আমরা সমতল দ্বিমাত্রিক জ্যামিতিক আকৃতি সম্পর্কে জেনেছি। নানা রকম আকৃতি মাপি এর এই অংশে আমরা ত্রিভুজ, সামন্তরিক, আয়ত, বর্গ ও বৃত্ত ইত্যাদি আকৃতির পরিসীমা ও ক্ষেত্রফল নির্ণয় করা শিখেছি। এবার চলো নিচের ছক- ১ পূরণ করিঃ

ছক- ১

| আকৃতি       | নাম         | পরিসীমা                                                                                     | ক্ষেত্রফল                                                                                                             |
|-------------|-------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 14 cm—      | সামান্তরিক  | 2×(দুইটি সন্নিহিত বাহুর<br>দৈর্ঘ্যের সমষ্টি)<br>= 2×(14+7) সেমি<br>= 2×21 সেমি<br>= 42 সেমি | সামান্তরিকের ক্ষেত্রফল<br>= ভূমি × উচ্চতা<br>* উচ্চতা দেয়া নেই।                                                      |
|             | আয়তক্ষেত্র | 2×(দুইটি সন্নিহিত বাহুর<br>দৈর্ঘ্যের সমষ্টি)<br>= 2×(14+7) সেমি<br>= 2×21 সেমি<br>= 42 সেমি | দৈৰ্ঘ্য × প্ৰস্থ<br>= 14×7 বৰ্গ সেমি<br>= 98 বৰ্গ সেমি                                                                |
|             | বৰ্গক্ষেত্ৰ | 4×এক বাহুর দৈর্ঘ্য<br>= 4×7 সেমি<br>= 28 সেমি                                               | =(এক বাহুর দৈর্ঘ্য) <sup>2</sup><br>= 7 <sup>2</sup> বর্গ সেমি<br>= 49 বর্গ সেমি                                      |
| 14 cm       | অর্ধবৃত্ত   | π×ব্যাসার্ধ<br>= π×7 সেমি<br>= 3.1416×7 সেমি<br>= 21.9912 সেমি।                             | ½× π×(ব্যাসাধ) <sup>2</sup> = ½×π×7 <sup>2</sup> বর্গ সেমি = ½×3.1416×49 বর্গ<br>সেমি =76.9692 বর্গ সেমি।             |
| 10 cm       | এিভুজ       | তিন বাহুর সমষ্টি<br>= (10+6+8) সেমি<br>= 24 সেমি।                                           | 1/2 × ভূমি × উচ্চতা<br>= 1/2 × 10 × 4.8 বৰ্গ<br>সেমি<br>= 24 বৰ্গ সেমি।                                               |
| 4 cm        | আয়তক্ষেত্র | 2×(দুইটি সন্নিহিত বাহুর<br>দৈর্ঘ্যের সমষ্টি)<br>= 2(4+3) সেমি<br>= 14 সেমি।                 | পদ্ধতি ১<br>দৈৰ্ঘ্য × প্ৰস্থ<br>= 4×3 বৰ্গ সেমি<br>= 12 বৰ্গ সেমি।<br>পদ্ধতি ২<br>5×2.4 বৰ্গ সেমি<br>= 12 বৰ্গ সেমি * |
| S CW A S CW | রম্বস       | 4×এক বাহুর দৈর্ঘ্য<br>= 4×5 সেমি<br>= 20 সেমি।                                              | ½ × কর্ণদ্বয়ের গুণফল = ½×(4+4)×(3+3) বর্গ সেমি = 24 বর্গ সেমি।                                                       |

\* [ব্যাখ্যাঃ চিত্রে আয়তের 5 সেমি কর্ণ আয়তকে দুইটি সমান ত্রিভুজ ক্ষেত্রে বিভক্ত করে, যেখানে একটি ত্রিভুজ ক্ষেত্রের ভূমি 5 সেমি ও উচ্চতা 2.4 সেমি, তাহলে এই ত্রিভুজের ক্ষেত্রফল  $= \frac{1}{2} \times 5 \times 2.4$  বর্গ সেমি। এখন একটি ত্রিভুজের ক্ষেত্রফল  $= \frac{1}{2} \times 5 \times 2.4$  বর্গ সেমি হলে দুইটি ত্রিভুজের ক্ষেত্রফল  $5 \times 2.4$  বর্গ সেমি আর দুইটি ত্রিভুজ ক্ষেত্র মিলে পাওয়া যায় পুরো আয়তক্ষেত্র যার ক্ষেত্রফল  $5 \times 2.4$  বর্গ সেমি 1

এবার মনে করো দৈর্ঘ্য ও প্রস্তের মান জানা নেই। তাহলে চলো দেখা যাক মান বসানোর পরিবর্তে দৈর্ঘ্য ও প্রস্তুকে অজানা রাশি হিসাবে চলক দিয়ে প্রকাশ করে দেখি।

ছক– ২

| আকৃতি                        | নাম                | ক্ষেত্রফল                                                    | পরিসীমা/পরিধি                                                                                     |
|------------------------------|--------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| দৈর্ঘ্য (l)<br>প্রস্থ<br>(w) | <u>আয়তক্ষেত্র</u> | দৈৰ্ঘ্য × প্ৰস্থ<br>= wl বৰ্গ একক                            | 2×(দুইটি সন্নিহিত বাহুর<br>দৈর্ঘ্যের সমষ্টি)<br>= 2(w+l) একক                                      |
| देमर्थ्य (l)                 | বৰ্গ               | (এক বাহুর দৈর্ঘ্য) <sup>2</sup><br>= ] <sup>2</sup> বর্গ একক | 4×এক বাহুর দৈর্ঘ্য<br>= 41 একক                                                                    |
| ড্চ<br>তা<br>(h)<br>ভূমি(b)  | <u> বি</u> ভুজ     | ½ × ভুমি × উচ্চতা<br>= ½×b×h বর্গ একক                        | ত্রিভুজের তিন বাহুর সমষ্টি = a+b+c একক [উল্লেখ্য প্রদন্ত চিত্রে সকল বাহুর দৈর্ঘ্যের উল্লেখ নেই]   |
| উ<br>চ্চ<br>তা               | সামান্তরিক         | ভূমি × উচ্চতা<br>= b×h বর্গ একক                              | 2×(সন্নিহিত দুই বাহুর<br>দৈর্ঘ্যের সমষ্টি)<br>= 2(a+b) একক<br>[উল্লেখ্য চিত্র a এর উল্লেখ<br>নেই] |
| ব্যাসার্ধ (r)                | বৃত্ত              | πr²<br>[এখানে, π =3.14 ও<br>r = ব্যাসার্ধ]                   | 2πr<br>[এখানে, π =3.14 ও r<br>= ব্যাসার্ধ]                                                        |

সূত্রঃ ট্রাপিজিয়ামের ক্ষেত্রফল = ½ × (সমান্তরাল বাহুদ্বয়ের সমষ্টি × উচ্চতা) বর্গ একক।

#### জোডায় কাজঃ

কাগজ কেটে নিচের (ক) , (খ) ও (গ) চিত্রের মতো মডেল তৈরি করো। তারপর বিকল্প একাধিক পদ্ধতিতে ক্ষেত্রফল নির্ণয় করো।

(ক) কাগজ কেটে নিচের চিত্র (ক) এর মত মডেল তৈরি করা হলো এবং এর ক্ষেত্রফল নির্ণয় করা হলো l



