PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12N 15/54, 9/10

(11) International Publication Number: WO 98/00549
(43) International Publication Date: 8 January 1998 (08.01.98)

(21) International Application Number: PCT/AU97/00402

(22) International Filing Date: 24 June 1997 (24.06.97)

(30) Priority Data:

PO 0699 27 June 1996 (27.06.96) AU

(71) Applicants (for all designated States except US): THE AUSTRALIAN NATIONAL UNIVERSITY [AU/AU]; Acton, ACT 2601 (AU). COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION [AU/AU]; Limestone Avenue, Campbell, ACT 2601 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ARIOLI, Antonio [AU/AU]; 8 Burrinjuck Crescent, Duffy, ACT 2611 (AU). WILLIAMSON, Richard, Edward [AU/AU]; "Wybalena", Butts Road, Murrumbateman, NSW 2582 (AU). BETZNER, Andreas, Stefan [DE/AU]; 40 Dallachy Place, Page, ACT 2614 (AU). PENG, Liangcai [AU/AU]; 3/12 Masson Street, Turner, ACT 2612 (AU).

(74) Agents: SLATTERY, John, Michael et al.; Davies Collison Cave, 1 Little Collins Street, Melbourne, VIC 3000 (AU).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: MANIPULATION OF CELLULOSE AND/OR β -1,4-GLUCAN

(57) Abstract

The present invention relates generally to isolated genes which encode polypeptides involved in cellulose biosynthesis in plants and transgenic plants expressing same in sense or antisense orientation, or as ribozymes, co-suppression or gene-targeting molecules. More particularly, the present invention is directed to a nucleic acid molecule isolated from Arabidopsis thaliana, Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and Eucalyptus ssp. which encode an enzyme which is important in cellulose biosynthesis, in particular the cellulose synthase enzyme and homologues, analogues and derivatives thereof and uses of same in the production of transgenic plants expressing altered cellulose biosynthetic properties.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	PI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Carneroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

- 1 -

"MANIPULATION OF CELLULOSE AND/OR β-1,4-GLUCAN"

The present invention relates generally to isolated genes which encode polypeptides involved in cellulose biosynthesis and transgenic organisms expressing same in sense or antisense orientation, or as ribozymes, co-suppression or gene-targeting molecules. More particularly, the present invention is directed to a nucleic acid molecule isolated from *Arabidopsis thaliana*, *Oryza sativa*, wheat, barley, maize, *Brassica ssp.*, *Gossypium hirsutum* and *Eucalyptus ssp.* which encode an enzyme which is important in cellulose biosynthesis, in particular the cellulose synthase enzyme and homologues, analogues and derivatives thereof and uses of same in the production of transgenic plants expressing altered cellulose biosynthetic properties.

Bibliographic details of the publications referred to by author in this specification are collected at the end of the description. Sequence identity numbers (SEQ ID Nos.) for the nucleotide and amino acid sequences referred to in the specification are defined after the bibliography.

Throughout the specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising" will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

Cellulose, the world's most abundant biopolymer, is the most characteristic component of plant cell walls in so far as it forms much of the structural framework of the cell wall.

25 Cellulose is comprised of crystalline β-1,4-glucan microfibrils. The crystalline microfibrils are extremely strong and resist enzymic and mechanical degradation, an important factor in determining the nutritional quantity, digestibility and palatability of animal and human foodstuffs. As cellulose is also the dominant structural component of industrially-important plant fibres, such as cotton, flax, hemp, jute and the timber crops such as *Eucalyptus ssp.* and *Pinus ssp.*, amongst others, there is considerable economic benefit to be derived from the

- 2 -

manipulation of cellulose content and/or quantity in plants. In particular, the production of food and fibre crops with altered cellulose content are highly desirable objectives.

5 nucleoside diphospoglucose such as UDP-glucose, to a pre-existing cellulose chain, catalysed by the enzyme cellulose synthase.

Several attempts to identify the components of the functional cellulose synthase in plants have failed, because levels of β -1,4-glucan or crystalline cellulose produced in such assays have 10 hitherto been too low to permit enzyme purification for protein sequence determination. Insufficient homology between bacterial β -1,4-glucan synthase genes and plant cellulose synthase genes has also prevented the use of hybridisation as an approach to isolating the plant homologues of bacterial β -1,4-glucan (cellulose) synthases.

15 Furthermore, it has not been possible to demonstrate that the cellulose synthase enzyme from plants is the same as, or functionally related to, other purified and characterised enzymes involved in polysaccharide biosynthesis. As a consequence, the cellulose synthase enzyme has not been isolated from plants and, until the present invention, no nucleic acid molecule has been characterised which functionally-encodes a plant cellulose synthase enzyme.

20

In work leading up to the present invention, the inventors have generated several novel mutant Arabidopsis thaliana plants which are defective in cellulose biosynthesis. The inventors have further isolated a cellulose synthase gene designated RSW1, which is involved in cellulose biosynthesis in Arabidopsis thaliana, and homologous sequences in Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and Eucalyptus ssp. The isolated nucleic acid molecules of the present invention provide the means by which cellulose content and structure may be modified in plants to produce a range of useful fibres suitable for specific industrial purposes, for example increased decay resistance of timber and altered

digestibility of foodstuffs, amongst others.

- 3 -

Accordingly, one aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides which encodes, or is complementary to a sequence which encodes a polypeptide of the cellulose biosynthetic pathway or a functional homologue,

analogue or derivative thereof.

The nucleic acid molecule of the invention may be derived from a prokaryotic source or a

eukaryotic source.

5

Those skilled in the art will be aware that cellulose production requires not only the presence 10 of a catalytic subunit, but also its activation and organisation into arrays which favour the

crystallization of glucan chains. This organisation is radically different between bacteria,

which possess linear arrays, and higher plants, which possess hexameric clusters or

"rosettes", of glucan chains. The correct organisation and activation of the bacterial enzyme

may require many factors which are either not known, or alternatively, not known to be

15 present in plant cells, for example specific membrane lipids to impart an active conformation

on the enzyme complex or protein, or the bacterial c-di-GMP activation system.

Accordingly, the use of a plant-derived sequence in eukaryotic cells such as plants provides

significant advantages compared to the use of bacterially-derived sequences.

20 Accordingly, the present invention does not extend to known genes encoding the catalytic

subunit of Agrobacterium tumefaciens or Acetobacter xylinum or Acetobacter pasteurianus

cellulose synthase, or the use of such known bacterial genes and polypeptides to manipulate

cellulose.

25 Preferably, the subject nucleic acid molecule is derived from an eukaryotic organism.

In a more preferred embodiment of the invention, the isolated nucleic acid molecule of the

invention encodes a plant cellulose synthase or a catalytic subunit thereof, or a homologue,

analogue or derivative thereof.

30

- 4 -

More preferably, the isolated nucleic acid molecule encodes a plant cellulose synthase polypeptide which is associated with the primary cell wall of a plant cell. In an alternative preferred embodiment, the nucleic acid molecule of the invention encodes a plant cellulose

5 of a plant cell.

In a more preferred embodiment, the nucleic acid molecule of the invention is a cDNA molecule, genomic clone, mRNA molecule or a synthetic oligonucleotide molecule.

10 In a particularly preferred embodiment, the present invention provides an isolated nucleic acid molecule which encodes or is complementary to a nucleic acid molecule which encodes the Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp. wheat, barley or maize cellulose synthase enzyme or a catalytic subunit thereof or a polypeptide component, homologue, analogue or derivative thereof.

15

As exemplified herein, the present inventors have identified cellulose biosynthesis genes in maize, wheat, barley, rice, cotton, *Brassica ssp.* and *Eucalyptus ssp.*, in addition to the specific *Arabidopsis thaliana RSW*1 gene sequence which has been shown to be particularly useful for altering cellulose and/or β -1,4-glucan and/or starch levels in cells.

20

Hereinafter the term "polypeptide of the cellulose biosynthetic pathway" or similar term shall be taken to refer to a polypeptide or a protein or a part, homologue, analogue or derivative thereof which is involved in one or more of the biosynthetic steps leading to the production of cellulose or any related β-1,4-glucan polymer in plants. In the present context, a polypeptide of the cellulose biosynthetic pathway shall also be taken to include both an active enzyme which contributes to the biosynthesis of cellulose or any related β-1,4-glucan polymer in plants and to a polypeptide component of such an enzyme. As used herein, a polypeptide of the cellulose biosynthetic pathway thus includes cellulose synthase. Those skilled in the art will be aware of other cellulose biosynthetic pathway polypeptides in plants.

The term "related β-1,4-glucan polymer" shall be taken to include any carbohydrate molecule comprised of a primary structure of β-1,4-linked glucose monomers similar to the structure of the components of the cellulose microfibril, wherein the relative arrangement or relative configuration of the glucan chains may differ from their relative configuration in microfibrils of cellulose. As used herein, a related β-1,4-glucan polymer includes those β-1,4-glucan polymers wherein individual β-1,4-glucan microfibrils are arranged in an anti-parallel or some other relative configuration not found in a cellulose molecule of plants and those non-crystalline β-1,4-glucans described as lacking the resistance to extraction and degradation that characterise cellulose microfibrils.

10

The term "cellulose synthase" shall be taken to refer to a polypeptide which is required to catalyse a β -1,4-glucan linkage to a cellulose microfibril.

Reference herein to "gene" is to be taken in its broadest context and includes:

- (i) a classical genomic gene consisting of transcriptional and/or translational regulatory sequences and/or a coding region and/or non-translated sequences (i.e. introns, 5'- and 3'- untranslated sequences); or
 - (ii) mRNA or cDNA corresponding to the coding regions (i.e. exons) and 5'- and 3'- untranslated sequences of the gene.

20

The term "gene" is also used to describe synthetic or fusion molecules encoding all or part of a functional product.

In the present context, the term "cellulose gene" or "cellulose genetic sequence" or similar term shall be taken to refer to any gene as hereinbefore defined which encodes a polypeptide of the cellulose biosynthetic pathway and includes a cellulose synthase gene.

The term "cellulose synthase gene" shall be taken to refer to any cellulose gene which specifically encodes a polypeptide which is a component of a functional enzyme having 30 cellulose synthase activity i.e. an enzyme which catalyses a β-1,4-glucan linkage to a

cellulose microfibril.

Preferred cellulose genes may be derived from a naturally-occurring cellulose gene by standard recombinant techniques. Generally, a cellulose gene may be subjected to managenesis to predate single of the cellulose synthase gene of the present invention include 5' and 3' terminal fusions as well as intra-sequence insertions of single or multiple nucleotides. Insertional nucleotide sequence variants are those in which one or more nucleotide sequence although random insertion is also possible with suitable screening of the resulting product. Deletional variants are characterised by the removal of one or more nucleotides from the sequence. Substitutional nucleotide variants are those in which at least one nucleotide in the sequence has been removed and a different nucleotide inserted in its place. Such a substitution may be "silent" in that the substitution does not change the amino acid defined by the codon.

15 Alternatively, substituents are designed to alter one amino acid for another similar acting amino acid, or amino acid of like charge, polarity, or hydrophobicity.

As used herein, the term "derived from" shall be taken to indicate that a particular integer or group of integers has originated from the species specified, but has not necessarily been obtained directly from the specified source.

For the present purpose, "homologues" of a nucleotide sequence shall be taken to refer to an isolated nucleic acid molecule which is substantially the same as the nucleic acid molecule of the present invention or its complementary nucleotide sequence, notwithstanding the occurrence within said sequence, of one or more nucleotide substitutions, insertions, deletions, or rearrangements.

"Analogues" of a nucleotide sequence set forth herein shall be taken to refer to an isolated nucleic acid molecule which is substantially the same as a nucleic acid molecule of the present invention or its complementary nucleotide sequence, notwithstanding the occurrence of any

non-nucleotide constituents not normally present in said isolated nucleic acid molecule, for example carbohydrates, radiochemicals including radionucleotides, reporter molecules such as, but not limited to DIG, alkaline phosphatase or horseradish peroxidase, amongst others.

5 "Derivatives" of a nucleotide sequence set forth herein shall be taken to refer to any isolated nucleic acid molecule which contains significant sequence similarity to said sequence or a part thereof. Generally, the nucleotide sequence of the present invention may be subjected to mutagenesis to produce single or multiple nucleotide substitutions, deletions and/or insertions. Nucleotide insertional derivatives of the nucleotide sequence of the present invention include 10 5° and 3° terminal fusions as well as intra-sequence insertions of single or multiple nucleotides or nucleotide analogues. Insertional nucleotide sequence variants are those in which one or more nucleotides or nucleotide analogues are introduced into a predetermined site in the nucleotide sequence of said sequence, although random insertion is also possible with suitable screening of the resulting product being performed. Deletional variants are characterised by the removal of one or more nucleotides from the nucleotide sequence. Substitutional nucleotide variants are those in which at least one nucleotide in the sequence has been removed and a different nucleotide or nucleotide analogue inserted in its place.

The present invention extends to the isolated nucleic acid molecule when integrated into the genome of a cell as an addition to the endogenous cellular complement of cellulose synthase genes. The said integrated nucleic acid molecule may, or may not, contain promoter sequences to regulate expression of the subject genetic sequence.

The isolated nucleic acid molecule of the present invention may be introduced into and expressed in any cell, for example a plant cell, fungal cell, insect cell, animal cell, yeast cell or bacterial cell. Those skilled in the art will be aware of any moficiations which are required to the codon usage or promoter sequences or other regulatory sequences, in order for expression to occur in such cells.

30 Another aspect of the present invention is directed to a nucleic acid molecule which comprises

a sequence of nucleotides corresponding or complementary to any one or more of the sequences set forth in SEQ ID Nos:1, 3, 4, 5, 7, 9, 11, or 13, or having at least about 40%, more preferably at least about 55%, still more preferably at least about 65%, yet still more preferably at least about 75-80% and even still more preferably at least about 85-95%

According to this aspect of the invention, said nucleic acid molecule encodes, or is complementary to a nucleotide sequence encoding, a polypeptide of the cellulose biosynthetic pathway in a plant or a homologue, analogue or derivative thereof.

10

Preferably, a nucleic acid molecule which is at least 40% related to any one or more of the sequences set forth in SEQ ID Nos:1, 3, 4, 5, 7, 9, 11, or 13 comprises a nucleotide sequence which encodes or is complementary to a sequence which encodes a plant cellulose synthase, more preferably a cellulose synthase which is associated with the primary or the secondary plant cell wall of the species from which it has been derived.

Furthermore, the nucleic acid molecule according to this aspect of the invention may be derived from a monocotyledonous or dicotyledonous plant species. In a particularly preferred embodiment, the nucleic acid molecule is derived from *Arabidopsis thaliana*, *Oryza sativa*, 20 wheat, barley, maize, *Brassica ssp.*, *Gossypium hirsutum* (cotton) or *Eucalyptus ssp.*, amongst others.

For the purposes of nomenclature, the nucleotide sequence shown in SEQ ID NO:1 relates to a cellulose gene as hereinbefore defined which comprises a cDNA sequence designated T20782 and which is derived from *Arabidopsis thaliana*. The amino acid sequence set forth in SEQ ID NO:2 relates to the polypeptide encoded by T20782.

The nucleotide sequence set forth in SEQ ID NO:3 relates to the nucleotide sequence of the complete *Arabidopsis thaliana* genomic gene *RSW*1, including both intron and exon sequences. The nucleotide sequence of SEQ ID NO:3 comprises exons 1-14 of the genomic

gene and includes 2295bp of 5'-untranslated sequences, of which approximately the first 1.9kb comprises RSW1 promoter sequence (there is a putative TATA box motif at positions 1843-1850 of SEQ ID NO:3). The nucleotide sequence set forth in SEQ ID NO:3 is derived from the cosmid clone 23H12. This sequence is also the genomic gene equivalent of SEQ ID No:1 and 5.

The nucleotide sequence set forth in SEQ ID NO:4 relates to the partial nucleotide sequence of a genomic gene variant of RSW1, derived from cosmid clone 12C4. The nucleotide sequence of SEQ ID NO:4 comprises exon sequence 1-11 and part of exon 12 of the genomic gene sequence and includes 862bp of 5'-untranslated sequences, of which approximately 700 nucleotides comprise RSW1 promoter sequences (there is a putative TATA box motif at positions 668-673 of SEQ ID NO:4). The genomic gene sequence set forth in SEQ ID NO:4 is the equivalent of the cDNA sequence set forth in SEQ ID NO:7 (i.e. cDNA clone Ath-A).

15 The nucleotide sequence shown in SEQ ID NO:5 relates to a cellulose gene as hereinbefore defined which comprises a cDNA equivalent of the *Arabidopsis thaliana RSW*1 gene set forth in SEQ ID NO:3. The amino acid sequence set forth in SEQ ID NO:6 relates to the polypeptide encoded by the wild-type *RSW*1 gene sequences set forth in SEQ ID Nos:3 and 5.

20

The nucleotide sequence shown in SEQ ID NO:7 relates to a cellulose gene as hereinbefore defined which comprises a cDNA equivalent of the *Arabidopsis thaliana RSW*1 gene set forth in SEQ ID NO:4. The nucleotide sequence is a variant of the nucleotide sequences set forth in SEQ ID Nos:3 and 5. The amino acid sequence set forth in SEQ ID NO:8 relates to the polypeptide encoded by the wild-type *RSW*1 gene sequences set forth in SEQ ID Nos:4 and 6.

The nucleotide sequence shown in SEQ ID NO:9 relates to a cellulose gene as hereinbefore defined which comprises a further wild-type variant of the *Arabidopsis thaliana RSW*1 gene set forth in SEQ ID Nos:3 and 5. The nucleotide sequence variant is designated *Ath-B*. The

amino acid sequence set forth in SEQ ID NO:10 relates to the polypeptide encoded by the wild-type RSW1 gene sequence set forth in SEQ ID No:9.

The nucleotide sequence shown in SEO ID NO:11 relates to a cellulose gene as hereinbefore

- gene is a mutant cellulose gene which produces a radial root swelling phenotype as described by Baskin et al (1992). The present inventors have shown herein that the rsw1 gene also produces reduced inflorescence length, reduced fertility, misshapen epidermal cells, reduced cellulose content and the accumulation of non-crystalline β-1,4-glucan, amongst others, when expressed in plant cells. The rsw1 nucleotide sequence is a further variant of the nucleotide sequences set forth in SEQ ID Nos:3 and 5. The amino acid sequence set forth in SEQ ID NO:12 relates to the rsw1 polypeptide encoded by the mutant rsw1 gene sequence set forth in SEQ ID No:11.
- 15 The nucleotide sequence shown in SEQ ID NO:13 relates to a cellulose gene as hereinbefore defined which comprises a cDNA equivalent of the *Oryza sativa RSW*1 or *RSW*1-like gene. The nucleotide sequence is closely-related to the *Arabidopsis thaliana RSW*1 and *rsw*1 nucleotide sequences set forth herein (SEQ ID Nos:1, 3, 4, 5, 7, 9 and 11). The amino acid sequence set forth in SEQ ID NO:14 relates to the polypeptide encoded by the *RSW*1 or 20 *RSW*1-like gene sequences set forth in SEQ ID No:13.

Those skilled in the art will be aware of procedures for the isolation of further cellulose genes to those specifically described herein, for example further cDNA sequences and genomic gene equivalents, when provided with one or more of the nucleotide sequences set forth in SEQ ID Nos:1, 3, 4, 5, 7, 9, 11, or 13. In particular, hybridisations may be performed using one or more nucleic acid hybridisation probes comprising at least 10 contiguous nucleotides and preferably at least 50 contiguous nucleotides derived from the nucleotide sequences set forth herein, to isolate cDNA clones, mRNA molecules, genomic clones from a genomic library (in particular genomic clones containing the entire 5' upstream region of the gene including 30 the promoter sequence, and the entire coding region and 3'-untranslated sequences), and/or

synthetic oligonucleotide molecules, amongst others. The present invention clearly extends to such related sequences.

The invention further extends to any homologues, analogues or derivatives of any one or 5 more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13.

A further aspect of the present invention contemplates a nucleic acid molecule which encodes or is complementary to a nucleic acid molecule which encodes, a polypeptide which is required for cellulose biosynthesis in a plant, such as cellulose synthase, and which is capable of hybridising under at least low stringency conditions to the nucleic acid molecule set forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or to a complementary strand thereof.

As an exemplification of this embodiment, the present inventors have shown that it is possible to isolate variants of the *Arabidopsis thaliana RSW*1 gene sequence set forth in SEQ ID NO:3, by hybridization under low stringency conditions. Such variants include related sequences derived from *Gossypium hirsutum* (cotton), *Eucalyptus ssp.* and *A. thaliana*. Additional variant are clearly encompassed by the present invention.

20 Preferably, the nucleic acid molecule further comprises a nucleotide sequence which encodes, or is complementary to a nucleotide sequence which encodes, a cellulose synthase polypeptide, more preferably a cellulose synthase which is associated with the primary or secondary plant cell wall of the plant species from which said nucleic acid molecule was derived.

25

More preferably, the nucleic acid molecule according to this aspect of the invention encodes or is complementary to a nucleic acid molecule which encodes, a polypeptide which is required for cellulose biosynthesis in a plant, such as cellulose synthase, and which is capable of hybridising under at least medium stringency conditions to the nucleic acid molecule set forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or to a complementary

strand thereof.

strand thereof.

Even more preferably, the nucleic acid molecule according to this aspect of the invention accordes or is complementary to a nucleic acid molecule which aneades, a networntide which is required for cellulose biosynthesis in a plant, such as cellulose synthase, and which is capable of hybridising under at least high stringency conditions to the nucleic acid molecule set forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or to a complementary

10 For the purposes of defining the level of stringency, a low stringency is defined herein as being a hybridisation and/or a wash carried out in 6xSSC buffer, 0.1% (w/v) SDS at 28°C. Generally, the stringency is increased by reducing the concentration of SSC buffer, and/or increasing the concentration of SDS and/or increasing the temperature of the hybridisation and/or wash. A medium stringency comprises a hybridisation and/or a wash carried out in 0.2xSSC-2xSSC buffer, 0.1% (w/v) SDS at 42°C to 65°C, while a high stringency comprises a hybridisation and/or a wash carried out in 0.1xSSC-0.2xSSC buffer, 0.1% (w/v) SDS at a temperature of at least 55°C. Conditions for hybridisations and washes are well understood by one normally skilled in the art. For the purposes of further clarification only, reference to the parameters affecting hybridisation between nucleic acid molecules is found in pages 20 2.10.8 to 2.10.16. of Ausubel et al. (1987), which is herein incorporated by reference.

In an even more preferred embodiment of the invention, the isolated nucleic acid molecule further comprises a sequence of nucleotides which is at least 40% identical to at least 10 contiguous nucleotides derived from any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a complementary strand thereof.

Still more preferably, the isolated nucleic acid molecule further comprises a sequence of nucleotides which is at least 40% identical to at least 50 contiguous nucleotides derived from the sequence set forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a complementary strand thereof.

The present invention is particularly directed to a nucleic acid molecule which is capable of functioning as a cellulose gene as hereinbefore defined, for example a cellulose synthase gene such as, but not limited to, the *Arabidopsis thaliana*, *Oryza sativa*, wheat, barley, maize, *Brassica ssp.*, *Gossypium hirsutum* or *Eucalyptus ssp.* cellulose synthase genes, amongst others. The subject invention clearly contemplates additional cellulose genes to those specifically described herein which are derived from these plant species.

The invention further contemplates other sources of cellulose genes such as but not limited to, tissues and cultured cells of plant origin. Preferred plant species according to this 10 embodiment include hemp, jute, flax and woody plants including, but not limited to *Pinus ssp.*, *Populus ssp.*, *Picea spp.*, amongst others.

A genetic sequence which encodes or is complementary to a sequence which encodes a polypeptide which is involved in cellulose biosynthesis may correspond to the naturally occurring sequence or may differ by one or more nucleotide substitutions, deletions and/or additions. Accordingly, the present invention extends to cellulose genes and any functional genes, mutants, derivatives, parts, fragments, homologues or analogues thereof or non-functional molecules but which are at least useful as, for example, genetic probes, or primer sequences in the enzymatic or chemical synthesis of said gene, or in the generation of immunologically interactive recombinant molecules.

In a particularly preferred embodiment, the cellulose genetic sequences are employed to identify and isolate similar genes from plant cells, tissues, or organ types of the same species, or from the cells, tissues, or organs of another plant species.

25

According to this embodiment, there is contemplated a method for identifying a related cellulose gene or related cellulose genetic sequence, for example a cellulose synthase or cellulose synthase-like gene, said method comprising contacting genomic DNA, or mRNA, or cDNA with a hybridisation effective amount of a first cellulose genetic sequence comprising any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a complementary

sequence, homologue, analogue or derivative thereof derived from at least 10 contiguous nucleotides of said first sequence, and then detecting said hybridisation.

Professible—the first genetic sequence comprises at least 50 continuous nucleotides, even more

ontiguous nucleotides, derived from any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a complementary strand, homologue, analogue or derivative thereof.

The related cellulose gene or related cellulose genetic sequence may be in a recombinant form, in a virus particle, bacteriophage particle, yeast cell, animal cell, or a plant cell. Preferably, the related cellulose gene or related cellulose genetic sequence is derived from a plant species, such as a monocotyledonous plant or a dicotyledonous plant selected from the list comprising Arabidopsis thaliana, wheat, barley, maize, Brassica ssp., Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., hemp, jute, flax, and woody plants including, but not limited to Pinus ssp., Populus ssp., Picea spp., amongst others.

More preferably, related cellulose gene or related cellulose genetic sequence is derived from a plant which is useful in the fibre or timber industries, for example Gossypium hirsutum (cotton), hemp, jute, flax, Eucalyptus ssp. or Pinus ssp., amongst others. Alternatively, the related cellulose gene or related cellulose genetic sequence is derived from a plant which is useful in the cereal or starch industry, for example wheat, barley, rice or maize, amongst others.

In a particularly preferred embodiment, the first cellulose genetic sequence is labelled with 25 a reporter molecule capable of giving an identifiable signal (e.g. a radioisotope such as ³²P or ³⁵S or a biotinylated molecule).

An alternative method contemplated in the present invention involves hybridising two nucleic acid "primer molecules" to a nucleic acid "template molecule" which comprises a related 30 cellulose gene or related cellulose genetic sequence or a functional part thereof, wherein the

- 15 -

first of said primers comprises contiguous nucleotides derived from any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13 or a homologue, analogue or derivative thereof and the second of said primers comprises contiguous nucleotides complementary to any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13. Specific nucleic acid molecule copies of the template molecule are amplified enzymatically in a polymerase chain reaction, a technique that is well known to one skilled in the art.

In a preferred embodiment, each nucleic acid primer molecule is at least 10 nucleotides in length, more preferably at least 20 nucleotides in length, even more preferably at least 30 nucleotides in length, still more preferably at least 40 nucleotides in length and even still more preferably at least 50 nucleotides in length.

Furthermore, the nucleic acid primer molecules consists of a combination of any of the nucleotides adenine, cytidine, guanine, thymidine, or inosine, or functional analogues or derivatives thereof which are at least capable of being incorporated into a polynucleotide molecule without having an inhibitory effect on the hybridisation of said primer to the template molecule in the environment in which it is used.

Furthermore, one or both of the nucleic acid primer molecules may be contained in an aqueous mixture of other nucleic acid primer molecules, for example a mixture of degenerate primer sequences which vary from each other by one or more nucleotide substitutions or deletions. Alternatively, one or both of the nucleic acid primer molecules may be in a substantially pure form.

25 The nucleic acid template molecule may be in a recombinant form, in a virus particle, bacteriophage particle, yeast cell, animal cell, or a plant cell. Preferably, the nucleic acid

- 16 -

template molecule is derived from a plant cell, tissue or organ, in particular a cell, tissue or organ derived from a plant selected from the list comprising Arabidopsis thaliana, Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and Eucalyptus ssp., hemp,

Government plants including but not limited to Pinus sen Panulus sen Picea

5 spp., amongst others.

Those skilled in the art will be aware that there are many known variations of the basic polymerase chain reaction procedure, which may be employed to isolate a related cellulose gene or related cellulose genetic sequence when provided with the nucleotide sequences set 10 forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13. Such variations are discussed, for example, in McPherson et al (1991). The present invention extends to the use of all such variations in the isolation of related cellulose genes or related cellulose genetic sequences using the nucleotide sequences embodied by the present invention.

- 15 The isolated nucleic acid molecule according to any of the further embodiments may be cloned into a plasmid or bacteriophage molecule, for example to facilitate the preparation of primer molecules or hybridisation probes or for the production of recombinant gene products. Methods for the production of such recombinant plasmids, cosmids, bacteriophage molecules or other recombinant molecules are well-known to those of ordinary skill in the art and can be accomplished without undue experimentation. Accordingly, the invention further extends to any recombinant plasmid, bacteriophage, cosmid or other recombinant molecule comprising the nucleotide sequence set forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a complementary sequence, homologue, analogue or derivative thereof.
- 25 The nucleic acid molecule of the present invention is also useful for developing genetic constructs which express a cellulose genetic sequence, thereby providing for the increased expression of genes involved in cellulose biosynthesis in plants, selected for example from the list comprising Arabidopsis thaliana, Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and Eucalyptus ssp., hemp, jute, flax, and woody plants including, but not limited to Pinus ssp., Populus ssp., Picea spp., amongst others. The present invention

- 17 -

particularly contemplates the modification of cellulose biosynthesis in cotton, hemp, jute, flax, Eucalyptus ssp. and Pinus ssp., amongst others.

The present inventors have discovered that the genetic sequences disclosed herein are capable of being used to modify the level of non-crystalline β-1,4,-glucan, in addition to altering cellulose levels when expressed, particularly when expressed in plants cells. In particular, the Arabidopsis thaliana rsw1 mutant has increased levels of non-crystalline β-1,4,-glucan, when grown at 31°C, compared to wild-type plants, grown under identical conditions. The expression of a genetic sequence described herein in the antisense orientation in transgenic plants grown at only 21°C is shown to reproduce many aspects of the rsw1 mutant phenotype.

Accordingly, the present invention clearly extends to the modification of non-crystalline β-1,4,-glucan biosynthesis in plants, selected for example from the list comprising Arabidopsis thaliana, Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and 15 Eucalyptus ssp., hemp, jute, flax, and woody plants including, but not limited to Pinus ssp., Populus ssp., Picea spp., amongst others. The present invention particularly contemplates the modification of non-crystalline β-1,4,-glucan biosynthesis in cotton, hemp, jute, flax, Eucalyptus ssp. and Pinus ssp., amongst others.

20 The present invention further extends to the production and use of non-crystalline β -1,4-glucan and to the use of the glucan to modify the properties of plant cell walls or cotton fibres or wood fibres. Such modified properties are described herein (Example 13).

The inventors have discovered that the *rswl* mutant has altered carbon partitioning compared to wild-type plants, resulting in significantly higher starch levels therein. The isolated nucleic acid molecules provided herein are further useful for altering the carbon partitioning in a cell. In particular, the present invention contemplates increased starch production in transgenic plants expressing the nucleic acid molecule of the invention in the antisense orientation or alterntively, expressing a ribozyme or co-suppression molecule comprising the nucleic acid sequence of the invention.

The invention further contemplates reduced starch and/or non-crystalline β -1.4-glucan product in transgenic plants expressing the nucleic acid molecule of the invention in the sense orientation such that cellulose production is increased therein.

- Wherein it is desired to increase cellulose production in a prant-cen, the cooling region cellulose gene is placed operably behind a promoter, in the sense orientation, such that a cellulose gene product is capable of being expressed under the control of said promoter sequence. In a preferred embodiment, the cellulose genetic sequence is a cellulose synthase genomic sequence, cDNA molecule or protein-coding sequence.
- In a particularly preferred embodiment, the cellulose genetic sequence comprises a sequence of nucleotides substantially the same as the sequence set forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13 or a homologue, analogue or derivative thereof.
- 15 Wherein it is desirable to reduce the content of cellulose or to increase the content of non-crystalline β-1,4-glucan, the nucleic acid molecule of the present invention is expressed in the antisense orientation under the control of a suitable promoter. Additionally, the nucleic acid molecule of the invention is also useful for developing ribozyme molecules, or in cosuppression of a cellulose gene. The expression of an antisense, ribozyme or co-suppression molecule comprising a cellulose gene, in a cell such as a plant cell, fungal cell, insect cell, animal cell, yeast cell or bacterial cell, may also increase the solubility, digestibility or extractability of metabolites from plant tissues or alternatively, or increase the availability of carbon as a precursor for any secondary metabolite other than cellulose (e.g. starch or sucrose). By targeting the endogenous cellulose gene, expression is diminished, reduced or otherwise lowered to a level that results in reduced deposition of cellulose in the primary or secondary cell walls of the plant cell, fungal cell, insect cell, animal cell, yeast cell or bacterial cell, and more particularly, a plant cell. Additionally, or alternatively, the content of non-crystalline β-1,4-glucan is increased in such cells.
- 30 Co-suppression is the reduction in expression of an endogenous gene that occurs when one

10

or more copies of said gene, or one or more copies of a substantially similar gene are introduced into the cell. The present invention also extends to the use of co-suppression to inhibit the expression of a gene which encodes a cellulose gene product, such as but not limited to cellulose synthase. Preferably, the co-suppression molecule of the present invention targets a plant mRNA molecule which encodes a cellulose synthase enzyme, for example a plant, fungus, or bacterial cellulose synthase mRNA, and more preferably a plant mRNA derived from Arabidopsis thaliana, Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and Eucalyptus ssp., hemp, jute, flax, or a woody plant such as Pinus ssp., Populus ssp., or Picea spp., amongst others.

10

In a particularly preferred embodiment, the gene which is targeted by a co-suppression molecule, comprises a sequence of nucleotides set forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a complement, homologue, analogue or derivative thereof.

- 15 In the context of the present invention, an antisense molecule is an RNA molecule which is transcribed from the complementary strand of a nuclear gene to that which is normally transcribed to produce a "sense" mRNA molecule capable of being translated into a polypeptide component of the cellulose biosynthetic pathway. The antisense molecule is therefore complementary to the mRNA transcribed from a sense cellulose gene or a part thereof. Although not limiting the mode of action of the antisense molecules of the present invention to any specific mechanism, the antisense RNA molecule possesses the capacity to form a double-stranded mRNA by base pairing with the sense mRNA, which may prevent translation of the sense mRNA and subsequent synthesis of a polypeptide gene product.
- 25 Preferably, the antisense molecule of the present invention targets a plant mRNA molecule which encodes a cellulose gene product, for example cellulose synthase. Preferably, the antisense molecule of the present invention targets a plant mRNA molecule which encodes a cellulose synthase enzyme, for example a plant mRNA derived from Arabidopsis thaliana, Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and Eucalyptus ssp., 30 hemp, jute. flax, or a woody plant such as Pinus ssp., Populus ssp., or Picea spp., amongst

- 20 -

others.

In a particularly preferred embodiment, the antisense molecule of the invention targets an appropriate angeded by any one or more of SEO ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or

5 a homologue, analogue or derivative thereor.

Ribozymes are synthetic RNA molecules which comprise a hybridising region complementary to two regions, each of at least 5 contiguous nucleotide bases in the target sense mRNA. In addition, ribozymes possess highly specific endoribonuclease activity, which autocatalytically cleaves the target sense mRNA. A complete description of the function of ribozymes is presented by Haseloff and Gerlach (1988) and contained in International Patent Application No. WO89/05852.

The present invention extends to ribozyme which target a sense mRNA encoding a cellulose gene product, thereby hybridising to said sense mRNA and cleaving it, such that it is no longer capable of being translated to synthesise a functional polypeptide product. Preferably, the ribozyme molecule of the present invention targets a plant mRNA molecule which encodes a cellulose synthase enzyme, for example a plant mRNA derived from *Arabidopsis thaliana*, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., hemp, jute, flax, or a woody plant such as Pinus ssp., Populus ssp., or Picea spp., amongst others.

In a particularly preferred embodiment, the ribozyme molecule will target an mRNA encoded by any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a homologue, analogue or derivative thereof.

25

According to this embodiment, the present invention provides a ribozyme or antisense molecule comprising at least 5 contiguous nucleotide bases derived from any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a complementary nucleotide sequence or a homologue, analogue or derivative thereof, wherein said antisense or ribozyme molecule is able to form a hydrogen-bonded complex with a sense mRNA encoding a cellulose gene

product to reduce translation thereof.

In a preferred embodiment, the antisense or ribozyme molecule comprises at least 10 to 20 contiguous nucleotides derived from any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a complementary nucleotide sequence or a homologue, analogue or derivative thereof. Although the preferred antisense and/or ribozyme molecules hybridise to at least about 10 to 20 nucleotides of the target molecule, the present invention extends to molecules capable of hybridising to at least about 50-100 nucleotide bases in length, or a molecule capable of hybridising to a full-length or substantially full-length mRNA encoded by a cellulose gene, 10 such as a cellulose synthase gene.

Those skilled in the art will be aware of the necessary conditions, if any, for selecting or preparing the antisense or ribozyme molecules of the invention.

- It is understood in the art that certain modifications, including nucleotide substitutions amongst others, may be made to the antisense and/or ribozyme molecules of the present invention, without destroying the efficacy of said molecules in inhibiting the expression of a gene encoding a cellulose gene product such as cellulose synthase. It is therefore within the scope of the present invention to include any nucleotide sequence variants, homologues, analogues, or fragments of the said gene encoding same, the only requirement being that said nucleotide sequence variant, when transcribed, produces an antisense and/or ribozyme molecule which is capable of hybridising to a sense mRNA molecule which encodes a cellulose gene product.
- DNA sequence to which it hybridises, thereby altering the form and/or function of the endogenous gene and the subsequent phenotype of the cell. According to this embodiment, at least a part of the DNA sequence defined by any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a related cellulose genetic sequence, may be introduced into target cells containing an endogenous cellulose gene, thereby replacing said endogenous cellulose gene.

According to this embodiment, the polypeptide product of said cellulose genetic sequence possesses different catalytic activity and/or expression characteristics, producing in turn modified cellulose deposition in the target cell. In a particularly preferred embodiment of the invention, the endogenous cellulose gene of a plant is replaced with a gene which is merely

- 5 capable of producing non-crystamic-p-1,4-glucan polymers of anotheric fibres such as rayon, in which the β-1,4-glucan polymers are arranged in an antiparallel configuration relative to one another.
- 10 The present invention extends to genetic constructs designed to facilitate expression of a cellulose genetic sequence which is identical, or complementary to the sequence set forth in any one or more of SEQ ID Nos:1, 3, 4, 5, 7, 9, 11 or 13, or a functional derivative, part, homologue, or analogue thereof, or a genetic construct designed to facilitate expression of a sense molecule, an antisense molecule, ribozyme molecule, co-suppression molecule, or gene targeting molecule containing said genetic sequence.

The said genetic construct of the present invention comprises the foregoing sense, antisense, or ribozyme, or co-suppression nucleic acid molecule, or gene-targeting molecule, placed operably under the control of a promoter sequence capable of regulating the expression of the said nucleic acid molecule in a prokaryotic or eukaryotic cell, preferably a plant cell. The said genetic construct optionally comprises, in addition to a promoter and sense, or antisense, or ribozyme, or co-suppression, or gene-targeting nucleic acid molecule, a terminator sequence.

25 The term "terminator" refers to a DNA sequence at the end of a transcriptional unit which signals termination of transcription. Terminators are 3'-non-translated DNA sequences containing a polyadenylation signal, which facilitates the addition of polyadenylate sequences to the 3'-end of a primary transcript. Terminators active in plant cells are known and described in the literature. They may be isolated from bacteria, fungi, viruses, animals and/or plants. Examples of terminators particularly suitable for use in the genetic constructs

of the present invention include the nopaline synthase (NOS) gene terminator of Agrobacterium tumefaciens, the terminator of the Cauliflower mosaic virus (CaMV) 35S gene, and the zein gene terminator from Zea mays.

- 5 Reference herein to a "promoter" is to be taken in its broadest context and includes the transcriptional regulatory sequences of a classical genomic gene, including the TATA box which is required for accurate transcription initiation, with or without a CCAAT box sequence and additional regulatory elements (i.e. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner. A promoter is usually, but not necessarily, positioned upstream or 5', of a structural gene, the expression of which it regulates. Furthermore, the regulatory elements comprising a promoter are usually positioned within 2 kb of the start site of transcription of the gene.
- In the present context, the term "promoter" is also used to describe a synthetic or fusion molecule, or derivative which confers, activates or enhances expression of said sense, antisense, or ribozyme, or co-suppression nucleic acid molecule, in a plant cell. Preferred promoters may contain additional copies of one or more specific regulatory elements, to further enhance expression of a sense antisense, ribozyme or co-suppression molecule and/or to alter the spatial expression and/or temporal expression of said sense or antisense, or ribozyme, or co-suppression, or gene-targeting molecule. For example, regulatory elements which confer copper inducibility may be placed adjacent to a heterologous promoter sequence driving expression of a sense, or antisense, or ribozyme, or co-suppression, or gene-targeting molecule, thereby conferring copper inducibility on the expression of said molecule.

25

Placing a sense or ribozyme, or antisense, or co-suppression, or gene-targeting molecule under the regulatory control of a promoter sequence means positioning the said molecule such that expression is controlled by the promoter sequence. Promoters are generally positioned 5' (upstream) to the genes that they control. In the construction of heterologous promoter/structural gene combinations it is generally preferred to position the promoter at a

distance from the gene transcription start site that is approximately the same as the distance between that promoter and the gene it controls in its natural setting, i.e., the gene from which the promoter is derived. As is known in the art, some variation in this distance can be

5 regulatory sequence element with respect to a heterologous gene to be praced under as comments defined by the positioning of the element in its natural setting, i.e., the genes from which it is derived. Again, as is known in the art, some variation in this distance can also occur.

Examples of promoters suitable for use in genetic constructs of the present invention include viral, fungal, bacterial, animal and plant derived promoters capable of functioning in prokaryotic or eukaryotic cells. Preferred promoters are those capable of regulating the expression of the subject cellulose genes of the innvention in plants cells, fungal cells, insect cells, yeast cells, animal cells or bacterial cells, amongst others. Particularly preferred promoters are capable of regulating expression of the subject nucleic acid molecules in plant cells. The promoter may regulate the expression of the said molecule constitutively, or differentially with respect to the tissue in which expression occurs or, with respect to the developmental stage at which expression occurs, or in response to external stimuli such as physiological stresses, or plant pathogens, or metal ions, amongst others. Preferably, the promoter is capable of regulating expression of a sense, or ribozyme, or antisense, or co20 suppression molecule or gene targeting, in a plant cell. Examples of preferred promoters include the CaMV 35S promoter, NOS promoter, octopine synthase (OCS) promoter and the like.

In a most preferred embodiment, the promoter is capable of expression in any plant cell, such as, but not limited to a plant selected from the list comprising Arabidopsis thaliana, Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and Eucalyptus ssp., hemp, jute, flax, and woody plants including, but not limited to Pinus ssp., Populus ssp., Picea spp., amongst others.

30 In a particularly preferred embodiment, the promoter may be derived from a genomic clone

encoding a cellulose gene product, in particular the promoter contained in the sequence set forth in SEQ ID NO:3 or SEQ ID NO:4. Preferably, the promoter sequence comprises nucleotide 1 to about 1900 of SEQ ID NO:3 or nucleotides 1 to about 700 of SEQ ID NO:4 or a homologue, analogue or derivative capable of hybridizing thereto under at least low 5 stringency conditions.

Optionally, the genetic construct of the present invention further comprises a terminator sequence.

In an exemplification of this embodiment, there is provided a binary genetic construct comprising the isolated nucleotide sequence of nucleotides set forth in SEQ ID NO:3. There is also provided a genetic construct comprising the isolated nucleotide sequence of nucleotides set forth in SEQ ID NO:1, in the antisense orientation, placed operably in connection with the CaMV 35S promoter.

15

In the present context, the term "in operable connection with" means that expression of the isolated nucleotide sequence is under the control of the promoter sequence with which it is connected, regardless of the relative physical distance of the sequences from each other or their relative orientation with respect to each other.

20

An alternative embodiment of the invention is directed to a genetic construct comprising a promoter or functional derivative, part, fragment, homologue, or analogue thereof, which is capable of directing the expression of a polypeptide early in the development of a plant cell at a stage when the cell wall is developing, such as during cell expansion or during cell division. In a particularly preferred embodiment, the promoter is contained in the sequence set forth in SEQ ID NO:3 or SEQ ID NO:4. Preferably, the promoter sequence comprises nucleotide 1 to about 1900 of SEQ ID NO:3 or nucleotides 1 to about 700 of SEQ ID NO:4 or a homologue, analogue or derivative capable of hybridizing thereto under at least low stringency conditions.

- 26 -

The polypeptide may be a reporter molecule which is encoded by a gene such as the bacterial β -glucuronidase gene or chloramphenicol acetyltransferase gene or alternatively, the firefly luciferase gene. Alternatively, the polypeptide may be encoded by a gene which is capable of producing a modified cellulose in the plant cell when placed in combination with the

a cellulose-like gene obtained from a bacterial or fungal source or a cellulose gene obtained from a plant source.

The genetic constructs of the present invention are particularly useful in the production of crop plants with altered cellulose content or structure. In particular, the rate of cellulose deposition may be reduced leading to a reduction in the total cellulose content of plants by transferring one or more of the antisense, ribozyme or co-suppression molecules described supra into a plant or alternatively, the same or similar end-result may be achieved by replacing an endogenous cellulose gene with an inactive or modified cellulose gene using gene-targeting approaches. The benefits to be derived from reducing cellulose content in plants are especially apparent in food and fodder crops such as, but not limited to maize, wheat, barley, rye, rice, barley, millet or sorghum, amongst others where improved digestibility of said crop is desired. The foregoing antisense, ribozyme or co-suppression molecules are also useful in producing plants with altered carbon partitioning such that increased carbon is available for growth, rather than deposited in the form of cellulose.

Alternatively, the introduction to plants of additional copies of a cellulose gene in the 'sense' orientation and under the control of a strong promoter is useful for the production of plants with increased cellulose content or more rapid rates of cellulose biosynthesis. Accordingly, such plants may exhibit a range of desired traits including, but not limited to modified strength and/or shape and/or properties of fibres, cell and plants, increased protection against chemical, physical or environmental stresses such as dehydration, heavy metals (e.g. cadmium) cold, heat or wind, increased resistance to attack by pathogens such as insects, nematodes and the like which physically penetrate the cell wall barrier during invasion/infection of the plant.

- 27 -

Alternatively, the production of plants with altered physical properties is made possible by the introduction thereto of altered cellulose gene(s). Such plants may produce β-1,4-glucan which is either non-crystalline or shows altered crystallinity. Such plants may also exhibit a range of desired traits including but not limited to, altered dietary fibre content, altered 5 digestibility and degradability or producing plants with altered extractability properties.

Furthermore, genetic constructs comprising a plant cellulose gene in the 'sense' orientation may be used to complement the existing range of cellulose genes present in a plant, thereby altering the composition or timing of deposition of cellulose deposited in the cell wall of said plant. In a preferred embodiment, the cellulose gene from one plant species or a β-1,4-glucan synthase gene from a non-plant species is used to transform a plant of a different species, thereby introducing novel cellulose biosynthetic metabolism to the second-mentioned plant species.

- In a related embodiment, a recombinant fusion polypeptide may be produced containing the active site from one cellulose gene product fused to another cellulose gene product, wherein said fusion polypeptide exhibits novel catalytic properties compared to either 'parent' polypeptide from which it is derived. Such fusion polypeptides may be produced by conventional recombinant DNA techniques known to those skilled in the art, either by introducing a recombinant DNA capable of expressing the entire fusion polypeptide into said plant or alternatively, by a gene-targeting approach in which recombination at the DNA level occurs in vivo and the resultant gene is capable of expressing a recombinant fusion polypeptide.
- 25 The present invention extends to all transgenic methods and products described *supra*, including genetic constructs.

