Классификация суперпозиций движений физической активности*

Проскурин А.Д., Белых Е.А.

proskurin.ad@phystech.edu, belyh.ea@phystech.edu

Московский физико-технический институт (государственный университет), Москва

В работе рассматривается задача анализа поведения человека по измерениям датчиков мобильного телефона. Исследуются временные ряды, построенные по показаниям акселерометра телефона. Данные представляют собой временные ряды сигнала, не имеющего точной периодики, а также содержащие неизвестную суперпозицию физической активности. В работе ищется оптимальный способ сегментации и оптимальное описание временного ряда. Строится метрическое пространство описаний элементарных действий. Предложен новый способ классификации и анализа сложных движений.

Ключевые слова: временные ряды, классификация, распознавание физической деятельности, суперпозиция движений.

Classification of superposition of physical activity^{*}

Proskurin A. D., Belykh E. A

Moscow Institute of Physics and Technology (state university), Moscow

Here should be abstract in English.

 ${f Keywords}: machine \ learning, \ time \ series, \ classification, \ physical \ activity \ recognition, \ action \ superposition.$

Введение

Решается задача классификации активности человека, что в перспективе поможет следить за его физическим и душевным состоянием. Целью данной работы является распознать сложные движения человека, являющиеся суперпозицией простых движений, используя данные акселерометра телефона. Задача анализа физической активности человека по временным рядам, полученным с помощью акселерометра, рассматривалась в [1, 2, 6, 4]. При этом, в [1, 2] движение рассматривается как простой процесс, а не суперпозиция нескольких действий.

Для классификации временных рядов акселерометра в [4] используется нейронная сеть оптимальной структуры. Найденная устойчивая модель описывается с помощью генетического алгоритма на уровне нейронов путем оптимизации структурных параметров. В [6] используется алгоритм k ближайших соседей. Результаты показывают, что оптимальным оказывается комбинирование продвинутых алгоритмов сегментации и алгоритма k ближайших соседей. В некоторых работах рассматривается композиция движений, либо зависимость движения от местоположения акселерометра. Так, в [18] ипользуются три классификатора: наивный байесовский, метод k ближайших соседей, решающее дерево. С их помощью производится анализ тринадцати типов движений, некоторые из которых являются простыми, а некоторые композицией простых. Особеный интерес представляют

Научный руководитель: Стрижов В. В. Задачу поставил: Стрижов В. В. Консультанты: Владимирова М. Р., Малькова А. С.

работы [22, 19, 21], в которых описываются алгоритмы анализа не только типа физической активности человека, но и анализа местоположения акселерометра во время физической активности. В [19] применяется гистограмма направленных градиентов для преобразования временных рядов и приведения их к более простому виду. Классификация рядов по типам физической активности и местоположению акселерометра делается с помощью алгоритма AdaBoost.

Одной из задач является поиск оптимального способа сегментации и описания временного ряда, а также построение метрического пространства описаний физической активности. В [1, 2] исследуются различные методы признакового описания временных рядов, на основе которых проводится классификация. При этом, в [1] в качестве признаковых описаний используются параметры аппроксимирующих моделей, а в [2] используется модель авторегрессии и модель сингулярного спектра временного ряда. В нашей работе предлагается рассмотреть инвариантные преобразования временных рядов, как это было сделано в [7]. В [22, 19, 21] используются разные способы описания временных рядов и их классификации. Так, в [21] используется диамическая байесовская сеть. В [22] используется алгоритм динамической трансформации временной шкалы для нахождение оптимального соответствия между временными рядами, а затем преобразованные ряды классифицируются с помощью алгоритма k ближайших соседей.

В [2] рассматривается задача построения признакового пространства, необходимого для описания рядов и их классификации. Рассматриваются два основных метода построения признакового пространства. Первый метод заключается в экспертном назначении базовых функций и служит для получения базового признакового пространства и классификации. Второй метод заключается в назначении параметрической гипотезы порождения объекта более сложной структуры. Для каждого временного ряда вычисляются оптимальные параметры порождения, то есть в данном случае коэффициенты авторегрессии. Эти вычисленные параметры и составляют новое признаковое пространство.

