COMP2009 2022-23 ADE Coursework TWO (6.25%) Wed. 29-MAR-2023

Time: 30 minutes.

Do not turn over the page until instructed.

Answer ALL FOUR questions for a total of 25 marks.

Calculators are not permitted.

Write your answers on these sheets within the spaces provided. Please write clearly. Write your name & ID in the box below CLEARLY AND IN UPPER CASE LETTERS

FAMILY NAME:	
FIRST NAME(S):	
Student ID number:	
Signature:	

(Also, write your name on each sheet; in case the sheets become separated.)

Information that might, or might not, be helpful:

Geometric series: $1 + 2 + 2^2 + 2^3 + ... + 2^p = 2^{p+1} - 1$

Powers of 2:

n	0	1	2	3	4	5	6
2 ⁿ	1	2	4	8	16	32	64

Reminders of properties of logs:

$$a^{0} = 1$$
 $log_{2} (2^{a}) = a$ $log_{b} (a) = log_{2} (a) / log_{2} (b)$ $log_{b} (a) = 1 / log_{a} (b)$

Master theorem: Given T(n) = a T(n/b) + f(n) and T(1)=1.

Case 1: If
$$f(n)$$
 is $O(n^c)$ for some c, with $c < log_b(a)$
then $T(n)$ is $O(n^{log_b(a)})$

Case 2: If
$$f(n)$$
 is $\Theta(n^c (\log n)^k)$ for some $k \ge 0$, and with $c = \log_b (a)$
then $T(n)$ is $\Theta(n^c (\log n)^{k+1})$

Case 3: If
$$f(n)$$
 is $\Omega(n^c)$ for some c, with $c > \log_b(a)$ then $T(n)$ is $\Theta(f(n))$ (strictly, we need f to satisfy a "regularity condition", which you can ignore here)

For completion by markers:

Total mark (out of 25):

Question 1. "Vectors and Amortised complexity" [4 marks]

An empirical study of the amortised complexity of insertions into the Vector data structure is considered. The study consists of starting from a Vector data structure with just a small array and then inserting n extra elements one at a time – using a 'push' operation. An estimate of the total number of primitive operations is maintained:

count(n) = estimate of the number of primitive operations (i.e. an estimate of the runtime) needed to push n elements starting from a small fixed size (a measure of the T(n) used in lectures)

The amortised cost is then the function: count(n) / n Two "resizing strategies" are studied for resizing the array when it is full:

- "Incremental" increase the size by some constant number
- "**Doubling**" double the size of the array each time
 Two graphs below are obtained from plotting count(n)/n (y-axis) as a function of n (x-axis)

Graph A:

Graph B:

NAME: Page 3

For each graph, clearly indicate which of the two resizing strategies it corresponds to (circle the correct answer and cross out the wrong one). Also, give a **brief** justification of your selection. You do NOT need to fully explain the graphs to get full marks!

	Circle one: Brief Explana	"Incremental"	or	"Doubling"	?
Graph A					
		"Incremental"	or	"Doubling"	?
	Brief Explana	ation:			
Graph B					

Question 2. Recurrence – Master Theorem (MT) [7 marks]

Using the Master Theorem, identify the MT case, and solve for the Big-Theta behaviour of T(n) for the following three recurrence relations. In all three problems, you can assume T(1)=1. If using "Case 3" then you can assume that the regularity condition is satisfied. There is no need (or point) to justify your answers.

Q2.a
$$T(n) = 8 T(n/2) + n^2$$

Give the value of log_b (a):

Circle the case: Case 1 Case 2 Case 3

Circle the correct Theta behaviour of T(n):

A.
$$\Theta$$
 (n^2)

B.
$$\Theta$$
 ($n^2 \log(n)$)

C.
$$\Theta$$
 (n^3)

D.
$$\Theta$$
 ($n^3 \log(n)$)

E.
$$\Theta$$
 (n^4)

F.
$$\Theta$$
 ($n^4 \log(n)$)

NAME:

Page 5

Case 3

 $T(n) = 8 T(n/2) + n^3$ Q2.b

Circle the case: Case 2 Case 1

Circle the correct Theta behaviour of T(n):

- A. Θ (n^2)
- B. Θ ($n^2 \log(n)$)
- C. Θ (n^3)
- D. Θ ($n^3 \log(n)$)
- E. Θ (n^4)
- F. Θ ($n^4 \log(n)$)

 $T(n) = 8 T(n/2) + n^4$ Q2.c

Circle the case: Case 1 Case 2 Case 3

Circle the correct Theta behaviour of T(n):

- A. Θ (n^2)
- B. Θ ($n^2 \log(n)$)
- C. Θ (n^3)
- D. Θ ($n^3 \log(n)$)
- E. Θ (n^4)
- F. Θ ($n^4 \log(n)$)

Question 3. Heaps

[7 marks]

Consider the following heap:

Q3.a Complete the following array-based representation of the heap:

Array Index	0	1	2	3	4	5	6
Key	-	1					

Q3.b You are then to **insert the number 4** into the heap. Briefly explain the process, and give the heap (as a tree) that results after the insertion:

NAME: Page 7

Q3.c You are then to **perform removeMin()** on the tree that results from **Q3.b**. Briefly explain the process, and give the heap (as a tree) that results after the removeMin.

Question 4. Recurrence relations

[7 marks]

Consider the following recurrence relation:

$$T(n) = 4 T(n/4) + 1$$
 $T(1) = 1$

The exact solution is claimed to be T(4^k) = (4^{k+1} -1)/3 Use induction to prove that this solution is correct, and show your working.

Base Case:

Step Case: