# Applications of Intrinsic Gaussian Distributions on Symmetric Spaces

Dustin Pluta

UCI, Dept. of Statistics

## Summary of Projects

- Adaptive Mantel Test for Association Testing in Imaging Genetics Data. (resubmitting)
   Zhaoxia Yu, Hernando Ombao (KAUST), Chuansheng Chen (UCI), Gui Xue (Beijing Normal University)
- Latent Factor Gaussian Process Model for Non-stationary Time Series. (submitted to NeurIPS 2019)
   Lingge Li, Babak Shahbaba, Norbert Fortin (UCI), Pierre Baldi
- Random Effects Mediation Model for Imaging Genetics Studies. (in progress)
   Zhaoxia Yu
- Statistical Applications of Harmonic Analysis on Symmetric Spaces. (in progress)
   Motivated by discussions with Moo Chung (Univ. of Wisconsin), Hernando Ombao, Andrew Holbrook.

#### LFGP Model

 The central idea of the Latent Factor GP model is to map the covariance process into Euclidean space using the matrix logarithm.



**Figure 1:** The matrix logarithm maps the space of symmetric positive definite (SPD) matrices to the tangent space at the identity.

#### Overview

- 1. Definition of the intrinsic Gaussian distribution as the solution to the heat equation.
- 2. The intrinsic Gaussian on hyperbolic space.
- 3. The differences of the Log-Euclidean Gaussian and the intrinsic Gaussian for SPD matrices.

#### Reference

Essentially all of the theoretical results discussed here are presented in Harmonic Analysis on Symmetric Spaces, A. Terras 2013/2016.

**Audrey Terras** Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré **Upper Half-Plane** Second Edition Springer

## Background

#### Symmetric Spaces

- Symmetric spaces are an important class of Riemannian manifolds with a special structure
- · Examples of symmetric spaces are
  - $\mathbb{R}^n$ : Euclidean space
  - $S^{n-1}$ : Sphere
  - · H: Poincaré upper half plane
  - $\mathcal{P}_n$ : space of  $n \times n$  symmetric positive definite matrices

## The Heat Equation on $\mathbb{R}^n$

## Definition: The Heat Equation on $\mathbb{R}^n$

$$\begin{cases} \frac{\partial E}{\partial t} - a^2 \Delta E = \delta(x, t) & t > 0, x \in \mathbb{R}^n \\ \Delta = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} \end{cases}$$

- $\Delta$  is the Laplacian operation on  $\mathbb{R}^n$ ,
- a is a constant related to the diffusion rate.

## The Heat Equation on $\mathbb{R}^n$

#### **Definition: Fourier Transform**

$$\hat{f}(t) = \int_{-\infty}^{\infty} \exp\{-2\pi i t x\} f(x) \, dx.$$

#### Theorem. Properties of the Fourier Transform

- 1.  $D^a \hat{f} = \widehat{(-2\pi i x)^a} f$
- $2. \widehat{D^a f} = (2\pi i x)^a \widehat{f}$
- 3. Convolution:  $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$
- 4. Fourier Inversion:  $\hat{f}(x) = f(-x)$

## The Heat Equation on $\mathbb{R}^n$

To solve the heat equation, apply the Fourier transform to change the problem into an ODE:

$$\frac{d\hat{E}}{dt} + (2\pi a ||x||)^2 \hat{E} = 1$$

$$\hat{E}(t) = \exp\{-(2\pi a x)^2 t\} \cdot \mathbf{1}[t > 0]$$

$$E(x,t) = \hat{E}(-x,t) = \exp\{-\widehat{(2\pi a ||x||)^2 t}\} \cdot \mathbf{1}[t > 0]$$

$$E(x,t) = (2a\sqrt{\pi t})^{-n} \exp\left\{-\frac{1}{2}\frac{||x||^2}{4a^2 t}\right\} \cdot \mathbf{1}[t > 0]$$

## Fundamental Solution to the Heat Equation on $\mathbb{R}^n$

Setting t = 1 and v = 2a, we write

$$G_v(x) := (2\pi v^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{\|x\|^2}{v^2}\right\}$$

## The Heat Equation on Symmetric Spaces

Let  $\mathcal M$  be a symmetric space with Riemannian metric  $d\mu$ .

#### Definition: The Intrinsic Laplacian

The intrinsic Laplacian operator  $\Delta^*$  on  $\mathcal{M}$  is the operator obtained by transforming  $\Delta$  according to the change of coordinates  $\mathbb{R}^n \to \mathcal{M}$ .

#### Definition: The Intrinsic Gaussian

The intrinsic Gaussian  $G_v(x)$  for  $(\mathcal{M}, d\mu)$  is the fundamental solution to the heat equation for the intrinsic Laplacian.

