	(Que	stions asked in pro	evious	AIEEE & IIIJ	EE)					
Q.1	α , β and the roots of t	uation $x^2 - 5x + 16 = 0$ are the equation $x^2 + px + q = 0$	Q.8	while the equation	vation $x^2 + px + 12 = 0$ is 4 $x^2 + px + q = 0$ has equal e of 'q' is- [AIEEE-2004] (C) 3 (D) 4					
	(A) $p = 1$ and $q = 56$	(B) $p = 1$ and $q = -56$ (CD) $p = -1$ and $q = -56$	Q.9	the roots of the equate assume the least va	-					
Q.2	$(x - b) = c \text{ and } c \neq 0,$ $(x - \alpha) (x - \beta) + c =$ (A) a and c	ots of the equation (x – a) then roots of the equation 0 are - [AIEEE-2002] (B) b and c	Q.10	(A) 1 (B) 0 (C) 3 (D) 2 If the roots of the equation $x^2 - bx + c = 0$ to two consecutive integers, then $b^2 - 4c$ equals [AIEEE-200]						
Q.3	, ,	(D) a+ b and b + c 3 then the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is	0.44	(A) -2 (B) 3						
		ρ α [AIEEE-2002]	Q.11	In a triangle PQR, $\angle R = \frac{\pi}{2}$, If $\tan \left(\frac{P}{2}\right)$ and						
	(A) 19/3	(B) 25/3		$\tan\left(\frac{Q}{2}\right)$ are the roots of $ax^2 + bx + c = 0$,						
	(C) – 19/3	(D) None of these		then-	[AIEEE-2005]					
Q.4		s of the quadratic equation equal to the sum of the	JN	(A) a = b + c (C) b = c	(B) c = a + b (D) b = a + c					
	squares of their recip	procals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$	Q.12		f the quadratic equation 5 = 0 are less than 5, ther					
	are in-	[AIEEE-2003]		k lies in the interval	[AIEEE-2005]					
	(A) Arithmetic Geom (B) Arithmetic Progre	ession		(A) (5, 6] (C) (-∞, 4)	(B) (6, ∞) (D) [4, 5]					
	(C) Geometric Progre (D) Harmonic Progre		Q.13		ratic equation x ² + px + q = (15°, respectively then the					
Q.5	equation (a ² – 5a + 3	ich one root of the quadratic 3) $x^2 + (3a - 1) x + 2 = 0$ is e other, is- [AIEEE-2003]		(A) 3 (C) 1	- [AIEEE-2006] (B) 0 (D) 2					
	$(A) - \frac{1}{3}$	(B) $\frac{2}{3}$	Q.14	All the values of m for which both roots of the equation $x^2 - 2mx + m^2 - 1 = 0$ are great than -2 but less than 4, lie in the interval – [AIEEE-200]						
	$(C) - \frac{2}{3}$	(D) $\frac{1}{3}$		(A) m > 3 (C) 1 < m < 4	(B) – 1 < m < 3 (D) – 2 < m < 0					
Q.6	The number of real $x^2 - 3 x + 2 = 0$ is	solutions of the equation [AIEEE-2003]	Q.15	If x is real, the	e maximum value o					
	(A) 3 (B) 2	(C) 4 (D) 1		$\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ is -	[AIEEE-2006]					
Q.7	If $(1-p)$ is a root $x^2 + px + (1-p) = 0$	of quadratic equation then its roots are- [AIEEE-2004]		(A) 41	(B) 1					
	(A) 0,1 (C) 0, – 1	(B) – 1, 1 (D) – 1, 2		(C) $\frac{17}{7}$	(D) $\frac{1}{4}$					

