linear regression in data raiences.

· Needs a select method, also called Regularistation. Up also least aquare - Ridge regression simplest method
And for a grand Hall?: on & Argmin MA - y 112 }. (Sol-
Air A 2π $AA_{y} = Roj_{x}(y)$ $Ax = 44$
Agrical Address of the state of
Proof: If Im A = B' (undedetermined, I I) Aty = AT (AAT) 'y Proof: Im A = R' -> y = y . Logrange mult: \(\forall \) \(\left\) (constraint) (surjective) Summary: \(\text{Overdet} \in A \) anject \(\text{c} \) At inv. \(\end{c} \) At \(\text{e} \) \(\text{P}^{\text{P}^{\text{P}}}\) (line detected A (in) \(\text{c} \) At \(\text{liv} \) (in the left \(\text{e} \) At \(\text{e} \) \(\text{P}^{\text{P}^{\text{P}}}\)
Proof: Im A: R' - y = y . Logrange mult: \(\forall_1\) \(\int \) (constraint) \(\text{Refall} = \text{Im} (AT). \(\text{Refall} = \text{AT} = AT = \text{AT} = \
Summary: 7 Overdet => A surject => A+A inv. (=) A+= (A+A) A+
Summary: Sundendet = A inj = AAT ihr = AT (AAT)-1 A inversible = A = AT (nove the cax) France case = SUD (cer bellow)
Coeffee (or - 100)
SUD: todo.

CENTRE DE RECHERCHES MATHÉMATIQUES

· Regularis: [mole grown) min = |y-Ax|2 + 1/x12 Pope: my @ (A*A - 1 Idp) Ay. - for smell p (determined) (a, a) becomes (a, Apr) = u: K(a;a) Thm: 21 300 Aty, more generally: ay argunite(x): * Ax: 4x: 4.5.7.

Proof: & 11y. Ax 11 = 11y. - 4x 11 - 1 11y. - y. 11

Esta (fm A) + 11/2. · Phat is Innoging: Rather normalize min - | 14-Ax12+ 1 hall and - (=AA + AE) | Ay C=1 = apai = 18 ML is harder to study than IP be \$ C+C.

· Focuss on Queste · No if and	the IP school does my -,	y as	$\begin{pmatrix} y \\ y $? Rate, 1	hypar ?
· 44 - 40 = (A'A ALD	A* (Ax, u] - 70.] 26 + (1	(ML+ AB)	(Aw)
Show (173)		((A'A) + () 6: (A)	an be arbita	any Amall	(A'w) (NGA) 1. UK W VIATATU
Nepd A	oura condit:	and can	be 0 in Me	& dimens?	