Examples of GLM Logistic regression and Poisson regression

Cathy Maugis-Rabusseau

INSA Toulouse / IMT GMM 116 cathy.maugis@insa-toulouse.fr

2021-2022

- 1 Logistic regression
- 2 Log regression

Outline

- Logistic regression
 - Modeling
 - Odds and odds ratio
 - Simple logistic regression
 - Multiple logistic regression

Outline

- Logistic regression
 - Modeling
 - Odds and odds ratio
 - Simple logistic regression
 - Multiple logistic regression

Context

- A binary response variable Y
- Explanatory variables: $x^{(1)}, \dots, x^{(p)}$
- Example : Credit Card Default

 A simulated data set containing information on n=10000 customers.

 The aim is to predict which customers will default on their credit card debt. We want to explain the binary variable *default* (1 if default, 0 otherwise) with the 3 following explanatory variables:
 - student: A factor with levels No and Yes indicating whether the customer is a student
 - balance: The average balance that the customer has remaining on their credit card after making their monthly payment
 - income: Income of customer

Example

```
data(Default)
attach(Default)
summary(Default)
```


Modeling

- Random component: $Y_i | \mathbf{x}_i \sim \mathcal{B}(\pi(\mathbf{x}_i)), Y_1, \dots, Y_n \text{ indep.}$
- Link function g :
 - logistic function:

$$F(u) = \frac{e^u}{1 + e^u} \iff g(\pi) = \ln\left(\frac{\pi}{1 - \pi}\right) = \operatorname{logit}(\pi).$$

In this case, the model is called **logistic model**.

- **probit function**: F is the cdf of $\mathcal{N}(0,1)$ and $g=F^{-1}$ is the probit function.
- Gompit or complementary log-log function: F is the cdf of the Gompertz law

$$F(u) = 1 - \exp(-e^u) \iff g(\pi) = \ln[-\ln(1-\pi)],$$

but this function is asymmetric.

Link functions

Outline

- Logistic regression
 - Modeling
 - Odds and odds ratio
 - Simple logistic regression
 - Multiple logistic regression

Odds and odds ratio

The odds for an individual x is

$$\operatorname{odds}(\mathbf{x}) = \frac{\mathbb{P}(Y = 1 | \mathbf{x})}{\mathbb{P}(Y = 0 | \mathbf{x})} = \frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})} = \exp[\operatorname{logit}(\pi(\mathbf{x}))]$$

The odds ratio between two individuals x and x
is defined as the ratio between their odds:

$$OR(\mathbf{x}, \tilde{\mathbf{x}}) = \frac{odds(\mathbf{x})}{odds(\tilde{\mathbf{x}})}.$$

• The **odds ratio** allow to measure the effect of an explanatory variable on the binary response variable.

Odds and odds ratio

The odds ratios can be used in several ways:

Comparison of success probabilities between two individuals:

$$\left\{ \begin{array}{lll} \mathrm{OR}(\mathbf{x},\tilde{\mathbf{x}}) > 1 & \Leftrightarrow & \pi(\mathbf{x}) > \pi(\tilde{\mathbf{x}}) \\ \mathrm{OR}(\mathbf{x},\tilde{\mathbf{x}}) = 1 & \Leftrightarrow & \pi(\mathbf{x}) = \pi(\tilde{\mathbf{x}}) \\ \mathrm{OR}(\mathbf{x},\tilde{\mathbf{x}}) < 1 & \Leftrightarrow & \pi(\mathbf{x}) < \pi(\tilde{\mathbf{x}}) \end{array} \right.$$

• Effect of an explanatory variable: when $logit[\pi(\mathbf{x})] = \theta_0 + \theta_1 x^{(1)} + \ldots + \theta_p x^{(p)}$,

$$\mathrm{OR}(\mathbf{x}, \tilde{\mathbf{x}}) = \prod_{j=1}^{p} \exp\left[\theta_{j}(x^{(j)} - \tilde{x}^{(j)})\right].$$

If two individuals only differ on the j-th variable:

$$\mathrm{OR}(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left[\theta_j(x^{(j)} - \tilde{x}^{(j)})\right].$$

Outline

- Logistic regression
 - Modeling
 - Odds and odds ratio
 - Simple logistic regression
 - Multiple logistic regression

with one quantitative explanatory variable

- Goal: explain default with the variable balance.
- Model:

$$Y_i \sim \mathcal{B}(\pi_{\theta}(\mathbf{x}_i)) ext{ with } \ln\left(\frac{\pi_{\theta}(\mathbf{x}_i)}{1 - \pi_{\theta}(\mathbf{x}_i)}\right) = \theta_0 + \theta_1 x_i.$$

Parameter estimation

- The parameter vector $\theta = (\theta_0, \theta_1)'$ is estimated by maximum likelihood.
- The likelihood: $L(\underline{Y}; \theta) = \prod_{i=1}^n \pi_{\theta}(\mathbf{x}_i)^{Y_i} [1 \pi_{\theta}(\mathbf{x}_i)]^{1-Y_i}$
- The log-likelihood:

$$I(\underline{Y}; \theta) = \sum_{i=1}^{n} \{ Y_{i} \ln[\pi_{\theta}(\mathbf{x}_{i})] + (1 - Y_{i}) \ln[1 - \pi_{\theta}(\mathbf{x}_{i})] \}$$

$$= \sum_{i=1}^{n} \{ Y_{i} \ln[F(\theta_{0} + \theta_{1}x_{i})] + (1 - Y_{i}) \ln[1 - F(\theta_{0} + \theta_{1}x_{i})] \}$$

