

School of Computer Science & Technology - Algoma

Linear Algebra

Math 1057

Instructor Dr. Mortaza Baky Haskuee

10 Invertible Matrices

10.1 Inverse of a Matrix	. 83
10.2 Computing the Inverse of a Matrix	. 85
10.3 Invertible Linear Mappings	. 87

Lecture 10

Invertible Matrices

10.1 Inverse of a Matrix

The inverse of a **square** matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ generalizes the notion of the reciprocal of a non-zero number $a \in \mathbb{R}$. Formally speaking, the inverse of a non-zero number $a \in \mathbb{R}$ is the unique number $c \in \mathbb{R}$ such that ac = ca = 1. The inverse of $a \neq 0$, usually denoted by $a^{-1} = \frac{1}{a}$, can be used to solve the equation ax = b:

$$ax = b \implies a^{-1}ax = a^{-1}b \implies x = a^{-1}b.$$

This motivates the following definition.

Definition 10.1: A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called **invertible** if there exists a matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ such that $\mathbf{AC} = \mathbf{I}_n$ and $\mathbf{CA} = \mathbf{I}_n$.

If **A** is invertible then can it have more than one inverse? Suppose that there exists C_1, C_2 such that $AC_i = C_iA = I_n$. Then

$$\mathbf{C}_2 = \mathbf{C}_2(\mathbf{A}\mathbf{C}_1) = (\mathbf{C}_2\mathbf{A})\mathbf{C}_1 = \mathbf{I}_n\mathbf{C}_1 = \mathbf{C}_1.$$

Thus, if A is invertible, it can have only one inverse. This motivates the following definition.

Definition 10.2: If **A** is invertible then we denote **the** inverse of **A** by \mathbf{A}^{-1} . Thus, $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$.

Example 10.3. Given **A** and **C** below, show that **C** is the inverse of **A**.

$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 0 \\ -1 & 2 & -2 \\ -2 & 6 & 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} -14 & -3 & -6 \\ -5 & -1 & -2 \\ 2 & 0 & 1 \end{bmatrix}$$

Solution. Compute AC:

$$\mathbf{AC} = \begin{bmatrix} 1 & -3 & 0 \\ -1 & 2 & -2 \\ -2 & 6 & 1 \end{bmatrix} \begin{bmatrix} -14 & -3 & -6 \\ -5 & -1 & -2 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Compute **CA**:

$$\mathbf{CA} = \begin{bmatrix} -14 & -3 & -6 \\ -5 & -1 & -2 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 & 0 \\ -1 & 2 & -2 \\ -2 & 6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Therefore, by definition $C = A^{-1}$.

Theorem 10.4: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ and suppose that \mathbf{A} is invertible. Then for any $\mathbf{b} \in \mathbb{R}^n$ the matrix equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution given by $\mathbf{A}^{-1}\mathbf{b}$.

Proof: Let $\mathbf{b} \in \mathbb{R}^n$ be arbitrary. Then multiplying the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ by \mathbf{A}^{-1} from the left we obtain that

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

 $\Rightarrow \mathbf{I}_n\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
 $\Rightarrow \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Therefore, with $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ we have that

$$\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{A}^{-1}\mathbf{b}) = \mathbf{A}\mathbf{A}^{-1}\mathbf{b} = \mathbf{I}_n\mathbf{b} = \mathbf{b}$$

and thus $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ is a solution. If $\tilde{\mathbf{x}}$ is another solution of the equation, that is, $\mathbf{A}\tilde{\mathbf{x}} = \mathbf{b}$, then multiplying both sides by \mathbf{A}^{-1} we obtain that $\tilde{\mathbf{x}} = \mathbf{A}^{-1}\mathbf{b}$. Thus, $\mathbf{x} = \tilde{\mathbf{x}}$. \square **Example 10.5.** Use the result of **Example 10.3.** to solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ if

$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 0 \\ -1 & 2 & -2 \\ -2 & 6 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}.$$

Solution. We showed in Example 10.3 that

$$\mathbf{A}^{-1} = \begin{bmatrix} -14 & -3 & -6 \\ -5 & -1 & -2 \\ 2 & 0 & 1 \end{bmatrix}.$$

Therefore, the unique solution to the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is

$$\mathbf{A}^{-1}\mathbf{b} = \begin{bmatrix} -14 & -3 & -6 \\ -5 & -1 & -2 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Verify:

$$\begin{bmatrix} 1 & -3 & 0 \\ -1 & 2 & -2 \\ -2 & 6 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}$$

The following theorem summarizes the relationship between the matrix inverse and matrix multiplication and matrix transpose.

