User Manual for VC4OWT

Version 20171226

[1] Download

VC4OWT.zip:

Execution: Type "VC4OWT" on the command window of the MATLAB, and then enter

Input File (Sample): (e.g. model.inp)

Output File (Sample): (e.g. figure.png, output.txt)

[2] EXAMPLE:

- 15-06-2018 wind and wave load are updated
- 26-12-2017 input file is changed as text file; considering the static load
- 20-09-2017 option directions for earthquake data, eigen analysis
- 27-05-2017 analysis case
- 25-02-2017 guide for VC4OWT

VC4OWT

Vibration Control for Offshore Wind Turbine

Tran Thanh Tuan¹, Le Minh Luong² and Dookie Kim³

Contents

[1] Download	1
[2] EXAMPLE:	1
[3] Updates	2
Contents	3
1. Introduction	∠
2. How to run VC4OWT?	
2. Input Data Format	7
3. Example	10
4. Appendix	19
References	20

¹ Department of Civil and Environmental Engineering, Kunsan National University, South Korea

² Department of Civil and Environmental Engineering, Kunsan National University, South Korea

³ Department of Civil and Environmental Engineering, Kunsan National University, South Korea

1. Introduction

The computer program VC4OWT (Vibration Control for Offshore Wind Turbine) is mainly used to evaluate the steel jacket platform seismic behavior by friction dampers and comparing them with steel brace. The used model in this program is evaluated in three cases, one case it is without brace and another case with steel braces and the last one with friction dampers. In addition, Soil-Structure Interaction can be considered in this program.

2. How to run VC4OWT?

STEP 1 Input (Group 1)

1.1. Import model (e.g.model.inp)

- 1.2. Wind and Wave loads
- 1.2.1. Wind Load

1.2.1 Wave Load

1.3. Earthquake data (3 options: x direction, y direction and two directions)

STEP 2 Analysis Cases (Group 2)

2.1. Brace properties

2.2. Damper properties

2.3. Soil properties

STEP 3 Analysis (Group 3)

- 3.1. Eigen Analysis
- 3.2. Dynamic Analysis

STEP 4 Output (Group 5)

- 4.1. Eigen value
- 4.2. Responses at tower base and top
- 4.3. Save data
- 4.4. Save figure

2. Input Data Format

Template Input Data file for VC4OWT

```
# ------ MEMBER NODES -----
 nN # Number of Nodes
# NodeID xCrdyCrd zCrd mx my mz mIx mIy mIz
# (-) (m) (m) (m)
  N[1]  x[1]  y[1]  z[1]  mx[1]  my[1]  mz[1]  mIx[1]  mIy[1]  mIz[1]
  N[nN] x[nN] y[nN] z[nN] mx[nN] my[nN] mz[nN] mIx[nN] mIy[nN] mIz[nN]
# ------ BOUNDARY CONDITIONS ------
 nS # Number of Boundary Condition Nodes
# ------ #ULTI-POINT CONSTRAINTS ------
# ------ MEMBER SECTIONS -----
# E : Modulus of Elasticity
# A : Cross section Area
# Iy, Iz : Moment of Inertia
# J : Torsional Moment of Inertia
# G : Shear Modulus
nSec # Number of Sections
 E(N/m^2) Poisson's Ratioanpha 2.10E+11 0.3 0.5
# SecIDD tw
# (-) (m) (m)
  S[1] D[1] tw[1]
  S[nSec] D[nSec] tw[nSec]
# ------ GEOTRAN ELEMENTS ------
 nGeo # Number of Tower Geotrans
# ID vecxz
 G[1] vec[1] vec [1] vec [1]
 : : : : : G[nGeo] vec [nGeo] vec [nGeo]
```

```
# ------ MEMBER ELEMENTS ------
nE # Number of Tower Elements
# + massDens: element mass density (per unit length), from which a lumped-mass matrix is formed
# + maxIters: maximum number of iterations to undertake to satisfy element compatibility
------ PLATFORM SECTIONS ------
# ------ PLATFORM ELEMENTS ------
secTag[1]
# ------ SSI NODES -----
2 # Number of SSI Nodes
# NodeID xCrd yCrd zCrd
# (-) m) (m) (m)
N[1] x[1] y[1] z[1] # first node: assign mass
N[2] x[2] y[2] z[2] # second node: assign bound condition
# ------- CONTROL ELEMENTS ------
 nC # Number of Control Elements
Note: Option [geoTran] is only used for brace control elements.
# ------ STATIC LOADS ------
 # Number of Points for Wave Load
```


# #BNode TNode Base[1]	OUTPUT NODE Top[1]
Note: Base and	Top Node of tower
# End of input	data file

3. Example

Example 1: To get the top and base point responses of the Wind Turbine with friction damper under Elcentro earthquake ignoring SSI effect.

