Pompproef Griftpark

1 Algemeen

1.1 Inleiding

Het Griftpark, de locatie van een voormalige stadgasfabriek, heeft een dermate verontreinigde ondergrond dat in de jaren 90 een cement-bentonietwand (schermwand) tot -56 [m NAP] is geplaatst om te voorkomen dat de verontreiniging lokale drinkwaterbronnen kon bereiken.

Na plaatsing is geregeld onderzoek gedaan naar de afdichting van de bodem (een natuurlijke kleilaag) en de continuïteit van de afdichting van de schermwand.

In een van deze onderzoeken is een pompproef gehouden waar in een afstudeeronderzoek over is gepubliceerd¹. De gegevens in deze rapportage worden gebruikt om de pompproef na te bouwen in TTIM². Dit laatste is niet bedoeld om een controle berekening uit te voeren op de pompproef, maar om de mogelijkheden van TIM weer te geven.

Voor de invoer (de laagopbouw) in de TTIM module is sondering CPT000000017440, op 15 meter afstand van B20, gebruikt (figuur 1).

Figuur 1 Ligging B20 en CPT...17440

De bewerkte sondering is opgenomen in figuur 2. Hierin is tevens de laagtypecodering opgenomen, de laagindeling conform het NHI³ en het DGM⁴.

¹ Pumping test analysis performed in the Griftpark's subsurface, Utrecht, the Netherlands (uu.nl)

² tim-groundwater · GitHub

³ Nederlands Hydrologisch Instrumentarium (nhi.nu)

⁴ Digitaal Geologisch Model: DGM | DINOloket

Figuur 2 Bewerking Sondering

2 Ondergrond en grondwater

2.1 Ondergrondopbouw

Op basis van sonderingen opgenomen in het Dinoloket van TNO is de van de profiellijn (paarse lijn in figuur 3) een overzicht gemaakt van de bodemtypes die zijn gesondeerd⁵. Dit overzicht is opgenomen in figuur 4.

Figuur 3 Overzicht schermwand (zwart lijn met cirkels) en profiellijn (paarse lijn)

⁵ http://www.rvde.nl/pdf/Python_bodemklassen.pdf

Figuur 4 Bodemtypes en filterstellingen (f1...f4)

In figuur 4 is een aantal zwarte lijnen getrokken die de mogelijke indeling van het pakket lemen, kleien, fijne zanden en lokaal grove zanden vertegenwoordigen die gezamenlijk de bovenzijde van de Tegelen afzettingen (T3 en T4⁶) vormen. Let ook op de indicatie van slecht gesorteerd zand. Het gehele pakket onder -37 [m NAP] vormt uiteindelijk de onderzijde van de kuip. De schermwand staat tot -56 [m NAP].

3 Uitgangspunten

In de rapportage⁷ wordt, naast een beschrijving van de meetpunten, filterdiepten, debieten en peilbuismetingen, de vraag gesteld of de bodem van de kuip deels open is en/of de schermwand meer doorlatend is dan gedacht.

Hiertoe is een pompproef uitgevoerd op 1 bron, B20, die een debiet onttrok van 10 [m³/uur], gecombineerd met twee bronnen (B21/B22) die respectievelijk 3,5 en 4 [m³/uur] onttrokken. De 3 bronnen bij elkaar staan over het algemeen gelijktijdig aan om een onderdruk te creëren in de kuip. Hiervoor is een debiet tussen de 9 [m³/uur] en 14 [m³/uur] ingesteld⁸.

Op basis van een complex schakelschema zijn de debieten veranderd en de daaruit voortkomende gemeten. Deze schakelingen zijn in TTIM ingebouwd.

