Задание 2. Градиентные методы обучения линейных моделей. Применение линейных моделей для определения токсичности комментария.

Янаков Дмитрий, 317 группа 9 ноября, 2021

1 Введение

В этом задании будут изучены градиентные методы обучения линейных моделей: «градиентный спуск» и «стохастический градиентный спуск», а именно: проведены эксперименты на датасете, содержащим комментарии из раздела обсуждений английской Википедии. Для начала будут выбраны оптимальные параметры для минимизации функции потерь и максимизации точности классификации. Затем, проведя дополнительное исследование, используя лемматизацию и другое векторное представление для комментариев, будет подобрана оптимальная стратегия для классификации. И под конец мы рассмотрим наиболее частые ошибки алгоритма и укажем их общие черты.

2 Пояснения к заданию

Приведём некоторые теоретические выкладки.

1. Рассмотрим задачу бинарной логистической регрессии. Пусть дана обучающая выборка $X=(x_i,y_i)_{i=1}^l,$ где $x_i\in\mathbb{R}^d,$ $y_i\in\mathbb{Y}=\{1,-1\},$ $w\in\mathbb{R}^d$ — вектор весов.

Тогда функция потерь имеет следующий вид:

$$Q(X, w) = \frac{1}{l} \sum_{i=1}^{l} \ln(1 + \exp(-y_i \langle w, x_i \rangle))$$

Выведем формулу градиента функции потерь:

$$d_w Q(X, w) = -\frac{1}{l} \sum_{i=1}^{l} \frac{\exp(-y_i \langle w, x_i \rangle) y_i x_i^T dw}{1 + \exp(-y_i \langle w, x_i \rangle)}$$

$$\Rightarrow \nabla_w Q(x,w) = -\frac{1}{l} \sum_{i=1}^l \frac{\exp(-y_i \langle w, x_i \rangle) y_i x_i}{1 + \exp(-y_i \langle w, x_i \rangle)} = -\frac{1}{l} \sum_{i=1}^l \frac{y_i x_i}{1 + \exp(y_i \langle w, x_i \rangle)}$$

2. Теперь рассмотрим задачу мультиномиальной логистической регрессии, т.е. $\mathbb{Y} = \{1, ..., K\}$. В этом случае функция потерь будет имеет следующий вид:

$$Q(X, w) = -\frac{1}{l} \sum_{i=1}^{l} \ln \frac{\exp(\langle w_{y_i}, x_i \rangle)}{\sum_{k=1}^{K} \exp(\langle w_k, x_i \rangle)} = \frac{1}{l} \sum_{i=1}^{l} \left[\ln \sum_{k=1}^{K} \exp(\langle w_k, x_i \rangle) - \langle w_{y_i}, x_i \rangle \right]$$

Выведем формулу градиента функции потерь:

$$dQ_{w_j}(X, w) = \frac{1}{l} \sum_{i=1}^{l} \left[\frac{\sum_{k=1}^{K} \exp(\langle w_k, x_i \rangle) d\langle w_k, x_i \rangle}{\sum_{k=1}^{K} \exp(\langle w_k, x_i \rangle)} - d\langle w_{y_i}, x_i \rangle \right]$$
$$= \frac{1}{l} \sum_{i=1}^{l} \left[\frac{\exp(\langle w_j, x_i \rangle) x_i^T dw_j}{\sum_{k=1}^{K} \exp(\langle w_k, x_i \rangle)} - x_i^T \left[y_i = j \right] dw_j \right]$$

$$\Rightarrow \nabla_{w_j} Q(x, w) = \frac{1}{l} \sum_{i=1}^{l} \left[\frac{\exp(\langle w_j, x_i \rangle) x_i}{\sum_{k=1}^{K} \exp(\langle w_k, x_i \rangle)} - x_i \left[y_i = j \right] \right]$$

3. Покажем, что при количестве классов =2, задача мультиномиальной логистической регрессии сводится к бинарной логистической регрессии.

