Answers to Chapter 4

1.
$$[T]_{D,B} = \begin{bmatrix} -1/3 & 1/3 \\ 0 & 1 \\ 2/3 & -2/3 \end{bmatrix}$$
; $[T]_{D,C} = \begin{bmatrix} 1/3 & 1/3 \\ 2 & 3 \\ -2/3 & -2/3 \end{bmatrix}$. **2(a)-(b)** $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. **(c)** $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

3.
$$\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$$
. 4. $\begin{bmatrix} -1 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. 5. Let $[T]_{B,B} = [a_{ij}]$. Then $Tu_j = \sum_{k=1}^n a_{kj}u_k$. Since B is orthonormal,

§ 4.2

1. The same equalities hold for linear transformations. 2(a) The jth column of B is equal to Be_i . Use associativity of matrix product. (b) The (i, j)th entry of AB is equal to the ith row of A times the jth column of B.

3(a) If
$$A = \begin{bmatrix} A_1 & \cdots & A_n \end{bmatrix}$$
 and $v = \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix}^t$, then $Av = b_1 A_1 + \cdots + b_n A_n$.

(b) If
$$B = \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix}$$
 and $u = [a_1 \cdots a_n]$, then $uB = a_1B_1 + \cdots + a_nB_n$.

- **4.** Use induction on *n* with $A^0 = I$
- **5.** $0 = [a_{ij}]$ with each $a_{ij} = 0$, and $-[a_{ij}] = [-a_{ij}]$.

6.
$$[a_{ij}] = \sum_{i} \sum_{j} a_{ij} E_{ij}$$
. And this equals 0, when each a_{ij} is 0. **7.** Yes.

8. Bases for U : $\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$. V : $\left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$. (Throwing away lin. dep. vectors from basis for U union basis for V .)

$$U+V: \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}. \quad U\cap V: \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

$$\left(\begin{bmatrix} a & -a \\ b & c \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ -\alpha & \gamma \end{bmatrix} \text{ leads to } \alpha = a, \ \beta = -a, \ b = -a, \ \gamma = c. \right)$$

10. Basis:
$$\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 + \sqrt{5} & 2 \\ -2 & 1 - \sqrt{5} \end{bmatrix} \right\}.$$

- 11. Easy to verify the subspace condition
- **12.** Ae_i = the *i*th column of A and R(A) = span $\{Ae_1, ..., Ae_n\}$.

14. Let
$$B = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}$$
. Then $Bw_1 = v_1, \ldots, Bw_n = v_n$. Since B is invertible, the conclusion follows.
15. rank $(A) \le m < n$. So, null $(A) \ge 1$. take a nonzero $(\alpha_1, \ldots, \alpha_n) \in N(A)$.
17(a) For all α . $\begin{bmatrix} 0 & 1 \\ 1 & -\alpha \end{bmatrix}$. **(b)** For no α . **(c)** For $\alpha \ne 0$. $\frac{1}{\alpha} \begin{bmatrix} 0 & \alpha \\ 1 & -1 \end{bmatrix}$.

- (d) For any $\alpha \neq 1$. $\frac{1}{\alpha 1} \begin{bmatrix} \alpha & -1 \\ -1 & 1 \end{bmatrix}$. 18. Yes. 19. $\operatorname{rank}(T) = \operatorname{null}(T) = 2$.
- **20.** $\{T_{ij}: 1 \le i \le m, \ 1 \le j \le n\}$, where $T_{ij}(v_j) = w_i$ and $T_{ij}(v_k) = 0$ for $k \ne j$.
- **21.** Write $X \in \mathbb{F}^{n \times p}$ as $[X_1 \cdots X_p]$. $N(T) = \{[X_1 \cdots X_p] : Ax_1 = 0, \dots, AX_p = 0\}$. So, $\text{null}(T) = p \cdot \text{null}(A)$. Then $rank(T) = np - null(T) = p \cdot rank(A)$.

1(a)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
. (b) $\begin{bmatrix} 0 & 1 & 0 \\ 2 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 1 & 6 \end{bmatrix}$. (c) $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$. 2. No; $A^* = A \Rightarrow (iA)^* = (iA)$.

