SZTUCZNA INTELIGENCJA I SYSTEMY DORADCZE

Przeszukiwanie przestrzeni stanów — problemy z więzami

Problemy z wiezami (CSP)

Ogólnie: stan jest "czarną skrzynką", dla której: można sprawdzić, czy jest celem dana jest wartość funkcji oceny użyteczności stanu można obliczyć sąsiednie stany

CSP:

stan jest zdefiniowany przez zmienne X_i z wartościami z dziedziny D_i test celu jest zbiorem więzów (ograniczeń) specyfikujących dopuszczalne kombinacje wartości dla podzbiorów zmiennych

CSP jest prostym przykładem formalnego języka do reprezentacji stanów

Reprezentacja CSP umożliwia skonstruowanie algorytmów bardziej efektywnych niż ogólne algorytmy przeszukiwania

Przyklad CSP: Kolorowanie mapy

Zmienne WA, NT, Q, NSW, V, SA, T

Dziedziny $D_i = \{red, green, blue\}$

Więzy: sąsiednie regiony mają mieć różne kolory

np. $WA \neq NT$ (jeśli symbol \neq należy do języka), lub $(WA, NT) \in \{(red, green), (red, blue), (green, red), (green, blue), \ldots\}$

Przyklad CSP: Kolorowanie mapy

Rozwiązania są wartościowaniami spełniającymi wszystkie więzy, np. $\{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green\}$

Graf zaleznosci

Binarny CSP: każde ograniczenie dotyczy co najwyżej dwóch zmiennych

Graf zależności: wierzchołki odpowiadają zmiennym, krawędzie — więzom

Algorytmy dla binarnego CSP używają struktury grafu do przyspieszenia szukania, np. Tasmania jest problem niezależnym od pozostałych regionów!

Rodzaje problemow CSP

Zmienne dyskretne

- dziedziny skończone rozmiaru $d \Rightarrow O(d^n)$ pełnych wartościowań
- - np. planowanie zadań, zmienne: daty początku i końca zadań
 - \diamondsuit wymaga języka więzów, np. $StartJob_1 + 5 \le StartJob_3$
 - ♦ problemy z więzami liniowymi są obliczalne
 - ♦ w ogólności nierozstrzygalne

Zmienne ciągłe

- 🔷 np. momenty początku i końca obserwacji przez Teleskop Hubble'a
- problemy z więzami liniowymi można rozwiązać w czasie wielomianowym (programowanie liniowe)

Rodzaje wiezow

Więzy unarne dotyczą pojedynczych zmiennych, np. $SA \neq green$

Więzy binarne dotyczą dwu zmiennych, np. $SA \neq WA$

Więzy wyższego rzędu dotyczą 3 lub więcej zmiennych, np. w kryptoarytmetyce

Preferencje (więzy nieostre), np. red jest lepszy niż green często reprezentowane przez funkcję kosztu przypisania wartości do zmiennej \rightarrow problemy optymalizacyjne z więzami

Przyklad: kryptoarytmetyka

Zmienne: $F T U W R O X_1 X_2 X_3$

Dziedziny: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Więzy: F,T,U,W,R,O wszystkie różne

$$O + O = R + 10 \cdot X_1$$

$$X_1 + W + W = U + 10 \cdot X_2$$

$$X_2 + T + T = O + 10 \cdot X_3$$

$$X_3 = F$$

Rzeczywiste problemy CSP

Problem przydziału np. kto którą klasę będzie uczyć?

Problem rozplanowania zadań np. gdzie i kiedy będą odbywać się poszczególne zajęcia?

Konfiguracja sprzętowa

Arkusze elektroniczne

Logistyka

Zaplanowanie produkcji

Planowanie kondygnacji

Wiele rzeczywistych problemów ma zmienne o wartościach rzeczywistych

Przeszukiwanie przyrostowe z powracaniem

Stany: zmienne częściowo przypisane (tzn. tylko niektóre) więzy zawsze spełnione dla ustalonych zmiennych

Stan początkowy: pusty zbiór przypisań { }

Funkcja następnika: przypisuje wartość do nieprzypisanej zmiennej tak, żeby nie powodować konfliktu więzów z dotychczasowym przypisaniem

porażka, gdy ustalenie kolejnej zmiennej jest niewykonalne

Cel: pełne przypisanie zmiennych

- 1) Dla problemu z n zmiennymi każde rozwiązanie jest na głębokości n \Rightarrow warto używać przeszukiwania wgłab
- 2) Ścieżka jest nieistotna, przypisanie zmiennych jest *przemienne*, np. [najpierw WA=red potem NT=green] to tak samo jak [najpierw NT=green potem WA=red]
 - ⇒ wystarczy rozważyć jeden ustalony porządek przypisywania zmiennych

Przeszukiwanie przyrostowe z powracaniem

```
Przeszukiwanie przyrostowe z powracaniem (ang. backtracking)
przeszukiwanie wgłąb, każdy krok to ustalenie wartości jednej zmiennej
kolejność przypisywania zmiennych jest ustalona
jeśli ustalenie kolejnej zmiennej jest niewykonalne bez łamania więzów
następuje powrót, tzn. cofnięcie niektórych przypisań
```

