# 第3章 多元函数微分学

一元函数微分学 推广

多元函数微分学

注意:善于类比,区别异同

# 3.1 多元函数的极限与连续性

- 一、区域
- 二、多元函数的概念
- 三、多元函数的极限
- 四、多元函数的连续性
- 五、内容小结

### 一、区域

#### 1. 邻域

点集 $U(P_0,\delta) = \{P | |PP_0| < \delta\}$ ,称为点 $P_0$ 的**8邻域**. **例如**,在平面上,

$$U(P_0,\delta) = \{(x,y)|\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta\}$$
(圆邻域)  
在空间中,

$$U(P_0, \delta) = \{(x, y, z) | \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2} < \delta \}$$
(\Rightarrow \Rightarrow \Rightarrow

说明: 若不需要强调邻域半径 $\delta$ ,也可写成 $U(P_0)$ .

点 
$$P_0$$
 的去心邻域记为  $U(P_0) = \{P \mid 0 < |PP_0| < \delta \}$ 

在讨论实际问题中也常使用方邻域,因为方邻域与圆邻域可以互相包含.



平面上的方邻域为

$$U(P_0,\delta) = \{(x,y) | |x-x_0| < \delta, |y-y_0| < \delta \}$$

#### 2. 平面点集

- (1) 内点、外点、边界点 设有点集 *E* 及一点 *P*:
  - 若存在点 P 的某邻域  $U(P) \subset E$  , 则称 P 为 E 的**内点**;
  - 若存在点 P 的某邻域  $U(P) \cap E = \emptyset$ , 则称 P 为 E 的**外点**;
  - 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E 的外点,则称 P 为 E 的边界点.

显然, E 的内点必属于 E, E 的外点必不属于 E, E 的 边界点可能属于 E, 也可能不属于 E.

### (2) 聚点

若对任意给定的 $\delta$ ,点P的去心邻域 $U(P,\delta)$ 内总有E中的点,则称  $P \neq E$ 的聚点.



聚点可以属于 E, 也可以不属于 E (因为聚点可以为 E 的边界点)

所有聚点所成的点集成为E的导集.

- (3) 开区域及闭区域
- 若点集 E 的点都是内点,则称 E 为开集;
- E 的边界点的全体称为 E 的边界, 记作 $\partial E$ ;
- 若点集  $E \supset \partial E$ ,则称 E 为闭集;
- 若集 *D* 中任意两点都可用一完全属于 *D* 的折线相连,则称 *D* 是连通的;
- 连通的开集称为开区域,简称区域;
- 开区域连同它的边界一起称为闭区域.

### 例如, 在平面上

$$^{\bullet} \left\{ (x,y) \mid x+y > 0 \right\}$$

$$\{(x,y) | 1 < x^2 + y^2 < 4 \}$$

$$\{(x,y) \mid x+y \ge 0 \}$$

$$\{(x,y) | 1 \le x^2 + y^2 \le 4 \}$$





开区域

闭区域





- 整个平面是最大的开域,也是最大的闭域;
- ♣ 点集  $\{(x,y)||x|>1\}$  是开集,但非区域.



● 对区域 D, 若存在正数 K, 使一切点  $P \in D$  与某定点 A 的距离  $|AP| \leq K$ , 则称 D 为有界区域,否则称为 无区界域.

#### 3. n 维空间

n 元有序数组  $(x_1, x_2, \dots, x_n)$  的全体称为n **维空间**,记作  $\mathbb{R}^n$ ,即

$$R^{n} = R \times R \times \dots \times R$$

$$= \{ (x_{1}, x_{2}, \dots, x_{n}) | x_{k} \in R, k = 1, 2, \dots, n \}$$

n 维空间中的每一个元素  $(x_1, x_2, \dots, x_n)$  称为空间中的一个点,数  $x_k$  称为该点的第 k 个坐标.

当所有坐标  $x_k = 0$  时,称该元素为  $\mathbb{R}^n$  中的零元,记作 O.

 $\mathbf{R}^n$ 中的点 $x = (x_1, x_2, \dots, x_n)$ 与点 $y = (y_1, y_2, \dots, y_n)$ 的**距离**记作 $\rho(x, y)$ 或 $\|x - y\|$ ,规定为

$$\rho(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

 $\mathbf{R}^n$ 中的点 $x = (x_1, x_2, \dots, x_n)$ 与零元O的距离为 $||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$ 

当n=1,2,3时, ||x|| 通常记作 |x|.