3.1 Input Examples:

#	# VC40WT Input File								
# 94				MEMBER NOD	ES				
# NodeI		Number of yCrd	zCrd	mx	my	mz	mIx	mIy	mIz
# (-)	.D XCIU (m)		(m)	(m)	illy	IIIZ	IIIIX	шту	ШТ
1	4.00	4.00	20.15	54280.75	54280.75	54280.75	0.00	0.00	0.00
2	-4.00	4.00	20.15	54280.75	54280.75	54280.75	0.00	0.00	0.00
3	-4.00	-4.00	20.15	54280.75	54280.75	54280.75	0.00	0.00	0.00
4	4.00	-4.00	20.15	54280.75	54280.75	54280.75	0.00	0.00	0.00
5	-4.00	4.00	16.15	1395.76	1395.76	1395.76	0.00	0.00	0.00
6	4.00	4.00	16.15	1395.76	1395.76	1395.76	0.00	0.00	0.00
7	4.00	-4.00	16.15	1395.76	1395.76	1395.76	0.00	0.00	0.00
8 9	-4.00	-4.00 6.00	16.15	1395.76	1395.76	1395.76	0.00	0.00	0.00
10	-6.00 6.00	6.00	-49.50 -49.50	17144.93 17144.93	17144.93 17144.93	17144.93 17144.93	0.00 0.00	0.00 0.00	0.00 0.00
11	4.02	4.02	15.65	8513.60	8513.60	8513.60	0.00	0.00	0.00
12	-4.02	4.02	15.65	8513.60	8513.60	8513.60	0.00	0.00	0.00
13	-4.02	-4.02	15.65	8513.60	8513.60	8513.60	0.00	0.00	0.00
14	4.02	-4.02	15.65	8513.60	8513.60	8513.60	0.00	0.00	0.00
15	-4.39	4.39	4.38	18161.95	18161.95	18161.95	0.00	0.00	0.00
16	4.39	4.39	4.38	18161.95	18161.95	18161.95	0.00	0.00	0.00
17	4.39	-4.39	4.38	18161.95	18161.95	18161.95	0.00	0.00	0.00
18	-4.39	-4.39	4.38	18161.95	18161.95	18161.95	0.00	0.00	0.00
19	4.19	0.00	10.26	5411.91	5411.91	5411.91	0.00	0.00	0.00
20	-4.19	0.00	10.26	5411.91	5411.91	5411.91	0.00	0.00	0.00
21 22	0.00 0.00	-4.19 4.19	10.26	5411.91 5411.91	5411.91 5411.91	5411.91 5411.91	0.00	0.00	0.00
23	-4.82	4.19	10.26 -8.92	21271.72	21271.72	21271.72	0.00 0.00	0.00 0.00	0.00 0.00
24	4.82	4.82	-8.92	21271.72	21271.72	21271.72	0.00	0.00	0.00
25	4.82	-4.82	-8.92	21271.72	21271.72	21271.72	0.00	0.00	0.00
26	-4.82	-4.82	-8.92	21271.72	21271.72	21271.72	0.00	0.00	0.00
27	4.59	0.00	-1.96	6226.42	6226.42	6226.42	0.00	0.00	0.00
28	0.00	4.59	-1.96	6226.42	6226.42	6226.42	0.00	0.00	0.00
29	-4.59	0.00	-1.96	6226.42	6226.42	6226.42	0.00	0.00	0.00
30	0.00	-4.59	-1.96	6226.42	6226.42	6226.42	0.00	0.00	0.00
31	-5.33	5.33	-24.61	28769.94	28769.94	28769.94	0.00	0.00	0.00
32	5.33	5.33	-24.61	28769.94	28769.94	28769.94	0.00	0.00	0.00
33	5.33	-5.33	-24.61	28769.94	28769.94	28769.94	0.00	0.00	0.00
34 35	-5.33 0.00	-5.33 -5.06	-24.61 -16.37	28769.94 7194.84	28769.94 7194.84	28769.94 7194.84	0.00 0.00	0.00 0.00	0.00 0.00
36	5.06	0.00	-16.37	7194.84	7194.84	7194.84	0.00	0.00	0.00
37	0.00	5.06	-16.37	7194.84	7194.84	7194.84	0.00	0.00	0.00
38	-5.06	0.00	-16.37	7194.84	7194.84	7194.84	0.00	0.00	0.00
39	-5.94	5.94	-43.13	18159.82	18159.82	18159.82	0.00	0.00	0.00
40	5.94	5.94	-43.13	18159.82	18159.82	18159.82	0.00	0.00	0.00
41	5.94	-5.94	-43.13	18159.82	18159.82	18159.82	0.00	0.00	0.00
42	-5.94	-5.94	-43.13	18159.82	18159.82	18159.82	0.00	0.00	0.00

