

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA (Prova Online)

29/08/2020

Allievi fisici

	Allegare alle sol	uzioni il presen	te testo indica	ando (in STA	AMPATEL	LO):
NOME E CO	OGNOME					
	, G1 (G1/12					

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tempo a disposizione: 2 ore

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas \Re = 8314 J/(kmol·K)

□ ESERCIZIO 1 (punti 12)

Si studino le caratteristiche dell'impianto schematizzato in figura.

10 m³/s aria nelle condizioni ambiente 1 (P1=1bar, T1=15°C) vengono elaborati da due compressori C1 e C2 entrambi con rapporto di compressione pari a 5 e rendimento isoentropico pari a 1.

Tra i due compressori è posto uno scambiatore di calore che raffredda (a pressione costante) l'aria compressa (2) fino alla temperatura di 50°C con una corrente d'aria ambiente (A1, PA1=1 bar, TA1=15°C) che si scalda di 100°C (PA1=PA2).

L'aria compressa viene riscaldata a pressione costante tramite un input termico (Q45) (es. radiazione solare concentrata) e successivamente espansa in un espansore (E), caratterizzato da un rendimento isoentropico pari 0.9, fino alla pressione P6 di 1 bar. Il rendimento meccanico ed elettrico del sistema è pari a 1.

Sapendo che la potenza netta prodotta dal sistema è 6 MW e assumendo l'aria gas perfetto (cp=1007 J/kg/K, γ =1.4, MM=28.9 kg/kmol), si chiede di:

- a. Rappresentare qualitativamente su un diagramma T-s tutte le trasformazioni e calcolare temperatura, pressione, entropia e del punto 2 e del punto A2 (s1=0 J/kg/K);
- b. Calcolare la potenza dei compressori C1 e C2 e la portata d'aria necessaria a \downarrow raffreddare l'aria compressa
- c. Calcolare la differenza di temperatura a cavallo dell'espansore 2
- d. Calcolare la temperatura di ingresso in E (T5) 3
- e. Calcolare il rendimento del sistema 🐧

□ ESERCIZIO2 (punti 8)

Un chip (k_{chip}=50 W/m/K), parallelepipedo con superficie di base pari a 800 mm2 e altezza 7 mm, è sede di una generazione di potenza pari a 5 MW/m³. Sulla superficie superiore del chip è incollato un dissipatore in alluminio (k_{alluminio}=180 W/m/K) costituito da uno strato di 5 mm e da una serie di alette. La superficie totale del dissipatore è 8000 mm2 con efficienza pari a 0.65. Alla giunzione tra il chip e il dissipatore è associata una resistenza di contatto pari a 5e-2 K/W. L'aria ambiente si trova a 25°C con un coefficiente di scambio termico convettivo pari a 95 W/m²/K.

Sapendo che dal fondo del chip viene dissipato il 20% della potenza generata e assumendo la monodimensionalità e stazionarietà del problema, si chiede di calcolare:

- a. la resistenza termica dello spessore di alluminio
- b. la potenza termica dissipata dal dissipatore alettato
- c. la temperatura della base delle alette
- d. Il profilo di temperatura nell'intervallo y [0 mm,12 mm]

□ QUESITO 3 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Descrivere un ciclo Joule-Brayton ideale chiuso riportando la rappresentazione su un piano T-s e h-S. Discutere il layout d'impianto e ricavare il rendimento ed il lavoro utile in funzione del rapporto di compressione.
- 2- Descrivere l'approccio a parametri concentrati per lo studio di un transitorio di riscaldamento e ricavare l'andamento della temperatura nel tempo. Riportare tutte le ipotesi considerare e rappresentare graficamente la potenza termica scambiata nel tempo.

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla **sola risposta corretta** (0.5 punto per risposta corretta, -0.2 punti se sbagliata).

La relazione cp=cv+R (R=8314 J/kmol/K) è:	E' valida anche per liquidi ideali E' valida solo per gas ideali Non è mai valida	🤏 vero		falso falso falso
Un ciclo Rankine saturo	La m [kg/s] all'uscita del GV è > m all'ingresso del			falso
ideale con un rigeneratore a miscela	condensatore A pari TMAX e TMIN, garantisce sempre un $\eta >=$ di un	\sim	۵	falso
GV→ Generatore di vapore	ciclo non rigenerativo			f -1
	Nel rigeneratore la portata di vapore e quella di acqua liquida sono separate			Taiso
m kg/s di fluido	Il modulo della spinta sul tubo non dipende dall'angolo	□ vero	١	falso
incomprimibile entrano in un condotto cilindrico curvo di lunghezza L e diametro D	La portata volumetrica in ingresso è uguale a quella in uscita	vero		falso
(Pin[bar]=Pout) (reg. Stazionario)	La direzione della spinta sul tubo dipende dalla densità (Tubo orizzontale con curva di 90°)	vero		falso
Una sfera (k=0.3 W/m/K,	Se D=10 cm e v=5 m/s → Re= 16666.7 e Pr=0.106	□ vero	4	falso
ρ=900 kg/m3, c=1400 J/kg/K) a Tiniziale=60°C è	Se valido approccio param. concentrati la Tfinale diminuisce all'aumentare di v	<pre>&vero</pre>		falso
investita da una corrente di gas a 15°C (ρ=1 kg/m3,	Se valido l'approccio a param.concentrati → Bi=Nu	□ vero	()	falso
k=0.05 W/m/K, cp=1060 J/kg/K, viscDin=3E-5 Pa*s):				
In un diagramma T-s:	Il punto critico è punto a tangente orizzontale della campana	• vero	-	falso
	La forma della campana è indipendente dal fluido			
	Il calore di evaporazione è rappresentato dall'area sottesa alla trasformazione	_		talso