

<u>COMPLAINT</u>

Plaintiffs Pamlab, L.L.C., Metabolite Laboratories, Inc., and Breckenridge

Pharmaceutical, Inc., by and through their attorneys, state as follows for their Complaint against

Defendant Seton Pharmaceuticals, L.L.C.:

The Parties

- Plaintiff Pamlab, L.L.C. ("Pamlab") is a limited liability company existing under the laws of the State of Louisiana, with its principal place of business at 4099 Highway 190, Covington, Louisiana, 70433.
- Plaintiff Metabolite Laboratories, Inc. ("Metabolite") is a corporation existing under the laws of the State of Colorado, with its principal place of business at 301 Garfield
 Street, Unit 2-West, Denver, Colorado, 80206.

- 3. Breckenridge Pharmaceutical, Inc. ("Breckenridge") is a corporation existing under the laws of the State of Florida, with its principal place of business at 1141 South Rogers Circle, Suite 3, Boca Raton, Florida, 33487.
- 4. Defendant Seton Pharmaceuticals, L.L.C. ("Seton") is a New Jersey limited liability company with its principal place of business at the Atlantic Corporate Center, 2317 Highway 34, Suite 1E, Manasquan, New Jersey, 08736.

Jurisdiction And Venue

- 5. This Court has original jurisdiction over the subject matter of this lawsuit under 28 U.S.C. §§ 1331 and 1338(a), because it arises under the patent laws of the United States, as well as under 28 U.S.C. § 1331 and 15 U.S.C. § 1221(a), because it concerns violations of section 43 of the Lanham Act, 15 U.S.C. § 1125.
- 6. Venue is proper in this judicial district pursuant to 28 U.S.C. §§ 1400 and 1391. On information and belief, Seton is subject to personal jurisdiction in this district because it markets and sells products to nationwide retail drug store chains, including those with locations within this judicial district, as well as through nationwide distributors and databases that target this judicial district.

STATEMENT OF FACTS

The Research Leading to the Patent in Suit and Pamlab's Patent License

7. Homocysteine is an amino acid and a natural byproduct of the human body's conversion of methionine into cysteine. If a body lacks the enzyme necessary to complete that conversion, or if the body lacks vitamins such as folic acid, B₆ and B₁₂, the concentration of homocysteine in the blood and urine increases.

- 8. In recent years, researchers have identified an increased homocysteine level in the blood (hyperhomocysteinemia) as an additional and independent risk factor for arteriosclerosis and coronary heart diseases. Similarly, hyperhomocysteinemia is linked with repeatedly occurring venous thromboses and apoplexy strokes.
- 9. Studies have shown that a combination of vitamins B_6 , B_{12} , and folic acid can lower homocysteine levels in most patients. Thus, doctors increasingly recommend that their patients with elevated homocysteine levels take supplements of vitamin B_6 , vitamin B_{12} , and especially folic acid.
- 10. Several years ago, Plaintiff Pamlab noted the medical interest in treating elevated homocysteine levels with vitamin B_{12} , vitamin B_6 , and folic acid (also known as folate), and decided to formulate a product having these vitamins in suitable quantities. During the development of this product, Pamlab discovered the groundbreaking work of two hematology professors at the University of Colorado School of Medicine, Dr. Robert H. Allen and Dr. Sally P. Stabler.
- Drs. Allen and Stabler have devoted their careers to studying vitamin B_{12} , vitamin B_6 , and folate. Their clinical work has been at the forefront of the research examining the relationship between those vitamins and homocysteine. Their studies have been widely cited and published in prestigious scientific journals such as the New England Journal of Medicine, and they have also been awarded a number of United States patents.
- 12. Among these is United States Patent No. 6,528,496, entitled "Compositions treating, preventing, or reducing elevated metabolic levels" ("the '496 Patent"), which was duly and legally issued to Drs. Allen and Stabler on March 4, 2003. The '496 Patent is attached as Exhibit A.

- 13. Dr. Allen formed Plaintiff Metabolite under the University of Colorado's guidelines. The patents and applications leading to the '496 Patent, and later the '496 Patent itself, were assigned to Metabolite, so that Metabolite is the owner of all right, title, and interest in the '496 Patent, as well as the related patents.
- 14. Accordingly, Pamlab approached Metabolite in 1999 and began discussions concerning a patent license for certain products. Pamlab first launched the product at issue (as discussed hereinafter) in the fall of 1999, while these discussions were in progress. Then on January 11, 2000, Pamlab entered into a license agreement with Metabolite (the "Patent License"), under which Metabolite granted Pamlab an exclusive license to certain formulations under several related patents and applications (one of which, through a subsequent continuation application, issued as the '496 Patent). Moreover, under the Patent License (as amended), Pamlab has the right to enforce the '496 Patent.

Pamlab's Licensed Product Foltx®

- 15. Pursuant to the Patent License, Pamlab manufactures and sells a product with the trademarked name of "Foltx®." Pamlab pays Metabolite a royalty based on the value of the sales of Foltx®.
 - 16. Foltx[®] is marketed to licensed physicians and other healthcare professionals.
- 17. Foltx[®] contains three active ingredients, namely vitamin B₁₂, vitamin B₆, and folic acid. When Foltx[®] was first marketed by Pamlab in October, 1999, it contained 1 mg. of vitamin B₁₂, 25 mg. of vitamin B₆, and 2.5 mg. of folic acid (the "1 mg. Foltx[®]"). Beginning in June, 2004, Pamlab introduced Foltx[®] containing 2 mg. of vitamin B₁₂ instead of 1 mg. (the "2 mg. Foltx[®]"), and discontinued sales of the 1 mg. Foltx[®].

- 18. After Pamlab launched Foltx® in October, 1999, the market for this product grew steadily as physicians increasingly recognized the relationship between elevated homocysteine and vitamin B₁₂, vitamin B₆, and folate.
- 19. Much of this recognition is attributable to the huge investment in education that Pamlab has undertaken. Pamlab has spent millions of dollars calling on tens of thousands of physicians through Pamlab's sales force, providing millions of product samples, publishing articles and advertisements in medical journals, and funding additional clinical studies.
- 20. Pamlab markets Foltx® to physicians as a medical food product intended for the specific dietary management of individuals under a physician's treatment for hyperhomocysteinemia, with particular emphasis on individuals with or at risk for atherosclerotic vascular disease in the coronary, peripheral, or cerebral vessels, or individuals with vitamin B₁₂ deficiency.

Breckenridge's Patent Sublicense and Its Licensed Folic Acid Products

- 21. In 2007, Breckenridge entered into a patent sublicense with Pamlab under a number of the Metabolite patents, with the express consent of Metabolite.
- 22. Under the patent sublicense, Breckenridge now markets the only licensed generic versions of both the 1 mg. Foltx[®] and the 2 mg. Foltx[®]. Breckenridge markets a product containing 1 mg. of vitamin B_{12} , 25 mg. of vitamin B_6 , and 2.5 mg. of folic acid as "Folbee[®]", and a product containing 2 mg. of vitamin B_{12} 25 mg. of vitamin B_6 , and 2.5 mg. of folic acid as "FolbicTM".
- 23. Breckenridge pays a royalty to Pamlab pursuant to the sublicense, which in turn pays a royalty to Metabolite.

Seton's Folic Acid Product

- 24. Upon information and belief, Seton has had manufactured, for sale in the United States, a product which Seton represents to contain 2 mg. of vitamin B_{12} , 25 mg. of vitamin B_6 , and 2.5 mg. folic acid ("Seton's Folic Acid Product"), the same active ingredients as 2 mg. Foltx[®] and FolbicTM.
- 25. Upon information and belief, Seton has offered, or intends in the near future to offer, Seton's Folic Acid Product for sale in commerce in the United States.
- 26. Upon information and belief, in offering its Folic Acid Product for sale, Seton has represented or will represent, explicitly or implicitly, that its Folic Acid Product is substitutable for Foltx[®] and/or FolbicTM.
- 27. Upon information and belief, Seton has not scientifically determined whether its Folic Acid Product is substitutable for Foltx® and/or FolbicTM.

COUNT I Patent Infringement

- 28. Plaintiffs incorporate the allegations of the preceding paragraphs as though fully set forth herein.
- 29. By manufacturing, selling, and/or offering to sell its Folic Acid Product, Seton has infringed and continues to infringe the '496 Patent under 35 U.S.C. section 271(a), and/or by having its Folic Acid Product manufactured to contain the active ingredients as specified above, with both knowledge and intent that its Folic Acid Product would infringe the '496 Patent, Seton has induced infringement of and/or contributed to the infringement of the '496 Patent under 35 U.S.C. section 271 (b) and/or (c).
 - 30. Plaintiffs have been injured thereby, in an amount to be determined at trial.

- 31. Upon information and belief, the infringement of the '496 Patent by Seton is willful.
- 32. Upon information and belief, Seton will continue its infringement of the '496 Patent unless its acts infringement are restrained and enjoined by this Court. Should Seton be permitted to continue its acts of infringement of the '496 Patent, Plaintiffs will suffer irreparable injury for which they have no adequate remedy at law.

<u>COUNT II</u> Violation Of The Lanham Act

- 33. Plaintiffs incorporate the allegations of the preceding paragraphs as though fully set forth herein.
- 34. In the alternative, if Seton's Folic Acid Product does not infringe the '496 Patent, then Seton has misrepresented, or intends to misrepresent, the active ingredients contained in this product, which constitutes false and/or misleading descriptions and representations of fact that misrepresent the nature, characteristics, and/or qualities of Seton's Folic Acid Product, and otherwise constitutes false advertising under section 43(a) of the Lanham Act, 15 U.S.C. § 1125(a).
- 35. In addition, upon information and belief, because Seton has not scientifically determined whether Seton's Folic Acid Product is substitutable for Foltx[®] and/or FolbicTM, the explicit or implied representations by Seton, in commerce, that its Folic Acid Product is substitutable for Foltx[®] and/or FolbicTM are false and/or misleading descriptions and representations of fact that misrepresent the nature, characteristics, and/or qualities of Seton's Folic Acid Product, and otherwise constitute false advertising in violation of section 43(a) of the Lanham Act, 15 U.S.C. § 1125(a).

- 36. Plaintiffs have been and/or will be injured thereby, in an amount to be determined at trial.
- 37. Upon information and belief, Seton will continue its violation of the Lanham Act unless such violations thereof are restrained and enjoined by this Court. Should Seton be permitted to continue its false and misleading descriptions and representations of fact and false advertising, Plaintiffs will suffer irreparable injury for which they have no adequate remedy at law.

WHEREFORE, Plaintiffs request that the Court:

- (a) Preliminarily and permanently enjoin Seton, its officers, directors, employees, partners, agents, licensees, servants, successors and assigns, and any and all persons acting in privity or concert with them, from making, having made, using, offering to sell, or selling Seton's Folic Acid Product;
- (b) Enter judgment against Seton for compensatory damages by reason of its infringement of the '496 Patent, as determined at trial, but not less than a reasonable royalty, in an amount to be determined at trial;
- (c) Determine that such infringement was willful, and award treble damages to Plaintiffs by reason thereof;
- (d) Declare this case to be "exceptional" within the meaning of 35 U.S.C. § 285, entitling Plaintiffs to an award of their reasonable attorneys fees, expenses and costs of this action;
- (e) Preliminarily and permanently enjoin Seton, its officers, directors, employees, partners, agents, licensees, servants, successors and assigns, and any and all persons acting in

privity or concert with them, from representing that Seton's Folic Acid Product is substitutable for Foltx® and/or FolbicTM;

- (f) Enter judgment against Seton for compensatory damages by reason of its violation of the Lanham Act, as determined at trial, in an amount to be determined at trial; and
- (g) Enter an Order granting Plaintiffs such other and additional relief against Seton as may be just and proper in the circumstances.

DEMAND FOR TRIAL BY JURY

Pursuant to Rule 38(b) of the Federal Rules of Civil Procedure, Plaintiffs demand a trial by jury of all issues properly triable to a jury in this case.

Dated: October 7, 2010

Bruce D. DeRenzi

bderenzi@crowell.com

CROWELL & MORING LLP

Bruce S. Lekem

590 Madison Avenue

New York, NY 10022-2524

Tel.: (212) 223-4000

Fax: (212) 223-4134

C. Randolph Ross

rross@bpirx.com

BRECKENRIDGE PHARMACEUTICAL, INC.

60 East 42nd Street Suite 5210

New York, NY 10165

Tel.: (646) 448-1303

Fax: (856) 494-1647

Attorneys for Plaintiffs

Pamlab, L.L.C.,

Metabolite Laboratories, Inc., and

Breckenridge Pharmaceutical, Inc.

EXHIBIT A

(12) United States Patent Allen et al.

(10) Patent No.:

US 6,528,496 B1

(45) Date of Patent:

Mar. 4, 2003

(54) COMPOSITIONS TREATING, PREVENTING OR REDUCING ELEVATED METABOLIC LEVELS

(76) Inventors: Rebert H. Allen, 301 Garfield St., Unit 2-West, Denver, CO (US) 80206; Sally P. Stabler, 641 Milwaukee St., Denver, CO (US) 80206

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 69/793,214

(22) Filed: Feb. 26, 2001

Related U.S. Application Date

- (60) Continuation of application No. 09/273,754, filed on Mar. 22, 1999, now Pat. No. 6,297,224, which is a continuation of application No. 09/012,955, filed on Jan. 26, 1998, now Pat. No. 6,207,651, which is a continuation of application No. 08/693,515, filed on Ang. 2, 1996, now Pat. No. 5,795,873, which is a division of application No. 07/999, 499, filed on Dec. 29, 1992, now Pat. No. 5,563,126.
- (52) U.S. Cl. 514/52; 514/249; 514/345

(56) References Cited

U.S. PATENT DOCUMENTS

4,940,658 A 7/1990 Allen 4,945,083 A 7/1990 James, Jr. 5,374,560 A 12/1994 Allen

OTHER PUBLICATIONS

Mangiarotti et al., "Hypervitamiaosis B12 in maintenance hemodialysis patients receiving massive supplementation of vitamin B12," The International Journal of Artificial Organs, vol. 9(5), pp. 417–420 (1986).*

Rosenblatt et al., 1987, Amer. J. Med. Gen. 26:377-383.* Brattström et al., 1990, Atheroscler. 81:51-60.*

Stabler et al., 1990, Blood 76:871-881.*

Lee, Richard, M.D. "Megaloblastic and Nonnegaloblastic Macrocytic Anemias," Wintrobe's Clinical Hematology, Lea & Febiger, Ninth Edition, vol. 1, pp. 745-790, 1993.

