

Schletter, Inc.		15° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 15.70 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1 (Pressure) 1.6	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.04 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

1.2D + 1.6S + 0.8W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 1.0W1.0D + 0.75L + 0.75W + 0.75S $0.6D + 1.0W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ $0.362D + 0.875E^{\circ}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

<u>ProfiPlus</u>
6105-T5
35 ksi
<u>75</u> in
28.81 ksi
28.47 ksi
0.51 in ³
0.37in^3
10100 ksi
0.60 in ⁴
0.29 in ⁴
0.90 in^2
1.08 lbs/ft
0.787 k-ft
0.107 k-ft
1.226 k-ft
0.871 k-ft
<u>76%</u>

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type = F _{ty} =	1.5x0.25 6061-T6	ksi
Φ =	0.90	
S _y =	0.02	in ³
E =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.004	k-ft
P _n =	0.036	k
M _{y allowable} =	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>9%</u>	

A cross brace kit is required every 22 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	491.27	1475.84	k
Compressive Load =	<u>1826.76</u>	1333.22	k
Lateral Load =	2.29	<u>549.06</u>	k
Moment (Weak Axis) =	0.00	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 21694.8 in-lbs Resisting Force Required = 723.16 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1205.27 lbs to resist overturning. Minimum Width = Weight Provided = 1903.13 lbs Sliding 131.96 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 329.90 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 131.96 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 Bearing Pressure

 Ballast Width

 21 in
 22 in
 23 in
 24 in

 P_{ftg} = (145 pcf)(5 ft)(1.5 ft)(1.75 ft) =
 1903 lbs
 1994 lbs
 2084 lbs
 2175 lbs

ASD LC	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	652 lbs	652 lbs	652 lbs	652 lbs	587 lbs	587 lbs	587 lbs	587 lbs	885 lbs	885 lbs	885 lbs	885 lbs	-234 lbs	-234 lbs	-234 lbs	-234 lbs
FB	478 lbs	478 lbs	478 lbs	478 lbs	426 lbs	426 lbs	426 lbs	426 lbs	645 lbs	645 lbs	645 lbs	645 lbs	-708 lbs	-708 lbs	-708 lbs	-708 lbs
F _V	44 lbs	44 lbs	44 lbs	44 lbs	233 lbs	233 lbs	233 lbs	233 lbs	205 lbs	205 lbs	205 lbs	205 lbs	-264 lbs	-264 lbs	-264 lbs	-264 lbs
P _{total}	3034 lbs	3124 lbs	3215 lbs	3306 lbs	2916 lbs	3007 lbs	3097 lbs	3188 lbs	3432 lbs	3523 lbs	3614 lbs	3704 lbs	200 lbs	254 lbs	309 lbs	363 lbs
M	392 lbs-ft	392 lbs-ft	392 lbs-ft	392 lbs-ft	652 lbs-ft	652 lbs-ft	652 lbs-ft	652 lbs-ft	758 lbs-ft	758 lbs-ft	758 lbs-ft	758 lbs-ft	469 lbs-ft	469 lbs-ft	469 lbs-ft	469 lbs-ft
е	0.13 ft	0.13 ft	0.12 ft	0.12 ft	0.22 ft	0.22 ft	0.21 ft	0.20 ft	0.22 ft	0.22 ft	0.21 ft	0.20 ft	2.35 ft	1.84 ft	1.52 ft	1.29 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	292.9 psf	289.5 psf	286.4 psf	283.5 psf	243.9 psf	242.7 psf	241.6 psf	240.6 psf	288.3 psf	285.0 psf	282.1 psf	279.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	400.5 psf	392.2 psf	384.6 psf	377.6 psf	422.6 psf	413.3 psf	404.8 psf	397.0 psf	496.3 psf	483.6 psf	472.0 psf	461.4 psf	496.2 psf	141.0 psf	109.5 psf	100.1 psf

Maximum Bearing Pressure = 496 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 249.4 \text{ ft-lbs}$

Resisting Force Required = 285.05 lbs S.F. = 1.67

Weight Required = 475.08 lbs Minimum Width = 21 in in Weight Provided = 1903.13 lbs A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		21 in			21 in		21 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	71 lbs	195 lbs	67 lbs	296 lbs	916 lbs	292 lbs	21 lbs	57 lbs	20 lbs	
F _V	1 lbs	1 lbs	0 lbs	5 lbs	5 lbs	0 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2427 lbs	2551 lbs	2423 lbs	2539 lbs	3158 lbs	2535 lbs	710 lbs	746 lbs	709 lbs	
М	1 lbs-ft	1 lbs-ft	0 lbs-ft	9 lbs-ft	7 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.29 ft	1.75 ft	1.75 ft	1.74 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	
f _{min}	276.9 sqft	291.1 sqft	276.9 sqft	286.4 sqft	358.3 sqft	289.4 sqft	81.0 sqft	85.1 sqft	81.0 sqft	
f _{max}	277.9 psf	292.0 psf	277.0 psf	293.8 psf	363.6 psf	289.9 psf	81.2 psf	85.4 psf	81.0 psf	

Maximum Bearing Pressure = 364 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.405 k	Maximum Axial Load =	1.134 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>25%</u>	Utilization =	<u>20%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.169 k	Maximum Axial Load =	0.036 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
		1.1.11	00/
Utilization =	<u>3%</u>	Utilization =	<u>0%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 28.39 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.568 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.019 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 75.00 \text{ in}$$

$$J = 0.255$$

$$195.296$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_L &= 28.8 \text{ ksi} \end{split}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 75.00 \text{ in}$$

$$J = 0.255$$

$$202.803$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_I = 28.7$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C \varphi$$

$$\phi F_L St = 28.8 \text{ ksi}$$

$$k = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.226 \text{ k-ft}$$

43.2 ksi

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$X = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

 $\phi F_L =$

3.4.9

b/t = 7.4

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$ $\phi F_L = 33.3 \text{ ksi}$ b/t = 23.9

S1 = 12.21S2 = 32.70

 $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$

 $\phi F_L = 28.5 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

 $\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.15 \\ & 22.8869 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2*ry^*\sqrt(Cb))]$$

 $\phi F_L = 29.5 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.15 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_L = & 29.5 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\left(P_t = 1.17 \frac{\theta_y}{\theta_y} F_{cov} \right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2 b/t =

 $\begin{array}{lll} t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \end{array}$

13.5 ksi

24.46

3.4.18

 $\phi F_L =$

h/t = 4.29

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 13.5 \text{ ksi} \\ y = & 217168 \text{ mm}^4 \\ & 0.522 \text{ in}^4 \\ x = & 29 \text{ mm} \\ \text{Sy} = & 0.457 \text{ in}^3 \\ M_{\text{max}} W k = & 0.513 \text{ k-ft} \end{array}$$

3.4.18

$$\begin{split} \text{h/t} &= & 24.46 \\ S1 &= \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr} \\ \text{S1} &= & 34.4 \\ \text{m} &= & 0.70 \\ \text{C}_0 &= & 34.23 \\ \text{Cc} &= & 37.77 \\ S2 &= & \frac{k_1Bbr}{mDbr} \\ \text{S2} &= & 72.1 \\ \text{\phiF}_\text{L} &= & 1.3\text{\phiyFcy} \\ \text{\phiF}_\text{L} &= & 43.2 \text{ ksi} \end{split}$$

 $\begin{array}{lll} \phi F_L St = & 29.5 \text{ ksi} \\ Ix = & 364470 \text{ mm}^4 \\ & 0.876 \text{ in}^4 \\ y = & 37.77 \text{ mm} \\ Sx = & 0.589 \text{ in}^3 \\ M_{max} St = & 1.448 \text{ k-ft} \end{array}$

Compression

3.4.7

 $\lambda = 0.46067$ r = 1.374 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi cc = 0.90326$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_L = 30.1251 \text{ ksi}$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{b_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 14.29 \text{ ksi}$
 $A = 576.21 \text{ mm}^2$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$V = 15 \text{ mm}$$

$$V = 0.163 \text{ in}^3$$

 $M_{max}Wk = 0.423 \text{ k-ft}$

7.75

 $M_{max}St = 0.423 \text{ k-ft}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437 \text{ in}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = \frac{\pi}{\pi} \sqrt{FCy/}$$

 $S2^* = 1.23671$

$$32^{\circ} = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{\text{max}} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.8 \text{ ksi}$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$CC = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\Delta t = 39958.2 \text{ mm}^4$$

$$\Delta t = 0.096 \text{ in}^4$$

$$\Delta t = 0.163 \text{ in}^3$$

$$\Delta t = 0.404 \text{ k-ft}$$

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

x =

 $M_{max}Wk =$

Sy =

15 mm

0.163 in³

0.450 k-ft

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 29.96 \text{ in}$$
 $J = 0.16$
 78.5957

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$SI = 0.5140$$

$$C_c \setminus^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S = 80190.1600^{2} \text{ (Ch}^{2}/\text{(Lh}^{2})\text{(Ch}^{2}/\text{(Lh}^{2})\text{(Ch}^{2})}$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$

$$\phi F_L = 30.5 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

S2 = 46.

$$\phi F_1 = \phi y F c y$$

$$\varphi F_1 = \varphi y_1 cy$$

$$\varphi F_1 = 33.3 \text{ ksi}$$

3.4.16.1

Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$
 $\varphi F_L = 43.2 \text{ ksi}$

$$\begin{array}{lll} \phi F_L St = & 30.5 \text{ ksi} \\ lx = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ y = & 15 \text{ mm} \\ Sx = & 0.163 \text{ in}^3 \\ M_{max} St = & 0.413 \text{ k-ft} \end{array}$$

Weak Axis:

3.4.14

$$L_{b} = 29.96 \text{ in}$$

$$J = 0.16$$

$$78.5957$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.5$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \ ksi \\ ly = & 39958.2 \ mm^4 \\ & 0.096 \ in^4 \\ x = & 15 \ mm \\ Sy = & 0.163 \ in^3 \\ M_{max} W k = & 0.450 \ k\text{-ft} \end{array}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 1.28467$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.75985$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 16.1143 \text{ ksi}$$
3.4.9
$$b/t = 7.75$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

32.70 (See 3.4.16 above for formula)

$$\phi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = \phi y F c y$

$$b/t = 7.75$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 16.11 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 8.09 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ		-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

_		Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	Υ	-4.45	-4.45	0	0
	2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

		Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	Υ	-63.248	-63.248	0	0
ſ	2	M16	Υ	-63.248	-63.248	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-43.785	-43.785	0	0
2	M16	V	-70.057	-70.057	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	89.322	89.322	0	0
2	M16	V	43.785	43.785	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	100.036	2	290.431	1	.038	1	0	1	0	1	0	1
2		min	-133.102	3	-344.439	3	132	3	0	3	0	1	0	1
3	N7	max	0	15	468.274	1	027	15	0	15	0	1	0	1
4		min	12	2	-108.918	3	746	1	001	1	0	1	0	1
5	N15	max	0	15	1405.202	1	.409	1	0	1	0	1	0	1
6		min	-1.428	1	-377.9	3	296	3	0	3	0	1	0	1
7	N16	max	390.568	2	1025.552	1	0	10	0	1	0	1	0	1
8		min	-422.357	3	-1135.261	3	-32.846	3	0	3	0	1	0	1
9	N23	max	0	15	468.154	1	1.76	1	.003	1	0	1	0	1
10		min	119	2	-108.558	3	.059	15	0	15	0	1	0	1
11	N24	max	100.253	2	294.834	1	33.155	3	.001	1	0	1	0	1
12		min	-133.214	3	-342.274	3	.005	10	0	3	0	1	0	1
13	Totals:	max	589.29	2	3952.448	1	0	3						
14		min	-689.013	3	-2417.351	3	0	11						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	I C	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
1	M2	1	max	339.383	1	.664	4	.538	1	0	15	0	3	0	1
2			min	-346.527	3	.157	15	087	3	0	1	0	2	0	1
3		2	max	339.479	1	.626	4	.538	1	0	15	0	1	0	15
4			min	-346.455	3	.149	15	087	3	0	1	0	10	0	4
5		3	max	339.576	1	.588	4	.538	1	0	15	0	1	0	15
6			min	-346.383	3	.14	15	087	3	0	1	0	10	0	4
7		4	max	339.672	1	.551	4	.538	1	0	15	0	1	0	15
8			min	-346.31	3	.131	15	087	3	0	1	0	3	0	4
9		5	max	339.769	1	.513	4	.538	1	0	15	0	1	0	15
10			min	-346.238	3	.122	15	087	3	0	1	0	3	0	4
11		6	max	339.865	1	.475	4	.538	1	0	15	0	1	0	15
12			min	-346.166	3	.113	15	087	3	0	1	0	3	0	4
13		7	max	339.961	1	.437	4	.538	1	0	15	0	1	0	15
14			min	-346.093	3	.104	15	087	3	0	1	0	3	0	4
15		8	max	340.058	1	.399	4	.538	1	0	15	0	1	0	15
16			min	-346.021	3	.095	15	087	3	0	1	0	3	0	4
17		9	max	340.154	1	.361	4	.538	1	0	15	0	1	0	15
18			min	-345.949	3	.086	15	087	3	0	1	0	3	0	4
19		10	max	340.25	1	.324	4	.538	1	0	15	0	1	0	15
20			min	-345.877	3	.077	15	087	3	0	1	0	3	0	4
21		11	max	340.347	1	.286	4	.538	1	0	15	0	1	0	15
22			min	-345.804	3	.068	15	087	3	0	1	0	3	0	4
23		12	max	340.443	1	.248	4	.538	1	0	15	0	1	0	15
24			min	-345.732	3	.06	15	087	3	0	1	0	3	0	4
25		13	max	340.54	1	.21	4	.538	1	0	15	0	1	0	15
26			min	-345.66	3	.051	15	087	3	0	1	0	3	0	4
27		14	max	340.636	1	.172	4	.538	1	0	15	0	1	0	15
28			min	-345.588	3	.042	15	087	3	0	1	0	3	0	4
29		15	max	340.732	1_	.134	4	.538	1	0	15	.001	1	0	15
30			min	-345.515	3	.033	15	087	3	0	1	0	3	0	4
31		16	max	340.829	1	.097	4	.538	1	0	15	.001	1	0	15
32			min	-345.443	3	.024	15	087	3	0	1	0	3	0	4
33		17	max	340.925	1	.059	4	.538	1	0	15	.001	1	0	15
34			min	-345.371	3	.014	9	087	3	0	1	0	3	0	4
35		18	max	341.021	1_	.03	10	.538	1	0	15	.001	1	0	15
36			min	-345.298	3	014	1	087	3	0	1	0	3	0	4
37		19	max	341.118	1	.006	10	.538	1	0	15	.001	1	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
38			min	-345.226	3	043	1	087	3	0	1	0	3	0	4
39	M3	1	max	37.465	10	1.814	4	013	15	0	15	.001	1	0	4
40			min	-85.055	1	.427	15	405	1	0	1	0	15	0	15
41		2	max	37.409	10	1.636	4	013	15	0	15	.001	1	0	4
42			min	-85.122	1	.385	15	405	1	0	1	0	15	0	15
43		3	max		10	1.458	4	013	15	0	15	0	1	0	4
44			min		1	.344	15	405	1	0	1	0	15	0	9
45		4	max	37.297	10	1.28	4	013	15	0	15	0	1	0	15
46		1	min	-85.256	1	.302	15	405	1	0	1	0	15	0	1
47		5	max	37.241	10	1.102	4	013	15	0	15	0	1	0	15
48		5		-85.323	1	.26	15	405	1	0	1	0	15	0	4
		-	min												
49		6	max		10	.924	4	013	15	0	15	0	1	0	15
50		_	min	-85.39	1	.218	15	405	1_	0	1_	0	15	0	4
51		7	max	37.13	10	.746	4	013	15	0	15	0	1	0	15
52			min	-85.457	1	.176	15	405	1	0	1	0	15	0	4
53		8	max		10	.568	4	013	15	0	15	0	1	0	15
54			min	-85.524	1	.134	15	405	1	0	1	0	15	0	4
55		9	max	37.018	10	.39	4	013	15	0	15	0	1	0	15
56			min	-85.592	1	.092	15	405	1	0	1	0	15	001	4
57		10	max	36.962	10	.212	4	013	15	0	15	0	1	0	15
58			min	-85.659	1	.051	15	405	1	0	1	0	15	001	4
59		11	max		10	.034	4	013	15	0	15	0	1	0	15
60			min	-85.726	1	.006	9	405	1	0	1	0	15	001	4
61		12	max	36.85	10	033	15	013	15	0	15	0	1	0	15
62		12	min	-85.793	1	144	4	405	1	0	1	0	15	001	4
63		13	max		10	075	15	013	15	0	15	0	1	0	15
		13											12		
64		4.4	min	-85.86	1	322	4	405	1	0	1	0		001	4
65		14	max	36.738	10	117	15	013	15	0	15	0	1	0	15
66		4.5	min	-85.927	1	5	4	405	1_	0	1	0	3	001	4
67		15	max	36.682	10	159	15	013	15	0	15	0	15	0	15
68			min	-85.994	1	678	4	405	1_	0	1	0	1_	0	4
69		16	max		10	2	15	013	15	0	15	0	15	0	15
70			min	-86.061	1	856	4	405	1	0	1	0	1	0	4
71		17	max	36.571	10	242	15	013	15	0	15	0	15	0	15
72			min	-86.128	1	-1.034	4	405	1	0	1	0	1	0	4
73		18	max	36.515	10	284	15	013	15	0	15	0	15	0	15
74			min	-86.195	1	-1.213	4	405	1	0	1	0	1	0	4
75		19	max	36.459	10	326	15	013	15	0	15	0	15	0	1 1
76			min	-86.263	1	-1.391	4	405	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	027	15	0	1	0	3	0	1
78				-109.791		0	1	81	1	0	1	0	1	0	1
79		2		467.174	1	0	1	027	15	0	1	0	12	0	1
80				-109.743		0	1	81	1	0	1	0	1	0	1
81		3	max		1	0	1	027	15	0	1	0	15	0	1
82			min		3	0	1	81	1	0	1	0	1	0	1
83		4			1	0	1	027	15	0	1	0	15	0	1
		4	max												
84		_	min			0	1	81	1_	0	1	0	1_	0	1
85		5	max		1	0	1	027	15	0	1	0	15	0	1
86			min	-109.597	3	0	1	81	1	0	1	0	1	0	1
87		6		467.433	1	0	1	027	15	0	1	0	15	0	1
88			min	-109.549	3	0	1	81	1	0	1	0	1	0	1
89		7	max	467.498	1	0	1	027	15	0	1	0	15	0	1
90			min	-109.5	3	0	1	81	1	0	1	0	1	0	1
91		8	max	467.563	1	0	1	027	15	0	1	0	15	0	1
92			min	-109.452	3	0	1	81	1	0	1	0	1	0	1
93		9	max		1	0	1	027	15	0	1	0	15	0	1
94				-109.403	3	0	1	81	1	0	1	0	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	467.692	1_	0	1	027	15	0	1	0	15	0	1
96			min	-109.355	3	0	1	81	1	0	1	0	1	0	1
97		11	max	467.757	1	0	1	027	15	0	1	0	15	0	1 1
98				-109.306	3	0	1	81	1	0	1	0	1	0	1
99		12	max		1	0	1	027	15	0	1	0	15	0	1
100				-109.258	3	0	1	81	1	0	1	0	1	0	1
101		13		467.886	1	0	1	027	15	0	1	0	15	0	1
102				-109.209	3	0	1	81	1	0	1	0	1	0	1
103		14		467.951	1	0	1	027	15	0	1	0	15	0	1
104		17		-109.161	3	0	1	81	1	0	1	0	1	0	1
105		15		468.016	1	0	1	027	15	0	1	0	15	0	1
106		13		-109.112	3		1	02 <i>1</i> 81	1	0	1	001	1		1
		10				0					_		_	0	++
107		16	max		1	0	1	027	15	0	1	0	15	0	1
108				-109.063	3	0	1	81	1	0	1	001	1	0	1
109		17		468.145	_1_	0	1	027	15	0	1	0	15	0	1
110			min	-109.015	3	0	1	81	1	0	1	001	1	0	1
111		18	max		_1_	0	1	027	15	0	1	0	15	0	1
112			min	-108.966	3	0	1	81	1	0	1	001	1	0	1
113		19	max	468.274	1	0	1	027	15	0	1	0	15	0	1
114			min	-108.918	3	0	1	81	1	0	1	001	1	0	1
115	M6	1	max	1104.588	1	.65	4	.274	1	0	1	0	3	0	1
116				-1134.445	3	.156	15	165	3	0	10	0	1	0	1
117		2		1104.685	1	.612	4	.274	1	0	1	0	3	0	15
118		_		-1134.373	3	.147	15	165	3	0	10	0	1	0	4
119		3	_	1104.781	1	.575	4	.274	1	0	1	0	11	0	15
120				-1134.301	3	.138	15	165	3	0	10	0	1	0	4
121		4		1104.878	1	.537	4	.274	1	0	1	0	11	0	15
122		-		-1134.228	3	.129	15	165	3	0	10	0	3	0	4
		-		1104.974			4	.274					1		
123		5			1	.499			1	0	1	0		0	15
124				-1134.156	3	.12	15	165	3	0	10	0	3	0	4
125		6		1105.07	1_	.461	4	.274	1	0	1	0	1	0	15
126				-1134.084	3_	.111	15	165	3	0	10	0	3	0	4
127		7		1105.167	_1_	.423	4	.274	1_	0	1	00	1	0	15
128				-1134.012	3	.102	15	165	3	0	10	0	3	0	4
129		8		1105.263	_1_	.385	4	.274	_1_	0	1	0	1	0	15
130			min	-1133.939	3	.093	15	165	3	0	10	0	3	0	4
131		9	max	1105.359	1_	.348	4	.274	1	0	1	0	1	0	15
132			min	-1133.867	3	.084	15	165	3	0	10	0	3	0	4
133		10	max	1105.456	1	.31	4	.274	1	0	1	0	1	0	15
134			min	-1133.795	3	.075	15	165	3	0	10	0	3	0	4
135		11	max	1105.552	1	.272	4	.274	1	0	1	0	1	0	15
136			min	-1133.723	3	.067	15	165	3	0	10	0	3	0	4
137		12		1105.648	1	.234	4	.274	1	0	1	0	1	0	15
138		14		-1133.65	3	.058	15	165	3	0	10	0	3	0	4
139		13		1105.745	<u></u>	.196	4	.274	1	0	1	0	1	0	15
140		13		-1133.578	3	.049	15	165	3	0	10	0	3	0	4
		11													$\overline{}$
141		14		1105.841	1	.162	2	.274	1	0	1	0	1	0	15
142		4-		-1133.506	3	.04	15	165	3	0	10	0	3	0	4
143		15		1105.938	1_	.132	2	.274	1	0	1	0	1	0	15
144				-1133.433	3	.029	9	165	3	0	10	0	3	0	4
145		16		1106.034	1_	.103	2	.274	1	0	1	0	1	0	15
146				-1133.361	3	.004	9	165	3	0	10	0	3	0	4
147		17		1106.13	_1_	.078	10	.274	1	0	1	0	1	0	15
148				-1133.289	3	02	9	165	3	0	10	0	3	0	4
149		18		1106.227	1	.054	10	.274	1	0	1	0	1	0	15
150				-1133.217	3	047	1	165	3	0	10	0	3	0	4
151		19		1106.323	1	.029	10	.274	1	0	1	0	1	0	15
						-	_ <u>-</u>			-		-			

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
152			min	-1133.144	3	077	1	165	3	0	10	0	3	0	4
153	M7	1	max	168.932	2	1.808	4	.009	1	0	1	0	1	0	4
154			min	-131.961	9	.427	15	008	3	0	3	0	3	0	15
155		2	max	168.865	2	1.63	4	.009	1	0	1	0	1	0	2
156			min	-132.017	9	.385	15	008	3	0	3	0	3	0	15
157		3	max	168.798	2	1.452	4	.009	1	0	1	0	1	0	2
158			min	-132.073	9	.343	15	008	3	0	3	0	3	0	9
159		4	max	168.731	2	1.274	4	.009	1	0	1	0	1	0	10
160			min	-132.129	9	.301	15	008	3	0	3	0	3	0	1
161		5	max	168.664	2	1.096	4	.009	1	0	1	0	1	0	15
162			min	-132.185	9	.259	15	008	3	0	3	0	3	0	4
163		6	max	168.597	2	.918	4	.009	1	0	1	0	1	0	15
164			min	-132.241	9	.217	15	008	3	0	3	0	3	0	4
165		7	max	168.529	2	.74	4	.009	1	0	1	0	1	0	15
166			min	-132.297	9	.175	15	008	3	0	3	0	3	0	4
167		8	max	168.462	2	.562	4	.009	1	0	1	0	1	0	15
168			min	-132.353	9	.134	15	008	3	0	3	0	3	0	4
169		9	max	168.395	2	.384	4	.009	1	0	1	0	1	0	15
170			min	-132.409	9	.092	15	008	3	0	3	0	3	001	4
171		10	max	168.328	2	.206	4	.009	1	0	1	0	1	0	15
172			min	-132.464	9	.05	15	008	3	0	3	0	3	001	4
173		11	max		2	.056	2	.009	1	0	1	0	1	0	15
174			min	-132.52	9	01	9	008	3	0	3	0	3	001	4
175		12	max		2	034	15	.009	1	0	1	0	1	0	15
176		T -	min	-132.576	9	15	4	008	3	0	3	0	3	001	4
177		13	max	168.127	2	076	15	.009	1	0	1	Ö	1	0	15
178		1	min	-132.632	9	328	4	008	3	0	3	0	3	001	4
179		14	max	168.06	2	117	15	.009	1	0	1	0	1	0	15
180			min	-132.688	9	506	4	008	3	0	3	0	3	001	4
181		15	max	167.993	2	159	15	.009	1	0	1	0	1	0	15
182		'0	min	-132.744	9	684	4	008	3	0	3	0	3	0	4
183		16	max		2	201	15	.009	1	0	1	0	1	0	15
184		'	min	-132.8	9	862	4	008	3	0	3	0	3	0	4
185		17	max	167.859	2	243	15	.009	1	0	1	0	1	0	15
186		1''	min	-132.856	9	-1.04	4	008	3	0	3	0	3	0	4
187		18	max	167.791	2	285	15	.009	1	0	1	0	1	0	15
188		10	min	-132.912	9	-1.218	4	008	3	0	3	0	3	0	4
189		19	max		2	327	15	.009	1	0	1	0	1	0	1
190		15	min	-132.968	9	-1.396	4	008	3	0	3	0	3	0	1
191	M8	1		1404.037	1	0	1	.53	1	0	1	0	10	0	1
192	IVIO			-378.774		0	1	279	3	0	1	0	1	0	1
193		2		1404.102	1	0	1	.53	1	0	1	0	1	0	1
194				-378.725	3	0	1	279	3	0	1	0	3	0	1
195		3		1404.167	1	0	1	.53	1	0	1	0	1	0	1
196			min	-378.677	3	0	1	279	3	0	1	0	3	0	1
197		4		1404.231		0	1	.53	1	0	1	0	1	0	1
198		-		-378.628	3	0	1	279	3	0	1	0	3	0	1
199		5		1404.296	<u> </u>	0	1	.53	1	0	1	0	<u> </u>	0	1
200		5		-378.58	3	0	1	279	3	0	1	0	3	0	1
		6					1		1		1		<u>ა</u> 1		
201		6	min	1404.361 -378.531	<u>1</u> 3	0	1	.53 279	3	0	1	0	3	0	1
		7		1404.426			1	.53			1	_		_	
203		/			<u>1</u>	0	1		3	0	1	0	<u>1</u>	0	1
204		0		-378.482	3_1	0	1	279		0		0		0	1
205		8		1404.49	1	0		.53	1	0	1	0	1	0	1
206		0	min	-378.434	3	0	1	279	3	0	1	0	3	0	1
207		9		1404.555	1	0	_	.53	1	0	<u> </u>	0	1	0	1
208			THILL	-378.385	3	0	1	279	3	0	1	0	3	0	1

