Model Predictive Control

Chapter 12: Hybrid MPC

Prof. Manfred Morari

Spring 2023

Coauthors: Prof. Francesco Borrelli, UC Berkeley

Prof. Colin Jones, EPFL

- 1. Modeling of Hybrid Systems
- 2. Optimal Control of Hybrid Systems
- 3. Model Predictive Control of Hybrid Systems
- 4. Explicit MPC of Hybrid Systems

- 1. Modeling of Hybrid Systems
- 2. Optimal Control of Hybrid Systems
- Model Predictive Control of Hybrid Systems
- 4. Explicit MPC of Hybrid Systems

1. Modeling of Hybrid Systems

Introduction

Examples of Hybrid Systems

Piecewise Affine (PWA) Systems

Mixed Logical Dynamical (MLD) Hybrid Model

Introduction

Up to this point: Discrete-time linear systems with linear constraints.

We now consider MPC for systems with

- Continuous dynamics: described by one or more difference (or differential) equations; states are continuous-valued.
- 2. **Discrete events**: state variables assume **discrete** values, e.g.
 - binary digits {0, 1},
 - N, Z, Q,...
 - finite set of symbols

Hybrid systems: Dynamical systems whose state evolution depends on an interaction between continuous dynamics and discrete events.

Introduction

Hybrid systems: Logic-based discrete dynamics and continuous dynamics interact through events and mode switches

1. Modeling of Hybrid Systems

Introduction

Examples of Hybrid Systems

Piecewise Affine (PWA) Systems

Mixed Logical Dynamical (MLD) Hybrid Model

Mechanical System with Backlash

- Continuous dynamics: states x_1 , x_2 , \dot{x}_1 , \dot{x}_2 .
- Discrete events:
 - a) "contact mode" ⇒ mechanical parts are in contact and the force is transmitted. Condition:

$$[(\Delta x = \delta) \land (\dot{x}_1 > \dot{x}_2)] \quad \bigvee \quad [(\Delta x = \varepsilon) \land (\dot{x}_2 > \dot{x}_1)]$$

b) "backlash mode" ⇒ mechanical parts are not in contact

DCDC Converter

- Continuous dynamics: states v_{ℓ} , i_{ℓ} , v_{c} , i_{c} , v_{0} , i_{0}
- Discrete events: S = 0, S = 1

1. Modeling of Hybrid Systems

Introduction

Examples of Hybrid Systems

Piecewise Affine (PWA) Systems

Mixed Logical Dynamical (MLD) Hybrid Model

Piecewise Affine (PWA) Systems

PWA systems are defined by:

• affine dynamics and output in each region:

$$\begin{cases} x(t+1) &= A_i x(t) + B_i u(t) + f_i \\ y(t) &= C_i x(t) + D_i u(t) + g_i \end{cases} \text{ if } (x(t), u(t)) \in \mathcal{X}_{i(t)}$$

• **polyhedral partition** of the (x, u)-space:

$$\{\mathcal{X}_i\}_{i=1}^s := \{x, u \mid H_i x + J_i u \le K_i\}$$

with $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$

Physical constraints on x(t) and u(t) are defined by polyhedra \mathcal{X}_i

Piecewise Affine (PWA) Systems

Examples:

- linearization of a non-linear system at different operating point ⇒ useful as an approximation tool
- closed-loop MPC system for linear constrained systems
- When the mode i is an exogenous variable, the partition disappears and we refer to the system as a Switched Affine System (SAS)

Definition: Well-Posedness

Let P be a PWA system and let $\mathcal{X} = \bigcup_{i=1}^{s} \mathcal{X}_i \subseteq \mathbb{R}^{n+m}$ be the polyhedral partition associated with it. System P is called **well-posed** if for all pairs $(x(t), u(t)) \in \mathcal{X}$ there exists only one index i(t) satisfying the membership condition.

Binary States, Inputs, and Outputs

Remark: In the previous example, the PWA system has only continuous states and inputs.

