Project Title : Establishing VPC Peering Between Two VPCs in AWS

1. Introduction

This project outlines the process of establishing a VPC peering connection between two Virtual Private Clouds (VPCs) in AWS, enabling network traffic between instances in different VPCs.

2. Objectives

- Create two VPCs with distinct CIDR blocks.
- Establish a VPC peering connection between them.
- Configure route tables to allow communication.
- Verify connectivity between instances in the peered VPCs.

3. Prerequisites

- An AWS account with necessary permissions.
- Basic understanding of AWS networking concepts.
- Access to the AWS Management Console.

4. Steps to Implement

Step 1: Create VPCs

Navigate to the VPC Dashboard: In the AWS Management Console, go to the VPC service.

Create the First VPC: Click on "Create VPC".

Set the following details:

- Name tag: Production_VPC
- IPv4 CIDR block: 10.0.0.0/16
- Leave other settings as default and click "Create VPC".

Create the Second VPC Repeat the above steps with:

Name tag: Operations_VPC

IPv4 CIDR block: 192.168.0.0/16

Step 2: Create Subnets

1. Add a Subnet to Production_VPC

Select PRODUCTION_VPC and click on "Create Subnet".

Configure:

- Subnet name: prod_public_subnet
- Availability Zone: Choose one (e.g., ap-south-1a).
- IPv4 CIDR block: 10.0.0.0/24

Click "Create Subnet".

2. Add a Subnet to OPERATIONS_VPC

- Repeat the above steps for OPERATIONS_VPC with:
 - Subnet name: Ops_public_Subnet
 - Availability Zone: Choose one (e.g., ap-south-1a).
 - IPv4 CIDR block: 192.168.0.0/24

Step 3: Create and Attach Internet Gateway to your VPC

- Click on Create internet gateway.
- Provide a Name tag for easier identification, e.g., Prod_IGW.
- Click Create internet gateway to proceed.

- In the dialog box, select the VPC you want to attach the IGW to.
- Click on Actions, then choose Attach to VPC.

Click Attach internet gateway to complete the attachment.

Step 4: Associate the Route Table with the Subnet & Edit the Route Table to Use the Internet Gateway

- 1. Navigate to Subnet Associations:
 - In the Route Tables section, select the route table you've just updated.
 - Go to the Subnet associations tab.
 - Click Edit subnet associations.

- Select the subnet(s) you want to associate with this route table.
- Click Save associations to confirm.

.

1. Edit Route Tables to use the internet gateway

- In the VPC Dashboard, select Route Tables from the left-hand menu.
- Identify and select the route table associated with the subnet you wish to provide internet access to.
- Click Edit routes, then Add route.
- In the Destination field, enter 0.0.0.0/0 to represent all IPv4 addresses.
- In the Target field, select the Internet Gateway ID (e.g., igw-xxxxxxxxx).
- Click Save routes to apply the changes

Step 5: Launch an EC2 Instance in the Public Subnet of Both the VPC.

- 1. Open the Amazon EC2 Console.
- 2. Click Launch Instance.
- 3. Provide an instance name (e.g., My_EC2_Instance).
- 4. Select an Amazon Machine Image (AMI) (e.g., Amazon Linux 2 AMI)
- 5. Choose an instance type (e.g., t2.micro).
- 6. Under Key pair (login), select an existing key pair or create a new one.
- 7. In Network settings, select your VPC (e.g., Production_VPC) and the public subnet (e.g., prod_public_subnet).

- 8. Ensure Auto-assign public IP is enabled.
- 9. Select an existing security group or create a new one with appropriate inbound rules (e.g., allowing SSH access).
- 10. Click Launch instance.

Step 6: Create a VPC Peering Connection

- o In the VPC dashboard, select "Peering Connections".
- Click "Create Peering Connection".
- o Set:
 - Peering connection name tag: PRODUCTION_VPC-to-OPERATIONS_VPC
 - Requester VPC: PRODUCTION_VPC
 - Accepter VPC: OPERATIONS_VPC
- o Click "Create Peering Connection".

- o In "Peering Connections", select the newly created connection.
- Click "Actions" > "Accept Request".
- Confirm acceptance.

Step 7: Update Route Tables

1. Modify Route Table for PRODUCTION_VPC

- Navigate to "Route Tables".
- Select the route table associated with PRODUCTION_VPC.
- Click "Edit Routes" and add:
 - Destination: 192.168.0.0/16
 - Target: Select the peering connection PRODUCTION_VPC-to-OPERATIONS_VPC
- Save changes.

2. Modify Route Table for OPERATIONS_VPC

- Repeat the above steps for OPERATIONS_VPC with:
 - Destination: 10.0.0.0/16
 - Target: Select the peering connection PRODUCTION_VPC-to-OPERATIONS_VPC

Step 8: Configure Security Groups

1. Update Security Group for Instances in PRODUCTION_VPC

 Ensure the security group allows inbound traffic from SSH via port 22 from Anywhere and also Allows traffic from ICMP(Internet control messaging protocol) from Anywhere.

