2-4 Additional Practice

SavvasRealize.com

Complex Numbers and Operations

Use square roots to solve each equation. Write your solutions using the imaginary unit, i.

1.
$$x^2 = -81$$

2.
$$x^2 = -625$$

3.
$$x^2 = -144$$

Simplify each expression.

4.
$$(-2+3i)+(5-2i)$$
 5. $(-6+7i)+(6-7i)$ **6.** $(8+5i)+(6-7i)$

5.
$$(-6 + 7i) + (6 - 7i)$$

6.
$$(8+5i)+(6-7i)$$

Write each product in the form a + bi.

7.
$$(4-3i)(-5+4i)$$
 8. $(2-i)(-3+6i)$

8.
$$(2-i)(-3+6i)$$

9.
$$(5-3i)(5+3i)$$

Write the quotient in the form a + bi.

10.
$$\frac{5+2i}{4i}$$

11.
$$\frac{3-2i}{4-3i}$$

12.
$$\frac{3i}{-2+i}$$

13. Why does multiplying a + bi by the complex conjugate a - bi eliminate ifrom the expression?

Solve the equations below using factoring.

14.
$$x^2 + 360 = 0$$

15.
$$x^2 + 40 = 0$$

16.
$$x^2 + 10 = 0$$

17. The total resistance of a circuit is given by the formula $R_T = \frac{1}{R_1} + \frac{1}{R_2}$. $R_1 = 4 + 6i$ ohms and $R_2 = 2 - 4i$ ohms. What is R_T ?