Meet Wizard

해커톤 중간점검

Manna조

김소은 문다연 박혜준 장한빛

FRIEND/GROUP

친구, 그룹 관리

SCHEDULE/LOCATION

스케줄, 위치 데이터 입력 및 저장

회원기입 form

회원가입

STEP1

그룹 선택

STEP2

나의 시간표/ 출발위치 확인

<아이디어톤 이후 개발한 것들>

<앞으로 할 일>

중간지점 도출 과정

그라함 스캔 알고리즘 다각형의 무게중심 알고리즘 다익스트라 알고리즘 중간지점 변경 알고리즘 약속시간 도출 알고리즘

FRIEND/GROUP

친구관리 및 친구조회

아이디 검색을 통해 친구 요청을 보낼 수 있고,

나에게 온 친구 요청을 수락하거나 거절할 수 있다.

위에서 수락한 친구는 친구조회창에 보이며, 아이디 일부만 검색하여 쉽게 찾을 수도 있다.

FRIEND/GROUP

- 그룹추가 버튼을 눌러, 그룹 이름과 그룹원을 선택하여 그룹을 생성할 수 있다.
- 생성된 그룹은 그룹관리 탭에 추가된다.
- … 버튼을 눌러 그룹원을 자세히 보거나, 해당 그룹을 삭제할 수 있다.

SCHEDULE/LOCATION

> 저장된 정보는 좌측 상태바에 그대로 저장된다.

회원가입 form

기입

- 로그인되지 않은 상태에서 홈페이지 좌측 메뉴바의 톱니 아이콘을 누르면 회원가입 화면으로 이동한다.
- 회원가입 입력 요소
- Username: 사용자 ID의 기능을 한다.
- Name : 사용자의 이름이다.
- 요소별 특성에 따라 Placeholder를 통해 입력 형식을 요구한다.
- Image 입력란에 '파일 선택'을 누른 후 이미지를 업로드하면, 프로필 사진의 미리보기가 보여진다.

STEP](그룹선택)

STEP1~STEP4의 서비스는 로그인한 회원에게만 제공됩니다.

그룹이 선택되었음이 보라색 테두리로 표현된다.

사전에 만들어져 있는 그룹 중 하나를 선택한다.

테스트

Nanbitj soeun12 mndn whyrano

그룹 OI름 검색

test gang

Description of the state of the

현재 선택된 그룹이 없습니다.

Next>

4명 이상의 그룹에 생긴 '…외 n명(~명 전체보기)' 링크를 클릭할 시, 멤버 전원의 Username(아이디), 이름, 전화번호가 표현된다.

STEP 2(LIST) ATTENTION OF THE PROPERTY OF THE

skip 버튼에 인접한 물음표 아이콘에 마우스 커서를 올리면 skip 기능에 대한 설명창이 나타난다.

유저의 시간표 설정을 skip했을 때. 취소 시 시간표가 다시 나타난다.

중간지점 도출 과정

그라함 스캔 알고리즘

그라함 스캔 알고리즘을 통해 사용자 위치들의 외곽 점들로 이루어진 다각형을 구한다.

다각형의 무게중심

다각형의 무게중심을 구해서 처음 중간지점으로 삼는다.

다익스트라 알고리즘

각 사용자 위치와 중간지점과의 최단 경로를 다익스트라 알고리즘을 통해 구한다. 지하철 데이터를 이용하며, 경로 값은 지하철 노드 개수로 한다.

중간지점 도출 완료!

도출한 결과를 step4에서 보여준다. 그 지점과 관련된 스팟들을 카테고리별로 보여준다.

새로운 중간지점으로 이동

중간지점에서 사용자 위치까지의 단위벡터와 소요시간을 고려하여 새로운 중간지점 도출한다. 만약 그라함 스캔 알고리즘으로 구한 다각형을 벗어난다면 벡터 값을 줄여서 다시 구한다. 부적합

중간지점으로 적합한지 검사

모든 사용자의 위치에서 중간지점까지 소요시간을 비교했을 때, 최대, 최소 통행 비용의 차이가 설정한 오차 내에 속하면 중간지점으로 선정한다.

중간지점 찾기 전제

전제].

한 지하철역에서 다음 지하철역까지의 이동 시간은 동일하다.

전제2.

각 사용자의 위치에서 가장 가까운 지하철역을 기반으로 중간지점을 산출하기 때문에 지하철이 발달한 수도권에서 약속장소를 찾는 것을 전제로 하며, 지하철이 발달된 지역이 아닐 시 위도/경도를 이용한 중간지점 좌표 값만 산출된다.

전제3.

최종 산출되는 중간지점은 지하철역이며, 여타의 교통수단은 고려하지 않는다.

