万年历问题——边界值

万年历问题的输入变量有三个: 年(y) ,月(m) ,日(d) 。这三个变量可以取到的范围如下:

● 年 *y*: 设定范围在 [2000, 2100]

月 m: [1, 12]日 d: [1, 31]

采用一般健壮性边界值法(min-, min, min+, nom, max-, max, max+),再加上一些需要重点考虑的情况,年月日三个变量的取值如下:

• 年 *y* : 1990, 2000, 2001, 2040, 2095, 2100, 2101

• 月 m: -1, 0, 1, 2, 6, 11, 12, 13

o 在7个健壮性边界值法的基础上,将min-部分分成了0和负数两类。

• 日 *d*: -1, 0, 1, 2, 16, 29, 31, 32

o 在7个健壮性边界值法的基础上,将min-部分分成了0和负数两类。

以上三个变量一共有 7+7+7=21(单缺陷假设)个测试用例。在此基础上,通过**健壮最坏**情况思考,添加对闰年闰月闰日、月末、年末的单独考量用例7个。

总共的测试用例如下:

用例编号	年y	月m	日d	预期输出日期	补充测试的注释
1	1990	6	16	invalid input	
2	2000	6	16	2000.6.17	
3	2001	6	16	2001.6.17	
4	2040	6	16	2040.6.17	
5	2095	6	16	2095.6.17	
6	2100	6	16	2100.6.17	
7	2101	6	16	invalid input	
8	2040	-1	16	invalid input	
9	2040	0	16	invalid input	
10	2040	1	16	2040.1.17	
11	2040	2	16	2040.2.17	
12	2040	11	16	2040.,11,17	
13	2040	12	16	204012.17	
14	2040	13	16	invalid input	
15	2040	6	-1	invalid input	
16	2040	6	0	invalid input	
17	2040	6	1	2040.6.2	
18	2040	6	2	2040.6.3	
19	2040	6	29	2040.6.30	
20	2040	6	31	invalid input	
21	2040	6	32	invalid input	
22	2040	6	30	2040.7.1	月末测试
23	2040	7	31	2040.8.1	月末测试
24	2040	12	31	2041.1.1	年末测试
25	2040	2	28	2040.2.29	闰日测试
26	2004	2	29	2040.3.1	闰日测试
27	2001	2	30	invalid input	闰日测试
28	2005	2	29	invalid input	闰日测试

万年历问题——等价类

万年历问题的输入变量有三个: 年(y) ,月(m) ,日(d) 。这三个变量的等价类如下:

- 年 y: 设定范围在 [2000, 2100],则等价类为:除4闰年、除400闰年、平年。
- 月 *m* : [1, 12], 等价类为: {2}, {12}, {1,3,5,7,8,10} (除12外的大月), {4,6,9,11} (小月)。
- 日 d: [1, 31], 等价类为{1~27}, {28}, {29}, {30}, {31}。

按照强一般等价类的划分,可以得出如下的测试用例:

例编号	年y	月m	日d	预期输出日期
1	2024	2	14	2024.2.15
2	2024	2	28	2024.2.29
3	2024	2	29	2024.3.1
4	2024	2	30	invalid input
5	2024	2	31	invalid input
6	2024	12	14	2024.12.15
7	2024	12	28	2024.12.29
8	2024	12	29	2024.12.30
9	2024	12	30	2024.12.31
10	2024	12	31	2025.1.1
11	2024	5	14	2024.5.15
12	2024	5	28	2024.5.29
13	2024	5	29	2024.5.30
14	2024	5	30	2024.5.31
15	2024	5	31	2024.6.1
16	2024	6	14	2024.6.15
17	2024	6	28	2024.6.29
18	2024	6	29	2024.6.29
		6	30	
19	2024			2024.7.1
20	2024	6	31	invalid input
21	2400	2	14	2400.2.15
22	2400	2	28	2400.2.29
23	2400	2	29	2400.3.1
24	2400	2		invalid input
25	2400	2	31	invalid input
26	2400	12	14	2400.12.15
27	2400	12	28	2400.12.29
28	2400	12	29	2400.12.30
29	2400	12	30	2400.12.31
30	2400	12	31	2401.1.1
31	2400	5	14	2400.5.15
32	2400	5	28	2400.5.29
33	2400	5	29	2400.5.30
34	2400	5	30	2400.5.31
35	2400	5	31	2400.6.1
36	2400	6	14	2400.6.15
37	2400	6	28	2400.6.29
38	2400	6	29	2400.6.30
39	2400	6	30	2400.7.1
40	2400	6	31	invalid input
41	2401	2	14	2401.2.15
42	2401	2	28	2401.3.1
43	2401	2		invalid input
44	2401	2		invalid input
45	2401	2	31	invalid input
46	2401	12	14	2401.12.15
47	2401	12	28	2401.12.29
48	2401	12	29	2401.12.29
49		12	30	
50	2401		31	2401.12.31
	2401	12		2402.1.1
51	2401	5	14	2401.5.15
52	2401	5	28	2401.5.29
53	2401	5	29	2401.5.30
54	2401	5	30	2401.5.31
55	2401	5	31	2401.6.1
56	2401	- 6	14	2401.6.15
57	2401	6	28	2401.6.29
58	2401	6	29	2401.6.30
59	2401	6		2401.7.1
60	2401	6	31	invalid input

佣金问题——边界值

佣金问题有三个变量(Host, Monitor, Peripheral),同时有一个中间输出变量(Amount)和最终输出变量(Comission)。

- Host的范围在[1, 70]
- Monitor的范围在[1, 80]
- Peripheral的范围在[1, 90]

采用一般健壮边界法,可以得到三个变量的取值为:

Host: -1, 0, 1, 3, 40, 68, 70, 72
Monitor: 0, 1, 2, 40, 79, 80, 81
Peripheral: 0, 1, 2, 46, 87, 90, 91

由于Amount在[100, 1000],(1000, 1800],(1800, 8200]三个区域内提佣金的比例不同,因此针对 Amount的在交叉边界附近的值额外取若干次得出如下测试用例34个:

用金问题边界值测试:	用例编号	Host	Monitor	Peripheral	Amount	rate	Comission
	1	-1	40	46	invalid	invalid	invalid
	2	0	40	46	invalid	invalid	invalid
	3	1	40	46	3295	20	659
	4	3	40	46	3345	20	669
	5	40	40	46	4270	20	854
	6	68	40	46	4970	20	994
	7	70	40	46	5020	20	1004
	8	72	40	46	invalid	invalid	invalid
	9	40	0	46	invalid	invalid	invalid
	10	40	1	46	3100	20	620
	11	40	2	46	3130	20	626
	12	40	40	46	4270	20	854
	13	40	79	46	5440	20	1088
	14	40	80	46	5470	20	1094
	15	40	81	46	invalid	invalid	invalid
	16	40	40	0	invalid	invalid	invalid
	17	40	40	1	2245	20	449
	18	40	40	2	2290	20	458
	19	40	40	46	4270	20	854
	20	40	40	87	6115	20	1223
	21	40	40	90	6250	20	1250
	22	40	40	91	invalid	invalid	invalid
	23	10	9	10	970	10	97
	24	10	15	6	970	10	97
	25	10	10	10	1000	10	100
	26	34	2	2	1000	10	100
	27	23	9	4	1025	15	153.75
	28	11	10	10	1025	15	153.75
	29	9	33	12	1755	15	263.25
	30	18	18	17	1755	15	263.25
	31	18	18	18	1800	15	270
	32	3	14	29	1800	15	270
	33	18	19	18	1830	20	366
	34	9	7	31	1830	20	366