We again will be dealing with divide-and-conquer algorithms.

When we left off last time, we were discussing two divide-and-conquer algorithms for multiplying $n \times n$ matrices:

• Straightforward approach with 8 recursive multiplications:

$$-T(n) = 8T(n/2) + \Theta(n^2)$$

• Strassen's approach with 7 recursive multiplications:

$$-T(n) = 7T(n/2) + \Theta(n^2)$$

The recursion trees of these algorithms are more complicated to analyze than in other examples we looked at last time. •

Another approach which can help us to analyze the running time of a divide-and-conquer algorithm is known as the **master method**:

Suppose the running time of an algorithm is of the form T(n) = aT(n/b) + f(n) where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function.

Intuitively, we will compare the asymptotic growths of the functions f(n) and $n^{\log_b a}$, and in many cases we will be able to directly determine the asymptotic growth of T(n).

Masker The ore m $T(n) = GT(n_0) + f(n)$ has the following asymptotic bounds.

1) If $f(n)GO(n^{\log_2 a} \cdot \epsilon)$ for Some $\epsilon > 0$, then $T(n) \in O(n^{\log_2 a})$.

2) If $f(n) \in O(n^{\log_2 a})$, then $T(n) \in O(n^{\log_2 a} \cdot \epsilon \log n)$.

3) If $f(n) \in \Omega(n^{6} \xi^{n+4})$ for some $\epsilon > 6$ and if $g \cdot f(\frac{1}{\epsilon}) \leq c \cdot f(n)$ for a c < 1, then $f(n) \in O(f(n))$ regularity condition

Ex: $T(n) = 4T(\frac{1}{2}) + h$ $6 = 4, b = 2, f(n) = n', n^{\log_2 n} = n' = n^2$ $n' \in O(n^{2-\epsilon})$ for $\epsilon = 1$ any $\epsilon \in (0, 1]$ Case | hold $\Rightarrow T(n) \in \theta(n^2)$.

Merge Sort: T(n) = 2T(n/2) + O(n)

- We showed via recursion tree and proof by induction that the running time of merge sort is $\Theta(n \log n)$.
- By master method: $621, b=2, n^{\log b} = n, f(n) = n$

Computing *n*th power of *a*: T(n) = T(n/2) + O(1)

- We showed via recursion tree that the running time of merge sort is $\Theta(\log n)$.
- By master method:

By master method.

$$A > 1, \quad A = 1, \quad A = 1$$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad A = 1, \quad A = 1$
 $A > 1, \quad A = 1, \quad$

Multiplying Matrices:

• Straightforward approach with 8 recursive multiplications:

$$-T(n) = 8T(n/2) + \Theta(n^2)$$

$$A = \begin{cases} 5 \\ 5 \end{cases}$$

$$f(n) \in \mathbb{N}^2$$

$$f(n) \in \mathbb{N}^2$$

$$h^2 \in \mathbb{O}(n^{3-\epsilon}) \quad \text{for Ex}$$

$$(asy 1 \text{ holds} =) \quad T(n) \in \mathbb{O}(n^3)$$

• Strassen's approach with 7 recursive multiplications:

$$-T(n) = 7T(n/2) + \Theta(n^2)$$

$$G = 7, b = 1, \Lambda^{b,3}$$

$$G(n) = \Lambda^2,$$

$$\Lambda^2 E(n) = \Lambda^2,$$

$$G(n) = \Lambda^2 = 0.001$$

$$G(n) = \Lambda^2 = 0.001$$

$$G(n) = \Lambda^2 = 0.001$$

.

.