

USER MANUAL IC LED FEATHERWING 150015

MUST READ

Check for software updates

Before using the product, make sure you use the most recent version of the control software, data sheet, and user manual. This is especially important for ICLED products that were not purchased directly from Würth Elektronik eiSos. A control software update on these respective products may be required.

We strongly recommend including in the customer system design the possibility for a control software update of the product.

CAUTIONS AND WARNING

This product is highly sensitive to electrostatic discharge (ESD). As such, always use proper ESD precaution when handling. Failing to fallow the aforementioned recommendations can result in severe damage to the part.

The ICLED FeatherWing can get hot during operation. Please avoid touching the surfaces of the board while it is in use and wait approximately one minute after turning off the power supply before handling it.

Warning against optical radiation: View the FeatherWing from a safe distance and use adequate protection as needed.

TABLE OF CONTENTS

1. GENERAL DESCRIPTION	4
1.1 Introduction	4
1.2 Contents	4
2. FUNCTIONAL DESCRIPTION	5
2.1 Adafruit Feather	5
2.2 ICLED FeatherWing (1312020030000)	5
2.2.1 Key features	5
2.2.2 ICLEDs	7
3. HARDWARE DESCRIPTION	8
3.1 Connectors	8
3.1.1 Feather connector	8
3.1.2 CON1	9
3.1.3 JP1	10
3.1.4 JP2	10
3.1.5 DIN Pin	10
3.2 Push buttons	10
3.2.1 S1	11
3.2.2 S2	11
3.3 Power supply	11
3.4 Fuses and temperature safety	11
3.5 Schematics	12
3.6 Layout	19
3.7 Bill of materials	21
4. SOFTWARE DESCRIPTION	22
4.1 Software architecture	22
4.2 Installing the tools	23
4.2.1 IDE	23
4.2.2 Installation steps	23
4.3 Hardware setup	23
4.4 Running the quick start example	24
4.5 Application examples	25
5. REGULATORY COMPLIANCE INFORMATION	26
5.1 Exemption clause	26

A APPENDIX	27
A.1 Revision history	27
A.2 Abbreviations	27
A.3 List of figures	28
A.4 List of tables	28
IMPORTANT NOTES	29
LEGAL NOTICE	29
LICENSE TERMS	30

1. GENERAL DESCRIPTION

1.1 Introduction

The Würth Elektronik eiSos ICLED FeatherWing is a development board fully compatible to the popular Adafruit Feather line of development boards. It extends the Feathers with a small 7 cm x 15 cm Würth Elektronik eiSos ICLED Display, which is controlled by just 1 GPIO pin of feather microcontroller. The published libraries and example-code make it easy to build up a prototype and kick-start the application development.

Figure 1: ICLED FeatherWing

1.2 Contents

Description	Quantity
WE ICLED FeatherWing	1
ESD Foam	1
Packaging: ESD safe bag	1

Table 1: Contents article 150015 ICLED FeatherWing numbers

Remove the ESD foam before using the FeatherWing to prevent any potential short circuits. Additionally, use the board on a non-conductive surface under laboratory conditions to ensure proper functionality.

V1.0 | 2024/08/01 WÜRTH ELEKTRONIK eiSos

2. FUNCTIONAL DESCRIPTION

The ICLED FeatherWing was designed with rapid prototyping in mind. Being fully compatible with the Adafruit ecosystem, this FeatherWing allows the user the flexibility to choose the preferred host microcontroller. The inherent modularity of the ecosystem allows the FeatherWing to be easily integrated into any project.

The next sections provide a brief introduction to Adafruit's Feather ecosystem and details on the Würth Elektronik eiSos ICLEDs.

2.1 Adafruit Feather

The Adafruit Feather ecosystem consists of two types of boards apart from a host of accessories:

- Feather: Adafruit Feathers are a complete line of development boards from Adafruit that are standalone and stackable. They can be powered either over the on-board micro-USB plugs or using a Li-Po battery. Feathers are portable, flexible and light as their namesake.
- FeatherWing: FeatherWings are stackable boards that when used along with a Feather add a certain functionality to the system.

The Feather system with more than 50+ Wings, several different types of accessories and Arduino/Circuit python-based code support provides a perfect ecosystem for rapid prototyping. Please refer to adafruit.com/feather for more details on the Adafruit Feather ecosystem.

2.2 ICLED FeatherWing (1312020030000)

2.2.1 Key features

The Würth Elektronik eiSos ICLED FeatherWing contains 105 ICLEDs in a 7x15 display shape with a pitch of 2.38 mm. It can be controlled by any Adafruit feather microcontroller board and is powered by USB-C (5 V@3 A) or LiPo battery. The display is controlled by only 1 pin while a second GPIO-pin is used to trigger an interrupt by pushing the "Prog"-button on the FeatherWing. Internal Level-shifter makes logic-levels lower than 3.3 V possible and with that usage of other micro-controllers than Adafruit feathers. Table 2 and Table 3 show the key characteristics and figure 2 the wavelength spectrum of this FeatherWing.

