Année universitaire 2021-2022

Licence 1: Éco-Gestion

Math₂

2e devoir — mai 2022

Durée: 2 heures

Documents et portables sont interdits.

Les calculatrices de type « collège » sont autorisées.

Aucun brouillon ne sera corrigé.

Toutes les réponses devront être justifiées et rédigées avec soin.

Le barême est donné à titre indicatif, il reste susceptible d'être modifié.

Ce devoir comporte une page.

Exercice A (3 points)

 (u_n) est une suite géométrique de premier terme $u_0 = 3$ et de raison q = 1,1. Soit $S_n = \sum_{k=0}^n u_k$. Déterminer le plus petit entier n pour lequel S_n est supérieur à dix millions.

Exercice B (3 points)

Soit f la fonction définie par $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$; $(x, y) \longmapsto x^2 + y^2 - 4$.

- 1. Déterminer l'équation de la courbe de niveau 5 de f et préciser sa nature;
- 2. Déterminer l'équation de la courbe de niveau -7 de f et préciser sa nature.

Exercice C (5 points)

Soit f la fonction définie par $f(x) = \frac{2x+5}{3x^2-12}$.

- 1. Déterminer $\mathcal D$ l'ensemble de définition de f .
- 2. Calculer f'(x) la dérivée de f.
- 3. Étudier le signe de f'(x) et en déduire les variations de f. Utiliser un tableau de variation pour présenter les résultats.
- 4. Déterminer la limite de f(x) en plus l'infini.

Exercice D (5 points)

- 1. Soit g la fonction définie par $g: \mathbb{R} \longrightarrow \mathbb{R}$; $x \longmapsto x^3 4x^2 + 4x + 2$.
 - (a) Déterminer g'(x) et g''(x);
 - (b) Résoudre g'(x) = 0;
 - (c) À l'aide de g'', déterminer la nature des points critiques de g.
- 2. Soit f la fonction définie par $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$; $(x, y) \longmapsto x^2y + xy + 9y + 47$. Déterminer les optimums de f sous la contrainte x y 5 = 0.

Exercice E (4 points)

Soit f la fonction définie par $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$; $x \longmapsto e^{1/x}$.

- 1. Calculer f'(x) et déterminer son signe;
- 2. Déterminer $\lim_{x\to 0^+} f(x)$.
- 3. Déterminer $\lim_{x \to +\infty} f(x)$.