

OUTLINE

- Old Program vs. New Program
- Back to the A* and Dijkstra's Algorithms
- Research on RoadMap Methods
 - Preliminaries: Graphs, Line Segmentations and Intersections, Convex Hull
 - Visibility Graph
 - General Approach
 - · Reduced Visibility Graph
- Demonstration

OLD vs. NEW (cont.)

- ArTcpConnection tcpConnHdlr;ArRobot robot;
- Aria::init()
 - Mandatory initialization initializes the thread layer and the signal handling methods, also socket layers for windows
- tcpConnHdlr.open (address, portnum)
 - or tcpConnHdlr.setPort (address, portnum) and openSimple()
- robot.setDeviceConnection (&tcpConnHdlr);
 - · Used to send commands and receive packets from
- robot.blockingConnect ()
 - · Return TRUE if connection to robot is established successfully

OLD vs. NEW (cont.)

- NEW using "Aria.h" (cont.)
 - robot.comInt (ArCommands::ENABLE, 1);
 - robot.runAsync (bool stopIfNotConnected);
 - "robot.run (true)" is only good for one-shot programs
 - e.g. actions
 - robot.setDeltaHeading (double degree);
 - robot.isHeadingDone ()
 - robot.move (double distance /* mm */);
 - robot.isMoveDone ()
 - robot.stopRunning (true);
 - Aria::shutdown ();

	A* – best first	Dijkstra's – breath first
Given	S – a start node G – a goal node	S – a start node G – not necessary
Cost	F(n) = g(n) + h(n)	F(n) = g(n)
G(n)	Cost from S to n	Cost from S to n
H(n)	 Dx = Goal_X - n.x , Dy = Goal_Y - n.y Manhattan Dx + Dy Euclidean √Dx² + Dy² 	Zero
Lists	OpenList – Priority Queue ClosedList	OpenList – Queue ClosedList

Research on RoadMaps

- Introduced in the "Shakey" project at SRI International in the late 60's
- Can produce shortest paths in 2D <u>configuration spaces</u>
- Representations:
 - Visibility Graphs
 - Voronoi Graphs

9

Preliminaries - Graphs

- A graph G = (V, E)
 - V: a set of vertices
 - E: a set of edges
- Directed graph: edges are directional
- Representations:
 - Adjacency Matrix
 - Adjacency List

Preliminaries - Lines

- A line L is defined by two distinct points: P₀ and P₁
- A finite line Segment: $\overline{P_0P_1}$, represents an edge in a graph
- In a 2D environment, L takes this representation:

$$L = \frac{X - P_0.x}{P_1.x - P_0.x} = \frac{Y - P_0.y}{P_1.y - P_0.y}$$

$$\Rightarrow (P_1.y - P_0.y)X + (P_0.x - P_1.x)Y + (P_1.x - P_0.x)P_0.y - (P_1.y - P_0.y)P_0.x = 0$$

$$\Rightarrow \mathbf{a} \ \mathbf{X} + \mathbf{b} \ \mathbf{Y} + \mathbf{c} = \mathbf{0}$$

13

Preliminaries - Lines

 For computing intersections of lines and segments in 2D and 3D, it is best to use the parametric equation representation

$$- P(s) = P_0 + s (P_1 - P_0) = P_0 + s \mathbf{u}$$

- where s is a real number and u = P₁-P₀ is a line direction vector.
- P(0)=P₀, P(1)=P₁
- when 0<s<1, P(s) is a point on P₀P₁, where s is the fraction of P(s)'s distance along the segment. That is, s = d(P0,P(s)) / d(P0,P1).
- If s < 0 then P(s) is outside the segment on the P₀ side
- if s > 1 then P(s) is outside the segment on the P₁ side.
- For two line intersections, solve s₁ and s₂

Preliminaries - Lines

- 2D Line Intersections very complicated
- For n segments, there are (²
 _n) = n(n-1) / 2 = O(n²) intersection points
- A brute force algorithm is computationally expensive
- Bentley-Ottmann Algorithm most popular
 - Time: O ($(n+k) \log n$)
 - Space: O (n+k), where k = # of intersections
- There are better algorithms, but they are much more difficult to implement

