Assignment-1 CS303

Shashank P 200010048

September 3, 2022

1 Problem 1

The Schema of the table is as shown below

Branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)
borrower (customer_name, loan_number)
account (account_number, branch_name, balance)
depositor (customer_name, account_number)

1.1 Sub Question (a)

1.1.1 Part (i)

To find the names of braches present in **Chicago**, we impose a condition on *branch_city* using table **Branch**. Projection can be used to get the names.

$$\prod_{branch_name} (\mathcal{O}_{branch_name="Chicago"}(Branch)) \tag{1}$$

1.1.2 Part (ii)

To solve this we take the cross product of **borrower** and **loan** tables and join them based on appropriate conditions. Projection is used to select the customer names.

$$P_{1} \equiv borrower.loan_number = loan.loan_number$$

$$P_{2} \equiv loan.branch_name = "Downtown"$$

$$\prod_{borrower.customer_name} (\mathcal{O}_{P_{1} \land P_{2}}(borrower \times loan))$$
(2)

1.2 Sub Question (b)

In this question I am assuming the following

- customer_name in Customer table are unique.
- Multiple Customers can be associated with the same loan (Joint Loans).
- One customer can take up multiple loans.
- Multiple people can open one account (Joint Account).
- One person can have only a single account number (As bank is the same in this case).

Table	Primary Key	Foreign Key	
Branch	branch_name	_	
customer	customer_name	_	
loan	loan_number	branch_name ref. Branch	
borrower	(customer_name, loan_number)	customer_name ref. customer loan_number ref. loan	
account	account_number branch_name Branch		
depositor	customer_name	customer_name ref. customer acccount_number ref. account	

Table 1: Keys in the given Schema

1.3 Sub Question (c)

1.3.1 Part (i)

First use the select operator then project the $loan_numebr$ on loan table.

$$\prod_{loan_number} (\mathcal{O}_{amount>10000}(loan)) \tag{3}$$

1.3.2 Part (ii)

We first join account and depositer tables. Then we use the select and project operator.

$$P_{1} \equiv account.account_number = depositor.account_number$$

$$P_{2} \equiv account.balance > 6000$$

$$\prod_{depositor.customer_name} (\mathcal{O}_{P_{1} \land P_{2}}(account \times depositor))$$

$$(4)$$

1.3.3 Part (iii)

Similar to previous question, but we have another condition on branch_name.

$$P_{1} \equiv account.account_number = depositor.account_number$$

$$P_{2} \equiv account.balance > 6000$$

$$P_{3} \equiv account.branch_name = "Uptown"$$

$$\prod_{depositor.customer_name} (\mathcal{O}_{P_{1} \land P_{2} \land P_{3}}(account \times depositor))$$

$$(5)$$

2 Problem 2

2.1 Part (i)

Selecting users whose age is more that 25.

Name				
Victor				
Jane				

Table 2: Output

2.2 Part (ii)

Select users whose Id is greater than 2 or whose age is not 31.

Id	Name	\mathbf{Age}	Gender	OccupationId	\mathbf{CityId}
1	John	25	Male	1	3
2	Sara	20	Female	3	4
3	Victor	31	Male	2	5
4	Jane	27	Female	1	3

Table 3: Output

2.3 Part (iii)

Join tables User and Occupation.

Id	Name	Age	Gender	Occupa- tionId	CityId	Occupa- tionId	Occupa- tionName
1	John	25	Male	1	3	3 1	Software
1	John	20	Male	1			Engineer
2	Sara	20	Female	3	4	3	Pharmacist
3	Victor	31	Male	2	5	2	Accountant
4	Jane 27 Female 1 3	9	3	Software			
4		3		Engineer			

Table 4: Output

2.4 Part (iv)

Natural join tables *User*, *Occupation* and *City*.

Id	Name	Age	Gender	Occupa- tionId	CityId	Occupa- tionName	CityName
1	John	25	Male	1	3	Software Engineer	Boston
2	Sara	20	Female	3	4	Pharmacist	New York
3	Victor	31	Male	2	5	Accountant	Toronto
4	Jane	27	Female	1	3	Software Engineer	Boston

Table 5: Output

2.5 Part (v)

Name and gender of users who live in Boston.

Name	Gender
John	Male
Jane	Female

Table 6: Output