SPRAWDZIAN 5

SIŁY W PRZYRODZIE

Plan testu sprawdzającego wielostopniowego

Poziom wymagań Konieczne		Podstawowe			Rozszerzające i dopełniające				Liczba				
Kategoria celów*	A	В	C	D	A	В	C	D	A	В	C	D	zadań
Uczeń rozpoznaje wzajemne oddziaływania.		1											1
Uczeń stosuje pierwszą zasadę dynamiki Newtona.			2										1
Uczeń poprawnie analizuje zjawisko bezwładności.		3											1
Uczeń rozróżnia siły tarcia tocznego i ślizgowego.	4												1
Uczeń stosuje prawo Pascala do wyjaśnienia zasady działania podnośnika hydraulicznego i hamulca.			5										1
Uczeń wymienia cechy siły wyporu.	6												1
Uczeń stosuje drugą zasadę dynamiki Newtona.							7						1
Uczeń wyznacza wartość siły wyporu na podstawie doświadczenia.							8						1
Uczeń stosuje pierwszą zasadę dynamiki Newtona.						9							1
Uczeń stosuje trzecią zasadę dynamiki Newtona.						10							1
Uczeń wykorzystuje do obliczeń wzór $p = \frac{F}{S}$.							11						1
Uczeń znajduje siłę wypadkową na podstawie analizy sił składowych.							12						1
Uczeń odróżnia oddziaływania bezpośrednie i na odległość.										13			1
Uczeń stosuje trzecią zasadę dynamiki Newtona.											14		1
Uczeń stosuje prawo Pascala do wyjaśnienia zasady działania podnośnika hydraulicznego i hamulca.												15	1
Uczeń analizuje i wykorzystuje dane z wykresu.											16.1 16.2		2
Uczeń analizuje warunki pływania ciał.											17		1
Uczeń posługuje się do obliczeń wzorem $p = dgh$.												18.1 18.2	2
Liczba zadań	2	2	2	_	_	2	4	_	_	1	4	3	20

Punktacja przy założeniu, że za każde poprawnie rozwiązane zadanie uczeń otrzymuje 1 punkt.

0-6 ocena niedostateczna

7–9 ocena dopuszczająca

10–12 ocena dostateczna

13-17 ocena dobra

18-20 ocena bardzo dobra

*Kategorie celów według taksonomii B. Niemierki:

A-zapamiętanie wiadomości,

B – rozumienie wiadomości,

C-stosowanie wiadomości w sytuacjach typowych,

D-stosowanie wiadomości w sytuacjach nietypowych.

AUTOR: Barbara Sagnowska, Katarzyna Nessing

SPRAWDZIAN 5

SIŁY W PRZYRODZIE

- Kasia odbija się od batutu. Batut ugina się, a Kasia zyskuje zwróconą w górę prędkość. Opisana sytuacja świadczy o tym, że batut i Kasia wzajemnie na siebie oddziałują. Wskaż, czy to wyjaśnienie jest prawdą czy fałszem.
 - A. Prawda.
- B. Fałsz.
- 2. W początkowej fazie spadania spadochroniarz porusza się ruchem przyspieszonym, a potem ruchem jednostajnym. Ruch jednostajny rozpoczyna się w chwili, w której zrównoważą się siły
 - A. ciężkości i nacisku.

B. nacisku i oporów powietrza.

c. ciężkości i oporów powietrza.

- D. ciężkości i sprężystości.
- Podczas gwałtownego hamowania samochodu osoba, która nie była przypięta pasami, porusza się
 - A. do przodu.
- B. do tyłu.
- 4. Po takiej samej powierzchni toczymy metalowe koło, a następnie je przesuwamy. Łatwiej jest nam je A / B, ponieważ siła tarcia tocznego ma C / D wartość niż siała tarcia ślizgowego.
 - A. toczyć

- B. przesuwać
- C. większą
- D. mniejszą

- Na tłok 1 (rysunek obok) naciskamy siłą F₁ = 1 N, a wówczas na tłok 2 działa siła zwrócona A / B o wartości C / D.
 - A. w dół

B. w góre

c. 0,2 N

D. 5 N

- 6. Na ciało zanurzone w wodzie działa siła wyporu przyłożona do A / B, o wartości F, kierunku C / D, zwrocie E / F.
 - A. wody

B. ciała

- c. pionowym
- D. poziomym

- E. w górę
- F. w lewo
- 7. Gdy na stojący motocykl o masie całkowitej 400 kg (wraz z motocyklistą) zadziałamy siłą o wartości 1400 N, to wartość przyspieszenia, z którym ruszy motocykl, wyniesie
 - **A.** 3,5 $\frac{m}{s^2}$

