

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores

GuideMe - Service for Consulting, Publication and Recommendation of Touristic Locations

ARTEM UMANETS

(Licenciado em Engenharia Informática e de Computadores)

Trabalho de projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Orientadores:

Mestre Artur Jorge Ferreira Mestre Nuno Miguel da Costa de Sousa Leite

Novembro de 2014

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores

GuideMe - Service for Consulting, Publication and Recommendation of Touristic Locations

ARTEM UMANETS

(Licenciado em Engenharia Informática e de Computadores)

Trabalho de projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Orientadores:

Mestre Artur Jorge Ferreira Mestre Nuno Miguel da Costa de Sousa Leite

Novembro de 2014

Acknowledgments

Resumo

Palavras Chave

Abstract

Keywords

Contents

Ac	know	ledgments	V
Lis	t of l	igures	xiii
Lis	t of T	ables	xv
Lis	t of (ode Listings	xvi
Lis	t of A	cronyms	xvi
1	Inti	oduction	1
	1.1	Examination timetable: State of the Art	2
		1.1.1 Timetabling Problem	2
		1.1.2 Solution approaches	2

List of Figures

List of Tables

List of Code Listings

Introduction

In this world, most of the people think that Artificial Intelligence was created to simulate human behavior and the way we humans think. Even thought people are not wrong, Artificial Intelligence was also created to solve problems that humans are unable to solve, or to solve it in a shorter amount of time, with a better solution. For example, any exhaustive search requires pretty complex algorithms (heuristics, meta-heuristics etc) with complex mathematical functions in order to find a feasible solution. Problems humans may take days to find a feasible solution, or may not find a solution at all that fits its needs, algorithms like these may deliver a very good solution in minutes, hours or days, depending on how much time the human is willing to use in order to get a better solution and not just a feasible one.

A concrete example is the creation of timetables for scheduling. Timetables can be used for educational purposes, sports scheduling, transportation timetabling etc. It may look like it's simple to create a timetable, but the truth is, this process normally requires following some rules in order to fit its purpose. These rules are called constraints in the timetabling subject, in which the more it has the harder it gets to create a feasible solution for the problem. In some cases, there are so many constraints in which some can be contradictory to each other, that it is needed to "relax the constraints" in order to solve the problem.

The process of creating a timetable requires that the final solution follows a set of constraints. These can be divided in two groups: hard constraints and soft constraints. Hard constraints are a set of rules which must be followed in order to get a feasible solution. In the other hand, soft constraints may be called "optional" since there is no need to follow these to get a solution, because they are not mandatory. The quality of a solution is calculated by using these soft constraints. In another words: the more soft constraints a solution follows, the better it is. This quality is based on the points (weight) of the soft constraints that that solution didn't follow, so the more points, the worse the solution. The weight of each soft constraint is set by the one that created the constraints.

Now that I talked a little bit about timetabling, let me specify the aim of this project. Its main is to create an examination timetable generator using ITC-2007 specifications. The solutions will be validated using a validator also created by me which specifies the quality of the solution and may do some corrections on the timetable in order to get an even better solution. It is also required that the final product may work with two test seasons which

can be considered an extension to ITC-2007 formulation. In the end an (optional) Graphical User Interface will be created in order to allow the user to edit the current solution to fit the users needs and allow optimization to the edited solution. The generator will be tested using data from ITC-2007 and some actual data from six different programs presented in my university ISEL.

1.1 Examination timetable: State of the Art

In this topic we'll be writing about the state of art concerning examination timetable. Concretely, we'll be writing about why timetabling is a rather complex problem, some possible approaches on trying to solve a problem this type and some of the solutions already taken, specifically in ITC 2007.

1.1.1 Timetabling Problem

Timetabling is a subject that has been under investigation for more than ten years. There is no optimal solution for creating perfect timetables. Creating timetables is a process that requires complex algorithms in which search for solutions following a set of constraints, as mentioned above. These constraints can be divided into five main classes named Unary, Binary, Capacity, Event Spread and Agent constraints (REF: 2008 Rhydian Lewis)

Timetabling problem may be formulated as a search or optimization problem (REF: 1999 Schaerf). Search problems consists about finding a solution that satisfies all the hard constraints, which soft constraints aren't the main goal, on contrary optimization problems are problems which tries to satisfy as most soft constraints as possible after satisfying all hard constraints. Optimization problems though are more commonly used to optimize feasible solutions obtained by using a search algorithm. The main goal consists in searching for a feasible solution which satisfies all hard constraints using a search algorithm. If the user's goal is to find the best solution possible in given time, a optimization solution may be applied to the solution given by the search algorithm.

