ÇOKLU TERAZİ KURAMI GENEL TARTMA FONKSİYONU VE SONUÇLARI

HALİL SALİH ORHAN ÖZEL PROFESYONEL EĞİTİM FEN LİSESİ

PROJE RAPORU

PROJE ADI

ÇOKLU TERAZİ KURAMI – GENEL TARTMA FONKSİYONU VE SONUÇLARI

PROJE DALI

MATEMATİK

HAZIRLAYAN

HALİL SALİH ORHAN

İÇİNDEKİLER

- 1. GİRİŞ
 - A- ÇOKLU TERAZİ KURAMI
 - B- GENEL TARTMA FONKSİYONU
 - C- PROJEDE KULLANILAN TANIM VE KISALTMALAR

2. YÖNTEM

- A- GENEL TARTMA FONKSİYONU VE ÇOKLU TERAZİ KURAMININ BULUNMA SÜRECİ
- B- GENEL TARTMA FONKSİYONU
 - (1) ÇİFT KOLLU TERAZİ 1 FARKLI NESNE İÇİN
 - (2) M KOLLU TERAZİ 1 FARKLI NESNE İÇİN
 - (3) ÜÇ KOLLU TERAZİ 2 FARKLI NESNE İÇİN
- 3. BULGULAR
- 4. SONUÇ VE TARTIŞMA
- 5. ÖNERİLER
- 6. KAYNAKÇA
- 7. EKLER

1. GİRİŞ

Coklu Terazi Kuramı:

Tanım: m adet kefesi bulunan bir terazimiz olsun.

İşleyiş: Terazi tartma işlemi sonucunda, kefelerini; kendisinden daha hafif kefeler, kendisinden daha yukarıda olacak şekilde hizalar.

Açıklamalar: Çoklu terazi kuramı, tamamen benim tasarladığım bir teoridir. Yaptığım literatür taramaları sonucunda bu teoriye benzer herhangi bir entry'e rastlamadım.

Genel Tartma Fonksiyonu:

Tanım: m kollu terazi yardımı ile; k tanesi kendi aralarında aynı, diğer özdeş n-k tanesinden farklı, n nesne arasından k tane farklı nesneyi bulabilmemizi sağlayan minimum tartım sayısını:

$$f(m, k, n)$$
; $m, n, k \in \mathbb{N}$

göstersin.

Özellik:

(1)
$$\forall x \le y \Leftrightarrow f(m, k, x) \le f(m, k, y)$$

P1) Aksini varsayalım.

$$\exists x, y \in \mathbb{N} ; x > y \ ve \ f(m, k, x) < f(m, k, y)$$

İçinde k tane hafif nesne bulunan y nesne arasına; bu nesnelerden bağımsız x - y tane ağır nesne ilave edilir ise: İçinde k tane hafif nesne bulunan x nesneli bir öbek elde edilir. Bu durumun cevabı f(m, k, x) olduğu için;

 $\exists x, y \in \mathbb{N} ; x > y \ ve \ f(m, k, x) < f(m, k, y)$ olması imkansızdır.

Projede Kullanılan Tanımlar ve Kısaltmalar:

1. İndirgemeli Diziler:

Bir (u_n) dizisinde herhangi bir n doğal sayısından itibaren bütün terimler için;

 $A_0u_{n+k}+A_1u_{n+k-1}+A_2u_{n+k-2}+\cdots+A_ku_n=0$ şeklinde doğrusal bir bağıntı sağlanıyorsa (u_n) dizisine k-inci mertebeden bir doğrusal *indirgemeli dizi* denir.

İndirgeme denklemini kullanarak dizinin tüm terimlerini elde edebiliriz.

2. Öz Yinelemeli Fonksiyonlar:

Kendi kod bloğu içerisinde kendisini çağıran fonksiyonlardır. Bilgisayar biliminde bu fonksiyonlar, bazı algoritmaların daha anlaşılır ve kompleks olmayan kod yazılmasını sağlar. Yapısal olarak *indirgemeli dizi* 'ye benzer.

3. Flooring ve Ceiling Fonksiyonları:

[x] fonksiyonu(Flooring veya Tam Değer Fonksiyonu), x'i aşmayan en büyük tamsayıyı gösterir.

[x] fonksiyonu(Ceiling veya Tavan Değer Fonksiyonu), x'den küçük olmayan en küçük tamsayıyı gösterir.

4. Modülo(Modüler Aritmetik) Kavramı:

$$x \equiv y \pmod{m}$$

ifadesi x ile y'nin m-ye bölümünden kalanların birbirine eşit olduğu anlamına gelir. Başka bir şekilde "x ile y sayısı modülo m-de birbirine denktir" diye ifade edilir.

5. Logaritma Fonksiyonu:

Logaritma fonksiyonu $f(x) = n^x$ fonksiyonunun tersidir. $(n \in \mathbb{Z}^+ \ ve \ n > 1)$

Ve
$$\log_n x$$
 olarak gösterilir. $\log_n x = f(x)^{-1}$ dir.

