New evidence from machine learning

Feng Li, Xingjian Zheng

Shanghai Advanced Institute of Finance, SJTU

May, 2023

SAIF

- 1 Background and Intro
- 2 Emission estimation
- 3 Empirical results
- 4 Conclusion
- **5** Supplementary figures and tables

- 2 Emission estimation
- 3 Empirical results
- 4 Conclusion

Background and Intro

Supplementary figures and tables

0000000

- Carbon emission data is one of the most important data for every Business/Govt./ entity
 - In the financial industry, in 2022, 680+ financial institutions with US\$130 Trillion AUM request information on carbon emissions.
 - Large corporates like LOréal and Diageo use carbon emission data for supplier evaluations and performance reviews. ă
 - Nation-wide/State-level authorities need carbon emission data to regulate firms, as in the Paris Agreement.

- As for economic empiricists, there exist contradictory views on the relationship between carbon emissions and asset prices.
 - The risk story: higher emissions, higher returns (Bolton and Kacperczyk, 2020, 2021a, 2021b, 2022a, 2022b)
 - Contrasting findings: higher emissions, lower returns (Garvey et al., 2018; In et al., 2017; Matsumura et al., 2014)
 - Inconclusive results: Insignificant emission-return relationship (Aswani et al., 2022; Monasterolo and De Angelis, 2020)
- The problem is with a lack of emission DATA! (sampling bias for the high emission firms/fewer disclosures prior to 2016/biased estimation methods)

Background and Intro

- Challenge(i): few firms voluntarily disclose carbon emissions (Busch et al., 2020).
 - In 2021, a record-breaking 13189 firms disclose carbon emissions globally. However, that only accounts for a small fraction of all the firms.
 - In the US, among the S&P MidCap 400, only 28 % of companies disclose their GHG emissions, and more than 4000 thousand companies do not make the disclosure
 - In the UK. 68% of the firms do not disclose carbon emissions.
- Challenge(ii): emission data might be generated by biased estimation algorithms.
 - Carbon emissions estimated by data vendors are largely linear interpolations based on industry-fixed effects and are too clustered with stock returns (Aswani et al., 2022).

This paper

- Estimates a large panel of scope 1 carbon emissions by US firms with XGBoost from 2002 to 2021.
 - This data set has broad coverage of 4111 firms per year as compared to 1675 firms provided by data vendors.
 - We design empirical tests and perform various ML validation tests to examine the robustness & accuracy.
 - We provide various robust analyses from empirical tests to machine learning tests.
- With this data set, we document the following simple facts:
 - Prior to 2016 (the Paris Agreement), there is a high carbon, high return relationship
 - Post-2016, the positive relationship drastically reversed to become negative, i.e., high carbon, low return.

Feng Li, Xingjian Zheng Carbon emission and Asset prices

$$Ret_{i,t} = \alpha + GHG_{i,t} + Controls_{i,t-1} + \delta_t + \mu_i + \varepsilon_{i,t},$$
 (1)

Figure 1: Carbon cumulative return premia

Related literature

- Carbon emission and stock returns
 - Positive emission-return relationship: A series of works by Bolton and Kacperczyk
 - Contrasting evidence: Aswani et al. (2022); Duan et al. (2022); Choi et al. (2022); Cheema-Fox et al. (2021); which may be driven
 - Evidence on investors' raising awareness of ESG investing: P'astor et al. (2021, 2022); Pedersen et al. (2021), and van der Beck (2021)
- Boosting trees in Economics and Finance
 - XGBoost models or other basic boosting trees are used in loan approval (Tantri, 2021, Rossi and Utkus, 2020), patent classification (Zheng, 2022), and return predictions (Teng et al., 2020)
- Economic links and industrial competitions
 - Most notably on business similarity (Hoberg and Philips, 2010, 2016, 2018), or competitions (Li et al. 2013, Bernard et al., 2020, Eisdorfer et al., 2020).
 - Other links like technological linkage (Lee et al., 2019), customers (Cohen and Frazzini, 2008), common analysts (Ali and Hirshleifer, 2020), etc.

- 2 Emission estimation
- 3 Empirical results
- 4 Conclusion
- 5 Supplementary figures and tables

Methodology

- Firms that share similar business structures produce carbon emissions on a similar scale.
- We can use the emission of disclosure firms to predict the emission of similar non-disclosure firms.

Figure 2: Estimation example

◆ロト ◆問 ▶ ◆ 重 ト ◆ 重 ・ 夕 Q ©

- We input (i) the emission data, (ii) similarity score pairs, (iii) firm fundamentals, and (iv) firms fixed identifiers into the XGBoost algorithm. We train the algorithm on a cross-sectional basis.
 - Similarity score is from the Hoberg and Philips data library; emission data is obtained from Trucost; firm fundamentals and fixed identifiers are from Compustat CCM.
 - Firm fundamentals include firm sales, total assets, non-current assets, and employee numbers.
 - XGBoost model is as follows:

$$\widehat{GHG}_f = \widehat{f}\left(GHG_d, \operatorname{score}_{\langle f, d \rangle}, \cdots\right) = \operatorname{arg\,min} L\left(f(X) + \widehat{GHG}_f\right) + R(f(\cdot))$$
 (2)

- Sample period: 2002-2021, with a training period from 2002-2018 and a test period from 2019 to 2021.
- We obtain (i) scope 1 emission data from Trucost and link firms by their GVKEY from WRDS, (ii) firm fundamentals from Compustat, and (iii) time series data from CRSP.

Background and Intro

Figure 3: Estimation methodology

Table 1: Number of disclosed firms in the dataset

Year	Trucost	Thomson Reuters	CDP	Aswani et al. (2022)	XGBoost Estimated
2002	629	4	4		2952
2003	851	10	1		3703
2004	1026	20	12		4073
2005	1260	50	37	700	4406
2006	1275	171	54	706	4440
2007	1237	309	77	693	4367
2008	1251	367	105	690	4328
2009	1265	500	329	709	4162
2010	1258	550	564	704	4011
2011	1252	588	801	715	3938
2012	1252	597	900	727	3909
2013	1350	572	998	800	3946
2014	1372	585	1217	829	4049
2015	1377	659	1135	859	4117
2016	3265	722	1472	2369	4281
2017	3286	797	1469	2509	4228
2018	3363	895	1501	2645	4242
2019	3393	1066	1418	1992	4279
2020	3154	1110	1436		4329
2021	385	398	356		4453
Average	1675	499	694	1176	4111

Table 2: Emission comparison between different data sets by year

	Pan	el A: Trucc	st data		Panel B: Xgboost estimated					
	Distinct firms	Mean	Std	Median	Distinct firms	Mean	Std	Mediar		
2002	629	12.05	2.54	11.90	2952	9.01	5.37	11.04		
2003	851	11.60	2.66	11.35	3703	8.96	5.09	10.80		
2004	1026	11.58	2.66	11.34	4073	9.09	4.92	10.79		
2005	1260	11.37	2.68	11.19	4406	9.03	4.88	10.67		
2006	1275	11.40	2.67	11.22	4440	9.14	4.80	10.71		
2007	1237	11.40	2.64	11.21	4367	9.24	4.78	10.82		
2008	1251	11.43	2.62	11.25	4328	9.27	4.75	10.83		
2009	1265	11.30	2.62	11.07	4162	9.22	4.72	10.73		
2010	1258	11.35	2.61	11.16	4011	9.32	4.68	10.79		
2011	1252	11.34	2.62	11.08	3938	9.35	4.67	10.80		
2012	1252	11.31	2.64	11.10	3909	9.28	4.71	10.73		
2013	1350	11.25	2.65	11.07	3946	9.36	4.60	10.73		
2014	1372	11.23	2.69	11.01	4049	9.30	4.66	10.71		
2015	1377	11.21	2.65	11.02	4117	9.36	4.51	10.68		
2016	3265	9.49	2.95	9.44	4281	9.36	3.49	9.76		
2017	3286	9.48	2.98	9.41	4228	9.41	3.42	9.78		
2018	3363	9.46	3.01	9.42	4242	9.33	3.43	9.69		
2019	3393	9.39	3.02	9.35	4279	9.29	3.39	9.62		
2020	3154	9.09	3.01	8.95	4329	9.03	3.39	9.38		
2021	385	7.61	2.37	7.57	4453	9.08	4.08	9.61		

