Last edited: 8/9/2021

Warfarin | Mechanism of Action, Indications, Adverse **Reactions, Contraindications**

OUTLINE

- MECHANISM OF ACTION I)
- II) **INDICATIONS**
- III) ADVERSE DRUG REACTIONS (ADRS)
- IV) CONTRAINDICATIONS
- **REVIEW QUESTIONS**
- VI) REFERENCES

MECHANISM OF ACTION

CLOTTING PROTEINS PRODUCTION

• Site: Hepatocytes

Vitamin K Cycle

Figure 1. Vitamin K Cycle

- Vitamin K Quinone (oxidized form) is transformed into Vitamin K Hydroquinone (reduced form) via the enzyme Quinone Reductase and in the process the coenzyme NADPH is oxidized to NADP+
- Vitamin K Hydroquinone (reduced) gives the enzyme Gamma-Glutamyl Carboxylase (γ-GC) electrons, forming Vitamin K Epoxide (oxidized)
- The thiol group of Vitamin K Epoxide Reductase (VKOR) donates electrons to Vitamin K Epoxide to convert it back to Vitamin K Quinone

Functionalization of Clotting Proteins

- Gamma-Glutamyl Carboxylase (y-GC) carboxylates clotting proteins to convert them into their functional form
- Clotting Proteins Carboxylated by γ-GC
 - o Procoagulants (Mnemonic- "1972: 9, 10, 7, 2")
 - Factor II
 - Factor VII
 - Factor IX
 - Factor X
 - o Anticoagulants
 - Protein C
 - Protein S

WARFARIN MECHANISM OF ACTION

Inhibition of Vitamin K Epoxide Reductase

- Warfarin inhibits Vitamin K Epoxide Reductase
 - o Vitamin K Epoxide can't get converted into Vit K Quinone → no Vit K Quinone to be reduced into Vit K Hydroquinone → no Vit K Hydroquinone to give e⁻ to y-GC → y-GC will not be able to carboxylate clotting proteins → non-functional clotting proteins (both procoagulants and anticoagulants)

Medical Editor: Abigail S. Xu, RPh

Intrinsic Pathway

- o Platelet plug forms negatively charged surface on platelet that activates Factor XII into XIIa
- o Factor XIIa activates Factor XI into XIa
- o Factor XIa activates Factor IX into IXa
- o Factor IXa and VIIIa activate Factor X into Xa

Common Pathway

- o Factor Xa combine with Factor Va and Platelet Factor3 (PF3) to convert Factor II (Prothrombin) into the activated Thrombin (Factor IIa)
- o Thrombin activates soluble fibringen (Factor I) into the insoluble fibrin (Factor Ia)
- Thrombin also activates Factor XIII into XIIIa that crosslinks fibrin strands producing a stable clot.

Extrinsic pathway

- o Trauma or injury outside blood vessel releases Tissue Factor or Factor III that activates Factor VII into VIIa.
- Factor VIIa converts Factor X into Xa →→→ common pathway

Anticoagulant Action of Warfarin

- Warfarin inhibit production of functional procoagulant clotting factors
 - \circ Inhibition of Factor II \rightarrow inhibit formation of fibrin and Factor XIIIa that crosslinks fibrin mesh
 - o Inhibition of Factor VII → inhibit extrinsic pathway
 - \circ Inhibition of Factor IX \rightarrow inhibit intrinsic pathway
 - o Inhibition of Factor X → inhibit common pathway

Procoagulant Effect of Early Dose Warfarin

Protein C and Protein S

- Endogenous anticoagulants
- Protein S: cofactor of Protein C
- Normal Physiology:
 - o Thrombin binds to Thrombomodulin in the endothelial cells, activating Protein C
 - Activated Protein C inhibits Factor V and VIII → ↓coagulation (anticoagulant)

Recall:

- Factor Va is important in activation of Prothrombin to Thrombin
- Factor VIIIa reacts with IXa to activate Factor X

- First few days of Warfarin intake: procoagulant activity
 - o Protein C and S will be the first clotting proteins affected since they have shorter half-lives.
 - $\circ \downarrow$ protein C and S $\rightarrow \downarrow$ inhibition of Factor V and VIII \rightarrow ↑Factor V and VIII → hypercoagulable state
- After a few days of Warfarin: anticoagulant
 - \circ hypercoagulable effect of inhibiting protein C and S will be overtaken by the inhibition of procoagulant clotting factors (II, VII, IX, X)
 - \circ by this time, pre-formed procoagulant clotting factors before warfarin intake would have already been excreted

WARFARIN DRUG INTERACTIONS

Metabolism of Warfarin

• Catalyzed by CYP 450 Oxidase producing its metabolite that will be excreted

(1) Drugs that INCREASE Warfarin concentration

- · Increase risk of bleeding
- CYP 450 Oxidase INHIBITORS
 - o inhibit Warfarin breakdown (Mnemonic: "O DEVICES")
 - o Omeprazole (Proton Pump Inhibitor)
 - o Disulfiram (Alcoholism)
 - o Ethanol- acute use
 - o Valproate (Anti-epileptic, bipolar disorder)
 - o Isoniazid (Anti-TB)
 - o Ciprofloxacin (Antibiotic)/ Cimetidine (Antihistamine)
 - o Erythromycin (Macrolide antibiotic)
 - o Sulfa Drugs

