$\underline{\text{Mikroelektronik Formelsammlung}}$

$1 \quad \underline{Inhalt}$

Inhaltsverzeichnis

1 <u>Inhalt</u>			2	
	1.1	Version	nierung	3
2	Mik	roelek	tronik I	4
	2.1	Leitfäl	nigkeit und Energiebänder	4
		2.1.1	Spezifischer Widerstand	4
		2.1.2		4
		2.1.3	Siliciumkristalle	5
	2.2	Elektro	onen und Löcher in Halbleitern	5
		2.2.1	Energie	5
		2.2.2	Elektrisches Feld	5
		2.2.3	Differentielles Ohmsches Gesetz	5
		2.2.4	Gesamtleitfähigkeit	6
		2.2.5	Ladungsträgerkonzentration in den Bändern	6
		2.2.6		6
			2.2.6.1 Boltzmann-Näherung	7
			2.2.6.2 Ladungsträgerkonzentration in der	
				7
		2.2.7		7
				8
		2.2.8	9	8
				8
		2.2.9		8
		2.2.10	9	9
				9
	2.3	Ströme		9
		2.3.1		9
		2.3.2		9
		2.3.3	9	9
		2.3.4	Diffustionsstromdichte	
		2.3.5	Einsteingleichung	0
		2.3.6	Gesamtstrom im Halbleiter	
		2.3.7	Rekombination und Generation	
			2.3.7.1 Niederinjektion	
			2.3.7.2 Minoritätsladungsträgerlebensdauer/	_
			-diffusionslänge	1
		2.3.8	Quasi-Fermi-Niveaus (QFN oder Imref)	
	2.4		ostatik des PN-Übergangs	
		2.4.1	Poisson-Gleichung	
		2.4.2	Ladungsneutralität und	_
			elektrostatisches Helebresetz	3

INHALTSVERZEICHNIS

		2.4.3	Potential und Feldstärke	
		2.4.4	1 0	14
	2.5	Kennli	inie des pn-Übergangs	15
		2.5.1	1 0 0	16
		2.5.2	Kleinsignalleitwert des pn-Übergangs	16
		2.5.3	Abweichung in der Vorwärtskennlinie	16
			2.5.3.1 Rekombinationsströme	16
			2.5.3.2 Idealität	17
3	Anh	ıänge	1	.8
	$\overline{3.1}$	Abkür	zungen/Formelzeichen	18
	3.2	Wichti	ige Donatoren und Akzeptoren $\ldots \ldots \ldots \ldots 2$	20
	3.3		ive Massen	21
	3.4		ücken wichtiger Materialien	
	3.5			21
	3.6	Nieder	feld- und Niederdotierungsbeweglichkeiten ($T=300K$) 2	21
	3.7	Konsta	${ m anten}$	22
	3.8			23

1.1 Versionierung

Datum	Vers.	Kürzel	Änderung	
04.05.2018	0.1	FL	Erzeugung Dokument; Erzeugung Inhaltsver-	
			zeichnis; Erzeugung Versionierung; Erzeugung	
			Leitf. u. Energieb.	
05.05.2018	0.1	FL	Korrektur formTabL	
06.05.2018	0.1	FL	Erzeugung Elek. u. Löch. in Halbl.; Erzeugung	
			Abk; Donatoren u. Akzeptoren; Eff. Massen;	
			Bandl.; Eckd.; u. Konst.	
12.05.2018	1.0	FL	Komplette Neustrukturierung; Fertigstellung	
			Inhalt	

2 Mikroelektronik I

Im Folgenden sei U = V.

2.1 Leitfähigkeit und Energiebänder

2.1.1 Spezifischer Widerstand

Ohmsches Gesetz :
$$V = RI[V]$$
 (2.1.1)

Widerstand :
$$R = \frac{V}{I} [\Omega]$$
 (2.1.2)

Leitwert :
$$G = \frac{1}{G} = \frac{I}{V} \left[\frac{1}{\Omega} = S \right]$$
 (2.1.3)

Spezifischer Widerstand :
$$R = \rho_{\overline{A}}^{L} [\Omega]$$
 (2.1.4)

Leitfähigkeit(a) :
$$\sigma \frac{A}{I}[S]$$
 (2.1.5)

Leitfähigkeit(b) :
$$\sigma = \frac{1}{a}$$
 (2.1.6)

2.1.2 Energiebänder

Wellenlänge :
$$\frac{ch}{E} = \frac{c}{\nu} = \frac{c}{f}$$
 (2.1.7)

Mit h als Planksches Wirkungsquantum, c als Lichtgeschwindigkeit (siehe 3.7) und ν hier als Frequenz (siehe 3.1).

Photoneneergie :
$$\frac{1,240}{\lambda[\mu m]} = \frac{hc}{\lambda} [eV]$$
 (2.1.8)

h ist hier in eV einzusetzen.

Ionisierungs-
energie der i-ten :
$$E_i = -\frac{m_0 q^4}{8\varepsilon_0^2 h^2 i^2} \sim \frac{m_0}{(\varepsilon_0)^2}$$
 (2.1.9)
Schale

Gegebenenfalls muss m_0 mit der effektiven Masse multipliziert werden.

