STATS300B – Lecture 5

Julia Palacios Scribed by Michael Howes

01/18/22

Contents

L	Convergence of random variables
	1.1 Skorokhod's theorem
	1.2 Marginal convergence
2	Delta method

1 Convergence of random variables

1.1 Skorokhod's theorem

We ended last lecture with the statement and a proof of Skorokhod's theorem.

Theorem 1 (Skorokhod). Suppose that $X_n \stackrel{d}{\to} X_0$. Then there exist random variables X_n^* such that $X_n^* \stackrel{\text{dist}}{=} X_n$ and $X_n^* \stackrel{a.s.}{\to} X_0^*$.

The idea behind the proof was to work with the inverse CDFs,

$$F_n^{-1}(t) = \inf\{x \in \mathbb{R} : F_n(x) \ge t\},\$$

where $F_n(x) = \mathbb{P}(X_n \leq x)$. We defined $X_n^* = F_n^{-1}(\xi)$ where $\xi \sim U(0,1)$. We showed that if $X_n \stackrel{d}{\to} X_0$, then $F_n^{-1}(\xi) \stackrel{a.s.}{\to} F_0^{-1}(\xi)$.

1.2 Marginal convergence

Let X_n and X be random k-vectors. Then

- 1. $X_n \stackrel{p}{\to} X$ if and only if $X_{n,j} \stackrel{p}{\to} X_j$ for all $j = 1, \dots, k$.
- 2. $X_n \stackrel{a.s.}{\to} X$ if and only if $X_{n,j} \stackrel{a.s.}{\to} X_j$ for all $j = 1, \dots, k$.
- 3. $X_n \stackrel{L^p}{\to} X$ if and only if $X_{n,j} \stackrel{L^p}{\to} X_j$ for all $j = 1, \dots, k$.
- 4. If $X_n \stackrel{d}{\to} X$, then $X_{n,j} \stackrel{d}{\to} X_j$ for all j = 1, ..., k. But (!) it is possible that $X_{n,j} \stackrel{d}{\to} X_j$ for all j = 1, ..., k and $X_n \stackrel{d}{\to} X$. Indeed, X_n need not have any distribution limit (see homework).

So for convergence in distribution, marginal (or element-wise) convergence is not enough to imply joint convergence. The Cramer–Wald device provides one work around. To show that $X_n \stackrel{d}{\to} X$, it suffices to show that $a^T X_n \stackrel{d}{\to} a^T X$ for all $a \in \mathbb{R}^k$ and if $X_n \stackrel{d}{\to} X$, then $a^T X_n \stackrel{d}{\to} a^T X$. There is a special

case when marginal convergence in distribution does imply joint convergence in distribution. This is when all but one of the entries of X are constant. More precisely, one can show, that if X_n, Y_n, X are random vectors and y is a constant, then

$$X_n \xrightarrow{d} X, Y_n \xrightarrow{p} y \Longrightarrow (X_n, Y_n) \xrightarrow{d} (X, y).$$

Note that since y is a constant, the condition $Y_n \stackrel{p}{\to} y$ is equivalent to $Y_n \stackrel{d}{\to} y$. This theorem can be combined with the continuous mapping theorem to prove Slutsky's theorem which is a real workhorse of asymptotic statistics.

Theorem 2 (Slutsky's). Suppose $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} c$, then

- 1. $X_n + Y_n \stackrel{d}{\to} X + c$
- 2. $Y_n X_n \stackrel{d}{\to} cX$,
- 3. $X_n/Y_n \stackrel{d}{\to} X/c \text{ provided } c \neq 0.$

Proof. As claimed above, we know that $(X_n, Y_n) \stackrel{d}{\to} (X, c)$. The function $(x, y) \mapsto x + y$, $(x, y) \mapsto xy$ and $(x, y) \mapsto x/y$ are all continuous on their domains. Thus, by the continuous mapping theorem the above results hold.

