Name:

1. X: the quantity rationed to high-service channel:

Cu: if the manufacturer under-estimates high-service channel demand and rations too little to this channel, it loses the opportunity to get a higher margin. Cu is the margin difference (6-4) = 2.

Co: if the manufacturer over-estimates high-service channel demand and rations too much to this channel, there will be leftovers in the high-service channel which would have been sold in the discount channel. In other words, the manufacturer loses the opportunity to sell the product at the discount channel, hence Co = 4. Therefore, Critical Fractile= Cu/(Cu+Co)=1/3, z=-0.4

The optimal quantity rationed to high-service channel is μ +z* δ =40,000-0.43(15000)=33,550. or use Norm.inv(1/3,40000,15000)=33,539

2.

# of No-Shows		
(d)	Probability	P(d <x)< th=""></x)<>
0	0.1	0
1	0.25	0.1
2	0.2	0.35
3	0.35	0.55
4	0.1	0.9

X: # of seats overbooked

Cu = \$180, Co = \$150, Critical Fractile = 0.5455.

Use the optimality condition, we get $Q^* = 2$. So the optimal overbooking level is 2, hence 102 reservations should the airline accept.

3. (a)
$$P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{20}{30} = 0.33 \Rightarrow 33\%$$

(b)
$$p = \frac{\lambda}{\mu} = 0.66$$

(c)
$$L_s = \lambda/(\mu - \lambda)=20/(30-20)=2$$
 people

(d)
$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{20^2}{30(30 - 20)} = 1.33 \text{ people}$$

(e)
$$W_s=1/(\mu-\lambda)=1/(30-20)=0.10$$
 hours

(f)
$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{20}{30(30 - 20)} = 0.0667$$
 hours