Spin Representation Theory of Symmetric Groups and Related Combinatorics Notes from a reading course in Fall 2018

George H. Seelinger

1. Introduction (presented by Jinkui Wan)

When discussing the representation theory of the symmetric group, one considers *linear representations* which are group homomorphisms

$$\mathfrak{S}_n \to GL(V)$$

In 1911, Schur started considering projective representations

$$\mathfrak{S}_n \to PGL(V) = GL(V)/\mathbb{C}^*$$

leading to the projective representation theory of \mathfrak{S}_n . It turns out that this corresponds to the linear representation theory of an extension of \mathfrak{S}_n , denoted $\tilde{\mathfrak{S}}_n$ and referred to as the double cover of the symmetric group, fitting into the short exact sequence

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \tilde{\mathfrak{S}}_n \to \mathfrak{S}_n \to 1$$

where, if $\mathbb{Z}/2\mathbb{Z} = \{1, z\}$, then z is central in $\tilde{\mathfrak{S}}_n$, which gives us that z = 1 or z = -1.

When z=1, we have the representation theory of \mathfrak{S}_n . When, z=-1, we have the representation theory of the *spin symmetric group algebra*

$$\mathbb{C}\mathfrak{S}_{n}^{-} = \mathbb{C}\mathfrak{S}_{n}/\langle z+1\rangle = \left\langle t_{1}, \dots, t_{n} \mid \begin{array}{c} t_{i}^{2} = 1 \\ t_{i}t_{i+1}t_{i} = t_{i+1}t_{i}t_{i+1} \\ t_{i}t_{j} = -t_{j}t_{i} \text{ when } |i-j| > 1 \end{array} \right\rangle$$

which is equipped with a $\mathbb{Z}/2\mathbb{Z}$ -grading. So, when we discuss spin representations of \mathfrak{S}_n , we are discussing linear representations of \mathbb{CS}_n^- . Our program to establish these ideas is as follows.

Part I

- (1) Basics of associative superalgebras
- (2) Connection to Hecke-Clifford (or Sengeev) algebra, \mathcal{H}_n
- (3) Split conjugacy classes in a finite supergroup
- (4) Characteristic map
- (5) Schur-Q functions
- (6) Schur-Sergeev duality
- (7) Seminormal form of irreducible representations

Part II

- (1) Centers of $\mathbb{C}\mathfrak{S}_n^-$ (analog of Farahat-Higman theory for $\mathbb{C}\mathfrak{S}_n$)
- (2) Coinvariant theory for \mathbb{CS}_n^-
- (3) Spin Kostka polynomials
- (4) Quantum deformation (in particular, Olshanki-Sergeev duality)

2. Generalities for Associative Superalgebras (presented by Jinkui Wan)

2.1. Definitions and Examples.

- 2.1. DEFINITION. (a) A vector superspace (over \mathbb{C}) is a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space $V = V_{\overline{0}} \oplus V_{\overline{1}}$, where elements of $V_{\overline{0}}$ are called even and elements of $V_{\overline{1}}$ are called odd. For $v \in V_i$, $i \in \mathbb{Z}/2\mathbb{Z}$, we say |v| = i.
- (b) If V is a vector superspace with $\dim V_{\overline{0}} = m$ and $\dim V_{\overline{1}} = n$, we say the graded dimension of V is (m, n), denoted $\dim V = (m, n)$.
- (c) A superalgebra is a \mathbb{C} -algebra A with a $\mathbb{Z}/2\mathbb{Z}$ -grading $A = A_{\overline{0}} \oplus A_{\overline{1}}$ such that $A_i A_j \subseteq A_{i+j}$ for all $i, j \in \mathbb{Z}/2\mathbb{Z}$.
- (d) A superalgebra ideal is a homogeneous ideal, that is, a subset $I \subseteq A$ such that $I = I_{\overline{0}} \oplus I_{\overline{1}} = (I \cap A_{\overline{0}}) \oplus (I \cap A_{\overline{1}})$ as vector spaces and $A_i I_j \subseteq I_{i+j}$ for all $i, j \in \mathbb{Z}/2\mathbb{Z}$.
- (e) A superalgebra that has no non-trivial ideals is called *simple*.
- (f) A superalgebra homomorphism $\theta \colon A \to B$ is an even algebra homomorphism, that is, an algebra homomorphism sending $A_i \to B_i$ for all $i \in \mathbb{Z}/2\mathbb{Z}$.
- (g) Given superalgebras A and B, the tensor product $A \otimes B$ is a superalgebra with multiplication

$$(a \otimes b)(a' \otimes b') = (-1)^{|a||b|} aa' \otimes bb'$$

for homogeneous elements and extended by linearity.

(h) A commutative superalgebra is one that is graded commutative, that is

$$yx = (-1)^{|x||y|}xy$$

Thus, the *supercommutator* of a superalgebra is given by

$$[x,y] = xy - (-1)^{|x||y|}yx$$

and the *supercenter* is given by

$$Z(A) = \{a \in A \mid [a, x] = 0 \text{ for all } x \in A\}$$

which is different than the center of an ungraded algebra.

- (i) Given a superalgebra A, we let |A| be the associative algebra where we forget the grading on A.
- 2.2. EXAMPLE. (a) Let V = V(m|n), the vector superspace with $\mathbf{dim}V = (m,n)$. Then, $\mathrm{End}_{\mathbb{C}}(V)$ is a superalgebra and is isomorphic to the matrix superalgebra

$$M(m|n) := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid \begin{array}{c} a \text{ is an } m \times m \text{ matrix} \\ b \text{ is an } m \times n \text{ matrix} \\ c \text{ is an } n \times m \text{ matrix} \\ d \text{ is an } n \times n \text{ matrix} \end{array} \right\}$$

3

or, in other words, M(m|n) consists of all m|n-block matrices and has $\dim M(m|n) = (m^2 + n^2, 2mn)$. Furthermore, M(m|n) is a simple superalgebra since |M(m|n)| is simple as a \mathbb{C} -algebra.

(b) Let V = V(n|n) and $p \in \operatorname{End}_{\mathbb{C}}(V)$ be an odd involution (that is, it sends $V_i \to V_{i+1}$ for $i \in \mathbb{Z}/2\mathbb{Z}$). Then, we define

$$\mathcal{Q}(V) := \{ f \in \operatorname{End}_{\mathbb{C}}(V) \mid fp = (-1)^{|f|} pf \} = \mathcal{Q}(V)_{\overline{0}} \oplus \mathcal{Q}(V)_{\overline{1}}$$

Q(V) is also a superalgebra. Moreover, if we pick a basis $\{v_1, \ldots, v_n\}$ of V_0 and let $v_i' = p(v_i)$ for $1 \le i \le n$, we have that, with respect to the basis $\{v_1, \ldots, v_n, v_1', \ldots, v_n'\}$, Q(V) is isomorphic to

$$\mathcal{Q}(n) := \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \in M(n|n) \right\}$$

and it is simple.

(c) The Clifford algebra $\mathcal{C}\ell_n$ is the superalgebra generated by the odd elements c_1, \ldots, c_n subject to the relations

$$\begin{cases} c_i^2 = 1 \\ c_i c_j = -c_j c_i & \forall 1 \le i \ne j \le n \end{cases}$$

2.3. Lemma. There exist isomorphisms of superalgebras

- (a) $M(m|n) \otimes M(k|l) \cong M(mk + nl|mk + nl)$
- (b) $M(m|n) \otimes \mathcal{Q}(k) \cong \mathcal{Q}((m+n)k)$
- (c) $Q(m) \otimes Q(n) \cong M(mn|mn)$

PROOF. For part (a), we note that

$$\operatorname{End}_{\mathbb{C}}(V(m|n)) \otimes \operatorname{End}_{\mathbb{C}}(V(k|l)) \cong \operatorname{End}_{\mathbb{C}}(V(mk+ml|mk+nl))$$

under the isomorphism sending $f \otimes g$ to the endomorphism of V(mk + ml|mk + nl) mapping $v \otimes w$ to $(-1)^{|g||v|} f(v) \otimes g(w)$.

For part (b), we have

$$\operatorname{End}(V(m|n)) \otimes \mathcal{Q}(V(k|k), p) \cong \mathcal{Q}(V(m|n) \otimes V(k|k), id \otimes p)$$

- For (c), one explicitly checks that $\mathcal{Q}(1) \otimes \mathcal{Q}(1) \cong M(1|1)$ and then inductively applies (a) and (b) above.
- 2.4. COROLLARY. Since $\mathcal{C}\ell_{m+n} \cong \mathcal{C}\ell_m \otimes \mathcal{C}\ell_n$ under the isomorphism sending generators c_1, \ldots, c_n to $c_1 \otimes 1, \ldots, c_n \otimes 1$ and c_{n+1}, \ldots, c_{n+m} to $1 \otimes c_1, \ldots, 1 \otimes c_m$, we have the corollaries
 - (a) $\mathcal{C}\ell_1 \cong \mathcal{Q}(1)$ under the isomorphism $c_1 \mapsto p(v_1)$
 - (b) $\mathcal{C}\ell_2 \cong M(1|1)$ since $\mathcal{C}\ell_2 \cong \mathcal{C}\ell_1 \otimes \mathcal{C}\ell_1 \cong \mathcal{Q}(1) \otimes \mathcal{Q}(1) \cong M(1|1)$
 - $(c) \ \mathcal{C}\ell_{2k} \cong M(2^{k-1}|2^{k-1})$
 - $(d) \ \mathcal{C}\ell_{2k-1} \cong \mathcal{Q}(2^{k-1})$
 - (e) and thus, $C\ell_n$ is simple by parts (c) and (d).