চিত্রে, ABED একটি ট্রাপিজিয়াম। D হতে BE এর উপর DC লম্ব। তাহলে DC হলো ট্রাপিজিয়ামের উচ্চতা। উল্লেখ্য এখানে, AB=DC=h, AD=BC=a, CE=c. DC ট্রাপিজিয়ামকে দুইটি ক্ষেত্র ABCD আয়ত ও DCE ত্রিভুজে বিভক্ত করে।

তাহলে,

ট্রাপিজিয়ামের ক্ষেত্রফল

- = ABCD এর ক্ষেত্রফল + DCE এর ক্ষেত্রফল
- $= ah + \frac{1}{2} \times c \times h$
- $= ah + \frac{1}{2}ch$
- $= \frac{1}{2}h(2a+c)$
- $= \frac{1}{2}h\{a+(a+c)\}$
- = ½×উচ্চতা×সমান্তরাল বাহুদ্বয়ের যোগফল।
- (খ) এবার কাগজ কেটে একই মাপের দুইটি ট্রাপিজিয়াম নিয়ে নিচের চিত্রের মত পাশাপাশি রেখে একটি সামান্তরিক গঠন করি।



আমরা জানি,

সামান্তরিকের ক্ষেত্রফল = ভূমি×উচ্চতা

তাহলে.

আমাদের গঠিত সামান্তরিকের ক্ষেত্রফল

 $= (a+b) \times h$ 

এখন.

গঠিত সামান্তরিকের ক্ষেত্রফল একই মাপের দুইটি ট্রাপিজিয়াম দ্বারা গঠিত।

অতএব

একটি ট্রাপিজিয়ামের ক্ষেত্রফল

- $= \frac{1}{2} \times (a+b) \times h$
- $= \frac{1}{2} \times h \times (a+b)$
- = ½×উচ্চতা×সমান্তরাল বাহুদ্বয়ের যোগফল।
- (গ) এবার কাগজ কেটে একটি ট্রাপিজিয়াম নিই। এরপর প্রথমে টাপিজিয়ামটিকে চিত্র অনুসারে মাঝ বরাবর আলাদা করি তাহলে এর উচ্চতা দুই অংশে ভাগ হয়ে গেল। পরবর্তিতে দুই ভাগকে চিত্রে উল্লেখিত পদ্ধতিতে বসাই। এবার প্রাপ্ত সামন্তরিকের ডান পাশের ত্রিভুজ অংশকে কেটে নিয়ে চিত্রানুসারে বাম পাশে স্থাপন করি ফলে আমরা একটি আয়তক্ষেত্র পেলাম। তাহলে এই আয়তক্ষেত্রের ক্ষেত্রফলই হলো ট্রাপিজিয়ামটির ক্ষেত্রফল।



তাহলে, চিত্র অনুসারে,

ট্রাপিজিয়ামের ক্ষেত্রফল

- = আয়তক্ষেত্রের ক্ষেত্রফল
- = দৈর্ঘ্য×প্রস্থ

$$=(a+b)\times\frac{h}{2}$$

- $= \frac{1}{2} \times h \times (a+b)$
- = ½×উচ্চতা×সমান্তরাল বাহুদ্বয়ের যোগফল।

# একক কাজ:

১. গ্রাফ পেপারের উপর একটি ট্রাপিজিয়াম আঁক। প্রতিটি ক্ষুদ্রতম বর্গকে 1 বর্গ একক এবং আংশিক ক্ষুদ্রতম অংশকে 0.5 বর্গ একক ধরে ট্রাপিজিয়ামটির ক্ষেত্রফল নির্ণয় করো।

#### সমাধানঃ



একটি গ্রাফ পেপার নিই এবং এর উপর একটি ট্রাপিজিয়াম ABCD অঙ্কন করি যার  $AB \parallel CD$ . এখন প্রতিটি ক্ষুদ্রতম বর্গকে 1 বর্গ একক এবং আংশিক ক্ষুদ্রতম অংশকে 0.5 বর্গ একক ধরে এর উচ্চতা ও সমান্তরাল দুই বাহুর দৈর্ঘ্য নির্ণয় করি।

তাহলে আমরা পাই,

AB = 6.5 একক

CD = 11.5 একক

উচ্চতা, Bh = 6 একক

এখন.

ট্রাপিজিয়ামের ক্ষেত্রফল

- = ½×উচ্চতা×সমান্তরাল বাহুদ্বয়ের যোগফল
- = ½×6×(6.5+11.5) বর্গ একক
- = ½×6×18 বর্গ একক
- = 54 বর্গ একক.

২. একটি ট্রাপিজিয়ামের সমান্তরাল বাহু দুইটির দৈর্ঘ্যের অন্তর 8 সেন্টিমিটার এবং এদের লম্ব দূরত্ব 24 সেন্টিমিটার । যদি ট্রাপিজিয়ামটির ক্ষেত্রফল 312 বর্গ সেন্টিমিটার হয়, তবে এর সমান্তরাল বাহু দুইটির দৈর্ঘ্য নির্ণয় করো।

#### সমাধানঃ

মনে করি, ট্রাপিজিয়ামের সমান্তরাল বাহু দুইটির মধ্যে ছোট বাহুর দৈর্ঘ্য = a সেমি তাহলে, ট্রাপিজিয়ামের সমান্তরাল বাহু দুইটির মধ্যে বড় বাহুর দৈর্ঘ্য = a+8 সেমি

আমরা জানি,

ট্রাপিজিয়ামের ক্ষেত্রফল = ½×উচ্চতা×সমান্তরাল বাহুদ্বয়ের যোগফল

তাহলে,

312 = ½×24×(a+a+8) [যেহেতু, দেওয়া আছে, উচ্চতা 24 সেমি ও ক্ষেত্ৰফল 312 সেমি]

বা, 
$$2a+8 = \frac{312}{12}$$

বা, 2a = 26-8

বা, 2a = 18

বা, 
$$a = \frac{18}{2}$$

অর্থাৎ, সমান্তরাল এক বাহু = 9 সেমি

তাহলে, সমান্তরাল অপর বাহু = 9+8 সেমি = 17 সেমি।

# ৩. চিত্রে $\Delta BCE$ এর ক্ষেত্রফল 100 বর্গ সেন্টিমিটার হলে, ABCD ট্রাপিজিয়ামটির ক্ষেত্রফল নির্ণয় করো।



# সমাধানঃ

চিত্ৰ হতে পাই,

AD || CE অর্থাৎ, DC = AE.

এখন,

AB = 31

বা, AE + EB = 31

বা, DC + EB = 31 [DC = AE বলে]

বা, 11 + EB = 31

বা, EB = 31 - 11

বা, EB = 20 সেমি

এখন দেওয়া আছে,

 $\Delta BCE$  এর ক্ষেত্রফল =100 বর্গ সেমি

বা,  $\frac{1}{2}$ ×EB×CF = 100 [এখানে, ভূমি = EB, উচ্চতা = CF]

বা, EB×CF = 200

বা, 20×CF = 200 [মান বসিয়ে]

বা, CF = 10 সেমি

এখন.

