Package 'MaximinInfer'

November 2, 2021

Type Package			
Title Inference for Maximin Effect in high-dimensional settings			
Version 0.1.0			
Author Zhenyu Wang; Zijian Guo			
Maintainer Zhenyu Wang <wangzy0701@gmail.com></wangzy0701@gmail.com>			
Description The package implements the sampling and aggregation method for the covariate shift maximin effect, which was proposed in arXiv:2011.07568. It constructs the confidence interval for any linear combination of the high-dimensional maximin effect.			
License GPL-3			
Encoding UTF-8			
LazyData true			
RoxygenNote 7.1.1			
Suggests knitr, rmarkdown			
VignetteBuilder knitr			
Imports MASS, stats, CVXR, glmnet, intervals, SIHR			
Depends R (>= 2.10)			
R topics documented:			
decide_delta			
Index			

2 decide_delta

decide_delta

decide delta data-dependently

Description

decide_delta will tell if the estimator is stable or not without ridge penalty at first. If instable, it picks a ridge penalty data-dependently.

Usage

```
decide_delta(object, step_delta = 0.1, MAX_iter = 100, verbose = FALSE)
```

Arguments

object Object of class inheriting from "Maximin"

step_delta The step size of searching delta (Default = 0.1)

MAX_iter Maximum of iterations for searching (Default = 100)

verbose Print information about delta and reward (Default = 'FALSE')

Value

delta The data-dependent ridge penalty
reward.ratio The ratio of penalized reward over non-penalized reward

Examples

```
## heterogenous data and covariates shift
X1 = sample_data$X1
X2 = sample_data$X2
Y1 = sample_data$Y1
Y2 = sample_data$Y2
X.target = sample_data$X.target

## loading
loading = rep(0, 100) # dimension p=100
loading[98:100] = 1

## call
mm <- Maximin(list(X1, X2), list(Y1, Y2), loading, X.target, covariate.shift = TRUE)
out <- decide_delta(mm)
out$delta
out$reward.ratio</pre>
```

infer 3

infer

Inference method for class "Maximin"

Description

Point estimator and Confidence interval based on Maximin object

Usage

```
infer(
 object,
  delta = 0,
  gen.size = 500,
  threshold = 0,
 alpha = 0.05,
 alpha.thres = 0.01
```

Arguments

object Object of class inheriting from "Maximin" delta The ridge penalty (Default = 0) The generating sample size (Default = 500) gen.size Should generated samples be filtered or not? if 0, use normal threshold to filter; threshold if 1, use chi-square threshold to filter; if 2, do not filter (Default = 0) alpha confidence value to construct confidence interval (Default = 0.05) alpha.thres confidence value to select generated samples (Default = 0.01)

Value

weight The weight vector for groups, of length Lpoint The point estimator of the linear combination mm.effect The aggregated maximin effect (coefficients), of length p or p+1

CIConfidence interval for the linear combination

Examples

```
## heterogenous data and covariates shift
X1 = sample_data$X1
X2 = sample_data$X2
Y1 = sample_data$Y1
Y2 = sample_data Y2
X.target = sample_data$X.target
## loading
loading = rep(0, 100) # dimension p=100
loading[98:100] = 1
mm <- Maximin(list(X1, X2), list(Y1, Y2), loading, X.target, covariate.shift = TRUE)</pre>
mmInfer <- infer(mm)</pre>
```

4 Maximin

Maximin

Description

'Maximin' returns the class "Maximin", which provides materials for later inference method.

Usage

```
Maximin(
   Xlist,
   Ylist,
   loading,
   X.target = NULL,
   cov.target = NULL,
   covariate.shift = TRUE,
   lam.value = c("CV", "CV.min"),
   intercept = TRUE,
   intercept.loading = FALSE
)
```

Arguments

Xlist list of design matrix for source data, of length L Ylist list of outcome vector for source data, of length L

Class Maximin

loading Loading, of length p

X. target Design matrix for target data, of dimension $n.target \times p$ (default = 'NULL') cov. target Covariance matrix for target data, of dimension $p \times p$ (default = 'NULL')

covariate.shift

Covariate shifts or not between source and target data (default = 'TRUE')

lam. value The method to be used to obtain Lasso estimator of high-dimensional regression

vector for each group

intercept Should intercept be fitted for the initial estimator (default = 'TRUE')

intercept.loading

Should intercept be included for the loading (default = 'FALSE')

Details

The algorithm implemented scenarios with or without covariate shift. If 'cov.target' is specified, the 'X.target' will be ignored; if not, while 'X.target' is specified, 'cov.target' will be estimated by 'X.target'. If both are not specified, the algorithm will automatically set 'covariate.shift' as 'FALSE'.

