Project MAS291 – Group 2

I. Members

- 1. Nguyễn Đức Hải- HE150561
- 2. Nguyễn Văn Tuyên- HE150819
- 3. Trần Đức Tuấn- HE151203

II. Data

Class A

No	Mark	No	Mark		
1	9	16	10		
2	8.5	17	7.7		
3	7.5	18	4.4		
4	6.6	19	9.7		
5	5.8	20	10		
6	4.6	21	4.1		
7	6	22	4.3		
8	5	23	8.5		
9	4.4	24	6.5		
10	4.2	25	9.5		
11	9.8	26	7.5		
12	9.1	27	6		

13	2	28	10
14	2.4	29	7.5
15	2.5	30	4.5

Class B

No	Mark	No	Mark			
1	6.6	16	10			
2	6	17	0			
3	5.5	18	8.2			
4	6	19	6.6			
5	4.2	20	10			
6	6.2	21	6.6			
7	4.4	22	7			
8	8.9	23	0			
9	8.1	24	6.6			
10	6.9	25	9.2			
11	5.6	26	8.8			
12	9	27	4.4			
13	1.6	28	5.2			
14	5.2	29	3.6			
15	7	30	6.2			

III. Analysis

Section 1: The mean and standard deviation of the two groups

- Group A mean and standard deviation:

•
$$\sum x^2 = 1482,26$$

•
$$(\sum x)^2 = 197,6^2$$

•
$$n = 30$$

 $\bar{x} \approx 6,567$

$$S = \sqrt{\frac{n\sum x^2 - (\sum x)^2}{n(n-1)}} \approx \sqrt{\frac{30\sum x^2 - (\sum x)^2}{30(30-1)}} \approx 2.496$$

- Group B mean and standard deviation:

•
$$\sum x^2 = 1311.44$$

•
$$(\sum x)^2 = 183.6^2$$

•
$$n = 30$$

 $\bar{x} \approx 6.12$

$$S = \sqrt{\frac{n \sum x^2 - (\sum x)^2}{n(n-1)}} \approx \sqrt{\frac{30 \sum x^2 - (\sum x)^2}{30(30-1)}} \approx 2.545$$

Section 2. Build frequency distribution and histogram for test data of 2 groups

2.1. Frequency distribution (Phân bố tần số)

Mark	0 ~	1 ~	2 ~	3 ~	4 ~	5 ~	6 ~	7 ~	8 ~	9 ~
	1	2	3	4	5	6	7	8	9	10
Frequency of Group A	0	1	2	0	8	3	2	4	3	7
Frequency of Group B	2	1	0	1	3	6	7	2	5	3

2.2. Histogram (Biểu đồ)

o A class chart:

o B class chart:

Section 3. Construct a 95% 2-sided confidence interval for the mean test scores of the 2 groups

According to:

$$\bar{x} - t_{\alpha/2, n-1} s / \sqrt{n} \le \mu \le \bar{x} + t_{\alpha/2, n-1} s / \sqrt{n}$$

- Group A:

$$\begin{split} n &= 30 \Rightarrow \text{n-1} = 29 \Rightarrow t_{0,025;29} = 2,05 \\ s &= 2.496 \Rightarrow t_{0,025;29} * \text{s}/\sqrt{n} = 2,05 * 2.496/\sqrt{30} = 0,934 \\ \Rightarrow 6,567 - 0,934 \leq \mu \leq 6,567 + 0,934 \\ \Rightarrow 5,633 \leq \mu \leq 7.501 \end{split}$$

- Group B:

$$n = 30 \Rightarrow n-1 = 29 \Rightarrow t_{0,025;29} = 2,05$$

$$s = 2.545 \Rightarrow t_{0,025;29} * s/\sqrt{n} = 2,05 * 2.545/\sqrt{30} = 0,953$$

$$\Rightarrow 6,12 - 0,953 \le \mu \le 6,12 + 0,953$$

$$\Rightarrow 5,167 \le \mu \le 7,073$$

Section 4.

