

Herbicidal compositions

5

The invention lies in the technical field of crop protection products, in particular active substance/surfactant/humectant combinations.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

To control undesired harmful plants, a multiplicity of herbicides is available to the user, which can be employed as a function of the biological properties of the herbicides, the species of harmful plants to be controlled and the crop plant species. In this context, the herbicidal active substances are formulated in such a way that their application is as optimal as possible and that they have high activity. A variety of formulation auxiliaries such as wetters, dispersants, emulsifiers, antifoams, solvents or fillers are employed for this purpose.

However, the reliability and the level of the control of the harmful plants vary as a function of environmental factors such as temperature, atmospheric humidity, soil moisture, light incidence, precipitation or soil type, which can lead to follow-up treatments in the event of poor activity or to the damage of useful plants in the case of unduly high rates of application.

A more reliable activity also has ecological advantages. To avoid poor activity, the user frequently increases the amount of active substance to be applied. However,

25 the disadvantage of this procedure is that the active substances' potential to affect soil fauna, to leach from the soil or to enter surface waters increases.

The effect of humectants on a variety of pesticides is described in *Adjuvants for Agrochemicals*, CRC Press, Inc. (1992), pp. 261 – 271. WO 89/02570 discloses that 30 humectants in conjunction with certain silicone surfactants can increase the activity of herbicides.

The object of the present invention was to provide a herbicidal composition with improved level of action and improved reliability of action. This object is achieved by

a specific herbicidal composition comprising herbicidal active substances in combination with certain surfactants and humectants.

The present invention thus relates to a herbicidal composition comprising

5 a) one or more herbicidal active substances,
b) one or more surfactants other than silicone surfactants, and
c) one or more humectants.

The herbicidal active substances a) which are present in the herbicidal compositions according to the invention are, for example, ALS inhibitors (acetolactate synthetase inhibitors) or herbicides other than ALS inhibitors, such as herbicides from the group of the carbamates, thiocarbamates, haloacetanilides, substituted phenoxy-, naphthoxy- and phenoxyphenoxy carboxylic acid derivatives and heteroaryloxy-phenoxyalkanecarboxylic acid derivatives such as quinolyloxy-, quinoxalyloxy-, pyridyloxy-, benzoxazolyloxy- and benzothiazolyloxyphenoxyalkanecarboxylic acid esters, cyclohexanedione derivatives, imidazolinones, phosphorus-containing herbicides, for example of the glufosinate type or of the glyphosate type, pyrimidinyloxy pyridine carboxylic acid derivatives, pyrimidyl oxybenzoic acid derivatives, triazolopyrimidinesulfonamide derivatives and S-(N-aryl-N-alkylcarbamoylmethyl)dithiophosphoric acid esters.

The ALS inhibitors are in particular sulfonamides, preferably from the group of the sulfonylureas, especially preferably those of the formula (I) and/or their salts

$$25 \quad R^a-SO_2-NR^b-CO-(NR^c)_x-R^d \quad (I)$$

in which

30 R^a is a hydrocarbon radical, preferably an aryl radical such as phenyl, which is unsubstituted or substituted or a heterocyclic radical, preferably a heteroaryl radical such as pyridyl, which is unsubstituted or substituted, and where the radicals

including substituents have 1-30 carbon atoms, preferably 1-20 carbon atoms, or R^a is an electron-attracting group such as a sulfonamide radical,

R^b is a hydrogen atom or a hydrocarbon radical which is unsubstituted or substituted and including substituents has 1-10 carbon atoms, for example

5 unsubstituted or substituted C_1-C_6 -alkyl, preferably a hydrogen atom or methyl,

R^c is a hydrogen atom or a hydrocarbon radical which is unsubstituted or substituted and including substituents has 1-10 carbon atoms, for example unsubstituted or substituted C_1-C_6 -alkyl, preferably a hydrogen atom or methyl,

x equals zero or 1 and

R^d is a heterocyclic radical.

Especially preferred ALS inhibitors are sulfonylureas of the formula (II) and/or their salts

in which

R^1 is C_1-C_4 -alkoxy, preferably C_2-C_4 -alkoxy, or $CO-R^a$, in which R^a equals OH, 20 C_1-C_4 -alkoxy or NR^bR^c , in which R^b and R^c independently of one another are identical or different and are H or C_1-C_4 -alkyl,

R^2 is halogen or $(A)_nNR^dR^e$, in which n equals zero or 1, A is a group $CR'R''$ in which R' and R'' independently of one another are identical or different and are H or C_1-C_4 -alkyl, R^d equals H or C_1-C_4 -alkyl and R^e is an acyl radical such as formyl or C_1-C_4 -alkylsulfonyl, and, in the event that R^1 equals C_1-C_4 -alkoxy, 25 preferably C_2-C_4 -alkoxy, R^2 can also be H,

R³ is H or C₁-C₄-alkyl,

m equals zero or 1, preferably zero,

5 X and Y independently of one another are identical or different and are C₁-C₆-alkyl, C₁-C₆-alkoxy or C₁-C₆-alkylthio, where each of the three abovementioned radicals is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, C₁-C₄-alkoxy and C₁-C₄-alkylthio, or are C₃-C₆-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-alkenyloxy or C₃-C₆-alkynyloxy, preferably C₁-C₄-alkyl or C₁-C₄-alkoxy, and

Z equals CH or N.

Preferred sulfonylureas of the formula (II) and/or their salts are those in which

5 m equals zero and

a) R¹ equals CO-(C₁-C₄-alkoxy) and R² equals halogen, preferably iodine, or R² equals CH₂-NHR^e, in which R^e is an acyl radical, preferably C₁-C₄-alkylsulfonyl, or

20 b) R¹ equals CO-N(C₁-C₄-alkyl)₂ and R² equals NHR^e, in which R^e is an acyl radical, preferably formyl.

A hydrocarbon radical for the purposes of this description is a straight-chain, branched or cyclic and saturated or unsaturated aliphatic or aromatic hydrocarbon radical, for example alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl or aryl; aryl in this context is a mono-, bi- or polycyclic aromatic system, for example phenyl, naphthyl, tetrahydronaphthyl, indenyl, indanyl, pentalenyl, fluorenyl and the like, preferably phenyl. A hydrocarbon radical preferably has 1 to 40 carbon atoms, by preference 1 to 30 carbon atoms; especially preferably, a hydrocarbon radical is alkyl, alkenyl or alkynyl, each of which has up to 12 carbon atoms, or cycloalkyl having 3, 4, 5, 6 or 7 ring atoms, or phenyl.

A heterocyclic radical or ring (heterocyclyl) for the purposes of the present description can be saturated, unsaturated or heteroaromatic and unsubstituted or substituted; by preference, it contains one or more hetero atoms in the ring, by preference selected from the group consisting of N, O and S; it is by preference an aliphatic heterocyclyl radical having 3 to 7 ring atoms or a heteroaromatic radical having 5 or 6 ring atoms and contains 1, 2 or 3 hetero atoms. The heterocyclic radical can be, for example a heteroaromatic radical or ring (heteroaryl) such as, for example, a mono-, bi- or polycyclic aromatic system in which at least 1 ring contains one or more hetero atoms, for example pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, thienyl, thiazolyl, oxazolyl, furyl, pyrrolyl, pyrazolyl and imidazolyl, or is a partially or fully hydrogenated radical such as oxiranyl, oxetanyl, pyrrolidyl, piperidyl, piperazinyl, dioxolanyl, morpholinyl, tetrahydrofuryl. Suitable substituents for a substituted heterocyclic radical are the substituents given further below, and additionally also oxo. The oxo group can also be present on those hetero ring atoms which can exist in various oxidation numbers, for example in the case of N and S.

Substituted radicals for the purposes of the present description, such as substituted hydrocarbon radicals, for example substituted alkyl, alkenyl, alkynyl or aryl such as phenyl and benzyl, or substituted heterocyclyl, are, for example, a substituted radical which is derived from the unsubstituted skeleton, the substituents being, for example, one or more, preferably 1, 2 or 3, radicals selected from the group consisting of halogen (fluorine, chlorine, bromine, iodine), alkoxy, haloalkoxy, alkylthio, hydroxyl, amino, nitro, carboxyl, cyano, azido, alkoxy carbonyl, alkyl carbonyl, formyl, carbamoyl, mono- and dialkylaminocarbonyl, substituted amino such as acylamino, mono- and dialkylamino, and alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl and, in the case of cyclic radicals, also alkyl and haloalkyl, and unsaturated aliphatic radicals which correspond to the abovementioned saturated hydrocarbon-containing radicals, such as alkenyl, alkynyl, alkenyloxy, alkynyoxy and the like. In the case of radicals with carbon atoms, those having 1 to 4 carbon atoms, in particular 1 or 2 carbon atoms, are preferred. Preferred are, as a rule, substituents selected from the group consisting of halogen, for example fluorine and chlorine, (C₁-C₄)alkyl, preferably methyl or ethyl,

(C₁-C₄)haloalkyl, preferably trifluoromethyl, (C₁-C₄)alkoxy, preferably methoxy or ethoxy, (C₁-C₄)haloalkoxy, nitro and cyano.

An acyl radical for the purposes of the present description is the radical of an organic acid which formally arises by elimination of an OH group from the organic acid, for example the radical of a carboxylic acid and radicals of acids derived therefrom such as thiocarboxylic acid, optionally N-substituted iminocarboxylic acids, or the radicals of carbonic monoesters, optionally N-substituted carbamic acids, sulfonic acids, sulfinic acids, phosphonic acids or phosphinic acids.

An acyl radical is preferably formyl or acyl selected from the group consisting of CO-R^X, CS-R^X, CO-OR^X, CS-OR^X, CS-SR^X, SOR^Y or SO₂R^Y, where R^X and R^Y are each a C₁-C₁₀-hydrocarbon radical such as C₁-C₁₀-alkyl or C₆-C₁₀-aryl, which hydrocarbon radical is unsubstituted or substituted, for example by one or more substituents selected from the group consisting of halogen, such as F, Cl, Br, I, alkoxy, haloalkoxy, hydroxyl, amino, nitro, cyano or alkylthio, or R^X and R^Y are aminocarbonyl, or aminosulfonyl, the two last-mentioned radicals being unsubstituted, N-monosubstituted or N,N-disubstituted, for example by substituents selected from the group consisting of alkyl or aryl.

Acyl is, for example, formyl, haloalkylcarbonyl, alkylcarbonyl such as (C₁-C₄)alkylcarbonyl, phenylcarbonyl, it being possible for the phenyl ring to be substituted, or alkyloxycarbonyl, such as (C₁-C₄) alkyloxycarbonyl, phenoxy carbonyl, benzyloxycarbonyl, alkylsulfonyl, such as (C₁-C₄) alkylsulfonyl, alkylsulfinyl, such as C₁-C₄(alkylsulfinyl), N-alkyl-1-iminoalkyl, such as N-(C₁-C₄)-1-imino-(C₁-C₄)alkyl and other radicals of organic acids.

The active substances from the group of the ALS inhibitors such as sulfonylureas which are present as component a) in the herbicidal compositions according to the invention are to be understood as meaning, for the purposes of the present invention, not only the neutral compounds, but always also their salts with inorganic and/or organic counterions.

Thus, for example, sulfonylureas can form salts in which the hydrogen of the -SO₂-NH- group is replaced by an agriculturally suitable cation. These salts are, for example, metal salts, in particular alkali metal salts or alkaline earth metal salts, in particular sodium and potassium salts, or else ammonium salts or salts with organic amines. Likewise, salt formation can be effected by addition of an acid onto basic groups, such as, for example, amino and alkylamino. Acids which are suitable for this purpose are strong inorganic and organic acids, for example HCl, HBr, H₂SO₄ or HNO₃.

