Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №3 з дисципліни «Комп'ютерна схемотехніка» на тему «Дослідження компараторів та схем контролю»

> Виконав: студент ННІКІТ СП-225 Клокун В. Д. Перевірив: Іскренко Ю. Ю.

1 Мета роботи

Вивчення логіки роботи, принципів побудови й синтезу схем порівняння (компараторів) та контролю парності. Визначення основних характеристик схем порівняння й контролю парності на інтегральних мікросхемах.

2 Хід роботи

2.1 Дослідження схеми порівняння чотирьохрозрядного слова A з константою нуля

Перетворюємо умову рівності слова A константи нуля з виразу до вигляду, зручного для побудови на логічних елементах HE—I:

$$F_{A=0} = \neg (\neg (\neg A_4 \land \neg A_3 \land \neg A_2 \land \neg A_1)). \tag{1}$$

Збираємо схему порівняння на логічних елементах НЕ—І (рис. 1а) відповідно до виразу (1). Подаємо на входи схеми порівняння різні двійкові набори (табл. 1) і записуємо в цю ж таблицю значення функції $F_{A=0}$.

Рис. 1: Схеми порівняння

A	$F_{A=0}$	$F_{A=1}$
1001		
1011		
0000		
1110		
1111		

Табл. 1: Значення функцій порівняння

2.2 Дослідження схеми порівняння чотирьохрозрядного слова A з константою одиниці

Перетворюємо умову рівності слова A константи одиниці до вигляду, зручного для побудови на елементах HE—I, аналогічно до виразу (1):

$$F_{A=1} = \neg (\neg (A_4 \land A_3 \land A_2 \land A_1)). \tag{2}$$

Збираємо схему порівняння на логічних елементах НЕ—І (рис. 1а) відповідно до виразу (2). Подаємо на входи схеми порівняння різні двійкові набори (табл. 1) і записуємо значення функції $F_{A=1}$.

2.3 Дослідження схеми порівняння двох чотирьохрозрядних слів A і B на рівність

Перетворюємо умову рівності двох слів A і B до вигляду, зручного для реалізації на логічних елементах HE—I:

$$F_{A=B} = \neg (\neg (\neg M_4 \land M_3 \land M_2 \land M_1)),$$

$$\neg M_1 = \neg (A_1 \land \neg B_1 \lor \neg A_1 \land B_1),$$

$$\neg M_2 = \neg (A_2 \land \neg B_2 \lor \neg A_2 \land B_2),$$

$$\neg M_3 = \neg (A_3 \land \neg B_3 \lor \neg A_3 \land B_3),$$

$$\neg M_4 = \neg (A_4 \land \neg B_4 \lor \neg A_4 \land B_4).$$

Збираємо схему порівняння двох слів A і B на логічних елементах І—АБО—НІ, НЕ—І відповідно до виразу. Подаємо на входи різні двійкові набори і записуємо значення функції $F_{A=B}$.

Рис. 2: Схема порівняння двох слів на рівність

A	В	$F_{A=B}$
0101	0101	
1111	1011	
0110	0110	
1100	1101	
1011	1100	

Табл. 2: Значення функції порівняння

2.4 Дослідження схеми порівняння двох трьохрозрядних слів A і B на більше

Перетворюємо умову порівняння на більше двох слів A і B до вигляду, зручного для реалізації на логічних елементах I—AБO—HI та HE—I:

$$F_{A>B} = \neg (\neg (A_3 \land \neg B_3 \lor \neg M_3 \land A_2 \land \neg B_2 \lor \neg M_3 \land \neg M_2 \land A_1 \land \neg B_1))$$

= $\neg (\neg (\neg (A_3 \land \neg B_3) \land \neg (\neg M_3 \land A_2 \land \neg B_2) \land \neg (\neg M_3 \land \neg M_2 \land A_1 \land \neg B_1))). (3)$

Збираємо схему порівняння двох слів на більше на логічних елементах І—АБО— НІ та НЕ—І (рис. 3) відповідно до виразу. Подаємо на входи схеми порівняння двійкові набори слів A і B (табл. 3), і записуємо значення функції $F_{A>B}$.

Рис. 3: Схема порівняння двох слів на більше

A	В	$F_{A>B}$
101	111	
111	111	
110	011	
010	001	
001	001	

Табл. 3: Значення функції порівняння

2.5 Дослідження схеми контролю парності чотирьохрозрядного слова А

Збираємо схему контролю парності чотирьохрозрядного слова A на логічних елементах І—АБО—НІ та НЕ—І (рис. 4). Подаємо на входи схеми контролю парності двійкові набори слів (табл. 4) і записуємо значення функцій F_1 і F_2 .

Рис. 4: Схема контролю парності

3 Висновок

Під час виконання даної лабораторної роботи ми вивчили логіку роботи, принципи побудови й синтезу схем порівняння (компараторів) та контролю парності. Визна-

A	V	F_1	F_2
1111	0		
1011	0		
1001	1		
1110	1		

Табл. 4: Значення функцій F_1 і F_2

чили основні характеристики схем порівняння й контролю парності на інтегральних мікросхемах.