第一章 行列式

1.

- () 23154 1 1 0 1 0 3该数列为奇排列
- () 631254 =5 2 0 0 1 0=8该排列为偶排列
- (3) n(n 1) 321 (n 1) (n 2) (n 3) $\frac{n(n 1)}{2}$

当 n 4m或n 4m 1时 , n(n 1) 321 为偶数 , 排列为偶排列

当n 4m 2或n 4m 3时, n(n 1) 321 为奇数,排列为奇排列(其中 m 012)

(4) 135 (2n 1)246 (2n) 0 1 2 3 (n 1) $\frac{n(n - 1)}{2}$

当n 4m或n 4m 1时, 135 (2n 1)246 (2n) 为偶数,排列为偶排列

当 n 4m 2或 n 4m 3时 , 135 (2n 1)246 (2n) 为奇数 , 排列为奇排列 (其中 m 0 1 2) 2.解:已知排列 i_ii₂ i_n的逆序数为 k , 这 n个数按从大到小排列

时逆序数为 $(n \ 1) \ (n \ 2) \ (n \ 3)$ $\frac{n(n \ 1)}{2}$ 个.

设第 x数 i_x 之后有 i_x 个数比 i_x 小,则倒排后 i_x 的位置

变为 $i_{n \times 1}$, 其后 $n \times r$ 个数比 $i_{n \times 1}$ 小 ,两者相加为 $n \times r$

故 $i_n i_{n-1}$ i_1 $\frac{n(n-1)}{2}$ $i_1 i_2$ i_n

- 3 证明: .因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列 当 n 2 时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。 偶排列与奇排列各占一半。
- 4 (1) $a_{13}a_{24}a_{33}a_{41}$ 不是行列式的项 $a_{14}a_{23}a_{31}a_{42}$ 是行列式的项 因为它的列排排列逆序列 $= (4321)=3+2+0+0=5 \ \ \,$ 为奇数, 应带负号
 - (2) $a_{51}a_{42}a_{33}a_{24}a_{51}$ 不是行列式的项 $a_{13}a_{52}a_{41}a_{35}a_{24} = a_{13}a_{24}a_{35}a_{41}a_{52}$ 因为它的列排排列逆 序列 (34512)=2+2+2+0+0=6 为偶数 应带正号。

 a_{11} a_{23} a_{32} a_{44}

5 解: \mathbf{a}_{12} \mathbf{a}_{23} \mathbf{a}_{34} \mathbf{a}_{41} 利用 为正负数来做,一共六项, 为正,则带正号, 为负则带负 \mathbf{a}_{14} \mathbf{a}_{23} \mathbf{a}_{31} \mathbf{a}_{42}

号来做。

6 解:(1)因为它是左下三角形

1
$$\frac{1230}{1230}$$
 $a_{11}a_{12}a_{23}a_{33}$ $a_{11}a_{12}a_{13}a_{23}a_{33}$ $a_{11}a_{13}a_{12}a_{23}a_{33}a_{24}a_{25}a_{23}a_{24}a_{25}a_{31}a_{32}a_{23}a_{24}a_{25}a_{31}a_{32}a_{23}a_{24}a_{25}a_{31}a_{32}a_{23}a_{24}a_{25}a_{31}a_{32}a_{23}a_{24}a_{25}a_{31}a_{22}a_{23}a_{24}a_{25}a_{31}a_{22}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{23}a_{24}a_{25}a_{$

9.(1). y mx b.经过(x₁, y₁)(x₂, y₂).

斜率 m
$$\frac{y_1}{x_1} \frac{y_2}{x_2}$$

y
$$\frac{y_1}{x_1} \frac{y_2}{x_2} x$$
 b代入 (x_1, y_1)

$$y_1 = \frac{y_1}{x_1} = \frac{y_2}{x_2} = x_1$$
 b b $y_1 = \frac{y_1}{x_1} = \frac{y_2}{x_2} = \frac{x_1}{x_2} = \frac{x_2y_1}{x_1}$

则y
$$\frac{y_1}{x_1}$$
 $\frac{y_2}{x_2}$ x $\frac{x_1 y_2}{x_1}$ $\frac{x_2 y_1}{x_2}$

又由
$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 & 0 \\ x_2 & y_2 & 1 & \end{vmatrix}$$

左边 = y_1 y_2 x y x_1 x_2 x_1y_2 x_2y_1 0 右边

则y
$$\frac{y_1}{x_1} \frac{y_2}{x_2} x \frac{x_1 y_2}{x_1 x_2}$$

问题特征:

利用性质 4 和 5 分成六个行列式相加

其余结合为零故

$$= \begin{vmatrix} 1 & \cos^{2} & \cos^{2} & \cos^{2} & \cos^{2} \\ 1 & \cos^{2} & \cos^{2} & \cos^{2} \end{vmatrix} = \begin{vmatrix} 2 & \sqrt{3} + (1) \sqrt{3} \\ 1 & \cos^{2} & \cos^{2} & \cos^{2} \end{vmatrix} = \begin{vmatrix} 2 & \sqrt{3} + (1) \sqrt{3} \\ 2 & \sqrt{3} + (1) \sqrt{3} \end{vmatrix} = \begin{vmatrix} 2 & \cos^{2} & 1 & \cos^{2} & \cos^{2} \\ 2 & \cos^{2} & 1 & \cos^{2} & \cos^{2} \end{vmatrix}$$

```
习题一
```

13 (1)

