$$-$$
, 1.0; -1; $-\frac{2}{3}$.

2.
$$\{(1, 2), (4, 3)\}; \{(2, 1), (4, 3), (3, 4), (3, 1), (1, 4)\}; \{(3, 1), (4, 4)\}.$$

$$3. \neg (\neg A \land \neg B); \neg (A \land \neg B); \neg (A \land \neg B) \land \neg (B \land \neg A).$$

4. Abel 群; 半群; 无.

 $5. n \geqslant 5$; $m \leqslant 2$ 或 $n \leqslant 2$; $m \geqslant 3$ 且 $n \geqslant 3$.

二、1—5: BDABC.

$$\equiv$$
, $1(\sqrt{})$; $2(\times)$; $3(\times)$; $4(\times)$; $5(\sqrt{})$.

四、解 (1)
$$(p \to q) \to r = (\neg p \lor q) \to r = \neg(\neg p \lor q) \lor r$$

$$= (p \land \neg q) \lor r = (p \lor r) \land (\neg q \lor r)$$

$$= (p \lor (q \land \neg q) \lor r) \land ((p \land \neg p) \lor \neg q \lor r)$$

$$= (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r) \qquad (7 分)$$

(2) 列出 $(p \rightarrow q) \rightarrow r$ 的真值表如下.

p	q	r	$p \rightarrow q$	$(p \to q) \to r$
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	1	1
0	1	0	1	0
0	0	1	1	1
0	0	0	1	0

所以,
$$(p \to q) \to r = (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r).$$
 (8分)

五、解 t(R)的关系图如下:

由此可见, $t(R) = A \times A \cdot (10 \ \%)$

六、解 Hasse 图如下: (5分)

- {6, 12, 24, 36}的极大元: 24, 36.
- {6, 12, 24, 36}的极小元: 6.
- {6, 12, 24, 36}的最大元: 无.
- {6, 12, 24, 36}的最小元: 6.
- {6, 12, 24, 36}的上界: 无.
- {6, 12, 24, 36}的下界: 2, 3, 6.
- {6, 12, 24, 36}的上确界: 无.
- {6, 12, 24, 36}的下确界: 6.

(5分)

七、证 用s:苏格拉底,P(x):x是人,D(x):x是要死的,则

$$\forall x (P(x) \rightarrow D(x)), P(s) \Rightarrow D(s)$$
. (5 $\%$)

(1) P(s) P

 $(2) \, \forall x (P(x) \to D(x)) \qquad P$

 $(3) P(s) \to D(s) \qquad \qquad \text{US}(2)$

(4) D(s) T(1)(3)I (5 分)

八、**证** (⇒) 设 G 的节点为 $v_1,v_2,\cdots,v_{n-1},v_n$. 由于 G 是强连通图,G 中任意两个节点相互可达,于是 v_1 到 v_2,v_2 到 v_3,\ldots,v_{n-1} 到 v_n,v_n 到 v_1 存在路,因此存在一条回路通过所有节点. (8分)

(⇐)显然. (2分)