Portfolio optimization

by: Ekapope Viriyakovithya , James Ponce, Deborah KEWON , Saeed Mirzaee, Usman Muhammad

Introduction

In this study, we aimed to create a model using AMPL to propose investors to manage their stock portfolio effectively and invested on the most profitable stocks. Having said that, we collected data from IEX Group (https://iextrading.com/developer/docs/#getting-started) and tried to optimize asset allocation strategies to make recommendations for investors.

Data description

Firstly, we randomly retrieved 500 stocks from the total 8,718 stocks in the U.S. market with the period of 5 years (1258 trading days). Each row expressed the closing price of stock for a certain trading date. However, using student version of AMPL software, we are allowed to compute with maximum 300 variables for non-linear problem (500 for linear problem). Therefore, we omitted 200 stocks in the second step. We aggregated stock prices by mean and grouped by month. Then calculated average percentage changes, covariance, and used as an input for AMPL.

Model description

In this study, we used two models; minimum covariance and Young's minimax which are described below.

Minimum covariance model

A minimum covariance portfolio indicates a well-diversified portfolio that consists of individually risky assets, which are hedged when traded together, resulting in the lowest possible risk for the rate of expected return and it can be calculated based on the below:

Objective function:

$$\sum_{i=1}^{N} c_{ij} w_i w_j$$

Subject to:

$$\sum_{i=1}^{N} r_i w_i \ge \infty$$

$$\sum_{i=1}^{N} w_i = 1$$

$$w_i \geq 0$$

$$w_i \leq u$$

Young's minimax model

The essence of this model lies in the minimax formulation of game theory, so the objective function is to maximize the minimum returns of the portfolio subject to constraints.

Objective function:

$$\max_{M_p,w} M_p$$

Subject to:

$$\sum_{j=1}^{N} w_{j} y_{jt} - M_{p} \ge 0, \quad t = 1...T$$

$$\sum_{j=1}^{N} w_{j} \overline{y}_{j} \ge G$$

$$\sum_{j=1}^{N} w_{j} \leq W$$

$$0 \le w_j \le u$$
, $j = 1...N$

The target of the objective function is the maximization of the portfolio's minimum returns (*Mp*).

 w_i : Optimal allocation

 $M_{\scriptscriptstyle p}$: Portfolio's minimum returns

 y_{it} : Historic monthly returns of the shares

 \overline{y}_i : expected returns of the assets

 ${\it W}\,$: Investor's budget

 $G: {\it Target return}$

N: Number of the assets

u: Upper bound of optimal allocations

T: Time period e.g. months

Implementation of AMPL

Mean and Covariance

For the implementation of the model in AMPL, this standard mean-covariance model, includes three constraint. The first one is regarding to return of investment, the second one refers to the budget and the last one is the upper and lower bound constraint. The objective of this model is to minimize the variance. The information required to implement the model is as follows.

Parameters:

- Number of stocks (N).
- Covariance matrix (c).
- Matrix of Mean return (r).
- Upper limit for investing in a single share (u).
- Return of investment (alpha).

Variables:

• Matrix of Weight of the stocks (w).

Constraints:

- Return of investment
- Budget constraint
- Upper and lower bound constraint.

```
reset;
    option solver minos;
    param N:
    param c {1..N, 1..N};
    param r {1..N};
    param u; # Upper limit for investing in a single share
    # required return that we want
    param alpha;
    var w {1..N} >= 0;
    # Objective function
    minimize variance:
    sum{i in 1..N, j in 1..N} c[i,j]*w[i]*w[j];
    # Return of investment constraint
    subject to RequiredReturn:
    sum\{i in 1..N\} r[i]*w[i] >= alpha;
    # Budget constraint
    subject to Budget:
    sum{i in 1..N} w[i] = 1;
    # Upper and lower bound constrains
    subject to lowerbounds {j in 1..N}:
    w[j] >= 0;
    subject to upperbounds {j in 1..N}:
    w[j] \ll u;
```

Results

We run the model with return of investment (alpha) equal to 0.03, 0.04 and 0.05, the results obtained are as follow.

