

Cisco 880 Series Integrated Services Router Software Configuration Guide

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA

http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387)

Fax: 408 527-0883

Text Part Number: OL-22206-01

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCDE, CCENT, CCSI, Cisco Eos, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco Nurse Connect, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flip Video, Flip Video (Design), Flipshare (Design), Flip Ultra, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Store, and Flip Gift Card are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Cisco 880 Series Integrated Services Router Software Configuration Guide © 2010-2011 Cisco Systems, Inc. All rights reserved.

Preface

This preface describes the objectives, audience, organization, and conventions used in this guide, and describes related documents that have additional information. It contains the following sections:

- Objective, page xiii
- Audience, page xiii
- Organization, page xiv
- Conventions, page xiv
- Related Documentation, page xv
- Searching Cisco Documents, page xv
- Obtaining Documentation and Submitting a Service Request, page xvi

Objective

This guide provides an overview and explains how to configure the various features for the Cisco 880 series Integrated Services Routers (ISR). Some information may not apply to your particular router model.

For warranty, service, and support information, see the "Cisco One-Year Limited Hardware Warranty Terms" section in *Readme First for the Cisco 800 Series Integrated Services Routers* that was shipped with your router.

Audience

This guide is intended for Cisco equipment providers who are technically knowledgeable and familiar with Cisco routers and Cisco IOS software and features.

Organization

This guide is organized into the following parts, chapters, and appendixes.

Chapters		
Product Overview	Provides a brief description of the router models and the available software features.	
Wireless Device Overview	Provides an introduction to the wireless device on the router and its use in network configurations.	
Basic Router Configuration	Provides procedures for configuring the basic parameters of the router.	
Basic Wireless Device Configuration	Provides procedures for initial configuration of the wireless device.	

Conventions

These documents use the conventions listed in Table 1 to convey instructions and information.

Table 1 Command Conventions

Convention	Description	
boldface font	Commands and keywords.	
italic font	Variables for which you supply values.	
[]	Optional keywords or arguments appear in square brackets.	
	A choice of required keywords appears in braces separated by vertical bars. You must select one.	
screen font	Examples of information displayed on the screen.	
boldface screen	Examples of information you must enter.	
< >	Nonprinting characters, for example, passwords, appear in angle brackets in contexts where italics are not available.	
[]	Default responses to system prompts appear in square brackets.	

Means *reader take note*. Notes contain helpful suggestions or references to additional information and material.

This symbol means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Tip

Means the following information will help you solve a problem. The tips information might not be troubleshooting or even an action, but could be useful information, similar to a Timesaver.

Related Documentation

In addition to Cisco 880 Series ISR Software Configuration Guide (this document), it includes the following documents:

- Readme First for the Cisco 800 Series Integrated Services Routers
- Regulatory Compliance and Safety Information for Cisco 800 Series and SOHO Series Routers
- Declarations of Conformity and Regulatory Information for Cisco Access Products with 802.11n Radios
- Software Activation on Cisco Integrated Services Routers and Cisco Integrated Service Routers G2
- Cisco IOS Release Notes for Cisco IOS Release 15.1.4 (M)

You might also need to refer to the following documents:

- Cisco System Manager Quick Start Guide
- Cisco IOS Release 12.4 Quality of Service Solutions Configuration Guide
- Cisco IOS Security Configuration Guide, Release 12.4
- Cisco IOS Security Configuration Guide, Release 12.4T
- Cisco IOS Security Command Reference, Release 12.4
- Cisco IOS Security Command Reference, Release 12.4T
- Cisco IOS Command Reference for Cisco Aironet Access Points and Bridges, versions 12.4(10b) JA and 12.3(8) JEC
- Cisco Aironet 1240AG Access Point Support Documentation
- Cisco 4400 Series Wireless LAN Controllers Support Documentation
- LWAPP Wireless LAN Controllers
- LWAPP Wireless LAN Access Points
- Cisco IOS Release 12.4 Voice Port Configuration Guide
- SCCP Controlled Analog (FXS) Ports with Supplementary Features in Cisco IOS Gateways
- Cisco Software Activation Conceptual Overview
- Cisco Software Activation Tasks and Commands

Searching Cisco Documents

To search an HTML document using a web browser, use the **Ctrl+F** (Windows) or **Cmd+F** (Apple) sequences. In most browsers the option to search whole words only, invoke case sensitivity, or search forward and backward are also available.

To search a PDF document in Adobe Reader, use the basic Find toolbar (Ctrl+F) or the Full Reader Search window (Shift+Ctrl+F). Use the Find toolbar to find words or phrases within one specific document. Use the Full Reader Search window to search multiple PDF files simultaneously as well as change case sensitivity, and other options. Adobe Reader comes with online help with more information regarding searching PDF documents.

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly *What's New in Cisco Product Documentation*, which also lists all new and revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the *What's New in Cisco Product Documentation* as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.

CHAPTER 1

Product Overview

This chapter provides an overview of the features available for the Cisco 880 series Integrated Service Router (ISR), and contains the following sections:

- General Description, page 1-1
- Cisco 880 Series ISR, page 1-1
- Licensing, page 1-3
- 880 SKUs for next generation Cisco 880 Series ISR platforms, page 1-3
- Memory, page 1-5
- LED Overview, page 1-6
- Power Supply, page 1-7

General Description

The Cisco 880 ISR provides Internet, VPN, data, and backup capability to corporate teleworkers and remote and small offices of fewer than 20 users. These routers are capable of bridging and multiprotocol routing between LAN and WAN ports, and provide advanced features such as antivirus protection. In addition, the Cisco 880W series ISR incorporates an 802.11b/g/n wireless radio that allows the ISR to act as a wireless access point.

Cisco 880 Series ISR

The Cisco 880 series ISRs are a family of fixed-configuration data routers, as described in the following sections:

- Models of the Cisco 880 Series ISRs, page 1-1
- Common Features, page 1-2

Host router sofware will be runnin gon 1st core and WLAN AP software will be running on 2nd core.

Models of the Cisco 880 Series ISRs

The Cisco 880 series ISRs have data capabilities. Each router has one WAN port. Data backup ports are also available on most of the routers. The 802.11b/g/n option is available on all models.

Table 1-1 gives the port configurations of the Cisco 880 series data routers.

Table 1-1 Port Configurations of the Cisco 880 Series Data ISRs

Model	WAN Port
C886VA-W-E-K9	ADSL2+ UR2
C887VAM-W-E-K9	ADSL2+ Annex M
C887VA-W-A-K9	ADSL2+ Annex A
C887VA-W-E-K9	ADSL2+ Annex A
C881W-A-K9	FE
C881W-E-K9	FE
C881W-P-K9	FE

Common Features

Cisco 880 series ISRs support the following features:

- 4-port 10/100 FE LAN Switch, page 1-2
- 802.11b/g/n Wireless LAN, page 1-2
- Battery-backed-up Real-Time Clock, page 1-2
- Security Features, page 1-2

4-port 10/100 FE LAN Switch

This switch provides four ports for connecting to 10/100BASE-T FE LANs, access points, or IP phones. A factory installed upgrade is available that gives Power over Ethernet (PoE) on two of the ports to provide power to access points or phones.

802.11b/g/n Wireless LAN

The Cisco 880W series ISRs have an integrated 802.11b/g/n single radio module for wireless LAN connectivity. With this module, the router can act as an access point in the local infrastructure.

Battery-backed-up Real-Time Clock

A battery-backed-up real-time clock (RTC) provides the date and time when the system is powered on. The RTC is used to verify the validity of the Certification Authority stored on the router.

Security Features

The Cisco 880 platforms provide the following security features:

- Intrusion Prevention System (IPS)
- Dynamic Multipoint VPN (DMVPN)
- IPsec
- Quality of service (QoS)

- Firewall
- URL filtering

Licensing

The Cisco 880 ISR is shipped with licensed software installed. Software features may be upgraded and the software licenses may be managed through *Cisco Licensing Manager*. See *Software Activation On Cisco Integrated Services Routers* on Cisco.com for details.

When you order a new router, you can specify the software image and feature set. The image and feature set are installed on your router before you receive it, so you do not need to purchase a software license. The router stores the software license file on the flash memory.

Selecting Feature Sets

Some feature sets are bundled and offered with a software license that is installed on the hardware platforms. For a list of features available with a software license on the Cisco 880, see *Cisco 880 Data Sheet*. See *Cisco IOS Software Activation Tasks and Commands* on Cisco.com for details about how to activate and manage the software licenses.

880 SKUs for next generation Cisco 880 Series ISR platforms

The following lists the SKUs particular for Next generation Cisco 880 Series ISR platforms.