Radien der Energieniveaus :
$$r_i = \frac{\varepsilon_0 i^2 h^2}{q^2 \pi m_0}$$
 (2.1.10)

Aufzubringende Energie :
$$E_f = |E_i - E_j| = \left| \frac{m_0 q^4}{8\varepsilon_0^2 h^2} \left(\frac{1}{j^2} - \frac{1}{i^2} \right) \right|$$
 (2.1.11)

Größengleichung zu (2.1.11) :
$$E_f = \left| \frac{9,11kg(1,602As)^4}{8(8,885\frac{As}{Vm}6,633s)^2} \cdot 10^{-15} \left(\frac{1}{j^2} \frac{1}{i^2} \right) \right|$$
 (2.1.12)

2.1.3 Siliciumkristalle

Atomdichte Silizium :
$$N_{Si} = \frac{Atomzahl}{Volumen} = \frac{n_{cell}}{a^3}$$
 (2.1.13)

Größenwert zu
$$(2.1.13)$$
 : $=\frac{8}{(5,43\cdot10^{-8}cm)^3} = 5,00\cdot10^{22}\frac{1}{cm^3}$ (2.1.14)

Atomdichte Si Valenzelektr. :
$$N_{val} = 4N_{Si} = 2,00 \cdot 10^{23} \frac{1}{cm^3}$$
 (2.1.15)

Im Folgenden sei EZ eine Einheitszelle.

Atomanzahl Einheitszelle Si :
$$n_{cell} = \frac{8 \text{in Ecken}}{8EZ} + \frac{6 \text{in Flächen}}{2EZ} + \frac{4 \text{im Volumen}}{1EZ}$$
 (2.1.16)

2.2 Elektronen und Löcher in Halbleitern

2.2.1 Energie

Im Folgenden sei E_c die Leitungsbandkante und E_v die Valenzbandkante.

$$E = E_c$$
 : $E_{pot} = E_c \ und \ E_{kin} = 0$ (2.2.1)

$$E > E_c$$
 : $E_{pot} = E_c \text{ und } E_{kin} = \frac{1}{2} m_n^* v^2$ (2.2.2)

$$E = E_v$$
 : $E_{pot} = E_v \text{ und } E_{kin} = 0$ (2.2.3)

$$E < E_c$$
 : $E_{pot} = E_v \text{ und } E_{kin} = \frac{1}{2} m_p^* v^2$ (2.2.4)

Therm. Energie :
$$E_{th} = E_{kin} = \frac{1}{2}m_o v_{th}^2 \cdot 1.08 = \frac{3}{2}kT[J]$$
 (2.2.5)

2.2.2 Elektrisches Feld

El. Feld(a) :
$$\varepsilon = -\frac{d\varphi}{dx} = -\left(-\frac{1}{q}\frac{dE_{pot}}{dx}\right) = \frac{1}{q}\frac{dE_i}{dx}$$
 (2.2.6)

Mit i als Platzhaler für c oder v.

2.2.3 Differentielles Ohmsches Gesetz

El. Feld(b) :
$$\varepsilon = \frac{V}{l} \left[\frac{V}{cm} \right]$$
 (2.2.7)

Stromdichte :
$$J = \frac{I}{A} \left[\frac{A}{cm^2} \right]$$
 (2.2.8)

Mit (2.1.5) folgt:

Leitfähigkeit(c) :
$$\sigma = G \frac{l}{A} = \frac{I \cdot l}{V \cdot A} = \frac{J}{\varepsilon}$$
 (2.2.9)

Driftstromdichte :
$$J_{drift} = \sigma \varepsilon = \rho_e v_d = qnv_d$$
 (2.2.10)

Wobei ρ_e die Ladungsdichte und v_d die Driftgeschwindigkeit sind. Damit folgt

Leitfähigkeit(d) :
$$\sigma = qn\frac{v_d}{\varepsilon}$$
 (2.2.11)

Beweglichkeit :
$$\mu = \frac{v_d}{\varepsilon} \left[\frac{cm^2}{Vs} \right]$$
 (2.2.12)

Leitfähigkeit(f) :
$$\sigma = q\mu n$$
 (2.2.13)

2.2.4 Gesamtleitfähigkeit

Gesamtleitfähigkeit :
$$\sigma_{ges} = \sigma_n + \sigma_p = q\mu_n n + q\mu_p p$$
 (2.2.14)

2.2.5 Ladungsträgerkonzentration in den Bändern

Zustandsdichte :
$$D_C(E) = \frac{\sqrt{2}}{\pi^2 h^3} (m_n^*)^{\frac{3}{2}} \sqrt{E - E_c}$$
 (2.2.15)

Die in (2.2.15) formulierte Gleichung ist als Zustandsdichte pro Energieintervall zu verstehen.

Größengleichung zu (2.2.15) :
$$D_C(E) = 6.8 \cdot 10^{21} \left(\frac{m_n^*}{m_o}\right)^{\frac{3}{2}} \cdot \sqrt{(E - E_c) [eV]} \left[\frac{1}{eVcm^3}\right]$$
 (2.2.16)

Größengleichung zu
$$(2.2.15)$$
 im : $D_C(E) = 6.8 \cdot 10^{21} \left(\frac{m_p^*}{m_o}\right)^{\frac{3}{2}}$ Valenzband
$$\cdot \sqrt{(E_v - E) \left[eV\right]} \left[\frac{1}{eVcm^3}\right]$$
 (2.2.17)

Elektronenkon-
zentration :
$$n = \int_{E_c}^{\infty} D_c(E) \cdot f(E) dE$$
 (2.2.18)

Löcherkonzentration :
$$p = \int_{-\infty}^{E_v} D_v(E) f_h(E) dE$$
 (2.2.19)

mit f(E) als Besetzungswahrscheinlichkeit.