ট্রাপিজিয়ামটির ক্ষেত্রফল

= ½×উচ্চতা×সমান্তরাল বাহুদ্বয়ের যোগফল

 $= \frac{1}{2} \times CF \times (AB + DC)$ 

 $= \frac{1}{2} \times 10 \times (31 + 11)$ 

 $=5 \times 42$ 

= 210 বর্গ সেমি।

# 8. নিচের ট্রাপিজিয়াম দুইটির ক্ষেত্রফল নির্ণয় করো:





#### সমাধানঃ

# ১ নং ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয়

দেওয়া আছে,

ট্রাপিজিয়ামটির সমান্তরাল দুই বাহুর দৈর্ঘ্য যথাক্রমে 7 cm ও 9cm এবং উচ্চতা = 3cm

তাহলে, ট্রাপিজিয়ামটির ক্ষেত্রফল

- = ½×(7+9)×3 বর্গ সেমি
- = ½×16×3 বৰ্গ সেমি
- = 8×3 বর্গ সেমি
- = 24 বর্গ সেমি

২ নং ট্রাপিজিয়ামের ক্ষেত্রফল নির্ণয়

দেওয়া আছে,

ট্রাপিজিয়ামটির সমান্তরাল দুই বাহুর দৈর্ঘ্য যথাক্রমে 5 cm ও 10cm এবং উচ্চতা = 6 cm

তাহলে, ট্রাপিজিয়ামটির ক্ষেত্রফল

- = ½×(5+10)×6 বর্গ সেমি
- = 1/2×15×6 বর্গ সেমি
- = 45 বর্গ সেমি

# ল. নিচের কোন কোন ট্রাপিজিয়ামের ক্ষেত্রফল সমান কিন্তু পরিসীমা ভিন্ন? হিসাব করে যাচাই করো।



#### সমাধানঃ

গ্রাফ কাগজে অঙ্কিত ট্রাপিজিয়ামগুলোর ক্ষেত্রফল হিসাবের জন্য ক্ষুদ্রতম বর্গের বাহুকে একক ধরে ট্রাপিজিয়ামগুলোর উচ্চতা পাই,

১ম ট্রাপিজিয়ামের উচ্চতা = 4 একক

২য় ট্রাপিজিয়ামের উচ্চতা = 8 একক

৩য় ট্রাপিজিয়ামের উচ্চতা = 6 একক

তাহলে চিত্রে ট্রাপিজিয়ামগুলোর প্রদত্ত বাহুর দৈর্ঘ্যের ভিত্তিতে আমরা পাই.

১ম ট্রাপিজিয়ামের ক্ষেত্রফল = ½×(10+14)×4 বর্গ একক = 48 বর্গ একক

২য় ট্রাপিজিয়ামের ক্ষেত্রফল =  $\frac{1}{2} \times (8+4) \times 8$  বর্গ একক = 48 বর্গ একক

৩য় ট্রাপিজিয়ামের ক্ষেত্রফল =  $\frac{1}{2} \times (6+10) \times 6$  বর্গ একক = 48 বর্গ একক

এবঃ

১ম ট্রাপিজিয়ামের পরিসীমা = 5+10+4+14 একক = 33 একক

২য় ট্রাপিজিয়ামের পরিসীমা = 10+4+10+8 একক = 32 একক

৩য় ট্রাপিজিয়ামের পরিসীমা = 6+6+10+7 একক = 29 একক

তাহলে, তিনটি ট্রাপিজিয়ামের ক্ষেত্রফল সমান কিন্তু পরিসীমা সমান নয়।

# শিখন সূত্ৰঃ

রম্বসের ক্ষেত্রফল = কর্ণদ্বয়ের গুণফলের অর্ধেক

# একক কাজঃ

নিচের ছকটি পূরণ করোঃ

# সমাধানঃ

প্রদত্ত ছকটি পূরণ করা হলোঃ

| আকৃতি        | নাম   | কণ (d <sub>1</sub> )      | কণ <sup>*</sup> (d <sub>2</sub> ) | ক্ষেত্রফল    |
|--------------|-------|---------------------------|-----------------------------------|--------------|
| B # C        | রম্বস | AC=d <sub>1</sub> =৪ সেমি | BD=d <sub>2</sub> =12 সেমি        | 48 বর্গ সেমি |
| P # S  Q # R | রম্বস | PR=6 সেমি                 | QS = 14 সেমি                      | 42 বর্গ সেমি |

চিত্র হতে পাই, আকৃতির প্রতিটি বাহু সমান এবং সমান্তরাল ফলে চিত্র দুটি রম্বস I ১ম চিত্রের, ক্ষেত্রফল =  $\frac{1}{2}$ ×কর্ণদ্বয়ের গুণফল =  $\frac{1}{2}$ ×8×12 বর্গ সেমি = 48 বর্গ সেমি

২য় চিত্রের QS বা ২য় কর্ণটির দৈর্ঘ্য নির্ণেয়: রম্বসের সূত্রমতে আমরা লিখতে পারি,

 $\frac{1}{2} \times PR \times QS = 42$ 

বা, PR×QS = 84

বা, 6×QS = 84

বা, QS = 14 সেমি।

# ঘনবস্তু (Solids)

আমরা সবাই কমবেশি নিচের জিনিসগুলোর সাথে পরিচিত। তাই না ? টুথপেস্ট, সাবান, বিস্কিট, ঔষধ আরো অনেক নিত্য প্রয়োজনীয় জিনিসপত্র আমরা ব্যবহার করে থাকি। পূর্বের শ্রেণিতে এরূপ মোরক বা বাব্সের আকৃতি সম্পর্কে আমরা জেনেছি। এবার নিচের দ্রব্যগুলো ভালোভাবে পর্যবেক্ষণ করে ছকের খালি ঘরগুলো পূরণ করো এবং তোমার চেনা-জানা আরো দু-তিনটি দ্রব্যের প্যাকেট সংগ্রহ করে তাদের ছবি আঁক , আকৃতির নাম, প্রতিটি পৃষ্ঠতলের আকার, পৃষ্ঠতলের সংখ্যা লিখ।

# সমাধানঃ

| শ্ৰমাশালঃ  |                                |                        |                     |
|------------|--------------------------------|------------------------|---------------------|
| দ্রব্য     | প্যাকেট অবস্থায়<br>আকৃতির নাম | প্রতিটি পৃষ্ঠতলের আকার | পৃষ্ঠতলের<br>সংখ্যা |
| SOAP       | আয়তাকার ঘনবস্তু               | আয়তাকার               | ৬                   |
| TOOTHPASTE | আয়তাকার ঘনবস্তু               | আয়তাকার               | ৬                   |
| TOYS       | আয়তাকার ঘনবস্তু               | আয়তাকার               | હ                   |
| BISON'S    | সিলিন্ডার                      | গোলাকার                | 9                   |

Ch

```
সূত্ৰঃ
```

আয়তাকার ঘনবস্তুর সমগ্রতলের ক্ষেত্রফল

=2(ab+bc+ca) বর্গ একক

আয়তাকার ঘনবস্তুর আয়তন = abd ঘন একক

এখানে,

a= দৈৰ্ঘ্য

b= প্রস্থ

c= উচ্চতা

# একক কাজঃ

# নিচের (ক) এবং (খ) চিত্রের সমগ্রতলের ক্ষেত্রফল নির্ণয় করো।



#### সমাধানঃ

#### (ক)

ক চিত্রটি একটি আয়তাকার ঘনবস্তু।

ঘনবস্তুটির দৈর্ঘ্য a = 6 cm; প্রস্থ b = 4 cm ও উচ্চতা c = 2 cm

#### তাহলে,

ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল

- = 2(ab+bc+ca) বৰ্গ একক
- = 2(6×4+4×2+2×6) বৰ্গ সেমি
- = 2(24+8+12) বর্গ সেমি
- = 2×44 বর্গ সেমি
- = 88 বর্গ সেমি