根据" 定义法 "
$$D x^n (1)^{l(2.3.4.5...n)} y^n x^n (1)^{n-1} y^n$$

$$\frac{n(n+1)}{2} \quad 2 \quad 3 \quad L \quad n-1 \quad n$$

$$\frac{n(n+1)}{2} \quad 3 \quad 4 \quad L \quad n \quad 1$$

$$L \quad L \quad L \quad L \quad L$$

$$\frac{n(n+1)}{2} \quad 1 \quad 2 \quad L \quad n-2 \quad n-1$$

$$= \frac{n(n+1)}{2} \begin{vmatrix} 1 & 2 & 3 & L & n-1 & n \\ 1 & 3 & 4 & L & n & 1 \\ L & L & L & L & L \\ 1 & 1 & 2 & L & n & 2 & n & 1 \end{vmatrix}$$

$$= -\frac{n(n+1)}{2} \begin{vmatrix} 1 & 1 & L & 1 & 1-n \\ 1 & 1 & L & 1-n & 1 \\ L & L & L & L & L \\ 1 & 1-n & L & 1 & 1 \\ 1 & 1 & L & 1 & 1 \end{vmatrix}$$

$$= -\frac{n(n+1)}{2} \begin{bmatrix} 1 & 1 & L & 1 & 1-n \\ 1 & 1 & L & 1-n & 1 \\ L & L & L & L & L \\ 1 & 1-n & L & 1 & 1 \\ 1 & 1 & L & 1 & 1 \end{bmatrix} - \frac{n(n-1)}{2} \begin{bmatrix} 1 & 1 & L & 0 & n \\ 1 & 1 & L & n & 0 \\ L & L & L & L & L \\ 1 & n & L & L & 0 \\ 1 & 0 & 0 & L & 0 \end{bmatrix}$$

$$(1)^{\frac{(n-1)(n-2)}{2}}(1)^{n-2}\frac{n(n-1)}{2}(1)^{\frac{n^2-3n-2}{2}}\frac{2n-2}{2}n^{n-1}\frac{n-1}{2}(1)^{\frac{n(n-1)}{2}}n^{n-1}\frac{n-1}{2}$$

^{范达蒙行列式} (-1)ⁿ⁽ⁿ⁻¹⁾ 1!2!L (n-1)!

注:根据范达蒙行列式原式 = $\begin{pmatrix} 1 \end{pmatrix} g \begin{pmatrix} 2 \end{pmatrix} L \begin{pmatrix} n & 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}^{1 \ 2 \ 3 \ L \ (n \ 1)} 1!2!L \begin{pmatrix} n & 1 \end{pmatrix}!$

 $\mathsf{L}\;\mathsf{L}$

-1 =
$$(1)^{\frac{n(n-1)}{2}}1!2!L$$
 (n 1)!

$$= a_{1}^{n} a_{2}^{n} L a_{n-1}^{n} \begin{vmatrix} 1 & \frac{b_{1}}{a_{1}} & \frac{b_{1}^{2}}{a_{1}^{2}} & L & \frac{b_{1}^{n-1}}{a_{1}^{n-1}} & \frac{b_{1}^{n}}{a_{1}^{n}} \\ 1 & \frac{b_{2}}{a_{2}} & \frac{b_{2}^{2}}{a_{2}^{2}} & L & \frac{b_{2}^{n-1}}{a_{2}^{n-1}} & \frac{b_{2}^{n}}{a_{2}^{n}} \\ L & L & L & L & L \\ 1 & \frac{b_{n-1}}{a_{n-1}} & \frac{b_{n-1}^{2}}{a_{n-1}^{2}} & L & \frac{b_{n-1}^{n-1}}{a_{n-1}^{n-1}} & \frac{b_{n-1}^{n}}{a_{n-1}^{n}} \end{vmatrix} = a_{1}^{n} a_{2}^{n} a_{3}^{n} L a_{n-1}^{n} \left(\frac{b_{1}}{a_{1}} & \frac{b_{1}}{a_{1}} \right) \quad (a_{1}b_{1} & a_{1}b_{1})$$

$$\begin{bmatrix} x_1 & 0 & 0 & L & 0 & 0 \\ 0 & x_2 & 0 & L & 0 & 0 \\ M & M & M & M & X_1 X_2 L & x_n a & a x_1 x_2 x_3 L & x_n \\ 0 & 0 & 0 & L & x_n & 0 \\ a & a & a & L & a & a \end{bmatrix}$$

$$\begin{bmatrix} a_0 & 1 & 0 & L & 0 & 0 \\ a_1 & x & 1 & L & 0 & 0 \\ M & M & M & M & M \\ a_{n \ 2} & 0 & 0 & L & x & 1 \\ a_{n \ 1} & 0 & 0 & L & 0 & x \\ \end{bmatrix}$$

 $xD_{n 1} a_{n 1}$

由此类推:

$$D_{n-1} \quad xD_{n-2} \quad a_{n-2}$$

L

$$D_2 xD_1 a_1$$

$$D \quad a_0 x^{n-1} \quad a_1 x^{n-2} \quad L \quad a_{n-1}$$

$$=(ab+1)(cd+1)-[a(-d)]=(ab+1)(cd+1)+ad$$

$$(2) == (4-6) (-1-15) = 32$$

$$(3) = ++$$

$$=-a(c-d)-a(d-b)-a(d-c)$$

=abd

= abd(c-b)(d-b)(c-d)

$$(4) = =$$

=(

==

16. 范达 行列式 V()==

- (1)因为为常数。所以 p(x) 是 n-1 次的多项式
- (2) 令 p(x)=0. 得 x=.x=..... 即 p(x) 的根为

第二章 矩阵代数

4. 计算下列矩阵乘积

(1) ==

```
(2)==
(3). \ (1,-1 \qquad , \ 2 \ ) = ( \ 1^*2 + \ ( \ -1 \ ) \ \ ^*1 + 2^*4, 1^*1 + (-1 \ ) \ \ ^*1 + 2^*2 \ \ , \ \ 1^*0 + \ ( \ -1 \ ) \ \ ^*3 + 2^*1 =
(9,4,1)
(4)(x,y,1)
= (x,y,1)
=
(5)
=
=
5. 设 A=, B=, 求
==
==
==
==
==
6.
(1)A =
n=1 时 A=
n=2 时 =
n=3 时 =A=
假设
       (1当 n=1时,=
       (2假设当 n2时(n为自然数)成立,令 n=k,则=成立;
       当 n=k+1 时
  =A=
=成立
综上当 n 微自然数时
        1 1 0
(2) A 0 1 1
        0 0 1
                1 1 0
当 n=1 时 , A<sup>1</sup> 0 1 1
                 0 0 1
```

假设 n=k+1 时

1 1 k
$$\frac{k(k \ 1)}{2}$$

= 0 1 1 k 成立
0 0 1

$$1$$
 n $\frac{n(n-1)}{2}$ 综上当 n 为自然数时 , A 0 1 n 0 1 1

0 0

0

 a^k 000a

整理得

$$a^{k\ 1}$$
 $(k\ 1)a^k$ $C_{k\ 1}^2a^{(k\ 1)\ 2}$ $C_{k\ 1}^3a^{(k\ 1)\ 3}$ $a^{k\ 1}$ 0 $a^{k\ 1}$ $(k\ 1)a^k$ $C_{k\ 1}^2a^{(k\ 1)\ 2}$ 成立 0 0 0 $a^{k\ 1}$ 0 0 0 0