- In a $\triangle PQR$, $\angle R = \frac{\pi}{2}$. If $\tan \frac{P}{2}$ and $\tan \frac{Q}{2}$ are Q.13 the roots of the equation $ax^2 + bx + c = 0$ $(a \neq 0)$, then-
 - (A) a + b = c
- (B) b + c = a
- (C) c + a = b
- (D) b = c
- For the equation $3x^2 + px + 3 = 0$, p > 0, if Q.14 one of the roots is square of the other, then p is equal to -[IIT Sc.-2000]
 - (A) 1/3
- (B) 1
- (C) 3
- (D) 2/3
- Q.15 If α and β ($\alpha < \beta$), are the roots of the equation $x^2 + bx + c = 0$, where c < 0 < b, then [IITSc. - 2000]
 - (A) $0 < \alpha < \beta$
- (B) α < 0 < β < $|\alpha|$
- (C) $\alpha < \beta < 0$
- (D) α < 0 < $|\alpha|$ < β
- If b > a, then the equation (x a)(x b) -Q.16 1 = 0, has -[IIT Sc.-2000]
 - (A) both roots in [a, b]
 - (B) both roots in $(-\infty, a)$
 - (C) both roots in (b, $+\infty$)
 - (D) one root in $(-\infty, a)$ and other in $(b, +\infty)$
- Let α, β be the roots of $x^2 x + p = 0$ and Q.17 γ, δ be the roots of $x^2 - 4x + q = 0$. If $\alpha, \beta, \gamma, \delta$ are in G.P., then the integral values of p and q respectively, are-[IIT Sc.-2001]
 - (A) -2, -32
- (B) 2, 3
- (C) 6, 3
- (D) 6, -32
- Q.18 The set of all real numbers x for which $x^2 - | x + 2 | + x > 0$, is- [IIT Sc.-2002] (A) $(-\infty, -2) \cup (2, \infty)$
 - (B) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
 - (C) $(-\infty, -1) \cup (1, \infty)$
 - (D) $(\sqrt{2}, \infty)$
- If one root of the equation $x^2 + px + q = 0$ Q.19 is square of the other then for any p & q, it [IIT Sc.-2004] will satisfy the relation-
 - (A) $p^3 q (3p 1) + q^2 = 0$
 - (B) $p^3 q (3p + 1) + q^2 = 0$
 - (C) $p^3 + q (3p-1) + q^2 = 0$
 - (D) $p^3 + q (3p + 1) + q^2 = 0$
- Let $x^2 + 2ax + 10 3a > 0$ for every real Q.20 value of x, then-[IIT Sc.-2004]
 - (A) a > 5
- (B) a < -5
- (C) -5 < a < 2
- (D) 2 < a < 5

- α , β are roots of equation $ax^2 + bx + c = 0$ and $\alpha + \beta$. $\alpha^2 + \beta^2 \cdot \alpha^3 + \beta^3$ are in G.P.. $\Delta = b^2 - 4ac$, then [IIT Sc.-2005]
 - (A) $\Delta b = 0$
- (B) $bc \neq 0$
- (C) $\Delta \neq 0$
- (D) $\Delta = 0$
- Q.22 Let a, b, c be sides of a triangle and any two of them are not equal and $\lambda \in R$. If the roots of the equation. $x^2 + 2 (a+b+c)x +$ $3\lambda(ab+bc+ca) = 0$ are real, then

- (A) $\frac{4}{3} < \lambda < \frac{5}{3}$ (B) $\frac{1}{3} < \lambda < \frac{5}{3}$
- (C) $\lambda > \frac{5}{3}$ (D) $\lambda < \frac{4}{3}$
- Q.23 If roots of x^2 -10cx -11d = 0 are a, b and the roots of x^2 -10ax -11b = 0 are c, d, then the value of a+b+c+d is equal to (a,b,c,d are different numbers) [IIT -2006]
- Q.24 Let α, β be the roots of the equation $x^2-px+r=0$ and $\frac{\alpha}{2}$, 2β be the roots of the equation $x^2-qx+r=0$. Then the value of r is [IIT -2007]
 - (A) $\frac{2}{9}$ (p q) (2q p)
 - (B) $\frac{2}{9}$ (q p) (2p q)
 - (C) $\frac{2}{9}$ (q 2p) (2q p)
 - (D) $\frac{2}{9}$ (2p-q) (2q-p)
- Let $f(x) = \frac{x^2 6x + 5}{x^2 5x + 6}$ Q.25

Match the expressions/statements in Column I with expression/statements in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the ORS. [IIT -2007]

Column I Column II

- (A) If -1 < x < 1, then f(x) satisfies
- (P) 0 < f(x) < 1
- (B) If 1 < x < 2, then
- (Q) f(x) < 0
- f(x) satisfies (C) If 3 < x < 5, then f(x) satisfies
- (R) f(x) > 0
- (D) If x > 5, then
- (S) f(x) < 1
- f(x) satisfies

ANSWER KEY

PAST YEAR

SECTION-A

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	Α	Α	В	С	D	С	C	Α	В	C	Α	В	Α	С	В	D	Α	В	Α	C
Ques.	21	22	23	24																
Ans.	D	D	1210	D																
Ques.	25		A o	P,R	2,S		В	\rightarrow Q	, S		С	\rightarrow Q	, S		D -	→ P,I	₹,S			
									,				,							

Ques.	1	2	3	4	5	6	7	8	თ	10	11	12	13	14	15	16	17	18	19
Ans.	D	С	Α	D	В	C	С	Α	Α	D	В	C	Α	В	Α	Α	O	Α	С

SECTION-B

MATHONGO