# (খ)

খ চিত্রটি একটি আয়তাকার ঘনবস্তু।

ঘনবস্তুটির দৈর্ঘ্য a = 4 cm; প্রস্থ b = 4 cm ও উচ্চতা c = 10 cm

#### তাহলে,

ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল

- = 2(ab+bc+ca) বৰ্গ একক
- = 2(4×4+4×10+10×4) বৰ্গ সেমি
- = 2(16+40+40) বৰ্গ সেমি
- = 2×96 বর্গ সেমি
- = 192 বর্গ সেমি

# দলগত কাজ:

শ্রেণিকক্ষের দৈর্ঘ্য, প্রস্থ ও উচ্চতা পরিমাপ করো। তারপর নিচের প্রশ্নগুলোর উত্তর দাওঃ

- ক. শ্রেণিকক্ষেটির সমগ্র-তলের ক্ষেত্রফল (দরজা ও জানালা বাদে)
- খ. পার্শ্বতলগুলোর ক্ষেত্রফল
- গ. প্রমাণ করো যে, শ্রেণিকক্ষের সমগ্রতলের ক্ষেত্রফল = পার্শ্বতলগুলোর ক্ষেত্রফল +2 × মেঝের ক্ষেত্রফল সমাধানঃ

মনে করি, আমরা শ্রেণিকক্ষ পরিমাপ করে দৈর্ঘ্য,প্রস্থ ও উচ্চতা পাই যথাক্রমে a,b ও c. আমরা শ্রেণিকক্ষে একই মাপের দুইটি দরজার ও চারটি জানালা পেলাম; প্রত্যেকটি দরজার দৈর্ঘ্য =p ও প্রস্থ =q এবং জানালার দৈর্ঘ্য m ও প্রস্থ n পেলাম। (ক)

মাপ অনুসারে,

শ্রেণিকক্ষের সমগ্রতলের ক্ষেত্রফল

= 2(ab+bc+ca) বৰ্গ একক

দুটি দরজার ক্ষেত্রফল = 2pq বর্গ একক ও চারটি জানালার ক্ষেত্রফল = 4mn বর্গ একক

তাহলে,

শ্রেণিকক্ষের সমগ্রতলের ক্ষেত্রফল (দরজা ও জানালা বাদে)

= 2(ab+bc+ca) – 2pq – 4mn বৰ্গ একক

(খ)

যেহেতু শ্রেণিকক্ষটি একটি আয়তাকার ঘনবস্তুর ন্যায় সেহেতু এর দৈর্ঘ্য , প্রস্থ ও উচ্চতা থেকে আমরা এর পার্শ্বতলগুলোর ক্ষেত্রফল বের করতে পারি। আয়তাকার ঘনবস্তুর চারটি পার্শ্বতল থাকে যেখানে দুইটি করে তল পরস্পর সমান ক্ষেত্রফল বিশিষ্ট হয়ে থাকে।



তাহলে,

শ্রেণিকক্ষের পার্শ্বতলগুলোর ক্ষেত্রফল

= 2(ac+bc) বৰ্গ একক

(গ)

শ্রেণিকক্ষের মেঝের ক্ষেত্রফল

- = দৈর্ঘ্য×প্রস্থ
- = ab বৰ্গ একক

এখন শ্রেণিকক্ষ যেহেতু আয়তাকার, সেহেতু এর ছাদের ক্ষেত্রফলও মেঝের ক্ষেত্রফলের সমান হবে। তাহলে,

চারটি পার্শ্বতলের ক্ষেত্রফল + মেঝের ক্ষেত্রফল + ছাদের ক্ষেত্রফল

- = চারটি পার্শ্বতলের ক্ষেত্রফল + 2×মেঝের ক্ষেত্রফল
- = 2(ac+bc) + 2ab বর্গ একক [পার্শ্বতলের ক্ষেত্রফল খ থেকে বসিয়ে]
- = 2(ac+bc+ab) বৰ্গ একক
- = 2(ab+bc+ca) বৰ্গ একক
- = শ্রেণিকক্ষের সমগ্রতলের ক্ষেত্রফল [প্রমাণিত]

সূত্ৰঃ

ঘনকের সমগ্রতলের ক্ষেত্রফল = 6a² বর্গ একক

ঘনকের আয়তন = a³ ঘন একক

এখানে,

ঘনকের দৈর্ঘ্য

- = ঘনকের প্রস্থ
- = ঘনকের উচ্চতা
- = a

# একক কাজ:

 মিনতি কাগজ দ্বারা পাশের ঘনবস্তু আকৃতির বাক্স দুইটি তৈরি করে। কোন বাক্সটি বানাতে মিনতির কম কাগজ লেগেছে?

# সমাধানঃ

প্রশ্নে কোন চিত্র দেয়া নেই এবং কোন পরিমাপও উল্লেখ নেই। তাই প্রকৃত সমাধান দেয়া গেল না। সমাধান সূত্রঃ ধরি, ১ম ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে a, b ও c হলে এর সমগ্রতলের ক্ষেত্রফল = 2(ab+bc+ca) আবার

২য় ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে p,q ও r হলে এর সমগ্রতলের ক্ষেত্রফল =2(pq+qr+rp) এখন, দুইটি ঘনবস্তুর ক্ষেত্রফল তুলনা করে দেখ যার ক্ষেত্রফল কম সোটি তৈরিতে কম কাগজ লেগেছে।

২. রবিনের একটি কেবিনেট আছে যার দৈর্ঘ্য , প্রস্থ ও উচ্চতা যথাক্রমে 2 মিটার, 1 মিটার এবং 3 মিটার। কেবিনেটটির তলা বাদে বাইরের বাকী অংশ রং করাতে চায়। প্রতি বর্গ মিটার রং করাতে 150 টাকা লাগলে তার মোট কত টাকা খরচ হবে?

# সমাধানঃ

দেওয়া আছে,

কেবিনেট এর দৈর্ঘ্য (a), প্রস্থ (b) ও উচ্চতা (c) যথাক্রমে 2 মিটার, 1 মিটার এবং 3 মিটার।

#### তাহলে

কেবিনের সমগ্রতলের ক্ষেত্রফল

- = 2(ab+bc+ca) বৰ্গ একক
- = 2(2×1+1×3+3×2) বর্গ মিটার
- = 2(2+3+6) বর্গ মিটার
- = 2×11 বর্গ মিটার
- = 22 বর্গ মিটার