综

上

1 4 2

7、已知 B= 0 3 2

0 4 3

证明 Bⁿ {E, 当 n 为偶数;

B, 当 n 为奇数

证明:

 $B^{2k} (B^2)^k E^k E$

 B^{2k-1} $B^{2k}B$ EB B

Bⁿ = { E, 当 n 为偶数;

B, 当 n 为奇数

8、证明两个 n 阶上三角形矩阵的乘积仍为一个上三角形矩阵。

证明:设两个 n 阶上三角形矩阵为 A,B,

根据矩阵乘法,有

0

0

则可知 AB为上三角形矩阵

同理,可得 BA也为上三角形矩阵。

9、若 AB=BA,AC=CA证明: A、B、C为同阶矩阵,且 A(B+C)=(B+C)A,A(BC)=BCA.

证:设
$$A=(a_{ij})_{m\ n}$$
 , $B=(B_{ij})_{n\ t}$, $C=(C_{ij})_{n\ s}$

由题知 AB、BA有意义,则可知必有 m=s,又由于 AB=BA,且 AB为 m× n 阶矩阵,则可知 m=n,所以 A、B 均为 n 阶矩阵。同理可知 A C均为 n 阶矩阵,故可得 A、B、C为同阶矩阵

- 10、已知 n 阶矩阵 A 和 B 满足等式 AB=BA, 证明:
- (1)
- (2)
- (3)

11、

12、证明

13、

14、

15、

1 1 0
当 n=1 时
$$A^1$$
= 0 1 1
0 0 1

假设 n=k+1 时

1 1 k
$$\frac{k(k \ 1)}{2}$$

= 0 1 1 k 成立
0 0 1

$$\mathbb{A}_{A=2}$$
时 \mathbb{A}^2 \mathbb{A}

综

16、(1)

$$2x_1 \quad 5x_3 \quad 4$$

$$2x_2 \quad 5x_4 \quad \ 6$$

$$x_1 \ 3x_3 \ 2$$

$$x_2 \ 3x_4 \ 1$$

由 得:

$$x_1$$
 2; x_2 23; x_3 0; x_4 8;

$$x_1$$
 x_2 3 6 2 4 x_3 x_4 4 8 9 18

$$3x_1 \quad 4x_2 \quad 2$$

$$6x_1$$
 $8x_2$ 4

$$3x_3 \quad 4x_4 \quad 9$$

$$6x_3$$
 $8x_4$ 18

$$x_1$$
 $x_1; x_2$ $\frac{1}{4}(2 \ 3x_1); x_3$ $x_3; x_4$ $\frac{1}{4}(9 \ 3x_3)$

得:
$$x$$
 $x_1 = \frac{1}{4}(2 - 3x_1)$ $x_3 = \frac{1}{4}(9 - 3x_3)$

由方程组,得:

$$x_1$$
 1; x_2 1; x_3 3

3
 1
 2

$$x_1$$
 x_2
 3
 9

 4
 3
 3
 x_3
 x_4
 1
 11

 1
 3
 0
 x_5
 x_6
 7
 5

$$3x_1$$
 x_3 $2x_5$ 3 $3x_2$ x_4 $2x_6$ 9 $4x_1$ $3x_3$ x_5 1 $4x_2$ $3x_4$ $3x_6$ 11 x_1 $3x_3$ 7 x_2 $3x_4$ 5

得
$$x_1$$
 $x_1; x_2$ $x_2; x_3$ $\frac{1}{3}(7 x_1);$ x_4 $\frac{1}{3}(7 x_2); x_5$ $\frac{1}{3}(8 5x_1); x_6$ $\frac{1}{3}(8 5x_2);$

(5)

得
$$x_1$$
 2; x_2 1; x_3 0; x_4 1; x_5 3; x_6 4; x_7 1; x_8 0; x_9 2

19、 (1) 解:

方程组的解为:

$$x_1, x_2, x_3, \frac{D_1}{D}, \frac{D_2}{D}, \frac{D_3}{D}$$
 2 2 3

(2)

$$D_1 = \begin{bmatrix} 5 & 1 & 1 & 1 \\ 2 & 2 & 1 & 4 \\ 2 & 3 & 1 & 5 \\ 0 & 1 & 2 & 11 \end{bmatrix} \qquad \begin{bmatrix} 1 & 5 & 1 & 1 \\ 1 & 2 & 1 & 4 \\ 2 & 2 & 1 & 5 \\ 3 & 1 & 2 & 11 \end{bmatrix} \qquad 284$$

方程组的解为:

$$x_1, \quad x_2, \quad x_2, \quad x_4, \qquad \frac{D_1}{D}\,, \quad \frac{D_2}{D}\,, \quad \frac{D_3}{D} \quad \frac{D_4}{D} \qquad 1, \quad 2, \quad 3, \quad 1$$

(3)

方程组的解为:

D
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix}$$
 $\begin{vmatrix} ab^2 & bc^2 & ca^2 & b^2c & a^2b & c^2a \\ ab(b & a) & bc(c & b) & ac(a & c) \end{vmatrix}$ $\begin{vmatrix} 1 & 1 & 1 \\ ab^2 & ca^2 & b^2c & a^2b & c^2a \\ ab(b & a) & bc(c & b) & ac(a & c) \end{vmatrix}$

意义;则其他情况 $D \mid A \mid 0$

$$x, y, z = \frac{D_1}{D}, \frac{D_2}{D}, \frac{D_3}{D} = a, b, c$$

(5)

Ε

0 0 1

$$A=A$$
'

Q A 为可逆对称矩阵

$$(A')$$
 = (A^{1})

$$A^{1} = (A^{1})^{1}$$

可逆对称矩阵的逆矩阵也是对称矩阵。

Q A 为 n 阶对称矩阵

$$(A^2)$$
 '= A^2

A² 为对称矩阵

QB是n阶反对称矩阵

$$B' = -B$$

$$(B^2)$$
 '=(BB) '=B'B'

QB是n阶反对称矩阵

$$(B^{2})^{2} = (-B)(-B)=B^{2}$$

B ² 是对称矩阵

(AB-BA) '

=AB-BA

AB-BA 为对称矩阵。

(2)必要性: QAB为反对称矩阵

$$又Q$$
 (AB) '=B'A'=-BA

AB=BA

充分性: Q AB=BA

AB为反对称矩阵

综上所述: AB是反对称矩阵的充分必要条件是 AB=BA

 X_{11}

26. 解:设矩阵 X为 x=

 \mathbf{X}_{n1}

则
$$x^{T} = x_{11} x_{21}$$
 ??? x_{n1}

$$Q x^T Ax=0$$

即

$$A_{11}x_{11} \quad A_{21}x_{21} \quad L \quad A_{n1}x_{n1} ? A_{12}x_{11} \quad A_{22}x_{21} \quad L \quad A_{n2}x_{n1}L \quad A_{1n}x_{11} \quad L \quad A_{nn}x_{n1} \quad _{1}n$$

 X_{11}

X₂₁ =0

M

 X_{n1} $_{n-1}$

Q 对任意 n 1矩阵都成立

$$A_{11}$$
 A_{21} L A_{nn} 0

A=0

27. 证: : Q A 为正交矩阵

$$A^T = A$$

$$A \qquad = \frac{A}{|A|} = A^* = A^T$$

又Q正交矩阵为可逆矩阵

$$A_{ij}$$
 a_{ij} $(i, j 1,2L n)$

$$: Q \ A_{ij} \quad a_{ij} \left| A \right| \quad 1$$

$$A^{1} = \frac{A}{|A|} = A^{*} = A$$

$$A^{T} (A^{1})^{T}$$

$$= (A^{\mathsf{T}})^{\mathsf{1}}$$

$$= (AE^{T})^{1}$$

= A

28. 解: A? A 1 (B UV') B 1
$$\frac{1}{r}$$
? B 1 V'B 1

= E $\frac{1}{r}$ UV'B 1 1 r UV'B 1

= E E O

V 1 UV'B 1 h A? A 1 E

依次用 V左乘和用 U右乘 V 1 UV B ¹消去 V U

得从而得证

29. 解:(1)判断 X可逆即:

$$|X| \begin{vmatrix} 0 & A \\ C & 0 \end{vmatrix} \qquad 1 |A||C|$$

因 A、C可逆,

则
$$A$$
 O C O 即 X O

则X可逆。

=
$$\begin{array}{ccc} Ca_{11} & Aa_{12} \\ Ca_{21} & Aa_{22} \end{array}$$

=E

$$\begin{bmatrix} x^1 & 0 & C \\ A^1 & 0 \end{bmatrix}$$

$$A A^2 E$$

$$A_1^3 = \begin{bmatrix} 1 & 1 & ^3 & 1 & 2 & 1 & 1 & 1 & 3 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 1 & 4 & \frac{3}{2} \\ 2 & 8 & 1 & \frac{1}{2} \end{bmatrix}$$

同理
$$EA_8$$
 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{3}$ 0 $\frac{7}{6}$ $\frac{1}{6}$ $\frac{1}{2}$

$$Z = \begin{bmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} & 0 & 0 & 1 \\ \frac{7}{6} & \frac{1}{6} & \frac{1}{2} & 2 & 0 & 1 & \frac{1}{2} \\ \frac{7}{6} & \frac{1}{6} & \frac{1}{2} & 2 & 0 & 1 & \frac{1}{2} \\ \end{bmatrix}$$

$$2 = \frac{7}{12}$$

$$2 = \frac{7}{12}$$

$$2 = \frac{7}{12}$$

$$2 = \frac{11}{12}$$

第三章 线性方程组

1. 证:假设 1 2, 2 3, 3 1线性相关,

则 1, 2, 3 不会为 0, 使得

又由 1, 2, 3线性无关 ,故

$$_{1}$$
+ $_{3}$ =0
 $_{1}$ + $_{2}$ 0
 $_{2}$ $_{3}$ 0

故由克莱默法则知: ₁ ₂ ₃ 0, 矛盾

故结论正确。

2. \mathbb{M} : = X_1, X_2, X_3, X_4

由3 1- +2 2 5 3 可得:

3、不一定。原式: $\mathbf{k}_{\scriptscriptstyle 1}$ 1 $\mathbf{k}_{\scriptscriptstyle 2}$ 2 \mathbf{L} $\mathbf{k}_{\scriptscriptstyle m}$ \mathbf{m} 0

故仅可得到 ₁ ₁ ₂ ₂ ,L , _m 线性无关

将每个向量任意拆分得到的新向量显然不一定仍然线性相关 例如向量成比例或含有零向量

4、不正确 使两等式成立的两组系数一般来说是不相等的,所以不可以做那样的公式提取

即 k₁ k₁ L k_m k_m

5、提示:含有零向量就一定线性相关

极大线性相关组中每一向量都无法用其他组中向量给出, 因此可用一极大线性无关组加零 向量构成向量组

6. 证:假设 _{1, 2}, L , _m线性相关 ,

由题意知,必存在一组使得

1 1 L m 1

由假设 1, 2L , m线性相关

必存在一组不全为 0的数 k_1, k_2, L k_m

使得: k₁ 1 L k_{m m} 0 2

由<1>与<2>可能:

= ₁ k_1 ₁ L _m k_m _m

但 的表示式是唯一的,故

$$_1+k_1$$
 $_1,L$ $_n$ k_m $_m$

即得: k_1 k_2 L k_m 0矛盾

故结论成立。

7. 证:设 1, 2 L , 为 A的列向量,

则 AB 0可写成:

由于 1, 2,L , n线性无关,则

 b_{ij} 0,1 i n,1 j p,故 B=0。

6、证明:假设 $_{1,2}$, $_{L}$, $_{m}$ 线性相关,则 $_{1,2}$, $_{L}$, $_{m}$, 线性相关(部分相关则全体相关) 所以存在 $_{m+1}$ 个不完全为 0 的数满足

1, 2,L , m 本来线性相关,故 可为 0,可不为 0

(1) 0 则 无法用 _{1, 2},L , _m线性表出

而 1, 2,L , m线性相关,根据定义,至少有一个向量可用其他 m-1 个向量表出,我们不妨设

$$_{\mathsf{m}}$$
 k_{1} $\mathsf{1}$ k_{2} $\mathsf{2}$ L k_{m} $\mathsf{1}$ m $\mathsf{1}$

