

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

No aplica No aplica No aplica

Relación con otras asignaturas

Anteriores Posteriores

No aplica No aplica

Nombre de la asignatura Departamento o Licenciatura

Arquitecturas de procesamiento en paralelo Ingeniería en Telemática

Ciclo Clave Créditos Área de formación curricular

3 - 4 IT3468 6 Licenciatura Elección Libre

Tipo de asignatura Horas de estudio

Taller 16 32 48 48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Al término del curso, el estudiante será capaz de comprender los principios de diseño, programación y operación de los sistemas de cómputo para el procesamiento en paralelo. OBJETIVOS ESPECÍFICOS El estudiante podrá:Comprender las necesidades, conceptos básicos y limitaciones del procesamiento en paralelo. Clasificar las arquitecturas de procesamiento en paralelo. Conocer los principios de funcionamiento de los procesadores segmentados, su clasificación, su ámbito de aplicación y los conflictos que presentan.

No aplica
Objetivo actitudinal
No aplica
Unidades y temas
Unidad I. CONCEPTOS GENERALES
No aplica
1) Necesidad del paralelismo
2) Concepto de paralelismo
3) Limitaciones del paralelismo
a) Rendimiento de los computadores paralelos
b) Ley de Amdahl
c) Ley de Gustafson
4) Tipos de paralelismo
a) Paralelismo implícito
b) Paralelismo explícito: clasificación de Flynn
5) Problemática planteada
a) Características de las máquinas paralelas
b) Aplicaciones del proceso paralelo

Unidad II. PROCESADORES SEGMENTADOS

Objetivo procedimental

No aplica 1) Introducción y definiciones 2) Rendimiento de los procesadores segmentados 3) Clasificación de los procesadores segmentados 4) Conflictos y sus tipos 5) Contr1ol de conflictos a) Conflictos estructurales b) Conflictos por dependencias de datos c) Conflictos de control 6) Procesadores segmentados y arquitectura RISC a) Procesadores superescalares y supersegmentados b) Segmentación en procesadores VLIW Unidad III. PROCESADORES VECTORIALES No aplica 1) Introducción y definiciones 2) Procesamiento vectorial 3) Segmentación y procesadores vectoriales 4) Arquitectura de los procesadores vectoriales 5) Rendimiento de los procesadores vectoriales 6) Características de los lenguajes para proceso vectorial

8) Ejemplos reales de computadores vectoriales
Unidad IV. REDES DE INTERCONEXIÓN No aplica
1) Introducción
2) Rendimiento de las sistemas de comunicación entre procesadores
3) Modelo básico: dos procesadores con comunicación total entre los procesos
4) Modelo extendido: n procesadores con comunicación total entre los procesos
5) Modelo lineal en el tiempo de comunicaciones
a) Modelo óptimo
b) Conclusiones
6) Características de las redes de interconexión
7) Elementos de conmutación (switches)
8) Permutaciones y funciones de intercambio
9) Clasificación de las redes de interconexión
a) Redes de interconexión estáticas
b) Redes de interconexión dinámicas
c) Resumen comparativo

10) Métodos de encaminamiento

7) Compiladores para procesadores vectoriales

b) Caminamiento en redes omega
c) Encaminamiento en redes delta
Unidad V. LA MEMORIA EN LOS SISTEMAS PARALELOS No aplica
Organizaciones de memoria para los multiprocesadores
2) Memorias entrelazadas
a) Acceso S
b) Acceso C
c) Acceso C/S
3) Memorias tolerantes a fallos
4) Coherencia caché
Unidad VI. SOFTWARE PARA SISTEMAS PARALELOS No aplica
1) Introducción
2) Sistemas operativos para sistemas paralelos
a) Clasificación de los sistemas operativos multiprocesador
3) Detección del paralelismo
a) Condiciones de Berstein
b) Grafos de flujo de datos

a) Encaminamiento en redes hipercubo

4) Modelos de programación para sistemas paralelos
a) Variables compartidas (work sharing)
b) Paso de mensajes
5) Lenguajes y librerías para la programación de sistemas paralelos
Unidad VII. MÁQUINAS TOLERANTES A FALLOS No aplica
1) Conceptos generales sobre tolerancia a fallos
2) Caracterización de los fallos
3) Filosofías de diseño para combatir los fallos
4) Redundancia
a) Redundancia hardware
b) Redundancia software
c) Redundancia informacional
d) Redundancia en el tiempo
5) Métodos de evalución de sistemas tolerantes a fallos
Actividades que promueven el aprendizaje

Estudiante

Docente

Exposición de temas en clase

Asignación de lecturas a los estudiantes.

Promoción de discusiones en clase.

Coordinación de las prácticas de laboratorio

Participación activa en clase.

Redacción de reportes sobre lecturas asignadas por

el docente.

Estudio de documentación previa a la clase.

Participación en prácticas de laboratorio y

elaboración de reportes de prácticas.

Actividades de aprendizaje en Internet

No aplica

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	30
Reportes de investigaciones	15
Participación en clase	15
Exposiciones en clase	20
Prácticas de laboratorio	20
Total	100

Fuentes de referencia básica

Bibliográficas

Hwang, K.-Briggs, F.A.: Arquitectura de computadoras y procesamiento paralelo, McGraw-Hill, 1988.

Hwang, K.: Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw-Hill, 1993.

Stone, H.S.: High-performance Computer Architecture, 2a. edición, Addison-Wesley, 1990.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Tabak, D.: Multiprocessors, Prentice-Hall International, 1990.

Johnson, B.W.: Design and Analysis of Fault Tolerant Digital Systems, Addison Wesley, 1989.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con Licenciatura en Ingeniería en Sistemas o afines, preferentemente nivel de Maestría en el área de Ciencias de la Computación o Ingeniería Eléctrica.

Docentes

Tener experiencia docente mínima de 3 años a nivel superior en asignaturas afines.

Profesionales

No aplica