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING([], csp)

function RECURSIVE-BACKTRACKING(assigned, csp) returns solution/failure
if assigned is complete then return assigned
var← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assigned, csp)
for each value in ORDER-DOMAIN-VALUES(var, assigned, csp) do
    if value is consistent with assigned according to CONSTRAINTS[csp] then
        result← RECURSIVE-BACKTRACKING([var = value | assigned], csp)
        if result ≠ failure then return result
end
return failure
```


Przesz. przyrostowe z powracaniem: wlasnosci

Uniwersalność??

Metoda jest uniwersalna dla wszystkich problemów z więzami

Złożoność pamięciowa??

Pamięta dotychczasowe przypisanie ⇒ liniowa

Złożoność czasowa??

W każdym węźle sprawdza wszystkie możliwe przypisania do jednej zmiennej

- \Rightarrow rozgałezienie drzewa przesz. b= rozmiar dziedziny zmiennych d
- \Rightarrow drzewo przeszukiwań ma d^n liści

Efektywność??

Rozwiązuje problem n-hetmanów dla $n \approx 25$

Heurystyki przyspieszajce

- Wybór zmiennej
 - ⇒ najbardziej ograniczającej spośród najbardziej ograniczonych
- Wybór wartości zmiennej
 - ⇒ najmniej ograniczającej
- ♦ Sprawdzenie wprzód

Binarny CSP:

- Sprawdzenie spójności łukowej
- ♦ Analiza grafu zależności

Wybor zmiennej: najbardziej ograniczona

Wybór zmiennej w kolejnym kroku przeszukiwania:

nabardziej ograniczona zmienna, tzn.

zmienna z najmniejszą liczbą dopuszczalnych wartości

Wybor zmiennej: najbardziej ograniczajaca

Wybór zmiennej spośród najbardziej ograniczonych zmiennych:

nabardziej ograniczająca zmienna, tzn.

zmienna z największą liczbą więzów z pozostałymi zmiennymi

Wybor wartosci: najmniej ograniczajaca

Wybór wartości dla zmiennej wybranej w kolejnym kroku przeszukiwania:

najmniej ograniczająca wartość, tzn.

wartość, która eliminuje najmniej wartości dla pozostałych zmiennych

Allows 1 value for SA

Allows 0 values for SA

Wybor wartosci: najmniej ograniczajaca

Wybór wartości dla zmiennej wybranej w kolejnym kroku przeszukiwania: najmniej ograniczająca wartość, tzn.

wartość, która eliminuje najmniej wartości dla pozostałych zmiennych

Połączenie heurystyk: wybór najbardziej ograniczającej spośród najbardziej ograniczonych zmiennych oraz wybór najmniej ograniczającej wartości zmiennej umożliwia znalezienie rozwiązania dla problemu 1000-hetmanów

Pomysł:

Przeszukiwanie sprawdza, czy dotychczas przypisane zmienne nie eliminują wszystkich wartości dla którejś z nieprzypisanych zmiennych Cofa się, jeśli któraś zmienna nie ma już żadnej dopuszczalnej wartości

Pomysł:

Przeszukiwanie sprawdza, czy dotychczas przypisane zmienne nie eliminują wszystkich wartości dla którejś z nieprzypisanych zmiennych Cofa się, jeśli któraś zmienna nie ma już żadnej dopuszczalnej wartości

Pomysł:

Przeszukiwanie sprawdza, czy dotychczas przypisane zmienne nie eliminują wszystkich wartości dla którejś z nieprzypisanych zmiennych Cofa się, jeśli któraś zmienna nie ma już żadnej dopuszczalnej wartości

Pomysł:

Przeszukiwanie sprawdza, czy dotychczas przypisane zmienne nie eliminują wszystkich wartości dla którejś z nieprzypisanych zmiennych Cofa się, jeśli któraś zmienna nie ma już żadnej dopuszczalnej wartości

Sprawdzenie wprzód propaguje informacje z przypisanych do nieprzypisanych więzów, ale nie od razu wykrywa wszystkie konflikty

NT i SA nie mogą być oba niebieskie!

Spojność łukowa sprawdza spełnialność więzów lokalnie pomiędzy nieprzypisanymi zmiennymi

Spójność łukowa jest określona dla binarnych CSP:

Łuk $X \to Y$ jest spójny wtw dla *każdej* wartości x na zmiennej X *istnieje* dopuszczalna wartość y na zmiennej Y

Najprostsza forma propagacji więzów sprawdza, czy każdy łuk jest spójny

Spójność łukowa jest określona dla binarnych CSP:

Łuk $X \to Y$ jest spójny wtw dla *każdej* wartości x na zmiennej X *istnieje* dopuszczalna wartość y na zmiennej Y

Najprostsza forma propagacji więzów sprawdza, czy każdy łuk jest spójny

Spójność łukowa jest określona dla binarnych CSP:

Łuk $X \to Y$ jest spójny wtw dla *każdej* wartości x na zmiennej X *istnieje* dopuszczalna wartość y na zmiennej Y

Najprostsza forma propagacji więzów sprawdza, czy każdy łuk jest spójny

Jeśli X eliminuje pewną wartość, spójność łukowa dla zmiennych związanych z X musi być ponownie sprawdzona

Spójność łukowa jest określona dla binarnych CSP:

Łuk $X \to Y$ jest spójny wtw dla *każdej* wartości x na zmiennej X *istnieje* dopuszczalna wartość y na zmiennej Y

Najprostsza forma propagacji więzów sprawdza, czy każdy łuk jest spójny

Jeśli X eliminuje pewną wartość, spójność łukowa dla zmiennych związanych z X musi być ponownie sprawdzona

Sprawdzenie spójności łukowej wykrywa konflikty wcześniej niż sprawdzanie wprzód

Spojnosc lukowa: algorytm

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
      if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function REMOVE-INCONSISTENT-VALUES (X_i, X_j) returns true iff we remove
a value
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint between X_i
and X_i
         then delete x from DOMAIN[X_i]; removed \leftarrow true
   return removed
```

