Boolean Logic

Lesson 1

Statements

Quasi-definition

A *statement*, also known as a *proposition* or an *assertion*, is a sentence that has a truth value of either true or false. A *theorem* is a statement that has a truth value of true.

- Boolean logic is named in honor of George Boole (1815 1864).
- In boolean logic, the truth values are either true or false.
- A statement is a concept that we can describe, but don't define.
- An axiom is a statement that is assumed to have a truth value of true. Generally, the truth value of an axiom cannot be determined by the truth value of other theorems.

Example

Examples of statements:

- $\mathbf{0} \ 1 = 1.$
- 2 Every square is a rectangle.
- 3 Some integers are divisible by 42.

Examples of non-statements:

- Square houses are boring.
- 2 Please make your bed, brush your teeth, and take out the garbage.

Logical notation

We'll use the ISO standard names for logical functions. These names are

negation	¬
and	$ \wedge $
or	V
implies	\implies
equivalent	≡
for all	
there exists]

- For a quick review of these functions, see https://en.wikipedia.org/wiki/Boolean_algebra.
- For additional ISO math symbols, see https://en.wikipedia.org/wiki/ISO_31-11.
- **1** In mathematics, for statements P and Q, the statement $P \vee Q$ is true when both P and Q are true; that is, we use the disjunction inclusive.

Negation

Definition

For a statement P, we define its *logical negation*, denoted by $\neg P$, with the *truth table*

D	_ D	l
Ρ	$\neg P$	
Т	F	
_	_	-
F	ı	

Equality

Definition

Let P and Q be statements. We define equivalence $P \equiv Q$ by the truth table

Р	Q	$P \equiv Q$	
Т	Т	Т	
Т	F	F	١.
F	Т	F	
F	F	T	

- Statements P and Q are equivalent provided the statements have the same truth value.
- ② Since both P and Q have two possible values, the truth table has $4(=2\times2)$ rows.
- **3** $P \equiv Q$ is an example of a *compound statement*. Its constituent parts are the statements P and Q.

Disjunctions

Definition

Let P and Q be statements. The *disjunction* of P with Q, denoted by $P \vee Q$, is a statement whose truth value is given by

Р	Q	$P \lor Q$	
Т	Т	Т	
Т	F	Т	
F	Т	Т	
F	F	F	

- **1** That is $P \lor Q$ is false when both P and Q are false; otherwise $P \lor Q$ is true.
- ② $P \lor Q$ is another example of a *compound statement*.
- In mathematical logic, notice that True ∨ True has a truth value of true.

Conjunctions

Definition

Let P and Q be a statements. The *conjunction* of P with Q, denoted by $P \wedge Q$, is a statement whose truth value is given by

Р	Q	$P \wedge Q$	
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

1 That is $P \wedge Q$ is true provided both P and Q are true; otherwise $P \wedge Q$ is false.

Tautologies

Definition

A compound statement that has a truth value of true for all possible truth values of its constituent parts is a *tautology*.

Example

Each of the following are tautologies:

- \bullet $P \vee \neg P$
- $P \equiv P$,
- $P \equiv \neg \neg P,$

Example

Example

Let's show that $\neg(P \land Q) \equiv (\neg P) \lor (\neg Q)$ is a tautology. There are two constituent parts, so we need a truth table with four rows. How many columns it has depends on how many steps we are willing to skip.

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$(\neg P) \lor (\neg Q)$	$\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$
T	T	Т	F	F	Т
T	F	F	T	T	Т
F	T	F	T	T	Т
F	F	F	Т	F	Т

The last column shows that regardless of the truth values for P and Q, the statement $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$ is true; therefore $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$ is a tautology.

- **①** Possibly the truth table should have columns for $\neg P$ and $\neg Q$.
- ② The tautology $\neg(P \land Q) \equiv (\neg P) \lor (\neg Q)$ is due to De Morgan, and is known as *De Morgan's law* (Augustus De Morgan (1806 1871).

Conditionals

The conditional is a logical connective that allows us to form a compound statement with the meaning "if P, then Q." Specifically:

Definition

Let P and Q be a statements. We define $P \implies Q$ with the truth table

Q	$P \implies Q$	
Т	Т	
F	F	
Т	Т	
F	Т	
	T F T	T T F F T T

- In the conditional $P \implies Q$, we say that P is the *hypothesis* and Q is the *conclusion*.
- ② A conditional is false when the hypothesis is true, but the conclusion is false; otherwise, a conditional is true.

Converse

Definition

The *converse* of the conditional $P \implies Q$ is the conditional $Q \implies P$.

Fact

A truth table shows that $(P \Longrightarrow Q) \equiv (Q \Longrightarrow P)$ is not a tautology. Specifically, $T \Longrightarrow F$ is false, but $F \Longrightarrow T$ is true.

Example

Consider the statement

If
$$x < 5$$
, then $x < 7$

and its converse

If
$$x < 7$$
, then $x < 5$.

The first statement is true, but its converse is false (because, for example, x could be six, making x < 7 true, but x < 5 false.

Contrapositive

Definition

The *contrapositive* of the conditional $P \implies Q$ is the conditional $\neg Q \implies \neg P$.

Fact

A truth table shows that $(P \implies Q) \equiv (\neg Q \implies \neg P)$ is a tautology.

Example

Consider the statements:

If
$$x < 5$$
, then $x < 7$

and its contrapositive

If
$$x \ge 7$$
, then $x \ge 5$

These statements are logically equivalent.

Extra conditional

Fact

A truth table shows that $(P \Longrightarrow Q) \equiv \neg P \lor Q$ is a tautology. This makes $P \not\Longrightarrow Q$ equivalent to $P \land \neg Q$.