Well done!

2MBA60 Analysis 2, Group 4-4

Jori Schlangen

Stef Mohnen

Mil Majerus

Jiaqi Wang

February 2024

15.12.1

Let $A:V\to W$ be a linear map from a finite-dimensional normed vector space $(V,\|\cdot\|_V)$ to a normed vector space $(W, \|\cdot\|_W)$.

Show that A is differentiable on V.

It suffices to show that there exists a bounded linear map $L_a:V\to W$ such that, if we define $\operatorname{Err}_a(x):=A(x)-A(a)-L_a(x-a)$, it holds that $\lim_{x\to a}\frac{\|\operatorname{Err}_a(x)\|_W}{\|x-a\|_V}=0$. Choose $L_a:=A$, then L_a is a linear map which is bounded since $L_a:V\to W$ and V is a finite

dimensional normed vector space.

From this it follows that:

$$\lim_{x \to a} \frac{\| \operatorname{Err}_{a}(x) \|_{W}}{\| x - a \|_{V}} = \lim_{x \to a} \frac{\| f(x) - f(a) - L_{a}(x - a) \|_{W}}{\| x - a \|_{V}}$$

$$= \lim_{x \to a} \frac{\| f(x) - f(a) - (f(x) - f(a)) \|_{W}}{\| x - a \|_{V}}$$

$$= \lim_{x \to a} \frac{\| 0 \|_{W}}{\| x - a \|_{V}} = 0$$

15.12.3

The function $\ln:(0,\infty)\to\mathbb{R}$ is the unique, differentiable function such that $\ln(1)=0$ and $\ln'(x) = \frac{1}{x}$. Show that for all $x \in (-1, \infty)$, it holds that

$$ln(x+1) < x$$

with equality if and only if x = 0.

Define
$$f:(-1,\infty)\to\mathbb{R}:f(x)=\ln(1+x)-x$$
.

We begin by showing equality:

$$x = 0 \implies \ln(1+0) = \ln(1) = 0 = x$$

Assume $\exists p \neq 0 : f(p) = 0$, then by Rolle's theorem there has to be a $k \in (0,p) : f'(k) = 0$.

Since $\forall s \in \mathbb{R} : \frac{1}{s} \neq 0$ we know there is no such k.

Hence the only solution to f(x) = 0 is 0 and thus

$$f(x) = 0 \iff \ln(1+x) - x \iff \ln(1+x) = \iff x = 0.$$

We follow by showing inequality:

By the Sum Rule, since $\ln(1+x)$ and -x are differentiable, we know f is differentiable and hence continuous.

Let $p \in (-1, \infty) \setminus \{0\}$.

We have two cases: $p > 0 \lor p < 0$.

Case 1: p > 0

By the Mean Value Theorem, since f is continuous on it's domain and $[0,p]\subset (-1,\infty)$, we know there exists a $c\in (0,p)$ such that $f'(c)=\frac{f(p)-f(0)}{p-0}=\frac{f(p)}{p}$.

Since c > 0 we know $\frac{1}{1+c} < 1$ and thus

$$f'(c) = \frac{1}{c+1} - 1 < 0$$

$$\iff \frac{1}{c+1} - 1 = \frac{\ln(1+p) - p}{p} < 0$$

$$\iff \frac{\ln(1+p)}{p} - 1 < 0$$

$$\iff \frac{\ln(1+p)}{p} < 1$$

$$\iff \ln(1+p) < p$$

Case 2: M < 0

By the Mean Value Theorem, since f is continuous on it's domain and $[p,0]\subset (-1,\infty)$, we know there exists a $c\in (p,0)$ such that $f'(c)=\frac{f(0)-f(p)}{0-p}=\frac{f(p)}{p}$.

Since -1 < c < 0 we know $\frac{1}{1+c} > 1$

$$f'(c) = \frac{1}{c+1} - 1 > 0$$

$$\iff \frac{1}{c+1} - 1 = \frac{\ln(1+p) - p}{p} > 0$$

$$\iff \frac{\ln(1+p)}{p} - 1 > 0$$

$$\iff \frac{\ln(1+p)}{p} > 1$$
Since $p < 0$

$$\iff \ln(1+p) < p$$

Since we checked every case, we have proven

$$\forall x \in (-1, \infty) : f(x) \le 0 \iff \ln(1+x) - 1 \le 0 \iff \ln(1+x) \le x$$

with equality if and only if x = 0.