2. Yöntem

Genel Tartma Fonksiyonu ve Çoklu Terazi Kuramının Bulunması Süreci:

Yaptığım matematik olimpiyatı çalışmaları sırasında rastladığım bir soru türü sayesinde, proje sürecine başladım. Bu soru en temel hali ile:

Eşit kollu bir terazi yardımı ile 1 tanesi diğerlerinden daha hafif olan 8 nesneden, farklı olan nesne minimum kaç tartma işlemi sonucu bulunması garanti edilebilir? 'dir. Ben bu soruyu; toplam n adet nesne için minimum tartma sayısını verecek bir formül çıkarmaya çalıştım. Ve bir formüle ulaştım. Daha sonraları; bu formülü eşit kollu terazi yerine kendi düşündüğüm çoklu teraziye göre, formülleştirmeye çalıştım. Ve sonuca ulaştım. Kendi düşündüğüm "Genel Tartma Fonksiyonu" 'nun bazı özel durumlar derledim. Çıkardığım sonuçların grafiklerini ve hesaplanmasını www.wolframalpha.com ve kendi yazdığım programlar sayesinde hesapladım.

Genel Tartma Fonksiyonu:

- A- Çift Kollu Terazi 1 Farklı Nesne İçin
- B- m Kollu Terazi 1 Farklı Nesne İçin
- C- 3 Kollu Terazi 2 Farklı Nesne İçin

A Çift Kollu Terazi 1 Farklı Nesne İçin f (2,1, n)

Soru: "Çift kollu bir terazi yardımı ile 1 tanesi diğerlerinden daha hafif olan n adet nesneden, farklı olan nesne minimum kaç tartma işlemi sonucu bulunması garanti edilebilir?" $(n \in \mathbb{Z}^+ \ ve \ n \ge 1)$

Cevap:

 $\lceil \log_3 n \rceil$

İspat:

İddia1.1:
$$f(2,1,n) = 1 + f\left(2,1,\left\lfloor\frac{n+2}{3}\right\rfloor\right)$$

İddia1.1 –in İspatı: $f(2,1,n) = 1 + f(2,1,a)$ olsun. (a minimum değer)

n = 3k, n = 3k + 1, n = 3k + 2 durumlarını ayrı ayrı inceleyelim; a- n = 3k için;

a < k olamayacağını gösterelim. Eğer a < k ise;

kefelerde olmayan ve her iki kefedeki nesnelerin sayısı < k olmalıdır. Buradan; toplam nesne sayısı < 3k olmalıdır.

Fakat 3k adet nesne olduğu için a < k olamaz. Buradan $a \ge k$ olmak zorundadır.

a = k için her zaman sağlayan durum gösterirsek daha az olamayacağı için f(2,1,3k) = 1 + f(2,1,k) olmak zorundadır. a = k için : Her kefeye k adet nesne koyarsak istediğimiz durum sağlanır.

b- n = 3k + 1 ve n = 3k + 2 icin;

 $a \le k$ olamayacağını gösterelim. Eğer $a \le k$ ise;

kefelerde olmayan ve her iki kefedeki nesnelerin sayısı $\leq k$ olmalıdır. Buradan; toplam nesne sayısı $\leq 3k$ olmalıdır.

Fakat 3k + s adet nesne olduğu için $a \le k$ olamaz. Buradan a > k olmak zorundadır.

a=k+1 için her zaman sağlayan durum gösterirsek daha az olamayacağı için f(2,1,3k+s)=1+f(2,1,k+1) olmak zorundadır. a=k+1 için :

Her kefeye k + 1 adet nesne koyarsak istediğimiz durum sağlanır.

Bu üç durumda iddia1.1 tarafından sağlandığı için iddia1.1 doğrudur.

```
İddia1.2: f(2,1,n); n \in [3^t+1,3^{t+1}] değerlerinde t+1 değerine denktir.  (t>0 \text{ ve } t \in \mathbb{N})  İddia1.2 –in İspatı:  f(2,1,n);   n \in [4,9] \text{ aralığındayken } 2 - \text{dir.}   n \in [3^k+1,3^{k+1}] \text{ aralığındayken } k+1 \text{ değerini alsın.}   n \in [3^{k+1}+1,3^{k+2}] \text{ aralığındayken } k+2 \text{ olduğunu gösterelim:}  iddia1.1-de n yerine [3^{k+1}+1,3^{k+2}] aralığında bir sayı koyarsak gelecek ifade;  f(2,1,n) = 1 + f(2,1,a) \text{ ve } a \in [3^k+1,3^{k+1}]  olur.  \text{Ve } f(2,1,a), a \in [3^k+1,3^{k+1}] \text{ aralığındayken } k+1 \text{ alacağı için,}   f(2,1,n); n \in [3^{k+1}+1,3^{k+2}] \text{ aralığındayken } k+2 \text{ değerini alır.}  Buradan İddia1.2 doğrudur.
```

İddia1.3: $f(2,1,n) = \lceil \log_3 n \rceil$ İddia1.3 –ün İspatı:

 $\lceil \log_3 n \rceil$; $n \in [3^t+1, 3^{t+1}]$ değerlerinde t+1 değerine denktir. İddia1.2-nin doğruluğundan İddia1.3 doğrudur.