2. Update Security Group for Instances in OPERATIONS_VPC

 Ensure the security group allows inbound traffic from SSH via port 22 from Anywhere and also Allows traffic from ICMP(Internet control messaging protocol) from Anywhere.

Step 9: Launch EC2 Instances and Test Connectivity

1. Test Connectivity

Use ping or SSH to test connectivity between the instances across VPCs.

SSH into the Instances

- 2. Open a terminal on your local machine.
- 3. Connect to the instances using SSH: ssh -i mykey.pem ec2-user@<public ip address>

Step 10: Ping instances private ip address to see a successful connection.

Use the ping command to test connectivity to the second instance using its private IP address:

ping <private-ip-of-instance-2>

```
ec2-user@ip-192-168-0-246:~ X
                                                                                                                                        ec2-user@ip-10-0-0-46:~
                                                                        13.201.123.214
C:\Users\Arun shankar khating\Downloads>ssh -i mykey.pem ec2-user@
52.66.52.173
                                                                                 ####_
                                                                                              Amazon Linux 2023
         #_
                                                                               \_####\
        ####
                     Amazon Linux 2023
                                                                                  \###|
        #####\
                                                                                    \#/
                                                                                              https://aws.amazon.com/linux/amazon-linux-202
         \###|
                     https://aws.amazon.com/linux/amazon-linux-202
                                                                        Last login: Fri Dec 27 06:50:18 2024 from 103.48.101.180
                                                                        [ec2-user@ip-192-168-0-246 ~]$ ping 10.0.0.46
Last login: Fri Dec 27 06:38:04 2024 from 103.48.101.180
                                                                        PING 10.0.0.46 (10.0.0.46) 56(84) bytes of data.
[ec2-user@ip-10-0-0-46 ~]$ ping 192.168.0.246
                                                                        64 bytes from 10.0.0.46: icmp_seq=1 ttl=127 time=0.644 ms
PING 192.168.0.246 (192.168.0.246) 56(84) bytes of data.
                                                                        64 bytes from 10.0.0.46: icmp_seq=2 ttl=127 time=0.412 ms
64 bytes from 192.168.0.246: icmp_seq=1 ttl=127 time=1.34 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=3 ttl=127 time=0.901 ms
64 bytes from 192.168.0.246: icmp_seq=2 ttl=127 time=0.576 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=4 ttl=127 time=1.32 ms
64 bytes from 192.168.0.246: icmp_seq=3 ttl=127 time=0.371 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=5 ttl=127 time=0.649 ms
64 bytes from 192.168.0.246: icmp_seq=4 ttl=127 time=0.764 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=6 ttl=127 time=0.394 ms
64 bytes from 192.168.0.246: icmp_seq=5 ttl=127 time=1.24 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=7 ttl=127 time=0.399 ms
64 bytes from 192.168.0.246: icmp_seq=6 ttl=127 time=0.546 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=8 ttl=127 time=0.407 ms
64 bytes from 192.168.0.246: icmp_seq=7 ttl=127 time=0.754 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=9 ttl=127 time=0.411 ms
64 bytes from 192.168.0.246: icmp_seq=8 ttl=127 time=0.390 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=10 ttl=127 time=0.492 ms
64 bytes from 192.168.0.246: icmp_seq=9 ttl=127 time=0.436 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=11 ttl=127 time=0.913 ms
64 bytes from 192.168.0.246: icmp_seg=10 ttl=127 time=0.351 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=12 ttl=127 time=0.660 ms
64 bytes from 192.168.0.246: icmp_seq=11 ttl=127 time=0.329 ms
                                                                        64 bytes from 10.0.0.46: icmp_seq=13 ttl=127 time=0.550 ms
64 bytes from 192.168.0.246: icmp_seq=12 ttl=127 time=0.739 ms
                                                                        ^C
                                                                            10.0.0.46 ping statistics ---
  - 192.168.0.246 ping statistics --
12 packets transmitted, 12 received, 0% packet loss, time 11380ms rtt min/avg/max/mdev = 0.329/0.653/1.341/0.323 ms
                                                                        13 packets transmitted, 13 received, 0% packet loss, time 12426ms
                                                                        rtt min/avg/max/mdev = 0.394/0.627/1.324/0.265 ms
                                                                        [ec2-user@ip-192-168-0-246 ~]$ |
[ec2-user@ip-10-0-0-46 ~]$
```

5. Verification

- Ensure the peering connection is active.
- Verify route tables have correct entries.
- Confirm security groups permit necessary traffic.
- Test instance connectivity to validate the setup.

6. Conclusion

By following these steps, you've successfully established a VPC peering connection between two VPCs, configured routing and security, and verified inter-VPC communication.