15.12.4

Proposition 15.1.5. Let $\Omega \subset \mathbb{R}$ be open and consider a function $f: \Omega \to W$ interpreted as a function from the subset Ω of the normed vector space $(\mathbb{R}, |\cdot|)$ to a normed vector space $(W, ||\cdot||_W)$. Let $a \in \Omega$. Then f is differentiable in a if and only if the limit

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. Then, if this limit exists we denote it by f'(a), and then for all $h \in \mathbb{R}$,

$$f'(a) \cdot h = (Df)_a(h).$$

Prove Proposition 15.1.5. You may assume that W is finite-dimensional. We show both directions.

- We need to show that f is differentiable in $a \implies$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \text{ exists.}$$

Since f is differentiable in a, it holds that

there exists a bounded linear map $L_a: \mathbb{R} \to W$ such that, if we define the error function $\operatorname{Err}_a:$ $\Omega \to W$ by

$$Err_a := f(x) - f(a) - L_a(x - a)$$

it holds that

$$\lim_{x \to a} \frac{\|\operatorname{Err}_a(x)\|_W}{|x - a|} = 0.$$

Obtain such a bounded linear map $L_a: \mathbb{R} \to W$.

It holds that

$$\lim_{x \to a} \frac{\|f(x) - f(a) - L_a(x - a)\|_W}{|x - a|} = 0.$$

Since this limit exists, it holds that $\lim_{x\to a} \|f(x) - f(a) - L_a(x-a)\|_W$ exists and $\lim_{x\to a} |x-a|$ exists $(\lim_{x\to a} |x-a| = 0)$ exist and $\forall a \in \mathbb{R} : |x-a| > ||f(x)-f(a)-L_a(x-a)||_W$ (Since the limit of their quotient is 0).

Since $\lim_{x\to a} \|f(x) - f(a) - L_a(x-a)\|_W$ exists and L_a is bounded, it holds that $\lim_{x\to a} \|f(x) - f(a)\|_W$ also exists.

Since $\lim_{x\to a} \|f(x) - f(a)\|_W f$ and $\lim_{x\to a} |x-a|$ both exist and $\lim_{x\to a} |x-a| > \lim_{x\to a} \|f(x) - f(a) - L_a(x-a)\|_W f$ with L_a bounded, it holds that

$$\lim_{x \to a} \frac{\|f(x) - f(a)\|_W}{|x - a|}$$
 exis

Because of this, we conclude that

and
$$\lim_{x\to a} |x-a|$$
 both exist and $\lim_{x\to a} |x-a| > \lim_{x\to a} \|f(x) - f(a)\|_{W}$ $\lim_{x\to a} \frac{\|f(x) - f(a)\|_{W}}{|x-a|}$ exists.

$$\lim_{x\to a} \frac{f(x) - f(a)}{x-a} \text{ also exists.}$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 also exists.

- We need to show that $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ exists $\implies f$ is differentiable in a. Since it holds that $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ exists, there exists some value $d\in\mathbb{R}, d=\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$. Obtain such a d.

Choose $L_a:\Omega\to\mathbb{R}, L_a(x):=(x)\cdot d$, then L_a is a bounded linear map since Ω is a finite dimensional normed vector space

for all
$$x, y, \lambda \in \mathbb{R}$$
, $L_a(x+y) = x \cdot d + y \cdot d = L_a(x) + L_a(y)$

$$\lambda \cdot L_a(x) = \lambda \cdot x \cdot d = L_a(\lambda \cdot x)$$

 $L_a(0) = 0.$

Then:

$$\lim_{x \to a} \frac{\|f(x) - f(a) - L_a(x - a)\|_W}{|x - a|} = \lim_{x \to a} \frac{\|f(x) - f(a) - (x - a) \cdot d\|_W}{|x - a|}$$

$$\lim_{x \to a} \frac{\|f(x) - f(a) - (x - a) \cdot \frac{f(x) - f(a)}{x - a}\|_W}{|x - a|}$$

$$\lim_{x \to a} \frac{\|f(x) - f(a) - (x - a) \cdot \frac{f(x) - f(a)}{x - a}\|_W}{|x - a|} = \lim_{x \to a} \frac{\|0\|_W}{|x - a|} = 0$$

We conclude that f is differentiable in a.

