

AL A 123340

(12)

AD-F300 164

AD

TECHNICAL REPORT ARBRL-TR-02456

TNT EQUIVALENCY OF PENTOLITE HEMISPHERES

Charles Kingery
George Coulter

December 1982

DTIC
ELECTED
S JAN 7 1983 D
A

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC FILE COPY

83 01 07 004

**BLANK PAGES
IN THIS
DOCUMENT
WERE NOT
FILMED**

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report
does not constitute endorsement of any commercial product.*

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

	Page
LIST OF ILLUSTRATIONS	5
LIST OF TABLES	7
I. INTRODUCTION	9
A. Background	9
B. Objectives	9
II. TEST PROCEDURE	9
A. Test Site	10
B. Test Charges	10
1. Pentolite Charge	10
2. TNT Charge	10
C. Instrumentation	10
III. RESULTS	14
A. TNT Results	14
B. Pentolite Results	14
C. Comparison of Arrival Times	14
D. Comparison of Peak Overpressures	14
E. Comparison of Overpressure Impulses	23
F. Comparison of Overpressure Durations	23
G. Equivalent Mass Factors (EMF), Peak Overpressure - Distance	23
H. Equivalent Mass Factors (EMF), Impulse-Distance	27
I. Peak Overpressure versus Time Comparisons	33
1. TNT vs. Pentolite, Station'0-3	33
2. TNT vs. Pentolite, Station 90-2	33
3. Pentolite vs. Pentolite, Station 90-2	33
4. TNT vs. Pentolite, Station 90-5	33
IV. DISCUSSION AND CONCLUSIONS	33
A. TNT vs. Pentolite over Sand	33
B. Pentolite over Sand vs. TNT over Clay	40

TABLE OF CONTENTS (Continued)

	Page
ACKNOWLEDGEMENTS	40
APPENDICES	
A - DATA TABLES FOR LARGE SCALE TNT HEMISPHERE DETONATED OVER A CLAY SURFACE	41
B - PRESSURE VERSUS TIME PLOTS	47
LIST OF SYMBOLS	75
DISTRIBUTION LIST	77

LIST OF ILLUSTRATIONS

Figure	Page
1. Photograph of Test Charge and Close-in Gage Stations	11
2. Test Layout Showing Gage Station Locations on the Two Blast Lines	12
3. TNT Booster Configurations	13
4. Measured Blast Parameters	15
5. Scaled Arrival Time Versus Scaled Distance for TNT and Pentolite Hemispherical Charges	22
6. Peak Overpressure Versus Scaled Distance for TNT and Pentolite Hemispherical Charges	24
7. Scaled Overpressure Impulse Versus Scaled Distance for TNT and Pentolite Hemispherical Charges	25
8. Scaled Overpressure Duration Versus Scaled Distance for TNT and Pentolite Hemispherical Charges	26
9. TNT Equivalent Mass Factors Versus Scaled Distance for Pentolite Hemispheres on a Sand Base	29
10. TNT Equivalent Mass Factors Versus Scaled Distance for Pentolite on a Sand Base and TNT on a Clay Base	30
11. TNT Equivalent Mass Factor Versus Scaled Distance for TNT Hemispherical Charges Fired on a Sand Base and a Clay Base	32
12. Comparison of TNT and Pentolite at Station 0-3	35
13. Comparison of TNT and Pentolite at Station 90-2	36
14. Comparison of Pentolite and Pentolite at Station 90-2	37
15. Comparison of all Shots at Station 90-5	38

Accession For	
NTIS GRA&I	
<input type="checkbox"/>	
D-C TAB	
<input type="checkbox"/>	
Unannounced	
<input type="checkbox"/>	
Justification	
Distribution/	
Availability Codes	
Avail and/or	
Dist	Special
A	

DTIC
COPY
INSPECTED
2

LIST OF TABLES

Table	Page
I. Measured TNT Blast Parameters	16
II. TNT Blast Parameters Scaled to 1 kg	17
III. TNT Blast Parameters Scaled to 1 Pound Mass	18
IV. Measured Pentolite Blast Parameters	19
V. Pentolite Blast Parameters Scaled to 1 kg	20
VI. Pentolite Blast Parameters Scaled to 1 Pound Mass	21
VII. Equivalent Mass Factors, Peak Overpressure-Distance	28
VIII. Equivalent Mass Factors, Impulse-Distance	31
IX. Equivalent Mass Factors, TNT Clay Base vs TNT Sand Base Impulse-Distance	34

I. INTRODUCTION

A. Background

Airblast parameters from the detonation of hemispherical TNT charges have been well documented in Reference 1 for yields ranging from 4536 kg to 453590 kg. These charges were detonated at the center of the flat side which was placed on a clay surface. Airblast parameters from the detonation of spherical TNT charges² and spherical Pentolite charges³ in free-air have also been well documented but there is a lack of data from the detonation of Pentolite hemispheres on the surface. The TNT equivalency of Pentolite is listed in Reference 2 as 1.17 based on peak overpressure and 1.15 based on overpressure impulse. When using Pentolite to simulate TNT on one of the small scale model tests⁴ the equivalency values listed above did not appear to be valid for surface burst hemispheres.

B. Objectives

Because of the differences noted in Reference 4, the Department of Defense Explosives Safety Board (DDESB) agreed to sponsor an experimental program at the Ballistic Research Laboratory (BRL) to determine the TNT equivalency of Pentolite hemispheres. The test area used in Reference 4 had a sand base and therefore the current series of tests were also conducted over a controlled sand base. This will determine any difference in blast output for TNT hemispheres detonated over sand and the established standard curves where the charges were detonated over a clay base, as well as establish a TNT equivalency for Pentolite detonated over sand.

II. TEST PROCEDURE

Discussed in the test procedures are three areas required for this experimental program. They are: The site preparation, the test charges, and the instrumentation.

¹ C. N. Kingery, "Air Blast Parameters versus Distances for Hemispherical TNT Surface Burst," BRL Report No. 1344, September 1966.

² "Structures to Resist the Effects of Accidental Explosions," Dept. of the Army Technical Manual, TM5-1300, June 1969.

³ H. G. Goodman, "Compiled Free-Air Blast Data on Bare Spherical Pentolite," BRL Report No. 1092, February 1960.

⁴ Charles Kingery, and George Watson, "Blast Leakage into Hardened Aircraft Shelter Models," Tech Report ARBRL-TR-02392, February 1982.

A. Test Site

The test site was designed for small charge programs. The blast lines have a heavy crushed rock base with a fine crushed gravel on top of that and finished with a sand layer approximately 20 cm thick. Two blast lines were instrumented for this series of tests to check the symmetry of the blast wave as it propagated from ground zero, defined to be the center of the flat side of the hemisphere. A photograph of the test charge and close-in station is presented in Figure 1. A test layout showing the gage station locations on the two blast lines is shown in Figure 2.

B. Test Charges

1. Pentolite Charges. The Pentolite charges (50 PETN/50 TNT) were cast at the Hot Melt Laboratory, a high explosive casting facility at the BRL. The mass of the three charges were 1134.1 gm, 1125.4 gm, and 1128.1 gm giving an average of 1129.2 gm which was used for the cube root scaling. A small hole was cast in the center of the flat face for insertion of the detonator. All charges went high order and produced consistent results.

2. TNT Charges. A total of four TNT charges was cast for use on this series of tests. The first TNT test configuration is shown in Figure 3A. The detonator was placed with the end flush against the PBX booster. This resulted in a low order detonation and therefore the booster configuration was changed for the next TNT test. The plastic ring detonator holder was replaced with a ring of Comp B as shown in Figure 3B. This configuration did not result in an acceptable detonation, so the last two charges were modified to take a small hemispherical charge of Pentolite as the booster. This booster configuration shown in Figure 3C was successful in producing two high order detonations. The two successful test charges were 1151 gm and 1141 gm mass giving an average value of 1146 gm.

