LCIE Etablissement de Moirans ZI Centralp 170, rue de Chatagnon 38430 Moirans

RCS Grenoble 408 363 174

Tel.: +33 4 76 07 36 36 Fax: +33 4 76 55 90 88

Rapport d'essai / Test report

N° 201003-6156CR-R2-E

JDE: 99698

DELIVRE A / ISSUED TO

: INGENICO

Rue Claude Chappe

B.P. 344

07503 GUILHERAND GRANGES

Objet / Subject

: Essais de compatibilité électromagnétique conformément aux normes

FCC CFR 47 Part 15, Subpart B et C.

Electromagnetic compatibility tests according to the standards

FCC CFR 47 Part 15, Subpart B and C

Matériel testé / Apparatus under test

Type sous test / Model under test

Produit / Product

: Lecteur de carte bancaire / Bank payment terminal

Marque / Trade mark

: INGENICO

Constructeur / Manufacturer

: INGENICO

Type / Model

iPP3x0-01Txxxxx

iPP320-01T1185A

N° de série / serial number

: iPP350-01T1108A : 09350PP40063651

09350PP40063626

FCC ID

: XKB-iPP3x0-01Txxx

Date des essais / Test date

: Du 26 au 28 Avril 2010 / From April 26th to 28th, 2010

Lieu d'essai / Test location

: BUREAU VERITAS LCIE SUD-EST ZI Centr'Alp - 170 rue de Chatagnon

38430 MOIRANS - France

Test réalisé par / Test performed by

: Anthony MERLIN

Ce document comporte / Composition of document : 72 pages.

MOIRANS, LE 7 Juin 2010 / June 7th, 2010

Ecrit par / Written by Anthony MERLIN

Approuvé par / Approved by, TRAI Jacques LOROGINIES ELECTRIQ

> Rue de Chatagnon 430 MOIRANS

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Toute reproduction partielle ou toute insertion de résultats dans un texte d'accompagnement en vue de leur diffusion doit recevoir un accord préalable et formet du LCIE. Ce document résulte d'essais difectués sur un spécimen, un échantillon ou une éprouvette. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à l'objet essayé. Sauf indication contraîre, la décision de conformité prend en compte l'incertitude de mesures. Il ne préjuge en aucun cas d'une décision de certification

This document shall not be reproduced, except in full, without t he written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested . Unless otherwise specified; the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

LCIE

35, av du Général Leclerc

Tel: +35 1 40 95 60 60 Fax : +35 1 40 95 86 56

Société par Actions Simplifiée

92266 Fontenay-aux-Roses cedex

contact@leie.fr

au capital de 15 745 984 € RCS Nanterre B 408 365 174

France

www.lcie.fr

www.leie.com

Page: 2 / 72

SUMMARY

1.	TEST PROGRAM	3
2.	SYSTEM TEST CONFIGURATION	4
3.	RADIATED EMISSION DATA	9
4.	FUNDAMENTAL FREQUENCY TOLERANCE (15.225E)	17
5.	BAND-EDGE COMPLIANCE §15.209	19
6.	CONDUCTED EMISSION DATA	20
TES	T EQUIPMENT LIST (MOIRANS SITE)	26
7.	UNCERTAINTIES CHART	28
8.	ANNEX 1 (GRAPHS)	29

Page: 3 / 72

1. Test Program

Standard: - FCC Part 15, Subpart B (Digital Devices)

- ANSI C63.4 (2003)

EMISSION TEST	LIMITS		RESULTS (Comments)	
Limits for conducted disturbance at mains ports	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	PASS
150kHz-30MHz	150-500kHz	66 to 56	56 to 46	
	0.5-5MHz 56 46		46	
	5-30MHz	60	50	
Radiated emissions 30MHz-12.5GHz	88MHz-216Mi 216MHz-960N	m z : 40 dBμV/m Hz : 43.5 dBμV/m //Hz : 46.0 dBμV/m lz : 54.0 dBμV/m	PASS	

Standard: - FCC Part 15, Subpart C

- ANSI C63.4 (2003)

EMISSION TEST	LIMITS			RESULTS (Comments)
Limits for conducted disturbance at mains ports	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	PASS
150kHz-30MHz	150-500kHz	66 to 56	56 to 46	
	0.5-5MHz	56	46	
	5-30MHz	60	50	
Radiated emissions 9kHz-30MHz	Measure at 30 490kHz-1.705	: 67.6dBµV/m /F(k	n /F(kHz)	PASS
Radiated emissions 30MHz-12.5GHz*	Measure at 31 30MHz-88MH 88MHz-216MH 216MHz-960M		PASS	
Fundamental frequency tolerance	Operation wit 13.110-14.010		PASS	
Bandedge compliance	Operation wit 13.110-14.010		PASS	

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

⁻ If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

Page: 4 / 72

2. SYSTEM TEST CONFIGURATION

2.1. **JUSTIFICATION**

The system was configured for testing in a typical fashion (as a customer would normally use it).

HARDWARE IDENTIFICATION 2.2.

