Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технический университет им. Н.Э. Баумана Факультет «Фундаментальные науки»

Лабораторная работа №9 по курсу «Вычислительная физика» Тема: «Многошаговые численные методы решения задачи Коши»

Вариант 6

Выполнили: студенты группы ФН4-72Б

Хижик А.И., Мистрюкова Л.А.

Проверил: доцент, к.физ.-мат.н.

Хасаншин Р.Х.

Оглавление

1.	Теоретическая часть		3
	1.1.	Введение	3
	1.2.	Построение разностной схемы методом неопределённых коэффициентов	3
	1.3.	Сходимость k -шаговых методов	4
	1.4.	Построение разностных методов с помощью интерполяционных многочленов	4
	1.5.	Схема предиктор-корректор	6
2.	Постан	новка задачи	8
3.	Програ	амма	9
4.	Резуль	таты вычислений	11
	4.1.	Задание А	11
	4.2.	Задание Б	12
5.	Вывол		13

1. Теоретическая часть

1.1. Введение

Рассмотрим задачу Коши для ДУ

$$u' = f(x, u(x)), \ x \in [a, b],$$
 (1)

с начальным условием

$$u(a) = u_0. (2)$$

Введем на [a,b] равномерную сетку $\omega_h = \{x_n = a + nh, n = \overline{0,N_h}\}, N_h = \frac{b-a}{h}$.

В общем случае для решения задачи (1-2) рассматривают функцию

$$u_{n+k} = F(f; x_{n+k}, \dots, x_n; u_{n+k}, \dots, u_n).$$
 (3)

В методах типа (3) для нахождения значения сеточной функции в новой узловой точке необходимо знать ее значение в k предшествующих узловых точках. Такие методы называется k-шаговыми.

Из класса методов (3) выделим класс линейных многошаговых методов (ЛММ):

$$\sum_{i=0}^{k} \alpha_i u_{n+i} = h \sum_{i=0}^{k} \beta_i f(x_{n+i}, u_{n+i}), \tag{4}$$

здесь α_i и β_i - постоянные, $\alpha_k \neq 0$, $|\alpha_0| + |\beta_0| \neq 0$. При $\beta_k = 0$ метод называется явным линейным k-шаговым, в случае $\beta_k \neq 0$ метод называется неявным линейным k-шаговым.

Область решения (4) зависит от k параметров. Для выделения единственного решения на сеточную функцию накладываются дополнительные условия:

$$u_0 = g_0, \dots, u_{k-1} = g_{k-1}. \tag{5}$$

При n=0 совместное решение (4-5) позволяет найти значение сеточной функции u_k в точке x_k . Используя $g_1, \ldots, g_{k-1}, u_k$ при n=1 из (4-5) можно найти u_{k+1} и так далее.

1.2. Построение разностной схемы методом неопределённых коэффициентов

Коэффициенты α_i и β_i выбирают так, чтобы невязка, получающаяся при подстановке точного решения в разностное уравнение (4) была порядка $O(h^{s+1})$, т.е.

$$\rho_{s+1} = \sum_{i=0}^{k} \alpha_i u(x_{n+i}) - h \sum_{i=0}^{k} \beta_i f(x_{n+i}, u(x_{n+i})) = O(h^{s+1}),$$

$$u(x_{n+i}) = \sum_{j=0}^{s+1} \frac{(ih)^j}{j!} u^{(j)}(x_n),$$

$$u'(x_{n+i}) = \sum_{i=0}^{s} \frac{(ih)^j}{j!} u^{(j+1)}(x_n).$$

Подставив эти разложения в выражение для невязки, получим ее разложение по степеням h:

$$\rho_{s+1} = \left(\sum_{i=0}^{k} \alpha_i\right) u(x_n) + h\left(\sum_{i=1}^{k} i\alpha_i - \sum_{i=0}^{k} \beta_i\right) u'(x_n) + \dots + \frac{h^s}{s!} \left(\sum_{i=1}^{k} i^s \alpha_i - s \sum_{i=1}^{k} i^{s-1} \beta_i\right) u^{(s)} + O(h^{s+1}),$$

$$\begin{cases} \sum_{i=0}^{k} \alpha_i = 0, \\ \sum_{i=1}^{k} i\alpha_i - \sum_{i=0}^{k} \beta_i = 0, \\ \dots \\ \sum_{i=1}^{k} i^s \alpha_i - s \sum_{i=1}^{k} i^{s+1} \beta_i = 0. \end{cases}$$

s – степень разностного уравнения (4), зависит только от коэффициентов α_i , β_i и никак не зависит от исходного уравнения (1).