C. Instrumentation

Established procedures for airblast instrumentation at the BRL were followed for this series of tests. The blast transducers were PCB Piezotronics Series 113A, with quartz crystal sensing elements and built-in voltage amplifiers. The transducers were mounted in lead bricks with nylon brushings to electrically insulate the transducer from ground. The bricks were buried in the sand with the top face flush with sand surface as shown in Figure 1. The signal cables were buried to a depth sufficient to eliminate any disturbances that might be generated from the blast wave or ground shock.

Honeywell 7600, 80 kHz, FM tape recorders were used to record and play-back the pressure versus time signals from the transducer. A Honeywell 1858 Visicorder was used to transfer the data from the tape to an analog form for a quick look of the results at the test site.

For the final data output, the tape signals were processed through an analog to digital converter, to a digital recorder reproducer, then to a computer. The computer was programmed to apply the calibration values and

Figure 1. Photograph of the test charge and close-in gage stations.

Figure 2. Test layout showing gage stat. in the two blast lines.

Figure 3. TNT booster configurations.

present the data in the proper units for analysis. From the computer the data is put on a digital tape from which the final form can be plotted or tabulated. The digital tape can also be stored for future analysis.

III. RESULTS

The results will be presented in the form of tables and graphs and direct comparisons will be made between the two explosives. The blast parameters to be compared are shown in Figure 4. A table of blast parameters versus scaled distance from Reference 1 has been converted to metric units and presented in Appendix A for comparison with the following results.

A. TNT Results

The measured TNT blast parameters obtained from Test 6 and Test 7 are listed in Table I in metric units. The average of values from Table I have been listed in Table II and scaled to 1 kg. For ease in comparing the average values with standard references, the results in Table I have also been converted to English units, scaled to 1 pound mass and listed in Table III. The first three gage locations 0-1, 0-2, and 90-1 were not instrumented after the first two tests because the bricks were blown out of position causing gage damage and questionable results.

B. Pentolite Results

Presentation of the Pentolite blast parameters will be in the same format as used for TNT. Measured data from Tests 2, 3, and 4 are listed in Table IV. The average values of the results in Table IV have been scaled to 1 kilogram and listed in Table V. The same values in English units have been scaled to one pound mass and listed in Table VI.

C. Comparison of Arrival Times

The arrival time of the blast wave at the gage stations along the blast lines is a good indication of the symmetry of the blast wave as well as differences in the yield of two explosives. Data listed in Tables II and V are plotted in Figure 5. The only significant differences in arrival times noted in Figure 5 are at the first three stations where the average arrival times for the Pentolite tests are shorter than the average arrival times for TNT. This would imply a higher shock front velocity and a higher peak overpressure. At many of the stations the recorded values overlap. At Station 90-5 the TNT values of arrival time are 5.28 and 5.31 ms while the Pentolite values are 5.24, 5.17, and 5.29 ms. Although the values overlap, the average value for TNT is greater than the average value for Pentolite. The solid line is plotted from values taken from Reference 1. These values are listed in the tables of Appendix A.

D. Comparison of Peak Overpressures

The average peak overpressures recorded along the blast lines from the TNT and Pentolite tests are listed in Tables II and V. The values from these tables are plotted in Figure 6. The peak overpressures recorded at the first

P_p = PEAK OVERPRESSURE FROM PENTOLITE CHARGE

P_T = PEAK OVERPRESSURE FROM TNT CHARGE

I_p = IMPULSE FROM PENTOLITE CHARGE

I_T = IMPULSE FROM TNT CHARGE

D_p = STATION DISTANCE FOR PENTOLITE CHARGE

D_T = STATION DISTANCE FOR TNT COMPARISON

t_a = ARRIVAL TIME

t_+ = DURATION

Figure 4. Measured blast parameters.

TABLE I. Measured TNT Blast Parameters

DISTANCE ARRIVAL TIME PEAK OVERPRESSURE OVERPRESSURE IMPULSE OVERPRESSURE DURATION

TEST NO.	R	t_a	t_a	P_T	I_T	I_T	t_+
0-3	0.248	0.070	--	7878	21429	469	--
90-2	0.413	0.125	0.120	6113	5876	165	158
0-4	0.621	0.185	0.187	2808	3079	203	198
90-3	0.827	0.325	0.310	2016	1640	224	185
0-5	1.242	0.735	0.700	853	861	166	174
90-4	1.658	--	1.197	--	506	--	130
0-6	2.482	2.675	2.637	169	170	104	103
90-5	3.723	5.280	5.310	79.6	85.5	79.2	78.5
0-7	6.207	11.79	11.81	37.8	39.5	52.0	48.2
90-6	9.102	19.72	19.64	20.2	21.0	34.3	34.1
0-8	12.41	29.32	29.34	10.8	10.9	23.2	22.4
90-7	18.61	47.31	47.16	6.01	6.03	15.1	14.7

NOTE: Average Charge Mass $Q = 1.146 \text{ kg TNT}$

TABLE II. TNT Blast Parameters Scaled to 1 kg

STATION	DISTANCE (P_T) m	ARRIVAL TIME (t_a)		PEAK OVERPRESSURE (P_T) kPa		OVERPRESSURE IMPULSE (I_T) kPa-ms		OVERPRESSURE DURATION (t_d) ms	
		m/ $kg^{1/3}$	ms	ms/ $kg^{1/3}$	kPa	ms	ms/ $kg^{1/3}$	ms	ms/ $kg^{1/3}$
0-3	0.248	0.238	0.070	0.067	14653	469	448	0.28	0.27
90-2	0.413	0.395	0.122	0.117	5994	161	154	0.26	0.25
0-4	0.621	0.593	0.186	0.178	2943	200	191	0.37	0.35
90-3	0.827	0.790	0.317	0.303	1828	204	195	0.61	0.58
0-5	1.242	1.187	0.717	0.685	857	170	162	1.04	0.99
90-4	1.658	1.584	1.197	1.144	506	130	124	1.36	1.30
0-6	2.482	2.372	2.660	2.542	169	104	99.4	2.27	2.17
90-5	3.723	3.558	5.295	5.060	82.5	78.8	75.3	2.88	2.75
0-7	6.207	5.931	11.80	11.28	38.6	50.1	47.9	3.96	3.78
90-6	9.102	8.698	19.68	18.71	20.6	34.2	32.7	4.27	4.08
0-8	12.41	11.86	29.33	28.03	10.9	22.8	21.8	4.49	4.29
90-7	18.61	17.78	47.23	45.13	6.03	14.9	14.2	5.81	5.55

Charge mass $Q = 1.146 \text{ kg}$
 $Q^{1/3} = 1.0465 \text{ kg}$

TABLE III. TNT Blast Parameters Scaled to 1 Pound Mass

STATION	DISTANCE Ft	Ft/lbm $^{1/3}$	ARRIVAL TIME ms	ms/lbm $^{1/3}$	OVERPRESSURE psi	OVERPRESSURE IMPULSE psi-ms	OVERPRESSURE DURATION ms
0-3	0.814	0.598	0.070	0.051	2125	65.6	48.1
90-2	1.355	0.995	0.123	0.090	735	22.5	16.5
0-4	2.037	1.496	0.186	0.137	427	29.0	21.3
90-3	2.713	1.992	0.317	0.233	265	29.6	21.7
0-5	4.075	2.992	0.717	0.526	124	24.7	18.1
90-4	5.440	3.994	1.197	0.879	23.4	18.9	13.8
0-6	8.143	5.979	2.660	1.953	24.5	15.1	11.1
90-5	12.22	8.972	5.310	3.899	12.0	11.4	8.39
0-7	20.36	14.95	11.80	8.664	5.73	7.27	5.34
90-6	29.86	21.92	19.68	14.45	3.05	4.96	3.64
0-8	40.72	29.90	29.33	21.53	1.58	3.31	2.43
90-7	61.06	44.83	47.23	34.68	0.87	2.16	1.59