2.2. Classification of Simple Superalgebras.

- 2.5. Theorem. There are two types of finite dimensional simple associative superalgebras over \mathbb{C} :
 - (a) M(m|n)
 - (b) Q(n)

2.3. Wedderburn Theorem and Schur's Lemma.

- 2.6. DEFINITION. (a) A (super)module over a superalgebra A is a vector space $M = M_{\overline{0}} \oplus M_{\overline{1}}$ with a left action of A on M such that $A_i M_j \subseteq M_{i+j}$ for all $i, j \in \mathbb{Z}/2\mathbb{Z}$.
- (b) A homomorphism between A-modules M and N is a linear map $f \colon M \to N$ such that

$$f(am) = (-1)^{|f||a|} af(m)$$
 for all $a \in A, m \in M$

and

$$\operatorname{Hom}_A(M,N) := \operatorname{Hom}_A(M,N)_{\overline{0}} \oplus \operatorname{Hom}_A(M,N)_{\overline{1}}$$

where $f \in \operatorname{Hom}_A(M, N)_{\overline{1}} \subseteq \operatorname{Hom}_{\mathbb{C}}(M, N)$ is such that $f(M_i) \subseteq N_{i+1}$ for all $i \in \mathbb{Z}/2\mathbb{Z}$.

- 2.7. DEFINITION. An A-module is said to be *simple* if it is nonzero and has no proper A-submodules. An A-module M is said to be *semisimple* if every A-submodule of M is a direct summand of M.
- 2.8. Theorem (Super Wedderburn Theorem). The following are equivalent for a finite dimensional superalgebra A.
 - (a) Every A-module is semisimple
 - (b) A is a finite direct sum of left simple superideals
 - (c) A is a direct product of a finite number of simple algebras
- 2.9. DEFINITION. Thus, we say a superalgebra A is *semisimple* if it satisfies one of the three conditions.
 - 2.10. EXAMPLE. (a) $M(m|n) = I_1 \oplus I_2 \oplus \cdots \oplus I_m \oplus I_{m+1} \oplus \cdots \oplus I_{m+n}$ where $I_k = M(m|n)E_{k,k}$ for $1 \le k \le m+n$.
 - (b) $Q(n) = J_1 \oplus \cdots \oplus J_n$ where

$$J_k = \mathcal{Q}(n)(E_{k,k} + E_{n+k,n+k})$$

(c) $\overline{\operatorname{Hom}_{M(m|n)}(I_k,I_k)} \cong \mathbb{C}$ and $\operatorname{Hom}_{\mathcal{Q}(n)}(J_k,J_k) \cong \mathbb{C} \oplus \mathbb{C}p$. Importantly, the latter space is not 1-dimensional despite J_k being 1-dimensional!

Check this. Most likely depends on your choice of basis and involution.

2.11. Corollary. A finite dimensional semisimple superalgebra A is isomorphic to

$$A \cong \bigoplus_{i=1}^{m} M(r_i|s_i) \oplus \bigoplus_{j=1}^{n} \mathcal{Q}(n_j)$$

where m = m(A) and q = q(A) are invariants of A.

- 2.12. DEFINITION. A simple A-module V is said to be of type M (resp. type Q) if it is annihilated by all but one summand of the form $M(r_i|s_i)$ (resp. $Q(n_i)$).
 - 2.13. COROLLARY. (a) The number of non-isomorphic simple A-modules is given by $m(A) + q(A) = \dim(Z(|A|) \cap A_{\overline{0}})$.
 - (b) The number of non-isomorphic simple A-modules of type Q is given by $q(A) = \dim(Z(|A|) \cap A_{\overline{1}})$.
- 2.14. Theorem (Schur's Lemma). If M and L are simple A-modules, then

$$\dim \operatorname{Hom}_A(M,L) = \begin{cases} 1 & \text{if } M \cong L \text{ of type } M \\ 2 & \text{if } M \cong L \text{ of type } Q \\ 0 & \text{otherwise} \end{cases}$$

- 2.15. Remark. (a) A simple A-module M is of type M if and only if |M| is a simple |A|-module
- (b) A simple A-module M is of type Q if and only if |M| is a direct sum of two non-isomorphic simple |A|-modules.

3. Split Conjugacy Classses in a Finite Supergroup (presented by Jinkui Wan)

Throughout, let G be a finite group with index 2 subgroup $G_0 \leq G$.

- 3.1. Definition. (a) We say that the elements of G_0 are even elements and the elements of $G_1 := G \setminus G_0$ are odd elements,
- (b) $\mathbb{C}G$ is a superalgebra, which we will denote $\mathbb{C}[G,G_0]$
- 3.2. Theorem (Super MAschke's Theorem). $\mathbb{C}[G, G_0]$ is semisimple
- 3.3. Proposition. (a) If $g \in G_i$, $h \in G$, then $hgh^{-1} \in G_i$ for all $i \in \mathbb{Z}/2\mathbb{Z}$.
- (b) The number of non-isomorphic simple $\mathbb{C}[G, G_0]$ -modules is equal to the number of even conjugacy classes in G.
- (c) The number of non-isomorphic simple $\mathbb{C}[G, G_0]$ -module of type Q is equal to the number of odd conjugacy classes in G.

PROOF. We note that, by the usual Artin-Wedderburn theorem, $\mathbb{C}G$ decomposes into a direct sum of simple matrix algebras, each of which has a 1-dimensional center and can be indexed by a conjugacy class of G via $c_i = \sum_{g \in \mathcal{C}_i} g$ where \mathcal{C}_i is a conjugacy class of G. In fact, this shows in the classical theory that the number of conjugacy classes of G equal the number of irreducible representations.

Since conjugacy classes are either even or odd by (a), which is left as an exercise, (b) follows because $\dim(Z(\mathbb{C}G)\cap\mathbb{C}[G,G_0]_{\overline{0}})$ is equal to the number of non-isomorphic simple $\mathbb{C}[G,G_0]$ -modules and (c) follow from the fact that $\dim(Z(\mathbb{C}G)\cap\mathbb{C}[G,G_0]_{\overline{1}})$ gives the number of those of type Q.

Now, consider the following situation. Let \tilde{G} be a group such that there exists an index 2 subgroup $\tilde{G}_0 \leq \tilde{G}$ and there exists a short exact sequence

$$1 \to \{1, z\} \to \tilde{G} \xrightarrow{\theta} G \to 1$$

where $z^2 = 1$ and z is central in \tilde{G} . Then,

3.4. Proposition. For C a conjugacy class of G, the preimage

$$\theta^{-1}(C) = \{q, qz \mid q \in C\} \subseteq \tilde{G}$$

has that

- (a) $\theta^{-1}(C)$ is a single conjugacy class in \tilde{G} if g is conjugate to zg in \tilde{G} or
- (b) $\theta^{-1}(C)$ splits into two conjugacy classes in \tilde{G} if there exists a $g \in C$ such that g is not conjugate to zg. In this case, we call C split.
- 3.5. Definition. We set

$$\mathbb{C}\tilde{G}^- := \mathbb{C}[G, G_0]/\langle z+1 \rangle$$

and call a $\mathbb{C}\tilde{G}^-$ -module a spin $\mathbb{C}[\tilde{G}, \tilde{G}_0]$ -module.

3.6. Proposition. (a) We have the isomorphism of superalgebras

$$\mathbb{C}[\tilde{G}, \tilde{G}_0] \cong \underbrace{\mathbb{C}[G, G_0]}_{(z=1)} \oplus \underbrace{\mathbb{C}\tilde{G}^-}_{(z=-1)}$$

- (b) The number of non-isomorphic simple spin $\mathbb{C}[\tilde{G}, \tilde{G}_0]$ -modules is equal to the number of even split conjugacy classes of G.
- (c) The number of non-isomorphic simple spin $\mathbb{C}[\tilde{G}, \tilde{G}_0]$ -modules of type Q is equal to the number of odd split conjugacy classes of G.

PROOF. Part (a) follows from the semisimplicity of $\mathbb{C}[\tilde{G}, \tilde{G}_0]$. Now, (a) tells us that

$$Z(|\mathbb{C}\tilde{G}^-|) = \{a \in Z(|\mathbb{C}[\tilde{G}, \tilde{G}_0]|) \mid za = -a\}$$

So let

$$\underbrace{D_1, zD_1, D_2, zD_2, \dots, D_r, zD_r}_{\text{split}}, \underbrace{D_{r+1}, \dots, D_{r+s}}_{\text{non-split}}$$

be the conjugacy classes of \tilde{G} where r is the number of split conjugacy classes in G, $D_i \cap zD_i = \emptyset$ for $1 \leq i \leq r$ and $zD_j = D_j$ for $r+1 \leq j \leq r+s$. Then,

$$Z(|\mathbb{C}\tilde{G}|)\cap \mathbb{C}\tilde{G}_{\overline{0}}=\{a\in Z(|\mathbb{C}\tilde{G}|)\mid a \text{ is even and } za=-a\}$$

has basis $d_{i_1} - zd_{i_1}, d_{i_2} - zd_{i_2}, \dots, d_{i_k} - zd_{i_k}$ for d_i even and _____

Check this part

$$Z(|\mathbb{C}\tilde{G}|)\cap \mathbb{C}\tilde{G}_{\overline{1}}=\{a\in Z(|\mathbb{C}\tilde{G}|)\mid a \text{ is odd and } za=-a\}$$

has basis $d_{j_1} - zd_{j_1}, d_{j_2} - zd_{j_2}, \dots, d_{j_k} - zd_{j_\ell}$ for d_j odd.

3.7. Example. We have

$$1 \to \{1, z\} \to \tilde{\mathfrak{S}}_n \stackrel{\theta_n}{\to} \mathfrak{S}_n \to 1$$

where $z \in \tilde{\mathfrak{S}}_n$ is even and central, the subgroup of index 2 is \tilde{A}_n , and

$$\mathbb{C}\mathfrak{S}_n^- := \mathbb{C}\tilde{\mathfrak{S}}_n/\langle z+1\rangle$$

is the spin symmetric group algebra.

3.8. DEFINITION. Throughout the remainder of these notes, we define $\theta_n \colon \tilde{\mathfrak{S}}_n \to \mathfrak{S}_n$ to be the double covering may above.

4. A Morita Superequivalence (presented by Jinkui Wan)

Since \mathfrak{S}_n acts on $\mathcal{C}\ell_n$ via $\sigma.c_i = c_{\sigma(i)}$, we can define the semidirect product $\mathcal{C}\ell_n \rtimes \mathbb{C}\mathfrak{S}_n$ with multiplication

$$(x,\sigma)(y,\tau) = (x\sigma(y),\sigma\tau)$$

4.1. Definition. We define the Hecke-Clifford superalgebra as

$$\mathcal{H} := \mathcal{C}\ell_n \rtimes \mathbb{C}\mathfrak{S}_n$$

with the c_i having odd parity and the s_i having even parity.