#### এখন.

কেবিনটির তলার ক্ষেত্রফল

- = দৈর্ঘ্য×প্রস্থ
- = ab বৰ্গ একক
- = 2×1 বর্গ মিটার
- = 2 বর্গ মিটার

#### তাহলে.

তলা বাদে কেবিনটির ক্ষেত্রফল

- = 22 2 বর্গ মিটার
- = 20 বর্গ মিটার

এখন 1 বর্গ মিটার রং করতে খরচ হয় 150 টাকা

 $\therefore 20$  বর্গ মিটার রং করতে খরচ হয়  $150 \times 20$  টাকা = 3000 টাকা।

# একক কাজ

# ১. নিচের ছকটি পূরণ করো:

#### সমাধানঃ

| শুমাবানঃ         |         |        |        |                                                                             |                                                       |
|------------------|---------|--------|--------|-----------------------------------------------------------------------------|-------------------------------------------------------|
| দ্রব্য           | দৈর্ঘ্য | প্রস্থ | উচ্চতা | সমগ্রতলের ক্ষেত্রফল                                                         | আয়তন                                                 |
|                  | (l)     | (b)    | (h)    |                                                                             |                                                       |
| 12 units 3 units | 12      | 3      | 1      | 2(lb+bh+hl)<br>=<br>2(12×3+3×1+1×1<br>2) squire units<br>= 102 squire units | lbh<br>= 12×3×1<br>cubic units<br>= 36 cubic<br>units |
|                  | 6       | 3      | 2      | 2(lb+bh+hl) = 2(6×3+3×2+2×6) squire units = 72 squire units                 | lbh = 6×3×2 cubic units = 36 cubic units              |
| 6 11             | 6       | 1      | 4      | 2(lb+bh+hl)<br>=<br>2(6×1+1×4+4×6)<br>squire units                          | lbh<br>= 6×1×4<br>cubic units<br>= 24 cubic           |

|          |   |   |   | = 68 squire units               | units       |
|----------|---|---|---|---------------------------------|-------------|
| <i>A</i> | 4 | 4 | 4 | 2(lb+bh+hl)                     | lbh         |
|          |   |   |   | = 2(lb+bh+hl)                   | = 4×4×4     |
|          |   |   |   | =                               | cubic units |
|          |   |   |   | $2(4\times4+4\times4+4\times4)$ | = 64 cubic  |
| 4        |   |   |   | squire units                    | units       |
| 4        |   |   |   | = 96 squire units               |             |

# ২. গণিত বই এর দৈর্ঘ্য, প্রস্থ এবং উচ্চতা মেপে বইটির সমগ্রতলের ক্ষেত্রফল এবং আয়তন নির্ণয় করো। সমাধানঃ

ধরি, দৈর্ঘ্য a =8cm, প্রস্থ b = 6cm ও উচ্চতা c = 2cm, তাহলে, সমগ্রতলের ক্ষেত্রফল = 2(ab+bc+ca) = 2(8.6+6.2+2.8)বর্গ সেমি = 2(48+12+16)বর্গ সেমি = 2×76 বর্গ সেমি = 152 বর্গ সেমি

এবংআয়তন = abc ঘন একক = 8.6.2 ঘন সেমি = 96 ঘন সেমি

# ৩. তিনটি ধাতব ঘনকের ধার যথাক্রমে 3 সে.মি., 4 সে.মি. এবং 5 সে.মি.। ঘনক তিনটিকে গলিয়ে একটি নতুন ঘনক বানানো হলো। নতুন ঘনকের সমগ্রতলের ক্ষেত্রফল ও আয়তন নির্ণয় করো। সমাধানঃ

3 সেমি ধার বিশিষ্ট ঘনকের আয়তন  $= 3^3$  ঘন সেমি = 27 ঘন সেমি

4 সেমি ধার বিশিষ্ট ঘনকের আয়তন =  $4^3$  ঘন সেমি = 64 ঘন সেমি

5 সেমি ধার বিশিষ্ট ঘনকের আয়তন  $=5^3$  ঘন সেমি =125 ঘন সেমি

তাহলে, উপরের তিনটি ঘনকের আয়তন = 27+64+125 ঘন সেমি = 216 ঘন সেমি

এখন,

কোন ঘনকের আয়তন 216 ঘন সেমি হলে তার ধার =  $3\sqrt{216}$  সেমি =  $3\sqrt{(6\times6\times6)}$  সেমি = 6 সেমি

অর্থাৎ, তিনটি ঘনক গলিয়ে নতুন একটা ঘনক বানালে নতুন ঘনকের আয়তন ঐ তিনটি ঘনকের আয়তনের সমান হবে।

শর্তমতে নতুন ঘনকের ধার = 6 সেমি

তাহলে.

নতুন ঘনকের সমগ্রতলের ক্ষেত্রফল =  $6 \times 6^2$  বর্গ সেমি

= 216 বর্গ সেমি [ঘনকের ক্ষেত্রফল = 6a² সূত্রানুসারে]

ও আয়তন =  $6^3$  ঘন সেমি = 216 ঘন সেমি।

# বেলন (Cylinder)

বেলন, নামটি পড়েই ছবিতে থাকা নিচের উপকরণ দুইটির কথা প্রথমেই মনে পড়ছে তাই না ? খজুঁলে আমাদের প্রত্যেকের ঘরেই এদের পাওয়া যাবে। বিশেষ করে সকালের নাস্তায় আমরা অনেকেই রুটি-পরোটা খেয়ে থাকি। আর তা বানাতে নিচের জিনিস দুইটি ব্যবহার করা হয়। বলতে পারবে জিনিস দুইটির কোনটিকে কি বলা হয়?



পাশের হাতলওয়ালা উপকরণটির নাম বেলন এবং নিচের বৃত্তাকার বস্তুটির নাম রুটি বানানোর পিঁড়ি। এখন তোমাকে একটি কাজ করতে হবে। রুটি বানানোর জন্য তোমার বাসায় যে পিঁড়িটি আছে , তার ব্যাসার্থ, ব্যাস, পরিধি ও উপরের তলের ক্ষেত্রফল বের করতে হবে। তোমার জন্য তৈরি করা (কম পক্ষে তিনটি) রুটির ক্ষেত্রফল নির্ণয় করো। এবার রুটি ও পিঁড়ির মধ্যকার ক্ষেত্রফল সম্পর্কে মতামত নিচের ছকে লিখে ছকটি পূরণ করো।

#### সমাধানঃ

| উপকরণ  | ব্যাসার্ধ                                                            | ব্যাস | পরিধি   | ক্ষেত্রফল |
|--------|----------------------------------------------------------------------|-------|---------|-----------|
| পিঁড়ি | 50                                                                   | 100   | 314.16  | 7854      |
| রুটি-১ | 40                                                                   | 80    | 251.328 | 5026.56   |
| রুটি-২ | 42                                                                   | 84    | 263.894 | 5541.78   |
| রুটি-৩ | 43                                                                   | 86    | 270.177 | 5808.818  |
| রুটি-৪ | 45                                                                   | 90    | 282.744 | 6361.74   |
| কুটি-৫ | 46                                                                   | 92    | 289.027 | 6647.625  |
| মতামত  | পিঁড়ির তুলনায় সকল রুটির ব্যাসার্ধ, ব্যাস, পরিধি কিংবা ক্ষেত্রফল কম |       |         |           |
|        | হয়ে থাকে।                                                           |       |         |           |

# ব্যাখ্যাঃ

যদি পিঁড়ি বা রুটির ব্যাসার্ধ = r হয়, তাহলে, এর ব্যাস = 2r; পরিধি =  $2\pi r$ ; ক্ষেত্রফল =  $\pi r^2$  যেখানে এর  $\pi$  মান 3.1416

# দলগত কাজ:

"বেলন আকৃতির বস্তুর নাম লেখার প্রতিযোগিতা। " সময়ঃ 5 মিনিট। দলের প্রত্যেকে নিজ নিজ খাতায় বেলন আকৃতির বস্তুর নাম লিখবে। যে দল সবচেয়ে বেশি নাম লিখতে পারবে, সে দল জয়লাভ করবে।

# সমাধানঃ

| বস্তুর নাম | বস্তুর নাম |
|------------|------------|
| পাইপ       | ব্যাটারি   |
| ভ্রাম      | ক্যান      |
| বোতল       | পেন্সিল    |
| বেলন       | লাঠি       |
| সিলিভার    | বাঁশ       |
| পিলার      | খুটি       |
| বাঁশি      | তার        |