NOTE: Charge Mass $W = 2.5265 \text{ lbm}$
 $W^{1/3} = 1.362 \text{ lbm}$

TABLE IV. Measured Pentolite Blast Parameters

TEST	STATION	R	ARRIVAL TIME		PEAK OVERPRESSURE				OVERPRESSURE IMPULSE				OVERPRESSURE DURATION	
			2	3	4	2	3	4	2	3	4	2	3	4
			ms	ms	ms	kPa	kPa	kPa	kPa-ms	kPa-ms	kPa-ms	ms	ms	ms
0-3	0.248	0.065	0.051	0.065	11491	11831	14866	325	294	442	0.37	0.26	0.33	
90-2	0.413	0.074	0.122	0.109	6708	7897	7328	---	168	204	0.26	0.21	0.27	
0-4	0.621	0.169	0.161	0.176	3806	4217	3347	206	208	184	0.36	0.29	0.27	
90-3	0.827	0.312	0.317	0.312	2089	2187	1964	184	194	188	0.55	0.60	0.70	
0-5	1.240	0.677	0.644	0.677	985	847	1008	201	194	204	1.51	1.56	1.47	
90-4	1.655	1.150	1.170	1.190	466	465	502	133	131	137	1.68	1.60	1.69	
0-6	2.481	2.450	2.420	2.500	187	200	200	110	110	107	2.40	2.22	2.50	
90-5	3.722	5.240	5.170	5.290	88.1	87.7	80.7	79.1	78.2	80.4	2.79	2.81	3.07	
0-7	6.205	11.42	11.25	11.50	42.1	43.4	40.7	52.7	51.1	50.6	3.93	3.83	4.00	
90-6	9.100	19.46	19.50	19.90	20.1	19.4	19.2	34.7	35.0	35.1	4.28	4.40	4.45	
0-8	12.41	28.72	28.39	28.74	11.6	12.9	12.4	23.4	23.2	23.1	4.49	4.40	4.55	
90-7	18.61	46.79	47.22	48.09	5.99	5.28	5.18	14.9	15.4	15.4	5.83	6.15	6.15	

NOTE: Average Charge Mass Q = 1.1292 kg Pentolite

TABLE V. Pentolite Blast Parameters Scaled to 1 kg

STA.	DISTANCE (D_p)	ARRIVAL TIME (t_a) ms	$Q^{1/3}$ kg	OVERPRESSURE (P_p) kPa	OVERPRESSURE IMPULSE (I_p) kPa-ms	OVERPRESSURE DURATION (τ_p) ms	$Q^{1/3}$ kg
0-3	0.248	0.238	0.060	0.058	12729	354	340
30-2	0.413	0.397	0.102	0.098	7311	186	179
0-4	0.621	0.596	0.169	0.162	3790	199	191
30-3	0.827	0.794	0.314	0.301	2080	189	181
0-5	1.240	1.191	0.666	0.640	947	200	192
90-4	1.655	1.589	1.170	1.124	478	134	128
0-6	2.481	2.382	2.457	2.359	196	109	105
20	3.722	3.574	5.233	5.025	85.5	79.2	76.1
0-7	6.205	5.958	11.39	10.94	42.1	51.5	49.4
30-6	9.100	8.738	19.62	18.84	19.6	34.9	33.5
0-8	12.41	11.92	28.62	27.48	12.3	23.2	22.3
90-7	18.61	17.87	47.37	45.48	5.48	15.2	14.6

NOTE: Charge Mass $Q = 1.1292$ kg
 $Q^{1/3} = 1.0414$ kg

TABLE VI. Pentolite Blast Parameters Scaled to 1 Pound Mass

STA.	DISTANCE Ft	ARRIVAL TIME Ft/lbm ^{1/3}	PEAK ms	OVERPRESSURES ms/lbm ^{1/3}	OVERPRESSURE IMPULSE		OVERPRESSURE DURATION	
					psi	psi-ms	psi-ms/lbm	ms
0-3	0.814	0.600	0.060	0.044	1846	51.3	37.9	0.32
90-2	1.355	1.000	0.102	0.075	1060	27.0	19.9	0.25
0-4	2.037	1.503	0.169	0.125	550	28.9	21.3	0.31
90-3	2.713	2.002	0.314	0.232	302	27.4	20.2	0.62
0-5	4.068	3.002	0.666	0.491	137	29.0	21.4	1.40
90-4	5.430	4.006	1.170	0.863	69.3	19.4	14.3	1.66
0-6	8.140	6.006	2.457	1.813	28.4	15.8	11.7	2.37
90-5	12.21	9.010	5.233	3.861	12.4	11.5	8.48	2.89
0-7	20.36	15.02	11.39	8.404	6.11	7.47	5.51	3.92
90-6	29.86	22.03	19.62	14.48	2.84	5.06	3.73	4.38
0-8	40.71	30.04	28.62	21.12	1.78	3.36	2.48	4.48
90-7	61.06	45.05	47.37	34.95	0.79	2.20	1.63	6.04

NOTE: Charge Mass W = 2.4895 lbm
 $W^{1/3} = 1.3553 \text{ lbm}$

Figure 5. Scaled arrival time versus scaled distance for TNT and Pentolite hemispherical charges.

three stations plotted in Figure 6 show that the Pentolite tests gave higher peak values than the TNT tests. Beyond the first three stations the trend is not consistent. There are three stations where the measured peak overpressure values overlap, three stations where the TNT values are higher, and two stations where the Pentolite values of peak overpressure are higher.

Also plotted in Figure 6 are the peak overpressure values versus scaled distance, for TNT hemispheres tested over hard packed clay surface, taken from Table A-I.

E. Comparison of Overpressure Impulses

The overpressure impulse (I) as shown in Figure 4 is the area under the overpressure versus time curve recorded at a specific station. Impulse values for each test and each station are listed in Tables I and IV. The average values from Tables I and IV have been scaled to 1 kg and listed in II and V. These values have been plotted in Figure 7 where direct comparisons can be made. Of the twelve stations instrumented, nine recorded values that overlapped between the two explosives. At one station the TNT impulse value was higher and at two stations it was lower than the Pentolite impulse value.

The solid curve in Figure 7 is taken from Table A-I which was converted from Reference 1.

F. Comparison of Overpressure Durations

The duration of the overpressure pulse, t_+ , as shown in Figure 4 is listed for each shot in Tables I and IV. The average values were scaled to 1 kg and are listed in Tables II and V. The scaled durations versus scaled distance are plotted in Figure 8 for the two explosives. Ten of the twelve stations have values of t_+ that overlap.

The scaled duration versus scaled distance plot has the same trend as the standard plot with the exception of the values between a scaled distance of $1 \text{ m}/\text{kg}^{1/3}$ to $2 \text{ m}/\text{kg}^{1/3}$. The measured values from these small charge tests are lower at all stations except the first two. No reason is given for this phenomenon.

G. Equivalent Mass Factors (EMF), Peak Overpressure-Distance

The TNT equivalency or the EMF of an explosive relative to TNT is defined in this report as the mass (kg) of a hemispherical TNT charge required to produce a specific blast parameter at a given distance as a 1 kg charge of Pentolite.

$$1 \text{ kg Pentolite} = \text{EMF} (1 \text{ kg TNT})$$

Using the cube root scaling law, the equivalent mass factor based on peak overpressure can be determined by selecting the mean peak overpressure, P_p , for Pentolite at a mean scaled distance, D_p , from Table V. Then from an expanded plot of peak overpressure versus scaled distance for TNT, from Table II, a scaled distance (D_T) at which the same peak overpressure occurs for TNT is obtained. The equivalent weight factor $\text{EMF} = (D_p/D_T)^3$. These values are

Figure 6. Peak overpressure versus scaled distance for TNT and Pentolite hemispherical charges.

Figure 7. Scaled overpressure impulse versus scaled distance for TNT and Pentolite hemispherical charges.