Equipment under test (EUT):

E.U.T.: iPP350-01T1108A

Serial number: 09350PP40063651

Model with all options

Serial number: 09350PP40063626

Model with all options

With Power supply FRIWO

153051

120V / 50-60Hz <-> 8Vdc With Power supply PHIHONG PSC16E-080 100-240V / 50Hz <-> 8Vdc

(Configuration n^a) (Configuration n⁹4)

Highest internal frequency: 387 MHz

Input/output:

1 x Power supply / Data port (Type HDMI, "1")

Page: 5 / 72

Auxiliaries used for testing:

- Laptop TOSHIBA SATELLITE PS141E-04YC sn: 13594938G
- POE Injector POE30U-560 (56Vdc 0.55A) PHIHONG sn: P71400110B1

I/O cables used for testing:

- Configuration 1: 1 x Ethernet cable (2m) (AC/DC adapter input), shielded, Ref: IPP3xx-A-XXX-X
- Configuration 2: 1 x Ethernet cable (2m) (POE) shielded, Ref: IPP3xx-P-XXX-X
- Configuration 2: 1 x Ethernet cable (2m), FTP Cat 5e, Type CM shielded
- Configuration 3: 1 x USB cable (2m), shielded, Ref: IPP3xx-X-XXX-X
- Configuration 4: 1 x RS232 cable (2m), shielded, Ref: IPP3xx-XX-XXX-X

2.3. RUNNING MODE

<u>Sequence n</u> :

A reading and writing process are performed on

- SAM1
- SAM2
- SAM3
- CAM0
- Cless

Sequence n2:

Sequence n°1 + a continuous ping process to EUT IP address from Laptop (TOSHIBA) (Ethernet link) is performed.

Sequence n3:

sequence nº1 + serial communication on COM0

Serial communication (RS232, COM0) consists to performed a self communication (RX and TX are bypassed)

Configuration				
Running mode	1	2	3	4
Sequence n [ୁ]			Х	
Sequence n ²	Х	Х		
Sequence n ³				Х

Page: 6 / 72

2.4. EQUIPMENT MODIFICATIONS

A ferrite (ref: wurth 742 711 31) on EUT cable has been necessary during testing for configuration 1 & 2.

Configuration 1

2.5. EUT EXERCISE SOFTWARE

Pack OS 3777 0900 + driver Cless 8200490207

Appli test CEM: TESTCAM0107

2.6. **EUT CONFIGURATION**

Configuration 1: <u>Communication access</u>: - Ethernet

Power supply: - Power supply adapter Type FRIWO 153051 (8Vdc <-> IPP3x)

Page: 7 / 72

Option Cable: - Ref: IPP3xx-A-XXX-X

<u>Communication access</u>: - Ethernet **Configuration 2**:

Power supply: POE30U-560 - Power over Ethernet (POE) provided by a POE injector type PHIHONG

Option Cable: - Ref: IPP3xx-P-XXX-X

<u>Configuration 3</u>: <u>Communication access</u>: - USB

Power supply: - Power provided by a Laptop (USB, 5Vdc <-> IPP3x)

Option Cable: - Ref: IPP3xx-X-XXX-X

<u>Configuration 4</u>: <u>Communication access</u>: - RS232

<u>Power supply</u>: - Power supply adapter Type PSC16E-080 (8Vdc <-> IPP3x)

Option Cable: - Ref: IPP3xx-XX-XXX-X

Page: 8 / 72

3. RADIATED EMISSION DATA

3.1. CLIMATIC CONDITIONS

Date of test : April 26th, 2010
Test performed by : A.MERLIN
Atmospheric pressure : 954mb
Relative humidity : 40%
Ambient temperature : 21℃

3.2. TEST SETUP

The installation of EUT is identical for pre-characterization measurement in a 3 meters semi anechoic chamber and for measures on a 10 meters Open site.

Page: 9 / 72

Configuration na

Page: 10 / 72

Configuration n2

Configuration n3

Page: 11 / 72

Configuration n%

3.3. TEST SEQUENCE AND RESULTS

3.3.1. Pre-characterization at 3 meters [9kHz-30MHz]

A pre-scan of all the setup has been performed in a 3 meters semi anechoic chamber.

The distance between EUT and antenna is 3 meters. For Pre-characterization, the loop antenna was rotated during the test for maximized the emission measurement. Measurement performed on 3 axis of EUT. Frequency band investigated is 9kHz to 30MHz.

The pre-characterization graphs are obtained in PEAK detection.

See graph for 9kHz-30MHz band:

Configuration n ^a	Color	Emr#1	(See annex 1)
Configuration n ^o	Black&White	Emr#2	(See annex 1)
Configuration n ²	Color	Emr#3	(See annex 1)
Configuration n ²	Black&White	Emr#4	(See annex 1)
Configuration n3	Color	Emr#5	(See annex 1)
Configuration n3	Black&White	Emr#6	(See annex 1)
Configuration n ^o 4	Color	Emr#7	(See annex 1)
Configuration n ² 4	Black&White	Emr#8	(See annex 1)

Page: 12 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

3.3.2. Pre-characterization [30MHz-2GHz]

For frequency band 30MHz to 1GHz, a pre-scan of all the setup has been performed in a 3 meters semi anechoic chamber.

