Scilab Textbook Companion for Thermodynamics Demystified by M. C. Potter¹

Created by
Aviral Yadav
B.Tech
Mechanical Engineering
ABES Engineering college
College Teacher
None
Cross-Checked by
Harpreeth Singh

September 14, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermodynamics Demystified

Author: M. C. Potter

Publisher: McGraw-Hill, USA

Edition: 1

Year: 2009

ISBN: 0071605991

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Basic Principles	7
2	Properties of Pure Substances	10
3	Heat and Work	16
4	The First Law of Thermodynamics	22
5	The Second Law of Thermodynamics	34
6	Power Vapor Cycles	45
7	Power Gas Cycles	60
8	Psychrometrics	72
9	Combustion	83

List of Scilab Codes

Exa 1.2	kinetic energy	7
Exa 1.3	density and specific volume is asked	7
Exa 1.4	absolute pressure	8
Exa 1.5	Compression in spring	8
Exa 1.6	increase in kinetic energy	S
Exa 2.1		10
Exa 2.2	volume of vapour	11
Exa 2.3		12
Exa 2.4		13
Exa 2.5		13
Exa 2.6	the van der Waals equation	13
Exa 3.1	constant pressure work done	16
Exa 3.2	110mm diameter cylinder work done	۱7
Exa 3.3	isothermal work by the ideal gas	18
Exa 3.4	A 100 kg mass drops 3 m	18
Exa 3.5	drive shaft in an automobile delivers	16
Exa 3.6	Heat supplied at constant pressure	16
Exa 3.7	non quasiequilibrium process	2(
Exa 4.1	paddle wheel heat transfer	22
Exa 4.2	internal energy increase	22
Exa 4.3	frictionless piston	23
Exa 4.4	concept of enthalpy	24
Exa 4.5	specific heat of superheated steam	25
Exa 4.6		25
Exa 4.7	quasiequilibrium process	26
Exa 4.8	piston cylinder arrangement	27
Exa 4.9	air in an insulated cylinder	27
Exa 4.10	Steam at 2000 kPa and 600 degree celsius	28

Exa 4.11	throttling valve
Exa 4.12	turbine power output
Exa 4.13	maximum pressure increase by pump
Exa 4.14	the supersonic nozzle
Exa 4.15	heat exchanger
Exa 5.4	Carnot engine
Exa 5.5	percentage increase in work
Exa 5.6	paddle wheel work
Exa 5.7	a combustion process in a cylinder
Exa 5.8	with variable specific heats
Exa 5.9	a reversible adiabatic process
Exa 5.10	Steam in a rigid container
Exa 5.11	Air in one half of an insulated tank
Exa 5.12	Two kilograms of steam
Exa 5.13	Superheated steam enters a turbine 41
Exa 5.14	turbine is assumed to be 80 percent efficient
Exa 5.15	preheater is used in a power plant cycle 43
Exa 6.1	power plant operate at the pressures of 10 kPa 45
Exa 6.2	Increase the boiler pressure
Exa 6.3	Increase the maximum temperature
Exa 6.4	Decrease the condenser pressure 48
Exa 6.5	High pressure steam enters a turbine at 2 MPa 50
Exa 6.6	inserted an open feedwater heater
Exa 6.7	efficiency of this reheat regeneration cycle
Exa 6.8	A Rankine cycle operates between 2 MPa and 10 kPa 54
Exa 6.9	ideal vapor refrigeration cycle
Exa 6.10	compressor is 80 percent efficient
Exa 6.11	A heat pump using R134a 57
Exa 7.1	the percent clearance and the MEP 60
Exa 7.2	Otto cycle with compression ratio of 10 61
Exa 7.3	A diesel cycle with a compression ratio 18 62
Exa 7.4	without constant specific heats
Exa 7.5	thermal efficiency for this Brayton cycle 65
Exa 7.6	compressor and gas turbine have efficiency of 75 percent 66
Exa 7.7	ideal regenerator to the gas turbine cycle 67
Exa 7.8	gas turbine provides the energy to the boiler
Exa 7.9	compressor with compression ratio of 10 69
Exa 7.10	adding ideal internal heat exchanger and regenerator . 70

Exa 8.1	air at 25 degree Celsius and 100 kPa in 150 metre cube	72
Exa 8.2	air is cooled below the dew point to 10 degree Celsius	73
Exa 8.3	100 kPa air stream	74
Exa 8.5	Hot dry air passes through an evaporative cooler	75
Exa 8.6	incoming volume flow rate is 50 metre cube per min .	76
Exa 8.7	heat transfer if the incoming volume flow rate of air is	
	60 metre cube per min	77
Exa 8.8	Outside air at 30 degree C and 90 percent relative hu-	
	midity	78
Exa 8.9	Outside cool air is mixed with inside air	79
Exa 8.10	cooling tower of power plant	80
Exa 9.1	air fuel ratio of 20	83
Exa 9.2	Butane with 90 percent theoretical air	84
Exa 9.3	Butane is burned with dry air	85
Exa 9.4	Volumetric analysis of the products of combustion	86
Exa 9.5	enthalpy of combustion of gaseous and liquid propane	87
Exa 9.6	propane and air enter a steady flow combustion chamber	88
Exa 9.7	Liquid octane fuels a jet engine	89
Exa 9.8	octane with 300 percent excess air	91
Exa 9.9	constant volume bomb calorimeter	92
Exa 9.10	propane with 250 percent theoretical air	93
Eva 9 11	the adiabatic flame temperature	95

Chapter 1

Basic Principles

Scilab code Exa 1.2 kinetic energy

```
1 clc
2 // solution
3
4 // initialization of variables
5 m=10 // mass in Kg
6 V=5 // velocity in m/s
7
8 KE=m*V**2/2 // kinetic energy in N-m
9 printf("The Kinetic Energy is "+string(KE)+" N.m")
```

Scilab code Exa 1.3 density and specific volume is asked

```
1 clc
2 // solution
3
4 // initialization of variables
5 V=3*5*20 // Volume of air in m^3 from dimensions
6 m=350 // mass in kg
```

```
7 g=9.81 // gavitational acceleration in m/s^2
8 rho=m/V // density
9 printf("The Density is %.3 f kg/m^3 \n",rho)
10
11 v=1/rho // specific volume of air
12 printf(" The specific volume is %.3 f m^3/kg \n",v)
13
14 gama=rho*g // specific weight of air
15 printf(" The specific weight is %.2 f N/m^3",gama)
```

Scilab code Exa 1.4 absolute pressure

```
1 clc
2 // solution
3
4 // initialization of variables
5 h=0.020 // height of mercury in m
6 gammawater=9810 // specific weight of water in N/m^3
7 Patm=0.7846*101.3 // atmospheric pressure in kPa from table B.1
8
9 Pgauge=13.6*gammawater*h/1000 // pressure in Pascal from condition gammaHg=13.6*gammawater
10
11 P=(Pgauge+Patm)// absolute pressure in KPa printf("The Pressure is %.2f kPa",P)
```

Scilab code Exa 1.5 Compression in spring

```
1 clc
2 // solution
3
4 // initialization of variables
```

```
5 d=10/100 // diameter of cylinder in 'm'
6 P=600 // pressure in KPa
7 Patm=100 // atmospheric pressure in Kpa
8 K=4.8*1000 // spring constant in N/m
9
10 deltax=(P-Patm)*(%pi*1000*d**2)/(4*K) // by
        balancing forces on piston
11 printf("The Compression in spring is %.3 f m", deltax)
```

Scilab code Exa 1.6 increase in kinetic energy

```
1 clc
2 // solution
4 // initialization of variables
5 ma=2200 // mass of Automobile 'a' in kg
6 va=25 //velocity of Automobile 'a' in m/s before
     collision
  val=13.89 // velocity of Automobile 'a' after
     collision in m/s
8 mb=1000 // mass of Automobile 'b' in kg
9 vb=24.44 //velocity of Automobile 'b' after
     collision in m/s
10
11 KE1=(ma*va**2)/2 // kinetic energy before collision
12 KE2=(ma*va1**2)/2+(mb*vb**2)/2 // kinetic energy
     after collision
13 U=(KE1-KE2)/1000 // internal energy from
     conservation of energy principle in kJ
14 printf ("The increase in kinetic energy is of %.1f kJ
     ",U)
```

Chapter 2

Properties of Pure Substances

Scilab code Exa 2.1 saturated water is vaporized

```
1 clc
2 //solution
3 // initialization of variables
4 m=10; // mass of saturated water in kg
5 // All the necessary values are taken from table C
       . 2
    // part (a)
8 P=0.001; // Pressure in MPa
9 vf=0.001; // specific volume of saturated liquid at
      0.001 Mpa in Kg/m<sup>3</sup>
10 vg=129.2; // specific volume of saturated vapour at
      0.001 Mpa in Kg/m^3
11 deltaV=m*(vg-vf)//properties of pure substance
12 printf("The Volume change at pressure "+string(P)+"
      MPa is \%.0 \text{ f m}^3 \text{ } \text{n}", deltaV)
13
14 // part (b)
15 P=0.26; // Pressure in MPa
16 vf=0.0011; // specific volume of saturated liquid
      at 0.26 MPa( it is same from at 0.2 and 0.3 MPa
```

```
upto 4 decimals)
17 vg = (P-0.2)*(0.6058-0.8857)/(0.3-0.2)+0.8857; //
      specific volume of saturated vapour by
      interpolation of Values at 0.2 MPa and 0.3 MPa
18 deltaV=m*(vg-vf)
19 printf(" The Volume change at pressure "+string(P)+"
      MPa is \%.2 \text{ f m}^3 \text{ } \text{n}", deltaV)
20
21 // part (c)
22 P=10; // Pressure in MPa
23 vf=0.00145; // specific volume of saturated liquid
      at 10 MPa
24 vg=0.01803; //specific volume of saturated vapour at
       10 MPa
25 deltaV=m*(vg-vf)
26 printf(" The Volume change at pressure "+string(P)+"
      MPa is \%.4 f m^3, deltaV)
```

Scilab code Exa 2.2 volume of vapour

```
1 clc
2 //solution
3 // initialization of variables
4 m=4// mass of water in kg
5 V=1 // volume in m^3
6 T=150 // temperature of water in degree centigrade
7
8 // TABLE C.1 is used for values in wet region
9 // Part (a)
10 P=475.8// pressure in KPa in wet region at temperature of 150 *C
11 printf("The pressure is %.1f kPa \n",P)
12
13 // Part (b)
14 // first we determine the dryness fraction
```

```
15  v=V/m// specific volume of water
16  vg=0.3928 // specific volume of saturated vapour
     @150 degree celsius
17  vf=0.00109 // specific volume of saturated liquid
     @150 degree celsius
18  x=(v-vf)/(vg-vf); //dryness fraction
19  mg=m*x; // mass of vapour
20  printf(" The mass of vapour present is %.3 f kg \n",
     mg)
21
22  // Part(c)
23  Vg=mg*vg;// volume of vapour
24  printf(" The volume of vapour is %.3 f m^3", Vg)
```

Scilab code Exa 2.3 the final volume of mixture

```
1 clc
2 //solution
3 // initialization of variables
4 m=2 // mass of water in kg
5 P=220 // pressure in KPa
6 x=0.8 // quality of steam
7 // Table C.2 is used for values
8 vg = (P-200)*(0.6058-0.8857)/(300-200)+0.8857
     specific volume of saturated vapour @ given
     pressure by interpolating
9 vf=0.0011 // specific volume of saturated liquid @
     220 KPa
10 v=vf+x*(vg-vf)// property of pure substance
11 V=m*v // total volume
12 printf("The Total volume of the mixture is "+string(
     V) + " m^3"
```

Scilab code Exa 2.4 constant pressure cylinder

```
1 clc
2 //solution
3 // initialization of variables
4 m=2 // mass of water in kg
5 P=2.2 // pressure in Mpa
6 T=800 // temperature in degree centigrade
7 // Table C.3 is used for values
8 v=0.2467+(P-2)*(0.1972-0.2467)/(2.5-2)// specific volue by interpolatin between 2 and 2.5 MPa
9 V=m*v // final volume
10 printf("The Final Volume is %.3f m^3",V)
```

Scilab code Exa 2.5 mass of air in the tire

```
1 clc
2 //solution
3 // initialization of variables
4 V=0.6 // volume of tyre in m^3
5 Pgauge=200 // gauge pressure in KPa
6 T=20+273 // temperature converted to kelvin
7 Patm=100 // atmospheric pressure in KPa
8 R=287 // gas constant in Nm/kg.K
9 Pabs=(Pgauge+Patm)*1000 // calculating absolute pressue in Pa
10
11 m=Pabs*V/(R*T)// mass from ideal gas equation
12 printf("The Mass of air is %.2 f Kg",m)
```

Scilab code Exa 2.6 the van der Waals equation

```
1 clc
```

```
2 //solution
3 // initialization of variables
4 T=500+273 // temperature of steam in kelvin
5 rho=24 // density in Kg/m<sup>3</sup>
6 R=0.462 // gas constant from Table B.2
7 v=1/rho // specific volume and density relation
8 // PART (a)
9 P=rho*R*T // from Ideal gas equation
10 printf("PART (a) The Pressure is "+string(P)+" KPa \
     n")
11 // answer is approximated in textbook
13 // PART (b)
14 a=1.703 // van der Waal's constant a value from
     Table B.7
15 b=0.00169 // van der Waal's constant b value from
     Table B.7
16 P=(R*T/(v-b))-(a/v**2) // Pressure from van der Waal
     's equation
17 printf(" PART (b) The Pressure is "+string(P)+" KPa
     \n")
18 // answer is approximated in textbook
19
20 // PART (c)
21 a=43.9 // van der Waal's constant a value from
     Table B.7
22 b=0.00117 // van der Waal's constant b value from
     Table B.7
23
P = (R*T/(v-b)) - (a/(v*(v+b)*sqrt(T))) / Redlich - Kwong
     equation
25 printf(" PART (c) The Pressure is "+string(P)+" KPa
26 // answer is approximated in textbook
27
28 // PART (d)
29 Tcr=947.4 // compressibilty temperature from table B
     . 3
```

```
30 Pcr=22100 // compressibility pressure from table B.3
31
32 TR=T/Tcr // reduced temperature
33 PR=P/Pcr // reduced pressure
34 Z=0.93 // from compressibility chart
35 P=Z*R*T/v // Pressure in KPa
36 printf(" PART (d) The Pressure is "+string(P)+" KPa \n")
37 // answer is approximated in textbook
38
39 // PART (e)
40 P=8000 // pressure from steam table @ 500*c and v= 0.0417 m^3
41 printf(" PART (e) The Pressure is "+string(P)+" KPa \n")
42 // answer is approximated in textbook
```