Figure 8. Scaled overpressure duration versus scaled distance for TNT and Pentolite hemispherical charges.

listed in Table VII. The peak overpressures used for this EMF determination were from 2080 kPa (302 psi) down to 5.48 kPa (0.795 psi). The equivalent mass factors listed in Table VII are plotted in Figure 9 as a function of scaled distance. The average value for the range considered is 1.11, which is slightly less than the accepted value of 1.17 published in Reference 2 for free-air TNT equivalency of Pentolite.

Calculations were also made to determine the EMF of Pentolite compared to the standard TNT hemispherical surface burst data from Reference 1. These EMF's (D_p/D_{T_0})³ are listed in Column 6 of Table VII. The mean value of the last nine stations is 1.08. This is smaller than determined for the TNT and Pentolite tested over sand. The values in Table VII are plotted in Figure 10 as a function of scaled distance.

A third equivalent weight factor of interest was the comparison of the TNT hemispherical charge tested over sand and the large scale TNT charges fired over hard packed clay. These EMF's are listed in column seven of Table VII. The mean value of 0.97 based on the last nine stations means that 0.97 kg of TNT detonated over hard packed clay would give the same average peak overpressures as 1 kg detonated over sand. The values of EMF from column seven of Table VII are plotted in Figure 11.

H. Equivalent Mass Factors (EMF), Impulse-Distance

The determination of the EMF for Pentolite based on overpressure impulse (I_p) is one of the objectives of this project. Since the impulse and distance are both scaled by the cube root of the mass, of the explosive, the following approach was taken. A ratio of the Pentolite impulse I_p and the scaled distance (D_p) from Table V is calculated. A reference TNT impulse (I_T) versus scaled distance (D_T) curve based on data from Table II is then searched to find an equal ratio of impulse I_T and distance D_T . The distance (D_T) at which a ratio equal to the reference ratio is determined is then used as in the previous section to determine EMF from $(D_p/D_T)^3$. The results of these calculations are listed in Table VIII. The EMF determined from the impulse-distance values are plotted in Figure 9. The average EMF determined from the last nine stations is 1.07, which is less than the value of 1.15 published in Reference 2 for free-air TNT equivalency of Pentolite.

Pentolite charges are usually used at the BRL for model tests, to simulate blast propagation and structure loading, although TNT is the usual explosive source on a full-size test. Therefore it is of interest to determine the TNT equivalency of Pentolite and the standard curve from Reference 1. The previously described method was used and the EMF's are listed in Column 9 of Table VIII. The mean value of 0.80 based on the last nine stations implies that it would require only 0.80 kg of TNT detonated over a hard packed surface to produce the impulse that 1 kg of Pentolite would produce when detonated over sand. EMF values from Table VIII are plotted in Figure 10.

The third comparison to be made is the TNT hemisphere detonated over sand and one detonated over hard packed clay. In Figure 7 it can be seen that the scaled impulses versus scaled distance for TNT hemispherical charges fired over a sand base are in general lower than the values based on data

TABLE VII. Equivalent Mass Factors, Peak Overpressure-Distance

P_p	D_p	n_i	D_{TS}	$(D_p/D_T)^3$	$(D_p/D_{TS})^3$	$(D_T/D_{TS})^3$
12729	0.237	0.250	0.255	0.85	0.80	0.99
7311	0.397	0.350	0.375	1.46	1.19	0.81
3790	0.596	0.540	0.590	1.34	1.03	0.77
2080	0.795	0.725	0.81	1.31	0.94	0.72
947	1.190	1.11	1.18	1.23	1.03	0.83
487	1.589	1.61	1.57	0.96	1.04	1.08
196	2.382	2.22	2.36	1.24	1.03	0.83
85.5	3.574	3.46	3.50	1.10	1.06	0.97
42.1	5.958	5.59	5.05	1.21	1.64	1.36
19.6	8.738	8.95	8.15	0.93	1.23	1.32
12.3	11.92	11.20	11.4	1.21	1.14	0.95
5.48	17.87	19.00	21.6	0.83	0.57	0.68
				1.11	1.08	0.97

 D_p = Distance pentolite on Sand, $m/kg^{1/3}$ D_T = Distance TNT on Sand, $m/kg^{1/3}$ D_{TS} = Distance TNT Standard Curve, $m/kg^{1/3}$ P_p = Pentolite peak overpressure, kPa

Figure 9. TNT equivalent mass factors versus scaled distance for Pentolite hemispheres on a sand base.

Figure 10. TNT equivalent mass factors versus scaled distance for Pentolite on a sand base and TNT on a clay base.

TABLE VIII. Equivalent Mass Factors, Impulse-Distance

I_P kPa-ms/kg ^{1/3}	D_P kg ^{1/3} /m	I_P/D_P	I_T kPa-ms/kg ^{1/3}	D_T kg ^{1/3} /m	$(D_P/D_T)^3$	I_{TS} kPa-ms/kg ^{1/3}	D_{TS} m/kg ^{1/3}	$(D_P/D_{TS})^3$
340	0.238	1429	358	0.25	0.85	317	0.22	1.23
179	0.397	451	167	0.37	1.24	179	0.40	1.00
191	0.596	320	191	0.59	1.00	166	0.52	1.52
181	0.794	228	191	0.84	0.84	236	1.04	0.45
192	1.191	161	175	1.08	1.32	202	1.25	0.86
128	1.589	80.6	125	1.55	1.08	148	1.81	0.68
105	2.382	44.1	102	2.31	1.10	111	2.52	0.85
76.1	3.574	21.3	75.4	3.54	1.03	77	3.62	0.97
49.4	5.958	8.29	48.0	5.80	1.08	50	6.03	0.96
33.5	8.738	3.83	32.9	8.60	1.05	34.2	8.93	0.94
22.3	11.92	1.87	22.0	11.75	1.04	24.2	12.94	0.78
14.6	17.87	.817	14.3	17.50	1.06	16.0	19.63	0.75
					1.07			
								0.80

Figure 11. Equivalent mass factors versus scaled distance for TNT hemispherical charges fired on a sand base and a clay base.

from large scale tests fired over a hard packed clay base. The equivalent mass factor can be seen in Table IX where the data recorded from this series of tests are compared with data compiled from large scale TNT tests ranging from 4536 to 453590 kg. The mean value of the EMF's based on the last nine stations is 0.80 which implies that a 0.80 kg TNT hemisphere fired over hard packed clay would produce the same impulse as 1 kg fired over hard packed sand.

I. Peak Overpressure versus Time Comparisons

As mentioned in the preceding text, many of the stations had peak overpressure values that overlapped between the TNT and Pentolite tests. This section will present some selected records from specific stations to illustrate the similarities between the detonation of a TNT hemisphere and a Pentolite hemisphere on a sand base. All pressure versus time records are presented in Appendix B.

1. TNT vs Pentolite, Station 0-3. A comparison of the overpressure versus time recorded at Station 0-3 is presented in Figure 12 to show the similarity between the two explosives at a distance of 0.248m.

2. TNT vs Pentolite, Station, 90-2. In Figure 13 a comparison is presented to show again the similarity in the overpressure versus time recorded at a 0.413m horizontal distance.

3. Pentolite vs Pentolite, 90-2. At some stations there was a greater variation in the repeat tests with the same explosive than between different explosives. This is shown in Figure 14 where the overpressure versus time from Shot 2 and Shot 4, both Pentolite tests, are presented. Similar differences are also evident when comparing two TNT tests especially at the close-in stations.

4. TNT vs Pentolite, Station 90-5. At a distance of 3.72m the test repeatability of the same explosive, and the similarity of the two different explosives are shown in Figure 15. The primary difference is in the time of arrival of the second shock. From Table I and IV the values of peak overpressure and impulse listed for Station 90-5 show the excellent correlation between the two explosives as well as the repeatability of the same explosive.

