《微分几何入门与广义相对论》 部分习题参考解答

by 薛定谔的大喵¹

2020年6月14日

 $^{^{1}}$ wyj1234@mail.ustc.edu.cn

目录

第一部分 上册	3
第一章 拓扑空间简介	5
第二章 流形和张量场	g
第三章 黎曼(内禀)曲率张量	26
第四章 李导数、Killing 场和超曲面	45
第五章 微分形式及其积分	54
第六章 狭义相对论	74
第七章 广义相对论基础	81
第八章 爱因斯坦方程的求解	83
第九章 施瓦西时空	84
第十章 宇宙论	85
第二部分 中册	86
第十一章 时空的整体因果结构	87
附录 B 量子力学数学基础简介	89
附录 G 李群和李代数	90

第一部分

上册

第六章 狭义相对论

习题

1. 惯性观者 G 和 G' 相对速率为 u = 0.6c,相遇时把时钟都调为零。用时空图讨论: (a) 在 G 所属的惯性参考系看来(以其同时观判断),当 G 钟读数为 $5\,\mu s$ 时,G' 钟的读数是多少? (b) 当 G 钟读数为 $5\,\mu s$ 时,他实际看见 G' 钟的读数是多少?

解 如图 6.1, 其中 a 点 G 的固有时为 $\tau = 5 \mu s$.

图 6.1: 题 1 解答图

(a) 易知 b 点的 x 坐标为 0.6τ , 于是 b 点 G' 的固有时为

$$\tau' = \sqrt{1 - 0.6^2} \tau = 0.8 \tau = 4 \text{ us.}$$

(b) 易求得 c 点在 t,x 坐标系下的坐标为 $\left(\frac{5}{8}\tau,\frac{3}{8}\tau\right)^{1}$,于是 c 点 G' 的固有时为

$$\tau'' = \sqrt{\left(\frac{5}{8}\right)^2 - \left(\frac{3}{8}\right)^2} \tau = \frac{\tau}{2} = 2.5 \,\text{µs}.$$

 $^{^{1}}t$ 在前,x 在后

2. 远方星体以 0.8c 的速率(匀速直线地)离开我们,我们测得它辐射来的闪光按 5 昼夜的周期变化。用时空图求星上观者测得的闪光周期。

解 如图 6.2, 记 c 点坐标为 $(\tau,0)$, 其中 $\tau=5$ d, 则可算得 b_2 点坐标为 $\left(\frac{5}{9},\frac{4}{9}\right)\tau$, 于是

图 6.2: 题 2 解答图

 b_1 到 b_2 星上观者经过的固有时 $\tau' = \sqrt{5^2 - 4^2} \frac{\tau}{9} = \frac{\tau}{3} = \frac{5}{3} d.$

3. 把图 6-20 的 *oa* 段和 *oe* 段线长分别记作 τ 和 τ' 。(a) 用两钟的相对速率 u 表出 τ'/τ ; (b) 在 u=0.6c 和 u=0.8c 两种情况下求出 τ'/τ 的数值。

图 6.3: 正文图 6-20

解 (a) 如图 6.4, 记 t = of,

$$\frac{\tau'}{\tau} = \frac{\sqrt{t^2 - u^2 t^2}}{t - ut} = \sqrt{\frac{1 + u}{1 - u}}.$$
(6.1)

图 6.4: 题 3 解答图

- (b) 将 u=0.6 和 u=0.8 代入,分别得 $\frac{\tau'}{\tau}$ 为 2 和 3。
- **4.** 惯性质点 A,B,C 排成一条直线并沿此线相对运动(见 图 6.5),相对速率 $u_{BA}=0.6c$, $u_{CA}=0.8c$, A,B 所在惯性系各为 \mathcal{R}_A 和 \mathcal{R}_B 。设 \mathcal{R}_B 系认为(测得)C 走了 $60\,\mathrm{m}$,画出时空图并求 \mathcal{R}_A 认为(测得)这一过程的时间。

$$\overrightarrow{A}$$
 \overrightarrow{B} \overrightarrow{C}

图 6.5: 题 4 用图

解 如图 6.6, oa 段长 $l=60\,\mathrm{m}$, 则可算得 a 的坐标为 $\left(\frac{3}{4},\frac{5}{4}\right)l$, 由 ac 的斜率为 $\frac{1}{0.6}$, oc 的

图 6.6: 题 4 解答图

斜率为 $\frac{1}{0.8}$ 可求得 c 点坐标为 $\left(4,\frac{16}{5}\right)l$,即 oc 在 \mathcal{R}_A 看来的时间为 $\frac{4l}{c}=\frac{240}{299792458}s$ 。

5. A, B 是同一惯性系的两个惯性观者,他们互相发射中子,每一中子以相对速率 0.6c 离开中子枪。设 B 测得 B 枪的中子发射速率为 10^4 s⁻¹ (即每秒发射 10^4 个),求 A 所发中子(根据中子自己的标准钟)测得的 B 枪的中子发射率(要求画时空图求解)。

