

TERROS REAL ESTATE

DATA ANALYSIS

1. Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

AVG_PRI	CE	CRIME_RA	ATE	PTRATIC)
Mean	22.53281	Mean	4.871976	Mean	18.45553
Standard Error	0.408861	Standard Error	0.12986	Standard Error	0.096244
Median	21.2	Median	4.82	Median	19.05
Mode	50	Mode	3.43	Mode	20.2
Standard		Standard		Standard	
Deviation	9.197104	Deviation	2.921132	Deviation	2.164946
Sample Variance	84.58672	Sample Variance	8.533012	Sample Variance	4.686989
Kurtosis	1.495197	Kurtosis	-1.18912	Kurtosis	-0.28509
Skewness	1.108098	Skewness	0.021728	Skewness	-0.80232
Range	45	Range	9.95	Range	9.4
Minimum	5	Minimum	0.04	Minimum	12.6
Maximum	50	Maximum	9.99	Maximum	22
Sum	11401.6	Sum	2465.22	Sum	9338.5
Count	506	Count	506	Count	506

LSTAT		AVG_ROO	OM	TAX	
Mean Standard Error Median Mode Standard Deviation	12.65306 0.317459 11.36 8.05 7.141062	Mean Standard Error Median Mode Standard	6.284634 0.031235 6.2085 5.713	Mean Standard Error Median Mode Standard	408.2372 7.492389 330 666
Sample Variance Kurtosis Skewness	50.99476 0.49324 0.90646	Deviation Sample Variance Kurtosis	0.702617 0.493671 1.8915	Deviation Sample Variance Kurtosis Skewness	168.5371 28404.76 -1.14241 0.669956
Range Minimum Maximum	36.24 1.73 37.97	Skewness Range Minimum Maximum	0.403612 5.219 3.561 8.78	Range Minimum Maximum	524 187 711
Sum Count	6402.45 506	Sum Count	3180.025 506	Sum Count	206568 506

DISTANO	~	NOX	
DISTANC	Æ	IVUX	
Mean	9.549407	Mean	0.554695
Standard Error	0.387085	Standard Error	0.005151
Median	5	Median	0.538
Mode	24	Mode	0.538
Standard		Standard	
Deviation	8.707259	Deviation	0.115878
Sample Variance	75.81637	Sample Variance	0.013428
Kurtosis	-0.86723	Kurtosis	-0.06467
Skewness	1.004815	Skewness	0.729308
Range	23	Range	0.486
Minimum	1	Minimum	0.385
Maximum	24	Maximum	0.871
Sum	4832	Sum	280.6757
Count	506	Count	506

INDUS		-	AGE	
Mean	11.13678		Mean	68.5749
Standard Error	0.30498		Standard Error	1.25137
Median	9.69		Median	77.5
Mode	18.1		Mode	100
Standard			Standard	
Deviation	6.860353		Deviation	28.14886
Sample Variance	47.06444		Sample Variance	792.3584
Kurtosis	-1.23354		Kurtosis	-0.96772
Skewness	0.295022		Skewness	-0.59896
Range	27.28		Range	97.1
Minimum	0.46		Minimum	2.9
Maximum	27.74		Maximum	100
Sum	5635.21		Sum	34698.9
Count	506		Count	506

INFERENCE

- #1. Crime Rate could be normally distributed the mean is 4.87 and median is 4.82 and skewness is 0.02
- #2. Average price of the owned houses 22.5 with positive skewnees that is much of its prices are towards the right and the range is 45 with min 5, max45
- #3. The **mean** of **AVG ROOM** is **6.28** and **median** is **6.20** which shows that it could be normally distributed
- #4. The Tax varies from the range of 187 to 711, the most common tax rate being 666
- #5. The range of age varies from 2.9 to 100, with the average being 68.5

2) Plot a histogram of the Avg_Price variable. What do you infer?

INFERENCE

This histogram Indicates that AvgPrice is positively skewed and the values are tail towards the right.

Around 50 % of the houses are priced in the range of 17.1 to 24.9(17100 to 24900 dollars).

3. Compute the covariance matrix. Share your observations.

	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RATE	8.52		_							
AGE	0.56	790.79								
INDUS	-0.11	124.27	46.97							
NOX	0.00	2.38	0.61	0.01						
DISTANCE	-0.23	111.55	35.48	0.62	75.67		_			
TAX	-8.23	2397.94	831.71	13.02	1333.12	28348.62				
PTRATIO	0.07	15.91	5.68	0.05	8.74	167.82	4.68			
AVG_ROOM	0.06	-4.74	-1.88	-0.02	-1.28	-34.52	-0.54	0.49		
LSTAT	-0.88	120.84	29.52	0.49	30.33	653.42	5.77	-3.07	50.89	
AVG_PRICE	1.16	-97.40	-30.46	-0.45	-30.50	-724.82	-10.09	4.48	- 48.35	84.42

Considering Independent variable as AVG_PRICE, CRIME RATE and AVG_ROOM are positively related WHITE CELLS represents negatively related variables and yellow cells represents positively related cells

4. Create a correlation matrix of all the variables (Use Data analysis tool pack).

- a) Which are the top 3 positively correlated pairs
- b) Which are the top 3 negatively correlated pairs.