For target return (alpha) equal 0.03

- The minimum variance obtained is 0.0011, this value recommends to allocate the investment as follows: **24% in stock number 29**, 9% in stock number 76, 0.9% in stock number 84, 0.7% in stock number 95, 2% in stock number 101, 3% in stock number 135, **12% in stock number 187**, 1.5% in stock number 198, 0.7% in stock number 240, 5.4% in stock number 242, 7.5% in stock number 243,**17% in stock number 267**, 8% in stock number 279, 5% in stock number 283.
- Notice that in this case the model allocated the investment in 14 stocks.

```
AMPL

ampl: model PortOpt.mod;
ampl: data PortOpt.dat;

MINOS 5.51: optimal solution found.

34 iterations, objective 0.001131495822

Nonlin evals: obj = 74, grad = 73.

AMPL

ampl: model PortOpt.mod;
ampl: data PortOpt.dat;

MINOS 5.51: optimal solution found.

34 iterations, objective 0.001131495822

Nonlin evals: obj = 74, grad = 73.
```

For target return (alpha) equal 0.04

- The minimum variance obtained is 0.006, this value recommends to allocate the investment as follows: 9% in stock number 135, 24% in stock number 187, 5% in stock number 198, 3% in stock number 242, 20% in stock number 243, 25% in stock number 279 and 10% in stock number 283.
- Notice that in this case the model allocated the investment in 7 stocks.

```
AMPL
ampl: model PortOpt.mod;
ampl: data PortOpt.dat;
MINOS 5.51: optimal solution found.
16 iterations, objective 0.006113098675
Nonlin evals: obj = 31, grad = 30.
```

For target return (alpha) equal 0.05

- The minimum variance obtained is 0.054, this value recommends to allocate the investment as follows: 33% in stock number 135, 27% in stock number 243, 24% in stock number 279 and 14.8% in stock number 283.
- Notice that in this case the model allocated the investment in 4 stocks.

```
AMPL
ampl: model PortOpt.mod;
ampl: data PortOpt.dat;
MINOS 5.51: optimal solution found.
10 iterations, objective 0.0546555031
Nonlin evals: obj = 13, grad = 12.
```

Based on the obtained results, we can clearly see the negative relationship between the risk (variance), and the diversification of the portfolio which is represented by the number of stocks where the model allocates the investment. The other words, the more diversity in portfolio the less risk, it works in the opposite way as well.

In the other hand, we notice the negative relationship among the target return and the diversity of the portfolio. In other words, the more target return expected the less diversity in the portfolio.

Minimax

In addition to Markowitz's mean-covariance analysis for the best combination of expected return and risk, Young introduced the Minimax model, which is based on the minimax decision rule in the game theory. The objective of this model is to maximize the minimum returns subject to constraints.

Our model file contains the definition of the parameters, variables and formulations:

n = number of stocks

T =number of months

W = budget

RetMat = past monthly returns for 300 selected shares

u = Upper limit for investing in a single share

G = target return of the portfolio

Mp = minimum portfolio

ExpRet = expected returns of stocks

stdv = standard deviation of stocks

Our objective function, which maximizes the minimum return is as below.

It is the result of subtraction between standard deviation of stock[j] and expected return of stock[j].

```
# objective function
maximize MinimumReturn:
sum {j in 1..n} w[j]*Mp[j];
```

In order to calculate the objective function, MP (minimum portfolio) should be first defined. Mp can be calculated using the following functions:

```
let {j in 1..n} ExpRet[j] := sum{i in 1..T} RetMat[i,j]/T;
let {j in 1..n} stdv[j] := sqrt((sum{i in 1..T} (RetMat[i,j] -ExpRet[j])^2)/T);
let {j in 1..n} Mp[j] := ExpRet[j]-stdv[j];
```

Expected return is the average of the past returns for 60 months.

We applied 4 constraints 1) the sum of expected return should be equal to or greater than our target return 2) investment(asset) allocation cannot be greater than our budget 3) lower bound of allocation is equal to or greater than 0 4) upper bound of allocation is equal to or less than limit for investing in a single share.

As for the budget, we used the percentage because percentage well reflects the change in a single stock even taking the scale into consideration. Using an actual amount for the budget can be very confusing as we do not know the actual value of each stock. The prices of certain stocks can be a lot higher than the prices of others. Therefore, we defined budget =1 (100%), so in that way we can easily compare the allocation %.

Results

- 1. With the 3% target return, we obtained -0.05 minimum return, which means the lowest % of return we can get is -0.048. Based on our input, we are advised to allocate 50% for stock 187, 46.7% for stock 101, and 3.3% for stock 279 (this allocation % is by month).
- 2. With the 4% target return, we obtained -0.13 minimum return. We are advised to allocate 50% for stock 243, 8.5% for stock 135 and 41.5% for stock 279.
- 3. In order to test the limit of target return, we also set the target return equal to 5%. With this input, we obtained -0.27 minimum return. We are advised to invest 50% of our budget for stock 243, 33.2% for stock 135 and 16.8% for stock 279.

