

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Кафедра "Космические аппараты и ракеты-носители" Дисциплина «Динамика летательных аппаратов»

Домашнее задание №2

Вариант №5

Студент: Зацепин Матвей

Геннадьевич

Группа: СМ1-81

ЗАДАНИЕ

При выполнении ДЗ №2 использовать результаты ДЗ №1.

- 1. Используя «универсальную диаграмму устойчивости» **оценить** устойчивость движения упругой ракеты по траектории.
- 2. Если полученный ответ отрицательный (движение неустойчиво), то:
 - уточнить границы смежной области неустойчивости
 - предъявить требования к АС.
- 3. Если полученный ответ положительный (движение устойчиво), то необходимо уточнить границы неустойчивости смежных областей.

При расчетах полагать, что $\varepsilon = 0.001$.

Градиент управляющей силы вычислить по формуле: $R_{yp} = k_p \cdot M_0 \cdot g_0$, где M_0 — стартовая масса, g_0 — ускорение свободного падения, k_p — коэффициент, заданный в таблице.

Амплитуду АС для частоты большей, чем частота среза вычислять по формуле:

$$\begin{split} A_{\rm AC} &= 0.5 \cdot exp(0.01 \cdot (\omega_0 - \omega)) \\ \varphi_{\rm AC} &= -\frac{\pi(\omega_0 - \omega)}{\omega_0 - \omega_\pi} \text{ для } \omega_0 < \omega < \omega_\pi; \\ \varphi_{\rm AC} &= -\pi - \frac{\pi(\omega_\pi - \omega)}{\omega_\pi - \omega_{2\pi}} \text{ для } \omega_\pi < \omega < \omega_{2\pi}; \end{split}$$

Порядковый номер в	Схема ракеты	Номер варианта
журнале старосты		
5	I	3

Таблица 1 – Исходные данные

Nº	Координаты сечения [м]					Параметры АС			M ₁	M_2	J_0	Хгп					
вар.	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9	\mathbf{w}_0	Wp	W_{2p}	k p	[т]	[т]	$[TM^2]$	[w]
5	2.0	4.0	5.0	9.0	13.0	14.0	17.0	20.0	23.0	20	50	110	0.5	2.0	1.5	2.0	4.5

Схема №1

Рисунок 1 — Схема распределенных масс и погонных жесткостей

РЕШЕНИЕ

1. Оценка устойчивости движения упругой ракеты по заданной траектории

Для того, чтобы параметры объекта регулирования были расположены в области устойчивости, необходимо, чтобы выполнились следующие условия:

1. Для первого тона колебаний $f_n(x_p) \cdot f_n'(x_r) > 0$, для второго тона колебаний $f_n(x_p) \cdot f_n'(x_r) < 0$;

2.
$$\omega_0 < \omega_1 < \omega_{\pi}$$
, $\omega_{\pi} < \omega_2 < \omega_{2\pi}$

Первое условие:

Для первого тона: $f_1(x_p) \cdot f_1'(x_r) = -0.09 < 0$, что означает невыполнение условия устойчивости.

Для второго тона: $f_2(x_p) \cdot f_2'(x_r) => 0$, что означает невыполнение условия устойчивости.

Первое условие не выполняется.

Второе условие:

Используя исходные данные и полученные в первой части ДЗ результаты значений собственных частот:

 $\omega_1 = 17.571 \, \text{рад/c}$

 $\omega_2 = 68,909 \text{ рад/с}$

 $\omega_0 = 20 \, \mathrm{pag/c}$

 $\omega_{\pi}=50\ \mathrm{pag/c}$

 $\omega_{2\pi}=110~{
m pag/c}$

Первое двойное неравенство $\omega_0 < \omega_1 < \omega_\pi$ примет вид:

Это неверно, неравенство не выполняется.

Второе двойное неравенство $\omega_{\pi} < \omega_{2} < \omega_{2\pi}$ примет вид:

4

Это верно, неравенство выполняется.

Из 2 равенств следует, что ракета не устойчива.

2. Уточнить границы смежной области неустойчивости и предъявить требования к АС.

Для начала необходимо задаться формулами, позволяющими определить координаты зеркал компонентов топлива x_4 и x_7 .

