Solution: Square-, Cube-, \mathcal{E} nth Roots Lời Giải: Căn Bâc 2, Căn Bâc 3, \mathcal{E} Căn Bâc n

Nguyễn Quản Bá Hồng*

Ngày 28 tháng 5 năm 2023

Tóm tắt nội dung

[en] This text is a collection of problems, from basic to advanced, on square-, cube-, \mathcal{E} nth roots. **Keyword.** Square root, cube root, nth root.

[vi] Tài liệu này là 1 bộ sưu tập các bài toán, từ cơ bản đến nâng cao, về *căn bậc 2, căn bậc 3, & căn bậc n*. **Từ khóa.** Căn bậc 2, căn bậc 3, căn bậc n, số hữu tỷ, số vô tỷ, căn thức.

- Lecture note Bài giảng: GitHub/NQBH/hobby/elementary mathematics/grade 9/square- & cube roots¹.
- Cheatsheet Công thức: GitHub/NQBH/hobby/elementary mathematics/grade 9/cheatsheet: square- & cube roots².
- Problem Bài tập: GitHub/NQBH/hobby/elementary mathematics/grade 9/problem: square- & cube roots³.
- Solution Lời giải: GitHub/NQBH/hobby/elementary mathematics/grade 9/solution: square- & cube roots⁴.

Mục lục

1	Square Root & Irrationals – Căn Bậc 2 & Số Vô Tỷ	2
2	Căn Thức Bậc 2 & Hằng Đẳng Thức $\sqrt{A^2} = A $	5
3	Liên Hệ Giữa Phép Nhân, Phép Chia & Phép Khai Phương	9
4	Biến Đổi Đơn Giản Biểu Thức Chứa Căn Thức Bậc 2	13
5	Rút Gọn Biểu Thức Có Chứa Căn Thức Bậc 2	16
6	Cube Root, nth Root – Căn Bậc 3, Căn Bậc n	19
7	Miscellaneous	21
T	Tài liêu	

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

¹URL: https://github.com/NQBH/hobby/blob/master/elementary_mathematics/grade_9/square_root_cube_root/NQBH_square_root_cube_root.

²https://github.com/NQBH/hobby/blob/master/elementary_mathematics/grade_9/square_root_cube_root/cheatsheet/NQBH_square_root_cube_root_cheatsheet.pdf.

³https://github.com/NQBH/hobby/blob/master/elementary_mathematics/grade_9/square_root_cube_root/problem/NQBH_square_root_cube_root_problem.pdf.

⁴https://github.com/NQBH/hobby/blob/master/elementary_mathematics/grade_9/square_root_cube_root/solution/NQBH_square_root_cube_root_solution.pdf.

1 Square Root & Irrationals – Căn Bậc 2 & Số Vô Tỷ

Bài toán 1 ([Chí+23], ?1-?3, pp. 4-5). (a) Tìm các căn bậc 2 của $9, \frac{4}{9}, 0.25, 2$. (b) Tìm căn bậc 2 số học của 49, 64, 81, 1.21. (c) Tìm căn bậc 2 của 49, 64, 81, 1.21.

Giải. (a) Căn bậc 2 của $9, \frac{4}{9}, 0.25, 2$ lần lượt là $\pm 3, \pm \frac{2}{3}, \pm 0.5, \pm \sqrt{2}$. (b) Căn bậc 2 số học của 49, 64, 81, 1.21 lần lượt là 7, 8, 9, 1.1. (c) Căn bậc 2 của 49, 64, 81, 1.21 lần lượt là $\pm 7, \pm 8, \pm 9, \pm 1.1$.

Bài toán 2 ([Chí+23], Ví dụ 2, ?4, pp. 5–6). So sánh: (a) 1 $\mathcal{E}\sqrt{2}$. (b) 2 $\mathcal{E}\sqrt{5}$. (c) 4 $\mathcal{E}\sqrt{15}$. (d) $\sqrt{11}$ \mathcal{E} 3.

$$Gi \'ai. \text{ (a) } 1 < 2 \Leftrightarrow \sqrt{1} = 1 < \sqrt{2}. \text{ (b) } 4 < 5 \Leftrightarrow \sqrt{4} = 2 < \sqrt{5}. \text{ (c) } 16 > 15 \Leftrightarrow \sqrt{16} = 4 > \sqrt{15}. \text{ (d) } 11 > 9 \Leftrightarrow \sqrt{11} > \sqrt{9} = 3. \quad \Box$$

Bài toán 3. Biên luân theo $a, b \in \mathbb{R}$ để so sánh $a \, \& \, \sqrt{b}$.

Giải. ĐKXĐ: $b \ge 0$. Xét các trường hợp:

- Trường hợp a < 0: vì $\sqrt{b} \ge 0$, $\forall b \in \mathbb{R}$, $b \ge 0$, suy ra $a < \sqrt{b}$.
- Trường hợp $a \ge 0$: Xét các trường hợp con:
 - o Trường hợp $0 \le a < \sqrt{b} \Leftrightarrow 0 \le a \& a^2 < b$.
 - Trường hợp $0 \le a = \sqrt{b} \Leftrightarrow 0 \le a \& a^2 = b$.

Tổng hợp các trường hợp đã xét:

$$\begin{cases} a<\sqrt{b}, & \text{n\'eu } (a<0 \wedge b \geq 0) \vee (a \geq 0 \wedge a^2 < b), \\ a=\sqrt{b}, & \text{n\'eu } a \geq 0 \wedge a^2 = b, \\ a>\sqrt{b}, & \text{n\'eu } a>0 \wedge a^2 > b. \end{cases}$$

Biện luận hoàn tất.

Bài toán 4 ([Chí+23], Ví dụ 3, ?5, p. 6). (a) Tìm $x \in \mathbb{R}$ thỏa: (a) $\sqrt{x} > 2$. (b) $\sqrt{x} < 1$. (c) $\sqrt{x} > 1$. (d) $\sqrt{x} < 3$.

Giải. (a) $\sqrt{x} > 2 \Leftrightarrow x > 2^2 = 4$. Vậy x > 4, $S = (4, \infty) := \{x \in \mathbb{R} | x > 4\}$. (b) ĐKXĐ: $x \ge 0$, $\sqrt{x} < 1 \Leftrightarrow 0 \le x < 1^2 = 1$. Vậy $0 \le x < 1$, $S = [0, 1) := \{x \in \mathbb{R} | 0 \le x < 1\}$. (c) $\sqrt{x} > 1 \Leftrightarrow x > 1^2 = 1$. Vậy x > 1, $S = (1, \infty) := \{x \in \mathbb{R} | x > 1\}$. (d) ĐKXĐ: $x \ge 0$, $\sqrt{x} < 3 \Leftrightarrow 0 \le x < 3^2 = 9$. Vậy $0 \le x < 9$, $S = [0, 9) := \{x \in \mathbb{R} | 0 \le x < 9\}$. □

Lưu ý 1. Ta quy ước S ký hiệu tập nghiệm của cả phương trình $\mathscr E$ bất phương trình.

Bài toán 5. $Biện\ luận\ theo\ tham\ số\ a,b,c,d\in\mathbb{R}\ dể\ giải\ bất\ phương\ trình:\ (a)\ \sqrt{x} < a.\ (b)\ \sqrt{x} > a.\ (c)\ \sqrt{x} \le a.\ (d)\ \sqrt{x} \ge a.$ $(d)\ \sqrt{ax+b} > c.\ (e)\ \sqrt{ax+b} < c.\ (f)\ \sqrt{ax+b} \le c.\ (g)\ \sqrt{ax+b} \ge c.\ (h)\ \sqrt{ax+b} < \sqrt{cx+d}.\ (i)\ \sqrt{ax+b} > \sqrt{cx+d}.\ (j)\ \sqrt{ax+b} \le \sqrt{cx+d}.$

Bài toán 6 ([Chí+23], 1., p. 6). *Tìm căn bậc 2 số học của mỗi số sau rồi suy ra căn bậc 2 của chúng:* 121, 144, 169, 225, 256, 324, 361, 400.

Giải. Căn bậc 2 số học của 121, 144, 169, 225, 256, 324, 361, 400 lần lượt là 11, 12, 13, 15, 16, 18, 19, 20. Căn bậc 2 của 121, 144, 169, 225, 256, 324, 361, 400 lần lượt là $\pm 11, \pm 12, \pm 13, \pm 15, \pm 16, \pm 18, \pm 19, \pm 20$.

Bài toán 7 ([Chí+23], 2., p. 6). So sánh: (a) 2 & $\sqrt{3}$. (b) 6 & $\sqrt{41}$. (c) 7 & $\sqrt{47}$.

Giải. (a)
$$4 > 3 \Leftrightarrow \sqrt{4} = 2 > \sqrt{3}$$
. (b) $36 < 41 \Leftrightarrow \sqrt{36} = 6 < \sqrt{41}$. (c) $49 > 47 \Leftrightarrow \sqrt{49} = 7 > \sqrt{47}$.

Bài toán 8 ([Chí+23], 3., p. 6). Tim $x \in \mathbb{R}$ thỏa mãn các phương trình sau \mathscr{C} sau đó làm tròn đến chữ số thập phân thứ \mathscr{Z} : (a) $x^2 = 2$. (b) $x^2 = 3$. (c) $x^2 = 3.5$. (d) $x^2 = 4.12$.

Hint. Nghiệm của phương trình bậc $2 x^2 = a$ với $a \ge 0$ là các căn bậc 2 của a.

Giải. (a)
$$x^2 = 2 \Leftrightarrow x = \pm \sqrt{2} \Rightarrow x \approx \pm 1.414$$
. (b) $x^2 = 3 \Leftrightarrow x = \pm \sqrt{3} \Rightarrow x \approx \pm 1.732$. (c) $x^2 = 3.5 \Leftrightarrow x = \pm \sqrt{3.5} \Rightarrow x \approx \pm 1.871$. (d) $x^2 = 4.12 \Leftrightarrow x = \pm \sqrt{4.12} \Rightarrow x \approx \pm 2.030$.

Bài toán 9 ([Chí+23], 4., p. 7). $Tim \ x \in \mathbb{R}$ thỏa: (a) $\sqrt{x} = 15$. (b) $2\sqrt{x} = 14$. (c) $\sqrt{x} < \sqrt{2}$. (d) $\sqrt{2x} < 4$.

 $\begin{array}{l} \mbox{\it Giải. DKXD: } x \geq 0. \ \mbox{(a)} \ \sqrt{x} = 15 \Leftrightarrow x = 15^2 = 225 > 0: \mbox{\it nhận. Vậy } x = 225, \mbox{\it S} = \{225\}. \ \mbox{(b)} \ 2\sqrt{x} = 14 \Leftrightarrow \sqrt{x} = \frac{14}{2} = 7 \Leftrightarrow x = 7^2 = 49 > 0: \mbox{\it nhận. Vậy } x = 49, \mbox{\it S} = \{49\}. \ \mbox{\it (c)} \ \sqrt{x} < \sqrt{2} \Leftrightarrow 0 \leq x < 2. \mbox{\it Vậy } 0 \leq x < 2, \mbox{\it S} = [0,2) \coloneqq \{x \in \mathbb{R} | 0 \leq x < 2\}. \ \mbox{\it (d)} \\ \sqrt{2x} < 4 \Leftrightarrow 0 \leq 2x < 4^2 = 16 \Leftrightarrow 0 \leq x < \frac{16}{2} = 8. \mbox{\it Vậy } 0 \leq x < 8, \mbox{\it S} = [0,8) \coloneqq \{x \in \mathbb{R} | 0 \leq x < 8\}. \end{array}$

Bài toán 10 ([Chí+23], 5., p. 7). Tính cạnh 1 hình vuông biết diện tích của nó bằng diện tích của hình chữ nhật có chiều rộng 3.5 m & chiều dài 14 m.

Bài toán 11 ([Thâ+23], 1., p. 5). Tính căn bậc 2 số học của 0.01, 0.04, 0.49, 0.64, 0.25, 0.81, 0.09, 0.16, 0, -1.

Giải. Căn bậc 2 số học của: 0.01, 0.04, 0.49, 0.64, 0.25, 0.81, 0.09, 0.16, 0 lần lượt là $\sqrt{0.01} = 0.1$, $\sqrt{0.04} = 0.2$, $\sqrt{0.49} = 0.7$, $\sqrt{0.64} = 0.8$, $\sqrt{0.25} = 0.5$, $\sqrt{0.81} = 0.9$, $\sqrt{0.09} = 0.3$, $\sqrt{0.16} = 0.4$, $\sqrt{0} = 0$. Riêng -1 không có căn bậc 2 (số học) vì -1 < 0. \square

Lưu ý 2. Căn bậc 2 số học của số thực không âm $a \ge 0$ là \sqrt{a} . Căn bậc 2 của $a \ge 0$ là $\pm \sqrt{a}$ (i.e., bao gồm \sqrt{a} & $-\sqrt{a}$), đặc biệt: căn bậc 2 của 0 là $\pm \sqrt{0} = 0$. Mọi số thực âm a < 0 không có căn bậc 2.

Bài toán 12 ([Thâ+23], 2., p. 5). Tìm $x \in \mathbb{R}$ thỏa: (a) $x^2 = 5$. (b) $x^2 = 6$. (c) $x^2 = 2.5$. (d) $x^2 = \sqrt{5}$. (e) $x^2 = -1$.

Giải. (a) $x^2 = 5 \Leftrightarrow x = \pm \sqrt{5}$. (b) $x^2 = 6 \Leftrightarrow x = \pm \sqrt{6}$. (c) $x^2 = 2.5 \Leftrightarrow x = \pm \sqrt{2.5}$. (d) $x^2 = \sqrt{5} \Leftrightarrow x = \pm \sqrt{\sqrt{5}} = \pm \sqrt[4]{5}$. (e) $x^2 = -1$ vô nghiệm vì $x^2 \ge 0 > -1$, $\forall x \in \mathbb{R}$.

Lưu ý 3 (Phương trình bậc $2 x^2 = a$). Giải & biện luận theo tham số a phương trình $x^2 = a$ với $a \in \mathbb{R}$ cho trước. Xét 3 trường hợp: (a) Trường hợp a = 0: $x^2 = 0 \Leftrightarrow x = 0$. (b) Trường hợp a > 0: $x^2 = a \Leftrightarrow x = \pm \sqrt{a}$. (c) Trường hợp a < 0: phương trình bậc $2 x^2 = a$ vô nghiệm vì $x^2 \ge 0 > a$, $\forall x \in \mathbb{R}$.

Bài toán 13 ([Thâ+23], 3., p. 5). Số nào có căn bậc 2 là: (a) $\sqrt{5}$. (b) 1.5. (c) -0.1. (d) $-\sqrt{9}$.

Giải. (a) 5 có 1 căn bậc 2 là $\sqrt{5}$. (b) $1.5^2 = 2.25$ có 1 căn bậc 2 là 1.5. (c) $(-0.1)^2 = 0.01$ có 1 căn bậc 2 là -0.1. (d) 9 có 1 căn bậc 2 là $-\sqrt{9}$.

Lưu ý 4. Số có căn bậc 2 là a là số a^2 . Cụ thể hơn, a^2 có căn bậc 2 là $\pm a$, trong đó căn bậc 2 số học của a^2 là |a|.

Bài toán 14 ([Thâ+23], 4., p. 5). Tìm $x \in \mathbb{R}$: (a) $\sqrt{x} = 3$. (b) $\sqrt{x} = \sqrt{5}$. (c) $\sqrt{x} = 0$. (d) $\sqrt{x} = -2$.

 $Giải. \ \ DKXD\ \ cho \ cả 4 \ \acute{y}: \ x \geq 0. \ \ (a) \ \sqrt{x} = 3 \Leftrightarrow x = 3^2 = 9 \ \ (thỏa \ DKXD: \ nhận). \ \ Vậy \ x = 9. \ \ (b) \ \sqrt{x} = \sqrt{5} \Leftrightarrow x = 5 \ \ (thỏa \ DKXD: \ nhận). \ \ Vậy \ x = 0. \ \ (d) \ \ \ \ Cách \ 1: \ \ Phương trình \ \sqrt{x} = -2 \ \ vô \ \ nghiệm vì \ \ \ \sqrt{x} \geq 0 > -2, \ \forall x \in \mathbb{R}. \ \ \ Cách \ 2: \ \ \ Căn \ \ bậc \ 2 \ số \ \ học thì không âm nên không tồn tại \ x \in \mathbb{R} \ \ thỏa \ \ \ mãn \ \ \sqrt{x} = -2.$

Lưu ý 5 (Phương trình bậc $2\sqrt{x}=a$). Giải & biện luận theo tham số a phương trình $\sqrt{x}=a$ với $a\in\mathbb{R}$ cho trước. $DKXD: x\geq 0$. Xét 3 trường hợp: (a) Trường hợp $a=0:\sqrt{x}=0\Leftrightarrow x=0$ (thỏa DKXD: nhận). (b) Trường hợp $a>0:\sqrt{x}=a\Leftrightarrow x=a^2>0$ (thỏa DKXD: nhận). (c) Trường hợp a<0: phương trình vô tỷ $\sqrt{x}=a$ vô nghiệm vì $\sqrt{x}\geq 0>a, \forall x\in\mathbb{R}$.

Bài toán 15 ([Thâ+23], 5., p. 6). Không dùng bảng số hay máy tính bỏ túi, so sánh: (a) $2 \& \sqrt{2} + 1$. (b) $1 \& \sqrt{3} - 1$. (c) $2\sqrt{31} \& 10$. (d) $-3\sqrt{11} \& -12$.

Hint. Sử dụng tính chất: $0 \le a < b \Leftrightarrow \sqrt{a} < \sqrt{b}, \forall a, b \in \mathbb{R}$.

1st giải. (a) $1 < 2 \Leftrightarrow \sqrt{1} = 1 < \sqrt{2} \Leftrightarrow 1 + 1 < \sqrt{2} + 1 \Leftrightarrow 2 < 1 + \sqrt{2}$. Vậy $2 < 1 + \sqrt{2}$. (b) $4 > 3 \Leftrightarrow \sqrt{4} = 2 > \sqrt{3} \Leftrightarrow 2 - 1 > \sqrt{3} - 1$. Vậy $1 > \sqrt{3} - 1$. (c) $31 > 25 \Leftrightarrow \sqrt{31} > \sqrt{25} = 5 \Leftrightarrow 2\sqrt{31} > 2 \cdot 5 = 10$. Vậy $2\sqrt{31} > 10$. (d) $11 < 16 \Leftrightarrow \sqrt{11} < \sqrt{16} = 4 \Leftrightarrow -3\sqrt{11} > -3 \cdot 4 = -12$. Vậy $-3\sqrt{11} > -12$.

Có thể bình phương 2 vế của 2 biểu thức cần so sánh như sau (đương nhiên sẽ tốn công hơn nhưng bù lại tự nhiên hơn Cách 1 đã được "tỉa gọt", i.e., giấu các bước suy luân lòng vòng ngoài nháp để trình bày lời giải 'chỉ 1 dòng biến đổi tương đương'):

 $2nd \ giải. \ (a) \ (\sqrt{2}+1)^2 = (\sqrt{2})^2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2} > 3 + 2\sqrt{1} = 3 + 2 = 5 > 4 = 2^2 \Rightarrow \sqrt{2} + 1 > 2. \ (b) \ (\sqrt{3}-1)^2 = (\sqrt{3})^2 - 2\sqrt{3} + 1^2 = 4 - 2\sqrt{3} < 4 - \sqrt{3} \cdot \sqrt{3} = 4 - 3 = 1, \ \text{trong đó đã sử dụng } -2 < -\sqrt{3}. \ \text{Vậy } 1 > \sqrt{3} - 1. \ (c) \ (2\sqrt{31})^2 = 2^2(\sqrt{31})^2 = 4 \cdot 31 = 124 > 100 = 10^2 \Rightarrow 2\sqrt{31} > 10. \ (d) \ (3\sqrt{11})^2 = 3^2(\sqrt{11})^2 = 9 \cdot 11 = 99 < 144 = 12^2 \Rightarrow 3\sqrt{11} < 12 \Leftrightarrow -3\sqrt{11} > -12.$ \Box $\nabla_{\text{R}} y \ -3\sqrt{11} > -12.$

Bài toán 16 ([Thâ+23], 6., p. 6). Đ/S? (a) Căn bậc 2 của 0.36 là 0.6. (b) Căn bậc 2 của 0.36 là 0.06. (c) $\sqrt{0.36} = 0.6$. (d) Căn bậc 2 của 0.36 là 0.6 & -0.6. (e) $\sqrt{0.36} = \pm 0.6$.

Giải. (a) S: Căn bậc 2 của 0.36 là ± 0.6 (chứ không phải mỗi 0.6). (b) S: Căn bậc 2 của 0.36 là 0.6 (chứ không phải 0.06). (c) D: $\sqrt{0.36} = 0.6$. (d) D: Căn bậc 2 của 0.36 là 0.6 & -0.6. (e) S: $\sqrt{0.36} = 0.6$ vì $-\sqrt{0.36} = -0.6$ & $\pm \sqrt{0.36} = \pm 0.6$ mới đúng.

Bài toán 17 ([Thâ+23], 7., p. 6). Trong các số $\sqrt{(-5)^2}$, $\sqrt{5^2}$, $-\sqrt{5^2}$, $-\sqrt{(-5)^2}$, số nào là căn bậc 2 số học của 25?

Giải. Có $\sqrt{(-5)^2} = \sqrt{25} = 5$, $\sqrt{5^2} = \sqrt{25} = 5$, $-\sqrt{5^2} = -\sqrt{25} = -5$, $-\sqrt{(-5)^2} = -\sqrt{25} = -5$, mà căn bậc 2 số học của 25 là 5 nên suy ra $\sqrt{(\pm 5)^2}$ là căn bậc 2 số học của 25.

Lưu ý 6. Cả 4 số $\sqrt{(-5)^2}$, $\sqrt{5^2}$, $-\sqrt{5^2}$, $-\sqrt{(-5)^2}$ đều là căn bậc 2 của $5^2 = 25$, trong đó $\sqrt{(\pm 5)^2} = \sqrt{25} = 5 > 0$ là căn bậc 2 số học của $5^2 = 25$.

