Übungsblatt für Dynamische Systeme

- 1. Finde die allgemeine Lösung der folgenden Differentialgleichungen:
 - (a) $y' = 2x(1+y^2)$;
 - (b) $(x^2 1)y' + 2xy^2 = 0$;
 - (c) $y' = e^{x+y}$;
 - (d) $y' = x^2 y^2$;
 - (e) $xy' = y^3 + y$;
 - (f) xy + (2x 1)y' = 0;
 - (g) $y' = y^2 \cos(x)$
 - (h) $y' = k \cdot \frac{y}{x}$, $k \in \mathbb{R}^*$;
 - (i) $y xy' = a(1 + x^2y'), a \in \mathbb{R}^*.$
- 2. Bestimme die allgemeine Lösung für die folgenden homogenen(Euler) DGL:
 - (a) $2x^2y' = x^2 + y^2$;
 - (b) $y' = -\frac{x+y}{y};$
 - (c) $xy' = \sqrt{x^2 y^2} + y$;
 - (d) $2x^3y' = y^3 + x^2y$.
- 3. Bestimme die Lösung der folgenden exakten DGL:
 - (a) xdx + ydy = 0;
 - (b) (x+y) dx + xdy = 0;
 - (c) $(6xy^2 + 1)dx + (3y^2 + 6x^2y)dy = 0;$
 - (d) $y(e^{xy} 4x) dx + x(e^{xy} 2x) dy = 0;$
 - (e) $\ln(y) dx + \left(\ln(y) + \frac{x}{y}\right) dy = 0.$
- 4. Bestimme die Lösung der folgenden liniaren DGL 1. Ordnung:
 - (a) $y' y \ ctg(x) = \sin(x)$;
 - (b) $y' + \frac{y}{x} = 3x;$
 - (c) $xy' + y = e^x$;
 - (d) $y' + y \cos(x) = \cos(x)$;
 - (e) $y' + 2xy = x + x^3$;
 - (f) $y' + ay = bx^2$, $a, b \in \mathbb{R}$;
 - (g) $x^3y' + 2y = x^3 + 2x$.

- 5. Bestimme die Lösung der folgenden Bernoulli'schen DGL:
 - (a) $y' \frac{4}{x}y = x\sqrt{y}$;
 - (b) $y' + \frac{1}{x}y = \frac{1}{x^2y^2}$;
 - (c) $xy' + y = y^2 \ln(x)$;
 - (d) $2x^2y' 4xy = y^2$;
 - (e) $y' 2xy = 2x^3y^2$.
- 6. Finde die allgemeine Lösung der DGL:
 - (a) $y'' = x \cos(x)$;
 - (b) $y'' = xe^x$;
 - (c) $y'' = e^{2x} + \sin(2x)$;
 - (d) $y''' = \ln(x)$;
 - (e) $y''' = \frac{1}{x+1}$;
 - (f) $y''' = -\frac{1}{x^2}$..
- 7. Finde die allgemeine Lösung der DGL:
 - (a) $(1+x^2)y'' = 2xy';$
 - (b) $xy''' 3y'' 4x^2 = 0;$
 - (c) $y^{(4)} + y''' = 0$;
 - (d) xy'' + y' + x = 0;
 - (e) $y'(1 + (y')^2) = ay'';$
 - (f) $xy^{(5)} + y^{(4)} = 0$.
- 8. Finde die Lösung der folgenden Cauchy-Probleme:
 - (a) $y' = 2x(1+y^2), y(0) = 1;$
 - (b) $y' = y^2 \cos(x), y(0) = \frac{1}{2};$
 - (c) $(x^2 3y^2) + 2xyy' = 0$, y(2) = 1;
 - (d) $y' y \ ctg(x) = \sin(x), \ y(\frac{\pi}{2}) = \pi;$
 - (e) $y' y \ tg(x) = \frac{1}{\cos(x)}, \ y(0) = 0;$
- 9. Bestimme die algemeine Lösung der folgenden DGL, so dass die entsprechenden Funktionen Lösungen der homogenen DGL sind:
 - (a) $x^2y'' 2xy' + 2y = 2x^3$, $y_1(x) = x$, $y_2(x) = x^2$;
 - (b) $(2x-1)y'' (4x^2+1)y' + (4x^2-2x+2)y = 4x^3 6x^2 + 2x 1, y_1(x) = e^x, y_2(x) = e^{x^2};$

