APRENDIZAJE PROFUNDO

REDES CONVOLUCIONALES

Gibran Fuentes-Pineda Septiembre 2025

RED NEURONAL CONVOLUCIONAL

- · Compuesta de dos bloques principales
 - 1. Extracción de características: múltiples capas convolucionales y de submuestreo
 - 2. *Clasificación*: Una o más capas completamente conectadas (incluyendo la capa de salida)

ARQUITECTURAS DE REDES CONVOLUCIONALES: LENET

 Red poco profunda inspirada en la propuesta originalmente por LeCun et al. 1998

Imagen tomada de http://deeplearning.net/tutorial/lenet.html

ARQUITECTURAS DE REDES CONVOLUCIONALES: ALEXNET

- · Usa función de activación ReLU
- · Entrenamiento con version optimizada para 2 GPUs
- Normaliza respuestas
- Submuestreo con traslape

Imagen tomada de Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks, 2012

ARQUITECTURAS DE REDES CONVOLUCIONALES: ZFNET

 Muy similar a AlexNet pero usa filtros más pequeños con menor desplazamiento

Imagen tomada de Zeiler and Fergus. Visualizing and Understanding Convolutional Networks, 2014

ARQUITECTURAS DE REDES CONVOLUCIONALES: VGGNET

- · 19 capas
- Filtros de 3×3 con desplazamientos de 1
- Max-pooling de 2 × 2 con desplazamientos de 2

Imagen tomada de diapositivas de Simonyan (ILSVRC Workshop 2014)

ARQUITECTURAS DE REDES CONVOLUCIONALES: GOOGLENET² (1)

- 22 capas¹
- Utiliza bloque de capas convolucionales paralelas cuyas salidas se concatenan

Imagen tomada de Szegedy et al. Going deeper with convolutions, 2014

¹Versiones posteriores fueron más profundas. Por ej. Inception v3 es de 48 capas.

²También conocida como Inception v1

ARQUITECTURAS DE REDES CONVOLUCIONALES: GOOGLENET (2)

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	- 1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		1×1×1000	- 1							1000K	1M
softmax		1×1×1000	0								

Tabla tomada de Szegedy et al. Going deeper with convolutions, 2014

BLOQUES INCEPTION

Imagen tomada de Szegedy et al. Going deeper with convolutions, 2014

ENTRENANDO REDES MÁS PROFUNDAS: RESNET (1)

- Reformula los mapeos que se desean aprender a residuales
- Más fácil de optimizar los residuales que el mapeo original³

Imagen tomada de He et al. Deep Residual Learning for Image Recognition, 2015

³Se ha mostrado que son aproximadores universales: Lin y Jegelka. ResNet with one-neuron hidden layers is a Universal Approximator, 2018.

ENTRENANDO REDES MÁS PROFUNDAS: RESNET (2)

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer					
conv1	112×112	7×7, 64, stride 2									
		3×3 max pool, stride 2									
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $					
conv3_x				$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	Γ 1∨1 128 T	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$					
conv4_x		L	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	[1×1, 1024]	1×1, 1024	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$					
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $					
	1×1	average pool, 1000-d fc, softmax									
FLOPs		1.8×10 ⁹	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹					

Imagen y tabla tomadas de He et al. Deep Residual Learning for Image Recognition, 2015

ENTRENANDO REDES MÁS PROFUNDAS: RESNET (3)

Imagen tomada de diapositivas de Kaiming He (ICML 2016)

ENTRENANDO REDES MÁS PROFUNDAS: DENSENET (1)

 Utiliza bloques que conectan la salida de cada capa con las entradas de capas subsecuentes.

Imagen tomada de Huang et al. Densely Connected Convolutional Networks, 2018

ENTRENANDO REDES MÁS PROFUNDAS: DENSENET (2)

Layers	Output Size	DenseNet- $121(k = 32)$ DenseNet- $169(k = 32)$ DenseNet- $201(k = 32)$ DenseNet- $161(k = 48)$					
Convolution	112 × 112	7 × 7 conv, stride 2					
Pooling	56 × 56	3 × 3 max pool, stride 2					
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$ $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$ $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$ $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$					
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$					
Transition Layer	56 × 56	1 × 1 conv					
(1)	28×28	2×2 average pool, stride 2					
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$					
(2)		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
Transition Layer	28×28	1 × 1 conv					
(2)	14 × 14	2 × 2 average pool, stride 2					
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 24 \end{bmatrix} \times 24 \begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix} \times 32 \begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 48 \end{bmatrix} \times 48 \begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 36 \end{bmatrix} \times 36$					
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 2^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-2} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 10^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \land 3^{-1} \begin{bmatrix} 3$					
Transition Layer	14 × 14	1 × 1 conv					
(3)	7 × 7	2×2 average pool, stride 2					
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 16 \end{bmatrix} \times 16 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 32 \end{bmatrix} \times 32 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 1 \text{ conv} \end{bmatrix} \times 24$					
(4)		$\begin{bmatrix} 1 \times 1 & \text{cont} \\ 3 \times 3 & \text{conv} \end{bmatrix} \times 16 \qquad \begin{bmatrix} 1 \times 1 & \text{cont} \\ 3 \times 3 & \text{conv} \end{bmatrix} \times 32 \qquad \begin{bmatrix} 1 \times 1 & \text{cont} \\ 3 \times 3 & \text{conv} \end{bmatrix} \times 32 \qquad \begin{bmatrix} 1 \times 1 & \text{cont} \\ 3 \times 3 & \text{conv} \end{bmatrix} \times 24$					
Classification	1×1	7 × 7 global average pool					
Layer		1000D fully-connected, softmax					

Imagen y tabla tomadas de Huang et al. Densely Connected Convolutional Networks, 2018