BEST AVAILABLE COPY

*DOCUMENT 1/1 **DOCUMENT NUMBER** @: unavailable

DETAIL JAPANESE

1. JP,07-126481,A(1995)

PATENT ABSTRACTS OF JAPAN

(11) Publication number :

07-126481

(43) Date of publication of application: 16.05.1995

(51) Int. CI.

C08L 59/00 C08K 5/00

(21) Application number: 05-275546 (71) Applicant: POLYPLASTICS CO

(22) Date of filing: **04.11.1993** (72) Inventor : **KATO ATSUSHI**

(54) WEATHER-RESISTANT POLYACETAL RESIN COMPOSITION

(57) Abstract:

PURPOSE: To obtain a polyacetal resin composition exhibiting remarkably im proved weather resistance, considerably suppressed generation of crack and extremely little lowering of strength and useful as automobile parts, etc., by adding a weather (light) stabilizer to a specific polyacetal resin.

CONSTITUTION: The objective composition is produced by compounding (A) 100 pts. wt. of a polyacetal resin having a crystallization time of 15min with (B) 0.01-5 pts.wt. of a weather (light) stabilizer. Preferably, the component B is one or more kinds of substances selected from among benzotriazole substance, benzophenone substance, oxalic acid anilide substance, aromatic benzoate substance and cyanoacrylate substance and the component A is a polymer containing oxymethylene unit as main constituent unit and 3-30wt.% of ≥2C oxyalkylene unit.

LEGAL STATUS

Date of request for

22, 07, 1999

examination]

[Date of sending the examiner's 24.07.2001

decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for

application

[Patent number]

NEXT BACK SEARCH MENU **HELP**

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出頭公開發号

特開平7-126481

(43)公開日 平成7年(1995)5月16日

(51) Int.CL⁵ COSL 69/00 鐵別記号 庁内祭殖番号

LMM

PI

技術表示箇所

C08K 5/00

審査請求 未請求 請求項の数4 OL (全 6 頁)

号番颇出(15) 物類平5-275546 (71) 出願人 390006323 ポリプラスチックス株式会社 (22)出题日 平成5年(1993)11月4日 大阪府大阪市中央区安土町2丁目3番13号 (72) 発明者 加藤 淳 帶剛県富士市石坂83-1 (74)代理人 弁理士 古谷 寥 (外3名)

(54) 【発明の名称】 耐酸性ポリアセタール樹脂組成物

(57)【要約】

【目的】 ポリアセタール樹脂の本来有する機械物性、 摩擦磨耗性、成形性などを保持しながら、耐候性に優 れ、特に成形片表面のクラック発生が著しく抑制された ポリアセタール樹脂組成物を提供する。

【構成】 (A) 結晶化時間が5分以上であるポリアセタ ール樹脂 100重量部に対して(B) 耐候(光)安定剤0.01 ~5重登部を配合する。

【特許請求の範囲】

【請求項1】 (A) 結晶化時間が5分以上であるポリア セタール樹脂 100重置部に対して(B) 耐候 (光) 安定剤 9.01~5 重置部を配合してなる耐候性ポリアセタール樹 脂組成物。

1

【請求項2】 (B) 耐候(光) 安定剤がベンゾトリアゾ ール系物質、ベンゾフェノン系物質、蓚酸アニリド系物 🕆 質、芳香族ベンゾエート系物質、シアノアクリレート系 物質の1種又は2種以上と、ヒンダードアミン系物質と の併用よりなる請求項1に記載の耐候性ポリアセタール 10 趋脂組成物。

【請求項3】 (A) 結晶化時間が5分以上であるポリア セタール樹脂が、オキシメチレンユニットを主たる機成 単位とする重合体中に炭素数2以上のオキシアルキレン ユニットを3~30重置%含有するものである請求項1又 は2記載の耐候性ポリアセタール樹脂組成物。

【謂求項4】 炭素数2以上のオキシアルキレンユニッ トを構成するモノマー成分が、エチレンオキシド、1,3 ージオキソラン。ジェチレングリコールホルマール及び 1.4 - ブタンジオールホルマールの何れか1種以上であ 20 る請求項3記載の耐候性ポリアセタール樹脂組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は耐候性に優れ、特に成形 品表面のクラック発生が抑えられたポリアセタール樹脂 組成物に関する。さらに詳しくは、(A) 結晶化時間が5 分以上であるポリアセタール樹脂に (B) 耐候(光)安 定剤を配合してなる、ポリアセタール樹脂の本来有する 機械物性、摩擦磨耗性、成形性などを保持しながら、耐 候性に優れ、特に成形片表面のクラック発生が著しく卸 30 制されたポリアセタール樹脂組成物及びその成形品を提 供するものである。

