

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

Raspberry Pi and Astro Pi

Session 2

Skills Workshop

OIDE and ESERO

Session Overview

PART 1. Physical Sense HAT setup

PART 2. Programming the Sense HAT

PART 3. Internet of Things (IoT) and ThingSpeak

PART 1
Sense HAT Setup

Attaching the Sense Hat

GPIO and the 40-pin header

Any of the GPIO pins can be designated (in software) as an input or output pin and used for a wide range of purposes

Programming Activity

Task:

Make one of the emulator programs you worked on before the break work on the physical sense HAT

Code Along:

- Open one of the programs you were working on earlier
- Make a copy of the line: from sense_emu import SenseHat
- Comment out the line: #from sense_emu import SenseHat
- Change the copied line: sense_emu → sense_hat
- Program to animate a pixel so that it appears to be moving around the 8x8 LED

Programming Activity

Challenge

Sparkling LED: Animate the LED so that it appears to sparkle!

https://projects.raspberrypi.org/en/projects/sense-hat-random-sparkles

Built in Sensors

- Temperature sensor
- Humidity sensor
- Pressure sensor
- Accelerometer
- Gyroscope
- Magnetometer
- Light sensor

Activity - Collecting Sensor Data

temperature = sense.get_temperature()

Sense HAT API Reference

★ Sense HAT Search docs	Docs » API Re	eference		○ Edit on GitHub	
Home	Sense H	IAT AF	I Referen	ice	
API Reference Sense HAT API Reference	LED Mat	rix			
LED Matrix	LLD With				
Environmental sensors	set_rotatio	set_rotation			
IMU Sensor	If you're using	If you're using the Pi upside down or sideways you can use this function to correct the orientation of			
Joystick	the image beir	the image being shown.			
Changelog	Parameter	Туре	Valid values	Explanation	
	r	Integer	0 90 180 270	The angle to rotate the LED matrix though. • is with the Raspberry Pi HDMI port facing downwards.	
	redraw	Boolean	True False	Whether or not to redraw what is already being displayed on the LED matrix. Defaults to True	
	Returned typ	Returned type Explanation			
	None				
	sense = Sense sense.set_rot # alternative	<pre>from sense_hat import SenseHat sense = SenseHat() sense.set_rotation(180) # alternatives sense.rotation = 180</pre>			

https://pythonhosted.org/sense-hat/api/

Programming Activity

Write a program to read and display the air pressure (or humidity)

Tracking Movement with the Sense HAT

Inertial Measurement Unit (IMU)

Combination of gyroscopic sensor, accelerometer, and magnetometer

Pitch — imagine a plane taking off

Roll — imagine a plane doing a victory roll

Yaw — imagine steering a plane like a car

Orientation


```
from sense_hat import SenseHat

sense = SenseHat()
sense.clear()

o = sense.get_orientation()
pitch = o["pitch"]
roll = o["roll"]
yaw = o["yaw"]

print("pitch {0} roll {1} yaw {2}".format(pitch, roll, yaw))
```


Accelerometer


```
from sense hat import SenseHat
sense = SenseHat()
while True:
       acceleration = sense.get accelerometer raw()
       x = acceleration['x']
       y = acceleration['y']
       z = acceleration['z']
      x=round(x, 0)
       y=round(y, 0)
       z=round(z, 0)
      print("x=\{0\}, y=\{1\}, z=\{2\}".format(x, y, z))
```


The Raspberry Pi and Astro Pi

PART 3
Internet of Things (IoT) and ThingSpeak

An overview of IoT Platforms and Dashboards

ThingSpeak:

Easiest to get going for beginners. Does all the heavy lifting such as graphing and animation for you.

Has MATLAB analytics.

Firebase:

Industry level database. Works great with webpages on Glitch. A little bit more complicated! Does not graph that data for you.