0 Preferred ALS inhibitors are from the series of the sulfonylureas, for example pyrimidinyl- or triazinylaminocarbonyl[benzene-, pyridine-, pyrazole-, thiophene- and (alkylsulfonyl)alkylamino]sulfamides. Preferred as substituents on the pyrimidine ring or triazine ring are alkoxy, alkyl, haloalkoxy, haloalkyl, halogen or dimethylamino, it being possible for all substituents to be combined independently of one another.

15 Preferred substituents in the benzene-, pyridine-, pyrazole-, thiophene- or (alkylsulfonyl)alkylamino moiety are alkyl, alkoxy, halogen such as F, Cl, Br or I, amino, alkylamino, dialkylamino, acylamino such as formylamino, nitro, alkoxy carbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkoxyaminocarbonyl, haloalkoxy, haloalkyl, alkylcarbonyl, alkoxyalkyl,

20 alkylsulfonylaminoalkyl, (alkanesulfonyl)alkylamino. Examples of such suitable sulfonylureas are

A1) Phenyl- and benzylsulfonylureas and related compounds, for example 1-(2-chlorophenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea (chlorsulfuron),

25 1-(2-ethoxycarbonylphenylsulfonyl)-3-(4-chloro-6-methoxypyrimidin-2-yl)urea (chlorimuron-ethyl),

1-(2-methoxyphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea (metsulfuron-methyl),

30 1-(2-chloroethoxyphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea (triasulfuron),

1-(2-methoxycarbonylphenylsulfonyl)-3-(4,6-dimethylpyrimidin-2-yl)urea
(sulfometuron-methyl),

1-(2-methoxycarbonylphenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-3-methylurea (tribenuron-methyl),

5 1-(2-methoxycarbonylbenzylsulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)urea
(bensulfuron-methyl),

1-(2-methoxycarbonylphenylsulfonyl)-3-(4,6-bis-(difluoromethoxy)pyrimidin-2-yl)urea,
(primisulfuron-methyl),

3-(4-ethyl-6-methoxy-1,3,5-triazin-2-yl)-1-(2,3-dihydro-1,1-dioxo-2-methylbenzo-[b]thiophen-7-sulfonyl)urea (EP-A 0 796 83),

3-(4-ethoxy-6-ethyl-1,3,5-triazin-2-yl)-1-(2,3-dihydro-1,1-dioxo-2-methylbenzo[b]-thiophen-7-sulfonyl)urea (EP-A 0 079 683),

3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-1-(2-methoxycarbonyl-5-iodophenylsulfonyl)urea (idosulfuron-methyl and its sodium salt, WO 92/13845),

15 DPX-66037, triflusulfuron-methyl (see Brighton Crop Prot. Conf. - Weeds - 1995, p. 853),

CGA-277476, (see Brighton Crop Prot. Conf. - Weeds - 1995, p. 79),

20 methyl 2-[3-(4,6-dimethoxypyrimidin-2-yl)ureidosulfonyl]-4-methanesulfonamido-methylbenzoate (mesosulfuron-methyl and its sodium salt, WO 95/10507),

N,N-dimethyl-2-[3-(4,6-dimethoxypyrimidin-2-yl)ureidosulfonyl]-4-formylamino-benzamide (foramsulfuron and its sodium salt, WO 95/01344);

25

A2) Thienylsulfonylureas, for example

1-(2-methoxycarbonylthiophen-3-yl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea
(thifensulfuron-methyl);

30

A3) Pyrazolylsulfonylureas, for example

1-(4-ethoxycarbonyl-1-methylpyrazol-5-yl-sulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)urea (pyrazosulfuron-methyl);

methyl 3-chloro-5-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-1-methyl-pyrazole-4-carboxylate (EP-A 0 282 613);

methyl 5-(4,6-dimethylpyrimidin-2-yl-carbamoylsulfamoyl)-1-(2-pyridyl)pyrazole-4-carboxylate (NC-330, see Brighton Crop Prot. Conference 'Weeds' 1991, Vol. 1, p45 et seq.),

DPX-A8947, azimsulfuron, (see Brighton Crop Prot. Conf. 'Weeds' 1995, p. 65);

5

A4) Sulfone diamide derivatives, for example

3-(4,6-dimethoxypyrimidin-2-yl)-1-(N-methyl-N-methylsulfonylaminosulfonyl)urea (amidosulfuron) and its structural analogs (EP-A 0 131 258 and Z. Pfl. Krankh. Pfl. Schutz, Special Issue XII, 489-497 (1990));

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

A5) Pyridylsulfonylureas, for example

1-(3-N,N-dimethylaminocarbonylpyridin-2-ylsulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)urea (nicosulfuron),

1-(3-ethylsulfonylpyridin-2-ylsulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)urea (rimsulfuron),

methyl 2-[3-(4,6-dimethoxypyrimidin-2-yl)ureidosulfonyl]-6-trifluoromethyl-3-pyridine-carboxylate, sodium salt (DPX-KE 459, fluprysulfuron, see Brighton Crop Prot. Conf. Weeds, 1995, p. 49),

pyridylsulfonylureas as are described, for example in DE-A 40 00 503 and DE-A 40 30 577, preferably those of the formula

in which

25 E is CH or N, preferably CH,

R²⁰ is iodine or NR²⁵R²⁶,

R²¹ is hydrogen, halogen, cyano, (C₁-C₃)alkyl, (C₁-C₃)alkoxy, (C₁-C₃)haloalkyl, (C₁-C₃)haloalkoxy, (C₁-C₃)alkylthio, (C₁-C₃)alkoxy(C₁-C₃)alkyl, (C₁-C₃)-

alkoxycarbonyl, mono- or di((C₁-C₃)alkyl)amino, (C₁-C₃)alkylsulfinyl or sulfonyl, SO₂-NR^xR^y or CO-NR^xR^y, in particular hydrogen,

R^x, R^y independently of one another are hydrogen, (C₁-C₃)alkyl, (C₁-C₃)alkenyl, (C₁-C₃)alkynyl or together are -(CH₂)₄-, -(CH₂)₅- or -(CH₂)₂-O-(CH₂)₂-,

5 n is 0, 1, 2 or 3, preferably 0 or 1,

R²² is hydrogen or CH₃,

R²³ is halogen, (C₁-C₂)alkyl, (C₁-C₂)alkoxy, (C₁-C₂)haloalkyl, in particular CF₃, (C₁-C₂)haloalkoxy, preferably OCHF₂ or OCH₂CF₃,

R²⁴ is (C₁-C₂)alkyl, (C₁-C₂)haloalkoxy, preferably OCHF₂, or (C₁-C₂)alkoxy,

10 R²⁵ is (C₁-C₄)alkyl,

R²⁶ is (C₁-C₄)alkylsulfonyl or

R²⁵ and R²⁶ together are a chain of the formula -(CH₂)₃SO₂- or -(CH₂)₄SO₂-, for example 3-(4,6-dimethoxypyrimiden-2-yl)-1-(3-N-methylsulfonyl-N-methyl-aminopyridin-2-yl)sulfonylurea, or their salts;

15 A6) Alkoxyphenoxy sulfonylureas as are described, for example, in EP-A 0 342 569, preferably those of the formula

20

in which

E is CH or N, preferably CH,

R²⁷ is ethoxy, propoxy or isopropoxy,

25 R²⁸ halogen, NO₂, CF₃, CN, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₁-C₄)alkylthio or (C₁-C₃)alkoxy carbonyl, preferably in the 6-position on the phenyl ring,

n is 0, 1, 2 or 3, preferably 0 or 1,

R²⁹ is hydrogen, (C₁-C₄)alkyl or (C₃-C₄)alkenyl,

R³⁰, R³¹ independently of one another are halogen, (C₁-C₂)alkyl, (C₁-C₂)alkoxy, (C₁-C₂)haloalkyl, (C₁-C₂)haloalkoxy or (C₁-C₂)alkoxy(C₁-C₂)alkyl, preferably OCH₃

or CH_3 , for example 3-(4,6-dimethoxypyrimidin-2-yl)-1-(2-ethoxyphenoxy)sulfonylurea, or their salts;

A7) Imidazolylsulfonylureas, for example

MON 37500, sulfosulfuron (see Brighton Crop Prot. Conf. 'Weeds', 1995, p. 57), and
5 other related sulfonylurea derivatives and mixtures of these.

Typical representatives of these active substances are, *inter alia*, the compounds listed hereinbelow: amidosulfuron, azimsulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, flupyrifluron-methyl-sodium, halosulfuron-methyl, imazosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, triflusulfuron-methyl, iodosulfuron-methyl and its sodium salt (WO 92/13845), mesosulfuron-methyl and its sodium salt (Agrow No. 347, March 3, 2000, page 22 (PJB Publications Ltd. 2000)) and foramsulfuron and its sodium salt (Agrow No. 338, October 15, 1999, page 26 (PJB Publications Ltd. 1999)).

The active substances listed hereinabove are known, for example, from "The
20 Pesticide Manual", 12th Edition (2000), The British Crop Protection Council, or the references cited after the individual active substances.

The herbicidal active substances which are present in the herbicidal compositions according to the invention and which differ from the ALS inhibitors are, for example,
25 herbicides from the group of the carbamates, thiocarbamates, haloacetanilides, substituted phenoxy-, naphthoxy- and phenoxyphenoxy carboxylic acid derivatives, and heteroaryloxyphenoxyalkanecarboxylic acid derivatives such as quinolylloxy-, quinoxalyloxy-, pyridyloxy-, benzoxazolyloxy- and benzothiazolyloxyphenoxyalkane-carboxylic esters, cyclohexanedione derivatives, imidazolinones, phosphorus-
30 containing herbicides, for example of glufosinate type or of the glyphosate type, pyrimidinylloxy pyridine carboxylic acid derivatives, pyrimidylloxybenzoic acid derivatives, triazolopyrimidinesulfonamide derivatives and S-(N-aryl-N-

alkylcarbamoylmethyl)dithiophosphoric esters. Preferred in this context are phenoxyphenoxy- and heteroaryloxyphenoxy carboxylic acid esters and salts, imidazolinones and herbicides such as bentazone, cyanazine, atrazine, dicamba or hydroxybenzonitriles such as bromoxynil and ioxynil and other foliar-acting 5 herbicides.

