

BEACH POLY'BOT

LABAUVIE--RAFFAELLI Eva DENIS--MARTIN Hugo

SOMMAIRE -

1 INTRODUCTION

ROBOT TRACTEUR

DISPOSITIF DE COLLECTE

04

DEMONSTRATION

05

LES AMELIORATIONS

06

CONCLUSION

BEACH POLY'BOT

Robot tracteur

Dispositif de collecte

Schéma Fonctionnel

Partie Commande:

• Carte de commande Arduino

Partie Laser:

- Laser VL53LO
- Servomoteur SG90

Partie Positionnement:

GPS Ublox 7M

Partie Puissance:

- Carte de puissance cyt-132 (x2)
- Moteurs 919D (x4)

<u>Circuit Commande</u> <u>5V</u>

<u>Circuit Puissance</u> <u>12V</u>

DISPOSITIF DE COLLECTE

- Placée à l'arrière du robot
- Dans un premier temps pour collecter les déchets et les stocker
- Dans un second temps, pour les trier

ROUE DE COLLECTE

- Récolter le sable et les déchets s'y trouvant
- Les envoyer sur un convoyeur par le biais d'une pente

TAPIS DE TRANSPORT

- Récupère les déchets rejetés par la roue
- Dans un premier temps, pour envoyer les déchets dans un bac
- Dans un second temps, pour permettre de les trier

Résultats actuels :

- Scan avec peu de points
- Evitement opérationnel
- Gps en cours

Améliorations:

- Structure hermétique
- Moteurs adapté (couple)
- Autres schémas de déplacements
- Système de raccord avec le ramassage

DISPOSITIF DE COLLECTE

Résultats actuels :

- Forme générale et solution trouvées
- Encore à l'état de prototype
- Difficultés à mettre la carte en fonctionnement : manque de reconnaissance d'image

Améliorations:

- Refaire les pièces de façons optimales pour permettre une meilleure unité du dispositif
- Intégrer le système de tri
- Intégrer la reconnaissance d'image

REMERCIEMENTS

Nous remercions:

Pascal MASSON

Christian PETERS

Xavier LEBRETON

Sébastien ROTHUT

Axel FAUVEL

Frédéric JUAN

Pour leur aide durant la réalisation de notre projet tout au long de l'année.

MERCI POUR VOTRE ATTENTION

Code Main()

```
#include "Capteurdistance.hpp"
#include "Adafruit VL53L0X.h"
#include "Servo.h"
#include "Gps.hpp"
#include "TinyGPS++.h"
#include "SoftwareSerial.h"
#include "Mouvements.hpp"
Servo servoinf:
int PWDD = 5;
int DIRD = 12:
//Moteurs Gauche
int PWDG = 6:
int DIRG = 13:
int switchgps = 7;
Mouvements myt = Mouvements();
Capteurdistance cd = Capteurdistance();
Gps gps = Gps();
unsigned long startTime = 0;
int positionMin = 0;
const int DEPLACEMENT_SERVO = 100;
float Lat = 0;
float Lon = 0;
static const int RXPin = 2, TXPin = 3;
static const uint32 t GPSBaud = 9600:
// The serial connection to the GPS device
SoftwareSerial ss(RXPin, TXPin);
```

```
roid setup() {
 Serial.begin(9600):
 Serial.println(F("Setup Started"));
pinMode(PWDD, OUTPUT);
pinMode(DIRD, OUTPUT);
 pinMode(PWDG, OUTPUT);
pinMode(DIRG, OUTPUT);
 pinMode(switchgps, INPUT_PULLUP);
 delay(100):
 while (!Serial) { delay(1); } //This part does a test on th
 //Laser Captor VL53L0X Setup
 if (!cd.begin()) {
  Serial.println(F("Failed to boot Captor VL53L0X"));
  while (1)
 int distancelaser:
 Serial.println(F("Succeeded to boot Captor VL530X"));
 Serial.println(F("Setup Finished"));
```

```
void loop() {
 if (digitalRead(switchgps) == HIGH) {
  Lat = gps.latitude();
   Lon = gps.longitude();
   Serial.print("Latitude: ");Serial.println(Lat);
   Serial.print("Longitude: ");Serial.println(Lon);
 if (millis() - startTime > DEPLACEMENT SERVO) {
   cd.continuousScan(servoinf);
   cd.angleIncrement();
   int distancelaser = cd.getDist();
   if (distancelaser < 200) {
     Serial.println(F("Object in range")):
     mvt.avanceBackward(1000);
     positionMin = cd.getMin();
     if (positionMin <= 4) {
      mvt.avanceLeft(1000):
     else {
      mvt.avanceRight(1000):
     cd.setAngle(4);
```