	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RATE	0									
AGE	0.007	0								
INDUS	-0.006	0.645	0							
NOX	0.002	0.731	0.764	0						
DISTANCE	-0.009	0.456	0.595	0.611	0					
TAX	-0.017	0.506	0.721	0.668	0.910	0				
PTRATIO	0.011	0.262	0.383	0.189	0.465	0.461	0			
				-		-				
AVG_ROOM	0.027	-0.240	-0.392	0.302	-0.210	0.292	-0.356	0		
LSTAT	-0.042	0.602	0.604	0.591	0.489	0.544	0.374	-0.614	0	
				-		-				
AVG_PRICE	0.043	-0.377	-0.484	0.427	-0.382	0.469	-0.508	0.695	-0.738	0

Top 3 Positively correlated variables is indiacted in red coloured cells, They are as follows

1.NOX and AGE = 0.731

2.NOX and INDUS = 0.764

3.TAX and DISTANCE = 0.910

Top 3 Negatively correlated variables is indicated green coloured cells, They are as follows

1. AVG PRICE and PTRATIO = -0.508

2.LSTAT and AVG ROOM = -0.614

3.LSTAT and AVG PRICE = -0.738

5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.

a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and Residual plot? b) Is LSTAT variable significant for the analysis based on your model?

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0.737663						
R Square	0.544146						
Adjusted R							
Square	0.543242						
Standard Error	6.21576						
Observations	506						

ANOVA

					Significance
	df	SS	MS	F	F
Regression	1	23243.91	23243.91	601.6179	5.08E-88
Residual	504	19472.38	38.63568		
Total	505	42716.3			

		Standard			Lower	Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	95%	95%	95.0%	95.0%
				3.7E-				
Intercept	34.55384	0.562627	61.41515	236	33.44846	35.65922	33.44846	35.65922
				5.08E-				
LSTAT	-0.95005	0.038733	-24.5279	88	-1.02615	-0.87395	-1.02615	-0.87395

INFERENCE

The built model has a **R SQUARE value of 0.544** and **P value is 5.08E-88** This indicates that this model can predict or explain 54.4% of the variance in the AVG PRICE

By Looking at the Residual plot we can say that there might be a pattern or yet we have to build a model by including other Variables as well

The Intercept is 34.55, which indiactes that Even if AVG PRICE is 0, Value of LSAT is 34.55

The Equation is AVG PRICE = 34.553 - 0.95(LSTAT)

6) Build a new Regression model including LSTAT and AVG_ROOM together as Independent variables and AVG_PRICE as dependent variable

a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging? b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain

SUMMARY OUTPUT

Regression S	tatistics
Multiple R	0.7991
R Square Adjusted R	0.638562
Square	0.637124
Standard Error	5.540257
Observations	506

					Significance
	df	SS	MS	F	F
Regression	2	27276.99	13638.49	444.3309	7E-112
Residual	503	15439.31	30.69445		
Total	505	42716.3			

		Standard			Lower	Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	95%	95%	95.0%	95.0%
Intercept	-1.35827	3.172828	-0.4281	0.668765	-7.5919	4.875355	-7.5919	4.875355
AVG_ROOM	5.094788	0.444466	11.46273	3.47E-27	4.22155	5.968026	4.22155	5.968026
LSTAT	-0.64236	0.043731	-14.6887	6.67E-41	0.72828	-0.55644	0.72828	-0.55644

6A. The Equation is AVG PRICE = -1.36 + 5.1*AVG ROOM - 0.64*LSTAT AVG ROOM = 7

LSTAT = 20

Substituting in the above eqaution

AVG PRICE = -1.36 + 5.1*7 - 0.64*20

AVG PRICE = 21.54

The company is quoting the value of 30, where the value supposed to be 21.54 Hence The company is overcharging

6B. The **R squared** value of **this model is 63.8** and for **previous model** it was **54.4**. hence this model can explain the variance of AVG PRIVE which is nearly **10%(9.4%)** is better than previous one

7) Build another Regression model with all variables where AVG_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted Rsquare, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.832979					
R Square	0.693854					
Adjusted R						
Square	0.688299					
Standard Error	5.134764					
Observations	506					