解 如图 6.7, oa 长为 $\Delta \tau_B$, 则由对称性易知 $ob = ab = \frac{\Delta \tau_B}{2}$, 则 $bc = 0.3 \Delta \tau_B$, 故算得 $\Delta \tau = ac = 0.4 \Delta \tau_B$, 因此 A 发射的中子测得的 B 的发射率为 $f = \frac{1}{\Delta \tau} = 2.5 f_B = 2.5 \times 10^4 \, \mathrm{s}^{-1}$ 。

图 6.7: 题 5 解答图

6. 静止 μ 子的平均寿命为 $\tau_0=2\times 10^{-6}\,\mathrm{s}$ 。 宇宙线产生的 μ 子相对于地球以 0.995c 的速率匀速直线下落,用时空图求地球观者测得的 $(\mathrm{a})\mu$ 子的平均寿命; $(\mathrm{b})\mu$ 子在其平均寿命内所走过的距离。

解 如图 6.8, $ac = \tau_0$, bc = t 为地球看来的平均寿命。则 ab = 0.995t, 有

$$\tau_0 = ac = \sqrt{|-t^2 + (0.995t)^2|} \approx 0.09987t,$$

故 $t \approx 10.0125\tau_0 = 2.0025 \times 10^{-5} \,\mathrm{s}$, 而走过的距离为 $ab = vt \approx 5.9733 \,\mathrm{km}$ 。

图 6.8: 图 6 解答图

7. 从惯性系 \mathscr{Q} 看来(认为,测得),位于某地 A 的两标准钟甲、乙指零时开始以速率 v=0.6c 一同做匀速直线运动,两钟指 1s 时到达某地 B。甲钟在到达 B 地时立即以速率 v 向 A 地匀速返回,乙钟在 B 地停留 1s (按他的钟)后以速率 v 向 A 的匀速返回。另有一丙钟一直呆在 A 地,且当甲、乙离开 A 地时也指零,(a) 画出甲、乙、丙的世界线;(b) 求乙钟返回 A 地时三钟的读数 $\tau_{\mathbb{P}}$, $\tau_{\mathbb{Z}}$ 和 $\tau_{\mathbb{R}}$ 。

解 如图 6.9, 设 A 地位于 x = 0, B 地位于 x = s。

图 6.9: 题 7 解答图

(a) 甲的世界线为 oabd; 乙的世界线为 oacd; 丙的世界线为 obd。

(b) 由题干知线长
$$oa=ac=ab=bd=cd$$
 都是 $\tau=1\,\mathrm{s}$,故 $\tau_{\mathrm{P}}=\tau_{\mathrm{C}}=3\,\mathrm{s}$ 。 a 点位于 $\left(\frac{5}{3}s,s\right)$, $oa=\frac{4}{3}s$,故 $s=\frac{3}{4}\tau$,则 $ob=2\times\frac{5}{3}s=\frac{5}{2}\tau$,于是 $\tau_{\mathrm{B}}=\frac{7}{2}\tau=3.5\,\mathrm{s}$ 。

8. (单选题) 双子 A, B 静止于某惯性系 \mathscr{R} 中的同一空间点上。A 从某时刻(此时 A, B 年龄相等)开始向东以速率 u 相对于惯性系 \mathscr{R} 做惯性运动,一段时间后 B 以速率 v>u 向东追上 A,则相遇时 A 的年龄

(1) 比 B 大,

(2) 比 B 小,

(3) 与 B 等。

解 选 (1)。 A 走了测地线, 而 B 不是测地线。

9. 标准钟 A, B 静止于某惯性系中的同一空间点上。A 钟从某时刻开始以速率 u=0.6c 匀速直线飞出,2s (根据 A 钟) 后以 u=0.6c 匀速直线返航。已知分手时两钟皆指零。(1) 求重逢时两钟的读数;(2) 当 A 钟指 3s 时看见 B 钟指多少?

- 解 1. 由 u=0.6c 知 $\gamma=\frac{5}{4}$,故 $\Delta \tau_{\rm A}=2\,{\rm s}$ 对应 $\Delta t=5/2\,{\rm s}$,由于 B 钟在惯性系中静止,重逢时 $\tau_{\rm B}=5\,{\rm s}$, $\tau_{\rm A}=4\,{\rm s}$ 。
 - 2. 如图 6.10,记 $\tau=2s$,则 a 的坐标为 $\left(\frac{3}{4}\tau,\frac{5}{4}\tau\right)$,b 的坐标为 $\left(0,\frac{5}{2}\tau\right)$, $\tau_{\rm A}=3s$ 的 c 位于 $\left(\frac{3}{8}\tau,\frac{15}{8}\right)$,则可算出 d 位于 $\left(0,\frac{3}{2}\tau\right)$,故 c 点处 A 看见 B 的读数为 $\frac{3}{2}\tau=3s$ 。

