GENERATIVE ADVERSARIAL NETWORKS

KAIM 2018 Anand Krish

Agenda

- Introduction to Generative Models
- GANs
- Objectives

Generative Modelling

- Going beyond traditional classification and Prediction –
 - Learn to simulate the data generator
 - Probabilistically learn the data generating distribution
 - Generate new samples of data
 - Unsupervised learning
- Inference based on data generation
 - Learn latent representations and features
- Myriad of Applications
 - Super-resolution, Text-to-speech
 - Fake image generation, style transfer
 - Face modification, speech generation
 - Drug discovery : new candidate molecules

Problems with Generative models

Problem	Solution
Sampling from Complex distribution	Use simple transformations to form samples of complex distribution
Intractable probability distributions	Implicit density generation
Adversarial Attacks	Use a generalized critic model – Game Theoretic approach

Advantages -

- No need for variational methods/Monte Carlo methods
- No need of latent variable models
- Simple architectures and straight-forward training

GAN

- Two parts **Generator** and **Discriminator**.
 - Generator (G) learns the data distribution from samples implicitly
 - Discriminator (D) learns to differentiate the original data from the samples from the Generator (Adversary)
- Formal description of GANs *Divergence Minimization*. Minimize the *distance* between probability distributions.

$$\min_{G} \max_{D} \mathbb{E}_{x \sim p_0} \left[\log D(x) \right] + \mathbb{E}_{z \sim q_{\theta}} \left[\log (1 - D(G(z))) \right]$$

Where p_0 is the original data distribution and q_θ is the distribution learned by the network. The above objective represents the Jenson-Shannon (JS) divergence. Train by alternatively training the D and G networks.

GAN Objectives

- Core problem with the native objective modal collapse
 - Learning just few correct samples to fool the discriminator
 - Reason The divergence function (JS divergence) saturates at larger deviations.
 - Solution Use Different Metric Wasserstein Metric (linear gradients)

GAN Objectives

- Further Problems
 - Wasserstein Metric is intractable

$$W(p_0, q_\theta) = \inf_{\gamma \in \Gamma} \mathbb{E}_{(x, y) \, \sim \gamma} [\|x - y\|]$$

English Translation: Take the largest value of the expectation of the set of all joint distributions whose marginals are p_0 and q_θ . (Kinda made is worse!!)

Solution – Use simple approximation

$$\mathbb{E}_{x \sim p_0}[D(x)] - \mathbb{E}_{x \sim q_\theta}[D(x)]$$

- Major Problem Approximation works only for 1 —Lipschitz discriminator functions D
- Solution Way too many!!!
 - Gradient Clipping
 - Gradient Penalty
 - Spectral Normalization

Most Promising Solutions

THANK YOU