Reinforcement Learning and Decision Making Under Uncertainty

Christos Dimitrakakis

March 14, 2023

Outline

Schedule

Beliefs and decisions

Decisions with observations

Bandit problems

Markov Decision Processes: Finite horizon

Markov Decision Processes: Infinite horizon I

Markov Decision Processes: Infinite horizon II

Markov Decision Processes: Stochastic Approximation

Model-based RL

Approximate Dynamic Programming

Policy Gradient

Bayesian methods

Regret bounds

MCTS

Advanced Bayesian Models

Inverse Reinforcment Learning

Multiplayer games

Course name:

The course will give a thorough introduction to reinforcement learning. The first 8 weeks will be devoted to the core theory and algorithms of reinforcement learning. The final 6 weeks will be focused on project work, during which more advanced topics will be inroduced.

The first 6 weeks will require the students to complete 5 assignments. The remainder of the term, the students will have to prepare a project, for which they will need to submit a report.

Week	Topic		
1	Beliefs and Decisions		
2	Bayesian Decision Rules		
3	Introduction to Bandit problems.		
4	Finite Horizon MDPs		
	Backwards Induction		
	The Bandit MDP		
5	infite Horizon MDPs		
	Value Iteration		
	Policy Iteration		
6	Sarsa / Q-Learning		
7	Model-Based RL		
8	Function Approximation, Gradient Methods		
9	Bayesian RL: Dynamic Programming, Sampling		
11	UCB/UCRL/UCT.		
	UCT/Alpha Zero.		
12	Inverse Reinforcement Learning		
13	Multiagent extensions: Bayesian Games		
13	Project presnetations		
14	Q&A. Mock exam		

Utility theory (90')

- 1. Rewards and preferences (15')
- 2. Transitivity of preferences (15')
- 3. Random rewards (5')
- 4. Decision Diagrams (10')
- 5. Utility functions and the expected utility hypothesis (15')
- 6. Utility exercise: Gambling (10' pen and paper)
- 7. The St. Petersburg Paradox (15')

Probability primer

- 1. Objective vs Subjective Probability: Example (5')
- 2. Relative likelihood: Completeness, Consistency, Transitivity, Complement, Subset (5')
- 3. Measure theory (5')
- 4. Axioms of Probability (5')
- 5. Random variables (5')
- 6. Expectations (5')
- 7. Expectations exercise (10')
- 8.
- 9. Quantum Physics
- 10. Coin toss
- 11. Relative Likelihood

Completeness A>B, B>A or A=B for any A,B Transitivity A>B,

B>C, A>C Complement: $A>B => ^A<^B$ Subset:

$$A \subset B \Rightarrow A < B$$

1. Measure theory

We can use probability to quantify this, so that A > B iff

Lab: Probability, Expectation, Utility

- 1. Exercise Set 1. Probability introduction.
- 2. Exercise Set 2. Sec 2.4, Exercises 4, 5.

Assignment.

Exercise 7, 8, 9.

Seminar:

Utility. What is the concept of utility? Why do we want to always maximise utility?

Example:

U	w1	w2
a 1	4	1
a2	3	3
a2	3	

Regret. Alternative notion.

L	w1	w2
a 1	0	2
a2	1	0

Minimising regret is the same as maximising utility when w does not depend on a. Hint: So that if $E[L|a^*] \leq E[L|a]$ for all a', $E[U|a^*] \geq E[L|a]$ for all a',

The utility analysis of choices involving risk: https: $// \verb|www.journals.uchicago.edu/doi/abs/10.1086/256692|$ The expected-utility hypothesis and the measurability of utility

Problems with Observations (45')

- 1. Discrete set of models example: the meteorologists problem (25')
- 2. Marginal probabilities (5').
- 3. Conditional probability (5').
- 4. Bayes theorem (10').

Statistical decisions (45')

- 1. ML Estimation (10')
- 2. MAP Estimation (10')
- 3. Bayes Estimation (10')
- 4. MSE Estimation (10') [not done]
- 5. Linearity of Expectations (10') [not done]
- 6. Convexity of Bayes Decisions (10') [not done]

Lab: Decision problems and estimation (45')

- 1. Problems with no observations. Book Exercise: 13,14,15.
- 2. Problems with observations. Book Exercise: 17, 18.

Assignment: James Randi

n meteorologists as prediction with expert advice

- lacktriangle Predictions $p_t = p_{t,1}, \dots, p_{t,n}$ of all models for outcomes y_t
- ightharpoonup Make decision a_t .
- ightharpoonup Observe true outcome y_t
- lacktriangle Obtain instant reward $r_t =
 ho(a_t, y_t)$
- ▶ Utility $U = \sum_{t=1}^{T} r_t$.
- T is the problem horizon

At each step t:

- 1. Observe p_t .
- 2. Calculate $\hat{p}_t = \sum_{\mu} \xi_t(\mu) p_{t,\mu}$
- 3. Make decision $a_t = \arg\max_{a} \sum_{y} \hat{p}_t(y) \rho(a, y)$.
- 4. Observe y_t and obtain reward $r_t = \rho(a_t, y_t)$.
- 5. Update: $\xi_{t+1}(\mu) \propto \xi_t(\mu) p_{t,\mu}(y_t)$.

