DIFERENCIJALNE JEDNAČINE VIŠEG REDA

13. maj 2024.

I)
$$y^{(n)}(x) = f(x)$$
, $f(x)$ neprekidna funkcija nad (a, b)

$$y^{(n-1)}(x) = \int f(x) dx = f_1(x) + c_1$$

$$y^{(n-2)}(x) = \int (f_1(x) + c_1) dx = f_2(x) + c_1 x + c_2$$

$$\vdots$$

$$y(x) = f_n(x) + \frac{c_1 x^{n-1}}{(n-1)!} + \dots + \frac{c_{n-1} x}{1!} + c_n$$

Rešiti početni problem $y^{IV} = \sin x$, y(0) = y''(0) = 1.

Primer

v'(0) = v'''(0) = 0

$$y''' = \int y'^{V}(x)dx = \int \sin x dx = -\cos x + c_{1},$$

$$y'' = \int y'''(x)dx = \int (-\cos x + c_{1})dx = -\sin x + c_{1}x + c_{2},$$

$$y' = \int y''(x)dx = \int (-\sin x + c_{1}x + c_{2})dx = \cos x + c_{1}\frac{x^{2}}{2} + c_{2}x + c_{3},$$

$$y = \int y'(x)dx = \int (\cos x + c_{1}\frac{x^{2}}{2} + c_{2}x + c_{3})dx =$$

$$\sin x + c_{1}\frac{x^{3}}{6} + c_{2}\frac{x^{2}}{2} + c_{3}x + c_{4},$$

$$y'''(0) = -1 + c_{1} = 0 \implies c_{1} = 1$$

$$y'''(0) = c_{2} = 1 \implies c_{2} = 1$$

 $y'(0) = 1 + c_3 = 0$ \Rightarrow $c_3 = -1$

 $\Rightarrow c_{4}=1$

$$\Rightarrow y = \sin x + \frac{x^3}{6} + \frac{x^2}{2} - x + 1$$

 $y(0) = c_4 = 1$

III)
$$F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0, 1 \le k < n$$

smena: $y^{(k)}(x) = z(x)$

dobijamo jednačinu reda n-k oblika

$$F(x,z,z',\ldots,z^{(n-k)})=0.$$

IV)
$$F(y, y', y'', \dots, y^{(n)}) = 0, n \ge 2$$

smena: $y' = z(y)$

$$y'' = \frac{dy'}{dx} = \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = z'(y)y'(x) = z'z$$

$$y''' = \frac{dy''}{dx} = \frac{d(zz')}{dx} = \frac{dz}{dx}z' + z\frac{dz'}{dx} = \frac{dz}{dy}\frac{dy}{dx}z' + z\frac{dz'}{dy}\frac{dy}{dx}$$

dobijamo jednačinu reda n-1 oblika

 $= 77^{2} + 7^{2}7''$

$$H(y, z, z', \dots, z^{(n-1)}) = 0.$$

• Ako znamo jedno rešenje $y_1(x)$ diferencijalne jednačine

$$y'' + a_1(x)y' + a_2(x)y = 0,$$

tada se jednačina

$$y'' + a_1(x)y' + a_2(x)y = f(x)$$

rešava smenom

$$y=z(x)y_1(x),$$

gde je z(x) nepoznata funkcija.

$$y = zy_1 \Rightarrow y' = z'y_1 + zy'_1 y'' = z''y_1 + 2z'y'_1 + zy''_1$$

pa da bi y bilo rešenje z(x) mora da zadovoljava jednačinu

$$y_1z'' + (2y_1' + a_1(x)y_1)z' + (y_1'' + a_1(x)y_1' + a_2(x)y_1)z = f(x)$$

koja ne sadrži z, pa joj se smenom z' = p, z'' = p' snižava red.

• Ako znamo dva rešenja $y_1(x)$ i $y_2(x)$ diferencijalne jednačine

$$y'' + a_1(x)y' + a_2(x)y = f(x),$$

tj. ako je

$$y_1''(x) + a_1(x)y_1'(x) + a_2(x)y_1(x) = f(x),$$

 $y_2''(x) + a_1(x)y_2'(x) + a_2(x)y_2(x) = f(x),$

oduzimanjem ove dve jednakosti dobija se

$$(y_2(x)-y_1(x))''+a_1(x)(y_2(x)-y_1(x))'+a_2(x)(y_2(x)-y_1(x))=0,$$

tj. funkcija $h(x) = y_2(x) - y_1(x)$ je jedno rešenje jednačine

$$y'' + a_1(x)y' + a_2(x)y = 0.$$

Ona se rešava smenom

$$y = z(x)(y_2(x) - y_1(x)).$$

Linearna jednačina n—tog reda, $n \ge 2$

Opšti oblik: $g_0(x)y^{(n)} + g_1(x)y^{(n-1)} + \cdots + g_n(x)y = h(x)$. Pretpostavke:

- $h(x), g_i(x), i = 1, 2, ..., n$ definisane i neprekidne nad otvorenim intervalom I
- $g_0(x) \neq 0, x \in I$

$$L_{n}[y] = f(x)$$

$$L_{n}[y] = y^{(n)} + a_{1}(x)y^{(n-1)} + \dots + a_{n}(x)y$$

$$a_{i}(x) = \frac{g_{i}(x)}{g_{0}(x)}, i = 1, 2, \dots, n, \quad f(x) = \frac{h(x)}{g_{0}(x)}$$

$$y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y = f(x)$$

• $f(x) = 0, x \in I$ - homogena diferencijalna jednačina, u suprotnom je to nehomogena diferencijalna jednačina

Linearna jednačina n—tog reda, $n \ge 2$

- 1) problem egzistencije rešenja
- 2) problem jednoznačnosti rešenja
- 3) problem pronalaženja rešenja (efektivnog rešavanja)

Teorema

Ako su $a_i(x)$, $i=1,2,\ldots,n$ i f(x) neprekidne funkcije nad intervalom I, $x_0 \in I$ proizvoljna tačka, $\alpha_i \in \mathbb{R}$, $i=0,1,\ldots,n-1$ proizvoljni brojevi, tada postoji jedinstveno rešenje y(x) diferencijalne jednačine $L_n[y]=f(x)$ koje zadovoljava početni uslov

$$y(x_0) = \alpha_0, \ y'(x_0) = \alpha_1, \dots, y^{(n-1)}(x_0) = \alpha_{n-1}$$

i definisano je nad datim intervalom I.

Homogena linearna jednačina $L_n[y] = 0$

Lema

Operator
$$L_n[\]$$
 je linearan, tj. važi $L_n[y_1+y_2]=L_n[y_1]+L_n[y_2], \quad L_n[cy]=cL_n[y],$ gde je c proizvoljna konstanta.

Teorema

(PRINCIP SUPERPOZICIJE) Ako su $y_i(x)$, i = 1, 2, ..., m rešenja homogene linearne diferencijalne jednačine tada je rešenje i $y(x) = \sum_{i=1}^{m} c_i y_i(x)$, gde su c_i proizvoljne konstante.

Dokaz.
$$L_n\left[\sum_{i=1}^m c_i y_i(x)\right] = \sum_{i=1}^m c_i L_n[y_i(x)] = 0.$$

- opšte rešenje: m = n, c_i se mogu izabrati tako da je zadovoljen svaki početni uslov
- partikularno rešenje dobijeno izborom konstanti c_i,
 i = 1, 2, ..., n

Definicija

Funkcije $f_i(x)$, $i=1,2,\ldots,n,\ n\in\mathbb{N}\setminus\{1\}$, su linearno zavisne nad intervalom I ako postoje brojevi c_i koji nisu svi jednaki nuli, da je $c_1f_1(x)+c_2f_2(x)+\cdots+c_nf_n(x)=0$, za svako $x\in I$. Funkcije koje nisu linearno zavisne su linearno nezavisne.

Definicija

Ako su funkcije $y_1(x), y_2(x), \dots, y_n(x) \in C^{n-1}(I), n \ge 2$, tada je

$$W(x) = W(y_1, \dots, y_n)(x) = \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & \dots & y'_n(x) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix}$$

determinanta Vronskog od $y_1(x), y_2(x), \ldots, y_n(x)$ nad I.

Lema

Neka su funkcije $y_1(x), y_2(x), \ldots, y_n(x)$ (n-1) puta neprekidno diferencijabilne nad intervalom I. Ako su funkcije y_1, y_2, \ldots, y_n linearno zavisne nad intervalom I, tada je W(x) = 0 za svako $x \in I$.

Dokaz. Ako su funkcije y_1, y_2, \ldots, y_n linearno zavisne nad intervalom I, tada postoje konstante c_1, c_2, \ldots, c_n koje nisu sve istovremeno jednake nuli, tako da je

$$c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x) = 0$$
, za svako $x \in I$.

Ako je na primer $c_n \neq 0$, tada je

$$y_n = \alpha_1 y_1 + \alpha_2 y_2 + \dots + \alpha_{n-1} y_{n-1}, \quad \alpha_i = -\frac{c_i}{c_n}, i = 1, 2, \dots, n-1.$$

Sledi da je poslednja kolona u W(x) linearna kombinacija prethodnih kolona, pa je W(x) = 0.

Lema

Ako su rešenja y_1, y_2, \ldots, y_n homogene linearne jednačine $L_n[y] = 0$ linearno nezavisna, tada je $W(x) \neq 0$, za svako $x \in I$.

Teorema

Potreban i dovoljan uslov da $y_1(x), y_2(x), \ldots, y_n(x)$ budu linearno nezavisna rešenja homogene linearne jednačine $L_n[y] = 0$ nad nekim intervalom I je da bude

$$W(x) \equiv W(y_1, y_2, \dots, y_n)(x) \neq 0$$
, za svako $x \in I$.