Properties	Value	Unit
Supply voltage	3.3 - 5	V
Logic level high In (min)	1.65 - 3.6	V
Logic level high In (R5 switched)	2.7 - Vdd	V
Logic level high Out	0.9 * Vdd	V
Power intake (USB-C) max	15	W
Power Consumption max	8	W
Power Consumption max (limitation)	2.5	W
Power Consumption typ.	1.5	W
Emitting power density max	16 000	cd/m²
Emitting power density (limitation)	10 000	cd/m²

Table 2: Key characteristics ICLED FeatherWing

V1.0 | 2024/08/01 WÜRTH ELEKTRONIK eiSos

www.we-online.com

USER MANUAL IC LED FeatherWing

Properties	Value	Unit
Peak wavelength Red	630	nn
Peak wavelength Green	520	nn
Peak wavelength Blue	465	nn
Sleep current	90	mA
Frame rate max.	150	Hz

Table 3: Continuation key characteristics ICLED FeatherWing

Figure 2: Wavelength spectrum of the ICLED FeatherWing

USER MANUAL

2.2.2 ICLEDs

The Wurth Elektronik eiSos ICLEDs are compact RGB-LEDs with an 8-Bit PWM for each color. This allows 16.777.216 different color mixing values controlled by a single wire. Every ICLED has an integrated signal reshaping, which guarantees optimal signal-shape for all LEDs in row.

Figure 3: Data transmission method

ICLEDs are driven by a single data line. The data transmission method (as shown in figure 3) begins with the first ICLED in the sequence, which reads the initial 24 bits from the data stream. This ICLED then regenerates and forwards the remaining bits to the subsequent ICLED in the chain. A unique end-of-data signal, characterized by a low signal level lasting more than 200 µs on the data line, signifies the end of the data packet. Upon detecting this signal, the first ICLED prepares to interpret the next sequence of 24 bits as the starting point for a new transmission cycle.

The data transmission protocol is designed with a specific order: it reads the most significant bit (MSB) first. This begins with the 8-bit pulse-width modulation (PWM) code for the green LED component. This is followed in sequence by the PWM codes for the red and blue LED components, respectively. This method ensures a structured and efficient way to control the colour and brightness of each ICLED individually.

V1.0 | 2024/08/01 WÜRTH ELEKTRONIK eiSos

www.we-online.com

3. HARDWARE DESCRIPTION

This section contains a detailed description of the hardware features of the ICLED FeatherWing.

3.1 Connectors

This section explains all connectors of the ICLED FeatherWing.

Figure 4: ICLED FeatherWing connnectors (top view)

Pin header	Function	WE- article number
Feather connector	Connection to Feather M0 or FeatherWings	61301211121 61301611121
CON1	USB-C connector for VDD bus supply	629722000214

Table 4: Default assembled connectors and pin headers

3.1.1 Feather connector

This is the standard set of connectors that is used across the Feather ecosystem. The table below describes the functions of each of the 28 pins as applicable to this FeatherWing.

V1.0 | 2024/08/01 **8** | 32 www.we-online.com

Pin Number	Pin name	Function
1	RST	Reset
2	3V3	3.3V reference level
3	AREF	Not connected
4	GND	Ground
5	AO	Not connected
6	A1	Not connected
7	A2	Not connected
8	АЗ	Not connected
9	A4	Not connected
10	A5	Not connected
11	SCK	Not connected
12	MOSI	(Optional) DI via R10
13	MISO	Not connected
14	UORX	Not connected
15	UOTX	Not connected
16	NC	Not connected
17	SDA	Not connected
18	SCL	Not connected
19	5	52
20	6	DI via R9
21	9	Not connected
22	U1TX	Not connected
23	U1RX	Not connected
24	12	(Optional) DI via R4
25	13	Not connected
26	5V	(Optional) USB power via R8
27	EN	Not connected
28	VBAT	Battery Power via D2

Table 5: Pin description from Feather connector

3.1.2 CON1

Connector CON1 is a USB-C connector designed for connecting to a power source (e.g. PC) using a standard USB-C cable. It is strongly advised against using a USB-Type-A to USB- Type-C adapter. The 5.1 kΩ resistors placed on the CC-lines will handle out up to 3 A from power source. However, the actual maximum current delivered will depend on what the power source can safely provide.