 $\mathbb{R}^n$ 中的变元 x 与定元 a 满足  $||x-a|| \to 0$  记作  $x \to a$ .

 $R^n$ 中点 a的  $\delta$ 邻域为

$$U(a,\delta) = \{ x | x \in \mathbb{R}^n, \rho(x,a) < \delta \}$$

### 二、多元函数的概念

### 引例:

• 圆柱体的体积

$$V = \pi r^2 h$$
,  $\{(r,h) | r > 0, h > 0\}$ 

h

• 定量理想气体的压强

$$p = \frac{RT}{V}$$
 (R为常数),  $\{(V, T) | V > 0, T > T_0\}$ 

• 三角形面积的海伦公式  $(p = \frac{a+b+c}{2})$ 

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$\{(a,b,c)| a>0, b>0, c>0, a+b>c\}$$



**定义1.** 设非空点集 $D \subset \mathbb{R}^n$ , 映射  $f:D \mapsto \mathbb{R}$  称为定义 在 D 上的 n 元函数,记作

$$u = f(x_1, x_2, \dots, x_n) \ \vec{\boxtimes} \ u = f(P), P \in D$$

点集 D 称为函数的**定义域**;数集  $\{u \mid u = f(P), P \in D\}$  称为函数的**值域**.

特别地, 当n=2时, 有二元函数

$$z = f(x, y), \quad (x, y) \in D \subset \mathbb{R}^2$$

当 n=3 时,有三元函数

$$u = f(x, y, z), \quad (x, y, z) \in D \subset \mathbb{R}^3$$

例如,二元函数  $z = \sqrt{1-x^2-y^2}$  定义域为圆域  $\{(x,y) | x^2 + y^2 \le 1\}$  图形为中心在原点的上半球面.

又如, 
$$z = \sin(xy)$$
,  $(x, y) \in \mathbb{R}^2$ 

说明: 二元函数  $z = f(x, y), (x, y) \in D$  的图形一般为空间曲面  $\Sigma$ .

三元函数  $u = \arcsin(x^2 + y^2 + z^2)$  定义域为单位闭球

$$\{(x,y,z)|x^2+y^2+z^2 \le 1\}$$

图形为 R<sup>4</sup>空间中的超曲面.







### 三、多元函数的极限

定义2. 设 n 元函数  $f(P), P \in D \subset \mathbb{R}^n, P_0$ 是 D 的聚点,若存在常数 A,对任意正数  $\varepsilon$ ,总存在正数  $\delta$ ,对一切  $P \in D \cap U(P_0, \delta)$ ,都有  $|f(P) - A| < \varepsilon$ ,则称 A 为函数  $f(P) \stackrel{\circ}{=} P_0$  时的极限,记作  $\lim_{P \to P_0} f(P) = A$  (也称为 n 重极限)

当 n=2 时, 记  $\rho = |PP_0| = \sqrt{(x-x_0)^2 + (y-y_0)^2}$  二元函数的极限可写作:

$$\lim_{\rho \to 0} f(x, y) = A = \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = A$$

**例1.** 设 
$$f(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}$$
  $(x^2 + y^2 \neq 0)$ 

求证: 
$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = 0.$$

∴ 
$$\forall \varepsilon > 0, \exists \delta = \sqrt{\varepsilon}, \mathring{\pm} 0 < \rho = \sqrt{x^2 + y^2} < \delta$$
 时, 总有

$$|f(x,y)-0| \le x^2 + y^2 < \delta^2 = \varepsilon$$

故 
$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = 0$$

**例2.** 设 
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$

求证: 
$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = 0.$$

$$\mathbf{\tilde{u}}: \quad \because 0 < |f(x,y)| \le \left| x \sin \frac{1}{y} + y \sin \frac{1}{x} \right|$$
$$\le |x| + |y| \longrightarrow 0$$

由夹逼准则 
$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = 0$$

• 若当点P(x,y)以不同方式趋于 $P_0(x_0,y_0)$ 时,函数趋于不同值或有的极限不存在,则可以断定函数极限不存在.