(2) Drugs that decrease warfarin concentration

- Increase risk for blood clots
- CYP 450 Oxidase INDUCERS (Mnemonic: "CP BARS")
 - o Carbamazepine (Trigeminal neuralgia, Anti-Epileptic)
 - o Phenytoin (Anti-epileptic)
 - o Barbiturates (Sedative-hypnotic)
 - o Alcohol- chronic use
 - o Rifampin (Anti-TB)
 - o St. John's Wort

MONITORING VITAMIN K LEVELS

- MOA of Warfarin involves Vit K Epoxide reductase → affects the Vit K cycle
- Conditions that ↓Vitamin K
 - \circ Celiac disease \to damaged small intestine $\to \mathop{\downarrow}\! Vit.$ K absorption
 - Chronic Pancreatitis → ↓pancreatic enzyme → ↓nutrient absorption
 - \circ Antibiotics \rightarrow kill bacterial flora that produce Vitamin K and B
- ↓Vitamin K → ↓Functionalization of Procoagulants → **↑bleeding risk**

Remember:

Warfarin

- inhibits Vitamin K Epoxide Reductase (VKOR)
- inhibits both procoagulants (Clotting Factor II, VII, IX, X) and anticoagulants (Protein C and S)
- Early dose Warfarin: Procoagulant Effect
- After few days: Anticoagulant
- Monitoring: PT-INR

Vitamin K Level Monitoring

- · High Vit K: increased risk of clotting
- Low Vit K: increased risk of bleeding

II) INDICATIONS

Warfarin

- Route: Oral
- Takes 2-3 days to achieve maximum effect
- Half-life: ≈40 hours
- Prevent clot formation → prevent thromboembolism

PROPHYLAXIS OF DEEP VEIN THROMBOSIS (DVT) AND PULMONARY EMBOLISM (PE)

- Warfarin
 - o chronic prophylaxis treatment for patients that previously had DVT and PE
 - o prophylaxis for DVT and PE for patients recovering from a surgery that causes them to be bedridden (i.e., total hip replacement, knee replacement surgery)

Nice to Know

• Acute DVT and PE Treatment: Heparin

Deep Vein Thrombosis

• blood clot that forms in one or more of the deep veins in the body, usually in the legs

Pulmonary Embolism

- blood clot from other parts of the body moves through the bloodstream and lodge into the pulmonary arteries, blocking blood flow to lungs
- Symptoms
 - o Tachypnea
 - o Hemoptysis
 - o Chest pain
- Diagnosis: Helical CT scan

Virchow's triad

- factors that increase risk of thrombosis
- - o interruption of blood flow
 - o Ex: long surgical operations, prolonged immobility
- 2) hypercoagulable
- 3) endothelial dysfunction/injury

(B) REDUCE INCIDENCE OF EMBOLISM & ISCHEMIC STROKE IN PATIENTS W/ ATRIAL FIBRILLATION

Atrial Fibrillation

- Atria do not contract properly → ↓blood flow to ventricles
 - → blood pools up in the atria and stagnate → stasis →clots in the valves
- Acute stressful event can cause the thrombi to break off and go to:
 - $\circ \ Coronary \ vessels \rightarrow \textbf{Myocardial Infarction}$
 - $\circ \ \mathsf{Aorta} \to \mathsf{Carotid} \ \mathsf{Artery} \to \mathsf{Brain} \to \mathsf{Ischemic} \ \mathsf{Stroke}$
 - o Aorta → intestinal vessels
 - Superior Mesenteric Artery (SMA) → Mesenteric Ischemia
 - Inferior Mesenteric Artery (IMA) → Ischemic colitis
 - Kidneys
 - Spleen

(C) POST-MYOCARDIAL INFARCTION

 Can cause cardiac muscles to be fibrous → ↓contractility (fibrous tissue cannot contract) → blood pool in the area → thrombus (Left ventricular thrombus)

(D) CONGESTIVE HEART FAILURE

- ↓contractility of heart
- ↓Stroke Volume
- †End-systolic volume (blood stagnates in the heart)

Monitoring Warfarin Therapy

PT/ INR

- Monitor Extrinsic Pathway
- Procedure:
 - o Plasma is separated from the patient's blood
 - \circ Tissue Factor (Factor III) is added to patient's plasma
 - Time for blood to clot is measured
- Prothrombin Time (PT): Time it takes for blood to clot
- International Normalized Ratio (INR): Ratio of

Patient's PT to the Control PT

- $\circ \mathit{INR} = \frac{\mathit{Patient's\,PT}}{\mathit{Control\,PT}}$
- o Different test kits have different control PT

Table 1 Target INR Base on Indication

Indication	Target INR
Normal (not on Warfarin)	≤ 1
Warfarin Therapy	2-3
Prosthetic heart valve (thrombogenic)	Up to 4