Bài toán 18 (Mở rộng [Thâ+23], 7., p. 6). Trong các số $\sqrt{(-a)^2}$, $\sqrt{a^2}$, $-\sqrt{a^2}$, $-\sqrt{(-a)^2}$, số nào là căn bậc 2 số học của a^2 với $a \in \mathbb{R}$ bất $k\hat{y}$?

 $\text{$Gi\"{ai}$. Có $\sqrt{(-a)^2} = \sqrt{a^2} = |a|, \ \sqrt{a^2} = \sqrt{a^2} = |a|, \ -\sqrt{a^2} = -\sqrt{a^2} = -|a|, \ -\sqrt{(-a)^2} = -\sqrt{a^2} = -|a|, \ \text{mà căn bậc 2 số học của} } \\ a^2 \text{ là a nên suy ra $\sqrt{(\pm a)^2}$ là căn bậc 2 số học của a^2.}$

Lưu ý 7. Cả 4 số $\sqrt{(-a)^2}$, $\sqrt{a^2}$, $-\sqrt{a^2}$, $-\sqrt{(-a)^2}$ đều là căn bậc 2 của a^2 , trong đó $\sqrt{(\pm a)^2} = \sqrt{a^2} = |a| \ge 0$ là căn bậc 2 số học của a^2 , $\forall a \in \mathbb{R}$.

Bài toán 19 ([Thâ+23], 8., p. 6). Chứng minh: $\sqrt{1^3+2^3}=1+2$, $\sqrt{1^3+2^3+3^3}=1+2+3$, $\sqrt{1^3+2^3+3^3+4^3}=1+2+3+4$. Viết tiếp 1 số đẳng thức tương tự.

Chứng minh. $\sqrt{1^3+2^3}=\sqrt{1+8}=\sqrt{9}=3=1+2, \sqrt{1^3+2^3+3^3}=\sqrt{1+8+27}=\sqrt{36}=6=1+2+3, \sqrt{1^3+2^3+3^3+4^3}=\sqrt{1+8+27+64}=\sqrt{100}=10=1+2+3+4.$ Ta có các đẳng thức:

$$\sqrt{1^3+2^3}=1,$$

$$\sqrt{1^3+2^3}=1+2,$$

$$\sqrt{1^3+2^3+3^3}=1+2+3,$$

$$\sqrt{1^3+2^3+3^3+4^3}=1+2+3+4,$$

$$\sqrt{1^3+2^3+3^3+4^3+5^3}=1+2+3+4+5,$$

$$\sqrt{1^3+2^3+3^3+4^3+5^3+6^3}=1+2+3+4+5+6,$$

$$\sqrt{1^3+2^3+3^3+4^3+5^3+6^3+7^3}=1+2+3+4+5+6+7,$$

$$\sqrt{1^3+2^3+3^3+4^3+5^3+6^3+7^3}=1+2+3+4+5+6+7+8,$$

$$\sqrt{1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3}=1+2+3+4+5+6+7+8+9,$$

$$\sqrt{1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3+9^3}=1+2+3+4+5+6+7+8+9+10.$$

Dự đoán đẳng thức tổng quát:

$$\sqrt{\sum_{i=1}^{n} i^3} = \sqrt{1^3 + 2^3 + \dots + n^3} = \sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}, \ \forall n \in \mathbb{N}^*.$$

Đẳng thức này đúng & có thể được chứng minh bằng phương pháp quy nap toán học.

Lưu ý 8. Công thức tính tổng lập phương của n số nguyên dương đầu tiên:

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\sum_{i=1}^{n} i\right)^2 = (1 + 2 + \dots + n)^2 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^2(n+1)^2}{4}, \ \forall n \in \mathbb{N}^*.$$
 (1)

Ta có thể kiểm nghiệm công thức trên bằng máy tính:

Bài toán 20. Viết chương trình Pascal, Python, C/C++ tính: (a) tổng n số nguyên dương đầu tiên. (b) tổng bình phương của n số nguyên dương đầu tiên. (c) tổng lập phương của n số nguyên dương đầu tiên. (d) Từ câu (a) & (c), kiểm tra đẳng thức (1). (e) tổng lũy thừa bậc $m \in \mathbb{R}$ của n số nguyên dương đầu tiên⁵.

Bài toán 21 ([Thâ+23], 9., p. 6). Cho $a,b \in \mathbb{R}, \ a,b \ge 0$. Chứng minh: (a) $a < b \Rightarrow \sqrt{a} < \sqrt{b}$. (b) $\sqrt{a} < \sqrt{b} \Rightarrow a < b$.

Chứng minh. (a) Vì $a,b \ge 0$ & a < b nên $\sqrt{a} + \sqrt{b} > \sqrt{a} + \sqrt{a} = 2\sqrt{a} \ge 0$ (*). Có $a < b \Rightarrow 0 > a - b = (\sqrt{a})^2 - (\sqrt{b})^2 = (\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$ (**). Từ (*) & (**), suy ra $\sqrt{a} - \sqrt{b} < 0$ hay $\sqrt{a} < \sqrt{b}$. (b) $\sqrt{a} < \sqrt{b} \Leftrightarrow \sqrt{a} - \sqrt{b} < 0$, kết hợp điều này & (*), suy ra $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) < 0 \Leftrightarrow a - b < 0 \Leftrightarrow a < b$.

Lưu ý 9. Từ chứng minh trên, ta thấy a - b $\mathcal{E}\sqrt{a} - \sqrt{b}$ luôn cùng dấu:

$$(a-b)(\sqrt{a}-\sqrt{b}) = \begin{cases} =0, & \text{if } a=b, \\ >0, & \text{if } a\neq b, \end{cases}, \ \forall a,b \in \mathbb{R}, \ a,b \ge 0.$$

Chặt chế & ngắn gọn hơn về công thức toán học, đẳng thức trên tương đương với đẳng thức:

$$sign(a - b) = sign(\sqrt{a} - \sqrt{b}), \ \forall a, b \in \mathbb{R}, \ a, b \ge 0,$$

 $trong \ do \ sign : \mathbb{R} \to \{0, \pm 1\}, \ x \mapsto sign \ x \ là \ hàm dấu <math>xác \ dinh \ trên \ tập \ số \ thực \ \mathbb{R} \ bởi \ công \ thức:$

$$sign x = \begin{cases} 1, & if \ x > 0, \\ 0, & if \ x = 0, \\ -1, & if \ x < 0. \end{cases}$$

Bài toán 22 ([Thâ+23], 10., p. 6). Cho $m \in \mathbb{R}$, m > 0. Chứng minh: (a) $m > 1 \Rightarrow \sqrt{m} > 1$. (b) $m < 1 \Rightarrow \sqrt{m} < 1$.

Chứng minh. Áp dụng Bài toán 21 (a) lần lượt với (a,b)=(1,m) & (a,b)=(m,1), ta được: (a) $m>1\Rightarrow \sqrt{m}>\sqrt{1}=1$. (b) $m<1\Rightarrow \sqrt{m}<\sqrt{1}=1$.

 $^{^5}$ Lũy thừa bậc thực của 1 số thực, i.e., a^b với $a,b\in\mathbb{R},~a^2+b^2\neq 0$, sẽ được học ở chương trình Toán Giải tích 11.

Bài toán 23 ([Thâ+23], 11., p. 6). Cho $m \in \mathbb{R}$, m > 0. Chứng minh: (a) $m > 1 \Rightarrow m > \sqrt{m} > 1$. (b) $m < 1 \Rightarrow m < \sqrt{m} < 1$.

Chứng minh. (a) Theo Bài toán 22 (a): $m > 1 \Rightarrow \sqrt{m} > 1$. Nhân cả 2 vế của bất đẳng thức cuối với $\sqrt{m} > 0$, ta được $m > \sqrt{m}$. (b) Theo Bài toán 22 (b): $m < 1 \Rightarrow \sqrt{m} < 1$. Nhân cả 2 vế của bất đẳng thức cuối với $\sqrt{m} > 0$, ta được $\sqrt{m} \cdot \sqrt{m} = m < \sqrt{m}$. \square

Bài toán 24 (Program to print out 1st n square roots). Với $n \in \mathbb{N}^*$ được $nh\hat{q}p$ từ bàn phím, viết chương trình Pascal, C/C++, Python $xuất \ ra$: (a) Căn bâc 2 của n. (b) Căn bâc 2 của n số nguyên dương đầu tiên.

Pascal:

```
program square_root;
var num, sqrt_num: real;
begin
    write('Enter a number num = ');
    readln(num);
    sqrt_num := Sqrt(num);
    writeln('sqrt of ', num,' = ', sqrt_num)
end.
```

Bài toán 25 (Số chính phương). Viết chương trình Pascal, C/C++, Python $d\vec{e}$ kiểm tra 1 số $n \in \mathbb{N}^*$ được nhập từ bàn phím có phải là số chính phương hay không.

Bài toán 26 ([Tuy23], Thí dụ 1, p. 5). Cho số thực $x \ge 0$. So sánh \sqrt{x} với x.

 $Giải. \ \ \text{Vì} \ x \geq 0 \ \ \text{nên} \ \sqrt{x} \ \text{có nghĩa/xác định} \ \& \ \sqrt{x} \geq 0. \ \text{Xét các trường hợp: (a)} \ \sqrt{x} = x \Leftrightarrow x = x^2 \Leftrightarrow x - x^2 = 0 \Leftrightarrow x(1-x) = 0 \Leftrightarrow x = 0 \ \text{hoặc} \ x = 1. \ \text{(b)} \ \sqrt{x} < x \Leftrightarrow x < x^2 \Leftrightarrow x - x^2 < 0 \Leftrightarrow x(1-x) < 0, \ \text{mà} \ x \geq 0 \ \text{nên suy ra} \ 1 - x < 0, \ \text{hay} \ x > 1. \ \text{(c)} \ \sqrt{x} > x \Leftrightarrow x > x^2 \Leftrightarrow x - x^2 > 0 \Leftrightarrow x(1-x) > 0 \Leftrightarrow 0 < x < 1. \ \text{Vậy:} \ x \in \{0,1\} \Leftrightarrow \sqrt{x} = x, \ x > 1 \Leftrightarrow \sqrt{x} < x, \ \& 0 < x < 1 \Leftrightarrow \sqrt{x} > x.$

Nhận xét 1. Về mặt phương pháp để so sánh 2 số không âm ta có thể so sánh các bình phương của 2 số đó: $a \ge b > 0 \Leftrightarrow a^2 \ge b^2$. Về kết quả, khi so sánh \sqrt{x} với x ta thấy có thể xảy ra cả 3 trường hợp: lớn hơn, nhỏ hơn, hoặc bằng nhau tùy theo x ở trong khoảng giá trị nào, cụ thể: $x \in \{0,1\} \Leftrightarrow \sqrt{x} = x, \ x > 1 \Leftrightarrow \sqrt{x} < x, \ \mathcal{E}\ 0 < x < 1 \Leftrightarrow \sqrt{x} > x$.

Bài toán 27 ([Bìn23], Ví dụ 2, p. 5). Chứng minh tổng & hiệu của 1 số hữu tỷ với 1 số vô tỷ là 1 số vô tỷ.

Giải. Chứng minh bằng phản chứng. Giả sử tồn tại 2 số $a \in \mathbb{Q}$ & $b \in \mathbb{R} \setminus \mathbb{Q}$ sao cho $c = a + b \in \mathbb{Q}$. Ta có b = c - a, mà hiệu của 2 số hữu tỷ c, a là 1 số hữu tỷ nên $b \in \mathbb{Q}$, mâu thuẫn với giả thiết, nên c phải là số vô tỷ. Chứng minh tương tự cho hiệu.

Bài toán 28 ([Bìn23], Ví dụ 3, p. 5). Xét xem các số a, b có thể là số vô tỷ hay không, nếu: (a) a + b & a - b là các số hữu tỷ. (b) a - b & ab là các số hữu tỷ.

Bài toán 29 ([Bìn23], Ví dụ 4, p. 5). Chứng minh: Nếu số tự nhiên a không là số chính phương thì \sqrt{a} là số vô tỷ.

Bài toán 30 ([Bìn23], 2., p. 6). Chứng minh các số sau là số vô tỷ: (a) $\sqrt{1+\sqrt{2}}$. (b) $m+\frac{\sqrt{3}}{n}$ với $m,n\in\mathbb{Q},\ n\neq 0$.

Bài toán 31 ([Bìn23], 3., p. 6). Xét xem các số a,b có thể là số vô tỷ hay không nếu: (a) ab $\mathcal{E} = \frac{a}{b}$ là các số hữu tỷ. (b) a + b $\mathcal{E} = \frac{a}{b}$ là các số hữu tỷ $(a + b \neq 0)$. (c) a + b, a^2 , $\mathcal{E} = b^2$ là các số hữu tỷ $(a + b \neq 0)$.

Bài toán 32 ([Bìn23], 4., p. 6). So sánh 2 số: (a) $2\sqrt{3}$ & $3\sqrt{2}$. (b) $6\sqrt{5}$ & $5\sqrt{6}$. (c) $\sqrt{24} + \sqrt{45}$ & 12. (d) $\sqrt{37} - \sqrt{15}$ & 2.

Bài toán 33 ([Bìn23], 5., p. 6). (a) Cho 1 ví dụ để chứng tỏ khẳng định $\sqrt{a} \le a$ với mọi số a không âm là sai. (b) Cho a > 0. Với giá trị nào của a thì \sqrt{a} ?

Bài toán 34 ([Bìn23], 6*., pp. 6–7). (a) Chỉ ra 1 số thực x mà $x-\frac{1}{x}$ là số nguyên $(x \neq \pm 1)$. (b) Chứng minh nếu $x-\frac{1}{x}$ là số nguyên \mathscr{C} $x \neq \pm 1$ thì x \mathscr{C} $x+\frac{1}{x}$ là số vô tỷ. Khi đó $\left(x+\frac{1}{x}\right)^{2n}$ \mathscr{C} $\left(x+\frac{1}{x}\right)^{2n+1}$ là số hữu tỷ hay số vô tỷ?

2 Căn Thức Bậc 2 & Hằng Đẳng Thức $\sqrt{A^2} = |A|$

Bài toán 35 ([Chí+23], ?1, p. 8). Hình chữ nhật ABCD có đường chéo dài 5 cm \mathscr{C} cạnh BC = x cm. tính AB.

Bài toán 36 ([Chí+23], ?2, p. 8). Với giá trị nào của $x \in \mathbb{R}$ thì $\sqrt{5-2x}$ xác định?

Bài toán 37 ([Chí+23], DL, p. 9). Chứng minh: $\sqrt{a^2} = |a|, \forall a \in \mathbb{R}$.

Bài toán 38 ([Chí+23], Ví dụ 2, p. 9). Tính: (a) $\sqrt{12^2}$. (b) $\sqrt{(-7)^2}$.

Bài toán 39 ([Chí+23], Ví dụ 3, p. 9). Rút gọn: (a) $\sqrt{(\sqrt{2}-1)^2}$. (b) $\sqrt{(2-\sqrt{5})^2}$.

Bài toán 40 ([Chí+23], Ví dụ 4, p. 10). Rút gọn: (a) $\sqrt{(x-2)^2}$ với $x \ge 2$. (b) $\sqrt{a^6}$ với a < 0.

Bài toán 41 ([Chí+23], 6., p. 10). Với giá trị nào của $a \in \mathbb{R}$ thì mỗi căn thức sau có nghĩa? (a) $\sqrt{\frac{a}{3}}$. (b) $\sqrt{-5a}$. (c) $\sqrt{4-a}$. (d) $\sqrt{3a+7}$.

Bài toán 42 ([Chí+23], 7., p. 10). Tính: (a) $\sqrt{(0.1)^2}$. (b) $\sqrt{(-0.3)^2}$. (c) $-\sqrt{(-1.3)^2}$. (d) $-0.4\sqrt{(-0.4)^2}$.

Bài toán 43 ([Chí+23], 8., p. 10). Rút gọn các biểu thức: (a) $\sqrt{(2-\sqrt{3})^2}$. (b) $\sqrt{(3-\sqrt{11})^2}$. (c) $2\sqrt{a^2}$ với $a \ge 0$ & với $a \in \mathbb{R}$. (d) $3\sqrt{(a-2)^2}$ với a < 2 & với $a \in \mathbb{R}$.

Bài toán 44 ([Chí+23], 9., p. 11). Tìm x thỏa: (a) $\sqrt{x^2} = 7$. (b) $\sqrt{x^2} = |-8|$. (c) $\sqrt{4x^2} = 6$. (d) $\sqrt{9x^2} = |-12|$.

Bài toán 45 ([Chí+23], 10., p. 11). Chứng minh: (a) $(\sqrt{3}-1)^2=4-2\sqrt{3}$. (b) $\sqrt{4-2\sqrt{3}}-\sqrt{3}=-1$.

Bài toán 46 ([Chí+23], 11., p. 11). $Tinh: (a) \sqrt{16} \cdot \sqrt{25} + \sqrt{196} : \sqrt{49}. (b) 36 : \sqrt{2 \cdot 3^2 \cdot 18} - \sqrt{169}. (c) \sqrt{\sqrt{81}}. (d) \sqrt{3^2 + 4^2}.$

Bài toán 47 ([Chí+23], 12., p. 11). Tìm x để mỗi căn thức sau có nghĩa: (a) $\sqrt{2x+7}$. (b) $\sqrt{-3x+4}$. (c) $\sqrt{\frac{1}{x-1}}$. (d) $\sqrt{1+x^2}$.

Bài toán 48 ([Chí+23], 13., p. 11). Rút gọn các biểu thức: (a) $2\sqrt{a^2} - 5a$ với a < 0 & $a \in \mathbb{R}$. (b) $\sqrt{25a^2} + 3a$ với $a \ge 0$ & $a \in \mathbb{R}$. (c) $\sqrt{9a^4} + 3a^2$. (d) $5\sqrt{4a^6} - 3a^3$ với a < 0 & $a \in \mathbb{R}$.

Bài toán 49 ([Chí+23], 14., p. 11). Phân tích thành nhân tử: (a) $x^2 - 3$. (b) $x^2 - 6$. (c) $x^2 + 2\sqrt{3}x + 3$. (d) $x^2 - 2\sqrt{5}x + 5$. Hint. $a = (\sqrt{a})^2$, $\forall a \in \mathbb{R}, a \ge 0$.

Bài toán 50 ([Chí+23], 15., p. 11). *Giải phương trình:* (a) $x^2 - 5 = 0$. (b) $x^2 - 2\sqrt{11}x + 11 = 0$.

Bài toán 51 ([Chí+23], 16., p. 12). Tìm chỗ sai trong phép chứng minh "Con muỗi nặng bằng con voi" sau: Giả sử con muỗi nặng m g, còn con voi nặng V g. Ta có: $m^2+V^2=V^2+m^2$. Cộng cả 2 vế với -2mV, ta có: $m^2-2mV+V^2=V^2-2mV+m^2$, hay $(m-V)^2=(V-m)^2$. Lấy căn bậc 2 mỗi vế của đẳng thức trên, ta được: $\sqrt{(m-V)^2}=\sqrt{(V-m)^2}$. Do đó m-V=V-m. Từ đó ta có 2m=2V, suy ra m=V. Vậy con muỗi nặng bằng con voi!

Bài toán 52 ([Thâ+23], 12., p. 7). Tìm $x \in \mathbb{R}$ để căn thức sau có nghĩa: (a) $\sqrt{-2x+3}$. (b) $\sqrt{\frac{2}{x^2}}$. (c) $\sqrt{\frac{4}{x+3}}$. (d) $\sqrt{\frac{-5}{x^2+6}}$.

Bài toán 53 ([Thâ+23], 13., p. 7). Rút gọn rồi tính: (a) $5\sqrt{(-2)^4}$. (b) $-4\sqrt{(-3)^6}$. (c) $\sqrt{\sqrt{(-5)^8}}$. (d) $2\sqrt{(-5)^6} + 3\sqrt{(-2)^8}$.

Bài toán 54 ([Thâ+23], 14., p. 7). Rút gọn các biểu thức: (a) $\sqrt{(4+\sqrt{2})^2}$. (b) $\sqrt{(3-\sqrt{3})^2}$. (c) $\sqrt{(4-\sqrt{17})^2}$. (d) $2\sqrt{3}+\sqrt{(2-\sqrt{3})^2}$.

Bài toán 55 ([Thâ+23], 15., p. 7). Chứng minh: (a) $9+4\sqrt{5}=(\sqrt{5}+2)^2$. (b) $\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2$. (c) $(4-\sqrt{7})^2=23-8\sqrt{7}$. (d) $\sqrt{23+8\sqrt{7}}-\sqrt{7}=4$.

Bài toán 56 ([Thâ+23], 16., p. 7). Biểu thức sau đây xác định với giá trị nào của x? (a) $\sqrt{(x-1)(x-3)}$. (b) $\sqrt{x^2-4}$. (c) $\sqrt{\frac{x-2}{x+3}}$. (d) $\sqrt{\frac{2+x}{5-x}}$.

Bài toán 57 ([Thâ+23], 17., p. 8). Tìm $x \in \mathbb{R}$ thỏa: (a) $\sqrt{9x^2} = 2x + 1$. (b) $\sqrt{x^2 + 6x + 9} = 3x - 1$. (c) $\sqrt{1 - 4x + 4x^2} = 5$. (d) $\sqrt{x^4} = 7$.

Bài toán 58 ([Thâ+23], 18., p. 8). Phân tích nhân tử: (a) $x^2 - 7$. (b) $x^2 - 2\sqrt{2}x + 2$. (c) $x^2 + 2\sqrt{13}x + 13$.

Bài toán 59 ([Thâ+23], 19., p. 8). Tìm DKXD rồi rút gọn các phân thức: (a) $\frac{x^2-5}{x+\sqrt{5}}$. (b) $\frac{x^2+2\sqrt{2}x+2}{x^2-2}$.

Bài toán 60 ([Thâ+23], 20., p. 8). Không dùng bảng số hay máy tính bỏ túi, so sánh: (a) $6 + 2\sqrt{2} & 9$. (b) $\sqrt{2} + \sqrt{3} & 3$. (c) $9 + 4\sqrt{5} & 16$. (d) $\sqrt{11} - \sqrt{3} & 2$.