: Schletter, Inc. : HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
209		10	max	1404.62	1_	0	1	.53	1	0	1	0	1	0	1
210			min	-378.337	3	0	1	279	3	0	1	0	3	0	1
211		11	max	1404.684	1	0	1	.53	1	0	1	0	1	0	1
212			min	-378.288	3	0	1	279	3	0	1	0	3	0	1
213		12	max	1404.749	1	0	1	.53	1	0	1	0	1	0	1
214			min	-378.24	3	0	1	279	3	0	1	0	3	0	1
215		13	max	1404.814	1	0	1	.53	1	0	1	0	1	0	1
216			min	-378.191	3	0	1	279	3	0	1	0	3	0	1
217		14	max	1404.879	1	0	1	.53	1	0	1	0	1	0	1
218			min	-378.143	3	0	1	279	3	0	1	0	3	0	1
219		15	max	1404.943	1	0	1	.53	1	0	1	0	1	0	1
220			min	-378.094	3	0	1	279	3	0	1	0	3	0	1
221		16	max	1405.008	1	0	1	.53	1	0	1	0	1	0	1
222				-378.046	3	0	1	279	3	0	1	0	3	0	1
223		17		1405.073	1	0	1	.53	1	0	1	0	1	0	1
224				-377.997	3	0	1	279	3	0	1	0	3	0	1
225		18		1405.137	1	0	1	.53	1	0	1	0	1	0	1
226				-377.949	3	0	1	279	3	0	1	0	3	0	1
227		19		1405.202	1	0	1	.53	1	0	1	0	1	0	1
228			min	-377.9	3	0	1	279	3	0	1	0	3	0	1
229	M10	1	max		1	.653	4	002	15	0	1	0	2	0	1
230			min	-332.062	3	.156	15	068	2	0	3	0	3	0	1
231		2	max	342.19	1	.615	4	002	15	0	1	0	1	0	15
232				-331.989	3	.147	15	068	2	0	3	0	3	0	4
233		3	max	342.287	1	.577	4	002	15	0	1	0	1	0	15
234				-331.917	3	.138	15	068	2	0	3	0	3	0	4
235		4	max		1	.539	4	002	15	0	1	0	1	0	15
236				-331.845	3	.129	15	068	2	0	3	0	3	0	4
237		5	max	342.48	1	.501	4	002	15	0	1	0	1	0	15
238			min	-331.773	3	.12	15	068	2	0	3	0	3	0	4
239		6	max	342.576	1	.463	4	002	15	0	1	0	1	0	15
240			min	-331.7	3	.111	15	068	2	0	3	0	3	0	4
241		7	max	342.672	1	.426	4	002	15	0	1	0	15	0	15
242				-331.628	3	.102	15	068	2	0	3	0	3	0	4
243		8	max	342.769	1	.388	4	002	15	0	1	0	15	0	15
244				-331.556	3	.094	15	068	2	0	3	0	3	0	4
245		9	max		1	.35	4	002	15	0	1	0	15	0	15
246				-331.484	3	.085	15	068	2	0	3	0	3	0	4
247		10	max		1	.312	4	002	15	0	1	0	15	0	15
248		10	min	-331.411	3	.076	15	068	2	0	3	0	3	0	4
249		11		343.058	1	.274	4	002	15	0	1	0	15	0	15
250				-331.339	3	.067	15	068	2	0	3	0	3	0	4
251		12		343.154	1	.236	4	002	15	0	1	0	15	0	15
252		12		-331.267	3	.058	15	068	2	0	3	0	3	0	4
253		13	max	343.25	1	.199	4	002	15	0	1	0	15	0	15
254		10		-331.194	3	.049	15	068	2	0	3	0	3	0	4
255		14		343.347	1	.161	4	002	15	0	1	0	15	0	15
256		14		-331.122	3	.04	15	068	2	0	3	0	3	0	4
257		15	max		_ <u></u>	.124	3	002	15	0	1	0	15	0	15
258		10	min	-331.05	3	.015	1	068	2	0	3	0	3	0	4
259		16	max		<u>ာ</u> 1	.101	3	002	15	0	1	0	15	0	15
260		10		-330.978	3	014	1	068	2	0	3	0	3	0	4
261		17		343.636	<u>ა</u> 1	.079	3	002	15	0	1	0	15	0	15
262		17		-330.905	3	044	1	068	2	0	3	0	3	0	4
		18			<u> </u>	.057	3	002	15		1	0	15	0	15
263 264		10	max	-330.833	3	073	1	068	2	0	3	0	3	0	4
		10													_
265		19	шах	343.829	1	.035	3	002	15	0	1	0	15	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft		<u>y-y Mome</u>	LC	z-z Mome	<u>. LC</u>
266			min	-330.761	3	103	1	068	2	0	3	0	3	0	4
267	M11	1	max	36.982	10	1.818	4	.507	1	0	1	0	3	0	4
268			min	-84.831	1	.428	15	.005	12	0	15	001	1	0	15
269		2	max	36.926	10	1.64	4	.507	1	0	1	0	3	0	4
270			min	-84.898	1	.386	15	.005	12	0	15	001	1	0	15
271		3	max	36.87	10	1.462	4	.507	1	0	1	0	3	0	4
272			min	-84.965	1	.344	15	.005	12	0	15	001	1	0	3
273		4	max	36.814	10	1.284	4	.507	1	0	1	0	3	0	15
274			min	-85.032	1	.302	15	.005	12	0	15	0	1	0	3
275		5	max	36.758	10	1.106	4	.507	1	0	1	0	3	0	15
276			min	-85.099	1	.26	15	.005	12	0	15	0	1	0	4
277		6	max	36.702	10	.928	4	.507	1	0	1	0	3	0	15
278			min	-85.166	1	.219	15	.005	12	0	15	0	1	0	4
279		7	max	36.647	10	.75	4	.507	1	0	1	0	3	0	15
280			min	-85.233	1	.177	15	.005	12	0	15	0	1	0	4
281		8	max	36.591	10	.572	4	.507	1	0	1	0	3	0	15
282			min	-85.3	1	.135	15	.005	12	0	15	0	1	0	4
283		9	max	36.535	10	.394	4	.507	1	0	1	0	3	0	15
284			min	-85.367	1	.093	15	.005	12	0	15	0	1	001	4
285		10	max	36.479	10	.216	4	.507	1	0	1	0	3	0	15
286			min	-85.434	1	.051	15	.005	12	0	15	0	1	001	4
287		11	max	36.423	10	.038	4	.507	1	0	1	0	3	0	15
288			min	-85.502	1	.001	3	.005	12	0	15	0	1	001	4
289		12	max	36.367	10	032	15	.507	1	0	1	0	3	0	15
290			min	-85.569	1	14	4	.005	12	0	15	0	1	001	4
291		13	max	36.311	10	074	15	.507	1	0	1	0	3	0	15
292		1.0	min	-85.636	1	318	4	.005	12	0	15	0	1	001	4
293		14	max	36.255	10	116	15	.507	1	0	1	0	3	0	15
294			min	-85.703	1	496	4	.005	12	0	15	0	10	001	4
295		15	max	36.199	10	158	15	.507	1	0	1	0	3	0	15
296		10	min	-85.77	1	674	4	.005	12	0	15	0	15	0	4
297		16	max	36.143	10	2	15	.507	1	0	1	0	1	0	15
298		10	min	-85.837	1	852	4	.005	12	0	15	0	15	0	4
299		17	max	36.087	10	242	15	.507	1	0	1	0	1	0	15
300		1 ''	min	-85.904	1	-1.03	4	.005	12	0	15	0	15	0	4
301		18	max	36.031	10	284	15	.507	1	0	1	0	1	0	15
302		10	min	-85.971	1	-1.208	4	.005	12	0	15	0	15	0	4
303		19	max	35.976	10	325	15	.507	1	0	1	0	1	0	1
304		15	min	-86.038	1	-1.386	4	.005	12	0	15	0	15	0	1
305	M12	1	max	466.989	1	0	1	1.908	1	0	1	0	1	0	1
306	IVIIZ			-109.432		0	1	.059	15	0	1	0	3	0	1
307		2		467.054	1	0	1	1.908	1	0	1	0	1	0	1
308			min		3	0	1	.059	15	0	1	0	15	0	1
309		3		467.118	1	0	1	1.908	1	0	1	0	1	0	1
310			min	-109.335	3	0	1	.059	15	0	1	0	15	0	1
311		4		467.183	1	0	1	1.908	1	0	1	0	1	0	1
312				-109.286	3	0	1	.059	15	0	1	0	15	0	1
313		5		467.248	1	0	1	1.908	1	0	1	0	1	0	1
314		1		-109.238		0	1	.059	15	0	1	0	15	0	1
315		6	max		<u> </u>	0	1	1.908	1	0	1	0	1	0	1
316		U			3	0	1	.059	15	0	1	0	15	0	1
317		7		467.377	1	0	1	1.908	1	0	1	.001	1	0	1
318					3	0	1	.059	15	0	1	0	15	0	1
319		8		467.442	<u> </u>		1	1.908	1		1	.001	1		1
320		0		-109.092	3	0	1	.059	15	<u>0</u> 	1	0	15	0 0	1
321		9	min	467.507	<u> </u>	0	1	1.908	1	0	1	.001	15	0	1
321		+ 3		-109.044			1			0	1		15		1
322			HIII	-109.044	3	0		.059	15	U		0	10	0	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

323	Member	Sec 10	may	Axial[lb] 467,571	LC 1		LC 1	z Shear[lb] 1.908	LC 1	Torque[k-ft]	LC 1	y-y Mome	LC 1	z-z Mome	LC 1
324		10	max	-108.995	3	0	1	.059	15	0	1	0	15	0	1
325		11	max	467.636	_ <u></u>	0	1	1.908	1	0	1	.002	1	0	1
326				-108.947	3	0	1	.059	15	0	1	0	15	0	1
327		12	max	467.701		0	1	1.908	1	0	1	.002	1	0	1
328		12		-108.898	3	0	1	.059	15	0	1	0	15	0	1
329		13	max	467.765	1	0	1	1.908	1	0	1	.002	1	0	1
330		10	min	-108.85	3	0	1	.059	15	0	1	0	15	0	1
331		14	max	467.83	1	0	1	1.908	1	0	1	.002	1	0	1
332		1 7	min	-108.801	3	0	1	.059	15	0	1	0	15	0	1
333		15	max	467.895	1	0	1	1.908	1	0	1	.002	1	0	1
334		-10	min	-108.752	3	0	1	.059	15	0	1	0	15	0	1
335		16	max	467.96	1	0	1	1.908	1	0	1	.003	1	0	1
336				-108.704	3	0	1	.059	15	0	1	0	15	0	1
337		17	max	468.024	1	0	1	1.908	1	0	1	.003	1	0	1
338				-108.655	3	Ö	1	.059	15	Ö	1	0	15	0	1
339		18	max	468.089	1	0	1	1.908	1	0	1	.003	1	0	1
340			_	-108.607	3	0	1	.059	15	0	1	0	15	0	1
341		19	max		1	0	1	1.908	1	0	1	.003	1	0	1
342			min	-108.558	3	0	1	.059	15	0	1	0	15	0	1
343	M1	1	max	85.986	1	325.773	3	-1.182	15	0	1	.075	1	0	1
344			min	2.627	15	-339.662	1	-38.156	1	0	3	.002	15	0	3
345		2	max	86.058	1	325.571	3	-1.182	15	0	1	.066	1	.074	1
346			min	2.649	15	-339.931	1	-38.156	1	0	3	.002	15	071	3
347		3	max	98.466	1	5.65	9	-1.166	15	0	3	.058	1	.146	1
348			min	-6.687	3	-20.976	3	-37.816	1	0	1	.002	15	14	3
349		4	max	98.538	1	5.425	9	-1.166	15	0	3	.049	1	.147	1
350			min	-6.633	3	-21.178	3	-37.816	1	0	1	.002	15	135	3
351		5	max	98.61	1	5.2	9	-1.166	15	0	3	.041	1	.147	1
352			min	-6.579	3	-21.38	3	-37.816	1	0	1	.001	15	131	3
353		6	max	98.683	1	4.975	9	-1.166	15	0	3	.033	1	.147	1
354			min	-6.525	3	-21.583	3	-37.816	1	0	1	.001	15	126	3
355		7	max	98.755	1	4.75	9	-1.166	15	0	3	.025	1	.147	1
356			min	-6.47	3	-21.785	3	-37.816	1	0	1	0	15	121	3
357		8	max	98.827	1	4.526	9	-1.166	15	0	3	.017	1	.148	1
358			min	-6.416	3	-21.987	3	-37.816	1	0	1_	0	15	117	3
359		9	max	98.899	<u>1</u>	4.301	9	-1.166	15	0	3	.008	1_	.148	1
360			min	-6.362	3	-22.19	3	-37.816	1	0	1_	0	15	112	3
361		10	max	98.972	1_	4.076	9	-1.166	15	0	3	0	3	.149	1
362			min	-6.308	3	-22.392	3	-37.816	1	0	1_	0	15	107	3
363		11	max		_1_	3.851	9	-1.166	15	0	3_	0	3	.149	1
364			min	-6.253	3_	-22.594	3	-37.816	1	0	1_	008	1_	102	3
365		12	max	99.116	_1_	3.627	9	-1.166	15	0	3_	0	12	.15	1
366			min	-6.199	3	-22.796	3	-37.816	1	0	1_	016	1	097	3
367		13	max	99.188	1_	3.402	9	-1.166	15	0	3_	0	12	.151	1
368			min	-6.145	3	-22.999	3	-37.816	1	0	1_	024	1	092	3
369		14	max	99.261	_1_	3.177	9	-1.166	15	0	3	001	15	.152	1
370			min	-6.091	3	-23.201	3	-37.816	1	0	1_	033	1	087	3
371		15	max	99.333	_1_	2.952	9	-1.166	15	0	3	001	15	.153	2
372		4.0	min	-6.037	3	-23.403	3	-37.816	1_	0	1_	041	1_	082	3
373		16	max	64.869	2	11.383	10	-1.179	15	0	1_	002	15	.156	2
374			min	-32.713	3	-61.301	1_	-38.183	1_	0	12	05	1_	077	3
375		17	max	64.942	2	11.158	10	-1.179	15	0	1	002	15	.167	1
376		40	min	-32.658	3	-61.571	1_	-38.183	1_	0	12	058	1_	067	3
377		18	max	-2.644	<u>15</u>	388.833	1	-1.206	15	0	3	002	15	.085	1
378		40	min	-86.017	1_	-154.205	3	-39.016	1_	0	1_	066	1_	034	3
379		19	max	-2.622	15	388.563	_1_	-1.206	15	0	3	002	15	0	1

Model Name

Schletter, Inc. HCV

:

