Интерпретацией называется отображение h, которое для каждого набора аргументов формулы исчисления высказываний приписывает этой формуле значение 0 или 1, и которое обладает свойствами: $h(\neg A) = \neg h(A), \quad h(A \rightarrow B) = h(A) \rightarrow h(B).$

Формула A называется *тавтологией*, если $h(A) \equiv 1$.

В дальнейшем будем интерпретировать знак \neg , как знак отрицания, а \rightarrow - как импликацию и вычислять истинностные значения формул, используя традиционные таблицы значений отрицания и импликации, рассмотренные ранее в курсе дискретной математики.

Утверждение о тождественной истинности теорем исчисления L.

Каждая теорема исчисления L является тождественно-истинной формулой.

Покажем сначала, что каждая из трёх схем аксиом исчисления L является тавтологией.

Построим таблицу истинности первой схемы аксиом $A \to (B \to A)$:

A	\rightarrow	(<i>B</i>	\rightarrow	<i>A</i>)					
0	1	0	1	0					
0	1	1	0	0					
1	1	0	1	1					
1	1	1	1	1					

Видим, что столбец, задающий вектор значений булевой функции $A \rightarrow (B \rightarrow A)$, состоит из одних единиц. Значит, первая схема аксиом, а, следовательно и любая аксиома по первой схеме аксиом, является тавтологией.

Аналогичным образом строим таблицы истинности второй и третьей схем аксиом:

(A	\rightarrow	(<i>B</i>	\rightarrow	<i>C</i>))	\rightarrow	((A	\rightarrow	<i>B</i>)	\rightarrow	(A	\rightarrow	<i>C</i>))
0	1	0	1	0	1	0	1	0	1	0	1	0
0	1	0	1	1	1	0	1	0	1	0	1	1
0	1	1	0	0	1	0	1	1	1	0	1	0
0	1	1	1	1	1	0	1	1	1	0	1	1
1	1	0	1	0	1	1	0	0	1	1	0	0
1	1	0	1	1	1	1	0	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1

$(\neg B$	\rightarrow	$\neg A)$	\rightarrow	((<i>¬B</i>	\rightarrow	<i>A</i>)	\rightarrow	<i>B</i>)
1	1	1	1	1	0	0	1	0
0	1	1	1	0	1	0	1	1
1	0	0	1	1	1	1	0	0
0	1	0	1	0	1	1	1	1

Видим, что столбцы, задающие векторы значений булевых функций, соответствующих второй и третьей схемам аксиом, состоят из одних единиц. Значит, вторая и третья схемы аксиом, а, следовательно и любые аксиомы по второй и третьей схемам аксиом, являются тавтологиями.

Пусть
$$A(X_1, X_2, ..., X_n) \rightarrow B(X_1, X_2, ..., X_n) \equiv 1$$
, $A(X_1, X_2, ..., X_n) \equiv 1$. Тогда для произвольного набора аргументов $(a_1, a_2, ..., a_n)$ выпол-

нено:
$$A(a_1,a_2,...,a_n)=1$$
, $A(a_1,a_2,...,a_n)\to B(a_1,a_2,...,a_n)=1$, откуда, по определению импликации, следует, что и $B(a_1,a_2,...,a_n)=1$.

Из произвольности взятого набора аргументов следует, что R(Y,Y,Y,Y)=1

 $B(X_1, X_2, ..., X_n) \equiv 1.$

Значит, применение правила MP к двум тавтологиям, также даёт тавтологию.

Пусть G - теорема, значит, существует последовательность $F_1,...,F_n$ такая, что $F_n = G$, каждый член которой F_i (i = 1,2,...,n) или является аксиомой, или получен по некоторому правилу вывода из некоторых предыдущих членов этой последовательности. Но выше было

показано, что каждая аксиома исчисления L – тавтология, и применение правила MP к двум тавтологиям также даёт тавтологию, значит, каждый член последовательности $F_1,...,F_n$, включая формулу $F_n = G$, является тавтологией. Теорема доказана.

