Formulas for Finite Sums:

$$\sum_{i=1}^{n} c = cn, \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \qquad \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2.$$

Double Angle Formulas:

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

Table of Trigonometric Substitutions:

Expression	Substitution	Identity	Range of $ heta$
$\sqrt{a^2 - x^2}$	$x = a\sin\theta$	$1 - \sin^2 \theta = \cos^2 \theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2} (\cos \theta \ge 0)$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$1 + \tan^2 \theta = \sec^2 \theta$	$-\frac{\pi}{2} < \theta < \frac{\pi}{2} (\sec \theta > 0)$
$\sqrt{x^2 - a^2}$	$x = a \sec \theta$	$\sec^2 \theta - 1 = \tan^2 \theta$	$0 \le \theta < \frac{\pi}{2} \text{ or } \pi \le \theta < \frac{3\pi}{2} \text{ (} an \theta \ge 0 \text{)}$

Error Bounds in the Trapezoidal and Midpoint Rules:

Suppose that $|f''(x)| \le K$ for all $a \le x \le b$. If E_T and E_M are the errors in the Trapezoidal and Midpoint Rules, then

$$|E_T| \le \frac{K(b-a)^3}{12 \, n^2}$$
 and $|E_M| \le \frac{K(b-a)^3}{24 \, n^2}$.

Error Bound in Simpson's Rule:

Suppose that $|f^{(4)}(x)| \leq K$ for all $a \leq x \leq b$. If E_S is the error in using Simpson's Rule, then

$$|E_S| \le \frac{K(b-a)^5}{180 \, n^4}.$$

Taylor's Inequality:

$$\left|f^{(n+1)}(x)\right| \le M \quad \text{for} \quad |x-a| \le d,$$

then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$.

1. Compute the following integrals.

[4] (a)
$$\int \frac{e^x}{e^{2x} - 4e^x + 5} dx$$

[4] (b) $\int \frac{1}{x^2\sqrt{4-x^2}} dx$, using the substitution $x = 2\cos\theta$.

2. Compute the following integrals.

[4]
$$\qquad \text{(a)} \quad \int_0^\pi |\sin x - 1| dx$$

[4] (b)
$$\int_{-1}^{1} \ln(x+1) \ dx$$

[5] 3. (a) Find the area of the surface that is generated by revolving the portion of the curve $y=x^3$ between x=0 and x=1 about the x-axis.

[3] (b) Find the area inside the polar curve $r=\sqrt{\theta}$, $0\leq\theta\leq2\pi$.

- 4. The parts of this problem are not related.
- [4] (a) Find the derivatives f'(x) and f''(x) if $f(x) = \int_1^x \frac{e^t}{t} dt$.

[4] (b) Suppose you know that $\{b_n\}$ is a decreasing sequence and all its terms lie between the numbers 4 and 6. Explain why the sequence has a limit. What can you say about the value of the limit?

[2] (c) Write down the definite integral which can be expressed by the limit $\lim_{n\to\infty}\left(\frac{2}{n}\sum_{i=1}^n\,e^{1+2i/n}\right)$

5.	A tank contains 100 litres of pure water. Brine that contains $0.1\ \mathrm{kg}$ of salt per litre
	enters the tank at a rate of 10 litres per minute. The solution is kept thoroughly mixed
	and drains from the tank at the same rate.

[5] (a) Find an expression in terms of for the amount of salt in the tank at any time t. Give your answer as a function of t.

[2] (b) How much salt is in the tank after 6 minutes?

[1] (c) How much salt is in the tank after a very long time; that is, as $t \to \infty$.

[5] **6.** Find the area of the region bounded by the curves $y=x^2$ and $y=(2-x^2)^2$.

- 7. All parts of this question concern the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
- [1] (a) What is the $\lim_{n\to\infty}$ of a_n for this series?
- [1] (b) Does this series converge or diverge?
- [4] (c) **Justify** your answer to part (b) above. You may **NOT** simply state that it is p-series with $p=\frac{1}{2}$. Clearly state the test(s) you are using and justify the steps in using the test.

[3] (d) Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. Does this series **converge** or **diverge**? Justify your answer.

[1] (e) Is the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ said to be absolutely convergent or conditionally convergent?

- **8.** Let R be the region bounded by the graph of $y=e^{-\sqrt{x}}$ and the x-axis, for $x\geq 0$.
- [5] (a) Find the volume of the solid generated when R is revolved about the x-axis.

[3] (b) Let C denote the curve with parametric equations

$$x=t-2\sin t,\ y=1-2\cos t,\ 0\leq t\leq 2\pi.$$

Set up BUT DO NOT EVALUATE the integral for the length of the curve ${\cal C}.$

9. For each series determine whether it is convergent or divergent. In each case, state the test(s) you are using and justify the steps in using the test.

[4] (a)
$$\sum_{k=1}^{\infty} \frac{1}{2k^{3/2} - 1}$$

[4] (b)
$$\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$$

[4] (c)
$$\sum_{n=3}^{\infty} \frac{e^{-2n}}{n^2 + 2n}$$

[3] 10. (a) Define the **Taylor Series** of a function f at a.

[4] (b) Compute the Taylor series for the function $f(x)=e^{-2x}$ at a=1. State your answer using the summation notation.

[4] (c) What is the bound on the error when using the T_3 polynomial to approximate e^{-2x} over the interval $x \in [0,2]$?

[8] ${f 11.}$ (a) For the following series compute the radius R of convergence and the interval I of convergence. Justify your answer. Credit will only be given in so far as the reasons

are adequate.
$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{2n+1}.$$

(b) Find the power series representation and the radius of convergence for the function: $f(x)=\frac{x^3}{x^3+27}.$ [4]

$$f(x) = \frac{x^3}{x^3 + 27}$$