4.2. Lemma. There exists a superalgebra isomorphism

$$\mathbb{C}\mathfrak{S}_{n}^{-}\otimes\mathcal{C}\ell_{n}\stackrel{\sim}{\to}\mathcal{H}_{n}$$

$$c_{i}\mapsto c_{i}$$

$$t_{j}\mapsto\frac{1}{\sqrt{-2}}s_{j}(c_{j}-c_{j+1})$$

Check this last map.

Recall that $\mathcal{C}\ell_n$ is a simple superalgebra and it has a unique simple module U_n . If n is even, U_n is of type M and if n is odd, U_n is of type Q. This leads us to define two functors

$$F_n := - \otimes U_n \colon \mathbb{CS}_n ext{-}\mathbf{Mod} o \mathcal{H}_n ext{-}\mathbf{Mod}$$
 $G_n := \operatorname{Hom}_{\mathcal{C}\ell_n}(U_n, -) \colon \mathcal{H}_n ext{-}\mathbf{Mod} o \mathbb{CS}_n^- ext{-}\mathbf{Mod}$

- 4.3. Lemma. [**Kle05**, Prop 13.2.2]
- (a) If n is even, then $F_n \circ G_n \cong id$ and $G_n \circ F_n \cong id$.
- (b) If n is odd, then $F_n \circ G_n \cong id \oplus \pi$ and $G_n \circ F_n \cong id \oplus \pi$ where $\pi(M)_i = M_{i+1}$ for all $i \in \mathbb{Z}/2\mathbb{Z}$.

Thus, because $(F_n \circ G_n)(M) = \operatorname{Hom}_{\mathcal{C}\ell_n}(U_n, M) \otimes U_n$, we have a (super)Morita equivalence between $\mathbb{C}\mathfrak{S}_n^- \otimes \mathcal{C}\ell_n$ and \mathcal{H}_n .

5. A Double Cover \tilde{B}_n (presented by Jinkui Wan)

Recall that $B_n = \mathbb{Z}_2^n \rtimes \mathfrak{S}_n$. We define

5.1. Definition.

$$\Pi_n := \left\langle z, a_1, \dots, a_n \mid \begin{array}{c} z^2 = a_i^2 = 1, \ \forall 1 \le i \le n \\ a_i a_j = z a_j a_i, \ i \ne j \end{array} \right\rangle$$

Then, \mathfrak{S}_n acts on Π_n via $\sigma(z)=z$ and $\sigma(a_i)=a_{\sigma(i)}$. This gives us the short exact sequence

$$1 \to \{1, z\} \to \Pi_n \rtimes \mathfrak{S}_n \to B_n \to 1$$
$$a_i \to b_i$$

and so we define

The flow here is not great.

5.2. DEFINITION. Let \tilde{B}_n be the supergroup on $\Pi_n \rtimes \mathfrak{S}_n$ with the a_i odd, z even, and $\sigma \in \mathfrak{S}_n$ even.

Since $\mathbb{C}B_n/\langle z+1\rangle = \mathcal{H}_n$, we wish to understand conjugacy classes in B_n . We will do so by example.

5.3. Example. Consider

$$x = ((+++-+++-+-), (1234)(567)(89)) \in B_{10}$$

As an element of \mathfrak{S}_{10} , (1234)(567)(89) has cycle type (4,3,2,1), but we wish to assign a parity to each of these cycles. To do so, we look at the (+,-)-array in the first coordinate and take the product of the entries corresponding to the cycle. So, (1234) gets cycle type $+\times+\times+\times-=-$ since those are entries 1,2,3, and 4 in the array. This gives the cycle type as a tuple of partitions $\rho=(\rho^+,\rho^-)$ and so $\rho(x)=((3),(4,2,1))$. Similarly, if

$$y = ((+ - - - + - - - + -), (1386)(279)(45)) \in B_{10}$$

then the first cycle has parity $+\times-\times-\times-=-$ since those are the 1, 3, 6, and 8 entries of the array. One can check that y has the same cycle type as x.

- 5.4. Lemma. Two elements of B_n are conjugate if and only if their cycle types are the same.
 - 5.5. Corollary. The number of conjugacy classes in B_n is

$$\#\{(\rho^+, \rho^-) \mid |\rho^+| + |\rho^-| = n\}$$

Now, the conjugacy class $\mathcal{C}_{\rho^+,\rho^-}$ is even if k is even for $\underbrace{b_{i_1}b_{i_2}\dots b_{i_k}}_{\in\mathbb{Z}_2^n}\sigma\in$

 C_{ρ^+,ρ^-} .

- 5.6. THEOREM (Read). [CW12, Theorem 3.31]
- (a) Even $\mathcal{C}_{\rho^+,\rho^-}$ splits if and only if $\rho^+ \in \mathcal{OP}_n$ and $\rho^- = \varnothing$
- (b) Odd C_{ρ^+,ρ^-} splits if and only if $\rho^+ = \emptyset$ and $\rho^- \in \mathcal{SP}_n^-$

where SP_n^- is all partitions of n with strict parts and odd length.

- 5.7. DEFINITION. For $\alpha \in \mathcal{OP}_n$, let \mathcal{C}_{α}^+ be the split conjugacy class in \tilde{B}_n satisfying

 - (a) $C_{\alpha}^{+} = \theta_{n}^{-1}(C_{\alpha,\varnothing})$ (b) There exists $\sigma \in C_{\alpha}^{+}$ such that $\sigma \in \mathfrak{S}_{n}$ with cycle type α .

6. A ring structure on R^- (presented by Jinkui Wan)

- 6.1. Definition. We give the following definition
- (a) Let $R_n^- := [\mathcal{H}_n\text{-}\mathbf{Mod}]$, the Grothendieck group of $\mathcal{H}_n\text{-}\mathbf{Mod}$.
- (b) Let $R^- := \bigoplus_{n=0}^{\infty} R_n^-$ where $R_0^- = \mathbb{Z}$
- (c) Let $R_{\mathbb{O}}^- = \mathbb{Q} \otimes_{\mathbb{Z}} R^-$
- (d) Let $\mathcal{H}_{m,n}$ be the subalgebra of \mathcal{H}_{m+n} generated by $\mathcal{C}\ell_{m+n}$ and $S_m \times$ S_n . Note that $\mathcal{H}_{m,n} \cong \mathcal{H}_m \otimes \mathcal{H}_n$ as a superalgebra.
- (e) Given $M \in \mathcal{H}_m$ -Mod and $N \in \mathcal{H}_n$ -Mod, we define

$$[M] \cdot [N] := [\operatorname{Ind}_{\mathcal{H}_m \otimes \mathcal{H}_n}^{\mathcal{H}_{m+n}} M \otimes N]$$

- 6.2. Proposition. R^- is commutative with respect to the above multiplication.
 - 6.3. Definition. Define a bilinear form via

$$\langle [M], [N] \rangle := \dim \operatorname{Hom}_{\mathcal{H}_n}(M, N)$$

for $M, N \in \mathcal{H}_n$

- 6.4. Lemma. For $\phi \in R_n^-$ (viewed as a character of \tilde{B}_n), set $\phi_\alpha := \phi(x)$ for any $x \in \mathcal{C}_{\alpha}$. Then,
 - (a) For $\phi \in R_m^-, \psi \in R_n^-$, and $\gamma \in \mathcal{OP}_{m+n}$,

$$(\phi \cdot \psi)_{\gamma} = \sum_{\substack{\alpha \in \mathcal{OP}_m, \beta \in \mathcal{OP}_n \\ \alpha \cup \beta = \gamma}} \frac{z_{\gamma}}{z_{\alpha} z_{\beta}} \phi_{\alpha} \psi_{\beta}$$

where z_{α} is the order of the centralizer of σ of cycle type α in \mathfrak{S}_n .

(b)

$$\langle \phi, \psi \rangle = \sum_{\alpha \in \mathcal{OP}} 2^{-\ell(\alpha)} z_{\alpha}^{-1} \phi_{\alpha} \psi_{\alpha}$$

6.5. Proposition. The character value vanishes unless you are in an even split conjugacy class.

7. The ring Γ (presented by Jinkui Wan)

- 7.1. Definition. Let $x = \{x_1, x_2, \ldots\}$.
- (a) Define $q_r = q_r(x)$ via the generating function

$$Q(t) = \sum_{r \ge 0} q_r(x)t^r = \prod_{i \ge 1} \frac{1 + tx_i}{1 - tx_i}$$

- (b) Let Γ be the \mathbb{Z} -subring of the ring of symmetric functions generated by $q_r, r \geq 0$.
- (c) $\Gamma_{\mathbb{Q}} := \mathbb{Q} \otimes_{\mathbb{Z}} \Gamma$
- 7.2. Proposition. (a) $\sum_{r+s=n} (-1)^r q_r q_s = 0$ because Q(t)Q(-t) = 1
- (b) $q_n = \sum_{\alpha \in \mathcal{OP}_n} 2^{\ell(\alpha)} z_{\alpha}^{-1} p_{\alpha}$ where $p_{\alpha} = P_{\alpha_1} \cdots p_{\alpha_\ell}$ because $\ln Q(t) = \sum_{r \text{ odd}} \frac{2p_r(x)t^r}{r}$.
- 7.3. THEOREM. (a) $\Gamma_{\mathbb{Q}}$ is a polynomial algebra with polynomial generators p_{2r-1} for $r \geq 1$.
- (b) $\{p_{\mu} \mid \mu \in \mathcal{OP}\}\ is\ a\ basis\ for\ \Gamma_{\mathbb{Q}}$
- 7.4. Definition. Let us define inner product on $\Gamma_{\mathbb{Q}}$ via

$$\langle p_{\alpha}, p_{\beta} \rangle := 2^{-\ell(\alpha)} z_{\alpha} \delta_{\alpha\beta}, \forall \alpha, \beta \in \mathcal{OP}$$

7.5. Definition. Define the (spin) characteristic map to be

$$\operatorname{ch}^- \colon R_{\mathbb{Q}}^- \to \Gamma_{\mathbb{Q}}$$
$$\phi \mapsto \sum_{\alpha \in \mathcal{OP}_n} z_{\alpha}^{-1} \phi_{\alpha} p_{\alpha}$$

- 7.6. Proposition. (a) ch⁻ is an algebra isomorphism.
- (b) ch^- is an isometry (that is, $\langle \phi, \psi \rangle = \langle \operatorname{ch}^-(\phi), \operatorname{ch}^-(\psi) \rangle$).