Dakle, za skup rešenja $\{y_1, y_2, \dots, y_n\}$ jednačine $L_n[y] = 0$ je ili W(x) = 0 za svako $x \in I$ ili $W(x) \neq 0$ za svako $x \in I$.

Primer

Ispitati linearnu zavisnost funkcija $y_1(x) = x$ i $y_2(x) = x^2$ nad \mathbb{R} . Naći W(x).

Iz $\alpha_1 x + \alpha_2 x^2 = 0$ za svako $x \in \mathbb{R}$ sledi da je $\alpha_1 = \alpha_2 = 0$, jer:

$$x = 1$$
 \Rightarrow $\alpha_1 + \alpha_2 = 0$
 $x = -1$ \Rightarrow $-\alpha_1 + \alpha_2 = 0$

tako da su funkcije $y_1(x)=x$ i $y_2(x)=x^2$ linearno nezavisne nad $\mathbb R$. Kako je

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = \begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix} = 2x^2 - x^2 = x^2,$$

sledi da je W(0) = 0, $W(x) \neq 0$, za svako $x \neq 0$.

Primer

Da li funkcije $y_1(x) = x$ i $y_2(x) = x^2$ mogu biti rešenja nad skupom \mathbb{R} neke homogene linearne jednačine oblika $y'' + a_1(x)y' + a_2(x)y = 0$, gde su $a_1(x)$ i $a_2(x)$ neprekidne funkcije za svako $x \in \mathbb{R}$? Formirati homogenu linearnu jednačinu čija su rešenja $y_1(x) = x$ i $y_2(x) = x^2$.

$$y_1(x)=x$$
 i $y_2(x)=x^2$ su linearno nezavisne nad $\mathbb R$. Ne mogu da budu rešenja homogene linearne jednačine $y''+a_1(x)y'+a_2(x)y=0$ nad $\mathbb R$, jer je $W(0)=0$. Ako su $y_1(x)=x$ i $y_2(x)=x^2$ rešenja neke linearne jednačine, tada je rešenje te jednačine i funkcija $y(x)=c_1x+c_2x^2$, gde su c_1 i c_2 proizvoljne konstante. $y(x)=c_1x+c_2x^2$ $y'(x)=c_1+2c_2x$ $\Rightarrow c_2=\frac{y''(x)}{2}$ $y''(x)=2c_2$ $\Rightarrow y(x)=xy'(x)-x^2y''(x)+\frac{x^2}{2}y''(x)$, pa je tražena jednačina $x^2y''-2xy'+2y=0$.

Definicija

Svaki skup od n, $n \in \mathbb{N} \setminus \{1\}$ linearno nezavisnih rešenja jednačine $L_n[y] = 0$ je fundamentalni skup rešenja jednačine $L_n[y] = 0$.

Teorema

Postoji fundamentalni skup rešenja jednačine $L_n[y] = 0$ nad intervalom 1.

Dokaz. Neka je x_0 proizvoljna tačka iz intervala I i $y_i(x)$, $i=1,2,\ldots,n$ rešenja jednačine $L_n[y]=0$ koja zadovoljavaju početni uslov

$$y_1(x_0) = 1, \quad y_1'(x_0) = 0, \quad \dots, \quad y_1^{(n-1)}(x_0) = 0,$$

 $y_2(x_0) = 0, \quad y_2'(x_0) = 1, \quad \dots, \quad y_2^{(n-1)}(x_0) = 0,$
 $\vdots \qquad \qquad \vdots \qquad \qquad \vdots$
 $y_n(x_0) = 0, \quad y_n'(x_0) = 0, \quad \dots, \quad y_n^{(n-1)}(x_0) = 1.$

(postoje na osnovu teoreme o egzistenciji i jedinstvenosti)

Rešenja $y_i(x)$ su linearno nezavisna nad intervalom I, jer da su linearno zavisna, sledilo bi da je W(x)=0 za svako $x\in I$, pa i za $x=x_0$.

Za x_0 imamo da je

$$W(x_0) = \left| egin{array}{cccc} 1 & 0 & \dots & 0 \ 0 & 1 & \dots, & 0 \ dots & dots & dots \ 0 & 0 & \dots & 1 \end{array}
ight| = 1
eq 0,$$

što je kontradikcija.

Teorema

(FORMULA LJUVILA-ABELA) Neka je $x_0 \in I$ proizvoljna tačka, a $\{y_1(x), y_2(x), \dots, y_n(x)\}$ fundamentalni skup rešenja homogene linearne jednačine $L_n[y] = 0$. Tada je za svako $x \in I$

$$W(x) = W(x_0)e^{-\int_{x_0}^x a_1(t)dt}$$
.

• Ako je $a_1 = c$, tada je $W(x) = W(x_0)e^{-c(x-x_0)}$, te za c = 0 važi $W(x) = W(x_0)$, za svako $x \in I$.

Posledica

Rešenja $y_1(x), y_2(x), \ldots, y_n(x)$ homogene linearne jednačine $L_n[y] = 0$ su linearno nezavisna nad intervalom I ako je $W(x_0) \neq 0$ za neku tačku $x_0 \in I$.

