

2026

Cell Cycle and Cell Division

Botany

Lecture - 01

Rupesh Chaudhary Sir

Topics to be covered

- (TELL CYCLE)
- 2
- 3
- 4

BASIC CONCEPT

DIPLOID

- * TWO COPY OF EACH
 CHROMOSOME
 - * 2n: 46
 - * 23 PAIRS
 - eg: SKIN CELL
 - * CHROMOSOME OF
 - SAME PAIR: HOMO-LOGOUS CHROMOSOME
 - A CHROMOSOME FROM DIFFERENT PAIR: NON HOMOLOGOUS

HAPLOID

- ★ ONE COPY OF EACH CHROMOSOME
- * N: 23

eg: SPERM/EGG (GAMETES)

CHROMOSOME

NO OF CHROMOSOME	QNE	ONE
CHROMATID	ONE	OWT
DNA	LESS	MORE

BASIC CONCEPT OF CELL CYCLE

- * INTERPHASE + M PHASE = CELLCYCLE.
- * >95% + <5
- * LONG SHORT
- * DURATION OF CELL CYCLE VARY FROM ORGANISM TO ORGANISM CELL.

1 DNA

- * 23 HOURS + IHOUR > 24 HOURS
- * YEAST: 90 MINUTES.

TWO DAUGHTER CELL

1 DNA

- * NON-DNIDING PHASE
- * RESTING PHASE (CELLIS NOT DIVIDING)
- * CELL METABOLICALLY ACTIVE
- * CONTINUOUS SYNTHESIS CONTENT OF NUCLEUS &
 CYTOPLASM. (CONTINUOSLY GROWTH)
- * DIVIDED INTO THREE PHASE
 - 1 9,/ GAP-1
 - 2 S/SYNTHESIS
 - 3 G2/GAP-2

--- KARYOKINESIS: DIVISION OF NUCLEUS

CYTOKINESIS: DIVISION OF CYTOPLASM.

EQUATIONAL DIVISION

CHROMOSOMAL/DNA CONTENT SAME IN BOTH PARENT & DAUGHTER CELL.

CELL CYCLE: THE SEQUENCE OF EVENTS

BY WHICH CELL DUPLICATE ITS GENOME (DNA) & OTHER CONSTITUENT (CELL ORGANELLE) → INTERPHASE

AND DISTRIBUTE EQUALLY IN TWO DAUGHTER CELL BY COMPLEX SERIES OF EVENTS - M PHASE

(PROPHASE, METAPHASE, ANAPHASE, TELOPHASE) - KARYOKINESIS

NOTE: NO CHANGE IN CHROMOSOME

NUMBER BUT DNA AMOUNT DOUBLE.

NOTE: CHROMOSOME DUPLICATION

(DNA REPUCATION)

NOTE: GROWTH IS CONTINUOUS
PROCESS (GI-S-G2)

	NO-OFCHROMOsame	TNUOMA AND	NO OF CHROMATID
PARENT CELL	2n=4	2C	1
GI	2n=4	2C	1
S	2n=4	4C	2
$G_{\mathbf{z}}$	2n=4	4C	2
MPHASE	2n=4	2C	1

PARENT CELL: 20 CHROMOSOME, IOPG DNA.

$$G_1 = 20$$
, $O_2 = 20$, $O_3 = 20$, $O_4 = 20$, $O_5 = 20$, $O_5 = 20$, $O_6 = 20$, O_6

NO OF CHROMOSOME IN G.

CHROMATID = I CHROMOSOME

10 CHROMATID = 10 CHROMOSOME

Q NO. OF CHROMATID: 10 IN S/G2
NO. OF CHROMOSOME: 'S.'
2 CHROMATID IN ONE CHROMOSOME
10 CHROMATID = 5 CHROMOSOME

