Praxisprojekt - Preprocessing und Visualisierung von Wetterdaten

Wetterdaten vom 01.01.2015 - 21.12.2022 in Düsseldorf Link: https://meteostat.net/de/place/de/dusseldorf?s=10400&t=2015-01-01/2022-12-31 - abgerufen 10.05.2023

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
```

Daten einlesen und anzeigen

In []: df.info()

```
monatsnamen = ['Januar', 'Februar', 'März', 'April', 'Mai', 'Juni', 'Juli', 'August', 'September', 'Oktober', 'November', 'Deze
        df = pd.read csv('wetterdaten2015-2022.csv')
    ]: df.head()
In [
Out[]:
                                                     wdir wspd wpgt
                 date tavg tmin tmax prcp snow
                                                                         pres tsun
         0 2015-01-01
                             -2.3
                                    5.5
                                          2.8
                                                0.0
                                                     176.0
                                                            15.8
                                                                   41.8 1034.6
                                                                                318
         1 2015-01-02
                                                                  44.6
                                                                       1028.1
                        5.6
                              1.7
                                    8.8
                                          1.1
                                                0.0
                                                     227.0
                                                            20.9
                                                                                132
         2 2015-01-03
                              0.4
                                    4.4
                                          4.2
                                                0.0
                                                     210.0
                                                            13.3
                                                                  40.0 1025.2
                                                                                  0
         3 2015-01-04
                                                0.0 266.0
                                                                  26.3 1033.3
                             -1.5
                                    6.4
                                          0.0
                                                            11.5
                                                                                378
         4 2015-01-05
                                                0.0 204.0
                                                                  25.9 1033.4
                        2.7
                             -0.8
                                    4.7
                                          0.0
                                                            11.9
                                                                                228
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2922 entries, 0 to 2921
Data columns (total 11 columns):
     Column Non-Null Count Dtype
            2922 non-null object
 0
     date
 1
     tavq
            2922 non-null
                           float64
            2922 non-null
     tmin
                           float64
            2922 non-null
                           float64
     tmax
     prcp
            2922 non-null
                           float64
            2709 non-null
                           float64
     snow
                           float64
     wdir
            2914 non-null
            2922 non-null
                           float64
     wspd
    wpgt
            2922 non-null
                           float64
     pres
            2922 non-null
                           float64
 10 tsun
            2922 non-null
                            int64
dtypes: float64(9), int64(1), object(1)
memory usage: 251.2+ KB
```

Datenaufbereitung

Neue Spalten anlegen -> Jahr, Tag und Monat trennen

```
In []: df['date'] = pd.to_datetime(df['date'])
In []: df['Jahr'] = df['date'].dt.year
    df['Monat'] = df['date'].dt.month
    df['Tag'] = df['date'].dt.day
In []: df.head(10)
```

```
Out[]:
                  date tavg tmin tmax prcp snow
                                                        wdir wspd wpgt
                                                                             pres tsun Jahr Monat Tag
                                                                                    318
         0 2015-01-01
                          1.7
                               -2.3
                                      5.5
                                            2.8
                                                   0.0
                                                        176.0
                                                                15.8
                                                                      41.8 1034.6
                                                                                         2015
                                                        227.0
                                                                           1028.1
         1 2015-01-02
                                                                                    132 2015
                          5.6
                                1.7
                                      8.8
                                             1.1
                                                   0.0
                                                                20.9
                                                                      44.6
                                                                                                    1
                                                                                                         2
                                            4.2
         2 2015-01-03
                          2.7
                                                        210.0
                                                                      40.0 1025.2
                                                                                      0 2015
                                                                                                         3
                                0.4
                                      4.4
                                                   0.0
                                                                13.3
                                                                                                    1
         3 2015-01-04
                                                   0.0 266.0
                                                                      26.3 1033.3
                                                                                    378 2015
                          2.7
                               -1.5
                                      6.4
                                            0.0
                                                                11.5
                                                                                                    1
         4 2015-01-05
                          2.7
                                                       204.0
                                                                      25.9 1033.4
                                                                                    228
                               -0.8
                                      4.7
                                            0.0
                                                   0.0
                                                                11.9
                                                                                         2015
                                                                                                         5
         5 2015-01-06
                          2.7
                                0.3
                                      5.0
                                            1.6
                                                   0.0
                                                       166.0
                                                                14.8
                                                                      32.8
                                                                           1024.5
                                                                                    114
                                                                                         2015
                                                                                                    1
                                                                                                         6
         6 2015-01-07
                          4.0
                                2.0
                                      6.9
                                            3.7
                                                       222.0
                                                                16.2
                                                                      38.9
                                                                            1028.1
                                                                                    348
                                                                                         2015
                                                                                                         7
                                                   0.0
                                                                      48.6 1023.2
         7 2015-01-08
                          5.7
                                2.6
                                      9.1
                                           20.9
                                                   0.0
                                                       193.0
                                                                22.0
                                                                                      0 2015
                                                                                                    1
                                                                                                         8
           2015-01-09
                          8.9
                                5.1
                                     14.2
                                            6.7
                                                   0.0
                                                        228.0
                                                                29.5
                                                                      80.6
                                                                            1019.7
                                                                                         2015
                                                                                                         9
            2015-01-10
                         10.9
                                3.7
                                    14.4
                                             3.1
                                                   0.0 254.0
                                                               34.2
                                                                      79.2 1013.0
                                                                                      0 2015
                                                                                                        10
                                                                                                    1
```

