Apunts d'Equacions diferencials ordinàries

ALEIX TORRES I CAMPS

Pau Martín (p.martin@gmail.com), Marcel Guardia i Rafael Ramírez

${\rm \acute{I}ndex}$

1	Ten	na 1: Introducció i definicions bàsiques	2
	1.1	Sistemes autònoms i no autònoms	2
	1.2	Problema de Cauchy o problema de valors inicials	3
	1.3	Interpretació geomètrica d'una e.d.o	3
	1.4	Exemples importants	3
2	Sist	temes lineals d'e.d.o.'s	4
	2.1	Motivació	4
	2.2	Propietats elementals	4
		E.d.o's lineals unidimensionals	
	2.4	Sistemes lineals de dimensió qualsevol (finita)	7
		2.4.1 Sistemes homogenis	
		2.4.2 Sistemes no homogenis	
		2.4.3 Sistemes lineals amb coeficients constants	

1 Tema 1: Introducció i definicions bàsiques

Definició 1. Una equació diferencial és una equació que involucra una funció incógnita i les seves derivades.

Exemple 1. Alguns exemples d'equacions diferencials:

- 1. $y(x), x \in \mathbb{R} \text{ amb } y''(x) y(x) = 0$
- 2. $y''(x) = -\sin(y(x))$
- 3. $y''(x) = -\sin(y(x)) + \cos(x)$
- 4. $\frac{\delta^2 z}{\delta x^2} + \frac{\delta^2 z}{\delta y^2} = 0$ on la incògnita és una funció de dues variables z(x, y).

Definició 2. Una e.d.o. és una equació diferencial de la forma:

- 1. Forma implícita: $g(x, y(x), \dots, y^{(n)}(x)) = 0$ on la incògnita és una funció $y(x) = (y_1(x) \dots y_m(x))^t$ d'una variable unidimensional x. Per tant, $g: U \in \mathbb{R} \times (\mathbb{R}^m)^{n+1} \to \mathbb{R}^m$.
- 2. Forma explícita: $y^{(n)}(x) = f(x, y(x), \dots, y^{n-1}(x))$. Ara $f: V \in \mathbb{R} \times (\mathbb{R}^m)^n \to \mathbb{R}^m$

Nota 2. A partir d'ara treballarem amb només la forma explícita. La qual abreviarem com $y^{(n)} = f(x, y, \dots, y^{n-1})$

Definició 3. Direm que $\varphi:(a,b)\to\mathbb{R}^m$ és una solució si φ és n vegades derivable i:

$$\varphi^{(n)}(x) = f(x, \varphi(x), \dots, \varphi^{(n-1)}(x)), \forall x \in (a, b)$$

Implícitament demantarem que:

$$\{(x, \varphi(x), \dots, \varphi^{n-1}(x)) | x \in (a, b)\} \subset Dom f$$

La solució general és el conjunt de totes les seves solucions.

Definició 4. Es diu que l'e.d.o. $y^{(n)} = f(x, y, \dots, y^{(n-1)})$ on $y = (y_1 \cdots y_m)^t$ és un sistema d'e.d.o's de m components, d'ordre n.

Nota 3. Sigui $y = (y_1 \cdots y_m)$, aleshores, $y^{(n)} = f(x, y, \dots, t^{(n-1)})$ és equivalent a un sistema de $n \times m$ e.d.o.'s d'ordre 1.

Demostració. En efecte, sigui $z_1 = y$ (vector de m components), $z_2 = y', \dots, z_n = y^{(n-1)}$. Per tant, a $z = (z_1, \dots, z_n)^t$ hi ha un total de $n \times m$ components.

Com que $z_1' = (y)' = y' = z_2$ i, anar fent, $z_{n-1}' = (y^{(n-2)})' = y^{(n-1)} = z_n$ i $z_n' = (y^{(n-1)})' = y^{(n)} = f(x, y, \dots, y^{(n-1)}) = f(x, z_1, \dots, z_n)$. Ens queda l'e.d.o. z' = g(x, z) que realment acaba sent $(z_1' \ z_2' \ \cdots \ z_n')^t = (z_2 \ z_3 \ \cdots \ z_n \ f(x, z_1, \cdots, z_n))^t$.

Exemple 4. y'' = -sin(y). Aleshores, $z_1 = y$ i $z_2 = y'$. Podem prendre per sistema d'equacions $z'_1 = z_2$ i $z'_2 = -sin(z_1)$.

1.1 Sistemes autònoms i no autònoms

Definició 5. Direm que una e.d.o. és autònoma si és de la forma y' = f(y) (equació que no depen de x). Direm que un sistema es no autònom si y' = f(x, y).

Proposició 6. Siguin y' = f(y) una e.d.o autònoma i $\varphi : (a,b) \to \mathbb{R}^n$ una solució. Llavors, $\forall x \in \mathbb{R}$ i $\varphi_{\alpha} : (a + \alpha, b + \alpha) \to \mathbb{R}^n$ per $x \mapsto \varphi_{\alpha}(x) = \varphi(x - \alpha)$ també és solució.

Demostració. En efecte: $\varphi'_{\alpha}(x) = \varphi'(x - \alpha) = f(\varphi(x - \alpha)) = f(\varphi_{\alpha}(x)).$

Nota 5. Podem transformar el sistema d'ordre 1 i n incògnites d'e.d.o's no autònom y' = f(x,y), en un sistema d'e.d.o's autónom d'ordre 1 i n + 1 incògnites.

Demostració. En efecte, fem $z_1 = x$ i $z_2 = y$. Aleshores, amb $z = (z_1 \ z_2)^t$ compleix que $z' = (z'_1 \ z'_2)^t = (1 \ f(x,y))^t = (1 \ f(z))^t = F(z)$, que és un e.d.o. d'ordre 1 amb n+1 incògnites.

