Vincent Arumadri

Department of Public Health

Frasmus MC

8th April, 2025

Non-linear association between rainfall and vector abundance and outbreak risk

Caldwell et al. 2021, Nature Communications

Introduction Concepts

Crossbasis

DLNMs: Conceptual model

Rainfall (Exposure)

Exposure-response

Malaria cases (Response)

Rainfall (Exposure)

Malaria cases (Response)

Key definitions

- Non-linear data associations: data where there is no linear relationship between a dependent (outcome/response) and an independent (exposure/predictor) variable
- Time series data: a sequence of data points collected over an interval of time e.g daily rainfall measurements, weekly sales
- Lag: time difference between two observations in a sequence

Day	Value	Lag-1	<i>Lag</i> – 2
1	10	NA	NA
2	20	10	NA
3	30	20	10
4	40	30	20
5	50	40	30

Introduction Concepts Stats

Key definitions

• Basis: known family of functions/transformations e.g. polynomials, thresholds, splines etc applied to a predictor X to generate basis variables: $b_1(X), b_2(X), b_k(X)$.

$$y = \beta_0 + \beta_1 b_1(x) + \beta_2 b_2(x) + ... + \beta_k b_k(x) + \epsilon$$
 (1)

• Basis function for polynomial takes the form:

$$b_j(x) = x^j$$
 polynomial function of degree j \uparrow Raise predictor x to degree j

• Substituting equation (2) in (1) Degree 3 polynomial

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_d x^d + \epsilon$$
Degree 1 (linear term) Degree 2 polynomial Degree d polynomial

Modelling non-linear data associations

- Polynomials and cubic splines (degree 3 polynomials) are the most common basis used to fit non-linear associations
- Unusual to use d greater than 3 or 4, overfitting and wiggly

Erasmus MO

Natural (restricted) cubic spline

- Natural cubic spline: cubic spline with additional boundary constraints, enforcing linearity beyond boundary knots
- Produce more stable estimates at boundaries (narrower confidence intervals) than cubic splines

Frasmus MO

• How are these concepts used in DLNMs?

DLNMs: Modelling framework

- DLNMs capture a detailed representation of the time-course of the exposure-lag-response relationship
- Risk associated with individual exposure events at each lag assigned a weight that contributes to overall cumulative risk

Erasmus MC

Statistical issue is to model this risk!

Introduction Concepts

s St

Stats

Basic model

• A general statistical model representation to describe the time series of outcomes Y_t with t = 1, ..., n is given by:

Link function Smoothed predictor
$$g(\mu_t) = \alpha + \sum_{j=1}^{J} s_j(x_{tj}; \beta) + \sum_{k=1}^{K} \gamma_k u_{tk}$$
 Other predictors with linear effects

- x_{tj} is the transformed (non-linear/smoothed) exposure at time t through basis function j
- β is (linear) unknown coefficient of x_{tj} to be estimated

Exposure-lag-response associations

- The risk is represented by a function s(x, t) defined in terms of both **intensity** and **timing** of a series of **past exposures**:
 - an exposure-response function f(x) for exposure x
 - a lag-response function $w(\ell)$ for lag ℓ
- Generating a bi-dimensional exposure-lag-response function

$$s(x, t) = f(x) \cdot w(\ell)$$

that describes simultaneously both the intensity and timing of past exposures

Basis for exposure-response function

- Given, a timeseries of exposure X and assuming a maximum lag of 2, we can compute, q_{xt} (vector of lagged exposure histories of X)
- Applying a linear transformation to q_{xt} we get R_{xt} (basis variables for lagged occurrences of X)

	t	X		lag 0	lag 1	lag 2		Γ <mark>10</mark>	NA	NA	l
Ī	1	10		10	NA	NA		20	1.0	NA	
	2	20	\rightarrow	20	10	NA	\Rightarrow	30	20	10	
	3	30		30	20	10		40	30	20	
	4	40		40	30	20		50	40	30	Erasmus MC
	5	50		50	40	30		L 30	1 0	<u> </u>	Calm

Basis for lag-response function

- Applying polynomial transformation of degree 2 to the lag vector, $\ell(0,1,2)$
- First step is to scale the lag vector by dividing by the maximum lag:

$$(0,1,2)/2 \Rightarrow (0,0.5,1)$$

 Obtaining C (basis variables for each lag for polynomial degrees d = 0,1,2)

x^d	x^0	x^1	x^2					
lag 0 (0)	1	0	0		1	0	0	
lag 1 (0.5)	1	0.5	0.25	$\Rightarrow C =$	1	0.5	0.25	Erasmus MC
lag 2 (1)	1	1	1			1	<u> </u>	Cafins

Introduction Concepts Stats Application Crossbasis

Special tensor product

 Simultaneously captures the intensity and timing of past exposures

$$A_{xt} = (1_{v\ell} \otimes R_{xt}) \odot (C \otimes 1_{vx})$$

Hadamard product

Kronecker product

• $1_{V\ell}$: Vector of 1's of dimensional length of lag vector

$$\ell(0,1,2) \Rightarrow 1_{\nu\ell} = [1,1,1]$$

• 1_{VX} : Vector of 1's of dimensional length of exposure vector

$$\begin{vmatrix} t & x \\ 1 & 10 \\ 2 & 20 \\ 3 & 30 \\ 4 & 40 \\ 5 & 50 \end{vmatrix} \Rightarrow 1_{vx} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

 $1_{v\ell}\otimes R_{xt}$

 $[1,1,1] \otimes \begin{bmatrix} 10 \\ 20 \\ 30 \\ 40 \\ \end{bmatrix}$ NA NA NA NA NA NA 20 =NA NA NA NA NA NA 20 30