Suitable herbicidal active substances a) which may be present as component a) in the herbicidal compositions according to the invention and which differ from the ALS inhibitors are, for example:

0 B) Herbicides of the phenoxyphenoxy- and heteroaryloxyphenoxy carboxylic acid derivatives type, such as

10 B1) Phenoxyphenoxy- and benzyloxyphenoxy carboxylic acid derivatives, for example methyl 2-(4-(2,4-dichlorophenoxy)phenoxy)propionate (diclofop-methyl), methyl 2-(4-(4-bromo-2-chlorophenoxy)phenoxy)propionate (DE-A 26 01 548), methyl 2-(4-(4-bromo-2-fluorophenoxy)phenoxy)propionate (US-A 4,808,750), methyl 2-(4-(2-chloro-4-trifluoromethylphenoxy)phenoxy)propionate (DE-A 24 33 067), methyl 2-(4-(2-fluoro-4-trifluoromethylphenoxy)phenoxy)propionate (US-A 20 4,808,750), methyl 2-(4-(2,4-dichlorobenzyl)phenoxy)propionate (DE-A 24 17 487), ethyl 4-(4-(4-trifluoromethylphenoxy)phenoxy)pent-2-enoate, methyl 2-(4-(4-trifluoromethylphenoxy)phenoxy)propionate (DE-A 24 33 067);

25 B2) „Mononuclear“ heteroaryloxyphenoxy alkanecarboxylic acid derivatives, for example ethyl 2-(4-(3,5-dichloropyridyl-2-oxy)phenoxy)propionate (EP-A 0 002 925), propargyl 2-(4-(3,5-dichloropyridyl-2-oxy)phenoxy)propionate (EP-A 0 003 114), methyl 2-(4-(3-chloro-5-trifluoromethyl-2-pyridyloxy)phenoxy)propionate 30 (EP-A 0 003 890), ethyl 2-(4-(3-chloro-5-trifluoromethyl-2-pyridyloxy)phenoxy)propionate (EP-A 0 003 890),

propargyl 2-(4-(5-chloro-3-fluoro-2-pyridyloxy)phenoxy)propionate (EP-A 0 191 736),
butyl 2-(4-(5-trifluoromethyl-2-pyridyloxy)phenoxy)propionate
(fluazifop-butyl);

5 B3) "Binuclear" heteroaryloxyphenoxyalkanecarboxylic acid derivatives, for
example
methyl and ethyl 2-(4-(6-chloro-2-quinoxalyloxy)phenoxy)propionate
(quizalofopmethyl and quizalofopethyl),
methyl 2-(4-(6-fluoro-2-quinoxalyloxy)phenoxy)propionate (see J. Pest. Sci. Vol. 10,
61 (1985)),
2-isopropylideneaminooxyethyl 2-(4-(6-chloro-2-quinoxalyloxy)phenoxy)propionate
(propaquazafop),
ethyl 2-(4-(6-chlorobenzoxazol-2-yloxy)phenoxy)propionate (fenoxaprop-ethyl), its
D(+) isomer (fenoxaprop-P-ethyl) and ethyl 2-(4-(6-chlorobenzthiazol-2-
yloxy)phenoxy)propionate (DE-A 26 40 730),
tetrahydro-2-furylmethyl 2-(4-(6-chloroquinoxalyloxy)phenoxy)propionate (EP-
A 0 323 727);

20 C) Chloroacetanilides, for example
N-methoxymethyl-2,6-diethylchloroacetanilide (alachlor),
N-(3-methoxyprop-2-yl)-2-methyl-6-ethylchloroacetanilide (metolachlor),
2,6-dimethyl-N-(3-methyl-1,2,4-oxadiazol-5-ylmethyl)chloroacetanilide,
N-(2,6-dimethylphenyl)-N-(1-pyrazolylmethyl)chloroacetamide (metazachlor);

25 D) Thiocarbamates, for example
S-ethyl N,N-dipropylthiocarbamate (EPTC),
S-ethyl N,N-diisobutylthiocarbamate (butylate);

30 E) Cyclohexanedione oximes, for example
methyl 3-(1-allyloxyiminobutyl)-4-hydroxy-6,6-dimethyl-2-oxocyclohex-3-
enecarboxylate (alloxydim),

2-(1-ethoxyiminobutyl)-5-(2-ethylthiopropyl)-3-hydroxycyclohex-2-en-1-one (sethoxydim),

2-(1-ethoxyiminobutyl)-5-(2-phenylthiopropyl)-3-hydroxycyclohex-2-en-1-one (cloproxydim),

5 2-(1-(3-chloroallyloxy)iminobutyl)-5-(2-ethylthiopropyl)-3-hydroxycyclohex-2-en-1-one,

2-(1-(3-chloroallyloxy)iminopropyl)-5-(2-ethylthiopropyl)-3-hydroxycyclohex-2-en-1-one (clethodim),

10 2-(1-ethoxyiminobutyl)-3-hydroxy-5-(thian-3-yl)-cyclohex-2-enone (cycloxydim),

2-(1-ethoxyiminopropyl)-5-(2,4,6-trimethylphenyl)-3-hydroxycyclohex-2-en-1-one (tralkoxydim);

F) Imidazolinones, for example

15 methyl 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-5-methylbenzoate and 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-4-methylbenzoic acid (imazamethabenz),

5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)pyridine-3-carboxylic acid (imazethapyr),

20 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)quinoline-3-carboxylic acid (imazaquin),

2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)pyridine-3-carboxylic acid (imazapyr),

25 5-methyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)pyridine-3-carboxylic acid (imazethamethapyr);

25

G) Triazolopyrimidinesulfonamide derivatives, for example

N-(2,6-difluorophenyl)-7-methyl-1,2,4-triazolo[1,5-c]pyrimidine-2-sulfonamide (flumetsulam),

N-(2,6-dichloro-3-methylphenyl)-5,7-dimethoxy-1,2,4-triazolo[1,5-c]pyrimidine-2-sulfonamide,

30 N-(2,6-difluorophenyl)-7-fluoro-5-methoxy-1,2,4-triazolo[1,5-c]pyrimidine-2-sulfonamide,

N-(2,6-dichloro-3-methylphenyl)-7-chloro-5-methoxy-1,2,4-triazolo[1,5-c]pyrimidine-2-sulfonamide,

N-(2-chloro-6-methoxycarbonyl)-5,7-dimethyl-1,2,4-triazolo[1,5-c]pyrimidine-2-sulfonamide (EP-A 0 343 752, US-A 4,988,812);

5

H) Benzoylcyclohexanediones, for example

2-(2-chloro-4-methylsulfonylbenzoyl)cyclohexane-1,3-dione (SC-0051, EP-A 0 137 963), 2-(2-nitrobenzoyl)-4,4-dimethylcyclohexane-1,3-dione (EP-A 0 274 634), 2-(2-nitro-3-methylsulfonylbenzoyl)-4,4-dimethylcyclohexane-1,3-dione (WO 91/13548);