İddia1.3 –ten sorunun cevabı:

 $\lceil \log_3 n \rceil$

B m Kollu Terazi I Farklı Nesne İçin f(m, 1, n)

Soru: "m kollu bir terazi yardımı ile 1 tanesi diğerlerinden daha hafif olan n adet nesneden, farklı olan nesne minimum kaç tartma işlemi sonucu bulunması garanti edilebilir?"

$$(m, n \in \mathbb{Z}^+, m \ge 2 \text{ ve } n \ge 1)$$

Cevap:

 $\lceil \log_{m+1} n \rceil$

İspat:

İddia2.1:
$$f(m, 1, n) = 1 + f\left(m, 1, \left\lfloor \frac{n+m}{m+1} \right\rfloor\right)$$

İddia2.1 –in İspatı: $f(m, 1, n) = 1 + f(m, 1, a)$ olsun. (a minimum değer)

n=(m+1)k , n=(m+1)k+s ; $s\in [1,m]$ durumlarını ayrı ayrı inceleyelim;

a- n = (m+1)k için;

a < k olamayacağını gösterelim. Eğer a < k ise;

kefelerde olmayan ve her kefedeki nesnelerin sayısı < k olmalıdır. Buradan; toplam nesne sayısı < (m+1)k olmalıdır. Fakat (m+1)k adet nesne olduğu için a < k olamaz. Buradan $a \ge k$ olmak zorundadır.

a=k için her zaman sağlayan durum gösterirsek daha az olamayacağı için f(m,1,(m+1)k)=1+f(m,1,k) olmak zorundadır. a=k için :

Her kefeye *k* adet nesne koyarsak istediğimiz durum sağlanır.

c- n = (m + 1)k + s için;

 $a \le k$ olamayacağını gösterelim. Eğer $a \le k$ ise;

kefelerde olmayan ve her kefedeki nesnelerin sayısı $\leq k$ olmalıdır. Buradan; toplam nesne sayısı $\leq (m+1)k$ olmalıdır. Fakat (m+1)k+s adet nesne olduğu için $a\leq k$ olamaz. Buradan a>k olmak zorundadır.

a=k+1 için her zaman sağlayan durum gösterirsek daha az olamayacağı için f(m,1,(m+1)k+s)=1+f(m,1,k+1) olmak zorundadır. a=k+1 için :

Her kefeye k + 1 adet nesne koyarsak istediğimiz durum sağlanır.

Bu üç durumda iddia2.1 tarafından sağlandığı için iddia2.1 doğrudur.

İddia
2.2: f(m, 1, n); $n \in [(m + 1)^t + 1, (m + 1)^{t+1}]$ değerlerinde t + 1 değerine denktir.

$$(t > 0 \text{ ve } t \in \mathbb{N})$$

İddia2.2 –in İspatı:

f(m, 1, n);

 $n \in [m+2, (m+1)^2]$ aralığındayken 2 –dir.

 $n \in [(m+1)^k + 1, (m+1)^{k+1}]$ aralığındayken k+1 değerini alsın.

 $n \in [(m+1)^{k+1}+1,(m+1)^{k+2}]$ aralığındayken k+2 olduğunu gösterelim:

iddia2.1-de n yerine $[(m+1)^{k+1}+1,(m+1)^{k+2}]$ aralığında bir sayı koyarsak gelecek ifade;

 $f(m, 1, n) = 1 + f(m, 1, a); a \in [(m+1)^k + 1, (m+1)^{k+1}]$

Ve f(m, 1, a), $a \in [(m + 1)^k + 1, (m + 1)^{k+1}]$ aralığındayken k + 1 alacağı için, f(m, 1, n); $n \in [(m + 1)^{k+1} + 1, (m + 1)^{k+2}]$ aralığındayken k + 2 değerini alır.

Buradan İddia2.2 doğrudur.

 $iddia2.3: f(m, 1, n) = [log_{m+1} n]$

olur.

İddia2.3 –ün İspatı:

 $\lceil \log_{m+1} n \rceil$; $n \in \lceil (m+1)^t + 1, (m+1)^{t+1} \rceil$ değerlerinde t+1 değerine denktir. İddia2.2-nin doğruluğundan İddia2.3 doğrudur.

İddia2.3 –ten sorunun cevabı:

 $\lceil \log_{m+1} n \rceil$

C 3 Kollu Terazi 2 Farklı Nesne İçin f (3,2,n)

Soru: "3 kollu bir terazi yardımı ile 2 tanesi diğerlerinden daha hafif olan n adet nesneden, farklı olan nesneler minimum kaç tartma işlemi sonucu bulunması garanti edilebilir?" $(n \in \mathbb{Z}^+ \text{ ve } n \geq 2)$

Cevap:

$$\lceil \log_2 n \rceil - 1$$

İspat:

İddia3.1:
$$f(3,2,2x) \leq 2f(3,1,x)$$
; $x \in \mathbb{Z}^+$

İddia3.1-in İspatı:

x = 1 için ---> $0 \le 0$ olduğundan doğru.

x = 2 için ---> $1 \le 2$ olduğundan doğru.

x < 2k için doğru olsun.

x = 2k için doğru olduğunu gösterelim.

$$x = 2k \text{ için } ---> f(3, 2, 4k) \le ?2f(3, 1, 2k)$$

4k tane nesne olduğu için her kefeye k adet nesne koymamız gerekir. Bu tartma işlemi sonucu 3 farklı denge durumu meydana gelebilir. Bu durumları ayrı ayrı inceleyelim.