Findings

- 1. Stock 135, 243 and 279 are highly recommended for investment
- 2. The higher the target return is, the riskier it is to invest

ex) when the target return increased from 3% to 5%, the minimum return also increased from - 0.048 to -0.27

Next steps/challenges/ recommendation/Conclusion

The proposed financial optimization model assists the investor to make the best decision for asset allocations in finance in order to both ensure his investments and have a satisfactory return of his portfolio. It is well-known that algebraic modelling languages are ideal tools for rapid prototyping and optimization model development.

Thus, our proposed portfolio optimization model utilizes the flexibility and convenience of the AMPL modelling language. A strong point of the proposed work is the variety of the state-of-the-art portfolio optimization models which aim is to advice the investor about the optimal asset allocation.

Furthermore, the code of this model can be easily extended or modified, since the majority of the operational and financial researchers are rather more familiar with mathematical modelling languages than with common programming languages.

Suggestions

For future implementation, we can include the concept of complementary stocks as a constraint. For this improvement its necessary to work previously with the dataset in order to include a new feature "the relationship between stocks" (positive or negative).

Appendix

Young's minimax model when G (target return)=0.03

	optimal solution f			
mpl: displa	is, objective -0.04	79783132		
[+] :=	·, ···,			
1 0	61 0	121 0	181 0	241 0
2 0	62 0	122 0	182 0	242 0
3 0	63 0	123 0	183 0	243 0
4 0	64 0	124 0	184 0	244 0
5 0	65 0	125 0	185 0	245 0
6 0 7 0	66 0	126 0 127 0	186 0	246 0 247 0
8 0	67 0 68 0	128 0	187 0.5 188 0	248 0
9 8	69 0	129 0	189 0	249 0
10 0	70 0	130 0	190 0	250 0
11 0	71 0	131 0	191 0	251 0
12 0	72 0	132 0	192 0	252 0
13 0	73 0	133 0	193 0	253 0
14 0	74 0	134 0	194 0	254 0
15 0	75 0	135 0	195 0	255 0
16 0	76 0	136 0	196 0	256 0
17 0	77 0	137 0	197 0	257 0
18 0	78 0	138 0	198 0	258 0
19 0 20 0	79 0 80 0	139 0 140 0	199 0 200 0	259 0 260 0
21 0	81 0	141 0	201 0	261 0
22 0	82 0	142 0	202 0	262 0
23 0	83 0	143 0	203 0	263 0
24 0	84 0	144 0	204 0	264 0
25 0	85 0	145 0	205 0	265 0
26 0	86 0	146 0	206 0	266 0
27 0	87 0	147 0	207 0	267 0
28 0	88 0	148 0	208 0	268 0
29 0	89 0	149 0	209 0	269 0
30 0 31 0	90 0 91 0	150 0 151 0	210 0 211 0	270 0
32 0	92 0	152 0	212 0	271 0 272 0
33 0	93 0	153 0	213 0	273 0
34 0	94 0	154 0	214 0	274 0
35 0	95 0	155 0	215 0	275 0
36 0	96 0	156 0	216 0	276 0
37 0	97 0	157 0	217 0	277 0
38 0	98 0	158 0	218 0	278 0
39 0	99 0	159 0	219 0	279 0.0330977
40 0	100 0	160 0	220 0	280 0
41 0	101 0.466902	161 0	221 0	281 0
42 0	102 0	162 0	222 0 223 0	282 0 283 0
43 0 44 0	103 0 104 0	163 0 164 0	224 0	284 0
45 0	105 0	165 0	225 0	285 0
46 0	106 0	166 0	226 0	286 0
47 0	107 0	167 0	227 0	287 0
48 0	108 0	168 0	228 0	288 0
49 0	109 0	169 0	229 0	289 0
50 0	110 0	170 0	230 0	290 0
51 0	111 0	171 0	231 0	291 0
52 0	112 0	172 0	232 0	292 0
53 0	113 0	173 0	233 0	293 0
54 0 55 0	114 0 115 0	174 0	234 0	294 0
56 0	116 0	175 0 176 0	235 0 236 0	295 0 296 0
57 0	117 0	177 0	237 0	297 0
58 0	118 0	178 0	238 0	298 0
59 0	119 0	179 0	239 0	299 0
60 0	120 0	180 0	240 0	300 0