Действительно, для бинарного случая, имеем следующую вероятность принадлежности объекта x классу 1:

$$\mathbb{P}(y=1|x) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

В случае двух классов $\mathbb{Y} = \{1, -1\}$, для мультиномиальной регрессии аналогичную вероятность можно выразить следующим образом:

$$\mathbb{P}(y=1|x) = \frac{\exp(\langle w_1, x \rangle)}{\exp(\langle w_1, x \rangle) + \exp(\langle w_{-1}, x \rangle)} = \frac{1}{1 + \exp(\langle w_{-1} - w_1, x \rangle)}$$

Получаем, что задача мультиномиальной регрессии переходит в задачу бинарной логистической регресии с вектором весов $w = -(w_{-1} - w_1) = w_1 - w_{-1}$.

3 Эксперименты

Перед тем, как проводить эксперименты, произведём некоторую обработку текста: приведём все комментарии к нижнему регистру и заменим в них все символы, не являющиеся буквами и цифрами, на пробелы.

Сами комментарии будут представлены векторно с помощью модели **BagOfWords** (с параметром **min df** $= 10^{-4}$). В дальнейшем будет приведено сравнение с моделью **TF-IDF**.

По умолчанию, будем использовать следующие параметры для градиентных методов обучения: максимальное количество итераций = 100, точность, по достижении которой, необходимо прекратить оптимизацию = 10^{-5} , частоту обновления (для стохастического градиентного спуска) = 0.3, а также коэффициент регуляризации = 0.01.

Отметим также, что подбор параметров будет проводиться по анализу следующих зависимостей:

- зависимость значения функции потерь от реального времени работы метода
- зависимость значения функции потерь от итерации метода (эпохи в случае стохастического варианта)
- зависимость точности (accuracy) от реального времени работы метода
- зависимость точности (ассштасу) итерации метода (эпохи в случае стохастического варианта)

3.1 Эксперимент 1

Рассмотрим следующие параметры для градиентного спуска и подберем оптимальные:

- ullet параметр размера шага lpha
- ullet параметр размера шага eta
- начальное приближение w_0

где α и β взяты из формулы для параметра темпа обучения $\eta_k = \frac{\alpha}{k^{\beta}}.$

3.1.1 Параметр размера шага α

Зафиксируем $\beta=1,\,w_0=\vec{0}$ и рассмотрим результаты работы алгоритма при разных α :

Графики зависимости значения функции потерь от времени и итерации, $\beta=1$, $\lambda=0.01$, $\omega_0=\vec{0}$

Сразу отметим тот факт, что графики зависимости от времени и итераций очень похожи, поэтому в дальнейшем мы будем опускать графики зависимости от итераций. Они приведены в **Приложении A**.

Из графиков видно: чем больше α , тем быстрее минимизируется функция потерь. Также заметим, что $\alpha < 0$ не рассматривается, поскольку параметр темпа обучения должен быть положительным.

Для исследования точности (accuracy) разобъем обучающую выборку на две подвыборки в отношении 7:3. Это разбиение будет использовано и далее для подбора других параметров.

Ситуация получается аналогичная: чем больше α , тем быстрее и больше достигается точность.

3.1.2 Параметр размера шага β

Зафиксируем $\alpha = 1, w_0 = \vec{0}$ и рассмотрим результаты работы алгоритма при разных β :

Из графика видно: чем меньше β , тем быстрее минимизируется функция потерь, однако при $\beta=0$ видны осцилляции (на самом деле они есть и при отрицательных β), которые связаны с тем, что алгоритму не хватает количества итераций для того, чтобы график вышел на плато. Также можно заметить, что кривая при $\beta=0.1$ обрывается раньше других. Это связано с тем, что точность, по достижении которой, необходимо прекратить оптимизацию, была достигнута.

Для точности на валидационной выборке получаются следующие результаты:

Выводы аналогичны предыдущему графику: при меньших β достигается большая точность, однако при совсем малых β график не успевает выйти на плато.

