Introdução

Discretização

Métodos d

Explícito

Métodos de

Kunge-Kutt

Metodo de Eu

ivietodo de neu

Médio

Runge-Kutta Clas

Estabilidad

Sistemas d

EDOs de Alta Ordem

Problema de Valor Inicial Introdução aos Métodos Discretos

Prof. Ruy Freitas Reis - ruy.reis@ufjf.br Programa de Pós-Graduação em Modelagem Computacional Universidade Federal de Juiz de Fora

Introdução

Discretização

Métodos de

Explícito

Métodos de

Runge-Kut

Método de Eule

Método de Heur Método do Pont

Médio

LStabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta
 Introdução
 Método de Euler
 Método de Heun
 Método do Ponto Médio
 Runge-Kutta Clássico
- 6 Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Conteúdo

Introdução

Discretização

Métodos de

Explícito Implícito

Métodos de Runge-Kutt

Runge-Kutt

Método de Hei

Método do Pon

Donne Koste C

Estabilidad

Sistemas de

EDOs de Alta Ordem

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta
 Introdução
 Método de Euler
 Método de Heun
 Método do Ponto Médio
 Runge-Kutta Clássico
- **6** Estabilidade
- 6 Sistemas de EDOs
- ₱ EDOs de Alta Ordem

Discretizaçã

Métodos de Euler

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutt

Método de Euler Método de Heun Método do Pont

Runge-Kutta Cla

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Introdução

- Equações diferenciais ordinárias (EDOs) são extremamente importantes pelo fato de muitos problemas na ciência e tecnologia recaem nestes tipos de equações
- Em cursos matemática aprendemos como determinar a solução deste tipo de problema para determinadas situações/condições.
- Entretanto, em muitas situações práticas e aplicadas, métodos numéricos são necessários pois não é possível determinar soluções de forma analítica (ou exata) ou ainda são muito difíceis de serem encontradas.
- Para introduzir o assunto, vamos começar com um exemplo que descreve o crescimento de uma população.

Introducão

Discretização

Métodos de Euler

Explícito Implícito

Métodos de Runge-Kutt

Runge-Kutt

Método de Heun Método do Ponto

Runge-Kutta C

Estabilidade

Sistemas d EDOs

EDOs de Alta Ordem

Introdução

Exemplo

- Sabemos que em condições normais (sob certas hipóteses), o número de indivíduos de uma população cresce a uma taxa proporcional ao atual número de indivíduos.
- Sabendo que após 2 anos o número de indivíduos da população dobra, e que após 3 anos é de 20000 indivíduos, qual é o número de indivíduos dessa localidade?

Solução

Seja t a variável tempo, N=N(t) o número de indivíduos no instante t e $N_0=N(t_0)$ o número de indivíduos no instante t_0 .

Como a taxa de variação da população é proporcional ao número de indivíduos, temos

$$\frac{dN}{dt} = kN$$

Solução

A solução analítica é dada por

$$N(t) = ce^{kt}$$

que podemos verificar (derivando) que satisfaz a equação

$$\frac{dN}{dt} = kce^{kt} = kN$$

Observe que para toda constante $c \in \mathbb{R}$, N(t) é uma solução equação diferencial. Isto é, existe uma família de infinitas funções N(t) que satisfazem à equação diferencial.

Para determinar uma solução única é preciso especificar um valor inicial N_0 da função solução em um instante de tempo t_0 .

Introdução

Discretização

Métodos de

Explicito

Métodos de Runge-Kutt

Introducão

Método de Eule

Método de Heun

Médio

Runge-Kutta Cláss

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

t

No exemplo em $t_0=0$ temos que $N(0)=N_0$. Assim

$$N(t=0) = ce^{k0} = N_0 \quad \Rightarrow \quad \boxed{c = N_0}$$

Introdução

Discretização

Métodos de

Explícito Implícito

Métodos de Runge-Kutt

Runge-Kutt

Método de Heun

Runge-Kutta Clássi

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem Solução

Logo

$$N(t) = N_0 e^{kt}$$

Podemos calcular k pois para t=2 temos que $N(t=2)=2N_0$, logo

$$N(2) = N_0 e^{2k} = 2N_0$$

 $\to \ln(e^{2k}) = \ln(2) \implies k = 0.3466$

Podemos ainda determinar o número inicial de indivíduos da população, pois para t=3 sabemos que N=20000, assim

$$N(3) = N_0 e^{3(0.3466)} = 20000$$

 $N_0 = \frac{20000}{e^{3(0.3466)}} = 7070$

Explícito

Métodos de

Runge-Kutt

Método de Eule

Método de Heur Método do Pon

Runge-Kutta Clássi

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

Introdução

Solução

E finalmente como k=0.3466 e $N_0=7070$, temos que a solução deste problema com os dados fornecidos é

Explícito Implícito

Métodos de Runge-Kutt

Introdução

Método de Euler

Método de Heun Método do Ponto Médio

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Introdução

Na maioria das vezes não temos uma solução analítica tipo a encontrada na anteriormente, e a única forma é recorrer a métodos numéricos para obtermos uma solução aproximada.

Definição (EDO de Ordem)

Uma equação diferencial ordinária (EDO) de ordem m é uma equação na forma

$$F(t, u(t), u'(t), u''(t), \dots, u^{(m)}(t)) = 0$$

onde temos uma função F que involve a variável independente t, a função incógnita u=u(t) e suas derivadas até ordem m.

Exemplos

- $u' = \frac{du}{dt} = 3t 1$ (ordem 1)
- $e^{u} \frac{d^{2}u}{dt^{2}} + 2 \left(\frac{du}{dt}\right)^{2} = 1$ (ordem 2)
- $u' + 3u'' + 6u = \sin(t)$ (ordem 2)

Introdução

Definição (Problema de Valor Inicial)

Um problema de valor inicial (PVI) pode ser escrito da seguinte forma: dada uma função f(t, u), encontrar a função u(t) para $t \in [t_0, t_f]$ tal que

$$\frac{du}{dt} = f(t, u)$$
 com a condição inicial $u(t_0) = u_0$

O Teorema que garante a existência e unicidade de soluções para este tipo de problema não será apresentado aqui, o qual pode ser encontrado em referências básicas sobre EDOs.