Для того, чтобы решение (4) не изменялось при умножении на константу, вводят условия нормировки

$$\alpha_k = 1, \tag{6}$$

$$\sum_{i=0}^{k} \beta_i = 1. \tag{7}$$

Определив α_i и β_i из (6), построим разностную схему нужного нам порядка. Многомерная схема сходится, если $\max_{k \le n \le N_h} |u(x_n) - u_n| \to 0$ при $h \to 0$ и $\max_{0 \le n \le k-1} |u(x_n) - u_n| \to 0$. Для сходимости схемы необходимо, чтобы она была аппроксимирующей и устойчивой.

1.3. Сходимость k-шаговых методов

Рассмотрим характеристический многочлен (4):

$$V(z) = \sum_{i=0}^{k} \alpha_i z^i,$$

Среди методов (4) необходимо отбросить те, характеристический многочлен которых имеет корни z > 1 либо кратные корни равные нулю.

Для устойчивой схемы корень z=1 – главный, остальные – посторонние. Если все посторонние корни находятся внутри единичного круга с центром в нуле, то схема сильно устойчивая. Если некоторые посторонние корни находятся внутри единичного круга, то схема слабо устойчива.

1.4. Построение разностных методов с помощью интерполяционных многочленов

Широкое распространение получили явные и неявные схемы Адамса:

• Явная схема Адамса

$$u_{n+1} - u_n = h \sum_{i=0}^{n} B_{ki} f(x_{n-i}, u_{n-i});$$
(8)

• Неявная схема Адамса

$$u_{n+1} - u_n = h \sum_{i=0}^{k} b_{ki} f(x_{n+1-i}, u_{n+1-i}).$$
(9)

k-шаговые методы могут быть получены не только из дифференциальных уравнений, но и из следующих интегральных соотношение

$$\int_{x_n}^{x_{n+1}} du = u_{n+1} - u_n = \int_{x_n}^{x_{n+1}} u'(x) dx = \int_{x_n}^{x_{n+1}} f(x, u(x)) dx.$$
 (10)

ИП Лагранжа

Рассмотрим правую часть уравнения (1) как функцию одного аргумента x, аппроксимируем её с помощью ИП Лагранжа в узловых точках $x_m, m = \overline{n-k}, n,$

$$u'(x) = L_{nk}(x) + r_{nk}(x) = \sum_{i=0}^{k} f(x_{n-i}, u(x_{n+i})) l_{ki}(x) + \frac{u^{(k+2)}(\xi(x))}{(k+1)!} \prod_{m=n-k}^{n} (x - x_m),$$

$$l_{ki} = \prod_{m=n-k, m \neq n-k} \frac{x - x_m}{x_{n-i} - x_m},$$

$$u(x_{n+1}) - u(x_n) = h \sum_{i=0}^{k} B_{ki} f(x_{n-i}, u(x_{n-i})) + \rho_{n+1},$$

$$B_{ki} = \frac{1}{h} \int_{x_n}^{x_{n+1}} l_{ki}(x) dx = \frac{(-1)^i}{i!(k-i)!} \int_0^1 \frac{t(t+1) \dots (t+k-1)}{t+i} dt,$$

$$\rho_{n+1} = \int_{x_n}^{x_{n+1}} \frac{u^{(k+2)}(\xi(x))}{(k+1)!} \prod_{m=n-k}^{n} (x - x_m) dx = O(h^{k+2}).$$

$$(11)$$

Аналог явной схемы Адамса:

$$u(x_{n+1}) - u(x_n) = h \sum_{i=0}^{k} B_{ki} f(x_{n-i}, u_{n-i}).$$
(12)