Yong's minimax model when G (target return)=0.04

```
MINOS 5.51: optimal solution found.
9 iterations, objective -0.1291259123
"option abs_boundtol 5.551115123125783e-17;"
or "option rel_boundtol 1.1102230246251565e-16;"
will change deduced dual values.
ampl: display w;
                   61 0
                                    121 0
                                                       181 0
 2 0 3 0
                   62 0
63 0
                                                       182 0
                                    122 0
                                                                          242 0
                                    123 0
                                                       183 0
                                                                          243 0.5
 4 0
                   64 0
                                    124 0
                                                       184 0
 5 0
                   65 0
                                                       185 €
                                    125 €
                                                                          245 0
                   66 0
                                    126 0
                                                       186 0
                                                                          246 0
67 0
68 0
                                    127 0
128 0
                                                       187 €
                                                                          247 0
                                                       188 0
                                                                          248 0
                   69 €
                                    129 €
                                                       189 0
                                                                          249 €
                   70 0
71 0
                                    130 0
131 0
                                                       190 0
191 0
                                                                          250 0
                                                                          251 0
                                    132 0
                   72 0
                                                       192 0
                                                                          252 0
                                    133 0
134 0
135 0.0849866
                                                       193 0
                                                                          253 0
254 0
                   73 0
                   74 0
                                                       194 0
                   75 0
                                                       195 0
                                                                          255 0
                   76 0
                                                                          256 0
                                    136 0
                                                       196 0
                                     137 €
                   77 €
                                                       197 €
                                                                          257 €
                                    138 0
139 0
                   78 0
                                                       198 0
                                                                          258 0
                   79 0
                                                       199 0
                                                                          259 €
                                     140 0
                   88 8
                                                       200 0
                                                                          260 0
                                    141 0
142 0
                   81 0
                                                       201 0
                                                                          261 0
                   82 0
                                                       202 0
                                                                          262 €
                   83 0
84 0
                                     143 0
                                                       203 0
                                                                          263 0
                                    144 0
                                                       284 8
                                                                          264 0
                                     145 €
                   85 0
                                                       205 0
                                                                          265 €
                   86 0
87 0
                                    146 0
147 0
                                                       206 0
207 0
                                                                          266 0
267 0
                   88 0
                                    148 0
                                                       208 0
                                                                          268 0
                   89 0
90 0
                                    149 0
150 0
                                                       209 0
210 0
                                                                          269 0
270 0
                   91 0
                                    151 0
                                                       211 0
                                                                          271 0
                                    152 0
153 0
                                                       212 0
213 0
                   92 0
                                                                          272 0
                   93 0
                                                                          273 0
                                    154 0
155 0
                   94 0
                                                       214 0
                                                                          274 0
                   95 0
                                                                          275 0
                                                       215 0
                   96 0
97 0
                                     156 0
                                                       216 0
                                                                          276 0
                                    157 0
158 0
                                                                          277 0
                                                       217 0
                   98 0
                                                       218 0
                                                                          278 0
                                    159 0
160 0
                   99 0
                                                       219 0
                                                                          279 0.415013
                  100 0
                                                       220 0
                                                                          280 0
                                    161 0
                                                       221 0
                  101 0
                                                                          281 0
                                    162 0
163 0
                                                       222 0
223 0
                                                                          282 €
                  102 0
                  103 0
                                                                          283 €
                                    164 0
165 0
166 0
167 0
                  104 0
                                                       224 0
                                                                          284 0
                                                       225 0
226 0
                                                                          285 0
286 0
                  105 0
                  106 0
                  107 0
                                                       227 0
                                                                          287 0
                                    168 0
                                                       228 0
                                                                          288 0
                  108 0
                                     169 €
                                                       229 €
                  109 0
                                                                          289 €
                                    170 0
171 0
                  110 0
                                                       230 0
                                                                          290 0
                                                                          291 €
                  111 0
                                                       231 0
                                    172 0
173 0
174 0
                                                       232 0
233 0
                  112 0
                                                                          292 0
                  113 0
                                                                          293 €
                                                       234 0
                                                                          294 0
                  114 0
                  115 0
                                     175 0
                                                       235 0
                                                                          295 €
                                     176 0
                                                       236 0
                  116 0
                                                                          296 0
                  117 0
                                     177 0
                                                       237 €
                                                                          297 €
                                                                          298 €
                  118 0
                                     178 €
                                                       238 0
                                                       239 €
                  119 0
                                     179 0
                                                                          299 €
60 0
                  120 0
                                     180 0
                                                       240 0
                                                                          300 0
```

