

Introduction to NLP

Statistical POS Tagging

Part of Speech Tagging Methods

- Rule-based
- Stochastic
 - HMM (generative)
 - Maximum Entropy MM (discriminative)
- Transformation-based

HMM Tagging

- T = argmax P(T|W)
 - where $T=t_1,t_2,...,t_n$
- By Bayes' theorem
 - P(T|W) = P(T)P(W|T)/P(W)
- Thus we are attempting to choose the sequence of tags that maximizes the right hand side of the equation
 - P(W) can be ignored
 - P(T) is called the prior, P(W|T) is called the likelihood.

HMM Tagging

- Complete formula
 - $P(T)P(W|T) = \prod P(w_i|w_1t_1...w_{i-1}t_{i-1}t_i)P(t_i|t_1...t_{i-2}t_{i-1})$
- Simplification 1:
 - $P(W|T) = \prod P(w_i|t_i)$
- Simplification 2:
 - $P(T) = \prod P(t_i | t_{i-1})$
- Bigram approximation
 - $T = \operatorname{argmax} P(T|W) = \operatorname{argmax} \prod P(w_i|t_i) P(t_i|t_{i-1})$

Maximum Likelihood Estimates

- P(NN|JJ) = C(JJ,NN)/C(JJ) = 22301/89401 = .249
- P(this|DT) = C(DT,this)/C(dT) = 7037/103687 = .068

Example

 The/DT rich/JJ like/VBP to/TO travel/ VB ./.

Example

Evaluating Taggers

- Data set
 - Training set
 - Development set
 - Test set
- Tagging accuracy
 - how many tags right
- Results
 - Accuracy around 97% on PTB trained on 800,000 words
 - (50–85% on unknown words; 50% for trigrams)
 - Upper bound 98% noise (e.g., errors and inconsistencies in the data, e.g., NN vs JJ)

Transformation-Based Learning

- [Brill 1995]
- Example
 - P(NN|sleep) = .9
 - P(VB|sleep) = .1
 - Change NN to VB when the previous tag is TO
- Types of rules:
 - The preceding (following) word is tagged z
 - The word two before (after) is tagged z
 - One of the two preceding (following) words is tagged z
 - One of the three preceding (following) words is tagged z
 - The preceding word is tagged z and the following word is tagged w

Transformation Based Tagger

	Change Tag		
#	From	То	Condition
1	NN	VB	Previous tag is TO
2	VBP	VB	One of the previous three tags is MD
3	NN	VB	One of the previous two tags is MD
4	VB	NN	One of the previous two tags is DT
5	VBD	VBN	One of the previous three tags is VBZ
6	VBN	VBD	Previous tag is PRP
7	VBN	VBD	Previous tag is NNP
8	VBD	VBN	Previous tag is VBD
9	VBP	VB	Previous tag is TO
10	POS	VBZ	Previous tag is PRP
11	VB	VBP	Previous tag is NNS
12	VBD	VBN	One of previous three tags is VBP
13	IN	WDT	One of next two tags is VB
14	VBD	VBN	One of previous two tags is VB
15	VB	VBP	Previous tag is PRP
16	IN	WDT	Next tag is VBZ
17	IN	DT	Next tag is NN
18	IJ	NNP	Next tag is NNP
19	IN	WDT	Next tag is VBD
20	JJR	RBR	Next tag is JJ

Figure 4
The first 20 nonlexicalized transformations.

Transformation Based Tagger

Change tag **a** to tag **b** when:

- The preceding (following) word is w.
- The word two before (after) is w.
- One of the two preceding (following) words is w.
- The current word is w and the preceding (following) word is x.
- The current word is w and the preceding (following) word is tagged z.
- The current word is w.
- The preceding (following) word is w and the preceding (following) tag is t.
- The current word is w, the preceding (following) word is w₂ and the preceding (following) tag is t.
 - where w and x are variables over all words in the training corpus, and z and t are variables over all parts of speech.

Transformation Based Tagger

	Change Tag		
#	From	То	Condition
1	NŇ	NNS	Has suffix -s
2	NN	CD	Has character .
3	NN	IJ	Has character -
4	NN	VBN	Has suffix -ed
5	NN	VBG	Has suffix -ing
6	??	RB	Has suffix -ly
7	??	IJ	Adding suffix -ly results in a word.
8	NN	CD	The word \$ can appear to the left.
9	NN	IJ	Has suffix -al
10	NN	VB	The word would can appear to the left.
11	NN	CD	Has character 0
12	NN	JJ	The word be can appear to the left.
13	NNS	IJ	Has suffix -us
14	NNS	VBZ	The word it can appear to the left.
15	NN	IJ	Has suffix -ble
16	NN	IJ	Has suffix -ic
17	NN	CD	Has character 1
18	NNS	NN	Has suffix -ss
19	??	JJ	Deleting the prefix un- results in a word
20	NN	IJ	Has suffix -ive

The first 20 transformations for unknown words.

Thoughts About POS Taggers

- New domains
 - Lower performance
- Distributional clustering
 - Combine statistics about semantically related words
 - Example: names of companies
 - Example: days of the week
 - Example: animals

External Links

- Jason Eisner's awesome interactive spreadsheet about learning HMMs
 - http://cs.jhu.edu/~jason/papers/#eisner-2002tnlp
 - http://cs.jhu.edu/~jason/papers/eisner.hmm.xls