[0002]

【従来の技術及び発明が解決しようとする課題】ポリア セタール樹脂は、機械的性質、耐疫労性、耐摩擦・磨耗 盤、耐薬品性、耐熱性及び成形性にも優れているため、 自動車、電気・電子機器その他精密機械、建材配管等の 分野において広く利用されている。しかしながら、用途 の拡大、多様化に伴い、その品質に対する要求はより高 度化する傾向を示している。要求される特性として、耐 40 候性が挙げられることがしばしばある。 しかし、ポリア セタール樹脂は光に対する悪露によりクラックが発生し 易い欠点があるために、使用できる場所が制限されてき た。この欠点が解決されれば、更に多くの分野でポリア キャニル結構の利用水質的できません 女人 小球が水が

特關平7-126481

ポリマー等の添加が必要であった。ここで、ポリアセタ ール以外の成分の多置添加は、ポリアセタール樹脂が本 奈持っている優れた機械的強度や耐疲労性、耐薬品性、 熱安定性等の低下を招き、耐候性は改善されてもなね、 利用できる分野が大きく制限されてきた。

[0003]

(2)

【課題を解決するための手段】本発明者等は、上記の如 き問題点を解決すべく鋭意検討を行った結果、結晶化時 間が一定以上のポリアセタール樹脂と耐候(光)安定剤 を用いることにより耐候性、特にクラック発生が改善さ れることを見出し、本発明を完成するに至った。即ち本 発明は、(A) 結晶化時間が5分以上であるポリアセター ル樹脂ねよび。(B) 耐候(光)安定剤、好ましくはベン ゾトリアゾール系物質、ベンゾフェノン系物質、蓚酸ア ニリド系物質。芳香族ベンゾエート系物質、シアノアク リレート系物質およびヒンダードアミン系物質より選ば れた1種又は2種以上よりなることを特徴とする耐候性 ポリアセタール樹脂組成物に関する。

【0004】本発明では、結晶化時間が5分以上、即 ち、ある一定以下の結晶化速度を持つポリアセタール樹 脂を用いることが、耐候性特にクラックの発生を抑制す る要因となっている。これは、おそらく結晶化速度が遅 いことで、成形品表面の残留歪みが少なくなることでク ラック発生が抑制されるものと考えられる。本発明でい う結晶化時間とは、熱緒院型DSC(示差走査熱量計、 例えばパーキンエルマー社製DSC?型)を用いて、ポ リアセタール榑脂を 200°Cで5分間保温した後。10°C/ 分の降温速度で 152℃まで降温し、その温度で保持した ときの、保持開始時間から結晶化発熱ピークまでの時間 のことである。本発明に供する樹脂のこの結晶化時間を 5分以上に調整せしめることによって、良好な樹脂組成 物を得るものである。使用するポリアセタール樹脂の結 晶化時間が5分より短いと、本発明の目的とする耐候性 改良効果が得られない。結晶化時間の上限は特に限定さ れないが、結晶化時間が長いと樹脂が硬化するまでの時 間が長くなり、成形効率の低下を招く場合があるため、 使用するポリアセタール樹脂の結晶化時間は 500分以下 であることが好ましい。結晶化時間が長いポリアセター ル樹脂は、窒化硼素、炭酸カルシウム、タルク等の結晶 核剤を用いることにより、調整が可能である。

【0005】本発明においては、結晶化時間が上記規定 内であるかぎり、ポリアセタール樹脂として、ホモボリ マー、およびコポリマーの何れも用いることが可能であ るが、オキシメチレンユニット(=00H, =)を主たる構成単 しょこうりゃれを見る対対の自じらへらり

ある。また、アセタールコポリマーは、分子が線状のみ ならず、分岐構造、架橋構造を有するものであっても良 いし、ポリアセタール樹脂の粘度は成形が可能な限り、 特に限定されない。ポリアセタールコポリマーの製造に 用いるコモノマー成分は特に限定されないが、一般的に は下記した一般式の構造を育するものが用いられる。

