LLM-compressor. Отчёт

Итоговый проект курса Deep Learning School

Студент: Матюнина Юлия Алексеевна Руководитель: Алексей Дмитриевич Рухович

Введение

Данная работа сделана к качестве итогового проекта курса от Deep Learning School.

Необходимо было на базе LLM с помощью алгоритма арифметической компрессии реализовать архиватор текста. Сжать Википедию и посчитать её объём. Улучшить коэффициент компрессии с помощью prefix tuning или steering. Обучить модель генерировать распределение для steering-вектора, чтобы ещё сильнее улучшить компрессию.

Основная часть работы находится в ноутбуках Compression with different models.ipynb, Compression with steering vector.ipynb и Steering vector with hyper prior.ipynb.

В ходе нашего исследования было провидено сравнение качества и скорости арифметического кодирования и декодирования с использованием различных небольших LLM. Были проведены эксперименты с использованием steering vector - фиксированного и обучаемого. Также сам steering vector кодировался с помощзью различных видов hyper-prior.

Подготовка

При подготовке работы были изучены научные статьи

- Language Modeling is Compression,
- Variational image compression with a scale hyperprior.

Для сжатия используется датасет Wikipedia Enwik8.

Запуск моделей производился на Colab с использованием графического процессора Т4.

Арифметическое кодирование с LLM

Арифметическое кодирование — метод энтропийного сжатия, в котором вся последовательность токенов кодируется как одно число в интервале [0, 1). Границы интервала постепенно сужаются в соответствии с предсказанным LLM распределением.

Алгоритм

1. Инициализация. Устанавливаем

$$low = 0, high = 2^{precision} - 1.$$

- 2. Основной цикл (для каждого токена t_i):
 - (a) Предсказание. По префиксу (t_0, \ldots, t_{i-1}) LLM выдаёт

probs =
$$[p_0, p_1, \dots, p_{V-1}], \quad \sum_{k=0}^{V-1} p_k = 1.$$

(b) Кумулятивная функция.

$$CDF[k] = \sum_{j \le k} p_j, \quad CDF[V] = 1.$$

(c) Сужение интервала. Обозначим R = high - low. Тогда

$$low \leftarrow low + |R \times CDF[t_i]|$$
,

$$\texttt{high} \leftarrow \texttt{low} + |R \times \texttt{CDF}[t_i + 1]|.$$

- (d) *Нормализация*. При попадании границ в «экстремальные» биты (E1/E2/E3) выполняем битовый сдвиг для сохранения точности.
- 3. Завершение. После кодирования всех токенов выбираем любое число внутри финального интервала [low, high) и выводим его битовый префикс длины precision.
- 4. Декодирование.
 - (a) Читаем первые precision бит как целое value, инициализируем low = 0, $high = 2^{precision} 1$.
 - (b) Для каждого токена t_i :
 - Находим такое t_i , что

$$ext{CDF}[t_i] \leq rac{ ext{value} - ext{low}}{ ext{high} - ext{low}} < ext{CDF}[t_i + 1].$$

• Сужаем low, high теми же формулами, что и в энкодере, и нормализуем.

Без чанков или с чанками

В начале обоснуем необходимость разбиения на чанки при экспериментах. В этом разделе использовалась модель EleutherAI/pythia-70m. Но результаты будут схожими и для других моделей.

Всего сжималось $400\,000$ бит информации $(50\,\mathrm{kB})$. Весь объём разбивался на части по $16\,000$ бит $(2\,\mathrm{kB})$. Получается 25 чанков. Ниже приведена сравнительная таблица результатов сжатия без использования чанков и с разбиением на чанки:

Метод	Время кодирования, с	Время декодирования, с	Размер после сжатия, бит	Коэффициент сжатия
Без чанков	733.66	731.65	60 471	0.1512
С чанками	138.17	152.33	66303	0.1658

Таблица 1: Сравнение без чанков и с чанками

- Разбиение на чанки даёт почти в 5× ускорение кодирования и декодирования.
- При этом коэффициент сжатия слегка ухудшается (с 0.1512 до 0.1658), то есть итоговый объём возрастает на $\sim 10\%$.
- Так как мы располагаем сравнительно небольшими мощностями, для нас ключевым становится фактор времени. Поэтому все дальнейшие эксперименты мы проводим, используя разбиение на чанки.

