Les vecteurs.

I. Translation et vecteurs.

Définition : Soient A et B deux points du plan.

La translation qui transforme A en B est appelée translation de vecteur \overrightarrow{AB} .

Image d'un point C par la translation de vecteur \overrightarrow{AB} .

1er cas : $C \notin (AB)$.

D est le point tel que ABDC est un parallélogramme.

2éme cas : C ∈(AB).

D est le point de (AB) tel que AB=CD et tel que le sens de C vers D soit le même que celui de A vers B.

II. Égalité de deux vecteurs.

a. Définition.

Définition : Dire que deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux signifie que la translation qui transforme A en B transforme C en D. On note $\overrightarrow{AB} = \overrightarrow{CD}$.

Conséquence : Si $\overline{AB} = \overline{CD}$, que peut-on dire du quadrilatère ABDC ? Inversement si ABDC est un parallélogramme, éventuellement aplati.

b. Représentant d'un vecteur.

La translation de vecteur \overrightarrow{AB} , transforme C en D, E en F, G en H.....

On a alors $\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF} = \overrightarrow{GH}$.

On dit que \overrightarrow{AB} , \overrightarrow{CD} , \overrightarrow{EF} et \overrightarrow{GH} sont des représentants d'un même vecteur que l'on peut également noter \overrightarrow{u} par exemple.

c. Vecteurs opposés.

Le vecteur opposé au vecteur \overrightarrow{AB} est le vecteur associé à la translation qui transforme B en

A. C'est le vecteur \overrightarrow{BA} .

III. Somme de deux vecteurs.

a. Deux translations.

Soient \vec{u} et \vec{v} deux vecteurs et ABCDE un polygone.

- 1. Construire A'B'C'D'E', image du polygone ABCDE par la translation de vecteur \vec{u} .
- 2. Construire A"B"C"D"E" image du polygone A'B'C'D'E' par la translation de vecteur \vec{v} .

La translation qui transforme A en A" est dite translation de vecteur $\vec{u} + \vec{v}$

Propriété-définition : Soient \vec{u} et \vec{v} deux vecteurs.

L'enchaînement des translations de vecteur \vec{u} et de vecteur \vec{v} est une translation. On dit alors que c'est la translation de vecteur $\vec{u} + \vec{v}$.

Construction : Construire le point M tel que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{EF}$

b. Relation de Chasles.

Relation de Chasles : Soient A, B et C trois points.

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Exemple: Réduire les sommes suivantes:

$$\overline{MN} + \overline{NP} =
\overline{MI} + \overline{IJ} + \overline{JK} =
\overline{CA} + \overline{NC} =$$

c. Règle du parallélogramme.

Soient A, B et C trois points. Soit le point D tel que $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$. Quelle est la nature du quadrilatère ABDC ?

On sait que $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$

D'après la relation de Chasles, on sait que $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$ d'où $\overrightarrow{AC} = \overrightarrow{BD}$.

On en déduit que ABDC est un parallélogramme.

Réciproquement, soit ABDC un parallélogramme. A quel vecteur est égal le vecteur $\overrightarrow{AB} + \overrightarrow{AC}$?

Propriété: Soient A, C, et D quatre points.

ABDC est une parallélogramme si et seulement si $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$

d. Le vecteur nul

Soient A et B deux points du plan.

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA}$$

Le vecteur \overrightarrow{AA} est le vecteur associé à la translation qui transforme A en A. On dit que \overrightarrow{AA} est le vecteur nul et on le note $\overrightarrow{0}$.

IV. Produit d'un vecteur par un nombre réel.

a. Définition.

Exemple : Soit \vec{u} un vecteur.

Construire le vecteur $2\vec{u}$ et le vecteur $-3\vec{u}$.

Propriété : Soit un vecteur \vec{u} et λ un nombre réel.

Soient A et B deux points tel que $\vec{u} = \overline{AB}$.

Le point C tel que $\lambda \vec{u} = \overline{AB}$ est tel que :

- $C \in [AB]$ et $AC = \lambda AB$ si $\lambda > 0$.
- $C \in (AB)$ mais $C \notin (AB)$ et $AC = -\lambda AB$ si $\lambda < 0$

b. Propriétés.

Propriété : Soient \vec{u} et \vec{v} deux vecteurs et λ et λ ' deux réels.

- $\lambda \vec{u} = \vec{0}$ si et seulement si $\lambda = 0$ ou $\vec{u} = \vec{0}$
- $\lambda(\vec{u} + \vec{v}) = \lambda \vec{u} + \lambda \vec{v}$
- $(\lambda + \lambda') = \lambda \vec{u} + \lambda' \vec{u}$

Exemple: Réduire les sommes suivantes:

- $2\overline{AB} + 2\overline{BC} =$
- $5 \overrightarrow{MN} 2 \overrightarrow{MN} =$

Propriété: Soient A et B deux points.

$$\overrightarrow{AB} = -\overrightarrow{BA}$$

c. Vecteurs colinéaires.

Définition : On dit que deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires s'il existe un réel λ tel que $\vec{u} = \lambda \vec{v}$.

Le vecteur $\vec{0}$ est colinéaire avec tous les vecteurs du plan.

On admettra les propriétés suivantes :

Propriétés :

- trois points A,B, et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- Deux droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD}

sont colinéaires.

d. Milieu d'un segment.

Propriété : I est le milieu d'un segment [AB] si et seulement si soit $\overrightarrow{AI} = \overrightarrow{IB}$ soit $\overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$