REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of faw, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
08/01/2002	Conference Proceedings	01/05/2001 - 31/10/2001
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
Workshop on Quantum Transpe	ort in Semiconductors	
		5b. GRANT NUMBER
		N00014-01-1-0115
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) Ferry, David K.		5d. PROJECT NUMBER
reny, David K.		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(STATIZED AND ASSESSED ARIZONA State University Office for Research and Sp. 270 Administration B Wing PO Box 873503 Tempe, AZ 85287-3503		8. PERFORMING ORGANIZATION REPORT NUMBER DWD 2651/TE (ARO) DWA 0052/TE (ONR) DWD 2652/TE (NASA)
-	arch Triangle Park NC 27709-2211	10. SPONSOR/MONITOR'S ACRONYM(S) ARO, ONR, NASA
Office of Naval Research,	Arlington VA 22217-5660	
National Aeronautics and S	pace Administration, Moffett Field CA 94035-1000	11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A workshop was held on the topic of quantum transport in semiconductor devices. This workshop brought together 17 lecturers and 35 other attendees for this purpose.

20020405 085

15. SUBJECT TERMS

Semiconductor devices, transport, quantum mechanics

16. SECURITY CLASS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON David K. Ferry
a.REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	None	256 plus CD	19b. TELEPHONE NUMBER (include area code) 480.965.2570

Advanced Research Workshop on Quantum Transport in Semiconductors

Hotel Villa del Mare, Maratea, Italy 17-22 June 2001

Session 1

. 3

Moderator: John Barker, Glasgow University, "Status of the physics and modeling of ultrasmall devices"

- 1A Greg Timp, University of Illinois, "Making small MOSFETs: ballistic and quantum effects"
- 1B Max Fischetti, IBM Research, "Modeling small MOSFETs-the role of quantum and many-body effects"
- 1C Steve Goodnick, Arizona State University, "Full Band Structure Calculations for Transport in Wide-Band-Gap Semiconductors"

Session 2

Moderator: Max Fischetti, IBM Research, "Semi-classical modeling of small semiconductor devices"

- 2A Asen Asenov, Glasgow University, "Discrete impurities and quantum potentials in MOSFET modeling"
- 2B Richard Akis, Arizona State University, "Effective potentials for quantum effects in MOSFETs"

Session 3

Moderator: Antti-Pekka Jauho, Danish University of Technology, "Introduction to Quantum Transport"

- 3A David Ferry, Arizona State University, "Wave function approaches for self-consistent computations of transport in quantum dots and arrays"
- 3B John Barker, Glasgow University, "Trajectories in quantum mechanics"
- 3C Michael Bonitz, Rostock University, "Non-equilibrium Green's functions: transient phenomena and the role of the initial state for devices"

Session 4

Moderator: Chihiro Hamaguchi, Osaka University, "The Metal-Insulator Transition"

- 4A Günther Bauer, University of Linz, "The metal-insulator transition in d = 2"
- 4B Jonathan Bird, Arizona State University, "The metal-insulator transistion in open quantum dots and arrays"

Session 5

4/1/2002 4:42 PM

Moderator: Michael Bonitz, Rostock University, "Spins and few particle problems in Semiconductors"

- 5A David Awschalom, UC Santa Barbara, "Spin coherence and optical measurements"
- 5B Daniel Loss, University of Basel, "Quantum computing in semiconductor systems"
- 5C Sankar Das Sarma, University of Maryland, "Few electron (and few impurity) systems-small system effects"

Session 6

Moderator: Gerhard Klimeck, Jet Propulsion Laboratory, "Applications of quantum transport in devices"

- 6A Carlo Jacoboni, Modena University, "The Wigner function and quantum transport"
- 6B Harold Grubin, SRA, Inc., "Modeling resonant tunneling diodes with Wigner functions and density matrices"
- 6C Dejan Jovanovic, Motorola, "Non-equilibrium Green's functions for MOSFET modeling"

Session 7

Moderator: Karl Hess, University of Illinois, "Applications of quantum transport in optics"

- 7A Tilmann Kuhn, University of Münster, "Quantum kinetics and the femtosecond time scale in optical excitation of semiconductors"
- 7B Rolf Haug, University of Hannover, "Single-electron charging effects in quantum dot arrays"

Session 8

Moderator: Anant Anantram, NASA Ames, "Novel New Concepts"