[0006]

[(t]

$$R_1$$
 $R_2 - C - 0$
 $R_3 - C - (R_5)$

【0007】(但し、R. R. R. R. R. R. は、同一又は異な る置換基であり、水素原子、アルキル蟇(1~5個の炭 素を有し0~3個の水素がハロゲン原子で置換されたも の、以下同じ)、または、ハロゲンで置換されたアルキ ル基を意味し、Reはメチレン基、オキシメチレン基、夫 メチレン基もしくはオキシメチレン基(この場合。p= ○~3の整数)、-(OH₂)。-OOH₂-(q = 1~4の整数) または-(O-Cho-Cho)。-OCho-(q = 1 ~4の整数)で示 される2 価の墓(この場合p=1)を示す。) 該コモノマーとしては、例えばエチレンオキシド。エピ クロルヒドリン、1,3-ジオキソラン、ジエテレングリ コールボルマール、1,4 - ブタンジオールボルマール、 1.3 - ジオキサン、プロビレンオキシド等が挙げられ る。中でもエチレンオキシド、1,3 - ジオキソラン、ジ ホルマールの中から選ばれた少なくとも一種であると、 結晶化時間を所望の範囲に調製し易く好きしい。

【0008】次に本発明において用いられる(8) 耐候 (光) 安定剤のうち好ましく用いられるものとしては、 ①ベンゾトリアゾール系物質、②ベンゾフェノン系物 質、②蓚酸アニリド系物質、②芳香族ベンゾエート系物 質 ・ ⑤シアノアクリレート系物資および〇ピンダードア ミン系物質よりなる群から選ばれた1種又は2種以上で ある。これらの物質の例を示すと次のものが挙げられ る。

即ち、②ベンゾトリアゾール系物質としては、2-(2) ーヒドロキシー5'ーメチルーフェニル) ベンゾトリアゾ ール、2 - (2'-ヒドロキシー3'.5' -ジーt - ブチル ーフェニル》ベンゾトリアゾール、2 - (3,5 -ジー t ニマンルニウェレ じゅせいけん マボン がいいじしけつげん

◎ベンゾフェノン系物質としては、2.4 -ジヒドロキシ ベンゾフェノン: 2-ヒドロキシー4-メトキシベンゾ フェノン、2-ヒドロキシー4-オクトキシベンゾフェ ノン、2-ヒドロキシー4-ドデシルオキシベンゾフェ ノン、2,2'ージヒドロキシー4ーメトキシベンゾフェノ ン、2.2'ージヒドロキシー4.4'ージメトキシベンゾフェ ノン、2-ヒドロキシー4-メトキシ-5-スルホベン ゾフェノン、2-ヒドロキシー4-オキシベンジルベン ゾフェノン等。

10 **③**蘊酸アニリド系物質としては、N-(2-エチルーフ ェニル》-N'- (2-エトキシー5-tープチルフェニ ル) 菱酸ジアミド、N-(2-エチル-フェニル)-N' - (2-エトキシーフェニル) 藤酸ジアミド等。 の芳香族ベンゾエート系物質としては、p-1-ブチル フェニルサリシレート、pーオクチルフェニルサリシレ 一卜等、

