SAS - Assignment 3.

学圣杰 11910901

Problem 2 (Writting Section)

(b). We are testing 48 null hypotheses Hio, "; Haro simultaneously, and the corresponding P-values are Pi, ..., Par.

We can compute the Probability of making at least one Type I emore (FWER): FWER = 1-(1-0.05)48 \approx 0.9147.

- => We still have 1-0.9147 = 0.0853's chance of making no Type I error even without adjustment for multiple comparsion.
- · Interpretation: the Probability of incorrectly rejecting at least one null hypothesis from 48 total simultaneous without any adjustment for multiple comparsions is 91.47%

Roblem 3

Note that y = x + x. $Var(y) = w^{-1} = diag \{bi\}$.

Let H= ZXWXJXIW.

Suppose $\chi' \chi$ is a linear function of observations and an estimator of B. if $\chi \chi$

is b.l.u.e. of B, we have 1°, E (AY)=B => AXB=B. => AX=I 2° . We need to satisfy that λY has the minimum variance \Rightarrow $Var(\lambda \chi) = \lambda Var(\chi) \lambda = \lambda W^{\dagger} \chi = (\lambda - H + H) W^{\dagger} (\lambda - H + H)'$ $= (y - H)M_1(y - H) + H,M_1H + (y - H)M_1H, + HM_1(y - H)$ Note that (A-H) W+H' = AW+H' - HW-H' = AW-W'X (X'W'X)-1 $- \langle \chi' \underline{W} \chi J' \chi' \underline{W} \underline{W}' \chi (\chi' \underline{W}' \chi)^{-1} = \underline{\chi} \chi (\chi' \underline{W}' \chi)^{-1} - \langle \chi' \underline{W}' \chi \rangle^{-1} = \underline{\varrho}$ $(Since \underline{\chi} \chi^{-1} \underline{L})$ Similarly, we have HW-(2-H)=2 Thus, Cov (AM)= (A-H) W-1(A-H) + H'W-H > H'W-H = Cov(H'y) Note that (入一片) W (入一片) is positive semi-definite => this equality holds only when $\lambda = H$. => thus we have BWLS = DY = HY = (XTWX)-XTWY is blue of Y

Problem 1

Code of SAS

```
%LET SampleSize = 10000;
DATA Data1;
 CALL STREAMINIT(12321);
 DO i = 1 TO &SampleSize;
   ARRAY x(*) x1-x20;
   DO j = 1 TO 20;
      x(j) = RAND("NORMAL");
    * Compute t statistic value;
   Mean = MEAN(OF x(*)); Std= std(Of x(*));
   t=SQRT(20)*Mean/Std;p = 2 - 2 * CDF("T",abs(t),19);
   OUTPUT;
 END;
 DROP i j;
RUN;
* Draw the histogram;
PROC SGPLOT data=Data1;
 histogram p;
run;
```

The histogram of the 10000 p-values are given below:

From this figure, we can observe that P appears to obey U(0,1), and this can also be proven in theory.

Proof

Note that the t-statistic $T=\frac{\sqrt{n}(\overline{X}-\mu_0)}{S}$ follows the t-distribution with degrees of freedom n-1=19 under H_0 .

Thus for an obs t under H_0 , we have $p = Pr(|T| \ge |t|) = 1 - |F(t) - F(-t)|$ where F is the cdf function of t-distribution with with degrees of freedom n-1=19.

Then consider the random variable under H_0 , we have P=1-|F(T)-F(-T)|=1-|2F(T)-1|.

We have $F(T) \sim U(0,1)$, and $2F(T)-1 \sim U(-1,1)$, then $|2F(T)-1| \sim U(0,1)$

Thus we have $P = 1 - |2F(T) - 1| \sim U(0, 1)$.

Problem 2

1(1)

Code of SAS

```
%LET SampleSize = 10000;
DATA Sim1;
 CALL STREAMINIT(12321);
 ARRAY Disease(*) ar as CHD db liv lun;
 ARRAY Factor(*) leo tm Kb pur hair fn ID sum;
 DO i=1 TO &SampleSize;
   DO j = 1 TO 6;
      Disease(j) = RAND("Bernoulli", 0.1);
   END;
   DO j= 1 TO 8;
     Factor(j) = RAND("Bernoulli", 0.05);
   END;
   OUTPUT;
 END;
  DROP i j;
RUN;
```

2(2)

See the writing section.