- (c) (x-1)y'' xy' + y = 3, $y_1(x) = x$, $y_2(x) = e^x$;
- (d) $xy'' + 2y' xy = e^x$, $y_1(x) = \frac{e^x}{x}$, $y_2(x) = \frac{e^{-x}}{x}$;
- 10. Finde die allgemeine Lösung der DGL:
 - (a) y'' y = 0;
 - (b) y'' + 2y' + y = 0;
 - (c) y'' y' + y = 0;
 - (d) y''' y = 0:
 - (e) y''' + 2y'' 5y' 6y = 0;
 - (f) $y^{(4)} + 4y''' + 5y'' + 4y' + 4y = 0$.
- 11. Bestimme die allgemeine Lösung der DGL, wobei die partikuläre Lösung mit der Methode "Variation der Konstaten" berechnet wird:
 - (a) y'' + y = tg(x);
 - (b) $y'' + y = \frac{1}{\sin(x)}$
 - (c) $y'' y = \frac{2e^x}{e^x 1}$;
 - (d) $y'' + 2y' + y = \frac{e^{-x}}{x^2 + 1}$
 - (e) $y'' 6y' + 9y = \frac{9x^2 + 6x + 2}{x^3}$.
- 12. Finde die allgemeine Lösung der DGL:
 - (a) $y'' 2y' + 5y = 5x^2 4x + 2$;
 - (b) $y'' + 3y' + 2y = e^x$;
 - (c) $y'' + y = xe^{-x}$;
 - (d) $y'' + y' 2y = 8\sin 2x$;
 - (e) $y''' 4y' = xe^{2x} + \sin(x) + x^2$
 - (f) $y''' + y'' = x + 1 + (2x + 5) e^x$;
 - (g) $y^{(4)} + 5y'' + 4y = \sin(x) + 10e^x$;
- 13. Bestimme die Lösungen der Cauchy-Probleme:
 - (a) $y'' + y = x^3 1$, y(0) = 0, y'(0) = -5;
 - (b) y'' 6y' + 9y = 9x 6, y(0) = 1, y'(0) = 3;
 - (c) $y'' + 4y = 5e^{-x}$, y(0) = 1, y'(0) = 3;
 - (d) y''' y' = -2x, y(0) = 0, y'(0) = 1, y''(0) = 2;
 - (e) y''' + 2y'' + 2y' + y = x, y(0) = y'(0) = y''(0) = 0.

14. Bestimme die Lösungen der folgenden Randwertprobleme:

(a)
$$y'' + y = x^3$$
, $y(0) = 1$, $y(\frac{\pi}{2}) = 0$;

(b)
$$y'' + \pi^2 y = 0$$
, $y(0) = 1$, $y(\frac{1}{2}) = 1$;

(c)
$$y'' + 4y = 5e^{-x}$$
, $y(0) = 1$, $y(\frac{\pi}{4}) = 1 + e^{-\frac{\pi}{4}}$;

(d)
$$y'' - 6y' + 10y = 10x + 4$$
, $y(0) = 0$, $y(\frac{\pi}{2}) = \frac{\pi}{2} + 1$;

(e)
$$y'' + y' = 1$$
, $y(0) = 0$, $y(1) = 1$;

(f)
$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$
, $y(0) = 2\ln(2) + 2$, $y(1) = \frac{e + 1}{e^2} (\ln(e + 1) + 1)$;

Hinweis: Die letzte Übung wird mit der selben Methode gelöst wie die DGL 2. Ordnung mit konstanten Koeffizienten. Aufpassen bei den Bedingungen!