A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 5EQ

Bookmark

Show all steps: (

ON

Problem

As a provisional definition, let us call a finite abelian group "decomposable" if there are elements $a_1, ..., a_n \in G$ such that:

(DI) For every $x \in G$, there are integers $k_1, ..., k_n$ such that $\mathbf{x} = \mathbf{a_1^{k_1} a_2^{k_2} \dots a_n^{k_n}}$ (D₂) If there are integers $l_1, ..., l_n$ such that

$$a_1^{l_1}a_2^{l_2}\cdots a_n^{l_n}=e^{\text{then }}a_1^{l_1}=a_2^{l_2}=\cdots=a_n^{l_n}=e^{-\frac{l_n}{n}}$$

If (D_1) and (D_2) hold, we will write $G = [a_1, a_2, ..., a_n]$. Assume this in parts 1 and 2.

Prove that if $a^{l_0}b_1^{l_1}\cdots b_n^{l_n}=e$, then $a^{l_0}=b_1^{l_1}=\cdots=b_n^{l_n}=e$.

Conclude that $G = [a, b, 1, ..., b_n]$.

Step-by-step solution

Step 1 of 3

Assume that G is a finite abelian group, and order of each element in G is some power of prime p. Let a is the highest possible order element in G and $H = \langle a \rangle$.

Objective is to prove that if $a^{l_0}b_1^{l_1}b_2^{l_2}$ $b_n^{l_n}=e$, then $a^{l_0},b_1^{l_1},\dots,b_n^{l_n}=e$. Also conclude that $G=\left[a,b_1,\dots,b_n\right]$.

According to the statement of decomposable group:

If a_1 , $a_n \in G$ and both the conditions D1, D2 holds, then $G = [a_1, a_2, a_n]$.

Comment

Step 2 of 3

One have seen that the following assumption is valid

$$G/H = [Hb_1, ..., Hb_n],$$

for some $b_1, ..., b_n \in G$. Also, $G = [a, b_1, ..., b_n]$.

That is, $[a, b_1, ..., b_n]$ forms a basis of G, also it is known that the conditions D1, D2 holds. So, any element x in G can be written as a product of some powers of $a, b_1, ..., b_n$. Thus,

for every $x \in G$, there are integers $k_0, k_1, ..., k_n$ such that

$$x = a^{k_0} b_1^{k_1} \quad b_n^{k_n}$$

Comment

Step 3 of 3

On combining the above statement with the D1, D2 conditions, it implies that if $a^{l_0}b_1^{l_1}b_2^{l_2}$ $b_n^{l_n}=e$, then $a^{l_0},b_1^{l_1},\dots,b_n^{l_n}=e$. And $G=\begin{bmatrix}a,b_1,\dots,b_n\end{bmatrix}$.

Comment