Bài toán 61 ([Thâ+23], 21., p. 8). Rút gọn biểu thức: (a) $\sqrt{4-2\sqrt{3}}-\sqrt{3}$. (b) $\sqrt{11+6\sqrt{2}}-3+\sqrt{2}$. (c) $\sqrt{9x^2}-2x$ với x<0 & $x\in\mathbb{R}$. (d) $x-4+\sqrt{16-8x+x^2}$ với x>4 & $x\in\mathbb{R}$.

Bài toán 62 ([Thâ+23], 22., p. 8). (a) Chứng minh: $\sqrt{(n+1)^2} + \sqrt{n^2} = (n+1)^2 - n^2$, $\forall n \in \mathbb{N}$. Viết đẳng thức trên với n = 1, 2, ..., 10. (b) Tính $\sqrt{(x+1)^2} + \sqrt{x^2}$ với $x \in \mathbb{R}$ rồi so sánh với $|(x+1)^2 - x^2|$.

Bài toán 63 ([Tuy23], Thí dụ 2, p. 5). Cho $a, b, c \in \mathbb{Q}$, $abc \neq 0$ & a = b + c. Chứng minh $A = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} \in \mathbb{Q}$.

 $Gi\mathring{a}i. \ \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \left(\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right)^2 + 2\left(\frac{1}{ab} + \frac{1}{ac} - \frac{1}{bc}\right) = \left(\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right)^2 + \frac{2(c+b-a)}{abc} = \left(\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right)^2 \text{ vì } a = b + c. \text{ Suy }$ $\text{ra } A = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} = \sqrt{\left(\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right)^2} = \left|\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right|. \text{ Có } a, b, c \in \mathbb{Q}^* \Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \in \mathbb{Q} \Rightarrow A = \left|\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right| \in \mathbb{Q}.$

Bài toán 64. Cho $a, b, c \in \mathbb{Q}$, $abc \neq 0$ & a + b + c = 0. Chứng minh $A = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} \in \mathbb{Q}$.

$$\text{1st giải.} \ \, \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2 - 2\left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right) = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2 - \frac{2(a+b+c)}{abc} = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2 \text{ vì } a + b + c = 0.$$
 Suy ra $A = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} = \sqrt{\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2} = \left|\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right|.$ Có $a, b, c \in \mathbb{Q}^* \Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \in \mathbb{Q} \Rightarrow A = \left|\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right| \in \mathbb{Q}.$

 $2nd \ giải. \ a+b+c=0 \Leftrightarrow -a=b+c, \ \text{nên ta có} \ \text{thể áp dụng bài toán 63 cho bộ 3 số} \ (-a,b,c) \in \mathbb{Q}^3, \ -abc \neq 0 \ \text{để thu được} \\ \sqrt{\frac{1}{(-a)^2}+\frac{1}{b^2}+\frac{1}{c^2}} \in \mathbb{Q}, \ \text{i.e.}, \ A=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}} \in \mathbb{Q}.$

Nhận xét 2 (Proof of $\in \mathbb{Q}$). Để chứng minh 1 số là số hữu tỷ ta biểu diễn số đó thành 1 biểu thức gồm các phép tính cộng, trừ, nhân, chia (cho 1 số khác 0) của các số hữu tỷ.

Bài toán 65. (a) Cho $a, b, c \in \mathbb{R}$, $abc \neq 0$, khi nào $thì <math>\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2 = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$? (b) Cho $a, b, c, d \in \mathbb{R}$, $abcd \neq 0$, khi $n\grave{a}o\ th\grave{i}\ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)^2 = \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}?\ (c)\ Cho\ a,b,c,d,e \in \mathbb{R},\ abcde \neq 0,\ khi\ n\grave{a}o\ th\grave{i}\ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)^2 = \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}?\ (c)\ Cho\ a,b,c,d,e \in \mathbb{R},\ abcde \neq 0,\ khi\ n\grave{a}o\ th\grave{i}\ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)^2 = \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}?\ (c)\ Cho\ a,b,c,d,e \in \mathbb{R},\ abcde \neq 0,\ khi\ n\grave{a}o\ th\grave{i}\ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)^2 = \frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}?\ (c)\ Cho\ a,b,c,d,e \in \mathbb{R},\ abcde \neq 0,\ khi\ n\grave{a}o\ th\grave{i}\ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)^2 = \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}?\ (c)\ Cho\ a,b,c,d,e \in \mathbb{R},\ abcde \neq 0,\ khi\ n\grave{a}o\ th\grave{i}\ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)^2 = \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{c^2}+\frac{1}{d^2$ $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2} + \frac{1}{e^2}? (d) \text{ Cho } n \in \mathbb{N}^*, \ a_i \in \mathbb{R}, \ \forall i = 1, 2, \dots, n, \ \prod_{i=1}^n a_i = a_1 a_2 \dots a_n \neq 0, \ khi \ n\`{a}o \ th\`{i} \ x\'{a}y \ ra \ d\~{a}ng \ th\'{u}c \ sau?$

$$\left(\sum_{i=1}^{n} \frac{1}{a_i}\right)^2 = \sum_{i=1}^{n} \frac{1}{a_i^2}, i.e., \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right)^2 = \frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}.$$

Bài toán 66. Cho $a, b, c, d \in \mathbb{Q}$, $abcd \neq 0$ & ab + ac + ad + bc + bd + cd = 0. Chứng minh $A = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}} \in \mathbb{Q}$.

Bài toán 67. Cho $a, b, c, d, e \in \mathbb{Q}$, $abcde \neq 0$ & abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde = 0. Chứng minh $A = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2} + \frac{1}{c^2}} \in \mathbb{Q}$

Bài toán 68. Cho $n \in \mathbb{N}^*$, $a_i \in \mathbb{Q}$, $\forall i = 1, 2, ..., n$, $\prod_{i=1}^n a_i = a_1 a_2 ... a_n \neq 0$, & $\sum_{\text{cyc}} a_1 a_2 ... a_{n-2} = 0$. Chứng minh:

$$A = \sqrt{\sum_{i=1}^{n} \frac{1}{a_i^2}} = \sqrt{\frac{1}{a_1^2} + \frac{1}{a_2^2} + \dots + \frac{1}{a_n^2}} \in \mathbb{Q}.$$

Lưu ý 10 (Cyclic sum). Ký hiệu \sum_{cyc} được gọi là tổng cyclic. Xem định nghĩa $\mathscr E$ ví dụ tại, e.g., $AoPS/cyclic\ sum^6$.

Bài toán 69 ([Tuy23], 1., p. 6). Tính $A = \sqrt{\frac{8^{10} - 4^{10}}{4^{11} - 8^4}}$.

Phân tích. 4,8 đều là lũy thừa của 2 nên sẽ tiện hơn nếu đưa tất cả các lũy thừa trong A về lũy thừa với cơ số 2.

$$Gi \dot{a} i. \ \ A = \sqrt{\frac{(2^3)^{10} - (2^2)^{10}}{(2^2)^{11} - (2^3)^4}} = \sqrt{\frac{2^{30} - 2^{20}}{2^{22} - 2^{12}}} = \sqrt{\frac{2^{20}(2^{10} - 1)}{2^{12}(2^{10} - 1)}} = \sqrt{2^8} = 2^4 = 16.$$

Bài toán 70 ([Tuy23], 2., p. 6). Cho $A = \underbrace{99...9}_{10/2} 4\underbrace{00...0}_{10/2} 9$. Tính \sqrt{A} .

$$1st \ giải. \ A = \underbrace{99\ldots9}_{10/s} 4 \cdot 1 \underbrace{00\ldots0}_{11/s} + 9 = \underbrace{(99\ldots9}_{10/s} 7 - 3) \underbrace{(99\ldots9}_{10/s} 7 + 3) + 9 = \underbrace{99\ldots9}_{10/s} 7^2 - 3^2 + 9 = \underbrace{99\ldots9}_{10/s} 7^2 \Rightarrow \sqrt{A} = \underbrace{99\ldots9}_{10/s} 7. \quad \Box$$

$$2nd \ gi \\ ai. \ A = (10^{10} - 1) \cdot 10^{12} + 4 \cdot 10^{11} + 9 = 10^{22} - 10^{12} + 4 \cdot 10^{11} + 9 = 10^{22} - 10 \cdot 10^{11} + 4 \cdot 10^{11} + 9 = 10^{22} - 6 \cdot 10^{11} + 9 = 10^{11} - 3)^2 \\ \Rightarrow \sqrt{A} = 10^{11} - 3 = \underbrace{99 \dots 9}_{10/8} 7.$$

Bài toán 71 ([Tuy23], 3., p. 6). Không dùng máy tính hoặc bằng số, so sánh: (a) $\sqrt{8} + \sqrt{15} \, \& \sqrt{65} - 1$. (b) $\frac{13 - 2\sqrt{3}}{6} \, \& \sqrt{2}$.

Hint. Tìm các số chính phương gần với các số dưới dấu căn để đơn giản dấu căn 1 cách hợp lý.

Bài toán 72 ([Tuy23], 4., p. 6). Tìm điều kiện xác định (DKXĐ) & tập xác định (TXD) của các biểu thức: (a) $\sqrt{2-x^2}$. (b) $\frac{x}{\sqrt{5x^2-3}}$. (c) $\sqrt{-4x^2+4x-1}$. (d) $\frac{1}{\sqrt{x^2+x-2}}$.

 $Gi \mathring{a}i. \text{ (a) } \sqrt{2-x^2} \text{ xác } \mathring{\text{dinh}} \Leftrightarrow 2-x^2 \geq 0 \Leftrightarrow x^2 \leq 2 \Leftrightarrow |x| \leq \sqrt{2} \Leftrightarrow -\sqrt{2} \leq x \leq \sqrt{2}. \text{ DKXD: } -\sqrt{2} \leq x \leq \sqrt{2}. \text{ TXD: } D = \left[-\sqrt{2},\sqrt{2}\right]. \text{ (b) } \frac{x}{\sqrt{5x^2-3}} \text{ xác } \mathring{\text{dinh}} \Leftrightarrow 5x^2-3>0 \Leftrightarrow x^2>\frac{3}{5} \Leftrightarrow |x|>\sqrt{\frac{3}{5}} \Leftrightarrow x>\sqrt{\frac{3}{5}} \text{ hoặc } x<-\sqrt{\frac{3}{5}}. \text{ DKXD: } x>\sqrt{\frac{3}{5}} \text{ hoặc } x<-\sqrt{\frac{3}{5}}. \text{ TXD: } D = \left(-\infty,-\sqrt{\frac{3}{5}}\right) \cup \left(\sqrt{\frac{3}{5}},\infty\right). \text{ (c) } \sqrt{-4x^2+4x-1} \text{ xác } \mathring{\text{dinh}} \Leftrightarrow -4x^2+4x-1\geq 0 \Leftrightarrow -(2x-1)^2 \geq 0 \Leftrightarrow (2x-1)^2 \leq 0 \Leftrightarrow 2x-1=0 \Leftrightarrow x=\frac{1}{2}. \text{ DKXD: } x=\frac{1}{2}. \text{ TXD: } D=\left\{\frac{1}{2}\right\}. \text{ (d) } \frac{1}{\sqrt{x^2+x-2}} \text{ xác } \mathring{\text{dinh}} \Leftrightarrow x^2+x-2>0 \Leftrightarrow (x-1)(x+2)>0 \Leftrightarrow x>1 \text{ hoặc } x<-2. \text{ DKXD: } x>1 \text{ hoặc } x<-2. \text{ TXD: } D=(-\infty,-2) \cup (1,\infty).$

 $\textbf{Bài toán 73 } ([\textbf{Tuy23}], \, 5., \, \textbf{p. 6}). \ \textit{Cho a, b, c} \in \mathbb{Q} \ \textit{khác nhau đôi một. Chứng minh } A = \sqrt{\frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2}} \in \mathbb{Q}.$

 $2nd \ giải. \ \ \text{Vì} \ (a-b)+(b-c)+(c-a)=0, \& \ \text{vì} \ a,b,c\in \mathbb{Q} \ \text{khác nhau đôi một nghĩa là } (a-b)(b-c)(c-a)\neq 0 \ \text{nên có thể áp dụng Bài toán } 64 \ \text{cho bộ } 3 \ \text{số} \ (a-b,b-c,c-a) \ \text{để thu được} \ A=\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}}\in \mathbb{Q}.$

Bài toán 74 ([Tuy23], 6., p. 6). Cho $a, b, c \in \mathbb{Q}$ thỏa mãn ab + bc + ca = 1. Chứng minh $A = \sqrt{(a^2 + 1)(b^2 + 1)(c^2 + 1)} \in \mathbb{Q}$.

 $\begin{array}{ll} \textit{Gi\'{a}i.} & a^2+1=a^2+ab+bc+ca=(a+b)(a+c), \ b^2+1=b^2+ab+bc+ca=(b+c)(b+a), \ c^2+1=c^2+ab+bc+ca=(c+a)(c+b), \\ \textit{n\'{e}n} & A=\sqrt{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}=\sqrt{(a+b)^2(b+c)^2(c+a)^2}=|(a+b)(b+c)(c+a)|. \ \textit{C\'{o}}: \ a,b,c\in\mathbb{Q} \Rightarrow A=|(a+b)(b+c)(c+a)|\in\mathbb{Q}. \end{array}$

Bài toán 75 ([Tuy23], 7., p. 6-7). (a) Tìm giá trị lớn nhất của biểu thức $A = \sqrt{-x^2 + x + \frac{3}{4}}$. (b) Tìm giá trị nhỏ nhất của biểu thức $B = \sqrt{4x^4 - 4x^2(x+1) + (x+1)^2 + 9}$. (c) Tìm giá trị nhỏ nhất của biểu thức $C = \sqrt{25x^2 - 20x + 4} + \sqrt{25x^2}$.

Bài toán 76 ([Tuy23], 8., p. 7). Cho x < 0, rút gọn biểu thức $A = |2x - \sqrt{(5x-1)^2}|$.

Bài toán 77 ([Tuy23], 9., p. 7). Cho biểu thức $A = 4x - \sqrt{9x^2 - 12x + 4}$. (a) Rút gọn A. (b) Tính giá trị của A với $x = \frac{2}{7}$.

Bài toán 78 ([Tuy23], 10., p. 7). Cho biểu thức $A = 5x + \sqrt{x^2 + 6x + 9}$. (a) Rút gọn A. (b) Tìm x để B = -9.

Bài toán 79 ([Tuy23], 11., p. 7). Tìm $x \in \mathbb{R}$ biết $\sqrt{4x^2 - 4x + 1} \le 5 - x$.

Bài toán 80 ([Tuy23], 12., p. 7). Giải phương trình: (a) $\sqrt{x^2 + 2x + 1} = \sqrt{x + 1}$. (b) $\sqrt{x^2 - 9} + \sqrt{x^2 - 6x + 9} = 0$. (c) $\sqrt{x^2 - 4} - x^2 + 4 = 0$.

Bài toán 81 ([Tuy23], 13., p. 7). Giải phương trình: (a) $\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}$. (b) $\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}$. (c) $\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}$.

Bài toán 82 ([Bìn23], Ví dụ 5, p. 7). Cho biểu thức $A = \sqrt{x - \sqrt{x^2 - 4x + 4}}$. (a) Tìm điều kiện xác định của biểu thức A. (b) Rút gọn biểu thức A.

Bài toán 83 ([Bìn23], Ví dụ 6, p. 8). Tìm điều kiện xác định của các biểu thức: (a) $A = \frac{1}{\sqrt{x^2 - 2x - 1}}$. (b) $B = \frac{1}{\sqrt{x - \sqrt{2x + 1}}}$.

Bài toán 84 ([Bìn23], Ví dụ 7, p. 8). Tìm các giá trị của x sao cho $\sqrt{x+1} < x+3$.

Bài toán 85 ([Bìn23], 7., p. 9). *Tìm điều kiện xác định của các biểu thức:* (a) $3-\sqrt{1-16x^2}$. (b) $\frac{1}{1-\sqrt{x^2-3}}$. (c) $\sqrt{8x-x^2-15}$.

(d)
$$\frac{2}{\sqrt{x^2 - x + 1}}$$
. (e) $A = \frac{1}{\sqrt{x - \sqrt{2x - 1}}}$. (f) $B = \frac{\sqrt{16 - x^2}}{\sqrt{2x + 1}} + \sqrt{x^2 - 8x + 14}$.

Bài toán 86 ([Bìn23], 8., p. 9). Cho biểu thức $A = \sqrt{x^2 - 6x + 9} - \sqrt{x^2 + 6x + 9}$. (a) Rút gọn biểu thức A. (b) Tìm các giá trị của x để A = 1.

Bài toán 87 ([Bìn23], 9., p. 9). Tìm các giá trị của x sao cho: (a) $\sqrt{x^2 - 3} \le x^2 - 3$. (b) $\sqrt{x^2 - 6x + 9} > x - 6$.

Bài toán 88 ([Bìn23], 10., p. 9). Cho a + b + c = 0 & $abc \neq 0$. Chứng minh hằng đẳng thức: $\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} = \left| \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right|$.

3 Liên Hệ Giữa Phép Nhân, Phép Chia & Phép Khai Phương

Bài toán 89 ([Chí+23], ?1, p. 12). *Tính & so sánh:* $\sqrt{16 \cdot 25}$ & $\sqrt{16} \cdot \sqrt{25}$.

Bài toán 90 ([Chí+23], DL, p. 12). Chứng minh: (a) $\sqrt{ab} = \sqrt{a}\sqrt{b}$, $\forall a,b \in \mathbb{R}$, $a,b \geq 0$. (b)

$$\sqrt{\prod_{i=1}^{n} a_i} = \prod_{i=1}^{n} \sqrt{a_i}, i.e., \sqrt{a_1 a_2 \cdots a_n} = \sqrt{a_1} \sqrt{a_2} \cdots \sqrt{a_n}, \forall n \in \mathbb{N}^*, \forall a_i \in \mathbb{R}, a_i \geq 0, \forall i = 1, 2, \dots, n.$$

Bài toán 91 ([Chí+23], Ví dụ 1, ?2, p. 13). Áp dụng quy tắc khai phương 1 tích, tính: (a) $\sqrt{49 \cdot 1.44 \cdot 25}$. (b) $\sqrt{810 \cdot 40}$. (c) $\sqrt{0.16 \cdot 0.64 \cdot 225}$. (d) $\sqrt{250 \cdot 360}$.

Bài toán 92 ([Chí+23], Ví dụ 2, ?3, pp. 13–14). *Tính:* (a) $\sqrt{5}\sqrt{20}$. (b) $\sqrt{1.3}\sqrt{52}\sqrt{10}$. (c) $\sqrt{3}\sqrt{75}$. (d) $\sqrt{20}\sqrt{72}\sqrt{4.9}$.

Bài toán 93 ([Chí+23], Ví dụ 3, ?4, p. 14). Tìm ĐKXĐ rồi rút gọn biểu thức: (a) $\sqrt{3a}\sqrt{27a}$ với $a \ge 0$. (b) $\sqrt{9a^2b^4}$. (c) $\sqrt{3a^3}\sqrt{12a}$. (d) $\sqrt{2a \cdot 32ab^2}$.

Bài toán 94 ([Chí+23], 17., p. 14). Áp dụng quy tắc khai phương 1 tích, tính: (a) $\sqrt{0.09 \cdot 64}$. (b) $\sqrt{2^4(-7)^2}$. (c) $\sqrt{12.1 \cdot 360}$. (d) $\sqrt{2^2 \cdot 3^4}$.

Bài toán 95 ([Chí+23], 18., p. 14). Áp dụng quy tắc nhân các căn bậc 2, tính: (a) $\sqrt{7}\sqrt{63}$. (b) $\sqrt{2.5}\sqrt{30}\sqrt{48}$. (c) $\sqrt{0.4}\cdot\sqrt{6.4}$. (d) $\sqrt{2.7}\sqrt{5}\sqrt{1.5}$.

Bài toán 96 ([Chí+23], 19., p. 15). Rút gọn biểu thức: (a) $\sqrt{0.36a^2}$ với a < 0 & $a \in \mathbb{R}$. (b) $\sqrt{a^4(3-a)^2}$ với $a \ge 3$ & $a \in \mathbb{R}$. (c) $\sqrt{27 \cdot 48(1-a)^2}$ với a > 1 & $a \in \mathbb{R}$. (d) $\frac{1}{a-b}\sqrt{a^4(a-b)^2}$ với a > b.

Bài toán 97 ([Chí+23], 20., p. 15). Rút gọn biểu thức: (a) $\sqrt{\frac{2a}{3}}\sqrt{\frac{3a}{8}}$ với $a \ge 0$. (b) $\sqrt{13a}\sqrt{\frac{52}{a}}$ với a > 0. (c) $\sqrt{5a}\sqrt{45a} - 3a$ với $a \ge 0$. (d) $(3-a)^2 - \sqrt{0.2}\sqrt{180a^2}$.

Bài toán 98 ([Chi+23], 21., p. 15). Khai phương tích $12 \cdot 30 \cdot 40$ được bao nhiều?

Bài toán 99 ([Chí+23], 22., p. 15). *Tính hợp lý:* (a) $\sqrt{13^2-12^2}$. (b) $\sqrt{17^2-8^2}$. (c) $\sqrt{117^2-108^2}$. (d) $\sqrt{313^2-312^2}$.

Bài toán 100 (Mở rộng [Chí+23], 22., p. 15). Rút gọn biểu thức:

$$\sqrt{\left(\frac{m^2+n^2}{2}\right)^2-\left(\frac{m^2-n^2}{2}\right)^2},\ \forall m,n\in\mathbb{R}.$$

Bài toán 101 ([Chí+23], 23., p. 15). Chứng minh: (a) $(2-\sqrt{3})(2+\sqrt{3})=1$. (b) $\sqrt{2006}\pm\sqrt{2005}$) là 2 số nghịch đảo của nhau.

Bài toán 102 (Mở rộng [Chí+23], 23., p. 15). Chứng minh: (a) $(n-\sqrt{n^2-1})(n+\sqrt{n^2-1})=1$, $\forall n \in \mathbb{R}$, $|n| \geq 1$. (b) $\sqrt{n+1} \pm \sqrt{n}$) là 2 số nghịch đảo của nhau, $\forall n \in \mathbb{R}$, $n \geq 0$.

