

Kalman FIlter

Hierarchical Noise Models

Hierarchical Noise Models

Hidden-state layer II

$$Z(t) = K(Z(t - \delta t)), U''(t)) + w(t)$$

Observation Layer

$$\begin{bmatrix} Y_{lat}[n] \\ Y_{long}[n] \end{bmatrix} = \begin{bmatrix} X_{lat}[n] \\ X_{long}[n] \end{bmatrix} + \varepsilon$$

Position Layer

$$\begin{bmatrix} X_{lat}[n] \\ X_{long}[n] \end{bmatrix} = \begin{bmatrix} X_{lat}[n-1] \\ X_{long}[n-1] \end{bmatrix} + \mathbf{T} \cdot \begin{bmatrix} \cos(\theta[n]) & \sin(\theta[n]) \\ -\sin(\theta[n]) & \cos(\theta[n]) \end{bmatrix} \cdot V_{elocity}[n] + p$$

Velocity Layer

$$\begin{bmatrix} V_{elocity}[n] \\ \theta[n] \end{bmatrix} = \begin{bmatrix} V_{elocity}[n-1] \\ \theta[n-1] \end{bmatrix} + \mathbf{T} \cdot \begin{bmatrix} A_{cc}[n] \\ W_{acc}[n] \end{bmatrix} + v$$

Acceleration Layer

$$\begin{bmatrix} A_{cc}[n] \\ W_{acc}[n] \end{bmatrix} = \begin{bmatrix} A_{cc}[n-1] \\ W_{acc}[n-1] \end{bmatrix} + \omega$$

$$Y[n] = A \cdot X[n] + B \cdot U[n] + e$$

$$\begin{bmatrix} Ylat(n) \\ Ylong(n) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} Xlat(n) \\ Xlong(n) \\ vel(n) \\ \theta(n) \\ Acc(n) \\ \omega(n) \end{bmatrix}$$

$$X[n] = C \cdot X[n-1] + D \cdot U[n] + v$$

$$\begin{bmatrix} Xlat(n) \\ Xlong(n) \\ vel(n) \\ \theta(n) \\ Acc(n) \\ \omega(n) \end{bmatrix} = \begin{bmatrix} 1 & 0 & T*\cos(\theta(n-1)) & T*\sin(\theta(n-1)) & 0 & 0 \\ 0 & 0 & -T*\sin(\theta(n-1)) & T*\cos(\theta(n-1)) & 0 & 0 \\ 0 & 0 & 1 & 0 & T & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Xlat(n-1) \\ Xlong(n-1) \\ vel(n-1) \\ \theta(n-1) \\ Acc(n-1) \\ \omega(n-1) \end{bmatrix}$$

$$Y[n] = A \cdot X[n] + B \cdot U[n] + e$$

$$X[n] = C \cdot X[n-1] + D \cdot U[n] + v$$

$$\hat{X}_{pred}[n] = \mathbf{C} \cdot \mathbf{X}[n-1] + D \cdot U[n]$$

$$\hat{X}_{pred}[n] = \mathbf{C} \cdot \mathbf{X}[\mathbf{n}-1] + D \cdot U[n]$$

$$\hat{Y}_{pred}[n] = A \cdot \hat{X}_{pred}[n] + B \cdot U[n]$$

$$\hat{P}_{pred}[n] = C \cdot P[n] \cdot C^{T} + Q$$

$$\hat{P}_{pred}[n] = C \cdot P[n] \cdot C^T + Q$$

$$err[n] = Y_{obs}[n] - \hat{Y}_{pred}[n]$$

$$S[n] = A \cdot \hat{P}_{pred}[n] \cdot A^T + R$$

$$K_{gain} = \hat{P}_{pred}[n] \cdot A^T \cdot S[n]^{-1}$$

$$X[n] = K_{gain} \cdot err[n] + \hat{X}_{pred}[n]$$

$$P[n] = (I - K_{gain} \cdot A) \cdot \hat{P}_{pred}[n]$$

Prediction

Update

Correction

```
>> A=eye(2);

>> nk=1000;

>> xtrue = [[1:nk]./200.*sin([1:nk]/50);...

[1:nk]./200.*cos([1:nk]/50)];

>> y=A*xtrue+randn(2,nk)/3;
```



```
R=.1*eye(2);
Q=.2*eye(2);
x=zeros(2,nk);
P=eye(2);
for k=2:nk
        xhat=C*x(:,k-1);
        yhat = A*xhat;
        Phat = C*P*C'+Q;
        err = y(:,k)-yhat;
        S = A*Phat*A'+R;
        K = Phat*A'*inv(S);
        x(:,k)=xhat+K*err;
        P=(eye(2)-K*A)*Phat;
end
```

