

第四章 抽样分布

▶总体和样本的关系

第四章 抽样分布

- ▶4.1 随机抽样与无偏估计
- ▶4.2 样本平均数的分布
- ▶4.3 样本平均数差数的分布
- **▶4.4** *t*分布
- \rightarrow 4.5 χ^2 分布
- ▶4.6 F分布

4.1 随机抽样与无偏估计

(1) 随机抽样

随机抽样:保证总体中的每一个个体,在每一次抽样中都有 同等的概率被抽为样本。

总体中个体数为N,样本容量为n,所有可能样本共有 N^n 个。 抽样策略:

- ① 假设一个较小的有限总体,进行类似无限总体的抽样模拟。
- ② 蒙特卡洛抽样: 仅抽取一部分样本。

(2) 无偏估计

例题:设有一总体N=4,具变量2,3,3,4。以样本容量n=2作独立的随机抽样,结果列于表4.1。

$$\mu = \frac{1}{4}(2+3+3+4) = 3$$

$$\sigma^2 = \frac{1}{4}[(2-3)^2 + (3-3)^2 + (3-3)^2 + (4-3)^2] = \frac{1}{2}$$

$$\sigma = \sqrt{\frac{1}{2}} = 0.707$$

走偏估计

$$\mu = 3 \ \sigma^2 = \frac{1}{2} \ \sigma = 0.707$$

样本平均数页的平均数:

$$\mu_{\overline{v}} = 3 = \mu$$

样本方差 s^2 的平均数:

$$\mu_{s^2} = \frac{1}{2} = \sigma^2$$

样本标准差s的平均数:

$$\mu_{\rm s} = 0.530 \neq \sigma$$

表4.1 N=4、n=2时所有可能样本的平均数、方差和标准差

样本值	样本平均数 \overline{y}	样本方差s ²	样本标准差 s
2,2	2.0	0.0	0.000
2,3	2.5	0.5	0.707
2,3	2.5	0.5	0.707
2,4	3	2.0	1.414
3,2	2.5	0.5	0.707
3,3	3	0.0	0.000
3,3	3	0.0	0.000
3,4	3.5	0.5	0.707
3,2	2.5	0.5	0.707
3,3	3	0.0	0.000
3,3	3	0.0	0.000
3,4	3.5	0.5	0.707
4,2	3	2.0	1.414
4,3	3.5	0.5	0.707
4,3	3.5	0.5	0.707
4,4	4	0.0	0.000
平均数	3.0	1/2	0.530

◆ 定义

在统计上,如果所有可能样本的某一统计数的平均数等于总体的相应参数,则称该统计数为总体相应参数的无偏估值。

◆ 规律

- (1) 样本平均数 \overline{y} 是总体平均数 μ 的无偏估值。
- (2) 样本方差 s^2 是总体方差 σ^2 的无偏估值。
- (3) 样本标准差s不是总体标准差 σ 的无偏估值。

第四章 抽样分布

- ▶4.1 随机抽样与无偏估计
- ▶4.2 样本平均数的分布
- ▶4.3 样本平均数差数的分布
- **▶4.4** *t*分布
- \rightarrow 4.5 χ^2 分布
- **>4.6** F分布

表4.2 样本平均数的分布

n=2		n=	-4
\overline{y}	f	\overline{y}	f
2.0	1	2.00	1
		2.25	8
2.5	4	2.50	28
		2.75	56
3.0	6	3.00	70
		3.25	56
3.5	4	3.50	28
		3.75	8
4.0	1	4.00	1
—— 平均数 μ _y	3		3
平均数 $\mu_{ar{y}}$ 方 差 $\sigma_{ar{y}}^2$	1/4		1/8

样本值	样本平均数
2,2	2.0
2,3	2.5
2,3	2.5
2,4	3
3,2	2.5
3,3	3
3,3	3
3,4	3.5
3,2	2.5
3,3	3
3,3	3
3,4	3.5
4,2	3
4,3	3.5
4,3	3.5
4,4	4