Theorem 10.6: Let **A** and **B** be invertible matrices. Then:

(1) The matrix A^{-1} is invertible and its inverse is A:

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}.$$

(2) The matrix AB is invertible and its inverse is $B^{-1}A^{-1}$:

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

(3) The matrix \mathbf{A}^T is invertible and its inverse is $(\mathbf{A}^{-1})^T$:

$$(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T.$$

Proof: To prove (2) we compute

$$(\mathbf{A}\mathbf{B})(\mathbf{B}^{-1}\mathbf{A}^{-1}) = \mathbf{A}\mathbf{B}\mathbf{B}^{-1}\mathbf{A}^{-1} = \mathbf{A}\mathbf{I}_n\mathbf{A}^{-1} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n.$$

To prove (3) we compute

$$\mathbf{A}^T(\mathbf{A}^{-1})^T = (\mathbf{A}^{-1}\mathbf{A})^T = \mathbf{I}_n^T = \mathbf{I}_n.$$

10.2 Computing the Inverse of a Matrix

If $\mathbf{A} \in M_{n \times n}$ is invertible, how do we find \mathbf{A}^{-1} ? Let $\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \end{bmatrix}$ and we will find expressions for \mathbf{c}_i . First note that $\mathbf{A}\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{A}\mathbf{c}_1 & \mathbf{A}\mathbf{c}_2 & \cdots & \mathbf{A}\mathbf{c}_n \end{bmatrix}$. On the other hand, we also have $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}$. Therefore, we want to find $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_n$ such that

$$\underbrace{\begin{bmatrix} \mathbf{A}\mathbf{c}_1 & \mathbf{A}\mathbf{c}_2 & \cdots & \mathbf{A}\mathbf{c}_n \end{bmatrix}}_{\mathbf{A}\mathbf{A}^{-1}} = \underbrace{\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}}_{\mathbf{I}_n}.$$

To find \mathbf{c}_i we therefore need to solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{e}_i$. Here the image vector "b" is \mathbf{e}_i . To find \mathbf{c}_1 we form the augmented matrix $\begin{bmatrix} \mathbf{A} & \mathbf{e}_1 \end{bmatrix}$ and find its RREF:

$$\begin{bmatrix} \mathbf{A} & \mathbf{e}_1 \end{bmatrix} \sim \begin{bmatrix} \mathbf{I}_n & \mathbf{c}_1 \end{bmatrix}$$
 .

We will need to do this for each $\mathbf{c}_2, \dots, \mathbf{c}_n$ so we might as well form the combined augmented matrix $\begin{bmatrix} \mathbf{A} & \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}$ and find the RREF all at once:

$$\begin{bmatrix} \mathbf{A} & \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix} \sim \begin{bmatrix} \mathbf{I}_n & \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \end{bmatrix}$$
.

In summary, to determine if A^{-1} exists and to simultaneously compute it, we compute the RREF of the augmented matrix

$$\begin{bmatrix} \mathbf{A} & \mathbf{I}_n \end{bmatrix}$$
,

that is, **A** augmented with the $n \times n$ identity matrix. If the RREF of **A** is \mathbf{I}_n , that is

$$egin{bmatrix} \mathbf{A} & \mathbf{I}_n \end{bmatrix} \sim egin{bmatrix} \mathbf{I}_n & \mathbf{c}_1 & \mathbf{c}_2 \cdots & \mathbf{c}_n \end{bmatrix}$$

then

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 \cdots & \mathbf{c}_n \end{bmatrix}.$$

If the RREF of **A** is not I_n then **A** is not invertible.

Example 10.7. Find the inverse of $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix}$ if it exists.

Solution. Form the augmented matrix $[\mathbf{A} \ \mathbf{I}_2]$ and row reduce:

$$\begin{bmatrix} \mathbf{A} & \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ -1 & -2 & 0 & 1 \end{bmatrix}$$

Add rows R_1 and R_2 :

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ -1 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Perform the operation $\xrightarrow{-3R_2+R_1}$:

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{-3R_2 + R_1} \begin{bmatrix} 1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Thus, $rref(A) = I_2$, and therefore A is invertible. The inverse is

$$\mathbf{A}^{-1} = \begin{bmatrix} -2 & -3 \\ 1 & 1 \end{bmatrix}$$

Verify:

$$\mathbf{A}\mathbf{A}^{-1} = \begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} -2 & -3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Example 10.8. Find the inverse of $\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 1 & 0 \\ -2 & 0 & -7 \end{bmatrix}$ if it exists.