• System to be solved:

$$\begin{cases} \sum_{i=1}^{n} \left[Y_i - \pi_{\theta}(\mathbf{x}_i) \right] = 0 \\ \sum_{i=1}^{n} x_i \left[Y_i - \pi_{\theta}(\mathbf{x}_i) \right] = 0 \end{cases}$$

Parameter estimation

• In order to use a Newton-Raphson or a Fisher-scoring algorithm, the Hassian matrix or the Fisher information matrix.

$$\begin{cases} \frac{\partial^2 I(\underline{Y};\theta)}{\partial \theta_0^2} = -\sum_{i=1}^n F(\theta_0 + \theta_1 x_i)[1 - F(\theta_0 + \theta_1 x_i)] \\ \frac{\partial^2 I(\underline{Y};\theta)}{\partial \theta_1^2} = -\sum_{i=1}^n x_i^2 F(\theta_0 + \theta_1 x_i)[1 - F(\theta_0 + \theta_1 x_i)] \\ \frac{\partial^2 I(\underline{Y};\theta)}{\partial \theta_0 \partial \theta_1} = -\sum_{i=1}^n x_i F(\theta_0 + \theta_1 x_i)[1 - F(\theta_0 + \theta_1 x_i)] \end{cases}$$

$$\mathcal{I}_n(\theta) = \left(\begin{array}{cc} \sum_{i=1}^n \pi_{\theta}(\mathbf{x}_i)(1 - \pi_{\theta}(\mathbf{x}_i)) & \sum_{i=1}^n x_i \pi_{\theta}(\mathbf{x}_i)(1 - \pi_{\theta}(\mathbf{x}_i)) \\ \sum_{i=1}^n x_i \pi_{\theta}(\mathbf{x}_i)(1 - \pi_{\theta}(\mathbf{x}_i)) & \sum_{i=1}^n x_i^2 \pi_{\theta}(\mathbf{x}_i)(1 - \pi_{\theta}(\mathbf{x}_i)) \end{array} \right) = \left(X' W X \right),$$

with $W = \operatorname{diag} \left[\pi_{\theta}(\mathbf{x}_1)(1 - \pi_{\theta}(\mathbf{x}_1)) , \ldots , \pi_{\theta}(\mathbf{x}_n)(1 - \pi_{\theta}(\mathbf{x}_n)) \right].$

```
glm.balance<-glm(default~balance,data=Default,family=binomial(link="logit"))</pre>
summary(glm.balance)
Call:
glm(formula = default ~ balance, family = binomial(link = "logit"),
   data = Default)
Deviance Residuals:
             10 Median
   Min
                               30
                                      Max
-2 2697 -0 1465 -0 0589 -0 0221 3 7589
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***
balance
            5.499e-03 2.204e-04 24.95 <2e-16 ***
___
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1596.5 on 9998 degrees of freedom
ATC: 1600.5
Number of Fisher Scoring iterations: 8
```



```
import pandas as pd
import numpy as np
import statsmodels.api as sm
Defaultpy=".Default
y=Defaultpy["default"].cat.codes
x=Defaultpy["balance"]
x_stat = sm.add_constant(x)
modelbalance = sm.Logit(y, x_stat).fit()
```

Optimization terminated successfully.

Current function value: 0.079823

Iterations 10

modelbalance.summary()

<class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

Dep. Variable:	У	No. Observations:	10000				
Model:	Logit	Df Residuals:	9998				
Method:	MLE	Df Model:	1				
Date:	Mer, 20 oct 2021	Pseudo R-squ.:	0.4534				
Time:	16:23:05	Log-Likelihood:	-798.23				
converged:	True	LL-Null:	-1460.3				
Covariance Type:	Covariance Type: nonrobust		6.233e-290				
co	oef std err	z P> z	[0.025 0.975]				
const -10.65		9.491 0.000	-11.359 -9.943				
balance 0.00	0.000 2	4.952 0.000	0.005 0.006				

Prediction

- Linear predictor: $\hat{\eta}_i = \hat{\theta}_0 + x_i \hat{\theta}_1$
- $\bullet \ \hat{\pi}(\mathbf{x}_i) = F(\hat{\eta}_i) = F(\hat{\theta}_0 + \hat{\theta}_1 x_i) = \pi_{\hat{\theta}}(\mathbf{x}_i).$
- Adjusted values \hat{Y}_i using the Bayes'rule :

$$\hat{Y}_i = \begin{cases} 1 & \text{if } \hat{\pi}(\mathbf{x}_i) > s \\ 0 & \text{otherwise.} \end{cases}$$

- For a new individual $\mathbf{x}_0 = (1, x_0)$, the fitted model allows to predict
 - a proportion (probability) $\hat{\pi}(\mathbf{x}_0) = F(\hat{\theta}_0 + \hat{\theta}_1 x_0)$
 - a predicted response $\hat{Y}_0 = \mathbb{1}_{\hat{\pi}(\mathbf{x}_0) > s}$.
- The threshold by default is s = 0.5

Prediction

Confidence interval

- ullet Goal: Construct a confidence interval for $heta_j$
- Methods: Wald's method or method based on the likelihood ratio
- With Wald,

$$IC_{1-\alpha}(\theta_j) = \left[(\widehat{\theta}_{ML})_j \pm z_{1-\alpha/2} \sqrt{[\mathcal{I}_n(\widehat{\theta}_{ML})^{-1}]_{jj}} \right]$$

