Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum II

Úloha č. 11

Název úlohy: Charakteristiky diod

Jméno: Vojtěch Votruba

Datum měření: 2023-11-13

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Teoretická část	0–2	
Výsledky a zpracování měření	0–9	
Diskuse výsledků	0-4	
Závěr	0–1	
Použitá literatura	0–1	
Celkem	max. 17	

Posuzoval: dne:

Pracovní úkoly

- 1. Změřte voltampérovou charakteristiku vakuové diody (EZ 81) bod po bodu.
- 2. Změřte voltampérovou charakteristiku Zenerovy diody (KZ 703) pomocí převodníku UDAQ-1408E.
- 3. Pro Zenerovu diodu určete její dynamický vnitřní odpor v propustném směru při proudu 200 mA a v závěrném směru pro proud 400 mA.
- 4. Určete odpovídající Zenerovo napětí U_Z .
- 5. Zakreslete do V-A charakteristiky zatěžovací přímku pro napětí zdroje $U_1 = -9 \,\mathrm{V}$ a proud tekoucí diodou $I = -350 \,\mathrm{mA}$ a graf vytisknete. Ze směrnice zatěžovací přímky určete zatěžovací odpor stabilizátoru R_S .
- 6. Sestavte stabilizátor napětí a ověřte jeho funkci.

1 Teoretická část

1.1 Vakuová dioda

Vakuová dioda je elektronická součástka tvořená skleněnou vakuovanou baňkou. V této baňce jsou umístěny katoda a anoda tak, že válcová anoda obklopuje katodu. Žhavíme-li pak katodu, uvolňují se z vrstvy, na kterou je nanesený nějaký oxid, elektrony. Tyto elektrony pak putují od katody k anodě a vytvářejí tak elektrický proud. [1]

Při nulovém napětí na diodě se v důsledku záporného prostorového náboje v okolí katody nějaké elektrony vrací. Takto vzniká malý "klidový" proud $I \approx 10^{-5} \, \mathrm{A}$ až $10^{-4} \, \mathrm{A}$ [1].

Zařadíme-li pak na diodu záporné napětí, velmi rychle (už okolo $-1\,\mathrm{V}$) nám proud klesne téměř na nulu. Při zařazení kladného napětí dioda proud propouští a její voltampérová charakteristika se popisuje vztahem

$$I_a = aU_a^{\frac{3}{2}},\tag{1}$$

který se nazývá třípolovinovým zákonem [1]. I_a značí anodový proud, U_a anodové napětí a konstanta a zde závisí na prostorovém uspořádání elektrod [1].

My v této úloze proměříme charakteristiku vakuové diody v obou směrech zapojení. Obvody, které k tomu využijeme jsou k viděni na obr. 1.

Obrázek 1: Schéma zapojení pro měření určité oblasti charakteristiky. Převzato z [1]

1.2 Zenerova dioda

Zenerova dioda je tvořena křemíkovým PN přechodem, který jí dává její charakteristické vlastnosti [1]. V propustném směru se Zenerova dioda chová podobně jako dioda vakuová. V záporné vlastností má však jiný průběh jak je vidět na obr. 2.

Oblast B nazýváme závěrnou a oblast C tzv. průraznou. Jakmile záporné napětí na diodě klesne pod určitou hodnotu, nastane na diodě průraz, který je charakterizován náhlým propouštěním záporného proudu [1]. Tento průraz nastává v důsledku tzv. Zenerova jevu a lavinového násobení [1].

Voltampérovou charakteristiku Zenerovy diody budeme měřit pomocí obvodu podle schématu na obr. 3.

Obrázek 2: Charakteristika Zenerovy diody [1]

Obrázek 3: Schéma zapojení Zenerovy diody do obvodu s A – D převodníkem. [1]

Zenerova dioda se často používá ke stabilizaci napětí. Princip je takový, že přivedeme-li na stabilizační obvod napětí U_1 , vyjde nám z něj napětí U_0 , které se bude pro výkyvy v U_1 měnit minimálně.

Sestavit stabilizátor napětí se Zenerovou didou je možné, pokud vstupní napětí U_1 přesáhne Zenerovo napětí U_Z (jež je zadáno pro určitý pracovní bod (viz obr. 2)) a pokud je odpor R_S zvolen tak, aby zatěžovací přímka protínala charakteristiku v průrazné oblasti, tak jako např. přímka 1 na obr. 2 [1]. My k ověření stabilizátoru využijeme obvod na obr. 4.

Obrázek 4: Obvod pro stabilizaci stejnosměrného napětí [1]

Tzv. dynamický vnitřní odpor definujeme jako lokální poměr změny napětí U_0 a změny proudu I_0 na diodě [1], tedy

$$r_i = \frac{\Delta U_0}{\Delta I_0}. (2)$$

Pro popis stabilizátoru napětí pak definujeme tzv. stabilizační činitel S_u [1]

$$S_u = \frac{U_0}{U_1} \frac{\Delta U_1}{\Delta U_0} = \frac{U_0(R_s + r_i)\Delta I}{U_1 r_i \Delta I} \approx \frac{U_{Z_0}(R_S + r_i)}{U_1 r_i}.$$
 (3)

2 Výsledky a zpracování měření

2.1 Podmínky pokusu

Měření bylo provedeno v místnosti PII v budově MFF UK na Karlově. Změřené podmínky termo-hygrobarometrem při pokusu byly následující: Teplota $t=23,4(4)\,^{\circ}\text{C}$, relativní vlhkost $\Phi=36(3)\%$, tlak $p=980(2)\,\text{hPa}$.

