

[그림 2.12] 전류 분배 회로

V1에서 KCL을 적용하면

$$I_s = I_1 + I_2 = V_1 \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

저항 R_2 에 흐르는 전류는 다음과 같이 나뉘게 된다.

$$I_2 = \frac{V_1}{R_2} = \frac{R_1}{R_1 + R_2} I_8 \tag{2.21}$$

2.5 등가 회로

2.5.1 전원의 치환

회로를 분석하는데 있어서 여러 개의 전압원과 전류원이 섞여 있을 때 한 종류의 전원으로 만들어 분석하면 편할 때가 있다. 이 경우에 적용하는 변환이 전원 변환이다. 전압원을 전 류원으로 치환한다던지 전류원을 전압원으로 치환한다던지 하면 때에 따라 매우 편리하다. 아래 그림 2.13에서 두 회로는 다음과 같은 관계가 있다.

$$i_s = \frac{v_s}{R_s}, \quad R_p = R_s \tag{2.22}$$

[그림 2.13] 전원의 치환

2.5.2 중첩의 원리

한 회로에 여러 전원이 있을 경우에 한 저항에 걸리는 전류나 전압값을 계산하고자 할때에 중첩의 원리를 사용하면 쉽게 구할 수 있다. 다시 말하면 한 저항에 걸리는 정압은

여러 전원에 의한 영향으로 나타나는데, 이는 각 전원이 저항에 미치는 영향을 더한 7° 간다는 것이다. 수식으로 표현하면 식 (2.23)과 같다. 1° 지원이 있을 경우 1° 지형 1° 건리는 전압이 1° 전원 다음과 같이 각 전원에 의한 영향을 더한 것과 같다.

$$v_R = v_{R_1} + v_{R_2} + \dots + v_{R_n}$$
 (2.23)

여기서 v_{R_i} 은 첫 번째 전원에 의한 저항 R에 미치는 전압값이다. 다음 회로에서 중첩의 원리를 사용하여 저항 R_p 에 흐르는 전류를 구해 보자.

중첩의 원리를 적용할 경우에는 다음과 같은 중요한 법칙을 적용해야 한다. 한 전원이 의한 영향을 구하기 위해서는 그 전원을 제외한 모든 전압원은 쇼트시키고 전류원은 오픈 시킨다.

 $lackbox{0.05}$ 전압원 v_s 에 의한 영향을 구하려면 전류원 i_s 는 개회로가 된다. 따라서 전류 i_s 은 다음과 같다.

$$i_1 = \frac{v_s}{R_s + R_p} \tag{2.24}$$

[그림 2.15] 전압원 v_s 에 의한 영향

● 전류원 i_s 에 의한 영향을 고려할 경우에는 전압원 v_s 는 쇼트된다.

[그림 2.16] 전류원 i.에 의한 영향

$$i_{2} = \frac{R_{s}}{R_{s} + R_{v}} i_{s} \tag{2.25} \label{eq:2.25}$$

결과적으로 저항 R_s 에 흐르는 전류 i는 두 전류값을 더한 것과 같다.

$$\begin{split} i &= i_1 + i_2 \\ &= \frac{v_s}{R_s + R_p} + \frac{R_s i_s}{R_s + R_p} \\ &= \frac{1}{R_s + R_p} (v_s + R_s i_s) \end{split} \tag{2,26}$$

2.5.3 Thevenin 등가 회로

Thevenin 등가 회로는 여러 개의 소자와 전원으로 구성되어 있는 회로의 한 부분을 하나의 전압원과 저항이 있는 동등한 회로로 대체하는 회로를 말한다. 전원이 있고 저항이 있는 어떤 회로에서 한 터미널에서 바라본 동등 회로를 오픈 전압 v_{∞} 와 전체 저항 R_{th} 의 직렬 연결로 나타낼 수 있다.

그림 2.7은 a-b터미널에서 바라본 동등 회로를 나타낸다. 저항 R_{th} 를 구하기 위해서는 전압원은 쇼트시키고 전류원은 오픈시킨 뒤에 터미널에서 바라본 전체 저항을 계산하면된다.