SAIF

- Estimation performance and data overview.
 - Machine learning performance
 - Variable importance contribution
 - Summary stats (below) and Correlation matrix

	N	Mean	Std	Min	25%	50%	75%	Max
Firm-yearl leve	l observation	ıs						
LOGGHG	82213	9.22	4.44	0.00	8.03	10.43	12.02	15.87
GHGINTEN	80469	7.44	20.65	0.00	0.04	0.42	3.78	110.94
LOGSIZE	80955	13.36	2.05	8.53	11.90	13.41	14.83	17.19
LEVERAGE	82166	0.58	0.27	0.08	0.37	0.58	0.80	1.11
INVEST2A	81043	0.04	0.05	0.00	0.00	0.02	0.05	0.23
ROE	82015	0.00	0.42	-1.19	-0.05	0.08	0.15	1.21
HHI	82136	0.09	0.07	0.02	0.05	0.07	0.12	0.35
LOGPPE	78955	4.57	2.59	0.02	2.56	4.49	6.49	9.54
B2M	77172	1.05	1.95	0.06	0.31	0.57	0.95	11.90
SALESGR	76818	0.10	0.31	-0.54	-0.04	0.06	0.18	1.34
EPSGR	77864	-0.03	2.15	-8.50	-0.37	0.08	0.56	5.86
Firm-year-mon	th level obse	rvations						
RETX	890602	1.02	16.47	-97.22	-5.79	0.43	6.63	1988.36
MOM	890522	1.12	4.72	-44.98	-1.01	0.90	2.88	169.02
VOLAT	890531	12.61	10.69	0.27	6.69	10.00	15.31	583.47
BETA	890602	1.23	1.08	-21.13	0.59	1.09	1.70	44.39

 Overall, the estimated data set is comparable to Trucosts original emissions in magnitude after 2016, and it has high validity and complements a very large fraction of the data set prior to 2016.

Background and Intro

Data validation

- We design several tests to validate the robustness of our data set.
- We design empirical tests to examine the validity.
 - State level regulation shocks
 - Transition matrix
 - Comparison of the determinants of carbon emission
 - Carbon emission and inclusion into ESG-related fund
- We also use machine learning tests to examine the robustness.
 - Cross-validation tests with hyper-parameters
 - Different partitioning results
 - Model comparison: XGBoost versus linear models
 - Business similarity and emission similarity

- 1 Background and Intro
- 2 Emission estimation
- 3 Empirical results
- 4 Conclusion
- Supplementary figures and tables

Main results

- We explore the cross-sectional properties of stock returns with firms carbon emissions.
- We first follow the pooled OLS regression model used in Bolton and Kacperczyk (2021a) as follows,

$$Ret_{i,t} = Const + GHG_{i,t} + Controls_{i,t-1} + \delta_t + \mu_j + \varepsilon_{i,t},$$
 (3)

- The independent variables include three different emission measures:

 (i) LOGGHG, (ii) GHGGR, and (iii) GHGINTEN. The most important variable is the logarithmic value of carbon emissions LOGHG.
- We partition the sample period before and after 2016 (the Paris Agreement), and examine the emission-return relationship with different samples, i.e., the Trucost sample and the XGBoost sample.

Table 3: Carbon emission and asset prices: replication of BK(2021a)

			Trucost orig	ginal sample		-				
Sample period		Panel A: 2002-2016 (before the Paris agreement)								
	(1)	(2)	(3)	(4)	(5)	(6)				
LOGGHG	0.0330* (1.89)	0.0686*** (3.86)								
GHGGR	(=:==)	(5.55)	0.5783*** (4.84)	0.5721*** (5.17)						
GHGINTEN			(,	(4-1-7)	-0.0032 (-0.44)	-0.0039 (-0.52)				
LOGSIZE	-0.0837 (-0.75)	-0.1026 (-0.93)	0.0189	0.0431 (0.37)	-0.0894 (-0.81)	-0.0779 (-0.70)				
B2M	-0.0480 (-1.31)	-0.0562 (-1.38)	-0.021 (-0.63)	-0.0033 (-0.09)	-0.0502 (-1.37)	-0.0454 (-1.11)				
LEVERAGE	0.0939	-0.1837 (-0.54)	-0.0561 (-0.22)	0.0689	0.0641 (0.24)	-0.1126 (-0.33)				
MOM	-0.0510 (-0.53)	-0.0596 (-0.61)	-0.0648 (-0.62)	-0.0763 (-0.73)	-0.0503 (-0.53)	-0.0597 (-0.61)				
INVEST2A	-3.3218** (-2.25)	-1.6153 (-1.20)	-3.2394* (-1.84)	-1.8206 (-1.19)	-3.2162** (-2.15)	-1.9375 (-1.41)				
ROE	0.8786*** (3.17)	0.7999***	0.6462*** (2.96)	0.6013***	0.8824*** (3.16)	0.8093**				
HHI	-0.1756 (-0.13)	0.0888 (0.06)	0.7088 (0.80)	0.6149	-0.1974 (-0.14)	0.1374				
LOGPPE	-0.0078 (-0.15)	0.003	-0.0019 (-0.04)	-0.0077 (-0.18)	0.0307	0.0379				
BETA	-0.3914* (-1.96)	-0.4019** (-2.11)	-0.3483 (-1.52)	-0.3438 (-1.57)	-0.3953** (-1.98)	-0.3992* (-2.10)				
VOLAT	0.1948*** (3.26)	0.2091*** (3.46)	0.1977*** (2.62)	0.2122*** (2.78)	0.1945*** (3.26)	0.2081**				
SALESGR	-0.2561 (-0.63)	-0.2186 (-0.58)	-0.2900 (-0.63)	-0.3059 (-0.68)	-0.2583 (-0.63)	-0.217 (-0.58)				
EPSGR	0.0219 (0.84)	0.0236 (0.85)	0.0111 (0.46)	0.0145 (0.59)	0.0221 (0.85)	0.0238 (0.87)				
Const Year-Mon FE	T T	T <u>T</u>	T T	T T	T T	Ţ				
Ind FE R2 N	0.22 215808	T 0.22 215808	0.23 185490	T 0.23 185490	0.22 215760	T 0.22 215760				

