FORMAS NORMAIS

Lógica Matemática

ALFABETO SIMPLIFICADO

DEFINIÇÃO

- Com a definição de conjuntos completos, sabemos que os conectivos definidos no alfabeto da lógica proposicional \neg , \lor , \land , \rightarrow , \leftrightarrow são redundantes.
- Assim, é possível redefinir o alfabeto da lógica proposicional de maneira simplificada utilizando um conjunto completo.
- Esta simplificação não muda em nada a linguagem da lógica proposicional do ponto de vista semântico.
- X Há varias definições possíveis para o alfabeto da lógica proposicional, todas equivalentes expressando a mesma linguagem.
- Definição.- (Alfabeto simplificado) Um alfabeto simplificado da Lógica Proposicional é constituído por:
- X 1.- Símbolos de pontuação: (,);
- 2.- Símbolos proposicionais:
 P, Q, R, S, P1, Q1, R1, S1, P2, Q2, ...;
- \mathbf{x} 3.- Conectivos proposicionais: \neg , \lor .

LITERAL DEFINIÇÃO

- <u>Definição</u>.- (Literal) Um literal, na lógica proposicional, é um símbolo proposicional ou a sua negação.
- **Exemplo.** Veja os exemplos de literais: $\neg P, Q, \neg R, \neg Q, P, S$

FORMAS NORMAIS

DEFINIÇÃO

- X <u>Definição</u>.– (Formas Normais) Há dois tipos de formas normais:
- X 1.– Uma fórmula H está na forma normal disjuntiva (fnd) se é uma disjunção de conjunção de literais.
- x 2.- Uma fórmula H está na forma normal conjuntiva (fnc) se é uma conjunção de disjunção de literais.

FORMA NORMAL DISJUNTIVA

DEFINIÇÃO

- Exemplo.— (Forma Normal Disjuntiva)
- **x** A fórmula H, está na forma normal disjuntiva (fnd):

FORMA NORMAL CONJUNTIVA

DEFINIÇÃO

- Exemplo.— (Forma Normal Conjuntiva)
- X A fórmula H, está na forma normal conjuntiva (fnc):

Conjunção

 $H = (\neg P \lor Q) \land (\neg R \lor \neg Q \lor P) \land (P \lor S)$ Disjunção

de literais

FORMAS NORMAIS

Proposição

- Proposição.- (Formas Normais) Seja H uma fórmula qualquer da lógica proposicional.
- X 1.- Existe uma fórmula H_{fnd} na forma normal disjuntiva que é equivalente a H;
- X 2.- Existe uma fórmula H_{fnc} na forma normal conjuntiva que é equivalente a H.
- X Apresenta-se algoritmos para a transformação de uma fórmula H qualquer nas formas normais disjuntiva e conjuntiva, respectivamente usando tabelas-verdade.

TRANSFORMAÇÃO DE FÓRMULAS PARA A FND ALGORITMO

- Converter uma fórmula H na forma fnd, significa expressar H como uma disjunção de componentes. Cada componente é uma conjunção de literais que representa um caso em que a fórmula H assume valor verdadeiro. Como cada componente é uma conjunção de literais, então essa componente será verdadeira se os literais forem todos verdadeiros.
- X A fórmula H_{fnd} será verdadeira se uma das componentes da disjunção for verdadeira. Caso contrário, a fórmula H_{fnd} será falsa, uma vez que todas as componentes sejam falsas.
- X Observe que a ocorrência de um caso exclui os outros, sejam eles casos em que a fórmula é verdadeira ou falsa. Temos um exemplo de FND:

$$H = (\neg P \land Q) \lor (\neg R \land \neg Q \land P) \lor (P \land S)$$

TRANSFORMAÇÃO DE FÓRMULAS PARA A FND ALGORITMO

- Χ Algoritmo para a fnd. (Transformação de Η para fnd)
 - o Passo 1.– Construa a tabela-verdade associada a H;
 - Passo 2.- Extrair as linhas da tabela-verdade que interpretam H como verdadeiro;
 - Passo 3.- Utilizando as informações de cada linha extraída, construir uma conjunção de literais que represente o caso verdadeiro representado pela linha;
 - Passo 4.- Construir a fórmula H_{fnd} como a disjunção das expressões obtidas no passo 3.

TRANSFORMAÇÃO DE FÓRMULAS PARA A FND

EXEMPLO

- Exemplo. Considere a fórmula H: $H = (P \rightarrow Q) \land R$ X
- Executamos os passos do algoritmo fnd. X

Passo 1.-

P	Q	R	$(P \rightarrow Q)$	$(P \to Q) \wedge R$
٧	٧	٧	V	V
V	٧	L	V	F
٧	F	٧	F	F
V	F	F	F	F
F	٧	٧	V	V
F	٧	F	V	F
F	F	٧	V	V
F	F	F	V	F

Passo 2.-

P	Q	R	$(P \rightarrow Q)$	$(P \to Q) \wedge R$
٧	٧	٧	V	V
F	٧	٧	V	V
F	F	٧	V	V

Passo 3.-
$$(P \land Q \land R)$$
, $(\neg P \land Q \land R)$, $(\neg P \land \neg Q \land R)$

Formar uma conjunção com os literais

Passo 4.-
$$(P \land Q \land R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$$

X Explicação: No passo 2, cada linha da tabela-verdade representa uma condição na forma de uma conjunção para a expressão lógica ser verdadeira. Temos assim, três formas alternativas de satisfazer a expressão lógica.