Value

'Maximin' returns an object of class "Maximin". The function 'infer' is used to do further inference. An object of class "Maximin" is a list containing the following components.

Gamma.prop The proposed debiased regression covariance matrix

MaximinInfer 5

Coef.est	matrix, of dimension $p(+1)$ x L where each column corresponds to the Lasso estimator of the high-dimensional regression vector for a given group
Point.vec	vector, of length ${\cal L}$ with the l-th entry as the debiased estimator of the linear combination of the l-th high-dimensional regression vector
L	The number of groups
gen.mu	The mean vector for sampling the regression covariance matrix
gen.Cov	The variance matrix for sampling the regression covariance matrix

MaximinInfer

The Wrapper function for Maximin inference

Description

MaximinInfer is a wrapper for class Maximin and the method infer.

Usage

```
MaximinInfer(
   Xlist,
   Ylist,
   loading,
   X.target = NULL,
   cov.target = NULL,
   covariate.shift = TRUE,
   lam.value = c("CV", "CV.min"),
   intercept = TRUE,
   intercept.loading = FALSE,
   delta = 0,
   gen.size = 500,
   threshold = 0,
   alpha = 0.05,
   alpha.thres = 0.01
)
```

Arguments

Xlist list of design matrix for source data, of length L Ylist list of outcome vector for source data, of length L

loading Loading, of length p

X. target Design matrix for target data, of dimension $n.target \times p$ (default = 'NULL') cov. target Covariance matrix for target data, of dimension $p \times p$ (default = 'NULL')

covariate.shift

Covariate shifts or not between source and target data (default = 'TRUE')

lam. value The method to be used to obtain Lasso estimator of high-dimensional regression

vector for each group

intercept Should intercept be fitted for the initial estimator (default = 'TRUE')

intercept.loading

Should intercept be included for the loading (default = 'FALSE')

6 measure_instability

delta	The ridge penalty (Default = 0)
gen.size	The generating sample size (Default = 500)
threshold	Should generated samples be filtered or not? If 0, use normal threshold to filter; if 1, use chi-square threshold to filter; if 2, do not filter. (Default = 0)
alpha	confidence value to construct confidence interval (Default = 0.05)
alpha.thres	confidence value to select generated samples (Default = 0.01)

Details

The algorithm implemented scenarios with or without covariate shift. If 'cov.target' is specified, the 'X.target' will be ignored; if not, while 'X.target' is specified, 'cov.target' will be estimated by 'X.target'. If both are not specified, the algorithm will automatically set 'covariate.shift' as 'FALSE'.

Value

Examples

```
## heterogenous data and covariates shift
X1 = sample_data$X1
X2 = sample_data$X2
Y1 = sample_data$Y1
Y2 = sample_data$Y2
X.target = sample_data$X.target

## loading
loading = rep(0, 100) # dimension p=100
loading[98:100] = 1

## call
mmInfer <- MaximinInfer(list(X1, X2), list(Y1, Y2), loading, X.target, covariate.shift = TRUE)</pre>
```

measure_instability measurement of instability

Description

compute the instability measurement given a specific ridge penalty

sample_data 7

Usage

```
measure_instability(
  object,
  delta = 0,
  gen.size = 500,
  threshold = 0,
  alpha.thres = 0.01
)
```

Arguments

object Object of class inheriting from "Maximin"

delta The ridge penalty (Default = 0)

gen. size The generating sample size (Default = 500)

threshold Should generated samples be filtered or not? if 0, use normal threshold to filter;

if 1, use chi-square threshold to filter; if 2, do not filter. (Default = 0)

alpha. thres confidence value to select generated samples (Default = 0.01)

Value

measure The measurement of instability

Examples

```
## heterogenous data and covariates shift
X1 = sample_data$X1
X2 = sample_data$X2
Y1 = sample_data$Y1
Y2 = sample_data$Y2
X.target = sample_data$X.target

## loading
loading = rep(0, 100) # dimension p=100
loading[98:100] = 1

## call
mm <- Maximin(list(X1, X2), list(Y1, Y2), loading, X.target, covariate.shift = TRUE)
out <- measure_instability(mm)
out$measure</pre>
```

sample_data

Sample Data for Analysis

Description

Datasets for the simple testing and running examples. The data is heterogenous with 2 groups, and covariates shift between target data and source data.

Usage

```
sample_data
```

8 sample_data

Format

list with source data and target data, which are:

- X1 Design matrix for the 1st group source data
- **X2** Design matrix for the 2nd group source data
- Y1 Outcome vector for the 1st group source data
- Y2 Outcome vector for the 2nd group source data

X.target Design matrix for the target data

Index