STRUCTURAL SYSTEM LABORATORY DEPARTMENT OF CIVIL ENGINEERING, KUNSAN NATIONAL UNIVERSITY, SOUTH KOREA									
	DEPARTMENT	OF CIVIL ENGI	NEERING, KU	NSAN NATION	al University	, South Korea			
43	5.62	0.00	-33.37				0.00	0.00	0.00
44	0.00	-5.62	-33.37	8343.83			0.00	0.00	0.00
45	-5.62	0.00	-33.37	8343.83			0.00	0.00	0.00
46	0.00	5.62	-33.37	8343.83	8343.83		0.00	0.00	0.00
47	-5.97	5.97	-44.00	5922.01	5922.01	5922.01	0.00	0.00	0.00
48	5.97	5.97	-44.00	5922.01	5922.01	5922.01	0.00	0.00	0.00
49	5.97	-5.97	-44.00	5922.01	5922.01	5922.01	0.00	0.00	0.00
50	-5.97	-5.97	-44.00	5922.01	5922.01	5922.01	0.00	0.00	0.00
51	-6.00	6.00	-45.00	1063.84			0.00	0.00	0.00
52	6.00	6.00	-45.00	1063.84			0.00	0.00	0.00
53	6.00	-6.00	-45.00	1063.84			0.00	0.00	0.00
54	-6.00	-6.00	-45.00	1063.84			0.00	0.00	0.00
55	-6.00	6.00	-45.50	16750.61			0.00	0.00	0.00
56	6.00	6.00	-45.50	16750.61			0.00	0.00	0.00
57	6.00	-6.00	-45.50	16750.61		16750.61	0.00	0.00	0.00
58	-6.00	-6.00	-45.50	16750.61			0.00	0.00	0.00
59	6.00	-6.00	-49.50	17144.93			0.00	0.00	0.00
60	-6.00	-6.00	-49.50	17144.93			0.00	0.00	0.00
61	-6.00	6.00	-50.00	748.91			0.00	0.00	0.00
62	6.00	6.00	-50.00	748.91			0.00	0.00	0.00
63	6.00	-6.00	-50.00	748.91			0.00	0.00	0.00
64	-6.00	-6.00	-50.00	748.91			0.00	0.00	0.00
65	-4.00	0.00	20.15	57756.73			0.00	0.00	0.00
66	0.00	-4.00	20.15	57756.73	57756.73	57756.73	0.00	0.00	0.00
67	4.00	0.00	20.15	57756.73	57756.73	57756.73	0.00	0.00	0.00
68	0.00	4.00	20.15	57756.73	57756.73	57756.73	0.00	0.00	0.00
69	0.00	0.00				116612.20	0.00	0.00	0.00
70	0.00	0.00	20.65	14229.62		14229.62	0.00	0.00	0.00
71	-4.00	-4.00	18.15	2289.12	2289.12		0.00	0.00	0.00
72	4.00	-4.00	18.15	2289.12	2289.12		0.00	0.00	0.00
73	4.00	4.00	18.15	2289.12			0.00	0.00	0.00
74 76	-4.00	4.00	18.15	2289.12			0.00	0.00	0.00
76	-4.80	-4.00	20.15	12706.48			0.00	0.00	0.00
77 70	-4.80	4.00		12706.48			0.00	0.00	0.00
78 79	-4.00 4.00	-4.80 -4.80	20.15	12706.48 12706.48			0.00	0.00	0.00
80	0.00	0.00	26.65				0.00 0.00	0.00 0.00	0.00 0.00
81	0.00	0.00	37.15				0.00	0.00	0.00
82	0.00	0.00	48.15		34749.87		0.00	0.00	0.00
83	0.00	0.00	59.15				0.00	0.00	0.00
84	0.00	0.00	69.15				0.00	0.00	0.00
85	0.00	0.00	78.65	20685.79			0.00	0.00	0.00
86	0.00	0.00	85.65	14260.48			0.00	0.00	0.00
87	0.00	0.00				353672.30	0.00	0.00	0.00
88	4.80	-4.00	20.15	12706.48			0.00	0.00	0.00
89	4.80	4.00	20.15	12706.48			0.00	0.00	0.00
90	4.00	4.80	20.15	12706.48			0.00	0.00	0.00
91	-4.00	4.80	20.15	12706.48		12706.48	0.00	0.00	0.00
92	-4.80	4.80	20.15	1155.13			0.00	0.00	0.00
93	4.80	4.80	20.15	1155.13			0.00	0.00	0.00
94	4.80	-4.80	20.15	1155.13			0.00	0.00	0.00
95	-4.80	-4.80	20.15	1155.13			0.00	0.00	0.00
							2.00	2.30	2.00
#				BOUNDARY (CONDITIONS				
	4	# Nu	mber of B	oundary Co	ondition No	odes			
# Node	x y	z xx	yy zz		1=fixed, 0	=free			

```
STRUCTURAL SYSTEM LABORATORY
     DEPARTMENT OF CIVIL ENGINEERING, KUNSAN NATIONAL UNIVERSITY, SOUTH KOREA
  62
      1 1 1 1 1 1
  63 1 1 1 1 1 1
  64 1 1 1 1 1 1
# ------ # CONSTRAINTS ------
          # Number of MP Constraints
#mNode sNode dof #mNode: master node; sNode: slave node; dof (1 2 3 4 5 6)
  69 1 1 2 3
  69 2 1 2 3
     3 1 2 3
  69
     4 1
  69
             2 3
# ------ MEMBER SECTIONS -----
     : Modulus of Elasticity
# A : Cross section Area
# Iy, Iz: Moment of Inertia
# J : Torsional Moment of Inertia
# G
     : Shear Modulus
           # Number of Sections
       E(N/m^2) Poisson's Ratioanpha
     2.10E+11
                 0.3
# SecID D
                   tw
                 (m)
# (-)
        (m)
      0.800 0.020
  1
   2
       1.200 0.050
              0.035
   3
       1.200
     1.200 0.040
   4
   5 2.080 0.491
   6
      2.080 0.060
       5.600 0.032
   7
              0.032
       5.557
   8
        5.318 0.030
   9
  10 5.082 0.028