Solution. Form the augmented matrix $\begin{bmatrix} \mathbf{A} & \mathbf{I}_3 \end{bmatrix}$ and row reduce:

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -2 & 0 & -7 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-R_1 + R_2, 2R_1 + R_2} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & -1 & 2 & 0 & 1 \end{bmatrix}$$

 $-R_3$:

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & -1 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{-R_3} \begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & -1 \end{bmatrix}$$

 $3R_3 + R_2$ and $-3R_3 + R_1$:

$$\begin{bmatrix} 1 & 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & -1 \end{bmatrix} \xrightarrow{3R_3 + R_2, \ -3R_3 + R_1} \begin{bmatrix} 1 & 0 & 0 & 7 & 0 & 3 \\ 0 & 1 & 0 & -7 & 1 & -3 \\ 0 & 0 & 1 & -2 & 0 & -1 \end{bmatrix}$$

Therefore, $rref(A) = I_3$, and therefore A is invertible. The inverse is

$$\mathbf{A}^{-1} = \begin{bmatrix} 7 & 0 & 3 \\ -7 & 1 & -3 \\ -2 & 0 & -1 \end{bmatrix}$$

Verify:

$$\mathbf{A}\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 1 & 0 \\ -2 & 0 & -7 \end{bmatrix} \begin{bmatrix} 7 & 0 & 3 \\ -7 & 1 & -3 \\ -2 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example 10.9. Find the inverse of $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -2 \\ -2 & 0 & -2 \end{bmatrix}$ if it exists.

Solution. Form the augmented matrix $[\mathbf{A} \ \mathbf{I}_3]$ and row reduce:

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & -2 & 0 & 1 & 0 \\ -2 & 0 & -2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-R_1 + R_2, \ 2R_1 + R_2} \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1 \end{bmatrix}$$

We need not go further since the rref(A) is not I_3 (rank(A) = 2). Therefore, A is not invertible.

10.3 Invertible Linear Mappings

Let $T_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^n$ be a matrix mapping with standard matrix \mathbf{A} and suppose that \mathbf{A} is invertible. Let $T_{\mathbf{A}^{-1}}: \mathbb{R}^n \to \mathbb{R}^n$ be the matrix mapping with standard matrix \mathbf{A}^{-1} . Then the standard matrix of the composite mapping $T_{\mathbf{A}^{-1}} \circ T_{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^n$ is

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}_n.$$

Therefore, $(\mathsf{T}_{\mathbf{A}^{-1}} \circ \mathsf{T}_{\mathbf{A}})(\mathbf{x}) = \mathbf{I}_n \mathbf{x} = \mathbf{x}$. Let's unravel $(\mathsf{T}_{\mathbf{A}^{-1}} \circ \mathsf{T}_{\mathbf{A}})(\mathbf{x})$ to see this:

$$(\mathsf{T}_{\mathbf{A}^{-1}} \circ \mathsf{T}_{\mathbf{A}})(\mathbf{x}) = \mathsf{T}_{\mathbf{A}^{-1}}(\mathsf{T}_{\mathbf{A}}(\mathbf{x})) = \mathsf{T}_{\mathbf{A}^{-1}}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{x}.$$

Similarly, the standard matrix of $(\mathsf{T}_{\mathbf{A}} \circ \mathsf{T}_{\mathbf{A}^{-1}})$ is also \mathbf{I}_n . Intuitively, the linear mapping $\mathsf{T}_{\mathbf{A}^{-1}}$ undoes what $\mathsf{T}_{\mathbf{A}}$ does, and conversely. Moreover, since $\mathbf{A}\mathbf{x} = \mathbf{b}$ always has a solution, $\mathsf{T}_{\mathbf{A}}$ is onto. And, because the solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique, $\mathsf{T}_{\mathbf{A}}$ is one-to-one.

The following theorem summarizes equivalent conditions for matrix invertibility.

Theorem 10.10: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The following statements are equivalent:

- (a) A is invertible.
- (b) **A** is row equivalent to I_n , that is, $rref(A) = I_n$.
- (c) The equation Ax = 0 has only the trivial solution.
- (d) The linear transformation $T_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is one-to-one.
- (e) The linear transformation $T_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is onto.
- (f) The matrix equation Ax = b is always solvable.
- (g) The columns of A span \mathbb{R}^n .
- (h) The columns of A are linearly independent.
- (i) \mathbf{A}^T is invertible.

Proof: This is a summary of all the statements we have proved about matrices and matrix mappings specialized to the case of square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$. Note that for non-square matrices, one-to-one does not imply ontoness, and conversely.

Example 10.11. Without doing any arithmetic, write down the inverse of the dilation matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}.$$

Example 10.12. Without doing any arithmetic, write down the inverse of the rotation matrix

$$\mathbf{A} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

After this lecture you should know the following:

- how to compute the inverse of a matrix
- properties of matrix inversion and matrix multiplication
- relate invertibility of a matrix with properties of the associated linear mapping (1-1, onto)
- the characterizations of invertible matrices Theorem 10.10