3.1.3 Параметр w_0

Зафиксируем $\alpha=1,\ \beta=0.1$ и рассмотрим результаты работы алгоритма при разных начальных приближениях $w_0.$

Возьмём следующие значения для w_0 :

- $w_0 = (0, ..., 0)$. Обозначение: $w_0 = 0$.
- $w_0 = (1, ..., 1)$. Обозначение: $w_0 = 1$.
- $w_0 = (2, ..., 2)$. Обозначение: $w_0 = 2$.
- $w_0 \sim U(0,1)$. Обозначение: $w_0 = \text{uniform}$.
- $w_0 \sim N(0,1)$. Обозначение: $w_0 = \text{normal}$.

Получим следующий результат:

Видно, что при увеличении нормы начального приближения, в первое время функция потерь принимает большие значения. Оптимальным является нулевое начальное приближение, так как функция потерь практически сразу выходит на плато и принимает меньшие значения, по сравнению с другими. Также при нём быстрее достигается оптимизирующая точность. Можно заметить, что функция потерь с начальным приближением, распределенным нормально, ведёт себя примерно так же, как функция потерь с начальным приближением $w_0=1$.

Для точности получаются следующие графики:

В данном случае хоть и видны осцилляции для нулевого начального приближения, график достаточно быстро выходит на плато и показывает результаты лучше, по сравнению с другими.

3.2 Эксперимент 2

В эксперименте 1 мы рассматривали параметры для градиентного спуска. Для стохастического градиентого спуска рассматриваются те же самые параметры, но добавляется еще один — размер подвыборки batch size.

3.2.1 Параметр размера шага α

Зафиксируем $\beta=1,\,w_0=\vec{0},\,{\rm batch_size}=1000$ и рассмотрим результаты работы алгоритма при разных α :

Зависимость значений функций потерь от времени аналогична градиентному случаю: при больших α функция потерь принимает меньшие значения.

Также, графики зависимости от эпох похожи на графики зависимости от времени, поэтому они приведены в **Приложении В**.

Для точности получается следующий результат:

Зависимость полностью аналогична предыдущему случаю, но что интересно: при $\alpha=0.01$ алгоритм проработал меньше всех. Это значит, что в стохастическом случае быстрее была достигнута оптимизирующая точность, но, как оказалось, не точность на валидационной выборке.

3.2.2 Параметр размера шага β

Зафиксируем $\alpha=1,\,w_0=\vec{0},\,{\rm batch_size}=1000$ и рассмотрим результаты работы алгоритма при разных β :

Графики зависимости значения функции потерь и точности от времени, $\alpha = 1$, $\lambda = 0.01$, $\omega_0 = \vec{0}$, batch_size=1000, log_freq=0.3

Здесь уже не наблюдаются сильные осцилляции (однако все равно присутствуют) при $\beta=0$, так как на это еще влияют параметры ${\bf batch_size}$ и ${\bf log_freq}$ (частота обновления), однако ситуация схожа с градиентным спуском: малые β показывают лучший результат. Точность на валидационной выборке приблизительно равна ${\bf 85}\%$.

3.2.3 Параметр w_0

Зафиксируем $\alpha = 1$, $\beta = 0.1$, batch_size = 1000 и рассмотрим результаты работы алгоритма при тех же самых w_0 , как и в эксперименте 1:

Графики зависимости значения функции потерь и точности от времени, $\alpha = 1$, $\lambda = 0.01$, $\omega_0 = \vec{0}$, batch size=1000, log freq=0.3

Нулевое начальное приближение показывает наилучший результат, как для минимизации функции потерь, так и для максимизации точности на валидационной выборке. Функции потерь для $w_0=1$ и $w_0=normal$ ведут себя даже более похоже, чем в случае градиентного спуска.

3.2.4 Параметр batch size

Зафиксируем $\alpha=1,\ \beta=0.1,\ w_0=\vec{0},$ и рассмотрим результаты работы алгоритма при разных batch size:

Графики зависимости значения функции потерь и точности от времени, $\alpha=1,\,\beta=0.1,\,\lambda=0.01,\,\omega_0=\vec{0},\,\log_{1}(\alpha=0.3)$

Видно, что при малых размерах подвыборки, алгоритм быстро прекращает работу, не добившись хорошего результата. С увеличением размера минимизируется функция потерь и увеличивается точность. Однако тут не прослеживается хорошей зависимости от размера, поскольку в разные моменты времени, алгоритм с меньшим размером подвыборки может выдавать результат лучше, чем алгоритм с большим размером, и как видно, функция потерь не сразу выходит на плато.

