STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

FU1.6: INTERVAL NOTATION

Interval

Often the domain of a function will be restricted to a subset of R. This subset is called an *interval*, and the *end points* are a and b. An interval may represented on a real number line as follows:

In inequality notation the above number line would be written as $a \le x \le b$.

In *interval notation* the above interval would be written as [a, b].

Closed Interval

Because the endpoints are included in the interval, this is called a *closed interval*. Square brackets are used. eg.[2, 5].

The end points on the on the real number line are represented as solid circles (or square brackets).

Open interval

If the endpoints are excluded, the interval is an *open interval*. Curved brackets are used. eg (2, 5).

The end points on the real number line are represented as open circles (or curved brackets).

This is written in inequality notation as a < x < b. In interval notation as (a, b).

Examples

Interval Notation	Inequality Notation $a \le x \le b$	Line Graph	
[a, b]		→ <i>a</i>	b
(a, b)	a < x < b	\overline{a}	b
[<i>a, b</i>)	a ≤ x < b	→ <i>a</i>	b

In interval notation the smaller number is always written to the left.

i.e.
$$[-3, 5) \neq (5, -3]$$

Note: the symbol ∞ (infinity) is **not** a numeral.

 ∞ is the concept of continuing indefinitely to the right $-\infty$ is the concept of continuing indefinitely to the left.

Hence we cannot write $[b, \infty]$, $[-\infty, a]$ or $b \le x \le \infty$, $-\infty \le x \le a$ etc..

Examples

1. Write the following in inequality notation and graph on a real number line.

- (a) [-2, 3)Inequality notation $-2 \le x < 3$
- (b) $(-\infty, 3]$. Inequality notation $x \le 3$

Graph

Graph

2. Write the interval notation and inequality notation for the following line graphs.

Interval notation (-5, 6]. Inequality notation $-5 < x \le 6$

Interval notation $(10, \infty)$ Inequality notation $10 < x < \infty$

See Exercise 1

Two intervals

Two (or more) subsets of R, with end points \boldsymbol{a} and \boldsymbol{b} , and \boldsymbol{c} and \boldsymbol{d} , respectively, can also be represented on a real number line.

Examples

1.

This is written in interval notation as $[a, b] \cup [c, d]$.

The symbol as ∪ represents 'in union with'

In inequality notation this may be written: $a \le x \le b$ with $c \le x \le d$

This is written in interval notation as $(-\infty, 2] \cup (5, 12]$.

In inequality notation this may be written: $x \le 2$ with $5 < x \le 12$

See Exercise 2

Exercises

Exercise 1

Write the following inequalities in interval notation and graph on a real number line.

(a)
$$1 \le x \le 10$$

(b)
$$-6 \le x < -4$$

(c)
$$x > 5$$

Exercise 2

Write the following in interval notation and inequality notation.

Exercise 3

Graph the following on a real number line and write in inequality notation.

(a)
$$(-\infty, -3) \cup (8, 13]$$
.

(b)
$$[-1, 4] \cup [6, 9]$$
. (c) $(-\infty, 3] \cup (6, \infty)$

(c)
$$(-\infty, 3] \cup (6, \infty)$$

Answers

Exercise 1

(a) [1, 10]

(b) [-6, -4)

(c) $(5, \infty)$

Exercise 2

(a)
$$(-\infty, -5], x \le -5$$

(b)
$$(-3, 0)$$
, $-3 < x < 0$

(a)
$$(-\infty, -5]$$
, $x \le -5$ (b) $(-3, 0)$, $-3 < x < 0$ (c) $[-1, 4)$, $-1 \le x < 4$

Exercise 3

(a) $-\infty < x < -3$ with $8 < x \le 13$

(b) $-1 \le x \le 4$ with $6 \le x \le 9$

(c) $-\infty < x \le 3$ with $6 < x < \infty$