15.12.5

Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be two two-dimensional vector spaces with bases v_1, v_2 and w_1, w_2 respectively. Assume that a function $f: V \to W$ is differentiable in 0 with

$$(Df)_0(v_1+v_2)=w_1$$

and

$$(Df)_0(v_1 - 2v_2) = w_1 - w_2.$$

Give the matrix representation of the linear map $(Df)_0: V \to W$ with respect to the bases v_1, v_2 and w_1, w_2 .

Define the coordinate map for the basis $\{w_1, w_2\}$ as $\Psi : W \to \mathbb{R}^2 : \{\Psi(w_1) = (1, 0), \Psi(w_2) = (0, 1)\}.$

Then $([Df]_0)_{ij}) = (\Psi(Df)_0(v_j))_i$.

Since $(Df)_0 \in \text{Lin}(V, W)$ it holds that

$$(Df)_0(v_1 + v_2) = (Df)_0(v_1) + (Df)_0(v_2) = w_1$$

and

$$(Df)_0(v_1 - 2v_2) = (Df)_0(v_1) - 2(Df)_0(v_2) = w_1 - w_2.$$

So

$$(Df)_0(v_2) = \frac{1}{3}w_2$$

and

$$2(Df)_0(v_1 + v_2) + (Df)_0(v_1 - 2v_2) = 2w_1 + w_1 - w_2$$

$$\iff 2(Df)_0(3v_1) = 3w_1$$

$$\iff 2(Df)_0(v_1) = w_1$$

Thus we get

$$[Df]_0 = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$$

16.4.4

i. Consider the function $f: \mathbb{R} \to \mathbb{R}^3$ given by

$$f(t) := (\cos(t), \sin(t), \arctan(t)).$$

Show that f is differentiable and give an expression for the function $f': \mathbb{R} \to \mathbb{R}^3$ and for the derivative $(Df): \mathbb{R} \to \text{Lin}(\mathbb{R}, \mathbb{R}^3)$.

The component functions $f_1: \mathbb{R} \to \mathbb{R}$ and $f_2: \mathbb{R} \to \mathbb{R}$ and $f_3: \mathbb{R} \to \mathbb{R}$ are given by

$$f_1(t) = \cos(t)$$

$$f_2(t) = \sin(t)$$

$$f_3(t) = \arctan(t)$$

Since these component functions are differentiable standard functions, we find by a proposition in the lecture notes that f is differentiable as well and

$$f'(t) = (f_1'(t), f_2'(t), f_3'(t)) = (-\sin(t), \cos(t), \frac{1}{1+t^2})$$

From a proposition in the lecture notes it follows that, for all $h \in \mathbb{R}$, $(Df) : \mathbb{R} \to \text{Lin}(\mathbb{R}, \mathbb{R}^3)$ is given by

$$t\mapsto (h\mapsto h\cdot (-\sin(t),\cos(t),\frac{1}{1+t^2}))$$

ii. Let w_1 and w_2 be two vectors in a finite-dimensional normed vector space $(W, \| \cdot \|_W)$. Consider the function $g: \mathbb{R} \to W$ given by

$$g(t) = \cosh(t)w_1 + \sinh(t)w_2.$$

Show that g is differentiable and give an expression for the function $g': \mathbb{R} \to W$ and for the derivative $(Dg): \mathbb{R} \to \operatorname{Lin}(\mathbb{R}, W)$.

We define

$$f(t) = \cosh(t) \cdot w_1$$

$$h(t) = \sinh(t) \cdot w_2$$

It holds that $\cosh(t)$ and $\sinh(t)$ are both differentiable in a point $a \in \mathbb{R}$ with derivative $\sinh(t)$ and $\cosh(t)$ respectively.

Since w_1, w_2 are constants the derivatives of $f(t) = \cosh(t)w_1$ and $h(t) = \sinh(t)w_2$ are $f'(t) = \sinh(t)w_1$ and $h'(t) = \cosh(t)w_2$.

Since f(t) and h(t) are both differentiable on \mathbb{R} and g = f + h, by the Sum Rule, the function $g : \mathbb{R} \to W$ is also differentiable on \mathbb{R} with derivative

$$g'(t) = f'(t) + h'(t) = \sinh(t)w_1 + \cosh(t)w_2$$

From a proposition in the lecture notes it follows that, for all $h \in \mathbb{R}$, $(Dg) : \mathbb{R} \to \operatorname{Lin}(\mathbb{R}, W)$ is given by

$$t \mapsto (h \mapsto h \cdot (\sinh(t)w_1 + \cosh(t)w_2))$$