Pechet, Liberto, "Anemias and Other Red Cell Disorders: Textbook of Primary Care Medicine," Mosby-Yearbook, Inc., St. Louis, MO 2nd Ed., pp 722-734, 1996.

Ueland, P.M. et al. "Plasma Homocysteine and Cardiovascular Disease." Arthorosclerotic Cardiovascular Disease, Hemostatis, and Endothelial Function, University of Bergen, vol. 8, pp. 183–234, 1992.

Ueland, P.M. et al. "Review Article: Plasma homocysteine, a sisk factor for vascular disease: plasma levels in bealth disease and drug therapy." The Clinical Pharmacology Unit, Department of Pharmacology and Toxicology, University of Bergen, Bergen, Norway, pp 473–501, 1989.

Graham, Ian M., et al., "Plasma Homocysteine as a Risk Factor for Vascular Disease." Journal of American Medicinal Association, vol. 227, No. 22, pp 1775–1781, Jun. 11, 1997.

Bratistrom, L.E., et al. "Folic acid-an innocuous means to reduce plasma homocysteine." Scandinavian Journal Clinical Laboratory Investigation, vol. 48, pp 215–221, 1988.

Stabler, Sally P., et al. "Elevation of Total Homocysteine in the Serum of Patients with Cobalamin or Folate Deficiency Detected by Capillary Gas Chromatography Mass Spectrometry." The American Society for Clinical Investigation, Journal of Clinical Investigation, vol. 81, pp 466–474, Feb. 1988.

Wilcken, David E., et al. "Homocysteine in the plasma of renal transplant recipients: effects of cofactors for methionine metabolism." Clinical Science, vol. 61, pp 743-749, 1981.

Wilcken, David E., et al., "Homocystinuria Due to Cystathionine B-Synthuse Deficiency—The Effects of Betaine Treatment in Pyridoxine—Responsive Patients." Metabolism, vol. 34, No. 12, pp 1115-1121, Dec. 1985.

Brattstrom, Lars E., et al. "Folic Acid Responsive Fontmeaupausal Homocysteinemia." Metabolism, vol. 34, No. 11, pp 1073–1107, Nov. 1985.

Olszewski, Andrzej J., et al. "Reduction of plasma lipid and homocysteine levels by pyridoxine, folate cobalamin, choline, ribofiavin, and troxeratin in athersclerosis." Atherosclerosis, vol. 75, pp 1-6, 1989.

(List continued on next page.)

Primary Examiner—James Housel
Assistant Examiner—Zachariah Lucas
(74) Attorney, Agent, or Firm—Gibson, Dunn & Crutcher
LIP

57) ABSTRACT

A method for orally administering vitamin preparations is described which combine vitamin B₁₂ (B₁₂, cobalamin) and folic acid (foliate), with and without pyridoxine (Ha), for preventing and treating elevated serum homocysteine (HC), cystathionine (CT), methylmalonic acid (MMA), or 2-methylcitric acid (2-MCA) levels. These metabolites have been shown to be indicative of B12 and/or folic acid deficiencies. Further, it is likely that a B6 deficiency may be present with a B₁₂ or folate deficiency. The method of the investion is also for use in lowering serum HC, CT, MMA, or 2-MCA in patients with or at risk for neuropsychiatric, vascular, renal or hematologic diseases. The method of the present invention climinates the costly and time consuming steps of distinguishing between vitamin deficiencies once a deficiency is found by measurement of serum metabolite levels. The present invention is of particular benefit to the populations at risk for elevated serum metabolite levels, such as the people over the age of 65, and populations that have or are at risk for neuropsychiatric, vascular, renal and hematologic diseases.

11 Claims, 11 Brawing Shoots

Page 2

OTHER PUBLICATIONS

Amesea, Egil, et al. "Serum Total Homocysteine and Coronary Heart Disease." International Journal of Epidemiology, vol. 24, No. 4, pp 704-709, 1995.

Mason, Joel B., et al. "Beyond Deficiency: New Views on the Functions and Health Effects of Vitamins." The Annals of New York Academy of Sciences, vol. 669, pp 197–204, 1992.

Franken, Diana G., et al. "Treatment of Mild Hyperhomocysteinemia in Vascular Disease Patients." Arteriosclerosis and Thrombosis, vol. 14, No. 3, pp 465–470, Mar. 1994.

van den Berg, Michiel, et al., "Combined vitamin B6 plus folic acid therapy in young patients with arteriosclerosis and hyperhomocysteinsmia." Journal of Vascular Surgery, vol. 20, No. 6, pp 933-940, Dec. 1994.

"Homocysteine, Folic Acid, and the Prevention of Vascular Disease." Nutrition Reviews, vol. 47, No. 8, pp 247-249, Aug. 1989.

Kang, Soo-Sang, et al., "Hyperhomocyst(e)inemia as a Risk Factor for Occlusive Vascular Disease." Annual Review of Nutrition, vol. 12, pp 279-298, 1992.

Stampfer, Meir J., M.D., et al. "A Prospective Study of Plasma Homocyst(e)ine and Risk of Myocardial Infarction in US Physicians." Journal of the American Medical Association, vol. 268, No. 7, pp 877–881, Aug. 19, 1992.

Stampfer, Meir J., M.D., et al. "Homocysteine and Marginal Vitamia Deficiency." Journal of the American Medical Association, vol. 270, No. 22, pp 2726-2727, Dec. 8, 1993. Chasan-Taber, Lisa, et al., "A Prospective Study of Volate and Vitamia B6 and Risk of Myocardial Infarction in US Physicians." Journal of the American College of Nutrition, vol. 15, No. 2, pp 136-143, 1996.

Harpey, Jean-Paul, M.D., "Homocystimuria caused by 5, 10-methylenstetrahydrofolate reductase deficiency: A case in an infant responding to methionine, folinic acid, pyridoxine, and vitamin B12 therapy." The Journal of Pediatrics, vol. 98, No. 2, pp 275-278, Feb. 1981.

Wilchen, David E., et al., "Folic Acid Lowers Elevated Plasma Homocysteine in Chronic Renal Insufficiency: Possible Implications for Prevention of Vascular Disease." Metabolism, vol. 37, No. 7, pp 697–701, Jul. 1988.

Rosenblatt, D.S., et al. "Vitamin B12 Responsive homocystimiria and Megloblastic Anemia: Heterogeneity in Methycobalamin Deficiency." American Journal of Medical Genetics, vol. 26, pp 377-383, 1987.

Brattstrom, Larz, et al. "Impaired Homocysteine Metabolism in Early Onset Cerebral and Peripheral Occlusive Arterial Disease." Atherosclerosis, vol. 81, pp 51-60, 1990. Stabler, Sally P., et al. "Clinical Spectrum and Diagnosis of Cobalamin Deficiency." Blood, vol. 76, No. 5, pp 871-881, Sep. 11, 1990.

Wilcken, David E., et al. "Homocysteinemia, Ishemic Heart Disease and the Carrier State for Homocystinuria." Metabolism, vol. 32, No. 4, pp 363–370, Apr. 1983.

Joosten, Etienne, et al. "Metabolic evidence that deficiencies of vitamin B12 (cobalamin), folate, and vitamin B6 occur commonly in elderly people." American Journal of Clinical Nutrition, vol. 58, pp 468-476, 1993.

Pennypacker, Leslye C., M.D., et al., "High Prevalence of Cobalamin Deficiency in Elderly Outpatients." Journal of the American Geniatrics Society, vol. 40, pp 1197–1204, 1992.

Lindenbaum, John, et al., "Prevalence of cobalamin deficiency in the Framingham elderly population." American Journal of Clinical Nutrition, vol. 60, pp 2-11, 1994.

Gilman, et al. "The Pharmacological Basis of Therapeutics." MacMillan Publishing, Inc., New York, NY, 6th Ed, pp 1333–1340, 1980.

Barness, Lewis A., M.D. "Vitamin B12 Deficiency with Emphasis on Methylmalonic Acid as a Diagnostic Aid." American Joannal of Clinical Nutrition, vol. 20, No. 6, pp 573-577, 1967.

^{*} cited by examiner

Mar. 4, 2003

Sheet 1 of 11

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

Mar. 4, 2003

Sheet 5 of 11

FIGURE 5

Mar. 4, 2003

Sheet 6 of 11

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

Mar. 4, 2003

Sheet 11 of 11

FIGURE 11

COMPOSITIONS TREATING, PREVENTING OR REDUCING ELEVATED METABOLIC LEVELS

This application is a continuation of application Ser. No. 5 09/273,754, filed Mar. 22, 1999, now issued as U.S. Pat. No. 6,297,224, which is a continuation of application Ser. No. 09/012,955 filed Jan. 26, 1998, now issued as U.S. Pat. No. 6,207,651, which is a continuation of application Ser. No. 08/693,515, filed Aug. 2, 1996, now issued as U.S. Pat. No. 10 5,795,873, which is a divisional of application Ser. No. 07/999,499 filed Dec. 29, 1992, now U.S. Pat. No. 5,563, 126.

FIELD OF THE INVENTION

This invention relates to the field of nutrition. Specifically, the invention is comprised of new oral vitamin preparations combining vitamin B_{12} (B_{12} , cobalamin) and folic acid (folate), and vitamin B₁₂, folate, and pyridoxine (B₆) for use in patients with elevated serum metabolite levels of homocysteine (HC), cystathionine (CT), methylmalonic acid (MMA), or 2-methylcitric acid (2-MCA). The elevation of these metabolites has been shown to be indicative of tissue deficiencies of B₁₂ and/or folate and/or B₆, and related to increased risk of neuropsychiatric, vascular, renal and hematologic diseases. One embodiment of the present invention uses a non-prescription formulation comprising between 0.3-10.0 mg B₁₂ and 0.1-0.4 mg folate, with the preferred embodiment using 2.0 mg B_{12} and 0.4 mg folate. Another embodiment of the non-prescription formulation uses 0.3-10 mg B_{12} , 0.1-0.4 mg folate, and 5-75 mg B_6 , with the preferred embodiment using 2.0 mg B_{12} , 0.4 mgfolate, and 25 mg B6. Another embodiment of the present invention uses a prescription strength formulation comprising between 0.3-10.0 mg B_{12} and 0.4-1.0 mg folate, with the preferred embodiment using 2 mg $\rm B_{12}$ and 1.0 mg folate. In a further embodiment of the present invention, a prescription strength formulation is used comprising 0.3-10 mg B₁₂, 0.4-1.0 mg foliate, and 5-75 mg B_{60} with the preferred embodiment using 2 mg B_{12} , 1.0 mg folate, and 25 mg $B_{\rm s}$. The formulations of the present invention eliminate the costly and time-consuming steps of distinguishing between vitamin deficiencies once a deficiency is found by measurement of serum metabolite levels. The present invention is of particular benefit to the populations at risk for tissue deficiencies of B12, folate, and B6, such as people over the age of 65, and populations that have or are at risk for neuropsychiatric, vascular, renal and hematologic diseases.

BACKGROUND

Vitamins B_{12} , folate, and B_6 are required cofactors in metabolic pathways involving methionine, homocysteine, cystathionine, and cysteine. B_{12} in the form of 5'-deoxyadenosylcobalamin is an essential cofactor in the 55 enzymatic conversion of methylmalosylCoA to succisyl-CoA. The remethylation of homocysteine (HC) to methionine catalyzed by methionine synthase requires folate (methyltetrahydeofolate) and B_{12} in the form of methylcobalamin. HC is condensed with serine to form cystathionine (CI) in a reaction catalyzed by cystathionine \Box -synthase which requires B_6 (pyridoxal phosphate). CT is hydrolyzed in another B_6 -dependent reaction to cysteine and \Box -ketobutyrate.

It is important to diagnose and treat B_{12} , folate, and B_6 65 deficiencies because these deficiencies can lead to life-threatening hometologic abnormalities which are completely

. 2

reversible by proper treatment. B₁₂ deficiency is a multisystem disorder with extremely varied clinical presentation which has been thought to occur in 0.4% of the population, e.g., about 1 million people in the United States. Symptoms of B_{12} deficiency include significant anomia, displayed for example in decreased hematocrit (e.g., <25%) or hemoglobin (e.g., ≦8 g %), with macrocytic red blood cells (i.e., mean cell volume generally greater than 100 fl), or neurologic symptoms of peripheral neuropathy and/or ataxia. See, for example, Babior and Bann (1983) in Harrison's Principles of Internal Medicine, (Petersdorf et al., eds.), McGraw-Hill Book Co., New York; Lee and Gardner (1984) in Textbook of Family Practice, 3rd Ed. (Rakel, ed.), Saunders & Co., Philadelphia). The hematological abnormalities seen are due to intracellular folate deficiency since foliate is required for a number of essential enzymatic reactions involved in DNA and RNA synthesis and since the form of foliate in screen (5-methyltetrahydrofolate) must be metabolized to tetrahydrofolate by the B12-dependent enzyme methionine synthase before it can be utilized by the RNA- and DNA-related enzymes. While it has been well recognized that individuals with B12 deficiency could display neurologic disorders in the absence of anemia, such situations were believed to be exceptional and rare. See, Beck (1985) in Cecil Textbook of Medicine, 17th Ed., (Wyngaarden and Smith, eds.), W. B. Saunders, Philadelphia, pp. 893-900; Babior and Bunn (1987) in Harrison's Principles of Internal Medicine, 11th Ed., (Braunwald et al., eds.) McGraw-Hill, New York, pp. 1498-1504; Walton (1985) in Brain's Diseases of the Nervous System, 9th Ed., Oxford University Press, Oxford, UK. The neurologic symptoms of B_{12} deficiency were considered to be late manifestations of the disease most typically occurring after the onset of anemia or, if they occurred first, were soon to be followed by the onset of anemia. See, Woltmann (1919) Am. J. Med. Sci. 157:400-409 Victor and Lear (1956) Am. J. Med. 20:896-911.