Spojnosc lukowa: wlasnosci

Złożoność czasowa??

 $O(n^2d^3)$, można poprawić do $O(n^2d^2)$ ale nie wykrywa wszystkich konfliktów w czasie wielomianowym!

Użyteczność??

Sprawdzenie może być wykonywane po każdym przypisaniu

Analiza grafu zaleznosci

Tasmania i kontynent są niezależnymi podproblemami Identyfikowalne jako spójne składowe grafu zależności

Analiza grafu zaleznosci: efektywnosc

Niech każdy podproblem ma c zmiennych z n wszystkich

Złożoność czasowa: $n/c \cdot d^c$, *liniowa* od n

Przykład, n=80, d=2, c=20 $2^{80}=4$ miliardy lat przy szybkości 10 milionów węzłów/sek $4\cdot 2^{20}=0.4$ sekundy przy szybkości 10 milionów węzłów/sek

CSP z drzewiastym grafem zaleznosci

Twierdzenie: jeśli graf zależności dla binarnego CSP nie ma cyklu, problem można rozwiązać w czasie $O(n\,d^2)$

CSP z drzewiastym grafem zaleznosci: algorytm

1. Wybiera jedną zmienną jako korzeń drzewa, porządkuje liniowo zmienne tak, że węzły bliżej korzenia poprzedzają dalsze węzły

- 2. Dla j malejącego od n do 2: REMOVEINCONSISTENT $(Parent(X_j), X_j)$
- 3. Dla j od 1 do n, ustal X_j spójnie z $Parent(X_j)$

CSP z prawie drzewiastym grafem zaleznosci

Redukcja problemu z jedną zmienną "niedrzewiastą": ustala wartość zmiennej niedrzewiastej i ogranicza dziedziny pozostałych zmiennych

Redukcja problemu ze zbiorem zmiennych redukujących ustala (na wszystkie możliwe sposoby) zbiór zmiennych takich, że graf zależności dla pozostałych zmiennych jest drzewem

Rozmiar zbioru redukującego = c \Rightarrow złożoność $O(d^c \cdot (n-c)d^2)$, bardzo szybkie dla małych c

Iteracyjne poprawianie

Stany: wszystkie zmienne przypisane, więzy niekoniecznie spełnione

Stan początkowy: dowolny stan z pełnym przypisaniem zmiennych

Funkcja następnika: *zmienia* wartość zmiennej powodującej konflikt więzów w bieżącym stanie

Cel: wszystkie więzy spełnione

Algorytmy: hill-climbing, symulowane wyżarzanie, algorytm genetyczny

Minimalna liczba konfliktow: algorytm

Stan początkowy: losowy lub zachłannie minimalizujący liczbę konfliktów

CONFLICTS = liczba niespełnionych więzów po przypisaniu var = v

```
function MIN-CONFLICTS(csp, max-steps) returns a solution or failure
   inputs: csp, a constraint satisfaction problem
             max-steps, the number of steps allowed before giving up
   local variables: current, a complete assignment
                       var. a variable
                       value, a value for a variable
   current \leftarrow an initial complete assignment for csp
   for i = 1 to max-steps do
        var \leftarrow a randomly chosen, conflicted variable from VARIABLES[csp]
        value \leftarrow \text{the value } v \text{ for } var \text{ that minimizes CONFLICTS}(var, v, current, csp)
        set var=value in current
        if current is a solution for csp then return current
   end
   return failure
```

Minimalna liczba konfliktow: 4-hetmanow

Stany: 4 hetmanów w 4 kolumnach ($4^4 = 256$ stanów)

Operacje: przesunięcie hetmana w kolumnie

Cel: brak konfliktów

Ocena stanu: h(n) = liczba konfliktów

Minimalna liczba konfliktow: efektywnosc

Z dużym prawdopodobieństwem rozwiązuje n-hetmanów z losowego stanu w prawie stałym czasie dla dowolnego n (np. n=10,000,000)

To samo zachodzi dla dowolnego losowo wygenerowanego CSP z wyjątkiem wąskiego zakresu wielkości

$$R = \frac{\text{liczba więzów}}{\text{liczba zmiennych}}$$