Now, we seek to construct the basic spin module.

7.7. PROPOSITION. $\mathcal{H}_n = \mathcal{C}\ell_n \rtimes \mathbb{C}\mathfrak{S}_n \ acts \ on \ \mathcal{C}\ell_n = \operatorname{span}\{c_I \mid I \subseteq \{1,2,\ldots,n\}\} \ via$

$$\begin{cases} c_i \cdot (c_{i_1} \cdots c_{i_k}) = c_i c_{i_1} \cdots c_{i_k} \\ \sigma \cdot (c_{i_1} \cdots c_{i_k}) = c_{\sigma(i_1)} \cdots c_{\sigma(i_k)} \end{cases}$$

where $c_i \in \mathcal{C}\ell_n$, $\sigma \in \mathfrak{S}_n$, and the action is extended by linearity.

7.8. Proposition. Let $\sigma = \sigma_1 \cdots \sigma_\ell$ be a cycle decomposition of σ . Then

$$\sigma c_I = \begin{cases} \pm c_I & \text{if } I \text{ is a union of some supports of } \sigma_1, \dots, \sigma_\ell \\ \pm c_J (J \neq I) & \text{otherwise} \end{cases}$$

7.9. Example. Let $\sigma = (134)(25) \in \mathfrak{S}_5$. Then,

$$\sigma c_3 c_5 = c_4 c_2$$

but

$$\sigma c_1 c_3 c_4 = c_3 c_4 c_1 = c_1 c_3 c_4$$

Thus, the character of this action, say ξ^n , satisfies

$$\xi^n(\alpha) = 2^{\ell(\alpha)}, \alpha \in \mathcal{OP}_n$$

and thus $\operatorname{ch}^-(\xi^n) = \sum_{\alpha \in \mathcal{OP}_n} z_{\alpha}^{-1} 2^{\ell(\alpha)} p_{\alpha} = q_n$.

7.10. DEFINITION. For $\lambda \in \mathcal{SP}$, we define ξ^{λ} via the recursive formulas

$$\xi^{(\lambda_1,\lambda_2)} = \xi^{\lambda_1} \xi^{\lambda_2} + 2 \sum_{i=1}^{\lambda_2} (-1)^i \xi^{\lambda_1 + i} \xi^{\lambda_2 - i}$$

$$\xi^{\lambda} = \begin{cases} \sum_{j=2}^k (-1)^j \xi^{(\lambda_1,\lambda_j)} \xi^{(\lambda_2,\dots,\hat{\lambda}_j,\dots,\lambda_k)} & k = \ell(\lambda) \text{ is even} \\ \sum_{j=1}^k (-1)^{j-1} \xi^{\lambda_j} \xi^{(\lambda_1,\dots,\hat{\lambda}_j,\dots,\lambda_k)} & k = \ell(\lambda) \text{ is odd} \end{cases}$$

- 7.11. THEOREM. (a) $\operatorname{ch}^-(\xi^{\lambda}) = Q_{\lambda}$, the Schur-Q function (to be defined in the next lecture). (b) $\left\{ \zeta^{\lambda} := 2^{-\frac{\ell(\lambda) \delta(\lambda)}{2}} \xi^{\lambda} \mid \lambda \in \mathcal{SP}_n \right\}$, where $\delta(\lambda) = \chi\{\ell(\lambda) \text{ is odd}\}$, is a 7.11. Theorem.
- complete list of simple characters.
- (c) ζ^{λ} is of type M if $\ell(\lambda)$ is even and of type Q if $\ell(\lambda)$ is odd.
- (d) The degree of ζ^{λ} is

$$2^{n-\frac{\ell(\lambda)-\delta(\lambda)}{2}} \frac{n!}{\lambda_1! \cdots \lambda_{\ell}!} \left(\prod_{i < j} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \right)$$

- 8. Schur-Q functions and related combinatorics (presented by George H. Seelinger)
- 9. Center of Symmetric Group Algebras and Spin Symmetric Group Algebras (presented by Jinkui Wan)
- **9.1. Farahat-Higman's Construction for** \mathfrak{S}_n **.** Given a permutation σ , we note that its cycle type is not stable under inclusion from $\mathfrak{S}_n \hookrightarrow \mathfrak{S}_{n+1}$.
 - 9.1. Example. Let $\sigma = (134)(2576) \in \mathfrak{S}_8$. Then, σ has cycle type

$$(4,3,1) =$$

but, when included into $\mathfrak{S}_n 9$, σ has cycle type

$$(4,3,1,1) =$$

- 9.2. Definition. Given a cycle $\sigma \in \mathfrak{S}_n$, its modified cycle type, λ , is given by removing the first column from its cycle type.
- 9.3. Example. The modified cycle type of $\sigma = (134)(2576) \in \mathfrak{S}_8$ is $\lambda = (3,2)$. Note that this is stable with respect to $\mathfrak{S}_8 \hookrightarrow \mathfrak{S}_9$.

12

- 9.4. Proposition. (a) If σ is of modified type λ , then $|\lambda|$ is the minimal length for σ as a product of (not necessarily simple) transpositions.
- (b) If

$$\begin{cases} \sigma \text{ is of modified type } \lambda \\ \tau \text{ is of modified type } \mu \\ \sigma \tau \text{ is of modified type } \nu \end{cases}, \text{ then } |\nu| \leq |\lambda| + |\mu|$$

- 9.5. EXAMPLE. (134) = (13)(34) and has modified type (2).
- 9.6. Definition. (a) Let $\mathcal{C}_{\lambda}(n)$ be the conjugacy class of \mathfrak{S}_n of modified type λ . Note $\mathcal{C}_{\lambda}(n) = \emptyset$ if $n < |\lambda| + \ell(\lambda)$.
- (b) Let

$$C_{\lambda}(n) := \begin{cases} \text{Class sum of } \mathcal{C}_{\lambda}(n) & \text{if } n \geq |\lambda| + \ell(\lambda) \\ 0 & \text{otherwise} \end{cases}$$

- 9.7. Example. $C_0(n) = \{id\}$ and $C_{(1)}(n)$ contains all transpositions of \mathfrak{S}_n . Thus, $C_{(1)}(n) = \sum_{1 \le i \le j \le n} (ij)$.
 - 9.8. Proposition. $\{C_{\lambda}(n) \mid |\lambda| + \ell(\lambda) \leq n\}$ is a basis for $Z(\mathbb{Z}\mathfrak{S}_n)$.
 - 9.9. Definition. Write

$$C_{\lambda}(n)C_{\mu}(n) = \sum A^{\nu}_{\lambda\mu}(n)C_{\nu}(n)$$

9.10. Example.

$$C_{(1)}(n)C_{(1)}(n) = 3C_{(2)}(n) + 2C_{(1,1)}(n) + \frac{1}{2}n(n-1)C_0(n)$$

since $C_{(1)}(n)^2 = \sum_{i=1}^n (ij)(kl)$ for all transpositions (ij), (kl) in \mathfrak{S}_n .

- 9.11. Theorem (Farahat-Higman). Let λ, μ, ν be partitions. Then,
- (a) There is a unique polynomial $f^{\nu}_{\lambda\mu}(x) \in \mathcal{Q}[x]$ such that $a^{\nu}_{\lambda\mu}(n) =$ $\begin{array}{l} f_{\lambda\mu}^{\nu}(n) \ for \ all \ n \geq |\nu| + \ell(\nu). \\ (b) \ f_{\lambda\mu}^{\nu}(x) = 0 \ unless \ |\nu| \leq |\lambda| + |\mu| \end{array}$
- (c) If $|\nu| = |\lambda| + |\mu|$, then $f_{\lambda\mu}^{\nu}(x)$ is a constant. In other words, $a_{\lambda\mu}^{\nu}(n)$ is independent of n.

Proof Idea. Let $\Gamma = \{(\sigma, \tau) \mid \sigma \in \mathcal{C}_{\lambda}(n), \tau \in \mathcal{C}_{\mu}(n), \sigma\tau \in \mathcal{C}_{\nu}(n)\}.$ Then, once computes

$$a_{\lambda\mu}^{\nu}(n) = \frac{\#\Gamma}{\#\mathcal{C}_{\lambda}(n)}$$

If we let \mathfrak{S}_n act on Γ by conjugation, that is $\gamma.(\sigma,\tau)=(\gamma\sigma\gamma^{-1},\gamma\tau\gamma^{-1}),$ then we get that

$$\Gamma = \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_k$$

Without loss of generality, take $(\sigma_1, \tau_1) \in \Gamma_1$. Then,

$$\#\Gamma_1 = \frac{n!}{\# \text{ of centralizers of } (\sigma_1, \tau_1) \text{ in } \mathfrak{S}_n}$$

Suppose $\gamma.(\sigma_1, \tau_1) = (\sigma_1, \tau_1)$. Then,

$$\gamma \sigma_1 \gamma^{-1} = \sigma_1$$
 and $\gamma \tau_1 \gamma^{-1} = \tau_1$

Thus,

$$\gamma \in \mathfrak{S}_{\operatorname{Supp}(\sigma_1, \tau_1)} \times \mathfrak{S}_{\{1, \dots, n\} \setminus \operatorname{Supp}(\sigma_1, \tau_1)}$$

where Supp $(\sigma_1, \tau_1) = \{j \in \{1, \dots, n\} \mid \sigma_1(j) \neq j \text{ or } \tau_1(j) \neq j\}$. So,

centralizers of (σ_1, τ_1) in $\mathfrak{S}_n = \#$ centralizers of (σ_1, τ_1) in $\mathfrak{S}_{\text{Supp}(\sigma_1, \tau_1)} \times (n - \# \text{Supp}(\sigma_1, \tau_1))!$

Thus, using our formula above for $a_{\lambda\mu}^{\nu}$, we arrive at _

Finish this formula

$$a_{\lambda\mu}^{\nu}(n) = \frac{\sum_{i} \#\Gamma_{i}}{\#\mathcal{C}_{\lambda}(n)}$$

9.12. DEFINITION. (a) Let \mathbb{B} be the ring of polynomials $f(x) \in \mathcal{Q}[x]$ such that $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$.