Длины баков:

Окислителя: $L_{ok} = x_5 - x_3$

Горючего: $L_{\Gamma} = x_8 - x_6$

Пускай процент заполненности бака есть s = 0..1

Тогда длина незаполненных частей бака:

Окислителя: $L_{ok} = (x_5 - x_3)(1 - s)$

Горючего: $L_{\Gamma} = (x_8 - x_6)(1 - s)$

Тогда искомые координаты зеркал:

- для жидкости в баке окислителя

$$x_4 = x_3 + (x_5 - x_3) \cdot (1 - s)$$

- для жидкости в баке горючего

$$x_7 = x_6 + (x_8 - x_6)(1 - s)$$

Будем искать первые 2 собственные частоты s по мере опустошения ракеты, так получим диаграммы устойчивости по мере опустошения ракеты:

Рисунок 2 — Диаграммы устойчивости для двух первых собственных частот Таблица 2 — Результаты расчетов для различных степеней заполнения

% заполнения баков	w1	f10(Xp)·f10(Xgp)	w2	f20(Xp)·f20(Xgp)
0	49,600	-0,572	138,500	0,391
5	30,601	-0,402	128,480	0,842
10	25,360	-0,295	121,315	1,172
15	22,630	-0,228	114,500	1,423
20	20,93	-0,185	107,81	1,576
25	19,78	-0,155	101,059	1,619
30	18,779	-0,134	94,285	1,562
40	18,015	-0,106	80,96	1,26
50	17,571	-0,09	68,9	0,903
60	17,421	-0,083	59,126	0,617
70	17,403	-0,081	51,87	0,419
80	17,364	-0,084	46,909	0,294
90	17,162	-0,094	43,845	0,221
100	16,701	-0,108	42,181	0,186

Для первого тона собственных колебаний ракеты выполняется условие $\omega_0 < \omega_1 < \omega_\pi$ для случая «сухой» ракеты и ракеты, заполненной топливом на s=20% и менее

Для второго тона собственных колебаний выполняется одно из определяющих устойчивость ракеты неравенств $\omega_{\pi} < \omega_2 < \omega_{2\pi}$ для случая степени заполнения s=20..70%

То есть ракета устойчива в окрестности 20%, расчеты с меньшим шагом дают границы:

При
$$s_1=0$$
,183: $\omega_2=110$; $\omega_1=21$,429, при $s< s_1-\omega_2>110$
При $s_2=0$,236: $\omega_2=102$,953; $\omega_1=20$, при $s> s_2-\omega_1<20$

Этим значениям s соответствуют значения зеркал жидкости: При $s_1 = 0.183$:

$$x_4 = 5 + 6 \cdot (1 - 0.183) = 9.902$$

 $x_7 = 12 + 4(1 - 0.183) = 15.268$

При $s_1 = 0.236$

$$x_4 = 5 + 6 \cdot (1 - 0.236) = 9.584$$

 $x_7 = 12 + 4(1 - 0.236) = 15.056$

При этом первое условие устойчивости не выполняется, по построенной диаграмме устойчивости (рис. 2) для первого тона $f_n(x_p) \cdot f'_n(x_r) < 0$, для второго тона колебаний $f_n(x_p) \cdot f'_n(x_r) > 0$ Поэтому **необходимо сменить** положение гироскопической платформы.

Найдем куда следует переместить гироплатформу: введем вспомогательную функцию $\varphi_n(x) = f_n(x_p) \cdot f_n'(x)$. Далее построим ее график для первых двух тонов колебания для сухой ракеты, и для заполненных на 20% баков, то есть **для s = 0.2:** Для первого тона:

Для второго тона:

А также для сухой ракеты:

Для первого тона:

Для второго тона:

Вариант заполнения	X _{ГП} из условий устойчивости
ω_{1} , 20% заполнения баков	5,269 - 9,627 13,924 - 19
ω_2 , 20% заполнения баков	0 - 2,332 6,837 - 10,668 13,263
	- 16,036
Оба условия для 20%	6,837 - 9,627 13,363 - 16,036
ω_1 , "сухая" ракета	4,52 — 19
ω_2 , "сухая" ракета	0 - 2,666 9,432 - 15,913
Оба условия для сухой	9,432-15,913
ракеты	

То есть разместить гироплатформу можно в точках со значениями координат в диапазоне 13-15 м. В нем располагается межбазовый отсек, в который мы и можем поместить платформу, приняв $X_{\Gamma\Pi}=13.5$