CON1	Function
-	USB-C connector for VDD bus supply

Table 6: USB-C connector

www.we-online.com

3.1.3 JP1

Connector JP1 is an optional standard 2.54 mm pinheader, which is not mounted by default. It can be used to combine multiple ICLED FeatherWings or with other ICLED screens. JP1 is directly connected to the DOUT Pin of ICLED105.

JP1	Function
1	Data Out of last ICLED

Table 7: Data Out connector

3.1.4 JP2

Connector JP2 is an optional standard 2.54 mm pinheader, which is not mounted by default. It can be used to combine multiple ICLED FeatherWings or with other ICLED screens. JP2 is connected to DIN Pin of ICLED1 via U1 and R5 or optional directly to DIN of ICLED1 via R3.

JP2	Function
1	Data In of Level-Shifter (U1)

Table 8: Data In connector

By switching boards in series it is important to remove R5 and replace the 0 Ω resistor for R3, on every board except the first one. First board will output data on 5 V logic level. If input signal level is higher than 3.6 V, there is a risk of damaging the level-shifter.

3.1.5 DIN Pin

The Data In (DIN) Pin is Pin 20 (GPIO 6) by default. It can be changed by removing R9 from board. If a 0 Ω resistor is placed for R4, pin 24 (GPIO 12) is the new DIN pin. By soldering a 0 Ω resistor for R10 it is also possible to use pin 12 (MOSI) for data input. Instead of soldering a 0 Ω resistor, it is also an option to short-circuit pads with solder. If needed, JP2 can be used as data input pin.

DIN is connected to level-shifter (U1) via R5 by default. If R5 is removed and a 0Ω resistor is placed for R3, DIN is directly connected to DIN pin of LED1. This is highly recommended, if input logic level is higher than 3.6 V, to avoid damaging U1. Please remind, that the maximum input voltage level is 5.5 V for ICLED FeatherWing.

Input reference level for U1 is 3V3. By supplying 3V3 pin with input logic voltage, any logic level between 1.65 V and 3.6 V can be shifted to 5 V.

3.2 Push buttons

Figure 5: ICLED FeatherWing push buttons (top view)

V1.0 | 2024/08/01 WÜRTH ELEKTRONIK eiSos

3.2.1 S1

This push button is connected to the /RESET pin of the Feather connector. Pressing this button resets m0.

3.2.2 S2

This push button is connected to Pin 5 of the Feather connector. Pressing this button pulls pin 5 to signal low. It is recommended to set this pin as an input with internal pull-up by software. It is recommended to use this pin for interrupt functions for example to change displayed data.

3.3 Power supply

The ICLED FeatherWing is powered with 5 V by USB-C or with 3.7 V by battery connected to Feather MO. It is highly not recommended to use an USB-Type-A to USB-Type-C adapter. The $5.1\,\mathrm{k}\Omega$ resistors placed on the CC-lines will handle out up to 3 A from power source. However, the actual maximum current delivered will depend on what the power source can safely provide. It can also be powered by the Feather MO Board with USB-Type-B via charging IC of the Feather MO. In this case, board is powered with $4.2\,\mathrm{V}$ and current is limited to max. $100\,\mathrm{mA}$. If battery is connected, it can buffer higher currents fo a while.

By soldering a 0 Ω resistor on R8 it is possible to connect VDD nodes of ICLED FeatherWing and Feather M0 board. In this case ICLED FeatherWing can be powered from the M0 USB- connection, or the M0 can be powered from USB-C-Connector connection of ICLED FeatherWing. Please remind limited maximum current consumption of USB-Type-B. For this reason, it is recommended to power Feather-stack from USB-C of ICLED FeatherWing.

If the FeatherWing is power sourced, the power LED (D1) lights up.

The 3V3 pin is only the reference-level for U1. It should be supplied with logic level high (be- tween 1.65 V and 3.6 V) if used. It will be supplied by MO/M4 3.3 V power-rail if connected. For more information see chapter 3.1.5.

If R8 is soldered, it is highly not recommended to connect USB-C plug of ICLEDFeatherWing and USB-B plug of Feather M0 to PC at same time. The USB-standard specifies a voltage between 4.45 V and 5.25 V. This can result in an short-circuit of 0.8 V between USB-connectors, as there is no Schottky- diode between them.

3.4 Fuses and temperature safety

To prevent board from overheating, there is a PWM limit of 210 included in the WE-ICLED library uploaded on Github. All 3 colour coordinates of a LED are summed up and if they are above 210, they will be reduced step by step. The R:G:B colour mixing ratio will be kept the same but the intensity will be reduced. When writing own code, please keep in mind that the board will heat up, if all ICLEDs are operated at full power. For this reason, F1 & F2 will shut down VDD, if board gets too hot. The cutoff temperature depends on the current floating through them. For more details see datasheets of F1 and F2 (part number can be found in BOM on section 3.7).