IV. DISCUSSION AND CONCLUSIONS

The data presented in the Results section and the calculated equivalent mass factors are based on a very limited number of tests. Therefore, some of the conclusions presented could change if larger samples were available to analyze.

A. TNT vs Pentolite over Sand

One of the primary objectives of this report was to determine the TNT, EMF for Pentolite hemispheres detonated on a sand base. The results of these tests are that it would require 1.11 kg of TNT to produce the blast overpressure from 1.0 kg Pentolite.

TABLE IX. Equivalent Mass Factors, TNT Clay Base vs TNT Sand
Base Impulse-Distance

I_T	D_T	I_T/D_T	I_{TS}	D_{TS}	$(D_T/D_{TS})^3$
448	0.238	1882	373	0.20	1.74
148	0.395	375	171	0.45	0.65
191	0.593	322	166	0.52	1.52
195	0.790	247	193	0.78	1.04
162	1.187	136	189	1.39	0.62
124	1.584	78.3	144	1.84	0.64
99.4	2.372	41.9	108	2.58	0.78
75.3	3.558	21.2	77.0	3.63	0.94
47.9	5.931	7.99	49.5	6.20	0.88
32.7	8.698	3.76	34.1	9.07	0.88
21.8	11.86	1.84	24.0	13.04	0.75
14.2	17.78	0.80	15.9	19.90	0.71
					.80

I_T = Impulse TNT on Sand, kPa-ms/kg^{1/3}

D_T = Distance TNT on Sand, m/kg^{1/3}

I_{TS} = Impulse TNT Clay, kPa-ms/kg^{1/3}

D_{TS} = Distance TNT Clay, m/kg^{1/3}

Figure 12. Comparison of TNT and Pentolite at Station 0-3.

Figure 13. Comparison of TNT and Pentolite at Station 90-2.

Figure 14. Comparison of Pentolite and Pentolite at Station 90-2.

Figure 15. Comparison of all shots at Station 90-5.

Figure 15. Comparison of all shots at Station 90-5. (cont'd)

The TNT EMF for Pentolite based on impulse-distance criteria was determined to be 1.07. The scaled overpressure impulse versus scaled distance presented in Figure 7 show a very good correlation between the two explosives but the detailed analysis indicates a mean difference of \pm four percent.

B. Pentolite over Sand vs TNT over Clay

The TNT blast parameters for hemispherical charges tested over clay as presented in Reference 1 are used as a standard for DDESB quantity-distance criteria. Pentolite hemispheres are used for model studies conducted over a sand base at the BRL and therefore it is necessary to establish the equivalent mass factors for these conditions. From Table VII it was established that the TNT (standard) EMF for Pentolite based on a peak overpressure criterion is 1.08, but based on an impulse criteria it is 0.80. This means that 1.08 kg of TNT on a clay surface would simulate 1.0 kg of Pentolite (peak overpressure) on sand but that it would require only 0.80 kg TNT on clay to simulate 1.0 kg of Pentolite (impulse) on sand.

ACKNOWLEDGMENTS

The authors wish to acknowledge the following individuals for their special contributions to this report. To Mr. George T. Watson the electronic engineer whose knowledge, experience, and careful attention to details resulted in the excellent pressure-time records used in the analysis portion of this report; and to Mr. Kenneth Holbrook the explosives handler and field technician for the site preparation and field activities.

APPENDIX A

DATA TABLES FOR LARGE SCALE TNT HEMISPHERES DETONATED OVER A CLAY SURFACE

TABLE A-1. TNT BLAST PARAMETERS VERSUS SCALED DISTANCE

λ_m m/kg ^{1/3}	ΔP_s kPa	t_a ms/kg ^{1/3}	t_+ ms/kg ^{1/3}	I_s kPa-ms/kg ^{1/3}
*	**			
7934-01	4793 5	1242-01	-----	-----
9918-01	3860 5	1561-01	-----	-----
1190	3188 5	1914-01	-----	-----
1388	2687 5	2298-01	-----	-----
1587	2304 5	2716-01	-----	-----
1785	2002 5	3164-01	256	-----
1984	1760 5	3642-01	246	379 3
2182	1561 5	4151-01	238	326 3
2380	1394 5	4690-01	232	288 3
2579	1253 5	5257-01	227	260 3
2777	1134 5	5854-01	223	240 3
2975	1032 5	6479-01	221	222 3
3194	9432 4	7131-01	221	209 3
3372	8653 4	7812-01	223	200 3
3570	7977 4	8520-01	224	192 3
3769	7377 4	9257-01	227	186 3
3967	6850 4	1002	232	179 3
4364	5931 4	1163	247	173 3
4760	5201 4	1370	271	170 3
5157	4604 4	1517	299	166 3
5554	4084 4	1710	333	165 3
5950	3678 4	1913	375	167 3
6347	3297 4	2126	424	170 3
6744	2980 4	2351	488	172 3
7141	2702 4	2587	560	179 3
7537	2441 4	2836	664	188 3
<hr/>				
* 7934-01 = .07934			**4793 5 =	47930

TABLE A-1. TNT BLAST PARAMETERS VERSUS SCALED DISTANCE (Con't)

λ_m	ΔP_s	t_a	t_+	I_s
$m/kg^{1/3}$	kPa	$ms/kg^{1/3}$	$ms/kg^{1/3}$	$kPa-ms/kg^{1/3}$
7934	2211 4	3095	788	201 3
8727	1813 4	3651	113 1	216 3
9521	1503 4	4258	154 1	238 3
1031 1	1264 4	4918	186 1	236 3
1111 1	1074 4	5628	207 1	225 3
1190 1	9218 3	6392	216 1	214 3
1289 1	7701 3	7419	221 1	201 3
1388 1	6507 3	8525	221 1	189 3
1488 1	5560 3	9709	217 1	178 3
1587 1	4797 3	1097 1	210 1	166 3
1785 1	3665 3	1371 1	206 1	149 3
1984 1	2885 3	1672 1	204 1	135 3
2182 1	2328 3	1999 1	210 1	124 3
2380 1	1918 3	2348 1	221 1	115 3
2579 1	1609 3	2717 1	238 1	107 3
2777 1	1371 3	3105 1	262 1	996 2
2975 1	1184 3	3510 1	281 1	933 2
3174 1	1035 3	3929 1	298 1	884 2
3372 1	9122 2	4360 1	311 1	839 2
3570 1	8150 2	4804 1	323 1	799 2
3769 1	7302 2	5256 1	333 1	758 2
3967 1	6629 2	5720 1	341 1	727 2
4364 1	5536 2	6668 1	355 1	668 2
4760 1	4706 2	7640 1	368 1	615 2
5157 1	4082 2	8635 1	381 1	519 2
5554 1	3576 2	9645 1	392 1	538 2

TABLE A-1. TNT BLAST PARAMETERS VERSUS SCALED DISTANCE (Con't)

λ_m		ΔP_s		t_a		t_+		I_a
				$ms/kg^{1/3}$		$ms/kg^{1/3}$		$kPa-ms/kg^{1/3}$
5951	1	3216	2	1067	2	402	1	507 2
6347	1	2880	2	1171	2	414	1	480 2
6744	1	2618	2	1276	2	421	1	449 2
7141	1	2405	2	1381	2	431	1	428 2
7537	1	2212	2	1488	2	439	1	406 2
7934	1	2057	2	1596	2	445	1	386 2
8727	1	1790	2	1812	2	458	1	352 2
9521	1	1585	2	2031	2	474	1	325 2
1031	2	1421	2	2250	2	484	1	300 2
1111	2	1287	2	2471	2	496	1	280 2
1190	2	1176	2	2694	2	508	1	263 2
1289	2	1060	2	2972	2	519	1	243 2
1388	2	9632	1	3252	2	531	1	225 2
1488	2	8818	1	3532	2	544	1	213 2
1587	2	8122	1	3815	2	552	1	198 2
1785	2	6998	1	4380	2	573	1	178 2
1984	2	6120	1	4948	2	592	1	161 2
2182	2	5417	1	5517	2	607	1	146 2
2380	2	4842	1	6088	2	622	1	134 2
2579	2	4363	1	6660	2	634	1	124 2
2777	2	3959	1	7234	2	648	1	115 2
2975	2	3600	1	7808	2	661	1	108 2
3174	2	3288	1	8382	2	674	1	101 2
3570	2	2786	1	9534	2	694	1	848 1
3967	2	2402	1	1069	3	710	1	803 1
4364	2	2101	1	1184	3	729	1	722 1
4760	2	1856	1	1300	3	749	1	660 1