1.2 Problema de Cauchy o problema de valors inicials

Definició 7. Sigui $U \subset \mathbb{R} \times \mathbb{R}^n$ un obert i $f: U \to \mathbb{R}^n$ una funció. Sigui $(x_0, y_0) \in U$. Anomenarem problema de Cauchy o problema de valor inicial (p.v.i) a trobar una solució de

$$y' = f(x, y)$$

$$y(x_0) = y_0$$

Exemple 6. Alguns exemples de problemes de Cauchy.

- 1. Volem trobar una funció que compleixi que: y' = y i y(0) = 1. Escollint $\varphi(x) = e^x$ és una solució, ja que si derivem ens dona ella mateixa i si l'igualem a 0 dona 1.
- 2. Volem trobar una funció que compleixi que: y' = y i $y(x_0) = y_0$. Escollint $\varphi(x) = y_0 e^{x-x_0}$ és solució, ja que si derivem dona ella mateixa i compleix el valor inicial.

Pregunta: Les solucions que hem trobat són totes les possibles? N'hi ha més?

- 3. yy' x = 0 i y(0) = 0. Solucions: $\varphi_{+-}(x) = + -x$ en són solució, substituint es veu.
- 4. yy' + x = 0 i y(0) = 0. No té cap solució. Una manera de veure-ho és veient que per $x \neq 0$ ni y ni y' poden ser 0. Llavors fixant-nos en x > 0 i suposant que y > 0, ens queda que y' < 0. Per tant, cal una funció contínua que és positiva per x postiva i que decreixi. Sigui a = y(1), llavors y(x) > a per tota x entre 0 i 1, aleshores, com que en 0 ha de ser 0 i és contínua, hem arribat a contradicció i no pot tenir solució.

1.3 Interpretació geomètrica d'una e.d.o

Sigui $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ $(x,y) \mapsto f(x,y)$. y' = f(x,y) i $\varphi: (a,b) \to \mathbb{R}$ n'és solució si $\varphi'(x) = f(x,\varphi(x))$. El que diu és si existeix una funció φ , el pendent de la seva gràfica segueix $f(x,\varphi)$.

1.4 Exemples importants

Exemple 7. Equació d'una molla elàstica (oscil·lador harmònic):

$$my^{\prime\prime}=-k^2y$$

On y és el desplaçament respecte la posició d'equilibri.

Exemple 8. Pèndol de longitud l sota un camp gravitatori constant el qual exerceix una força mg.

$$m\theta''l = -mg\sin\theta \iff \theta'' = -\frac{g}{l}\sin\theta$$

On θ és l'angle del pèndol respecte la vertical.

Exemple 9. Model SIR. S és el nombre de persones subceptibles, I infectats i R persones que deixen de ser de la resta tant perquè es curen com perquè moren. N = S + I + R

$$S' = -\frac{\beta}{N}SI$$

$$I' = \frac{\beta}{N}SI - \gamma I$$

$$R' = \gamma I$$

Exemple 10. n cossos a l'espai de masses m_1, m_2, \ldots, m_n submessos a la seva mutua atracció gravitatòria. q_i és la posició del cos i en un sistema de referència.

$$m_i q_i'' = G \sum_{j \neq i} \frac{m_i m_j}{||q_j - q_i||^3} (q_j - q_i)$$

Exemple 11. E.d.o's de famílies de corbes.

Considerem la següent família de corbes: $x^2+y^2=r^2$, per $r\in\mathbb{R}$. Tinc les solucions i m'interessa buscar la e.d.o. que la tingui per solució. Si y=y(x), derivant respecte a x: 2x+2yy'=0 o simplificant y'y+x=0, o també $y'=-\frac{x}{y}$.

Família ortogonal. Té el pendent ortogonal, $y' = -\frac{1}{-\frac{x}{y}} = \frac{y}{x}$. Té per solució $y(x) = \alpha x$ per $\alpha \in \mathbb{R}$.

Exercici: Trobeu l'e.d.o de la família de corbes $(x - \alpha)^2 + y^2 = \alpha^2$. I la família de corbes ortogonals.

Crec que:

$$y' = -\frac{x - \alpha}{y}$$
$$y(0) = 0$$

2 Sistemes lineals d'e.d.o.'s

Definició 8. Direm que un sistema d'e.d.o's és lineal si és de la forma (de funció incògnita x):

$$x' = A(t)x + b(t), \ A(t) \in \mathcal{M}_{n \times n}(\mathbb{R}) \ b(t) \in \mathbb{R}^n$$

Direm que el sistema és homogeni si b(t) = 0. El sistema homogeni associat és x' = A(t)x.

Direm que el sistema té coeficients constants si A no depèn de t.

2.1 Motivació

Suposem que tenim un sistema d'e.d.o.'s x' = f(t, x), on f és \mathscr{C}^1 respecte de x. Suposem que $x_0(t)$ n'és solució. Volem estudiar el comportament de les solucions "properes".

$$f(t,x) = f(t,x_0(t)) + D_x f(t,x_0(t))(x - x_0(t)) + o(||x - x_0(t)||)$$

On D_x és la matriu diferencial.

Sigui $\tilde{x} = x - x_0(t)$, llavors, $\tilde{x}' = x' - x_0(t)' = f(t, x_0(t)) + D_x(t, x_0(t))\tilde{x} + o(||\tilde{x}||) - f(t, x_0(t)) = D_x f(t, x_0(t))\tilde{x} + o(||\tilde{x}||)$ el qual s'aproxima a un sistema lineal.

2.2 Propietats elementals

Proposició 9. (Principi de superposició) Considerem el sistema lineal homogeni x' = A(t)x, on $A(t) \in \mathcal{M}_{n \times n}(\mathbb{R})$. La solució, generat del sistema és un espai vectorial, és a dir, si φ_1 i φ_2 són solució i $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ (o \mathbb{C}), llavors $\lambda_1 \varphi_1 + \lambda_2 \varphi_2$ és també solució.