Example 😱 ଟ

```
# likelihood ratio
confint(glm.balance)
                   2.5 %
                              97.5 %
(Intercept) -11.383288936 -9.966565064
balance
          0.005078926 0.005943365
# Wald
confint.default(glm.balance)
                           97.5 %
                   2.5 %
(Intercept) -11.359186056 -9.943475172
balance 0.005066999 0.005930835
ci = modelbalance.conf_int(0.05)
print(ci)
const -11.359208 -9.943453
balance 0.005067 0.005931
```

Test for the nullity of θ_j (Z-test)

- Hypotheses: $\mathcal{H}_0: \theta_j = 0$ against $\mathcal{H}_1: \theta_j \neq 0$
- Based on the result

$$\mathcal{I}_n(\hat{\theta}_{ML})^{1/2}(\hat{\theta}_{ML}-\theta) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0_2, I_2),$$

we prove that, under \mathcal{H}_0 ,

$$\hat{rac{\hat{ heta}_j}{\hat{\sigma}_j}} \overset{\mathcal{L}}{\underset{n o +\infty}{\longrightarrow}} \mathcal{N}(0,1) ext{ with } \hat{\sigma}_j = \sqrt{[\mathcal{I}(\hat{ heta}_{ML})^{-1}]_{jj}}$$

• Reject zone (asymptotic test of level α):

$$\mathcal{R}_{\alpha} = \left\{ \left| \hat{\theta}_{j} / \hat{\sigma}_{j} \right| > z_{1-\alpha/2} \right\}$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of $\mathcal{N}(0,1)$.


```
summary(glm.balance)
```

```
Call:
glm(formula = default ~ balance, family = binomial(link = "logit").
   data = Default)
Deviance Residuals:
   Min
             10 Median 30 Max
-2.2697 -0.1465 -0.0589 -0.0221 3.7589
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***
halance
            5 499e-03 2 204e-04 24 95 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1596.5 on 9998 degrees of freedom
ATC: 1600.5
```

Since p-values < 2e - 16, we reject the nullity of both parameters.

Number of Fisher Scoring iterations: 8

modelbalance.summary()

<class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

Dep. Variable:				10000		
Model:	Logit	Df Residuals:		9998		
Method:	MLE	Df Model:		1		
Date:	Mer, 20 oct 2021	Pseudo R-squ.:		0.4534		
Time:	16:23:07	Log-Likelihood:		-798.23		
converged:	True	LL-Null:		-1460.3		
Covariance Type:	nonrobust	LLR p-value:		6.233e-290		
coe	f std err	z P> z	[0.025	0.975]		
const -10.651 balance 0.005		29.491 0.000 24.952 0.000	-11.359 0.005	-9.943 0.006		

Possibly complete quasi-separation: A fraction 0.13 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Test for the nullity of θ_i

- It is also possible to consider a submodel testing
- Example for the nullity of θ_1

```
anova(glm(default~1,data=Default,family=binomial(link="logit")), glm.balance,test="Chisq")
Analysis of Deviance Table
Model 1: default ~ 1
Model 2: default ~ balance
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
      9999
               2920.7
      9998
           1596.5 1 1324.2 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
from scipy.stats import chi2
LR stat = (-2)* (modelbalance.llnull - modelbalance.llf):
df = 1
pvalue = 1 - chi2(df).cdf(LR stat):
print(LR_stat)
1324 1980279638472
print(pvalue)
```

With a qualitative explanatory variable

- Goal: Explain default with the variable student (2 levels).
- Possible models:

$$\begin{aligned} \text{logit} \left[\pi_{\theta}(\mathbf{x}_i) \right] &= \theta_0 + \theta_1 \mathbb{1}_{x_i = 1} + \theta_2 \mathbb{1}_{x_i = 0} \\ &= (\theta_0 + \theta_2) + (\theta_1 - \theta_2) \mathbb{1}_{x_i = 1} + 0 \, \mathbb{1}_{x_i = 0}. \end{aligned}$$

- $\bullet \Rightarrow$ non-identifiable model \Rightarrow constraint on parameters.
- For example, if we assume that $\theta_2 = 0$, the model is

$$\operatorname{logit}[\pi_{\theta}(\mathbf{x}_i)] = \theta_0 + \theta_1 \mathbb{1}_{x_i=1}$$

 We can then use the same reasoning to estimate the parameters, construct confidence intervals, test the nullity of each parameter, ...

• With R, the constraint by default is $\theta_2 = 0$:

```
glm.student = glm(default-student, data=Default, family=binomial)
summary(glm.student)
```

```
Call:
glm(formula = default ~ student, family = binomial, data = Default)
Deviance Residuals:
            10 Median 30
                                  Max
   Min
-0.2970 -0.2970 -0.2434 -0.2434 2.6585
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
studentVes 0 40489 0 11502 3 52 0 000431 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 2908.7 on 9998 degrees of freedom
ATC: 2912.7
Number of Fisher Scoring iterations: 6
```



```
y=Defaultpy["default"].cat.codes
x=Defaultpy["student"].cat.codes
x_stat = sm.add_constant(x)
modelstudent = sm.Logit(y, x_stat).fit();
```

Optimization terminated successfully.