**例3.** 讨论函数  $f(x,y) = \frac{xy}{x^2 + y^2}$  在点 (0, 0) 的极限.

解: 设 P(x, y) 沿直线 y = kx 趋于点 (0, 0),则有

$$\lim_{\substack{x \to 0 \\ y = kx}} f(x, y) = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{kx^2}{x^2 + k^2x^2} = \frac{k}{1 + k^2}$$

k 值不同极限不同!

故 f(x,y)在 (0,0) 点极限不存在.



• 二重极限  $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$  与累次极限  $\lim_{\substack{x \to x_0 \\ y \to y_0}} \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 

及  $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$ 不同.

如果它们都存在,则三者相等.

仅知其中一个存在,推不出其它二者存在.

**例如,** 
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, 显然

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = 0, \quad \lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0$$

但由例3知它在(0,0)点二重极限不存在.

### 四、多元函数的连续性

**定义3.** 设 n 元函数 f(P) 定义在 D 上, 聚点  $P_0 \in D$ , 如果存在

$$\lim_{P \to P_0} f(P) = f(P_0)$$

则称n元函数f(P)在点 $P_0$ 连续,否则称为不连续,此时 $P_0$ 称为间断点.

如果函数在D上各点处都连续,则称此函数在D上连续.

例如,函数

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

在点(0,0)极限不存在,故(0,0)为其间断点.

又如,函数

$$f(x,y) = \frac{1}{x^2 + y^2 - 1}$$

在圆周  $x^2 + y^2 = 1$  上间断.



结论:一切多元初等函数在定义区域内连续.

闭域上多元连续函数有与一元函数类似的如下性质:

定理: 若f(P) 在有界闭域 D 上连续,则

- (1)  $\exists K > 0$ , 使  $|f(P)| \le K$ ,  $P \in D$ ; (有界性定理)
- (2) *f*(*P*) 在 *D* 上可取得最大值 *M* 及最小值 *m*; (最值定理)
- (3) 对任意  $\mu \in [m, M]$ ,  $\exists Q \in D$ , 使  $f(Q) = \mu$ ; (介值定理)
- \*(4) f(P) 必在D 上一致连续. (一致连续性定理) (证明略)

例5. 求 
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\sqrt{xy+1}-1}{xy}$$
.

解: 原式 = 
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{(\sqrt{xy+1})^2 - 1}{xy(\sqrt{xy+1}+1)} = \lim_{\substack{x \to 0 \ y \to 0}} \frac{1}{\sqrt{xy+1}+1} = \frac{1}{2}$$

**例6.** 求函数 
$$f(x,y) = \frac{\arcsin(3-x^2-y^2)}{\sqrt{x-y^2}}$$
 的连续域.

解: 
$$\begin{cases} |3 - x^2 - y^2| \le 1 \\ x - y^2 > 0 \end{cases}$$



# 五、内容小结

- 1. 区域
  - 邻域:  $U(P_0,\delta)$ ,  $U(P_0,\delta)$
  - 区域 —— 连通的开集
  - R<sup>n</sup>空间
- 2. 多元函数概念

$$n$$
 元函数  $u = f(P) = f(x_1, x_2, \dots, x_n)$   
 $P \in D \subset \mathbb{R}^n$ 

3. 多元函数的极限

- 4. 多元函数的连续性
  - 1) 函数 f(P) 在  $P_0$  连续  $\longrightarrow$   $\lim_{P \to P_0} f(P) = f(P_0)$
  - 2) 闭域上的多元连续函数的性质:

有界定理; 最值定理; 介值定理

3) 一切多元初等函数在定义区域内连续

练习题 1. 设 
$$f(xy, \frac{y^2}{x}) = x^2 + y^2$$
, 求  $f(\frac{y^2}{x}, xy)$ .

解法2 
$$\Rightarrow$$
  $\begin{cases} xy = \frac{v^2}{u} \\ \frac{y^2}{x} = uv \end{cases}$   $\begin{cases} y = v \\ x = \frac{v}{u} \end{cases}$   $f(\frac{v^2}{u}, uv)$   $f(\frac{v^2}{u}, uv)$   $f(\frac{v^2}{u}, uv)$   $f(\frac{v^2}{u}, uv) = f(xy, \frac{v^2}{x}) = (\frac{v}{u})^2 + v^2$ 

$$f(\frac{y^2}{x}, xy) = \frac{y^2}{x^2} + y^2$$

2. 
$$\lim_{\substack{x \to 0 \\ y \to 0}} x \frac{\ln(1+xy)}{x+y}$$
 是否存在?