⑤シアノアクリレート系物質としては、2-エチルヘキ シルー2ーシアノー3.3 ージフェニルアクリレート、エ チルー2ーシアノー3,3ージフェニルアクリレート等、 カアルキル基もしくはハロゲン化アルキルで置換された 20 **®**ピンダードアミン系物質とは、立体障害性基を有する ピペリジン誘導体で、その例を示せば、4ーアセトキシ -2.2.6.6 -テトラメチルピペリジン、4-ステアロイ ルオキシー2,2,5,6 ーテトラメチルピペリジン、4ーア クリロイルオキシー2,2,6.6 ーテトラメチルピペリジ ン、4ーメトキシー2,2.5.6 ーテトラメチルピペリジ ン、4ーベンゾイルオキシー2,2,6.5 ーテトラメチルビ ペリジン、4 - シクロヘキシルオキシー2,2,6,5 - テト ラメチルピペリジン、4-フェノキシー2,2,6,6 -テト ラメチルピペリジン、4 - ベンジルオキシー2.2.5.6 -エチレングリコールホルマール、1.4 ープタンジオール 30 テトラメチルピペリジン。4 ー (フェニルカルバモイル オキシ) -2,2,5,6 -テトラメチルピペリジン、ビス (2.2.6,6 ーテトラメチルー4ーピペリジル) オキザレ ート、ビス(2,2,6,6 ーテトラメチルー4 ーピペリジ ル) マロネート、ビス (2.2.6.6 ーテトラメチルー4ー ピペリジル) アジペート、ビス (2,2,5,6 ーテトラメチ ルー4ーピペリジル》セバケート、ピス(1,2,2,5,6 ー ペンタメチルー4ーピペリジル)セバケート、ピス (2、 2.6.6 - テトラメチルー4 - ピペリジル〉テレフタレー **ト. 1.2 ービス(2,2,6.5 ーテトラメチルー4ーピペリ** 40 ジルオキシ) エタン、ピス (2,2,6,6 ーテトラメチルー 4-ビベリジル) ヘキサメチレン-1.5-ジルカバメー ト、ビス (1-メチル-2.2.6,6 ーテトラメチル-4-ピペリジル) アジペート、トリス(2,2,6,6 ーテトラメ チルー4 - ピペリジル》ペンゼン-1.3,5 ートリカルボ

モミル 二十位のもで、ガー 左凸之無のレルコミン (新油仕

特闘平7-126481

との併用が好ましく、更にはOベンゾトリアゾール系物 質と®ヒンダードアミン系物質の併用が最も好ましい。 ことで用いられる耐候(光)安定剤(B)は(A)成分 100 重量部に対してe.01~5重量部が適当であり、特に6.02 ~3重置部が好ましい。これらの成分は過少の場合には 効果が期待できず、又過大に添加しても経済的不利のみ ならず、前述のように機械的性質の低下、金型の污染等 の問題をもたらす結果となる。

【0009】更に本発明に於いて耐候性に優れる公知の 樹脂、例えばポリメチルメタクリレートに代表されるアー19 を直接仕込む方法等、何れも使用できる。 クリル系樹脂。ポリカーボネート樹脂。オレフィン系重 台体なども添加することももちろん可能である。また、 クラック発生を抑える目的で添加される表面改質剤、例 えばポリエチレングリコール、一価あるいは多価アルコ ールの脂肪酸エステル類。多価アルコールのエーテル類 等も添加可能である。これらの樹脂および表面改質剤の 添加で、機械的強度特に靭性等が変化するが、本発明の ポリアセタールコポリマー樹脂を用いることにより、従 楽のポリアセタール樹脂に添加されるべき置より少置の 添加で耐候性が改良されるため、機械的物性と耐候性の 20 両立が可能となる。更に多量の耐候性改善のための添加 剤の添加はポリアセタール本来の熱安定性も損なう場合 もあるが、添加量が少ないことにより、熱安定性も向上 することが明らかとなった。尚、本発明のポリアセター ルコポリマー樹脂および組成物には、熱安定性を補強す るため公知の酸化防止剤や窒素化合物。アルカリまたは アルカリ土類金属化合物等を1種または2種以上組み合 わせて使用することが望ましい。本発明の樹脂及び組成 物はその目的に応じ所望の特性を付与するため、従来公 知の添加物、倒えば滑削、鮮型削、帯電防止剤その他の 30 界面活性剤、あるいは前述以外の有機高分子材料、無機※

	ノズル	C 1	C 2				
シリンダー温度(℃)	200	190	180				
射出圧力	650 (kg/cm²)						
射出速度	1.0 (m/min)						
金型温度	89 (°C)						

⑦クラック発生時間

試験片に紫外線を所定の条件で照射し、試験片表面のク ラック発生の有無を10倍のルーペで観察し、初めてクラ ックが認められた時間をもってクラックの発生時間とし、40 た。値が大きいほど良好であることを示す。

の表面状態の変化

試験片に紫外線を所定の条件で一定時間(600 時間、10 90時間)照射し、照射前後における試験片の色組の変 アストラックの仕組みを破壊し

*または有機の微能状、粉粒状、板状の充填剤等を1種ま たは2種以上添加含有させることも可能である。

【①①10】本発明の組成物の調製は、従来の樹脂組成 物調製法として一般に用いられる公知の方法により容易 に調製される。例えば、各成分を混合した後押出し機に より練り込み鉀出してペレットを調製し、しかる後、成 形する方法、一旦組成の異なるペレットを調製し、その ペレットを所定量複合して成形に供し成形後に目的組成 の成形品を得る方法、成形機に各成分の1または2以上