 $Demostraci\acute{o}. \text{ Sabem que } \varphi_i'(t) = A(t)\varphi_i(t) \text{ per } i=1,2. \text{ Donats } \lambda_1,\lambda_2 \in R, \text{ sigui } \tilde{\varphi} = \lambda_1\varphi_1 + \lambda_2\varphi_2. \text{ Llavors, } \tilde{\varphi}' = \lambda_1\varphi_1' + \lambda_2\varphi_2' = \lambda_1A(t)\varphi_1 + \lambda_2A(t)\varphi_2 = A(t)(\lambda_1\varphi_1 + \lambda_2\varphi_2) = A(t)\tilde{\varphi}.$

Proposició 10. Considerem el sistema lineal

$$x' = A(t)x + b(t)$$

Sigui φ_p una solució del sistema ($\varphi_p' = A(t)\varphi_p + b(t)$). La solució general és

$$\{\varphi|\varphi'=A(t)\varphi+b(t)\}=\{\varphi=\varphi_p+\varphi_n|\varphi_n=A(t)\varphi_n\}=\{\varphi_p\}+\{\varphi_n|\varphi_n\ soluci\acute{o}\ del\ sistema\ homogeni\ associat\}$$

Demostraci'o.

 \supseteq Sigui $\tilde{\varphi} = \varphi_p + \varphi_n$, on $\varphi'_n = A(t)\varphi_n$. Llavors

$$\tilde{\varphi}' = \varphi_p' + \varphi_n' = A(t)\varphi_p + b(t) + A(t)\varphi_n = A(t)(\varphi_p + \varphi_n) + b(t) = A(t)\tilde{\varphi} + b(t)$$

 \subseteq Sigui $\hat{\varphi}$ una solució $(\hat{\varphi}' = A(t)\hat{\varphi} + b(t))$, llavors: $\hat{\varphi} = \varphi_p + \hat{\varphi} - \varphi_p$ i cal veure que $\varphi_n = \hat{\varphi} - \varphi_p$ és solució del sistema homogeni. Com que, $\varphi'_n = \hat{\varphi}' - \varphi'_p = A(t)\hat{\varphi} + b(t) - A(t)\varphi_p - b(t) = A(t)(\hat{\varphi} - \varphi_p) = A(t)\varphi_n$, per tant, φ_n és solució del sistema homogeni i hem acabat.

2.3 E.d.o's lineals unidimensionals

Consierem una e.d.o de la forma

$$x' = a(t)x + b(t), \ a(t) \in \mathbb{R}(o \ \mathbb{C}), \ x \in \mathbb{R}$$

Per resoldre-la:

- 1. Trobarem la solució general de x' = a(t)x.
- 2. Trobarem una solució particular de x' = a(t)x + b(t).

Notació: En aquest tema $I \subset \mathbb{R}$ serà un interval obert.

Proposició 11. Sigui $a:I\subset\mathbb{R}\to\mathbb{R}$ una funció contínua. Sigui $t_0\in I$. Llavors, la solució general de l'e.d.o. lineal homogenia x'=a(t)x és

$$\{\lambda e^{\int_{t_0}^t a(s)ds} | \lambda \in \mathbb{R}\}$$

Equivalentment, per a qualsevol $(t_0, x_0) \in I \times \mathbb{R}$, l'única solució de p.v.i.

$$x' = a(t)x$$
$$x(t_0) = x_0$$

 $\acute{e}s$

$$\varphi(t, t_0, x_0) = x_0 e^{\int_{t_0}^t a(s)ds}$$

De mostraci'o.

 \subseteq Sigui $\varphi(t) = x_0 e^{\int_{t_0}^t a(s)ds}$. Tenim que

$$\varphi(t)' = x_0 e^{\int_{t_0}^t a(s)ds} \left(\int_{t_0}^t a(s)ds \right)' = a(t)x_0 e^{\int_{t_0}^t a(s)ds} = a(t)\varphi(t)$$

Amb això hem vist que és solució de l'equació. Ara anem a veure que és solució del p.v.i.

$$\varphi(t_0) = x_0 e^{\int_{t_0}^{t_0} a(s)ds} = x_0 e^0 = x_0$$

 \supseteq Observem que $e^{\int_{t_0}^t a(s)ds} \neq 0, \ \forall t \in I.$

Sigui $\hat{\varphi}$, una solució de x' = a(t)x, la podem escriure com $\hat{\varphi}(t) = c(t)e^{\int_{t_0}^t a(s)ds}$ amb $c(t) = e^{-\int_{t_0}^t a(s)ds}\hat{\varphi}(t)$, clarament c és una funció derivable a I.

Llavors, $c'(t)e^{\int_{t_0}^t a(s)ds} + c(t)a(t)e^{\int_{t_0}^t a(s)ds} = \hat{\varphi}'(t) = a(t)\hat{\varphi}(t) = a(t)c(t)e^{\int_{t_0}^t a(s)ds} \iff c'(t)e^{\int_{t_0}^t a(s)ds} = 0 \iff c'(t) = 0 \implies c = \lambda$. És a dir, com que la derivada de la c és 0, tenim que c és una constant. I hem acabat perquè hem vist que qualsevol solució és de la forma descrita.

Nota 12. Què va fer que escollissim $e^{\int_{t_0}^t a(s)ds}$ com a candidat de solució?

