

PCNPS PSPACE S EXP
PCEXP exporential trie
from the line merarchy thesens.
That's all we know?
LENP = 3NTM, s.t. L= {x M on input xaccepts}
What about complements of languages in NP
$T = \{x \mid x \notin L\}$
= { x \$\ accepting path for x}
= 3 x } path .TM rejects 3
(accepto)
CO-NP is the class of languages that are
complements of languages in NP. Not clear how to check/verify XEL for LECOMP
·
eg. "his not HAM" } HOW TO "F is not satisfiable" CERTIFY?!

How hard are problems in these complexity
classes? Are some problems harder than
others?
Lets go back to NP. Short proof of YES XEL.
K-CLIQUE = { G = (V, E), K / G has a chique of size & 3
size kg
TSP = {\hat{h}=(V,\varepsilon), with distances dig : Itom of leight \le D z
of leight & D 3
Integer $LP = \{(A,b) : \exists x : Ax \leq b \}$ and $x \in \mathbb{Z}^n \}$
and $x \in \mathbb{Z}^n$
$SAT = \{F : \exists x : F(x) = 1\}$
3/1 · 1 · 3/1 · 1 · (/ - 1 ·)
Vertex Cover = $\{(G, K): \exists S \subseteq V, S \leq K \text{ s.t. every edge has at least } Z$
one endpoint in 5
Ind-Set = $\{(G=V,E), K\}: G$ has an ind. set of size K \mathcal{F}
which of these problems is hard? harder?
in an alasitha to solver an instance of Problem A
Reduction from Problem A to Problem B is an algorithm to solve an instance of Problem A using a blackbox procedure to solve Problem B.
KARP Reduction X -> Y
XELA (=> YELB
Cook leduction can use many cells "YELB?"
Cook leduction can use many calls "YELB?" to decide if XELA.
Polynomial-trè reduction: # calls to agele for B + additional computation true is polynomial.

	Clique -> Ind. sot.
	Ind: set -, clique'
	Ind. set > V.C.
	•
	Clique -> V·C·
	SAT - I. L.P.
	Is there a hardest problem?
	A language L is called NP-complete if
	1. LENP
	2. & A E NA, 3 polytie reduction A -> L.
	2. 4 KENT, J Porjone
	Q. 3 NP-complete fredhern?
	Α.
	Im. SAT is NP-complete.
[2	OOK/LEVIN