图 6.10: 题 9 解答图

10. 地球自转线速率在赤道之值约为每小时 1600 km。甲、乙为赤道上的一对孪生子。甲坐飞机以每小时 1600 km 的速率向西绕赤道飞行一圈后回家与乙重逢(忽略地球和太阳引力场的影响。由第 7 章可知引力的存在对应于时空的弯曲。)。(a) 画出地球表面的世界面和甲、乙的世界线(甲相对于地面的运动抵消了地球自转的效应,所以甲是惯性观者。);(b) 甲与乙中谁更年轻?(c) 两者年龄相差多少?(答:约为 10⁻⁷ s。)注:本实验已于 1971 年完成,当然不是对人而是对铯原子钟。见Hafele and Keating 1972。

解 如图 6.11。

- (a) 233
- (b) 乙更年轻。
- (c) 以坐标时 t 为参数, 乙的世界线切矢模长为

$$\left\| \left(\frac{\partial}{\partial t} \right)^a \right\| = \sqrt{1 - u^2},$$

图 6.11: 题 10 解答图

其中u是自转的3-速率,则乙经过的线长为

$$\tau = \int_0^T \left\| \left(\frac{\partial}{\partial t} \right)^a \right\| dt = \sqrt{1 - u^2} T,$$

代入 u 和 T = 1d 知

$$T - \tau = (1 - \sqrt{1 - u^2}) T = 9.49449 \times 10^{-8} \text{ s.}$$

11. 静长 $l=5\,\mathrm{m}$ 的汽车以 u=0.6c 的速率匀速进库,库有坚硬后墙。为简化问题,假定车头撞墙的信息以光速传播,车身任一点接到信息立即停下。(a) 设司库测得在车头撞墙的同时车尾的钟 C_w 指零,求车尾"获悉"车头撞墙这一信息时 C_w 的读数;(b) 求车完全停下后的静长 \hat{l} ;(c) 用 u 表示新旧静长比 \hat{l}/l 。

解 如图 6.12, $ac = cd = \hat{l}$, 则 $bc = u\hat{l}$, $ab = (1+u)\hat{l}$, 而由尺缩公式知 $ab = \sqrt{1-u^2}l$, 故

图 6.12: 题 11 解答图

$$(1+u)\hat{l} = \sqrt{1-u^2}l, \implies \hat{l} = \sqrt{\frac{1-u}{1+u}}l,$$

则

$$bd = \sqrt{cd^2 - bc^2} = \sqrt{1 - u^2}\hat{l} = l,$$

故

- (a) C_w 的读数为 bd=l,恢复 c 即 $\frac{l}{c}=\frac{5}{299792458}s\approx 1.66782\times 10^{-8}\,\mathrm{s}$ 。
- (b) 代入 u = 0.6c 知 $\hat{l} = \frac{l}{2} = 2.5 \,\mathrm{m}$ 。

(c)
$$\hat{l} = \sqrt{\frac{1-u}{1+u}}.$$

12. 试证命题 6-3-4.

证明 命题 6-3-4 如下

Thm 质点世界线上各点的 4 加速 A^a 与 4 速 U^a 正交,即 $A^aU_a=\eta_{ab}A^aU^b=0$ 。

 \mathbf{Prf}

$$\begin{split} U_a A^a &= U_a U^b \partial_b U^a \\ &= \frac{1}{2} U^b \partial_b \left(U_a U^a \right) \\ &= 0 \end{split}$$

13. 设观者世界线为 $t\sim x$ 面内的双曲线 G (见图 6-43),图中 K 为已知, A^a 为观者的 4 加速,求 A^aA_a (结论是 A^aA_a 为常数,因此 G 称为匀加速运动观者 。请注意这指的是 4 加速。)

图 6.13: 原书图 6-43

解 由图知此双曲线的参数为 a=b=K, 可写出双曲线方程为

$$x^2 - t^2 = K^2.$$

²或称 Rindler 观者——笔者注

两边对固有时求导,

$$2x\frac{\mathrm{d}x}{\mathrm{d}\tau} - 2t\frac{\mathrm{d}t}{\mathrm{d}\tau} = 0,$$
$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = \frac{t}{x}\frac{\mathrm{d}t}{\mathrm{d}\tau},$$

而

$$Z^{a} = \frac{\mathrm{d}t}{\mathrm{d}\tau} \left(\frac{\partial}{\partial t}\right)^{a} + \frac{\mathrm{d}x}{\mathrm{d}\tau} \left(\frac{\partial}{\partial x}\right)^{a}$$

是归一的,则

$$\left(\frac{\mathrm{d}x}{\mathrm{d}\tau}\right)^2 - \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2 = \left[\left(\frac{t}{x}\right)^2 - 1\right] \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2$$

$$= -\left(\frac{K}{x}\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2$$

$$= -1,$$

$$\implies \frac{1}{x}\frac{\mathrm{d}t}{\mathrm{d}\tau} = \frac{1}{t}\frac{\mathrm{d}x}{\mathrm{d}\tau} = \frac{1}{K},$$