ANOVA					
					Significance
	df	SS	MS	F	F
Regression	9	29638.8605	3293.2067	124.9045	1.933E-121
Residual	496	13077.4349	26.365796		
Total	505	42716.2954			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	29.24132	4.8171256	6.0702829	2.54E-09	19.7768278	38.705803	19.7768278	38.705803
CRIME_RATE	0.048725	0.07841865	0.6213464	0.5346572	-0.1053485	0.2027988	-0.1053485	0.2027988
AGE	0.032771	0.01309781	2.5019968	0.0126704	0.00703665	0.0585047	0.00703665	0.0585047
INDUS	0.130551	0.06311733	2.0683922	0.0391209	0.00654109	0.2545617	0.00654109	0.2545617
			-					
NOX	-10.3212	3.89403626	2.6505102	0.0082939	-17.972023	-2.670343	-17.972023	-2.670343
DISTANCE	0.261094	0.06794707	3.8426026	0.0001375	0.12759401	0.3945931	0.12759401	0.3945931
			-					
TAX	-0.0144	0.00390516	3.6877361	0.0002512	-0.0220739	-0.006728	-0.0220739	-0.006728
			-					
PTRATIO	-1.07431	0.13360172	8.0411041	6.586E-15	-1.3368004	-0.81181	-1.3368004	-0.81181
AVG_ROOM	4.125409	0.442759	9.3175049	3.893E-19	3.25549474	4.9953236	3.25549474	4.9953236
			-					
LSTAT	-0.60349	0.05308116	11.369129	8.911E-27	-0.7077782	-0.499195	-0.7077782	-0.499195

INFERENCE

This model has a R squared value of .69 which is higher than the previous model whose r squared value is 0.64 hence this model explain 5% of variance better than the previous model

The intercept value is 29.24, which indicates that even if all the variable are zero, The AVG PRICE Would be 29.24

By looking at the P-Values only CRIME RATE is insignificant which is higher than 0.05, and indicated by grey cell in the table

Adjusted R Square value is 0.688, which indicates it explains 68.8 % variance of the dependent variable By looking at coefficients NOX,TAX,LSTAT are negatively correlated

8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:

a) Interpret the output of this model. b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square? c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town? d) Write the regression equation from this model.

SUMMARY OUTPUT

Regression Statistics Multiple R 0.832836 R Square 0.693615 Adjusted R Square 0.688684 Standard Error 5.131591 Observations 506

ANOVA

					Significance
	df	SS	MS	F	F
Regression	8	29628.68	3703.585	140.643	1.9E-122
Residual	497	13087.61	26.33323		
Total	505	42716.3			

		Standard			Lower	Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	95%	95%	95.0%	95.0%
Intercept	29.42847	4.804729	6.124898	1.85E-09	19.98839	38.86856	19.98839	38.86856
NOX	-10.2727	0.013087	2.516606	0.012163	0.007222	0.058648	0.007222	0.058648
PTRATIO	-1.0717	0.063078	2.072202	0.038762	0.006778	0.254642	0.006778	0.254642
LSTAT	-0.60516	3.890849	-2.64022	0.008546	-17.9172	-2.62816	-17.9172	-2.62816
TAX	-0.01445	0.067902	3.851242	0.000133	0.128096	0.394916	0.128096	0.394916
AGE	0.032935	0.003902	-3.70395	0.000236	-0.02212	-0.00679	-0.02212	-0.00679
INDUS	0.13071	0.133454	-8.03053	7.08E-15	-1.33391	-0.8095	-1.33391	-0.8095
DISTANCE	0.261506	0.442485	9.3234	3.69E-19	3.256096	4.994842	3.256096	4.994842
AVG_ROOM	4.125469	0.05298	-11.4224	5.42E-27	-0.70925	-0.50107	-0.70925	-0.50107

A. The R square Value of this model is 0.6936 which explains 69.36% of variance of AVG PRICE

The INTERCEPT value is 29.42 which indictes even if all the variables are zero the AVG PRICE would be 29.42

B. Adjusted R Sqare of previous model is 68.83

Adjusted R square of this model is 68.87

There is no significant change in R square value but we have all significant variables here which shows this is the better model

C. The Sorted cells are in Gray colour

NOX is negatively related to AVG price that is when nox increases AVG price decreases

for every one unit increase in NOX, The AVG PRICE decreases by 10.27 units

D. The Equation is as follows

AVG PRICE = 29.42 - (10.27*NOX) - (1.07*PTRATIO) - (0.6*LSTAT) - (0.01*TAX) + (0.033*AGE) + (0.13*INDUS) + (0.26*DISTANCE) + (4.12*AVG_ROOM)