- ↑INR (increased risk of bleeding)
 - o Too much Warfarin → inhibit Factor VII → inhibit extrinsic pathway \rightarrow inhibit clotting $\rightarrow \uparrow PT \rightarrow \uparrow INR$ ↑risk of bleeding
- ↓INR (increased risk of clotting)
 - o Insufficient Warfarin

III) ADVERSE DRUG REACTIONS (ADRS)

(A) BLEEDING

- 1) Gingival Bleeding
- 2) Anterior Epistaxis nosebleed
- 3) Melena upper GI bleed dark or black feces
- 4) Hematochezia lower GI bleed red stool
- 5) Hematemesis vomiting blood
- 6) Bleeding indications on skin
 - a. Petechiae pinpoint hemorrhage on skin
 - b. Purpura larger pinpoint hemorrhaging
 - c. Ecchymosis large bruising
- 7) Hematuria blood in urine

Monitoring patients

- Look for signs of bleeding (physical exam)
- · CBC to check for anemia
- Hemoccult to check for GI bleed

(B) WARFARIN-INDUCED SKIN NECROSIS

Mechanism

- Warfarin (first 2-3days)
 - $\circ \downarrow$ Protein C and Protein S $\to \uparrow$ Factor Va and VIIIa \to ↑Thrombus formation
- ullet Thrombus form in the vessels of skin $\to \downarrow$ blood flow \to ischemia → necrotic tissues
- Body parts commonly affected
 - o Limbs
 - Breasts
 - o Penis

Prevention

- Bridging Therapy
 - o During first few days of Warfarin initiation, give Heparin with Warfarin to counteract the paradoxical procoagulant effect of early Warfarin doses
 - Heparin
 - Inhibit Factor X and II → inhibit thrombus formation

Antidote for Warfarin Overdose

- 1) Slow infusion of Vitamin K
 - o Will take a few hours before taking effect
 - Vitamin K will oversaturate VKOR → ↓inhibition of procoagulants
- 2) Choose between the two:
 - a. Prothrombin Complex Concentrate (PCC)
 - Superior
 - Complex of Factor II, VII, IX, X
 - b. Fresh Frozen Plasma (FFP)
 - All clotting proteins

IV) CONTRAINDICATIONS

(A) LIVER FAILURE

- Liver
 - o Main site of production of clotting proteins
 - o Liver failure → ↓clotting proteins
 - o Warfarin → ↓production of clotting proteins
 - o Be cautious in giving Warfarin to patients with liver failure since there is a high risk of bleeding

(B) PREGNANCY

• Warfarin is Teratogenic

(1) Congenital Heart Defects

- a. Patent Ductus Arteriosus (PDA)
- b. Coarctation of Aorta

(2) Central Nervous System Malformations

- a. Changes in corpus callosum that connects the two hemispheres of the brain
- b. Fluid build-up in subarachnoid space

(3) Facial Features / Respiratory Distress

- a. Nasal hypoplasia
- b. Choanal atresia narrowing/ block at the back of nasal passage
- c. Cleft palate
- d. Laryngomalacia

(C) BLEEDING RISKS

- Actively Bleeding
- ↑BP → Aortic Dissection
- Aortic Aneurysm

V) REVIEW QUESTIONS

- 1) Which of the following increases the risk of bleeding when taken with Warfarin?
 - a. Sulfa Drugs
 - b. St. John's Wort
 - c. Chronic Alcoholism
 - d. Rifampin
- 2) What enzyme catalyzes the post-translational modification of clotting proteins to make them functional?
 - a. Quinone Reductase
 - b. Vitamin K Epoxide Reductase
 - c. Gamma-Glutamyl Carboxylase
 - d. CYP450 Oxidase
- 3) Which is an endogenous anticoagulant?
 - a. Factor VII
 - b. Factor X
 - c. Protein C
 - d. Factor IX

4) Which clotting factor converts fibrinogen to fibrin?

- a. Thrombin
- b. Prothrombin
- c. Factor XIIIa
- d. Factor XIII

5) Which increases clotting risks?

- a. High Vitamin K
- b. Low Vitamin K
- c. Liver failure
- d. Taking warfarin with Isoniazid

6) What is used to treat acute DVT and PE?

- a. Warfarin
- b. Heparin
- c. Fresh Frozen Plasma
- d. Vitamin K

7) Contraindications of Warfarin, except:

- a. Liver Failure
- b. Post-myocardial infarction
- c. Pregnancy
- d. Bleeding

8) True or False: In the first few days of Warfarin therapy, it produces a procoagulant effect.

- a. True
- b. False

9) Which clotting factor/s is/are inhibited by Protein C?

- a. Va
- b. VIIIa
- c. Thrombin
- d. a & b

10) What activates Clotting Factor VII?

- a. Tissue Factor
- b. Factor III
- c. a & b
- d. Factor X

CHECK YOUR ANSWERS

VI) REFERENCES

4 of 4 NERD CARDIOVASCULAR PHARMACOLOGY: Note #1..