$$I(u, v, t) \rightarrow I(u + \Delta u, v + \Delta v, t + \Delta t)$$

Taylor expansion

$$I(u + \Delta u, v + \Delta v, t + \Delta t) \approx I(u, v, t) + \frac{dI}{du} \delta u + \frac{dI}{dv} \delta v + \frac{dI}{dt} \delta t$$

Assume that intensity doesn't change (just moves around)

$$I(u, v, t) = I(u + \Delta u, v + \Delta v, t + \Delta t)$$

$$0 = \frac{dI}{du}\delta u + \frac{dI}{dv}\delta v + \frac{dI}{dt}\delta t$$

Optical Flow $-\frac{dI}{dt} = \frac{dI}{du}\frac{du}{dt} + \frac{dI}{dv}\frac{dv}{dt}$ Change in intensity at pixel

Gradient in horizontal (u)

Gradient in vertical (v)

Each pixel has one equation and two unknowns

- Lucas-Kanade Method (Sparse flow)
- Gunnar Farneback Method (dense flow)

Lucas-Kanade Method (Sparse flow)

- Track only corner points
- Find Shi-Tomasi points between frames (cv2.goodPointsToTrack(.))

```
# params for corner detection
feature params = dict( maxCorners = 100, qualityLevel = 0.3, minDistance = 7, blockSize = 7)
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15, 15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS
         cv2.TERM_CRITERIA_COUNT,10, 0.03))
old pts = cv2.goodFeaturesToTrack(old gray, mask = None, **feature params)
New pts, status, err = cv2.calcOpticalFlowPyrLK(old gray, new gray, old pts, None, **lk params)
# Select good points
good new = new pts[status == 1]
good old = old pts[status == 1]
```

Lucas-Kanade Method (Sparse flow)

$$-\frac{dI}{dt} = \frac{dI}{du}\frac{du}{dt} + \frac{dI}{dv}\frac{dv}{dt}$$

Gunnar Farneback Method (dense flow)

Make image pyramid

Polynomial Approximation

$$\tilde{I}(u, v, t = 1) = \sum_{j=-2}^{2} \sum_{i=-2}^{2} \alpha_{i,j} * I(u+i, v+j, t = 0)$$

Iterative estimate du & dv

$$I(u, v, t = 0) - I(u, v, t = 1) = \frac{d\tilde{I}(u, v)}{du} \frac{du}{dt} + \frac{d\tilde{I}(u, v)}{dv} \frac{dv}{dt}$$
$$\alpha_{i,j} = \begin{cases} 1 & i, j = du, dv \\ 0 & else \end{cases}$$

Gunnar Farneback Method (dense flow)

Flow is a $\langle n \times m \times 2 \rangle$ image and is the du/dt and dv/dt for each pixel location

Gunnar Farneback Method (dense flow)

Single Object tracking

MeanShift

Center of mass of intensities inside circle

Center of mass of intensities inside (larger) circle

Size of region-of-interest in current and next frame are fixed

Single Object tracking

CAMShift method (continuous adaptive mean shift)

Center of mass of intensities inside circle

Center of mass of intensities inside (larger) circle

Size of region-of-interest is also adjusted based on covariance of intensities

Single Object tracking

CAMShift method (continuous adaptive mean shift)

Boosting tracker

- Similar to Haar cascade model
- Requires training at runtime with positive/negative data
- User labels object to be tracked (or by some detection method)
- Given new frame, run classifier on all nearby pixels to previous known location
- Update positives/negatives and training as we add frames

MIL (multiple instance learning)

 Similar to Boosting tracker, but uses multiple samples around the point to define positive "bags" (collections of images related to the positive image)

- Less prone to drift cf Boosting
- Better job at partial occlusions than Boost but cannot track over full occlusions

KCF (kernelized correlation function) tracker CSRT (discriminate correlation filter) MOSSE (minimum output sum of squared error

- Given a test texture to track (h)
- 2) Compute FFT of texture (H)
- Compute correlation of h with new image (f)

$$g = f \otimes h$$
$$G = F \cdot H^*$$

find max of correlation

Visual Object Tracking using Adaptive Correlation Filters

Lecture Notes on Kalman filters

Observation Layer

$$\begin{bmatrix} Y_{lat}[n] \\ Y_{long}[n] \end{bmatrix} = \begin{bmatrix} X_{lat}[n] \\ X_{long}[n] \end{bmatrix} + \varepsilon$$

Position Layer

$$\begin{bmatrix} X_{lat}[n] \\ X_{long}[n] \end{bmatrix} = \begin{bmatrix} X_{lat}[n-1] \\ X_{long}[n-1] \end{bmatrix} + p$$

$$Y[n] = X[n] + e$$

$$Y[n] = A \cdot X[n] + B \cdot U[n] + e$$

$$X[n] = X[n-1] + p$$

$$X[n] = C \cdot X[n-1] + D \cdot U[n] + v$$

Observation Layer

$$Y[n] = X[n] + e$$
Position Layer
 $e = N(0, R)$

$$X[n] = X[n-1] + v$$

$$v = N(0,Q)$$

Given X[n-1], where do I expect the car to be at n:

$$\hat{X}_{pred}[n] = X[n-1]$$

$$\widehat{Y}_{pred}[n] = \widehat{X}_{pred}[n]$$

After I measure the position, how far off was my estimate:

$$err[n] = Y_{obs}[n] - \hat{Y}_{pred}[n]$$

Update the estimate of X[n] between where I expected it to be and where I measured it:

$$X[n] = K_{gain} \cdot err[n] + \hat{X}_{pred}[n]$$

$$K_{gain} \sim \begin{cases} 1 & \text{Update is solely determined by Y[n]} \\ 0 & \text{Update is solely determined by X[n-1]} \end{cases}$$

Kalman Gain

$$Y = A \cdot X + e$$

Least-squares

$$\min_{X}(|Y-AX|^2)$$

Weighted Leastsquares

$$\min_{X} (|Y - AX|_{R}^{2} + |X - X_{0}|_{Q}^{2})$$

Notation denotes:

$$|\Psi|_{\Omega}^2 \equiv \Psi \cdot \Omega^{-1} \cdot \Psi^T$$

Prior expectation of X

Kalman Gain

$$Y = A \cdot X + e$$

$$\min_{X} \left(|Y - AX|_{R}^{2} + |X - X_{0}|_{Q}^{2} \right)$$

$$X = (A^T \cdot R^{-1} \cdot A + Q^{-1})^{-1} A^T \cdot R^{-1} \cdot (Y - A \cdot X_0) + X_0$$

Special Case (Tikhonov regularization/ Ridge regression)

$$X_0 = 0$$
 $R = \varepsilon \cdot I$ $\lambda = \frac{\varepsilon}{v} \leftarrow 1$ /Signal-to-noise ratio

$$X = (A^T \cdot A + \lambda \cdot I)^{-1}A^T \cdot Y$$

Kalman Gain

$$Y = A \cdot X + e$$

$$\min_{X} \left(|Y - AX|_{R}^{2} + |X - X_{0}|_{Q}^{2} \right)$$

$$X = (A^{T} \cdot R^{-1} \cdot A + Q^{-1})^{-1}A^{T} \cdot R^{-1} \cdot (Y - A \cdot X_{0}) + X_{0}$$

$$X[n] = K_{gain} \cdot (Y_{obs}[n] - \hat{Y}_{pred}[n]) + \hat{X}_{pred}[n]$$

$$X = Q \cdot A^T \cdot (A \cdot Q \cdot A^T + R)^{-1} \cdot (Y - A \cdot X_0) + X_0$$

$$Y[n] = X[n] + e$$

$$X[n] = X[n-1] + v$$

$$\hat{X}_{pred}[n] = X[n-1]$$

$$\hat{Y}_{pred}[n] = \hat{X}_{pred}[n]$$

$$\hat{P}_{pred}[n] = P[n] + Q$$

$$err[n] = Y_{obs}[n] - \hat{Y}_{pred}[n]$$

$$S[n] = \hat{P}_{pred}[n] + R$$

$$K_{gain} = \hat{P}_{pred} [n] \cdot S[n]^{-1}$$

$$X[n] = K_{gain} \cdot err[n] + \hat{X}_{pred}[n]$$

$$P[n] = (I - K_{gain}) \cdot \hat{P}_{pred}[n]$$

Prediction

Update

Correction

$$Y[n] = A \cdot X[n] + B \cdot U[n] + e$$

$$X[n] = C \cdot X[n-1] + D \cdot U[n] + v$$

$$\hat{X}_{pred}[n] = \mathbf{C} \cdot \mathbf{X}[n-1] + D \cdot U[n]$$

$$\hat{X}_{pred}[n] = \mathbf{C} \cdot \mathbf{X}[\mathbf{n}-1] + D \cdot U[n]$$

$$\hat{Y}_{pred}[n] = A \cdot \hat{X}_{pred}[n] + B \cdot U[n]$$

$$\hat{P}_{pred}[n] = C \cdot P[n] \cdot C^{T} + Q$$

$$\hat{P}_{pred}[n] = C \cdot P[n] \cdot C^T + Q$$

$$err[n] = Y_{obs}[n] - \hat{Y}_{pred}[n]$$

$$S[n] = A \cdot \hat{P}_{pred}[n] \cdot A^T + R$$

$$K_{gain} = \hat{P}_{pred}[n] \cdot A^T \cdot S[n]^{-1}$$

$$X[n] = K_{gain} \cdot err[n] + \hat{X}_{pred}[n]$$

$$P[n] = (I - K_{gain} \cdot A) \cdot \hat{P}_{pred}[n]$$

Prediction

Update

Correction

```
>> A=eye(2);

>> nk=1000;

>> xtrue = [[1:nk]./200.*sin([1:nk]/50);...

[1:nk]./200.*cos([1:nk]/50)];

>> y=A*xtrue+randn(2,nk)/3;
```



```
R=.1*eye(2);
Q=.2*eye(2);
x=zeros(2,nk);
P=eye(2);
for k=2:nk
        xhat=C*x(:,k-1);
        yhat = A*xhat;
        Phat = C*P*C'+Q;
        err = y(:,k)-yhat;
        S = A*Phat*A'+R;
        K = Phat*A'*inv(S);
        x(:,k)=xhat+K*err;
        P=(eye(2)-K*A)*Phat;
end
```

```
>> nk=1000;
>> xtrue = [[1:nk]./200.*sin([1:nk]/50);...
            [1:nk]./200.*cos([1:nk]/50)];
>> y=A*xtrue+randn(2,nk)/3;
                                                    Measured
                                                    Estimated
                  -2
```

>> A=eye(2);

```
R=.1*eye(2);
Q=.2*eye(2);
x=zeros(2,nk);
P=eye(2);
for k=2:nk
        xhat=C*x(:,k-1);
        yhat = A*xhat;
        Phat = C*P*C'+Q;
        err = y(:,k)-yhat;
        S = A*Phat*A'+R;
        K = Phat*A'*inv(S);
        x(:,k)=xhat+K*err;
        P=(eye(2)-K*A)*Phat;
end
```

```
>> A=eye(2);

>> nk=1000;

>> xtrue = [[1:nk]./200.*sin([1:nk]/50);...

[1:nk]./200.*cos([1:nk]/50)];

>> y=A*xtrue+randn(2,nk)/3;
```



```
R=2*eye(2);
Q=.2*eye(2);
x=zeros(2,nk);
P=eye(2);
for k=2:nk
        xhat=C*x(:,k-1);
        yhat = A*xhat;
        Phat = C*P*C'+Q;
        err = y(:,k)-yhat;
        S = A*Phat*A'+R;
        K = Phat*A'*inv(S);
        x(:,k)=xhat+K*err;
        P=(eye(2)-K*A)*Phat;
end
```

```
>> A=eye(2);

>> nk=1000;

>> xtrue = [[1:nk]./200.*sin([1:nk]/50);...

[1:nk]./200.*cos([1:nk]/50)];

>> y=A*xtrue+randn(2,nk)/3;
```



```
R=20*eye(2);
Q=.2*eye(2);
x=zeros(2,nk);
P=eye(2);
for k=2:nk
        xhat=C*x(:,k-1);
        yhat = A*xhat;
        Phat = C*P*C'+Q;
        err = y(:,k)-yhat;
        S = A*Phat*A'+R;
        K = Phat*A'*inv(S);
        x(:,k)=xhat+K*err;
        P=(eye(2)-K*A)*Phat;
end
```

Fixed Interval Smoother

end

For (k=0; k \hat{X}_{k|k-1} = C \cdot X_{k-1|k-1} + D \cdot U_k
$$\hat{Y}_k = A \cdot \hat{X}_{k|k-1} + B \cdot U_k$$

$$\hat{P}_{k|k-1} = C \cdot P_{k-1|k-1} \cdot C^T + Q$$

$$inn_k = Y_k - \hat{Y}_k$$

$$S = A \cdot \hat{P}_{k|k-1} \cdot A^T + R$$

$$K = \hat{P}_{k|k-1} \cdot A^T \cdot S^{-1}$$

$$X_{k|k} = K \cdot inn_k + \hat{X}_{k|k-1}$$

 $P_{k|k} = (I - K \cdot A) \cdot \hat{P}_{k|k-1}$

For (k=n; k>0; k--):
$$M_{k} = P_{k|k} \cdot A \cdot \hat{P}_{k+1|k}^{-1}$$
$$X_{k|n} = X_{k|k} + M_{k} \cdot (X_{k+1|n} - X_{k+1|k})$$
$$P_{k|n} = P_{k|k} + M_{k} \cdot (P_{k+1|n} - \hat{P}_{k+1|k})$$

Requires storing the $X_{k|k}$, $X_{k+1|k}$, $P_{k|k}$, and $\hat{P}_{k+1|k}$ from the forward pass

Tuning R and Q

- R- Measurement noise
 - Uncertainty in each measurement
 - Low R → model will simply track the measurements (no filtering)
 - High Q → model will be independent of the data
 - Data fusion (use R to weight different measurements)
- Q- Process noise
 - Allowed changes in the state between updates
 - Low Q → state will be more static
 - High Q → allows state to vary wildly (less informative)
 - Ideally Q is the variance(diff(state))

Observation Layer

$$\begin{bmatrix} Y_{lat}[n] \\ Y_{long}[n] \end{bmatrix} = \begin{bmatrix} X_{lat}[n] \\ X_{long}[n] \end{bmatrix} + \varepsilon$$

Position Layer

$$\begin{bmatrix} X_{lat}[n] \\ X_{long}[n] \end{bmatrix} = \begin{bmatrix} X_{lat}[n-1] \\ X_{long}[n-1] \end{bmatrix} + \mathbf{T} \cdot \begin{bmatrix} \cos(\theta[n]) \\ -\sin(\theta[n]) \end{bmatrix} \cdot V_{elocity}[n] + p$$

Velocity Layer

$$\begin{bmatrix} V_{elocity}[n] \\ \theta[n] \end{bmatrix} = \begin{bmatrix} V_{elocity}[n-1] \\ \theta[n-1] \end{bmatrix} + \mathbf{T} \cdot \begin{bmatrix} A_{cc}[n] \\ W_{acc}[n] \end{bmatrix} + v$$

Acceleration Layer

$$\begin{bmatrix} A_{cc}[n] \\ W_{acc}[n] \end{bmatrix} = \begin{bmatrix} A_{cc}[n-1] \\ W_{acc}[n-1] \end{bmatrix} + \omega$$

$$Y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} X_{lat} \\ X_{long} \\ X_{velocity} \\ \theta_{velocity} \\ X_{accel} \\ \theta_{accel} \end{bmatrix} + \varepsilon$$