Estem buscant solució de x'(t) = a(t)x(t) tal que $x(t_0) = x_0$. Ara, podem veure la equació com $\frac{x'(t)}{x(t)} = a(t) \iff \int_{t_0}^t \frac{x'(t)}{x(t)} dt = \int_{t_0}^t a(s) ds$ que és el mateix que $\ln(x(t) - \ln(x(t_0))) = \int_{t_0}^t a(s) ds \iff \ln(x) = \ln(x_0) + \int_{t_0}^t a(s) ds \iff x(t) = e^{\ln x_0} e^{\int_{t_0}^t a(s) ds} = x_0 e^{\int_{t_0}^t a(s) ds}.$

Proposició 12. La solució general de x' = a(t)x + b(t); $a, b : I \subset \mathbb{R} \to \mathbb{R}$ contínues és:

$$\{x(t) = e^{\int_{t_0}^t a(s)ds} [\lambda + \int_{t_0}^t e^{-\int_{t_0}^s a(\sigma)d\sigma} b(s)ds], \lambda \in \mathbb{R}\}$$

I, per tant, la solució que satisfà $x(t_0) = x_0$ és:

$$\varphi(t, t_0, x_0) = e^{\int_{t_0}^t a(s)ds} (x_0 + \int_{t_0}^t e^{\int_{t_0}^s a(\sigma)d\sigma} b(s)ds) = x_0 e^{\int_{t_0}^t a(s)ds} + e^{\int_{t_0}^t a(\sigma)d\sigma} \int_{t_0}^t e^{-\int_{t_0}^s a(\sigma)d\sigma} b(s)ds =$$

$$= x_0 e^{\int_{t_0}^t a(s)ds} + \int_{t_0}^t e^{\int_s^t a(\sigma)d\sigma} b(s)ds$$

Demostraci'o. Per començar, veure que x de la forma descrita son soluci\'o és un càlcul. Ara, per veure que tota soluci\'o és d'aquella forma fem servir el mètode de variacions de les constants.

Semblant a la proposició del cas homogeni busquem la c(t) tal que $x_p(t) = c(t)e^{\int_{t_0}^t a(s)ds}$, $(\forall t)$. Substituint a l'equació original tenim:

$$c'(t)e^{\int_{t_0}^t a(s)ds} + c(t)a(t)e^{\int_{t_0}^t a(s)ds} = x'_p(t) = a(t)c(t)e^{\int_{t_0}^t a(s)ds} + b(t) \iff c'(t)e^{\int_{t_0}^t a(s)ds} = b(t)$$

$$\implies c'(t) = e^{-\int_{t_0}^t a(s)ds}b(t) \implies c(t) - x_0 = \int_{t_0}^t c'(s)ds = \int_{t_0}^t e^{-\int_{t_0}^s a(\sigma)d\sigma}b(s)ds$$

I, per tant,

$$c(t) = x_0 + \int_{t_0}^t e^{\int_{t_0}^s a(\sigma)d\sigma} b(s)ds$$

Exemple 13. Posem per cas que volem resoldre l'equació $x' = tx + \frac{1}{t}$ (coeficients continus, o bé a $(-\infty, 0)$, o bé a $(0, \infty)$).

Soluci'o. 1. Busquem l'equaci\'o homogènia. $x'=tx\implies \frac{x'}{x}=t,$ integrant entre t_0 i t, tenim

$$\ln x - \ln x_0 = \frac{1}{2}t^2 - \frac{1}{2}t_0^2 \implies x(t) = x_0 e^{\frac{1}{2}t^2 - \frac{1}{2}t_0^2} = x_0 e^{-\frac{1}{2}t_0^2} e^{\frac{1}{2}t^2}$$

Per tant, la solució general homogenia:

$$\{x(t) = \lambda e^{\frac{1}{2}t^2}, \ \lambda \in \mathbb{R}\}\$$

2. Trobem la solució de l'e.d.o. completa que en t_0 val x_0 :

6

 $x_p(t) = c(t)e^{\frac{1}{2}t^2}$ i substituim a l'e.d.o:

$$c'(t)e^{\frac{1}{2}t^2} + c(t)e^{\frac{1}{2}t^2}t = x'_p(t) = tc(t)e^{\frac{1}{2}t^2} + \frac{1}{t}$$

Que aleshores queda:

$$c'(t) = \frac{1}{t}e^{-\frac{1}{2}t^2} \implies c(t) = x_0e^{-\frac{1}{2}t_0^2} + \int_{t_0}^t \frac{1}{s}e^{-\frac{1}{2}s^2}ds$$

Perquè $c'(t_0) = x_0 e^{-\frac{1}{2}t_0^2}$, finalment, la solució és:

$$x_p(t) = e^{\frac{1}{2}t^2} \left[x_0 e^{-\frac{1}{2}t_0^2} + \int_{t_0}^t \frac{1}{s} e^{-\frac{1}{2}s^2} ds \right]$$

2.4 Sistemes lineals de dimensió qualsevol (finita)

2.4.1 Sistemes homogenis

Sigui la e.d.o x' = A(t)x, per $A \in \mathcal{C}(I, \mathcal{M}_{n \times n}(\mathbb{R}))$, és a dir, A és una matriu $n \times n$ amb coeficients continus a $I \subset R$.

Proposició 13. Sigui el sistema x' = A(t)x, amb $A \in \mathcal{C}^k(I, \mathcal{M}_{n \times n}(\mathbb{R}))$. Llavors, si φ n'és una solució definida a $I \implies \varphi \in \mathcal{C}^{k+1}(I, \mathbb{R}^n)$.

Demostració. Provem-ho per inducció:

Pel cas base k=0. Si φ és solució $\implies \varphi'(t)=A(t)\varphi(t) \implies \varphi\in\mathscr{C}^1(I,\mathbb{R}^n)$.

Suposem que A és de classe \mathscr{C}^k i φ és solució de x' = A(t)x de classe \mathscr{C}^k : llavors $\varphi'(t) = A(t)\varphi(t) \implies A, \varphi' \in \mathscr{C}^k \implies \varphi \in \mathscr{C}^{k+1}$.

Exemple 14. Comproveu que el mateix argument s'aplica a x' = f(t, x), si f és de classe \mathscr{C}^k respecte a (t, x).

