HS16 yannis.baek

ALEGBRA I - SUMMARY

YANNIS BÄHNI

\sim							
С	റ	n	t	Ω	n	1	C

1	Gro	oups	1
	1.1	Subgroups	1
		1.1.1 Normal Subgroups	2
	1.2	Homomorphisms	2
	1.3	Cyclic Groups	2
	1.4	Symmetric Groups	
		1.4.1 Cycles	3
	1.5	Automorphisms	3
	1.6	Direct Products	4
2	Ring	gs	6
3	\mathbf{Use}	full Stuff	8

1. Groups

1.1. Subgroups.

Definition 1.1. A subgroup of a group G is a subset $H \subseteq G$ such that

- (1) $1 \in H$
- (2) $x \in H \text{ implies } x^{-1} \in H$
- (3) $x, y \in H$ implies $xy \in H$

Proposition 1.1. $H \leq G$ if and only if $H \neq \emptyset$ and $x, y \in H$ implies $xy^{-1} \in H$.

Proposition 1.2. For $H \neq \emptyset$ the following conditions are equivalent:

- (1) $H \leq G$
- (2) $HH \subseteq H$ and $H^{-1} \subseteq H$
- (3) $HH^{-1} \subseteq H$

(Yannis Bähni) UNIVERSITY OF ZURICH, RÄMISTRASSE 71, 8006 ZURICH $E\text{-}mail\ address:\ yannis.baehni@uzh.ch.$

Definition 1.2. Let G be a group and $X \subseteq G$. Define

$$\langle X \rangle := \bigcap_{X \subseteq H \le G} H \tag{1}$$

Proposition 1.3. Let X be a subset of a group G. Then

$$\langle X \rangle = \{ x_1 \cdots x_n : \forall i \in I \ x_i \in X \cup X^{-1}, n \in \mathbb{N} \}$$
 (2)

1.1.1. Normal Subgroups.

1.2. Homomorphisms.

Proposition 1.4. If $\varphi: A \to B$ is a group homomorphism, then $\varphi(1) = 1$, $\varphi(x^{-1}) = \varphi(x)^{-1}$ and $\varphi(x^n) = \varphi(x)^n$ for all $x \in A$ and $n \in \mathbb{Z}$.

Proposition 1.5. A group homomorphism $\varphi: A \to B$ is injective if and only if $\ker(\varphi) = \{1\}$.

Lemma 1.1. Let $\varphi: G \to H$ be an injective group homomorphism and let $a \in G$ be of finite order. Then $|\langle \varphi(a) \rangle| = |\langle a \rangle|$.

Proposition 1.6. If $G = \langle X \rangle$ and $\varphi, \psi : G \to G'$ are group homomorphisms with $\varphi(x) = \psi(x)$ for every $x \in X$ then $\varphi = \psi$.

1.3. Cyclic Groups.

Definition 1.3. A group or subgroup is cyclic when it is generated by a single element.

Lemma 1.2. Every group of prime order is cyclic.

Proposition 1.7. Every subgroup of $(\mathbb{Z},+)$ is cyclic, generated by a unique nonnegative integer.

Proof. Let $H \leq \mathbb{Z}$. If $H = \{0\}$, then $H = \langle 0 \rangle$. So assume $H \neq \{0\}$. Thus H contains a nonzero integer. Since $H \leq \mathbb{Z}$ we have that H contains a positive integer. Let us denote the smallest positive integer in H by n. Every integer multiple of n belongs to H. Conversly, if $m \in H$ we have by integer division m = nq + r for some $q, r \in \mathbb{Z}$ with $0 \leq r < n$. So $m - nq = r \in H$ contradicting the minimality of n being the smallest positive integer. Hence m = nq and so $m \in \langle n \rangle$.

Proposition 1.8. Let G be a group and let $a \in G$. If $a^m \neq 1$ for all $m \neq 0$, then $\langle a \rangle \cong \mathbb{Z}$; in particular $\langle a \rangle$ is infinite. Otherwise, there is a smallest positive integer n such that $a^n = 1$, and then $a^m = 1$ if and only if n divides m, and $\langle a \rangle \cong \mathbb{Z}/n\mathbb{Z}$; in particular, $\langle a \rangle$ is finite of order n.

