All-Pairs Shortest Paths

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python

Week 5

Two types of shortest path problems of interest

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

All pairs shortest paths

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities

Two types of shortest path problems of interest

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees
- Dijkstra's algorithm (non-negative weights), Bellman-Ford algorithm (allows negative weights)

All pairs shortest paths

- Find shortest paths between every pair of vertices *i* and *j*
- Optimal airline, railway, road routes between cities

Two types of shortest path problems of interest

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees
- Dijkstra's algorithm (non-negative weights), Bellman-Ford algorithm (allows negative weights)

All pairs shortest paths

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities
- Run Dijkstra or Bellman-Ford from each vertex

Two types of shortest path problems of interest

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees
- Dijkstra's algorithm (non-negative weights), Bellman-Ford algorithm (allows negative weights)

All pairs shortest paths

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities
- Run Dijkstra or Bellman-Ford from each vertex
- Is there is another way?

- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1
- $A^+ = A + A^2 + \cdots + A^{n-1}$

 Adjacency matrix A represents paths of length 1

- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1
- $A^+ = A + A^2 + \cdots + A^{n-1}$

An alternative approach

- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1
- $A^+ = A + A^2 + \cdots + A^{n-1}$

An alternative approach

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
 - Constraint applies only to intermediate vertices between i and j
 - $B^0[i,j] = 1$ if there is a direct edge
 - $B^0 = A$

- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1
- $A^+ = A + A^2 + \cdots + A^{n-1}$

An alternative approach

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
 - Constraint applies only to intermediate vertices between i and j
 - $B^0[i,j] = 1$ if there is a direct edge
 - $\blacksquare B^0 = A$
- $B^{k+1}[i,j] = 1$ if
 - $B^k[i,j] = 1$ can already reach j from i via $\{0,1,\ldots,k-1\}$
 - $B^k[i, k] = 1$ and $B^k[k, j] = 1$ use $\{0, 1, \dots, k-1\}$ to go from i to k and then from k to j

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $B^0[i,j] = A[i,j]$
 - Direct edges, no intermediate vertices
- $B^{k+1}[i,j] = 1$ if
 - $B^{k}[i,j] = 1$, or
 - $B^k[i,k] = 1 \text{ and } B^k[k,j] = 1$

 The algorithm on the left also computes transitive closure — Warshall's algorithm

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $B^0[i,j] = A[i,j]$
 - Direct edges, no intermediate vertices
- $B^{k+1}[i,j] = 1$ if
 - $B^{k}[i,j] = 1$, or
 - $lacksquare B^k[i,k] = 1 \text{ and } B^k[k,j] = 1$

- The algorithm on the left also computes transitive closure — Warshall's algorithm
- $B^n[i,j] = 1$ if there is some path from i to j with intermediate vertices in $\{0,1,\ldots,n-1\}$

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $B^0[i,j] = A[i,j]$
 - Direct edges, no intermediate vertices
- $B^{k+1}[i,j] = 1$ if
 - $B^k[i,j] = 1$, or
 - $lacksquare B^k[i,k] = 1 \text{ and } B^k[k,j] = 1$

- The algorithm on the left also computes transitive closure — Warshall's algorithm
- $B^n[i,j] = 1$ if there is some path from i to j with intermediate vertices in $\{0,1,\ldots,n-1\}$
- $B^n = A^+$

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $B^0[i,j] = A[i,j]$
 - Direct edges, no intermediate vertices
- $B^{k+1}[i,j] = 1$ if
 - $B^k[i,j] = 1$, or
 - $B^k[i, k] = 1$ and $B^k[k, j] = 1$

- The algorithm on the left also computes transitive closure — Warshall's algorithm
- $B^n[i,j] = 1$ if there is some path from i to j with intermediate vertices in $\{0,1,\ldots,n-1\}$
- $B^n = A^+$
- We adapt Warshall's algorithm to compute all-pairs shortest paths

- Let $SP^k[i,j]$ be the length of the shortest path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $SP^0[i,j] = W[i,j]$
 - No intermediate vertices, shortest path is weight of direct edge
 - Assume $W[i,j] = \infty$ if $(i,j) \notin E$

- Let $SP^k[i,j]$ be the length of the shortest path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $SP^0[i,j] = W[i,j]$
 - No intermediate vertices, shortest path is weight of direct edge
 - Assume $W[i,j] = \infty$ if $(i,j) \notin E$
- $SP^{k+1}[i,j]$ is the minimum of
 - $SP^k[i,j]$ Shortest path using only $\{0,1,\ldots,k-1\}$
 - $SP^k[i, k] + SP^k[k, j]$ Combine shortest path from i to k and k to j