Bunlar:

A- Terazinin üç kefesinin aynı hizada olması;

Bu durumda farklı olan nesneler kefelerin dışındadır. Buradan farklı nesneler k nesne içerisindedir. Buradan;

$$f(3,2,4k) = 1 + f(3,2,k)$$

gelir.

B- Terazinin iki kefesinin diğer kefeden aşağıda olması;

Bu durumun olabilmesi iki farklı şekilde olabilir;

- 1- Yukarıdaki kefede 1 tane, kefelerde olmayan 1 tane farklı nesne olması
- 2- Yukarıdaki kefede 2 tane farklı nesne olması

Buradan iki farklı şey yapılabilir:

i- Hiç tartma işlemi yapmadan bu iki durumun hangisinin olduğunu anlayamayız. Bu durumların hangisi olduğunu bilmeden yapabileceğimiz tek yorum; farklı nesneleri yukarıdaki kefe ve kefelerin dışındaki nesnelerin birleşiminin içindedir. Buradan;

$$f(3,2,4k) = 1 + f(3,2,2k)$$

ii- Bir tartma işlemi daha yaparsak hangi durumun olduğu anlaşılır. Eğer 1. Durum ise, ya kefe ile kefeler dışındaki nesneleri ayrı ayrı f(3,1,k) tartma işlemi yaparız;

$$f(3,2,4k) = 2 + 2f(3,1,k)$$

Yada kefe ile kefeler dışındaki nesneleri birleştirip f(3,2,2k) tartma işlemi yaparız.

$$f(3,2,4k) = 2 + f(3,2,2k)$$

İddia3.1-de x < 2k durumlarını doğru kabul ettiğimiz için bu durumun cevabı;

$$f(3,2,4k) = 2 + f(3,2,2k)$$

Eğer 2. Durum ise, f(3,2,k) tartma işlemi yaparız;

$$f(3,2,4k) = 2 + f(3,2,k)$$

Bu iki durumdan en fazla olanı almak zorundayız.

ii. Durumunun cevabı;

$$f(3,2,4k) = 2 + f(3,2,2k)$$

gelir.

i durumunu yapmak daha az tartma işlemi gerektirdiği için minimum tartma sayısı için i durumu yapılmalıdır. Buradan B durumunun cevabı:

$$f(3,2,4k) = 1 + f(3,2,2k)$$

gelir.

C- Terazinin iki kefesinin diğer kefeden yukarıda olması;

Bu durumda yukarıdaki kefelerin her birinde birer tane farklı nesne vardır. Buradan ya her kefeyi ayrı ayrı f(3,1,k) tartımda buluruz;

$$1 + 2f(3,1,k)$$

Yada iki kefedeki nesneleri birleştirip f(3,2,2k) tartımda buluruz;

$$1 + f(3,2,2k)$$

İddia3.1-de x < 2k durumlarını doğru kabul ettiğimiz için C durumunun cevabı;

$$f(3,2,4k) = 1 + f(3,2,2k)$$

gelir.

A, B ve C durumlarından cevabı en çok olanı almak zorundayız. Buradan;

$$f(3,2,4k) = 1 + f(3,2,2k)$$

gelir.

f(3,2,4k) = 1 + f(3,2,2k) ifadesinde k yerine sırası ile $2^{t-2}, 2^{t-3}, ..., 2^{0}$ koyarsak ve taraf tarafa gelen ifadeleri toplayıp sadeleştirirsek gelecek ifade:

$$f(3,2,2^t) = t - 1 + f(3,2,2)$$

 $\operatorname{dir} f(3,2,2) = 0$ olduğundan;

$$f(3,2,2^t) = t - 1$$

gelir.

 $\forall x \leq y \iff f(m, k, x) \leq f(m, k, y)$ olduğu için;

$$t-1 \le f(3,2,2^t+2s) \le t; s \in [0,2^t-2^{t-1}]ve \ s \in \mathbb{Z}$$

$$t \le 2f(3,1,2^{t-1}+s); \in [0,2^t-2^{t-1}]ve \ s \in \mathbb{Z}$$

ifadeleri doğrudur. Bu iki ifadeden;

$$f(3,2,2^t+2s) \le 2f(3,1,2^{t-1}+s)$$

Bu ifadeden;

$$f(3,2,4k) \le 2f(3,1,2k)$$

$$f(3,2,4k) \le 2f(3,1,2k)$$
$$f(3,2,4k+2) \le 2f(3,1,2k+1)$$

elde edilir. Buradan İddia 3.1 x = 2k ve x = 2k + 1 için doğrudur. Tümevarımdan $x \in \mathbb{Z}^+$ için İddia3.1 doğrudur. Buradan İddia3.1 doğrudur.

$$Iddia 3.2: f(3,2,4k+1) = 1 + f(3,2,2k+1); k \in \mathbb{Z}^+$$

İddia3.2-in İspatı:

4k + 1 tane nesne olduğu için her kefeye k adet nesne koymamız gerekir. Bu tartma işlemi sonucu 3 farklı denge durumu meydana gelebilir. Bu durumları ayrı ayrı inceleyelim. Bunlar:

A- Terazinin üç kefesinin aynı hizada olması;

Bu durumda farklı olan nesneler kefelerin dışındadır. Buradan farklı nesneler k+1 tane nesne içerisindedir. Buradan;

$$f(3,2,4k+1) = 1 + f(3,2,k+1)$$

gelir.

