EXERCISES

[1] Certain tubes manufactured by a company have a mean lifetime of 800 hours and a standard deviation of 40 hours. Find the probability that a random sample of 36 tubes taken from the group will have a mean lifetime.

a- Between 790 and 810 hours,

b- More than 815 hours.

[2] A and B manufacture two types of cables, having mean breaking strengths of 4000 and 4500 pounds and standard deviations of 300 and 200 pounds respectively. If 100 cables of brand A and 50 cables of brand B are tested, what is the probability that the mean breaking strength of B will be

a- At least 600 pounds more than A,

b- At least 450 pounds more than A.

[3] Find **a-** P($-t_{0.005} < t < t_{0.01}$) **b-** Find P(t >- $t_{0.025}$).

[4] Given a random sample of size 24 from a normal distribution, find, K such that

a- P(-2.069 < t < K) = 0.965

b- P(K < t < 2.807) = 0.095.

C- P(-K < t < K) = 0.90.

[5] Consider the four independent random variables X, Y, U and V such that $X \sim$ N(0,16), Y ~ N(5,4), U ~ $\chi^2(4)$ and V ~ $\chi^2(16)$.

State the distribution of each of the following variables

 $a - \frac{X^2}{16} + \frac{(Y-5)^2}{4}$ $b - \frac{X}{\sqrt{V}}$ $c - \frac{4U}{V}$ d - X + 2Y e - 2X - Y

[6] If X_1 , X_2 , ..., X_n are i.i.d. $N(0,\sigma^2)$, state the distribution of each of the following variables:

a- U = 3 X_1 - 5 X_2 + 8 **b-** V = $\sum_{i=1}^{n} X_i$

 $c-W = \left(\sum_{i=1}^{n} X_{i}\right)^{2} / n \sigma^{2}$ $d-Y = \frac{2X_{1}^{2}}{X_{2}^{2} + X_{2}^{2}}$ $e-Y = \frac{\sum X_{i}}{\sqrt{\sum X_{i}^{2}}}$

[7] If X_1 , X_2 , ..., X_n are i.i.d. $N(0,\sigma^2)$, state the distribution of each of the following variables:

a- Y = 5 X₁ -7 X₂ +2 **b-** Y = $\frac{2 X_1^2}{X_2^2 + X_3^2}$ **c-** Y = $\frac{\sum X_i}{\sqrt{\sum X_i^2}}$

[8] Suppose that X_1 , X_2 , X_3 and X_4 are i.i.d. $N(0,\sigma^2)$, then the distribution of the random

variable $Y = \frac{X_1 + X_2}{\sqrt{X_3^2 + X_4^2}}$ is a. $\chi^2(2)$ b. t(2)

c. F(2,2)

d. None of the above.

- [9] Consider the three independent random variables X, U and V such that $X \sim N(0,1)$, $U \sim \chi^2(4)$ and $V \sim \chi^2(16)$. Find the distribution of $W = X^2 + U + V$.
- [10] Let \overline{X} and \overline{Y} be sample means of two independent random samples of sizes 10 and 20 from N(4,9) and N(5,16) respectively. Find mean, variance and distribution of $Z = \overline{X} - 2\overline{Y} + 3$.
- [11] Show that if X has a t distribution with v d.f., then $Y=X^2$ has an F distribution with $\mathbf{v}_1 = 1$ and $\mathbf{v}_2 = \mathbf{v}$ d.f.
- [12] Circle the best answer from each of the following multiple-choice questions: Let X ~ N(1,16), Y ~ N(0,4) and U ~ χ^2 (15) be three independent r.v's.
 - **a-** The distribution of 2X-3Y+5 is

i. N(7,28)

ii. N(7,100)

iii. N(2,105) iv. None of the above.

b- One of the following r.v.'s has F(16,1)

i. $\frac{U+Y^2/4}{(X-1)^2/16}$ ii. $\frac{U+Y^2/4}{(X-1)^2}$ iii. $\frac{(U+Y^2/4)/16}{(X-1)^2}$ iv. None of the above.

c- The distribution of $\frac{X-1}{\sqrt{Z^2+U}}$ is

i. t(3)

iii. t(16) iv. None of the above.

<+><+><+><+><+><+><+><+><+>