(13)

Для построения неявной схемы Адамса рассмотрим узловые точки $x_m, m = \overline{n-k+1, n+1}$ и представим производные с помощью ИП Лагранжа:

$$u'(x) = \sum_{i=0}^{k} f(x_{n-i+1}, u(x_{n-i+1})) l_{k+i}(x) + \frac{u^{(k+2)}(\xi(x))}{(k+1)!} \prod_{m=n-k+1}^{n+1} (x - x_m),$$

$$u(x_{n+1}) - u(x_n) = h \sum_{i=0}^{k} b_{ki} f(x_{n-i+1}, u(x_{n-i+1})) + \rho_{n+1},$$

$$b_{ki} = \frac{1}{h} \int_{x_i}^{x_{i+1}} l_{ki} dx = \frac{(-1)^i}{i!(k-i)!} \int_0^1 \frac{(t-1)t \dots (t+k-2)}{t+i-1} dt,$$

$$\rho_{n+1} = O(h^{k+2}),$$

$$u_{n+1} - u_n = h \sum_{i=0}^{n} b_{ki} f(x_{n-i+1}, u_{n-i+1}).$$
(13)

ИП Ньютона

Рассмотрим аппроксимацию правой части уравнения (1) с помощью ИП Ньютона для аппроксимации назад в узловых точках $\{x_m\},\ m=\overline{n-k,n},\ \frac{x-x_h}{h}=t,\ dx=hdt,$

$$P_{nk}(x) = P_{nk}(x_n + th) = \sum_{i=0}^k \frac{\Delta^i t_{n-i}}{i!} t \dots (t+i-1) + R_{kn}(x),$$
$$u'(x) = P_{nk}(x_n + th) + R_{kn}(x),$$

$$u(x_{n+1}) - u(x_n) = h \sum_{i=1}^{n} \gamma_i \Delta^i f_{n-i} + \rho_{n+1},$$

$$\gamma_i = \frac{1}{i!} \int_{x_i}^{x_{i+1}} t \dots (t+i-1) dt.$$
(14)

Явная разностная схема Адамса: $u_{n+1} - u_n = h \sum_{i=0}^k \gamma_i \Delta^i f_{n-i}$,

$$P_{nk} = \sum_{i=0}^{k} \frac{\Delta^{i} f_{n-i+1}}{i!} (t-1) \dots (t+i-2),$$

$$u'(x) = P_{nk}(x_{n} + th) + R_{nk}(x),$$

$$u(x_{n+1}) - u(x_n) = h \sum_{i=0}^{k} \gamma_i \Delta^i f_{n-i+1} + \rho_{n+1},$$

$$u_{n+1} - u_n = h \sum_{i=0}^{k} \overline{\gamma}_i \Delta^i f_{n-i+1},$$

$$\overline{\gamma}_i = \frac{1}{i!} \int_{x_n}^{x_{n+1}} (t-1) \dots (t+i-2) dt.$$
(15)

1.5. Схема предиктор-корректор

Метод прогноза и коррекции (предиктор-корректор) – семейство многошаговых методов, которые используют неявные схемы.

Суть этих методов состоит в следующем. На каждом шаге вводится два этапа, использующих многошаговые методы: с помощью явного метода (предиктора) по известным значениям функции в предыдущих узлах находится начальное приближение $u_{n+1}=u_{n+1}^0$ в новом узле; используя неявный метод (корректор), в результате итераций находится приближения $u_{n+1}^1, u_{n+1}^2, \ldots$ Итерационный процесс продолжается пока не выполнится неравенство $|u_{n+1}^k-u_{n+1}^{k-1}|<\varepsilon$, где ε заданная точность вычислений.

Один из вариантов метода прогноза и коррекции может быть получен на основе метода Адамса четвёртого порядка имеющего вид следующих разностных соотношений: на этапе предиктора

$$u_{n+1} = u_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}), \tag{16}$$

на этапе корректора

$$u_{n+1} = u_n + \frac{h}{24}(9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2}). \tag{17}$$

Явная схема используется на каждом этапе один раз (16), а с помощью неявной схемы строится итерационный процесс вычисления u_{n+1} , поскольку это значение входит и в правую часть (17).