      11
      4.800
      0.024

      12
      4.565
      0.022

      13
      4.329
      0.020

      14
      4.118
      0.030

  15
        4.000
                0.030
# ------ GEOTRAN ELEMENTS ------
  40 # Number of Tower Geotrans
  ID vecxz
   1 1.00E+00 0.00E+00 0.00E+00
   2 0.00E+00 1.00E+00 0.00E+00
   3 0.00E+00 -1.00E+00 0.00E+00
   4 -1.00E+00 0.00E+00 0.00E+00
   5 -7.07E-01 -7.07E-01 0.00E+00
   6 7.07E-01 -7.07E-01 0.00E+00
   7 7.07E-01 7.07E-01 0.00E+00
   8 -7.07E-01 7.07E-01 0.00E+00
   9 9.99E-01 4.39E-02 0.00E+00
  10 9.99E-01 -4.39E-02 0.00E+00
  11 -9.99E-01 4.39E-02 0.00E+00
  12 -9.99E-01 -4.39E-02 0.00E+00
  13 -4.39E-02 -9.99E-01 0.00E+00
```

```
STRUCTURAL SYSTEM LABORATORY
      DEPARTMENT OF CIVIL ENGINEERING, KUNSAN NATIONAL UNIVERSITY, SOUTH KOREA
  14 -4.39E-02 9.99E-01 0.00E+00
  15
      4.39E-02 9.99E-01 0.00E+00
  16 7.07E-01 7.07E-01 0.00E+00
  17 9.99E-01 -4.72E-02 0.00E+00
  18 -9.99E-01 -4.72E-02 0.00E+00
     4.72E-02 9.99E-01 0.00E+00
  19
  20 -4.72E-02 9.99E-01 0.00E+00
  21 -9.99E-01 4.72E-02 0.00E+00
  22
     9.99E-01 4.72E-02 0.00E+00
  23 -4.72E-02 -9.99E-01 0.00E+00
     -4.72E-02 9.99E-01 0.00E+00
  24
  25
     -5.05E-02 -9.99E-01 0.00E+00
  26 -5.05E-02 9.99E-01 0.00E+00
  27 9.99E-01 5.05E-02 0.00E+00
  28 9.99E-01 -5.05E-02 0.00E+00
  29 -5.05E-02 -9.99E-01 0.00E+00
  30 -5.05E-02 9.99E-01 0.00E+00
  31 -9.99E-01 5.05E-02 0.00E+00
  32 -9.99E-01 -5.05E-02 0.00E+00
  33 9.99E-01 -5.37E-02 0.00E+00
  34 -9.99E-01 -5.37E-02 0.00E+00
  35
     -5.37E-02 -9.99E-01 0.00E+00
  36 -5.37E-02 9.99E-01 0.00E+00
  37 -9.99E-01 5.37E-02 0.00E+00
  38 9.99E-01 5.37E-02 0.00E+00
  39 5.37E-02 9.99E-01 0.00E+00
  40 -5.37E-02 9.99E-01 0.00E+00
# ------ MEMBER ELEMENTS ------
 125
            # Number of Tower Elements
# + massDens: element mass density (per unit length), from which a lumped-mass matrix is formed
# + maxIters: maximum number of iterations to undertake to satisfy element compatibility
# + tol:
         tolerance for satisfaction of element compatibility
# NIP massDens
                  maxIters
                               tol
                 10 10E-12
   5
          98
                      secTag geoTran
# EleID NodeI NodeJ
                           4
          8
                  71
   2
                                    2
          71
                  3
   3
                           4
                                    2
   4
          7
                 72
                          4
                                    2
   5
          72
                  4
                          4
                                    2
                 73
                          4
                                    2
   6
          6
   7
          73
                   1
                           4
                                    2
          2
   8
                 74
                           4
                                    3
   9
                 5
                                    3
         74
                          4
  19
         12
                  5
                          3
                                   5
         13
                  8
                          3
  20
                                    6
  21
                   7
                            3
                                    7
          14
  22
         11
                  6
                           3
                                    8
  25
                          7
                                    2
         69
                 70
  26
          70
                 80
                          8
                                   2
  27
         18
                 13
                           3
                                    6
```