সিলিভারটির বক্রতলের ক্ষেত্রফল

 $=2\pi rh$ 

এখানে, r=ব্যাসার্ধ এবং h=উচ্চতা যা নিচের চিত্রে দেখানো হলোঃ



#### একক কাজ:

কোনো এক কোম্পানী তাদের তৈরি করা শুড়োদুধ সমবৃত্তভূমিক সিলিভার আকৃতির টিনের পাত্রে বাজারজাত করতে চায়। টিনের পাত্রটির ব্যাস 16cm এবং উচ্চতা 24cm কোম্পানী টিনের পাত্রটির উপর ও নিচের দিকে ফাঁকা রেখে পাত্রটি সম্পূর্ণ ঘুরিয়ে একটি মোড়ক লাগানোর সিদ্ধান্ত নিয়েছে। মোড়কটির ক্ষেত্রফল নির্ণয় করো।



#### সমাধানঃ

টিনের পাত্রটির উপর ও নিচের দিকে ফাঁকা রেখে পাত্রটি সম্পূর্ণ ঘুরিয়ে একটি মোড়ক লাগানো হলে , মোড়কটির ক্ষেত্রফল = সিলিন্ডার আকৃতির টিনের পাত্রের বক্রতলের ক্ষেত্রফল।

দেওয়া আছে,

টিনের পাত্রটির ব্যাস = 16cm অর্থাৎ ব্যাসার্ধ  $r=\frac{16}{2}\,cm=8cm$  এবং উচ্চতা h=24cm

তাহলে.

টিনের পাত্রটির বক্রতলের ক্ষেত্রফল

- $=2\pi rh$
- = 2×3.1416×8×24 বর্গ সেমি
- = 1206.2744 বর্গ সেমি ı

অতএব, মোড়কটির ক্ষেত্রফল 1206.2744 বর্গ সেমি।

# শিখন সূত্ৰঃ

সিলিভারের সমগ্রতলের ক্ষেত্রফল

- = বক্রতলের ক্ষেত্রফল + ২×বৃত্তের ক্ষেত্রফল
- $=2\pi rh+2\pi r^2$
- $=2\pi r(h+r)$

#### একক কাজঃ

১. নিচের (i) ও (ii) নং চিত্র দুইটি সমবৃত্তভূমিক সিলিভার হলে এদের সমগ্রতলের ক্ষেত্রফল নির্ণয় করো।



#### সমাধানঃ

(i) নং চিত্ৰ হতে পাই,

r = 14 cm ও h= 8 cm

তাহলে, (i) নং সিলিভারের সমগ্রতলের ক্ষেত্রফল

- = 2πr(h+r) বৰ্গ একক
- = 2×3.1416×14(8+14) বর্গ সেমি
- = 1935.2256 বর্গ সেমি
- (ii) নং চিত্ৰ হতে পাই,

2r = 2 cm অর্থাৎ, r = 1 cm এবং h = 2 cm

তাহলে, (ii) নং সিলিভারের সমগ্রতলের ক্ষেত্রফল

- = 2πr(h+r) বৰ্গ একক
- = 2×3.1416×1(2+1) বৰ্গ সেমি
- = 18.8496 বর্গ সেমি

২. নমিতার স্কুলে 24 টি গোলাকার পিলার আছে। প্রতিটি পিলারের ব্যাস 30 সেন্টিমিটার এবং উচ্চতা 4 মিটার। প্রতি বর্গ মিটার রং করতে 125 টাকা খরচ হলে সবগুলো পিলার রং করতে কত টাকা খরচ হবে? সমাধানঃ

দেওয়া আছে,

প্রতিটি পিলারের ব্যাস = 2r = 30 সেমি

অর্থাৎ, ব্যাসার্ধ  $r = \frac{30}{2}$  সেমি = 15 সেমি = 0.15 মিটার

এবং, প্রতিটি পিইলারের উচ্চতা h = 4 মিটার।

এখন যেহেতু স্কুলের পিলারের নিচে ও উপরে রং করা হয় না সেহেতু আমরা পিলারের বক্রতলের ক্ষেত্রফল বের করব।

তাহলে.

একটি পিলারের বক্রতলের ক্ষেত্রফল

- = 2πrh বর্গ একক
- = 2×3.1416×0.15×4 বর্গ মিটার
- = 3.76992 বর্গ মিটার

অতএব,

24 টি পিলারের বক্রতলের ক্ষেত্রফল

- = 24×3.76992 বর্গ মিটার
- = 90.47808 বর্গ মিটার

এখন,

1 বর্গ মিটার রং করতে খরচ হয় 125 টাকা

 $\because 90.47808$  বর্গ মিটার রং করতে খরচ হয়  $125 \times 90.47808$  টাকা = 11309.76 টাকা।

সুতরাং, সবগুলো পিলার রং করতে খরচ হয় 11309.76 টাকা।

শিখন সূত্ৰঃ

সিলিভারের আয়তন

- = বৃত্তক্ষেত্রটির ক্ষেত্রফল × উচ্চতা
- $=\pi r^2 \times h$  ঘন একক
- $=\pi r^2 h$  ঘন একক।

#### একক কাজঃ

# ১. নিচের ছবিটি দেখো। এখানে সিলিভারের মাত্রাগুলো ক্রমানুসারে (ব্যাসর্থ ও উচ্চতা) দ্বিগুণ করা ই আয়তনের কীরূপ পরিবর্তন ঘটবে? যুক্তিসহ মতামত ব্যক্ত করো।



#### সমাধানঃ

ধরি, ১ম সিলিন্ডারের ব্যাসার্ধ = r এবং উচ্চতা = h

শর্ত অনুসারে,

২য় সিলিভারের ব্যাসার্ধ =  $2 \times r = 2r$  এবং উচ্চতা =  $2 \times h = 2h$ 

এবং ৩য় সিলিভারের ব্যাসার্থ =  $2 \times 2r = 4r$  এবং উচ্চতা =  $2 \times 2h = 4h$ 

তাহলে,

১ম সিলিভারের আয়তন = π $r^2h$ 

২য় সিলিভারের আয়তন =  $\pi(2r)^2(2h) = \pi 4r^2 2h = 8\pi r^2 h$ 

তয় সিলিভারের আয়তন = π(4r)²(4h) = π16r²4h = 64πr²h = 8×8 πr²h

অর্থাৎ, সিলিন্ডারের মাত্রাগুলো ক্রমানুসারে দ্বিগুণ করা হলে এদের আয়তন আট (৪) গুণ হারে বৃদ্ধি পাবে।

# ২. নিচের ছবিটি লক্ষ করো। এখানে প্রথম সিলিভারটির ব্যাস দ্বিগুণ এবং উচ্চতা অর্ধেক করে দ্বিতীয় সিলিভারটি তৈরি করা হয়েছে। সিলিভার দুইটির আয়তনের অনুপাত নির্ণয় করো।



#### সমাধানঃ

দেওয়া আছে,

১ম সিলিভারের ব্যাস = 30 cm অর্থাৎ, ব্যাসার্ধ  $(r_1) = \frac{30}{2} \text{ cm} = 15 \text{ cm}$ 

ও এর উচ্চতা (h<sub>1</sub>) = 20 cm

এবং,

২য় সিলিভারের ব্যাস = 60 cm অর্থাৎ, ব্যাসার্ধ  $(r_2) = \frac{60}{2} \text{ cm} = 30 \text{ cm}$ 

