

#6

SEQUENCE LISTING

<110> Ulrich, Robert G.
<120> Bacterial Superantigen Vaccines
<130> 003/233/SAP
<140> 10/002,784
<141> 2001-11-26
<150> 08/882,431; 09/144,776
<151> 97-06-25; 98-09-01
<160> 40
<170> Apple Macintosh Microsoft Word 6.0
<210> 1
<211> 830
<212> DNA
<213> Artificial sequence
<220>
<223> mutant staphylococcal enterotoxin A periplasmic
<400> 1

atgaaaaaaaaa cagcatttac attactttta ttcatggcc 40
taacgttgac aacaagtcca ctgttaaat gtgcgagaa 80
aaggcaagaa ataaatgaaa aagatttgcg aaaaaagtct 120
gaattgcagg gaacagctt aggcaatctt aaacaatct 160
attatttacaa tgaaaaagct aaaactgaaa ataaagagag 200
tcacgatcaa ttccgcacgc atactatattt gtttaaggc 240
ttttttacag atcattcggt gtataacgtt tttatgtac 280
gtttttgattt aaaggatattt gttgtataat ataaaggaa 320
aaaatgttagac ttgtatgtgtt cttatgttgg ttatcaatgt 360
gcgggtgtt cacccaaacaa aacagcttgc atgtatgtgt 400
gtgtacacgtt acatgataat aatcgatgtt ccgaagagaa 440
aaaatgtccg atcaatttat ggcttagacgg taaacaaaat 480
acagtacctt tgaaacgggt taaaacaaat aaaaaatgt 520
taactgttca ggagtgtgtt cttaacgca gacgttattt 560
acagaaaaaa tataatttat ataaactctga tgttttgtat 600
ggaaaggttc agaggggattt aatcgtgtt cataacttcta 640

cagaaccttc	ggtaattac	gatttatttg	gtgctcaagg	680
acagtattca	aatacactat	taagaatata	tagagataat	720
aaaacgatta	actctgaaaa	catgcattt	gatataattt	760
tatataacaag	ttaaacatgg	tagtttgac	caacgtaatg	800
ttcagattat	tatgaaccga	taataatcta		830

<210> 2

<211> 257

<212> PRT

<213> Artificial sequence

<220>

<223> mutant staphylococcal enterotoxin A periplasmic

<400> 2

Met Lys Lys Thr Ala Phe Thr Leu Leu Leu	
1 5 10	
Phe Ile Ala Leu Thr Leu Thr Thr Ser Pro	
15 15 20	
Leu Val Asn Gly Ser Glu Lys Ser Glu Glu	
25 25 30	
Ile Asn Glu Lys Asp Leu Arg Lys Lys Ser	
35 35 40	
Glu Leu Gln Gly Thr Ala Leu Gly Asn Leu	
45 45 50	
Lys Gln Ile Tyr Tyr Tyr Asn Glu Lys Ala	
55 55 60	
Lys Thr Glu Asn Lys Glu Ser His Asp Gln	
65 65 70	
Phe Arg Gln His Thr Ile Leu Phe Lys Gly	
75 75 80	
Phe Phe Thr Asp His Ser Trp Tyr Asn Asp	
85 85 90	
Leu Leu Val Arg Phe Asp Ser Lys Asp Ile	
95 95 100	
Val Asp Lys Tyr Lys Gly Lys Lys Val Asp	
105 105 110	
Leu Tyr Gly Ala Tyr Ala Gly Tyr Gln Cys	
115 115 120	
Ala Gly Gly Thr Pro Asn Lys Thr Ala Cys	
125 125 130	
Met Tyr Gly Gly Val Thr Leu His Asp Asn	
135 135 140	
Asn Arg Leu Thr Glu Glu Lys Lys Val Pro	
145 145 150	
Ile Asn Leu Trp Leu Asp Gly Lys Gln Asn	
155 155 160	
Thr Val Pro Leu Glu Thr Val Lys Thr Asn	

	165	170
Lys Lys Asn Val	Thr Val Gln Glu Leu Asp	
	175	180
Leu Gln Ala Arg	Arg Tyr Leu Gln Glu Lys	
	185	190
Tyr Asn Leu Tyr	Asn Ser Asp Val Phe Asp	
	195	200
Gly Lys Val Gln	Arg Gly Leu Ile Val Phe	
	205	210
His Thr Ser Thr	Glu Pro Ser Val Asn Tyr	
	215	220
Asp Leu Phe Gly	Ala Gln Gly Gln Tyr Ser	
	225	230
Asn Thr Leu leu	Arg Ile Tyr Arg Asp Asn	
	235	240
Lys Thr Ile Asn	Ser Glu Asn Met His Ile	
	245	250
Asp Ile Tyr Leu	Tyr Thr Ser	
	255	

<210> 3

<211> 757

<212> DNA

<213> Artificial sequence

<220>

<223> mutant staphylococcal enterotoxin A cytoplasmic

<400> 3

atgagaaaaag cgaagaaaata aatgaaaaag atttgcgaaa	40
aaagtctgaa ttgcaggaa cagctttagg caatctaaa	80
caaatttatt attacaatga aaaagctaaa actgaaaaata	120
aagagagtca cgatcaattt cgacagcata ctatattgtt	160
taaaggcttt ttacagatc attctggta taacgattta	200
ttagtacgtt ttgattcaaa ggatattgtt gataaaata	240
aaggaaaaaa agtagacttg tatggtgctt atgctggta	280
tcaatgtcgcc ggtgttacac caaacaaaac agcttgtatg	320
tatggtggtaa tAACGTTACA tgataataat cgattgaccg	360
aagaaaaaaa agtgccgatc aatttatggc tagacggtaa	400
acaaaatataca gtacctttgg aaacggttaa aacgaataag	440
aaaaaatgtaa ctgttcagga gttggatctt caagcaagac	480
gttatttaca gggaaaaatata aattttatata actctgtatgt	520
ttttgatggg aagggttcaga ggggatataat cgtgtttcat	560
acttctacag aaccttcgggt taattacgat ttatggtg	600
ctcaaggaca gtattcaaat acacttataa gaatataatag	640
agataataaa acgattaact ctgaaaacat gcatattgtat	680
atataatttat atacaagttta aacatggtag ttttgaccaa	720
cgtaatgttc agattttat gaaccggagaa taatcta	757

<210> 4

<211> 233

<212> PRT

<213> artificial sequence

<220>

<223> mutant staphylococcal enterotoxin A cytoplasmic

<400> 4

Met	Glu	Lys	Ser	Glu	Glu	Ile	Asn	Glu	Lys
				5					10
Asp	Leu	Arg	Lys	Lys	Ser	Glu	Leu	Gln	Gly
				15					20
Thr	Ala	Leu	Gly	Asn	Leu	Lys	Gln	Ile	Tyr
				25					30
Tyr	Tyr	Asn	Glu	Lys	Ala	Lys	Thr	Glu	Asn
				35					40
Lys	Glu	Ser	His	Asp	Gln	Phe	Arg	Gln	His
				45					50
Thr	Ile	Leu	Phe	Lys	Gly	Phe	Phe	Thr	Asp
				55					60
His	Ser	Trp	Tyr	Asn	Asp	Leu	Leu	Val	Arg
				65					70
Phe	Asp	Ser	Lys	Asp	Ile	Val	Asp	Lys	Tyr
				75					80
Lys	Gly	Lys	Lys	Val	Asp	Leu	Tyr	Gly	Ala
				85					90
Tyr	Ala	Gly	Tyr	Gln	Cys	Ala	Gly	Gly	Thr
				95					100
Pro	Asn	Lys	Thr	Ala	Cys	Met	Tyr	Gly	Gly
				105					110
Val	Thr	Leu	His	Asp	Asn	Asn	Arg	Leu	Thr
				115					120
Glu	Glu	Lys	Lys	Val	Pro	Ile	Asn	Leu	Trp
				125					130
Leu	Asp	Gly	Lys	Gln	Asn	Thr	Val	Pro	Leu
				135					140
Glu	Thr	Val	Lys	Thr	Asn	Lys	Lys	Asn	Val
				145					150
Thr	Val	Gln	Glu	Leu	Asp	Leu	Gln	Ala	Arg
				155					160
Arg	Tyr	Leu	Gln	Glu	Lys	Tyr	Asn	Leu	Tyr
				165					170
Asn	Ser	Asp	Val	Phe	Asp	Gly	Lys	Val	Gln
				175					180
Arg	Gly	Leu	Ile	Val	Phe	His	Thr	Ser	Thr
				185					190
Glu	Pro	Ser	Val	Asn	Tyr	Asp	Leu	Phe	Gly
				195					200