The recombinant DNA molecule carrying the sense, antisense, ribozyme or co-suppression molecule of the present invention and/or genetic construct comprising the same, may be introduced into plant tissue, thereby producing a "transgenic plant", by various techniques

known to those skilled in the art. The technique used for a given plant species or specific type of plant tissue depends on the known successful techniques. Means for introducing recombinant DNA into plant tissue include, but are not limited to, transformation

- 5 DNA (Crossway et al., 1986), or T-DNA-mediated transfer from Agrovacterium to the plant-tissue. Representative T-DNA vector systems are described in the following references: An et al. (1985); Herrera-Estrella et al. (1983a,b); Herrera-Estrella et al. (1985). Once introduced into the plant tissue, the expression of the introduced gene may be assayed in a transient expression system, or it may be determined after selection for stable integration within the plant genome. Techniques are known for the in vitro culture of plant tissue, and in a number of cases, for regeneration into whole plants. Procedures for transferring the introduced gene from the originally transformed plant into commercially useful cultivars are known to those skilled in the art.
- 15 A still further aspect of the present invention extends to a transgenic plant such as a crop plant, carrying the foregoing sense, antisense, ribozyme, co-suppression, or gene-targeting molecule and/or genetic constructs comprising the same. Preferably, the transgenic plant is one or more of the following: Arabidopsis thaliana, Oryza sativa, wheat, barley, maize, Brassica ssp., Gossypium hirsutum and Eucalyptus ssp., hemp, jute, flax, Pinus ssp., 20 Populus ssp., or Picea spp. Additional species are not excluded.

The present invention further extends to the progeny of said transgenic plant.

Yet another aspect of the present invention provides for the expression of the subject genetic sequence in a suitable host (e.g. a prokaryote or eukaryote) to produce full length or non-full length recombinant cellulose gene products.

Hereinafter the term "cellulose gene product" shall be taken to refer to a recombinant product of a cellulose gene as hereinbefore defined. Accordingly, the term "cellulose gene product" includes a polypeptide product of any gene involved in the cellulose biosynthetic pathway in

- 29 -

plants, such as, but not limited to a cellulose synthase gene product.

Preferably, the recombinant cellulose gene product comprises an amino acid sequence having the catalytic activity of a cellulose synthase polypeptide or a functional mutant, derivative 5 part, fragment, or analogue thereof.

In a particularly preferred embodiment of the invention, the recombinant cellulose gene product comprises a sequence or amino acids that is at least 40% identical to any one or more of SEQ ID Nos:2, 6, 8, 10, 12 or 14, or a homologue, analogue or derivative thereof.

10

Single and three-letter abbreviations used for amino acid residues contained in the specification are provided in Table 1.

In the present context, "homologues" of an amino acid sequence refer to those polypeptides, enzymes or proteins which have a similar catalytic activity to the amino acid sequences described herein, notwithstanding any amino acid substitutions, additions or deletions thereto. A homologue may be isolated or derived from the same or another plant species as the species from which the polypeptides of the invention are derived.

20 "Analogues" encompass polypeptides of the invention notwithstanding the occurrence of any non-naturally occurring amino acid analogues therein.

"Derivatives" include modified peptides in which ligands are attached to one or more of the amino acid residues contained therein, such as carbohydrates, enzymes, proteins, polypeptides or reporter molecules such as radionuclides or fluorescent compounds. Glycosylated, fluorescent, acylated or alkylated forms of the subject peptides are particularly contemplated by the present invention. Additionally, derivatives of an amino acid sequence described herein which comprises fragments or parts of the subject amino acid sequences are within the scope of the invention, as are homopolymers or heteropolymers comprising two or more copies of the subject polypeptides. Procedures for derivatizing peptides are well-known in the

- 30 -

art.

TABLE 1

		Abbreviation	Symbol
5	Alanine	Ala	Α
	Arginine	Arg	R
	Asparagine	Asn	N
	Aspartic acid	Asp	D
	Cysteine	Cys	С
10	D-alanine	Dal	X
	Glutamine	Gln	Q
	Glutamic acid	Glu	Е
	Glycine	Gly	G
	Histidine	His	Н
15	Isoleucine	Ile	I
	Leucine	Leu	L
	Lysine	Lys	K
	Methionine	Met	M
	Phenylalanine	Phe	F
20	Proline	Pro	P
	Serine	Ser	S
	Threonine	Thr	Т
	Tryptophan	Trp	W
	Tryosine	Tyr	Y
25	Valine	Val	V
	Any amino acid	Xaa	X

- 31 -

Substitutions encompass amino acid alterations in which an amino acid is replaced with a different naturally-occurring or a non-conventional amino acid residue. Such substitutions may be classified as "conservative", in which an amino acid residue contained in a cellulose gene product is replaced with another naturally-occurring amino acid of similar character, for 5 example Gly↔Ala, Val↔Ile↔Leu, Asp↔Glu, Lys↔Arg, Asn↔Gln or Phe↔Trp↔Tyr.

Substitutions encompassed by the present invention may also be "non-conservative", in which an amino acid residue which is present in a cellulose gene product described herein is substituted with an amino acid with different properties, such as a naturally-occurring amino acid from a different group (eg. substituted a charged or hydrophobic amino acid with alanine), or alternatively, in which a naturally-occurring amino acid is substituted with a non-conventional amino acid.

Non-conventional amino acids encompassed by the invention include, but are not limited to 15 those listed in Table 2.

Amino acid substitutions are typically of single residues, but may be of multiple residues, either clustered or dispersed.

Amino acid deletions will usually be of the order of about 1-10 amino acid residues, while insertions may be of any length. Deletions and insertions may be made to the N-terminus, the C-terminus or be internal deletions or insertions. Generally, insertions within the amino acid sequence will be smaller than amino- or carboxy-terminal fusions and of the order of 1-4 amino acid residues.

25

A homologue, analogue or derivative of a cellulose gene product as referred to herein may readily be made using peptide synthetic techniques well-known in the art, such as solid phase peptide synthesis and the like, or by recombinant DNA manipulations. Techniques for making substituent mutations at pre-determined sites using recombinant DNA technology, for 30 example by M13 mutagenesis, are also well-known. The manipulation of nucleic acid

molecules to produce variant peptides, polypeptides or proteins which manifest as substitutions, insertions or deletions are well-known in the art.

The collulese gave products described herein may be derivatized further by the inclusion or

5 attachment thereto of a protective group-winer-prevents, minutes cellular degradative processes. Such derivatization may be useful where the half-life of the subject polypeptide is required to be extended, for ample to increase the amount of cellulose produced in a primary or secondary cell wall of a plant cell or alternatively, to increase the amount of protein produced in a bacterial or eukaryotic expression system. Examples of 10 chemical groups suitable for this purpose include, but are not limited to, any of the nonconventional amino acid residues listed in Table 2, in particular a D-stereoisomer or a methylated form of a naturally-occurring amino acid listed in Table 1. Additional chemical groups which are useful for this purpose are selected from the list comprising aryl or heterocyclic N-acyl substituents, polyalkylene oxide moieties, desulphatohirudin muteins, 15 alpha-muteins, alpha-aminophosphonic acids, water-soluble polymer groups such as polyethylene glycol attached to sugar residues using hydrazone or oxime groups, benzodiazepine dione derivatives, glycosyl groups such as beta-glycosylamine or a derivative thereof, isocyanate conjugated to a polyol functional group or polyoxyethylene polyol capped with diisocyanate, amongst others. Similarly, a cellulose gene product or a homologue, 20 analogue or derivative thereof may be cross-linked or fused to itself or to a protease inhibitor peptide, to reduce susceptibility of said molecule to proteolysis.

TABLE 2

Non-conventional amino acid	Code	Non-conventional amino acid	Code
5			
α-aminobutyric acid	Abu	L-N-methylalanine	Nmala
α -amino- α -methylbutyrate	Mgabu	L-N-methylarginine	Nmarg
aminocyclopropane-	Cpro	L-N-methylasparagine	Nmasn
carboxylate		L-N-methylaspartic acid	Nmasp
10 aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcys
aminonorbornyl-	Norb	L-N-methylglutamine	Nmgln
carboxylate		L-N-methylglutamic acid	Nmglu
cyclohexylalanine	Chexa	L-N-methylhistidine	Nmhis
cyclopentylalanine	Cpen	L-N-methylisolleucine	Nmile
15 D-alanine	Dai	L-N-methylleucine	Nmleu
D-arginine	Darg	L-N-methyllysine	Nmlys
D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
D-cysteine	Dcys	L-N-methylnorleucine	Nmnle
D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
0 D-glutamic acid	Dglu	L-N-methylornithine	Nmorn
D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
D-isoleucine	Dile	L-N-methylproline	Nmpro
D-leucine	Dleu	L-N-methylserine	Nmser
D-lysine	Dlys	L-N-methylthreonine	Nmthr
5 D-methionine	Dmet	L-N-methyltryptophan	Nmtrp
D-ornithine	Dorn	L-N-methyltyrosine	Nmtyr
D-phenylalanine	Dphe	L-N-methylvaline	Nmval
D-proline	Dpro	L-N-methylethylglycine	Nmetg
D-serine	Dser	L-N-methyl-t-butylglycine	Nmtbug
D-threonine	Dthr	L-norleucine	Nle

	D-tryptophan	Dtrp	L-norvaline	Nva
	D-tyrosine	Dtyr	α -methyl-aminoisobutyrate	Maib
	D-valine	Dval	α -methyl- γ -aminobutyrate	Mgabu
	Decreative	Dmala	α-methylcyclohexylalanine	Mchexa
5	D-α-methylarginine	Dmarg	winding respection and the	· · · · · · · · · · · · · · · · · · ·
	D-α-methylasparagine	Dmasn	α-methyl-α-napthylalanine	Manap
	D-α-methylaspartate	Dmasp	α-methylpenicillamine	Mpen
	D-α-methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
	D-α-methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
10	D-α-methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
	D-α-methylisoleucine	Dmile	N-amino-α-methylbutyrate	Nmaabu
	D-α-methylleucine	Dmleu	α -napthylalanine	Anap
	D-α-methyllysine	Dmlys	N-benzylglycine	Nphe
	D-α-methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
15	D-α-methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
	D-α-methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
	D - α -methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
	D-α-methylserine	Dmser	N-cyclobutylglycine	Nebut
	D-α-methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
20	D-α-methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
	D-α-methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
	D-α-methylvaline	Dmval	N-cylcododecylglycine	Ncdod
	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Nepro
25	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycine	Nbhm
	D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glycine	Nbhe
	D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)glycine	Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
30	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl))glycine	Nser

	D-N-methylisoleucine	Dnmile	N-(imidazolylethyl))glycine	Nhis
	D-N-methylleucine	Dnmleu	N-(3-indolylyethyl)glycine	Nhtrp
	D-N-methyllysine	Dnmlys	N-methyl-γ-aminobutyrate	Nmgabu
	N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
	5 D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	Nmcpen
	N-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
	N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
٠	N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
	N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
	10 D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
	D-N-methyltyrosine	Dnmtyr	N-methyla-napthylalanine	Nmanap
	D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
	γ-aminobutyric acid	Gabu	N-(p-hydroxyphenyl)glycine	Nhtyr
	L-t-butylglycine	Tbug	N-(thiomethyl)glycine	Ncys
1	15 L-ethylglycine	Etg	penicillamine	Pen
	L-homophenylalanine	Hphe	L-α-methylalanine	Mala
	L-α-methylarginine	Marg	L-α-methylasparagine	Masn
	L-α-methylaspartate	Masp	L-α-methyl-t-butylglycine	Mtbug
	L-α-methylcysteine	Mcys	L-methylethylglycine	Metg
2	20 L-α-methylglutamine	Mgln	L-α-methylglutamate	Mglu
	L-α-methylhistidine	Mhis	L-α-methylhomophenylalanine	Mhphe
	L-a-methylisoleucine	Mile	N-(2-methylthioethyl)glycine	Nmet
	L-α-methylleucine	Mleu	L-α-methyllysine	Mlys
	L-α-methylmethionine	Mmet	L-α-methylnorleucine	Mnle
2	25 L-α-methylnorvaline	Mnva	L - α -methylornithine	Morn
	L-α-methylphenylalanine	Mphe	L-α-methylproline	Mpro
	L-α-methylserine	Mser	L - α -methylthreonine	Mthr
	L-α-methyltryptophan	Mtrp	L-α-methyltyrosine	Mtyr
	L - α -methylvaline	Mval	L-N-methylhomophenylalanine	Nmhphe

- 36 -

N-(N-(2,2-diphenylethyl)

Nnbhm

N-(N-(3,3-diphenylpropyl)

Nnbhe

carbamylmethyl)glycine

carbamylmethyl)glycine

1-carboxy-1-(2.2-diphenyl- Nmbc

thulamine)cuclentonane

3

In an alternative embodiment of the invention, the recombinant cellulose gene product is characterised by at least one functional β -glycosyl transferase domain contained therein.

10

The term "β-glycosyl transferase domain" as used herein refers to a sequence of amino acids which is highly conserved in different processive enzymes belonging to the class of glycosyl transferase enzymes (Saxena et al., 1995), for example the bacterial β-1,4-glycosyl transferase enzymes and plant cellulose synthase enzymes amongst others, wherein said domain possesses a putative function in contributing to or maintaining the overall catalytic activity, substrate specificity or substrate binding of an enzyme in said enzyme class. The β-glycosyl transferase domain is recognisable by the occurrence of certain amino acid residues at particular locations in a polypeptide sequence, however there is no stretch of contiguous amino acid residues comprised therein.

20

As a consequence of the lack of contiguity in a β-glycosyl transferase domain, it is not a straightforward matter to isolate a cellulose gene by taking advantage of the presence of a β-glycosyl transferase domain in the polypeptide encoded by said gene. For example, the β-glycosyl transferase domain would not be easily utilisable as a probe to facilitate the rapid isolation of all β-glycosyl transferase genetic sequences from a particular organism and then to isolate from those genetic sequences a cellulose gene such as cellulose synthase.

In a preferred embodiment, the present invention provides an isolated polypeptide which:

(i)contains at least one structural β -glycosyl transferase domain as hereinbefore

30 defined; and

- 37 -

- (ii) has at least 40% amino acid sequence similarity to at least 20 contiguous amino acid residues set forth in any one or more of SEQ ID Nos:2, 6, 8, 10, 12 or 14, or a homologue, analogue or derivative thereof.
- 5 More preferably, the polypeptide of the invention is at least 40% identical to at least 50 contiguous amino acid residues, even more preferably at least 100 amino acid residues of any one or more of SEQ ID Nos:2, 6, 8, 10, 12 or 14, or a homologue, analogue or derivative thereof.
- In a particularly preferred embodiment, the percentage similarity to any one or more of SEQ ID Nos:2, 6, 8, 10, 12 or 14 is at least 50-60%, more preferably at least 65-70%, even more preferably at least 75-80% and even more preferably at least 85-90%, including about 91% or 95%.
- 15 In a related embodiment, the present invention provides a "sequencably pure" form of the amino acid sequence described herein. "Sequencably pure" is hereinbefore described as substantially homogeneous to facilitate amino acid determination.
- In a further related embodiment, the present invention provides a "substantially homogeneous" form of the subject amino acid sequence, wherein the term "substantially homogeneous" is hereinbefore defined as being in a form suitable for interaction with an immunologically interactive molecule. Preferably, the polypeptide is at least 20% homogeneous, more preferably at least 50% homogeneous, still more preferably at least 75% homogeneous and yet still more preferably at least about 95-100% homogeneous, in 25 terms of activity per microgram of total protein in the protein preparation.

The present invention further extends to a synthetic peptide of at least 5 amino acid residues in length derived from or comprising a part of the amino acid sequence set forth in any one or more of SEQ ID Nos:2, 6, 8, 10, 12 or 14, or having at least 40% similarity thereto.

Those skilled in the art will be aware that such synthetic peptides may be useful in the production of immunologically interactive molecules for the preparation of antibodies or as the peptide component of an immunoassay.

THE THE PROPERTY OF THE PROPER

antibody or an immunologically interactive part or fragment thereof which is capable of binding to a cellulose gene product according to any of the foregoing embodiments.

The term "antibody" as used herein, is intended to include fragments thereof which are also specifically reactive with a polypeptide of the invention. Antibodies can be fragmented using conventional techniques and the fragments screened for utility in the same manner as for whole antibodies. For example, F(ab')2 fragments can be generated by treating antibody with pepsin. The resulting F(ab')2 fragment can be treated to reduce disulfide bridges to produce Fab' fragments.

15

Those skilled in the art will be aware of how to produce antibody molecules when provided with the cellulose gene product of the present invention. For example, by using a polypeptide of the present invention polyclonal antisera or monoclonal antibodies can be made using standard methods. A mammal, (e.g., a mouse, hamster, or rabbit) can be immunized with an immunogenic form of the polypeptide which elicits an antibody response in the mammal. Techniques for conferring immunogenicity on a polypeptide include conjugation to carriers or other techniques well known in the art. For example, the polypeptide can be administered in the presence of adjuvant. The progress of immunization can be monitored by detection of antibody titers in plasma or serum. Standard ELISA or other immunoassay can be used with the immunogen as antigen to assess the levels of antibodies. Following immunization, antisera can be obtained and, if desired IgG molecules corresponding to the polyclonal antibodies may be isolated from the sera.

To produce monoclonal antibodies, antibody producing cells (lymphocytes) can be harvested 30 from an immunized animal and fused with myeloma cells by standard somatic cell fusion

- 39 -

procedures thus immortalizing these cells and yielding hybridoma cells. Such techniques are well known in the art. For example, the hybridoma technique originally developed by Kohler and Milstein (1975) as well as other techniques such as the human B-cell hybridoma technique (Kozbor et al., 1983), the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., 1985), and screening of combinatorial antibody libraries (Huse et al., 1989). Hybridoma cells can be screened immunochemically for production of antibodies which are specifically reactive with the polypeptide and monoclonal antibodies isolated.

As with all immunogenic compositions for eliciting antibodies, the immunogenically effective amounts of the polypeptides of the invention must be determined empirically. Factors to be considered include the immunogenicity of the native polypeptide, whether or not the polypeptide will be complexed with or covalently attached to an adjuvant or carrier protein or other carrier and route of administration for the composition, i.e. intravenous, intramuscular, subcutaneous, etc., and the number of immunizing doses to be administered. Such factors are known in the vaccine art and it is well within the skill of immunologists to make such determinations without undue experimentation.

It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody.

The present invention is further described by reference to the following non-limiting Figures and Examples.

- 40 -

In the Figures:

Figure 1 is a photographic representation showing the inflorescence length of wild-type

Arabidonsis thaliana Columbia plants (plants 1 and 3) and rsw1 plants (plants 2 and 4)

commenced, the bolts were removed and the re-growth followed in plants grown at each temperature.

Figure 2 is a photographic representation of a cryo-scanning electron micrograph showing misshapen epidermal cells in the cotyledons and hypocotyl of the rsw1 mutant when grown at 31°C for 10 days.

Figure 3 is a graphical representation of a gas chromatograph of alditol acetates of methylated sugars from a cellulose standard (top panel) and from the neutral glucan derived from shoots of rswl plants grown at 31°C (lower panel). The co-incident peaks show that the rswl glucan is 1,4-linked.

Figure 4 is a schematic representation of the contiguous region of Arabidopsis thaliana chromosome 4 (stippled box) between the cosmid markers g8300 and 06455, showing the location of overlapping YAC clones (open boxes) within the contiguous region. The position of the RSW1 locus is also indicated, approximately 1.2cM from g8300 and 0.9cM from 06455. The scale indicates 100kb in length. L, left-end of YAC; R, right-end of YAC. Above the representation of chromosome 4, the YAC fragments and cosmid clone fragments used to construct the contiguous region are indicated, using a prefix designation corresponding to the YAC or cosmid from which the fragments were obtained (eg yUP9E3, yUP20B12, etc) and a suffix designation indicating whether the fragment corresponds to the right-end (RE) or left-end (LE) of the YAC clone; N, North; S, South; CAPS, cleaved amplified polymorphic sequence (Konieczny and Ausubel, 1993) version of the g8300 marker.

- 41 -

Figure 5 is a schematic representation of a restriction map of construct 23H12 between the left T-DNA border (LB) and right T-DNA border (RB) sequences (top solid line), showing the position of the Arabidopsis thaliana RSW1 locus (stippled box). The line at the top of the figure indicates the region of 23H12 which is contained in construct pRSW1. The structure of the RSW1 gene between the translation start (ATG) and translation stop (TAG) codons is indicated at the bottom of the figure. Exons are indicated by filled boxes; introns are indicated by the solid black line. The alignment of EST clone T20782 to the 3'-end of the RSW1 gene, from near the end of exon 7 to the end of exon 14, is also indicated at the bottom of the figure. Restriction sites within 23H12 are as follows: B, BamHI; E, EcoRI; 10 H, HindIII; S, SalI; Sm, Smal.

- Figure 6 is a photographic representation showing complementation of the radial root swelling phenotype of the rsw1 mutant by transformation with construct 23H12. The rsw1 mutant was transformed with 23H12 as described in Example 6. Transformed rsw1 plants (centre group of three seedlings), untransformed rsw1 plants (left group of three seedlings) and untransformed A.thaliana Columbia plants (right group of three seedlings) were grown at 21°C for 5 days and then transferred to 31°C for a further 2 days, after which time the degree of root elongation and radial root swelling was determined.
- 20 Figure 7 is a photographic representation comparing wild-type Arabidopsis thaliana Columbia plants (right-hand side of the ruler) and A.thaliana Columbia plants transformed with the antisense RSW1 construct (i.e. EST T20782 expressed in the antisense orientation under control of the CaMV 35S promoter sequence; left-hand side of the ruler), showing inflorescence shortening at 21°C in plants transformed with the antisense RSW1 construct compared to untransformed Columbia plants. The phenotype of the antisense plants at 21°C is similar to the phenotype of the rsw1 mutant at 31°C. Inflorescence height is indicated in millimetres.
- Figure 8 is a schematic representation showing the first 90 amino acid residues of 30 Arabidopsis thaliana RSW1 aligned to the amino acid sequences of homologous polypeptides

from A. thaliana and other plant species. The shaded region indicates highly conserved sequences. Ath-A and Ath-B are closely related Arabidopsis thaliana cDNA clones identified by hybridisation screening using part of the RSW1 cDNA as a probe. S0542, rice EST clone (MAFF DNA bank, Japan); celA1 and celA2, cotton cDNA sequences expressed in cotton

factors. Amino acid designations are as indicated in Table 1 incorporated herein. Conserved cysteine residues are indicated by the asterisk.

o Hore Tearer at, 1990), So to trata and so ro-

Figure 9 is a schematic representation showing the alignment of the complete amino acid sequence of Arabidopsis thaliana RSW1 to the amino acid sequences of homologous polypeptides from A. thaliana and other plant species. The shaded region indicates highly conserved sequences. Ath-A and Ath-B are closely related Arabidopsis thaliana cDNA clones identified by hybridisation screening using part of the RSW1 cDNA as a probe. S0542, rice EST clone (MAFF DNA bank, Japan); celA1, cotton genetic sequence (Pear et al, 1996); D48636, a partial cDNA clone obtained from rice (Pear et al, 1996). Amino acid designations are as indicated in Table 1 incorporated herein. Numbering indicates the amino acid position in the RSW1 sequence.

Figure 10 is a schematic representation of the RSW1 polypeptide, showing the positions of putative transmembrane helices (hatched boxes), cysteine-rich region (Cys) and aspartate residues (D) and the QVLRW signature which are conserved between RSW1 and related amino acid sequences. Regions of RSW1 which are highly-conserved between putative cellulose biosynthesis polypeptides are indicated by the dark-shaded boxes, while less-conserved regions are indicated by the light-shaded boxes.

25

Figure 11 is a photographic representation of a Southern blot hybridisation of the 5'- end of the Arabidopsis thaliana RSW1 cDNA to Bg/III-digested DNA derived from A. thaliana (lane 1) and cotton (lane 2). Hybridisations were carried out under low stringency conditions at 55°C. Arrows indicate the positions of hybridising bands.

EXAMPLE 1

CHARACTERISATION OF THE CELLULOSE-DEFICIENT

Arabidopsis thaliana MUTANT rsw1

5 1. Morphology

The Arabidopsis thaliana rsw1 mutant was produced in a genetic background comprising the ecotype Columbia.

The altered root cell-shape and temperature sensitivity of the root morphology of the 10 Arabidopsis thaliana mutant rsw1 are disclosed, among other morphological mutants, by Baskin et al. (1992).

As shown in Figure 1, the present inventors have shown that the rsw1 mutant exhibits the surprising phenotype of having reduced inflorescence height when grown at 31°C, compared to wild-type Columbia plants grown under similar conditions. In contrast, when grown at 21°C, the inflorescence height of rsw1 is not significantly different from wild type plants grown under similar conditions, indicating that the shoot phenotype of rsw1 is conditional and temperature-dependent.

- 20 Furthermore, cryo-scanning electron microscopy of the epidermal cells of the *rsw*1 mutant indicates significant abnormality in cell shape, particularly in respect of those epidermal cells forming the leaves, hypocotyl and cotyledons, when the seedlings are grown at 31°C (Figure 2).
- 25 Rosettes (terminal complexes) are the putative hexameric cellulose synthase complexes of higher plant plasma membranes (Herth, 1985). Freeze-fractured root cells of Arabidopsis thaliana rswl plants grown at 18°C show cellulose microfibrils and rosettes on the PF face of the plasma membrane that resembles those of wild-type A. thaliana and other angiosperms. Transferring the rswl mutant to 31°C reduces the number of rosettes in the mutant within 30 min, leading to extensive loss after 3 hours. Plasma membrane particles

align in rows on prolonged exposure to the restrictive temperature. In contrast, there is no change in the appearance of cortical microtubules that align cellulose microfibrils, or of Golgi bodies that synthesise other wall polysaccharides and assemble rosettes.

5 2. Carbonyarate content

The effect of mutations in the RSW1 gene on the synthesis of cellulose and other carbohydrates was assessed by measuring in vivo incorporation of ¹⁴C (supplied as uniformly labelled glucose) into various cell wall fractions. Wild type (RSW1) and homozygous mutant rsw1 seed were germinated at 21°C on agar containing Hoagland's nutrients and 1% (w/v) 10 unlabelled glucose. After 5 d, half of the seedlings were transferred to 31°C for 1 d while the remainder were maintained at 21°C for the same time. Seedlings were covered with a solution containing Hoagland's nutrients and ¹⁴C-glucose and incubated for a further 3 h at the same temperature. Rinsed roots and shoots were separated and frozen in liquid nitrogen. Tissue was homogenised in cold, 0.5 M potassium phosphate buffer (0.5M KH₂PO₄, pH7.0) 15 and a crude cell wall fraction collected by centrifugation at 2800 rpm. The wall fraction was extracted with chloroform/methanol [1:1 (v/v)] at 40°C for 1 hour, followed by a brief incubation at 150°C, to remove lipids. The pellet was washed successively with 2ml methanol, 2ml acetone and twice with 2ml of deionised water. Finally, the pellet was extracted successively with dimethyl sulphoxide under nitrogen to remove starch; 0.5% 20 ammonium oxalate to remove pectins; 0.1 M KOH and 3 mg/ml NaBH₄ and then with 4 M KOH and 3 mg/ml NaBH₄ to extract hemicelluloses; boiling acetic acid/nitric acid/water [8:1:2 (v/v)], to extract any residual non-cellulosic carbohydrates and leave crystalline cellulose as the final insoluble pellet (Updegraph, 1969). All fractions were analysed by liquid scintillation counting and the counts in each fraction from the mutant were expressed 25 as a percentage of the counts in the wild type under the same conditions.

As shown in Table 3, mutant and wild type plants behave in quite similar fashion at 21°C (the permissive temperature) whereas, at the restrictive temperature of 31°C, the incorporation of ¹⁴C into cellulose is severely inhibited (to 36% of wild type) by the rsw1 30 mutation. The data in Table 3 indicate that cellulose synthesis is specifically inhibited in

- 45 -

the rsw1 mutant. The wild type RSW1 gene is therefore involved quite directly in cellulose synthesis and changing its sequence by mutation changes the rate of synthesis.

TABLE 3

İ			rswl plants expressed as a raction from wild type plants			
Pectins		Hemicelluloses		Cellulose		
21°C	31°C	21°C	31°C	21°C	31°C	
125	104	111	101	80	36	

10

5

In homozygous mutant rsw1 plants, the pectin fraction extracted by ammonium oxalate contained abundant glucose, atypical of true uronic acid-rich pectins. The great majority of the glucose remained in the supernatant when cetyltrimethylammonium bromide precipitated the negatively charged pectins.

3. Non-crystalline β-1,4-glucan content

The quantity of cellulose and the quantity of a non-crystalline β -1,4-glucan recovered from the ammonium oxalate fraction were determined for seedlings of wild type Columbia and for backcrossed, homozygous rswl that were grown for either 7 days at 21°C or alternatively, for 2 days at 21°C and 5 days at 31°C, on vertical agar plates containing growth medium (Baskin et al., 1992) plus 1% (w/v) glucose, and under continuous light (90 µmol m⁻² s⁻¹). Roots and shoots were separated from about 150 seedlings, freeze-dried to constant weight and ground in a mortar and pestle with 3 ml of cold 0.5 M potassium phosphate buffer (pH 7.0). The combined homogenate after two buffer rinses (2ml each) was centrifuged at 2800 x g for 10 min. After washing the pellet fraction twice with 2 ml buffer and twice with 2 ml distilled water, the pellet, comprising the crude cell wall fraction, and the pooled supernatants, comprising the phosphate buffer fraction were retained. The crude cell wall pellet fraction was stirred with two 3 ml aliquots of chloroform/methanol [1:1 (v/v)] for 1 hour at 40°C, 2 ml of methanol at 40°C for 30 min, 2 ml of acetone for 30 min, and twice with water. The whole

procedure repeated in the case of shoots. Combined supernatants were dried in a nitrogen stream. The pellet was successively extracted with: (i)3 ml of DMSO- water 9:1 [v/v], sealed under nitrogen, overnight with shaking, followed by two 2ml extractions using DMSO/water and three 2ml water washes; (ii) 3ml of ammonium oxalate (0.5 %) at 100°C for 1 hour,

borohydride, for 1 hour at 25°C (repeated once for root material or twice for shoot material), with a final wash with 2 ml water; (iv) 3 ml of 4 M KOH containing 1 mg/ml sodium borohydride, for 1 hour at 25°C (repeated once for root material or twice for shoot material). The final pellet was boiled with intermittent stirring in 3 ml of acetic acid-nitric acid-water 10 [8:1:2 (v/v)] (Updegraph 1969), combined with 2 water washes, and diluted with 5 ml water.

The insoluble residue of cellulose was solubilised in 67% (v/v) H₂SO₄, shown to contain greater than 97% (w/v) glucose using GC/MS (Fisons AS800/MD800) of alditol acetates (Doares *et al.*, 1991) and quantified in three independent samples by anthrone/H₂SO₄ reaction.

15 Results of GC/MS for pooled replica samples are presented in Table 4.

The non-crystalline β-1.4-glucan was recovered as the supernatant from the ammonium oxalate fraction when anionic pectins were precipitated by overnight incubation at 37°C with 2% (w/v) cetyltrimethylammonium bromide (CTAB) and collected by centrifugation at 2800 x g for 10 min. The glucan (250 µg/ml) or starch (Sigma; 200 µg/ml) were digested with mixtures of endocellulase (EC 3.2.1.4; Megazyme, Australia) from *Trichoderma* and almond β-glucosidase (EC 3.2.1.21; Sigma), or *Bacillus sp.* α-amylase (EC 3.2.1.1; Sigma) and rice α-glucosidase (EC 3.2.1.20; Sigma).

25 The material recovered in the supernatant from the ammonium oxalate fraction was shown to contain a pure β-1,4-glucan by demonstrating that: (i) only glucose was detectable when it was hydrolysed by 2 M TFA in a sealed tube for 1 h at 120°C in an autoclave, the supernatant (2000 g for 5 min) was dried under vacuum at 45°C to remove TFA and glucose was determined by GC/MS;
(ii) methylation (Needs and

30 Selvendran 1993) gave a dominant peak resolved by thin layer chromatography and by GC/MS

that was identical to that from a cellulose standard and so indicative of 1.4-linked glucan (Figure 3); and

(iii) the endo-cellulase and β -1,4-glucosidase mixture released 83 % of the TFA-releasable glucose from the glucan produced by rswl at 31°C while 5 the α-amylase/α-glucosidase mixture released no glucose from the glucan. Conversely, the α-amylase/α-glucosidase mixture released 95% of the TFA-releasable glucose from a starch sample, while the endo-cellulase/ β -1,4-glucosidase mixture released no glucose from starch.

Extractability of the glucan using ammonium oxalate, and the susceptibility of the glucan to 10 endocellulase/β-glucosidase and TFA hydrolysis indicate that the glucan in the rswl mutant is not crystalline, because it is the crystallinity of glucan which makes cellulose resistant to extraction and degradation.

Table 4 shows the quantity of glucose in cellulose determined by the anthrone/H₂SO₄ reaction 15 and the quantity in the non-crystalline glucan after TFA hydrolysis, for shoots of wild type and mutant rswl Arabidopsis plants. The data indicate that the production of cellulose and of the non-crystalline β-1,4-glucan can be manipulated by mutational changes in the RSW1 gene.

TABLE 4 20 Glucose contents of cellulose and of the ammonium oxalate-extractable glucan

	wild type		rswl	
	21°C	31°C	21°C	31°C
Cellulose	273+28	363+18*	218+20	159+19*
Glucan	22	58	24	195

All values nmol glucose mg-1 plant dry weight + sd (n=3).

25 * Differences significant at 0.001 % level.

4. Starch content

The quantity of starch recovered in the DMSO fraction from roots in the experiment described above was also determined by the anthrone/H₂SO₄ extraction (Table 5).

As shown in Table 5, the level of starch deposited in the rsw1 mutant is 4-fold that detectable in the roots of wild-type plants at the restrictive temperature of 31°C. A similar rise in starch is also seen if the data are expressed as nmol glucose per plant. There is no detectable difference in deposition at starch between rsw1 plants and wild-type plants at

TABLE 5

Quantity of starch (nmol glucose per mg dry weight of seedling) extracted from roots of rsw1 and wild type seedlings

		Phenotype		
10	Temperature	Wild-type	rswl mutant	
	21°C	22	18	
	31°C	37	126	

The composition of cell walls in the rsw1 mutant plant compared to wild type plants at the restrictive temperature of 31°C, is summarised in Table 6.

TABLE 6

Mol% composition of cell walls from shoots of rsw1 and wild-type seedlings grown at 31°C

!		Phenotype		
	Cell wall component	Wild-type	rsw1 mutant	
	Crystalline cellulose	38.4	16.5	
25	Non- crystalline β-1,4-glucan	8.5	27.1	
	Pectin	37.1	36.3	
	Alkali-soluble	15.6	19.8	
	Acid-soluble	0.3	0.4	

20

- 49 -

In conclusion, the *rsw*1 mutation disassembles cellulose synthase complexes in the plasma membrane, reduces cellulose accumulation and causes β -1,4-glucan to accumulate in a non-crystalline form.

5

EXAMPLE 2 MAPPING OF YAC CLONES TO THE rsw1 LOCUS

The rsw1 locus in the mutant Arabidopsis thaliana plant described in Example 1 above was 10 mapped to chromosome 4 of A. thaliana using RFLP gene mapping techniques(Chang et al., 1988; Nam et al., 1989) to analyse the F₂ or F₃ progeny derived from a Columbia (Co)/Landsberg (Ler) cross. In particular, the rsw1 mutation was shown to be linked genetically to the ga5 locus, which is a chromosome 4 visual marker in A. thaliana.

15 Based on an analysis of map distances and chromosomal break points in 293 F₂ or F₃ progeny derived from a Columbia (Co)/Landsberg (Ler) cross, rsw1 was localised to an approximately 2.1 cM region between the RFLP markers g8300 and 06455, approximately 1.2cM south of the CAPS (cleaved amplified polymorphic sequence; Konieczny and Ausubel, 1993) version of the g8300 marker (Figure 4).

20

The interval between g8300 and 06455 in which rswl residues was found to be spanned by an overlapping set of Yeast Artificial Chromosome (YAC) clones. The clones were obtained from Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia. The YACs were positioned in the g8300/06455 interval by hybridisation using known DNA molecular markers (from within the interval) and DNA fragments from the ends of the YACs. The length of the interval was estimated to comprise 900kb of DNA.

Refined gene mapping of recombinants within the region spanned by YAC clones established the genetic distance between the RFLP marker g8300 and the rsw1 locus.

The combination of genetic map distance data and the mapping of YAC clones within the region further localised the rswl locus to the YAC clone designated yUP5C8.

MAPPING OF cDNA CLONES TO THE YAC CLONE YUP5C8

An Arabidopsis thaliana cDNA clone designated T20782 was obtained from the public Arabidopsis Resource Centre, Ohio State University, 1735 Neil Avenue. Columbus, OH 43210, United States of America. The T20782 cDNA clone was localised broadly to the DNA interval on Arabidopsis chromosome 4 between the two markers g8300 and 06455 shown in Figure 4. Using a polymerase chain reaction (PCR) based approach DNA primers (5'-AGAACAGCAGATACACGGA-3' and 5'-CTGAAGAAGGCTGGACAAT-3') designed to the T20782 cDNA nucleotide sequence were used to screen Arabidopsis YAC clone libraries. The T20782 cDNA clone was found to localise to YACs (CIC1F9, CIC10E9, CIC11D9) identified on the Arabidopsis chromosome 4 g8300 and 06455 interval (Figure 4). The same approach was used to further localise clone T20782 to YAC clone yUP5C8, the same YAC designated to contain the rsw1 locus in the same chromosome interval (Figure 4).

20

Furthermore, amplification of the YAC clone yUP5C8 using primers derived from T20782 produces a 500bp fragment containing two putative exons identical to part of the T20782 nucleotide sequence, in addition to two intron sequences.

25 The cDNA T20782 was considered as a candidate gene involved in cellulose biosynthesis.

- 51 -

EXAMPLE 4

NUCLEOTIDE SEQUENCE ANALYSIS OF THE CDNA CLONE T20782

5 The nucleotide sequence of the cDNA clone T20782 is presented in SEQ ID NO: 1. The nucleotide sequence was obtained using a Dye Terminator Cycle Sequencing kit (Perkin Elmer cat. #401384) as recommended by the manufacturer. Four template clones were used for nucleotide sequencing to generate the sequence listed. The first template was the cDNA clone T20782. This template was sequenced using the following sequencing primers:

10

a)5'-CAATGCATTCATAGCTCCAGCCT-3'

b)5'-AAAAGGCTGGAGCTATGAATGCAT-3'

c)5'-TCACCGACAGATTCATCATACCCG-3'

d)5'- GACATGGAATCACCTTAACTGCC-3'

e)5'-CCATTCAGTCTTGTCTTCGTAACC-3'

f)5'-GGTTACGAAGACAAGACTGAAATGG-3'

g)5'-GAACCTCATAGGCATTGTGGGCTGG-3'

h)5'-GCAGGCTCTATATGGGTATGATCC-3'

i)Standard M13 forward sequencing primer.

i)Standard T7 sequencing primer.

The second template clone (T20782 SphI deletion clone) was constructed by creating a DNA deletion within the T20782 clone. The T20782 clone was digested with the restriction enzyme SphI, the enzyme was heat-killed, the DNA ligated and electroporated into NM522 25 E.coli host cells. The T20782 SphI deletion clone was then sequenced using a standard M13 forward sequencing primer. Two other deletion clones were made for DNA sequencing in a similar fashion but the restriction enzymes EcoRI and SmaI were used. The T20782 EcoRI deletion clone and the T20782 SmaI deletion clone were sequenced using a standard T7 sequencing primer. The DNA sequence shown in SEQ ID NO:1 is for one DNA strand only however those skilled in the art will be able to generate the nucleotide sequence of the

complementary strand from the data provided.

The amino acid sequence encoded by clone T20782 was derived and is set forth in SEQ ID NO:2.

The T20782 clone encodes all but the first Aspartate (D) residue of the D, D, D, QXXRW signature conserved in the general architecture of β-glycosyl transferases. In particular, T20782 encodes 5 amino acid residues of the D, D, D, QXXRW signature, between amino acid positions 109 and 370 of SEQ ID NO:2. The conserved Aspartate, Aspartate, 10 Glutamine. Arginine and Tryptophan amino acid residues are shown below, in bold type,

- 10 Glutamine. Arginine and Tryptophan amino acid residues are shown below, in bold type with the local amino acid residues also indicated:
 - 1. Amino acid residues 105 to 113 of SEQ ID NO:2:

LLNVDCDHY;

2. Amino acid residues 324 to 332 of SEQ ID NO:2:

SVTEDILTG; and

3. Amino acid residues 362 to 374 of SEQ ID NO:2:

DRLNQVLRWALGS.

- 20 It must be noted that these invariable amino acids merely indicate that the T20782 derived amino acid sequence belongs to a very broad group of glycosyl transferases. Some of these enzymes such as cellulose synthase, chitin synthase, alginate synthase and hyaluronic acid synthase produce functionally very different compounds.
- 25 The presence of the conserved amino acid residues merely indicate that the T20782 clone may encode a β-glycosyl transferase protein such as the cellulose gene product, cellulose synthase. The fact that the clone localises in the vicinity of a gene involved in cellulose biosynthesis is the key feature which now focus interest on the T20782 clone as a candidate for the RSW1 (cellulose synthase) gene.

- 53 -

The T20782 potentially codes for a cellulose synthase.

EXAMPLE 5

5 NUCLEOTIDE SEQUENCE ANALYSIS OF THE GENOMIC CLONE 23H12

Clone 23H12 contains approximately 21kb of *Arabidopsis thaliana* genomic DNA in the region between the left border and right border T-DNA sequences, and localises to the *RSW*1 candidate YAC yUP5C8. Clone 23H12 was isolated by hybridisation using EST20782 insert DNA. from a genomic DNA library made for plant transformation. Cosmid 12C4 was also shown to hybridize to the cDNA clone T20782, however this cosmid appears to comprise a partial genomic sequence corresponding to the related *Ath*-A cDNA sequence set forth in SEQ ID NO:7, for which the corresponding amino acid sequence is set forth in SEQ ID NO:8.

15

A restriction enzyme map of clone 23H12 is presented in Figure 5.

Nucleotide sequence of 8411bp of genomic DNA in the binary cosmid clone 23H12 was obtained (SEQ ID NO:3) by primer walking along the 23H12 template, using a Dye 20 Terminator Cycle Sequencing kit (Perkin Elmer cat. #401384) as recommended by the manufacturer. The following primers at least, were used for DNA sequencing of the 23H12 clone DNA:

	a)cs1-R	5'-CAATGCATTCATAGCTCCAGCCT-3'
25	b)cs1-F	5'-AAAAGGCTGGAGCTATGAATGCAT-3'
	c)up	5'-AGAACAGCAGATACACGGA-3'
	d)ve76-R2	5'-ATCCGTGTATCTGCTGTTCTTACC-3'
	e)est1-R	5'-AATGCTCTTGTTGCCAAAGCAC-3'
	f)sve76-F	5'-ATTGTCCAGCCTTCTTCAGG-3'
30	g)ve76-R	5'-CTGAAGAAGGCTGGACAATGC-3'

PCT/AU97/00402 WO 98/00549

- 54 -

h)B12-R1	5'-AGGTAAGCATAGCTGAACCATC-3'
i)B12-R2	5'-AGTAGATTGCAGATGGTTTTCTAC-3'
j)B12-R3	5'-TTCAATGGGTCCACTGTACTAAC-3'
k)B12-R4	5'-ATTCAGATGCACCATTGTC-3'

The structure of the RSW1 gene contained in cosmid clone 23H12 is also presented in Figure 5. As shown therein, coding sequences in 23H12, from the last 12 bp of exon 7 to the end of exon 14, correspond to the full T20782 cDNA sequence (i.e. SEQ ID NO:1). The nucleotide sequences of the RSW1 gene comprising exons 1 to 8 were amplified from 10 A.thaliana Columbia double-stranded cDNA, using amplification primers upstream of the RSW1 start site and a primer internal to the EST clone T20782.

The exons in the RSW1 gene range from 81bp to 585bp in length and all 5' and 3' intron/exon splice junctions conform to the conserved intron rule.

15

The RSW1 transcript comprises a 5'-untranslated sequence of at least 70bp in length, a 3243bp coding region and a 360bp 3'-untranslated region. Northern hybridization analyses indicate that the RSW1 transcript in wild-type A. thaliana roots, leaves and inflorescences is approximately 4.0kb in length, and that a similar transcript size occurs in mutant tissue 20 (data not shown).

The derived amino acid sequence of the RSW1 polypeptide encoded by the cosmid clone 23H12 (i.e. the polypeptide set forth in SEQ ID NO:6) is 1081 amino acids in length and contains the entire D, D, D, QXXRW signature characteristic of β -glycosyl transferase 25 proteins, between amino acid position 395 and amino acid position 822. The conserved Aspartate, Glutamine, Arginine and Tryptophan residues are shown below, in bold type, with the local amino acid residues also indicated:

1. amino acid residues 391 to 399 of SEQ ID NO:6:

YVSDDGSAM 30

- 55 -

2. Amino acid residues 557 to 565 of SEQ ID NO:6:

LLNVDCDHY;

3. Amino acid residues 776 to 784 of SEQ ID NO:6:

SVTEDILTG: and

4. Amino acid residues 814 to 826 of SEQ ID NO:6:

DRLNQVLRWALGS.

The second and third conserved Aspartate residues listed *supra*, and the fourth conserved amino acid sequence motif listed *supra* (i.e. QVLRW) are also present in the cDNA clone T20782 (see Example 4 above).

The 23H12 clone potentially encodes a cellulose synthase.

15 EXAMPLE 6

COMPLEMENTATION OF THE rsw1 MUTATION

The complementation of the cellulose mutant plant rsw1 is the key test to demonstrate the function of the clone 23H12 gene product. Complementation of the rsw1 phenotype was demonstrated by transforming the binary cosmid clone 23H12, or a derivative clone thereof encoding a functional gene product, into the Arabidopsis thaliana cellulose mutant rsw1. Two DNA constructs (23H12 and pRSW1) were used to complement the rswl mutant plant line.

25 1. Construct 23H12

5

Clone 23H12 is described in Example 5 and Figure 5.

2. Construct pRSW1

The 23H12 construct has an insert of about 21kb in length. To demonstrate that any 30 complementation of the phenotype of the rsw1 mutation is the result of expression of the gene

which corresponds to SEQ ID NO:3, a genetic construct, designated as pRSW1, comprising the putative RSW1 gene with most of the surrounding DNA deleted, was produced. A restriction enzyme (RE) map of the RSW1 gene insert in pRSW1 is provided in Figure 5.

binary plasmid pBIN19. Briefly, Escherichia coli cells containing cosmid 23H12 were grown in LB medium supplemented with tetracyclin (3.5 mg/L). Plasmid DNA was prepared by alkaline lysis and digested sequentially with restriction enzymes PvuII and SalI. Two co-migrating fragments of 9 kb and 10 kb. respectively, were isolated as a single fraction from a 0.8% (w/v) agarose gel. The RSW1 gene was contained on the 10 kb PvuII/SalI fragment. The 9 kb fragment appeared to be a PvuII cleavage product not comprising the RSW1 gene. The restriction fragments were ligated into pBIN19 digested with SmaI and SalI. An aliquot of the ligation mix was introduced by electroporation into E.coli strain XLB1. Colonies resistant to kanamycin (50 mg/L) were selected and subsequently characterised by restriction enzyme analysis to identify those clones which contained only the 10 kb PvuII/SalI fragment comprising the RSW1 gene, in pBIN19.

3. Transfer of the 23HI2 and pRSW1 constructs to Agrobacterium tumefaciens

Cosmid 23H12 was transferred to Agrobacterium by triparental mating, essentially as described by Ditta et al. (1980). Three bacterial strains as follows were mixed on solid LB medium without antibiotics: Strain 1 was an E. coli helper strain containing the mobilising plasmid pRK2013, grown to stationary phase; Strain 2 was E.coli containing cosmid 23H12, grown to stationary phase; and Strain 3 was an exponential-phase culture of A. tumefaciens strain AGL1 (Lazo et al., 1991). The mixture was allowed to grow over night at 28°C, before an aliquot was streaked out on solid LB medium containing antibiotics (ampicillin 50 mg/L, rifampicin 50 mg/L, tetracyclin 3.5 mg/L) to select for transformed A. tumefaciens AGL1. Resistant colonies appeared after 2-3 days at 28°C and were streaked out once again on selective medium for further purification. Selected colonies were then subcultured in liquid LB medium supplemented with rifampicin (50 mg/L) and tetracyclin (3.5 mg/L) and stored at -80°C.

- 57 -

Plasmid pRSW1 (initially designated as p2029) was introduced into A. tumefaciens strain AGL1 by electroporation.