The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization with a log-periodic antenna. The EUT is being rotated on 360° and on 3 axis during the measurement. The precharacterization graphs are obtained in PEAK detection.

For frequency band 1GHz to 2GHz, a search is performed in the semi-anechoic chamber in order to determine frequencies radiated by the EUT (Measuring distance reduced to 1m).

See graphs for 30MHz-1GHz:

Configuration n° - Color H polarization V polarization Configuration n° - B&W H polarization V polarization	Emr#9 Emr#10 Emr#11 Emr#12	(See annex 1) (See annex 1) (See annex 1) (See annex 1)
Configuration n ² - Color H polarization V polarization Configuration n ² - B&W H polarization V polarization	Emr#13 Emr#14 Emr#15 Emr#16	(See annex 1) (See annex 1) (See annex 1) (See annex 1)
Configuration $n\Im$ - Color H polarization V polarization Configuration $n\Im$ – $B\&W$ H polarization V polarization	Emr#17 Emr#18 Emr#19 Emr#20	(See annex 1) (See annex 1) (See annex 1) (See annex 1)
Configuration n% - Color H polarization V polarization Configuration n% – B&W H polarization V polarization	Emr#21 Emr#22 Emr#23 Emr#24	(See annex 1) (See annex 1) (See annex 1) (See annex 1)

Page: 13 / 72

3.3.3. Characterization on 10 meters open site below 30 MHz

The product has been tested according to ANSI C63.4 (2003), FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C §15.225 limits in the frequency range 13.553MHz 13.567MHz. Measurement bandwidth was 9kHz.

Antenna height was 1m for both horizontal and vertical polarization.

Antenna was rotated around its vertical axis.

Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on clauses 3.2.

Worst configuration: Configuration n2

Frequency (MHz)	QPeak Limit (dBµV/m) @ 30m	Qpeak (dBµV/m)	Qpeak-Limit (Margin dB)	Turntable Angle (deg)	Ant. Pol./ Angle (deg)	Tot Corr (dB)
13.56* ¹	84.0	43.7	-40.3	270	90	35.3
27.12* ¹	29.5		No Significant I	39.3		

^{*1:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@30m = M@10m-19.1dB)

Limits Sub clause §15.225

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)		
13.553-13.567	15 848	30		
13.333-13.307	84 dBµV/m	30		
13.410-13.553	334	20		
13.567-13.710	50.5 dBµV/m	30		
13.110-13.410	106	20		
13.710-14.010	40.5 dBµV/m	30		

See chapter 5 of this test report for band edge measurements.

Page: 14 / 72

3.3.4. Characterization on 10 meters open site from 30MHz to 2GHz

The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart B §15.109 limits and C §15.209 limits. Measurement bandwidth was 120kHz from 30 MHz to 1GHz and 1MHz from 1GHz to 2GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.2

Worst case final data result between Color and B&W by configuration:

Configuration n 1:

No	Frequency (MHz)	QPeak Limit (dBµV/m)		Qpeak-Limit (Margin, dB)	Angle (deg)	Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	34.12	40	31.8	-8.2	10	V	110	13.1	None
2	38.564	40	36.1	-3.9	45	V	100	12.0	None
3	40.678	40	37.9	-2.1	230	V	100	12.0	None
4	54.245	40	38.3	-1.7	50	V	110	12.3	With Modification §2.4
5	64.123	40	35.9	-4.1	45	V	100	11.0	None
6	67.893	40	35.2	-4.8	90	V	230	10.4	None
7	774.102	46	40.4	-5.6	200	Н	150	26.1	None
8	999.968	54	43.8	-10.2	0	Н	100	29.7	None

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Configuration n2:

No	Frequency (MHz)	QPeak Limit (dBµV/m)	Qpeak * (dBµV/m)	Qpeak-Limit (Margin, dB)	Angle (deg)	Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	37.356	40	36.4	-3.6	150	V	150	12.0	None
2	40.679	40	39.7	-0.3	100	V	100	12.0	With Modification §2.4
3	50.369	40	27.4	-12.6	300	V	100	12.7	None
4	54.237	40	38.9	-1.1	230	V	100	12.3	With Modification §2.4
5	176.16	43.5	31.8	-11.7	200	Н	340	18.3	None
6	732.201	46	44.0	-2.0	290	Н	110	25.8	None
7	999.991	54	41.2	-12.8	280	Н	130	29.7	None

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Page: 15 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

Configuration n3:

No	Frequency (MHz)	QPeak Limit (dBµV/m)		Qpeak-Limit (Margin, dB)	Angle (deg)	Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	33.771	40	23.9	-16.1	0	V	100	13.1	None
2	40.679	40	37.7	-2.3	320	V	100	12.0	None
3	54.249	40	36.4	-3.6	0	V	175	12.3	None
4	786.426	46	39.0	-7.0	160	V	170	26.2	None
5	870.856	46	39.3	-6.7	320	Н	260	27.4	None
6	999.984	54	42.0	-12.0	0	Н	220	29.7	None