Datum	Tijd	B20	B21+B22
17-02-22	05:49	OFF	ON
24-02-22	09:25	ON	ON
03-03-22	06:55	OFF	ON
10-03-22	07:30	ON	ON
17-03-22	08:15	OFF	ON
31-03-22	07:30	ON	ON
14-04-22	13:43	OFF	ON
24-04-22	21:30	OFF	OFF
09-05-22	11:30	OFF	ON
10-05-22	11:30	ON	ON
13-05-22	17:40	OFF	OFF
24-05-22	10:40	ON	ON

Tabel 1 Schakelschema

⁶ http://www.rvde.nl/pdf/2%20Tegelen%20afzettingen.pdf

⁷ Pumping test analysis performed in the Griftpark's subsurface, Utrecht, the Netherlands (uu.nl)

⁸ An Evaluation of the In-Situ Hydraulic Conductivity of Cement-Bentonite Walls | TU Delft Repository info@rvde.nl - 5 - 16-9-2024

De locaties van de peilbuizen en bronnen is opgenomen in figuur 5.

Figuur 5 Locaties meet- en onttrekkingsmiddelen

Vervolgens zijn op basis van de figuren in de pompproefbeschrijving de verschillende stijghoogtes gedigitaliseerd. Figuur 6 geeft de rapportgrafiek.

Figuur 6 Grafiek uit de rapportage met stijghoogtes en neerslagoverschot

Op basis van het verschil in reactie op de schakelingen is duidelijk dat, ondanks het feit dat de sonderingen een redelijk doorlatende bodem suggereren (althans, bij B20) er op basis van de peilbuismetingen tussen BU1 en BU3 een weerstandslaag aanwezig is en tussen BU3 en BU 4 een volgende (waarschijnlijk grotere) weerstandslaag.

Op basis van de ondergrondalgoritmes voor Doorlatendheid, Berging en Anisotropie wordt door het Pythonscript een laagindeling (per meter, in verband met rekentijden) berekend. Deze is opgenomen in tabel 2.

Hierin valt op ter hoogte van de peilbuisfilters BU-3 en BU-4 geen weerstandbiedende lagen door het pythonscript wordt berekend. Mogelijk dat de diepte van deze sondering het wrijvingsgetal parten speelt, of dat toevallig op deze diepte op deze locatie een beperkte opening in de weerstandbiedende lagen aanwezig is.

Om de verschillen in stijghoogte op basis van deze modellering te kunnen verklaren is het pakket tussen laag 50 en 61 handmatig veranderd zoals in tabel 3.