However, it has recently been shown that the textbook description of severe megaloblastic anomia and combined systems disease of the nervous system is the rarest presentation of B₁₂ deficiency at the present time (Stabler et al. (1990) Blood 76:871-881; Carmel (1988) Arch. Int. Med. 148:1712-1714 Allen (1991) in Cecil Textbook of Medicine, 19th Ed., (Wyngaarden and Smith, et al. eda.), W. B. Saunders, Philadelphia, pp. 846-854.). Therefore, contravito previous teachings, patients that may benefit from B₁₂ therapy may have minimal to no hematologic changes while manifesting a wide variety of neurologic and psychiatric abnormalities (Lindenbaum et al. (1988) N. Engl. J. Med. 318:1720-1728; Greenfield and O'Flynn (1933) Lancet 2:62-63). This is particularly true for populations at risk for B₁₂ deficiency, such as the elderly population (Pennypacker et al. (1992) J. Am. Geriatric Soc. 40: (in press).

The incidence of folate deficiency in the population is unknown, but has been thought to occur commonly in individuals with various degrees of alcoholism. The hematologic abnormalities seen with folate deficiency, such as macrocytic anemia, are indistinguishable from those seen with B_{12} deficiency. Folate is required for a number of essential enzymatic reactions involved in DNA and RNA synthesis, and is particularly important in rapidly dividing cells like those in the bone marrow.

B_o is required for the first step in home synthesis and serves a major role in transamination reactions of amino acid metabolism, in decarboxylations, and in the synthesis of the neuroactive amines histamine, tyramine, serotonia, and —aminobutyric acid (GABA). Clinical manifestations

iachide microcytic hypochromic anemia, characteristic skin changes of dermatitis and acrodynia, muscular weakness, and a variety of neuropsychiatric abnormalities including hypericritability, epileptiform convulsions, depression and confusion (Newberne and Conner (1989) in Clinical Biochemistry of Domestic Animals, Academic Press, San Diego, pp. 796-834).

Vitamin deficiencies are generally determined by measurement of scrum levels. Normal scrum B₁₂ levels are 200-900 pg/ml, with levels of less than 100 pg/ml being said to indicate clinically significant deficiency (Beck (1985) sapra) However, serum B₁₂ levels are a relatively insensitive determinant of B12 deficiency in that only 50% of patients with clinically confirmed B₁₂ deficiency have levels less than 100 pg/ml, 40% are 100-200 pg/ml, and at least 5-10% have values in the 200-300 pg/ml range. Diagnosis is further complicated by the fact that 2.5% of normal subjects (6,250. 000 people in the U.S.) have low serum B₁₂ levels (Alico (1991) supra), with no evidence of B_{12} deficiency and are unlikely to benefit from B_{12} therapy (Schilling et al. (1983) $_{20}$ Clin. Chem. 29:582; Stabler (1990) supra).

Normal serum folate levels are 2.5-20 ng/ml, with levels less than 2.5 ng/ml indicating the possibility of clinically significant deficiency. Like B12 serum levels, however, serum folate levels are a relatively insensitive measure in 25 that only 50-75% of patients with foliate deficiency have levels less than 2.5% ng/ml, with most of the remaining 25-50% being in the 2.5-5.0 ng/ml range (Allen (1991) in Cecil Textbook of Medicine, 19th Ed., supra)

The development of sensitive serum metabolite assays for 30 HC, CT, MMA, and 2-MCA has allowed the relationship between metabolite levels and vitamin deficiencies to be investigated (Stabler et al. (1987) Anal. Biochem. 162:185-196; Stabler et al. (1986) J. Clin. Invest. 81:466-474). It has been found that elevated serum levels of HC and MMA are clinically useful tests of functional intracellular deficiencies of B12 and foliate, with elevated HC levels seen with both B₁₂ and folate deficiencies, and elevated MMA levels seen with a B₁₂ deficiency (Allen et al. 40 (1990) Am. J. Hematol. 34:9098 Lindenbaum et al. (1990) Am. J. Hematol. 34:99-107; Lindenbaum et al. (1988) N. Engl. J. Med. 318:1720-1728; Beck (1991) in Neuropsychiatric Consequences of Cobalamin Deficiency, Mosby Year Book 36:33-56 Moelby et al. (1990) 228:373-378; 45 Ucland and Refsum (1989) J. Lab. Clin. Med. 114:473-501: Pennypacker et al. (1992) supra). Increased serum levels of CT are seen in both deficiencies and 2-MCA is elevated in B₁₂ deficiency (Allen et al. (1991) in Proceedings of the 1st International Congress on Vitamins and Biofactors in Life 50 Science, Kobe (Japan); Allen et al. (1993) Metabolism (in press)). HC and CT may be elevated in patients with intracellular deficiency of B6, but this has not been as well documented (Park and Linkswiler (1970) J. Nutr. 100:110-116; Smolin and Benvange (1982) J. Nutr. 55 112:1264-1272).

Elevated serum metabolite levels are observed in disease states other than classic vitamin deficiencies. For example, elevated HC levels have been observed in the presence of vascular disease. The homocysteine theory of 60 atheroaclerosis, formulated by McCally and Wilson (1975) Atherosclerosis 22:215-227, suggests that high levels of HC are responsible for the vascular lesions seen in homocystinuria, a genetic defect caused by a deficiency in the cazyme cystathionine []-synthase. The theory also 65 implies that moderate elevations of HC might be associated with increased risk for vascular disease (Unland et al. (1992)

in Atherosclerotic Cardiovascular Disease, Hemostasis, and Endothelial Function (Francis, Jr., ed.), Marcel Dekker, Inc., New York, pp. 183-236). Moderate hyperhomocysteinemia has been shown to be frequently present in cases of stroke and to be independent of other stroke risk factors (Brattstrom et al. (1992) Eur. J. Clin. Invest. 22:214-221). Clinical and experimental evidence demonstrates that patients who are homozygotes for cystathionine - synthese deficiency have a markedly increased incidence of vascular disease and thrombosis. A number of studies (see, Clarke et al. (1991) N. Engl. J. Med. 324:1149-1155) strongly suggest that beterozygotes for a deficiency of cystathionine β-synthase also have an increased incidence of vascular disease and thrombosis and that such heterozygotes may constitute as many as one-third of all patients who develop strokes, heart attacks, or peripheral vascular disease under age 50. It is also likely that such heterozygotes are also at increased risk for vascular disease and thrombosis after age 50. Since the incidence of heterozygosity for cystathion β -synthase deficiency is estimated to be 1 in 60-70, this means that there are approximately 4 million heterozygotes in the U.S. It is also possible that patients with vascular disease due to other causes, such as hypercholesterolemia, would also benefit from a decrease in their scrum HC levels even if their existing levels are only slightly elevated or actually within the normal range.

Renal disease is another condition that gives rise to elevated levels of serum metabolites. Approximately 75% of patients with renal disease have elevated serum concentrations of HC, CT, MMA, and 2-MCA. Since patients with renal disease have a significant incidence and marked accelenation of vascular disease, it might be beneficial to lower their serum metabolite levels, especially that of HC.

An increasing prevalence of low serum B₁₂ concentra-77:1606-1612; Stabler et al. (1988) J. Clin. Invest. 35 tions with advancing age has been found by many but not all investigators (Bailey et al. (1980) J. Am. Geriatr. Soc. 28:276-278 Eisborg et al. (1976) Acta Med. Scand. 200:309-314; Niisson-Ehle et al. (1989) Dig. Dis. Sci. 34:716-723; Norman (1985) 33:374; Hitzhusen et al. (1986) Am. J. Clin. Pathol. 85:3236), folate (Magnus et al. (1982) Scan. J. Haematol. 28:360-366; Blundell et al. (1985) J. Clin. Pathol. 38:1179-1184 Elwood et al. (1971) Br. J. Haematol. 21:557-563; Garry et al. (1984) J. Am. Geriatr. Soc. 32:71926; Hanger et al. (1991) J. Am. Geriatr. Soc. 39:1155-1159), and B₆ (Ranke et al. (1960) J. Gerostol. 15:41-44; Rose et al. (1976) Am. J. Clin. Nutr. 29:847-853; Baker et al. (1979) J. Am. Geriatz. Soc. 27:444450). Moreover, prevalence estimates for these vitamin deficiencies vary widely depending on the population groups studied. It has been unclear whether this increased prevalence is a normal age related phenomena or a true reflection of tissue vitamin deficiency and whether the low serum vitamin concentrations are a reliable indicator of functional intracelinlar deficiency.

It is difficult, expensive and time-consuming to distinguish between deficiencies of vitamins B_{12} , folste, and B_6 . The hematologic abnormalities seen with B₁₂ deficiency are indistinguishable from those seen with foliate deficiency. Similarly to a B₁₂ deficiency, B₆ deficiencies also result in bematologic as well as neuropsychiatric abnormalities. The traditional methods of determining deficiencies by measurement of serum vitamin levels are often insensitive. As a result, in order to determine if and which vitamin deficiency is present, a patient will be treated with one vitamin at a time and the response to that vitamin determined by normalization of serum vitamin levels and the correction of hematologic abnormalities. These steps are then repeated with each

vitamin. This method of treatment is both expensive and time-consuming. In the presence of multiple deficiencies, the diagnosis of vitamin deficiencies is further confused and give rise to the dangerous possibility that only one deficiency will be treated. For example, the hematologic abnormalities seen with a B₁₂ deficiency will respond to treatment with folste alone. However, the neuropsychiatric abnormalities caused by the B₁₂ deficiency will not be corrected and may indeed by worsened.

It has now been discovered for the first time that the 10 prevalence of intracellular deficiencies of vitamins B12, foliate, and Be alone or in combination, is substantially higher than that previously estimated by measurement of serum vitamin concentrations. The present disclosure establishes that tissue deficiencies of one or more of the vitamins 15 B₁₂, folate and B₆, as demonstrated by the elevated metabolite concentrations, occurs commonly in the elderly population even when serum vitamin levels are normal. Based on this new discovery, the present invention addresses the problem of distinguishing between vitamin deficiencies 20 when low, low-normal, or normal serum vitamin concentrations are found by providing formulations for the treatment of high serum metabolites and at-risk populations for combinations of one or more tissue deficiencies of vitamins B12, folate, and B.

Hathcock and Troendle (1991) JAMA 265:96-97, have suggested the treatment of pernicious anemia with an oral pill containing 300 to 1000 ug or more per day of B₁₂. However, contrary to the present invention, Hathcock and Troendle teach away from combining B₁₂ therapy with folate, since "if the oral cobalamin therapy should fail to maintain adequate levels, folate might provide protection against development of anemia while permitting nerve damage from cobalamin deficiency."

U.S. Pat. No. 4,945,083, issued Jul. 31, 1990 to Jansen. entitled: Safe Oral Folic-Acid-Containing Vitamin Preparation, describes a oral vitamin preparation comprising 0.1-1.0 mg B_{12} and 0.1-1.0 mg foliate for the treatment or prevention of megaloblastic anemia. This formulation presents a problem in the case of a B12 deficient patient, in that the 0.5 mg foliate may correct the hematologic abnormalities present, but the 0.5 mg B₁₂ dose may be insufficient to correct a B₁₂ deficiency due to inadequate intrinsic factor. By contrast, the formulation of the present invention teaches the use of the combination of B₁₂ and folate, and of B₁₂, folate and Br. sufficient to treat either single or multiple deficiencies of B₁₂, folate, and B₆. The present invention does not rely on the determination of vitamin deficiencies by the measurement of scrum vitamin levels, but uses the more sensitive measurement of elevated serum metabolites of HC, CT, MMA, and 2-MCA, shown to be related to the presence of B₁₂ and/or foliate and/or to B₆ deficiencies or to the presence of the increased risk of neuropsychiatric, vascular, renal, and hematologic diseases.

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.

SUMMARY OF THE INVENTION

This invention includes a method for orally administering two new vitamin preparations containing vitamin B_{12} and folste, and vitamin B_{22} , folste and B_{6} , for the treatment of patients with elevated serum metabolites, such as 65 homocysteine, cystathionine, methylmalonic acid, and 2-methylcitric acid, as well as populations at risk for tissue

deficiencies in one or more of the vitamins B_{12} , folate, and B_6 or for neuropsychiatric, vascular, renal, or hematologic diseases.

One embodiment of the present invention uses an over-the-counter formulation comprised of between 0.3-10 mg CN-cobalamin (B_{12}) and 0.1-0.4 mg folate. Another embodiment of the non-prescription formulation uses 0.3-10 mg B_{22} , 0.1-0.4 mg folate, and 5-75 mg B_{σ} Preferred embodiments of the over-the-counter formulation are comprised of about 2.0 mg B_{12} and 0.4 mg folate, and 2.0 mg B_{12} , 0.4 mg folate, and 25 mg B_{σ} respectively.

Another embodiment of the present invention uses a prescription formulation comprised of between 0.3–10 mg CN-cobalamin ($\rm B_{12}$) and 0.4–10.0 mg folate. Another embodiment of the prescription formulation of the present invention uses 0.3–10 mg B₁₂, 0.4–10.0 mg folate, and 5–75 mg B₆. Preferred embodiments of the prescription formulation use about 2.0 mg B₁₂ and 1.0 mg folate, and 2.0 mg B₁₂, 1.0 mg folate, and 2.5 mg B₆, respectively.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the distribution of serum B₁₂ levels for a population of elderly outpatients (ages 65–99, n=152) and a normal population (ages 17–65, n=100).