We will formulate PWA systems including binary state and inputs by treating 0–1 binary variables as:

- **Numbers**, over which arithmetic operations are defined.
- Boolean variables, over which Boolean functions are defined.

```
We will use the notation x = \begin{bmatrix} x_c \\ x_\ell \end{bmatrix} \in \mathbb{R}^{n_c} \times \{0, 1\}^{n_\ell}, \ n := n_c + n_\ell;
y \in \mathbb{R}^{p_c} \times \{0, 1\}^{p_\ell}, \ p := p_c + p_\ell; \ u \in \mathbb{R}^{m_c} \times \{0, 1\}^{m_\ell}, \ m := m_c + m_\ell.
```

Boolean Algebra: Basic Definitions and Notation

- **Boolean variable:** A variable δ is a Boolean variable if $\delta \in \{0, 1\}$, where " $\delta = 0$ " means "false", " $\delta = 1$ " means "true".
- A Boolean expression is obtained by combining Boolean variables through the logic operators ¬ (not), ∨ (or), ∧ (and), ← (implied by), → (implies), and ↔ (iff).
- **A Boolean function** $f: \{0, 1\}^{n-1} \mapsto \{0, 1\}$ is used to define a Boolean variable δ_n as a logic function of other variables $\delta_1, \dots, \delta_{n-1}$:

$$\delta_n = f(\delta_1, \delta_2, \dots, \delta_{n-1}).$$

Example

$$x_c(t+1) = 2x_c(t) + u_c(t) - 3u_\ell(t)$$

$$x_\ell(t+1) = x_\ell(t) \wedge u_\ell(t)$$

can be represented in the PWA form

$$\begin{bmatrix} x_c(t+1) \\ x_\ell(t+1) \end{bmatrix} = \begin{cases} \begin{bmatrix} 2x_c(t) + u_c(t) \\ 0 \end{bmatrix} & \text{if} \quad x_\ell \le \frac{1}{2}, u_\ell \le \frac{1}{2} \\ \begin{bmatrix} 2x_c(t) + u_c(t) - 3 \\ 0 \end{bmatrix} & \text{if} \quad x_\ell \le \frac{1}{2}, u_\ell \ge \frac{1}{2} + \epsilon \\ \begin{bmatrix} 2x_c(t) + u_c(t) \\ 0 \end{bmatrix} & \text{if} \quad x_\ell \ge \frac{1}{2} + \epsilon, u_\ell \le \frac{1}{2} \\ \begin{bmatrix} 2x_c(t) + u_c(t) - 3 \\ 1 \end{bmatrix} & \text{if} \quad x_\ell \ge \frac{1}{2} + \epsilon, u_\ell \ge \frac{1}{2} + \epsilon. \end{cases}$$

by associating $x_{\ell} = 0$ with $x_{\ell} \leq \frac{1}{2}$ and $x_{\ell} = 1$ with $x_{\ell} \geq \frac{1}{2} + \epsilon$ for any $0 < \epsilon \leq \frac{1}{2}$.

1. Modeling of Hybrid Systems

Introduction

Examples of Hybrid Systems

Piecewise Affine (PWA) Systems

Mixed Logical Dynamical (MLD) Hybrid Model

Mixed Logical Dynamical Systems

Goal: Describe hybrid system in form compatible with optimization software:

- continuous and Boolean variables
- linear equalities and inequalities

Idea: associate to each Boolean variable p_i a binary integer variable δ_i :

$$p_i \Leftrightarrow \{\delta_i = 1\}, \quad \neg p_i \Leftrightarrow \{\delta_i = 0\}$$

and embed them into a set of constraints as linear integer inequalities.

Two main steps:

- 1. Translation of Logic Rules into Linear Integer Inequalities
- 2. Translation continuous and logical components into Linear Mixed-Integer Relations

Final result: a compact model with linear equalities and inequalities involving real and binary variables

Boolean formulas as Linear Integer Inequalities

Goal

Given a Boolean formula $F(p_1, p_2, ..., p_n)$ define a polyhedral set P such that a set of binary values $\{\delta_1, \delta_2, ..., \delta_n\}$ satisfies the Boolean formula F in P

$$F(p_1, p_2, ..., p_n)$$
 "TRUE" $\Leftrightarrow A\delta \leq B$, $\delta \in \{0, 1\}^n$

where: $\{\delta_i = 1\} \Leftrightarrow p_i = \mathsf{TRUE}$.