2(3)

The p-values of the chi-square tests are given below:

	Arthritis	Asthma	CHD	Diabetes	Liver cirrhosis	Lung cancer
Leo	0.2547	0.6160	0.5447	0.3114	0.9013	0.3564
6:00-8:00am	0.3682	0.8012	0.4060	0.6837	0.6051	0.2045
Kobe fan	0.5229	0.2197	0.2677	0.2085	0.2055	0.9008
love purple	0.6200	0.5861	0.9840	0.7711	0.8054	0.9091
red hair	0.3622	0.3747	0.7012	0.0325	0.7950	0.0256
first name C	0.4643	0.6074	0.1696	0.1388	<mark>0.0368</mark>	0.7499
ID number 1	0.2281	0.6768	0.4149	0.5230	0.4221	0.2577
summer	0.5666	0.8767	0.1546	0.6984	0.5463	0.5115

From these results, without adjusting for multiple comparisons, we found three significant associations: red hair & Diabetes, first name C & Liver cirrhosis and red hair & Lung cancer.

These findings are actually Type I errors.

Problem 4

4(1)

The mean of *effort* is 29.6592189, and the standard deviation (sd) of *effort* is 5.1427635.

The scatterplot of loss vs. hours with a regression line by effort_cat (i.e., the interaction plot) are given below

And from the plot, we can find:

- The relationship between *loss* and *hours* does not change direction based on *effort_cat*.
- The slopes of several straight lines are not seriously different, which indicates that their interaction

effect between loss and hours on effort_cat is not strong.

From above, we think the interaction term between *loss* and *hours* should not be added to our linear regression model.

4(2)

From problem 4(1), we do not consider the interaction effect of *hours* and *effort* and the estimated regression coefficients are given below

参数	估计	标准 误差	t 值	Pr > Itl
截距	-15.60248713	3.20106924	-4.87	<.0001
effort	0.70525760	0.08812083	8.00	<.0001
hours	2.35014374	0.91638026	2.56	0.0105

Conclusion:

- ullet If we take the significance level lpha=0.05, then all the intercept, coefficients of effort and hours are significant.
- ullet The linear regression model is $loss=0.70525760*effort+2.35014374*hours-15.60248713+\epsilon$

4(3)

Homoscedasticity assumption

Fitted vs. residual plot

White test

异方差性检验									
方程	检验	统计量	自由度	Pr > 卡方	变量				
loss	White 检验	137.8	5	<.0001	所有变量的叉积				
	Breusch-Pagan	129.7	2	<.0001	1, effort, hours				

Conclusion

This model can not satisfy the homoscedasticity assumption, since

- The absolute value of residuals shows an increasing trend with the increase of the predicted value.
- The p-value obtained from White's test is significant, indicating that we reject the assumption of homoscedasticity.

Normality assumption

Q-Q plot

Shapiro-Wilk test

正态性检验								
方程	检验统计量	值	概率					
resid	Shapiro-Wilk W	0.97	<.0001					
系统	Mardia 偏度	8.40	0.0037					
	Mardia 峰度	-5.61	<.0001					
	Henze-Zirkler T	11.84	<.0001					

Conclusion

This model can not satisfy the normality assumption, since

- The upper and lower quantiles of QQplot deviate significantly from the line.
- The p-value obtained from Shapiro-Wilk test is significant, indicating that we reject the assumption of normality.

But we can not judge Whether the cause of the error of non-normal residuals is caused by heteroskedasticity or the data itself.

Problem 5

5(1)

Obtain the pairwise Pearson correlation coefficients and rank them in descending order by the absolute value.

And we can have that X4&X5, X4&X6 and X5&X6 are highly linearly correlated (The corresponding correlation coefficients are 0.98456 and 0.97708 respectively).

