1. Given the differential equation that models the behavior of the motor-

$$m x'' + bx' + kx = 0$$

$$x'' + 20x' + 96x = 0$$

is the differential equation.

Given,
Weight of motorcycle with rider,
mg,
=(204+180)
= 384 = mg [m = man]

Gravitational accelation, 9 = 32 ft 5-2

:. mass, on =
$$(384/32)$$

Displacement, S = 4/12 [converting

$$\therefore \text{ spring force, } k = \frac{mg}{5}$$

$$= \frac{384}{4/12}$$

$$= 11.62$$

damping = bx' = 240x' [b-damping]

...b = 240

1. b) Finding the equation of motion, x(t), of the motorwale after jump, Siren the sillorential equation that mudels

Gotler DE from 1. a)

$$2''+20x'+96x=0$$

which is a 2nd order, linear, homogenous with constant coefficint differential equation.

let, the solution, $x = e^{mt}$

$$m^2 + 20m + 96 = 0$$

$$m = -8, -12$$

.. The general solution is, x(t) = C, e + C2e -12t

Given the initial conditions,

$$\chi(0) = \frac{4}{12} = \frac{1}{3}$$

 $x'(t) = -8C_1 e^{-8t} - 12C_2 e^{-12t}$

$$x'(0) = -8C_1 - 12C_2 = 10$$

$$\frac{2}{2}\frac{1}{2}$$

$$\chi(0) = C_1 + C_2 = \frac{1}{3}$$

solving D4 10.

$$C_i = \frac{7}{2}$$

$$C_2 = -\frac{19}{6}$$

.. Equation of motion,
$$\chi(t) = \frac{7}{2}e^{-8t} - \frac{19}{6}e^{-12t}$$

cyale suspension system,

X 4 50 x 4 06 x = 0

is the differential equation.

c) Gotter equation of motion from "1.b),"

$$\chi(t) = \frac{7}{2}e^{-8t} = \frac{19}{6}e^{-12t}$$

Figure 1 .: Graph.

lable				
	×		x(t)	
	0		0.33333	
	0.1		0.61886	
	0.2		0.41936	7
	0.3		0.23098	7
	0.4		0.11660	7
	0,5		0.05625	1
1	0.6		0.02643	1
1	0.7	1	0.01223	
	0.8	T	0.00560	
	0.9		0.00254	
-	1		0.00115	

Figure 2: Table