Current function value: 0.145434

Iterations 7

modelstudent.summary()

<class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

		20620		NODULOD		
Dep. Varia	able:		y No.	Observations	:	10000
Model:		L	ogit Df	Residuals:		9998
Method:			MLE Df	Model:		1
Date:	M	ler, 20 oct	2021 Pse	udo R-squ.:		0.004097
Time:		16:2	3:08 Log	-Likelihood:		-1454.3
converged	:		True LL-	Null:		-1460.3
Covariance	e Type:	nonro	bust LLR	p-value:		0.0005416
	coef	std err	Z	P> z	[0.025	0.975]
const	-3.5041	0.071	-49.554	0.000	-3.643	-3.366
0	0.4049	0.115	3.520	0.000	0.179	0.630

Example

• Model: $Y_i \sim \mathcal{B}(\pi_{\theta}(\mathbf{x}_i))$ with

$$logit[\pi_{\theta}(\mathbf{x}_i)] = \theta_0 + \theta_1 \, \mathbb{1}_{student_i=1}$$

Odds and odds ratio:

$$\begin{cases} \text{ odds("student")} = e^{\theta_0+\theta_1} = 0.045\\ \text{ odds("non-student")} = e^{\theta_0} = 0.030\\ \text{ OR("student", "non-student")} = e^{\theta_1} = 1.5 \end{cases}$$

Thus a student is 1.5 times more likely to be in default than a non-student.

```
exp(c(glm.student$coefficients,sum(glm.student$coefficients)))

(Intercept) studentYes
0.03007799 1.49913321 0.04508342
```

Outline

- Logistic regression
 - Modeling
 - Odds and odds ratio
 - Simple logistic regression
 - Multiple logistic regression

Context

- A binary response variable Y
- p regressors $x^{(1)}, \ldots, x^{(p)}$
- Example: p = 3 regressors
 - 1 qualitative variable (student = $x^{(1)}$)
 - 2 quantitative variables (balance = $x^{(2)}$, income= $x^{(3)}$)

Model without interaction (

• Model: $Y_i \sim \mathcal{B}(\pi_{\theta}(\mathbf{x}_i))$ indep. with

$$\operatorname{logit}[\pi_{\theta}(\mathbf{x}_{i})] = \theta_{0} + \theta_{1} \, \mathbb{1}_{x_{i}^{(1)} = 1} + \theta_{2} \, x_{i}^{(2)} + \theta_{3} \, x_{i}^{(3)}$$

glm.additif<-glm(default~.,data=Default,family=binomial(link="logit"))</pre> summary(glm.additif)

```
Call:
glm(formula = default ~ ., family = binomial(link = "logit"),
   data = Default)
Deviance Residuals:
             10 Median
                                     Max
   Min
                              30
-2.4691 -0.1418 -0.0557 -0.0203 3.7383
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **
balance 5.737e-03 2.319e-04 24.738 < 2e-16 ***
income 3.033e-06 8.203e-06 0.370 0.71152
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.5 on 9996 degrees of freedom
ATC: 1579.5
```



```
Defaultpy=r.DefaultBIS
y=Defaultpy["default"]
x=Defaultpy[Defaultpy.columns.drop("default")]
x_stat = sm.add_constant(x)
modeladditif = sm.Logit(y, x_stat).fit()
```

Optimization terminated successfully.

Current function value: 0.078577

Iterations 10

modeladditif.summary()

<class 'statsmodels.iolib.summary.Summary'>
"""

Logit Regression Results

Dep. Variable:	default	No. Observations:	10000			
Model:	Logit	Df Residuals:	9996			
Method:	MLE	Df Model:	3			
Date:	Mer, 20 oct 2021	Pseudo R-squ.:	0.4619			
Time:	16:23:09	Log-Likelihood:	-785.77			
converged:	True	LL-Null:	-1460.3			
Covariance Type:	nonrobust	LLR p-value:	3.257e-292			

	coef	std err	z	P> z	[0.025	0.975]
const student balance	-10.8690 -0.6468 0.0057	0.492 0.236 0.000	-22.079 -2.738 24.737	0.000 0.006 0.000	-11.834 -1.110 0.005	-9.904 -0.184 0.006
income	3.033e-06	8.2e-06	0.370	0.712	-1.3e-05	1.91e-05

Test of nullity of θ_j

- Test of nullity \Longrightarrow Z-test In our example, p-value=0.71152 for the nullity of $\theta_3 \Longrightarrow$ we can remove the variable *income* from the model
- We can reach the same conclusion by a sub-model test

```
glm.sansincome<-glm(default-student+balance,data=Default,family=binomial(link="logit"))
anova(glm.sansincome,glm.additif,test="Chisq")</pre>
```

```
Analysis of Deviance Table

Model 1: default - student + balance

Model 2: default - student + balance + income

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

9997 1571.7

10: 0.13677 0.7115
```

Test the nullity of θ_2 and θ_3 simul.

