

الامتمان الوطني الموحد للبكالوريا الدورة العادية 2016 _____

NS 22

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الإنجاز	الرياضيات	اثمادة
7	المعامل	شعبة الطوم التجريبية بمسلكها وشعبة الطوم والتكنولوجيات بمسلكيها	الشعبة أو المسلك

تعليمات عامة

- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؛
 - يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؛
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؛
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؛
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من أربعة تمارين و مسألة، مستقلة فيما بينها، و تتوزع حسب المجالات كما يلى:

2.5 نقط	المتتاليات العددية	التمرين الأول
3 نقط	الهندسة الفضائية	التمرين الثاني
3 نقط	الأعداد العقدية	التمرين الثالث
3 نقط	حساب الاحتمالات	التمرين الرابع
8.5 نقط	دراسة دالة عددية وحساب التكامل	مسألة

⁻ بالنسبة للمسألة ، In يرمز لدالة اللوغاريتم النبيري.

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

التمرين الأول : (2.5 ن)

$${
m IN}$$
 نعتبر المنتالية العديية ${
m u_{n+1}}=rac{3+u_n}{5-u_n}$ و ${
m u_0}=2$ المعرفة بما يلي : ${
m u_0}=2$

IN نم
$$u_n < 3$$
 أن $u_n < 3$ أن $u_{n+1} - 3 = \frac{4(u_n - 3)}{2 + (3 - u_n)}$ اكل $u_n < 3$ أن (1) الكل $u_n < 3$

$$_{n}$$
 IN نكل $v_{n}=\dfrac{u_{n}-1}{3-u_{n}}$: لتكن $v_{n}=\dfrac{u_{n}-1}{3-u_{n}}$ المتتالية العدية المعرفة بما يلي:

IN نکل
$$v_n = \left(\frac{1}{2}\right)^n$$
 نکل $v_n = \left(\frac{1}{2}\right)^n$ نکل متالیة هندسیة أساسها $\frac{1}{2}$ شم استنتج أن $v_n = \left(\frac{1}{2}\right)^n$ نکل الله من 0.75

$$u_n = \frac{1 + 3v_n}{1 + v_n}$$
 بدلالة IN بين أن $u_n = \frac{1 + 3v_n}{1 + v_n}$ بدلالة 0.5

(u_n) جـ حدد نهاية المتتالية (0.

التمرين الثانى: (3ن)

0.5

B(3,1,1) و A(2,1,3) النقط A(2,1,3)، النقط A(2,1,3) النقط A(2,1,3) و A(

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$$
 1) \overrightarrow{i}

$$(ABC)$$
 ب- استنتج أن $2x + 2y + z - 9 = 0$ هي معادلة ديكارتية للمستوى

هو 6 و أن شعاعها هو 6
$$\Omega(1,-1,0)$$
 و النقطة ($\Omega(1,-1,0)$ و النسعاعها هو 6 مركز الفلكة ($\Omega(1,-1,0)$

$$(\Gamma)$$
 و استنتج أن المستوى (ABC) يقطع الفلكة (S) و استنتج أن المستوى (ABC) يقطع الفلكة (S)

(ABC) و العمودي على المستقيم (
$$\Delta$$
) المار من النقطة Ω و العمودي على المستوى (Δ)

$$_{\rm B}$$
 بين أن مركز الدائرة $_{\rm C}$) هو النقطة $_{\rm B}$

التمرين الثالث: (3ن)

$$z^2 - 4z + 29 = 0$$
: المعادلة C عدد الأعداد العقدية العداد العد

 Ω نعتبر، في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر Ω و Ω و B و B التي Ω النقط Ω و B و B التي Ω الحاقها على التوالي هي Ω و B و D بحيث Ω و Ω و Ω و Ω و Ω و D التي الحاقها على التوالي هي Ω و B و D بحيث Ω و Ω و D بحيث Ω و Ω و D بحيث Ω

 $\mathbf{u} = \mathbf{b} - \boldsymbol{\omega}$ أـ ليكن \mathbf{u} العدد العقدى بحيث \mathbf{u}

$$\arg \mathbf{u} \equiv \frac{\pi}{4} [2\pi]$$
 ثم بین أن $\mathbf{u} = 3 + 3\mathbf{i}$

$$(u)$$
 بـ حدد عمدة للعد العقدي \overline{u} u يرمز لمرافق العد العقدي u

$$\arg\left(\frac{\mathbf{b}-\omega}{\mathbf{a}-\omega}\right) \equiv \frac{\pi}{2}[2\pi]$$
 و أن $\Omega \mathbf{A} = \Omega \mathbf{B}$ و أن $\mathbf{a}-\omega = \mathbf{u}$ و أن $\mathbf{a}-\omega = \mathbf{u}$ 0.75

د۔ نعتبر الدوران R الذي مركزه
$$\Omega$$
 و زاويته $\frac{\pi}{2}$ حدد صورة النقطة Ω بالدوران R

0.75