## Definition: Poincaré Upper Half-plane

The Poincaré upper half-plane is the space

$$H = \{x + iy \mid x, y \in \mathbb{R}, y > 0\}, \text{ where } i = \sqrt{-1}.$$



**Figure 2:** Tesselation of **H** for  $SL(2,\mathbb{Z})$ . [Terras 2013]

The Poincaré Disk model is also commonly used to represent H.



Figure 3: Illustration by Coxeter that inspired Escher. [Terras 2013]

#### Definition: Arc Length on H

The arc length on H is given by

$$ds^2 = y^{-2}(dx^2 + dy^2)$$

#### Definition: Geodesic polar coordinates on H

$$x = y \sinh r \sin(2\theta), \quad y = (\cosh r + \cos(2\theta) \sinh r)^{-1}$$

#### Definition: Heat Equation on H

$$\Delta^* u = \frac{\partial u}{\partial t} = y^2 \Delta u(x + iy, t), \quad u(z, 0) = \delta(z)$$

We can solve the hyperbolic heat equation to find an expression of the hyperbolic Gaussian density function.

## Density of the Hyperbolic Gaussian

$$G_{t}(e^{-r}i) = \frac{\sqrt{2}}{(4\pi t)^{3/2}e^{t/4}} \int_{r}^{\infty} \frac{be^{-b^{2}/4t} db}{\sqrt{\cosh b - \cosh r}}$$

# Hyperbolic Gaussian



**Figure 4:** Hyperbolic Gaussian density along the *y*-axis for various values of t. [Terras 2013]

# Hyperbolic Gaussian



Figure 5: Level curves of the hyperbolic Gaussian, upper half-plane model.

# Hyperbolic Gaussian



Figure 6: Density of the hyperbolic Gaussian, Poincaré disk model.

## Central Limit Theorem on the Hyperbolic Upper Half-Plane

#### CLT on H

Suppose that  $\{Z_n\}_{n\geq 1}$  is a sequence of iid SO(2)-invariant random variables in **H** with density f(z). Let  $S_n=Z_1\circ\cdots\circ Z_n$  be normalized as  $S_n^\#$ . Then for measurable sets  $A\subset H$  we have

$$\int_{A} f_{n}^{\#}(z) d\mu \to \exp(d/4) \int_{A} G_{d/4}(z) d\mu \quad \text{as } n \to \infty,$$

where  $G_c$  is the Gaussian on **H**, and with  $d = 2\pi \int_{r>0} f_Z(e^{-r}i)r^2 \sinh r dr$ .

## **Application to Adaptive Mantel Test**

#### Application to the Mantel Test and Metric Learning

Using the intrinsic Gaussian G on H (or  $SL(n,\mathbb{R})/SO(n)$  for n>2), we can state a Bayesian model for the observed data

$$Y \sim \mathcal{N}(0, \sigma^{2}X^{T}WX + \sigma_{\varepsilon}^{2}I_{m})$$

$$W \sim G_{\mathcal{SP}_{n}}(I, v)$$

$$\sigma^{2} \sim Gamma(a, b)$$

$$\sigma_{\varepsilon}^{2} \sim Gamma(c, d),$$

where values are chosen for v (prior variance of W) and a, b, c, d (according to prior beliefs about variance of Y and  $h^2 = \sigma^2/(\sigma^2 + \sigma_e^2)$ ).

# **Application to Modeling Covariance Matrices**

- The Gaussian on  $\mathcal{P}_d$  can be derived using a similar strategy as for  $\mathbf{H}$ .
- The Log-Euclidean and intrinsic Gaussians agree at the identity, and diverge as one moves towards the boundary.
- Since covariance matrices resulting from real data are often approximately low-rank, the differences between the two distributions could be substantial in practice.



## Summary

- 1. For many symmetric Riemannian manifolds, we can define an intrinsic Gaussian distribution as the solution to the heat equation for the intrinsic Laplacian.
- 2. The intrinsic distributions may give better behavior near the boundary of the manifold than Gaussians defined on the tangent space.
- 3. The intrinsic Gaussian shares many properties of the usual normal distribution, including a Central Limit Theorem.
- 4. Consequently, if random errors "combine" according to the Riemannian geometry of the manifold, the combined errors will approximately follow an intrinsic Gaussian distribution.

#### Thanks!

#### Reference

A. Terras. *Harmonic Analysis on Symmetric Spaces and Applications*. 2013 Springer.

Slides available at:

https://github.com/dspluta/HASS/



Figure 7: Escher, Circle Limit III