3.3 Эксперимент 3

Теперь, когда мы подробно изучили зависимость функции потерь и точности от различных параметров для градиентного спуска (GD) и стохастического градиентного спуска (SGD), мы можем сравнить их поведение.

Зафиксируем следующие параметры: $\alpha=1.5,\,\beta=1,\,w_0=\vec{0},\,\mathrm{batch_size}=1000.$ Получим следующие результаты:

		Время работы, с	Точность на валидационной выборке, %	Значение функции потерь		
	GD	14.80	81.20	0.50		
5	SGD	1.89	81.32	0.50		

Время работы стохастического градиентного спуска гораздо меньше времени работы обычного градиентного спуска. Это достигается за счёт того, что на каждой итерации алгоритма выбираюся не все объекты, а только некоторое их подмножество. Точность у SGD чуть выше, но итоговое значение функций потерь одинаково.

Для наглядности, проиллюстрируем результат в виде графиков:

Сравнение GD и SGD, α = 1.5, β = 1, λ =0.01, ω_0 = $\vec{0}$, batch_size=1000, log_freq=0.3

3.4 Эксперимент 4

Попробуем применить алгоритм лемматизации (приведение слов в начальную форму) с удалением стоп-слов и исследуем, как такая предобработка данных повлияет на точность классификации, время работы алгоритма и размерность признакового пространства.

На примере покажем, как изменяется предложение:

- до лемматизации и удаления стоп-слов: how could i post before the block expires the funny thing is you think i m being uncivil
- после лемматизации и удаления стоп-слов: could post block expires funny thing think uncivil

Как видно, размер предложения существенно уменьшился, что вероятно скажется на размерности признакового пространства. Действительно: до лемматизации и удаления стоп-слов, размерность признакового пространства составляла — 16050, после — 14291.

Сравним время и точность для разных алгоритмов с теми же параметрами, как в эксперименте 3:

	Время работы, с	Точность классификации, %
GD без предобработки	14.81	81.20
GD с предобработкой	10.12	82.01
SGD без предобработки	1.90	81.32
SGD с предобработкой	1.72	81.45

Как видно из результатов, лемматизация и удаление стоп-слов действительно помогли увеличить точность классификации и уменьшить время работы как в случае градиентного спуска, так и в случае стохастического градиентного спуска. Причём в случае градиентного спуска изменения более значительные.

Связано это, конечно, с тем, что размерность признакового пространства уменьшилась и алгоритм обрабатывает меньший объем данных. К тому же, после обработки исчезли менее значительные слова, что также повлияло на точность.

3.5 Эксперимент 5

В начале мы упомянули, что будем использовать векторное представление для комментариев с помощью модели **BagOfWords** (**BOF**). Попробуем теперь использовать модель **TF-IDF** и сравнить качество, время работы алгоритмов и размерность признакового пространства.

Поскольку словарь при новом представлении не изменился, то не изменилась и размерность признакового пространства. Она также равна **16050**.

Рассмотрим, как меняется точность и время работы алгоритмов в зависимости от модели при тех же параметрах, как в эксперименте 3, кроме параметра batch_size. В этом эксперименте batch_size = 2500.

Зависимость качеста от векторного представления, $\alpha=1.5, \beta=0.1, \lambda=0.01, \omega_0=\vec{0}, \text{ batch_size}=2500, \log_{10} \alpha=0.3$

Видно, что точность на модели **BOF**, больше чем на **TF-IDF** как для градиентного спуска, так и для стохастического градиентного спуска. Однако время работы примерно одинаковое. В случае GD **TF-IDF** работает быстрее, чем **BOF**; в случае SGD **TF-IDF** работает медленнее.

Важно отметить, что данный результат справедлив только для $batch_size = 2500$. Если варьировать данный параметр, то будет меняться продолжительность работы алгоритмов, но точность **BOF** будет оставаться больше.