1. 그라함 스캔 알고리즘

그라함 스캔 알고리즘은 평면상에서 유한한 점들의 볼록 껍질을 찾는 방법이다. 유한개의 점들 중 다른 점을 가둘 수 있는 외곽점을 찾는 알고리즘 중 하나로, 이 외곽점을 이으면 볼록 껍질(Convex hull)이 된다. 이번 프로젝트에서는 이 점들을 각 사용자의 위치와 가장 가까운 지하철역들의 좌표로 설정한다.

알고리즘

- 1.y 값이 가장 작은 점을 찾는다.(만약 여러 개 존재 시 x 값이 가장 작은 점을 선택한다)이 때,이 점을 pO라 부른다.
- 2.p0를 기준으로 다른 모든 점의 각도를 구하여 각도가 작은 순서대로 정렬한다.
- 3. pO와 정렬된 점을 2개의 Convex hull에 추기한다.
- 4. 그 다음 점부터 다음 조건을 반복하여 수행한다.
- 4-1. Convex hull의 마지막 직선에서 현재 점이 왼쪽에 있으면 Convex hull의 마지막 점을 Convex hull에서 제외한다. (현재점이 4-2번 조건을 만족할 때까지 진행한다)
 - 4-2. Convex hull의 마지막 직선에서 현재 점이 오른쪽에 있으면 현재 점을 Convex hull에 추가하고 다음 점을 가져온다.
- 5. Convex hull을 이루고 있는 점을 이어준다.

2. 다각형의 무게중심 알고리즘

n각형에서 한 꼭지점과 이 꼭지점을 제외한 나머지 (n-1)개의 꼭지점으로 이루어진 다각형의 중선들의 중심을 연결한 선분을 n각형의 중선이라 부른다.

n각형의 모든 n개의 중선은 한 점에서 교차하며 교점은 각 중선을 (n-1):1로 분할한다.

이 점을 n각형의 중선들의 중심 또는 다각형의 무게중심이라 부른다.

$$Area = A = \frac{1}{2} \sum_{i=0}^{N-1} (x_i y_{i+1} - x_{i+1} y_i)$$

Centroid_x =
$$\frac{1}{6A} \sum_{i=0}^{N-1} (x_i + x_{i+1})(x_i y_{i+1} - x_{i+1} y_i)$$

Centroid_y =
$$\frac{1}{6A} \sum_{i=0}^{N-1} (y_i + y_{i+1})(x_i y_{i+1} - x_{i+1} y_i)$$

3. 다익스트라 알고리즘

다익스트라 알고리즘은 도로 교통망 같은 곳에서 나타날 수 있는 그래프에서 꼭짓점 간의 최단 경로를 찾는 알고리즘이다.

원래는 두 꼭짓점 간의 가장 짧은 경로를 찾는 알고리즘이지만, 일반적인 변형은 한 꼭짓점을 "소스" 꼭짓점으로 고정하고, 그래프의 다른 모든 꼭짓점까지의 최단경로를 찾는 알고리즘으로 최단 경로 트리를 만드는 것이다.

이번 프로젝트에서는 위의 한 꼭짓점을 최초 중간지점 위치로 고정하고, 그래프의 다른 모든 꼭짓점들을 각 사용자 위치와 가장 가까운 지하철역 위치로 하여 각 사용자 위치에서 중간지점까지의 최단경로를 찾는 용도로 다익스트라 알고리즘을 이용한다.

4. 중간지점 변경 알고리즘

중간지점 선정을 위한 탐색 과정은 노드들의 좌표 평균인 곳에서 시작한다.

먼저, 현재 위치한 중간지점이 합리적인지 확인하여(유효성 검사), 합리적이지 않은 경우 다음에 중간지점이 위치할 곳을 구한다.

알고리즘

1. 중간지점을 시점으로 보고 한 노드를 종점으로 보았을 때 생기는 벡터를 단위 벡터로 만들고, 시간 가중치(노드의 합)와 곱한 값을 모두 더한다.

2. 그 후, 노드의 개수와 특정 상수로 나누어 다음 중간지점이 위치할 곳에 대한 정보를 가진 벡터를 생성하고, 현재 위치한 중간지점에 더하여 중간지점을 이동한다.

3.상수는 벡터의 크기를 조절하는 역할로 중간지점 이동 범위를 조절한다.

$$\frac{}{center_{i+1}} = \frac{}{center_i} + \frac{\sum_{j=1}^{n} (time W_j \times \overrightarrow{user_j})}{n \times \alpha}$$

여기서 center는 중간지점, timeW는 시간 가중치(노드 개수 합)를 시간 가중치들의 평균으로 나는 값, user는 노드와 중간지점의 단위벡터, n은 노드들의 총 개수, a는 벡터의 크기를 결정할 상수이다.

약속시간도출알고리즘

각 사용자의 약속 불가 시간(분홍색 스케줄)을 합하여 공통의 시간표에 약속 불가 시간으로 출력한다.

각 사용자의 약속 선호 시간(초록색 스케줄)의 교집합인 시간대를 파악하여 공통의 시간표에 약속 선호 시간으로 출력한다.

약속 시간 도출