Thingsboard:

Like ThingSpeak but better looking and with more features. No free version though! (€10 p/m)

IFTTT

If This Then That lets your programs link up with Phillips Hue, Alexa, Google Assistant and other Home IoT devices

ThingSpeak Advantages & Limitations

ThingSpeak Advantages:

- **Free** to use (8 data sources)
- Can both read and write
- Quick & easy sensor to graph
- Quick & easy share/publish

ThingSpeak Limitations:

More like a spreadsheet with 8 columns, data does not have branches or leaf nodes like Firebase.

Let's make a ThingSpeak project!

We'll do this as a LIVE CODING session!

1. Go to ThingSpeak.com and create a MathWorks account.

Create a New Channel.

2. Give your channel a name.

Say what you're recording in Field 1.

Scroll down to the bottom of the page and click on Save Channel

Save Channel

3. After saving, go back into your channel and copy the *Write API Key*.

Make a note of this Key.

This is the secret password that allows

ANYONE to write to your database

4. Writing to your Database is so simple you could

theoretically add a data point without Python!

In fact, all the Python program does is open one webpage.

Opening that URL once adds a data point. Opening it again

will add it again.

5. Test using this 5 line python program that opens a

webpage.

```
import sys
from urllib.request import urlopen

f = urlopen("https://api.thingspeak.com/update?api_key=DA1K0TYF36CAE516&field1=50")
#print(f.read())
f.close()
```


Uncomment this line to check if your code works.

It should return something in the format
b'11907' (I've added 11907 data points but your number may be
much smaller)

Base URL (always the same) +

API Key (Secret & Unique to your Channel)+ Field + Data

https://api.thingspeak.com/update?api_key=DA1K0TYF36CAE516&field1=42

Change this GREEN PART to YOUR API Key

6. Run the previous code twice and then check to see if your graph!

If it's not working, ensure that:

- Your device has an internet connection
- You've used the correct API key for the channel you are viewing. (Not my API)
- You're not viewing a channel that is being spammed by 50 people right now. There is a limit on how quickly you can send data. (15 seconds for the free version)

Channel Stats

Created: about 2 hours ago Last entry: about a minute ago

Base URL (always the same)

+API Key (Secret & Unique to your Channel)

+ Field

+ Data

https://api.thingspeak.com/update?api_key=DA1K0TYF36CAE516&field1=42

7. Try this Longer example with two fields. We're nearly ready for sensors.

This code has placeholder variables for each sensor e.g. *fakeTemperature* = 42

You will need to add *Field 2* on your Thingspeak Channel in Chrome.


```
import sys
from time import sleep
from urllib.request import urlopen
myAPI = "DA1K0TYF36CAE516" #your key from your own thingspeak account. Put yours here.
def updateThingSpeak():
  print('Now updating thingspeak')
  baseURL = 'https://api.thingspeak.com/update?api_key=%s' % myAPI
  f = urlopen(baseURL + "&field1=%s" % (fakeTemperatureMeasurement) + "&field2=%s" % (fakeHumidityMeasurement) )
  print ("Success! I uploaded data point No. ", f.read())
  f.close()
# Program Starts Here
fakeTemperatureMeasurement = 42
fakeHumidityMeasurement = 99
while True:
   updateThingSpeak()
   print("Now waiting another 10 seconds before uploading more data to thingspeak...")
   print("")
```


These Field names only decorate your Webpage Graph and will not affect your python Data coming in

8. Now try stream Temperature Data from your Sense Hat!

```
from sense_hat import SenseHat

sh = SenseHat()
temperature = sh.get_temperature()
print(temperature)

sh.show_message("Its" + str(temperature) + "C")
```


Examples of

Thingspeak Apps:

- ThingShow (Android)
- Thingview (iOS)

Channel Sharing Settings

- O Keep channel view private
- Share channel view with everyone

Other cool stuff to try later:

Tweet Control! Send a Tweet if
things get too hot or if your cookie
has gone missing!
Or control your Raspberry Pi Motor,
Light or Servo by Tweeting!
It's under ThingSpeak.com/apps

https://community.thingspeak.com/documentation/apps/tweetcontrol/

Lunch Break

An Roinn Oideachais Department of Education