В нашей работе на основе методов классификации временных рядов, описанных в [1, 2], строится новый метод классификации. Рассмотривается взвешенная сумма различных моделей и инвариантные преобразования рядов: сдвиг и растяжение. В качестве исходных данных используются не только данные WISDM [11], но и собранные самостоятельно. В качестве базовых алгоритмов рассматриваются методы классификации временных рядов, описанные в более ранних работах. Так, в работе [1] был рассмотрен метод классификации, основанный на признаковом описании ряда. Решается задача выбора конкретных используемых признаков и выбора аппроксимирующей модели для построения признакового пространства. В работе были исследованы методы, использующие в качестве признаковых описаний параметры рядов аппроксимирующей модели, было проведено сравнение моделей аппроксимации, а также предложен алгоритм классификации временных рядов в пространстве параметров распределений признаков их сегментов. «Тут нужсно более подробное описание»

Постановка задачи классификации временных рядов

Пусть $\{(\mathbf{x}_i, \mathbf{y}_i)\}$ — это обучающая выборка, где \mathbf{x} — временной ряд, имеющий большую длину, чем наиболее продолжительная рассматриваемая суперпозиция, \mathbf{y} — это рассматриваемые типы суперпозиций физической активности.

Рассматриваются следующие виды суперпозиций физической активности:

h \g	No nand motion	Look at watch	Take a sip, 33cl	Carry sack (right hand), 2kg
Stand	$_{ m id+id}$	id+g2	id+g3	$_{ m id+id}$
Walk normal	h2+id	h2+g2	h2+g3	h2+g4
Downstairs	h3+id	h3+g2	h3+g3	h3+g4
Jog	h4+id	h4+g2	h4+g3	h4+g4

Таблица 1. Типы рассматриваемых суперпозиций физической активности

Данные для работы собираются по следующему квесту:

- Поставить воду 300cl, пакет с бутылкой 2l на стол.
- Запустить приложение [название].
- Проверить частоту семплирования, [100Hz].
- Нажать на кнопку Старт
- Повторять: Топнуть, Действие из списка, считать про себя до пяти. Действие рук повторять не спеша.
- Нажать кнопку Стоп.
- Сохранить файл.
- Послать по специальному адресу файл и анкету со следующему данными:
 - 1. sex, age, weight, height,
 - 2. morning, evening, exited, calm,
 - 3. left back pocket, left hand, left hand bag (for phone).

Список действий:

- Надеть рюкзак (на оба плеча). Снять рюкзак. 10 раз, перерыв между действиями по 2 секунды.
- Снять очки. Надеть очки. 10 раз, перерыв между действиями по 2 секунды.
- Шагать 3 минуты.
- Шагать на месте 3 минуты.
- 25 приседаний.
- Поднести чашку со стола ко рту, поставить чашку. 20 раз, перерыв между действиями по 2 секунды.

Функция F построения множества признаков временного ряда:

$$F: \mathbf{X} \to \mathbb{R}^{\mathbf{n}}$$

Многоклассовый классификатор G, который переводит признаки в метки:

$$G: \mathbb{R}^n \to \mathbf{Y}$$

Итоговый алгоритм — это композиция некоторого G и F:

$$a = G \circ F$$

Предлагается в качестве функции потерь использовать индикатор

$$Q(a, D) = \frac{1}{|D|} \sum_{(x,y) \in D} I(a(x) \neq y)$$

В методе обучения будем фиксировать F и оптимизировать функцию G, тогда оптимальный алгоритм принимает следующий вид:

$$a_F = \widehat{G} \circ F$$
, где
$$\widehat{G} = \operatorname*{argmin}_G(Q(G \circ F, D))$$

Чтобы оценить эффективность метода обучения, мы будем разбивать нашу выборку r раз на тестовую и тренировочную $(D = A_1 \sqcup B_1 = A_2 \sqcup B_2 = ... = A_r \sqcup B_r)$, в таком случае наш критерий качества a_F будет:

$$QV(a_F, D) = \frac{1}{r} \sum_{i=1}^{r} Q(a_F(A_i), B_i)$$

Итоговая цель — найти:

$$\widehat{a} = \underset{F}{\operatorname{argmin}}(QV(a_F, D))$$

Модель локальной аппроксимации SEMOR

Модель **SEMOR** решает задачу аппроксимации отнормированного временного ряда Z временным рядом \mathbf{x} .

Для этого производится преобразование ряда x.

Преобразованием ряда является его сдвиг и растяжение, то есть выбор коэффициентов ω_1 и ω_2 и переход от ряда $\mathbf{x}(t)$ к ряду $\mathbf{x}(\omega_1*t+\omega_2)$.

Таким образом, задача заключается в поиске таких коэффициентов ω_1 и ω_2 , что величина $||Z - \mathbf{x}(\omega_1 * t + \omega_2)||$ минимизируется.