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13
E14
E15
E16
E17
E18
E19
E20
E21
E22
E23
E24
E25
E26
E27
E28
E29
E30
E31
E32
E33
E34
E35
E36
E37
E38
E39
E40
E41
E42
E43
E44
E45
E46
E47
E48
E49
E50
E51
E52
E53
E54
E55
E56
E57
E58
E59
E60
E61
E62
E63
E64
E65
E66
E67
E68
E69
E70
E71
E72
E73
E74
E75
E76
E77
E78
E79
E80
E81
E82
E83
E84
E85
E86
E87
E88
E89
E90
E91
E92
E93
E94
E95
E96
E97
E98
E99
E100
E101
E102
E103
E104
E105
E106
E107
E108
E109
E110
E111
E112
E113
E114
E115
E116
E117
E118
E119
E120
E121
E122
E123
E124
E125
E126
E127
E128
E129
E130
E131
E132
E133
E134
E135
E136
E137
E138
E139
E140
E141
E142
E143
E144
E145
E146
E147
E148
E149
E150
E151
E152
E153
E154
E155
E156
E157
E158
E159
E160
E161
E162
E163
E164
E165
E166
E167
E168
E169
E170
E171
E172
E173
E174
E175
E176
E177
E178
E179
E180
E181
E182
E183
E184
E185
E186
E187
E188
E189
E190
E191
E192
E193
E194
E195
E196
E197
E198
E199
E200
E201
E202
E203
E204
E205
E206
E207
E208
E209
E210
E211
E212
E213
E214
E215
E216
E217
E218
E219
E220
E221
E222
E223
E224
E225
E226
E227
E228
E229
E229
E230
E231
E232
E233
E234
E235
E236
E237
E238
E239
E240
E241
E242
E243
E244
E245
E246
E247
E248
E249
E250
E251
E252
E253
E254
E255
E256
E257
E258
E259
E259
E260
E261
E262
E263
E264
E265
E266
E267
E268
E269
E269
E270
E271
E272
E273
E274
E275
E276
E277
E278
E279
E279
E280
E281
E282
E283
E284
E285
E286
E287
E288
E289
E289
E290
E291
E292
E293
E294
E295
E296
E297
E298
E299
E299
E300
E301
E302
E303
E304
E305
E306
E307
E308
E309
E309
E310
E311
E312
E313
E314
E315
E316
E317
E318
E319
E319
E320
E321
E322
E323
E324
E325
E326
E327
E328
E329
E329
E330
E331
E332
E333
E334
E335
E336
E337
E338
E339
E339
E340
E341
E342
E343
E344
E345
E346
E347
E348
E349
E349
E350
E351
E352
E353
E354
E355
E356
E357
E358
E359
E359
E360
E361
E362
E363
E364
E365
E366
E367
E368
E369
E369
E370
E371
E372
E373
E374
E375
E376
E377
E378
E379
E379
E380
E381
E382
E383
E384
E385
E386
E387
E388
E389
E389
E390
E391
E392
E393
E394
E395
E396
E397
E398
E399
E399
E400
E401
E402
E403
E404
E405
E406
E407
E408
E409
E409
E410
E411
E412
E413
E414
E415
E416
E417
E418
E419
E419
E420
E421
E422
E423
E424
E425
E426
E427
E428
E429
E429
E430
E431
E432
E433
E434
E435
E436
E437
E438
E439
E439
E440
E441
E442
E443
E444
E445
E446
E447
E448
E449
E449
E450
E451
E452
E453
E454
E455
E456
E457
E458
E459
E459
E460
E461
E462
E463
E464
E465
E466
E467
E468
E469
E469
E470
E471
E472
E473
E474
E475
E476
E477
E478
E479
E479
E480
E481
E482
E483
E484
E485
E486
E487
E488
E489
E489
E490
E491
E492
E493
E494
E495
E496
E497
E498
E499
E499
E500
E501
E502
E503
E504
E505
E506
E507
E508
E509
E509
E510
E511
E512
E513
E514
E515
E516
E517
E518
E519
E519
E520
E521
E522
E523
E524
E525
E526
E527
E528
E529
E529
E530
E531
E532
E533
E534
E535
E536
E537
E538
E539
E539
E540
E541
E542
E543
E544
E545
E546
E547
E548
E549
E549
E550
E551
E552
E553
E554
E555
E556
E557
E558
E559
E559
E560
E561
E562
E563
E564
E565
E566
E567
E568
E569
E569
E570
E571
E572
E573
E574
E575
E576
E577
E578
E579
E579
E580
E581
E582
E583
E584
E585
E586
E587
E588
E589
E589
E590
E591
E592
E593
E594
E595
E596
E597
E598
E599
E599
E600
E601
E602
E603
E604
E605
E606
E607
E608
E609
E609
E610
E611
E612
E613
E614
E615
E616
E617
E618
E619
E619
E620
E621
E622
E623
E624
E625
E626
E627
E628
E629
E629
E630
E631
E632
E633
E634
E635
E636
E637
E638
E639
E639
E640
E641
E642
E643
E644
E645
E646
E647
E648
E649
E649
E650
E651
E652
E653
E654
E655
E656
E657
E658
E659
E659
E660
E661
E662
E663
E664
E665
E666
E667
E668
E669
E669
E670
E671
E672
E673
E674
E675
E676
E677
E678
E679
E679
E680
E681
E682
E683
E684
E685
E686
E687
E688
E689
E689
E690
E691
E692
E693
E694
E695
E696
E697
E698
E699
E699
E700
E701
E702
E703
E704
E705
E706
E707
E708
E709
E709
E710
E711
E712
E713
E714
E715
E716
E717
E718
E719
E719
E720
E721
E722
E723
E724
E725
E726
E727
E728
E729
E729
E730
E731
E732
E733
E734
E735
E736
E737
E738
E739
E739
E740
E741
E742
E743
E744
E745
E746
E747
E748
E749
E749
E750
E751
E752
E753
E754
E755
E756
E757
E758
E759
E759
E760
E761
E762
E763
E764
E765
E766
E767
E768
E769
E769
E770
E771
E772
E773
E774
E775
E776
E777
E778
E779
E779
E780
E781
E782
E783
E784
E785
E786
E787
E788
E789
E789
E790
E791
E792
E793
E794
E795
E796
E797
E798
E799
E799
E800
E801
E802
E803
E804
E805
E806
E807
E808
E809
E809
E810
E811
E812
E813
E814
E815
E816
E817
E818
E819
E819
E820
E821
E822
E823
E824
E825
E826
E827
E828
E829
E829
E830
E831
E832
E833
E834
E835
E836
E837
E838
E839
E839
E840
E841
E842
E843
E844
E845
E846
E847
E848
E849
E849
E850
E851
E852
E853
E854
E855
E856
E857
E858
E859
E859
E860
E861
E862
E863
E864
E865
E866
E867
E868
E869
E869
E870
E871
E872
E873
E874
E875
E876
E877
E878
E879
E879
E880
E881
E882
E883
E884
E885
E886
E887
E888
E889
E889
E890
E891
E892
E893
E894
E895
E896
E897
E898
E899
E899
E900
E901
E902
E903
E904
E905
E906
E907
E908
E909
E909
E910
E911
E912
E913
E914
E915
E916
E917
E918
E919
E919
E920
E921
E922
E923
E924
E925
E926
E927
E928
E929
E929
E930
E931
E932
E933
E934
E935
E936
E937
E938
E939
E939
E940
E941
E942
E943
E944
E945
E946
E947
E948
E949
E949
E950
E951
E952
E953
E954
E955
E956
E957
E958
E959
E959
E960
E961
E962
E963
E964
E965
E966
E967
E968
E969
E969
E970
E971
E972
E973
E974
E975
E976
E977
E978
E979
E979
E980
E981
E982
E983
E984
E985
E986
E987
E988
E989
E989
E990
E991
E992
E993
E994
E995
E996
E997
E998
E999
E999
E1000
E1001
E1002
E1003
E1004
E1005
E1006
E1007
E1008
E1009
E1009
E1010
E1011
E1012
E1013
E1014
E1015
E1016
E1017
E1018
E1019
E1019
E1020
E1021
E1022
E1023
E1024
E1025
E1026
E1027
E1028
E1029
E1029
E1030
E1031
E1032
E1033
E1034
E1035
E1036
E1037
E1038
E1039
E1039
E1040
E1041
E1042
E1043
E1044
E1045
E1046
E1047
E1048
E1049
E1049
E1050
E1051
E1052
E1053
E1054
E1055
E1056
E1057
E1058
E1059
E1059
E1060
E1061
E1062
E1063
E1064
E1065
E1066
E1067
E1068
E1069
E1069
E1070
E1071
E1072
E1073
E1074
E1075
E1076
E1077
E1078
E1079
E1079
E1080
E1081
E1082
E1083
E1084
E1085
E1086
E1087
E1088
E1089
E1089
E1090
E1091
E1092
E1093
E1094
E1095
E1096
E1097
E1098
E1099
E1099
E1100
E1101
E1102
E1103
E1104
E1105
E1106
E1107
E1108
E1109
E1109
E1110
E1111
E1112
E1113
E1114
E1115
E1116
E1117
E1118
E1119
E1119
E1120
E1121
E1122
E1123
E1124
E1125
E1126
E1127
E1128
E1129
E1129
E1130
E1131
E1132
E1133
E1134
E1135
E1136
E1137
E1138
E1139
E1139
E1140
E1141
E1142
E1143
E1144
E1145
E1146
E1147
E1148
E1149
E1149
E1150
E1151
E1152
E1153
E1154
E1155
E1156
E1157
E1158
E1159
E1159
E1160
E1161
E1162
E1163
E1164
E1165
E1166
E1167
E1168
E1169
E1169
E1170
E1171
E1172
E1173
E1174
E1175
E1176
E1177
E1178
E1179
E1179
E1180
E1181
E1182
E1183
E1184
E1185
E1186
E1187
E1188
E1189
E1189
E1190
E1191
E1192
E1193
E1194
E1195
E1196
E1197
E1198
E1199
E1199
E1200
E1201
E1202
E1203
E1204
E1205
E1206
E1207
E1208
E1209
E1209
E1210
E1211
E1212
E1213
E1214
E1215
E1216
E1217
E1218
E1219
E1219
E1220
E1221
E1222
E1223
E1224
E1225
E1226
E1227
E1228
E1229
E1229
E1230
E1231
E1232
E1233
E1234
E1235
E1236
E1237
E1238
E1239
E1239
E1240
E1241
E1242
E1243
E1244
E1245
E1246
E1247
E1248
E1249
E1249
E1250
E1251
E1252
E1253
E1254
E1255
E1256
E1257
E1258
E1259
E1259
E1260
E1261
E1262
E1263
E1264
E1265
E1266
E1267
E1268
E1269
E1269
E1270
E1271
E1272
E1273
E1274
E1275
E1276
E1277
E1278
E1279
E1279
E1280
E1281
E1282
E1283
E1284
E1285
E1286
E1287
E1288
E1289
E1289
E1290
E1291
E1292
E1293
E1294
E1295
E1296
E1297
E1298
E1299
E1299
E1300
E1301
E1302
E1303
E1304
E1305
E1306
E1307
E1308
E1309
E1309
E1310
E1311
E1312
E1313
E1314
E1315
E1316
E1317
E1318
E1319
E1319
E1320
E1321
E1322
E1323
E1324
E1325
E1326
E1327
E1328
E1329
E1329
E1330
E1331
E1332
E1333
E1334
E1335
E1336
E1337
E1338
E1339
E1339
E1340
E1341
E1342
E1343
E1344
E1345
E1346
E1347
E1348
E1349
E1349
E1350
E1351
E1352
E1353
E1354
E1355
E1356
E1357
E1358
E1359
E1359
E1360
E1361
E1362
E1363
E1364
E1365
E1366
E1367
E1368
E1369
E1369
E1370
E1371
E1372
E1373
E1374
E1375
E1376
E1377
E1378
E1379
E1379
E1380
E1381
E1382
E1383
E1384
E1385
E1386
E1387
E1388
E1389
E1389
E1390
E1391
E1392
E1393
E1394
E1395
E1396
E1397
E1398
E1399
E1399
E1400
E1401
E1402
E1403
E1404
E1405
E1406
E1407
E1408
E1409
E1409
E1410
E1411
E1412
E1413
E1414
E1415
E1416
E1417
E1418
E1419
E1419
E1420
E1421
E1422
E1423
E1424
E1425
E1426
E1427
E1428
E1429
E1429
E1430
E1431
E1432
E1433
E1434
E1435
E1436
E1437
E1438
E1439
E1439
E1440
E1441
E1442
E1443
E1444
E1445
E1446
E1447
E1448
E1449
E1449
E1450
E1451
E1452
E1453
E1454
E1455
E1456
E1457
E1458
E1459
E1459
E1460
E1461
E1462
E1463
E1464
E1465
E1466
E1467
E1468
E1469
E1469
E1470
E1471
E1472
E1473
E1474
E1475
E1476
E1477
E1478
E1479
E1479
E1480
E1481
E1482
E1483
E1484
E1485
E1486
E1487
E1488
E1489
E1489
E1490
E1491
E1492
E1493
E1494
E1495
E1496
E1497
E1498
E1499
E1499
E1500
E1501
E1502
E1503
E1504
E1505
E1506
E1507
E1508
E1509
E1509
E1510
E1511
E1512
E1513
E1514
E1515
E1516
E1517
E1518
E1519
E1519
E1520
E1521
E1522
E1523
E1524
E1525
E1526
E1527
E1528
E1529
E1529
E1530
E1531
E1532
E1533
E1534
E1535
E1536
E1537
E1538
E1539
E1539
E1540
E1541
E1542
E1543
E1544
E1545
E1546
E1547
E1548
E1549
E1549
E1550
E1551
E1552
E1553
E1554
E1555
E1556
E1557
E1558
E1559
E1559
E1560
E1561
E1562
E1563
E1564
E1565
E1566
E1567
E1568
E1569
E1569
E1570
E1571
E1572
E1573
E1574
E1575
E1576
E1577
E1578
E1579
E1579
E1580
E1581
E1582
E1583
E1584
E1585
E1586
E1

in which

R¹ is (C₁-C₄)alkyl or (C₁-C₄)haloalkyl;

R² is (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl or (C₃-C₆)cycloalkyl-(C₁-C₄)alkyl and

A is -CH₂-, -CH₂-CH₂-, -CH₂-CH₂-CH₂-, -O-, -CH₂-CH₂-O-, -CH₂-CH₂-CH₂-O-, especially preferably those of the formula E1-E7

PCT/EP2016/055650

L) Phosphorus-containing herbicides, for example of the glufosinate type, such as glufosinate in the narrow sense, i.e. D,L-2-amino-4-[hydroxy(methyl)phosphinyl]-

butanoic acid, glufosinatemonoammonium salts, L-glufosinate, L- or (2S)-2-amino-4-[hydroxy(methyl)phosphinyl]butanoic acid, L-glufosinatemonoammonium salt or bialaphos (or bilanafos), i.e. L-2-amino-4-[hydroxy(methyl)phosphinyl]butanoyl-L-alanyl-L-alanine, in particular its sodium salt,

5 or of the glyphosate type, such as glyphosate, i.e. N-(phosphonomethyl)glycine, glyphosatemonoisopropylammonium salt, glyphosate sodium salt, or sulfosate, i.e. N-(phosphonomethyl)glycine trimesium salt = N-(phosphonomethyl)glycine trimethylsulfoxonium salt.

10 The herbicides of groups B to L are known, for example, from each of the specifications stated above and from "The Pesticide Manual", 12th Edition, 2000, The British Crop Protection Council, "Agricultural Chemicals Book II - Herbicides -", by W.T. Thompson, Thompson Publications, Fresno CA, USA 1990 and "Farm Chemicals Handbook '90", Meister Publishing Company, Willoughby OH, USA, 1990.

15 The surfactants b) which are present in the herbicidal compositions according to the invention differ from silicone surfactants. Silicone surfactants are surfactants which contain at least one silicon atom and they are described, for example, in WO 89/12394. The surfactants present as surfactants b) in the herbicidal compositions according to the invention can be of the ionic and nonionic type, such as aromatic – based surfactants, for example surface-active benzenes or phenols which are substituted by one or more alkyl groups and have subsequently been derivatized, or nonaromatic-based surfactants, for example heterocycle-, olefin-, aliphatic- or cycloaliphatic-based surfactants, for example surface-active pyridine, pyrimidine, 20 triazine, pyrrole, pyrrolidine, furan, thiophene, benzoxazole, benzothiazole and triazole compounds which are substituted by one or more alkyl groups and have subsequently been derivatized.

25

Examples of aromatic surfactants are:

30 b1) phenols, phenyl (C₁-C₄)alkyl ethers or (poly)alkoxylated phenols [= phenol (poly)alkylene glycol ethers], for example having 1 to 50 alkyleneoxy units in the (poly)alkyleneoxy moiety, where the alkylene moiety has preferably in each case

1 to 4 carbon atoms, preferably phenol which has been reacted with 3 to 10 mol of alkylene oxide,

5 b2) (poly)alkylphenols or (poly)alkylphenol alkoxylates [= polyalkylphenol (poly)alkylene glycol ethers], for example having 1 to 12 carbon atoms per alkyl radical and 1 to 150 alkyleneoxy units in the polyalkyleneoxy moiety, preferably triisobutylphenol or tri-n-butylphenol which has been reacted with 1 to 50 mol of ethylene oxide,

10 b3) polyarylphenols or polyarylphenol alkoxylates [= polyarylphenol (poly)alkylene glycol ethers], for example tristyrylphenol polyalkylene glycol ethers with 1 to 150 alkyleneoxy units in the polyalkyleneoxy moiety, preferably tristyrylphenol which has been reacted with 1 to 50 mol of ethylene oxide,

15 b4) compounds which formally constitute the reaction products of the molecules described under b1) to b3) with sulfuric acid or phosphoric acid and their salts which have been neutralized with suitable bases, for example the acid phosphoric ester of the triethoxylated phenol, the acid phosphoric ester of a nonylphenol which has been reacted with 9 mol of ethylene oxide, and the triethanolamine-neutralized phosphoric acid ester of the reaction product of 20 mol of ethylene oxide and 1 mol of tristyrylphenol, and

20 b5) acid (poly)alkyl- and (poly)arylbenzenesulfonates which have been neutralized with suitable bases, for example having 1 to 12 carbon atoms per alkyl radical, or having up to 3 styrene units in the polyaryl radical, preferably (linear) dodecylbenzenesulfonic acid and its oil-soluble salts such as, for example, the isopropylammonium salt of dodecylbenzenesulfonic acid.