Download SSL Software: http://www.kim2kie.com/3_ach/SSL_Software.php

STRUCTURAL SYSTEM LABORATORY

2	STRUCTUF	RAL SY	ISTEM LA	BORAT	ORY
	DEPARTMENT OF C	IVIL ENGINI	EERING, KUNSAN	NATIONAL UN	NIVERSITY, SOUTH KOREA
32	81	82	10	2	
33	82	83	11	2	
34	83	84	12	2	
35	84	85	13	2	
36	85	86	14	2	
37	41	49	2	5	
38	49	53	2	5	
39	17	19	1	9	
40	19	11	1	9	
41	14	19	1	10	
42	19	16	1	10	
43	12	20	1	11	
44	20	18	1	11	
45	15	20	1	12	
46	20	13	1	12	
47	13	21	1	13	
48	21	17	1	13	
49	14	21	1	14	
50	21	18	1	14	
51	16	22	1	14	
52	22	12	1	14	
53	11	22	1	15	
54	22	15	1	15	
55	86	87	15	2	
59	15	23	3	16	
60	17	25	3	5	
61	26	18	3	6	
62	24	16	3	8	
			2		
64 CF	53	57		3	
65	57	59	5	3	
66	59	63	6	3 2	
67	64	60	6		
68	60	58	5	2	
69	58	54	2	2	
70	54	50	2	6	
71	17	27	1	17	
72	27	24	1	17	
73	16	27	1	18	
74	27	25	1	18	
75	16	28	1	19	
76	28	23	1	19	
77	24	28	1	20	
78	28	15	1	20	
79	15	29	1	21	
80	29	26	1	21	
81	18	29	1	22	
82	29	23	1	22	
83	18	30	1	23	
84	30	25	1	23	
85	17	30	1	24	
86	30	26	1	24	
91	31	23	3	5	
92	33	25	3	7	
93	34	26	3	6	
94	32	24	3	8	
95	50	42	2	6	

