Ecole d'Ingénieurs du Canton de Vaud VPN Solution

Christian Tettamanti
christian.tettamanti@eivd.ch
 Stefano Ventura
 stefano.ventura@eivd.ch

TCOM Institute
EIVD

VPN - Virtual Private Network

.

e i g

Ecole d'ingénieurs - hes Genève Start date: 01.02.2002

Duration: 1+1 years

Stefano Ventura Christian Tettamanti Pascal Gachet

Gérald Litzistorf Philippe Logean Nicolas Sadeg prof. HES ing. HES ing. HES

prof. HES ing. HES ing. HES

Phase I

- Research and study of remote access solutions
- Secure access on internal private network
- Interoperability tests
- Study of VPN protocols (L2TP, PPTP, IPSec)
- LAN-to-LAN and HOST-to-LAN scenarios

- Phase I Protocols
 - PPTP point-to-point tunneling protocol
 - L2TP layer 2 tunneling protocol
 - IPSEC IP security protocols
 - IKE → authentication
 - AH → integrity
 - ESP → confidentiality, integrity

- Phase II
 - Research and study of secure authentication mechanisms
 - Study of Public Key Infrastructure (PKI)
 - Interoperability tests

- Phase III
 - Deployment
 - LAN-to-LAN between EIG and TCOM
 - HOST-to-LAN at EIVD

VPN – Open Source Software

Different solutions based on Open Source

Server OS: Slackware Linux

• Firewall: Netfilter/iptables

Gateway VPN: OpenSwan

PKI Authority: OpenCA

VPN Clients: Win2K: SSH Sentinel*

Linux: OpenSwan

VPN – Scenario 1

EIG – Proprietary Solutions

EIVD – Open Source Solutions

tcom

VPN – Scenario 2

EIVD – Open Source Solutions

tcom

VPN – Scenario 3

EIG – Proprietary Solutions

EIVD – Open Source Solutions

VPN – Remote Client Authentication

- The remote client authenticates himself on gw VPN
- The authentication is based on X.509 certificates
- The client acquire a private IP address with DCHP-over-IPSEC
- The remote client is part of the internal private network

tcom

VPN - DHCP-over-IPSec

• Internet Draft: draft-ietf-ipsec-dhcp-13.txt

ISAKMP SA: Main Mode Auth.

DHCP DISCOVER

DHCP SA: Life Time = 20 sec.

VPN - NAT-Traversal

Internet Drafts: draft-ietf-ipsec-udp-encaps-03.txt draft-ietf-ipsec-nat-t-03.txt

VPN – Encountered Problems

- PKI
 - Token Integration
- Internet Service Provider (ISP)
 - Firewalls
 - Routing
- NAT routers
 - Intelligent Box
 - Stupid Box
 - NAT-Traversal
 - ESP→UDP Encapsulation

VPN – Gateway VPN Capabilities

IKE:

Encryption algorithm: aes-256bit

Integrity function: SHA-2

DF Group: MODP 1536 (group 5)

PKI authentication OK

IPSEC - ESP (AH):

Encryption algorithm: aes-256bit

Integrity function: HMAC-SHA-2

DF Group: MODP 1536 (group 5)

Other:

DHCP over IPSEC OK

NAT-Traversal OK

VPN – Final Architecture

tcom

VPN – SSH Sentinell Configuration

VPN – PKI Certificate Configuration

VPN – SA Life & NAT Configuration

VPN – IKE & ESP Configuration

VPN – Connection example

VPN – **Network Interfaces**

an auestions