25 In the case of the alkyleneoxy units, ethyleneoxy, propyleneoxy and butyleneoxy units, in particular ethyleneoxy units, are preferred. Preferred surfactants from the group of the aromatic-based surfactants are, in particular, for example phenol which has been reacted with 4 to 10 mol of ethylene oxide, commercially available for example in the form of the Agrisol® brands (Akcros), triisobutylphenol which has been reacted with 4 to 50 mol of ethylene oxide, commercially available for example in the form of the Sapogenat®T brands (Clariant), nonylphenol which has been reacted with 4 to 50 mol of ethylene oxide,

for example commercially available in the form of the Arkopal® brands (Clariant), tristyrylphenol which has been reacted with 4 to 150 mol of ethylene oxide, for example Soprophor®CY/8 (Rhodia), and acid (linear) dodecylbenzenesulfonate, for example commercially available in the form of the Marlon® brands (Hüls).

5

Examples of nonaromatic surfactants are given hereinbelow, where EO=ethylene oxide units, PO=propylene oxide units and BO=butylene oxide units:

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

20
25
30

- b6) fatty alcohols having 10 – 24 carbon atoms with 0-60 EO and/or 0-20 PO and/or 0-15 BO in any desired sequence. The terminal hydroxyl groups of these compounds can be terminally capped by an alkyl, cycloalkyl or acyl radical having 1-24 carbon atoms. Examples of such compounds are: Genapol®C,L,O,T,UD,UDD,X brands by Clariant, Plurafac® and Lutensol®A,AT,ON,TO brands by BASF, Marlipal®24 and O13 brands by Condea, Dehypon® brands by Henkel, Ethylan® brands by Akzo-Nobel such as Ethylan CD 120 or Synperonic® brands by Unichem, for example Synperonic® A7.
- b7) Anionic derivatives of the products described under b6) in the form of ether carboxylates, sulfonates, sulfates and phosphates and their inorganic salts (for example alkali metal salts and alkaline earth metal salts) and organic salts (for example on an amine or alkanolamine base) such as Genapol®LRO, Sandopan® brands, Hostaphat/Hordaphos® brands by Clariant. Copolymers composed of EO,PO and/or BO units such as, for example, block copolymers such as the Pluronic® brands by BASF and the Synperonic® brands by Uniquema with a molecular weight of 400 to 10^8 . Alkylene oxide adducts of C₁ – C₉ alcohols such as Atlox®5000 by Uniquema or Hoe® S3510 by Clariant.
- Anionic derivatives of the products described under b8) and b9) in the form of ether carboxylates, sulfonates, sulfates and phosphates and their inorganic salts (for example alkali metal salts and alkaline earth metal salts) and organic salts (for example on an amine or alkanolamine base).

5 b8) Fatty acid and triglyceride alkoxylates such as the Serdox®NOG brands by Condea or the Emulsogen® brands by Clariant, salts of aliphatic, cycloaliphatic and olefinic carboxylic acids and polycarboxylic acids, and alpha-sulfofatty acid esters as available from Henkel.

10 b9) Fatty acid amide alkoxylates such as the Comperlan® brands by Henkel or the Amam® brands by Rhodia.

15 Alkylene oxide adducts of alkyne diols such as the Surfynol® brands by Air Products. Sugar derivatives such as amino and amido sugars from Clariant, glucitols from Clariant, alkyl polyglycosides in the form of the APG® brands by Henkel or such as sorbitan esters in the form of the Span® or Tween® brands by Uniquema or cyclodextrin esters or ethers from Wacker.

20 b10) Surface-active cellulose and algin, pectin and guar derivatives such as the Tylose® brands by Clariant, the Manutex® brands by Kelco and guar derivatives from Cesalpina.

25 Alkylene oxide adducts on a polyol base such as Polyglykol® brands by Clariant. Surface-active polyglycerides and their derivatives from Clariant.

30 b11) Sulfosuccinates, alkanesulfonates, paraffin- and olefinsulfonates such as Netzer IS®, Hoe®S1728, Hostapur®OS, Hostapur®SAS by Clariant, Triton®GR7ME and GR5 by Union Carbide, Empimin® brands by Albright and Wilson, Marlon®-PS65 by Condea.

35 b12) Sulfosuccinates such as the Aerosol® brands by Cytec or the Empimin® brands by Albright and Wilson.

40 b13) Alkylene oxide adducts of fatty amines, quaternary ammonium compounds with 8 to 22 carbon atoms (C₈–C₂₂) such as, for example, the Genamin®C,L,O,T brands by Clariant.

0
10
20
30
40
50
60
70
80
90
100

- b14) Surface-active, zwitterionic compounds such as taurides, betaines and sulfobetaines in the form of Tegotain® brands by Goldschmidt, Hostapon®T and Arkopon®T brands by Clariant.
- 5 b15) Per- or polyfluorinated surface-active compounds such as Fluowet® brands by Clariant, the Bayowet® brands by Bayer, the Zonyl® brands by DuPont, and products of this type from Daikin and Asahi Glass.
- b16) Surface-active sulfonamides, for example from Bayer.
- 15 b17) Surface-active polyacrylic and –methacrylic derivatives such as the Sokalan® brands by BASF.
- b18) Surface-active polyamides such as modified gelatin or derivatized polyaspartic acid from Bayer and their derivatives.
- 20 b19) Surface-active polymers based on maleic anhydride and/or reaction products of maleic anhydride, and copolymers comprising maleic anhydride and/or reaction products of maleic anhydride, such as the Agrimer® VEMA brands by ISP.
- b20) Surface-active derivatives of montan, polyethylene and polypropylene waxes such as the Hoechst® waxes or the Licowet® brands by Clariant.
- 25 b21) Surface-active phosphonates and phosphinates such as Fluowet®-PL by Clariant.
- b22) Poly- or perhalogenated surfactants such as, for example, Emulsogen®-1557 by Clariant.

30

The surfactants b) which are present in the herbicidal compositions according to the invention are preferably of the type of the C₈-C₂₀-alkyl polyglycol ether sulfates,

preferably C₁₀-C₁₈-alkyl polyglycol ether sulfates, which are preferably used in the form of their salts, for example alkali metal salts such as sodium salts or potassium salts, and/or ammonium salts, but also as alkaline earth metal salts such as magnesium salts, 2 to 5 ethylene oxide units preferably being present in the polyglycol moiety. An especially preferred example is sodium C₁₂/C₁₄-fatty alcohol diglycol ether sulfate (tradename for example Genapol® LRO, Clariant GmbH).

A humectant for the purposes of the present invention is understood as meaning a compound which is capable of physically absorbing water and/or storing water.

Examples of preferred humectants are hygroscopic compounds.

Examples of substances which may be present in the herbicidal compositions according to the invention as humectant c) are the following:

MgSO₄, polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, glycerol and pentaerythritol, and their ethers and esters, for example ethylene, glycol ethers, propylene glycol ethers or glycerol esters; polyalkylene glycols such as polyethylene glycols (preferably with a molecular weight of 500 – 60000), polypropylene glycols (preferably with a molecular weight of 600 – 75000) and ethylene oxide (EO) / propylene oxide (PO) copolymers, for example with EO-PO-, EO-PO-EO- or PO-EO-PO units;

sugars such as hexoses, pentoses, molasses, alkylpolysaccharides and xanthans, for example the Malitol® brands by Salim Oleo Chemicals such as Maltitol® 75; gelatin; cellulose derivatives such as water-soluble lignosulfonates or

hydroxycelluloses; citric acid and citric acid derivatives such as citric acid salts, for example alkali metal, alkaline earth metal or ammonium citrates, such as sodium citrate; lactic acid and lactic acid derivatives such as lactic acid salts, for example alkali metal, alkaline earth metal or ammonium lactates, such as sodium lactate, for example in the form of their racemates (DL) or of the individual optical isomers, for example sodium D-lactate and sodium L-lactate; tartaric acid and tartaric acid derivatives such as tartaric acid salts, for example alkali metal, alkaline earth metal or ammonium tartrates such as sodium tartrate, for example in the form of their racemates (uvic acid) or of the individual optical isomers, for example sodium (+)-

tartrate and sodium (-)-tartrate; aspartic acid and aspartic acid derivatives such as aspartic acid salts, for example alkali metal, alkaline earth metal or ammonium aspartates such as sodium aspartate, for example in the form of their racemates (DL) or of the individual optical isomers, for example sodium D-aspartate and sodium L-aspartate; succinates such as the Triton® brands by Rohm and Haas; polyvinyl compounds such as modified polyvinylpyrrolidone such as the Luviskol® brands by BASF and the Agrimer® brands by ISP or the derivatized polyvinyl acetates such as the Mowilith® brands by Clariant or the polyvinyl butyrates such as the Lutonal® brands by BASF, the Vinnapas® and the Pioloform® brands by Wacker or the modified polyvinyl alcohols such as the Mowiol® brands by Clariant. Preferred humectants are polyhydric alcohols such as ethylene glycol or propylene glycol and lactic acid and lactic acid derivatives such as lactic acid salts, for example alkali metal, alkaline earth metal or ammonium lactates such as sodium lactate, for example in the form of their racemates (DL) or of the individual optical isomers, for example sodium D-lactate and sodium L-lactate.

The herbicidal compositions according to the invention conventionally comprise

- a) 0.0001 to 99% by weight, preferably 0.1 to 95% by weight, of one or more herbicidal active substances,
- b) 0.1 to 97% by weight of one or more surfactants other than silicone surfactants, and
- c) 0.1 to 90% by weight of one or more humectants.

The herbicidal compositions according to the invention have an outstanding herbicidal activity. The improved control of the harmful plants by the herbicidal compositions according to the invention makes it possible to reduce the application rate and/or to increase the safety margin. Both make sense both from the economical and the ecological angle.

In a preferred embodiment, herbicidal compositions according to the invention are characterized by a synergistically active content for combination of the herbicides a) with surfactants b) and humectants c). In this context, it must be emphasized in

particular that, as a rule, the herbicidal compositions of the invention have an inherent synergistic action, even in combinations with application rates or weight ratios of a) : b): c) where synergism cannot be detected readily in each individual case, for example because the individual compounds are usually employed in very 5 different application rates in the combination or else because even the individual compounds alone effect very good control of the harmful plants.

The herbicidal compositions according to the invention are prepared by customary processes, for example grinding, mixing, dissolving or dispersing individual 10 components.

The components a), b) and c) of the herbicidal compositions according to the invention may be present together in a readymix which can then be applied in the customary fashion, for example in the form of a spray mixture, or they can be formulated separately and applied for example by the tank mix method or in succession. When the components are formulated separately, components a), b) and c) can be formulated for example in each case individually, or else components 15 a) and b), a) and c) or b) and c) can be formulated jointly and the third component in each case is formulated separately.

20 The herbicidal compositions according to the invention can be formulated in various ways, depending on the prevailing biological and/or chemical-physical parameters. The following are examples of suitable formulation possibilities: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable 25 concentrates (EC), emulsions (EW) such as oil-in-water and water-in-oil emulsions, sprayable solutions, suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), seed-dressing materials, granules for spreading and soil application, granules (GR) in the form of 30 microgranules, spray granules, coated granules and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.

These individual formulation types are known in principle and are described, for

example, in: Winnacker-Küchler, "Chemische Technologie" [Chemical Engineering], Volume 7, C. Hauser Verlag Munich, 4th Ed. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973; K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.

5

The formulation auxiliaries required, such as inert materials, surfactants, solvents and additives, are also known and are described, for example, in Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte" [Surface-active ethylene oxide adducts], Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Volume 7, C. Hauser Verlag Munich, 4th Ed. 1986.