		TRAL SYSTI				H KOREA		
96	39	47	2	7				
97	26	35	1	25				
98	35	33	1	25				
99	25	35	1	26				
100	35	34	1	26				
101	47	51	2	16				
102	51	55	2	3				
103	33	36	1	27				
104	36	24	1	27				
105	25	36	1	28				
106	36	32	1	28				
107	55	9	5	3				
108	9	61	6	3				
109	31	37	1	29				
110	37	24	1	29				
111	32	37	1	30				
112	37	23	1	30				
113	62	10	6	2				
114	10	56	5	2				
115	23	38	1	31				
116	38	34	1	31				
117	31	38	1	32				
118	38	26	1	32				
123	31	39	2	7				
124	33	41	2	5				
125	42	34	2	6				
126	40	32	2	8				
127	40	48	2	6				
128	48	52	2	6				
129	52	56	2	3				
135	33	43	1	33				
136	43	40	1	33				
137	32	43	1	34				
138	43	41	1	34				
139	34	44	1	35				
140	44	41	1	35				
141	33	44	1	36				
142	44	42	1	36				
143	31	45	1	37				
144	45	42	1	37				
145	34	45	1	38				
146	45	39	1	38				
147	32	46	1	39				
148	46	39	1	39				
149	40	46	1	40				
150	46	31	1	40				
151	47	48	1	3				
152	48	49	1	4				
153	49	50	1	2				
154	50	47	1	1				
	- -							
#			PLAT	FORM SEC	CTIONS		 	
#SecID	h		Density		son's Ratio			
# (-)	(m)	(N/m^2)	(N/m^3/g)	(-)			
16	4	2.10E+11	0.00		0.3			

Download SSL Software: http://www.kim2kie.com/3_ach/SSL_Software.php

STRUCTURAL SYSTEM LABORATORY DEPARTMENT OF CIVIL ENGINEERING, KUNSAN NATIONAL UNIVERSITY, SOUTH KOREA

#				PLATFORM I	ELEMENTS	
12	# 1	Number of	Platform El	ements.		
# EleID	NodeI	NodeJ	NodeK	NodeL s	ecTag	
		69	68	2	16	
	69		1	68	16	
1003	3	66	69	65	16	
1004	66	4	67	69	16	
1005	76	3	2	77	16	
1006	78	79	4	3	16	
1007	4	88	89	1	16	
1008	2 77 1	1	90	91	16	
1009	77	2 89	91	92	16	
1010	1	89	93	90		
1011	79	94	88	4	16	
1012	95	78	3	76	16	
				SSI NODES		
			SSI Nodes			
# NodeID	xCrd	yCrd	zCrd			
# (-)	(m))	(m)	(m)		
75	0.00	0.00	-50.001			
96	0.00	0.00	-50.001			
					LEMENTS	
			Control Ele			
			_	_	(for brace-e)	
	1			8		
				5		
11				6		
12	4	81	17	7		
					ADS	
64	# [Number of	Points for	Wave Load		
					_	
				OUTPUT NOL)E	
#BNode 1						
69 8	3/					
д. г. 1 . с		C13				
# End of	input dat	ta †11e				

3.2 Output

3.2.1 Eigen

3.2.2 Response

Top Displacement:

Total acceleration at tower top

- 3.3 Save
- 3.3.1 Save Data
- 3.3.2 Save Figure

4. Appendix

4.1 Element Coordinate Transformation

The element coordinate system is specified as follows:

The x-axis is a vector given by the two element nodes; The vector vecxz is a vector the user specifies that must not be parallel to the x-axis. The x-axis along with the vecxz Vector define the xz plane. The local y-axis is defined by taking the cross product of the x-axis vector and the vecxz vector ($Vy = Vxz \times Vx$). The local z-axis is then found simply by taking the cross product of the y-axis and x-axis vectors ($Vz = Vx \times Vy$). The section is attached to the element such that the y-z coordinate system used to specify the section corresponds to the y-z axes of the element.

References

• Dookie Kim (2017). Dynamics of Structures: 4th Edition, Goomibook

_