 $\Longrightarrow \frac{1}{x}\frac{1}{d\tau} = \frac{1}{t}\frac{1}{d\tau} = \frac{1}{t}\frac{1}{d\tau}$ 于是 4 速又可改写为

$$Z^{a}=\frac{1}{K}\left[x\left(\frac{\partial}{\partial t}\right)^{a}+t\left(\frac{\partial}{\partial x}\right)^{a}\right],$$

故

$$\begin{split} A^a &= \frac{\mathrm{d}Z^a}{\mathrm{d}\tau} \\ &= \frac{1}{K} \left[\frac{\mathrm{d}x}{\mathrm{d}\tau} \left(\frac{\partial}{\partial t} \right)^a + \frac{\mathrm{d}t}{\mathrm{d}\tau} \left(\frac{\partial}{\partial x} \right)^a \right] \\ &= \frac{1}{K^2} \left[t \left(\frac{\partial}{\partial t} \right)^a + x \left(\frac{\partial}{\partial x} \right)^a \right], \\ A_a A^a &= \frac{1}{K^4} \left(x^2 - t^2 \right) \\ &= \frac{1}{K^2}. \end{split}$$

14. 试证命题 6-6-2.

证明 命题 6-6-2 如下

Thm 设惯性系 ℛ 和 ℛ 由洛伦兹变换

$$t=\gamma\left(t'+vx'
ight),\quad x=\gamma\left(x'+vt'
ight),\quad y=y',\quad z=z'$$

相联系,则两者测同一电磁场 F_{ab} 所得值 $\left(\vec{E},\vec{B}
ight)$ 和 $\left(\vec{E'},\vec{B'}
ight)$ 有如下关系:
$$E'_1=E_1,\qquad E'_2=\gamma\left(E_2-vB_3\right),\qquad E'_3=\gamma\left(E_3+vB_2\right);$$
 $B'_1=B_1,\qquad B'_2=\gamma\left(B_2+vE_3\right),\qquad B'_3=\gamma\left(B_3-vE_2\right).$

Prf 记矩阵 Λ 为

$$[\Lambda^{\mu}_{\ \nu}] = \begin{bmatrix} \frac{\partial x^{\mu}}{\partial x'^{\nu}} \end{bmatrix} = \begin{pmatrix} \gamma & \gamma v & 0 & 0 \\ \gamma v & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

则易知

$$\left[\left(\Lambda^{-1} \right)^{\mu}_{\ \nu} \right] = \left[\frac{\partial x'^{\mu}}{\partial x^{\nu}} \right] = \begin{pmatrix} \gamma & -\gamma v & 0 & 0 \\ -\gamma v & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

而根据张量变换律

$$F^{\prime \mu}_{\ \nu} = \frac{\partial x^{\prime \mu}}{\partial x^{\sigma}} \frac{\partial x^{\rho}}{\partial x^{\prime \nu}} F^{\sigma}_{\ \rho}$$
$$= (\Lambda^{-1})^{\mu}_{\ \sigma} F^{\sigma}_{\ \rho} \Lambda^{\rho}_{\ \nu}.$$

于是有矩阵等式

$$[F'] = \Lambda^{-1} [F] \Lambda,$$

其中 [F] 表示 F^{μ}_{ν} 排成的矩阵

$$[F] = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix},$$

于是经过简单的矩阵乘法算得

$$[F'] = \begin{pmatrix} 0 & E_1 & \gamma (E_2 - vB_3) & \gamma (E_3 + vB_2) \\ E_1 & 0 & \gamma (B_3 - vE_2) & -\gamma (B_2 + vE_3) \\ \gamma (E_2 - vB_3) & -\gamma (B_3 - vE_2) & 0 & B_1 \\ \gamma (E_3 + vB_2) & \gamma (B_2 + vE_3) & -B_1 & 0 \end{pmatrix},$$

可以直接读出

$$E'_1 = E_1,$$
 $E'_2 = \gamma (E_2 - vB_3),$ $E'_3 = \gamma (E_3 + vB_2);$ $B'_1 = B_1,$ $B'_2 = \gamma (B_2 + vE_3),$ $B'_3 = \gamma (B_3 - vE_2).$

- **15.** 设瞬时观者测 F_{ab} 所得电场和磁场分别为 E^a 和 B^a (也记为 \vec{E} 和 \vec{B}), 试证:
 - (a) $F_{ab}F^{ab} = 2(B^2 E^2)$,
 - (b) $F_{ab}*F^{ab}=4\vec{E}\cdot\vec{B}$ 。提示: 可利用惯性坐标基底把 $F_{ab}*F^{ab}$ 写成分量表达式。

注:本题表明,虽然 \vec{E} 和 \vec{B} 都是观者依赖的, B^2-E^2 和 $\vec{E}\cdot\vec{B}$ 却同观者无关。事实上,由 F_{ab} 能构造的独立的不变量只有这两个。