$$\begin{bmatrix} X_{lat} \\ X_{long} \\ X_{velocity} \\ \theta_{velocity} \\ X_{accel} \\ \theta_{accel} \end{bmatrix} = B \begin{pmatrix} \begin{bmatrix} X_{lat} \\ X_{long} \\ X_{velocity} \\ \theta_{velocity} \\ X_{accel} \\ \theta_{accel} \end{bmatrix} + \begin{bmatrix} v_{lat} \\ v_{long} \\ v_{velocity} \\ v_{velocity} \\ v_{accel} \\ v_{accel} \end{bmatrix}$$

$$\begin{bmatrix} X_{lat} \\ X_{long} \\ X_{velocity} \\ \theta_{velocity} \\ X_{accel} \\ \theta_{accel} \end{bmatrix} = B \begin{pmatrix} \begin{bmatrix} X_{lat} \\ X_{long} \\ X_{velocity} \\ \theta_{velocity} \\ X_{accel} \\ \theta_{accel} \end{bmatrix} + \begin{bmatrix} v_{lat} \\ v_{long} \\ v_{velocity} \\ v_{velocity} \\ v_{accel} \\ v_{accel} \\ v_{accel} \end{bmatrix} + \begin{bmatrix} V_{lat} \\ v_{long} \\ v_{velocity} \\ v_{velocity} \\ v_{accel} \\ v_{accel} \\ v_{accel} \end{bmatrix}$$

$$B(X) = \begin{bmatrix} X_{lat} + T * \cos(\theta_{velocity}) * X_{velocity} \\ X_{long} - T * \sin(\theta_{velocity}) * X_{velocity} \\ X_{velocity} + T * X_{accel} \\ \theta_{velocity} + T * \theta_{accel} \\ 1 \\ 1 \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} X_{lat} \\ X_{long} \\ X_{velocity} \\ \theta_{velocity} \\ X_{accel} \\ \theta_{accel} \end{bmatrix} + \varepsilon$$

$$\begin{bmatrix} dX_{lat}/dt \\ dX_{long}/dt \\ dX_{velocity}/dt \\ d\theta_{velocity}/dt \\ d\theta_{accel}/dt \end{bmatrix} = \begin{bmatrix} 1 & 0 & T \cdot \cos(\theta_{velocity}) & -T \cdot X_{velocity} \cdot \sin(\theta_{velocity}) & 0 & 0 \\ 0 & 1 & -T \cdot \sin(\theta_{velocity}) & T \cdot X_{velocity} \cdot \cos(\theta_{velocity}) & 0 & 0 \\ 0 & 0 & 1 & 0 & T & 0 \\ 0 & 0 & 0 & 1 & 0 & T \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} dX_{lat}/dt \\ dX_{long}/dt \\ dX_{velocity}/dt \\ d\theta_{velocity}/dt \\ d\theta_{accel}/dt \end{bmatrix} + \begin{bmatrix} v_{lat} \\ v_{long} \\ v_{velocity} \\ v_{velocity} \\ v_{accel} \\ v_{accel} \end{bmatrix}$$

Advantages-

- Model is restricted by real-world physics. (e.g. instantaneous velocity changes are not possible)
- More control over the sources of noise/error

$$Y[n] = H(X[n], U[n]) + e$$

$$X[n] = F(X[n-1], U[n]) + v$$

$$\widehat{X}_{pred}[n] = F(X[n-1],U[n])$$

$$\widehat{Y}_{pred}[n] = H(\widehat{X}_{pred}[n], U[n])$$

$$\widehat{P}_{pred}[n] = F' \cdot P[n] \cdot F'^{T} + Q$$

$$err[n] = Y_{obs}[n] - \hat{Y}_{pred}[n]$$

$$S[n] = H' \cdot \hat{P}_{pred}[n] \cdot H'^T + R$$

$$K_{gain} = \hat{P}_{pred}[n] \cdot H'^T \cdot S[n]^{-1}$$

$$X[n] = K_{gain} \cdot err[n] + \hat{X}_{pred}[n]$$

$$P[n] = (I - K_{gain} \cdot H') \cdot \hat{P}_{pred}[n]$$

Prediction

$$F' = \frac{\partial F}{\partial X} \bigg|_{\widehat{X}_{pred}[n]}$$

Update

$$H' = \frac{\partial H}{\partial X} \bigg|_{\hat{Y}_{pred}[n]}$$

Correction