Teorema

Ako je $\{y_1(x), y_2(x), \ldots, y_n(x)\}$ fundamentalni skup rešenja homogene linearne jednačine $L_n[y]=0$ nad intervalom I, tada je opšte rešenje te jednačine nad intervalom I dato sa

$$y(x) = c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x),$$

gde su c_1, c_2, \ldots, c_n proizvoljni realni brojevi.

Dokaz. Neka su su $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ proizvoljni realni brojevi i neka je h(x) rešenje jednačine $L_n[y] = 0$ koje zadovoljava početni uslov

$$h(x_0) = \alpha_0, h'(x_0) = \alpha_1, \ldots, h^{(n-1)}(x_0) = \alpha_{n-1}, \quad x_0 \in I.$$

Pokažimo da se u rešenju

$$y(x) = c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x)$$

konstante c_1, c_2, \ldots, c_n mogu odrediti tako da i y(x) zadovoljava isti početni uslov.

Uvrštavajući početni uslov u

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x)$$

dobijamo sistem S algebarskih jednačina

$$c_1y_1(x_0) + c_2y_2(x_0) + \cdots + c_ny_n(x_0) = \alpha_0$$

 $c_1y_1'(x_0) + c_2y_2'(x_0) + \cdots + c_ny_n'(x_0) = \alpha_1$

$$c_1 y_1^{(n-1)}(x_0) + c_2 y_2^{(n-1)}(x_0) + \cdots + c_n y_n^{(n-1)}(x_0) = \alpha_{n-1}$$

Determinanta ovog sistema je $D_S = W(x_0) \neq 0$ jer su rešenja $y_1(x), y_2(x), \ldots, y_n(x)$ linearno nezavisna, pa je sistem određen. Znači, rešenje

$$y(x) = c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x),$$

gde je (c_1, c_2, \dots, c_n) rešenje sistema S zadovoljava isti početni uslov kao i rešenje h(x).

Zbog jednoznačnosti rešenja početnog problema je $y(x) = h(x), x \in I$.

$$L_n[y] = y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_0 y = 0, a_i \in \mathbb{R}$$

Ako je $y=e^{kx},\ k\in\mathbb{R}$ tada je $y^{(i)}=k^ie^{kx},\ i=1,2,\ldots,n,$ pa je

$$L_n[e^{kx}] = e^{kx} \left(\underbrace{k^n + a_1 k^{n-1} + \dots + a_{n-1} k + a_n}_{P_n(k)}\right)$$

pa je

$$L_n[e^{kx}] = 0 \Leftrightarrow k^n + a_1k^{n-1} + \cdots + a_{n-1}k + a_n = 0$$

- $P_n(k)$ karakterističan polinom
- $k^n + a_1 k^{n-1} + \cdots + a_{n-1} k + a_n = 0$ karakteristična jednačina

Rešenja diferencijalne jednačine su za svako $x \in (-\infty, \infty)$ funkcije

$$y_i = e^{k_i x}, \quad i = 1, 2, \dots, n.$$

Lema

Ako je y(x) = u(x) + iv(x) kompleksno rešenje linearne jednačine $L_n[y] = 0$ tada su u(x) i v(x) dva realna rešenja te jednačine.

Dokaz.
$$L_n[u(x) + iv(x)] = L_n[u(x)] + iL_n[v(x)] = 0$$

 $\Rightarrow L_n[u(x)] = L_n[v(x)] = 0.$

• Koreni karakteristične jednačine su realni i jednostruki Karakteristična jednačina ima $1 < m \le n$ različitih realnih korena k_i , $i = 1, \ldots, m$; realna rešenja su $y_i = e^{k_i x}$, $i = 1, \ldots, m$; linearno su nezavisna (čine fundamentalni skup rešenja) ako je m = n, jer je

$$W(x) = \begin{vmatrix} e^{k_1x} & e^{k_2x} & \dots & e^{k_mx} \\ k_1 e^{k_1x} & k_2 e^{k_2x} & \dots & k_m e^{k_mx} \\ \vdots & \vdots & & \vdots \\ k_1^{m-1} e^{k_1x} & k_2^{m-1} e^{k_2x} & \dots & k_m^{m-1} e^{k_mx} \\ = e^{(k_1+k_2+\dots+k_m)x} V. \end{vmatrix}$$

gde je

$$V = \left| egin{array}{cccc} 1 & 1 & \dots & 1 \ k_1 & k_2 & \dots & k_m \ dots & dots & dots \ k_1^{m-1} & k_2^{m-1} & \dots & k_m^{m-1} \end{array}
ight| = \prod_{1 \leq j < i \leq m} (k_i - k_j)
eq 0,$$

jer je $k_i \neq k_i$ za $i \neq j$.