Для решения задачи классификации суперпозиции физической активности используется модель **SEMOR** для двух рядов.

Пусть есть отнормированный ряд Z, который необходимо классифицировать. Также есть два множества отнормированных рядов $\{G_1, G_2, ..., G_n\}$ и $\{H_1, H_2, ..., H_m\}$.

Необходимо найти такую пару рядов G_i и H_j , что Z является их суперпозицией. Для этого нужно преобразовать ряды и построить их суперпозицию Q.

Суперпозицией преобразованных рядов является их сумма, которая также преобразована с помощью сдвига и растяжения:

$$Q = \omega_5 * (G_i(\omega_1 * t + \omega_2) + H_j(\omega_3 * t + \omega_4)) + \omega_6$$

Таким образом, необходимо найти:

$$argmin_{(i,j)}||Q-Z||,$$

где все ω в Q выбраны так, что они минимизируют значение функции.

Путь наименьшей стоимости между рядами DTW

В данной работе для приближения нескольких временных рядов друг к другу предлагается использовать алгоритм **DTW**.

Пусть есть два временных ряда: G из \mathbb{R}^n и H из \mathbb{R}^m . Пусть Ω^{nm} - матрица, такая что ее элемент $\Omega_{ij} = (G_i - H_j)^2$.

Путем между двумя рядами G и H будем назвать последовательность пар индексов элементов матрицы Ω : $\pi = \{\pi_r\} = \{(i_r, j_r)\}$, где $r \in \{1, ..., R\}$, причем R называется длиной пути, а $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$.

Стоимостью пути π называется величина $Cost(G, H, \Pi) = \sum_{(i,j) \in \pi} \Omega_{ij}$.

Тогда задача поиска кратчашего пути заключается в поиске пути $\hat{\pi} = argmin_{\pi}Cost(G, H, \pi)$, а точнее его величины, которую можно обозначить как $\rho(G, H) = Cost(G, H, \hat{\pi})$.

Для решения этой задачи в работе предлагается использовать следующий метод. Построим новую матрицу Γ^{nm} , элементы которой определим следующим образом:

$$\Gamma_{1j} = \Omega_{1j}, \ \Gamma_{i1} = \Omega_{i1}, \ i \in \{1, ..., n\}, \ j \in \{1, ..., m\}.$$

$$\Gamma_{ij} = \Omega_{ij} + \min(\Gamma_{i-1,j}, \Gamma_{i,j-1}, \Gamma_{i-1,j-1})$$

Пути, найденные в матрице Г, будем назвать выравнивающими.

В таком случае в качестве значения функции расстояния между рядами G и H будем считать стоимость выравнивающего пути между ними:

$$\rho(G, H) = \Gamma_{nm}$$
.

Как и в случае модели **SEMOR**, данный алгоритм может быть обобщен для случая трех временных рядов. Пусть есть ряды G из \mathbb{R}^n , H из \mathbb{R}^m , Z из \mathbb{R}^t . Пусть, как и в случае с двумя рядами, есть матрица расстояний Ω^{nmt} , где $\Omega_{ijk} = (G_i - H_j - Z_k)^2$.

Аналогично определим путь как последовательность троек индексов элементов матрицы Ω : $\pi = \{\pi_r\} = \{(i_r, j_r, k_r)\}$, где $r \in \{1, ..., R\}$, причем R называется длиной пути, а $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$, $k \in \{1, ..., t\}$.

Стоимостью пути π назовем величину $Cost(G, H, Z, \pi) = \sum_{(i,i,k) \in \pi} \Omega_{ijk}$.

Тогда задача поиска кратчашего пути заключается в поиске пути $\hat{\pi} = argmin_{\pi}Cost(G, H, Z, \pi)$, а точнее его величины, которую можно обозначить как $\rho(G, H, Z) = Cost(G, H, Z, \hat{\pi})$.

Для решения этой задачи в работе предлагается использовать следующий метод. Построим новую матрицу Γ^{nmt} , элементы которой определим следующим образом:

$$\Gamma_{1j1} = \Omega_{1j1}, \ \Gamma_{i11} = \Omega_{i11}, \ \Gamma_{11k} = \Omega_{11k}, \ i \in \{1, .., n\}, \ j \in \{1, .., m\}, \ k \in \{1, .., t\}.$$

$$\Gamma_{ijk} = \Omega_{ijk} + min(\Gamma_{i-1,j,k}, \Gamma_{i,j-1,k}, \Gamma_{i,j,k-1}, \Gamma_{i-1,j-1,k}, \Gamma_{i-1,j,k-1}, \Gamma_{i,j-1,k-1}, \Gamma_{i-1,j-1,k-1})$$

Пути, найденные в матрице Г, будем назвать выравнивающими.

