Challenging question 5

Adhvik Mani Sai Murarisetty - AI20BTECH11015

Download latex-tikz codes from

https://github.com/adhvik24/AI1103-PROBABILITY-AND-RANDOM-VARIABLES/blob/main/ch pr 5/ch pr 5. tex

Therefore two possibilities. So,

$$Pr(X_4 > X_3 > Max(X_1, X_2)) = \frac{2}{24}$$
 (2.0.3)
= $\frac{1}{12}$ (2.0.4)

Therefore correct answers are (1) and (3).

1 Challenging Question 5

Suppose X_1, X_2, X_3 and X_4 are independent and identically distributed random variables, having density function f. Then,

1)
$$\Pr(X_4 > Max(X_1, X_2) > X_3) = \frac{1}{6}$$

2) $\Pr(X_4 > Max(X_1, X_2) > X_3) = \frac{1}{8}$
3) $\Pr(X_4 > X_3 > Max(X_1, X_2)) = \frac{1}{12}$
4) $\Pr(X_4 > X_3 > Max(X_1, X_2)) = \frac{1}{6}$

2)
$$Pr(X_4 > Max(X_1, X_2) > X_3) = \frac{1}{8}$$

3)
$$Pr(X_4 > X_3 > Max(X_1, X_2)) = \frac{1}{12}$$

4)
$$\Pr(X_4 > X_3 > Max(X_1, X_2)) = \frac{1}{6}$$

2 SOLUTION

Total number of possible arrangements of these four R.V's in an order = 4!=24 ways.

As given X_1, X_2, X_3 and X_4 are independent and identically distributed random variables they all are equally likely for a position.

Required orders are:

1) $X_4 > Max(X_1, X_2) > X_3$, for this possible orders are:

a)
$$X_4 > X_1 > X_2 > X_3$$

b)
$$X_4 > X_1 > X_3 > X_2$$

c)
$$X_4 > X_2 > X_1 > X_3$$

d)
$$X_4 > X_2 > X_3 > X_1$$

Therefore four possibilities. So,

$$\Pr(X_4 > Max(X_1, X_2) > X_3) = \frac{4}{24} \qquad (2.0.1)$$
$$= \frac{1}{6} \qquad (2.0.2)$$

- 2) $X_4 > X_3 > Max(X_1, X_2)$, for this possible orders are:
 - a) $X_4 > X_3 > X_1 > X_2$

b)
$$X_4 > X_3 > X_2 > X_1$$