Opšte rešenje za m = n dato je sa:

$$y(x) = \sum_{i=1}^{n} c_i e^{k_i x}.$$

Koreni karakteristične jednačine su kompleksni i jednostruki

$$k_j=lpha_j+i\,eta_j,\,eta_j
eq 0,\, ext{tada su rešenja}$$

$$\begin{aligned} y_{j_1}&=&\operatorname{Re}(e^{(lpha_j+i\,eta_j) ext{x}})=e^{lpha_j ext{x}}\coseta_j ext{x} \ y_{j_2}&=&\operatorname{Im}(e^{(lpha_j+i\,eta_j) ext{x}})=e^{lpha_j ext{x}}\sineta_j ext{x} \end{aligned}$$

Lako se proverava da su ova dva rešenja linearno nezavisna.

lako je $\overline{k_j}=\alpha_j-i\,\beta_j$ takođe koren karakteristične jednačine, nema dodatnih rešenja!

• Koreni karakteristične jednačine su realni i višestruki

 k_i koren višestrukosti m > 1, tada su rešenja jednačine funkcije

$$y_{i_1}(x) = e^{k_i x}, y_{i_2}(x) = x e^{k_i x}, \ldots, y_{i_m}(x) = x^{m-1} e^{k_i x}$$

i linearno su nezavisna:

Kako je

$$P_n(k_i) = P'_n(k_i) = \cdots = P_n^{(m-1)}(k_i) = 0, \quad P_n^{(m)}(k_i) \neq 0$$
 i kako je $L_n[e^{kx}] = e^{kx}P_n(k)$ to se diferenciranjem po k dobija

$$L_n[xe^{kx}] = xe^{kx}P_n(k) + e^{kx}P'_n(k)$$

= $e^{kx}(xP_n(k) + P'_n(k))$

pa se iz $L_n[xe^{kx}] = e^{kx}(xP_n(k) + P'_n(k))$ stavljajući $k = k_i$ dobija $L_n[xe^{k_ix}] = 0$, tj da je i xe^{k_ix} rešenje. Slično, diferenciranjem (m-1) puta po k dobijamo da su rešenja i funkcije

$$y_{i_1}(x) = e^{k_i x}, \ y_{i_2}(x) = x e^{k_i x}, \dots, y_{i_m}(x) = x^{m-1} e^{k_i x}.$$

• Koreni karakteristične jednačine su kompleksni i višestruki $k_j=\alpha_j+i\ \beta_j,\ \beta_j\neq 0$ koren višestrukosti m>1, tada su 2m realnih (linearno nezavisnih) rešenja jednačine funkcije

$$y_{j_1} = e^{\alpha_j x} \cos \beta_j x,$$

$$y_{j_2} = x e^{\alpha_j x} \cos \beta_j x,$$

$$\vdots$$

$$y_{j_m} = x^{m-1} e^{\alpha_j x} \cos \beta_j x,$$

$$y_{j_{m+1}} = e^{\alpha_j x} \sin \beta_j x,$$

$$y_{j_{m+2}} = x e^{\alpha_j x} \sin \beta_j x,$$

$$\vdots$$

$$y_{j_{2m}} = x^{m-1} e^{\alpha_j x} \sin \beta_j x.$$

Primer

$$k_{1} = k_{2} = k_{3} = 1,$$

$$k_{4} = -1,$$

$$k_{5} = 3 + i,$$

$$k_{6} = 3 - i,$$

$$k_{7} = k_{8} = k_{9} = 2 + i,$$

$$k_{10} = k_{11} = k_{12} = 2 - i.$$

$$y(x) = e^{x}(c_1 + c_2x + c_3x^2) + c_4e^{-x} + e^{3x}(c_5\cos x + c_6\sin x) + e^{2x}(c_7\cos x + c_8x\cos x + c_9x^x\cos x + c_{10}\sin x + c_{11}x\sin x + c_{12}x^2\sin x)$$

Primer

$$k_1 = k_2 = k_3 = 1,$$
 $k_4 = -1,$
 $k_5 = 3 + i,$
 $k_6 = 3 - i,$
 $k_7 = k_8 = k_9 = 2 + i,$
 $k_{10} = k_{11} = k_{12} = 2 - i.$

$$y(x) = e^{x}(c_1 + c_2x + c_3x^2) + c_4e^{-x} + e^{3x}(c_5\cos x + c_6\sin x) + e^{2x}(c_7\cos x + c_8x\cos x + c_9x^x\cos x + c_{10}\sin x + c_{11}x\sin x + c_{12}x^2\sin x)$$

Primer

$$k_1 = k_2 = k_3 = 1,$$
 $k_4 = -1,$
 $k_5 = 3 + i,$
 $k_6 = 3 - i,$
 $k_7 = k_8 = k_9 = 2 + i,$
 $k_{10} = k_{11} = k_{12} = 2 - i.$

$$y(x) = e^{x}(c_1 + c_2x + c_3x^2) + c_4e^{-x} + e^{3x}(c_5\cos x + c_6\sin x) + e^{2x}(c_7\cos x + c_8x\cos x + c_9x^x\cos x + c_{10}\sin x + c_{11}x\sin x + c_{12}x^2\sin x)$$