		[m NAP]	[m/dag]				[dag]
1	0			0,12	5.5e-10	8,4	500
3	1				5.4e-07		0
4	2	-2	11,3	0,25	6.6e-06	4,0	0
5 10.1 0.23 5.6e-06 4.3 7 -7 14.7 0.31 1.1e-05 3.2 8 -8 17.5 0.38 1.5e-06 2.7 9 -9 18.7 0.41 1.8e-05 2.4 10 -10 10.7 0.24 6.0e-06 4.1 11 11 11.2 0.25 6.4e-06 4.0 12 -12 2.2 0.5 0.46 2.2e-05 2.2 13 -13 20.6 0.46 2.2e-05 2.2 14 -14 20.7 0.47 2.2e-05 2.2 15 -15 9.2 0.22 4.6e-06 4.6 16 -16 -16 23.7 0.57 3.1e-05 1.8 17 -17 20.9 0.47 2.3e-05 2.1 18 -16 -16 -17 23e-05 2.1 19 -19 19.8 0.	3	-3			6.5e-06	4,0	0
6 10.3 0.23 5.6e-06 4.3 7 7 7 14.7 0.31 1.1e-05 3.2 8 8 17.5 0.38 1.5e-05 2.7 9 -9 18.7 0.41 1.8e-05 2.4 10 10 10 7 0.24 60e-06 4.1 11 -11 11.1 11.2 2.2e-05 2.2 13 -13 20.6 0.46 2.2e-05 2.2 14 -14 20.7 0.47 2.2e-05 2.2 15 -15 5.9 2.022 4.6e-06 4.6 16 -16 23.7 0.57 3.1e-05 1.8 17 -17 20.9 0.47 23.e-05 2.1 18 -18 16.9 0.36 1.4e-05 2.8 19 -19 19.8 0.44 2.6e-05 2.3 20 -20 6.5 0.18 <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>	4						0
7							0
S							0
P							0
10							0
11							0
12							0
13							0
14 -14 20.7 0.47 2.2e.05 2.2 15 -15 9.2 0.22 4.6e.06 4.6 16 -16 23.7 0.57 3.1e.05 1.8 17 -17 20.9 0.47 2.3e.05 2.1 18 16,9 0.36 1.4e.05 2.8 19 -19 19.8 0.44 2.0e.05 2.3 20 -20 6.5 0.18 2.7e.06 5.5 21 -21 17.6 0.38 1.5e.05 2.6 22 -22 18.4 0.40 1.7e.05 2.5 23 -23 15.4 0.33 1.2e.05 3.1 24 -24 26.2 0.67 4.1e.05 1.5 25 -25 32.7 1.00 7.6e.05 1.0 26 -26 23.0 1.0 1.0 7.9e.05 1.0 27 -27 16.2 0.35							0
15							0
16							0
17							0
18							0
19							0
20	19				2.0e-05		0
22 -22 18,4 0,40 1,7e-05 2,5 23 -23 15,4 0,33 1,2e-05 3,1 24 -24 26,2 0,67 4,1e-05 1,5 25 -25 32,7 1,00 7,6e-05 1,0 26 -26 34,0 1,00 7,9e-05 1,0 27 -27 16,2 0,35 1,3e-05 2,9 28 -28 18,7 0,41 1,8e-05 2,5 29 -29 19,8 0,44 2,0e-05 2,3 30 -30 20,5 0,46 2,2e-05 2,2 31 -31 20,0 0,44 2,1e-05 2,3 32 -32 26,2 0,67 4,1e-05 1,5 33 -33 31,8 0,97 7,1e-05 1,0 34 -34 21,5 0,49 2,4e-05 2,0 35 -35 22,8 0,53	20	-20		0,18	2.7e-06		0
23 -23 15,4 0,33 1,2e-05 3,1 24 -24 26,2 0,67 4,1e-05 1,5 25 -25 32,7 1,00 7,6e-05 1,0 26 -26 34,0 1,00 7,9e-05 1,0 27 -27 16,2 0,35 1,3e-05 2,9 28 -28 18,7 0,41 1,8e-05 2,5 29 -29 19,8 0,44 2,0e-05 2,3 30 -30 20,5 0,46 2,2e-05 2,2 31 -31 20,0 0,44 2,1e-05 2,3 32 -32 26,2 0,67 4,1e-05 1,5 33 -33 31,8 0,97 7,1e-05 1,0 34 -34 21,5 0,49 2,4e-05 2,0 35 -35 22,8 0,54 2,9e-05 1,9 36 -36 22,9 0,54	21	-21	17,6	0,38	1.5e-05	2,6	0
24 -24 26,2 0,67 4.1e-05 1,5 25 -25 32,7 1,00 7.6e-05 1,0 26 -26 34,0 1,00 7.9e-05 1,0 27 -27 16,2 0,35 1.3e-05 2,9 28 -28 18,7 0,41 1.8e-05 2,5 29 -29 19,8 0,44 2.0e-05 2,3 30 -30 20,5 0,46 2.2e-05 2,2 31 -31 20,0 0,44 2.1e-05 2,3 32 -32 26,2 0,67 4.1e-05 1,5 33 33 31,8 0.97 7.1e-05 1,0 34 -34 21,5 0,49 2.4e-05 2,0 35 -35 22,8 0,53 2.2e-05 1,9 36 -36 22,9 0,54 2.9e-05 1,9 37 -37 24,0 0,58	22		18,4	0,40	1.7e-05	2,5	0
25 -25 32,7 1,00 7,6e-05 1,0 26 -26 34,0 1,00 7,9e-05 1,0 27 -27 16,2 0,35 1,3e-05 2,9 28 -28 18,7 0,41 1,8e-05 2,5 29 -29 19,8 0,44 2,0e-05 2,3 30 -30 20,5 0,46 2,2e-05 2,2 31 -31 20,0 0,44 2,1e-05 2,3 32 -32 26,2 0,67 4,1e-05 1,5 33 -33 31,8 0,97 7,1e-05 1,0 34 -34 21,5 0,49 2,4e-05 2,0 35 -35 22,8 0,53 2,8e-05 1,9 36 -36 22,9 0,54 2,9e-05 1,9 37 -37 24,0 0,58 3,2e-05 1,7 38 -38 2,2e 0,54							0
