Metal-Semiconductor Junctions Can get many of the useful p-17 junction properties with a metal-semiconductor Advantage: simpler to make _ high speed rectification Besides rectifier, metals needed for ohmic contact. (low resistance) (low resistance) How to draw energy bands? b-u fruction &

Metal-semicion ductor junction:

Evac Evac Eco

First, line up E vac levels. Evac E= hu-gom -gom = metal work function Similarly for semiconductor: g X = semicon ductor
electron affinity

Step1:	Line up E	Frac levels		
Step 2:				
	→ Be	and semic	on ductor	bands
Frac	Evac		Evac	
	===EFS	×	Ec	Ec
Fm /////	EV		EV	±F
Semicon	ductor bank	s stay P	ut.	E_{V}
Ec-EF	in bulk s	stays the s	same	
	nds bend.	•		
How mu	ch do ba	ands bend	?	

In this example, electrons flow to metal from semiconductor.

They leave behind uncompensated donors.

-> positively charged depletion region.

Metal somiconductor

= + n

depletion region

11111

contact potential prevents further diffusion into metal

min se-

Barrier height to injection

Depletion width W:

Can get from some formula asin ptn junction

and capacitance $C = \frac{Esc}{W}A$ as in p-n junction

semicion ductor, Metal Now electrons flow from metal to Semiconductor Semiconductor Metal

Diffusion bornier

Reverse of n-type

note extra. Eg term.

Rectifying Contacts under Bias (Schottley Diode) Forward Bias Vo -> Vo-V as with p-n junction

(X-7)

12/2sc \(\frac{1}{9}(Vo-V) \)

(X-7)

1-side ques n-sidegas 1 Metal Vo-> Vo+V n-side goes V

Barrier g %= g (m. xsc) unaffected

Diffusion (forward) much more

Diffusion (reverse) much less (negligible)

Saturation current depends on %.

Tor large reverse Vr,

I = Io (e8"/RT,) = -Io

depends an getting over 90%

Example: Schottley Burrier

An ideal metal-semiconductor contact is made of a metal that has $\Phi_{\rm M}=4.75$ eV, and a semiconductor that has $\chi=4.00$ eV with $n_{\rm i}=10^{10}/{\rm cm}^3$, $N_{\rm D}=10^{16}/{\rm cm}^3$, and $E_{\rm G}=1.00$ eV; kT=0.026 eV.

- (a) Calculate the barrier for electrons in the metal.
- (b) Calculate V_{bi} , the barrier for electrons in the semiconductor.
- (c) Calculate the value of the depletion region width at thermal equilibrium.
- (d) Calculate the maximum electric field.
- (e) Sketch the energy band diagram in thermal equilibrium.

$$\Phi_{\rm H} = 4.75 \, {\rm eV}$$
 $I = 4.00 \, {\rm eV}$ $E_6 = 1.00 \, {\rm eV}$ $C = 11.8 \, {\rm eV}$

(c)
$$W = \chi_n = \left[\frac{2 \times 6}{8 N_0} (V_i - V_A)\right]^{V_2}$$
 $V_a = 0$

(d)
$$\varepsilon_{\text{max}}$$
 at $x=0$

$$\varepsilon_{\text{max}} = -\frac{2}{K_s} \frac{N_0}{K_s} \times_n =$$

Junction Capacitance of Schottley Diode

$$\frac{1}{C^2} = \frac{2(V_0 - V)}{9N_0 \in SCA^2}$$

Slope: d(1/c2) =
$$\Delta(1/c^2) = \frac{Z}{gN_d E_{sc}A^2}$$

Example: Schottley Barrier Properties

OBJECTIVE: To calculate the theoretical barrier height, built-in potential barrier, and maximum, electric field in a metal-semiconductor diode for zero applied bias.

Consider a contact between tungsten and n-type silicon doped to $N_d = 10^{16} \text{ cm}^{-3}$ at $T = 300^{\circ}\text{K}$.

Solution:

The metal work function for tungsten (W) is $\phi_m = 4.55$ volts and the electron affinity for silicon is $\chi = 4.01$ volts. The barrier height is then

$$\phi_{B}=\phi_{B0}=$$

where ϕ_{B0} is the ideal Schottky barrier height. We can calculate ϕ_n as

$$\phi_n = \frac{kT}{e} \ln\left(\frac{N_c}{N_d}\right) = 0.0259 \ln\left(\frac{2.8 \times 10^{19}}{10^{16}}\right) = 0.206 \text{ volt}$$

Then

$$\bigvee_{\mathcal{O}} = V_{bi} = \phi_{B0} - \phi_n =$$

The space charge width at zero bias is

Comment:

The values of space charge width and electric field are very similar to those obtained for a pn junction.

Example: Metal Work Function Effect on &

The ideal M-S contact has a semiconductor with $\chi = 4$ eV, $n_i = 10^{10} \text{cm}^3$, $N_D = 10^{16}/\text{cm}^3$, $E_G = 1.2$ eV, and kT = 0.026 eV. Various metals are applied to the semiconductor with $\Phi_M = 4$, 4.25, 4.5, 4.75, and 5.0 eV.

- (a) Calculate and sketch Φ_B vs. Φ_M
- (b) Calculate and sketch qV_{bi} vs. Φ_M
- (c) If $K_S = 12$ obtain an equation, with numerical coefficients, for the depletion region width vs. Φ_M if $V_A = 0$
- (d) What is the probability that an electron will have an energy equal to Φ_B if $\Phi_M = 4.75$ eV?

(c)
$$W = \chi_n = \left[\frac{2 \kappa_0 \epsilon_0}{8 N_0} (V_{N_0} - V_A)\right]^{\frac{1}{2}} \quad V_A = 0$$

= 3.64 × 10⁻⁵ ($\frac{3M}{2}$ - 4.241)