Primer

$$k_1 = k_2 = k_3 = 1,$$
 $k_4 = -1,$
 $k_5 = 3 + i,$
 $k_6 = 3 - i,$
 $k_7 = k_8 = k_9 = 2 + i,$
 $k_{10} = k_{11} = k_{12} = 2 - i.$

$$y(x) = e^{x}(c_1 + c_2x + c_3x^2) + c_4e^{-x} + e^{3x}(c_5\cos x + c_6\sin x) + e^{2x}(c_7\cos x + c_8x\cos x + c_9x^x\cos x + c_{10}\sin x + c_{11}x\sin x + c_{12}x^2\sin x)$$

Primer

$$k_1 = k_2 = k_3 = 1,$$
 $k_4 = -1,$
 $k_5 = 3 + i,$
 $k_6 = 3 - i,$
 $k_7 = k_8 = k_9 = 2 + i,$
 $k_{10} = k_{11} = k_{12} = 2 - i.$

$$y(x) = e^{x}(c_1 + c_2x + c_3x^2) + c_4e^{-x} + e^{3x}(c_5\cos x + c_6\sin x) + e^{2x}(c_7\cos x + c_8x\cos x + c_9x^x\cos x + c_{10}\sin x + c_{11}x\sin x + c_{12}x^2\sin x)$$

Teorema

Neka je $y_p(x)$ neko (partikularno) rešenje jednačine

$$L_n[y] = f(x)$$

 $i \ y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x)$ opšte rešenje odgovarajuće homogene jednačine $L_n[y] = 0$. Tada je

$$y(x) = y_h(x) + y_p(x)$$

opšte rešenje jednačine $L_n[y] = f(x)$.

Dokaz. y(x) je rešenje jednačine $L_n[y] = f(x)$ jer iz linearnosti operatora $L_n[\]$ sledi

$$L_n[y(x)] = L_n[y_h(x) + y_p(x)] = L_n[y_h(x)] + L_n[y_p(x)]$$

= 0 + f(x) = f(x)

Pokažimo da ono sadrži svako rešenje koje zadovoljava početni uslov $y^{(i)}(x_0) = \alpha_i, i = 0, 1, \dots, n-1,$

(tj. svako partikularno rešenje), gde su α_i proizvoljni realni brojevi, $x_0 \in I$ proizvoljna tačka i $y^{(0)}(x) = y(x)$:

Neka je $\{y_1(x), \dots, y_n(x)\}$ fundamentalni skup rešenja jednačine $L_n[y] = 0$. Tada je njeno opšte rešenje

$$y_h(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x).$$

Neka su $\alpha_0, \ldots, \alpha_{n-1} \in \mathbb{R}$ proizvoljni brojevi i h(x) rešenje jednačine $L_n[y] = f(x)$ koje u proizvoljnoj tački x_0 zadovoljava početni uslov

$$h(x_0) = \alpha_0, h'(x_0) = \alpha_1, \ldots, h^{(n-1)}(x_0) = \alpha_{n-1}.$$

Pokazaćemo da se u rešenju

 $y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x) + y_p(x)$ konstante mogu odrediti tako da i funkcija y(x) zadovoljava isti početni uslov.

Uvrštavajući početni uslov u jednačinu $L_n[y] = f(x)$ dobijamo sistem S algebarskih jednačina

Determinanta sistema S je $D_S = W(x_0) \neq 0$, pa je sistem određen.

Dakle, rešenje $g(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x) + y_p(x)$, gde je (c_1, c_2, \dots, c_n) rešenje sistema S zadovoljava isti početni uslov kao i h(x).

Zbog jednoznačnosti rešenja početnog problema je g(x) = h(x) za svako $x \in I$.

Teorema

Neka je $y_1(x), \ldots, y_n(x)$ fundamentalni skup rešenja jednačine $L_n[y] = 0$ nad intervalom I. Tada je partikularno rešenje $y_p(x)$ nehomogene jednačine $L_n[y] = f(x)$ koje zadovoljava početni uslov $y_p^{(i)}(x_0) = y_0^{(i)} = \alpha_i, i = 0, 1, \ldots, n-1, dato sa$

$$y_p(x) = \sum_{i=1}^n y_i(x) \int_{x_0}^{\infty} \frac{W_i(s)}{W(s)} f(s) ds,$$

gde je $x_0 \in I$ proizvoljna tačka, a $W_i(s)$, i = 0, 1, ..., n, je determinanta koja se dobija kada se iz determinante Wronskog funkcija $y_1(x), ..., y_n(x)$ i-ta kolona zameni sa col(0, 0, ..., 1) dok su ostale kolone iste kao kod W(x).