Erasmus MC
Usiverity Medical Center Strandon
2 afrons

 $\overline{C\otimes 1_{\mathsf{vx}}}$

Erasmus MC
University Medical Center Rotatelan
2 of May

 $(1_{v\ell}\otimes R_{xt})\odot (\mathcal{C}\otimes 1_{vx})=A_{xt}$

	1	0		0	
	1	0		0	
	1	0		0	
	1	0		0	
	1	0		0	
	1	0.5	C).2!	5
	1	0.5	C).2!	5
0	1	0.5	C).2!	5
	1	0.5	C).2!	5
	1	0.5	C).2!	5
	1	1		1	
	1	1		1	
	1	1		1	
	1	1		1	
	1	1		1	

	10	0	0
	20	0	0
	30	0	0
	40	0	0
	50	0	0
-	NA	NA	NA
	10	5	2.5
=	20	10	5
	30	15	7.5
	40	20	10
-	NA	NA	NA
	NA	NA	NA
	10	10	10
	20	20	20
	30	30	30

Cumulative risk of exposures across lags

• From Gasparrini et al 2010 "... array A_{xt} is then re-arranged summing along the third dimension of lags to obtain the final matrix of cross-basis functions, w_{xt} ."

$$A_{x_t} \Rightarrow \begin{bmatrix} 10 & 0 & 0 \\ 20 & 0 & 0 \\ 30 & 0 & 0 \\ 40 & 0 & 0 \\ 50 & 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} NA & NA & NA \\ 10 & 5 & 2.5 \\ 20 & 10 & 5 \\ 30 & 15 & 7.5 \\ 40 & 20 & 10 \end{bmatrix} \oplus \begin{bmatrix} NA & NA & NA \\ NA & NA & NA \\ 10 & 10 & 10 \\ 20 & 20 & 20 \\ 30 & 30 & 30 \end{bmatrix}$$

$$Direct - sum(\oplus) \Rightarrow egin{bmatrix} {\sf NA} & {\sf NA} & {\sf NA} \\ {\sf NA} & {\sf NA} & {\sf NA} \\ {\sf 60} & {\sf 20} & {\sf 15} \\ {\sf 90} & {\sf 35} & {\sf 27.5} \\ {\sf 120} & {\sf 50} & {\sf 40} \end{bmatrix}$$

 $= w_{xt}\beta$

Erasmus MC
University Medical Center Fattandan
2 of June

Crossbasis functions

[2.]

[3,]

[5.]

[4.] 90

NA NA

120

60 20 15.0

35 27.5

50 40.0

```
# Load package
pacman::p load("dlnm")
# data
x <- data.frame(
  t = 1:5
  value = c(10, 20, 30, 40, 50)
х
     t value
          10
          20
          30
## 5 5
          50
# crossbasis
cb.x <- crossbasis(x$value, lag=2,
                      argvar=list(fun = "lin"),
                      arglag=list(fun="poly", degree=2))
# crossbasis matrix
head(cb.x, 5)
        v1.11 v1.12 v1.13
## [1.]
                       NA
```

NA

Erasmus MC
Usivalty Middul Cetter Strandon
2 M/ms

Distributed lag non-linear models (DLNMs)

• Bi-dimensional exposure-lag-response function $f(x) \cdot w(\ell)$:

$$s(x,t) = \int_{\ell_0}^L f(x_{t-\ell}) \cdot w(\ell) d\ell$$

• Approximation obtained through a discretization of the lag period into equally spaced time units, q_{x_t}

$$s(x_{t-\ell_0},\ldots,x_{t-L}) \approx \sum_{\ell=\ell_0}^L f(x_{t-\ell}) \cdot w(\ell)$$

• The problem reduces to choosing a basis function for exposure-response (q_x) and lag-response (ℓ) space

Effect of temperature and ozone on mortality

```
# Load packages and data
pacman::p_load("dlnm", "splines")
chicagoNMMAPS <- chicagoNMMAPS
# Objective: to investigate the effects of temperature and
# Ozone on mortality up to lag 30 and 5, respectively
# crossbasis ozone
cb.o3 <- crossbasis(chicagoNMMAPS$o3, lag=5,
                     argvar=list(fun="thr", thr=40.3).
                     arglag=list(fun="thr"))
# crossbasis temperature
cb.temp <- crossbasis(chicagoNMMAPS$temp, lag=30,
                      argvar=list(fun = "ns", df=5).
                      arglag=list(fun="bs"))
# model
model <- glm(death ~ cb.o3 + cb.temp + dow,
              family=quasipoisson(), chicagoNMMAPS)
# pred (extract estimated associations predicted by model)
pred.temp <- crosspred(cb.temp, model, cen=21)</pre>
pred.o3 \leftarrow crosspred(cb.o3, model, at=c(0:65,40.3))
# plots
plot(pred.temp, xlab="Temperature (°C)", zlab="RR",
     main="3D graph of temperature effect on mortality")
```


Introduction Concept

Stats

Crossbasis

Effect of temperature and ozone on mortality

3D graph of temperature effect on mortality

3D graph of ozone effect on mortality

Introduction

Stats

Crossbasis

Application

Effect of rainfall and temperature on dengue risk

Erasmus MC

- A. Gasparrini, Armstrong, and Kenward 2010
- Antonio Gasparrini 2011
- Gareth James Daniela Witten Trevor Hastie and Robert Tibshirani 2013
- Antonio Gasparrini and Leone 2014
- Aßenmacher 2016
- Lowe et al. 2018

Thank you!

Slides: https://github.com/arumadri/dlnm