- 8A Karl Hess, University of Illinois, "EPR Experiments: the Assumptions, and the Failure of Bell's Theorem"
- 8B Antti-Pekka Jauho, Danish University of Technology, "Scanning probe measurements of biomolecules on silicon surfaces"
- 8C Mark Lundstrom, Purdue, "The Landauer approach in device modeling"
- 8D Wolfgang Windl, Motorola, "Diffusion and clustering of impurities-a problem that cannot be ignored"

Poster Presentations

Poster Group 1

- 1-1 "Analytical theory for the low frequency transport and noise in Q1D conductors," G. Gomilla and L. Reggiani, Universidad Polytechnica Catalunya.
- 1-2 "Monte Carlo simulations of Wigner function tunneling: Role of the effective potential," L. Shifren and D. K. Ferry, Arizona State University.
- 1-3 "3D device Monte Carlo modeling with discrete impurities," S. Barraud, S. Galdin, P. Dollfus, Institut d'Electronique Fondamentale.
- 1-4 "3D modeling of imperfect interfaces and edges in decanano MOSFETs," S. Kaya, Ohio

- University, and A. R. Brown, S. Roy, and A. Asenov, Glasgow University.
- 1-5 "Comparison of first-order quantum correction schemes in 3D drift-diffusion simulations in sub-0.1 micron MOSFETs," J. R. Watling, A. R. Brown, A. Asenov, and D. K. Ferry, Glasgow University.
- 1-6 "Quantum potential in the presence of heterointerfaces," J. R. Watling, R. C. W. Wilkins, and J. R. Barker, Glasgow University.
- 1-7 "Performance of scaled double delta doped PHEMTs," K. Kalna, J. R. Watling, A. Brown, and A. Asenov, Glasgow University.
- 1-8 "Electron transport and infrared photoconductivity in quantum dot structures," V. Ryzhii and V. Mitin, University of Aizu.
- 1-9 "Photoluminescence from hot electrons in low dimensional systems," H. Momose, Y. Inui, M. Itoh, and C. Hamaguchi, Osaka University.
- 1-10 "Nonlinear transport through an array of quantum dots," G. Kiesslich, A. Wacker, and E. Schöll, Technische Universität Berlin.

Poster Group 2

- 2-1 "Quantum algorithms in the frame of a coupled-quantum-wires physical system," S. Reggiani, A. Bertoni, R. Brunetti, and M. Rudan, University of Bologna.
- 2-2 "Quantum waves in the coupled-wire Qubit," J. Harris, R. Akis, and D. K. Ferry, Arizona State University.
- 2-3 "Quantum mechanical study of nanoscale MOSFET," A. Svizhenko, M. P. Anantram, and T. R. Govindam, NASA Ames Research Laboratory.
- 2-4 "Effects of lead population on magnetic flux controlled dissipative electron transport through coupled quantum dots," N. Horing, Stevens Institute of Technology.
- 2-5 "Transport in quantum dot arrays," N. Mori, Y. Takamura, T. Ishida, and C. Hamaguchi, Osaka University.
- 2-6 "Non-equilibrium transport in nanostructures," J. Fransson, University of Uppsala.
- 2-7 "Tunneling spectroscopy of exchange-correlation interaction of electrons in Schottky barrier in quantizing magnetic field," A. Shulman, Institute of Radioengineering and Electronics.
- 2-8 "Stochastic simulation of the Barker-Ferry equation," M. Nedjalkov, Technical University of Vienna.
- 2-9 "Simulation of entanglement in semiconductor quantum wires," A. Bertoni, R. Ionicioiu, P. Zanardi, F. Rossi, and C. Jacoboni, University of Modena.
- 2-10 "Mesoscopic fluctuations of Coulomb drag between quasi-ballistic 1D wires," N. A. Mortensen, K. Flensburg, and A.-P. Jauho, Danish Technical University.

