Project Development

Delivery Of Sprint-3

Date	03 October 2022
Team ID	PNT2022TMID37447
Project Name	Project - Corporate Employee Attrition Analytics

DATA UNDERSTANDING, DATA PREPARATION & TESTING

CATEGORICAL VARIABLES CORRELATION

HYPOTHESIS TESTING CONDITIONS

Our hypotheses will be:

➤ Null Hypothesis (H0)

H0: There is no relationship between 2 categorial variables ie Both features or variables are independent of each other

➤ Alternate Hypothesis (H1)

H1: There is Relationship between 2 categorical variables .ie Both features or variables are independent of each other

CODING:


```
🌢 ibm corporate employee attrition analysis.ipynb 🔯
                                                                                                                                                           ■ Comment 😃 Share 🌣
       File Edit View Insert Runtime Tools Help All changes saved
                                                                                                                                                                 + Code + Text
Q
                lst1=[df,chi_square_statistic,p_value]
               #compare chi_square_statistic with critical_value and p-value which is the probability of getting chi-square>0.09 (chi_square_statistic) if(chi_square_statistic>-critical_value):
                 test stat=0
                if(p_value<=alpha):
                if((test_stat==1) and (p_val==1) ):
                  final_output=1
                 final output=0
                lst.append(lst1)
                final.append(final_output)
                input_features.append((i,j))
▤
              results.append(lst)
              chisqr_result.append(final)
>_
```



```
#categorical=[i for i in final_df.columns.tolist() if(final_df[i].dtype==object)]
#categorical.remove("Over18")
import scipy.stats
from scipy.stats import chi2
results=[]
[]=Ist
#final=[]
input features=[]
chisqr_result=[]
for i in categorical:
 #print("*"*6 + i + "*"*6)
 final=[]
 for j in categorical:
  #print("*"*6 + j + "*"*6)
  #print("*"*6 + i +"--" + j + "*"*6)
  #Contingency Table
  contingency_table=pd.crosstab(final_df[i],final_df[j])
  #print('contingency table :-\n',contingency table)
  #Observed Values
  Observed_Values = contingency_table.values
  #print("Observed Values :-\n",Observed Values)
  #Expected Values
  #import scipy.stats
```

```
b=scipy.stats.chi2_contingency(contingency_table)
  Expected Values = b[3]
  #print("Expected Values :-\n",Expected Values)
  #Degree of Freedom
  no of rows=Observed Values.shape[0]
  no_of_columns=Observed_Values.shape[1]
  df=(no_of_rows-1)*(no_of_columns-1)
  #print("Degree of Freedom:-",df)
  #Significance Level 5%
  alpha=0.05
  #chi-square statistic - χ2
  #from scipy.stats import chi2
  chi square=sum([(o-
e)**2./e for o,e in zip(Observed_Values,Expected_Values)])
  chi square statistic=chi square[0]+chi square[1]
  #print("chi-square statistic:-",chi square statistic)
  #critical value
  critical value=chi2.ppf(q=1-alpha,df=df)
  #print('critical_value:',critical_value)
  #p-value
  p value=1-chi2.cdf(x=chi square statistic,df=df)
  #print('p-value:',p value)
```

```
#print('Degree of Freedom: ',df)
  #print('chi-square statistic:',chi_square_statistic)
  #print('critical value:',critical value)
  #print('p-value:',p value)
  #lst1=[df,chi_square_statistic,critical_value,p_value]
  lst1=[df,chi square statistic,p value]
  #compare chi square statistic with critical value and p-
value which is the probability of getting chi-square>0.09 (chi square statistic)
  if(chi_square_statistic>=critical_value):
   #print("Reject H0,There is a relationship between 2 categorical variables")
   test stat=1
  else:
   #print("Retain H0,There is no relationship between 2 categorical variables")
   test stat=0
  if(p value<=alpha):</pre>
    ##print("Reject H0,There is a relationship between 2 categorical variables")
    p_val=1
  else:
    #print("Retain H0,There is no relationship between 2 categorical variables")
    p val=0
  if((test stat==1) and (p val==1):
```

#print('Significance level: ',alpha)

```
final_output=1
else:
final_output=0

lst.append(lst1)
final.append(final_output)
input_features.append((i,j))

results.append(lst)
chisqr_result.append(final)

print(input_features)
print(results)
print(chisqr_result)
```