- We want to test the nullity of θ_2 and θ_3 simultaneously
- Method 1: sub-model testing

anova(glm.student,glm.additif,test="Chisq")

- (M_0) : logit $[\pi_{\theta}(\mathbf{x}_i)] = \theta_0 + \theta_1 \mathbb{1}_{\mathbf{x}_i^{(1)} = 1}$
- (M_1) : logit $[\pi_{\theta}(\mathbf{x}_i)] = \theta_0 + \theta_1 \, \mathbb{1}_{x_i^{(1)} = 1} + \theta_2 \, x_i^{(2)} + \theta_3 \, x_i^{(3)}$

$$T = \mathcal{D}(M_0) - \mathcal{D}(M_1) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi^2(4-2)$$

```
Analysis of Deviance Table

Model 1: default - student
Model 2: default - student + balance + income
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 9998 2908.7
2 9996 1571.5 2 1337.1 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Test the nullity of θ_2 and θ_3 simul.

- We want to test the nullity of θ_2 and θ_3 simultaneously
- Method 2: Wald's test

$$\mathcal{H}_0: C\theta = \mathbf{0}_2 \text{ against } \mathcal{H}_1: C\theta \neq \mathbf{0}_2 \text{ with } C = \left(\begin{array}{ccc} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{array}\right).$$

Under \mathcal{H}_0 ,

$$T = (C\hat{\theta}_{ML})' \left[C\mathcal{I}_n(\hat{\theta}_{ML})^{-1} C' \right]^{-1} (C\hat{\theta}_{ML}) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi^2(2).$$

Variable selection

- More generally, a variable selection procedure can be implemented
- For instance, we can implement a backward selection procedure based on the AIC criterion

```
step.backward <- step(glm.additif)
Start: ATC=1579.54
default ~ student + balance + income
         Df Deviance
                     ATC
- income 1 1571.7 1577.7
            1571 5 1579 5
<none>
- student 1 1579.0 1585.0
- balance 1 2907.5 2913.5
Step: AIC=1577.68
default ~ student + balance
         Df Deviance
                       ATC
<none>
        1571.7 1577.7
- student 1 1596.5 1600.5

    halance 1 2908.7 2912.7
```

Variable selection

 We can use stepAIC (MASS library) with AIC (option "p=2") or BIC (option "p=log(n)")

```
library(MASS)
stepAIC(glm.additif, direction=c("backward"),p=2,trace=0) # AIC
Call: glm(formula = default ~ student + balance, family = binomial(link = "logit"),
   data = Default)
Coefficients:
(Intercept) studentYes balance
-10.749496 -0.714878 0.005738
Degrees of Freedom: 9999 Total (i.e. Null); 9997 Residual
Null Deviance:
                   2921
Residual Deviance: 1572
                          ATC: 1578
stepAIC(glm.additif, direction=c("backward"),p=log(nrow(Default))) # BIC
Start: AIC=1579.54
default ~ student + balance + income
         Df Deviance ATC
- income 1 1571.7 1577.7
         1571.5 1579.5
<none>
```

- student 1 1579.0 1585.0

Model with interaction

• Full model with all interactions (order 2):

$$\log i [\pi_{\theta}(\mathbf{x}_{i})] = \theta_{0} + \theta_{2} x_{i}^{(2)} + \theta_{3} x_{i}^{(3)} + \theta_{23} x_{i}^{(2)} x_{i}^{(3)} + (\beta_{1} + \beta_{2} x_{i}^{(2)} + \beta_{3} x_{i}^{(3)}) \mathbb{1}_{x_{i}^{(1)} = 1}$$

 Then, use a variable selection procedure to simplify the model and valid with a testing procedure

Model with interaction

```
glm.full<-glm(default~.^2,data=Default,family="binomial")</pre>
summary(glm.full)
Call:
glm(formula = default ~ .^2, family = "binomial", data = Default)
Deviance Residuals:
   Min 1Q Median 3Q
                                    Max
-2.4848 -0.1417 -0.0554 -0.0202 3.7579
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.104e+01 1.866e+00 -5.914 3.33e-09 ***
studentYes
               -5.201e-01 1.344e+00 -0.387
                                                0.699
balance
       5.882e-03 1.180e-03 4.983 6.27e-07 ***
                4.050e-06 4.459e-05 0.091 0.928
income
studentYes:balance -2.551e-04 7.905e-04 -0.323 0.747
studentYes:income 1.447e-05 2.779e-05 0.521 0.602
balance:income -1.579e-09 2.815e-08 -0.056 0.955
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.1 on 9993 degrees of freedom
ATC: 1585.1
Number of Fisher Scoring iterations: 8
```

Model with interaction

```
stepAIC(glm.full, direction=c("backward"),p=log(nrow(Default)),trace=0)
Call: glm(formula = default ~ student + balance, family = "binomial",
   data = Default)
Coefficients:
(Intercept) studentYes balance
-10.749496 -0.714878 0.005738
Degrees of Freedom: 9999 Total (i.e. Null); 9997 Residual
Null Deviance:
                   2921
Residual Deviance: 1572
                          ATC: 1578
anova(glm.sansincome,glm.full)
Analysis of Deviance Table
Model 1: default ~ student + balance
Model 2: default ~ (student + balance + income)^2
```

Resid. Df Resid. Dev Df Deviance 9997 1571.7 9993 1571.1 4 0.61588

Focus on "default ∼ student+balance"

• Model: $Y_i \sim \mathcal{B}(\pi_{\theta}(\mathbf{x}_i))$ indep. with

$$\text{logit}[\pi_{\theta}(\mathbf{x}_i)] = \theta_0 + \theta_1 \mathbb{1}_{x_i^{(1)} = 1} + \theta_2 x_i^{(2)} = X_i \theta \text{ where } X_i = (1, \mathbb{1}_{x_i^{(1)} = 1}, x_i^{(2)})$$

glm.final = glm(default ~ student + balance, data=Default, family=binomial)
summary(glm.final)