B. $10 \frac{\text{m}}{\text{s}^2}$

- **c.** 35 $\frac{\text{m}}{\text{s}^2}$
- **D.** 5,6 $\frac{\text{m}}{\text{s}^2}$
- 8. Na siłomierzu zawieszono odważnik i siłomierz wskazał wartość ciężaru odważnika 0,8 N. Po zanurzeniu odważnika w wodzie wskazanie siłomierza zmalało do 0,5 N. Wartość siły wyporu wynosi
 - **A.** 1,3 N

B. 0,3 N

c. 1,6 N

- **D.** 0,625 N
- Na wagonik ciągnięty przez lokomotywę poruszającą się ruchem jednostajnym prostoliniowym działają siły A / B. Wartość siły wypadkowej działającej na wagonik C / D.
 - A. ciężkości, nacisku, sprężystości podłoża, tarcia

AUTOR: Barbara Sagnowska, Katarzyna Nessing

- B. ciężkości, sprężystości podłoża, ciągu lokomotywy, tarcia
- c. wynosi zero
- D. jest niemożliwa do określenia, gdyż nie znamy wartości działających sił

10. Leżąca na stole kulka działa na stół siłą o wartości *F*. Siłę wynikającą z trzeciej zasady dynamiki poprawnie przedstawia rysunek **A** / **B** / **C** / **D**.

- Jeżeli ciśnienie wody na dnie naczynia o powierzchni 20 cm² jest równe 25 hPa, to wartość siły parcia na dno wynosi
 - **A.** 500 N
- **B.** 125 N
- **c.** 1,25 N
- **D.** 5 N

Na leżący na stole klocek działają siły, jak pokazuje rysunek obok. Siła wypadkowa działająca na klocek ma wartość A/B, kierunek C/D, zwrot E/F.

- **B.** 3 N
- c. pionowy
- D. poziomy
- E. w lewo
- F. w prawo

- 13. Przykładem oddziaływania bezpośredniego jest oddziaływanie A / B i C / D.
 - A. szklanki leżącej na stole ze stołem
- B. Ziemi z Księżycem
- B. kluczy trzymanych w ręce z ręką

AUTOR: Barbara Sagnowska, Katarzyna Nessing

- c. magnesu i leżącej na stole pinezki
- 14. Traktor ciągnie przyczepę, działając na nią siłą o kierunku poziomym, zwrocie w lewo i wartości 500 N. Wynikająca z trzeciej zasady dynamiki siła reakcji ma A / B, jej źródłem jest C / D, a przedmiotem jej działania jest E / F.
 - A. kierunek poziomy, zwrot w lewo, taka sama wartość
 - **B.** kierunek poziomy, zwrot w prawo, taką samą wartość
 - c. traktor
- D. przyczepa
- E. traktor
- F. podłoże
- **15.** Powierzchnie tłoków podnośnika hydraulicznego są równe odpowiednio 15 cm² i 600 cm². Aby za pomocą tego podnośnika podnieść ruchem jednostajnym auto o masie 2,5 tony, należy na mniejszy tłok działać siłą o wartości
 - **A.** 16 N
- **B.** 1000 kN
- **c.** 100 N
- **D.** 625 N

16. Wykres obok przedstawia zależność wartości przyspieszeń trzech ciał od wartości działającej na nie siły.

Dokończ poniższe zdania na podstawie analizy danych z wykresu.

- **16.1.** Masa drugiego ciała jest o **A** / **B** większa od masy **C** / **D** ciała.
- **16.2.** Masa trzeciego ciała jest **E** / **F** razy mniejsza od masy pierwszego ciała.

17. Uzupełnij zdanie. Wybierz poprawną odpowiedź spośród 1-3 oraz spośród A-C. Statek wpłynął z koryta rzeki do słonego morza. Wartość działającej na statek siły wyporu

1. zmalała		A. w rzece jej wartość była większa od ciężaru statku.				
2. wzrosła	i	B. w obu przypadkach równoważy ona ciężar statku.				
3. nie uległa zmianie		C. w rzece jej wartość była mniejsza od ciężaru statku.				

- **18.** W różnych naczyniach znajdują się ciecze o gęstościach $d_2 > d_1$.
 - **18.1.** Zależność ciśnienia hydrostatycznego na dnie naczyń w zależności od wysokości słupa cieczy poprawnie przedstawia wykres **A** / **B**.

18.2. Gęstość cieczy w naczyniu 2 (d_2) jest równa \mathbf{C} / \mathbf{D} .

c. 0,15
$$\frac{\text{kg}}{\text{m}^3}$$

D. 1,5
$$\frac{\text{kg}}{\text{m}^3}$$

SPRAWDZIAN 5 Wersja B

SIŁY W PRZYRODZIE

- Spadający na bungee Karol powoduje wydłużenie liny, która rozciąga się i hamuje ruch Karola w dół. Karol i lina wzajemnie na siebie oddziałują. Wskaż, czy ten wniosek jest prawdą czy fałszem.
 - A. Prawda.
- B. Fałsz.
- 2. Siedzący na dachu kot pozostaje w spoczynku, bo siła, którą przyciąga go Ziemia, jest równoważona przez
 - A. siłę ciężkości.

