

Algoritmo Perceptrón¹

Jorge Civera Alfons Juan Albert Sanchis

Departamento de Sistemas Informáticos y Computación

¹Para una correcta visualización, se requiere Acrobat Reader v. 7.0 o superior

Objetivos formativos

- Aplicar el algoritmo Perceptrón a una tarea de clasificación
- Explicar el comportamiento del algoritmo Perceptrón en función de sus parámetros

Índice

1	Funciones discriminantes lineales	3
2	Algoritmo Perceptrón	4
3	Ejemplo	5
4	Convergencia y calidad de la solución	•
5	Conclusiones	7

1. Funciones discriminantes lineales

Todo clasificador puede representarse como:

$$c(x) = \underset{c}{\operatorname{arg\,max}} \ g_c(x)$$

donde cada clase c utiliza una *función discriminante* $g_c(x)$ que mide el grado de pertenencia de un objeto x a la clase c

Las funciones discriminantes más utilizadas son *lineales* (con x):

$$g_c(m{x}) = m{w}_c^t m{x} + w_{c0}$$
 donde $m{x} = egin{pmatrix} x_1 \ x_D \end{pmatrix}$ y $m{w_c} = egin{pmatrix} w_{c1} \ x_D \end{pmatrix}$

Con notación *homogénea*:

$$g_c(\mathbf{x}) = \mathbf{w}_c^t \mathbf{x}$$
 donde $\mathbf{x} = \begin{pmatrix} 1 \\ \boldsymbol{x} \end{pmatrix}$ y $\mathbf{w}_c = \begin{pmatrix} w_{c0} \\ \boldsymbol{w}_c \end{pmatrix}$

2. Algoritmo Perceptrón

Entrada:
$$\{(\mathbf{x}_n, c_n)\}_{n=1}^N$$
, $\{\mathbf{w}_c\}_{c=0}^C$, $\alpha \in \mathbb{R}^{>0}$ y $b \in \mathbb{R}$

Salida:
$$\{\mathbf{w}_c\}^* = \underset{\{\mathbf{w}_c\}}{\operatorname{arg\,min}} \sum_n \left[\underset{c \neq c_n}{\operatorname{máx}} \mathbf{w}_c^t \mathbf{x}_n + b > \mathbf{w}_{c_n}^t \mathbf{x}_n \right]$$

Método:

$$[P] = \begin{cases} 1 & \text{si} \quad P = \text{verdadero} \\ 0 & \text{si} \quad P = \text{falso} \end{cases}$$

repetir

para todo dato \mathbf{x}_n

$$err = falso$$

para toda clase c distinta de c_n

si
$$\mathbf{w}_c^t \mathbf{x}_n + b > \mathbf{w}_{c_n}^t \mathbf{x}_n$$
: $\mathbf{w}_c = \mathbf{w}_c - \alpha \cdot \mathbf{x}_n$; $err = \text{verdadero}$

si
$$err$$
: $\mathbf{w}_{c_n} = \mathbf{w}_{c_n} + \alpha \cdot \mathbf{x}_n$

hasta que no quedan muestras mal clasificadas

3. Ejemplo

4. Convergencia y calidad de la solución

Converge si los datos son linealmente separables y $b \le 0$

Conviene implementarlo con un máximo número de iteraciones.

Cuando $\alpha \to 0$, la convergencia es más suave, pero más lenta.

Calidad de la solución:

Linealmente separables	$b \leq 0$	b > 0
SI	Fronteras con	Fronteras
SI	poca holgura	centradas
NO	Fronteras	Fronteras
INO	baja calidad	casi óptimas

5. Conclusiones

Hemos visto:

- El algoritmo Perceptrón y una traza del mismo
- La convergencia del algoritmo en función de sus parámetros y las muestras de entrenamiento utilizadas