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

	Carbon emissions estimated by XGBoost algorithm											
Sample period		Panel B: 200)2-2016 (bef	ore the Paris	agreement)			Panel C: 201	.6-2021 (afte	er the Paris	agreement)	
	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
LOGGHG GHGGR	0.0142* (1.84)	0.0109* (1.91)	0.0082	0.0087			-0.0888*** (-3.32)	-0.0536** (-2.12)	-0.0333	-0.0086		
GHGINTEN			(0.67)	(0.74)	-0.0089***	-0.0091***			(-0.77)	(-0.18)	-0.0368***	-0.0339***
LOGSIZE	0.0781 (0.80)	0.0597 (0.64)	0.1334 (1.39)	0.1224 (1.23)	(-3.69) 0.0609 (0.62)	(-4.01) 0.0473 (0.50)	0.4077** (2.05)	0.3759** (2.09)	0.4388** (2.28)	0.3837** (2.26)	(-4.69) 0.3288* (1.77)	(-5.32) 0.2828* (1.76)
B2M LEVERAGE	0.0238 (0.60) 0.0980	0.0324 (0.72) 0.1593	0.0197 (0.49) 0.0057	0.0273 (0.58) -0.0318	0.0198 (0.52) 0.0234	0.0303 (0.70) 0.0908	-0.0413 (-0.52) 0.3255	-0.0752 (-0.95) -0.9475**	-0.0382 (-0.47) 0.3891	-0.0751 (-0.97) -0.8988	-0.0597 (-0.74) 0.1917	-0.1054 (-1.32) -1.1771***
МОМ	(0.24) -0.2240** (-2.09)	(0.45) -0.2310** (-2.13)	(0.01) -0.2049 (-1.56)	(-0.10) -0.2123 (-1.61)	(0.06) -0.2243** (-2.08)	(0.25) -0.2317** (-2.13)	(0.58) -0.5270*** (-2.90)	(-2.28) -0.5744*** (-3.09)	(0.72) -0.5205*** (-2.96)	(-1.90) -0.569*** (-3.17)	(0.36) -0.5226*** (-2.73)	(-2.97) -0.5675*** (-2.93)
INVEST2A	-5.0657*** (-2.82)	-4.5781*** (-4.44)	-5.092*** (-2.66)	-4.2569*** (-4.01)	-4`.7319** (-2.59)	-4.5971*** (-4.31)	-6.9409*** (-2.97)	-5.2963* (-1.78)	-5.9519*** (-2.80)	-3.9687 (-1.42)	-7.3364*** (-3.33)	-Š.6558* (-1.93)
ROE HHI	1.7037*** (7.53) -0.6862	1.6475*** (7.75) -2.143	1.5736*** (6.08) -0.5437	1.5156*** (6.40) -1.7339	1.6171*** (7.08) -0.625	1.5994*** (7.37) -2.1255	3.0414*** (7.64) -1.9027	2.4474*** (13.56) -8.399	2.9773*** (7.19) -1.5674	2.3953** (11.80) -6.3390	2.8340*** (6.92) -2.2382	2.3229*** (12.53) -7.4728
LOGPPE	(-1.45) 0.1223** (2.01)	(-0.98) 0.1458*** (2.83)	(-1.18) 0.1134 (1.70)	(-0.69) 0.1331*** (2.62)	(-1.33) 0.1294* (1.97)	(-0.99) 0.1376*** (2.65)	(-0.77) 0.0393 (0.35)	(-0.49) 0.1489 (1.38)	(-0.60) -0.0549 (-0.42)	(-0.40) 0.1043 (0.89)	(-0.93) -0.0298 (-0.25)	(-0.44) 0.1265 (1.20)
BETA	-0.6399*** (-2.77)	-0.6203*** (-2.78)	-0.6216** (-2.57)	-0.6081** (-2.59)	-0.6489*** (-2.83)	-0.6214*** (-2.78)	-0.3427 (-1.21)	-0.2134 (-0.71)	-0.3324 (-1.14)	-0.2079 (-0.66)	-0.3378 (-1.21)	-0.2075 (-0.70)
VOLAT SALESGR	0.3083*** (4.50) -0.5018***	0.3136*** (4.68) -0.4659***	0.3063*** (3.61) -0.4297***	0.3138*** (3.75) -0.3763**	0.3101*** (4.49) -0.5234***	0.3153*** (4.67) -0.5105***	0.397*** (5.21) -0.7476**	0.4241*** (5.52) -0.6291*	0.3947*** (5.33) -0.8482***	0.4215*** (5.64) -0.7571**	0.3937*** (4.98) -0.7835**	0.4200*** (5.31) -0.677*
EPSGR	(-3.36) 0.0946*** (3.75)	(-3.05) 0.0974*** (3.80)	(-2.75) 0.0475** (2.20)	(-2.36) 0.0511** (2.35)	(-3.55) 0.0994*** (3.85)	(-3.45) 0.1003*** (3.82)	(-1.99) 0.0298 (0.69)	(-1.91) 0.0345 (0.87)	(-2.10) 0.027 (0.64)	(-2.13) 0.0322 (0.85)	(-2.07) 0.0363 (0.87)	(-2.03) 0.0369 (0.98)
Const Year-Mon FE Ind FE	T T	T T T	T T	T T T	T T	T T T	T T	T T T	T T	T T T	T T	T T T
R2 N	0.16 533001	0.17 533001	0.17 406387	0.17 406387	0.16 531136	0.16 531136	0.16 231149	0.17 231149	0.17 217119	0.17 217119	0.17 229777	0.17 229777

Cumulative carbon premia

Background and Intro

 We examine the cumulative return premia estimated from monthly cross-sectional returns from equation 3, and the independent var. of interest is LOGGHG.

Empirical results

0000000000000

- Similar to regression results, there seems to be a structural mutation in carbon pricing.
- Adding industry fixed effects makes a huge difference for the Trucost data, but not that significant for XGBoost estimated data.

Figure 4: Cumulative premia

Figure 5: Cumulative premia with industry FE

Feng Li. Xingijan Zheng Carbon emission and Asset prices

Portfolio sorting results

Background and Intro

- We sort firms into 5 quintiles based on LOGGHG and report cumulative returns for hi-lo portfolio returns.
- XGBoost sample is able to generate a positive emission-return relationship prior to 2016 because of its large sample base.

Figure 6: XGBoost data sample

Figure 7: Trucost data sample

Carbon pricing before and after the Paris Agreement

- We examine the structural mutation of carbon premia around 2016.
- We keep the high emission and low emission quintile firms, and interact their scope 1 emission with a time dummy to examine the carbon pricing.

$$Ret_{i,t} = Const + HIGHG_{i,t} + After_t + HIGHG_{i,t} \times After_t + Controls_{i,t-1} + FE + \varepsilon_{i,t}$$
 (4)

 We also report regression results excluding high-emission firms, and the effect is slightly more significant.

Carbon emission and Asset prices

Table 4: Emission-return relationship after the Paris Agreement

	Panel A: XGBoost whole sample								
	LOG	GHG	GHO	GGR	GHGINTEN				
	(1)	(2)	(3)	(4)	(5)	(6)			
POST*HIGHG	-0.8583* (-1.93)	-0.9313** (-2.05)	0.4629 (0.89)	0.4887 (0.96)	-1.1188*** (-3.00)	-1.065** (-2.51)			
POST	1.0684***	1.1492***	4.1305***	4.251***	0.5041	Ò.5048			
HIGHG	(3.38) 0.3554*	(3.25) 0.4209***	(9.21) 0.2523**	(8.46) 0.2596**	(1.52) -0.0238	(1.29) -0.0064			
Tildild	(1.75)	(3.44)	(2.36)	(2.30)	(-0.18)	(-0.06)			
Const	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ			
Controls Year FE	÷	÷	÷	÷	+	÷			
Ind FE		T		T		T			
R2 N	0.16 308838	0.16 308838	0.16 241463	0.16 241463	0.14 295656	0.15 295656			

Panel B: XGBoost exclude high emission industries

	LOG	GHG	GH	GGR	GHGINTEN					
	(7)	(8)	(9)	(10)	(11)	(12)				
POST*HIGHG	-0.8922** (-2.00)	-0.9637** (-2.08)	0.4665 (0.90)	0.4857 (0.96)	-1.0997*** (-2.98)	-1.0445** (-2.43)				
POST	1.1873***	1.237***	4.123***	4.2275***	Ò.4106	0.3976				
HIGHG	(3.65) 0.3643* (1.81)	(3.44) 0.4503*** (3.69)	(8.87) 0.2457** (2.36)	(8.21) 0.2604** (2.37)	(1.23) -0.0163 (-0.12)	(1.01) 0.0156 (0.14)				
Const	Ţ	Ţ	Ţ	Ţ	Ţ	Ţ				
Controls Year FE	÷	±	÷	Ė	÷	±				
Ind FE R2	0.16	0.16	0.16	0.16	0.14	0.15				
N	300021	300021	233743	233743	287194	287194				