Code Mouvements

```
#include "Mouvements.hpp"
Mouvements::Mouvements(){};
 By activating or not DIR, we can change the direction of rotation.
 void Mouvements::off() {
  analogWrite(PWDD, 0);
  digitalWrite(DIRD, HIGH);
  analogWrite(PWDG, 0);
  digitalWrite(DIRG, HIGH);
 void Mouvements::forward() {
  analogWrite(PWDD, 32);
  digitalWrite(DIRD, HIGH);
  analogWrite(PWDG, 32);
  digitalWrite(DIRG, LOW);
 void Mouvements::backward() {
 void Mouvements::left() {
 void Mouvements::right() { ·
 void Mouvements::avanceForward(int temps) {
void Mouvements::avanceBackward(int temps) { ··
 void Mouvements::avanceLeft(int temps) {
void Mouvements::avanceRight(int temps) { ···
```

```
#ifndef MOUVEMENTS.H
#define MOUVEMENTS.H
#include "Arquino.h"

/*

*/

class Mouvements {
    public:
    Mouvements();
    unsigned long InstantTime; //unsigned Long permet d'avoir des chiffre allant jusqu'à 2^32 - 1
    const int PNDD = 5;
    const int DIND = 12;
    const int DIND = 13;
    void off();
    void off();
    void forward();
    void forward();
    void left();
    void avanceBackward(int temps);
    void avanceBackward(int temps);
    void avanceRackward(int temps);
    void avanceRackward(int temps);
    void avanceRackward(int temps);
    void avanceRackward(int temps);
    void avanceCatchward(int temps);
    void avanceCatchward(int temps);
    void avanceCatchward(int temps);
}
#endif
```


Code Laser

```
int Capteurdistance::distance() {
   VL53L0X_RangingMeasurementData_t measure;
   rangingTest(&measure, false);
   return measure.RangeMilliMeter;
   Serial.println("Mesure distance");
   Serial.println(measure.RangeMilliMeter);
}
```

```
int Capteurdistance::scanSweep(Servo servoinf) {
    Serial.println(f("==> scanSweep"));
    int i = 0;
    min_v = 9080;
    min_i = 0;

for (int servoInfPosition = infAngleMin; servoInfPosition <= infAngleMax; servoInfPosition += infFas) {
        servoInf.write(servoInfPosition);
        delay(150);
        scanTableau(i) = distance();
        Serial.print(f("La valeur de i = "));
        Serial.print(f("La valeur de i = "));
        Serial.print(f("ca valeur de i = "));
        Serial.print(f("set : "));
        Serial.print(in(scanTableau(i));
        if (scanTableau(i) = min_v = scanTableau(i);
        min_v = scanTableau(i);
        min_i = i;
    }
    i**;
}

Serial.print("Ca valeur min est ");
    Serial.print("da valeur min est ");
    Serial.print("min_v);
    Serial.print("min_v);
    Serial.print(n(min_v);
    Serial.print(n(min_i);
    Serial.print(n(min_i);
    Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Serial.print(n(min_i);
        Seri
```

```
int Capteurdistance::continuousScan(Servo servoinf) {
 int k = 0:
 while (k <= anglePosition) {
   servoInfPosition = infAngleMin + k * infPas:
 servoinf.write(servoInfPosition);
 dist = distance();
 return (dist);
int Capteurdistance::angleIncrement() {
 if (sensScan == true) {
   anglePosition++;
   if (anglePosition >= lenghtScanTableau + 1) {
     sensScan = false;
     anglePosition--;
 else if (sensScan == false) {
   anglePosition=anglePosition - 1;
   if (anglePosition < 0) {
     sensScan = true:
     anglePosition++;
```

```
#define CAPTEURDISTANCE H
#include "Arduino.h"
#include "Adafruit VL53L0X.h"
#include "Servo.h"
class Capteurdistance : public Adafruit VL53L0X {
 Capteurdistance();
  int distance():
  int getAngle();
  void setAngle(int anale):
  int getDist();
  int getMin();
  int scanSweep(Servo servoinf);
  int continuousScan(Servo servoinf);
  int angleIncrement();
  int servoInfPosition = 0:
  int servoSupPosition = 0;
  int dist:
  static const int lenghtScanTableau = 9;
  int anglePosition = 0;
  int infAngleMin = 1;
  int infAngleMax = 129:
  int infPas = 16;
  int supAngleMin = 80;
  int supAngleMax = 120;
  int supPas = 10:
  int min v = 9000:
 int min i = 0;
 bool sensScan = true;
#endif
```


Code GPS

```
#include "Gps.hpp"
Gps::Gps() : ss(RXPin, TXPin) {}
 void Gps::loop() {
 printFloat(gps.location.lat(), gps.location.isValid(), 11, 6);
  printFloat(gps.location.lng(), gps.location.isValid(), 12, 6);
  Serial.println();
  smartDelay(1000);
  if (millis() > 5000 && gps.charsProcessed() < 10)
    Serial.println(F("No GPS data received: check wiring"));
 float Gps::latitude() {
  return gps.location.lat();
float Gps::longitude() {
  return gps.location.lng();
void Gps::smartDelay(unsigned long ms) {
  unsigned long start = millis();
  do {
    while (ss.available())
      gps.encode(ss.read());
  } while (millis() - start < ms);
void Gps::printFloat(float val, bool valid, int len, int prec) { ...
```

```
#ifndef GPS H
#define GPS H
#include "TinyGPS++.h"
#include "SoftwareSerial.h"
class Gps {
    Gps();
   void loop();
   float latitude();
    float longitude();
  private:
    static const int RXPin = 2, TXPin = 3;
   static const uint32_t GPSBaud = 9600;
   TinyGPSPlus gps;
   SoftwareSerial ss;
   void smartDelay(unsigned long ms);
   void printFloat(float val, bool valid, int len, int prec);
#endif
```