The GroebnerWalk package

Francesco Nowell

TU Berlin

29.07.2024

Given the ideal in $\mathbb{Q}[x, y, z]$

$$I = \langle 6+3x^3+16x^2z+14x^2y^3, 6+y^3z+17x^2z^2+7xy^2z^2+13x^3z^2 \rangle$$

compute the reduced Gröbner basis of I w.r.t the lexicographic ordering with $x \succ y \succ z$

Motivating example

Given the ideal in $\mathbb{Q}[x, y, z]$

$$I = \langle 6+3x^3+16x^2z+14x^2y^3, 6+y^3z+17x^2z^2+7xy^2z^2+13x^3z^2 \rangle$$

compute the reduced Gröbner basis of I w.r.t the lexicographic ordering with $x \succ y \succ z$

Problem: Calling Buchberger's algorithm runs into S-pairs of degree up to 46, with up to 466 terms and coefficients of order up to 10^{590} . This is slow!

Given the ideal in $\mathbb{Q}[x, y, z]$

$$I = \langle 6+3x^3+16x^2z+14x^2y^3, 6+y^3z+17x^2z^2+7xy^2z^2+13x^3z^2 \rangle$$

compute the reduced Gröbner basis of I w.r.t the lexicographic ordering with $x \succ y \succ z$

Problem: Calling Buchberger's algorithm runs into S-pairs of degree up to 46, with up to 466 terms and coefficients of order up to 10^{590} . This is slow!

Idea: Replace this one 'heavy' computation with many 'light' ones.

Gröbner cones

Let $I \triangleleft \mathbb{Q}[x_1,...,x_n]$ be a fixed ideal and \prec be a monomial ordering. We denote the <u>marked</u> Gröbner basis of I by

$$G_{\prec} = \{g_1, g_2, ..., g_s\}$$
.

Gröbner cones

Let $I \triangleleft \mathbb{Q}[x_1,...,x_n]$ be a fixed ideal and \prec be a monomial ordering. We denote the <u>marked</u> Gröbner basis of I by

$$G_{\prec} = \{g_1, g_2, ..., g_s\}$$
.

The marked Gröbner bases of I are in 1-1 correspondence with full-dimensional cones in \mathbb{R}^n . We call these **Gröbner cones** and refer to them by C_{\prec} .

Gröbner cones

Let $I \triangleleft \mathbb{Q}[x_1,...,x_n]$ be a fixed ideal and \prec be a monomial ordering. We denote the <u>marked</u> Gröbner basis of I by

$$G_{\prec} = \{g_1, g_2, ..., g_s\}$$
.

The marked Gröbner bases of I are in 1-1 correspondence with full-dimensional cones in \mathbb{R}^n . We call these **Gröbner cones** and refer to them by C_{\prec} .

The Gröbner cones of *I* form a polyhedral fan, called the **Gröbner fan**.

Task: Given monomial orders \prec' and \prec and G_{\prec} , compute $G_{\prec'}$.

Task: Given monomial orders \prec' and \prec and G_{\prec} , compute $G_{\prec'}$.

Task: Given monomial orders \prec' and \prec and G_{\prec} , compute $G_{\prec'}$.

Task: Given monomial orders \prec' and \prec and G_{\prec} , compute $G_{\prec'}$.

Task: Given monomial orders \prec' and \prec and G_{\prec} , compute $G_{\prec'}$.

Task: Given monomial orders \prec' and \prec and G_{\prec} , compute $G_{\prec'}$.

Modifications to the Gröbner walk

The 'Zig-Zag' walk([AGK97]): scale the weight vectors at every step so they have integer entries.

The perturbed walk([Tra00]): Modify $\sigma \in C_{\prec}$ and $\tau \in C_{\prec'}$ such as to ensure intersections on facets of cones.

The generic walk([Fuk+07]): Replace $\overline{\sigma}\overline{\tau}$ with a symbolic line segment.

The GroebnerWalk package

https://zenodo.org/records/11451243 ([FN24]) https://github.com/ooinaruhugh/GroebnerWalk.jl

Comparison with groebner_basis

	Runtime in OSCAR (s., avg.)					
Ideal	groebner_basis		Standard walk		Generic walk	
	\mathbb{Q}	\mathbb{F}_{p}	\mathbb{Q}	\mathbb{F}_p	\mathbb{Q}	\mathbb{F}_p
cyclic5	0.07	0.05	0.08	0.07	0.91	0.879
cyclic6	5928.51	0.24	0.93	0.61	17.85	28.41
agk4	1407.76	$4*10^{-5}$	23.79	5.33	214.75	201.69
newellp1	2081.76	0.40	25.51	17.33	6042.97	4597.38
randomknap4	0.16	0.14	97.30	77.38	19.98	49.81

References I

- [AGK97] Beatrice Amrhein, Oliver Gloor, and Wolfgang Küchlin. "On the walk". en. In: *Theoretical Computer Science* 187.1-2 (Nov. 1997), pp. 179-202. ISSN: 03043975. DOI: 10.1016/S0304-3975(97)00064-9. URL: https://linkinghub.elsevier.com/retrieve/pii/S0304397597000649 (visited on 09/01/2023).
- [CKM97] S. Collart, M. Kalkbrener, and D. Mall. "Converting Bases with the Gröbner Walk". en. In: Journal of Symbolic Computation 24.3-4 (Sept. 1997), pp. 465-469. ISSN: 07477171. DOI: 10.1006/jsco.1996.0145. URL: https://linkinghub.elsevier.com/retrieve/pii/S0747717196901455 (visited on 09/01/2023).
- [FN24] Kamillo Ferry and Francesco Nowell. *GroebnerWalk.jl: v1.0.1*.

 June 2024. DOI: 10.5281/ZEN0D0.11451243. URL:

 https://zenodo.org/doi/10.5281/zenodo.11451243

 (visited on 07/06/2024).

References II

- [Fuk+07] K. Fukuda et al. "The generic Gröbner walk". In: Journal of Symbolic Computation 42.3 (Mar. 2007), pp. 298-312. ISSN: 0747-7171. DOI: 10.1016/j.jsc.2006.09.004. URL: https://www.sciencedirect.com/science/article/ pii/S0747717106001003 (visited on 09/01/2023).
- [Tra00] Quoc-Nam Tran. "A Fast Algorithm for Gröbner Basis Conversion and its Applications". In: Journal of Symbolic Computation 30.4 (Oct. 2000), pp. 451-467. ISSN: 0747-7171. DOI: 10.1006/jsco.1999.0416. URL: https://www.sciencedirect.com/science/article/pii/S0747717199904169 (visited on 09/26/2023).