Ala Gln Gly Gln Tyr Ser Asn Thr Leu Leu
 205 210
 Arg Ile Tyr Arg Asp Asn Lys Thr Ile Asn
 215 220
 Ser Glu Asn Met His Ile Asp Ile Tyr Leu
 225 230
 Tyr Thr Ser

<210> 5

<211> 1712

<212> DNA

<213> Artificial sequence

<220>

<223> mutant staphylococcal enterotoxin B

<400> 5

gaactaggta	aaaaataat	tatgagaaaa	cactatgttg	40
ttaaagatgt	tttcgtatat	aagttaggt	gatgtatagt	80
tacttaattt	taaaagcata	acttaatttt	tataaataac	120
atgaggattat	taaatatataat	taagttctt	ttaatgttt	160
tttaattgaa	tatataagat	tataacatat	attnaaagtg	200
tatctagata	cttttggga	atgttgata	aaggagataa	240
aaaatgtata	agagattatt	tatccacat	gtatTTGA	280
tattcgact	gatatttagtt	atttctcacac	ccaacgtttt	320
agcagagagt	caaccagatc	ctaaaccaga	tgagttgcac	360
aaatcgagta	aattcactgg	tttgatggaa	gatatgaaag	400
ttttgtatga	tgataactat	gtatcagcaa	taaacgttaa	440
atctatagat	caatttctat	actttgactt	aatatattct	480
attaaggaca	ctaaggtagg	ggattatgtat	aatgttcgag	520
tcgaatttaa	aaacaaagat	ttagctgata	aatacaaaga	560
taaatacgta	gatgtgttt	gagctaatta	ttatttatcaa	600
tgttattttt	ctaaaaaaaaac	gaatgtatatt	aattcgcac	640
aaactgacaa	acgaaaaact	tgtatgtatg	gtgggttaac	680
tgacataat	ggaaaccaat	tagataaata	tagaagtatt	720
actgttcggg	tatttgaaga	tggtaaaaat	ttatttatctt	760
ttgacgtaca	aactataaag	aaaaagggtga	ctgctcaaga	800
attagattac	ctaaactcgtc	actattttgt	aaaaataaaa	840
aaactctatg	aatttaacaa	ctcgccctat	gaaacgggat	880
atattaaatt	tatagaaaaat	gagaatagct	tttggtatga	920
catgatgcct	gcaccaggag	ataaatttgc	ccaatctaaa	960
tatthaatga	tgtacaatga	caataaaaatg	gttgattcta	1000
aagatgtgaa	gattgaagtt	tatcttacga	caaagaaaaaa	1040
gtggaaattat	attttagaaa	agtaataatg	aagagttagt	1080
aattaaggca	ggcacttata	gagtacctgc	cttttctaatt	1120
attatTTAGT	tatagttatt	tttggtatata	ctctctgatt	1160
tagcattaac	cccttggatc	cattatagtt	ttcaccaact	1200
tttagctgaaa	ttggggatc	atTTTATCT	ttactatgga	1240

tagttactgt	gtcgccgttt	ttaacgattt	gtttctctt	1280
taatttgcata	gttaattttt	tccatgcata	atttgcgtca	1320
aacctatttc	catttgattt	tattcttgac	aatcaattc	1360
tttaaactact	atccgttata	atccgttgt	tataaaattt	1400
actaaatcca	tctaaatccag	ctgtacccgt	aataactactt	1440
tcggcaccat	tattnaaattt	gtacgttaca	ccaaactgtct	1480
catttgcgtt	tttatcgata	atatttgctt	ctttcaaagc	1520
atcttacata	ttttccata	agttcttata	tgttatttca	1560
gaagccttg	caacgttattt	aataccatta	taatttgaat	1600
aagaatgaaa	acctgaacct	actgttgtt	aaactaaagc	1640
acttgctatc	aatgttcttg	ttaatagttt	tttatttcatt	1680
ttatttctc	ctataactta	tttgcataatcg	at	1712

<210> 6

<211> 266

<212> PRT

<213> Artificial sequence

<220>

<223> mutant staphylococcal enterotoxin B

<400> 6

Met	Tyr	Lys	Arg	Leu	Phe	Ile	Ser	His	Val	
					5					10
Ile	Leu	Ile	Phe	Ala	Leu	Ile	Leu	Val	Ile	
					15					20
Ser	Thr	Pro	Asn	Val	Leu	Ala	Glu	Ser	Gln	
					25					30
Pro	Asp	Pro	Lys	Pro	Asp	Glu	Leu	His	Lys	
					35					40
Ser	Ser	Lys	Phe	Thr	Gly	Leu	Met	Glu	Asp	
					45					50
Met	Lys	Val	Leu	Tyr	Asp	Asp	Asn	His	Val	
					55					60
Ser	Ala	Ile	Asn	Val	Lys	Ser	Ile	Asp	Gln	
					65					70
Phe	Leu	Tyr	Phe	Asp	Leu	Ile	Tyr	Ser	Ile	
					75					80
Lys	Asp	Thr	Lys	Leu	Gly	Asp	Tyr	Asp	Asn	
					85					90
Val	Arg	Val	Glu	Phe	Lys	Asn	Lys	Asp	Leu	
					95					100
Ala	Asp	Lys	Tyr	Lys	Asp	Lys	Tyr	Val	Asp	
					105					110
Val	Phe	Gly	Ala	Asn	Tyr	Tyr	Tyr	Gln	Cys	
					115					120
Tyr	Phe	Ser	Lys	Lys	Thr	Asn	Asp	Ile	Asn	
					125					130
Ser	His	Gln	Thr	Asp	Lys	Arg	Lys	Thr	Cys	

	135		140
Met Tyr Gly Gly	Val	Thr Glu His Asn	Gly
	145		150
Asn Gln Leu Asp	Lys	Tyr Arg Ser Ile	Thr
	155		160
Val Arg Val Phe	Glu	Asp Gly Lys Asn	Leu
	165		170
Leu Ser Phe Asp	Val	Gln Thr Asn Lys	Lys
	175		180
Lys Val Thr Ala	Gln	Glu Leu Asp Tyr	Leu
	185		190
Thr Arg His Tyr	Leu	Val Lys Asn Lys	Lys
	195		200
Leu Tyr Glu Phe	Asn	Asn Ser Pro Tyr	Glu
	205		210
Thr Gly Tyr Ile	Lys	Phe Ile Glu Asn	Glu
	215		220
Asn Ser Phe Trp	Tyr	Asp Met Met Pro	Ala
	225		230
Pro Gly Asp Lys	Phe	Ala Gln Ser Lys	Tyr
	235		240
Leu Met Met Tyr	Asn	Asp Asn Lys Met	Val
	245		250
Asp Ser Lys Asp	Val	Lys Ile Glu Val	Tyr
	255		260
Leu Thr Thr Lys	Lys	Lys	
	265		

<210> 7

<211> 1712

<212> DNA

<213> Artificial sequence

<220>

<223> mutant staphylococcal enterotoxin B periplasmic

<400> 7

gaacttagta	aaaaataat	tatgagaaaa	cactatgtt	40
ttaaaggatgt	tttcgtatat	aagttaggt	gtgtatagt	80
tacccaattt	taaaagcata	acttaattaa	tataaataac	120
atgagattat	taaatataat	taagttctt	ttaatgttt	160
ttaatttgaa	tatthaagat	tataacatata	atttaaagtg	200
tatcttagata	cttttggga	atgttggata	aaggagataa	240
aaaatgtata	agagattatt	tatbtcacat	gtaattttga	280
tatccgcact	gatatttagtt	atttctcacac	ccaacgttt	320
agcagagagt	caaccagatc	ctaaaccaga	tgagttgcac	360
aaatcgagta	aattcactgg	tttgatggaa	aatatgaaag	400
ttttgttatga	tgataatcat	gtatcagcaa	taaacgttaa	440
atctatagat	caatttcgat	actttgactt	aatatattct	480

