

planetmath.org

Math for the people, by the people.

example of multiply transitive

Canonical name ExampleOfMultiplyTransitive

Date of creation 2013-03-22 17:21:56 Last modified on 2013-03-22 17:21:56 Owner Algeboy (12884) Last modified by Algeboy (12884)

Numerical id 4

Author Algeboy (12884)

Entry type Example Classification msc 20B20 **Theorem 1.** 1. The general linear group GL(V) acts transitively on the set of points (1-dimensional subspaces) in the projective geometry PG(V).

- 2. PGL(V) is doubly transitive on the set of all of points in PG(V).
- 3. PGL(V) is not 3-transitive on the set of all points in PG(V) if dim $V \neq 2$.

Proof. Evidently 2 implies 1. So suppose we have pairs of distinct points (P,Q) and (R,S). Then take $P=\langle x\rangle,\ Q=\langle y\rangle,\ R=\langle z\rangle$ and $S=\langle w\rangle$. As $P\neq Q,\ x$ and y are linearly independent, just as z and w are. Therefore extending $\{x,y\}$ to a basis B and $\{z,w\}$ to a basis C, we know there is a linear transformation $f\in GL(V)$ taking B to C – consider the change of basis matrix. Therefore GL(V) is 2-transitive.

Now suppose dim $V \geq 2$. Then there exists a linearly indepedent set $\{x, y, z\}$ which gives three distinct non-collinear points (P, Q, R), $P = \langle x \rangle$, $Q = \langle y \rangle$ and $R = \langle z \rangle$. But then we also have three collinear points (P, Q, S) where $S = \langle x + y \rangle$. As GL(V) prevserves the geometry of PG(V), we cannot have a map in GL(V) send (P, Q, R) to (P, Q, S).

Note that the action of GL(V) on PG(V) is not faithful so we use instead PGL(V).