

Medical Imaging and Applications (EE-XXX)

Case Study Report

Date: 16th May, 2025

Submitted to:

Prof. (Dr.) Sneha Singh
[Assistant Professor, SCEE, IIT Mandi]

Submitted by:

Mood Vikram(T24045)

Title: Breast Cancer Detection.

Objective

The objective of this task is to develop a Computer-Aided Diagnosis (CAD) system for classifying images from the BUSI (Breast Ultrasound Images) dataset. The system have graphical user interface (GUI) built with Tkinter, deep learning models (ResNet18, GoogleNet, CNN+Transformer), and machine learning models (Random Forest, AdaBoost, SVM) for classifying images into benign, malignant, or normal categories. The preprocessing pipeline applies **median filtering**, **high-pass and edge enhancement**, and resizing to prepare images for classification.

Overview

Dataset:

Classes	# images
Malignant	210
Benign	437
Normal	133

Preprocessing Pipeline:

- Prepare images for classification by enhancing quality and standardizing format.
- Steps:
 - Convert images to grayscale and then to RGB.
 - Apply median filtering to reduce noise.
 - Perform high-pass and edge enhancement using Gaussian filtering.
 - Resize images to 224x224 pixels.

Classification Models:

- Deep Learning Models:
 - **ResNet18**: A convolutional neural network (CNN) with a modified fully connected layer for 3-class output.
 - GoogleNet: A deep CNN with an Inception architecture, adapted for 3-class classification.
 - **CNN+Transformer**: A hybrid model combining ResNet18's feature extraction with a Transformer encoder for enhanced feature processing.
 - o **Ensemble**: Combines predictions by selecting the class with the

highest probability across the three models.

- Machine Learning Models:
 - Random Forest, AdaBoost, and SVM: Trained on features extracted by a ResNet18-based feature extractor.
 - **Ensemble**: Uses the maximum probability across these models for final classification.

Graphical User Interface (GUI):

- Framework: Built using Tkinter.
- Features:
 - **Image Selection**: Users can select an image (PNG, JPG, JPEG) via a file dialog.
 - **Model Type Selection**: Choose between deep learning or machine learning ensembles.
 - Classification: A "Classify" button triggers classification and displays results (predicted class and probabilities) in a text area.
 - **Preprocessed Image Display**: A "Show Preprocessed Image" button displays the preprocessed image in a Matplotlib window.
- Functionality: Displays the selected image path, classification results.

Results:

Preprocessed image

Model	Class	Probability
ResNet18	Benign	0.0028
	Malignant	0.8965
	Normal	0.1006
GoogleNet	Benign	0.6410
	Malignant	0.2661
	Normal	0.0929
CNN+Transfo rmer	Benign	0.4843
	Malignant	0.4945
	Normal	0.0212
Random Forest	Benign	0.2200
	Malignant	0.4600
	Normal	0.3200
AdaBoost	Benign	0.3157
	Malignant	0.3407
	Normal	0.3436

SVM	Benign	0.0326
	Malignant	0.6623
	Normal	0.3052
Result	Malignant	

Conclusion

The development of the new Computer-Aided Diagnosis (CAD) system for the BUSI dataset successfully achieves its objective of providing a robust and user-friendly platform for classifying breast ultrasound images into benign, malignant, or normal categories. By integrating a sophisticated preprocessing pipeline, a combination of deep learning and machine learning ensemble models, and a Tkinter-based graphical user interface (GUI), the system ensures accurate classification and seamless user interaction.