Dokaz. Neka je $\{y_1(x), \dots, y_n(x)\}$ fundamentalni skup rešenja. Potrebno je odrediti funkcije $c_1(x), \dots, c_n(x)$ tako da je

$$y_p(x) = c_1(x)y_1(x) + c_2(x)y_2(x) + \cdots + c_n(x)y_n(x)$$

partikularno rešenje nad intervalom I jednačine $L_n[y] = f(x)$. Diferenciranjem obe strane i ako za prvi uslov za funkcije $c_i(x)$ uzmemo

$$c'_1(x)y_1(x) + c'_2(x)y_2(x) + \cdots + c'_n(x)y_n(x) = 0$$

dobijamo

$$y_p'(x) = c_1(x)y_1'(x) + c_2(x)y_2'(x) + \cdots + c_n(x)y_n'(x)$$

Ponovnim diferenciranjem poslednje jednakosti i ako za drugi uslov za funkcije $c_i(x)$ uzmemo

$$c'_1(x)y'_1(x) + c'_2(x)y'_2(x) + \cdots + c'_n(x)y'_n(x) = 0$$

dobijamo

$$y_p''(x) = c_1(x)y_1''(x) + c_2(x)y_2''(x) + \cdots + c_n(x)y_n''(x).$$

Nastavljajući ovaj postupak dobijamo

$$c_1'(x)y_1^{(n-2)}(x)+c_2'(x)y_2^{(n-2)}(x)+\cdots+c_n'(x)y_n^{(n-2)}(x)=0,$$

$$y_p^{(n-1)}(x) = c_1(x)y_1^{(n-1)}(x) + c_2(x)y_2^{(n-1)}(x) + \cdots + c_n(x)y_n^{(n-1)}(x).$$

Sada je

$$y_p^{(n)}(x) = c_1'(x)y_1^{(n-1)}(x) + c_2'(x)y_2^{(n-1)}(x) + \cdots + c_n'(x)y_n^{(n-1)}(x) + c_1(x)y_1^{(n)}(x) + c_2(x)y_2^{(n)}(x) + \cdots + c_n(x)y_n^{(n)}(x).$$

Kako funkcija

$$y_p(x) = c_1(x)y_1(x) + c_2(x)y_2(x) + \cdots + c_n(x)y_n(x)$$

treba da bude rešenje jednačine $L_n[y] = f(x)$, zamenom $y_p(x), y_p'(x), \ldots, y_p^{(n)}(x)$ u tu jednačinu i vodeći računa da je $\{y_1(x), \ldots, y_n(x)\}$ fundamentalni skup rešenja jednačine $L_n[y] = 0$, dobijamo

$$L_n[y_p(x)] \equiv \sum_{i=1}^n c_i(x) \underbrace{L_n[y_i(x)]}_{0} + \sum_{i=1}^n c'_i(x) y_i^{(n-1)}(x) = f(x),$$

odnosno

$$c'_1(x)y_1^{(n-1)}(x)+c'_2(x)y_2^{(n-1)}(x)+\cdots+c'_n(x)y_n^{(n-1)}(x)=f(x).$$

Determinanta linearnog (algebarskog) sistema

$$c'_1(x)y_1(x) + c'_2(x)y_2(x) + \cdots + c'_n(x)y_n(x) = 0$$

$$c'_1(x)y'_1(x)$$
 + $c'_2(x)y'_2(x)$ + · · · + $c'_n(x)y'_n(x)$ = 0

:

$$c'_1(x)y_1^{(n-1)}(x) + c'_2(x)y_2^{(n-1)}(x) + \cdots + c'_n(x)y_n^{(n-1)}(x) = f(x)$$

je $W(x) \neq 0$ jer su rešenja $y_1(x), \dots, y_n(x)$ jednačine $L_n[y] = 0$ po pretpostavci linearno nezavisna. Rešavanjem po $c_i'(x)$ dobija se

$$c'_i(x) = \frac{D_{C_i}}{D} = \frac{W_i(x)f(x)}{W(x)}, \quad i = 1, 2, \dots, n.$$

Integracijom nad intervalom (x_0, x) za $x > x_0$ (tj. (x, x_0) za $x < x_0$) sledi da je

$$c_i(x) = \int\limits_{x_0}^x rac{W_i(s)}{W(s)} f(s) ds, \quad i = 1, 2, \ldots, n,$$

čijom zamenom u obrazac za $y_p(x)$ dobijamo da je partikularno rešenje

$$y_p(x) = \sum_{i=1}^n y_i(x) \int_{x_0}^x \frac{W_i(s)}{W(s)} f(s) ds.$$

Na primer, za n=2 sistem za određivanje funkcija c_i glasi

$$c'_1(x)y_1(x) + c'_2(x)y_2(x) = 0$$

 $c'_1(x)y'_1(x) + c'_2(x)y'_2(x) = f(x),$

dok je za n=3 odgovarajući sistem

Primer

Naći opšte rešenje jednačine $y''' - y'' = e^x$.

$$y''' - y'' = 0 \implies k^3 - k^2 = 0 \implies k_1 = k_2 = 0, k_3 = 1$$

 $\implies y_h(x) = c_1 + c_2 x + c_3 e^x$

Metodom varijacije konstanti dobijamo sistem

$$c'_1(x) + c'_2(x)x + c'_3(x)e^x = 0$$

 $c'_2(x) + c'_3(x)e^x = 0$
 $c'_3(x)e^x = e^x$

čijim rešavanjem i integracijom rešenja dobijamo

$$c_3'(x) = 1 \Rightarrow c_3(x) = x + C_3 c_2'(x) = -c_3'(x)e^x = -e^x \Rightarrow c_2(x) = -e^x + C_2 c_1'(x) = -c_2'(x)x - c_3'(x)e^x = (x - 1)e^x \Rightarrow c_1(x) = (x - 2)e^x + C_1$$

Jedno partikularno rešenje nehomogene jednačine je

$$y_p(x) = (x-2)e^x$$

pa je

$$y(x) = y_h(x) + y_p(x) = c_1 + c_2x + c_3e^x + (x-2)e^x$$
.

