Computational Linguistics

Lecture 4

Dr. Dina Khattab

dina.khattab@cis.asu.edu.eg

REGULAR EXPRESSION (REGEX)

Regular Expressions

- Easy way to generate a language that is accepted by FSA
- > Rules:
 - ε is a regular expression
 - Any symbol in Σ is a regular expression

If r and s are any regular expressions then so is:

- r s denotes union e.g. "r or s"
- *rs* denotes *r* followed by *s* (concatination)
- (*r*)* denotes concatination of r with itself zero or more times (Kleene closure)
- (*r*)+ denotes concatination of r with itself one or more times (positive closure)
- () used for controlling order of operations

Example Regular Expressions

Regular Expression	Corresponding Language
ε	ε
а	a
abc	abc
a b c	a, b, c
ab*	a, ab, abb, abbb,
ab+	ab, abb, abbb,
(ab)*	ε, ab, abab, ababab,
(a b c)*	ε, a, b, c, aa, ab, ac, aaa,
a b*	ε, a, b, bb, bbb,
a b c z A B Z	Any letter
0 1 2 9	Any digit

Precedence in Regular Expressions

>* has highest precedence, left associative

Concatenation has second highest precedence, left associative

has lowest associative, left associative

More Regular Expression Examples

Regular Expression	Corresponding Language
ε a b ab*	ε, a, b, ab, abb, abbb,
ab*c	ac, abc, abbc,
ab* a* ε because a*	ε, a, ab, aa, aaa, abb,
a(b* a*)	a, ab, aa, abb, aaa,
a(b a)*	a, ab, aa, aaa, aab, aba,

Examples

- >a*b*
- ≻a+b*a
- >bac*b+
- >cba*b*
- >c(ba)+c
- $>ab*(c|\varepsilon)$

Draw a graph for FSA that represents the following regular expressions:

- > a | b
- > b *
- > (ab)+
- > ab*c
- \rightarrow a(b*|a*)
- > (a | b)*
- **>** a+b*a

$$\mathbf{a}|\mathbf{b} = \mathbf{a}$$
, b

 $b^* = \epsilon, b, bb, bb,$

(ab)+ = ab, abab, ababab,

-NOTE-

$$\longrightarrow \underbrace{S1}^{a} \xrightarrow{S2}^{b} \underbrace{S3} = \longrightarrow \underbrace{S1}^{ab} \underbrace{S2}$$

ab*c = ac, abc, abbc, abbbc,

 $a(b^*|a^*) = a, ab, abb, ..., aa, aaa, ...$

(a|b)* = ε, a, b, aa, ab, ba, bb, aaa, abb, aba, aab, bbb, baa, bab, baa,......

a+**b*****a** = aa , aaa , aaaa , ... , aba , abba , aaba , aabba ,

- NOTEString must start and end with an "a"