attaaggaca	ctaagttagg	gaattatgat	aatgttcgag	520
tgcgaatttaa	aaacaaaat	ttagctgata	aatacaaaga	560
taaatacgta	gatgtgttt	gagctaatgc	ttattatcaa	600
tgtgttttt	ctaaaaaaac	gaatgatatt	aattcgcac	640
aaactgacaa	acgaaaaaact	tgtatgtatg	gtgggtgtaac	680
tgagcataat	gaaaaccaat	tagataaata	tagaagtatt	720
actgttcggg	tatttgaaga	tggtaaaaat	tttattatctt	760
ttgacgtaca	aactataaag	aaaaagggtga	ctgctcaaga	800
attagattac	ctaactcg	actatttgg	aaaaaaataaa	840
aaactctatg	aatttaacaa	ctcgcc	cttgcggat	880
atattaaatt	tatagaaaat	gagaatagct	tttggatgta	920
catatgcct	gcaccaggag	ataaatttga	ccaatctaa	960
tatttaatga	tgatcaatga	caataaaatg	tttgattcta	1000
aagatgtgaa	gattgaagt	tatcttacga	caaagaaaaa	1040
gtgaaattat	attttagaaa	agtaaatatg	aagagttagt	1080
aattaaggca	ggcacttata	gagtacctgc	ctttcttaat	1120
attatttagt	tatagttatt	tttggtat	ctctctgatt	1160
tagatttaac	cccttgttgc	cattatagtt	ttcacaact	1200
tttagctgaaa	ttgggggatc	attttatct	ttactatgta	1240
tagtactgt	gtccgcgtt	ttaacgattt	gtttctctt	1280
taatttgtca	gtttaatttt	tccatgcac	atttgcgtca	1320
aacctatttc	catttggatt	tattttgac	aaatcaatc	1360
ttttaacact	atcggtatt	atcgggtt	tattaaaatt	1400
actaagttca	tctaaatcag	ctgtaccgt	aataactactt	1440
tcgccaccat	tatttaaatt	gtacgtacca	ccaaactgtct	1480
catttgtgt	tttatcgata	atatttgctt	ctttcaaa	1520
atctcttaca	ttttccata	agtcttata	tgttatttca	1560
gaagcctttg	caacgttatt	aataccatta	taatttgaat	1600
aagaatgaaa	acctgaacct	actgttta	aaactaaagc	1640
acttgctatc	aatgttctt	ttaatagttt	tttatttatt	1680
ttatttctc	ctataactta	tttgcaatcg	at	1712

<210> 8

<211> 266

<212> PRT

<213> Artificial sequence

<220>

<223> mutant staphylococcal enterotoxin B periplasmic

<400> 8

Met	Tyr	Lys	Arg	Leu	Phe	Ile	Ser	His	Val	
					5					10
Ile	Leu	Ile	Phe	Ala	Leu	Ile	Leu	Val	Ile	
					15					20
Ser	Thr	Pro	Asn	Val	Leu	Ala	Glu	Ser	Gln	
					25					30
Pro	Asp	Pro	Lys	Pro	Asp	Glu	Leu	His	Lys	
					35					40

Ser	Ser	Lys	Phe	Thr	Gly	Leu	Met	Glu	Asn	
				45						50
Met	Lys	Val	Leu	Tyr	Asp	Asp	Asn	His	Val	
				55						60
Ser	Ala	Ile	Asn	Val	Lys	Ser	Ile	Asp	Gln	
				65						70
Phe	Arg	Tyr	Phe	Asp	Leu	Ile	Tyr	Ser	Ile	
				75						80
Lys	Asp	Thr	Lys	Leu	Gly	Asn	Tyr	Asp	Asn	
				85						90
Val	Arg	Val	Glu	Phe	Lys	Asn	Lys	Asp	Leu	
				95						100
Ala	Asp	Lys	Tyr	Lys	Asp	Lys	Tyr	Val	Asp	
				105						110
Val	Phe	Gly	Ala	Asn	Ala	Tyr	Tyr	Gln	Cys	
				115						120
Ala	Phe	Ser	Lys	Lys	Thr	Asn	Asp	Ile	Asn	
				125						130
Ser	His	Gln	Thr	Asp	Lys	Arg	Lys	Thr	Cys	
				135						140
Met	Tyr	Gly	Gly	Val	Thr	Glu	His	Asn	Gly	
				145						150
Asn	Gln	Leu	Asp	Lys	Tyr	Arg	Ser	Ile	Thr	
				155						160
Val	Arg	Val	Phe	Glu	Asp	Gly	Lys	Asn	Leu	
				165						170
Leu	Ser	Phe	Asp	Val	Gln	Tyr	Asn	Lys	Lys	
				175						180
Lys	Val	Thr	Ala	Gln	Glu	Leu	Asp	Tyr	Leu	
				185						190
Thr	Arg	His	Tyr	Leu	Val	Lys	Asn	Lys	Lys	
				195						200
Leu	Tyr	Glu	Phe	Asn	Asn	Ser	Pro	Tyr	Glu	
				205						210
Thr	Gly	Tyr	Ile	Lys	Phe	Ile	Glu	Asn	Glu	
				215						220
Asn	Ser	Phe	Trp	Tyr	Asp	Met	Met	Pro	Ala	
				225						230
Pro	Gly	Asp	Lys	Phe	Asp	Gln	Ser	Lys	Tyr	
				235						240
Leu	Met	Met	Tyr	Asn	Asp	Asn	Lys	Met	Val	
				245						250
Asp	Ser	Lys	Asp	Val	Lys	Ile	Glu	Val	Tyr	
				255						260
Leu	Thr	Thr	Lys	Lys	Lys					
				265						

<210> 9

<211> 1388

<212> DNA

10/33

<213> Artificial sequence

<220>

<223> mutant staphylococcal enterotoxin B cytoplasmic

<400> 9

atgagtcaac cagatcctaa accagatgag ttgcacaat	40
cgagtaaatt cactggttt atggaaaata tgaaagttt	80
gtatgatgat aatcatgtat cagcaataaa cgtaaaatct	120
atagatcaat ttcgatactt tgacttaatg tattctatta	160
aggacactaa gtttagggat tatgataatg ttcgagtca	200
attaaaaaac aaagatttag ctgataaataa caaagataaa	240
tacgtatgtg tggggggc taatgcttat tatcaatgtg	280
ctttttctaa aaaaacgaat gatattaatt cgcatcaaac	320
tgacaaacgaaa aaaaacttgta tttatgttgg tgtaactgag	360
cataatggaa accaattaga taaatataga agtattactg	400
ttccgggtatt tgaagatggg aaaaatttat tatcttttga	440
cgtacacaaact aataagaaaa aggtgactgc tcaagaattha	480
gattacctaactt ctcgtcacta ttgggtgaaa aataaaaaac	520
tctatgatattt taacaactcg ccttatgaaa cgggatata	560
taaatttata gaaaatgaga atagctttt gtatgacatg	600
atgcctgcac caggagataa atttgaccat tctaaatattt	640
taatgatgtatcaatgacaat aaaatggttt attctaaaga	680
tgtgtgtgtt gaaatggattt ttacgacaaa gaaaaatgtgaa	720
aattatattttt tagaaaaatgtatcaatgacatg gtttagtattt	760
aaggcaggca ctatagatg acctgcctt tctaatat	800
tttagttata ttatattttt ttatatctctt ctgatttttt	840
attaacccctt tggtgcatt atagttttca ccaacttttt	880
ctggaaatggggatcattt ttatctttat tatggatagt	920
tactgtgtcg ccgtttttaa cgattttttt ctcttttaat	960
ttgtcagttttaa attttttcca tgcatttttgcgtcaaaacc	1000
tatttccattt tggttttttattt ctgtacaaaat caattttttt	1040
aacactatcg gtatataatcg gcttggtttattt aaaaattacta	1080
agtctatcta aatcagctgt acccgtaataa ctactttcg	1120
caccattttttaaaattgtac gtaacaccaa ctgtcttattt	1160
tgctgttttaa tcgtatataat ttgtttttttt caaaggatct	1200
cttacattttt tccataagtc tctatctgtt atttcagaag	1240
cctttgcacac gttatataat ccattataat ttgaagaaga	1280
atgaaaacactt gaaacctactg ttgtttaaaac taaagcactt	1320
gctatcaatgtt ttcttgcattttaa tagttttttttaat ttcat	1360
tttccctat aacttatttttgcatcgtat	1388