Poster Group 3

- 3-1 "Spin dynamics in III-V quantum wells using Monte Carlo simulation," A. Bournel and P. Hesto, Universite Paris Sud.
- 3-2 "Electron-spin-phonon coupling and relaxation dynamics in a double quantum dot," V. Puller, L. Mourokh, and N. Horing, Stevens Institute of Technology.
- 3-3 "Quantum computing with spin qubits in semiconductors structures," V. Privman, Clarkson University.
- 3-4 "High-field transport through semiconductor heterostructures," M. Morifuji, Osaka University.
- 3-5 "Effect of electronic disorder on the phonon-drag," V. Mitin, Wayne State University.
- 3-6 "Wigner function dynamics in presence of an infinite potential barrier," P. Bordone and C. Jacoboni, Modena University.
- 3-7 "Quantum transport in 2D MOSFETs," A. P. Anantram, A. Svizhenko, and T. R. Govindan,

- NASA Ames Research Center.
- 3-8 "Density-matrix modeling of terahertz photon-assisted tunneling in resonant tunneling diodes," M. Asada, Tokyo Insitute of Technology.
- 3-9 "Hyperfine interaction between nuclear and electronic spins," I. D. Vagner, Holon Academic Institute of Technology.
- 3-10 "Metal-insulator transition in 2D few-electron systems," A. Filinov, M. Bonitz, and Yu. Lozovik, University of Rostock.
- 3-11 "Quantum dot modeling using NEMO-3D," G. Klimeck, F. Oyafuso, R. C. Bowen, T. B. Boykin, T. A. Cwik, E. Huang, and E. Vinyard, Jet Propulsion Laboratory.

Advanced Research Workshop

Quantum Transport in Semiconductors

Introduction and Overview

John Barker University of Glasgow act Villa del Mare, Maratea, Ital 17-22 Jane, 2001 Advanced Research Workshop

Quantum Transport in Semiconductors

TOWN THE TOURS HE STORY THE

Office of Navel Recently US Army Research Orders

Advanced Research Workshop

Quantum Transport in Semiconductors

Origins

1 Day Workshop on Quantum Transport Theory (Glasgow, May 2000)

Present state of play in the field

Encourage new workers

Map out new opportunities

Flag new directions

Format

Gordon Conference Style

- !ntroductory/tutorial material
- Advanced Topics
- Pre-publication ethics

Time Table

- Ereakfast 8 00
- Morning session: 9 00-12 30 (coffee 11 10)
- C Lunch 13 00
- Ad hoc sessions
- Poster session: 16 00-17 00
- Evening session: 1700-1930
- ் Dinner: 20 00

Sessions

² Moderator: overview and introduction (5-10 minutes)

Speakers: 45 minutes (questions welcomed in talks)

© Questions & Discussion:10-15 minutes per lecture

Wednesday

4 000

Exeursion: Monastery visit + shopping in Maratea

Please sign up: Rosella Brunetti

Dinner: 20 00

Session 1: Moday, June 18

Ultra-small devices

- Moderator: John Barker, University of Glasgow
- Greg Timp, University of Illinois
- Max Fischetti, IBM T J Watson Research Lab
- Steve Goodnick, Arizona State University

NVN

Department of Electronics and Electrical Engineering Nanoelectronics Research Centre University of Glasgow John. R. Barker

Advanced Research Workshop

Quantum Transport in Semiconductors

Moores Law

history since

1970

The dinosaur model: silicon will eventually become extinct

.... due to impending catastrophe

role will be replaced by new species: quantum, molecular... After the catastrophe, a long hiatus will occur and silicon's

Projected Breakdown of Moore's Law

1977

Time

(challenged by JRB/DKF In 1979- 25 nm)

quantum transport theory strategy has often been: The guiding philosophy behind semiconductor

- · Moore's empirical Law will eventually breakdown at small enough physical scales.
- Quantum effects will likely become dominant by then.
- Prepare for new devices based on novel quantum concepts: wave interference devices discrete energy levels quantum computing... single electronics tunnel devices

What has actually happened

Year	1999	2001 2004	2004	2008	2008 2011 2014	2014
MPU Gate Length (nm)	140	100	70			
Oxide thickness (nm)	1.9-2.5	1.5-1.9	12-1.5			
Drain extensions (nm)	42-70+	30-50				

Solution Being Pursued No Known Solutions Solution exists

Scaling of MOSFETs to decanano dimensions

(International Roadmap for Semiconductors - 1999 Edition)

The silicon MOSFET scene

The first moves:

Conventional device modelling:

Drift Diffusion Hydrodynamic Monte Carlo Empirical

Self-consistent via Poisson equation

non-equilibrium effects Schrödinger-Poisson Ballistic transport Quantum levels in Serions channel

Density gradient or Quantum potential Keep charge away from interfaces Funnelling & Corrections

And very recently, the road map has speeded up by 5 years!! Robert Chau (Intel) 2001

technology node, which will be ready for production in 2005." "High performance 30 nm gate length CMOS transistors operating at Vcc = 0.85 V demonstrated for 65 nm logic

Intel Road Part of Map:

Year	2001	2003	2005	2003 2005 2007	2009
Node	150	96	65	45	30
Gate Length	70	50	30	20	15

In production

Chau

TEM Cross section of a 20 nm gate length NMOS transistor

the specific of the master that happened in the state of the state of

Single prototype MOSFETS devices have also been demonstrated with healthy I-V characteristics with gate lengths in 7-14 nm scales.