- "Cálculo Numérico". Neide Bertoldi Franco.
- "Elementary Differential Equations", Boyce & DiPrima

Introdução

Discretização

Métodos de Euler

Explícito Implícito

Métodos de Runge-Kutt

Runge-Kutt

Método de Heu

Método do Pon

.....

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta Introdução Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico
- **6** Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Explícito Implícito

Métodos de Runge-Kutta

Método de Euler Método de Heun

Método do Ponto Médio

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Discretização

Resolver um PVI numericamente consiste em calcular aproximações para a função u=u(t) em um conjunto de pontos discretos t_0, t_1, \ldots, t_N de um intervalo [a, b].

Para discretizar o intervalo [a, b], tomamos N subintervalos $(N \ge 1)$ e fazemos

$$t_i = t_0 + ih, \quad i = 0, 1, 2, \dots, N$$

onde

$$t_0=a, \quad t_f=b, \quad h=\frac{t_f-t_0}{N}$$

Em geral chamamos h de passo ou simplesmente passo de tempo. Em outras referências costuma aparecer como Δt ou h_t .

Discretização

Sendo assim, calculamos aproximações para u(t) nestes pontos, isto é, determinamos

$$u_n$$
 tal que $u_n \approx u(t_n), \quad n = 0, 1, \dots, N$

Notação:

- $u(t_n)$ denota a avaliação da solução exata u(t) no ponto $t = t_n$
- u_n denota a aproximação obtida no passo de tempo t_n para o valor da solução $u(t_n)$

Assim, a partir do valor inicial dado u_0 , calculamos a cada passo, nos pontos $t_1 = t_0 + h$, $t_2 = t_0 + 2h$, ..., aproximações u_n para a solução $u(t_n)$.

Introdução

Discretização

Métodos de

Explícito

Implícito

Métodos de Runge-Kutta

Introducão

Mátodo do Eul

Mátada da Ha

Mátada da Par

Médio

Rungo-Kutta Cláss

the second second

Sistemas d

EDOs de Alta

Discretização

Introdução

Discretização

Métodos de Fuler

Explícito

Métodos de

Runge-Kutt

Método de Eule

Método de Pent

Médio

Runge-Rutta Cia

Estabilidad

Sistemas de EDOs

EDOs de Alta

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta Introdução Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico
- 6 Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Conteúdo

- Introdução
- Discienzaça

Métodos d

Explícito

Implicito

Runge-Kutt

Introdução

Método de Hei

Método do Pon

Medio

runge ruttu en

Estabilidade

Sistemas de EDOs

EDOs de Alta

2 Discretização

1 Introdução

- 3 Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta Introdução Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico
- **6** Estabilidade
- **6** Sistemas de EDOs
- **7** EDOs de Alta Ordem

Discretizaçã

Métodos d

Explícito

Métodos de Runge-Kutt

Introdução Método de Euler

Método de Heun Método do Ponto Médio

61.

EDOs

EDOs de Alta Ordem

Método de Euler Explícito

 Vamos agora estudar alguns métodos para solução aproximada de problemas de valor inicial. Iremos começar pelo Método de Euler explícito, o qual é dado por

$$u_{n+1} = u_n + hf(t_n, u(t_n))$$

para n = 0, 1, ..., N.

- Existem diversas formas de se deduzir essa expressão do método de Euler. Para começar iremos apresentar a versão que pode ser deduzida a partir da série de Taylor.
- Lembrando que a expansão em série de Taylor de uma função f(x) em torno do ponto x = a é dada por

$$f(x) = f(a) + f'(a)(x - a) + f''(a)\frac{(x-a)^2}{2} + \ldots + f^{(n)}(a)\frac{(x-a)^n}{n!} + \ldots$$

Discretizaçã

Métodos d

Explícito

Métodos de

Runge-Kutt

Método de Heur Método do Pon

Médio do Pon

Runge-Rutta C

Estabilidade

Sistemas d EDOs

EDOs de Alta

Método de Euler Explícito

Escrevendo a solução do problema u(t) usando série de Taylor em torno do ponto t_n temos

$$u(t) = u(t_n) + u'(t_n)(t - t_n) + u''(t_n)\frac{(t - t_n)^2}{2} + \dots$$

avaliando em t_{n+1} resulta

$$u(t_{n+1}) = u(t_n) + u'(t_n)(t_{n+1} - t_n) + u''(t_n)\frac{(t_{n+1} - t_n)^2}{2} + \dots$$

desprezando os termos depois da segunda derivada e considerando que $h = t_{n+1} - t_n$ e que u' = f(t, u), temos

$$u(t_{n+1}) \approx u(t_n) + hf'(t_n, u(t_n))$$

de onde obtemos o método de Euler explícito como

$$u_{n+1} = u_n + hf(t_n, u_n)$$
 (2)

Diametica

Métodos de

Explícito

Implícito

Métodos de Runge-Kutt

Introdução

Método de Heun Método do Ponto Médio

Runge-Kutta Clás

Estabilidade

Sistemas de EDOs

EDOs de Alta

Método de Euler Explícito

Podemos fazer algumas observações:

- Dizemos que o método de Euler é explícito pois para calcular u_{n+1} só dependemos de valores passados da solução, que conhecidos podemos simplesmente calcular o valor aproximado da solução no próximo passo. Ou seja, não é preciso resolver uma equação para encontrar u_{n+1} .
- O método é de 1-passo pois só envolve o valor da solução de 1 passo anterior u_n.
- Existem métodos que para calcular u_{n+1} precisamos de u_n e u_{n-1} , entre outros.
- Em algumas situações o método de Euler pode ter problemas. Na prática outros métodos mais robustos são utilizados de forma a evitar determinados problemas durante a solução.