ও এর উচ্চতা (h<sub>2</sub>) = 10 cm

এখন,

১ম সিলিভারের আয়তন =  $\pi r_1^2 h_1 = \pi \times 15^2 \times 20$  cubic cm

২য় সিলিভারের আয়তন =  $\pi r_2^2 h_2 = \pi \times 30^2 \times 10$  cubic cm

অতএব, সিলিভার দুইটির আয়তনের অনুপাত

 $= \pi \times 15^2 \times 20 : \pi \times 30^2 \times 10$ 

 $= 15^2 \times 2 : 30^2$ 

 $= 15 \times 15 \times 2 : 30 \times 30$ 

 $= 15 \times 30 : 30 \times 30$ 

= 15:30= 1:2

৩. একটি বিস্কৃট কোম্পানী বিস্কৃট প্যাকিং এর জন্য আয়তাকার ঘনবস্তু আকৃতির বাক্স তৈরি করবে। সেজন্য নিচের দুই ধরনের বাক্সের পরিকল্পনা করে।

ক. দৈর্ঘ্য = 20 সে.মি., প্রস্থ = 8 সে.মি., উচ্চতা = 3 সে.মি.

কোন ধরনের বাক্সটি বানালে কোম্পানীর জন্য লাভজনক হবে ? যুক্তিসহ ব্যাখ্যা করো। আয়তন ঠিক রেখে বাক্সের মাত্রাগুলো শুধু পরিবর্তন করলেও আয়তন ঠিক থাকবে এবং কোম্পানী লাভবান হবে। এমন পরামর্শ তুমি কী দিতে পারবে?

#### সমাধানঃ

ক বাক্সের আয়তন =  $20 \times 8 \times 3$  ঘন সেমি = 480 ঘন সেমি।

খ বাক্সের আয়তন = 12×10×4 ঘন সেমি = 480 ঘন সেমি।

এখানে দেখা যাচ্ছে দুইটি বাক্সের আয়তন একই ; অর্থাৎ আয়তন ঠিক রেখে বাক্সের মাত্রাগুলো শুধু পরিবর্তন করলেও আয়তন ঠিক থাকবে এবং কোম্পানী লাভবান হবে যদি বাক্সের আকার =  $n \times 6$  কুটের আকার হয় অর্থাৎ বস্কুটগুলো যেন পরিপূর্ণভাবে বাক্সে সাজানো যায় যেখানে কোন ফাঁকা জায়গা না থাকে।

8. একটি A4 আ-কৃ-তি-র কা-গ-জ-কে প্রস্থ ও দৈর্ঘ্য বরাবর মোড়িয়ে নিচের চি ত্রে র ম তো দুইটি বেলন বা সিলিভার বানাও।



ক. তোমার বানানো বেলন বা সিলিভার দুইটির মধ্যে কোনটির আয়তন বেশি?

খ. A4 আ-কৃ-তি-র কা-গ-জ থেকে কোন আ-কৃ-তি-র অংশ কে-টে নিলে উভয় সিলিভারের আয়তন স-মা-ন হবে? তোমার উত্তরের স্বপক্ষে যুক্তি দাও।

# সমাধানঃ

(ক)

কাগজের দৈর্ঘ্য = 29.7 সেমি ও প্রস্থ = 21 সেমি।

তাহলে.

কাগজটিকে দৈর্ঘ্য বরাবর মোড়িয়ে ১ম বেলন তৈরি করলে,

১ম বেলনের পরিধি (2πr<sub>1</sub>) = 29.7 সেমি ও উচ্চতা (h<sub>1</sub>) = 21 সেমি।

এখন,

 $2\pi r_1 = 29.7$ 

বা, 
$$r_1 = \frac{29.7}{2\pi} = 4.7269$$
 সেমি (প্রায়)

অতএব,

১ম বেলনের আয়তন

= πr<sub>1</sub><sup>2</sup>h<sub>1</sub> ঘন একক

= 3.1416×(4.7269)2×21 ঘন সেমি

= 1474.086 ঘন সেমি (প্রায়)

আবার

কাগজটিকে প্রস্থ বরাবর মোড়িয়ে ২য় বেলন তৈরি করলে,

হয় বেলনের পরিধি  $(2\pi r_2)=21$  সেমি ও উচ্চতা  $(h_1)=29.7$  সেমি। এখন,  $2\pi r_2=21$  বা,  $r_2=\frac{21}{2\pi}=3.3422$  সেমি (প্রায়) অতএব,  $2y \ \text{বেলনের আয়তন} = \pi r_2^2 h_2$  ঘন একক  $=3.1416\times(3.3422)^2\times29.7$  ঘন সেমি =1042.25 ঘন সেমি (প্রায়) অর্থাৎ, ১ম বেলনের আয়তন ২য় বেলন অপেক্ষা বেশী।

#### (খ)

A4 আকৃতির কাগজ থেকে এমন একটা অংশ যার আকৃতি আয়তাকার যা কেটে নিলে উভয় সিলিভারের আয়তন সমান হবে।

ব্যাখ্যাঃ

নিচের চিত্রটি লক্ষ্য করি,



A4 কাগজটির প্রস্থ = দৈর্ঘ্য হলে অর্থাৎ প্রস্থ 21~cm এর সমান দৈর্ঘ্য করলে সবুজ অংশের আয়তাকার অংশ কেটে নিতে হয়। সেক্ষেত্রে কাগজটির দৈর্ঘ্য = 21~cm হয়।

সেক্ষেত্রে দৈর্ঘ্য ও প্রস্থ বরাবর মোড়িয়ে দুইটি বেলন তৈরি করলে , প্রতিটি বেলনের উচ্চতা হবে 21 সেমি. ও পরিধি হবে 21 সেমি ।

অর্থাৎ সিলিন্ডার বা বেলন দুইটির আয়তন সমান হবে।

- ৫. স্কেল দিয়ে মেপে 21 cm দৈর্ঘ্য ও 12 cm প্রস্থ বিশিষ্ট দুইটি কাগজের টুকরা কেটে নাও। এবার কাগজের টুকরার একটিকে দৈর্ঘ্য বরাবর এবং অপরটিকে প্রস্থ বরাবর রোল বা গোল করে পাকিয়ে দুইটি সমবৃত্তভূমিক বেলন বা সিলিন্ডার তৈরি করো।
- ক. উভয় সিলিভারের বক্রতলের ক্ষেত্রফল ও আয়তন নির্ণয় করো।
- খ. উভয় সিলিভারের আয়তনে কোনো পার্থক্য থাকলে, কেন পার্থক্য হয়েছে তা যুক্তি সহ ব্যাখ্যা করো। সমাধানঃ

# (ক)

দেওয়া আছে,

প্রত্যেকটি কাগজের দৈর্ঘ্য = 21 সেমি ও প্রস্থ = 12 সেমি।

এখন,

১ম কাগজটাকে দৈর্ঘ্য বরাবর রোল বা মুড়িয়ে সমবৃত্তভূমিক একটা বেলন বা সিলিন্ডার তৈরি করি। ফলে তৈরিকৃত ১ম সিলিন্ডারের পরিধি  $(2\pi r_1)=21$  সেমি ও উচ্চতা  $(h_1)=12$  সেমি।

্রব

২য় কাগজটাকে দৈর্ঘ্য বরাবর রোল বা মুড়িয়ে সমবৃত্তভূমিক একটি বেলন বা সিলিন্ডার তৈরি করি। ফলে তৈরিকৃত ২য় সিলিন্ডারের পরিধি  $(2\pi r_2)=12$  সেমি ও উচ্চতা  $(h_2)=21$  সেমি।