It is possible, but not recommended to short-circuit F1 and F2. In this case all LEDs can be used on full power without restrictions, but board will heat up uncontrolled. Please keep this in mind and be careful, when doing this. On full power, the ICLED FeatherWing can reach more than 150°C

V1.0 | 2024/08/01

WÜRTH ELEKTRONIK eiSos www.

3.5 Schematics

Figure 6: Schematics Sheet 1

Figure 7: Schematics Sheet 2

Figure 8: Schematics Sheet 3

Figure 9: Schematics Sheet 4

Figure 10: Schematics Sheet 5

Figure 11: Schematics Sheet 6

Figure 12: Schematics Sheet 7

3.6 Layout

Figure 13: Assembly diagram TOP

Figure 14: Assembly diagram BOTTOM

Figure 15: Top layer (upper), layer 2 (second), layer 15 (third) and bottom layer (bottom)

3.7 Bill of materials

Part	Value	Pack	Manufacturer	NR
CON1	WR-COM	SMT	Würth Elektronik eiSos	629722000214
C1, C2	100 nF	0402	Würth Elektronik eiSos	885012205037
C3, C4	47 μF	0805	Würth Elektronik eiSos	885012107006
C5, C6	220 nF	0603	Würth Elektronik eiSos	885012206125
C7 – C9	1 μF	0402	Würth Elektronik eiSos	885012105012
D1	WL-SMCC	0402	Würth Elektronik eiSos	150040RS73240
D2	SBR3U20SA-13	SMT	Diodes inc	SBR3U20SA-13
D3	WE-TVS	SMT	Würth Elektronik eiSos	824032815
F1, F2	MF-ASML050/6-2	0402	Bourns	MF-ASML050/6-2
JP1, JP2	n.m.	THT	Würth Elektronik eiSos	61300111121
L1, L2	WE-CBF	0402	Würth Elektronik eiSos	7427927311
ICLED1 – ICLED105	WL-ICLED	2020	Würth Elektronik eiSos	1312020030000
R1, R2	5,1 kΩ	0402	Yageo	RC0402FR-075K1L
R3, R10	n.m.	0603	Würth Elektronik eiSos	560112116001
R4, R8	n.m.	0402	Würth Elektronik eiSos	560112110001
R5, R9	ΟΩ	0603	Würth Elektronik eiSos	560112116001
R6	4,7 kΩ	0402	Würth Elektronik eiSos	560112110245
R7	330 Ω	0402	Würth Elektronik eiSos	560112110231
S1, S2	WS-TASU	SMT	Würth Elektronik eiSos	434331013822
U1	TXS0101DCK	SMT	Texas Instruments	TXS0101DCK

Table 9: Bill of materials ICLED FeatherWing

V1.0 | 2024/08/01 **21** | 32 WÜRTH ELEKTRONIK eiSos www.we-online.com

IC LED FeatherWing

4. SOFTWARE DESCRIPTION

Würth Elektronik eiSos provides a software development kit (SDK) with examples to support all the WE FeatherWings. Here are the salient features of the WE FeatherWing SDK.

- The SDK is open-source and well documented.
- It uses popular open-source tool chain including an IDE.
- The examples are written in Arduino-styled C/C++ for quick prototyping.
- Development platform independent (Windows, Linux or MAC).
- Modular structure of the software stack makes it easy to integrate into any project.

The SDK can be accessed on Github at github.com/WurthElektronik/FeatherWings.

4.1 Software architecture

The WE FeatherWing SDK is built up in a modular way using a set of open-source tools to enable complete flexibility for the user.

The figure 16 shows the architecture of the WE FeatherWing SDK.

- <u>PlatformIO</u>: is a cross-platform, cross-architecture, multiple framework professional tool for embedded software development. It provides the tool chain necessary for the software development including building, debugging, code-upload and many more. PlatformIO works well on all the modern operating systems and supports a host of development boards including the Feathers from Adafruit. Further details about PlatformIO can be found under platformio.org
- Platform interface: This layer provides abstraction to the peripheral drivers for the plat- form being used. Currently, this SDK implements an abstraction to the Arduino peripheral drivers for the Feather M0 express platform.
- WE SDK: This is a layer of C++ drivers for the ICLEDFeatherWingfrom Würth Elektronik eiSos which implement all the necessary functions to utilize full feature set of the ICLED- module offered. More details on the SDK and dowloads under: github.com/WurthElektronik/FeatherWings.
- Board files: This layer provides abstraction at a board level and provides functions to configure and control individual FeatherWings from WE.
- <u>User application</u>: The SDK currently implements a quick start example for each of the FeatherWings.

