PS1

June 28, 2024

1. (a) Proof.

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} (x_{i1} + 1 - x_{i1}) \times y_i$$
$$= \sum_{i=1}^{n} x_{i1} \times y_i + \sum_{i=1}^{n} (1 - x_{i1}) \times y_i$$

(b)

$$\begin{split} \widehat{\beta}_1 &= \frac{\sum_{i=1}^n (x_{i1} - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_{i1} - \overline{x})^2} \\ &= \frac{\sum_{i=1}^n x_{i1} y_i - \overline{x} \sum_{i=1}^n y_i - \overline{y} \sum_{i=1}^n x_{1i} + \sum_{i=1}^n \overline{xy}}{\sum_{i=1}^n x_{1i} y_i - \overline{x} \sum_{i=1}^n y_{i-1} \overline{y} \sum_{i=1}^n x_{1i} + \overline{x} \sum_{i=1}^n x_{1i}} \\ &= \frac{\sum_{i=1}^n x_{i1} y_i - \overline{y} \sum_{i=1}^n x_{i-1} y_i - \overline{y} \sum_{i=1}^n x_{1i}}{(1 - \overline{x}) \sum_{i=1}^n x_{1i}} \\ &= \frac{\sum_{i=1}^n x_{i1} y_i - \overline{y} \sum_{i=1}^n x_{1i}}{(1 - \overline{x}) \sum_{i=1}^n x_{1i}} \\ &= \frac{\sum_{i=1}^n x_{i1} y_i - \overline{y} \sum_{i=1}^n x_{1i}}{(1 - \overline{x}) \sum_{i=1}^n x_{1i}} - \frac{\overline{y}}{1 - \overline{x}} \\ &= \frac{\sum_{i=1}^n x_{i1} y_i}{(1 - \overline{x}) \sum_{i=1}^n x_{1i}} - \frac{\overline{y}}{1 - \overline{x}} \\ &= \frac{\sum_{i=1}^n x_{i1} y_i}{(1 - \overline{x}) \sum_{i=1}^n x_{1i}} - \frac{\sum_{i=1}^n y_i}{\sum_{i=1}^n (1 - x_{i1})} - \frac{\sum_{i=1}^n (1 - x_{i1}) y_i}{\sum_{i=1}^n (1 - x_{i1})} \\ &= \left(\sum_{i=1}^n x_{i1} y_i\right) \left(\frac{1}{(1 - \overline{x}) \sum_{i=1}^n x_{1i}} - \frac{1}{\sum_{i=1}^n (1 - x_{i1})}\right) - \frac{\sum_{i=1}^n (1 - x_{i1}) y_i}{n_0} \\ &= \left(\sum_{i=1}^n x_{i1} y_i\right) \frac{n - \sum_{i=1}^n x_{1i}}{\sum_{i=1}^n (1 - x_{1i}) \sum_{i=1}^n x_{1i}} - \overline{y}_0 \\ &= \frac{\sum_{i=1}^n x_{i1} y_i}{\sum_{i=1}^n (1 - x_{1i}) \sum_{i=1}^n x_{1i}} - \overline{y}_0 \\ &= \overline{y}_1 - \overline{y}_0 \\ &= \overline{y}_1 - \overline{y}_0 \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \frac{\sum_{i=1}^n y_i}{n} - \frac{\overline{y}_1 \times n_1}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \frac{\sum_{i=1}^n y_i}{n} - \frac{\overline{y}_1 \times n_1}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} + \overline{y}_0 \frac{\sum_{i=1}^n (1 - x_{1i}) y_i}{n} \\ &= \overline{y}_0 \frac{\sum_{i=1}^n x_{1i}}{n} +$$

- (c) $\hat{\beta}_1$ represents the difference between y on x=1 and y on x=0, and $\hat{\beta}_0$ represents the average of y on x=0.
- (d) Proof.

