

CRYPTOCURRENCY PRICE PREDICTION

Presented by: Mime LIU

Agenda

Key Talking Points

••••	Why do i do this project	••••	<u>Model</u>

- <u>Tech stack used and idea flows</u> Findings and Reflections
- key points/background knowledge
 Challenges and key take-aways

Huge market

Pertaning to Machine Learning

Personal interest

Readily available big data

Tech Stack

Idea flow / Framework

01 HTML- user interface

General data Analysis and Visualisation

Machine learning

Key points

2021-05-08	58803.77580865
2021-05-09	58232.31614190
2021-05-10	55859.79754454
2021-05-11	56704.57305850
2021-05-12	49150.53387514
2021-05-13	49716.19160254
2021-05-14	49880.53342038
2021-05-15	46760.18656071
2021-05-16	46456.05847448
2021-05-17	43537.51138918
2021-05-18	42909.40092517

Date

11 data
only 1 variable
date is either index
or not able to be used in study

```
# define functions to help select the right df/data and split the test/traing data accordingly
# for bitcoin data

df=concat_df.loc[concat_df['Name'] == 'Bitcoin',['Close']]
# df=df.query('index >= 20180101')
print(df.shape)
split_row = len(df) - int(0.2 * len(df))
train = df.iloc[:split_row].values
test = df.iloc[split_row:].values
print(train.shape, test.shape)
```

Have to set a time_step/lookback

```
x_train, y_train = [], []
for i in range(60,len(train)):
    x_train.append(scaled_data[i-60:i,0])
    y_train.append(scaled_data[i,0])

x_train = np.array(x_train)
    x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],1))
    y_train=np.array(y_train)
    y_train=y_train.reshape(-1,1)
```


Actual data My prediction

2021-07-30	\$750,407,963,580	\$28,717,414,113	15/7/21	33200.60945
2021-07-29	\$751,371,299,911	\$41,369,107,423	16/7/21	33195.65697
2021-07-28	\$732,311,951,673	\$36,401,287,454	17/7/21	33190.81631
2021-07-27	\$701,921,012,035	\$53,550,491,998	18/7/21	33186.08495
			19/7/21	33181.46006
2021-07-26	\$664,681,184,169	\$20,929,083,221	20/7/21	33176.9392
2021-07-25	\$642,012,590,041	\$22,120,323,672	21/7/21	33172.51984
2021-07-24	\$627,747,173,675	\$22,937,379,735	22/7/21	33168.19936
2021-07-23	\$607,621,607,805	\$19,741,588,059	23/7/21	33163.97562
2021-07-22	\$605,357,009,417	\$29,070,652,060	24/7/21	33159.84611
2021-07-21	\$561,743,228,117	\$23,000,299,062	25/7/21	33155.80879
2021-07-20	\$580,252,472,383	\$20,095,540,828	26/7/21	33151.86123
2021-07-19	\$597,872,278,369	\$17,742,105,808	27/7/21	33148.00152
2021-07-18	\$592,581,931,071	\$17,715,455,995	28/7/21	33144.22732
2021-07-17	\$588,495,008,676	\$22,671,859,963	29/7/21	33140.53681
2021-07-16	\$595,342,431,374	\$21,557,729,227	30/7/21	33136.92798

- rms=np.sqrt(np.mean(np.power((test-closing_price_transformed),2)))
 rms
- C→ 2666.9774646170504

Errors

```
Interrupt execution (%/Ctrl+M I) cell executed since last change started at 16:31 (0 minutes ago)

MSE = mean_squared_error(test, closing_price)

print(f'MSE score is {MSE}.')

print(f'MAE score is {MAE}.')

MSE score is 771048404.1123757.

MAE score is 1483.642948310698.
```


ther findin

Acceptable test result however prediction was not ideal, indicating many other overlooked factors?

Issues of overtfitting

Need a bit more trialling and erroring to find out within what date range the prediction would be more accurate etc.

Time series Machine learning was a brand new thing

Unable to use Tensorflow from the local machine, faced with unfamiliarity with Colab, and time pressure

Stuck at the front end to back end part

Challenges