OUTPUT:

[('BusinessTravel', 'BusinessTravel', ('BusinessTravel', 'Department'), ('BusinessTravel', 'EducationField'), ('BusinessTravel', 'Gender'), ('BusinessTravel', 'JobRole'), ('BusinessTravel', 'MaritalStatus'), ('Department', 'BusinessTravel'), ('Department', 'Department', 'Department', 'BusinessTravel'), ('Department', 'Department'), ('Department', 'Department', 'Departmen 'EducationField'), ('Department', 'Gender'), ('Department', 'JobRole'), ('Department', 'MaritalStatus'), ('EducationField', 'BusinessTravel'), ('EducationField', 'Department'), ('EducationField', 'EducationField'), ('EducationField', 'Gender'), ('EducationField', 'JobRole'), ('EducationField', 'MaritalStatus'), ('Gender', 'BusinessTravel'), ('Gender', 'Department'), ('Gender', 'EducationField'), ('Gender', 'Gender'), ('Gender', 'JobRole'), ('Gender', 'MaritalStatus'), ('JobRole', 'BusinessTravel'), ('JobRole', 'Department'), ('JobRole', 'EducationField'), ('JobRole', 'Gender'), ('JobRole', 'JobRole'), ('JobRole', 'MaritalStatus'), ('MaritalStatus', 'BusinessTravel'), ('MaritalStatus', 'Department'), ('MaritalStatus', 'EducationField'), ('MaritalStatus', 'Gender'), ('MaritalStatus', 'JobRole'), ('MaritalStatus', 'MaritalStatus')] [[[4, 7351.0, 0.0], [4, 18.482283670323035, 0.0009930508225365342], [10, 22.91951299984114, [10, 22.91951299984114]]0.011047599808440722], [2, 6.474780866568969, 0.03926622936205737], [16, 2.112602038483311, 0.9999848809548781], [4, 19.96730541356567, 0.0005068757482377118], [4, 24.107877157800974, 7.599456876472566e-05], [4, 5606.99999999999, 0.0], [10, 1814.9940082404353, 0.0], [2, 0.6554237083518072, 0.7205706192092916], [16, 7.0608955020156134, 0.9720693962380044], [4, 21.01893128218694, 0.0003139440272663663], [10, 43.21521906368869, 4.55116138065037e-06], [10, 2149.140329473462, 0.0], [25, 6754.0, 0.0], [5, 8.173363631380072, 0.1469364827306855], [40, 0.146936482730685], [40, 0.14693682730685], [40, 0.146936482730685], [40, 0.146936482730685], [40, 0.146982730685], [40, 0.146982730685], [40, 0.146982730685], [40, 0.146982730685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.1469820685], [40, 0.146982720685], [40, 0.146982720685], [40, 0.14698216.27224873151621, 0.9996876232608488], [10, 21.99437742174664, 0.015133269763218382], [2, 5.46509022138302, 0.06505351040946972], [2, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.7350469639355997], [5, 0.6156417705991506, 0.735046963935599], [5, 0.6156417705991506, 0.73504696393559], [5, 0.6156417705991506, 0.73504696393559], [5, 0.6156417705991506, 0.73504696393559], [5, 0.6156417705991506, 0.73504696393559], [5, 0.6156417705991506, 0.73504696393559], [5, 0.6156417705991506, 0.73504696], [5, 0.615641770599], [5, 0.615641770599], [5, 0.61564177059], [5, 0.615647705], [5, 0.615647705], [5, 0.615647705], [5, 0.615647705], [5, 0.615647705], [5, 0.61564

```
3.586949392393711, 0.6102738423265935], [1, 4300.0, 0.0], [8, 0.10167285358473775,
0.9999997327969251], [2, 3.979090758630589, 0.13675758414167993], [16, 21.346364236257617, 20.9999997327969251], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.13675758414167993], [2, 3.979090758630589, 0.136757589], [2, 3.979090758630589, 0.136757589], [2, 3.979090758630589], [2, 3.979090758630589], [2, 3.979090758630589], [2, 3.979090758630589], [2, 3.979090758630589], [2, 3.979090758630589], [2, 3.979090758630589], [2, 3.97909075869], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.9790907589], [2, 3.979090907589], [2, 3.97909090909], [2, 3.97909090909], [2, 3.97909090909090909], [2, 3.9790909090909], [2, 3.9790909090909], [2, 3.9790909090909], [2, 3.9790909090909], [2, 3.979090909090909], [2, 3.9790909090909], [2, 3.9790909090909], [2, 3.979090909090909], [2, 3.9790909090909], [2, 3.9790909090909], [2, 3.979090909090909], [2, 3.9790909090909], [2, 3.979090909090909], [2, 3.979090909090909090909090909], [2, 3.97909090909090909090909090909], [2, 3.9790909090909090909090909090909090909], [2, 3.9790909090909090909090