C881W

- 512 MB memory
- 256 MB Flash
- 4-port 10/100 Switch
- 2-port PoE is a factory-configurable option
- 10/100 FE WAN
- 1 port console/aux
- 1 port external USB 2.0
- Real-time clock
- · Embedded WLAN antenna on wireless models

C886VA-W

· 512 MB memory

- 256 MB Flash
- 4-port 10/100 Switch
- 2-port PoE is a factory-configurable option
- 1 port console/aux
- 1 port external USB 2.0
- ADSL2+ Annex B
- ISDN backup WAN
- Real-time clock
- · Embedded WLAN antenna on wireless models

C887VAM-W

- 512 MB memory
- 256 MB Flash
- 4-port 10/100 Switch
- 2-port PoE is a factory-configurable option
- 1 port console/aux
- 1 port external USB 2.0
- ADSL2+ Annex M
- · Real-time clock
- · Embedded WLAN antenna on wireless model

C887VA-W

- 512 MB memory
- · 256 MB Flash
- 4-port 10/100 Switch
- 2 port PoE is a factory-configurable option
- 1 port console/aux
- 1 port external USB 2.0
- ADSL2+ Annex A
- Real-time clock
- · Embedded WLAN antenna on wireless model

C881GW

- 512 MB memory
- · 256 MB Flash

- 4-port 10/100 Switch
- 2-port PoE is a factory-configurable option
- 10/100 FE WAN
- 3G modem with Dual SIMM card slots
- 1 port console/aux
- 1 port external USB 2.0
- · Real-time clock
- · Embedded WLAN antenna on wireless models

C887GW

- · 512 MB memory
- · 256 MB Flash
- 4-port 10/100 Switch
- 2-port PoE is a facotry-configurable option
- 1 port console/aux
- 1 port external USB 2.0
- ADSL2+ Annex A
- 3G modem with Dual SIMM card slots
- · Real-time clock
- Embedded WLAN antenna on wireless models

Memory

Table 1-2 illustrates the on board memory and flash size for the first and second core. The total memory installed is 512 MB + 256 MB flash, and they are partitioned as shown in the following table.

Table 1-2 Memory Specifications

On Board Memory	1st core	2nd core
512 MB	384 MB	128 MB
Flash size		
256	192	64

LED Overview

All LEDs are visible on the front of the chassis (bezel side). No LEDs are mounted on the I/O side.

Table 1-3 LED Definition Summary by Interface

LED	Color	Description	Indication
PWR Ok	Green	Power On OK, Rourter	Off= no power
		Operational	Steady on= normal operation
			Blink= boot up phase in ROM Monitor mode
Ethernet Switch and	Green	Ethernet Switch	Off= No link
FE/GE LAN/WAN ports			Steady on= link
ports			Blink= TXD/RXD data
РоЕ	Green/Yellow	PoE Status	Off= no device powered, PoE administratively disabled
			Steady on green= PD connected and powered
			Steady on yellow= PD denied power, power delivery fault
xDSL	Green	CD	Steady on= connected
			Blink= training
	Green	Data	Blink= TXD/RXD data
ISDN data	Green	Link	Off= no connection
			Steady on= BRI S/T connection established
	Green	B1 channel data	Off= No data
			Blin= TXD/RXD data
	Green	B2 channel data	Off= No data
			Blink= TXD/RXD data

OL-22206-01

Table 1-3 LED Definition Summary by Interface (continued)

LED	Color	Description	Indication
PWR Ok	Green	Power On OK, Rourter	Off= no power
		Operational	Steady on= normal operation
			Blink= boot up phase in ROM Monitor mode
Wireless/LAN	Green	2.4 GHz Radio	Off= Radio is down (no SSID
	Green	If dual-radio is installed	configured) Steady on= Radio is up, SSID configured, beacons being send, client is associated, no data traffic being sent/received
			Slow blink= Radio is up (SSID configured and sending beacon)
			Fast Blink= Radio is up, client is associated, radio is sending/receiving data traffic
	Green	Autonomous Mode	Off= Ethernet link down
			On= Ethernet link up no traffic
			Blink= Ethernet link up with data traffic
		Unified Mode	Off= Ethernet link down
			On= Ethernet link up, connected to controller
			Blink= AP not communicating with controller
VPN_OK			Off= no tunnel
			Steady on= at least one tunnel is up
PPP_OK			Off=no PPP session
			Steady on= at least one PPP established

Power Supply

External 12V Power Supply Adapter

The following power supplies are used accross Next generation Cisco 880 ISR platforms depending on SKU:

 New grounded 12 V 30 W external desktop adapter for all 86x and 88x models. Connection to the chassis is with a single barrel connector.

On board 12V Power supply

PoE ports powered from 12 VDC on motherboard.

Power over Ethernet (PoE Inline Power Option)

Inline power is a configurator option. PoE configured boxes are supplied with a 12 VDC 60 W adapter in lieu of the 30 W.

Images supported

c800-universalk9-mz

This image offers all IOS features supported by c8xx platforms.

$c800-universalk9_npe-mz$

This image does not support VPN payload and secure voice functionality, and statisfies import considerations for CIS countries.

Licenses for each image:

For universalk9 image:

Technology Package licenses:

- Advipservices
- advsecurityk9

Feature licenses:

- ios-ips-update
- SSL VPN

For universalk9_npe image:

Technology Package licenses:

advipservices_npe

OL-22206-01

advsecurity_npe

Feature licenses:

- ios-ips-ipdate

Minimum software version needed to support AP802

Table 1-4 Software version needed for AP802

Software	Minimum version
Router IOS	15.1(4) M
AP IOS (Autonomous mode)	TBD
AP IOS (unified mode)	J.MR2
WLC	J.MR2
WCS	J.MR2

Images supported

CHAPTER 2

Wireless Device Overview

Wireless devices (commonly configured as *access points*) provide a secure, affordable, and easy-to-use wireless LAN solution that combines mobility and flexibility with the enterprise-class features required by networking professionals. When configured as a access point, the wireless device serves as the connection point between wireless and wired networks or as the center point of a stand-alone wireless network. In large installations, wireless users within radio range can roam throughout a facility while maintaining seamless, uninterrupted access to the network.

With a management system based on Cisco IOS software, wireless devices are Wi-Fi CERTIFIED™, 802.11b-compliant, 802.11g-compliant, and 802.11n-compliant wireless LAN transceivers.

Software Modes

The access point is shipped with an autonomous image and a recovery image on the access point's flash. The default mode is autonomous; however, the access point can be upgraded to operate in Cisco Unified Wireless mode.

Each mode is described below:

- Autonomous mode—supports standalone network configurations, where all configuration settings are maintained locally on the wireless device. Each autonomous device can load its starting configuration independently, and still operate in a cohesive fashion on the network.
- Cisco Unified Wireless mode—operates in conjunction with a Cisco Unified Wireless LAN controller, where all configuration information is maintained within the controller. In the Cisco Unified Wireless LAN architecture, wireless devices operate in the lightweight mode using Leightweight Access Point Protocol (LWAPP), (as opposed to autonomous mode). The lightweight access point, or wireless device, has no configuration until it associates to a controller. The configuration on the wireless device can be modified by the controller only when the networking is up and running. The controller manages the wireless device configuration, firmware, and control transactions such as 802.1x authentication. All wireless traffic is tunneled through the controller.

See *Why Migrate to a Cisco Unified Wireless Network?* on Cisco.com for more about this network architecture design.

Management Options

The wireless device runs its own version of Cisco IOS software that is separate from the Cisco IOS software operating on the router. You can configure and monitor the access point with several different tools:

- Cisco IOS software CLI
- Simple Network Management Protocol (SNMP)
- Web-browser interface: http://cisco.com/en/US/docs/wireless/access_point/12.4_10b_JA/configuration/guide/scg12410b-c hap2-gui.html

The web-browser interface is fully compatible with Microsoft Internet Explorer version 6.0 on Windows 98, 2000, and XP platforms, and with Netscape version 7.0 on Windows 98, 2000, XP, and Solaris platforms.

Avoid using the CLI and the web-browser tools concurrently to configure the wireless device. If you configure the wireless device using the CLI, the web-browser interface may display an inaccurate interpretation of the configuration. This inappropriate display of information does not necessarily mean the wireless device is misconfigured.

Use the **interface dot11radio** global configuration CLI command to place the wireless device into the radio configuration mode.

Network Configuration Examples

Setup the access point role in any of these common wireless network configurations. The access point default configuration is as a root unit connected to a wired LAN or as the central unit in an all-wireless network. Access points can also be configured as bridges and workgroup bridges. These roles require specific configurations, as defined in the following examples.

- Root Access Point, page 2-3
- Central Unit in an All-Wireless Network, page 2-4

Root Access Point

An access point connected directly to a wired LAN provides a connection point for wireless users. If more than one access point is connected to the LAN, users can roam from one area of a facility to another without losing their connection to the network. As users move out of range of one access point, they automatically connect to the network (associate) through another access point. The roaming process is seamless and transparent to the user. Figure 1 shows access points acting as root units on a wired LAN.