2.2.6 Fermi-Dirac-Verteilung

Fermi-Dirac- :
$$f(E) = \frac{1}{\frac{E - E_F}{e kT} + 1}$$
 (2.2.20)

Mit E_F als Fermi Energie.

$$E = E_F$$
 : $f(E = E_F) = \frac{1}{2}$ (2.2.21)

Fermi-Dirac-
Verteilung(b) :
$$f(E) := f_e(E)$$
 (2.2.22)

Fermi-Dirac-
Verteilung(c) :
$$f_h(E) = 1 - f_e(E)$$
 (2.2.23)

Fermi-Dirac-
Verteilung(d) :
$$f_h(E) + f_e(E) = 1$$
 (2.2.24)

2.2.6.1 Boltzmann-Näherung

Boltzmann-
Näherung(a) :
$$f_{e,Boltz}(E) = e^{-\frac{E - E_F}{kT}}$$
 (2.2.25)

Die Boltzmann-Näherung ist nur für den Fall $E-E_f>3kT$ zureichend genau.

$$E - E_F >> kT$$
 : $f_h(E) = 1 - f_e(E) \cong 1$ (2.2.26)

$$E_F - E >> kT$$
 : $f_e(E) = \frac{1}{\frac{E - E_F}{kT} + 1} \cong 1$ (2.2.27)

Prozentualer

Fehler der Boltzmann- :
$$F_{boltz,\%} = \frac{f(\Delta E) - f_{boltz}(\Delta E)}{f(\Delta E)}$$
 (2.2.28)

Näherung

2.2.6.2 Ladungsträgerkonzentration in der Boltzmann-Näherung

Elektronenkon-
zentration :
$$n = N_C e^{-\frac{E_C - E_F}{kT}}$$
 (2.2.29)

Lochkonzentration :
$$p = N_V e^{-\frac{E_F - E_V}{kT}}$$
 (2.2.30)

Effektive Zu-
standsdichte(a) :
$$N_C = 2 \left(\frac{2\pi m_n^* kT}{h^2} \right)^{\frac{3}{2}} \sim (m_n^* T)^{\frac{3}{2}}$$
 (2.2.31)

Effektive Zu-
standsdichte(b) :
$$N_V = 2\left(\frac{2\pi m_p^* kT}{h^2}\right)^{\frac{3}{2}} \sim \left(m_p^* T\right)^{\frac{3}{2}}$$
 (2.2.32)

Größengleichung zu (2.2.31) und :
$$N_{C,V} = 2,50 \cdot 10^{19} \left(\frac{m_{n,p}^*}{m_0}\right)^{\frac{3}{2}} \left(\frac{T[K]}{300}\right)^{\frac{3}{2}} [cm^{-3}]$$
 (2.2.33)

2.2.7 Massenwirkungsgesetz

Massenwir-
kungsgesetz(a) :
$$np = N_C N_V e^{-\frac{E_C - E_F}{kT}} e^{-\frac{E_F - E_V}{kT}}$$
 (2.2.34)

Bandlücke :
$$E_g = E_C - E_V$$
 (2.2.35)

(2.2.35) in (2.2.34) (wobei n_i die intrinsische Ladungsträgerdichte ist):

Massenwir-
kungsgesetz(b) :
$$np = N_C N_V e^{\frac{E_g}{kT}} = n_i^2$$
 (2.2.36)

Also gilt ganz allgemein (und zwar unabhängig von der Dotierung)

Massenwir-
kungsgesetz(c) :
$$np = n_i^2$$
 (2.2.37)

Intrinsische

Ladungsträger- :
$$ni = \sqrt{N_C N_V} \cdot e^{-\frac{E_g}{2kT}}$$
 (2.2.38)

dichte

2.2.7.1 Umformulierungen

$$E_C - E_F$$
 : $E_C - E_F = kT \cdot ln\left(\frac{N_C}{n}\right)$ (2.2.39)

$$E_F - E_V \qquad : \quad E_F - E_V = kT \cdot ln\left(\frac{N_V n}{n_i^2}\right) \tag{2.2.40}$$

2.2.8 Fermi-Niveau

Fermi-Niveau(a) :
$$E_{Fi} = \frac{EC + EV}{2} - \frac{kT}{2} ln\left(\frac{N_C}{N_V}\right)$$
 (2.2.41)

Mit (2.2.31) und (2.2.32) in (2.2.41) folgt:

Fermi-Niveau(b) :
$$E_{fi} = \frac{EC + EV}{2} - \frac{3}{4}kT \cdot ln\left(\frac{m_n^*}{m_p^*}\right)$$
 (2.2.42)

2.2.8.1 Umformulierungen

$$|E_{Fi} - E_V| = \frac{E_g}{2} - \frac{kT}{2} \cdot \ln\left(\frac{N_C}{N_V}\right) \tag{2.2.43}$$

$$E_C = E_F + E_g \Rightarrow \frac{E_C + E_V}{2}$$

$$= \frac{E_V + E_g + E_V}{2} = E_V + \frac{E_g}{2} \stackrel{Ev := 0V}{=} \frac{E_g}{2}$$
(2.2.44)

$$E_g = E_C - E_V = (E_C - E_F) + (E_F - E_V)$$

$$\Rightarrow E_C - E_F = E_g - (E_F - E_V)$$
(2.2.45)

2.2.9 Bandbesetzung im intrinsischen Halbleiter

Definiert man

$$n_e = D_C(E)f(E)dE (2.2.46)$$

wo n_e die Elektronenkonzentration pro Energieintervall beschreibt erhält man aus (2.2.18)

$$n = \int_{E_G}^{\infty} n_e dE \tag{2.2.47}$$

bzw. mit $p_e = D_V(E)(1 - f(E))$ aus (2.2.19)

$$p = \int_{-\infty}^{E_V} p_e dE \tag{2.2.48}$$

2.2.10 Bandbesetzung im extrinsischen Halbleiter

Aus der Annahme, dass alle Donatoren und Akzeptoren ionisiert seien, folgt

$$N_D^+ \approx N_D \qquad \qquad N_A^- \approx N_A \qquad (2.2.49)$$

Aus der Ladungsneutralität und (2.2.37) folgt

$$n = \frac{N_D^+ - N_A^-}{2} + \sqrt{\frac{(N_D^+ - N_A^-)^2}{4} + n_i^2}$$
 (2.2.50)

2.2.10.1 Wichtige Näherung zur Bestimmung der Minoritäten

Beispiel an einem n-typ Halbleiter: Mit (2.2.49) und

$$N_D >> N_A, \qquad N_D >> n_i \tag{2.2.51}$$

folgt dann:

$$n \approx N_D \tag{2.2.52}$$

Mit (2.2.37) lassen sich so die Minoritäten bestimmen

$$p = \frac{n_i^2}{n} (2.2.53)$$

2.3 Ströme im Halbleiter

2.3.1 Driftstrom

Def.: Erfolgt die Ladungsträgerbewegung als Folge einer elektrischen Feldstärke, so spricht man im Halbleiter von einem Driftstrom.