Chapter 3

Heat and Work

Scilab code Exa 3.1 constant pressure work done

```
1 clc
2 //solution
3 //initialization of variables
4 \quad m=1
                      // mass in kg
                     //quality of steam
5 x = 20/100
6 P=200
                   //constant pressure in kPa
7 T1=100
                    //temperature intitial in degree
      centigrade
8 T2 = 400
                    //temperature final in degree
      centigrade
10 // first we find initial volume v1 and final volume
      v2
11
12 // using table C.2
13 vf=0.001061 // specific volume of saturated liquid
      in m<sup>3</sup> per kg
14 vg=0.8857 //specific volume of saturated vapour in
     m<sup>3</sup> per kg
15
16 \text{ v1=vf+x*(vg-vf)};
```

Scilab code Exa 3.2 110mm diameter cylinder work done

```
1 clc
2 //initialization of variables
3 D=110/1000 // diameter of cylinder in m
4 V1=100e-6 // initial volume@ state 1 in m^3
5 T1=60 // initial temp @ state 1 in *C
6 T2=200 // final temo @ state 2 in *C
7 M=50 // weight of piston in kg
8 g=9.81 // gravitational accleration in m/sec^2
9 Patm=100000 // atmospheric pressure in Pa
10 A=\%pi*(D^2)/4 // area of piston in m^2
11
12 // BALANCING THE FORCES To GET PRESSURE P
13 // M. g=P. A-Patm
14 P=Patm+(M*g/A) // atm pressure is added to get
     absolute pressure
15
16 v1=0.001017 // specific volume at 60*C and 0.15Mpa
     pressure
17 m=V1/v1; // mass of water in kg
18
19 // find volume at state 2
20 v2=1.444 // specific volume of steam at 200*C and
     0.15 MPa
21 V2=m*v2// final volume in m^3
```

```
22
23 W=P*(V2-V1)/1000; // work done divided by 1000 to
        get in kJ
24 printf("The work done is %.1 f kJ", W)
```

Scilab code Exa 3.3 isothermal work by the ideal gas

```
1 clc
2 //initialization of variables
3 P1=200
               // initial pressure in kPa
              //initial volume in m<sup>3</sup>
4 V1=2
           //final pressure in kPa
5 P2=100
6 C=P1*V1// isothermal process i.e P.V=constant
7 // find final volume
8 V2=P1*V1/P2 // final volume by P1.V1=P2.V2
10 function[p]=pressure(v) // expressing pressure as
     function of volume
      p=C/v;
11
12 endfunction
14 W=integrate ('C/v', 'v', V1, V2) // itegrating over
     volume to get work
15 printf("The Work done by gas is %.0 f kJ", w) //
     answer is approximated in textbook
```

Scilab code Exa 3.4 A 100 kg mass drops 3 m

```
1 clc//
2 //initialization of variables
3 M=100 // mass in kg
4 d=3 // depth by which mass drops in m
5 V=0.002 // increased volume in m^3
```

```
6 g=9.81 // gravitational accleration in m/sec^2
7 Pgauge=100*1000// gauge pressure in N/m
8 Patm =100*1000 // atmospheric pressure in N/m
9 P=Pgauge+Patm // to get absolute pressure
10
11 //calculate work done by paddle wheel
12 Wpaddlewheel=(-M*g*d) // work is negative as it is
     done on the system
13
14 //calculate work done on piston it
15 Wboundary=P*V // area mulitiplied by height is
     volume thus W=P.V
16 //net work
17 Wnet=Wpaddlewheel+Wboundary; // Work in joule as SI
     units are used
18 printf("The Net Work done is "+string(Wnet)+" J")
19 // in textbook answer is 2450 J which is when we
     assume g=9.80
```

Scilab code Exa 3.5 drive shaft in an automobile delivers

```
1 clc
2 // initialization of variables
3 T=100 // torque of shaft in N.m
4 N=3000 // rotation speed in rpm
5 omega=(N*2*%pi/60) // angular velocity in rad/sec
6 // calculation of power
7 Wdot=(T*omega); // power is work done per unit time
8 printf("Power transmitted is %.1f hp", Wdot/746) // divided by 746 to convert W into hp
9 //answer is approximated in textbook
```

Scilab code Exa 3.6 Heat supplied at constant pressure

```
1 clc
2 // initialization of variables
3 D=10/100 //diameter of cylinder in m
4 d=50/1000 //compression in spring in m
5 Patm=100000 // atmospheric pressure in Pa
6 K=10*1000 // spring constant converted in N/m
7 w=50*9.81 // weight of piston in Newton =mass*
     gravitational acceleration
9 // find the initial pressure in cylinder by force
     balance
10 A=(\%pi*D^2)/4; // area of piston
                       // balancing forces on
11 P1 = ((Patm * A) + w) / A;
     piston P1.A=Patm.A+W
12
13 // work done by air to raise the piston for 50mm if
     spring not present
14 Wgas=P1*A*d; // pressure*area force and Work =
     Force* displacement
15
16 // work done on spring to compress
17 Wspring=(K*d^2)/2; // Work in j
18
19 // now total work done by air is sum of two works
20 Wnet=Wgas+Wspring; // Work in j
21
22 printf("The net work done by air is %.2f J", Wnet)
23 //The answer is approximated in textbook but here it
      is precise
```

Scilab code Exa 3.7 non quasiequilibrium process

```
1 clc
2 // variable initialization
3
```

```
4 d=2  //distance travelled by weight in m
5 m=50  // mass of weight in kg
6 g=9.8  // gravitaional acceleration in m/sec^2
7
8 // calculation of work in non-quasiequilibrium process
9 W=m*g*d;// work in joules
10
11 // the work done must be transferred as heat
12 Q=W;
13
14 printf("The heat that must transfer is "+string(Q)+" Joules")
```

Chapter 4

The First Law of Thermodynamics

Scilab code Exa 4.1 paddle wheel heat transfer

Scilab code Exa 4.2 internal energy increase

```
1 clc
2 //initialization of variables
```

```
3 P= 5*746 // power of fan converted in watt
4 t=1*60*60 // time converted to seconds
5
6 // by first law of thermodynamics Q=delU + W
7 // Q=0 hence -W=delU
8 // first we find work input
9 W=-P*t // work in J
10 delU=-W // from 1st law
11 printf("The internal energy increase is "+string(delU)+" J")
12 // The answer is approximated in textbook
13 // our answer is precise
```

Scilab code Exa 4.3 frictionless piston

```
1 clc
2 //initialization of variables
3 P=400 // pressure in kPa
4 T1=200 // initial temperature in degree celsius
5 V1= 2 // initial volume in m^3
6 Q=3500 // heat added in kJ
7 v1=0.5342 // specific volume of steam at 200 degree
      celcius and 0.4 Mpa pressure from table C.3
8 u1=2647 // specific internal energy in kJ/kg @
     pressure = 0.4 MPa
9 m=V1/v1 // mass in kg
10 // we have a relation Between u2 and v2 from 1st law
      of thermodynamics
11 v2=1.06 // specific volume at state 2 by trial and
     error and interpolation
12 \ V2 = m * v2
13 u2 = ((3500 - 400 * (V2 - V1))/m) + 2647 // specific internal
     energy for v2=1.06 by trial and error
14
15 // on interpolation from steam table at 0.4 MPa we
```

Scilab code Exa 4.4 concept of enthalpy

```
1 clc
2 // initialization of variables
3 P=400 // pressure in kPa
4 T1=200 // initial tmperature in degree celsius
5 V=2 // initial volume in m<sup>3</sup>
6 Q=3500 // heat added in kJ
8 //solution
9 h1=2860 // initial enthalpy @ 200*C and 400 kPa from
      steam table
10 v=0.5342 // specific volume from steam table C.3
11 m = V / v;
12 h2=(Q/m)+h1; // final enthalpy in kJ/kg from energy
     equation
13
14 // NOW USING THIS ENTHLAPY AND INTERPOLATING FROM
     STEAM TABLE
15 T2=600+(92.6/224)*100
16 printf("The Final temperature is "+string(T2)+"
     degree Celsius")
17 // result is obtained from interpolation on steam
     table
```

Scilab code Exa 4.5 specific heat of superheated steam

```
1 clc
2 // initialization of variables
3 T1=300 // initial temperature in degree celsius
4 T2=700 // final temperature in degree celsius
5 P=150// pressure in kPa
6 m=3 // mass of steam in kg
8 // solution
9 // part (a)
11 delH=m*integrate('2.07+(T-400)/1480', 'T', T1, T2) //
      expressing as function of temperature and
      integrating
12 printf(" The change in Enthalpy is "+string(delH)+"
     kJ \setminus n")
13
14 // part(b)
15 CPavg=delH/(m*(T2-T1)) // avg value of specific heat
      at constant pressure
16 printf(" The average value of Cp is "+string(CPavg)+
     " kJ/kg.*C")
```

Scilab code Exa 4.6 enthalpy change for 1 kg of nitrogen

```
1 clc
2 // initialization of variables
3 m=1 // mass of nitrogen in kg
4 T1=300 // initial temperature in Kelvin
5 T2=1200 // final temperature in Kelvin
6 M=28 // in kg/kmol
7 // part(a)
8 // the enthalpy change is found from gas table in App.E
```

Scilab code Exa 4.7 quasiequilibrium process

```
1 clc
2 // initialization of variables
3 \text{ x=0.7} // quality of steam
4 P1=200 // initial pressure in kPa
5 P2=800 // final pressure in kPa
6 V=2 // volume in m<sup>3</sup>
7 //The values are taken from TABLE C.2
8 vf1=0.0010 //specific volume of saturated liquid at
      200 kPa
9 vg1=0.8857 //specific volume of saturated gas at 200
      kPa
10 uf1=504.5 // specific internal energy of saturated
      liquid @ state 1
11 ug1=2529.5 // speciific internal energy of saturated
       gas @ state 1
12
13 v1=vf1+x*(vg1-vf1); //specific volume of vapour
14 \text{ m=V/v1}
15
16 u1=uf1+x*(ug1-uf1) // specific internal energy of
     vapour @ state 1
17 v2=v1 // constant volume process
```

Scilab code Exa 4.8 piston cylinder arrangement

```
1 clc
2 // initialization of variables
3 V=0.02 // volume in m^3
4 P=400 // pressure in kPa
5 T1=50+273 // initial temperature in kelvin
6 T2=700+273 // final temperature in kelvin
7 Q=50 // heat added in kJ
8 R=287 // constant for air
9 Cp=1 // constant for specific heat of air
10
11 // using the ideal gas equation
12
13 m=P*1000*V/(R*T1) // mass of air in kg
14 W=Q-(m*Cp*(T2-T1)) // work done from first law
15 printf("The Paddle work is "+string(W)+" kJ")
```

Scilab code Exa 4.9 air in an insulated cylinder

```
1 clc
2 // initialization of variables
3 V1=2 // initial volume in m^3
4 V2=0.2 // final volume in m^3
5 T1=20+273// temperature in kelvin
6 P=200 // pressure in kPa
7 R=0.287 // constant for air
```

```
8 gama=1.4 // polytropic index for air
9 Cv=0.717// specific heat at constant volume for air
10 //solution
11
12 //using the ideal gas equation
13 m=(P*V1)/(R*T1) // mass in kg
14 // process is adiabatic thus
15 T2=T1*((V1/V2)**(gama-1))// final temperature
16
17 W=-m*Cv*(T2-T1)// work from first law
18 printf("The Work is "+string(W)+" kJ")
19 // solution is approximated in textbook
```

Scilab code Exa 4.10 Steam at 2000 kPa and 600 degree celsius

```
1 clc
2 // initialization of variables
3 P1=2000 // initial pressure in kPa
4 T1=600 // initial temperature in degree celsius
5 p2=600 // final pressure in kPa
6 T2=200 // final temperature in degree celsius
7 d1=0.06 // diameter of inlet pipe in metre
8 d2=0.120 // diameter of outlet pipe in metre
9 V1=20 // velocity at inlet in m/s
10
11 //solution
12 // from superheat table C.3 values are noted
13 v1=0.1996 // specific volume of superheated steam @
     600*C and 2000 kPa
14 v2=0.3520 // specific volume of superheated steam @
     200*C and 2000 kPa
15 rho1=1/v1 // initial density
16 rho2=1/v2 // final density
17 A1=(%pi*d1**2)/4 // inlet area
18 A2 = (\%pi*d2**2)/4 // exit area
```

```
19
20 V2=(rho1*A1*V1)/(rho2*A2) // from continuity
        equation
21 printf("The Exit velocity is "+string(V2)+" m/s \n")
22
23 mdot=rho1*A1*V1 // mass flow rate
24 printf(" The mass flow rate is "+string(mdot)+" kg/s
        ")
```

