## Large-scale power loss in ground-based CMB maps

Sigurd Naess<sup>1</sup>

<sup>1</sup>Institute of Theoretical Astrophysics, University of Oslo, Norway

#### ABSTRACT

#### 1. INTRODUCTION

CMB telescopes observe the sky by scanning their detectors across it while continuously reading off a series of samples from the detectors. Typically the signal-to-noise ratio of each sample is small, but by combining a large number of samples with knowledge of which direction the telescope was pointing at any time, it's possible to reconstruct an image of the sky. There are several ways of doing this, with the most common being maximum-likelihood, filter+bin and destriping. These all start by modelling the telescope data as

$$d = Pm + n \tag{1}$$

where d is the set of samples read off from the detectors (often called the time-ordered data), m is the set of pixels of the sky image we want to reconstruct, n is the noise in each sample (usually with significant correlations), and P is a pointing matrix that encodes how each sample responds to the pixels in the image.

Given the model, it's possible to either directly solve for an unbiased map (as in maximum likelihood mapmaking or destriping), or to measure and correct for the bias in a biased estimator (as in filter+bin mapmaking). However, this fails when the model does not actually describe the data, and this turns out to be the norm rather than the exception. The goal of this paper is to demonstrate the unintuitive and surprisingly large (O(1)) effect even seemingly inconsequential model errors can have when imaging the CMB. The full scope of these errors appears to be largely unappreciated, and I fear that most ground-based CMB analyses so far suffer from uncorrected bias at low multipoles in total intensity due to these effects.

### 2. SUBPIXEL ERRORS

Subpixel errors may be both the most common and most important class of model errors in CMB mapmaking. For efficiency reasons P is always<sup>1</sup> chosen to use simple nearest-neighbor interpolation, where the value of a sample is simply given by the value of the pixel



**Figure 1.** The noise model/inverse weights/inverse filter used in the subpixel bias demonstration in figures 3 and 4. It is a simple Fourier-diagonal 1/f + white noise spectrum typical for ground-based CMB observations. The frequency axis is in dimensionless units in this toy example, but for real telescopes the transition from white noise is typically a few Hz, corresponding to multipoles of hundreds on the sky.

nearest to it. This means that P can be implemented by simply reading off one pixel value per sample, and its transpose  $P^T$  consists of simply summing the value of the samples that hit each pixel. However, this comes at the cost of there being a discontinuous jump in values as one scans from one pixel to the next, as illustrated in figure 2. Hence, the closest the model can get to a smooth curve is a staircase-like function that hugs it, leaving a residual full of discontinuous jumps (the blue curve in the figure).

This by itself is not necessarily problematic. The trouble arises when this is coupled with a likelihood<sup>2</sup> where some modes have much less weight than others. Ground-based CMB telescopes suffer from atmospheric emission that acts as a large source of noise on large scales. This leads to time-ordered data noise power spectra similar to the one sketched in figure 1, with

<sup>&</sup>lt;sup>1</sup> I am not aware of any published CMB analysis that has done something else.

<sup>&</sup>lt;sup>2</sup> The equivalent for filter+bin is a filter that impacts some modes more than others (which is the whole point of a filter), and for destriping it's a baseline amplitude prior with those properties.

a white noise floor at short timescales (high frequency)

transitioning to a steep rise of several orders of magnitude as one moves to longer timescales (low frequency). Should cite Naess (2019).

# REFERENCES

Naess, S. K. 2019, JCAP, 2019, 060–060, How to avoid X'es around point sources in maximum likelihood CMB maps, http://dx.doi.org/10.1088/1475-7516/2019/12/060



Figure 2. a: Example path (red) of a detector across a few pixels. The area closest to each pixel center (black dots) is shown with dotted lines. In the nearest neighbor model, the value associated with each sample is simply that of the closest pixel, regardless of where inside that pixel it is. b: Example detector signal (red) for the same path. The closest matching model (green) leaves a jagged residual (blue) that has power on all lengthscales despite the signal itself being very smooth. For comparison, if our model were a constant zero, then the residual would just be the signal itself (red), and hence smooth. If smooth residuals are much cheaper in the likelihood than jagged ones, then a zero model will be preferred to one that hugs the signal as tightly as possible like the green curve.



Figure 3. Demonstration of large loss of power in longwavelength mode caused by the poor subpixel treatment in the standard nearest-neighbor pointing matrix. Figure 1 shows the noise model/inverse weights/inverse filter used in the various methods. signal: The input signal, a smooth long-wavelength mode, sampled at 10 samples per output pixel. binned: Simple binned map (the unweighted average per pixel). Very suboptimal in the presence of correlated noise, but unbiased. ML: Maximum-likelihood map. 2/3 of the signal is lost despite the naive expectation of biaslessness for this estimator. FB deobs: Filter+bin map debiased using an observation matrix. Identical to ML. FB detrans: Filter+bin map debiased by deconvolving a transfer function measured from simulations. Even more biased than the others due to ignoring mode coupling. **destripe**: Destriper in the limit of 1-sample baselines. Identical to ML.



**Figure 4.** Like figure 3, but with the input signal having the same nearest-neighbor pixelization as the models. In this case all models except FB detrans are unbiased.



Figure 5. Demonstration of large-scale bias in a multidetector system due to an interaction between strong largescale detector correlations in the noise model and large relative gain errors between the detectors. signal long: An input long-wavelength signal, with the same pixelization as the output to avoid subpixel bias. ML long: Corresponding maximum-likelihood map, which exhibits both an amplitude and phase error. signal short and ML short: The same, but for a short-wavelength mode. Here the bias is negligible, despite the model's gain errors being scale-independent.