```
glm(formula = default ~ student + balance, family = binomial,
   data = Default)
Deviance Residuals:
   Min
             10 Median 30
                                      Max
-2.4578 -0.1422 -0.0559 -0.0203 3.7435
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.075e+01 3.692e-01 -29.116 < 2e-16 ***
studentVes -7 149e-01 1 475e-01 -4 846 1 26e-06 ***
          5.738e-03 2.318e-04 24.750 < 2e-16 ***
balance
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1571.7 on 9997 degrees of freedom
ATC: 1577.7
```

Call:

Focus on "default ∼ student+balance"

Probability prediction:

$$\hat{\pi}_i = rac{e^{\hat{\eta}_i}}{1 + e^{\hat{\eta}_i}} ext{ with } \hat{\eta}_i = X_i \hat{ heta}_{ML}$$

• Fitted values $\hat{Y}_i = \mathbb{1}_{\hat{\pi}_i > 0.5}$

hatpi <- glm.final\$fitted.values table(default,hatpi>0.5)

Parameter interpretation

• 2 individuals with the same balance value (*bal*), one student and one non-student $\mathbf{x} = (1, 1, bal)$ and $\tilde{\mathbf{x}} = (1, 0, bal)$ then

$$\mathit{OR}(\mathbf{x}, \mathbf{ ilde{x}}) = rac{e^{ heta_0 + heta_1 + heta_2 \mathit{bal}}}{e^{ heta_0 + heta_2 \mathit{bal}}} = e^{ heta_1}$$

thus a student is $e^{-0.7149} = 0.489$ times likely to be in default than a non-student for the same value of *balance*.

• 2 individuals (both student or non-student) and balance(\mathbf{x})= balance($\tilde{\mathbf{x}}$)+1

$$OR(\mathbf{x}, \tilde{\mathbf{x}}) = e^{\theta_1(balance(\mathbf{x}) - balance(\tilde{\mathbf{x}}))}$$

thus when we increase the balance variable by one unit, the chance of being at default is multiplied by $e^{0.005738} = 1.005$.

Outline

- 2 Log regression
 - Description of the example
 - Log regression with one regressor
 - Multiple log regression

Outline

- 2 Log regression
 - Description of the example
 - Log regression with one regressor
 - Multiple log regression

Example: Number of maritime accidents

- We are interested in the variable incidents = number of damage incidents per month of commissioning of a ship
- The data frame contains 40 observations on 5 ship types in 4 vintages and 2 service periods:
 - type: factor with levels "A" to "E" for the different ship types
 - construction: factor with levels "1960-64", "1965-69", "1970-74", "1975-79" for the periods of construction
 - *operation*: factor with levels "1960-74", "1975-79" for the periods of operation
 - service: aggregate months of service

Example

```
data("ShipAccidents")
#str(ShipAccidents)
summary(ShipAccidents)
```


Outline

- 2 Log regression
 - Description of the example
 - Log regression with one regressor
 - Multiple log regression

With a quantitative explanatory variable

- Goal: explain the response variable incidents (Y) with the quantitative variable service (x)
- Model:

$$\begin{cases} Y_i \sim \mathcal{P}(\lambda(\mathbf{x}_i)), \ \forall i = 1, \dots, n \\ \ln[\lambda(\mathbf{x}_i)] = \theta_0 + \theta_1 x_i \\ Y_1, \dots, Y_n \text{ independent} \end{cases}$$


```
fit.service <- glm(incidents ~ service, data=ShipAccidents, family=poisson)
summary(fit.service)
Call:
glm(formula = incidents ~ service, family = poisson, data = ShipAccidents)
Deviance Residuals:
   Min 1Q Median 3Q Max
-6.0040 -3.1674 -2.0055 0.9155 7.2372
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.613e+00 7.150e-02 22.55 <2e-16 ***
service 6.417e-05 2.870e-06 22.36 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 730.25 on 39 degrees of freedom
Residual deviance: 374.55 on 38 degrees of freedom
ATC: 476.41
Number of Fisher Scoring iterations: 6
```


import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.formula.api import glm
Accidpy=r.ShipAccidents
fitservicepy=glm('incidents-service',data=Accidpy,family=sm.families.Poisson()).fit()
print(fitservicepy.summary())

Generalized Linear Model Regression Results

Dep. Variable:	incidents	No. Obs	ervations	:	40		
Model:	GLM	Df Resi	duals:		38		
Model Family:	Poisson	Df Mode	1:		1		
Link Function:	log	Scale:	Scale:		1.0000		
Method:	IRLS	Log-Lik	elihood:		-236.21		
Date:	Mer, 20 oct 2021	Devianc	e:		374.55		
Time:	16:23:14	Pearson	chi2:		368.		
No. Iterations:	6						
Covariance Type: nonrobust							
coe	f std err	Z	P> z	[0.025	0.975]		
Intercept 1.612	7 0.072 2	2.555	0.000	1.473	1.753		
service 6.417e-0	5 2.87e-06 2	2.356	0.000	5.85e-05	6.98e-05		

With a qualitative explanatory variable

- Goal: Explain incidents with the qualitative variable type having 5 levels.
- To make the model identifiable, we must choose a reference level (here, type = A).
- Model:

$$\begin{cases} Y_i \sim \mathcal{P}(\lambda(\mathbf{x}_i)), \ \forall i = 1, \dots, n \\ \ln[\lambda(\mathbf{x}_i)] = \theta_0 + \theta_1 \mathbb{1}_{\mathsf{type_i} = B} + \theta_2 \mathbb{1}_{\mathsf{type_i} = C} + \theta_3 \mathbb{1}_{\mathsf{type_i} = D} + \theta_4 \mathbb{1}_{\mathsf{type_i} = E} \\ Y_1, \dots, Y_n \text{ independent} \end{cases}$$