Método de Heun Método do Pont

Médio

Sistemas de

EDOs de Alta Ordem

Método de Euler Explícito

Exemplo

Resolver o PVI abaixo utilizando o método de Euler explícito no intervalo [0,0.3] com h=0.1.

$$u'(t) = -u + t + 2$$
$$u(0) = 2$$

Solução do Exemplo

Tomando n = 0 na Eq. (2), temos

$$u_1 = u_0 + hf(t_0, u_0) = 2 + 0.1(-2 + 0 + 2) = 2$$

Para n = 1, $t_1 = 0.1$

$$u_2 = u_1 + hf(t_1, u_1) = 2 + 0.1(-2 + 0.1 + 2) = 2.01$$

Runge-Kutt

Método de Eule

Método de Heun Método do Pont

Donne Kosse CK

Runge-Rutta Cla

Estabilidad

Sistemas d EDOs

EDOs de Alta Ordem

Método de Euler Explícito

Solução do Exemplo

Para n = 2, $t_2 = 0.2$

$$u_3 = u_2 + hf(t_2, u_2) = 2 + 0.1(-2.01 + 0.2 + 2) = 2.019$$

Assim

tn	$u(t_n)$	un
0.0	2.0	2.0
0.1	2.00484	2.0
0.2	2.01873	2.01
0.3	2.04082	2.019

Explícito

Método de Euler Explícito

Exemplo

Resolver o PVI dado por

$$u'(t) = u - t$$
$$u(0) = 2$$

para $t \in [0, 1] \text{ com } N = 4$.

Solução do Exemplo

$$h = \frac{1 - 0}{4} = 0.25$$

Assim temos

$$t_0=0, \quad t_1=0.25, \quad t_2=0.5, \quad t_3=0.75, \quad t_4=1.0$$

Introdução

Discretizaçã

Métodos de

Explícito

Implícito

Métodos de Runge-Kutta

Introdução

Método de Eule

Método de Heur Método do Pont

Médio

Runge-Kut

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Método de Euler Explícito

Solução do Exemplo

Para n=0

$$u_1 = u_0 + hf(t_0, u_0) = u_0 + h(u_0 - t_0) = 2 + 0.25(2 - 0) = 2.5$$

Para n=1

$$u_2 = u_1 + hf(t_1, u_1) = 2.5 + 0.25(2.5 - 0.25) = 3.0625$$

Para n=2

$$u_3 = u_2 + hf(t_2, u_2) = 3.0625 + 0.25(3.0625 - 0.5) = 3.7031$$

Para n=3

$$u_4 = u_3 + hf(t_3, u_3) = 3.7031 + 0.25(3.7031 - 0.75) = 4.4414$$

Discretizaçã

Métodos de

Explícito

Implícito

Runge-Kutta

Método de Eulei Método de Heur

Método de Heun Método do Pont

runge rucu e

Estabilidade

Sistemas d EDOs

EDOs de Alta

Método de Euler Explícito

Solução do Exemplo

Nesse caso a solução exata é dada por $u(t) = e^t + t + 1$.

n	tį	$u(t_i)$	uį	erro
0	0.0	2	2	0.0
1	0.25	2.5340	2.5	0.0340
2	0.5	3.1487	3.0625	0.0862
3	0.75	3.8670	2.7031	0.1639
4	1.0	4.7183	4.4414	0.2769

Explícito

Método de Euler Explícito Pseudocódigo

Algoritmo 1: Método de Euler Explícito

entrada: função f = f(t, u)condição inicial $u(t_0) = u_0$ intervalo $[t_0, t_f]$ número de passos N

saída: solução aproximada u_i , i = 0, 1, ..., N

```
1 h = (t_f - t_0)/N;
```

2
$$t[0] = t_0$$
;

3
$$u[0] = u_0$$
;

4 para n de 0 até N-1 faça

5
$$t[n+1] = t[n] + h;$$

6 $u[n+1] = u[n] + h * f(t[n], u[n]);$

7 fim

Método de Euler Explícito Python

Explícito

13 14 15

11

18

19 20

return t, u

```
import numpy as np
  def forward_euler(f, u0, tspan, n):
3
     , , ,
4
           => funcao
     u0
           => condicao inicial
6
           => intervalo [t0.tf]
     tspan
     n
           => numero de passos
     , , ,
8
9
         (tspan[1]-tspan[0])/(n)
      = np.zeros(n+1)
     t = np.zeros(n+1)
12
     u[0]
          = u0
     t[0] = tspan[0]
16
     for i in range(n):
17
       t[i+1] = t[i] + h
```

u[i+1] = u[i] + h*f(t[i], u[i])

Introdução

Discretização

Métodos de

Implícito

Métodos de

Runge-Kut

Introdução

Método de Heu

Método do Pon

Médio

runge ruccu eiu.

Estabilidad

Sistemas de EDOs

EDOs de Alta

Conteúdo

- 1 Introdução
- 2 Discretização
- 3 Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta Introdução Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico
- 6 Estabilidade
- **6** Sistemas de EDOs
- 7 EDOs de Alta Ordem

Introdução

Discretizaçã

Métodos de

Implícito

Métodos de Runge-Kutt

Introdução

Método de Heu

Médio do Por

LStabilidadi

EDOs EDOs

EDOs de Alta Ordem

Método de Euler Implícito

Vamos apresentar agora um outro método conhecido como método de Euler implícito. Para isso recorremos novamente à série de Taylor. Escrevendo u(t) em série de Taylor em torno de t_{n+1} , temos

$$u(t) = u(t_{n+1}) + (t - t_{n+1})u'(t_{n+1})$$

Avaliando em $t = t_n$ e substituindo u' = f chegamos a

$$u(t_n) = u(t_{n+1}) + \underbrace{(t_n - t_{n+1})}_{=-h} f(t_{n+1}, u(t_{n+1}))$$

de onde obtemos o método

$$u_{n+1} = u_n + hf(t_{n+1}, u_{n+1})$$

que é conhecido como método de Euler implícito.

Introdução

Discretizaçã

Métodos de

Implícito

Métodos de Runge-Kutt

Runge-Kutt

Método de Eule Método de Heur

Método do Pon Médio

Estabilidad

EDOs

EDOs de Alta Ordem

Método de Euler Implícito

Vamos apresentar agora um outro método conhecido como método de Euler implícito. Para isso recorremos novamente à série de Taylor. Escrevendo u(t) em série de Taylor em torno de t_{n+1} , temos

$$u(t) = u(t_{n+1}) + (t - t_{n+1})u'(t_{n+1})$$

Avaliando em $t = t_n$ e substituindo u' = f chegamos a

$$u(t_n) = u(t_{n+1}) + \underbrace{(t_n - t_{n+1})}_{=-h} f(t_{n+1}, u(t_{n+1}))$$

de onde obtemos o método

$$u_{n+1} = u_n + hf(t_{n+1}, u_{n+1})$$

que é conhecido como método de Euler implícito.