◆□▶ ◆圖▶ ◆意▶ ◆意▶

Table 5: Carbon emission and realized stock returns (Trucost post 2016)

Sample period		2016-2021 (After the Paris Agreement with Trucost sample)									
	(1)	(2)	(3)	(4)	(5)	(6)					
LOGGHG	-0.0898*** (-3.66)	-0.0085 (-0.16)									
GHGGR	(5.55)	(0.10)	0.9119* (1.87)	1.0895** (2.09)							
GHGINTEN			(1.07)	(2.03)	-0.0423 (-0.86)	-0.0332 (-0.84)					
LOGSIZE	0.7525*** (3.29)	0.6214**	0.7759*** (3.26)	0.6725**	0.7164***	0.6085**					
B2M	0.0373 (1.34)	0.0056 (0.18)	0.0495* (1.84)	0.0260	0.0305 (1.07)	0.0014					
LEVERAGE	-0.2922 (-0.59)	-1.1791*** (-3.02)	-0.0177 (-0.05)	-1.0527*** (-3.42)	-0.1547 (-0.30)	-1.1884** (-3.03)					
MOM	-0.3415 (-1.54)	-0.403 (-1.60)	-0.3415 (-1.53)	-0.4052 (-1.60)	-0.3409 (-1.52)	-0.4025 (-1.59)					
INVEST2A	-4.0486* (-1.76)	-2.1562 (-1.02)	-5.2882* (-2.01)	-2.9505 (-1.44)	-4.2593* (-1.97)	-2.1882** (-1.10)					
ROE	1.9664***	1.7233***	2.0597***	1.8355***	1.9064***	1.7241***					
нні	0.2043	-5.9436 (-1.33)	-0.2678 (-0.12)	-8.5278 (-1.91)	-0.0536 (-0.02)	-5.8526 (-1.28)					
LOGPPE	-0.1871* (-1.89)	-0.0311 (-0.40)	-0.2564** (-2.67)	-0.0378 (-0.42)	-0.2349*** (-3.35)	-0.0253 (-0.29)					
BETA	-0.5881* (-1.76)	-0.4872 (-1.54)	-0.5841* (-1.76)	-0.4947 (-1.58)	-0.5983* (-1.75)	-0.4839 (-1.54)					
VOLAT	0.4642***	0.5014***	0.4479***	0.4873***	0.4625***	0.5011***					
SALESGR	-1.0494** (-2.28)	-0.8052 (-1.52)	-1.1018** (-2.71)	-0.8971* (-2.02)	-1.0314** (-2.21)	-0.8129 (-1.55)					
EPSGR	0.0694 (1.59)	0.0771 (1.42)	0.0552 (1.24)	0.0626 (1.16)	0.072 (1.55)	0.0770 (1.43)					
Const Year-Mon FE	T T	T T	T T	T T	T T	Ŧ					
Ind FE R2 N	0.22 116602	T 0.23 116602	0.23 114381	T 0.24 114381	0.23 116578	T 0.23 116578					

Feng Li, Xingjian Zheng SAIF

Carbon premia: 2002-2021 full sample period

Table 6: Carbon emission and realized stock returns

Sample period		Panel	A: 2002-202	1 (Trucost sa	imple)			Panel	B: 2002-202	(XGBoost Sa	ample)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
LOGGHG	0.0098 (0.48)	0.0536** (2.34)					-0.0006 (-0.05)	0.0053 (0.68)				
GHGGR	(0.40)	(2.54)	0.7061*** (3.72)	0.7412*** (3.81)			(0.00)	(0.00)	-0.0067 (-0.31)	-0.0027 (-0.13)		
GHGINTEN			(5.72)	(5.01)	-0.0081 (-0.76)	-0.0127 (-1.00)			(0.51)	(0.15)	-0.0136*** (-4.07)	-0.0128*** (-4.54)
LOGSIZE	0.2110 (1.31)	0.1799 (1.15)	0.3317**	0.3280** (2.03)	0.2034	0.1959 (1.30)	0.1692* (1.72)	0.1514 (1.61)	0.2351** (2.34)	0.2184**	0.1380	0.1245
B2M	0.0051	-0.0071 (-0.20)	0.0356 (1.13)	0.0401 (1.29)	0.0026	0.0004 (0.01)	0.0027	0.0014 (0.03)	0.0022	(2.30) -0.0021 (-0.05)	-0.0040 (-0.10)	-0.0047 (-0.12)
LEVERAGE	0.0248 (0.11)	-0.3707 (-1.40)	-0.0686 (-0.30)	-0.2306 (-0.86)	0.0132 (0.06)	-0.3141 (-1.20)	0.2643 (0.80)	-0.0369 (-0.12)	0.2143	-0.172 (-0.62)	0.1872 (0.56)	-0.1109 (-0.37)
MOM	-0.1588 (-1.47)	-0.1777 (-1.56)	-0.1819 (-1.56)	-0.2036 (-1.65)	-0.1584 (-1.47)	-0.1775 (-1.56)	-0.32*** (-3.21)	-0.3288*** (-3.27)	-0.3264*** (-2.89)	-0.3372*** (-2.96)	-0.3179*** (-3.14)	-0.3261*** (-3.20)
INVEST2A	-4.1423** (-2.66)	-1.1284 (-0.94)	-4.2961*** (-2.47)	-1.3298 (-1.13)	-4.0824** (-2.65)	-1.4080 (-1.17)	-5.4709*** (-3.32)	-3.9786*** (-3.13)	-5.1894*** (-3.00)	-3.3814*** (-2.50)	-5.1657*** (-3.09)	-3.9874*** (-3.08)
ROE	1.3541***	1.2599***	1.3136*** (4.58)	1.2813***	1.3487***	1.2730***	2.1456***	1.9609*** (10.97)	2.1062***	1.8976***	2.0225***	1.8924*** (10.61)
HHI	0.0808	-1.3239 (-0.77)	0.5122 (0.54)	-1.4447 (-0.85)	0.0584	-1.2548 (-0.73)	-1.1072 (-1.30)	-2.529 (-1.21)	-0.9551 (-0.97)	-2.5869 (-1.10)	-1.0636 (-1.26)	-2.4719 (-1.21)
LOGPPE	-0.0698 (-1.30)	-0.0277 (-0.60)	-0.0822 (-1.41)	-0.0303 (-0.62)	-0.0500 (-0.88)	0.0026	0.0888	0.1306***	0.0572 (0.91)	0.1090**	0.0825	0.1204**
BETA	-0.5782** (-2.66)	-0.5715** (-2.73)	-0.5272** (-2.30)	-0.5147** (-2.35)	-0.5815** (-2.65)	-0.5690 (-2.74)	-0.5642*** (-2.80)	-0.5503*** (-2.82)	-0.532**	-0.5207*** (-2.64)	-0.5670*** (-2.83)	-0.5455*** (-2.80)
VOLAT	0.3311***	0.3514***	0.3333***	0.3532***	0.3310***	0.3510***	0.3348***	0.3437***	(-2.63) 0.3379*** (6.10)	0.3489***	0.3335***	0.3420***
SALESGR	-0.5847* (-2.04)	-0.4992* (-1.82)	-0.6767** (-2.23)	-0.6188** (-2.14)	-0.5850** (-2.05)	-0.4968* (-1.81)	-0.5819*** (-3.68)	-0.4867*** (-3.04)	-0.5943*** (-3.35)	-0.4856*** (-2.77)	-0.6134*** (-3.89)	-0.5333 (-3.38)
EPSGR	0.0510* (1.75)	0.0525* (1.71)	0.0375 (1.33)	0.0379 (1.30)	0.0513* (1.75)	0.0523* (1.72)	0.0777***	0.0842***	0.0431** (2.15)	0.0500** (2.56)	0.0828***	0.0869*** (3.84)
		. ,	. ,	. ,	. ,	. ,	. ,					<u> </u>
Const Year-Mon FE Ind FE	Ť	T T T	Ť	T T	Ť	T T	Ť	T T	T T	T T T	Ť	T T T
R2 N	0.22 332410	0.22 332410	0.23 299871	0.23 299871	0.22 332338	0.22 332338	0.16 764150	0.16 764150	0.17 623506	0.17 623506	0.16 760913	0.16 760913