[그림 2.17] Thevenin 동등 회로

그러면 오픈 전압 v_{oc} 와 저항 R_{th} 를 구해보자.

● voc 계산하기

lackloss v_{oc} 계산하기 v_{oc} 를 구하기 위해서는 a-b 터미널을 열고 a-b 터미널에 걸리는 전압을 가하고 된다. 된다

[그림 2.18] v_{oc} 구하기

$$v_{oc} = \frac{R_2}{R_1 + R_2} v_s$$

② R_{th} 계산하기

저항 R_{th} 를 계산하기 위해서는 다음과 같이 전압원을 쇼트시키고 터미널 a-b에서 바라보 저항값을 계산하면 된다.

[그림 2.19] 저항 R_{th} 구하기

$$R_{\rm th}=R_{\rm l}//R_{\rm 2}$$

그러므로 그림 2.17에서 부하 저항 R_L 에 걸리는 전압을 계산하면 다음과 $^{\mathrm{CF}}$

$$v_{L} = \frac{R_{L}}{R_{th} + R_{L}} v_{oc} \tag{2.29}$$

(2, 27)

(2,28)

예제 21 Thevenin 등가 회로

다음 회로에서 저항 R에 흐르는 전류 I를 Thevenin 등가 회로를 사용하여 구하시오

먼저 R_{th} 를 구하기 위해 전압원을 쇼트시키면

$$R_{th} = 4 + 5//20 = 4 + 4 = 8\Omega$$

오픈전압 V_{oc} 를 계산하기 위해 전압 분배를 적용하면 다음과 같다. 주의 할 점은 4Ω 의 저항은 개회로 전압이므로 포함되지 않는다는 것이다.

$$V_{oc} = \frac{20}{20 + 5} 50 V = 40 V$$

라서 결과적인 Thevenin 동등 회로는 다음과 같다.

여기서 전류값은

$$I = \frac{40}{8 + R}$$

2.5.4 Norton 등가 회로

Norton 등가 회로는 Thevenin 등가 회로와 마찬가지로 여러 개의 소자와 전원으로 구 성되어 있는 회로의 한 부분을 하나의 전류원과 저항이 있는 동등한 회로로 대체하는 회로 를 말한다. 전원이 있고 저항이 있는 어떤 회로에서 한 터미널에서 바라본 동등 회로를 오픈 전류 i_{sc} 와 전체 저항 R_n 의 병렬 연결로 나타낼 수 있다.

그림 2.20은 a-b 터미널에서 바라본 동등 회로를 나타낸다. 저항 R_n 를 구하기 위해서는 전압원은 쇼트시키고 전류원은 오픈시킨 뒤에 터미널에서 바라본 전체 저항을 계산하면 된다.

그러면 쇼트 전압 i_{sc} 와 저항 R_n 을 구해보자.

● i_{sc} 계산하기

쇼트 전류 i_{sc} 를 구하기 위해서는 a-b 터미널을 쇼트시키고 a-b 터미널에 흐르는 전류을 구하면 된다.

[그림 2.21] i_{sc} 구하기

$$i_{sc} = \frac{v_s}{R_1 + R_2} \tag{2.27}$$

② R_n 계산하기

저항 R_n 를 계산하기 위해서는 다음과 같이 전압원을 쇼트시키고 터미널 a-b에서 바라 본 저항값을 계산하면 된다.

[그림 2.22) 저항 R_n 구하기

$$R_n = (R_1 + R_2) / / R_3 (2.28)$$

그러므로 그림 2.20에서 부하 저항 R_L 에 걸리는 전압을 계산하면 다음과 같다.

$$v_L = \frac{R_n R_L}{R_n + R_L} i_{sc} \tag{2.29}$$

예 제 22 Norton 등가 회로 예

다음 회로에서 Norton 등가 회로를 구하고 전류 I를 계산하시오.