Analytic Approach

1. Transform $F(p_1, p_2, ..., p_n)$ into a **Conjunctive Normal Form (CNF)**:

$$F(p_1, p_2, \ldots, p_n) = \bigwedge_j \left[\bigvee_i p_i\right]$$

2. Translation of a **CNF** into **algebraic inequalities:**

relation	Boolean	linear constraints
AND	$\delta_1 \wedge \delta_2$	$\delta_1 \geq 1$, $\delta_2 \geq 1$ or $\delta_1 + \delta_2 \geq 2$
OR	$\delta_1 \vee \delta_2$	$\delta_1 + \delta_2 \geq 1$
NOT	$\neg \delta_1$	$(1-\delta_1)\geq 1$ or $\delta_1=0$
XOR	$\delta_1 \oplus \delta_2$	$\delta_1 + \delta_2 = 1$
IMPLY	$\delta_1 ightarrow \delta_2$	$\delta_1 - \delta_2 \le 0$
IFF	$\delta_1 \leftrightarrow \delta_2$	$\delta_1 - \delta_2 = 0$
ASSIGNMENT		$\delta_1 + (1 - \delta_3) \geq 1$
$\delta_3 = \delta_1 \wedge \delta_2$	$\delta_3 \leftrightarrow \delta_1 \wedge \delta_2$	$\delta_2 + (1 - \delta_3) \ge 1$
		$\left (1-\delta_1)+(1-\delta_2)+\delta_3 \geq 1 \right $

Analytic Approach. Example

Given

$$F(p_1, p_2, p_3, p_4) \stackrel{\triangle}{=} [(p_1 \wedge p_2) \Rightarrow (p_3 \wedge p_4)]$$

find the equivalent set of linear integer inequalities.

1. remove implication:

$$F(p_1, p_2, p_3, p_4) = \neg(p_1 \land p_2) \lor (p_3 \land p_4)$$

2. using DeMorgan's theorem, obtain CNF:

$$F(p_1, p_2, p_3, p_4) = (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_1 \lor \neg p_2 \lor p_4)$$

3. introduce $[\delta_i = 1] \Leftrightarrow p_i = \mathsf{TRUE}$ and write the inequalities:

$$F(p_1, p_2, p_3, p_4) = TRUE \Leftrightarrow \begin{cases} \delta_1 + \delta_2 - \delta_3 & \leq 1 \\ \delta_1 + \delta_2 - \delta_4 & \leq 1 \\ \delta_{1,2,3,4} \in \{0, 1\} \end{cases}$$

Linear Inequality As Logic Condition

Definition: Event Generator

An **event generator** is defined by function $f_{EG}: \mathcal{X}_c \times \mathcal{U}_c \times \mathbb{N}_0 \to \mathcal{D}$:

$$\delta_e(t) = f_{EG}(x_c(t), u_c(t), t)$$

Consider the Boolean expression consisting of a Boolean variable p and continuous variable $x \in \mathbb{R}^n$:

$$p \Leftrightarrow a^T x \leq b$$

where $a \in \mathbb{R}^n$, $b \in \mathbb{R}$, $x \in \mathcal{X} \subset \mathbb{R}^n$:

$$\mathcal{X} = \{ x \mid a^T x - b \in [m, M] \}$$

Translated to linear inequalitites:

$$a^T x - b \leq M(1 - \delta)$$

 $a^T x - b > m\delta$

Switched Affine Dynamics

Rewrite the state update functions of the SAS as

$$z_1(t) = \begin{cases} A_1 x_c(t) + B_1 u_c(t) + f_1, & \text{if } (i(t) = 1), \\ 0, & \text{otherwise,} \end{cases}$$

$$\vdots$$

$$z_s(t) = \begin{cases} A_s x_c(t) + B_s u_c(t) + f_s, & \text{if } (i(t) = s), \\ 0, & \text{otherwise,} \end{cases}$$

$$x_c(t+1) = \sum_{i=1}^s z_i(t),$$

In general, use the "IF-THEN-ELSE" relations

IF
$$\delta$$
 THEN $z = a'_1 x + b'_1 u + f_1$ ELSE $z = a'_2 x + b'_2 u + f_2$,

