

Name: Raghunath Muddu

SID: 2139797

Introduction:

Diabetes can have a significant impact on an individual's overall health and wellness. we will use various supervised machine learning classification models on a diabetes-related dataset to predict the probability of a person getting Diabetes within next five year. This research will involve implementing multiple methods, such as Logistic Regression, Support Vector Machines, Naive Bayes Classifier, K Nearest Neighbor, Decision Tree and random forest. We will also use of techniques K-fold cross-validation to know which models performs most effectively.

Dataset description:

The dataset has 768 instances, with 8 unique and there are multiple independent variables and one outcome. The prediction variables are Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedigree Function, age The dataset includes the following features of following datatypes.

- Pregnancies: No of times Pregnant
- Blood Pressure: Diastolic Blood Pressure (mm hg)
- Insulin: 2-Hour serum insulin (mu U/M1)
- Glucose: Plasma Glucose Concentration 2 hours in Oral Glucose tolerance test
- Skin Thickness: Triceps Skin fold Thickness (mm)
- BMI: Body mass index (weight/kg, height/m^2)
- Diabetes Pedigree Function: indicates the function which scores likelihood of Diabetes based on Family history.
- Outcome: Binary classification (0 or 1) 500/768 are 0. 268/768 are 1.

Summary of dataset:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Distplot:

From the above table we can see that the min value columns of Pregnancies, Glucose, Blood pressure, Skin thickness, Insulin, BMI is Zero, as the min values can't be Zero, Hence we need to take the mean of every column and replace in the value of Zero

Data cleaning

We have to make sure there are no Duplicate rows, if there are any Duplicate rows, we need to remove the duplicates from the dataset and Even before and after dropping duplicate, if the dataset still has the same shape which indicates there is no Duplicates in the dataset.

Check the Null Values

Pregnancies	0
Glucose	0
BloodPressure	0
SkinThickness	0
Insulin	0
BMI	0
DiabetesPedigreeFunction	0
Age	0
Outcome	0

There are no Null Values.

Number of zeroes in dataset:

```
No. of zero values in BloodPressure 35
No. of zero values in SkinThickness 227
No. of zero values in Insulin 374
No. of zero values in Glucose 5
No. of zero values in BMI 11
```

Replace no.of zero values with mean of that columns

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	121.681605	72.254807	26.606479	118.660163	32.450805	0.471876	33.240885	0.348958
std	3.369578	30.436016	12.115932	9.631241	93.080358	6.875374	0.331329	11.760232	0.476951
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	0.078000	21.000000	0.000000
25%	1.000000	99.750000	64.000000	20.536458	79.799479	27.500000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	79.799479	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

After replacing the mean with the zero's, numerical have changed.

Data visualisation

Count plot for outcome variable:

Negative (0): 500 Positive (1): 268

The dataset consists of 768 people, with 268 having diabetes (labelled as positive with a value of 1) and 500 not having diabetes (labelled as negative with a value of 0). The outcome column represents the presence or absence of diabetes. The countplot indicates that the dataset is imbalanced since the number of patients without diabetes is greater than those with diabetes.

<u>Histograms for all Variables</u>: Histograms are more commonly used Graphs to display the numeric data.

<u>Scatter plot</u>: In scatter plot the graph plots a values of two variable along with two axes and it also makes to understand the correlation between the two variables

<u>Pair plot</u>: va[riables pairplot is the best way to create the scatterplots between all the variables

 For Glucose variable it is observed that chances of getting diabetic increases as Glucose goes above 130.

Correlation matrix:

From the correlation heatmap, we can see that there is a high correlation between the outcome and (pregnancies, Glucose, BMI, Age, Insulin), we can still select this feature to accept input from the user and predict the outcome.

There is no high correlation, there is medium correlation between

Data preprocessing:

- The dataset will be split into X and y for pre-processing using the train-test split function from the sklearn library's model selection function. A test size of 30% will be used.
- X will contain all of the features, such as Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedigree Function, and Age.
- Y will contain the dependent variable or outcome.
- The data will be scaled using standard scaler before being fed to the models
- There are no categorical columns in the dataset, so there is no need for encoding.

Model building:

- Different classification models such as logistic regression, K-nearest neighbour classifier, Naïve-Bayes, Support Vector Machine, and decision tree with default parameters will be built using the sklearn library.
- Once the models are trained, the predict function will be used to predict the results. To further evaluate the models, different evaluation metrics will be employed.