B- Terazinin iki kefesinin diğer kefeden aşağıda olması;

Bu durumun olabilmesi iki farklı şekilde olabilir;

- 1- Yukarıdaki kefede 1 tane, kefelerde olmayan 1 tane farklı nesne olması
- 2- Yukarıdaki kefede 2 tane farklı nesne olması

Buradan iki farklı şey yapılabilir:

i- Hiç tartma işlemi yapmadan bu iki durumun hangisinin olduğunu anlayamayız. Bu durumların hangisi olduğunu bilmeden yapabileceğimiz tek yorum; farklı nesneleri yukarıdaki kefe ve kefelerin dışındaki nesnelerin birleşiminin içindedir. Buradan;

$$f(3,2,4k+1) = 1 + f(3,2,2k+1)$$

ii- Bir tartma işlemi daha yaparsak hangi durumun olduğu anlaşılır. Eğer 1. Durum ise, ya kefe ile kefeler dışındaki nesnelere toplamda f(3,1,k) + f(3,1,k+1) tartma işlemi yaparız;

$$f(3,2,4k+1) = 2 + f(3,1,k) + f(3,1,k+1)$$

Yada kefe ile kefeler dışındaki nesneleri birleştirip f(3,2,2k+1) tartma işlemi yaparız.

$$f(3,2,4k) = 2 + f(3,2,2k+1)$$

İddia3.1'in doğruluğundan; 1. Durumun cevabı;

$$f(3,2,4k+1) = 2 + f(3,2,2k+1)$$

Eğer 2. Durum ise, f(3,2,k) tartma işlemi yaparız;

$$f(3,2,4k) = 2 + f(3,2,k)$$

Bu iki durumdan en çok olanı almak zorundayız. i durumunu yapmak daha az tartma işlemi gerektirdiği için minimum tartma sayısı için i durumu yapılmalıdır.

B durumunun cevabı:

$$f(3,2,4k+1) = 1 + f(3,2,2k+1)$$

gelir.

C- Terazinin iki kefesinin diğer kefeden yukarıda olması;

Bu durumda yukarıdaki kefelerin her birinde birer tane farklı nesne vardır. Buradan ya her kefeyi ayrı ayrı f(3,1,k) tartımda buluruz.

$$1 + 2f(3,1,k)$$

Yada iki kefedeki nesneleri birleştirip f(3,2,2k) tartımda buluruz.

$$1 + f(3,2,2k)$$

İddia3.1 göz önüne alındığında C durumunun cevabı;

$$f(3,2,4k+1) = 1 + f(3,2,2k)$$

gelir.

A, B ve C durumlarından cevabı en çok olanı almak zorundayız. Buradan;

$$f(3,2,4k+1) = 1 + f(3,2,2k+1)$$

gelir.

Buradan İddia3.2 doğrudur.

f(3,2,4k+1) = 1 + f(3,2,2k+1) ifadesinde k yerine sırası ile $2^{t-2}, 2^{t-3}, \dots, 2^0$ koyarsak ve taraf tarafa gelen ifadeleri toplayıp sadeleştirirsek gelecek ifade:

$$f(3,2,2^t+1) = t-1+f(3,2,3)$$

 $\operatorname{dir} f(3,2,3) = 1 \operatorname{olduğundan}$

$$f(3,2,2^t+1) = t$$

İddia3.3:
$$f(3,2,2^x+s)=x; s\in [1,2^{x+1}-2^x]; x,s\in \mathbb{Z}^+$$

İddia3.3-in İspatı:

 $f(3,2,2^t+1)=t$, $f(3,2,2^{t+1})=t$ ve $\forall~x\leq y \Leftrightarrow f(m,k,x)\leq f(m,k,y)$ olduğundan;

$$f(3,2,2^t+s)=t; s\in [1,2^{t+1}-2^t]; t,s\in \mathbb{Z}^+$$

gelir.

$$\dot{I}ddia3.4: f(3,2,n) = [log_2 n] - 1; n \in \mathbb{Z}^+$$

İddia3.4-in İspatı:

 $\lceil \log_2 n \rceil - 1$; $n \in [2^t + 1, 2^{t+1}]$ aralığında t değerini alır. Bu durum; f(3,2,n) için de geçerli olduğu için;

$$f(3,2,n) = \lceil \log_2 n \rceil - 1$$

D 8 Kollu Terazi 3 Farklı Nesne İçin f (8,3, n)

Soru: "8 kollu bir terazi yardımı ile 3 tanesi diğerlerinden daha hafif olan n adet nesneden, farklı olan nesneler minimum kaç tartma işlemi sonucu bulunması garanti edilebilir?"

$$(n \in \mathbb{Z}^+ ve n \ge 3)$$

Cevap:

$$\lceil \log_3 n \rceil - 1$$

İspat:

İddia4.1:
$$f(8,3,3^x+1)=x$$
; $x \in \mathbb{Z}^+$

İddia4.1-in İspatı:

x = 1 için İddia4.1 doğrudur.

x < k için İddia4.1-nin doğruluğunu kabul edelim.

x = k i cin;

 $3^k + 1$ adet nesnemiz olduğu için her kefeye 3^{k-2} adet nesne koymamız gerekir. Buradan dört farklı denge durumu gelebilir;

A- Terazinin 8 kefesinin de aynı hizada olması;

Bu durumda farklı nesneler kefelerin dışındadır. Buradan;

$$f(8,3,3^k+1) = 1 + f(8,3,3^{k-2}+1) = 1 + k - 2 = k - 1$$

B- Terazinin 7 kefesinin, diğer kefeden aşağıda olması;

Bu durumda farklı hizadaki kefede ve kefeler dışındaki bölgede toplamda 3 adet farklı nesne vardır. Bu durumun olabilmesi üç farklı durumda meydana gelebilir;

- 1. Farklı hizadaki kefede 1 adet farklı nesne olması
- 2. Farklı hizadaki kefede 2 adet farklı nesne olması
- 3. Farklı hizadaki kefede 3 adet farklı nesne olması

Burada iki farklı şey yapılabilir;

i- Hiç tartma işlemi yapmadan Bu üç durumdan hangisinin olduğunu anlayamayız. Bu durumların hangisinin olmadığını bilmeden yapabileceğimiz tek yorum; farklı kefedeki ve kefelerin dışındaki nesnelerin birleşiminin içerisinde üç adet farklı nesne vardır;

$$k \ge 1 + f(8,3,2.3^{k-2} + 1) = f(8,3,3^k + 1)$$

ii- Bir tartma işlemi daha yaparsak Bu üç durumdan hangisinin olduğunu anlayabiliriz.

1'inci durum ise;

$$k \ge 2 + f(8,2,3^{k-2}+1) + f(8,1,3^{k-2}) = f(8,3,3^k+1)$$
veya
$$k \ge f(8,3,2.3^{k-2}+1) + 2 = f(8,3,3^k+1)$$
2'nci durum ise;
$$k-1 \ge 2 + f(8,2,3^{k-2}) + f(8,1,3^{k-2}+1) = f(8,3,3^k+1)$$
veya
$$k \ge f(8,3,2.3^{k-2}+1) + 2 = f(8,3,3^k+1)$$
3'üncü durum ise:

 $k \ge 2 + f(8,3,3^{k-2}) = f(8,3,3^k + 1)$

Buradan eğer B durumu ise $k \ge f(8,3,3^k+1)$ gelir.

C- Terazinin 6 kefesinin, diğer 2 kefeden aşağıda olması;

Bu durumda farklı hizadaki kefelerle kefeler dışındaki nesnelerin içinde toplam üç farklı nesne vardır. Bunun olabilmesi iki farklı durumda meydana gelebilir;

1. Farklı olan kefelerin her birinde bir adet farklı nesne olması

Bu durumda ya iki kefe ve kefeler dışındaki nesne öbeklerini birleştirerek;

$$f(8,3,3^{k}+1) = 1 + f(8,3,3^{k-1}+1) = k$$
yada ayrı ayrı tartıp;
$$k \le 1 + 2f(8,1,3^{k-2}) + f(8,1,3^{k-2}+1) = f(8,3,3^{k}+1)$$

$$veya \\ k \le 1 + f(8,2,2.3^{k-2}) + f(8,1,3^{k-2}+1) = f(8,3,3^k+1) \\ veya$$

$$k \le 1 + f(8,2,2.3^{k-2} + 1) + f(8,2,3^{k-2}) = f(8,3,3^k + 1)$$

Ayrı ayrı tarttığımızda daha çok tartma işlemi yapıldığı için birleştirip tartmak gerekir. Buradan bu durumun cevabı;

$$f(8,3,3^k+1) = 1 + f(8,3,3^{k-1}+1) = k$$

2. Farklı olan kefelerin birinde bir diğerinde iki farklı nesne olması

Bu durumda ya iki kefeyi birleştirerek;

$$f(8,3,3^k+1) = 1 + f(8,3,2.3^{k-2}) \le k$$

yada ayrı ayrı tartarak;

$$f(8.3.3^{k} + 1) = f(8.2.3^{k-2}) + f(8.1.3^{k-2}) \le k$$

D- Terazinin 5 kefesinin, diğer 3 kefesinden aşağıda olması;

Bu durumda farklı kefelerde toplamda üç farklı nesne vardır. Bu durumun olabilmesi tek bir şekilde olabilir;

Farklı kefelerin her birinde bir adet farklı nesne olması

Bu durumda ya kefeleri birleştirerek;
$$f(8,3,3^k+1) = 1 + f(8,3,3^{k-1}) \le k$$
 yada ayrı ayrı tartarsak;
$$f(8,3,3^k+1) = 1 + 3f(8,1,3^{k-2}) \ge k ; k > 2$$

$$veya$$

$$f(8,3,3^k+1) = 1 + f(8,2,2,3^{k-2}) + f(8,3,3^{k-2}) \ge k$$

A, B, C1, C2 ve D durumlarını incelersek garanti tartım sayısı en büyük olacağı durum C1 durumudur . Ve bu durumda;

$$f(8,3,3^k+1) = 1 + f(8,3,3^{k-1}+1) = k$$

Buradan İddia4.1 doğrudur.