(b) Let \mathcal{K} be the \mathbb{B} -algebra with basis $\{c_{\lambda} \mid \lambda \in \mathcal{P}\}$ such that

$$c_{\lambda}c_{\mu} := \sum_{\nu \in \mathcal{P}} f_{\lambda\mu}^{\nu}(x)c_{\nu}$$

We call this ring the Farahat-Higman ring.

- 9.13. Proposition. We have the following facts
- (a) K is commutative and associative.
- (b) \mathcal{K} is filtered via $\deg(c_{\lambda}) = |\lambda|$ for all $\lambda \in \mathcal{P}$.

9.14. Remark. \mathcal{K} is not graded because $\sum_{\nu \in \mathcal{P}} f_{\lambda\mu}^{\nu}(x) c_{\nu}$ is not homogeneous. However, if we say $\mathcal{K}_r = \operatorname{span}\{c_{\lambda} \mid |\lambda| \leq r\}$, then $\mathcal{K}_r \mathcal{K}_s \subseteq \mathcal{K}_{r+s}$, making \mathcal{K} filtered.

9.15. DEFINITION. Let $\operatorname{gr} \mathcal{K}$ be the associated graded algebra, that is, $\operatorname{gr} \mathcal{K}$ is defined by $(\operatorname{gr} \mathcal{K})_r = \mathcal{K}_r/\mathcal{K}_{r-1}$ and then $\operatorname{gr} \mathcal{K} = \bigoplus_{r>0} (\operatorname{gr} \mathcal{K})_r$.

9.16. Lemma. We have the following facts.

(a) If $|\lambda| + s = m$, then

$$a_{\lambda,(s)}^{(m)} = \begin{cases} \frac{(m+1)s!}{\prod_{i \ge 0} m_i(\lambda)!} & \text{if } \ell(\lambda) \le s+1\\ 0 & \text{otherwise} \end{cases}$$

where $m_0(\lambda) = r + 1 - \ell(\lambda)$.

(b) If $|\lambda| + s = |\nu|$, then

$$a_{\lambda,(s)}^{\nu} = \sum_{\substack{(i,\mu) \in \mathbb{N} \times \mathcal{P} \\ 1 \leq i \leq \ell(\lambda) \\ \mu \cup \nu = \lambda \cup (\nu_i)}} a_{\mu,(s)}^{(\nu_i)}$$

9.17. PROPOSITION. Let λ be a partition and let $m_i(\lambda)$ be the number of i's in λ such that $\lambda = (i^{m_i(\lambda)})_{i>1}$. Then, the top degree of $c_{\lambda}c_{(s)}$ is given by

$$(c_{\lambda}c_{(s)})^{*} = \sum_{|\nu|=|\lambda|+s} a_{\lambda,(s)}^{\nu} c_{\nu} = \sum_{\mu \subseteq \lambda, \ell(\mu) \le s+1} \frac{(m_{s+|\mu|}(\lambda)+1)(s+|\mu|+1)s!}{(s+1-\ell(\mu))! \prod_{i \ge 1} m_{i}(\mu)!} c_{\lambda \cup (s+|\mu|)-\mu}$$

- 9.18. Remark. $\mu = (i^{m_i(\mu)}) \subseteq \lambda \iff m_i(\mu) \le m_i(\lambda) \ \forall i \ge i$.
- 9.19. EXAMPLE. To illustrate the formula $\lambda \cup (s + |\mu|) \mu$, consider cycles $\sigma = (134)(2567)(8)$ and $\tau = (28)$. Then, $\lambda = (3,2)$ is the modified cycle type of σ and s = 1 gives the modified cycle type of τ . Then,

$$\sigma\tau = (134)(28567)$$

which has modified cycle type $(4,2) = (3,2) \cup (1+|(3)|) - (3)$.

9.20. Corollary.

$$c_{\lambda_1}c_{\lambda_2}\cdots c_{\lambda_\ell} = \sum_{\mu \rhd \lambda} d_{\lambda\mu}c_{\mu}$$

and $d_{\lambda\lambda} > 0$ in gr K. Thus, c_1, c_2, \ldots are algebraically independent elements of span_{$\mathbb{Z}} \{c_{\lambda}\}.$ </sub>

- 9.21. PROPOSITION. $\mathbb{Q} \otimes_{\mathbb{Z}} \operatorname{gr} \mathcal{K}$ is a polynomial algebra generated by c_1, c_2, \ldots (Note that $\mathbb{Z} \hookrightarrow \mathbb{B}$ as constants.)
 - 9.22. REMARK. (a) There exists a ring isomorphism $\Lambda \to \operatorname{gr} \mathcal{K}$ sending duals of h_{λ}^* (images of h_{λ} under a certain automorphism), called g_{λ} , to c_{λ} . See [Mac79, p 132–3].
 - (b) gr $Z(\mathbb{Z}\mathfrak{S}_n) \cong H^*(\mathrm{Hilb}^n(\mathbb{C}^2); \mathbb{Z})$, the cohomology ring of the Hilbert Scheme of points on \mathbb{C}^2 , as a \mathbb{Z} -algebra.
 - 9.23. Theorem. The homomorphism given by

$$\Pi_n \colon \mathcal{K} \to Z(\mathbb{Z}\mathfrak{S}_n)$$
$$\sum f_{\lambda}(x)c_{\lambda} \mapsto \sum f_{\lambda}(n)c_{\lambda}(n)$$

is a surjective homomorphism.

9.24. Proposition. K is generated by $K_m := \sum_{|\lambda|=m} c_{\lambda}$ for $m \geq 0$.

This tells us that

$$\Pi_m(\mathcal{K}) = \sum_{|\lambda| = m} c_{\lambda}(n) = \sum_{\substack{\sigma \in \mathfrak{S}_n \\ \text{$\#$ of cycles in } \sigma = n - m}} \sigma$$

and so $Z(\mathbb{Z}\mathfrak{S}_n)$ is generated by $\Pi_n(\mathcal{K}_0), \Pi_n(\mathcal{K}_1), \dots, \Pi_n(\mathcal{K}_{n-1})$.

10. Double cover of $\tilde{\mathfrak{S}}_n$ and even split conjugacy classes

Recall the short exact sequence

$$1 \to \{1, z\} \to \tilde{\mathfrak{S}}_n \to \mathfrak{S}_n \to 1$$

where

$$\tilde{\mathfrak{S}}_{n} = \left\langle z, t_{1}, t_{2}, \dots, t_{n-1} \mid \begin{cases} z \text{ is central} \\ z^{2} = 1, t_{i}^{2} = z \\ t_{i}t_{i+1}t_{i} = t_{i+1}t_{i}t_{i+1} \\ t_{i}t_{j} = zt_{j}t_{i} \end{cases} \right\rangle$$

10.1. Definition. Define the element

$$x_i := t_i t_{i+1} \cdots t_{n-1} t_n t_{n-1} \cdots t_{i+1} t_i$$

which gets mapped to the transposition $(i, n) \in \mathfrak{S}_n$ under the map θ_n . Then, we let

$$[i_1 i_2 \cdots i_m] := \begin{cases} z & \text{if } m = 1\\ x_{i_1} x_{i_m} x_{i_{m-1}} \cdots x_{i_2} x_{i_1} & \text{if } m \ge 2 \end{cases}$$

10.2. Proposition. Every element of $\tilde{\mathfrak{S}}_n$ is of the form

$$z^q \underbrace{[i_1 i_2 \cdots i_m][j_1 j_2 \cdots j_k] \cdots}_{disjoint}$$

where q = 0, 1.

- 10.3. Lemma. For λ such that $|\lambda| + \ell(\lambda) \leq n$, $\theta_n^{-1}(\mathcal{C}_{\lambda}(n))$ splits if and only if
 - (a) λ has only even parts or
 - (b) $\lambda \in \mathcal{SP}$, $|\lambda|$ odd, $|\lambda| + \ell(\lambda) = n$ or n 1.
- 10.4. PROPOSITION. $\sigma \in \mathfrak{S}_n$ of modified type λ is even if and only if $|\lambda|$ is even.
- 10.5. DEFINITION. Let $\mathcal{D}_{\lambda}(n)$ be the even split conjugacy class in $\tilde{\mathfrak{S}}_n$ containing $[1, 2, \ldots, \lambda_1 + 1][\lambda_1 + 2, \ldots, \lambda_1 + \lambda_2 + 2] \ldots$
 - 10.6. Proposition. (a) $\theta^{-1}(\mathcal{C}_{\lambda}(n)) = \mathcal{D}_{\lambda}(n) \cup z\mathcal{D}_{\lambda}(n)$.
 - (b) $\{d_{\lambda}(n) \mid \lambda \in \mathcal{EP}, |\lambda| + \ell(\lambda) \leq n\}$ is a basis for the even center of $\mathbb{Z}\mathfrak{S}_n^- = \mathbb{Z}\tilde{\mathfrak{S}}_n/\langle z+1\rangle$.
 - 10.7. Define $b^{\nu}_{\lambda\mu}(n)$ by

$$d_{\lambda}(n)d_{\mu}(n) = \sum_{\nu \in \mathcal{EP}} b_{\lambda\mu}^{\nu}(n)c_{\nu}(n)$$

10.8. Example.

$$d_{(4)}(8)d_{(2)}(8) = 13d_{(4)}(8) - 35d_{(2)}(8) - 18d_{(2,2)}(8) - 7d_{(6)}(8) + 2d_{(4,2)}(8) \in Z(\mathbb{Z}\mathfrak{S}_8^-)$$

10.9. THEOREM (Tysse-Wang). Let $\lambda, \mu, \nu \in \mathcal{EP}$.

- (a) There exists a unique $g^{\nu}_{\lambda\mu}(x) \in \mathcal{Q}[x]$ such that $b^{\nu}_{\lambda\mu}(n) = g^{\nu}_{\lambda\mu}(n)$ for all $n \ge |\nu| + \ell(\nu)$.
- (b) $g_{\lambda\mu}^{\nu}(x) = 0$ unless $|\nu| \le |\lambda| + |\mu|$ (c) If $|\nu| = |\lambda| + |\mu|$, then $g_{\lambda\mu}^{\nu}(x)$ is a constnat.
- 10.10. Definition. Let the spin Farahat-Higman algebra \mathbb{F} be a \mathbb{B} algebra with basis $\{d_{\lambda} \mid \lambda \in \mathcal{EP}\}$ and

$$d_{\lambda}d_{\mu} = \sum_{\nu \in \mathcal{EP}} g_{\lambda\mu}^{\nu}(x)d_{\nu}$$

which is filtered with respect to $deg(d_{\lambda}) = |\lambda|$.