Corollary 1.1. Any two cyclic groups of order n are isomorphic.

Corollary 1.2. Every subgroup of a cyclic group is cyclic. Furthermore, either $H = \{1\}$ or $H = \langle x^n \rangle$, where n is the least positive integer with $x^n \in H$.

Proof. Let $H \leq G := \langle x \rangle$, $H \neq \{1\}$. Then $H' := \{k \in \mathbb{Z} : x^k \in H\} \leq (\mathbb{Z}, +)$ since

- $0 \in H'$ by $1 = x^0 \in H \le G$;
- If $k, k' \in H'$ then $k + k' \in H'$ by $x^{k+k'} = x^k x^{k'} \in H$;
- If $k \in H'$ then also $-k \in H'$ by $x^{-k} = (x^k)^{-1} \in H$.

Therefore $H' = \langle n \rangle$ for the least positive integer in H'. Now consider $\langle x^n \rangle$. We have that $\langle x^n \rangle \subseteq H$ by the previous observation and if $x^k \in H$ for some $k \in \mathbb{Z}$ we have $k \in H' = \langle n \rangle$ and so k = mn for some $m \in \mathbb{Z}$ which yields $x^k = x^{mn} = (x^n)^m \in \langle x^n \rangle$.

Proposition 1.9. A cyclic group $G := \langle x \rangle$ of finite order n has a unique subgroup of order d, namely $\langle x^{n/d} \rangle = \{g \in G : g^d = 1\}$, for every divisor d of n.

Proof. We prove the equality $\langle x^{n/d} \rangle = \{g \in G : g^d = 1\}$ only. An element of $\langle x^{n/d} \rangle$ has the form $x^{kn/d}$ for some integer k. Therefore

$$(x^{kn/d})^d = (x^n)^k = 1^k = 1$$

Conversly if $g \in G$ with $g^d = 1$ we have that $g = x^k$ for some integer k since G is cyclic. Hence $1 = g^d = x^{kd}$ and so $n \mid kd$. So

$$g=x^k=(x^{kd/n})^{n/d}=(x^{n/d})^{kd/n}\in\langle x^{n/d}\rangle$$

Lemma 1.3. For all $n \in \mathbb{N}$

$$\mathbb{Z}_n^\times = \{\overline{k} : \gcd(n,k) = 1\} \qquad \text{ and } \qquad |\mathbb{Z}_n^\times| = \varphi(n)$$

- 1.4. Symmetric Groups.
- 1.4.1. Cycles.

Lemma 1.4. Let

1.5. Automorphisms.

Definition 1.4. Let G be a group. For $a \in G$ define

$$\iota_a: \begin{cases} G \to G \\ x \mapsto axa^{-1} \end{cases} \tag{3}$$

Further

 $\operatorname{Inn}(G) := \{ \iota_a : a \in G \} \tag{4}$

Lemma 1.5. We have $\iota_a \in \operatorname{Aut}(G)$ for any $a \in G$. Furthermore $\operatorname{Inn}(G) \subseteq \operatorname{Aut}(G)$.

Proof. $\iota_a \in \operatorname{Aut}(G)$ and $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$ is obvious. Let $\iota_a \in \operatorname{Inn}(G)$ and $\varphi \in \operatorname{Aut}(G)$. Then for $r \in G$

$$\varphi \iota_a \varphi^{-1}(x) = \varphi(a\varphi^{-1}(x)a^{-1}) = \varphi(a)x\varphi(a)^{-1}$$
 so $\varphi \iota_a \varphi^{-1} = \iota_{\varphi(a)} \in \text{Inn}(G)$.

Lemma 1.6. The mapping

$$\iota: \begin{cases} G \to \operatorname{Aut}(G) \\ a \mapsto \iota_a \end{cases} \tag{5}$$

is a homomorphisms. Furthermore $ker(\iota) = Z(G)$.