Example 1 (One-sided t-test). Suppose X_1, \ldots, X_n are i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2 < \infty$. Suppose we wish to test $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$.

If X_i was normally distributed, we know that the uniformly most powerful unbiased test rejects when $T_n \ge t_{n-1,\alpha}$ where

$$T_n = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{S_n},$$

and

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

When X_i are normally distributed and the null holds, we know that T_n has the students t distribution with n-1 degrees of freedom. We would like to know the asymptotic distribution of T_n in the non-normal cases. In particular,

- 1. What is the asymptotic distribution of T_n when $\mu = \mu_0$?
- 2. What is the asymptotic distribution of T_n when $\mu > \mu_0$?

With Slutsky's theorem we can answer both of these,

- 1. We have seen before that the weak law of large numbers implies that $S_n \stackrel{p}{\to} \sigma$ and that the central limit theorem implies that $\sqrt{n}(\bar{X}_n \mu_0) \stackrel{d}{\to} \mathsf{N}(0, \sigma^2)$. Thus, Slutsky's theorem implies that $T_n \stackrel{d}{\to} \mathsf{N}(0, 1)$.
- 2. If $\mu > \mu_0$, then we can write T_n as,

$$T_n = \frac{\sqrt{n}(\bar{X}_n - \mu) + \sqrt{n}(\mu - \mu_0)}{S_n} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} + \frac{\sqrt{n}(\mu - \mu_0)}{S_n}.$$

We know that $\frac{\sqrt{n}(\bar{X}_n-\mu)}{S_n} \stackrel{d}{\to} \mathsf{N}(0,1)$ but $\frac{\sqrt{n}(\mu-\mu_0)}{S_n} \stackrel{p}{\to} +\infty$. Thus, when $\mu > \mu_0$, $T_n \stackrel{d}{\to} +\infty$. Thus, for $\mu > \mu_0$,

$$\mathbb{P}_{\mu,\sigma^2}(T_n \ge t_{n-1,\alpha}) \stackrel{n \to \infty}{\to} 1.$$

Therefor, under any alternative, the test has asymptotic power 1.

Example 2 (Testing variance). Suppose X_1, X_2, \ldots are i.i.d. with $\mathbb{E}[X_1] < \infty$, $\operatorname{Var}(X_1) = \sigma^2$ and $\mathbb{E}[(X_1 - \mu)^4] = \mu_4 < \infty$. Let $Y_i = (X_i - \mu)^2$ then $\mathbb{E}[Y_i] = \sigma^2$ and $\operatorname{Var}(Y_i) = \mathbb{E}[(X_i - \mu)^4] - \mathbb{E}[(X_i - \mu)^2]^2 = \mu_4 - \sigma^4$. Thus,

$$T_n = \frac{\sqrt{n}(\bar{Y}_n - \sigma^2)}{\sqrt{\mu_4 - \sigma^4}} \rightarrow \mathsf{N}(0, 1).$$

Example 3 (Pearson's chi-squared). Suppose X_1, \ldots, X_n are i.i.d. with distribution $\mathsf{Multinomial}_k(1, p)$. That is each X_i is a vector in $\{0, 1\}^k$ with exactly one entry equal to one and,

$$\mathbb{P}(X_{i,j}=1)=p_j,$$

for every j. Let $N = \sum_{i=1}^{n} X_i \sim \mathsf{Multinomial}_k(n,p)$ and let $\widehat{p} = \frac{N}{n}$. Let H_0 be the hypothesis $p = p_0$ and let H_1 be $p \neq p_0$. Pearson's chi-squared test statistic of H_0 against H_1 is,

$$Q_n = \sum_{i=1}^k \frac{(N_j - np_{0,j})^2}{np_{0,j}}.$$

We will show that under H_0 , $Q \stackrel{d}{\to} \chi^2_{k-1}$ as $n \to \infty$. It suffices to write $Q_n = W_n^T W_n$ where $W_n \stackrel{d}{\to} \mathsf{N}(0, I_{k-1})$. With this in mind, define,

$$Z_n = \begin{bmatrix} rac{N_1 - np_{0,1}}{\sqrt{np_{0,1}}} \\ \vdots \\ rac{N_k - np_{0,k}}{\sqrt{np_{0,k}}} \end{bmatrix} \in \mathbb{R}^k.$$