10.11. Proposition. Let λ be a partition and rewrite $\lambda = (i_{i>1}^{m_i(\lambda)})$. Let $s \geq 0$ be event. Then,

$$(d_{\lambda}d_{(s)})^* = \sum_{\mu} (-1)^{\ell(\mu)} \frac{(m_{s+|\mu|}(\lambda)+1)(s+|\mu|+1)s!}{(s+1-\ell(\mu))! \prod_{i\geq 1} m_i(\mu)!} d_{\lambda \cup (s+|\mu|)-\mu}$$

- 10.12. Corollary.
- 10.12. COROLLARY. (a) $\mathbb{Q} \otimes_{\mathbb{Z}[\frac{1}{2}]} \operatorname{gr} \mathbb{F}$ is generated by d_2, d_4, \ldots (b) There exists an injective homomorphism $\mathbb{Q} \otimes_{\mathbb{Z}[\frac{1}{2}]} \operatorname{gr} \mathbb{F} \hookrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{K}$ via (for $\lambda \in \mathcal{EP}$) $d_{\lambda} \mapsto (-1)^{\ell(\lambda)c_{\lambda}}$.

What is this

- 10.1. Connections to odd Jucys-Murphy elements.
- 10.13. Definition. Let us define

$$M_k := \sum_{i=1}^{k-1} [i, k] \in \mathbb{Z}\mathfrak{S}_n^-$$

- 10.14. Proposition. We have
- (a) $M_k M_l = -M_l M_k$ for $k \neq l$

$$M_k^2 = -(k-1) - \sum_{1 \le i \ne j \le k-1} [i, j, k] \in \mathbb{Z}\mathfrak{S}_n^-$$

10.15. DEFINITION. we define

$$e_{r,n} := \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} M_{i_1}^2 M_{i_2}^2 \cdots M_{i_r}^2 \in Z(\mathbb{Z}\mathfrak{S}_n^-)$$

- 10.16. Proposition. (a) $e_{r,n}$ has top degree 2r
- (b) $e_{r,n} = \sum_{\lambda \in \mathcal{EP}, |\lambda| + \ell(\lambda) \le n} A_{\lambda}(n) d_{\lambda}(n)$ for some $A_{\lambda}(n)$. (c) $A_{\lambda}(n)$ is the coefficient of $[1, 2, \dots, \lambda_1 + 1][\lambda_1 + 2, \dots, \lambda_1 + \lambda_2 + 2] \cdots$ in $e_{r,n}$ and is independent of n.
- 10.17. Definition. In light of the proposition above, we write $A_{\lambda} :=$ $A_{\lambda}(n)$ and define

$$e_r^* := \sum_{\lambda \in \mathcal{EP}, |\lambda| = 2r} A_{\lambda} d_{\lambda} \in \mathbb{F}$$

- 10.18. EXAMPLE. $e_1^* = -d_2$ and $e_2^* = d_{(2,2)} 2d_4$.
- 10.19. Proposition. $A_{\lambda}=\left(-1\right)^{\ell(\lambda)\prod_{i\geq 1}c_{\frac{\lambda_{i}}{2}}}$ where $c_{0}=1$ and $c_{r}=\left(\frac{2r}{r}\right)$ are the Contagnorm $\frac{1}{r+1}\binom{2r}{r}$ are the Cartan numbers.
 - 10.20. Theorem. $\mathbb{B}\left[\frac{1}{2}\right] \otimes_{\mathbb{B}} \mathbb{F}$ is generated by $e_1^*, e_2^*, e_3^*, \dots$
 - 10.21. Corollary. Via the surjective homomorphism

$$\mathbb{B}\left[\frac{1}{2}\right] \otimes_{\mathbb{B}} \mathbb{F} \to Z(\mathbb{Z}\left[\frac{1}{2}\right] \mathfrak{S}_{n}^{-})$$
$$\sum_{\lambda \in \mathcal{EP}} f_{\lambda}(x) d_{\lambda} \mapsto \sum_{\lambda \in \mathcal{EP}} f_{\lambda}(n) d_{\lambda}(n)$$

the even center of $\mathbb{Z}\left[\frac{1}{2}\right]\mathfrak{S}_n^-$ is generated by (the top degree of) $e_{r,n}$.

11. Schur-Sergeev duality for q(n) (presented by Chris Chung)

12. Seminormal form construction for irreducible \mathcal{H}_n -modules (presented by Jinkui Wan)

A review for the symmetric group case was presented, but not written up here yet.

12.1. Definition. We define the Jucys-Murphy elements in $\mathcal{H}_n = \mathcal{C}\ell_n \rtimes$ \mathbb{CS}_n as

$$J_k := \sum_{1 \le j < k \le n} (1 + c_j c_k)(jk),$$

- 12.2. Proposition. The Jucys-Murphy elements have the following properties.
 - (a) $J_k J_l = J_l J_k$ for $l \le k \ne l \le n$.

 - (b) $c_k J_k = -J_k c_k$ and $c_l J_k = J_k c_l$ for $k \neq l$. (c) $s_k J_k = J_{k+1} s_k (1 + c_k c_{k+1})$ for $1 \leq k \leq n-1$ and $s_l J_k = J_k s_l$ for $k \neq l, l+1$.
- 12.3. Definition. The degenerate affine Hecke-Clifford algebra is given by

$$\hat{\mathcal{H}}_n = \langle s_1, \dots, s_{n-1}, c_1, \dots, c_n, x_1, \dots, x_n \rangle$$

with additional relations

$$\begin{cases} x_k x_l = x_l x_k \\ s_k x_k = x_{k+1} s_k - (1 + c_k c_{k+1}) \\ s_i x_k = x_k s_i \\ x_k c_k = -c_k x_k \\ x_k c_l = c_l x_k \end{cases} \qquad k \neq i, i+1$$

12.4. Proposition. There exists a projection $\pi: \hat{\mathcal{H}}_n \twoheadrightarrow \mathcal{H}_n$ such that

$$\pi(s_i) = s_i, \pi(c_k) = c_k, \pi(x_l) = J_l$$

In particular, $\pi(x_1) = J_1 = 0$, so $x_1 \in \ker \pi$.

In fact, $\ker \pi = \langle x_1 \rangle$ and so \mathcal{H}_n -Mod can be identified as the subcategory of $\hat{\mathcal{H}}_n$ -Mod on which $x_1 = 0$.

12.5. Theorem (PBW Theorem). We have that

$$\{x_1^{\alpha_1} \cdots x_n^{\alpha_n} c_1^{\beta_1} \cdots c_n^{\beta_n} w \mid \alpha_i \in \mathbb{Z}_+, \beta_i \in \{0, 1\}, 1 \le i \le n, w \in \mathfrak{S}_n\}$$

is a basis for $\hat{\mathcal{H}}_n$.

12.6. COROLLARY (Corollary of PBW Theorem). The subalgebra of $\hat{\mathcal{H}}_n$ generated by $x_1, \ldots, x_n, c_1, \ldots, c_n$ is isomorphic to

$$\mathcal{C}\ell_n \otimes \mathbb{C}[x_1, \dots, x_n]/\langle x_k c_k = -c_k x_k, x_k c_l = c_l x_k, l \neq k \rangle = \underbrace{P_1^c \otimes P_1^c \otimes \cdots \otimes P_1^c}_{n \text{ conies}}$$

where $P_1^c = \langle x_1, c_1 \rangle$.

- 12.7. PROPOSITION. The \mathfrak{S}_n fixed points $\mathbb{C}[x_1^2, x_2^2, \dots, x_n^2]^{\mathfrak{S}_n} \subseteq Center\ of\ \hat{\mathcal{H}}_n$.
- 12.8. PROPOSITION. (a) The eigenvalues of x_1^2, \ldots, x_n^2 are of the form q(i) := i(i+1) for $i \in \mathbb{Z}_+$.
- (b) If all the eigenvalues of x_j^2 on a finite dimensional $\hat{\mathcal{H}}_n$ -module M for a fixed j are of the form q(i), then M is integral.

The second part of the proposition follows from the intertwining elements.

