CH08-320201 Algorithms and Data Structures

Lecture 4 — 13 Feb 2018

Prof. Dr. Michael Sedlmair

Jacobs University Spring 2018

1.5 First general analysis task: Solve recurrences

Solving Recurrences

 Merge Sort analysis required us to solve the recurrence:

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

- A recurrence (or recurrence relation) is an equation that recursively defines a sequence (given an initial term).
- How can we generally solve recurrences?

Three methods

- Substitution method
- Recursion tree
- Master method

Substitution method

The substitution method is based on some intuition. It executes the following steps:

- Guess the form of the solution.
- Verify by induction.
- Solve for constants.

- Consider recurrence T(n) = 4T(n/2) + n with base case $T(1) = \Theta(1)$.
- Prove O and Ω separately.
- Guess $O(n^3)$.
- Verify by induction:
 - 1. Check base case (n = 1).
 - 2. Assuming $T(k) \le ck^3$ for k < n show $T(n) \le cn^3$.

Base case:

 $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.

For $1 \le n < n_0$, we have $\Theta(1) \le cn^3$, if we pick c big enough.

Induction step:

```
T(n) = 4T(n/2) + n
      \leq 4c(n/2)^3 + n
      = (c/2)n^3 + n
      = cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual
      < cn^3 \leftarrow desired
whenever (c/2)n^3 - n \ge 0, for example,
if c \ge 2 and n \ge 1.
                          residual
```

- Was our guess a good one?
- Was it tight enough?
- Make a new guess: $T(n) = O(n^2)$.
- Try to prove by induction.
 - 1. Base step: as before.
 - 2. Induction step: Assuming $T(k) \le ck^2$ for k < n, show $T(n) \le cn^2$.

```
T(n) = 4T(n/2) + n
\leq 4c(n/2)^{2} + n
= cn^{2} + n
= cn^{2} - (-n) \quad [\text{desired} - \text{residual}]
\leq cn^{2} \quad \text{for } no \text{ choice of } c > 0. \text{ Lose!}
```

- Idea: Adjust hypothesis by subtracting a lowerorder term.
- Induction step: Assuming $T(k) \le c_1 k^2 - c_2 k$ for k < n

show $T(n) \le c_1 n^2 - c_2 n$.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1 n^2 - 2c_2 n + n$$

$$= c_1 n^2 - c_2 n - (c_2 n - n)$$

$$\leq c_1 n^2 - c_2 n \quad \text{if } c_2 \geq 1.$$

- Finally, solve for constants:
 - Pick c₁ large enough to handle the base case.
 - Pick c_2 according to the induction proof (>1).

Recursion tree

- For the Merge Sort analysis, we used a recursion tree.
- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- This does not necessarily lead to a reliable solution.
- However, the recursion-tree method promotes intuition.
- It is good for generating guesses for the substitution method.

Consider recurrence $T(n) = T(n/4) + T(n/2) + n^2$ with base case $T(1) = \Theta(1)$.

$$(n/4)^{2} \qquad (n/2)^{2} \qquad \frac{5}{16}n^{2}$$

$$(n/16)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\Theta(1) \qquad \text{Total} = n^{2} \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^{2} + \left(\frac{5}{16}\right)^{3} + \cdots\right)$$

Considering the geometric series

$$1+x+x^2+\dots+x^n = \frac{1-x^{n+1}}{1-x}$$
 for $x \ne 1$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

we get
$$T(n) = \Theta(n^2)$$

Master method

The master method applies to recurrences of the form

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

It distinguishes 3 common cases by comparing

$$f(n)$$
 with $n^{\log_b a}$

Master method

Recurrence: T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_b a} \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega$ $(n^{\log_b a} + \varepsilon)$ for some constant $\varepsilon > 0$ and $a f(n/b) \le c f(n)$ for some constant c < 1, then $T(n) = \Theta(f(n))$.

$$T(n) = aT(n/b) + f(n)$$

$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2$

$$n^{\log_b a} = n^2$$
$$f(n) = n$$

Case 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1$ Thus, $T(n) = \Theta(n^2)$.

$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2$
 $n^{\log_b a} = n^2$

$$f(n) = n^2$$

Case 2:
$$f(n) = \Theta(n^2)$$
,
Thus, $T(n) = \Theta(n^2 \lg n)$.

$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2$
 $n^{\log_b a} = n^2$

$$f(n) = n^3$$

Case 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$ and $4(n/2)^3 \le cn^3$ for c = 1/2 (regulation condition) Thus, $T(n) = \Theta(n^3)$.

$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2$
 $n^{\log_b a} = n^2$
 $f(n) = n^2/\lg n$

Master method does not apply

(for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$)