"IF-THEN-ELSE" Relations

$$(m_2 - M_1)\delta + z_t \leq a_2^T x_t + b_2$$

$$z_t = a_1^T x_t + b_1$$

$$ELSE$$

$$(m_1 - M_2)\delta - z_t \leq -a_2^T x_t - b_2$$

$$(m_1 - M_2)(1 - \delta) + z_t \leq a_1^T x_t + b_1$$

$$(m_2 - M_1)(1 - \delta) - z_t \leq -a_1^T x_t - b_1$$

where $x \in \mathcal{X}$, with

$$\sup_{x \in \mathcal{X}} a_i^T x + b_i \le M_i,$$

$$\inf_{x \in \mathcal{X}} a_i^T x + b_i \ge m_i,$$

$$m_2 \ne M_1, \ m_1 \ne M_2.$$

Hybrid Modelling - An Example

Consider the following system with constraints: $|x| \le 10$, $|u| \le 10$

$$x_{t+1} = \begin{cases} 0.8x_t + u_t & \text{if } x_t \ge 0\\ -0.8x_t + u_t & \text{if } x_t < 0 \end{cases}$$

1. associate $\{\delta_t = 1\} \Leftrightarrow \{x_t \ge 0\}$

$$-m\delta_t \leq x_t - m$$

$$-(M+\epsilon)\delta_t \leq -x_t - \epsilon,$$

where: M = -m = 10, $\epsilon > 0$.

2. state update equation:

$$x_{t+1} = 1.6\delta_t x_t - 0.8x_t + u_t$$

Hybrid Modelling - An Example

3. introduce variable: $z_t = \delta_t x_t$

$$x_{t+1} = 1.6z_t - 0.8x_t + u_t$$

4. constraints on z:

$$z_{t} \leq M\delta_{t}$$

$$z_{t} \geq m\delta_{t}$$

$$z_{t} \leq x_{t} - m(1 - \delta_{t})$$

$$z_{t} \geq x_{t} - M(1 - \delta_{t})$$

MLD Hybrid Model

A DHA can be converted into the following MLD model

$$\begin{array}{rcl} x_{t+1} & = & Ax_t + B_1 u_t + B_2 \delta_t + B_3 z_t \\ y_t & = & Cx_t + D_1 u_t + D_2 \delta_t + D_3 z_t \\ E_2 \delta_t + E_3 z_t & \leq & E_4 x_t + E_1 u_t + E_5 \end{array}$$

where $x \in \mathbb{R}^{n_c} \times \{0,1\}^{n_\ell}$, $u \in \mathbb{R}^{m_c} \times \{0,1\}^{m_\ell}$ $y \in \mathbb{R}^{p_c} \times \{0,1\}^{p_\ell}$, $\delta \in \{0,1\}^{r_\ell}$ and $z \in \mathbb{R}^{r_c}$.

Physical constraints on continuous variables:

$$C = \left\{ \begin{bmatrix} x_c \\ u_c \end{bmatrix} \in \mathbb{R}^{n_c + m_c} \mid Fx_c + Gu_c \le H \right\}$$

MLD Hybrid Model. Well-Posedness

Well-Posedness:

for a given $x = \begin{bmatrix} x_t \\ u_t \end{bmatrix} \Rightarrow x_{t+1}$ and y_t uniquely determined

• Complete Well-Posedness:

well-posedness + uniquely determined δ_t and z_t , \forall $\begin{bmatrix} x_t \\ u_t \end{bmatrix}$

- Well-posedness is sufficient for the computation of the state and output prediction
- Complete well-posedness allows transformation into equivalent hybrid models

HYbrid System DEscription Language

HYSDEL

- based on DHA
- enables description of discrete-time hybrid systems in a compact way:
 - automata and propositional logic
 - continuous dynamics
 - A/D and D/A conversion
 - definition of constraints
- automatically **generates MLD models** for MATLAB
- freely available from:

http://control.ee.ethz.ch/~hybrid/hysdel/

- 1. Modeling of Hybrid Systems
- 2. Optimal Control of Hybrid Systems
- 3. Model Predictive Control of Hybrid Systems
- 4. Explicit MPC of Hybrid Systems