Figure 1 Access Points as Root Units on a Wired LAN

Central Unit in an All-Wireless Network

In an all-wireless network, an access point acts as a stand-alone root unit. The access point is not attached to a wired LAN; it functions as a hub linking all stations together. The access point serves as the focal point for communications, increasing the communication range of wireless users. Figure 2 shows an access point in an all-wireless network.

Figure 2 Access Point as Central Unit in All-Wireless Network

CHAPTER 3

Basic Router Configuration

This chapter provides procedures for configuring the basic parameters of your Cisco router, including global parameter settings, routing protocols, interfaces, and command-line access. It also describes the default configuration on startup.

- Interface Ports, page 3-2
- Default Configuration, page 3-2
- Information Needed for Configuration, page 3-4
- Configuring Command-Line Access, page 3-5
- Configuring Global Parameters, page 3-7
- Configuring WAN Interfaces, page 3-7
- Configuring a Fast Ethernet WAN Interface, page 3-8
- Configuring the Fast Ethernet LAN Interfaces, page 3-16
- Configuring the Wireless LAN Interface, page 3-16
- Configuring a Loopback Interface, page 3-17
- Configuring Static Routes, page 3-18
- Configuring Dynamic Routes, page 3-20

Individual router models may not support every feature described in this guide. Features that are not supported by a particular router are indicated whenever possible.

This chapter includes configuration examples and verification steps, as available.

Interface Ports

Table 3-1 lists the interfaces that are supported for each router and their associated port labels on the equipment.

Router	Interface	Port Label
Cisco 880	Fast Ethernet LAN	LAN, FE0–FE3
	Wireless LAN	(no label)
Cisco 881, 881W, 881G, 881GW	Fast Ethernet WAN	WAN, FE4
Cisco 886, 886W, 886G, 886GW	ADSLoverISDN	ADSLoPOTS
Cisco 887, 887W	ADSL2oPOTS WAN	ADSLoPOTS
Cisco 887V, 887VW, 887VG, 887VGW	VDSL2oPOTS WAN	VDSLoPOTS
Cisco 888, 888W	G.SHDSL WAN	G.SHDSL

Default Configuration

When you first boot up your Cisco router, some basic configuration has already been performed. All of the LAN and WAN interfaces have been created, console and vty ports are configured, and the inside interface for Network Address Translation (NAT) has been assigned. Use the **show running-config** command to view the initial configuration, as shown in the following example for a Cisco 881W.

Router# show running-config

```
User Access Verification
Password:
Router> en
Password:
Router# show running-config
Building configuration...
Current configuration: 986 bytes
version 12.4
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname Router
boot-start-marker
boot-end-marker
enable secret 5 $1$q4y5$NxDeM.OhON6YA51bcfGvN1
enable password ciscocisco
```

```
no aaa new-model
no ip routing
no ip cef
multilink bundle-name authe
archive
log config
 hidekeys
interface FastEthernet0
interface FastEthernet1
shutdown
interface FastEthernet2
shutdown
interface FastEthernet3
shutdown
interface FastEthernet4
ip address 10.1.1.1 255.255.255.0
no ip route-cache
duplex auto
speed auto
interface Vlan1
no ip address
no ip route-cache
shutdown
interface wlan-ap0
description Service Module interface to manage the embedded AP
 ip unnumbered Vlan1
no cdp enable
arp timeout 0
ip route 0.0.0.0 0.0.0.0 10.1.1.1
no ip http server
no ip http secure-server
control-plane
!
1
```

```
line con 0
no modem enable
line aux 0
line vty 0 4
password cisco
login
transport input telnet ssh!
scheduler max-task-time 5000
!
webvpn cef
end
Router#
```

Information Needed for Configuration

You need to gather some or all of the following information, depending on your planned network scenario, before configuring your network:

- If you are setting up an Internet connection, gather the following information:
 - PPP client name that is assigned as your login name
 - PPP authentication type: Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP)
 - PPP password to access your Internet service provider (ISP) account
 - DNS server IP address and default gateways
- If you are setting up a connection to a corporate network, you and the network administrator must generate and share the following information for the WAN interfaces of the routers:
 - PPP authentication type: CHAP or PAP
 - PPP client name to access the router
 - PPP password to access the router
- If you are setting up IP routing:
 - Generate the addressing scheme for your IP network.
 - Determine the IP routing parameter information, including IP address and ATM permanent virtual circuits (PVCs). These PVC parameters are typically virtual path identifier (VPI), virtual circuit identifier (VCI), and traffic-shaping parameters.
 - Determine the number of PVCs that your service provider has given you, along with their VPIs
 and VCIs
 - For each PVC determine the type of AAL5 encapsulation supported. It can be one of the following:

AAL5SNAP—This can be either routed RFC 1483 or bridged RFC 1483. For routed RFC 1483, the service provider must provide you with a static IP address. For bridged RFC 1483, you may use DHCP to obtain your IP address, or you may obtain a static IP address from your service provider.

AAL5MUX PPP—With this type of encapsulation, you need to determine the PPP-related configuration items.

- If you plan to connect over an ADSL or G.SHDSL line:
 - Order the appropriate line from your public telephone service provider.

For ADSL lines—Ensure that the ADSL signaling type is DMT (also known as ANSI T1.413) or DMT Issue 2.

For G.SHDSL lines—Verify that the G.SHDSL line conforms to the ITU G.991.2 standard and supports Annex A (North America) or Annex B (Europe).

After you have collected the appropriate information, you can perform a full configuration on your router, beginning with the tasks in the "Configuring Command-Line Access" section on page 3-5.

To obtain or change software licenses:

• See Software Activation on Cisco Integrated Services Routers and Cisco Integrated Service Routers G2

Configuring Command-Line Access

To configure parameters to control access to the router perform these steps, beginning in global configuration mode:

SUMMARY STEPS

- 1. line [aux | console | tty | vty] line-number
- 2. password password
- 3. login
- 4. exec-timeout minutes [seconds]
- 5. line [aux | console | tty | vty] line-number
- 6. password password
- 7. login
- 8. end

DETAILED STEPS

	Command	Purpose
Step 1	line [aux console tty vty] line-number	Enters line configuration mode, and specifies the type of line.
	Example:	This example specifies a console terminal for
	Router(config)# line console 0 Router(config-line)#	access.
Step 2	password password	Specifies a unique password for the console terminal line.
	Example:	
	Router(config)# password 5dr4Hepw3 Router(config-line)#	
Step 3	login	Enables password checking at terminal session login.
	Example:	
	Router(config-line)# login Router(config-line)#	

	Command	Purpose
Step 4	exec-timeout minutes [seconds]	Sets the interval that the EXEC command interpreter waits until user input is detected. The
	Example:	default is 10 minutes. Optionally, add seconds to
	outer(config-line)# exec-timeout 5 30 outer(config-line)#	the interval value.
	Router (Confry-Time)#	This example shows a timeout of 5 minutes and 30 seconds. Entering a timeout of 0 0 specifies never to time out.
Step 5	line [aux console tty vty] line-number	Specifies a virtual terminal for remote console access.
	Example:	
	Router(config-line)# line vty 0 4 Router(config-line)#	
tep 6	password password	Specifies a unique password for the virtual terminal line.
	Example:	
	Router(config-line)# password aldf2ad1 Router(config-line)#	
ep 7	login	Enables password checking at the virtual terminal session login.
	Example:	
	Router(config-line)# login Router(config-line)#	
tep 8	end	Exits line configuration mode, and returns to privileged EXEC mode.
	Example:	
	Router(config-line)# end Router#	

Example

The following configuration shows the command-line access commands.