0.16557767933875145], [16, 21.87562551229072, 0.1472530084755297], [40, 21.445350078938674,
0.9928153627256894], [8, 12.642109094561857, 0.12477119469827436], [64, 8069.0, 0.0], [16,
23.660196523911065, 0.09719334311698913], [4, 16.929818667528195, 0.001994587277967308], [4,
15.257701399909378, 0.004195514172212866, [10, 12.780313848683722, 0.23621543026603953],
[2, 4.206509895247947, 0.12205848698313337], [16, 11.408404447909351, 0.7836029365000337],
[4, 5682.0, 0.0]], [[4, 7351.0, 0.0], [4, 18.482283670323035, 0.0009930508225365342], [10,
22.91951299984114, 0.011047599808440722], [2, 6.474780866568969, 0.03926622936205737], [16,
2.112602038483311, 0.9999848809548781], [4, 19.96730541356567, 0.0005068757482377118], [4,
24.107877157800974, 7.599456876472566e-05], [4, 5606.999999999999, 0.0], [10,
1814.9940082404353, 0.0], [2, 0.6554237083518072, 0.7205706192092916], [16,
7.0608955020156134, 0.9720693962380044], [4, 21.01893128218694, 0.0003139440272663663], [10,
43.21521906368869, 4.55116138065037e-06], [10, 2149.140329473462, 0.0], [25, 6754.0, 0.0], [5,
21.99437742174664, 0.015133269763218382], [2, 5.46509022138302, 0.06505351040946972], [2,
0.6156417705991506, 0.7350469639355997], [5, 3.586949392393711, 0.6102738423265935], [1,
4300.0, 0.0], [8, 0.10167285358473775, 0.9999997327969251], [2, 3.979090758630589,
0.13675758414167993], [16, 21.346364236257617, 0.16557767933875145], [16, 21.87562551229072,
0.1472530084755297], [40, 21.445350078938674, 0.9928153627256894], [8, 12.642109094561857,
0.12477119469827436], [64, 8069.0, 0.0], [16, 23.660196523911065, 0.09719334311698913], [4,
16.929818667528195, 0.001994587277967308], [4, 15.257701399909378, 0.004195514172212866],
[10, 12.780313848683722, 0.23621543026603953], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.20650989], [2, 4.20650989], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.2065098], [2, 4.20650
[16, 11.408404447909351, 0.7836029365000337], [4, 5682.0, 0.0]], [[4, 7351.0, 0.0], [4,
18.482283670323035, 0.0009930508225365342], [10, 22.91951299984114, 0.011047599808440722],
19.96730541356567, 0.0005068757482377118], [4, 24.107877157800974, 7.599456876472566e-05],
[4, 5606.99999999999, 0.0], [10, 1814.9940082404353, 0.0], [2, 0.6554237083518072,
0.7205706192092916], [16, 7.0608955020156134, 0.9720693962380044], [4, 21.01893128218694,
0.0003139440272663663], [10, 43.21521906368869, 4.55116138065037e-06], [10, 43.21521906368869, 4.55116138065037e-06], [10, 40.21521906368869, 4.55116138065037e-06], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906368869], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [10, 40.21521906], [
2149.140329473462, 0.0], [25, 6754.0, 0.0], [5, 8.173363631380072, 0.1469364827306855], [40,
5.46509022138302, 0.06505351040946972], [2, 0.6156417705991506, 0.7350469639355997], [5,
3.586949392393711, 0.6102738423265935], [1, 4300.0, 0.0], [8, 0.10167285358473775,
0.9999997327969251], [2, 3.979090758630589, 0.13675758414167993], [16, 21.346364236257617,