FIG. 2 shows serum MMA levels for a population of clderly outpatients with serum B_{12} values<300 pg/ml (ages 65–99, n=38/152) and a normal population with serum B_{12} values<300 pg/ml (ages 17–65, n=10/100)

FIG. 3 shows serum HC levels for a population of elderly outpatients with serum B_{12} values<300 pg/ml (ages 65–99, n=38/152) and a normal population with serum B_{12} values<300 pg/ml (ages 17-65, n=10/100).

FIG. 4 shows serum MMA levels before and after treatment with parenteral cobalamin for a population of elderly cutpatients with elevated MMA values and serum B₁₂ values<300 pg/ml (ages 65-99, n=15/38).

FIG. 5 shows serum HC levels before and after treatment with parenteral cobalamin for a population of elderly outpatients with elevated HC values and serum B₁₂ values of <300 pg/ml (ages 65-99, n=10/38)

FIG. 6 shows the distribution of serum B₁₂ levels for a population of elderly nursing home patients (ages 55–107, n=212) and a normal population (ages 17–65, n=100).

FIG. 7 shows serum MMA levels for a population of elderly massing home patients with serum B₁₂ values<300 pg/ml (ages 55-107, n=29/212) and a normal population with serum B₁₂ values (ages 17-65, n=10/100).

FIG. 8 shows serum HC levels for a population of elderly nursing home patients with serum B₁₂ values<300 pg/ml (ages 55-107, n=29/212) and a normal population with serum B₁₂ values<300 pg/ml (ages 17-65, n=10/100).

FIG. 9 shows serum MMA levels before and after treatment with parenteral cobalamin for a population of elderly nursing home patients with serum B_{12} values<300 pg/ml (ages 55-107, n=14/29).

FIG. 10 shows serum HC levels before and after treatment with parenteral cobalamin for a population of elderly nursing home patients with serum B_{12} values<300 pg/ml (ages 55–107, n=14/29).

FIG. 11 shows the distribution of scram B₁₂ levels for a population of elderly patients (ages 65-99, n=548) and a normal population (ages 22-63, n=117) (Framingham study).

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the presently preferred embodiments of the invention, which, together

with the following examples, serve to explain the principles of the invention.

This invention uses new oral vitamin formulations combining vitamin B_{12} (B_{12} , cobalamin) and folic acid (folate), and vitamin B_{12} , folate and pyridoxine (B_0). The formulations of the present invention are for use in the treatment of elevated sarum levels of one or more of the metabolites homocysteine (HC), cystathionine (CT), methylmalonic acid (MMA), or 2-methylcitric acid (2-MCA). The use of the formulations of the present invention further include as a 10 method of lowering serum metabolite levels of one or more of HC, CT, MMA, or 2-MCA, where these metabolite levels are not elevated but the patients are at risk for or have neuropsychiatric, vascular, renal, or hematologic diseases.

One embodiment of the present invention uses a non-prescription formulation comprised of between about 0.3–10 mg CN-cobalamin ($\rm B_{12}$) and 0.1–0.4 mg folate. Another embodiment of the present invention uses a non-prescription formulation comprised of between about 0.3–10 mg $\rm B_{12}$, 0.1–0.4 mg folate, and 5–75 mg $\rm B_{g}$. Preferred embodiments of the non-prescription formulation are comprised of about 2.0 mg $\rm B_{12}$, and 0.4 mg folate, and 2.0 mg $\rm B_{12}$, 0.4 mg folate, and 2.5 mg $\rm B_{gg}$ respectively.

Another embodiment of the present invention is comprised of a prescription formulation comprised of between about 0.3-10 mg B₁₂ and 0.4-10.0 mg folate, with the preferred embodiment comprised of about 2.0 mg B₁₂ and 1.0 mg folate. Another embodiment of the prescription strength formulation is comprised of about 0.3-10 mg B₁₂, 30 0.4-10.0 mg folate, and 5-75 mg B₆, with a preferred embodiment comprised of about 2.0 mg B₁₂, 1.0 mg folate, and 25 mg B₆.

The formulations of the present invention are for the treatment and prevention of elevated metabolite levels in at risk populations, such as the elderly, and people that have or are at risk for neuropsychiatric, vascular, renal and hematologic diseases. The present invention eliminates the costly and time consuming need to differentiate between B_{12} , folate, and B_6 deficiencies.

The administration of a daily dose of the vitamin formulations of the present invention provides better long-term normalization of serum HC and other metabolites than prior art formulations, and eliminates the difficulty in differentiating between deficiencies of two or three of the vitamins, as the difficulty in diagnosing multiple deficiencies of two or three of the vitamins, and the expense of doing so. Further, the administration of an oral preparation of B₁₂ and folate, with or without B₆, is preferred over intransuscular injections for patient convenience and case of administration.

For example, the inclusion of B₁₂ will be useful as a safeguard for patients misdiagnosed folate deficient, even though they are actually B12 deficient, since treatment with folate alone in such patients is extremely dangerous. The danger arises from the fact that treating a B12 deficient 55 patient with foliate alone may reverse or prevent the hematologic abnormalities seen in B₁₂ deficiency, but will not correct the neuropsychiatric abnormalities of a B₁₂ deficiency and may actually precipitate them. Even in the absence of intrinsic factor, approximately 1% of a 2.0 mg 60 oral dose of B12 is absorbed by diffusion. Thus, approximately 20 ug of B₁₂ would be absorbed from the formulations of the present invention which would be more than adequate even in patients with permicious anemia who have lost their intrinsic factor-facilitated absorption mechanism 65 for B₁₂. The inclusion of folate will be of benefit since B₁₂ deficiency causes a secondary intracellular deficiency of

folate. The inclusion of folate and B₆ will also be of benefit in patients with mixed vitamin deficiencies.

The formulations of the present invention may be administered as a non-injectable implant or orally. Non-injectable use may be as a patch. Formulations for oral administration are preferably encapsulated. Preferably, the capsule is designed so that the formulation is released gastrically where bioavailability is maximized. Additional excipients may be included to facilitate absorption of the vitamin formulations. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disantegrating agents, and binders may also be employed.

Example 1 describes the methods used to measure serum vitamin and metabolite levels. Example 2 describes a new study conducted with 412 subjects over the age of 65 with a variety of medical conditions correlating the incidence of low serum vitamin levels with elevated serum metabolite levels. A study determining the incidence of undetected B₁₂ deficiency and response of serum MMA and HC to B₁₂ treatment in a geriatric outpatient population is described in Example 3. Example 4 describes a similar study conducted with a geriatric nursing home population, and Example 5 describes a similar study conducted with another geriatric population.

EXAMPLE 1

Methods for Measurement of Serum Vitamin and Metabolite Levels

Serum vitamin assays. Serum vitamins B_{12} and folate were measured by a quantitative radioassay method using purified intrinsic factor and purified folate binding protein. Vitamin B_6 was measured by a radioenzymatic assay method wherein serum is incubated with apoenzyme to sine decarboxylase, C_{14} labelled tyrosine is added to start the enzymatic reaction which is stopped with HCI. Subsequently the free C_{14} -labelled CO_2 is adsorbed by a KOH impregnated filtering paper. The measured C_{14} activity is directly proportional to the B_6 (pyridoxal phosphate) concentration (Laboratory Bioscientia, Germany).

Seram metabolite assays. Serum metabolite assays for homocysteine and methylmalonic acid were conducted by the capillary gas chromatography and mass spectrometry methods of Marcell et al. (1985) Anal. Biochem. 150:58; Stabler et al. (1987) supra, and Allen et al. (1990) Am. J. Hematol. 34:90-98. Serum cystathonine levels were assayed by the method of Stabler et al. (1992) Blood (submitted). Serum 2-methylcitric acid was assayed by the method of Allen et al. (1993) Metabolism supra.

Statistical methods. Statistical analysis was done with the SAS statistical package (version 6.06). Nonparametric data for two or more groups were tested with the two sample Wilcoxon rank sum test (with Bonferroni's correction for the significance level α) and the Kruskall Wallis test. From the results of the healthy young subjects reference intervals were calculated. Since the frequency distribution of the values of each parameter were markedly abnormal they were transformed to normal distributions using log transformation. The sample prevalence p with 95% confidence intervals of low serum vitamins B_{12} , folate, and B_6 concentrations was calculated as $(pa2\ p\ (1-p)/mx100\ wherein n is the total sample size, p is the number of low serum vitamin concentrations/n; low serum concentrations are defined as<mean -2 S.D.$

EXAMPLE 2

Incidence of Elevated MMA, 2-MCA, HC, and CT Levels in the Geriatric Population

The serum concentrations of B_{12} , foliate, and B_6 were measured in 412 subjects over the age of 65 (subgroups

Ŷ

A-D), and in 99 healthy control subjects aged 20-55 years (subgroup E). The geniatric subgroups were defined as follows: A, 110 patients with atherosclerosis; B, 98 patients with neuropsychiatric disorders; C, 102 patients with atherosclerosis and multiple diseases including rheumatoid arthritis and diabetes; D, 102 subjects who were healthy.

Venous blood was obtained from all subjects in the morning after an overnight fast. The blood was spun within one hour after collection and the serum was transported in dry ice to the central laboratory. Serum vitamins B_{12} and folate were measured as described in Example 1 with a 10 vitamin B_{12} folate dual RIA kit (CT301/CT202 Americal Buchier, UK). Vitamin B_6 and serum metabolites were measured as described in Example 1.

Since renal function can influence serum metabolite concentrations (Ueland and Refisum (1989) supra Moelby et al. (1992) Scand. J. Clin. Lab. Invest. 52:351-354), serum creatinine concentrations were measured in all subjects by the Jaffe photometric method (Laboratory Bioscientia, Germany). Normal range was 62-124 µmol/L. Creatinine clearance was calculated using the formulation of Cockroft and Gault (1976) Nephron 16:31-41.

Normal ranges for serum vitamin and metabolite levels were determined by the mean=2 standard deviations after log normalization using the values from subgroup E. Results are shown in Table 1:

TABLE 1

INCIDENCE OF LOW SERUM VITAMIN AND HIGH METABOLITE LEVELS IN GERLATRIC POPULATIONS A-D AND A YOUNGER HEALTHY POPULATION E.

Group	B ₁₂	Folic Acid	B ₆	MMA	2-MCA	BC	CT
A	6%	12%	48%	36%	44%	55%	64%
B	6%	19%	53%	47%	39%	59%	6%
C	3%	10%	50%	32%	45%	39%	73%
D	6%	6%	17%	26%	23%	38%	41%
₽.	2%	1%	1%	3%	6%	2%	4%

There was a rough correlation with low vitamin levels and elevated metabolites, but many of the patients with elevated metabolites had low normal or normal vitamin levels. Correlations between clinical abnormalities within groups A, B, and C were not present. Patients were treated with weekly injections of a multi-vitamin preparation containing 1.0 mg B₁₂, 1.1 mg folate, and 5 mg B₆, resulting in a marked lowering or normalization of elevated metabolite levels in virtually every elderly patient.

These data support the conclusions that there is an increased incidence of low levels of serum B_{12} folate, and B_6 in the geriatric population, and that serum MMA, B_6 in the geriatric population, and that serum MMA, B_6 in the geriatric population, and that serum MMA, B_6 in the geriatric patients. The presence of elevated levels of one or more of the metabolites HC, CT, MMA, or 2-MCA indicate a tissue or intracellular deficiency of one or more of the vitamins B_{12} , folate and B_6 . It not possible to tell without expensive, time-consuming, and extensive testing which one vitamin or pair of vitamins, or whether all three vitamins are deficient. These observations, together with the fact that selevated metabolite levels are corrected by parenteral therapy with a combination of vitamins B_{12} , folate, and B_6 , indicate that a tissue deficiency of one or more of these vitamins occurs commonly in the geriatric population and that measurement of across vitamin levels alone is an inadequate method for identifying such deficiencies.

EXAMPLE 3

Determination of Serum B₁₂ Folate, MMA, HC, CT and 2-MCA Levels in a Geriatric Outpatient Population

A study was conducted with 152 elderly outpatient subjects to measure the prevalence of B_{12} deficiency in geriatric

outpatients as determined by both low serum B₁₂ levels and elevations of MMA and HC, and to determine the response to B₁₂ treatment. Blood samples were obtained on 152 consecutive geriatric outpatients, ages 65-99. Control values were determined from 100 subjects, ages 17-65. Serum B₁₂ folate, MMA HC, CT, and 2-MCA levels were obtained for each patient, shown in Table 2. The significance of the results marked as "**" in Table 2 are as follows: B₁₂ levels of 200 pg/ml; folate<3.8 ng/ml; homocysteine>16.2 uM; MMA>271 nM; CT>342 nM; and 2-MCA>228 nM. Serum MMA, HC, CT, and 2-MCA levels were measured as described in Example 1. Serum B₁₂ and folate were measured as described in Example 1 using a Corning Immophase kit (CIBA-Corning, Medfield, Mass.) with the normal range defined as 200-800 pg/ml for B₁₂ and 3.8

parenteral cyanocobalamin injections (1,000 ug IM) for 8 weeks, followed by monthly injections. Repeat laboratory and clinical assessments were administered at 8 weeks and 20 at 6 months.

Results show that 25% of the subjects had a scrum B₁₂ level ≤ 300 pg/ml and 8.5% had a low level of <200 pg/ml.

ng/ml for folate. After evaluation, patients received weekly

FIG. 1 shows the shift seen in elderly subject towards lower serum B_{12} levels. More than half of the subjects with low or low-normal serum B_{12} levels had elevations of MMA (FIG. 2) and/or HC (FIG. 3) greater than 3 S.D. above the means in normals and representing 14.5% of the total screened

population.

Patients with low and low/normal serum B_{12} levels were treated with weekly injections of 1.0 mg B_{12} . Parenteral B_{12} administration caused elevated metabolite levels to fall to or towards normal (FIGS. 4 and 5) in every subject treated with B_{12} . It appears that the true prevalence of previously unrecognized B_{12} deficiency in this elderly population was at least 14.5%.

