Analysis of Single-Cell RNA-Seq Data: Experimental Design

Orr Ashenberg, Jacques Serizay

June 2021

Overall goals

Introduction to the rapidly expanding world of single-cell transcriptomics

Focus less on specific software tools but more on underlying concepts - so down the line, you can make informed choices

Hands on lab exercises analyzing single-cell heterogeneity

Create a fun, learning, collaborative, and interactive environment over the next week

A few organizational notes

https://github.com/js2264/scRNAseq Physalia 2021

Write course notes and questions in a shared Google document

Raise hand in Zoom (Participants) to ask questions or use chat

Please use video and mute microphone when not in use

Please be patient with technical issues (network, Zoom, etc...)

Mouse organogenesis studied by single-cell RNA sequencing

Fig. 1: sci-RNA-seq3 enables profiling of 2,072,011 cells from 61 mouse embryos across 5 developmental stages in a single experiment.

Cao, J., at al. Nature 2019

Mouse organogenesis studied by single-cell RNA sequencing

Clustering and visualization of 2,026,641 mouse embryo cells

Mouse organogenesis studied by single-cell RNA sequencing

Incredible diversity in cell types, states, and interactions across human tissues

A cell's identity and fate are shaped by many features

Technological innovations allow observation at increasing resolution

"by the help of Microscopes, there is nothing so small as to escape our inquiry" Robert Hooke

Technological innovations allow observation at increasing resolution

Single-cell genomics makes possible high-resolution characterization of cells

Single-cell RNA sequencing has grown exponentially

Ongoing developments in single-cell genomics: Many other molecules from single cells may be profiled

DNA and epigenome

Single cell genomes (WES, WGS) Single cell epigenomics (HiC, ChIP, ATAC, mC)

RNA

Full length (mRNA, total RNA)
5' and 3' end counting

Proteins

Multi-parameter flow Mass cytometry Single cell proteomics

'multi-omics'

DNA+RNA (G+T) RNA+protein (T+P) Epigenome + RNA

Ongoing developments in single-cell genomics: Growing toolbox for spatial genomics

Spatial genomics

profiling single cells in their *in situ* context

Ongoing developments in single-cell genomics: Growing toolbox for spatial genomics

MERFISH (RNA)

mouse spleen

High Density Spatial Transcriptomics (RNA)

H&E Annotations

breast cancer

Moffitt J.R. et al. (2016) *PNAS* 113: 11046-11051. Goltsev Y. et al. (2018) *Cell.* 174: 968-981. Vickovic S. et al. (2019) *Nature Methods.* 16: 987–990.

Human Cell Atlas mission

To create a <u>comprehensive reference map</u> of the types and properties of all human cells, the fundamental unit of life, as a basis for understanding, diagnosing, monitoring, and treating health and disease.

"The vestiges of the rupture reveal themselves, if someone brings forward a map of the world and considers carefully the coasts of the three [continents]." Dutch map maker Abraham Ortelius (1596)

Human Cell Atlas mission

To create a <u>comprehensive reference map</u> of the types and properties of all human cells, the fundamental unit of life, as a basis for understanding, diagnosing, monitoring, and treating health and disease.

- Intestinal Stem Cell
- Enterocyte Progenitor
- Enterocyte

The Human Cell Atlas will sample most major tissues

Tissue Sources

- 20-60 adults
- living donors, organ donors, post-mortem
- fresh, frozen, or fixed

First draft: 10 M cells → Comprehensive atlas: 10 B cells

The Human Cell Atlas is a global effort

Human Tumor Atlas Network

Typical RNA-Seq workflow

ARABARA

mRNA from a source

Experimental design: single cell RNA-Seq

Single cell transcriptomics using SMART-Seq2

Single cell transcriptomics using SMART-Seq2

i5 index seq. Read 1 seq. Sequencing-ready tragment - i7 index seq.

Single cell transcriptomics using droplets and microfluidics

10x Next GEM samples a pool of ~3,500,000 10x Barcodes to separately index each cell's transcriptome

Single cell transcriptomics using 10x Chromium system

Visit https://liorpachter.wordpress.com/2019/02/07/sub-poisson-loading-for-single-cell-rna-seq/

UMI: Unique Molecular Identifiers (Random Molecular Tags)

Early labeling of mRNA molecules with random nucleotide tags enables amplification biases to be corrected

Low input amount -> transcript dropout + PCR amplification bias

Unique Molecular Identifiers (UMIs) can correct for PCR bias

Remember: UMIs do not correct for low-capture rates, which leads to an abundance of false negatives. Capture rates are estimated to 5-20% across various protocols.

Single-cell RNA-Seq pipeline

4 billion reads Slide courtesy of Karthik Shekhar

There are many single-cell RNA sequencing methods

There are many single-cell RNA sequencing methods

Each protocol has advantages and limitations. What one ends up using is often dictated by multiple features - the biological context, cost, objective etc.

Chen X. et al. (2018) Annual Review of Biomedical Data Science Vol. 1:29-51

Considerations for single cell RNA-Seq

Choose protocol based on:

- Throughput (# of cells / reaction)
- Sample of origin
- Cost / Labor / Time limitations
- Gene body coverage 5', 3' biased, or full-length?
- UMI vs no-UMI
- Sequencing depth / cell

For example:

- If I want to classify all cell types in a diverse tissue (e.g. brain), I need high throughput
- If I want to re-annotate the transcriptome and discover new isoforms, I need full-length coverage
- If I only have access to archival human samples, I will need to use a method that permits fixed cells (or nuclei)

The most powerful way to control batch effects is with careful experimental design

Single-cell RNA-Seq analysis pipeline Analyzing the expression data

Single-cell RNA-Seq analysis pipeline Generating the count matrix

Single-cell gene expression distributions are very different from bulk gene expression distributions

Population Average

Bulk

Cellular resolution

Single cell

Some single-cell RNA-Seq data challenges to remember

 Drop out: data has an excessive amount of zeros due to limiting mRNA

Zero expression doesn't mean the gene isn't on

There are many quality control filters for genes and cells

Genes detected per cell (ordered)

Complexity = Number of genes detected in a cell

Some unique features and challenges of single cell RNA-Seq

Features

- measures the distribution of expression levels for each gene across a population of single cells
- can study 1e2-1e6 cells in an experiment

Challenges

- amplification during library preparation
- gene dropout
- experimental design and computational analysis

Seurat and scanpy: single cell analysis toolkits

Single-cell analysis computations in the Cloud

Inputs and outputs are stored in Google Cloud storage buckets

Data processing and analysis are performed in Terra

https://cumulus.readthedocs.io/en/latest/index.html

Single Cell Portal facilitates sharing of single-cell studies

A few single-cell resources

Comprehensive list of single-cell resources

https://github.com/seandavi/awesome-single-cell

https://www.scrna-tools.org/

Computational packages for single-cell analysis

https://satijalab.org/seurat/

https://scanpy.readthedocs.io/

http://bioconductor.org/packages/devel/workflows/html/simpleSingleCell.html

eLife Commentary on the Human Cell Atlas https://elifesciences.org/articles/27041

Nature Commentary on the Human Cell Atlas

https://www.nature.com/news/the-human-cell-atlas-from-vision-to-reality-1.22854

Online courses

https://scrnaseq-course.cog.sanger.ac.uk/website/index.html

https://osca.bioconductor.org/

Single cell data repositories

http://jinglebells.bgu.ac.il/

www.nxn.se/single-cell-studies/