◆□▶ ◆圖▶ ◆意▶ ◆意▶

Supplementary figures and tables

- We provide other tests related to the carbon risks in the US equity market.
- Test (i): carbon premia and other common risk factors
- Test (ii):alternative risk stories
 - After 2016, higher emission firms are more profitable/less financially constrained/have lower product failure risk.
 - Firms need to lay off their brown business and divert to cleaner business that they are unfamiliar with and often more costly.
- Test (iii): Univariate sorting results

Background and Intro

Background and Intro

- We use linear models with the same covariates and firm-fixed identifiers (GVKEYs) to predict GHG.
- Following a similar methodology, we fit a linear model with in-sample data and predict the carbon emissions of non-disclosure firms. We scale the emission of disclosure firms with similarity scores and then estimate the regressions.
- We perform similar pooled-OLS regressions to examine the emission-return relationship before and after 2016.
- Linear models produce noisy fits for data samples before the Paris Agreement, with an average OOS-R2 around 0.18. Moreover, the positive emission-return relationship is insignificant before 2016.
- Linear models produce more significantly negative results post-2016.

Table 7: Carbon premia: sample estimated with linear models

	Carbon emissions estimated by linear models											
Sample period	-	Panel A: 20	02-2016 (bef	fore the Paris	agreement)			Panel B: 20	016-2021 (aft	er the Paris	agreement)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
LOGGHG	0.0064 (0.40)	0.0011 (0.15)					-0.1541*** (-5.96)	-0.1513*** (-3.45)				
GHGGR	(0.40)	(0.13)	0.0610*** (3.72)	0.0653*** (4.05)			(-3.30)	(-3.43)	-0.0311 (-0.47)	0.0203 (0.30)		
GHGINTEN			(3.72)	(4.03)	-0.0009*** (-5.21)	-0.0011*** (-5.65)			(-0.41)	(0.30)	-0.0026*** (-5.26)	-0.0024*** (-4.97)
LOGSIZE	0.0823	0.0677	0.1559 (1.35)	0.1737 (1.47)	0.0620	0.0441	0.3576* (1.81)	0.3660**	0.5110** (2.30)	0.4489** (2.28)	0.3223*	0.2711*
B2M	0.0278 (0.68)	0.037	0.0238	0.0457	0.0190 (0.51)	0.0304	-0.0732 (-0.89)	-0.0739 (-0.94)	-0.0223 (-0.25)	-0.0546 (-0.66)	-0.0757 (-0.91)	-0.1128 (-1.42)
LEVERAGE	0.1677	0.1876 (0.51)	0.1384	0.0549 (0.15)	-0.1329 (-0.31)	-0.0283 (-0.08)	-0.1936 (-0.35)	-0.9025** (-2.14)	-0.1074 (-0.18)	-1.0497** (-2.11)	0.0410	-1.1917** (-3.0)
MOM	-0.2323** (-2.20)	-0.2392** (-2.25)	-0.2443* (-1.87)	-0.2533* (-1.94)	-0.2361** (-2.23)	-0.2440** (-2.28)	-0.5335*** (-2.95)	-0.5801*** (-3.14)	-0.5277*** (-2.94)	-0.5754*** (-3.11)	-0.5305*** (-2.78)	-0.5736*** (-2.98)
INVEST2A	-5.0673***	-4.6147*** (-4.38)	-5.4579*** (-3.07)	-4.4997*** (-3.93)	-4.5832** (-2.44)	-4.6578*** (-4.30)	-6.8024*** (-2.91)	-5.9003** (-1.08)	-5.5817**	-4.3452 (-1.39)	-7.8397***	-5.6403*
ROE	(-2.81) 1.7729*** (6.66)	1.6987***	1.7127*** (6.39)	1.6068***	1.4971***	1.5224*** (6.75)	2.8767*** (7.70)	2.406***	(-2.20) 2.8686*** (7.07)	2.3213*** (11.30)	(-3.34) 2.551*** (6.71)	(-1.96) 2.1861*** (11.79)
HHI	-0.7581 (-1.58)	-2.3831 (-1.06)	0.1170 (0.16)	3.8975 (2.28)	-0.6862 (-1.40)	-2.3919 (-1.07)	-1.0988 (-0.44)	-8.6217 (-0.51)	-0.8969 (-0.38)	-7.2007 (-0.42)	-1.8518 (-0.75)	-7.7877 (-0.47)
LOGPPE	0.1264** (2.16)	0.1443*** (2.84)	0.1312* (1.67)	0.1423** (2.27)	0.1176* (1.86)	0.1150** (2.35)	0.1457 (1.17)	0.2047* (1.93)	-0.0447 (-0.28)	0.1043 (0.83)	-0.0389 (-0.34)	0.1228 (1.21)
BETA	-0.6271*** (-2.71) 0.3144***	-0.6042*** (-2.69)	-0.6081*** (-2.67)	-0.5880*** (-2.64) 0.3382***	-0.6409*** (-2.78)	-0.6067*** (-2.71) 0.3255***	-0.3380 (-1.18) 0.4026***	-0.2141 (-0.71)	-0.2998 (-1.05)	-0.1766 (-0.58)	-0.3447 (-1.25)	-0.2137 (-0.72) 0.4247***
VOLAT	(4 77)	0.3199***	0.3287*** (3.95)	(4.08)	0.3209***	0.3255*** (4.99) -0.5827***	(5.34)	0.4269*** (5.55)	0.3975*** (5.47)	0.4230*** (5.68)	0.4002*** (5.14)	(5.41)
SALESGR	-0.5257*** (-3.59)	(-3.20)	-0.5401*** (-3.56)	-0.4830*** (-3.32)	-0.5610*** (-4.07)	(-4.16)	-0.7503** (-2.00)	-0.6354* (-1.91)	-0.8721** (-2.30)	-0.7284** (-2.21)	-0.7615* (-1.94)	-0.7159** (-2.07)
EPSGR	0.0976*** (3.72)	0.1010*** (3.78)	0.0336 (1.25)	0.038 (1.50)	0.1115*** (4.02)	0.1112*** (3.98)	0.0365 (0.86)	0.0386 (0.99)	0.0229 (0.53)	0.0295 (0.74)	0.0493 (1.30)	0.0444 (1.27)
Const Year-Mon FE	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
Ind FE R2 N	0.16 542066	T 0.16 542066	0.17 397310	T 0.17 397310	0.16 540011	T 0.16 540011	0.16 231285	T 0.16 231285	0.16 208027	T 0.17 208027	0.16 229913	T 0.17 229913

Conclusion •00

- 4 Conclusion

Conclusion

000

Conclusion

- This paper estimates a large panel of scope 1 emission data for listed US firms from 2002 to 2021.
 - Prior to 2016, there is a positive emission-return relationship, and it is more pronounced with XGBoost estimated data.
 - Post-2016, stocks of firms with lower emissions earned higher returns, reflecting a shift in investors' ESG-related preferences.
- XGBoost estimated data outperforms (i) the original data set provided by Trucost and (ii) the data set estimated by linear models.
- We cannot rule out other risk-driven stories: Low emission firms are less profitable/more financially constrained/have higher valuation risk.

Thanks!