Discretização

Métodos de Euler

Implícito

Métodos de Runge-Kutt

Método de Euler Método de Heun Método do Ponto

Runge-Rutta Cia

Lstabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Método de Euler Implícito

Algumas observações:

- Este método é chamado de implícito pois para o cálculo de u_{n+1} também depende da solução no passo u_{n+1} através de $f(t_{n+1}, u_{n+1})$
- Se a função f(t, u(t)) for linear, calcular u_{n+1} é fácil
 - Por exemplo: f = qu
- Por outro lado se a função f(t,u(t)) for **não linear**, como ocorre na maioria das aplicações, então uma equação não linear terá que ser resolvida a cada passo do método. Alguns métodos mais utilizados são:
 - Método do Ponto Fixo
 - Método de Newton

Explícito

Implícito

Runge-Kutt

Introdução

Método de Heun

Método do Ponto Médio

Runge-Kutta Cl

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

Método de Euler Implícito

Exemplo

Resolver o PVI dado por

$$u'(t) = u - t$$
$$u(0) = 2$$

para $t \in [0, 1] \text{ com } N = 4$.

Solução do Exemplo

$$h = \frac{1 - 0}{4} = 0.25$$

Assim temos

$$t_0=0, \quad t_1=0.25, \quad t_2=0.5, \quad t_3=0.75, \quad t_4=1.0$$

Introdução

Discretizaçã

Métodos de Euler

Explícito

Implícito

Runge-Kutt

Introdução

Método de Eule Método de Heu

Método do Pon

Médio

Runge-Kutta

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Método de Euler Implícito

Solução do Exemplo

Para n = 0

$$u_1 = u_0 + hf(t_1, u_1) = 2 + 0.25(u_1 - 0.25) = 2.5833$$

Para n=1

$$u_2 = u_1 + hf(t_2, u_2) = 2.5833 + 0.25(u_2 - 0.5) = 3.2777$$

Para n=2

$$u_3 = u_2 + hf(t_3, u_3) = 3.2777 + 0.25(u_3 - 0.75) = 4.1203$$

Para n=3

$$u_4 = u_3 + hf(t_4, u_4) = 4.1203 + 0.25(u_4 - 1) = 5.1604$$

Implícito

Método de Euler Implícito

Solução do Exemplo

Nesse caso a solução exata é dada por $u(t) = e^{t} + t + 1$.

n	t _i	u(t _i)	uį	erro
0	0.0	2	2	0.0
1	0.25	2.5340	2.5833	0.04930
2	0.5	3.1487	3.2777	0.1290
3	0.75	3.8670	4.1203	0.2533
4	1.0	4.7183	5.1604	0.4421


```
IMD/UFJF
```

Euler Implícito

Python

Implícito

t = np.zeros (n+1)u = np.zeros (n+1)h = (tspan[1] - tspan[0]) / float (n) t[0] = tspan[0]; u[0] = u0for i in range(n): to = t[i]uo = u[i] tp = t[i] + h19

Agora vamos ao método de Euler $f(x_{i+1}) = f(x_i) + hf'(x_{i+1})$

```
from scipy.optimize import fsolve
   import numpy as np
   def backward_euler ( f, u0, tspan, n ):
     f => funcao
     u0 => condicao inicial
     tspan => intervalo [t0,tf]
     n => numero de passos
 g
       up = uo + h * f (to, uo)
20
21
22
23
       up = fsolve ( backward_euler_residual, up, args = ( f, to, uo, tp ) )
       t[i+1]
              = tp
        u[i+1] = up
     return t. u
```

$\mathsf{IMD}/\mathsf{UFJF}$

Introdução

Discretizaçã

Métodos d Euler

Implícito

Métodos de

Runge-Kutta

Introdução

4

5

9

10

11 12

13 14

Método de Heun

Médio do Pont

Runge-Kutta Cl

Estabilidade

Litabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Euler Implícito

Introdução

Discretização

Métodos de

Explícito

Métodos de

Runge-Kutta

Método de Eule

Método de Heur Método do Pont

Medio CV

Estabilidad

Sistemas de

EDOs de Alta

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta Introdução Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico
- 6 Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Conteúdo

Introdução

Discretizaçã

Métodos de Euler

Explícito Implícito

Runge-K

Introdução

Método de Heu

Médio do Por

D..... V. the C

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- 4 Métodos de Runge-Kutta Introdução

Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico

- 6 Estabilidade
- **6** Sistemas de EDOs
- 7 EDOs de Alta Ordem

Introdução

Outros métodos

Vejamos agora uma outra forma de se derivar o método de Euler e outros métodos.

$$u'(t) = f(t, u)$$

Integrando a expressão anterior de t_n a t_{n+1} , temos

$$\int_{t_n}^{t_{n+1}} u'(t) \ dt = \int_{t_n}^{t_{n+1}} f(t,u) \ dt$$

Pelo TFC temos

$$u_{t_{n+1}} - u_{t_n} = \int_{t_n}^{t_{n+1}} f(t, u) dt$$

$$u_{t_{n+1}} = u_{t_n} + \int_{t_n}^{t_{n+1}} f(t, u) dt$$
 (3)

Introducão

Discretizaçã

Métodos de

Explícito Implícito

Runge-Kut

Introducão

Método de Heur Método do Pon

Médio

mark terror

EDOs

EDOs de Alta Ordem

Outros métodos

Aproximando a integral da equação anterior com a regra do retângulo (I = hf(a)) obtemos o método de Euler

$$u_{t_{n+1}} = u_{t_n} + hf(t_n, u_n)$$

Assim vemos claramente que diferentes formas de aproximar a integral em (3) resultam em diferentes métodos numéricos para solução de problemas de valor inicial.

Podemos aproximar a integral involvendo f(t,u) pela regra do trapézio, e assim obtemos

$$u_{t_{n+1}} = u_{t_n} + \frac{h}{2}[f(t_n, u_n) + f(t_{n+1}, u_{n+1})]$$

que é conhecido como método do trapézio e se trata de um método implícito, como podemos ver pela presença de u_{n+1} do lado direito.