Scilab code Exa 4.11 throttling valve

```
1 clc
2 // initialization of variables
3 P1=8000 // initial pressure in kPa
4 T1=300 // temperature in degree celsius
5 P2=2000 // final pressure in kPa
6
7 //solution
8 h1=2785 // specific enthalpy of steam in kJ/kg @
     8000 kPa and 300 degree celsius from steam table
9 h2=h1 // throttling process thus enthalpy is
     constant
10 T2=212.4 // from steam table as we know enthalpy and
      pressure
11 hf2=909 // specific enthalpy of saturated liquid @
     2000 kPa and 300 degree celsius
12 hg2=2799.5 // specific enthalpy of saturated gas @
     2000 kPa and 300 degree celsius
13 x2=(h2-hf2)/(hg2-hf2) // quality of steam
14
15 vg2=0.0992 // specific
                           volume of saturated gas @
     2000 kPa and 212.4*c
16 vf2=0.0012 //specific volume of saturated liquid @
     2000 kPa and 212.4*c
17 v2=vf2+x2*(vg2-vf2) // from properties of pure
```

substance

```
18
19 printf("The Final Temperature and Specific volume is
    "+string(T2)+" *C and "+string(v2)+" m^3/kg")
```

Scilab code Exa 4.12 turbine power output

```
1 clc
2 // initialization of variables
3 P1=4000 // inlet pressure in kPa
4 T1=500 // inlet temperature in degree celsius
5 V1=200 // inlet steam velocity in m/s
6 d1=0.05 // inlet diameter in 'm'
7 P2=80 // exit pressure in kPa
8 d2=0.250 // exit diameter in 'm'
10 // solution
11 v1=0.08643 // specific volume from steam table @
     4000 kPa and 500*C
12 v2=2.087 // specific volume from steam table @ 80
     kPa and 500*C
13 rho1=1/v1 // density at inlet
14 rho2=1/v2 // density at outlet
15 A1=(\%pi*d1**2)/4 // inlet area
16 \quad A2 = (\%pi*d2**2)/4
17 mdot=rho1*A1*V1 // mass flow rate
18
19 //now using table C.3
20 h1=3445 // initial specific enthalpy @ 4000 kPa and
     500 *C
21 h2=2666 // final specific enthalpy @ 80 kPa and 500
22 WT=-mdot*(h2-h1) // maximum power from first law
23 printf("The power output is "+string(WT)+" kJ/s \setminus n"
```

```
24
25  V2=(A1*V1*rho1)/(A2*rho2)
26  delKE=mdot*((V2**2)-(V1**2))/2
27  printf(" The change in K.E is "+string(delKE)+" J/s"
    )
28  // the amswer is different as the solution in scilab
    is highly precise while the solution in textbook
    is wrong due to approximation of exit velocity
```

Scilab code Exa 4.13 maximum pressure increase by pump

```
1 clc
2 // initialization of variables
3 Wdot=10 // pump power in hp
4 g=9.81 // acceleration due to gravity
5 rho=1000 // density of water in kg/m^3
6 \ d1=0.06 \ // \ inlet \ dimeter \ in \ 'm'
7 d2=0.10 // oulet diamter in 'm'
8 V1=10 // velocity of water at inlet in m/s
9
10 //solution
11 A1=\%pi*(d1**2)/4 // area of inlet
12 A2=%pi*(d2**2)/4 // area of outlet
13 V2=A1*V1/A2 // oulet velocity from continuity
      equation
14
15 mdot=rho*A1*V1 // mass flow rate
16 delP = ((((Wdot*746)/mdot) - ((V2**2) - V1**2)/(2*g))*rho)
      /1000 // change in pressure in kPa
17 printf("The rise in pressure is "+string(delP)+" kPa
18 // The answer is approximated in textbook, our
     answer is precise
```

Scilab code Exa 4.14 the supersonic nozzle

```
1 clc
2 // initialization of variables
3 P1=7000 // inlet pressure in Pa
4 T1=420 // inlet temperature in degree celsius
5 V1=400// inlet velocity in m/s
6 d1=0.200 // inlet diameter in 'm'
7 V2=700 // exit velocity in m/s
8 k=1.4 // polytopic index for air
9 Cp=1000 // specific heat at constant pressure for
      air in j/kg.K
10 R=287 // specific gas constant for air
11 //solution
12
13 //part (a)
14 T2 = (((V1**2) - V2**2) / (2*Cp)) + T1 // outlet temperature
       in degree celsius
15 printf ("The exit temperature is "+string(T2)+" *C \setminus n
16
17 // part (b)
18
19 rho1=P1/(R*(T1+273)) // density at entrance
20 \quad A1 = (\%pi*d1**2)/4
21 mdot=rho1*A1*V1 //
22 printf(" The mass flow rate is "+string(mdot)+" kg/s
       \n")
23
24 // part (c)
25
26 \text{ rho2=rho1*}(((T2+273)/(T1+273))**(1/(k-1)))
      density at exit
27 // now we find the exit diameter
```

```
28 d2=sqrt((rho1*V1*(d1)**2)/(rho2*V2))
29 printf(" The outlet diameter is "+string(d2)+" m")
```

Scilab code Exa 4.15 heat exchanger

```
1 clc
2 // initialization of variables
3 mdots=100 // mass flow rate of sodium in kg/s
4 Ts1=450 // inlet temperature of sodium in degree
      celsius
5 Ts2=350 // exit temperature of sodium in degree
      celsius
6 Cp=1.25 // specific heat of sodium in KJ/kg.*C
7 Tw1=20 // inlet temperature of water in degree
      celsius
8 Pw=5000 // inlet pressure of water in kPa
9
10 // solution
11 hw1=88.65 // enthalpy from table C.4
12 hw2=2794 // enthalpy from table C.3
13 mdotw=(mdots*Cp*(Ts1-Ts2))/(hw2-hw1) // mass flow
     rate of water
14 printf("The mass flow rate of water is "+string(
     mdotw) + "kg/s n"
15 Qdot=mdotw*(hw2-hw1) // heat transfer in kW using
     energy equation
16 printf(" The rate of heat transfer is "+string(Qdot)
     +" kW")
```

Chapter 5

The Second Law of Thermodynamics

Scilab code Exa 5.4 Carnot engine

```
1 clc
2 // initialization of variables
3 Th=200+273 // higher temperture in kelvin
4 Tl=20+273 // lower temperture in kelvin
5 Wdot=15 // output of engine in kW
6
7 ef=1-(Tl/Th) // carnot efficiency
8
9 Qhdot=Wdot/ef // heat supplied by reservoir
10 printf(" The heat supplied by higher temperature reservoir is %.2 f kW \n ",Qhdot)
11 // using forst law
12 Qldot=Qhdot-Wdot // heat rejected to reservoir
13 printf(" The heat suppled by lower temperature reservoir is %.2 f kW",Qldot)
```

Scilab code Exa 5.5 percentage increase in work

```
1 clc
2 // initialization of variables
3 TL1=-5+273 // lower temperature in kelvin for first
      situation
4 TH=20+273 // higher temperature in kelvin
5 TL2=-25+273 //lower temperature in kelvin for second
      situation
6
7 //solution
9 COP1=TL1/(TH-TL1) // carnot refrigerator COP for
      first situation
10 // Let Heat be 100 kJ
11 QL=100 // assumption
12 W1=QL/COP1 // work done for situation 1
13
14 // for situation 2
15 COP2=TL2/(TH-TL2) // COP carnot for second situation
16 W2=QL/COP2 // work done
17
18 Per=(W2-W1)*100/W1 // percentage increase in work
19 printf (" The percentage increase in work is %.1f\%\""
     ,Per)
```

Scilab code Exa 5.6 paddle wheel work

```
1 clc
2 // initialization of variables
3 T1=20+273 // initial temperature in kelvin
4 P=200 // pressure in kPa
5 V=2 //volume in m^3
6 R=0.287 // gas constant for air
```

Scilab code Exa 5.7 a combustion process in a cylinder

```
1 clc
2 // initialization of variables
3 T1=350+273 // initial temperature in kelvin
4 P1=1200 // initial pressure in kPa
5 P2=140 // final pressure in kPa
6 k=1.4 // polytopic index for air
7 Cv=0.717 // specific heat at constant volume for air
8 //solution
9 T2=T1*((P2/P1)**((k-1)/k)) // reversible adiabatic process relation
10
11 w=-Cv*(T2-T1) // work done by gases in reversible adiabatic process
12 printf(" The work done by gases is %.0 f kJ/kg",w)
```

Scilab code Exa 5.8 with variable specific heats

```
1 clc
```

```
2 // initialization of variables
3 T1=20+273 // initial temperature in kelvin
4 P1=200 // pressure in kPa
5 V=2 //volume in m<sup>3</sup>
6 R=0.287 // gas constant for air
7 W=-720 // negative as work is done on air in kJ
9 //solution
10
11 m = (P1*V)/(R*T1)// mass of air
12
13 u1=209.1 //specific internal energy of air at 293K
     and 200 kPa from table E.1
14 s1=1.678 // by interpolation from table E.1
15 // change in internal energy= work done
16 u2=-(W/m)+u1 // final internal energy
17 T2=501.2// final temperature interpolated from table
      E.1 corresponding to value of u2
18 s2=2.222 // value of s from table E.3 by
     interpolating from corresponding to value of u2
19
20 P2=P1*(T2/T1) // final pressure in kPa
21
22 delS=m*(s2-s1-R*log(P2/P1))// entropy change
23 printf(" The Entropy increase is %.3f kJ/K",delS)
```

Scilab code Exa 5.9 a reversible adiabatic process

```
1 clc
2 // initialization of variables
3 T1=350+273 // initial temperature in kelvin
4 P1=1200 // initial pressure in kPa
5 P2=140 // final pressure in kPa
6 k=1.4 // polytopic index for air
7
```

```
8 //solution
9 // The values are taken from table E.1
10 Pr660=23.13// relative pressure @ 660K
11 Pr620=18.36// relative pressure @ 620K
12 Pr1=((Pr660-Pr620)*3/40)+Pr620 // relative pressure
     by interpolation
13 Pr2=Pr1*(P2/P1) // relative pressure at state 2
14
15 Pr340=2.149 // relative pressure @ 340K
16 Pr380=3.176 // relative pressure @ 380K
17 T2=((Pr2-Pr340)/(Pr380-Pr340))*40+340 //
     interpolating final temperature from table E.1
18
19 // now interpolating u1 AND u2 from table E.1
20 u620=451.0// specific internal energy @ 620k
21 u660=481.0// specific internal energy @ 660k
22 u1 = (u660 - u620) * (3/40) + u620 // initial internal
     energy
23
24 u380=271.7 //specific internal energy @ 380k
25 u340=242.8 //specific internal energy @ 340k
26 u2=((Pr2-Pr340)/(Pr380-Pr340))*(u380-u340)+u340 //
      final internal energy
27
28 w=u2-u1 // work= change in internal energy
29 printf(" The work done by gas is %.0f kJ/kg",w)
30 // The answer is slightly different as values are
     approximated in textbook
```

Scilab code Exa 5.10 Steam in a rigid container

```
1 clc
2 // initialization of variables
3 T1=300+273 // initial temperature in kelvin
4 P1=600 // initial pressure in kPa
```

```
5 P2=40 // final pressure in kPa
7 //solution
8 //please refer to steam table for values
9 v1=0.4344 // specific volume from steam table @ 573k
       and 600 kPa
10 v2=v1 // rigid container
11 u1=2801 // specific internal energy from steam table
      @ 573k and 600 kPa
12 s1=7.372 // specific entropy @ 600 kPa and 573 K
13
14 vg2=0.4625 // specific volume of saturated vapour @
     40 kPa and 573 K
15 vf2=0.0011 // specific volume of saturated liquid @
     40 kPa and 573 K
  sf2=1.777 // specific entropy of saturated liquid @
     40 kPa and 573 K
17 sg2=5.1197 // specific entropy of saturated vapour @
       40 kPa and 573 K
18 x=(v2-vf2)/(vg2-vf2)// quality of steam using pure
      substance relation
19
20 s2=sf2+x*sg2 // overall specific enthalpy at quality
       'x '
21 delS=s2-s1 // entropy change
22 printf (" The entropy change is \%0.3 \, \mathrm{f \ kJ/kg.K \setminus n}",
      delS)
23
24 //heat transfer
25 uf2=604.3 //specific internal energy of saturated
     liquid @ 40 kPa and 573 K
26 ug2=1949.3 //specific internal energy of saturated
      vapour @ 40 kPa and 573 K
27 u2=uf2+x*ug2 //specific internal energy @ quality x
28 q=u2-u1 // heat transfer in kJ/kg from first law as
     W=0
29 printf (" The heat transfer is \%.0 \,\mathrm{f}\,\mathrm{kJ/kg}",q)
30 // the answers are approximated in textbook but here
```

Scilab code Exa 5.11 Air in one half of an insulated tank

```
1 clc
2 // initialization of variables
3 v1=0.5 // assumed as air is filled in half of the tank
4 v2=1 // final volume when partition is removed
5 R=0.287 // gas contant for air
6 //solution
7 q=0 // heat transfer is zero
8 w=0 // work done is zero
9 // temperatue is constant as no change in internal energy by first law
10 dels=R*log(v2/v1)// change in entropy when temperature is constant
11 printf("The change in specific entropy is %.3 f kJ/kg .K",dels)
```

Scilab code Exa 5.12 Two kilograms of steam

```
1 clc
2 // initialization of variables
3 T1=400+273 // initial temperature in kelvin
4 P=600 // pressure in kPa
5 Tsurr=25+273 // surrounding temperature in K
6 m=2 // mass of steam in kg
7
8 //solution
9 //please refer to steam table for values
10 s1=7.708 // specific entropy of steam @ 400 degree celsius and 0.6 MPa
```

```
11 s2=1.9316// specific enropy of condensed water @ 25
     degree celsius and 0.6 MPa
12 delSsys=m*(s2-s1) // entropy change in system i.e of
      steam
13
14 h1=3270 // specific enthalpy of steam @ 400 degree
     celsius and 0.6 MPa
15 h2=670.6//specific enropy of condensed water @ 25
     degree celsius and 0.6 MPa
16
17 Q=m*(h1-h2)// heat transfer at constant pressure
18 delSsurr=Q/Tsurr // entropy change in surroundings
19
20 sigma=delSsys+delSsurr // net entropy change
21
22 printf("The net entropy production is %.1 f kJ/K",
     sigma)
```