证明 我表示并不想用分量······用分量的话矩阵相乘求迹,看官自行计算。还是几何语言看着舒服.虽然看着计算更长······

引理 1 对任意参考系有分解式

$$F_{ab} = Z_a E_b - Z_b E_a + \varepsilon_{abc} B^c,$$

其中

$$\varepsilon_{abc} = \varepsilon_{dabc} Z^d$$

是"空间体元"(因为 Z^a 未必是某超曲面法矢故加引号)。

证明 由

$$B_a = -{}^*F_{ab} Z^b = -\frac{1}{2} \varepsilon_{abcd} F^{cd} Z^b = \frac{1}{2} \varepsilon_{acd} F^{cd},$$

知

$$\varepsilon_{abc}B^c = \frac{1}{2}\varepsilon_{abc}\varepsilon^{cde}F_{de} = h^d_{[a}h^e_{b]}F_{de} = h^d_{a}h^e_{b}F_{de}\,,$$

其中 $h^{ab}=\delta^a_{\ b}+Z^aZ_b$ 是空间投影,而即使 Z^a 不是某超曲面法矢,也可以通过展开计算证明有 $arepsilon_{abc}arepsilon^{cde}=2h^d_{\ [a}h^e_{\ b]}$ 。进一步展开得

$$\varepsilon_{abc}B^c = \left(\delta^d_{\ a} + Z^dZ_a\right)\left(\delta^e_{\ b} + Z^eZ_b\right)F_{de} = F_{ab} - Z_aE_b + Z_bE_a.$$

由引理直接计算:

(a)

$$\begin{split} F_{ab} \, F^{ab} &= \left(Z_a E_b - Z_b E_a + \varepsilon_{abc} B^c \right) \left(Z^a E^b - Z^b E^a + \varepsilon^{abd} B_d \right) \\ &= -E^2 - E^2 + \varepsilon_{abc} \varepsilon^{abd} B^c B_d \\ &= 2 \left(B^2 - E^2 \right). \end{split}$$

(b) 易算得

$${}^*F_{ab} = \frac{1}{2} \varepsilon_{abcd} F^{cd}$$

$$= \frac{1}{2} \varepsilon_{abcd} \left(Z^c E^d - Z^d E^c + \varepsilon^{cde} B_e \right)$$

$$= Z_b B_a - Z_a B_b + \varepsilon_{abc} E^c,$$
(6.2)

故

$$\begin{split} F_{ab} * F^{ab} &= \left(Z_a E_b - Z_b E_a + \varepsilon_{abc} B^c \right) \left(Z^b B^a - Z^a B^b + \varepsilon^{abd} E_d \right) \\ &= E_b E^b + E_a B^a + \varepsilon_{abc} \varepsilon^{abd} B^c E_d \\ &= 4 E_a B^a. \end{split}$$

16. 试证命题 6-6-5 (只需证后两个麦氏方程)。

证明 命题 6-6-5 如下

命题 对任一惯性系 $\{t,x,y,z\}$, 由式 (6-6-10)、 $(6-6-11)^3$ 可导出 3 维麦氏方程

$$(a)\nabla \cdot \vec{E} = 4\pi\rho, \qquad (b)\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$$
$$(c)\nabla \cdot \vec{B} = 0, \qquad (d)\nabla \times \vec{B} = 4\pi\vec{j} + \frac{\partial \vec{E}}{\partial t}.$$

其中第一、四式对应于式 (6-6-10), 第二、三式对应于式 (6-6-11)。

证明如下: 式(c):

$$\nabla \cdot \vec{B} = \partial_a B^a = -\partial_a * F^{ab} Z_b = -\frac{1}{2} \varepsilon^{abcd} Z_b \partial_a F_{cd} = 0,$$

式 (d):

$$\begin{split} \hat{\varepsilon}^{abc}\partial_b B_c &= -Z_d \varepsilon^{dabc} \partial_b \,^* F_{ce} \, Z^e \\ &= \frac{1}{2} Z_d Z^e \varepsilon^{cdab} \varepsilon_{cemn} \partial_b F^{mn} \\ &= -\frac{3!}{2} Z_d Z^e \delta^d_{\ [e} \delta^a_{\ m} \delta^b_{\ n]} \partial_b F^{mn} \\ &= -Z_d Z^e \left(\delta^d_{\ e} \delta^a_{\ m} \delta^b_{\ n} + \delta^d_{\ m} \delta^a_{\ n} \delta^b_{\ e} + \delta^d_{\ n} \delta^a_{\ e} \delta^b_{\ m} \right) \partial_b F^{mn} \\ &= \partial_b F^{ab} - Z^b Z_d \partial_b F^{da} - Z_d Z^a \partial_b F^{bd} \\ &= -h^a_{\ d} \partial_b F^{bd} + Z^b \partial_b E^a \\ &= 4\pi j^a + \partial_t E^a. \end{split}$$

补充

笔者认为由引理1计算更优雅,且4维麦氏方程与3维麦氏方程的等价性非常显然。计算如下:

由引理1知

$$\partial^a F_{ab} = \partial^a \left(Z_a E_b - Z_b E_a + \varepsilon_{abc} B^c \right) = \partial_t E_b - Z_b \partial^a E_a - \varepsilon_{bac} \partial^a B^c$$
$$= -4\pi J_b = -4\pi \rho Z_b - 4\pi j_b,$$