TRANSFORMAÇÃO DE FÓRMULAS PARA A FNC ALGORITMO

- Converter uma fórmula H na forma fnc, significa expressar H como uma conjunção de componentes. Cada componente é uma disjunção de literais que representa um caso em que a fórmula H assume valor falso. Como cada componente é uma disjunção de literais, então essa componente será falsa se os literais forem todos falsos.
- A fórmula H_{fnc} será falsa se uma das componentes da conjunção for falsa. Caso contrário, a fórmula H_{fnd} será verdadeira, uma vez que todas as componentes sejam verdadeiras.
- X Observe que a ocorrência de um caso exclui os outros, sejam eles casos em que a fórmula é verdadeira ou falsa. Temos um exemplo:

$$H = (\neg P \lor Q) \land (\neg R \lor \neg Q \lor P) \land (P \lor S)$$

TRANSFORMAÇÃO DE FÓRMULAS PARA A FNC ALGORITMO

- X Algoritmo para a fnc.- (Transformação de H para fnc)
 - o Passo 1.– Construa a tabela-verdade associada a H;
 - Passo 2.- Extrair as linhas da tabela-verdade que interpretam H como falso;
 - Passo 3.- Utilizando as informações de cada linha extraída, construir uma disjunção de literais que represente o caso falso representado pela linha.
 Para isso inverta os literais presentes em cada linha extraída;
 - Passo 4.- Construir a fórmula H_{fnc} como a conjunção das expressões obtidas no passo 3.

TRANSFORMAÇÃO DE FÓRMULAS PARA A FNC

EXEMPLO

- **X** Exemplo. Considere a fórmula H:
- $H = (P \rightarrow Q) \land R$
- **X** Executamos os passos do algoritmo fnc.

Passo 1.-

P	Q	R	$(P \rightarrow Q)$	$(P \to Q) \wedge R$
V	٧	٧	V	V
V	٧	F	V	F
٧	F	٧	F	F
٧	F	F	F	F
F	>	>	V	V
F	٧	F	V	F
F	F	٧	V	V
F	F	F	V	F

Passo 2.-

P	Q	R	$(P \rightarrow Q)$	$(P \to Q) \wedge R$
٧	٧	F	V	F
٧	F	V	F	F
٧	F	F	F	F
F	٧	F	٧	F
F	F	F	V	F

Passo 3.-

$$(\neg P \lor \neg Q \lor R),$$

$$(\neg P \lor Q \lor \neg R),$$

$$(\neg P \lor Q \lor R),$$

$$(P \lor \neg Q \lor R),$$

$$(P \lor Q \lor R)$$

Inverter os literais e formar uma disjunção

Passo 4.- $(\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor Q \lor R)$

TRANSFORMAÇÃO DE FÓRMULAS PARA A FNC

EXEMPLO-EXPLICAÇÃO

Passo 2.-

P	Q	R	$(P \rightarrow Q)$	$(P \to Q) \wedge R$
٧	٧	F	V	F
V	F	٧	F	F
٧	F	F	F	F
F	٧	F	٧	F
F	F	F	V	F

Passo 3.-
$$(\neg P \lor \neg Q \lor R)$$
, $(\neg P \lor Q \lor \neg R)$, $(\neg P \lor Q \lor R)$, $(P \lor \neg Q \lor R)$, $(P \lor Q \lor R)$

Explicação: No passo 2, cada linha da tabela-verdade representa uma condição verdadeira na forma de conjunção para a expressão lógica ser falsa. Precisamos converter cada condição na forma de disjunção, para isso aplicamos Dupla Negação e De Morgan, conforme ilustrado no exemplo:

$$(P \land Q \land \neg R) \Leftrightarrow \neg \neg (P \land Q \land \neg R) \qquad \text{Dupla Negação}$$

$$\Leftrightarrow \neg (\neg P \lor \neg Q \lor R) \qquad \text{De Morgan}$$

TRANSFORMAÇÃO DE FÓRMULAS PARA A FNC

EXEMPLO-EXPLICAÇÃO

X Temos assim, que a expressão:

$$H = (P \rightarrow Q) \wedge R$$

X Na forma normal disjuntiva FND:

$$(P \land Q \land R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$$

X Pode ser escrita para a falsidade conforme a tabela:

$$(P \land Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land \neg R)$$

X Negando a expressão e aplicando De Morgan temos:

$$\neg (P \land Q \land \neg R) \land \neg (P \land \neg Q \land R) \land \neg (P \land \neg Q \land \neg R) \land \neg (\neg P \land Q \land \neg R) \land \neg (\neg P \land \neg Q \land \neg R)$$

X Aplicando De Morgan a cada termos a forma normal conjuntiva FNC:

$$(\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor Q \lor R)$$

REFERÊNCIAS

De Souza, João Nunes. Lógica para Ciência da Computação e Áreas Afins. Capítulo 3. 3ª Edição. Editora Campus. São Paulo. 2015.