数组&矩阵

数组

由n个相同类型的元素组成的有限序列。数组是线性表的推广。

一维数组

arr[0, 1, ..., n-1]

存储结构关系: $pos(a_i) = pos(a_0) + i \times L \quad (0 \le i < n)$

二维数组

行优先

设行: m, 列: n

存储结构关系: $pos(a_{i,j}) = pos(a_{0,0}) + [i \times n + j] \times L \quad (0 \leq i < m, 0 \leq j < n)$

列优先

设行: m, 列: n

存储结构关系: $pos(a_{i,j}) = pos(a_{0,0}) + [j imes m+i] imes L \quad (0 \leq i < m, 0 \leq j < n)$

高维数组

压缩矩阵

特殊矩阵:具有许多相同的元素或零元素,且这些元素的位置分布有一定的规律的矩阵。 特殊矩阵的压缩存储:将多个值相同的元素只分配一个存储空间,**零元素不分配空间**。

对称矩阵

一般存储下三角矩阵,下三角区域(含主对角线)。第一行:1个元素;第二行:2个元素;…第i-1行:i-1个元素;第i行:j-1个元素。故 a_{ij} 为第 $\frac{i(i+1)}{2}+j$ 个元素。

元素 a_{ij} 与其在数组中的下标k之间的对应关系:

- 1. $\frac{i(i-1)}{2}+j-1$ $(i\geq j)$ 下三角区和主对角线;
- 2. $\frac{j(j-1)}{2} + i 1$ (i < j) 上三角区。

三角矩阵

上三角矩阵

上三角区域(含主对角线)。第一行:n个元素;第二行:n-1个元素; ...第i-1行:n-i+2个元素;第i 行: j-i个元素。故 a_{ij} 为第 $\frac{(n+n-i+2)(i-1)}{2}+j-i+1=\frac{(i-1)(2n-i+2)}{2}+j-i+1$ 个元素。 下三角区域只存储一个元素,该常数为顺序压缩存储最后一个位置。 元素 a_{ij} 与其在数组中的下标k之间的对应关系:

1.
$$\frac{n(n+1)}{2}$$
 $(i>j)$ 下三角区;

1.
$$\frac{n(n+1)}{2}$$
 $(i>j)$ 下三角区;
2. $\frac{(i-1)(2n-i+2)}{2}+j-i$ $(i\le j)$ 上三角区和主对角线。

下三角矩阵

元素 a_{ij} 与其在数组中的下标k之间的对应关系:

1.
$$\frac{n(n+1)}{2}$$
 $(i < j)$ 上三角区;

1.
$$\frac{n(n+1)}{2}$$
 $(i < j)$ 上三角区;
2. $\frac{(i-1)(i)}{2} + j - i$ $(i \ge j)$ 下三角区和主对角线。

对角矩阵

除第1行和第i行外,每行都有三个元素,第i行有j-i+2个元素,故 a_{ij} 为第 3(i-2)+2+j-i+2=2i+j-2个元素。 元素 a_{ij} 与其在数组中的下标k之间的对应关系:k=2i+j-3

稀疏矩阵

Type4: 稀疏矩阵(sparse matrix)

a ₁₁	0	0	0	0
a ₂₁	0	0	0	0
0	0	a ₃₃	0	0
0	0	0	0	a ₄₅
0	0	0	0	a ₅₅

i	j	v
1	1	a ₁₁
2	1	a ₂₁
3	3	a ₃₃
4	5	a ₄₅
5	5	a ₅₅

三元组

矩阵存储

顺序存储

三元组表示法

伪地址表示法

链式存储

邻接表表示法

十字链表表示法

串

定义概念

主串

子串

串长

字符串匹配

暴力匹配

特点

缺点: 时间复杂度太高。

时间复杂度

 $O(n^2)$

kmp算法

字符串前缀:字符串最后一个字符之外的所有头部子串;字符串后缀:字符串第一个字符之外的所有尾部子串;

部分匹配值:字符串的前缀和后缀的最长相等前后缀长度。

部分匹配值

原理

next数组

求解

求解next数组的口诀:

- 1. 求出模式串的部分匹配值;
- 2. 将部分匹配值右移一位;
- 3. 在首位字符处补-1。

改进的kmp算法

传统kmp算法的缺点

nextval数组