u_R = the angular velocity of the right wheel in radians/sec u_L = the angular velocity of the left wheel in radians/sec r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) and the center of the robot

$$v_x = \dot{x} = \frac{r}{2} \langle u_R + u_L \rangle \cos \theta$$

$$v_y = \dot{y} = \frac{r}{2} \langle u_R + u_L \rangle \sin \theta$$

 u_R = the angular velocity of the right wheel in radians/sec

 u_L = the angular velocity of the left wheel in radians/sec

r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) to the center of the robot

ICC

 u_R = the angular velocity of the right wheel in radians/sec

 u_{L} = the angular velocity of the left wheel in radians/sec

r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) and the center of the robot

 u_R := the angular velocity of the right wheel in radians/sec u_L = the angular velocity of the left wheel in radians/sec r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) and the center of the robot

ICC

$$v_{x} = \dot{x} = \frac{r}{2} \langle u_{R} + u_{L} \rangle \cos \theta$$

$$v_{y} = \dot{y} = \frac{r}{2} \langle u_{R} + u_{L} \rangle \sin \theta$$

$$\theta = -180$$

 u_R = the angular velocity of the right wheel in radians/sec

 u_L = the angular velocity of the left wheel in radians/sec

r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) and the center of the robot

 u_R = the angular velocity of the right wheel in radians/sec u_L = the angular velocity of the left wheel in radians/sec r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) and the center of the robot

$$v_x = \dot{x} = \frac{r}{2} \langle u_R + u_L \rangle \cos \theta$$

$$v_y = \dot{y} = \frac{r}{2} \langle u_R + u_L \rangle \sin \theta$$

$$v_x = \dot{x} = \frac{r}{2} \langle u_R + u_L \rangle \cos \theta$$

$$v_y = \dot{y} = \frac{r}{2} \langle u_R + u_L \rangle \sin \theta$$

 u_R = the angular velocity of the right wheel in radians/sec u_L = the angular velocity of the left wheel in radians/sec r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) and the center of the robot

 θ

 u_R = the angular velocity of the right wheel in radians/sec u_L = the angular velocity of the left wheel in radians/sec r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) and the center of the robot

$$v_x = \dot{x} = r/2 \langle u_R + u_L \rangle \cos \theta$$

$$v_y = \dot{y} = r/2 \langle u_R + u_L \rangle \sin \theta$$

 u_R = the angular velocity of the right wheel in radians/sec u_L = the angular velocity of the left wheel in radians/sec r= the radius of each of the wheels R= the distance from the center of the circle (aka ICC)

and the center of the robot

$$v_x = \dot{x} = \frac{r}{2} \langle u_R + u_L \rangle \cos \theta$$

$$v_y = \dot{y} = \frac{r}{2} \langle u_R + u_L \rangle \sin \theta$$

 u_R = the angular velocity of the right wheel in radians/sec

 u_L = the angular velocity of the left wheel in radians/sec

r= the radius of each of the wheels

R= the distance from the center of the circle (aka ICC) and the center of the robot

