LISTA DE EXERCÍCIOS

PROBABILIDADE E ESTATÍSTICA MATEMÁTICA

Prof. Anderson Ara PPGMNE - UFPR

Exercício 01: Seja X= distância à origem de um ponto selecionado ao acaso, em um disco de raio r, sendo $0 \le x \le r$. Seja

$$F_X(x) = \left\{egin{array}{ll} 0 & x < 0 \ rac{x^2}{r^2} & 0 \leq x \leq r \ 1 & x > r \end{array}
ight.$$

- a. Esboce o gráfico da função de probabilidade acumulada de X;
- b. Encontre a função densidade de probabilidade de X e a esboce-a graficamente;
- c. Mostre que a função encontrada no item b é uma função densidade de probabilidade;
- d. Calcule E(X) e indique-a no gráfico do item b.

Exercício 02: Seja X uma variável aleatória com distribuição uniforme contínua com parâmetros 0 e 4, mostre que a variância de X é maior que 1.

Exercício 03: Seja $Y \sim \operatorname{Exp}(5)$:

- a. Mostre que $f_Y(y)=5\exp{\{-5x\}}I_{[0,\infty)(x)}$ é uma f.d.p.;
- b. Calcule a probabilidade $P(Y \leq 1)$.

Exercício 04: Em um jogo de tabuleiro em que tirar 1 era crucial, um jogador solicitou que gostaria de jogar com seu próprio dado, pois isso poderia aumentar sua moral durante o jogo. Os adversários eram estatísticos desconfiados quiseram analisar o dado com calma. Assim, realizaram dois experimentos lançando o dado 54 vezes a cada experimento. No primeiro obtiveram 10 faces 1 e no segundo 14 faces 1. Considerando que o dado seja honesto e aproximação normal, calcule a probabilidade de o dado resultar face 1:

- a. 10 vezes ou mais;
- b. Mais que 14 vezes.
- c. Entre 10 e 14 vezes.

Exercício 05: Seja
$$X \sim \mathrm{Beta}(\alpha, \beta)$$
 mostre que $Var(X) = rac{lpha eta}{(lpha + eta + 1)(lpha + eta)^2}$

Exercício 06: Seja o lançamento de três moedas honestas. Seja X o número de caras nos dois primeiros lançamentos e Y o número de caras nos dois últimos.

- a. Encontre a distribuição conjunta de X e Y;
- b. Encontre E(Y|X=1);
- c. Encontre $\rho_{X,Y}$.

Exercício 07: Seja

$$f_{X,Y}(x,y) = 4c(x+y-2xy)I_{(0,1)}(x)I_{(0,1)}(y)$$

- a. Encontre o valor de c para que $f_{X,Y}(x,y)$ seja uma f.d.p.;
- b. Encontre as distribuições marginais das variáveis X e Y;
- c. X e Y são v.a. independentes? Justifique.

Exercício 08: Seja X e Y com distribuição normal bivariada de parâmetros $\mu_x=5$, $\mu_x=10$ $\sigma_X^2=1$, and $\sigma_Y^2=25$. Se $\rho=0$, encontre P(X+Y<16).

Exercício 09: Seja

$$f_{X,Y}(x,y) = rac{1}{8} x(x-y) I_{(0,2)}(x) I_{(-2,2)}(y)$$

- a. Encontre $f_Y(y)$;
- b. Encontre $f_{X|Y}(x|y)$.

Exercício 10: Seja $X \sim \operatorname{Exp}(1)$, encontre a função densidade de probabilidade de Y = 2X + 1.

Exercício 11: Seja $X \sim \mathrm{U}(0,1)$ e $Y \sim \mathrm{U}(0,1)$ com $X \perp Y$

- a. Encontre a função densidade de probabilidade de Z=X+Y;
- b. Calcule E(Z) via a densidade do item a. e verifique que E(X+Y)=E(X)+E(Y)=E(Z) .

Respostas:

E01. d:
$$\frac{2}{3}r$$
.

E02. Mostre que a variância é
$$\frac{4}{3}$$

E03. b:
$$1-e^{-5} pprox 0,993$$

E06. b: 1; c:
$$\frac{1}{2}$$

E07. a:
$$c=rac{1}{2}$$
; b: $X\sim U(0,1)$ e $Y\sim U(0,1)$; c. $X
ot\perp Y$

E08.
$$\Phi\left(\frac{1}{\sqrt{26}}\right)\approx 0,578$$

E09. a:
$$f_Y(y)=rac{1}{3}-rac{1}{4}y$$
; b $f_{X|Y}(x|y)=rac{x(x-y)}{2\left(rac{4}{3}-y
ight)}$

E10
$$f_Y(y) = rac{1}{2} \exp\{-rac{y-1}{2}\} I_{[1,\infty)}(y)$$

E11. a.

$$f_Z(z) = \left\{egin{array}{ll} z & 0 \leq z < 1 \ 2-z & 1 \leq z \leq 2 \end{array}
ight.$$

b.
$$E(Z)=1$$