Introdução

Discretizaçã

Métodos de

Explícito Implícito

Runge-K Introducão

Método de E

Método de Heu Método do Pon

Runge-Kutta Clás

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

Método de Runge-Kutta

• Dado um PVI da forma $y'(t) = f(t, y), \quad y(t_0) = y_0,$ podemos integrar a EDO entre t_n e t_{n+1}

$$\int_{t_n}^{t_{n+1}} y'(t)dt = y(t_{n+1}) - y(t_n) = \int_{t_n}^{t_{n+1}} f(t, y(t))dt,$$

resultando em

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(t, y(t)) dt,$$

- Esta equação é exata, porém, sem conhecer y(t) não há como avaliar a integral acima.
- Diferentes métodos de Runge-Kutta surgirão de diferentes abordagens para aproximar esta integral.

Introducão

Discretização

Métodos de

Explícito Implícito

Métodos de Runge-Kutt

Introdução

Método de Euler Método de Heun

Método do Ponto

Runge-Kutta Clássic

Estabilidad

Sistemas de

EDOs de Alta Ordem

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- 4 Métodos de Runge-Kutta

Introdução

Método de Euler

Método de Heun Método do Ponto Médio Runge-Kutta Clássico

- 6 Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Introdução

Discretizaçã

Métodos de

Explícito Implícito

Métodos de Runge-Kutt

Introdução

Método de Fuler

Método de Heur

Método do Pont

Runge-Kutta

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

Método de Runge-Kutta

• Como já introduzido antes, o primeiro método de Runge-Kutta sai de aproximar a integral pela Regra do Retângulo I = hf(a)

$$y_{n+1}=y_n+hf(t_n,y_n),$$

que é a fórmula do método de Euler explícito.

Outra opção seria considerar a Regra do Retângulo
 I = hf(b)

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}),$$

resultando na fórmula do método de Euler implícito.

Introdução

Discretização

Métodos de

Explícito

Métodos de

Introdução

Método de Heun

Método do Pon

Medio

Estabilidad

Sistemas de

EDOs de Alta

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- 4 Métodos de Runge-Kutta

Introdução

Método de Eulei

Método de Heun

Método do Ponto Médio Runge-Kutta Clássico

- 5 Estabilidade
- **6** Sistemas de EDOs
- 7 EDOs de Alta Ordem

Introdução

Discretizaca

Métodos de

Explícito Implícito

Métodos de Runge-Kutt

Introdução

Método de Heun

Método do Pont

Dunna Kusa Cl

Estabilidade

C: .

EDOs EDOs

EDOs de Alta Ordem

Método de Heun

- Utilizar métodos implícitos é mais complicado que utilizar métodos explícitos.
- Uma maneira de converter o método de implícito para explícito é computar aproximações intermediárias e empregá-las na fórmula de iteração.
- Por exemplo, o método de Euler implícito poderia ser adaptado da seguinte forma

$$\bar{y} = y_n + hf(t_n, y_n),$$

 $y_{n+1} = y_n + hf(t_{n+1}, \bar{y}).$

• Neste caso, uma aproximação \bar{y} para y_{n+1} é computada usando o método de Euler explícito e depois empregada para substituir y_{n+1} na fórmula de iteração do método de Euler implícito, tornando-o assim um método explícito.

Introdução

Discretizaçã

Métodos de

Explícito Implícito

Métodos de Runge-Kutta

Introdução

Método de Heun

Médio do Ponto

_

Estabilidad

Sistemas d EDOs

EDOs de Alta Ordem

Método de Heun

- Para conseguir um método melhor, a integral deve ser melhor aproximada.
- Poderíamos usar a Regra do Trapézio:

$$y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_{n+1})]$$

 Novamente, este é um método implícito. Sua versão explícita, conhecida como método de Heun, pode ser obtida da mesma forma

$$\bar{y} = y_n + hf(t_n, y_n),$$

$$y_{n+1} = y_n + \frac{h}{2}[f(t_n, y_n) + f(t_{n+1}, \bar{y})]$$

Introdução

Discretização

Métodos de

Explícito Implícito

Métodos de Runge-Kutt

Runge-Kutt

Método de E

Método do Ponto Médio

Runge-Kutta Cláss

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- 4 Métodos de Runge-Kutta

Introdução

Método de Eulei

Método de Luier

Método do Ponto Médio

Runge-Kutta Clássico

- 6 Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Introdução

Discretizaçã

Métodos de Euler

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutta

Método de Euler

Método do Ponto Médio

Runge-Kutta Clás

Estabilidade

Sistemas de

EDOs de Alta Ordem

Método do Ponto Médio

• Um exemplo de método de Runge-Kutta de segunda ordem é o método do ponto médio, obtido quando a integral é aproximada pela área de um retângulo cuja altura é o valor de f no ponto médio do intervalo $[t_n, t_{n+1}]$

$$\bar{y} = y_n + \frac{h}{2}f(t_n, y_n),$$

$$y_{n+1} = y_n + hf(t_n + \frac{h}{2}, \bar{y})$$

• Perceba \bar{y} foi obtido com o método de Euler, usando um passo de metade de h. Desta forma, \bar{y} é uma aproximação para y em $t_{n+\frac{1}{2}}=t_n+\frac{h}{2}$.

Conteúdo

Introdução

Discretizaçã

Métodos de Euler

Explícito Implícito

Métodos de Runge-Kutt

Runge-Kutt

Método de Heur

Médio

Runge-Kutta Clássico

_

Sistemas de

EDOs

EDOs de Alta Ordem

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- 4 Métodos de Runge-Kutta

Introdução

Método de Euler

Método de Heun

Método do Ponto Médio

Runge-Kutta Clássico

- 5 Estabilidade
- **6** Sistemas de EDOs
- 7 EDOs de Alta Ordem

Introdução

Discretizaçã

Métodos de

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutta

Método de Eule Método de Heu

Método do Pon Médio

Runge-Kutta Clássico

Estabilidad

Sistemas d EDOs

EDOs de Alta Ordem

Método de Runge-Kutta

 É possível construir métodos de Runge-Kutta de ordens superiores. Como exemplo, um método de Runge-Kutta de quarta ordem

$$Y_1 = y_n,$$

$$Y_2 = y_n + \frac{h}{2}f(t_n, Y_1),$$

$$Y_3 = y_n + \frac{h}{2}f(t_{n+\frac{1}{2}}, Y_2),$$

$$Y_4 = y_n + hf(t_{n+\frac{1}{2}}, Y_3),$$

$$y_{n+1} = y_n + \frac{h}{6} [f(t_n, Y_1) + 2f(t_{n+\frac{1}{2}}, Y_2) + 2f(t_{n+\frac{1}{2}}, Y_3) + f(t_n, Y_4)].$$

Conteúdo

Introdução

Discretização

Métodos de Euler

Explícito Implícito

Métodos de Runge-Kutt

Introdução

Método de Heu

Método do Pon

NIEGIO .