Scilab code Exa 5.13 Superheated steam enters a turbine

```
1 clc
2 // initialization of variables
3 T1=600+273 // initial temperature in kelvin
4 P1=2 // initial pressure in MPa
5 P2=10 // final pressure in kPa
6 mdot=2 // mass flow rate in kg/s
7
8 // solution
9 // please refer to steam table for values
10 h1=3690 // specific enthalpy in kJ/kg @ 2MPa and 600 degree celsius
11 s1=7.702 // specific entropy in kJ/kg.K @ 2MPa and 600 degree celsius
12 s2=s1 // Reversible adiabatic process thus entropy is constant
```

```
13 sf2=0.6491 //specific entropy of saturated liquid
     from steam table @ 10 kPa
14 sg2=8.151 //specific entropy of saturated vapour
     from steam table @ 10 kPa
15
16 \text{ x2=(s2-sf2)/(sg2-sf2)} // quality of steam at turbine
       exit
17
18 h2f=191.8 //specific enthalpy of saturated liquid
     from steam table @ 10 kPa
19 h2g=2584.8 //specific enthalpy of saturated vapour
     from steam table @ 10 kPa
20 h2=h2f+x2*(h2g-h2f) // specific enthalpy @ quality '
     \mathbf{x},
21
22 WdotT=mdot*(h1-h2)// from work done in adiabatic
      process
23 printf (" The maximum power output is \%.0 \, f \, kJ/s",
     WdotT)
24 // the answers are approximated in textbook but here
      they are precise thus minute difference is there
```

Scilab code Exa 5.14 turbine is assumed to be 80 percent efficient

```
1 clc
2 // initialization of variables
3
4 T1=600+273 // initial temperature in kelvin
5 P1=2 // initial pressure in MPa
6 P2=10 // final pressure in kPa
7 mdot=2 // mass flow rate in kg/s
8 EffT=0.8 // efficiency of turbine
9 WdotT=2496 // theoritical power of turbine in kW
10
11 //solution
```

```
12 Wdota=EffT*WdotT // actual power output of turbine
13 h1=3690 // specific enthalpy @ 2MPa and 600 degree
      celsius
14 h2=h1-(Wdota/mdot) // final enthalpy from first law
     of thermodynamics
15
16 T2=((h2-2688)/(2783-2688))*(150-100)+100 // by
     interpolating from steam table @ P2= 10 kPa, h2
     =2770
17 s2=8.46 // final specific entropy by interpolation
     from steam table
18
19 printf ("The temperature by interpolation is \%.0 \,\mathrm{f}
      degree celsius \n",T2)
20 printf ("The final entropy by interpolation is %.2 f
     kJ/kg.K",s2)
21 // The temperature and entropy are found by
     interpolation from steam table and cannot be
     shown here.
```

Scilab code Exa 5.15 preheater is used in a power plant cycle

```
clc
// initialization of variables

T2=250 // temperature of steam in degree celsius
mdot2=0.5 // mass flow rate of steam in kg/s
T1=45 // temperature of water in degree celsius
mdot1=4 // mass flow rate of water in kg/s
P=600 // pressure in kPa

mdot3=mdot1+mdot2 // by mass balance

h2=2957 // specific enthalpy in kJ/kg of steam @ 600
```

```
Kpa from steam table
14 h1=188.4 // specific enthalpy in kJ/kg of water @
     600 Kpa from steam table
15
16 h3=(mdot1*h1+mdot2*h2)/mdot3 // specific enthalpy in
      kJ/kg at exit
17
18 // by interpolation from saturated steam table
19 T3=(h3-461.3)*10/(503.7-461.3)+110 // temperature of
      mixture
20
21 sf3=1.508 // entropy of saturated liquid in kJ/kg.K
     at 600Kpa and T3 temperature from steam table
22 \text{ s3=sf3}
23 s2=7.182 // entropy of superheated steam in kJ/kg.K
     @ 600Kpa from steam table
24 s1=0.639 // entropy of entering water in kJ/kg.K at
     T= 45 degree celsius
25
26 sigmaprod=mdot3*s3-mdot2*s2-mdot1*s1
27 printf ("The rate of entropy production is %0.3 f kW/K
      ", sigmaprod)
```

Chapter 6

Power Vapor Cycles

Scilab code Exa 6.1 power plant operate at the pressures of 10 kPa

```
1 clc
2 // solution
3 //initialization of variables
4 // Please refer to the given figure in question for
      quantities
5 P2=2*1000 //higher pressure converted in in kPa
6 P1=10 // lower pressure in kPa
7 rho=1000 // density of water in Kg/m<sup>3</sup>
8 h1=192 // enthalpy at state 1 in kJ/kg
9 h3=3248 // enthalpy at state 3 in kJ/kg
10 s3=7.1279// entropy at state 3 in kJ/kg.K
11
12 //calculation of pump work
13 wp=(P2-P1)/rho // pump work given by equation 4.56
     in textbook
14 h2=h1+wp // by enrgy balance b/w state 1 and 2
15 q=h3-h2 // Heat input from 2 to 3
16
17 s4=s3 // isentropic process
18 sf=0.6491 // entropy of saturated liquid @10 kPa
     from steam table
```

Scilab code Exa 6.2 Increase the boiler pressure

```
1 clc
2 // solution
3 //initialization of variables
4 // Please refer to the given figure of question 6.1
     for quantities
5 effi1=0.323 //old efficiency
6 P2=4*1000 //higher pressure converted in in kPa
7 P1=10 // lower pressure in kPa
8 rho=1000 // density of water in Kg/m^3
9 h1=192 // enthalpy at state 1 in kJ/kg
10 h3=3214 // enthalpy at state 3 i.e @400 degree
     celsius and 4MPa in kJ/kg
11 s3=6.769// entropy at state 3 i.e @400 degree
     celsius and 4MPa in kJ/kg.K
12
13 s4=s3 // insentropic process
14 sf=0.6491 // entropy of saturated liquid @10 kPa
```

```
from steam table
15 sg=8.151 // entropy of saturated vapour @10 kPa from
       steam table
16
17 x=(s4-sf)/(sg-sf)// quality of steam
18
19 hf=192 //enthalpy of saturated liquid @10 kPa from
      steam table
20 hg=2584 // enthalpy of saturated vapour @10 kPa from
       steam table
21 h4=hf+x*(hg-hf)// enthalpy @ state 4
22 h2=h1 // isenthalpic process
23 qb=h3-h2 // heat addition
24
25 wt=h3-h4 // turbine work
26
27 effi2=(wt)/qb // efficiency of power cycle
28 printf(" The Efficiency is \%.3\,\mathrm{f} or \%.1\,\mathrm{f} \%\% \n",effi2
      ,effi2*100)
29 %increase=((effi2-effi1)/effi1)*100
30 printf (" The \%\% increase in Efficiency is \%.2\,\mathrm{f} \n",
      %increase)
```

Scilab code Exa 6.3 Increase the maximum temperature

```
1 clc
2 // solution
3 //initialization of variables
4 // Please refer to fig of question 6.1 for quantities
5 effil=0.323 //old efficiency
6 P2=2*1000 //higher pressure converted in in kPa
7 P1=10 // lower pressure in kPa
8 rho=1000 // density of water in Kg/m^3
9 T2=600// max temperature of cycle in degree celsius
```

```
10 h1=192 // enthalpy at state 1 in kJ/kg
11 h3=3690 // enthalpy at state 3 in kJ/kg, 600*C and 2
      MPa pressure
12 s3=7.702// entropy at state 3 in kJ/kg.K, 600*C and
      2MPa pressure
13
14 s4=s3// isentropic process
15 sf=0.6491 // entropy of saturated liquid @10 kPa
      from steam table
16 sg=8.151 // entropy of saturated vapour @10 kPa from
       steam table
17
18 x=(s4-sf)/(sg-sf)// quality of steam
19
20 hf=192 //enthalpy of saturated liquid @10 kPa from
      steam table
21 hg=2584 // enthalpy of saturated vapour @10 kPa from
       steam table
22 h4=hf+x*(hg-hf)// enthalpy @ state 4
23
24 h2=h1 // isenthalpic process
25 qb=h3-h2 // heat addition
26
27 wt=h3-h4 // turbine work
28
29 effi2=(wt)/qb // efficiency of power cycle
30 printf (" The Efficiency is \%.3 \,\mathrm{f} or \%.1 \,\mathrm{f} \%\% \,\mathrm{n}", effi2
      ,effi2*100)
31 %increase=((effi2-effi1)/effi1)*100
32 printf (" The \%\% increase in Efficiency is \%.2 \,\mathrm{f} \,\,\mathrm{n}",
      %increase)
```

Scilab code Exa 6.4 Decrease the condenser pressure

1 clc

```
2 // solution
3 //initialization of variables
4 // Please refer to fig of question 6.1 for
      quantities
5 effi1=0.323 //old efficiency
6 P2=2*1000 //higher pressure converted in in kPa
7 P1=4 // condenser pressure in kPa
8 rho=1000 // density of water in Kg/m<sup>3</sup>
9 h1=192 // enthalpy at state 1 in kJ/kg
10 h3=3248 // enthalpy at state 3 in kJ/kg
11 s3=7.1279// entropy at state 3 in kJ/kg.K
12
13 s4=s3 // isentropic process
14
15 sf=0.4225 // entropy of saturated liquid @10 kPa
      from steam table
16 sg=8.4754 // entropy of saturated vapour @10 kPa
      from steam table
17
18 x=(s4-sf)/(sg-sf)// from property of pure substance
19
20 hf=121 //enthalpy of saturated liquid @4 kPa from
      steam table
21 hg=2554 // enthalpy of saturated vapour @4 kPa from
      steam table
22 h4=hf+x*(hg-hf)// enthalpy @ state 4h1=h2 //
      isenthalpic process
23 h2=h1 // isenthalpic process
24 qb=h3-h2 // heat addition
25
26 wt=h3-h4 // turbine work
27
28 effi2=(wt)/qb // efficiency of power cycle
29 printf(" The Efficiency is \%.3\,\mathrm{f} or \%.1\,\mathrm{f} \%\% \n",effi2
      ,effi2*100)
30 %increase=((effi2-effi1)/effi1)*100
31 printf (" The \%\% increase in Efficiency is \%.2\,\mathrm{f} \n",
      %increase)
```

```
32 // the answer in the textbook is different due to approximations
```

Scilab code Exa 6.5 High pressure steam enters a turbine at 2 MPa

```
1 clc
2 clear
3 // solution
4 //initialization of variables
5 P2=2*1000 //higher pressure converted in in kPa
6 P1=10 // lower pressure in kPa
7 h1=192 // enthalpy at 10 kPa in kJ/kg
8 h3=3248 // enthalpy @ state 3 in kJ/kg from table C
9 s3=7.128 // entropy @ state 3 in kJ/kg.K from table
10 s4=s3 // isentropic process
11
12 h2=h1 //isenthalpic process
13 h4 = ((s4-7.038)/(7.233-7.038))*(3056-2950)+2950
     using adjacent values for
14 //interpolation from table C.3
15 h5=3267 // enthalpy at 800 kPa and $00 degree
      celsius
16 s5=7.572 // entropy at 800 kPa and $00 degree
     celsius
17
18 s6=s5 // isentropic process
19 sf=0.6491// entropy of saturated liquid @10 kPa
     from steam table
20 sg=8.151 // entropy of saturated vapour @10 kPa from
      steam table
21
22 x=(s6-sf)/(sg-sf)// quality of steam
23
```

```
24 hf=192 //enthalpy of saturated liquid @10 kPa from
      steam table
25 hg=2585 // enthalpy of saturated vapour @10 kPa from
       steam table
26
27 h6=hf+x*(hg-hf)// enthalpy @ state 6
28
29 // we now calculate energy input
30 qb=(h5-h4)+(h3-h2)// heat interaction
31
32 // we now calculate work output
33 wt=(h5-h6)+(h3-h4)// turbine work
34
35 eff=(wt)/qb // efficiency of power cycle
36 printf (" The Efficiency is \%.4 \,\mathrm{f9} or \%.2 \,\mathrm{f} \%\\n\",eff,
      eff*100)
```

Scilab code Exa 6.6 inserted an open feedwater heater

```
1 clc
2 clear
3 // solution
4 // initialization of variables
5 // Please refer to fig of question 6.1 for
     quantities
6 effi1=0.357//efficiency from example 6.3
7 P2=2*1000 //higher pressure converted in in kPa
8 P1=10 // lower pressure in kPa
9 rho=1000 // density of water in Kg/m^3
10 T2=600// max temperature of cycle in degree celsius
11 h1=192 // enthalpy at state 1 in kJ/kg
12 h3=3690 // enthalpy at state 3 in kJ/kg, 600*C and 2
     MPa pressure
13 h4=2442 // enthalpy from example 6.3
14 h6=505 // specific enthalpy @ 200 kPa from steam
```

```
table
15 h7=h6 // isenthalpic process
16 s3=7.702// entropy at state 3 in kJ/kg.K, 600*C and
      2MPa pressure
17
18 h2=h1 // isenthalpic process
19 s5=s3 // isentropic process
20 h5 = (s3-7.509)*(2971-2870)/(7.709-7.509)+2870/
      interpolationg from steam table 2 200 kPa using
      s5=s3=7.702 \text{ kJ/kg}.
21
22 m6=1 // let mass of steam =1 Kg
23 m5 = (h6 - h2) * (m6) / (h5 - h2)
24 m2=m6-m5 // conservation of mass
25
26 wt=h3-h5+(h5-h4)*m2 // work done by turbine
27 qb=h3-h7 // heat given to bolier
28 effi2=(wt)/qb // efficiency of power cycle
29 printf (" The Efficiency is \%.3\,\mathrm{f} or \%.1\,\mathrm{f} \%\% \n", effi2
      ,effi2*100)
30 %increase=((effi2-effi1)/effi1)*100
31 printf (" The \%\% increase in Efficiency is \%.2\,\mathrm{f} \n",
      %increase)
32 // The anwer is different in textbook as there the
      intermediate values are approximated while in
      scilab the calculations are precise
```