10
15
20
25
30

Based on these formulations, it is also possible to prepare combinations with other agrochemical active substances such as insecticides, acaricides, herbicides, fungicides, safeners, fertilizers and/or growth regulators, for example in the form of a readymix or a tank mix.

20

Wettable powders are products which are uniformly dispersible in water and which, besides the herbicide a) and / or surfactant b) and / or humectant c), also comprise diluents or inert materials and, if appropriate further ionic and/or nonionic surfactants (wetters, dispersants), for example polyoxyethylated alkylphenols, polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkanesulfonates, alkylbenzenesulfonates, sodium lignosulfonates, sodium 2,2'-dinaphthylmethane-6,6'-disulfonate, sodium dibutylnaphthalene sulfonate or else sodium oleoylmethyltauride. To prepare the wettable powders, the herbicides a) and/or surfactants b) and/or humectants c) are ground finely, for example in customary apparatuses such as hammer mills, blower mills and air-jet mills, and

mixed with the formulation auxiliaries, either simultaneously or subsequently. Emulsifiable concentrates are prepared by dissolving herbicide a) and/or surfactant b) and/or humectant c) in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or else higher-boiling aromatics or hydrocarbons or

5 mixtures of the organic solvents with addition of one or more ionic or nonionic surfactants (emulsifiers). Examples of emulsifiers which may be used are: calcium salts of alkylarylsulfonic acid, such as calcium dodecylbenzenesulfonate, or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide/ethylene oxide condensates, alkyl polyethers, sorbitan esters such as, for example, sorbitan fatty acid esters, or polyoxyethylene sorbitan esters such as, for example, polyoxyethylene sorbitan fatty acid esters.

Dusts are obtained by grinding herbicide a) and/or surfactant b) and/or humectant c) with finely divided solid materials, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.

20 Suspension concentrates can be water- or oil-based. They can be prepared, for example by wet grinding by means of commercially available bead mills and, if appropriate, addition of further surfactants as have already been mentioned for example above in the case of the other formulation types.

25 Emulsions, for example oil-in-water emulsions (EW), can be prepared for example by means of stirrers, colloid mills and/or static mixers using aqueous organic solvents and, if appropriate, further surfactants as have already been mentioned for example above in the case of the other formulation types.

30 Granules can be prepared either by spraying the herbicide a) and/or surfactant b) and/or humectant c) onto adsorptive, granulated inert material or by applying active ingredient concentrates to the surface of carriers such as sand, kaolinates or granulated inert material with the aid of adhesives, for example polyvinyl alcohol, sodium polyacrylate or else mineral oils. Suitable herbicide a) and/or surfactant b)

and/or humectant c) may also be granulated in the manner conventionally used for the production of fertilizer granules, if desired in a mixture with fertilizers. As a rule, water-dispersible granules are prepared by conventional processes such as spray drying, fluidized-bed granulation, disk granulation, mixing with high-speed mixers 5 and extrusion without solid inert material. Regarding the production of disk granules, fluidized-bed granules, extruder granules and spray granules, see, for example, the methods in "Spray-Drying Handbook" 3rd Ed. 1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, page 147 et seq; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, pp. 8-57.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

For further details on the formulation of crop protection products, see, for example, G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, pages 81-96 and J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pages 101-103.

20 In addition, the abovementioned active ingredient formulations may comprise, if appropriate, additives such as adhesives, wetters, dispersants, emulsifiers, penetrants, preservatives, antifreeze agents, solvents, fillers, carriers, colorants, antifoams, evaporation inhibitors, pH regulators or viscosity regulators which are customary in each case.

25 The herbicidal compositions according to the invention can be used pre- or post-emergence, for example by spraying. The product input required for weed control can be reduced substantially by employing the herbicidal compositions according to the invention.

30 As a rule, the herbicides a) to be used in accordance with the invention are applied together with the surfactants b) and humectants c) or in succession, preferably in the form of a spray mixture comprising the herbicides a), the surfactants b) and the humectants c) in effective amounts and, if appropriate, further customary auxiliaries. The spray mixture is preferably prepared on the basis of water and /or an oil, for

example a high-boiling hydrocarbon such as kerosene or paraffin. The herbicidal compositions according to the invention can be formulated as a tank mix or a readymix.

5 The active ingredient concentration in wettable powders is, for example, approximately 10 to 90% by weight, the remainder to 100% by weight being composed of customary formulation constituents. In the case of emulsifiable concentrates, the active ingredient concentration may amount to approximately 1 to 90%, preferably 5 to 80% by weight. Formulations in the form of dusts comprise 1 to 10 30% by weight of active ingredient, preferably in most cases 5 to 20% by weight of active ingredient, sprayable solutions contain approximately 0.05 to 80%, preferably 2 to 50% by weight of active ingredient. In the case of water-dispersible granules, the active ingredient content depends partly on whether the active compound is present in liquid or solid form and on which granulation auxiliaries, fillers and the like are being used. The active ingredient content amounts to, for example, between 1 and 15 95% by weight, preferably to between 10 and 80% by weight in the case of the water-dispersible granules.

20 The amount of surfactant b) in concentrated formulations can naturally not be increased at will without adversely affecting the stability of the formulation. In the concentrated formulations, the weight ratio herbicide a): surfactant b) is generally 1000:1 to 1:10000, preferably 200:1 to 1:200; the weight ratio herbicide a): humectant c) is generally from 1000:1 to 1:10000, preferably 200:1 to 1:200; and the weight ratio of surfactant b) : humectant c) is generally 1000:1 to 1:1000, preferably 25 200:1 to 1:200.

30 Upon application, the weight ratio herbicide a): surfactant b) is generally in the range of from 1000:1 to 1:100000, in particular 200:1 to 1:1000, depending on the efficacy of the herbicide in question. The weight ratio herbicide a): humectant c) is upon application in general in the range from 1000:1 to 1:100000, in particular 200:1 to 1:200 depending on the efficacy of the herbicide in question. The weight ratio surfactant b): humectant c) upon application is generally in the range of from 1000:1

to 1:1000, preferably 200:1 to 1:200.

Upon application, the concentration of herbicide a) is generally 0.0001 to 20% by weight, preferably 0.01 to 3% by weight, in the composition applied, for example the

5 spray mixture, at an application rate of 5 to 4000 l/ha, preferably 100 to 600 l/ha. In general, the concentration of surfactant b) is 0.001 to 5% by weight, preferably 0.1 to 2.0% by weight, in particular 0.1 to 0.5% by weight, in the composition applied, for example the spray mixture, at an application rate of 5 to 4000 l/ha, preferably 100 to 600 l/ha. In general, the concentration of humectant c) is 0.001 to 20% by weight,

10 preferably 0.01 to 5% by weight, of humectant c) in the composition applied, for example the spray mixture, at an application rate of 5 to 4000 l/ha, preferably 100 to 600 l/ha.

15 Preferably, the herbicidal compositions according to the invention additionally comprise water and if appropriate, organic solvents besides components a), b) and c) and are formulated in the form of an aqueous concentrated dispersion or emulsion or as a tank mix in the form of a dilute dispersion, emulsion or solution with a degree of dilution of up to that of the ready-to-use spray mixture. A herbicidal composition prepared as a tank mix and comprising, for use, the preferred amounts of herbicide a), surfactant b) and humectant c) is especially preferred.

20 Mixtures or coformulations with other active substances such as, for example, insecticides, acaricides, herbicides, fungicides, safeners, fertilizers and/or growth regulators are possible, if appropriate.

25 For use, concentrated formulations which are present in commercially available form are, if appropriate, diluted in the customary fashion, for example by means of water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules. Preparations in the form of dusts, spray granules, absorption 30 granules, sprayable solutions and spray mixtures prepared as tank mixes are not conventionally diluted further with additional inert substances prior to use. However, it may be advantageous or necessary to add further amounts of surfactants b),

humectant c) and/or other conventional auxiliaries, in particular self-emulsifying oils or liquid paraffins, to the spray mixtures.

The application rate required of the herbicides a) varies with the external conditions such as temperature, humidity and the nature of the herbicide used. It can vary

5 within wide limits, for example between 0.001 and 10 kg/ha or more of active substance, but it is preferably between 0.005 and 5 kg/ha.

The herbicidal compositions according to the invention have an outstanding herbicidal activity against a broad spectrum of economically important

10 monocotyledonous and dicotyledonous harmful plants. The active ingredients also act efficiently on perennial weeds which produce shoots from rhizomes, rootstocks or other perennial organs and which are difficult to control. In this context, it does not matter whether the substances are applied before sowing, pre-emergence or post-emergence. Specific examples may be mentioned of some representatives of the 15 monocotyledonous and dicotyledonous weed flora which can be controlled by the herbicidal compositions according to the invention, without the enumeration being a restriction to certain species.

Examples of weed species on which the herbicidal compositions act efficiently are,

20 from amongst the monocotyledonous weed species, *Avena*, *Lolium*, *Alopecurus*, *Phalaris*, *Echinochloa*, *Digitaria*, *Setaria* and *Bromus* species, such as *Bromus catharticus*, *Bromus secalinus*, *Bromus erectus*, *Bromus tectorum* and *Bromus japonicus*, and *Cyperus* species from the annual group, and, among the perennial 25 species, *Agropyron*, *Cynodon*, *Imperata* and *Sorghum* and also perennial *Cyperus* species.

In the case of the dicotyledonous weed species, the spectrum of action extends to genera such as, for example, *Galium*, *Viola*, *Veronica*, *Lamium*, *Stellaria*, *Amaranthus*, *Sinapis*, *Ipomoea*, *Matricaria*, *Abutilon* and *Sida* amongst the annuals, 30 and *Convolvulus*, *Cirsium*, *Rumex* and *Artemisia* in the case of the perennial weeds.

The active ingredients according to the invention also act outstandingly efficiently on harmful plants which are found under the specific cultures in rice, such as, for example, *Echinochloa*, *Sagittaria*, *Alisma*, *Eleocharis*, *Scirpus* and *Cyperus*.

5 If the herbicidal compositions according to the invention are applied to the soil surface before germination, the weed seedlings are either prevented completely from emerging or else the weeds grow until they have reached the cotyledon stage, but then their growth stops, and, eventually, after three to four weeks have elapsed, they die completely.

10 If the herbicidal compositions according to the invention are applied post-emergence to the green parts of the plants, growth likewise stops drastically a very short time after the treatment, and the weed plants remain at the growth stage of the point of time of application, or they die completely after a certain time, so that in this manner 15 competition by the weeds, which is harmful to the crop plants, is eliminated very early and in a sustained manner.

Even though the herbicidal compositions according to the invention have an outstanding herbicidal activity against monocotyledonous and dicotyledonous weeds, 20 crop plants of economically important crops such as dicotyledonous crops such as, for example, soybeans, cotton, oilseed rape, sugarbeet, in particular soybean, or graminaceous crops such as wheat, barley, rye, rice or maize, are harmed only to a minor extent, if at all. For these reasons, the present compounds are highly suitable 25 for the selective control of undesired vegetation in stands of agriculturally useful plants or of ornamentals.

In addition, the herbicidal compositions according to the invention have outstanding growth-regulatory properties in crop plants. They engage in the plants' metabolism in a regulatory fashion and can thus be used for the directed control of plant 30 constituents and for facilitating harvesting, such as, for example, by triggering desiccation and stunted growth. Moreover, they are also suitable for generally controlling and inhibiting undesired vegetative growth without destroying the plants in

the process. Inhibition of the vegetative growth plays an important role in many monocotyledonous and dicotyledonous crops since lodging can be reduced, or prevented completely, thereby.