```
fit.type <- glm(incidents ~ type, data=ShipAccidents, family=poisson)
summary(fit.type)
Call:
glm(formula = incidents ~ type, family = poisson, data = ShipAccidents)
Deviance Residuals:
            10 Median 30
                                   Max
   Min
-7.9530 -2.0616 -0.4541 1.2873 4.3425
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6582 0.1543 10.747 < 2e-16 ***
tvpeB
           1.7957 0.1666 10.777 < 2e-16 ***
typeC
         typeD
tvpeE
         -0.2719 0.2346 -1.159 0.24650
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 730.25 on 39 degrees of freedom
Residual deviance: 275.65 on 35 degrees of freedom
ATC: 383.52
Number of Fisher Scoring iterations: 6
```


fittypepy=glm('incidents-C(type)',data=Accidpy,family=sm.families.Poisson()).fit()
print(fittypepy.summary())

Generalized Linear Model Regression Results

Dep. Variable: Model: Model Family: Link Function: Method: Date: Time: No. Iterations Covariance Type	:	incidents GLM Poisson log IRLS 20 oct 2021 16:23:15 5 nonrobust	No. Obse Df Resid Df Model Scale: Log-Like Deviance Pearson	lihood:		40 35 4 1.0000 -186.76 275.65 249.
	coef	std err	z	P> z	[0.025	0.975]
Intercept C(type)[T.B] C(type)[T.C] C(type)[T.D]	1.6582 1.7957 -1.2528 -0.9045	0.154 0.167 0.327 0.287	10.747 10.777 -3.827 -3.146	0.000 0.000 0.000 0.002	1.356 1.469 -1.894 -1.468	1.961 2.122 -0.611 -0.341

0.235 -1.159

-0.2719

C(type)[T.E]

0.246

-0.732

0.188

Effect of variable type

- Since the variable *type* has 5 levels, a sub-model test is used to test the effect of this variable:
 - (M_0) : $\ln[\lambda(\mathbf{x}_i)] = \theta_0$ • (M_1) : $\ln[\lambda(\mathbf{x}_i)] = \theta_0 + \theta_1 \mathbb{1}_{\text{type}_i = B} + \theta_2 \mathbb{1}_{\text{type}_i = C} + \theta_3 \mathbb{1}_{\text{type}_i = D} + \theta_4 \mathbb{1}_{\text{type}_i = E}$
- Test's statistics:

$$T = \mathcal{D}(M_0) - \mathcal{D}(M_1) \underset{n \to +\infty}{\overset{\mathcal{L}}{\longrightarrow}} \chi^2(5-1)$$

- Reject zone: $\mathcal{R}_{\alpha} = \{T > v_{1-\alpha,4}\}$ where $v_{1-\alpha,4}$ is the $(1-\alpha)$ quantile of $\chi^2(4)$.
- ullet P-value: $\mathit{pval} = \mathbb{P}_{\mathcal{H}_0} \left(T > T^{obs}
 ight) \mathop{\longrightarrow}\limits_{n o + \infty} \mathbb{P}(\chi^2(4) > T^{obs})$

Effect of variable type


```
anova(glm(incidents ~ 1, data=ShipAccidents, family=poisson), fit.type, test="Chisq")
Analysis of Deviance Table
Model 1: incidents ~ 1
Model 2: incidents ~ type
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
        39
               730.25
        35 275.65 4 454.6 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
from scipy.stats import chi2
LR_stat=(-2)*(fittypepy.llnull - fittypepy.llf);
pvalue=1-chi2(4).cdf(LR_stat);
print(LR_stat)
454.6025535903679
print(pvalue)
```

Outline

- 2 Log regression
 - Description of the example
 - Log regression with one regressor
 - Multiple log regression

Multiple log regression

- Goal: Explain the response variable incidents with with all the available explanatory variables.
- Since a model with interactions (2nd order) has 37 parameters and the sample size is n=40, we only consider an additive log regression model here.
- Model: $Y_i \sim \mathcal{P}(\lambda(\mathbf{x})_i)$ with

$$\begin{split} \ln[\lambda(\mathbf{x}_{i})] = & \theta_{0} + \alpha_{1} \mathbb{1}_{\mathsf{type_{i}} = \mathsf{B}} + \alpha_{2} \mathbb{1}_{\mathsf{type_{i}} = \mathsf{C}} + \alpha_{3} \mathbb{1}_{\mathsf{type_{i}} = \mathsf{D}} + \alpha_{4} \mathbb{1}_{\mathsf{type_{i}} = \mathsf{E}} \\ & + \beta_{1} \mathbb{1}_{const_{i} = "65 - 69"} + \beta_{2} \mathbb{1}_{const_{i} = "70 - 74"} + \beta_{3} \mathbb{1}_{const_{i} = "75 - 79"} \\ & + \gamma_{1} \mathbb{1}_{op_{i} = "75 - 79"} + \theta_{1} service_{i} \end{split}$$

 $\label{fit.add} $$ \ \ $$ \ glm(incidents \ \ `\ .\ ,\ data=ShipAccidents,\ family=poisson) $$ summary(fit.add) $$$

