

X4-Class Power MOSFET™

IXTK400N15X4 IXTX400N15X4

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T_J = 25°C to 175°C	150	V	
V _{DGR}	T_J = 25°C to 175°C, R_{GS} = 1M Ω	150	V	
V _{GSS}	Continuous	± 20	V	
V _{GSM}	Transient	± 30	V	
I _{D25} I _{L(RMS)}	$T_{\rm C}=25^{\circ}{\rm C}$ (Chip Capability)	400	A	
	External Lead Current Limit	160	A	
	$T_{\rm C}=25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	900	A	
I _A	T _c = 25°C	200	A	
E _{AS}	T _c = 25°C	3	J	
P _D	T _C = 25°C	1500	W	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	50	V/ns	
T _J		-55 +175	°C	
T _{JM}		175	°C	
T _{stg}		-55 +175	°C	
T _L	Maximum Lead Temperature for Soldering 1.6 mm (0.062in.) from Case for 10s	300	°C	
T _{SOLD}		260	°C	
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in	
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb	
Weight	TO-264	10	g	
	PLUS247	6	g	

		cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	150			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 1mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 15$	0°C		25 2	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 100A, Note 1$		2.4	3.1	mΩ

150V 400A $3.1 m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

G = Gate D = Drain S = SourceTab = Drain

Features

- International Standard Packages
- Low Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions		Chai	haracteristic Values		
$(T_J = 25^{\circ}C, U)$	Inless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	100	170	S	
R_{Gi}	Gate Input Resistance		1.2	Ω	
C _{iss}			14.5	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3.1	nF	
C _{rss}			8.0	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\bigvee_{GS} = 0V$		2500	pF	
$C_{o(tr)}$	Time related $\int_{DS} V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		9400	pF	
t _{d(on)}			40	ns	
t,	Resistive Switching Times		22	ns	
t _{d(off)}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		180	ns	
t _f	$R_{\rm G} = 1\Omega$ (External)		8	ns	
Q _{g(on)}			430	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		100	nC	
Q_{gd}			100	nC	
R _{thJC}				0.10 °C/W	
R _{thcs}			0.15	°C/W	

Source-Drain Diode

Symbo	ol Test Conditions (Characteristic Values		
$(T_{J} = 2)$	5°C, Unless Otherwise Specified) Min	n. Typ.	Max.	
Is	$V_{gs} = 0V$		400	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{ m JM}}$		1600	Α
V _{SD}	$I_F = 100A$, $V_{GS} = 0V$, Note 1		1.4	V
t _{rr}	$I_{\rm F} = 150$ A, -di/dt = 100A/ μ s	175		ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	} '	1.1		μC
I _{RM}	$\int V_{R} = 100V, V_{GS} = 0V$	12.3		Α

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ T_J = 25°C 1000 V_{GS} = 10V 9V 900 8V 800 700 Ip - Amperes 600 500 400 300 200 100 5V 2 3 6 0 5 10 V_{DS} - Volts

F: F B N II I 1 1 0004 V I

0

-50

-25

0

50

T_C - Degrees Centigrade

75

100

125

150

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.