Check out some data

In this activity we will check out ipython install and the availability of some important modules. Furthermore, we'll visualize a dataset, learning a bit about the power of Pandas.

Note: Activity adapted from http://nbviewer.jupyter.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-

<u>%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb</u>). Montréal cycling data from Données Ouvertes Montréal (http://donnees.ville.montreal.gc.ca/dataset/velos-comptage)

First, let's make sure you have the right modules installed to run activities for this class.

```
In [1]: import pandas as pd
import numpy as np
import scipy as sp
# Open graphs in new cells in the page rather than in a separate window
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (15, 5) # set a default figure size
```

You can read data from a CSV file using the read_csv function. By default, it assumes that the fields are comma-separated.

We're going to be looking some cyclist data from Montréal. Here's the <u>original page</u> (http://donnees.ville.montreal.qc.ca/dataset/velos-comptage) (in French), but it's already included in this repository. We're using the data from 2012.

This dataset is a list of how many people were on 7 different bike paths in Montreal, each day.

In [21]: broken_df = pd.read_csv('data/bikes.csv','rt', encoding='latin1', engine='python
broken_df

C:\Users\Checkout\AppData\Local\Programs\Python\Python310\lib\site-packages\IPy thon\core\interactiveshell.py:3398: FutureWarning: In a future version of panda s all arguments of read_csv except for the argument 'filepath_or_buffer' will b e keyword-only.

exec(code_obj, self.user_global_ns, self.user_ns)

Out[21]:

Date;Berri 1;Brébeuf (données non disponibles);Côte-Sainte-Catherine;Maisonneuve 1;Maisonneuve 2;du Parc;Pierre-Dupuy;Rachel1;St-Urbain (données non disponibles)

0	01/01/2012;35;;0;38;51;26;10;16;
1	02/01/2012;83;;1;68;153;53;6;43;
2	03/01/2012;135;;2;104;248;89;3;58;
3	04/01/2012;144;;1;116;318;111;8;61;
4	05/01/2012;197;;2;124;330;97;13;95;
305	01/11/2012;2405;;1208;1701;3082;2076;165;2461
306	02/11/2012;1582;;737;1109;2277;1392;97;1888
307	03/11/2012;844;;380;612;1137;713;105;1302
308	04/11/2012;966;;446;710;1277;692;197;1374
309	05/11/2012;2247;;1170;1705;3221;2143;179;2430

310 rows × 1 columns

In [22]: # Look at the first 3 rows broken_df[:3]

Out[22]:

Date;Berri 1;Brébeuf (données non disponibles);Côte-Sainte-Catherine;Maisonneuve 1;Maisonneuve 2;du Parc;Pierre-Dupuy;Rachel1;St-Urbain (données non disponibles)

0	01/01/2012;35;;0;38;51;26;10;16;
1	02/01/2012;83;;1;68;153;53;6;43;
2	03/01/2012;135;;2;104;248;89;3;58;

You'll notice that this is totally broken! read_csv has a bunch of options that will let us fix that, though. Here we'll

- change the column separator to a ;
- Set the encoding to 'latin1' (the default is 'utf8')
- · Parse the dates in the 'Date' column
- · Tell it that our dates have the date first instead of the month first
- · Set the index to be the 'Date' column

In [7]: fixed_df = pd.read_csv('data/bikes.csv', sep=';', encoding='latin1', parse_dates=
fixed_df[:3]

Out[7]:

	Berri 1	Brébeuf (données non disponibles)	Côte- Sainte- Catherine	Maisonneuve 1	Maisonneuve 2	du Parc	Pierre- Dupuy	Rachel1	St-Urb (donn I disponib
Date									
2012- 01-01	35	NaN	0	38	51	26	10	16	,
2012- 01-02	83	NaN	1	68	153	53	6	43	ľ
2012- 01-03	135	NaN	2	104	248	89	3	58	١
4									>

When you read a CSV, you get a kind of object called a DataFrame, which is made up of rows and columns. You get columns out of a DataFrame the same way you get elements out of a dictionary.

Here's an example:

```
In [8]: fixed_df['Berri 1']
Out[8]: Date
        2012-01-01
                         35
        2012-01-02
                         83
        2012-01-03
                        135
        2012-01-04
                        144
        2012-01-05
                        197
        2012-11-01
                       2405
        2012-11-02
                       1582
        2012-11-03
                        844
        2012-11-04
                        966
        2012-11-05
                       2247
        Name: Berri 1, Length: 310, dtype: int64
```

Just add .plot() to the end to plot! How could it be easier? =)

We can see that, unsurprisingly, not many people are biking in January, February, and March,

In [9]: fixed_df['Berri 1'].plot()

Out[9]: <AxesSubplot:xlabel='Date'>

We can also plot all the columns just as easily. We'll make it a little bigger, too. You can see that it's more squished together, but all the bike paths behave basically the same -- if it's a bad day for cyclists, it's a bad day everywhere.

In [10]: fixed_df.plot(figsize=(15, 10))

Out[10]: <AxesSubplot:xlabel='Date'>

- F		
In I		
T11		
	40.0	