এখন,

১ম সিলিভারের পরিধি,  $2\pi r_1 = 21$ 

বা, 
$$r_1 = \frac{21}{2\pi} = 3.3422$$
 সেমি (প্রায়)

১ম সিলিভারের বক্রতলের ক্ষেত্রফল

- = 2πr<sub>1</sub>h<sub>1</sub> বৰ্গ একক
- = (2πr<sub>1</sub>)×h<sub>1</sub> বৰ্গ একক
- = 21×12 বর্গ সেমি
- = 252 বর্গ সেমি

১ম সিলিভারের আয়তন

- $=\pi r_1^2 h_1$
- $= 3.1416 \times (3.3422)^2 \times 12$
- = 421.11 ঘন সেমি (প্রায়)

এবং,

২য় সিলিন্ডারের পরিধি,  $2\pi r_2 = 12$ 

বা, 
$$r_2 = \frac{12}{2\pi} = 1.91$$
 সেমি (প্রায়)

২য় সিলিভারের বক্রতলের ক্ষেত্রফল

- = 2πr<sub>2</sub>h<sub>2</sub> বৰ্গ একক
- = (2πr<sub>2</sub>)×h<sub>2</sub> বৰ্গ একক
- = 12×21 বর্গ সেমি
- = 252 বর্গ সেমি

২য় সিলিভারের আয়তন

- $=\pi r_2^2 h_2$
- $= 3.1416 \times (1.91)^2 \times 21$
- = 240.68 ঘন সেমি (প্রায়)

# (খ)

ক হতে পাই,

১ম সিলিভারের আয়তন ২য় সিলিভারের আয়তনের থেকে বড়।

কারনঃ

আমরা সিলিভারের আয়তন নির্ণয়ের সূত্র পর্যালোচনা করে দেখতে পাই , সিলিভারের আয়তন নির্ণয়ের ক্ষেত্রে সিলিভারের ব্যাসার্ধ এর বর্গ ব্যবহৃত হয়।

এখানে, ১ম সিলিভারের ব্যাসার্ধ > ২য় সিলিভারের ব্যাসার্ধ [ক হতে]

বা, (১ম সিলিভারের ব্যাসার্ধ) $^2$  > (২য় সিলিভারের ব্যাসার্ধ) $^2$ 

যার ফলে, ১ম সিলিভারের আয়তন, ২য় সিলিভারের আয়তন থেকে বড়।

```
৬. ঢাকনাসহ একটি কাঠের বাক্সের বাইরের মাপ যথাক্রমে ১০ সেমি , ৯ সেমি এবং ৭ সেমি। বাক্সটির ভিতরের
সমগ্রতলের ক্ষেত্রফল ২৬২ বর্গ সে.মি.। বাঞ্চটির কাঠের পুরুত্ব সমান।
ক. বাপ্সটির আয়তন নির্ণয় করো।
খ. বারুটির দেওয়ালের পুরুত্ব নির্ণয় করো।
সমাধানঃ
(ক)
দেওয়া আছে,
বাক্সের বাইরের মাপ যথাক্রমে 10 সে.মি., 9 সে.মি. এবং 7 সে.মি.।
অর্থাৎ, দৈর্ঘ্য a=10 সেমি; প্রস্থ b=9 সেমি ; উচ্চতা c=7 সেমি।
তাহলে.
বাক্সটির আয়তন
= abc
= 10×9×7 ঘন সেমি
= 630 ঘন সেমি।
ধরি, বাক্সটির দেয়ালের পুরুত্ব = x সেমি
তাহলে,
বাক্সটির ভিতরের দৈর্ঘ্য a_1= (10-2x) সেমি
বাক্সটির ভিতরের প্রস্থ b_1 = (9-2x) সেমি
বাক্সটির ভিতরের উচ্চতা c_1= (7-2x) সেমি
প্রশ্ন অনুসারে,
বাক্সের ভিতরের সমগ্রতলের ক্ষেত্রফল = 262 বর্গ সেমি
বা, 2(a_1b_1+b_1c_1+c_1a_1)=262
বা, 2{(10-2x)(9-2x)+(9-2x)(7-2x)+(7-2x)(10-2x} = 262
 7, 2\{(90-18x-20x+4x^2)+(63-14x-18x+4x^2)+(70-20x-14x+4x^2)=262 
বা, 90 -38x + 4x<sup>2</sup> + 63 - 32x + 4x<sup>2</sup> + 70 - 34x + 4x<sup>2</sup> = 131
বা, 223 – 104x + 12x<sup>2</sup> = 131
বা, 223 - 104x + 12x<sup>2</sup> - 131 = 0
বা, 12x^2 - 104x + 92 = 0
বা, 3x^2 - 26x + 23 = 0
4x^2 - 23x - 3x + 23 = 0
\sqrt{3}(3x-23) - 1(3x-23) = 0
বা, (x-1)(3x-23) = 0
বা, 3x-23 = 0 অথবা, x-1 = 0
বা, 3x = 23 অথবা, x = 1
বা, x = \frac{23}{3} = 7.67 যা বাক্সটির উচ্চতা থেকেও বড়।
তাহলে x অর্থাৎ বাব্সের পুরুত্বের গ্রহণযোগ্য মান হলো 1.
অতএব, বাক্সটির দেয়ালের পুরুত্ব = 1 সেমি।
৭. একটি বেলনের আয়তন 150 ঘন সে.মি। বেলনটির ভূমির ব্যাসার্ধ ও উচ্চতা কি কি হওয়ার সম্ভাবনা
আছে?
সমাধানঃ
```

বেলনটির ব্যাসার্ধ r ও উচ্চতা h হলে, বেলনের আয়তন,  $\pi r^2 h = 150$  বা,  $h = 150/\pi r^2$  .....(i)

এখন, (i) নং সমীকরণ অনুসারে r এর মানের ভিত্তিতে h কি কি হতে পারে তার একটি তালিকা নিম্মে দেওয়া হলোঃ

| বেলনের ব্যাসার্ধ (r) | বেলনের উচ্চতা (h = 150/πr²) |
|----------------------|-----------------------------|
| 1                    | 47.74637                    |
| 2                    | 11.93659                    |
| 3                    | 5.305152                    |
| 4                    | 2.984148                    |
| 5                    | 1.909854                    |
| 6                    | 1.326288                    |
| 7                    | 0.974415                    |
| 8                    | 0.746037                    |
| 9                    | 0.589461                    |
| 10                   | 0.477463                    |

আবার,

 $\pi r^2 h = 150$ 

বা,  $r = \sqrt{(150/\pi h)}$  .....(ii)

এখন, (ii) নং সমীকরণ অনুসারে h এর মানের ভিত্তিতে r কি কি হতে পারে তার একটি তালিকা নিম্মে দেওয়া হলোঃ

| বেলনের উচ্চতা (h) | বেলনের ব্যাসার্ধ $(r = \sqrt{(150/\pi h)})$ |
|-------------------|---------------------------------------------|
| 1                 | 6.909875                                    |
| 2                 | 4.886019                                    |
| 3                 | 3.989418                                    |
| 4                 | 3.345493                                    |
| 5                 | 3.09019                                     |
| 6                 | 2.82094                                     |
| 7                 | 2.611687                                    |
| 8                 | 2.443                                       |
| 9                 | 2.30329                                     |
| 10                | 2.185094                                    |