If we're only interested in score of student which is above 5 then:

- Class A:

Sample mean: $\bar{x} = 8.17$

Sample size: n = 19

- $\sum x^2 = 1308.18$
- $(\sum x)^2 = 155.2^2$
- n = 19

Standard Deviation;
$$s = \sqrt{\frac{n\sum x^2 - (\sum x)^2}{n(n-1)}} \approx \sqrt{\frac{19*1308.18 - 155.2^2}{19(19-1)}} \approx 1.5$$

- Class B:

Sample mean: $\bar{x} = 7.191$

Sample size: n = 23

- $\sum x^2 = 1239.56$
- $(\sum x)^2 = 165.4^2$
- n = 19

Standard Deviation;
$$s = \sqrt{\frac{n \sum x^2 - (\sum x)^2}{n(n-1)}} \approx \sqrt{\frac{23 \sum x^2 - (\sum x)^2}{23(23-1)}} \approx 1.51$$

According to:
$$\bar{x} - t_{\alpha/2, n-1} s / \sqrt{n} \le \mu \le \bar{x} + t_{\alpha/2, n-1} s / \sqrt{n}$$

- Class A:

$$n = 19 \Rightarrow n - 1 = 18 \Rightarrow t_{0.025,18} = 2,101$$

$$s = 1.5 \rightarrow t_{0.025; 18} * s/\sqrt{n} = 2,101 * (1.5)/\sqrt{19} = 0,723$$

$$\Rightarrow 8.17 - 0.723 \le \mu \le 8.17 + 0.723$$

$$\Rightarrow$$
 7.447 \leq μ \leq 8.893

- Class B:

$$n = 23 \rightarrow n - 1 = 22 \rightarrow t_{0,025; 22} = 2.074$$

$$s = 1.51 \rightarrow t_{0.025; 22 * s} / \sqrt{n} = 2.074 * (1.51) / \sqrt{23} = 0.653$$

$$\Rightarrow$$
7.191 - 0,653 $\leq \mu \leq$ 7.191 + 0,653

$$\Rightarrow$$
 6,538 $\leq \mu \leq$ 7.844

Section 5.

-Hypothesis Tests on the Mean of Class A

$$\bar{x} = 6,567$$

$$s = 2.496$$

$$n = 30$$

a.

$$H_0$$
: $\mu = 5$

$$H_1$$
: $\mu \neq \mu_0$

$$t_0 = \frac{\overline{x} - \mu}{s/\sqrt{n}} = \frac{6,567 - 5}{2.496/\sqrt{30}} = 3.438$$

⇒ Reject because $t_0 > t_{\alpha/2; n-1} (3.438 > 2,05)$

b.

$$H_0$$
: $\mu = 5$

$$H_1: \mu > \mu_0$$

$$t_0 = \frac{\overline{x} - \mu}{s/\sqrt{n}} = \frac{6,567 - 5}{2.496/\sqrt{30}} = 3.438$$

⇒ Reject because $t_0 > t_{\alpha; n-1}$ (3.438 > 1,699)

Section 6.

-Hypothesis Tests on the Mean of Class B

$$\overline{x} = 6.12$$
; s = 2.545; n = 30

a.

$$H_0$$
: $\mu = 5$

$$H_1$$
: $\mu \neq \mu_0$

$$t_0 = \frac{\overline{x} - \mu}{s / \sqrt{n}} = \frac{6,12 - 5}{2.545 / \sqrt{30}} = 2.41$$

 \Rightarrow Reject because $t_0 > t_{\alpha/2; n-1} (2.41 > 2.05)$

b.

$$H_0$$
: $\mu = 5$

$$H_1: \mu > \mu_0$$

$$t_0 = \frac{\overline{x} - \mu}{s / \sqrt{n}} = \frac{6,12 - 5}{2.545 / \sqrt{30}} = 2.41$$

 \Rightarrow Reject because $t_0 > t_{\alpha, n-1} (2.41 > 1,699)$

Section 7.