Search problems are quoted as NP-Complete (REF: NP-Complete wiki) and optimization problems are quoted as NP-Hard (REF: NP-Hard wiki) problem. Optimization problems are labeled NP-Hard because any optimization problem can be reduced to a graph coloring problem which is also NP-Hard. Graph coloring will be briefly explained later.

1.1.2 Solution approaches

Timetabling solution approaches may be the most difficult decision making part of the project. Considering the number of possible solution approaches that can be made, but still only a short number of those approaches may have good solutions within a reasonable amount of time. Considering the state of art, some combinations of algorithms appear to be better than others, if well implemented and optimized. These algorithms normally are divided in search algorithms and optimization algorithms in which are known

as Heuristics and Meta-heuristics. Both of these can be used to generate solutions separately, but normally Heuristics are used to generate a solution not guaranteed to be optimal, but good enough to at least solve all the hard constraints. In contrary the Meta-heuristics are often only to, given a feasible solution, generate an even better optimized solution, in which the main goal is to solve the most soft constraints possible in order to get the lowest score. Heuristics though are problem-dependent, meaning that these are adapted to a specific problem in which take advantage of its details. Considering these algorithms are often greedy, they tend to get trapped on local optimum. Meta-heuristics are problem-independent, meaning they can't take advantages of specific problems. These are often not greedy so they can be used to solve (optimize) any problem given.

Most of the Meta-heuristic algorithms used belong to one of the three categories: One-Stage algorithms, Two-Stage algorithms and Algorithms that allow relaxations. (REF: 2008 - Rhydian Lewis). The first two algorithms are worth explaining, mainly because of their usage in the state of art. The One-Stage algorithm works as Meta-heuristic algorithm(s) that is only used to get an initial optimal solution, which the goal is to satisfy both hard and soft constraints at the same time. Approaches using this are not very common because it's hard to get proper solutions in a reasonable amount of time trying to satisfy both types of constraints at the same time and this one of the reasons the Meta-heuristics are only used as optimization algorithms instead of search algorithms. The Two-Stage algorithms are the most used types of approaches because two phases (the reason for "Two-Stage" name) which the first phase consists in all soft constraints being "discarded" and focus only on solving hard constraints to obtain feasible solution. The next phase is an attempt to find the best solution, trying to solve the highest number soft constraints possible.

1.1.2.1 Typical solution approaches

The most typical heuristic (?) solution approaches are: Graph Coloring, Constraint Programming Based Technique, Integer Linear Programming.

Graph Coloring:

This algorithm is divided in two main sub-types, which is vertex coloring and edge coloring. The main goal of this algorithm (vertex) is to, given a number of vertices and edges, color the vertexes so that no adjacent vertices have the same color. In this algorithm, it's best to find a solution with least colors possible. In examination timetable problem, a basic approach could be to represent the exams as vertices and the hard constraints as edges (considering this is search algorithm, it is good to use optimization algorithms to deal with soft constraints) so that exams with the same color, can be assign to the same timeslot. After coloring, it proceeds to assign the exams into timeslots considering the colors in the solution. (REF: 2009 - Qu Burke)

Constraint Programming Based Technique:

This type of technique allows direct programming with constraints which gives ease and flexibility in solving problems like timetabling. Two important features about this technique that are used are backtracking and local variables that facilitates searching for an optimal solution (with a great cost: time). Constraint programming is different from other types of programming, as in these types it is specified the steps that need to be executed, but in constraint programming it is specified the properties (hard constraints) of the solution or properties that should not be in the solution. (REF: 2009 - Qu Burke)

Integer Linear Programming:

Integer Linear Programming is a technique in which some or all variables must be integer and the objective function and the constraints (non-integer) must be linear. Schaerf in his article specifies some approaches to school, course and examination timetabling using all integer linear programming methods to obtain feasible solutions and perform optimization (REF: 1999 - Schaerf).