1 Considérons pour tout entier naturel n, la propriété \mathcal{P}_n définie par:

$$\mathcal{P}_n$$
: " $u_n \leqslant 7$ "

Montrons, à l'aide d'un raisonnement par récurrence, que la propriété \mathcal{P}_n est réalisée pour tout entier naturel n.

Initialisation:

On a: $u_0 = 5 \le 7$

La propriété \mathcal{P}_0 est vraie.

• Hérédité:

Supposons que la propriété \mathcal{P}_n soit réalisée pour un entier naturel n quelconque. C'est à dire qu'on a l'hypothèse de récurrence:

$$u_n \leqslant 7$$

Partons de la comparaison suivante:

$$u_n \leqslant 7$$

$$\frac{1}{3} \cdot u_n \leqslant \frac{7}{3}$$

$$\frac{1}{3} \cdot u_n + 4 \leqslant \frac{7}{3} + 4$$

$$u_{n+1} \leqslant \frac{19}{3}$$

$$u_{n+1} \leqslant \frac{19}{3} \leqslant 7$$

$$u_{n+1} \leqslant 7$$

 $u_{n+1} \leq 7$ On vient d'établir la propriété \mathcal{P}_{n+1} .

Conclusion:

La propriété \mathcal{P}_n est initialisée au rang 0 et elle vérifie la propriété d'hérédité. A l'aide d'un raisonnement par récurrence, on vient d'établir que la propriété \mathcal{P}_n est vérifiée pour tout entier naturel n.

(2) Considérons la propriété Q_n définie pour tout entier naturel n par la relation:

$$Q_n$$
: " $u_n \leqslant u_{n+1}$ "

Montrons, à l'aide d'un raisonnement par récurrence, que la propriété Q_n est réalisée pour tout entier naturel n.

• Initialisation:

Le terme de rang 1 a pour valeur:

$$u_1 = \frac{1}{3} \times 5 + 4 = \frac{5}{3} + 4 = \frac{17}{3}$$

On a la comparaison $5 < \frac{17}{3}$

$$5 < \frac{17}{3}$$

 $u_0 < u_1$ Ainsi, la propriété Q_0 est vérifiée.

Hérédité:

Supposons que la propriété Q_n soit réalisée pour un entier naturel n quelconque. C'est à dire qu'on a l'hypothèse de récurrence:

$$u_n \leqslant u_{n+1}$$

Partons de la comparaison:

$$u_n < u_{n+1}$$

$$\frac{1}{3} \cdot u_n < \frac{1}{3} \cdot u_{n+1}$$

$$\frac{1}{3} \cdot u_n + 4 < \frac{1}{3} \cdot u_{n+1} + 4$$

On vient détablir la propriété Q_{n+1} .

Conclusion:

La propriété Q_n est initialisée au rang 0 et elle véri-

fie la propriété d'hérédité. A l'aide d'un raisonnement par récurrence, on vient d'établir que la propriété Q_n est réalisée pour tout entier naturel n.

(3) La suite (u_n) est croissante et majorée. D'après le théorème de convergence des suites monotones, on en déduit que la suite (u_n) est convergente.

Considérons la propriété \mathcal{P}_n définie pour tout entier naturel n par la relation:

$$\mathcal{P}_n$$
: "0 < $u_n \leqslant 2$ "

Montrons, à l'aide d'un raisonnement par récurrence, que cette propriété \mathcal{P}_n est vraie pour tout entier naturel n.

Initialisation:

De l'encadrement $0 < 1 \le 2$, on en déduit que la propriété \mathcal{P}_0 est vraie.

• Hérédité:

Supposons que la propriété \mathcal{P}_n est vraie pour un entier naturel n quelconque. C'est à dire qu'on a l'hypothèse de récurrence suivante:

$$0 < u_n \leqslant 2$$

La fonction racine carrée est croissante sur \mathbb{R}_+ :

$$0 < 2 \cdot u_n \leq 4$$

$$\sqrt{0} < \sqrt{2 \cdot u_n} \leq \sqrt{4}$$

$$0 < u_{n+1} \leq 2$$

On vient d'établir que la propriété \mathcal{P}_n est vraie au rang n+1.

Conclusion:

La propriété \mathcal{P}_n est initialisé au rang 0 et elle vérifie la propriété d'hérédité. A l'aide d'un raisonnement par récurrence, on vient de montrer que la propriété \mathcal{P}_n est vraie pour tout entier naturel n.

2 Etudions le signe de la différence suivante:

$$u_{n+1} - u_n = \sqrt{2u_n} - u_n$$

Le facteur $\sqrt{2u_n}+u_n$ est strictement postif:

$$= \frac{\left(\sqrt{2u_n} - u_n\right)\left(\sqrt{2u_n} + u_n\right)}{\sqrt{2u_n} + u_n}$$

$$= \frac{\left(\sqrt{2u_n}\right)^2 - \left(u_n\right)^2}{\sqrt{2u_n} + u_n} = \frac{2u_n - u_n^2}{\sqrt{2u_n} + u_n} = \frac{u_n \cdot (2 - u_n)}{\sqrt{2u_n} + u_n}$$

De l'encadrement obtenu à la question (1), on a:

$$\begin{array}{c|c} u_n > 0 & u_n \leqslant 2 & \sqrt{2 \cdot u_n + u_n} > 0 \\ & -u_n \geqslant -2 & \sqrt{2 \cdot u_n + u_n} > 0 \\ & 2 - u_n \geqslant 2 - 2 & 2 - u_n \geqslant 0 \end{array}$$

Ainsi, la différence de deux termes consécutifs de la suite (u_n) a pour signe:

$$u_{n+1} - u_n = \frac{u_n \cdot (2 - u_n)}{\sqrt{2u_n + u_n}} > 0$$

On en déduit que la suite (u_n) est croissante sur \mathbb{N} .

Autre démonstration: étudier le signe de $u_{n+1}-u_n$ via la transformation algébrique:

$$u_{n+1} - u_n = \sqrt{2 \cdot u_n} - u_n = \sqrt{2} \cdot \sqrt{u_n} - (\sqrt{u_n})^2$$
$$= \sqrt{u_n} \cdot (\sqrt{2} - \sqrt{u_n})$$

(3) La suite (u_n) est croissante et majorée par 2. D'après le théorème de convergence des suites mono-

tones, on en déduit que la suite (u_n) est convergente.	