Модель	Параметров	Кодирование (с)	Декодирование (с)	Размер после сжатия (бит)	Коэффициент сжатия
EleutherAI/pythia-70m	$70\mathrm{M}$	138.17	152.33	66 303	0.1658
EleutherAI/pythia-160m	$160\mathrm{M}$	335.48	339.62	57 478	0.1437
GPT-2 (small)	$117\mathrm{M}$	379.86	380.13	61 388	0.1535
Open_llama_3b	$3\mathrm{B}$	3297.45	3263.61	38 099	0.0952
Open_llama_7b	$7\mathrm{B}$	3971.34	3957.65	36 262	0.0907

Таблица 2: Результаты по моделям

Различные модели

Всего сжималось $400\,000$ бит информации ($50\,\mathrm{kB}$) тем же образом — 25 чанков по $2\,\mathrm{kB}$. Код экспериментов находится в ноутбуке Compression with different models.ipynb. Ниже приведена сравнительная таблица результатов сжатия с использованием различных моделей:

Мы видим, что самые маленькие модели (Pythia-70M, Pythia-160M, GPT-2) производят кодирование за несколько сотен секунд, тогда как крупные OpenLLaMA-3B/7B требуют уже нескольких тысяч секунд на энкодинг/декодинг. С ростом размера модели коэффициент сжатия падает (то есть сжатие становится более эффективным). Интересно, что GPT-2, которая имеет меньше параметров, чем EleutherAI/pythia-160m, работает дольше. Тем не менее коэффициент сжатия у неё хуже. Модели Open_llama_3b и Open_llama_7b отличаются по качеству и скорости сжатия не так сильно, как можно было бы подумать, глядя на количество параметров.

Так как мы располагаем малым количеством вычислительных ресурсов, для дальнейших экспериментов будем использовать EleutherAI/pythia-70m — самую маленькую и быструю модель.

Steering vector

Steering vector — это дополнительный контекст, который подаётся в начало входа модели и «настраивает» её работу под нужную тематику или стиль. В наших экспериментах мы рассматривали три варианта steering vector:

Фиксированная строка

Подаём заранее заданную фразу (в нашем случае, «This is Wikipedia html») и преобразуем её в токены. Эта последовательность служит префиксом, но сама не меняется в ходе работы модели.

Статический soft-prompt

Вместо текстовой строки вектор представляет собой матрицу вещественных эмбеддингов фиксированного размера. Элементы этой матрицы инициализируются случайно и после этого не обучаются.

Обучаемый soft-prompt

Матрица эмбеддингов включается в процесс обучения. Её значения оптимизируются так, чтобы улучшить степень компрессии заданного текста.

Вариант steering-вектора	Размер после сжатия (бит)	Коэффициент сжатия	
Фиксированная строка	66406	0.1660	
Статический soft-prompt	68 138	0.1703	
Обучаемый soft-prompt (100 эпох)	62589	0.1565	
Обучаемый soft-prompt (500 эпох)	54256	0.1356	

Таблица 3: Влияние вида steering vector

Добавление фиксированной текстовой строки или статического soft-prompt чуть ухудшает коэффициент по сравнению с базовым (0.1658). Это логично, ведь мы подаем рандомные числа,

которые никак не отражают информацию в тексте. Оптимизация soft-prompt в ходе обучения (100 и особенно 500 эпох) заметно улучшает сжатие, снижая коэффициент до 0.1356.

Hyper-prior

Гипер-приор (hyper-prior) — это распределение априорной информации c (в нашем случае это steering vector), которое позволяет учесть априорные представления о данных x. Формально мы представляем плотность p(x) как:

$$p(x) = \int p(c) p(x \mid c) dc.$$

Кодирование происходит в два этапа:

- 1. Сначала кодируется значение c по априорному распределению p(c).
- 2. Затем кодируется текст x по условному распределению $p(x \mid c)$.