Bài toán 103 ([Chí+23], 24., p. 15). Rút gọn & tìm giá trị (làm tròn đến chữ số thập phân thứ 3) của các căn thức: (a) $\sqrt{4(1+6x+9x^2)^2}$ tại $x=-\sqrt{2}$. (b) $\sqrt{9a^2(b^2+4-4b)}$ tại a=-2, $b=-\sqrt{3}$.

Bài toán 104 ([Chí+23], 25., p. 16). $Tim\ x \in \mathbb{R}$ thỏa: (a) $\sqrt{16x} = 8$. (b) $\sqrt{4x} = \sqrt{5}$. (c) $\sqrt{9(x-1)} = 21$. (d) $\sqrt{4(1-x)^2} - 6 = 0$.

Bài toán 105 ([Chí+23], 26., p. 16). (a) So sánh $\sqrt{25+9}$ & $\sqrt{25}+\sqrt{9}$. (b) Chứng minh $\sqrt{a+b} < \sqrt{a}+\sqrt{b}$, $\forall a,b \in \mathbb{R}$, a,b > 0. (c) Chứng minh $\sqrt{a+b} \le \sqrt{a}+\sqrt{b}$, $\forall a,b \in \mathbb{R}$, $a,b \ge 0$.

Bài toán 106 ([Chí+23], 27., p. 16). So sánh: (a) $4 \& 2\sqrt{3}$. (b) $-\sqrt{5} \& -2$.

Bài toán 107 ([Thâ+23], 23., p. 9). $Tinh: (a) \sqrt{10}\sqrt{40}. (b) \sqrt{5}\sqrt{45}. (c) \sqrt{52}\sqrt{13}. (d) \sqrt{2}\sqrt{162}.$

Bài toán 108 ([Thâ+23], 24., p. 9). Tính: (a) $\sqrt{45 \cdot 80}$. (b) $\sqrt{75 \cdot 48}$. (c) $\sqrt{90 \cdot 6.4}$. (d) $\sqrt{2.5 \cdot 14.4}$.

Bài toán 109 ([Thâ+23], 25., p. 9). Rút gọn rồi tính: (a) $\sqrt{6.8^2 - 3.2^2}$. (b) $\sqrt{21.8^2 - 18.2^2}$. (c) $\sqrt{117.5^2 - 26.5^2 - 1440}$. (d) $\sqrt{146.5^2 - 109.5^2 + 27.256}$.

Bài toán 110 ([Thâ+23], 26., p. 9). Chứng minh: (a) $\sqrt{9-\sqrt{17}}\sqrt{9+\sqrt{17}}=8$. (b) $2\sqrt{2}(\sqrt{3}-2)+(1+2\sqrt{2})^2-2\sqrt{6}=9$.

 $\textbf{Bài toán 111 ([Th\hat{a}+23], 27., p. 9).} \ \textit{Rút gọn: (a)} \ \frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}. \ \textit{(b)} \ \frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}.$

Bài toán 112 ([Thâ+23], 28., p. 9). Không dùng bảng số hay máy tính bỏ túi, so sánh: (a) $\sqrt{2} + \sqrt{3}$ & $\sqrt{10}$. (b) $\sqrt{3} + 2$ & $\sqrt{2} + \sqrt{6}$. (c) 16 & $\sqrt{15}\sqrt{17}$. (d) 8 & $\sqrt{15} + \sqrt{17}$.

Bài toán 113 ([Thâ+23], 29., p. 9). Không dùng bảng số hay máy tính bỏ túi, so sánh: (a) $\sqrt{2003} + \sqrt{2005}$ & $2\sqrt{2004}$.

Bài toán 114 ([Thâ+23], 30., p. 9). Cho 2 biểu thức $A = \sqrt{x+2}\sqrt{x-3}$, $B = \sqrt{(x+2)(x-3)}$. (a) Tìm $x \in \mathbb{R}$ lần lượt để A, B có nghĩa. (b) Với giá trị nào của x thì A = B?

Bài toán 115 ([Thâ+23], 31., p. 10). $Bi\mathring{e}u$ $di\~{e}n$ \sqrt{ab} \mathring{o} dang tích các căn $b\^{a}c$ 2 $v\acute{o}i$ a < 0 & b < 0. $\acute{A}p$ dang tính $\sqrt{(-25)\cdot(-64)}$.

Bài toán 116 ([Thâ+23], 32., p. 10). Rút gọn các biểu thức: (a) $\sqrt{4(a-3)^2}$ với $a \ge 3$ & $a \in \mathbb{R}$. (b) $\sqrt{9(b-2)^2}$ với b < 2 & $b \in \mathbb{R}$. (c) $\sqrt{a^2(a+1)^2}$ với a > 0 & $a \in \mathbb{R}$. (d) $\sqrt{b^2(b-1)^2}$ với b < 0 & $b \in \mathbb{R}$.

Bài toán 117 ([Thâ+23], 33., p. 10). (a) Tìm DKXD & biến đổi các biểu thức sau về dạng tích: $A(x) = \sqrt{x^2 - 4} + 2\sqrt{x - 2}$, $B(x) = 3\sqrt{x + 3} + \sqrt{x^2 - 9}$. (b) Giải phương trình A(x) = 0 & B(x) = 0.

Bài toán 118 ([Thâ+23], 34., p. 10). $Tim\ x \in \mathbb{R}\ thỏa:\ (a)\ \sqrt{x-5} = 3.\ (b)\ \sqrt{x-10} = -2.\ (c)\ \sqrt{2x-1} = \sqrt{5}.\ (d)\ \sqrt{4-5x} = 12.$

Bài toán 119 ([Thâ+23], 35., p. 10). (a) Chứng minh: $(\sqrt{n+1}-\sqrt{n})^2 = \sqrt{(2n+1)^2} - \sqrt{(2n+1)^2-1}$, $\forall n \in \mathbb{N}$. Viết đẳng thức trên khi n = 1, 2, 3, 4. (B) Đẳng thức trên còn đúng khi $n \in \mathbb{Z}$ & $n \in \mathbb{R}$ không?

Bài toán 120 ([Chí+23], ?1, p. 16). *Tính & so sánh*: $\sqrt{\frac{16}{25}} \& \frac{\sqrt{16}}{\sqrt{25}}$

Bài toán 121 ([Chí+23], DL, p. 16). Chứng minh: $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$, $\forall a, b \in \mathbb{R}, a \ge 0, b > 0$.

Bài toán 122 ([Chí+23], Ví dụ 1, ?2, p. 17). Áp dụng quy tắc khai phương 1 thương, tính: (a) $\sqrt{\frac{25}{121}}$. (b) $\sqrt{\frac{9}{16}} : \frac{25}{36}$. (a) $\sqrt{\frac{225}{256}}$ (d) $\sqrt{0.0196}$.

Bài toán 123 ([Chí+23], Ví dụ 2, ?3, pp. 17–18). *Tính:* (a) $\frac{\sqrt{80}}{\sqrt{5}}$. (b) $\sqrt{\frac{49}{8}}$: $\sqrt{3\frac{1}{8}}$. (c) $\frac{\sqrt{999}}{\sqrt{111}}$. (d) $\frac{\sqrt{52}}{\sqrt{117}}$.

Bài toán 124 ([Chí+23], Ví dụ 3, ?4, p. 18). Rút gọn biểu thức: (a) $\sqrt{\frac{4a^2}{25}}$. (b) $\frac{\sqrt{27a}}{\sqrt{3a}}$ với a > 0. (c) $\sqrt{\frac{2a^2b^4}{50}}$. (d) $\frac{\sqrt{2ab^2}}{\sqrt{162}}$ với $a \ge 0$.

Bài toán 125 ([Chí+23], 28., p. 18). $Tinh: (a) \sqrt{\frac{289}{225}}. (b) \sqrt{2\frac{14}{25}}. (c) \sqrt{\frac{0.25}{9}}. (d) \sqrt{\frac{8.1}{1.6}}.$

Bài toán 126 ([Chí+23], 29., p. 19). *Tính:* (a) $\frac{\sqrt{2}}{\sqrt{18}}$. (b) $\frac{\sqrt{15}}{\sqrt{735}}$. (c) $\frac{\sqrt{12500}}{\sqrt{500}}$. (d) $\frac{\sqrt{6^5}}{\sqrt{2^3 \cdot 3^5}}$.

 $\begin{aligned} \mathbf{B\grave{a}i~to\acute{a}n~127~([Ch\acute{1}+23],~30.,~p.~19).} ~~R\acute{u}t~gon~biểu~thức:~(a)~\frac{y}{x}\sqrt{\frac{x^2}{y^4}}~v\acute{o}i~x>0~\&~y\neq0.~(b)~2y^2\sqrt{\frac{x^4}{4y^2}}~v\acute{o}i~y<0.~(c)~5xy\sqrt{\frac{25x^2}{y^6}}\\ v\acute{o}i~x<0,~y>0.~(d)~0.2x^3y^3\sqrt{\frac{16}{x^4y^8}}~v\acute{o}i~xy\neq0. \end{aligned}$

Bài toán 128 ([Chí+23], 31., p. 19). (a) So sánh $\sqrt{25-16}$ & $\sqrt{25}-\sqrt{16}$. (b) Chứng minh: $\sqrt{a}-\sqrt{b}<\sqrt{a-b}, \, \forall a,b\in\mathbb{R}, \, a>b>0$.

 $\textbf{B\grave{a}i to\acute{a}n 129} \; ([\frac{\text{Ch\'i}+23}], 32., \text{p. 19}). \; \textit{Tinh: (a)} \; \sqrt{1\frac{9}{16} \cdot 5\frac{4}{9} \cdot 0.01}. \; \textit{(b)} \; \sqrt{1.44 \cdot 1.21 - 1.44 \cdot 0.4}. \; \textit{(c)} \; \sqrt{\frac{165^2 - 124^2}{164}}. \; \textit{(d)} \; \sqrt{\frac{149^2 - 76^2}{457^2 - 384^2}}. \; \textit{(d)} \; \sqrt{\frac{149^2$

Bài toán 130 ([Chí+23], 33., p. 19). Giải phương trình: (a) $\sqrt{2}x - \sqrt{50} = 0$. (b) $\sqrt{3}x + \sqrt{3} = \sqrt{12} + \sqrt{27}$. (c) $\sqrt{3}x^2 - \sqrt{12} = 0$. (d) $\frac{x^2}{\sqrt{5}} - \sqrt{20} = 0$.

Bài toán 131 ([Chí+23], 34., pp. 19–20). Rút gọn biểu thức: (a) $ab^2\sqrt{\frac{3}{a^2b^4}}$ với a < b, $b \neq 0$. (b) $\sqrt{\frac{27(a-3)^2}{48}}$ với a > 3. (c) $\sqrt{\frac{9+12a+4a^2}{b^2}}$ với $a \geq -1.5$ & b < 0. (d) $(a-b)\sqrt{\frac{ab}{(a-b)^2}}$ với a < b < 0.

Bài toán 132 ([Chí+23], 35., p. 20). Tìm $x \in \mathbb{R}$ thỏa: (a) $\sqrt{(x-3)^2} = 9$. (b) $\sqrt{4x^2 + 4x + 1} = 6$.

Bài toán 133 ([Chí+23], 36., p. 20). D/S? (a) $0.01 = \sqrt{0.0001}$. (b) $-0.5 = \sqrt{-0.25}$. (c) $6 < \sqrt{39} < 7$. (d) $(4 - \sqrt{13})2x < \sqrt{3}(4 - \sqrt{13}) \Leftrightarrow 2x < \sqrt{3}$.

Bài toán 134 ([Chí+23], 37., p. 20). Trên lưới ô vuông, mỗi hình vuông cạnh 1 cm, cho 4 điểm M, N, P, Q:

Xác định số đo cạnh, đường chéo & diện tích tứ giác MNPQ.

Bài toán 135 ([Thâ+23], 36., p. 10). Áp dụng quy tắc khai phương 1 thương, tính: (a) $\sqrt{\frac{9}{169}}$. (b) $\sqrt{\frac{25}{144}}$. (c) $\sqrt{1\frac{9}{16}}$. (d) $\sqrt{2\frac{7}{81}}$.

Bài toán 136 ([Thâ+23], 37., p. 11). Áp dụng quy tắc chia căn bậc 2, tính: (a) $\frac{\sqrt{2300}}{\sqrt{23}}$. (b) $\frac{\sqrt{12.5}}{\sqrt{0.5}}$. (c) $\frac{\sqrt{192}}{\sqrt{12}}$. (d) $\frac{\sqrt{6}}{\sqrt{150}}$.

Bài toán 137 ([Thâ+23], 38., p. 11). Cho các biểu thức $A = \sqrt{\frac{2x+3}{x-3}}$, $B = \frac{\sqrt{2x+3}}{\sqrt{x-3}}$. (a) Tìm $x \in \mathbb{R}$ lần lượt để A, B có nghĩa. (b) Với giá trị nào của $x \in \mathbb{R}$ thì A = B?

Bài toán 138 ([Thâ+23], 39., p. 11). Biểu diễn $\sqrt{\frac{a}{b}}$ với a,b<0 ở dạng thương của 2 căn thức. Áp dụng tính $\sqrt{\frac{-49}{-81}}$.

Bài toán 139 ([Thâ+23], 40., p. 11). Rút gọn biểu thức: (a) $\frac{\sqrt{63y^3}}{\sqrt{7y}}$, y > 0. (b) $\frac{\sqrt{48x^3}}{\sqrt{3x^5}}$, x > 0. (c) $\frac{\sqrt{45mn^2}}{\sqrt{20m}}$, m, n > 0. (d) $\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}$, a < 0, $b \neq 0$.

Bài toán 140 ([Thâ+23], 41., pp. 11–12). Rút gọn biểu thức: (a) $\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}$, $x \ge 0$. (b) $\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{y-2\sqrt{y}+1}{(x-1)^4}}$, $x \ne 1$, $y \ne 1$, $y \ge 0$.

Bài toán 141 ([Thâ+23], 42., p. 12). Rút gọn biểu thức với điều kiện đã cho của x rồi tính giá trị của nó: (a) $\sqrt{\frac{(x-2)^4}{(3-x)^2}} + \frac{x^2-1}{x-3}$, x < 3, $tại \ x = 0.5$. (b) $4x - \sqrt{8} + \frac{\sqrt{x^3 + 2x^2}}{\sqrt{x+2}}$, x > -2, $tại \ x = -\sqrt{2}$.

Bài toán 142 ([Thâ+23], 43., p. 12). $Tim\ x \in \mathbb{R}$ thỏa: (a) $\sqrt{\frac{2x-3}{x-1}} = 2$. (b) $\frac{\sqrt{2x-3}}{\sqrt{x-1}} = 2$. (c) $\sqrt{\frac{4x+3}{x+1}} = 3$. (d) $\frac{\sqrt{4x+3}}{\sqrt{x+1}} = 3$.

Bài toán 143 ([Thâ+23], 44., p. 12). Chứng minh bất đẳng thức Cauchy cho 2 số không âm:

$$\frac{a+b}{2} \ge \sqrt{ab}, \ \forall a, b \in \mathbb{R}, \ a, b \ge 0.$$

Dấu đẳng thức xảy ra khi nào?

Bài toán 144 ([Thâ+23], 45., p. 12). Chứng minh:

$$\sqrt{\frac{a+b}{2}} \geq \frac{\sqrt{a}+\sqrt{b}}{2}, \ \forall a,b \in \mathbb{R}, \ a,b \geq 0.$$

Bài toán 145 ([Thâ+23], 46., p. 12). Chứng minh: $a + \frac{1}{a} \ge 2$, $\forall a \in \mathbb{R}, \ a > 0$.

Bài toán 146 ([Thâ+23], 52., p. 13). Chứng $\sqrt{2}$ là số vô tỷ.

Bài toán 147 ([Thâ+23], 53., p. 13). Chứng minh: (a) $\sqrt{3}$ là số vô tỷ. (b) $5\sqrt{2}$, $3+\sqrt{2}$ đều là số vô tỷ.

Bài toán 148 ([Thâ+23], 54., p. 14). Tìm tập hợp các số thực x thỏa mãn bất đẳng thức $\sqrt{x} > 2$ & biểu diễn tập hợp đó trên trục số.

Bài toán 149 ([Thâ+23], 55., p. 14). Tìm tập hợp các số thực x thỏa mãn bất đẳng thức $\sqrt{x} < 3$ & biểu diễn tập hợp đó trên trục số.

Bài toán 150 ([Tuy23], Thí dụ 3, p. 9). *Rút gọn biểu thức* $A = \sqrt{4 + \sqrt{7}} - \sqrt{4 - \sqrt{7}}$.

Bài toán 151 ([Tuy23], Thí dụ 4, p. 10). Từm giá trị lớn nhất của biểu thức $A = \sqrt{x-5} + \sqrt{13-x}$.

Bài toán 152 ([Tuy23], 14., p. 11). Rút gọn biểu thức
$$A = \frac{\sqrt{\sqrt{7} - \sqrt{3}} - \sqrt{\sqrt{7} + \sqrt{3}}}{\sqrt{\sqrt{7} - 2}}$$
.

Bài toán 153 ([Tuy23], 15., p. 11). Cho 2 số có tổng bằng $\sqrt{19}$ & có hiệu bằng $\sqrt{7}$. Tính tích của 2 số đó.

Bài toán 154 ([Tuy23], 16., p. 11). *Tính* \sqrt{A} *biết:* (a) $A = 13 - 2\sqrt{42}$. (b) $A = 46 + 6\sqrt{5}$. (c) $A = 12 - 3\sqrt{15}$.

Bài toán 155 ([Tuy23], 17., p. 12). Rút gọn biểu thức: (a) $A = \sqrt{6 + 2\sqrt{2}\sqrt{3 - \sqrt{4 + 2\sqrt{3}}}}$. (b) $B = \sqrt{5} - \sqrt{3 - \sqrt{29 - 12\sqrt{5}}}$. (c) $C = \sqrt{3 - \sqrt{5}}(\sqrt{10} - \sqrt{2})(3 + \sqrt{5})$.

Bài toán 156 ([Tuy23], 18., p. 12). Rút gọn biểu thức $A = \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}}$.

Bài toán 157 ([Tuy23], 19., p. 12). Cho a > 0, so sánh $\sqrt{a+1} + \sqrt{a+3}$ với $2\sqrt{a+2}$.

Bài toán 158 ([Tuy23], 20., p. 12). Cho a, b, x, y > 0. Chứng minh $\sqrt{ax} + \sqrt{by} \le \sqrt{(a+b)(x+y)}$.

Bài toán 159 ([Tuy23], 21., p. 12). (a) Tìm giá trị lớn nhất của biểu thức $A = \sqrt{x+1} - \sqrt{x-8}$. (b) Tìm giá trị nhỏ nhất của biểu thức $B = \sqrt{x-1} + \sqrt{5-x}$.

Bài toán 160 ([Tuy23], 22., p. 12). Rút gọn biểu thức:

$$A = \frac{\sqrt{1 + \sqrt{1 - x^2}} \left[\sqrt{(1 + x)^3} - \sqrt{(1 - x)^3} \right]}{2 + \sqrt{1 - x^2}}.$$

Bài toán 161 ([Tuy23], 23., p. 12). Tìm x, y biết $x + y + 12 = 4\sqrt{x} + 6\sqrt{y - 1}$.

Bài toán 162 ([Tuy23], 24., p. 12). Tìm x, y, z biết $\sqrt{x-a} + \sqrt{y-b} + \sqrt{z-c} = \frac{1}{2}(x+y+z)$, trong đó a+b+c=3.

Bài toán 163 ([Tuy23], 25., p. 12). Giải phương trình $\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5$.

Bài toán 164 ([Tuy23], 26., p. 12). Giải phương trình $\sqrt{x^2 - 5x + 6} + \sqrt{x + 1} = \sqrt{x - 2} + \sqrt{x^2 - 2x - 3}$

Bài toán 165 ([Tuy23], 27., p. 12). Chứng minh bất đẳng thức $\sqrt{n+a} + \sqrt{n-a} < 2\sqrt{n}$ vpwos $0 < |a| \le n$. Áp dụng (không dùng máy tính hoặc bảng số): Chứng minh: $\sqrt{101} - \sqrt{99} > 0.1$.

Bài toán 166 ([Tuy23], 28., p. 13). Chứng minh: $2(\sqrt{n+1}-\sqrt{n})<\frac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{n-1}), \ \forall n\in\mathbb{N}^{\star}$. Áp dụng: Cho $S=\sum_{i=1}^{100}\frac{1}{\sqrt{i}}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{100}}$. Chứng minh 18< S<19.

Bài toán 167 ([Tuy23], 29., p. 13). Chứng minh: $\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} - \sqrt{n}$, $\forall n \in \mathbb{N}^*$. Áp dụng: Chứng minh: $S = \sum_{i=1}^{2500} \frac{1}{\sqrt{i}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{2500}} < 100$.

Bài toán 168 ([Tuy23], 30., p. 13). Cho x, y, z > 0. Chứng minh $x + y + z \ge \sqrt{xy} + \sqrt{yz} + \sqrt{zx}$.

Bài toán 169 ([Tuy23], 31., p. 13). Cho $A = \sqrt{x+3} + \sqrt{5-x}$. Chứng minh $A \le 4$.

Bài toán 170 ([Tuy23], 32., p. 13). Cho $B = \frac{x^3}{1+y} + \frac{y^3}{1+x}$ trong đó x,y là các số thực dương thỏa mãn điều kiện xy = 1. Chứng minh $B \ge 1$.

Bài toán 171 ([Tuy23], 33., p. 13). Cho x, y, z > 0 thỏa mãn điều kiện $\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 2$. Chứng minh $xyz \leq \frac{1}{8}$.

Bài toán 172 ([Tuy23], 34., p. 13). Tìm các số dương x, y, z sao cho x + y + z = 3 & $x^4 + y^4 + z^4 = 3xyz$.

Bài toán 173 ([Tuy23], 35., p. 13). Cho $\sqrt{x} + 2\sqrt{y} = 10$. Chứng minh: $x + y \ge 20$.

Bài toán 174 ([Tuy23], 36., p. 13). Cho $x, y, z \ge 0$ thỏa mãn điều kiện x + y + z = 1. Chứng minh: $\sqrt{x + y} + \sqrt{y + z} + \sqrt{z + x} \le \sqrt{6}$.

