IALM

求解方法

基于S1/2建模的稳健稀疏-低秩矩阵分解

增广拉格朗日乘子法

Robust P(A
$$f(X) = ||A|(X) = D - A - E$$
 的機理②· $f(X) = ||A|(X) + ||A|(X) +$

实际求解中只需要更新A或E各一次得到子问题的一个近似解即可,即非精确增广拉格朗日乘子法ADM。 $A_{k+1}=\arg\min_AL\left(A,E_{k+1},Y_k,\mu_k\right),E_{k+1}=\arg\min_EL\left(A_{k+1},E,Y_k,\mu_k\right)$ 更多详细的算法内容参见下方论文的Algorithm 4、5

The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices

IALM

Algorithm 4 (RPCA via the Exact ALM Method)

```
Input: Observation matrix D \in \mathbb{R}^{m \times n}, \lambda.
 1: Y_0^* = \operatorname{sgn}(D)/J(\operatorname{sgn}(D)); \ \mu_0 > 0; \ \rho > 1; \ k = 0.
 2: while not converged do
          // Lines 4-12 solve (A_{k+1}^*, E_{k+1}^*) = \arg\min_{A \in E} L(A, E, Y_k^*, \mu_k).
          A_{k+1}^0 = A_k^*, E_{k+1}^0 = E_k^*, j = 0; while not converged do
 4:
              // Lines 7-8 solve A_{k+1}^{j+1} = \arg\min_{A} L(A, E_{k+1}^{j}, Y_{k}^{*}, \mu_{k}).
              (U, S, V) = \operatorname{svd}(D - E_{k+1}^{j} + \mu_{k}^{-1} Y_{k}^{*});
              A_{k+1}^{j+1} = US_{\mu_k^{-1}}[S]V^T;
              // Line 10 solves E_{k+1}^{j+1} = \arg\min_{E} L(A_{k+1}^{j+1}, E, Y_k^*, \mu_k).
              E_{k+1}^{j+1} = \mathcal{S}_{\lambda \mu_k^{-1}} [D - A_{k+1}^{j+1} + \mu_k^{-1} Y_k^*];
10:
               j \leftarrow j + 1.
11:
12:
           end while
          Y_{k+1}^* = Y_k^* + \mu_k (D - A_{k+1}^* - E_{k+1}^*).
Update \mu_k to \mu_{k+1}.
13:
14:
15:
           k \leftarrow k + 1.
16: end while
Output: (A_k^*, E_k^*).
```

Algorithm 5 (RPCA via the Inexact ALM Method)

```
Input: Observation matrix D \in \mathbb{R}^{m \times n}, \lambda.
 1: Y_0 = D/J(D); E_0 = 0; \mu_0 > 0; \rho > 1; k = 0.
 2: while not converged do
        // Lines 4-5 solve A_{k+1} = \arg\min_{A} L(A, E_k, Y_k, \mu_k).
        (U, S, V) = \text{svd}(D - E_k + \mu_k^{-1} Y_k);
        A_{k+1} = US_{\mu_k^{-1}}[S]V^T.
        // Line 7 solves E_{k+1} = \arg\min_{E} L(A_{k+1}, E, Y_k, \mu_k).
        E_{k+1} = \mathcal{S}_{\lambda \mu_k^{-1}} [D - A_{k+1} + \mu_k^{-1} Y_k].
        Y_{k+1} = Y_k + \mu_k (D - A_{k+1} - E_{k+1}).
 8:
 9:
        Update \mu_k to \mu_{k+1}.
        k \leftarrow k + 1.
10:
11: end while
Output: (A_k, E_k).
```

其中的
$$\langle A,B
angle = \operatorname{tr}\left(A^TB
ight), \quad J(Y) = \max\left(\|Y\|_2,\lambda^{-1}\|Y\|_\infty
ight)$$
 $\mathcal{S}_{arepsilon}[x] \doteq \left\{egin{array}{l} x-arepsilon, & ext{if } x>arepsilon \\ x+arepsilon, & ext{if } x<-arepsilon \\ 0, & ext{otherwise} \end{array}
ight.$ $\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \left|a_{ij}\right|^2}$

增广拉格朗日算法中每一轮迭代最主要计算量在于奇异值分解,寻找一种高效的部分奇异值分解方法对于视频背景建模这种 较大规模的问题是非常重要的。

根据算法5得到的视频结果:部分帧(从左到右依次是原始帧、背景、前景)

IALM 2

我的代码地址: https://github.com/yxhuang7538/Video_background_modeling/tree/main/IALM