В таком случае в качестве значения функции расстояния между рядами G, H и Z будем считать стоимость выравнивающего пути между ними:

$$\rho(G, H, Z) = \Gamma_{nmt}.$$

Итоговый алгоритм

В модели **SEMOR** при известных коэффицентах $\omega_1, \omega_2, \omega_3, \omega_4$ оптимальные коэффициенты легко найти с помощью линейной регрессии. Задача же поиска коэффициентов $\omega_1, \omega_2, \omega_3, \omega_4$, минимизирующих значение функции, остается довольно сложной. Для ее решения в данной работе предлагается использовать алгоритм **DTW**.

Пусть, как и в модели **SEMOR** есть ортонормированный ряд Z, который необходимо классифицировать, а также два множества отнормированных рядов $\{G_1, G_2, ..., G_n\}$ и $\{H_1, H_2, ..., H_m\}$.

Будем перебирать пары рядов из множеств $\{G_i\}$ и $\{H_j\}$. Для каждой фиксированной пары (G_i, H_j) и ряда Z построим матрицу Γ описанным выше способом.

Пусть кратчайший путь, найденный с помощью матрицы Γ , это $\hat{\pi}$. Тогда рассмотрим этот путь, он состоит из троек (i,j,k), где $i\in\{1,...,n\},\ j\in\{1,...,m\},\ k\in\{1,...,t\}$. Составим новые ряды \hat{G} , \hat{H} , \hat{Z} , где $\hat{G}=\{G_i\}$ по $i\in\hat{\pi}$, $\hat{H}=\{H_j\}$ по $j\in\hat{\pi}$, $\hat{Z}=\{Z_k\}$ по $k\in\hat{\pi}$.

Для полученных трех рядов применим линейную регрессию, чтобы найти коэффициенты ω_5 и ω_6 для приближения ряда \hat{Z} рядом $\hat{Q} = \omega_5 * (\hat{G} + \hat{H}) + \omega_6$.

В конечном итоге нужно выбрать такую пару G_i и H_j , для которой значение величины $||\hat{Q} - Z||$ будет минимальным. Тогда для ряда Z будем говорить, что он является суперпозицией ряда G_i и H_i .

Вычислительный эксперимент

Для проверки качества построенного алгоритма, протестируем его на искусственных данных.

Сгенерируем два случайных ряда A и B. Возьмем два множества рядов:

Полученные из ряда A:

- $-A_1 = A/8$
- $-A_2 = sin(A)$
- $-A_3 = log(A)$
- $A_4 = exp(A/10)$

Полученные из ряда B:

- $-B_1 = cos(B)$
- $-B_2 = sin(log(B))$
- $B_3 = sin(B*2)$
- $-B_4 = 2 * tq(B/5)$

В качестве рядов для классификации Z будем рассматривать почленные суммы рядов A_i и B_i . Сгенерировав эти суммы, запустим построенный алгоритм на них.

Таблица 2. Качество работы итогового алгоритма на искусственных данных

$A \setminus B$	B_1	B_2	B_3	B_4
A_1	100%	100%	90%	60%
A_2	100%	80%	100%	40%
A_3	90%	90%	80%	60%
A_4	80%	100%	50%	100%

В среднем качество работы: 82.5%

Базовый вычислительный эксперимент

Модель локальной аппроксимации AR

Рассмотрим параметрическую модель, которая будет приближать реальные значения нашего временного ряда:

$$g(w, \mathbf{X}) \to \mathbf{X}$$
, где $w \in \mathbb{R}^n$.

В качестве параметрической модели рассмотрим авторегрессионную модель AR(p):

Пусть
$$x=[x_1,x_2,...x_t]$$
 — временной ряд, где $x_i \in \mathbb{R}$ Тогда $g(w,x)=[\widehat{x}_1,\widehat{x}_2,...,\widehat{x}_t],$ где $\widehat{x}_k=\begin{cases} x_k, & k=1,...,p, \\ w_0+\sum_{i=1}^p w_i\cdot x_{k-i}, & k=p+1,...,t. \end{cases}$

Если в качестве ρ взять евклидово расстояние, то оптимальное w определяется следующей формулой:

$$w_g(x) = \arg\min_{w \in \mathbb{R}^n} \sum_{i=1}^t ||x_i - \hat{x}_i||_2^2$$

Алгоритм классификации

Для завершения построения классификатора временных рядов, необходимо построить классификатор G по обучающей выборке $\{(F(x),y) \mid (x,y) \in D\}$.