Driftstrom Elektronen :
$$J_{drift,n} = q\mu_n n\varepsilon = \sigma_n \varepsilon \left[\frac{A}{m^2}\right]$$
 (2.3.1)

Driftstrom
Löcher :
$$J_{drift,p} = q\mu_n p \boldsymbol{\varepsilon} = \sigma_p \boldsymbol{\varepsilon}$$
 (2.3.2)

Gesamtdrift-
strom :
$$J_{drift} = J_{drift,n} + J_{drift,p} = (\sigma_n + \sigma_p)\varepsilon = \frac{V}{l\rho}$$
 (2.3.3)

2.3.2 Beweglichkeit

Drift-
geschwindigkeit
$$n$$
: $v_{d,n} = -\mu_n \varepsilon$ (2.3.4)

Drift-
geschwindigkeit
$$p$$
: $v_{d,p} = +\mu_p \varepsilon$ (2.3.5)

2.3.3 Partikelstromdichte

Partikelstrom-
dichte :
$$J_{part}(x) = -D\frac{dM}{dx} \left[\frac{cm^2}{s} \right]$$
 (2.3.6)

2.3.4 Diffustionsstromdichte

Diffusionsstrom-
dichte(a) :
$$J_{diff} = qJ_{part}$$
 (2.3.7)

Diffusions-
stromdichte
$$n$$
: $J_{diff,n} = -qJ_{part} = -q\left(-D_n\frac{dn}{dx}\right) = qD_n\frac{dn}{dx}$ (2.3.8)

Diffusions-
stromdichte
$$p$$
: $J_{diff,p} = qJ_{part} = q\left(-D_p\frac{dn}{dx}\right) = -qD_p\frac{dp}{dx}$ (2.3.9)

2.3.5 Einsteingleichung

Diffusions-
konstante
$$n$$
: $D_n = \mu_n \frac{kT}{q}$ (2.3.10)

Diffusions-
konstante
$$p$$
 : $D_p = \mu_p \frac{kT}{q}$ (2.3.11)

kT ist jeweils in Joule einzusetzen. Liegt der Wert von kT in eV vor, muss auf das normieren auf die Elementarladung verzichtet werden!

2.3.6 Gesamtstrom im Halbleiter

Elektronen-
stromdichte :
$$J_n = q\mu_n n\varepsilon + qD_n \frac{dn}{dx} = \sigma_n \varepsilon + qD_n \frac{dn}{dx}$$
 (2.3.12)

Löcher-
stromdichte :
$$J_p = q\mu_p p \varepsilon + q D_p \frac{dp}{dx} = \sigma_p \varepsilon + q D_p \frac{dp}{dx}$$
 (2.3.13)

Gesamtstrom-
dichte :
$$J_{tot} = J_n + J_p$$
 (2.3.14)
$$= J_{drift,n} + J_{diff,n} + J_{drift,p} + J_{diff,p}$$

In den meisten Bauelementen kann die Driftstromdichte für Minoritäten vernachlässigt werden.

2.3.7 Rekombination und Generation

Injektion von Ladungsträgern :
$$np > n_i^2$$
 (2.3.15)

Extraktion von Ladungsträgern :
$$np < n_i^2$$
 (2.3.16)

2.3.7.1 Niederinjektion

Lochkonzentration vor :
$$p_0 = \frac{n_i^2}{n_0} = 10^5 cm^{-3}$$
 (2.3.17)
Injektion

Niederinjektion bedeutet, dass sich die Majoritätenkonzentration während dem Betreiben des Bauelements (praktisch) nicht ändert. (Vgl. Werner 2017)

Näherung Minoritäten :
$$p \approx \Delta p$$
 (2.3.18)

Näherung Majoritäten :
$$n \approx n_0$$
 (2.3.19)

"PN-Übergänge, npn- und pnp Transistoren, Thyristoren, etc. betreibt man normalerweise im Bereich der Niederinjektion. "(Werner 2017)

2.3.7.2 Minoritätsladungsträgerlebensdauer/ -diffusionslänge

Minoritätsladungsträgerle- :
$$\Delta p(t) = \Delta p(t_0)e^{-\frac{t-t_0}{\tau}}$$
 (2.3.20) bensdauer

Wobei $\tau = \frac{1}{K_1}$ den zeitlichen Abfall von p charackterisiert und Minoritätsladungsträgerlebensdauer heißt. (Vgl. Werner 2017)

$$\Rightarrow \tau = \frac{\Delta p}{\frac{d\Delta p}{dt}}\Big|_{t=0} \tag{2.3.21}$$

Minoritätsladungsträgerdif:
$$\Delta p(x) = \Delta p(x_0) e^{-\frac{x-x_0}{L}}$$
 (2.3.22) fusionslänge

Wobei $L = \frac{1}{K_2}$ den räumlichen Abfall der Überschusskonzentration charackterisiert und Minoritätsladungsträgerdiffusionslänge heißt. (Vgl. Werner 2017)

Diffusionslänge Löcher :
$$L_p = \sqrt{D_p \tau_p}$$
 (2.3.23)

Diffusionslänge Elektronen :
$$L_n = \sqrt{D_n \tau_n}$$
 (2.3.24)

2.3.8 Quasi-Fermi-Niveaus (QFN oder Imref)

Liegt Injektion oder Extraktion vor, also gilt $np > n_i^2$ oder $np < n_i^2$, gelten die Zusammenhänge aus (2.2.36) nicht mehr, da hier ein gleiches Fermi-Niveau für Löcher und Elektronen vorrausgesetzt wird. Um das zu korrigieren werden für Löcher und Elektronen Quasiferminiveaus eingeführt.