[0011]

【実施例】以下 - 実施例を挙げ本発明を更に詳しく説明 するが、本発明はこれらに限定されるものではない。 尚、実施例において結晶化時間および耐候性等の特性値 の評価に用いた方法は以下の通りである。

(1) 結晶化時間

パーキンエルマー社製示差走査熱置計DSC7型を用 い、サンブル童約5mgで、 200℃で5分保持した後、10 ℃毎分で降温した。 152℃に達した時点で温度を一定に 保ち、保持関始からの経過時間に対する吸発熱曲線いわ ゆるDSCカーブを記録した。 152℃に達した時点か 5. 記録されるビークの出現時間までを結晶化時間とし た。

(2) 耐候性試験

紫外線フェードメータ(スガ試験機(株)製FAL-AU・H ·B·Br型)を用いて、下記条件にて成形した試験片 (長さ70mm×幅40mm×厚さ3mmの平板)にブラックパネ ル温度83℃で繁角線を照射し、クラック発生時間及び表 面状態の変化を評価した。

* 成形機 :東芝(株)製!S 8 () * 成形条件

C3 160

M 1 号ダンベル片 (最狭部:幅12.7mm, 厚さ3.2mm)を 成形し、ASTM D538 に運拠して引張強伸度を測定した。

(4) 熱安定性試験

調製したペレットを用いて 230°C空気中60分間での熱重 置減少量を測定した(wg%/60分)。この値が少ないほ と熱安定性が良好であることを意味する。

【0012】実施例1

内径80mmの二つの円が一部重なった断面を有し、外側に Q1. 维大洛子()。L. L. H. A. M. ()。L. L. 太八舟()/1

(5)

特関平7-126481

-4

	9								19	
				-	比		校	(P)	-	
			1	2	3	4	5	6	7	8
(A) ポリアセタール樹脂		建草题	100	100	109	100	100	190	100	100
	コモノマー	注1	90	Dŋ	00	60	E0	50	00	00
	含有登	全量%	2	2	2	2	2	2	2	2
	結晶化時間	5)	i	l	j	2	2	2	l	1
(B) 耐候安定剂			B- <u>i</u>		B-1	8-1	8~1	8-2	8-1	B-1
		重量部	0. 6		0.3	0. 3	0.3	0. 3	0.6	0.9
		往日		B-3	6-3	8-0	B-4	B-3	8-3	B-3
		金貨部		0. 8	0.3	6. 3	6. 3	0.3	0. 5	0.9
	クラック完全時間	(hr)	240	200	360	320	300	240	380	400
	表面状態	600時間隔射	4	5	3	4	4	4	3	3
	:	1000時間照射	5	5	5	5	5	5	5	4
引張試験 伸度 強度	神度	(%)	71	70	70	69	69	72	78	82
	強度	(kgf/cm²)	599	605	602	598	600	600	575	560
熱安定性		(%t %)	0.68	0, 65	0.69	9, 76	0.71	0.84	0.93	1 03

【0015】注-1》

M : 1,3 -ジオキソラン

EO : エチレンオキシド

BDFo: 1.4 - ブタンジオールホルマール

注-2)

8-1:2-[2-ヒドロキシー3,5-ビス(α , α -ジメチルベンジル)フェニル] ベンゾトリアゾール

8-2:2-ヒドロキシー4-オキシベンジルベンゾフェ ノン

注-3}

B-3 : ビス (2,2,6,6 ーテトラメチルー4 - ピペリジル) セバケート

B-4: コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシー2,2,6,6 ーテトラメチルピペリジン重縮合物

実施例1~6と比較例1~6を比較することにより、結晶化時間が長くなることにより耐候性特にクラック発生 時間が長くなる。 カニュル 医生水 新聞 キャナ・スとしゃ わかる。実施例で、8は更に結晶化時間が長くなっており、更にクラック発生が抑制されている。比較例で、8 30 は耐候安定性増至によりクラック発生は抑制されているが、耐候安定剤のしみ出しによる表面の白化が著しく、外額が非常に悪くなっている。更に機械強度の低下も大きく実用に供せるレベルではない。また、実施例は比較例に比べ熱安定性が優れている。

[0016]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.