26 .26 34,0 1,00 7.9e-05 1,0 27 .27 16,2 0,35 1.3e-05 2,9 28 .28 18,7 0.41 1.8e-05 2,5 29 .29 19,8 0.44 2.0e-05 2,3 30 .30 20,5 0.46 2.2e-05 2,2 31 .31 20,0 0.44 2.1e-05 2,3 32 .32 26,2 0.67 4.1e-05 1,5 33 .33 31,8 0.97 7.1e-05 1,0 34 .34 21,5 0.49 2.4e-05 2,0 35 .35 22,8 0,53 2.8e-05 1,9 36 .36 22,9 0.54 2.9e-05 1,9 37 .37 24,0 0.58 3.2e-05 1,7 38 .38 22,8 0.54 2.8e-05 1,9 39 .39 23,5 0.56							0
27 -27 16,2 0,35 1,3e-05 2,9 28 -28 18,7 0,41 1,8e-05 2,5 29 -29 19,8 0,44 2,0e-05 2,3 30 -30 20,5 0,46 2,2e-05 2,2 31 -31 20,0 0,44 2,1e-05 2,3 32 -32 26,2 0,67 4,1e-05 1,5 33 -33 31,8 0,97 7,1e-05 1,0 34 -34 21,5 0,49 2,4e-05 2,0 35 -35 22,8 0,53 2,8e-05 1,9 36 -36 22,9 0,54 2,9e-05 1,9 37 -37 24,0 0,58 3,2e-05 1,7 38 -38 22,8 0,54 2,8e-05 1,9 39 -39 23,5 0,56 3,1e-05 1,8 40 -40 22,9 0,54							0
28 -28 18,7 0.41 1.8e-05 2,5 29 -29 19,8 0.44 2.0e-05 2,3 30 -30 20,5 0.46 2.2e-05 2,2 31 -31 20,0 0.44 2.1e-05 2,3 32 -32 26,2 0.67 4.1e-05 1,5 33 -33 31,8 0.97 7.1e-05 1,0 34 -34 21,5 0.49 2.4e-05 2,0 35 -35 22,8 0,53 2.8e-05 1,9 36 -36 22,9 0.54 2.9e-05 1,9 37 -37 24,0 0.58 3.2e-05 1,7 38 22,8 0.54 2.8e-05 1,9 39 -39 23,5 0,56 3.1e-05 1,8 40 -40 22,9 0.54 2.8e-05 1,9 41 -41 30,5 0.89 6.3e-05 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>							0
29 -29 19,8 0,44 2.0e-05 2,3 30 -30 20,5 0,46 2.2e-05 2,2 31 -31 20,0 0,44 2.1e-05 2,3 32 -32 26,2 0,67 4.1e-05 1,5 33 -33 31,8 0,97 7.1e-05 1,0 34 -34 21,5 0,49 2.4e-05 2.0 35 -35 22,8 0,53 2.8e-05 1,9 36 -36 22,9 0,54 2.9e-05 1,9 37 -37 24,0 0,58 3.2e-05 1,7 38 -38 22,8 0,54 2.8e-05 1,9 39 -39 23,5 0,56 3.1e-05 1,8 40 -40 22,9 0,54 2.8e-05 1,9 41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90							0
30							0
31							0
32 -32 26,2 0,67 4.1e-05 1,5 33 -33 31,8 0,97 7.1e-05 1,0 34 -34 21,5 0,49 2.4e-05 2,0 35 -22,8 0,53 2.8e-05 1,9 36 -36 22,9 0,54 2.9e-05 1,9 37 -37 24,0 0,58 3.2e-05 1,7 38 -38 22,8 0,54 2.8e-05 1,9 39 -39 23,5 0,56 3.1e-05 1,8 40 -40 22,9 0,54 2.8e-05 1,9 41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,1 43 -43 27,8 0,75 4.8e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05<							0
33 -33 31,8 0,97 7.1e-05 1,0 34 -34 21,5 0,49 2.4e-05 2,0 35 -35 22,8 0,53 2.8e-05 1,9 36 -36 22,9 0,54 2.9e-05 1,9 37 -37 24,0 0,58 3.2e-05 1,7 38 -38 22,8 0,54 2.8e-05 1,9 39 -39 23,5 0,56 3.1e-05 1,8 40 -40 22,9 0,54 2.8e-05 1,9 41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39							0
34 -34 21,5 0,49 2.4e-05 2,0 35 -35 22,8 0,53 2.8e-05 1,9 36 -36 22,9 0,54 2.9e-05 1,9 37 -37 24,0 0,58 3.2e-05 1,7 38 -38 22,8 0,54 2.8e-05 1,9 39 -39 23,5 0,56 3.1e-05 1,8 40 -40 22,9 0,54 2.8e-05 1,9 41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,1 43 -43 27,8 0,75 4.8e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38							0
35 .35 22,8 0,53 2.8e-05 1,9 36 .36 22,9 0,54 2.9e-05 1,9 37 .37 24,0 0,58 3.2e-05 1,7 38 .38 22,8 0,54 2.8e-05 1,9 39 .39 23,5 0,56 3.1e-05 1,8 40 .40 22,9 0,54 2.8e-05 1,9 41 .41 30,5 0,89 6.3e-05 1,1 42 .42 30,7 0,90 6.4e-05 1,1 43 .43 27,8 0,75 4.8e-05 1,3 44 .44 12,0 0,26 7.2e-06 3,8 45 .45 20,0 0,45 2.1e-05 2,2 46 .46 18,1 0,39 1.6e-05 2,6 47 .47 17,6 0,38 1.5e-05 2,6 48 .48 24,3 0,59							0
