Lecture 23 - Frequency Response of Amplifiers (I)

COMMON-SOURCE AMPLIFIER

May 6, 2003

Contents:

- 1. Introduction
- 2. Intrinsic frequency response of MOSFET
- 3. Frequency response of common-source amplifier
- 4. Miller effect

Reading assignment:

Howe and Sodini, Ch. 10, §§10.1-10.4

Key questions

- How does one assess the intrinsic frequency response of a transistor?
- What limits the frequency response of an amplifier?
- What is the "Miller effect"?

1. Introduction

Frequency domain is a major consideration in most analog circuits.

Data rates, bandwidths, carrier frequencies all pushing up.

Motivation:

- Processor speeds ↑
- Traffic volume $\uparrow \Rightarrow$ data rates \uparrow
- More bandwidth available at higher frequencies in the spectrum

2. Intrinsic frequency response of MOSFET

 \square How does one assess the intrinsic frequency response of a transistor?

 $f_t \equiv short\text{-}circuit\ current\text{-}gain\ cut\text{-}off\ frequency\ [GHz]$

Consider MOSFET biased in saturation regime with small-signal source applied to gate:

 v_s at input $\Rightarrow i_{out}$: transistor effect $\Rightarrow i_{in}$ due to gate capacitance

Frequency dependence: $f \uparrow \Rightarrow i_{in} \uparrow \Rightarrow \left| \frac{i_{out}}{i_{in}} \right| \downarrow$

$$f_t \equiv \text{frequency at which } \left| \frac{i_{out}}{i_{in}} \right| = 1$$

Complete small-signal model in saturation:

node 1:
$$i_{in} - v_{gs} j\omega C_{gs} - v_{gs} j\omega C_{gd} = 0$$

$$\Rightarrow i_{in} = v_{gs} j\omega (C_{gs} + C_{gd})$$

node 2:
$$i_{out} - g_m v_{gs} + v_{gs} j\omega C_{gd} = 0$$

$$\Rightarrow i_{out} = v_{gs} (g_m - j\omega C_{gd})$$

Current gain:

$$h_{21} = \frac{i_{out}}{i_{in}} = \frac{g_m - j\omega C_{gd}}{j\omega (C_{gs} + C_{gd})}$$

 \square Magnitude of h_{21} :

$$|h_{21}| = \frac{\sqrt{g_m^2 + \omega^2 C_{gd}^2}}{\omega (C_{gs} + C_{gd})}$$

• For low frequency, $\omega \ll \frac{g_m}{C_{gd}}$,

$$|h_{21}| \simeq \frac{g_m}{\omega(C_{qs} + C_{qd})}$$

• For high frequency, $\omega \gg \frac{g_m}{C_{ad}}$,

$$|h_{21}| \simeq \frac{C_{gd}}{C_{gs} + C_{gd}} < 1$$

 $|h_{21}|$ becomes unity at:

$$\omega_T = 2\pi f_T = \frac{g_m}{C_{gs} + C_{gd}}$$

Then:

$$f_T = \frac{g_m}{2\pi(C_{qs} + C_{qd})}$$

 \square Physical interpretation of f_T :

Consider:

$$\frac{1}{2\pi f_T} = \frac{C_{gs} + C_{gd}}{g_m} \simeq \frac{C_{gs}}{g_m}$$

Plug in device physics expressions for C_{gs} and g_m :

$$\frac{1}{2\pi f_T} \simeq \frac{C_{gs}}{g_m} = \frac{\frac{2}{3}LWC_{ox}}{\frac{W}{L}\mu C_{ox}(V_{GS} - V_T)} = \frac{L}{\mu_2^3 \frac{V_{GS} - V_T}{L}}$$

or

$$\frac{1}{2\pi f_T} \simeq \frac{L}{\mu < E_{chan} >} = \frac{L}{\langle v_{chan} \rangle} = \tau_t$$

 $\tau_t \equiv transit \ time \ from \ source \ to \ drain \ [s]$

Then:

$$f_T \simeq \frac{1}{2\pi\tau_t}$$

 f_T gives an idea of the *intrinsic delay* of the transistor: good first-order figure of merit for frequency response.

To reduce τ_t and increase f_T :

- $L \downarrow$: trade-off is cost
- $(V_{GS} V_T) \uparrow \Rightarrow I_D \uparrow$: trade-off is power
- $\mu \uparrow$: hard to do
- note: f_T independent of W

Impact of bias point on f_T :

$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd})} = \frac{\frac{W}{L}\mu C_{ox}(V_{GS} - V_T)}{2\pi(C_{gs} + C_{gd})} = \frac{\sqrt{2\frac{W}{L}\mu C_{ox}I_D}}{2\pi(C_{gs} + C_{gd})}$$

In typical MOSFET at typical bias points:

$$f_T \sim 1 - 25 \; GHz$$

3. Frequency response of common-source amp

Small-signal equivalent circuit model (assuming current source has no parasitic capacitance):