Bài toán 175 ([Bìn23], Ví dụ 8, p. 10). Rút gọn biểu thức $A = \sqrt{x + \sqrt{2x - 1}} - \sqrt{x - \sqrt{2x - 1}}$.

Bài toán 176 ([Bìn23], Ví dụ 9, p. 11). Chứng minh số $\sqrt{2} + \sqrt{3} + \sqrt{5}$ là số vô tỷ.

Bài toán 177 ([Bìn23], 11., pp. 11–12). Rút gọn biểu thức: (a) $\sqrt{11-2\sqrt{10}}$. (b) $\sqrt{9-2\sqrt{14}}$. (c) $\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}$. (d) $\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}$. (e) $\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}$. (f) $\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}$. (g) $\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}$. (h) $\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}$. (i) $\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}$.

Bài toán 178 ([Bìn23], 12., p. 12). Tính: (a) $(4 + \sqrt{15})(\sqrt{10} - \sqrt{6})\sqrt{4 - \sqrt{15}}$. (b) $\sqrt{3 - \sqrt{5}}(\sqrt{10} - \sqrt{2})(3 + \sqrt{5})$. (c) $\frac{\sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5} - 2}}{\sqrt{\sqrt{5} + 1}} - \sqrt{3 - 2\sqrt{2}}$.

Bài toán 179 ([Bìn23], 13., p. 12). Chứng minh các hằng đẳng thức sau với $b \ge 0$, $a \ge \sqrt{b}$: (a) $\sqrt{a + \sqrt{b}} \pm \sqrt{a - \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 - b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}}$.

Bài toán 180 ([Bìn23], 14., p. 12). Rút gọn biểu thức $A = \sqrt{x + 2\sqrt{2x - 4}} + \sqrt{x - 2\sqrt{2x - 4}}$.

Bài toán 181 ([Bìn23], 15., p. 12). Cho biểu thức $A = \frac{x + \sqrt{x^2 - 2x}}{x - \sqrt{x^2 - 2x}} - \frac{x - \sqrt{x^2 - 2x}}{x + \sqrt{x^2 - 2x}}$. (a) Tìm điều kiện xác định của biểu thức A. (b) Rút gọn biểu thức A. (c) Tìm giá trị của x để A < 2.

Bài toán 182 ([Bìn23], 16., p. 12). Lập 1 phương trình bậc 2 với các hệ số nguyên, trong đó: (a) $2+\sqrt{3}$ là 1 nghiệm của phương trình. (b) $6-4\sqrt{2}$ là 1 nghiệm của phương trình.

Bài toán 183 ([Bìn23], 17., p. 13). Chứng minh các số sau là số vô tỷ: (a) $\sqrt{3} - \sqrt{2}$. (b) $2\sqrt{2} + \sqrt{3}$.

Bài toán 184 ([Bìn23], 18., p. 13). Có tồn tại các số hữu tỷ dương a, b hay không nếu: (a) $\sqrt{a} + \sqrt{b} = \sqrt{2}$. (b) $\sqrt{a} + \sqrt{b} = \sqrt{\sqrt{2}}$.

Bài toán 185 ([Bìn23], 19., p. 13). Cho 3 số $x, y, \sqrt{x} + \sqrt{y}$ là các số hữu tỷ. Chứng minh mỗi số \sqrt{x}, \sqrt{y} đều là số hữu tỷ.

Bài toán 186 ([Bìn23], 20., p. 13). Cho a,b,c,d là các số dương. Chứng minh tồn tại 1 số dương trong 2 số $2a+b-2\sqrt{cd}$ & $2c+d-2\sqrt{ab}$.

Bài toán 187 ([Bìn23], 21*., p. 13). (a) Rút gọn biểu thức $A = \sqrt{1 + \frac{1}{a^2} + \frac{1}{(a+1)^2}}$ với a > 0. (b) Tính giá trị của tổng $B = \sum_{i=1}^{99} \sqrt{1 + \frac{1}{i^2} + \frac{1}{(i+1)^2}} = \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + \dots + \sqrt{1 + \frac{1}{99^2} + \frac{1}{100^2}}.$

Bài toán 188 ([Bìn23], 22*., p. 13). (a) Nêu 1 cách tính nhẩm 997². (b) Tính tổng các chữ số của A biết $\sqrt{A} = 99...96$ (có 100 chữ số 9).

4 Biến Đổi Đơn Giản Biểu Thức Chứa Căn Thức Bâc 2

Bài toán 189 ([Chí+23], ?1, p. 24). Chứng minh: $\sqrt{a^2b} = a\sqrt{b}, \forall a, b \in \mathbb{R}, a, b \geq 0.$

Bài toán 190 ([Chí+23], Ví dụ 1–2, ?2, pp. 24–25). *Rút gọn:* (a) $\sqrt{2 \cdot 3^2}$. (b) $\sqrt{20}$. (c) $3\sqrt{5} + \sqrt{20} + \sqrt{5}$. (d) $\sqrt{2} + \sqrt{8} + \sqrt{50}$. (e) $4\sqrt{3} + \sqrt{27} - \sqrt{45} + \sqrt{5}$.

Bài toán 191 ([Chí+23], Ví dụ 3, ?3, p. 25). Đưa thừa số ra ngoài dấu căn: (a) $\sqrt{4x^2y}$ với $x, y \ge 0$. (b) $\sqrt{18xy^2}$ với $x \ge 0$, y < 0. (c) $\sqrt{28a^4b^2}$ với $b \ge 0$. (d) $\sqrt{72a^2b^4}$ với a < 0.

Bài toán 192 ([Chí+23], Ví dụ 4, ?4, p. 26). Dưa thừa số vào trong dấu căn: (a) $3\sqrt{7}$. (b) $-2\sqrt{3}$. (c) $5a^2\sqrt{2a}$ với $a \ge 0$. (d) $-3a^2\sqrt{2ab}$ với $ab \ge 0$. (e) $3\sqrt{5}$. (f) $1.2\sqrt{5}$. (g) $ab^4\sqrt{a}$ với $a \ge 0$. (h) $-2ab^2\sqrt{5a}$ với $a \ge 0$.

Bài toán 193 ([Chí+23], Ví dụ 5, p. 26). So sánh $3\sqrt{7} \& \sqrt{28}$.

Bài toán 194 ([Chí+23], 43., p. 27). Viết các số hoặc biểu thức dưới dấu căn thành dạng tích rồi đưa thừa số ra ngoài dấu căn: (a) $\sqrt{54}$. (b) $\sqrt{108}$. (c) $0.1\sqrt{20000}$. (d) $-0.05\sqrt{28800}$. (e) $\sqrt{7 \cdot 63a^2}$.

Bài toán 195 ([Chí+23], 44., p. 27). Dưa thừa số vào trong dấu căn: $3\sqrt{5}, -5\sqrt{2}, -\frac{2}{3}\sqrt{xy}$ với $xy \ge 0, \ x\sqrt{\frac{2}{x}}$ với x > 0.

Bài toán 196 ([Chí+23], 45., p. 27). So sánh: (a) $3\sqrt{3}$ & $\sqrt{12}$. (b) 7 & $3\sqrt{5}$. (c) $\frac{1}{3}\sqrt{51}$ & $\frac{1}{5}\sqrt{150}$. (d) $\frac{1}{2}\sqrt{6}$ & $6\sqrt{\frac{1}{2}}$.

Bài toán 197 ([Chí+23], 46., p. 27). Rút gọn các biểu thức sau với $x \ge 0$: (a) $2\sqrt{3x} - 4\sqrt{3x} + 27 - 3\sqrt{3x}$. (b) $3\sqrt{2x} - 5\sqrt{8x} + 7\sqrt{18x} + 28$.

Bài toán 198 ([Chí+23], 47., p. 27). Rút gọn: (a) $\frac{2}{x^2-y^2}\sqrt{\frac{3(x+y)^2}{2}}$ với $x \ge 0$, $y \ge 0$, & $x \ne y$. (b) $\frac{2}{2a-1}\sqrt{5a^2(1-4a+4a^2)}$ với a > 0.5.

Bài toán 199 ([Thâ+23], 56., p. 14). Dưa thừa số ra ngoài dấu căn: (a) $\sqrt{7x^2}$ với x > 0. (b) $\sqrt{8y^2}$ với y < 0. (c) $\sqrt{25x^3}$ với x > 0. (d) $\sqrt{48y^4}$.

Bài toán 200 ([Thâ+23], 57., p. 14). Dưa thừa số vào trong dấu căn: (a) $x\sqrt{5}$ với $x \ge 0$. (b) $x\sqrt{13}$ với x < 0. (c) $x\sqrt{\frac{11}{x}}$ với x > 0. (d) $x\sqrt{\frac{-29}{x}}$ với x < 0.

Bài toán 201 ([Thâ+23], 58., p. 14). Rút gọn biểu thức: (a) $\sqrt{75} + \sqrt{48} - \sqrt{300}$. (b) $\sqrt{98} - \sqrt{72} + 0.5\sqrt{8}$. (c) $\sqrt{9a} - \sqrt{16a} + \sqrt{49a}$ với $a \ge 0$. (d) $\sqrt{16b} + 2\sqrt{40b} - 3\sqrt{90b}$ với $b \ge 0$.

Bài toán 202 ([Thâ+23], 59., p. 14). Rút gọn biểu thức: (a) $(2\sqrt{3}+\sqrt{5})\sqrt{3}-\sqrt{60}$. (b) $(5\sqrt{2}+2\sqrt{5})\sqrt{5}-\sqrt{250}$. (c) $(\sqrt{28}-\sqrt{12}-\sqrt{7})\sqrt{7}+2\sqrt{21}$. (d) $(\sqrt{99}-\sqrt{18}-\sqrt{11})\sqrt{11}+3\sqrt{22}$.

Bài toán 203 ([Thâ+23], 60., p. 15). Rút gọn biểu thức: (a) $2\sqrt{40\sqrt{12}} - 2\sqrt{\sqrt{75}} - 3\sqrt{5\sqrt{48}}$. (b) $2\sqrt{8\sqrt{3}} - 2\sqrt{5\sqrt{3}} - 3\sqrt{20\sqrt{3}}$.

Bài toán 204 ([Thâ+23], 61., p. 15). Khai triển & rút gọn các biểu thức với $x, y \ge 0$. (a) $(1 - \sqrt{x})(1 + \sqrt{x} + x)$. (b) $(\sqrt{x} + 2)(x - 2\sqrt{x} + 4)$. (c) $(\sqrt{x} - \sqrt{y})(x + y + \sqrt{xy})$. (d) $(x + \sqrt{y})(x^2 + y - x\sqrt{y})$.

Bài toán 205 ([Thâ+23], 62., p. 15). Khai triển & rút gọn các biểu thức với $x, y \ge 0$. (a) $(4\sqrt{x} - \sqrt{2x})(\sqrt{x} - \sqrt{2x})$. (b) $(2\sqrt{x} + \sqrt{y})(3\sqrt{x} - 2\sqrt{y})$.

Bài toán 206 ([Thâ+23], 63., p. 15). Chứng minh: (a) $\frac{(x\sqrt{y}+y\sqrt{x})(\sqrt{x}-\sqrt{y})}{\sqrt{xy}} = x-y \ với \ x,y>0$. (b) $\frac{\sqrt{x^3}-1}{\sqrt{x}-1} = x+\sqrt{x}+1$ $với \ x \geq 0 \ \& \ x \neq 1$.

Bài toán 207 ([Thâ+23], 64., p. 15). (a) Chứng minh: $x + 2\sqrt{2x-4} = (\sqrt{2} + \sqrt{x-2})^2$ với $x \ge 2$. (b) Rút gọn biểu thức $\sqrt{x+2\sqrt{2x-4}} + \sqrt{x-2\sqrt{2x-4}}$ với $x \ge 2$.

Bài toán 208 ([Thâ+23], 65., p. 15). Tìm $x \in \mathbb{R}$ thỏa: (a) $\sqrt{25x} = 35$. (b) $\sqrt{4x} \le 162$. (c) $3\sqrt{x} = \sqrt{12}$. (d) $2\sqrt{x} \ge \sqrt{10}$.

Bài toán 209 ([Thâ+23], 66., p. 15). $Tim \ x \in \mathbb{R} \ thỏa: (a) \sqrt{x^2-9} - 3\sqrt{x-3} = 0. \ (b) \sqrt{x^2-4} - 2\sqrt{x+2} = 0.$

Bài toán 210 ([Thâ+23], 67., p. 15). Áp dụng bất đẳng thức Cauchy cho 2 số không âm, chứng minh: (a) Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất. (b) Trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi nhỏ nhất.

Bài toán 211 ([Thâ+23], 6.1., p. 15). Rút gọn biểu thức $3\sqrt{x^2y} + x\sqrt{y}$ với $x < 0, y \ge 0$.

Bài toán 212 ([Chí+23], Ví dụ 1, ?1, p. 28). Khử mẫu của biểu thức lấy căn: (a) $\sqrt{\frac{2}{3}}$. (b) $\sqrt{\frac{5a}{7b}}$ với ab > 0. (c) $\sqrt{\frac{4}{5}}$. (d) $\sqrt{\frac{3}{125}}$. (e) $\sqrt{\frac{3}{2a^3}}$ với a > 0.

Bài toán 213 ([Chí+23], Ví dụ 2, ?2, pp. 28-29). Trực căn thức ở mẫu: (a) $\frac{5}{2\sqrt{3}}$. (b) $\frac{10}{\sqrt{3}+1}$. (c) $\frac{6}{\sqrt{5}-\sqrt{3}}$. (d) $\frac{5}{3\sqrt{8}}$, $\frac{2}{\sqrt{b}}$ với b > 0. (e) $\frac{5}{5-2\sqrt{3}}$, $\frac{2a}{1-\sqrt{a}}$ với $a \ge 0$, $a \ne 1$. (f) $\frac{4}{\sqrt{7}+\sqrt{5}}$, $\frac{6a}{2\sqrt{a}-\sqrt{b}}$ với a > b > 0.

Bài toán 214 ([Chí+23], 48., p. 29). Khử mẫu của biểu thức lấy căn: $\sqrt{\frac{1}{600}}$, $\sqrt{\frac{11}{540}}$, $\sqrt{\frac{3}{50}}$, $\sqrt{\frac{5}{98}}$, $\sqrt{\frac{(1-\sqrt{3})^2}{27}}$.

Bài toán 215 ([Chí+23], 49., p. 29). Tìm DKXD rồi khử mẫu của biểu thức lấy căn: $ab\sqrt{\frac{a}{b}}, \frac{a}{b}\sqrt{\frac{b}{a}}, \sqrt{\frac{1}{b} + \frac{1}{b^2}}, \sqrt{\frac{9a^3}{36b}}, 3xy\sqrt{\frac{2}{xy}}$.

Bài toán 216 ([Chí+23], 50., p. 30). Tìm DKXD rồi trục căn thức: $\frac{5}{\sqrt{10}}, \frac{5}{2\sqrt{5}}, \frac{1}{3\sqrt{20}}, \frac{2\sqrt{2}+2}{5\sqrt{2}}, \frac{y+b\sqrt{y}}{b\sqrt{y}}$

Bài toán 217 ([Chí+23], 51., p. 30). Tìm DKXĐ rồi trục căn thức: $\frac{3}{\sqrt{3}+1}, \frac{2}{\sqrt{3}-1}, \frac{2+\sqrt{3}}{2-\sqrt{3}}, \frac{b}{3+\sqrt{b}}, \frac{p}{2\sqrt{p}-1}$.

Bài toán 218 ([Chí+23], 52., p. 30). Tìm DKXD rồi trục căn thức: $\frac{2}{\sqrt{6}-\sqrt{5}}, \frac{3}{\sqrt{10}+\sqrt{7}}, \frac{1}{\sqrt{x}-\sqrt{y}}, \frac{2ab}{\sqrt{a}-\sqrt{b}}$

Bài toán 219 ([Chí+23], 53., p. 30). Tìm DKXD rồi rút gọn biểu thức: (a) $\sqrt{18(\sqrt{2}-\sqrt{3})^2}$. (b) $ab\sqrt{1+\frac{1}{a^2b^2}}$. (c) $\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}$. (d) $\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}$.

Bài toán 220 ([Chí+23], 54., p. 30). Tìm DKXD rồi rút gọn biểu thức: $\frac{2+\sqrt{2}}{1+\sqrt{2}}, \frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}, \frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}, \frac{a-\sqrt{a}}{1-\sqrt{a}}, \frac{p-2\sqrt{p}}{\sqrt{p}-2}$

Bài toán 221 ([Chí+23], 55., p. 30). Phân tích thành nhân tử với $a,b,x,y \in \mathbb{R},\ a,b,x,y \geq 0$: (a) $ab + b\sqrt{a} + \sqrt{a} + 1$. (b) $\sqrt{x^3} - \sqrt{y^3} + \sqrt{x^2y} - \sqrt{xy^2}$.

Bài toán 222 ([Chí+23], 56., p. 30). Sắp xếp theo thứ tự tăng dần: (a) $3\sqrt{5}$, $2\sqrt{6}$, $\sqrt{29}$, $4\sqrt{2}$. (b) $6\sqrt{2}$, $\sqrt{38}$, $3\sqrt{7}$, $2\sqrt{14}$.

Bài toán 223 ([Chí+23], 57., p. 30). Giải phương trình $\sqrt{25x} - \sqrt{16x} = 9$.

Bài toán 224 ([Thâ+23], 68., p. 16). Khử mẫu của mỗi biểu thức lấy căn & rút gọn (nếu được): (a) $\sqrt{\frac{2}{3}}$. (b) $\sqrt{\frac{x^2}{5}}$ với $x \ge 0$. (c) $\sqrt{\frac{3}{x}}$ với x > 0. (d) $\sqrt{x^2 - \frac{x^2}{7}}$ với x < 0.

Bài toán 225 ([Thâ+23], 69., p. 16). Trực căn thức ở mẫu & rút gọn (nếu được): (a) $\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}$. (b) $\frac{26}{5-2\sqrt{3}}$. (c) $\frac{2\sqrt{10}-5}{4-\sqrt{10}}$. (d) $\frac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}$.

Bài toán 226 ([Thâ+23], 70., p. 16). Rút gọn biểu thức: (a) $\frac{2}{\sqrt{3}-1} - \frac{2}{\sqrt{3}+1}$. (b) $\frac{5}{12(2\sqrt{5}+3\sqrt{2})} - \frac{5}{12(2\sqrt{5}-3\sqrt{2})}$. (c) $\frac{5+\sqrt{5}}{5-\sqrt{5}} + \frac{5-\sqrt{5}}{5+\sqrt{5}}$. (d) $\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1} - \frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}$.

Bài toán 227 ([Thâ+23], 71., p. 16). Chứng minh đẳng thức:

$$\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}, \ \forall n \in \mathbb{N}.$$

Bài toán 228 ([Thâ+23], 72., p. 17). Xác định giá trị biểu thức sau theo cách thích hợp: $\frac{1}{\sqrt{2}+\sqrt{1}} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}}$.

Bài toán 229 ([Thâ+23], 73., p. 17). Không dùng bảng số hay máy tính bỏ túi, so sánh: $\sqrt{2005} - \sqrt{2004} \ \mathcal{E} \sqrt{2004} - \sqrt{2003}$.

Bài toán 230 ([Thâ+23], 74., p. 17). Rút gọn

$$\frac{1}{\sqrt{1}-\sqrt{2}} - \frac{1}{\sqrt{2}-\sqrt{3}} + \frac{1}{\sqrt{3}-\sqrt{4}} - \frac{1}{\sqrt{4}-\sqrt{5}} + \frac{1}{\sqrt{5}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{9}}.$$

Bài toán 231 ([Thâ+23], 75., p. 17). Rút gọn biểu thức: (a) $\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}$ với $x,y\geq 0,\ x\neq y.$ (b) $\frac{x-\sqrt{3x}+3}{x\sqrt{x}+3\sqrt{3}}$ với $x\geq 0.$

Bài toán 232 ([Thâ+23], 76., p. 17). Trục căn thức ở mẫu: (a) $\frac{1}{\sqrt{3}+\sqrt{2}+1}$. (b) $\frac{1}{\sqrt{5}-\sqrt{3}+2}$.

Bài toán 233 ([Thâ+23], 77., p. 17). Tìm $x \in \mathbb{R}$ thỏa: (a) $\sqrt{2x+3} = 1 + \sqrt{2}$. (b) $\sqrt{10 + \sqrt{3}x} = 2 + \sqrt{6}$. (c) $\sqrt{3x-2} = 2 - \sqrt{3}$. (d) $\sqrt{x+1} = \sqrt{5} - 3$.

Bài toán 234 ([Thâ+23], 78., p. 17). Tìm tập hợp các giá trị $x \in \mathbb{R}$ thỏa mãn điều kiện sau & biểu diễn tập hợp đó trên trục số: (a) $\sqrt{x-2} \ge \sqrt{3}$. (b) $\sqrt{3-2x} \le \sqrt{5}$.

Bài toán 235 ([Thâ+23], 79., pp. 17–18). Cho các số $x,y \in \mathbb{R}$ có dạng $x = a_1\sqrt{2} + b_1$ & $y = a_2\sqrt{2} + b_2$, trong đó $a_i,b_i \in \mathbb{Q}$, i = 1, 2. Chứng minh: (a) x + y & xy cũng có dạng $a\sqrt{2} + b$ với $a,b \in \mathbb{Q}$. (b) $\frac{x}{y}$ với $y \neq 0$ cũng có dạng $a\sqrt{2} + b$ với $a,b \in \mathbb{Q}$.

Bài toán 236 ([Thâ+23], 7.1., p. 18). Rút gọn biểu thức $x\sqrt{\frac{x}{y^3}}$ với x, y < 0.

Bài toán 237 ([Thâ+23], 7.2., p. 18). $Tinh \frac{6}{\sqrt{7}-1}$.

Bài toán 238 ([Bìn23], Ví dụ 10, p. 14). *Rút gọn biểu thức* $A = \sqrt{5} - \sqrt{3 - \sqrt{29 - 12\sqrt{5}}}$.

