n-Fold Cross Validation

- Partition match set into n equal subsets
 - o Denote subsets as $S_1, S_2, ..., S_n$
- \blacksquare Let training set be $S_2 \cup S_3 \cup ... \cup S_n$
 - o And test set is S₁
- \blacksquare Repeat with training set $S_1 \cup S_3 \cup ... \cup S_n$
 - And test set S₂
- And so on, for each of n "folds"
 - Typically, n = 5 or n = 10 is used

Scatterplot

- Train a model on the training set
- Apply score to test
 - o Can visualize results as a scatterplot
 - match scores
 - nomatch scores

Thresholding

Set threshold after scoring phase

- Ideally, we have complete separation
 - o I.e., no "overlap" in scatterplot
 - o Usually, that doesn't happen
 - o So, where to set the threshold?

In practice, thresholding is critical

Thresholding

- Where to set threshold?
 - Left scatterplot is a lot easier than right

Results

- Given scatterplot and a threshold
- □ For each sample, one of 4 cases...
 - True positive correctly classified as +
 - False positive incorrectly classified as +
 - True negative correctly classified as -
 - False negative incorrectly classified as -
- TP, FP, TN, FN, respectively
 - Append "R" to each for "rate"

Confusion Matrix

Assuming that high scores (i.e., above threshold) better match the model

Sensitivity and Specificity

- The TPR also known as sensitivity while TNR is known as specificity
- Consider a medical test
 - Sensitivity is percentage of sick people detected by the test (as they should be)
 - Specificity is percentage of healthy who are not classified as sick (as they should)
- □ Inherent tradeoff between TPR & TNR
 - Everything depends on threshold!

Accuracy

- □ Let P be the number of positive cases tested and N the negative cases tested
 - o Note: P is size of test set, N nomatch set
 - o Also, P = TP + FN and N = TN + FP
- □ Then, Accuracy = (TP + TN) / (P + N)
 - Note that accuracy ranges from 0 to 1
 - Accuracy of 1? Ideal situation
 - Accuracy 0.5? Don't give up your day job...

Accuracy

- Accuracy tells us something...
 - o But it depends on where threshold is set
 - o How should we set the threshold?
 - Seems we are going around in circles, like a dog chasing its tail
- Bottom line? We still don't have good way to compare different techniques
 - o Next slide, please...

- Receiver Operating Characteristic
 - o Originated from electrical engineering
 - Now widely used in many fields
- What is an ROC curve?
 - Plot TPR vs FPR as threshold varies thru the range of scores
 - o Plot FPR on x-axis, TPR on y-axis
 - Equivalently, 1 specificity vs sensitivity
- What the ...?

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 1.0
 - FPR = 1.0 TNR 1.0 - 0.0 = 1.0

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 1.0
 - FPR = 1.0 TNR 1.0 - 0.2 = 0.8

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 1.0
 - FPR = 1.0 TNR 1.0 - 0.4 = 0.6

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 1.0
 - FPR = 1.0 TNR 1.0 - 0.6 = 0.4

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive
 - Below yellow is negative
- □ In this case,
 - o TPR = 0.8
 - FPR = 1.0 TNR 1.0 - 0.6 = 0.4

- Suppose threshold set at yellow line
 - Above yellow, classified as positive,
 - Below yellow is negative
- □ In this case,
 - o TPR = 0.6
 - FPR = 1.0 TNR1.0 0.6 = 0.4

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 0.6
 - FPR = 1.0 TNR 1.0 - 0.6 = 0.2

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 0.4
 - FPR = 1.0 TNR 1.0 - 0.6 = 0.2

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 0.4
 - FPR = 1.0 TNR 1.0 - 1.0 = 0.0

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 0.2
 - FPR = 1.0 TNR 1.0 - 0.6 = 0.0

- Suppose threshold set at yellow line
 - o Above yellow, classified as positive,
 - o Below yellow is negative
- □ In this case,
 - o TPR = 0.0
 - FPR = 1.0 TNR 1.0 - 0.6 = 0.0

- Connect the dots...
- This is a ROC curve!
- What good is it?
 - Captures info wrt all possible thresholds
 - o Removes threshold as a factor in the analysis
- What does it all mean?

- Random classifier?
 - Orange 45 degree line
- Perfect classifier?
 - o Red (Why?)
- □ Above 45 degree line?
 - o Better than random
 - The closer to the red,
 the closer to ideal

Area Under the Curve (AUC)

- ROC curve lives within a 1x1 square
- Random classifier?
 - o AUC ≈ 0.5
- Perfect classifier (red)?
 - o AUC = 1.0
- Example curve (blue)?
 - o AUC = 0.8

Area Under the Curve (AUC)

- Area under ROC curve quantifies success
 - o 0.5 like flipping coin
 - o 1.0 ideal detection
- □ AUC of ROC curve
 - o Enables us to compare different techniques
 - o And no need to worry about threshold

- What is the difference between the AUC and the Accuracy?
- Just looking at a ROC, can you tell which is the best threshold?