CSE203 - Project

Timestamp: Wednesday 12th December, 2018 - 13:58 2018-2019

We are here interested in proving facts about propositional logic. The purpose of this project is the proof of the 2 following facts:

- 1. natural deduction is correct w.r.t. the interpretation of assertions;
- 2. it is decidable to check that an assertion is universally valid. We are going to check that by implementing a sound normalization algorithm for assertions, and then to write, in Coq, a simple decision for the universal validity of the normalized assertions.

We provide a Coq skeleton file prop. v and we ask you to fill the missing definitions & proofs.

Assertions - we assume given an infinite countable set of propositional variables \mathcal{X} . In the formalization, we take $\mathcal{X} \triangleq \mathbb{N}$. The set of assertions \mathcal{A} is given by

$$\begin{array}{ccccc} \phi, \psi, \xi \in \mathcal{A} & ::= & p \in \mathcal{X} & \text{propositional variable} \\ & \mid & \bot & \text{false} \\ & \mid & \phi \lor \psi & \text{disjunction} \\ & \mid & \phi \land \psi & \text{conjunction} \\ & \mid & \phi \Rightarrow \psi & \text{implication} \end{array}$$

We write \top (resp. $\neg \phi$, $\phi \Leftrightarrow \psi$) for $\bot \Rightarrow \bot$ (resp. $\phi \Rightarrow \bot$, $(\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)$). The set of assertions is defined in Coq by the type prop.

Denotation of assertions - we now define the denotation of an assertion w.r.t. a valuation. A value is any function ν from \mathcal{X} to \mathbb{B} ($\triangleq \{\top, \bot\}$). The denotation of an assertion ϕ w.r.t. a valuation ν , written $\llbracket \phi \rrbracket_{\nu}$ is defined as follows:

We say that an assertion ϕ is satisfiable under a valuation ν if $[\![\phi]\!]_{\nu} = \top$. We say that an assertion is valid if it is satisfiable under any valuation.

Q1. Fill the Coq definition sem : valuation \rightarrow prop \rightarrow bool s.t. sem v p returns the denotation of p w.r.t the valuation v.

Base rules

$$\frac{p \in \Gamma}{\Gamma \vdash p} \text{ Axiom } \frac{\neg p, \Gamma \vdash \bot}{\Gamma \vdash p} \text{ Absurd}$$

Introduction rules

$$\frac{\Gamma \vdash p \qquad \Gamma \vdash q}{\Gamma \vdash p \land q} \land \text{-I} \qquad \qquad \frac{\Gamma \vdash p}{\Gamma \vdash p \lor q} \lor \text{-L-I} \qquad \qquad \frac{\Gamma \vdash q}{\Gamma \vdash p \lor q} \lor \text{-R-I} \qquad \qquad \frac{p, \Gamma \vdash q}{\Gamma \vdash p \Rightarrow q} \Rightarrow \text{-I}$$

ELIMINATION RULES

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash p} \bot - E \qquad \frac{\Gamma \vdash p \land q}{\Gamma \vdash p} \land - L - E \qquad \frac{\Gamma \vdash p \land q}{\Gamma \vdash q} \land - R - E \qquad \frac{\Gamma \vdash p \lor q \qquad p, \Gamma \vdash r \qquad q, \Gamma \vdash r}{\Gamma \vdash r} \lor - E$$

$$\frac{\Gamma \vdash p \qquad \Gamma \vdash p \Rightarrow q}{\Gamma \vdash q} \Rightarrow - E$$

Figure 1: Natural deduction inference rules

Natural deduction - we describe description a proof calculus for assertions called *Natural Deduction*. A judgment of natural deduction is of the form $\Gamma \vdash \phi$ where Γ is a list of assertions (ϕ_1, ϕ_2, \ldots) called an *environment*.

Derivation of judgment in natural deduction is described by a set of inference rules that we give in Figure 1. It is defined in Coq using the inductive predicate $nd : list prop \rightarrow prop \rightarrow Prop$.

We say that an assertion ϕ is provable under Γ if $\phi \vdash \Gamma$. If Γ is empty, we simply say that ϕ is provable. We also extend the notion of satisfiability to environments: we say that a valuation ν satisfies an environment Γ if it satisfies all its assertions, i.e. if ν satisfies any assertion $\phi \in \Gamma$.

We start by proving a weakening lemma for natural deduction derivations. We say that an environment Γ is weaker than an environment Δ (written $\Gamma \leq \Delta$) if $\forall \phi. \phi \in \Gamma \Rightarrow \phi \in \Delta$.

Q2. Prove that $\cdot \vdash \cdot$ is monotonous w.r.t. \preceq , i.e. if $\Gamma \preceq \Delta$ and $\Gamma \vdash \phi$, then $\Delta \vdash \psi$. (Lemma subenv_nd in the file)

We now prove the correctness of natural deduction w.r.t. the denotation of assertions that is expressed as follows: if ϕ is provable under Γ , then any valuation that satisfies Γ must satisfy ϕ .

Q3. Prove the correctness of natural deduction:

```
Lemma correctness (env : list prop) (p : prop) : nd env p \rightarrow forall v, (forall q, In q env \rightarrow sat v q) \rightarrow sat v p.
```

Deciding validity of assertions - The aim of that section is to write and prove correct a program (or decision procedure) for deciding if an assertion is valid. For that, we will write two normalization procedures for transforming assertions from their general form to a more restricted one. All these transformations will preserve the satisfiability of assertions. Then, we will write and prove correct (and complete) a decision procedure for the satisfiability of assertions in restricted form. Finally, tying all up, we will derive a correct procedure for the satisfiability of assertions in general form.