0.16557767933875145], [16, 21.87562551229072, 0.1472530084755297], [40, 21.445350078938674,
0.9928153627256894], [8, 12.642109094561857, 0.12477119469827436], [64, 8069.0, 0.0], [16,
23.660196523911065, 0.09719334311698913], [4, 16.929818667528195, 0.001994587277967308], [4,
15.257701399909378, 0.004195514172212866, [10, 12.780313848683722, 0.23621543026603953],
[4, 5682.0, 0.0]], [[4, 7351.0, 0.0], [4, 18.482283670323035, 0.0009930508225365342], [10,
22.91951299984114, 0.011047599808440722], [2, 6.474780866568969, 0.03926622936205737], [16,
2.112602038483311, 0.9999848809548781], [4, 19.96730541356567, 0.0005068757482377118], [4,
24.107877157800974, 7.599456876472566e-05], [4, 5606.999999999999, 0.0], [10,
1814.9940082404353, 0.0], [2, 0.6554237083518072, 0.7205706192092916], [16,
7.0608955020156134, 0.9720693962380044], [4, 21.01893128218694, 0.0003139440272663663], [10, 21.01893128218694, 0.0003139440272663663], [10, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.01893128218694, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.0003139440272663663], [20, 21.018924, 0.000314, 0.000314, 0.000314], [20, 21.018924, 0.000314, 0.000314, 0.000314, 0.000314], [20, 21.018924, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.000314, 0.
43.21521906368869, 4.55116138065037e-06], [10, 2149.140329473462, 0.0], [25, 6754.0, 0.0], [5,
8.173363631380072, 0.1469364827306855], [40, 16.27224873151621, 0.9996876232608488], [10,
21.99437742174664, 0.015133269763218382], [2, 5.46509022138302, 0.06505351040946972], [2,
0.6156417705991506, 0.7350469639355997], [5, 3.586949392393711, 0.6102738423265935], [1,
4300.0, 0.0], [8, 0.10167285358473775, 0.9999997327969251], [2, 3.979090758630589,
0.13675758414167993], [16, 21.346364236257617, 0.16557767933875145], [16, 21.87562551229072,
0.1472530084755297], [40, 21.445350078938674, 0.9928153627256894], [8, 12.642109094561857,
0.12477119469827436], [64, 8069.0, 0.0], [16, 23.660196523911065, 0.09719334311698913], [4,
16.929818667528195, 0.001994587277967308], [4, 15.257701399909378, 0.004195514172212866],
[10, 12.780313848683722, 0.23621543026603953], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698313337], [2, 4.206509895247947, 0.12205848698], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247947], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509895247], [2, 4.206509897], [2, 4.206509897], [2, 4.206509897], [2, 4.20609897], [2, 4.20650997], [2, 4.20650997], [2, 4.20650997], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.2065097], [2, 4.
[16, 11.408404447909351, 0.7836029365000337], [4, 5682.0, 0.0]], [[4, 7351.0, 0.0], [4,
18.482283670323035, 0.0009930508225365342], [10, 22.91951299984114, 0.011047599808440722], [10, 22.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.011047599808440722], [10, 20.91951299984114, 0.001047599808440722], [10, 20.91951299984114, 0.001047599808440722], [10, 20.91951299984114, 0.001047599808440722], [10, 20.91951299984114], [10, 20.91951299984114], [10, 20.91951299984114], [10, 20.91951299984114], [10, 20.919512999884199999899], [10, 20.9195129999899], [10, 20.919512999989], [10, 20.91999999], [10, 20.9199999], [10, 20.91999999], [10, 20.919999], [10, 20.91999], [10, 20.91999], [10, 20.91999], [10, 20.91999], [10, 20.91999], [10, 20.91999], [10, 20.9199], [10, 20.9199], [10, 20.9199], [10, 20.9199], [10, 20.9199], [10, 20.9199], [10, 20.9199], [10, 20.9199], [10, 20.9199], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10, 20.919], [10
```