В этих формулах, как и в случае метода Адамса, при вычислении u_{n+1} необходимы значения сеточной функции в четырёх предыдущих узлах: $u_n, u_{n-1}, u_{n-2}, u_{n-3}$. Следовательно, расчёт по этому методу может быть начат только со значения u_4 . Необходимые при этом u_1, u_2, u_3 находятся по методу Рунге-Кутта, u_0 задаётся начальным условием. Эта характерная особенность многошаговых методов.

2. Постановка задачи

- Решить задачу Коши для ОДУ $u' = (2-u)\tan(x), \ u(0) = -1, \ x \in [0,1]$ методом предиктор-корректор.
- ullet Вычислить $B_{ki},\,b_{ki},\,\gamma_i,\,\overline{\gamma}_i$ для значений $k,i=\overline{0,7}$

3. Программа

Задание А

```
#include <iostream>
#include <cmath>
using std::cout;
using std::cin;
using std::endl;
double a = 0, b = 1, u_zero = -1;
int N = 50;
int NR = 3;
double eps = 1E-1;
double h = (b-a) / N;
double fun(double x, double u);
void pred cor(double* x. double* u. int i);
int main() {
   double *u = new double[N+1];
    double *x = new double[N+1];
   u[0] = u_zero;
   x[N] = b;
    double *k0 = new double[NR];
    double *k1 = new double[NR];
    double *k2 = new double[NR];
    double *k3 = new double[NR];
    int i:
    for(i=0; i<=N; i++){
       x[i] = a + i*h;
    // Runge_Kutta
    cout << "Runge_Kutta" << endl;</pre>
    for(i=0; i <= NR; i++){
        k0[i] = fun(x[i], u[i]);
        k1[i] = fun(x[i] + h / 2, u[i] + h * k0[i] / 2);
        k2[i] = fun(x[i] + h / 2, u[i] + h * k1[i] / 2);
        k3[i] = fun(x[i] + h, u[i] + h * k2[i]);
         u[i+1] = u[i] + h * (ko[i] + 2 * k1[i] + 2 * k2[i] + k3[i]) / 6;   cout << "{"} << i << ", " << x[i] << ", " << u[i] << "}," << end1; 
    }
    pred_cor(x, u, i);
    return 0;
void pred_cor(double* x, double* u, int i){
    double u_cor;
    for(i = NR; i<=N; i++){
        u[i+1] = u[i] + h*(55*fun(x[i],u[i]) - 59*fun(x[i-1],u[i-1]) + 37*fun(x[i-2],u[i-2]) - 9*fun(x[i-3],u[i-3])) / 24;
            u[i+1] = u[i] + h * (9*fun(x[i+1], u_cor) + 19 * fun(x[i], u[i]) - 5*fun(x[i-1], u[i-1]) + fun(x[i-2], u[i-2])) / 24;
        } while(eps <= abs(u[i+1]-u_cor));</pre>
        cout << "{" << i << ", " << x[i] << ", " << u[i] << "}," << endl;
   }
double fun(double x, double u){
   return (2-u) * tan(x);
Задание Б
#include <iostream>
#include <cmath>
using namespace std;
int fact(int n);
class Integrate{
private:
    int i_val, k_val, scenario;
    double left_bound, right_bound;
public:
    Integrate(int p1, int p2, int t, double 1, double r){
        k_val = p1;
        i_val = p2;
        scenario = t;
        left_bound = 1;
```

```
right bound = r:
   }
    double Simpson(double n2);
   double Richardson();
    double Function(double t);
   double Function1(double t):
   double Function2(double t);
int main() {
   for(int k = 0; k \le 7; k++){
       for(auto i = 0; i <= k; i++) {
          Integrate tmp(k, i, 1, 0.0, 1);
           cout << "{" << k << ", " << i << ", " << (pow(-1, i)/(1.0*fact(i)*fact(k - i))) * tmp.Richardson() << "}, ";
       cout << endl;</pre>
    }
    for(int k = 0; k \le 7; k++){
       for(auto i = 0: i <= k: i++) {
          Integrate tmp(k, i, 2, 0.0, 1);
           cout << endl;
    }
    for(int k = 0; k \le 7; k++){
       Integrate tmp(k, 1, 3, 0.0, 1.0);
       cout << "{" << k << ", " << (1/(fact(k)*1.0)) * tmp.Richardson() << "}, " << endl;
    for(int k = 0; k \le 7; k++){
       Integrate tmp(k, 1, 4, 0.0, 1.0);
       cout << "{" << k << ", " << (1/(fact(k)*1.0)) * tmp.Richardson() << "}, " << endl;</pre>
   }
   return 0:
}
int fact(int n) {
   if ((n==0)||(n==1)){return 1;}
    else {return n*fact(n-1);}
double Integrate::Function(double x){
   return Function1(x) * ((scenario == 1) or (scenario == 2)) + Function2(x) * ((scenario == 3) or (scenario == 4));
double Integrate::Function1(double x){
    double answ = 1;
    if ((x + i_val - 1 * (scenario == 2)) == 0.0)
       return 1;
       for(int t = 0; t <= k_val; t++){answ *= (x + t - 1 * (scenario == 2));};
   return answ/(x + i_val - 1 * (scenario == 2));
double Integrate::Function2(double x){
   double answ = 1;
   for(int t = 0; t <= k_val - 1; t++){answ *= (x + t - 1 * (scenario == 4));};
   return answ;
double Integrate::Simpson(double n2){
    int n1 = n2 * 2;
   double data_x[n1 + 1], I = 0;
   for (int i = 0; i < n1 + 1; i++){
      data_x[i] = left_bound + i * (right_bound - left_bound) / (double)(n1);
    double h = (data_x[1] - data_x[0]) * 1.0;
   for (int i = 0; i < n1 / 2; i++){
      I += Function(data_x[2*i]) + 4 * Function(data_x[2*i + 1]) + Function(data_x[2*i + 2]);
   };
   return I * h / 3.0;
double Integrate::Richardson(){
    double r1 = Simpson(1000);
    double r2 = Simpson(1500);
   double r3 = Simpson(2000);
    int p = log2((r3 - r2) / (r2 - r1));
    return 1.0*((2 ^ p)*r1 - r2) / ((2 ^ p) - 1);
```

