Wstępny projekt architektury

1. O projekcie

Nazwa projektu: Domowa stacja meteo z wykorzystaniem modułów Arduino. Home weather station using Arduino modules.

Celem projektu jest opracowanie oraz realizacja domowej stacji meteo z wykorzystaniem modułów Arduino, jako stacja bazowa oraz układ czujników wyposażony w typowe czujniki dla tego typu stacji. Wymiana danych pomiędzy układem czujników oraz stacją bazową powinna odbywać się bezprzewodowo. Zaproponowane rozwiązanie powinno zapewnić, jak najdłuższy czas pracy układu z czujnikami na zasilaniu bateryjnym. Prezentacja danych pomiarowych powinna odbywać się na stacji bazowej za pomocą wybranego układu wyświetlacza.

Ograniczenia:

- 1) Ograniczenia projektowe:
 - a) Zespół projektowy liczy 3 osoby.
 - b) Maksymalny koszt realizacji projektu to 250 zł.
 - c) Dostarczenie dokumentacji projektowej specyfikacja techniczna systemu(spis wymagań wobec systemu oraz opis ich realizacji),
 - d) instrukcja obsługi dla poszczególnych użytkowników, słownik pojęć.
- 2) Ograniczenie sprzetowe i programowe:
 - a) System musi być kompatybilny z Arduino IDE.
 - b) Komunikacja z światem zewnętrznym przez zewnętrzny układ.

2. Proponowana architektura i technologie prototypu architektonicznego

- Rodzaj architektury:
 - o Architektura komponentowa
- Zastosowane technologie:
 - o C++/Arduino IDE
- Uzasadnienie:
 - Programowanie odbywa się najczęściej za pośrednictwem Arduino IDEbazującym na projekcie Processing. Standardowo IDE Arduino zawiera bibliotekę C/C++o nazwie "Wiring", dzięki czemu wykonywanie podstawowych operacji wejścia/wyjścia staje się znacznie łatwiejsze. Wewnątrz Arduino IDE kod programu jest pośrednio kompilowany przez avr-gcc, a następnie wgrywany do podłączonej płyty Arduino. IDE działa wtedy jako emulator terminala szeregowego, pozwalając na interakcję z pracującym Arduino. Komponenty mogą być wykorzystane w wielu aplikacjach. Każdy komponent może zawierać swoją własną konfigurację i być konfigurowany w różny sposób dla różnych aplikacji.
- Model architektury

3. Wybór funkcji produktu do prototypu architektonicznego

3.1. Atrybuty jakości

Sprawność

 Ta własność obejmuje "zespół właściwości odnoszących się do wzajemnego stosunku pomiędzy poziomem usług świadczonych przez oprogramowanie a wielkością użytkowanych zasobów w określonych warunkach". Z własnością tą łączą się pojęcia takie jak czas odpowiedzi, wielkość użytkowanych zasobów (obszar pamięci, przestrzeń na dysku, sprzęt, użytkowane usługi lub wsparcie logistyczne, itp.).

Niezawodność oprogramowania

Obejmuje ona "zespół właściwości odnoszących się do zdolności oprogramowania do utrzymania poziomu usług zgodnego z ustalonymi warunkami i w czasie ustalonego okresu czasu". Z własnością tą łączą się pojęcia takie jak tolerancja błędów, możliwość odtworzenia stanu obliczeń po awarii, częstość awarii.

Skalowalność

 Jest to zdolność do takiej rozbudowy systemu aby pracował z akceptowalną wydajnością. Rozbudowę można przeprowadzić przez dołączanie kolejnych czujników (np. Czujnik prędkości powietrza, czujnik nasłonecznienia).

Łatwość użytkowania

 Obejmuje ona "zespół właściwości odnoszących się do wysiłku niezbędnego do użytkowania i do indywidualnej oceny tego użytkowania przez określony jawnie lub domniemany zbiór użytkowników". Z własnością tą łączą się pojęcia takie jak łatwość zrozumienia, łatwość szkolenia i łatwość eksploatacji.

Utrzymywalność

 Własność ta odnosi się do wysiłku niezbędnego przy wprowadzaniu modyfikacji do oprogramowania. Z własnością tą łączą się pojęcia takie jak: łatwość analizy oprogramowania, łatwość modyfikacji, stabilność oprogramowania przy modyfikacjach czy łatwość testowania.

4. Podejście do testowania prototypu architektonicznego

(infrastruktura i metoda testowania prototypu)

4.1. Metody i techniki testowania

Atrybut	Kto?	Jak?	Dostęp do produktu	Automatyczne?
Niezawodność	Amadeusz Chmielowski	Wywoływanie zdalne PSOD'a/BSOD'a a następnie sprawdzanie funkcji sensorów i działania systemu/	Zdalny	
Sprawność	Władysław Jakołcewicz	Puszczenie kodu mierzącego obciążenie procesora i pamięci.	Zdalny	/
Skalowalność	Aleksy Lisowski	Dodanie do arduino kolejnego sensora, korzystającego z jednego z obsługiwanych przez Arduino UNO interfejsów (np. I2C)	Bezpośredni	
Łatwość użycia	Władysław Jakołcewicz	Podłączenie sprzętu do prądu, obserwowanie wyników na ekranie arduino	Bezpośredni	
Utrzymywalność	Amadeusz Chmielowski	Wgranie zmian do funkcji poprzez serwer zdalny podłączony do arduino za pomocą USB	Zdalny	

4.2. Środowisko i narzędzia

- Środowisko sprzętowe:
 - o Arduino UNO
 - o Sensor BME-280
 - o Moduł BT HC-05
 - o Server z Win10
- Środowisko programowe:
 - o Arduino IDE
 - Python (Pycharm i pytest)
 - arduino_testsuite (python package for arduino unit test's)
- Narzędzia do automatyzacji:
 - Kolejka webowa z możliwością puszczania testów na podłączonym do serwera osprzęcie
- Narzędzia do zgłaszania błędów:
 - o JIRA