

Privacy-preserving methods: multimedia and biometrics perspectives

S. Voloshynovskiy

http://sip.unige.ch/education/multimedia-security/

Lecture Outline

- Introduction: privacy and security in biometrics and multimedia
- Cryptographic approach
- Signal processing approach
- Hybrid approach

Information security

 Personal Identier Number (PIN): to control access to service, systems and information

 Subscriber Identity Module (SIM): access to mobile phones, to protect against illegal use of network

Secure Socket Layer (SSL): to prevent eavesdropping on information exchanged between two terminals

Traditional cryptography

Cryptography: develops tools for protecting information and establishing secure interactions.

- Encryption: provides confidentially of information
- Authentication: verifies the identity

Note: The algorithms are public, therefore, the security of the schemes depends on the secrecy of a key owned by the legitimate parties.

Practical cryptography issues in our modern society:

- 1 Key generation and distribution
- 2 Safely storage: (mobile phones, bank tokens, smart cards, : : :)
- 3 Noisy observation: authentication based on something closely linked to physiological characters

Biometrics

Fingerprint

Iris

Biometrics: why to be protected?

A biometric template is a representation of a unique characteristic of an individual. It might also contain some information about diseases. Therefore, it contains privacy-sensitive information.

To abuse database:

- impersonation
- identity theft
- cross-database matching
- detectable pathologies
- ... yet undiscovered attacks

Note: biometric templates can not be "cancelable" because people have only ten fingers, two eyes, etc.

Mutimedia security: cryptographic solution

- Main idea:
 - do not store date itself
 - store a one-way hash (non-invertible function like UNIX function)
 - for the same data, the same hash

Remark: the hash $\varphi(.)$ is assumed to be uninformative \Rightarrow non-invertible. (which is not true in information-theoretic sense).

$$I(X; h(X)) = 0$$

This is not true, since
$$h(X)$$
 is a function of $X!$

$$b_x = h(x)$$

Mutimedia security: cryptographic solution

Why are traditional security tools not suitable for multimedia?

- Traditional security:
 - Cryptographic encryption (confidentiality of information)
 - Cryptographic hashes (authentication, trust, access control)
- Main concerns of classical crypto-based algorithms:
 - Sensitivity to noise and unintentional distortions in input data
 - Data handling in the encrypted domain

Mutimedia privacy: data «degradation»

Why are traditional privacy tools not suitable for multimedia?

- Traditional privacy protection [1]:
 - Data owner (protect data): based on data degradation and randomization (noise addition, lossy compression, data removal, dim. reduction...)
 - Data user (protect requests): based on anonymization, randomized rules
- Main concerns of classical privacy preserving algorithms:
 - Reduction of accuracy (data utility)
 - Not very efficient against experienced attackers (sensitivity analysis)

Original

50% removed based on key

Median 9x9

Adaptive recovery

[1] C. Aggarwal and P. Yu, Privacy-Preserving Data Mining: Models and Algorithms, Spinger, 2008.

DINOU2.

Signal processing approach: authentication

- Use hypothesis testing
- Handle noisy data ⇒ extended decision region

$$\begin{cases} H_0: \mathbf{y} = \mathbf{x'} + \mathbf{z}, \\ H_1: \mathbf{y} = \mathbf{x}(m) + \mathbf{z}, \\ \mathbf{x'} \neq \mathbf{x}(m), \text{any } 1 \leq m \leq |\mathcal{M}| \end{cases}$$

Decision region

Gaussian assumption \Rightarrow Euclidian distance \equiv Sphere region

L (a-b)2=

$$\mathcal{R}_{1}: d^{E}\left(\mathbf{y}, \mathbf{x}(m)\right) = \left\|\mathbf{y} - \mathbf{x}(m)\right\|^{2} \leq \gamma N \quad \Rightarrow \quad \mathcal{R}_{1}: \mathbf{y}^{T}\mathbf{x}(m) \geq \gamma' N$$

My 1/2 = 2 g T & (m) + 112H2

Blind attacks

 $lackbox{ } \mathbf{x}'$ under H_0 was assumed to be generated in blind way

Informed attacks

■ Attacker can generate \mathbf{x}' as close as possible to $\mathbf{x}(m)$, if it is disclosed!

$$P_f = \Pr\left[\mathbf{y}^T \mathbf{x}(m) \ge \gamma' N \middle| H_0 \text{ blind} \right]$$

$$P_{sa} = \Pr \left[\mathbf{y}^T \mathbf{x}(m) \ge \gamma' N \middle| H_0 \text{ informed} \right] - \text{prob. of succ. attack}$$

Conclusion:

 \blacksquare the disclosure of $\mathbf{x}(m)$ is dangerous for the performance (security).