<210> 10

<211> 239

<212> PRT

<213> Artificial sequence

<220>

<223> mutant staphylococcal enterotoxin B cytoplasmic

<400> 10

Met	Ser	Gln	Pro	Asp	Pro	Lys	Pro	Asp	Glu
				5					10
Leu	His	Lys	Ser	Ser	Lys	Phe	Thr	Gly	Leu
				15					20
Met	Glu	Asn	Met	Lys	Val	Leu	Tyr	Asp	Asp
				25					30
Asn	His	Val	Ser	Ala	Ile	Asn	Val	Lys	Ser
				35					40
Ile	Asp	Gln	Phe	Arg	Tyr	Phe	Asp	Leu	Ile
				45					50
Tyr	Ser	Ile	Lys	Asp	Thr	Lys	Leu	Gly	Asn
				55					60
Tyr	Asp	Asn	Val	Arg	Val	Glu	Phe	Lys	Asn
				65					70
Lys	Asp	Leu	Ala	Asp	Lys	Tyr	Lys	Asp	Lys
				75					80
Tyr	Val	Asp	Val	Phe	Gly	Ala	Asn	Ala	Tyr
				85					90
Tyr	Gln	Cys	Ala	Phe	Ser	Lys	Lys	Thr	Asn
				95					100
Asp	Ile	Asn	Ser	His	Gln	Thr	Asp	Lys	Arg
				105					110
Lys	Thr	Cys	Met	Tyr	Gly	Gly	Val	Thr	Glu
				115					120
His	Asn	Gly	Asn	Gln	Leu	Asp	Lys	Tyr	Arg
				125					130
Ser	Ile	Thr	Val	Arg	Val	Phe	Glu	Asp	Gly
				135					140
Lys	Asn	Leu	Leu	Ser	Phe	Asp	Val	Gln	Thr
				145					150
Asn	Lys	Lys	Lys	Val	Thr	Ala	Gln	Glu	Leu
				155					160
Asp	Tyr	Leu	Thr	Arg	His	Tyr	Leu	Val	Lys
				165					170
Asn	Lys	Lys	Leu	Tyr	Glu	Phe	Asn	Asn	Ser
				175					180
Pro	Tyr	Glu	Thr	Gly	Tyr	Ile	Lys	Phe	Ile
				185					190
Glu	Asn	Glu	Asn	Ser	Phe	Trp	Tyr	Asp	Met
				195					200
Met	Pro	Ala	Pro	Gly	Asp	Lys	Phe	Asp	Gln
				205					210
Ser	Lys	Tyr	Leu	Met	Met	Tyr	Asn	Asp	Asn
				215					220
Lys	Met	Val	Asp	Ser	Lys	Asp	Val	Lys	Ile
				225					230
Glu	Val	Tyr	Leu	Thr	Thr	Lys	Lys	Lys	
				235					

<210> 11

<211> 731

<212> DNA

<213> Artificial sequence

<220>

<223> toxin shock syndrome toxin-1 mutant

<400> 11

taaggagaat	taaaaatgaa	taaaaaattta	ctaatgaatt	40
tttttatcgt	aagccctttg	ttgcttgcga	caactgctac	80
agattttacc	cctgttccct	tatcatctaa	tcaaataatc	120
aaaactgcaa	aagcatctac	aaacgataat	ataaaggatt	160
tgcttagactg	gtatagtagt	gggtctgaca	cttttacaaa	200
tagtgaagtt	tttagataatt	ccagaggatc	tatgcgtata	240
aaaaacacag	atggcagcat	cagcttgata	attttccga	280
gtccttatta	tagccctgct	tttacaaaag	ggggaaaaagt	320
tgacttaaac	acaaaaagaa	ctaaaaaaaa	ccaacatact	360
agcgaaggaa	cttataatcca	tttccaaata	agtggcgta	400
caaatactga	aaaattacct	actccaaatag	aactacctt	440
aaaagttaag	gttcatggta	aagatagccc	cttaaagtat	480
gggc当地	tcgat当地	acaatagct	atatcaactt	520
tagactttga	aattcgtcat	cagctaactc	aaatacatgg	560
attatatcgt	tcaagcgata	aaacgggtgg	ttattggaaa	600
ataacaatga	atgacggatc	cacatatcaa	agtgatttat	640
ctaaaaagtt	tgaatacaat	actgaaaaac	cacctataaa	680
tattgatgaa	ataaaaacta	tagaagcaga	aattaattaa	720
tttaccactt	t			731

<210> 12

<211> 234

<212> PRT

<213> Artificial sequence

<220>

<223> toxin shock syndrom toxin-1 mutant

<400> 12

Met	Asn	Lys	Lys	Leu	Leu	Met	Asn	Phe	Phe
				5				10	
Ile	Val	Ser	Pro	Leu	Leu	Leu	Ala	Thr	Thr
				15				20	

Ala Thr Asp Phe Thr Pro Val Pro Leu Ser
25 30
Ser Asn Gln Ile Ile Lys Thr Ala Lys Ala
35 40
Ser Thr Asn Asp Asn Ile Lys Asp Leu Leu
45 50
Asp Trp Tyr Ser Ser Gly Ser Asp Thr Phe
55 60
Thr Asn Ser Glu Val Leu Asp Asn Ser Arg
65 70
Gly Ser Met Arg Ile Lys Asn Thr Asp Gly
75 80
Ser Ile Ser Leu Ile Ile Phe Pro Ser Pro
85 90
Tyr Tyr Ser Pro Ala Phe Thr Lys Gly Glu
95 100
Lys Val Asp Leu Asn Thr Lys Arg Thr Lys
105 110
Lys Ser Gln His Thr Ser Glu Gly Thr Tyr
115 120
Ile His Phe Gln Ile Ser Gly Val Thr Asn
125 130
Thr Glu Lys Leu Pro Thr Pro Ile Glu Leu
135 140
Pro Leu Lys Val Lys Val His Gly Lys Asp
145 150
Ser Pro Leu Lys Tyr Gly Pro Lys Phe Asp
155 160
Lys Lys Gln Leu Ala Ile Ser Thr Leu Asp
165 170
Phe Glu Ile Arg His Gln Leu Thr Gln Ile
175 180
His Gly Leu Tyr Arg Ser Ser Asp Lys Thr
185 190
Gly Gly Tyr Trp Lys Ile Thr Met Asn Asp
195 200
Gly Ser Thr Tyr Gln Ser Asp Leu Ser Lys
205 210
Lys Phe Glu Tyr Asn Thr Glu Lys Pro Pro
215 220
Ile Asn Ile Asp Glu Ile Lys Thr Ile Glu
225 230
Ala Glu Ile Asn

<210> 13

<211> 1095

<212> DNA

<213> Artificial sequence

<220>

<223> staphylococcal enterotoxin C-1 mutant

<400> 13

atcattaaat	ataattaatt	ttcttttaat	atttttttaa	40
ttgaatattt	aagattataa	gatataattt	aagtgtatct	80
agatactttt	tggaaatgtt	ggatgaagga	gataaaaatg	120
aataagagtc	gatttatttc	atgcgttaatt	ttgatattcg	160
cacttatact	agttctttt	acacccaacg	tattagcaga	200
gagccaaacca	gaccctacgc	catatggat	gcacaaaacg	240
agtaaaattca	ctgggttgat	ggaaaatatt	aaagtttat	280
atgtatgtca	ttatgtatca	gcaactaaag	ttaagtctgt	320
agataaattt	agggcacatg	atthaattta	taacattatg	360
gataaaaaac	tgaaaaattt	tgacaaatgt	aaaacagat	400
tatthaatttga	aggttttagca	aagaatgtaca	aagatgaagt	440
agttgtatgt	tatggatcaa	attactatgt	aaactgttat	480
tttcatccca	aaagataatgt	aggttaatgt	acaggtggca	520
aaacttgtat	gtatggagga	ataacaaaac	atgaaggaaa	560
ccacttggat	aatgggaaact	tacaaaatgt	acttataaga	600
gttatgaaaa	ataaaagaaa	cacaatttct	tttgaagtgc	640
aaactgataa	aaaaagtgt	acagctcaag	aactagacat	680
aaaagctagg	attttttaa	ttaataaaaa	aaattttgtat	720
gagtttaaca	gttcaccata	tgaaaacagga	tatataaaaat	760
ttattgaaaa	taacggcaat	actttttggt	atgatatgtat	800
gcccgtcacca	ggcgataagt	ttgaccaatc	taaatattta	840
atgatgtaca	acgacaataaa	aacgggtgat	tctaaaatgt	880
tgaagataga	agtcccacctt	acaacaaaga	atggataatg	920
ttaatccgat	tttgatataa	aaagtggaaag	tatttagat	960
atttggaaagg	taagtacttc	ggtgcttgcc	tttttaggat	1000
gcatatatat	agattaaacc	gcacttctat	attaatagaa	1040
agtgcggta	tttataact	caatctaaac	tataataatt	1080
ggaatcatct	tcaa			1095