V1.0 | 2024/08/01 **22** | 32 www.we-online.com

Figure 16: Software architecture

4.2 Installing the tools

4.2.1 IDE

Although, platformIO provides a versatile command line interface for development, the SDK provides quick start projects for the Visual Studio Code. This popular IDE makes for better code organization as well as code editing. Visual Studio Code is available on all modern operating systems. Support for extensions, built-in Git and a versatile code editor make it a well rounded tool for embedded software development. Please refer to code.visualstudio.com for more details on Visual Studio Code.

4.2.2 Installation steps

- Install Visual Studio Code on the platform of your choice following the instructions under code.visualstudio.com/docs
- Follow the instructions under platformio.org/install/ide?install=vscode to install PlatformIO IDE extension.

4.3 Hardware setup

The quick start examples in the SDK are written to be run on Adafruit's Feather M0 express. The hardware setup is as simple as stacking up the FeatherWing on top of the MO Feather and powering up the board.

V1.0 | 2024/08/01 **23** | 32 www.we-online.com

4.4 Running the quick start example

- Clone or download the WE FeatherWing SDK from Github: github.com/WurthElektronik/FeatherWings
- Open the workspace of interest with the filename <FeatherWing> code-workspace in Visual Studio code.
- Build and upload the code from the PlatformIO tab as shown in the below Figure.
- After successful upload, click on Monitor to view the debug logs in the serial terminal (See Figure 17).

Figure 17: Running the quick start example

V1.0 | 2024/08/01 WÜRTH ELEKTRONIK eiSos

www.we-online.com

4.5 Application examples

Several example programs are included in the **main.cpp file**. Users can change between these **TEST Examples** by pressing the **S2** button at side of ICLED board.

Test number	Description	Required FeatherWing	
1	Initializing sequence	-	
2	Set different pixels at different colour	-	
3	Show alphabet	-	
4	Display "Hello World!"	-	
5	Display rainbow effect	-	
6	Display prices	-	
7	Show emojis	-	
8	HSV and RGB color model test	-	
9	Display data from Proteus III Bluetooth Module	SensorBLE FeatherWing Kit	
10	Display ambient temperature (in °C) from the WE temperature sensor	SensorBLE FeatherWing Kit	
11	Display relative humidity (rH) from the WE humidity sensor SensorBLE FeatherWin		

Table 10: Application example definition according to TEST number

Note:

In the **main.cpp** file, ensure you set **PROTEUSIIIFEATHERWING** and/or **SENSORFEATHERWING** to true if you plan to use the Bluetooth and sensor reading features, respectively.

V1.0 | 2024/08/01 **25** | 32 WÜRTH ELEKTRONIK eiSos www.we-online.com

IC LED FeatherWing

5. REGULATORY COMPLIANCE INFORMATION

This evaluation board destined for professionals to be used solely at research and development facilities for such purposes. This board has been tested to satisfy general EMC requirements and to ensure the photobiological safety for the user. Following standards have been applied:

- CISPR32-FAR
- 61000-4-4 CDN coupling
- EN 55015_MAINS
- IEC 61000-4-3
- IEC 61000-4-6
- IEC 62471:2006
- EN 62471:2008

5.1 Exemption clause

Relevant regulation requirements are subject to change. Würth Elektronik eiSos does not guarantee the accuracy of the before mentioned information. Directives, technical standards, procedural descriptions and the like may be interpreted differently by the national authorities. Equally, the national laws and restrictions may vary with the country. In case of doubt or uncertainty, we recommend that you consult with the authorities or official certification organizations of the relevant countries. Würth Elektronik eiSos is exempt from any responsibilities or liabilities related to regulatory compliance.

Notwithstanding the above, Würth Elektronik eiSos makes no representations and warranties of any kind related to their accuracy, correctness, completeness and/or usability for customer applications. No responsibility is assumed for inaccuracies or incompleteness.

V1.0 | 2024/08/01 **26** | 32 www.we-online.com

A APPENDIX

A.1 Revision history

Manual Version	Hardware version	Notes	Date
V1.0	1.0	Initial Version	August 2024

A.2 Abbreviations

Abbreviation	Name	Description
CISPR	Comité International Spécial des Perturbations Radioélectriques	International Special Committee on Radio
EV	Evaluation	
ESD	Electro Static Discharge	
EMC	Electro Magnetic Compatibility	
GND	Ground	
HIGH	High signal level	
IC	Integrated Circuit	
IDE	Integrated development environment	
IEC	International Electrotechnical Commission	
IEEE	Institute for electrical and electronic engineers	
JTAG	Joint Test Action Group	
LED	Light Emitting Diode	
Li-Po	Lithium-Polymer	
LOW	Low signal level	
PC	Personal Computer	
PCB	Printed Circuit Board	
PWM	Pulse Width Modulation	
USB	Universal Serial Bus	
VDD	Positive supply voltage	
VSS	Negative supply voltage	

