

Aşağıdaki yapılandırılmış gridde (numaralandırılmış kutucuklarda) bileşikler verilmiştir. Kutucuk numaralarını kullanarak soruları cevaplayınız (Aynı kutucuk numarasını birden fazla cevap için kullanabilirsiniz.).

1 NH ₃ (g)	NaCl(k)	3 SO ₂ (g)	CH ₃ OH(s)
AgNO ₃ (k)	KCI(k)	NH ₄ Cl(k)	NaOH(k)
9 MgCl ₂ (k)	10 KOH(k)	C ₂ H ₅ OH(s)	$C_6H_{12}O_6(k)$
ZnSO ₄ (k)	FeCl ₂ (k)	CO ₂ (g)	C ₁₂ H ₂₂ O ₁₁ (k)

- a) Hangileri suda iyonik çözünür?
- b) Hangileri suda moleküler çözünür?
- c) 3. kutucukta yer alan gazın $SO_2(g) + H_2O(s) \rightleftharpoons HSO_3^-(suda) + H^+(suda)$ çözünme türü nedir?
- ç) Tablodaki maddelerden yararlanarak fiziksel çözünmeye ait bir çözünme denklemi yazınız.
- d) CCl_4 sıvısı içerisinde hangi maddeler moleküler çözünür?

Kontrol Noktası

- 1. Aşağıda bazı maddelerin suda çözünme denklemleri verilmiştir. Çözünme denklemlerini inceleyerek hangilerinin iyonik, hangilerinin moleküler çözünme olduğunu yazınız.
 - a) $MgCl_2(k) + H_2O(s) \rightarrow Mg^{2+}(suda) + 2Cl^{-}(suda)$
 - b) $CH_3OCH_3(s) + H_2O(s) \rightarrow CH_3OCH_3(suda)$
 - c) $HCl(g) + H_2O(s) \rightarrow H_3O^+(suda) + Cl^-(suda)$
 - $C_6H_{12}O_6(k) + H_2O(s) \rightarrow C_6H_{12}O_6(suda)$
- 2. Aşağıda bazı maddelerin suda çözünme denklemleri verilmiştir. Çözünme denklemlerini inceleyerek hangilerinin kimyasal, hangilerinin fiziksel çözünme olduğunu karşılarındaki boşluklara yazınız.
 - a) $SO_2(g) + H_2O(s) \rightleftharpoons HSO_3^-(suda) + H^+(suda)$
 - b) $N_2O_5(g) + H_2O(s) \rightleftharpoons 2NO_3(suda) + 2H^+(suda)$
 - c) $AI(OH)_3(k) + H_2O(s) \rightarrow AI^{3+}(suda) + 3OH^{-}(suda)$
 - $(s) I_2(k) + C_E H_E(s) \rightarrow I_2(benzende)$