◆ 性质

(1) 样本平均数分布的平均数等于总体平均数

$$\mu_{\overline{v}} = \mu$$

(2) 样本平均数分布的方差等于总体方差除以样本容量

进而有:
$$\sigma_{\bar{y}}^2 = \frac{\sigma^2}{n}$$

$$\sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}$$

 $\sigma_{\overline{v}}$ 为平均数的标准误,是 \overline{y} 的抽样误差的度量, 随着样本容量的增加而减小。

◆ 性质

- (3) 如果总体服从正态分布 $N(\mu, \sigma^2)$,不论样本容量n多大, 样本平均数 \overline{y} 服从正态分布 $N(\mu, \sigma^2/n)$ 。
- (4) 如果总体不服从正态分布 ,其平均数为 μ ,方差为 σ^2 , 则随着样本容量n不断增大, 样本平均数y的分布愈来愈 趋近于正态分布 $N(\mu, \sigma^2/n)$ 。这是中心极限定理。 一般只要n>30,就可以应用这一定理, \overline{y} 服从正态分布 $N(\mu, \sigma^2/n)$.

$$\overline{y} \sim N(\mu_{\overline{y}}, \sigma_{\overline{y}}^2)$$
 或 $\overline{y} \sim N(\mu, \sigma^2 / n)$

标准正态离差:
$$u = \frac{\overline{y} - \mu_{\overline{y}}}{\sigma_{\overline{y}}} = \frac{\overline{y} - \mu}{\sigma/\sqrt{n}}$$

$$= \frac{2.625 - 3}{0.707/\sqrt{4}}$$

$$= -1.06$$

查附表1:
$$F(-1.06) = 0.1446$$

 $P\{\overline{y} < 2.625\} = 0.1446$

例题:已知一正态总体 $\mu = 29.83$, $\sigma = 1.045$,

试求若样本容量
$$n = 4$$
, $P\{|\overline{y} - \mu| > 0.5\} = ? \overline{y} \sim N(\mu, \sigma^2 / n)$

$$P\{|\overline{y} - \mu| > 0.5\} = P\{\overline{y} - \mu > 0.5\} + P\{\overline{y} - \mu < -0.5\}$$

$$u = \frac{\overline{y} - \mu_{\overline{y}}}{\sigma_{\overline{y}}} = \frac{\overline{y} - \mu}{\sigma / \sqrt{n}}$$
$$= \frac{-0.5}{0.5225} = -0.96$$

$$\overline{y} \sim N(\mu, \sigma^2 / n)$$

查附表1: F(-0.96) = 0.1685 $P\{\overline{y} - \mu < -0.5\} = 0.1685$

由于正态分布左右对称, $P\{|\bar{y}-\mu|>0.5\}=2\times0.1685=0.3370$

第四章 抽样分布

- ▶4.1 随机抽样与无偏估计
- ▶4.2 样本平均数的分布
- ▶4.3 样本平均数差数的分布
- **▶4.4** *t*分布
- \rightarrow 4.5 χ^2 分布
- ▶4.6 F分布

◆ 推导

总体1:
$$N_1 = 4(2, 3, 3, 4)$$

$$\mu_1 = 3 \sigma_1^2 = 1/2 n_1 = 2$$

$\overline{\overline{y}}_1$	f
2.0	1
2.5	4
3.0	6
3.5	4
4.0	1
 总和	16

总体2:
$$N_2 = 3(1, 2, 3)$$

$$\mu_2 = 2 \sigma_2^2 = 2/3 n_2 = 2$$

$\overline{\overline{y}}_2$	f
1.0	1
1.5	2
2.0	3
2.5	2
3.0	1
 总和	9

样本平均数差数: $\overline{y}_1 - \overline{y}_2$

$$16 \times 9 = 144$$

表4.3 样本平均数差数的分布

$\overline{\overline{y}}_1 - \overline{\overline{y}}_2$	f
—1.0	1
-0.5	6
0.0	17
0.5	30
1.0	36
1.5	30
2.0	17
2.5	6
3.0	1
总 和	144