Scilab code Exa 6.7 efficiency of this reheat regeneration cycle

```
1 clc
2 // solution
3 //initialization of variables
4 P2=2*1000 //higher pressure converted in kPa
5 P1=10 // lower pressure in kPa
6 h1=192 // enthalpy at 10 kPa in kJ/kg
```

```
7 h3=3248 // enthalpy @ state 3 in kJ/kg from table C
8 s3=7.128 // entropy @ state 3 in kJ/kg.K from table
     C.3
9
10 s4=s3 // isentropic process
11
12 h4 = ((s4-7.038)/(7.233-7.038))*(3056-2950)+2950 //
      using adjacent values for
13 //interpolation from table C.3
14 h5=3267 // enthalpy at 800 kPa and $00 degree
      celsius
15 s5=7.572 // entropy at 800 kPa and $00 degree
      celsius
16
17 s6=s5 // isentropic process
18 sf=0.6491// entropy of saturated liquid @10 kPa
     from steam table
19 sg=8.151 // entropy of saturated vapour @10 kPa from
       steam table
20
21 \text{ x=(s6-sf)/(sg-sf)// quality of steam}
22
23 hf=192 //enthalpy of saturated liquid @10 kPa from
     steam table
24 hg=2585 // enthalpy of saturated vapour @10 kPa from
      steam table
25
26 \text{ h6=hf+x*(hg-hf)// enthalpy @ state 6}
27 h7=721 // enthalpy of saturated liquid @800 kPa from
       steam table
28 h8=h7 // isenthalpic process
29 h2=h1 // isenthalpic process
30
31 m8=1 // let mass of steam =1 Kg
32 \text{ m4} = (h8-h2)*(m8)/(h4-h2)
33 m2=m8-m4 // conservation of mass
34
```

Scilab code Exa 6.8 A Rankine cycle operates between 2 MPa and 10 kPa

```
1 clc
2 clear
3 // solution
4 //initialization of variables
6 // for rankine cycle refer to fig 6.9
8 effiT=0.8 // turbine efficiency
9 P2=2*1000 // higher pressure converted in
                                              kPa
10 P1=10 // lower pressure in kPa
11 h1=192 // enthalpy at 10 kPa in kJ/kg
12 h3=3690 // enthalpy of superheated steam @ 2 MPa
     from steam table in kJ/kg
13 s3=7.702 //entropy of superheated steam @ 2 MPa from
      steam table in kJ/kg.K
14 // state 4' is repsresented by '41'
15 h2=h1 //isenthalpic process
16 s41=s3 // entropy is constant
17 sf=0.6491 // entropy of saturated liquid @10 kPa
     from steam table
18 sg=8.151 // entropy of saturated vapour @10 kPa from
      steam table
19 x=(s41-sf)/(sg-sf)// from property of pure substance
20
21 hf=191.8 //enthalpy of saturated liquid @10 kPa from
      steam table
```

```
22 hg=2584 // enthalpy of saturated vapour @10 kPa from
       steam table
23 h41=hf+x*(hg-hf)// enthalpy @ state 41
24
25 wa=effiT*(h3-h41)// turbine efficiency = (actual work
      )/(isentropic work)
26
27 qb=h3-h2 // heat supplied
28
29 effi=(wa)/qb // efficiency of power cycle
30 printf(" The Efficiency is \%.3 \, \text{f} or \%.1 \, \text{f} \, \% \, \text{n}", effi,
      effi*100)
31
32 h4=h3-wa // adiabatic process
33
34 // now using interpolation for superheated steam @
      10 kPa
35 T4 = (h4 - 2688) * (150 - 100) / (2783 - 2688) + 100
36
37 printf("\n The Temperature from interpolation comes
      out to be %i degree celsius", T4)
```

Scilab code Exa 6.9 ideal vapor refrigeration cycle

```
degree celsius from table D.1
11 h3=105.3 // enthalpy of saturated R134a liquid @ -24
       degree celsius from table D.2
12 h4=h3 // isenthalpic process
13
14 // interpolating enthalpy from table D.3 @ 39.39
      degree celsius
15 h2=(s1-0.9066)*(280.19-268.68)/(0.9428-0.9066)
      +268.68
16 QdotE=mdot*(h1-h4) // heat transfer rate
17 WdotC=mdot*(h2-h1)// power given to compressor
18
19 COP=QdotE/WdotC // coefficient of performance
20
21 Hp=(WdotC/0.746)/(QdotE/3.52) //calculating
      Horsepower required per Ton
22
23 printf ("The rate of refrigeration is \%0.1 \,\mathrm{f}\,\mathrm{kJ/s}\,\mathrm{n}"
      , QdotE)
24 printf ("The coefficient of performance is \%0.2 f \n"
      ,COP)
25 printf ("The rating in horsepower per ton is \%0.3 \,\mathrm{f} \, \mathrm{n}
       ", Hp)
```

Scilab code Exa 6.10 compressor is 80 percent efficient

```
1 clc
2
3 // solution
4 //initialization of variables
5 // refer to fig 6.10c
6 effi=0.8 // compressor efficiency
7 mdot=0.6 // mass flow rate of refrigerant in Kg/sec
8 T4=-24 // temperature of evaporator
9 T2=39.39 // temperature of condensor
```

```
10 T1=-20 // supeheating temperature
11 T3=40 // subcooling temperature
12 h3=106.2 // enthalpy of liquid R-134a @ 40 degree
      celsius from table D.1
13 h4=h3 // isenthalpic process
14 h1=236.5 // enthalpy of superheated R-134a @ 0.10
      MPa and -20 degree celsius from table D.3
15 s1=0.960 //entropy of superheated R-134a @ 0.10 MPa
      and -20 degree celsius from table D.3
16
17 s2dash=s1 // isentropic process
18
19 // using interpolation from table D.3 @ 1.0 MPa for
      s2dash = 0.960
20 h2dash = (s2dash - 0.9428) * (291.36 - 280.19)
      /(0.9768-0.9428)+280.19
21
22 h2=(h2dash-h1)/(effi)+h1 // by definition of
      compressor efficiency
23
24 QdotE=mdot*(h1-h4)//heat transfer rate power given
      to compressor
25
26 wdotc=mdot*(h2-h1)// power given to compressor
27
28 COP=QdotE/wdotc // coefficient of performance
29
30 printf ("The rate of refrigeration is \%0.1 \,\mathrm{f}\,\mathrm{kJ/s}\,\mathrm{n}"
      ,QdotE)
31
32 printf ("The coefficient of performance is \%0.2 \,\mathrm{f} \, \text{n}"
      ,COP)
33 // The value of Wdotc is shown wrong in the textbook
     . It should be multiplied by mass flow rate
```

Scilab code Exa 6.11 A heat pump using R134a

```
1 clc
2 // solution
3 //initialization of variables
4 // refer to fig 6.10c
6 QdotC=300 //heating Load in KWh or heat rejected by
      condensor
7 T1=-12 // evaporator temperature in degree celsius
8 P2=800 // condensor pressure in kPa
9 h1=240 // specific enthalpy of saturated R-134a
     vapour @ -12 degree celsius from table D.1
10 s1=0.927 // specific entropy of saturated R-134a
     vapour @ -12 degree celsius from table D.1
11 s2=s1 // isentropic process
12 h3=93.4 //specific enthalpy of saturated R-134a
     liquid @ 800 kPa from tableD.2
13
14 // extrapolating enthalpy from table D.2 @ 0.8 MPa
     for s = 0.927
15 h2=273.7-(0.9374-s2)*(284.4-273.7)/(0.9711-0.9374)
16
17 // QdotE=mdot*(h1-h4) is heat transfer rate
18 mdot=QdotC/(h2-h3)// mass flow rate
19
20 WdotC=mdot*(h2-h1)// power given to compressor
21
22 //part(a)
23 COP=QdotC/WdotC // coefficient of performance
24 printf ("The coefficient of performance is \%0.2 f \n"
      ,COP)
25
26 //part(b)
27 cost=WdotC*0.07 // cost of electricity
28 printf("The cost of electricity is $ \%0.3 f /hr \n",
     cost)
29
```

Chapter 7

Power Gas Cycles

Scilab code Exa 7.1 the percent clearance and the MEP

```
1 clc
2 //solution
3 // initialization of variables
5 r=12 // compression ratio
6 k=1.4 // polytropic index for air
7 p1=200 // pressure at state 1 in kPa
8 p3=10000 // pressure at state 3 in kPa
10 c=100/(r-1) // clearance in percentage
11 printf ("The percent clearance is \%0.2 \,\mathrm{f} \,\%\% \,\n",c)
12 v3=100 // let us assume v3=100 m<sup>3</sup> for calculations
13 p2=p1*(r**k) // polytopic process pressure relation
14 p4=p3*(1/(r**k))// polytropic process pressure
      relation
15 w34=v3*(r*p4-p3)/(1-k) // polytropic work done in
      process 3 to 4
16 v2=v3 // constant volume process
17 w12=v2*(p2-r*p1)/(1-k)
18 wcycle=w12+w34 // total work in cycle
19 // now equating the polytropic work calculated to
```

```
work by MEP
20 MEP=wcycle/(r*v2-v2) // as work = pressure*change in
    volume
21 printf("The MEP is %i kPa", MEP)
22 // The solution is wrong in textbook as calculation
    for P2 is wrong
```

Scilab code Exa 7.2 Otto cycle with compression ratio of 10

```
1 clc
2 //solution
3 // initialization of variables
5 r=10 // compression ratio
6 k=1.4 // polytropic index for air
7 R=0.287 // specific gas constant for air
8 \text{ Cv=0.717} // specific heat at constant volume
9 Wnet=1000 // net work output in kJ/kg
10 T1=227+273 // low air temperaure in kelvin
11 p1=200 // low pressure in kPa
12
13 effi=1-(1/r^(k-1)) // thermal efficeiency
14 printf("The maximum possible thermal efficiency is
      \%0.1 \, \text{f } \%\% \, \text{n",effi*100)}
15
16 T2=T1*(r)^(k-1) // isentropic process temperature
      relation
17
18 T4=((Wnet/Cv)+T2-T1)/((r^(k-1))-1) // using
      expression for work
19
20 T3=T4*(r)^(k-1)
21
22 efficarnot=1-T1/T3
23 printf ("The carnot efficiency is \%0.1\,\mathrm{f} \%\%",
```

```
efficarnot*100)

24

25 v1=R*T1/p1 // initial volume

26 v2=v1/r // from compression ratio

27

28 MEP=Wnet/(v1-v2) // mean effective pressure equation

29

30 printf("The MEP is %0.0 f kPa", MEP)
```

Scilab code Exa 7.3 A diesel cycle with a compression ratio 18

```
1 clc
2 //solution
3 // initialization of variables
5
6 r=18 // compression ratio
7 k=1.4 // polytropic index for air
8 R=0.287 // specific gas constant for air
9 Cv=0.717 // specific heat at constant volume
10 Cp=1.0 // specific heat at constant pressure
11 T1=200+273 // lower temperature in kelvin
12 P1=200 // low pressure in kPa
13 T3=2000 // higher temperature of cycle in kelvin
14
15 v1=R*T1/P1 // specific volume at state 1 in m^3
16 v2=v1/r // specific volume after compression in m<sup>3</sup>
17
18 T2=T1*(v1/v2)^(k-1) // temperature after compression
19 P2=P1*(v1/v2)^k // pressure after compression
20 P3=P2 // diesel cycle
21 v3=R*T3/P3 // volume at state 3
22
23 rc=v3/v2 // cutoff ratio
24
```

```
25 effi=1-((rc^k)-1)/(r^(k-1)*k*(rc-1))
26
27
28 printf ("The thermal efficiency is \%0.2\,\mathrm{f}~\%\%~\ n", effi
      *100)
29
30 v4=v1 // diesel cycle
31 T4=T3*(v3/v4)^(k-1) // adiabatic process
32
33 qin=Cp*(T3-T2) // using first law
34 qout=Cv*(T4-T1) // heat rejected
35
36 Wnet=qin-qout // net work
37 MEP=Wnet/(v1-v2) // expression of mean effective
      pressure in terms of work
38
39 printf(" The MEP is %i kPa", MEP)
```

Scilab code Exa 7.4 without constant specific heats

```
clc
//solution
// initialization of variables

r=18 // compression ratio
k=1.4 // polytropic index for air
R=0.287 // specific gas constant for air
T1=200+273 // lower temperaure in kelvin
P1=200 // low pressure in kPa
T3=2000 // higher temperature of cycle in kelvin

v1=R*T1/P1 // specific volume at state 1 in m^3
//using table E.1
u1=340 // specific internal energy in kJ/kg
vr1=198.1 // in m^3/kg
```

```
16
17 vr2=vr1*(1/r) // as r=v1/v2
18
19 // now finding corresponding values from table E.1
20 T2=1310 // temperature in kelvin
21 Pr2=34 // pressure in kPa
22 h2=1408 // specific entropy in kJ/kg
23 v2=v1/18 // volume at state 2
24 P2=R*T2/v2 // pressure at state 2
25
26 h3=2252.1 // specific enthalpy in kJ/kg from table E
     . 1
27 \text{ vr3} = 2.776
28 P3=P2 // diesel cycle
29 v3=R*T3/P3 // after compression volume
30 v4=v1 // isochoric process
31 vr4=vr3*v4/v3 // isentropic process
32 // now using Vr4 we read corresponding value from
      table E.1
33 T4=915 // final temperature in kelvin
34 u4=687.5 // specific internal energy at state 4
35
36 qin=h3-h2 // using first law
37 qout=u4-u1 // heat rejected
38
39 Wnet=qin-qout // net work
40 effi=100*Wnet/qin // thermal efficiency
41 printf ("The thermal efficiency is \%0.2 \text{ f } \% \setminus \text{n}", effi)
43 MEP=Wnet/(v1-v2) // expression of mean effective
      pressure in terms of work
44
45 printf(" The MEP is \%0.2\,\mathrm{f} kPa \n", MEP)
46
47 erroreffi=(66.6-effi)*100/effi // error in
      efficiency
48 errorMEP=(515-MEP)*100/MEP // error in MEP
49
```