Proof. That $\iota \in \operatorname{Hom}(G, \operatorname{Aut}(G))$ is obvious. For $a \in \ker(\iota)$ we must have that $\iota_a = \operatorname{id}$, so $axa^{-1} = x$ for any $x \in G$. Hence $a \in Z(G)$. The converse is trivial.

Thus by the first isomorphism theorem we have

$$G/Z(G) \cong \operatorname{Inn}(G)$$

Proposition 1.10. Let G be a group and assume G/Z(G) is cyclic. Then G is abelian.

Proof. Since G/Z(G) is cyclic we have $G/Z(G) = \langle gZ(G) \rangle$ for some $g \in G$. Furthermore, each element of G/Z(G) has the form $(gZ(G))^k = g^kZ(G)$ since $Z(G) \subseteq G$ and $k \in \mathbb{Z}$. Let $x, y \in G$. Since G/Z(G) provides a partition of G we have $x = g^mz$ and $y = g^nz'$ for some $m, n \in \mathbb{Z}$, $z, z' \in Z(G)$. Therefore

$$xy=g^mzg^nz'=g^mg^nzz'=g^{m+n}zz'=g^ng^mzz'=g^ng^mz'z=g^nz'g^mz=yx$$
 since center elements commute with every group element. $\ \Box$

1.6. Direct Products.

Proposition 1.11. A group G is isomorphic to the direct product $G_1 \times G_2$ of two groups G_1 , G_2 if and only if it contains normal subgroups $A \cong G_1$ and $B \cong G_2$ such that $A \cap B = \{1\}$ and AB = G.

Lemma 1.7. Let G be a group. For every $a \in G$ the mappings

$$\vartheta_a: \begin{cases} G \to G \\ x \mapsto ax \end{cases} \qquad \vartheta_a': \begin{cases} G \to G \\ x \mapsto xa \end{cases} \tag{6}$$

are bijections.

Theorem 1.1.

Lemma 1.8. Let G be a group. If $x^2 = 1$ for every $x \in G$ then G is abelian.

Proposition 1.12. In a finite group, the inverse of an element is a positive power of that element.

Proposition 1.13. If $G = \langle X \rangle$ and the elements of X are pairwise interchangeable then G is abelian. Hence every cyclic group is abelian.

Definition 1.5. Let G be a group. The order of an element $x \in G$ is defined by $|\langle x \rangle|$.

Definition 1.6. Relative to $H \leq G$ the left coset of an element $x \in G$ is the subset xH of G; the right coset of an element $x \in G$ is the subset Hx of G.

Proposition 1.14. The left cosets of $H \leq G$ constitute a partition of G and so do the right cosets.

Proposition 1.15. The number of left cosets of a subgroup is equal to the number of right cosets.

Definition 1.7. The index [G:H] of $H \leq G$ is the cardinal number of its left or right cosets.

Proposition 1.16. (Lagrange's Theorem) If $H \leq G$, then |G| = [G : H]|H|. Hence if $|G| < \infty$, the order and the index of a subgroup divide the order of G.

Theorem 1.2. In a finite group G we have $g^{|G|} = 1$ for any $g \in G$.

Definition 1.8. Let $N \subseteq G$. The group of all cosets of N is the quotient group G/N of G by N. The homomorphism $x \mapsto xN = Nx$ is the canonical projection of G onto G/N.

Proposition 1.17. Let $N \subseteq G$. Every subgroup of G/N is the quotient H/N of a unique subgroup H of G that contains N.

2. Rings

Definition 2.1. An algebraic structure $(R, +, \cdot)$ with binary operations $+, \cdot : R \times R \to R$ is called a **ring** if (R, +) is an ableian group, (R, \cdot) is a semigroup and for all $x, y, z \in R$ it holds that

$$x(y+z) = xy + xz$$
 and $(x+y)z = xz + yz$.

Definition 2.2. Let R be a ring. A subset $S \subseteq R$ is called **subring** if $(S, +) \leq (R, +)$ and $xy \in S$ for every $x, y \in S$. If R is a ring with unity, then also $1 \in S$.