4. Transformation of rswl plants

5 The *rswl* plant line was transformed with constructs 23H12 and pRSW1 using vacuum infiltration essentially as described by Bechtold et al. (1993).

5. Analysis of radial swelling in transformants

Complementation of the radial swelling (rsw) phenotype, which is characteristic of the rsw1 mutant plant, was assayed by germinating transformed (i.e. T1 seed) rsw1seeds obtained as described supra on Hoaglands plates containing 50µg/ml kanamycin. Plates containing the transformed seeds were incubated at 21°C for 10-12 days. Kanamycin-resistant seedlings were transferred to fresh Hoaglands plates containing 50µg/ml kanamycin and incubated at 31°C for 2 days. Following this incubation, the root tip was examined for a radial swelling phenotype. Under these conditions, the roots of wild-type plants do not show any radial swelling phenotype however, the roots of rsw1 plants show clear radial swelling at the root tip and also have a short root compared to the wild-type plants. As a consequence, determination of the radial swelling phenotype of the transformed plants was indicative of successful complementation of the rsw1 phenotype.

20

The kanamycin-resistant seedlings were maintained by further growth of seedlings at 21 °C, following the high temperature incubation. Once plants had recovered, the seedlings were transferred to soil and grown in cabinets at 21 °C (16 hr light/8 hr dark cycle). T2 seed was then harvested from mature individual plants.

25

Using the 23H12 construct for rswl transformation, a total of 262 kanamycin-resistant seedlings were obtained. All of these transformants were tested for complementation of the root radial swelling phenotype. A total of 230 seedlings showed a wild type root phenotype, while only 32 seedlings showed the radial swelling root phenotype characteristic of rswl plants. By way of example, Figure 6 shows the phenotypes of transformed seedlings compared

to untransformed wild-type and rsw1 seedlings, following incubation at 31°C. As shown in Figure 6, there is clear complementation of the radial swelling phenotype in the transformed seedlings, with normal root length being exhibited by the transformed seedlings at 31°C

were obtained. All of the 11 seedlings tested for complementation of the root radial swelling phenotype showed a wild type root phenotype and none of the seedlings showed any signs of radial swelling in the roots (data not shown).

10 6. General morphological analysis of the complemented rswl mutant line

Further characterisation of the complemented rswl plants has shown that other morphological characteristics of rswl have also been restored in the transgenic lines, for example the bolt (inflorescence) height, and the ability of the plants to grow wild type cotyledons, leaves, trichomes, siliques and flowers at 31 °C (data not shown).

15

7. Biochemical complementation of the rswl mutant line

T2 seed from transformations using cosmid 23H12 as described *supra* or alternatively, using the binary plasmid pBin19 which lacks any *RSW*1 gene sequences, was sown on Hoagland's solid media containing kanamycin (50µg/ml), incubated for 2 days at 21°C and then transferred to 31°C for 5 days. Wild-type *A.thaliana* Columbia plants were grown under similar conditions but without kanamycin in the growth medium. Kanamycin resistant T2 seedlings which have at least one copy of the 23H12 cosmid sequence, and wild-type seedlings, were collected and frozen for cellulose analysis.

25 Cellulose levels were determined as acetic-nitric acid insoluble material (Updegraph, 1969) for 10 lines of kanamycin-resistant T2 plants transformed with the 23H12 cosmid sequence, and compared to the cellulose levels in rsw1 mutant plants, wild-type A.thaliana Columbia plants and A.thaliana Columbia plants transformed with the binary plasmid pBin19. The results are provided in Table 7.

- 59 -

As shown in Table 7, the cellulose levels have been significantly elevated in the complemented rswl (T2) plants, compared to the cellulose levels measured in the rswl mutant parent plant. In fact, cellulose levels in the 23H12-transformed plants, expressed relative to the fresh weight of plant material or on a per seedling basis, are not significantly different from the cellulose levels of either wild-type Arabidopsis thaliana Columbia plants or A.thaliana Columbia transformed with the binary plasmid pBin19. These data indicate that the 23H12 cosmid is able to fully complement the cellulose-deficient phenotype of the rsw1 mutant.

Homozygous T3 lines are generated to confirm the data presented in Table 7.

10

Furthermore, data presented in Table 7 indicate that there is no difference in the rate of growth of the T2 transformed rsw1 plants and wild-type plants at 31°C, because the fresh weight of such plants does not differ significantly. In contrast, the fresh weight of mutant rsw1 seedlings grown under identical conditions is only approximately 55% of the level observed in T2 lines transformed with 23H12 (range about 30% to about 80%). These data support the conclusion that cellulose levels have been manipulated in the complemented rsw1 (T2) plants.

Furthermore, the rate of cellulose synthesis in 23H12-transformed plants and wild-type 20 plants at 31°C, as measured by ¹⁴C incorporation is also determined.

Furthermore, the β -1,4-glucan levels and starch levels in the 23H12 transformant lines are shown to be similar to the β -1,4-glucan and starch levels in wild-type plants.

- 60 -

TABLE 7
CELLULOSE LEVELS IN rsw1 PLANTS TRANSFORMED
WITH COSMID CLONE 23H12

	PLANT LINE	SAMPLE SIZE (No. of plants)	SEEDLING FRESH WEIGHT (mg)	CELLULOSE (mg cellulose/ 100 mg tissue)	CELLULOSE (mg cellulose/ seedling)
	1.2 (rsw1+23H12)	126	2.51	1.23	0.031
10	1.4 (rsw1+23H12)	132	2.25	2.50	0.056
	2.1 (rsw1+23H12)	126	3.23	1.29	0.042
	3.1 (rsw1+23H12)	127	3.75	1.23	0.046
	3.10 (rsw1+23H12)	128	3.52	1.69	0.060
15	4.4 (rsw1+23H12)	110	5.14	1.31	0.067
	4.5 (rswl+23H12)	125	3.18	1.26	0.040
	5.3 (rsw1+23H12)	124	2.77	1.17	0.032
	9.2 (rsw1+23H12)	125	2.26	1.41	0.032
20	10.8 (rsw1+23H12)	126	2.4	1.20	0.029
	Columbia/pBin19	106	2.64	1.34	0.035
	Columbia	178	2.73	1.18	0.032
!	rsw1 mutant	179	1.77	0.84	0.015

25

EXAMPLE 7

DETERMINATION OF THE FULL-LENGTH NUCLEOTIDE SEQUENCE ENCODING THE WILD-TYPE RSW1 POLYPEPTIDE

5 Arabidopsis thaliana double-stranded cDNA and cDNA libraries were prepared using the CAPFINDER cDNA kit (Clontech). RNA was isolated from wild-type Columbia grown in sterile conditions for 21 days.

Approximately 100,000 cDNA clones in an unamplified cDNA library were screened under standard hybridization conditions at 65°C, using a probe comprising ³²P-labelled DNA amplified from double stranded cDNA. To prepare the hybridization probe, the following amplification primers were used:

- 1. 2280-F:5'GAATCGGCTACGAATTTCCCA 3'
- 2. 2370-F:5'TTGGTTGCTGGATCCTACCGG 3'
- 15 3. csp1-R:5'GGT TCT AAA TCT TCT TCC GTC 3'

wherein the primer combinations were either 2280-F/csp1-R or 2370-F/csp1-R. The primer 2280-F corresponds to nucleotide positions 2226 to 2246 in SEQ ID NO:3, upstream of the translation start site. The primer 2370-F corresponds to nucleotide positions 2314 to 2334 in SEQ ID NO:3, encoding amino acids 7 through 13 of the RSW1 polypeptide. The primer csp1-R comprises nucleotide sequences complementary to nucleotides 588 to 608 of the T20782 clone (SEQ ID NO:1) corresponding to nucleotides 6120 to 6140 of SEQ ID NO:3. The hybridization probes produced are approximately 1858 nucleotides in length (2280-F/csp1-R primer combination) or 1946 nucleotides in length (2370-F/csp1-R primer 25 combination).

Five hybridizing bacteriophage clones were identified, which were plaque-purified to homogeneity during two successive rounds of screening. Plasmids were rescued from the positively-hybridizing bacteriophage clones, using the Stratagene excision protocol for the ZapExpressTM vector according to the manufacturer's instructions. Colony hybridizations

confirmed the identity of the clones.

Isolated cDNA clones were sequenced by primer walking similar to the method described in Examples 4 and 5 supra.

A full-length wild-type RSW1 nucleotide sequence was compiled from the nucleotide sequences of two cDNA clones. First, the 3'-end of the cDNA, encoding amino acids 453-1081 of RSW1, corresponded to the nucleotide sequence of the EST clone T20782 (SEQ ID NO:1). The remaining cDNA sequence, encoding amino acids 1-654 of RSW1, was generated by amplification of the 5'-end from cDNA, using primer 2280-F, which comprises nucleotide sequences approximately 50-70bp upstream of the RSW1 translation start site in cosmid 23 H12, and primer csp1-R, which comprises nucleotide sequences complementary to nucleotides 588 to 608 of the T20782 clone (SEQ ID NO:1).

- 15 Several amplified clones are sequenced to show that no nucleotide errors were introduced by the amplification process. The 5' and 3' nucleotide sequences are spliced together to produce the complete RSWI open reading frame and 3'-untranslated region provided in SEQ ID NO:5.
- 20 Those skilled in the art will be aware that the 5'-end and 3'-end of the two incomplete cDNAs are spliced together to obtain a full-length cDNA clone, the nucleotide sequence of which is set forth in SEQ ID NO:5.

Of the remaining cDNA clones, no isolated cDNA clone comprised a nucleotide sequence which precisely matched the nucleotide sequence of the RSW1 gene present in cosmid 23H12. However, several clones containing closely-related sequences were obtained, as summarised in Table 8. The nucleotide sequences of the Ath-A and Ath-B cDNAs are provided herein as SEQ ID Nos: 7 and 9, respectively.

- 63 -

TABLE 8
CHARACTERISATION OF A. thaliana cDNA CLONES

	CLONE NAME	DESCRIPTION	LENGTH	SEQ ID NO:
	RSW1.1A	chimeric clone	partial	not provided
5	RSW1A chimeric clone		partial	not provided
	Ath-A	12C4 cDNA	full-length	SEQ ID NO:7
	Ath-B	new sequence	full-length	SEQ ID NO:9
	RSW4A	identical to Ath-B	full-length	not provided

10 The derived amino acid sequences encoded by the cDNAs listed in Table 8, is provided in Figures 8 and 9 and SEQ ID Nos: 8 and 10 herein.

Figure 10 a schematic representation of the important features of the RSW1 polypeptide which are conserved within A.thaliana and between A.thaliana and other plant species. In addition to the species indicated in Figure 10, the present inventors have also identified maize, wheat, barley and Brassica ssp. cellulose biosynthetic genes by homology search. Accordingly, the present invention extends to cellulose genes and cellulose biosynthetic polypeptides as hereinbefore defined, derived from any plant species, including A. thaliana, cotton, rice, wheat, barley, maize, Eucalyptus ssp., Brassica ssp. Pinus ssp., Populus ssp., 20 Picea ssp., hemp, jute and flax, amongst others.

EXAMPLE 8 ISOLATION OF FULL-LENGTH NUCLEOTIDE SEQUENCE ENCODING THE MUTANT RSW1 POLYPEPTIDE

25

Arabidopsis thaliana double-stranded cDNA and cDNA libraries were prepared using the CAPFINDER cDNA kit (Clontech). RNA was isolated from Arabidopsis thaliana Columbia rsw1 mutant plants grown in sterile conditions for 21 days.

30 The full-length rsw1 mutant nucleotide sequence was generated by sequencing two amplified

DNA fragments spanning the rsw1 mutant gene. The 5'- end sequence of the cDNA (comprising the 5'-untranslated region and exons 1-11) was amplified using the primer combination 2280-F/csp1-R (Example 7). The 3'-end sequence was amplified using the primers EST1-F and cs3-R set forth below:

2. Primer cs3-R:

5'GACATGGAATCACCTTAACTGCC 3'

wherein primer EST1-F corresponds to nucleotide positions 1399-1420 of SEQ ID NO:5 (within exon 8) and primer cs3-R is complementary to nucleotides 3335-3359 of SEQ ID NO:5 (within the 3'-untranslated region of the wild-type transcript).

The full-length sequence of the mutant rsw1 transcript is set forth herein as SEQ ID NO:11.

Whilst not being bound by any theory or mode of action, a single nucleotide substitution in the rsw1 mutant nucleotide sequence (nucleotide position 1716 in SEQ ID NO:11), relative to the wild-type RSW1 nucleotide sequence (nucleotide position 1646 in SEQ ID NO:5), resulting in Ala549 being substituted with Val549 in the mutant polypeptide, may contribute to the altered activity of the RSW1 polypeptide at non-permissive temperatures such as 31°C. Additional amino acid substitutions are also contemplated by the present invention, to alter the activity of the RSW1 polypeptide, or to make the polypeptide temperature-sensitive.

EXAMPLE 9

ANTISENSE INHIBITION OF CELLULOSE PRODUCTION IN TRANSGENIC PLANTS

1. Construction of an antisense RSW1 binary vector

One example of transgenic plants in which cellulose production is inhibited is provided by the expression of an antisense genetic construct therein. Antisense technology is used to target expression of a cellulose gene(s) to reduce the amount of cellulose produced by

25

- 65 -

transgenic plants.

By way of exemplification, an antisense plant transformation construct has been engineered to contain the T20782 cDNA insert (or a part thereof) in the antisense orientation and in 5 operable connection with the CaMV 35S promoter present in the binary plasmid pRD410 (Datla et al. 1992). More particularly, the T20782 cDNA clone, which comprises the 3'-end of the wild-type RSW1 gene, was digested with XbaI and KpnI and cloned into the kanamycin-resistant derivative of pGEM3zf(-), designated as plasmid, pJKKMf(-). The RSW1 sequence was sub-cloned, in the antisense orientation, into the binary vector pRD410 as a XbaI/SacI fragment, thereby replacing the β-glucuronidase (GUS or uidA) gene. This allows the RSW1 sequence to be transcribed in the antisense orientation under the control of the CaMV 35S promoter.

The antisense RSW1 binary plasmid vector was transferred to Agrobacterium tumefaciens strain AGL1, by triparental mating and selection on rifampicin and kanamycin, as described by Lazo et al. (1991). The presence of the RSW1 insert in transformed A.tumefaciens cells was confirmed by Southern hybridization analysis (Southern, 1975). The construct was shown to be free of deletion or rearrangements prior to transformation of plant tissues, by back-transformation into Escherichia coli strain JM101 and restriction digestion analysis.

20

2. Transformation of Arabidopsis thaliana

Eight pots, each containing approximately 16 A. thaliana ecotype Columbia plants, were grown under standard conditions. Plant tissue was transformed with the antisense RSW1 binary plasmid by vacuum infiltration as described by Bechtold et al (1993). Infiltration media contained 2.5% (w/v) sucrose and plants were infiltrated for 2 min until a vacuum of approximately 400mm Hg was obtained. The vacuum connection was shut off and plants allowed to sit under vacuum for 5 min.

Approximately 34,000 T1 seed was screened on MS plates containing 50µg/ml kanamycin, 30 to select for plants containing the antisense RSW1 construct. Of the T1 seed sown, 135

kanamycin-resistant seedlings were identified, of which 91 were transferred into soil and grown at 21°C under a long-day photoperiod (16hr light; 8hr dark).

Of the 91 transgenic lines, 19 lines were chosen for further analysis which had anther

consequence, required hand-pollination to obtain T2 seed therefrom.

T2 seed from 14 of these 19 lines was plated out onto vertical Hoaglands plates containing kanamycin to determine segregation ratios. Between five and ten seed were plated per transgenic line. Control seeds, including A. thaliana Columbia containing the binary vector pBIN19 (Bevan, 1984) and segregating 3:1 for kanamycin resistance, and the rswl mutant transformed with the NPTII gene, also segregating 3:1 for kanamycin resistance, were grown under the same conditions. Kanamycin-resistant plants were transferred to soil and grown at 21°C under long days, until flowering. Untransformed Arabidopsis thaliana Columbia plants were also grown under similar conditions, in the absence of kanamycin.

3. Morphology of antisense- RSW1 plants

A comparison of the morphology of antisense RSW1 plants grown at 21°C, to mutant rswl plants grown at the non-permissive temperature (i.e. 31°C) has identified a number of common 20 phenotypes. For example, the antisense plants exhibit reduced fertility, inflorescence shortening and have short anthers, compared to wild-type plants, when grown at 21°C. These phenotypes are also observed in mutant rswl plants grown at 31°C. These results suggest that the antisense construct in the transgenic plants may be targeting the expression of the wild-type RSW1 gene at 21°C.

25

Figure 7 shows the reduced inflorescence (bolt) height in antisense 35S-RSW1 plants compared to wild-type A. thaliana Columbia plants grown under identical conditions.

4. Cell wall carbohydrate analysis of antisense plants.

30 T3 plants which are homozygous for the 35S-RSW1 antisense construct are generated and the

- 67 -

content of cellulose therein is determined as described in Example 1. Plants expressing the antisense construct are shown to have significantly less cellulose in their cell walls, compared to wild-type plants. Additionally, the levels of non-crystalline β-1,4-glucan and starch are elevated in the cells of antisense plants, compared to otherwise isogenic plant lines which have not been transformed with the antisense genetic construct.

5. Antisense 35S-RSW1 mRNA expression levels in transgenic plants

Total RNA was extracted from 0.2g of leaf tissue derived from 33 kanamycin-resistant T1 plants containing the antisense 35S-RSW1 genetic construct, essentially according to 10 Longemann et al. (1986). Total RNA (25 μg) was separated on a 2.2M formaldehyde/agarose gel, blotted onto nylon filters and hybridized to a riboprobe comprising the sense strand sequence of the cDNA clone T20782. To produce the riboprobe, T7 RNA polymerase was used to transcribe sense RNA from a linearised plasmid template containing T20782, in the presence of [α-32P]UTP. Hybridizations and subsequent washes were performed as described by Dolferus et al. (1994). Hybridized membranes were exposed to Phosphor screens (Molecular Dynamics, USA).

The levels of expression of the RSW1 antisense transcript were determined and compared to the level of fertility observed for the plant lines. As shown in Table 9, the level of antisense gene expression is correlated with the reduced fertility phenotype of the antisense plants. In 13 lines, a very high or high level of expression of the 35S-RSW1 antisense gene was observed and, in 11 of these lines fertility was reduced. Only lines 2W and 3E which expressed high to very high levels of antisense mRNA, appeared to be fully fertile. In 12 lines which expressed medium levels of antisense mRNA, approximately one-half were fertile and one-half appeared to exhibit reduced fertility. In contrast, in 8 plant lines in which only a low or very low level of expression of the antisense 35S-RSW1 genetic construct was observed, a wild-type (i.e. fertile) phenotype was observed for all but one transgenic line, line 2R.

Data presented in Table 9 and Figure 7 indicate that the phenotype of the cellulose-deficient 30 mutant rsw1 may be reproduced by expressing antisense RSW1 genetic constructs in transgenic

- 68 -

plants.

To confirm reduced cellulose synthesis and/or deposition in transgenic plants expressing the antisense RSW1 gene, the level of cellulose is measured by the ¹⁴C incorporation assay or

production in otherwise isogenic wild-type plants. Cellulose production in the transgenic plants is shown to be significantly reduced compared to wild-type plants. The severity of phenotype of the transgenic plants thus produced varies considerably, depending to some extent upon the level of inhibition of cellulose biosynthesis.

10

TABLE 9

LEVELS OF ANTISENSE GENE EXPRESSION AND FERTILITY IN T1 LINES OF ANTISENSE 35S-RSW1 PLANTS

5	TI PLANT	ANTISENSE 35S- <i>RSW</i> 1	FERTILITY	T1 PLANT	ANTISENSE 35S- <i>RSW</i> 1	FERTILITY
	LINE	EXPRESSION	TERTIERT	LINE	EXPRESSION	PERTIETT
	В	very high	sterile*	2H	medium	fertile
	2B	very high	sterile*	С	medium	sterile*
	3E	very high	fertile	F	medium	sterile*
10	2E	high	sterile*	2Q	medium	fertile
	2K	high	sterile*	3P	medium	sterile*
·	2M	high	sterile*	3T	medium	fertile
	20	high	sterile*	5D	medium	sterile*
	2P	high	sterile*	6A	medium	fertile
15	2W	high	fertile	8E	low	fertile
	2Z	high	sterile*	2R	low	sterile*
	3G	high	sterile*	7A .	low	fertile
	3Q	high	sterile*	7S	low	fertile
ſ	7Q	high	sterile*	70	low	fertile
20	7N	medium	sterile*	7R	low	fertile
	7G	medium	fertile	1B	very low	fertile
ľ	1C	medium	sterile*	2 U	very low	fertile
	2X	medium	sterile*		that hand nothing	

^{*}sterile phenotype not indicative of complete sterility, but that hand pollination at least, is

²⁵ required to obtain seed from such plants.

- 70 -

EXAMPLE 10 RSW1 RELATED SEQUENCES IN RICE PLANTS

To identify RSW1 related nucleotide sequences in rice, a genetic sequence database was

Arabidopsis thaliana RSW1 nucleotide sequences described in the preceding Examples. Rice EST S0542 (MAFF DNA bank, Japan) was identified, for which only a partial nucleotide sequences was available. Additionally, before the instant invention, there was no probable function attached to the rice EST S0542 sequence.

10

The present inventors have obtained the complete nucleotide sequence of clone S0542 and derived the amino acid sequence encoded therefor. The S0542 cDNA is only 1741bp in length and appears to be a partial cDNA clone because, although it comprises 100bp of 5'-untranslated sequence and contains the ATG start codon, it is truncated at 3'-end and, as a consequence encodes only the first 547 amino acid residues of the rice RSW1 or RSW1-like polypeptide. Based upon the length of the corresponding *Arabidopsis thaliana* RSW1 polypeptide (1081 amino acids), the rice RSW1 sequence set forth in SEQ ID NO:14 appears to contain approximately one-half of the complete amino acid sequence.

- The N-terminal half of the rice RSW1 amino acid sequence is approximately 70% identical to the Arabidopsis thaliana RSW1 polypeptide set forth in SEQ ID NO:6, with higher homology (approximately 90%) occurring between amino acid residues 271-547 of the rice sequence. These data strongly suggest that S0542 is the rice homologue of the A. thaliana RSW1 gene. Alignments of rice, A. thaliana and cotton RSW1 amino acid sequences are presented in Figures 9 and 10.
- To isolate full-length cDNA clones and genomic clone equivalents of S0542 (this study and MAFF DNA bank, Japan) or D48636 (Pear et al., 1996), cDNA and genomic clone libraries are produced using rice mRNA and genomic DNA respectively, and screened by hybridisation using the S0542 or D48636 cDNAs as a probe, essentially as described herein. Positive-

- 71 -

hybridising plaques are identified and plaque-purified, during further rounds of screening by hybridisation, to single plaques.

The rice clones are sequenced as described in the preceding Examples to determine the complete nucleotide sequences of the rice RSW1 genes and derived amino acid sequences therefor. Those skilled in the art will be aware that such gene sequences are useful for the production of transgenic plants, in particular transgenic cereal plants having altered cellulose content and/or quality, using standard techniques. The present invention extends to all such genetic sequences and applications therefor.

10

EXAMPLE 11 RSW1 RELATED SEQUENCES IN COTTON PLANTS

15 A ³²P-labelled *RSW*1 PCR fragment was used to screen approximately 200,000 cDNA clones in a cotton fibre cDNA library. The *RSW*1 PCR probe was initially amplified from *Arabidopsis thaliana* wild type cDNA using the primers 2280-F and csp1-R described in the preceding Examples, and then re-amplified using the primer combination 2370-F/csp1-R, also described in the preceding Examples.

20

Hybridisations were carried out under low stringency conditions at 55°C.

Six putative positive-hybridising plaques were identified in the first screening round. Using two further rounds of screening by hybridisation, four of these plaques were purified to single plaques. Three plaques hybridise very strongly to the RSW1 probe while the fourth plaque hybridises less intensely.

We conclude that the positive-hybridising plaques which have been purified are strong candidates for comprising cotton RSW1 gene sequences or RSW1-like gene sequences.

30 Furthermore, the cotton cDNAs may encode the catalytic subunit of cellulose synthase,

- 72 -

because the subunit protein architecture of cellulose synthase appears to be highly conserved among plants as highlighted in the preceding Example.

Furthermore, a Southern blot of cotton genomic DNA digested with BgIII was hybridised with

are presented in Figure 11. These data demonstrate that RSW1-related sequences exist in the cotton genome.

The cotton cDNA clones described herein are sequenced as described in the preceding Examples and used to produce transgenic cotton plants having altered fibre characteristics. The cDNAs are also used to genetically alter the cellulose content and/or quality of other plants, using standard techniques.

EXAMPLE 12 RSW1 RELATED SEQUENCES IN EUCALYPTUS SSP.

Putative Eucalyptus ssp. cellulose synthase catalytic subunit gene fragments were obtained by amplification using PCR. DNA primers were designed to conserved amino acid residues found in the Arabidopsis thaliana RSW1 and 12C4 amino acid sequences. Three primers were used 20 for PCR. The primers are listed below:

pcsF-I 5'- A A/G A A G A T I G A C/T T A C/T C/T T I A A A/G G A C/T A A-3'
pcsR-II 5'-A T I G T I G G I G T I C G/T A/G T T C/T T G A/T/G/C C T/G A/T/C/G C C -3'
pcsF-II 5'- G C I A T G A A A/G A/C G I G A I T A C/T G A A/G G A -3'

Using standard PCR conditions (50°C annealing temperature) and solutions, the primer sets pcsF-I/pcsR-II and pcsF-II/pcsR-II were used to amplify genetic sequences from pooled *Eucalyptus ssp.* cDNA. In the first reaction primers pcsF-I and pcsR-II were used to generate a fragment approximately 700 bp in length. In the second PCR reaction, which used primers pcsF-II and pcsR-II, a fragment estimated to 700 bp was obtained. The sizes of the PCR

25

- 73 -

fragments are within the size range estimated for the corresponding Arabidopsis thaliana sequences.

We conclude that the amplified *Eucalyptus ssp.* PCR fragments are likely to be related to the 5 *Arabidopsis thaliana RSW*1 gene and may encode at least a part of the *Eucalyptus ssp.* cellulose synthase catalytic subunit.

The Eucalyptus ssp. PCR clones described herein are sequenced as described in the preceding Examples and used to isolate the corresponding full-length Eucalyptus ssp cDNAs and genomic gene equivalents. Those skilled in the art will be aware that such gene sequences are useful for the production of transgenic plants, in particular transgenic Eucalyptus ssp plants having altered cellulose content and/or quality, using standard techniques. The present invention extends to all such genetic sequences and applications therefor.

15

EXAMPLE 13 NON-CRYSTALLINE B-1,4-GLUCAN AS A MODIFIER OF CELL WALL PROPERTIES

- 20 The properties of plant cell walls depend on the carbohydrates, proteins and other polymers of which they are composed and the complex ways in which they interact. Increasing the quantities of non-crystalline β-1,4-glucan in cell walls affects those wall properties which influence mechanical, nutritional and many other qualities as well as having secondary consequences resulting from the diversion of carbon into non-crystalline glucan at the expense 25 of other uses. To illustrate one of these effects, we investigated the ability of the non-crystalline glucan to hydrogen bond to other wall components particularly cellulose in the way that has been shown to be important for wall mechanics.
- Hemicelluloses such as xyloglucans cross-link cellulose microfibrils by hydrogen bonding to 30 the microfibril surface (Levy et al., 1991). Since the β -1,4-glucan backbone of xyloglucan is

thought to be responsible for hydrogen bonding (with the xylose, galactose and fucose substitutions limiting the capacity to form further hydrogen bonds) we can expect the non-crystalline β -1.4-glucan also to have a capacity to hydrogen bond and cross link cellulose. The effectiveness of strong alkalis in extracting xyloglucans is thought to relate to their disruption

To demonstrate that the non-crystalline β-1,4-glucan forms similar associations with the cellulose microfibrils, we examined whether the 4 M KOH fraction, extracted from shoots of the rsw1 mutant and from wild type RSW1 plants, contained non-crystalline glucan in addition to xyloglucan. The non-crystalline glucan was separated from xyloglucan in the 4 M KOH extract by dialysing the neutralised extract against distilled water and centrifuging at 14000 g for 1 hour. The pellet was shown to be a pure β-1,4-glucan by using the methods for monosaccharide analysis, methylation analysis and enzyme digestion used to characterise the glucan in the ammonium oxalate fraction (see Example 1).

15

Table 10 shows the presence of substantial quantities of glucan recovered in pure form in the pellet from 4 M KOH fractions extracted from the overproducing rsw1 mutant of Arabidopsis thaliana. These data also demonstrate the presence of smaller quantities of non-crystalline β-1,4-glucan in the 4 M KOH fraction from wild type plants, compared to rsw1. particularly 20 when grown at 31 °C.

TABLE 10

Glucose contents* of 4M KOH fractions from shoots of wild-type and
rsw1mutant Arabidopsis thaliana plants

Glucose fraction	wild	-type	rsw1 r	nutant
	21°C	31°C	21°C	31°C
xyloglucan and non-crystalline				
glucan in whole extract	36.4	56.9	27.1	93.1
non-crystalline glucan in pellet	7.8	20.5	7.6	56.0

^{*,} nmol glucose/ mg plant dry weight after TFA hydrolysis

- 75 -

The monosaccharide composition of the supernatant remaining after centrifugation was determined after TFA hydrolysis. These data, and data from methylation analysis, are consistent with the supernatant being a relatively pure xyloglucan. The supernatant was free of glucan, because no glucose could be released by the endocellulase/β-glucosidase mixture that released glucose from β-1,4-glucan.

The presence of both non-crystalline β -1,4-glucan and xyloglucan in the 4 M KOH fraction, when taken together with the implications from structural predictions (Levy *et al*, 1991), is consistent with some of the non-crystalline β -1,4-glucan in the wall hydrogen bonding to 10 cellulose microfibrils in similar fashion to the β -1,4-glucan backbone of xyloglucan.

The cross linking provided when xyloglucans and other hemicelluloses bind to two or more microfibrils is an important determinant of the mechanical properties of cellulosic walls (Hayashi, 1989). The effects of increasing the amounts of non-crystalline β-1,4-glucan in walls are likely to be greatest in walls which otherwise possess relatively low levels of cross linking as a result of high ratios of cellulose: hemicelluloses. Such conditions are common in secondary walls including those of various fibres, and the cellulose:hemicellulose ratio is particularly high in cotton fibres.

20 The effects on wall mechanical properties of overproducing non-crystalline glucan are shown by transforming plants with the mutant allele of rswl (SEQ ID NO:11) operably under the control of either the RSW1 promoter derived from SEQ ID NO:3 or SEQ ID NO:4 or alternatively, an appropriate constitutive promoter such as the CaMV 35S promoter. Production of non-crystalline glucan is quantified by fractionating the cell walls using the methods described above to show in particular that non-crystalline glucan is recovered in the 4 M KOH fraction. Mechanical properties of the cell walls are measured using standard methods for fibre analysis to study parameters such as stress-strain curves, and breaking strain, amongst other properties.

- 76 -

EXAMPLE 14 OVER-EXPRESSION OF CELLULOSE SYNTHASE IN TRANSGENIC PLANTS

oc cellulose synthase in Arabidonsis thaliana

plants.

In the first strategy, the CaMV 35S promoter sequence is operably connected to the full-length cellulose synthase cDNA which is obtainable by primer extension of SEQ ID NO:1. This is achievable by cloning the full-length cDNA encoding cellulose synthase, in the sense orientation, between the CaMV 35S promoter or other suitable promoter operable in plants and the nopaline synthase terminator sequences of the binary plasmid pBI121.

In the second strategy, the coding part of the genomic gene is cloned, in the sense orientation, between the CaMV 35S promoter and the nopaline synthase terminator sequences of the binary plasmid pBI121.

In the third strategy, the 23H12 binary cosmid clone or the derivative pRSW1, containing the cellulose synthase gene sequence operably under the control of the cellulose synthase gene promoter and terminator sequences is prepared in a form suitable for transformation of plant tissue.

For Agrobacterium-mediated tissue transformation, binary plasmid constructs discussed supra are transformed into Agrobacterium tumefaciens strain AGL1 or other suitable strain. The recombinant DNA constructs are then introduced into wild type Arabidopsis thaliana plants (Columbia ecotype), as described in the preceding Examples.

Alternatively, plant tissue is directly transformed using the vacuum infiltration method described by Beshtold et al. (1993).

- 77 -

The transgenic plants thus produced exhibit a range of phenotypes, partly because of position effects and variable levels of expression of the cellulose synthase transgene.

Cellulose content in the transgenic plants and isogenic untransformed control plants is determined by the ¹⁴C incorporation assay or as acetic/nitric acid insoluble material as described in Example 1. In general, the level of cellulose deposition and rates of cellulose biosynthesis in the transgenic plants are significantly greater than for untransformed control plants.

10 Furthermore, in some cases, co-supression leads to mimicry of the rswl mutant phenotype.

EXAMPLE 15

SITE-DIRECTED MUTAGENESIS OF THE RSW1 GENE

15

The nucleotide sequence of the RSW1 gene contained in 23H12 is mutated using site-directed mutagenesis, at several positions to alter its catalytic activity or substrate affinity or glucan properties. In one example, the RSW1 gene is mutated to comprise one or more mutations present in the mutant rsw1 allele.

20

The mutated genetic sequences are cloned into binary plasmid described in the preceding Examples, in place of the wild-type sequences. Plant tissue obtained from both wild-type Arabidopsis thaliana (Columbia) plants and A. thaliana rswl plants is transformed as described herein and whole plants are regenerated.

25

Control transformations are performed using the wild-type cellulose synthase gene sequence.

- 78 -

EXAMPLE 16 PHENOTYPES OF PLANTS EXPRESSING MUTATED *RSW*1 GENES

Plants transformed with genetic constructs described in Example 15 (and elsewhere) are the large formula of transgens copies to eliminate variability arising therefrom. Plants expressing single copies of different transgenes are analysed rather forward components, including cellulose, non-crystalline β -1,4-glucan polymer, starch and carbohydrate content.

10 1. Cellulose content

Cellulose content in the transgenic plants is determined by the ¹⁴C incorporation assay as described in Example 1. Cell walls are prepared, fractionated and the monosaccharide composition of individual fractions determined as in Example 1.

15 2. Non-crystalline β-1,4-glucan content

Transgenic plants expressing the rsw1 mutant allele exhibit a higher level of non-crystalline, and therefore extractable, β -1,4-glucan in cell walls compared to plants expressing an additional copy of the wild-type RSW1 allele. Thus, it is possible to change the crystallinity of the β -1,4-glucan chains present in the cell wall by mutation of the wild-type RSW1 allele.

20

3. Starch content

Transgenic plants are also analysed to determine the effect of mutagenesis of the RSW1 gene on the level of starch deposited in their roots. The quantity of starch present in material prepared from the crude wall fraction is determined using the anthrone/H₂SO₄ method described in Example 1. The data show that mutating the RSW1 gene to the mutant rsw1 allele increases starch deposition. This demonstrates that the gene can be used to alter the partitioning of carbon into carbohydrates other than cellulose.

4.Cell wall composition

30 The cell wall composition of transgenic plant material is also analysed. Wild type and rswl

and transgenic seedlings are grown for 2 d at 21°C and then kept for a further 5 d at either 21°C or 31°C. With transfer to 31°C when the seed has scarcely germinated, the wall composition at final harvest largely reflects the operation of the mutated rsw1 gene product at its restrictive temperature. Cell wall fractionation is carried out in similar fashion to that 5 described for the ¹⁴C-experiment (Example 1) and the monosaccharide composition of each fraction is quantified by GC/MS after hydrolysis with trifluoroacetic acid or, in the case of crystalline cellulose, H₂SO₄.

In some transgenic plants in which the RSW1 gene is mutated, the monosaccharide composition is comparable to that observed for homozygous rsw1 plants, at least in some cases, confirming that there is a major reduction in the quantity of crystalline cellulose in the final, acid insoluble fraction. Thus, mutation of the RSW1 gene can be performed to produce changes in the composition of plant cell walls.

15 EXAMPLE 17

CHEMICAL MODIFICATION OF THE RSW1 GENE TO MANIPULATE CELLULOSE PRODUCTION AND PLANT CELL WALL CONTENT.

As demonstrated in the preceding Examples, the RSW1 gene is involved in cellulose 20 production and the manipulation of cell wall content.

In the present Example, to identify novel phenotypes and gene sequences important for the normal functioning of the cellulose synthase gene, the RSW1 gene is modified in planta, using the chemical mutagen EMS. The mutant plants are identified following germination and the modified RSW1 genes are isolated and characterised at the nucleotide sequence level. A sequence comparison between the mutant gene sequences and the wild type sequence reveals nucleotides which encode amino acids important to the normal catalytic activity of the cellulose synthase enzyme, at least in Arabidopsis thaliana plants.

30 This approach thus generates further gene sequences of utility in the modification of cellulose

- 80 -

content and properties in plants.

EXAMPLE 18 DISCUSSION

Five pieces of evidence make a compelling case that the RSW1 gene product encodes the catalytic subunit of cellulose synthase:

- 1. The rsw1 mutation selectively inhibits cellulose synthesis and promotes accumulation of a non-crystalline β -1,4-glucan;
- The rsw1 mutation removes cellulose synthase complexes from the plasma membrane, providing a plausible mechanism for reduced cellulose accumulation and placing the RSW1 product either in the complexes or interacting with them;
 - 3. The D,D,D,QXXRW signature identifies the RSW1 gene product as a processive glycosyl transferase enzyme (Saxena, 1995);
- 15 4. The wild type allele corrects the temperature sensitive phenotype of the *rswl* mutant; and
 - 5. Antisense expression of the RSW1 in transgenic plants grown at 21 °C reproduces some of the phenotype of rsw1 which is observed following growth at 31 °C.
- 20 Consistent with the plasma membrane location expected for a catalytic subunit, the putative 122 kDa RSW1 product contains 8 predicted membrane-spanning regions. Six of these regions cluster near the C-terminus (Figure 10), separated from the other two by a domain that is probably cytoplasmic and has the weak sequence similarities to prokaryotic glycosyl transferases (Wong, 1990; Saxena, 1990; Matthyse, 1995; Sofia, 1994; Kutish, 1996).

25

RSW1 therefore qualifies as a member of the large family of Arabidopsis thaliana genes whose members show weak similarities to bacterial cellulose synthase. RSW1 is the first member of that family to be rigorously identified as an authentic cellulose synthase. Among the diverse genes in A. thaliana, at least two genes show very strong sequence similarities to the RSW1 gene and are most likely members of a highly conserved sub-family involved in

WO 98/00549

- 81 -

cellulose synthesis. The closely related sequences come from cosmid 12C4, a partial genomic clone cross-hybridising with EST T20782 designated *Ath*-A, and from a full length cDNA designated *Ath*-B.

PCT/AU97/00402

5 Ath-A resembles RSW1 (SEQ ID NO:5) at its N-terminus whereas Ath-B starts 22 amino acid residues downstream [Figure 8 and Figure 9(i), (ii) and (iii)]. Closely related sequences in other angiosperms are the rice EST S0542 [Figure 9(i), (ii) and (iii)], which resembles the polypeptides encoded by RSW1 and Ath-A and the cotton celA1 gene (Pear, 1996) at the N-terminus.

10

The Arabidopsis thaliana, rice and cotton genes have regions of very high sequence similarity interspersed with variable regions (Figures 9 and 10). Most of the highest conservation among those gene products occurs in their central cytoplasmic domain where the weak similarities to the bacterial cellulose synthase occur. The N-terminal region that precedes the first membrane spanning region is probably also cytoplasmic but shows many amino acid substitutions as well as sequences in RSW1 that have no counterpart in some of the other genes as already noted for celA. An exception to this is a region comprising 7 cysteine residues with highly conserved spacings (Figure 10). This is reminiscent of regions suggested to mediate protein-protein and protein-lipid interactions in diverse proteins including transcriptional regulators and may account for the striking sequence similarity between this region of RSW1 and two putative soybean bZIP transcription factors (Genbank SOYSTF1A and 1B).

In conclusion, the chemical and ultrastructural changes seen in the cellulose-deficient mutant combine with gene cloning and complementation of the mutant to provide strong evidence that the RSW1 locus encodes the catalytic subunit of cellulose synthase. Accumulation of non-crystalline β-1,4-glucan in the shoot of the rsw1 mutant suggests that properties affected by the mutation are required for glucan chains to assemble into microfibrils. Whilst not being bound by any theory or mode of action, a key property may be the aggregation of catalytic subunits into plasma membrane rosettes. At the restrictive temperature, mutant synthase

complexes disassemble to monomers (or smaller oligomers) that are undetectable by freeze etching. At least in the shoot, the monomers seem to remain biosynthetically active but their β -1,4-glucan products fail to crystallise into microfibrils probably because the chains are growing from dispersed sites. Crystallisation into microfibrils, with all its consequences for

aggregated as plasma membrane rosettes.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.

15 REFERENCES

- 1. An et al. (1985) EMBO J. 4:277-284.
- Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1987) Current Protocols in Molecular Biology. Wiley Interscience (ISBN 047140338).
- 20 3. Baskin et al. (1992) Aust. J. Plant Physiol. 19:427-437.
 - 4. Bechtold et al. (1993) Planta 316:1194-1199.
 - 5. Bevan, M. (1984) Nucl. Acids Res. 12, 8711-8721.
 - 6. Chang, C. et al (1988) Proc. Natl. Acad. Sci. (USA) 85, 6856-6860.
 - 7. Coleet al. (1985) In Monoclonal antibodies in cancer therapy, Alan R. Bliss Inc., pp 77-96;
 - 8. Crossway et al. (1986) Mol. Gen. Genet. 202:179-185.
 - 9. Datla, R.S.S., Hammerlindl, J.K., Panchuk, B., Pelcher, L.E. and Keller, W. (1992) Gene, 211, 383-384.
 - 10. Ditta G., et al. (1980) Proc. Natl. Acad. Sci. (USA) 77, 7347-7351.
- 30 11. Doares, S.H., Albersheim, P. and Darvill, A.G. (1991) Carb. Res. 210, 311-317.

- 83 -
- 12. Dolferus, R., Jacobs, M., Peacock, W.J. and Dennis, E.S. (1994) Plant Physiol. 105, 1075-1087.
- 13. Fromm et al. (1985) Proc. Natl. Acad. Sci. (USA) 82:5824-5828.
- 14. Haseloff, J., and Gerlach, W.L. (1988) Nature 334:586-594
- 5 15. Hayashi (1989) Ann Rev Plant Physiol. Plant Molecular Biol. 40, 139-168.
 - 16. Hayashi and MacLachlan (1984) Plant Physiol. 75, 596-604.
 - 17. Herrera-Estrella et al. (1983a) Nature 303:209-213.
 - 18. Herrera-Estrella et al. (1983b) EMBO J. 2:987-995
 - 19. Herrera-Estrella et al. (1985) In: Plant Genetic Engineering, Cambridge
- University Press, NY, pp 63-93.
 - 20. Herth, W. (1985) Planta 164, 12-21.
 - 21. Huse et al. (1989) Science 246: 1275-1281.
 - 22. Kohler and Milstein (1975) Nature, 256: 495-499.
 - 23. Konieczny, A. and Ausubel, F. (1993) Plant J. 4, 403-410.
- 15 24. Kozbor et al. (1983) Immunol. Today 4: 72.
 - 25. Lazo, G.R., Stein, P.A. and Ludwig, R.A. (1991). Bio/technology 9,963-967.
 - 26. Levy et al. (1991) Plant Journal 1, 195-215.
 - 27. Longemann, J, Schell, J. and Willmitzer, L. (1987). Anal. Biochem. 163, 16-20.
 - 28. Matthyse, A.G., White, S., and Lightfoot, R. (1995) J. Bacteriol. 177, 1069-1075.
- 20 29. McPherson et al. (1991) In: PCR:A Practical Approach. IRL Press. Oxford.
 - 30. Nam, H.-G., et al. (1989) Plant Cell 1, 699-705.
 - 31. Needs, P.W. and Selvendran, R.R. (1993) Phytochem. Anal. 4, 210-216.
 - 32. Paszkowski et al. (1984) EMBO J. 3:2717-2722.
 - 33. Pear, J.R., et al (1996) Proc. Natl. Acad. Sci. (USA) 93, 12637-12642.
- 25 34. Saxena et al. (1990) Plant Mol. Biol. 15, 673-683.
 - 35. Saxena et al. (1995) J.Bacteriol. 177: 1419-1424.
 - 36. Sofia, H.J., et al (1994) Nucl. Acids Res. 22, 2576-2586.
 - 37. Southern, E.M. (1975). J. Mol. Biol. 98, 503-517.
 - 38. Updegraph, D.J. (1969) Analyt. Bioch. 32: 429-424.
- 30 39. Wong, H.C. et al (1990) Proc. Natl. Acad. Sci. (USA) 87:8130-8134.