Scilab code Exa 7.5 thermal efficiency for this Brayton cycle

```
1 clc
2 //solution
3 // initialization of variables
4 Cp=1.0 // specific heat at constant pressure
5 k=1.4 // polytropic index for air
6 T1=25+273 // temperature at compressor inlet
7 T3=850+273 // maximum temperature in kelvin
9 r=5 // pressure ratio=P2/P1 & P4/P3
10
11 T2=T1*(r)^((k-1)/k) // temperature after compression
12
13 T4=T3*(1/r)^((k-1)/k) // final temperature
14
15 Wcomp=Cp*(T2-T1) // compressor work
16 Wturb=Cp*(T3-T4) // turbine work
17
18 BWR=Wcomp/Wturb // back work ratio
19
20 printf("The BWR is \%0.1 \text{ f } \% \text{n}", BWR*100)
21
22 Effi=1-r^{(1-k)/k} // thermal efficiency
24 printf(" The thermal efficiency is \%0.1 \text{ f } \% \setminus \text{n}", Effi
```

Scilab code Exa 7.6 compressor and gas turbine have efficiency of 75 percent

```
1 clc
2 //solution
3 // initialization of variables
5 Cp=1.0 // specific heat at constant pressure
6 k=1.4 // polytropic index for air
7 T1=25+273 // temperature at compressor inlet
8 T3=850+273 // maximum temperature in kelvin
9
10 r=5 // pressure ratio=P2/P1 \& P4/P3
11 efficomp=0.75 // efficiency of compressor
12 effiturb=0.75 // efficiency of turbine
13
14 T2dash=T1*(r)^((k-1)/k) // temperature after
      compression
15 Wcomp=Cp*(T2dash-T1)/efficomp // compressor work
16
17 T4dash=T3*(1/r)^((k-1)/k) // final temperature
18 Wturb=Cp*(T3-T4dash)*effiturb // turbine work
19
20 BWR=100*Wcomp/Wturb // back work ratio
21
22 printf ("The BWR is \%0.1 \text{ f } \% \text{n}", BWR)
23
24 T2=(Wcomp/Cp)+T1 // actual temperature of state 2
25
26 qin=Cp*(T3-T2) // using first law
27
28 Wnet=(Wturb-Wcomp) // net work
29
```

```
30 effi=100*Wnet/qin // thermal efficiency 31 printf("The thermal efficiency is \%0.2\,\mathrm{f} \%\ \n",effi)
```

Scilab code Exa 7.7 ideal regenerator to the gas turbine cycle

```
1 clc
2 //solution
3 // initialization of variables
5 Cp=1.0 // specific heat at constant pressure
6 k=1.4 // polytropic index for air
7 T1=25+273 // temperature at compressor inlet
8 T3=850+273 // maximum temperature in kelvin
10 r=5 // pressure ratio=P2/P1 \& P4/P3
12 T2=T1*(r)^((k-1)/k) // temperature after compression
13
14 T4=T3*(1/r)^((k-1)/k) // final temperature
15
16 Wcomp=Cp*(T2-T1) // compressor work
17 Wturb=Cp*(T3-T4) // turbine work
18
19 BWR=Wcomp/Wturb // back work ratio
20
21 printf("The BWR is \%0.1 \text{ f } \% \text{n}", BWR*100)
22
23 effi=(1-((T1/T4)*(r^((k-1)/k))))// efficiency
24 printf (" The thermal efficiency is \%0.1\,\mathrm{f}~\%\% \n", effi
      *100)
25 // The solution in textbook is incorrect dur to
      wrong value of T4 (temperature at state 4)
```

Scilab code Exa 7.8 gas turbine provides the energy to the boiler

```
1 clc
2 clear
3 //solution
4 // initialization of variables
6 //REFER TO FIG.:7.8
8 Cp=1 // specific constant at constant pressure
9 k=1.4 // polytropic constant for air
10 T5=25+273 // temperature at state 5 in kelvin
11 T7=850+273 // temperature at state 4 in kelvin
12 T9=350 // exit temperature of water from bolier in
     kelvin
13 WdotST=100000 // power from steam turbine in Watt
14 r=5 // pressure ratio=P2/P1 \& P4/P3
15
16 h1=192 // specific enthalpy at 10 Kpa from steam
     table
17 h2=h1 // isenthalpic process
18 h3=3214 // specific enthalpy at 4 Mpa and 400 degree
       celsius from steam table
19 s3=6.769 // specific entropy at 4 Mpa and 400 degree
       celsius from steam table
20
21 s4=s3 // isentropic process
22 sf=0.6491 // specific entropy of saturated liquid at
      10 kPa and 45 degree celsius from table C.2
23 sg=8.1510 // specific entropy of saturated liquid at
       10 kPa and 45 degree celsius from table C.2
24 \text{ x4}=(s4-sf)/(sg-sf) // quality of steam
25
26 hf=h1 // specific enthalpy of saturated liquid @ 10
     Kpa
27 \text{ hg} = 2584.6
28 h4=hf+x4*(hg-hf) // specific entropy at state 4
29
```

```
30 mdots=WdotST/(h3-h4) // steam mass flow rate from
      turbine output
31
32 T6=T5*(r^{(k-1)/k}) // adiabatic process relation
33 T8=T7*(1/r^{(k-1)/k})) // adiabatic process relation
34
35 // Now using energy balance in boiler
36 \text{ mdota=mdots*(h3-h2)/(Cp*(T8-T9))} // \text{mass flow rate}
      of water
37 Wdotturb=mdota*Cp*(T7-T8) // power produced by
      turbine
38
39 Wdotcomp=mdota*Cp*(T6-T5) // energy needed by
      compressor
40
41 WdotGT=Wdotturb-Wdotcomp // net turbine work
42
43 Qdotin=mdota*Cp*(T7-T6) // energy input by combustor
44
45 effi=100*(WdotST+WdotGT)/Qdotin // combined
      efficiency
46
47 printf("The thermal efficiency of the combined cycle
       is \%0.1 f \%\% ",effi)
```

Scilab code Exa 7.9 compressor with compression ratio of 10

```
1 clc
2 clear
3 //solution
4 // initialization of variables
5
6 Cp=1 // specific constant at constant pressure
7 k=1.4 // polytropic constant for air
8 r=10
```

```
9 T2=-10+273 // temperature at entry of compressor
10 T4=30+273 // temperature at entry of turbine
11
12 T3=T2*(r^{(k-1)/k})) // temperature at state 3 in
     kelvin
13 T1=T4*(1/r^{(k-1)/k})) // temperature at state 1 in
     degree celsius
14 printf ("The minimum temperature is %0.1f degree
      celsius n, T1-273)
15
16 qin=Cp*(T2-T1) // heat input
17 Wcomp=Cp*(T3-T2)// compressor work
18 Wturb=Cp*(T4-T1) // turbine work
19
20 COP=qin/(Wcomp-Wturb) // COP of refrigeration
21 printf(" The COP is %0.2f", COP)
```

Scilab code Exa 7.10 adding ideal internal heat exchanger and regenerator

```
clc
clear
// solution
// initialization of variables

Cp=1 // specific constant at constant pressure
k=1.4 // polytropic constant for air
r=10
T3=-10+273 // temperature at entry of compressor
T6=-40+273 // temperature at entry of turbine

T5=T3 // heat exchanger
T2=T6 // heat exchanger

T4=T3*(r^((k-1)/k)) // temperature after compression
```

Chapter 8

Psychrometrics

Scilab code Exa 8.1 air at 25 degree Celsius and 100 kPa in 150 metre cube

```
1 clc
2 // solution
3 //initialization of variables
4 Ra=0.287 // specific gas constant for air
5 P=100 // pressure of room in kPa
6 V=150 // volume of room in m<sup>3</sup>
7 T=25+273 // temperature of air in kelvin
8 phi=0.6 // relative humidity
9 Pg=3.29 // saturation vapour pressure in kPa at 25 *
     C from table C.1
10 Mv= 18 // molecular mass of water vapor
11 Ma=28.97 // molecular mass of air
12
13 Pv=Pg*phi // partial pressure of water vapour
15 Pa=P-Pv // partial pressure of air
16
17 w=0.622*(Pv/Pa) // humidity ratio in Kg of water/ Kg
       of dry air
18 Tdp=17.4 // dew point temperature from interpolation
```

```
in table C.2 corresponding to partial pressure
     Pv=1.98 kPa
19
20 ma=Pa*V/(Ra*T) // mass of air
21 mv=w*ma // mass of water vapour in kg
22
23 // now we find volume percentage
24 Nv=mv/Mv // moles of vapour
25 Na=ma/Ma // moles of air
26
27 Vw= Nv/(Na+Nv) // fraction of volume occupied by
      water vapour
28
29 printf(" The humidity ratio is \%0.3\,\mathrm{f} Kg water/ kg of
       dry air \n",w)
30 printf ("The dew point is \%0.1 f degree celsius \n",
      Tdp)
31 printf("The mass of water vapour in the air is %0.2 f
       kg \ n, mv)
32 printf("The volume percentage of the room that is
      water vapor is \%0.2 \, \text{f} \, \%\%", Vw*100)
33 // The answers are correct within given limits
34 // The variation in answers is due to approximations
      made by
35 // textbook while scilab is precise
```

Scilab code Exa 8.2 air is cooled below the dew point to 10 degree Celsius

```
1 clc
2 clear
3 // solution
4 //initialization of variables
5 Ra=0.287 // specific gas constant for air
6 P=100 // pressure of room in kPa
7 w1=0.0126 // old humidity ratio of example 8.1-
```

```
8 Pg=3.29 // saturation vapour pressure in kPa at 25 *
     C from table C.1
9 mv=2.17 // initial mass of water vapour in example
      8.1
10 T=25+273 // temperature after reheat
11 V=150 // volume of room in m<sup>3</sup>
12 Pv=1.228 // saturation vapour pressure in kPa @ 10
      degree celsius from table C.1
13 Pa=P-Pv // partial pressure of air
14 w2=0.622*(Pv/Pa) // new humidity ratio in Kg of
      water/ Kg of dry air
15 deltaw=w1-w2 // difference in humidity ratio
16 ma=Pa*V/(Ra*T) // mass of air
17 deltamv=deltaw*ma // mass of water vapour condensed
18 X=deltamv*100/mv // percentage of water vapour
      condensed
19 printf ("The percentage that condenses is %0.1 f %% \n
     ",X)
20 // AFTER REHEATING
21 phi=1.608*w2*Pa/Pg
22 printf("The relative humidity is \%0.1 \text{ f } \%\%", phi*100)
```

Scilab code Exa 8.3 100 kPa air stream

```
1 clc
2 // solution
3 //initialization of variables
4 T1=40 // dry bulb temperature in degree celsius
5 T2=20 // wet bulb temperature in degree celsius
6 Cp=1.0 // specific heat
7 P=100 // pressure of air stream in kPa
8 pg1=7.383 //saturation pressure @ 40 degree celsius
9 hfg2=2454 // latent heat for 20 degree celsius
10 Pg2=2.338 // saturation pressure @ 20 degree celsius
11 w2=0.622*Pg2/(P-Pg2) // specific humidity for wet
```

```
bulb condition
12 hg1=2574 // specific enthalpy of saturated vapour @
     40 degree celsius
13 hf2=83.9 //spedific enthalpy of saturated liquid @
     20 degree celsius
14 w1 = ((w2*hfg2) + Cp*(T2-T1))/(hg1-hf2)// specific
     humidity for 40 degree celsius
15 printf ("The humidity ratio is %0.5 f kg water/ Kg dry
       air \ n", w1)
16 pv1=100*w1/(0.622+w1) // partial pressure of vapour
17 phi=pv1/pg1 // relative humidity
18 printf ("The relative humidity is %0.1 f %% \n", phi
      *100)
19
20 hv=hg1 // temperature is at DBT=40 degree celsius
21 h=Cp*T1+w1*hv // specific enthalpy of air
22 printf("The specific enthalpy is \%0.1 f kJ/kg dry air
     ",h)
```

Scilab code Exa 8.5 Hot dry air passes through an evaporative cooler

```
clc
//solution
// initialization of variables

T1=40 // inlet temperature in degree celsius
T2=27 // outlet temperature in degree celsius
phi1= 10 // relative humidity at inlet
// as no heat transfer takes place thus isenthalpic process
//Thus following the enthalpy line at DBT=40 and Relative humidity=10
phi2=45 // by interpolation of constant enthalpy line
w1=0.0046// specific humidity @ T=40 and phi1=10
```

```
12 w2=0.010 // specific humidity at outlet
13 W=w2-w1 // amount of water added
14 Tmin=18.5 // minimum temperature at 100% relative humidity
15 printf("The relative humidity is %i %% \n ",phi2)
16 printf("The added water is %0.04f kg water/kg dry air \n",W)
17 printf("The lowest possible temperature is %0.1f *C ",Tmin)
```