Note that $\mathbb{E}_{H_0}[Z] = 0$ and, for $i \neq j$,

$$Cov_{H_0}(Z_{n,i}Z_{n,j}) = \frac{1}{n\sqrt{p_{0,i}p_{0,j}}}Cov_{H_0}(N_{n,i}N_{n,j})$$
$$= \frac{1}{n\sqrt{p_{0,i}p_{0,j}}}np_{0,i}p_{0,j}$$
$$= \sqrt{p_{0,i}p_{0,j}}.$$

And

$$\operatorname{Var}_{H_0}(Z_{n,j}) = \frac{1}{np_{0,j}} \operatorname{Var}_{H_0}(N_{n,j}) = \frac{np_{0,j}(1 - p_{0,j})}{np_{0,j}} = 1 - p_{0,j}.$$

Thus, $\mathbb{E}[Z_n] = 0$ and $\operatorname{Var}(Z_n) = \Sigma$ where $\Sigma = I - \sqrt{p_0} \sqrt{p_0}^T$. Furthermore, by the multivariate CLT, $Z_n \stackrel{d}{\to} \mathsf{N}_K(0,\Sigma)$. Now let Γ be an orthogonal matrix with first row equal to $\sqrt{p_0}$. It follows that,

$$Z_n^T Z_n = (\Gamma Z_n)^T (\Gamma Z_n)$$
$$= V_n^T V_n.$$

By Slutsky's we have $V_n \stackrel{d}{\to} V \sim \Gamma \mathsf{N}_k(0, \Sigma) = \mathsf{N}_k(0, \Gamma^T \Sigma \Gamma)$. Furthermore,

$$\Gamma^{T} \Sigma \Gamma = \Gamma^{T} \Gamma - \Gamma^{T} \sqrt{p_{0}} \sqrt{p_{0}}^{T} \Gamma = I - e_{1} e_{1}^{T} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Thus $V^T V \sim \chi_{k-1}^2$ and $Q_n \stackrel{d}{\to} \chi_{k-1}^2$.

2 Delta method

The central limit theorem tells us that $\sqrt{n}(\bar{X}_n - \mu)$ converges in distribution to $N(0, \sigma^2)$. Often we aren't just interested in the mean. The *delta method* allows us to study the asymptotic distribution of functions of the mean.

Theorem 3 (Delta method 1). Suppose that X_1, X_2, \ldots are i.i.d. with mean μ and variance $\sigma^2 < \infty$. Suppose that f is differentiable at μ , then

$$\sqrt{n}(f(\bar{X}_n) - f(\mu)) \stackrel{d}{\to} \mathsf{N}(0, [f'(\mu)]^2 \sigma^2).$$

Proof. We can prove this result by combining Slutsky's theorem with a Taylor's approximation. We have

$$f(\bar{X}_n) = f(\mu) + f'(\mu)(\bar{X}_n - \mu) + o(\bar{X}_n - \mu).$$

By the central limit theorem $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} \mathsf{N}(0, \sigma^2)$ and so $o(\bar{X}_n - \mu) = o_p(\sqrt{n})$. Thus, rearranging the above we get,

$$\sqrt{n}(f(\bar{X}_n) - f(\mu)) = f'(\mu)\sqrt{n}(\bar{X}_n - \mu) + o_p(1).$$

Slutsky's theorem thus implies that $\sqrt{n}(f(\bar{X}_n) - f(\mu)) \stackrel{d}{\to} f'(\mu) \mathsf{N}(0,\sigma^2) = \mathsf{N}(0,[f'(\mu)]^2\sigma^2).$

The delta method can be generalized to situations other than that of the central limit theorem. There are also higher dimensional versions like the following.

