Combining RecyclePivotsWithIntersection and LowerUnits

Joseph Boudou, Bruno Woltzenlogel Paleo

October 2012

Overview

Benchmarks

Algorithms implemented in Scala for Skeptik

1000 proofs from VeriT

- 100 SAT proofs from the old external SAT solver
- 900 SMT proofs translated to propositional resolution

Propositional resolution calculus

Conventions

- Clauses are sets of literals.
- ▶ ā is the dual of a.
- ▶ Let η_{Γ} be a proof of clause Γ and η_{Λ} a proof of Δ .
- ▶ If $\bar{a} \in \Gamma$ and $a \in \Delta$ then $\eta = \eta_{\Gamma} \odot_a \eta_{\Delta}$ is a proof of $(\Gamma \cup \Delta) \setminus \{a, \bar{a}\}.$
- a is the pivot of η.
- $η_{\Gamma}$ and $η_{\Delta}$ are the *premises* of η.
- η is a *child* of both η_{Γ} and η_{Δ} .

Proof as DAG

A node can have more than one child.

Regular proof

Definition (Regular proof)

A proof is said to be regular if on every path from its root to any of its axiom, each pivot appears only once.

Regular proof

Definition (Regular proof)

A proof is said to be regular if on every path from its root to any of its axiom, each pivot appears only once.

Theorem (Tseitin)

Given a set of axioms and a clause Γ , the smallest regular proof of Γ might be exponentialy bigger than the smallest irregular proof of Γ .

Extending Irregularity

Definition (Fully regular proof)

A proof is fully regular if for each variable there is at most one resolution node with this variable as pivot.

Conventions

- Usual irregularities are called vertical irregularities.
- Other irregularities are called horizontal irregularities.

RecyclePivotsWithIntersection (RPI)

Partial Vertical Regularization

Delete a branch only if the pivot appears on every path from the root to the node.

Definition (Safe literal)

A literal is safe for a node η if it can be added to η 's clause without changing the proof's conclusion (root's clause).

Two traversals

- Collect safe literals and mark edges to delete.
- ↓ Delete edges and fix the proof.

LowerUnits (LU)

Lowering

Moving a node down the proof to resolve it only once.

Lowering Units

- Units can always be lowered.
- Reduces horizontal irregularities.

Two traversals

- Collect units with more than one child.
- ↓ Delete units, fix the proof and then reintroduce the units at the bottom of the proof.

Sequential Composition

Root and Units Safe Literals

In RPI.LU, after LU:

- ▶ the proof is of the form $\eta \odot_{a_0} \eta_0 \odot_{a_1} \cdots \odot_{a_n} \eta_n$;
- ▶ $\{\bar{a}_i \mid i \leq n\}$ is the safe literals for η : the root's safe literals;
- ▶ $\forall i < n, \{\bar{a}_j \mid i < j \le n\}$ is the safe literals for η_i .

Root and Units Safe Literals

In RPI.LU, after LU:

- ▶ the proof is of the form $\eta \odot_{a_0} \eta_0 \odot_{a_1} \cdots \odot_{a_n} \eta_n$;
- ▶ $\{\bar{a}_i \mid i \leq n\}$ is the safe literals for η : the root's safe literals;
- ▶ $\forall i < n, \{\bar{a}_j \mid i < j \le n\}$ is the safe literals for η_i .

For a combined algorithm to be always at least as good as RPI.LU it has to compute root and units safe literals.

For a combined algorithm to be always at least as good as LU.RPI it has to be able to lower units introduced by RPI.

RPI[3]LU

For a combined algorithm to be always at least as good as RPI.LU it has to compute root and units safe literals.

Three traversals

- ↓ collect units and compute root and units safe literals ;
- \uparrow compute safe literals and mark edges to be deleted ;
- ↓ fix the proof and reintroduce units.

RPI[3]LU vs RPI.LU

RPI[3]LU vs RPI.LU

For a combined algorithm to be always at least as good as LU.RPI it has to be able to lower units introduced by RPI.

► Collect units during fixing (top-down traversal).