<210> 14

<211> 266

<212> PRT

<213> Artificial sequence

<220>

<223> staphylococcal enterotoxin C-1 mutant

<400> 14

Met	Asn	Lys	Ser	Arg	Phe	Ile	Ser	Cys	Val
				5					10
Ile	Leu	Ile	Phe	Ala	Leu	Ile	Leu	Val	Leu
				15					20

Phe Thr Pro Asn Val Leu Ala Glu Ser Gln
25 30
Pro Asp Pro Thr Pro Asp Glu Leu His Lys
35 40
Ala Ser Lys Phe Thr Gly Leu Met Glu Asn
45 50
Met Lys Val Leu Tyr Asp Asp His Tyr Val
55 60
Ser Ala Thr Lys Val Lys Ser Val Asp Lys
65 70
Phe Arg Ala His Asp Leu Ile Tyr Asn Ile
75 80
Ser Asp Lys Lys Leu Lys Asn Tyr Asp Lys
85 90
Val Lys Thr Glu Leu Leu Asn Glu Gly Leu
95 100
Ala Lys Lys Tyr Lys Asp Glu Val Val Asp
105 110
Val Tyr Gly Ser Asn Tyr Tyr Val Asn Cys
115 120
Tyr Phe Ser Ser Lys Asp Asn Val Gly Lys
125 130
Val Thr Gly Gly Lys Thr Cys Met Tyr Gly
135 140
Gly Ile Thr Lys His Glu Gly Asn His Phe
145 150
Asp Asn Gly Asn Leu Gln Asn Val Leu Ile
155 160
Arg Val Tyr Glu Asn Lys Arg Asn Thr Ile
165 170
Ser Phe Glu Val Gln Thr Asp Lys Lys Ser
175 180
Val Thr Ala Gln Glu Leu Asp Ile Lys Ala
185 190
Arg Asn Phe Leu Ile Asn Lys Lys Asn Leu
195 200
Tyr Glu Phe Asn Ser Ser Phe Tyr Glu Thr
205 210
Gly Tyr Ile Lys Phe Ile Glu Asn Asn Gly
215 220
Asn Thr Phe Trp Tyr Asp Met Met Pro Ala
225 230
Pro Gly Asp Lys Phe Asp Gln Ser Lys Tyr
235 240
Leu Met Met Tyr Asn Asp Asn Lys Thr Val
245 250
Asp Ser Lys Ser Val Lys Ile Glu Val His
255 260
Leu Thr Thr Lys Asn Gly
265

<211> 1837

<212> DNA

<213> Artificial sequence

<220>

<223> streptococcal pyrogenic exotoxin-A mutant

<400> 15

tcatgtttga cagcttatca tcgataagct tacttttgc	40
atcgagtcta tccttggaaac aggtgcacca tagatttaggg	80
catggagatt taccagacaa ctatgcacgt atatactcac	120
atcacgcaat cgccaatttg a tgacattggactaaatca	160
atcaatttgt tactaacaag caactagatt gacaactaat	200
tctcaacaaa cgttaattta acaacattca agtaactccc	240
accagctcca tcaatgccta ccgtaaatgaa tcataactta	280
ctaaaacctt gttagatcaa ggaaaaatcc ttttgtcttg	320
ttcatgagtt accataactt tctatattat tgacaactaa	360
attgacaactt cttaattat ttttgcgtct actcaaagt	400
ttcttcattt gatatagttt aattccacca tcacttcttc	440
cactcctctt accgtcacaa cttcatcattt ttcactttt	480
tcgtgtggta acacataatc aaatattttt ccgtttttac	520
gcactatcgcc tactgtgtca cctaaaaat acccccttata	560
aatcgcttctt ttaaactcat ctatataata catatttcat	600
cctccctaccc ttatattcgt aaaaagatataa aaataactat	640
tgtttttttt gttatattat aaaaatataa ttaatataaag	680
ttaatgtttt ttaaaaatata acaattttat tctatttata	720
gttagctatt ttttcattgt tagtaatattt ggtgaattgt	760
aataaacctt ttaaattcttag aggagaaccc agatataaaaa	800
tggaggaaata ttaatggaaa acaataaaaa agtattgaag	840
aaaatgttat tttttgtttt agtgcattt cttggactaa	880
caatctcgca agaggatattt gctcaacaaaccccgatcc	920
aaggccaaactt cacagatcta gtttagttaa aacccttcaa	960
aatatataattt ttctttatga ggggtgaccct gttactcag	1000
agaatgtgaa atctgttgat caacttagat ctcacgattt	1040
aatatataat gtttcagggc caaattatga taaataaaa	1080
actgaactta agaaccaaga gatggcaact ttatthaagg	1120
ataaaaaacgt tgatattat ggtgttagaat attaccatct	1160
ctgttattta tggaaaatgg cagaaaaggag tgcatgtatc	1200
tagggggggg taacaaatca tgaaggaaat catttagaaa	1240
ttccctaaaaaa gatagtgcattt aaagtatcaa tggatggat	1280
ccaaaggctta tcatttgata ttgaaacaaa taaaaaaatg	1320
gttaactgcctc aagaatttgcg ctataaaggta agaaaatatac	1360
ttacagataaa taagcaacta tataactatgc gacccctctaa	1400
atatggaaact ggatataataa agttcatacc taagaataaaa	1440
gaaaggttttt ggttgattt tttccctgaa ccagaattta	1480
ctcaatctaa atatcttgcg atatataaag ataatgaaac	1520
gcttgcgtca aacacaaggcc aaattgttttgcg ctacactgct	1560
accaagtaac tttttgcgtttt tggcaacccctt acctactgct	1600
ggatttagaa atttttttttgcg aatttttttttgcg ttaatgtaaa	1640
aaccgctcat ttgtatggcg gttttgtctt atctaaagga	1680

gcttacctc ctaatgctgc	aaaattttaa	atgtggatt	1720
tttgatattg tctattgtat	ttgatggta	atcccattt	1760
tcgacagaca tcgtcggtcc	acctctaaca	ccaaaatcat	1800
agacaggagc tttagctta	gcaactattt	tatcgtc	1837

<210> 16

<211> 251

<212> PRT

<213> Artificial sequence

<220>

<223> streptococcal pyrogenic exotoxin-A mutant

<400> 16

Met Glu Asn Asn Lys Lys Val Leu Lys Lys	
5	10
Met Val Phe Phe Val Leu Val Thr Phe Leu	
15	20
Gly Leu Thr Ile Ser Gln Glu Val Phe Ala	
25	30
Gln Gln Asp Pro Asp Pro Ser Gln Leu His	
35	40
Arg Ser Ser Leu Val Lys Asn Leu Gln Asn	
45	50
Ile Tyr Phe Leu Tyr Glu Gly Asp Pro Val	
55	60
Thr His Glu Asn Val Lys Ser Val Asp Gln	
65	70
Leu Arg Ser His Asp Leu Ile Tyr Asn Val	
75	80
Ser Gly Pro Asn Tyr Asp Lys Leu Lys Thr	
85	90
Glu Leu Lys Asn Gln Glu Met Ala Thr Leu	
95	100
Phe Lys Asp Lys Asn Val Asp Ile Tyr Gly	
105	110
Val Glu Tyr Tyr His Leu Cys Tyr Leu Cys	
115	120
Glu Asn Ala Glu Arg Ser Ala Cys Ile Tyr	
125	130
Gly Gly Val Thr Asn His Glu Gly Asn His	
135	140
Leu Glu Ile Pro Lys Lys Ile Val Val Lys	
145	150
Val Ser Ile Asp Gly Ile Gln Ser Leu Ser	
155	160
Phe Asp Ile Glu Thr Asn Lys Lys Met Val	
165	170
Thr Ala Gln Glu Leu Asp Tyr Lys Val Arg	