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
380			min	-85.945	1	-154.407	3	-39.016	1	0	1	075	1	0	3
381	<u>M5</u>	1	max	192.409	1	1074.948	3	0	10	0	1	.003	3	0	3
382			min	4.303	12	-1120.542	1	-29.558	3	0	3	0	10	0	1
383		2	max	192.482	1	1074.746	3	0	10	0	1	0	1	.243	1
384			min	4.339	12	-1120.812	1	-29.558	3	0	3	003	3	233	3
385		3	max	231.525	1	8.337	9	3.378	3	0	3	0	1	.481	1
386			min	-33.493	3	-73.915	3	533	1	0	1	009	3	461	3
387		4	max	231.597	1	8.112	9	3.378	3	0	3	0	1	.485	1
388			min	-33.438	3	-74.118	3	533	1	0	1	008	3	445	3
389		5	max	231.67	1	7.887	9	3.378	3	0	3	0	1	.488	1
390			min	-33.384	3	-74.32	3	533	1	0	1	008	3	429	3
391		6	max	231.742	1	7.663	9	3.378	3	0	3	0	1	.492	1
392			min	-33.33	3	-74.522	3	533	1	0	1	007	3	413	3
393		7	max	231.814	1	7.438	9	3.378	3	0	3	0	1	.496	1
394			min	-33.276	3	-74.724	3	533	1	0	1	006	3	396	3
395		8	max	231.887	1	7.213	9	3.378	3	0	3	0	11	.5	1
396			min	-33.222	3	-74.927	3	533	1	0	1	005	3	38	3
397		9	max	231.959	1	6.988	9	3.378	3	0	3	0	11	.504	1
398			min	-33.167	3	-75.129	3	533	1	0	1	005	3	364	3
399		10	max	232.031	1	6.764	9	3.378	3	0	3	0	10	.508	1
400			min	-33.113	3	-75.331	3	533	1	0	1	004	3	348	3
401		11	max	232.103	1	6.539	9	3.378	3	0	3	0	10	.512	1
402			min	-33.059	3	-75.534	3	533	1	0	1	003	3	331	3
403		12	max	232.176	1	6.314	9	3.378	3	0	3	0	10	.516	1
404			min	-33.005	3	-75.736	3	533	1	0	1	002	3	315	3
405		13	max	232.248	1	6.089	9	3.378	3	0	3	0	10	.52	1
406			min	-32.951	3	-75.938	3	533	1	0	1	002	3	298	3
407		14	max	232.32	1	5.864	9	3.378	3	0	3	0	10	.524	1
408			min	-32.896	3	-76.141	3	533	1	0	1	001	3	282	3
409		15	max	232.392	1	5.64	9	3.378	3	0	3	0	10	.528	1
410			min	-32.842	3	-76.343	3	533	1	0	1	0	1	265	3
411		16	max	232.526	2	55.619	2	3.354	3	0	1	0	3	.533	1
412			min	-105.391	3	-139.496	3	516	1	0	10	0	1	248	3
413		17	max	232.598	2	55.35	2	3.354	3	0	1	0	3	.549	1
414			min	-105.337	3	-139.699	3	516	1	0	10	0	1	218	3
415		18	max	-5.059	12	1278.837	1	3.071	3	0	3	.002	3	.277	1
416			min	-192.542	1	-506.535	3	097	1	0	1	0	1	11	3
417		19	max	-5.023	12	1278.568	1	3.071	3	0	3	.002	3	0	3
418			min	-192.47	1	-506.737	3	097	1	0	1	0	1	0	1
419	M9	1	max	85.66	1	325.755	3	39.201	1	0	3	002	15	0	1
420			min	2.615	15	-339.659	1	1.353	15	0	1	074	1	0	3
421		2	max		1	325.553	3	39.201	1	0	3	0	12	.074	1
422			min	2.637	15	-339.929	1	1.353	15	0	1	065	1	071	3
423		3	max		1	5.63	9	36.787	1	0	1	.006	3	.146	1
424			min	-6.458	3	-20.916	3	472	3	0	15	056	1	14	3
425	<u> </u>	4	max		1	5.405	9	36.787	1	0	1	.006	3	.146	1
426			min	-6.404	3	-21.119	3	472	3	0	15	048	1	135	3
427		5	max	98.73	1	5.18	9	36.787	1	0	1	.005	3	.147	1
428			min	-6.35	3	-21.321	3	472	3	0	15	04	1	131	3
429		6	max		1	4.956	9	36.787	1	0	1	.005	3	.147	1
430			min	-6.295	3	-21.523	3	472	3	0	15	032	1	126	3
431		7	max		1	4.731	9	36.787	1	0	1	.005	3	.147	1
432			min	-6.241	3	-21.726	3	472	3	0	15	024	1	121	3
433		8	max	98.947	1	4.506	9	36.787	1	0	1	.005	3	.148	1
434		Ĭ	min	-6.187	3	-21.928	3	472	3	0	15	016	1	117	3
435		9	max		1	4.281	9	36.787	1	0	1	.005	3	.148	1
436			min	-6.133	3	-22.13	3	472	3	0	15	008	1	112	3
									_	•					

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
437		10	max	99.092	1	4.057	9	36.787	1	0	1	.005	3	.149	1
438			min	-6.079	3	-22.332	3	472	3	0	15	0	1	107	3
439		11	max	99.164	1_	3.832	9	36.787	1	00	1	.008	1	.149	1
440			min	-6.024	3	-22.535	3	472	3	0	15	0	15	102	3
441		12	max	99.236	1	3.607	9	36.787	1	0	1	.016	1	.15	1
442		10	min	-5.97	3	-22.737	3	472	3	0	15	0	15	097	3
443		13	max	99.309	1	3.382	9	36.787	1	0	1	.024	1	<u>.151</u>	1
444		4.	min	<u>-5.916</u>	3	-22.939	3	472	3	0	15	0	15	092	3
445		14	max	99.381	1	3.158	9	36.787	1	0	1	.032	1	.152	1
446		4.5	min	-5.862	3	-23.142	3	472	3	0	15	0	15	087	3
447		15	max	99.453	1	2.933	9	36.787	1	0	1	.04	1	.153	2
448		4.0	min	-5.808	3	-23.344	3	472	3	0	15	.001	15	082	3
449		16	max	65.014	2	11.091	10	37.268	3	0	15	.049	15	.156	2
450 451		17	min	-32.924 65.097	2	-61.184 10.866	<u>1</u> 10	46 37.268	1	<u> </u>	15	.002 .057	1	<u>077</u> .167	1
452		17	max min	65.087 -32.869	3	-61.453	1	46	3	0	1	.002	15	067	3
453		18	max	-2.635	15	388.834	1	39.123	1	0	1	.065	1	.085	1
454		10	min	-85.712	1	-154.203	3	178	3	0	3	.002	15	034	3
455		19	max	-2.614	15	388.564	1	39.123	1	0	1	.074	1	<u>034</u> 0	1
456		13	min	-85.64	1	-154.405	3	178	3	0	3	.002	15	0	3
457	M13	1	max	39.282	1	339.338	1	-2.615	15	0	1	.074	1	0	1
458	14110		min	1.353	15	-325.758	3	-85.653	1	0	3	.002	15	0	3
459		2	max	39.282	1	239.531	1	-2.001	15	0	1	.021	1	.193	3
460		_	min	1.353	15	-229.848	3	-65.428	1	0	3	0	15	201	1
461		3	max	39.282	1	139.724	1	-1.387	15	0	1	.003	3	.319	3
462			min	1.353	15	-133.939	3	-45.203	1	0	3	017	1	333	1
463		4	max	39.282	1	39.917	1	772	15	0	1	0	3	.379	3
464			min	1.353	15	-38.029	3	-24.977	1	0	3	041	1	395	1
465		5	max	39.282	1	57.88	3	.045	10	0	1	0	12	.372	3
466			min	1.353	15	-59.89	1	-4.752	1	0	3	052	1	388	1
467		6	max	39.282	1	153.79	3	15.473	1	0	1	0	12	.299	3
468			min	1.353	15	-159.697	1	303	3	0	3	048	1	312	1
469		7	max	39.282	1_	249.7	3	35.699	1	00	1	0	12	.158	3
470			min	1.353	15	-259.504	1_	.434	12	0	3	03	1	166	1
471		8	max	39.282	1	345.609	3	55.924	1	0	1	.002	2	.049	1
472			min	1.353	15	-359.311	1_	1.031	12	0	3	0	3	048	3
473		9	max	39.282	1	441.519	3	76.149	1	0	1	.047	1	.333	1
474		40	min	1.353	15	-459.118	1_	1.627	12	0	3	0	12	322	3
475		10	max	39.282	1	537.429	3	96.375	1	0	1	.107	1	.686	1
476		4.4	min	1.353	15	-558.925	1	2.223	12	0	3	.002	12	<u>661</u>	3
477		11	max			459.118		-1.482	12	0	3	.047	1	.333	1
478 479		12	min max	1.182 38.233	15	-441.519 359.311	3	-75.823 886	12	0	3	002 .002	2	322	3
480		12	min	1.182	15	-345.609	3	-55.598	1	<u> </u>	1	003	3	.049 048	3
481		13	max	38.233	1	259.504	1	29	12	0	3	<u>003</u> 0	15	.158	3
482		13	min	1.182	15	-249.7	3	-35.372	1	0	1	031	1	166	1
483		14	max		1	159.697	1	.532	3	0	3	001	15	.299	3
484		17	min	1.182	15	-153.79	3	-15.147	1	0	1	048	1	312	1
485		15	max	38.233	1	59.89	1	5.078	1	0	3	002	15	.372	3
486		10	min	1.182	15	-57.88	3	045	10	0	1	052	1	388	1
487		16	max	38.233	1	38.029	3	25.304	1	0	3	001	12	.379	3
488			min	1.182	15	-39.917	1	.784	15	0	1	041	1	395	1
489		17	max	38.233	1	133.939	3	45.529	1	0	3	0	3	.319	3
490			min	1.182	15	-139.724	1	1.398	15	0	1	017	1	333	1
491		18	max	38.233	1	229.848	3	65.754	1	0	3	.022	1	.193	3
492			min	1.182	15	-239.531	1	2.012	15	0	1	0	15	201	1
493		19	max		1	325.758	3	85.98	1	0	3	.075	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
494			min	1.182	15	-339.338	1	2.627	15	0	1	.002	15	0	3
495	M16	1	max	.179	3	388.9	1	-2.614	15	0	3	.074	1	0	1
496			min	-39.042	1	-154.416	3	-85.647	1	0	1	.002	15	0	3
497		2	max	.179	3	274.498	1	-1.999	15	0	3	.021	1	.091	3
498			min	-39.042	1	-109.103	3	-65.422	1	0	1	0	15	23	1
499		3	max	.179	3	160.095	1	-1.385	15	0	3	0	12	.152	3
500			min	-39.042	1	-63.791	3	-45.197	1	0	1	017	1	381	1
501		4	max	.179	3	45.693	1	77	15	0	3	001	15	.18	3
502			min	-39.042	1	-18.478	3	-24.971	1	0	1	042	1	453	1
503		5	max	.179	3	26.835	3	.048	10	0	3	002	15	.177	3
504			min	-39.042	1	-68.71	1	-4.746	1	0	1	052	1	445	1
505		6	max	.179	3	72.148	3	15.479	1	0	3	001	15	.143	3
506			min	-39.042	1	-183.113	1	.008	3	0	1	048	1	357	1
507		7	max	.179	3	117.461	3	35.705	1	0	3	0	15	.077	3
508			min	-39.042	1	-297.515	1	.629	12	0	1	03	1	19	1
509		8	max	.179	3	162.774	3	55.93	1	0	3	.002	2	.056	1
510			min	-39.042	1	-411.918	1	1.225	12	0	1	002	3	02	3
511		9	max	.179	3	208.087	3	76.155	1	0	3	.047	1	.382	1
512			min	-39.042	1	-526.32	1	1.821	12	0	1	0	3	149	3
513		10	max	-1.206	15	-12.843	15	96.381	1	0	15	.107	1	.787	1
514			min	-39.042	1	-640.723	1	-3.889	3	0	1	.003	12	309	3
515		11	max	-1.206	15	526.32	1	-2.01	12	0	1	.047	1	.382	1
516			min	-38.941	1	-208.087	3	-75.851	1	0	3	.001	12	149	3
517		12	max	-1.206	15	411.918	1	-1.414	12	0	1	.002	2	.056	1
518			min	-38.941	1	-162.774	3	-55.626	1	0	3	0	3	02	3
519		13	max	-1.206	15	297.515	1	818	12	0	1	0	15	.077	3
520			min	-38.941	1	-117.461	3	-35.4	1	0	3	031	1	19	1
521		14	max	-1.206	15	183.112	1	222	12	0	1	001	12	.143	3
522			min	-38.941	1	-72.148	3	-15.175	1	0	3	048	1	357	1
523		15	max	-1.206	15	68.71	1	5.05	1	0	1	001	12	.177	3
524			min	-38.941	1	-26.835	3	048	10	0	3	052	1	445	1
525		16	max	-1.206	15	18.478	3	25.276	1	0	1	0	12	.18	3
526			min	-38.941	1	-45.693	1	.779	15	0	3	041	1	453	1
527		17	max	-1.206	15	63.791	3	45.501	1	0	1	0	3	.152	3
528			min	-38.941	1	-160.095	1	1.393	15	0	3	017	1	381	1
529		18	max	-1.206	15	109.103	3	65.726	1	0	1	.022	1	.091	3
530			min	-38.941	1	-274.498	1	2.008	15	0	3	0	15	23	1
531		19	max	-1.206	15	154.416	3	85.952	1	0	1	.075	1	0	1
532			min	-38.941	1	-388.9	1	2.622	15	0	3	.002	15	0	3
533	M15	1	max	.237	1	2.18	4	.046	3	0	1	0	1	0	1
534			min	-35.281	3	0	2	055	1	0	3	0	3	0	1
535		2	max	.165	1	1.938	4	.046	3	0	1	0	1	0	2
536			min	-35.335	3	0	2	055	1	0	3	0	3	0	4
537		3	max	.093	1	1.696	4	.046	3	0	1	0	1	0	2
538			min	-35.389	3	0	2	055	1	0	3	0	3	001	4
539		4	max	.021	1	1.454	4	.046	3	0	1	0	1	0	2
540			min	-35.443	3	0	2	055	1	0	3	0	3	002	4
541		5	max	0	2	1.211	4	.046	3	0	1	0	1	0	2
542			min	-35.497	3	0	2	055	1	0	3	0	3	003	4
543		6	max	0	2	.969	4	.046	3	0	1	0	1	0	2
544		Ĭ	min	-35.55	3	0	2	055	1	0	3	0	3	003	4
545		7	max	0	2	.727	4	.046	3	0	1	0	3	0	2
546			min	-35.604	3	0	2	055	1	0	3	0	1	003	4
547		8	max	0	2	.485	4	.046	3	0	1	0	3	0	2
548		Ť	min	-35.658	3	0	2	055	1	0	3	0	1	003	4
549		9	max	0	2	.242	4	.046	3	0	1	0	3	0	2
550		Ť	min	-35.712	3	0	2	055	1	0	3	0	1	004	4
000			11/11/1	00.7 12				.000				•		100-	T

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	
551		10	max	0	2	0	1	.046	3	0	1_	0	3	0	2
552			min	-35.766	3	0	1	055	1	0	3	0	1	004	4
553		11	max	0	2	0	2	.046	3	0	1_	0	3	0	2
554			min	-35.82	3	242	4	055	1	0	3	0	1	004	4
555		12	max	0	2	0	2	.046	3	0	1	0	3	0	2
556		10	min	-35.874	3	485	4	055	1	0	3	0	1	003	4
557		13	max	0	2	0	2	.046	3	0	1	0	3	0	2
558			min	-35.928	3	727	4	055	1	0	3	0	1	003	4
559		14	max	0	2	0	2	.046	3	0	1	0	3	0	2
560		4.5	min	-35.982	3	969	4	055	1	0	3	0	1	003	4
561		15	max	0	2	0	2	.046	3	0	1	0	3	0	2
562		40	min	-36.036	3	-1.211	4	055	1	0	3	0	1	003	4
563		16	max	0	2	0	2	.046	3	0	1	0	3	0	2
564			min	-36.09	3	-1.454	4	055	1	0	3	0	1	002	4
565		17	max	0	2	0	2	.046	3	0	1	0	3	0	2
566		40	min	-36.144	3	-1.696	4	055	1	0	3	0	1	001	4
567		18	max	0	2	0	2	.046	3	0	1	0	3	0	2
568		40	min	-36.198	3	-1.938	4	055	1	0	3	0	1	0	4
569		19	max	0	2	0	2	.046	3	0	1	0	3	0	1
570	NA4CA	4	min	-36.252	3	-2.18	4	055	1_	0	3	0	1	0	1
571	M16A	1	max	0	10	2.18	4	.026	1	0	3	0	3	0	1
572			min	-35.583	3	0	10	018	3	0	1	0	1	0	1
573		2	max	0	10	1.938	4	.026	1	0	3	0	3	0	10
574			min	-35.529	3	0	10	018	3	0	1	0	1	0	4
575		3	max	0	10	1.696	4	.026	1	0	3	0	3	0	10
576		4	min	-35.475	3	0	10	018	3	0		0		001	4
577		4	max	0	10	1.454	4	.026	1	0	3	0	3	0	10
578		_	min	-35.421	3	0	10	018	3	0	1	0	1	002	4
579		5	max	0	10	1.211	4	.026	1	0	3	0	3	0	10
580 581		6	min	-35.367 0	3 10	.969	10	018 .026	1	0	3	0	3	003 0	10
582		0	max	-35.313	3	.969	10	018	3	0	1	0	1	003	4
583		7	min	<u>-33.313</u> 0	10	.727	4	.026	1		3	0	3	003 0	
584			max min	-35.259	3	0	10	018	3	0	1	0	1	003	10
585		8	max	<u>-33.239</u> 0	10	.485	4	.026	1	0	3	0	3	003 0	10
586		0	min	-35.205	3	0	10	018	3	0	1	0	1	003	4
587		9	max	0	10	.242	4	.026	1	0	3	0	3	0	10
588		9	min	-35.151	3	0	10	018	3	0	1	0	1	004	4
589		10	max	0	10	0	1	.026	1	0	3	0	3	0	10
590		10	min	-35.097	3	0	1	018	3	0	1	0	1	004	4
591		11	max		10	0	10	.026	1	0	3	0	3	0	10
592			min	-35.043	3	242	4	018	3	0	1	0	1	004	4
593		12	max	0	10	0	10	.026	1	0	3	0	3	0	10
594			min	-34.989	3	485	4	018	3	0	1	0	1	003	4
595		13	max	0	10	0	10	.026	1	0	3	0	2	0	10
596		-10	min	-34.935	3	727	4	018	3	0	1	0	4	003	4
597		14	max	0	10	0	10	.026	1	0	3	0	1	0	10
598			min	-34.881	3	969	4	018	3	0	1	0	3	003	4
599		15	max	0	10	0	10	.026	1	0	3	0	1	0	10
600		l i i	min	-34.827	3	-1.211	4	018	3	0	1	0	3	003	4
601		16	max	0	10	0	10	.026	1	0	3	0	1	0	10
602			min	-34.774	3	-1.454	4	018	3	0	1	0	3	002	4
603		17	max	0	10	0	10	.026	1	0	3	0	1	0	10
604			min	-34.72	3	-1.696	4	018	3	0	1	0	3	001	4
605		18	max	.034	2	0	10	.026	1	0	3	0	1	0	10
606			min	-34.666	3	-1.938	4	018	3	0	1	0	3	0	4
607		19	max	.106	2	0	10	.026	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

....