*İddia*4.2:
$$f(8,3,3^x) = x - 1$$
; $x \in \mathbb{Z}^+$

İddia4.2-in İspatı:

x = 1 için *İddia4.2* doğrudur.

x < k için *İddia4.2* doğru olsun.

x = k için doğruluğunu gösterelim;

 3^k adet nesnemiz olduğu için her kefeye 3^{k-2} adet nesne koymamız gerekir. Buradan dört farklı denge durumu meydana gelebilir;

- A- Terazinin 8 kefesinin de aynı hizada olması;
- B- Terazinin 7 kefesinin, diğer kefeden aşağıda olması
- C- Terazinin 6 kefesinin, diğer iki kefeden aşağıda olması
- D- Terazinin 5 kefesinin, diğer üç kefeden aşağıda olması

Bu dört durumun her birinde; farklı üç nesnemizin toplamda üç farklı kefe öbeğinin bileşiminin içinde olduğu kolayca görülebilir. Buradan;

$$f(8,3,3^k) \le 1 + f(8,3,3^{k-1}) = 1 + k - 2 = k - 1$$
$$\boxed{f(8,3,3^k) \le k - 1}$$

Ve $\forall x \leq y \Leftrightarrow f(m, k, x) \leq f(m, k, y)$ olduğundan;

$$k-1 = f(8,3,3^{k-1}+1) \le f(8,3,3^k)$$

$$k-1 \le f(8,3,3^k)$$

gelir. Bu iki eşitsizlikten;

$$k-1 \le f(8,3,3^k) \le k-1$$

Buradan

$$f(8,3,3^k) = k - 1$$

Buradan İddia4.2 doğrudur.

$$\dot{I}ddia4.3: f(8,3,3^x+s) = x; s \in [1,3^{x+1}-3^x]; x,s \in \mathbb{Z}^+$$

İddia4.3-in İspatı:

$$f(8,3,3^t+1)=t$$
 , $f(8,3,3^{t+1})=t$ ve $\forall~x\leq y \Leftrightarrow f(m,k,x)\leq f(m,k,y)$ olduğundan;

$$f(8,3,3^t + s) = t; s \in [1,3^{t+1} - 3^t]; t, s \in \mathbb{Z}^+$$

gelir.

$$\dot{I}ddia4.4: f(8,3,n) = [log_3 n] - 1; n \in \mathbb{Z}^+$$

İddia3.4-in İspatı:

 $\lceil \log_3 n \rceil - 1$; $n \in [3^t + 1, 3^{t+1}]$ aralığında t değerini alır. Bu durum; f(8,3,n) için de geçerli olduğu için;

$$f(8,3,n) = \lceil \log_3 n \rceil - 1$$

3. Bulgular

1. **Soru:** "Çift kollu bir terazi yardımı ile 1 tanesi diğerlerinden daha hafif olan n adet nesneden, farklı olan nesne minimum kaç tartma işlemi sonucu bulunması garanti edilebilir?"

$$(n \in \mathbb{Z}^+ \ ve \ n \ge 1)$$

Cevap:

$$\lceil \log_3 n \rceil$$

2. **Soru:** "m kollu bir terazi yardımı ile 1 tanesi diğerlerinden daha hafif olan n adet nesneden, farklı olan nesne minimum kaç tartma işlemi sonucu bulunması garanti edilebilir?"

$$(m, n \in \mathbb{Z}^+, m \ge 2 \text{ ve } n \ge 1)$$

Cevap:

$$\lceil \log_{m+1} n \rceil$$

3. **Soru:** "3 kollu bir terazi yardımı ile 2 tanesi diğerlerinden daha hafif olan n adet nesneden, farklı olan nesneler minimum kaç tartma işlemi sonucu bulunması garanti edilebilir?"

$$(n \in \mathbb{Z}^+ \ ve \ n \ge 2)$$

Cevap:

$$\lceil \log_2 n \rceil - 1$$

4. **Soru:** "8 kollu bir terazi yardımı ile 3 tanesi diğerlerinden daha hafif olan n adet nesneden, farklı olan nesneler minimum kaç tartma işlemi sonucu bulunması garanti edilebilir?"

$$(n \in \mathbb{Z}^+ \ ve \ n \geq 3)$$

Cevap:

$$\lceil \log_3 n \rceil - 1$$

5. Sonuç

- 1. Çoklu Terazi Kuramı oluşturuldu.
- 2. Belirli durumlar için Genel Tartma Fonksiyonu bulundu.
- 3. Genel tartma fonksiyonu ile logaritma fonksiyonun ilişkisi gözlendi.