For a combined algorithm to be always at least as good as LU.RPI it has to be able to lower units introduced by RPI.

► Collect units during fixing (top-down traversal).

Problems

▶ If a unit $\{a\}$ depends on a unit $\{b\}$ it'll be seen as $\{a, \bar{b}\}$.

For a combined algorithm to be always at least as good as LU.RPI it has to be able to lower units introduced by RPI.

Collect units during fixing (top-down traversal).

Problems

- ▶ If a unit $\{a\}$ depends on a unit $\{b\}$ it'll be seen as $\{a, \bar{b}\}$.
- ▶ What to do if we find $\{a, \bar{b}\}$ after $\{b\}$?

For a combined algorithm to be always at least as good as LU.RPI it has to be able to lower units introduced by RPI.

Collect units during fixing (top-down traversal).

Problems

- ▶ If a unit $\{a\}$ depends on a unit $\{b\}$ it'll be seen as $\{a, \bar{b}\}$.
- ▶ What to do if we find $\{a, \bar{b}\}$ after $\{b\}$?
- A new algorithm extending LU is needed.

Lowering a node

The (generalized) problem

- ▶ Given $\psi[\eta] \odot_{a_0} \eta_0 \odot_{a_1} \cdots \odot_{a_{n-1}} \eta_{n-1}$
- ▶ is $Fix(\psi[]) \odot_a \eta \odot_{a_0} \eta_0 \odot_{a_1} \cdots \odot_{a_{n-1}} \eta_{n-1}$ equivalent?

Two steps

- ▶ Deleting the node : $Fix(\psi[])$;
- ▶ Reintroducing it : $\bigcirc_a \eta$.

Beware of introduced literals

▶ $\Delta = \{\bar{a}_i \mid i < n\}$ is the safe literals of Fix $(\psi[]) \odot_a \eta$.

Conditions

Literals introduced by reintroducing the node

- ▶ Let Γ_+ be η 's clause,
- $ightharpoonup \Gamma \setminus \Delta = \{a\}.$

Definition (Active literal)

Let's consider a node η with clause Γ_+ . A literal a from Γ_+ is said to be an active literal of η iff a is the pivot of one of η 's child.

Literals introduced by deleting the node

- ▶ Let Γ _ be the set of the duals of η 's active literals,
- $\Gamma_- \setminus \Delta = \{\bar{a}\}.$

Partial regularization

Deletable node

• If $\Gamma_- \setminus \Delta = \emptyset$ then delete η .

Partial regularization

Deletable node

• If Γ _ \ $\Delta = \emptyset$ then delete η .

Partial regularization

• If the dual of any of η 's active literal belongs to Δ then delete the edge.

Partial regularization

Deletable node (implemented)

▶ If Γ _ \ $\Delta = \emptyset$ then delete η .

Partial regularization (not implemented)

• If the dual of any of η 's active literal belongs to Δ then delete the edge.

Algorithm

```
\begin{array}{l} \Delta \leftarrow \varnothing \ ; \\ \mbox{for every node } \eta \mbox{ in a top-down traversal do} \\ | \mbox{ Fix } \eta \ ; \\ \mbox{ Compute } \Gamma_- \setminus \Delta \ ; \\ \mbox{ if } \Gamma_- \setminus \Delta = \varnothing \mbox{ then} \\ | \mbox{ Delete } \eta \ ; \\ \mbox{ else if } \Gamma_- \setminus \Delta = \{\bar{a}\} \mbox{ and } \Gamma_+ \setminus \Delta = \{a\} \mbox{ then} \\ | \mbox{ Lower } \eta \ ; \\ | \mbox{ } \Delta \leftarrow \Delta \cup \{a\} \ ; \end{array}
```

Comparison with LU

Comparison with LU

Comparison with LU

Conclusion

Compression ratio comparison

Conclusion

Compression ratio comparison

References

Skeptik

http://github.com/Paradoxika/Skeptik

Bibliography

Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs via partial regularization. In: CADE. Lecture Notes in Computer Science, vol. 6803, pp. 237–251. Springer (2011)