It can be seen from the data presented in Table 2 that serum B_{12} levels are insensitive for screening B_{12} deficiencies since similar numbers of patients with low normal scrum B_{12} levels of 201–300 pg/ml compared with patients with low B_{12} levels (\leq 200 pg/ml) had markedly elevated metabolites which fell with B_{12} treatment. Further, this study shows that elderly patients have a high incidence (at least 14.5%) of unrecognized B_{12} deficiency, detectable by measurement of scrum HC and MMA levels in patients with scrum B_{12} levels<300 pg/ml.

A further finding in this study emphasizes the need to treat elevated metabolite levels with a combination of vitamin B_{12} and folate with or without B_6 . Some of the patients exhibiting elevated metabolite levels did not fully respond to B_{12} treatment. This may indicate a concomitant deficiency of folste and/or B_6 . The lack of response to B_{12} treatment could result from a deficiency of one, a pair, or all three vitamins. However, it would be expensive and time-consuming to attempt to distinguish between the vitamin deficiencies.

Another, and perhaps the most important, finding in this study is the large number of patients with serum B_{12} >300 pg/ml who have elevated values for one or more metabolites as indicated by a "*** next to the individual values. As can readily be seen in Table 2, there are many examples of elevated value for MMA and/or 2-MCA at all levels of serum B_{12} including the mid-normal (300-600 pg/ml), the high-normal (600-800 pg/ml), and even the elevated (>800 pg/ml) ranges. The same is true for elevations of HC and CT. In some patients the serum folate is low, indicating that folate deficiency may be present, but in many cases both B_{12}

and folate levels are normal. B6 levels were not performed in this study, but Be deficiency would not be expected to cause elevations of MMA or 2-MCA. Thus in many patients it is not clear which vitamin, or pair of vitamins, or whether all three vitamins is or are deficient. One could pick a single 5 vitamin, often at random, with which to treat a patient for several weeks or months, and then repeat measurement of metabolitè levels to determine if a partial or full correction had occurred. If there was no response, one could try another vitamin, or if there was a partial response one could add a 10 second vitamin, and then repeat metabolite measurement after several weeks or months. If there was still no response, one could try the third vitamin, or if there was a partial response, one could try a different pair of vitamins. Evenmally one could determine whether an individual vitamin, a 15 particular pair of vitamins, or all three vitamins were required to normalize or maximally reduce the metabolite levels, but it would often require months or even a year to make this determination. Such a determination would be expensive. In addition, a patient who was optimally treated 20 with a single vitamin or pair of vitamins might subsequently develop a deficiency of one or even two of the other vitamins as evidenced by a re-elevation or increase in the levels of one or more metabolites. Therapeutic testing could be reinitisted and continued as described above, although this would 25 also be time-consuming and expensive.

It requires less time and expense to treat patients with elevated metabolite levels with a combination of vitamin B_{12} and folate, or a combination of vitamin B_{12} , folate and vitamin B_0 . The utility of the approach of the present invention is appreciated only after it is taught, for the first time in the present disclosure, that a deficiency of one or more of the three vitamins occurs commonly in the elderly population as evidenced by elevation of one or more metabolites, i.e., MMA, 2-MCA, HC and CT.

EXAMPLE 4

Determination of Sorum B₁₂, Folate, MMA, and HC Levels in a Geriatric Nursing Home Population

A study was conducted with 212 elderly nursing home patients to determine serum B_{12} folate, MMA, and HC levels (Table 3). The significance of the results shown in Table 3 marked with "**" are as described for Table 2 (Example 3). The control group consisted of 100 subjects between the ages of 17-65 years. As in the study described in Example 3, the elderly population exhibited a shift to lower serum B_{12} levels (FIG. 6), elevated serum B_{12} for levels. Parenteral administration of B_{12} of 1 mg per week for 8 weeks to those with serum B_{12} <00 pg/ml caused elevated MMA (FIG. 9) and HC (FIG. 10) levels to fall to or towards normal.

As in the study reported in Example 3, a further finding in this study emphasizes the need to treat elevated metabolite levels with a combination of vitamins B_{12} and folate, with or without B_6 . Some of the patients exhibiting elevated metabolite levels did not fully respond to B_{12} treatment. This may indicate a concomitant deficiency of folate and/or B_6 . The lack of response to B_{12} treatment could result from a coefficiency of one, a pair, or all three vitamins. However, it would be expensive and time-consuming to attempt to distinguish between the vitamin deficiencies.

Again, an important finding in this study is the large number of patients with serum B_{12} >300 pg/ml who have 65 elevated values for one or more metabolites as indicated by a **** next to the individual values. As is seen in Table 3,

12

there are many examples of elevated values for MMA at all levels of serum B₁₂ including the mid-normal (300-600 pg/ml), the high-normal (600-800 pg/ml), and even the elevated (>800 pg/ml) ranges. The same is true for elevations of HC. In some patients the serum folate is low, indicating that foliate deficiency may be present, but in many cases both B12 and foliate levels are normal. B6 levels were not performed in this study, but B₆ deficiency would not be expected to cause elevations of MMA. Thus, again it is not clear which vitamin, or pair of vitamins, or whether all three vitamins is or are deficient. One could pick a single vitamin with which to treat a patient for several weeks or months, and then repeat measurement of metabolite levels to determine if a partial or full correction had occurred. If there was no response, one could try another vitamin, or if there was a partial response one could add a second vitamin, and then repeat metabolite measurement after several weeks or months. If there was still no response, one could try the third vitamin, or if there was a partial response, one could try a different pair of vitamins. Eventually one could determine whether an individual vitamin, a particular pair of vitamins, or all three vitamins were required to normalize or maximally reduce the metabolite levels, but it would often require months or even a year to make this determination. Such a determination would be expensive. In addition, a patient who was optimally treated with a single vitamin or pair of vitamins might subsequently develop a deficiency of one or even two of the other vitamins as evidenced by a re-elevation or increase in the levels of one or more metabolites. Therapeutic testing could be reinitiated and continued as described above, although this would also be timeconsuming and expensive.

It requires less time and expense to treat patients with elevated metabolite levels with a combination of vitamin B_{12} and folate, or a combination of vitamin B_{12} , folate and vitamin B_6 . The utility of the approach of the present invention is appreciated only after it is taught, for the first time in the present disclosure, that a deficiency of one or more of the three vitamius occurs commonly in the elderly population as evidenced by elevation of one or more metabolites, i.e., MMA, 2-MCA, HC and CT.

EXAMPLE 5

Determination of Serum B₁₂ Folate, 14MA, and HC Levels in a Geriatric Population

A study was conducted with 548 elderly subjects from the Framingham study between the ages of 65–99 to determine serum B_{12} folate, MMA, and HC levels (Table 4). The significance of the results shown in Table 4 (marked with "**") are as described for Table 2 (Example 2).

As in the study described in Examples 3 and 4, the elderly population exhibited a shift to lower serum B₁₂ levels (FIG. 11), and elevated serum MMA and HC levels. The elderly population also exhibited a high incidence (9.5%) of low serum folate levels (Table 4). As in the studies reported in Examples 2, 3 and 4, the incidence of tissue or intracellular vitamin deficiencies based on elevated metabolite levels was higher than that predicted from measurement of serum vitamin levels.

As in Examples 3 and 4 above, these results confirm the importance of the finding that there are a large number of patients with sorum B₁₂>300 pg/ml who have elevated values for one or more metabolites as indicated by a "**" next to the individual values. As is seen in Table 4, there are many examples of elevated MMA values at all levels of

serum B₁₂ including the mid-normal (300-600 pg/ml), the high-normal (600-800 pg/ml), and even the elevated (>800 pg/ml) ranges. The same is true for elevations of HC. In some patients the serum folate is low, indicating that folate deficiency may be present, but in many cases both B12 and 5 folate levels are normal. Be levels were not performed in this study, but Bo deficiency would not be expected to course elevations of MMA. Thus, again it is not clear which vitamin, or pair of vitamins, or whether all three vitamins is or are deficient. One could pick a single vitamin with which 10 to treat a patient for several weeks or months, and then repeat measurement of metabolite levels to determine if a partial or full correction had occurred. If there was no response, one could try another vitamin, or if there was a partial response one could add a second vitamin, and then 15 repeat metabolite measurement after several weeks or months. If there was still no response, one could try the third vitamin, or if there was a partial response, one could try a different pair of vitamins. Eventually one could determine whether an individual vitamin, a particular pair of vitamins, 20 or all three vitamins were required to normalize or maximally reduce the metabolite levels, but it would often require months or even a year to make this determination. Such a determination would be expensive. In addition, a patient who was optimally treated with a single vitamin or pair of 25 vitamins might subsequently develop a deficiency of one or even two of the other vitamins as evidenced by a re-elevation or increase in the levels of one or more metabolites. Therapeutic testing could be reinitiated and continued as described above, although this would also be time- 30 consuming and expensive.

It requires less time and expense to treat patients with elevated metabolite levels with a combination of vitamin B_{12} and folate, or a combination of vitamin B_{12} , folate and 35 vitamin B_0 . The utility of the approach of the present invention is appreciated only after it is taught, for the first time in the present disclosure, that a deficiency of one or more of the three vitamins occurs commonly in the elderly population as evidenced by elevation of one or more 40 metabolites, i.e., MMA, 2-MCA, HC and CT.

								028	418	5.6	34.6**	608**	589**	351**
			TABL	E 2				011	420	10.6	18.8**	683**	1014**	282**
							•	081	421	6.6	16.5**	861**	641**	531**
	SERU	M MET	BOLITE	& VITAME	N LEVELS			033	423	4.2	16.3**	156	194	170
				STENT NO			45	057	425	18.3	13.5	209	381**	321**
						_		023	427	18.9	12.1	223	524**	- 168
Pa-			Home-			Total		135	430	8.8	13.5	284**	412**	. 180
ticat	\mathbf{B}_{12}	Folate	cytteine	MMA	CT	MC		097	435	15.4	10.9	353**	465**	119
								052	438	6.8	15.2	281**	372	238***
116	66**	9.8	41.8**	1508**	507**	759**		132	448	12.6	16.8	1931**	394**	250**
118	79**	9.3	29.5**	2200**	343	428**	50	086	451	12.1	6.6	139	208	107
016	155**	7.6	15.3	1316**	208	196		148	458	13.9	11.4	187	322	238**
067	163**	6.6	9.9	93	164	69		012	466	15.3	8.3	560**	250	144
091	178**	12.0	29.2**	3108	438*=	318**		083	466	12.0	13.7	366**	214	193
042	161**	11.3	13.0	452	300	262**		133	470	13.8	10.8	290**	275	55
030	185**	6.6	26.0**	782**	310	223		017	475	4.0	39.6	196	467**	220
037	187**	9.4	12.3	160	218	334**	55	053	476	13.4	12.3	226	206	125
100	187**	9.5	13.6	208	453**	141	22	009	482	6.5	25.3**	240	470**	214
036	188*	9.9	16.3**	298**	3654*	322**		066	498	9.6	129	374**	233	92
109	189**	7.6	12.3	127	138	161		031	507	11.0	14.8	173	278	220
007	191**	11.7	67.1	6349**	619**	1005**	,	099	507	10.4	9.6	124	233	63
019	193**	. 5.8	. 16.7**	412	272	235**		128	507	4.6	9.4	294**	324	176
050	210	4.0	25.3**	464***	727**	121		013	514	21.3	15.9	163		
108	234	6.0	31.1**	264	523**	315**	60	151	522	7.8	14.3	370**	324	215
042	216	7.2	19.1**	418**	340**	288*		077	523	6.8	17.7**	184	210	214
126	224	5.5	8.8	103	361***	121		079	523	15.6	13.0	316**	223	251**
005	231	12.5	17.1**	269	825**	276**		054	524	4.9	10.0	148	230	123
024	235	13.0	18.5**	2946**	232	289**		020	524	9.9	14.2	235	366**	190
111	237	6.3	14.6	135	360**	203		069	528	7.0	9.7	257	281	83
023	239	4.1	21.9**	385=*	775**	279**	65	085	536	4.0	22.5**	97	291	114
010	256	12.9	11.5	652**	119	144		084	551	14.2	12.5	166	179	131

14

TABLE 2-continued

						n levels pulation	
	Pa- tient	B ₁₂	Folate	Homo- cysteise	MMA	СT	Total MC
	055	258	6.8	7.5	189	342	185
	102	259	10.9 18.5	23.9**	1894**	423** 295	400** 248**
)	026 107	260 262	13.1	10.1	231	628**	153
	038	269	7.6	15.7	222	152	152
	140	277	4.0	29.1**	744**	602**	254**
	074	278	5.2 14.6	24.1** 14.8**	699** 554**	296 259	187 277**
	002 019	278 282	8.5	12.4	329**	262	161
5	935	287	5.8	9.8	230	390**	218
	049	290	3,9	33.0**	140	275	138
	078	290	10.9	12.5	197	240	209
	045 092	291 294	8.7 14.9	.9.5 19.3**	162 500**	613** 246	132 167
	137	297	6.8	10.1	631**	340	184
,	072	298	6.7	19.7**	375**	302	246**
	149	310	8.3	16.1	314**	199	149
	047 060	312 312	4.9 9.4	15.9 8.0	277** 100	271 228	173 203
	046	314	6.5	16.2	142	336	125
	093	318.	6.4	16.5**	304**	361**	130
5	014	321	14.5	10.7	275**	233	170
	188 032	327 340	7.1 6.6	17.8** 8.6	263 150	507** 133	258** 133
	147	347	7.6	18.2**	305**	219	265**
	001	351	4.7	20.8**	199	402**	223
	090	353	49	20.7**	144	419**	178
,	008 104	358 360	5.4 12.7	12.6 12.1	372** 260	529** 89	177 77
	110	370	3.0↔	17.1**	· 456**	297	150
	103	373 ·	18.7	14.5	257	219	180
	056	373	6.5	12.4	236	415**	189
	048 131	374 377	3.6*** 10.9	9.7 13.6	167 256	237 220	230*** 85
,	122	378	76	21.9**	906**	227	196
	004	385	8.6	10.3	109	288	92
	120	390	9.8	22.9**	499**	529**	260**
	138 143	405 407	6.9 8.1	14.7 14.3	334** 158	238 259	188 263**
	101	408	5.9	9.2	160	134	40
)	145	410	3.7**	25.4**	567**	550**	349**
	027	415	11.1	10.6	1 69	278	164
	028	418 420	5.6 10.6	34.6** 18.8**	608** 683**	589** 1014**	351** 282**
	011 081	421	6.6	16.5**	861**	641**	531**
	033	423	4.2	16.3**	156	194	170
•	057	425	18.3	13.5	209	381**	321**
	023	427 430	18.9 8.8	12.1 13.5	223 284**	524** 412**	· 168 180
	135 097	435	15.4	10.9	353**	465**	119
	052	438	6.8	15.2	281**	372	238***
	132	448	12.6	16.8	1931**	394**	250**
)	086	451	12.1 13.9	6.6	139 187	208 322	107 238**
	148 012	458 466	15.3	11.4 8.3	560**	250	144
	083	466	12.0	13.7	366**	214	193
	133	470	13.8	10.8	290**	275	55
	017	475	4.0	39.6** 12.3	196 226	467** 206	220 125
•	053 009	476 482	13.4 6.5	25.3**	240	470**	214
	066	498	9.6	129	374**	233	92
	031	507	11.0	14.8	173	278	220
	099	507	10.4	9.6	124 294**	233 324	63 176
	128	507	4.6	9.4	474	J24	1 10