TABLE A-1. TNT BLAST PARAMETERS VERSUS SCALED DISTANCE (Con't)

λ_m	ΔP_s	t_a	t_+	I_s
$m/kg^{1/3}$	kPa	$ms/kg^{1/3}$	$ms/kg^{1/3}$	$kPa-ms/kg^{1/3}$
5157 2	1658 1	1415 2	762 1	606 1
5554 2	1491 1	1531 3	775 1	561 1
5951 2	1358 1	1647 3	788 1	525 1
6347 2	1236 1	1764 3	801 1	489 1
6744 2	1136 1	1880 3	814 1	455 1
7141 2	1050 1	1996 3	824 1	431 1
7537 2	9715	2112 3	835 1	405 1
7934 2	9060	2228 3	845 1	381 1
8727 2	7912	2461 3	859 1	344 1
9521 2	7005	2693 3	876 1	315 1
1031 3	6260	2926 3	892 1	288 1
1110 3	5645	3159 3	907 1	267 1
1190 3	5123	3390 3	922 1	247 1
1289 3	4578	3682 3	927 1	226 1
1388 3	4123	3972 3	957 1	209 1
1487 3	3744	4264 3	966 1	195 1
1587 3	3420	4556 3	983 1	180 1
1785 3	2896	5138 3	101 2	160 1
1984 3	2496	5720 3	103 2	-----
2182 3	2186	6303 3	105 2	-----
2380 3	1931	6884 3	107 2	-----
2579 3	1724	7468 3	-----	-----
2777 3	1558	8050 3	-----	-----
3174 3	1289	9217 3	-----	-----
3570 3	1089	1038 4	-----	-----
3967 3	9446-01	1155 4	-----	-----

APPENDIX B
PRESSURE VERSUS TIME CURVES

LIST OF ILLUSTRATIONS

Figure	Page
B-1. Pressure and impulse versus time, Station 0-3, Pentolite.....	51
B-2. Pressure and impulse versus time, Station 0-3, TNT.....	52
B-3. Pressure and impulse versus time, Station 90-2, Pentolite.....	53
B-4. Pressure and impulse versus time, Station 90-2, TNT.....	54
B-5. Pressure and impulse versus time, Station 0-4, Pentolite.....	55
B-6. Pressure and impulse versus time, Station 0-4, TNT.....	56
B-7. Pressure and impulse versus time, Station 90-3, Pentolite.....	57
B-8. Pressure and impulse versus time, Station 90-3, TNT.....	58
B-9. Pressure and impulse versus time, Station 0-5, Pentolite.....	59
B-10. Pressure and impulse versus time, Station 0-5, TNT.....	60
B-11. Pressure and impulse versus time, Station 90-4, Pentolite.....	61
B-12. Pressure and impulse versus time, Station 90-4, TNT.....	62
B-13. Pressure and impulse versus time, Station 0-6, Pentolite.....	63
B-14. Pressure and impulse versus time, Station 0-6, TNT.....	64
B-15. Pressure and impulse versus time, Station 90-5, Pentolite.....	65
B-16. Pressure and impulse versus time, Station 90-5, TNT.....	66
B-17. Pressure and impulse versus time, Station 0-7, Pentolite.....	67
B-18. Pressure and impulse versus time, Station 0-7, TNT.....	68
B-19. Pressure and impulse versus time, Station 90-6, Pentolite.....	69
B-20. Pressure and impulse versus time, Station 90-6, TNT.....	70
B-21. Pressure and impulse versus time, Station 0-8, Pentolite.....	71
B-22. Pressure and impulse versus time, Station 0-8, TNT.....	72
B-23. Pressure and impulse versus time, Station 90-7, Pentolite.....	73
B-24. Pressure and impulse versus time, Station 90-7, TNT.....	74

Figure B-1. Pressure and impulse versus time, Station 0-3, Pentolite.

Figure B-2. Pressure and impulse versus time, Station 0-3, TNT

Figure B-3. Pressure and impulse versus time, Station 90-2, Pentolite.

Figure B-4. Pressure and impulse versus time, Station 90-2, TNT.

Figure B-5. Pressure and impulse versus time, Station 0-4, Pentolite.

Figure B-6. Pressure and impulse versus time, Station 0-4, TNT.

Figure B-7. Pressure and impulse versus time, Station 90-3, Pentolite.

Figure B-8. Pressure and impulse versus time, Station 90-3, TNT.

Figure B-9. Pressure and impulse versus time, Station 0-5, Pentolite.

Figure B-10. Pressure and impulse versus time, Station 0-5, TNT.

Figure B-11. Pressure and impulse versus time, Station 90-4, Pentolite.

Figure B-12. Pressure and impulse versus time, Station 90-4, TNT.

Figure B-13. Pressure and impulse versus time, Station 0-6, Pentolite.

Figure B-14. Pressure and impulse versus time, Station 0-6, TNT.

Figure B-15. Pressure and impulse versus time, Station 90-5, Pentolite.

Figure B-16. Pressure and impulse versus time, Station 90-5, TNT.

Figure B-17. Pressure and impulse versus time, Station 0-7, Pentolite.

Figure B-18. Pressure and impulse versus time, Station 0-7, TNT.

Figure B-19. Pressure and impulse versus time, Station 90-6, Pentolite.

Figure B-20. Pressure and impulse versus time, Station 90-6, TNT.

Figure B-21. Pressure and impulse versus time, Station 0-8, Pentolite.

Figure B-22. Pressure and impulse versus time, Station 0-8, TNT.

Figure B-23. Pressure and impulse versus time, Station 90-7, Pentolite.

Figure B-24. Pressure and impulse versus time, Station 90-7, TNT.

LIST OF SYMBOLS

D _P	distance from Pentolite charge
D _T	distance from TNT charge
EMF	equivalent mass factor
I _P	impulse from Pentolite charge
I _S	impulse from Standard TNT curve
I _T	impulse from TNT charge
P _P	peak overpressure from Pentolite charge
P _S	peak overpressure from Standard TNT curve
P _T	peak overpressure from TNT charge
t _a	blast wave arrival time
t ₊	blast wave positive duration
λ_m	scaled distance, m/kg ^{1/3} , Standard TNT Table

