CSCI 270 Lecture 27: Numerical and Partitioning Problems

Travelling Salesman Problem

Given a set of n cities, a distance function d(u, v) which specifies the distance between any two cities u and v, and a value D, find a tour of length $\leq D$.

From the comic XKCD:

Subset Sum

Given n positive integers $w_1, w_2, ..., w_n$ and a target W is there a subset of integers which add up exactly to W?

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
v_3	=	0	0	-1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
S ₂	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
83	=	0	0	0	0	0	1	0
S'3	=	0	0	0	0	0	2	0
54	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

3-Color

Given an undirected graph G = (V, E), is there a way to assign one of 3 colors Red, Green, and Blue, to each node, so that no two adjacent nodes have the same color?

4-Color

Given an undirected graph G = (V, E), is there a way to assign one of 4 colors Red, Green, Blue, and Purple to each node, so that no two adjacent nodes have the same color?

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

m							
	(CHOTCHKIES RESTAURANT)						
- APPETIZERS	5~						
MUXED FRUIT	2.15						
FRENCH FRIES	2.75						
SIDE SALAD	3.35						
HOT WINGS	3.55						
MOZZARELLA STICKS	4.20						
SAMPLER PLATE	5.80						
→ SANDWICHES	\sim						
RAPRECUE	6 55						

