

CS 310: Algorithms

Lecture 22

Instructor: Naveed Anwar Bhatti

Few Slides taken from Dr. Imdad's CS 510 course

The max flow clearly is of size 2

If the greedy algorithm adds a flow of size 1 via the s-t path s, a, b, tNo s-t path in the remaining graph

Max Flow – Fix for the Algorithm

- A more general way of pushing further flow is to push forward flow on edges where some capacity is remaining
- Cancel existing flow on the edges already carrying some flow
- Think of it as pushing flow backward

- Add one unit of flow via the s, b, a, t path
- ba ∉ E, but we can cancel the existing flow on the ab ∈ E

Max Flow – Fix for the Algorithm

- A more general way of pushing further flow is to push forward flow on edges where some capacity is remaining
- Cancel existing flow on the edges already carrying some flow
- Think of it as pushing flow backward

- Add one unit of flow via the s, b, a, t path
- ba ∉ E, but we can cancel the existing flow on the ab ∈ E

Max Flow – Fix for the Algorithm

- A more general way of pushing further flow is to push forward flow on edges where some capacity is remaining
- Cancel existing flow on the edges already carrying some flow
- Think of it as pushing flow backward

- Add one unit of flow via the s, b, a, t path
- ba ∉ E, but we can cancel the existing flow on the ab ∈ E

- Cancellation of existing flows on edges (if need be) is the right framework to add more flow
- A systematic way to search for the right place to cancel flow and adding more flow is to use the residual network

• Given a network G and a flow f on G, the residual graph G_f of G with respect to f is defined as follows:

- Given a network G and a flow f on G, the residual graph G_f of G
 with respect to f is defined as follows:
- Vertex set of G_f is the same as that of G

- Given a network G and a flow f on G, the residual graph G_f of G with respect to f is defined as follows:
- Vertex set of G_f is the same as that of G
- forward edges: For each e = uv of G on which $f_e < c_e$, there is an edge e = uv in G_f with a capacity $c_e f_e > 0$
 - \blacksquare we can push forward $c_e f_e$ residual capacity units of flow on e

- Given a network G and a flow f on G, the residual graph G_f of G with respect to f is defined as follows:
- Vertex set of G_f is the same as that of G
- forward edges: For each e = uv of G on which $f_e < c_e$, there is an edge e = uv in G_f with a capacity $c_e f_e > 0$
 - \blacksquare we can push forward $c_e f_e$ residual capacity units of flow on e
- backward edges: For each edge e = uv of G on which $f_e > 0$, there is an edge e' = vu in G_f with a capacity of f_e

- Given a network G and a flow f on G, the residual graph G_f of G with respect to f is defined as follows:
- Vertex set of G_f is the same as that of G
- forward edges: For each e = uv of G on which $f_e < c_e$, there is an edge e = uv in G_f with a capacity $c_e f_e > 0$
 - \blacksquare we can push forward $c_e f_e$ residual capacity units of flow on e
- backward edges: For each edge e = uv of G on which $f_e > 0$, there is an edge e' = vu in G_f with a capacity of f_e
 - lacksquare we can cancel or push backward f_e units of flow $c_{e'}=f_e$ on e

- Given a network G and a flow f on G, the residual graph G_f of G with respect to f is defined as follows:
- Vertex set of G_f is the same as that of G
- forward edges: For each e = uv of G on which $f_e < c_e$, there is an edge e = uv in G_f with a capacity $c_e f_e > 0$
 - \blacksquare we can push forward $c_e f_e$ residual capacity units of flow on e
- backward edges: For each edge e = uv of G on which $f_e > 0$, there is an edge e' = vu in G_f with a capacity of f_e
 - lacktriangle we can cancel or push backward f_e units of flow $c_{e'}=f_e$ on e
- For any G and f, G_f has at most twice as many edges as G

Flow network with flow shown in blue

The corresponding residual network

Flow network with flow shown in blue

The corresponding residual network

Flow network with flow shown in blue

The corresponding residual network

An augmenting path is a simple s - t path in the residual graph G_f

An augmenting path is a simple s - t path in the residual graph G_f

An augmenting path is a simple s - t path in the residual graph G_f

Augmenting path theorem: Flow f is a max flow iff there are no augmenting paths.

An augmenting path is a simple s - t path in the residual graph G_f

Augmenting path theorem: Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem: [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.

Flow network

Flow network

Residual network

Flow network

Bottleneck (P) = 1

Residual network

Flow network

Flow network

Algorithm Augment(P, f)

$$b \leftarrow bottleneck(P, f)$$

 $f' \leftarrow f$
for each edge $e = uv \in P$ **do**
if e is a forward edge **then**
 $f'_e \leftarrow f_e + b$
else if e is a backward edge **then**
 $f'_{vu} \leftarrow f_{vu} - b$

Max Flow – The Ford-Fulkerson Algorithm

Given a flow network G with source s and t

```
Algorithm Ford-Fulkerson Algorithm (G)
                      ▷ Initialize to a (valid) flow of size 0 (on every edge)
  f \leftarrow 0
  while TRUE do
      Compute G_f
      Find an s-t path P in G_f
                                                           ▶ Using e.g. DFS
      if no such path then
         return f
      else
         f \leftarrow Augment(P, f)
```


Min-Cut = 19

or

Max-flow = 19

The Ford-Fulkerson Algorithm – Time Complexity

Given a flow network G with source s and t

```
Algorithm Ford-Fulkerson Algorithm (G)
                      ▷ Initialize to a (valid) flow of size 0 (on every edge)
  f \leftarrow 0
  while TRUE do O(f)
      Compute G_f O(V+E)
      Find an s-t path P in G_f O(V+E)
                                                           ▶ Using e.g. DFS
                                               O(f E) when E >= V
      if no such path then
         return f
      else
         f \leftarrow \text{Augment}(P, f) O(E)
```


Residual Network

Residual Network

Flow Value = 1

Residual Network

Flow Value = 1

Residual Network

Flow Value = 1

Residual Network

Flow Value = 2

Residual Network

Flow Value = 2

Residual Network

Flow Value = 2

Residual Network

Flow Value = 3

Residual Network

Flow Value = 3

Residual Network

Flow Value = 3

Residual Network

Waiting for Ford Fulkerson algorithm to complete on 4 Vertices and 5 Edges

Thanks a lot

If you are taking a Nap, wake up.....Lecture Over