Feng Li, Xingjian Zheng

- Background and Intro

- **5** Supplementary figures and tables

- Empirical background: California pioneered sustainable operation by setting emission reduction targets in 2005.
- Until 2022, 23 states followed guickly.
- Emission policies include carbon pricing, emission limits, renewable portfolio standards, and steps to promote cleaner transportation.
- We investigate firms carbon emissions in these Green states before and after the policy shock. We expect to see a significant decrease in these firms.
- Our identification strategy is very similar to a staggered DID as follow:

$$LOGGHG_{i,t} = RegulatoryShock_{i,t} + Controls_{i,t} + \mu_j + \lambda_s + \varepsilon_{i,t}$$
 (5)

[BACK to validation page]

Figure 8: State emission targets

[BACK to validation page]

		LOG	GHG	
	(1)	(2)	(3)	(4)
Regulated	-0.2317*** (-3.66)	-0.3383*** (-5.18)		
RegulateYears	(====)	()	-0.0136*** (-2.93)	-0.0211*** (-3.81)
LOGSIZE	0.3612*** (10.27)	0.3626*** (10.25)	0.3332*** (7.04)	0.3351*** (7.06)
B2M	0.2701*** (7.16)	0.2728***	0.2918*** (4.80)	0.2941***
LEVERAGE	1.0599***	1.0333*** (6.15)	0.9260*** (4.18)	0.9185***
INVEST2A	-1.5413** (-2.39)	-1.4396** (-2.24)	-2.9039*** (-2.74)	(4.15) -2.9326***
ROE	-0.0576	-0.0856	-0.0594	(-2.76) -0.0773
нні	(-0.72) -1.5277*	(-1.07) -1.5027*	(-0.52) -1.2401	(-0.68) -1.2758
PPE	(-1.73) 0.3098***	(-1.71) 0.3118***	(-1.11) 0.3061***	(-1.14) 0.3078***
SALESGR	(8.97) -0.0128	(8.95) -0.0044	(6.47) 0.0190	(6.48) 0.0268
EPSGR	(-0.22) 0.0043 (0.54)	(-0.08) 0.0056 (0.71)	(0.25) 0.0008 (0.07)	(0.36) 0.0014 (0.13)
Const	Т	Т	Т	Т
Ind FE State FE	Т	T T	Т	T T
R2 N	0.11 61739	0.11 61739	0.10 61739	0.09 61739

Transition Matrix

Table 9: Transition matrix of firms in each emission quntiles

	Par	el A: Tran	sition Pro	b. after 1	year		Pan	el B: Tran	sition Prob	after 3 y	ears/
	Q1 L0	Q2 L0	Q3 L0	Q4 L0	Q5 L0		Q1 L0	Q2 L0	Q3 L0	Q4 L0	Q5 L0
Q1 L1	70.94%	14.66%	8.78%	5.37%	1.83%	Q1 L3	59.10%	19.51%	11.95%	8.34%	2.68%
Q2 L1	13.40%	65.16%	17.92%	4.93%	1.09%	Q2 L3	17.40%	52.63%	25.78%	8.42%	1.84%
Q3 L1	8.37%	14.20%	55.93%	19.13%	2.18%	Q3 L3	11.84%	17.91%	41.04%	25.33%	3.39%
Q4 L1	5.33%	4.99%	15.69%	60.75%	11.56%	Q4 L3	8.45%	7.77%	17.96%	46.70%	15.96%
Q5 L1	1.95%	0.98%	1.67%	9.82%	83.34%	Q5 L3	3.21%	2.18%	3.27%	11.21%	76.13%
N	13952	14440	14528	14733	15157	N	10391	11027	11125	11676	12509
	Pan	el C: Tran	sition Prob	after 5 y	ears/		Pan	el D: Tran	sition Prob	after 7 y	ears/
	Q1 L0	Q2 L0	Q3 L0	Q4 L0	Q5 L0		Q1 L0	Q2 L0	Q3 L0	Q4 L0	Q5 L0
Q1 L5	51.45%	21.03%	14.18%	9.86%	2.91%	Q1 L7	46.86%	21.33%	14.59%	10.15%	3.05%
Q2 L5	19.99%	46.58%	28.76%	12.23%	2.29%	Q2 L7	21.68%	43.36%	31.41%	14.25%	3.16%
Q3 L5	14.40%	19.48%	33.71%	26.46%	4.68%	Q3 L7	15.42%	20.23%	29.55%	27.88%	5.29%
Q4 L5	10.15%	9.85%	19.32%	38.50%	18.63%	Q4 L7	11.61%	11.20%	19.85%	34.59%	18.82%
Q5 L5	4.01%	3.06%	4.04%	12.94%	71.49%	Q5 L7	4.43%	3.87%	4.60%	13.14%	69.69%
N	7805	8356	8500	9093	10148	N	5849	6248	6463	7055	8135

[BACK to validation page]

[Supplementary auto-correlation test]

Emission persistency with auto-correlation test

We follow Bolton and Kacperczyk (2021a) by examining the auto-correlation of carbon emissions.

Table 10: Emission persistency with auto-correlation test

	LOG	GHG _t	GHO	GGR _t	GHGII	VTEN _t
	(1)	(2)	(3)	(4)	(5)	(6)
$LOGGHG_{t-1}$	0.6881*** (35.21)	0.5448*** (24.15)				
GHGGR_{t-1}	(99.22)	(=)	-0.0974*** (-13.87)	-0.1088*** (-15.96)		
$\mathit{GHGINTEN}_{t-1}$			(-13.67)	(-15.90)	0.7407*** (40.16)	0.7024*** (33.66)
Const	Т	Т	Т	Т	Т	Т
Control		Т		Т		Т
Year FE	Т	Т	Т	Т	Т	Т
R2	0.49	0.40	0.01	0.02	0.59	0.58
N	76113	63463	54499	48103	71256	63283

Emission determinants comparison

Table 11: Comparison of the determinants of carbon emission

	LOG	GHG	GH	GGR	GHG_	INTEN
	(1)	(2)	(3)	(4)	(5)	(6)
LOGSIZE	0.3414***	0.3542***	-0.0038*	-0.0052	-0.3366***	-1.9057***
	(14.06)	(11.23)	(-1.86)	(-0.25)	(-5.61)	(-11.28)
B2M	0.1554***	0.177***	-0.0011	-0.0228***	-0.1300***	-0.5718**
	(12.56)	(12.47)	(-0.58)	(-3.37)	(-2.76)	(-7.30)
ROE	0.2726***	-0.0876	-0.0264***	-0.1110***	-0.1391	-5.9785**
	(5.42)	(-1.19)	(-3.52)	(-2.23)	(-1.04)	(-8.28)
LEVERAGE	0.9781***	1.0461***	Ò.0015	0.0233	Ò.1629	-6.2313***
	(8.38)	(7.08)	(0.17)	(0.41)	(0.60)	(-7.57)
INVEST2A	-4.1697***	-2.2379***	0.0464	-0.2078	-4.7228***	5.0805
	(-8.31)	(-3.49)	(0.42)	(-0.75)	(-2.36)	(1.08)
HHI	0.4701	-2.3518***	0.3405***	-Ò.6824*	-0.4627	2.8716
	(0.98)	(-2.38)	(3.73)	(-1.75)	(-0.56)	(0.57)
LOGPPE	0.4958***	0.3356***	0.0009	Ò.0007	0.3357***	-0.8784**
	(19.90)	(11.14)	(0.49)	(0.09)	(7.54)	(-5.18)
SALESGR	-0.0902*	-0.0275	0.8895***	0.5855***	-0.0828	-1.7184**
	(-1.71)	(-0.61)	(19.84)	(5.41)	(-0.64)	(-3.82)
EPSGR	-0.0044	0.0082	-0.0025**	-0.0001	0.0186	0.3005***
	(-1.07)	(0.98)	(-2.03)	(-0.02)	(1.30)	(5.59)
Const	Т	Т	Т	Т	Т	Т
Year FE	T	T	T	T	T	Т
Ind FE	T	T	T	T	T	Т
R2	0.56	0.13	0.28	0.01	0.01	0.12
N	29146	67912	26089	54992	29143	67720
Data sample	Trucost	XGB	Trucost	XGB	Trucost	XGB