36 -36 22,9 0,54 2.9e-05 1,9 37 -37 24,0 0,58 3.2e-05 1,7 38 -38 22,8 0,54 2.8e-05 1,9 39 -39 23,5 0,56 3.1e-05 1,8 40 -40 22,9 0,54 2.8e-05 1,9 41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,1 43 -43 27,8 0,75 4.8e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59							0
37 -37 24,0 0,58 3.2e-05 1,7 38 -38 22,8 0,54 2.8e-05 1,9 39 -39 23,5 0,56 3.1e-05 1,8 40 -40 22,9 0,54 2.8e-05 1,9 41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,1 43 -43 27,8 0,75 4.8e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68							0
39 -39 23,5 0,56 3.1e-05 1,8 40 -40 22,9 0,54 2.8e-05 1,9 41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,1 43 -43 27,8 0,75 4.8e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63	37	-37			3.2e-05		0
40 -40 22,9 0,54 2.8e-05 1,9 41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,1 43 -43 27,8 0,75 4.8e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33	38	-38	22,8	0,54	2.8e-05	1,9	0
41 -41 30,5 0,89 6.3e-05 1,1 42 -42 30,7 0,90 6.4e-05 1,1 43 -43 27,8 0,75 4.8e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-	39	-39	23,5	0,56	3.1e-05	1,8	0
42 -42 30,7 0,90 6.4e-05 1,1 43 -43 27,8 0,75 4.8e-05 1,3 44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-							0
43 -43 27,8 0,75 4,8e-05 1,3 44 -44 12,0 0,26 7,2e-06 3,8 45 -45 20,0 0,45 2,1e-05 2,2 46 -46 18,1 0,39 1,6e-05 2,6 47 -47 17,6 0,38 1,5e-05 2,6 48 -48 24,3 0,59 3,3e-05 1,7 49 -49 22,3 0,52 2,7e-05 1,9 50 -50 26,3 0,68 4,1e-05 1,5 51 -51 28,6 0,79 5,2e-05 1,3 52 -52 25,2 0,63 3,7e-05 1,6 53 -53 15,6 0,33 1,2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3,9e-05 1,5 56 -56 28,3 0,77 5,0e-05 1,3 57 -57 23,7 0,57 3,1e-							0
44 -44 12,0 0,26 7.2e-06 3,8 45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-	-						0
45 -45 20,0 0,45 2.1e-05 2,2 46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30	-						0
46 -46 18,1 0,39 1.6e-05 2,6 47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25							0
47 -47 17,6 0,38 1.5e-05 2,6 48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1							0
48 -48 24,3 0,59 3.3e-05 1,7 49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1							0
49 -49 22,3 0,52 2.7e-05 1,9 50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1							0
50 -50 26,3 0,68 4.1e-05 1,5 51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1							0
51 -51 28,6 0,79 5.2e-05 1,3 52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1							0
52 -52 25,2 0,63 3.7e-05 1,6 53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1							0
53 -53 15,6 0,33 1.2e-05 3,0 54 -54 25,3 0,63 3,70E-05 1,6 55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1							0
55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1	53						0
55 -55 25,7 0,65 3.9e-05 1,5 56 -56 28,3 0,77 5.0e-05 1,3 57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1	54	-54	25,3	0,63	3,70E-05	1,6	0
57 -57 23,7 0,57 3.1e-05 1,8 58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1	55	-55	25,7	0,65	3.9e-05		0
58 -58 14,0 0,30 9.7e-06 3,4 59 -59 11,1 0,25 6,30E-06 4,1				0,77	5.0e-05		0
59 -59 11,1 0,25 6,30E-06 4,1							0
							0
60 1.0 0,25 6.2e-06 4.1							0
							0
61 -61 21,7 0,50 2.5e-05 2,0 Tabel 2 Bodemparameters on basis van Python						2,0	Q