Open issues:

- $lacktriangledown \mathbf{x}(m)$ is stored in the public domain
- lacktriangledown no security $\mathbf{x}(m)$ can be used for various attacks

M-ary hypothesis testing

$$\begin{cases} H_0: \mathbf{y} = \mathbf{x}' + \mathbf{z}, \\ H_1: \mathbf{y} = \mathbf{x}(1) + \mathbf{z}, \\ \vdots \\ H_{|\mathcal{M}|}: \mathbf{y} = \mathbf{x}(\left|\mathcal{M}\right|) + \mathbf{z}, \\ \mathbf{x}' \neq \mathbf{x}(m), \text{any } 1 \leq m \leq \left|\mathcal{M}\right| \end{cases}$$

$$P_f = \Pr \left[igcup_{m=1}^{|\mathcal{M}|} \mathbf{y}^T \mathbf{x}(m) \ge \gamma' N \middle| H_{0 \, ext{blind}}
ight]$$
 $P_{sa} = \Pr \left[igcup_{m=1}^{|\mathcal{M}|} \mathbf{y}^T \mathbf{x}(m) \ge \gamma' N \middle| H_{0 \, ext{informed}}
ight]$

$$P_{sa} = \Pr \left[\bigcup_{m=1}^{|\mathcal{M}|} \mathbf{y}^T \mathbf{x}(m) \ge \gamma' N \middle| H_{0 \text{ informed}} \right]$$

$$P_{ic} = \Pr\left[\underbrace{\mathbf{y}^T \mathbf{x}(m) < \gamma' N}_{\text{miss}} \bigcup \bigcup_{m' \neq m}^{|\mathcal{M}|} \mathbf{y}^T \mathbf{x}(m') \ge \gamma' N \middle| H_m \right]$$

Open issues:

- lack all $ig\{ \mathbf{x}(m) ig\}$ are stored in the public domain
- no security $\mathbf{x}(m)$ can be used for various attacks no privacy

Signal processing approach: towards «robust hashing»

- If x(m) is open, the attacker can: (a) deduce privacy and (b) design attacks
- Robust hashing: an attempt to mimic crypto hashing but stay robust to signal processing (blur, noise, lossy compression, etc.) and geometric (affine, projective) distortions.

Signal processing approach: towards «robust hashing»

- Main assumptions:
 - Robust hashing is robust to some minor modifications
 - Robust hashing is non-invertible under

Remark: authentication/identification based on $\left(\mathbf{B_x},\mathbf{B_y}\right)$ is less accurate than based on $\left(\mathbf{X},\mathbf{Y}\right)$

Signal processing approach: towards «robust hashing»

• Impact of reduction of dimensionality and binarization:

• FP:
$$\mathcal{R}^N \times \mathcal{K} \rightarrow \left\{0,1\right\}^L$$

Hybrid solution

- Application of non-invertible transformations leads to the loss in performance
- One can compensate it by selecting longer L

- In turn, longer L leads to better chances for image reconstruction!
- Problem: can one trade-off security/privacy performance?

⇒ Solution: crypto + signal processing + coding

Hybrid solution: strategies

- Several methods (based on common idea):
 - fuzzy commitment
 - helper data
- Main strategy:
 - use additional helper data to correct errors
 - use a fact that ${\bf X}$ and ${\bf Y}$ are correlated as well as ${\bf B_x}$ and ${\bf B_y}$ for the hypothesis H_1 in authentication and the hypothesis H_m in identification

Hybrid solution: fuzzy commitment

Idea:

- ${\bf k}$ is used for every new session (i.i.d.) while ${\bf b}_{\rm x}$ remains the same (non-renewable)
- $\mathbf{b}_{\mathbf{x}}$ is used to lock the key (even, if it is not i.i.d.) \Rightarrow analog of one-time-pad

Hybrid solution: fuzzy commitment

Open issues:

- In general case,
 - $ullet \mathbf{b}_{\mathbf{x}}
 eq \mathbf{b}_{\mathbf{y}} \Rightarrow \text{residual error}$

$$\hat{\mathbf{k}} = \mathbf{k} \oplus \underbrace{\mathbf{b}_{\mathbf{x}} \oplus \mathbf{b}_{\mathbf{y}}}_{\mathbf{b}_{\mathbf{z}}} = \mathbf{k} \oplus \mathbf{b}_{\mathbf{z}} \Rightarrow \varphi(\mathbf{k}) \neq \varphi(\hat{\mathbf{k}})$$

- Idea:
 - add redundancy to k using error correction code to correct errors
 - redundancy is proportional to $pprox LH_2\!\left(P_b\right)$

Hybrid solution: fuzzy commitment

- \bullet $\ \mathrm{ECC^{-1}}$ decoder corrects errors in $\mathbf{k} \oplus \mathbf{b_z}$
- Open issues:
 - ECC(k) is not anymore i.i.d.
 - ⇒ smaller entropy: easier to predict and attack
 - In addition b_x is not i.i.d., the attacks are possible against both!

Hybrid solution: helper data based systems

Open issues:

- redundancy is proportional to $\approx LH_2\left(P_b\right)$
- However, these methods represent the state-of-the-art!
- It is up to you to find something better.