Young's minimax model when G (target return)=0.05

ampi. Solv	-,			
	: optimal solut ons, objective ·			
ampl: disp w [*] :=				
10	61 0	121 0	181 0	241 0
2 0	62 0	122 0	182 0	242 0
3 0	63 8	123 0	183 0	243 0.5
4 0	64 0	124 0	184 0	244 0
5 0	65 0	125 0	185 0	245 0
6 8	66 0	126 0	186 0	246 0
7 0	67 0	127 0	187 0	247 0
8 0	68 0	128 0	188 0	248 0
9 0	69 0	129 0	189 0	249 0
10 0	70 0	130 0	190 0	250 0
11 0	71 0	131 0	191 0	251 0
12 0	72 0	132 0	192 0	252 0
13 0	73 0	133 0	193 0	253 0
14 0 15 0	74 0	134 0	194 0 195 0	254 0 255 0
16 0	75 0 76 0	135 0.332497 136 0	196 0	256 Ø
17 0	77 0	137 0	197 0	257 0
18 0	78 0	138 0	198 0	258 0
19 0	79 0	139 0	199 0	259 0
20 0	80 0	140 0	200 0	260 0
21 0	81 0	141 0	201 0	261 0
22 0	82 0	142 0	202 0	262 0
23 0	83 0	143 0	203 0	263 0
24 0	84 0	144 0	204 0	264 0
25 0	85 0	145 0	205 0	265 0
26 0	86 0	146 0	206 0	266 0
27 0	87 0	147 0	207 0	267 0
28 0	88 0	148 0	208 0	268 0
29 0	89 0	149 0	209 0	269 0
30 0	90 0	150 0	210 0	270 0
31 0	91 0	151 0	211 0	271 0
32 0	92 0	152 0	212 0	272 0
33 0 34 0	93 Ø 94 Ø	153 0 154 0	213 0 214 0	273 0 274 0
35 0	95 0	155 0	215 0	275 0
36 0	96 0	156 0	216 0	276 0
37 0	97 0	157 0	217 0	277 0
38 0	98 0	158 0	218 0	278 0
39 0	99 0	159 0	219 0	279 0.167503
40 0	100 0	160 0	220 0	280 0
41 0	101 0	161 0	221 0	281 0
42 0	102 0	162 0	222 0	282 0
43 0	103 0	163 0	223 0	283 0
44 0	104 0	164 0	224 0	284 0
45 0	105 0	165 0	225 0	285 0
46 0	106 0	166 0	226 0	286 0
47 0	107 0	167 0	227 0	287 0
48 0	108 0	168 0	228 0	288 0
49 0	109 0	169 0	229 0	289 0
50 0	110 0	170 0	230 0	290 0
51 0	111 0	171 0	231 0	291 0
52 0 53 0	112 0 113 0	172 0 173 0	232 0 233 0	292 0 293 0
54 0	114 0	174 0	234 0	294 0
55 0	115 0	175 0	235 0	295 0
56 0	116 0	176 0	236 0	296 0
57 0	117 0	177 0	237 0	297 0
58 0	118 0	178 0	238 0	298 0
59 0	119 0	179 0	239 0	299 0
68 8	120 0	180 0	249 0	300 0
;				

```
Console
AMPL
ampl: model PortOpt.mod;
ampl: data PortOpt.dat;
MINOS 5.51: optimal solution found.
34 iterations, objective 0.001131495822
Nonlin evals: obj = 74, grad = 73.
w [*] :=
  1 0
                   76 0.0926932
                                    151 0
                                                      226 0
                                                      227 0
  2 0
                   77 0
                                    152 0
                   78 0
                                                      228 0
  3 0
                                    153 0
  4 0
                   79 0
                                    154 0
                                                      229 0
  5 0
                   80 0
                                    155 0
                                                      230 0
  6 0
                   81 0
                                    156 0
                                                      231 0
  7 0
                   82 0
                                    157 0
                                                      232 0
  8 0
                   83 0
                                    158 0
                                                      233 0
  9 0
                   84 0.00978407
                                    159 0
                                                      234 0
                                                      235 0
 10 0
                   85 0
                                    160 0
 11 0
                   86 0
                                    161 0
                                                      236 0
 12 0
                   87 0
                                    162 0
                                                      237 0
 13 0
                   88 0
                                                      238 0
                                    163 0
                                    164 0
 14 0
                   89 0
                                                      239 0
                                                      240 0.00796595
 15 0
                   90 0
                                    165 0
 16 0
                   91 0
                                    166 0
                                                      241 0
                                                      242 0.0544199
 17 0
                   92 0
                                    167 0
                   93 0
                                    168 0
                                                      243 0.0755786
 18 0
 19 0
                   94 0
                                    169 0
                                                      244 0
                                                      245 0
 20 0
                   95 0.00768153
                                    170 0
                                                      246 0
 21 0
                   96 0
                                    171 0
                                                      247 0
 22 0
                   97 0
                                    172 0
 23 0
                   98 0
                                    173 0
                                                      248 0
 24 0
                   99 0
                                    174 0
                                                      249 0
 25 0
                                                      250 0
                  100 0
                                    175 0
 26 0
                  101 0.0200756
                                    176 0
                                                      251 0
 27 0
                  102 0
                                    177 0
                                                      252 0
 28 0
                  103 0
                                    178 0
                                                      253 0
 29 0.249722
                  104 0
                                    179 0
                                                      254 0
 30 0
                  105 0
                                    180 0
                                                      255 0
                  106 0
                                    181 0
                                                      256 0
 31 0
                                                      257 0
 32 0
                  107 0
                                    182 0
 33 0
                  108 0
                                    183 0
                                                      258 0
 34 0
                  109 0
                                    184 0
                                                      259 0
                                    185 0
 35 0
                  110 0
                                                      260 0
 36 0
                  111 0
                                    186 0
                                                      261 0
 37 0
                                    187 0.121237
                                                      262 0
                  112 0
 38 0
                  113 0
                                    188 0
                                                      263 0
 39 0
                  114 0
                                    189 0
                                                      264 0
 40 0
                  115 0
                                    190 0
                                                      265 0
 41 0
                  116 0
                                    191 0
                                                      266 0
 42 0
                  117 0
                                    192 0
                                                      267 0.179745
 43 0
                  118 0
                                    193 0
                                                      268 0
 44 0
                                                      269 0
                  119 0
                                    194 0
 45 0
                  120 0
                                    195 0
                                                      270 0
 46 0
                  121 0
                                    196 0
                                                      271 0
```