Model Evaluation and Comparison:

- To evaluate the models, different evaluation metrics such as precision, accuracy score, recall, F1-score, specificity and sensitivity and AUC-RUC curve will be employed to determine the best model
- Below are the results for different evaluation metrics for classifiers with default parameters.

Accuracy score:

```
Accuracy score of logistic Regression: 76.62%
Accuracy score of KNN: 75.76%
Accuracy score of Naive-bayes: 72.73%
Accuracy score of Support Vector Machines: 79.65%
Accuracy score of Decision Tree: 71.00%
Accuracy score of Random Forest: 76.19%
```

SVM shows the highest accuracy along with logistic regression.

Confusion matrix:

confusion matrix of Logistic Regression:

confusion matrix of K nearest Neighbour

confusion matrix of Support Vector Machine

confusion matrix of Naïve Bayes Classifier

confusion matrix of Decision tree

confusion matrix of Random forest

Classification report:

Classsisficat	-	Logisitic Regression				
:	precision	recall	f1-score	support		
0	0.79	0.86	0.82	129		
1	0.65	0.52	0.58	63		
accuracy			0.75	192		
macro avg	0.72	0.69	0.70	192		
weighted avg	0.74	0.75	0.74	192		
Classsisficat	ion report for	K Nearest Neighbour				
:	precision	recall	f1-score	support		
0	0.80	0.81	0.80	129		
1	0.60	0.57	0.59	63		
accuracy			0.73	192		
macro avg	0.70	0.69	0.69	192		
weighted avg	0.73	0.73	0.73	192		
Classsisficat	ion report for	Support	t Vector Ma	achine		
:	precision	recall	f1-score	support		
0	0.77	0.84	0.80	129		
1	0.59	0.48	0.53	63		
accuracy			0.72	192		
macro avg	0.68	0.66	0.66	192		
weighted avg	0.71	0.72	0.71	192		
Classsisficat	ion report for	Decisio	on Tree			
:	precision		f1-score	support		
0	0.80	0.79	0.80	129		
1	0.58	0.60	0.59	63		
accuracy			0.73	192		
macro avg	0.69	0.70	0.70	192		
weighted avg	0.73	0.73	0.73	192		
Classsisficat	ion report for	Naive-H	Bayes			
:	precision	recall	f1-score	support		
0	0.82	0.81	0.81	129		
1	0.62	0.63	0.62	63		
accuracy			0.75	192		
macro avg	0.72	0.72	0.72	192		
weighted avg	0.75	0.75	0.75	192		

Classsisfication	on report for	Random	Forest	
:	precision	recall	f1-score	support
0	0.78	0.81	0.80	129
1	0.58	0.52	0.55	63
accuracy			0.72	192
macro avg	0.68	0.67	0.67	192
weighted avg	0.71	0.72	0.71	192

SVM, logistic regression, random forest shows the best precision and recall.

ROC curves:

ROC Score: 0.69

ROC Score: 0.69

ROC Score: 0.66

ROC Score: 0.70

ROC Score: 0.72

ROC Score: 0.69

Naïve Bayes getting the highest ROC score.

Specificity and sensitivity

```
Logistic Regression: Specificity=0.864, Sensitivity=0.595
k-NN: Specificity=0.810, Sensitivity=0.667
Naive Bayes: Specificity=0.782, Sensitivity=0.631
```

SVM: Specificity=0.884, Sensitivity=0.643

Decision Tree: Specificity=0.762, Sensitivity=0.619 Random Forest: Specificity=0.816, Sensitivity=0.667

Logistic regression and SVM got highest specificity.

KNN and SVM got highest Sensitivity.

K Fold Cross validation using 10 folds:

```
Average performance of Logistic Regression is: 76.43
Average performance of K Nearest Neighbour is: 71.35
Average performance of Naive-Bayes is: 74.48
Average performance of SVM is: 76.05
Average performance of Decision Tree is: 68.89
Average performance of Random Forest is: 75.78
```

Conclusion:

- 1. There were no NULL values present in the dataset however there ever many Zero's present, so we considered them as NULL values and imputed them
- 2. SVM shows the highest accuracy.
- 3. After SVM random forest and Logistic Regression have highest accuracy.
- 4. SVM shows highest precision, recall and f1-score.
- 5. Support Vector machine and KNN shows the highest ROC scores.
- 6. Logistic Regression and SVM has the highest specificity, KNN and Random Forest shows highest Sensitivity.
- 7. Logistic Regression, SVM and random forest shows the highest average accuracies while doing K Fold cross validation.

From overall evaluation metrices Support Vector machines and Logistic Regression shows best evaluation results.