Teorema 14. (És el teorema 2.8 dels apunts) Siguin $I \subset \mathbb{R}$, interval de \mathbb{R} , $A \in \mathcal{C}(I, M_{n \times n}(\mathbb{R}))$. Sigui $(t_0, x_0) \in I \times \mathbb{R}^n$, qualsevol. llavors el p.v.i

$$x' = A(t)x$$
$$x(t_0) = x_0$$

té una solució \mathscr{C} , definida a I. Una solució és única en el sentit següent: si $\tilde{\varphi}: \tilde{I} \subset I \to \mathbb{R}$ n'és una altra solució $\Longrightarrow \tilde{\varphi}_{|\tilde{I}} = \varphi_{|\tilde{I}}$

Demostració. És un corol·lari del Teorema de Picard.

Nota 15. No sabem calcular φ . El teorema ens permet deduir l'aplicació: $\varphi: I \times I \times \mathbb{R}^n \to \mathbb{R}^n$ amb $(t,t_0,x_0) \to \varphi(t,t_0,x_0)$, on $\varphi(t,t_0,x_0)$ és la solució del p.v.i. en l'instant t. A aquesta aplicació l'anomenarem flux del p.v.i.

Exercici: Fent servir el teorema 2.8. i el fet que la sol·lució general de x' = A(t)x és un espai vectorial, proveu que, fixats $t, t_0 \in I$, l'aplicació de \mathbb{R}^n a \mathbb{R}^n , que envia x_0 a $\varphi(t, t_0, x_0)$ és una aplicació lineal.

$$\varphi(t, t_0, \lambda_0 x_0 + \lambda_1 x_1) = \lambda_0 \varphi(t, t_0, x_0) + \lambda_1 \varphi(t, t_0, x_1)$$

Teorema 15. Sigui $A \in \mathcal{C}(I, M_{n \times n}(\mathbb{R}))$. Llavors, la solució general de x' = A(t)x (sistema lineal i homogeni) és un espai vectorial de dimensió n.

Demostraci'o. Veurem (1) que hi ha n solucions de x' = A(t)x linealment independents (\implies dimensi\'o de la soluci\'o general $\geq n$). (2) que aquestes solucions en són base.

Per (1). Sigui $t_0 \in I$. Sigui e_i , l'i-éssim vector de la base canònica a \mathbb{R}^n . Pel teorema 2.8, sigui φ_i la solució del p.v.i:

$$x' = A(t)x$$
$$x(t_0) = e_i$$

Afirmem que $\{\varphi_i\}_{i=1,\dots,n}$ són l.i. Hem de veure que si $\lambda_1\varphi_1(t)+\dots+\lambda_n\varphi_n(t)=0$ $(\forall t\in I)\implies \lambda_1=\dots=\lambda_n=0.$

Suposem que tenim uns $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tals que compleixen la condició anterior. En particular, si $t = t_0$, $\lambda_1 \varphi_1(t_0) + \dots + \lambda_n \varphi_n(t_0) = \lambda_1 e_1 + \dots + \lambda_n e_n = 0$, llavors com els vectors canònics són l.i. llavors $\lambda_1 = \dots = \lambda_n = 0$.

Per (2). Sigui $\tilde{\varphi}: I \subset \mathbb{R} \to \mathbb{R}^n$ una solució qualsevol de x' = A(t)x. Siguin $\lambda_1, \dots, \lambda_n$ tals que $\lambda_1 e_1 + \dots + \lambda_n e_n = \varphi(\tilde{t}_0)$. Veiem que $\tilde{\varphi}(t) = \lambda_1 \varphi_1(t) + \dots + \lambda_n \varphi_n(t)$ ($\forall t \in I$).

Per a veure-ho, comproveu que són solució del mateix p.v.i i apliquem el Teorema 2.8. Tant $\tilde{\varphi}$ com $\lambda_1 \varphi + \cdots + \lambda_n \varphi_n$ són solució de x' = A(t)x. Com que $\lambda_1 \varphi_1(t_0) + \cdots + \lambda_n \varphi_n(t_0) = \lambda_1 e_1 + \cdots + \lambda_n e_n = \tilde{\varphi}(t_0)$ coincideixen en $t = t_0$ llavors, com la solució del p.v.i. és única, coincideixen en tot I.

Definició 16. Sigui $A \in (I, \mathcal{M}_{n \times n}(\mathbb{R}))$. Anomenarem sistema fonamental de solucions de x' = A(t)x a qualsevol base de la solució general del sistema. El teorema anterior ens diu que un s.f.s té exactament n funcions.

Definició 17. Sigui $A \in (I, \mathcal{M}_{n \times n}(\mathbb{R}))$. Direm que una matriu M(t) (per $t \in I$) és una matriu fonamental del sistema x' = A(t)x si les seves columnes són un s.f.s. del sistema. És a dir, si $M(t) = (m_1(t), \dots, m_n(t))$, llavors $m'_i = A(t)m_i$. Podem escriure M(t)' = A(t)M(t) i que $\{m_i\}_{i=1,\dots,n}$ generant l'espai de solucions.

Exercici: Considerem el problema següent: Donada una matriu $C \in \mathcal{M}_{n \times n}(\mathbb{R})$, busquem Φ tal que

$$\Phi'(t) = A(t)\Phi(t)$$

$$\Phi(t_0) = C$$

On $A \in \mathcal{C}(I, \mathcal{M}_{n \times n}(\mathbb{R}))$ i $t_0 \in I$. Proveu que $\exists!$ solució $\Phi(t)$ definida en I.

Exemple 16. Trobem una m.f. de

$$x' = \frac{1}{t}x + y$$
$$y' = \frac{1}{t}y$$

La qual és

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{t} & 1 \\ 0 & \frac{1}{t} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Comencem resolent (2). $y' = \frac{1}{t}y \implies \frac{y'}{y} = \frac{1}{t} \implies \ln y = c + \ln t \text{ llavors } y(t) = \beta t.$ Substituïm a (1):

$$x' = \frac{1}{t}x + \beta t$$

Les solucions de $x' = \frac{1}{t}x$ són $x_n(t) = \alpha t$. Variació de les constants: x(t) = c(t)t. $c'(t)t + c(t) = \frac{1}{t}c(t)t + \beta t \implies c'(t) = \beta \implies c(t) = \alpha + \beta t$, llavors $x(t) = (\alpha + \beta t)t = \alpha t + \beta t^2$ i $y(t) = \beta t$ amb $\alpha, \beta \in \mathbb{R}$.