Elektronenkon-
zentration :
$$n = N_C e^{-\frac{E_C - E_{Fn}}{kT}}$$
 (2.3.25)

Lochkonzentration :
$$p = N_V e^{-\frac{E_{Fp} - E_V}{kT}}$$
 (2.3.26)

Massenwir-
kungsgesetz(b) :
$$np = N_C N_V e^{\frac{E_g}{kT}} e^{\frac{E_{Fn} - E_{Fp}}{kT}}$$

$$= n_i^2 e^{\frac{E_{Fn} - E_{Fp}}{kT}}$$

$$(2.3.27)$$

Es gilt:

Gleichgewicht :
$$np = n_i^2 \Leftrightarrow E_{Fn} = E_{Fp} = E_F$$
 (2.3.28)

Injektion :
$$np > n_i^2 \Leftrightarrow E_{Fn} > E_{Fp}$$
 (2.3.29)

Extraktion :
$$np < n_i^2 \Leftrightarrow E_{Fn} < E_{Fp}$$
 (2.3.30)

Elektronen-
stromdichte :
$$J_n(x) \stackrel{(2.3.12),(2.2.29)}{=} \sigma_n(x) \frac{1}{q} \frac{dE_{Fn}}{dx}$$
 (2.3.31)

Löcherstrom-
dichte :
$$J_p(x) \stackrel{(2.3.13),(2.2.30)}{=} \sigma_p(x) \frac{1}{q} \frac{dE_{Fp}}{dx}$$
 (2.3.32)

2.4 Elektrostatik des PN-Übergangs

2.4.1 Poisson-Gleichung

Poisson-
Gleicunung :
$$\frac{d^2\varphi(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon_d}$$
 (2.4.1)

Mit $\varphi(x)$ als Potential und $\rho_Q(x)$ als räumliche Ladungsdichte.

Dielektrizitäts-
konstante :
$$\varepsilon_d = \varepsilon_r \varepsilon_0$$
 (2.4.2)

Mit

Potentielle Energie(a) :
$$\varphi(x) = -\frac{1}{q}E_{pot}(x)$$
 (2.4.3)

folgt

Potentielle Energie(b) :
$$\frac{1}{q} \frac{d^2 E_{pot}(x)}{dx^2} = \frac{\rho_Q(x)}{\varepsilon_d}$$
 (2.4.4)

Mit (2.2.6) und (2.4.1) folgt

differentielles El. Feld :
$$\frac{d\boldsymbol{\varepsilon}(x)}{dx} = \frac{\rho_Q(x)}{\varepsilon_d}$$
 (2.4.5)

2.4.2 Ladungsneutralität und elektrostatisches Helebgesetz

Verarmungsnäherung :
$$\rho_Q(x) = \begin{cases} -qN_A & \text{für } -dp \le x < 0 \\ +qN_D & \text{für } 0 < x \le d_n \end{cases}$$
 (2.4.6)

Wobei sich der pn-Übergang zwischen $-d_p$ und d_n befindet und somit $-d_p$ und d_n die Grenzen der RLZ darstellen.

Flächenladungs-

dichte links v. :
$$Q_L = \rho_L d_p = -q N_A d_P$$
 (2.4.7)
pn-Übergang

Flächenladungs-

dichte rechts v. :
$$Q_R = \rho_R d_n = +q N_D d_n$$
 (2.4.8)
pn-Übergang

Flächenladung

gesamt :
$$G_{F,total} = Q_L + Q_R = 0$$

$$= -qN_Ad_p + qN_Dd_n$$
 (2.4.9)

Folgerung aus
$$(2.4.9)(a) : N_A d_p = N_D d_n (2.4.10)$$

Folgerung aus
$$(2.4.9)(b)$$
 : $\frac{d_p}{d_n} = \frac{N_D}{N_A}$ (2.4.11)

2.4.3 Potential und Feldstärke

Elektrische Feldstärke(a1) :
$$\varepsilon_L(x) = -\frac{q}{\varepsilon_d} N_A(x + d_p)$$
 (2.4.12)

Elektrische Feldstärke(b2) :
$$\varepsilon_R(x) = \frac{q}{\varepsilon_d} N_D(x - d_n)$$
 (2.4.13)

Maximale el. Feldstärke(a) :
$$\varepsilon_{max} = \varepsilon(x=0) = \varepsilon_{L,R}(x=0)$$
 (2.4.14)

Elektrische Feldstärke(a2) :
$$\varepsilon_L(x) = \varepsilon_{max} \left(1 + \frac{x}{d_p} \right) \text{ für } -d_p \le x \le 0$$
 (2.4.15)

Elektrische Feldstärke(b2) :
$$\varepsilon_R(x) = \varepsilon_{max} \left(1 - \frac{x}{d_n} \right)$$
 für $0 \le x \le d_n$ (2.4.16)

2.4.4 Diffusionsspannung und Weite der RLZ

Weite(a) :
$$w = d_n + d_p$$
 (2.4.17)

Diffusions span-
nung(a) :
$$V_{bi} = \varphi_R(d_n) = -\frac{\varepsilon_{max}}{2}(d_n + d_p) = -\frac{\varepsilon_{max}}{2}w$$
 (2.4.18)

Mit (2.4.14) erhält man

Diffusions span-
nung(b) :
$$V_{bi} = \frac{qN_A}{2\varepsilon_d}d_p(d_n + d_p)$$
 (2.4.19)