则
$$\frac{1}{1}$$
 k_1 k_2 k_2 k_3 k_4 k_4 k_4 k_4 k_4 k_5 k_6 k_6 k_6 k_7 k_8 k_8

这样得到了 的另一种表出式,即表出不唯一

综上,假设成立条件下得到的结论与"可用 $_1$, $_2$, L, $_m$ 唯一表出"矛盾

故假设不成立, 1, 2,L , m线性无关

```
7、将 A表示为 A
                    <sub>1</sub>, <sub>2</sub>,L , <sub>n</sub> ,B表示为 B
                                                       M
                                                        n
AB
               2 2 L
                            n n
若 1, 2,L , n线性无关,则必有
                                          _{2} L
                                                     n 0
                                                               B 0
                                   1
同理可证 A
P117 T8
解
                                                                             1
                                                  1 2 行+ 4 行
     4 10 0
                                       10
                                                                     10
                                                                                                 10 0
                                            0
                                                                 4
                                                                        0
                                                  五
5
2
2
7
2
7
7
7
7
                   31 行 + 4 行
                                                            0 -20
        18 4
                                -20
                                      18
                                                                    -52
                                                                                           -20
                                                                                                -52 4
                                                                        4
                                                                              互换 3 ,4 行
                   7 1 行 + 2 行
 17
    18 40 10
                                 -50
                                      -130
                                                                0
                                                                     0
                                                                         0
                                           10
                                                             0
                                                                                                 -4
                                                                                                     0
 3 7 13 1
                                      -17
                                  -5
                                                                 0
                                                                     -4
                                                                                                 0
                                                                                                     0
由此 r=3
解
                                                                             2
                                                   (
                                                                                                      )
     1
 2
         11
              2
                                   2
                                       11
                                            2
                                                             1 2 11
                                                                        2
                                                                                          1 2 11
                                                                              3 2 行 3 行
4 2 行 4 行
                                                  41行 3行
          4
                                  1
                                        4
                    互换 1,2行
                                                  1行 4行
                                                                3 12
 11
      4
         56
              5
                                  11
                                       56
                                            5
                                                                                                     0
                                                                         3
                                                                                             0
 2
      1 5
               6
                                1
                                   2
                                        5
                                             6
                                                                4 16
                                                                                             0
                                                                                                0
                                                                                                    0
由此 r=2
解
                                                                             3
     0 0
                                           0
                                               0
                                                                                          1
                   4
                                                                                               4
              2
                                           2
                                               3
                                                                                     3
                                                                                         13
                                                                                              28
 0
         0
                   5
                                                   14
                                                        32
                                                                             0
                         互换 1 ,3 行
                                                                41行 3行
                         互换 2 ,4 行
                                                                 1行 2行
                                           5
                                                   32
                                                                                         28
 0
     0
         1
              3
                   6
                                               6
                                                        77
                                                                                 5
                                                                                     6
                                                                                              61
                                                   2
                                                                                          2
                  32
                                                         5
         3
             14
                                               0
                                                                                               5
                                                                             0
                                                                                     0
             32
     5 6
                                                    3
                                                         6
                                                                                          3
                                                                                               6
                 77
                                           0
                                                                                 0
                                              1
                                                                             0
                 1 0
                          0
                                 1
                                       4
                                                               0 0
                                                                        1
                                                                              4
                                                            1
                                13
                 0 2
                           3
                                       28
   \frac{5}{2} 2 行 3 行 \frac{1}{2} 2 行 4 行
                                              3 行 4 行
2
3 3 行 5 行
                           3
2
3
2
                                9
2
9
2
                                       18
                 0 0
                                                            0 0
                                                              0
                                       18
                                                            0 0 0
                                3
                 0 0
                                       6
由此 r=3
解
                                                                            4
                                               \frac{1}{2} \quad \frac{1}{2} \quad 1
                                    2 00 5
                         \frac{1}{2} 1 行 3 行 \frac{3}{2} 1 行 2 行
                                          5
                                                                    2 行 3 行
                                                                                   5
          2 0 1
      5
                                                                                                0 0
                                           5
```

```
由此 r=2
解
                                          (
                                                                5
                                                       2 1 行 3 行
    2
                  2
 3
         1
              3
                                 2
                                                       \frac{3}{2} 1 行 2 行
                                                                                   5
2
                                                                          \frac{11}{2}
                      互换 2 ,3 行
                                    2
 2
                                 3
                                             3
         3
                  3
                                                                 0
                                         1
                                    5
 4
    5
             6
                                             6
                                         5
         5
                                                 1
                                                                     7
                                                                                    7
                                                                          11
                                                                  0
              2
                  1
                       3
   22行 3行
                  0
                                 2
              0
                       0
由此 r=3
解:(6)
          0 0
                              1 0
                                        0
                                                                      0 0
           0
                                 1
                                     0
                                                                      0 0
       0
                                        0
                                                           0 1
             0
                                                 1行 2行
                   互换 4 ,5 行
           0
                                                             1
             0
                                                           0
 0
                                     0
    0
                              0
                                 1
                                                           0
                                                              1
                                                                  0
    1 0
                                 0
                                    1
                                                                         0
                              0
                                                           0
                                                             0
                                                                      1
          1
                                           0
                                                                  1
                        0
                           0
                                               0
                        0
                           0
                                            0
   2 行 3 行
   2 行 4 行
                                  3 行 4 行
                0
                     2
                        0
                           0
                                               0
                                                   2
                                                       0
                                                          0
                 0
              0
                                               0
                                            0
                                                       1
             0 0
                     1
                                               0
                                                       0
                         1
                                            0
                                                   0
                            0
                                                          1
由此 r=5
T9 解(1):设向量组线性相关,则
 1 1
       2 2
             3 3
                    4 4
 (1,3,5,1,4,0) (2,3,2,2,2,2,2) (3,2,3,3,3,3) (4,4,4,4,4,4)
  ( \ _{1} \ _{2} \ _{3} \ _{4},3 \ _{1} \ 3 \ _{2} \ 2 \ _{3} \ 4 \ _{4},5 \ _{1} \ 2 \ _{2} \ _{3} \ _{4},\ 4 \ _{1} \ 2 \ _{2} \ _{3} \ _{4},\ _{2} \ _{3} \ _{4})
  0
 1 2 3 4 0 1
 3 _1 3 _2 2 _3 4 _4 0 2
 5 1 2 2 3 4 0 3
 2 3 4 0 5
由 1 , 3 得: 1 - 2 2
```