		I	ABLE 2	continued				<u></u>		TABLE	3-continued	
	SE IN	RUM ME A GERIAT	RECOUTE	& VITAMI	n levels Pulation		- 5				TE & VITAMIN SING HOME PO	
Pa- tieni	B ₁₂	Folat	Homo-	MMA	CT.	Total MC		Patient	B _{1.2}	Foliate	Homocysteine	Methylmalonic Aci
082	559			-			- , ,	NH176	129**	9.2	20,3**	1156**
117	560	12.3 3.4*	14.6 18.8**	208 102	371** 176	182 88		NH196 NH109	136**	6.2	41.0**	1077**
061	561	12.7	9.8	170	404**	152	10	NH203	146**	9.8 4.3	20.9** 12.2	1294** 437**
006	567	4.6	16.8**	138	688**	165	10	NH141	161**	13,4	12.2	223
129 003	567	4.9	16.2	363**	495**	331**		NH178	172**	8.2	5.9	143
115	570 576	11.4	12.9 17.8**	189 128	330 231	230**		NH103	189**	5.5	13.1	362**
089	578	10.3	12.0	147	251 258	95 236**		NH181 NH160	196** 206	6.3 11.9	14.7 12.5	296** 640***
143	581	2.6**		165	555**	208	15	NH197	221	24.0	10.5	654**
114	583	5.1	16.6**	599**	660**	177	13	NH073	222	3.6**	19.8**	490**
080 015	593 598	9.5 7.0	18.0**	208	289	142		NH110	227	5.5	13.7	1297**
039	596	9.6	12.4 18.1**	167 691**	381** 719**	95 354**		NH010	228 234	4.0	21.1**	413**
070	612	5.6	13.7	197	296	82		NH012 NH037	234	8.7 11.5	16.0 22.5**	596** 11299**
051	622	12.9	8.3	119	246	150		NH114	238	12.8	13.2	442**
139	628	8.5	7.8	145	166	83	20	NH211	240	6.0	14.1	166
150 043	628 635	8.6 5.9	14.5 13.7	295**	315	183		NH075	250	9.3	12.1	170
096	651	17.4	9.7	239 326**	272	199		NH172	255	7.2	14.4	552**
073	657	7.0	9.5	186	238	78		NH148 NH138	259 264	5.7 9.2	19.2** 16.7**	317** 340**
127	665	5.8	8.1	166	344**	147		NH150	264	4.0	13.7	98
121	677	10.2	9.5	226	346**	173	25	NH099	272	5.5	12.5	125
034	694	15.9	12.1	406**	592**	584**		NH124	275	6.9	11.5	87
124 123	697 702	9.7 10.4	11.0	63	179	60		NH179	301	7.6	7.1	143
113	705	7.6	10.6 8.4	186 107	148 534**	96 92		NH135	302	6.5	23.4**	397**
071	709	10.6	11.3	207	584**	141		NH087 NH180	364 304	7.8 5.8	10.8 10.5	327** 237
076	722	8.1	10.5	271	489**	138	30	NH209	306	7.6	11.9	105
044	724	7.3	12.1	212	683**	217		NH107	310	3.3==	8.6	148
040	731	15.1	7.4	205	149	136		NH081	320	4.3	23.6**	470**
062 025	741 741	4.4 10.0	18.7** 12.2	153 224	856**	416**		NH068	324	7.9	13,4	243
119	755	5.9	10.1	187	344** 377**	121 61		NH183 NH033	325 330	7.7	11.1	144
975	757	10.0	24.7**	246	345**	276**	35	NH161	333	13.8 8.5	7.7 11.3	149 385**
098	759	13.8	13.9	380**	239	156	.33	NH192	337	10.7	9.5	209
134	769	7.5	10.4	125	131	81		NH136	340	6.7	18.2**	409**
087 142	773 788	25.0 4.6	30.1	181	285	135		NH191	342	20.2	13.4	271
064	792	15.4	12.1 8.6	166 218	273 299	129 139		NH137 NH182	343	4.0	15.6	183
094	793	16.6	10.0	186	179	173		NHI020	346 347	8.2 8.4	14.4 10.4	448** 149
122	806	8.8	14.4	184	271	161	40	NH165	351	18.5	11.8	425**
112	812	12.0	9.2	. 181	184	108		NH095	352	8.5	14.5	366**
125 106	817 862	14.4 5.3	11.0 9.2	158	242	72		NH194	361	4.3	20.3**	305**
46	890	13.9	11.9	94 135	300	95		NH106 NH060	362	4.8	12.9	296**
158	897	5.3	38.5**	154	460**	80		NHOO9	367 368	4,7 5.1 .	16.4** 15.9	7 <u>1</u> 325**
63	943	17.8	19.7**	277**	642**	306**	45	NH071	382	4.9	12.9	330**
95	960	25.3	10.7	135	181	111		NH080	390	6.1	15.0	171
52	963	9.4	8.8	198	-			NEI013	407	6.7	124	310**
130 VSD	971	15.9	13.5	106	307	84		NH126	409	9.2	17.4**	137
359 105	1063	9,4	9.7	129	378**	54		NE030 NE210	411	11.2	10.4	844** 210
us 36	1109 1163	11.0	6.1	87 350	355	64	50	NH210 NH2158	414	5.7	11.9 16.2	210 508**
65	1251	6.0 14.5	13.1 10.7	250 88	565**	122		NH027	416	10.2	15.5	769**
29	1490	22.2	9.7	06 129	147 111	88 105		NE003	424	16.5	9.5	167
44	1536	7.0	17.7**	216	694**	418**		NH187	429	4.7	8.8	439**
68	1809	12.7	10.4	59	128	39		NH022	430	10.5	14.0	214
-								NH162 NH162	436 438	10.6 6.1	17.7** 19.2**	340** 180
							55	NEI021	439	5.3	35.1	191
			<u></u>		-			NEE056	447	11.7	10.9	184
			TABL	E 3				NEL119	448	3.2**	14.1	241
	CEP!	ing see					•	NH120	448	5.6	120	138
	IN A G	BBTKLAR. AM MET	: NEIBGRA	VITAMIN	LEVELS MULATION			NH186 NH064	450 451	4.7 6.9	23.1** 10.6	213 237
				بالتكاليف		•	60	NH057	453	14.6	10.4	282**
Paticut	2	12. F	olate H	omocyatelac	Mothyland	onic Acid		NH131	454	8.1	16.2	258
787- 0		****				. ,		NE1059	462	6.0	9.1	147
(H1)70 (H129		Sea 1	14.0	34.8**	3365			NH202	465	3.3**	17.0**	393**
TH156			7.4 12.4	40:9** 17:4**	6245			NH134	475	15.3	11.6	321**
EH13 9		6**	9.7	20.9**	1130 1180		65	NH083 NH199	475 479	7.4 15.1	10.6 10.4	178 141
	6	7**		~					745	Andrea.	444	

		TABLE	3-continued					TABLE	3-continued	
_1			te & Vitamin Sing Home Po		, 5	ı			ie & Vicamen Sing Home Po	
Patient	B ₁₂	Folate	Homocyateine	Methylmalonic Acid		Patient	B ₁₂	Folate	Homocysteine	Methylmalosic A
TH200	491	13.6	9.8	154		NH190	752	5.2	14.1	254
VH213	497	8.1	10.0	92		NE067	760	22.5	9.5	232 100
VH143 VH031	500 502	5.2 6.4	22.1**	175 151	473	NH014 NH072	767 768	89 83	7.3 6.9	131
VIR188	504	12.5	16.1 15.1	1461**	10	NH133	772	8.8	20.4**	219
VH171	504	10.7	12.9	344**		NH122	778	6.0	10.4	. 108
18008	505	4.6	9.9	185		NE076	781	12.1	14.9	282**
TH102	506	16.6	9.1	236		NH147	785	7.5	24.5**	411**
UR1 45	512	7.7	22.2**	161		NHU26	786	9.7	8.3	146
TH093	514	5.1	17.7**	185	15	NH151	789	24.4	11.1	182 158
VIII118 VIII185	524 524	25,0 8.7	10.1	314**		NH198 NH088	797 801	10.9 6.4	19.7 18.3**	184
1H1711	527	5.1	12.1 18.4**	84 250		NEI004	806	11.3	8.8	96
0H149	530	12.6	18.2**	531**		NEE024	818	5.1	14.1	219
THE 11	534	8.1	12.5	654**		NELIOO	826	16.4	10.5	103
VH128	540	4.3	11.6	120	20	NH078	831	7.2	10.3	266
VER035	547	7.5	9.8	193	20	NH052	844	19.6	8.0	193
₹ H 005	551	17.7	5.0	365**		NH142	848	18.6	12.1	398**
79212 TENOT	552	11.9	12.1	202		NH002	862	9,4	11.3 12.6	212 169
791007 791086	554 554	6.4	26.1**	646**		NH091	891 897	4.9 22.0	8.4	132
(FR) 69	555	9.5 22.7	5.1 6.8	127 134		NH127 NH096	901	9.3	5.2	104
H121	555	8.2	10.0	112	25	NH201	910	25.0	15.7	424**
H117	571	6.6	9.7	351**		NH184	941	21.5	10.8	170
TE1055	581	14.8	9.1	265		NB208	945	20.2	9.8	113
IBO25	581	5.2	15.3	181		NH130	968	22.4	10.4	339**
H104	583	3.9	14.6	1699**		NH164	989	8.0	16.8**	102
H173	583	11.2	10.6	160		NH077	1006	15.1	9.2	188
H177	584	6,2	5.7	111	30	NE017	1015	11.9	9.5	175
H207	586	8.5	16,4**	243		NH029	1053	18.6.	11.4 9.7	161 193
19070 19038	591 592	5.4	12.0	168		NH023	1055 1079	9.3 6.4	11.4	106
HO49	599	8.0 10.7	8.8 21.7**	230 238		NE047 NE043	1082	14.5	13.9	144
H062	606	4,5	7.7	96		NH195	1088	36.9	12.2	150
TH1.53	608	7.7	13.6	221	35	NH193	1092	8.2	15.7	225
H206	611	6.6	16.4**	400**	33	NH046	1093	9.2	18.8**	186
HO18	614	6.3	10.9	123		NH101	1108	3.9	8.1	139
OH 163	616	5.0	9.6	132		NH098	1117	11.3	12.5	88
H189	619	7.6	12.0	158		NH168	1124	25.2	15.0	203 159
HD45	620	21.0	12.4	265		NH006	1126	6.9	8.1 21.9**	262
HO74 HO54	621 623	10.2 8.0	9.2 9.8	172	40	NH144 NH044	1135 1159	8.0 26.8	10.2	109
H152	625	8.2	7.8	121 206		NH175	1162	7.8	12.0	210
H140	637	21.7	13.6	300**		NH146	1179	9.8	10.1	129
CHO50	642	16.3	13.5	275**		NH112	1238	10.3	15.0	347**
HD89	644	7.7	16.7**	444**		NH001	1304	13.1	6.9	142
TH036	549	7.9	10.7	68		NH166	1337	13.4	8.3	67
1909 7	651	6.6	13.4	426==	45	NH079	1346	18.0	12.0	248
H016	656	4.1	61.0**	356**		NH041	1528	20.7	R.2	155
E1053	657	14.2	10.6	320==		NEI063	1559	15.0	7.0	66
HD66 HD51	658 659	7.7 4.0	11. <i>A</i> 10.7	228 216		NH159	1566	6.6	15.5	451**
H108	671	5.8	24.0**	210 823**		NH125	1703	8.2 15.0	20.6**	153 197
FB058	673	6.0	11.2	392**	50	NH094	1768 2029	15.9	8.4 16.8**	182 206
H028	675	22.3	9.1	105		NH123 NH174	2028 2106	19.2 13.3	12.8	283**
H204	678	4,7	10.2	148		NIB039	2227	23.8	8.9	119
H169	679	6.9	19.2**	267		NH019	2297	11.1	15.5	177
H032	681	12.7	5,9	99		NEI092	2360	5.7	9.8	131
EE)65	682	11.0	13.5	176		NH085	3141	22.0	26.9**	1947**
H061 Kriss	683	13.4	9.6	190	55		- T-			
H116 H015	685 699	9.0 6.8	7.5 16.8**	244 236						
H157	711	10.0	12.8	198						
H155	715	10.0	17.6**	308**				TA	BLE 4	
H034	715	7.9	11.4	179				44.7		
H040	717	10.5	15.7	256	er		SER	JM METAE	IGLITE & VITAI	
H105	718	6.0	13.2	308**	60				IATRIC ROPUL	
HO49	719	8.0	10.8	207		100		- 		_
HO84	720	6.8	9.4	169		Patient	B ₁₂	Pola	te Homocys	oine MMA
HE115	724	16.3	9,4	161						24.454.4
H205	734	8.5	13.3	232		495	77		65.4**	
H113 H154	738 738	11.7 13.7	10.3 9.6	171 123	65	484 522	84 100			967**
		1.5.7								