Bài toán 239 ([Bìn23], Ví dụ 11, p. 14). Tính giá trị của biểu thức

$$M = \sum_{i=1}^{24} \frac{1}{(i+1)\sqrt{i} + i\sqrt{i+1}} = \frac{1}{2\sqrt{1} + 1\sqrt{2}} + \frac{1}{3\sqrt{2} + 2\sqrt{3}} + \frac{1}{4\sqrt{3} + 3\sqrt{4}} + \dots + \frac{1}{25\sqrt{24} + 24\sqrt{25}}.$$

Bài toán 240 ([Bìn23], 23., p. 15). Rút gọn biểu thức $A = \sqrt{1-a} + \sqrt{a(a-1)} + a\sqrt{\frac{a-1}{a}}$.

Bài toán 241 ([Bìn23], 24., p. 15). Chứng minh các hằng đẳng thức: (a) $\sqrt{10 + \sqrt{60} - \sqrt{24} - \sqrt{40}} = \sqrt{3} + \sqrt{5} - \sqrt{2}$. (b) $\sqrt{6 + \sqrt{24} + \sqrt{12} + \sqrt{8}} - \sqrt{3} = \sqrt{2} + 1$.

Bài toán 242 ([Bìn23], 25., p. 15). Cho $A = \sqrt{10 + \sqrt{24} + \sqrt{40} + \sqrt{60}}$. Biểu diễn A dưới dạng tổng của 3 căn thức.

Bài toán 243 ([Bìn23], 26., p. 15). Rút gọn biểu thức $A = \frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}$

Bài toán 244 ([Bìn23], 27., p. 15). Rút gọn biểu thức $B = \frac{x^2 + 5x + 6 + x\sqrt{9 - x^2}}{3x - x^2 + (x + 2)\sqrt{9 - x^2}}$

Bài toán 245 ([Bìn23], 28., p. 15). Rút gọn biểu thức:

$$A = \sum_{i=1}^{n-1} \frac{1}{\sqrt{i} + \sqrt{i+1}} = \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{n-1} + \sqrt{n}},$$

$$B = \sum_{i=1}^{24} \frac{1}{\sqrt{i} - \sqrt{i+1}} = \frac{1}{\sqrt{1} - \sqrt{2}} - \frac{1}{\sqrt{2} - \sqrt{3}} + \frac{1}{\sqrt{3} - \sqrt{4}} - \dots - \frac{1}{\sqrt{24} - \sqrt{25}}.$$

5 Rút Gọn Biểu Thức Có Chứa Căn Thức Bậc 2

Bài toán 246 ([Chí+23], Ví dụ 1, ?1, p. 31). Rút gọn: (a) $5\sqrt{a} + 6\sqrt{\frac{a}{4}} - a\sqrt{\frac{4}{a}} + \sqrt{5} \ với \ a > 0$. (b) $3\sqrt{5a} - \sqrt{20a} + 4\sqrt{45a} + \sqrt{a}$ $với \ a \ge 0$.

Bài toán 247 ([Chí+23], Ví dụ 2, p. 31). Chứng minh: $(1+\sqrt{2}+\sqrt{3})(1+\sqrt{2}-\sqrt{3})=2\sqrt{2}$.

 $\textbf{B\grave{a}i to\acute{a}n 248 ([Ch\acute{1}+23], ?2, p. 31). } \ \textit{Ch\acute{u}ng minh: } \frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}} - \sqrt{ab} = (\sqrt{a}-\sqrt{b})^2, \ \forall a,b \in \mathbb{R}, \ a,b > 0.$

Bài toán 249 ([Chí+23], ?2, p. 31). Cho biểu thức $P = \left(\frac{\sqrt{a}}{2} - \frac{1}{2\sqrt{a}}\right)^2 \left(\frac{\sqrt{a}-1}{\sqrt{a}+1} - \frac{\sqrt{a}+1}{\sqrt{a}-1}\right)$ với $a \in \mathbb{R}$. (a) Tìm DKXD. (b) Rút gọn biểu thức P. (c) Tìm giá trị của $a \in \mathbb{R}$ để P < 0.

Bài toán 250 ([Chí+23], ?3, p. 32). Tìm DKXD & rút gọn biểu thức: (a) $\frac{x^2-3}{x+\sqrt{3}}$. (b) $\frac{1-a\sqrt{a}}{1-\sqrt{a}}$.

Bài toán 251 ([Chí+23], 58., p. 32). Rút gọn biểu thức: (a) $5\sqrt{\frac{1}{5}} + \frac{1}{2}\sqrt{20} + \sqrt{5}$. (b) $\sqrt{\frac{1}{2}} + \sqrt{4.5} + \sqrt{12.5}$. (c) $\sqrt{20} - \sqrt{45} + 3\sqrt{18} + \sqrt{72}$. (d) $0.1\sqrt{200} + 2\sqrt{0.08} + 0.4\sqrt{50}$.

Bài toán 252 ([Chí+23], 59., p. 32). Tìm DKXD & rút gọn biểu thức: (a) $5\sqrt{a} - 4b\sqrt{25a^3} + 5a\sqrt{16ab^2} - 2\sqrt{9a}$. (b) $5a\sqrt{64ab^3} - \sqrt{3}\sqrt{12a^3b^3} + 2ab\sqrt{9ab} - 5b\sqrt{81a^3b}$.

Bài toán 253 ([Chí+23], 60., p. 33). Cho biểu thức $A = \sqrt{16x+16} - \sqrt{9x+9} + \sqrt{4x+4} + \sqrt{x+1}$. (a) Tìm DKXĐ. (b) Rút gọn biểu thức A. (c) Tìm $x \in \mathbb{R}$ sao cho A = 16.

Bài toán 254 ([Chí+23], 61., p. 33). Chứng minh đẳng thức: $\frac{3}{2}\sqrt{6} + 2\sqrt{\frac{2}{3}} - 4\sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{6}$. (b) $\left(x\sqrt{\frac{6}{x}} + \sqrt{\frac{2x}{3}} + \sqrt{6x}\right)$: $\sqrt{6x} = 2\frac{1}{3}$ với x > 0.

Bài toán 255 ([Chí+23], 62., p. 33). Rút gọn biểu thức: (a) $\frac{1}{2}\sqrt{48} - 2\sqrt{75} - \frac{\sqrt{33}}{\sqrt{11}} + 5\sqrt{1\frac{1}{3}}$. (b) $\sqrt{150} + \sqrt{1.6}\sqrt{60} + 4.5\sqrt{2\frac{2}{3}} - \sqrt{6.6}$ (c) $(\sqrt{28} - 2\sqrt{3} + \sqrt{7})\sqrt{7} + \sqrt{84}$. (d) $(\sqrt{6} + \sqrt{5})^2 - \sqrt{120}$.

 $\textbf{Bài toán 256} \; ([\textbf{Ch\'i}+2\textbf{3}], 63., \text{p. 33}). \; \textit{Tìm DKXD & rút gọn biểu thức: (a)} \; \sqrt{\frac{a}{b}} + \sqrt{ab} + \frac{a}{b} \sqrt{\frac{b}{a}}. \; (b) \; \sqrt{\frac{m}{1-2x+x^2}} \sqrt{\frac{4m-8mx+4mx^2}{81}}.$

 $\begin{aligned} \mathbf{B\grave{a}i~to\acute{a}n~257~([Ch\acute{\mathbf{i}}+23],~64.,~p.~33).} & \textit{Ch\acute{u}ng~minh~d} \mathring{a}ng~th\acute{u}c:~(a)~\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2 = 1,~\forall a \in \mathbb{R},~a \geq 0,~a \neq 1.~(b) \\ \frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}} = |a|,~\forall a,b \in \mathbb{R},~a+b > 0,~b \neq 0. \end{aligned}$

Bài toán 258 ([Chí+23], 65., p. 34). Tìm ĐKXĐ & rút gọn rồi so sánh giá trị của A với 1 biết:

$$A = \left(\frac{1}{a - \sqrt{a}} + \frac{1}{\sqrt{a} - 1}\right) : \frac{\sqrt{a} + 1}{a - 2\sqrt{a} + 1}.$$

Bài toán 259 ([Chí+23], 66., p. 34). Tính $\frac{1}{2+\sqrt{3}} + \frac{1}{2-\sqrt{3}}$.

Bài toán 260 ([Thâ+23], 80., p. 18). Tìm ĐKXĐ & rút gọn biểu thức: (a) $(2-\sqrt{2})(-5\sqrt{2}) - (3\sqrt{2}-5)^2$. (b) $2\sqrt{3a} - \sqrt{75a} + a\sqrt{\frac{13.5}{2a}} - \frac{2}{5}\sqrt{300a^3}$

Bài toán 261 ([Thâ+23], 81., p. 18). *Tìm DKXĐ & rút gọn biểu thức:* (a) $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}} + \frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}$. (b) $\frac{a-b}{\sqrt{a}-\sqrt{b}} - \frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}$.

Bài toán 262 ([Thâ+23], 82., pp. 18–19). (a) Chứng minh $x^2 + x\sqrt{3} + 1 = \left(x + \frac{\sqrt{3}}{2}\right)^2 + \frac{1}{4}$. (b) Tìm giá trị nhỏ nhất của biểu thức $x^2 + x\sqrt{3} + 1$. Giá trị đó đạt được khi x bằng bao nhiêu?

Bài toán 263 ([Thâ+23], 83., p. 19). Chứng tỏ giá trị các biểu thức sau là số hữu tỷ: (a) $\frac{2}{\sqrt{7}-5} - \frac{2}{\sqrt{7}+5}$. (b) $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} + \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}$.

Bài toán 264 ([Thâ+23], 84., p. 19). $Tim\ x \in \mathbb{R}$ thỏa: (a) $\sqrt{4x+20}-3\sqrt{5+x}+\frac{4}{3}\sqrt{9x+45}=6$. (b) $\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}$.

Bài toán 265 ([Thâ+23], 85., p. 19). Cho biểu thức $A = \frac{\sqrt{x}+1}{\sqrt{x}-2} + \frac{2\sqrt{x}}{\sqrt{x}+2} + \frac{2+5\sqrt{x}}{4-x}$. (a) Tìm DKXD. (b) Rút gọn A. (c) Tìm $x \in \mathbb{R}$ để A = 2.

Bài toán 266 ([Thâ+23], 86., p. 19). Cho biểu thức $A = \left(\frac{1}{\sqrt{a}-1} - \frac{1}{\sqrt{a}}\right) : \left(\frac{\sqrt{a}+1}{\sqrt{a}-2} - \frac{\sqrt{a}+2}{\sqrt{a}-1}\right)$. (a) Tìm ĐKXĐ. (b) Rút gọn A. (c) Tìm $a \in \mathbb{R}$ $d\mathring{e}$ A > 0.

Bài toán 267 ([Thâ+23], 87., p. 19). (a) Chứng minh bất đẳng thức: $a+b+c \geq \sqrt{ab}+\sqrt{bc}+\sqrt{ca}$, $\forall a,b,c \in \mathbb{R}$, $a,b,c \geq 0$. (b) Mở rộng kết quả cho trường hợp 4,5 số không âm. (c) Mở rộng kết quả cho trường hợp $n \in \mathbb{N}^*$ số không âm.

Bài toán 268 ([Thâ+23], 88., p. 19). *Giải bất phương trình* $\sqrt{32}x - (\sqrt{8} + \sqrt{2})x > \sqrt{2}$.

Bài toán 269 ([Tuy23], Thí dụ 5, p. 14). Cho $A = \sqrt{11 + \sqrt{96}}$ & $B = \frac{2\sqrt{2}}{1 + \sqrt{2} - \sqrt{3}}$. Không dùng máy tính hoặc bảng số, so sánh A & B.

Bài toán 270 ([Tuy23], Thí dụ 6, p. 15). Cho biểu thức $A = \left(\frac{1}{\sqrt{x} - \sqrt{x-1}} - \frac{x-3}{\sqrt{x-1} - \sqrt{2}}\right) \left(\frac{2}{\sqrt{2} - \sqrt{x}} - \frac{\sqrt{x} + \sqrt{2}}{\sqrt{2x} - x}\right)$.

(a) Tìm DKXD rồi rút gọn A. (b) Tính giá trị của A với $x = 3 - 2\sqrt{2}$.

Bài toán 271 ([Tuy23], 37., pp. 15–16). Không dùng máy tính hoặc bảng số, so sánh các số sau: (a) $-3\sqrt{11}$ & $-7\sqrt{2}$. (b) $\frac{7}{2}\sqrt{\frac{1}{12}}$ & $\frac{9}{4}\sqrt{\frac{1}{5}}$. (c) $\sqrt{\frac{4}{27}}$ & $\sqrt{\frac{3}{26}}$.

Bài toán 272 ([Tuy23], 38., p. 16). Không dùng máy tính hoặc bảng số, chứng minh $4\sqrt{5} - 3\sqrt{2} < 5$.

Bài toán 273 ([Tuy23], 39., p. 16). Cho $A = \sqrt{x^2 + 1} - x - \frac{1}{\sqrt{x^2 + 1} - x}$ trong đó $x \in \mathbb{R}$. Xác định $x \in \mathbb{R}$ để giá trị của A là 1 số tự nhiên.

Bài toán 274 ([Tuy23], 40., p. 16). Trục căn thức ở mẫu của các biểu thức sau: (a) $A = \frac{1}{\sqrt{a} + \sqrt{b} + \sqrt{2c}}$ trong đó a, b, c > 0 thỏa mãn điều kiện c là trung bình nhân của a & b. (b) $B = \frac{1}{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}}$ trong đó a, b, c, d > 0 thỏa mãn điều kiện ab = cd & $a + b \neq c + d$.

Bài toán 275 ([Tuy23], 41., p. 16). Tìm $x,y\in\mathbb{N}$ sao cho x>y>0 thỏa mãn điều kiện $\sqrt{x}+\sqrt{y}=\sqrt{931}$.

Bài toán 276 ([Tuy23], 42., p. 16). Chứng minh: $\frac{2\sqrt{mn}}{\sqrt{m} + \sqrt{n} + \sqrt{m+n}} = \sqrt{m} + \sqrt{n} - \sqrt{m+n}$. Áp dụng tính $\frac{2\sqrt{10}}{\sqrt{2} + \sqrt{5} + \sqrt{7}}$.

Bài toán 277 ([Tuy23], 43., p. 16). Chứng minh: $\frac{1}{(n+1)\sqrt{n} + n\sqrt{n+1}} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}, \ \forall n \in \mathbb{N}^{\star}. \ \textit{Áp dụng tính tổng:}$ $S = \sum_{i=1}^{399} \frac{1}{(i+1)\sqrt{i} + i\sqrt{i+1}} = \frac{1}{2\sqrt{1} + 1\sqrt{2}} + \frac{1}{3\sqrt{2} + 2\sqrt{3}} + \dots + \frac{1}{400\sqrt{399} + 399\sqrt{400}}.$

Bài toán 278 ([Tuy23], 44., p. 16). Tìm $n \in \mathbb{N}$ nhỏ nhất sao cho $\sqrt{n+1} - \sqrt{n} < 0.05$.

Bài toán 279 ([Tuy23], 45., p. 17). Cho
$$A = \sum_{i=1}^{120} \frac{1}{\sqrt{i} + \sqrt{i+1}} = \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{120} + \sqrt{121}}, B = \sum_{i=1}^{35} \frac{1}{\sqrt{i}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{35}}$$
. Chứng minh $A < B$.

Bài toán 280 ([Tuy23], 46., p. 17). Cho x,y,z>0 & khác nhau đôi một. Chứng minh giá trị của biểu thức

$$A = \frac{x}{(\sqrt{x} - \sqrt{y})(\sqrt{x} - \sqrt{z})} + \frac{y}{(\sqrt{y} - \sqrt{z})(\sqrt{y} - \sqrt{z})} + \frac{z}{(\sqrt{z} - \sqrt{x})(\sqrt{z} - \sqrt{y})}$$

không phụ thuộc vào giá trị của các biến.

Bài toán 281 ([Tuy23], 47., p. 17). Cho biểu thức $A = \frac{1}{\sqrt{x}+2} - \frac{5}{x-\sqrt{x}-6} - \frac{\sqrt{x}-2}{3-\sqrt{x}}$. (a) Rút gọn A. (b) Tìm giá trị lớn nhất của A.

Bài toán 282 ([Tuy23], 48., p. 17). Cho $A = \left(\frac{\sqrt{x} + \sqrt{y}}{1 - \sqrt{xy}} + \frac{\sqrt{x} - \sqrt{y}}{1 - + \sqrt{xy}}\right) : \left(1 + \frac{x + y + 2xy}{1 - xy}\right)$. (a) Rút gọn A. (b) Tính giá trị của P với $x = \frac{2}{2 + \sqrt{3}}$. (c) Tìm giá trị lớn nhất của A.

Bài toán 283 ([Tuy23], 49., p. 17). Cho $A = \frac{\sqrt{x}}{\sqrt{xy} + \sqrt{x} + 2} + \frac{\sqrt{y}}{\sqrt{yz} + \sqrt{y} + 1} + \frac{2\sqrt{z}}{\sqrt{zx} + 2\sqrt{z} + 2}$. Biết xyz = 4, tính \sqrt{P} .

Bài toán 284 ([Bìn23], Ví dụ 12, p. 15). $Tinh: A = \left(\sqrt{\frac{1+a}{1-a}} + \sqrt{\frac{1-a}{1+a}}\right) : \left(\sqrt{\frac{1+a}{1-a}} - \sqrt{\frac{1-a}{1+a}}\right)$.

Bài toán 285 ([Bìn23], Ví dụ 13, p. 16). Rút gọn biểu thức $A = \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}} + \frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}$.

Bài toán 286 ([Bìn23], Ví dụ 14, p. 16). Cho $A = \frac{\sqrt{a}+6}{\sqrt{a}+1}$. (a) Tìm các số nguyên a để A là số nguyên. (b) Chứng minh với $a = \frac{4}{9}$ thì A là số nguyên. (c) Tìm các số hữu tỷ a để A là số nguyên.

Bài toán 287 ([Bìn23], 29., p. 18). Rút gọn biểu thức: (a) $A = \frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}} + \frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}$. (b) $B = \left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2$. (c) $C = \frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}$: $\left[\left(\frac{1}{x}+\frac{1}{y}\right)\frac{1}{x+y+2\sqrt{xy}} + \frac{2}{(\sqrt{x}+\sqrt{y})^3}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right]$ với $x = 2-\sqrt{3}$ & $y = 2+\sqrt{3}$.

Bài toán 288 ([Bìn23], 30., p. 18). Rút gọn biểu thức $A = \frac{1 - \sqrt{x-1}}{\sqrt{x-2\sqrt{x-1}}}$

Bài toán 289 ([Bìn23], 31., p. 18). Rút gọn biểu thức $A = \frac{\sqrt{x + \sqrt{x^2 - y^2}} - \sqrt{x - \sqrt{x^2 - y^2}}}{\sqrt{2(x - y)}}$ với x > y > 0.

Bài toán 290 ([Bìn23], 32., p. 18). Rút gọn biểu thức $A = \left(\frac{1}{\sqrt{x-1}} + \frac{1}{\sqrt{x+1}}\right) : \left(\frac{1}{\sqrt{x-1}} - \frac{1}{\sqrt{x+1}}\right) với \ x = \frac{a^2 + b^2}{2ab} \ \mathcal{E}$ b > a > 0.

Bài toán 291 ([Bìn23], 33., p. 18). Rút gọn biểu thức $B = \frac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}$ với $x = \frac{1}{2}\left(\sqrt{\frac{1-a}{a}} - \sqrt{\frac{a}{1-a}}\right)$ & 0 < a < 1.

 $\textbf{Bài toán 292 ([Bìn23], 34., p. 18).} \ \textit{Rút gọn biểu thức } A = a + b - \sqrt{\frac{(a^2+1)(b^2+1)}{c^2+1}} \ \textit{với } a, b, c > 0 \ \textit{\& ab} + bc + ca = 1.$

Bài toán 293 ([Bìn23], 35., p. 18). Rút gọn biểu thức $A = \frac{\sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}}}{\sqrt{x + \sqrt{2x - 1}} + \sqrt{x - \sqrt{2x - 1}}} \cdot \sqrt{2x - 1}$.

Bài toán 294 ([Bìn23], 36., p. 18). Chứng minh hằng đẳng thức sau với $x \ge 2$

$$\sqrt{\sqrt{x} + \sqrt{\frac{x^2 - 4}{x}}} + \sqrt{\sqrt{x} - \sqrt{\frac{x^2 - 4}{x}}} = \sqrt{\frac{2x + 4}{\sqrt{x}}}.$$

Bài toán 295 ([Bìn23], 37., p. 18). Cho $a = \frac{-1 + \sqrt{2}}{2}$, $b = \frac{-1 - \sqrt{2}}{2}$. Tính $a^7 + b^7$.

Bài toán 296 ([Bìn23], 38., p. 19). Cho biết $\sqrt{x^2 - 6x + 13} - \sqrt{x^2 - 6x + 10} = 1$. Tính $\sqrt{x^2 - 6x + 13} + \sqrt{x^2 - 6x + 10}$.

Bài toán 297 ([Bìn23], 39., p. 19). Cho biểu thức $A = \frac{\sqrt{a}+2}{\sqrt{a}-2}$. (a) Tìm các số nguyên a để A là số nguyên. (b) Tìm các số hữu tỷ a để A là số nguyên.

Bài toán 298 ([Bìn23], 40., p. 19). Cho $a = \sqrt{2} - 1$. (a) Viết a^2 , a^3 dưới dạng $\sqrt{m} - \sqrt{m-1}$ trong đó m là số tự nhiên. (b) Chứng minh với mọi số nguyên dương n, số a^n viết được dưới dạng trên.

6 Cube Root, nth Root – Căn Bậc 3, Căn Bậc n

Bài toán 299 (Program to print out 1st n cube roots). $Vi\acute{e}t$ chương trình Pascal, C/C++, Python $xu\acute{a}t$ ra căn bậc 3 của n số tự nhiên đầu tiên với $n \in \mathbb{N}^*$ được nhập từ bàn phím.

Bài toán 300. Viết chương trình Pascal, C/C++, Python để kiểm tra 1 số $n \in \mathbb{N}^*$ được nhập từ bàn phím có phải là lập phương của 1 số tự nhiên hay không.