- Let $SP^k[i,j]$ be the length of the shortest path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $SP^0[i,j] = W[i,j]$
 - No intermediate vertices, shortest path is weight of direct edge
 - Assume $W[i,j] = \infty$ if $(i,j) \notin E$
- $SP^{k+1}[i,j]$ is the minimum of
 - $SP^k[i,j]$ Shortest path using only $\{0,1,\ldots,k-1\}$
 - $SP^k[i, k] + SP^k[k, j]$ Combine shortest path from i to k and k to j
- $SP^n[i,j] = 1$ is the length of the shortest path overall from i to j
 - Intermediate vertices lie in $\{0, 1, ..., n-1\}$

SP^0	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^0	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^1	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^1	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^1	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	8	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	8	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^2	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^2	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^2	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	8	∞	∞	8	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	8	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^3	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	-1	-2	-1	∞	1	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^7	0	1	2	3	4	5	6	7
0	∞	10	10	11	14	12	∞	8
1	∞	1	0	1	4	2	∞	∞
2	∞	1	1	1	4	3	∞	∞
3	∞	1	0	1	3	2	∞	∞
4	∞	-2	-3	-2	1	-1	∞	∞
5	∞	-1	-2	-1	2	1	∞	∞
6	∞	-4	-4	-3	0	-2	∞	∞
7	∞	-3	-3	-2	1	-1	1	∞

SP^7	0	1	2	3	4	5	6	7
0	∞	10	10	11	14	12	∞	8
1	∞	1	0	1	4	2	∞	∞
2	∞	1	1	1	4	3	∞	∞
3	∞	1	0	1	3	2	∞	∞
4	∞	-2	-3	-2	1	-1	∞	∞
5	∞	-1	-2	-1	2	1	∞	∞
6	∞	-4	-4	-3	0	-2	∞	∞
7	∞	-3	-3	-2	1	-1	1	∞

SP^8	0	1	2	3	4	5	6	7
0	∞	5	5	6	9	7	9	8
1	∞	1	0	1	4	2	∞	∞
2	∞	1	1	1	4	3	∞	∞
3	∞	1	0	1	3	2	∞	∞
4	∞	-2	-3	-2	1	-1	∞	∞
5	∞	-1	-2	-1	2	1	∞	∞
6	∞	-4	-4	-3	0	-2	∞	∞
7	∞	-3	-3	-2	1	-1	1	∞

SP ⁸	0	1	2	3	4	5	6	7
0	∞	5	5	6	9	7	9	8
1	∞	1	0	1	4	2	∞	∞
2	∞	1	1	1	4	3	∞	∞
3	∞	1	0	1	3	2	∞	∞
4	∞	-2	-3	-2	1	-1	∞	∞
5	∞	-1	-2	-1	2	1	∞	∞
6	∞	-4	-4	-3	0	-2	∞	∞
7	∞	-3	-3	-2	1	-1	1	∞

■ Shortest path matrix *SP* is $n \times n \times (n+1)$

```
def floydwarshall(WMat):
 (rows,cols,x) = WMat.shape
 infinity = np.max(WMat)*rows*rows+1
SP = np.zeros(shape=(rows,cols,cols+1))
for i in range(rows):
  for j in range(cols):
     SP[i,j,0] = infinity
for i in range(rows):
  for i in range(cols):
     if WMat[i,j,0] == 1:
       SP[i,j,0] = WMat[i,j,1]
for k in range(1,cols+1):
  for i in range(rows):
     for j in range(cols):
       SP[i,j,k] = min(SP[i,j,k-1],
                       SP[i,k-1,k-1]+SP[k-1,j,k-1])
return(SP[:,:,cols])
```

- Shortest path matrix *SP* is $n \times n \times (n+1)$
- Initialize SP[i,j,0] to edge weight W(i,j), or ∞ if no edge

```
def floydwarshall(WMat):
 (rows,cols,x) = WMat.shape
 infinity = np.max(WMat)*rows*rows+1
SP = np.zeros(shape=(rows,cols,cols+1))
for i in range(rows):
   for j in range(cols):
     SP[i,j,0] = infinity
for i in range(rows):
  for i in range(cols):
     if WMat[i,j,0] == 1:
       SP[i,j,0] = WMat[i,j,1]
for k in range(1,cols+1):
  for i in range(rows):
     for j in range(cols):
       SP[i,j,k] = min(SP[i,j,k-1],
                       SP[i,k-1,k-1]+SP[k-1,j,k-1])
return(SP[:,:,cols])
```