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Configuration n%:

Oomigarati	011 11 4.								
No	Frequency (MHz)	QPeak Limit (dBµV/m)	Qpeak * (dBµV/m)	Qpeak-Limit (Margin, dB)	Angle (deg)	Pol	Hgt (cm)	Tot Corr (dB)	Comments
1	34.12	40	35.0	-5.0	0	V	100	13.1	None
2	40.674	40	37.9	-2.1	0	V	100	12.0	None
3	54.24	40	38.2	-1.8	0	V	100	12.3	None
4	57.004	40	32.5	-7.5	0	V	100	11.9	None
5	122.005	43.5	34.5	-9.0	105	V	100	16.2	None
6	732.192	46	42.3	-3.7	250	Н	110	25.8	None
7	786.44	46	38.7	-7.3	110	V	100	26.2	None
8	871.054	46	37.3	-8.7	230	V	120	27.5	None
9	999.991	54	41.4	-12.6	145	Н	100	29.7	None

^{*:} Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

Frequency band 1GHz to 2GHz – For all configuration

Measurements are performed using a PEAK and Average detection. (RBW = 1MHz)

No	Frequency (GHz)	Limit Average	Measure Average	Margin (Mes-Lim)	Angle Table		Correc.	Comments
	(3)	(dBµV/m)	(dBµV/m)	(dB)	(deg)	(cm)	(dB)	

No Significant Frequency observed

Note: Measures have been done at 3m distance.

RESULTS: PASS

Page: 16 / 72

3.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 dB\mu V/m$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m = Common Antilogarithm [(32dB<math>\mu V/m)/20] = 39.8 \mu V/m$.

Page: 17 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

4. Fundamental frequency tolerance (15.225e)

4.1. TEST CONDITIONS

Date of test : April 29th, 2010 Test performed by : A.MERLIN

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency when the temperature is varied from -20% to +50% at the no minal power voltage and the primary power voltage is varied from 85% to 115% of the rated supply voltage at 20%.

4.2. Temperature and voltage fluctuation

Temperature has been set at +20 \degree C, −20 \degree C and +50 \degree C.

Voltage is varied from 102V/60Hz to 138V/60Hz (4 configurations)

Frequency of carrier: 13.56 MHz Upper limit: 13.561356 MHz Lower limit: 13.558644 MHz

The equipment (RF box) is set in a climatic chamber. Measure is performed on one channel of RF module.

Configuration n ?:

Temperature	-20℃	20℃	+50℃
Voltage			
Mains voltage: 110V/60Hz			
Frequency Drift (MHz)	0.00087	REF	-0.000062
Carrier level (dBc)	-2.520000	REF	-0.370000
Mains voltage: 93,5V/60Hz			
Frequency Drift (MHz)	0.000085	-0.000064	-0.000065
Carrier level (dBc)	-0.930000	-0.140000	-0.280000
Mains voltage: 126V/60Hz			
Frequency Drift (MHz)	0.000085	-0.000057	-0.000065
Carrier level (dBc)	-0.560000	-0.160000	-0.250000

Frequency drift measured is **87 Hz** when the temperature is varied from -20° to $+50^{\circ}$ and voltage is varied from $120\text{V}/60\text{Hz} \pm 15\%$.

Configuration n2:

Temperature	-20℃	20℃	+50℃
Voltage			
Mains voltage: 110V/60Hz			
Frequency Drift (MHz)	0.000094	REF	-0.000032
Carrier level (dBc)	-1.840000	REF	-0.160000
Mains voltage: 93,5V/60Hz			
Frequency Drift (MHz)	0.000094	0.000000	-0.000040
Carrier level (dBc)	-1.980000	0.000000	-0.190000
Mains voltage: 126V/60Hz			
Frequency Drift (MHz)	0.000097	-0.000002	-0.000037
Carrier level (dBc)	-0.640000	0.000000	-0.190000

Frequency drift measured is **107 Hz** when the temperature is varied from -20°C to +50°C and voltage is varied from 120V/60Hz ± 15%.

Page: 18 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

Configuration n3:

<u>นเสมอีก กร.</u>			
Temperature	-20℃	20℃	+50℃
Voltage			
Mains voltage: 110V/60Hz			
Frequency Drift (MHz)	0.000054	REF	-0.000084
Carrier level (dBc)	-0.480000	REF	-0.670000
Mains voltage: 93,5V/60Hz			
Frequency Drift (MHz)	0.000062	-0.000026	-0.000082
Carrier level (dBc)	-0.230000	-0.370000	-0.650000
Mains voltage: 126V/60Hz			
Frequency Drift (MHz)	0.000062	-0.000019	-0.000079
Carrier level (dBc)	-0.160000	-0.300000	-0.600000

Frequency drift measured is **84 Hz** when the temperature is varied from -20°C to +50°C and voltage is varied from 120V/60Hz \pm 15%.