You do not need to input the commands marked "default." These commands appear automatically in the configuration file generated when you use the **show running-config** command.

```
!
line con 0
exec-timeout 10 0
password 4youreyesonly
login
transport input none (default)
stopbits 1 (default)
line vty 0 4
password secret
login
!
```

Configuring Global Parameters

To configure selected global parameters for your router, perform these steps:

SUMMARY STEPS

- 1. configure terminal
- 2. hostname name
- 3. enable secret password
- 4. no ip domain-lookup

DETAILED STEPS

Command	Purpose
configure terminal	Enters global configuration mode, when using the console port.
<pre>Example: Router> enable Router# configure terminal Router(config)#</pre>	If you are connecting to the router using a remote terminal, use the following: telnet router name or address Login: login id Password: ********* Router> enable
hostname name	Specifies the name for the router.
Example:	
<pre>Router(config)# hostname Router Router(config)#</pre>	
enable secret password	Specifies an encrypted password to prevent unauthorized access to the router.
Example:	
<pre>Router(config)# enable secret cr1ny5ho Router(config)#</pre>	
no ip domain-lookup	Disables the router from translating unfamiliar words (typos) into IP addresses.
Example:	1
Router(config)# no ip domain-lookup Router(config)#	

Configuring WAN Interfaces

Configure the WAN interface for your router using one of the following as appropriate:

- Configuring a Fast Ethernet WAN Interface, page 3-8
- Configuring a VDSL2 WAN Interface, page 3-8
- Configuring ADSL or VDSL on Cisco Multi Mode 886VA and 887VA ISRs, page 3-9
- Configuring ADSL Mode, page 3-10

Configuring a Fast Ethernet WAN Interface

To configure the Fast Ethernet interface on a Cisco 861 or 881 ISR, perform these steps, beginning in global configuration mode:

SUMMARY STEPS

- 1. interface type number
- 2. ip address ip-address mask
- 3. no shutdown
- 4. exit

DETAILED STEPS

Command	Purpose
interface type number	Enters the configuration mode for a Fast Ethernet WAN interface on the router.
Example:	
<pre>Router(config)# interface fastethernet 4 Router(config-if)#</pre>	
ip address ip-address mask	Sets the IP address and subnet mask for the specified Fast Ethernet interface.
Example:	
Router(config-if)# ip address 192.168.12.2 255.255.255.0 Router(config-if)#	
no shutdown	Enables the Ethernet interface, changing its state from administratively down to
Example:	administratively up.
<pre>Router(config-if)# no shutdown Router(config-if)#</pre>	
exit	Exits configuration mode for the Fast Ethernet interface and returns to global configuration
Example:	mode.
<pre>Router(config-if)# exit Router(config)#</pre>	

Configuring a VDSL2 WAN Interface

The VDSL2 WAN interface is used on the Cisco 887V ISR platforms. Note that the VDSL2 WAN interface uses Ethernet as the Layer 2 transport mechanism. To configure VDSL2 on the Cisco 887V ISR, perform these steps, beginning in global configuration mode.

SUMMARY STEPS

- 1. controller vdsl 0
- 2. interface type number
- 3. ip address ip-address mask

- 4. shutdown
- 5. no shutdown
- 6. exit

DETAILED STEPS

Command	Purpose	
controller vdsl 0	Enters controller configuration mode and the controller number.	
Example:	Note There is no need to configure any	
Router# config t Router(config)# controller vdsl 0	VDSL2 parameters from CPE side. Any specific VDSL2 settings should be set on the DSLAM side.	
interface type number	Enters the configuration mode for Ethernet Layer 2 transport on the VDSL WAN interface	
Example:	on the router.	
Router(config)# interface ethernet 0 Router(config-if)#		
ip address ip-address mask	Sets the IP address and subnet mask for the interface.	
Example:		
Router(config-if)# ip address 192.168.12.2 255.255.255.0 Router(config-if)#		
shutdown	Disables the interface, changing its state from administratively up to administratively down.	
Example:		
Router(config-if)# no shutdown Router(config-if)#		
no shutdown	Enables the interface, changing its state from administratively down to administratively up.	
Example:		
Router(config-if)# no shutdown Router(config-if)#		
exit	Exits configuration mode and returns to globa configuration mode.	
Example:	_	
Router(config-if)# exit Router(config)#		

Configuring ADSL or VDSL on Cisco Multi Mode 886VA and 887VA ISRs

The Cisco customer premise equipment (CPE) 886VA and 887VA integrated services routers (ISRs) support asymmetric digital subscriber line (ADSL) 1/2/2+ and very high speed digital subscriber line 2 (VDSL2) transmission modes, also called multi mode. The 886VA supports xDSL over ISDN and the 887VA supports xDSL over a plain old telephone system (POTS).

The default CPE operating mode is auto. Auto mode means that the CPE trains up to the mode configured on the digital subscriber line access multiplexer (DSLAM), ADSL1/2/2+ or VDSL2.

The following examples assume the DSLAM is configured in either ADSL2+ mode or VDSL2, and the CPE is configured in auto mode.

Figure 3-1 shows an ATM WAN or Ethernet WAN network topography.

Figure 3-1 Example Topology

A DSLAM in Layer 1 mode may be configured for auto mode. A DSLAM in Layer 2 mode must be configured for ATM mode or packet transfer mode (PTM).

Cisco 886VA and 887VA allow a maximum of four permanent virtual circuits (PVCs).

Configuring ADSL Mode

Configuration tasks

Perform the following tasks to configure ADSL mode:

- Configuring ADSL Auto Mode
- · Configuring CPE and Peer for ADSL Mode
- ADSL Configuration Example
- · Verifying ADSL Configuration

· Verifying CPE to Peer Connection for ADSL

Configuring ADSL Auto Mode

Perform these steps to configure the DSL controller to auto mode, starting in global configuration mode.

Configure the DSLAM in ADSL 1/2//2+ mode prior to configuring the router.

SUMMARY STEPS

- 1. controller vdsl slot
- 2. operating mode {auto|adsl1|adsl2|adsl2+|vdsl2|ansl}
- 3. end

DETAILED STEPS

	Command	Purpose
Step 1	controller vdsl slot Example:	Enters config mode for the VDSL controller.
	Router (config) # Controller vdsl 0	
Step 2	operating mode {auto adsl1 adsl2 adsl2+ vdsl2 ansl}	Configures the operating mode. The default is auto and is recommended.
	Example:	
	Router (config-controller) # operating mode auto	
Step 3	end	Exits the configuration mode and enters
	Example:	EXEC mode.
	Router (config-conroller) # end Router	

When configured in auto, the operating mode does not appear in the show running command.

Configuring CPE and Peer ADSL Mode

When configuring for ADSL, the ATM main interface or ATM sub-interface must be configured with a PVC and an IP address, perform a **no shutdown** command on the interface if needed.

Configuring the ATM CPE SIDE

Perform the following steps to configure the ATM CPE side, starting in global configuration mode.

SUMMARY STEPS

- 1. interface type number
- 2. no shutdown
- 3. interface atm0.1 point-to-point
- 4. ip address ip-address mask
- 5. ppvc [name] vpi/vci
- 6. protocol protocol {protocol-address [virtual-template] | inarp} [[no] broadcast | disable-check-subnet | [no] enable-check-subnet]
- 7. end

DETAILED STEPS

Command		Purpose	
Step 1	<pre>interface type number Example:</pre>	Enters configuration mode for the ATM WAN interface (ATM0).	
	Router (config) # interface atm0		
Step 2	no shutdown	Enables the configuration changes to	
	Example:	the ATM interface.	
	Router (config-if) # no shutdown Router (config-if) #		
Step 3	interface atm0.1 point-to-point	Enables the ATM0.1 point-to-point	
	Example:	interface.	
	Router (config-if) # interface ATM0.1 point-to-point Router (config-subif) #		
Step 4	ip address ip-address mask	Enters IP address and subnet mask.	
	Example:		
	Router (config-subif)# ip address 30.0.0.1 255.255.255.0		
Step 5	pvc [name] vpi/vci	Creates or assigns a name to an ATM	
	Example:	PVC and enters the ATM virtual circuit configuration mode.	
	Router (config-subif) # pvc 13/32 Router (config-if-atm-vc) #	configuration mode.	

Command		Purpose	
Step 6	protocol protocol {protocol-address} [virtual-template] inarp} [[no] broadcast disable-check-subnet [no] enable-check-subnet]	Configures a static map for an ATM PVC.	
	Example:		
	Router (config-if-atm-vc) # protocol ip 30.0.0.2 broadcast		
Step 7	end	Exits the configuration mode and enters	
	Example:	EXEC mode.	
	<pre>Router (config-if-atm-vc) # end</pre>		
	Router #		

ADSL Configuration Example

The following example shows a typical ADSL2+ configuration set to auto mode. Outputs in **bold** are critical.

```
Router# show running
Building configuration...
Current configuration :
                            1250 bytes
! Last configuration change at 02:07:09 UTC Tue Mar 16 2010
version 15.1
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname Router
boot-start-marker
boot-end-marker
no aaa new-model
memory-size iomem 10
ip source-route
ip cef
no ipv6 cef
1
license udi pid CISCO887-V2-K9 sn FHK1313227E
```

```
license boot module c880-data level adviperservices
vtp domain cisco
vtp mode transparet
controller VDSL 0
vlan 2-4
interface Ethernet 0
no ip address
 shutdown
 no fair-queue
interface BRI0
no ip address
 encapsulation hdlc
 shutdown
isdn termintation multidrop
interface ATM0
 no ip address
no atm ilmi-keepalive
interface ATM0.1 point-to-point
 ip address 30.0.0.1 255.255.255.0
 pvc 15/32
 protocol ip 30.0.0.2 broadcast
interface FastEthernet0
interface FastEthernet1
interface FastEthernet2
interface FastEthernet3
interface Vlan1
no ip address
ip forward-protocol nd
no ip http server
no ip http secure-server
control-palne
line con 0
no modem enable
line aux 0
line vty 0 4
```

```
login
  transport input all
!
exception data-corruption buffer truncate
end
```