V1.0 | 2024/08/01 **27** | 32 WÜRTH ELEKTRONIK eiSos www.we-online.com

IC LED FeatherWing

A.3 List of figures

FIGURE 1 : ICLED FEATHERWING	4
FIGURE 2 : WAVELENGTH SPECTRUM OF THE ICLED FEATHERWING	ε
FIGURE 3 : DATA TRANSMISSION METHOD	7
FIGURE 4 : ICLED FEATHERWING CONNNECTORS (TOP VIEW)	8
FIGURE 5 : ICLED FEATHERWING PUSH BUTTONS (TOP VIEW)	10
FIGURE 6 : SCHEMATICS SHEET 1	12
FIGURE 7 : SCHEMATICS SHEET 2	13
FIGURE 8 : SCHEMATICS SHEET 3	14
FIGURE 9 : SCHEMATICS SHEET 4	15
FIGURE 10 : SCHEMATICS SHEET 5	16
FIGURE 11 : SCHEMATICS SHEET 6	17
FIGURE 12 : SCHEMATICS SHEET 7	18
FIGURE 13 : ASSEMBLY DIAGRAM TOP	
FIGURE 14 : ASSEMBLY DIAGRAM BOTTOM	19
FIGURE 15 : TOP LAYER (UPPER), LAYER 2 (SECOND), LAYER 15 (THIRD) AND BOTTOM LAYER (BOTTOM)	20
FIGURE 16 : SOFTWARE ARCHITECTURE	23
FIGURE 17 : RUNNING THE QUICK START EXAMPLE	24
A.4 List of tables	
TABLE 1 : CONTENTS ARTICLE 150015 ICLED FEATHERWING NUMBERS	
TABLE 2 : KEY CHARACTERISTICS ICLED FEATHERWING	5
TABLE 3 : CONTINUATION KEY CHARACTERISTICS ICLED FEATHERWING	ε
TABLE 4 : DEFAULT ASSEMBLED CONNECTORS AND PIN HEADERS	8
TABLE 5 : PIN DESCRIPTION FROM FEATHER CONNECTOR	g
TABLE 6 : USB-C CONNECTOR	g
TABLE 7 : DATA OUT CONNECTOR	10
TABLE 8 : DATA IN CONNECTOR	10
TABLE 9 : BILL OF MATERIALS ICLED FEATHERWING	21
TARLE 10 · APPLICATION FYAMPLE DEFINITION ACCORDING TO TEST NUMBER	25

Important notes

The following conditions apply to all goods within the optoelectronic product range of Würth Elektronik eiSos GmbH & Co. KG:

GENERAL CUSTOMER RESPONSIBILITY

Some goods within the product range of Würth Elektronik eiSos GmbH & Co. KG contain statements regarding general suitability for certain application areas. These statements about suitability are based on our knowledge and experience of typical requirements concerning the areas, serve as general guidance and cannot be estimated as binding statements about the suitability for a customer application. The responsibility for the applicability and use in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for the respective customer application or not. Accordingly, the customer is cautioned to verify that the documentation is current before placing orders.

CUSTOMER RESPONSIBILITY RELATED TO SPECIFIC, IN PARTICULAR SAFETY-RELEVANT APPLICATIONS

It has to be clearly pointed out that the possibility of a malfunction of electronic components or failure before the end of the usual lifetime cannot be completely eliminated in the current state of the art, even if the products are operated within the range of the specifications. The same statement is valid for all software source code and firmware parts contained in or used with or for products in the optoelectronic product range of Würth Elektronik eiSos GmbH & Co. KG. In certain customer applications requiring a high level of safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health, it must be ensured by most advanced technological aid of suitable design of the customer application that no injury or damage is caused to third parties in the event of malfunction or failure of an electronic component.

BEST CARE AND ATTENTION

Any product-specific data sheets, manuals, application notes, PCN's, warnings and cautions must be strictly observed in the most recent versions and matching to the products firmware revisions. These documents can be downloaded from the product specific sections on the opto- electronic homepage.

CUSTOMER SUPPORT FOR PRODUCT SPECIFICATIONS

Some products within the product range may contain substances, which are subject to restrictions in certain jurisdictions in order to serve specific technical requirements. Necessary information is available on

request. In this case, the field sales engineer or the internal salesperson in charge should be contacted who will be happy to support in this matter.

PRODUCT IMPROVEMENTS

Due to constant product improvement, product specifications may change from time to time. As a standard reporting procedure of the Product Change Notification (PCN) according to the JEDEC-Standard, we inform about major changes. In case of further queries regarding the PCN, the field sales engineer, the internal salesperson or the technical support team in charge should be contacted. The basic responsibility of the customer as per section 7.1 and 7.2 remains unaffected. All optoelectronic module source codes as well as all PC software tools are not subject to the Product Change Notification information process.

