Exercice 228:

Soit G un groupe fini. Pour $x \in G$, on note $\overline{x} = \{gxg^{-1}/g \in G\}$ la classe de conjugaison de x. On dit que x est ambivalent si $x^{-1} \in \overline{x}$.

- a) Montrer que si une classe de conjugaison contient un élément ambivalent alors tous ses éléments
- **b)** Pour $x \in G$, soit $\rho(x)$ le nombre de $g \in G$ tel que $g^2 = x$. Montrer que $\frac{1}{|G|} \sum_{x \in G} \rho(x)^2$ est le nombre de classes de conjugaison ambivalentes de G.
- a) Soit C une classe de conjugaison et $x \in C$ ambivalent. On a $x^{-1} \in \overline{x} = C$ donc $C = \overline{x^{-1}}$. Soit $y \in \overline{x}$. Il existe $g \in G$ tel que $y = gxg^{-1}$. Alors $y^{-1} = gx^{-1}g^{-1} \in \overline{x^{-1}} = C$. Or on a aussi $C = \overline{y}$ donc $y^{-1} \in \overline{y}$, ce qui
- Notons Γ l'ensemble des classes ambivalentes. Par le calcul, on a :

$$\begin{split} \frac{1}{|G|} \sum_{x \in G} \rho(x)^2 &= \frac{1}{|G|} \sum_{x \in G} \left(\sum_{l \in G} \delta(l^2 = x) \right)^2 \\ &= \frac{1}{|G|} \sum_{x \in G} \left(\sum_{(l,h) \in G^2} \delta(l^2 = x) \delta(h^2 = x) \right) \\ &= \frac{1}{|G|} \sum_{(l,h) \in G^2} \delta(l^2 = h^2) \\ &= \frac{1}{|G|} \sum_{(u,h) \in G^2} \delta(huhu = h^2) \text{ car } u \to hu \text{ est une bijection} \\ &= \frac{1}{|G|} \sum_{\gamma \in \Gamma} \sum_{u \in \gamma} \sum_{h \in G} \delta(u = hu^{-1}h^{-1}) \end{split}$$

Or $\forall u \in \gamma$ considérons la fonction $\Phi_u : h \in G \to hu^{-1}h^{-1} \in \gamma = \overline{u}$. Elle est surjective. On a alors:

$$\sum_{u\in\gamma}\sum_{h\in G}\delta(u=hu^{-1}h^{-1})=\sum_{u\in\gamma}|\Phi_u^{-1}(\{u\})|$$

Cependant, $\Phi_u^{-1}(\{u\})$ et $\Phi_x^{-1}(\{u\})$ sont en bijection pour tout $x \in \gamma$. En effet, si $x \in \gamma$ alors il existe $g \in G$ tel que $x = gu^{-1}g^{-1}$ et comme u est ambivalent il existe $h \in G$ tel que $u = hu^{-1}h^{-1}$.

x est aussi ambivalent donc il existe $k \in G$ tel que $x^{-1} = kxk^{-1}$.

On a alors en regroupant $u=(hg^{-1}k^{-1})x^{-1}(hg^{-1}k^{-1})^{-1}$. On peut donc définir $f:h\in\Phi_u^{-1}(\{u\})\to hg^{-1}k^{-1}\in\Phi_x^{-1}(\{u\})$. C'est alors clairement une bijection. Finalement, on a:

$$\sum_{u \in \gamma} |\Phi_u^{-1}(\{u\})| = \sum_{r \in \gamma} |\Phi_u^{-1}(\{r\})| = |G|$$

(La dernière somme est le cardinal de l'ensemble des antécédents des images qui est G.)

D'où $\frac{1}{|G|}\sum_{x}\rho(x)^2$ est le nombre de classes de conjugaison de G.