19.96730541356567, 0.0005068757482377118], [4, 24.107877157800974, 7.599456876472566e-05], [4, 5606.9999999999, 0.0], [10, 1814.9940082404353, 0.0], [2, 0.6554237083518072, 0.7205706192092916], [16, 7.0608955020156134, 0.9720693962380044], [4, 21.01893128218694, 10.01893128218694], [4, 21.01894], [4, 21.01894], [4, 20.0003139440272663663], [10, 43.21521906368869, 4.55116138065037e-06], [10, 2149.140329473462, 0.0], [25, 6754.0, 0.0], [5, 8.173363631380072, 0.1469364827306855], [40, 16.27224873151621, 0.9996876232608488], [10, 21.99437742174664, 0.015133269763218382], [2, 5.46509022138302, 0.06505351040946972], [2, 0.6156417705991506, 0.7350469639355997], [5, 3.586949392393711, 0.6102738423265935], [1, 4300.0, 0.0], [8, 0.10167285358473775, 0.9999997327969251], [2, 3.979090758630589, 0.13675758414167993], [16, 21.346364236257617, 0.16557767933875145], [16, 21.87562551229072, 0.1472530084755297], [40, 21.445350078938674, 0.9928153627256894], [8, 12.642109094561857, 0.12477119469827436], [64, 8069.0, 0.0], [16, 23.660196523911065, 0.09719334311698913], [4, 16.929818667528195, 0.001994587277967308], [4, 15.257701399909378, 0.004195514172212866, [10, 12.780313848683722, 0.23621543026603953], [4, 5682.0, 0.0]], [[4, 7351.0, 0.0], [4, 18.482283670323035, 0.0009930508225365342], [10, 22.91951299984114, 0.011047599808440722], [2, 6.474780866568969, 0.03926622936205737], [16, 2.112602038483311, 0.9999848809548781], [4, 19.96730541356567, 0.0005068757482377118], [4, 24.107877157800974, 7.599456876472566e-05], [4, 5606.99999999999, 0.0], [10, 1814.9940082404353, 0.0], [2, 0.6554237083518072, 0.7205706192092916], [16, 7.0608955020156134, 0.9720693962380044], [4, 21.01893128218694, 0.0003139440272663663], [10, 43.21521906368869, 4.55116138065037e-06], [10, 2149.140329473462, 0.0], [25, 6754.0, 0.0], [5, 8.173363631380072, 0.1469364827306855], [40, 16.27224873151621, 0.9996876232608488], [10, 21.99437742174664, 0.015133269763218382], [2, 5.46509022138302, 0.06505351040946972], [2, 0.6156417705991506, 0.7350469639355997], [5, 3.586949392393711, 0.6102738423265935], [1, 4300.0, 0.0], [8, 0.10167285358473775, 0.9999997327969251], [2, 3.979090758630589, 0.13675758414167993], [16, 21.346364236257617, 0.16557767933875145], [16, 21.87562551229072, 0.1472530084755297], [40, 21.445350078938674, 0.9928153627256894], [8, 12.642109094561857, 0.12477119469827436], [64, 8069.0, 0.0], [16, 23.660196523911065, 0.09719334311698913], [4, 16.929818667528195, 0.001994587277967308, [4, 15.257701399909378, 0.004195514172212866], [10, 12.780313848683722, 0.23621543026603953], [2, 4.206509895247947, 0.12205848698313337], [16, 11.408404447909351, 0.7836029365000337], [4, 5682.0, 0.0]]] [[1, 1, 1, 1, 0, 1], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 0, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1]]