6. Öneriler

- 1. Fabrikalarda; ürün serisi içinde hatalı ürünler olduğu tespit edildikten sonra, ürün serisinin içinde hatalı ürünü bulmak için ; ideal iş gücü ideal masrafla hatalı ürünlerin bulunmasının sağlanması.
- 2. Yeni algoritmalara altyapı sağlanması.
- 3. Projenin cevabı ile benzer sonuçları veren soruların çözümünün sağlanması ve çift yönden sayma (counting two ways) yolu ile yapılan sorulara yeni bir çeşit sağlama.
- 4. Projeyi sonsuz küçükler hesabına (calculus) göre genelleşmesini sağlayıp logaritma ile ilgili farklı düşünceler bulunması.
- 5. Üniversiteye geçiş sınavları ve bilim olimpiyatlarında çıkabilecek bir soru tipi oluşturulması.

7. Kaynakça

- 1. http://n1b-algo.blogspot.com.tr
- 2. https://www.quora.com/There-are-N-balls-out-of-which-1-has-a-different-weight-and-the-rest-N-1-are-identical-in-weight-There-is-a-weighing-instrument-which-can-compare-weights-of-only-2-at-a-time-What-is-the-minimum-number-of-weighings-that-are-needed-to-be-done-in-order-to-find-the-odd-ball-out
- 3. TÜBİTAK Ulusal Ortaokul Ve Lise Olimpiyatı Soru Kitapçıkları
- 4. Akdeniz Üniversitesi Antalya Matematik Olimpiyatları Soru Kitapçıkları
- **5.** Özdemir M., Matematik Olimpiyatlarına Hazırlık 2, Altın Nokta Yayınları, 2014.
- **6.** Özdemir M., Dahimatik, Altın Nokta Yayınları, 2013.
- 7. Alizade R., Ufuktepe Ü., Sonlu Matematik, Altın Nokta Yayınları, 2012.
- 8. Andrescu T., Enescu B., Mathematical Olympiad Treasures, Birkhäuser, 2006
- **9.** http://geomania.org/forum/fantezi-cebir-arsivi/indirgemeli-dizi-problemleri-2567/?action=dlattach;attach=11307/
- **10.** http://www.ozanaki.com/home/uploads/teaching/bst201-veri-yapilari/04-recursive-fonksiyonlar.pdf
- 11. İndirgemeli Diziler, Türk Matematik Derneği
- 12. http://www.wolframalpha.com

13. https://halils00.github.io/coklu-terazi-kurami/

8. Ekler

1.

 $f(2,1,x);\ x\in [1,20]\ iken\ grafi\S i(mavi)$

 $\log_3 x\,;\,x\in[1,\!20]\,iken\,grafi\S i(k\imath rm\imath z\imath)$

2.

f(m,1,x)'in; tablodaki x,m değerleri için sonuçları					
x m	3	4	6	9	13
10000	7	6	5	4	4
10000000	12	11	9	7	7
4242424242	16	14	12	10	9
32323236777	18	16	13	11	10
99999999999	19	16	14	11	10
56	3	3	3	2	2
379	5	4	4	3	3
6563	7	6	5	4	4
4545422	12	10	8	7	6
6666666	12	10	9	7	6
33378535	13	11	9	8	7

3.

f(3,2,x)'in; tablodaki x , m değerleri için sonuçları			
X	f(3,2,x)		
345	8		
567	9		
463	8		
10000	13		
565438	19		
6664321	22		
8664322	23		

4.

https://halilsalihorhan.github.io/coklu-terazi-kurami/

```
<html>
             <body background="background.png">
                 <centre>
                   F[
                     <input id="a" type="text" />,
                     <input id="b" type="text" />,
                     <input id="c" type="text" />]
                     <bra />
                     <br />
                     <button type="button" id="myBtn"</pre>
         onclick="calculate()">Calculate</button>
                     <br />
                     <br />"<span id="M"></span>" kollu terazide "<span</pre>
         id="N"></span>" tanesi diğerlerinden farklı "<span id="K"></span>"
         nesne arasından farklı olan nesneler;"<span id="t"></span>" tartımda
         bulunması garanti edilebilir.
                 </center>
                 <script>
                     var inputA = document.getElementById("a");
                     var inputB = document.getElementById("b");
                     var inputC = document.getElementById("c");
                     var spanResult = document.getElementById("t");
                     var spanM = document.getElementById("M");
                     var spanN = document.getElementById("N");
                     var spanK = document.getElementById("K");
                     inputC.addEventListener("keyup", function(event) {
```

```
event.preventDefault();
                if (event.keyCode == 13) {
                    calculate();
                }
            });
            function f(x, y, z) {
              if (y == 1) {
                return Math.ceil(Math.log(z) / Math.log(x + 1));
              }
              if (y == 2) {
                if (x == 3) {
                  return Math.ceil(Math.log(z) / Math.log(2)) - 1;
                }
              }
            }
            function calculate() {
              var q = parseInt(inputA.value);
              var w = parseInt(inputB.value);
              var e = parseInt(inputC.value);
              var s = f(q, w, e);
              spanResult.innerHTML = s;
              spanM.innerHTML = inputA.value;
              spanN.innerHTML = inputB.value;
              spanK.innerHTML = inputC.value;
            }
        </script>
        <style>
            input {
              width: 40px;
              height: 30px;
              font-size: 25px;
            }
            input#m {
              margin-right: 10px;
            }
            button {
              margin: 0 auto;
            }
        </style>
    </body>
</html>
```