TABLE	4-continued		TABLE 4-continued

				ITE & VITAMIN RIC POPULATION		5				TE & VITAMIN RIC POPULATION	• •
_	Patient	B ₁₂	Folate	Homocysteine	MMA		Patient	B ₁₂	Folate	Homocysteine	MMA
_	493	135**	4.4	16.9**	421		548	250	29**	12.4	179
	528	145**	3.9	38_3**	729**		441	250	4.5	8.5	147
	510	155**	4.6	14.1	804**	100	480	255	4.8	16.9**	558**
	502	155**	2.1**	16.9**	347***	10	532	255	7.0	14.8	419**
	412	160**	18.5**	33.8**	1301***		464	255	11.5	12.9 12.1	400** 293**
	409 470	160** 165**	4.8 9.2	16.8** 19.9**	164		494 106	255 255	6.2 4.5	11.7	203
•	460	165**	6.8	11.5	1468** 142		546	260	5.5	14.7	662**
	437	170**	4.9	16.5**	813		541	260	5.4	30.8***	426**
	439	170**	1.2**	21.3**	502**	15	420	260	5.3	13.6	347**
	525	175***	11.5	15.3	1058**	1.5	500	260	6.7	14.0	330**
	442	175**	4.2	17.5**	328**		538	260	9.3	17.3**	298**
	456	180**	7.3	11.1	206		457	260	2.9**	12.6	286**
	450	180**	5,0	11.8	196		472	260	8.3	13.8	278**
	477 508	185** 190**	3.4**	31.444	369		424	260	6.3 6.8	10.1 10.5	242 197
	423	190**	4.1 2.5**	19.5** 19.0**	335*** 329**	20	433 425	260 265	7.3	14.7	724**
	462	190**	3.8	11.6	276**		468	265	3.8	16.7**	289**
	523	190⊶	5.6	16.8**	207		435	265	7.4	14.0	150
	482	190**	29**	25.1**	179		499	265	2.2**	12.4	131
	459	190**	5.3	19.6**	167		432	270	4.3	28.3**	432**
	543	195==	4.3	13.5	470**		521	270	3.7**	15.3	349**
	520	195**	1.7**	22.2**	309**	25	549	270	4.21	12.4	343**
	431	195**	7.2	13.5	251		518	270	10.0	10.1	276**
-	513	200	5.0	25.0**	1184**		418	270	26.0	9.4	213
	534	200	4.9	32.6**	1080**		419	2701	6.5	12.5 18.7*=	212 189
	515 531	200 200	4.9 5.1	17.3** 26.8**	478** 466**		428 443	270 270	4.2 8.8	12.0	187
	516	200	3.6**	20.8** 17.8**	279**	30	446	270	11.0	8.1	157
	526	200	1.6**	23.5	171	30	461	275	7.6	15.1	663**
	471	205	5.7	22.0**	542**		440	275	4.9	12.9	248
	413	205	2.6**	20.4**	304**		436	275	6.3	30.1**	233
	497	205	3.3**	19.4**	258		530	275	7.4	13.6	231
	539	205	4.1	15.4	247		438	275	4.6	8.5	221
	544	205	12.5	11.7	233	35	527	275	7.5	10.5	219
	540	205	4.0 2.2**	17.1**	185		444	275	4.0	12.2 15.3	180 463**
	517 496	205 210	3.7**	15.0 15.2	151 1103**		429 503	280 280	5.3 4.4	25.7**	421**
	488	210	16.5	21.8**	600**		485	280	3.5**	15.6	381**
	416	215	12.5	10.0	197	•	410	280	14.5	10.0	201
	434	220	7.1	24.8**	439**		487	280	3.9	10.5	166
	545	220	11.5	14.4	407**	40	430	280	9.2	8.8	161
	547	220	5.3	17.5**	396**		519	285	3.9	22.2**	919**
	408	220	3.2**	. 15.4**	357=*		476	285	10.5	12.8 ·	339**
	449	220	3.7**	13.7	272**		509	285	5.4	13.0	331**
	507	220	8.5	10.0	179		501	285	5.5	12.4	252
	458 491	225 225	10.5 7.2	21.1	964** 472**	45	542 445	285 285	6.9 7.2	15.5 14.9	242 237
	529	230	2.0**	16.0 61.1	1172**		427	285	4.0	17.1**	233
	415	230	3.2**	28.9**	377**		490	290	4.7	13.9	203
	453	230	3.6**	19.8**	336**		451	290	2.1**	20.0**	226
	448	230	5,2	13.1	319**		434	290	7.0	9.7	117
	498	230	5.9	20.1**	255		467	290	4.3	6.5	68
	533	230	5.7	11.7	151	50	463	295	5.8	12-3	296**
	466	235	35.0	12.1	617**		473	295	7.5	14.4	290**
	537.	. 235	5.7	10.7	394**		505	295	4.1	12.4	257
	483 512	235	8.6	16.6**	344**		198	300	13.5	10.9 12.2	323** 216
	452	235 240	3.9	12.5 26.5**	190 1068**		195 207	300 305	9.8 7.7	13.2	330**
	454	240	4.7 5.2	11.9	201		207 67	305	8.6	15.4	312**
	535	240	4.4	15.3	195	55	50	305	9.0	11.6	235
	421	245	10.5	12.5	464**		70	305	12.5	12.7	228
	469	245	6.2	20.0**	448**		113	305	5.6	13.5	201
	474	245	7.3	10.3	327**		- 39	305	6.9	19.7**	170
	486	245	9.2	12.6	156		3	305	4.2	11.5	135
	536	250	22.5	20.3**	1068**	60	325	305	14.5	9.4	94
	475	250	5.6	23.0	456**	-	368	310	4.7	15.9	371**
	511	250	2.7**	23.1**	398**		322	310	7.8	15.3	362** 305**
	465 506	250 250	4.1 5.2	23.1**	323**		295 347	310	7.2 5.8	13.8 16.5**	266
	417	250	5.5	11.5 25.2**	252 243		313	310 310	5.0 6.1	16.5**	219
	524	1250	2.5**	14.4	212		355	310	5.5	15.4	138
	411	250	9.9	11.5	200	65	291	310	4.5	15.2	125
				10.7	182		478	315	23.0	17.7**	857**

 	T	ABLE 4-c	continued				T	ABLE 4	continued	
			ITE & VITAMEN TRIC FORULATION		 5				ITE & VITAMIN TRIC POPULATION	<u> </u>
Patient	B _{1,2}	Folate	Homocyneine	ММА		Peticat	B ₁₂	Polate	Homocysteine	MMA
53	315	5.8	12.1	505**		481	355	5.2	17.1**	134
240 14	315 315	6,7 9.6	12.3 14.2	394** 331**		92 324	360 360	4.2 3.8	25.2** 16.6**	321** 264
137	315	7.8	24.3**	306**	10	87	360	3.3**	13.3	290
254	315	8.7	17.0**	285**		46	360	5.4	11.1	179
109	315	.3,7**	16.5**	263		289	360	9.5	7,9	129
252 186	315 315	5.2	10.1	241		392	360	5.1	10.3	125 240
183	315 315	4.1 5.5	15.4 10.7	238 195		320 134	365 365	6.4 13.5	17.3** 11.8	238
390	315	6.9	10.0	188	15	239	365	7.7	13.2	236
267	315	2.2**	12.0	124	15	326	365	6.0	10.9	180
310	320	12.0	13.8	395**	,	364	365	4.1	13.9	154
31 88	320 320	17.0	12.9	334**		218	365	7.5	11.2 12.2	126 119
403	320 320	4.8 9.6	13.8 11.3	217 162		216 248	365 365	6.2 5.7	13.3	117
60	320	6.2	11.4	155		375	370	4.1	20.7**	532**
315	320	6.4	9.9	136	20	288	370	6.4	18.8**	436**
175	325	6.3	17,8**	486**		161	370	6.3	11.2	340**
317 18	325 325	22.0	14.0	294**		244	370	19.5	9.8	286**
247	325	6.3 13.5	11.3 13.7	241 231		330 334	370 370	18.0 12.5	12.2 8.7	228 172
223	325	9.2	12.6	202		275	370	6.9	12.7	162
132	325	3.7**	15.4	184	25	54	375	7.3	10.1	583**
168	325	4.3	10.2	174		185	375	9.3	10.5	386**
238	325	5.5	9.9	166	-	52	375	8.1	15.5	291**
117 404	325 330	5.2 2.5**	15.0 33.1**	154 1085**		366 93	375 375	5.0 3.3**	12.5 16.2	290** 248
138	330	4.8	33.1 ···· 11.3	360**		151	375	2.9**	12.3	235
316	330	3.6**	10.2	272**	36	85	375	6.7	14.8	217
63	330	5.1	12.5	242		294	375	7.6	12.2	184
333	330	34,0	9.2	235		361	375	7.9	10.7	179
16 276	330 330	4.6	13.3	211		318	375	5.5	13.7	160 153
391	330	5.7 4.1	11.9 8.4	200 184		386 304	375 375	7.6 9.1	10.4 9.4	132
362	330	9.2	11.7	178	35	228	380	7.7	17.1**	320**
1	330	9,9	8.9	170	33	110	390	4.0	7.2	135
379	335	16.0	12.1	471**		204	390	5.7	10.6	91
147	335	9.0	9.7	427**		348	385	2.3**	17.4**	368**
89 211	335 335	8.D 5.O	15.3 12.2	385** 374**		146 260	385 385	11.5 5.5	12.5 13.7	253 211
45	335	5.9	16.3**	250		136	385	3.6**	19.8**	205
47	335	5.0	13.6	249	40	338	385	5.0	16.2	180
402	335	4,7	13.5	230		376	385	3,6**	13.7	154
314 150	335 335	7.6	9.7	203	÷	194	385	12.5	7.9	153
120	340	4:8 1.9**	11.2 21.0**	119 775**	•	504 160	385 390	38.0 8.1	9.5 24.7**	138 475**
284	340	7.2	25.6**	439**		354	390	11.5	12.8	212
230	340	14.0	11.4	419**	45 .	25	390	5.1	11.3	205
149	340	8.8	18.9**	337**		387	390	8.7	8.4	162
269	340	3.9	16.2	302**		86	390	21.0	12.6	133
197 19	340 340	10.5 9.6	12.8 11.0	233 232		133 331	390 395	3.9 12.0	11.3 20.1**	113 638 **
422	340	3.1**	14.4	188		130	395	10.5	10.8	256
196	340	11.5	8.9	169	- 50	82	395	2,8**	9.8	236
40	345	8.7	14.6	610**		119	395	12.5	16.3**	209
244	345	8.6	15.8	461**		380	395	10.5	14_3	159
287	345	5.7	18.1**	427**		373	395	5.5	11.6	152
100 383	345 345	8.3 4.3	14.8 27.2**	403** 284**		256 384	395 395	10.5 7.3	9.9 14.7	149 116
62	345	19.5	9.6	250		105	393 400	19.0	10.5	322**
350	345	8.0	10.0	249	55	251	400	4.8	14.9	289**
65	345	8.0	10.2	247		352	400	11.5	9.6	181
307	345	16.5	11.6	208		279	400	4.5	11.7	170
69 236	345	17.0	9,9	197		339	400	7.4	13.6	168 294**
328 43	345 345	7.5 6.0	8.9 13.2	192 191		381 285	405 405	6.7 7.0	12.4 14.2	281**
 222	345	6.1	9.2	175	60	265 340	405	3.6**	19.6**	275**
306	345	4.3	17.2**	160		51	405	6.5	14.3	233
154	345	7.3	10.2	148		33	405	6.5	9.6	207
94	350	4.8	16.1	302**		268	405	3.3**	14.9	205
201 13	350 350	6.1	9.9	200		73 17	405	5.2 7.5	13.1	172 473⊶
236	350 355	5.1 7.2	10.9 14.8	193 309**	65	17 286	410 410	7.5 4.7	16.2 18.8**	415**
191	355	5.8	15,3	257		140	410	5.9	21.7**	302***