Definition 2.3. A commutative ring R with unity is called an **integral domain** if it has one of the following equivalent properties:

- (i) (Cancellation) zx = zy implies x = y for any $x, y, z \in R$ with $z \neq 0$.
- (ii) (No divisors of zero) xy = 0 implies either x = 0 or y = 0 for any $x, y \in R$.

Definition 2.4. A ring R with unity is called a **skew field** if $R^{\times} = R \setminus \{0\}$.

Definition 2.5. A commutative skew field is called a **field**.

Definition 2.6. A ring $R \neq \{0\}$ is called **simple** if $\{0\}$ and R are the only ideals.

Definition 2.7. Let R be a commutative ring. An ideal $P \neq R$ is called a **prime ideal** if $ab \in P$ implies either $a \in P$ or $b \in P$ for $a, b \in R$.

Lemma 2.1. An ideal $P \neq R$ of a commutative ring R with unity is a prime ideal if and only if R/P is an integral domain.

Definition 2.8. An ideal $M \neq R$ is called **maximal** if there exists no ideal I such that $M \subsetneq I \subsetneq R$.

Lemma 2.2. Let R be a commutative ring with unity. An ideal $M \neq R$ is maximal if and only if R/M is a field.

Definition 2.9. An integral domain R is called a **factorial domain** or **unique factorisation domain** when the following properties hold:

- (i) Every element $x \notin R^{\times} \cup \{0\}$ can be written as product of irreducible factors.
- (ii) If $p_1 \cdots p_n = q_1 \cdots q_m$ for irreducible $p_1, \dots, p_n, q_1, \dots, q_m \in R$, then n = m and there exists $\sigma \in S_n$ such that $p_i \sim q_{\sigma(i)}$ for $i = 1, \dots, n$.

Definition 2.10. An integral domain is called a **principal ideal domain** if every ideal of R is principal.

MAT211: Algebra I Yannis Bähni HS16 yannis.baehni@uzh.ch

Theorem 2.1. Every principal ideal domain is a factorial domain.

Definition 2.11. An integral domain R is called an **euclidean domain** if there is a mapping $\varphi: R \setminus \{0\} \to \mathbb{N}_0$ with the following property: To any $a, b \in R$ with $b \neq 0$ there exist $q, r \in R$ such that a = qb + r and either r = 0 or $\varphi(r) < \varphi(b)$.

Theorem 2.2. Every euclidean domain is a principal ideal domain.

Definition 2.12. A ring R is called **noetherian** if it has one of the following equivalent properties:

- (i) Every ascending chain $A_1 \subseteq A_2 \subseteq ...$ of ideals A_i of R is stationary, i.e. there exists some $k \in \mathbb{N}$ such that $A_i = A_k$ for every $i \geq k$.
- (ii) Every nonempty collection of ideals of R contains a maximal element.
- (iii) Every ideal of R is finitely generated.

Theorem 2.3. (Hilbert) If R is a commutative noetherian ring with unity then R[X] is noetherian.

3. Usefull Stuff

• Let G be a group and $H, K \leq G$. Then

$$[G:(H\cap K)] \le [G:H][G:K].$$
 (7)

• Consider the system of congruence equations

$$X \equiv a_1 \bmod r_1, \dots, X \equiv a_n \bmod r_n \tag{8}$$

where $r_1, \ldots, r_n \in \mathbb{Z}$ are pairwise coprime and $a_1, \ldots, a_n \in \mathbb{Z}$. Now set

$$r := r_1 \cdots r_n$$
 and $s_i := \frac{r}{r_i}$ (9)

for each i = 1, ..., n and determine $k_i \in \mathbb{Z}$ such that

$$k_i s_i \equiv 1 \bmod r_i \tag{10}$$

for each i = 1, ..., n. This can be done using the extended euclidean algorithm, i.e. since s_i and r_i are coprime, we find $t_i \in \mathbb{Z}$ such that

$$k_i s_i + t_i r_i = 1. (11)$$

Then

$$k := k_1 s_1 a_1 + \dots + k_n s_n a_n \tag{12}$$

is a solution of (8) and the set of solutions of (8) is $k + r\mathbb{Z}$.