Low-frequency voltage gain:

$$A_{v,LF} = \frac{v_{out}}{v_s} = -g_m(r_o//r_{oc}//R_L) = -g_m R'_{out}$$

node 1:
$$\frac{v_s - v_{gs}}{R_S} - v_{gs} j\omega C_{gs} - (v_{gs} - v_{out}) j\omega C_{gd} = 0$$

node 2:
$$(v_{gs}-v_{out})j\omega C_{gd}-g_m v_{gs}-v_{out}j\omega C_{db}-\frac{v_{out}}{R'_{out}}=0$$

Solve for v_{gs} in **2**:

$$v_{gs} = v_{out} \frac{j\omega(C_{gd} + C_{db}) + \frac{1}{R'_{out}}}{j\omega C_{gd} - g_m}$$

Plug in **1** and solve for v_{out}/v_s :

$$A_v = \frac{-(g_m - j\omega C_{gd})R'_{out}}{DEN}$$

with

$$DEN = 1 + j\omega \{R_S C_{gs} + R_S C_{gd} [1 + R'_{out} (\frac{1}{R_S} + g_m)] + R'_{out} C_{db} \}$$
$$-\omega^2 R_S R'_{out} C_{gs} (C_{gd} + C_{db})$$

[check that for $\omega = 0$, $A_{v,LF} = -g_m R'_{out}$]

Simplify:

1. Operate at $\omega \ll \omega_T = \frac{g_m}{C_{gs} + C_{qd}} \Rightarrow$

$$g_m \gg \omega(C_{gs} + C_{gd}) > \omega C_{gs}, \ \omega C_{gd}$$

2. Assume g_m high enough so that

$$\frac{1}{R_S} + g_m \simeq g_m$$

3. Eliminate ω^2 term in denominator of A_v \Rightarrow worst-case estimation of bandwidth

Then:

$$A_v \simeq \frac{-g_m R'_{out}}{1 + j\omega [R_S C_{gs} + R_S C_{gd} (1 + g_m R'_{out}) + R'_{out} C_{db}]}$$

This has the form:

$$A_v(\omega) = \frac{A_{v,LF}}{1 + j\frac{\omega}{\omega_H}}$$

At $\omega = \omega_H$:

$$|A_v(\omega_H)| = \frac{1}{\sqrt{2}} |A_{v,LF}|$$

 ω_H gives idea of frequency beyond which $|A_v|$ starts rolling off quickly $\Rightarrow bandwidth$

For common-source amplifier:

$$\omega_{H} = \frac{1}{R_{S}C_{gs} + R_{S}C_{gd}(1 + g_{m}R'_{out}) + R'_{out}C_{db}}$$

Frequency response of common-source amplifier limited by C_{gs} and C_{gd} shorting out the input, and C_{db} shorting out the output.

Can rewrite as:

$$f_H = \frac{1}{2\pi \{R_S[C_{gs} + C_{gd}(1 + |A_{v,LF}|)] + R'_{out}C_{db}\}}$$

Compare with:

$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd})}$$

- \square In general: $f_H \ll f_T$ due to
 - typically: $g_m \gg \frac{1}{R_S}$
 - C_{db} enters f_H but not f_T
 - presence of $|A_{v,LF}|$ in denominator
- \square To improve bandwidth,
 - $C_{gs}, C_{gd}, C_{db} \downarrow \Rightarrow$ small transistor with low parasitics
 - $|A_{v,LF}| \downarrow \Rightarrow$ don't want more gain than really needed

but...

why is it that effect of C_{gd} on f_H appears to being amplified by $1 + |A_{v,LF}|$??!!

4. Miller effect

In common-source amplifier, C_{gd} looks much bigger than it really is.

Consider simple voltage-gain stage:

What is the input impedance?

$$i_{in} = (v_{in} - v_{out})j\omega C$$

But

$$v_{out} = -A_v v_{in}$$

Then:

$$i_{in} = v_{in}(1 + A_v)C$$

or

$$Z_{in} = \frac{v_{in}}{i_{in}} = \frac{1}{j\omega(1 + A_v)C}$$

From input, C, looks much bigger than it really is. This is called the *Miller effect*.

When a capacitor is located across nodes where there is voltage gain, its effect on bandwidth is amplified by the voltage gain \Rightarrow *Miller capacitance*:

$$C_{Miller} = C(1 + A_v)$$

Why?

$$v_{in} \uparrow \Rightarrow v_{out} = -A_v v_{in} \downarrow \downarrow \Rightarrow (v_{in} - v_{out}) \uparrow \uparrow \Rightarrow i_{in} \uparrow \uparrow$$

In amplifier stages with voltage gain, it is critical to have small capacitance across voltage gain nodes.

As a result of the Miller effect, there is a fundamental $gain-bandwidth\ tradeoff$ in amplifiers.

Key conclusions

- f_T (short-circuit current-gain cut-off frequency): figure of merit to assess intrinsic frequency response of transistors.
- In MOSFET, to first order,

$$f_t = \frac{1}{2\pi\tau_t}$$

where τ_t is $transit\ time$ of electrons through channel.

- In common-source amplifier, voltage gain rolls off at high frequency because C_{gs} and C_{gd} short out input and C_{db} shorts out output.
- In common-source amplifier, effect of C_{gd} on bandwidth is magnified by amplifier voltage gain.
- *Miller effect*: effect of capacitance across voltage gain nodes is magnified by voltage gain
 - \Rightarrow trade-off between gain and bandwidth.