USTHB/FGMGP 2^{ème} année Licence. ST

Epreuve fondamentale de mécanique rationnelle

Documents non autorisés - temps alloué: 1 H 30 mn.

EXERCICE 1: (6 points)

Une barre homogène OA, de poids P = 100 N et de longueur 3R, est articulée en O, autour d'un axe horizontal OZ. Elle s'appuie sur un cylindre lisse (sans Frottements) de rayon R = 20 cm et de poids Q = 200 N; lequel s'appuyant sur un plan horizontal lisse.

Le cylindre est maintenu dans sa position d'équilibre ci-indiquée, par un fil inextensible OC de longueur 2R.

Déterminer la tension du fil, ainsi que la réaction en O.

EXERCICE 2: (7 points)

Une barre horizontale AB, de <u>poids négligeable</u>, liée au mur à l'aide d'une articulation sphérique A, est maintenue dans sa position perpendiculaire au mur, grâce à deux câbles CD et EC, comme indiqué sur la figure ci-contre.

A son extrémité B est suspendu un poids P = 100 N.

Données:
$$AC = AH = AE = a = 1 m$$

$$AB = HD = 2a = 2 m$$

Les coordonnées de D sont : (-a; 0; 2a)

Déterminer la réaction de l'articulation sphérique A, ainsi que les tensions T_1 (du câble \bullet) et T_2 (du câble \bullet).

EXERCICE 3: (7 points)

Soit le système mécanique composé:

- d'un cadre \bullet ayant un pivot (articulation cylindrique) en \bullet , animé d'un mouvement de rotation à vitesse constante \circ autour de l'axe \bullet \bullet .

- d'un disque 2 de rayon R et d'épaisseur négligeable, <u>soudé</u> à un axe AB, lié au cadre 2 par les deux articulations cylindriques A et B; le disque est animé d'un mouvement de rotation à vitesse constante $\mathring{\beta}$ autour de l'axe \textcircled{CY}_2 .

On donne: OC = AC = CB = L; $CM = R X_3$.

 $\mathbf{R_0}$ (O,X₀,Y₀,Z₀) : repère fixe ; $\mathbf{R_1}$ (O,X₁,Y₁,Z₁) : repère lié au cadre \mathbf{Q} . $\mathbf{R_2}$ (C,X₂,Y₂,Z₂) // à $\mathbf{R_1}$; $\mathbf{R_3}$ (C,X₃,Y₃,Z₃) : repère lié au disque \mathbf{Q} .

1°/ Etablir les figures planes représentatives des différentes rotations.

 2° / Déterminer le vecteur rotation instantanée du disque par rapport à R_0 exprimé dans R_2 .

 3° / Déterminer par dérivation, la vitesse absolue (par rapport à R_0) de M, exprimée dans R_2 .

 $4^{\circ}/$ En déduire la vitesse absolue de M exprimée dans R_1 et ensuite dans $R_{\vec{\sigma}}$.

5°/ Déterminer par dérivation la vitesse de M par rapport à R₁, exprimée dans R₂

 6° / Déterminer par dérivation, l'accélération absolue (par rapport à R_0) de M exprimée dans R_2 .

Fin

corrigé de l'épreuve fondamentale de mécanique rationnelle