	175	180
Lys Tyr Leu Thr Asp Asn Lys Gln Leu Tyr	185	190
Thr Asn Gly Pro Ser Lys Tyr Glu Thr Gly	195	200
Tyr Ile Lys Phe Ile Pro Lys Asn Lys Glu	205	210
Ser Phe Trp Phe Asp Phe Pro Glu Pro	215	220
Glu Phe Thr Gln Ser Lys Tyr Leu Met Ile	225	230
Tyr Lys Asp Asn Glu Thr Leu Asp Ser Asn	235	240
Thr Ser Gln Ile Glu Val Tyr Leu Thr Thr	245	250
Lys		
<210> 17		
<211> 28		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> primer		
<400> 18		
ctcgcaagag gtacatatgc aacaagac		28
<210> 18		
<211> 24		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> primer		
<400> 18		
gcagtaggta agcttgccaa aagc		24
<210> 19		
<211> 34		

<212> DNA
<213> Artificial sequence
<220>
<223> primer
<400> 19
gatatacata tgcaacaaga ccccgatcca agcc 34
<210> 20
<211> 37
<212> DNA
<213> Artificial sequence
<220>
<223> primer
<400> 20
gagatttaac aactggttgc ttgggttgtt aatgtac 37
<210> 21
<211> 37
<212> DNA
<213> Artificial sequence
<220>
<223> primer
<400> 21
gtctacctaa caaccaagca accagttgtt aaatctc 37
<210> 22
<211> 27
<212> DNA
<213> Artificial sequence

<220>

<223> primer

<400> 22

gaattcggat ccgcttagcct acaacag

27

<210> 23

<211> 1419

<212> DNA

<213> Artificial sequence

<220>

<223> mutant SpeA/mutant SpeB fusion

<400> 23

atgcaacaag	accccgtatcc	aaggccaactt	cacagatcta	40
gttttagttaa	aaaccccaa	aatatataat	ttcttttatga	80
gggtgaccct	gttacttcacg	agaatgtgaa	atctgttgat	120
caacctcgat	ctcacgtat	aatatataat	gtttcagggc	160
caaattatga	taaattaaaa	actgaactta	agaaccaaga	200
gatggcaact	ttatattaagg	ataaaaacat	tgtatattat	240
ggtgttagaat	attaccatct	ctgttattta	tgtgaaaatg	280
cagaaaggag	tgcgtgtatc	tacggagggg	taacaaaatcg	320
tgaagggaat	catttagaaa	ttccctaaaaa	gatagtgcgtc	360
aaagtatcaa	tcgatggtat	acaaaaggcta	tcatttgata	400
ttgaaacaaa	taaaaaaaatg	gttaactgctc	aagaatttaga	440
ctataaagtt	agaaaaatatc	ttacagataa	taagcaacta	480
tatactaattg	gaccctctaa	atatgaaact	ggatataataa	520
agttcataacc	taagaataaaa	gaaagttttt	ggtttgattt	560
tttccctgaa	ccagaattta	ctcaatctaa	atatctttag	600
atatataaaag	ataatgaaac	gcttgactca	aacacaagcc	640
aaattgaagt	ctacctaaca	accaagcaac	cagttgttaa	680
atctctccct	gattcaaag	gcatttcattt	caatcaagggt	720
aacccttaca	accttattgac	acctgtttt	gaaaaaagttaa	760
aaccagggtga	acaatctttt	gtagggtcaac	atgcagctac	800
aggatgtgtt	gctactgcaa	ctgctcaaat	tatgaaatata	840
cataattacc	ctaaacaaagg	gttggaaagac	tacacttaca	880
cactaagctc	aaataacc	tatttcaacc	atccctaagaa	920
cttgggttgc	gctatctta	ctagacaata	caactggAAC	960
aacatcctac	ctactttag	cggaagagaa	tctaaccgttc	1000
aaaaaaaaatggc	gattttcagaa	ttgtatggctg	atgttggat	1040
ttcagtagac	atggattatg	gtccccatctag	tggttctgca	1080
ggtagctctc	gtgttcaag	agcccttggaaa	gaaaaactttg	1120
gctacaacca	atctgttac	caaatcaacc	gtagcgactt	1160
tagcaaacaa	gattggaaag	cacaaatttga	caaagaatta	1200
tctcaaaaacc	aaccagtata	ctaccaagggt	gtcggtaaag	1240

taggcggaca	tgcctttgtt	atcgatggtg	ctgacggacg	1280
taacttctac	catgttaact	ggggttgggg	tggagtctct	1320
gacggcttct	tccgtcttga	cgcactaaac	ccctcagctc	1360
ttgttactgg	tggcggcga	ggcggcttca	acggttacca	1400
aagtgttgtt	gtaggctag			1419

<210> 24

<211> 398

<212> PRT

<213> Artificial sequence

<220>

<223> mutant streptococcal pyrogenic exotoxin B prosegment

<400> 24

Met Asn Lys Lys Lys Leu Gly Ile Arg Leu	
5	10
Leu Ser Leu Leu Ala Leu Gly Gly Phe Val	
15	20
Leu Ala Asn Pro Val Phe Ala Asp Gln Asn	
25	30
Phe Ala Arg Asn Glu Lys Glu Ala Lys Asp	
35	40
Ser Ala Ile Thr Phe Ile Gln Lys Ser Ala	
45	50
Ala Ile Lys Ala Gly Ala Arg Ser Ala Glu	
55	60
Asp Ile Lys Leu Asp Lys Val Asn Leu Gly	
65	70
Gly Glu Leu Ser Gly Ser Asn Met Tyr Gly	
75	80
Tyr Asn Ile Ser Thr Gly Gly Phe Val Ile	
85	90
Val Ser Gly Asp Lys Arg Ser Pro Glu Ile	
95	100
Leu Gly Tyr Ser Thr Ser Gly Ser Phe Asp	
105	110
Ala Asn Gly Lys Glu Asn Ile Ala Ser Phe	
115	120
Met Glu Ser Tyr Val Glu Gln Ile Lys Glu	
125	130
Asn Lys Lys Leu Asp Thr Thr Tyr Ala Gly	
135	140
Thr Ala Glu Ile Lys Gln Pro Val Val Lys	
145	150
Ser Leu Leu Asp Ser Lys Gly Ile His Tyr	
155	160
Asn Gln Gly Asn Pro Tyr Asn Leu Thr	

	165	170
Pro Val Ile Glu	Lys Val Lys Pro Gly	Glu
	175	180
Gln Ser Phe Val	Gly Gln His Ala Ala	Thr
	185	190
Gly Cys Val Ala	Thr Ala Thr Ala Gln	Ile
	195	200
Met Lys Tyr His	Asn Tyr Pro Asn Lys	Gly
	205	210
Leu Lys Asp Tyr	Thr Tyr Thr Leu Ser	Ser
	215	220
Asn Asn Pro Tyr	Phe Asn His Pro Lys	Asn
	225	230
Leu Phe Ala Ala	Ile Ser Thr Arg Gln	Tyr
	235	240
Asn Trp Asn Asn	Ile Leu Pro Thr Tyr	Ser
	245	250
Gly Arg Glu Ser	Asn Val Gln Lys Met	Ala
	255	260
Ile Ser Glu Leu	Met Ala Asp Val Gly	Ile
	265	270
Ser Val Asp Met	Asp Tyr Gly Pro Ser	Ser
	275	280
Gly Ser Ala Gly	Ser Ser Arg Val Gln	Arg
	285	290
Ala Leu Lys Glu	Asn Phe Gly Tyr Asn	Gln
	295	300
Ser Val His Gln	Ile Asn Arg Gly Asp	Phe
	305	310
Ser Lys Gln Asp	Trp Glu Ala Gln Ile	Asp
	315	320
Lys Glu Leu Ser	Gln Asn Gln Pro Val	Tyr
	325	330
Tyr Gln Gly Val	Gly Lys Val Gly Gly	His
	335	340
Ala Phe Val Ile	Asp Gly Ala Asp Gly	Arg
	345	350
Asn Phe Tyr His	Val Asn Trp Gly Trp	Gly
	355	360
Gly Val Ser Asp	Gly Phe Phe Arg Leu	Asp
	365	370
Ala Leu Asn Pro	Ser Ala Leu Gly Thr	Gly
	375	380
Gly Gly Ala Gly	Gly Phe Asn Gly Tyr	Gln
	385	390
Ser Ala Val Val	Gly Ile Lys Pro	
	395	

