Note: Preview of slides from (projectionoperator.tex) by Qirui Li (https://orcid.org/0000-0002-6042-1291). For educational and non-commercial use only. Any unlawful use will be prosecuted.

© 2025 Qirui Li Licensed under CC BY-NC-SA 4.0. You may modify, share, or adapt with proper attribution, for non-commercial educational use only, and must include the license link: https://github.com/honeymath/Linear-Algebra-Slides/blob/main/LICENSE

Full license: https://creativecommons.org/licenses/by-nc-sa/4.0/

Projection operators

Projection operators are the most simple and intuitive, yet also the most important linear transformations.

Definition 1

For a vector space V over F, a projection operator $T:V\longrightarrow V$ (or an idempotent) is an operator such that

$$T^2 = T$$
.

Geometric explaination of projection operator

We will firstly introduce the idea of the projection operator by **sun light model** before explaining this definition.

A vector standing straight at the origin (like a tree). The sunlight shines on it through some direction. The projection T maps any vector \vec{v} to its shadow $\vec{w} := T\vec{v}$ on the floor.

The sunlight direction **needs not** to be perpendicular to the floor.

Geometric explaination of projection operator

In the definition, we have required $T^2=T$. Algebraically, this means that $T^2\vec{v}=T\vec{v}$ for any vector \vec{v} . Geometrically, it means that the shadow of a shadow is the shadow itself. Here is the explaination: Since $\vec{w}:=T\vec{v}$ represents the shadow of \vec{v} , the \vec{w} lies on the floor. The shadow of a vector on the floor is itself. Therefore $T\vec{w}=\vec{w}$.

Intuitively, a projection needs to specify the floor and the sunlight. But we define them only by $T^2 = T$. Therefore, we need to answer the following questions:

- 1. If $T^2 = T$, how do we define the floor?
- 2. If $T^2 = T$, how do we define the direction of sunlight?
- 3. After specifying the floor and the direction of sunlight, we have enough information to draw the projection geometrically. But why $T\vec{v}$ is the shadow of \vec{v} ?

To answer this question, we need an example of an actural projection.

Let's assume T is an actural projection. If a vector \vec{v} is pointing to the sun, what does its shadow looks like? What is $\vec{w} = T\vec{v}$ in this case?

Should \vec{v} be an element in the following set?

$$\{\vec{v}\in V: T\vec{v}=\vec{0}\}.$$

Why this set describes the direction of the sunlight?

Let's assume T is an actural projection. If a vector \vec{w} is lying on the ground, what does its shadow looks like? What is $T\vec{w}$ in this case? Is \vec{w} the same as $T\vec{w}$?

Should \vec{w} be an element of the following set?

$$\{\vec{w}: \vec{w} = T\vec{v} \text{ for some } \vec{v} \in V\}.$$

Furthermore, when T is a projection, is the following statement equivalent?

$$\vec{w} = T\vec{v}$$
 for some $\vec{v} \in V \iff T\vec{w} = \vec{w}$.

Which of the following set describes the floor? or both of them do?

$$\{\vec{w}:\vec{w}=T\vec{v} \text{ for some } \vec{v}\in V\}, \qquad \{\vec{w}\in V:\vec{w}=T\vec{w}\}.$$

We define kernel and image for linear operators, this is just an analogue of null space and column space (if you think T as a matrix)

Definition 2

For any linear operator $T:V\longrightarrow V$, the kernel and image of T are defined by

$$\operatorname{Ker}(T) := \{ \vec{v} : T\vec{v} = \vec{0} \},\$$

$$\operatorname{Im}(T) := \{ \vec{w} : \vec{w} = T\vec{v} \text{ for some } \vec{v} \in V \}.$$

Come back to our abstract definition $T^2 = T$. We may draw a line from the vector head along $\operatorname{Ker}(T)$ until it $\operatorname{Im}(T)$ to get its shadow, but why this is $T\vec{v}$?

Let T be an operator with $T^2=T$. By drawing $\mathrm{Ker}(T)$ and $\mathrm{Im}(T)$, the sunlight and the ground have been determined. Along the direction of the sunlight, one finds the shadow \vec{w} of \vec{v} . Why $\vec{w}=T\vec{v}$?

There are many operators with the same Ker(T) and Im(T) with T.

 $T\vec{v}$ has to be a vector in $\mathrm{Im}(T)$, but there are many choices. But only one choice makes

$$T\vec{v} - \vec{v} \in \text{Ker}(T)$$
.

Note that

$$T^2 = T \iff T(T - I) = 0 \iff T\vec{v} - \vec{v} \in \operatorname{Ker}(T) \text{ for all } \vec{v} \in V.$$

Summary

As long as an operator $T:V\longrightarrow V$ satisfies $T^2=T$, it is a projection such that

- For any vector $\vec{v} \in V$, $T\vec{v}$ represents the shadow and $\vec{v} T\vec{v} = (I T)\vec{v}$ is a vector pointing to the direction of the sun.
- $\{\vec{v}: T\vec{v} = \vec{0}\}$ describes the direction of the sunlight, it consists of vectors \vec{v} with $T\vec{v} = \vec{0}$.
- $\{\vec{v}: T\vec{v} = \vec{v}\}$ describes the floor, it consists of all possible shadows $\vec{w} = T\vec{v}$. In particular, for any $\vec{w} \in \text{Im}(T)$, we have $T\vec{w} = \vec{w}$.

Projection operator also has other equivalent definition.

Proposition 1

Suppose $T:V\longrightarrow V$ is a linear operator, the following are equivalent

- $T^2 = T$;
- For any $\vec{v} \in \text{Im}(T)$, we have $T\vec{v} = \vec{v}$;
- For any $\vec{v} \in V$, we have $T\vec{v} \vec{v} \in \text{Ker}(T)$.

Proof: Exercise.