Simulated Annealing für Künstliche Neuronale Netze

Gabriel Gavrilas

Künstliche Neuronale Netze

Aufbau Neuronaler Netzwerke

- Grundlegende Struktur:
 Neuron
- Output = $f(\sum_i w_i x_i)$
- Feedforward
- «Lernen» durch
 Optimierung der
 Gewichte.

Aufbau Neuronaler Netzwerke

- Komposition vieler Neuronen in Netz
- Verschiedene «layers» mit mehreren Neuronen
- «layers» vollständig verbunden untereinander
- «Lernen» wiederum durch
 Optimierung der Gewichte

Gradient Descent

- Standard Verfahren für Neurale Netze
- Optimierung mithilfe der Gradienten
- Backpropagation
- Probleme
 - Vanishing gradients
 - Lokale Minima

Mein Projekt

Mein Projekt

- Implementation eines Neuronalen Netzes mit Simulated Annealing als Optimierungsverfahren
- In Pyhton mit Jupyther Notebooks
- Implementationsverlauf:
 - 1. Struktur Neuronales Netzwerk & Datengenerierung
 - 2. Implementation GD Versionen
 - 3. Implementation SA Versionen
 - 4. Parametrisiertes SA

Simulated Annealing

Simulated Annealing

- Let $s = s_0$
- For k = 0 through k_{max} (exclusive):
 - $T \leftarrow \text{temperature}(k_{\text{max}}/(k+1))$
 - Pick a random neighbour, $s_{\text{new}} \leftarrow \text{neighbour}(s)$
 - If $P(E(s), E(s_{\text{new}}), T) \ge \text{random}(0, 1)$:
 - $s \leftarrow s_{\text{new}}$
- Output: the final state s

Simulated Annealing für Neuronale Netze

1. Zustandsraum & Startzustand s_0 :

- Zustandsraum: Werte der Gewichte
- Startzustand: Zufällige Werte zwischen -1 und 1

2. Energy function:

- Loss function des Neuronalen Netzes
- Squared loss, absolute loss
- Regularisierung: L1, L2

Simulated Annealing für Neuronale Netze

- 3. Kandidaten generierende Funktion neighbour(s)
 - Zufälliger kleiner Wert zu Gewichten addiert
 - Abhängig von der Temperatur
- 4. Annahmewahrscheinlichkeit $P(e, e_{new}, t)$:
 - Falls $e_{new} < e:1$
 - Sonst mehrere Möglichkeiten:
 - Konstant: 0
 - Linear: *t*
 - Boltzmann: $\exp(-\frac{e_{new}-e}{t})$
 - Boltzmann: $(1+i)^{\left(-\frac{e_{new}-e}{t}\right)}$

Simulated Annealing für Neuronale Netze

- 5. Abkühlungsprogramm: temperature() & Starttemperatur
 - temperature(): Stufenweise linear, linear, exponentiel
 - Starttemperatur: 1, von Funktion abhängig
- 6. Abbruchbedingung
 - Max. Anzahl Iterationen
- 7. Rückgabe
 - Letzter Zustand
 - Bester Zustand

Kommentare

Vergelich SA-GD

- Keine Gradienten
- Globale maxima
- Aber:
 - Keine Zeitgarantien
 - GD kann verbessert werden -> SGD

Andere Methoden

- Stochastic Gradient descent SGD:
 - Approximieren des Gradienten
 - Lernrate
 - Verhält sich wie SA: https://leon.bottou.org/publications/pdf/nimes-1991.pdf
- EA, GA

Demo

Ende

Vielen Dank!