Mit (2.4.10) erhält man schließlich

Teilweite
$$d_p$$
 : $d_p = \sqrt{\frac{2\varepsilon_d N_D V_{bi}}{q N_A (N_A + N_D)}} \sim \sqrt{V_{bi}}$ (2.4.20)

Weite(b) :
$$w = dp \left(1 + \frac{N_A}{N_D}\right)$$
 (2.4.21)

Weite(c) :
$$w = \sqrt{\frac{2\varepsilon_d}{q} \frac{N_A + N_D}{N_A N_D} V_{bi}} \sim \sqrt{V_{bi}}$$
 (2.4.22)

Folgerung(a) :
$$w \uparrow \Rightarrow V_{bi} \uparrow$$
 (2.4.23)

Diffusions span-

$$\operatorname{nung}(\mathbf{c}) : qV_{bi} = kT \ln \left(\frac{n_{n0}p_{p0}}{n_i^2} \right) \approx kT \ln \left(\frac{N_A N_D}{n_i^2} \right)$$
(2.4.24)

Diffusions span-

$$\operatorname{nung}(\mathbf{d}) \qquad : \quad V_{bi}^{0} = \frac{kT}{q} \ln \left(\frac{N_{D} N_{A}}{n_{i}^{2}} \right)$$
(2.4.25)

Diffusions span-

$$\operatorname{nung}(e) : V_{bi} = V_{bi}^{0} - V$$
(2.4.26)

Aus (2.4.10) und (2.4.17) folgen

Relative Weite
$$p$$
: $d_p = w \frac{N_D}{N_A + N_D}$ (2.4.27)

Relative Weite
$$n$$
: $d_n = w \frac{N_A}{N_A + N_D}$ (2.4.28)

Maximale el. Feldstärke(b) :
$$|\varepsilon_{max}| = 2\frac{V_{bi}}{w}$$
 (2.4.29)

Flächenladungs-
dichte :
$$Q_F = |Q_R| = |Q_L| = qN_A d_p = qN_D d_n$$

$$= q \frac{N_A N_D}{N_A + N_D} w = \sqrt{2\varepsilon_d \frac{N_A N_D}{N_A + N_D} q V_{bi}}$$
 (2.4.30)

Kennlinie des pn-Übergangs 2.5

Minoritätenkon-
zentration(a) :
$$\Delta p \Big|_{d_n} = p_n - p_{n0} = p_{n0} \left(e^{\frac{qV}{kT}} - 1 \right)$$
 (2.5.1)

Minoritätenkon-
zentration(b) :
$$\Delta n|_{-d_p} = n_p - n_{p0} = p_{n0} \left(e^{\frac{qV}{kT}} - 1\right)$$
 (2.5.2)

Stromdichte
$$n$$
: $J_n(-d_p) = J_{n0}\left(e^{\frac{qV}{kT}} - 1\right)$ (2.5.3)

Stromdichte
$$p$$
: $J_p(d_n) = J_{p0} \left(e^{\frac{qV}{kT}} - 1 \right)$ (2.5.4)

Bandlücke :
$$E_g = -\frac{\ln(J_0(T_4)) - \ln(J_0(T_2))}{\frac{1}{T_1} - \frac{1}{T_2}}$$
 (2.5.5)

Stromdichte(a) :
$$J = \left(\frac{qD_n}{L_n}n_{p0} + \frac{qD_p}{L_p}p_{n0}\right)\left(e^{\frac{qV}{kT}} - 1\right)$$
 (2.5.6)

Mit $p_{n0} = \frac{n_i^2}{N_D}$ und $n_{po} = \frac{n_i^2}{N_A}$ folgt

Stromdichte(b) :
$$J = qn_i^2 \left(\frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D}\right) \left(e^{\frac{qV}{kT}} - 1\right)$$
 (2.5.7)

Die e-Funktion wird bei negativen Spannungen sehr klein, das impliziert direkt einen sehr kleinen Stromfluss beim Sperrverhalten. Bei einer großen Bandlücke erhält man so ein sehr gutes Sperrverhalten.

Sperrsättigungs-
stromdichte :
$$J_0 = q n_i^2 \left(\frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right)$$
 (2.5.8)

Stromdichte(c) :
$$J = J_0 \left(e^{\frac{qV}{kT}} - 1 \right)$$
 (2.5.9)

Elektronensperr- :
$$J_{no} = q n_i^2 \left(\frac{D_n}{L_n N_A}\right)$$
 (2.5.10) sättigungsstromdichte

Löchersperrsät-

tigungsstrom- :
$$J_{po} = q n_i^2 \left(\frac{D_p}{L_p N_D}\right)$$
 (2.5.11)

Bei stark unsymmetrischer Dotierung wird die Sperrsättigungsstromdichte ebenso stark unsymmetrisch und es kann vereinfacht werden. Im Fall $N_A >> N_D$ z.B:

Näherung(a) :
$$J_0 = q n_i^2 \left(\frac{D_p}{L_p N_D}\right)$$
 (2.5.12)

Näherung(b) :
$$J = \frac{qD_p}{L_p} \frac{n_i^2}{N_D} \left(e^{\frac{qV}{kT}} - 1 \right)$$
 (2.5.13)

 $\overline{15}$ Florian Leuze

2.5.1 Kapazität des pn-Übergangs

Kapazität(a) :
$$C = \frac{dQ}{dW}$$
 (2.5.14)

Kapazität(b) :
$$C_{platt} = \varepsilon_r \varepsilon_0 \frac{A}{w} = \varepsilon_d \frac{A}{w}$$
 (2.5.15)

Kapazität der
$$\operatorname{RLZ}(a)$$
 : $C_{RLZ} = A\sqrt{\frac{q\varepsilon_d}{2} \frac{N_A N_D}{N_A + N_D}} \sqrt{\frac{1}{V_{bi}^0 - V}}$ (2.5.16)