Estabilidade

Sistemas de EDOs

EDOs de Alta

2 Discretização

1 Introdução

- 3 Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta Introdução Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico
- 6 Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Introdução

Discretizaçã

Métodos de

Explícito Implícito

Métodos de Runge-Kutta

Método de Eule

Método de Heur Método do Pont

Runge-Kutti

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Estabilidade

Como vimos no exemplo anterior, em muitos casos durante a solução numérica de EDOs, podemos observar que alguns algoritmos apresentam soluções com erro muito grande.

Em certos casos a solução diverge, oscila ou cresce indefinidamente.

Esses fenômenos são chamados de instabilidade do método numérico.

Embora existam diversas formas de se analisar a estabilidade dos métodos, veremos aqui apenas uma abordagem.

Estabilidade

Problema Padrão

$$u'(t) = qu(t)$$
$$u(0) = 1$$

onde a < 0.

A solução analítica desse problema é dada por: $u(t) = e^{qt}$, e como q < 0, observa-se que

$$\lim_{t\to\infty}u(t)=0.$$

Logo, os métodos numéricos devem atender a essa condição. Vamos analisar o que acontece para o método de Euler explícito e para o método do Trapézio.

Introdução

Discretizaçã

Métodos de

Explícito

Métodos de Runge-Kutta

Runge-Kutt

Método de Heu

Método do Pon

Runge-Kutta

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Estabilidade

Método de Euler Explícito

Para o método de Euler

$$u_{n+1} = u_n + hf(t_n, u_n)$$

como para o problema padrão f = qu, temos que

$$u_{n+1}=u_n+hqu_n$$

e assim

$$u_{1} = u_{0} + hqu_{0} = (1 + hq)u_{0}$$

$$u_{2} = u_{1} + hqu_{1} = u_{1}(1 + hq) = (1 + hq)^{2}u_{0}$$

$$\vdots$$

$$u_{n} = u_{n-1} + hqu_{n-1} = u_{n-1}(1 + hq) = (1 + hq)^{n}u_{0}.$$

Introdução

Métados de

Euler Explícito

Métodos de

Runge-Kutt

Método de Heu

Método do Por Médio

runge ruccu

Estabilidade

Sistemas de EDOs

EDOs de Alt Ordem

Estabilidade

Método de Euler Explícito

Assim vemos claramente que se |1 + hq| > 1, os valores de u_n , que seriam aproximações para $u(t_n)$ começam a crescer indefinidamente, isto é,

$$u_n \to \infty$$
 quando $n \to \infty$

causando a instabilidade que verificamos no exemplo.

Logo podemos obter uma condição de estabilidade dada por

$$|1+hq|<1$$

a qual tem que ser respeitada se quisermos que as aproximações acompanhem a solução exata. Trabalhando na equação iremos obter uma condição que o passo de tempo h deve satisfazer para garantir a estabilidade.

Estabilidade

Estabilidade

Exemplo

Para q = -10 temos

$$|1 - 10h| < 1$$
 $-1 < 1 - 10h < 1$
 $-2 < -10h < 0$
 $2 > 10h > 0$
 $0.2 > h > 0$

assim concluímos que condição de estabilidade para o método de Euler explícito nesse problema é dada por: h < 0.2

Introdução

Discretização

Métodos de Fuler

Explícito

Métodos d Runge-Kut

Runge-Kut

Método de Eul

Métado do Pon

Médio

Runge-Kutta Clás:

Estabilidade

Sistemas de EDOs

EDOs de Alta

Exemplo Método de Euler

Então tomando

$$\begin{cases} u'(t) &= -10u \\ u(0) &= 1 \end{cases}$$

A solução analítica desse problema é dada por: $u(t)=e^{-10t}$

Introdução

Discretizaca

Métodos de

Explícito

Métodos de

Runge-Kutt

Introdução

Método de Eule

Método de Heun Método do Pont

medio

Estabilidade

Locabilidad

Sistemas de EDOs

EDOs de Alta Ordem

Exemplo Método de Euler

Estabilidade

introdução

Discretização

Métodos de

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutta

Método de Heun Método do Ponto

Médio

Runge-Kutta

Estabilidade Sistemas de

EDOs

EDOs de Alta Ordem Para o <u>método do Trapézio</u>

$$u_{n+1} = u_n + \frac{h}{2}[f(t_n, u_n) + f(t_{n+1}, u_{n+1})]$$

como

$$f(t_n, u_n) = qu_n$$

$$f(t_{n+1}, u_{n+1}) = qu_{n+1}$$

temos

$$u_{n+1} = u_n + \frac{hq}{2}u_n + \frac{hq}{2}u_{n+1}$$

$$u_{n+1} - \frac{hq}{2}u_{n+1} = u_n + \frac{hq}{2}u_n$$

$$u_{n+1} \left(1 - \frac{hq}{2}\right) = u_n \left(1 + \frac{hq}{2}\right)$$

$$u_{n+1} = u_n \left(\frac{1 + \frac{hq}{2}}{1 - \frac{hq}{2}}\right)$$

Runge-Kutt

Método de Euler

Método de Heun Método do Ponto

Runge-Kutta Clás

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Estabilidade

$$u_{n+1} = \left(\frac{1 + \frac{hq}{2}}{1 - \frac{hq}{2}}\right) u_n$$

Como $u_0 = 1$, temos

$$u_{1} = \left(\frac{1 + \frac{hq}{2}}{1 - \frac{hq}{2}}\right) u_{0}, u_{2} = \left(\frac{1 + \frac{hq}{2}}{1 - \frac{hq}{2}}\right)^{2} u_{0},$$

$$\dots, u_{n} = \left(\frac{1 + \frac{hq}{2}}{1 - \frac{hq}{2}}\right)^{n} u_{0}$$

Como q < 0 vemos que o denominador será sempre maior que o numerador para qualquer passo h. Portanto $u_n \to 0$ independentemente da escolha do passo h.

