Travaux Pratiques : Filtrage, Convolution et Analyse Spectrale

Contexte et objectif du TP/TEA

Dans ce TP, vous découvrirez comment appliquer des **filtres passe-bas** à des signaux en utilisant la **convolution** et comment analyser leur comportement en fréquence avec la **transformée de Fourier (FFT)**. Vous devrez compléter certains segments de code, effectuer des expérimentations et répondre à des questions de réflexion.

Étape 1: Introduction à la convolution

La **convolution** est utilisée pour appliquer un filtre à un signal. Cela permet, par exemple, de **lisser** un signal ou de **filtrer** des fréquences indésirables.

Instructions

- 1 Créez un signal tabx et un filtre passe-bas tabh.
- 2 Utilisez la fonction **convolution** pour filtrer le signal.
- 3 Tracez les graphiques du signal d'origine, du filtre, et du signal convolué.

```
% Signal discret
tabx = [1 1 1 1 2 2 2 2 1 1 1 1];

% Filtre passe-bas (à compléter)
tabh = _____;

% Convolution (à compléter)
tabz = _____;

% Affichage
figure(1);
subplot(3,1,1)
stem(tabtempx)
axis([0 length(tabtempx) 0 3])

subplot(3,1,2)
stem(tabh)
axis([0 length(tabtempx) 0 3])
```

subplot(3,1,3) stem(tabz)

Questions à répondre

- 4 Complétez le filtre tabh avec une moyenne sur 3 points.
- 5 Complétez la ligne de convolution pour obtenir le signal filtré.
- 6 Que se passe-t-il lorsque vous appliquez un filtre passe-bas sur ce signal?

Étape 2 : Filtrage d'un signal sinusoïdal

Le filtrage passe-bas atténue les hautes fréquences tout en préservant les basses fréquences. C'est utile pour éliminer les **composantes bruitées** d'un signal.

Instructions

- 7 Créez un signal sinusoïdal.
- 8 Définissez un filtre passe-bas de longueur N = 11.
- 9 Appliquez la convolution entre le signal sinusoïdal et le filtre.

```
% Paramètres du signal sinusoïdal
f = 100; % Fréquence du signal
fe = 1000; % Fréquence d'échantillonnage
te = 1/fe; % Période d'échantillonnage
t = 0:te:1; % Intervalle de temps
% Génération du signal sinusoïdal (à compléter)
tabx = ;
% Filtre passe-bas de longueur 11 (à compléter)
N = 11;
tabh = _____;
% Convolution (à compléter)
tabz = ;
% Affichage
figure;
subplot(3,1,1);
plot(t, tabx);
title('Signal sinusoïdal tabx');
subplot(3,1,2);
plot(tabh);
title('Filtre passe-bas tabh');
subplot(3,1,3);
plot(t, tabz(1:length(t)));
title('Signal filtré tabz');
```

- Complétez la génération du signal sinusoïdal (sin (2*pi*f*t)).
- 11 Remplissez le filtre passe-bas avec une moyenne sur 11 points.
- 12 Que remarquez-vous après filtrage du signal sinusoïdal?

Étape 3 : Filtrage d'un signal à deux fréquences

Capsule théorique

Un signal peut contenir plusieurs fréquences. Un filtre passe-bas permet de conserver les fréquences basses et d'atténuer les fréquences élevées.

Instructions

- 13 Créez un signal avec deux fréquences : f1 = 50 Hz et f2 = 300 Hz.
- Filtrez ce signal avec un filtre passe-bas de longueur N = 7.

```
% Fréquences du signal f1 = 50; f2 = 300;
% Génération du signal à deux fréquences (à compléter) tabx = _____;
% Filtre passe-bas de longueur 7 (à compléter) N = 7; tabh = _____;
```

```
% Convolution (à compléter)
tabz = ____;

% Affichage
figure;
subplot(3,1,1);
plot(t, tabx);
title('Signal à deux fréquences tabx');

subplot(3,1,2);
plot(tabh);
title('Filtre passe-bas tabh');

subplot(3,1,3);
plot(t, tabz(1:length(t)));
title('Signal filtré tabz');
```

- Complétez le signal en combinant deux sinusoïdes (sin (2*pi*f1*t) + sin (2*pi*f2*t)).
- 16 Comment le filtrage modifie-t-il les composantes fréquentielles du signal ?

