

Fourier-Wavelet Regularized Deconvolution (ForWaRD)

Seminar: Embedded Image Processing

Professor: Simon **Supervisor**: Yousef Baroud

Outline

Introduction

Original Image

⊗ PSF ⊕ AWGN ≡

Blurred Image

PSF- Point Spread Function AWGN - Additive White Gaussian Noise

Motivation

- Image blur Model: f (x,y)*g(x,y) + n(x,y) = h(x,y)
- Naive Deconvolution (Inverse fourier transform)
 - 1/G(w)
 - Limitation: Large Mean Square error
- How to estimate the original image?

Deblurring Algorithms

Deblurring Algorithms

Wiener Deconvolution

Image

Fourier
Filtering
F

Transform

• Wiener Filter $\frac{G^*(\omega)}{\mid G(\omega)\mid^2 + \frac{S_n(\omega)}{S_f(\omega)}} \quad \Longrightarrow \quad \frac{G^*(\omega)}{\mid G(\omega)\mid^2 + K}$

J = deconvwnr(I,PSF,NSR)

Transform

Wiener Filter Result

Original image

Noisy image, SNR =40dB

+ Sharp images

Singularities

Wiener, ISNR =5.61dB, SNR =20.79dB

Krishna

Wavelet Domain

Krishna

Haar Wavelet Transform

- Forward Transform
 - At each level
 - Scaling coefficients
 - Avg. of adjacent samples
 - Wavelet coefficients
 - Sub. of adjacent samples

6	8	6	8
3	6	3	1
2	4	2	3
4	6	4	3
	2	30	51 10

[ca,ch,cv,cd]=Dwt2(X, 'wname')

Wavelet Transform Result

- + Smooth regions
- Noise

ForWaRD Algorithm

- Fourier Shrinkage
 - Tikhonov filter, K= 3.4*10⁻⁴

$$\frac{G^*(\omega)}{\mid G(\omega)\mid^2 + K}$$

- Wavelet Shrinkage
 - Coefficients Threshold : Y = wthresh(X,SORH,T)
 - Wavelet domain wiener filter

ForWaRD Implementation

Krishna

ForWaRD Implementation

ForWaRD Implementation

Krishna

Results Comparison

Original image

'Wiener, ISNR =5.61dB, SNR =20.79dB

Noisy image, SNR =40dB

ForWaRD, ISNR =7.41dB, SNR =22.6dB

ForWaRD Implementation on GPU

- Real time HD video deblurring (30 f/s)
 - Camera + Processor + GPU

- DDGPU library (Demosaic & Deblur on GPU)
 - Reduced ForWaRD
 - Remove WDWF, Subframes for Thresholding
- Performance Improvements
 - Reduced memory transfers
 - Reduced unnecessary data movements

ForWaRD Performance Results

Implement DDGPU on GPU cards

Time/frame (ms)	Color	GPU	Improvements
55	Gray	GTX 580	Removed device transfers
100	Color	GTX 580	Reduced Computations
37.5	Color	GTX 670	Full Reduced Algorithm
23	Color	GTX 780	Upgraded Hardware

ForWaRD Implementation Comparison

ForWaRD	ForWaRD on GPU
Huge computations	Parallel Computations (Multi core)
High Memory bandwidth	Minimized bandwidth
Grayscale images	Colored images

Krishna 18

Conclusion

- Deconvolution in any single domain is inadequate
- Forward combines fourier & wavelet domains
- Better Estimate than traditional filters
- Improved MSE □ Good visual quality
- Space variant applications
- Future: Gpu cards □ Fpga's

References

- [1] R. Neelamani, H. Choi, and R. Baraniuk, 'Forward: Fourierwavelet regularized deconvolution for ill-conditioned systems
- [2] J. Dysart, B. Brockman, S. Johnes, F. Bacon "Embedded Realtime HD Video Deblurring
- [3] C. Gonzalez, E. Woods, "Digital Signal Processing,", Pearson,
- [4] T. Young, J. Gerbrands, J. van Vliet, "Fundamentals of Image Processing," Delft University of Technology.
- [5] Y. Nievergelt, "Wavelets Made Easy," Birkhaeuser, 1999.
- [6] J. Kalifa and S. Mallat, "Thresholding estimators for linear inverse problems,'Ann. Statist.,', vol. 31,no. 1, Feb 2003.
- [7] S. Mallat, A Wavelet Tour of Signal Processing. New York: Academic, 1998.
- [8] http://dsp.rice.edu/software/forward

DANKE

Thank you