其中蓝色表示空间张量,绿色表示正比于 Z_a 的时间部分,故可直接读出

$$\partial_a E^a = 4\pi \rho, \quad \dot{\mathbb{g}} \quad \nabla \cdot \vec{E} = 4\pi \rho,$$

以及

$$\partial_t E_a - \varepsilon_{abc} \partial^b B^c = -4\pi j_a, \quad \not \Im \quad \nabla \times \vec B = 4\pi \vec j + \frac{\partial \vec E}{\partial t},$$

 $^{^{3}}$ 正文 (6-6-10) 为 $\partial^{a}F_{ab}=-4\pi J_{b}$,正文 (6-6-11) 为 $\partial_{[a}F_{bc]}=0$ 。

同样地,由

$$\begin{split} \varepsilon^{abcd}\partial_b F_{cd} &= \varepsilon^{abcd} Z_c \partial_b E_d + \varepsilon^{abcd} \varepsilon_{fcde} Z^f \partial_b B^e \\ &= \varepsilon^{abd} \partial_b E_d - \left(\delta^a{}_f \delta^b{}_e - \delta^a{}_e \delta^b{}_f \right) Z^f \partial_b B^e \\ &= \varepsilon^{abd} \partial_b E_d - Z^a \partial_b B^b + \partial_t B^a \\ &= 0 \end{split}$$

直接读出

$$\partial_a B^a = 0$$
 $\dot{\mathbf{g}}$ $\nabla \cdot \vec{B} = 0$,

及

$$\varepsilon^{abd}\partial_b E_d + \partial_t B^a = 0 \quad \text{\'{A}} \quad \nabla \times \vec{B} = -\frac{\partial \vec{B}}{\partial t}.$$

这样不仅很快推出了四条三维麦氏方程,而且显然四条三麦氏方程包含了两条四维方程的所有信息。此外,以上计算容易推广到非惯性系乃至弯曲时空任意参考系的一般情况,看官读过中册 §14.1 后不妨尝试。

17. 试证瞬时观者测得的电磁场能量密度和 3 动量密度分别为 $T_{00}=(E^2+B^2)/8\pi$ 和 $w_i=-T_{i0}=\left(\vec{E}\times\vec{B}\right)_i/4\pi$,i=1,2,3。提示:用 F_{ab} 的对称表达式 $(6\text{-}6\text{-}28')^4$ 可简化 T_{00} 的计算。

证明 直接计算

$$\begin{split} T_{00} &= T_{ab} \, Z^a Z^b \\ &= \frac{1}{8\pi} Z^a \left(F_{ac} \, F_b{}^c + {}^*F_{ac} \, {}^*F_b{}^c \right) Z^b \\ &= \frac{1}{8\pi} \left(E^2 + B^2 \right), \end{split}$$

而

$$\begin{split} w_a &= -h^b{}_a Z^c T_{bc} \\ &= -\frac{1}{4\pi} h^b{}_a Z^c \left(F_{bd} F_c{}^d - \frac{1}{4} F_{de} F^{de} \eta_{bc} \right) \\ &= \frac{1}{4\pi} h^b{}_a E^d F_{bd} \\ &= \frac{1}{4\pi} \varepsilon_{ade} E^d B^e, \end{split}$$

其中最后一个等号用了引理 1,此式即三维语言的

$$\vec{w} = \frac{1}{4\pi} \vec{E} \times \vec{B}.$$

 $^{^{4}}$ 正文 (6-6-28') 为 $T_{ab} = \frac{1}{8\pi} \left(F_{ac} F_{b}{}^{c} + {}^{*}F_{ac} \right)$

补充

由引理 1,容易直接把 T_{ab} 算出来。首先,

$$\begin{split} F_{ac}F_b{}^c &= \left(Z_aE_c - Z_cE_a + \varepsilon_{acd}B^d\right)\left(Z_bE^c - Z^cE_b + \varepsilon_b{}^{ce}B_e\right) \\ &= E^2Z_aZ_b + Z_a\varepsilon_{bce}E^cB^e - E_aE_b + Z_b\varepsilon_{acd}E^cB^d + B^2\delta_{ab} - B_aB_b \\ &= E^2Z_aZ_b + 2Z_{(a}\varepsilon_{b)ce}E^cB^e + B^2\delta_{ab} - E_aE_b - B_aB_b, \end{split}$$

由 (6.2) 知 * 运算的效果为

$$E_a \mapsto -B_a, \quad B_a \mapsto E_a,$$

故直接写出

$$\begin{split} {}^*F_{ac}\, {}^*F_b\, {}^c &= B^2 Z_a Z_b - 2 Z_{(a} \varepsilon_{b)ce} B^c E^e + E^2 \delta_{ab} - B_a B_b - E_a E_b \\ &= B^2 Z_a Z_b + 2 Z_{(a} \varepsilon_{b)ce} E^c B^e + E^2 \delta_{ab} - E_a E_b - B_a B_b, \end{split}$$