$$\begin{split} \mathbb{E}[\widehat{\beta}_1] &= \beta_1 \\ &= \frac{\mathbb{E}[y] - \beta_0}{\mathbb{E}[x_1]} \\ &= \frac{\mathbb{E}[y|x_1 = 1]P(x_1 = 1) + \mathbb{E}[y|x_1 = 0]P(x_1 = 0) - \mathbb{E}[y|x_1 = 0]}{P(x_1 = 0) \times 0 + P(x_1 = 1) \times 1} \\ &= \frac{\mathbb{E}[y|x_1 = 1]P(x_1 = 1) - \mathbb{E}[y|x_1 = 0]P(x_1 = 1)}{P(x_1 = 1)} \\ &= \mathbb{E}[y|x_1 = 1] - \mathbb{E}[y|x_1 = 0] \end{split}$$

- 2. (a) There's 3 possible explanations for the correlation between smoking and baby's weight.
 - i. The more the mother smoked, the less the baby's weight.
 - ii. The less the baby's weight, the more the mother smoked.
 - iii. There's a third variable that affects both the mother's smoking and the baby's weight in the contrary way.

- (b) Because the more the mother smoked, the less the baby's weight, and the effect of smoking on baby's weight is quite big.
- (c) Yes, it's possible according to the common sense.
- 3. (a)
- . use "EduIncome_24.dta"
- . summarize birthyear wage schooling_yr

Variable	Obs	Mean	Std. Dev.	Min	Max
birthyear		1974.794	10.584	1955	1990
wage	2,429	58122.36	41021.76	2113.569	608707.9
schooling_yr	1 2,429	7.656237	2.927878	0	15

- (b) . gen female = (gender == 2)
 - . summarize female

Variable	Obs	Mean	Std. Dev.	Min	Max
female	2,429	.2984767	.457684	0	1

Female in the sample accounts for 29.85%.

(c) . summarize wage if female == 1

Variable	0bs	Mean	Std. Dev.	Min	Max
wage	725	47644.76	32694.44	2242.335	355079.6

. summarize wage if female == 0

Variable	1	0bs	Mean	Std.	Dev.		Min	Max
	+							
wage	l 1	. 704	62580.26	43337	7.33	2113.	569	608707.9

. regress wage female

Source	l SS	df	MS	Number of obs	=	2,429
	+			F(1, 2427)	=	69.32
Model	l 1.1345e+11	1	1.1345e+11	Prob > F	=	0.0000
Residual	3.9723e+12	2,427	1.6367e+09	R-squared	=	0.0278

-	Total	4.0858e+12		1.6828e+09		R-squared MSE	=	
	wage	Coef.		t			onf.	Interval]
_	female _cons		1793.902 980.063	-8.33	0.000 0.000	-18453. 60658.		-11417.77 64502.11

So, we have wage = $62580.26 - 14935.5 \times \text{female}$.

Using my conclusion in Q1, this regression result means that the wage difference between female and male is -14935.5 yuan, and the average wage for male is 62580.26 yuan.

- (d) . gen age = 2023 birthyear
 - . summarize age

Variable	0bs	Mean	Std. Dev.	Min	Max
+					
age	2,429	48.20585	10.584	33	68

- . gen ln_wage = ln(wage)
- . regress ln_wage age $schooling_yr$

Source	SS	df	MS	Number of obs	=	2,429
+-				F(2, 2426)	=	33.05
Model	37.4492937	2	18.7246468	Prob > F	=	0.0000
Residual	1374.39397	2,426	.566526782	R-squared	=	0.0265
				Adj R-squared	=	0.0257
Total	1411.84327	2,428	.581484047	Root MSE	=	.75268

ln_wage		Std. Err.	t	P> t	[95% Conf.	Interval]
age schooling_yr _cons	.0027053	.001456	1.86	0.063	0001498	.0055605
	.0425877	.0052633	8.09	0.000	.0322666	.0529088
	10.26689	.0867829	118.31	0.000	10.09671	10.43707

If schooling_yr increases by 1, the log(wage) will increase by 0.043.

- (e) . predict ln_wage_hat, xb
 - . gen residual = ln_wage ln_wage_hat
 - . summarize ln_wage_hat residual

Variable	Obs	Mean	Std. Dev.	Min	Max
ln_wage_hat	2,429	10.72336	.1241931	10.35617	11.07885
residual	2,429	3.34e-09	.7523697	-3.072877	2.525533

The residual is very small, which suggests that the model fits the data well.

(f) In (d), we have $R^2 = 0.0265$, indicating that there may be other factors not included in the model.