ME 786/886 Fall 2022 Prof. I. Tsukrov

Homework #6

(Due 11/01/22)

Homework expectations: same as HW#1 and HW#2. Show all work and provide printouts!

A. Reading (Text)

 4^{th} edition: 3.8 – Treatment of boundary conditions; 4.1-4.3, 4.5 – Trusses 5^{th} edition: 3.7-3.9 – Boundary conditions; 5.1-5.4 – Trusses

- **B. Problems** (The problem numbers are for the 4th edition of the Text. See Canvas for a PDF file with the original problem formulations. But remember that the original formulations are modified as stated below).)
- **B**. Solve the following problems longhand (use calculator/computer, but no FEA software).
- **B-1** (20 pts) For this assembly of two one-dimensional bar elements find u_2 and F_3 if the force at node 2 and displacement of node 3 are prescribed.

B-2 (40 pts) For the plane truss shown below, determine the displacements and reactions. Let E = 240 GPa, $A = 1 \times 10^{-4} \text{ m}^2$ for elements 1 and 2, and $A = 3 \times 10^{-4} \text{ m}^2$ for element 3.

C. Use finite element program MARC to solve the following problems. Present the "deformed and original" truss pictures with numerical values of displacement shown (one picture for x-displacement, one picture for y-displacement). Present pictures with the values for x- and y-components of the reaction forces if asked. Also, include the printout of the <u>fragment</u> of the **.out** file where the nodal displacements and element stresses are shown. Don't include the entire printout! Underline or circle the answers. Annotate them properly (as u_x , σ , etc.) and specify units.

C-1 (20 points, Text, p. 142) Use finite element program MARC to solve problem **4.10**. Report displacements, stresses and reaction forces. All members of the truss are made of 0.2%C HR steel. **Include the self-weight of steel**. Model the entire structure, don't use symmetry.

C-2 (20 points, Text, p. 147) Use finite element program MARC to solve problem **4.20**. Find nodal displacements, stresses and reaction forces. Note that the truss consists of 11 members, so the inclined members are not attached to each other. All members of the truss are made of Stainless 302 CR. **Neglect the self-weight of steel**. Ignore the question on buckling. Model the entire structure, don't use symmetry.

TYPICAL PHYSICAL PROPERTIES OF SOME MATERIALS

		Ultimate Strength		Yield	Modulus of		Coef. of	Thermal
Material	Density kg/m³	Tension MPa	Comp. MPa	strength MPa	elasticity E GPa	Poisson's ratio	thermal exp. $10^{-6}/^{\circ}$ C	conductivity W/m °C
Aluminum 2014-T6 (alloy) 6061-T6	2800 2800	470 228		410 131	72 70	0.33 0.33	23 23	210 210
Brass cold rolled annealed	8470 8470	540 330		420 100	105 105	0.35 0.35	19 19	105 105
Bronze Manganese	8800	450		170	100	0.34	20	58
Cast Iron Gray Malleable	7200 7200	170 370	650	250	95 170	0.25 0.25	12 12	45 45
Concrete Low strength Medium strength High strength	2400 2400 2400	2 3 4	20 41 62		22 32 40	0.15 0.15 0.15	11 11 11	1 1 1
Copper hard-drawn	8900	380		330	120	0.33	17	380
Glass Silicon	2400	80	400		70	0.17	8	0.8
Magnesium 8.5% Al	1800	350		250	45	0.35	26	160
Steel 0.2%C HR 0.2%C CR 0.6%C HR 0.8%C HR quenched	7850 7850 7850 7850	410 550 690 830		250 350 370 700	200 200 200 200	0.30 0.30 0.30 0.30	12 12 12 12	42 42 42 42 42
Stainless 302 CR	7920	860		600	194	0.30	17	18
Titanium 6% Al 4% V	4460	900		830	110	0.34	9	14

Properties vary widely depending on changes in composition, temperature, and treatment conditions. $CR = Cold \ rolled \ HR = Hot \ rolled$