Bài toán 301 (Program to print out 1st n nth roots). $Vi\acute{e}t$ chương trình Pascal, C/C++, Python $xu\acute{a}t$ ra căn bậc n cůa m số tự nhiện dầu tiện với $m, n \in \mathbb{N}^*$ dược nhập từ bàn phím.

Bài toán 302. Viết chương trình Pascal, C/C++, Python để kiểm tra 1 số m được nhập từ bàn phím có phải là lũy thừa bậc n của 1 số tự nhiên hay không với $m, n \in \mathbb{N}^*$ được nhập từ bàn phím.

Bài toán 303 ([Chí+23], ?1, p. 35). Tìm căn bậc 3 của: $27, -64, 0, \frac{1}{125}$.

Bài toán 304 ([Chí+23], Ví dụ 2, p. 35). So sánh 2 & $\sqrt[3]{7}$.

Bài toán 305 ([Chí+23], Ví dụ 3, p. 36). Rút gọn $\sqrt[3]{8a^3} - 5a$.

Bài toán 306 ([Chí+23], ?2, p. 36). Tính $\sqrt[3]{1728}$: $\sqrt[3]{64}$ theo 2 cách.

Bài toán 307 ([Chí+23], 67., p. 36). $Tinh: \sqrt[3]{512}, \sqrt[3]{-729}, \sqrt[3]{0.064}, \sqrt[3]{-0.216}, \sqrt[3]{-0.008}.$

Bài toán 308 ([Chí+23], 68., p. 36). *Tính:* (a) $\sqrt[3]{27} - \sqrt[3]{-8} - \sqrt[3]{125}$. (b) $\frac{\sqrt[3]{135}}{\sqrt[3]{5}} - \sqrt[3]{54}\sqrt[3]{4}$.

Bài toán 309 ([Chí+23], 69., p. 36). So sánh: (a) 5 & $\sqrt[3]{123}$. (b) $5\sqrt[3]{6}$ & $6\sqrt[3]{5}$.

Bài toán 310 ([Thâ+23], 88., p. 20). Không dùng bảng số hay máy tính bỏ túi, tính: $\sqrt[3]{-343}$, $\sqrt[3]{0.027}$, $\sqrt[3]{1.331}$, $\sqrt[3]{-0.512}$.

Bài toán 311 ([Thâ+23], 89., p. 20). Tìm $x \in \mathbb{R}$ thỏa: (a) $\sqrt[3]{x} = -1.5$. (b) $\sqrt[3]{x-5} = 0.9$.

Bài toán 312 (Mở rộng [Thâ+23], 89., p. 20). Tìm $x \in \mathbb{R}$ thỏa: (a) $\sqrt[3]{x} = a \in \mathbb{R}$. (b) $\sqrt[3]{ax+b} = c$. (c) $\sqrt[3]{ax^2 + bx + c} = d$.

Bài toán 313 ([Thâ+23], 90., p. 20). Chứng minh: (a) $\sqrt[3]{a^3b} = a\sqrt[3]{b}$, $\forall a, b \in \mathbb{R}$. (b) $\sqrt[3]{\frac{a}{b^2}} = \frac{1}{b}\sqrt[3]{ab}$, $\forall a, b \in \mathbb{R}$, $b \neq 0$.

Bài toán 314 ([Thâ+23], 92., p. 20). Không dùng bảng số hay máy tính bỏ túi, so sánh: (a) $2\sqrt[3]{3}$ & $\sqrt[3]{23}$. (b) 33 & $3\sqrt[3]{1333}$.

Bài toán 315 ([Thâ+23], 93., p. 20). Tìm tập hợp các giá trị $x \in \mathbb{R}$ thỏa mãn điều kiện sau & biểu diễn tập hợp đó trên trục số: (a) $\sqrt[3]{x} \ge 2$. (b) $\sqrt[3]{x} \le -1.5$.

Bài toán 316 ([Thâ+23], 94., pp. 20-21). Chứng minh:

$$x^{3} + y^{3} + z^{3} - 3xyz = \frac{1}{2}(x+y+z)\left[(x-y)^{2} + (y-z)^{2} + (z-x)^{2}\right], \ \forall x, y, z \in \mathbb{R}.$$

Từ đó, chứng tỏ:

$$\frac{x^3 + y^3 + z^3}{3} \ge xyz, \ \forall x, y, z \in \mathbb{R}, \ x, y, z \ge 0,$$
$$\frac{a + b + c}{3} \ge \sqrt[3]{abc} \ \forall a, b, c \in \mathbb{R}, \ a, b, c \ge 0.$$

Dấu đẳng thức xảy ra khi nào?

Bài toán 317 ([Thâ+23], 95., p. 20). Áp dụng bất đẳng thức Cauchy cho 3 số không âm, chứng minh: (a) Trong các hình hộp chữ nhật có cùng tổng 3 kích thước thì hình lập phương có thể tích lớn nhất. (b) Trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng 3 kích thước bé nhất.

Bài toán 318 (Mở rộng [Tuy23], Thí dụ 1, p. 5). Cho $x \in \mathbb{R}$. So sánh $\sqrt[3]{x}$ với x.

 $Giải. \ \sqrt[3]{x} \ \text{xác định} \ \forall x \in \mathbb{R}. \ \text{Xét các trường hợp: (a)} \ \sqrt[3]{x} = x \Leftrightarrow x = x^3 \Leftrightarrow x - x^3 = 0 \Leftrightarrow x(1-x^2) = 0 \Leftrightarrow x(1-x)(1+x) = 0 \Leftrightarrow x \in \{0,\pm 1\}. \ \text{(b)} \ \sqrt[3]{x} < x \Leftrightarrow x < x^3 \Leftrightarrow x - x^3 < 0 \Leftrightarrow x(1-x^2) < 0 \Leftrightarrow x(1-x)(1+x) < 0 \Leftrightarrow -1 < x < 0 \text{ hoặc } x > 1, \text{ trong đó phép biến đổi tương đương cuối cùng thu được nhờ lập bảng xét dấu. (c)} \ \sqrt[3]{x} > x \Leftrightarrow x > x^3 \Leftrightarrow x - x^3 > 0 \Leftrightarrow x(1-x^2) > 0 \Leftrightarrow x(1-x)(1+x) > 0 \Leftrightarrow x < -1 \text{ hoặc } 0 < x < 1, \text{ trong đó phép biến đổi tương đương cuối cùng thu được nhờ lập bảng xét dấu. Vậy: } \ \sqrt[3]{x} = x \Leftrightarrow x \in \{0,\pm 1\}, \ \sqrt[3]{x} < x \Leftrightarrow x \in (-1,0) \cup (1,+\infty), \ \sqrt[3]{x} > x \Leftrightarrow x \in (-\infty,-1) \cup (0,1).$

Bài toán 319 (Mở rộng [Tuy23], Thí dụ 1, p. 5). Cho $x \in \mathbb{R}$, $n \in \mathbb{N}^*$. So sánh $\sqrt[n]{x}$ với x.

Bài toán 320 ([Tuy23], Thí dụ 7, p. 19). $Tinh x = \sqrt[3]{17\sqrt{5} + 38} - \sqrt[3]{17\sqrt{5} - 38}$.

Bài toán 321 ([Tuy23], Thí dụ 8, p. 20). Giải & biện luận phương trình $(x-a)^n = a^2 - 2a + 1$ với $n \in \mathbb{N}^*$, a là tham số.

Bài toán 322 ([Tuy23], 50., p. 21). *Tính:* (a) $\sqrt[3]{8\sqrt{5}-16}\sqrt[3]{8\sqrt{5}+16}$. (b) $\sqrt[3]{7-5\sqrt{2}}+\sqrt[6]{8}$. (c) $\sqrt[3]{4}\sqrt[3]{1-\sqrt{3}}\sqrt[6]{4+2\sqrt{3}}$.

Bài toán 323 ([Tuy23], 51., p. 21). (a) Tính $\frac{2}{\sqrt[3]{3}-1} - \frac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}$. (b) Cho $x = \frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}$, $y = \frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}$. Tính giá trị của biểu thức $P = \frac{xy}{x+y}$.

 $\textbf{B\grave{a}i to\acute{a}n 324 ([Tuy23], 52., p. 21).} \ \textit{Cho} \ x = \frac{\sqrt[3]{8-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}} \sqrt[3]{8+3\sqrt{5}}, \ y = \frac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}} + \frac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt[3]{81}}. \ \textit{Tinh } xy.$

Bài toán 325 ([Tuy23], 53., p. 22). Tính: (a) $x = \sqrt[3]{5+2\sqrt{13}} + \sqrt[3]{5-2\sqrt{13}}$. (b) $x = \sqrt[3]{\sqrt{5}+2} - \sqrt[3]{\sqrt{5}-2}$. (c) $x = \sqrt[3]{182+\sqrt{33125}} + \sqrt[3]{182-\sqrt{33125}}$.

Bài toán 326 ([Tuy23], 54., p. 22). Cho $A = \sqrt[3]{60 + \sqrt[3]{60 + \sqrt[3]{60 + \dots + \sqrt[3]{60}}}}$. Chứng minh 3 < A < 3. Tìm $\lfloor A \rfloor$.

Bài toán 327 ([Tuy23], 55., p. 22). Cho $A = \sqrt{20 + \sqrt{20 + \sqrt{20 + \dots + \sqrt{20}}}}, B = \sqrt[3]{24 + \sqrt[3]{24 + \sqrt[3]{24 + \dots + \sqrt[3]{24}}}}. Chứng minh <math>7 < A + B < 8$. Tìm |A + B|.

Bài toán 328 ([Tuy23], 56., p. 22). So sánh $a = \sqrt[3]{5\sqrt{2}}$ & $b = \sqrt{5\sqrt[3]{2}}$.

Bài toán 329 ([Tuy23], 57., p. 22). Cho $ax^3 = by^3 = cz^3$ & $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Chứng minh $\sqrt[3]{ax^2 + by^2 + cz^2} = \sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c}$.

Bài toán 330 ([Tuy23], 58., p. 22). Giải phương trình: (a) $x^3 + x^2 + x = -\frac{1}{3}$. (b) $x^3 + 2x^2 - 4x = -\frac{8}{3}$.

Bài toán 331 ([Tuy23], 59., p. 22). *Giải phương trình:* (a) $\sqrt[3]{x+2} + \sqrt[3]{x-2} = \sqrt[3]{5x}$. (b) $2\sqrt[3]{(x+2)^2} - \sqrt[3]{(x-2)^2} = \sqrt[3]{x^2-4}$.

Bài toán 332 ([Tuy23], 60., p. 22). *Giải phương trình:* $\sqrt[3]{x-5} + \sqrt[3]{2x-1} - \sqrt[3]{3x+2} = -2$.

Bài toán 333 ([Tuy23], 61., p. 22). *Giải phương trình:* $\sqrt[n]{(x-2)^2} + 4\sqrt[n]{x^2 - 4} = 5\sqrt[n]{(x+2)^2}$.

Bài toán 334 ([Tuy23], 62., p. 22). Cho A=(a+b)(b+c)(c+a) trong đó a,b,c là các số thực dương thỏa mãn điều kiện abc=1. Chứng $minh\ A+1\geq 3(a+b+c)$.

Bài toán 335 ([Bìn23], Ví dụ 15, p. 20). Chứng tỏ số $m = \sqrt[3]{\sqrt{5} + 2} - \sqrt[3]{\sqrt{5} - 2}$ là 1 nghiệm của phương trình $x^3 + 3x - 4 = 0$.

Bài toán 336 ([Bìn23], Ví dụ 16, p. 20). *Tính giá trị của biểu thức* $A = \sqrt[3]{7 + 5\sqrt{2}} + \sqrt[3]{7 - 5\sqrt{2}}$

Bài toán 337 ([Bìn23], 41., p. 20). Tính: (a) $\frac{\sqrt[3]{4} + \sqrt[3]{2} + 2}{\sqrt[3]{4} + \sqrt[3]{2} + 1}$. (b) $\sqrt{3 + \sqrt{3} + \sqrt[3]{10 + 6\sqrt{3}}}$. (c) $\frac{4 + 2\sqrt{3}}{\sqrt[3]{10 + 6\sqrt{3}}}$.

Bài toán 338 ([Bìn23], 42., p. 21). $S \hat{o} m = \sqrt[3]{4 + \sqrt{80}} - \sqrt[3]{4 - \sqrt{80}} c \hat{o} phải là nghiệm của phương trình <math>x^3 + 12x - 8 = 0$ không?

Bài toán 339 ([Bìn23], 43., p. 21). Lập 1 phương trình bậc 3 với các hệ số nguyên, trong đó: (a) $\sqrt[3]{2} + \sqrt[3]{4}$ là 1 nghiệm của phương trình. (b) $\sqrt[3]{9} - \sqrt[3]{3}$ là 1 nghiệm của phương trình.

Bài toán 340 ([Bìn23], 44., p. 21). $Tinh: (a) A = \sqrt[3]{6\sqrt{3} + 10} - \sqrt[3]{6\sqrt{3} - 10}. (b) B = \sqrt[3]{5 + 2\sqrt{13}} + \sqrt[3]{5 - 2\sqrt{13}}. (c) C = \sqrt[3]{45 + 29\sqrt{2}} + \sqrt[3]{45 - 29\sqrt{2}}. (d) D = \sqrt[3]{2 + 10\sqrt{\frac{1}{27}}} + \sqrt[3]{2 - 10\sqrt{\frac{1}{27}}}. (e) E = \sqrt[3]{4 + \frac{5}{3}\sqrt{\frac{31}{3}}} + \sqrt[3]{4 - \frac{5}{3}\sqrt{\frac{31}{3}}}.$

Bài toán 341 ([Bìn23], 45., p. 21). Tìm xbiết: (a) $\sqrt[3]{2+x} + \sqrt[3]{2-x} = 1$. (b) $2x^3 = (x-1)^3$.

Bài toán 342 ([Bìn23], 46., p. 21). Cho $am^3 = bn^3 = cp^3$ & $\frac{1}{m} + \frac{1}{n} + \frac{1}{p} = 1$. Chứng minh: $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = \sqrt[3]{am^2 + bn^2 + cp^2}$.

Bài toán 343 ([Bìn23], 47., p. 21). Tính: (a) $\sqrt[3]{2} - \sqrt{5}(\sqrt[6]{9} + 4\sqrt{5} + \sqrt[3]{2} + \sqrt[5]{5})$. (b) $\sqrt[4]{17} + 12\sqrt{2} - \sqrt{2}$. (c) $\sqrt[4]{56} - 24\sqrt{5}$. (d) $1 + \sqrt[4]{28} - 16\sqrt{3}$. (e) $\frac{2}{\sqrt{4 - 3\sqrt[4]{5} + 2\sqrt{5} - \sqrt[4]{125}}}$.

7 Miscellaneous

Bài toán 344 ([Chí+23], 1–5, p. 39). (a) Nêu điều kiện để $x \in \mathbb{R}$ là căn bậc 2 số học của số $a \in \mathbb{R}$ không âm. Cho ví dụ. (b) Chứng minh $\sqrt{a^2} = |a|$, $\forall a \in \mathbb{R}$. (c) Biểu thức A phải thỏa điều kiện gì để \sqrt{A} xác định? (d) Phát biểu & chứng minh định lý về mối liên hệ giữa phép nhân & phép khai phương. Cho ví dụ. (e) Phát biểu & chứng minh định lý về mối liên hệ giữa phép chia & phép khai phương. Cho ví dụ.

$$\textbf{B\grave{a}i \ to\acute{a}n \ 345} \ ([\frac{\textbf{C}h\acute{n}+23]}{\sqrt{567}}, 70., \text{p. 40}). \ \ \textit{Tinh: (a)} \ \sqrt{\frac{25}{81} \cdot \frac{16}{49} \cdot \frac{196}{9}}. \ (b) \ \sqrt{3\frac{1}{16} \cdot 2\frac{14}{25} \cdot 2\frac{34}{81}}. \ (c) \ \frac{\sqrt{640}\sqrt{34.3}}{\sqrt{567}}. \ (d) \ \sqrt{21.6}\sqrt{810}\sqrt{11^2-5^2}.$$

Bài toán 346 ([Chí+23], 71., p. 40). Rút gọn biểu thức: (a) $(\sqrt{8}-3\sqrt{2}+\sqrt{10})\sqrt{2}-\sqrt{5}$. (b) $0.2\sqrt{(-10)^2\cdot 3}+2\sqrt{(\sqrt{3}-\sqrt{5})^2}$. (c) $\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)$: $\frac{1}{8}$. (d) $2\sqrt{(\sqrt{2}-3)^2}+\sqrt{2(-3)^2}-5\sqrt{(-1)^4}$.

Bài toán 347 ([Chí+23], 72., p. 40). Phân tích thành nhân tử với $a,b,x,y \in \mathbb{R},\ a,b,x,y \geq 0,\ a \geq b$: (a) $xy - y\sqrt{x} + \sqrt{x} - 1$. (b) $\sqrt{ax} - \sqrt{by} + \sqrt{bx} - \sqrt{ay}$. (c) $\sqrt{a+b} + \sqrt{a^2-b^2}$. (d) $12 - \sqrt{x} - x$.

Bài toán 348 ([Chí+23], 73., p. 40). Tìm DKXD, rút gọn rồi tính giá trị của biểu thức: (a) $\sqrt{-9a} - \sqrt{9 + 12a + 4a^2}$ tại a = -9. (b) $1 + \frac{3m}{m-2} \sqrt{m^2 - 4m + 4}$ tại m = 1.5. (c) $\sqrt{1 - 10a + 25a^2} - 4a$ tại $a = \sqrt{2}$. (d) $4x - \sqrt{9x^2 + 6x + 1}$ tại $x = -\sqrt{3}$.

Bài toán 349 ([Chí+23], 74., p. 40). $Tim \ x \in \mathbb{R} \ thỏa: (a) \ \sqrt{(2x-1)^2} = 3. \ (b) \ \frac{5}{3} \sqrt{15x} - \sqrt{15x} - 2 = \frac{1}{3} \sqrt{15x}$

 $\begin{aligned} \mathbf{B\grave{a}i\;to\acute{a}n\;350\;([Ch\acute{1}+23],75.,pp.\;40-41).}\;\;\;Ch\acute{u}ng\;minh:\;(a)\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}} = -1.5.\;\;(b)\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\\ \frac{1}{\sqrt{7}-\sqrt{5}} = -2.\;\;(c)\;\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\;\frac{1}{\sqrt{a}-\sqrt{b}} = a-b,\;\forall a,b\in\mathbb{R},\;a,b>0,\;a\neq b.\;\;(d)\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right) = 1-a,\\ \forall a\in\mathbb{R},\;a\geq0,\;a\neq1. \end{aligned}$

Bài toán 351 ([Chí+23], 76., p. 41). Cho biểu thức $A = \frac{a}{\sqrt{a^2 - b^2}} - \left(1 + \frac{a}{\sqrt{a^2 - b^2}}\right) : \frac{b}{a - \sqrt{a^2 - b^2}}$. (a) Tìm DKXD. (b) Rút gọn A. (c) Tính Q khi a = 3b.

Bài toán 352 ([Thâ+23], 96., p. 21). *Giải phương trình* $\sqrt{3+\sqrt{x}}=3$.

Bài toán 353 ([Thâ+23], 97., p. 21). $Tinh \sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}} + \sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}$.

Bài toán 354 ([Thâ+23], 98., p. 22). Chứng minh: (a) $\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}$. (b) $\sqrt{\frac{4}{(2-\sqrt{5})^2}}-\sqrt{\frac{4}{(2+\sqrt{5})^2}}=8$.

Bài toán 355 ([Thâ+23], 99., p. 22). Cho $A = \frac{\sqrt{4x^2 - 4x + 1}}{4x - 2}$. Chứng minh |A| = 0.5 với $x \neq 0.5$.

Bài toán 356 ([Thâ+23], 100., p. 22). Rút gọn biểu thức: (a) $\sqrt{(2-\sqrt{3})^2} + \sqrt{4-2\sqrt{3}}$. (b) $\sqrt{15-6\sqrt{6}} + \sqrt{33-12\sqrt{6}}$. (c) $(15\sqrt{200} - 3\sqrt{450} + 2\sqrt{50}) : \sqrt{10}$.

Bài toán 357 ([Thâ+23], 101., p. 22). (a) Chứng minh: $x - 4\sqrt{x-4} = (\sqrt{x-4}-2)^2$, $\forall x \in \mathbb{R}$, $x \ge 4$. (b) Tìm DKXD & rút gọn biểu thức $A = \sqrt{x+4\sqrt{x-4}} + \sqrt{x-4\sqrt{x-4}}$.

Bài toán 358 ([Thâ+23], 102., p. 22). Tìm DKXD của các biểu thức $A = \sqrt{x} + \sqrt{x+1}$, $B = \sqrt{x+4} + \sqrt{x-1}$. (a) Chứng minh $A \ge 1$ & $B \ge \sqrt{5}$. (b) Tìm $x \in \mathbb{R}$ thỏa: $\sqrt{x} + \sqrt{x+1} = 1$, $\sqrt{x+4} + \sqrt{x-1} = 2$.

Bài toán 359 ([Thâ+23], 103., p. 22). Chứng minh: $x - \sqrt{x} + 1 = \left(\sqrt{x} - \frac{1}{2}\right)^2 + \frac{3}{4}$, $\forall x \in \mathbb{R}$, $x \ge 0$. Từ đó, cho biết biểu thức $\frac{1}{x - \sqrt{x} + 1}$ có giá trị lớn nhất là bao nhiêu? Giá trị đó đạt được khi x bằng bao nhiêu?

Bài toán 360 ([Thâ+23], 104., p. 23). Tìm $x \in \mathbb{Z}$ để biểu thức $\frac{\sqrt{x}+1}{\sqrt{x}-3}$ nhận giá trị nguyên.

Bài toán 361 ([Thâ+23], 105., p. 23). Chứng minh $\forall a, b \in \mathbb{R}, a, b \ge 0, a \ne 0$: (a) $\frac{\sqrt{a} + \sqrt{b}}{2\sqrt{a} - 2\sqrt{b}} - \frac{\sqrt{a} - \sqrt{b}}{2\sqrt{a} + 2\sqrt{b}} - \frac{2b}{b-a} = \frac{2\sqrt{b}}{\sqrt{a} - \sqrt{b}}$.