Scilab code Exa 8.6 incoming volume flow rate is 50 metre cube per min

```
1 clc
2 //solution
3 // initialization of variables
4 T1=5+273 // outside air temperature in kelvin
5 P=100 // pressure in kPa
6 Ra=0.287 // specific gas constant for air
7 phi=0.7 // relative humidity outside
8 Qf=50/60 // volume flow rate in m^3/\sec
9 Pg1=0.872 // saturation pressure at 278 K
10 Pv1=phi*Pg1 // partial pressure of water vapour
11 Pa1=P-Pv1 // partial pressure of air
12
13 rhoa=Pa1/(Ra*T1) // density of dry air
14
15 mdota= Qf*rhoa // mass flow rate of dry air
16
17 // using psychrometric chart at T1=5*C and phi1=70%
18 h1=14 // inlet enthalpy in kJ/kg
19 h2=35 // enthalpy after heating in kJ/kg
20
21 Qdot=mdota*(h2-h1) // heat transfer rate
22 // from psychrometric chart for T=25 *C and 35 kJ/kg
      enthalpy
```

```
23 phi2=19 // realtive humidity
24 printf("The heat transfer rate is %0.1 f kJ/s \n",
        Qdot)
25 printf("The final relative humidity is %i %% ",phi2)
```

Scilab code Exa 8.7 heat transfer if the incoming volume flow rate of air is 60 metre cube per min

```
1 clc
2 //solution
3 // initialization of variables
4 //DATA TAKEN FROM PSYCHROMETRIC CHART
5 T1=5+273 // outside temperature in kelvin
6 h1=10// enthalpy in kJ/kg @ T=5 *C and 40 % relative
      humidity
7 Pg1=0.872 // saturaion pressure in kPa for 5 degree
      celsius DBT
8 \text{ phi1} = 0.4
9 h2=33 // specific enthalpy at 25 *C and 40 \%
     relatuve humidity
10 h3=45 // specific enthalpy at state 3
11 P=100 // atmospheric pressure in kPa
12 Ra=0.287 // specific gas constant for air
13 Qf=60/60 // volume flow rate in m^3/s
14 Pv1=phi1*Pg1 // partial presure of water vapour
15 Pa1=P-Pv1 // partial pressure of air
16 w2=0.0021 // specific humidity @ 40 % relative
     humidity and 25*C temperature
17 w3=0.008 // final specific humidity
18 rhoa1=Pa1/(Ra*T1) // air density
19 mdota=Qf*rhoa1 // mass flow rate of dry air
20
21 Qdot=mdota*(h2-h1) // heat transfer rate
23 // as the process is isothermal thus
```

Scilab code Exa 8.8 Outside air at 30 degree C and 90 percent relative humidity

```
1 clc
2 //solution
3 // initialization of variables
4 // REFER TO FIG. 8.4
5 T1=30 // outside temperature in degree celsius
6 phi1=0.9 // outside relative humidity
7 T2=23 // room temperature in degree celsius
8 phi2=0.4 // relative humidity in room
10 // using psychrometric chart
11 w1=0.0245 // specific humidity @ 30 *C and relative
     humidity 0.9
12 h1=93 // specific enthalpy @ 30 *C and relative
     humidity 0.9
13 w2=w1 // during cooling humidity remains constant
14 w3=0.007 // specific humidity @ 23 *C and relative
     humidity 0.4
15 h4=41 // final specific enthalpy
16 h3=26 // specific enthalpy @ 23 *C and relative
     humidity 0.4
17 deltaw=w3-w2 // moisture removed
```

Scilab code Exa 8.9 Outside cool air is mixed with inside air

```
1 clc
2 //solution
3 // initialization of variables
4 P=100 // atospheric pressure in kPa
5 R=0.287 // specific gas constant for air
6 T1=15+273 // outside temperature in kelvin
7 phi1=0.4// outside air relative humidity
8 Qf1=40 // outside air flow rate in m^3/min
9 T2=32+273 // inside temperature in kelvin
10 phi2=0.7 // inside air relative humidity
11 Qf2=20 // outside air flow rate in m^3/min
12 Ps1=1.7 // saturation pressure @ 15 degree celsius
     and 40% humidity
13 Ps2=4.9 // saturation pressure @ 32 degree celsius
     and 70% humidity
14
15 Pv1=Ps1*phi1 // partial pressure of water vapour
     outside
16
17 Pv2=Ps2*phi2 // partial pressure of water vapour
     inside
```

```
18
19 Pa1=P-Pv1 //partial pressure of dry air outside
20 Pa2=P-Pv2 //partial pressure of dry air inside
21
22 rhoa1=Pa1/(R*T1) // density of outside air
23 mdota1=Qf1*rhoa1 // mass flow rate of air outside
24
25 rhoa2=Pa2/(R*T2) // density of inside air
26 mdota2=Qf2*rhoa2 // mass flow rate of inside air
  // using psychrometric chart locating state 1 and 2
28 h1=37 // specific enthalpy @ DBT 15*C and 40\%
     humidity
29 w1=0.0073 // specific humidity @ DBT 15*C and 40 \%
     humidity
30 h2=110 // specific enthalpy @ DBT 32*C and 70\%
     humidity
31 w2=0.0302 // specific humidity @ DBT 32*C and 70\%
     humidity
32 ratio=mdota1/mdota2 // ratio of distance between
     states
33 // using this ratio state 3 is located on
      psychrometric chart
34 \quad T3 = (mdota1*T1+mdota2*T2)/(mdota1+mdota2)-273 //
      final temparature in celsius
35
36 phi3=65// final relative humidity at T3 from
     psychrometric chart
37
38 printf ("The relative humidity is \%i \%% \n", phi3)
39 printf ("The resultant temperature is %i degree
      celsius", T3)
```

Scilab code Exa 8.10 cooling tower of power plant

1 clc

```
2 //solution
3 // initialization of variables
4 mdotw3=10000 // mass flow rate of water entering in
     cooling tower in kg/min
5 Tw1=40+273 // temperature of water entering cooling
     tower in kelvin
6 Ta1=20+273 // temperature of air entering cooling
     tower in kelvin
7 phi1=0.5// relative humidity of entering air
8 Tw2=25+273 // temperature of water leaving cooling
     tower in kelvin
  Ta2=32+273 // temperature of air leaving cooling
     tower in kelvin
10 phi2=0.98 // relative humidity of leaving air
11 // from psychrometric chart
12 h1=37// specific enthalpy of air @ 20*C DBT and 50%
     humidity
13 w1=0.0073 // specific humidity of air @ 20*C DBT and
      50% humidity
14 h2=110// specific enthalpy of air @ 32*C DBT and 98%
      humidity
15 w2=0.030 // specific humidity of air @ 32*C DBT and
     98% humidity
16
17 h3=167.5 // specific enthalpy of water from steam
     table at 40 degree celsius
18 h4=104.9 // specific enthalpy of water from steam
     table at 25 degree celsius
19
20 mdota=(mdotw3*(h4-h3))/(h1-h2+(w2-w1)*h4) // by
     energy balance
21
22
23 v1=0.84 // specific volume of air entering tower
     from psychrometric chart
24
25 Qf=mdota*v1 // volume flow rate in m^3/min
26 printf ("The volume flow rate of air into the cooling
```

```
tower is %i m^3/min \n",Qf)

27

28 mdot4=mdotw3-(w2-w1)*mdota // by mass balance

29 printf("The mass flow rate of water that leaves the cooling tower is %i kg/min",mdot4)

30 // The answers is slightly different in textbook due to approximations in calculations while in scilab solution is precise
```

Chapter 9

Combustion

Scilab code Exa 9.1 air fuel ratio of 20

```
1 clc
2 clear
3 // initialization of variables
5 AFactual=20 // air fuel ratio actual
6 // The energy balance is done from equation
8 / C4H10 + 6.5(O2+3.76N2) \longrightarrow 4CO2 + 5H2O + 24.44
      N2
10 P=100 // atmospheic preesure in kPa
11 mair=6.5*(1+3.76)*29 // mass of air
12 mfuel=1*58 // mass of fuel
13 AFth=mair/mfuel // theoritical air-fuel ratio
14 %excessair=(AFactual-AFth)*100/AFth
15
16 printf ("The \%\% excess air is \%0.2 \,\mathrm{f} \,\%\% \,\mathrm{n}", %excessair
17
18 // NOW THE REACTION IS
19 // C4H10+ (1+\% \text{excessair}/100)*6.5*(O2+3.76N2) ---->
```

```
4CO2 + 5H2O + 1.903O2 + 31.6N2

20
21 %CO2=4/42.5*100 // VOLUME % OF CO2

22
23 printf("The volume %% of CO2 is %0.2f %% \n",%CO2)

24
25 // NOW WE FIND DEW POINT

26 Nv=5 // moles of water

27 N=42.5 // moles of air

28 Pv=P*(Nv/N) // partial pressure of vapour

29 Tdp=49// dew point temperature in degree celsius from table C.2

30
31 printf("The Dew point temperature is %i degree celsius", Tdp)
```

Scilab code Exa 9.2 Butane with 90 percent theoretical air

```
1 clc
2 // initialization of variables
3
4 %air=0.9 // 90% air is used for combustion
5
6 // THE REACTION IS
7 // C4H10 + 0.9*6.5*(O2+3.76N2)----> aCO2 + 5H20 + bCO
8 // a and b are calculated by atomic balance
9 a=2.7
10 b=1.3
11 %C0=b*100/31 // volume % of CO
12
13 printf("The volume %% of CO is %0.2 f %% \n",%CO)
14
15 mair=6.5*%air*4.76*29 // mass of air in kg
16 mfuel=1*58 // mass of fuel butane in kg
```

```
17 AF=mair/mfuel // air-fuel ratio
18
19 printf("The air to fuel ratio is %0.2 f kg air/ kg
        fuel ", AF)
20 // THE SOLUTION IS CORRECT BUT THERE ARE SOME
        PRINTING MISTAKES IN TEXTBOOK
```

Scilab code Exa 9.3 Butane is burned with dry air

```
1 clc
2 // initialization of variables
4 // THE REACTION IS
5 // aC4H10 + b(O2+3.76N2) ----> CO2 + 1CO + 3.5H20 +
       84.6\,\mathrm{N2} + \mathrm{cH2O}
6 // a, b and c are calculated by atomic balance
7 // C: 4a=11+1
8 // H:10 a=2c
9 // O: 2b=22+1+7+c
10 // solving these equations using matrix
11 A = [4 \ 0 \ 0; 10 \ 0 \ -2; 0 \ 2 \ -1]
12 B = [12; 0; 30]
13 x = A \setminus B
14 \ a=x(1)
15 b=x(2)
16 c=x(3)
17
18 // Now equation becomes
19 / C4H10 + 7.5(O2+3.76N2) \longrightarrow 3.67CO2 + 0.33CO +
       1.17 \,\mathrm{H}20 + 28.17 \,\mathrm{N}2 + 5 \mathrm{H}2\mathrm{O}
20 //MOLES OF AIR in this equation is 7.5 moles
21 mairactual=7.5 // in moles
22 //MOLES OF AIR in standard equation of Ex.9 is 6.5
23 mairtheoritical=6.5
24 %theoriticalair=100*(mairactual/mairtheoritical)
```

```
25 printf ("The \%\% theoritical air is \%0.1\,\mathrm{f} \%\%", \% theoriticalair)
```

Scilab code Exa 9.4 Volumetric analysis of the products of combustion

```
1 clc
2 // initialization of variables
3 // The reaction equation is
4 / \text{CaHb} + c (O2+3.76N2) \longrightarrow 10.4CO2 + 1.2CO + 2.8O2 +
      85.6\,\mathrm{N2} + \mathrm{dH2O}
6 // using atomic balancing
7 // C: a=10.4+12
8 / N: 3.76 c = 85.6
9 //O: 2c = 20.8 + 1.2 + 5.6 + d
10 / H: b=2d
11
12 // Solving these equations using matrix
13 A=[1 0 0 0;0 0 3.76 0;0 0 2 -1;0 1 0 -2]
14 B = [11.6; 85.6; 27.6; 0]
15 x = A \setminus B
16 \ a=x(1)
17 b=x(2)
18 c=x(3)
19 d=x(4)
20
21 // substituing these values in reaction equation
22 / C11.6 H37.9 + 21.08 (O2+3.76N2) \longrightarrow 11.6 CO2 + 18.95
      H2O + 79.26 N2
23 %theoriticalair=22.8*100/21.08 // theoritical air
24 excessair=%theoriticalair-100
25
26 printf ("The excess air is %i %%", excessair)
```

Scilab code Exa 9.5 enthalpy of combustion of gaseous and liquid propane

```
1 clc
2 // initialization of variables
3 // The reaction equation is
4 //C3H8 + 5(O2+3.76N2) \longrightarrow 3CO2 + 18.8N2 + 4H2O
6 // All the enthalpy of formation values are taken
     from Table B.5 with units in kJ/mol
7 hfCO2=-393520 // enthalpy associated with CO2
8 hfH20=-285830 // enthalpy associated with H2O(1)
9 hfC3H8=-103850// ehthalpy associated with C3H8
10
11 // by first law Q= Hproducts - Hreactants
12
13 Qg=3*(hfCO2)+4*(hfH2O)-(hfC3H8) // enthalpy of
     combustion for gaseous propane
14
15 printf("The enthalpy of combustion for gaseous
     propane is \%i kJ\n",Qg)
16
17 hv=15060 // enthalpy of vaporization for propane
18
19 Ql=3*(hfCO2)+4*(hfH2O)-(hfC3H8-hv) // enthalpy of
     combustion for liquid propane
20
21 printf(" The enthalpy of combustion for liquid
     propane is \%i kJ\n",Q1)
22
23 //The answers are slightly different in textbook as
     they have approximated the result while in SCILAB
      results are precise
```