- 84 -

SEQUENCE LISTING

(1) GENERAL INFORMATION: 5 (i) APPLICANT: Australian National University and the Commonwealth Scientific Industrial Research Organisation 10 (ii) TITLE OF INVENTION: Manipulation of plant cellulose (iii) NUMBER OF SEQUENCES: 14 (iv) CORRESPONDENCE ADDRESS: 15 (A) ADDRESSEE: Davies Collison Cave Patent Attorneys (B) STREET: 1, Little Collins Street (C) CITY: Melbourne (D) STATE: Victoria (E) COUNTRY: Australia 20 (F) ZIP: 3000 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible 25 (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: PCT INTERNATIONAL 30 (B) FILING DATE: (vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: AU PO0699 (B) FILING DATE: 27-JUN-1996 35 (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: SLATTERY, JOHN M

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 61-3-9254-2777
(B) TELEFAX: 61-3-9254-2770

- 85 -

(C) TELEX: AA31787

(2) INFORMATION FOR SEQ ID NO:1:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2248 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

10

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

15 (vi) ORIGINAL SOURCE:

(A) ORGANISM: Arabidopsis thaliana

(vii) IMMEDIATE SOURCE:

(B) CLONE: EST T20782

20

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1887

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGA GCT ATG AAG AGA GAG TAT GAA GAG TTT AAA GTG AGG ATA AAT GCT 48

Arg Ala Met Lys Arg Glu Tyr Glu Glu Phe Lys Val Arg Ile Asn Ala

30 1 5 10 15

CTT GTT GCC AAA GCA CAG AAA ATC CCT GGA GAA GGC TGG ACA ATG CAG 96

Leu Val Ala Lys Ala Gln Lys Ile Pro Gly Glu Gly Trp Thr Met Gln

20 25 30 35

GAT GGT ACT CCC TGG CCT GGT AAC AAC ACT AGA GAT CAT CCT GGA ATG

Asp Gly Thr Pro Trp Pro Gly Asn Asn Thr Arg Asp His Pro Gly Met

35 40 45

- 86 -

	ATA	CAG	GTG	TTC	TTA	GGC	CAT	AGT	GGG	GGT	CTG	GAT	ACC	GAT	GGA	AAT	192
	lle	Gln	Val	Pne	Leu	Gly	His	Ser	Gly	Gly	Leu	Asp	Thr	Asp	Gly	Asn	
		50					55					60					
5	GAG	CTG	CCT	AGA	CTC	ATC	TAT	GTT	TCT	CGT	GAA	AAG	CGG	CCT	GGA	TTT	240
-	Glu	Leu	Pro	Arg	Leu	Ile	Tyr	Val	Ser	Arg	Glu	Lys	Arg	Pro	Gly	Phe	
															GTA		288
10	Gln	His	His	Lys	Lys	Ala	Gly	Ala	Met	Asn	Ala	Ser	Ile	Arg	Val	Ser	
					85					90					95		
															GAT		336
	Ala	Val	Leu		Asn	Gly	Ala	Tyr		Leu	Asn	Val	Asp	Cys	Asp	His	
15				100					105					110			
															ATG		384
	Tyr	Phe		Asn	Ser	Lys	Ala		Lys	Glu	Ala	Met	_	Phe	Met	Met	
20			115					120					125				
20	CNC		COT	a cice	CC 2	7 7 C	220	TCC	TCC	ጥለሞ	CTC	CNC		CC#	CAA	CCT	432
															CAA		432
	Asp	130	Ala	116	GIY	БУЗ	135	Cys	cys	lyi	vai	140	Pne	PIO	Gln	Arg	
		130					133					140					
25	ጥጥጥ	CNC	CCT	ልጥጥ	CAT	ጥጥር	CNC	ርልጥ	CGA	ጥልጥ	GCC	ם מ מ	, NGC	አአጥ	АТА	CTC	480
															Ile	_	100
	145	rap	Gry	110	пор	150		nop	****9	- , -	155		nr 9	71311		160	
	113					130					-33					100	
	ттт	TTC	GAT	ATT	AAC	ATG	AAG	GGG	TTG	GAT	GGT	ATC	CAC	GGT	CCA	GTA	528
30															Pro		
					165		•	•		170	•			•	175		
	TAT	GTG	GGT	ACT	GGT	TGT	TGT	TTT	AAT	AGG	CAG	GCT	CTA	TAT	GGG	TAT	576
	Tyr	Val	Gly	Thr	Gly	Cys	Cys	Phe	Asn	Arg	Gln	Ala	Leu	Tyr	Gly	Tyr	
35			_	180	-				185	_				190	_	_	
	GAT	CCT	GTT	TTG	ACG	GAA	GAA	GAT	TTA	GAA	CCA	AAT	TTA	ATT	GTC	AAG	624
	Asp	Pro	Val	Leu	Thr	Glu	Glu	Asp	Leu	Glu	Pro	Asn	Ile	Ile	Val	Lys	
			195					200					205				
40																	

- 87 -

	AGC	TGT	TGO	GGG	TCA	AGG	AAG	AAA	GGT	AAA	AGT	AGC	AAC	AAC	TAT	r aac	672
	Ser	Cys	Cys	Gly	/ Ser	Arg	Lys	Lys	Gly	Lys	Ser	Ser	Lys	Lys	туз	Asn	
		210)				215					220					
5	TAC	GAA	AAG	AGG	AGA	GGC	ATC	AAC	AGA	AGT	GAC	TCC	AA1	GCI	CCA	CTT	720
	Tyr	Glu	Lys	Arg	Arg	Gly	Ile	Asn	Arg	Ser	Asp	Ser	Asn	Ala	Pro	Leu	
	225					230					235					240	
	TTC	AAT	ATG	GAG	GAC	ATC	GAT	GAG	GGT	TTT	GAA	GGT	TAT	GAT	GAT	GAG	768
10	Phe	Asn	Met	Glu	Asp	Ile	Asp	Glu	Gly	Phe	Glu	Gly	Tyr	Asp	Asp	Glu	
					245					250					255		
	AGG	TCT	ATT	CTA	ATG	TCC	CAG	AGG	AGT	GTA	GAG	AAG	CGT	TTT	GGT	CAG	816
	Arg	Ser	Ile	Leu	Met	Ser	Gln	Arg	Ser	Val	Glu	Lys	Arg	Phe	Gly	Gln	
15				260					265					270			
	TCG	CCG	GTA	TTT	TTA	GCG	GCA	ACC	TTC	ATG	GAA	CAA	GGC	GGC	TTA	CCA	864
	Ser	Pro	Val	Phe	Ile	Ala	Ala	Thr	Phe	Met	Glu	Gln	Gly	Gly	Ile	Pro	
			275					280					285				
20																	
	CCA	ACA	ACC	AAT	CCC	GCT	ACT	CTT	CTG	AAG	GAG	GCT	ATT	CAT	GTT	ATA	912
	Pro	Thr	Thr	Asn	Pro	Ala	Thr	Leu	Leu	Lys	Glu	Ala	Ile	His	Val	Ile	
		290					295					300					
25	AGC	TGT	GGT	TAC	GAA	GAC	AAG	ACT	GAA	TGG	GGC	AAA	GAG	ATT	GGT	TGG	960
	Ser	Cys	Gly	Tyr	Glu	Asp	Lys	Thr	Glu	Trp	Gly	Lys	Glu	Ile	Gly	Trp	
	305					310					315					320	
	ATC	TAT	GGT	TCC	GTG	ACG	GAA	gat	TTA	CTT	ACT	GGG	TTC	AAG	ATG	CAT	1008
30	Ile	Tyr	Gly	Ser	Val	Thr	Glu	Asp	Ile	Leu	Thr	Gly	Phe	Lys	Met	His	
					325					330					335		
	GCC	CGG	GGT	TGG	ATA	TCG	ATC	TAC	TGC	AAT	CCT	CCA	CGC	CCT	GCG	TTC	1056
	Ala	Arg	Gly	Trp	Ile	Ser	Ile	Tyr	Cys	Asn	Pro	Pro	Arg	Pro	Ala	Phe	
35				340					345					350			
	AAG	GGA	TCT	GCA	CCA	ATC	AAT	CTT	TCT	GAT	CGT	TTG	AAC	CAA	GTT	CTT	1104
	Lys	Gly	Ser	Ala	Pro	Ile	Asn	Leu	Ser	Asp	Arg	Leu	Asn	Gln	Val	Leu	
			355					360					365				
40																	

- 88 -

	CGA	TGG	GCT	TTG	GGA	TCT	ATC	GAG	ATT	CTT	CTT	AGC	AGA	CAT	TGT	CCT	1152
	Arg	Trp	Ala	Leu	Gly	Ser	Ile	Glu	Ile	Leu	Leu	Ser	Arg	His	CAa	Pro	
		370					375					380					
5	ATC	TGG	TAT	GGT	TAC	CAT	GGA	AGG	TTG	AGA	CTT	TTG	GAG	AGG	ATC	GCT	1200
	lie	Trp	Tyr	Gly	Tyr	His	Gly	Arg	Leu	Arg	Leu	Leu	Glu	Arg	Ile	Ala	
				ACC													1248
10	Tyr	Ile	Asn	Thr	Ile	Val	Tyr	Pro	Ile	Thr	Ser	Ile	Pro	Leu	Ile	Ala	
					405					410					415		
				CTT													1296
15	Tyr	Cys	He	Leu	Pro	Ala	Phe	Cys		He	Thr	Asp	Arg		Ile	lie	
15				420					425					430			
	ccc	CAC	እጥለ	AGC	አአሮ	ጥ ስ ርግ	ccc	ACT	እ ጥጥ	TCC	ጥ ጥር	አ ጉጥ	СТА	CTC	TTC	ATC	1344
				Ser													1344
	110	O ₁ u	435	561	AGII	LYL	n.u	440	110	rrp	rne	110	445	ДСС	1110	110	
20			133					110					113				
	TCA	ATT	GCT	GTG	ACT	GGA	ATC	CTG	AAA	CTG	AAA	TGG	AAC	GGT	GTG	AGC	1392
				Val													
		450					455		•		•	460		•			
25	ATT	GAG	GAT	TGG	TGG	AGG	AAC	AAC	CAG	TTC	TGG	GTC	ÀТТ	GGT	GGC	ACA	1440
	Ile	Glu	Asp	Trp	Trp	Arg	Asn	Asn	Gln	Phe	Trp	Val	Ile	Gly	Gly	Thr	
	465					470					475					480	
	TCC	ACC	CAT	CTT	TTT	GCT	GTC	TTC	CAA	GGT	CTA	CTT	AAG	GTT	CTT	GCT	1488
30	Ser	Thr	His	Leu	Phe	Ala	Val	Phe	Gln	Gly	Leu	Leu	Lys	Val	Leu	Ala	
					485					490					495		
	GGT	ATC	AAC	ACC	AAC	TTC	ACC	GTT	ACA	TCT	AAA	GCC	ACA	AAC	AAA	AAT	1536
	Gly	Ile	Asn	Thr	Asn	Phe	Thr	Val	Thr	Ser	Lys	Ala	Thr	Asn	Lys	Asn	
35				500					505					510			
	GGG	GAT	TTT	GCA	AAA	CTC	TAC	ATC	TTC	AAA	TGG	ACA	GCT	CTT	CTC	ATT	1584
	Gly	Asp	Phe	Ala	Lys	Leu	Tyr	Ile	Phe	Lys	Trp	Thr	Ala	Leu	Leu	Ile	
• •			515					520					525				
40																	

- 89 -

	CCA CCA	ACC	ACC	GTC	CTA	СТТ	GTG	AAC	CTC	ATA	GGC	ATT	GTG	GCT	GGT	1632
	Pro Pro	Thr	Thr	Val	Leu	Leu	Val	Asn	Leu	Ile	Gly	Ile	Val	Ala	Gly	
	530					535					540					
5	GTC TCT	TAT	GCT	GTA	AAC	AGT	GGC	TAC	CAG	TCG	TGG	GGT	CCG	CTT	TTC	1680
	Val Ser	Tyr	Ala	Val	Asn	Ser	Gly	Tyr	Gln	Ser	Trp	Gly	Pro	Leu	Phe	
	545				550					555					560	
	GGG AAG															1728
10	Gly Lys	Leu	Phe	Phe	Ala	Leu	Trp	Val	Ile	Ala	His	Leu	Tyr	Pro	Phe	
				565					570					575		
	TTG AAA															1776
٠, ٥	Leu Lys	Gly		Leu	Gly	Arg	Gln		Arg	Thr	Pro	Thr		Val	Ile	
15			580					585					590			
	ama maa			~~~	~~~	~~~	maa		 .			~~~		~~~		
	GTC TGG															1824
	Val Trp	595	vai	Leu	Leu	Ala	5er	116	Pne	ser	Leu		Trp	vai	Arg	
20		373					800					605				
20	ATC AAT	ccc	ттт	CTC	CAC	ccc	ידממ	ccc	a a T	ccc	አአሮ	አአሮ	ጥ ጥ / '	ידיגג	caa	1872
	Ile Asn															1872
	610	FIO	FIIC	vai	-	615	Veli	FIO	MSII		620	ASII	Fne	ASII	GIY	*
	010					015					020					
25	AAA GGA	GGT	GTC	ттт	TAGA	СССТ	'Α Τ Τ	ተል ተል	ፐልሮፐ	т ст	CTGT	'GCAT	מדמ	מ מ י ד	ΔΔΔ	1927
	Lys Gly										0.0.	J				
	625	,														
	CGCGCAAT	GG G	AATT	CCAA	A TC	ATCT	AAAC	CCA	TCAA	ACC	CCAG	TGAA	cc G	GGCA	GTTAA	1987
30																
	GGTGATTC	CA T	GTCC.	AAGA	T TA	GCTT	TCTC	CGA	GTAG	CCA (GAGA.	AGGT	GA A	ATTG	TTCGT	2047
	AACACTAT	TG T	AATG.	ATTT	T CC	AGTG	GGGA	AGA	AGAT	GTG (GACC	CAAA'	TG A	TACA'	TAGTC	2107
35	TACAAAAA	GA A	TTAG	TTAT	A AC	TTTC	TTAT	ATT	TATT	TTA '	TTTA	AAGC'	TT G	TTAG	ACTCA	2167
	CACTTATG	TA A	TGTT	GGAA	C TT	GTTG'	TCCT	AAA	AAGG	GAT 1	TGGA	GTTT	rc T	TTTT	ATCTA	2227
	AGAATCTG	aa g	TTTA	TATG	Т											2248
40																

- 90 -

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 629 amino acids

5 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: 10

Arg Ala Met Lys Arg Glu Tyr Glu Glu Phe Lys Val Arg Ile Asn Ala 5 10

15 Leu Val Ala Lys Ala Gln Lys Ile Pro Gly Glu Gly Trp Thr Met Gln 20 25

Asp Gly Thr Pro Trp Pro Gly Asn Asn Thr Arg Asp His Pro Gly Met

35 40

20

Ile Gln Val Phe Leu Gly His Ser Gly Gly Leu Asp Thr Asp Gly Asn 50 55 60

Glu Leu Pro Arg Leu Ile Tyr Val Ser Arg Glu Lys Arg Pro Gly Phe 75 ' 25 65 70

Gln His His Lys Lys Ala Gly Ala Met Asn Ala Ser Ile Arg Val Ser 85 90

 $30\,$ Ala Val Leu Thr Asn Gly Ala Tyr Leu Leu Asn Val Asp Cys Asp His 100 105

Tyr Phe Asn Asn Ser Lys Ala Ile Lys Glu Ala Met Cys Phe Met Met 115 120 125

35

Asp Pro Ala Ile Gly Lys Lys Cys Cys Tyr Val Gln Phe Pro Gln Arg 130 135 140

Phe Asp Gly Ile Asp Leu His Asp Arg Tyr Ala Asn Arg Asn Ile Val 40 145 150 155 160 - 91 -

	Phe	Phe	Asp	Ile	Asn 165		Lys	Gly	Leu	170	-	Ile	His	Gly	Pro	Val
5	Туг	Val	Gly	Thr 180	Gly	Cys	Cys	Phe	Asn 185	Arg	Gln	Ala	Leu	Туг 190	Gly	Tyr
	Asp	Pro	Val 195	Leu	Thr	Glu	Glu	Asp 200	Leu	Glu	Pro	Asn	11e 205	Ile	Val	Lys
10	Ser	Cys 210	Cys	Gly	Ser	Arg	Lys 215	Lys	Gly	Lys	Ser	Ser 220	Lys	Lys	Tyr	Asn
15	Tyr 225	Glu	Lys	Arg	Arg	Gly 230	Ile	Asn	Arg	Ser	As p	Ser	Asn	Ala	Pro	Leu 240
13	Phe	Asn	Met	Glu	Asp 245	Ile	Asp	Glu	Gly	Phe 250	Glu	Gly	Tyr	Asp	Asp 255	Glu
20	Arg	Ser	Ile	Leu 260	Met	Ser	Gln	Arg	Ser 265	Val	Glu	Lys	Arg	Phe 270	Gly	Gln
	Ser	Pro	Val 275	Phe	Ile	Ala	Ala	Thr 280	Phe	Met	Glu	Gln	Gly 285	Gly	Ile	Pro
25	Pro	Thr 290	Thr	Asn	Pro	Ala	Thr 295	Leu	Leu	Lys	Glu	Ala 300	Ile	His	Val	Ile
30	Ser 305	Cys	Gly	Tyr	Glu	Asp 310	Lys	Thr	Glu	Trp	Gly 315	Lys	Glu	Ile	Gly	Trp 320
	Ile	Tyr	Gly	Ser	Val 325	Thr	Glu	qaA	Ile	Leu 330	Thr	Gly	Phe	Lys	Met 335	His
35	Ala	Arg	Gly	Trp 340	Ile	Ser	Ile	Tyr	Cys 345	Asn	Pro	Pro	Arg	Pro 350	Ala	Phe
	Lys	Gly	Ser 355	Ala	Pro	Ile		Leu 360	Ser	Asp	Arg		A sn 365	Gln	Val	Leu

- 92 -

Arg Trp Ala Leu Gly Ser Ile Glu Ile Leu Leu Ser Arg His Cys Pro 370 375 380

fle Trp Tyr Gly Tyr His Gly Arg Leu Arg Leu Leu Glu Arg Ile Ala
5 385 390 395 400

405 410 415

10 Tyr Cys Ile Leu Pro Ala Phe Cys Leu Ile Thr Asp Arg Phe Ile Ile 420 425 430

Pro Glu Ile Ser Asn Tyr Ala Ser Ile Trp Phe Ile Leu Leu Phe Ile
435
440
445

15

Ser Ile Ala Val Thr Gly Ile Leu Lys Leu Lys Trp Asn Gly Val Ser 450 455 460

Ile Glu Asp Trp Trp Arg Asn Asn Gln Phe Trp Val Ile Gly Gly Thr 20 465 470 475 480

Ser Thr His Leu Phe Ala Val Phe Gln Gly Leu Leu Lys Val Leu Ala.
485 490 495

25 Gly Ile Asn Thr Asn Phe Thr Val Thr Ser Lys Ala Thr Asn Lys Asn 500 505 510

Gly Asp Phe Ala Lys Leu Tyr Ile Phe Lys Trp Thr Ala Leu Leu Ile 515 520 525

30

Pro Pro Thr Thr Val Leu Leu Val Asn Leu Ile Gly Ile Val Ala Gly
530 535 540

Val Ser Tyr Ala Val Asn Ser Gly Tyr Gln Ser Trp Gly Pro Leu Phe $35\ 545$ 550 555 560

Gly Lys Leu Phe Phe Ala Leu Trp Val Ile Ala His Leu Tyr Pro Phe 565 570 575

- 93 -

Leu Lys Gly Leu Leu Gly Arg Gln Asn Arg Thr Pro Thr Ile Val Ile
580 585 590

Val Trp Ser Val Leu Leu Ala Ser Ile Phe Ser Leu Leu Trp Val Arg 5 595 600 605

Ile Asn Pro Phe Val Asp Ala Asn Pro Asn Ala Asn Asn Phe Asn Gly
610 620

10 Lys Gly Gly Val Phe 625

(2) INFORMATION FOR SEQ ID NO:3:

- 94 -

	(i)	SEQUENCE CHARACTERISTICS:
5		(A: LENGTH: 8411 base pairs
		(B) TYPE: nucleic acid
		(D) TOPOLOGY: linear
10	(ii)	MOLECULE TYPE: DNA (genomic)
	(iii)	HYPOTHETICAL: NO
15	(iv)	ANTI-SENSE: NO
	(vi)	ORIGINAL SOURCE:
		(A) ORGANISM: Arabidopsis thaliana
		(B) STRAIN: Columbia (wild-type)
20	(vii)	IMMEDIATE SOURCE:
		(B) CLONE: 23H12 RSW1 GENE
0.5	(ix)	FEATURE:
25		(A) NAME/KEY: exon
		(B) LOCATION: 22962376
	(ix)	FEATURE:
		(A) NAME/KEY: exon
30		(B) LOCATION: 29043099
	(ix)	FEATURE:
		(A) NAME/KEY: exon
		(B) LOCATION: 3198.,3370
35		
	(ix)	FEATURE:
		(A) NAME/KEY: exon
		(B) LOCATION: 35943708
40		
40	(ix)	FEATURE:

- 95 -

(A) NAME/KEY: exon (B) LOCATION: 3824..4013 (ix) FEATURE: 5 (A) NAME/KEY: exon (B) LOCATION: 4181..4447 (1x) FEATURE: (A) NAME/KEY: exon 10 (B) LOCATION: 4783..5128 (1x) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 5207..5344 15 (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 5426..5551 20 (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 5703..5915 (ix) FEATURE: 25 (A) NAME/KEY: exon (B) LOCATION: 6022..6286 (ix) FEATURE: (A) NAME/KEY: exon 30 (B) LOCATION: 6374..6570 (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 6655..7005 35

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 7088..8032

- 96 -

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	TTAGAAGAAG	CCTGAGCCGG	AGTCCTATTC	AATTATCTAG	AAGAAGTCTG	AGCCGGAGTC	60
5	CCACTCGATT	GTCTAGGAGA	AGCCTAAGCC	GGAGTCCCAT	TCGATCACCT	AGGAAGAGTG	120

	CCAGGAGACG	TATCAGCAGG	AGTCCAGTCC	GATCATCTAG	GAAGAGTGTG	AGCAGGAGTC	240
10	CTATTCGATT	GTCCAGAAGA	AGTATCAGCA	GGAGTCCTAT	TCGATTGTCC	AGGAGAAGTA	300
	TCAGCAGGAG	TCCTGTTAGA	GGAAGAAGAA	GAATTAGCAG	AAGTCCAGTT	CCGGCAAGGA	360
15	GAAGGAGTGT	GCGGCCTAGA	TCTCCTCCTC	CTGACCGCAG	AAGAAGTTTG	TCAAGAAGTG	420
	СТТСТССТАА	TGGGCGCATA	AGGAGAGGGA	GAGGATTTAG	CCAAAGATTC	TCATACGCCC	480
20	GTCGATACAG	AACTAGTCCA	TCTCCTGATC	GATCTCCTTA	TCGCTTTAGT	GATAGGAGTG	540
	ACCGTGACAG	GTGAATAGCC	CACACATAAT	ATAACTCCCC	CTTTCTGTTA	CACACTCTCG	600
	TACTGAACCG	TCTTTTTTAT	AACGTCTTCT	CTGTAGATTT	AGAAGTCGCA	GAAGGTTCTC	660
25	GCCAAGTCGG	TTCAGAAGCC	CACTAAGAGG	AAGAACACCT	CCAAGGTACT	TATCCTCTTT	720
	AGTACATTGT	TTCAGCTGAT	TCTTTACATC	TAAAAGTTTC	ATGAATATGG	AACTAAAATT	780
30	GGTGATCCAA	AAGAATTATT	CTTGATTTCA	CAACTCGAAA	GTATGCTCAG	GTATAGAAGA	840
	AGAAGCCGCT	CAGTATCGCC	TGGTCTCTGT	TATCGCAACC	GGCGGTACAG	CCGCAGCCCT	900
	ATCCGTAGCC	GATCTCCACC	TTACAGAAAG	AGAAGGTCAC	CATCCGCTAG	CCACAGCCTG	960
35	AGTCCATCGA	GGTCAAGATC	AAGATCAAAG	TCATATTCAA	AATCTCCCAT	TGGGACGGG	1020
	AAAGCAAGAT	CAGTGTCAAG	ATCACCATCC	AAGGCAAGGT	CTCCATCGAA	GTCGGATTCG	1080
40	ACATCCTCGG	ATAATAGCCC	AGGTGGGAAA	AAGGGATTAG	TAGCCTATGA	TTAATGAATA	1140

PCT/AU97/00402 WO 98/00549

- 97 -

	ATGATTACCO	TTAAGTTAAG	TGTTTGTTCT	TTTTACTGAG	G AAGAGATGG1	r aaagagagta	1200
	ATTTDATDA	C TTCTGTAAAA	CATAAGCATT	GTCTTTTGCC	G TATGTTTGTT	TGATTATGCT	1260
5	CCAAGATTG	TAAAAATTTO	TGTTGATGTT	TGCCGACATI	TTTTCTTTG1	TGCCATTTGC	1320
	CGACAAATGT	TAACTTCCAT	TATTCGTTGC	GGAGTTGGTT	TTGGTCCAAT	AATTAAACTT	1380
10		AAGCATAACT	AAATGTGACG	TTTGTCACCA	AACTTTAGAA	CAACGACATC	1440
		TATTTGGATA	ATCAATATAA	TTTACGATTI	CTTCCTACAT	' ATATATCATA	1500
	TCACTATACC	ACCGTCATTA	TCACTATCAC	ТАААТАТААА	AATGTTAAAA	TGATTTCTTA	1560
15	ATGGAATTTT	TTTTGTTAAA	AGTTTATTGA	САСААААА	GAATTAAAAC	TCAGAAATCT	1620
	GTATACTGAA	TTAAAACTTG	TAAATATAAC	AACAAAATGG	GATTAAAAAA	AGAAGTGGCA	1680
20	TCCATTTAAA	AATTATTTGC	GAATTCGCCC	GTAACTTCTT	AAGCTAACAA	TTAGAACCTA	1740
	ATCAACACTA	GTTATTTTGA	GTCCACCGAC	AGGTGATAGC	AAATAAAAA	GAACAGGCTG	1800
	GTACCAGAGC	CAACAACAAC	GTGGCTTCTT	CTTTTTTTTT	ТТТААТАТАА	TCAAACAATC	1860
25	ATACTTTGTC	CTATCTCTTT	CTTGCAATAA	GATTTTGCCA	CGTCACATAC	TAAGAAGCTG	1920
	GCGCGTCTAG	TGGGGAAGCC	AGAACGGCTC	АСТТТААААА	GTAGAGAGAT	GATAACTTGA	1980
30	GCCGAATAGA	GCCGAGCTGA	GCTAAAACGG	TGGGAGAGGA	AGAGGCTACT	ACTACCGTCA	2040
50	CCATCTCCGG	TAAAATAATG	TACTTGTCAT	TTAAAAATTA	AGAAAAAACA	CATCACTCTG	2100
	CGATAAAATA	GGCAAAAGCA	GATTTGAAGA	AGAAGCAGCT	TGAGATATCA	AATAGAGAGA	2160
35	GAGAGTGACA	GAGGAGTGTG	TGAACATCCT	TTTTTAGTAG	ATTTGGGTTT	TCGAGATGCC	2220
	GTATTGAATC	GGCTACGAAT	TTCCCAATTT	TGAATTTTGT	GAATCTCTCT	CTTTCTCTGT	2280
40	GTGTCGGTGG	CTGCGATGGA	GGCCAGTGCC	GGCTTGGTTG	CTGGATCCTA	CCGGAGAAAC	2340

- 98 -

GAGCTCGTTC	GGATCCGACA	TGAATCTGAT	GGCGGGGTCT	GTTCATCTTC	CCTTTTTCCC	2400
ATTTTTTTGT	TATTGTTTTT	CGTTCTTACA	ATTTTTGATG	TGTAGATCTC	ATCTAGATTT	2460
СТСТСТТТСТ	AAATCTCGTC	TCTTTTGGAT	CCATAATTGG	ATCATTGAAA	CTCAGATTTC	2520

10	AACTTTTCTG	CTCCAATTCT	TCAAATTGTT	GTGATCTATA	TCAATTAATG	CCGCATCTGT	2640
••	TTTCTTAAAA	TCTCTTATGG	AAAGTGTCGG	TGGATTTCAG	TTCGTTAACT	TTTTTAAGCT	2700
	AAAATCTTTG	ACTCTTAAAG	TTTAGCTTTA	CTTATTGAGA	TTTAGCTCAA	CTAGATCTCG	2760
15	TTAGTTCCCG	CCATGGGATA	CAGACTGTGA	CTCGCCTTAA	TTCAGATCTG	CATTGATTGT	2820
	TTTGATTTAG	ATCCTTGCTC	ATCTCTTTCT	GTAGTTTCTA	ATACTCAATG	ACTAACAATG	2880
20	ATGCAATGTT	GGTCAAAGTG	CAGACCAAAC	CTTTGAAGAA	TATGAATGGC	CAGATATGTC	2940
	AGATCTGTGG	TGATGATGTT	GGACTCGCTG	AAACTGGAGA	TGTCTTTGTC	GCGTGTAATG	3000
	AATGTGCCTT	CCCTGTGTGT	CGGCCTTGCT	ATGAGTACGA	GAGGAAAGAT	GGAACTCAGT	3060
25	GTTGCCCTCA	ATGCAAGACT	AGATTCAGAC	GACACAGGGG	TCAGTTGTCT	TTTTCTTTTT	3120
	GTTGGCAATT	GCTATATATG	GATTTTCTCT	TTTTGTTTCT	TTGCTGTTGT	GTTGAACAAT	3180
30	TTTTTGGAAT	TTTCCAGGGA	GTCCTCGTGT	TGAAGGAGAT	GAAGATGAGG	ATGATGTTGA	3240
	TGATATCGAG	AATGAGTTCA	ATTACGCCCA	GGGAGCTAAC	AAGGCGAGAC	ACCAACGCCA	3300
	TGGCGAAGAG	TTTTCTTCTT	CCTCTAGACA	TGAATCTCAA	CCAATTCCTC	TTCTCACCCA	3360
35	TGGCCATACG	GTAGGGACCT	ACATTTTCCC	TTTAGACTCT	AGAGTGATTT	GTATTACTCA	3420
	ATAAATCCCT	AGAGTGGTCA	TTTATTACTT	ACTATTCACG	TTAATGTTAT	ATGTGAACAA	3480
40	ATCTTAACAG	AATTTTTTC	TGATAGTACA	TGGTCATCCA	AATTAAGAAA	TAATAATAGA	3540

	TGTTGTTAG	r TGTGTCTGTT	r ttcaatagai	TCATGACCT	T TTTCTATAC	A CAGGTTTCTG	3600
	GAGAGATTC	G CACGCCTGAT	T ACACAATCTG	TGCGAACTAG	C ATCAGGTCC	TTGGGTCCTT	3660
5	CTGACAGGA	A TGCTATTTC	TCTCCATATA	TTGATCCACC	G GCAACCTGG1	TATTCATATGT	3720
	TTTTCCCTTC	G TGCACGTGGT	CTTTGTTAAA	TGTGATTCCT	r ATTCATTTT	T ACAACATATA	3780
10		ACCGTAACTG	ATAGCTCCCG	CTAAAAATTO	G CAGTCCCTG1	AAGAATCGTG	3840
		AAGACTTGAA	CTCTTATGGG	CTTGGTAATG	TTGACTGGAA	AGAAAGAGTT	3900
	GAAGGCTGGA	AGCTGAAGCA	GGAGAAAAAT	ATGTTACAGA	TGACTGGTAA	ATACCATGAA	3960
15	GGGAAAGGAG	GAGAAATTGA	AGGGACTGGT	TCCAATGGCG	; AAGAACTCCA	AATGTAAGTG	4020
	GAAATACTAG	ACCAATATCT	TTATTGTCCA	ACTCAAACAG	CTCTTGGCCG	TGATGCTAAT	4080
20	AACCACTCTT	GGTTTCTTAT	TATGTATTGA	TAGACATAAT	TAAGTATCTG	CTTTGTTACA	4140
20	тттстттсст	TCCACTCAAT	TATGGTTCTC	GTACTTACAG	GGCTGATGAT	ACACGTCTTC	4200
	CTATGAGTCG	TGTGGTGCCT	ATCCCATCTT	CTCGCCTAAC	CCCTTATCGG	GTTGTGATTA	4260
25	TTCTCCGGCT	TATCATCTTG	TGTTTCTTCT	TGCAATATCG	TACAACTCAC	CCTGTGAAAA	4320
	ATGCATATCC	TTTGTGGTTG	ACCTCGGTTA	TCTGTGAGAT	CTGGTTTGCA	TTTTCTTGGC	4380
30	TTCTTGATCA	GTTTCCCAAA	TGGTACCCCA	TTAACAGGGA	GACTTATCTT	GACCGTCTCG	4440
50	CTATAAGGTT	GGTCTTTAAG	TTTATACATC	CCCTACTCTC	ATCTCTCTTT	TATGTATTAA	4500
	CTTGATATCT	TCTATCACAG	TTTTCGATAG	TTGACTTTTT	CCCCCTGTAA	АТТТААТТТА	4560
35	AATTTAGACA	ATGGTGCATC	TGAATTTTGA	TTATGATATA	TCTTAAGAAG	ATTATGATTG	4620
	TAAATCTTGA	AATTTAGTAG	AAAACCATCT	GCAATCTACT	GACCATGTGA	AGTTTCCGAC	4680
40	TAGACTATGA	TAGAAGCATG	CCAAGTGGAG	TGTTTATTAA	GATAGAGCTT	AGCTATTATA	4740

- 100 -

	CTGATTTTAT	ATGTGTTTTG	ATTTTTTGGT	TTCTTATTGT	AGATATGATC	GAGACGGTGA	4800
	ACCATCACAG	CTCGTTCCTG	TTGATGTGTT	TGTTAGTACA	GTGGACCCAT	TGAAAGAGCC	4860
5	TCCCCTTGTT	ACAGCAAACA	CAGTTCTCTC	GATTCTTTCT	GTGGACTACC	CGGTAGATAA	4920

10	AACCGCTGAG	TTTGCAAAGA	AATGGGTACC	ATTTTGCAAG	AAATTCAACA	TTGAACCTAG	5040
	GGCCCCTGAA	TTCTATTTTG	CCCAGAAGAT	AGATTACTTG	AAGGACAAGA	TCCAACCGTC	5100
	TTTTGTTAAA	GAGCGACGAG	CTATGAAGGT	CATTTGAAAA	GTCCACCTGC	TTCTCATCCA	5160
15	TACGGCAAAG	AGATTGACTG	ACTTTTTCTT	TGGTTTGTAT	TGACAGAGAG	AGTATGAAGA	5220
	GTTTAAAGTG	AGGATAAATG	CTCTTGTTGC	CAAAGCACAG	AAAATCCCTG	AAGAAGGCTG	5280
20	GACAATGCAG	GATGGTACTC	CCTGGCCTGG	TAACAACACT	AGAGATCATC	CTGGAATGAT	5340
	ACAGGTACAG	TGTGGCAATC	CCTTGATTGT	GACAGAGAGG	ATAACGTAAA	GGAAACATGT	5400
	TTACATCGTT	TTGTTTCAAT	TTCAGGTGTT	CTTAGGCCAT	AGTGGGGGTC	TGGATACCGA	5460
25	TGGAAATGAG	CTGCCTAGAC	TCATCTATGT	TTCTCGTGAA	AAGCGGCCTG	GATTTCAACA	5520
	CCACAAAAAG	GCTGGAGCTA	TGAATGCATT	GGTTTGTTAA	CTTTCAGAAT	CCTATTGTGT	5580
30	CCTCTATTTT	ATTCTCTTGT	TCACTGCCTA	AGAAACGTTC	TTCTTGTGTA	GCCGTTGCTT	5640
	CACATTCTTT	TTTTTCTAGG	CTATGTGTTC	TCTCCTAATT	TAGTATCTCT	TTACTTTGAC	570 0
	AGATCCGTGT	ATCTGCTGTT	CTTACCAATG	GAGCATATCT	TTTGAACGTG	GATTGTGATC	5760
35	ATTACTTTAA	TAACAGTAAG	GCTATTAAAG	AAGCTATGTG	TTTCATGATG	GACCCGGCTA	5820
	TTGGAAAGAA	GTGCTGCTAT	GTCCAGTTCC	CTCAACGTTT	TGACGGTATT	GATTTGCACG	5880
40	ATCGATATGC	CAACAGGAAT	ATAGTCTTTT	TCGATGTGAG	TATCACTTCC	CCATTGTCTT	5940
-10							

- 101 -

	TTGTTTCTC	r tttgttcata	A TTTTGGTTG0	G ATTTACTCG1	TTCTGCTATO	GCCTGACTTG	600
	GATATTTGT	r ctcttgggc <i>i</i>	GATTAACATO	G AAGGGGTTGG	ATGGTATCCA	GGGTCCAGTA	606
5	TATGTGGGT	A CTGGTTGTTG	TTTTAATAGO	G CAGGCTCTAT	ATGGGTATGA	TCCTGTTTTG	612
	ACGGAAGAAC	G ATTTAGAACC	: AAATATTATT	GTCAAGAGCT	GTTGCGGGTC	AAGGAAGAAA	618
10		A GCAAGAAGTA	. TAACTACGAA	AAGAGGAGAG	GCATCAACAG	AAGTGACTCC	624
•		ттттсаатат	GGAGGACATO	GATGAGGGTT	TTGAAGGTTT	GATTGAGCTG	630
	ATTGTGTAAT	AACATCACTT	CTTTATGTAA	TGATTTATGT	GATGGTGAAA	TCTTACAATC	636
15	CTTGTTTATG	CAGGTTATGA	TGATGAGAGG	TCTATTCTAA	TGTCCCAGAG	GAGTGTAGAG	642
	AAGCGTTTTG	GTCAGTCGCC	GGTATTTATT	GCGGCAACCT	TCATGGAACA	AGGCGGCATT	6486
20	CCACCAACAA	CCAATCCCGC	TACTCTTCTG	AAGGAGGCTA	TTCATGTTAT	AAGCTGTGGT	6540
20	TACGAAGACA	AGACTGAATG	GGGCAAAGAG	GTCAGTTTTC	AAATGCAGCT	ACAGAATCTT	6600
	CTTATGTTCT	CTTTCTTACC	TGTTTGATGA	CATCTTATTT	GGCACTTTTG	TTAGATTGGT	6660
25	TGGATCTATG	GTTCCGTGAC	GGAAGATATT	CTTACTGGGT	TCAAGATGCA	TGCCCGGGGT	6720
	TGGATATCGA	TCTACTGCAA	TCCTCCACGC	CCTGCGTTCA	AGGGATCTGC	ACCAATCAAT	6780
30	CTTTCTGATC	GTTTGAACCA	AGTTCTTCGA	TGGGCTTTGG	GATCTATCGA	GATTCTTCTT	6840
	AGCAGACATT	GTCCTATCTG	GTATGGTTAC	CATGGAAGGT	TGAGACTTTT	GGAGAGGATC	6900
	GCTTATATCA	ACACCATCGT	CTATCCTATT	ACATCCATCC	CTCTTATTGC	GTATTGTATT	6960
35	CTTCCCGCTT	TTTGTCTCAT	CACCGACAGA	TTCATCATAC	CCGAGGTTTG	TAAAACTGAC	7020
	CACACTGCTA	TTTACTATTT	GAATCCCATT	TTGTGAATGC	ATTTTTTGT	CATCATCATT	7080
40	GTTGCAGATA	AGCAACTACG	CGAGTATTTG	GTTCATTCTA	CTCTTCATCT	CAATTGCTGT	7140
-							

MADOCIDE AND CONSCION

- 102 -

	GACTGGAATC	CTGGAGCTGA	GATGGAGCGG	TGTGAGCATT	GAGGATTGGT	GGAGGAACGA	7200
	GCAGTTCTGG	GTCATTGGTG	GCACATCCGC	CCATCTTTTT	GCTGTCTTCC	AAGGTCTACT	7260
5	TAAGGTTCTT	GCTGGTATCG	ACACCAACTT	CACCGTTACA	TCTAAAGCCA	CAGACGAAGA	7320

		And the second second					
10	CGTCCTACTT	GTGAACCTCA	TAGGCATTGT	GGCTGGTGTC	TCTTATGCTG	TAAACAGTGG	7440
	CTACCAGTCG	TGGGGTCCGC	TTTTCGGGAA	GCTCTTCTTC	GCCTTATGGG	TTATTGCCCA	7500
	TCTCTACCCT	TTCTTGAAAG	GTCTGTTGGG	AAGACAAAAC	CGAACACCAA	CCATCGTCAT	7560
15	TGTCTGGTCT	GTTCTTCTCG	CCTCCATCTT	CTCGTTGCTT	TGGGTCAGGA	TCAATCCCTT	7620
	TGTGGACGCC	AATCCCAATG	CCAACAACTT	CAATGGCAAA	GGAGGTGTCT	TTTAGACCCT	7680
20	ATTTATATAC	TTGTGTGTGC	АТАТАТСААА	AACGCGCAAT	GGGAATTCCA	AATCATCTAA	7740
	ACCCATCAAA	CCCCAGTGAA	CCGGGCAGTT	AAGGTGATTC	CATGTCCAAG	ATTAGCTTTC	7800
	TCCGAGTAGC	CAGAGAAGGT	GAAATTGTTC	GTAACACTAT	TGTAATGATT	TTCCAGTGGG	7860
25	GAAGAAGATG	TGGACCCAAA	TGATACATAG	TCTACAAAAA	GAATTTGTTA	TTCTTTCTTA	7920
	TATTTATTTT	ATTTAAAGCT	TGTTAGACTC	ACACTTATGT	AATGTTGGAA	CTTGTTGTCC	7980
30	TAAAAAGGGA	TTGGAGTTTT	CTTTTTATCT	AAGAATCTGA	AGTTTATATG	CTAAGCTTTT	8040
	CACTTTACTA	CAAAAAGTTT	ATGGATATGA	TGGTGTACGT	CAATTGTTGG	TGCAAGTGTT	8100
	GATGTCTTCG	GGTGAACTCG	CCCTCTTGTT	TTGTCTCACC	CATCAGTACA	AATAGAATGA	8160
35	CATTTATTTT	TTTGAACTTT	TAACGAAATC	TTTGTCATTA	TGGGACTTGA	TCAGTAAAGT	8220
	TACATATTTG	AAGAGATATT	GTGTAAACTC	TTATTTGAAT	CAGAATCAGA	TCAATCAAAA	8280
40	ATTGAAAACG	TAAAGTTCAA	ACAAAAAGGT	AGAGTGAATC	TTTTAATCCC	CCCTCAATAC	8340

- 103 -

TAATTTGTGA AATCTCAAGT GGTGTAAAAT GAACCCAATT AGTATCCACA ATGTGTTTCT 8400 CTGATCAATC C 8411 5 (2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 5009 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 20 (vi) ORIGINAL SOURCE: (A) ORGANISM: Arabidopsis thaliana (B) STRAIN: Columbia 25 (vii) IMMEDIATE SOURCE: (B) CLONE: 12C4 (ix) FEATURE: (A) NAME/KEY: exon 30 (B) LOCATION: 863..943 (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1454..1840 35 (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1923..2025 40 (ix) FEATURE:

- 104 -

(A) NAME/KEY: exon (B) LOCATION: 2122..2311 (ix) FEATURE: 5 (A) NAME/KEY: exon (B) LOCATION: 2421..2687 (ix) FEATURE: (A) NAME/KEY: exon 10 (B) LOCATION: 2776..3121 (1x) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 3220..3357 15 (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 3507..3623 20 (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 3723..3935 (ix) FEATURE: 25 (A) NAME/KEY: exon (B) LOCATION: 4027..4297 (ix) FEATURE: (A) NAME/KEY: exon 30 (B) LOCATION: 4380..4576 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: 35 AAGGAATAAT AAGATAGGGG TTTAATGGGA GACAATCAAT CTTCAGGGGT TTTCTGGAAN 60 AACGGCGGGG TAAAAAACAA GACATCAATC GGACCCGATC ACGAGGACCC GGATCCGNAT 120 CGATAAACAG NGTAGCTTTC AATACCCCAT TTTCCCAGAA ACACCTCTCA AAAATTTTTT 180

- 105 -

	CAAGAACTNG	TATAAATATC	TCAGTTTCGT	TCACGCAGG	CTTTNTTATT	TTGGNAANTC	240
	TNTNTTCATN	GTTCACCAAC	TCCCTCTTGA	AGGTGGGACA	A GAGTCCAGCT	CCACCACCAC	300
5	CATAGCCATC	GCGTCGTTTT	CTCCGGGACC	CACTTATTT	GTGACGTTTC	TCTCTTTGTA	360
	TATACATACA	ATTGTTTTCA	GTCTCAATTT	GCTGTCCACA	TTTTAACACA	ACTCTATCTC	420
10		TCTGAATCTC	GTCTCTCTCA	TTCCTATTTA	TCCCAATCTA	ATCTATCACA	480
10		CATTGCTTTT	GTCAGTCTGT	AAAATTCTCT	TTGAATCAGT	GAATCACTCA	540
	CTTAAATCCA	AAACAGTTTT	TTTTTCTTTC	TTTCTTTATT	TGCTTGTTGT	GGAATCAATA	600
15	GCTGTCTCCG	GGAAAATTCG	TTTTTTTCT	CCTTCGGGAT	СТСТТТТТТ	TTTTTTTTGG	660
	TTTTATTTAA	TAATTATCCC	CGAGCCAACA	TTTATTGTCG	ATTCGGTTTA	тттсстстсс	720
20	TTCGTCTTCC	ACTCTTACTA	GTGCATGCTC	TGAATCTGTA	TGTAATGGGA	GTTCAACAGT	780
20	CTGGATCCAT	TATCCTAGCC	GGGTCGGGTC	AAGGTCTTTG	AGTAAGAGAG	ACAATTCGTT	840
	TTGATTCGGT	GTAGAAGACA	TCATGAATAC	TGGTGGTCGG	CTCATTGCTG	GCTCTCACAA	900
25	CAGAAACGAA	TTCGTTCTCA	TTAACGCCGA	TGAGAGTGCC	AGAGTAAGAA	TAACTTTTGT	960
	ANGAATTTGT	GACGGAAAAA	AGTTTAATTT	TTTCTCTTTC	TTGGGGATCT	AGATTATGAG	1020
30	AATCTAGATG	GAATATTTTG	ATCTGAAATT	GGAAGTTTCT	AGGGAGTAAT	GCCGCAACCC	1080
	ACATGTTCTG	TTTTTTCTTT	TTTCTTTTCT	TCAAGTAGTG	TTGCATGATT	CATACGTGTC	1140
	GGCAGAGATG	TCCTGAGAAC	CGAATTCAAT	GTTGTAGCAG	TAGCAATAAG	TTCAAAGAAA	1200
35	GTCCATTTTT	TTATATTACT	AATTCTGTTC	TTGGTTTATT	TGAGCTGGTC	TTTATTGCAT	1260
	TTCACCTGGA	TTCAGATACT	AATAACTGTC	TCAATTATGT	AAAAATGACA	ACTTTATGAA	1320
40	ATTCAGTTTC	ACAATTATGT	AATTCATAAT	CGATGAATGT	TTTTCTTGAG	TCTTTATCAT	1380

- 106 -

	CTTTAGGATT	TGATTAAGAT	GCAATTTGAT	GAAAATACTA	AAAAGACTCA	TGTGTTCTCA	1440
	TTTCTCTATG	TAGATACGAT	CAGTACAAGA	ACTGAGTGGG	CAAACATGTC	AAATCTGTGG	1500
5	AGATGAAATC	GAATTAACGG	TTAGCAGTGA	GCTCTTTGTT	GCTTGCAACG	AATGCGCATT	1560
	CCCGGTTTGT	AGACCATGCT	ATOAOTATOA	MCOMMONORM	-001211111-111-02210-		
10	GTGCAAAACT	CGATACAAAA	GGATTAAAGG	TAGTCCACGG	GTTGATGGAG	ATGATGAAGA	1680
10	AGAAGAAGAC	ATTGATGATC	TTGAGTATGA	GTTTGATCAT	GGGATGGACC	CTGAACATGC	1740
	CGCTGAAGCC	GCACTCTCTT	CACGCCTTAA	CACCGGTCGT	GGTGGATTGG	ATTCAGCTCC	1800
15	ACCTGGCTCT	CAGATTCCTC	TTTTGACTTA	TTGTGATGAA	GTGAGGAATC	CAAATTGTTT	1860
	GTTTTCTCTG	ACAATGTTGT	TGCTTAGATG	ATTCTTTTTC	TTATTAGTCT	ATGTGTTTTC	1920
20	AGGATGCTGA	TATGTATTCT	GATCGTCATG	CTCTTATCGT	GCCTCCTTCA	ACGGGATATG	1980
20	GGAATCGCGT	CTATCCTGCA	CCGTTTACAG	ATTCTTCTGC	ACCTCGTATG	TGTTTACTTT	2040
	TATGATTCCT	ACAATTTTTC	TTCTTATATG	ATTTGGTCAC	CTTCTAATGA	GTTATGAAAT	2100
25	GGTTTTGTTT	GTTGTTTTCA	GCACAGGCGA	GATCAATGGT	TCCTCAGAAA	GATATTGCGG	2160
	AATATGGTTA	TGGAAGTGTT	GCTTGGAAGG	ACCGTATGGA	AGTTTGGAAG	AGACGACAAG	2220
30	GCGAAAAGCT	TCAAGTCATT	AAGCATGAAG	GAGGAAACAA	TGGTCGAGGT	TCCAATGATG	2280
50	ACGACGAACT	AGATGATCCT	GACATGCCTA	TGTAAGTTGT	TAAAATCTAA	CAAAAGTTCA	2340
	GATGAAATGA	TGCTCTGAAA	TTTTGTGTTC	AATGGNTTTG	TTTTCTTATT	GTTGTTTAAA	2400
35	CATTTTTCGT	GCTAATTCAG	GATGGATGAA	GGAAGACAAC	CTCTCTCAAG	AAAGCTACCT	2460
	ATTCGTTCAA	GCAGAATAAA	TCCTTACAGG	ATGTTAATTC	TGTGTCGCCT	CGCGATTCTT	2520
40	GGTCTTTTCT	TTCATTATAG	AATTCTCCAT	CCAGTCAATG	ATGCATATGG	ATTATGGTTA	2580

