UNIMINUTO

MATERIA: INTELIGENCIA ARTIFICIAL

Presentado por: Andres Santiago García Chaves

ID: 966074

NRC: 45-67864

Fecha: 21/07/2025

Tabla de contenido

1. Descripción del caso y del problema	3
2. Aplicación de la inteligencia artificial en el caso	.4
3. Solución alterna propuesta	.4
4. Reflexión final	5
5. Referencias	5

1. Descripción del caso y del problema

Un caso destacado que evidencia el uso de la inteligencia artificial en la resolución de problemas específicos es el proyecto desarrollado por la empresa DeepMind (subsidiaria de Alphabet/Google) en colaboración con el Moorfields Eye Hospital en Londres. El problema principal abordado en este caso fue la detección temprana y precisa de enfermedades oculares a través del análisis de imágenes obtenidas por tomografía de coherencia óptica (OCT).

Contexto:

Millones de personas en el mundo padecen enfermedades oculares que, si no se diagnostican y tratan a tiempo, pueden llevar a la ceguera. Diagnosticar estas condiciones requiere la interpretación especializada de imágenes médicas por parte de oftalmólogos capacitados, lo cual representa un desafío ante la creciente demanda y escasez de especialistas.

Personas involucradas:

- Pacientes con enfermedades oculares (como degeneración macular relacionada con la edad o retinopatía diabética).
- Oftalmólogos del hospital Moorfields.
- Ingenieros y científicos de datos de DeepMind.
- Autoridades del sistema de salud británico (NHS).

Causas:

- Escasez de oftalmólogos ante el aumento de casos.
- Retrasos en diagnósticos por exceso de demanda.
- Alta dependencia del juicio humano, lo que puede llevar a errores o diagnósticos tardíos.

Consecuencias:

- Pérdida progresiva de visión o ceguera irreversible en pacientes.
- Saturación de los sistemas de salud pública.
- Baja eficiencia en la gestión de casos médicos urgentes.

2. Aplicación de la inteligencia artificial en el caso

DeepMind desarrolló un sistema de inteligencia artificial basado en redes neuronales convolucionales (CNN) que analiza escaneos de OCT y realiza un diagnóstico preliminar con una precisión comparable a la de expertos humanos. Este sistema no solo identifica las condiciones médicas, sino que también proporciona una justificación visual y textual que permite a los médicos entender el diagnóstico propuesto.

Tipo de agente empleado:

Se utilizó un agente basado en el conocimiento (knowledge-based agent) que combina aprendizaje profundo (deep learning) con sistemas explicativos (explainable AI). Este agente percibe (a través de imágenes), razona (procesamiento de datos) y actúa (emitiendo diagnósticos y recomendaciones clínicas).

3. Solución alterna propuesta

Si bien el sistema de DeepMind ofrece resultados prometedores, una solución alterna podría implicar el uso de un sistema multiagente distribuido, en el que:

- Un agente recopile datos médicos del paciente desde diversas fuentes (historial clínico, glucosa en sangre, presión arterial).
- Otro agente especializado en procesamiento de imágenes realice el análisis de los escaneos OCT.
- Un tercer agente priorice los casos con base en la gravedad y genere alertas al personal médico.

Este sistema permitiría una atención más integral al paciente, considerando no solo la imagen médica, sino su historial clínico y factores de riesgo, generando recomendaciones más precisas y personalizadas.

Tipo de programa de IA propuesto:

Aplicaría un sistema multiagente reactivo e híbrido, con módulos de percepción (visión computacional), razonamiento (machine learning supervisado y no

supervisado), y acción (generación de alertas y reportes). Este enfoque sería más flexible y adaptable a diversos contextos hospitalarios.

4. Reflexión final

En mi entorno, un problema actual es la tenencia irresponsable de mascotas y la falta de recolección de sus excrementos en espacios públicos, lo que afecta la convivencia, la salud pública y la estética urbana.

Propuesta con IA:

Desarrollar un sistema de monitoreo con cámaras conectadas a un agente inteligente que:

- Detecte automáticamente cuándo una mascota defeca.
- Identifique si el dueño recoge o no los desechos.
- Genere reportes o alertas a la administración local del conjunto residencial o municipio.

El sistema usaría visión computacional, redes neuronales y detección de objetos, entrenado con miles de imágenes reales. Además, se podría integrar con una aplicación móvil para notificar a los dueños reincidentes y ofrecer campañas educativas personalizadas.

5. Referencias

- Cuatrecasas, C. (2022). La inteligencia artificial como herramienta de investigación criminal: utilidades y riesgos potenciales de su uso jurisdiccional. Wolters Kluwer Legal and Regulatory España.
- De Fauw, J., Ledsam, J. R., Romera-Paredes, B., et al. (2018).
 Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342–1350.
 https://doi.org/10.1038/s41591-018-0107-6
- Meseguer, P., & López de Mántaras, R. (2017). Inteligencia artificial. Consejo Superior de Investigaciones Científicas (CSIC).

 Núñez, M. (2019). Inteligencia artificial y responsabilidad civil: régimen jurídico de los daños causados por robots autónomos con inteligencia artificial. Reus.