Emission and ESG fund inclusion

Table 12: Carbon emission and inclusion into ESG-related fund

		Total inclusion	1	Average inclusion				
	(1)	(2)	(3)	(4)	(5)	(6)		
LOGGHG	-0.0752* (-1.72)	-0.1465*** (-3.36)	-0.1336*** (-3.33)	-0.0001 (-0.08)	-0.0027* (-1.84)	-0.0025* (-1.77)		
Ю	, ,	` ′	0.0700*** (7.38)	, ,	,	0.0102** (6.01)		
Controls	Т	Т	Т	Т	Т	Т		
Ind FE	T	T	T	T	T	Т		
Year FE		T	T		T	Т		
R2 N	0.50 67912	0.52 67912	0.57 67912	0.68 67912	0.71 67912	0.72 67912		

Fitted vs. predication: out-of-sample

XGBoost training results

Machine learning performance.

005 R2 = 0.83

000 R2 = 0.83

000 R2 = 0.83

000 R2 = 0.83

Figure 9: XGBoost learning curve

Figure 10: Fitted vs. Disclosed

[BACK TO PREVIOUS PAGE]

Variable importance contribution plot.

Figure 11: Importance plot

Figure 12: SHAP value plot

[BACK TO PREVIOUS PAGE]

mean test score 0.98 0.96 0.94 인.92 · 0.90 0.88 0.86 tree depth

Test score by max depth

Figure 13: Cross-validation test on learning rate

Figure 14: Cross-validation test on tree depth

Training with different partitioning period.

Fitted vs. predication: out-of-sample Fitted vs. disclosed - 45-degree fitted line 0.8 0.6 e 0.4 005 R2 = 0.831.0 Predicted GHG emission

Figure 15: OOS validation (Training set: 2002-2017)

Figure 16: OOS validation (Training set: 2002-2019)

Model comparison:XGBoost versus Linearmode1s.

Figure 17: XGBoost model density

Figure 18: Linear model density

[BACK to validation page]

SAIF

Business similarity and emission similarity.

Figure 19: Prediction only with similarity score

Figure 20: Prediction with random similarity score

[BACK to validation page]

Carbon emission and Asset prices

• Correlation matrix.

Table 13: Correlation matrix

	LOGGHG	GHGINTEN	LOGSIZE	LEVERAGE	INVEST2A	ROE	нні	LOGPPE	B2M	SALESGR	EPSGR
LOGGHG	1.00										
GHGINTEN	0.23	1.00									
LOGSIZE	0.32	-0.30	1.00								
LEVERAGE	-0.01	-0.09	0.07	1.00							
INVEST2A	0.25	0.03	0.08	-0.09	1.00						
ROE	0.08	-0.16	0.27	0.14	0.05	1.00					
HHI	0.00	0.02	-0.03	-0.08	-0.03	-0.04	1.00				
LOGPPE	0.47	-0.25	0.69	0.23	0.39	0.23	-0.05	1.00			
B2M	0.10	-0.03	-0.18	0.08	0.04	0.00	-0.01	0.23	1.00		
SALESGR	0.00	-0.01	0.08	-0.06	0.06	0.05	0.00	-0.04	-0.07	1.00	
EPSGR	0.02	-0.04	0.15	-0.04	-0.02	0.26	-0.02	0.05	-0.06	0.19	1.00

[BACK TO PREVIOUS PAGE]

Carbon premia and common risk factors

- We estimate the following regression, where the premia are estimated from monthly cross-sectional regressions from equation 3.
- We especially examine the post-2016 period in panel B.

$$RiskPrem_t = \alpha + Factor_{i,t} + \varepsilon_t \tag{6}$$

Table 14: Carbon premia and common risk factors

			Panel A:	2002-20	21				Panel B: 20	16-2021		
	LOG	GHG	GHG	GR	GHGI	NTEN	LOG	GHG	GHGG	GR	GHGI	NTEN
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Intercept	-0.0209 (-1.53)	-0.0135 (-1.06)	0.0214* (1.79)	0.0158 (1.36)	-0.012*** (-4.01)	-0.0132*** (-4.35)	-0.0957*** (-8.02)	-0.0796*** (-4.85)	0.0274 (1.34)	0.0171 (0.71)	-0.0272*** (-5.68)	-0.0288*** (-6.23)
RMRF	0.0013 (0.64)	(=:==)	-0.0003 (-0.10)	()	-0.0006 (-1.17)	()	0.0093*** (2.95)	()	-0.0151*** (-2.81)	(*)	-0.0001 (-0.10)	()
SMB	-0.0079 (-1.54)		-0.0022 (-0.33)		-0.0037*** (-3.49)		-0.0218*** (-2.56)		0.0032 (0.27)		-0.0081*** (-6.05)	
HML	-0.0065		-0.0146**		-0.0004		-0.0036		-0.0224***		Ò.0004	
RMW	(-1.42) 0.0055 (1.16)		(-2.29) -0.0064 (-1.12)		(-0.30) 0.0003 (0.23)		(-0.53) 0.0082 (1.20)		(-3.13) 0.0131 (1.00)		(0.23) -0.0023 (-1.12)	
CMA	0.0153** (2.57)		-0.0146* (-1.69)		-0.0022* (-1.80)		0.0256** (2.37)		-0.0166* (-1.96)		-0.0034** (-2.10)	
BAB	0.0046 (1.31)		-0.0057 (-1.23)		0.0001 (0.01)		0.0052 (0.76)		-0.0119 (-1.10)		-0.0003 (-0.17)	
LIQ	0.001 (0.39)		-0.0032 (-0.86)		0.0003 (0.53)		-0.0035 (-0.95)		0.0116 (1.66)		-0.0011** (-1.93)	
Mom	0.0001 (0.05)		0.0008 (0.29)		-0.0001 (-0.27)		0.0046 (1.10)		-0.0042 (-0.47)		-0.0020* (-1.89)	
R2 N	0.10 240	0.00 240	0.10 228	0.00 228	0.14 240	0.00 240	0.33 72	0.00 72	0.28 72	0.00 72	0.33 ′ 72	0.00 72

[BACK to previous page]

4□→ 4周→ 4 => 4 => 9 q

Alternative risk stories

- The structural mutation in carbon premia may not be only driven by a shift in investors' ESG preference.
- Higher emission firms may be more profitable/less financially constrained/product failure risks...etc.
 - Reasoning: Firms need to adopt ESG technologies after the Paris Agreement because of regulatory changes.
 - Firms need to lay off their brown business and divert to cleaner business that they are unfamiliar with and often more costly.
- We estimate the following regression,

$$Risk_{i,t} = Const + GHG_{i,t} + POST_t + GHG_{i,t} \times POST_t + Controls_{i,t-1} + \varepsilon_{i,t},$$
 (7)

where the dependent variable includes different risks such as profitability/liquidity/solvency/innovation/valuation, and we interact with firms' carbon emission with a time dummy after the Paris Agreement.