Будем для этого использовать модель логистической регрессии:

$$f(x,A,b)=A\cdot F(x)+b$$
, где $A\in M_{m\times n},b\in M_{m\times 1}$ подбираемые параметры.

Далее из вектора f(x, A, b) получаем вектор вероятностей:

$$pr(x, A, b)_k = \frac{e^{f(x, A, b)_k}}{\sum_{i=1}^n e^{f(x, A, b)_i}}$$

Тогда классификатор примет вид:

$$G(x,y) = \operatorname*{arg max}_{k=1}^{m} pr_k(x,A,b)$$

В качестве функции оценки качества параметров тогда будет функция:

$$Loss(x, w, A, b) = \sum_{i=1}^{m} y_i \cdot log(pr_i(x, A, b))$$

Оптимальные параметры модели определяются следующим образом:

$$\widehat{A}, \widehat{b} = \underset{A,b}{\operatorname{argmin}} loss(x, w, A, b)$$

Датасет WISDM

Датасет WISDM [11] содержит показания акселерометра для шести видов человеческой активности:

- 1. Jogging
- 2. Walking
- 3. Upstairs
- 4. Downstairs

- 5. Sitting
- 6. Standing

Необработанные данные, представляющие из себя последовательность размеченных показаний акселерометра (по тройке чисел на каждый отсчет времени с интервалом в 50 миллисекунд), были разбиты на временные ряды длиной по 200 отсчетов (10 секунд).

Модель авторегрессии

Признаковое описание. Каждый временной ряд описывается следующими признаками: среднее значение по каждой из координат, среднее квадратичное отклонение по каждой из координат, средний квадрат ускорения, 10 коэффициентов модели авторегрессии AR(9).

Результаты.

	Jogging	Walking	${f Upstairs}$	Downstairs	Sitting	Standing	Total quality
KNN (k = 1)	99.40%	98.82%	93.81%	87.34%	98.04%	100.00%	97.61%
Random forest (100 trees)	99.70%	99.29%	88.50%	81.01%	96.08%	100.00%	96.75%
Log regression	99.40%	96.00%	78.76%	43.04%	92.16%	97.67%	91.10%

Таблица 3. Качество модели авторегрессии на датасете WISDM

Рис. 1. Точность классификации при использовании модели авторегрессии и классфикатора KNN.

Рис. 2. Точность классификации при использовании модели авторегрессии и Random forest.

и логистической регрессии.

Рис. 3. Точность классификации при использовании модели авторегрессии

Как видно, все три классификатора показывают хорошие результаты и классифицируют данные с точностью более 91%. В то же время, наилучшие результаты показывает KNN, при этом все классификаторы показывают наихудшие результаты для классов «Upstairs» и «Downstairs». При этом, все алгоритмы можно улучшать с помощью, например, добавления дополнительных признаков или перебора параметров классификаторов.

Коэффициенты Фурье

Признаковое описание. Каждый временной ряд описывается первыми 15 коэффициентами ряда, полученного преобразованием Фурье исходного ряда.

Результаты.

	Jogging	Walking	Upstairs	Downstairs	Sitting	Standing	Total quality
KNN (k = 1)	98.80%	97.78%	39.00%	26.92%	100.00%	100.00%	82.20%
Random forest (100 trees)	98.80%	99.01%	63.00%	54.80%	100.00%	100.00%	91.20%
Log regression	93.69%	97.04%	22.00%	16.35%	94.00%	100.00%	80.77%

Таблица 4. Качество коэффициентов Фурье на датасете WISDM

Рис. 4. Точность классификации при использовании коэффициентов Фурье и классификатора KNN.

Рис. 5. Точность классификации при использовании коэффициентов Фурье и Random forest.

Log regression. Mean Accuracy: 80.77%

Рис. 6. Точность классификации при использовании коэффициентов Фурье и логистической регрессии.

Линейное преобразование ряда и модель авторегрессии

Признаковое описание. В данном случае перед применением модели авторегрессии к ряду было применено нормирование перед запуском модели авторегрессии.

Результаты.