Tabel 2 Bodemparameters op basis van Python

Op basis van de weerstand die uit de peilbuismetingen naar voren komt is de weerstand van laag 54 hard ingevoerd als 125 dagen en van laag 59 als 1000 dagen. Deze waarden volgen uit de fit tussen model en metingen.

Laagnr	Тор	k	kzkh	S	an	С
	[m NAP]	[m/dag]				[dag]
50	-50	26,3	0,68	4,10E-05	1,48	0
51	-51	28,6	0,79	5,20E-05	1,27	0
52	-52	25,2	0,63	3,70E-05	1,59	0
53	-53	15,6	0,33	1,20E-05	3	0
54	-54	0,0	0,12	2,20E-09	8,41	125
55	-55	25,7	0,65	3,90E-05	1,54	0
56	-56	28,3	0,77	5,00E-05	1,3	0
57	-57	23,8	0,57	3,10E-05	1,75	0
58	-58	14,0	0,3	9,70E-06	3,35	0
59	-59	0,0	0,12	2,80E-10	8,41	1000
60	-60	11,0	0,25	6,20E-06	4,08	0
61	-61	21,7	0,5	2,50E-05	2,01	0.

Tabel 3 Aangepaste parameters laag 50/61

Deze waarden, de schakeltijden en meetdiepten en locaties zijn in een Pythonscript (opgenomen op de Github pagina) ingebouwd. Dit script leest de sondering in, vormt de parametermatrix en levert de berekende stijghoogteverlopen op in combinatie met de gemeten stijghoogteverlopen. Hiernaast wordt een verlagingsbeeld ter hoogte van de onttrekkingsfilters berekend (als shapefile) en de berekende anisotropie gevisualiseerd.

Uiteindelijk zijn er twee kalibraties geweest:

- 1. Ten eerste de fit tussen de onttrekking en de diepere peilbuizen (op BU3 en BU4).
- 2. Nadat deze peilbuizen in de modellering een redelijke fit bereikten is de gemiddelde weerstand van de schermwand gefit. Op basis van het stijghoogteverloop kon in deze modellering een weerstand van 54 dagen worden berekend. Dit impliceert dat de 0,6 meter brede schermwand een gemiddelde doorlatendheid zou hebben van 1,11*E-2 [m/dag].

Het toegepaste script is opgenomen in op de Github pagina⁹, samen met de Excel file waarin de gemeten verlagingen (overgenomen uit de grafiek, die kunnen dus afwijken van de werkelijk gemeten waarde) en de Excel file met de coördinaten van de schermwand (overgenomen uit de tekeningen)

⁹ <u>Died1808 (Died1808) / Repositories · GitHub</u> *info* @rvde.nl

4 Resultaten

In figuur 7 is het vergelijk tussen de gemeten waarden (de stippellijnen) en de berekende waarden (de doorgetrokken lijnen) opgenomen. Hierbij is de kleur (gemeten/berekend) gelijk gehouden. In het script staan een paar correctiewaarden om op dag 128 alle lijnen vanaf hetzelfde punt te laten starten. De meetlocaties en meetdiepten waren als volgt (tabel 4).De meetwaarden van DV11 en DV12 zijn niet opgenomen in de figuur, die van BU1 (-18, -54,5, -63,5) wel.