PRODUCT LIFE CYCLE

Due to technical progress and economical evaluation, we also reserve the right to discontinue production and delivery of products. As a standard reporting procedure of the Product Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early stage about inevitable product discontinuance. According to this, we cannot ensure that all products within our product range will always be available. Therefore, it needs to be verified with the field sales engineer or the internal salesperson in charge about the current product availability expectancy before or when the product for application design-in disposal is considered. The approach named above does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

PROPERTY RIGHTS

All the rights for contractual products produced by Würth Elektronik eiSos GmbH & Co. KG on the basis of ideas, development contracts as well as models or templates that are subject to copyright, patent or commercial protection supplied to the customer will remain with Würth Elektronik eiSos GmbH & Co. KG. Würth Elektronik eiSos GmbH & Co. KG does not warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, ap-plication, or process in which Würth Elektronik eiSos GmbH & Co. KG components or services are used.

GENERAL TERMS AND CONDITIONS

Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms and Conditions of Würth Elektronik eiSos Group", last version available at www.we-online.com.

Legal notice

EXCLUSION OF LIABILITY

Würth Elektronik eiSos GmbH & Co. KG considers the information in this document to be correct at the time of publication. However, Würth Elektronik eiSos GmbH & Co. KG reserves the right to modify the information such as technical specifications or functions of its products or discontinue the production of these products or the support of one of these products without any written announcement or notification to customers. The customer must make sure that the information used

corresponds to the latest published information. Würth Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products. Würth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for any other of its intellectual property rights or third-party rights.

Notwithstanding anything above, Würth Elektronik eiSos GmbH & Co. KG makes no representations and/or warranties of any kind for the provided information related to their accuracy, correctness,

V1.0 | 2024/08/01 **29** | 32

IC LED FeatherWing

completeness, usage of the products and/or usability for customer applications. Information published by Würth Elektronik eiSos GmbH & Co. KG regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.

SUITABILITY IN CUSTOMER APPLICATIONS

The customer bears the responsibility for compliance of systems or units, in which Würth Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Würth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences lessen the likelihood of failures that might cause harm and take appropriate remedial actions. The customer will fully indemnify Würth Elektronik eiSos GmbH & Co. KG and its representatives against any damages arising out of the use of any Würth Elektronik eiSos GmbH & Co. KG components in safety-critical applications.

License terms

These License terms will take effect upon the purchase and usage of the Würth Elektronik eiSos GmbH & Co. KG eiPal optoelectronics products. You hereby agree that these license terms are applicable to the product and the incorporated software, firmware and source codes (collectively hereinafter "Software") made available by Würth Elektronik eiSos in any form, including but not limited to binary, executable or source code form. The Software included in any Würth Elektronik eiSos eiPal optoelectronics product is purchased to you on the condition that you accept the terms and conditions of these license terms. You agree to comply with all provisions under these license terms.

LIMITED LICENSE

Würth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and royaltyfree license to use the Software under the conditions that will be set forth in these license terms. You are free to use the provided Software only in connection with one of the products from Würth Elektronik eiSos to the extent described in these license terms. You are entitled to change or alter the source code for the sole purpose of creating an application embedding the Würth Elektronik eiSos eiPal optoelectronics product. The transfer of the source code to third parties is allowed to the sole extent that the source code is used by such third parties in connection with the Würth Elektronik eiSos' eiPal optoelectronics product or another hardware provided by Würth Elektronik eiSos under strict adherence of these license terms. Würth Elektronik eiSos will not assume any liability for the usage of the Software. You are not entitled to transfer the source code in any form to third parties without prior written consent of Würth Elektronik eiSos. You are not allowed to reproduce, translate, reverse engineer, decompile, disassemble or create derivative works of the product

TRADEMARKS

AMBER wireless is a registered trademark of Würth Elektronik eiSos GmbH & Co. KG. All other trademarks, registered trademarks, and product names are the exclusive property of the respective owners.

USAGE RESTRICTION

Würth Elektronik eiSos GmbH & Co. KG products have been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover, Würth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. Würth Elektronik eiSos GmbH & Co. KG must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component, which is used in electrical circuits that require high safety and reliability function or performance. By using Würth Elektronik eiSos GmbH & Co. KG products, the customer agrees to these terms and conditions.

and/or the Software in whole or in part. No more extensive rights to use and exploit the products and/or the Software are granted to you.