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \alpha \begin{pmatrix} t \\ 0 \end{pmatrix} + \beta \begin{pmatrix} t^2 \\ t \end{pmatrix}$$

Exercici: Raoneu que φ_1 i φ_2 són base de la solució general del sitema. Llavors una m.f n'és:

$$\Phi(t) = \begin{pmatrix} t & t^2 \\ 0 & t \end{pmatrix}$$

Proposició 18. Considrem el sistema d'e.d.o homogeni de dimensió finita $(x' = A(t)x \text{ amb } A \in \mathcal{C}(I, \mathcal{M}_{n \times n}(\mathbb{R})))$. Aleshores,

- 1. Si M(t) n'és una m.f. $\implies det(M(t)) \neq 0 \ \forall t \in I$.
- 2. M(t) n'és $m.f \iff M'(t) = A(t)M(t)$ i $\exists t_0 \in I$ tal que $det(M(t_0)) \neq 0$.
- 3. Sigui M(t) una m.f. llavors N(t) és m.f. $\iff \exists C \in \mathscr{M}_{n \times n}(\mathbb{R})$ constant amb det $C \neq 0$, tal que N(t) = M(t)C.
- 4. Sigui M(t) una m.f. La solució del p.v.i. és $\varphi(t,t_0,x_0)=M(t)M(t_0)^{-1}x_0$.

Demostraci'o.

1. Suposem que en un punt t_0 el determinant de la matriu és 0 (det $M(t_0) = 0$). Aleshores, el rang $M(t_0) < n \implies \neq \mathbb{R}^n \implies x_0 \in \mathbb{R}^n$ tal que $x_0 \notin \text{Im } M(t_0)$. És a dir, el sistema $M(t_0)\lambda = x_0$ no té solució.

Ara, considerem el p.v.i. x' = A(t)x i $x(t_0) = x_0$ té una única solució $\varphi_0(t)$, però $x_0 = \varphi_0(t_0) \neq M(t_0)\lambda \ \forall \lambda \in \mathbb{R}^n$. Llavors φ_0 no està generada per les columnes de M(t), per tant, les columnes no son base, contradicció amb el fet que M(t) és m.f.

- 2. \Longrightarrow Immediata per 1, perquè si el determinant és diferent de 0 arreu, aleshores ho és per tot punt de l'interval i en particular podem trobar un punt.
 - **Exercici:** És refer la demostració del fet que la solució general de x' = A(t)x és un espai vectorial de dimensió n. INDICACIÓ: M'(t) = A(t)M(t) i $\det M(t_0) \neq 0$. Anomenarem v_i a la columna i de $M(t_0)$ llavors $\implies \{v_1, \dots, v_n\}$ són base de \mathbb{R}^n . Llavors la columna i de M(t) és l'única solució del p.v.i. x' = A(t)x i $x(t_0) = v_i$.
- 3. \Leftarrow Sigui C una matriu constant amb det $C \neq 0$. Sigui N(t) = M(t)C, per una banda, det $N(t) = \det M(t) \det C$, llavors el determinant de la matriu N(t) és diferent de 0 per tot t. Per altra banda, N'(t) = (M(t)C)' = M'(t)C = A(t)M(t)C = A(t)N(t). Llavors N(t) és una matriu fonamental.
 - \implies Sigui $t_0 \in I$ un punt qualsevol i sigui $C = M(t_0)^{-1}N(t_0)$. Veurem que N(t) = M(t)C, per $\forall t \in I$. Per veure que són iguals, com que les dues són solució del sistema x' = A(t)x. Només cal veure que ambdues coincideixen en el punt t_0 , ja que $N(t_0) = M(t_0)M(t_0)^{-1}N(t_0)$. Llavors per unicitat de les solucions del p.v.i. N(t) i M(t)C son la mateixa matriu.

A més, la C és única. (FALTA PROOF)

4. Hem de veure que $M(t)M(t_0)^{-1}x_0$ són solució del p.v.i. Està clar que en t_0 les matrius es cancelen i només queda x_0 . I a més, si derivem l'expressió les constants no són importants i compleix l'equació.

Exemple 17. L'aplicació del argument d'existencia i unicitat de solucions per a provar coses no trivials.

considerem el sistema d'e.d.o's: (1) x' = f(x,t), amb $f : \mathbb{R} \times U \subset \mathbb{R}^n \to \mathbb{R}^n$ i $f(t+T,x) = f(t,x) \ \forall (t,x) \in \mathbb{R} \times U$.

Suposem que $\forall (t_0, x_0) \in \mathbb{R} \times U$, el p.v.i. (2) x' = f(t, x) i $x(t_0) = x_0$. Suposem que $\varphi(t)$ és solució de (1) (definida en l'interval de longitud T). Llavors φ és T-periòdica $(\varphi(t+T) = \varphi(t) \ \forall t \in \mathbb{R}) \iff \exists t_0 \in \mathbb{R}$ tal que $\varphi(t_0 + T) = \varphi(t_0)$.