故

$$\begin{split} T_{ab} &= \frac{1}{8\pi} \left(F_{ac} F_b{}^c + {}^*F_{ac}{}^*F_b{}^c \right) \\ &= \frac{1}{8\pi} \Big[\left(E^2 + B^2 \right) Z_a Z_b + 4 Z_{(a} \varepsilon_{b)cd} E^c B^d \\ &+ \left(E^2 + B^2 \right) \delta_{ab} - 2 E_a E_b - 2 B_a B_b \Big], \end{split}$$

容易读出能量密度

$$\varepsilon = Z^a Z^b T_{ab} = \frac{1}{8\pi} \left(E^2 + B^2 \right),$$

3 动量密度或玻印亭矢量

$$w_a = -h^b_{\ a} Z^c T_{bc} = \frac{1}{4\pi} \varepsilon_{acd} E^c B^d,$$

及应力张量, 或麦克斯韦张量

$$s_{ab} = h^{c}{}_{a}h^{d}{}_{b}T_{cd} = \frac{1}{4\pi} \left[\frac{1}{2} \left(E^{2} + B^{2} \right) \delta_{ab} - E_{a}E_{b} - B_{a}B_{b} \right].$$

18. (a) 试证 4 电流密度为 J^a 的电磁场 F_{ab} 的能动张量 T_{ab} 满足 $\partial^a T_{ab} = -F_{bc} J^c$ (由此可知 当 $J^a = 0$ 时有 $\partial^a T_{ab} = 0$); (b) 试证上式在惯性系中的时间分量反映能量守恒,即郭硕鸿 1995 40 页式 (6.2); 空间分量反映 3 动量守恒,即郭书 220 页式 (7.6)。提示: 用 4 洛伦兹 力表达式 (6-6-20)⁵ 把 $F_{bc} J^c$ 改写为洛伦兹力密度。

⁵正文式 (6-6-20) 为 $F^a = qF^a_{\ b}U^b$ 。

证明 (a) 先计算

$$\partial^a (F_{ac} F_b^{\ c}) = F_{bc} \partial_a F^{ac} + F^{ac} \partial_a F_{bc}$$
$$= -4\pi F_{bc} J^c + F^{ac} \partial_a F_{bc},$$

注意到

$$\partial^a * F_{ab} = \frac{1}{2} \varepsilon_{abcd} \partial^a F^{cd} = 0,$$

有

$$\begin{split} \partial^{a} \left({}^{*}F_{ac} \, {}^{*}F_{b}{}^{c} \right) &= {}^{*}F^{ac}\partial_{a} \, {}^{*}F_{bc} \\ &= \frac{1}{4} \varepsilon^{acde} \varepsilon_{bcmn} F_{de} \, \partial_{a} F^{mn} \\ &= -\frac{3!}{4} \delta^{a}{}_{[b} \delta^{d}{}_{m} \delta^{e}{}_{n]} F_{de} \, \partial_{a} F^{mn} \\ &= -\frac{1}{2} \left(F_{de} \, \partial_{b} F^{de} + F_{db} \, \partial_{a} F^{ad} + F_{be} \, \partial_{a} F^{ea} \right) \\ &= -\frac{1}{2} F_{ac} \, \partial_{b} F^{ac} + 2 \pi F_{db} \, J^{d} - 2 \pi F_{be} \, J^{e} \\ &= -4 \pi F_{bc} \, J^{c} - \frac{1}{2} F^{ac} \partial_{b} F_{ac} \,, \end{split}$$

故

$$\begin{split} \partial^a T_{ab} &= \frac{1}{8\pi} \partial^a \left(F_{ac} \, F_{b}^{\ c} + {}^*F_{ac} \, {}^*F_{b}^{\ c} \right) \\ &= -F_{bc} \, J^c + \frac{1}{8\pi} \left(F^{ac} \partial_a F_{bc} - \frac{1}{2} F^{ac} \partial_b F_{ac} \right) \\ &= -F_{bc} \, J^c + \frac{1}{16\pi} F^{ac} \left(\partial_a F_{bc} + \partial_c F_{ab} + \partial_b F_{ca} \right) \\ &= -F_{bc} \, J^c. \end{split}$$

(b) 向时间方向投影:

$$\begin{split} \partial^a \left(T_{ab} \, Z^b \right) &= \partial^a \left(-\varepsilon Z_a - w_a \right) \\ &= - \, Z^b F_{bc} \, J^c = E_c j^c, \end{split}$$

即

$$\partial_t \varepsilon + \nabla \cdot \vec{w} + \vec{E} \cdot \vec{j} = 0,$$

对形如 $(t_1,t_2) \times \Sigma$ 的时空区域积分,左边前两项的积分为 t_2-t_1 时间内 Σ 内场的能量增加量,第三项积分为对电荷做功,即电荷能量的增加量,故能量守恒。 向空间投影:

$$\begin{split} h^b_{a}\partial^c T_{cb} &= -\partial^t w_a + \partial^c s_{ca} = \partial_t w_a + \partial^c s_{ca} \\ &= -h^b_{a} F_b = -f_a \,, \end{split}$$