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-34.612	3	-2.18	4	018	3	0	1	0	3	0	1

Envelope Member Section Deflections

LIIV	норе метн	UEI C	Jecur	on Dene	CliUi	13									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.005	2	.008	1	-1.626e-5	15	NC	3	NC	2
2			min	003	3	004	3	0	3	-5.201e-4	1	5751.503	2	3867.158	
3		2	max	.002	1	.005	2	.007	1	-1.563e-5		NC	3	NC	2
4		_	min	002	3	004	3	0	3	-5.002e-4	1	6252.54	2	4192.637	1
5		3	max	.002	1	.004	2	.007	1	-1.5e-5	15	NC	1	NC	2
6			min	002	3	004	3	0	3	-4.804e-4	1	6844.39	2	4575.948	_
7		4	max	.002	1	.004	2	.006	1	-1.437e-5	15	NC	1	NC	2
8		_	min	002	3	004	3	0	3	-4.605e-4	1	7548.597	2	5031.252	
9		5	max	.002	1	.004	2	.005	1	-1.373e-5	15	NC	1	NC	2
10		5	min	002	3	004	3	<u>.005</u>	3		1	8393.768	2	5577.473	1
		6								-4.406e-4	_				•
11		6	max	.002	3	.003	2	.005	1	-1.31e-5	<u>15</u>	NC	1 2	NC	2
12		-	min	002		003	3	0	3	-4.208e-4	1_	9418.539	_	6240.367	1
13		7	max	.002	1	.003	2	.004	1	-1.247e-5	<u>15</u>	NC	1	NC	2
14			min	002	3	003	3	0	3	-4.009e-4	1_	NC	1_	7055.731	1
15		8	max	.002	1	.002	2	.004	1	-1.184e-5	<u>15</u>	NC	1_	NC	2
16			min	002	3	003	3	0	3	-3.81e-4	_1_	NC	_1_	8074.539	
17		9	max	.001	1	.002	2	.003	1	-1.121e-5	<u>15</u>	NC	_1_	NC	2
18			min	001	3	003	3	0	3	-3.611e-4	<u>1</u>	NC	1_	9371.452	
19		10	max	.001	1	.002	2	.003	1	-1.057e-5	15	NC	_1_	NC	1
20			min	001	3	003	3	0	3	-3.413e-4	1_	NC	1_	NC	1
21		11	max	.001	1	.001	2	.002	1	-9.942e-6	<u>15</u>	NC	1	NC	1
22			min	001	3	002	3	0	3	-3.214e-4	1	NC	1	NC	1
23		12	max	0	1	.001	2	.002	1	-9.31e-6	15	NC	1	NC	1
24			min	0	3	002	3	0	3	-3.015e-4	1	NC	1	NC	1
25		13	max	0	1	0	2	.001	1	-8.678e-6	15	NC	1	NC	1
26			min	0	3	002	3	0	3	-2.817e-4	1	NC	1	NC	1
27		14	max	0	1	0	2	.001	1	-8.046e-6	15	NC	1	NC	1
28			min	0	3	002	3	0	3	-2.618e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	0	1	-7.414e-6	15	NC	1	NC	1
30			min	0	3	001	3	0	3	-2.419e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	-6.781e-6	15	NC	1	NC	1
32		10	min	0	3	001	3	0	3	-2.221e-4	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	-6.149e-6	15	NC	1	NC	1
34		11	min	0	3	0	3	0	3	-2.022e-4	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	-5.517e-6	•	NC	1	NC	1
36		10	min	0	3	0	3	0	3	-1.823e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-4.191e-6	12	NC	1	NC	1
38		19		0	1	0	1	0	1	-1.625e-4	1	NC	1	NC	1
	M3	1	min		1		1		1			NC NC	1		1
39	IVIO		max	0	1	0	1	0	1	7.375e-5	1		1	NC NC	1
40			min		-					2.035e-6		NC NC	_	NC NC	
41		2	max	0	1	0	2	0		9.297e-5	1_	NC NC	1_	NC NC	1
42			min	0	10	0	3	0	1	2.821e-6	<u>15</u>	NC	1_	NC	1
43		3	max	0	1	0	2	0	12		1_	NC	1	NC	1
44			min	0	10	001	3	0	1	3.422e-6	15	NC	1_	NC	1
45		4	max	0	1	0	2	0	12	1.314e-4	1_	NC	1_	NC	1
46			min	0	10	002	3	0	1	4.024e-6	15	NC	1	NC	1
47		5	max	0	1	0	2	0	3	1.506e-4	1_	NC	1_	NC	1
48			min	0	10	003	3	0	1	4.625e-6	15	NC	1	NC	1
49		6	max	0	1	0	2	0	3	1.699e-4	1_	NC	1_	NC	1
50			min	0	10	003	3	0	1	5.227e-6	15	NC	1	NC	1
51		7	max	0	1	0	2	0	3	1.891e-4	1	NC	1	NC	1
		_			_	·	_	·	_	· · · · · · · · · · · · · · · · · · ·	_	· · · · · · · · · · · · · · · · · · ·	_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
52			min	0	10	004	3	0	1	5.828e-6	15	NC	1_	NC	1
53		8	max	0	1	0	2	0	3	2.083e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	10	004	3	0	1	6.43e-6	15	NC	1	NC	1
55		9	max	0	1	0	2	0	3	2.275e-4	1	NC	1	NC	1
56			min	0	10	005	3	0	1	7.031e-6	15	NC	1	NC	1
57		10	max	0	1	.001	2	0	1	2.467e-4	1_	NC	1	NC	1
58			min	0	10	005	3	0	15	7.633e-6	15	NC	1	NC	1
59		11	max	0	1	.002	2	0	1	2.66e-4	1	NC	1	NC	1
60			min	0	10	006	3	0	15	8.235e-6	15	NC	1	NC	1
61		12	max	0	1	.002	2	0	1	2.852e-4	1	NC	1	NC	1
62			min	0	10	006	3	0	15	8.836e-6	15	NC	1	NC	1
63		13	max	0	1	.003	2	.001	1	3.044e-4	1	NC	1	NC	1
64			min	0	10	006	3	0	15	9.438e-6	15	NC	1	NC	1
65		14	max	0	1	.004	2	.002	1	3.236e-4	1	NC	1	NC	1
66			min	0	10	006	3	0	15	1.004e-5	15	NC	1	NC	1
67		15	max	0	1	.004	2	.002	1	3.428e-4	1	NC	1	NC	1
68			min	0	10	006	3	0	15	1.064e-5	15	NC	1	NC	1
69		16	max	0	1	.005	2	.002	1	3.621e-4	1	NC	1	NC	1
70			min	0	10	006	3	0	15	1.124e-5	15	8946.438	2	NC	1
71		17	max	0	1	.006	2	.003	1	3.813e-4	1	NC	3	NC	1
72			min	0	10	006	3	0	15	1.184e-5	15	7608.949	2	NC	1
73		18	max	0	1	.007	2	.003	1	4.005e-4	1	NC	3	NC	1
74			min	0	10	006	3	0	15		15	6581.238	2	NC	1
75		19	max	0	1	.008	2	.004	1	4.197e-4	1	NC	3	NC	1
76			min	0	10	006	3	0	15	1.305e-5	15	5782.439	2	NC	1
77	M4	1	max	.002	1	.006	2	0		-1.471e-5	15	NC	1	NC	2
78			min	0	3	005	3	003	1	-4.804e-4	1	NC	1	7280.76	1
79		2	max	.002	1	.006	2	0	15		15	NC	1	NC	2
80			min	0	3	004	3	002	1	-4.804e-4	1	NC	1	7946.012	1
81		3	max	.002	1	.005	2	0	15	-1.471e-5	15	NC	1	NC	2
82			min	0	3	004	3	002	1	-4.804e-4	1	NC	1	8737.612	1
83		4	max	.002	1	.005	2	0	15		15	NC	1	NC	2
84			min	0	3	004	3	002	1	-4.804e-4	1	NC	1	9688.918	
85		5	max	.002	1	.005	2	0	15		15	NC	1	NC	1
86			min	0	3	004	3	002	1	-4.804e-4	1	NC	1	NC	1
87		6	max	.002	1	.004	2	0	15	-1.471e-5	15	NC	1	NC	1
88			min	0	3	003	3	002	1	-4.804e-4	1	NC	1	NC	1
89		7	max	.001	1	.004	2	0		-1.471e-5		NC	1	NC	1
90			min	0	3	003	3	001	1	-4.804e-4	1	NC	1	NC	1
91		8	max	.001	1	.004	2	0		-1.471e-5		NC	1	NC	1
92			min	0	3	003	3	001		-4.804e-4		NC	1	NC	1
93		9	max	.001	1	.003	2	0		-1.471e-5		NC	1	NC	1
94			min	0	3	003	3	001	1	-4.804e-4	1	NC	1	NC	1
95		10	max	.001	1	.003	2	0	15		15	NC	1	NC	1
96		- 10	min	0	3	002	3	0	1	-4.804e-4	1	NC	1	NC	1
97		11	max	0	1	.003	2	0	15			NC	1	NC	1
98			min	0	3	002	3	0	1	-4.804e-4	1	NC	1	NC	1
99		12	max	0	1	.002	2	0	15		15	NC	1	NC	1
100		12	min	0	3	002	3	0	1	-4.804e-4	1	NC	1	NC	1
101		13	max	0	1	.002	2	0		-1.471e-5		NC	1	NC	1
102		13	min	0	3	002	3	0	1	-4.804e-4	1	NC	1	NC	1
103		14	max	0	1	.002	2	0		-1.471e-5		NC	1	NC	1
104		14	min	0	3	001	3	0	1	-4.804e-4	1	NC	1	NC	1
105		15		0	1	.001	2	<u> </u>	15		15	NC NC	1	NC	1
106		10	max	0	3	001	3	0	1	-1.47 Te-5	1 <u>1</u>	NC NC	1	NC NC	1
107		16		0	1	.001	2	0		-4.804e-4 -1.471e-5		NC NC	1	NC NC	1
		10	max												
108			min	0	3	0	3	0	1	-4.804e-4	<u>1</u>	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	LC
109		17	max	0	1	0	2	0	15	-1.471e-5	<u>15</u>	NC	_1_	NC	1_
110			min	0	3	0	3	0	1	-4.804e-4	1_	NC	1_	NC	1
111		18	max	0	1	00	2	00	15		<u>15</u>	NC	_1_	NC	1
112			min	0	3	0	3	0	1	-4.804e-4	1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	-1.471e-5	<u>15</u>	NC	1_	NC	1
114	140		min	0	1	0	1	0	1	-4.804e-4	1_	NC	1_	NC	1
115	<u>M6</u>	1_	max	.008	1	.019	2	.003	1	1.871e-4	3	NC 4507.000	3	NC 0400 004	2
116			min	008	3	013	3	003	3	-6.337e-8		1597.828	2	9120.291	1
117		2	max	.008	1	.018	2	.003	1	1.828e-4	3	NC 4704 CCF	3	NC	2
118 119		2	min	008	3	013	2	002	3	-6.003e-8	10	1704.665 NC	2	9841.428 NC	1
120		3	max	.007 007	3	.016 012	3	.003 002	3	1.785e-4	3	1826.459	3	NC NC	1
121		4	min	007 .007	1	012 .015	2	.002	1	-5.669e-8 1.743e-4	<u>10</u>	NC	3	NC NC	1
122		4	max min	007	3	015	3	002	3	-5.335e-8		1966.197	2	NC NC	1
123		5	max	.006	1	.014	2	.002	1	1.7e-4	3	NC	3	NC	1
124			min	007	3	011	3	002	3	-5.001e-8		2127.723	2	NC	1
125		6	max	.006	1	.013	2	.002	1	1.657e-4	3	NC	3	NC	1
126			min	006	3	01	3	002	3	-4.488e-7	2	2316.07	2	NC	1
127		7	max	.005	1	.012	2	.002	1	1.614e-4	3	NC	3	NC	1
128			min	006	3	009	3	002	3	-2.377e-6	2	2537.952	2	NC	1
129		8	max	.005	1	.011	2	.002	1	1.572e-4	3	NC	3	NC	1
130			min	005	3	009	3	001	3	-4.306e-6	2	2802.526	2	NC	1
131		9	max	.005	1	.01	2	.001	1	1.529e-4	3	NC	3	NC	1
132			min	005	3	008	3	001	3	-6.261e-6	1	3122.618	2	NC	1
133		10	max	.004	1	.009	2	.001	1	1.486e-4	3	NC	3	NC	1
134			min	004	3	007	3	001	3	-1.258e-5	1	3516.756	2	NC	1
135		11	max	.004	1	.008	2	0	1	1.443e-4	3	NC	3	NC	1
136			min	004	3	007	3	0	3	-1.889e-5	1	4012.731	2	NC	1
137		12	max	.003	1	.006	2	0	1	1.401e-4	3	NC	3	NC	1
138			min	003	3	006	3	0	3	-2.521e-5	1	4654.219	2	NC	1
139		13	max	.003	1	.005	2	0	1	1.358e-4	3	NC	3	NC	1
140			min	003	3	005	3	0	3	-3.152e-5	1_	5514.007	2	NC	1
141		14	max	.002	1	.004	2	00	1	1.315e-4	3_	NC	3_	NC	1
142			min	002	3	004	3	0	3	-3.784e-5	1_	6723.111	2	NC	1
143		15	max	.002	1	.004	2	0	1	1.273e-4	3	NC	3_	NC	1
144			min	002	3	003	3	0	3	-4.415e-5	1_	8543.549	2	NC	1
145		16	max	.001	1	.003	2	0	1	1.23e-4	3	NC	1	NC	1
146			min	<u>001</u>	3	003	3	0	3	-5.047e-5	1_	NC	1_	NC NC	1
147		17	max	0	1	.002	2	0	1	1.187e-4	3_	NC		NC NC	1
148		40	min	0	3	002	3	0	3	-5.678e-5	1_	NC NC	1_	NC NC	1
149		18	max	0	1	0	2	0	1			NC NC	1	NC NC	1
150		40	min	0	3	0	3	0	3	-6.31e-5	1_	NC NC	1_	NC NC	1
151 152		19	max	0	1	0	1	0 0	1	1.102e-4	3_	NC NC	1	NC NC	1
	M7	1	min	<u> </u>	1	<u> </u>	1	0	1	-6.942e-5 3.115e-5	1	NC NC	1	NC NC	1
153 154	IVI 7		max min	0	1	0	1	0	1	-4.989e-5	3	NC NC	1	NC NC	1
155		2	max	0	9	.001	2	0	3	2.622e-5	1	NC	1	NC	1
156			min	0	2	001	3	0	1	-3.837e-5	3	NC	1	NC	1
157		3		0	9	.002	2	0	3	2.13e-5	<u> </u>	NC	1	NC	1
158		3	max min	0	2	003	3	0	1	-2.685e-5	3	NC	1	NC	1
159		4	max	0	9	.004	2	0	3	1.637e-5	<u> </u>	NC	1	NC	1
160			min	0	2	004	3	0	1	-1.533e-5	3	NC	1	NC	1
161		5	max	0	9	.005	2	0	3	1.145e-5	1	NC	1	NC	1
162			min	0	2	006	3	0	1	-3.81e-6	3	9767.234	2	NC	1
163		6	max	0	9	.006	2	.001	3	7.71e-6	3	NC	3	NC	1
164			min	0	2	007	3	0	1	0	10	7804.93	2	NC	1
165		7	max	0	9	.007	2	.001	3	1.923e-5	3	NC	3	NC	1
		<u> </u>				.001		.001		,					