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Administrator Defense Technical Information Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314	5	Chairman Department of Defense Explosives Safety Board 2461 Eisenhower Avenue Alexandria, VA 22331
1	Office Secretary of Defense ADUSDRE (R/AT) (ET) ATTN: Mr. J. Persh, Staff Specialist, Materials and Structures Washington, DC 20301	1	Director Weapons Systems Evaluation Group ATTN: CPT Donald E. McCoy Washington, DC 20305
1	Under Secretary of Defense for Research and Engineering Department of Defense Washington, DC 20301	3	Director Institute for Defense Analysis ATTN: Dr. H. Menkes Dr. J. Bengston Tech Info Ofc 1801 Beauregard St., Alexandria, VA 22311
1	Director of Defense Research and Engineering Washington, DC 20301	2	Chairman Joint Chiefs of Staff ATTN: J-3, Operations J-5, Plans & Policy (R&D Division) Washington, DC 20301
1	Assistant Secretary of Defense (MRA&L) ATTN: EO&S Washington, DC 20301	1	Director Defense Communications Agency ATTN: NMCSSC (Code 510) 8th St. and S. Courthouse Rd. Washington, DC 20305
1	Assistant to the Secretary of Defense (Atomic Energy) ATTN: Document Control Washington, DC 20301	3	Director Defense Nuclear Agency ATTN: SPTD, Mr. T. E. Kennedy DDST (E), Dr. E. Sevin OALG, Mr. T. P. Jeffers Washington, DC 20305
1	Director Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209	1	DNA Information and Analysis Center Kaman Tempo ATTN: DASIAC 816 State Street P.O. Drawer QQ Santa Barbara, CA 93102
1	Director Defense Intelligence Agency ATTN: DT-1B, Dr. J. Vorona Washington, DC 20301		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander Field Command Defense Nuclear Agency ATTN: Tech Lib, FCWS-SC Kirtland AFB, NM 87115	1	Director US Army BMD Advanced Technology Center ATTN: M. Whitfield Huntsville, AL 35804
1	HQDA (DAMA-CSM-CA) Washington, DC 20310	1	Commander US Army Ballistic Missile Defense Systems Command ATTN: J. Veeneman P.O. Box 1500, West Station Huntsville, AL 35804
1	HQDA (DAMA-CSM-CA) Washington, DC 20310	1	Director US Army Engineer Waterways Experiment Station ATTN: WESNP, Mr. L. F. Ingram P.O. Box 631 Vicksburg, MS 39181
1	HQDA (DAMA-AR; NCL Div) Washington, DC 20310	1	Commander US Army Materiel Development and Readiness Command ATTN: DRCSF 5001 Eisenhower Avenue Alexandria, VA 22333
1	HQDA (DAMO-NCC, COL. B.C. Robinson) Washington, DC 20310	1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333
1	HQDA (DAEN-RDL, Mr. Simonini) Washington, DC 20314	1	Commander DARCOM Field Safety Activity ATTN: DRXOSOES Charlestown, IN 47111
1	HQDA (DAEN-RDZ-A, Dr. Choromokos) Washington, DC 20314	1	Office of the Inspector General Department of the Army ATTN: DAIG-SD Washington, DC 20310
1	Commander US Army Europe ATTN: AEAGA-BE, Mr. P. Morgan APO New York, NY 09801		
1	HQDA (DAPE-HRS) Washington, DC 20310		
1	HQDA (DAEN-MCC-D/Mr. L. Foley) Washington, DC 20312		
1	HQDA (DAEN-MPE-T/Mr. R. L. Wright) Washington, DC 20314		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Director DARCOM, ITC ATTN: Dr. Chiang Red River Depot Texarkana, TX 75501	1	Commander Cornhusker Army Ammunition Plant Grand Island, NE 68801
1	Commander US Army Armament Research and Development Command ATTN: DRDAR-LCM-SP Dover, NJ 07801	1	Commander Iowa Army Ammunition Plant Burlington, IA 52502
2	Commander US Army Armament Material Readiness Command ATTN: Joint Army-Navy-Air Force Conventional Ammunition Prof Coord GP/EI Jordan Rock Island, IL 61299	1	Commander Indiana Army Ammunition Plant Charlestown, IN 47111
3	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 Cys) DRDAR-TDC Dover, NJ 07801	1	Commander Joliet Army Ammunition Plant Joliet, IL 60436
1	Commander Pine Bluff Arsenal Pine Bluff, AR 71601	1	Commander Kansas Army Ammunition Plant Parsons, KS 67357
1	Commander US Army Rock Island Arsenal Rock Island, IL 61299	1	Commander Lone Star Army Ammunition Plant Texarkana, TX 75502
1	Commander US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189	1	Commander Longhorn Army Ammunition Plant Marshall, TX 75671
		1	Commander Louisiana Army Ammunition Plant Shreveport, LA 71102
		1	Commander Milan Army Ammunition Plant Milan, TN 38358
		1	Commander Radford Army Ammunition Plant Radford, VA 24141
		1	Commander Ravenna Army Ammunition Plant Ravenna, OH 44266

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Aviation Research and Development Command ATTN: DRDAV-E 4300 Goodfellow Blvd St. Louis, MO 63120	2	Commander US Army Missile Command ATTN: DRSMI-RX, Mr. W. Thomas DRSMI-RR, Mr. L. Lively Redstone Arsenal, AL 35898
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Commander US Army Mobility Equipment Research & Development Command ATTN: DRDFB-ND, Mr. R. L. Brooke Fort Belvoir, VA 22060
2	Director Lewis Directorate US Army Air Mobility Research and Development Laboratory Lewis Research Center ATTN: Mail Stop 77-5 21000 Brookpark Road Cleveland, OH 44135	1	Commander US Army Natick Research and Development Command ATTN: DRDNA-DT, Dr. D. Seiling Natick, MA 01762
1	Commander US Army Communications Research and Development Command DRDCO-PPA-SA Fort Monmouth, NJ 07703	2	Commander US Army Tank Automotive Rsch and Development Command ATTN: DRDTA DRDTA-UL Warren, MI 48090
1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703	1	Commander Dugway Proving Ground ATTN: STEDP-TO-H, Mr. Miller Dugway, UT 84022
1	Commander US Army Harry Diamond Labs ATTN: DELHD-TI 2800 Powder Mill Road Adelphi, MD 20783	1	Commander US Army Foreign Science and Technology Center ATTN: Rsch & Data Branch Federal Office Building 220-7th Street, NE Charlottesville, VA 22901
3	Commander US Army Missile Command ATTN: DRDMI-R DRDMI-YDL DRDMI-RSS, Mr. Bob Cobb Redstone Arsenal, AL 35898	1	Commander US Army Materials and Mechanics Research Center ATTN: DRXMR-ATL Watertown, MA 02172

DISTRIBUTION LIST

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander Naval Surface Weapons Center White Oak Laboratory ATTN: R-15, Mr. M. M. Swisdak Silver Spring, MD 20910	1	Officer in Charge (Code L31) Civil Engineering Lab ATTN: Code L51, Mr. W. A. Keenan Naval Construction Battalion Center Port Hueneme, CA 93041
1	Commander Naval Surface Weapons Center Dahlgren Laboratory ATTN: E-23, Mr. J. J. Walsh Dahlgren, VA 22448	2	Superintendent Naval Postgraduate School ATTN: Tech Reports Sec. Code 57, Prof. R. Ball Monterey, CA 93940
2	Commander Naval Weapons Center ATTN: Code 0632, W. F. Finder China Lake, CA 93555	1	Commander Bureau of Naval Weapons Department of the Navy Washington, DC 20360
1	Commander Naval Ship Research and Development Center Facility ATTN: Mr. Lowell T. Butt Underwater Explosions Research Division Portsmouth, VA 23709	1	HQ USAF (AFNIE-CA) Washington, DC 20330
1	Commanding Officer Naval Weapons Support Center Crane, IN 47522	3	HQ USAF (AFRIDQ; AFRODXM; AFRDPM) Washington, DC 20330
1	Officer in Charge Naval EOD Facility ATTN: Code D, Mr. L. Dickenson Indian Head, MD 20640	1	AFTAWC (OA) Eglin AFB, FL 32542
1	Commander Naval Weapons Evaluation Facility ATTN: Document Control Kirtland AFB Albuquerque, NM 87117	1	Air Force Systems Command ATTN: IGFG Andrews AFB Washington, DC 20334
1	Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Washington, DC 20375	1	AFRPL Edwards AFB, CA 93523
		1	ADTC (DLODL, Tech Lib) Eglin AFB, FL 32542
		1	ADTC Eglin AFB, FL 32542

