$\mathbf{a}_l, \hat{a}_l, \hat{a}_l^{\dagger}$: a_l - amplituda pola dla modu l w klasycznym opisie, \hat{a}_l - operator anihilacji dla modu lw opisie kwantowym, \hat{a}_{l}^{\dagger} - operator kreacji dla modu lw opisie kwantowym. compression_factor: Współczynnik kompresji. $D_2:$ Drugi współczynnik dyspersji, opisujący rozpraszanie modów w rezonatorze. Detuning, różnica miedzy czestotliwościa pompowania a czestotliwościa rezonansowa. Delta Kroneckera, funkcja dyskretna przyjmujaca wartość 1, gdy x=0, i 0 w przeciwnym przypadku. Współczynnik sprzeżenia, opisujacy efektywność sprzeżenia w układzie. Parametr w odniesieniu. Γ : Współczynnik tłumienia. Stała sprzeżenia, opisujaca siłe interakcji miedzy modami. H_{WV} : Parametr zwiazany z dyspersja. Hamiltonian układu, opisujący całkowita energie układu w opisie kwantowym. \hbar : Stała Plancka.

Parametr sprzeżenia.

 κ :

Stała tłumienia, opisujaca straty energii w układzie.

k: Stała. Ω : Czestotliwość. Φ : Moc pompowania, reprezentujaca zewnetrzne zasilanie energia do układu. Współrzedna katowa lub faza. Czestotliwość rezonansowa modu. S: Amplituda sygnału wejściowego lub pompowania. Czas. u: Pole optyczne. Operator fluktuacji próżni dla mechanizmu strat s i modu l. Stała nieliniowości, opisujaca efekt nieliniowy w układzie. ν : Liczba modów. $\nu_{\rm Detuning}$: Czestotliwość detuningu. ν_{pump} :

Czestotliwość pompowania.