```
Call:
glm(formula = incidents ~ ., family = poisson, data = ShipAccidents)
Deviance Residuals:
                             3Q
   Min
             10 Median
                                     Max
-2.5810 -1.4773 -0.8972 0.5952 3.2154
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
(Intercept)
                   5.492e-04 2.787e-01 0.002 0.998427
typeB
                 5.933e-01 2.163e-01 2.743 0.006092 **
typeC
                 -1.190e+00 3.275e-01 -3.635 0.000278 ***
typeD
                -8.210e-01 2.877e-01 -2.854 0.004321 **
               -2.900e-01 2.351e-01 -1.233 0.217466
typeE
construction1965-69 1.148e+00 1.793e-01 6.403 1.53e-10 ***
construction1970-74 1.596e+00 2.242e-01 7.122 1.06e-12 ***
construction1975-79 5.670e-01 2.809e-01 2.018 0.043557 *
operation1975-79 8.619e-01 1.317e-01 6.546 5.92e-11 ***
service
                  7.270e-05 8.488e-06 8.565 < 2e-16 ***
___
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 730.253 on 39 degrees of freedom
Residual deviance: 99.793 on 30 degrees of freedom
ATC: 217.66
```

Number of Fisher Scoring iterations: 5

fitaddpy =glm('incidents-C(type)+C(construction)+C(operation)+service',
 data=Accidpy,family=sm.families.Poisson()).fit()
print(fitaddpy.summary())

Generalized Linear Model Regression Results

Dep. Variable:	incidents	No. Observations:	40
Model:	GLM	Df Residuals:	30
Model Family:	Poisson	Df Model:	9
Link Function:	log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-98.830
Date:	Mer, 20 oct 2021	Deviance:	99.793
Time:	16:23:16	Pearson chi2:	90.0
No. Iterations:	6		

Covariance Type: nonrobust

covariance Type.	monii obub o					
	coef	std err	Z	P> z	Γ0.025	0.975]
Intercept	0.0005	0.279	0.002	0.998	-0.546	0.547
C(type)[T.B]	0.5933	0.216	2.743	0.006	0.169	1.017
C(type)[T.C]	-1.1903	0.327	-3.635	0.000	-1.832	-0.548
C(type)[T.D]	-0.8210	0.288	-2.854	0.004	-1.385	-0.257
C(type)[T.E]	-0.2900	0.235	-1.233	0.217	-0.751	0.171
C(construction)[T.1965-69]	1.1479	0.179	6.403	0.000	0.796	1.499
C(construction)[T.1970-74]	1.5965	0.224	7.122	0.000	1.157	2.036
C(construction)[T.1975-79]	0.5670	0.281	2.018	0.044	0.016	1.118
C(operation)[T.1975-79]	0.8619	0.132	6.546	0.000	0.604	1.120
service	7.27e-05	8.49e-06	8.565	0.000	5.61e-05	8.93e-05

Variable selection

 It is possible to implement a variable selection procedure using step(fit.add) (backward procedure with AIC criterion)

```
step(fit.add,trace=1)
Start: ATC=217.66
incidents ~ type + construction + operation + service
              Df Deviance
                             ATC
                   99.793 217.66
<none>
             4 148.053 257.92
- tvpe
- operation 1 147.687 263.55
- service 1 182,605 298,47

    construction 3 191 419 303 29

Call: glm(formula = incidents ~ type + construction + operation + service,
   family = poisson, data = ShipAccidents)
Coefficients:
       (Intercept)
                                typeB
                                                      typeC
         0.0005492
                              0.5932730
                                                  -1.1903189
                                 typeE construction1965-69
             typeD
         -0.8210370
                             -0.2899922
                                                  1.1478796
construction1970-74 construction1975-79
                                         operation1975-79
         1.5964752
                              0.5669790
                                                  0.8618750
           service
         0.0000727
Degrees of Freedom: 39 Total (i.e. Null); 30 Residual
Null Deviance:
                   730.3
```

Test of sub-models

 We can for instance test the sub-model without the variables contructions and operation

```
fit.ssmod <- glm(incidents ~ type +service,data=ShipAccidents,family=poisson)
anova(fit.ssmod, fit.add, test="Chisq")
Analysis of Deviance Table
Model 1: incidents ~ type + service
Model 2: incidents ~ type + construction + operation + service
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
        34 230.832
        30 99.793 4 131.04 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fitssmodpy = glm('incidents~C(type)+service',data=Accidpy,family=sm.families.Poisson()).fit()
LR_stat=(fitssmodpy.deviance - fitaddpy.deviance)
print(LR_stat)
131 03874238496047
print(1-chi2(4).cdf(LR_stat))
```

0.0

Prediction

• If we want to predict the average number of incidents for a ship with type="A", construction= "65-69", operation="60-74", service=1000

$$\hat{\lambda}_0 = e^{X_0 \hat{\theta}_{ML}} \text{ with } X_0 = (1, \underbrace{0, 0, 0, 0}_{type}, \underbrace{1, 0, 0}_{construction}, 0, 1000)$$

```
new.data = data.frame(type=factor("A"), construction=factor("1965-69"),operation=factor("1960-74"), service = 1
lambda_hat = exp(predict(fit.add,new.data))
lambda_hat
```

3.391016

- Prediction of some probabilities: Let $A \sim \mathcal{P}(\hat{\lambda}_0)$. For instance,
 - ship has no incident: $\mathbb{P}(A=0)=e^{-\hat{\lambda}_0}$
 - ullet ship has at most one incident: $\mathbb{P}(A \leq 1) = (1 + \hat{\lambda}_0)e^{-\lambda_0}$

c(exp(-lambda_hat),(1+lambda_hat) * exp(-lambda_hat))