 \Leftarrow Considerem $\varphi(t)$ solució $\varphi'(t) = f(t, \varphi(t))$ i $\tilde{\varphi}(t) = \varphi(t+T)$. En $t = t_0$, $\varphi(t_0) = \varphi(t_0+T) = \tilde{\varphi}(t_0)$. Només ens cal comprovar que ambdues són solució de l'e.d.o.

$$\tilde{\varphi}'(t) = \varphi(t+T)' = f(t+T, \varphi(t+T)) = f(t, \varphi(t+T)) = f(t, \tilde{\varphi}(t))$$

Teorema 19. Sigui Φ una matriu $n \times n$ tal que $\Phi' = A(t)\Phi(t)$, on $A \in \mathcal{C}(I, \mathcal{M}(\mathbb{R}))$. Llavors, (en funció de t):

$$(\det \Phi(t))' = trA(t) \det \Phi(t)$$

Demostració. Sigui φ_i , la columna i de la matriu Φ . Com que det $\Phi = \det(\varphi_1, \dots, \varphi_n)$, derivant respecte a t:

$$(\det \Phi(t))' = \det(\varphi_1, \varphi_2, \cdots, \varphi_n) + \det(\varphi_1, \varphi_2', \cdots, \varphi_n) + \cdots + \det(\varphi_1, \varphi_2, \cdots, \varphi_n')$$

Com que $\varphi_i' = A(t)\varphi$, ens queda:

$$= \det(A\varphi_1, \varphi_2, \cdots, \varphi_n) + \det(\varphi_1, A\varphi_2, \cdots, \varphi_n) + \cdots + \det(\varphi_1, \varphi_2, \cdots, A\varphi_n)$$

Si definim, fixat t, per a $v_1, \dots, v_n \in \mathbb{R}^n$, $f(v_1, \dots, v_n) = \det(Av_1, \dots, v_n) + \dots$, $\det(v_1, \dots, Av_n)$. Aleshores f satisfà: (1) $f(v_1, \dots, v_i, \dots, v_j, \dots, v_n) = -f(v_1, \dots, v_j, \dots, v_i, \dots, v_n)$. (2) $f(\lambda v_1, \dots, v_n) = \dots = f(v_1, \dots, \lambda v_n) = \lambda f(v_1, \dots, v_n)$. Llavors, f és una aplicació n lineal alternades.

L'espai d'aplicacions n-lineals alternades a \mathbb{R}^n té dimensió 1. Llavors $f(v_1, \dots, v_n) = a \det(v_1, \dots, v_n)$, anem a determinar la constant a evaluant f en els vectors $\{e_i\}_{i=1\cdots n}$ de la base canónica:

$$f(e_1, \cdots, e_n) = a \det(e_1, \cdots, e_n) = a$$

$$f(e_1, \dots, e_n) = \det(Ae_1, e_2, \dots, e_n) + \det(e_1, Ae_2, \dots, e_n) + \dots + \det(e_1, e_2, \dots, Ae_n) = a_{11} + a_{22} + \dots + a_{nn} = \operatorname{tr} A$$
Per tant, $\det \Phi(t)' = \operatorname{tr} A(t) \det \Phi(t)$.

Corol·lari 20. (Formula de Liouville). Sigui Φ una matriu $n \times n$ tal que $\Phi' = A(t)\Phi(t)$, on $A \in \mathscr{C}(I, \mathscr{M}(\mathbb{R}))$. Llavors:

$$\det \Phi(t) = \det \Phi(t_0) e^{\int_{t_0}^t tr A(s) ds}$$

Demostració. Pel teorema anterior, el determinant és solució del sistema de p.v.i. $d' = \operatorname{tr} A(t)d$ i $d(t_0) = \det \Phi(t_0)$, la solució de la qual ja l'haviem vista anteriorment.

Exercici: (d'aplicació de la fórmula de Liouville) Considerem el sistema:

$$x' = tx + e^{t^2}y$$
$$y' = \cos(t)x - ty$$

Sigui $\varphi(t, t_0, (x_0, y_0))$ el seu flux. És a dir, l'única solució del p.v.i.

$$\varphi(t, t_0, (x_0, y_0))' = A(t)\varphi(t, t_0, (x_0, y_0))$$

$$\varphi(t, t_0, (x_0, y_0)) = (x_0 \ y_0)^t$$

Proveu que, per a qualsevol conjunt mesurable $D \subset \mathbb{R}^2$, i qualsevol $t, t_0 \in \mathbb{R}$ fixats,

$$\hat{a}rea(D) = \hat{a}rea(\varphi(t, t_0, D))$$

INDICACIONS: àrea $(D) = \int_D 1 dx dy$. I, el teorema de canvi de variable, ens diu que si $\Psi: D \to \Psi(D)$ que envia $(u,v) \mapsto \Psi(u,v)$ és un canvi de variables, llavors

$$\int_{\Psi(D)} f(x,y) dx dy = \int_{D} f(\Psi(u,v)) |\det D\Psi(u,v)| du dv$$

2.4.2 Sistemes no homogenis

Considerem el sistema (1): x' = A(t)x + b(t). on $A \in \mathcal{C}(I, \mathcal{M}_{n \times n}(\mathbb{R}))$ i $b \in \mathcal{C}(I, \mathbb{R}^n)$.

Suposem que M(t) és una m.f. del sistema homogeni (2): M(t)' = A(t)M(t) i det $M(t) \neq 0$ per tot $t \in I$. Busquem les solucions de la forma x(t) = M(t)y(t) (on $y(t) = M(t)^{-1}x(t)$ que és derivable perquè les dues parts ho son ja que són solució i el determinant de $M(t) \neq 0$.).

Derivem respecte a t, per (1) i per (2)A(t)x(t)+b(t)=x'(t)=M(t)'y(t)+M(t)y'(t), que a banda i banda és igual a A(t)M(t)y(t)+b(t)=A(t)M(t)y(t)+M(t)y'(t). Ens queda que y(t) ha de satisfer (3): M(t)y'(t)=b(t), per tant, $y'(t)=M(x)^{-1}b(t)$. Fixem $t_0 \in I$, la funció y solució de (3) tal que $y(t_0)=0$ és

$$y(t) = \int_{t_0}^t M(s)^{-1} b(s) ds$$

per tant, una solució de (1) és (satisfà $x_p(t_0) = 0$):

$$x_p(t) = M(t) \int_{t_0}^t M(s)^{-1} b(s) ds$$

La solució del p.v.i. x' = A(t)x + b(t) i $x(t_0) = x_0$ és $\varphi(t, t_0, x_0) = M(t)M(t_0)'x_0 + M(t)\int_{t_0}^t M(s)^{-1}b(s)ds = M(t)\left[M(t_0)^{-1}x_0 + \int_{t_0}^t M(s)^{-1}b(s)ds\right].$

2.4.3 Sistemes lineals amb coeficients constants

Definició 21. Anomenarem sistema d'e.d.o. lineal amb coeficients constants a un sistema de la forma:

$$x' = Ax + b(t), A \in \mathscr{M}_{n \times n}(\mathbb{R})$$

amb b una funció definida a I (o \mathbb{R}).