12.9. DEFINITION. Let intertwining element $\Phi_k \in \hat{\mathcal{H}}_n$ be given by

$$\Phi_k := s_k(x_k^2 - x_{k+1}^2) + (x_k + x_{k+1}) + c_k c_{k+1}(x_k - x_{k+1})$$
$$= (x_{k+1}^2 - x_k^2) s_k - (x_k + x_{k+1}) - c_k c_{k+1}(x_k - x_{k+1})$$

Note, the second equality follows from the fact that

$$s_k x_k^2 = x_{k+1} s_k x_k - (1 + c_k c_{k+1}) x_k = x_{k+1}^2 s_k - (1 + c_k c_{k+1}) (1 + x_k)$$

and, using conjugation by s_k ,

$$x_k^2 s_k = s_k x_{k+1}^2 - s_k (1 + c_k c_{k+1})(1 + x_k) s_k \Longrightarrow -s_k x_{k+1}^2 = -x_k^2 s_k - s_k (1 + c_k c_{k+1})(1 + x_k) s_k$$

Therefore, we get

$$s_k(x_k^2 - x_{k+1}^2) = (x_{k+1}^2 - x_k^2)s_k - (1 + c_k c_{k+1})(1 + x_k) - s_k(1 + c_k c_{k+1})(1 + x_k)s_k$$

12.10. Proposition. We have the following useful relations for the intertwining elements.

$$\begin{cases} \Phi_k \Phi_l = \Phi_l \Phi_k & |k-l| > 1 \\ \Phi_k \Phi_{k+1} \Phi_k = \Phi_{k+1} \Phi_k \Phi_{k+1} \\ \Phi_k^2 = 2(x_k^2 + x_{k+1}^2) - (x_k^2 - x_{k+1}^2)^2 \\ \Phi_k x_k = x_{k+1} \Phi_k, \Phi_k x_{k+1} = x_k \Phi_k, \Phi_k x_l = x_l \Phi_k & l \neq k, k+1 \\ \Phi_k c_k = c_{k+1} \Phi_k, \Phi_k c_{k+1} = c_k \Phi_k, \Phi_k c_l = c_l \Phi_k & l \neq k, k+1 \end{cases}$$

12.11. PROPOSITION. If v is some eigenvector of x_{j+1}^2 , that is, if $x_{j+1}^2v=av$, then $x_j^2\Phi_jv=a\Phi_jv$, so Φ_jv is an x_j^2 eigenvector with the same eigenvalue.

PROOF. Since
$$x_j^2\Phi_j=\Phi_jx_{j+1}^2$$
, we get that
$$x_j^2\Phi_jx=\Phi_jx_{j+1}^2v=\Phi_jav=a\Phi_jx$$

- 12.12. DEFINITION. A finite dimensional $\hat{\mathcal{H}}_n$ -module M is called *completely splittable (CS)* if x_1, x_2, \ldots, x_n act semisimply, ie the actions of x_1, \ldots, x_n can be diagonalized simultaneously.
- 12.13. Proposition. Every integral CS $\hat{\mathcal{H}}_n$ -module M can be decomposed as

$$M = \bigoplus_{\mathbf{i} \in \mathbb{Z}_+^n} M_{\mathbf{i}}$$

where

$$M_{\mathbf{i}} = \{ v \in M \mid x_k^2 v = q(i_k)v, 1 \le k \le n \}$$

is the common eigenspace of $x_1^2, x_2^2, \dots, x_n^2$ with eigenvalues $q(i_1), q(i_2), \dots, q(i_k)$. Furthermore, define

$$\operatorname{wt}(M) := \{ \mathbf{i} \in \mathbb{Z}_+^n \mid M_{\mathbf{i}} \neq 0 \}$$

Our goal is to describe $\operatorname{wt}(M)$ for integral irreducible CS $\hat{\mathcal{H}}_n$ -modules.

12.14. LEMMA. If $\mathbf{i} = (i_1, \dots, i_n) \in \mathbb{Z}_+^n$ is in $\operatorname{wt}(M)$ for some integral irreducible $CS \hat{\mathcal{H}}_n$ -module, then $i_k \neq i_{k+1}$ for all $1 \leq k \leq n-1$.

PROOF. Suppose $i_k = i_{k+1}$ so that $x_k^2 v = x_{k+1}^2 v$ for $v \in M_i$. Since $x_k^4 s_k - 2q(i_k) x_k^2 s_k + q(i_k)^2 s_k = x_k^2 (s_k x_{k+1}^2 - s_k (1 + c_k c_{k+1}) (1 + x_k) s_k) - 2q(i_k) x_k^2 s_k + q(i_k)^2 s_k$

Somehow we get that $s_k v \in M_i$. Then, we get

figure this out

$$\Rightarrow x_k^2 s_k v = q(i_k) s_k v$$

$$\Rightarrow (x_k^2 - q(i_k)) s_k v = 0$$

$$\Rightarrow (s_k x_{k+1}^2 - x_k (1 - c_k c_{k+1}) - (1 - c_k c_{k+1}) x_{k+1}) v - q(i_k) s_k v = 0$$

However,
$$x_{k+1}^2v = q(i_{k+1})v = q(i_k)v$$
 by assumption, so
$$\implies (x_k(1-c_kc_{k+1})+(1-c_kc_{k+1})x_k)v = 0$$

$$\implies 2(x_k^2+x_{k+1}^2)v = 0$$

$$\implies i_k=i_{k+1}=0$$

$$\implies x_k^2v = 0 = x_{k+1}^2v$$
 since M is CS
$$\implies v = 0$$
 since

Finish this proof.

12.15. LEMMA. Suppose $\mathbf{i} = (i_1, \dots, i_n) \in \operatorname{wt}(M) \subseteq \mathbb{Z}_+^n$ for some integral, irreducible, $CS \hat{\mathcal{H}}_n$ -module. Fix $1 \leq k \leq n-1$.

- (a) If $i_k \neq i_{k+1} \pm 1$, then $\Phi_k z \neq 0$ for all $0 \neq z \in M_i$.
- (b) If $i_k = i_{k+1} \pm 1$, then $\Phi_k = 0$ on M_i .

PROOF. Since
$$\Phi_k^2 = 2(x_k^2 + x_{k+1}^2) - (x_k^2 - x_{k+1}^2)^2$$
, then

$$\Phi_k^2 z = (2(q(i_k) + q(i_{k+1})) - q(i_k)^2 + 2q(i_k)q(i_{k+1}) - q(i_{k+1})^2)z = 0$$

if and only if

$$(q(i_k) - q(i_{k+1}))^2 = 2(q(i_k) + q(i_{k+1}))$$

Now, if we write $i_k = i_{k+1} + c$, then

$$\begin{cases} q(i_k) = i_{k+1}^2 + 2ci_{k+1} + c^2 + i_{k+1} + c \\ q(i_{k+1}) = i_{k+1}^2 + i_{k+1} \end{cases} \implies \begin{cases} q(i_k) - q(i_{k+1}) = 2ci_{k+1} + c^2 + c \\ q(i_k) + q(i_{k+1}) = 2i_{k+1}^2 + 2ci_{k+1} + c^2 + 2i_{k+1} + c \end{cases}$$

From here, one checks that $c=\pm 1$ certainly gives solutions independent of i_{k+1} . Thus, $i_k=i_{k+1}\pm 1\Longrightarrow \Phi_k^2z=0$. Furthermore, there are other formal solutions to these equations, namely $c=-2i_{k+1}$ and $c=-2(i_{k+1}+1)$, but since $i_{k+1}\geq 0$, this would force $i_k<0$ unless $i_k=i_{k+1}=0$, which is not admissible by the previous lemma.

So, to prove the second part, since $\Phi_k^2 z = 0$, it must be that if $\Phi_k z \neq 0$ and so $\Phi_k z \in M_{s_k \mathbf{i}}$. Then, there exists a minimal sequence $\Phi_{j_1}, \ldots, \Phi_{j_r}$ such that $\Phi_{j_1} \cdots \Phi_{j_r} \Phi_k z \in M_{\mathbf{i}}$ since M is irreducible. Then, if $\sigma = s_{j_1} \cdots s_{j_r} s_k \in \mathfrak{S}_n$, it must be that $\sigma \cdot \mathbf{i} = \mathbf{i}$. If one assumes $\sigma \neq 1$, this leads to a violation of Lemma 12.14 with some work. Then, using the exchange condition for Coxeter groups, one shows that r = 1 which gives $j_1 = k$, so $\Phi_k^2 z \neq 0$, contradicting what we showed above.

Why is this true?

12.16. REMARK. Suppose V is an integral, irreducible $\hat{\mathcal{H}}_n$ -module. Let $\hat{\mathcal{H}}_{(n-r,1^k)} = \langle s_1, \dots, s_{n-r-1}, c_1, \dots, c_n, x_1, \dots, x_r \rangle$. Then,

$$V \text{ is CS} \iff \forall \mathbf{i} \in \text{wt}(V), 1 \leq k \leq n-1, i_k \neq i_{k+1}$$

$$\iff \operatorname{Res}_{\hat{\mathcal{H}}_{(n-r,1^r)}}^{\hat{\mathcal{H}}_n} V \text{ is semisimple } \forall 1 \leq r \leq n$$

$$\iff \operatorname{Res}_{\hat{\mathcal{H}}_{(1^k,n-k-r,1^r)}}^{\hat{\mathcal{H}}_n} V \text{ is semisimple}$$

The second $\hat{\mathcal{H}}_{(1^k,n-k-r,1^r)}$ is not defined

12.17. COROLLARY. Suppose $\mathbf{i} \in \text{wt}(V)$ for some integral, irreducible, $CS \ \hat{\mathcal{H}}_n$ -module V. If $i_k = i_{k+2}$ for some $1 \le k \le n-2$, then $i_k = i_{k+2} = 0$ and $i_{k+1} = 1$.