- What quantum/many-body effects occur in these devices and how do we model them?
- What are the implications of the dinosaur refusing to die for quantum devices?

Where is the limit and what QTT is needed if any?

Time

(2) R Backer Pert Charter de officie grant Bressatter Richelle and Arthrop

per Bushy Rese november British on beetsakshilds notes by represe sele

Certainly, below 50 nm we expect strong atomistic effects.

suggest strong many-body effects: Coulombic, The predicted high carrier densities also correlations/fluctuations.

But at what level do we need to move to a true atomistic model, and where does the need for computational chemistry methods come in?

and the role of the fundamental theoretical frameworks These questions are addressed in today's sessions that underpin true QTT and fully quantum devices are discussed later.

J. Bude, F. Baumann‡, K. Evans-Lutterodt, A. Ghetti, S. Goodnick†, J. Grazul‡,
M. Green, S. Hillenius, Y. Kim, J. Lyding†, W. Mansfield, D. Muller‡, T. Sorsch,
K. Timp†, R. Timp†, J. Yu†.
Agere, Arizona State University†, Bell Laboratories, Lucent Technologies‡,
University of Illinois†

University of Illinois G. Timp

YEAR OF FIRST PRODUCT SHIPMENT	2001	2004	2008	2014
TECHNOLOGY GENERATIONS DENSE LINES (DRAM Half-Pitch) (nm)	130	90	60	30
Logic (High-Volume: MPU)				
Logic Transistors/chip (including SRAM)	67.3M	135M	539M	4.3B
Chip Frequency (GHz)				
On-chip local clock, high performance	2.1G	3.5G	7.1G	14.9G
TECHNOLOGY REQUIREMENTS				
Min. Logic Vdd(V) (desktop)	1.5	1.2	0.9	0.6
Nominal Ion (n/pMOS)@25C(mA/µm)	0.75/0.35		0.75/0.35	0.75/0.35
Nominal loff @25C (nA/µm)	5		80	160
tox equivalent (nm)	1.5-1.9		0.8-1.2	0.5-0.6
junction depth xj (nm)			16-26	8-13

Frieder Baumann et al.

What does t_{ox} =1nm look like?

When is t_{ox} =1nm?

STEM/EELS

Nominally 1.1nm thick gate oxide: 0.8-1.0nm SiO₂

The End of the Roadmap for SiO2

There will be no more bulk-like bonding when the Oxide is less than 0.7 nm

MOBILITY RESOLVED

S. Goodnick

Roughness limited mobility decreases as inverse square of surface field, and as $(\Delta\Lambda)^2$:

S. Goodnick

J. Yu and J. Lyding

Scanning **T**unneling **M**icroscopy THROUGH the Oxide

 $\Delta\Lambda$ =0.29nm⁻²

MOBILITY MEASUREMENTS VS. CALCULATION

Completely constrained mobility Calculation on "rough" MOSFETS correlates well with measurements.

The Highlights

- Homeric challenges face bulk silicon technology, but the same is true of all the pretenders to the throne.
- Some of these challenges stem from "atomic" sensitivity (e.g. the gate oxide)
- As process control decreases; circuit margins must increase at an even faster rate.

Long-range Coulomb interactions, coupled plasmon/insulator-TO-phonon modes, and electron mobility in Si inversion layers

Max Fischetti

IBM Research Division

T. J. Watson Research Center

Yorktown Heights, NY 10598
in collaboration with Deborah Neumayer and Eduard Cartier

June 2001

Outline

- Long-range Coulomb interactions (a short review):
- g_m and v_{eff} degradation in short-channel/thin-oxide MOSFETs (semiclassical
 - mobility degradation in thin-oxide MOSFETs (quantum)
- High-k insulators:
- Simple picture
- Dispersion of coupled insulator-TO-phonons/plasmon modes
- Material parameters
- Scattering strength
- Electron mobility in inversion layers
 - Effect of SiO₂ interfacial layers