2.2 Charakteristika vakuové diody

Nejprve jsme v této úloze měli změřit voltampérovou charakteristiku vakuové diody. Sestavili jsme tedy zapojení podle schématu na obr. 1 a postupně jsme měnili napětí U na laboratorním zdroji, přitom jsme si zapisovali hodnotu napětí i hodnotu proudu I.

Nejistota zde byla zpracována podle chyby měřícího přístroje. Tím zde byl digitální multimetr FLUKE RMS 175. Pro měření proudu výrobce uvádí nejistotu 1 % + 3 digity a pro měření napětí 0.15 % + 2 digity [2].

Data byla zanesena do tabulky 1 níže. Dále byly také (do obr. 5) vyhotoveny grafy charakteristiky pro závěrný a propustný směr. V propustném směru jsme graf proložili funkcí podle vztahu (1) pomocí programu Origin.

Tal	oulka	1:	Ν	[aměřená	vol	ltampérov	νá c	hara	kteri	sti	ka	val	kuové	dio	dy.
-----	-------	----	---	----------	-----	-----------	------	------	-------	-----	----	-----	-------	-----	-----

U / V	$I\ /\mathrm{mA}$
-1,046(4)	0,00(3)
-0,900(3)	0,00(3)
-0.694(3)	0,02(3)
-0,593(3)	0.04(3)
-0,443(3)	0,12(3)
-0,201(2)	0,33(3)
-0.041(2)	0,50(4)
0,000(2)	0,57(4)
1,759(5)	3,15(6)
3,927(8)	7,1(1)
6,13(1)	12,5(2)
8,06(1)	17,9(2)
10,11(2)	24,9(3)
11,90(2)	30,27(3)
14,04(2)	36,6(4)
16,38(3)	44,5(5)
18,16(3)	52,0(6)
20,32(3)	62,3(9)
22,14(4)	71(1)
24,21(4)	82(1)
25,95(4)	91(1)
28,43(4)	104(1)

2.3 Charakteristika Zenerovy diody

Zde byla charakteristika měřena pomocí A-D převodníku UDAQ-1408E podle obvodu na obr. 3. Jako odpor v obvodu byl pro odečtení proudu zapojen laboratorní rezistor s odporem $1\,\Omega$. Charakteristiku jsme tentokrát nezaznamenávali my, ale zaznamenali ji příslušný počítačový program, úkolem experimentátora zde bylo měnit zapojené napětí. Bylo takto naměřeno právě 1000 hodnot – naměřený graf charakteristiky byl vynesen do obr. 6 pomocí programu 0rigin.

Po získání grafu této charakteristiky byl použit také pro odečtení Zenerova napětí jakožto průsečíku tečny k charakteristice v průrazové oblasti a osy x. Origin nám nevrátil odhad nejistoty, a proto jsme hodnotu zaznamenali na tři platné cifry, kdy nejistotu odhadneme jako jednotku v posledním zaznamenaném řádu.

$$U_Z = -6.72(1) \text{ V}.$$

Potom, co jsme tímto způsobem zjistili Zenerovo napětí, mohli jsme do obr. 6 vynést také zatěžovací přímku. Její směrnice, neboli napětí R_S , byla vypočtena z obou krajních bodů, tj. (-9 V, 0 µA) a $(U_Z, -350 \text{ µA})$:

$$R_S = 6.51(3) \Omega,$$

Obrázek 5: Voltampérová charakteristika vakuové diody.

kde nejistota R_S byla spočtena podle metody přenosu chyb [3] z nejistoty U_Z .

$$\sigma_{R_S} = \frac{\sigma_{U_Z}}{350\,\mathrm{mA}}.$$

Obrázek 6: Voltampérova charakteristika Zenerovy diody s vynesenou zatěžovací přímkou.

Nakonec jsme měli změřit ještě dynamické vnitřní odpory, to bylo provedeno pomocí lineární regrese na voltampérové charakteristice v okolí proudu $I=200\,\mathrm{mA}$ a $I=-400\,\mathrm{mA}$. Odpory zde budou představovat převrácenou hodnotu směrnic tečen v těchto oblastech. Regrese provedená pomocí $\mathtt{Originu}$ v oblasti $150\,\mathrm{mA}$ až $250\,\mathrm{mA}$ nám dává

$$r(200 \,\mathrm{mA}) = 0.19(1) \,\Omega,$$

A v oblasti $-300\,\mathrm{mA}$ až $-500\,\mathrm{mA}$

$$r(-400 \,\mathrm{mA}) = 0.22(1) \,\Omega.$$

2.4 Stabilizátor napětí

V této části už zbývalo pouze ověřit funkčnost stabilizátoru napětí. Sestavili jsme obvod podle obr. 4, kde jsme jako napětí U_1 připojili laboratorní zdroj a kde jsme na obě svorky paralelně zapojili multimetry FLUKE RMS 175, z těchto multimetrů jsme si zapisovali závislost $U_0 = U_0(U_1)$. Vzhledem k této metodě měření, byla nejistota zpracována analogicky k podsekci 2.1.