<210> 25

<211> 248

<212> PRT

<213> Artificial sequence

<220>

<223> mutant streptococcal pyrogenic exotoxin-B

<400> 25

Gln	Pro	Val	Val	Lys	Ser	Leu	Leu	Asp	Ser		
				5						10	
Lys	Gly	Ile	His	Tyr	Asn	Gln	Gly	Asn	Pro		
				15						20	
Tyr	Asn	Leu	Leu	Thr	Pro	Val	Ile	Glu	Lys		
				25						30	
Val	Lys	Pro	Gly	Glu	Gln	Ser	Phe	Val	Gly		
				35						40	
Gln	His	Ala	Ala	Thr	Gly	Cys	Val	Ala	Thr		
				45						50	
Ala	Thr	Ala	Gln	Ile	Met	Lys	Tyr	His	Asn		
				55						60	
Tyr	Pro	Asn	Lys	Gly	Leu	Lys	Asp	Tyr	Thr		
				65						70	
Tyr	Thr	Leu	Ser	Ser	Asn	Asn	Pro	Tyr	Phe		
				75						80	
Asn	His	Pro	Lys	Asn	Leu	Phe	Ala	Ala	Ile		
				85						90	
Ser	Thr	Arg	Gln	Tyr	Asn	Trp	Asn	Asn	Ile		
				95						100	
Leu	Pro	Thr	Tyr	Ser	Gly	Arg	Glu	Ser	Asn		
				105						110	
Val	Gln	Lys	Met	Ala	Ile	Ser	Glu	Leu	Met		
				115						120	
Ala	Asp	Val	Gly	Ile	Ser	Val	Asp	Met	Asp		
				125						130	
Tyr	Gly	Pro	Ser	Ser	Gly	Ser	Ala	Gly	Ser		
				135						140	
Ser	Arg	Val	Gln	Arg	Ala	Leu	Lys	Glu	Asn		
				145						150	
Phe	Gly	Tyr	Asn	Gln	Ser	Val	His	Gln	Ile		
				155						160	
Asn	Arg	Ser	Asp	Phe	Ser	Gln	Asp	Trp	Glu		
				165						170	
Ala	Gln	Ile	Asp	Lys	Glu	Leu	Ser	Gln	Asn		
				175						180	
Gln	Pro	Val	Tyr	Tyr	Gln	Gly	Gly	Lys	Val		
				185						190	
Gly	Gly	His	Ala	Phe	Val	Ile	Asp	Gly	Ala		
				195						200	
Asp	Gly	Arg	Asn	Phe	Tyr	His	Val	Asn	Trp		
				205						210	
Gly	Trp	Gly	Gly	Val	Ser	Asp	Gly	Phe	Phe		
				215						220	
Arg	Leu	Asp	Ala	Leu	Asn	Pro	Ser	Ala	Leu		
				225						230	
Gly	Thr	Gly	Gly	Gly	Ala	Gly	Gly	Phe	Asn		

235 240
Gly Tyr Gln Ser Ala Val Val Gly
245

<210> 26

<211> 220

<212> PRT

<213> Artificial sequence

<220>

<223> mutant streptococcal pyrogenic exotoxin-A

<400> 26

Met Gln Gln Asp Pro Asp Pro Ser Gln Leu
5 10
His Arg Ser Ser Leu Val Lys Asn Leu Gln
15 20
Asn Ile Tyr Phe Leu Tyr Glu Gly Asp Pro
25 30
Val Thr His Glu Asn Val Lys Ser Val Asp
35 40
Gln Leu Arg Ser His Asp Leu Ile Tyr Asn
45 50
Val Ser Gly Pro Asn Tyr Asp Lys Leu Lys
55 60
Thr Glu Leu Lys Asn Gln Glu Met Ala Thr
65 70
Leu Phe Lys Asp Lys Asn Ile Asp Ile Tyr
75 80
Gly Val Glu Tyr Tyr His Leu Cys Tyr Leu
85 90
Cys Glu Asn Ala Glu Arg Ser Ala Cys Ile
95 100
Gly Gly Val Thr Asn Arg Glu Gly Asn His
105 100
Leu Glu Ile Pro Lys Lys Ile Val Val Lys
115 120
Val Ser Ile Asp Gly Ile Gln Ser Leu Ser
125 130
Phe Asp Ile Glu Thr Asn Lys Lys Met Val
135 140
Thr Ala Gln Glu Leu Asp Tyr Lys Val Arg
145 150
Lys Tyr Leu Thr Asp Asn Lys Gln Leu Tyr
155 160
Thr Asn Gly Pro Ser Lys Tyr Glu Thr Gly
165 170
Tyr Ile Lys Phe Ile Pro Lys Asn Lys Glu

	175	180
Ser Phe Trp Phe Asp Phe Phe Pro Glu Pro		
185	190	
Glu Phe Thr Gln Ser Lys Tyr Leu Met Ile		
195	200	
Tyr Lys Asp Asn Glu Thr Leu Asp Ser Asn		
205	210	
Thr Gln Ile Glu Val Tyr Leu Thr Thr Lys		
215	220	

<210> 27

<211> 468

<212> PRT

<213> Artificial sequence

<220>

<223> mutant SpeA-mutant SpeB fusion

<400> 27

Met Gln Gln Asp Pro Asp Pro Ser Gln Leu		
5	10	
His Arg Ser Ser Leu Val Lys Asn Leu Gln		
15	20	
Asn Ile Tyr Phe Leu Tyr Glu Gly Asp Pro		
25	30	
Val Thr His Glu Asn Val Lys Ser Val Asp		
35	40	
Gln Leu Arg Ser His Asp Leu Ile Tyr Asn		
45	50	
Val Ser Gly Pro Asn Tyr Asp Lys Leu Lys		
55	60	
Thr Glu Leu Lys Asn Gln Glu Met Ala Thr		
65	70	
Leu Phe Lys Asp Lys Asn Ile Asp Ile Tyr		
75	80	
Gly Val Glu Tyr Tyr His Leu Cys Tyr Leu		
85	90	
Cys Glu Asn Ala Glu Arg Ser Ala Cys Ile		
95	100	
Gly Gly Val Thr Asn Arg Glu Gly Asn His		
105	110	
Leu Glu Ile Pro Lys Lys Ile Val Val Lys		
115	120	
Val Ser Ile Asp Gly Ile Gln Ser Leu Ser		
125	130	
Phe Asp Ile Glu Thr Asn Lys Lys Met Val		
135	140	
Thr Ala Gln Glu Leu Asp Tyr Lys Val Arg		
145	150	

Lys	Tyr	Leu	Thr	Asp	Asn	Lys	Gln	Leu	Tyr
				155					160
Thr	Asn	Gly	Pro	Ser	Lys	Tyr	Glu	Thr	Gly
				165					170
Tyr	Ile	Lys	Phe	Ile	Pro	Lys	Asn	Lys	Glu
				175					180
Ser	Phe	Trp	Phe	Asp	Phe	Phe	Pro	Glu	Pro
				185					190
Glu	Phe	Thr	Gln	Ser	Lys	Tyr	Leu	Met	Ile
				195					200
Tyr	Lys	Asp	Asn	Glu	Thr	Leu	Asp	Ser	Asn
				205					210
Thr	Gln	Ile	Glu	Val	Tyr	Leu	Thr	Thr	Lys
				215					220
Gln	Pro	Val	Val	Lys	Ser	Leu	Leu	Asp	Ser
				225					230
Lys	Gly	Ile	His	Tyr	Asn	Gln	Gly	Asn	Pro
				235					240
Tyr	Asn	Leu	Leu	Thr	Pro	Val	Ile	Glu	Lys
				245					250
Val	Lys	Pro	Gly	Glu	Gln	Ser	Phe	Val	Gly
				255					260
Gln	His	Ala	Ala	Thr	Gly	Cys	Val	Ala	Thr
				265					270
Ala	Thr	Ala	Gln	Ile	Met	Lys	Tyr	His	Asn
				275					280
Tyr	Pro	Asn	Lys	Gly	Leu	Lys	Asp	Tyr	Thr
				285					290
Tyr	Thr	Leu	Ser	Ser	Asn	Asn	Pro	Tyr	Phe
				295					300
Asn	His	Pro	Lys	Asn	Leu	Phe	Ala	Ala	Ile
				305					310
Ser	Thr	Arg	Gln	Tyr	Asn	Trp	Asn	Asn	Ile
				315					320
Leu	Pro	Thr	Tyr	Ser	Gly	Arg	Glu	Ser	Asn
				325					330
Val	Gln	Lys	Met	Ala	Ile	Ser	Glu	Leu	Met
				335					340
Ala	Asp	Val	Gly	Ile	Ser	Val	Asp	Met	Asp
				345					350
Tyr	Gly	Pro	Ser	Ser	Gly	Ser	Ala	Gly	Ser
				355					360
Ser	Arg	Val	Gln	Arg	Ala	Leu	Lys	Glu	Asn
				365					370
Phe	Gly	Tyr	Asn	Gln	Ser	Val	His	Gln	Ile
				375					380
Asn	Arg	Ser	Asp	Phe	Ser	Gln	Asp	Trp	Glu
				385					390
Ala	Gln	Ile	Asp	Lys	Glu	Leu	Ser	Gln	Asn
				395					400
Gln	Pro	Val	Tyr	Tyr	Gln	Gly	Gly	Lys	Val
				405					410
Gly	Gly	His	Ala	Phe	Val	Ile	Asp	Gly	Ala
				415					420