Такой подход позволяет добиться более эффективного сжатия, так как мы сжимаем не только x, но и c

Мы протестировали три варианта кодирования steering vector по hyper-prior:

Вариант 1: Гауссов гипер-приор

Предполагаем, что каждая координата c_i steering-вектора распределена нормально: $c_i \sim \mathcal{N}(0, \sigma^2)$, и разбиваем диапазон $[c_{\min}, c_{\max}]$ на N равномерных бинов длины $\Delta = (c_{\max} - c_{\min})/N$. Априорная дискретная вероятность каждого бина строится по Гауссову закону, после чего из PMF строится CDF для арифметического кодирования.

Вариант 2: Эмпирический гипер-приор

Используем фактические значения $\{c_i\}$ из обученного steering-вектора:

- 1. Отбрасываем экстремальные перцентили (1% и 99%), получая диапазон $[v_{\min}, v_{\max}]$.
- 2. Строим гистограмму на этом отрезке с N бинами, нормируем в PMF.
- 3. Строим целочисленный CDF из этой PMF.

Вариант 3: Lloyd-Max (1D k-means) гипер-приор

Оптимизируем уровни квантования так, чтобы минимизировать MSE:

- 1. Берём подвыборку значений c_i и запускаем 1D k-means с N кластерами, получая центроиды μ_0, \ldots, μ_{N-1} .
- 2. Каждый c_i «попадает» в ближайший центроид.
- 3. Частоты попаданий формируют эмпирический РМF.
- 4. Строим целочисленный CDF для арифметического кодирования.

Гауссов prior требует минимум метаданных (192 бит) и даёт самый низкий общий объём данных (690 396 бит), однако имеет не самую низкую MSE (5.1×10^{-4}). Эмпирический prior использует больше метаданных (8 320 бит) и даёт наибольший общий объём данных (804 596 бит) с наибольшей MSE (4.49×10^{-3}), то есть является неэффективным. В Lloyd–Мах prior метаданные (16 480 бит) занимают вдвое больше, чем у эмпирического приора, но итоговый объём (803 685 бит) практически равен эмпирическому, так как MSE рекордно малая (4.07×10^{-5}), что обеспечивает более эффективное сжатие основного текста.

Гипер-приор	Битов для данных	Бит/ коорд	Метаданных (бит)	Всего бит	Энтр./коорд (бит)	Энтр. всего (бит)	MSE	Коэф. сжатия
Гауссов	690204	6.7403	192	690 396	6.7252	688655.97	5.107074e-04	0.2107
Эмпирический	796276	7.7761	8 3 2 0	804596	7.7136	789871.63	4.488599 e-03	0.2455
Lloyd-Max (1D k-means)	787205	7.6875	16480	803685	7.6872	787172.48	4.065110 e- 05	0.2453

Таблица 4: Сравнение hyper-prior по объёму данных, метаданным и качеству восстановления

Рис. 1: Rate-distortion диаграмма

Наглядно результаты представлены на диаграмме:

Таким образом, при текущем объеме данных лучше всего сжимает steering vector гауссов приор. Но при увеличении объема данный есть вероятность, что выигрыш от точности восстановления steering vector с помощью Lloyd–Мах превысит затраты на передачу метаданных.

Выводы

- Мы рассмотрели арифметическое кодирование текста на базе LLM. Нами были рассмотрены модели размером 70m-7b. Чем больше модель, тем лучший коэффициент сжатия она обеспечивает. Но большие модели работают медленнее и требуют больших вычислительных ресурсов.
- Предобученный steering vector способен улучшить коэффициент сжатия на несколько процентов. Необученный steering vector использовать нет смысла.
- Получившийся steering vector в целях дальнейшей оптимизации можно сам сжать, использую подход на основе hyper prior. Для лучшего коэффициента сжатия steering vector при малом объеме данных лучше использовать гауссов гипер-приор, а для лучшей точности восстановления steering vector Lloyd—Max гипер-приор.