The update does not depend on a_t

Prediction with expert advice

- Advice $p_t = p_{t,1}, \ldots, p_{t,n} \in D$
- ightharpoonup Make prediction $\hat{p}_t \in D$
- ▶ Observe true outcome $y_t \in Y$
- ▶ Obtain instant reward $r_t = u(\hat{p}_t, y_t)$
- $\blacktriangleright \text{ Utility } U = \sum_{t=1}^{T} r_t.$

Relation to n meteorologists

- D is the set of distributions on Y.
- However, there are only predictions, no actions. To add actions:

$$u(\hat{p}_t, y_t) = \rho(a^*(\hat{p}_t), y_t), \qquad a^*(\hat{p}_t) = \arg\max_{a} \rho(a, y_t)$$

The update does not depend on a_t

The Exponentially Weighted Average

MWA Algorithm

Predict by averaging all of the predictions:

$$\hat{p}_t(y) = \sum_{\mu} \xi_t(\mu) p_{t,\mu}(y)$$

Update by weighting the quality of each prediction

$$\xi_{t+1}(\mu) = \frac{\xi_t(\mu) \exp[\eta u(p_{t,\mu}, y_t)]}{\sum_{\mu'} \xi_t(\mu') \exp[\eta u(p_{t,\mu}, y_t)]}$$

Choices for u

- lacksquare $u(p_{t,\mu},y_t)=\ln p_{t,\mu}(y_t),\;\eta=1,\;\mathsf{Bayes's}\;\mathsf{theorem}.$
- $u(p_{t,\mu}, y_t) = \rho(a^*(p_{t,\mu}), y_t)$: quality of expert prediction.

The n armed stochastic bandit problem

- ightharpoonup Take action a_t
- **Delta** Obtain reward $r_t \sim P_{a_t}(r)$ with expected value μ_{a_t} .
- ▶ The utility is $U = \sum_t r_t$, while P is unknown.

The Regret

-Total regret with respect to the best arm:

$$L \triangleq \sum_{t=1}^{T} [\mu^* - r_t], \qquad \mu^* = \max_{a} \mu_a$$

 \triangleright Expected regret of an algorithm π :

$$\mathbb{E}^{\pi}[L] = \sum_{t=1}^{T} \mathbb{E}^{\pi}[\mu^* - r_t], = \sum_{a=1}^{n} \mathbb{E}^{\pi}[n_{T,a}](\mu^* - \mu_a)$$

 $ightharpoonup n_{T,a}$ is the number of times a has been pulled after n steps.

Bernoulli bandits

A classical example of this is when the rewards are Bernoulli, i.e.

$$r_t|a_t=i\sim \mathrm{Bernoulli}(\mu_i)$$

Greedy algorithm

- ▶ Take action $a_t = \arg\max_a \hat{\mu}_{t,a}$
- lacksquare Obtain reward $r_t \sim P_{a_t}(r)$ with expected value μ_{a_t} .
- ▶ Update arm: $s_{t,a_t} = s_{t-1,a_t} + r_t$, $n_{t,a_t} = n_{t-1,a_t} + 1$.
- lacktriangle Others stay the same: $s_{t,a}=s_{t-1,a}$, $n_{t,a}=n_{t-1,a}$ for $a
 eq a_t$.
- Update means: $\hat{\mu}_{t,i} = s_{t,i}/n_{t,i}$.

Policies and exploration

- $ightharpoonup n_{t,i}, s_{t,i}$ are sufficient statistics for Bernoulli bandits.
- ► The more often we pull an arm, the more certain we are the mean is correct.

Upper confidence bound: exploration bonuses

► Take action $a_t = \arg\max_a \hat{\mu}_{t,a} + O(1/\sqrt{n_{t,a}})$.

Posterior sampling: randomisation

- Given some prior parameters $\alpha, \beta > 0$ (e.g. 1).
- ▶ Sample $\hat{\mu} \sim \xi_t(\mu)$.
- ightharpoonup Take action $a_t = \arg\max_a \hat{\mu}_a$.

The upper confidence bound

Let

$$\hat{\mu}_n = \sum_{i=1}^t r_i / n,$$

be the sample mean estimate of an iiid RV in [0,1] with $\mathbb{E}[r_i] = \mu$. Then we have

$$\mathbb{P}(\hat{\mu}_n \ge \mu + \epsilon) \le \exp(-2n\epsilon^2)$$

or equivalently

$$\mathbb{P}(\hat{\mu}_n \ge \mu_n + \sqrt{\ln(1/\delta)/2n} \le \delta.)$$

Beta distributions as beliefs

- ► [Go through Chapter 4, Beta distribution]
- ► [Visualise Beta distribution]
- ▶ [Do the James Random Exercise 3]
- Note that the problem here is that this is only a point estimate: it ignores uncertainty. In fact, we can represent our uncertainty about the arms in a probabilistic way with the Beta distribution:
 - If our prior over an arm's mean is $\operatorname{Beta}(\alpha, \beta)$ then the -posterior at time t is $\operatorname{Beta}(\alpha + s_{t,i}, \beta + n_{t,i} s_{t,i})$.
- ► [Visualise how the posterior changes for a biased coin as we obtain more data].