Optimal Control for Hybrid Systems: General Formulation

Consider the CFTOC problem:

$$J^{*}(x(t)) = \min_{U_{0}} p(x_{N}) + \sum_{k=0}^{N-1} q(x_{k}, u_{k}, \delta_{k}, z_{k}),$$
s.t.
$$\begin{cases} x_{k+1} = Ax_{k} + B_{1}u_{k} + B_{2}\delta_{k} + B_{3}z_{k} \\ E_{2}\delta_{k} + E_{3}z_{k} \leq E_{4}x_{k} + E_{1}u_{k} + E_{5} \\ x_{N} \in \mathcal{X}_{f} \\ x_{0} = x(t) \end{cases}$$

where $x \in \mathbb{R}^{n_c} \times \{0, 1\}^{n_b}$, $u \in \mathbb{R}^{m_c} \times \{0, 1\}^{m_b}$, $y \in \mathbb{R}^{p_c} \times \{0, 1\}^{p_b}$, $\delta \in \{0, 1\}^{r_b}$ and $z \in \mathbb{R}^{r_c}$ and

$$U_0 = \{u_0, u_1, \dots, u_{N-1}\}$$

Mixed Integer Optimization

Mixed Integer Linear Programming

Consider the following MILP:

$$\begin{aligned} \inf_{[z_c,z_b]} & \quad c_c'z_c + c_b'z_b + d \\ \text{subj. to} & \quad G_cz_c + G_bz_b \leq W \\ & \quad z_c \in \mathbb{R}^{s_c}, \ z_b \in \{0,1\}^{s_b} \end{aligned}$$

where $z_c \in \mathbb{R}^{s_c}$, $z_b \in \{0, 1\}^{s_b}$

- MILP are nonconvex, in general.
- For a fixed \bar{z}_b the MILP becomes a linear program:

$$\begin{array}{ll} \inf_{[z_c,z_b]} & c_c'z_c + \left(c'b\bar{z}_b + d\right) \\ \text{subj. to} & G_cz_c \leq W - G_b\bar{z}_b \\ & z_c \in \mathbb{R}^{s_c} \end{array}$$

• Brute force approach to solution: enumerating the 2^{s_b} integer values of the variable z_b and solve the corresponding LPs. By comparing the 2^{s_b} optimal costs one can find the optimizer and the optimal cost of the MILP

Mixed Integer Quadratic Programming

Consider the following MIQP:

$$\begin{aligned} \inf_{[z_c,z_b]} & \quad \frac{1}{2}z'Hz + q'z + r \\ \text{subj. to} & \quad G_cz_c + G_bz_b \leq W \\ & \quad z_c \in \mathbb{R}^{s_c}, \ z_b \in \{0,1\}^{s_b} \\ & \quad z = [z_c,z_b], s = s_c + s_d \end{aligned}$$

where $H \succeq 0$, $z_c \in \mathbb{R}^{s_c}$, $z_b \in \{0, 1\}^{s_b}$.

- MIQP are nonconvex, in general.
- For a fixed integer value \bar{z}_b of z_b , the MIQP becomes a quadratic program:

inf_[z_c]
$$\frac{1}{2}z'_cH_cz_c + q'_cz + k$$

subj. to $G_cz_c \leq W - G_b\bar{z}_b$
 $z_c \in \mathbb{R}^{s_c}$

• Brute force approach to the solution: enumerating all the 2^{s_b} integer values of the variable z_b and solve the corresponding QPs. By comparing the 2^{s_b} optimal costs one can derive the optimizer and the optimal cost of the MIQP.

Branch and Bound (B&B)

Common solution method for MIPs, based on relaxations of binaries: $\{0,1\} \rightarrow [0,1]$.

- Optimal cost of a solution to a modified problem where some binaries are relaxed is a **lower bound** on optimal cost.
- Any feasible solution to original problem is **upper bound** on optimal cost.
- Use bounds to rule out parts of the B&B tree systematically much more efficient than brute force search

- 1. Modeling of Hybrid Systems
- 2. Optimal Control of Hybrid Systems
- 3. Model Predictive Control of Hybrid Systems
- 4. Explicit MPC of Hybrid Systems

Model Predictive Control of Hybrid Systems

MPC solution: Optimization in the loop

As for linear MPC, at each sample time:

- Measure / estimate current state x(t)
- Find the optimal input sequence for the entire planning window N: $U_t^* = \{u_t^*, u_{t+1}^*, \dots, u_{t+N-1}^*\}$
- Implement only the **first** control action u_t^*
- Key difference: Requires online solution of an MILP or MIQP