Configuration n%:

Temperature	-20℃	20℃	+50℃
Voltage			
Mains voltage: 110V/60Hz			
Frequency Drift (MHz)	0.000075	REF	-0.000077
Carrier level (dBc)	-2.540000	REF	-0.260000
Mains voltage: 93,5V/60Hz			
Frequency Drift (MHz)	0.000070	-0.000059	-0.000074
Carrier level (dBc)	-1.660000	-0.170000	-0.260000
Mains voltage: 126V/60Hz			
Frequency Drift (MHz)	0.000075	-0.000057	-0.000074
Carrier level (dBc)	-3.160000	-0.140000	-0.260000

Frequency drift measured is **75 Hz** when the temperature is varied from -20°C to +50°C and voltage is varied from $120 \text{V}/60 \text{Hz} \pm 15$ %.

Page: 19 / 72

5. BAND-EDGE COMPLIANCE §15.209

5.1. CLIMATIC CONDITIONS

Date of test : April 26th, 2010
Test performed by : A.MERLIN
Atmospheric pressure
Relative humidity : 40%
Ambient temperature : 21℃

5.2. EQUIPMENT CONFIGURATION

See § 2.3.

5.3. Frequency band 13.110-14.010MHz

Following plots show radiated emission level in the frequency band 13.110-14.010MHz with a RBW of 9kHz and a quasi-peak detector. The graphs are obtained with a measuring receiver ESU8.

Configuration n2: Worst case

Page: 20 / 72

6. CONDUCTED EMISSION DATA

6.1. CLIMATIC CONDITIONS

Date of test : April 28th, 2010
Test performed by : A.MERLIN
Atmospheric pressure : 801mb
Relative humidity : 41%
Ambient temperature : 24℃

6.2. SETUP FOR CONDUCTED EMISSIONS MEASUREMENT

The product has been tested according to ANSI C63.4-(2003) and FCC Part 15 subpart B and C.

The product has been tested with 120V/60Hz power line voltage and compared to the FCC Part 15 subpart B §15.107 and C §15.207 limits. Measurement bandwidth was 9kHz from 150 kHz to 30 MHz.

Measurement is made with a Rohde & Schwarz ESU8 receiver in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H.

The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Page: 21 / 72

6.3. TEST SETUP

The EUT is placed on the ground reference plane, at 80cm from the LISN. The distance between the EUT and the vertical ground plane is 40cm.

Auxiliaries are powered by another LISN.

The cable has been shorted to 1meter length. The EUT is powered trough the LISN (measure).

Configuration nº1

Page: 22 / 72

Configuration n²

Configuration n3

Configuration n%

Page: 25 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

6.4. TEST SEQUENCE AND RESULTS

Measurements are performed on the phase (L1) and neutral (N) of power line voltage.

A measurement is also performed with a 50Ω dummy load replacing the transmitter antenna in order to demonstrate that some 13.56MHz may be cross-coupled to AC line connection.

Graphs are obtained in PEAK detection.

Measures are also performed in Quasi-Peak and Average for any strong signal.

medeares are also perfermed	in Quaer real and riverage for a	arry strong eighan	
Configuration n ^o − Color:			
Measure on L1:	graph Emc#1		(see annex 1)
Measure on N:	graph Emc#2		(see annex 1)
Configuration n ^o − B&W:			
Measure on L1:	graph Emc#3		(see annex 1)
Measure on N:	graph Emc#4		(see annex 1)
Configuration n ^o 2 – Color:			
Measure on L1:	graph Emc#5	Laptop power supply	(see annex 1)
Measure on N:	graph Emc#6	Laptop power supply	(see annex 1)
Measure on L1:	graph Emc#7	POE power supply	(see annex 1)
Measure on N:	graph Emc#8	POE power supply	(see annex 1)
Configuration n ^o 2 − B&W:			
Measure on L1:	graph Emc#9	Laptop power supply	(see annex 1)
Measure on N:	graph Emc#10	Laptop power supply	(see annex 1)
Measure on L1:	graph Emc#11	POE power supply	(see annex 1)
Measure on N:	graph Emc#12	POE power supply	(see annex 1)
Configuration n3 – Color:			
Measure on L1:	graph Emc#13		(see annex 1)
Measure on N:	graph Emc#14		(see annex 1)
Configuration n3 – B&W:			
Measure on L1:	graph Emc#15		(see annex 1)
Measure on N:	graph Emc#16		(see annex 1)
Configuration n ² – Color:			
Measure on L1:	graph Emc#17		(see annex 1)
Measure on N:	graph Emc#18		(see annex 1)
Configuration n ⁹ 4 – B&W:	5 .		,
Measure on L1:	graph Emc#19		(see annex 1)
Measure on N:	graph Emc#20		(see annex 1)

RESULT: PASS

Page: 26 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

TEST EQUIPMENT LIST (MOIRANS SITE)