47	0	122 0	197 0	272 0
48	0	123 0	198 0.0159892	273 0
49	0	124 0	199 0	274 0
50	0	125 0	200 0	275 0
51	0	126 0	201 0	276 0
52	0	127 0	202 0	277 0
53	0	128 0	203 0	278 0
54	0	129 0	204 0	279 0.0834729
55	0	130 0	205 0	280 0
56	0	131 0	206 0	281 0
57	0	132 0	207 0	282 0
58	0	133 0	208 0	283 0.0511497
59	0	134 0	209 0	284 0
60	0	135 0.0304855	210 0	285 0
61	0	136 0	211 0	286 0
62	0	137 0	212 0	287 0
63	0	138 0	213 0	288 0
64	0	139 0	214 0	289 0
65	0	140 0	215 0	290 0
66	0	141 0	216 0	291 0
67	0	142 0	217 0	292 0
68	0	143 0	218 0	293 0
69	0	144 0	219 0	294 0
70	0	145 0	220 0	295 0
71	0	146 0	221 0	296 0
72	0	147 0	222 0	297 0
73	0	148 0	223 0	298 0
74	0	149 0	224 0	299 0
75	0	150 0	225 0	300 0

Covariance Model run for alpha = 0.04

Console				₹ 🔳
AMPL				
ampl: model	PortOnt mod:			
ampl: data P				
	optimal solutio	n found		
	s, objective 0.			
	: obj = 31, gra			
w [*] :=	. obj = 51, gro	id = 50.		
10	61 0	121 0	181 0	241 0
2 0	62 0	122 0	182 0	242 0.0383905
3 0	63 0	123 0	183 0	243 0.207177
4 0	64 0	124 0	184 0	244 0
5 0	65 0	125 0	185 0	245 0
60	66 0	126 0	186 0	246 0
7 0	67 0	127 0	187 0.246647	247 0
8 0	68 0	128 0	188 0	
				248 0
9 0	69 0	129 0	189 0	249 0
10 0	70 0	130 0	190 0	250 0
11 0	71 0	131 0	191 0	251 0
12 0	72 0	132 0	192 0	252 0
13 0	73 0	133 0	193 0	253 0
14 0	74 0	134 0	194 0	254 0
15 0	75 0	135 0.0965431	195 0	255 0
16 0	76 0	136 0	196 0	256 0
17 0	77 0	137 0	197 0	257 0
18 0	78 0	138 0	198 0.0493634	258 0
19 0	79 0	139 0	199 0	259 0
20 0	80 0	140 0	200 0	260 0
21 0	81 0	141 0	201 0	261 0
22 0	82 0	142 0	202 0	262 0
23 0	83 0	143 0	203 0	263 0
24 0	84 0	144 0	204 0	264 0
25 0	85 0	145 0	205 0	265 0
26 0	86 0	146 0	206 0	266 0
27 0	87 0	147 0	207 0	267 0
28 0	88 0	148 0	208 0	268 0
29 0	89 0	149 0	209 0	269 0
30 0	90 0	150 0	210 0	270 0
31 0	91 0	151 0	211 0	271 0
32 0	92 0	152 0	212 0	272 0
33 0	93 0	153 0	213 0	273 0
34 0	94 0	154 0	214 0	274 0
35 0	95 0	155 0	215 0	275 0
36 0	96 0	156 0	216 0	276 0
37 0	97 0	157 0	217 0	277 0
38 0	98 0	158 0	218 0	278 0
39 0	99 0	159 0	219 0	279 0.256693
40 0	100 0	160 0	220 0	280 0
41 0	101 0	161 0	221 0	281 0
42 0	102 0	162 0	222 0	282 0
43 0	103 0	163 0	223 0	283 0.105186
44 0	104 0	164 0	224 0	284 0
45 0	105 0	165 0	225 0	285 0