```
In []: unique = df['date'].nunique()
length = df['date'].value_counts().count()

if unique == length:
    print('Alle Daten sind einzigartig')
```

Alle Daten sind einzigartig

Wochenname & Monatsname hinzufügen

```
In [ ]: #df['Wochentag'] = df['date'].dt.day_name(locale='de_DE.UTF-8')
#df['Monatsname'] = df['date'].dt.month_name(locale='de_DE.UTF-8')
```

Unnötige Spalten löschen

```
In []: df.drop(['prcp'], axis=1, inplace=True)
    df.drop(['snow'], axis=1, inplace=True)
    df.drop(['wpgt'], axis=1, inplace=True)
    df.drop(['pres'], axis=1, inplace=True)
```

```
In []: df.head(10)
```

	date	tavg	tmin	tmax	wdir	wspd	tsun	Jahr	Monat	Tag
0	2015-01-01	1.7	-2.3	5.5	176.0	15.8	318	2015	1	1
1	2015-01-02	5.6	1.7	8.8	227.0	20.9	132	2015	1	2
2	2015-01-03	2.7	0.4	4.4	210.0	13.3	0	2015	1	3
3	2015-01-04	2.7	-1.5	6.4	266.0	11.5	378	2015	1	4
4	2015-01-05	2.7	-0.8	4.7	204.0	11.9	228	2015	1	5
5	2015-01-06	2.7	0.3	5.0	166.0	14.8	114	2015	1	6
6	2015-01-07	4.0	2.0	6.9	222.0	16.2	348	2015	1	7
7	2015-01-08	5.7	2.6	9.1	193.0	22.0	0	2015	1	8
8	2015-01-09	8.9	5.1	14.2	228.0	29.5	0	2015	1	9
9	2015-01-10	10.9	3.7	14.4	254.0	34.2	0	2015	1	10

Spaltennamen umbenennen

Out[]:

'date': 'Datum','tavg': 'Durchschnittstemperatur', 'tmin': 'Min_Temperatur', 'tmax': 'Max_Temperatur', 'prcp': 'Gesamtniederschlag', 'snow': 'Schneehöhe', 'wdir': 'Windrichtung', 'wspd': 'Windgeschwindigkeit', 'wpgt': 'Spitzenhöhe', 'pres': 'Luftdruck', 'tsun': 'Sonnenscheindauer'

```
In []: df.rename(columns={'date': 'Datum', 'tavg': 'Durchschnittstemperatur', 'tmin': 'Min_Temperatur', 'tmax': 'Max_Temperatur', 'wdi
In []: df.head(10)
```

Out[]:		Datum	Durchschnittstemperatur	Min_Temperatur	Max_Temperatur	Windrichtung	Windgeschwindigkeit	Sonnenscheindauer	Jahr	Monat T
	0	2015- 01-01	1.7	-2.3	5.5	176.0	15.8	318	2015	1
	1	2015- 01-02	5.6	1.7	8.8	227.0	20.9	132	2015	1
	2	2015- 01-03	2.7	0.4	4.4	210.0	13.3	0	2015	1
	3	2015- 01-04	2.7	-1.5	6.4	266.0	11.5	378	2015	1
	4	2015- 01-05	2.7	-0.8	4.7	204.0	11.9	228	2015	1
	5	2015- 01-06	2.7	0.3	5.0	166.0	14.8	114	2015	1
	6	2015- 01-07	4.0	2.0	6.9	222.0	16.2	348	2015	1
	7	2015- 01-08	5.7	2.6	9.1	193.0	22.0	0	2015	1
	8	2015- 01-09	8.9	5.1	14.2	228.0	29.5	0	2015	1
	9	2015- 01-10	10.9	3.7	14.4	254.0	34.2	0	2015	1

Datenanalyse

1) Durchschnittstemperatur nach Jahr und Monat

Monat	1	2	3	4	5	6	7	8	9	10	11	12
Jahr												
2015	3.680645	3.057143	6.406452	9.703333	13.341935	16.863333	19.816129	19.916129	13.830000	10.003226	9.910000	9.493548
2016	4.741935	4.589655	5.280645	9.340000	15.119355	17.506667	19.509677	18.861290	18.380000	10.032258	6.086667	4.493548
2017	0.712903	5.825000	9.512903	8.490000	16.019355	19.540000	19.432258	18.441935	14.406667	13.232258	6.900000	4.645161
2018	5.883871	0.214286	5.235484	13.666667	17.187097	18.486667	22.496774	20.548387	15.776667	12.729032	7.250000	6.012903
2019	2.748387	6.817857	8.296774	11.380000	11.912903	20.456667	20.203226	20.109677	15.503333	12.400000	6.373333	5.909677
2020	5.670968	7.048276	7.409677	12.180000	13.677419	18.610000	18.322581	21.822581	15.973333	11.900000	8.726667	5.638710
2021	3.012903	4.707143	6.870968	7.060000	11.909677	19.893333	18.835484	17.351613	16.396667	11.535484	6.340000	5.445161
2022	4.616129	6.557143	7.945161	9.866667	15.522581	18.560000	20.061290	21.912903	15.466667	14.112903	9.206667	4.029032

Out[]:

```
In []: plt.figure(figsize=(10, 8))
    sns.heatmap(data=df_pivotAvgTemp, annot=True, cmap='coolwarm', fmt='.1f')
    plt.xlabel('Monat')
    plt.ylabel('Jahr')
    plt.title('Durchschnittstemperatur nach Jahr und Monat')
    plt.xticks(ticks=range(1, 13), labels=monatsnamen, rotation=90)
plt.show()
```

Durchschnittstemperatur nach Jahr und Monat 3.7 3.1 6.4 9.7 13.3 16.9 19.8 19.9 13.8 10.0 9.9 9.5 - 20.0 2016 15.1 19.5 18.9 10.0 6.1 4.5 9.3 18.4 - 17.5 2017 0.7 5.8 9.5 8.5 16.0 19.4 18.4 13.2 19.5 14.4 6.9 4.6 - 15.0 2018 0.2 17.2 18.5 12.7 5.9 13.7 22.5 20.5 15.8 7.2 6.0 - 12.5 Jahr 6.8 8.3 11.4 11.9 20.5 20.2 20.1 15.5 12.4 6.4 5.9 - 10.0 2020 - 7.5 5.7 7.0 7.4 16.0 11.9 12.2 13.7 18.6 21.8 8.7 5.6 - 5.0 2021 18.8 11.5 3.0 6.9 7.1 11.9 19.9 16.4 6.3 5.4 - 2.5 2022 4.6 20.1 21.9 6.6 7.9 15.5 18.6 15.5 14.1 9.9 9.2 4.0 Januar Juni $\overline{\mathbb{H}}$ Oktober April Februar März September November Dezember Monat

2) Änderung der Durchschnittstemperatur pro Jahr

Jahr Durchschnittstemperatur

Out[]:

```
In [ ]: temp_regYear = df.groupby([df['Jahr']])['Durchschnittstemperatur'].mean().reset_index()
temp_regYear
```

0	2015	11.389589
1	2016	11.179508
2	2017	11.466027
3	2018	12.203562
4	2019	11.866575
5	2020	12.259016
6	2021	10.811781
7	2022	12.358356

```
In [ ]: graph = sns.lmplot(data=temp_regYear, x='Jahr', y='Durchschnittstemperatur', ci=None)
    graph.set_axis_labels("Jahr", "Durchschnittliche Temperatur")
    plt.show()
```


3) Änderung der Durchschnittstemperatur pro Monat über die Jahre

```
In [ ]: temp_regMonth = df.groupby([df['Jahr'], df['Monat']])['Durchschnittstemperatur'].mean().reset_index()
temp_regMonth
```

Out[]:		Jahr	Monat	Durchschnittstemperatur
	0	2015	1	3.680645
	1	2015	2	3.057143
	2	2015	3	6.406452
	3	2015	4	9.703333
	4	2015	5	13.341935
	•••			
	91	2022	8	21.912903
	92	2022	9	15.466667
	93	2022	10	14.112903
	94	2022	11	9.206667
	95	2022	12	4.029032

96 rows × 3 columns

```
In []: graph = sns.lmplot(data=temp_regMonth, x='Jahr', y='Durchschnittstemperatur', hue='Monat', col='Monat', col_wrap=3, height=3, a
graph.set_axis_labels("Jahr", "Durchschnittliche Temperatur")
plt.show()
```


4) Maximale Temperatur nach Jahr und Monat

Out[]:		Jahr	Monat	Max_Temperatur
	0	2015	1	14.4
	1	2015	2	12.1
	2	2015	3	18.4
	3	2015	4	24.1
	4	2015	5	26.2
	•••	•••	•••	
	91	2022	8	33.7
	92	2022	9	30.8
	93	2022	10	23.9
	94	2022	11	17.4
	95	2022	12	17.5

96 rows × 3 columns

```
In []: plt.figure(figsize=(10, 8))
    sns.swarmplot(data=df_groupedMax,x='Monat', y='Max_Temperatur', palette='Set2', hue="Jahr")
    plt.title('Maximale Temperatur pro Jahr und Monat')
    plt.xlabel('Monat')
    plt.ylabel('Maximale Temperatur')
    plt.xticks(ticks=range(0, 12), labels=monatsnamen, rotation=90)
    plt.legend(bbox_to_anchor=(1, 1), loc=2)
    plt.show()
```



```
In []: plt.figure(figsize=(10, 8))
    sns.boxplot(data=df_groupedMax,x='Monat', y='Max_Temperatur', palette='Set2')
    plt.title('Maximale Temperatur pro Monat')
    plt.xlabel('Monat')
    plt.ylabel('Maximale Temperatur')
    plt.xticks(ticks=range(0, 12), labels=monatsnamen, rotation=90)
    plt.legend(bbox_to_anchor=(1, 1), loc=2)
    plt.show()
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

5) Minimale Temperatur nach Jahr und Monat

```
In []: df_groupedMin = df.groupby(['Jahr', 'Monat'])['Min_Temperatur'].min().reset_index()
    plt.figure(figsize=(10, 8))
    sns.violinplot(data=df_groupedMin,x='Monat', y='Min_Temperatur', palette='dark', inner=None)
    sns.swarmplot(data=df_groupedMin,x='Monat', y='Min_Temperatur', palette='Set2', hue="Jahr")
    plt.title('Minimale Temperatur pro Jahr und Monat')
    plt.xlabel('Jahr')
    plt.ylabel('Maximale Temperatur')
    plt.xticks(ticks=range(0, 12), labels=monatsnamen, rotation=90)
    plt.legend(bbox_to_anchor=(1, 1), loc=2)
    plt.show()
```


6) Häufigkeitsverteilung -> Windrichtung

```
In [ ]: def grad_zu_himmelsrichtung(grad):
            if grad >= 337.5 or grad < 22.5:
                return 'Nord'
            elif grad >= 22.5 and grad < 67.5:
                return 'Nordost'
            elif grad >= 67.5 and grad < 112.5:
                 return 'Ost'
            elif grad >= 112.5 and grad < 157.5:
                return 'Südost'
            elif grad >= 157.5 and grad < 202.5:
                return 'Süd'
            elif grad >= 202.5 and grad < 247.5:
                return 'Südwest'
            elif grad >= 247.5 and grad < 292.5:</pre>
                 return 'West'
            else:
                return 'Nordwest'
In []: df['Himmelsrichtung'] = df['Windrichtung'].apply(grad_zu_himmelsrichtung)
        himmelsrichtung = df['Himmelsrichtung'].value_counts()
        himmelsrichtung
Out[]: Himmelsrichtung
        Südwest
                     699
        Süd
                    590
                    348
        West
        Südost
                    348
        Nordost
                    331
        Nord
                    277
        Nordwest
                    197
                    132
        0st
        Name: count, dtype: int64
        plt.bar(himmelsrichtung.index, himmelsrichtung.values)
In []:
        plt.xlabel('Himmelsrichtung')
        plt.ylabel('Häufigkeit')
        plt.title('Häufigkeitsverteilung der Windrichtung')
        plt.xticks(rotation=90)
        plt.show()
```



```
In []: # Als Kreisdiagramm
    plt.pie(himmelsrichtung.values, labels=himmelsrichtung.index, autopct='%1.1f%%')
    plt.axis('equal')
    plt.title('Häufigkeitsverteilung der Windrichtung')
    plt.show()
```

Häufigkeitsverteilung der Windrichtung

7) Durchschnittliche Sonnenscheindauer

```
Out[]: Monat
        1
               85.233871
        2
              199.349558
              280.326613
        3
        4
              389.833333
        5
              429.713710
              441.779167
        6
        7
              418.375000
        8
              411.096774
        9
              342.241667
              200.375000
        10
        11
              140.562500
        12
               86.443548
        Name: Sonnenscheindauer, dtype: float64
In [ ]: plt.plot(avg_sonnenscheindauer.index, avg_sonnenscheindauer.values, marker='o')
        plt.xlabel('Monat')
        plt.ylabel('Durchschnittliche Sonnenscheindauer (in Stunden)')
        plt.title('Durchschnittliche Sonnenscheindauer pro Monat')
        plt.xticks(ticks=range(1, 13), labels=monatsnamen, rotation=90)
        # Zeige das Diagramm an
        plt.show()
```