B. siłę nacisku na dach.

c. siłę oporów powietrza.

- **D.** siłę, której źródłem jest dach.
- 3. Podczas gwałtownego ruszania autobusu osoba, która nie trzyma się uchwytu, poruszy się
 - A. do przodu.
- B. do tyłu.
- 4. Po takiej samej powierzchni toczymy metalową puszkę, a następnie ją przesuwamy. Łatwiej jest nam puszkę A / B, ponieważ siła tarcia tocznego ma C / D wartość niż siła tarcia ślizgowego.
 - A. toczyć

- B. przesuwać
- c. większą
- D. mniejszą
- 5. Na tłok 1 naciskamy siłą $F_1 = 1$ N, a wówczas na tłok 2 działa siła zwrócona A / B o wartości C / D.

- A. w lewo
- B. w prawo
- **c.** 3 N

- **D.** $\frac{1}{3}$ N
- Na zanurzone w wodzie ciało działa przyłożona do niego siła wyporu o wartości F, kierunku pionowym, zwrocie w dół. Wskaż, czy wymienione cechy siły są prawdziwe czy fałszywe.
 - A. Prawdziwe.
- **B.** Fałszywe.
- Jeżeli działająca na samochód siła o wartości 4,5 kN nadaje mu przyspieszenie o wartości 3 m/s², to masa samochodu wynosi
 - **A.** 1,5 tony.
- B. 1350 kilogramów.
- **c.** 13,5 tony.
- **D.** 15 ton.
- 8. Na siłomierzu zawieszono metalową kulkę i siłomierz wskazał wartość jej ciężaru 2,2 N. Po zanurzeniu kulki w wodzie wskazanie siłomierza zmalało do 1,8 N. Wartość siły wyporu wynosi
 - **A.** 0,2 N

B. 1,2 N

c. 4 N

- **D.** 0.4 N
- Tomek przesuwa biurko ruchem jednostajnym prostoliniowym. Na biurko działają siły A / B, a wartość siły wypadkowej działającej na biurko C / D.
 - A. ciężkości, nacisku, sprężystości podłoża i tarcia
 - B. ciężkości, sprężystości podłoża, mięśni Tomka i tarcia
 - c. wynosi zero
 - D. jest niemożliwa do określenia, gdyż nie znamy wartości działających sił

AUTOR: Barbara Sagnowska, Katarzyna Nessing

10. Pomarańcza działa na rękę siłą nacisku o wartości F. Siłę wynikającą z trzeciej zasady dynamiki poprawnie przedstawia rysunek A / B / C / D.

- Ciśnienie wody na dnie naczynia o pewnej powierzchni jest równe 20 hPa. Jeżeli wartość siły parcia na dno tego naczynia wynosi 8 N, to powierzchnia dna jest równa
 - A. 40 m²

- **B.** 40 cm²
- C. 16 m²

D. 160 cm²

- Aby klocek w sytuacji pokazanej na rysunku obok pozostał w spoczynku, należy przyłożyć do niego siłę o wartości A / B, kierunku C / D, zwrocie E / F.
 - A. 3 N

- **B.** 6 N
- c. pionowym
- D. poziomym
- E. w prawo
- F. w lewo

- Przykładem oddziaływania na odległość jest oddziaływanie A / B i C / D.
 - A. talerzyka ze stojącą na nim filiżanką

B. potartych gazetą baloników

c. kluczy trzymanych w ręce z ręką

AUTOR: Barbara Sagnowska, Katarzyna Nessing

- D. magnesu i leżącej w pobliżu pinezki
- 14. Mama pcha wózek z dzieckiem, działając siłą o kierunku poziomym, zwrocie w prawo i wartości 100 N. Wynikająca z trzeciej zasady dynamiki siła reakcji ma A / B, jej źródłem jest C / D, a przedmiotem jej działania E / F.
 - A. kierunek poziomy, zwrot w lewo, taką samą wartość
 - B. kierunek poziomy, zwrot w prawo, taką samą wartość
 - c. mama

- D. wózek z dzieckiem
- E. mama
- F. podłoże
- 15. Wartość siły, którą działano na mniejszy tłok podnośnika o powierzchni 24 cm², aby podnieść ruchem jednostajnym ciało o masie 3 t, wynosi 20 N. Powierzchnia większego tłoka jest równa
 - A. 24 m²

- **B.** 0.24 cm²
- **c.** 60 m²

D. 3.6 m^2

16. Wykres obok przedstawia zależność szybkości trzech ciał o masach $m_1 = 1 \text{ kg}, m_2 = 2 \text{ kg}, m_3 = 1.5 \text{ kg od czasu}.$

Dokończ poniższe zdania na podstawie analizy danych z wykresu.