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio	LC
166			min	0	2	008	3	0	1	0	10	6460.381	2	NC	1
167		8	max	0	9	.008	2	.001	3	3.075e-5	3	NC	3	NC	1
168			min	0	2	01	3	001	1	-3.329e-6	1	5473.488	2	NC	1
169		9	max	0	9	.01	2	.001	3	4.227e-5	3	NC	3	NC	1
170			min	0	2	011	3	001	1	-8.254e-6	1	4714.626	2	NC	1
171		10	max	0	9	.011	2	.002	3	5.379e-5	3	NC	3	NC	1
172			min	0	2	012	3	001	1	-1.318e-5	1	4111.846	2	NC	1
173		11	max	0	9	.013	2	.002	3	6.531e-5	3	NC	3	NC	1
174			min	001	2	013	3	001	1	-1.81e-5	1	3621.82	2	NC	1
175		12	max	0	9	.014	2	.002	3	7.683e-5	3	NC	3	NC	1
176			min	001	2	014	3	001	1	-2.303e-5	1	3216.695	2	NC	1
177		13	max	.001	9	.016	2	.002	3	8.835e-5	3	NC	3	NC	1
178		1	min	001	2	015	3	001	1	-2.795e-5	1	2877.574	2	NC	1
179		14	max	.001	9	.018	2	.002	3	9.988e-5	3	NC	3	NC	1
180		17	min	001	2	016	3	002	1	-3.288e-5	1	2591.055	2	NC	1
181		15	max	.001	9	.02	2	.002	3	1.114e-4	3	NC	3	NC	1
182		10	min	001	2	017	3	002	1	-3.78e-5	1	2347.273	2	NC	1
183		16	max	.001	9	.022	2	.002	3	1.229e-4	3	NC	3	NC	1
184		10	min	002	2	018	3	002	1	-4.273e-5	1	2138.753	2	NC	1
185		17		.002	9	.023	2	.002	3	1.344e-4	3	NC	3	NC NC	1
186		17	max	002	2	023 018	3	002	1	-4.765e-5	1	1959.692	2	NC NC	1
		10	min		9		2					NC		NC NC	
187		18	max	.001	2	.025		.001	3	1.46e-4	3		3		1
188		40	min	002		019	3	002	1	-5.258e-5	1_	1805.509	2	NC NC	1
189		19	max	.002	9	.028	2	.001	3	1.575e-4	3_	NC	3_	NC	1
190	140	-	min	002	2	02	3	002	1	-5.75e-5	1_	1672.539	2	NC NC	1
191	<u>M8</u>	1	max	.007	1	.022	2	.002	1	-6.581e-8	10	NC	1	NC	1
192		_	min	002	3	015	3	0	3	-1.261e-4	3_	NC	_1_	NC	1
193		2	max	.006	1	.02	2	.002	1	-6.581e-8	<u>10</u>	NC	1_	NC	1
194		_	min	002	3	014	3	0	3	-1.261e-4	3	NC	1_	NC	1
195		3	max	.006	1	.019	2	.001	1			NC	1	NC	1
196			min	002	3	013	3	0	3	-1.261e-4	3	NC	1	NC	1
197		4	max	.006	1	.018	2	.001	1	-6.581e-8	10	NC	_1_	NC	1
198			min	002	3	012	3	0	3	-1.261e-4	3	NC	1_	NC	1
199		5	max	.005	1	.017	2	.001	1	-6.581e-8	10	NC	1_	NC	1
200			min	001	3	011	3	0	3	-1.261e-4	3	NC	1	NC	1
201		6	max	.005	1	.016	2	0	1	-6.581e-8	10	NC	1	NC	1
202			min	001	3	011	3	0	3	-1.261e-4	3	NC	1	NC	1
203		7	max	.004	1	.014	2	0	1	-6.581e-8	10	NC	1	NC	1
204			min	001	3	01	3	0	3	-1.261e-4	3	NC	1	NC	1
205		8	max	.004	1	.013	2	0	1	-6.581e-8	10	NC	1	NC	1
206			min		3	009	3	0	3	-1.261e-4		NC	1	NC	1
207		9	max	.004	1	.012	2	0	1	-6.581e-8		NC	1	NC	1
208			min	001	3	008	3	0	3			NC	1	NC	1
209		10	max	.003	1	.011	2	0	1	-6.581e-8		NC	1	NC	1
210		· Ŭ	min	0	3	007	3	0	3	-1.261e-4	3	NC	1	NC	1
211		11	max	.003	1	.01	2	0	1	-6.581e-8		NC	1	NC	1
212			min	0	3	007	3	0	3	-1.261e-4	3	NC	1	NC	1
213		12	max	.003	1	.008	2	0	1	-6.581e-8		NC	1	NC	1
214		12	min	.003	3	006	3	0	3	-1.261e-4	3	NC NC	1	NC	1
215		13		.002	1	.007	2	0	1	-6.581e-8		NC NC	1	NC NC	1
		13	max	.002	3		3	0	3			NC NC	1		1
216		4.4	min			005				-1.261e-4	3			NC NC	
217		14	max	.002	1	.006	2	0	1	-6.581e-8		NC NC	1	NC NC	1
218		4-	min	0	3	004	3	0	3	-1.261e-4	3	NC NC	1_	NC NC	1
219		15	max	.001	1	.005	2	0	1	-6.581e-8		NC		NC	1
220			min	0	3	003	3	0	3	-1.261e-4	3_	NC	1_	NC	1
221		16	max	.001	1	.004	2	0	1	-6.581e-8		NC	_1_	NC	1
222			min	0	3	002	3	0	3	-1.261e-4	3	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.002	2	0	1		10	NC	1_	NC	1
224			min	0	3	002	3	0	3	-1.261e-4	3	NC	1_	NC	1
225		18	max	0	1	.001	2	0	1	-6.581e-8	10	NC	1	NC	1
226			min	0	3	0	3	0	3	-1.261e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1		10	NC	1	NC	1
228			min	0	1	0	1	0	1	-1.261e-4	3	NC	1	NC	1
229	M10	1	max	.003	1	.005	2	0	3	5.917e-4	1	NC	3	NC	1
230	IVITO	<u> </u>	min	002	3	004	3	001	1	-2.33e-4	3	5764.667	2	NC	1
231		2		.002	1	.005	2	<u>001</u>	3	5.638e-4	1	NC	3	NC	1
232		 	max		3		3	001	1			6267.154	2	NC NC	1
		-	min	002		004			_	-2.266e-4	3				
233		3	max	.002	1	.004	2	0	3	5.359e-4	1	NC	1_	NC	1
234			min	002	3	004	3	0	1	-2.201e-4	3	6860.775	2	NC	1
235		4	max	.002	1	.004	2	0	3	5.08e-4	_1_	NC	_1_	NC	1
236			min	002	3	004	3	0	1	-2.137e-4	3	7567.159	2	NC	1
237		5	max	.002	1	.004	2	0	3	4.8e-4	1	NC	1	NC	1
238			min	002	3	004	3	0	1	-2.072e-4	3	8415.037	2	NC	1
239		6	max	.002	1	.003	2	0	3	4.521e-4	1	NC	1	NC	1
240			min	002	3	004	3	0	1	-2.007e-4	3	9443.212	2	NC	1
241		7	max	.002	1	.003	2	0	3	4.242e-4	1	NC	1	NC	1
242			min	002	3	003	3	0	1	-1.943e-4	3	NC	1	NC	1
243		8		.002	1	.002	2	0	3		1	NC	1	NC	1
		-	max							3.963e-4					
244		<u> </u>	min	002	3	003	3	0	1	-1.878e-4	3	NC NC	1_	NC NC	1
245		9	max	.001	1	.002	2	0	3	3.684e-4	1_	NC	_1_	NC	1
246			min	001	3	003	3	0	1	-1.814e-4	3	NC	1_	NC	1
247		10	max	.001	1	.002	2	0	3	3.404e-4	_1_	NC	_1_	NC	1
248			min	001	3	003	3	0	1	-1.749e-4	3	NC	1	NC	1
249		11	max	.001	1	.001	2	0	3	3.125e-4	1	NC	1_	NC	1
250			min	001	3	003	3	0	1	-1.685e-4	3	NC	1	NC	1
251		12	max	0	1	.001	2	0	3	2.846e-4	1	NC	1	NC	1
252			min	0	3	002	3	0	1	-1.62e-4	3	NC	1	NC	1
253		13	max	0	1	0	2	0	3	2.567e-4	1	NC	1	NC	1
254			min	0	3	002	3	0	1	-1.555e-4	3	NC	1	NC	1
255		14	max	0	1	0	2	0	3	2.288e-4	1	NC	1	NC	1
256		14		0	3	002	3	0	1		3	NC NC	1	NC NC	1
		4.5	min							-1.491e-4			•		
257		15	max	0	1	0	2	0	3	2.008e-4	1_	NC	1_	NC NC	1
258		1.0	min	0	3	001	3	0	1	-1.426e-4	3	NC	1_	NC	1
259		16	max	0	1	0	2	0	3	1.729e-4	1_	NC	_1_	NC	1
260			min	0	3	001	3	0	1	-1.362e-4	3	NC	1_	NC	1
261		17	max	0	1	0	2	0	3	1.45e-4	1	NC	1	NC	1
262			min	0	3	0	3	0	1	-1.297e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	1.171e-4	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-1.233e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	8.915e-5	1	NC	1	NC	1
266		1.0	min	0	1	0	1	0	1	-1.168e-4	3	NC	1	NC	1
267	M11	1		0	1	0	1	0	1	5.328e-5	3	NC	1	NC	1
268	IVI I I		max	0	1	0	1	0	1	-4.144e-5	<u>3</u>	NC NC	1	NC NC	1
		0	min								_		•		
269		2	max	0	1	0	2	0	1	4.129e-5	3	NC NC	1_	NC NC	1
270		-	min	0	10	0	3	0	3	-7.212e-5	1_	NC	1_	NC NC	1
271		3	max	0	1	0	2	0	1	2.929e-5	3	NC	1_	NC	1
272			min	0	10	001	3	0	3	-1.028e-4	1	NC	1	NC	1
273		4	max	0	1	0	2	0	1	1.73e-5	3	NC	_1_	NC	1
274			min	0	10	002	3	0	3	-1.335e-4	1	NC	1	NC	1
275	<u> </u>	5	max	0	1	0	2	0	10	5.308e-6	3	NC	1	NC	1
276			min	0	10	003	3	0	3	-1.642e-4	1	NC	1	NC	1
277		6	max	0	1	0	2	0	10		12	NC	1	NC	1
278			min	0	10	003	3	001	3	-1.949e-4	1	NC	1	NC	1
279		7		0	1	<u>003</u> 0	2	0			15	NC	1	NC	1
219		<u> </u>	max	U		U	L Z	U	LIU	0-9C40.0-	ıυ	INC		INC	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	<u>Sec</u>		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
280			min	0	10	004	3	001	3	-2.255e-4	1_	NC	1	NC	1
281		8	max	0	1	0	2	0	10	-7.834e-6	15	NC	1	NC	1
282			min	0	10	004	3	001	3	-2.562e-4	1	NC	1	NC	1
283		9	max	0	1	0	2	0	10	-8.824e-6	15	NC	1	NC	1
284			min	0	10	005	3	002	1	-2.869e-4	1	NC	1	NC	1
285		10	max	0	1	.001	2	0	15	-9.813e-6	15	NC	1	NC	1
286			min	0	10	005	3	002	1	-3.176e-4	1	NC	1	NC	1
287		11	max	0	1	.002	2	0	15	-1.08e-5	15	NC	1	NC	1
288			min	0	10	006	3	003	1	-3.483e-4	1	NC	1	NC	1
289		12	max	0	1	.002	2	0	15	-1.179e-5	15	NC	1	NC	1
290		· <u>-</u>	min	0	10	006	3	003	1	-3.789e-4	1	NC	1	NC	1
291		13	max	0	1	.003	2	0		-1.278e-5	15	NC	1	NC	1
292		10	min	0	10	006	3	004	1	-4.096e-4	1	NC	1	NC	1
293		14	max	0	1	.004	2	0	15	-1.377e-5	15	NC	1	NC	1
294		17	min	0	10	006	3	005	1	-4.403e-4	1	NC	1	NC	1
295		15	max	0	1	.004	2	0	_	-1.476e-5	15	NC	1	NC	2
296		13	min	0	10	006	3	005	1	-4.71e-4	1	NC	1	8914.487	1
297		16			1	.005	2	0		-4.71e-4 -1.575e-5	15	NC	1	NC	2
		10	max	0	10	005 006	3	006	1	-5.017e-4	1	8961.357	2		
298		47	min								•			8015.033	
299		17	max	0	10	.006	3	006	1	-1.674e-5 -5.324e-4	<u>15</u> 1	NC 7620.255	2	NC 7315.569	2
300		4.0	min	0		006						NC		NC	2
301		18	max	0	1	.007	2	0		-1.773e-5	<u>15</u>		3		
302		10	min	0	10	006	3	007	1	-5.63e-4	1.	6590.075	2	6769.264	
303		19	max	0	1	.008	2	0	15	-1.872e-5	<u>15</u>	NC	3_	NC 0044.057	2
304	N440	-	min	0	10	006	3	007	1	-5.937e-4	1_	5789.553	2	6344.257	1
305	M12	1	max	.002	1	.006	2	.006	1	4.864e-4	1_	NC NC	1_	NC 2450,000	3
306		<u> </u>	min	0	3	005	3	0	15	1.575e-5	<u>15</u>	NC NC	1_	3158.269	
307		2	max	.002	1	.006	2	.006	1	4.864e-4	1_	NC		NC	2
308			min	0	3	004	3	0	15	1.575e-5	15	NC	1_	3444.905	
309		3	max	.002	1	.005	2	.005	1	4.864e-4	1_	NC	1	NC 0700.07	2
310		-	min	0	3	004	3	0	15	1.575e-5	<u>15</u>	NC NC	1_	3786.07	1
311		4	max	.002	1	.005	2	.005	1	4.864e-4	1_	NC	1	NC	2
312		_	min	0	3	004	3	0	15	1.575e-5	<u>15</u>	NC	1_	4196.142	1
313		5	max	.002	1	.005	2	.004	1	4.864e-4	1_	NC	1_	NC .	2
314			min	0	3	004	3	0	15	1.575e-5	15	NC	1_	4694.711	1
315		6	max	.002	1	.004	2	.004	1	4.864e-4	1_	NC	1	NC	2
316		_	min	0	3	003	3	0	15	1.575e-5	<u>15</u>	NC	_1_	5309.021	1
317		7	max	.001	1	.004	2	.003	1	4.864e-4	_1_	NC	_1_	NC	2
318			min	0	3	003	3	0	15	1.575e-5	15	NC	1_	6077.88	1
319		8	max	.001	1	.004	2	.003	1_	4.864e-4	_1_	NC	_1_	NC	2
320			min	0	3	003	3	0			15	NC	1_	7058.12	1
321		9	max	.001	1	.003	2	.002	1	4.864e-4	_1_	NC	_1_	NC	2
322			min	0	3	003	3	0	15	1.575e-5	15	NC	1_	8335.709	1
323		10	max	.001	1	.003	2	.002	1	4.864e-4	1_	NC	1_	NC	1
324			min	0	3	002	3	0	15	1.575e-5	15	NC	1_	NC	1
325		11	max	0	1	.003	2	.002	1	4.864e-4	_1_	NC	_1_	NC	1
326			min	0	3	002	3	0	15	1.575e-5	15	NC	1_	NC	1
327		12	max	0	1	.002	2	.001	1	4.864e-4	<u>1</u>	NC	<u>1</u>	NC	1
328			min	0	3	002	3	0	15	1.575e-5	15	NC	1_	NC	1
329		13	max	0	1	.002	2	0	1	4.864e-4	1_	NC	_1_	NC	1
330			min	0	3	002	3	0	15	1.575e-5	15	NC	1	NC	1
331		14	max	0	1	.002	2	0	1	4.864e-4	1_	NC	_1_	NC	1
332			min	0	3	001	3	0	15	1.575e-5	15	NC	1	NC	1
333		15	max	0	1	.001	2	0	1	4.864e-4	1	NC	1	NC	1
334			min	0	3	001	3	0	15	1.575e-5	15	NC	1	NC	1
335		16	max	0	1	.001	2	0	1	4.864e-4	1	NC	1	NC	1
336			min	0	3	0	3	0	15	1.575e-5	15	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	0	2	0	1	4.864e-4	_1_	NC	_1_	NC	1_
338			min	0	3	0	3	0	15	1.575e-5	15	NC	1_	NC	1
339		18	max	0	1	0	2	0	1	4.864e-4	_1_	NC	_1_	NC	1
340			min	0	3	0	3	0	15	1.575e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	4.864e-4	1_	NC	_1_	NC	1
342	5.4.4		min	0	1	0	1	0	1	1.575e-5	15	NC NC	1_	NC NC	1
343	<u>M1</u>	1	max	.004	3	.02	3	.001	3	1.84e-2	1_	NC	1	NC NC	1
344			min	005	2	023	1	003	1	-1.753e-2	3	NC NC	1_	NC NC	1
345		2	max	.004	3	.011	3	.001	3	8.941e-3	1	NC 4000 C00	4	NC NC	1
346		2	min	005	2	012 .002	1	006	1	-8.663e-3	3	4232.683 NC	1_	NC NC	2
347		3	max	.004	3	002	3	0 008	3	3.819e-5 -3.415e-4	3	2183.999	<u>4</u> 1		1
348		4	min	005 .004	3	002 .007	1	008	3	3.835e-5	<u>1</u> 3	NC	<u> </u>	9790.17 NC	2
350		4	max	005	2	005	3	009	1	-2.844e-4	1	1543.984	1	8113.462	1
351		5		.004	3	.014	1	<u>009</u> 0	3	3.852e-5	3	NC	5	NC	2
352			max	005	2	01	3	009	1	-2.274e-4	1	1236.496	1	7807.123	
353		6	max	.003	3	.02	1	<u>009</u>	3	3.868e-5	3	NC	5	NC	2
354		—	min	005	2	015	3	008	1	-1.704e-4	1	1062.725	1	8379.597	1
355		7	max	.004	3	.025	1	<u>.000</u>	3	3.885e-5	3	NC	5	NC	1
356			min	005	2	018	3	007	1	-1.133e-4	1	957.511	1	NC	1
357		8	max	.004	3	.028	1	0	3	3.902e-5	3	NC	5	NC	1
358			min	005	2	021	3	006	1	-5.627e-5	1	893.768	1	NC	1
359		9	max	.004	3	.03	1	0	3	3.918e-5	3	NC	5	NC	1
360			min	005	2	022	3	004	1	2.961e-7	15	858.851	1	NC	1
361		10	max	.004	3	.031	1	0	3	5.782e-5	1	NC	5	NC	1
362			min	005	2	022	3	003	1	2.035e-6	15	846.923	1	NC	1
363		11	max	.004	3	.03	1	0	3	1.149e-4	1	NC	5	NC	1
364			min	005	2	021	3	0	1	3.773e-6	15	856.202	1	NC	1
365		12	max	.004	3	.028	1	0	1	1.719e-4	1_	NC	5	NC	1
366			min	005	2	02	3	0	15	5.512e-6	15	888.224	1_	NC	1
367		13	max	.004	3	.025	1	.002	1	2.289e-4	_1_	NC	5_	NC	1
368			min	005	2	017	3	0	15	7.251e-6	15	948.5	<u>1</u>	NC	1
369		14	max	.004	3	.02	1	.003	1	2.86e-4	_1_	NC	5	NC	2
370			min	005	2	013	3	0	15	8.989e-6		1049.128	1_	8682.796	
371		15	max	.004	3	.013	1	.004	1_	3.43e-4	_1_	NC 1010	_5_	NC	2
372		40	min	005	2	009	3	0	15	1.073e-5		1216.072	1_	8027.986	
373		16	max	.004	3	.006	1	.004	1	3.855e-4	1_	NC 4544 848	4_	NC 2000 004	2
374		47	min	005	2	004	3	0	15	1.203e-5		1511.312	1_	8293.984	
375		17	max	.004	3	.002	3	.003	1	8.085e-5	1_	NC	4	NC 0007.007	2
376		10	min max	005	3	003	3	0	1 <u>5</u>	2.876e-6	15	2121.473	1_4	9967.337	1
377		18		.004		.008		0		1.047e-2 -4.205e-3		NC 4007 F76	<u>4</u> 1	NC NC	1
378 379		19	min max	005 .004	3	014 .015	3	0	1 <u>5</u>	2.106e-2	3	4097.576 NC	1	NC NC	1
380		19	min	005	2	026	1	002	1	-8.517e-3	<u>1</u> 3	NC NC	1	NC NC	1
381	M5	1	max	.014	3	.065	3	.002	3	8.515e-7	3	NC	1	NC	1
382	IVIO		min	019	2	078	1	003	1	0.515e-7	15	NC NC	1	NC	1
383		2	max	.014	3	.035	3	.002	3	4.903e-5	3	NC	5	NC	1
384			min	019	2	042	1	003	1	-7.307e-5	1	1258.926	1	NC	1
385		3	max	.014	3	.007	3	.003	3	9.629e-5	3	NC	5	NC	1
386			min	019	2	007	1	003	1	-1.447e-4	1	649.081	1	NC	1
387		4	max	.014	3	.023	1	.003	3	9.543e-5	3	NC	5	NC	1
388			min	019	2	015	3	003	1	-1.373e-4	1	458.213	1	NC	1
389		5	max	.014	3	.048	1	.003	3	9.456e-5	3	NC	5	NC	1
390		Ť	min	019	2	034	3	003	1	-1.298e-4	1	366.419	1	NC	1
391		6	max	.014	3	.068	1	.003	3	9.37e-5	3	NC	15	NC	1
392		Ĭ	min	019	2	049	3	003	1	-1.223e-4	1	314.469	1	NC	1
393		7	max	.014	3	.084	1	.004	3	9.283e-5	3	NC	15	NC	1
			,							0 0 0	_				

