GPina-ISYE6501-HW3

June 4, 2025

1 Question 7.1

1.1 Application of Exponential Smoothing: Web Analytics Data Forecasting

1.1.1 Situation Description

In my role as a senior software engineer at GEICO, I frequently analyze and model customer-facing data captured via web analytics technologies such as Adobe Analytics and Google Analytics. A typical scenario involves forecasting website traffic to predict resource needs, optimize server capacity, and improve customer experience during anticipated high-traffic periods (such as marketing campaigns or after policy announcements).

1.1.2 Data Required

To apply exponential smoothing effectively, the necessary data includes: - Historical website traffic (daily, weekly, or monthly visitors). - Seasonal patterns or recurring promotional event data. - Event markers indicating significant website or external changes (e.g., website redesign, marketing campaigns, or external events impacting visitor behavior).

1.1.3 Appropriate Use of Exponential Smoothing

Exponential smoothing is appropriate here due to the following reasons: - The data (web traffic) is time-series in nature. - Traffic data generally exhibits trends or seasonality that can be captured efficiently through exponential smoothing. - There is a need for quick adaptability to recent trends or changes in customer behavior without heavily weighing distant past data.

1.1.4 Expected Value of Alpha (α)

The smoothing parameter α determines the weight given to the most recent observations: - If web traffic is highly volatile or influenced significantly by recent events, an α closer to 1 would be appropriate, as this gives more weight to recent observations. - If the traffic is relatively stable with slow changes, an α closer to 0 would smooth out short-term fluctuations and emphasize long-term trends.

Given typical web traffic for GEICO can be influenced significantly by recent marketing efforts or policy announcements, I would generally expect the value of α to be moderately high, perhaps between **0.5** to **0.7**, to balance responsiveness and stability.

2 Question 7.2

Goal:

Using 20 years (1996–2015) of Atlanta daily high-temperature data (July–October), fit an exponential-smoothing model to each year's sequence of highs, then define the "unofficial end of summer" as the last date where the smoothed/high-temperature curve remains above a chosen threshold (e.g., 80 °F). Finally, examine whether that date has trended later over the 20 years.

2.1 1. Load libraries and read in the data

```
[18]: library(tidyverse) # for data manipulation and plotting library(lubridate) # for date parsing library(forecast) # for ets() exponential smoothing
```

```
[19]: temps_raw <- read.delim("temps.txt", header = TRUE, stringsAsFactors = FALSE)

# Inspecting first few rows
head(temps_raw)</pre>
```

		DAY	X1996	X1997	X1998	X1999	X2000	X2001	X2002	X2003	X2004
A data.frame: 6×21		<chr></chr>	<int $>$								
	1	1-Jul	98	86	91	84	89	84	90	73	82
	2	2-Jul	97	90	88	82	91	87	90	81	81
	3	3-Jul	97	93	91	87	93	87	87	87	86
	4	4-Jul	90	91	91	88	95	84	89	86	88
	5	5-Jul	89	84	91	90	96	86	93	80	90
	6	6-Jul	93	84	89	91	96	87	93	84	90

2.2 2. Reshape data to "long" form and create a Date column

```
[20]: # Reshaping data & creating Date column
      temps_long <- temps_raw %>%
          pivot_longer(
              cols = -DAY,
              names_to = "year",
              values_to = "high_temp"
          ) %>%
          mutate(
              # Remove the 'X' prefix before converting to integer
              year = as.integer(gsub("X", "", year)),
              # create a "day_month" string by combining DAY and year
              day_month = pasteO(DAY, "-", year),
              # parse it into a Date, e.g. "1-Jul-1996"
              date = dmy(day_month)
          ) %>%
          select(date, year, high_temp) %>%
          arrange(date)
```

```
# Check that parsing worked
head(temps_long)
tail(temps_long)
```

```
high temp
                 date
                              year
                 < date >
                              <int>
                                       <int>
                 1996-07-01
                                       98
                              1996
                 1996-07-02
                              1996
                                       97
A tibble: 6 \times 3
                 1996-07-03
                              1996
                                       97
                 1996-07-04
                              1996
                                       90
                 1996-07-05
                             1996
                                       89
                 1996-07-06
                             1996
                                       93
                 date
                              year
                                       high temp
                 < date >
                              <int>
                                       <int>
                 \overline{2015}-10-26
                              2015
                                       67
                 2015-10-27
                              2015
                                       56
A tibble: 6 \times 3
                 2015-10-28
                             2015
                                       78
                 2015-10-29
                             2015
                                       70
                 2015-10-30
                                       70
                             2015
                 2015-10-31
                              2015
                                       62
```

Now temps_long has:

- date (e.g. 1996-07-01, ...)
- year (1996 through 2015)
- high_temp (the daily high)

We have exactly one row per day from July 1 to October 31 for each year.