$$N_1 = 4, n_1 = 2, \mu_1 = 3, \sigma_1^2 = 1/2$$

 $N_2 = 3, n_2 = 2, \mu_2 = 2, \sigma_2^2 = 2/3$

样本平均数差数分布的平均数为:

$$\mu_{\overline{y}_1 - \overline{y}_2} = \frac{\sum f(\overline{y}_1 - \overline{y}_2)}{N_1^{n_1} N_2^{n_2}}$$

$$= 144 / 144 = 1 = 3 - 2$$

$$= \mu_1 - \mu_2$$

样本平均数差数分布的方差为:

$$\sigma_{\bar{y}_1 - \bar{y}_2}^2 = \frac{1}{N_1^{n_1} N_2^{n_2}} \sum_{j=1}^{n_1} f[(\bar{y}_1 - \bar{y}_2) - (\mu_1 - \mu_2)]^2$$

$$= \frac{7}{12} = \frac{1}{4} + \frac{1}{3} = \frac{1}{2} / 2 + \frac{2}{3} / 2$$

$$= \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \sigma_{\bar{y}_1}^2 + \sigma_{\bar{y}_2}^2$$

◆ 性质

(1) 样本平均数差数的平均数等于总体平均数之差

$$\mu_{\overline{y}_1 - \overline{y}_2} = \mu_1 - \mu_2$$

(2) 样本平均数差数的方差等于两个样本平均数方差之和

$$\sigma_{\bar{y}_1 - \bar{y}_2}^2 = \sigma_{\bar{y}_1}^2 + \sigma_{\bar{y}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

(3) 如果 \overline{y}_1 服从正态分布 $N(\mu_1, \sigma_{\overline{y}_1}^2)$, \overline{y}_2 服从正态分布 $N(\mu_2, \sigma_{\overline{y}_2}^2)$, 则 $(\overline{y}_1 - \overline{y}_2)$ 服从正态分布 $N(\mu_1 - \mu_2, \sigma_{\overline{y}_1 - \overline{y}_2}^2)$ 。

例题: 已知两个正态总体 $\mu_1 - \mu_2 = 1$, $\sigma_{\bar{y}_1}^2 = \frac{1}{4}$, $\sigma_{\bar{y}_2}^2 = \frac{1}{3}$, 求 $(\bar{y}_1 - \bar{y}_2) < 0.25$ 的概率。

$$\overline{y}_{1} - \overline{y}_{2} \sim N(\mu_{1} - \mu_{2}, \sigma_{\overline{y}_{1} - \overline{y}_{2}}^{2}) \qquad \sigma_{\overline{y}_{1} - \overline{y}_{2}}^{2} = \sigma_{\overline{y}_{1}}^{2} + \sigma_{\overline{y}_{2}}^{2}$$

$$\sigma_{\overline{y}_{1} - \overline{y}_{2}}^{2} = \sqrt{\sigma_{\overline{y}_{1}}^{2} + \sigma_{\overline{y}_{2}}^{2}} = \sqrt{\frac{1}{4} + \frac{1}{3}} = 0.7638$$

$$u = \frac{y - \mu}{\sigma}$$

$$u = \frac{\left(\overline{y}_1 - \overline{y}_2\right) - (\mu_1 - \mu_2)}{\sigma_{\overline{y}_1 - \overline{y}_2}} = \frac{(0.25 - 1)}{0.7638} = -0.98$$
查附表1: $F(-0.98) = 0.1635$

$$P\{(\overline{y}_1 - \overline{y}_2) \le 0.25\} = 0.1635$$

第四章 抽样分布

- ▶4.1 随机抽样与无偏估计
- ▶4.2 样本平均数的分布
- ▶4.3 样本平均数差数的分布
- **▶4.4** *t*分布
- \rightarrow 4.5 χ^2 分布
- **>4.6** F分布