由 3 , 4 得: 1 2 4

代入 3 式,得: 5 1 2 2 4 10 2 3 2 0

2 0

1 2 3 4 0

线性无关

由此 r=4

10 (1) 证:由 1, 2,L , m 线性相关

则必有一组不全为 0 的数 $_{1, 2}$, $_{L}$, $_{m}$

使得 _{1 1, 2 2},L , _{m m} 0

既有: ₁a₁₁, ₂a₂₁,L , _ma_{m1} 0

$$_{1}a_{12}$$
, $_{2}a_{22}$,L, $_{m}a_{m2}$ 0
(*) K
 $_{1}a_{1n}$, $_{2}a_{2n}$,L, $_{m}a_{mn}$ 0

从 $_{1,2}$, $_{L}$, $_{m}$ 中每一个向量中去掉第 $_{1}$, $_{1}$, $_{2}$, $_{L}$, $_{1}$, $_{3}$, 就相当于在上述方程组中去掉 S 个方程

剩下的方程仍成立

既有不全为零的数 1, 2,L , s

使得: 1 1, 2 2, L , s s 0

从而: 1, 2, L, s 线性相关

```
显然当 1, 2, L, s线性无关时
```

由上面的证明可知 1^p, 2^p,L , s^p肯定线性无关

(2)由(1)的证明很显然得到结论

11、证明:把 i (1,ti,ti,ti,K,ti) (i 1,2,K,r,r n)作为矩阵 A行向量写成矩阵 A

只须证 A的行量组线性无关即可

即证: r_A r

显然 A中有一个 r 阶子式

故有 r_A r , 从而结论成立

12、证:先证当 ₁, ₂,L , _s可由 ₁, ₂,L , _m线性表示出时 , ₁, ₂,L , _s的秩小于等于 ₁, ₂,L , _m的秩

不妨设: 1, 2,L , s的极大无关组为 1, 2,L , r ;

1, 2,L , m 的极大无关组为 1, 2,L , t

只须证: r t即可

假设 r t

那么由条件可知: 1, 2,L , r可由 1, 2,L , t 线性表出 , 即存在一矩阵 k_{t} r , 使得

 X_1

在上式两端同右乘一列向量 X_2 , 即得: M

 \mathbf{X}_{r}

只要找到一组不全为 0 的数 x_1, x_2, L , x_r , 使得:

就能说明 $_{1,2}$, $_{L}$, $_{r}$ 线性相关,与 $_{1,2}$, $_{L}$, $_{r}$ 线性无关矛盾

事实上:由于 \mathbf{r} \mathbf{t} $\mathbf{r}_{k_{s,t}}$,所以上述方程组一定有非 $\mathbf{0}$ 解

故结论成立,同理可证 r t ,从而有 r t 13.证:

(1) r s时,

若 det(k) k 0,

则 $M \times 1$ M M M M

说明,向量组 B与A可相互线性表示,又由 A线性无关,其秩 所以 r(B) S,从而 B线性无关

反之:若 B线性无关,考察 $_{1\ 1}$ + $_{2\ 2}$ +L + $_{s\ s}$ 0 代入并整理得:

$$a_{11}$$
 L a_{1s} \Leftrightarrow k a_{21} L a_{2s} L L a_{ss} r s

由上式可得:

$$(\ _{1}a_{11} \ _{2}a_{21} \ L \ _{s}a_{s1})_{1}$$
 $(\ _{1}a_{12} \ _{2}a_{22} \ L \ _{s}a_{s2})_{2} \ L$
 $(\ _{1}a_{1s} \ _{2}a_{2s} \ L \ _{s}a_{ss})_{s}$

```
由 1, 2,L , s线性无关,所以
         _1a_{11} L _sa_{s1} 0
 (*) L
 _1a_{s1} L _sa_{ss} 0
若 | k | 0,则(*)有非0角
从而 1, 2,L , s
 \stackrel{2}{\text{M}} \quad \stackrel{k}{\text{M}} \quad \stackrel{2}{\text{M}} \quad
故 _{1}^{\mathsf{T}}, _{2}^{\mathsf{T}}, _{1}^{\mathsf{L}}, _{r}^{\mathsf{T}} _{1}^{\mathsf{T}}, _{2}^{\mathsf{T}}, _{s}^{\mathsf{L}}, _{s}^{\mathsf{T}}
考查: T T L T D
即 \begin{bmatrix} T & T \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} T & 2 \\ 1 & M \end{bmatrix} 0
将 \begin{bmatrix} \mathsf{T} & \mathsf{T} & \mathsf{L} & \mathsf{T} & \mathsf{T} & \mathsf{T} & \mathsf{T} & \mathsf{T} \\ \mathsf{1} & \mathsf{1} & \mathsf{2} & \mathsf{L} & \mathsf{1} & \mathsf{1} & \mathsf{2} & \mathsf{L} & \mathsf{1} & \mathsf{s} \end{bmatrix} \mathsf{K}^\mathsf{T} 代入上式得:
     \begin{bmatrix} T & T \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} T & T \\ s \end{bmatrix}, \begin{bmatrix} T & k \end{bmatrix}
由于 _1, _2, _1, _3, 线性无关 , _1, _2, _1, _3 也线性无关
故 \mathbf{k}^{\mathsf{T}} \mathbf{k}^{\mathsf{T}} 0 M
                        X_1
而方程组 k<sup>T</sup> X<sub>2</sub> 0 只有 0 解 M
                                                                        r_{k^T} r
```

 $\mathbf{X}_{\mathbf{r}}$

 X_1

而 $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{2$

- 14. 记住一下常用矩阵秩的性质
- (1) $r_{A_{min}}$ min m, n
- $(2) r_A r_{A^r}$
- (3)若 P,Q 可逆,则 r_{PAQ} r_A
- (4) max r_A , r_B $r_{A,B}$ r_A r_B