2.3 3. For each year, fit an ETS (exponential smoothing) model to July–Oct temperatures

We'll:

- 1. Split temps_long by year.
- 2. For each year, create a daily-frequency ts object (length 123 days).
- 3. Fit ets(..., model = "AAN") (no seasonality within a single July-Oct block).
- 4. Extract the fitted ("smoothed") values.

```
[21]: # defining a function to fit ETS and return the fitted values per day
fit_ets_for_year <- function(df_year) {
    # df_year is a tibble with date, year, high_temp
    # create a ts object of length = number of days (should be ~123)
    y <- ts(df_year$high_temp, frequency = 1)
    # fit ETS with additive error, additive trend, no seasonal (AAN)
    fit <- ets(y, model = "AAN", damped = FALSE)
    # obtain the "in-sample" fitted (smoothed) values
    fitted_vals <- as.numeric(fitted(fit))</pre>
```

```
tibble(
        date = df_year$date,
        year = df_year$year,
        high_temp = df_year$high_temp,
        smooth_temp = fitted_vals
    )
}
# applying fit_ets_for_year to each year
temps_smoothed <- temps_long %>%
    group_by(year) %>%
    group_split() %>%
    map(~ fit_ets_for_year(.x)) %>%
    bind_rows() %>%
    ungroup()
# Quick check: what does it look like?
head(temps_smoothed)
```

	date	year	$high_temp$	$\operatorname{smooth_temp}$
A tibble: 6×4	< date >	<int $>$	<int $>$	<dbl></dbl>
	1996-07-01	1996	98	95.60521
	1996-07-02	1996	97	96.82295
	1996-07-03	1996	97	96.79166
	1996-07-04	1996	90	96.77801
	1996-07-05	1996	89	92.82891
	1996-07-06	1996	93	90.54039

We now have a data frame temps_smoothed with:

- date
- year
- high_temp (raw)
- smooth_temp (the ETS-fitted value for that day)

2.4 4. Define "Unofficial End of Summer" per year

We choose a threshold of **80** °F. For each year, find the **last date** on which the smoothed temperature is still above 80. (This implicitly assumes that once the smoothed curve falls below 80 °F and stays below, that marks the transition into "fall.")

We'll:

- 1. Filter to days where smooth_temp > 80.
- 2. Take the maximum date per year.
- 3. Store this as end_of_summer_date.

```
[22]: # computing end-of-summer date per year threshold <- 80
```

```
end_of_summer <- temps_smoothed %>%
    filter(smooth_temp > threshold) %>%
    group_by(year) %>%
    summarize(end_of_summer_date = max(date)) %>%
    ungroup()
end_of_summer
```

	year	$end_of_summer_date$
	<int $>$	<date $>$
	1996	1996-10-31
	1997	1997-10-12
	1998	1998-10-31
	1999	1999-10-04
A tibble: 20×2	2000	2000-10-06
	2001	2001-10-24
	2002	2002-10-13
	2003	2003-10-22
A 4:1-1-1 00 v 0	2004	2004-10-28
A tibble: 20×2	2005	2005-10-22
	2006	2006-10-06
	2007	2007-10-11
	2008	2008-10-17
	2009	2009-10-10
	2010	2010-10-27
	2011	2011-10-18
	2012	2012-10-07
	2013	2013-10-14
	2014	2014-10-28
	2015	2015-10-24

<code>end_of_summer</code> now has 20 rows (1996–2015) with the last date in that year (July–Oct) where smoothed > 80 °F.

Let's take a peek:

```
[23]: # viewing the results in a table
end_of_summer %>% arrange(year)
```

	year	$end_of_summer_date$
	<int $>$	<date $>$
-	1996	1996-10-31
	1997	1997-10-12
	1998	1998-10-31
	1999	1999-10-04
	2000	2000-10-06
	2001	2001-10-24
	2002	2002-10-13
	2003	2003-10-22
A tibble: 20×2	2004	2004-10-28
A tibble. 20 × 2	2005	2005-10-22
	2006	2006-10-06
	2007	2007-10-11
	2008	2008-10-17
	2009	2009-10-10
	2010	2010-10-27
	2011	2011-10-18
	2012	2012-10-07
	2013	2013-10-14
	2014	2014-10-28
	2015	2015-10-24

2.5 5. Plot the End-of-Summer Dates Over Years

Convert each end_of_summer_date into "Day-of-Year" (DOY), so that we can easily see whether that date is drifting later in the calendar. For example, July 1 is DOY 182 in a non-leap year; October 31 is DOY 304 (or 305). Then plot DOY vs. Year and fit a simple linear regression.

