M534H HOMEWORKS-Spring 2009

• Set 1. Due date: Thursday February 12th

Section 1.1: 2, 3, 4, 11

Section 1.2: 1, 2, 3, 4, 5.

Section 1.3: 7, 9, 10 (in \mathbb{R}^3), 11.

Additional Problem:

Let $u = u(\mathbf{x}, t)$ be a solution to the wave equation $u_{tt} - \Delta u = 0$ in \mathbb{R}^2 . Assuming that $\nabla u \to 0$ fast enough as $|\mathbf{x}| \to \infty$ prove that

$$E(t) = \int_{\mathbb{R}^2} |u_t|^2 + |\nabla u|^2 \, dx dy$$

is constant in t for all time t.

• Set 2. Due date: Thursday February 26th

Section 1.4:

Section 1.5: 1, 4 and then do 5, 6 as modified below.

Problem 5 states: Consider the equation

$$u_x + yu_y = 0$$

with boundary condition $u(x,0) = \phi(x)$.

(a) For $\phi(x) = x$, for all x, show that no solution exists.

(b) For $\phi(x) = 1$ for all x, show that there are many solutions.

<u>Problem 6 states</u>: Solve the equation $u_x + 2x y^2 u_y = 0$ and find a solution that satisfies the auxiliary condition u(0,y) = y.

Section 1.6: 1, 2, 4

Additional Problems:

- (1) Find the general solution of $u_x \sin(x) u_y = 0$. Then find the special solution that satisfies $f(0, e^y) = e^y$.
- (2) Find the regions in 2d-space where $x^2 u_{xx} + 4u_{xy} + y^2 u_{yy} = 0$ is respectively elliptic, parabolic, hyperbolic. Plot these regions.