- 107 -

	ACGTCAGTTA	TATGCGAGAT	' ATGGTTTGCA	. GTGTCTTGGA	TTCTTGATCA	ATTCCCCAAA	2640
	TGGTATCCTA	TAGAACGTGA	AACATACCTC	GATAGACTCT	CTCTCAGGTA	ACATAAACCC	2700
5	TGAAAAGTTC	TTGTCTGCAA	ATATTCATTT	TTTACATTCC	CAAAAATTTT	TGAAACTCTA	2760
	TTTTTCTTAC	ATAAGGTACG	AGAAGGAAGG	AAAACCGTCA	GGATTAGCAC	CTGTTGATGT	2820
10		ACAGTGGATC	CGTTGAAAGA	GCCACCCTTG	ATTACAGCAA	ACACAGTTCT	2880
10		GCAGTTGATT	ATCCTGTGGA	TAAGGTTGCG	TGTTATGTAT	CAAACAATGG	2940
	TGCAGCTATG	CTTACATTTG	AAGCTCTCTC	TGATACAGCT	GAGTTTGCTA	GAAAATGGGT	3000
15	TCCTTTTTGT	AAGAAGTTTA	ATATCGAGCC	ACGAGCTCCT	GAGTGGTATT	TTTCTCAGAA	3060
	GATGGATTAC	CTGAAGAACA	AAGTTCATCC	TGCTTTTGTC	AGGGAACGTC	GTGCTATGAA	3120
20	GGTTTTCTTT	GCTGCTTTTT	CTCTTTCTGA	GTATATCCTA	TCATAAAAGT	GTTGTTTCAA	3180
	GAATCTGATT	TACGTTTTT	GCTTGTTTGT	TTGTTGCAGA	GAGATTATGA	GGAGTTTAAA	3240
	GTGAAGATAA	ATGCACTGGT	TGCTACTGCA	CAGAAAGTGC	CTGAGGAAGG	TTGGACTATG	3300
25	CAAGATGGAA	CTCCTTGGCC	TGGAAACAAC	GTCCGTGACC	ATCCTGGAAT	GATTCAGGTA	3360
	ATGATGAGTT	TGATTGAATA	GGCAAAAAA	AAGCGGTTTT	TGTCCTCTTC	ACTTTGTTTC	3420
30	CCTGGATCTG	TTAAATTGGA	ATGAGCACTC	TACTTCTCAA	TATATCTTCA	GACCGAAGCC	3480
	TTTTTAAGAG	ATTTTGTAAA	TGACAGGTGT	TCTTGGGTCA	TAGTGGAGTT	CGTGATACGG	3540
	ATGGTAATGA	GTTACCACGT	CTAGTGTATG	TTTCTCGTGA	GAAGCGGCCT	GGATTTGATC	3600
35	ACCACAAGAA	AGCTGGAGCT	ATGAATTCCT	TGGTAAGTAT	AATGTGTTTC	TTTATTTATG	3660
	AATCTCTCTT	TTCGGAGCCC	TGACTTCTCA	TAAACTAAAA	CTCATCTTAC	TTCTTCTTGA	3720
40	AGATCCGAGT	CTCTGCTGTT	CTATCAAACG	CTCCTTACCT	TCTTAATGTC	GATTGTGATC	3780

- 108 -

ACTACATCAA	CAACAGCAAA	GCAATTAGAG	AATCTATGTG	TTTCATGATG	GACCCGCAAT	3840
CGGGAAAGAA	AGTTTGTTAT	GTTCAGTTTC	CGCAGAGATT	TGATGGGATT	GATAGACATG	3900
ATAGATACTC	AAACCGTAAC	GTTGTGTTCT	TTGATGTATG	TGTCCTTATC	TCTTTTGCTT	3960

10	AAACAGATTA	ACATGAAAGG	TCTTGATGGG	ATACAAGGAC	CGATATATGT	CGGGACAGGT	4080
	TGTGTGTTTA	GAAAACAGGC	TCTTTATGGT	TTTGATGCAC	CAAAGAAGAA	GAAACCACCA	4140
	GGCAAAACCT	GTAACTGTTG	GCCTAAATGG	TGTTGTTTGT	GTTGTGGGTT	GAGAAAGAAG	4200
15	AGTAAAACGA	AAGCCAAAGA	TAAGAAAACT	AACACTAAAG	AGACTTCAAA	GCAGATTCAT	4260
	GCGCTAGAGA	ATGTCGACGA	AGGTGTTATC	GTCCCAGGTA	AAAAAAGAAG	GAAAAAAA A	4320
20	ACATTTCTTA	TTTGGTTTCT	GTCTTGTTGA	AAGTCTAAGT	AGATCCTTTT	GATTGTTAGT	4380
	GTCAAATGTT	GAGAAGAGAT	CTGAAGCAAC	ACAATTGAAA	TTGGAGAAGA	AGTTTGGACA	4440
	ATCTCCGGTT	ттссттссст	CTGCTGTTCT	ACAGAACGGT	GGAGTTCCCC	GTAACGCAAG	4500
25	CCCCGCATGT	TTGTTAAGAG	AAGCCATTCA	AGTTATTAGC	TGCGGGTACG	AAGATAAAAC	4560
	CGAATGGGGA	AAAGAGGTAG	AAAACATTAC	AAAGTTTTTC	AACTTCTGAA	AACTAGAAAA	4620
30	GTTCTTGTGA	TCTCATTCTT	GCTGATAATC	ACACGCAGAT	CGGGTGGATT	TATGGATCGG	4680
50	TGACTGAAGA	TATCCTGACG	GGTTTCAAGA	TGCATTGCCA	TGGATGGAGA	TCTGTGTACT	4740
	GTATGCCTAA	GCGTGCAGCT	TTTAAAGGAT	CTGCTCCTAT	TAACTTGTCA	GATCGTCTTC	4800
35	ATCAAGTTCT	ACGTTGGGCT	CTTGGCTCTG	TAGAGATTTT	CTTGAGCAGA	CATTGTCCGA	4860
	TATGGTATGG	TTATGGTGGT	GGTTTAAAAT	GGTTGGAGAG	ATTCTCTTAC	ATCAACTCTG	4920
40	TCGTCTATCC	TTGGACTTCA	CTTCCATTGA	TCGTCTATTG	TTCTCTCCCC	GCGGTTTGTT	4980

PCT/AU97/00402 WO 98/00549

- 109 -

TACTCACAGG AAAATTCATC GTCCCTGAG

5009

```
5 (2) INFORMATION FOR SEQ ID NO:5:
```

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3603 base pairs

(B) TYPE: nucleic acid

10 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

15 (iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Arabidopsis thaliana

(B) STRAIN: Columbia

20

(vii) IMMEDIATE SOURCE:

(B) CLONE: RSW1 CDNA

(ix) FEATURE:

25 (A) NAME/KEY: CDS

(B) LOCATION: 1..3243

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

30

ATG GAG GCC AGT GCC GGC TTG GTT GCT GGA TCC TAC CGG AGA AAC GAG 4.8 Met Glu Ala Ser Ala Gly Leu Val Ala Gly Ser Tyr Arg Arg Asn Glu 1

5 15

35 CTC GTT CGG ATC CGA CAT GAA TCT GAT GGC GGG ACC AAA CCT TTG AAG 96 Leu Val Arg Ile Arg His Glu Ser Asp Gly Gly Thr Lys Pro Leu Lys 20 25 30

- 110 -

	AAT	ATG	AAT	GGC	CAG	ATA	TGT	CAG	ATC	TGT	GGT	GAT	GAT	GTT	GGA	CTC	144
	Asn	Met	Asn	Gly	Gln	Ile	Cys	Gln	Ile	Cys	G1 y	Asp	Asp	Val	Gly	Leu	
			35					40					45				
5	GCT	GAA	ACT	GGA	GAT	GTC	TTT	GTC	GCG	TGT	AAT	GAA	TGT	GCC	TTC	CCT	192
	-	61.	Obas	Cla	Ace.	1/27	Phe	Va.l	Ala.	CVS	Asn.	Glu	Cys	Ala	Phe	Pro	
	GTG	TGT	ÇGG	CCT	TGC	TAT	GAG	TAC	GAG	AGG	AAA	GAT	GGA	ACT	CAG	TGT	240
10	Val	Cys	Arg	Pro	Cys	Tyr	Glu	Tyr	Glu	Arg	Lys	Asp	Glγ	Thr	Gln	Cys	
	65					70					75					80	
	TGC	CCT	CAA	TGC	AAG	ACT	AGA	TTC	AGA	CGA	CAC	AGG	GGG	AGT	CCT	CGT	288
	Cys	Pro	Gln	Cys	Lys	Thr	Arg	Phe	Arg	Arg	His	Arg	Gly	Ser	Pro	Arg	
15					85					90					95		
	GTT	GAA	GGA	GAT	GAA	GAT	GAG	GAT	GAT	GTT	GAT	GAT	ATC	GAG	AAT	GAG	336
	Val	Glu	Gly	Asp	Glu	Asp	Glu	Asp	Asp	Val	Asp	Asp	Ile	Glu	Asn	Glu	
				100					105					110			
20																	
	TTC	AAT	TAC	GCC	CAG	GGA	GCT	AAC	AAG	GCG	AGA	CAC	CAA	CGC	CAT	GGC	384
	Phe	Asn	Tyr	Ala	Gln	Gly	Ala	Asn	Lys	Ala	Arg	His	Gln	Arg	His	Gly	
			115					120					125				
25	GAA	GAG	TTT	TCT	TCT	TCC	TCT	AGA	CAT	GAA	TCT	CAA	CCA	ATT	CCT	CTT	432
	Glu	Glu	Phe	Ser	Ser	Ser	Ser	Arg	His	Glu	Ser	Gln	Pro	Ile	Pro	Leu	
		130					135					140					
								TCT									480
30	Leu	Thr	His	Gly	His	Thr	Val	Ser	Gly	Glu	Ile	Arg	Thr	Pro	Asp	Thr	
	145					150					155					160	
	CAA	TCT	GTG	CGA	ACT	ACA	TCA	GGT	CCT	TTG	GGT	CCT	тст	GAC	AGG	AAT	528
	Gln	Ser	Val	Arg	Thr	Thr	Ser	Gly	Pro	Leu	Gly	Pro	Ser	Asp	Arg	Asn	
35					165					170					175		
								GAT									576
	Ala	Ile	Ser		Pro	Tyr	Ile	Asp		Arg	Gln	Pro	Val	Pro	Val	Arg	
4.0				180					185					190			
40																	

- 111 -

	ATC	GTG	GAC	CCG	TCA	AAA	GAC	TTG	AAC	TCT	TAT	GGG	CT	r GG1	r aan	r gtt	624
	Ile	Val	Asp	Pro	Ser	Lys	Asp	Leu	Asn	Ser	туг	Gly	Let	Gly	Ası	val	
			195					200					205	;			
5	GAC	TGG	AAA	GAA	AGA	GTT	GAA	GGC	TGG	AAG	CTG	AAG	CAC	GAC	AA.	TAA 1	672
	Asp	Trp	Lys	Glu	Arg	Val	Glu	Gly	Trp	Lys	Leu	Lys	Glr	Glu	Lys	Asn	
		210					215					220					
	ATG	TTA	CAG	ATG	ACT	CGT	AAA	TAC	CAT	GAA	GGG	AAA	GGA	GGA	GAA	TTA	720
10	Met	Leu	Gln	Met	Thr	Gly	Lys	Tyr	His	Glu	Gly	Lys	G1y	Gly	Glu	Ile	
	225					230					235					240	
	GAA	GGG	ACT	GGT	TCC	AAT	GGC	GAA	GAA	CTC	CAA	ATG	GCT	GAT	GAT	ACA	768
	Glu	Gly	Thr	Gly	Ser	Asn	Gly	Glu	Glu	Leu	Gln	Met	Ala	Asp	Asp	Thr	
15					245					250					255		
	CGT	CTT	CCT	ATG	AGT	CGT	GTG	GTG	CCT	ATC	CCA	TCT	TCT	CGC	CTA	ACC	816
	Arg	Leu	Pro	Met	Ser	Arg	Val	Val	Pro	Ile	Pro	Ser	Ser	Arg	Leu	Thr	
				260					265					270			
20																	
	CCT	TAT	CGG	GTT	GTG	TTA	ATT	CTC	CGG	CTT	ATC	ATC	TTG	TGT	TTC	TTC	864
	Pro	Tyr	Arg	Val	Val	Ile	Ile	Leu	Arg	Leu	Ile	Ile	Leu	Суз	Phe	Phe	
			275					280					285				
												1					
25	TTG	CAA	TAT	CGT	ACA	ACT	CAC	CCT	GTG	AAA	AAT	GCA	TAT	CCT	TTG	TGG	912
	Leu	Gln	Tyr	Arg	Thr	Thr	His	Pro	Val	Lys	Asn	Ala	Tyr	Pro	Leu	Trp	
		290					295					300					
			TCG														960
30	Leu	Thr	Ser	Val	Ile	Cys	Glu	Ile	Trp	Phe	Ala	Phe	Ser	Trp	Leu	Leu	
	305					310					315					320	
	GAT	CAG	TTT	CCC	AAA	TGG	TAC	CCC	ATT	AAC	AGG	GAG	ACT	TAT	CTT	GAC	1008
	Asp	Gln	Phe	Pro	Lys	Trp	Tyr	Pro	Ile	Asn	Arg	Glu	Thr	Tyr	Leu	Asp	
35					325					330					335		
	CGT	CTC	GCT	ATA	AGA	TAT	GAT	CGA	GAC	GGT	GAA	CCA	TCA	CAG	CTC	GTT	1056
	Arg	Leu	Ala	Ile	Arg	Tyr .	Asp .	Arg	Asp	Gly	Glu	Pro	Ser	Gln	Leu	Va1	
				340					345					350			

- 112 -

	CCT	GTT	GAT	GTG	TTT	GTT	AGT	ACA	GTG	GAC	CCA	TTG	AAA	GAG	CCT	CCC	1104
	Pro	Val	Asp	Val	Phe	Val	Ser	Thr	Val	Asp	Pro	Leu	Lys	Glu	Pro	Pro	
			355					360					365				
5	CTT	GTT	ACA	GCA	AAC	ACA	GTT	CTC	TCG	ATT	CTT	TCT	GTG	GAC	TAC	CCG	1152
	Leu	Val	Thr	Ala	Asn	Thr	Val	Leu	Ser	Ile	Leu	Ser	Val	Asp	Tyr	Pro	
	GTA	GAT	AAA	GTA	GCC	TGT	TAT	GTT	TCA	GAT	GAT	GGT	TCA	GCT	ATG	CTT	1200
10	Val	Asp	Lys	Val	Ala	Cys	Tyr	Val	Ser	Asp	Asp	Gly	Ser	Ala	Met	Leu	
	385					390					395					400	
	ACC	TTT	GAA	TCC	CTT	TCT	GAA	ACC	GCT	GAG	TTT	GCA	AAG	AAA	TGG	GTA	1248
	Thr	Phe	Glu	Ser	Leu	Ser	Glu	Thr	Ala	Glu	Phe	Ala	Lys	Lys	Trp	Val	
15					405					410					415		
	CCA	TTT	TGC	AAG	AAA	TTC	AAC	ATT	GAA	CCT	AGG	GCC	CCT	GAA	TTC	TAT	1296
	Pro	Phe	Cys	Lys	Lys	Phe	Asn	Ile	Glu	Pro	Arg	Ala	Pro	Glu	Phe	Tyr	
30				420					425					430			
20																	
				AAG													1344
	Phe	Ala		Lys	He	Asp	Tyr		Lys	Asp	Lys	He		Pro	Ser	Phe	
			435					440					445				
25	o mm		010	<i>a</i> a>	22.	COM	1 mc			a.a		<i>a</i>	;	mmm		ama	1202
25				CGA													1392
	vai	450	GIU	Arg	Arg	MIA	455	rys	ALG	Gru	LYL	460	GIU	FILE	цуs	vai	
		430					433					400					
	AGG	АТА	דממ	GCT	ርጥጥ	GTT	GCC	ДДД	GCA	CAG	AAA	ATC	ССТ	AAD	AAD	GGC	1440
30				Ala													
	465					470					475					480	
																	•
	TGG	ACA	ATG	CAG	GAT	GGT	ACT	CCC	TGG	CCT	GGT	AAC	AAC	ACT	AGA	GAT	1488
	Trp	Thr	Met	Gln	Asp	Gly	Thr	Pro	Trp	Pro	Gly	Asn	Asn	Thr	Arg	Asp	
35					485					490					495		
	CAT	CCT	GGA	ATG	ATA	CAG	GTG	TTC	TTA	GGC	CAT	AGT	GGG	GGT	CTG	GAT	1536
	His	Pro	Gly	Met	Ile	Gln	Val	Phe	Leu	Gly	His	Ser	Gly	Gly	Leu	Asp	
				500					505					510			
40																	

- 113 -

	ACC	GAT	r GG#	CAA A	GAG	CTG	CCT	AGA	CTC	ATO	TAT	GTI	TC	r cg:	r gaj	AAG	1584
	Thr	Asp	Gly	/ Asr	Glu	Leu	Pro	Arg	Leu	Ile	Tyr	Val	Ser	Arg	g Glv	Lys	
			519	5				520					525	5			
_																	
5	CGG	CCI	GGA	TTT	CAA	CAC	CAC	AAA	AAG	GCI	GGA	GCI	ATO	AA1	GC#	TTG	1632
	Arg	Pro	Gly	Phe	Gln	His	His	Lys	Lys	Ala	Gly	Ala	Met	Asr	Ala	Leu	
		530	,				535					540					
	h.m.c	001	· con	m om	000	C TO TO	om m	1.00	330	00.		m a m	comm	mma			
10					GCT Ala												1680
10			vai	Sei	Ald		Leu	Int	ASI	GIY			Leu	Leu	ASN		
	545					550					555					560	
	GAT	TGT	GAT	CAT	TAC	ттт	ТАА	AAC	AGT	AAG	GCT	Αττ	AAA	GAA	GCT	ATG	1728
					Tyr												2.22
15		,	•		565					570			-7-		575		
	TGT	TTC	ATG	ATG	GAC	CCG	GCT	ATT	GGA	AAG	AAG	TGC	TGC	TAT	GTC	CAG	1776
	Cys	Phe	Met	Met	Asp	Pro	Ala	Ile	Gly	Lys	Lys	Cys	Cys	Tyr	Val	Gln	
				580					585					590			
20																	
	TTC	CCT	CAA	CGT	TTT	GAC	GGT	TTA	GAT	TTG	CAC	GAT	CGA	TAT	GCC	AAC	1824
	Phe	Pro	Gln	Arg	Phe	Asp	Gly	Ile	Asp	Leu	His	Asp	Arg	Tyr	Ala	Asn	
			595					600					605				
25	AGG	AAT	ATA	GTC	TTT	TTC	GAT	ATT	AAC	ATG	AAG	GGG	TTG	GAT	GGT	ATC	1872
	Arg	Asn	Ile	Val	Phe	Phe	Asp	Ile	Asn	Met	Lys	Gly	Leu	Asp	Gly	Ile	
		610					615					620					
20					TAT												1920
30	Gln	Gly	Pro	Val	Tyr	Val	Gly	Thr	Gly	Cys	Cys	Phe	Asn	Arg	Gln	Ala	
	625					630					635					640	
	COT B		222	~~~		~~=											
					GAT												1968
35	rea	IYI	σ±y	ıyr	Asp	110	vai	ren	1 n.r.		GIU	wsb	ren	GIU		ASN	
,,					645					650					655		
	ATT	ATT	GTC	AAG	AGC	TGT	TGC	GGG	TCA	AGG	AAG	AAA	GGT	ΔΔΔ	AGT	AGC	2016
					Ser												. 2010
		-	.=	660		.,-	- , -		665	3	-, -	1	1	670			

- 114 -

	AAG	AAG	TAT	AAC	TAC	GAA	AAG	AGG	AGA	GGC	ATC	AAC	AGA	AGT	GAC	TCC	2064
	Lys	Lys	Tyr	Asn	Tyr	Glu	Lys	Arg	Arg	Gly	Ile	Asn	Arg	Ser	Asp	Ser	
			675					680					685				
5	AAT	GCT	CCA	CTT	TTC	AAT	ATG	GAG	GAC	ATC	GAT	GAG	GGT	TTT	GAA	GGT	2112
	Asn	Ala	Pro	Leu	Phe	Asn	Met	Glu	Asp	Ile	Asp	Glu	Gly	Phe	Glu	Gly	ne State of the St
																	á
					AGG												2160
10	Tyr	Asp	Asp	Glu	Arg		Ile	Leu	Met	Ser		Arg	Ser	Val	Glu		
	705					710					715					720	
					TCG												2208
16	Arg	Pne	Gly	Gin	Ser	Pro	val	Phe	Пе		Ala	Thr	Phe	Met		Gin	
15					725					730					735		
	225	<i>acc</i>	7 COC	CCN	CC1		N.C.C	220	666	COTT	n C.	C/D/M	cmc	220	CNC	CCT	2256
					CCA Pro											_	2230
	GIA	Gry	116	740	PLU	1111	1111	MSII	745	ATO	1111	Ded	Deu	750	Giu	AIA .	
20				,40					743					, 30			
	АТТ	CAT	GTT	АТА	AGC	TGT	GGT	TAC	GAA	GAC	AAG	ACT	GAA	TGG	GGC	AAA	2304
					Ser												
			755			•	•	760		•	•		765	•		•	
25	GAG	ATT	GGT	TGG	ATC	TAT	GGT	TCC	GTG	ACG	GAA	GAT	ATT	CTT	ACT	GGG	2352
	Glu	Ile	Gly	Trp	Ile	Tyr	Gly	Ser	Val	Thr	Glu	Asp	Ile	Leu	Thr	Gly	
		770					775					780					
	TTC	AAG	ATG	CAT	GCC	CGG	GGT	TGG	ATA	TCG	ATC	TAC	TGC	AAT	ССТ	CCA	2400
30	Phe	Lys	Met	His	Ala	Arg	Gly	Trp	Ile	Ser	Ile	Tyr	Суз	Asn	Pro	Pro	
	785					790					795					800	
	CGC	CCT	GCG	TTC	AAG	GGA	TCT	GCA	CCA	ATC	AAT	CTT	TCT	GAT	CGT	TTG	2448
	Arg	Pro	Ala	Phe	Lys	Gly	Ser	Ala	Pro	Ile	Asn	Leu	Ser	Asp	Arg	Leu	
35					805					810					815		
	AAC	CAA	GTT	CTT	CGA	TGG	GCT	TTG	GGA	TCT	ATC	GAG	TTA	CTT	CTT	AGC	2496
	Asn	Gln	Val	Leu	Arg	Trp	Ala	Leu	Gly	Ser	Ile	Glu	Ile	Leu	Leu	Ser	
				820					825					830			
40																	

- 115 -

	AGA	CAT	TGT	ССТ	ATC	TGG	TAT	GGT	TAC	CAT	GGA	AGG	TTG	AGA	CTI	TTG	2544
	Arg	His	Cys	Pro	Ile	Trp	Tyr	Gly	Tyr	His	Gly	Arg	Leu	Arg	Leu	Leu	
			835					840					845				
5	GAG	AGG	ATC	GCT	TAT	ATC	AAC	ACC	ATC	GTC	TAT	CCT	ATT	ACA	TCC	ATC	2592
	Glu	Arg	Ile	Ala	Tyr	Ile	Asn	Thr	Ile	Val	Tyr	Pro	Ile	Thr	Ser	Ile	
		850					855					860					
									CCC								2640
10	Pro	Leu	lle	Ala	Tyr	Cys	Ile	Leu	Pro	Ala	Phe	Суз	Leu	Ile	Thr	Asp	
	865					870					875					880	
									AAC								2688
15	Arg	Phe	lie	Ile		GIu	He	Ser	Asn	_	Ala	Ser	He	Trp		Ile	
15					885					890					895		
	CTA	CTC	ተ ሞር	እጥሮ	ጥ ር እ	እጥጥ	CCT	стс	ACT	CCA	እጥሮ	CTC	CAC	CTC	אכא	TCC	2736
	-								Thr								2/30
	Leu	Leu	FIIE	900	261	116	Ala	VAI	905	GIY	116	beu	GIU	910	Arg	11-12	
20				300					905					310			
20	AGC	GGT	GTG	AGC	АТТ	GAG	GAT	TGG	TGG	AGG	מאר	GAG	CAG	ጥፐር	TGG	GTC	2784
									Trp								
	001	U 1,	915	001				920		5			925				
25	ATT	GGT	GGC	ACA	TCC	GCC	CAT	CTT	TTT	GCT	GTC	TTC	CAA	GGT	СТА	CTT	2832
									Phe								
		930	•				935					940		•			
	AAG	GTT	CTT	GCT	GGT	ATC	GAC	ACC	AAC	TTC	ACC	GTT	ACA	TCT	AAA	GCC	2880
30	Lys	Val	Leu	Ala	Gly	Ile	Asp	Thr	Asn	Phe	Thr	Val	Thr	Ser	Lys	Ala	
	945					950					955					960	
										•							
	ACA	GAC	GAA	GAT	GGG	GAT	TTT	GCA	GAA	CTC	TAC	ATC	TTC	AAA	TGG	ACA	2928
	Thr	Asp	Glu	Asp	Gly	Asp	Phe	Ala	Glu	Leu	Tyr	Ile	Phe	Lys	Trp	Thr	
35					965					970					975		
	GCT	CTT	CTC	ATT	CCA	CCA	ACC	ACC	GTC	CTA	CTT	GTG	AAC	CTC	ATA	GGC	2976
	Ala	Leu	Leu	Ile	Pro	Pro	Thr	Thr	Val	Leu	Leu	Val	Asn	Leu	Ile	Gly	
				980					985					990			

- 116 -

	ATT	GTG	GCT	GGT	GTC	TCT	TAT	GCT	GTA	AAC	AGT	GGC	TAC	CAG	TCG	TGG	;	3024
	lle	Val	Ala	Gly	Val	Ser	Tyr	Ala	Val	Asn	Ser	Gly	Tyr	Gln	Ser	Trp		
			995					100	D				1009	5				
_																		
5	GGT	CCG	CTT	TTC	GGG	AAG	CTC	TTC	TTC	GCC	TTA	TGG	GTT	ATT	GCC	CAT		3072
					The latest		Terror to	Phon	0	-Adda	I-O-W	The same	-Mad-	-I-l-o-	A-1-0-	Hi-C		
		TOT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															
	CTC	TAC	ССТ	ጥጥር	TTG	מממ	CCT	CTG	ም ምር	GGA) C)	CAA	አስሮ	CCA	מרמ	CCA		3120
10	Leu																	1120
	102	=				1030				,	1039			5		1040		
	ACC	ATC	GTC	ATT	GTC	TGG	тст	GTT	CTT	CTC	GCC	TCC	ATC	TTC	TCG	TTG	:	3168
	Thr	Ile	Val	Ile	Val	Trp	Ser	Val	Leu	Leu	Ala	Ser	Ile	Phe	Ser	Leu		
15					1049	5				1050)				1059	5		
	CTT	TGG	GTC	AGG	ATC	AAT	CCC	TTT	GTG	GAC	GCC	AAT	CCC	AAT	GCC	AAC	:	3216
	Leu	Trp	Val	Arg	Ile	Asn	Pro	Phe	Val	Asp	Ala	Asn	Pro	Asn	Ala	Asn		
				1060	כ				1069	5				1070	0			
20																		
		TTC								TAG	ACCC1	rat 1	TATA	ATAC"	ΓT		-	3263
	Asn	Phe		-	Lys	Gly	Gly											
			1079	>				1080	J									
25	GTG	гатаа	י דמי	ידבידב	מממר	A C C	ccc	ATG	יעט:	<u>ነ</u> ተጥር (מממ־	TCAT	· rcta <i>t</i>	אבר (CATO	CAAACC	7	323
23	GIG.	10100	~v. ,	11111	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31. C.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2110	<i>,</i> 0, 7, 2		-1461	1011		4.0		200.00	•	,,,,,
	CCAC	STGA	ACC (GGC	AGTT <i>I</i>	AA GO	TGA	rtcc	A TGT	rcca;	AGAT	TAGO	TTTC	TC (CGAG1	ragcca	3	383
	GAG	AAGG"	rga /	AATTO	STTC	GT A	ACAC	TATT	G TA	ATGA:	TTT	CCAC	STGGC	GA A	AGAA	SATGTG	3	3443
30																		
	GAC	CAA	ATG A	ATAC	ATAG:	rc T	CAA	AAA G	A AT	rtgt:	TATT	CTTT	CTTA	ATA 7	rtta:	TTTTAT	3	3503
	TTA	AAGC'	rtg :	TTAG	ACTC	AC A	TTA:	rgta.	A TG	rtgg/	AACT	TGT	GTC	TA J) AAA	GGATT	3	3563
35	GGA	GT T T	rct 1	TTTT	ATCT	AA G	AATC:	rgaa(G TT	rata:	rgct						3	3603
	(2)	****	20147	T.C.	E05	arc.	TD .	v										
	(2)	INF	JKMA:	TON	FUR	SEQ	י מד	0 : UK	•									

40 (i) SEQUENCE CHARACTERISTICS:

- 117,-

				()	A) LE	NGTH	1: 10)81 a	mino	aci	ds					
				(E	3) TY	PE:	amir	o ac	id							
				(E) TC	POLC	GY:	line	ar							
5		,	(ii)	MOLE	CULE	TYP	E: p	rote	in							
		:	(xi)	SEQU	JENCE	DES	CRIP	TION	: SE	Q ID	NO:	6 :				
10			ı Ala	Ser	: Ala 5	Gly	Leu	Val	Ala	Gly		Tyr	Arg	Arg	Asn 15	Glu
	Leu	Val	Arg			Hıs	Glu	Ser			Gly	Thr	Lys			Lys
				20					25					30		
15	Asn	Met			Gln	Ile	Cys	Gln	Ile	Cys	Gly	Asp		Val	Gly	Leu
			35					40					45			
	Ala	Glu 50		Gly	Asp	Val	Phe 55	Val	Ala	Cys	Asn	Glu 60	Cys	Ala	Phe	Pro
20																
	Val 65	Cys	Arg	Pro	Cys	Туг 70	Glu	Tyr	Glu	Arg	Lys 75	Asp	Gly	Thr	Gln	Cys
25	Cys	Pro	Gln	Cys	Lys 85	Thr	Arg	Phe	Arg	Arg 90	His	Arg	Gly	Ser	Pro 95	Arg
	Val	Glu	Gly	Asp	Glu	Asp	Glu	Asp	Asp 105	Val	Asp	Asp	Ile	Glu 110	Asn	Glu
30	Phe	Asn	Туг	Ala	Gln	Gly	Ala	Asn	Lys	Ala	Arg	His	Gln	Arg	His	Gly
			115					120					125			
	Glu	Glu 130	Phe	Ser	Ser	Ser	Ser	Arg	His	Glu	Ser	Gln 140	Pro	Ile	Pro	Leu
35																
	Leu	Thr	His	Gly	His	Thr	Val	Ser	Gly	Glu	Ile	Arq	Thr	Pro	Asp	Thr
	145			•		150			•		155	•			•	160
	Gln	Ser	Val	Arg	Thr	Thr	Ser	Gly	Pro	Leu	Gly	Pro	Ser	Asp	Arg	Asn
40					165					170				_	175	

- 118 -

Ala Ile Ser Ser Pro Tyr Ile Asp Pro Arg Gln Pro Val Pro Val Arg 180 185 190

Ile Val Asp Pro Ser Lys Asp Leu Asn Ser Tyr Gly Leu Gly Asn Val
5 195 200 205

						.,,										
		210					215					220				
10	Met	Leu	Gln	Met	Thr	Gly	Lys	Tyr	His	Glu	Gly	Lys	Gly	GΙΆ	Glu	11
	225					230					235					24
	Glu	Gly	Thr	Gly	Ser	Asn	Gly	Glu	Glu	Leu	Gln	Met	Ala	Asp	Asp	Th
					245					250					255	
15																
	Arg	Leu	Pro	Met	Ser	Arg	Val	Val	Pro	Ile	Pro	Ser	Ser	Arg	Leu	Th
				260					265					270		
	Pro	Tyr	Arg	Val	Val	Ile	Ile	Leu	Arg	Leu	Ile	Ile	Leu	Cys	Phe	Ph
20		_	275					280					285			
	Leu	Gln	Tvr	Arg	Thr	Thr	His	Pro	Val	Lvs	Asn	Ala	Tvr	Pro	Leu	Tr
		290	- , -	5			295			-,-		300	-1-			
		230					200					300				
25	tau	Thr	Sar	V = 1	Ile	Cve	Glu	110	Trn	Dhe	Λla	Dhe	Sar	Trn	Lau	T.es
23		1111	261	Val	116	•	Giu	116	IIp	FILE		FILE	361	rrp	Deu	
	305					310					315					32
	_			_	_	_		_			_			_	_	_
	Asp	Gln	Phe	Pro	Lys	Trp	Tyr	Pro	Ile		Arg	Gļu	Thr	Tyr		As
• •					325					330					335	
30																
	Arg	Leu	Ala	Ile	Arg	Tyr	Asp	Arg	Asp	Gly	Glu	Pro	Ser	Gln	Leu	Va
				340					345					350		
	Pro	Val	Asp	Val	Phe	Val	Ser	Thr	Val	Asp	Pro	Leu	Lys	Glu	Pro	Pr
35			355					360					365			
	Leu	Val	Thr	Ala	Asn	Thr	Val	Leu	Ser	Ile	Leu	Ser	Val	Asp	Tyr	Pr
		370					375					380				

- 119 -

Val Asp Lys Val Ala Cys Tyr Val Ser Asp Gly Ser Ala Met Leu 385 390 395 400
Thr Phe Glu Ser Leu Ser Glu Thr Ala Glu Phe Ala Lys Lys Trp Val 405 410 415
Pro Phe Cys Lys Lys Phe Asn Ile Glu Pro Arg Ala Pro Glu Phe Tyr 420 425 430
10 Phe Ala Gln Lys Ile Asp Tyr Leu Lys Asp Lys Ile Gln Pro Ser Phe 435 440 445
Val Lys Glu Arg Arg Ala Met Lys Arg Glu Tyr Glu Glu Phe Lys Val 450 455 460
Arg Ile Asn Ala Leu Val Ala Lys Ala Gln Lys Ile Pro Glu Glu Gly 465 470 475 480
Trp Thr Met Gln Asp Gly Thr Pro Trp Pro Gly Asn Asn Thr Arg Asp 485 490 495
His Pro Gly Met Ile Gln Val Phe Leu Gly His Ser Gly Gly Leu Asp 500 510
25 Thr Asp Gly Asn Glu Leu Pro Arg Leu Ile Tyr Val Ser Arg Glu Lys 515 520 525
Arg Pro Gly Phe Gln His His Lys Lys Ala Gly Ala Met Asn Ala Leu 530 535 540
Ile Arg Val Ser Ala Val Leu Thr Asn Gly Ala Tyr Leu Leu Asn Val 545 550 560
Asp Cys Asp His Tyr Phe Asn Asn Ser Lys Ala Ile Lys Glu Ala Met 565 570 575
Cys Phe Met Met Asp Pro Ala Ile Gly Lys Lys Cys Cys Tyr Val Gln 580 585 590

- 120 -

Phe Pro Gln Arg Phe Asp Gly Ile Asp Leu His Asp Arg Tyr Ala Asn
595 600 605

Arg Asn Ile Val Phe Phe Asp Ile Asn Met Lys Gly Leu Asp Gly Ile
5 610 615 620

625 630 635 640

10 Leu Tyr Gly Tyr Asp Pro Val Leu Thr Glu Glu Asp Leu Glu Pro Asn
645 650 655

Ile Ile Val Lys Ser Cys Cys Gly Ser Arg Lys Lys Gly Lys Ser Ser 660 665 670

15

Lys Lys Tyr Asn Tyr Glu Lys Arg Arg Gly Ile Asn Arg Ser Asp Ser 675 680 685

Asn Ala Pro Leu Phe Asn Met Glu Asp Ile Asp Glu Gly Phe Glu Gly 20 690 695 700

Tyr Asp Asp Glu Arg Ser Ile Leu Met Ser Gln Arg Ser Val Glu Lys
705 710 715 720

25 Arg Phe Gly Gln Ser Pro Val Phe Ile Ala Ala Thr Phe Met Glu Gln
725 730 735

Gly Gly Ile Pro Pro Thr Thr Asn Pro Ala Thr Leu Leu Lys Glu Ala
740 745 750

30

Ile His Val Ile Ser Cys Gly Tyr Glu Asp Lys Thr Glu Trp Gly Lys
755 760 765

Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr Glu Asp Ile Leu Thr Gly
35 770 780

Phe Lys Met His Ala Arg Gly Trp Ile Ser Ile Tyr Cys Asn Pro Pro 785 790 795 800

- 121 -

121 ~
Arg Pro Ala Phe Lys Gly Ser Ala Pro Ile Asn Leu Ser Asp Arg Leu 805 810 815
Asn Gln Val Leu Arg Trp Ala Leu Gly Ser Ile Glu Ile Leu Leu Ser 820 825 830
Arg His Cys Pro Ile Trp Tyr Gly Tyr His Gly Arg Leu Arg Leu Leu 835 840 845
10 Glu Arg Ile Ala Tyr Ile Asn Thr Ile Val Tyr Pro Ile Thr Ser Ile 850 855 860
Pro Leu Ile Ala Tyr Cys Ile Leu Pro Ala Phe Cys Leu Ile Thr Asp 865 870 875 880
Arg Phe Ile Ile Pro Glu Ile Ser Asn Tyr Ala Ser Ile Trp Phe Ile 885 890 895
Leu Leu Phe Ile Ser Ile Ala Val Thr Gly Ile Leu Glu Leu Arg Trp 900 905 910
Ser Gly Val Ser Ile Glu Asp Trp Trp Arg Asn Glu Gln Phe Trp Val 915 920 925
25 Ile Gly Gly Thr Ser Ala His Leu Phe Ala Val Phe Gln Gly Leu Leu 930 935 940
Lys Val Leu Ala Gly Ile Asp Thr Asn Phe Thr Val Thr Ser Lys Ala 945 950 955 960
Thr Asp Glu Asp Gly Asp Phe Ala Glu Leu Tyr Ile Phe Lys Trp Thr 965 970 975
Ala Leu Leu Ile Pro Pro Thr Thr Val Leu Leu Val Asn Leu Ile Gly 980 985 990
Ile Val Ala Gly Val Ser Tyr Ala Val Asn Ser Gly Tyr Gln Ser Trp

1000

1005

35

- 122 -

Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Leu Trp Val Ile Ala His 1010 1015 1020

Leu Tyr Pro Phe Leu Lys Gly Leu Leu Gly Arg Gln Asn Arg Thr Pro 5 1025 1030 1035 1040

1045 1050

1055

10 Leu Trp Val Arg Ile Asn Pro Phe Val Asp Ala Asn Pro Asn Ala Asn
1060 1065 1070

Asn Phe Asn Gly Lys Gly Gly Val Phe 1075 1080

15

- (2) INFORMATION FOR SEQ ID NO:7:
- 20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3828 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

25

- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- 30 (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Arabidopsis thaliana
 - (B) STRAIN: Columbia

- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: Ath-A
- (ix) FEATURE:
- 40 (A) NAME/KEY: CDS

- 123 -

(B) LOCATION: 239..3490

		(x)	J SE	QUEN	ICE I	ESCR	IPTI	ON:	SEQ	ID N	0:7:						
5																	
	GTC	GACA	CTA	AGTG	GATO	CA A	AGAA	TTCG	C GG	CCGC	GTCG	ATA	CGGC	TGC	GAGA	AGACGA	. 6
	CAG	AAGG	GGA	TTGT	CGAT	TC G	GTTT	ATTT	C GT	CTCC	TTCG	TCT	TCCA	C T C	TTAC	TAGTGO	12
10	ATG	CTCT	GAA	TCTG	TATG	TA A	TGGG	agtt	C AA	.CAGT	CTGG	ATC	CATT	ATC	CTAG	CCGGGT	18
	CGG	GTCA	AGG	TCTT	TGAA	TA A	gaga	GACA	а тт	CGTT	TTGA	TTC	GGTG	TAG	AAGA	.CATC	23
	ATG	AAT	ACT	GGT	GGT	CGG	CTC	ATT	GCT	GGC	TCT	CAC	AAC	AGA	AAC	GAA	28
15	Met	Asn	Thr	Gly	Gly	Arg	Leu	Ile	Ala	Gly	Ser	His	Asn	Arg	Asn	Glu	
	1				5					10					15		
	TTC	GTT	CTC	ATT	AAC	GCC	GAT	GAG	AGT	GCC	AGA	ATA	CGA	TCA	GTA	CAA	334
	Phe	Val	Leu	Ile	Asn	Ala	Asp	Glu	Ser	Ala	Arg	Ile	Arg	Ser	Val	Gln	
20				20					25					30			
	GAA	CTG	AGT	GGG	CAA	ACA	TGT	CAA	ATC	TGT	GGA	GAT	GAA	ATC	GAA	ATT	382
	Glu	Leu	Ser	Gly	Gln	Thr	Cys	Gln	Ile	Cys	Gly	Asp	Glu	Ile	Glu	Leu	
			35					40					45				
25																	
	ACG	GTT	AGC	AGT	GAG	CTC	TTT	GTT	GCT	TGC	AAC	GAA	TGC	GCA	TTC	CCG	430
	Thr		Ser	Ser	Glu	Leu		Val	Ala	Cya	Asn		Суѕ	Ala	Phe	Pro	
		50					55					60					
30	GTT	TGT	AGA	CCA	TGC	TAT	GAG	TAT	GAA	CGT	AGA	GAA	GGA	AAT	CAA	GCT	478
	Val	Cys	Arg	Pro	Cys	Tyr	Glu	Tyr	Glu	Arg	Arg	Glu	Gly	Asn	Gln	Ala	
	65					70					75					80	
	TGT	CCT	CAG	TGC	AAA	ACT	CGA	TAC	AAA	AGG	ATT	AAA	GGT	AGT	CCA	CGG	526
35	Cys	Pro	Gln	Cys	Lys	Thr	Arg	Tyr	Lys	Arg	Ile	Lys	Gly	Ser	Pro	Arg	
					85					90					95		
	GTT	GAT	GGA	GAT	GAT	GAA	gaa	GAA	GAA	GAC	ATT	GAT	GAT	CTT	GAG	TAT	574
	Val	Asp	Gly	Asp	Asp	Glu	Glu	Glu	Glu	Asp	Ile	Asp	Asp	Leu	Glu	Tyr	
40				100					105					110			

- 124 -

	GAG	TTT	GAT	CAT	GGG	ATG	GAC	CCT	GAA	CAT	GCC	GCT	GAA	GCC	GCA	CTC		622
	Glu	Phe	Asp	Hıs	Gly	Met	Asp	Pro	Glu	His	Ala	Ala	Glu	Ala	Ala	Leu		
			115					120					125					
5	TCT	TCA	CGC	CTT	AAC	ACC	GGT	CGT	GGT	GGA	TTG	GAT	TCA	GCT	CCA	CCT		670
	Sor	Ser	Ara	Leu	Asn	Thr	Gly	Arg	Gly	Gly	Leu	Asp	Ser	Ala	Pro	Pro		
																		-
	GGC	TCT	CAG	ATT	CCT	CTT	TTG	ACT	TAT	TGT	GAT	GAA	GAT	GCT	GAT	ATG		718
10	Gly	Ser	Gln	Ile	Pro	Leu	Leu	Thr	Tyr	Cys	Asp	Glu	Asp	Ala	Asp	Met		
	145					150					155					160		
	TAT	TCT	GAT	CGT	CAT	GCT	CTT	ATC	GTG	CCT	CCT	TCA	ACG	GGA	TAT	GGG		766
	Tyr	Ser	Asp	Arg	His	Ala	Leu	Ile	Val		Pro	Ser	Thr	Gly	Tyr	Gly		
15					165					170					175			
															CCA			814
	Asn	Arg	Val	Ō	Pro	Ala	Pro	Phe		Asp	Ser	Ser	Ala		Pro	Gln		
20				180					185					190				
20							~-~									~~>		0.60
														_	TAT			862
	Ala	Arg		Met	Val	Pro	Gin	-	Asp	He	Ala	Glu	_	Gly	Tyr	Gly		
			195					200					205					
25	1 am	amm	0.00	maa		~~~	00m	>	a		maa			20. P	C	cac		630
23	AGT																	910
	Ser		Ala	Trp	Lys	Asp	_	мес	GIU	vai	Trp		Arg	Arg	Gln	GIY		
		210					215					220						
	CAA	244	رست	CD D	CTC	እጥጥ	NAG	ጉልጥ	CAA	CCA	GGA	220	AAT	CCT	CGA	CCT		958
30	Glu																	,,,,
50	225	., 5	200		,	230	. , .		014	0.,	235		710	σ.,		240		
•	TCC	AAT	GAT	GAC	GAC	GAA	CTA	GAT	GAT	CCT	GAC	ATG	ССТ	ATG	ATG	GAT	1	1006
															Met		-	
35			•	٠	245			•	•	250	•				255	•		
	GAA	GGA	AGA	CAA	CCT	CTC	TCA	AGA	AAG	CTA	CCT	ATT	CGT	TCA	AGC	AGA	1	L054
															Ser			
		•		260				-	265				_	270		-		
40																		

- 125 -

	ATA	AAT	CCT	TAC	AGG	ATG	TTA	ATT	CTG	TGT	CGC	CTC	GCG	ATI	CTT	GGT	1102
	Ile	Asn	Pro	Tyr	Arg	Met	Leu	Ile	Leu	Cys	Arg	Leu	Ala	Ile	Leu	Gly	
			275					280					285				
5	CTT	TTC	TTT	CAT	TAT	AGA	ATT	CTC	CAT	CCA	GTC	AAT	GAT	GCA	TAT	GGA	1150
	Leu	Phe	Phe	His	Tyr	Arg	Ile	Leu	His	Pro	Val	Asn	Asp	Ala	Tyr	Gly	
		290					295					300					
												TTT					1198
10	Leu	Trp	Leu	Thr	Ser	Val	Ile	Cys	Glu	Ile	Trp	Phe	Ala	Val	Ser	Trp	
	305					310					315					320	
									-			GAA					1246
15	Ile	Leu	Asp	Gln		Pro	Lys	Trp	Tyr		He	Glu	Arg	Glu		-	
15					325					330					335		
	CTC	ሮአጥ	א ריי א	CTC	TOT	OTC.	NCC.	ምአ ር	CNC	አክሮ	ממס	GGA	אאא	ccc	ም ር አ	CCA	1294
																	1234
	Leu	MSp	мгд		Ser	Leu	nig	171	345	руэ	Giu	Gly	ъys	350	SET	Gly	
20				340					343					330			
20	ፐ ፕ ል	GCA	ССТ	GTT	TAD	GTT	ттт	GTT	AGT	ACA	GTG	GAT	CCG	TTG	AAA	GAG	1342
												Asp					23.2
			355					360				21.02	365		-,0		
25	ccc	CCC	TTG	ATT	ACA	GCA	AAC	ACA	GTT	CTT	TCC	ATT	CTA	GCA	GTT	GAT	1390
												Ile					
		370					375					380				•	
	TAT	CCT	GTG	GAT	AAG	GTT	GCG	TGT	TAT	GTA	TCA	AAC	AAT	GGT	GCA	GCT	1438
30	Tyr	Pro	Val	Asp	Lys	Val	Ala	Cys	Tyr	Val	Ser	Asn	Asn	Gly	Ala	Ala	
	385					390					395					400	
	ATG	CTT	ACA	TTT	GAA	GCT	CTC	TCT	GAT	ACA	GCT	GAT	TTT	GCT	ACA	AAA	1486
	Met	Leu	Thr	Phe	Glu	Ala	Leu	Ser	qsA	Thr	Ala	Asp	Phe	Ala	Thr	Lys	
35					405					410					415		
	TGG	GTT	CCT	TTT	TGT	AAG	AAG	TTT	AAT	ATC	GAG	CCA	CGA	GCT	CCT	GAG	1534
	Trp	Val	Pro	Phe	Суз	Lys	Lys	Phe	Asn	Ile	Glu	Pro .	Arg	Ala	Pro	Glu	
				420					425					430			

- 126 -

TGG TAT TTT TCT CAG AAG ATG GAT TAC CTG AAG AAC AAA GTT CAT CCT 1582

	100	IAI	111	101	CAG	AAG	AIG	GMI	IAC	010	AAG	AAC	~~~	011	CAI	CCI	1302
	Trp	Tyr	Phe	Ser	Gln	Lys	Met	Asp	Tyr	Leu	ŗλa	Asn	Lys	Val	His	Pro	
			435					440					445				
5	GCT	ттт	GTC	AGG	445	ርርጥ	ССТ	CCT	ΔTG	244	AGA	CAT	тат	GAA	GAG	ттт	1630
_												Asp					
	MIG	FILE	Val	ALG	GIG	Arg	Arg	Ala	Mec	Буз	Arg	vab	TYL	GIU	Gru	rne	
						-											
																	 -
	AAA	GTG	AAG	ATA	AAT	GCA	CTG	GTT	GCT	ACT	GCA	CAG	AAA	GTG	CCT	GAG	1678
10	Lys	Val	Lys	Ile	Asn	Ala	Leu	Val	Ala	Thr	Ala	Gln	Lys	Val	Pro	Glu	
	465					470					475					480	
	GAA	CGT	TGG	ACT	ATG	CAA	GAT	GGA	ACT	CCT	TGG	CCT	GGA	AAC	AAC	GTC	1726
	Glu	Ara	Trn	Thr	Met	Gl n	Asp	Glv	Thr	Pro	Trn	Pro	Glv	Asn	Asn	Va)	
15	0	5						,		490			,		495		
13					485					490					475		
	CGT	GAC	CAT	CCT	GGA	ATG	ATT	CAG	GTG	TTC	TTG	GGT	CAT	AGT	GGA	GTT	1774
	Arg	Asp	His	Pro	Gly	Met	Ile	Gln	Val	Phe	Leu	Gly	His	Ser	Gly	Val	
				500					505					510			
20																	
	CGT	GAT	ACG	GAT	GGT	AAT	GAG	TTA	CCA	CGT	CTA	GTG	TAT	GTT	TCT	CGT	1822
	Arg	Asp	Thr	Asp	Gly	Asn	Glu	Leu	Pro	Arg	Leu	Val	Tyr	Val	Ser	Arg	
	_	•	515	-	•			520		_	•		525				
25	GAG	D D C	ccc	دريد	CCN	ጥጥጥ	СУТ	CAC	CAC	A A C	מממ	CCT	CCA	CCT	ATC	አልጥ	1870
23																	1870
	Gru	·	Arg	Pro	GTA	Pne	_	HIS	HIS	Lys	гув	Ala	GIŞ	Ala	met	AGN	
		530					535					540					
	TCC	TTG	ATC	CGA	GTC	TCT	GCT	GTT	CTA	TCA	AAC	GCT	CCT	TAC	CTT	CTT	1918
30	Ser	Leu	Ile	Arg	Val	Ser	Ala	Val	Leu	Ser	Asn	Ala	Pro	Tyr	Leu	Leu	
	545					550					555					560	
	AAT	GTC	GAT	TGT	GAT	CAC	TAC	ATC	AAC	AAC	AGC	AAA	GCA	ATT	AGA	GAA	1966
												Lys					
35	7311	vai	nsp	Суз	_	1113		1+0	nan		501	ays	7.10	**~	_	014	
3)					565					570					575		
	TCT	ATG	TGT	TTC	ATG	ATG	GAC	CCG	CAA	TCG	GGA	AAG	AAA	GTT	TGT	TAT	2014
	Ser	Met	Cys	Phe	Met	Met	Asp	Pro	Gln	Ser	Gly	Lys	Lys	Val	Cys	Tyr	
				580					585					590			
40																	

- 127 -

	GTT	CAG	TTT	CCG	CAG	AGA	TTT	GAT	GGG	ATT	GAT	AGA	CAT	GAT	` AGA	TAC	2062
	Val	Gln	Phe	Pro	Gln	Arg	Phe	Asp	Gly	Ile	Asp	Arg	His	Asp	Arg	Tyr	
			595					600					605				
5	TCA	AAC	CGT	AAC	GTT	GTG	TTC	TTT	GAT	ATT	AAC	ATG	AAA	GGT	CTT	GAT	2110
	Ser	Asn	Arg	Asn	Va]	Val	Phe	Phe	Asp	Ile	Asn	Met	Lys	Gly	Leu	Asp	
		610					615					620					
	GGG	ATA	CAA	GGA	CCG	ATA	TAT	GTC	GGG	ACA	GGT	TGT	GTG	TTT	AGA	AAA	2158
10	Gly	Ile	Gln	Gly	Pro	Ile	Tyr	Val	Gly	Thr	Gly	Cys	Val	Phe	Arg	Lys	
	625					630					635					640	
	CAG	GCT	CTT	TAT	GGT	TTT	GAT	GÇA	CCA	AAG	AAG	AAG	AAA	CCA	CCA	GGC	2206
	Gln	Ala	Leu	Tyr	Gly	Phe	Asp	Ala	Pro	Lys	Lys	Lys	Lys	Pro	Pro	Gly	
15					645					650					655		
	AAA	ACC	TGT	AAC	TGT	TGG	CCT	AAA	TGG	TGT	TGT	TTG	TGT	TGT	GGG	TTG	2254
	Lys	Thr	Cys	Asn	Cys	Trp	Pro	Lys	Trp	Cys	Cys	Leu	Cys	Cys	Gly	Leu	
				660					665					670			
20																	
	AGA	AAG	AAG	AGT	AAA	ACG	AAA	GCC	ACA	GAT	AAG	AAA	ACT	AAC	ACT	AAA	2302
	Arg	Lys	Lys	Ser	Lys	Thr	Lys	Ala	Thr	Asp	Lys	Lys	Thr	Asn	Thr	Lys	
			675					680					685				
25	GAG	ACT	TCA	AAG	CAG	ATT	САТ	GCG	СТА	GAG	AAT	GTC	GAC	GAA	GGT	GTT	2350
	Glu	Thr	ser	Lys	Gln	Ile	His	Ala	Leu	Glu	Asn	Val	Asp	Glu	Gly	Val	
		690					695					700					
	ATC	GTC	CCA	GTG	TCA	AAT	GTT	GAG	AAG	AGA	TCT	GAA	GCA	ACA	CAA	TTG	2398
30	Ile	Val	Pro	Val	Ser	Asn	Val	Glu	Lys	Arg	Ser	Glu	Ala	Thr	Gln	Leu	
	705					710					715					720	
	AAA	TTG	GAG	AAG	AAG	TTT	GGA	CAA	TCT	CCG	GTT	TTC	GTT	GCC	тст	GCT	2446
	Lys	Leu	Glu	Lys	Lys	Phe	Gly	Gln	Ser	Pro	Val	Phe	Val	Ala	Ser	Ala	
35					725					730					735		
	GTT	CTA	CAG	AAC	GGT	GGA	GTT	ccc	CGT	AAC	GCA	AGC	CCC	GCA	TGT	TTG	2494
	Val	Leu	Gln	Asn	Gly	Gly	Val	Pro	Arg	Asn	Ala	Ser	Pro	Ala	Cys	Leu	
				740	-	-			745					750	-		

- 128 - .