46	0	106	0	166	0	226	0	286	0
47	0	107	0	167	0	227	0	287	0
48	0	108	0	168	0	228	0	288	0
49	0	109	0	169	0	229	0	289	0
50	0	110	0	170	0	230	0	290	0
51	0	111	0	171	0	231	0	291	0
52	0	112	0	172	0	232	0	292	0
53	0	113	0	173	0	233	0	293	0
54	0	114	0	174	0	234	0	294	0
55	0	115	0	175	0	235	0	295	0
56	0	116	0	176	0	236	0	296	0
57	0	117	0	177	0	237	0	297	0
58	0	118	0	178	0	238	0	298	0
59	0	119	0	179	0	239	0	299	0
60	0	120	0	180	0	240	0	300	0

Covariance Model run for alpha = 0.05

AMPL

ampl: model PortOpt.mod; ampl: data PortOpt.dat; MINOS 5.51: optimal solution found.

MINOS 5.51: optimal solution found. 10 iterations, objective 0.0546555031 Nonlin evals: obj = 13, grad = 12.

. Ге			,	,	9		•						
	,] :·	-							404		244		
1			61			121			181		241		
2			62			122			182		242		
3			63			123			183				.269262
4			64			124			184		244		
5			65			125			185		245		
6	0		66	0		126			186	0	246	0	
7	0		67	0		127	0		187	0	247	0	
8	0		68	0		128	0		188	0	248	0	
9	0		69	0		129	0		189	0	249	0	
10	0		70	0		130	0		190	0	250	0	
11	0		71	0		131	0		191	0	251	0	
12	0		72	0		132			192		252		
13			73			133			193		253		
14			74			134			194		254		
15			75					33691	195		255		
16			76			136			196		256		
17			77			137			197		257		
18			78			138			198		258		
19			79			139			199		259		
20			80			140			200		260		
21			81			141			201		261		
22			82			142			202		262		
23			83			143			203		263		
24			84			144			204		264		
25			85			145			205		265		
26			86			146			206		266		
27			87			147			207		267		
28			88			148			208		268		
29			89			149			209		269		
30			90			150			210		270		
31			91			151			211		271		
32			92			152			212		272		
33			93			153			213		273		
34			94			154			214		274		
35			95			155			215		275		
36			96			156			216		276		
37			97			157			217		277		
38	0		98			158			218		278		
39	0		99	0		159	0		219	0	279	0.	.24888
40	0		100	0		160	0		220	0	280	0	
41	0		101	0		161	0		221	0	281	0	
42	0		102	0		162	0		222	0	282	0	
43	0		103	0		163	0		223	0	283	0.	148166
44	0		104	0		164	0		224	0	284	0	
45	0		105			165			225		285		
46			106			166			226		286		
-	-			_			-			-			

47	0	107	0	167	0	227	0	287	0
48	0	108	0	168	0	228	0	288	0
49	0	109	0	169	0	229	0	289	0
50	0	110	0	170	0	230	0	290	0
51	0	111	0	171	0	231	0	291	0
52	0	112	0	172	0	232	0	292	0
53	0	113	0	173	0	233	0	293	0
54	0	114	0	174	0	234	0	294	0
55	0	115	0	175	0	235	0	295	0
56	0	116	0	176	0	236	0	296	0
57	0	117	0	177	0	237	0	297	0
58	0	118	0	178	0	238	0	298	0
59	0	119	0	179	0	239	0	299	0
60	0	120	0	180	0	240	0	300	0

Index and Symbol Table (It looks in 4 columns in Word desktop version)

Index	Symbol
1	EWL
2	SKF
3	HMY
4	TOK
5	VECO
6	ALLY.A
7	KBWB
8	TOT
9	LEE
10	IIF
11	VGM
12	IGHG
13	PAA
14	MBG
15	BGT
16	TLK
17	DZZ
18	ALL.D
19	FNK
20	UTL
21	SYNL
22	PAGP
23	NCI
24	VOYA
25	NS
26	PFLT
27	JQC
28	MCY
29	ERIE
30	BYD

