Exercic

Proposer un modèle de connaissance et de comportement

1 Proposer un modèle de connaissance et de comportement

1.1 Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique

Exercice 1 - Mouvement T - *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$.

Question 2 Retracer le schéma cinématique pour $\lambda = -20 \, \text{mm}$.

Corrigé voir 2.1.

Exercice 2 - Mouvement R *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad.

Question 2 Retracer le schéma cinématique pour $\theta = \pi$ rad.

Corrigé voir 2.1.

Exercice 3 - Mouvement TT - *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$ et $\mu = 10 \, \text{mm}$.

Question 2 Retracer le schéma cinématique pour $\lambda = 0 \, \text{mm}$ et $\mu = 20 \, \text{mm}$.

Corrigé voir 2.1.

Exercice 4 - Mouvement RR *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = \pi$ rad.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = 0$ rad.

Corrigé voir 2.1.

Exercice 5 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir 2.1.

Exercice 6 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i2}$.

Question 1 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir 2.1.

Exercice 7 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \,\text{mm}$ et $r = 10 \,\text{mm}$.

Question 1 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Corrigé voir 2.1.

Exercice 8 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi$ rad et $\varphi(t) = -\frac{\pi}{4}$ rad.

Corrigé voir 2.1.

Exercice 9 - Mouvement RT - RSG **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm.

Question 1 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30\,\mathrm{mm}$. On notera I_2 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t)$ de 0 à $\frac{\pi}{2}$.

Corrigé voir 2.1.

Exercice 10 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 3 En déduire la course de la pièce 2.

Corrigé voir 2.1.

Exercice 11 - Pompe à pistons radiaux **

B2-12

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir 2.1.

Exercice 12 – Système bielle manivelle ** B2-12

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \, \text{mm}$ et $L = 20 \, \text{mm}$.

Question 1 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 2 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 3 En déduire la course de la pièce **3**.

Corrigé voir 2.1.

Exercice 13 – Système de transformation de mouvement $\star\star$

B2-12

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Question 1 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 4 En déduire la course de la pièce 3.

Corrigé voir 2.1.

Exercice 14 - Barrière Sympact **

B2-12

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 2 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Corrigé voir 2.1.

Exercice 15 – Barrière Sympact **

B2-12

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 30 \, \text{mm}$ et $R = 10 \, \text{mm}$.

$$\theta(t) = -\frac{\pi}{2} rad.$$

Corrigé voir 2.1.

Proposer un modèle de connaissance et de comportement - Corrigés

2.1 Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique

Exercice 1 - Mouvement T - *

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Retracer le schéma cinématique pour* $\lambda = 10$ mm.

Question 2 Retracer le schéma cinématique pour $\lambda = -20 \,\mathrm{mm}$.

Exercice 2 - Mouvement R *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad.

Question 2 Retracer le schéma cinématique pour $\theta = \hat{\pi}$ rad.

Exercice 3 - Mouvement TT - *

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Retracer le schéma cinématique pour* $\lambda = 10 \,\mathrm{mm}$ *et* $\mu = 10 \,\mathrm{mm}$.

Question 2 Retracer le schéma cinématique pour $\lambda = 0$ mm et $\mu = 20$ mm.

Exercice 4 - Mouvement RR *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = \pi$ rad.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = 0$ rad.

Exercice 5 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 6 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm. **Question 2** Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 7 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Exercice 8 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi$ rad et $\varphi(t) = -\frac{\pi}{4}$ rad.

Exercice 9 - Mouvement RT - RSG **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre 0 et 1.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30$ mm. On notera I_2 le point de contact entre ${\bf 0}$ et ${\bf 1}$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t) de 0 \dot{a} \frac{\pi}{2}$.

Exercice 10 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 3 En déduire la course de la pièce 2.

Exercice 11 - Pompe à pistons radiaux **

B2-12

Pas de corrigé pour cet exercice.

Question 1 *Retracer le schéma cinématique pour* $\theta(t) = 0$ *rad.*

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 2.

Exercice 12 - Système bielle manivelle **

B2-12

Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 2 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 3 En déduire la course de la pièce 3.

Exercice 13 – Système de transformation de mouvement **
B2-12

Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 3.

Exercice 14 - Barrière Sympact **

B2-12

Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 2 Retracer le schéma cinématique pour $\theta(t) = -\frac{2\pi}{2}$ rad.

Exercice 15 - Barrière Sympact **

B2-12

Pas de corrigé pour cet exercice.

Question 1 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 2 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Index

Arbre à cames, 3, 6

Barrière Sympact, 4, 7 Bielle Manivelle, 4, 7

Compétence B2-12, 2–4, 6, 7

Moteur, 4, 7
Mécanisme à 1 rotation, 2, 6
Mécanisme à 1 rotation et 1 translation, 2, 6
Mécanisme à 1 rotations, 1 translation et RSG, 3, 6
Mécanisme à 1 translation, 2, 6
Mécanisme à 1 translation et 1 rotation, 2, 6
Mécanisme à 2 rotations, 2, 6
Mécanisme à 2 rotations 3D, 3, 6
Mécanisme à 2 translations, 2, 6

Pompe à palettes, 3, 6 Pompe à pistons radiaux, 3, 6