3. Yes. **4.**
$$A^* = A, B^* = B \Rightarrow (A + \alpha B)^* = A + \alpha B$$
 for real α ; Basis: $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

- **5(a)** $\dim_{\mathbb{F}}(\mathbb{F}^{n\times n}) = n^2$; $\dim_{\mathbb{R}}(\mathbb{C}^{n\times n}) = 2n^2$. **(b)** $\ln \mathbb{F}^{n\times n}$, $\dim_{\mathbb{F}}$ is $(n^2 + n)/2$. $\ln \mathbb{C}^{n\times n}$, $\dim_{\mathbb{R}}$ is $n^2 + n$. (c) In $\mathbb{F}^{n \times n}$, dim_{\mathbb{F}} is $(n^2 - n)/2$. In $\mathbb{C}^{n \times n}$, dim_{\mathbb{F}} is $n^2 - n$.
- (d) In $\mathbb{C}^{n\times n}$, Basis over \mathbb{R} : the *n* matrices with a single 1 on the diagonal, the n(n-1)/2 matrices with a single pair of 1s at corresponding off-diagonal elements and the n(n-1)/2 matrices with a single pair of i and i at corresponding off-diagonal elements. Thus dim_R is n^2 . In $\mathbb{R}^{n \times n}$, dim_R is $(n^2 + n)/2$.
- (e) In $\mathbb{F}^{n\times n}$, dim_{\mathbb{F}} is $(n^2+n)/2$. In $\mathbb{C}^{n\times n}$, dim_{\mathbb{R}} is n^2+n . (f) In $\mathbb{F}^{n\times n}$, dim_{\mathbb{F}} is n. In $\mathbb{C}^{n\times n}$, dim_{\mathbb{F}} is 2n. (g) In $\mathbb{F}^{n\times n}$, dim $_{\mathbb{F}}$ is 1. In $\mathbb{C}^{n\times n}$, dim $_{\mathbb{R}}$ is 2.
- **6(a)** $(A^t)^{-1} = (A^{-1})^t$. **(b)** $(A^*)^{-1} = (A^{-1})^*$. **(c)** Let $A^{-1} = [y_1 \cdots y_n]$. Now, $Ay_k = e_k$. A is lower triangular with nonzero entries on the diagonal. $A = [a_{ij}]$ and $y_k = (b_1, \dots, b_n)^t$ implies $a_{11}b_1 = 0$, $a_{21}b_1 + a_{22}b_2 = 0$, Then $b_1 = 0$, $b_2 = 0$, ..., $b_{k-1} = 0$. So, A^{-1} is lower triangular. (d) Use A^t and (c).
- 7. Use $(AB)^* = B^*A^*$. 8(a)-(b) Use $(AB)^* = B^*A^*$. (c) Use $(AB)^* = B^*A^*$ and $(B^*)^{-1} = (B^{-1})^*$.

9.
$$A^* + A = 0 = B^* + B \Rightarrow (A + \alpha B)^* + (A + \alpha B) = 0$$
 for real α . Basis: $\left\{ \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & i \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \right\}$.

10.
$$\begin{bmatrix} 1 & 1+i & 1 \\ -1+i & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$
. **11.**
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
.

§ 4.4

- **1.** $tr(A + \alpha B) = tr(A) + \alpha tr(B)$; so V is a subspace of $\mathbb{F}^{n \times n}$.
- **2.** $tr(A + \alpha B) = tr(A) + \alpha tr(B)$; with V as in Q.1, $null(T) = \dim_{\mathbb{F}}(V) = n^2 1$.

3.
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. **4(a)** No; $tr(-I + (-I)) < 0$. **(b)** Yes. **5.** $A = I = B$.
6. $tr(AB) = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk}b_{kj} = \sum_{k=1}^{n} \sum_{j=1}^{n} a_{kj}b_{jk} = \sum_{j=1}^{n} \sum_{k=1}^{n} b_{jk}a_{kj} = tr(BA)$.

6.
$$\operatorname{tr}(AB) = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} b_{kj} = \sum_{k=1}^{n} \sum_{j=1}^{n} a_{kj} b_{jk} = \sum_{j=1}^{n} \sum_{k=1}^{n} b_{jk} a_{kj} = \operatorname{tr}(BA)$$

7.
$$\operatorname{tr}(AB - BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = 0 \neq \operatorname{tr}(I)$$
. 8. Let $C = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$. If $a = 0$, take $A = \begin{bmatrix} 0 & -b \\ c & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

If
$$a \neq 0$$
, take $A = \begin{bmatrix} 0 & a \\ 0 & c \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & b/a \end{bmatrix}$.