Estabilidade

Estabilidade

Exemplo

Para h = 0.25 e q = -10, temos hq = -2.5 e assim

$$u_{n+1} = \frac{1 - 2.5}{1 + 2.5} u_n = \frac{-0.25}{2.25} u_n$$

e então

$$u_{n+1} = \left(\frac{-1}{9}\right)^{n+1} u_0$$

e assim

$$u_0 = 1$$
, $u_1 = -0.1111$, $u_2 = 0.0123$, $u_3 = -0.0014$,

ou seja $u_n \to 0$ para $n \to \infty$.

Introdução

Discretização

Métodos de

Explícito

Métodos d Runge-Kut

Runge-Kut

Introdução

Método de He

Métado do Por

Médio

Runge-Kutta Clás

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Exemplo Método do Trapézio

Então tomando

$$\begin{cases} u'(t) &= -10u \\ u(0) &= 1 \end{cases}$$

A solução analítica desse problema é dada por: $u(t)=e^{-10t}$

Introdução

Discretização

Métodos de

Explícito Implícito

Métodos de

Runge-Kutt

Método de Euler

Método de Heun

Método do Pon Médio

Runge-Kutta Clás

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Exemplo Método do Trapézio

Introdução

Discretização

Métodos de

Explícito

Métodos de

Runge-Kutt

Método de Hei

Método do Pont

Médio

Runge-Rutta Cia

Estabilidad

Sistemas de EDOs

EDOs de Alta

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta Introdução Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico
- 6 Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Sistemas de FDOs

Sistemas de EDOs

Podemos ter uma situação com um sistema de *m* equações de primeira ordem com m funções incógnitas u_1, u_2, \ldots, u_m , em relação à variável independente t.

Se cada uma dessas funções satisfizer a condição inicial no ponto t_0 , temos um PVI para um sistema de EDOs de primeira ordem, isto é

$$\frac{du_1}{dt} = f_1(t, u_1, u_2, \dots, u_m)$$

$$\frac{du_2}{dt} = f_2(t, u_1, u_2, \dots, u_m)$$

$$\vdots$$

$$\frac{du_m}{dt} = f_m(t, u_1, u_2, \dots, u_m)$$

com as seguintes condições iniciais

$$u_1(t_0) = \alpha_1, u_2(t_0) = \alpha_2, \dots, u_m(t_0) = \alpha_m$$

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutt

Método de Heur

D...... V....

Estabilidad

Sistemas de

EDOs de Alta Ordem

Sistemas de EDOs

Podemos escrever as equações anteriores de forma matricial da seguinte forma

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix}, \quad \mathbf{F}(\mathbf{t}, \mathbf{u}) = \begin{bmatrix} f_1(t, u_1, \dots, u_m) \\ f_2(t, u_1, \dots, u_m) \\ \vdots \\ f_m(t, u_1, \dots, u_m) \end{bmatrix}, \quad \mathbf{u}_0 = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix}$$

e assim o problema pode ser escrito como

$$\mathbf{u}'(t) = \mathbf{F}(t, \mathbf{u})$$

 $\mathbf{u}(0) = \mathbf{u_0}$

o que permite aplicar os métodos que iremos estudar para sistemas de EDOs simplesmente aplicando os métodos para cada componentes do vetor ${\bf u}$.

Sistemas de FDOs

Introdução

Discretizaçã

Métodos de Euler

Explícito Implícito

Métodos de

Runge-Kutta

Método de Eule

Método do Pon

Médio

Runge-Kutt

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

Exemplo

Resolver o seguinte sistema

$$u'(t) = f(t, u, v) = u + v + 3t$$

 $v'(t) = g(t, u, v) = 2u - v - t$
 $u(0) = 0$
 $v(0) = -1$

usando o método de Euler explícito para $t \in [0, 2]$ com um passo de tempo h = 0.2.

Solução do Exemplo

Pelo método de Euler, temos

$$u_{n+1} = u_n + h f(t_n, u_n, v_n)$$

 $v_{n+1} = v_n + h g(t_n, u_n, v_n)$

Sistemas de EDOs

Introdução

Discretizaçã

Métodos de Euler

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutt

Método de Heur

Método do Pont

Donne Voese (

Sistemas de EDOs

EDOs de Alta Ordem

Solução do Exemplo

Assim para n = 0, calculamos u_1 e v_1 tomando

$$u_1 = u_0 + hf(t_0, u_0, v_0) = u_0 + h(u_0 + v_0 + 3t_0)$$

= 0 + 0.2(0 - 1 + 0) = -0.2
$$v_1 = v_0 + hg(t_0, u_0, v_0) = v_0 + h(2u_0 - v_0 - t_0)$$

Para n = 1, calculamos u_2 e v_2

$$u_2 = u_0 + hf(t_1, u_1, v_1) = u_1 + h(u_1 + v_1 + 3t_1)$$

= -0.2 + 0.2[-0.2 - 0.8 + 3(0.2)]

$$v_2 = v_1 + hg(t_1, u_1, v_1) = v_1 + h(2u_1 - v_1 - t_1)$$

= -0.8 + 0.2[2(-0.2) + 0.8 - 0.2] = -0.76

e assim por diante para $n = 2, \ldots$

Introdução

Discretizaçã

Métodos de

Explícito

Métodos de

Runge-Kut

Método de Eu

Método de Heu

Método do Pon

Rungo-Kutta Clá

Cara hilliahada

Sistemas de EDOs

EDOs de Alta Ordem

Sistemas de EDOs

Introducão

Discretização

Métodos de

Explícito Implícito

Métodos de Runge-Kutt

Runge-Kutt

Método de Heu

Método do Pon

Iviedio

Estabilidad

Sistemas d

EDOs de Alta

Conteúdo

- 1 Introdução
- 2 Discretização
- Métodos de Euler Explícito Implícito
- Métodos de Runge-Kutta Introdução Método de Euler Método de Heun Método do Ponto Médio Runge-Kutta Clássico
- 6 Estabilidade
- 6 Sistemas de EDOs
- 7 EDOs de Alta Ordem