TABLE 4-continued		
TADER 44COMMINES		

	TARI	R 4	-contin	ne d
--	------	-----	---------	------

			ite & Vitamen RIC POPULATION		5				TTE & VITAMEN RIC POPULATION	
Patient	B ₁₂	Polate	Homocysteine	MMA		Patient	B ₁₂	Polate	Homocysteine	ММА
116	410	6.8	14.5	218	7	226	465	7.7	10.2	173
396	410	5.6	16.1	190		377	465	5.6	8.5	143
356	410	1.9**	27.6**	149		253	465	10.0	7.0	138
237	410	3.6**	16.6**	122	10	76	470	12.5	14.8	304**
112	410	5.5	8.9	107	_	203	470	15. 0	7.6	233
259	410	4.7	11.6	99	14	296	470	23.5	11.0	161
176	415	5.2	21.9**	453**		382	470	5.3	11.1	109
193	415	10.5	11.3	163		6	475	10.5	12.5	232
323	415	5.1	9.6	163		75	475	4.5	8.1	150
202	415	11.5	9.4	150	15	332	475	9.4	10.0	144
398	415	8.0	12.6	134	**	290	475	14.0	9.1	143
321	420	5.2	10.7	383**		128	475	5.9	9.3	133
142	420	29.0	8.3	234		124	475	6.0	13.5	111
327	420	3.2**	14.6	203		177	475	8.8	9.1	106
342	420	7.3	9.4	156		126	480	13.0	11.0	212
170	420	20.5	10.3	142		283	480	5.2	10.6	175
345	420	29.5	13.2	136	20	209	480	10.5	10.5	175
302	420	8.6	8.8	128		293	480	6.8	15.5	135
115	425	6.3	22.2**	628**		121	485	4.7	20.0**	345**
97	425	12.5	19.8**	313**		282	485	12.0	10.9	236
246	425	8.7	15.1	241		71	485	13.5	8.1	168
72	425	10.5	13.5	241	•	385	485	9.0	14.1	128
365	425	6.7	16.7**	237	25	190	495	9.9	10.4	410**
139	425	12.5	10.4	224		210	495	8.6	- 12.0	243
143	425	8.1	13.5	216	:	155	495	5.9	10.4	219
426	425	19.5	14.5	201		336	495	13.5	9.9	135
303	425	3.0**	14.5	154		280	500	8.7	14.5	334**
388	425	6.2	12.3	135		96	500	4.7	10.8	237
127	425	6.7	8.4	100	30	145	500	5.9	17.5**	233
262	430	10.0	12.1	323**		199	500	4.2	13.8	199
270	430	4.8	12.9	293**		489	500	11.5	9.7	198
514	430	4.3	12.9	197		217	500	6.4	9.6	166
341	430	3.5**	19.9**	190		90	500	7.5	8.5	106
278	430	5.2	10.8	182		164	510	5.2	23.8**	408**
370	430	11.0	15.3	174		343	510	4.5	13.7	284**
55	430	7.6	1170	162	35	42	510	4.9	7.4	233
274	430	5.0	8.2	131		351	510	8.5	11.0	207
367	430	17.5	8.0	126		299	510	12.0	8.0	104
98	430	13.5	12.8	125		99	520	10.5	25.8**	322**
337	435	13.5	14.1	395**		114	520	30.0	10.9	220
309	435	8.7	12.9	349**		369	520	29.0	16.7**	206
305	435	17.5	15.4	187	40	37	520	10.5	8.6	191
144	435	25.0	8.9	167		251	520 520	6.7	16.8**	151
34	435	8.6	7.6	157		403	520	7.5	12.6	148
234	435	9.7	9.2	116		229	520	7.9	11.0	116
123	440	9.6	12.2	622**		135	520	3.2**	8.3	88
200	440	4.8	12.4	257		83	530	6.8	14.8	372**
250	440	7.5	12.9	248	45	91	530	14.5	10.6	228
107	440	6.3	14.7	183		167	530	23.5	9.2	176
300	440	6.5	7.9	123		181	530	5.5	9.3	171
374	445	5.4	14.0	247		56	530	20.0	8.3	163
372	445	11.0	11.0	181		5	530 530	13.5	8.1	159
36	445	4.0	10.0	181		180	- 540	12.0	9.0	216
271	445	7.2	10.4	124	50	311	540	4.1	13.3	214
242	445	15.5	9.6		30	389	540	3.9	13.9	169
264	445	6.0	9.8 10.7	112 100		125	540	5.5	13.0	159
172	450	11.5	14.9	607**		35	540 540	22.5	11.0	123
32	450	11.5		362**		35 104	550	10.5	16.5**	544**
346	450 450	13.5	13.6	330**		104 393	550 550	10.5 4.9	11.9	339**
41	450	8.5	15.8		_				14.0	278**
95	450		11.4	194	55	394	550	23.0		263
357		5.1	12.5	182		292	550 650	6.9	16.2	219
319	455 455	6.3	14.4	296**		163	550	6.7	14.3	
		17.0	10.2	147		66	550	10.5	11.6	206
308 228	455	15.0	9.8	131		29	550	17.5	9.6	191
235	455	23.0	9.0	124		227	550	7.9	11.7	154
349	455	9,2	8.3	82	60	36	550	7.5	11.9	152
178	460	5.6	20.6***	473**		241	550	10.5	9.8	100
312	460	4.7	14.4	197		102	550	9.7	8.6	91
79	460	5.0	10.4	173		77	560	24.0	14.8	554**
131	460	18.0	10.2	162		162	560	10.5	11.8	275**
243	460	2.6**	11.6	160	*	273	560	8.7	9.4	180
261	465 465	7.7	10.6	252	65	- 80	560	6.3	11.2	108 93
378		5.4	13.2	221		255	560	8.8	9.9	63/3

TABLE 4-continued

TABLE 4-continued

			ITE & VITAMIN RIC POPULATION	•	_	SERUM METADOLITE & VITAMIN LEVELS IN A GERIATRIC POPULATION 5							
Patient	B ₁₂	Polate	Homocysteine	MMA	_	Patient	B ₂₂	Poiste	Homocysteine	MMA			
205	570	34.0	10.2	255		232	790	15.5	10.1	151			
23	570	21.5	8.3	241		141	790	12.5	9,5	74			
447	570	25.0	10.0	164		129	800	8.7	11.7	211			
225	570	5.7	12.2	154	10	188	800	15.0	12.3	174			
174	570	7.1	11.0	127		400	800	12.5	10_3	156			
11	570	19.0	8.9	119		24	810	23.0	7.5	194			
165	580	10.5	14.8	226		173	830	35.0	11.4	243			
182	580	8.9	8:2	189		214	.830	21.5	12.0	187			
245	590	15.5	10.6	262		63	830	13.8	8.8	185			
83	590	17.5	8.3	199	15	148	630	45.0	7.1	146			
166	590	11.5	9,4	188		84	830	23.5	7.0	136			
158	590	7.3	10.7	166		179	830	16.5	6.6	96			
187	590	4.5	11.0	146		173	840	23.5	11.2	195			
156	- 590	23.5	11.3	112		28	870	5.B.	15.9	197			
231	600	9.5	9,0	192		233	870	7.9	12.7	169			
78	600	11.5	9.4	151	20	221	870	40.0	7.0	126			
329	630	15.0	7.3	312**	20	371	880	20.0	8.5	152			
57	610	16.0	11.9	286**		213	890	10.5	18.0**	231			
. 7	610	12.0	10.4	195		358	900	21.0	8.3	149			
277	610	9.5	7.8	153		298	910	15.5	10.2	22.1			
108	620	13.5	8.4	191		118	910	100.0	9.7	170			
205	620	18.0	7.5	145		479	950	11.5	12.1	188			
263	620	9,8	10.2	101	25	30	950	6.2	10.5	170			
9	630	4.9	11.4	300**		159	1000	9.5	8.7	281**			
111	630	8.3	11.1	276**		239	1050	37.0	14.3	313**			
68	630	11.5	8.9	143		103	1050	12.5	10.3	154			
399	630	14.0	11.0	90		59	1150	17.5	7.3	180			
266	640	5.1	15.7	364**		157	1250	12.0	14.0	206			
12	640	24.5	9.0	233	30	363	1350	28.0	10.4	190			
152	640	8.1	10.0	209		22	1400	13.5	10.4	233			
405	640	7.0	12.8	186		64	1400	31.0	9.7	149			
27	640	22.5	8.4	136		169	1450	15.0	9.5	15 0			
258	640	8.3	11.2	120		-							
249	640	8.7	9.1	81									
297	650	16.0	10.0	279**	35	What is o	diament in						
192	650	4.9	14.9	213									
257	650	3.3**	16.3==	206		1. An ora	vitamin i	onalumno	a comprising app	Proximate:			
184	650	12.5	9.9	193		2.0 mg vita	mîn B a	nd 0.4 m	e folic seid.				
58	650	18.5	10.7	172		4 75- 6			1, further comp	و ج معتمد			
301	650	16.0	15.5	162				OT CHIMI	1, turner comb	IDEN 3-1			
397	650	12.5	8.4	146	40	mg vitamin	B ₆ .		4				
272	650	11.0	7.4	120	40			of claim	2, having approx	rimately 2			
153 °	650	7.1	13.1	116				or cimin					
406	650	6.6	5.8	81		mg vitamin	B ₆ .						
10	660	9.0	7.6	154		4. An oral	vitamin f	ormulatio	n, comprising app	proximate			
26	660	22.6	8.3	132		2 mg vitam							
265	670	3.9	19.3**	509**	. 4-	THE ABOUT	w D ₁₂ all	a You make	aren aren.				
359	670	21.0	8.3	269	45	5. The fo	mulation	of claim	4, further comp	cising 5-			
48	670	32.0	9.9	262		mg vitamin	B.,		_				
335	670	11.5	8.1	121		_	. •	-6-1-2-	• • • • • • • • • • • • • • • • • • •				
189	680	6.6	17.9**	358**				OI CISHID	5, having approx	rienalicià .			
220	680	15.5	10.9	115		mg vitamin	B ₅ .			- 1			
15	690	13.5	13.4	159			•	iommulatio	n comprising ap	ocovinaste			
44		20.0	12.7	244	50					AL-AVERIAN-			
77	700					2.0 mg vitai	nin B., a	nd U.1~0.	4 mg folic acid.				
21	700	13.5	10.2	129									
		13.5 15.0		129 65		8 The fo	emulation	of claim	7. further comn	<u> </u>			
21	700		7.1	65		8. The fo	emulation	of claim	7, further comp	rising 3—			
21 74	700 700	15.0	7.1 8.5	65 266		mg vitamin	emulation $\mathbf{B}_{\mathbf{c}}$	of claim					
21 74 4	700 700 710	15.0 29.0 11.5	7.1 8.5 11.4	65 266 206		mg vitamin	emulation $\mathbf{B}_{\mathbf{c}}$	of claim	 further comp having approx 				
21 74 4 353	700 700 710 710 710	15.0 29.0 11.5 10.5	7.1 8.5 11.4 9.6	65 266 206 185	22	mg vitamin 9. The fo	rmulation B ₆ . rmulation	of claim					
21 74 4 353 281 2	700 700 710 710 710 710	15.0 29.0 11.5 10.5 6.0	7.1 8.5 11.4 9.6 8.5	65 266 206 185 109	55	mg vitamin 9. The fo mg vitamin	rmulation B ₆ . rmulation B ₆ .	of claim	8, having approx	rimately :			
21 74 4 353 281	700 700 710 710 710 710 710 740	15.0 29.0 11.5 10.5 6.0 20.0	7.1 8.5 11.4 9.6 8.5 11.1	65 266 206 185 109 250	55	mg vitamin 9. The formg vitamin 10. An o	rmulation B ₆ . rmulation B ₆ . rel vitem	of claim of claim in formu	8, having approx	rimately			
21 74 4 353 281 2 212	700 700 710 710 710 710 710 740	15.0 29.0 11.5 10.5 6.0 20.0 12.0	7.1 8.5 11.4 9.6 8.5 11.1 11.5	65 266 206 185 109 250 216	55	mg vitamin 9. The formg vitamin 10. An o	rmulation B ₆ . rmulation B ₆ . rel vitem	of claim of claim in formu	8, having approx	rimately			
21 74 4 353 281 2 212 8 206	700 700 710 710 710 710 710 740 740 750	15.0 29.0 11.5 10.5 6.0 20.0 12.0 12.5	7.1 8.5 11.4 9.6 8.5 11.1 11.5 8.3	65 266 206 185 109 250 216 116	55	mg vitamin 9. The formg vitamin 10. An ormately 2 mg	emulation B ₆ . emulation B ₆ . est vitam vitamin 1	of claim of claim in formul 3,2,0.4-10	8, having approx lation, comprisi 0.0 mg folic scid,	rimately :			
21 74 4 353 281 2 212 8 206	700 700 710 710 710 710 710 740 740 750	15.0 29.0 11.5 19.5 8.0 20.0 12.0 12.5 14.5	7.1 8.5 11.4 9.6 8.5 11.1 11.5 8.3 12.7	65 266 206 185 109 250 216 116 372**	55	mg vitamin 9. The formg vitamin 10. An ormately 2 mg comprising	rmulation B ₆ , rmulation B ₆ , ral vitam vitamia l 5–75 mg	of claim of claim in formul 3,2,0.4-10 vitamin B	8, having approximation, comprising 0.0 mg folic acid,	rimately approx			
21 74 4 353 281 2 212 8 206 103	700 700 710 710 710 710 740 740 750 770	15.0 29.0 11.5 10.5 6.0 20.0 12.0 12.5 14.5 32.0	7.1 8.5 11.4 9.6 8.5 11.1 11.5 8.3 12.7 11.7	65 266 206 185 109 250 216 116 372**		mg vitamin 9. The formg vitamin 10. An ormately 2 mg comprising 11. The fe	emulation B ₅ - emulation B ₆ - eral vitamin Vitamin S-75 mg emulation	of claim of claim in formul 3,2,0.4-10 vitamin B	8, having approx lation, comprisi 0.0 mg folic scid,	rimately approx			
21 74 4 353 281 2 212 8 206 103 344 20	700 700 710 710 710 710 740 740 750 770 770	15.0 29.0 11.5 10.5 8.0 20.0 12.0 12.5 14.5 32.0 35.0	7.1 8.5 11.4 9.6 8.5 11.1 11.5 8.3 12.7 11.7	65 266 206 185 109 250 216 116 372** 297**		mg vitamin 9. The formg vitamin 10. An ormately 2 mg comprising	emulation B ₅ - emulation B ₆ - eral vitamin Vitamin S-75 mg emulation	of claim of claim in formul 3,2,0.4-10 vitamin B	8, having approximation, comprising 0.0 mg folic acid,	rimately a ng approx , and furth			
21 74 4 353 281 2 212 8 206 103	700 700 710 710 710 710 740 740 750 770	15.0 29.0 11.5 10.5 6.0 20.0 12.0 12.5 14.5 32.0	7.1 8.5 11.4 9.6 8.5 11.1 11.5 8.3 12.7 11.7	65 266 206 185 109 250 216 116 372**		mg vitamin 9. The formg vitamin 10. An ormately 2 mg comprising 11. The fe	emulation B ₅ - emulation B ₆ - eral vitamin Vitamin S-75 mg emulation	of claim of claim in formul 3,2,0.4-10 vitamin B	8, having approximation, comprising 0.0 mg folic acid,	rimately 2 ng approx , and furth			