	N°LCIE	TYPE	COMPANY	REF	commentaire
RADIATED		SUREMENT (PRE-SCAN SEMI-ANECH	,		
	A5329032VO	Absorption clamp	LUTHI	MDS21	
	A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	
X	A4049060VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	
X	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	
Х	A7486006VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447F	
	A7085008VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085009VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085010VO	Amplifier 10MHz – 1300 MHz	A-INFO INC	JXWBLA-T	
X	C2040146VO	Antenna Bi-Log XWing	TESEQ	CBL6144	
	C2042027VO	Antenna horn	EMCO	3115	
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	
X	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	
X	A5329045VO	Cable EMR (s-Anechoic chamber)			
X	A5329056VO	Cable Radiat EMI (Pre-amp/Analyzer)			
X	A5329057VO	Cable Radiat. EMI (Pre-amp/cage)	DOLIDE 0 001 1144 D7	F0110	
X	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	
X	A4060030VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	
X	A3169050VO	Radiated emission comb generator	BARDET		
	D3044015VO	Semi-Anechoic chamber #2	SIEPEL HEWLETT PACKARD	HP8568B	
X	A4060029VO	Spectrum analyzer		I .	
X	A4060028VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	
X	F2000404VO F2000393VO	Turntable chamber Turntable controller chamber	ETS Lingren ETS Lingren	Model 2165 Model 2066	
^	F2000393VO	Turntable controller chamber	ETS Lingren	IVIOGEI 2000	
DADIATED	EMISSION MEAS	l SUREMENT (OPEN AREA TEST SITE)			
KADIATED	A5329032VO	Absorption clamp	LUTHI	MDS21	1
	A5329032VO A5329044VO	Absorption clamp	RHODE ET SCHWARZ	85024A	+
Х	A4049059VO	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	+
^	A7102024VO	Amplifier 8 GHz	HEROTEK	A1080304A	+
	A7102024VO	Amplifier 8-26GHz	ALDETEC	ALS01452	+
	A7085008VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085009VO	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447D	
	A7085010VO	Amplifier 10MHz – 1300 MHz	A-INFO INC	JXWBLA-T	
Х	C2040050VO	Antenna biconic	EMCO	3104C	
Λ	C2040051VO	Antenna Bi-log	CHASE	CBL6111A	
	C2042027VO	Antenna horn	EMCO	3115	
	C2042028VO	Antenna horn 26GHz	SCHWARZBECK	BBHA 9170	
Х	C2040056VO	Antenna log-periodic	EMCO	3146	
X	C2040052VO	Antenna Loop	ELECTRO-METRICS	EM-6879	
X	F2000288VO	Antenna mast	EMCO	1050	
X	A5329048VO	Cable EMR OATS	SUCOFLEX	106G	
X	A5329199VO	Cable OATS (Mast at 10m)	UTIFLEX	1000	
X	A5329188VO	Cable OATS (Mast at 10m)	UTIFLEX		
		Cable OATS (Mast at 3m)	UTIFLEX		
	A5329196VO	Cable OATS (Turntable)	UTIFLEX		
	A5329187VO	Cable OATS (Turntable)	UTIFLEX		
	A2640011VO	Measurement receiver 9kHz–30MHz	ROHDE ET SCHWARZ	ESH3	
Х	A2642019	Measurement Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	
X	A4060027VO	Pre-selector RF	HEWLETT PACKARD	HP85685A	
X	A3169050VO	Radiated emission comb generator	BARDET		
X	A4060017VO	Spectrum analyzer	HEWLETT PACKARD	HP8568B	
	A4060018VO	Spectrum Analyzer 9KHz – 26.5GHz	HEWLETT PACKARD	8593E	
	A4060016VO	Spectrum analyzer 9kHz –1.8GHz	HEWLETT PACKARD	8591E	
Х	A4060019VO	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	
X	F2000403VO	Turntable	ETS LINDGREN	Model 2187	
X	F2000286VO	Turntable / Antenna mast controller	ETS LINDGREN	Model 2066	
	1 22.3				
CONDUCT	ED MEASUREME	NT EMISSION	-	•	
	A5329061VO	Cable Conduct. EMI			
Х	A5329060VO	Cable Conduct. EMI			