31	UCFC
32	SUNW
33	ONCY
34	RJI
35	AFT
36	IGI
37	PSA.W
38	CPL
39	EXG
40	CXO
41	BVN
42	HAO
43	GXC
44	FXN
45	VKI
46	BSJJ
47	CVS
48	HST
49	Е
50	SBAC
51	WAFD
52	HI
53	PXMV
54	BID
55	JAZZ
56	CMG
57	BLRX
58	PDM
59	SLAB
60	FTR
61	MLPX

62	AUY
63	USA
64	WBC
65	PTY
66	HEP
67	VCSH
68	TGB
69	PM
70	USAC
71	ORCL
72	LAND
73	MUS
74	ABB
75	HMSY
76	CNC
77	FRAN
78	JXI
79	FANH
80	BAS
81	CPTA
82	MCA
83	GFF
84	OSPN
85	AWSM
86	GPOR
87	SPDW
88	RGT
89	QRTEA
90	CATY
91	BIB
92	KYN

93	ETR
94	SPHB
95	ELMD
96	CECO
97	NTRS
98	ASYS
99	GTXI
100	HON
101	ISRG
102	ENT
103	HELE
104	RST
105	HCCI
106	TEUM
107	PZD
108	SMSI
109	FPA
110	BNDX
111	QDF
112	DVN
113	ALSK
114	REM
115	WFC.R
116	TTGT
117	HSON
118	SPTS
119	IGN
120	FLNT
121	IWX
122	ECH
123	DVAX

124	CHFS
125	ESI
126	RING
127	SCOR
128	ARR.B
129	BHR
130	JPI
131	INWK
132	STAA
133	IXP
134	LB
135	USLV
136	IUSV
137	MRVL
138	MFA
139	PSR
140	VVUS
141	DKL
142	F
143	ABUS
144	VVR
145	MSA
146	RPT
147	CHK.D
148	AOA
149	CHN
150	JPXN
151	MRC
152	GEO
153	EOD
154	CHKR
155	ATI
156	POOL
157	HFWA
158	CDMO
159	FGM
160	PLW
161	GAL
162	WCC
102	*****

163	IFN
164	EGPT
165	PHK
166	GLV
167	RF.A
168	CCIH
169	ERX
170	CHT
171	HRL
172	BR
173	MEOH
174	IWP
175	IDE
176	HIX
177	TWO
178	GALT
179	VNQ
180	GTIM
181	LAD
182	CPK
183	IJS
184	PSK
185	SNPS
186	FFIN
187	CHGG
188	GHM
189	MET
190	MCF
191	SOHO
192	NVG
193	TAO
194	RVT
195	MIDD
196	EWC
197	EFG
198	HIIQ
199	STML
200	GCC
201	SPTL

202	MIDZ				
203	GM				
204	PLD				
205	PEJ				
206	SUNS				
207	CYRN				
208	NHC				
209	BECN				
210	WEC				
211	ETJ				
212	PCEF				
213	BSCK				
214	HCI				
215	AGYS				
216	MUC				
217	NGS				
218	DUC				
219	IOVA				
220	JWN				
221	CEV				
222	ODP				
223	SYMC				
224	VSEC				
225	AHT.D				
226	CZNC				
227	SOXS				
228	PRGX				
229	TDS				
230	IYW				
231	FUND				
232	MDSO				
233	EWO				
234	AIV				
235	UPW				
236	UIHC				
237	XONE				
238	IDLV				
239	ATRI				
240	HSII				

241	NAN			
242	OLED			
243	AXGN			
244	FRBK			
245	STFC			
246	GSBC			
247	CPSI			
248	IWR			
249	IWN			
250	GPX			
251	BTA			
252	BKN			
253	PYN			
254	BVSN			
255	LKFN			
256	HCFT			
257	XOP			
258	CORP			
259	DPZ			
260	WTR			
261	VCV			
262	RY			
263	SHYD			
264	NUV			
265	SLY			
266	EPAY			
267	CENT			
268	CGA			
269	ACAD			
270	RRGB			
271	TDJ			
272	ABC			
273	AKAM			
274	SNV			
275	STAG			
276	TRMB			
277	OSBC			
278	CUK			
279	INGN			

280	ZROZ
281	TARO
282	ARC
283	SKY
284	BBT.F
285	AGIO

286	PNR
287	QADA
288	ICLN
289	VEA
290	EVM
291	MRO

)Z	286	PNR	292	ALL		298	HRTX
0	287	QADA	293	LUB		299	TVC
;	288	ICLN	294	TSCO		300	IRM
	289	VEA	295	FLXN	_		
.F	290	EVM	296	FVE			
C	291	MRO	297	ROL			
			 		ı		

298	HRTX
299	TVC
300	IRM