						P	earson 相关	系数, N = 304	15						
X1	X1	deathRate	X12	X7	X8	X9	X10	X14	X13	X11	X3	X5	X4	X6	X2
	1.00000	0.46272	0.11403	-0.11021	0.10227	0.10042	0.05420	-0.04731	-0.01460	-0.01252	0.00834	-0.00572	0.00469	0.00322	-0.00223
X2	X2	X3	X10	X9	X14	X8	deathRate	X13	X7	X12	X11	X6	X4	X5	X1
	1.00000	-0.78895	-0.75519	0.72451	0.70605	-0.45295	-0.42832	0.42612	0.35573	-0.27037	0.16740	-0.15354	-0.11812	-0.09180	-0.00223
Х3	X3	X9	X2	X8	X10	X7	X14	X12	X11	deathRate	X5	X4	X13	X6	X1
	1.00000	-0.82326	-0.78895	0.65508	0.65178	-0.64365	-0.53283	0.51161	-0.50955	0.42935	-0.21385	-0.19264	-0.15765	-0.14798	0.00834
X4	X4	X5	X6	X7	X10	X11	X13	X12	X3	X14	X8	X2	X9	deathRate	X1
	1.00000	0.98456	0.97708	0.42702	0.42663	0.37690	-0.24822	-0.20560	-0.19264	-0.14858	-0.12912	-0.11812	0.07175	-0.00577	0.00469
X5	X5	X4	X6	X7	X10	X11	X12	X13	X3	X8	X14	X2	X9	deathRate	X1
	1.00000	0.98456	0.93361	0.44832	0.39808	0.39807	-0.24267	-0.23716	-0.21385	-0.14276	-0.12965	-0.09180	0.08395	-0.02251	-0.00572
X6	X6	X4	X5	X10	X7	X11	X13	X14	X12	X2	X3	X8	X9	deathRate	X1
	1.00000	0.97708	0.93361	0.45454	0.37266	0.33987	-0.25735	-0.17851	-0.15654	-0.15354	-0.14798	-0.11126	0.04915	0.01122	0.00322
X7	X7	X11	X3	X12	X8	X9	X5	X4	X6	X2	deathRate	X10	X13	X1	X14
	1.00000	0.67853	-0.64365	-0.62340	-0.55241	0.45278	0.44832	0.42702	0.37266	0.35573	-0.26787	-0.24974	-0.14699	-0.11021	0.10722
X8	X8	X3	X9	X7	X10	X11	X12	X2	deathRate	X14	X5	X4	X6	X1	X13
	1.00000	0.65508	-0.63470	-0.55241	0.53013	-0.50192	0.46938	-0.45295	0.37823	-0.37374	-0.14276	-0.12912	-0.11126	0.10227	-0.02211
Х9	X9	X3	X2	X10	X8	X14	X7	X11	deathRate	X12	X13	X1	X5	X4	X6
	1.00000	-0.82326	0.72451	-0.71967	-0.63470	0.60290	0.45278	0.42971	-0.38578	-0.34569	0.18848	0.10042	0.08395	0.07175	0.04915
X10	X10	X2	X9	X3	X14	X8	X6	X4	deathRate	X5	X13	X7	X12	X11	X1
	1.00000	-0.75519	-0.71967	0.65178	-0.63581	0.53013	0.45454	0.42663	0.40428	0.39808	-0.30489	-0.24974	0.19604	-0.13421	0.05420
X11	X11	X12	X7	X3	X8	X9	X5	X4	X6	X13	deathRate	X2	X10	X14	X1
	1.00000	-0.82845	0.67853	-0.50955	-0.50192	0.42971	0.39807	0.37690	0.33987	-0.26551	-0.17783	0.16740	-0.13421	0.04909	-0.01252
X12	X12	X11	X7	X3	X8	X9	X2	deathRate	X5	X4	X10	X6	X14	X1	X13
	1.00000	-0.82845	-0.62340	0.51161	0.46938	-0.34569	-0.27037	0.25739	-0.24267	-0.20560	0.19604	-0.15654	-0.14690	0.11403	0.01634
X13	X13	X14	X2	X10	X11	X6	X4	X5	X9	deathRate	X3	X7	X8	X12	X1
	1.00000	0.43721	0.42612	-0.30489	-0.26551	-0.25735	-0.24822	-0.23716	0.18848	-0.18611	-0.15765	-0.14699	-0.02211	0.01634	-0.01460
X14	X14	X2	X10	X9	X3	deathRate	X13	X8	X6	X4	X12	X5	X7	X11	X1
	1.00000	0.70605	-0.63581	0.60290	-0.53283	-0.48608	0.43721	-0.37374	-0.17851	-0.14858	-0.14690	-0.12965	0.10722	0.04909	-0.04731
deathRate	deathRate	X14	X1	X3	X2	X10	X9	X8	X7	X12	X13	X11	X5	X6	X4
	1.00000	-0.48608	0.46272	0.42935	-0.42832	0.40428	-0.38578	0.37823	-0.26787	0.25739	-0.18611	-0.17783	-0.02251	0.01122	-0.00577

