18.06 - Review for final exam

Sam Turton

May 14, 2019

(Fall 2018 final, Q2): The real $m \times n$ matrix A has a QR factorization A = QR of the form

$$Q = \begin{pmatrix} q_1 & q_2 & q_3 & q_4 & q_5 & q_6 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & -2 & 2 & 0 & 0 & 0 \\ 2 & -3 & 0 & 0 & 0 & 0 \\ & 1 & 0 & 0 & 0 & 0 \\ & & & 3 & 1 & -1 \\ & & & & 1 & 2 \\ & & & & 1 \end{pmatrix},$$

where $q_1, ..., q_6$ are six orthonormal vectors in \mathbb{R}^m .

- (a) Give as much true information as possible about m, n, and the rank of A.
- (b) If a_5 is the 5th column of A, write it in the basis $q_1, ..., q_6$, i.e. write it as $a_5 = c_1q_1 + c_2q_2 + ... + c_6q_6$, by giving the numerical values of the coefficients $c_1, ..., c_6$.
- (c) What is $||a_5||$?
- (d) This pattern of zero entries in R means that columns of A must be to columns of A
- (e) If A is a square matrix, what is $|\det A|$ (the absolute value of the determinant)?

- (a) (Spring 2018 exam 2, Q3): The compact singular value decomposition of a rank r, $m \times n$ matrix A is $U\Sigma V^T$ where Σ is square r by r with positive diagonal entries, U is $m \times r$ and V is $n \times r$. Write down projection matrices for the four fundamental subspaces of A, in terms of one of U, Σ , or V in each expression. Be sure to clearly identify which fundamental subspace of A goes with which projection matrix.
- (b) **(Fall 2013 final, Q1):** Project *b* onto the column space of *A*. Do **not** compute a projection matrix for either:

•
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $b = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$.

•
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix}$.

(Spring 2017 exam 1, Q2): Circle which of the following statements might possibly be true. Give an example of a possible matrix A for each possibly true statement.

- (a) Ax = b has a unique solution for a 5×3 matrix A.
- (b) Ax = b has a unique solution for a 3×5 matrix A.
- (c) Ax = b is not solvable for any b.
- (d) Ax = b is not solvable for any $b \neq 0$.

(Spring 2018 exam 3, Q2, adapted): Prove that $\sum_i \sigma_i^2 = \sum_{i,j} a_{ij}^2$ (Hint: Consider $\text{Tr}(A^T A)$). In all cases find a two by two matrix which has the given eigenvalues and the given singular values or explain why it is impossible.

- 1. $\lambda = 0, 1, \sigma = 1, 1.$
- 2. $\lambda = 0, 1, \, \sigma = 0, \sqrt{2}$.
- 3. $\lambda = 0, 0, \sigma = 0, 2018$.
- 4. $\lambda = 4, 4, \sigma = 3, 5.$

(Fall 2014 exam 2, Q2): Let
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

- (a) Calculate the determinant det(A).
- (b) Explain why A is an invertible matrix. Find the entry (2,3) of the inverse matrix A^{-1} .
- (c) Notice that all sums of entries in rows of A are the same. Explain why this implies that $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ is an eigenvector of A. What is the corresponding eigenvalue λ_1 ?
- (d) Find two other eigenvalues λ_2 and λ_3 of A.
- (e) Find the projection matrix P for the projection onto the column space of A.

(Spring 2019 exam 2, Q2):

- 1. Compute the gradient of $f(x) = x^T x + \text{sum}(x)$ without the use of indices.
- 2. Consider the nonlinear matrix function $f(A) = A^T A$. It is possible to write df as a linear transformation of dA. What is that linear transformation?