Long-range Coulomb interactions in small MOSFETS

- Source, drain, and gate regions are high-density electron gases
- S/D separation (i.e., channel length) is shrinking below the Debye length of the channel
- Gate needs to be 1 nm (or less!) away from the channel
- Collective 'fluctuations' in S/D perturb electrons in the channel (electron/bulk-plasmon interactions)
- Collective fluctuations in gate (interface plasmons) cause Coulomb drag

MVF

7

June 01

June 01 1

Coulomb interactions and device speed

- S/D interactions thermalize carriers, build high-energy tails, increase momentum-loss indirectly
- Gate-induced Coulomb-drag subtracts momentum directly
- Lower transconductance, lower mobility

High- κ insulators

- ullet VLSI scaling demands insulator thicknesses t approaching 1 nm for (near) future devices. But it's hard to go below 1.5 nm:
- Gate tunneling draws too much stand-by power
- Reliability (wear-out, breakdown) is a debated issue, but 1 nm seems to be 'too much' even to the optimist
- ullet Lot of activity on insulators with high dielectric constant $(\epsilon_{ox}^0=\kappa \epsilon_0)$, so that the gate capacitance

$$C_g \, = \, \frac{\epsilon_{ox}^0}{t} \, = \, \frac{\epsilon_{SiO_2}^0}{t_{eq}}$$

corresponds to the required small $t_{eq}.$

- Materials considered:
- Metal-oxides (HfO2, ZrO2, Al $_2$ O $_3...$), with $\kappa pprox 10\text{-}30$
 - Silicates (ZrSiO₄, HfSiO₄), with $\kappa \approx 15\text{-}25$
- Perovskites, rare-earth oxides, with $\kappa \approx 100$
- Nitrides (AIN, Si $_3N_4$), with $\kappa\approx 10$ Ferroelectrics ($\kappa\sim 10^3)...$ but that's another story...

June 01 3

June 01

High- κ insulators: A simple picture

- $\epsilon_{ox}^0=\epsilon_{ion}^0+\epsilon_{el}^0$ $\epsilon_{el}^0\propto E_{gap}^{-1}\dots$ so, not much room left for insulators (must have large $E_{gap}!$)
 - \bullet Large ϵ^0_{ion} due to polarizable bonds (typically, metal-oxygen), 'soft' bonds associated with 'soft' TO-phonons
- ϵ_{ion}^{∞} not too large (ions move slowly)
- So, for large- κ materials, ϵ_{ox}^0 much larger than ϵ_{ox}^∞
- Insulator-TO-modes at interface (surface-optical modes, SO) scatter electrons with strength ∞ :

$$\hbar\omega_{SO}\left[\frac{1}{\epsilon_{Si}^{\infty}+\epsilon_{ox}^{\infty}}-\frac{1}{\epsilon_{Si}^{\infty}+\epsilon_{ox}^{0}}\right]$$

(Fröhlich + images, Wang-Mahan, 72)

- Small effect ($\sim 5\%$) in SiO $_2$:
- $\epsilon_{ox}^0~(\approx 3.9)$ not much larger than $\epsilon_{ox}^\infty~(\approx 2$ to 2.5) because Si-O bond is 'hard'
- Small Fröhlich-like coupling constant
- Hard bonds imply 'stiff' $ilde{ ext{TO}}$ -modes, $\hbar\omega_{TO}>>k_BT$: too energetic to be emitted by thermal electrons, too energetic to be thermally excited (no absorption).
- But large effects in high-κ materials:
- Large ϵ_{ox}^0 due to polarization of 'soft' bonds
 - Large Fröhlich-like coupling constant
- Soft bonds imply 'soft' TO-modes, $\hbar \omega_{TO} \sim k_B T$: energy low enough to allow emission by thermal electrons, low enough to be thermally excited (absorption possible).

High- κ insulators: A simple picture

- Use Wang-Mahan (Hess-Vogl, 79; Moore-Ferry, 80) matrix element
- Single insulator/Si interface (infinitely-thick insulator)
- No electronic screening
- rau or-pnonons and (shamelessly) empirical surface-roughness (Matthiessen's rule to fit experiments for SiO $_2$ at $n_s=10^{13}~{\rm cm}^{-2})$ Add Si-phonons and (shamelessly)

June 01

June 01

Interface modes:

A better model for thin-insulator MOSFETs

- Consider a depleted-Si/insulator/inverted-Si MOS system
- Look for longitudinal eigenmodes (TM-modes or p-waves) of Maxwell's equations: $\epsilon_{tot}(\mathbf{Q},\omega)=0$. These give $\mathbf{E}\neq 0$ even when $\mathbf{D}=0$, while transverse modes $(\epsilon_{tot}(\mathbf{Q},\omega)=\infty)$ give $\mathbf{E}=0$ for any \mathbf{D} , so no scattering field.
- ullet Use non-retarded limit (OK for wavelength $\sim \lambda_F$), so unknown is electrostatic potential satisfying Laplace equation.
 - Chose model dielectric functions (long-wavelength-limit, two insulator TO modes).
- ullet Impose continuity of $\mathbf{E}_{||}$ and \mathbf{D}_{\perp} at two interfaces
- → homogeneous linear problem of 4 equations in 4 unknowns
- \rightarrow 3 unknowns expressed in terms of the remaining one (to be fixed).
- Secular equation (i.e. vanishing of determinant) gives dispersion of coupled modes (4+2 of them).
- Determine phonon- and plasmon-content of each mode.
- determine last unknown) somehow... (semiclassically). This defines the scattering potential. Normalize potential (i.e.
- Account for Landau-damping (lost in taking a real ϵ in the long-wavelength
- Determine the subband structure (triangular-well).
- Compute the mobility (Kubo-Greenwood)

Interface modes

- Consider MOS system:
- (poly-)Si gate, $\epsilon_g({\bf q},\omega)$, for $z\leq 0$ insulator, $\epsilon_{ox}(\omega)$, for $0< z\leq t$ Si 2DEG, $\epsilon_s({\bf Q},\omega)$, for z>t
- Write electrostatic potential (non-retarded limit):

$$\phi(\mathbf{R},z,t) \; = \; \sum_{\mathbf{Q}} \; \phi_{\mathbf{Q},\omega}(z) \; e^{i\mathbf{Q}\cdot\mathbf{R}} \; e^{i\omega t}$$

$$\phi_{Q,\omega}(z) = \begin{cases} a_{Q,\omega} e^{Qz} & (z < 0) \\ b_{Q,\omega} e^{-Qz} + c_{Q,\omega} e^{Qz} & (0 \le z < t_{ox}) \\ d_{Q,\omega} e^{-Qz} & (z \ge t_{ox}) \end{cases}$$

Solve Laplace equation:

$$\frac{d^2\phi_{\mathbf{Q},\omega}(z)}{dz^2} - Q^2\phi_{\mathbf{Q},\omega}(z) = 0$$

with boundary-conditions (BCs):

$$\begin{cases} E_{\parallel,\omega}(\mathbf{R},z=0^-,t) &= E_{\parallel,\omega}(\mathbf{R},z=0^+,t) \\ E_{\parallel,\omega}(\mathbf{R},z=t_{ox}^-,t) &= E_{\parallel,\omega}(\mathbf{R},z=t_{ox}^+,t) \\ D_{z,\omega}(\mathbf{R},z=0^-,t) &= D_{z,\omega}(\mathbf{R},z=0^+,t) \\ D_{z,\omega}(\mathbf{R},z=t_{ox}^-,t) &= D_{z,\omega}(\mathbf{R},z=t_{ox}^+,t) \end{cases}$$

BCs become:

$$\begin{cases} a_{Q,\omega} \\ b_{Q,\omega} e^{-Qt} + c_{Q,\omega} e^{Qt} \\ &= d_{Q,\omega} e^{-Qt} \\ &\bar{\epsilon}_g(Q,\omega) a_{Q,\omega} \\ &\epsilon_{ox}(\omega) \left[b_{Q,\omega} e^{-Qt} - c_{Q,\omega} e^{Qt} \right] \\ &= \bar{\epsilon}_s^{(2D)}(Q,\omega) a_{Q,\omega} \end{cases}$$

ullet Eigenmodes $\omega({f Q})$ given by secular equation:

$$e^{Qt}[\tilde{\epsilon}_g(Q,\omega) + \epsilon_{ox}(\omega)][\tilde{\epsilon}_s^{(2D)}(Q,\omega) + \epsilon_{ox}(\omega)]$$
$$- e^{-Qt}[\tilde{\epsilon}_g(Q,\omega) - \epsilon_{ox}(\omega)][\tilde{\epsilon}_s^{(2D)}(Q,\omega) - \epsilon_{ox}(\omega)] = 0$$

MVF

June 01

MVF

"Effective" dielectric functions

Gate:

- RPA:

$$\tilde{\epsilon}_g(Q,\omega) = \frac{1}{\pi} \int_{-\infty}^{+\infty} d\left(\frac{q_z}{Q}\right) \frac{\epsilon_g(Q,q_z;\omega)}{1+(q_z/Q)^2} \approx \epsilon_g(q = \sqrt{2}Q,\omega)$$

Long-wavelength limit:

$$\epsilon_g(\omega) = \epsilon_{Si}^{\infty} \left(1 - \frac{\omega_{p,g}^2}{\omega^2} \right)$$

Getting $\omega_{p,g}$ is not trivial: Electron density in the depleted gate is at least z-dependent. Use either surface-density or Q-dependent average.

Substrate:

$$\bar{\epsilon}_s^{(2D)}(Q,\omega) = \epsilon_{Si}^{\infty} \left\{ 1 + e^{2Qt} \sum_{\mu\mu'} \frac{\beta_{\mu\mu'}(Q,\omega)}{2Q} \Phi_{Q,\omega;\mu\mu'} \Phi_{Q,\mu\mu'} \right\}$$

Long-wavelength limit:

$$\epsilon_s^{(2D)}(Q,\omega) = \epsilon_{Si}^{\infty} \left[1 - \frac{\omega_{p,s}(Q)^2}{\omega^2} \right]$$

Insulator (taking only 2 TO modes):

$$\epsilon_{ox}(\omega) \; = \; \epsilon_{ox}^{\infty} + (\epsilon_{ox}^i - \epsilon_{ox}^{\infty}) \frac{\omega_{TO2}^2}{\omega_{TO2}^2 - \omega^2} + (\epsilon_{ox}^0 - \epsilon_{ox}^i) \frac{\omega_{TO1}^2}{\omega_{TO1}^2 - \omega^2}$$

RPA vs long-wavelength-limit for Si/SiO₂/Si

June 01

10

Effect of coupling

Coupled modes for Si/SiO₂/Si system: Thickness dependence

June 01 12

Coupled LO-plasmons modes for Si/AIN/Si system

June 01 14

MVF

13

June 01

MVF

Cóupled LO-plasmons modes for Si/ZrO₂/Si system

TO- and plasmon content Landau damping

- \bullet Define 3 dispersions $\omega_Q^{(-\alpha,j)}$ (j=1,3) by ignoring mode α $(\alpha=$ TO1, TO2, gate-plasma, substrate-2D-plasma)
 - Mode- α content of mode $\omega_Q^{(i)}$ (for 4 modes):

$$\Pi^{(lpha)}(\omega_Q^{(i)}) \, pprox \,$$

$$\left| \frac{\left(\omega_Q^{(i)^2} - \omega_Q^{(-\alpha,1)^2} \right) \left(\omega_Q^{(i)^2} - \omega_Q^{(-\alpha,2)^2} \right) \left(\omega_Q^{(i)^2} - \omega_Q^{(-\alpha,3)^2} \right)}{\left(\omega_Q^{(i)^2} - \omega_Q^{(j)^2} \right) \left(\omega_Q^{(i)^2} - \omega_Q^{(i)^2} \right)} \right|$$

with i, j, k, l cyclical.

Content normalized so that:

$$\sum_{i=1}^{4} \Pi^{(\alpha)}(\omega_{Q}^{(i)}) = 1$$

$$\Pi^{(G)}(\omega_Q^{(i)}) + \Pi^{(S)}(\omega_Q^{(i)}) + \Pi^{(TO1)}(\omega_Q^{(i)}) + \Pi^{(TO2)}(\omega_Q^{(i)}) = 1$$

June 01 16

June 01 15

Scattering strength

• Field $\phi_{Q,\omega_Q^{(i)}}(z)$ defined up to a multiplicative constant $a_{Q,\omega_Q^{(i)}}$:

$$b_{Q,\omega_Q^{(i)}} = \frac{\epsilon_{ox}(\omega_Q^{(i)}) - \epsilon_g(\omega_Q^{(i)})}{2\epsilon_{ox}(\omega_Q^{(i)})} a_{Q,\omega_Q^{(i)}}$$
$$c_{Q,\omega_Q^{(i)}} = \frac{\epsilon_{ox}(\omega_Q^{(i)}) + \epsilon_g(\omega_Q^{(i)})}{2\epsilon_{ox}(\omega_Q^{(i)})} a_{Q,\omega_Q^{(i)}}$$
$$d_{Q,\omega_Q^{(i)}} = \frac{\epsilon_{ox}(\omega_Q^{(i)}) - \epsilon_g(\omega_Q^{(i)})}{\epsilon_{ox}(\omega_Q^{(i)}) + \epsilon_s(Q,\omega_Q^{(i)})} a_{Q,\omega_Q^{(i)}}$$