Introdução

Discretizaçã

Métodos de

Explícito Implícito

Métodos de Runge-Kutt

Introdução Método de Euler

Método de Heun Método do Ponto

Runge-Kutta Clássi

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

EDOs de Alta Ordem

Podemos ter ainda a seguinte situação

$$\frac{d^m u}{dt^m} = f(t, u, u', u'', \dots, u^{(m-1)})$$

com as condições iniciais:

$$u(t_0) = \alpha_1$$

$$u'(t_0) = \alpha_2$$

$$\vdots$$

$$u^{(m-1)}(t_0) = \alpha_m$$

Também podemos resolver este tipo de problema com os métodos que iremos estudar, para isso, basta proceder com uma definição de novas variáveis e reescrever o problema como um sistema de EDOs de primeira ordem.

Introdução

Discretizaçã

Métodos de

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutt

Método de Heur

Método do Pont

Médio

Estabilidad

Sistemas de EDOs

EDOs de Alta Ordem

EDOs de Alta Ordem

Vejamos um exemplo para ilustrar a idéia. Considere a seguinte EDO de quarta ordem:

$$u^{(4)} = u''' - 2u + 3t$$

$$u(t_0) = 1$$

$$u'(t_0) = 2$$

$$u''(t_0) = 3$$

$$u'''(t_0) = 4$$

Assim definimos novas variáveis como

$$u_1 = u$$

$$u_2 = u'$$

$$u_3 = u''$$

$$u_4 = u'''$$

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutt

Método de Euler Método de Heun

Método de Pietri

Médio

_

Estabilidade

Sistemas de EDOs

EDOs de Alta Ordem

EDOs de Alta Ordem

Vejamos um exemplo para ilustrar a idéia. Considere a seguinte EDO de quarta ordem:

$$u^{(4)} = u''' - 2u + 3t$$

$$u(t_0) = 1$$

$$u'(t_0) = 2$$

$$u''(t_0) = 3$$

$$u'''(t_0) = 4$$

Assim definimos novas variáveis como

$$u_1 = u \implies u'_1 = u' = u_2$$

 $u_2 = u' \implies u'_2 = u'' = u_3$
 $u_3 = u'' \implies u'_3 = u''' = u_4$
 $u_4 = u''' \implies u'_4 = u^{(4)} = u_4 - 2u_1 + 3t$

Explícito

Métodos de

Introdução

Método de Eul

Método do Pon

Médio

Runge-Kutta Class

Estabilidad

Sistemas d EDOs

EDOs de Alta Ordem

EDOs de Alta Ordem

E para as condições iniciais temos:

$$u_1 = u \implies u_1(t_0) = 1$$

 $u_2 = u' \implies u_2(t_0) = 2$
 $u_3 = u'' \implies u_3(t_0) = 3$
 $u_4 = u''' \implies u_4(t_0) = 4$

Introdução

Discretizaçã

Métodos de

Explícito Implícito

Métodos de Runge-Kutta

Runge-Kutt

Método de Euler Método de Heun

Método do Pont

Runge-Kutta Clás

Estabilidad

Sistemas d EDOs

EDOs de Alta Ordem

EDOs de Alta Ordem

Exemplo

Consideramos um problema de valor inicial para uma EDO de 2^a ordem:

$$u'' - u' + 3u = t$$

 $u(0) = 1$
 $u'(0) = -2$

e queremos encontrar a solução u(t) para $t \in [0,4]$.

Explícito

Métodos de Runge-Kutta

Runge-Kutta

Método de Euler

Método de Heun Método do Ponto

Runge-Kutta Cláss

Estabilidad

Sistemas d EDOs

EDOs de Alta Ordem

EDOs de Alta Ordem

Solução Exemplo

Primeiro temos que reescrever isso como um sistema de $1^{\underline{a}}$ ordem : Seja $u_1(t) = u(t)$ e $u_2(t) = u'(t)$, então obtemos

$$\begin{cases} u'_1 &= u_2 \\ u_1(0) &= 1 \\ u'_2 &= t + u_2 - 3u_1 \\ u_2 &= -2 \end{cases}$$

Introdução

Discretizaçã

Métodos de

Explícito

Métodos de

Runge-Kutt

Introdução

Método de Heun

Método do Ponti Médio

Runge-Kutta Clá

Estabilidad

Sistemas d

EDOs de Alta Ordem

EDOs de Alta Ordem

k+2

Introdução

Discretizaçã

Métodos de

Explícito

Métodos de

Runge-Kutta

Método de Euler Método de Heun

Método do Ponto Médio

Runge-Rutta Ci

Estabilidade

Sistemas d EDOs

EDOs de Alta Ordem Simule uma reação enzimática pelo modelo de Michaeles-Menten usando o método de Runge-Kutta Clássico e Trapezio

$$\begin{cases} \frac{d[S]}{dt} &= k_{-1}[C] - k_{+1}[S][E] \\ \frac{d[E]}{dt} &= (k_{-1} + k_{+2})[C] - k_{+1}[S][E] \\ \frac{d[C]}{dt} &= -(k_{-1} + k_{+2})[C] + k_{+1}[S][E] \\ \frac{d[P]}{dt} &= k_{+2}[C] \end{cases}$$

Utilize as condições iniciais: s0 = 10.0, e0 = 2.0 e c0 = p0 = 0.0; e parâmetros $k_{1+} = 0.01$, $k_{1-} = 0.02$ e $k_{2+} = 0.03$.

EDOs de Alta Ordem

Exercicio

Utilizando os metodos numéricos aprendidos resolva o modelo de Lotka-Volterra

$$\begin{cases} \frac{dL}{dt} &= \alpha L - \beta LA \\ \frac{dA}{dt} &= \delta LA - \gamma A \end{cases}$$

Simule 20 u.t. utilizando 101 passos de tempo, os parâmetros $\alpha = \beta = \gamma = \delta = 1$ e condições iniciais $L_0 = 2.0$ e $A_0 = 1.0$.

Como ficou a simulação?

- a) Utilizando Euler Explícito
- b) Utilizando Euler Implícito