- **16.1.** Wartość wypadkowej siły działającej na ciało o masie m_2 jest o **A** / **B** większa od wartości siły wypadkowej działającej na ciało o masie C / D.
- **16.2.** Wartość wypadkowej siły działającej na ciało o masie m_1 jest **E** / **F** razy większa od wartości siły wypadkowej działającej na ciało o masie m_3 .

A. 0.5 N

B. 2.5 N

C. m₁

 \mathbf{D} . m_2

E. 3

- Uzupełnij zdanie. Wybierz poprawną odpowiedź spośród 1-3 oraz spośród A-C. Ten sam drewniany klocek wrzucono do wody z kranu i do roztworu wody z solą. Klocek
 - 1. pływa częściowo zanurzony w obu przypadkach
 - 2. w pierwszym przypadku tonie, w drugim pływa częściowo zanurzony
 - 3. w pierwszym przypadku pływa częściowo zanurzony, w drugim tonie
- A. wartość siły wyporu w pierwszym przypadku jest większa od ciężaru ciała.
- **B.** wartość siły wyporu w obu przypadkach równoważy ciężar ciała.
- C. wartość siły wyporu w drugim przypadku jest większa od ciężaru ciała.
- 18. Wykres obok przedstawia zależność ciśnienia hydrostatycznego od głębokości dla dwóch cieczy. Dokończ poniższe zdania na podstawie analizy danych z wykresu.
 - **18.1.** Gęstość cieczy 2 jest **A** / **B** od gęstości cieczy 1.
 - 18.2. Różnica gęstości cieczy wynosi C / D.
 - A. mniejsza
- B. większa
- **c.** 0,1 $\frac{\text{kg}}{\text{m}^3}$
- **D.** 0,15 $\frac{\text{kg}}{\text{m}^3}$

Karta informacyjna nauczyciela

Sprawdzian 5 Wersja A

•	7, 6, 5, 6, 7,
Nr zadania	Odpowiedź
1	■ A □ B
2	A B C D
3	■ A □ B
4	■ A □ B □ C ■ D
5	A B C D
6	A B C D _ E F
7	■ A □ B □ C □ D
8	A B C D
9	A B C D
10	AB _CD
11	AB C D
12	A BC DE _F
13	■ A □ Bi ■ C □ D
14	A B C D _ E F
15	A B C D
16	16.1. A B C D 16.2. E F
17	17.1.
18	18.1. A B 18.2. C D

Sprawdzian 5 Wersja B

_	
Nr zadania	Odpowiedź
1	■ A □ B
2	ABC D
3	A B
4	■ A □ B □ C ■ D
5	A B C D
6	A B
7	■ A □ B □ C □ D
8	AB C ■ D
9	A B C D
10	A B C
11	A B
12	■ A □ B □ C ■ D □ E ■ F
13	□ A ■ B i □ C ■ D
14	■ A □ B □ C ■ D ■ E □ F
15	A B C D
16	16.1. A B C D 16.2. F
17	17.1.
18	18.1. A B B 18.2. C D

AUTOR: Barbara Sagnowska, Katarzyna Nessing

Karta odpowiedzi ucznia

Sprawdzian 5

Wersja A

Imię i nazwisko	Data	Klasa	

Nr zadania	Odpowiedź
1	Па Пв
2	ABCD
3	□A □B
4	□A □B □C □D
5	□A □B □C □D
6	A B C D E F
7	□A □B□C □D
8	□A □B□C □D
9	□ A □ B □ C □ D
10	ABCD
11	□A □B □C □D
12	A B C D E F
13	□A □Bi □C □D
14	A B C D E F
15	□A □B □C □D
16	16.1.
17	17.1.
18	18.1. A B 18.2. C D

AUTOR: Barbara Sagnowska, Katarzyna Nessing

Karta odpowiedzi ucznia

Sprawdzian 5

Imię i nazwisko Data Klasa

Wersja B

Nr zadania	Odpowiedź
1	□A □B
2	ABCD
3	□ A □ B
4	ABCD
5	ABCD
6	□A □B
7	ABCD
8	ABCD
9	ABCD
10	ABCD
11	ABCD
12	ABCDEF
13	□ A □ B i □ C □ D
14	A B C D E F
15	ABCD
16	16.1. A B C D 16.2. E F
17	17.1.
18	18.1.

AUTOR: Barbara Sagnowska, Katarzyna Nessing

