Y such that PY = Y.

Note: Equivalently: Y is an eigenvector of P corresponding to the eigenvalue 1

<u>Upshot</u>: If P is the transition matrix of some Markov chain $X_0, X_0, ...,$ and $\lim_{n \to \infty} X_n = Y$ then Y is a steady state vector of P.

Example. The weather model:

$$P = \frac{R}{S} \begin{bmatrix} 0.6 & 0.1 \\ 0.4 & 0.9 \end{bmatrix}$$

Example. The gambling model (with $p \neq 0, 1$):

$$P = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 1-p & 0 & 0 & 0 \\ 0 & 0 & 1-p & 0 & 0 \\ 0 & p & 0 & 1-p & 0 \\ 3 & 0 & 0 & p & 0 & 0 \\ 4 & 0 & 0 & 0 & p & 1 \end{bmatrix}$$

Proposition

If P is a stochastic matrix then P has a steady-state vector.

Lemma

If A is a square matrix then λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T .

Example. Random walk on a circular network:

$$P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 4 & 1/2 & 0 & 1/2 & 0 \end{bmatrix}$$

Definition

A stochastic matrix P is *regular* if there is $N \ge 0$ such that all entries of P^N are positive.

Perron-Frobenius Theorem

If P is a regular stochastic matrix then:

- ullet There exists only one steady state vector Y of P
- ullet For any probability vector X we have

$$\lim_{n} P^{n}X = Y$$