✓ Congratulations! You passed! TO PASS 80% or higher Keep Learn	GRADE 100%
Linear Algebra TOTAL POINTS 5 1. Let two matrices be $A = \begin{bmatrix} 1 & -4 \\ -2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$ What is A + B?	1/1 point
2. Let $x=\begin{bmatrix} 5\\5\\2\\7 \end{bmatrix}$ What is $2*x$? $\begin{bmatrix} \begin{bmatrix} 5\\5\\2\\1\\1\\2 \end{bmatrix} \end{bmatrix}$ $\begin{bmatrix} [10&10&4&14] \\ \\ \begin{bmatrix} 5\\2\\2\\1 \end{bmatrix} \end{bmatrix}$ $\begin{bmatrix} \begin{bmatrix} 10&10&4&14 \end{bmatrix}$ $\begin{bmatrix} \begin{bmatrix} 5\\5\\2\\2\\1 \end{bmatrix} \end{bmatrix}$ $\begin{bmatrix} \begin{bmatrix} 10\\10\\4\\14 \end{bmatrix}$ Correct To multiply the vector x by 2, take each element of x and multiply that element by 2. 3. Let u be a 3-dimensional vector, where specifically $u=\begin{bmatrix} 2\\1\\8 \end{bmatrix}$ What is u^T ? $\begin{bmatrix} [8&1&2] \\ \\ \end{bmatrix}$ What is u^T ?	1/1 point
$\begin{bmatrix} 2 & 1 & 8 \\ 8 & 1 \\ 2 & 2 \end{bmatrix}$	1/1 point
 ✓ Correct 5. Let A and B be 3x3 (square) matrices. Which of the following must necessarily hold true? Check all that apply. ✓ If C = A * B, then C is a 3x3 matrix. ✓ Correct Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an m × n. matrix, and B a n × o matrix, then C would be m × o. (In our example, m = n = o = 3.) □ A * B * A = B * A * B ✓ If B is the 3x3 identity matrix, then A * B = B * A ✓ Correct Even though matrix multiplication is not commutative in general (A * B ≠ B * A for general matrices A, B), for the special case where B = I, we have A * B = A * I = A, and also B * A = I * A = A. So, A * B = B * A. 	