5 Owing to their herbicidal and plant-growth regulatory properties, the herbicidal combinations according to the invention can also be employed for controlling harmful plants in crops of genetically modified plants which are known or yet to be developed. As a rule, the transgenic plants are distinguished by particular advantageous properties, for example by resistances to certain pesticides, especially

0 certain herbicides, resistances to plant diseases or to plant pathogens such as certain insects or microorganisms such as fungi, bacteria or viruses. Other particular properties concern for example the harvested material with regard to quantity, quality, storeability, composition and specific constituents. Thus, transgenic plants with an increased starch content or with a modified starch quality or with a different fatty acid composition of the harvested material are known.

15 The use of the compositions according to the invention in economically important transgenic crops of useful plants and ornamentals, such as graminaceous crops such as wheat, barley, rye, oats, millet, rice and maize or else crops of sugarbeet, cotton, soybean, oilseed rape, potato, tomato, pea and other vegetables is preferred.

20 The compositions according to the invention may preferably be employed as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or which have been rendered resistant to the phytotoxic effects of the herbicides by recombinant means.

25 When the herbicidal compositions according to the invention are used in transgenic crops, effects are frequently observed – in addition to the effects on harmful plants which can be observed in other crops – which are specific for the application in the transgenic crop in question, for example a modified or specifically extended weed spectrum which can be controlled, also modified application rates which can be employed for application, preferably good combining properties with the herbicides to which the transgenic crop is resistant, and an effect on growth and yield of the

transgenic crop plants.

A subject of the invention is therefore also the use of the compositions according to the invention as herbicides for controlling harmful plants, preferably in crops of

5 plants, it also being possible for the crops of plants to take the form of crops of transgenic plants.

The herbicidal compositions according to the invention can also be employed nonselectively for controlling undesired vegetation, for example in plantation crops, on verges, squares, industrial terrain or rail tracks.

Owing to the relatively low application rate of the herbicidal compositions according to the invention, they are generally already very well tolerated. In particular, a reduction in the absolute application rate can be achieved by the combinations according to the invention, compared with the individual use of a herbicidal active substance.

4 A subject of the invention is therefore also a method of controlling harmful plants, preferably for selectively controlling harmful plants in crops of useful plants, which 20 comprises applying a herbicidally active amount of the abovementioned herbicides a) in combination with at least one of the surfactants b) and at least one humectant c), for example pre-emergence, post-emergence or pre- and post-emergence, preferably pre-emergence, jointly or in succession, to the plants, plant parts, plant seeds or the area on which the plants grow, for example the area under cultivation.

25 In a preferred method variant, the herbicides a) are applied in application rates of from 0.1 to 2000 g of active substances/ha, preferably of from 0.5 to 1000 g of active substances/ha. It is furthermore especially preferred to apply the active ingredients in the form of a readymix or in the form of tank mixes, where the individual 30 components, for example in the form of formulations, are jointly mixed with water in the tank and the resulting spray mixture is applied.

Since the crop plant compatibility of the combinations according to the invention is extremely good, combined with a very high degree of control of the harmful plants, the combinations according to the invention can be considered as selective. In a preferred embodiment, herbicidal compositions with the active substances

5 combinations according to the invention are therefore employed for selectively controlling undesired plants.

If, if desired, the compatibility and/or selectivity of the herbicidal compositions according to the invention is to be increased even further, it may be advantageous to

10 apply them together with safeners or antidotes, either jointly in a mixture or staggered in time.

Compounds which are suitable as safeners or antidotes for the herbicidal compositions according to the invention are known, for example, from EP-A-333 131 (ZA-89/1960), EP-A-269 806 (US-A-4,891,057), EP-A-346 620 (AU-A-89/34951) and the international patent applications PCT/EP 90/01966 (WO-91108202) and PCT/EP 90102020 (WO-911078474) and literature cited therein or can be prepared by the processes described therein. Further suitable safeners are known from EP-A-94 349 (US-A-4,902,304), EP-A-191 736 (US-A-4,881,966) and EP-A-0

20 492 366 and the literature cited therein.

In a preferred embodiment, the herbicidal compositions of the present invention therefore contain an additional content of one or more compounds which act as safeners or antidotes.

25 Especially preferred antidotes or safeners or groups of compounds which are suitable as safeners or antidotes for the above-described herbicidal compositions of the invention are, inter alia:

30 a) compounds of the dichlorophenylpyrazolin-3-carboxylic acid type, preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylate (compound S1 –1, mefenpyr-diethyl) and related

compounds as are described in the international application WO 91/07874 (PCT/EP 90102020);

5 b) dichlorophenylpyrazolecarboxylic acid derivatives, preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-methylpyrazole-3-carboxylate (compound S1-2), ethyl 1-(2,4-dichlorophenyl)-5-isopropylpyrazole-3-carboxylate (compound S1-3), ethyl 1-(2,4-dichlorophenyl)-5-(1,1-dimethylethyl)pyrazole-3-carboxylate (compound S1-4), ethyl 1-(2,4-dichlorophenyl)-5-phenylpyrazole-3-carboxylate (compound S1-5) and related compounds as are described in EP-A-0 333 131 and EP-A-0 269 806;

10 c) compounds of the triazolecarboxylic acids type, preferably compounds such as ethyl 1-(2,4-dichlorophenyl)-5-trichloromethyl-(1H)-1,2,4-triazole-3-carboxylate (compound S1-6, fenchlorazole) and related compounds (see EP-A-0 174 562 and EP-A-0 346 620);

15 d) compounds of the dichlorobenzyl-2-isoxazoline-3-carboxylic acid type, compounds of the 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid type, preferably compounds such as ethyl 5-(2,4-dichlorobenzyl)-2-isoxazoline-3-carboxylate (compound S1-7) or ethyl 5-phenyl-2-isoxazoline-3-carboxylate (compound S1-8), and related compounds as are described in international patent application WO 91/08202 (PCT/EP 90/01966);

20 e) compounds of the 8-quinolinoxyacetic acid type, preferably compounds such as 1-methylhex-1-yl (5-chloro-8-quinolinoxy)acetate (S2-1; cloquintocet-mexyl), 1,3-dimethylbut-1-yl (5-chloro-8-quinolinoxy)acetate (S2-2), 4-allyloxy (5-chloro-8-quinolinoxy)acetate (S2-3), 1-allyloxy-prop-2-yl (5-chloro-8-quinolinoxy)acetate (S2-4), ethyl (5-chloro-8-quinolinoxy)acetate (S2-5), methyl (5-chloro-8-quinolinoxy)acetate (S2-6),

allyl (5-chloro-8-quinolinoxy)acetate (S2-7),
2-(2-propylideneiminoxy)-1-ethyl (5-chloro-8-quinolinoxy)acetate (S2-8),
2-oxoprop-1-yl (5-chloro-8-quinolinoxy)acetate (S2-9) and related compounds
as are described in EP-A-0 086 750, EP-A-0 094 349 and EP-A-0 191 736 or
EP-A-0 492 366;

5 f) compounds of the (5-chloro-8-quinolinoxy)malonic acid type, preferably
compounds such as diethyl (5-chloro-8-quinolinoxy)malonate, diallyl (5-chloro-
8-quinolinoxy)malonate, methyl ethyl (5-chloro-8-quinolinoxy)malonate and
related compounds as have been described and proposed in German patent
application EP-A-0 582 198;

10 g) active substances of the type of the phenoxyacetic acid derivatives or
phenoxypropionic acid derivatives or of the aromatic carboxylic acids such as,
for example, 2,4-dichlorophenoxyacetic acid (and esters) (2,4-D),
4-chloro-2-methylphenoxypropionic acid (mecoprop), MCPA or 3,6-dichloro-
2-methoxybenzoic acid (and esters) (dicamba).

15 h) compounds of the 5,5-diphenyl-2-oxaoline-3-carboxylic acid type, preferably
ethyl 5,5-diphenyl-2-oxazoline-3-carboxylate (S3-1, isoxadifen-ethyl).

20 i) compounds which are known as safeners, for example for rice, such as
fenclorim (= 4,6-dichloro-2-phenylpyrimidine, Pesticide Manual, 11th Edition,
1997, pp. 511-512), dimepiperate (= S-1-methyl-1-phenylethyl piperidine-1-
thiocarboxylate, Pesticide Manual, 11th Edition, 1997, pp. 404-405), daimuron
25 (= 1 -(1 -methyl- 1-phenylethyl)-3-p-tolylurea, Pesticide Manual, 11th Edition,
1997, p. 330), cumyluron (= 3-(2-chlorophenylmethyl)-1 -(1
-methyl-1-phenylethyl) urea, JP-A-60/087254), methoxyphenone (=
30 3,3'-dimethyl-4-methoxybenzophenone, CSB (=
1-bromo-4-(chloromethylsulfonyl)benzene, CAS-Reg. No. 54091-06-4).

In addition, at least some of the abovementioned compounds are described in EP-A-0 640 587, which is herewith referred to for disclosure purposes.

j) A further important group of compounds which are suitable as safeners and 5 antidotes is known from WO 95107897.

The safeners (antidotes) of the above groups a) to j) reduce or prevent phytotoxic effects which may be observed when the herbicidal compositions according to the invention are employed in crops of useful plants, without adversely affecting the 10 efficacy of the herbicides against harmful plants. This makes it possible considerably to widen the spectrum of application of the herbicidal compositions according to the invention; in particular, the use of safeners makes possible the application of herbicidal compositions which could previously only be employed to a limited extent or with insufficient success, i.e. of combinations which, at low dosages with a poor 15 spectrum of action, led to insufficient control of the harmful plants without safener.

Components a), b) and c) of the herbicidal compositions according to the invention and the abovementioned safeners can be applied jointly (for example as readymix or by the tank mix method) or in succession in any desired sequence. The weight ratio 20 safener:herbicide (compound(s) of the formula (I) and/or their salts) can vary within wide ranges and is preferably in the range of from 1 : 100 to 100 : 1, in particular of from 1 : 100 to 50: 1. The amounts of herbicide(s) and safener(s) which are optimal in each case usually depend on the type of the herbicidal composition and/or on the 25 safener used, and also on the nature of the plant stand to be treated.

Depending on their properties, the safeners can be used for pretreating the seed of the crop plant (seed dressing) or introduced into the seed furrows prior to sowing or applied together with the herbicide mixture before or after emergence of the plants. 30 Pre-emergence treatment includes both the treatment of the area under cultivation before sowing and the treatment of the areas under cultivation where seed has been sown, but growth is as yet not present. The joint application with the herbicide mixture is preferred. Tank mixes or readymixes can be employed for this purpose.

The application rates required, of the safeners, can vary within wide limits, depending on the indication and the herbicide used; they are, as a rule, in the range of from 0.001 to 1 kg, preferably 0.005 to 0.2 kg, of active substance per hectare.

5

The herbicidal compositions according to the invention can be applied in the customary fashion, for example with water as carrier in spray mixture quantities of approximately 5 to 4000 liters/ha. Application of the compositions by what is known as the low-volume and ultra-low-volume methods (ULV) is also possible, as is their application in the form of granules and microgranules.

10
15
20
25

A preferred use relates to application of herbicidal compositions which contain components a), b) and c) in a synergistically active amount. The invention also extends to mixtures of one or more herbicides a) with one or more surfactants b) and one or more humectants c).

20

Besides, one, two or more of agrochemical active substances other than herbicide a) (for example herbicides, insecticides, fungicides, safeners) may be present in the herbicidal compositions of the invention for complementing the properties, usually in minor amounts.

This results in a large number of possibilities of combining several active substances with each other and of employing them jointly for controlling harmful plants in crops of plants without deviating from the spirit of the invention.

25

Thus, in a preferred embodiment, for example various active substances of the formula (II) and/or their salts may be combined with each other, for example mesosulfuron-methyl + iodosulfuron-methyl,
mesosulfuron-methyl + iodosulfuron-methyl-sodium,
mesosulfuron-methyl + foramsulfuron,
mesosulfuron-methyl + foramsulfuron-sodium,
mesosulfuron-methyl-sodium + iodosulfuron-methyl,

mesosulfuron-methyl-sodium + iodosulfuron-methyl-sodium,
mesosulfuron-methyl-sodium + foramsulfuron,
mesosulfuron-methyl-sodium + foramsulfuron-sodium,
foramsulfuron + iodosulfuron-methyl,
5 foramsulfuron + iodosulfuron-methyl-sodium,
foramsulfuron-sodium + iodosulfuron-methyl,
foramsulfuron-sodium + iodosulfuron-methyl-sodium.