Theorem 4 (Delta mathod 2 (higher dimensional)). Suppose that X_1, X_2, \ldots are random k-vectors such that,

$$a_n(X_n-c) \stackrel{d}{\to} Y.$$

If f is a real-valued function that is differentiable at c, then

$$a_n(f(X_n) - f(c)) \stackrel{d}{\to} \nabla f(c)^T Y.$$

The proof is via a Taylor's approximation like the previous version.

Example 4. Suppose X_1, X_2, \ldots are i.i.d. random vectors with $\mathbb{E}[X_1] = \theta \neq 0$ and $Cov(X_1) = \Sigma$. Define $\phi(h) = \frac{1}{2} \|h\|_2^2$. By the multivariate central limit theorem, $\sqrt{n}(\bar{X}_n - \theta) \stackrel{d}{\to} \mathsf{N}_k(0, \Sigma)$. Thus,

$$\sqrt{n}(\phi(\bar{X}_n) - \phi(\theta)) \stackrel{d}{\to} \theta^T \mathsf{N}(0, \Sigma) = \mathsf{N}(0, \theta^T \Sigma \theta),$$

since $\nabla h(\theta) = \theta$.

Example 5. Let $S_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}_n^2$. We know that $S_n^2 \stackrel{p}{\to} \sigma^2 = \text{Var}(X_1)$, but can we say something about the limiting distribution of S_n^2 ? Note that $S_n^2 = \phi(\bar{X}_n, \bar{X}^2_n)$ where $\phi(x, y) = y - x^2$. Note that $\nabla \phi(x, y) = (-2x, 1)^T$. Also, assume X_1 has a finite fourth moment,

$$\sqrt{n} \left(\begin{bmatrix} \bar{X}_n \\ \bar{X}^2 n \end{bmatrix} - \begin{bmatrix} \mu \\ \mu^2 + \sigma^2 \end{bmatrix} \right) \overset{d}{\to} \mathsf{N}_2(0, \Sigma).$$

Where

$$\Sigma = \begin{bmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X, X^2) \\ \operatorname{Cov}(X, X^2) & \operatorname{Var}(X^2) \end{bmatrix}$$

Note that $\nabla \phi(\mu, \mu^2 + \sigma^2) = (-2\mu, 1)^T$. Thus,

$$\nabla \phi(\mu, \mu^2 + \sigma^2)^T \Sigma \nabla \phi(\mu, \mu^2 + \sigma^2) = [-2\mu, 1] \begin{bmatrix} -2\mu\sigma^2 + \text{Cov}(X, X^2) \\ -2\mu \text{Cov}(X, X^2) + \text{Var}(X^2) \end{bmatrix}$$
$$= 4\mu^2\sigma^2 - 4\mu \text{Cov}(X, X^2) + \text{Var}(X^2)$$
$$=: \gamma.$$

By the delta-method $\sqrt{n}(S_n^2 - \sigma^2) \stackrel{d}{\to} \mathsf{N}(0, \gamma)$.

If the first derivate of our function is zero, then we can use the higher order delta method to get a better approximation.

Theorem 5 (Delta method 3 (higher order)). Suppose that X_n are random k-vectors such that

$$r_n(X_n - \theta) \stackrel{d}{\to} X,$$

where r_n is a deterministic function with $r_n \to +\infty$. Let ϕ be a real-valued function that is twice differentiable at θ with $\phi'(\theta) = 0$. Then,

$$r_n^2(\phi(X_n) - \phi(\theta)) \stackrel{d}{\to} \frac{1}{2} X^T \nabla^2 \phi(\theta) T.$$

Note that since $r_n \to +\infty$, $r_n^2 > r_n$ for sufficiently large n. Thus, the rate of convergence of $\phi(X_n)$ to $\phi(\theta)$ is faster. This is because we have to multiply by large numbers in order to have $\phi(X_n) - \phi(X)$ converge to a non-trivial distribution. We will prove the higher order delta method at the start of the next class.