	Jogging	Walking	Upstairs	Downstairs	Sitting	Standing	Total quality
KNN (k = 1)	99.70%	99.53%	95.83%	83.13%	96.15%	100.00%	97.80%
Random forest (100 trees)	99.44%	99.24%	89.62%	71.60%	98.46%	100.00%	96.17%
Log regression	93.69%	97.04%	22.00%	16.35%	94.00%	100.00%	80.77%

Таблица 5. Качество комбинирования линейного преобразования рядов и модели авторегрессии на датасете WISDM

Random forest. Mean Accuracy: 96.17%

Заключение

В работе была рассмотрена задача классификации видов физической активности человека. Был проведен вычислительный эксперимент с базовыми алгоритмами и их модификациями, который показал очень хорошие результаты. Был также предложен метод классификации суперпозиции временных рядов с помощью комбинации модели **SEMOR** и алгоритма **DTW**.

Построенный алгоритм показал хорошие результаты на искусственных данных. Ожидается, что такие же хорошие результаты будут показаны и на реальных временных рядах, описывающих физическую активность человека, что в перспективе может привести к получению алгоритма лучшего, чем базовый.

Литература

- [1] Карасиков М.Е., Стрижов В.В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016.
- [2] *Кузнецов М.П., Ивкин Н.П.* Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // *Машинное обучение и анализ данных*, 2015. Т. 1, № 11. С. 1471 1483.
- [3] Исаченко Р.В., Стрижов В.В. Метрическое обучение в задачах многоклассовой классификации временных рядов // Информатика и ее применения, 2016, 10(2): 48-57.
- [4] Задаянчук А.И., Попова М.С., Стрижов В.В. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии. 2016.
- [5] Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2016, Vol. 20, No. 6, 1466 1476.
- [6] Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015: 1-14.
- [7] *Кузнецова М.В.* Классификация временных рядов с использованием инвариантных преобразований // *Выпускная квалификационная работа магистра*, 2015, Московский физикотехнический институт.
- [8] Фадеев И.В. Выбор иерархических моделей в авторегрессионном прогнозировании // Магистерская диссертация, 2013, Московский физико-технический институт.
- [9] Исаченко Р.В. Реализация алгоритма классификации временных рядов // sourceforge.net, http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group274/ Isachenko2015TimeSeries/code/.
- [10] Кононенко Д.С. Оценка параметров инвариантных преобразований в задачах прогнозирования временных рядов // Магистерская диссертация, 2013, Московский физико-технический институт.
- [11] Wisdm's activity prediction dataset // , 2012, http://www.cis.fordham.edu/wisdm/dataset.php.
- [12] Oliver Amft Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition // Sensors, 2015.
- [13] Akram Bayat, Marc Pomplun, Duc A. Tran A Study on Human Activity Recognition Using Accelerometer Data from Smartphones // The 11th International Conference on Mobile Systems and Pervasive Computing, 2014.
- [14] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-Ortiz Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector

- Machine // Proceedings of the 4th international conference on Ambient Assisted Living and Home Care, 2012.
- [15] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-Ortiz A Public Domain Dataset for Human Activity Recognition Using Smartphones // 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2013.
- [16] Xiangbin Zhu, Huiling Qiu High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections // PLoS ONE, 2016.
- [17] Haritha Vellampalli Physical Human Activity Recognition Using Machine Learning Algorithms // Dissertation, Dublin Institute of Technology, 2017.
- [18] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and Paul J. M. Havinga Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors // Sensors, 2016.
- [19] Shinki Miyamoto, Hitoshi Ogawa Human Activity Recognition System Including Smartphone Position // International workshop on Innovations in Information and Communication Science and Technology, 2014.
- [20] Charissa Ann Ronao, Sung-Bae Cho Recognizing human activities from smartphone sensors using hierarchical continuous hidden Markov models // International Journal of Distributed Sensor Networks, 2017, Vol. 13(1).
- [21] Dina Bousdar Ahmed, Korbinian Frank, Oliver Heirich Recognition of Professional Activities With Displaceable Sensors // Vehicular Technology Conference, 2015.
- [22] Shah Md. Shihab Hasan, Mohshi Masnad, Md. Mohiuddin Khan, Hasan Mahmud, Md. Kamrul Hasan Human Activity Recognition using Smartphone Sensors with Context Filtering // The Ninth International Conference on Advances in Computer-Human Interactions, 2016.
- А. В. Гончаров, В. В. Стрижсов Метрическая классификация временных рядов со взвешенным выравниванием относительно центроидов классов // Московский физико-технический институт, 2015.