먼저 등가 저항 R_n 을 계산하면

쇼트된 전류값 I_{SC} 을 계산하면

$$I_{SC} = \frac{15\,V}{4\,K\Omega + 8\,K\Omega} = \frac{5}{4}\,m\,A$$

따라서 Norton 동등 회로는 다음과 같다.

$$I = \frac{4K}{4K + R} \cdot \frac{5}{4}mA$$

2.6 노드 분석법 (Nodal Analysis)

KCL을 적용하여 회로를 분석하는 방법이 노드 분석법이다. 전류원이 있는 다음 회로를 고려해 보자.

- 우선 노드를 지정한다. 이때 맨 밑의 노드는 접지이다.
- 각 노드로부터의 전류의 방향을 지정한다.
- 라 노드에서 전류의 값을 계산한다.

예제 23 노드 분석 예 1

[그림 2.23] 노드 분석법

노드 a에서 KCL을 적용하면

실 험 ■ 3 등가 회로 및 중첩의 원리

준비물: 전원 공급기, 멀티미터, 저항 $1.0K\Omega$, $2.0K\Omega$, $3.0K\Omega$, $4.0K\Omega$, 330Ω , 가변_전 항기 $(5.0K\Omega)$ 1. 아래의 회로에 대하여 다음의 과정을 차례로 실행하여 아래의 표들을 완성 하시오.

1.1 단자 a, b 사이에 저항값 R_L 을 아래의 표와 같이 차례로 변화시키면서 R_L 양단의 전압과 R_L 을 통해 흐르는 전류를 측정하시오.

	R_L =1k Ω		R_L =	=2k <i>Ω</i>	R_L =3k Ω R_L =4k		-4kΩ	
	전압	전류	전압	전류	전압	전류	전압	전류
측정값				1982				

- 1.2 전원 V_1 을 연결하고 a, b 단자를 개방하여 a, b 단자에 대한 테브난 등가 전압 V_{oc} 를 측정하시오
- 1.3 회로의 전원 V_1 을 단락 시키고 a, b 단자에 대한 저항 R_{th} 를 측정 하시오.
- 1.4 측정된 전압 V_{oc} 와 저항값 R_{th} 에 따라 테브난 등가 회로를 그리시오. 브레드 보드 한편에 얻어진 테브난 등가 회로를 실제 구성하시오.
- 1.5 테브난 등가 회로의 단자 a, b 사이에 저항값 R_L 을 아래의 표와 같이 차례로 변화 시키면서 R_L 양단의 전압과 R_L 을 통해 흐르는 전류를 측정하시오

	194 91 14 15	R_L =	=1kΩ	R -	-01.0			1 1—		
	183 91 8 8 I	전압	전류	전압	=2k <i>Ω</i>	R_L =	3k <i>Ω</i>	D		
	측정값			건답	전류	전압	전류		-4kΩ	Carlo Carlo
•								전압	전류	
1	테버나 두기	나히구르	E-m							

1.6 테브난 등가 회로를 통해 얻어진 측정값과 주어진 회로를 통해 얻어진 측정값을 비

2. 다음 회로에 대하여 다음의 과정을 차례로 실행하여 표들을 완성 하시오.

2.1 주어진 회로를 구성하고 $I_1,\ I_2,\ I_3$ 를 측정하여 아래의 표를 완성하시오.

3A 22	I_1	I_2	I_3
측정값			A field Cale and a second

2.2 V_1 은 그대로 두고 V_2 는 단락 시킨 상태로 I_1 , I_2 , I_3 를 측정하여 아래의 표를 완성하시오.

SECTION DE LA MARTINE DE	I_1	I_2	I_3
측정값	1	a reason mud state	rosspires

2.3 V_2 는 그대로 두고 V_1 은 단락 시킨 상태로 $I_1,\ I_2,\ I_3$ 를 측정하여 아래의 표를 완성하시오.

	And the state of t					
	I_1	I_2	I_3			
측정값						

2.4 앞서 측정된 전류값들의 관계를 중첩의 원리를 이용하여 설명하시오.

날 짜 검 인