CMPE 314 Midterm Exam 1

(March 10, 2011)

Problem 1. (15 points)

- (a) Sketch the pn-junction diode's current and voltage characteristic, including the breakdown effect (indicate the current direction and voltage polarity).
- (b) For a forward-biased diode, draw the equivalent circuit for the following piecewise linear models: with turn-on voltage V_{γ} and forward resistance $r_{\rm f}$; with turn-on voltage V_{γ} and zero forward resistance; with zero turn-on voltage and zero forward resistance.

Problem 2. (25 points)

Assume all diodes in the circuit shown have the same reverse-saturation current I_s (full model). Write down the full set of equations that lead to solving v_o , I_{D1} and I_{D2} .

Problem 3. (20 points)

Find and plot v_0 for the circuit and input shown. Assume $r_f = 0$, $V_{\gamma} = 0$.

Problem 4. (20 points)

Find v_0 for the circuit and input shown. Assume $r_f = 0$, $V_{\gamma} = 0$, and the RC time constant is large.

Problem 5. (20 points)

In the circuit shown, $V_Z = 10$ V, $V_I = 20$ V, $R_i = 200$ Ω . Determine the range of R_L so that the power dissipated by the zener diode will not exceed $P_Z(\max) = 400$ mW. (Bonus 5 points if $r_z=10$ Ω is taken into account.)

Solutions to Midterm Exam I

CMPE 3141 Spring Z011

Problem 1

(b) Under forward bias

Problem 2

$$V_{I} = 5 V$$

Di, Dz, Dz all are on.

$$I_{D_2} = \frac{V_0}{R_2} + I_{D_1}$$

$$I_{D_i} = I_s \left(e^{V_0/V_T} - 1 \right)$$

$$I_{D_2} = I_{D_3} = I_s(e^{V_{D_2}/V_T}) \Rightarrow V_{D_2} = V_{D_3}$$

Problem 5

$$P_{z,\text{max}} = V_z \cdot I_z \leq 460 \text{ mW} \qquad + I_i \qquad I_z \downarrow \begin{cases} r_z \\ r_z \end{cases} \qquad + I_i \qquad I_z \downarrow \begin{cases} r_z \\ r_z \end{cases} \qquad + I_i \qquad$$

Ri

$$I_{Ri} = \frac{V_i - (V_z + V_{rz})}{R_i} = \frac{20 - (10 + 0.4)}{200} = 48 \text{ mA}$$

$$V_{RL} = V_2 + V_{r2} = I_L R_L$$

$$R_{L} \leq \frac{V_{z} + V_{rz}}{I_{L}} = \frac{10.4 V}{8 mA} = 1.3 P. \Omega$$

Problem 3

$$V_{I}+2 < -V_{\delta}$$
 diode on $V_{0}=V_{I}+2+V_{\delta}$

VI + Z > - Vy diode off Vo = 0

$$V_0 = 0$$

VI 201 Gode of

Vo= 0

Problem 4

When Ut > VB, diode is on

Capacitur is charging

Vc, max = Vimax - VB

= VM-VB

Vc = Vc, max due to very slow discharging

Vo(t) = Vi(t) - Vc, max = Vi(t) - VM + VB

