

Constructions Ex 11.2 Q13 Answer:

Given that

Construct a right triangle of sides let $AB=8\,\mathrm{cm}$, $AC=6\,\mathrm{cm}$, and $\angle A=90^{0}$ and then a triangle similar to it whose sides are $\left(\frac{3}{4}\right)^{\mathrm{th}}$ of the corresponding sides of ΔABC .

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment let $AB = 8 \,\mathrm{cm}$

Step: II- With A as centre and draw an angle $\angle A = 90^\circ$.

Step: III- With A as centre and radius $AC = 6 \, \mathrm{cm}$

Step: IV-Join BC to obtain right $\triangle ABC$

Step: V- Below AB, makes an acute angle $\angle BAX = 60^{\circ}$.

Step: VI- Along AX, mark off five points $A_1,A_2,A_3,$ and A_4 such that $AA_1=A_1A_2=A_2A_3=A_3A_4$

Step: VII- Join $A_4 B$.

Step: VIII -Since we have to construct a triangle each of whose sides is $\left(\frac{3}{4}\right)^{\text{th}}$ of the corresponding sides of right $\triangle ABC$.

So, we draw a line A_3B' on AX from point A_3 which is $A_3B'\|A_4B$, and meeting AB at B'.

Step: IX- From B' point draw $B'C' \big\| BC, \text{ and meeting } AC \text{ at } C'$

Thus, $\Delta AB'C'$ is the required triangle, each of whose sides is $\binom{3}{4}^{\text{th}}$ of the corresponding sides of ΔABC .