Scilab code Exa 9.6 propane and air enter a steady flow combustion chamber

```
1 clc
2 // initialization of variables
3 // The reaction equation is
4 //C3H8 + 5(O2+3.76N2) \longrightarrow 3CO2 + 18.8N2 + 4H2O
6 // All the enthalpy of formation values are taken
     from Table B.5 with units in kJ/mol
7 hfCO2=-393520 // enthalpy of formation associated
      with CO2
8 hbarCO2=22280 //enthalpy associated with CO2 at 600K
      from table E.4
9 hdotbarCO2=9364//enthalpy associated with CO2 at 298
     K from table E.4
10
11 hfH20=-241820 // enthalpy of formation associated
     with gaseous H2O
12 hbarH20=20402 //enthalpy associated with H20 at 600K
      from table E.6
13 hdotbarH20=9904//enthalpy associated with H20 at 298
     K from table E.6
14
15 hfC3H8=-103850// ehthalpy of formation associated
     with C3H8
16
17 hbarN2=17563 //enthalpy associated with N2 at 600K
     from table E.2
18 hdotbarN2=8669//enthalpy associated with N2 at 298K
     from table E.2
19 // by first law Q= Hproducts - Hreactants
20
21 Qg=3*(hfCO2+hbarCO2-hdotbarCO2)+4*(hfH2O+hbarH2O-
```

```
hdotbarH2O)+18.8*(hbarN2-hdotbarN2)-(hfC3H8) //
enthalpy of combustion

22
23 printf("The heat transfer required is %i kJ\n",Qg)

24
25 //The answer is WRONG textbook as they have made an error in calculating Qg
```

Scilab code Exa 9.7 Liquid octane fuels a jet engine

```
1 clc
2 // initialization of variables
3 // The reaction equation is
5 / (C8H18 + 12.5(O2+3.76N2) --- > 8CO2 + 47N2 + 9H2O
7 // All the enthalpy of formation values are taken
     from Table B.5 with units in kJ/mol
8 hfCO2=-393520 // enthalpy of formation associated
     with CO2
  hbarCO2=42769 //enthalpy associated with CO2 at 1000
     K from table E.4
10 hdotbarCO2=9364//enthalpy associated with CO2 at 298
     K from table E.4
11
12 hfH20=-241820 // enthalpy of formation associated
     with gaseous H2O
13 hbarH20=35882 //enthalpy associated with H20 at 1000
     K from table E.6
14 hdotbarH20=9904//enthalpy associated with H20 at 298
     K from table E.6
15 hfC3H8=-103850// ehthalpy of formation associated
     with C3H8
16
17 hbarN2p=(30784+29476)/2 //enthalpy associated with
```

```
N2 at 1000K from table E.2 by averaging enthalpy
      at 1020K and 980K for product
18 hbarN2r=17563 //enthalpy associated with N2 at 600K
      from table E.2 for reactant
19 hdotbarN2=8669//enthalpy associated with N2 at 298K
      from table E.2
20
21 hfC8H18=-249910 // enthalpy of formation associated
      with octane taken from internet as not provided
      in textbook
22
23 hbar02=17929 // enthalpy associated with O2 at 600K
      table E.3
24 hdotbar02=8682//enthalpy associated with O2 at 298K
      table E.3
25
26 // using first law and including kinetic energy
      change
27 // 0 = Hp - Hr + Mp * (V^2) / 2
28
29 Hp=8*(hfCO2+hbarCO2-hdotbarCO2)+9*(hfH2O+hbarH2O-
      hdotbarH20)+47*(hbarN2p-hdotbarN2)
  // enthalpy of products
30
31
32 Hr=(hfC8H18)+12.5*(hbar02-hdotbar02)+47*(hbarN2r-
      hdotbarN2)
33 // enthalpy of reactants
34
35 \text{ Mp} = 8*44+9*18+47*28 //(mass of products by
      multiplying molecular mass to number of moles)
36
37 \text{ V=} \text{sqrt} (2*1000*(Hr-Hp)/Mp) // \text{ exit velocity using}
      energy balance
38
39 printf("The exit velocity is %i m/s", V)
40
41 //The answers are slightly different in textbook as
      they have approximated the values while in SCILAB
```

Scilab code Exa 9.8 octane with 300 percent excess air

```
1 clc
2 // initialization of variables
4 // The reaction equation with theoritical air is
5 / C8H18 + 12.5(O2+3.76N2) \longrightarrow 8CO2 + 47N2 + 9H2O
  // for 400% theoritical air reaction is
  // C8H18 + 50(O2+3.76N2)---> 8CO2 + 188N2 + 9H2O +
     37.502
10
11 // All the enthalpy of formation values are taken
     from Table B.5 with units in kJ/mol
12 hfCO2=-393520 // enthalpy of formation associated
     with CO2
13 hbarCO2=42769 //enthalpy associated with CO2 at 1000
     K from table E.4
14 hdotbarCO2=9364//enthalpy associated with CO2 at 298
     K from table E.4
15 hfH20 = -241820 // enthalpy of formation associated
      with gaseous H2O
16 hbarH20=35882 //enthalpy associated with H20 at 1000
     K from table E.6
17 hdotbarH20=9904//enthalpy associated with H20 at 298
     K from table E.6
18 hbarN2p = (30784 + 29476)/2 //enthalpy associated with
     N2 at 1000K from table E.2 by averaging enthalpy
      at 1020K and 980K
19 hdotbarN2=8669//enthalpy associated with N2 at 298K
     from table E.2
20
```

```
21 hfC8H18=-249910 // enthalpy associated with octane
      taken from internet as not provided in textbook
22 hbar02=31389 // enthalpy associated with O2 at 1000 \mathrm{K}
       table E.3
23 hdotbar02=8682//enthalpy associated with O2 at 298K
      table E.3
24
25 Hp=8*(hfCO2+hbarCO2-hdotbarCO2)+9*(hfH2O+hbarH2O-
      hdotbarH20)+37.5*(hbarO2-hdotbarO2)+188*(hbarN2p-
      hdotbarN2)// enthalpy of products
26
27 \text{ Hr} = (\text{hfC8H18})
28 // enthalpy of reactants
29
30 Q=Hp-Hr // using first law2
32 printf(" The heat transfer is %i kJ",Q)
33
34 //The answers are slightly different in textbook as
      they have approximated the values while in SCILAB
       results are precise
```

Scilab code Exa 9.9 constant volume bomb calorimeter

```
1 clc
2 // initialization of variables
3
4 // The reaction equation is
5 //C3H8 + 5O2—> 8CO2 + 4H2O
6
7 // All the enthalpy of formation values are taken from Table B.5 with units in kJ/mol
8 hfCO2=-393520 // enthalpy associated with CO2
9 hfH2O=-241820 // enthalpy associated with gaseous H2O
```

```
10 hfC3H8=103850// enthalpy of formation associated
     with C3H8
11 hfgC3H8=15060// enthalpy of vapourization associated
      with C3H8
12 T=20+273 // temperature in kelvin
13 Rbar=8.314 // universal gas constant
14 Nr=6 // number of moles of reactants
15 Np=7 // number of moles of products
16 Hp=3*(hfCO2)+4*(hfH2O) // enthalpy of products
17
18 Hr=hfC3H8+hfgC3H8 // enthalpy of reactants
19
20 Q=(Hp-Hr-(Nr-Np)*Rbar*T)*10^(-3) // heat transfer
     from first law
21
22 printf(" The heat transfer is %i MJ",Q)
23
24 //The answers are slightly different in textbook as
     they have approximated the values while in SCILAB
      results are precise
```

Scilab code Exa 9.10 propane with 250 percent theoretical air

```
1 clc
2 // initialization of variables
3
4 // The reaction equation for theoritical air is
5 //C3H8 + 5(O2 + 3.76N2) ----> 3CO2 + 4H2O + 18.8N2
6
7 // for 250% theoritical air reaction becomes
8 //C3H8 + 12.5(O2 + 3.76N2) ----> 3CO2 + 4H2O + 47N2 + 7.5O2
9
10 // All the enthalpy of formation values are taken from Table B.5 with units in kJ/mol
```

```
11
12 Np=47+7.5+4+3 // number of moles of product
13 hfCO2=-393520 // enthalpy of formation associated
     with CO2
14 hbarCO2=(62963+65271)/2 //enthalpy associated with
     CO<sub>2</sub> at 1380 K from table E.4
15 hbarCO2dash = (58381+60666)/2 //enthalpy associated
      with CO2 at 1300 K by average from table E.4
16 hdotbarCO2=9364//enthalpy associated with CO2 at 298
     K from table E.4
17
18 hfC3H8=-103850// ehthalpy of formation associated
     with C3H8
19
20 hfH20=-241820 // enthalpy of formation associated
     with gaseous H2O
21 hbarH20=(51521+53351)/2 //enthalpy associated with
     H20 at 1380 K by taking average from table E.6
22 hbarH2Odash=48807 //enthalpy associated with H2O at
     1300 K from table E.6
23 hdotbarH20=9904//enthalpy associated with H20 at 298
     K from table E.6
24
25 hbarN2=42920 //enthalpy associated with N2 at 1380K
     from table E.2 by interpolating enthalpy between
     1020K and 980K
26 hbarN2dash=40170 //enthalpy associated with N2 at
      1300 K from table E.2
  hdotbarN2=8669//enthalpy associated with N2 at 298K
     from table E.2
28
29 hf02=(44198+45648)/2 // enthalpy associated with O2
      at 1380 Kby taking average from table E.3
30 hf02dash=48807 // enthalpy associated with O2 at
      1380 Kby taking average from table E.3
31 hdotbar02=8682//enthalpy associated with O2 at 298K
     table E.3
32
```

```
33 // for adiabatic flame temperature first assume
      products composed only of nitrogen and Q=0 as
      adiabatic
34 \text{ hp} = (\text{hfC3H8} - 3*(\text{hfCO2}) - 4*(\text{hfH2O}))/\text{Np} + \text{hdotbarN2}
35 // using hp we assume temp=1380 K
36 // then energy for 1380 k is
37 H1=3*(hfCO2+hbarCO2-hdotbarCO2)+4*(hfH2O+hbarH2O-
      hdotbarH20)+7.5*(hf02-hdotbar02)+47*(hbarN2-
      hdotbarN2) // energy assuming temperature to be
      1380 K
38
39 //this is very large
40
41 // now at 1300 K adiabatic temperature
42 H2=3*(hfCO2+hbarCO2dash-hdotbarCO2)+4*(hfH2O+
      hbarH2Odash-hdotbarH2O)+7.5*(hfO2dash-hdotbarO2)
      +47*(hbarN2dash-hdotbarN2) // energy assuming
      temperature to be 1300 K
43
   // now interpolation between these two temperatures
44
45 Tp=1300-((hp+H2)/(H1-H2))*(1380-1300) // adiabatic
      temperature by interpolation
46 printf ("The adiabatic flame temperature is %i K", Tp)
47
48 //The answers is different in textbook as they hav
      printed the value of hfCO2 with positive sign
      while calculating H2
```

Scilab code Exa 9.11 the adiabatic flame temperature

```
1 clc

2 // initialization of variables

3 

4 // The reaction equation for theoritical air is

5 //\text{C3H8} + 5(\text{O2} + 3.76\text{N2}) \longrightarrow 3\text{CO2} + 4\text{H2O} + 18.8\text{N2}
```

```
7 // All the enthalpy of formation values are taken
      from Table B.5 with units in kJ/mol
9 Np=18.8+4+3 // number of moles of product
10 hfCO2=-393520 // enthalpy associated with CO2
11 hbarCO2=137400 //enthalpy associated with CO2 at
      2600 K from table E.4 by interpolation
12 hbarCO2dash=125152 //enthalpy associated with CO2 at
       2400 K from table E.4
13 hdotbarCO2=9364//enthalpy associated with CO2 at 298
     K from table E.4
14
15 hfC3H8=-103850// ehthalpy associated with C3H8
16
17 hfH20=-241820 // enthalpy associated with gaseous
     H<sub>2</sub>O
18 hbarH20=114273 //enthalpy associated with H20 at
      2600 K from table E.6
19 hbarH2Odash=103508 //enthalpy associated with H2O at
       2400 K from table E.6
20 hdotbarH20=9904//enthalpy associated with H20 at 298
     K from table E.6
21
22 hbarN2=86600 //enthalpy associated with N2 at 2600 K
       from table E.2 by interpolation
23 hbarN2dash=79320 //enthalpy associated with N2 at
      2400 K from table E.2
  hdotbarN2=8669//enthalpy associated with N2 at 298K
      from table E.2
25
26 // for adiabatic flame temperature first assume
      products composed only of nitrogen and Q=0 as
      adiabatic
27 \text{ hp} = (\text{hfC3H8} - 3*(\text{hfCO2}) - 4*(\text{hfH2O}))/\text{Np} + \text{hdotbarN2}
28
29 // using hp we assume temp=2600 \text{ K}
30 // then energy for 2600 k is
```

```
31 H1=3*(hfCO2+hbarCO2-hdotbarCO2)+4*(hfH2O+hbarH2O-
      hdotbarH20)+18.8*(hbarN2-hdotbarN2) // energy
      assuming temperature to be 2600 K
32
33 // now at 2400 K adiabatic temperature
34 \text{ H2}=3*(\text{hfCO2}+\text{hbarCO2dash}-\text{hdotbarCO2})+4*(\text{hfH2O}+\text{hdotbarCO2})
      hbarH2Odash-hdotbarH2O)+18.8*(hbarN2dash-
      hdotbarN2) // energy assuming temperature to be
      2400 K
35
    // now interpolation between these two temperatures
36
37 Tp=2400-((hp+H2)/(H1-H2))*(2600-2400) // adiabatic
      temperature by interpolation
38 printf("The adiabatic flame temperature is %i K", Tp)
39
40 //The answers are slightly different in textbook as
      they have approximated the values while in SCILAB
       results are precise
```