Naam	х	у	Meetdiepte [m NAP]
B20	137262	456945	-8/-20
B21	137227	457090	-8/-21
B22	137175	457056	-8/-22
BU1_18	137231	456947	-18
BU1_44.5	137231	456947	-44,5
BU1_54.5	137231	456947	-54,5
BU1_63.5	137231	456947	-63,5
BU2_65	137296	456961	-65
DV11	137319	456941	-31
DV12	137302	456948	-31

Tabel 4 Meetparameters

De fit tussen gemeten en berekend is na dag 128 goed te noemen.

Figuur 7 Gemeten (stippellijnen) en berekende (lijnen) stijghoogtes

Tussen 0 en 70 dagen is de grondwaterdruk ogenschijnlijk gestegen, In de rapportage wordt gemeld dat gedurende 4 maanden er technische problemen waren met B20. Hierdoor was de maximale onttrokken hoeveelheid (van B21+B22+B20) minder dan normaal.

Onduidelijk of deze 4 maanden voor 24-02-2022 of daarin lagen. Alleen B21+B22 onttrokken dan grondwater wat tot een hogere basisdruk in de kuip heeft geleid. Deze moet er eerst uit voordat er weer sprake kon zijn van een stabiele beginsituatie. Het fitten van de gemeten en de berekende verlagingen heeft dan ook vooral op de periode na dag 128 plaatsgevonden.

Op basis van deze fit wordt voor het watervoerende pakket tussen 0 [m NAP] en -54 [m NAP] een KD-waarde van 1175 [m²/dag] berekend, dit komt neer op een gemiddelde k-waarde van 21,8 [m/dag]. De bergingsfactor (S) bedraagt dan 1,34*E-3. De totale weerstand van de bodem van de kuip ligt rond 1125 dagen. Dit is een gemiddelde over de bodem in de kuip, lokaal zal deze variëren tussen <200 dagen (op basis van de sondeerbeelden) tot meer dan 2500 dagen. De gemiddelde weerstand van de schermwand is op 54 dagen berekend.

De berekende anisotropie van het watervoerende pakket (0/-54 [m NAP]) ligt tussen 1-8 (figuur 8).

Figuur 6 Berekende anisotropie per bodemlaag

5 Verlagingsbeelden

Met behulp van de TIM-module contour is het verlagingsbeeld op dag 148 berekend op een diepte van -18 [m NAP] (ter hoogte van de onttrekkingsfilters). Deze is opgenomen in figuur 9. Overigens kan van elk tijdstip op elke gewenste diepte een dergelijk beeld worden gegenereerd. Hiermee is TIM flexibeler dan bijvoorbeeld Modflow waarin het genereren van dit soort beelden beperkt wordt door de gekozen blokgroottes.

Opgemerkt wordt dat dit de verlaging (in [m]) is ten opzichte van een uitgangsgrondwaterstand van 0. In werkelijkheid bedroeg de basisgrondwaterstand buiten de kuip circa +0,3 [m NAP] Helaas zijn de meetdata van de omgevingspeilbuizen niet opgenomen in de rapportage. Hiermee zou een dergelijk beeld goed gebruikt kunnen worden ter kallibratie van deze modellering.

Figuur 9 Verlaging (in [m]) t.o.v. 0.

6 Conclusie

Met behulp van een diepe sondering en TTIM is snel een grondwatermodel te bouwen wat de gemeten waarden van een pompproef binnen een grote gesloten kuip goed lijkt te modelleren. Hoewel deze methodiek onder Quick&Dirty valt kan ze in mijn opinie een goede aanvulling zijn op de toolbox die nodig is om verspreiding van stoffen en de monitoring van drukken in dit soort kuipen beter te leren begrijpen.