◆ t分布的提出

从正态总体中抽样,其样本平均数 \bar{y} 服从 $N(\mu, \sigma_{\bar{v}}^2)$ 。

总体方差已知
$$u = \frac{\overline{y} - \mu}{\sigma_{\overline{y}}} = \frac{\overline{y} - \mu}{\sigma/\sqrt{n}}$$

总体方差一般未知

$$s^2$$
代替 σ^2

$$t = \frac{\overline{y} - \mu}{S_{\overline{y}}} = \frac{\overline{y} - \mu}{S/\sqrt{n}} \qquad (n < 30)$$

◆ t分布的提出

1908年,英国统计学家W. S. Gosset 于以笔名"student"在论文"The Probable Error of a Mean"中提出t分布,又称为学生氏t分布,开创了小样本理论的先河。

THE PROBABLE ERROR OF A MEAN.

BY STUDENT.

Introduction.

Any experiment may be regarded as forming an individual of a "population" of experiments which might be performed under the same conditions. A series of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us to form a judgment as to the statistical constants of the population to which the experiments belong. In a great number of cases the question finally turns on the value of a mean, either directly, or as the mean difference between the two quantities.

◆ t分布的概率密度函数:

$$f(t) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{\pi v} \Gamma(\frac{v}{2})} (1 + \frac{t^2}{v})^{-(\frac{v+1}{2})}, \quad -\infty < t < +\infty$$

$$v: 自由度 (n-1)$$

$$\Gamma: gamma$$
 函数

◆ t分布的平均数与方差:

$$\mu_{t} = \int_{-\infty}^{+\infty} f(t) \cdot t dt = 0$$

$$\sigma_{t}^{2} = \int_{-\infty}^{+\infty} f(t) \cdot (t - \mu_{t})^{2} dt = \frac{v}{v - 2} \quad (v > 2)$$

◆ 性质

- (1) *t*分布受自由度的制约,每一个自由度都有一条*t*分布曲线。
- (2) t分布密度曲线以t=0为中心,左右对称,且在t=0时,t分布的概率密度函数取得最大值。

t分布的概率密度曲线

◆ 性质

(3)和标准正态分布相比较,t分布顶端偏低,尾端偏高。 ν 越大,t分布越趋近于标准正态分布。当 $\nu > 30$ 时,接近标准正态分布; $\nu \rightarrow \infty$ 时,与标准正态分布重合。

t分布的概率密度曲线

◆ t分布的概率

t分布的累积函数F(t):

$$F(t_i) = P\{t \le t_i\} = \int_{-\infty}^{t_i} f(t)dt$$

t分布的右尾从 t_i 到+∞的概率:

$$P\{t > t_i\} = 1 - F(t_i)$$

由于t分布的对称性,故两尾概率为:

$$P\{|t| > t_i\} = 2[1 - F(t_i)]$$

◆ t分布的概率

附表3列出不同自由度下 t 分布的两尾临界值

附表3 t分布两尾临界值 $t_{\alpha/2,df}$ 表

$$p\{\mid t\mid \geq t_{\alpha/2,df}\} = \alpha$$

古山座 16				α				
自由度 好一	0.500	0. 200	0.100	0.050	0.025	0.010	0. 005	
1	1.000	3.078	6.314	12. 706	25. 452	63.657	127. 321	
2	0.816	1.886	2.920	4. 303	6.205	9.925	14. 089	
3	0.765	1.638	2.353	3. 182	4. 177	5.841	7.453	
4	0.741	1.533	2. 132	2. 776	3.495	4.604	5.598	
5	0.727	1.476	2.015	2. 571	3. 163	4.032	4.773	
6	0.718	1.440	1.943	2. 447	2.969	3.707	4.317	
7	0.711	1.415	1.895	2.365	2.841	3.499	4. 029	
8	0.706	1.397	1.860	2.306	2.752	3.355	3.833	
9	0.703	1.383	1.833	2. 262	2. 685	3. 250	3.690	
10	0.700	1.372	1.812	2. 228	2.634	3. 169	3. 581	