The herbicidal active substances a) and their mixtures, for example the

0 abovementioned active substance mixtures of active substances of the formula (II)
and/or their salts, can preferably be combined with a C₈-C₂₀-alkyl polyglycol ether
sulfate such as sodium C₁₂/C₁₄-fatty alcohol diglycol ether sulfate (tradename for
example Genapol[®] LRO, Clariant GmbH) as component b) and a lactic acid
derivative such as sodium lactate as component c). In addition, preferably one or
15 more safeners may be present, in particular the safeners mefenpyr-diethyl (S1-1),
cloquintocet-mexyl (S2-1) and isoxadifen-ethyl (S3-1).

In conclusion, it can be said that the herbicidal compositions according to the
invention have an outstanding herbicidal action and that in a preferred embodiment
20 superadditive (= synergistic) effects are observed. In this case, the action in the
combinations exceeds that of the individual components employed alone.

These effects permit inter alia a reduction in the application rate, control of a broader
spectrum of broad-leaved weeds and grass weeds, filling in of gaps in action, a more
25 rapid and more reliable action, a prolonged duration of action, complete control of
harmful plants with only one or few applications, and a widened period of application.
The abovementioned properties are required in weed control practice in order to
keep agricultural crops free from undesired plant competitors and thus to safeguard
and/or increase the yields in terms of quality and quantity. The technical standard is
30 exceeded markedly by the combinations according to the invention with regard to the
properties described. Thus, a considerably improved reliability of action is observed
under different environmental conditions.

In a further embodiment of the present invention, herbicidal compositions comprising at least one compound of the formula (II') and/or their salts

5 in which R¹ is CO-(C₁-C₄-alkoxy), R² is CH₂-NHR^e, where R^e is an acyl radical, preferably C₁-C₄-alkylsulfonyl, R³ is H or C₁-C₄-alkyl, and X, Y and Z are as defined in formula (II), for example mesosulfuron-methyl and/or its salts such as the sodium salt, are outstandingly suitable for controlling Bromus species such as Bromus catharticus, Bromus secalinus, Bromus erectus, Bromus tectorum and Bromus japonicus.

Bromus plants are controlled particularly efficiently under normal conditions of humidity, and Bromus is still controlled under very dry conditions. Normal conditions of humidity are to be understood as meaning in particular those conditions where the

15 Bromus plant does not start wilting owing to lack of water. This is the case in particular when the plant is supplied with such an amount of water within the first 4 weeks after application of the herbicidal composition that it is capable of replacing the water lost by transpiration by water from the soil and wilting is prevented (see, for example, Scheffer / Schachtschnabel: Lehrbuch der Bodenkunde [Textbook of

20 Pedology], Ferdinand Enke Verlag (Stuttgart), 11th Edition (1982), p. 171 et seq.). For controlling Bromus, in particular under very dry conditions, it is preferred that the herbicidal compositions additionally comprise a surfactant b) which is not a silicone surfactant, and/or a humectant c), besides the compound of the formula (II') and/or its salts.

25 In addition, the herbicidal compositions may additionally comprise further agrochemical active substances (for example herbicides, insecticides, fungicides, safeners). Thus, in a preferred embodiment, for example, active substances of the

formula (II') and/or their salts can be combined with other, different active substances of the formula (II) and/or their salts, for example

mesosulfuron-methyl + iodosulfuron-methyl,

mesosulfuron-methyl + iodosulfuron-methyl-sodium,

5 mesosulfuron-methyl + foramsulfuron,

mesosulfuron-methyl + foramsulfuron-sodium,

mesosulfuron-methyl-sodium + iodosulfuron-methyl,

mesosulfuron-methyl-sodium + iodosulfuron-methyl-sodium,

mesosulfuron-methyl-sodium + foramsulfuron,

10 mesosulfuron-methyl-sodium + foramsulfuron-sodium,

foramsulfuron + iodosulfuron-methyl,

foramsulfuron + iodosulfuron-methyl-sodium,

foramsulfuron-sodium + iodosulfuron-methyl,

foramsulfuron-sodium + iodosulfuron-methyl-sodium.

15 The herbicidal active substances of the formula (II') and/or their salts and their mixtures, for example the abovementioned active substance mixtures of active substances of the formula (II') and/or their salts with other, different active substances of the formula (II) and/or their salts can preferably be combined with a

20 C_8-C_{20} -alkyl polyglycol ether sulfate such as sodium C_{12}/C_{14} -fatty alcohol diglycol ether sulfate (tradename for example Genapol[®] LRO, Clariant GmbH) as component b) and/or a lactic acid derivative such as sodium lactate as component c). In addition, preferably one or more safeners may be present, in particular the safeners mefenpyr-diethyl (S1-1), cloquintocet-mexyl (S2-1) and isoxadifen-ethyl (S3-1).

25

What has been said above for the statements on the herbicidal compositions according to claim 1 also applies analogously to the herbicidal compositions of this further embodiment of the present invention.

30 The use examples which follow illustrate the invention and have no limiting character whatsoever.

A. Preparation of the spray mixtures

The individual components herbicide, surfactant and humectant with regard to type and application rate as stated in Tables 1-4 were added with stirring to a water

5 application rate of 300 l/ha so that a homogeneous spray mixture was formed. The active substances rimsulfuron and nicosulfuron in the commercially available formulations Cato® WG25 (Du Pont) and Motivell® (BASF) were used for this purpose, respectively. Iodosulfuron-methyl-sodium and mesosulfuron-methyl were added in each case as 20 percent water-dispersible powders. Foramsulfuron was

10 used as 50 percent water-dispersible granules. The surfactants used were Genapol® LRO as 70 percent paste (Clariant) and Synperonic® A7 (Unichema).

Humectants employed were sodium lactate as 50 percent aqueous solution (Merck KGaA, Darmstadt) and propylene glycol (Clariant).

15 The spray application was carried out as described in the examples section.

B. Biological examples

The abbreviations used hereinbelow denote:

20	g a.i./ha	grams of active substance/hectare		
	AVEFA	<i>Avena fatua</i>	ALOMY	<i>Alopecurus myosuroides</i>
	BROTE	<i>Bromus tectorum</i>	DIGSA	<i>Digitaria adscendens</i>
	ECHCG	<i>Echinochloa crus-galli</i>	LOLMU	<i>Lolium multiflorum</i>

25 Visual scoring was carried out using a percentage scale of 0% = no damage to 100% = all plants dead.

Example B.1

30 Seeds of the harmful plants AVEFA and LOLMU were sown in a sandy loam soil in round pots type 13 in a controlled-environment cabinet and watered slightly. During the entire experiment period, the substrate only received minimal irrigation. A daytime temperature of 18°C and a nighttime temperature of 16°C was adhered to, a

uniform day length of 16 hours being achieved by additional illumination with sodium vapor lamps (approx. 7000 lux). The relative atmospheric humidity was 50%. Four weeks after sowing, the plants were treated on a laboratory spray conveyor with spray mixtures of components mesosulfuron-methyl (A1), sodium lactate and Genapol® LRO, which spray mixtures had been prepared in accordance with Example A. The water application rate for the spray application of the preparations was 300 l/ha. After the treatment, the plants were returned to the controlled-environment cabinet. Visual scoring 14 days after the application gave the results shown in Table 1.

Table 1

Action [%] against harmful plants

Components	G a.i. / ha	AVEFA	LOLMU
A1	60	10	10
A1 + Genapol® LRO	60 324	20	50
A1 + Genapol® LRO + sodium lactate	60 324 150	70	60

Example B.2

Seeds of the harmful plants LOLMU, ALOMY, AVEFA, ECHCG and DIGSA were sown in a sandy loam soil in round pots type 7 in a greenhouse and watered slightly. A daytime temperature of 22 to 24°C and a nighttime temperature of 16 to 18°C was adhered to, a uniform day length of 16 hours being achieved by additional illumination with sodium vapor lamps (approx. 7000 lux). The relative atmospheric humidity was 60 to 80%. Two weeks after sowing, the plants were treated on a laboratory spray conveyor with the spray mixtures of rimsulfuron (A2), nicosulfuron (A3), iodosulfuron-methyl sodium (A4) and foramsulfuron (A5) and of combinations of A2, A3, A4 and A5 with Genapol® LRO and sodium lactate, the spray mixtures being prepared as in Example A. The water application rate for the spray application

of the preparations was 300 l/ha. After the treatment, the plants were returned to the greenhouse. Visual scoring 28 days after the application gave the results shown in Table 2.

5 Table 2 Action [%] against harmful plants

Components	g a.i. / ha	LOLMU	ALOMY	AVEFA	ECHCG	DIGSA
A2	5	60	70	0	10	30
A2 + Genapol® LRO + sodium lactate	5	98	90	85	85	70
A3	20	-	0	0	0	-
A3 + Genapol® LRO + sodium lactate	20	-	60	30	5	-
A4	20	60	50	60	70	30
A4 + Genapol® LRO + sodium lactate	20	65	70	95	80	40
A5	20	50	70	60	30	0
A5 + Genapol® LRO + sodium lactate	20	70	80	98	45	30

Example B.3

10

Seeds of the harmful plant BROTE were sown in a sandy loam soil in round pots type 13 in the open and watered slightly. During the entire experimental period, the substrate only received minimal irrigation. Four weeks after sowing, the plants were treated on a laboratory spray conveyor with spray mixtures of components

15 mesosulfuron-methyl (A1), Genapol® LRO and sodium lactate, A1, Synperonic®A7

and sodium lactate and A1, Genapol® LRO and propylene glycol, the spray mixtures being prepared as in Example A. The water application rate for the spray application of the preparations was 300 l/ha. After the treatment, the plants were returned to the open. Visual scoring 28 days after application gave the results shown in Table 3.

5

Table 3 Action [%] against harmful plants

Components	g a.i. / ha	BROTE
A1	10	12.5
A1 + Genapol® LRO	10 300	12.5
A1 + Genapol® LRO + sodium lactate	10 300 300	42.5
A1 + Synperonic® A7	10 300	10
A1 + Synperonic® A7 + sodium lactate	10 300 300	17.5
A1 + Genapol® LRO + propylene glycol	10 300 300	27.5

10 Example B.4

15 Seeds of the harmful plant BROTE were sown in a sandy loam soil in round pots type 7 in a greenhouse and watered slightly. A daytime temperature of 22 to 24°C and a nighttime temperature of 16 to 18°C was adhered to, a uniform day length of 16 hours being achieved by additional illumination with sodium vapor lamps (approx. 7000 lux). The relative atmospheric humidity was 60 to 80%. Two weeks after sowing, the plants were treated on a laboratory spray conveyor using an oil

DRAFT - PEGGY LEE

dispersion containing 1.5% by weight mesosulfuron-methyl (A1) and 4.5% by weight mefenpyr-diethyl (S1-1) and combinations of the oil dispersion containing 1.5% by weight of mesosulfuron-methyl and 4.5% by weight of mefenpyr-diethyl with Genapol® LRO (300 g Genapol® LRO / ha). The water application rate for the spray application of the preparations was 300 l/ha. After the treatment, the plants were returned to the greenhouse. Visual scoring 28 days after the application gave the results shown in Table 4.

Table 4 Action [%] against harmful plants

Components	g a.i. / ha	BROTE
A1*	7.5	80
	11	87.5
A1* + Genapol® LRO	7.5	85
	11	90

A1*: mesosulfuron-methyl (A1) + mefenpyr-diethyl (S1-1)