

[54] Title of the Invention: Temperature compensating method for local oscillator circuit

[11] Japanese Patent Laid-open No.50-125659

[43] Opened: Oct. 2, 1975

[21] Application No.49-31148

[22] Filing Date: Mar. 19, 1974

[72] Inventor: M. Okazaki

[71] Applicant: Alps Electric

[Claim]

A temperature compensating method for a local oscillator circuit characterized in that series capacitors for tracking compensation are assigned to different bands of frequencies respectively so that the temperature compensation at each frequency band can be carried out with its assigned capacitor.

[Brief Description of the Drawings]

Fig. 1 is a circuitry diagram of a conventional local oscillator circuit.

Fig. 2 is a graphic diagram showing a temperature drift profile at the US channels according to a conventional compensation method.

Fig. 3 is a circuitry diagram of a local oscillator circuit showing an embodiment of the present invention.

Fig. 4 is a graphic diagram showing a temperature drift profile at the US channels in the circuit shown in Fig. 3.

Fig. 5 is a circuitry diagram of a local oscillator circuit

showing another embodiment of the present invention.

[Reference Numerals]

Q: local oscillator transistor, D1: band switching diode,
D2: variable-capacitance diode for tuning, E_A, E_B: band
switching sources, +B: B source, Tu: tuning voltage applied to
diode D2, S: band switch, R1, R3: diode current controlling
resistors, R2: high-frequency limiting resistor, R4: dropper
resistor, C1: low-band tracking compensation capacitor, C2, C4,
C4': high-band tracking compensation capacitors, C2: Clapp
capacitor, C2': compensating capacitor, L1: high-band tuning
coil, L2: low-band tuning coil

特許出願

(1200-A)

特　　許　　願 (2) 故障なし

昭和49年3月19日

特許庁長官 斎藤英雄殿

1. 発明の名称 局部発振回路の温度補償方式

2. 発明者

住所 東京都大田区蒲谷大塚町1番7号
アルプス電気株式会社内

氏名 蘭 菊 兰也

3. 特許出願人

住所 東京都大田区蒲谷大塚町1番7号
氏名 (109) アルプス電気株式会社
代表者 片蘭筋太郎

4. 代理人 T 171

住所 東京都豊島区南長崎2丁目5番2号
氏名 (7139)弁理士 玉置久五郎 (外4名)

5. 添付書類の目録

- (1) 明細書 1通
 (2) 図面 1通
 (3) 願書副本 1通
 (4) 委任状 1通

49-031148

明　細　書

1. 発明の名称

局部発振回路の温度補償方式

2. 特許請求の範囲

トランシッキング補正用直列コンデンサを、各周波数帯域ごとに設定し、該直列コンデンサをそれぞれ用いて、各周波数帯ごとの温度補償を行なうこととする局部発振回路の温度補償方式。

3. 発明の詳細な説明

本発明は、全チャンネルにわたって周波数ドリフトを少なくする局部発振回路の温度補償方式に関する。

温度変化によってコイルのLおよびコンデンサのCの値が変化し、これによりLC同調回路の同調周波数も変動するので、この変動を防止するため温度補償回路を設けることは、従来より行われている。

チューナにおける局部発振回路においても発振同調回路の静電容量の主な要素は、真空管の電極間容量やトランジスタの接合容量あるいはダイオ

(19) 日本国特許庁

公開特許公報

①特開昭 50-125659

④公開日 昭50.(1975)10.2

②特願昭 49-31148

②出願日 昭49.(1974)3.19

審査請求 未請求 (全5頁)

序内整理番号

6379 53
7230 53

⑤日本分類

98(5)B11
96(7)C13

⑥Int.CI:

H03B 5/08
H04B 1/26

ードの可変容量であつて温度上昇により、上記要素の定数が変動するため周波数ドリフトを生ずる。局部発振周波数の安定化は、最も重要な問題であり、温度の変化に対して十分補償できる回路と、その構成部品を選ぶ必要がある。

従来、テレビジョン受信機の局部発振器においては、低周波帯のトランジッキング補正を、低周波帯の同調時に動作する補正コンデンサに高周波帯のトランシッキング補正用コンデンサを加えた合成容量により行なっていた。このために、低周波帯受信時には、高周波帯で設定した補正コンデンサの影響が大きく現われ、特にトランシッキング補正容量は、温度補償も兼ねているために、低周波帯の温度補償を自由に設定することはできず、したがって高周波帯、低周波帯ともに適当な妥協点に甘んじなければならなかつた。

第1図は、従来の局部発振回路の接続図である。図において、Qは局部発振トランジスタ、D₁はバンド切換用ダイオード、D₂は同調用可変容量ダイオード、E_A、E_Bはバンド切換用電源、T₀は同調

