$\mathbf{Q2}$

$$f((0,1,0),(0,1,0)) = 0 \cdot 0 + 0 \cdot 0$$

= 0

However, $(0,1,0) \neq 0$, so f does not satisfy the property of definiteness.

$\mathbf{Q3}$

Let S be the set of inner products with the positivity condition. Let S' be the set of inner products with the new condition. To start, let $f \in S$. Then, $f(v,v) > 0 \ \forall v \in V$ with $v \neq 0$, so the new condition is satisfied since $\exists v \in V$ with f(v,v) > 0. So, $f \in S'$, so $S \subseteq S'$. Now consider the other direction: take a function $g \in S'$. We know that by the new inner product definition, $\exists v \in V$ such that g(v,v) > 0. This v must be nonzero, as we still have the definiteness axiom. Now, by contradiction, consider a nonzero vector k orthogonal to v. Then,

$$\langle k, k \rangle < 0$$

$$\exists a : a \langle k, k \rangle = -\langle v, v \rangle$$

$$\langle \sqrt{a}k, \sqrt{a}k \rangle + \langle v, v \rangle = 0$$

So,

$$\langle \sqrt{a}k+v,\sqrt{a}k+v\rangle = \langle \sqrt{a}k,\sqrt{a}k\rangle + \langle v,v\rangle = 0$$

Thus $\sqrt{a}k + v = 0 \Rightarrow k = -\frac{v}{\sqrt{a}}$, contradicting k being orthogonal to v. So, g(k,k) = 0 for all k orthogonal to v. Then, $\forall w \in V$, we can write w as a sum of a scalar multiple of c plus a vector k orthogonal to v.

$$w = cv + k$$
$$\langle w, w \rangle = \langle cv + k, cv + k \rangle$$
$$= \langle cv, cv \rangle + \langle k, k \rangle$$

And since both terms of this sum are positive, we know that the inner product of w with itself is positive, so $g(w,w) > 0 \ \forall$ nonzero $w \in V$. That means $g \in S$, so $S' \subseteq S$, completing the proof.

$\mathbf{Q8}$

Let $u, v \in V$, ||u|| = ||v|| = 1. Then, $|\langle u, v \rangle| = |1| = 1 = ||u|| ||v||$. So, by Cauchy-Schwartz, u and v are collinear, and have the same magnitude, so u = -voru = v. However, if u = -v, $\langle u, v \rangle = \langle -v, v \rangle = -\langle v, v \rangle < 0$. But $\langle u, v \rangle = 1$, which is a contradiction, so u = v.

Q11

Let $a, b \in \mathbb{R}^4$ with the inner product defined as the dot product.

$$a = (\sqrt{a}, \sqrt{b}, \sqrt{c}, \sqrt{d})$$

$$b = (\frac{1}{\sqrt{a}}, \frac{1}{\sqrt{b}}, \frac{1}{\sqrt{c}}, \frac{1}{\sqrt{d}})$$
then $|\langle a, b \rangle| = |4| = 4$

$$||a|| = \sqrt{\langle a, a \rangle} = \sqrt{a + b + c + d}$$

$$||b|| = \sqrt{\langle b, b \rangle} = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

So by Cauchy - Schwartz:

$$\begin{split} |\langle a,b\rangle| &\leq ||a||||b|| \\ 4 &\leq \sqrt{a+b+c+d}\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}} \\ 16 &\leq (a+b+c+d)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}) \end{split}$$

Q19

$$\begin{split} \langle u,v \rangle &= \frac{||u+v^2|| - ||u-v||^2}{4} \\ &= \frac{\langle u+v,u+v \rangle - \langle u-v,u-v \rangle}{4} \\ &= \frac{\langle u,u \rangle + \langle u,v \rangle + \langle v,u \rangle + \langle v,v \rangle - \langle u,u \rangle + \langle v,u \rangle + \langle u,v \rangle - \langle v,v \rangle}{4} \\ &= \frac{4\langle u,v \rangle}{4} \\ &= \langle u,v \rangle \end{split}$$