Como parâmetro de comparação, levar em consideração a v1 submetida para o CBIC 2017

• Melhor resultado todas as mensagens: F1 **0.5054** (modelo B)

Evoluções v2

- Constraint na criação e em cada geração de indivíduos
 - Mais de uma massive function: fitness zero
 - Não ter if_then_else ou polaritySum* na raíz penalização de 20% do fitness
- Pesos para os dicionários

Dicionários/Pesos							
W1	W2	W 3	W4	W 5	W6	W 7	
LIU	Sentiwordnet	AFFIN	Vader	Slang	Effect	Semeval2015	

• Parâmetros principais [1]

o Gerações: 51

o População: 500

Testes 1

Usando valores discretos como terminais (0.0, 0.5, 1.0, 1.5, 2.0) para possíveis pesos e um range de valor real [0,2]

#	Indivíduo
1	polaritySumAVGUsingWeights(replaceNegatingWords(removeAllPonctuation(replaceBoosterWords(removeStop Words(replaceNegatingWords(replaceBoosterWords(boostUpperCase(x))))))), 0.5 , 0.0 , 0.31063506398117546 , 0.0 , 0.0 , 0.0 , 0.0)
2	polaritySumAVGUsingWeights(removeAllPonctuation(replaceBoosterWords(removeStopWords(replaceNegating Words(x)))), 0.0 , 0.0 , 1.6561909157376327 , positiveWordsQuantity(replaceNegatingWords(removeAllPonctuation(x))), negativeWordsQuantity(x), 0.0 , 0.0)
3	polaritySumAVGUsingWeights(replaceBoosterWords(removeAllPonctuation(removeStopWords(replaceNegating Words((x))))), 0.5 , 0.0 , 0.5 , positiveWordsQuantity(removeStopWords(replaceBoosterWords(removeLinks(removeAllPonctuation(replaceBoosterWords(replaceBoosterWords(removeAllPonctuation(replaceNegatingWords(removeAllPonctuation(replaceBoosterWords(removeAllPonctuation(replaceNegatingWords(x))))))))))))))))))))))))))))))))))))

Resultados

3 models evaluated - 7 dictionaries

AVG All F1 SemEval: **0.6011 Best** All F1 value: **0.6101** Desvio padrão: **0.64**

Algumas observações:

• Geração em que foi obtido o melhor indivíduo

Modelo 1: geração 40Modelo 2: geração 38Modelo 3: geração 44

Testes 2

Usando somente o valor discreto 0.0 e mantendo os valores reais [0,2]

#	Indivíduo
1	polaritySumAVGUsingWeights(removeStopWords(removeAllPonctuation(replaceNegatingWords(replaceBooster Words(x)))), sub(1.4917314878762928, 1.0666968653301865), if_then_else(hasURLs(removeAllPonctuation(removeStopWords(x))), 1.695040482181927, 0.0), if_then_else(hasURLs(removeLinks(replaceNegatingWords(removeAllPonctuation(x)))), 0.5791933567949965, 0.252301850185894), if_then_else(hasURLs(removeLinks(boostUpperCase(removeAllPonctuation(replaceNegatingWords(x))))), mul(1.4917314878762928, 1.5050939233561567), sub(1.4917314878762928, 1.4917314878762928)), 0.0, 0.0, 0.0)
2	polaritySumAVGUsingWeights(removeAllPonctuation(replaceNegatingWords(boostUpperCase(removeStopWords(replaceBoosterWords(removeLinks(x)))))), 0.4405453203256887, 0.0, 0.2494501229744468, 0.0, 0.0, 0.0, 0.0)
3	$if_then_else(hasURLs(x), add(sub(sub(\textbf{0.0}, add(negativeWordsQuantity(boostUpperCase(removeStopWords(removeStopWords(removeAllPonctuation(x)))))), mul(\textbf{0.0}, \textbf{0.0})), add(negativeWordsQuantity(removeStopWords(boostUpperCase(removeStopWords(removeStopWords(removeAllPonctuation(x)))))), mul(\textbf{0.0}, \textbf{0.0}))), positiveWordsQuantity(replaceNegatingWords(x))), add(polaritySumAVGUsingWeights(replaceNegatingWords(removeLinks(removeAllPonctuation(removeStopWords(x)))), 0.32170186496512987, 0.0, 1.7518934561906048, 0.32170186496512987, 0.0, 0.0, 0.0), add(sub(add(\textbf{0.0}, mul(\textbf{0.0}, \textbf{0.0}))), add(negativeWordsQuantity(boostUpperCase(removeStopWords(removeAllPonctuation(x))))), positiveWordsQuantity(x)))), positiveWordsQuantity(x))))$

3 models evaluated - 7 dictionaries

AVG All F1 SemEval: 0.608 Best All F1 value: 0.6105 Desvio padrão: 0.26

Algumas observações:

Geração em que foi obtido o melhor indivíduo

Modelo 1: geração 45Modelo 2: geração 33Modelo 3: geração 38

Próximos passos

- Mutação diferenciada para os valores dos pesos dos dicionários com probabilidade diferente
 - Manter as duas mutações
 - Aumentar a probabilidade de mutação dos valores, uma vez que está fortemente ligado com a criação do indivíduo
- Modificação dos parâmetros de população e gerações
 - Bons indivíduos estão sendo obtidos em gerações muito próximas do limite, o que sugere que ainda pode haver espaço para melhorias nos indivíduos se houverem mais gerações

- Manter 25 mil ciclos (50 * 500)
- [1] Sean Luke, Gabriel Catalin Balan, and Liviu Panait. Population Implosion in Genetic Programming Department of Computer Science, George Mason University 4400 University Drive MSN 4A5, Fairfax, VA 22030, USA