F6+

The second new algorithm, which we call the exponentiated gradient algorithm with positive and negative weights, or EG_L^\pm , is given in Fig. 3. The EG_L^\pm algorithm can best be understood as a way to generalize the EG_L algorithm for more general weight vectors by using a reduction. Given a trial sequence S, let S' be a modified trial sequence obtained from S by replacing each instance \mathbf{x}_t by $\mathbf{x}_t' = (Ux_1, ..., Ux_N, -Ux_1, ..., -Ux_N)$. Hence, the number of dimensions is doubled. For a start vector pair $(\mathbf{s}^+, \mathbf{s}^-)$ for EG_L^\pm , let $\mathbf{s} = (s_1^+, ..., s_N^+, s_1^-, ..., s_N^-)$. Consider using $\mathrm{EG}_L^\pm(U, (\mathbf{s}^+, \mathbf{s}^-), \eta)$ on a trial sequence S and using $\mathrm{EG}_L(\mathbf{s}, \eta)$ on the modified trial sequence S'. If we let \mathbf{w}_t' be the tth weight vector of $\mathrm{EG}_L(\mathbf{s}, \eta)$ on the trial sequence S', it is easy to see that $U\mathbf{w}_t' = (w_{t,1}^+, ..., w_{t,N}^+, w_{t,1}^-, ..., w_{t,N}^-)$ holds for all t and,

Algorithm EG_L $^{\pm}(U, (s^+, s^-), \eta)$

Parameters:

L: a loss function from $\mathbf{R} \times \mathbf{R}$ to $[0, \infty)$,

U: the total weight of the weight vectors,

 s^+ and s^- : a pair of start vectors in $[0, 1]^N$, with $\sum_{i=1}^N (s_i^+ + s_i^-) = 1$, and

 η : a learning rate in $[0, \infty)$.

Initialization: Before the first trial, set $\mathbf{w}_1^+ = U\mathbf{s}^+$ and $\mathbf{w}_1^- = U\mathbf{s}^{\perp}$.

Prediction: Upon receiving the tth instance \mathbf{x}_t , give the prediction

$$\hat{y}_t = (\mathbf{w}_t^+ - \mathbf{w}_t^-) \cdot \mathbf{x}_t$$

Update: Upon receiving the tth outcome y_t , update the weights according to the rules

$$w_{t+1,i}^{+} = U \cdot \frac{w_{t,i}^{+} r_{t,i}^{+}}{\sum_{j=1}^{N} \left(w_{t,j}^{+} r_{t,j}^{+} + w_{t,j}^{-} r_{t,j}^{-} \right)}$$
(3.8)

$$w_{t+1,i}^{-} = U \cdot \frac{w_{t,i}^{-} r_{t,i}^{-}}{\sum_{j=1}^{N} \left(w_{t,j}^{+} r_{t,j}^{+} + w_{t,j}^{-} r_{t,j}^{-} \right)}, \tag{3.9}$$

where

$$r_{t,i}^{+} = \exp(-\eta L_{y_t}'(\hat{y}_t) U x_{t,i})$$
(3.10)

$$r_{t,i}^{-} = \exp(\eta L_{y_t}'(\hat{y}_t) \ Ux_{t,i}) = \frac{1}{r_{t,i}^{+}}$$
(3.11)

FIG. 3. Exponential gradient algorithm with positive and negative weights $EG_L^{\pm}(U, (s^+, s^-), \eta)$.

therefore, $\mathbf{w}_t' \cdot \mathbf{x}_t' = (\mathbf{w}_t^+ - \mathbf{w}_t^-) \cdot \mathbf{x}_t$. Hence, the predictions of EG_L^\pm on S and EG_L on S' are identical, so EG_L^\pm is a result of applying a simple transformation to EG_L . This transformation leads to an algorithm that in effect uses a weight vector $\mathbf{w}_t^+ - \mathbf{w}_t^-$, which can contain negative components. Further, by using the scaling factor U, we can make the weight vector $\mathbf{w}_t^+ - \mathbf{w}_t^-$ range over all vectors $\mathbf{w} \in \mathbf{R}$ for which $\|\mathbf{w}\|_1 \leq U$. Although $\|\mathbf{w}_t^+\|_1 + \|\mathbf{w}_t^-\|_1$ is always exactly U, vectors $\mathbf{w}_t^+ - \mathbf{w}_t^-$ with $\|\mathbf{w}_t^+ - \mathbf{w}_t^-\|_1 < U$ result simply from having both $w_{t,i}^+ > 0$ and $w_{t,i}^- > 0$ for some i. For other examples of reductions of this type, see Littlestone et al. (1995).

The parameters of EG_L^\pm are a loss function L, a scaling factor U, a pair $(\mathbf{s}^+, \mathbf{s}^-)$ of start vectors in $[0,1]^N$ with $\sum_{i=1}^N (s_i^+ + s_i^-) = 1$, and a learning rate η . We simply write EG^\pm for EG_L^\pm where L is the square loss function. As the start vectors for EG^\pm , one would typically use $\mathbf{s}^+ = \mathbf{s}^- = (1/(2N), ..., 1/(2N))$. This gives $\mathbf{w}_1^+ - \mathbf{w}_1^- = \mathbf{0}$. A typical learning rate function could be $\eta = 1/(3U^2X^2)$ where X is an estimated upper bound for the maximum L_∞ norm $\max_i \|\mathbf{x}_i\|_\infty$ of the instances. More detailed theoretical results are given in Theorem 5.11.

۸ ~~ ؛ --