5(2)

We can check the tolerance or the variance inflation factor (tolerance < 0.1 or VIF > 10) to detect the multicollinearity.

And we can see that multicollinearity exists for X4, X5 and X6.

	参数估计									
变量	自由度	参数 估计	标准 误差	t 值	Pr > Iti	容差	方差 膨胀			
Intercept	1	105.06360	10.64377	9.87	<.0001		0			
X1	1	0.22746	0.00734	31.00	<.0001	0.85533	1.16913			
X2	1	-0.02214	0.07085	-0.31	0.7547	0.18114	5.52062			
ХЗ	1	0.49805	0.15528	3.21	0.0014	0.13307	7.51509			
X4	1	1.73487	1.07601	1.61	0.1070	0.00423	236.36600			
X5	1	-0.86791	0.62807	-1.38	0.1671	0.01226	81.57354			
X6	1	-0.93525	0.52369	-1.79	0.0742	0.01722	58.07256			
X7	1	-0.11051	0.09337	-1.18	0.2367	0.31928	3.13209			
X8	1	0.45534	0.16062	2.83	0.0046	0.42862	2.33305			
Х9	1	-0.22009	0.07959	-2.77	0.0057	0.18370	5.44356			
X10	1	-0.01005	0.11719	-0.09	0.9317	0.15622	6.40119			
X11	1	0.05969	0.05389	1.11	0.2681	0.16912	5.91292			
X12	1	0.10414	0.05434	1.92	0.0554	0.21124	4.73405			
X13	1	0.00290	0.18131	0.02	0.9872	0.58885	1.69823			
X14	1	-1.66058	0.10730	-15.48	<.0001	0.39410	2.53744			

5(3)

The plot of lines showing the parameter estimates of X1, X3, X4, X5, X6, X8, X14 against λ are given below:

From the plot we can find:

- When λ increases by a small amount, the coefficients of X4 (Median age of residents), X5(Median age of male residents) and X6 (Median age of female residents) decrease rapidly in absolute value.
 - This is not unexpected because the sample correlation coefficients of X4&X5, X4&X6 and X5&X6 are 0.98456, 0.97708 and 0.93361respectively (from problem5(1)). The coefficients of X4, X5 and X6 are quickly driven towards zero and are almost mirror images of each other about the zero line.
- The effects of X1 (per capita(100,000) cancer diagnosis), X3 (Percent of populace in poverty) and X14 (Percent of resident (age 25 and over) with bachelor's degree) also appear to be overestimated in absolute value. The coefficients decrease in absolute value as λ increases, and level off at non-zero values.

- The effect of X8 (Percent of resident (age 16 and over) unemployed), is likely to be originally underestimated. The coefficient increases slightly as λ increases.
- The coefficients appear to stabilize in the neighborhood of $\lambda=0.4$. So we expect coefficients estimated at $\lambda=0.4$ to be more suitable for estimation of the effects of the explanatory variables.

5(4)

The model selection results according to the BIC criterion are presented below, X14, X1, X3, X8 are added sequentially to the model.

	逐步选择汇总										
步	进入的 效应	删除的 效应	引入 效应数	调整 R 方	AIC	СР	SBC				
0	Intercept		1	0.0000	23285.4967	2795.6228	20244.5180				
1	X14		2	0.2360	22466.7135	1418.0861	19431.7561				
2	X1		3	0.4297	21577.4697	288.6053	18548.5335				
3	ХЗ		4	0.4737	21333.9233	32.8040	18311.0084				
4	X8		5	0.4773*	21314.2926*	13.0743*	18297.3989*				
	* 准则的最佳值										

Generate the plots of these criteria by step.