Table 15: Carbon emission and asset prices: alternative risk stories

			XGBoos	st sample		
Dep.Var	Profit	margin	Operat	ting CF	R	&D
	(1)	(2)	(3)	(4)	(5)	(6)
LOGGHG	-0.0089*** (-6.36)	0.0005 (0.33)	-0.0004* (-1.79)	-0.0002 (-1.09)	0.0009*** (6.21)	0.0003** (2.33)
LOGGHG*POST	0.0487*** (5.76)	0.0366***	0.0049*** (5.92)	0.0033***	-0.0022*** (-5.44)	-0.0008*** (-3.70)
POST	-0.5982*** (-7.31)	-0.4361*** (-6.67)	-0.0768*** (-6.66)	-0.0587*** (-5.35)	0.0250*** (5.53)	0.0095***
LOGSIZE	-0.0445*** (-6.62)	-0.029*** (-3.86)	-0.0011 (-1.14)	0.0035*** (3.33)	0.0126***	0.0075***
B2M	-0.0048 (-1.56)	-0.0081** (-2.54)	-0.0031*** (-5.47)	-0.0011** (-2.20)	0.0012*** (2.63)	0.0015***
ROE	1.6349*** (20.94)	1.2696*** (25.82)	0.2988*** (32.03)	0.2585*** (31.94)	-0.1023*** (-20.79)	-0.0487*** (-14.81)
LEVERAGE	0.5333*** (6.06)	0.3014*** (4.85)	-0.0292*** (-2.84)	-0.0151* (-1.96)	-0.0792*** (-23.54)	-0.0001 (-0.03)
INVEST2A	-0.2785* (-1.76)	-0.0476 (-0.32)	0.3801***	0.3386***	-0.0209 (-1.41)	0.0575***
нні	-0.3902*** (-3.96)	-0.1018 (-0.70)	0.0119	-0.0415* (-1.79)	0.0887***	-0.0058 (-0.57)
LOGPPE	0.0546*** (8.85)	0.0557*** (7.94)	0.0134*** (14.19)	0.0097***	-0.0129*** (-16.94)	-0.0097*** (-17.08)
SALESGR	0.0221 (0.80)	0.1681*** (5.39)	0.0264*** (4.41)	0.0395*** (8.03)	0.0271***	0.0143***
EPSGR	-0.0252*** (-5.52)	-0.0131*** (-4.52)	-0.0047*** (-5.83)	-0.0032*** (-5.07)	0.0033*** (9.51)	0.0017*** (8.84)
Const Ind FE	Т	T T	Т	T T	Т	T
R2 N	0.22 67720	0.35 67720	0.39 67356	0.60 67356	0.10 67911	0.24 67911

			XGBoost s	sample		
Dep.Var	Solv	ency	Tobi	n's Q	Divid	payout
	(7)	(8)	(9)	(10)	(11)	(12)
LOGGHG	-0.7007***	-0.1924	-0.001	-0.0124***	-0.0037***	-0.0012
LOGGHG*POST	(-3.70) 1.246** (2.46)	(-1.06) 1.0284** (2.20)	(-0.37) -0.0121** (-2.13)	(-4.41) -0.0089 (-1.51)	(-2.72) 0.0058*** (2.86)	(-0.87) 0.0056** (2.74)
POST	-21.2084***	-17.5476***	0.2503***	0.1798**	-0.1027***	-0.0942**
LOGSIZE	(-3.48) 4.7327*** (5.67)	(-3.10) 4.2763*** (4.86)	(2.87) 0.4184*** (19.61)	(2.08) 0.4686*** (21.07)	(-3.33) 0.0891*** (14.99)	(-3.32) 0.0796** (12.45)
B2M	0.9898*	0.722	0.0211**	0.0678***	0.0112***	0.0064*
ROE	(1.78) 55.2045***	(1.39) 45.1487***	(2.28) -0.3129***	(8.44) -0.0245	(3.13) 0.4342***	(1.74) 0.3837**
LEVERAGE	(18.98) -105.5669*** (-11.91)	(15.74) -112.1008*** (-13.43)	(-6.40) -0.8742*** (-10.39)	(-0.55) 0.019 (0.24)	(24.11) 0.2578*** (9.26)	(19.96) 0.0899** (3.29)
INVEST2A	81.4961***	100.5752***	5.4758***	5.497***	-0.4401***	-0.5383**
нні	(4.76) 7.5768	(5.73) -16.6693	(15.90) 1.8527***	(17.46) 0.8196**	(-3.12) -0.0701	(-3.33) -0.0173
LOGPPE	(0.61) -1.8233** (-2.39)	(-0.79) -0.8269 (-0.98)	(7.85) -0.2960*** (-19.40)	(2.59) -0.3662*** (-21.30)	(-0.78) -0.0251*** (-4.56)	(-0.09) -0.008 (-1.32)
SALESGR	3.3622**	8.3616***	0.3992***	0.3027***	-0.2147***	-0.194***
EPSGR	(2.04) 0.2583 (1.12)	(5.13) 0.6511*** (3.11)	(14.18) 0.0141** (2.47)	(11.51) 0.0062 (1.35)	(-9.01) 0.022*** (7.39)	(-8.33) 0.0234** (7.67)
Const Ind FE	Т	Ţ	Т	Ţ	Т	Ţ
R2 N	0.08 51379	0.16 51379	0.08 67873	0.27 67873	0.17 63766	0.20 63766

Table 16: Univariate sorting results

			Panel A: Sorting	g results based	on XGBoost est	mated data		
Portfolio	VW return	EW return	LOGGHG	GHGGR	GHGINTEN	SALE	AT	LOGSIZE
Lo	0.6336* (1.78)	1.1785*** (2.81)	3.98	-0.16	1.39	746.49	1980.58	12.55
2	0.8837***	1.1544*** (2.85)	9.74	0.30	6.59	1515.48	2453.22	13.11
3	0.7291** (2.31)	1.0347** (2.51)	10.98	0.51	9.03	2322.34	3121.30	13.35
4	0.7652*** (2.92)	1.0837*** (2.80)	12.20	0.62	9.97	5541.45	7575.81	13.88
Hi Hi-Lo	0.5343** (2.02) -0.0993 (-0.49)	0.8782** (2.36) -0.3003 (-1.41)	14.55	0.54	11.21	19320.72	27068.58	14.99
Portfolio	LEVERAGE	B2M	INVEST2A	ROE	нні	LOGPPE	SALESGR	EPSGR
Lo	0.49	0.73	0.03	-0.08	0.10	3.18	0.12	-0.13
2	0.50	0.88	0.04	-0.04	0.10	4.04	0.11	-0.12
3	0.54	0.81	0.05	0.00	0.10	4.75	0.11	-0.08
4	0.58	1.06	0.06	0.07	0.10	5.92	0.10	0.01
Hi	0.64	1.69	0.06	0.10	0.09	7.87	0.08	0.07

Carbon emission and Asset prices

Portfolio	VW return	EW return	LOGGHG	GHGGR	GHGINTEN	SALE	AT	LOGSIZE
Lo	0.6336* (1.78)	1.1785*** (2.81)	3.98	-0.16	1.39	746.49	1980.58	12.55
2	0.8837***	1.1544*** (2.85)	9.74	0.30	6.59	1515.48	2453.22	13.11
3	0.7291** (2.31)	1.0347** (2.51)	10.98	0.51	9.03	2322.34	3121.30	13.35
4	0.7652*** (2.92)	1.0837*** (2.80)	12.20	0.62	9.97	5541.45	7575.81	13.88
Hi Hi-Lo	0.5343** (2.02) -0.0993 (-0.49)	0.8782** (2.36) -0.3003 (-1.41)	14.55	0.54	11.21	19320.72	27068.58	14.99
Portfolio	LEVERAGE	B2M	INVEST2A	ROE	нні	LOGPPE	SALESGR	EPSGR
Lo	0.49	0.73	0.03	-0.08	0.10	3.18	0.12	-0.13
2	0.50	0.88	0.04	-0.04	0.10	4.04	0.11	-0.12
3	0.54	0.81	0.05	0.00	0.10	4.75	0.11	-0.08
4	0.58	1.06	0.06	0.07	0.10	5.92	0.10	0.01
Hi	0.64	1.69	0.06	0.10	0.09	7.87	0.08	0.07

