Written Test Duration 45min

Exercise 1 : (3 points)

For each proposition, verify whether it is valid or not (Justify your answer):

- 1. If $\alpha_1, \alpha_2, ..., \alpha_n = \beta \wedge \delta$ then $\alpha_1, \alpha_2, ..., \alpha_n = \beta$ and $\alpha_1, \alpha_2, ..., \alpha_n = \delta$
- 2. If $\alpha_1, \alpha_2, ..., \alpha_n = \beta \delta$ then $\alpha_1, \alpha_2, ..., \alpha_n = \beta$ or $\alpha_1, \alpha_2, ..., \alpha_n = \delta$
- 3. $\alpha_1, \alpha_2, \ldots, \alpha_n = \beta \delta$ iff $\alpha_1, \alpha_2, \ldots, \alpha_n, \beta = \delta$

Exercise 2 (6 points) Verify the following logical consequences:

- 1. $P \rightarrow Q \lor R$, $\exists Q \rightarrow P$, $\exists Q \lor S \models S$
- 2. $P \rightarrow Q \lor R$, $1Q \rightarrow P \models S$
- 3. $P \rightarrow Q \lor R$, $1Q \rightarrow P$, $1Q \lor S$, $1R \models S$
- 4. $P \rightarrow Q \lor R$, $1Q \rightarrow P$, $1Q \lor S$, 1R, $A \lor B = S$
- 5. $P \rightarrow Q \lor R$, $\exists Q \rightarrow P \mid = S \lor \exists S$
- 6. $P \rightarrow Q \lor R$, $\exists Q \rightarrow P$, $\exists Q \lor (A \rightarrow B)$, $\exists R \models (A \rightarrow B)$

Exercise 3 (5 points + 2 points)

Translate the following statements into propositional language:

Three students, Ali, Brahim, and Cylia, are trying to figure out how their module was validated. Here are the clues they have: $\frac{1}{2}$

- 1. If Ali validated the module, then he did so through continuous assessment.
- 2. If Brahim validated the module, then he did so through a final exam.
- 3. If Cylia validated the module, then she did so through a project.
- 4. No one validated the module through a final exam.
- 5. Ali did not validate the module through continuous assessment.

Who validated the module, knowing that only one of the three did?