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander Air Force Armament Laboratory ATTN: DLYV, Mr. R. L. McGuire Eglin AFB, FL 32542	3	AFML (LLN, Dr. T. Nicholas; MAS: MBC, Mr. D. Schmidt) Wright-Patterson AFB, OH 45433
1	Ogden ALC/MMWRE ATTN: (Mr. Ted E. Comins) Hill AFB, UT 84406	1	FTD (ETD) Wright-Patterson AFB, OH 45433
5	AFWL (DEO, Mr. F. H. Peterson) SYT, MAJ W. A. Whitaker; SRR; WSUL, SR) Kirtland AFB, NM 87115	1	Mr. Richard W. Watson Director, Pittsburgh Mining & Safety Research Center Bureau of Mines, Dept of the Interior 4800 Forbes Avenue Pittsburgh, PA 15213
1	Director of Aerospace Safety HQ, USAF ATTN: JGD/AFISC (SEVV), COL J. E. McQueen Norton AFB, CA 92409	1	Headquarters Energy Research and Development Administration Department of Military Applications Washington, DC 20545
2	HQ, USAF ATTN: IDG/AFISC (SEW), COL A. R. Nading Norton AFB, CA 92409	1	Director Office of Operational and Environmental Safety US Department of Energy Washington, DC 20545
2	Director Joint Strategic Target Planning Staff ATTN: JLTW; TPTP Offutt AFB Omaha, NB 68113	1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299
1	HQ AFESC RDC Walter Buckholtz Tyndall AFB, FL 32403	2	Albuquerque Operations Office US Department of Energy ATTN: Div of Operational Safety P.O. Box 5400 Albuquerque, NM 87115
1	AFCEC (DE-LTC Walkup) Tyndall AFB, FL 32401		
1	AFFDL (FBE) Wright-Patterson AFB, OH 45433		
2	AFLC (MMWM/CPT D. Rideout; IGYE/K. Shopker) Wright-Patterson AFB, OH 45433		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Institute of Makers of Explosives ATTN: Mr. Harry Hampton Graybar Buildings, Rm 2449 420 Lexington Avenue New York, NY 10017	1	Director National Aeronautics and Space Administration Scientific and Technical Information Facility P.O. Box 8757 Baltimore/Washington International Airport, MD 21240
1	Institute of Makers of Explosives ATTN: Mr. F. P. Smith, Jr., Executive Director 1575 Eye St., N.W. Washington, DC 20005	1	National Academy of Sciences ATTN: Mr. D. G. Groves 2101 Constitution Avenue, NW Washington, DC 20418
1	Director Lawrence Livermore Laboratory Technical Information Division P.O. Box 808 Livermore, CA 94550	1	Aeronautical Research Associates of Princeton, Inc. ATTN: Dr. C. Donaldson 50 Washington Road Princeton, NJ 08540
1	Director Los Alamos Scientific Lab ATTN: Dr. J. Taylor P.O. Box 1663 Los Alamos, NM 87544	1	Aerospace Corporation P.O. Box 92957 Los Angeles, CA 90009
2	Sandia Laboratories ATTN: Info Dist Div Dr. W. A. von Riesemann Albuquerque, NM 87115	1	Agbabian Associates ATTN: Dr. D. P. Reddy 250 N. Nash Street El Segundo, CA 90245
1	Director National Aeronautics and Space Administration Marshall Space Flight Center Huntsville, AL 35812	2	AVCO Corporation Structures and Mechanics Dept. ATTN: Dr. William Broding Dr. J. Gilmore 201 Lowell Street Wilmington, MA 01887
2	National Aeronautics and Space Administration Aerospace Safety Research and Data Institute ATTN: Mr. S. Weiss, Mail Stop 6-2 Mr. R. Kemp, Mail Stop 6-2 Lewis Research Center Cleveland, OH 44135	2	Battelle Memorial Institute ATTN: Dr. L. E. Hulbert Mr. J. E. Backofen, Jr. 505 King Avenue Columbus, OH 43201
		1	Black & Veatch Consulting Engineers ATTN: Mr. H. L. Callahan 1500 Meadow Lake Parkway Kansas City, MO 64114

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
2	The Boeing Company Aerospace Group ATTN: Dr. Peter Grafton Dr. D. Strome Mail Stop 8C-68 Seattle, WA 98124	2	Martin Marietta Laboratories ATTN: Dr. P. F. Jordan Mr. R. Goldman 1450 S. Rolling Road Baltimore, MD 21227
1	General American Transportation Corp. General American Research Div. ATTN: Dr. J. C. Shang 7449 N. Natchez Avenue Niles, IL 60648	1	Mason & Hanger-Silas Mason Co., Inc. Pantex Plant ATTN: Director of Development P.O. Box 647 Amarillo, TX 79117
1	Hercules, Inc. ATTN: Billings Brown Box 93 Magna, UT 84044	1	McDonnell Douglas Astronautics Western Division ATTN: Dr. Lea Cohen 5301 Bosla Avenue Huntington Beach, CA 92647
2	Kaman-AviDyne ATTN: Dr. N. P. Hobbs Mr. S. Criscione Northwest Industrial Park 83 Second Avenue Burlington, MA 01803	1	Monsanto Research Corporation Mound Laboratory ATTN: Frank Neff Miamisburg, OH 45342
1	J.G. Engineering Research Associates 3831 Menlo Drive Baltimore, MD 21215	1	Physics International 2700 Merced Street San Leandro, CA 94577
3	Kaman-Nuclear ATTN: Dr. F. H. Shelton Dr. D. Sachs Dr. R. Keffe 1500 Garden of the Gods Road Colorado Springs, CO 80907	1	R&D Associates ATTN: Mr. John Lewis P.O. Box 9695 Marina del Rey, CA 90291
1	Knolls Atomic Power Laboratory ATTN: Dr. R. A. Powell Schenectady, NY 12309	1	Science Applications, Inc. 8th Floor 2361 Jefferson Davis Highway Arlington, VA 22202
1	Lovelace Research Institute ATTN: Dr. E. R. Fletcher P.O. Box 5890 Albuquerque, NM 87115	1	Brown University Division of Engineering ATTN: Prof R. Clifton Providence, RI 02912
		1	Florida Atlantic University Dept. of Ocean Engineering ATTN: Prof K. K. Stevens Boca Raton, FL 33432

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Georgia Institute of Tech ATTN: Dr. S. Atluri 225 North Avenue, NW Atlanta, GA 30332	1	Texas A&M University Department of Aerospace Engineering ATTN: Dr. James A. Stricklin College Station, TX 77843
1	IIT Research Institute ATTN: Mrs. H. Napadensky 10 West 35 Street Chicago, IL 60616	1	University of Alabama ATTN: Dr. T. L. Cost P.O. Box 2908 University, AL 35486
1	Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E. A. Witmar Cambridge, MA 02139	1	University of Delaware Department of Mechanical and Aerospace Engineering ATTN: Prof J. R. Vinson Newark, DE 19711
3	Southwest Research Institute ATTN: Dr. H. N. Abramson Dr. W. E. Baker Dr. U. S. Lindholm 8500 Culebra Road San Antonio, TX 78228	<u>Aberdeen Proving Ground</u>	
1	Ammann & Whitney ATTN: Mr. N. Dobbs Suite 1700 Two World Trade Center New York, NY 10048	Dir, USAMSAA ATTN: DRXSY-D DRXSY-G, Mr. R. Norman DRXSY-MP, H. Cohen Cdr/Dir, CSL, EA ATTN: DRDAR-CLJ-L Cdr/USATECOM ATTN: DRSTE-TO-F Cdr, US Army Toxic and Hazardous Materials Agency, Bldg E4585 ATTN: DRXTA-TE Dir, USACSL, Bldg E3516, EA ATTN: DRDAR-CLB-PA	

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number _____

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: _____

Telephone Number: _____

Organization Address:

— FOLD HERE —

Director
US Army Ballistic Research Laboratory
Aberdeen Proving Ground, MD 21005

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 12062 WASHINGTON, DC
POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director
US Army Ballistic Research Laboratory
ATTN: DRDAR-TSB -S
Aberdeen Proving Ground, MD 21005

— FOLD HERE —