Для доказательства обратного утверждения – что каждая тавтология является теоремой исчисления L, придётся предварительно доказать ряд вспомогательных теорем.

Некоторые теоремы исчисления L.

Докажем некоторые теоремы, которые будут использованы в дальнейшем.

Первая теорема двойного отрицания (1 $\angle IO$): $\vdash - - - A \rightarrow A$

$$B_1$$
: $(\neg A \rightarrow \neg \neg A) \rightarrow ((\neg A \rightarrow \neg A) \rightarrow A)$ - аксиома по 3 схеме аксиом $\begin{pmatrix} \neg A & A \\ A & B \end{pmatrix}$;

$$B_2$$
: $-A \rightarrow -A$ - теорема; $B: (-A \rightarrow -A) \rightarrow A (\Pi C \ltimes B R)$

$$B_3: (\neg A \rightarrow \neg \neg A) \rightarrow A (\Pi C \ltimes B_1, B_3)$$

$$B_4$$
: —— A \rightarrow (— A \rightarrow —— A) - аксиома по 1 схеме аксиом

$$\begin{pmatrix} \neg \neg A & \neg A \\ A & B \end{pmatrix}$$
;

$$B_5: \longrightarrow A \longrightarrow A (TU \ltimes B_4, B_3)$$

Вторая теорема двойного отрицания—
$$(2 \cancel{\square} O)$$
: $A \rightarrow ---A$.

$$B_1: (\longrightarrow A \longrightarrow A) \longrightarrow ((\longrightarrow A \longrightarrow A) \longrightarrow A)$$
 - аксиома по

$$B_1$$
: $(\neg \neg \neg A \rightarrow \neg A) \rightarrow ((\neg \neg \neg A \rightarrow A) \rightarrow \neg \neg A)$ - аксиома по 3 схеме аксиом $\begin{pmatrix} A & \neg \neg A \\ A & B \end{pmatrix}$;

$$B_2$$
: $\longrightarrow A \rightarrow \bigcirc A - (1 \square O)$ $\begin{pmatrix} \neg A \\ A \end{pmatrix}$; B_3 : $(\longrightarrow A \rightarrow A) \rightarrow \longrightarrow A$ $(MP \ltimes B_1, B_2)$; B_4 : $A \rightarrow (\longrightarrow A \rightarrow A)$ - аксиома по 1 схеме аксиом $\begin{pmatrix} A & \neg \neg \neg A \\ A & B \end{pmatrix}$; B_5 : $A \rightarrow \longrightarrow A$ $(TU \ltimes B_4, B_3)$

Теорема выводимости

 $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$.

$$\neg A \to (A \to B)$$
. B_1 : $\neg A$ - гипотеза; B_2 : A - гипотеза; B_3 : $\neg A \to (\neg B \to \neg A)$ - аксиома по 1 схеме аксиом $\begin{pmatrix} \neg A & \neg B \\ A & B \end{pmatrix}$;

импликации \vdash (*BИ*):

$$B_4$$
: $A \to (\neg B \to A)$ - аксиома по 1 схеме аксиом $\begin{pmatrix} A & \neg B \\ A & B \end{pmatrix}$; B_5 : $\neg B \to \neg A$ - $(MP \ltimes B_1, B_3)$ B_6 : $\neg B \to A$ - $(MP \ltimes B_2, B_4)$

$$B_7: (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$
 - 3 схема аксиом;
 $B_8: (\neg B \rightarrow A) \rightarrow B$ - $(MP \ltimes B_5, B_7)$

$$B_9$$
: B - (MP к B_6, B_8) Получили, что из гипотез $\neg A$, A выводима формула B .