USAGE AND OBLIGATIONS

The responsibility for the applicability and use of the Würth Elektronik eiSos eiPal optoelectronics product with the incorporated Software in a particular customer design is always solely- within the authority of the customer. Due to this fact, it is up to you to evaluate and investigate, where appropriate, and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for your respective application or not. You are responsible for using the Würth Elektronik eiSos eiPal optoelectronics product with the incorporated Software in compliance with all applicable product liability and product safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear the risk for failure leading to personal injury or death due to your usage of the product with the incorporated Software.

Würth Elektronik eiSos' products with the incorporated Software are not authorized for use in safety-critical applications, or where a failure of the product with the incorporated Software is reasonably expected to cause severe personal injury or death. Moreover, Würth Elektronik eiSos' products with the incorporated Software are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (auto- motive control, traincontrol, ship control), transportation signal, disaster prevention, medical, public information network etc. You shall inform Würth Elektronik eiSos about the intent of such usage before design-in stage. In certain customer applications requiring a very high level of safety and in which the malfunction or failure of an electronic component could endanger human life or health, you must ensure to have all

IC LED FeatherWing

necessary expertise in the safety and regulatory ramifications of your applications. You acknowledge and agree that you are solely responsible for all legal, regulatory and safety-related requirements concerning your products and any use of Würth Elektronik eiSos' products with the incorporated Software in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos. YOU SHALL INDEMNIFY WÜRTH ELEKTRONIK EISOS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WÜRTH ELEKTRONIK EISOS' PRODUCTS WITH THE INCORPORATED FIRMWARE IN SUCH SAFETY-CRITICAL APPLICATIONS.

OWNERSHIP

The incorporated Firmware created by Würth Elektronik eiSos is and will remain the exclusive property of Würth Elektronik eiSos.

FIRMWARE UPDATE(S)

You have the opportunity to request the current and actual firmware for a bought Würth Elektronik eiSos eiPal optoelectronics product within the time of warranty. However, Würth Elektronik eiSos has no obligation to update a modules firmware in their production facilities but can offer this as a service on request. The upload of firmware updates falls within your responsibility, e.g. via ACC or another software for firmware updates. Firmware updates will not be communicated automatically. It is within your responsibility to check the current version of a firmware in the latest version of the product manual on our website. The revision table in the product manual provides all necessary information about firmware updates. There is no right to be provided with binary files, so called "Firmware images", those could be flashed through JTAG, SWD, Spi-Bi-Wire, SPI or similar interfaces.

DISCLAIMER OF WARRANTY

THE FIRMWARE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WÜRTH ELEKTRONIK EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES' INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR YOUR INTENDED PURPOSE OR USAGE. WÜRTH ELEKTRONIK EISOS DOES NOT WARRANT OR REPRE- SENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL

PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH THE WÜRTH ELEKTRONIK EISOS' PRODUCT WITH THE INCORPORATED SOFTWARE IS USED. INFORMATION PUBLISHED BY WÜRTH ELEKTRONIK EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE A LICENSE FROM WÜRTH ELEKTRONIK EISOS TO USE SUCH PRODUCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

LIMITATION OF LIABILITY

Any liability not expressly provided by Würth Elektronik eiSos shall be disclaimed.

You agree to hold us harmless from any third-party claims related to your usage of the Würth Elektronik eiSos' products with the incorporated Software. Würth Elektronik eiSos disclaims any liability for any alteration, development created by you or your customers as well as for any combination with other products.

APPLICABLE LAW AND JURISDICTION

Applicable law to this license terms shall be the laws of the Federal Republic of Germany. Any dispute, claim or controversy arising out of or relating to this license terms shall be resolved and finally settled by the court competent for the location of Würth Elektronik eiSos' registered office.

SEVERABILITY CLAUSE

If any of these provisions shall be deemed invalid, void, or for any reason unenforceable, that provision shall be deemed severable and shall not affect the validity and enforceability of any remaining provisions. Any such provision shall be replaced with new valid provisions that most closely approximate the purpose of the terms. The above-mentioned provisions are also valid in the event that these terms are determined to contain gaps.

MISCELLANEOUS

Würth Elektronik eiSos reserves the right at any time to change these terms at its own discretion. It is your responsibility to check for any updates. Your continued usage of the products with the incorporated Software will be deemed as the acceptance of the change.

We recommend you to be updated about the status of new Software, which is available on our website or in our data sheet and manual, and to implement new Software in your device where appropriate. By ordering an eiPal optoelectronics product, you accept these license terms in all terms.

V1.0 | 2024/08/01 **31** | 32 www.we-online.com

Contact Würth Elektronik eiSos GmbH & Co. KG Division eiPal Optoelectronics

Max-Eyth-Straße 1 74638 Waldenburg Germany

Tel.: +49 7942 9450

E-Mail: e.pmhotline-eipal@we-online.de https://www.we-online.com/en/components/products/led