Eletricidade & Magnetismo

(2014-2015)

Relatório Individual de Laboratório

12 de dezembro de 2014

Nome:	N.º Mecanográfico:
D 1 ~	

Recomendações:

Turma P13

- O relatório é realizado individualmente;
- Leia atentamente todo o enunciado da prova e se tiver dúvidas coloque-as ao docente;
- Tem a duração exata de 2 horas, sem qualquer tolerância;
- O enunciado do relatório tem 2 versões distintas mas de igual dificuldade. Deverão indicar a versão (A ou B) no início da folha de resposta;
- Deverão justificar todas as respostas;
- Não será permitida a consulta dos guias, fichas ou dos registos efetuados durante as aulas;
- Não haverá formulário para as leis fundamentais (Lei de Ohm, Kirschoff, Faraday, Lenz, etc.). Equações de dedução complexa/demorada, caso sejam necessárias, estarão presentes no enunciado;
- Podem usar máquina de calcular com capacidades gráficas;
- O uso do computador/tablet está restringido apenas para uso no tratamento de dados (Excel, MatLAB, etc.) não podendo ser usado para consulta de PDF's ou ligação à Internet;
- O telemóvel deverá estar desligado durante a prova.

Cotações:

Questão	1	2	3	Total	
Pontos	50	75	75	200	
Obtidos					

Constantes fundamentais:

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$$
 $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$
 $e = 1.60 \times 10^{-19} \text{ C}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$

Versão A

1. Trabalho Prático 1 : Eletrostática

Recorde o Trabalho Prático 1, no qual determinou a capacidade elétrica de uma esfera condutora.

Neste trabalho aplicou diversos potenciais elevados a uma esfera condutora de raio $R \pm \Delta R = 4.50 \pm 0.05$ cm, adquirindo esta uma carga. Os valores dessa carga Q, para diferentes potenciais aplicados V, estão registados na Tabela 1.

Tabela 1: Carga (Q) da esfera em função do potencial (V) aplicado.

0 ()			3	1	,	· / I	
$V \pm 0.01 \text{ (kV)}$	0.52	1.85	3.14	3.93	5.39	6.43	
$Q \pm 1 \; (\mathrm{nC})$	12	17	25	29	35	41	

- 15
- (a) A carga da esfera não é medida diretamente. Explique sucintamente, como se determina o valor da carga.
- 25
- (b) Determine o valor experimental da capacidade elétrica da esfera $C_{\rm esfera}$ e respectivo erro. (Nota: Não precisa de representar graficamente os valores experimentais bem como a reta da linearização.)
- 10
- (c) Compare o valor experimental com o valor esperado, sabendo que a tensão aplicada à esfera condutora é proporcional à carga Q de acordo com a Eq. 1. Comente o resultado.

$$V = \frac{1}{4\pi\varepsilon_0 R} Q \tag{1}$$

2. Trabalho Prático 6: Indução Eletromagnética

Recorde o trabalho prático sobre a Indução eletromagnética.

- 10
- (a) Na primeira parte deste trabalho montou o circuito da Fig. 1, com o objetivo de estudar a Lei de Faraday e de Lenz.

Descreva o que observou no movimento dos ponteiros do galvanómetro, quando ligou a fonte de tensão e, à luz das leis de Faraday e de Lenz, indique o sentido da corrente induzida no circuito da bobina 2.

Figura 1:

(b) Considere um circuito no qual estão ligados em série um gerador de sinal, uma resistência de $R \pm \Delta R = 100 \pm 5~\Omega$ e um solenoide (daqui em diante referido como primário) de raio $r \pm \Delta r = 1.38 \pm 0.01$ cm e $N/l \pm \Delta N/l = 3000 \pm 15$ espiras por metro. Uma bobina (daqui em diante referida como secundário) de $N_b \pm \Delta N_b = 1200 \pm 6$ espiras envolve o primário. Aplica-se um sinal triangular ao circuito primário tendo-se observado nos terminais da resistência o sinal do Canal A da Fig. 2 (tracejado). O sinal induzido no secundário é o que se observa no Canal B da mesma figura (cheio).

30

i. Determine o coeficiente de indução mútua observado e compare-o com o esperado, sabendo que a força eletromotriz (f.e.m.) induzida no secundário é dada pela Eq. 2.

$$\varepsilon = \pi \mu_0 \frac{N}{l} r^2 N_b \frac{\mathrm{d}i}{\mathrm{d}t} \tag{2}$$

Figura 2: Visor do osciloscópio. O Canal A está representado a tracejado enquanto o Canal B a cheio.

15

ii. Justique convenientemente a forma do sinal induzido (Fig. 2 - cheio)

10

iii. Explique como efetuou as ligações à terra dos canais do oscilóscopio e do gerador de sinais. Justifique convenientemente a resposta.

10

iv. Se o sinal aplicado (Canal A) fosse quadrangular, o sinal induzido (Canal B) seria triangular?

3. Trabalho Prático 5 : Bobinas de Helmholtz

Recorde o trabalho prático sobre o estudo do campo magnético produzido pelas Bobinas de Helmholtz. Os resultados experimentais obtidos estão representados no gráfico da Fig. 3. Cada bobina tem de raio R=3.5 cm.

Figura 3: Tensão de Hall ao longo do eixo das bobinas.

- 20
- (a) A medição do campo foi feita com recurso a uma sonda de efeito de Hall. Para a calibração desta usou um solenoide padrão. Diga em que posição do solenoide colocou a sonda e porquê.
- 15
- (b) Sabendo que a constante de calibração da sonda $C_c \pm \Delta Cc = 34.9 \pm 0.5 \; (\text{mT/V})$, determine o valor do campo magnético para a Bobina 2 e respetivo erro, na posição $x = 11.5 \; \text{cm}$.
- 10
- (c) Indique, justificando, se trabalhou em configuração de Helmholtz e indique também a principal vantagem desta configuração de bobinas.
- 15
- (d) Conclua, através do gráfico, se se verifica ou não o princípio da sobreposição do campo magnetico no caso em que as bobinas têm corrente a fluir em sentidos opostos.
- (e) Determine o número de espiras da bobina 2 se nesta estiver a fluir uma corrente de I = 0.585 A, sabendo que o campo magnético por uma espira ao longo do seu eixo é dado pela Eq. 3.

$$B(x) = \frac{\mu_0}{2} \frac{IR^2}{(R^2 + x^2)^{3/2}}$$
 (3)

15

Página 4