

1 Somas de Riemann e integrabilidade

[Usando a notação introduzida em http://calculo.wikidot.com/2-2-integrais-parte-1 ...]

A função f é integrável (à Riemann) em $[a,b] \subseteq D_f$ e $\int_a^b f(x) dx = I \in \mathbb{R}$ se

$$S(f, P_n, C_n) \rightarrow I$$
, quando $n \rightarrow +\infty$, desde que $\Delta(P_n) \rightarrow 0$

sendo P_n partições de [a, b] em n intervalos e C_n sequências compatíveis.

Negativamente: f não é integrável se $S(f, P_n, C_n)$ não tem limite, ou seja,

- para alguma escolha de P_n e C_n , $S(f, P_n, C_n) \to \pm \infty$ ou
- para diferentes escolhas de P_n e C_n , $S(f, P_n, C_n)$ tem limites diferentes

Contudo, se f é integrável, $S(f, P_n, C_n) \rightarrow \int_a^b f(x) dx$ para quaisquer P_n e C_n por exemplo, $P_n = \{x_i = a + i \frac{b-a}{n}\}$ (uniforme), sendo ξ_i um dos extremos

2 Integrabilidade: condições necessárias e suficientes

Num intervalo $[a, b] \subseteq D_f$ podemos dizer de f que ...

diferenciável ⇒ contínua ⇒ integrável ⇒ limitada

não limitada ⇒ não integrável

- limitada e não contínua num número finito de pontos ⇒ integrável
- g integrável e $f(x) \neq g(x)$ num número finito de pontos \Rightarrow integrável

sendo
$$\int_a^b f(x) dx = \int_a^b g(x) dx$$

monótona ⇒ integrável

3 Exercícios

- 1. Considera a função definida em \mathbb{R} por $f(x) = \begin{cases} \frac{\operatorname{tg} x}{x} & \operatorname{se} x \in]0, \frac{\pi}{2}[\\ \operatorname{sen} x & \operatorname{se} x \notin]0, \frac{\pi}{2}[\end{cases}$
 - (a) Mostra que f é integrável em $\left[-\pi, \frac{\pi}{4}\right]$.
 - (b) Mostra que f não é integrável em $\left[\frac{\pi}{4}, \pi\right]$.
- 2. Seja f uma função de domínio D=[0,2] tal que f(0)=0 e, para cada n=0,1,2,3,..., $f(x)=\frac{1}{2^n}$ (constante) no intervalo $]\frac{1}{2^n},\frac{2}{2^n}]$. Esboça o gráfico de f e, baseando-te nele:
 - (a) justifica que f é integrável;
 - (b) mostra que $A = \int_0^2 f(x) dx = 1 + \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \frac{1}{4^4} + \cdots$;
 - (c) verifica que $\frac{1}{2}x \le f(x) \le x$ e prova que $A \in \left[\frac{5}{4}, \frac{3}{2}\right]$.