PROOF. If $i_k \neq i_{k+1} \pm 1$, then $s_k \cdot \mathbf{i} \in \text{wt } V$ by the first part of 12.15, but $s_k \cdot \mathbf{i} = (\cdots, i_{k+1}, i_k, i_{k+2} \cdots)$ and, by assumption, $i_k = i_{k+2}$ contradicting 12.14. So, it must be that $i_{k+1} = i_k \pm 1$ and so $\Phi_k = 0 = \Phi_{k+1}$ on V_i by the second part of 12.15. Thus, for $z \in V$,

$$\begin{cases} \Phi_k z = 0 & \Longrightarrow (q(i_k) - q(i_{k+1})) s_k z = -((x_k + x_{k+1}) + c_k c_{k+1} (x_k - x_{k+1})) z \\ \Phi_{k+1} z = 0 & \Longrightarrow (q(i_{k+1}) - q(i_{k+2})) s_{k+1} z = -((x_{k+1} + x_{k+2}) + c_{k+1} c_{k+2} (x_{k+1} - x_{k+2})) z \end{cases}$$

which gives us the s_k and s_{k+1} actions on V_i . From here, we can use the braid relation $s_k s_{k+1} s_k = s_{k+1} s_k s_{k+1}$ to arrive at the equality

$$((x_k + x_{k+2})(6x_{k+1}^2 + 2x_k x_{k+2}) + c_k c_{k+2}(x_k - x_{k+2})(6x_{k+1}^2 - 2x_k x_{k+2}))z = 0$$

Now, $x_k z = \pm \sqrt{q(i_k)}z$. Furthermore, since $i_k = i_{k+2}$, we have that either $x_k z = x_{k+2}z$ or $x_k z = -x_{k+2}z$. Decompose

$$V_{\mathbf{i}} = W_1 \oplus W_2$$

where $W_1 := \{z \in V_i \mid x_k z = x_{k+2} z\}$ and $W_2 := \{z \in V_i \mid x_k z = -x_{k+2} z\}$. Now, we can break up our braid relation equality.

$$z \in W_1 \Longrightarrow 0 = ((x_k + x_{k+2})(6x_{k+1}^2 + 2x_k x_{k+2}) + c_k c_{k+2}(x_k - x_{k+2})(6x_{k+1}^2 - 2x_k x_{k+2}))z$$

$$= 2x_k (6x_{k+1}^2 + 2x_k^2)z$$

$$= 2\sqrt{q(i_k)}(6q(i_{k+1}) + 2q(i_k))z$$

$$z \in W_2 \Longrightarrow 0 = ((x_k + x_{k+2})(6x_{k+1}^2 + 2x_k x_{k+2}) + c_k c_{k+2}(x_k - x_{k+2})(6x_{k+1}^2 - 2x_k x_{k+2}))z$$

$$= c_k c_{k+2} 2x_k (6x_{k+1}^2 + 2x_k^2)z$$

$$=c_kc_{k+2}(2\sqrt{q(i_k)}(6q(i_{k+1})+2q(i_k)))z$$
 Thus, we obtain that

$$2\sqrt{g(i_k)}(6g(i_{k+1}) + 2g(i_k)) = 0$$

Moreover, we know that $i_{k+1} = i_k \pm 1$, so we get

$$\begin{cases} \sqrt{i_k(i_k+1)}(6(i_k-1)i_k+2(i_k+1)i_k) = 0 & \text{if } i_{k+1} = i_k - 1\\ \sqrt{i_k(i_k+1)}(6(i_k+1)(i_k+2) + 2(i_k+1)i_k) = 0 & \text{if } i_{k+1} = i_k + 1 \end{cases}$$

There are no solutions to the first equation that give i_k and i_{k+1} as non-negative integers and the only such solution for the second equation is $i_k = 0$ and $i_{k+1} = 1$.

In conclusion, we have the following.

12.18. THEOREM. Let W(n) be the set of weights of all integral irreducible $CS \hat{\mathcal{H}}_n$ -modules and let $\mathbf{i} \in W(n)$. Then,

- (a) $i_k \neq i_{k+1}$ for all $1 \leq k \leq n-1$.
- (b) If $i_k = i_\ell = 0$ for some $1 \le k < \ell \le n$, then $1 \in \{i_{k+1}, \dots, i_{\ell-1}\}$. (c) If $i_k = i_\ell \ge 1$ for some $1 \le k < \ell \le n$, then $\{i_k 1, i_k + 1\} \subseteq$ $\{i_{k+1},\ldots,i_{\ell-1}\}.$

PROOF. The first part is just a restatement of 12.14.

For the next part, assume $1 \not\in \{i_{k+1}, \dots, i_{\ell-1}\}$. Then, we can swap indices using ?? to get new weights until we obtain a weight of the form

$$(\ldots,0,0,\ldots)$$

which is not allowed by the previous part.

For the last part, let $u = i_k = i_\ell \ge 1$ be such that $k - \ell$ is minimal among such occurrences. If only one of u+1, u-1 appear in between i_k and i_{ℓ} , then it must appear twice because, otherwise, we could swap indices using 12.15 to get new weights until we are of the form

$$(\ldots, u, u \pm 1, u, \ldots)$$

which is not a weight by 12.17 since $u \geq 1$. Thus, we have violated the minimality of our choice of u.

Now, we wish to describe a bijection between $\mathcal{W}(n)$ and standard skew shifted tableaux of size n.

- 12.19. Definition. Given strict partitions $\nu \subseteq \xi$, the skew shifted Ferrers diagram ξ/ν is given by removing the boxes of ν from ξ .
 - 12.20. Example. Consider $(3, 2) \subseteq (5, 4, 2, 1)$. Then,

We now illustrate the bijection by example.

12.21. Example. Let i = (1, 0, 3, 2, 1, 0, 6). Then, we construct our standard skew shifted tableau in steps by adding a box of content i_k labelled k on the kth step.

$$(1,0,3,2) \mapsto \begin{array}{|c|c|}\hline 3\\\hline 1&4\\\hline 2\\\hline \end{array}$$

:

$$(1,0,3,2,1,0) \mapsto \begin{array}{c|c} \hline 3 \\ \hline 1 & 4 \\ \hline 2 & 5 \\ \hline 6 \\ \end{array}$$

$$(1,0,3,2,1,0,6) \mapsto \begin{array}{c|c} \hline 7 \\ \hline & 3 \\ \hline & 1 & 4 \\ \hline & 2 & 5 \\ \hline & 6 \\ \hline \end{array}$$

So, our final answer has outer shape $\xi = (7, 4, 3, 2, 1)$ and inner shape $\nu = (6, 3, 1)$:

- 12.22. Definition. Given $\mathbf{i} \in \text{wt } V$, let $T(\mathbf{i})$ be the corresponding standard skew shifted tableau.
- 12.23. PROPOSITION. If $\mathbf{i}, \mathbf{j} \in \text{wt}(V)$ for some integral irreducible CS $\hat{\mathcal{H}}_n$ -module V, then $T(\mathbf{i})$ and $T(\mathbf{j})$ have the same shape.

PROOF. If $(i_1, \ldots, i_k, i_{k+1}, \ldots, i_n)$, then $(i_1, \ldots, i_{k-1}, i_{k+1}, i_k, \ldots, i_n)$ is a weight only if $i_k \neq i_{k+1} \pm 1$ by ??. However, under such a condition, it does not matter in which order we add the boxes corresponding to i_k and i_{k+1} . Thus, these two weights will yield the same shape.

What is the reference here?

12.24. Definition. Given ξ/ν a skew-shifted Ferrer's diagram of size n, we define

$$\mathcal{F}(\xi/\nu) := \{ \mathsf{T} \mid \mathsf{T} \text{ a standard Young tableau of shape } \xi/\nu \}$$

and

$$\hat{D}^{\xi/\nu} := \bigoplus_{\mathsf{T} \in \mathcal{F}(\xi/\nu)} \mathcal{C}\ell_n v_\mathsf{T}$$

as a vector space with actions

$$x_k v_{\mathsf{T}} = \sqrt{q(c(\mathsf{T}_k))} v_{\mathsf{T}}$$

where $c(T_k)$ is the content of the box labelled by k in T and where $\mathcal{C}\ell_n$ acts by multiplication on the left.

12.25. Proposition. We have

$$s_k v_{\mathsf{T}} = \left(\frac{1}{\sqrt{q(c(\mathsf{T}_{k+1}))} - \sqrt{q(c(\mathsf{T}_k))}} + \frac{1}{\sqrt{q(c(\mathsf{T}_{k+1}))} + \sqrt{q(c(\mathsf{T}_k))}} c_k c_{k+1}\right) v_{\mathsf{T}} + \sqrt{1 - \frac{2(q(c(\mathsf{T}_{k+1}))) + c_k c_{k+1}}{(q(c(\mathsf{T}_{k+1})) - q(c(\mathsf{T}_k)))}} c_k c_{k+1}$$

PROOF. This fact follows formally from the fact that $\Phi_k v_{\mathsf{T}} = a v_{s_k \mathsf{T}}$ for some scalar a if $s_k \mathsf{T}$ is standard.

Actually do this proof.

12.26. COROLLARY. $\hat{D}^{\xi/\nu}$ is an integral $CS \hat{\mathcal{H}}_n$ -module.

Proof. Mainly, one needs to check the Coxeter relations.

Fill in this proof.

13. Spin Kostka Polynomials

13.1. DEFINITION. Let $\nu \in \mathcal{SP}$ and μ be a partition. Then, the *spin Kostka polynomials* are the transition polynomials from the Hall-Littlewood P-functions to the Q-Schur functions. In other words,

$$Q_{\nu}(x) = \sum_{\mu} K_{\nu\mu}^{-}(t) P_{\mu}(x;t)$$

If we also let $b_{\nu\lambda}$ be such that

$$Q_{\nu}(x) = \sum_{\lambda} b_{\nu\lambda} s_{\lambda}(x)$$

then we get

13.2. PROPOSITION. For $\nu \in \mathcal{SP}$ and μ a partition,

$$K_{\nu\mu}^{-}(t) = \sum_{\lambda} b_{\nu\lambda} K_{\lambda\mu}(t)$$

where $K_{\lambda\mu}(t)$ are the Kostka-Foulkes polynomials.

Proof. By definition of Kostka-Foulkes, we have

$$s_{\lambda} = \sum_{\mu} K_{\lambda\mu}(t) P_{\mu}(x;t)$$

and so

$$\sum_{\mu} K_{\nu\mu}(t) P_{\mu}(x;t) = Q_{\nu}(x) = \sum_{\lambda} b_{\nu\lambda} s_{\lambda} = \sum_{\lambda,\mu} b_{\nu\lambda} K_{\lambda\mu}(t) P_{\mu}(x;t)$$

Bibliography

- [CW12] S.-J. Cheng and W. Wang, Dualities and Representations of Lie Superalgebras, 2012
- [Kle05] A. Kleshchev, Linear and Projective Representations of Symmetric Groups, 2005.
- [Mac79] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 1979. 2nd Edition, 1995.
- [Sag87] B. E. Sagan, Shifted Tableaux, Schur Q-functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A (1987), 62–103.
- [WW12] J. Wan and W. Wang, Lectures on Spin Representation Theory of Symmetric Groups, Bull. Inst. Math. Acad. Sin. (2012), 91–164.