Тогда, применив теорему дедукции, получим, что $\neg A \models A \rightarrow B$. Применив ещё раз теорему дедукции, получим $\models \neg A \rightarrow (A \rightarrow B)$

$$B_1: \neg B \rightarrow \neg A$$
 - гипотеза;

$$(-R \rightarrow 4) \rightarrow R$$
) - 3 cxema aксиом:

(2KII):

$$B_2: (\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B) - 3$$
 схема аксиом;

$$B_3: (\neg B \rightarrow A) \rightarrow B - (M\Pi \ltimes B_1, B_2)$$

$$B_4$$
: $A \rightarrow (\neg B \rightarrow A)$ - аксиома по 1 схеме аксиом $\begin{pmatrix} A & \neg B \\ A & B \end{pmatrix}$;

$$B_5$$
: $A \to B$ (*TИ* B_4, B_3); Получили, что из гипотезы $\neg B \to \neg A$ выводима формула $A \to B$.

Получили, что из гипотезы
$$\neg B \to \neg A$$
 выводима формула $A \to B$. Применив теорему дедукции, получим, что $\vdash (\neg B \to \neg A) \to (A \to B)$

Вторая теорема контрапозиции
$$\vdash$$
 $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$.

$$B_3: \longrightarrow A \longrightarrow B (TU \ltimes B_1, B_2);$$

$$B_3: \longrightarrow A \longrightarrow B \ (IM \ltimes B_1, B_2);$$

 $B_4: B \longrightarrow \longrightarrow B \ (2 \square O);$

$$B_4: B \rightarrow \neg B (2 \not\perp O);$$

 $B_5: \neg A \rightarrow \neg B (T u \ltimes B_3, B_4);$

$$B_6: (\neg A \rightarrow \neg B) \rightarrow (\neg B \rightarrow \neg A) - (1K\Pi) \begin{pmatrix} \neg B & \neg A \\ A & B \end{pmatrix};$$

$$B_7: \neg B \to \neg A \ (MP \ B_5, B_6);$$
 Получили, что из гипотезы $A \to B$ выводима формула $\neg B \to \neg A$.

Применив теорему дедукции, получим, что
$$\vdash (A \to B) \to (\neg B \to \neg A)$$
. Отрицание импликации (OU) : $\vdash A \to (\neg B \to \neg (A \to B))$.

$$B_1$$
: A -гипотеза; B_2 : $A \rightarrow B$ -гипотеза;

$$B_2: A \to B$$
- гипотеза;
 $B_3: B$ - (MP к B_1, B_2);

Получили, что из гипотез $A, A \to B$ выводима формула B.

Применим теорему дедукции, получим: $A \vdash (A \rightarrow B) \rightarrow B$.

применим теорему дедукции, получим:

$$B_4: A \to ((A \to B) \to B) \cdot B_5: \quad ((A \to B) \to B) \to (\neg B \to \neg (A \to B));$$

$$B_4: A \to ((A \to B) \to B) \cdot B_5: \quad ((A \to B) \to B) \to (\neg B \to \neg (A \to B))$$

$$(2K\Pi) \quad \begin{pmatrix} A \to B & B \\ A & B \end{pmatrix}$$

$$B_6: A \to (\neg B \to \neg (A \to B)). (TU \ltimes B_4, B_5)$$

Теорема разбора
$$\vdash$$
 случаев $(A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B)$.

- 1) $A \rightarrow B$ гипотеза; 2) $\neg A \rightarrow B$ - гипотеза;
- 3) $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ (2K Π);
- 4) $\neg B \rightarrow \neg A$ (MP 1.3):

5)
$$(\neg A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 (2KII) $\begin{pmatrix} \neg A & B \\ A & B \end{pmatrix}$;

6) $\neg B \rightarrow \neg A$ (MP 5.2)

7)
$$(\neg B \rightarrow \neg \neg A) \rightarrow ((\neg B \rightarrow \neg A) \rightarrow B)$$
; аксиома по 3 схеме аксиом

$$\begin{pmatrix} A & B \end{pmatrix}$$

8)
$$(\neg B \rightarrow \neg A) \rightarrow B$$
; (MP 7,6)

Получили, что из гипотез
$$\neg A \rightarrow B$$
, $A \rightarrow B$ выводима формула B . Применим теорему дедукции, получим: $A \rightarrow B \vdash (\neg A \rightarrow B) \rightarrow B$

Ещё раз применим теорему дедукции, получим:

$$\vdash (A \to B) \to ((\neg A \to B) \to B).$$