解:利用 $\ln(1+xy) \sim xy$ , 取  $y = x^{\alpha} - x$ 

$$\lim_{\substack{x \to 0 \\ y \to 0}} x \frac{\ln(1+xy)}{x+y} = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{x^2y}{x+y} = \lim_{x \to 0} \frac{x^{\alpha+2}-x^3}{x^{\alpha}}$$

$$= \lim_{x \to 0} (x^2 - x^{3-\alpha}) = \begin{cases} -1, & \alpha = 3 \\ 0, & \alpha < 3 \\ \infty, & \alpha > 3 \end{cases}$$

所以极限不存在.

3. 证明 
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 在全平面连续.

证: 在 $(x,y) \neq (0,0)$ 处, f(x,y)为初等函数, 故连续.

由夹逼准则得

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{\sqrt{x^2 + y^2}} = 0 = f(0,0)$$

故函数在全平面连续.

### 思考题

若点(x,y)沿着无数多条平面曲线趋向于点 $(x_0,y_0)$ 时,函数f(x,y)都趋向于 A,能否断定  $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=A$ ?

### 思考题解答

不能.

例 
$$f(x,y) = \frac{x^3y^2}{(x^2+y^4)^2}, (x,y) \to (0,0)$$

但是  $\lim_{(x,y)\to(0,0)} f(x,y)$  不存在.

原因为若取
$$x = y^2$$
,  $f(y^2, y) = \frac{y^0 y^2}{(y^4 + y^4)^2} \to \frac{1}{4}$ .

#### 练习题

#### 一、填空题:

1、 若
$$f(x,y) = x^2 + y^2 - xy \tan \frac{x}{y}$$
, 则 $f(tx,ty) = ____.$ 

2、 若
$$f(x,y) = \frac{x^2 + y^2}{2xy}$$
, 则 $f(2,-3) = _____;$ 

$$f(1,\frac{y}{x}) = \underline{\hspace{1cm}}$$

3、 若
$$f(\frac{y}{x}) = \frac{\sqrt{x^2 + y^2}}{y}(y > 0)$$
,则 $f(x) =$ \_\_\_\_\_\_.

4、 若 
$$f(x+y,\frac{y}{x}) = x^2 - y^2$$
, 则  $f(x,y) =$ \_\_\_\_\_\_.

函数
$$z = \frac{\sqrt{4x - y^2}}{\ln(1 - x^2 - y^2)}$$
的定义域是\_\_\_\_\_\_.

6、函数
$$z = \sqrt{x - \sqrt{y}}$$
的定义域是\_\_\_\_\_\_.

7、函数
$$z = \arcsin \frac{y}{x}$$
的定义域是\_\_\_\_\_\_

8、函数
$$z = \frac{y^2 + 2x}{y^2 - 2x}$$
的间断点是\_\_\_\_\_\_\_.

#### 二、求下列各极限:

$$1, \lim_{\substack{x\to 0\\y\to 0}}\frac{2-\sqrt{xy+4}}{xy};$$

$$2, \lim_{\substack{x\to 0\\y\to 0}}\frac{\sin xy}{x};$$

3. 
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)x^2y^2}$$
.

三、证明: 
$$\lim_{\substack{x\to 0\\y\to 0}}\frac{xy}{\sqrt{x^2+y^2}}=0.$$

四、证明极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\sqrt{xy+1}-1}{x+y}$$
不存在

### 练习题答案

$$-1, \quad t^{2}f(x,y); \qquad 2, -\frac{13}{12}, \quad f(x,y);$$

$$3, \quad \frac{\sqrt{1+x^{2}}}{x}; \qquad 4, \quad x^{2}\frac{1-y}{1+y};$$

$$5, \quad \{(x,y)|0 < x^{2} + y^{2} < 1, y^{2} \le 4x\};$$

$$6, \quad \{(x,y)|x \ge 0, y \ge 0, x^{2} \ge y\};$$

$$7, \quad \{(x,y)|x > 0, -x \le y \le x\}$$

$$\cup \{(x,y)|x < 0, x \le y \le -x\};$$

$$8, \quad \{(x,y)|y^{2} - 2x = 0\}.$$

$$-1, \quad -\frac{1}{4}; \qquad 2, \quad 0; \qquad 3, \quad +\infty.$$