即

$$\partial_t w^i + \partial_i s^{ji} + f^i = 0,$$

对形如 $(t_1,t_2) \times \Sigma$ 的时空区域积分,左边前两项的积分为 $t_2 - t_1$ 时间内 Σ 内场的冲量增加量,第三项积分为对电荷所做冲量,即电荷动量的增加量,故动量守恒。

19. 试证式 $(6\text{-}6\text{-}29)^6$ 中的 a^a 和 ϕ 满足 $\vec{B} = \nabla \times \vec{a}$ 和 $\vec{E} = -\nabla \phi - \partial \vec{a}/\partial t$,因而的确是电动力学中的 3 矢势和标势。

证明 由 $A_a = \phi Z_a + a_a$ 得

$$\begin{split} \partial_a A_b &= \delta^c{}_a \partial_c A_b \\ &= \left(-Z_a \partial_t + \hat{\partial}_a \right) (\phi Z_b + a_b) \\ &= -Z_a Z_b \partial_t \phi - Z_a \partial_t a_b + Z_b \hat{\partial}_a \phi + \hat{\partial}_a a_b, \end{split}$$

故

$$\begin{split} F_{ab} &= 2\partial_{[a}A_{b]} \\ &= -2Z_{[a}\partial_t a_{b]} - 2Z_{[a}\hat{\partial}_{b]}\phi + 2\hat{\partial}_{[a}a_{b]} \\ &= -2Z_{[a}\partial_t a_{b]} - 2Z_{[a}\hat{\partial}_{b]}\phi + \varepsilon_{eab}\varepsilon^{ecd}\hat{\partial}_c a_{d}, \end{split}$$

与引理1对比,即知

$$E^{a} = -\partial_{t}a^{a} - \hat{\partial}^{a}\phi \quad \dot{\mathfrak{R}} \quad \vec{E} = -\frac{\partial \vec{a}}{\partial t} - \nabla\phi,$$

及

$$B^a = \varepsilon^{abc} \hat{\partial}_b a_c \quad \not \Delta \quad \vec{B} = \nabla \times \vec{a}.$$

20. 在选读 6-1-1 中,(a) 试证 $\nabla_a (\mathrm{d} t)_b = 0$,其中 t 为绝对时间, ∇_a 为牛顿时空的导数算符 【提示:从式 $(5\text{-}7\text{-}2)^7$ 出发。】;(b) 设 w^a 为空间矢量(即切于绝对同时面的矢量), v^a 为任 一 4 维矢量,试证 $v^a\nabla_a w^b$ 仍为空间矢量【提示:注意 $\nabla_a t$ 是绝对同时面的法余矢。】。

证明 (a) 由 (5-7-2) 得

$$\begin{split} \nabla_{\mu} \left(\mathrm{d}t \right)_{\nu} &= \left(\frac{\partial}{\partial x^{\mu}} \right)^{a} \left(\frac{\partial}{\partial x^{\nu}} \right)^{b} \nabla_{a} \left(\mathrm{d}t \right)_{b} \\ &= - \left(\mathrm{d}t \right)_{b} \left(\frac{\partial}{\partial x^{\mu}} \right)^{a} \nabla_{a} \left(\frac{\partial}{\partial x^{\nu}} \right)^{b} \\ &= - \left(\mathrm{d}t \right)_{b} \Gamma^{\sigma}_{\ \mu\nu} \left(\frac{\partial}{\partial x^{\sigma}} \right)^{b} \\ &= - \Gamma^{0}_{\ \mu\nu}, \end{split}$$

⁶正文式 (6-6-29) 为
$$A_a = -\phi(\mathrm{d}t)_a + a_a$$
。
⁷正文式 (5-7-2) 为 $\left(\frac{\partial}{\partial x^\tau}\right)^b \nabla_b \left(\frac{\partial}{\partial x^\mu}\right)^a = \Gamma^{\sigma}_{\mu\tau} \left(\frac{\partial}{\partial x^\sigma}\right)^a$ 。

由 $\Gamma^{\mu}_{\nu\sigma}$ 在选定特定坐标系下的特殊形式,上式为零。

(b) 由 (a) 知 $\nabla_a \nabla_b t = 0$, 故

$$v^{a}\left(\nabla_{a}w^{b}\right)\nabla_{b}t=v^{a}\nabla_{a}\left(w^{b}\nabla_{b}t\right)-v^{a}w^{b}\nabla_{a}\nabla_{b}t=0,$$

故 $v^a \nabla_a w^b$ 是空间矢量。

第二部分 中册

Bibliography

```
Hafele, J. C. and Richard E. Keating (1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains". In: Science 177.4044, pp. 166–168. ISSN: 0036-8075. DOI: 10.1126/science.177.4044.166. eprint: https://science.sciencemag.org/content/177/4044/166.full.pdf. URL: https://science.sciencemag.org/content/177/4044/166 (cit. on p. 79). 郭硕鸿 (1995). 电动力学. 第二版. 北京: 高等教育出版社 (cit. on p. 87).
```