Page: 27 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

N°LCIE TYPE COMPANY REF commentaire Χ UTIFLEX A5329189VO Shielded cable A5329076VO Shielded cable UTIFLEX UTIFLEX A5329206VO Shielded cable A5329207VO Shielded cable UTIFLEX A5329060VO Shielded cable UTIFLEX A5329071VO Shielded cable UTIFLEX Χ A3169049VO Conducted emission comb generator BARDET A4040015 Clickmeter **SCHAFFNER** DIA1512D A5329037VO Current injection probe SCHAFFNER CIP8213 A1290017VO Current probe **SCHAFFNER** CSP9160 A5329036VO Direct Injection Module 100+50 Ohms LCIE MID01-100 ohms A7156004VO Direct Injection Module 100+50 Ohms LUTHI CR100A A5329042VO LUTHI FTC 101 Ferrite Tube A1092042VO Ferrite Tube LUTHI FTC101 C2320059VO LISN **EMCO** 3810/2SH LISN C2320068VO **EMCO** 3825/2 C2320061VO LISN TELEMETER ELECTRONIC NNB-2/16Z C2320062VO LISN tri-phase ESH2-Z5 RHODE ET SCHWARZ 33852.19.53 C2320063VO LISN tri-phase ESH2-Z5 RHODE ET SCHWARZ 33852.19.53 Χ RHODE ET SCHWARZ ENV216 C2320123VO LISN A2640011VO Measurement receiver 9kHz-30MHz ROHDE ET SCHWARZ ESH3 Measurement Receiver 20Hz - 8GHz Χ A2642019VO **ROHDE & SCHWARZ** ESU8 C2320067VO ISN 2 x 2 wires RHODE ET SCHWARZ ENY22 RHODE ET SCHWARZ C2320066VO ISN 4 wires ENY41 C2320124VO ISN 4 wires T400A TESEQ D3044016VO Semi-Anechoic chamber #1 SIEPEL D3044017VO SIEPEL Semi-Anechoic chamber #3 D3044015VO Semi-Anechoic chamber #2 SIEPEL Faraday Cage D3044010VO **RAY PROOF** HEWLETT PACKARD A4049061VO Transient limiter 11947A A4089117VO Voltage probe LCIE FUNDAMENTAL FREQUENCY TOLERANCE 200 105 6 BIA CLIMATIC CL 6-25 D1022117VO Climatic chamber B2082009VO Hewlett Packard HP 5350B Χ Frequency Counter A2240015VO Passive loop antenna EMCO 7405-901 Χ BNC cable 50Ω A5329206VO UTIFLEX Shielded cable C2040052VO **ELECTRO-METRICS** EM-6879 690234 Antenna Loop A4060018VO Spectrum Analyzer 9KHz - 26.5GHz HEWLETT PACKARD 8593F 3409u00537 A2642019 Measurement Receiver 20Hz – 8GHz **ROHDE & SCHWARZ** ESU8 100131 **BAND-EDGE COMPLIANCE** A2240015VO Passive loop antenna **EMCO** 7405-901 BNC cable 50Ω A5329198VO Shielded cable UTIFLEX C2040052VO **ELECTRO-METRICS** Χ Antenna Loop EM-6879 690234 Spectrum Analyzer 9KHz - 26.5GHz 3409u00537 A4060018VO HEWLETT PACKARD 8593E Χ A2642019 Measurement Receiver 20Hz - 8GHz ROHDE & SCHWARZ ESU8 100131

Page: 28 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

7. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB

Page: 29 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

8. ANNEX 1 (GRAPHS)

Page: 30 / 72

	IONS (Pre-characterization at 3r	eters) Test configuration:	
	Emr#2	Configuration n°1	
	Parallel	B&W	
	9kHz-30MHz		
	0-359°		
RBW / VBW :	9kHz / 30kHz		
150 dBμV/m	Fr		30MHz
	Frequency (MHz)	Peak (dBμV/m)	
	13.562*	53.13	
	27.118	49.2	
*Carrier Frequency			

Page: 31 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

*Carrier Frequency

	SSIONS (Pre-characterization at 3r	meters)	Test configuration:	
Graph name:	Emr#3		Configuration n ²	
Antenna polarization	Parallel			
Frequency band 9kHz-30MHz			_	
Azimuth:	0-359°			
RBW / VBW :	9kHz / 30kHz			
150 dBµV/m		the state of the s	Marine Ma	
	Frequency (MHz)	Peak (dB	μV/m)	
	13.55*	51.03		
	27.114	48.9		

Page: 32 / 72

RADIATED EMISSIONS	(Pre-characterization at 3r	neters) Tes	t configuration:
Graph name: Emr#		Con	figuration n ²
Antenna polarization Paral	llel	B&V	N
. ,	-30MHz		
Azimuth: 0-35 9			
	: / 30kHz		
dBµV/m	Fre	What was a squared and the squ	Wally with the same of the sam
	Frequency (MHz)	Peak (dBµV/m)	
	13.55*	53.63	
	27.114	49.2	
*Carrier Frequency			

Page: 33 / 72

	IONS (Pre-characterization at 3r	meters) Test configuration:
•	Emr#5	Configuration n ³
	Parallel	Color
	9kHz-30MHz	
	0-359°	
RBW / VBW :	9kHz / 30kHz	
0 - 3kHz	Fr	équence 30MHz
	Frequency (MHz)	Peak (dBμV/m)
	13.558*	50.93
	27.118	43
*Carrier Frequency		

Page: 34 / 72

	IONS (Pre-characterization at 3r	neters) Test configuration:	
	Emr#6	Configuration n ³	
'	Parallel	B&W	
	9kHz-30MHz		
	0-359°		
	9kHz / 30kHz		
150 dBμV/m	Fr	quence	MHz
	Frequency (MHz)	Peak (dBµV/m)	
	13.558*	50.9	
	27.118	43.1	
*Carrier Frequency			