															AAA Lys		2542
	200	,	755			-		760		-,-	7	-1-	765	•	- , -		
5	GAA																2590
	Glu	Trp	Gly	Lys	Glu	Ile	Gly	Trp	Ile	Tyr	Gly	Ser	Val	Thr	Glu	Asp	
							-										
	ATC	CTG	ACG	GGT	TTC	AAG	ATG	CAT	TGC	CAT	GGA	TGG	AGA	TCT	GTG	TAC	2638
10	Ile	Leu	Thr	Gly	Phe	Lys	Met	His	Cys	His	Gly	Trp	Arg	Ser	Val	Tyr	
	785					790					795					800	
															AAC		2686
15	Cys	Met	Pro	Lys	_	Ala	Ala	Phe	Lys		Ser	Ala	Pro	He	Asn	Leu	
1 3					805					810					815		
	TCA	GAT	CGT	CTT	CAT	CAA	GTT	CTA	CGT	TGG	GCT	CTT	GGC	TCT	GTA	GAG	2734
															Val		
				820					825					830			
20																	
	ATT	TTC	TTG	AGC	AGA	CAT	TGT	CCG	ATA	TGG	TAT	GGT	TAT	GGT	GGT	GGT	2782
	Ile	Phe	Leu	Ser	Arg	His	Cys	Pro	Ile	Trp	Tyr	Gly	Tyr	Gly	Gly	Gly	
			835					840					B45				
25					~~~		6 500	ma n	ma 0			mam.		omo	m> m	a am	2020
23	TTA																2830
	Leu	850	ırp	Leu	Gru	Arg	855	Sei	ıyı	116	VOII	860	Vai	Val	Tyr	PIO	
		030															
	TGG	ACT	TCA	CTT	CCA	TTG	ATC	GTC	TAT	TGT	TCT	CTC	ccc	GCG	GTT	TGT	2878
30	Trp	Thr	Ser	Leu	Pro	Leu	Ile	Val	Tyr	Cys	Ser	Leu	Pro	Ala	Val	Cys	
	865					870					875					880	
															GCA		2926
25	Leu	Leu	Thr	Gly	•	Phe	Ile	Val	Pro		Ile	Ser	Asn	Tyr	Ala	Gly	•
35					885					890					895		
	ATA	CTC	T TC	ATG	CTC	ATG	TTC	ATA	TCC	ATA	GCA	GTA	ACT	GGA	ATC	CTC	2974
															Ile		
				900					905					910			
40																	

- 129 -

	GA	A ATC	CA	A TGO	G GG#	A GGT	GTC	GGA	ATC	GA1	GAT	TGG	TG	G AGA	AA A	C GAG	3022
	Glu	Met	Glr	ı Trp	Gly	Gly	Val	Gly	lle	Asp) Asp	Trp	Tr	Arg	j Ası	n Glu	
			915	5				920)				929	5			
_																	
5																TTT	3070
	Glr		_	Val	. Ile	Gly	_		Ser	Ser	His		Phe	Ala	Leu	ı Phe	
		930					935					940					
	САА	GGT	TTG	CTC	: AAA	GTT	CTA	GCC	GGA	GTT	AAC	ACG	AAT	TTC	: ACA	GTC	3118
10						Val											
	945				•	950			•		955					960	
	ACT	TCA	AAA	GCA	GCA	GAC	GAT	GGA	GCT	TTC	TCT	GAG	CTI	TAC	ATC	TTC	3166
	Thr	Ser	Lys	Ala	Ala	Asp	Asp	Gly	Ala	Phe	Ser	Glu	Leu	Tyr	Ile	Phe	
15					965					970					975		
	AAG	TGG	ACA	ACT	TTG	TTG	ATT	CCT	CCG	ACA	ACA	CTT	CTG	ATC	ATT	AAC	3214
	Lys	Trp	Thr		Leu	Leu	Ile	Pro		Thr	Thr	Leu	Leu		Ile	Asn	
20				980					985					990			
20	ስጥር	אדיד	CCA	CTT	አ ምም	GTC	ccc	Curran	on com	CAT	ccc	N COCC	NGG	n n m	coc	m 3 m	2262
						Val											3262
		110	995	vuı	110	vai	GIY	1000		vəħ	AIG	116	100		GIY	IYL	
								_ • • •	-					-			
25	GAC	TCA	TGG	GGA	CCT	CTC	TTT	GGG	AGA	CTT	TTC	TTC	GCT	CTT	TGG	GTC	3310
						Leu											
		1010)				1019	5				1020)				
						CCA											3358
30	Ile	Val	His	Leu	Tyr	Pro	Phe	Leu	Lys	Gly	Met	Leu	Gly	Lys	Gln	Asp	
	102	5				1030	1				1035	i				1040	
						ATT											3406
35	Буз	MEC	Pro	inr	1045	Ile	vai	val				Leu	Leu	Ala			
J.J					1043	•				1050					1055	,	
	TTG	ACA	CTC	TTG	TGG	GTC	AGA	АТТ	AAC	CCG	TTT	GTG :	GCT	AAA	GGG	GGA	3454
						Val											3131
				1060					1065	_	-		_	1070	-	1	
40																	

PCT/AU97/00402 WO 98/00549

- 130 -

CCA GTG TTG GAG ATC TGT GGT CTG AAT TGT GGA AAC TAAGATCCTC 3500 Pro Val Leu Glu Ile Cys Gly Leu Asn Cys Gly Asn 1075 1080

5 AGTGAAAGAA GAGCAAAGGA GTTTGTGTTG GAGCTTTGGA AGCAAATGTG TTGATGATGA 3560

TTTTGTTACC CCTAAATTAA TTCTTTTGTT ATCATGGTTA TACTAATAGA ATTGTTTGTT 3680 10 TTTCTTTTT ACATGTACTT TTAGTTATTC CGTAGTTATT GTATAATACT GATAACGATC 3740 ATATATACAC ACTTTGTTAA CAAAAAAAA AAAAAAAAA AAAAAAAA AAAGCGGCCG 3800 15 CTCGAATTGT CGACGCGGCC GCGAATTC 3828

- 20 (2) Information for SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1084 amino acids
 - (B) TYPE: amino acid
- 25 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

30

Met Asn Thr Gly Gly Arg Leu Ile Ala Gly Ser His Asn Arg Asn Glu 10

Phe Val Leu Ile Asn Ala Asp Glu Ser Ala Arg Ile Arg Ser Val Gln 35 20 25

Glu Leu Ser Gly Gln Thr Cys Gln Ile Cys Gly Asp Glu Ile Glu Leu 35 40 45

		Th	r V		Se	r S	er	Gl	u Le	eu i			l A	la	Cys	Ası	n Gl	u C	ys	Ala	a Pł	ne	Pro
				50							55						6	0					
	5			ys	Ar	g P	ro	Су	s Т _ў		ilu	ту	r G	lu.	Arg	Arg	g Gl	u G	ly	Asr	ı Gl	n	Ala
	3	6	5						7	0						75	5						80
		Суз	s Pi	ro	Glr	n Cy	/s	Lys	T h	r A	rg	ту	r Ly	/s /	Arg	Ile	Ly	s G	ly	Ser	Pr	ο,	Arg
								85	5						90						9	5	
1	0	Val	As	g	Gly	As	q	Asp	Gl	u G	lu	Glu	ı Gl	u A	Asp	Ile	Ası	o As	q	Leu	Gl	ս :	Гуr
						10	0						10	5						110			
	(Glu	Ph	e .	Asp	Hi	s	G1 y	Me	: A:	sp	Pro	G1	u H	lis	Ala	Ala	G1	u.	Ala	Ala	a I	.eu
15	5				115							120						12	5				
	5	Ser	Se	ri	Arg	Le	u 1	Asn	Thi	- G1	ly	Arg	Gl	y G	ly	Leu	Asp	Se	r i	Ala	Pro	P	ro
			13	0						13	35						140						
	G	ly	Se	r (Sln	11	e I	Pro	Leu	Le	eu '	Thr	Ty	ר כי	ys .	Asp	Glu	As	p #	Ala	Asp	M	et
20	1	45							150							155							60
	Т	yr	Se	r A	sp	Arg	j H	lis	Ala	Le	u :	Ile	Val	. P1	ro I	Pro	Ser	Th	r G	ly	Tyr	G.	ly
								65						17							175		
25	A	sn	Arg	, v	al	Туг	· P	ro	Ala	Pr	o E	Phe	Thr	As	sp S	Ser.	Ser	Ala	ιP	ro	Pro	G)	Ln
						180							185							90			
	A.	la	Arg	S	er	Met	V	al	Pro	Gli	n L	ys	Asp	11	e A	la (31u	Tyr	G	lv :	Γvr	Gì	v
30					95							00						- 205		-	•		•
50	Se	er	Val	A.	la	Trp	L	ys .	Asp	Arg	g M	et	Glu	Va	1 T	ro I	.vs	Arq	Àι	ra G	:ln	G)	v
			210							219							20	5	•••			01	y
	Gl	u I	Lys	Le	eu (Gln	Vā	al :	Ile	Lys	н	is (Glu	G1·	v G	lv a	sn	N e n	12	v *	~~	C 1.	
35	22								230	•		. = .				35		11511	31	уА		24	
	Se	r 1	Asn	As	מ:	as.	As	a a	Slu	ī.e.:	λ.	en 1	A e ==	D~-	, »-	.n. 1.	~ ·	.				_	
					• •	- F	24					1 س	.ap	250		-p M	ec 1	rro	ме		et <i>:</i> S5	Ası	0

- 132 -

Glu Gly Arg Gln Pro Leu Ser Arg Lys Leu Pro Ile Arg Ser Ser Arg 260 265 270

Ile Asn Pro Tyr Arg Met Leu Ile Leu Cys Arg Leu Ala Ile Leu Gly

285
285

 $10\,$ Leu Trp Leu Thr Ser Val Ile Cys Glu Ile Trp Phe Ala Val Ser Trp Ile Leu Asp Gln Phe Pro Lys Trp Tyr Pro Ile Glu Arg Glu Thr Tyr Leu Asp Arg Leu Ser Leu Arg Tyr Glu Lys Glu Gly Lys Pro Ser Gly Leu Ala Pro Val Asp Val Phe Val Ser Thr Val Asp Pro Leu Lys Glu Pro Pro Leu Ile Thr Ala Asn Thr Val Leu Ser Ile Leu Ala Val Asp 25 Tyr Pro Val Asp Lys Val Ala Cys Tyr Val Ser Asn Asn Gly Ala Ala Met Leu Thr Phe Glu Ala Leu Ser Asp Thr Ala Asp Phe Ala Thr Lys Trp Val Pro Phe Cys Lys Phe Asn Ile Glu Pro Arg Ala Pro Glu Trp Tyr Phe Ser Gln Lys Met Asp Tyr Leu Lys Asn Lys Val His Pro Ala Phe Val Arg Glu Arg Arg Ala Met Lys Arg Asp Tyr Glu Glu Phe

		Lys 465		. Lys	: Ile	Asn	470		Val	Ala	Thr	Ala 475		Lys	val	Pro	480
	5	Glu	Arg	Trp	Thr	Met 485		Asp	Gly	Thr	Pro 490	-	Pro	Gly	Asr	495	
		Arg	Asp	His	Pro 500	Gly	Met	Ile	Gln	Val		Leu	Gly	His	Ser 510	-	Val
1	0	Arg	Asp	Thr 515		Gly	Asn	Glu	Leu 520		Arg	Leu	Val	туr 525		Ser	Arg
. 1	.5	Glu	L ys 530	Arg	Pro	Gly	Phe	Asp 535	His	His	Lys	Lys	Ala 540	Gly	Ala	Met	Asn
		Ser 545	Leu	Ile	Arg	Val	Ser 5 50	Ala	Val	Leu	Ser	Asn 555	Ala	Pro	туг	Leu	Leu 560
2	20	Asn	Val	Asp	Cys	Asp 565	His	Tyr	Ile	Asn	Asn 570	Ser	Lys	Ala	Ile	Arg 575	Glu
		Ser	Met	Cys	Phe 580	Met	Met	Asp	Pro	Gln 585	Ser	Gly	Lys	Lys	Val 590	Cys	Tyr
2	:5	Val	Gln	Phe 595	Pro	Gln	Arg	Phe	Asp 600	Gly	Ile	Asp	Arg	His 605	Asp	Arg	Туг
2	0	Ser	Asn 610	Arg	Asn	Val	Val	Phe 615	Phe	Asp	Ile	Asn	Met 620	Lys	Gly	Le u	Asp
,		Gly 625	Ile	Gln	Gly	Pro	Ile 630	туг	Val	Gly	Thr	Gly 635	Суз	Val	Phe	Arg	Lys 640
3		Gln	Ala	Leu	туr	Gly 645	Phe	qeA	Ala	Pro	Lys 650	Lys	Lya	Lys	Pro	Pro 655	Gly
		Lys	Thr	Cys	Asn 660	Cys	Trp	Pro	Lys	Trp 665	Суз	Суз	Leu		Cys 670	Gly	Leu

- 134 -

Arg Lys Lys Ser Lys Thr Lys Ala Thr Asp Lys Lys Thr Asn Thr Lys
675 680 685

Glu Thr Ser Lys Gln Ile His Ala Leu Glu Asn Val Asp Glu Gly Val 5 690 695 700

 $10\,$ Lys Leu Glu Lys Lys Phe Gly Gln Ser Pro Val Phe Val Ala Ser Ala Val Leu Gln Asn Gly Gly Val Pro Arg Asn Ala Ser Pro Ala Cys Leu Leu Arg Glu Ala Ile Gln Val Ile Ser Cys Gly Tyr Gln Asp Lys Thr Glu Trp Gly Lys Glu Ile Gly Trp Ile Tyr Gly Ser Val Thr Glu Asp 20 770 Ile Leu Thr Gly Phe Lys Met His Cys His Gly Trp Arg Ser Val Tyr 25 Cys Met Pro Lys Arg Ala Ala Phe Lys Gly Ser Ala Pro Ile Asn Leu Ser Asp Arg Leu His Gln Val Leu Arg Trp Ala Leu Gly Ser Val Glu Ile Phe Leu Ser Arg His Cys Pro Ile Trp Tyr Gly Tyr Gly Gly Gly Leu Lys Trp Leu Glu Arg Phe Ser Tyr Ile Asn Ser Val Val Tyr Pro Trp Thr Ser Leu Pro Leu Ile Val Tyr Cys Ser Leu Pro Ala Val Cys

- 135 -

Leu Leu Thr Gly Lys Phe Ile Val Pro Glu Ile Ser Asn Tyr Ala Gly 885 890 895

Ile Leu Phe Met Leu Met Phe Ile Ser Ile Ala Val Thr Gly Ile Leu 5 900 905 910

Glu Met Gln Trp Gly Gly Val Gly Ile Asp Asp Trp Trp Arg Asn Glu
915 920 925

10 Gln Phe Trp Val Ile Gly Gly Ala Ser Ser His Leu Phe Ala Leu Phe 930 935 940

Gln Gly Leu Leu Lys Val Leu Ala Gly Val Asn Thr Asn Phe Thr Val
945 950 955 960

15

Thr Ser Lys Ala Ala Asp Asp Gly Ala Phe Ser Glu Leu Tyr Ile Phe 965 970 975

Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Leu Ile Ile Asn 980 985 990

Ile Ile Gly Val Ile Val Gly Val Ser Asp Ala Ile Ser Asn Gly Tyr 995 1000 1005

25 Asp Ser Trp Gly Pro Leu Phe Gly Arg Leu Phe Phe Ala Leu Trp Val

Ile Val His Leu Tyr Pro Phe Leu Lys Gly Met Leu Gly Lys Gln Asp
1025 1030 1035 1040

30

Lys Met Pro Thr Ile Ile Val Val Trp Ser Ile Leu Leu Ala Ser Ile 1045 1050 1055

Leu Thr Leu Leu Trp Val Arg Ile Asn Pro Phe Val Ala Lys Gly Gly
35

Pro Val Leu Glu Ile Cys Gly Leu Asn Cys Gly Asn 1075 1080 5

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(B) TYPE: nucleic acid

(A) LENGTH: 3614 base pairs

- 136 -

	(C) STRANDEDNESS: single	
10	(ii) MOLECULE TYPE: cDNA	
. •	(iii) HYPOTHETICAL: NO	
15	(vi) ORIGINAL SOURCE:(A) ORGANISM: Arabidopsis thaliana(B) STRAIN: Columbia	
	(Vii) IMMEDIATE SOURCE: (B) CLONE: Ath-B	
20	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2173411	
25	······································	60
30	GAATTCGCGG CCGCGTCGAC TACGGCTGCG AGAAGACGAC AGAAGGGGAT CCCAAGATTC TCCTCTTCGT CTTCCTTATA AACTATCTCT CTGTAGAGAA GAAAGCTTGG ATCCAGATTG	120
	AGAGAGATTC AGAGAGCCAC ATCACCACAC TCCATCTTCA GATCTCATGA TTTGAACTAT	180
35	TCCGACGTTT CGGTGTTGGA AGCAACTAAG TGACAA ATG GAA TCC GAA GGA GAA Met Glu Ser Glu Gly Glu 1 5	234
	ACC GCG GGA AAG CCG ATG AAG AAC ATT GTT CCG CAG ACT TGC CAG ATC Thr Ala Gly Lys Pro Met Lys Asn Ile Val Pro Gln Thr Cys Gln Ile 10 15 20	282
40		

- 137 -

	TGT	AGI	GAC	: AAI	GTI	. GGC	AAG	ACT	GTT	GAT	GGA	GA1	CGI	TT	r GT G	GCT	330
	Cys	Ser	Asp	Asn	val	Gly	Lys	Thr	Val	Asp	Gly	Asp	Arg	Phe	val	Ala	
			25					30					3 5	i			
5	TGT	GAT	ATT	TGT	TCA	TTC	CCA	GTT	TGT	CGG	CCT	TGC	TAC	GAG	TAT	GAG	378
	Cys	Asp	Ile	Cys	Ser	Phe	Pro	Val	Cys	Arg	Pro	Cys	Tyr	Glu	Туг	Glu	
		40					45					50					
	AGG	AAA	GAT	GGG	TAA	CAA	TCT	TGT	CCT	CAG	TGC	AAA	ACC	AGA	TAC	AAG	426
10	Arg	Lys	Asp	Gly	Asn	Gln	Ser	Cys	Pro	Gln	Сув	Lys	Thr	Arg	Tyr	Lys	
	55					60					65					70	
	AGG	CTC	AAA	GGT	AGT	CCT	GCT	ATT	CCT	GGT	GAT	AAA	GAC	GAG	GAT	GGC	474
	Arg	Leu	Lys	Gly	Ser	Pro	Ala	Ile	Pro	Gly	Asp	Lys	Asp	Glu	Asp	Gly	
15					75					80					85		
	TTA	GCT	GAT	GAA	GGT	ACT	GTT	GAG	TTC	AAC	TAC	CCT	CAG	AAG	GAG	AAA	522
	Leu	Ala	Asp	Glu	Gly	Thr	Val	Glu	Phe	Asn	Tyr	Pro	Gln	Lys	Glu	Lys	
				90					95					100			
20																	
	ATT	TCA	GAG	CGG	ATG	CTT	GGT	TGG	CAT	CTT	ACT	CGT	GGG	AAG	GGA	GAG	570
	Ile	Ser	Glu	Arg	Met	Leu	Gly	Trp	His	Leu	Thr	Arg	Gly	Lys	Gly	Glu	
			105					110					115				
25	GAA	ATG	GGG	GAA	CCC	CAG	TAT	GAT	AAA	GAG	GTC	TCT	CAC	AAT	CAT	CTT	618
	Glu	Met	Gly	Glu	Pro	Gln	Tyr	Asp	Lys	Glu	Val	Ser	His	Asn	His	Leu	
		120					125					130					
	CCT	CGT	CTC	ACG	AGC	AGA	CAA	GAT	ACT	TCA	GGA	GAG	TTT	TCT	GCT	GCC	666
30	Pro	Arg	Leu	Thr	Ser	Arg	Gln	Asp	Thr	Ser	Gly	Glu	Phe	Ser	Ala	Ala	
	135					140					145					150	
	TCA	CCT	GAA	CGC	CTC	TCT	GTA	TCT	TCT	ACT	ATC	GCT	GGG	GGA	AAG	CGC	714
	Ser	Pro	Glu	Arg	Leu	Ser	Val	Ser	Ser	Thr	Ile	Ala	Gly	Gly	Lys	Arg	
35					155					160					165		
	CTT	CCC	TAT	TCA	TCA	GAT	GTC	AAT	CAA	TCA	CCA	AAT	AGA	AGG	ATT	GTG	762
	Leu	Pro	Tyr	Ser	Ser	Asp	Val	Asn	Gln	Ser	Pro	neA	Arg	Arg	Ile	Val	
				170					175					180			

- 138 -

	GAT	CCT	GTT	GGA	CTC	GGG	AAT	GTA	GCT	TGG	AAG	GAG	AGA	GTT	GAT	GGC	810
	Asp	Pro	Val	Gly	Leu	Gly	Asn	Val	Ala	Trp	Lys	Glu	Arg	Val	Asp	Gly	
			185					190					195				
_																	
5															CAG		858
	Trp	Lys	Met	Lys	GIn	Glu	Lys	Asn	Thr	GIY	Pro	val	Ser	Thr	Gln	Ala	
 							30.000										
	GCT	тст	GAA	AGA	GGT	GGA	GTA	GAT	TTA	GAT	GCC	AGC	ACA	GAT	ATC	CTA	906
10	Ala	Ser	Glu	Arg	Gly	Gly	Val	Asp	Ile	Asp	Ala	Ser	Thr	Asp	Ile	Leu	
	215					220					225					230	
	GCA	GAT	GAG	GCT	CTG	CTG	AAT	GAC	GAA	GCG	AGG	CAG	CTT	CTG	TCA	AGG	954
	Ala	Asp	Glu	Ala	Leu	Leu	Asn	Asp	Glu	Ala	Arg	Gln	Leu	Leu	Ser	Arg	
15					235					240					245		
		omm.	mc a	3 OT	c c m	TC N	TC3	ccc	B TO CO	A 3 T	COTT	T 3 C	202	እጥሮ	GTT	እ ጥጥ	1002
															Val		1002
	Lys	vai	Jer	250	110	Jei	501	n. y	255	7.5		.,.	*****	260	***		
20																	
	ATG	CTG	CGG	CTT	GTT	ATC	CTT	TGT	СТС	TTC	TTG	CAT	TAC	CGT	ATA	ACA	1050
	Met	Leu	Arg	Leu	Val	lle	Leu	Сув	Leu	Phe	Leu	His	Tyr	Arg	Ile	Thr	
			265					270					275				
													,				
25															ATA		1098
	Asn		Val	Pro	Asn	Ala		Ala	Leu	Trp	Leu		Ser	Val	Ile	Cys	
		280					285					290					
	GAG	ATC	TGG	ттт	GCC	TTA	TCC	TGG	ATT	TTG	GAT	CAG	TTT	CCC	AAG	TGG	1146
30															Lys		
	295		-			300		-			305					310	
	TTT	CCT	GTG	AAC	CGT	GAA	ACC	TAC	CTC	GAC	AGG	CTT	GCT	TTA	AGA	TAT	1194
	Phe	Pro	Val	Asn	Arg	Glu	Thr	Tyr	Leu	Asp	Arg	Leu	Ala	Leu	Arg	Tyr	
35					315					320					325		
															TTC		1242
	чзр	нгg	GIU	330	GIU	Pro	ser	GIN	335	HIG	MIG	AGI	чзр	340	Phe	AGT	
40				J 3 U					,,,,					740			
. •																	

- 139 -

	AGT	AC1	GT1	GAC	CCC	TTC	AAG	GAG	CCA	ccc	CTI	GTG	ACA	GC	C AA	C ACA		1290
	Ser	Thr	· Val	Asp	Pro	Leu	. Lys	Glu	Pro	Pro	Leu	val	Thr	Ala	a Ası	n Thr		
			345	•				350	•				355	i				
5	GTG	СТС	TCT	ATI	CTG	GCT	GTT	GAC	TAC	CCA	GTT	GAC	AAG	GTO	TC	TGT		1338
	Val	Leu	Ser	Ile	Leu	Ala	Val	Asp	Tyr	Pro	Va1	Asp	Lys	Va]	. Ser	Cys		
		360					365					370						
	TAT	GTT	TCT	GAT	GAT	GGT	GCT	GCT	ATG	TTA	TCA	TTT	GAA	TCA	CTI	GCA		1386
10	Tyr	Val	Ser	Asp	Asp	Gly	Ala	Ala	Met	Leu	Ser	Phe	Glu	Ser	Leu	Ala		
	375					380					385					390		
	GAA	ACA	TCA	GAG	TTT	GCT	CGT	AAA	TGG	GTA	CCA	TTT	TGC	AAG	AAA	TAT		1434
	Glu	Thr	Ser	Glu	Phe	Ala	Arg	Lys	Trp	Val	Pro	Phe	Cys	Lys	Lys	Tyr		
15					395					400					405			
	AGC	ATA	GAG	CCT	CGT	GCA	CCA	GAA	TGG	TAC	TTT	GCT	GCG	AAA	ATA	GAT		1482
	Ser	Ile	Glu	Pro	Arg	Ala	Pro	Glu	Trp	Tyr	Phe	Ala	Ala	Lys	Ile	Asp		
				410					415					420				
20																		
	TAC	TTG	AAG	GAT	AAA	GTT	CAG	ACA	TCA	TTT	GTC	AAA	GAT	CGT	AGA	GCT		1530
	Tyr	Leu	Lys	Asp	Lys	Val	Gln	Thr	Ser	Phe	Val	Lys	Asp	Arg	Arg	Ala		
			425					430					435					
25	ATG	AAG	AGG	GAA	TAT	GAG	GAA	TTT	AAA	ATC	CGA	ATC	AAT	GCA	CTT	GTT		1578
	Met	Lys	Arg	Glu	Tyr	Glu	Glu	Phe	Lys	Ile	Arg	Ile	Asn	Ala	Leu	Val		
		440					445					450						
	TCC	AAA	GCC	CTA	AAA	TGT	CCT	GAA	GAA	GGG	TGG	GTT	ATG	CAA	GAT	GGC		1626
30	Ser	Lys	Ala	Leu	Lys	Суз	Pro	Glu	Glu	Gly	Trp	Val	Met	Gln	Asp	Gly		
	455					460					465					470		
	ACA	CCG	TGG	CCT	GGA	AAT	AAT	ACA	GGG	GAC	CAT	CCA	GGA	ATG	ATC	CAG		1674
	Thr	Pro	Trp	Pro	Gly	Asn	Asn	Thr	Gly	Asp	His	Pro	Gly	Met	Ile	Gln		
35					475					480					485			
											-							
	GTC	TTC	TTA	GGG	CAA	AAT	GGT	GGA	CTT	GAT	GCA	GAG	GGC	AAT	GAG	CTC	-	1722
	Val	Phe	Leu	Gly	Gln	Asn	Gly	Gly	Leu	Asp	Ala	Glu	Gly	Asn	Glu	Leu		
				490					495					500				
40																		

- 140 -

CCG CGT TTG GTA TAT GTT TCT CGA GAA AAG CGA CCA GGA TTC CAG CAC

	Pro	Arg	Leu 505	Val	туг	Val	Ser	Arg 510	Glu	Lys	Arg	Pro	Gly 515	Phe	Gln	His	
5	CAC	AAA	AAG	GCT	GGT	GCT	ATG	AAT	GCA	CTG	GTG	AGA	GTT	TCA	GCA	GTT	1818
	U.S.	Lvs	Lvs	Ala	Gly	Ala	Met	Asn	Ala	Leu	Val	Arg	Val	Ser	Ala	Val	
													a de la constantina della cons				
• •	-					TTC											1866
10	Leu	Thr	Asn	Gly	Pro		Ile	Leu	Asn	Leu	-	Cys	Asp	His	Tyr		
	535					540					545					550	
						TTA											1914
1.5	Asn	Asn	Ser	Lys		Leu	Arg	Glu	Ala		Cys	Phe	Leu	Met		Pro	
15					555					560					565		
	חממ	CTC	GGG	D D C	440	GTT	тст	ጥልጥ	CTT	CAG	ፐ ፓር	CCA	200	ACA	ጥጥጥ	CAT	1962
						Val											2702
	7.511		O.J	570		.41	٠,٠	- / -	575	01			01	580		ПОР	
20									3.3								
	GGT	ATC	GAT	AAG	AAC	GAT	AGA	TAT	GCT	AAT	CGT	AAT	ACC	GTG	TTC	TTT	2010
						Asp											
	-		585	•		_	_	590			-		595				
													,				
25	GAT	ATT	AAC	TTG	AGA	GGT	TTA	GAT	GGG	ATT	CAA	GGA	ССТ	GTA	TAT	GTC	2058
	Asp	Ile	Asn	Leu	Arg	Gly	Leu	Asp	Gly	Ile	Gln	Gly	Pro	Val	Tyr	Val	
		600					605					610					
	GGA	ACT	GGA	TGT	GTT	TTC	AAC	AGA	ACA	GCA	TTA	TAC	GGT	TAT	GAA	CCT	2106
30	Glγ	Thr	Gly	Cys	Val	Phe	Asn	Arg	Thr	Ala	Leu	Tyr	Gly	Tyr	Glu	Pro	
	615					620					625					630	
	CCA	ATA	AAA	GTA	AAA	CAC	AAG	AAG	CCA	AGT	CTT	TTA	TCT	AAG	CTC	TGT	2154
	Pro	Ile	Lys	Val	Lys	His	Lys	Lys	Pro	Ser	Leu	Leu	Ser	Lys	Leu	Cys	
35					635					640					645		
	GGT	GGA	TCA	AGA	AAG	AAG	AAT	TCC	AAA	GCT	AAG	AAA	GAG	TCG	GAC	AAA	2202
	Gly	Gly	Ser	Arg	Lys	Lys	Asn	Ser	ГÀз	Ala	Lys	Lys	Glu	Ser	Asp	Lys	
				650					655					660			
40																	

- 141 -

	AAG	AAA	TCA	GGC	AGG	CAT	ACT	GAC	TCA	ACT	GTI	CCI	GTA	TTC	. AAC	CTC	2250
	Lys	Lys	Ser	Gly	Arg	His	Thr	Asp	Ser	Thr	Val	Pro	Val	. Phe	Asr	Leu	
			665					670	•				675	5			
_																	
5																AAG	2298
	Asp	_		Glu	Glu	Gly		Glu	Gly	Ala	Gly	Phe	Asp	Asp	Glu	Lys	
		680					685					690					
	GCG	CTC	TTA	ATG	TCG	CAA	ATG	AGC	CTG	GAG	AAG	CGA	TTT	GGA	CAG	$\tau c \tau$	2346
10												Arg					23.0
	695					700					705			*		710	
	GCT	GTT	TTT	GTT	GCT	TCT	ACC	CTA	ATG	GAA	AAT	GGT	GGT	GTT	ССТ	CCT	2394
	Ala	Val	Phe	Val	Ala	Ser	Thr	Leu	Met	Glu	Asn	Gly	Gly	Val	Pro	Pro	
15					715					720					725		
	TCA	GCA	ACT	CCA	GAA	AAC	TTT	CTC	AAA	GAG	GCT	ATC	CAT	GTC	TTA	AGT	2442
	Ser	Ala	Thr		Glu	Asn	Phe	Leu	-	Glu	Ala	Ile	His		Ile	Ser	
20				730					735					740			
20	TOT	ccm	T > T	CNC	C N TT	220	T/CA	~ n ~	TOO	CCA	እጥሮ	CNC	a more	cc.	TCC	n mc	2400
												GAG Glu					2490
	Cys	Gly	745	Giu	vab	шүз	361	750	rrp	GIY	Mec	Gru	755	Gry	TTP	116	
													,				
25	TAT	GGT	тст	GTG	ACA	GAA	GAT	АТТ	CTG	ACT	GGG	TTC	: AAA	ATG	CAT	GCC	2538
	Tyr	Gly	Ser	Va l	Thr	Glu	Asp	Ile	Leu	Thr	Gly	Phe	Lys	Met	His	Ala	
		760					765					770					
												CTT	-				2586
30	Arg	Gly	Trp	Arg	Ser	Ile	Tyr	Суз	Met	Pro	Lys	Leu	Pro	Ala	Phe	Lys	
	775					780					785					790	
												AAC					2634
35	GIY	ser	Ala	Pro	795	ASI	Leu	ser	Asp	800	Leu	Asn	GIN	vai		Arg	
ر ر					125					500					805		
	TGG	GCT	TTA	GGT	TCA	GTT	GAG	ATT	CTC	TTC	AGT	CGG	CAT	TGT	CCT	ATA	2682
												Arg					-
	-			810					815			-		820			
40																	

- 142 -

	TGG	TAT	GGT	TAC	AAT	GGG	AGG	CTA	AAA	TTT	CTT	GAG	AGG	TTT	GCG	TAT	2730
	Trp	Tyr	Gly	Tyr	Asn	Gly	Arg	Leu	Lys	Phe	Leu	Glu	Arg	Phe	Ala	Tyr	
			825					830					835				
5	GTG	AAC	ACC	ACC	ATC	TAC	CCT	ATC	ACC	TCC	ATT	CCT	CTT	CTC	ATG	TAT	2778
	Val	Asn	Thr	Thr	Ile	Tyr	Pro	Ile	Thr	Ser	Ile	Pro	Leu	Leu	Met	туг	
	TGT	ACA	TTG	CTA	GCC	GTT	TGT	CTC	TTC	ACC	AAC	CAG	TTT	ATT	ATT	CCT	2826
10	Cys	Thr	Leu	Leu	Ala	Val	Cys	Leu	Phe	Thr	Asn	Gln	Phe	Ile	Ile	Pro	
	855					860					865					870	
	CAG	TTA	AGT	AAC	ATT	GCA	AGT	ATA	TGG	TTT	CTG	TCT	CTC	TTT	CTC	TCC	2874
	Gln	Ile	Ser	Asn	Ile	Ala	Ser	Ile	Trp	Phe	Leu	Ser	Leu	Phe	Leu	Ser	
15					875					880					885		
	ATT	TTC	GCC	ACG	GGT	ATA	CTA	GAA	ATG	AGG	TGG	AGT	GGC	GTA	GGC	ATA	2922
	Ile	Phe	Ala	Thr	Gly	Ile	Leu	Glu	Met	Arg	Trp	Ser	Gly	Val	Gly	Ile	
				890					895					900			
20																	
	GAC	GAA	TGG	TGG	AGA	AAC	GAG	CAG	TTT	TGG	GTC	ATT	GGT	GGA	GTA	TCC	2970
	Asp	Glu	Trp	Trp	Arg	Asn	Glu	Gln	Phe	Trp	Val	Ile	Gly	Gly	Val	Ser	
			905					910					915				
25																	
25						GTG											3018
	Ala		Leu	Phe	Ala	Val		Gln	Gly	Ile	Leu	-	Val	Leu	Ala	Gly	
		920					925					930					
						- ~-					~~~						
30						ACA											3066
50		Asp	inr	ASN	Pne	Thr	vai	inr	ser	Lys	945	ser	ASP	GIU	Asp		
	935					940					743					950	
	GAC	TTT	GCT	GAG	CTC	TAC	TTG	ттс	444	TGG	ACA	אכא	СТТ	CTG	ል ጥጥ	cce	3114
						Tyr							-				322.
35	щ			~ . u	955	- , -	204		2,5	960		••••	200	200	965		
	CCA	ACG	ACG	CTG	CTC	ATT	GTA	AAC	TTA	GTG	GGA	GTT	GTT	GCA	GGA	GTC	3162
						Ile											
				970					975		•			980	•		
40																	

- 143 -

	TCT	TAT	GCT	ATC	AAC	AGT	GGA	TAC	CAA	TCA	TGG	GGA	CCA	CTC	TTT	GGT	3210
	Ser	Tyr	Ala	Ile	Asn	Ser	Gly	Tyr	Gln	Ser	Trp	Gly	Pro	Leu	Phe	Gly	
			985					990					995				
_																	
5	AAG	TTG	TTC	TTT	GCC	TTC	TGG	GTG	ATT	GTT	CAC	TTG	TAC	CCT	TTC	CTC	3258
	Lys	Leu	Phe	Phe	Ala	Phe	Trp	Val	Ile	Val	His	Leu	Tyr	Pro	Phe	Leu	
		100	Ď				100	5				1010)				
			TTG														3306
10	Lys	Gly	Leu	Met	Gly	Arg	Gln	Asn	Arg	Thr	Pro	Thr	Ile	Val	Val	Val	
	1019	5				1020)				1025	ó				1030	
	TGG	TCT	GTT	CTC	TTG	GCT	TCT	ATC	TTC	TCG	TTG	TTG	TGG	GTT	AGG	ATT	3354
	Trp	Ser	Val	Leu	Leu	Ala	Ser	Ile	Phe	Ser	Leu	Leu	Trp	Val	Arg	Ile	
15					1035	•				1040	1				1045	•	
			TTC														3402
	Asp	Pro	Phe	Thr	Ser	Arg	Val	Thr	Gly	Pro	Asp	Ile	Leu	Glu	Cys	Gly	
				1050)				1055					1060)		
20																	
	ATC	AAC	TGT	TGAG	AAGC	GA G	CAAA	TATI	T AC	CTGT	TTTG	AGG	GTTA	AAA			3451
	Ile	Asn	-														
			1065														
25																	
25	AAAA	CACA	GA A	TTTA	AATT	A TT	TTTC	ATTG	TTT	TATT	TGT	TCAC	TTTT	TT A	.CTTT	TGTTG	3511
	TGTG	TATC	TG T	CTGT	TCGT	T CT	TCTG	TCTT	GGT	GTCA	TAA .	ATTT.	ATGT	GT A	GAAT.	ATATC	3571
20	TTAC	TCTA	GT T	ACTT	TGGA	A AG	TTAT	AATT	AAA	GTGA	AAG	CCA					3614
30																	

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1065 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- 144 -

(11) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

5 Met Glu Ser Glu Gly Glu Thr Ala Gly Lys Pro Met Lys Asn Ile Val

Pro Gln Thr Cys Gln Ile Cys Ser Asp Asn Val Gly Lys Thr Val Asp
20 25 30

10

Gly Asp Arg Phe Val Ala Cys Asp Ile Cys Ser Phe Pro Val Cys Arg
35 40 45

Pro Cys Tyr Glu Tyr Glu Arg Lys Asp Gly Asn Gln Ser Cys Pro Gln
15 50 55 60

Cys Lys Thr Arg Tyr Lys Arg Leu Lys Gly Ser Pro Ala Ile Pro Gly 65 70 75 80

20 Asp Lys Asp Glu Asp Gly Leu Ala Asp Glu Gly Thr Val Glu Phe Asn 85 90 95

Tyr Pro Gln Lys Glu Lys Ile Ser Glu Arg Met Leu Gly Trp His Leu 100 105 110

25

Thr Arg Gly Lys Gly Glu Glu Met Gly Glu Pro Gln Tyr Asp Lys Glu 115 120 125

Val Ser His Asn His Leu Pro Arg Leu Thr Ser Arg Gln Asp Thr Ser 30 130 135 140

35 Ile Ala Gly Gly Lys Arg Leu Pro Tyr Ser Ser Asp Val Asn Gln Ser 165 170 175

Pro Asn Arg Arg Ile Val Asp Pro Val Gly Leu Gly Asn Val Ala Trp
180 185 190

- 145 -

	Lys	Glu	Arg	Val	. Asp	Gly	Trp	Lys	Met	Lys	Gln	Glı	Lys	Asn	Thr	Gly
			195					200)				209	;		
	Pro	Val	Ser	Thr	Gln	Ala	Ala	Ser	Glu	Arg	Gly	Gly	/ Val	. Asp	Ile	Asp
5		210					215			_	•	220		•		•
_		210					213					220				
				_								_				
	Ala	Ser	Thr	Asp	Ile			Asp	Glu	Ala	Leu	Leu	ı Asn	Asp	Glu	Ala
	225					230					235					240
10	Arg	Gln	Leu	Leu	Ser	Arg	Lys	Val	Ser	Ile	Pro	Ser	Ser	Arg	lle	Asn
					245					250					255	
	Pro	Tyr	Arg	Met	Val	Ile	Met	Leu	Arq	Leu	Va1	Ile	Leu	Cvs	Leu	Phe
		•	-	260					265					270		
15																
	T 011	uic	T1	7 ~~	T) a	The	200	D=0	tra 1	Dwo	200	212	Dha	חות		Trp
	LEU	ura	_	ALY	116	1111	ASII		vai	PIO	ASII	AIA		Ala	beu	пр
			275					280					285			
	Leu	Val	Ser	Val	Ile	Cys	Glu	Ile	Trp	Phe	Ala	Leu	Ser	Trp	Ile	Leu
20		290					295					300				
	Asp	Gln	Phe	Pro	Lys	Trp	Phe	Pro	Val	Asn	Arg	Glu	Thr	Tyr	Leu	Asp
	305					310					315					320
25	Arg	Leu	Ala	Leu	Ara	Tvr	Asp	Ara	Glu	Glv	Glu	Pro	: Ser	Gln	Leu	λla
					325	-,-		5		330				· · · ·	335	
					323					,,,,					دود	
		**- 1			-		٠.			_	_		_		_	_
	Ala	vaı	Asp		Pne	vaı	Ser	Thr		Asp	Pro	Leu	rys		Pro	Pro
20				340					345					350		
30																
	Leu	Val	Thr	Ala	Asn	Thr	Val	Leu	Ser	Ile	Leu	Ala	Val	Ąsp	Tyr	Pro
			355					360					365			
	Val	Asp	Lys	Val	Ser	Cys	Tyr	Val	Ser	Asp	Asp	Gly	Ala	Ala	Met	Leu
35		370					375					380				
	Ser	Phe	Glu	Ser	Len	Ala	Glu	Th∽	Ser	Gliv	Phe	Ala	۵ra	Lve	Trn	Val
	385					390		- •••			395	u	9	~y3	_	400
																~ U U

- 146 -

Pro Phe Cys Lys Lys Tyr Ser Ile Glu Pro Arg Ala Pro Glu Trp Tyr
405 410 415

Phe Ala Ala Lys Ile Asp Tyr Leu Lys Asp Lys Val Gln Thr Ser Phe 420 425 430

445 435 440 10 Arg Ile Asn Ala Leu Val Ser Lys Ala Leu Lys Cys Pro Glu Glu Gly 455 450 Trp Val Met Gln Asp Gly Thr Pro Trp Pro Gly Asn Asn Thr Gly Asp 470 475 480 15 His Pro Gly Met Ile Gln Val Phe Leu Gly Gln Asn Gly Gly Leu Asp 485 490 Ala Glu Gly Asn Glu Leu Pro Arg Leu Val Tyr Val Ser Arg Glu Lys 20 500 505 510