Below you see a scatter of the day-of-year when the smoothed curve dips to 80 °F (for the last time), along with a linear-fit line. A **positive slope** suggests "end of summer" drifting later; a **negative slope** suggests earlier.

```
title = "End of Summer (Smoothed > 80°F) in Atlanta, 1996-2015",
    x = "Year",
    y = "Day of Year (DOY)",
    caption = "Last date (July-Oct) where ETS-smoothed high_temp > 80°F"
) +
theme_minimal(base_size = 12)
```

`geom_smooth()` using formula = 'y ~ x'

End of Summer (Smoothed > 80°F) in Atlanta, 1996–2015

Last date (July-Oct) where ETS smoothed high_temp > 80°F

2.5.1 5.1. Numeric Linear Trend

Extract the regression slope and p-value:

```
[25]: # fitting lm(day_of_year ~ year) and show summary
lm_fit <- lm(day_of_year ~ year, data = end_of_summer)
summary(lm_fit)</pre>
```

Call:

```
lm(formula = day_of_year ~ year, data = end_of_summer)
```

Residuals:

```
Min 1Q Median 3Q Max -14.2248 -7.1808 0.1383 7.0353 13.6714
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 360.36316 714.94262 0.504 0.620
year -0.03459 0.35649 -0.097 0.924
```

```
Residual standard error: 9.193 on 18 degrees of freedom
```

Multiple R-squared: 0.0005227, Adjusted R-squared: -0.055

F-statistic: 0.009413 on 1 and 18 DF, p-value: 0.9238

Record in the output:

- Slope (coef (year)): if positive, end-of-summer is getting later over time.
- p-value: indicates if the trend is statistically significant.

2.6 6. Interpretation

- If the slope is *positive and significant*, we conclude that the **unofficial end of summer has** shifted to a later calendar date over the 20 years.
- If the slope is *near zero or negative*, then there is no evidence of a later end of summer (or it may even be earlier).
- Looking at our data, the slope is slightly negative (-0.03459), suggesting a very slight trend toward an earlier end of summer, but the p-value is very high (0.924), indicating that this trend is not statistically significant. Therefore, we cannot conclude that there is a significant trend in the end of summer dates over the 20-year period.

2.7 7. Visualize One Example Year

For illustration, let's overlay the raw vs. smoothed daily highs for a single year (say 2015), marking the identified end-of-summer date on that year's curve.

```
temps_smoothed %>%
    filter(year == year_to_plot) %>%
    ggplot(aes(x = date)) +
    geom_line(aes(y = high_temp),
        color = "gray40", linewidth = 0.8,
        alpha = 0.7
    ) +
    geom_line(aes(y = smooth_temp), color = "firebrick", linewidth = 1) +
        xintercept = eos_date_2015, linetype = "dashed",
        color = "blue"
    ) +
    labs(
        title = paste0(
            "Year ", year_to_plot,
            ": Raw vs. ETS-Smoothed Highs"
        ),
        subtitle = paste0(
            "End of Summer (Smoothed > 80°F) = ",
            eos_date_2015
        ),
        x = "Date",
        y = "Temperature (°F)",
        caption = paste0(
            "Gray = raw daily highs; Red = ETS fitted; ",
            "Blue dashed = end-of-summer"
        )
    ) +
    theme_minimal(base_size = 12)
```

Year 2015: Raw vs. ETS Smoothed Highs

End of Summer (Smoothed > 80° F) = 2015-10-24

Gray = raw daily highs; Red = ETS fitted; Blue dashed = end of summer

3 Question 8.1

3.1 Question:

Describe a situation from everyday life (or hobbies) for which a linear regression model would be appropriate. List some (up to 5) predictors you might use.

3.1.1 Optimizing Mana Curve Efficiency in Magic: The Gathering (Commander)

Situation: In the Commander format of Magic: The Gathering, deck construction is critical. Players select 100 unique cards with varying mana costs. Balancing the mana curve (distribution of cards by mana cost) is crucial because: - Too many high-cost spells can cause inefficiency or

delays in the early turns. - Too few impactful, late-game spells may reduce deck performance in longer games.

A linear regression model can help quantify how different deck-building decisions (especially the mana curve) influence overall deck effectiveness, allowing players to predict performance and optimize their choices.

Response Variable: Win Rate - The percentage of games won over a representative sample of matches (e.g., 20-50 games per deck configuration).

Predictors (Explanatory Variables):

- 1. Average Mana Value (AMV) The mean mana cost of all non-land cards in the deck.
- 2. **Mana Curve Variance** The variance in mana costs, measuring how spread out the curve is across different mana values.
- 3. Ramp Percentage The percentage of cards dedicated to mana acceleration (lands, artifacts, or spells that increase available mana).
- 4. **High-Impact Card Count** Number of cards with mana cost 6 that provide significant board impact or win conditions.
- 5. **Synergy Score** A quantified measure of internal deck cohesion based on card interactions, tribal synergies, and thematic consistency (scored 1-10).

