中国科学技术大学

2018—2019学年第一学期期末试卷

考试科目 时间序列分析 得分 _____

	 所在系	姓名	 学号	
		考试时间: 2019年6月	27日14:30—16:30	
·. (32	分) 填空题(每题2	分,答案请写在答题组	5上):	
1.	设随机变量U与V	不相关而方差相同均	g 为 σ^2 ,令	
		$X_t = U\cos(\omega$	$t) + V\sin(\omega t), t \in T$	
	其中 $\omega(\neq 0)$ 为常数,则序列 $\{X_t, t \in T\}$ 的自相关函数 $\rho(t,s) =$			
2.	设ARMA(2, 1): $X_t - 0.1X_{t-1} + aX_{t-2} = \epsilon_t - 0.5\epsilon_{t-1}$, 当 a 满足条件时, 模型是平稳的的.			
3.	. 设 $MA(q)$ 模型			
		$X_t = \epsilon_t + \theta_2$	$1\epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q}$	
的逆转形式为 $\epsilon_t = \sum_{k=0}^{\infty} \phi_k X_{t-k}$,则 $\sum_{k=0}^{\infty} \phi_k = $				
4.	4. 设 $\{X_t, t=0,\pm 1,\pm 2,\ldots\}$ 是满足平稳可逆的ARMA (p,q) 模型			
	$X_t = \phi_1 X_{t-1} +$	$\cdots + \phi_p X_{t-p} + \mu + \epsilon$	$\epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q}, \epsilon_t$	$\sim WN(0,\sigma^2)$
	的序列, 则 X_t 的语	普密度为		
5.				
6.	为了判断一个平稳序列中是否含有信息,是否可以继续分析,需要对该序列进行			
7.	对于时间序列{X	_t }, 如果满足	X_t , $\{X_t\}$	$\sim I(d)$.
8.	零均值平稳列 X_t 满足			
9.	对平稳的AR(2)核	某型 $X_t = a_1 X_{t-1} + a_2 X_{t-1}$	$K_{t-2}+\epsilon_t$,则偏相关系数 $\phi_{11}=$	
	$\phi_{22} = _{___}$	ϕ_{33}	=	_·

- 二. (24分)简单计算题(每题8分,答案请写在答题纸上)
 - **1.** 从AR(2)模型 $X_t = 1.5X_{t-1} 0.75X_{t-2} + \epsilon_t$, $\epsilon_t \sim N(0,1)$ 模拟产生了n = 144个数据, 从这组数据计算的 $\hat{\gamma}(0) = 8.434$, $\hat{\rho}(1) = 0.834$, $\hat{\rho}(2) = 0.476$, 求 a_1, a_2 及 σ^2 的估计以及 $\mathbf{a} = (a_1, a_2)^T$ 估计的协差阵的渐近估计.
 - **2.** 考虑一随机游走序列 $X_t = c + X_{t-1} + \epsilon_t + \nabla \eta_t, t \geq 1$, 其中 $\epsilon_t \sim WN(0, \sigma_{\epsilon}^2), \eta_t \sim WN(0, \sigma_n^2)$, $\mathbb{E}\epsilon_t \eta_s = 0$ 对任意的 $t, s. y_0, \eta_0$ 为初值. 求 X_t 的均值和协方差。
 - 3. 对任意一个简单季节模型序列,

$$X_t = \epsilon_t + \theta \epsilon_{t-12}, \quad \epsilon_t \sim WN(0, \sigma^2),$$

求它的自相关系数.

- 三. (44分) 计算题(每题答案请写在答题纸上):
 - 1. 考虑如下的时间序列模型MA(2)

$$Y_t = 40 + \epsilon_t - 0.6\epsilon_{t-1} + 0.8\epsilon_{t-2}, \ \epsilon_t \sim N(0, 20),$$

$$\epsilon_t = 2, \epsilon_{t-1} = -4, \epsilon_{t-2} = -6.$$

- (1) 预测未来2期的值.
- (2) 求出未来两期预测值的95%的置信区间.
- (3) 求出处的谱密度函数.
- **2.** 设 Y_t 为t时段股票的收益, X_t 为这个时段的通货膨胀率, 假定GARCH-M模型为 $Y_t = 0.05 + 0.3X_t + 0.2h_t + \epsilon_t$, 其中 $\epsilon_t = v_t \sqrt{1 + 0.05\epsilon_{t-1}^2}$, $h_t = Var(\epsilon_t | \epsilon_{t-1}, ...)$ 和 v_t 为相互独立的N(0,1)随机变量. 求
 - (1) $E(Y_t|X_t=0.1,\epsilon_{t-1}=0.6)$ 为多少?
 - (2) $Var(Y_t|X_t = 0.1, \epsilon_{t-1} = 0.6)$ 为多少?
 - (3) Y_t 在给定 X_t 及 ϵ_{t-1} 下的分布是否为正态? 为什么?
- **3.** 对ARMA(p,q)序列

$$X_t = a_1 X_{t-1} + \ldots + a_p X_{t-p} + \epsilon_t + b_1 \epsilon_{t-1} + \ldots + b_q \epsilon_{t-q}, \quad \epsilon_t \sim WN(0, \sigma^2),$$

 $(1) \diamondsuit m = \max\{p, q\}$

$$Y_{t} = \begin{cases} X_{t}/\sigma, & t = 1, \dots, m \\ (X_{t} - aX_{t-1} - \dots - a_{p}X_{t-p})/\sigma, & t = m+1, \dots, \end{cases}$$

求解**EY₄Y**_s.

(2) 令 $\{\eta_t\}$ 是和 $\{\epsilon_t\}$ 独立的白噪声 $WN(0, \nu^2)$, 试问

$$Z_t = X_t + \eta_t$$

还是ARMA序列吗?如果是,阶数是多少?