Assignment and exercise

- 1. Implement epsilon-greedy bandits (lab, 30')
- 2. Implement Thompson sampling bandits (lab, 30')
- 3, Implement UCB bandits (home)
 - 1. Compare them in a benchmark (home)

- 1. The bandit MDP (30')
- 2. MDP definitions (15')
- 3. MDP examples (15')
- 4. Monte Carlo Policy Evaluation (15')
- 5. DP: Finite Horizon Policy Evaluation (15')
- 6. DP: Finite Horizon Backward Induction (15')
- 7. DP: Proof of Backwards Induction (15')

The Markov decision process

Interaction at time t

- ▶ Observe state $s_t \in S$
- ▶ Take action $a_t \in A$.
- ▶ Obtain reward $r_t \in \mathbb{R}$.

The MDP model μ

- ► Transition kernel $P_{\mu}(s_{t+1}|s_t, a_t)$.
- Reward with mean $\rho_{\mu}(s_t, a_t)$

Policies

Markov policies $\pi(a_t|s_t)$

Utility

Total reward up to a finite (but not necessarily fixed) horizon T

$$U_1 = \sum r_t$$

MDP examples

Shortest path problems

- ▶ Goal state $s^* \in S$.
- ▶ Reward $r_t = -1$ for all $s \neq s^*$
- ▶ Game ends time T where $s_T = s^*$.

Blackjack against a croupier

- Croupier shows one card.
- Current state is croupier's card and your cards.
- ▶ Reward is $r_T = 1$ if you win, $r_T = -1$ if you lose at the end, otherwise 0.

Monte Carlo Policy Evaluation

$$egin{aligned} V_t^\pi(s) &= \mathbb{E}^\pi[U_t|s_t = s] \ &pprox rac{1}{N} \sum_{n=1}^N U_t^{(n)} \end{aligned}$$

Policy Evaluation

$$egin{aligned} V_t^\pi(s) &= \mathbb{E}^\pi[U_t|s_t = s] \ &= \mathbb{E}^\pi[\sum_{k=t}^T r_k|s_t = s] \ &= \mathbb{E}^\pi[r_t|s_t = s] + \mathbb{E}^\pi[\sum_{k=t+1}^T r_k|s_t = s] \ &= \mathbb{E}^\pi[r_t|s_t = s] + \mathbb{E}^\pi[U_{t+1}|s_t = s] \ &= \mathbb{E}^\pi[r_t|s_t = s] + \sum_{s'} \mathbb{E}^\pi[U_{t+1}|s_{t+1} = s'] \, \mathbb{P}^\pi(s_{t+1} = s'|s_t = s) \ &= \mathbb{E}^\pi[r_t|s_t = s] + \sum_{s'} V_{t+1}^\pi(s') \, \mathbb{P}^\pi(s_{t+1} = s'|s_t = s) \ &= \mathbb{E}^\pi[r_t|s_t = s] + \sum_{s'} V_{t+1}^\pi(s') \sum_{a} \mathbb{P}(s_{t+1} = s'|s_t = s, a_t = a) \pi_t(a) \end{aligned}$$

Backwards induction

Let v_t be the estimates of the backwards induction algorithm. We want to prove that $v_t = V_t^*$. This is true for t = T. Let us assume by induction that $v_{t+1} > V_{t+1}^*$. Then it must hold for t as well:

$$egin{aligned} v_t(s) &= \max_a r(s) + \sum_j p(j|s,a) v_{t+1}(j) \ &\geq \max_a r(s) + \sum_j p(j|s,a) V_{t+1}^*(j) \ &\geq \max_a r(s) + \sum_j p(j|s,a) V_{t+1}^\pi(j) \ &\geq V_t^\pi(s) \end{aligned}$$

If π^* is the policy returned by backwards induction, then $v_t = V^{\pi^*}$. Consequently

$$V^* \ge V^* \pi^* = v \ge V^* \Rightarrow v = V^*.$$

- 1. DP: Value Iteration (45')
- 2. DP: Policy Iteration (45')
- 1. DP: Temporal Differences (45')
- 2. DP: Modified Policy Iteration (45')
- 1. Sarsa (45')
- 2. Q-learning (45')
- 1. Actor-Critic Algorithms (45')
- 2. Model-based RL (45')
- 1. Fitted Value Iteration (45')
- 2. Approximate Policy Iteration (45')
- 1. Direct Policy Gradient, i.e. REINFORCE (45')
- 2. Actor-Critic Methods, e.g. Soft Actor Critic (45')
- 1. Thompson sampling (25')
- 2. Bayesian Policy Gradient (20')
- 3. BAMDPs (25')
- 4. POMDPs (20')

- 1. UCB (45')
- 2. UCRL (45')
- 1. UCT (45')
- 2. Alphazero (45')
- 1. Linear Models (20')
- 2. Gaussian Processes (25')
- 3. GPTD (45')
- 1. Apprenticeship learning (45')
- 2. Probabilistic IRL (45')

Bayesian games (90')