Volem resoldre la part homogenia: x' = Ax, trobem-ne una matriu fonamental.

Definició 22. Sigui $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. La seva exponencial és

$$e^A = \sum_{j=0}^{\infty} \frac{1}{j!} A^j$$

Observació 23. Escollim una norma a \mathbb{R}^n , $||\cdot||$. Llavors, la norma matricial associada és

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

 $Aquest\ compleix\ que\ ||Ax|| \le ||A||||x||,\ a\ m\'es,\ ||AB|| \le ||A||||B||.$

Llavors, anem a veure que l'exponencial d'una matriu està ben definida:

$$||e^A|| = ||\sum_{j=0}^{\infty} \frac{1}{j!} A^j|| \le \sum_{j=0}^{\infty} \frac{1}{j!} ||A^j|| \le \sum_{j=0}^{\infty} \frac{1}{j!} ||A||^j = e^{||A||}$$

Lema 24. Siguin $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ tals que AB = BA. Llavors

$$e^{A+B} = e^A e^B$$

Demostració. Tenim que $e^{A+B} = \sum_{j=0}^{\infty} \frac{1}{j!} (A+B)^j$.

Per altra banda $e^A e^B = (\sum_{n \geq 0} \frac{1}{k!} A^k) (\sum_{l \geq 0} \frac{1}{l!} B^l) = \sum_{k \geq 0} \sum_{l \geq 0} \frac{1}{k! l!} A^k B^l$. Ara, fent un canvu de índexos (j = k + l); $= \sum_{j \geq 0} \sum_{k = 0}^j \frac{1}{k! (j - k)!} A^k B^{j - k} = \sum_{j \geq 0} \frac{1}{j!} \sum_{k = 0}^j \binom{j}{k} A^j B^{j - k}$ que pel binomi de Newton (ja que AB commuten) és igual a l'expressió de $e^{A + B}$.

Lema 25. Sigui $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ llavors

$$\frac{d}{dt}e^{tA} = Ae^{tA} = e^{tA}A$$

Demostració. Per definició de derivada tenim:

$$\frac{d}{dt}e^{tA} = \lim_{h \to 0} \frac{e^{(t+h)A} - e^{tA}}{h} = \lim_{h \to 0} \frac{e^{tA+hA} - e^{tA}}{h} =$$

Ara, com que tA i hA commuten podem utilitzar el lemma anterior:

$$= \lim_{h \to 0} \frac{e^{hA}e^{tA} - e^{tA}}{h} = \lim_{h \to 0} \frac{(e^{hA} - \operatorname{Id})e^{tA}}{h}$$

Ara, com que e^{tA} és una constant, només fa falta provar que la resta del límit és igual a A.

$$\lim_{h \to 0} \frac{e^{hA} - \mathrm{Id}}{h} = \lim_{h \to 0} \frac{1}{h} \left[\sum_{j \ge 0} \frac{1}{j!} (hA)^j - \mathrm{Id} \right] = [A^0 = \mathrm{Id}] = \lim_{h \to 0} \sum_{j \ge 1} \frac{1}{j!} h^{j-1} A^j = A$$

Proposició 26. Considerem el sistema (*) x' = Ax, amb $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Sigui $\Phi(t)$ la matriu fonamental de (*) tal que $\Phi(0) = \mathrm{Id}$. Llavors

- 1. $\Phi(t) = e^{tA}$
- 2. $e^{(t+s)A}\Phi(t+s) = \Phi(t)\Phi(s)^{=}e^{tA}e^{sA}$
- 3. $e^{-tA} = (e^{tA})^{-1}$
- 4. Si M(t) és una matriu fonamental qualsevol de (*), llavors $e^{tA} = M(t)M(0)^{-1}$.

Demostració.

- 1. Pel lemma anterior, e^{tA} satisfà que $(e^{tA})' = Ae^{tA}$, i en t = 0, $e^{0A} = \text{Id}$ (llavors el det $A \neq 0$), pel teorema d'existencia i unicitat de solucions, tenim $\Phi(t) = e^{tA}$.
- 2. Fent servir el que acabem de demostrar i que tA i sA commuten surt automàticament.
- 3. Si prenem s = -t a (2): $\mathrm{Id} = \Phi(t-t) = \Phi(t+s) = \Phi(t)\Phi(-t) = e^{tA}e^{-tA}$. Llavors, $e^{-tA} = (e^{tA})^{-1}$.
- 4. Per ser M(t) matriu fonamental, M(0) té determinant diferent de 0 i, per tant, la inversa existeix. Llavors $M(t)M(0)^{-1}$ per una propietat anterior que vam veure, és matriu fonamental. Però com que compleix la mateixa condició incial en 0 que e^{tA} , $M(0)M(0)^{-1} = \mathrm{Id}$, son solució del mateix p.v.i. i, per tant, son la mateixa matriu $(e^{tA} = M(t)M(0)^{-1})$.

Corol·lari 27. La solució del p.v.i. x' = Ax i $x(t_0) = x_0$ és $\varphi(t, t_0, x_0) = \varphi(t - t_0, 0, x_0) = e^{tA}e^{-tA}x_0 = e^{(t-t_0)A}x_0$. Perquè en $t = t_0$, $e^{t_0A}e^{-t_0A}x_0 = Ix_0 = x_0$.