CS 210 Practice Midterm

Name:		
Student ID:		
I agree to abide by the UCR Academic Integrity Policy.		
Signature:		

Rules:

- Work individually. No notes, calculators, etc., permitted. Scratch paper will be provided by the proctor.
- The proctor is not allowed to answer individual questions during the exam, but may choose to make an announcement if something requires correction/clarification.
- If you see a possible error or ambiguity in an exam question, you may bring it to the attention of the proctor.
- You should answer every question to the best of your ability even if you think there is a issue/mistake in the question.

Question	Points	Score
1	2	
2	2	
3	2	
4	2	
5	2	
6	2	
7	2	
8	2	
9	2	
10	2	
11	4	
12	4	
13	4	
14	4	
15	4	
16	9	
17	9	
18	12	
Total	70	

True/False

For each question, indicate whether the statement is true or false by circling T or F, respectively.

- 1. (T/F) Addition of two positive floating point numbers may cause underflow.
- 2. (TF) If two numbers are exactly representable in floating point, then the result of an arithmetic operation on them is also an exactly representable floating point number.
- 3. (T)F) Floating point cancellation errors can be a source of instability in an algorithm.
- 4. (T) F) A problem that has a condition number of 1 can be said to be well-conditioned.
- 5. (Tf) If $A\mathbf{x} = \mathbf{b}$ then \mathbf{x} is necessarily in the range of A.
- 6. (TF) Solving $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{n \times n}$ a diagonal matrix, requires $\sim n^2$ operations.
- 7. (T) F) Any symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ has a Cholesky factorization of the form $A = LL^T$, where $L \in \mathbb{R}^{n \times n}$ is lower triangular.
- 8. (T) F) If $\|\cdot\|_q$ and $\|\cdot\|_p$ are both vector p-norms, then they are equivalent, i.e., there exist constants and C_2 such that $C_1 \|\mathbf{x}\|_q \leq \|\mathbf{x}\|_p \leq C_2 \|\mathbf{x}\|_q$ for all vectors \mathbf{x} .
- 9. (T) For any vector \mathbf{x} , $\|\mathbf{x}\|_1 \ge \|\mathbf{x}\|_2$.
- 10. (T/F) If $P \in \mathbb{R}^{n \times n}$ is a projection matrix, then so is P^T

Multiple Choice

Instructions: For the multiple choice problems, circle exactly one of (a) - (e).

- 11. Which of the following statements are necessarily true?
 - **F** I. A small backward error implies a small forward error.
 - II. It is possible for rounding errors to catastrophically destroy the accuracy of an algorithm.
 - III. A large absolute error implies a large relative error.
 - (a) I only
 - (b) II only
 - (c) III only
 - (d) I and II only
 - (e) II and III only

12. Which of the following statements are true?

T. A triangular matrix with a zero on its diagonal is singular.

F. II. A matrix with a zero on its diagonal is singular.

T. III. If
$$A\mathbf{z} = \mathbf{0}$$
 for a non-zero vector \mathbf{z} , then $\det(A) = 0$.

(a) I only

(b) II only

- 13. Which of the following statements is <u>false</u>?
 - (a) The number of solutions of $A\mathbf{x} = \mathbf{b}$ may depend on \mathbf{b} .
 - (b) If A is singular, then $A\mathbf{x} = \mathbf{b}$ has either no solution or infinitely many solutions.
 - (c) If $\mathbf{b} = A\mathbf{x}$ for some \mathbf{x} , then \mathbf{b} must be in the columnspace of A.
 - (d) Solving a triangular system by forward or backward substitution requires $O(n^2)$ flops.
 - (e) The LU and Cholesky factorizations of a symmetric, positive definite matrix would be exactly the same. Lin Lu is unit lower, Lin Llt is not.
- 14. Which one of the following statements is <u>false</u>?
 - (a) A symmetric matrix, A, satisfies $||A||_1 = ||A||_{\infty}$.
 - (b) A permutation matrix, P, satisfies $||P||_2 = 1$.
 - (c) An orthogonal matrix, Q, satisfies $||Q||_2 = 1$.
 - (d) If A is singular matrix, then $||A||_2 = 0$. (e) For any vector \mathbf{x} , $||\mathbf{x}||_1 >= ||\mathbf{x}||_{\infty}$.
- 15. Consider an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$. Which statement is false
 - (a) Q must be nonsingular. \checkmark
 - (b) $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$ for any vector $\mathbf{x} \in \mathbb{R}^n$.
 - (c) If $\{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n\}$ are the columns of Q, then for all $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} = \mathbf{q}_1 \mathbf{q}_1^T \mathbf{x} + ... + \mathbf{q}_n \mathbf{q}_n^T \mathbf{x}$. (d) $Q = Q^T$.
 - (e) The condition number of Q with respect to the 2-norm is 1.

Written Response

- 16. Consider a normalized floating point number system with p digits of precision, base β and integer exponent $E, L \leq E \leq U$. Let x be a given nonzero floating-point number in this system and let y be an adjacent floating-point number, also nonzero.
 - (a) What is the minimum possible distance (|x y|) between x and y?
 - (b) What is the maximum possible distance between x and y?
 - (c) If we allow denormalization, what will be the distance between the denormalized numbers?

17. Let
$$\mathbf{x}^T = (1, 2, 3), \mathbf{y}^T = (0, 1, -2).$$

- (a) Write down the values of $\mathbf{x}^T \mathbf{y}$ and $\mathbf{x} \mathbf{y}^T$.
- (b) What is $rank(\mathbf{x}\mathbf{y}^T)$?
- (c) Give a basis for range($\mathbf{x}\mathbf{y}^T$)?

(a)
$$x^{7}y^{2}(123)(0) = 1.0 + 2.1 + 3(-2) = -4$$

$$xy^{7} = (2) (2) (2) = (0) (1 - 2) (0) (2 - 4) (0) (3 - 6)$$

range
$$(xy^{\tau}) = \{xy^{\tau}v \mid \forall v \in \mathbb{R}^3\}$$

 $(xy^{\dagger}v = x(y^{\tau}v) = (y^{\tau}v)^{\top}x$

$$= \frac{1}{\sqrt{x}}$$

(C) every element in range (xyT)

can be expressed of for some XXIR

So {X} of is a basis for range (xyT)

18. Consider the 3×3 matrix

$$A = \begin{pmatrix} 2 & 4 & 3 \\ 6 & 14 & 10 \\ 4 & 10 & 10 \end{pmatrix}.$$

- (a) Express A as A = LU where L is a unit lower triangular matrix, and U is the upper triangular matrix.
- (b) Explain how you would use the factors L and U to solve the linear equations $A\mathbf{x} = \mathbf{b}$.
- (c) For a general invertible $n \times n$ matrix A with LU factorization A = LU, how many operations does it takes to solve the linear system $A\mathbf{x} = \mathbf{b}$ using the LU factorization of A?

(C) Do 2 triangular solves

Each trianglelar solve takes

n² operations.

So need 2n² operations.