MOSFET's (metal-oxide-semiconductor field-effect transistor)

Current Controlled vs Voltage Controlled Devices

FET (Field Effect Transistor)

Few important advantages of FET over conventional Transistors

- 1. Unipolar device i. e. operation depends on only one type of charge carriers (h or e)
- 2. Voltage controlled Device (gate voltage controls drain current)
- 3. Very high input impedance ($\approx 10^9 10^{12} \Omega$)
- 4. Low Voltage Low Current Operation is possible (Low-power consumption)
- 5. Less Noisy as Compared to BJT
- 6. Very small in size, occupies very small space in Ics
- Low voltage low current operation is possible in MOSFETS

Types of Field Effect Transistors (The Classification)

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make them very useful.

There are 2 types of MOSFET's:

- Depletion mode MOSFET (D-MOSFET)
- Enhancement Mode MOSFET (E-MOSFET)

Depletion Type MOSFET

Enhancement Type MOSFET

D-MOSFET Symbols

E-MOSFET Symbols

n-channel

p-channel

n-channel

(b)

(a)

Depletion Mode MOSFET Construction

The Drain (D) and Source (S) leads connect to the to n-doped regions
These N-doped regions are connected via an n-channel
This n-channel is connected to the Gate (G) via a thin insulating layer of SiO₂
The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS

Basics Operation

n-Channel depletion-type MOSFET with $V_{GS} = 0$ V and an applied

Basic Operation

A D-MOSFET may be biased to operate in two modes: the **Depletion** mode or the **Enhancement** mode

Enhancement Mode MOSFET's

Enhancement Mode MOSFET Construction

The Drain (D) and Source (S) connect to the to n-doped regions These n-doped regions are not connected via an n-channel without an external voltage The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO_2 The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS

Basics opeartion

Electrons attracted to positive gate (induced n-channel) Region depleted of p-type carriers (holes) $D \circ$ $I_G = 0 \text{ A}$ + SS $G \subseteq$ V_{DS} p + V_{GS} S Insulating layer Holes repelled by positive gate

Basic Operation

The Enhancement mode MOSFET only operates in the enhancement mode.

VGs is always positive

 $I_{DSS} = 0$ when $V_{GS} < V_{T}$

As V_Gs increases above V_T, I_D increases

If VGs is kept constant and VDs is increased, then ID saturates (IDSS)

The saturation level, VDssat is reached.

A JFET has three terminals, namely

- (A) cathode, anode, grid
- (B) emitter, base, collector
- (C) source, gate, drain (D) none of the above

A MOSFET is a driven device

- (A) current
- (B) voltage
- (C) both current and voltage
- (D) none of the above

A MOSFET can be operated with

- (A) negative gate voltage only
- (B) positive gate voltage only
- (C) positive as well as negative gate voltage
- (C) none of the above

The input control parameter of a MOSFET is

- (A) gate voltage
- (B) source voltage
- (c) drain voltage
- (D) gate current

The input impedance of a MOSFET is of the order of

• • • • • • • • • • • •

- (A) 1Ω
- (B) a few hundred Ω
- (C) $k\Omega$
- (D) several $M\Omega$