证法一:由上述性质(4)条, $r_{A,B}$ r_A r_B

而 A B,B ^{列变} A,B

所以 $r_{A\ B}$ $r_{(A\ B,B)}$ $r_{(A,B)}$ r_{A} r_{B}

证法二:设 A 1, 2,L, n, B 1, 2,L, n (A,B 同型,所以列

则 A B $_1$ $_1$, $_2$ $_2$, L , $_n$ $_n$

显然 A B 的列向量组可由 $_{1,2}$,L , $_{n}$ 与 $_{1,2}$,L , $_{n}$ 的极大无关组线性表出

若设 _{i,}, _{i₂},L , _{i,}, _{j₁}, _{j₂},L , _{j₁}分别为 ₁, ₂,L , _n与 ₁, ₂,L , _n的极无关组

那么 A B 的列向量组可由 $i_1, i_2, L, i_1, i_2, L, i_1, i_2, L, i_1, i_2, L, i_1, i_2, L$ 所以

 $r_{A B}$ r_{A} r_{B}

14、(第二种)证明:设有向量组 A= \mathbf{a}_{ij} $_{mxn}$, B= \mathbf{b}_{ij} $_{mxn}$

A的行向量组为: 1, 2,..., m

其极大线性无关组为: i1, i2, ···, irA

B的行向量组为: 1, 2,..., m

其极大线性无关组为: j₁, j₂,..., j_rB

A + B 的行向量组记为: 1, 2, ..., m

其中 1 1 1, 2 2 2,····, m m m

则 1, 2, ····, m , i1, i2, ····, rA , j1, j2, ····, jrB

有

A B . 又 A B

即有 A A B

习题三

15、解:对增广矩阵进行初等变换.

2 3 1 1 3 2 5 3 2 В 2 1 2 2 3

-3 1行+2行 2 1行+3行

1 -2 3 -1 1 -1 2 行+ 3 行

1 -2 3 -1 1

0 5 -4 0 -1

0 5 -4 0 -1

0 5 -4 0 1

0 0 0 0 2

则 A B 无解

解:对方程组的增广矩阵进行初等变换.

В

-5 3 2 4 2 4 1 7 3 5 5 7 4 6 3

 $-\frac{7}{3}$ 1 行 + 2 行 $-\frac{5}{3}$ 1 行 + 4 行

3 -5 2 4 2

-1 2 行+ 3 行

3 -5 2 2 0 0 0 0

则 A 无解 В

解:对方程组的增广矩阵进行初等变换.(课本第119页题目出错,应该为

8 $2x_1$ $5x_2$ $8x_3$ $4x_1$ $3x_2$ 9 $9x_3$ $2x_1$ $3x_2$ 7 $5x_3$ 12 $7x_3$ $8x_2$ X_1

则 A = B = 3有唯一解。即唯一解为(3,2,1,)。

 $2x_1$ $5x_2$ $8x_3$ 8 x_1 3 由方程组 $7x_2$ $7x_3$ 7 解得: x_2 2 x_3 1 x_3 1

(4)、解:对方程组的增广矩阵进行初等变换.

2行+3行

-2 2行+4行

则 A = B = 3 < 6 只方程组有无穷多解。

先求它的一个特解,与阶梯形矩阵对应的方程组为

令上式中的 X_3 X_5 X_6 0, 解得 x_1 $1,x_2$ $1,x_4$ 2.

于是得到特解: x₀ 1, 1,0,2,0,0

导出组的方程为:

```
令 x_3 1, x_5 x_6 0. 解得: x_1 1, x_2 1, x_4 0.
```

可求得导出组的基础解系: x_1 1, 1,1,0,0,0 , x_2 1,1,0, 2,1,0 , x_3 1,2,0, 3,0,1

于是方程组的通解为:

其中 **k**₁, **k**₂, **k**₃为任意常数.

16. (1) 欲使方程有解,须使 $r_A = r_B$

对 B 进行初等行变换,过程如下:

显然, =5时, $r_A=r_B=2$

故
$$x_1 = \frac{1}{5} \cdot 4 = \frac{2}{x_3} \cdot \frac{2}{6x_4}$$
 $x_2 = \frac{1}{5} \cdot 3 \cdot 3x_3 \cdot 7x_4$

(2)同样地,欲使该方程有解,须使 $r_{A}=r_{B}$

对 B 进行初等行变换,得

 交換
 行
 0
 1
 1
 2

 0
 1
 2
 1
 1
 2

 0
 1
 2
 1
 1
 2

= 1时

1 1 1 1
B = 0 0 0 0 此时
$$r_A = r_B$$
, 故方程有解。
0 0 0 0

= - 2时

$$1$$
 2 1 2 $B = 0$ 3 3 6 由于 r_A r_B , 故方程无解。 0 0 0 3

1且 2时, r_A=r_B=3,方程有唯一解,且

$$x_1$$
 x_2 x_3 1 x_3 1 1 1 1 2 x_3 1 1 1

(此处只考虑 = 1 及 = -2 两种特殊情形,原因在于,当 = 1 或 = -2 时会使

得矩阵第二、三行的首先为零,从而引起 r_A r_B 情况的出现)

$$x_1 \qquad \frac{1}{2}$$

$$x_2 \qquad \frac{1}{2}$$

$$x_3 \qquad \frac{(1)^2}{2}$$

17. 证明:记系数矩阵为A,增广矩阵为B。

$$a_{11}$$
 a_{12} L a_{1n} b_1 a_{21} a_{22} L a_{2n} b_2 另外: C = M M M M M a_{n1} a_{n2} L a_{nn} b_n b_1 b_2 L b_n 0

假设 $r_A = r$,可设 A 的前 r 行线性无关且第 (r+1) 行可用前 r 行线性表出,那么对于

 列,有可能使得 b_{r 1} ib_i (当然,这种关系也有可能满足) 。

但当这种关系部满足时, $r_A > r_B$,故 r_A r_B ,同理 r_c r_B 。

综上: r_c r_B r_A

由于 $r_A = r_c$, 故 $r_c = r_B = r_A$, 方程有解。

18. 解:首先明确在平面直角坐标系中,直线的方程应为 A x+By=C.

$$Ax_1$$
 By_1 C 那么 Ax_2 By_2 C Ax_3 By_3 C

$$x_1 \quad y_1 \quad C$$
 用矩阵表示,即为 $x_2 \quad y_2 \quad B \quad C$ $x_3 \quad y_3 \quad C$