Asp Gly Arg Asn Phe Tyr His Val Asn Trp
425 430
Gly Trp Gly Gly Val Ser Asp Gly Phe Phe
435 440
Arg Leu Asp Ala Leu Asn Pro Ser Ala Leu
445 450
Gly Thr Gly Gly Ala Gly Gly Phe Asn
455 460
Gly Tyr Gln Ser Ala Val Val Gly
465

<210> 28

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 28

gatatacata tgcaacaaga ccccgatcca agcc 34

<210> 29

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 29

catgtgtata tctccttcct tggttttag gtagac 36

<210> 30

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 30

gtctacctaa caaccaagga aggagatata cacatg

36

<210> 31

<211> 27

<212> DNA

<213> Artificial Sequence

5220>

<223> Primer

<400> 31

qaattcggat ccgcttagcct acaacag

27

<210> 32

<211> 82

<212> PBT

<213> staphylococcal enterotoxin A

<223> partial sequence as shown in Figure 3

<400> 32

Ser His Asp Gln Phe Leu Gln His Thr Ile
5 10

Leu Phe Lys Gly Phe Phe Thr Asp His Ser
15 20

Trp Tyr Asn Asp Leu Leu Val Asp Phe Asp
25 30

Ser Lys Asp Ile Val Asp Lys Tyr Lys Gly
35 40

Lys Lys Val Asp Leu Tyr Gly Ala Tyr Tyr
45 50

Gly Tyr Gln Cys Ala Gly Gly Thr Pro Asn
55 60

Lys Thr Ala Cys Met Tyr Gly Gly Val Thr
65 70

Leu His Asp Asn Asn Arg Leu Thr Glu Glu
75 80

Lys Lys

5210> 3

<211> 82

<212> PRT

<213> staphylococcal enterotoxin D

<223> partial sequence as shown in Figure 3

<400> 33

Thr	Gly	Asp	Gln	Phe	Leu	Glu	Asn	Thr	Leu	
				5						10
Leu	Tyr	Lys	Lys	Phe	Phe	Thr	Asp	Leu	Ile	
				15						20
Asn	Phe	Glu	Asp	Leu	Leu	Ile	Asn	Phe	Asn	
				25						30
Ser	Lys	Glu	Met	Ala	Gln	His	Phe	Lys	Ser	
				35						40
Lys	Asn	Val	Asp	Val	Tyr	Pro	Ile	Arg	Tyr	
				45						50
Ser	Ile	Asn	Cys	Tyr	Gly	Gly	Glu	Ile	Asp	
				55						60
Arg	Thr	Ala	Cys	Thr	Tyr	Gly	Gly	Val	Thr	
				65						70
Pro	His	Glu	Gly	Asn	Lys	Leu	Lys	Glu	Arg	
				75						80
Lys	Lys									

<210> 34

<211> 82

<212> PRT

<213> staphylococcal enterotoxin E

<223> partial sequence as shown in Figure 3

<400> 34

Ser	Asp	Asp	Gln	Phe	Leu	Glu	Asn	Thr	Leu	
				5						10
Leu	Phe	Lys	Gly	Phe	Phe	Thr	Gly	His	Pro	
				15						20
Trp	Tyr	Asn	Asp	Leu	Leu	Val	Asp	Leu	Gly	
				25						30
Ser	Lys	Asp	Ala	Thr	Asn	Lys	Tyr	Lys	Gly	
				35						40
Lys	Lys	Val	Asp	Leu	Tyr	Gly	Ala	Tyr	Tyr	
				45						50
Gly	Tyr	Gln	Cys	Ala	Gly	Gly	Thr	Pro	Asn	
				55						60
Lys	Thr	Ala	Cys	Met	Tyr	Gly	Gly	Val	Thr	

Asn Glu Gly Leu Ala Lys Lys Tyr Lys Asp
35 40
Glu Val Val Asp Val Tyr Gly Ser Asn Tyr
45 50
Tyr Val Asn Cys Tyr Phe Ser Ser Lys Asp
55 60
Asn Val Gly Lys Val Thr Gly Gly Lys Thr
65 70
Cys Met Tyr Gly Gly Ile Thr Lys His Glu
75 80
Gly Asn His Phe Asp Asn Gly Asn Leu
85

<210> 37

<211> 89

<212> PRT

<213> staphylococcal enterotoxin C2

<223> partial sequence as shown in Figure 3

<400> 37

Ser Val Asp Lys Phe Leu Ala His Asp Leu
5 10
Ile Tyr Asn Ile Ser Asp Lys Lys Leu Lys
15 20
Asn Tyr Asp Lys Val Lys Thr Glu Leu Leu
25 30
Asn Glu Asp Leu Ala Lys Lys Tyr Lys Asp
35 40
Glu Val Val Asp Val Tyr Gly Ser Asn Tyr
45 50
Tyr Val Asn Cys Tyr Phe Ser Ser Lys Asp
55 60
Asn Val Gly Lys Val Thr Gly Gly Lys Thr
65 70
Cys Met Tyr Gly Gly Ile Thr Lys His Glu
75 80
Gly Asn His Phe Asp Asn Gly Asn Leu
85

<210> 38

<211> 89

<212> PRT

<213> staphylococcal enterotoxin C3

<223> partial sequence as shown in Figure 3

<400> 38

Ser	Val	Asp	Lys	Phe	Leu	Ala	His	Asp	Leu
				5					10
Ile	Tyr	Asn	Ile	Ser	Asp	Lys	Lys	Leu	Lys
				15					20
Asn	Tyr	Asp	Lys	Val	Lys	Thr	Glu	Leu	Leu
				25					30
Asn	Glu	Asp	Leu	Ala	Lys	Lys	Tyr	Lys	Asp
				35					40
Glu	Val	Val	Asp	Val	Tyr	Gly	Ser	Asn	Tyr
				45					50
Tyr	Val	Asn	Cys	Tyr	Phe	Ser	Ser	Lys	Asp
				55					60
Asn	Val	Gly	Lys	Val	Thr	Gly	Gly	Lys	Thr
				65					70
Cys	Met	Tyr	Gly	Gly	Ile	Thr	Lys	His	Glu
				75					80
Gly	Asn	His	Phe	Asp	Asn	Gly	Asn	Leu	
				85					

<210> 39

<211> 79

<212> PRT

<213> streptococcal pyrogenic enterotoxin a

<223> partial sequence as shown in Figure 3

<400> 39

Ser	Val	Asp	Gln	Leu	Leu	Ser	His	Asp	Leu
				5					10
Ile	Tyr	Asn	Val	Ser	Gly	Pro	Asn	Tyr	Asp
				15					20
Lys	Leu	Lys	Thr	Glu	Leu	Lys	Asn	Gln	Glu
				25					30
Met	Ala	Thr	Leu	Phe	Lys	Asp	Lys	Asn	Val
				35					40
Asp	Ile	Tyr	Gly	Val	Glu	Tyr	Tyr	His	Leu
				45					50
Cys	Tyr	Leu	Cys	Glu	Asn	Ala	Glu	Arg	Ser
				55					60
Ala	Cys	Ile	Tyr	Gly	Gly	Val	Thr	Asn	His
				65					70
Glu	Gly	Asn	His	Leu	Glu	Ile	Pro	Lys	
				75					

<210> 40

<211> 73

