Implementing Branch and Bound in C++ using SCIP

Djime Gueye

13 February 2018

Outline

- Branch and Bound
 - Introduction
 - Important operations
 - Branching
 - Bounding
 - Pruning
 - Strategies for choosing next Candidate
- ② implementing Branch and Bound:For 0-1 Integer programming
 - Implementation of branch and bound for 0-1 Integer programming
 - Creating the problem instance
 - Solving the subproblems: A LP-Solver
 - Building subproblems: The Node Class
 - The solving Process: The BranchandBound class

Branch and Bound

Introduction

- Method for solving linear integer programs.
- Simulates complete tree search of the solutions.
- This presentation will consider a maximization problem.

Principle Operations

Branching

- Divide the problem to solve P_0 in subproblems $P_1, P_2, ..., P_k$ so that $X(P_0) = \bigcup_{i=1}^k X(P_i)$ and $X(P_i) \cap X(P_j) = \emptyset$ for all $i \neq j$
- ullet The subproblems are on their turn branched and we get a solution tree. With root P_0

Bounding

- The best feasible solution found is a lower bound on the optimal objective value. Use heuristic at the beginning or set $\underline{F} = -\infty$
- For each problem P_i determine an upper bound $\overline{F_i}$ on the optimal objective value of the subproblem.
 - Solve relaxation P'_i , a simplification of P_i with $X(P'_i) \subset X(P_i)$ we get by removing or "relaxing" some constraints

Pruning

Stop considering i.e. **prune** a subproblem in these cases:

- if $\overline{F_i} \leq \underline{F}$. The optimal solution of this subproblem can not be better than the lower bound.
- if $\overline{F_i} > \underline{F}$ and the solution is feasible.Set new lower bound $\underline{F} = \overline{F_i}$
- if $X(P'_i) = \emptyset$ P_i is infeasible and doesn't have to be observed anymore.

Example

max
$$x_1+2x_2$$
 subject to $x_1+3x_2\leq 7$ $3x_1+2x_2\leq 10$ $x_1,x_2\geq 0$ and integers

Example cont.

 P_0

- Since (0,0) is feasible, set $\underline{F}=0$
- Build relaxation of P_0 the start problem by removing the integrality constraint, and solve max $x_1 + 2x_2$ under $x_1 + 3x_2 \le 7$, $3x_1 + 2x_2 \le 10$ and $x_1, x_2 \ge 0$ With the simplex method or graphically. The optimal solution is (2.29, 1.57) and $F_0 = 5.43$.
- $\overline{F_0} = 5.43$
- Build Subproblems $P_1 = \max x_1 + 2x_2$ under $x_1 + 3x_2 \le 7, 3x_1 + 2x_2 \le 10, x_1 \le 2$ and $x_1, x_2 \ge 0$ and integers and $P_2 = \max x_1 + 2x_2$ under $x_1 + 3x_2 \le 7, 3x_1 + 2x_2 \le 10, x_1 \ge 3$ and $x_1, x_2 \ge 0$ and integers.

Tree

Example cont.

 P_1

- Solve relaxation of P_1 max x_1+2x_2 under $x_1+3x_2 \le 7, 3x_1+2x_2 \le 10, x_1 \le 2$ and $x_1, x_2 \ge 0$
- Optimal Solution is (2, 1.667) objective value $F_1 = 5.33$
- $\overline{F_1} = 5.33$
- Build Subproblems $P_3 = \max x_1 + 2x_2$ under $x_1 + 3x_2 \le 7, 3x_1 + 2x_2 \le 10, x_1 \le 2, x_2 \le 1$ and $x_1, x_2 \ge 0$ and integers and $P_4 = \max x_1 + 2x_2$ under $x_1 + 3x_2 \le 7, 3x_1 + 2x_2 \le 10, x_1 \le 2, x_2 \ge 2$ and $x_1, x_2 \ge 0$ and integers.

Tree

Example P2

• Solve relaxation of P_2 max x_1+2x_2 under $x_1+3x_2\leq 7, 3x_1+2x_2\leq 10, x_1\geq 3$ and $x_1,x_2\geq 0$

- Optimal Solution is (3,0.5) objective value $F_2=4$
- $\overline{F_2} = 4$

Example P₃

- Solve relaxation of P_3 max x_1+2x_2 under $x_1+3x_2\leq 7, 3x_1+2x_2\leq 10, x_1\leq 2, x_2\leq 1$ and $x_1,x_2\geq 0$
- Optimal Solution is (2,1) objective value $F_3=4$
- (2,1) is the new best solution, $\underline{F}=4$.

Example P4

- Solve relaxation of P_4 max $x_1 + 2x_2$ under $x_1 + 3x_2 \le 7, 3x_1 + 2x_2 \le 10, x_1 \le 2, x_2 \ge 2$ and $x_1, x_2 \ge 0$
- Optimal Solution is (1,2) objective value $F_4=5$
- (1,2) is the new best solution, $\underline{F}=5$.
- $\overline{F_2}$ < 5, prune P_2
- There is no more problem to observe the optimal solution is (1,2) and optimal objective value 5.

Strategies for choosing next Candidate

The LIFO_Rule

The problem that has been added at last to the candidate list will be branched first.

The Maximum upper bound strategy

Choose the problem from the list that has a highest Upper bound.

Implementation

The problem should be formulated in this form:

$$\begin{aligned} & \text{min} & & c^T x \\ & \text{subject to} & & Ax \geq b \\ & x \geq 0 & \\ & x_j \text{ is integer} & j = 1, ..., p \leq n \end{aligned}$$

- Create text file with problem data in this format
- Create problem instance as object of the Class MBP.
- The problem data will be stored in this class

The LP class

- LP solver that uses scip
- will be used to solve the subproblems

The Node Class

- represents a subproblem
- Has an LP- attribute: the relaxed problem
- Linked to its subproblems

The solving process

The BranchandBound Class

- Has a Linked list as Datastructure for the branch and Bound tree
- important attributes
 - The global upper bound
 - The lowest lower Bound
- The important methods
 - The Branch method
 - the bound method
 - the solve method

For Further Reading I

W. Domschke *Einfuehrung in Operations Research*. Springer, 2015.