Arg Pro Gly Phe Gln His His Lys Lys Ala Gly Ala Met Asn Ala Leu
515 520 525

25 Val Arg Val Ser Ala Val Leu Thr Asn Gly Pro Phe Ile Leu Asn Leu 530 535 540

Asp Cys Asp His Tyr Ile Asn Asn Ser Lys Ala Leu Arg Glu Ala Met 545 550 560

Cys Phe Leu Met Asp Pro Asn Leu Gly Lys Gln Val Cys Tyr Val Gln
565 570 575

Phe Pro Gln Arg Phe Asp Gly Ile Asp Lys Asn Asp Arg Tyr Ala Asn 35 580 585 590

Arg Asn Thr Val Phe Phe Asp Ile Asn Leu Arg Gly Leu Asp Gly Ile
595 600 605

- 147 -

	Glr	Gly	Pro	Val	Tyr	Val	Gly	Thr	Gly	, Cys	. Val	. Phe	e Asr	Arg	Thr	Al
		610					615	5				620)			
	Leu	Tvr	Glv	TVr	Glu	Pro	Pro	lle	LVS	. Val	Lvs	His	LVS	Lvs	Pro	Se
5	625	•	7	- , -		630			-,-		635		_,_	-,-		64
	025					930					033					0 1
	Leu	Lau	Sar	Lvc	Leu	Cvc	Clu			λκα	Lvc	1 100	. Aen	Sar	7	. ו א
	Dea	Leu	261	Lys		Cys	GIY	GIY	261	_	-	цуs	, ASI	Jer	-	
					645					650					655	
10	A-2-	_	۵,	_			_	_	_		_					
10	Lys	Lys	Giu		Asp	Lys	Lys	Lys		Gly	Arg	His	Thr		Ser	Thi
				660					665					670		
		_														
	Val	Pro		Phe	Asn	Leu	Asp	_		Glu	Glu	Gly		Glu	Gly	Ala
			675					680					685			
15																
	Gly	Phe	Asp	Asp	Glu	Lys	Ala	Leu	Leu	Met	Ser	Gln	Met	Ser	Leu	G1 u
		690					695					700				
	Lys	Arg	Phe	Gly	Gln	Ser	Ala	Val	Phe	Val	Ala	Ser	Thr	Leu	Met	Glu
20	705					710					715					720
	Asn	Gly	Gly	Val	Pro	Pro	Ser	Ala	Thr	Pro	Glu	Asn	Phe	Leu	Lys	Glu
					725					730					735	
25	Ala	Ile	His	Val	lle	Ser	Суз	Gly	Tyr	Glu	Asp	Lys	Ser	Asp	Trp	Gly
				740					745					750		
	Met	Glu	Ile	Gly	Trp	Ile	Tyr	Gly	Ser	Va1	Thr	Glu	Asp	Ile	Leu	Thr
			755					760	•				765			
30																
	Gly	Phe	Lys	Met	His	Ala	Arg	Gly	Trp	Arg	Ser	Ile	Tyr	Cys	Met	Pro
		770					775					780				
	Lys	Leu	Pro	Ala	Phe	Lys	Gly	Ser	Ala	Pro	Ile	Asn	Leu	Ser	Asp	Ara
35	785					790	•				795				•	800
-	-															
	Leu	Asn	Gln	Val	Leu	Ara	Trn	Ala	Leu	Glv	Ser	Val	Glu	Tle	(eu	Dhe
			~		805	••• 3			200	810	~~.		J14			-116
					505					3 1 0					815	

- 148 -

Ser Arg His Cys Pro Ile Trp Tyr Gly Tyr Asn Gly Arg Leu Lys Phe 820 825 830

Leu Glu Arg Phe Ala Tyr Val Asn Thr Thr Ile Tyr Pro Ile Thr Ser

845

10 Asn Gln Phe Ile Ile Pro Gln Ile Ser Asn Ile Ala Ser Ile Trp Phe Leu Ser Leu Phe Leu Ser Ile Phe Ala Thr Gly Ile Leu Glu Met Arg Trp Ser Gly Val Gly Ile Asp Glu Trp Trp Arg Asn Glu Gln Phe Trp Val Ile Gly Gly Val Ser Ala His Leu Phe Ala Val Phe Gln Gly Ile Leu Lys Val Leu Ala Gly Ile Asp Thr Asn Phe Thr Val Thr Ser Lys 25 Ala Ser Asp Glu Asp Gly Asp Phe Ala Glu Leu Tyr Leu Phe Lys Trp Thr Thr Leu Leu Ile Pro Pro Thr Thr Leu Leu Ile Val Asn Leu Val Gly Val Val Ala Gly Val Ser Tyr Ala Ile Asn Ser Gly Tyr Gln Ser . 985 Trp Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Phe Trp Val Ile Val His Leu Tyr Pro Phe Leu Lys Gly Leu Met Gly Arg Gln Asn Arg Thr

- 149 -

Pro Thr Iie Val Val Val Trp Ser Val Leu Leu Ala Ser Ile Phe Ser 1025 1030 1035

Leu Leu Trp Val Arg Ile Asp Pro Phe Thr Ser Arg Val Thr Gly Pro 5 1045 1050 1055

Asp Ile Leu Glu Cys Gly Ile Asn Cys 1060 1065

10

- (2) INFORMATION FOR SEQ ID NO:11:
- (i) SEQUENCE CHARACTERISTICS:

15

(A) LENGTH: 3673 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

25

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Arabidopsis thaliana
 - (B) STRAIN: Columbia
 - (C) INDIVIDUAL ISOLATE: rswl mutant

30

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 71..3313

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

- 150 -

	GGT	GGCT	GCG .	ATG (GAG	GCC .	AGT (GCC ·	GGC '	TTG	GTT (GCT (GGA	TCC	TAC	CGG	109	
			ı	Met	Glu .	Ala	Ser.	Ala	Gly	Leu	Val .	Ala	Gly .	Ser '	Tyr .	Arg		
				1				5					10					
5	AGA	AAC	GAG	CTC	GTT	CGG	ATC	CGA	CAT	GAA	TCT	GAT	GGC	GGG	ACC	AAA	157	
	Arg	Asn	Glu	Leu	Val	Arg	Ile	Arg	His	Glu	Ser	Asp	Gly	Gly	Thr	Lys		
														,			 	 710-9
							GGC										205	
10	Pro	Leu	Lys	Asn	Met	Asn	Gly	Gln	lle	Cys	Gln	Ile	Cys	Gly	Asp	Asp		
	30					35					40					45		
							GGA										253	
1.5	Val	Gly	Leu	Ala		Thr	Gly	Asp	Val		Val	Ala	Cys	Asn		Cys		
15					50					55					60			
							CCT										301	
	Ala	Pne	Pro		cys	Arg	Pro	Cys	-	GIU	Tyr	GIU	Arg	-	Asp	GIY		
20				65					70					75				
20	ስርፕ	CNG	かつか	TOC	ር ር	ממי	TGC	ስስC	ስ <i>ር</i> ጥ	ስ <i>ር</i> አ	TTC	ክ/G ክ	CCA	CNC	n/c/C	acc	349	
							Cys										347	
	1111	GIII	80	СуЗ	110	GIM	Суз	85	1	Arg	rne	rrg	90	1123	n. g	Gly		
								•										
25	AGT	ССТ	CGT	GTT	GAA	GGA	GAT	GAA	GAT	GAG	GAT	GAT	GTŤ	GAT	GAT	ATC	397	
							Asp											
		95				•	100		•		•	105		•	•			
	GAG	AAT	GAG	TTC	AAT	TAC	GCC	CAG	GGA	GCT	AAC	AAG	GCG	AGA	CAC	CAA	445	
30	Glu	Asn	Glu	Phe	Asn	Tyr	Ala	Gln	Gly	Ala	Asn	Lys	Ala	Arg	His	Gln		
	110					115					120					125		
	CGC	CAT	GGC	GAA	GAG	TTT	TCT	TCT	TCC	TCT	AGA	CAT	GAA	TCT	CAA	CCA	493	
	Arg	His	Gly	Glu	Glu	Phe	Ser	Ser	Ser	Ser	Arg	His	Glu	Ser	Gln	Pro		
35					130					135					140			
	ATT	CCT	CTT	СТС	ACC	CAT	GGC	CAT	ACG	GTT	TCT	GGA	GAG	ATT	CGC	ACG	541	
	Ile	Pro	Leu	Leu	Thr	His	Gly	His	Thr	Val	Ser	Gly	Glu	Ile	Arg	Thr		
			•	145					150					155				
40																		

- 151 -

	CCI	GAT	ACA	CAA	TCT	GTG	CGA	ACI	ACA	TCF	GG1	CCT	TTC	G GG	ר ככי	тст	589
	Pro	Asp	Thr	Gln	Ser	Val	Arg	Thr	Thr	Sez	Gly	Pro	Le	Gly	/ Pro	Ser	
			160					165	i				170)			
_																	
5	GAC	AGG	TAA	GCT	ATT	TCA	TCT	CCA	TAT	TTA	GAT	CCA	CGC	CAA	CCI	GTC	637
	Asp	Arg	Asn	Ala	Ile	Ser	Ser	Pro	Tyr	Ile	Asp	Pro	Arg	Glr	Pro	Val	
		175					180					185					
																CTT	685
10	Pro	Val	Arg	Ile	Val		Pro	Ser	Lys	Asp			Ser	Tyr	Gly		
	190					195					200					205	
										~							
		AAT															733
15	GIY	Asn	vai	Asp	1 F P	Lys	Gra	Arg	vai	215	GIY	Trp	ьys	ren	•	Gin	
13					210					213					220		
	GAG	AAA	ААТ	ATG	TTA	CAG	ATG	ACT	GGT	AAA	TAC	CAT	GAA	GGG	AAA	GGA	781
		Lys															, 52
		- 4		225					230	-1-	-1-			235		1	
20																	
	GGA	GAA	ATT	GAA	GGG	ACT	GGT	TCC	AAT	GGC	GAA	GAA	CTC	CAA	ATG	GCT	829
	Gly	Glu	Ile	Glu	Gly	Thr	Gly	Ser	Asn	Gly	Glu	Glu	Leu	Gln	Met	Ala	
			240					245					250				
25	GAT	GAT	ACA	CGT	CTT	CCT	ATG	AGT	CGT	GTG	GTG	CCT	ATC	CCA	TCT	TCT	877
	Asp	Asp	Thr	Arg	Leu	Pro	Met	Ser	Arg	Val	Val	Pro	Ile	Pro	Ser	Ser	
		255					260					265					
	CGC	CTA	ACC	CCT	TAT	CGG	GTT	GTG	ATT	ATT	CTC	CGG	CTT	ATC	ATC	TTG	925
30	Arg	Leu	Thr	Pro	Tyr	Arg	Val	Val	Ile	Ile	Leu	Arg	Leu	Ile	Ile	Leu	
	270					275					280					285	
	TGT	TTC	TTC	TTG	CAA	TAT	CGT	ACA	ACT	CAC	CCT	GT G	AAA	AAT	GCA	TAT	973
2.5	Cys	Phe	Phe	Leu	Gln	Tyr	Arg	Thr	Thr	His	Pro	Val	Lys	Asn	Ala	Tyr	
35					290					295					300		
		TTG															1021
	Pro	Leu			Thr	Ser	Val			Glu	Ile	Trp	Phe		Phe	Ser	
				305					310					315			

- 152 -

	TGG	CTT	CTT	GAT	CAG	TTT	CCC	AAA	TGG	TAC	CCC	ATT	AAC	AGG	GAG	ACT	1069
	Trp	Leu	Leu	Asp	Gln	Phe	Pro	Lys	Trp	Tyr	Pro	Ile	Asn	Arg	Glu	Thr	
			320					325					330				
5	TAT	CTT	GAC	CGT	CTC	GCT	ATA	AGA	TAT	GAT	CGA	GAC	GGT	GAA	CCA	TCA	1117
	Tyr	Leu	Asp	Arg	Leu	Ala	Ile	Arg	Tyr	Asp	Arg	Asp	Gly	Glu	Pro	Ser	
	CAG	CTC	GTT	CCT	GTT	GAT	GTG	TTT	GTT	AGT	ACA	GTG	GAC	CCA	TTG	AAA	1165
10	Gln	Leu	Val	Pro	Val	Asp	Val	Phe	Val	Ser	Thr	Val	Asp	Pro	Leu	Lys	
	350					355					360					365	
	GAG	CCT	CCC	CTT	GTT	ACA	GCA	AAC	ACA	GTT	CTC	TCG	ATT	CTT	TCT	GTG	1213
	Glu	Pro	Pro	Leu	Val	Thr	Ala	Asn	Thr	Val	Leu	Ser	Ile	Leu	Ser	Val	
15					370					375					380		
	GAC	TAC	CCG	GTA	GAT	AAA	GTA	GCC	TGT	TAT	GTT	TCA	GAT	GAT	GGT	TCA	1261
	Asp	Tyr	Pro	Val	Asp	Lys	Val	Ala	Cys	Tyr	Val	Ser	Asp	Asp	Gly	Ser	
•				385					390					395			
20																	
	GCT	ATG	CTT	ACC	TTT	GAA	TCC	CTT	TCT	GAA	ACC	GCT	GAG	TTT	GCA	AAG	1309
	Ala	Met		Thr	Phe	Glu	Ser		Ser	Glu	Thr	Ala		Phe	Ala	Lys	
			400					405					410				
26																	
23		TGG															1357
	Lys	Trp	Val	Pro	Pne	Cys	-	ьуs	Pne	Asn	11e		Pro	Arg	АТа	Pro	
		415					420					425					
		mmc			000	~~~		2002	G b m	m	mmc.		a		. ma	C N N	1405
30		TTC															1405
30		Phe	ıyr	Pne	AIA	435	rys	ite	Asp	lyr	Leu	гÀг	Asp	rys	11e	445	
	430					433					440					413	
	ccc	TCT	ттт	GTT	מממ	GAG	CGA	CCA	CCT	ATG	DAG	AGA	GAG	тат	CAA	GAG	1453
		Ser															1433
35		501	2110	761	450	014	y	A. y	7124	455	<i></i>	~~ 9	014	171	460	GIU	
23					130												
	ፐጥፕ	AAA	GTG	AGG	ATA	ААТ	GCT	CTT	GTT	GCC	AAA	GCA	CAG	ДДД	ATC	ССТ	1501
		Lys															
		-,-		465					470		-,-			475			
40									.,,					• • •			

- 153 -

	GAA	GAA	GGC	TGC	3 ACA	ATG	CAG	GAT	GGT	AC1	ccc	TGG	CCI	GG	C AAC	C AAC	1549
	Glu	Glu	Gly	Trp	Thr	Met	Gln	Asp	Gly	Thr	Pro	Trp	Pro	Gly	/ Asr	n Asn	
			480	•				485					490)			
5	ACT	AGA	GAT	CAT	CCT	GGA	ATG	ATA	CAG	GTG	TTC	TTA	GGC	CAT	AG1	GGG	1597
	Thr	Arg	Asp	His	Pro	Gly	Met	Ile	Gln	Val	Phe	Leu	Gly	His	Ser	Gly	
		495					500					505					
	GGT	CTG	GAT	ACC	GAT	GGA	AAT	GAG	CTG	CCT	AGA	CTC	ATC	TAT	GTT	TCT	1645
10	Gly	Leu	Asp	Thr	Asp	Gly	Asn	Glu	Leu	Pro	Arg	Leu	Ile	Tyr	Val	Ser	
	510					515					520					525	
	CGT	GAA	AAG	CGG	CCT	GGA	TTT	CAA	CAC	CAC	AAA	AAG	GCT	GGA	GCT	ATG	1693
	Arg	Glu	Lys	Arg	Pro	GJA	Phe	Gln	His	His	Lys	Lys	Ala	Gly	Ala	Met	
15					530					535					540		
	AAT	GCA	TTG	ATC	CGT	GTA	TCT	GTT	GTT	CTT	ACC	AAT	GGA	GCA	TAT	CTT	1741
	Asn	Ala	Leu	Ile	Arg	Val	Ser	Val	Val	Leu	Thr	Asn	Gly	Ala	Tyr	Leu	
20				545					550					5 5 5			
20																	
	TTG	AAC	GTG	GAT	TGT	GAT	CAT	TAC	TTT	TAA	AAC	AGT	AAG	GCT	ATT	AAA	1789
	Leu	Asn		Asp	Cys	Asp	His		Phe	Asn	Asn	Ser	-	Ala	Ile	Lys	
			560					565					570				
25													1				
23					TTC												1837
	Glu		Met	Cys	Phe	Met		Asp	Pro	Ala	Ile		Lys	Lys	Cys	Cys	
		575					580					585					
	m 5 m	CTIC	CAC	TTC.	COT	C2.2	CC.		0.0			C> m	mmo	~~~	0 h m		1005
30					CCT Pro												1885
50	590	vai	GIII	Pile	PLO		Arg	PHE	Asp	GIY		Asp	Leu	HIS	Aab	605	
	390					595					600					603	
	ጥለጥ	ccc	n n C	N.C.C.	AAT	ארדא	CTC	dodede	TTC	CAT	n Tr	200	B. TT.CT	220	ccc	TTC	1077
					Asn												1933
35	TYL	AIG	Vall	Arg	610	116	vai	FIIC		-	116	ASII	Mec	Lys	•	neu	
ر د					910					615					620		
	CAT	сст	ΔTC	CAG	GGT	CCA	СТА	ጥልጥ	GTG.	ርርጥ	ልሮጥ	CCT	יייבאיני	ጥርጥ	ጥጥጥ	ልልጥ	1981
					Gly												#30T
	23.05	y		625	J- y			-1-	630	J		JLY	-ys	635	£ 11C	FIGI)	
40														J J J			
. •																	

- 154 -

	AGG	CAG	GCT	CTA	TAT	GGG	TAT	GAT	CCT	GTT	TTG	ACG	GAA	GAA	GAT	ATT	2029
	Arg	Gln	Ala	Leu	Tyr	Gly	Tyr	Asp	Pro	Val	Leu	Thr	Glu	Glu	Asp	Leu	
			640					645					650				
5	GAA	CCA	AAT	ATT	ATT	GTC	AAG	AGC	TGT	TGC	GGG	TCA	AGG	AAG	AAA	GGT	2077
	Glu	Pro	Asn	Ile	Ile	Val	Lys	Ser	Cys	Cys	Gly	Ser	Arg	Lys	Lys	Gly	
										and the same of						LORDON DE	
																(
	AAA	AGT	AGC	AAG	AAG	TAT	AAC	TAC	GAA	AAG	AGG	AGA	GGC	ATC	AAC	AGA	2125
10	Lys	Ser	Ser	Lys	Lys	Tyr	Asn	Tyr	Glu	Lys	Arg	Arg	Gly	Ile	Asn	Arg	
	670					675					680					685	
	AGT	GAC	TCC	AAT	GCT	CCA	CTT	TTC	AAT	ATG	GAG	GAC	ATC	GAT	GAG	GGT	2173
	Ser	Asp	Ser	Asn	Ala	Pro	Leu	Phe	Asn	Met	Glu	Asp	Ile	Asp	Glu	Gly	
15					690					695					700		
	TTT	GAA	GGT	TAT	GAT	GAT	GAG	AGG	TCT	ATT	CTA	ATG	TCC	CAG	AGG	AGT	2221
	Phe	Glu	Gly	Tyr	Asp	Asp	Glu	Arg	Ser	Ile	Leu	Met	Ser	Gln	Arg	Ser	
				705					710					715			
20																	
	GTA	GAG	AAG	CGT	TTT	GGT	CAG	TCG	CCG	GTA	TTT	ATT	GCG	GCA	ACC	TTC	2269
	Val	Glu	Lys	Arg	Phe	Gly	Gln	Ser	Pro	Val	Phe	Ile	Ala	Ala	Thr	Phe	
			720					725					730				
25	ATG	GAA	CAA	GGC	GGC	ATT	CCA	CCA	ACA	ACC	AAT	CCC	GCT	ACT	CTT	CTG	2317
	Met	Glu	Gln	Gly	Gly	Ile	Pro	Pro	Thr	Thr	Asn	Pro	Ala	Thr	Leu	Leu	
		735					740					745					
	AAG	GAG	GCT	ATT	CAT	GTT	ATA	AGC	TGT	GGT	TAC	GAA	GAC	AAG	ACT	GAA	2365
30	Lys	Glu	Ala	Ile	His	Val	Ile	Ser	Суз	Gly	Tyr	Glu	Asp	Lys	Thr	Glu	
	750					755					760					765	
	TGG	GGC	AAA	GAG	ATT	GGT	TGG	ATC	TAT	GGT	TCC	GTG	ACG	GAA	GAT	ATT	2413
	Trp	Gly	Lys	Glu	Ile	Gly	Trp	Ile	Tyr	Gly	Ser	Val	Thr	Glu	Asp	Ile	
35					770					775					780		
	CTT	ACT	GGG	TTC	AAG	ATG	CAT	GCC	CGG	GGT	TGG	ATA	TCG	ATC	TAC	TGC	2461
	Leu	Thr	Gly	Phe	Lys	Met	His	Ala	Arg	Gly	Trp	Ile	Ser	Ile	Tyr	Суз	
				785					790					795			
40																	

- 155 -

	AA	r cc	r cc	A CG	c cc1	GCC	TTC	AAG	GGA	TCI	r GCA	A CCA	ATO	C AA	г ст	т тст	2509
	Ası	n Pro	Pro	Arg	g Pro	Ala	Pne	Lys	Gly	Ser	Ala	Pro	Ile	Ası	n Le	u Ser	
			800)				805					810)			
5	GAT	CG	TTC	AAC	CAA	GTT	CTT	CGA	TGG	GCT	TTC	GGA	TCI	TA	GAG	G ATT	2557
	Asp	Arg	, Leu	Asr	Gln	Val	Leu	Arg	Trp	Ala	Lev	Gly	Ser	: Ile	e Gli	ı Ile	
		819	;				820					825					
	CTT	CTI	AGC	AGA	CAT	TGT	CCT	ATC	TGG	TAT	GGT	TAC	CAT	' GGA	AGC	G TTG	2605
10	Leu	Let	Ser	Arg	His	Cys	Pro	Ile	Trp	Tyr	Gly	Tyr	His	Gly	Arc	g Leu	
	830					835					840					845	
	AGA	CTT	TTG	GAG	AGG	ATC	GCT	TAT	ATC	AAC	ACC	ATC	GTC	TAT	. CCI	TTA	2653
	_	Leu	Leu	Glu	Arg	Ile	Ala	Tyr	Ile	Asn	Thr	Ile	Val	Tyr	Pro	Ile	
15					850					855					860)	
																CTC	2701
	Thr	Ser	Ile			Ile	Ala	Tyr	-	Ile	Leu	Pro	Ala	Phe	Cys	Leu	
20				865					870					875			
20																	
					TTC												2749
	He	Thr		Arg	Phe	Ile	Ile		Glu	Ile	Ser	Asn	-	Ala	Ser	Ile	
			880					885					890				
25	TCC	ም ሞር	አ ଫጥ	CTA	CTC	T TC	N.T.C	TC N	3 mm	~~	ama	.	~~ 1	•	-		0.7.00
23					Leu												2797
	11p	895	116	Leu	Leu	PHE	900	Ser	116	MIG	Vai		GIĄ	He	Leu	GIU	
		073					900					905					
	CTG	AGA	тсс	AGC	GGT	GTG	AGC	ል ፕ	GAG	CAT	тсс	TCC	ACC	N N C	CNC	CNC	2845
30					Gly												2045
	910	•••	110	JC1	Oly	915	501	110	O14	чор	920	110	719	no!!	Gru	925	
						713					200					723	
	TTC	TGG	GTC	TTA	GGT	GGC	ACA	TCC	GCC	CAT	СТТ	TTT	GCT	GTC	ттс	CAA	2893
					Gly												1003
35					930	,				935					940	01	
	GGT	CTA	CTT	AAG	GTT	CTT	GCT	GGT .	ATC	GAC	ACC	AAC	TTC	ACC	GTT	ACA	2941
					Val												
				945					950	-				955			
40																	

- 156 -

	TCT	AAA	GCC	ACA	GAC	GAA	GAT	GGG	GAT	TTT	GCA	GAA	CTC	TAC	ATC	TTC	2989
	Ser	Lys	Ala	Thr	Asp	Glu	Asp	Gly	Asp	Phe	Ala	Glu	Leu	Tyr	Ile	Phe	
			960					965					970				
5	AAA	TGG	ACA	GCT	CTT	CTC	ATT	CCA	CCA	ACC	ACC	GTC	СТА	CTT	GTG	AAC	3037
	Lys	Trp	Thr	Ala	Leu	Leu	Ile	Pro	Pro	Thr	Thr	Val	Leu	Leu	Val	Asn	
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
	CTC	ATA	GGC	ATT	GTG	GCT	GGT	GTC	TCT	TAT	GCT	GTA	AAC	AGT	GGC	TAC	3085
10	Leu	Ile	Gly	Ile	Val	Ala	Gly	Val	Ser	Tyr	Ala	Val	Asn	Ser	Gly	Tyr	
	990					995					1000)				1005	
	CAG	TCG	TGG	GGT	CCG	CTT	TTC	GGG	AAG	CTC	TTC	TTC	GCC	TTA	TGG	GTT	3133
	Gln	Ser	Trp	Gly	Pro	Leu	Phe	Gly	Lys	Leu	Phe	Phe	Ala	Leu	Trp	Val	
15					1010)				1019	5				1020)	
	ATT	GCC	CAT	CTC	TAC	CCT	TTC	TTG	AAA	GGT	CTG	TTG	GGA	AGA	CAA	AAC	3181
	Ile	Ala	His	Leu	Tyr	Pro	Phe	Leu	Lys	Gly	Leu	Leu	Gly	Arg	Gln	Asn	
				1025	5				1030)				1039	5		
20					-												
	CGA	ACA	CCA	ACC	ATC	GTC	ATT	GTC	TGG	TCT	GTT	CTT	CTC	GCC	TCC	ATC	3229
	Arg	Thr	Pro	Thr	Ile	Val	Ile	Val	Trp	Ser	Val	Leu	Leu	Ala	Ser	Ile	
			1040)				1049	5				1050)			
25	TTC	TCG	TTG	CTT	TGG	GTC	AGG	ATC	AAT	CCC	TTT	GTG	GAC	GCC	AAT	CCC	3277
	Phe	Ser	Leu	Leu	Trp	Val	Arg	Ile	Asn	Pro	Phe	Val	Asp	Ala	Asn	Pro	
		1059	5				1060					1069	5				
	AAT	GCC	AAC	AAC	TTC	TAA	GGC	AAA	GGA	GGT	GTC	TTT	TAGA	ACCC	TAT		3323
30	Asn	Ala	Asn	Asn	Phe	Asn	Gly	Lys	Gly	Gly	Val	Phe					
	1070)				1075	,				1080)					
	TTAT	ATA	CTT C	STGTO	STGC	AT AT	ATC	LAAA	A CGC	CGCA	ATGG	GAAT	TCC	AAA 7	CAT	CTAAAC	3383
								•									
35	CCAT	CAA	ACC (CAGI	rgaac	C GO	GCAC	ATT	A GGT	GATI	CCA	TGT	CAAC	AT T	CAGCT	TTTCTC	3.443
	CGAC	TAG	CCA C	GAGA	AGGTO	SA AA	TTGT	TCGT	AA 1	ACTA	ATTG	TAAT	rgat1	TTT (CAGT	rgggga	3503
										•							
	AGA	GATO	STG C	SACCO	CAAAT	rg at	'ACAT	AGTO	TAC	XAAA:	AGA	ATT	GTT	ATT (TTTC	CTTATA	3563
40																	

- 157 -

5

10

30

35

100

TTTATTTTAT TTAAAGCTTG TTAGACTCAC ACTTATGTAA TGTTGGAACT TGTTGTCCTA 3623 AAAAGGGATT GGAGTTTTCT TTTTATCTAA GAATCTGAAG TTTATATGCT 3673 (2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1081 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: Met Glu Ala Ser Ala Gly Leu Val Ala Gly Ser Tyr Arg Arg Asn Glu 20 1 5 10 Leu Val Arg Ile Arg His Glu Ser Asp Gly Gly Thr Lys Pro Leu Lys 20 25 30 25 Asn Met Asn Gly Gln Ile Cys Gln Ile Cys Gly Asp Asp Val Gly Leu 35 40 Ala Glu Thr Gly Asp Val Phe Val Ala Cys Asn Glu Cys Ala Phe Pro 50 55 Val Cys Arg Pro Cys Tyr Glu Tyr Glu Arg Lys Asp Gly Thr Gln Cys 65 70 75 Cys Pro Gln Cys Lys Thr Arg Phe Arg Arg His Arg Gly Ser Pro Arg 85 90 Val Glu Gly Asp Glu Asp Glu Asp Asp Val Asp Asp Ile Glu Asn Glu

105

- 158 -

Phe Asn Tyr Ala Gln Gly Ala Asn Lys Ala Arg His Gln Arg His Gly
115 120 125

Glu Glu Phe Ser Ser Ser Ser Arg His Glu Ser Gln Pro Ile Pro Leu

5 130 135 140

10 Gln Ser Val Arg Thr Thr Ser Gly Pro Leu Gly Pro Ser Asp Arg Asn Ala Ile Ser Ser Pro Tyr Ile Asp Pro Arg Gln Pro Val Pro Val Arg Ile Val Asp Pro Ser Lys Asp Leu Asn Ser Tyr Gly Leu Gly Asn Val Asp Trp Lys Glu Arg Val Glu Gly Trp Lys Leu Lys Gln Glu Lys Asn Met Leu Gln Met Thr Gly Lys Tyr His Glu Gly Lys Gly Gly Glu Ile 25 Glu Gly Thr Gly Ser Asn Gly Glu Glu Leu Gln Met Ala Asp Asp Thr Arg Leu Pro Met Ser Arg Val Val Pro Ile Pro Ser Ser Arg Leu Thr Pro Tyr Arg Val Val Ile Ile Leu Arg Leu Ile Ile Leu Cys Phe Phe Leu Gln Tyr Arg Thr Thr His Pro Val Lys Asn Ala Tyr Pro Leu Trp 35 290 Leu Thr Ser Val Ile Cys Glu Ile Trp Phe Ala Phe Ser Trp Leu Leu

	As	sp G	ln P	he P		_ys 325	Trp	туг	r Pr	o Il	e As	sn Ar	g Glu	ı Thi	Tyr	Leu 335	
5	Ar	g Le	eu A		le <i>A</i> 40	irg :	ſyr	Asp	Ar	g As 34		y Gl	u Pro) Ser	Gln 350	Leu	Val
	Pr	o Va	il As 35		al P	he V	'al	Ser	Th:		l As	p Pro	Leu	Lys 365	Glu	Pro	Pro
10	Lei	ນ Va 37		ır Al	a A	sn T		Val 375	Leu	ı Sei	: Ile	e Leu	Ser 380	Val	Asp	Tyr	Pro
15	Val		p Ly	s Va	1 A		ys 1 90	Гуr	Val	Ser	` Asp	395	Gly	Ser	Ala		Leu 400
	Thr	Phe	e Gl	u Se	r Le		er G	lu	Thr	Ala	Glu 410	Phe	Ala	Lys		rrp '	Val
20	Pro	Phe	: Cys	420		s Ph	e A	sn	Ile	Glu 425	Pro	Arg	Ala		Glu F 430	Phe T	[yr
			435					4	40			Lys	•	445			
25 1	Val	Lys 450	Glu	Arg	Arg	, Ala	4 9		ys .	Arg	Glu	Tyr (Glu (460	Glu F	he L	ys V	al
30	Arg 165	Ile	Asn	Ala	Leu	Va]		a L	ys i	Ala		Lys] 475	Ile P	ro G	lu G	lu Gi 48	
Т	rp	Thr	Met	Gln	Asp	Gly	Th	r P	ro 1	rp :	Pro (Gly A	sn A	sn T	hr Ar	g As	p

His Pro Gly Met Ile Gln Val Phe Leu Gly His Ser Gly Gly Leu Asp

Thr Asp Gly Asn Glu Leu Pro Arg Leu Ile Tyr Val Ser Arg Glu Lys

- 160 -

Arg Pro Gly Phe Gln His His Lys Lys Ala Gly Ala Met Asn Ala Leu 530 535 540

Ile Arg Val Ser Val Val Leu Thr Asn Gly Ala Tyr Leu Leu Asn Val 5 545 550 560

10 Cys Phe Met Met Asp Pro Ala Ile Gly Lys Lys Cys Cys Tyr Val Gln 580 585 Phe Pro Gln Arg Phe Asp Gly Ile Asp Leu His Asp Arg Tyr Ala Asn 595 600 15 Arg Asn Ile Val Phe Phe Asp Ile Asn Met Lys Gly Leu Asp Gly Ile 610 615 Gln Gly Pro Val Tyr Val Gly Thr Gly Cys Cys Phe Asn Arg Gln Ala 20 625 630 635 Leu Tyr Gly Tyr Asp Pro Val Leu Thr Glu Glu Asp Leu Glu Pro Asn 650 645 25 Ile Ile Val Lys Ser Cys Cys Gly Ser Arg Lys Lys Gly Lys Ser Ser 660 665 670 Lys Lys Tyr Asn Tyr Glu Lys Arg Arg Gly Ile Asn Arg Ser Asp Ser 675 685 680 30 Asn Ala Pro Leu Phe Asn Met Glu Asp Ile Asp Glu Gly Phe Glu Gly 690 695 700 Tyr Asp Asp Glu Arg Ser Ile Leu Met Ser Gln Arg Ser Val Glu Lys 35 705 710 Arg Phe Gly Gln Ser Pro Val Phe Ile Ala Ala Thr Phe Met Glu Gln 725 730

•			
Gly Gly Tla	D		
ory the p	Pro Thr Thr	Asn Pro Ala Thr L	eu Leu Lys Glu Ala
7	740	745	
			750
Ile Hıs Val I	le Ser Cvs clus	D	r Glu Trp Gly Lys
5 755	cys Gly	tyr Glu Asp Lys Th	r Glu Trp Gly Lys
33	7	760	765
61			
Glu Ile Gly Tr	p lle Tyr Gly S	er Val Thr Glu As _j	- 71
770	775		
		780)
10 Phe Lys Mor III			
10 Phe Lys Met Hi 785	s Ala Arg Gly Tr	p Ile Ser Ile Tyr	CVS Asn Dro D
, 65	790	795	
			800
Arg Pro Ala Phe	Lys Glv Ser Al	a Pro Ile Asn Leu	
	805	a Pro Ile Asn Leu	Ser Asp Arg Leu
15	003	810	815
Asn Gln Val Leu	Arg Trp Ala Leu	Gly Ser Ile Glu	71.
820		825	lle Leu Leu Ser
		025	830
Arg His Cys Pro	71 - m -	-	
20 835	ite Trp Tyr Gly	Tyr His Gly Arg	Leu Arg Leu Leu
20 835	840		345
Glu Arg Ile Ala	Tyr Ile Asn Thr	Ile Val Tyr Pro I	
850	255	The val Tyr Pro I	le Thr Ser Ile
	855	860	
25 pm			
25 Pro Leu Ile Ala 1 865	Yr Cys Ile Leu	Pro Ala Phe Cvs 1	i Tie m
865	870	975	ed lie Thr Asp
		875	088
Arg Phe Ile Ile p	ro Clu za -		
Arg Phe Ile Ile P	to Gid lie Ser A	Asn Tyr Ala Ser Il	e Trp Phe Ile
30	85	890	895
Leu Leu Phe Ile Se	r Ile Ala Val m	hr Cluri -	
900		Gry ile Leu Gl	Leu Arg Trp
	91	05	910
Ser Cluster			
Ser Gly Val Ser Il	e Glu Asp Trp Tr	p Arg Asn Glu Gla	Dho man
915	920		Pne Trp Val
		925	
Ile Gly Gly The came			
lle Gly Gly Thr Ser 930	Ala His Leu Ph	e Ala Val Phe Gln	Gly Len ten
730	935	940	Deu

- 162 -

Lys Val Leu Ala Gly Ile Asp Thr Asn Phe Thr Val Thr Ser Lys Ala 945 950 955 960

Thr Asp Glu Asp Gly Asp Phe Ala Glu Leu Tyr Ile Phe Lys Trp Thr
5 965 970 975

Ala Leu Leu Tre

980

985

990

10 Ile val Ala Gly Val Ser Tyr Ala Val Asn Ser Gly Tyr Gln Ser Trp
995 1000 1005

Gly Pro Leu Phe Gly Lys Leu Phe Phe Ala Leu Trp Val Ile Ala His 1010 1015 1020

15

Leu Tyr Pro Phe Leu Lys Gly Leu Leu Gly Arg Gln Asn Arg Thr Pro 1025 1030 1035 1040

Thr Ile Val Ile Val Trp Ser Val Leu Leu Ala Ser Ile Phe Ser Leu 20 1045 1050 1055

Leu Trp Val Arg Ile Asn Pro Phe Val Asp Ala Asn Pro Asn Ala Asn 1060 1065 1070

25 Asn Phe Asn Gly Lys Gly Gly Val Phe 1075 1080

- 30 (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1741 base pairs
 - (B) TYPE: nucleic acid
- 35 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
- 40 (iii) HYPOTHETICAL: NO

- 163 -

(1V) ANTI-SENSE: NO

		(v)	L) O	RIGII	NAL :	SOUR	CE:											
				(A)	ORGAI	MZIN	: Or	yza s	sativ	∕a								
5																		
		(VI)		MMED:														
				(B; (LONE	: S(1542											
		(ix	c) FE	EATUF	RE:													
10				(A) N	JAME/	KEY:	CDS	3										
				(B) I	OCAI	ION:	101	17	741									
15		(Xi) SE	EQUEN	ICE I	ESCR	IPTI	ON:	SEQ	ID N	10:13	3 :						
13	GTG	CGGC	CGC	CGCG	CATO	TA G	GCTT	GCCG	ic go	ന്ദാര	'GCGG	: ATC	TGCG	AGC	TGCG	TAGCO	r.G	6
	TTT	CTCG	CTG	TGAG	TGGA	GG A	GGAG	GAGG	A AG	GGAG	GAGG	ATG	GCG	GCG	AAC	GCG		11
												Met	Ala	Ala	Asn	Ala		
20												1				5		
	666	> ****C	CTC.		CCN	TCO.	000				0.00	mmo	0.00			200		
				Ala												CGC		16
	,	,,,,,			10		3			15					20	_		
25													:					
	CCC	GAC	GGC	GAC	GCG	CCA	CCG	CCG	GCT	AAG	CCA	GGG	AAG	AGT	GTG	AAT		21
	Pro	Asp	Gly	Asp	Ala	Pro	Pro	Pro	Ala	Lys	Pro	Gly	Lys	Ser	Val	Asn		
				25					30					35				
30	CCT	CAG	GTC	TGC	כאכ	እጥጥ	TOT	ccc	GAC	እርጥ	Corr	ccc	CTC	TCC	ccc	N.C.C		25.0
,,				Cys														259
	•		40	•			- 4	45				,	50					
				TTT														307
35	Gly	Asp	Val	Phe	Val	Ala	Cys	Asn	Glu	Cys	Ala	Phe	Pro	Val	Cys	Arg		
		55					60					65						
	ር ር	<u>ፕሮ</u> ር	ጥልሮ	GAG	ጥ ውር	GDD	ር ር ሮ	מממ	ממט	CCC	አአባ	CNC	TCC	TCC	ccc	CAC		255
				Glu														355
Ю	70	-, -	- 2 -		-7-	75	3	-,0		~~7	80		-13	Cla		85		

- 164 -

TGC AAG ACT AGA TAC AAG AGG CAC AAA GGT TGC CCT AGA GTT CAG GGC 403

	Cys	Lys	Thr	Arg	Tyr	Lys	Arg	His	Lys	Gly	Cae	Pro	Arg	Val	Gln	Gly	
					90					95					100		
5	GAT	GAG	GAA	GAA	GAA	GAT	GTT	GAT	GAC	CTG	GAC	TAA	GAA	TTC	CAT	TAT	451
					- CO	-Non-	Ho.)	Ace.	Aco	Len	Asp	Asp	Cln	Phe	His	Tyr	
 				-2-0-0							- Jenes		~				
• •									GAG								499
10	Lys	Hıs		Asn	Gly	Lys	Gly		Glu	Trp	Gln	Ile		Arg	Gln	Gly	
			120					125					130				
									TCT								547
15	Glu	_	Val	Asp	Leu	Ser		Ser	Ser	Arg	HIS		Gin	His	Arg	lle	
15		135					140					145					
	ccc	ccm	CTC	200	N C T	ccc	C	CAC	ATC	TCA	CCA	CAC	N.T.C	CCT	C N T	CCT	595
									Ile								333
	150	ALG	neu	1111	361	155	GIN	Gin	116	Ser	160	GIU	176	P10	vah	165	
20	150					133					100					165	
20	TCC	CCC	GAT	CGC	СЪТ	ጥርጥ	ΔTC	CGC	AGC	GGA	ACA	ፐርኔ	AGC	тат	CTT	CAT	643
									Ser								013
	541				170	001			501	175	••••	501	001	-,-	180		
										-							
25	CCA	AGT	GTT	CCA	GTT	CCT	GTG	AGG	ATT	GTG	GAC	CCC	TCC	AAG	GAC	TTG	691
									Ile								
				185					190		-			195	•		
	AAT	TCC	TAT	GGG	ATT	AAC	AGT	GTT	GAC	TGG	CAA	GAA	AGA	GTT	GCC	AGC	739
30	Asn	Ser	Tyr	Gly	Ile	Asn	Ser	Val	Asp	Trp	Gln	Glu	Arg	Val	Ala	Ser	
			200					205					210				
	TGG	AGG	AAC	AAG	CAG	GAC	AAA	AAT	ATG	ATG	CAG	GTA	GCT	AAT	AAA	TAT	787
	Trp	Arg	Asn	Lys	Gln	Asp	Lys	Asn	Met	Met	Gln	Val	Ala	Asn	Lys	Tyr	
35		215					220					225					
	CCA	GAG	GCA	AGA	GGG	GGA	GAC	ATG	GAA	GGG	ACT	GGT	TCA	AAT	GGT	GAA	835
	Pro	Glu	Ala	Arg	Gly	Gly	Asp	Met	Glu	Gly	Thr	Gly	Ser	Asn	Gly	Glu	
	230					235					240					245	
40																	

- 165 -

	GAT	· ATC	CAA	ATG	GTT	GAT	GAT	GCA	CGT	CTA	CCT	CTC	AGC	CGC	ATA	GTG	883
	Asp	Tle	Glr	Met	Val	Asp	Asp	Ala	Arg	Leu	Pro	Leu	Ser	Arg	Ile	Val	
					250					255					260	1	
_																	
5	CCT	ATO	CCI	TCA	AAC	CAG	CTC	AAC	CTT	TAC	CGG	ATT	GTT	ATC	ATT	CTC	931
	Pro	Ile	Pro	Ser	Asn	Gln	Leu	Asn		-	Arg	Ile	Val			Leu	
				265					270					275	1		
	COM	C C C C C C C C C C C C C C C C C C C	, N.T.C	ATC	CTC	አጥር	ም ሞረ	ምም ር	ጥጥር	C	ጥለጥ	CCT	ርጥር	л CT	י ראיזי	CCN	979
10				Ile													919
	ALG	Deu	280		200	1100	2110	285		0111	- 7 -	ura	290	****			
			200					203					2,0				
	GTG	CGG	GAT	GCT	TAT	GGA	TTG	TGG	CTA	GTA	TCT	GTT	ATC	TGT	GAA	ATT	1027
	Val	Arg	Asp	Ala	Tyr	G1y	Leu	Trp	Leu	Val	Ser	Val	Ile	Cys	Glu	Ile	
15		295					300					305					
	TGG	TTG	ccc	ATT	TCC	TGG	CTC	CTA	GAT	CAA	TTC	CCA	AAG	TGG	TAC	CCG	1075
	Trp	Leu	Pro	Leu	Ser	Trp	Leu	Leu	Asp	Gln	Phe	Pro	Lys	Trp	Tyr	Pro	
	310					315					320					325	
20																	
				GAA													1123
	Ile	Asn	Arg	Glu		Tyr	Leu	Asp	Arg		Ala	Leu	Arg	Tyr	-	Arg	
					330					335					340		
25	a.a.	aa k	a.c	223	max	G3.G	omm.	0.0m	000	» mm		ama.	mmm	omo		100	
23				CCA Pro													1171
	010	Gry	GIU	345	361	GIII	Leu	NIG	350	116	nap	V 4 1	rne	355	261	INL	
				343					330					,,,			
	GTG	GAT	CCA	CTA	AAG	GAA	CCT	CCT	CTG	ATC	ACA	GCA	AAC	ACT	GTT	TTG	1219
30	Val	Asp	Pro	Leu	Lys	Glu	Pro	Pro	Leu	Ile	Thr	Ala	Asn	Thr	Val	Leu	
			360					365					370				
	TCC	ATT	CTG	GCT	GTG	GAT	TAC	CCT	GTT	GAC	AAA	GTG	TCA	TGC	TAT	GTT	1267
	Ser	Ile	Leu	Ala	Val	Asp	Tyr	Pro	Val	Asp	rya	Val	Ser	Сув	Tyr	Val	
35		375					380					385					
	TCT	GAC	GAT	GGT	TCA	GCT	ATG	TTA	ACT	TTT	GAG	GCT	CTG	TCA	GAA	ACT	1315
		Asp	Asp	Gly	Ser		Met	Leu	Thr	Phe	Glu	Ala	Leu	Ser	Glu	Thr	
40	390					395					400					405	
40																	

- 166 -

															AAT Asn 420		1363
5	GAA	CCA	CGA	GCT	CCA	GAG	49.0		100	100	635		54.1		TAC		1411
				125													
	AAG	GAC	AAA	ATC	CAA	ССТ	TCC	TTT	GTT	AAA	GAA	AGG	CGG	GCA	ATG	AAG	1459
10	Lys	Asp	Lys	Ile	Gln	Pro	Ser	Phe	Val	Lys	Glu	Arg	Arg	Ala	Met	Lys	
			440					445					450				
	AGA	GAG	TAT	GAA	GAA	TTC	AAG	GTA	CGG	ATC	AAT	GCT	СТТ	GTT	GCG	AAG	1507
	Arg	Glu	Tyr	Glu	Glu	Phe	Lys	Val	Arg	Ile	Asn	Ala	Leu	Val	Ala	Lys	
15		455					460					465					
															ACT		1555
		Gln	Lys	Val	Pro		Glu	Gly	Trp	Thr		Ala	Asp	Gly	Thr		
20	470					475					480					485	
	TGG	ССТ	GGG	AAT	AAC	CCA	AGG	GAT	CAC	CCT	GGC	ATG	TTA	CAG	GTG	TTC	1603
															Val		
					490					495					500		
25	TTG	GGG	CAC	AGT	GGT	GGG	CTT	GAC	ACT	GAT	GGT	AAC	GAG	TTG	CCA	CGG	1651
	Leu	Gly	His		Gly	Gly	Leu	Asp		Asp	Gly	Asn	Glu		Pro	Arg	
				505					510					515			
	СТТ	GTC	TAC	GTC	тст	CGT	GAA	AAG	AGG	CCA	GGA	TTC	CAG	CAT	CAC	AAG	1699
30															His		
			520			•		525			-		530			•	
	AAG	GCT	GGT	GCA	ATG	AAT	GCA	TTG	ATT	CGT	GTA	TCT	GCT	GTG			1741
	Lys	Ala	Gly	Ala	Met	Asn	Ala	Leu	Ile	Arg	Val	Ser	Ala	Val			
35		535					540					545					

- 167 -

	(2)	INF	URMA	HON	FUR	250	יענ	NO: 1	4:							
			(i)	SEQU:	ENCE	СНА	RACT	ERIS	TICS	:						
				(A) LEI	NGTH	: 54	7 am	ino	acid.	S					
5				(B	TY	PE:	amin	o ac	id							
				{D) то	POLO	GY:	line	ar							
		(11)	MOLE	CULE	TYP	E: p	rote	in							
0		,	es l	e e O ()	ENCE	೧೯೮	~p t p	TION	. 65/	מז ר	NO ·	14.				
		ν.	~ 1, ,	3EQU.	unce	DL 3	C4(11	11011		2 10		• •				
	Met	Ala	Ala	Asn	Ala	Gly	Met	Val	Ala	Gly	Ser	Arg	Asn	Arg	Asn	Glu
	1				5					10					15	
15	Phe	Val	Met	Ile	Arg	Pro	Asp	Gly	Asp	Ala	Pro	Pro	Pro	Ala	Lys	Pro
				20					25					30		
	Gly	Lys	Ser	Val	Asn	Gly	Gln	Val	Cys	Gln	Ile	Cys	Gly	Asp	Thr	Val
			35					40					45			
20																
	Gly	Val	Ser	Ala	Thr	Gly	Asp	Val	Phe	Val	Ala	Cys	Asn	Glu	Cys	Ala
		50					55					60				
	Phe	Pro	Val	Cys	Arg	Pro	Cys	Tyr	Glu	Tyr	Glu	Arg	Lys	Glu	Gly	Asn
25	65					70					75					80
	Gln	Cys	Cys	Pro	Gln	Cys	Lys	Thr	Arg	Tyr	Lys	Arg	His	Lys	Gly	Cys
					85					90					95	
30	Pro	Arg	Val	Gln	Gly	Asp	Glu	Glu	Glu	Glu	Asp	Val	Asp	Asp	Leu	Asp
				100					105					110		
	Asn	Glu	Phe	His	Tyr	Lys	His	Gly	Asn	Gly	Lys	Gly	Pro	Glu	Trp	Gln
			115					120					125			
35																
	Ile	Gln	Arg	Gln	Gly	Glu	Asp	Val	Asp	Leu	Ser	Ser	Ser	Ser	Arg	His
		130					135					140				
	Glu	Gln	His	Arg	Ile	Pro	Arg	Leu	Thr	Ser	Gly	Gln	Gln	Ile	Ser	Gly
Ю	145					150					155					160

- 168 -

Glu Ile Pro Asp Ala Ser Pro Asp Arg His Ser Ile Arg Ser Gly Thr 165 170 175

Ser Ser Tyr Val Asp Pro Ser Val Pro Val Pro Val Arg Ile Val Asp
5 180 185 190

10 Glu Arg Val Ala Ser Trp Arg Asn Lys Gln Asp Lys Asn Met Met Gln Val Ala Asn Lys Tyr Pro Glu Ala Arg Gly Gly Asp Met Glu Gly Thr Gly Ser Asn Gly Glu Asp Ile Gln Met Val Asp Asp Ala Arg Leu Pro Leu Ser Arg Ile Val Pro Ile Pro Ser Asn Gln Leu Asn Leu Tyr Arg Ile Val Ile Ile Leu Arg Leu Ile Ile Leu Met Phe Phe Phe Gln Tyr 25 Arg Val Thr His Pro Val Arg Asp Ala Tyr Gly Leu Trp Leu Val Ser Val Ile Cys Glu Ile Trp Leu Pro Leu Ser Trp Leu Leu Asp Gln Phe Pro Lys Trp Tyr Pro Ile Asn Arg Glu Thr Tyr Leu Asp Arg Leu Ala Leu Arg Tyr Asp Arg Glu Gly Glu Pro Ser Gln Leu Ala Pro Ile Asp Val Phe Val Ser Thr Val Asp Pro Leu Lys Glu Pro Pro Leu Ile Thr

	А		Asn 170	Thi	c Va	l Le	eu Se		le 75	Leu	Al	a Va	al As		yr P 30	ro 1	Val	Asp	Lys
		al S	er	Cys	Ту	r Va	1 Se		sp /	Asp	Gl	y Se	r Al		et L	eu T	Thr	Phe	Glu 400
1		a L	eu S	Ser	Glu	1 Th		a Gi	lu F	he	Ala	41	g Ly	s Tr	p Va	al P		Phe 415	Cys
	Lу	s Ly	/s H	lis	Asn 420	rl	e Gl	u Pr	:о А	rg	Ala 425	Pro	o Gl	ı Ph	е Ту		he .	Ala	Gln
15	Ly 5	s I]		sp 35	Tyr	Let	ı Lys	a As		ys 40	Ile	Gln) Pro	Se:	e Ph		al 1	Lys (Glu
	Arg	g Ar 45		la	Met	Lys	Arg	G1:		yr (Glu	Glu	Phe	Lys 460		l Ar	g I	le /	Asn
20	Ala 465	Le	u Va	al .	Ala	Lys	Ala 470	Glr	ı Ly	's V	/al	Pro	Glu 475	Glu	Gly	Tr	рТ		let 80
25	Ala	Ası	G1	уΊ		Ala 485	Trp	Pro	Gl	уА		Asn 490	Pro	Arg	Asp	His		ro G 95	ly
	Met	Ile	: G1		/al	Phe	Leu	Gly	Hi		er (Gly	Gly	Leu	Asp	Thr		sp G∶	ly
30	Asn	Glu	Le:		ro 1	Arg	Leu	Val	Ту: 520		al S	Ser.	Arg	Glu	Lys 525	Arg	Pr	o G1	ly
	Phe	Gln 530	His	з Н	is I	ys		Ala 535	Gly	/ Al	a M	let i	Asn ;	Ala 540	Leu	Ile	Ar	g Va	.1

35 Ser Ala Val

CLAIMS:

- 1. An isolated nucleic acid molecule which encodes a polypeptide of the cellulose biosynthetic pathway or a homologue, analogue or derivative thereof or a complementary sequence thereto, wherein said polypeptide is capable of producing cellulose and/or β -1,4-
- 2. The isolated nucleic acid molecule according to claim 1 wherein the polypeptide is cellulose synthase or a catalytic subunit thereof.
- 10 3. The isolated nucleic acid molecule according to claim 1 or 2, derived from a prokaryote.
- 4. The isolated nucleic acid molecule according to claim 3, wherein the prokaryote is a bacterium other than Agrobacterium tumefaciens. Acetobacter pasteurianus or Acetobacter 15 xylinum.
 - 5. The isolated nucleic acid molecule according to claim 1 or 2, derived from a eukaryote.
- 20 6. The isolated nucleic acid molecule according to claim 5, wherein the eukaryote is a plant or fungus.
 - 7. The isolated nucleic acid molecule according to claim 6, wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa
- 25 (rice), wheat, barley, maize, Brassica ssp., Eucalyptus ssp., hemp, jute, flax, Pinus ssp., Populus ssp., and Picea spp., amongst others.
 - 8. The isolated nucleic acid molecule according to claim 2 wherein the cellulose synthase or catalytic subunit thereof is the *Arabidopsis thaliana* RSW1 polypeptide.