参数估计									
参数	自由度	估计	标准 误差	t 值					
Intercept	1	80.166233	3.685285	21.75					
X1	1	0.226680	0.006860	33.05					
ХЗ	1	0.849711	0.082680	10.28					
X8	1	0.654495	0.140590	4.66					
X14	1	-1.700383	0.079852	-21.29					

From above, we have the final model after model selection is

$$Y = 80.166233 + 0.226680X_1 + 0.849711X_3 + 0.654495X_8 - 1.700383X_{14} + \epsilon$$

- On average, after accounting for the effect of the other three variables, the deathRate(per capita cancer mortalities) with 1 more per capita cancer diagnosis is 0.2267 higher.
- On average, after accounting for the effect of the other three variables, the deathRate(per capita cancer mortalities) with 1% more population in poverty is 0.8497 higher.
- On average, after accounting for the effect of the other three variables, the deathRate(per capita cancer mortalities) with 1% more residents (age 16 and over) unemployed is 0.6545 higher.
- On average, after accounting for the effect of the other three variables, the deathRate(per capita cancer mortalities) with 1% more residents (age 25 and over) with bachelor's degree is 1.7004 lower.

5(5)

When we filter out the regions with $|r_{stu}|>3$ as outliers, the filtered regions sorted by X1 in ascending order are given below

观测	Region	deathRate	X1	Х3	X8	X14	r
1	Aleutians West Census Area, Alask	203.3	201.3	9.9	2.1	10.3	4.27942
2	Presidio County, Texas	66.3	211.1	21.8	9.6	14	-3.14242
3	Zapata County, Texas	112.5	340.9	32.6	12.2	5.3	-3.58358
4	Atchison County, Missouri	222.4	372.9	12.2	4.3	15.8	3.56789
5	Wibaux County, Montana	214.4	373.3	11.7	3	16.4	3.27764
6	Randolph County, Georgia	127	374.8	36.3	10.4	7.1	-3.18806
7	Crowley County, Colorado	110.7	389.1	40.5	27	7.8	-4.85664
8	Crittenden County, Arkansas	242.9	389.9	27.3	9.9	11.7	3.22666
9	Anderson County, Texas	245.2	394.3	20.4	4.3	7.5	3.41220
10	Dade County, Georgia	238.2	423.9	16.4	6.1	10.2	3.06410
11	Esmeralda County, Nevada	262.1	453.5494221	14	11.9	12.6	4.04464
12	Lander County, Nevada	123.8	453.5494221	11	12	4.7	-3.42247
13	Pershing County, Nevada	121.8	453.5494221	18.5	9.5	7.5	-3.51546
14	Rush County, Kansas	114.3	453.5494221	12.1	5.6	12.8	-3.03888
15	Woodson County, Kansas	293.9	453.5494221	18.4	4.6	12.7	5.70904
16	Cimarron County, Oklahoma	258.7	456.9	18	2.2	15.3	4.21594
17	Coahoma County, Mississippi	266.7	460.1	35	20.3	12.6	3.03551
18	Madison County, Mississippi	292.5	460.5	13.1	5.4	26.7	6.97678
19	Mississippi County, Missouri	270.5	476.9	32.2	12.2	8	3.02300
20	Franklin Parish, Louisiana	140.5	479.6	29	11.5	6.4	-3.48220
21	Baker County, Georgia	127.6	488.4	27.3	7.1	4.3	-4.19506
22	Greene County, Alabama	154.5	495.8	33.2	20.4	7.8	-3.32126
23	Nome Census Area, Alaska	277.6	499.3	26.1	16.5	10.3	3.43978
24	North Slope Borough, Alaska	256.9	501.1	11.5	9.3	10.4	3.24662
25	Robertson County, Kentucky	274	530.3	23	6.7	9.8	3.31704
26	Echols County, Georgia	126.4	538.1	27.1	10.1	6.5	-4.72418

The 2712th, 2724th and 2725th observation is the datapoint for Alaska, which is a state not connected to the mainland of the US. So it may be considered an outlier and removed from the analysis.