代数结构 HW8 答案

张朔宁

May 3, 2025

20. 设 A_4 是全体 4 元偶置换构成的群,请列出它的全部元素

\mathbf{M} . A_4 的元素如下:

恒等置换:Id

所有 3-轮换(共 8 个): (123), (132), (124), (142), (134), (143), (234), (243) 两个不相交对换的乘积(共 3 个): (12)(34), (13)(24), (14)(23) 故:

 $A_4 = \{Id, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)\}.$

22. 证明:整数加群 Z 与偶数加群 2Z 同构

Proof. 定义映射 $\varphi: \mathbb{Z} \to 2\mathbb{Z}$,令 $\varphi(n) = 2n$ 验证单射:若 $\varphi(m) = \varphi(n)$,则 $2m = 2n \Rightarrow m = n$ 验证满射:任意 $k \in 2\mathbb{Z}$,都有 k = 2n 对某个 $n \in \mathbb{Z}$,即 $\varphi(n) = k$ 验证同态:对任意 $m, n \in \mathbb{Z}$,有

$$\varphi(m+n) = 2(m+n) = 2m + 2n = \varphi(m) + \varphi(n)$$

П

因此, φ 是一个同构映射, 故 \mathbb{Z} 与 $2\mathbb{Z}$ 同构

23. 证明:群的同构关系是一种等价关系

Proof. 设 G_1,G_2,G_3 是群,验证等价关系的三条性质即可自反性:恒等映射 $\mathrm{id}_G(g)=g$ 是同构映射

对称性:若 $\varphi:G_1\to G_2$ 是同构映射,则其逆映射 $\varphi^{-1}:G_2\to G_1$ 也是同构映射 传递性:若 $\varphi:G_1\to G_2$ 、 $\psi:G_2\to G_3$ 均为同构映射,则复合映射 $\psi\circ\varphi:G_1\to G_3$ 是同构映射

故群的同构是一种等价关系

26. 在群 $\langle G, * \rangle$ 中定义新的二元运算 \bullet , 令

$$a \bullet b = b * a$$
.

证明: $\langle G, \bullet \rangle$ 是群, 且与 (G, *) 同构

Proof. (1) 证明 $\langle G, \bullet \rangle$ 是群:

封闭性: $b*a \in G$,因为 G 对 * 封闭结合律:

$$(a \bullet b) \bullet c = (b * a) \bullet c = c * (b * a)$$
$$a \bullet (b \bullet c) = a \bullet (c * b) = (c * b) * a$$

单位元: $e\in G$,有 $a\bullet e=e*a=a$, $e\bullet a=a*e=a$ 逆元:设 a^{-1} 是 a 的逆元,则:

$$a \bullet a^{-1} = a^{-1} * a = e, \quad a^{-1} \bullet a = a * a^{-1} = e$$

故 (G, ●) 是群

 $(2) \ \, \mathbb{E} \\ 义 映 射 \,\, \varphi : G \to G, \ \, \varphi(a) = a^{-1}$

对任意 $a,b \in G$, 有

$$\varphi(a * b) = (a * b)^{-1} = b^{-1} * a^{-1} = \varphi(a) \bullet \varphi(b)$$

下面验证 φ 是双射

单射: $\varphi(a)=\varphi(b)\Rightarrow a^{-1}=b^{-1}\Rightarrow a=b$ 满射:对任意 $c\in G,\ \varphi(c^{-1})=c$

故 φ 是同构, $(G,*)\cong (G,\bullet)$

1. 设 H 是交换群 G 的子群,证明:H 的每个左陪集也是一个右陪集

Proof. 对任意 $a \in G$,左陪集为 $aH = \{ah \mid h \in H\}$,右陪集为 $Ha = \{ha \mid h \in H\}$ 因为 G 是交换群,ah = ha,所以 aH = Ha

- 2. 设 $H \in G$ 的子群, $a,b \in G$ 证明以下命题等价:
 - (1) $a^{-1} * b \in H$
 - $(4) \ a \in bH$

 $(4) \Rightarrow (1)$:若 $a \in bH$, 则存在 $h \in H$, 使得 a = b * h, 即 $b^{-1} * a = h \in H$, 等价于 $a^{-1} * b \in H$