Survival Analysis

Ani Katchova

Survival Analysis Overview

- Survival analysis examples
- Survival analysis set up and features
- Extensions of basic survival analysis
- Survival, hazard, and cumulative hazard functions
- Nonparametric analysis (Kaplan-Meier survival function)
- Parametric models (Exponential, Weibull, Gompertz, and Log-logistic)
- Semi-parametric models (Cox proportional hazard model)

Survival Analysis

Survival analysis is also called duration analysis, transition analysis, failure time analysis, and time-to-event analysis.

Survival analysis examples

- Finance: Loan performance (borrowers obtain loans and then they either default or continue to repay their loans)
- Economics: Firm survival and exit
- Economics: Time to retirement, finding a new job, etc.
- Economics: Adoption of new technology (firms either adopt the new technology or still haven't adopted it)

Survival analysis set up

- Subjects are tracked until an event happens (<u>failure</u>) or we lose them from the sample (censored observations).
- We are interested in how long they stay in the sample (<u>survival</u>).
- We are also interested in their risk of failure (<u>hazard rates</u>).

Survival analysis features

- The dependent variable is duration (time to event or time to being censored) so it is a combination of time and event/censoring.
 - o time variable = length of time until the event happened or as long as they are in the study
 - o the event variable = 1 if the event happened or 0 if the event has not yet happened
 - o Instead of an event variable, a censor variable can be defined. The censored variable =1 if the event has not happened yet, and 0 if the event has happened.

Time	Event/ Failure	Censored	Explanation
15	0	1	Event hasn't happened yet (censored)
22	1	0	Event happened (not censored)
78	0	1	Event hasn't happened yet (censored)
34	1	0	Event happened (not censored)

- The hazard rate is the probability that the event will happen at time *t* given that the individual is at risk at time *t*.
- Hazard rates usually change over time.
 - o The probability of defaulting on a loan may be low in the beginning but increases over the time of the loan.

Extensions of the basic survival analysis

- Multiple occurrences of events (multiple observations per individual)
 - o borrower may have repeated restructuring of the loan
 - o firm may adopt technology in some years but not others
- More than one type of event (include codes for events, e.g. 1, 2, 3, 4)
 - o borrower may default (one type of event) or repay the loan earlier (a second type of event)
 - o firms may adopt different types of technologies
- Two groups of participants
 - o the effect of two types of educational programs on technology adoption rates
- Time-varying covariates
 - o borrower's income may have changed during the study which caused the default.
- Discrete instead of continuous transition times
 - o exits are measured in intervals (such as every month)
- There may different starting times we need to measure time from the beginning time to the event.

Survival, hazard, and cumulative hazard functions

- The dependent variable duration is assumed to have a continuous probability distribution f(t).
- The probability that the duration time will be *less than t* is:

$$F(t) = Prob(T \le t) = \int_0^t f(s)ds$$

• *Survival function* is the probability that the duration will be *at least t*:

$$S(t) = 1 - F(t) = Prob(T \ge t)$$

• *Hazard rate* is the probability that the duration will end after time *t*, given that it has lasted until time *t*:

$$\lambda(t) = \frac{f(t)}{S(t)}$$

• The hazard rate is the probability that an individual will experience the event at time *t* while that individual is at risk for experiencing the event.

Nonparametric models

• Nonparametric estimation is useful for descriptive purposes and to see the shape of the hazard or survival function before a parametric model with regressors is introduced.

Time	Number	Number	Number of	Hazard	Cumulative	Survival
t_{j}	at risk	of events	censored	function	hazard function	function
	n_{j}	d_{j}	observation	$\lambda = d_j/n_j$	$\Lambda(t_j)$	$S(t_j)$
	-	-	S		-	-
3	100	10	3	10/100=0.1	0.1	1-0.1=0.9
4	100-10-	3	2	3/87=0.034	0.1+0.034	0.9*(1-0.034)
	3=87				=0.134	=0.87
5	87-3-2=82	6	1	6/82=0.073	0.134+0.073	0.87*(1-
					=0.207	0.073)=0.81

• Think about the shapes of the hazard function and survival function plotted over time.

Survival analysis nonparametric procedure

- Sort the observations based on duration from smallest to largest $t_1 \le t_2 \le \cdots \le t_n$
- For each duration, determine the number of observations at risk n_j (those still in the sample), the number of events d_i and the number of censored observations m_i .
- Calculate the hazard function as the number of events as a proportion of the number of observations at risk

$$\lambda(t_j) = \frac{d_j}{n_j}$$

• *Nelson-Aalen estimator of the cumulative hazard function* – calculated by summing up hazard functions over time:

$$\Lambda(t_j) = \sum \frac{d_j}{n_j}$$

• *The Kaplan-Meier estimator of the survival function* – take the ratios of those without events over those at risk and multiply that over time.

$$S(t_j) = \prod \frac{n_j - d_j}{n_j}$$

A few facts about the Kaplan-Meier survival function

- It is a decreasing step function with a jump at each discrete event time.
- Without censoring, the Kaplan-Meier estimator is just the empirical distribution of the data.

Parametric and semiparametric models

• Unlike the nonparametric estimation, the parametric models also allow the inclusion of independent variables.

Parametric models

• Parametric models can assume different parametric forms for the hazard function.

Parametric model	Hazard function λ	Survival function <i>S</i>
Exponential	γ	$\exp\left(-\gamma t\right)$
Weibull	$\gamma \alpha t^{\alpha-1}$	$\exp\left(-\gamma t^{\alpha}\right)$
Gompertz	$\gamma \exp(\alpha t)$	$\exp\left(-(\gamma/\alpha)(e^{\alpha t}-1)\right)$
Log-logistic	$\alpha \gamma^{\alpha} t^{\alpha-1} / (1 + (\gamma t)^{\alpha})$	$1/(1+(\gamma t)^{\alpha})$

• The exponential model has a constant hazard rate over time.

Cox proportional hazard model

• The hazard rate in the Cox proportional hazard model is defined as:

$$\lambda(t|\mathbf{x},\beta) = \lambda_0(t) \exp(\mathbf{x}'\beta)$$

Estimation of the parametric models

- For the parametric and semiparametric models, report both the coefficients and hazard ratios.
- Interpretation of coefficients: a positive coefficient means that as the independent variable increases the time-to-event *decreases*, (lower duration or more likely for the event to happen).
- Interpretation of hazard rates: a hazard ratio of 2 (0.5) means that for a one unit increase in the x variable, the hazard rate (probability of event happening) increases by 100% (decreases by 50%). A hazard rate of greater than 1 means that it is more likely for the event to happen.

Coefficient	Hazard	Conclusion	
	rate		
Positive	>1	Lower duration, higher hazard rates (more	
		likely for the event to happen).	
Negative	(0,1)	Higher duration, lower hazard rates (less	
		likely for the event to happen).	