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	x Rotate [r LC		
394			min	019	2	06	3	003	-1.148e-4 1	282.939 1	NC 1
395		8	max	.014	3	.096	1	.004	9.196e-5 3	NC 15	
396			min	019	2	067	3	003	-1.074e-4 1	263.751 1	NC 1
397		9	max	.014	3	.103	1	.003	9.11e-5 3	NC 15	
398			min	019	2	071	3	003	-9.989e-5 1	253.126 1	NC 1
399		10	max	.014	3	.105	1	.003	9.023e-5 3	NC 15	NC 1
400			min	019	2	072	3	002	-9.241e-5 1	249.317 1	NC 1
401		11	max	.014	3	.103	1	.003	8.936e-5 3	NC 15	NC 1
402			min	019	2	069	3	002	-8.494e-5 1	251.776 1	NC 1
403		12	max	.014	3	.096	1	.003	8.85e-5 3	NC 15	NC 1
404			min	019	2	064	3	002	-7.746e-5 1	260.942 1	NC 1
405		13	max	.014	3	.084	1	.002	8.763e-5 3	NC 15	NC 1
406			min	019	2	055	3	002	-6.999e-5 1	278.427 1	NC 1
407		14	max	.014	3	.068	1	.002	8.676e-5 3	NC 5	NC 1
408			min	019	2	044	3	002	-6.251e-5 1	307.79 1	NC 1
409		15	max	.014	3	.046	1	.002	8.59e-5 3	NC 5	NC 1
410			min	019	2	03	3	002	-5.503e-5 1	356.691 1	NC 1
411		16	max	.014	3	.02	1	.001	8.308e-5 3	NC 5	NC 1
412			min	019	2	013	3	002	-5.083e-5 1	443.51 1	NC 1
413		17	max	.014	3	.005	3	0	3.379e-5 3	NC 5	NC 1
414			min	019	2	011	1	002	-1.244e-4 1	624.365 1	NC 1
415		18	max	.014	3	.026	3	0	1.652e-5 3	NC 5	NC 1
416			min	019	2	048	1	002	-6.351e-5 1	1207.493 1	NC 1
417		19	max	.014	3	.048	3	0	0 5	NC 1	NC 1
418			min	019	2	087	1	002	-1.404e-7 3	NC 1	NC 1
419	M9	1	max	.004	3	.02	3	.001	1.753e-2 3	NC 1	NC 1
420	1110		min	005	2	023	1	004	-1.84e-2 1	NC 1	NC 1
421		2	max	.004	3	.011	3	0	8.694e-3 3	NC 4	NC 1
422			min	005	2	013	1	0	-9.106e-3 1	4234.076 1	NC 1
423		3	max	.004	3	.002	3	.001	2.275e-5 2	NC 4	NC 1
424			min	005	2	002	1	0	7.571e-7 15	2184.74 1	NC 1
425		4	max	.004	3	.007	1	.002	1.336e-5 3	NC 5	NC 1
426		_	min	005	2	005	3	0	-2.901e-5 1	1544.511 1	NC 1
427		5	max	.004	3	.014	1	.003	5.015e-6 3	NC 5	NC 1
428			min	005	2	011	3	001	-7.323e-5 1	1236.904 1	NC 1
429		6	max	.004	3	.02	1	.002	1.659e-6 10	NC 5	NC 1
430		_	min	005	2	015	3	002	-1.174e-4 1	1063.059 1	NC 1
431		7	max	.004	3	.025	1	.002	-1.551e-6 10	NC 5	NC 1
432		+-	min	00 4	2	019	3	002	-1.617e-4 1	957.794 1	NC 1
433		8	max	.004	3	.028	1	<u>002</u> 0	-4.761e-6 10	NC 5	NC 1
434		-		005	2	021	3	002		894.015 1	NC 1
435		9	min		3		1	_	7.541e-6 15		NC 1
436		9	max	.004 005	2	.03 022	3	0 002	-2.501e-4 1	NC 5 859.07 1	NC 1
437		10		.004	3		1	<u>002</u> 0	-2.301e-4 1 0 -8.924e-6 15	NC 5	NC 1
		10	max			.031					
438		11	min	005	2	022	3	002	-2.943e-4 1	· · · · · · · ·	
439		11	max	.004	3	.03	1	0	0 -1.031e-5 15	NC 5	NC 1
440		40	min	005	2	021	3	004	-3.385e-4 1	856.384 1	NC 1
441		12	max	.004	3	.028	1	0	5 -1.169e-5 15	NC 5	NC 1
442		40	min	005	2	02	3	005	-3.827e-4 1	888.394 1	NC 1
443		13	max	.004	3	.025	1	0	5 -1.307e-5 15	NC 5	NC 2
444			min	005	2	017	3	007	-4.27e-4 1	948.662 1	8867.829 1
445		14	max	.004	3	.02	1	0	5 -1.446e-5 15	NC 5	NC 2
446			min	005	2	014	3	007	-4.712e-4 1	1049.286 1	7741.72 1
447		15	max	.004	3	.013	1	0	5 -1.584e-5 15	NC 5	NC 2
448			min	005	2	009	3	008	-5.154e-4 1	1216.232 1	7402.259 1
449		16	max	.004	3	.006	1	0	5 -1.689e-5 15	NC 4	
450			min	005	2	004	3	007	-5.492e-4 1	1511.486 1	7815.821 1