3.6 Эксперимент 6

Исследуем зависимость качества, времени работы и размерности признакового пространства в зависимости от следующих параметров модели **BOF**:

- min df
- max df

3.6.1 Параметр min df

Проиллюстрируем зависимость точности от времени для различных значений параметра:

Для случая GD видно, что при увеличении значении параметра, уменьшается точность и итоговое время работы алгоритма. Связано это конечно с тем, что размерность признакового пространства падает, поскольку исчезают слова с частотой меньше, чем заданный параметр.

Для случая SGD график с наименьшим значением параметра быстрее всех выходит на плато. По времени работы ситуация аналогична с GD.

3.6.2 Параметр max df

Проиллюстрируем зависимость точности от времени для различных значений параметра:

Зависимость качеста от max_df, α = 1.5, β = 0.1, λ =0.01, ω_0 = $\vec{0}$, batch_size=1000, log_freq=0.3

В случае слишком малого значения параметра высокой точности не наблюдается. При увеличении значения параметра, точность растёт, но увеличивается и время работы алгоритма, хотя размерность признакового пространства, как будет показано далее, увеличивается ненамного.

Поскольку вероятность того, что в комментариях будут одни токсичные слова, конечно, же мала, то увеличение точности связано вероятнее всего с тем, что удаляются слова с частотой большей, чем заданный параметр.

3.6.3 Сравнение

Сравним значения для размерностей признаковых пространств при разных значениях параметров:

	$\min_{ ext{d}} ext{d} ext{f}$				\max_{df}				
	0.1	0.01	0.0001	0.00001	0.001	0.01	0.1	0.2	0.5
Размерность	89658	16050	3736	568	85922	89090	89603	89638	89655

Заметим, что размерность уменьшается гораздо быстрее в случае варьирования параметра min df, то есть варьирования наименьшей частоты, при которой слово добавляется в словарь.

3.7 Эксперимент 7

После исследования многих параметров и моделей вернёмся к тестовой (не валидационной) выборке и выберем лучший алгоритм для неё.

Для достижения более правдоподобной точности, увеличим максимальное количество итераций до 1000.

Используем стохастический градиентный спуск с моделью **BagOfWords** (и параметром $\min_{d} df = 0.001$) и следующими параметрами: $\alpha = 1.5$, $\beta = 0.1$, $w_0 = \vec{0}$ и $batch_size = 3000$.

Точность на тестовой выборке составила — 82.93%, а итоговое время работы — 68.59с. Рассмотрим некоторые типичные ошибки, которые допускает алгоритм:

- Например, комментарий «Dear god this site is horrible.» был классифцирован, как токсичный, хотя таковым не является. Скорее всего, это из-за того, что он содержит слово «horrible».
- Другой пример: комментарий « That's helpful. MOS be damned, Thecodingproject thinks it's '10x' worse.» был классифцирован, как нетоксичный, хотя является токсичным. Возможно, алгоритм не считает слово « damn» весомым, для того, чтобы отнести комментарий к токсичному. И это резонно, поскольку « damn» может выражать так же и удивление.

То есть, в основном, ошибки допускаются из-за того, что алгоритм попросту не понимает смысла предложения. У него есть слова, которые прибавляют веса к токсичности, а есть те, которые уменьшают. Также есть случаи неанглийских комментариев, на которых алгоритм, очевидно, может легко допустить ошибку, поскольку обучается он преимущественно на английских комментариях.

4 Выводы

Итак, мы рассмотрели датасет комментариев из раздела обсуждений английской Википедии и провели эксперименты над ним для выявления наилучшего алгоритма для классификации. Изначально мы определили оптимальные параметры как для градиентного спуска, так и для стохастического градиентного спуска. Потом попробовали изменить векторное представление для комментариев, а также применили лемматизацию для повышения точности классификации. Важно отметить, что, точность, которую мы получили — скорее всего далеко не предел, поскольку в наших экспериментах мы фиксировали какие-то параметры, а какие-то варьировали. Для достижения большей точности нужно рассматривать комбинации различных значений параметров. В заключение были отмечены некоторые ошибки, которые свойственны нашему алгоритму.

5 Приложение А. Градиентный спуск.

6 Приложение В. Стохастический градиентный спуск.