- **9.** $(y^t A x)^t = y^t A x$ implies $a_{12} = a_{21}$. Next, $x^t A x \ge 0$ gives a quadratic. Complete the square and argue. **10.** $tr(A) = \sum_{i} \sum_{i} |a_{ii}|^2$.
- **11.** $A^*A = A^2 \Rightarrow AA^* = (A^*)^2$. Then $(A^* A)^*(A^* A) = AA^* A^*A$. So, $tr[(A^* A)^*(A^* A)] = 0$. By Q.10, $A^* - A = 0$. 13. $\det(A) \times \det(B) = \det(AB) = \det(2C) = 2^4 \det(C) = 16$. Since A has only integers entries, det(A) is an integer. Thus the pair (det(A), det(B)) can be $(\pm 1, \mp 16)$, $(\pm 2, \mp 8)$, $(\pm 4, \mp 4)$, or $(\pm 8, \mp 2)$, or $(\pm 16, \mp 1)$. Then max(det(A) + det(B)) is 16 + 1 = 17.
- **14.** $AE_{ij} = E_{ij}A \Rightarrow a_{ij} = 0$ for $i \neq j$ and $a_{ii} = a_{ij}$. Then $A = a_{11}I$.
- **15(a)-(b)** Multiply and see. **(c)** Then $A = a_{11}I$.
- **16(a)** $\det(A)\det(B) = \det(AB) = \det(I) = 1 \Rightarrow \det(A) \neq 0$. A^{-1} exists. Now, $AB = I \Rightarrow B = A^{-1}$. Then

$$AB = I.$$
 (b) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}.$

1.
$$\begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$
 (a) $[I]_{N,O} = \frac{1}{2} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$ (b) $[T]_{N,O} = \frac{1}{2} \begin{bmatrix} 2 & 3 & 3 \\ 2 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}.$

(c)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_0 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_y = \frac{1}{2} \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}, \begin{bmatrix} T \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_y = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix}.$$

$$\mathbf{2(a)}\ Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 1 & 0 \\ -4 & -1 \end{bmatrix}. \ \mathbf{(b)}\ P = \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix}. \ \mathbf{(c)}\ S = \begin{bmatrix} 1 & 0 \\ -4 & -1 \end{bmatrix}.$$