State null and alternate hypothesis of class A:

$$H_0$$
: $p = 0.5$

H₁:
$$p \neq 0,5$$

Test statistic:

$$z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$$

$$= \frac{19 - 30 * 0.5}{\sqrt{30 * 0.5.(1 - 0.5)}}$$

$$\approx 1.46$$

Reject H₀: p=0,5 if $z_0 < -z_{0,025} = -1.96$

or
$$z_0 > z_{0.025} = 1.96$$

 \Rightarrow Conclusion: Since $z_0 \approx 1,46 < z_{0,005} = 1.96$; we agree H_0 and conclude the proportion of students in group A with test scores than 5 is more than 50%.

Section 8.

State null and alternate hypothesis of class A:

$$H_0$$
: $p = 0.3$

H₁:
$$p \neq 0,3$$

Test statistic:

$$z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$$
$$= \frac{19 - 30.0,3}{\sqrt{30.0,3(1 - 0,3)}}$$
$$\approx 3.98$$

Reject H₀: p=0,3 if $z_0 < -z_{0,025} = -1.96$

or
$$z_0 > z_{0.025} = 1.96$$

 \Rightarrow Conclusion: Since $z_0 \approx 3.98 > z_{0,025} = 1.96$; we reject H_0 and conclude the proportion of students in group A with test scores than 5 is not equal 30%.

Section 9.

With the data from the data given in the table, we see that with table A there are 30 students and their average score is 6.567. As for Group B, we have 30 students and their average score is 6,12.

From the given problem, we have:

$$X1 = 6.567$$
; $X2 = 6.12$; $X1 = 30$; $X2 = 30$; $X1 = 2.496$; $X2 = 2.545$

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

= 58 (If v is not an integer, round down to the

nearest integer)

If \bar{x}_1 , \bar{x}_2 , s_1^2 , and s_2^2 are the means and variances of two random samples of sizes n_1 and n_2 , respectively, from two independent normal populations with unknown and unequal variances, an approximate $100(1-\alpha)\%$ confidence interval on the difference in means $\mu_1 - \mu_2$ is

$$\overline{x}_1 - \overline{x}_2 - t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_1 - \mu_2 \le \overline{x}_1 - \overline{x}_2 + t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \quad (10-20)$$

where v is given by Equation 10-16 and $t_{\alpha/2,\nu}$ is the upper $\alpha/2$ percentage point of the t distribution with ν degrees of freedom.

$$-0.9 \le \mu_1 - \mu_2 \le 1.78$$

 \Rightarrow Conclusion: The average test score of group A is the same as that of group B because X1 - X2 = 6.567–6,12 = 0.447. It is still within the 99% 2-sided confidence interval.

6. Difference in two proportions of two binominal parameters $p_1 - p_2$ $\hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2} }$ $\leq p_1 - p_2 \leq \hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2} }$

From the recipe \Rightarrow -0,01469 \leq P1 - P2 \leq 0,2813

Section 10.

Từ các giá trị ở trên ta đưa ra nhận xét:

1. Giá trị trung bình, độ lệch tiêu chuẩn, phân bố tần và biểu đồ cho dữ liệu điểm thi của hai nhóm

Nhóm A có giá trị trung bình = $\frac{6.567}{(2.496)}$; độ lệch chuẩn của nhóm A

Nhóm B có giá trị trung bình = $\frac{6,12}{6,12}$; độ lệch chuẩn của nhóm B $\frac{(2.545)}{6,12}$

Giá trị trung bình của nhóm A (6.567) lớn hơn nhóm B (6,12); đồng thời độ lệch chuẩn của nhóm A (2,496) nhỏ hơn nhóm B với độ lệch chuẩn (2,545)

Từ đó, ta suy ra nhóm A có điểm số tốt hơn nhóm B và có sự biến động thấp hơn nhóm B. Tuy nhiên sự biến động không chênh lệnh nhiều.