Naměřené hodnoty jsme zanesli do tabulky 2.

Tabulka 2: Naměřené hodnoty napětí na stabilizátoru se Zenerovou diodou.

U_1 / V	U_0 / V
0,007(2)	0,007(2)
1,763(5)	1,763(5)
3,223(7)	3,223(7)
5,13(1)	5,13(1)
6,92(3)	6,69(3)
8,07(3)	6,76(3)
9,93(3)	6,82(3)
11,59(4)	6,86(3)

A pak také do grafu na obr. 7. Finálně jsme určili stabilizační činitel S_u pro -9 V podle vztahu (2).

$$S_u = 25(1),$$

kde jsme nejistotu spočetli podle metody přenosu chyb [3],

$$\sigma_{S_u}^2 = \sigma_{U_Z}^2 \left(\frac{r_i + R_S}{U_Z r_i} \right)^2 + \sigma_{r_i}^2 \left(\frac{U_Z R_S}{U_1 r_i^2} \right)^2 + \sigma_{R_S}^2 \left(\frac{U_Z}{U_1 r_i} \right)^2.$$

Obrázek 7: Závislost výstupního napětí na stabilizátoru U_0 na vstupním napětí U_1 .

3 Diskuse výsledků

3.1 Vakuová dioda

V této podsekci se získané výsledky shodují s předpokládanými. Teoretický fit v propustné oblasti $(y = y_0 + aU^{\frac{3}{2}})$ dobře prokládá naměřené hodnoty viz obr. 5. V závěrné oblasti zároveň také dochází k chování, které bychom čekali, okolo hodnoty U = -1 V dioda již nepropouští skoro žádný proud. Nejistoty zde byly započítány z chyb měřicích přístrojů.

3.2 Charakteristika Zenerovy diody

Měřená charakteristika Zenerovy diody odpovídá předpokládané charakteristice podle obr. 2. Na obr. 6 si můžeme povšimnout, že některé body jsou z charakteristicky vychýlené, to ale bylo způsobem příliš rychlým přenastavením napětí na zdroji experimentátorem, nejde o žádnou fyzikální anomálii. Z charakteristiky jsme dál určovali dynamické vnitřní odpory. Ty budou mít ve skutečnosti o něco větší nejistotu, kterou bychom mohli podchytit započítáním nejistot A-D převodníků, což jsme neudělali. Tím bychom udělali celé měření věrohodnější.

Je také možné, že nejistota napětí U_Z byla podhodnocená, leč bychom zvolením vyšší nejistoty mohli ztratit informace, které nám Origin poskytnul.

3.3 Stabilizátor napětí

Toto ověření také bylo změřeno úspěšně. Na naměřených datech a v grafu viz tab. 2, obr. 7 pozorujeme stabilizaci napětí a výrazný pokles směrnice. Nejistoty ze byly zpracovány jako chyby měřicích přístrojů doporučené výrobcem a naše vlastní odhady zkombinovány metodou přenosu chyb.

4 Závěr

Podařilo se proměřit voltampérovou charakteristiku jak vakuové, tak Zenerovy diody. Pro vakuovou diodu jsme její křivku v propustné oblasti proložili teoretickou závislostí a ukázalo se, že se s ní naměřená data dobře shodují.

Dále jsme určili pro Zenerovu diodu dynamické vnitřní odpory v oblasti $200\,\mathrm{mA}$ a $-400\,\mathrm{mA}$ na hodnoty

$$r(200 \,\mathrm{mA}) = 0.19(1) \,\Omega,$$

 $r(-400 \,\mathrm{mA}) = 0.22(1) \,\Omega.$

Stanovili jsme také odpovídající Zenerovo napětí s odporem stabilizátoru

$$U_Z = -6.27(1) \text{ V},$$

 $R_S = 6.43(3) \Omega$

a zakreslili do grafu voltampérové charakteristiky Zenerovy diody zatěžovací přímku. Nakonec jsme také ověřili činnost stabilizátoru napětí a spočetli jeho stabilizační činitel

$$S_u = 25(1).$$

Reference

- [1] Charakteristiky diod [online]. [cit. 2023-11-19]. Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/zadani/211
- [2] Fluke 175 True-RMS Digital Multimeter [online]. [cit. 2023-11-19]. Dostupné z: https://www.fluke.com/en/product/electrical-testing/digital-multimeters/fluke-175
- [3] ENGLICH, Jiří. Úvod do praktické fyziky. Praha: Matfyzpress, 2006. ISBN 80-86732-93-2.