15

Preliminaries - Lines

Bentley-Ottmann Algorithm

- Idea: if two segments intersect, so do their xcoordinates
- Input: { L_i} Output: { I_i}
- Sort input segments by the end points in linear order increasing x then increasing y
- Event Queue EQ maintains a sequence of x values ordered from left to right – endpoints and intersections
- The sweep line *SL* is vertical, sweeps from left to right and stop at certain "events"
 - adds a segment when SL encounters the left endpoint
 O(log n)
 - deletes it when read in its right endpoint O(log n)
 - When two segments intersects, their positions are swapped in the list – O(log n) binary search
 - Maintain above-below relationships between two segments
- Two segments intersect only when they are adjacent in SL

Preliminaries - Lines

Bentley-Ottmann Algorithm (cont.)

- 1. EQ (event queue) is empty
- 2. Insert all segment endpoints into EQ (store segment with left endpoint)
- 3. Assign SL (status structure) to be empty
- 4. while (EQ not empty)
 - (a) Find next event point p in EQ
 - (b) Process event point p
 - remove p from EQ
 - update SL
 - report intersections
 - add new (upcoming) event points To EQ (intersect.

<u>endwhile</u>

17

Preliminaries - Convex Hull

- · Informal definition: a "rubber band" that is placed around a set of points.
- Properties:
 - All points are either on the hull or inside the hull
 - Each inner angle is less than 180 degree
- Point Orientation Testing:
 - Consider 3 points: P_1 at (x_1, y_1) , P_2 at (x_2, y_2) , P_3 at
 - The "Signed Area" function: $\Delta(P_1, P_2, P_3)$
 - = $x_1y_2 x_2y_1 + x_3y_1 x_1y_3 + x_2y_3 x_3y_2$ $\Delta(P_1, P_2, P_3) > 0$ left turn
 - = 0 collinear (a straight line) < 0 right turn

Preliminaries - Convex Hull

- · Gift Wrapping Algorithm
 - start with the point with the smallest y, wrap the imaginary rope counterclockwise
 - Average: O(hN); Worst: O (N²) , h = # of vertices on convex hull, N = # of total points
- · Graham Scan Algorithm most used
 - Start with the point with the smallest y, A
 - Sort remaining points P_i ∈ {P {A}} by the angles between (P_i, A) and X-axis O(N logN)
 MergeSort
 - Scan counterclockwise for the next new point P
 O (2N)
 - If P forms a left turn with the last two points in H, or H contains less than two points, add P to H
 - Worst: O(N logN)

19

RoadMaps - Visibility Graph

- Input: configurations of S and G, and a map
- Output: a path in C_{free} connecting S and G
- Steps:
 - 1. Build a roadmap in C_{free} (preprocessing the hard part)
 - roadmap nodes are free or semi-free configurations
 - Two nodes connected by an edge if the robot can move between them
 - 2. Connect S and G to roadmap nodes v_s and v_q

RoadMaps - Visibility Graphs

- CB configuration space of an obstacle
- Nodes are connected by an edge if
 - They are an obstacle edge
 - The straight line segment connecting them lies entirely in C_{free}
- Add S and G as nodes as well

- ❖ conceptually simple
- hard to implement without knowledge about computational geometry

21

CB3

CB1

RoadMaps – Reduced Visibility Graphs

- Idea: we don't really need all the edges in the visibility graph
- Easier to build
 - 1. Construct the convex hull
 - 2. Construct the pairwise tangents between each obstacles
 - O (N + $c^2 \log N$), c = # of obstacles
- All non-obstacle edges are <u>tangent</u> <u>segments</u>
 - Let L be the line passing through an edge (P₀, P₁) in the visibility graph. The segment (P₀, P₁) is a tangent segment iff L is a tangent to the obstacle at both P₀ and P₁

References

- Wikipedia. "A* search algorithm". < http://en.wikipedia.org>.
- Amit J.Patel. "Heuristics". Oct 9, 2004. http://theory.standford.edu/%7Eamitp/GameProgramming/Heuristics.html>.
- Nancy Amato. "Roadmap Methods". <u>Randomized Motion Planning</u>. University of Padova. Fall 2004.
- softSufers. "Algorithms". 2001-2004. http://softsurfer.com/algorithm_archive.htm>.
- M. T. Goodrich and R. Tamassia. "Convex Hulls". <u>Algorithm Design</u>. John Wiley & Sons, Inc. New York. 2002. 572 582.