IDENTIFYING QUESTIONS IN THE AMERICAN ASSOCIATION OF SWINE VETERINARIAN'S PRRS RISK ASSESSMENT SURVEY THAT ARE IMPORTANT FOR RETROSPECTIVELY CLASSIFYING SWINE HERDS ACCORDING TO WHETHER THEY REPORTED CLINICAL PRRS OUTBREAKS IN THE PREVIOUS 3 YEARS

DJ Holtkamp¹, H Lin², C Wang^{1,2}, AM O'Connor¹

¹Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA USA, ²Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA USA, holtkamp@iastate.edu

Introduction

The American Association of Swine Veterinarians (AASV) Production Animal Disease Risk Assessment Program (PADRAP) is a web-based program that offers a set of risk assessment surveys being used by veterinarians who are members of the AASV. AASV members use PADRAP to help producers systematically assess risk factors that may be associated with clinical outcomes. Completed surveys are added to the dataset of completed surveys. One of the surveys included in PADRAP is the porcine reproductive and respiratory syndrome (PRRS) Risk Assessment for the Breeding Herd. The aim of the study was to categorize questions in version 2 of the PRRS Risk Assessment for the Breeding Herd survey as important or unimportant for classifying herds according to whether they reported clinical PRRS outbreaks in the previous 3 years.

Materials and Methods

Surveys from 896 sow herd sites in the United States and Canada completed between March 2005 and March 2009 were included in the analysis. The survey contained a large number of questions with a complex correlation structure among the questions where responses for several questions were dependent upon responses to others. To overcome these issues, an approach was developed using a series of statistical methods including random forest, principle component analysis, logistic regression and receiver operating characteristic (ROC) analysis to classify the herds using the questions in the survey as explanatory variables. Questions were ranked by importance and systematically excluded from least important to most important. The questions excluded, without significantly affecting the performance of the model for classifying herds were categorized as unimportant.

Results

After first removing questions with the lowest Gini score in multiple of tens a significant decrease in area under the curve (AUC) (-0.02, p < 0.01) occurred when the 40 questions with the lowest Gini score were excluded but no significant decrease in AUC (0.00, p = 1.00) when 30 were excluded. Thus we further studied the questions with the 31st to the 39th lowest Gini score by removing them one at a time. Model summaries including the number of questions, number of principal components, point and 95% interval estimate of AUC for all models

studied are reported in Table 1. Thirty-eight of the 127 questions analyzed could be removed from the model without significantly reducing the AUC and therefore categorized as unimportant. Sections of the survey where a large number of questions were categorized as unimportant included 1) entry of semen into the breeding herd and 2) transportation of live animals. Sections with a high percentage of questions identified as unimportant included 1) characteristics of the site, 2) disposal of dead animals and waste management and 3) employee and visitors.

Table 1. Summary of area under the curve (AUC) of all models and difference between AUC of Models 10 through 120 (reduced models) and Model 0 (full model).

	Number of	Number of principal			v.s. Model 0	
Model	questions	components	AUC	95%CI	P-value	95%CI
Model 0	127	371	1.00	(1.00, 1.00)		
Model 10	117	355	1.00	(1.00, 1.00)	1.00	(0.00, 0.00)
Model 20	107	337	1.00	(1.00, 1.00)	1.00	(0.00, 0.00)
Model 30	97	316	1.00	(1.00, 1.00)	1.00	(0.00, 0.00)
Model 31	96	314	1.00	(1.00, 1.00)	1.00	(0.00, 0.00)
Model 32	95	313	1.00	(1.00, 1.00)	1.00	(0.00, 0.00)
Model 33	94	311	1.00	(1.00, 1.00)	0.41	(0.00, 0.00)
Model 34	93	308	1.00	(1.00, 1.00)	0.13	(0.00, 0.00)
Model 35	92	305	1.00	(1.00, 1.00)	0.31	(0.00, 0.00)
Model 36	91	302	1.00	(1.00, 1.00)	1.00	(0.00, 0.00)
Model 37	90	299	1.00	(1.00, 1.00)	1.00	(0.00, 0.00)
Model 38	89	295	1.00	(1.00, 1.00)	0.28	(0.00, 0.00)
Model 39	88	292	0.98	(0.97, 0.99)	<.01	(-0.03, -0.01)
Model 40	87	290	0.98	(0.97, 0.98)	<.01	(-0.03, -0.02)
Model 50	77	259	0.94	(0.93, 0.96)	<.01	(-0.07, -0.04)
Model 60	67	234	0.94	(0.92, 0.95)	<.01	(-0.08, -0.05)
Model 70	57	207	0.92	(0.91, 0.94)	<.01	(-0.09, -0.06)
Model 80	47	173	0.91	(0.89, 0.93)	<.01	(-0.11, -0.07)
Model 90	37	143	0.89	(0.87, 0.91)	<.01	(-0.13, -0.09)
Model 100	27	105	0.89	(0.86, 0.91)	<.01	(-0.14, -0.09)
Model 110	17	67	0.85	(0.83, 0.88)	<.01	(-0.17, -0.12)
Model 120	7	26	0.81	(0.78, 0.84)	<.01	(-0.22, -0.16)

Conclusions and Discussion

The analysis presented demonstrates how a program like PADRAP, that is supported by a professional association and used by a community of veterinarians, can generate valuable data that contributes to our understanding of the relative importance of risk factors for disease. Specifically, the results elucidate the relative importance of risk factors and areas of risk factors for clinical outcomes and removing unimportant questions may reduce the time required to complete the survey without affecting the quality of information obtained. The results show how the data may be used to iteratively improve the quality of the survey by decreasing the reliance upon expert opinion to identify questions that should remain in the survey.