WHAT IS CLAIMED IS:

1	1. A method of controlling a write current in a magnetic disk drive, the method
2	comprising:
3	receiving a write command to initiate a present write operation; and
4	if a predetermined period of time has elapsed since a most recent write operation
5	terminated,
6	applying a given write current to a write head coil at the beginning of the
7	present write operation, and
8	decreasing the write current during the present write operation, wherein
9	the write current is less than the given write current at the end of the write operation; or
10	if said predetermined period of time has not elapsed since the most recent write
11	operation terminated, applying a write current less than the given write current at the beginning
12	of the present write operation.
1	2. A method of controlling a write current in a magnetic disk drive, the method
1	
2	comprising:
3	receiving a write command to initiate a present write operation; and
4	if a predetermined period of time has elapsed since a most recent write operation
5	terminated,
6	applying a first write current to a write head coil during a first portion of
7	the present write operation, and
8	applying a second write current during a second later portion of the
9	present write operation, wherein the first write current is higher than the second write
10	current; or
11	if said predetermined period of time has not elapsed since a most recent write
12	operation terminated, applying the second write current during the first and second portions of
13	the present write operation.
1	3. The method of claim 2 wherein a transition between the first and second write

2

currents is a smooth transition with a plurality of intermediate write currents.

1	4. The method of claim 2 wherein the first and second write currents are
2	maintained at respective constant levels during the first and second portions of the write
3	operation.
1	5. The method of claim 2 wherein the first write current is achieved by increasing
2	an amount of overshoot during the first portion of the write operation relative to the amount of
3	overshoot during the second portion of the time interval.
1	6. The method of claim 2 wherein said predetermined period of time is between
2	several tens of microseconds and a millisecond.
1	7. The method of claim 2 wherein:
2	the write current applied to the write head coil is specified by a register value; and
3	the register value is set to specify the first write current after said predetermined
4	period of time has elapsed.
1	8. A method of controlling a write current in a magnetic disk drive, the write
2	current being supplied to a write head coil when information targeted for storage is divided into
3	specified segments and is written onto a magnetic disk medium,
4	wherein a larger write current at the beginning of writing than at the end of
5	writing is used when the information is written after the elapse of a predetermined period of time
6	subsequently to the end of the last writing, and substantially the same write current at the
7	beginning of writing as at the end of writing is used when the information is written within a
8	predetermined period of time after the start of writing.
1	9. The method of claim 8 wherein the write current is increased or decreased by
2	increasing or decreasing an amount of overshoot.
1	10. The method of claim 8 wherein said predetermined period of time after the
2	start of writing is between several tens of microseconds and a millisecond.
1	11. A magnetic disk drive comprising:
2	a magnetic disk that rotates during operation:

3	a write head having a coil through which a write current is passed during a write
4	operation; and
5	a write current control circuit that causes said write current to decrease during a
6	write operation so that for an initial portion of the write operation, the write current is higher than
7	the write current for an ending portion of the write operation.
1	12. The magnetic disk drive of claim 11 wherein the initial portion is defined by
2	a predetermined number of sectors.
1	13. The magnetic disk drive of claim 11 wherein the write current decreases as a
2	smooth function during the write operation.
1	14. The magnetic disk drive of claim 11 wherein the write current is held at a first
2	value for a first portion of the write operation and then at a second, lower value following the
3	first portion of the write operation.
1	15. A magnetic disk drive using a magnetic head for energizing a coil when
2	information targeted for storage is divided into specified segments and is written onto a magnetic
3	disk medium,
4	wherein said magnetic disk drive has a function of setting the value of write
5	current to be supplied to the coil for each of said specified segments and records a information
6	while varying the write current during a writing sequence.
1	16. The magnetic disk drive of claim 15 wherein said specified segments are
2	sectors.
1	17. The magnetic disk drive of claim 15 wherein said magnetic disk drive has a
2	function of setting an overshoot instead of setting said write current and records the information
3	at various settings for said write current by varying the overshoot.