$$P\{|t| \ge 2.228\} = P\{t \ge 2.228\} + P\{t < -2.228\} = 0.05$$

第四章 抽样分布

- ▶4.1 随机抽样与无偏估计
- ▶4.2 样本平均数的分布
- ▶4.3 样本平均数差数的分布
- **▶4.4** *t*分布
- \rightarrow 4.5 χ^2 分布
- ▶4.6 F分布

$4.5 \chi^2$ 分布(卡方分布)

◆ 定义

n个相互独立的标准正态离差u的平方和

$$\chi^{2} = u_{1}^{2} + u_{2}^{2} + \dots + u_{n}^{2} = \sum_{i=1}^{n} u_{i}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \mu)^{2}}{\sigma^{2}} \sim \chi_{v=n}^{2}$$

样本:

$$s^{2} = \frac{\sum (y - \overline{y})^{2}}{n - 1} \qquad \chi^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{\sigma^{2}} = \frac{(n - 1)s^{2}}{\sigma^{2}} \sim \chi^{2}_{v=n-1}$$

◆ ½分布的概率密度函数

$$f(\chi^{2}) = \frac{(\chi^{2})^{\frac{\nu}{2}-1} e^{-\frac{1}{2}\chi^{2}}}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$$

不同自由度下光分布的概率密度曲线

◆ χ^2 分布的性质

① 定义域
$$\chi^2 \in [0, +\infty)$$

② 平均数
$$\mu_{\chi^2} = \nu$$

- ③ $\mathbf{c}v = 1$ 时,分布极度左偏; $\mathbf{c}v = 2$ 时,曲线在 $\chi^2 = 0$ 处最高; 随着v增大, 曲线渐趋左右对称。
- ④ 当v > 30, χ^2 分布趋于正态分布 $\sqrt{2\chi^2} \sim N(\sqrt{2v-1}, 1)$ $u = \sqrt{2\chi^2} - \sqrt{2\nu - 1}$

◆ ½分布的概率计算

 χ^2 分布的累积函数 $F(\chi^2)$:

$$F(\chi_i^2) = P\{\chi^2 \le \chi_i^2\} = \int_0^{\chi_i^2} f(\chi^2) d(\chi^2)$$

 χ^2 分布的右尾从 χ_i^2 到+∞的概率:

$$P\{\chi^{2} > \chi_{i}^{2}\} = 1 - F(\chi_{i}^{2}) = \int_{\chi_{i}^{2}}^{+\infty} f(\chi^{2}) d(\chi^{2})$$