4. Результаты вычислений

4.1. Задание А

Рис. 1. Решение задачи Коши для ОДУ $u'=(2-u)\tan(x),$ u(0)=-1, $x\in[0,1]$ методом предиктор-корректор при а) N=10, b) N=50, c) N=100 для $\varepsilon=10^{-1},$ $10^{-2},$ 10^{-3}

4.2. Задание Б

Значения B_{ki} для $k,i=\overline{0,7}$

$$\begin{split} B_{0,0} &= 1 \\ B_{1,0} &= \frac{3}{2}, B_{1,1} = -\frac{1}{2} \\ B_{2,0} &= \frac{23}{12}, B_{2,1} = -\frac{4}{3}, B_{2,2} = \frac{5}{12} \\ B_{3,0} &= \frac{55}{24}, B_{3,1} = -\frac{59}{24}, B_{3,2} = \frac{37}{24}, B_{3,3} = -\frac{3}{8} \\ B_{4,0} &= \frac{1901}{720}, B_{4,1} = -\frac{1387}{360}, B_{4,2} = \frac{109}{30}, B_{4,3} = -\frac{637}{360}, B_{4,4} = \frac{251}{720} \\ B_{5,0} &= \frac{4277}{1440}, B_{5,1} = -\frac{2641}{480}, B_{5,2} = \frac{4991}{720}, B_{5,3} = -\frac{3649}{720}, B_{5,4} = \frac{959}{480}, B_{5,5} = -\frac{95}{288} \\ B_{6,0} &= \frac{198721}{60480}, B_{6,1} = -\frac{18637}{2520}, B_{6,2} = \frac{235183}{20160}, B_{6,3} = -\frac{10754}{945}, B_{6,4} = \frac{135713}{20160}, B_{6,5} = -\frac{5603}{2520}, B_{6,6} = \frac{19087}{60480}, B_{7,0} = \frac{16083}{4480}, B_{7,1} = -\frac{1152169}{120960}, B_{7,2} = \frac{242653}{13440}, B_{7,3} = -\frac{296053}{13440}, B_{7,4} = \frac{2102243}{120960}, B_{7,5} = -\frac{115747}{13440}, B_{7,6} = \frac{32653}{13440}, B_{7,7} = -\frac{5257}{17280} \end{split}$$