コンデンサ C_1 は温度補償用としても動作するが、同調用ダイオード D_1 の容量温度係数が正であるために、コンデンサ C_1 には負の温度係数を用いて周波数のドリフト補正が行われる。

次に、ローバンドを受信するときには、バンド切換スイッチ S を電源 E_B 側に倒す。電源 E_B から、スイッチ S 、抵抗 R_1 、コイル L_1 を介して、ダイオード D_1 に負の電圧が加えられるが、ダイオード D_1 は逆極性に接続されるので、電流は該ダイオード D_1 に流れることなく、該ダイオード D_1 は開放された状態となる。したがって、可変容量ダイオード D_2 、トランジスタ補正コンデンサ C_2 、同調コイル L_1 、スイッチ D_1 を含む回路で、同調回路が構成される。コイル L_1 およびコンデンサ C_1 の直列回路は、バンド切換ダイオード D_1 の側路によって、短絡されるので同調回路から外され、ハイバンドではコイル L_1 のみが同調コイルとなり、コンデンサ C_2 のみがトランジスタ補正コンデンサの役目を果す。同時に

(3)

の影響力は大である。

日本における使用周波数は、90~108MHz のローバンド、170~222MHz のハイバンドであって、容量 C_1 と C_2 をこれらに切換えて用いれば、さほどの不具合は認められないが、これをそのまま例えれば米国チャンネル、ドイツ・チャンネルで使用すると、ローバンドにおいて周波数のドリフトが生ずる。すなわち、米国やドイツ等では、ローバンドに 54~88MHz、ハイバンドに 109~230MHz の周波数を使用するので、ローバンドにおいて容量 C_1 で温度補償する場合には、日本よりローバンドの周波数が低く、またローバンドの周波数変化がハイバンドよりも広いので、同調用ダイオード D_1 のより大きい容量範囲まで補正容量 C_1 を使用することとなり、補償過剰になって、ローバンドのローチャンネルでは周波数は正方向にドリフトする。

第2図は、従来の補償方式による米国チャンネルでの周波数の温度ドリフト特性曲線図である。

図においては、横軸にチャンネル数をとり、縦軸に周波数の温度ドリフト Δf をとっている。す

(4)

なわち、ハイバンド、ローバンドとともに適当な温度補償ができるように、両バンドでの妥協点に補償コンデンサの温度係数を設定した場合の特性を示しているが、図から明らかなように、妥協点においてさえも尚、ローバンドのローチャンネルで正方向に、ハイバンドのローチャンネルで負方向に大きくドリフトが生じている。

本発明の目的は、従来の局部発振回路における温度補償方式の上記のような欠点を解消すること、すなわち、米国チャンネル、ドイツ・チャンネル等で使用する全チャンネルにわたって、温度による周波数ドリフトを少くするような局部発振回路の温度補償方式を提供することにある。

上記の目的は、本発明にしたがえば、トランジスタ補正用直列コンデンサを、各周波数帯ごとに設定し、該直列コンデンサをそれぞれ用いて、各周波数帯ごとの温度補償を行つことによって達成される。

以下、図面を参照しながら、本発明を説明する。

第3図は、本発明の一実施例を示す局部発振回路の接続図である。図において、 C_1' および C_2 は

ハイバンド・トラッキング補正コンデンサ、 R_1 はダイオード電流制限抵抗であり、その他は第1図のものと同一である。

図においては、バンド切換スイッチ S が電源 E_A 側に接続されており、ハイバンド受信時を示す。電源 E_A より、スイッチ S 、抵抗 R_1 、コイル L_1 、ダイオード D_1 、抵抗 R_2 を通って、電流が流れるので、コイル L_1 とコンデンサ C_1 の直列回路はダイオード D_1 と抵抗 R_2 により短絡されてしまう。したがって、可変容量ダイオード D_2 、トラッキング補正コンデンサ C_2' 、同調コイル L_1 、ダイオード D_1 、トラッキング補正コンデンサ C_1' を含む回路により、同調回路が構成される。そして、コンデンサ C_2' と C_1' の直列合成容量がトラッキング補正と同時に、温度補償用として動作する。

次に、ローバンドを受信する場合、バンド切換スイッチ S を電源 E_B 側に倒すので、負電圧がスイッチ S 、抵抗 R_1 、コイル L_1 を介して、ダイオード D_1 にかかる。しかし、ダイオード D_1 は電圧方向と逆極性に接続されているので、電流は該ダイオード D_1

(7)

第4図は、第3図の回路による米国チャンネルでの温度ドリフト特性曲線図である。第4図は、第2図と同じように、縦軸に周波数ドリフト df 、横軸にチャンネル数をとっている。