21

(b)
$$\left(\frac{a\sqrt{a} + b\sqrt{b}}{\sqrt{a} + \sqrt{b}} - \sqrt{ab}\right) \left(\frac{\sqrt{a} + \sqrt{b}}{a - b}\right)^2 = 1.$$

Bài toán 362 ([Thâ+23], 106., p. 23). Cho biểu thức $A = \frac{(\sqrt{a} + \sqrt{b})^2 - 4\sqrt{ab}}{\sqrt{a} - \sqrt{b}} - \frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{ab}}$. (a) Tìm điều kiện để A có nghĩa. (b) Khi A có nghĩa, chứng tổ giá trị của A không phụ thuộc vào a.

Bài toán 363 ([Thâ+23], 107., p. 23). Cho biểu thức $A = \left(\frac{2x+1}{\sqrt{x^3}-1} - \frac{\sqrt{x}}{x+\sqrt{x}+1}\right) \left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}} - \sqrt{x}\right)$. (a) Tìm DKXD. (b) Rút gọn A. (c) Tìm $x \in \mathbb{R}$ để A = 3.

Bài toán 364 ([Thâ+23], 108., p. 23). Cho biểu thức $A = \left(\frac{\sqrt{x}}{3+\sqrt{x}} + \frac{x+9}{9-x}\right) : \left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}} - \frac{1}{\sqrt{x}}\right)$. (a) Tìm DKXD. (b) Rút gọn A. (c) Tìm $x \in \mathbb{R}$ sao cho C < -1.

Bài toán 365 ([Thâ+23], I.1., p. 23). Không dùng bảng số hoặc máy tính, so sánh $\frac{1}{\sqrt{3}-\sqrt{2}}$ & $\sqrt{5}+1$.

Bài toán 366 ([Tuy23], Thí dụ 15, pp. 29–30). Cho biểu thức $A = \left(\frac{1}{1-\sqrt{x}} - \frac{1}{\sqrt{x}}\right) : \left(\frac{2x+\sqrt{x}-1}{1-x} + \frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)$. (a) Rút gọn A. (b) Tính giá trị của A với $x = 7 - 4\sqrt{3}$. (c) Tìm giá trị lớn nhất của a để P > a.

Bài toán 367 ([Tuy23], 80., p. 31). Chứng minh: $\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{(a+b)^2}} = \left| \frac{1}{a} + \frac{1}{b} - \frac{1}{a+b} \right|$, $\forall a, b \in \mathbb{R}$, $ab(a+b) \neq 0$. Áp dụng tính $A = \sqrt{1 + 999^2 + \frac{999^2}{1000^2}} + \frac{999}{1000}$.

Bài toán 368 ([Tuy23], 81., p. 31). Rút gọn biểu thức $A = (4 + \sqrt{15})(\sqrt{10} - \sqrt{6})\sqrt{4 - \sqrt{15}}$.

Bài toán 369 ([Tuy23], 82., p. 31). Không dùng máy tính hoặc bảng số, chứng minh: $\sqrt{14} - \sqrt{13} < 2\sqrt{3} - \sqrt{11}$.

Bài toán 370 ([Tuy23], 83., p. 31). Giải phương trình: $\frac{1}{\sqrt{x+3}+\sqrt{x+2}} + \frac{1}{\sqrt{x+2}+\sqrt{x+1}} + \frac{1}{\sqrt{x+1}+\sqrt{x}} = 1.$

Bài toán 371 ([Tuy23], 84., p. 31). Tìm x, y, z biết $x + y + z + 35 = 2(2\sqrt{x+1} + 3\sqrt{y+2} + 4\sqrt{z+3})$.

Bài toán 372 ([Tuy23], 85., p. 31). Cho $a>0,\ b>0$ & $\frac{1}{a}+\frac{1}{b}=1$. Chứng minh: $\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}$.

Bài toán 373 ([Tuy23], 86., p. 31). Chứng minh: $A = \sqrt{8 + 2\sqrt{10 + 2\sqrt{5}}} + \sqrt{8 - 2\sqrt{10 + 2\sqrt{5}}} = \sqrt{2} + \sqrt{10}$.

Bài toán 374 ([Tuy23], 87., p. 31). Chứng minh:

$$\frac{1}{4} < \frac{2 - \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}}{2 - \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}} < \frac{3}{10},$$

 $(\mathring{\sigma} t\mathring{u} c\acute{\sigma} n \ d\hat{a}u \ c\breve{\sigma}n, \ \mathring{\sigma} m\tilde{a}u \ c\acute{\sigma} n-1 \ d\hat{a}u \ c\breve{\sigma}n).$

Bài toán 375 ([Tuy23], 88., p. 31). *Giải phương trình:* $\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+3\sqrt{2x-5}}=2\sqrt{2}$.

Bài toán 376 ([Tuy23], 89., p. 31). *Giải phương trình:* $\sqrt[3]{(65+x)^2} + 4\sqrt[3]{(65-x)^2} = 5\sqrt[3]{65^2 - x^2}$.

Bài toán 377 ([Tuy23], 90., p. 32). Giải phương trình ẩn x: $\frac{(a-x)\sqrt[4]{x-b} + (x-b)\sqrt[4]{a-x}}{\sqrt[4]{a-x} + \sqrt[4]{x-b}} = \frac{a-b}{2} \ với \ a > b$.

Bài toán 378 ([Tuy23], 91., p. 32). Cho biểu thức $A = \sum_{i=1}^{199} \frac{1}{\sqrt{i(200-i)}} = \frac{1}{\sqrt{1\cdot 199}} + \frac{1}{\sqrt{2\cdot 198}} + \dots + \frac{1}{\sqrt{199\cdot 1}}$. Chứng minh A > 1.99.

Bài toán 379 ([Tuy23], 92., p. 32). Cho n số dương a_1, a_2, \ldots, a_n . Chứng minh:

$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} \frac{1}{a_i}\right) = \left(a_1 + a_2 + \dots + a_n\right) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \ge n^2.$$

Bài toán 380 ([Tuy23], 93., p. 32). Cho các số thực dương a, b, c, d thỏa mãn điều kiện abcd = 1. Chứng minh: $a^2 + b^2 + c^2 + d^2 + a(b+c) + b(c+d) + c(d+a) + d(a+b) \ge 12$.

Bài toán 381 ([Tuy23], 94., p. 32). Giải phương trình:
$$\sqrt{\frac{x^2+x+1}{x}} + \sqrt{\frac{x}{x^2+x+1}} = \frac{7}{4}$$
.

Bài toán 382 ([Tuy23], 95., p. 32). Giải phương trình: $\sqrt{x+x^2} + \sqrt{x-x^2} = x+1$.

Bài toán 383 ([Tuy23], 96., p. 32). Cho $A = \frac{x^2 - \sqrt{x}}{x + \sqrt{x} + 1} - \frac{x^2 + \sqrt{x}}{x - \sqrt{x} + 1}$ với $0 \le x \le 1$. Rút gọn biểu thức $B = 1 - \sqrt{A + x + 1}$.

Bài toán 384 ([Tuy23], 97., p. 32). Cho biểu thức $A = \frac{x\sqrt{x}-3}{x-2\sqrt{x}-3} - \frac{2(\sqrt{x}-3)}{\sqrt{x}+1} + \frac{\sqrt{x}+3}{3-\sqrt{x}}$. (a) Rút gọn A. (b) Tính giá trị của A với $x = 14 - 6\sqrt{5}$. (c) Tìm GTNN của A.

Bài toán 385 ([BNS23], Ví dụ 1.1, p. 5). *Rút gọn biểu thức* $A = \sqrt{(7+4\sqrt{3})(a-1)^2}$.

Bài toán 386 ([BNS23], Ví dụ 1.2, p. 6). Cho biểu thức $A = \sqrt{a + 2\sqrt{a - 1}} + \sqrt{a - 2\sqrt{a - 1}}$. (a) Tìm điều kiện xác định của A. (b) Rút gọn biểu thức A với $1 \le a < 2$. (c) Rút gọn biểu thức A với $a \ge 2$.

Bài toán 387 ([BNS23], Ví dụ 1.3, p. 6). *Dơn giản biểu thức* $A = \left(\sqrt{8+2\sqrt{7}} + 2\sqrt{8-2\sqrt{7}}\right)(\sqrt{63}+1)$.

Bài toán 388 ([BNS23], Ví dụ 1.4, p. 6). Tính tổng $A = \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}}$.

Bài toán 389 ([BNS23], Ví dụ 1.5, p. 6). Tính $A = \frac{\sqrt{7 - 2\sqrt{10}}(7 + 2\sqrt{10})(74 - 22\sqrt{10})}{\sqrt{125} - 4\sqrt{50} + 5\sqrt{20} + \sqrt{8}}$.

Bài toán 390 ([BNS23], Ví dụ 1.6, p. 7). Cho $a = \sqrt{3 + \sqrt{5 + 2\sqrt{3}}} + \sqrt{3 - \sqrt{5 + 2\sqrt{3}}}$. Chứng minh: $a^2 - 2a - 2 = 0$.

Bài toán 391 ([BNS23], Ví dụ 1.7, p. 7). Cho $a = \sqrt{4 + \sqrt{10 + 2\sqrt{5}}} + \sqrt{4 - \sqrt{10 + 2\sqrt{5}}}$. Tính

$$A = \frac{a^4 - 4a^3 + a^2 + 6a + 4}{a^2 - 2a + 12}.$$

Bài toán 392 ([BNS23], Ví dụ 1.8, p. 7). Cho $f(x) = \frac{1+\sqrt{1+x}}{x+1} + \frac{1+\sqrt{1-x}}{x-1} \ \ \mathcal{E} \ a = \frac{\sqrt{3}}{2}$. Tính f(a).

Bài toán 393 ([BNS23], Ví dụ 1.9, p. 8). $Gi \mathring{a} thi \acute{e}t \ x,y,z>0 \ \mathcal{E} \ xy+yz+zx=a.$ Chứng minh

$$x\sqrt{\frac{(a+y^2)(a+z^2)}{a+x^2}} + y\sqrt{\frac{(a+z^2)(a+x^2)}{a+y^2}} + z\sqrt{\frac{(a+x^2)(a+y^2)}{a+z^2}} = 2a.$$

Bài toán 394 ([BNS23], 1.1, p. 8). $Bi\mathring{eu}$ $di\~{en}$ $\sqrt{\frac{3+\sqrt{5}}{2}}$ $th\grave{a}nh$ $a+b\sqrt{5}$ $v\acute{oi}$ $a,b\in\mathbb{Q}$.

Bài toán 395 ([BNS23], 1.2, p. 8). Đơn giản biểu thức $A = 3\sqrt{2} + 2\sqrt{3} - \sqrt{18} + \sqrt{28 - 16\sqrt{3}}$.

Bài toán 396 ([BNS23], 1.3, p. 8). Chứng minh $\sqrt{10+2\sqrt{24}}-\sqrt{10-2\sqrt{24}}=4$.

Bài toán 397 ([BNS23], 1.4, p. 8). Tính $A = \sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{2+\sqrt{3}}} \cdot \sqrt{2-\sqrt{2+\sqrt{3}}}$.

Bài toán 398 ([BNS23], 1.5, p. 9). Tính tích ab với

$$a = \sqrt{2 + \sqrt{2}} \sqrt{3 + \sqrt{7 + \sqrt{2}}}, \ b = \sqrt{3 + \sqrt{6 + \sqrt{7 + \sqrt{2}}}} \sqrt{3 - \sqrt{6 + \sqrt{7 + \sqrt{2}}}}.$$

Bài toán 399 ([BNS23], 1.6, p. 9). Chứng minh $\frac{4}{\sqrt{5}-1} + \frac{3}{\sqrt{5}-2} + \frac{16}{\sqrt{5}-3} = -5$.

Bài toán 400 ([BNS23], 1.7, p. 9). Chứng minh $\left(\frac{2}{\sqrt{6}-1} + \frac{3}{\sqrt{6}-2} + \frac{3}{\sqrt{6}-3}\right) \frac{5}{9\sqrt{6}+4} = \frac{1}{2}$.

Bài toán 401 ([BNS23], 1.8, p. 9). Cho $f(x) = \frac{x + \sqrt{5}}{\sqrt{x} + \sqrt{x + \sqrt{5}}} + \frac{x - \sqrt{5}}{\sqrt{x} - \sqrt{x - \sqrt{5}}}$. Tính f(3).

Bài toán 402 ([BNS23], 1.9, p. 9). Cho $f(x) = \frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}} \ \ \mathcal{E} \ a = \frac{4}{\sqrt{3} + \frac{1}{\sqrt{3}}}.$ Tính f(a).

Bài toán 403 ([BNS23], Ví dụ 2.1, p. 10). Chứng minh với $ab \neq 0$: $\frac{\sqrt[3]{a^5b^7}}{\sqrt[3]{a^2b}} - \frac{\sqrt[3]{a^4b^8}}{\sqrt[3]{ab^2}} = 0$.

Bài toán 404 ([BNS23], Ví dụ 2.2, p. 10). *Chứng minh với* $abc \neq 0$: $\frac{\sqrt[3]{a^4b^5c^7}}{\sqrt[3]{ab^2c}} = abc^2$.

Bài toán 405 ([BNS23], Ví dụ 2.3, p. 10). Với $a \ge 2 + \sqrt{2}$ &

$$u = \sqrt[3]{\left(a + \frac{2}{a}\right)^3 - 3a^2 - \frac{12}{a^2} + 3\left(a + \frac{2}{a}\right) - 13}, \ v = \sqrt{a^2 + \frac{4}{a^2} - 8\left(a + \frac{2}{a}\right) + 20}.$$

Chứng minh u - v = 3.

Bài toán 406 ([BNS23], Ví dụ 2.4, p. 11). Đơn giản biểu thức $A = \sqrt[3]{8(7+5\sqrt{2})} + \sqrt[3]{216(7-5\sqrt{2})} + 4\sqrt{2} - 7$.

Bài toán 407 ([BNS23], Ví dụ 2.5, p. 11). Chứng minh $\sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}} = 1$.

Bài toán 408 ([BNS23], Ví dụ 2.6, p. 11). Chứng minh nếu $a = \sqrt[3]{\sqrt{5} + 2} - \sqrt[3]{\sqrt{5} - 2}$ thì $a^3 + 3a = 4$.

Bài toán 409 ([BNS23], Ví dụ 2.7, p. 11). Chứng minh:

$$\frac{\sqrt{\left(\frac{9-2\sqrt{3}}{\sqrt{3}-\sqrt[3]{2}}+3\sqrt[3]{2}\right)\sqrt{3}}}{3+\sqrt[6]{108}} = \sqrt[3]{\sqrt{5}+2} - \sqrt[3]{\sqrt{5}-2}.$$

Bài toán 410 ([BNS23], Ví dụ 2.8, p. 12). Chứng minh nếu $\sqrt[3]{(a+1)^2} + \sqrt[3]{a^2-1} + \sqrt[3]{(a-1)^2} = 1$ thì $\sqrt[3]{a+1} - \sqrt[3]{a-1} = 2$.

Bài toán 411 ([BNS23], Ví dụ 2.9, p. 12). Đơn giản biểu thức $A = \frac{x+1}{2\sqrt[3]{\sqrt{3}-\sqrt{2}\sqrt[6]{5}+2\sqrt{6}}+x+\frac{1}{x}}$ với $x \notin \{-1,0\}$.

Bài toán 412 ([BNS23], Ví dụ 2.10, p. 12). Cho $a = \sqrt{2} + \sqrt{7} - \sqrt[3]{61 + 46\sqrt{5}} + 1$. (a) Chứng minh $a^4 - 14a^2 + 9 = 0$. (b) Giả sử $f(x) = x^5 + 2x^4 - 14x^3 - 28x^2 + 9x + 19$. Tính f(a).

Bài toán 413 ([BNS23], Ví dụ 2.11, p. 13). Cho a, b, c > 0. Giả sử m, n, p là những số nguyên dương lớn hơn 1 sao cho $bc = \sqrt[m]{a}$, $ca = \sqrt[n]{b}$, & $ab = \sqrt[p]{c}$. Chứng minh trong 3 số a, b, c phải có ít nhất 1 số bằng 1.

 $\begin{array}{l} \textbf{Bài toán 414 ([BNS23],\ V\'i\ dụ\ 2.12,\ p.\ 13).} \ \ \textit{Cho}\ a = \frac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}. \ \ (\textit{a)}\ \textit{X\'ac}\ \textit{dịnh đa thức với hệ số nguyên bậc dương nhỏ nhất nhận số a làm nghiệm.} \ (\textit{b})\ \textit{Giả sử đa thức}\ f(x) = 3x^6 - 4x^5 - 7x^4 + 6x^3 + 6x^2 + x - 53\sqrt{2}. \ \textit{Tính } f(a). \end{array}$

Bài toán 415 ([BNS23], Ví dụ 2.13, p. 14). Cho $a = \frac{7 - 4\sqrt{3}}{\sqrt[3]{26 - 15\sqrt{3}}} - \sqrt[3]{26 + 15\sqrt{3}}$. (a) Xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận số a làm nghiệm. (b) Giả sử đa thức $f(x) = \frac{x^6 + x^4 + 4x^2}{40(x^4 + 4x^2 - 144)}$. Tính f(a).

Bài toán 416 ([BNS23], Ví dụ 2.14, p. 14). Cho $a = \sqrt[3]{38 + 17\sqrt{5}} + \sqrt[3]{38 - 17\sqrt{5}}$. Giả sử ta có đa thức $f(x) = (x^3 + 3x + 1935)^{2012}$. Tính f(a).

Bài toán 417 ([BNS23], 2.1., p. 14). $Bi\mathring{eu}$ $di\tilde{en}$ $\sqrt[3]{2+\sqrt{5}}$ thành $a+b\sqrt{5}$ $v\acute{oi}$ $a,b\in\mathbb{Q}$.

Bài toán 418 ([BNS23], 2.2., p. 14). Cho $a = \sqrt[3]{\sqrt{5} + 2} + \sqrt[3]{1 - \sqrt{11}}$. Chứng minh $a^9 - 6a^6 + 282a^3 = 8$.

Bài toán 419 ([BNS23], 2.3., p. 15). Cho $a = (\sqrt[3]{1+2\sqrt{6}} - \sqrt[6]{5+4\sqrt{6}})\sqrt[3]{2\sqrt{6}-1} + 1$. (a) Xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm. (b) Giả sử $f(x) = \sum_{i=1}^{2012} ix^i + 2012$. Tính f(a).

Bài toán 420 ([BNS23], 2.4., p. 15). Chứng minh:

$$\frac{a+2\sqrt{ab}+9b}{\sqrt{a}+3\sqrt{b}-2\sqrt[4]{ab}}-2\sqrt{b}=\left(\sqrt[4]{a}+\sqrt[4]{b}\right)^2,\ \forall a,b\in\mathbb{R},\ a,b>0.$$

Bài toán 421 ([BNS23], 2.5., p. 15). Chứng minh.

$$\left(\sqrt[3]{a^4} + b^2\sqrt[3]{a^2} + b^4\right) \frac{\sqrt[3]{a^8} - b^6 + b^4\sqrt[3]{a^2} - a^2b^2}{a^2b^2 + b^2 - a^2b^8 - b^4} = a^2b^2, \ \forall a,b \in \mathbb{R}, \ ab \neq 0, \ a \neq b^3.$$

Bài toán 422 ([BNS23], 2.6., p. 15). Cho a, b > 0. Dơn giản biểu thức

$$A = \frac{\sqrt{a^3 + 2a^2b} + \sqrt{a^4 + 2a^3b} - \sqrt{a^3 - a^2b}}{\sqrt{(2a + b - \sqrt{a^2 + 2ab})(\sqrt[3]{a^2} - \sqrt[6]{a^5} + a)}}.$$

Bài toán 423 ([BNS23], 2.7., p. 15). $Gi\mathring{a} s\mathring{u} u^3 \geq v^2$, $u, v \in \mathbb{Q}^+$. $X\acute{a}c \ dinh \ u, v \ d\mathring{e}$

$$\sqrt{\frac{u - 8\sqrt[6]{u^3v^2 + 4\sqrt[3]{v^2}}}{\sqrt{u} - 2\sqrt[3]{v} + 2\sqrt[12]{u^3v^2}} + 3\sqrt[3]{v}} + \sqrt[6]{v} = 1.$$

Bài toán 424. Cho $a,b,c,A,B \in \mathbb{Z}, c \geq 0$ thỏa mãn đẳng thức $(a+b\sqrt{c})^2 = A+B\sqrt{c}$. (a) Tìm mối quan hệ của a,b,c,A,B. Biểu diễn (A,B) theo (a,b,c). $(b)^*$ Biểu diễn (a,b) theo (c,A,B).

Bài toán 425. Cho $a,b,c,A,B \in \mathbb{Z}, c \geq 0$ thỏa mãn đẳng thức $(a+b\sqrt{c})^3 = A+B\sqrt{c}$. (a) Tìm mối quan hệ của a,b,c,A,B. Biểu diễn (A,B) theo (a,b,c). $(b)^*$ Biểu diễn (a,b) theo (c,A,B).

Bài toán 426. Cho $a, b, c, A, B \in \mathbb{Z}$, $c \geq 0$ thỏa mãn đẳng thức $(a + b\sqrt[3]{c})^3 = A + B\sqrt[3]{c} + C\sqrt[3]{c^2}$. (a) Tìm mối quan hệ của a, b, c, A, B, C. Biểu diễn (A, B, C) theo (a, b, c). $(b)^*$ Biểu diễn (a, b) theo (c, A, B, C).

Tài liệu

- [Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 275.
- [BNS23] Vũ Hữu Bình, Phạm Thị Bạch Ngọc, and Nguyễn Tam Sơn. *Tài Liệu Chuyên Toán Trung Học Cơ Sở Toán 9. Tập 1: Đại Số*. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 192.
- [Chí+23] Phan Đức Chính, Tôn Thân, Vũ Hữu Bình, Trần Phương Dung, Ngô Hữu Dũng, Lê Văn Hồng, and Nguyễn Hữu Thảo. *Toán 9 Tập 1*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 128.
- [Thâ+23] Tôn Thân, Vũ Hữu Bình, Trần Phương Dung, Lê Văn Hồng, and Nguyễn Hữu Thảo. *Bài Tập Toán 9 Tập 1*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 216.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.