Metod jednakih koeficijenata

Ako je jednačina linearna sa konstantnim koeficijentima oblika

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = f(x)$$

gde je funkcija f(x) specijalnog oblika

$$f(x) = e^{\alpha x} (P(x) \cos \beta x + Q(x) \sin \beta x),$$

partikularno rešenje tražimo u obliku

$$y_p(x) = x^r e^{\alpha x} (T_k(x) \cos \beta x + R_k(x) \sin \beta x)$$

pri čemu je

- $k = \max\{n, m\}$, $n = \deg P(x)$, $m = \deg Q(x)$, ako su oba polinoma različita od nula polinoma (ako je P(x) nula polinom onda je k = m, a ako je Q(x) nula polinom onda je k = n)
- r je višestrukost $\alpha + i\beta$ kao korena karakteristične jednačine odgovarajuće homogene jednačine

Metod jednakih koeficijenata

Korisna je činjenica: ako je

$$L_n[y] = f_1(x) + f_2(x)$$

i ako je

 $y_1(x)$ partikularno rešenje jednačine $L_n[y] = f_1(x)$ nad I,

 $y_2(x)$ partikularno rešenje jednačine $L_n[y] = f_2(x)$ nad I,

tada je

$$y(x) = y_1(x) + y_2(x)$$

nad intervalom / partikularno rešenje jednačine

$$L_n[y] = f_1(x) + f_2(x)$$

Metod jednakih koeficijenata

Primer

Odrediti opšte rešenja jednačine $y''' - y'' = e^x + \sin x + x$.

Rešenje. Opšte rešenje homogenog dela jednačine je

$$y_h(x) = c_1 + c_2 x + c_3 e^x$$
.

Jedno partikularno rešenje jednačine $y''' - y'' = e^x$ je

$$y_{p_1}(x) = xe^x$$
.

Jedno partikularno rešenje jednačine $y''' - y'' = \sin x$ je

$$y_{p_2}(x) = \frac{1}{2}(\cos x + \sin x).$$

Jedno partikularno rešenje jednačine y''' - y'' = x je

$$y_{p_3}(x) = -\frac{1}{6}x^2(x+3).$$

Opšte rešenje je

$$y(x) = c_1 + c_2 x + c_3 e^x + x e^x + \frac{1}{2} (\cos x + \sin x) - \frac{1}{6} x^2 (x+3).$$

Ojlerova jednačina

Ojlerova jednačina je oblika

$$(ax+b)^{n}y^{(n)} + a_{1}(ax+b)^{n-1}y^{(n-1)} + \cdots + a_{n-1}(ax+b)y' + a_{n}y = f(x)$$

gde su a_i , i = 1, 2, ..., n konstante i smenom

$$ax + b = e^t, ax + b > 0 \quad (ax + b = -e^t, ax + b < 0)$$

svodi se na jednačinu sa konstantnim koeficijentima.

Ojlerova jednačina

Primer

Naći opšte rešenje diferencijalne jednačine

$$x^3y''' + x^2y'' + 3xy - 8y = 0.$$

Za x > 0 smenom

$$x = e^{t} \implies y'_{x} = y'_{t}t'_{x} = \frac{1}{x}y'_{t},$$

$$y''_{x} = -\frac{1}{x^{2}}y'_{t} + \frac{1}{x^{2}}y''_{t} = \frac{1}{x^{2}}(y''_{t} - y'_{t})$$

$$y'''_{x} = -\frac{2}{x^{3}}(y''_{t} - y'_{t}) + \frac{1}{x^{3}}(y'''_{t} - y''_{t}) = \frac{1}{x^{3}}(y'''_{t} - 3y''_{t} + 2y'_{t})$$
The linear energy of the principle of the state of the s

dobija se linearna diferencijalna jednačina y'''-2y''+4y'-8y=0. čija karakteristična jednačina r^3-2r^2+4r-8 ima korene $r_1=2$, $r_2=2i,\ r_3=-2i$ pa je njen fundamentalni skup rešenja $\{e^{2t},\sin 2t,\cos 2t\}$ tako da je fundamentalni skup rešenja Ojlerove jednačine $\{x^2,\sin(2\ln|x|),\cos(2\ln|x|)\},\ x\neq 0$ pa je opšte rešenje $y=c_1x^2+c_2\sin(2\ln|x|)+c_3\cos(2\ln|x|)$.