Verifying ADSL Configuration

Verify that the configuration is set properly by using the **show controller vdsl 0** command from the privileged EXEC mode. Outputs in **bold** are critical.

```
Router# show controller vdsl 0 Controller VDSL 0 is UP
```

Daemon Status:	Up	
	XTU-R (DS)	XTU-C (US)
chip Vendor ID:	'BDM'	'BDCM'
Chip Vendor Specific:	0x0000	0x6110
Chip Vendor Country:	0xB500	0xB500
Modem Vendor ID:	'csco'	'BDCM'
Modem Vendor Specific:	0x4602	0x6110
Modem Vendor Country:	0xB500	0xB500
Serial Number Near:	FHK1313227E 887-V	72-K 15.1(20100
Serial Number Far:		
Modem Version Nead:	15.1(20100426:193	3435) [changahn
Modem Version Far:	0x6110	
Modem Status:	TC Sync (Showtime	<u>=</u> !)
DSL Config Mode:	AUTO	
Trained Mode:	G.992.5 (ADSL2+)	Annex A
TC Mode:	ATM	
Selftest Result:	0x00	
DELT configuration:	disabled	
DELT state:	not running	
Trellis:	ON	ON
Line Attenuation:	1.0 dB	1.4 dB
Signal Attenuation:	1.0 dB	0.0 dB
Noise Margin:	6.8 dB	13.6 dB
Atteinable Rate:	25036 kbits/s	1253 kbits/s
Actual Power:	13.7 dBm	12.3 dBM
Total FECS:	0	0
Total ES:	0	0
Total SES:	0	0
Total LOSS:	0	0
Total UAS:	0	0
Total LPRS:	0	0
Total LOFS:	0	0
Total LOLS:	0	0
Bit swap:	163	7
Full inits:	32	
Failed Full inits:	0	
Short inits:	0	
Failed short inits:	0	

Firmware Source Filename (version)

VDSL embedded VDSL LINUX DEV 01212008 (1)

Modem FW Version: 100426_1053-4.02L.03.A2pv6C030f.d22j

Modem PHY Version: A2pv6C030f.d22j

	DS Channel1	DS Channel0	US Channel1	US channel0
Speed (kbps):	0	24184	0	1047
Previous Speed:	0	24176	0	1047
Total Cells:	0	317070460	0	13723742
User Cells:	0	0	0	0
Reed-solomon EC:	0	0	0	0
CRC Errors:	0	0	0	0
Header Errors:	0	0	0	0
<pre>Interleave (ms):</pre>	0.00	0.08	0.00	13.56
Actual INP:	0.00	0.00	0.00	1.80

Training Log: Stopped

Training Log Filename: flash:vdsllog.bin

Verifying CPE to Peer Connection for ADSL

Ping the peer to confirm that CPE to peer configuration is setup correctly.

Router# ping 30.0.0.2 rep 20

Configuring the Fast Ethernet LAN Interfaces

The Fast Ethernet LAN interfaces on your router are automatically configured as part of the default VLAN and are not configured with individual addresses. Access is provided through the VLAN. You may assign the interfaces to other VLANs.

Configuring the Wireless LAN Interface

The Cisco 880 series wireless routers have an integrated 802.11n module for wireless LAN connectivity. The router can then act as an access point in the local infrastructure. For more information about configuring a wireless connection, see Chapter 4, "Basic Wireless Device Configuration".

Configuring a Loopback Interface

The loopback interface acts as a placeholder for the static IP address and provides default routing information.

To configure a loopback interface perform these steps, beginning in global configuration mode:

SUMMARY STEPS

- 1. interface type number
- 2. ip address ip-address mask
- 3. exit

DETAILED STEPS

Command	Purpose
interface type number	Enters configuration mode for the loopback interface.
Example:	
<pre>Router(config)# interface Loopback 0 Router(config-if)#</pre>	
ip address ip-address mask	Sets the IP address and subnet mask for the loopback interface.
Example:	
Router(config-if)# ip address 10.108.1.1 255.255.255.0 Router(config-if)#	
exit	Exits configuration mode for the loopback interface and returns to global configuration
Example:	mode.
Router(config-if)# exit Router(config)#	

Example

The loopback interface in this sample configuration is used to support Network Address Translation (NAT) on the virtual-template interface. This configuration example shows the loopback interface configured on the Fast Ethernet interface with an IP address of 200.200.100.1/24, which acts as a static IP address. The loopback interface points back to virtual-template1, which has a negotiated IP address.

```
! interface loopback 0 ip address 200.200.100.1 255.255.255.0 (static IP address) ip nat outside ! interface Virtual-Template1 ip unnumbered loopback0 no ip directed-broadcast ip nat outside !
```

Verifying Configuration

To verify that you have properly configured the loopback interface, enter the **show interface loopback** command. You should see verification output similar to the following example.

```
Router# show interface loopback 0
Loopback0 is up, line protocol is up
 Hardware is Loopback
  Internet address is 200.200.100.1/24
  MTU 1514 bytes, BW 8000000 Kbit, DLY 5000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation LOOPBACK, loopback not set
  Last input never, output never, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/0, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     0 packets input, 0 bytes, 0 no buffer
    Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 packets output, 0 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 output buffer failures, 0 output buffers swapped out
```

Another way to verify the loopback interface is to ping it:

```
Router# ping 200.200.100.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.200.100.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

Configuring Static Routes

Static routes provide fixed routing paths through the network. They are manually configured on the router. If the network topology changes, the static route must be updated with a new route. Static routes are private routes unless they are redistributed by a routing protocol.

To configure static routes perform these steps, beginning in global configuration mode:

SUMMARY STEPS

- 1. **ip route** prefix mask {ip-address | interface-type interface-number [ip-address]}
- 2. end

DETAILED STEPS

Command	Purpose
ip route prefix mask {ip-address interface-type	Specifies the static route for the IP packets.
interface-number [ip-address]}	For details about this command and about
Example:	additional parameters that can be set, see the <i>Cisco IOS IP Routing Protocols Command Reference</i> .
Router(config) # ip route 192.168.1.0 255.255.0.0 10.10.10.2 Router(config) #	,
end	Exits router configuration mode, and enters privileged EXEC mode.
Example:	
Router(config)# end	
Router#	

Example

In the following configuration example, the static route sends out all IP packets with a destination IP address of 192.168.1.0 and a subnet mask of 255.255.255.0 on the Fast Ethernet interface to another device with an IP address of 10.10.10.2. Specifically, the packets are sent to the configured PVC.

You do not need to enter the command marked "(**default**)." This command appears automatically in the configuration file generated when you use the **show running-config** command.

```
!
ip classless (default)
ip route 192.168.1.0 255.255.255.0 10.10.10.2!
```

Verifying Configuration

To verify that you have properly configured static routing, enter the **show ip route** command and look for static routes signified by the "S."

You should see verification output similar to the following:

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
        D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default, U - per-user static route
        o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 1 subnets
C        10.108.1.0 is directly connected, Loopback0
S* 0.0.0.0/0 is directly connected, FastEthernet0
```

Configuring Dynamic Routes

In dynamic routing, the network protocol adjusts the path automatically, based on network traffic or topology. Changes in dynamic routes are shared with other routers in the network.

The Cisco routers can use IP routing protocols, such as Routing Information Protocol (RIP) or Enhanced Interior Gateway Routing Protocol (EIGRP), to learn routes dynamically. You can configure either of these routing protocols on your router.

- Configuring Routing Information Protocol, page 3-20
- Configuring Enhanced Interior Gateway Routing Protocol, page 3-22

Configuring Routing Information Protocol

To configure the RIP routing protocol on the router, perform these steps, beginning in global configuration mode:

SUMMARY STEPS

- 1. router rip
- 2. version {1 | 2}
- 3. network ip-address
- 4. no auto-summary
- 5. end

DETAILED STEPS

	Command	Task
Step 1	router rip	Enters router configuration mode, and enables RIP on the router.
	Example:	
	Router> configure terminal Router(config)# router rip Router(config-router)#	
Step 2	version {1 2}	Specifies use of RIP version 1 or 2.
	Example:	
	<pre>Router(config-router)# version 2 Router(config-router)#</pre>	
Step 3	network ip-address	Specifies a list of networks on which RIP is to be applied, using the address of the network of each
	Example:	directly connected network.
	<pre>Router(config-router)# network 192.168.1.1 Router(config-router)# network 10.10.7.1 Router(config-router)#</pre>	

	Command	Task
Step 4	no auto-summary	Disables automatic summarization of subnet routes into network-level routes. This allows subprefix
	Example:	routing information to pass across classful network
	<pre>Router(config-router)# no auto-summary Router(config-router)#</pre>	boundaries.
Step 5	end	Exits router configuration mode, and enters privileged EXEC mode.
	Example:	
	Router(config-router)# end Router#	

Example

The following configuration example shows RIP version 2 enabled in IP network 10.0.0.0 and 192.168.1.0.