(d)
$$PQP^{-1} = [I]_{N,O}[A]_{O,O}[I]N, O^{-1} = [A]_{N,O}[I]_{O,N} = [A]_{N,N} = S.$$

- **3.** $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$; then $[v]_B = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $A[v]_B = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $[Av]_B = \begin{bmatrix} 1 \\ 3 \end{bmatrix}_B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$.
- **4.** If $Tv_i = a_{i1}w_1 + \cdots + a_{im}w_m$ for $1 \le i \le n$, then $T = \sum_{i=1}^n \sum_{j=1}^m a_{ij}T_{ij}$. Next, this equals 0 implies $Tv_i = 0$. As $\{w_j\}$ lin. ind., $a_{i1} = \cdots = a_{im} = 0$. Conclude that $\{T_{ij}\}$ is lin. ind.
- **5(a)** T is one-one iff $\text{null}(T) = \{0\}$ iff $\text{null}([T]_{E,B}) = 0$ iff $\text{rank}([T]_{E,B}) = n$. (b) T is onto iff $[T]_{E,B}$ is onto iff $\text{rank}([T]_{E,B}) = m$.
- **6.** Both $\mathcal{L}(V,W)$ and $\mathbb{F}^{m\times n}$ are vector spaces. Use Exercise 5 and show that $[\alpha T]_{E,B} = \alpha [T]_{E,B}$ and $[S+T]_{E,B} = [S]_{E,B} + [T]_{E,B}$.
- 7. Since the map $T \mapsto [T]_{E,B}$ is an isomorphism, it maps a basis onto a basis.
- **8(a)** Write $C_j :=$ the jth column of $A = [\langle u_1, u_j \rangle, \dots, \langle u_n, u_j \rangle]^t$. Suppose for scalars $b_1, \dots, b_n, \sum_j b_j C_j = 0$. Its ith component gives $\sum_j b_j \langle u_i, u_j \rangle = 0$. That is, for each i, $\langle \sum_j b_j u_j, u_i \rangle = 0$. Since $\{u_i\}$ is a basis, for each $v \in V$, $\langle \sum_j b_j u_j, v \rangle = 0$. In particular, $\langle \sum_j b_j u_j, \sum_j b_j u_j \rangle = 0$. Or, $\sum_j b_j u_j = 0$. Due to lin ind. of $\{u_j\}$, each $b_j = 0$. So, the columns of A are lin. ind.
- **(b)** Since $\{C_1, ..., C_n\}$ is a basis for $\mathbb{F}^{n \times 1}$, there exist unique scalars $b_1, ..., b_n$ such that $[\overline{\alpha}_1, ..., \overline{\alpha}_n]^t = b_1C_1 + \cdots + b_nC_n$. Comparing the components, we have $\overline{\alpha}_i = \langle u_i, \sum_j b_j u_j \rangle$. So, $\alpha_i = \langle \sum_j b_j u_j, u_i \rangle$.
- **9.** $[T]_{C,C} = [I]_{C,B}[T]_{B,B}[I]_{B,C}$. Thus we show that if $R = P^{-1}QP$, then tr(R) = tr(P) for $n \times n$ matrices P,Q,R, with P invertible. For this, use $tr(M_1M_2) = tr(M_2M_1)$. Similarly, do for the determinant.
- **10.** $x = \sum_i \langle x, u_i \rangle u_i, \ y = \sum_j \langle y, u_j \rangle u_j \Rightarrow \langle x, y \rangle = \sum_i \langle x, u_i \rangle \sum_j \langle u_j, y \rangle \langle u_i, u_j \rangle$. This proves the first part. Next, define $T: V \to \mathbb{F}^n$ by $T(u_k) = e_k$ for k = 1, ..., n. Since $x = \sum_k \langle x, u_k \rangle u_k, \ Tx = \sum_k \langle x, u_k \rangle e_k$. Using first part, $||Tx||^2 = \sum_k |\langle x, u_k \rangle|^2 = ||x||^2$.

§ 4.6

- **1.** For $A = [a_{ij}]$, write $\overline{A} = [\overline{a}_{ij}]$. See that $\operatorname{rank}(\overline{A} = \operatorname{rank}(A)$. Then use $\operatorname{rank}(B^t) = \operatorname{rank}(B)$.
- **2.** If rank(A) = r = rank(B), then $A = Q^{-1}E_rP$ and $B = M^{-1}E_rS$. So, $B = M^{-1}QAP^{-1}S$.
- **3(a)** $R(AB) = \{ABx : x \in \mathbb{F}^{k \times 1}\} \subseteq \{Ay : y \in \mathbb{F}^{n \times 1}\} = R(A)$. **(b)** From (a), $rank(AB) \le rank(A)$. Next, $rank((AB)^t) = rank(B^tA^t) \le rank(B^t) = rank(B)$.
- **4.** Let A = DE and B = FG be the full rank factorizations of A and B. Now, $A + B = \begin{bmatrix} D & F \end{bmatrix} \begin{bmatrix} E \\ G \end{bmatrix}$. By

Exercise 3,
$$\operatorname{rank}(A+B) \leq \operatorname{rank}\left(\begin{bmatrix} E \\ G \end{bmatrix}\right) \leq \operatorname{rank}(E) + \operatorname{rank}(G) = \operatorname{rank}(A) + \operatorname{rank}(B)$$
.

- **5(a)** Since A = BC, each column of A is a linear combination of columns of B. Since B has full rank, the columns of B are lin. ind. (b) Use (a) on $A^t = C^t B^t$.
- **6.** The columns of A are unique linear combinations of columns of A. The coefficients in these linear combinations give the matrix C. Thus C is a unique matrix. **7.** Since D is invertible, rank(BD) = rank(B).
- **8.** From Exercise 5(a), columns of B_1 form a basis for R(A). Also, the columns of B_2 form a basis for R(A). The isomorphism that maps the columns of B_1 to columns of B_2 provides such a D. Then use Exercise 6.