Mit (2.4.26) folgt

Kapazität der RLZ(b) :
$$C_{RLZ} = A \frac{\varepsilon_d}{\sqrt{\frac{q\varepsilon_d}{2} \frac{N_A + N_D}{N_A N_D} V_{bi}}}$$
 (2.5.17)

Setzt mein weiter (2.4.22) ein erhält man schließlich

Kapazität der
$$\operatorname{RLZ}(c)$$
: $C_{RLZ} = A \frac{\varepsilon_d}{w}$ (2.5.18)

Diffusionskapa-

zität der :
$$C_{diff} = \frac{dQ_{min}}{dV} = A \frac{q^2}{kT} L_p p_{n0} e^{\frac{qV}{kT}}$$
 (2.5.19)

Minoritäten

2.5.2 Kleinsignalleitwert des pn-Übergangs

Kleingisnalleit-
wert :
$$G_d = \frac{dI}{dV} = A\frac{dJ}{dV}$$
 (2.5.20)

Differnetieller Leitwert :
$$G_d = A \frac{dJ}{dV} = A \frac{q}{kT} J$$
 (2.5.21)

2.5.3 Abweichung in der Vorwärtskennlinie

2.5.3.1 Rekombinationsströme

Rekombinationssperrsätti: $J_{ro} = qn_i \frac{w}{2\tau_{RLZ}}$ (2.5.22) gungsstrom

Rekombinations :
$$J_r = J_{ro} \left(e^{\frac{qV}{2kT}} - 1 \right)$$
 (2.5.23)

Totale Stromdichte(a) :
$$J_t = J_0 \left(\frac{qV}{kT} - 1 \right) + J_{ro} \left(\frac{qV}{2kT} \right)$$
 (2.5.24)

Verhältnis(a) :
$$\frac{J_{id}}{J_r} = \frac{J_0}{J_{ro}} \frac{qV}{2kT}$$
 (2.5.25)

Mit $\tau_{RLZ} \approx \tau$ folgt mit $L = \sqrt{D\tau}$ (siehe (2.3.23), (2.3.24))

Verhältnis(b) :
$$\frac{J_{id}}{J_r} = \frac{2n_i}{w} \left(\frac{L_n}{N_A} + \frac{L_p}{N_D} \right) \frac{qV}{2kT}$$
 (2.5.26)

Bei

$$\frac{L_n}{N_A} >> \frac{L_p}{N_D}$$

gilt

Näherung(a) :
$$\frac{J_{id}}{J_r} = \frac{2n_i}{w} \frac{L_n}{N_A} \frac{qV}{2kT}$$
 (2.5.27)

2.5.3.2 Idealität

Totale Stromdichte(b) :
$$J_{to}\left(\frac{qV}{n_{id}kT} - 1\right)$$
 (2.5.28)

Idealität :
$$n_{id} = \frac{\frac{dV}{dlog(J_t)}}{2,3026 \cdot \frac{kT}{q}}$$
 (2.5.29)

3 Anhänge

${\bf 3.1} \quad {\bf Abk\"{u}rzungen/Formelzeichen}$

Zeichen	Einheit	Bedeutung
A	m^2	Fläche
a	$\frac{m}{s^2}$	Beschleunigung
b	$\frac{cm^2}{Vs}$	Ladungsträgerbeweglichkeit
d	m	Dicke
D_n	$\frac{m^2}{s}$	Diffusionskonstante für Elektronen
D_p	$\frac{m^2}{s}$	Diffusionskonstante für Löcher
e	C	Elementarladung
E	$\frac{N}{C} = \frac{VAs}{mAs} = \frac{V}{m}$	Elektrische Feldstärke
E_c	eV	Leitungsbandkante
E_F	eV	Fermi-Energie
E_g	eV	Energie der Bandlücke
E_v	eV	Valenzbandkante
f	Hz	Frequenz
$ec{F}$	$N = \frac{kgm}{s^2}$	Kraft
G	$\frac{A}{V} = \frac{1}{\Omega} = S$	Leitwert
h	eVs	Plank-Konstante
\hbar	eVs	Planksches Wirkungsquantum
i	A	Elektrischer Strom
j	$\frac{A}{m2}$	Elektrische Stromdichte
J_n	$\frac{A}{m2}$	Elektronenstromdichte
J_p	$\frac{A}{m2}$	Löcherstromdichte
J_{diff}	$\frac{A}{m2}$	Diffusionsstromdichte
J_{part}	$\frac{A}{m2}$	Partikelstromdichte
J_to	$\frac{A}{m2}$	Totale Stromdichte
J_r	$\frac{A}{m2}$	Rekombinationsstromdichte

Fortsetzung auf Folgeseite

 ${\bf Tabelle~1:~Abk\"{u}rzungen/Formelzeichen}$

Zeichen	Einheit	Bedeutung
J_{drift}	$\frac{A}{m2}$	Driftstromdichte
l	m	Länge
L	m	Minoritätsladungsträgerdiffusionslänge
L_n	m	Diffusionslänge Elektronen
L_p	m	Diffusionslänge Löcher
n		Elektronenkonzentration
n_i		Intrinsische Ladungsträgerdichte
n_{id}		Idealität einer Diode
N_A	m^{-3}	Akzeptorendichte
N_D	m^{-3}	Donatorendichte
N_C	cm^{-3}	Effektive Zustandsdichte der Elektronen
N_V	cm^{-3}	Effektive Zustandsdichte der Löcher
p		Lochkonzentration
q	C	Probeladung (in der Regel $= e$)
\vec{r}	m	Weg
r	Ω	Differentieller Widerstand
R	Ω	Widerstand
R_F	$\frac{\Omega}{square}$	Flächenwiderstand
U	V	Elektrische Spannung
U_g	V	Gesamtspannung
v	$\frac{m}{s}$	Geschwindigkeit
v_D, v_d	$\frac{m}{s}$	Driftgeschwindigkeit
w	m	Weite bzw. Breite
\overline{W}	$Ws = J = \frac{kgm^2}{s^2}$	Arbeit bzw. Energie
α	$\frac{1}{\circ C}$	Temperturkoeffizient des Ohmwiderstandes
ν	Hz	Hier Frequenz der Welle
ρ	$\frac{Vcm}{A} = \Omega cm$	Spezifischer Widerstand

