Свойства коэффициентов множественной регрессии

Решить следующую задачу:

Заданы следующие данные опытов:

Хозяйства	Качество почвы (x), балл бонитета	Урожайность (Y), ц/га	x_iy_i	x ²
1	55	18,1+k		
2	50	21,1+k		
3	68	22,9+k		
4	48	18,9+k		
5	87	18,6+k		
6	60	30,5+k		
7	75	23,4+k		
8	80	27,6+k		
9	66	20,9+k		
10	58	18,2+k		
Сумма				
Среднее				

Здесь к – порядковый номер студента по журналу.

Выполнить следующее:

- 1. Построить уравнение регрессии.
- 2. Построить график.

3.	3. Провести экономический анализ полученных результатов.						

Методические указания к выполнению заданий

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных a и b

$$F(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

принимает наименьшее значение. То есть, при данных a и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными.

 $F(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$

Находим частные производные функции $\overline{i-1}$ переменным a и b, приравниваем эти производные к нулю.

приравниваем эти производные к нулю.

$$\begin{cases} \frac{\partial F(a,b)}{\partial a} = 0 \\ \frac{\partial F(a,b)}{\partial b} = 0 \end{cases} \Leftrightarrow \begin{cases} -2\sum_{i=1}^{n} (y_i - (ax_i + b))x_i = 0 \\ -2\sum_{i=1}^{n} (y_i - (ax_i + b)) = 0 \end{cases} \Leftrightarrow \begin{cases} -2\sum_{i=1}^{n} (y_i - (ax_i + b)) = 0 \\ -2\sum_{i=1}^{n} (y_i - (ax_i + b)) = 0 \end{cases} \Leftrightarrow \begin{cases} a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} b = \sum_{i=1}^{n} y_i \end{cases} \Leftrightarrow \begin{cases} a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a\sum_{i=1}^{n} x_i + nb = \sum_{i=1}^{n} y_i \end{cases}$$

Решаем полученную систему уравнений любым методом (например *методом подстановки* или методом Крамера) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

$$\begin{cases} a = \frac{n\sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ \sum_{i=1}^{n} y_{i} + a\sum_{i=1}^{n} x_{i} \end{cases}$$

$$F(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

При данных a и b функция принимает наименьшее значение. Доказательство этого факта приведено ниже по тексту в конце страницы .

Вот и весь метод наименьших квадратов. Формула для нахождения

параметра
$$a$$
 содержит суммы $\sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i y_i \sum_{i=1}^{n} x_i^2$ и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a .

Пришло время вспомнить про исходный пример.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3	i = 4	<i>i</i> = 5	$\sum_{i=1}^{5}$
x_i	0	1	2	4	5	12
\mathcal{Y}_i	2,1	2,4	2,6	2,8	3	12,9
$x_i y_i$	0	2,4	5,2	11,2	15	33,8
x_i^2	0	1	4	16	25	46

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i.

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов a и b. Подставляем в них соответствующие значения из

последнего столбца таблицы:

$$\begin{cases} a = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \implies \\ b = \frac{\sum_{i=1}^{n} y_{i} - a \sum_{i=1}^{n} x_{i}}{n} \end{cases}$$

$$\begin{cases} a = \frac{5 \cdot 33.8 - 12 \cdot 12.9}{5 \cdot 46 - 12^{2}} \implies \begin{cases} a \approx 0.165 \\ b \approx 2.184 \end{cases}$$

Следовательно, y = 0.165x + 2.184 - искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y =

0.165x+2.184 или $g(x)=\sqrt[3]{x+1}+1$ лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.