- 171 -

9. The isolated nucleic acid molecule according to any one of claims 1 to 8, comprising a sequence of nucleotides which is at least 40% identical to any one of SEQ ID NOs:1, 3, 4. 5. 7. 9. 11 or 13 or a complementary sequence thereof.

PCT/AU97/00402

5

WO 98/00549

- 10. The isolated nucleic acid molecule according to claim 9, wherein the percentage identity to any one of SEQ ID NOs:1, 3, 4, 5, 7, 9, 11 or 13 or a complementary sequence thereof is at least 60%.
- 10 11. The isolated nucleic acid molecule according to claim 9, wherein the percentage identity to any one of SEQ ID NOs:1, 3, 4, 5, 7, 9, 11 or 13 or a complementary sequence thereof is at least 80%.
- 12. An isolated nucleic acid molecule which comprises a sequence of nucleotides 15 substantially as set forth in any one of SEQ ID NOs:3, 4, 5, 7, 9 or 11 or a homologue, analogue or derivative thereof or a complementary sequence thereto.
- 13. The isolated nucleic acid molecule according to any one of claims 1 to 12, wherein said nucleic acid molecule hybridizes under at least low stringency conditions to at least 20 20 contiguous nucleotides of any one of SEQ ID NOs:1, 3, 4, 5, 7, 9, 11 or 13 or a complementary sequence thereto.
- 14. An isolated nucleic acid molecule which encodes a polypeptide which is capable of cellulose and/or β -1,4- glucan biosynthesis in a plant cell, fungal cell, insect cell, animal cell, 25 yeast cell or bacterial cell when expressed therein.
 - 15. The isolated nucleic acid molecule according to claim 14, wherein the polypeptide is cellulose synthase or a catalytic subunit thereof.
- 30 16. The isolated nucleic acid molecule according to claim 14 or 15, derived from a

prokaryote

- 17. The isolated nucleic acid molecule according to claim 16, wherein the prokaryote is a bacterium other than Agrobacterium tumefaciens, Acetobacter pasteurianus or Acetobacter
- 18. The isolated nucleic acid molecule according to claim 14 or 15, derived from a eukaryote.
- 10 19. The isolated nucleic acid molecule according to claim 18, wherein the eukaryote is a plant or fungus.
- 20. The isolated nucleic acid molecule according to claim 19, wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), wheat, barley, maize, Brassica ssp., Eucalyptus ssp., hemp, jute, flax, Pinus ssp., Populus ssp., and Picea spp., amongst others.
 - 21. The isolated nucleic acid molecule according to claim 20, wherein the cellulose synthase or catalytic subunit thereof is the *Arabidopsis thaliana* RSW1 polypeptide.
 - The isolated nucleic acid molecule according to any one of claims 14 to 21, comprising a sequence of nucleotides which is at least 40% identical to any one of SEQ ID NOs:1, 3, 4, 5, 7, 9, 11 or 13 or a complementary sequence thereto.
- 25 23. The isolated nucleic acid molecule according to claim 22, wherein the percentage identity to any one of SEQ ID NOs:1, 3, 4, 5, 7, 9, 11 or 13 or a complementary sequence thereof is at least 60%.
- 24. The isolated nucleic acid molecule according to claim 22, wherein the percentage 30 identity to any one of SEQ ID NOs:1, 3, 4, 5, 7, 9, 11 or 13 or a complementary sequence

- 173 -

thereof is at least 80%.

- 25. The isolated nucleic acid molecule according to claim 22, comprising the sequence of nucleotides substantially as set forth in any one of SEQ ID NOs:3, 4, 5, 7, 9 or 11 or a 5 homologue, analogue or derivative thereof or a complementary sequence thereto.
- 26. An isolated nucleic acid molecule which encodes or is complementary to a nucleic acid molecule which encodes a polypeptide capable of cellulose and/or β-1,4-glucan biosynthesis wherein said polypeptide comprises a sequence of amino acids which is at least 10 40% identical to any one of SEQ ID Nos:2, 6, 8, 10, 12 or 14.
 - 27. The isolated nucleic acid molecule according to claim 26, wherein the percentage identity to any one of SEQ ID Nos:2, 6, 8, 10, 12 or 14 is at least 60%.
- 15 28. The isolated nucleic acid molecule according to claim 27, wherein the percentage identity to any one of SEQ ID Nos:2, 6, 8, 10, 12 or 14 is at least 80%.
- 29. The isolated nucleic acid molecule according to claim 26, wherein the polypeptide comprises a sequence of amino acids substantially as set forth in any one of SEQ ID Nos:2, 20 6, 8, 10, 12 or 14.
 - 30. A genetic construct which comprises the isolated nucleic acid molecule according to any one of claims 1 to 29.
- 25 31. A genetic construct which comprises the isolated nucleic acid molecule according to any one of claims 1 to 29 operably connected to a promoter sequence.
- 32. The genetic construct according to claim 31, wherein the nucleic acid molecule is operably connected to the promoter sequence in the sense orientation such that RNA which 30 encodes a polypeptide capable of cellulose and/or β-1,4-glucan biosynthesis or a homologue.

- 174 -

analogue or derivative thereof is produced when said nucleic acid molecule is expressed.

- 33. The genetic construct according to claim 31, wherein the nucleic acid molecule is operably connected to the promoter sequence in the antisense orientation such that RNA
- 1,4-glucan biosynthesis or a homologue, analogue or derivative thereof, is produced when said nucleic acid molecule is expressed.
- 34. The genetic construct according to claim 33, wherein the nucleic acid molecule 10 encodes an antisense or ribozyme molecule.
 - 35. The genetic construct according to any one of claims 31 to 34, wherein the promoter is the CaMV 35S promoter.
- 15 36. The genetic construct according to any one of claims 31 to 34, wherein the promoter is the *Arabidopsis thaliana RSW*1 gene promoter.
- 37. A method of increasing the level of cellulose in a cell, tissue, organ or organism, said method comprising expressing the isolated nucleic acid molecule according to any one of 20 claims 1 to 29 therein, in the sense orientation, for a time and under conditions at least sufficient to produce or increase expression of the polypeptide encoded therefor.
 - 38. The method according to claim 37, comprising the additional first step of transforming the cell, tissue, organ or organism with the isolated nucleic acid molecule.
 - 39. The method according to claim 38, wherein the cell is a prokaryotic cell.
 - 40. The method according to claim 38, wherein the cell, tissue, organ or organism is a eukaryotic cell, tissue, organ or organism.

- 175 -

- The method according to claim 40, wherein the cell, tissue, organ or organism is a plant, fungal, insect, animal or yeast cell, tissue, organ or organism.
- 42. The method according to claim 41, wherein the cell, tissue, organ or organism is a 5 plant cell, tissue, organ or organism.
- 43. The method according to claim 42 wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants 10 such as Pinus ssp., Populus ssp., Picea spp., amongst others.
- 44. A method of reducing the level of non-crystalline β-1,4-glucan in a cell, tissue, organ or organism, said method comprising expressing the isolated nucleic acid molecule according to any one of claims 1 to 29 therein, in the sense orientation, for a time and under conditions
 15 at least sufficient to produce or increase expression of the polypeptide encoded therefor.
 - 45. The method according to claim 44, comprising the additional first step of transforming the cell, tissue, organ or organism with the isolated nucleic acid molecule.
 - 46. The method according to claim 44, wherein the cell is a prokaryotic cell.

20

- 47. The method according to claim 44, wherein the cell, tissue, organ or organism is a eukaryotic cell, tissue, organ or organism.
- 48. The method according to claim 47, wherein the cell, tissue, organ or organism is a plant, fungal, insect, animal or yeast cell, tissue, organ or organism.
- 49. The method according to claim 48, wherein the cell, tissue, organ or organism is a 30 plant cell, tissue, organ or organism.

- 50. The method according to claim 50 wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants such as Pinus ssp., Populus ssp., Picea spp., amongst others.
- A method of reducing the level of starch in a cell, tissue, organ or organism, said method comprising expressing the isolated nucleic acid molecule according to any one of claims 1 to 29 therein, in the sense orientation, for a time and under conditions at least sufficient to produce or increase expression of the polypeptide encoded therefor.

10

- 52. The method according to claim 50, comprising the additional first step of transforming the cell, tissue, organ or organism with the isolated nucleic acid molecule.
- 53. The method according to claim 51, wherein the cell is a prokaryotic cell.

- 54. The method according to claim 53, wherein the cell, tissue, organ or organism is a eukaryotic cell, tissue, organ or organism.
- 55. The method according to claim 54, wherein the eukaryote is a plant, fungus, insect, 20 animal or yeast.
 - 56. The method according to claim 55, wherein the eukaryote is a plant.
- 57. The method according to claim 56 wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants such as Pinus ssp., Populus ssp., Picea spp., amongst others.
- 58. A method of reducing the level of cellulose in a cell, tissue, organ or organism, said method comprising expressing the isolated nucleic acid molecule according to any one of

- 177 -

claims 1 to 29 therein, in the antisense orientation, for a time and under conditions at least sufficient to prevent or reduce the expression of the polypeptide encoded therefor.

- 59. The method according to claim 58, comprising the additional first step of 5 transforming the cell, tissue, organ or organism with the isolated nucleic acid molecule.
 - 60. The method according to claims 58 or 59, wherein the cell, tissue, organ or organism is a eukaryotic cell, tissue, organ or organism.
- 10 61. The method according to claim 60, wherein the eukaryote is a plant, fungus, insect, animal or yeast.
 - 62. The method according to claim 61, wherein the eukaryote is a plant.
- 15 63. The method according to claim 62 wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton). Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants such as Pinus ssp., Populus ssp., Picea spp., amongst others.
- 20 64. A method of increasing the level of non-crystalline β-1,4-glucan in a cell, tissue, organ or organism, said method comprising expressing the isolated nucleic acid molecule according to any one of claims 1 to 29 therein, in the antisense orientation, for a time and under conditions at least sufficient to prevent or reduce the expression of the polypeptide encoded therefor.

- 65. The method according to claim 64, comprising the additional first step of transforming the cell, tissue, organ or organism with the isolated nucleic acid molecule.
- 66. The method according to claims 64 or 65, wherein the cell, tissue, organ or organism 30 is a eukaryotic cell, tissue, organ or organism.

- 67. The method according to claim 66, wherein the eukaryote is a plant, fungus, insect, animal or yeast.
- 68. The method according to claim 67, wherein the eukaryote is a plant.
- 69. The method according to claim 68 wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants such as Pinus ssp., Populus ssp., Picea spp., amongst others.

10

A method of increasing the level of starch in a cell, tissue, organ or organism, said method comprising expressing the isolated nucleic acid molecule according to any one of claims 1 to 29 therein, in the antisense orientation, for a time and under conditions at least sufficient to prevent or reduce the expression of the polypeptide encoded therefor.

- 71. The method according to claim 70, comprising the additional first step of transforming the cell, tissue, organ or organism with the isolated nucleic acid molecule.
- 72. The method according to claims 70 or 71, wherein the cell, tissue, organ or organism 20 is a eukaryotic cell, tissue, organ or organism.
 - 73. The method according to claim 72, wherein the eukaryote is a plant, fungus, insect, animal or yeast.
- 25 74. The method according to claim 73, wherein the eukaryote is a plant.
- 75. The method according to claim 74 wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants 30 such as Pinus ssp., Populus ssp., Picea spp., amongst others.

WO 98/00549 PCT/AU97/00402

- 179 -

- 76. A method of producing a recombinant enzymatically active polypeptide which is capable of synthesizing cellulose and/or β-1,4-glucan and/or an intermediate between cellulose and β-1,4-glucan in a cell, said method comprising expressing the isolated nucleic acid molecule according to any one of claims 1 to 29 or a homologue, analogue or derivative thereof in said cell for a time and under conditions sufficient for the polypeptide encoded therefor to be produced.
- 77. The method according to claim 76, comprising the additional first step of transforming the cell with the isolated nucleic acid molecule according to any one of claims 10 1 to 29 or the genetic construct according to any one of claims 11 to 15.
 - 78. A recombinant polypeptide produced according to the method defined by claim 76 or 77.
- 15 79. The recombinant cellulose biosynthetic polypeptide according to claim 78, further defined as a recombinant cellulose synthase or catalytically active subunit thereof.
- 80. A recombinant cellulose biosynthetic polypeptide capable of cellulose and/or β-1,4-glucan production and comprising a sequence of amino acids set forth in any one of SEQ ID
 20 Nos: 2, 6, 8, 10, 12 or 14 or a homologue, analogue or derivative thereof which is at least 40% identical thereto.
 - The recombinant cellulose biosynthetic polypeptide according to claim 80, wherein the percentage identity to any one of SEQ ID Nos: 2, 6, 8, 10, 12 or 14 is at least 60%.
 - 82. The recombinant cellulose biosynthetic polypeptide according to claim 81, wherein the percentage identity to any one of SEQ ID Nos: 2, 6, 8, 10, 12 or 14 is at least 80%.

25

83. The recombinant cellulose biosynthetic polypeptide according to claim 82, comprising 30 a sequence of amino acids substantially as set forth in any one of SEQ ID Nos: 2, 6, 8, 10,

12 or 14.

10

20

25

84. A method of altering the mechanical properties of a cell wall, said method comprising expressing the isolated nucleic acid molecule according to any one of claims 1 to 29 in the

non-crystalline β-1,4-glucan to increase in said cell.

85. The method according to claim 84 wherein the non-crystalline β -1,4-glucan is cross-linked to cellulose microfibrils.

86. The method according to claim 84 or 85 wherein the cell wall normally has a high ratio of cellulose to hemicelluloses.

- 87. The method according to any one of claims 84 to 86, wherein the nucleic acid molecule expressed in the antisense orientation is contained within an antisense molecule or ribozyme molecule.
 - 88. The method according to any one of claims 84 to 87, wherein the cell wall is a plant cell wall.
 - 89. The method according to claim 88, wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants such as Pinus ssp., Populus ssp., Picea spp., amongst others.
 - 90. An antibody molecule which binds to the recombinant polypeptide according to any one of claims 78 to 83 or a homologue, analogue or derivative thereof.
- 91. A transgenic plant transformed with the isolated nucleic acid molecule according to 30 any one of claims 1 to 29 or a genetic construct according to any one of claims 30 to 36.

WO 98/00549 PCT/AU97/00402

- 181 -

The transgenic plant according to claim 91, wherein said plant is selected from the list comprising Arabidopsis thaliana. Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants such as Pinus ssp., Populus ssp., Picea spp., amongst others.

5

- 93. Use of an isolated nucleic acid molecule according to any one of claims 1 to 29 to modify the cellulose content of a cell.
- 94. Use according to claim 93, wherein if the nucleic acid molecule according to any one 10 of claims 1 to 29 is expressed in the sense orientation in said cell, the level of cellulose therein is increased.
- 95. Use according to claim 93, wherein if the nucleic acid molecule according to any one of claims 1 to 29 is expressed in the antisense orientation in said cell, the level of cellulose 15 therein is decreased.
 - 96. Use according to claim 95, wherein said cell is further characterised by increased non-crystalline β -1,4-glucan content and/or starch content.
- 20 97. Use according to claim 95 or 96, wherein said cell is further characterised by increased cross-linking of non-crystalline β-1,4-glucan to cellulose.
 - 98. Use according to any one of claims 93 to 97, wherein the cell is a plant cell.
- 25 99. Use according to claim 98 wherein the plant is selected from the list comprising Arabidopsis thaliana, Gossypium hirsutum (cotton), Oryza sativa (rice), Eucalyptus ssp., Brassica ssp., wheat, barley, maize, hemp, jute, flax, and woody plants such as Pinus ssp., Populus ssp., Picea spp., amongst others.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Figure 3

Figure 4

Figure 5

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Figure 8

\sim	+	T
١.	ont	- 1

Cont II

Cont II

Cont IV

Cont V

Cont VI

Cont VII

Cont VIII

Cont IX

Cont X

		10	20	30	40	50	09
SW1	MEASAGI MNTGGRI	LVAGSYRRNEL LIAGSHNRNEF	MEASAGLVAGSYRRNELVRIRHESDGGTKPLKNMNGQICQICGDDVGLAETGDVFVAC MNTGGRLIAGSHNRNEFVLINADESARIRSVQELSGQTCQICGDEIELTVSSELFVAC	. TKPLKNMN . IRSVQELS	GQICQICGDD' GQTCQICGDE	VGLAETGDVFV. IELTVSSELFV.	4C
30542	MAANAGN	AVAGSRNRNEF	MAANAGMVAGSRNRNEFVMIRPDGDAPPPAKPGKSVNGQVCQICGDTVGVSATGDVFVAC	PAKPGKSVN	GQVCQICGDT	VGVSATGDVFV	4C
Ath-B			MESEGET	AGKPMKNIV	PQTCQICSDN	MESEGETAGKPMKNIVPQTCQICSDNVGKTVDGDRFVAC	AC.
elAl				MMESG	VPVCHTCGEH	MMESGVPVCHTCGEHVGLNVNGEPFVAC	4C
elA2							
048636							
		70	80	06	100	110 1	120
SWI	NECAFPVCRPCYI	VCRPCYEYERK	EYERKDGTQCCPQCKTRFRRHRGSPRVEGDEDEDDVDDIENEFNYAQG	RFRRHRGSF	RVEGDEDEDD	VDDIENEFNYA	5Č
Ath-A	NECAFPI	VCRPCYEYERF	NECAFPVCRPCYEYERREGNQACPQCKTRYKRIKGSPRVDGDDEEEEDIDDLEYEFDHGM	RYKRIKGSF	RVDGDDEEEE	DIDDLEYEFDH	SM GM
30542	NECAFP	VCRPCYEYER	NECAFPVCRPCYEYERKEGNQCCPQCKTRYKRHKGCPRVQGDEEEEDVDDLDNEFHYKHG	RYKRHKGCF	RVQGDEEEED	VDDLDNEFHYK	HG
Ath-B	DICSFP	VCRPCYEYER	DICSFPVCRPCYEYERKDGNQSCPQCKTRYKRLKGSPAIPGDKDEDGLADEGTVEFNYPQ	RYKRLKGSF	AIPGDKDEDG	LADEGTVEFNY	PQ
celal	HECNFPICKSCF	ICKSCFEYDLE	EYDLKEGRKACLRCGSPYDENLLDDVEKATGDQSTMAAHLNKSQDVGI	PYDENLLDE	VEKATGDQST	MAAHLNKSQDV	GI
celA2							
048636							

FIGURE 9 (CONT I)

RSW1 Ath-A S0542 Ath-B Cel-A1 Cel-A2 D48636	ANKARHQRHGEEFSSSSRHESQPIPLLTHGHTVSGE DPEHAAEAALSSRLNTGRGGLDSAPPGSQIPLLTYCDEDADMYSDRHA NGKGPEWQIQRQGEDVDLSSSSRHEQHRIPRLTSGQQISGE K.EKISERMLGWHLTRGKGEEMGEPQYDKEVSHNHLPRLTSRQDTSGE	140 150 160 170 160 17 . RHQRHGEEFSSSRHESQPIPLLTHGHTVSGE NTGRGGLDSAPPGSQIPLLTYCDEDADMYSDRHA . QRQGEDVDLSSSRHEQHRIPRLTSGQQISGE FRGKGEEMGEPQYDKEVSHNHLPRLTSRQDTSGE	160 PLLTHGHTV DEDADMYSD PRLTSGQQI	SGE SGE SGE	180 TPDTQSVRTT VPPSTGYGNR DASPDRHSIR AASPERLSVS
RSW1 Ath-A S0542 Ath-B Cel-A1 Cel-A2 D48636	SGPLGPSDRNAISSPYIDPRQPVPVRIVDPSKDLNSYGLGNVDWKERVVYPAPFTDSSAPPQARSMVPQKDIAEYGYGSVAWKDRNSGTSSYVDPSVPVRIVDPSKDLNSYGINSVDWQERVSTIAGGKRLPYSSDVNQSPNRRIVDPVGLGNVAWKERVSTHARHISSVSTLDSEMAEDNGNSIWKNRV	210 RIVDPSKDLNS RRSMVPQKDIAI RRIVDPSKDLNS NQSPNRRIVDI	220 NSYGLGNVDWKERV AEYGYGSVAWKDRN NSYGINSVDWQERV DPVGLGNVAWKERV MAEDNGNSIWKNRV	ERV DRN ERV INRV	240 SWKLKQEKNML WKRRQGEKLQ SWRNKQDKNMM SWKMKQEKNTG SWKEKKNKKK
FIGURE	9 (CONT II)				

	250 2	260	270	280	290	300
RSW1	QMTGKYHEGKGGEIEGTGSNGEELQMADDTRLPMSRVVPIPSSRLTPYRVVIIL	EIEGTGSN	GEELQMADD7	TRLPMSRVVP	IPSSRLTPYRV	/IIL
Ath-A	VIKHEGGNNGRG	SNDDDDELD	DPDMPMMDE	SRQPLSRKLP	EGGNNGRGSNDDDELDDPDMPMMDEGRQPLSRKLPIRSSRINPYRMLILC	ILC
S0542	QVANKYPEARGGDMEGTGSNGEDIQMVDDARLPLSRIVPIPSNQLNLYRIVIIL	DMEGTGSN	GEDIQMVDDA	ARLPLSRIVP	IPSNQLNLYRI	/IIL
Ath-B	PVSTQAASERGGVDIDASTDILADEALLNDEARQLLSRKVSIPSSRINPYRMVIML	IDASTDIL	ADEALLNDE?	ARQLLSRKVS	IPSSRINPYRM	/IML
Cel-Al	PATTKVEF	EAEIPPEQ	QMEDKPAPD/	ASQPLSTIP	TKVEREAEIPPEQQMEDKPAPDASQPLSTIIPIPKSRLAPYRTVIIM	/IIM
Cel-A2						
D48636	PMTNGTSIAPSEGRGVGI	IDASTDYN	MEDALLNDE	TRQPLSRKVP	SEGRGVGDIDASTDYNMEDALLNDETRQPLSRKVPLPSSRINPYRMVIVL	/IVL
	310	320	330	340	350	360
RSW1	RLIILCFFLQYRTHPVF	CNAYPLWLT	SVICEIWFA	FSWLLDQFPK	YRTTHPVKNAYPLWLTSVICEIWFAFSWLLDQFPKWYPINRETYLDRLAI	RLAI
Ath-A	RLAILGLFFHYRILHPV	IDAYGLWLT	SVICEIWFA	VSWILDQFPK	YRILHPVNDAYGLWLTSVICEIWFAVSWILDQFPKWYPIERETYLDRLSL	RLSL
S0542	RLI ILMFFFQYRVTHPVI	NDAYGLWLV	SVICEIWLP	LSWLLDQFPK	YRVTHPVRDAYGLWLVSVICEIWLPLSWLLDQFPKWYPINRETYLDRLAL	RLAL
Ath-B	RLVILCLFLHYRITNPV	PNAFALWLV	SVICEIWFA	LSWILDQFPK	YRITNPVPNAFALWLVSVICEIWFALSWILDQFPKWFPVNRETYLDRLAL	RLAL
Cel-Al	RLIILGLFFHYRVTNPVDSAFGLWLTSVICEIWFAFSWVLDQFPKWYPVNRETYIDRLSA	SAFGLWLT	SVICEIWFA	FSWVLDQFPK	WYPVNRETYID	RLSA
Ce1-A2						
D48636	RLVVLSIFLHYRITNPV	RNAYPLWLL	SVICEIWFA	LSWILDQFPK	IYRITNPVRNAYPLWLLSVICEIWFALSWILDQFPKWFPINRETYLDRLAL	RLAL

FIGURE 9 (CONT III)

	370	380	390	400	420
RSW1	RYDRDGEPSQLVPVDVFVSTVDPLKEPPLVTANTVLSILSVDYPVDKV	DVFVSTVDPLKE	PPLVTANTVL	SILSVDYPVDK	VYSDDGSAML
Ath-A	RYEKEGKPSGLAPVDVFVSTVDPLKEPPLITANTVLSILAVDYPVDKV	DVFVSTVDPLKE	PPLITANTVL	SILAVDYPVDK	VYSDDGAAML
S0542	RYDREGEPSQLAPIDVFVSTVDPLKEPPLITANTVLSILAVDYPVDKV	DVFVSTVDPLKE	PPLITANTVL	SILAVDYPVDK	VYSDDGSAML
Ath-B	RLVILCLFLHYRITNPVPNAFALWLVSVICEIWFALSWILDQFPKWFP	NPVPNAFALWLV	SVICEIWFAL	SWILDQFPKWF	PRETYLDRLAL
Cel-Al	RYEREGEPDELAAVDFFVSTVDPLKEPPLITANTVLSILALDYPVDKV	DFFVSTVDPLKE	PPLITANTVL	SILALDYPVDK	VISDDGAAML
Cel-A2					
D48636	RYDREGEPSQLAAVDIFVSTVDPMKEPPLVTANTVLSILAVDYPVDKV	DIFVSTVDPMKE	PPLVTANTVL	SILAVDYPVDK	VYSDDGAAML
	430	440	450	460	480
RSW1	TFESLSETAEFAKKWVPFCKKFNIEPRAPEFYFAQKIDYLKDKIQPSF	WVPFCKKFNIE	RAPEFYFAQK	CIDYLKDKIQPS	FERRAMKREYE
Ath-A	TFEALSDTAEFARK	EFARKWVPFCKKFNIEPRAPEWYFSQKMDYLKNKVHPAF	RAPEWYFSQK	MDYLKNKVHPA	FERRAMKRDYE
S0542	TFEALSETAEFARK	EFARKWVPFCKKHNIEPRAPEFYFAQKIDYLKDKIQPSF	PRAPEFYFAQK	CIDYLKDKIQPS	FERRAMKREYE
Ath-B	SFESLAETSEFARK	EFARKWVPFCKKYSIEPRAPEWYFAAKIDYLKDKVQTSF	PRAPEWYFAAK	CIDYLKDKVQTS	FURRAMKREYE
Cel-A1	TFESLVETADFARK	DFARKWVPFCKKFSIEPRAPEFYFSQKIDYLKDKVQPSF	PRAPEFYFSQK	CIDYLKDKVQPS	FERRAMKRDYE
Cel-A2	RR	RRWVPFCKKHNVEPRAPEFYFNEKIDYLKDKVHPSF	PRAPEFYFNER	CIDYLKDKVHPS	FERRAMKREYE
D48636	TFDALAETSEFARK	EFARKWVPFVKKYNIEPRAPEWYFSQKIDYLKDKVHPSF	PRAPEWYFSQF	CIDYLKDKVHPS	ECDRRAMKREYE

FIGURE 9 (CONT IV)

540 LVYVSREKRPGYQHHKKAGAENALVRVSAVLTNAPFILNLDCDHYVNNSKAVREAMCFLM LVYVSREKRPGYQHHKKAGAENALVRVSAVLTNAPFILNLDCDHYINNSKAMREAMCFLM LVYVSREKRPGFQHHKKAGAMNALVRVSAVLTNGQYMLNLDCDHY INNSKALREAMCFLM EFKVRINGLVAKAQKVPEEGWIMQDGTPWPGNNTRDHPGMIQVFLGHSGGLDTEGNELPR LIYVSREKRPGFQHHKKAGAMNALIRVSAVLTNGAYLLNVDCDHYFNNSKAIKEAMCFMM LVYVSREKRPGFDHHKKAGAMNSLIRVSAVLSNAPYLLNVDCDHYINNSKAIRESMCFMM LVYVSREKRPGFQHHKKAGAMNALVRVSAVLTNGPFILNLDCDHYINNSKALREAMCFLM **EFKVRINALVAKAQKIPEEGWTMQDGTPWPGNNTRDHPGMIQVFLGHSGGLDTDGNELPR EFKVKINALVATAQKVPEEGWTMQDGTPWPGNNVRDHPGMIQVFLGHSGVRDTDGNELPR** EFKVRINALVAKAQKVPEEGWTMADGTAWPGNNPRDHPGMIQVFLGHSGGLDTDGNELPR EFKIRINALVSKALKCPEEGWVMQDGTPWPGNNTGDHPGMIQVFLGONGGLDAEGNELPR EYKIRINALVAKAQKTPDEGWTMQDGTSWPGNNPRDHPGMIQVFLGYSGARDIEGNELPR EFKVRINALVAKAQKKPEEGWVMQDGTPWPGNNTRDHPGMIQVYLGSAGALDVDGKELPR 590 530 580 520 510 LVYVSREKRPGFOHHKKAGAMNALIRVSAV 560 500 550 490 Cel-A2 D48636 Cel-A2 D48636 Cel-A1 Cel-Al Ath-B Ath-A Ath-B Ath-A **S0542 S0542** RSW1 RSWI

FIGURE 9 (CONT V)

	610 620 630 640 6	099
RSW1 Ath-A	DPAIGKKCCYVQFPQRFDGIDLHDRYANRNIVFFDINMKGLDGIQGPV DPOSGKKVCYVOFPORFDGIDRHDRYSNRNVVFFDINMKGLDGIOGPI	GTGCCFNRQA GTGCVFRKOA
S0542		X
Ath-B	DPNLGKQVCYVQFPQRFDGIDKNDRYANRNTVFFDINLRGLDGIQGPV DPOVCBDVCYVQFPQBFDCIDBSDBYANBNTVFFDINMWCIDGIQGPV	GTGCVFNRTA
Cel-Al		GIGCVFNRQA GTGCVFNRQA
D48636	DPNLGRSVCYVQFPQRFDGIDRNDRYANRNTVFFDINLRGLDGIQGPV	GTGCVFNRTA
÷	670 680 690 700	720
RSW1	LYGYDPVLTEEDLEPNIIVKSCCGSRKKGKSSKKYNYE	KRR
Ath-A S0542	LYGFDAPKKKKPPGKTCNCWPKWCCLCCGLRKKSKTKA	KDKKT
Ath-B	LYGYEPPIKVKHKKPSLLSKLCGGSRKKNSKAKKESDK	KKSGR
Cel-A1	LYGYGPPSMPSFPKSSSSSCSCCCPGKKEPKDPS	ELYRDA
Cel-A2	LYGYDPPVSEKRPKMTCDCWPSWCCCCCGGSRKKSKKKGEKKGLLGGL	GKKKKMMGKN
D48636	LYGYEPPIKQKKKGSFLSSLCGGRKKASKSKKKSSDK	KKSNK
FIGURE	9 (CONT VI)	
3 ***		

	730	740	750	760	770	780
RSW1	GINRSDSNAPLFNMEDIDEGFEGYDDERSILMSQRSVEKRFGQSPVFIAATFMEQGGIPP	MEDIDEGFEGY	DDERSILMSQ	RSVEKRFGQS	PVFIAATFMEQ (GIPP
Ath-A	NTKETSKQIHALENVDEGVIVPVSNVEKRSEATQLKLEKKFGQSPVFVASAVLQNGGVPR	NVDEGVIVPVS	NVEKRSEATQ	LKLEKKFGQS	PVFVASAVLQNO	GUPR
S0542						
Ath-B	HTDS.TVPVFNLDDIEEGVEGAGFDDEKALLMSQMSLEKRFGQSAVFVASTLMENGGVPP	DIEEGVEGAGF	DDEKALLMSQ	MSLEKRFGQS	AVFVASTLMEN (GVPP
Cel-A1	KREELDAAIFNLREIDNYDEYERSMLISQTSFEKTFGLSSVFIESTLMENGGVAE	EIDN YD	EYERSMLISQ	TSFEKTFGLS	SVFIESTLMEN	GUAE
Cel-A2	YVKKGSAPVFDLEEIEEGLEG. YEELEKSTLMSQKNFEKRFGQSPVFIASTLMENGGLPE	RIEEGLEG.YE	ELEKSTLMSQ	KNFEKRFGQS	PVFIASTLMEN (3GLPE
D48636	HVDS.AVPVFNLEDIEEGVEGAGFDDEKSLLMSQMSLEKRFGQSAAFVASTLMEYGGVPQ	DIEEGVEGAGF	DDEKSLLMSQ	MSLEKRFGQS	AAFVASTLMEY(3GVPQ
	190	800	810	820	830	840
RSW1	TINPATLLKEAIH	AIHVISCGYEDKTEWGKEIGWIYGSVTEDILTGFKMHARGWISIYCNPPR	WGKEIGWIYG	SVTEDILTGF	KMHARGWISIY	CNPPR
Ath-A	NASPACLLREAIC	AIQVISCGYEDKTEWGKEIGWIYGSVTEDILTGFKMHCHGWRSVYCMPKR	WGKEIGWIYG	SVTEDILTGF	KMHCHGWRSVY	CMPKR
S0542						
Ath-B	SATPENFLKEAIE	AIHVISCGYEDKSDWGMEIGWIYGSVTEDILTGFKMHARGWRSIYCMPKL	WGMEIGWIYG	SVTEDILTGF	KMHARGWRSIY	CMPKL
Cel-A1	SANPSTLIKEAIE	AIHVISCGYEEKTAWGKEIGWIYGSVTEDILTGFKMHCRGWRSIYCMPLR	WGKEIGWIYG	SVTEDILTGF	KMHCRGWRSIY	CMPLR

FIGURE 9 (CONT VII)

GTNSTSLIKEAIHVISCGYEEKTEWGKEIGWIYGSVTEDILTGFKMHCRGWKSVYCVPKR

SATPESLLKEAIHVISCGYEDKTEWGTEIGWIYGSVTEDILTGFKMHARGWRSIYCMPKR

Cel-Al Cel-A2 D48636

FIGURE 9 (CONT VIII)

RSW1 Ath-A S0542 Ath-B Cel-A1	850 860 870 880 8 PAFKGSAPINLSDRLNQVLRWALGSIEILLSRHCPIWYGYHG.RLRLL AAFKGSAPINLSDRLHQVLRWALGSVEIFLSRHCPIWYGYGG.GLKWL PAFKGSAPINLSDRLNQVLRWALGSVEILFSRHCPIWYGYNG.RLKFL PAFKGSAPINLSDRLHQVLRWALGSVEIFLSRHCPLWYGYGG.KLKWL	860 NQVLRWALGSII HQVLRWALGSVI NQVLRWALGSVI HQVLRWALGSVI	870 EILLSRHCPIN EIFLSRHCPIN EILFSRHCPIN EIFLSRHCPLN	880 WYGYHG.I WYGYGG.(WYGYNG.I WYGYGGGI	RLRLL SLKWL RLKFL RLKWL	900 IAYINTIVYP FSYINSVVYP FAYVNTTIYP LAYINTIVYP
D48636	PAFKGSAPINLSDRLNQVLRWALGSVEILFSRHCPIWYGYGG.RLKFI 910 920 930 940	NQVLRWALGSVI 920	EILFSRHCPI 930	WYGYGG.] 940	RLKFI	FAYINTTIYP 0 960
RSW1 Ath-A S0542	ITSIPLIAYCILPAFCLITDRFIIPEISNYASIWFILLFISIAVTGII WTSLPLIVYCSLPAVCLLTGKFIVPEISNYAGILFMLMFISIAVTGII	CLITDRFIIPE CLLTGKFIVPE	ISNYASIWFI ISNYAGILFM	LLFISIA	VTGII VTGII	LRWSGVSIEDW MQWGGVGIDDW
Ath-B Cel-Al Cel-A2 D48636	ITSIPLLMYCTLLAVCLFTNQFIIPQISNIASIWFLSLFLSIFATGII FTSLPLIAYCSLPAICLLTGKFIIPTLSNLASVLFLGLFLSIIVTAVI FTSIPLLAYCTIPAVCLLTGKFIIPTLSNLTSVWFLALFLSIIATGVI LTSIPLLIYCVLPAICLLTGKFIIPEISNFASIWFISLFISIFATGII	CLLTGKF11PQ CLLTGKF11PT CLLTGKF11PT	ISNIASIWFL LSNLASVLFL LSNLTSVWFL ISNFASIWFI	SLFLSIF GLFLSII ALFLSII SLFISIF	ATGII VTAVI ATGVI	MRWSGVGIDEW JRWSGVSIEDL JRWSGVSIQDW MRWSGVGIDEW

SUBSTITUTE SHEET (Rule 26)

	970	980	066	1000	1010	1020
RSW1	WRNEQFWVIGGTSAHLFAVFQGLLKVLAGIDTNFTVTSKATDEDGDFAELYIFKWTALLI	LFAVFQGLLKV	LAGIDTNFT	JTSKATDEDG	DFAELYIFKWT	ALLI
Ath-A	WRNEQFWVIGGASSHLFALFQGLLKVLAGVNTNFTVTSKAAD.DGAFSELYIFKWTTLLI	LFALFQGLLKV	LAGVNTNFT	JTSKAAD.DG	AFSELYIFKWT	rlli
S0542						
Ath-B	WRNEQFWVIGGVSAHLFAVFQGILKVLAGIDTNFTVTSKASDEDGDFAELYLFKWTTLLI	LFAVFQGILKV	LAGIDTNFT	VTSKASDEDG	DFAELYLFKWT	rlli
Cel-A1	WRNEQFWVIGGVSAHLFAVFQGFLKMLAGIDTNFTVTAKAAD.DADFGELYIVKWTTLLI	LFAVFQGFLKM	ILAGIDTNFT	VTAKAAD.DA	DFGELYIVKWT	ruli
Cel-A2	WRNEQFWVIGGVSAHLFAVFQGLLKVLAGVDTNFTVTAKAAD.DTEFGELYLFKWTTLLI	LFAVFQGLLKV	'LAGVDTNFT	VTAKAAD.DT	EFGELYLFKWT	rlli
D48636	WRNEOFWVIGGISAHLFAVFOGLLKVLAGIDTNFTVTSKASDEDGDFAELYMFKWTTLLI	LFAVFQGLLKV	LAGIDTNFT	VTSKASDEDG	DFAELYMFKWT	ruli
	1030	1040	1050	1060	1070	1080
RSW1	PPTTVLLVNLIGIVA	GVSYAVNSGYÇ	SWGPLFGKL	FFALWVIAHL	IGIVAGVSYAVNSGYQSWGPLFGKLFFALWVIAHLYPFLKGLLGRQNRTP	NRTP
Ath-A	PPTTLLI INI IGVIV	GVSDAISNGYL	SWGPLFGRL	FFALWVIVHL	IGVIVGVSDAISNGYDSWGPLFGRLFFALWVIVHLYPFLKGMLGKQDKMP	DKMP
S0542						
Ath-B	PPTTLLIVNLVGVVAGVSYAINSGYQSWGPLFGKLFFAFWVIVHLYPFLKGLMGRQNRTP	GVSYAINSGYÇ	SWGPLFGKL	FFAFWVIVHL	YPFLKGLMGRQ	NRTP
Cel-A1	PPTTLLIVNMVGVVAGFSDALNKGYEAWGPLFGKVFFSFWVILHLYPFLKGLMGRQNRTP	GFSDALNKGYE	SAWGPLFGKV	FFSFWVILHI	YPFLKGLMGRQ	NRTP
Cel-A2	PPTTLIILNMVGVVAGVSDAINNGYGSWGPLFGKLFFAFWVILHLYPFLKGLMGRQNRTP	GVSDAINNGYG	SSWGPLFGKL	FFAFWVILHI	YPFLKGLMGRQ	NRTP
D48636	PPTTILIINLVGVVAGISYAINSGYQSWGPLFGKLFFAFWVIVHLYPFLKGLMGRONRTP	GISYAINSGYC	SWGPLFGKL	FFAFWVIVHL	YPFLKGLMGRC	NRTP

SUBSTITUTE SHEET (Rule 26)

FIGURE 9 (CONT IX)

RSW1	TIVIVWSVLLASIFSLLWVRINPFVDANPNANNFNGKGGVF
Ath-A	TIIVVWSILLASILTLLWVRINPFVAK.GGPVLEICGLNCGN
S0542	
Ath-B	TIVVVWSVLLASIFSLLWVRIDPFTSRVTGPDILECGINC
Cel-A1	TIVVLWSVLLASVFSLVWVRINPFVSTADSTTVSQSCISIDC
Cel-A2	TIVVLWSILLASIFSLVWVRIDPFLPKQTGPVLKQCGVEC
D48636	TIVVVWAILLASIFSLLWVRIDPFTTRVTGPDTQTCGINC
-	

FIGURE 9 (CONT X)

FIGURE 10

SUBSTITUTE SHEET (HULE 26)

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/AU 97/00402

A .	CLASSIFICATION OF SUBJECT MATTER	}	
Int Cl ⁶ :	C12N 15/54, 9/10		
According to	International Patent Classification (IPC) or to be	oth national classification and IPC	
В.	FIELDS SEARCHED		
	unentation searched (classification system followed by ic Database Box below	classification symbols)	
	searched other than minimum documentation to the e ic Database Box below	extent that such documents are included in	the fields searched
WPAT. Med	base consulted during the international search (name line, ChemAbs, Genebank, Swiss Prot, EMBs: Cellulose Biosynthesis, Cellulose Synthase	L	terms used)
C.	DOCUMENTS CONSIDERED TO BE RELEVAN	T .	
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
x x	WO 91/13988 (THE BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM), 19 September 1991 see whole document 1-4, 14-16, 30-32 WO 92/18631 (WEYERHAESUR COMPANY) 29 October 1992 see whole document 1-4, 14-16		
х	WO 90/12098 (CETUS CORPORATION) see whole document	18 October 1990	1-4, 14-16
Further documents are listed in the continuation of Box C X See patent family annex			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention caunot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
Date of the actu	al completion of the international search	Date of mailing of the international searc	h report
14 August 1997		18 AUG 1997	
	ng address of the ISA/AU INDUSTRIAL PROPERTY ORGANISATION 2606 Facsuntle No.: (06) 285 3929	Authorized officer Philippa Wyrdeman JIM CHAN Telephone No.: (06) 283 2340	

INTERNATIONAL SEARCH REPORT

...ternational Application No.

nor.		71004	^-
PCT/A	NU Y	1/004	UZ

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1992) copbko

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/AU 97/00402

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Do	cument Cited in Search Report		Patent Family Member				
wo	9113988	AU	75569/91				
wo	9012098	AU	54373/90	CA	2014264	EP	471687
		IL	94053	NZ	233312	US	5268274
wo	9218631	US	5268274	NZ	233312	CA	2014264
		IL	94053	AU	54373/90	EP	471687

END OF ANNEX

			4
			•
			•
	•		
•			
	•		
		•	
•			