Étape 4 : Ajout de bruit et filtrage

Capsule théorique

Dans la pratique, les signaux sont souvent **bruités**. Le filtrage passe-bas aide à éliminer les **hautes fréquences** indésirables liées au bruit.

Instructions

- 17 Créez un signal à deux fréquences (f1 = 50 Hz et f2 = 300 Hz) et ajoutez du **bruit blanc**.
- Filtrez ce signal avec un filtre passe-bas de longueur N = 7.

```
% Génération du signal à deux fréquences sans bruit
tabxsansbruit = sin(2*pi*f1*t) + sin(2*pi*f2*t);
% Ajout de bruit blanc (à compléter)
tabx = ;
% Filtre passe-bas (à compléter)
tabh = ;
% Convolution (à compléter)
tabz = ;
% Affichage
figure;
subplot(3,1,1);
plot(t, tabx);
title('Signal bruité tabx');
subplot(3,1,2);
plot(tabh);
title('Filtre passe-bas tabh');
subplot(3,1,3);
plot(t, tabz(1:length(t)));
title('Signal filtré tabz');
```

- Complétez la ligne ajoutant du bruit au signal avec tabx = tabxsansbruit + 0.3*randn(1,length(t)).
- 20 Quelle est l'influence du filtrage sur le bruit ?

Étape 5 : Analyse spectrale avec la FFT

Capsule théorique

La **Transformée de Fourier (FFT)** permet de visualiser un signal dans le **domaine fréquentiel**, révélant ses composantes en fréquences. La **FFT** est utilisée pour analyser les effets du filtrage sur un signal.

Instructions

- 21 Calculez la **FFT** du signal sans bruit.
- 22 Calculez la **FFT** du signal filtré.
- 23 Tracez les spectres d'amplitude.

Code à compléter

```
% FFT du signal sans bruit (à compléter)
X = ;
% Affichage du spectre du signal sans bruit
figure;
fp = (0:Nx-1)/Nx/te; fp = fp - 1/2/te;
stem(fp, fftshift(abs(X)));
axis([-1/(2*te) 1/(2*te) 0 max(abs(X))]);
xlabel('Fréquence (Hz)');
ylabel('Amplitude du spectre');
title('Spectre du signal sans bruit');
% FFT du signal filtré (à compléter)
Z = ;
% Affichage du spectre du signal filtré
figure;
fp = (0:Nz-1)/Nz/te; fp = fp - 1/2/te;
stem(fp, fftshift(abs(Z)));
axis([-1/(2*te) 1/(2*te) 0 max(abs(Z))]);
xlabel('Fréquence (Hz)');
ylabel('Amplitude du spectre');
title('Spectre du signal filtré');
```

- 24 Complétez les lignes pour la FFT (fft (tabxsansbruit) et fft (tabz)).
- 25 Quelles fréquences sont atténuées après filtrage?

Conclusion et discussion

En complétant ce TP, vous aurez expérimenté avec la **convolution**, les **filtres passe-bas**, et la **FFT** pour analyser les signaux. Vous avez vu comment ces techniques permettent de traiter un signal en réduisant le bruit et en observant les effets dans le domaine fréquentiel.

Résumé des parties à compléter

- **Étape 1**: Compléter la définition du filtre et la convolution.
- **Étape 2** : Générer un signal sinusoïdal et appliquer la convolution.
- 28 Étape 3 : Créer un signal à deux fréquences et appliquer un filtre.
- 29 Étape 4 : Ajouter du bruit à un signal et le filtrer.
- 30 Étape 5 : Calculer la FFT des signaux et analyser leurs spectres