- 1. Modeling of Hybrid Systems
- 2. Optimal Control of Hybrid Systems
- 3. Model Predictive Control of Hybrid Systems
- 4. Explicit MPC of Hybrid Systems

Explicit MPC for Hybrid Systems. Quadratic Case

Theorem

The solution to the CFTOC problem based on an MLD model and with quadratic cost is **time-varying PWA feedback law** of the form:

$$u_t^*(x_t) = F_t^i x_t + G_t^i$$
 if $x_t \in \mathcal{R}_k^i$

where $\left\{\mathcal{R}_t^i\right\}_{i=1}^{R_t}$ are regions partitioning the set of feasible states \mathcal{X}_t^* and the closure $\bar{\mathcal{R}}_k^i$ of the sets \mathcal{R}_k^i has the following form:

$$\bar{\mathcal{R}}_{k}^{i} := \left\{ x : x(k)' L(j)_{k}^{i} x(k) + M(j)_{k}^{i} x(k) \leq N(j)_{k}^{i}, \ j = 1, \dots, n_{k}^{i} \right\},
k = 0, \dots, N - 1.$$

(note: quadratic and linear boundaries - not polyhedra!)

Explicit MPC for Hybrid Systems. Quadratic Case

- Denote by $\{v_i\}_{i=1}^{s^N}$ the set of all possible switching sequences over the horizon N
- Fix a certain v_i and constrain the state to switch according to sequence v_i .
- The problem becomes a **CFTOC** for a linear time-varying system. The solution is

$$u^i(x(0))=\tilde{F}^{i,j}x(0)+\tilde{g}^{i,j}, \quad \forall x(0)\in\mathcal{T}^{i,j}, \quad j=1,\ldots,N^{r^i}$$
 where $\mathcal{D}^i=\bigcup_{j=1}^{N^{r^i}}\mathcal{T}^{i,j}$

- The set $\mathcal{X}_0 = \bigcup_{i=1}^{s^N} \mathcal{D}^i$ in general is **not convex**.
- The sets \mathcal{D}^i can, in general, overlap. I.e., some initial state is feasible for more than one switching sequence.

Explicit MPC for Hybrid Systems. 1, ∞ -norm Case

Theorem

The solution to the CFTOC problem based on an MLD model and with the cost based on norms $\{1, \infty\}$ is a **time-varying PPWA feedback law** of the form:

$$u_t^*(x_t) = F_t^i x_t + G_t^i$$
 if $x_t \in \mathcal{R}_k^i$

where $\{\mathcal{R}_t^i\}_{i=1}^{R_t}$ are polyhedral regions partitioning the set of feasible states \mathcal{X}_t^* .

MPC for Hybrid Systems - Complexity

- The complexity strongly depends on the problem structure and the initial setup
- In general:

Mixed-Integer programming is HARD

- Efficient general purpose solvers for MILP/MIQP: CPLEX, XPRESS-MP ⇒ based on Branch-And-Bound, Branch-And-Cut methods + lots of heuristics
- On-line optimization is good for applications allowing large sampling intervals (typically minutes), requires expensive hardware and (even more) expensive software
- For very small problems requiring fast sampling rate
 ⇒ explicit solution of the MPC

Explicit MPC for Hybrid Systems - Example

$$\begin{cases} x_{t+1} &= 0.8 \begin{bmatrix} \cos \alpha_t & -\sin \alpha_t \\ \sin \alpha_t & \cos \alpha_t \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \\ \alpha_t &= \begin{cases} \pi/3 & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x_t \ge 0, \\ -\pi/3 & \text{if } \begin{bmatrix} 1 & 0 \end{bmatrix} x_t < 0 \\ x_t & \in [-10, 10] \times [-10, 10], \end{cases} \\ u_t &\in [-1, 1] \\ N &= 12, P_N = Q_X = I, Q_U = 1, \infty - \text{norm} \end{cases}$$

Summary

- Hybrid systems: mixture of continuous and discrete dynamics
 - Many important systems fall in this class
 - Many tricks involved in modeling automatic systems available to convert to consistent form

- Optimization problem becomes a mixed-integer linear / quadratic program
 - NP-hard (exponential time to solve)
 - Advanced commercial solvers available

- MPC theory (invariance, stability, etc) applies
 - Computing invariant sets is usually extremely difficult
 - Computing the optimal solution is extremely difficult (sub-optimal ok)