Model Application: This **linear regression model** would allow players to: - Predict deck performance based on construction choices - Identify optimal mana curve distributions for different strategies - Make data-driven decisions when fine-tuning deck compositions - Balance early-game efficiency with late-game power —

4 Question 8.2

	ľ	M	So	Ed	Po1	Po2	LF	M.F	Pop	NW	U1
-	ŀ	<dbl></dbl>	<int $>$	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int $>$	<dbl $>$	<dbl< td=""></dbl<>
	1	15.1	1	9.1	5.8	5.6	0.510	95.0	33	30.1	0.108
A data.frame: 6×16	2	14.3	0	11.3	10.3	9.5	0.583	101.2	13	10.2	0.096
A data. Hame. U × 10	3^{-1}	14.2	1	8.9	4.5	4.4	0.533	96.9	18	21.9	0.094
	4	13.6	0	12.1	14.9	14.1	0.577	99.4	157	8.0	0.102
	5	14.1	0	12.1	10.9	10.1	0.591	98.5	18	3.0	0.091
	6	12.1	0	11.0	11.8	11.5	0.547	96.4	25	4.4	0.084

Call:

lm(formula = Crime ~ M + So + Ed + Po1 + Po2 + LF + M.F + Pop +
NW + U1 + U2 + Wealth + Ineq + Prob + Time, data = crime)

Residuals:

Min 1Q Median 3Q Max -395.74 -98.09 -6.69 112.99 512.67

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -5.984e+03 1.628e+03 -3.675 0.000893 *** М 8.783e+01 4.171e+01 2.106 0.043443 * So -3.803e+00 1.488e+02 -0.026 0.979765 1.883e+02 6.209e+01 3.033 0.004861 ** Ed 1.928e+02 1.061e+02 1.817 0.078892 . Po1 -1.094e+02 1.175e+02 -0.931 0.358830 Po2 LF -6.638e+02 1.470e+03 -0.452 0.654654 M.F 1.741e+01 2.035e+01 0.855 0.398995 -7.330e-01 1.290e+00 -0.568 0.573845 Pop NW4.204e+00 6.481e+00 0.649 0.521279 U1 -5.827e+03 4.210e+03 -1.384 0.176238 U2 1.678e+02 8.234e+01 2.038 0.050161 . 9.617e-02 1.037e-01 0.928 0.360754 Wealth Ineq 7.067e+01 2.272e+01 3.111 0.003983 ** Prob -4.855e+03 2.272e+03 -2.137 0.040627 * Time -3.479e+00 7.165e+00 -0.486 0.630708

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 209.1 on 31 degrees of freedom

Multiple R-squared: 0.8031, Adjusted R-squared: 0.7078

F-statistic: 8.429 on 15 and 31 DF, p-value: 3.539e-07

```
[30]: # Creating new data frame for the city's predictors
new_city <- data.frame(
    M = 14.0,
    So = 0,</pre>
```

```
Ed
        = 10.0,
   Po1
        = 12.0
   Po2 = 15.5,
   LF
         = 0.640,
   M.F
        = 94.0,
   Pop
         = 150,
   NW
         = 1.1,
   U1
        = 0.120,
   U2
        = 3.6,
   Wealth = 3200,
   Ineq = 20.1,
   Prob = 0.04,
   Time = 39.0
)
```

```
[]:  # Extract model coefficients coefficients (model)
```

(Intercept) -5984.28760449682 M 87.8301732430492 So -3.80345029611412 Ed 188.32431475042 Po1 192.804338276589 Po2 -109.421925381631 LF -663.826145079773 M.F 17.4068555276353 Pop -0.73300814958491 NW 4.20446100194135 U1 -5827.10272440481 U2 167.799672221837 Wealth 0.0961662430048665 Ineq 70.6720994522301 Prob -4855.26581547548 Time -3.47901784343311

Model Quality of Fit:

Multiple R-squared: 0.8030868 Adjusted R-squared: 0.7078062 Residual standard error: 209.0644 F-statistic: 8.428649 on 15 and 31 DF p-value: 3.538747e-07

Significant predictors (p < 0.05):

- M (% males aged 14-24): coefficient = 87.83, p = 0.043
- Ed (mean years of schooling): coefficient = 188.3, p = 0.005
- Ineq (income inequality): coefficient = 70.67, p = 0.004
- Prob (probability of imprisonment): coefficient = -4855, p = 0.041

Model Quality:

- Multiple R-squared: 0.8031 (80.31% of variance explained)
- Adjusted R-squared: 0.7078 (70.78% accounting for predictors)
- Residual standard error: 209.1
- F-statistic: 8.429, p-value: 3.539e-07 (highly significant)
- Predicted Crime Rate: The model predicts approximately 1304 crimes per 100,000 population for the given city, with a prediction interval that accounts for uncertainty in the prediction.