Fortsetzung auf Folgeseite

 ${\bf Tabelle~1:~Abk\"{u}rzungen/Formelzeichen}$

Zeichen	Einheit	Bedeutung
$ ho_e$		Ladungsdichte
κ	$\frac{1}{\Omega cm} = \frac{S}{cm}$	Spezifische Leitfähigkeit
ε_0	$\frac{As}{Vm}$	Dielektrizitätskonstante im Vakuum
φ	V	Elektrisches Potential
τ	S	Stoßzeit
τ	S	Minoritätsladungsträgerlebensdauer
μ	$\frac{cm^2}{Vs}$	Beweglichkeit

3.2 Wichtige Donatoren und Akzeptoren

Ch. Sym.	Name	Тур
В	Bor	Akzeptor
Al	Alluminium	Akzeptor
Ga	Gallium	Akzeptor
In	Indium	Akzeptor
P	Phosphor	Donator
As	Arsen	Donator
Sb	Antimon	Donator
Bi	Wismut	Donator

3.3 Effektive Massen

Band	Wert	Element
$\frac{m_n^*}{m_0}$	1,08	Silizium
$\frac{m_n^*}{m_0}$	1,561	Germanium
$\frac{m_n^*}{m_0}$	1,067	Gallium-Arsenid
$\frac{m_p^*}{m_0}$	1,10	Silizium
$\frac{m_p^*}{m_0}$	1, 291	Germanium
$\frac{m_p^*}{m_0}$	1,473	Gallium

3.4 Bandlücken wichtiger Materialien

Zeichen	Wert in eV	Material
E_{g,SiO_2}	9	Siliziumdioxid
$E_{g,C}$	5,47	Diamant
$E_{g,CdS}$	2,42	Cadmiumsulfid
$E_{g,GaP}$	2,26	Galliumphosphid
$E_{g,GaAs}$	1,42	Gallium-Arsenid
$E_{g,InP}$	1,35	Indiumphosphid
$E_{g,Si}$	1,12	Silizium
$E_{g,Ge}$	0,66	Germanium
$E_{g,InSb}$	0, 17	Indiumantimonid

3.5 Eckdaten wichtiger Halbleiter

Ch. Sym.	E_g in $[eV]$	N_C in $[cm^{-3}]$	N_V in $[cm^{-3}]$	n_i in $[cm^{-3}]$
Si	1,124	$2,81 \cdot 10^{19}$	$2,88 \cdot 10^{19}$	$1,04 \cdot 10^{10}$
Ge	0,67	$1,05 \cdot 10^{19}$	$3,92 \cdot 10^{18}$	$1,55\cdot 10^{13}$
GaAs	1,424	$4,33 \cdot 10^{17}$	$8,13\cdot 10^{18}$	$2,04 \cdot 10^6$

3.6 Niederfeld- und Niederdotierungsbeweglichkeiten (T = 300K)

n/p	Si	Ge	GaAs
$\mu_n \left[\frac{cm^2}{Vs} \right]$	1340	3900	8000
$\mu_p \left[\frac{cm^2}{Vs} \right]$	460	1900	400

3.7 Konstanten

Ze.	Wert	Bedeutung
c	$2,998\cdot 10^8 [fracms]$	Lichtgeschwindigkeit
e,q	$1,602176\cdot 10^{-19} [C]$	Elementarladung
e,q	$1,602176\cdot 10^{-19} [J]$	Elementarladung
h	$6,63 \cdot 10^{-34} [Js]$	Planck-Konstante
h	$4,136\cdot 10^{-15} [eVs]$	Planck-Konstante
\hbar	$\frac{h}{2\pi}$	Plancksches Wirkungsquantum
k	$8,6173 \cdot 10^{-5} \left[\frac{eV}{K} \right]$	Boltzmann Konstante
kT	25,85[meV]	mit der Boltzmann Konstante und $T=300K$
m_0	$9,11\cdot 10^{-31}[kg]$	Elektronenmasse
ε_0	$8,854\cdot 10^{-12} \left[\frac{As}{Vm}\right]$	Dielektrizitätskonstante des Vakuuums
$arepsilon_{Si}$	11,90	Korrekturfaktor Dielektrizitätskonstante für Silizium

3.8 Nachwort

Diese Formelsammlung wurde nahezu ausschließlich auf Basis des Mikroelektroni-I Scripts von Prof. Dr. Jürgen H. Werner erstellt. Nahezu sämtliche Formeln und Werte sind direkt dem Script entnommen und wurden nicht für diese Sammlung eigenständig hergeleitet. Für ausführlichere Beschreibungen empfehle ich sehr das eben angesprochene Script zu studieren, dass unter (Werner 2017) im Literaturverzeichnis zu finden ist. Diese Formelsammlung ist einzige ein Hilfsmittel für mich und meine Kommilitonen und sehr wahrscheinlich nicht fehlerfrei. Sollten Fehler gefunden werden, würde ich mich sehr freuen wenn man mir das kurz in einer E-Mail (f.leuze@outlook.de) mitteilen würde, damit ich entsprechende Korrekturen vornehmen kann.

4 Literatur

Werner, P. D.-N. J. H. (2017), Mikroelektronik I. Vorlesungsscript.