若将 A .B 都看做自变量,将 $x_i \cdot y_i$ 看做系数,那么,增广矩阵即为

$$B = x_1 y_1 C$$

$$B = x_2 y_2 C$$

$$x_3 y_3 C$$

由于列向量线向相关,故 $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$

故
$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

若为
$$n(n > 3)$$
 点共线,则增广矩阵 $B' = \begin{cases} x_1 & y_1 & C \\ x_2 & y_2 & C \\ L & L & L \\ x_n & y_n & C \end{cases}$

该矩阵中第 3 个列向量可用前两个线向表出,故 r_B ' < 3 。

考虑直线的特殊情形:

当该直线经过原点(0 ,0)时, $r_B'=1$;其余情形下, $r_B'=2$

$$x_1 \quad y_1 \quad C$$
 $x_2 \quad y_2 \quad C$ $p_2 \quad C$ $p_4 \quad C$ $p_5 \quad C$ $p_6 \quad C$ $p_7 \quad C$ $p_8 \quad C$ $p_8 \quad C$

19. 解:对方程组的增广矩阵施行初等行变换

方程组有解的充要条件为 $r_A = r_B = 4$,则需 a_1 a_2 a_3 a_4 $a_5 = 0$

解出 B₁矩阵对应的方程组得:

$$x_1$$
 x_5 a_1 a_2 a_3 a_4 x_2 x_5 a_2 a_3 a_4 x_3 x_5 a_3 a_4 x_4 x_5 a_4

令 $x_5 = 0$ 得到方程组的特解

20. 证明

(1)方程组的系数矩阵 A

系数 a,b,c,d,e 中有两个等于 -1

即 a+1,b+1,c+1,d+1,e+1 中有两个等于 0

则 r_A=4, 因此方程组必有非零解

(2)

已知任何系数都不等于 -1, 且 $\frac{a}{a}$ $\frac{b}{b}$ $\frac{c}{c}$ $\frac{d}{d}$ $\frac{e}{e}$ =1

则 $\frac{b}{b}$ $\frac{c}{c}$ $\frac{d}{d}$ $\frac{e}{e}$ $\frac{1}{a}$ =0 得 r_A =4, 因此方程组必有非零解 21.

(1) 方程组的系数矩阵 A 通过初等行变换化简

矩阵的秩 $r_A = 2 < 4$,基础解系由 2 个线性无关的解向量构成

A₁矩阵对应的方程组

$$x_{1} \quad \frac{1}{9} x_{3}^{\circ} \quad \frac{2}{9} x_{4}^{\circ}$$

$$x_{2} \quad \frac{8}{3} x_{3}^{\circ} \quad \frac{7}{3} x_{4}^{\circ}$$

令
$$x_3^{\circ}$$
 1, x_4° 0 代入解得 x_1 $\frac{1}{9}$ x_2 $\frac{8}{3}$

对应的解的向量为
$$x_1$$
 $\frac{1}{9}, \frac{8}{3}, 1, 0$

令
$$\hat{x}_3$$
 0, \hat{x}_4 1 代入解得 x_1 $\frac{2}{9}$ x_2 $\frac{7}{3}$

对应的解的向量为
$$x_2$$
 $\frac{2}{9}$, $\frac{7}{3}$,0,1

X₁, X₂是方程组的一个基础解系

r ur uu 则方程组通解为 x $k_{_1}$ $x_{_1}$ $k_{_2}$ $x_{_2}$. 其中 $k_{_1}$. $k_{_2}$ 为任意的实数

(2)方程组的系数矩阵 A

矩阵 A 的秩 $r_A = 2 < 4$, 基础解系由 2 个线性无关的解构成

A₁对应的方程组为

$$x_1 \quad 2x_2^{\circ} \quad \frac{2}{7}x_4^{\circ}$$
 $x_3 \quad \frac{5}{7}x_4^{\circ}$

令
$$\overset{\circ}{x_2}$$
 1, $\overset{\circ}{x_4}$ 0 可解得 x_1 2, x_3 0

ur 对应的解向量为 x₁ 2,1,0,0

令
$$\hat{x_2}$$
 0, $\hat{x_4}$ 1 可解得 x_1 $\frac{2}{7}$, x_3 $\frac{5}{7}$

对应的解向量为 x_2 $\frac{2}{7},0, \frac{5}{7},1$

 $\mathbf{x}_1, \mathbf{x}_2$ 是方程组的一个基础解系

方程组的通解为

$$egin{array}{lll} r & \mbox{\it ur} & \mbox{\it ur} & \mbox{\it x} & k_1 \, X_1 & k_2 \, X_2 \ , \mbox{\it j} + \mbox{\it k}_1 \ . & k_2 \mbox{\it 为任意的实数} \end{array}$$

(3)方程组的系数矩阵

r_A=4, 基础解系由 2 个线性无关的解向量构成

写出阶梯形对应的方程组

$$x_1$$
 x_5
 x_2 x_4
 x_3 x_4
 x_6 0

。 。 。
$$v$$
 令 x_4 1, x_5 0解出对应的解向量为 x_1 0,1,1,1,0,0

 $\mathbf{L}^{\mathbf{r}}$ $\mathbf{L}^{\mathbf{r}}$ $\mathbf{L}^{\mathbf{r}}$ 是方程组的一个基础解系

方程组的通解为

$$\mathbf{r}$$
 $\mathbf{u}\mathbf{r}$ $\mathbf{u}\mathbf{r}$ \mathbf{x} $\mathbf{k}_1\mathbf{x}_1$ $\mathbf{k}_2\mathbf{x}_2$, 其中 \mathbf{k}_1 . \mathbf{k}_2 为任意的实数

(4)方程组的系数矩阵 A

 $r_A = 3$,基础解系应由 2 个线性无关的解构成

阶梯矩阵对应的方程组为

$$\stackrel{\circ}{\circ} \stackrel{\circ}{x_3} \stackrel{\circ}{1}, \stackrel{\circ}{x_5} \stackrel{\circ}{0} \quad$$
解得对应的解向量为 $\stackrel{\mathsf{ur}}{x_1} \stackrel{\circ}{0}, \frac{1}{3}, 1, 0, 0$

$$\hat{x}_3 \hat{x}_3 \hat{x}_5 \hat{x}_$$

 $\mathbf{U}^{\mathbf{r}}$ $\mathbf{U}^{\mathbf{r}}$ \mathbf{X}_1 , \mathbf{X}_2 构成方程组的一个基础解系