YOLO9000: Better, Faster, Stronger

Abstract

- novel and drawn from prior works method により state-of-the-art かつ高速
- "Our joint training allows YOLO9000 to predict detections for object classes that don't have labelled detection data."
 - これどゆこと???
- · we validate our model on ImageNet detection task
 - 。 200 class 中 44 class にしか detection data がない ImageNet detection validation set に対して 19.7mAP
 - 。 detection data がない 156 class に対しても 16.0mAP
- real-time で 9,000 classes 以上を検出可能

1. Introduction

- detection は classification に比べ dataset に制約がある
 - 。 most common classification datasets: 数十万クラス,何百万枚の画像
 - 。 most common detection datasets: 数千クラス、数千から数十万枚の画像
- detection も classification の scale にしたいがラベルづけが大変、当分無理そう
- 既存の large amount of classification data を使って detection system の scope を expand する手法を開発
 - 。 classification の hierarchical (階層的な) 視点を用い、複数のデータセットを統合することに成功した
- detection data からも classification data からも学習を可能にする joint training algorithm を提案
 - 。 classification images を使って detection の性能を向上 (leverage)
- 本論文の構成は以下:
 - i. YOLO を improve して YOLOv2 に
 - ii. dataset combination method と joint training algorithm の導入

2. Better

機械学習の評価方法

	y = 1	y = 0
$\hat{y} = 1$	True Positive (TP)	False Positive (FP)
$\hat{y} = 0$	False Negative (FN)	True Negative (TN)

- Accuracy: 正解率, $\frac{TP+TF}{TP+FP+FN+TN}$
 - 。 全体のうちどれだけあってるか
- Precision: 適合率, TP TP+FP
 - 。 positive と予測したもののうちどれだけあってるか (これが高いとがむしゃらに true って言ってることになる)
- Recall: 再現率, IP TP+FN
 - 。 正しいもののうちどれだけを予測できたか

概要

- YOLO は他の state-of-the-art な手法に比べ、多様な欠点に悩まされてきた
 - 。 localization errors がとても多い
 - 。 recall が小さい (FP は少ないけど FN が多い、つまり見落としてる)
 - 識別率を維持しつつ, recall と localization を improve する方針
- 最近のトレンドはネットワークを深くしたりアンサンブルによりパフォーマンスを上げることだけど、YOLO は速さを維持したいのでそうしなかった

Batch Normalization

- batch normalization を全ての convs につけることで 2% improvement in mAP
- 過学習を避けつつ dropout をなくすことができた
- batch normalization
 - 。 勾配消失・爆発を防ぐ
 - 。 今までは活性化関数の変更、weights の初期値の事前学習、Ir を小さくする、dropout などの手法により対処してきたがこれらが不要に
 - 。 共変量シフト (Covariate Shift): 訓練データと予測データの入力の分布に偏りがあること
 - 内部の共変量シフト (Internal Covariate Shift): 隠れ層において層と activation 毎に入力分布が変わること
 - 。 まあ要するに途中で conv の出力とかを batch 単位で正規化すること

High Resolution Classifier

- pre-training では 224 x 224 で行なっていたが、448 x 448 のフルサイズで行なった、10 epochs
- increase almost 4% mAP

Convolutional With Anchor Boxes

- YOLO では FC 層で bounding boxes の座標を得ていたが、Faster R-CNN では hand-picked priors と呼ばれる convs のみの layer で得ている
 - 。 conv layers しか使っていないので, Faster R-CNN の region proposal network (RPN) はoffsets and confidences for anchor boxes を予測する
 - 。 YOLOv2 でもこれを採用
- 変更点は以下
 - i. FC 層をなくして anchor boxes を使った
 - ii. 解像度を上げるために pooling なくした
 - iii. 入力画像を 448 x 448 から 416 x 416 にした
 - 32 の奇数倍にして center cell を一意に定めるため
 - 13 x 13 の feature map を得る
 - iv. class prediction を spatial location から切り離し、それぞれの anchor box について class と objectness を予測するようにした
- anchor box の採用による影響
 - 。 accuracy は若干下がった
 - 。 YOLO では 98 boxes しか予測できなかったが、千以上の box について予測できるようになった
 - without anchor box: 69.5mAP with a recall of 81%
 - with anchor box: 69.2mAP with a recall of 88%
 - o anchor box is 何?
 - 単純に各 sliding-window に対して複数の scale, aspect ratio の bounding box をやる

Dimension Clusters

- YOLO で anchor boxes を使用することによる2つの問題点のうちの1つ目: box dimensions are hand picked について
 - 。 network は box の adjust を学習することができるが、適切な prior (前例、優先順位) を設定することでその学習をより 容易にすることができる
 - 。 prior を人が決定するのではなく、k-means clustering により行う
 - 。 ユークリッド距離によってクラスタリングを行うとでかい box が大きな error を出してしまうので, $d=1-\mathrm{IOU}$ として定義した
 - 。 IOU は k と正の相関を持ったが、 model complexity と recall とのトレードオフで k=5 とした
 - 。 k=5 で hand-picked な 9 anchor box と同等の性能 (Ave. IOU = 61%), k=9 では 67.2%

Direct Location Prediction

- YOLO で anchor boxes を使用することによる2つの問題点のうちの2つ目:特に学習初期におけるモデルの不安定性
 - 。 主に (x, y) を予測するところに起因
 - 。 Region Proposal Networks では t_x, t_y を導入して解決していたが、これは任意の box を出力できる代わりに学習が大変