Значения b_{ki} для $k, i = \overline{0,7}$

$$\begin{array}{l} b_{0,0}=1\\ b_{1,0}=\frac{1}{2},b_{1,1}=\frac{1}{2}\\ b_{2,0}=\frac{5}{12},b_{2,1}=\frac{2}{3},b_{2,2}=-\frac{1}{12}\\ b_{3,0}=\frac{3}{8},b_{3,1}=\frac{19}{24},b_{3,2}=-\frac{5}{24},b_{3,3}=\frac{1}{24}\\ b_{4,0}=\frac{251}{720},b_{4,1}=\frac{323}{360},b_{4,2}=-\frac{11}{30},b_{4,3}=\frac{53}{360},b_{4,4}=-\frac{19}{720}\\ b_{5,0}=\frac{95}{288},b_{5,1}=\frac{1427}{1440},b_{5,2}=-\frac{133}{240},b_{5,3}=\frac{241}{720},b_{5,4}=-\frac{173}{1440},b_{5,5}=\frac{3}{160}\\ b_{6,0}=\frac{19087}{60480},b_{6,1}=\frac{2713}{2520},b_{6,2}=-\frac{15487}{20160},b_{6,3}=\frac{586}{945},b_{6,4}=-\frac{6737}{20160},b_{6,5}=\frac{263}{2520},b_{6,6}=-\frac{863}{60480}\\ b_{7,0}=\frac{5257}{17280},b_{7,1}=\frac{139849}{120960},b_{7,2}=-\frac{4511}{4480},b_{7,3}=\frac{123133}{120960},b_{7,4}=-\frac{88547}{120960},b_{7,5}=\frac{1537}{4480},b_{7,6}=-\frac{11351}{120960},b_{7,7}=\frac{275}{24192} \end{array}$$

Значения γ_i (Explicit formula) и $\overline{\gamma_i}$ (Implicit formula) для $i=\overline{0,7}$

$$\gamma_0 = 1, \gamma_1 = \frac{1}{2}, \gamma_2 = \frac{5}{12}, \gamma_3 = \frac{3}{8}, \gamma_4 = \frac{251}{720}, \gamma_5 = \frac{95}{288}, \gamma_6 = \frac{19087}{60480}, \gamma_7 = \frac{5257}{17280}$$

$$\overline{\gamma_0} = 1, \overline{\gamma_1} = -\frac{1}{2}, \overline{\gamma_2} = -\frac{1}{12}, \overline{\gamma_3} = -\frac{1}{24}, \overline{\gamma_4} = -\frac{19}{720}, \overline{\gamma_5} = -\frac{3}{160}, \overline{\gamma_6} = -\frac{863}{60480}, \overline{\gamma_7} = -\frac{275}{24192}$$

5. Вывод

Методом предиктор-корректор решена задача Коши для ОДУ $u'=(2-u)\tan(x),\ u(0)=-1,$ $x\in[0,1]$. Вычислены коэффициенты $B_{ki},b_{ki},\gamma_i,\overline{\gamma}_i,k,i=\overline{0,7}$ членов ряда разностного уравнения для экстраполяционной и интеполяционной формул Адамса в случае использования интерполяционных многочленов Лагранжа и Ньютона.

Метод предиктор-корректор показал значительно большую точность, чем ранее рассмотренные методы решения дифференциальных уравнений.