Задача 1

3 B

Введите все номера верных утверждений или равенств:

- 1) $\{x \in \mathbb{N} \mid x^2 1 \le 3\} = \{1; 2\}$
- 2) Естественной областью определения функции, обратной к функции $f(x)=2^{3x-1}$, является $(-\infty,+\infty)$.
- 3) $\forall x \in [3,4] \ (x^2-4x-4>0)$

Пример ввода: [1, 3]. Можно ввести как [3, 1].

(Если вы считаете, что верных утверждений или равенств нет, то введите [])

Ваш ответ: [1]

Задача 2

3 🖺

Введите все номера верных утверждений или равенств:

- 1) Если $A\subset\mathbb{R}$ и $A=\{k+1\ |\ k\in\mathbb{Z}\}$, то точка 1 предельная точка A.
- 2) $\lim_{x \to 0} {4\sqrt[4]{x} 1 \choose \sqrt[5]{x} 1} = \lim_{\substack{x \to 0 \ x \to 0}} {4\sqrt[4]{x} 1 \choose \sqrt[4]{x} 1}$
- 3) Пусть a_n последовательность $(n_0, n \in \mathbb{N})$. Если orall arepsilon > 0 : $orall n_0 > 0$: $orall n < n_0 \implies a_n > -arepsilon$, то $\lim_{n o +\infty} a_n = +\infty$.

Пример ввода: [1, 3]. Можно ввести как [3, 1].

(Если вы считаете, что верных утверждений или равенств нет, то введите [])

Ваш ответ: [2]

Задача 3

3

Введите все номера верных утверждений или равенств:

- 1) $rac{4x^2+5x+1}{x^3+1}=lpha(x)-1$, если lpha(x) бесконечно малая функция при x o -1.
- 2) $f(x)=x^2-4x+4$ и $g(x)=x^2-5x+6$ бесконечно малые функции одного порядка малости при x o 2.
- 3) $f(x) = (2+x) \cdot \ln{(1-x)}$ бесконечно малая функция в точке $x_0 = -2$.

Пример ввода: [1, 3]. Можно ввести как [3, 1].

(Если вы считаете, что верных утверждений или равенств нет, то введите [])

Ваш ответ: [1, 3]

Задача 4

3 B

Введите все номера верных утверждений или равенств:

- 1) Функция $f(x)=rac{\sin x}{x}$ имеет разрыв 2 рода в точке x=0.
- 2) Нормаль к графику функции $y=x^2-x-3$ в точке x=2 параллельна нормали к графику функции $6y-x^2+2x=0$ в точке x=0.
- 3) Если функция $f:(a;b)\in\mathbb{R}$ представима в виде $f(x_0+h)-f(x_0)=Ah+o(h)$ при h o 0, где $x_0,x_0+h\in(a;b),A\in\mathbb{R}$, то A=h.

Пример ввода: [1, 3]. Можно ввести как [3, 1].

(Если вы считаете, что верных утверждений или равенств нет, то введите [])

Ваш ответ: []

Задача 5

Введите все номера верных утверждений или равенств:

- 1) Согласно правилу Лопиталя $\lim_{x \to 0} \frac{\sin x}{\operatorname{tg} x} = \lim_{x \to 0} \frac{(\sin x)'}{(\operatorname{tg} x)'}$
- 2) Функция $f(x)=(x-2)^3$ отличается от своего многочлена Маклорена 3-го порядка на x^3 .
- 3) Если в некоторой проколотой окрестности точки x_0 выполняется неравенство $f(x)>f(x_0)$ и функция fдифференцируема в точке x_0 , то $f'(x_0)=0$.

Пример ввода: [1, 3]. Можно ввести как [3, 1].

(Если вы считаете, что верных утверждений или равенств нет, то введите [])

Ваш ответ: [1, 3]

Задача 6

Введите все номера верных утверждений или равенств:

- 1) Функция $y=\sin(x)-x$ не меняет характер монотонности на $(-\infty;+\infty)$.
- 2) Если для функции $f:\langle a,b
 angle o \mathbb{R}$ и любых $x,x_1,x_2 \in \langle a,b
 angle$ таких, что $x_1 < x < x_2$, выполняется неравенство $rac{f(x)-f(x_1)}{x-x_1}>rac{f(x_2)-f(x)}{x_2-x}$, то функция f является выпуклой вверх на $\langle a,b
 angle$. 3) Функция $y=rac{x^4}{(1+x)^3}$ имеет вертикальную и наклонную асимптоты.

Пример ввода: [1, 3]. Можно ввести как [3, 1].

(Если вы считаете, что верных утверждений или равенств нет, то введите [])

Ответ: [1, 3] Правильный ответ наверное [1, 2, 3]

Задача 7

Вычислите $\lim_{x o 0} rac{ ext{tg } 3x + 3 rcsin 6x}{ ext{sin } 10x + 2 rctg } 6x$

Формат ответа обыкновенная дробь.

Ответу 2/3 соответствует

Пример ввода: 2/3

Ваш ответ: 21/22

Задача 8

Исследуйте на непрерывность функцию

$$f(x) = egin{cases} \pi, & x \leq -3\pi, \ x + 2\pi, & -3\pi < x < -2\pi, \ rac{1-\cos(x)}{x^3}, & |x| \leq 2\pi, \ rac{1}{x^{-3\pi}} & x > 2\pi. \end{cases}$$

Определите тип следующих точек: $x_1 = -3\pi, x_2 = -2\pi, x_3 = 0, x_4 = 2\pi, x_5 = 3\pi$

Формат ответа: строка из пяти цифр, k-я цифра равна:

- 1. 0, если x_k точка непрерывности
- 2. 1, если x_k точка разрыва 1-ого рода, при этом не устранимого
- 3. 2, если x_k точка разрыва 2-ого рода
- 4. 3, если x_k точка устранимого разрыва

Например: ответ 01200 означает, что x_1, x_4, x_5 - точки непрерывности, x_2 - точка разрыва 1-го рода (неустранимого), x_3 - точка разрыва 2-го рода

Ваш ответ: 10212

Задача 9

. Вычислить значение y_x' в точке A(-5,-5), если функция y(x) задана неявно формулой: $3^{\frac{2x}{y}}+3^{\frac{y}{x}}=12$

$$3^{\frac{2x}{y}} + 3^{\frac{y}{x}} = 12$$

В ответе укажите обыкновенную несократимую дробь.

Пример ответа: $0.5, -\frac{4}{6}$ Пример ввода: 1/2, -2/3

Ваш ответ: 1

Задача 10

Найдите длину промежутка, на котором функция $f(x) = -11x^4e^{-2x}$ убывает.

Запишите ответ с точностью до двух знаков после запятой.

Пример ответа: -1.23Пример ввода: -1.23

Ваш ответ: 2.00