Геометрия масс

Mатериальной точкой будем называть пары вида (A, m), где A — точка плоскости, а m — произвольное действительное число (масса).

Центром масс материальных точек материальных точек $(A_1, m_1), (A_2, m_2), \ldots, (A_n, m_n)$ будем называть точку Z такую, что

$$m_1\overrightarrow{ZA_1} + m_2\overrightarrow{ZA_2} + \ldots + m_n\overrightarrow{ZA_n} = \overrightarrow{0}.$$

Утверждение. Если сумма масс не равна нулю, то центр масс существует и единственен, причём для произвольной точки X плоскости положение центра масс Z можно получить с помощью формулы

$$\overrightarrow{XZ} = \frac{m_1 \overrightarrow{XA_1} + m_2 \overrightarrow{XA_2} + \ldots + m_n \overrightarrow{XA_n}}{m_1 + m_2 + \ldots + m_n}.$$

В частности, для двух материальных точек (A, m_1) , (A_2, m_2) выполнено npa-вило рычага: $\overrightarrow{A_1Z}: \overrightarrow{ZA_2} = m_2: m_1$.

Теорема о группировке. Дана некоторая система материальных точек. Выберем часть из них и заменим на центр масс выбранных точек (с массой, равной сумме выбранных масс). Тогда центр масс всей системы не изменится.

- **1.** В шестиугольнике точки A_1 , A_2 , A_3 , A_4 , A_5 , A_6 являются серединами последовательных сторон. Докажите, что точки пересечения медиан треугольников $A_1A_3A_5$ и $A_2A_4A_6$ совпадают.
- **2.** Пусть X,Y,Z точки пересечения медиан треугольников PBC,PAC, PAB соответственно. Докажите, точка P и точки пересечения медиан треугольников ABC и XYZ лежат на одной прямой.
- 3. На сторонах BC и CD параллелограмма ABCD выбраны точки K и L так, что BK:KC=CL:LD. Докажите, что точка пересечения медиан треугольника AKL лежит на диагонали BD.
- **4.** Какие массы надо положить в вершины треугольника со сторонами a, b, c и углами α , β , γ , чтобы центр масс попал в
 - (а) точку Нагеля;
 - (б) центр вневписанной окружности со стороны вершины A;
 - **(в)** точку D такую, что ABDC параллелограмм;
 - **(г)** ортоцентр;
 - (д) центр описанной окружности?

- 5. Прямая Нагеля. Докажите, что центр вписанной окружности I, точка пересечения медиан M и точка Нагеля N лежат на одной прямой, причём NM=2MI.
- **6.** Внутри треугольника ABC отмечена точка X. Её отразили относительно середин сторон AB, AC, BC, получили точки X_c , X_b , X_a соответственно. Докажите, что прямые AX_a , BX_b , CX_c пересекаются в одной точке.
- 7. (a) В точках касания описанного n-угольника со своей вписанной окружностью расставлены массы, равные длине соответствующих сторон. Докажите, что центр масс рассматриваемой системы совпадает с центром вписанной окружности.
 - (б) **Теорема Ньютона.** Докажите, что в описанном четырёхугольнике центр вписанной окружности лежит на отрезке, соединяющем середины его диагоналей.
- 8. На сторонах AB, AC, BC треугольника ABC выбраны точки C_1 , B_1 , A_1 соответственно. Отрезки AA_1 и B_1C_1 пересекаются в точке X. Оказалось, что получившиеся четырёхугольники являются описанными. Пусть a и b радиусы вписанных окружностей треугольников AXC_1 и AXB_1 соответственно, c и d радиусы вписанных окружностей четырёхугольников BA_1XC_1 и CA_1XB_1 соответственно. Докажите, что 1/a + 1/d = 1/b + 1/c.