揚州大學 YANGZHOU UNIVERSITY

◆ ½分布的概率计算

$$\chi_{0.05,5}^2 = 11.07$$
 $P(\chi^2 > 11.07) = 0.05$

附表 7 χ^2 分布右尾临界值 $\chi^2_{\alpha,df}$ 表

$$P\{\chi^2 \geqslant \chi_{\alpha,df}^2\} = \alpha$$

自由度					C	χ				
df	0.995	0. 990	0. 975	0.950	0.900	0. 100	0.050	0.025	0.010	0.005
1					0.02	2.71	3. 84	5. 02	6. 63	7. 88
2	0.01	0. 02	0.05	0. 10	0. 21	4. 61	5. 99	7. 38	9. 21	10.60
3	0.07	0. 11	0. 22	0.35	0. 58	6. 25	7. 81	9. 35	11.34	12. 84
4	0. 21	0. 30	0.48	0.71	1.06	7. 78	9. 49	11. 14	13. 28	14. 86
5	0.41	0. 55	0.83	1. 15	1.61	9. 24	11.07	12. 83	15.09	16. 75
6	0.68	0. 87	1. 24	1. 64	2. 20	10. 64	12. 59	14. 45	16.81	18. 55
7	0. 99	1. 24	1.69	2. 17	2. 83	12.02	14. 07	16. 01	18.48	20. 28
8	1.34	1. 65	2. 18	2.73	3.49	13. 36	15. 51	17. 53	20.09	21.96
9	1.73	2. 09	2.70	3. 33	4. 17	14.68	16. 92	19.02	21.69	23. 59
10	2. 16	2. 56	3. 25	3. 94	4. 87	15. 99	18.31	20.48	23. 21	25. 19

例题:已知某总体 $\sigma^2=10$ 、试求当随机抽取n=40

的样本时,求
$$P\{s^2 \leq 9\} = ?$$

由于n>30,可作正态近似

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{(40-1)\times 9}{10} = 35.1$$

$$u = \sqrt{2\chi^2} - \sqrt{2\nu - 1}$$
$$= \sqrt{2 \times 35.1} - \sqrt{2 \times 39 - 1} = -0.40$$

查附表1: F(-0.40) = 0.3446

$$P\{s^2 \le 9\} = 0.3446$$

第四章 抽样分布

- ▶4.1 随机抽样与无偏估计
- ▶4.2 样本平均数的分布
- ▶4.3 样本平均数差数的分布
- **▶4.4** *t*分布
- \rightarrow 4.5 χ^2 分布
- **▶4.6** F分布

◆ 定义

在一正态总体 $N(\mu, \sigma^2)$ 中随机抽取样本容量为 n_1 和 n_2 的两 个样本,其样本方差(均方)的比值定义为F

$$F = \frac{S_1^2}{S_2^2} \sim F_{\nu_1,\nu_2} \text{ ft} \qquad \nu_1 = n_1 - 1, \nu_2 = n_2 - 1$$

◆ F分布的概率密度函数

$$f(F) = \frac{\Gamma(\frac{v_1 + v_2}{2})}{\Gamma(\frac{v_1}{2})\Gamma(\frac{v_2}{2})} v_1^{\frac{v_1}{2}} v_2^{\frac{v_2}{2}} \frac{F^{\frac{v_1}{2} - 1}}{(v_1 F + v_2)^{\frac{v_1 + v_2}{2}}}$$

◆ F分布的性质

- (1) F分布的取值区间为 $[0,+\infty)$
- (2) F分布曲线的形状仅决定于 ν_1 和 ν_2

◆ F分布的概率计算

F分布的累积函数 $F(F_i)$:

$$F(F_i) = P\{F \leq F_i\} = \int_0^{F_i} f(F)dF$$

F分布右尾从F,到+∞的概率:

$$P\{F > F_i\} = 1 - F(F_i)$$

◆ F分布的概率计算

附表 4 F 分布右尾临界值 F_{α, df_i, df_j} 表

df_2												d	y_1	
492	1	2	3	4	5	6	7	8	9	10	11	12	14	16
1	161 4 052 5	200 000		225 5 625			237 5 928	239 5 981		242 6 056		244 6 106	245 6 143	
2														2 19. 43 3 99. 44
3												8.74 27.05		8. 69 26. 83
4	7.71 21.20 I											5.91 14.37		
5	6. 61 16. 26 1													4.60 9.68

$$P\{F > F_{\alpha,\nu_1,\nu_2}\} = 0.05 (\bot)$$

 $P\{F > F_{\alpha,\nu_1,\nu_2}\} = 0.01 (\top)$

当 ν_1 =1, ν_2 =5时,查询右尾概率等于 0.05和0.01的临界F值

$$F_{0.05,1,5}$$
=6.61, $F_{0.01,1,5}$ =16.26

$$P\{F > 6.61\} = 0.05$$

$$P\{F>16.26\}=0.01$$