図から明らかのように、ローバンド、ハイバンドとともにドリフトはきわめて少くなってしまっており、また温度補償がほど適切に行われていることが理解できる。

第5図は、本発明の他の実施例を示す局部発振回路の接続図である。第5図において、 R_1 はドロッパー抵抗、 $+B$ は B 電源、 C_1' はハイバンド・トラッキング補正コンデンサであり、他は第1図、第3図のものと同一である。

第1図、第3図は、局部発振トランジスタ Q として、エミッタ接地型のものを使用した場合を示したが、第5図は局部発振トランジスタ Q として、コレクタ接地型を使用した場合の一実施例を示す。

そして、本実施例においては、ハイバンドでは、コレクタ接地型局部発振トランジスタ Q のバイパス・コンデンサ C_1' をトラッキング補正兼温度補

には流れず、したがって該ダイオード D_1 は開放された状態となる。そして、可変容量ダイオード D_2 、補正コンデンサ C_2' 、同調コイル L_1 および L_2 、補正コンデンサ C_1' を含む回路により、同調回路が構成される。すなわち、コイル L_1 と L_2 の直列合成インダクタンスが同調コイルとなり、コンデンサ C_1 と C_1' の直列合成容量がトラッキング補正コンデンサとなり、温度補償用コンデンサも並ぶ。この場合、コンデンサ C_2' はハイバンド、ローバンド受信時の両方に影響するが、該コンデンサ C_2' の温度係数を殆んど無視できる値にすれば、ハイバンドにおいてはコンデンサ C_1 の温度係数、ローバンドにおいてはコンデンサ C_1' の温度係数のみによって、同調用ダイオード D_1 の容量温度係数を補正することができる。したがって、各バンドごとに適切な温度係数を有するトラッキング補正用コンデンサを設定することになるので、米国チャンネル、ドイツ・チャンネルを含む全チャンネルにわたって温度による周波数ドリフトを少くすることができます。

(8)

借用として使用するのである。すなわち、ハイバンドの場合には、同調用ダイオード D_1 、補正コンデンサ C_2' 、同調コイル L_1 、ダイオード D_1 、補正コンデンサ C_1' を含む回路により、同調回路が構成される。コンデンサ C_2' の温度係数を無視できる値にすれば、コンデンサ C_1' の温度係数のみで可変容量ダイオード D_1 の容量温度係数を補正することができる。また、ローバンドの場合には、同調用ダイオード D_2 、補正コンデンサ C_1' 、同調コイル L_1 と L_2 、補正コンデンサ C_1 により、同調回路が構成されるので、コンデンサ C_1 の温度係数のみでダイオード D_2 の容量温度係数を補正することができる。

さらに、本実施例の場合には、バイパス・コンデンサ C_1' をトラッキング補正および温度補償に兼用しているから、第3図の回路におけるハイバンド・トラッキング補正コンデンサに相当する部品が不要となり、大量生産に当たり節約ができる。

第5図の回路を用いても、その効果は第3図の回路を用いた場合と全く同一であり、その温度ド

(9)

(10)

リフト特性曲線は第4図に示すものとほぼ同一となる。

以上、説明したように、本発明によれば、トラッキング補正用コンデンサを各バンドごとに適切に設定するので、米国チャンネル、ドイツ・チャネルを含む全チャンネルにわたって、温度による周波数ドリフトをきわめて少くすることができ、かつ経済的に局部発振回路を構成することができる等、その効果は非常に大である。

4. 図面の簡単な説明

第1図は、従来の局部発振回路の接続図、第2図は従来の補償方式による米国チャンネルでの温度ドリフト特性曲線図、第3図は本発明の一実施例を示す局部発振回路の接続図、第4図は第3図の回路による米国チャンネルでの温度ドリフト特性曲線図、第5図は本発明の他の実施例を示す局部発振回路の接続図である。

図において、Qは局部発振トランジスタ、D₁はバンド切換えダイオード、D₂は同調用可変容量ダイオード、E_A、E_Bはバンド切換え電源、+BはB電

源、T_UはダイオードD₂に印加する同調用電圧、Sはバンド切換えスイッチ、R₁、R₃はダイオード電流制限抵抗、R₂は高周波阻止抵抗、R₄はドロッパー抵抗、C₁はローバンド・トラッキング補正コンデンサ、C₂、C₄、C_{4'}はハイバンド・トラッキング補正コンデンサ、C₃はクラップ・コンデンサ、C_{3'}は補正コンデンサ、L₁はハイバンド同調コイル、L₂はローバンド同調コイルである。

特許出願人 アルプス電気株式会社

代理人弁理士 玉蟲久五郎(外4名)

(11)

第2図

(12)

第3図

第4図

6. 前記以外の代理人

住 所 東京都豊島区南長崎2丁目5番2号

氏 名 (7283)弁理士 柏 谷 昭 司

(7449)弁理士 田 坂 善 重

(7589)弁理士 渡 達 弘 一

(7727)弁理士 戦 村 雅 俊