Model Name

Schletter, Inc.HCV

пСV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r		(n) L/y Ratio	LC		LC
451		17	max	.004	3	.002	3	0		15	NC	4	NC	2
452			min	005	2	003	1	006	1 -3.349e-4	1	2121.705	1_	9533.933	1
453		18	max	.004	3	.008	3	0	15 4.209e-3	3	NC	4	NC	1
454			min	005	2	014	1	004	1 -1.06e-2	1	4098.008	1	NC	1
455		19	max	.004	3	.015	3	0	3 8.517e-3	3	NC	1	NC	1
456			min	005	2	026	1	001	1 -2.106e-2	1	NC	1	NC	1
457	M13	1	max	.004	1	.02	3	.004	3 3.44e-3	3	NC	1	NC	1
458	10110		min	001	3	023	1	005	2 -4.151e-3	1	NC	1	NC	1
459		2	max	.004	1	.161	3	.016	1 4.308e-3	3	NC	5	NC	2
460			min	001	3	172	1	002	10 -5.236e-3	1	1012.905	1	7821.341	1
461		3		.004	1	.276	3	.041	1 5.176e-3	3	NC	5	NC	3
		3	max									-		3
462		-	min	001	3	293	1	0	10 -6.322e-3	1_	556.558	<u>1</u>	3350.701	1
463		4	max	.004	1	349	3	.062	1 6.044e-3	3	NC	5	NC	3
464			min	001	3	37	1	0	10 -7.408e-3	1_	433.168	1_	2279.688	
465		5	max	.004	1	.37	3	.072	1 6.912e-3	3	NC	_5_	NC	3
466			min	001	3	393	1	0	10 -8.494e-3	1_	405.532	1_	1991.597	1
467		6	max	.004	1	.342	3	.067	1 7.781e-3	3_	NC	5_	NC	3
468			min	001	3	365	1	001	10 -9.58e-3	1	439.551	1	2131.482	1
469		7	max	.004	1	.274	3	.048	1 8.649e-3	3	NC	5	NC	2
470			min	001	3	294	1	004	10 -1.067e-2	1	553.875	1	2882.805	1
471		8	max	.004	1	.184	3	.022	1 9.517e-3	3	NC	5	NC	2
472			min	001	3	202	1	007	10 -1.175e-2	1	840.553	1	5913.343	1
473		9	max	.004	1	.102	3	.012	3 1.038e-2	3	NC	5	NC	1
474			min	001	3	117	1	014	2 -1.284e-2	1	1604.061	1	NC	1
475		10	max	.003	1	.065	3	.014	3 1.125e-2	3	NC	4	NC	1
476		10	min	001	3	078	1	019	2 -1.392e-2	1	2736.486	1	NC	1
		11					3				NC			
477		11	max	.003	1	.102		.015	3 1.039e-2	3		5	NC NC	1
478		10	min	001	3	117	1	014	2 -1.284e-2	1_	1604.061	_1_	NC NC	1
479		12	max	.003	1	.184	3	.022	1 9.517e-3	3	NC	5	NC	2
480		10	min	001	3	202	1	007	10 -1.175e-2	1_	840.553	1_	5808.07	1
481		13	max	.003	1	.274	3	.049	1 8.65e-3	3	NC	_5_	NC	2
482			min	001	3	294	1	004	10 -1.067e-2	<u>1</u>	553.875	1_	2860.966	
483		14	max	.003	1	.342	3	.067	1 7.782e-3	3	NC	5	NC	3
484			min	001	3	365	1	001	10 -9.581e-3	1	439.551	1	2124.664	1
485		15	max	.003	1	.371	3	.072	1 6.915e-3	3	NC	5	NC	3
486			min	001	3	393	1	0	10 -8.495e-3	1	405.532	1	1991.325	1
487		16	max	.003	1	.349	3	.062	1 6.047e-3	3	NC	5	NC	3
488			min	001	3	37	1	0	10 -7.409e-3	1	433.168	1	2286.105	
489		17	max	.003	1	.276	3	.041	1 5.179e-3	3	NC	5	NC	3
490			min	001	3	293	1	0	10 -6.323e-3	1	556.558	1	3372.89	1
491		18	max	.003	1	.161	3	.015	1 4.312e-3	3	NC	5	NC	2
492		10	min	001	3	172	1	002		1	1012.906	1	7926.523	
493		19	max	.003	1	.02	3	.004	3 3.444e-3	3	NC	1	NC	1
		19										1		1
494	MAC	4	min	001	3	023	1	005		1_	NC NC	•	NC NC	
495	M16	1_	max	.001	1	.015	3	.004	3 4.371e-3	1_	NC	1_	NC NC	1
496		_	min	0	3	026	1	005		3	NC NC	1_	NC NC	1
497		2	max	.001	1	.083	3	.015	1 5.539e-3	1_	NC	5	NC	2
498			min	0	3	195	1	002		3	884.912	1_	7827.191	1
499		3	max	.001	1	.14	3	.041	1 6.706e-3	1	NC	5_	NC	3
500			min	0	3	334	1	0		3	486.288	1_	3353.921	1
501		4	max	.001	1	.176	3	.062	1 7.873e-3	1	NC	5	NC	3
502			min	0	3	422	1	0	10 -4.476e-3	3	378.559	1	2282.626	1
503		5	max	.001	1	.188	3	.071	1 9.04e-3	1	NC	5	NC	3
504			min	0	3	449	1	0	10 -5.113e-3	3	354.537	1	1995.259	
505		6	max	.001	1	.176	3	.066	1 1.021e-2	1	NC	5	NC	3
506			min	0	3	416	1	001		3	384.521	1	2137.629	
507		7	max	.001	1	.145	3	.048	1 1.137e-2	1	NC	5	NC	2
JU1			παλ	.001		. 140	_ ∪	.040	1 1.1376-2		INC	<u> </u>	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
508			min	0	3	335	1	004	10	-6.388e-3	3	485.111	1_	2898.169	
509		8	max	.001	1	.103	3	.021	1	1.254e-2	1	NC	5	NC	2
510			min	0	3	229	1	007	10	-7.026e-3	3	738.11	_1_	5997.857	1
511		9	max	.002	1	.065	3	.015	3	1.371e-2	1_	NC	_5_	NC NC	1
512		40	min	0	3	<u>131</u>	1	015	2	-7.663e-3	3	1417.955	1_	NC NC	1
513		10	max	.002	3	.048	3	.014	2	1.488e-2	1	NC	4	NC NC	1
514		11	min	0	1	087	3	019	3	-8.301e-3 1.371e-2	3	2442.851 NC	1_		1
515 516			max	.002	3	.065 131	1	.013 014	2	-7.663e-3	<u>1</u> 3	1417.955	_ <u>5_</u> 1	NC NC	1
517		12		.002	1	.103	3	.021	1	1.254e-2	<u> </u>	NC	<u> </u>	NC NC	2
518		12	max min	<u>.002</u>	3	229	1	007	10	-7.025e-3	3	738.111	1	5955.036	
519		13	max	.002	1	.145	3	.048	1	1.137e-2	<u> </u>	NC	5	NC	2
520		13	min	0	3	335	1	004	10	-6.387e-3	3	485.111	1	2895.363	
521		14	max	.002	1	.176	3	.066	1	1.021e-2	1	NC	5	NC	3
522		17	min	0	3	416	1	001	10	-5.749e-3	3	384.521	1	2142.069	
523		15	max	.002	1	.188	3	.071	1	9.041e-3	1	NC	5	NC	3
524			min	0	3	449	1	0	10	-5.111e-3	3	354.537	1	2004.501	1
525		16	max	.002	1	.176	3	.061	1	7.874e-3	1	NC	5	NC	3
526			min	0	3	422	1	0	10	-4.473e-3	3	378.559	1	2299.881	1
527		17	max	.002	1	.14	3	.04	1	6.706e-3	1	NC	5	NC	3
528			min	0	3	334	1	0	10	-3.835e-3	3	486.288	1	3393.705	
529		18	max	.002	1	.083	3	.015	1	5.539e-3	1	NC	5	NC	2
530			min	0	3	195	1	002	10	-3.198e-3	3	884.913	1	7985.562	1
531		19	max	.002	1	.015	3	.004	3	4.372e-3	1	NC	1	NC	1
532			min	0	3	026	1	005	2	-2.56e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	2.771e-4	3	NC	1_	NC	1
534			min	0	1	0	1	0	1	-6.03e-5	1	NC	1	NC	1
535		2	max	0	3	002	15	.001	1	7.548e-4	3	NC	_1_	NC	1
536			min	0	2	009	4	0	3	-6.891e-4	1	8669.266	4	NC	1
537		3	max	0	3	004	15	.004	1	1.233e-3	3	NC	_5_	NC	1
538			min	0	2	018	4	003	3	-1.318e-3	1	4411.494	4_	NC	1
539		4	max	0	3	006	15	.007	1	1.71e-3	3	NC	<u>15</u>	NC	4
540		_	min	0	2	027	4	006	3	-1.947e-3	1_	3026.542	4_	7700.261	1
541		5	max	0	3	008	15	.012	1	2.188e-3	3	NC	<u>15</u>	NC 5044 404	4
542		_	min	0	2	034	4	01	3	-2.575e-3	1_	2361.642	4_	5044.481	1
543		6	max	0	3	01	15	.017	1	2.666e-3	3	8455.413	<u>15</u>	NC acco aza	4
544		7	min	0	3	041	15	014 .022	3	-3.204e-3	1	1987.571	<u>4</u>	3668.272	1
545			max	0		011 046			3	3.144e-3 -3.833e-3	<u>3</u> 1	7498.426 1762.617	<u>15</u> 4	NC	4
546 547		8	min	<u> </u>	3	046 012	15	018 .027	1	3.621e-3	3	6924.09	15	2864.87 NC	4
548		0	max min	0	2	012 05	4	022		-4.462e-3				2360.404	
549		9	max	0	3	012	15	.032	1	4.099e-3	3	6614.948		NC	4
550		3	min	0	2	052	4	026	3	-5.091e-3	1	1554.942		2030.519	
551		10	max	0	3	012	15	.036	1	4.577e-3	3	6517.151	15	NC	4
552		10	min	0	2	053	4	029	3	-5.719e-3	1	1531.954	4	1812.85	1
553		11	max	0	3	012	15	.038	1	5.055e-3	3	6614.948	15	NC	5
554			min	0	2	053	4	031	3	-6.348e-3	1	1554.942	4	1674.677	1
555		12	max	0	3	012	15	.04	1	5.532e-3	3	6924.09	15	NC	5
556			min	0	2	05	4	032	3	-6.977e-3	1	1627.611	4	1599.749	
557		13	max	0	3	011	15	.039	1	6.01e-3	3	7498.426	15	NC	5
558			min	001	2	047	4	032	3	-7.606e-3	1	1762.617	4	1583.287	1
559		14	max	0	3	01	15	.037	1	6.488e-3	3	8455.413	15	NC	5
560			min	001	2	041	4	03	3	-8.234e-3	1	1987.571	4	1632.109	
561		15	max	0	3	008	15	.032	1	6.966e-3	3	NC	15	NC	4
562			min	001	2	035	4	026	3	-8.863e-3	1	2361.642	4	1771.498	1
563		16	max	0	3	006	15	.024	1	7.443e-3	3	NC	15	NC	4
564			min	001	2	028	4	02	3	-9.492e-3	1	3026.542	4	2070.21	1

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	Ö	3	004	15	.013	1	7.921e-3	3	NC	5	NC	4
566			min	001	2	019	4	011	3	-1.012e-2	1	4411.494	4	2744.041	1
567		18	max	0	3	001	12	.002	9	8.399e-3	3	NC	1_	NC	4
568			min	001	2	01	1	005	2	-1.075e-2	1	8669.266	4	4884.724	1
569		19	max	0	3	.004	3	.015	3	8.877e-3	3	NC	1	NC	1
570			min	002	2	003	1	02	2	-1.138e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.005	3	2.65e-3	3	NC	1	NC	1
572			min	0	3	002	1	006	2	-3.156e-3	1	NC	1_	NC	1
573		2	max	0	10	002	15	.003	1	2.533e-3	3	NC	1	NC	1
574			min	0	3	01	4	0	10	-3.004e-3	1	8669.266	4	NC	1
575		3	max	0	10	004	15	.009	1	2.416e-3	3	NC	5	NC	4
576			min	0	3	019	4	004	3	-2.853e-3	1	4411.494	4	6460.527	1
577		4	max	0	10	006	15	.013	1	2.298e-3	3	NC	15	NC	4
578			min	0	3	027	4	007	3	-2.701e-3	1	3026.542	4	4907.22	1
579		5	max	0	10	008	15	.016	1	2.181e-3	3	NC	15	NC	4
580			min	0	3	035	4	009	3	-2.55e-3	1	2361.642	4	4231.668	1
581		6	max	0	10	01	15	.017	1	2.064e-3	3	8455.413	15	NC	4
582			min	0	3	041	4	01	3	-2.398e-3	1	1987.571	4	3933.386	1
583		7	max	0	10	011	15	.018	1	1.946e-3	3	7498.426	15	NC	4
584			min	0	3	046	4	011	3	-2.247e-3	1	1762.617	4	3855.135	1
585		8	max	0	10	012	15	.018	1	1.829e-3	3	6924.09	15	NC	4
586			min	0	3	05	4	011	3	-2.095e-3	1	1627.611	4	3942.5	1
587		9	max	0	10	012	15	.017	1	1.712e-3	3	6614.948	15	NC	4
588			min	0	3	052	4	01	3	-1.944e-3	1	1554.942	4	4186.883	1
589		10	max	0	10	012	15	.015	1	1.594e-3	3	6517.151	15	NC	4
590			min	0	3	053	4	009	3	-1.792e-3	1	1531.954	4	4611.893	1
591		11	max	0	10	012	15	.013	1	1.477e-3	3	6614.948	15	NC	4
592			min	0	3	052	4	008	3	-1.64e-3	1	1554.942	4	5277.981	1
593		12	max	0	10	012	15	.011	1	1.36e-3	3	6924.09	15	NC	4
594			min	0	3	05	4	007	3	-1.489e-3	1	1627.611	4	6305.177	1
595		13	max	0	10	011	15	.009	1	1.242e-3	3	7498.426	15	NC	2
596			min	0	3	046	4	005	3	-1.337e-3	1	1762.617	4	7931.314	1
597		14	max	0	10	01	15	.006	1	1.125e-3	3	8455.413	15	NC	1
598			min	0	3	041	4	004	3	-1.186e-3	1	1987.571	4	NC	1
599		15	max	0	10	008	15	.004	1	1.008e-3	3	NC	15	NC	1
600			min	0	3	034	4	002	3	-1.034e-3	1	2361.642	4	NC	1
601		16	max	0	10	006	15	.002	1	8.903e-4	3	NC	15	NC	1
602			min	0	3	027	4	001	3	-8.827e-4	1	3026.542	4	NC	1
603		17	max	0	10	004	15	0	1	7.73e-4	3	NC	5	NC	1
604			min	0	3	018	4	0	3	-7.312e-4	1	4411.494	4	NC	1
605		18	max	0	10	002	15	0	4	6.557e-4	3	NC	1_	NC	1
606			min	0	3	009	4	0	2	-5.957e-4	2	8669.266	4	NC	1
607		19	max	0	1	0	1	0	1	5.383e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-4.646e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v Ψ _{ed,V} Ψ _{c,V} Ψ _{h,V}	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.