- Shortest path matrix SP is $n \times n \times (n+1)$
- Initialize SP[i,j,0] to edge weight W(i,j), or ∞ if no edge
- Update SP[i,j,k] from SP[i,j,k-1] using the Floyd-Warshall update rule

```
def floydwarshall(WMat):
 (rows,cols,x) = WMat.shape
 infinity = np.max(WMat)*rows*rows+1
 SP = np.zeros(shape=(rows,cols,cols+1))
for i in range(rows):
   for j in range(cols):
     SP[i,j,0] = infinity
for i in range(rows):
  for i in range(cols):
     if WMat[i,j,0] == 1:
       SP[i,j,0] = WMat[i,j,1]
for k in range(1,cols+1):
  for i in range(rows):
     for j in range(cols):
       SP[i,j,k] = min(SP[i,j,k-1],
                       SP[i,k-1,k-1]+SP[k-1,j,k-1])
return(SP[:,:,cols])
```

- Shortest path matrix *SP* is $n \times n \times (n+1)$
- Initialize SP[i, j, 0] to edge weight W(i, j), or ∞ if no edge
- Update SP[i, j, k] from SP[i, j, k-1] using the Flovd-Warshall update rule
- Time complexity is $O(n^3)$

```
def floydwarshall(WMat):
 (rows,cols,x) = WMat.shape
 infinity = np.max(WMat)*rows*rows+1
 SP = np.zeros(shape=(rows,cols,cols+1))
for i in range(rows):
   for j in range(cols):
     SP[i,j,0] = infinity
for i in range(rows):
  for i in range(cols):
     if WMat[i,j,0] == 1:
       SP[i,j,0] = WMat[i,j,1]
for k in range(1,cols+1):
  for i in range(rows):
     for j in range(cols):
       SP[i,j,k] = min(SP[i,j,k-1],
                       SP[i,k-1,k-1]+SP[k-1,j,k-1])
return(SP[:,:,cols])
```

- Shortest path matrix SP is $n \times n \times (n+1)$
- Initialize SP[i,j,0] to edge weight W(i,j), or ∞ if no edge
- Update SP[i,j,k] from SP[i,j,k-1] using the Floyd-Warshall update rule
- Time complexity is $O(n^3)$
- We only need SP[i,j,k-1] to compute SP[i,j,k]

```
def floydwarshall(WMat):
 (rows,cols,x) = WMat.shape
 infinity = np.max(WMat)*rows*rows+1
 SP = np.zeros(shape=(rows,cols,cols+1))
for i in range(rows):
   for j in range(cols):
     SP[i,j,0] = infinity
for i in range(rows):
  for i in range(cols):
     if WMat[i,j,0] == 1:
       SP[i,j,0] = WMat[i,j,1]
for k in range(1,cols+1):
  for i in range(rows):
     for j in range(cols):
       SP[i,j,k] = min(SP[i,j,k-1],
                       SP[i,k-1,k-1]+SP[k-1,j,k-1])
return(SP[:,:,cols])
```

- Shortest path matrix SP is $n \times n \times (n+1)$
- Initialize SP[i,j,0] to edge weight W(i,j), or ∞ if no edge
- Update SP[i,j,k] from SP[i,j,k-1] using the Floyd-Warshall update rule
- Time complexity is $O(n^3)$
- We only need SP[i,j,k-1] to compute SP[i,j,k]
- Maintain two "slices" SP[i,j], SP'[i,j], compute SP' from SP, copy SP' to SP, save space

```
def floydwarshall(WMat):
 (rows,cols,x) = WMat.shape
 infinity = np.max(WMat)*rows*rows+1
 SP = np.zeros(shape=(rows,cols,cols+1))
for i in range(rows):
   for j in range(cols):
     SP[i,j,0] = infinity
for i in range(rows):
  for i in range(cols):
     if WMat[i,j,0] == 1:
       SP[i,j,0] = WMat[i,j,1]
for k in range(1,cols+1):
  for i in range(rows):
     for j in range(cols):
       SP[i,j,k] = min(SP[i,j,k-1],
                       SP[i,k-1,k-1]+SP[k-1,j,k-1])
return(SP[:,:,cols])
```

Summary

- Warshall's algorithm is an alternative way to compute transitive closure
 - $B^k[i,j] = 1$ if we can reach j from i using vertices in $\{0,1,\ldots,k-1\}$
- Adapt Warshall's algorithm to compute all pairs shortest paths
 - $SP^k[i,j]$ is the length of the shorest path from i to j using vertices in $\{0,1,\ldots,k-1\}$
 - $SP^n[i,j]$ is the length of the overall shorest path
 - Floyd-Warshall algorithm
- Works with negative edge weights, assuming no negative cycles
- Simple nested loop implementation, time $O(n^3)$
- Space can be limited to $O(n^2)$ by reusing two "slices" SP and SP'