To see this configuration, use the **show running-config** command from privileged EXEC mode.

```
!
Router# show running-config
router rip
version 2
network 10.0.0.0
network 192.168.1.0
no auto-summary
```

Verifying Configuration

To verify that you have properly configured RIP, enter the **show ip route** command and look for RIP routes signified by "R." You should see a verification output like the example shown below.

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2
    i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
    ia - IS-IS inter area, * - candidate default, U - per-user static route
    O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 1 subnets
C    10.108.1.0 is directly connected, Loopback0
R    3.0.0.0/8 [120/1] via 2.2.2.1, 00:00:02, Ethernet0/0
```

Configuring Enhanced Interior Gateway Routing Protocol

To configure Enhanced Interior Gateway Routing Protocol (EIGRP) perform these steps, beginning in global configuration mode

SUMMARY STEPS

- 1. router eigrp as-number
- 2. network ip-address
- 3. end

:DETAILED STEPS

	Command	Purpose
Step 1	router eigrp as-number	Enters router configuration mode, and enables EIGRP on the router. The autonomous-system
	Example:	number identifies the route to other EIGRP routers
	<pre>Router(config)# router eigrp 109 Router(config)#</pre>	and is used to tag the EIGRP information.
Step 2	network ip-address	Specifies a list of networks on which EIGRP is to be applied, using the IP address of the network of
	Example:	directly connected networks.
	Router(config)# network 192.145.1.0 Router(config)# network 10.10.12.115 Router(config)#	
Step 3	end	Exits router configuration mode, and enters privileged EXEC mode.
	Example:	
	Router(config-router)# end Router#	

Example

The following configuration example shows the EIGRP routing protocol enabled in IP networks 192.145.1.0 and 10.10.12.115. The EIGRP autonomous system number is 109.

To see this configuration, use the **show running-config** command, beginning in privileged EXEC mode.

```
!
router eigrp 109
   network 192.145.1.0
       network 10.10.12.115
```

Verifying Configuration

To verify that you have properly configured IP EIGRP, enter the **show ip route** command, and look for EIGRP routes indicated by "D." You should see verification output similar to the following:

```
Router# show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2
```

С

```
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/24 is subnetted, 1 subnets
       10.108.1.0 is directly connected, Loopback0
     3.0.0.0/8 [90/409600] via 2.2.2.1, 00:00:02, Ethernet0/0
```

Configuring Dynamic Routes

CHAPTER 4

Basic Wireless Device Configuration

This chapter describes how to configure the autonomous wireless device on the following Integrated Services Router (ISR)

• Cisco 880 Series

Note

To upgrade the autonomous software to Cisco Unified software on the embedded wireless device, see the "Upgrading to Cisco Unified Software" section on page 4-9 for instructions.

The wireless device is embedded and does not have an external console port for connections. To configure the wireless device, use a console cable to connect a personal computer to the host router's console port, and perform these procedures to establish connectivity and configure the wireless settings.

- Starting a Wireless Configuration Session, page 4-2
- Configuring Wireless Settings, page 4-4
- Configuring the Access Point in Hot Standby Mode, page 4-9 (Optional)
- Upgrading to Cisco Unified Software, page 4-9
- Related Documentation, page 4-12

Starting a Wireless Configuration Session

Before you configure the wireless settings in the router's setup, you must follow these steps to open a session between the router and the access point.

Enter the following commands in global configuration mode on the router's Cisco IOS CLI.

SUMMARY STEPS

- 1. interface wlan-ap0
- 2. ip address subnet mask
- 3. no shutdown
- 4. interface vlan1
- 5. ip address subnet mask
- 6. exit
- 7. exit
- 8. service-module wlan-ap 0 session

DETAILED STEPSf

	Command	Purpose
Step 1	interface wlan-ap0	Defines the router's console interface to the wireless device. The interface is used for communication between the router's console and the wireless device. Always use port 0. The following message appears:
	<pre>Example: router(config) # interface wlan-ap0 router(config-if) #</pre>	The wlan-ap 0 interface is used for managing the embedded AP. Please use the service-module wlan-ap 0 session command to console into the embedded AP.
Step 2	ip address subnet mask	Specifies the interface IP address and subnet mask.
	<pre>Example: router(config-if)# ip address 10.21.0.20 255.255.255.0 or router(config-if)# ip unnumbered vlan1</pre>	Note The IP address can be shared with the IP address assigned to the Cisco Integrated Services Router by using the ip unnumbered vlan1 command.
Step 3	no shutdown	Specifies that the internal interface connection will remain open.
	Example: router(config-if)# no shutdown	

'	Command	Purpose
Step 4	<pre>interface vlan1 Example: router(config-if)# interface vlan1</pre>	Specifies the virtual LAN interface for data communication on the internal Gigabit Ethernet 0 (GE0) port to other interfaces. • All the switch ports inherit the default vlan1 interface on the Cisco 880 Series ISR.
Step 5	ip address subnet mask	Specifies the interface IP address and subnet mask.
	Example: router(config-if)# ip address 10.10.0.30 255.255.255.0	
Step 6	exit	Exits the interface configuration mode.
	<pre>Example: router(config-if)# exit router(config)#</pre>	
Step 7	exit	Exits the global configuration mode.
	<pre>Example: router(config) # exit router#</pre>	
Step 8	service-module wlan-ap 0 session	Opens the connection between the wireless device and the router's console.
	Example: router# service-module wlan-ap0 session Trying 10.21.0.20, 2002 Open ap>	

If you want to create a Cisco IOS software alias for the console to session into the wireless device, enter the **alias exec dot11radio service-module wlan-ap 0 session** command at the EXEC prompt. After entering this command, you will automatically skip to the **dot11 radio** level in the Cisco IOS software.

Closing the Session

To close the session between the wireless device and the router's console, perform the following steps.

Wireless Device

1. Control-Shift-6 x

Router

- 1. disconnect
- 2. Press Enter

Configuring Wireless Settings

If you are configuring the wireless device for the first time, you must start a configuration session between the access point and the router before you attempt to configure the basic wireless settings. See the "Starting a Wireless Configuration Session" section on page 4-2.

Configure the wireless device with the tool that matches the software on the device.

- Cisco IOS Command Line Interface, page 4-5—Autonomous software
- Cisco Express Setup, page 4-4—Unified Software

If you are running the wireless device in Autonomous mode and would like to upgrade to Unified mode, see the "Upgrading to Cisco Unified Software" section on page 4-9 for upgrade instructions.

After upgrading to Cisco Unified Wireless software, use the web browser interface to configure the device:

http://cisco.com/en/US/docs/wireless/access_point/12.4_10b_JA/configuration/guide/scg1 2410b-chap2-gui.html

Cisco Express Setup

To configure the Unified wireless device use the web-browser tool:

- Step 1 Establish a console connection to the wireless device and get the Bridge-Group Virtual Interface (BVI) IP address by entering the **show interface bvi1 Cisco** IOS command.
- Step 2 Open a browser window, and enter the BVI IP address in the browser-window address line. Press Enter.

 An Enter Network Password window appears.
- **Step 3** Enter your username. *Cisco* is the default user name.
- Step 4 Enter the wireless device password. *Cisco* is the default password. The Summary Status page appears. For details about using the web-browser configuration page, see: http://cisco.com/en/US/docs/wireless/access_point/12.4_10b_JA/configuration/guide/scg12410b-chap 4-first.html#wp1103336

Cisco IOS Command Line Interface

To configure the Autonomous wireless device, use the Cisco IOS CLI tool and perform these tasks:

- Configuring the Radio, page 4-5
- Configuring Wireless Security Settings, page 4-5
- Configuring Wireless Quality of Service, page 4-8 (Optional)

Configuring the Radio

Configure the radio parameters on the wireless device to transmit signals in autonomous or Cisco Unified mode. For specific configuration procedures, see Chapter 9, "Configuring Radio Settings".

Configuring Wireless Security Settings

- Configuring Authentication, page 4-5
- Configuring WEP and Cipher Suites, page 4-6
- Configuring Wireless VLANs, page 4-6

Configuring Authentication

Authentication types are tied to the Service Set Identifiers (SSIDs) that are configured for the access point. To serve different types of client devices with the same access point, configure multiple SSIDs.

Before a wireless client device can communicate on your network through the access point, the client device must authenticate to the access point by using open or shared-key authentication. For maximum security, client devices should also authenticate to your network using MAC address or Extensible Authentication Protocol (EAP) authentication. Both authentication types rely on an authentication server on your network.

To select an authentication type, see *Authentication Types for Wireless Devices* at: http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityAuthenticationTypes .html.

To set up a maximum security environment, see RADIUS and TACACS+ Servers in a Wireless Environment at:

 $http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityRadiusTacacs_1.htm~l.$

Configuring Access Point as Local Authenticator

To provide local authentication service or backup authentication service for a WAN link failure or a server failure, you can configure an access point to act as a local authentication server. The access point can authenticate up to 50 wireless client devices using Lightweight Extensible Authentication Protocol (LEAP), Extensible Authentication Protocol-Flexible Authentication via Secure Tunneling (EAP-FAST), or MAC-based authentication. The access point performs up to 5 authentications per second.

You configure the local authenticator access point manually with client usernames and passwords because it does not synchronize its database with RADIUS servers. You can specify a VLAN and a list of SSIDs that a client is allowed to use.

For details about setting up the wireless device in this role, see *Using the Access Point as a Local Authenticator* at:

http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityLocalAuthent.html

Configuring WEP and Cipher Suites

Wired Equivalent Privacy (WEP) encryption scrambles the data transmitted between wireless devices to keep the communication private. Wireless devices and their wireless client devices use the same WEP key to encrypt and decrypt data. WEP keys encrypt both unicast and multicast messages. Unicast messages are addressed to one device on the network. Multicast messages are addressed to multiple devices on the network.

Cipher suites are sets of encryption and integrity algorithms designed to protect radio communication on your wireless LAN. You must use a cipher suite to enable Wi-Fi Protected Access (WPA) or Cisco Centralized Key Management (CCKM).

Cipher suites that contain Temporal Key Integrity Protocol (TKIP) provide the greatest security for your wireless LAN. Cipher suites that contain only WEP are the least secure.

For encryption procedures, see *Configuring WEP and Cipher Suites* at: http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityCipherSuitesWEP.ht ml

Configuring Wireless VLANs

If you use VLANs on your wireless LAN and assign SSIDs to VLANs, you can create multiple SSIDs by using any of the four security settings defined in the "Security Types" section on page 4-7. A VLAN can be thought of as a broadcast domain that exists within a defined set of switches. A VLAN consists of a number of end systems, either hosts or network equipment (such as bridges and routers), that are connected by a single bridging domain. The bridging domain is supported on various pieces of network equipment such as LAN switches that operate bridging protocols between them with a separate group of protocols for each VLAN.

For more information about wireless VLAN architecture, see *Configuring Wireless VLANs* at: http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/wireless_vlans.html

If you do *not* use VLANs on your wireless LAN, the security options that you can assign to SSIDs are limited because the encryption settings and authentication types are linked on the Express Security page.

Assigning SSIDs

You can configure up to 16 SSIDs on a wireless device in the role of an access point, and you can configure a unique set of parameters for each SSID. For example, you might use one SSID to allow guests limited access to the network and another SSID to allow authorized users access to secure data.

For more about creating multiple SSIDs, see *Service Set Identifiers* document at: http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/ServiceSetID.html.

Without VLANs, encryption settings (WEP and ciphers) apply to an interface, such as the 2.4-GHz radio, and you cannot use more than one encryption setting on an interface. For example, when you create an SSID with static WEP with VLANs disabled, you cannot create additional SSIDs with WPA authentication because the SSIDs use different encryption settings. If you find that the security setting for an SSID conflicts with the settings for another SSID, you can delete one or more SSIDs to eliminate the conflict.

Security Types

Table 4-1 describes the four security types that you can assign to an SSID.

Table 4-1 Types of SSID Security

Security Type	Description	Security Features Enabled
No security	This is the least secure option. You should use this option only for SSIDs in a public space and you should assign it to a VLAN that restricts access to your network.	None.
Static WEP key	This option is more secure than no security. However, static WEP keys are vulnerable to attack. If you configure this setting, you should consider limiting association to the wireless device based on MAC address, see Cipher Suites and WEP at: http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityCipherSuitesWEP.html.	Mandatory WEP. Client devices cannot associate using this SSID without a WEP key that matches the wireless device key.
	Or If your network does not have a RADIUS server, consider using an access point as a local authentication server. See <i>Using the Access Point as a Local Authenticator</i> for instructions: http://www.cisco.com/en/US/docs/routers/access/wireless/	

Table 4-1 Types of SSID Security (continued)

Security Type	Description	Security Features Enabled
EAP ¹ authentication	This option enables 802.1X authentication (such as LEAP ² , PEAP ³ , EAP-TLS ⁴ , EAP-FAST ⁵ , EAP-TTLS ⁶ , EAP-GTC ⁷ , EAP-SIM ⁸ , and other 802.1X/EAP-based products)	Mandatory 802.1X authentication. Client devices that associate using this SSID must perform 802.1X authentication.
	This setting uses mandatory encryption, WEP, open authentication plus EAP, network EAP authentication, no key management, and RADIUS server authentication port 1645. You are required to enter the IP address and shared secret for an authentication server on your network (server authentication port 1645). Because 802.1X authentication provides dynamic encryption keys, you do not need to enter a WEP key.	If radio clients are configured to authenticate using EAP-FAST, open authentication with EAP should also be configured. If you do not configure open authentication with EAP, the following warning message appears: SSID CONFIG WARNING: [SSID]: If radio clients are using EAP-FAST, AUTH OPEN with EAP should also be configured.
WPA ⁹	This option permits wireless access to users who are authenticated against a database. Access is through the services of an authentication server. Users' IP traffic is then encrypted with stronger algorithms than those used in WEP. This setting uses encryption ciphers, TKIP ¹⁰ , open authentication plus EAP, network EAP authentication, key management WPA mandatory, and RADIUS server authentication port 1645. As with EAP authentication, you must enter the IP address and shared secret for an authentication server on your network (server authentication port 1645).	Mandatory WPA authentication. Client devices that associate using this SSID must be WPA capable. If radio clients are configured to authenticate using EAP-FAST, open authentication with EAP should also be configured. If you don't configure open authentication with EAP, the following warning message appears: SSID CONFIG WARNING: [SSID]: If radio clients are using EAP-FAST, AUTH OPEN with EAP should also be configured.

- 1. EAP = Extensible Authentication Protocol.
- 2. LEAP = Lightweight Extensible Authentication Protocol.
- 3. PEAP = Protected Extensible Authentication Protocol.
- 4. EAP-TLS = Extensible Authentication Protocol—Transport Layer Security.
- 5. EAP-FAST = Extensible Authentication Protocol—Flexible Authentication via Secure Tunneling.
- 6. EAP-TTLS = Extensible Authentication Protocol—Tunneled Transport Layer Security.
- 7. EAP-GTC = Extensible Authentication Protocol—Generic Token Card.
- 8. EAP-SIM = Extensible Authentication Protocol—Subscriber Identity Module.
- 9. WPA = Wi-Fi Protected Access.
- 10. TKIP = Temporal Key Integrity Protocol.

Configuring Wireless Quality of Service

Configuring quality of service (QoS) can provide preferential treatment to certain traffic at the expense of other traffic. Without QoS, the device offers best-effort service to each packet, regardless of the packet contents or size. It sends the packets without any assurance of reliability, delay bounds, or throughput. To configure quality of service (QoS) for your wireless device, see *Quality of Service in a Wireless Environment* at:

http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/QualityOfService.html.

Configuring the Access Point in Hot Standby Mode

In hot standby mode, an access point is designated as a backup for another access point. The standby access point is placed near the access point that it monitors and is configured exactly like the monitored access point. The standby access point associates with the monitored access point as a client and sends Internet Access Point Protocol (IAPP) queries to the monitored access point through the Ethernet and radio ports. If the monitored access point fails to respond, the standby access point comes online and takes the monitored access point's place in the network.

Except for the IP address, the standby access point's settings should be identical to the settings on the monitored access point. If the monitored access point goes off line and the standby access point takes its place in the network, matching settings ensure that client devices can switch easily to the standby access point. For more information, see *Hot Standby Access Points* at:

http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/RolesHotStandby.html.

Upgrading to Cisco Unified Software

To run the access point in Cisco Unified mode, upgrade the software by performing the following procedures:

- Preparing for the Upgrade, page 4-9
- Performing the Upgrade, page 4-10
- Downgrading the Software on the Access Point, page 4-11
- Recovering Software on the Access Point, page 4-12

Software Prerequisites

- Cisco 880 Series ISRs with embedded access points are eligible to upgrade from autonomous software to Cisco Unified software, if the router is running the advipservices feature set and Cisco IOS 15.1.(4)M software.
- To use the embedded access point in a Cisco Unified Architecture, the Cisco Wireless LAN Configuration (WLC) must be running version 15.1.(4)M.

Preparing for the Upgrade

Perform the tasks in the following sections to prepare for the upgrade:

- Secure an IP Address on the Access Point, page 4-10
- Confirm that the Mode Setting is Enabled, page 4-10

Secure an IP Address on the Access Point

Secure an IP address on the access point so it that can communicate with the WLC and download the Unified image upon boot up. The host router provides the access point DHCP server functionality through the DHCP pool. Then the access point communicates with the WLC and setup option 43 for the controller IP address in the DHCP pool configuration. The following is a sample configuration:

```
ip dhcp pool embedded-ap-pool
network 60.0.0.0 255.255.255.0
dns-server 171.70.168.183
default-router 60.0.0.1
option 43 hex f104.0a0a.0a0f (single WLC IP address(10.10.10.15) in hex format)
int vlan1
ip address 60.0.0.1 255.255.255.0
```

For more information about the WLC discovery process, see *Cisco Wireless LAN Configuration Guide* at: http://www.cisco.com/en/US/docs/wireless/controller/4.0/configuration/guide/ccfig40.html

Confirm that the Mode Setting is Enabled

To confirm that the mode setting is enabled, perform the following steps.

- **Step 1** Ping the WLC from the router to confirm IP connectivity.
- Step 2 Enter the service-module wlan-ap 0 session command to establish a session into the access point.
- **Step 3** Confirm that the access point is running an autonomous boot image.
- **Step 4** Enter the **show boot** command on the access point to confirm that the mode setting is enabled. The following is sample output for the command:

```
# show boot
BOOT path-list: flash:ap802-k9w7-mx.124/ap802-k9w7-mx.124
Config file: flash:/config.txt
Private Config file: flash:/private-config
Enable Break: no
Manual Boot: yes
HELPER path-list: no
NVRAM/Config file
buffer size: 32768
Mode Button: on
Radio Core TFTP:
ap#
```

Performing the Upgrade

To upgrade the autonomous software to Cisco Unified software, follow these steps:

Step 1 To change the access point boot image to a Cisco Unified upgrade image (also known as a *recovery image*), issue the **service-module wlan-ap 0 bootimage unified** command, in global configuration mode.

```
Router# conf terminal
Router(config)# service-module wlan-ap 0 bootimage unified
Router(confiq)# end
```


If the **service-module wlan-ap 0 bootimage unified** command does not work successfully, check whether the software license is still eligible.

To identify the access point's boot image path, use the **show boot** command in privileged EXEC mode on the access point console:

```
autonomous-AP# show boot
BOOT path-list: flash:/ap802-rcvk9w8-mx/ap802-rcvk9w8-mx
```

Step 2 To perform a graceful shutdown and reboot of the access point to complete the upgrade process, issue the **service-module wlan-ap 0 reload** command in global configuration mode. Establish a session into the access point and monitor the upgrade process.

See "Cisco Express Setup" section on page 4-4 for details about using the GUI configuration page to set up the wireless device settings.

Troubleshooting an Upgrade or Reverting the AP to Autonomous Mode

- **Q.** My access point failed to upgrade from autonomous software to Cisco Unified software, and it appears to be stuck in the recovery mode. What is my next step?
- **A.** If the access point fails to upgrade from autonomous to Unified software, perform the following actions:
 - Check to ensure the autonomous access point does not have the static IP address configured on the BVI interface before you boot the recovery image.
 - Issue a ping between the router/access point and the WLC to confirm communication.
 - Check the access point and WLC clock (time and date) are set correctly.
- **Q.** My access point is attempting to boot, but it keeps failing. Why?

 My access point is stuck in the recovery image and will not upgrade to the Unified software. Why?
- **A.** The access point may attempt to boot and fail or may become stuck in the recovery mode and fail to upgrade to the Unified software. If either occurs use the **service-module wlan-ap0 reset bootloader** command to return the access point to the bootloader for manual image recovery.

Upgrading AP bootloader

For AP802, the bootloader is available as part of host router image. To upgrade the bootloader, follow these commands:

```
Router# service-module wlan-ap 0 upgrade bootloader Router# service-module wlan-ap 0 reset
```

Downgrading the Software on the Access Point

To reset the access point BOOT back to the last autonomous image, use the **service-module wlan-ap0 bootimage autonomous** command in global configuration mode. To reload the access point with the autonomous software image, use the **service-module wlan-ap 0 reload** command.

Recovering Software on the Access Point

To recover the image on the access point, use the **service-module wlan-ap0 reset bootloader** command in global configuration mode. This command returns the access point to the bootloader for manual image recovery.

Use this command with caution. It does *not* provide an orderly shutdown and consequently may impact file operations that are in progress. Use this command only to recover from a shutdown or a failed state.

Related Documentation

Refer to the following documentation for additional autonomous and unified configuration procedures:

- Autonomous Cisco Documentation—Table 4-2
- Cisco Unified Documentation—Table 4-3

Table 4-2 Autonomous Cisco Documentation

Network Design	Links
Wireless Overview	Chapter 2, "Wireless Device Overview"
Security	Links
Authentication Types for Wireless Devices	This document describes the authentication types that are configured on the access point.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityAuthenticationTypes.html
RADIUS and TACACS+ Servers in a Wireless Environment	This document describes how to enable and configure the RADIUS and TACACS+ and provides detailed accounting information and flexible administrative control over authentication and authorization processes. RADIUS and TACACS+ are facilitated through AAA ¹ and can be enabled only through AAA commands.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityRadiusTacacs_1.html
Using the Access Point as a Local Authenticator	This document describes how to use a wireless device in the role of an access point as a local authenticator, serving as a standalone authenticator for a small wireless LAN, or providing backup authentication service. As a local authenticator, the access point performs LEAP, EAP-FAST, and MAC-based authentication for up to 50 client devices.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityLocalAuthent.html
Cipher Suites and WEP	This document describes how to configure the cipher suites required for using WPA and CCKM ² ; WEP; and WEP features including AES ³ , MIC ⁴ , TKIP, and broadcast key rotation.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SecurityCipherSuitesWEP.html

Table 4-2 Autonomous Cisco Documentation (continued)

Network Design	Links
Hot Standby Access Points	This document describes how to configure your wireless device as a hot standby unit.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/RolesHotStandby.html
Configuring Wireless VLANs	This document describes how to configure an access point to operate with the VLANs set up on a wired LAN.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/wireless_vlans.html
Service Set Identifiers	In the role of an access point, a wireless device can support up to 16 SSIDs. This document describes how to configure and manage SSIDs on the wireless device.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/ServiceSetID.html
Administering	Links
Quality of Service	This document describes how to configure QoS on your Cisco wireless interface. With this feature, you can provide preferential treatment to certain traffic at the expense of other traffic. Without QoS, the device offers best-effort service to each packet, regardless of the packet contents or size. It sends the packets without any assurance of reliability, delay bounds, or throughput.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/QualityOfService.html
Regulatory Domains and Channels	This document lists the radio channels supported by Cisco access products in the regulatory domains of the world.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/RadioChannelFrequencies.html
System Message Logging	This document describes how to configure system message logging on your wireless device.
	http://www.cisco.com/en/US/docs/routers/access/wireless/software/guide/SysMsgLogging.html

- 1. AAA = Authentication, Authorization, and Accounting.
- 2. CCKM = Cisco Centralized Key Management.
- $3. \quad AES = Advanced \ Encryption \ Standard.$
- 4. MIC = Message Integrity Check.

Table 4-3 Cisco Unified Documentation

Network Design	Links
Why Migrate to the Cisco Unified Wireless Network?	http://www.cisco.com/en/US/prod/collateral/wireless/ps5679/ps6548/prod_white_paper0900aecd804f19e3_ps6305_Products_White_Paper.html
LWAPP ¹ Wireless LAN Controllers	http://www.cisco.com/en/US/products/ps6366/index.html

Table 4-3 Cisco Unified Documentation (continued)

Network Design	Links
LWAPP Wireless LAN Access Points	http://www.cisco.com/en/US/prod/collateral/wireless/ps5678/ps6306/prod_white_paper0900aecd802c18ee_ps6366_Products_White_Paper.html
Cisco IOS Command Reference for Cisco Aironet Access Points and Bridges, versions 12.4(10b) JA and 12.3(8) JEC	http://www.cisco.com/en/US/docs/wireless/access_point/12.4_10b_JA/command/reference/cr2410b.html
Cisco Aironet 1240AG Access Point Support Documentation	http://www.cisco.com/en/US/docs/wireless/access_point/1240/quick/guide/ap1240qs.html
Cisco 4400 Series Wireless LAN Controllers Support Documentation	http://www.cisco.com/en/US/products/ps6366/tsd_products_support_series_home.html

^{1.} LWAPP = Lightweight Access Point Protocol.