- 。 今回は YOLO を踏襲して grid と bounding box の中心を対応づける
- 。 以下の t_x, t_y, t_w, t_h, t_o を予測する (grid cell の左上を (c_x, c_y) とする)

$$b_x = \sigma(t_x) + c_x$$

$$b_y = \sigma(t_y) + c_y$$

$$b_w = p_w e^{t_w}$$

$$b_h = p_h e^{t_h}$$

$$Pr(\text{object}) \times IOU(b, \text{object}) = \sigma(t_o)$$

。 学習が容易になったので anchor box に比べ 5% の性能上昇

Fine-Grained Features

- 13 x 13 は小さな object には不十分なことがある
 - Faster R-CNN, SSD では複数の scale の feature maps に proposal networks をつないでいたが、YOLO では 26 x 26 の feature map からの passthrough を導入することにより解決する
- passthrough layer では higher resolution layer を lower resolution layer に concat
 - 。 1つのチャンネルから4つのチャンネルにつなぐ (ResNet に似てる)
 - 26 x 26 x 512 -> 13 x 13 x 2048
- 1% の改善

Multi-Scale Training

- conv layers のみで構成されているのでサイズ不変
- 1/32 にダウンスケールされるので 10 batchs ごとに一辺の長さを 32 ずつ {320, 352,...,608} と random に変化させた
- input resolution を変えることで速さと正確性の trade off ができるお

Further Experiments

- PASCAL VOC 2007: high resolution YOLOv2 が最強
- PASCAL VOC 2012: SSD 512 が最強

Faster

- 多くの frameworks は VGG-16 を base feature extractor として使っているが、224 x 224 の画像1枚に対して 30 billion もの 浮動小数点演算を要求するので非効率
 - 。 YOLOのカスタムモデルでは 224 x 224 の画像に対して 8.5 billion
 - 。 ImageNet での性能を比較, VGG-16 の 90.0% に対して 88.0% を記録

Training for Classification

- Darknet-19 を 224 x 224 で pre-train したのちに 448 x 448 で fine-tuning
- 1000 classes, 160 epochs using SGD
- · data augumentation

Training for Detection

- Darknet-19 の last conv を detection 用の 3 x 3, 1 x 1 の conv に交換し、passthrough leyer を追加
- 160 epochs
- data augumentation with the same way as SSD

Stronger

- classification と detection を jointly に学習するための mechanism を propose
 - 。 クラスラベルのみのデータも detection の学習に使える
- training 中は classification と detection の datasets を mix して使う

- 。 detection 用の data に対しては architecture 全体の loss function で backropagate
- 。 classification 用の data に対しては loss fuction のうち識別に関わるの部分のみ backropagate
 - But how?
- 複数の datasets を使うためにはいくつか解決しなければならない問題がある
 - 。 detection のクラスは少なく classification のクラスは多い
 - COCO では "dog" のみでも ImageNet では "Norfolk terrier", "Yorkshire terrier", and "Bedlington terrier" 等 100 種 類もある
 - 。 多くの classification model で用いられる softmax は mutual exclusive (互いに排反) であるが、例えば "dog" と "Norfolk terrier" は排反ではない
- この問題を解決するために multi-label model を使用

Hierarchical Classification

- ImageNet のラベルは WordNet からもって来ている
 - 。 WordNet 内の単語はグラフ構造をもつ
 - "Norfolk terrier" < "terrier" < "hunting dog" < "dog" < "canine"</p>
 - 。 この階層構造を採用する
- WordNet 内のグラフ構造は有向グラフであり、木構造ではない
 - 。 "dog" が "canine" でもあり "domstic animal" でもあるように言語は複雑だから
 - 。 graph 構造の代わりに,hierarchical tree を作成した
 - 。 ImageNet 内の単語について、WordNet のグラフを用いて root node への path を特定
 - 多くの場合 path は1つのみ
 - 。 そのように構築されたグラフに path を追加したり取り除いたりすることで木を最小化した
 - 。 このようにして出来上がった木を WordTree と呼ぶ
- 各ノードについて条件付き確率 (ex: Pr(Norfolk teriierlterrier)) を予測する

 $Pr(Norfolk teriier) = Pr(Norfolk teriier|terrier) \times Pr(teriier|hunting dog) \times \cdots \times Pr(mammal|animal) \times Pr(animal|properties)$

- WordTree を構築するために ImageNet の 1000 クラスから 1369 まで中間ノードを追加
 - 。 "Norfolk terrier" に対しては "dog", "mammal" も予測するようにした
 - 。 クラス増やしたけど性能は落ちなかった
 - 。 学習していない犬を入力すると、"dog" の値は高いが下位の単語の値は全て低くなる
- detection の際には、detector が生成した bounding box の予測する tree of probability 中を、最も confidence score が高い path を選択するように探索し、score threshold を超えたらそのクラスを出力とする

Joint Classification and Detection

- COCO に ImageNet の top 9000 クラスを追加して 9418 クラスの WordTree を作成
 - 。 ImageNet の方がデータ数が多いので COCO からは oversampling した, 結果 ImageNet:COCO = 4:1
- この WordNet で学習した YOLOv2 が YOLO9000
 - o ただし, anchor box の k-means clustering は k=3 に変更
- 学習について
 - When YOLOv2 sees a detection image
 - 普通にバックプロパゲート
 - classification についてはより上位の単語まで学習
 - "dog" でポシャっても "German Shepherd" versus "Golden Retriever" については error を与えない
 - When YOLOv2 sees a classification image
 - classification loss のみバックプロパゲート
 - そのクラスに対して最も高い score を返す bounding box を特定し、その predicted tree について loss を計算
 - "We also assume that the predicted box overlaps what would be the ground truth label by at least .3 IOU" が何言ってるかわからん