CODING:

OUTPUT:

TRAIN-TEST SPLIT

CODING:

from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import TimeSeriesSplit from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression

attrition_lable=final_df['Attrition'] final_df=final_df.drop('Attrition',1)

attrition_lable=attrition_lable.map(lambda x : 1 if(x=='Yes') else 0)

X_train, X_test, y_train, y_test = train_test_split(final_df,attrition_lable,test_siz e=0.20,stratify=attrition_lable, random_state=42)

X_train, X_cv, y_train, y_cv = train_test_split(X_train,y_train,test_size=0.20,strat ify=y_train, random_state=42)

CONVERTING CATEGORICAL COLUMNS DATA INTO NUMERICAL DATA

USING GET DUMMIES

CODING:

#foe i in [X_train,X_cv,X_test]:

X_train=pd.get_dummies(X_train)

X cv=pd.get dummies(X cv)

X_test=pd.get_dummies(X_test)

print(X_train.shape , X_cv.shape , X_test.shape)

OUTPUT:

(2752, 48) (688, 48) (860, 48)

USING COUNT VECTORIZES

CODING:

```
#categorical
#[X train[i].value counts().keys().tolist() for i in categorical]
#final_df.applymap(lambda x: j.replace("-","_").replace(" ","_"))
for i in categorical:
 #print(i)
 X_train[i]=X_train[i].map(lambda x: x.replace("-","_").replace(" ","_"))
 X_cv[i]=X_cv[i].map(lambda x: x.replace("-","_").replace(" ","_"))
 X test[i]=X test[i].map(lambda x: x.replace("-"," ").replace(" "," "))
 #print(df[i])
#X train
[X_test[i].value_counts().keys().tolist() for i in categorical]
from sklearn.feature extraction.text import CountVectorizer
vect = CountVectorizer()
x train MaritalStatus= vect.fit transform(X train['MaritalStatus'])
x_test_MaritalStatus = vect.transform(X_test['MaritalStatus'])
x_cv_MaritalStatus = vect.transform(X_cv['MaritalStatus'])
x train MaritalStatus.shape, x cv MaritalStatus.shape, x test MaritalStatus
vect = CountVectorizer()
```

```
x train BusinessTravel= vect.fit transform(X train['BusinessTravel'])
x test BusinessTravel = vect.transform(X test['BusinessTravel'])
x cv BusinessTravel = vect.transform(X cv['BusinessTravel'])
x train BusinessTravel.shape, x cv BusinessTravel.shape, x test BusinessTrav
el.shape
vect.get feature names()
x train BusinessTravel.toarray()
|st1=[]
for i in categorical:
 vect = CountVectorizer()
 x train vect= vect.fit transform(final df[i])
 x train col name=pd.DataFrame(x train vect.toarray(),columns=vect.get fea
ture names())
 lst1.append(x_train_col_name)
print(lst1)
horizontalStack = pd.concat([surveySub, surveySubLast10], axis=1)
x_train_col_name=pd.DataFrame(x_train_vect.toarray(),columns=vect.get_feat
ure names())
```

```
from sklearn.feature_extraction.text import CountVectorizer

vect = CountVectorizer()

x_train_BusinessTravel= vect.fit_transform(X_train['MaritalStatus'])

x_test_BusinessTravel = vect.transform(X_test['MaritalStatus'])

x_cv_BusinessTravel = vect.transform(X_cv['MaritalStatus'])

#col=['JobRole_'+i for i in vect.get_feature_names()]

pd.DataFrame(x_train_BusinessTravel.toarray(),columns=col)

final_df.columns.tolist()
```

CHECKING DISTRIBUTION ON THE LABEL IN TEST, TRAIN, CV DATA

CODING:

my colors = 'rgbkymc'

train_class_distribution.plot(kind='bar')

it returns a dict, keys as class labels and values as the number of data points in
that class
train_class_distribution = y_train.value_counts()

test_class_distribution = y_test.value_counts()

cv_class_distribution = y_cv.value_counts()

```
plt.xlabel('Class')
plt.ylabel('Data points per Class')
plt.title('Distribution of yi in train data')
plt.grid()
plt.show()
sorted_yi = np.argsort(-train_class_distribution.values)
for i in sorted_yi:
  print('Number of data points in class', i, ':',train class distribution.values[i], '('
, np.round((train class distribution.values[i]/y train.shape[0]*100), 3), '%)')
print('-'*80)
my colors = 'rgbkymc'
test class distribution.plot(kind='bar')
plt.xlabel('Class')
plt.ylabel('Data points per Class')
plt.title('Distribution of yi in test data')
plt.grid()
plt.show()
sorted_yi = np.argsort(-test_class_distribution.values)
for i in sorted_yi:
  print('Number of data points in class', i+1, ':',test_class_distribution.values[i], '
(', np.round((test_class_distribution.values[i]/y_test.shape[0]*100), 3), '%)')
```

```
print('-'*80)
my_colors = 'rgbkymc'
cv_class_distribution.plot(kind='bar')
plt.xlabel('Class')
plt.ylabel('Data points per Class')
plt.title('Distribution of yi in cross validation data')
plt.grid()
plt.show()

sorted_yi = np.argsort(-train_class_distribution.values)
for i in sorted_yi:
    print('Number of data points in class', i+1, ':',cv_class_distribution.values[i], '(', np.round((cv_class_distribution.values[i]/y_cv.shape[0]*100), 3), '%)')
```


OUTPUT:

Number of data points in class 0: 2307 (83.83%)

Number of data points in class 1:445 (16.17%)

Number of data points in class 1:721 (83.837%)

Number of data points in class 2:139 (16.163%)

Number of data points in class 1:577 (83.866%)

Number of data points in class 2:111 (16.134%)