Page: 35 / 72

RADIATED EMISS	SIONS (Pre-characterization at 3meters)	Test configuration:	
Graph name:	Emr#7	Configuration n ² 4	
Antenna polarization	Parallel	Color	
Frequency band	9kHz-30MHz		
Azimuth:	0-359°		
RBW / VBW :	9kHz / 30kHz		
150 dBµV/m			
*Carrier Frequency			

Page: 36 / 72

	SIONS (Pre-characterization at 3	neters) Test configuration:
	Emr#8	Configuration n ² 4
Antenna polarization	Parallel	B&W
Frequency band	9kHz-30MHz	
Azimuth:	0-359°	
RBW / VBW :	9kHz / 30kHz	
dBµV/m		quence 30MHz
	Frequency (MHz)	Peak (dBμV/m)
	13.55*	53.62
	27.114	48.79
*Carrier Frequency	21.111	10110

Page: 37 / 72

RAPPORT D'ESSAI / TEST REPORT N° 201003-6156CR-R2-E

RADIATED EMISSION Test configuration: N° Color Emr#9 Graph name: LAN Antenna position: Horizontal 110V - 60Hz 0°-360° Azimuth: RBW/VBW: 120kHz / 300kHz Peak Measure QPeak Limit@3m dBµV/m Frequency (MHz) | Peak (dBµV/m) 40.6 31 176.16 29.2

Page: 38 / 72

	RADI	ATED	EMI	SSIC	N		Test configuration: N°									
Graph			Em	r#10			Col									
					Vertical											
Azimuth:					360°	•		110V – 60Hz								
					kHz	/ 3	00kHz	Peak Measure				QPeak Limit@3m				
100 dBµV/m																
															\Box	
															<u>_</u>	
		Ŷ			-				_							
	ıî a													Ŷ.	Ŷ	
	w ^w /w/w/	. <u>î</u>		M										بليليل	wlw	
	 		1. I A			\vdash	, A. M.				ul. a	1	Mohalmed	MM	\vdash	
	V	"M	M J / I'	' \.			MalV MalVV.		,	و اید ن	Just Mary	Milhamarani	,			
			.AM.	\V		יויוערי	i Mrthwhlhin a		Lan II. Mal. Mayora M	My Malan Prayer					Ш	
				'	MM	ļ'	' W	MINAMA	www.philoso.] "						
															Н	
0	30MHz														1GHz	
	30WI 12						Fr	équence						Sous-ba	ande 1	
					Fre		ency (MHz)	Peak (dBµV/m)								
				-			33.72		38.29							
							38		37.32							
				-			40.6 45.6		41.3 33.4	_						
							45.6 64.12		35.77							
							67.76		35.69							
				-			141.12		30.39							
				ŀ			774		38.23							
							939.56		39.41							
							999.96		39.1							
<u> </u>																

RADIATED	EMISSION	Test configuration: N°1					
Graph name:	Emr#11	B&W					
Antenna position:	Horizontal	LAN					
Azimuth:	0°- 360°	110V – 60Hz					

Page: 40 / 72

RADIATED EMISSION							Test configuration: N°1								
Graph name:					r#1:			B&	W						
Antenna position: V				Ver	tica	ıl		LAI							
				0°-	360)°		110	V – 60Hz						
			120	kHz	z / 3	00kHz	Peak Measure				QPeak Limit@3m				
100 dВµV/m		hw.A.				W. 10 W.				April Andrody (1)	Minimo	No.	And the second second	10 Laboratoria	- -
0	30MHz														1GHz
				ı				réquence						Sous-ba	ande 1
					Fr	equ	ency (MHz) 33.84	Pea	ak (dBµV/	m)					
							33 84								
									35.72						
							38.24		37.98						
							38.24 40.64		37.98 34.71						
							38.24 40.64 46.12		37.98 34.71 34.31						
							38.24 40.64 46.12 58.68		37.98 34.71 34.31 33.72						
							38.24 40.64 46.12 58.68 64.28		37.98 34.71 34.31 33.72 35.16						
							38.24 40.64 46.12 58.68 64.28 141.12		37.98 34.71 34.31 33.72 35.16 30.39						
							38.24 40.64 46.12 58.68 64.28 141.12 705.08		37.98 34.71 34.31 33.72 35.16 30.39 35.97						
							38.24 40.64 46.12 58.68 64.28 141.12 705.08 732.08		37.98 34.71 34.31 33.72 35.16 30.39 35.97 42.84						
							38.24 40.64 46.12 58.68 64.28 141.12 705.08 732.08 313.44		37.98 34.71 34.31 33.72 35.16 30.39 35.97 42.84 36.55						
							38.24 40.64 46.12 58.68 64.28 141.12 705.08 732.08		37.98 34.71 34.31 33.72 35.16 30.39 35.97 42.84						

RADIATED	EMISSION	Test configuration:	N2
Graph name:	Emr#13	Color	
Antenna position:	Horizontal	POE	
Azimuth:	0°- 360°		

Page: 43 / 72

Page: 49 / 72

Page: 55 / 72

Page: 61 / 72

Page: 65 / 72

Page: 67 / 72

Page: 69 / 72

