Name Of the Graph	Actual	PSO- Min colour(T ime in seconds)	Genetic- Min colour(T ime in seconds)	Simulate d Anneali ng-Min colour(T ime in seconds)	Neural Network -Min colour(T ime in seconds)	Genetic- Simulate d-Min colour(T ime in seconds)	Genetic- PSO- Min colour(T ime in seconds)
DSJC10 00.1	?						
DSJC10 00.5	?						
DSJC10 00.9	?						
DSJC12 5.1	?	8(17.25s	8(12.80s	9(3.03s)		8(8.94s)	
DSJC12 5.5	?	27(26.46 s)	26(13.97 s)	25(5.62s		24(14.01 s)	
DSJC12 5.9	?	57(18.34 s)	59(11.55 s)	57(3.27s		54(8.341 s)	
DSJC25 0.1	?	13(50.33 s)	13(44.84 s)	14(12.73 s)		12(37.30 s)	
DSJC25 0.5	?	45(44.29 s)	44(48.16 s)	s)		41(56.35 s)	
DSJC25 0.9	?	101(62.3 8s)	99(40.11 s)	102(10.7 6s)		95(35.61 s)	
DSJC50 0.1	?	21(126.2 2s)	21(163.8 9s)	22(65.40 s)		19(140.4 4s)	
DSJC50 0.5	?	82(348.8 1s)	76(173.9 7s)	78(91.18 s)		72(211.3 9s)	
DSJC50 0.9	?	185(237. 54s)	178(150. 89s)	9s)		173(140. 39)	
DSJR50 0.5.1	?	6s)	88s)	14(63.61 s)		13(127.2 5s)	
DSJR50 0.5.1c	?	126(119. 48s)	123(109. 87s)	133(49.1 9s)		110(123. 58s)	
DSJR50 0.5	?	158(225. 62s)	156(160. 33s)	154(81.2 9s)		150(197. 73s)	
flat1000 _50_0	50						
flat1000 _60_0	60						
flat1000 _76_0	76						
flat300_ 20_0	20	50(132.9 8s)	46(66.12 s)	52(32.15 s)		46(78.66 s)	

flat300_ 26_0	26	50(134.8 8s)	50(66.73 s)	48(32.42 s)		47(78.91 s)	
flat300_ 28_0	28	53(132.2 2s)	49(66.32 s)	55(31.22 s)	4	46(78.98 s)	
fpsol2.i.	65	65	65	65		65	
fpsol2.i.	30	31	30	31	3	30	
fpsol2.i.	30	32(93.24 s)	35(110.7 9s)	31(32.03 s)		31(50.10 s)	
initthx.i.	54	54(329.6 7s)	190(137. 64s)		4	56(200.8 5s)	
initthx.i.	31	39(303.6 9s)	41(145.1 1s)	35(72.40 s)		33(167.1 6s)	
initthx.i.	31	38(286.8 2s)	42(128.5 5s)	35(68.26 s)		46(162.8 6s)	
latin_sq uare_10	?						
le450_1 5b	15	23(158.1 8s)	23(43.30 s)	23(24.25 s)		21(131.5 4s)	
le450_1 5c	15	34(101.1 3s)	32(45.10 s)	32(26.30 s)		30(146.5 3s)	
le450_1 5d	15	34(115.1 5s)	34(44.91 s)	34(47.09 s)		31(149.7 5s)	
le450_2 5a	25	29(161.7 1s)	29(43.76 s)	31(43.09 s)		26(131.9 5s)	
le450_2 5b	25	29(252.2 8s)	27(43.61 s)	28(22.94 s)		27(129.8 3s)	22(5352. 89s)
le450_2 5c	25	39(124.1 7s)	37(44.70 s)	37(26.67 s)		35(155.7 ls)	
le450_2 5d	25	39(102.4 91s)	40(44.78 s)	37(49.61 s)		35(142.3 2s)	
le450_5 a	5	14(151.0 3s)	14(44.01 s)	14(21.99 s)		13(127.7 6s)	
le450_5 b	5	14(151.9 1s)	14(44.35 s)	17(20.92 s)		13(126.5 0s)	
le450_5	5	19(181.0 1s)	19(43.06 s)	16(24.70 s)		16(134.3 0s)	
le450_5	5	18(200.6 1s)	19(43.81 s)	18(23.61 s)		16(133.9 ls)	
mulsol.i.	49	49(13.99 s)	51(9.38s	49(6.96s	4	49(22.11 s)	
mulsol.i.	31	33(70.82 s)	42(8.08s	48(6.77s	3	33(20.63 s)	

mulsol.i.	31	33(67.69 s)	44(8.00s	38(5.52s	34(19.00 s)	
mulsol.i.	31	34	40	37	33	38
mulsol.i.	31	33(69.44 s)	48(8.20s	37(6.37s	35(19.67 s)	
school1	?	45(105.1 1s)	47(33.26 s)	45(38.98 s)	40(107.9 6s)	
school1.	?	41(93.49 s)	44(28.59 s)	45(33.32 s)	36(88.92 s)	
zeroin.i.	49	50(38.70 s)	50(9.48s	50(7.83s	49(22.39 s)	
zeroin.i.	30	31(39.02 s)	34(10.04 s)	31(7.10s	30(23.48 s)	
zeroin.i.	30	31(36.23 s)	30(8.76s	30(7.19s	30(21.48 s)	
anna	11	11	11	11	11	
david	11	11	11	12	11	
homer	13	13(186.2 8s)	13(113.2 7s)	13(28.54 s)	13(116.3 4s)	13(283.1 3s)
huck	11	11	11	11	11	,
jean	10	10	10	10	10	
games12	9	9	9	9	9	
miles10	42	45	46	46	43	
miles15	73	73(36.34 s)	73(11.04 s)	73(1.81s	73(8.30s	
miles25	8	8	8	8	8	
miles50	20	21	23	23	20	
miles75	31		33	33	31	
queen5	5	8	8	8	6	
queen6	7	10	9	9	8	
queen7	7	11	11	11	10	
queen8	9	13	12	12	11	12
queen9	10	14	13	14	13	
queen10	?	16(14.88 s)	15(145.3 5s)	15 (63.93s)	14(152.0 0s)	
queen11	11	18(133.6 0s)	16(219.8 0s)	17(1.86s	15(294.9 2s)	
queen12	12	15	15	16	14	

queen13	13	20(32.82 s)	19(31.21 s)	21(2.87s	18(225.4 2s)	
queen14	?	22(42.16 s)	21(49.51 s)	22(5.08s	20(117.7 7s)	
queen15	?	24(53.93 s)	22(63.90 s)	24(5.95s	22(182.3 8s)	
queen16	?	25(70.08 s)	24(71.10 s)	24(8.29s	23(307.8 6s)	
myciel3	4	4	4	4	4	
myciel4	5	5	5	5	5	
myciel5	6	6	6	6	6	
myciel6	7	7	7	7	7	
myciel7	8	8	8	8	8	