The set of I-assertions is given by

$$\begin{array}{lll} \Phi, \Psi, \Xi \in \mathbb{I} & ::= & p \in \mathcal{X} & \text{propositional variable} \\ & | & b \in \mathbb{B} & \text{propositional constant} \\ & | & \text{if } \Phi \text{ then } \Psi \text{ else } \Xi & \text{if assertion} \end{array}$$

The set of I-assertions is defined in Coq by the type ifForm.

As for general assertions, we define a notion of denotation of a \mathbb{I} -assertion Φ w.r.t a valuation ν (denoted by $\llbracket \Phi \rrbracket_{\nu}$):

- **Q4.** Fill the Coq definition if sem: valuation \rightarrow if Form \rightarrow bool s.t. if sem v p returns the denotation of the I-assertion p w.r.t the valuation v.
- **Q5.** Write a function if Form_of_prop : prop \rightarrow if Form that transforms a general assertion to an \mathbb{I} -assertion. Keep in mind that this transformation should keep satisfiability of assertions.
- **Q6.** Prove the correctness of your transformation, i.e.

```
Lemma ifForm_correct (v : valuation) (p : prop) :
  sem v p = ifsem v (ifForm_of_prop p).
```

An \mathbb{I} -assertion Φ is said to be *normalized* if all the conditions of the if-then-else constructs are propositional variables, i.e. if it is of the form

$$\begin{array}{lll} \hat{\Phi}, \hat{\Psi} \in \mathbb{K} & ::= & p \in \mathcal{X} & \text{propositional variable} \\ & | & b \in \mathbb{B} & \text{propositional constant} \\ & | & \text{if } p \text{ then } \hat{\Phi} \text{ else } \hat{\Psi} & \text{normalized if assertion} \end{array}$$

We write \mathbb{K} for the set of normalized \mathbb{I} -assertions. The notion of denotation is unchanged from \mathbb{I} -assertions to \mathbb{K} -assertions. The set of \mathbb{K} -assertions is defined in Coq by the type nifform. (Note that it is not a subtype of ifform)

Q7. Fill the Coq definition nifsem: valuation \rightarrow nifform \rightarrow bool s.t. nifsem v p returns the denotation of the \mathbb{K} -assertion p w.r.t the valuation v.

We now define a procedure for normalizing \mathbb{I} -assertions. This procedure relies of two inductive functions. One $(\llbracket \Phi \rrbracket)$ that normalized a \mathbb{I} -assertion, and one $(\llbracket \text{if } \hat{\Phi} \text{ then } \hat{\Psi} \text{ else } \hat{\Xi} \rrbracket)$ that normalized if-then-else constructs whose sub-formulas are already \mathbb{K} -assertions.

$$\begin{aligned} \langle p \rangle &= p \\ \langle b \rangle &= b \end{aligned}$$
 (if Φ then Ψ else $\Xi \rangle = \|\text{if } \langle \Phi \rangle$ then $\langle \Psi \rangle$ else $\langle \Xi \rangle \|$
$$\|\text{if } p \text{ then } \hat{\Phi} \text{ else } \hat{\Psi} \| = \text{if } p \text{ then } \hat{\Phi} \text{ else } \hat{\Psi}$$

$$\|\text{if } \top \text{ then } \hat{\Phi} \text{ else } \hat{\Psi} \| = \hat{\Phi}$$

$$\|\text{if } \bot \text{ then } \hat{\Phi} \text{ else } \hat{\Psi} \| = \hat{\Psi}$$

$$\|\text{if } \hat{\Phi} \text{ then } \hat{\Psi} \text{ else } \hat{\Xi}) \text{ then } \hat{\Psi}' \text{ else } \hat{\Xi}' \| =$$

$$\|\hat{\Phi} \text{ then } \|\text{if } \hat{\Psi} \text{ then } \hat{\Psi}' \text{ else } \hat{\Xi}' \| \text{ else } \|\text{if } \hat{\Xi} \text{ then } \hat{\Psi}' \text{ else } \hat{\Xi}' \|$$

Q8. Define in Coq the two normalization procedures:

```
Fixpoint normif (c t f : nifForm) {struct c} : nifForm.

Fixpoint norm (p : ifForm) {struct p} : nifForm.
```

Q9. Prove that the normalization procedure is correct, i.e.

```
Lemma normif_correct (v : valuation) (c t f : nifForm) :
   nifsem v (normif c t f) =
      if nifsem v c then nifsem v t else nifsem v f.

Lemma norm_correct (v : valuation) (p : ifForm) :
   nifsem v (norm p) = ifsem v p.
```

The decision procedure $\,$ - we here give the Coq code that decide if a \mathbb{K} -assertion is valid or not w.r.t a partial valuation:

Definition nifform_tauto p := nifform_tauto_r (fun $_ \Rightarrow$ None) p.

We ask you to prove the correctness and completeness of the procedure.

Q10. Prove the correctness of the procedure:

```
Lemma nifForm_tauto_r_correct (xv : nat → option bool) (p : nifForm) :
    nifForm_tauto_r xv p = true
    → forall v, (forall x b, xv x = Some b → v x = b)
    → nifsem v p = true.

Lemma nifForm_tauto_correct (p : nifForm) :
    nifForm_tauto p = true → forall v, nifsem v p = true.
```

Q11. Prove the completeness of the procedure:

We can now all tie up, writing and proving correct a decision procedure for the validity of assertions.

Q12. Write a Coq function is_tautology: prop \rightarrow bool that decides if a assertion is valid or not.

 ${\bf Q13.}$ Prove that your decision procedure is correct and complete:

```
Lemma is_tautology_correct (p : prop) : is_tautology p = true \rightarrow valid p. Lemma is_tautology_complete (p : prop) : is_tautology p = false \rightarrow exists v, sem v p = false.
```