Nhóm A có điểm số nhằm trong khoảng từ 4 đến 10, trong đó điểm từ 9~10 có tần xuất nhiều nhất (9) và điểm 7~8 cũng có tần xuất xuất hiện là 8, tần xuất dưới trung bình là 6.

Nhóm B có điểm số nhằm trong khoảng từ 0 đến 10, trong đó điểm từ 5~6 có tần xuất nhiều nhất(9) và điểm 6~7 cũng có tần xuất xuất hiện là 5, tần xuất dưới trung bình là 7.

Nhóm A có điểm giỏi(>8) nhiều điểm giỏi hơn nhóm B(13 > 9).

Từ đó ta thấy rằng nhóm A có khả năng học tập tốt hơn nhóm B.

2. Khoảng tin cậy hai phía 95% cho điểm thi trung bình và điểm thi trung bình có điểm thi > 5. (của hai nhóm)

Chúng ta chắc chắn 95% (độ tin cậy) rằng trong khoảng (5,633; 7.501) có chứa giá trị trung bình của nhóm A

Chúng ta chắc chắn 95% (độ tin cậy) rằng trong khoảng (5,167;7,073) có chứa giá trị trung bình của nhóm B

Chúng ta chắc chắn 95% (độ tin cậy) rằng trong khoảng (7.447;8.893) có chứa điểm thi trung bình lớn hơn 4 của nhóm A

Chúng ta chắc chắn 95% (độ tin cậy) rằng trong khoảng (6,538;7.844) có chứa điểm thi trung bình lớn hơn 5 của nhóm B

3. Các giả thuyết được kiểm định

*Với giả thiết điểm thi trung bình của sinh viên lớp A:

a. Bằng 5

Kết luận: Vì (3.438 >2,05) nên bác bỏ H0 và kết luận điểm thi trung bình của sinh viên lớp A khác 5

b. Lón hon 5

Kết luận: Vì (3.438 > 1,699) nên bác bỏ H0 và kết luận điểm thi trung bình của sinh viên lớp A lớn hơn 5

*Với giả thiết điểm thi trung bình của sinh viên lớp B:

a. Bằng 5

Kết luận: Vì (2.41 > 2,05) nên bác bỏ H0 và kết luận điểm thi trung bình của sinh viên lớp B khác 5

b. Lón hơn 5

Kết luận: Vì (2.41>1,699) nên bác bỏ H0 và kết luận điểm thi trung bình của sinh viên lớp B lớn hơn 5

*Kiểm định giả thiết tỷ lệ sinh viên nhóm A đạt điểm thi lớn hơn 5 (> 5) = 50%

Kết luận: Vì $z_{0\approx}$ 1,46 < $z_{0,005}$ = 1.96 nên đồng ý H0 và kết luận tỉ lệ học sinh nhóm A có điểm thi trên 5 lớn hơn 50%.

*Kiểm định giả thiết tỷ lệ sinh viên nhóm A đạt điểm thi lớn hơn 5(>5) =30%

Kết luận: Vì $z_{0\approx} 3.98 > z_{0,025} = 1.96$ nên bác bỏ H0 và kết luận tỉ lệ học sinh nhóm A có điểm thi trên 5 không bằng 30%.

Câu 9:

Khoảng tin cậy 99% trên có ý nghĩa: hiệu số điểm của trung bình của 2 nhóm A và B nằm trong khoảng từ -0,9 đến 1,78

Khoảng tin cậy 95% trên có ý nghĩa: tỷ lệ sinh viên đạt yêu cầu (điểm thi > 5) của 2 nhóm A và B nằm trong khoảng từ -0,01469 đến 0,2813

Tổng Quan: Về mọi mặt ta thấy chỉ số của nhóm A đều tốt hơn nhóm B và ta thấy được nhóm A có khả năng học tập tốt hơn nhóm B.