- \bullet Fix $a \atop Q, \omega_O^{(i)}$ via second-quanization or semiclassically.
 - Semiclassically (not-so-trivial extension of Kittel 63):
 - Re-write potential as:

$$\phi_Q^{(i)}(\mathbf{R},z,t) = \phi^{(i)}_{Q,\omega_Q^{(i)}}(z) \cos(\mathbf{Q} \cdot \mathbf{R} - \omega_Q^{(i)}t)$$

– Write interface charge-density as: $ho_Q^{(i)}({f R},z,t)$

$$ho_{Q}^{(i)}(\mathbf{R},z,t)$$

$$= \left\{ \delta(z) \left[\epsilon_{gate}(\omega_Q^{(i)}) a_{Q,\omega_Q^{(i)}} + \epsilon_{insulator}(\omega_Q^{(i)}) \left(b_{Q,\omega_Q^{(i)}} - c_{Q,\omega_Q^{(i)}} \right) \right] \right.$$

$$+ \delta(z-t) \left[\epsilon_{insulator}(\omega_Q^{(i)}) \left(c_{Q,\omega_Q^{(i)}} e^{Qt} - b_{Q,\omega_Q^{(i)}} e^{-Qt} \right) + \epsilon_{substrate}(Q,\omega_Q^{(i)}) d_{\Delta_{Q}(i)} e^{-Qt} \right] \right\} Q \cos(\mathbf{Q} \cdot \mathbf{R} - \omega_Q^{(i)}t) .$$

$$+ \epsilon_{substrate}(Q, \omega_Q^{(i)}) d_{Q, \omega_Q^{(i)}} e^{-Qt}] \} Q \cos(\mathbf{Q} \cdot \mathbf{R} - \omega_Q^{(i)}t).$$

 $\epsilon_{gate}(\omega)$, $\epsilon_{insulator}(\omega)$, and $\epsilon_{substrate}(Q,\omega)$ to be determined: whatever response is accounted for by these functions, is not accounted for by the potential

- Get total energy (potential+kinetic, including self-energy): $< W_Q^{(i)} > = 2 < U_Q^{(i)} >$

$$=rac{2}{\Omega}\left\langle \int_{\Omega}d\mathbf{R}\,\int_{-\infty}^{\infty}\,dz\;\phi_{Q}^{(i)}(\mathbf{R},z,t)\;
ho_{Q}^{(i)}(\mathbf{R},z,t)
ight
angle$$

$$=Q \, \epsilon_{TOT}(Q,\omega_Q^{(i)}) \left[\frac{\epsilon_{ox}(\omega_Q^{(i)}) - \epsilon_g(\omega_Q^{(i)})}{\epsilon_{ox}(\omega_Q^{(i)}) + \epsilon_s(Q,\omega_Q^{(i)})} \right]^2 \frac{a^2}{Q,\omega_Q^{(i)}} e^{-2Qt}$$
 with

$$\begin{split} \epsilon_{TOT}(Q,\omega) &= \epsilon_{gate}(\omega) \left[\frac{\epsilon_{ox}(\omega) + \epsilon_{s}(Q,\omega)}{\epsilon_{ox}(\omega) - \epsilon_{g}(\omega)} \right]^{2} e^{2Qt} \\ &+ \epsilon_{insulator}(\omega) \left\{ \left[\frac{\epsilon_{ox}(\omega) + \epsilon_{s}(Q,\omega)}{2\epsilon_{ox}(\omega)} \right]^{2} (e^{2Qt} - 1) \\ &+ \left[\frac{\epsilon_{ox}(\omega) - \epsilon_{s}(Q,\omega)}{2\epsilon_{ox}(\omega)} \right]^{2} (1 - e^{-2Qt}) \right\} \\ &+ \epsilon_{substrate}(Q,\omega) \end{split}$$

$$\phi^{(i)}_{Q,\omega_Q^{(i)}} = \left[\frac{\hbar\omega_Q^{(i)}}{2\;Q\;\epsilon_{TOT}(Q,\omega_Q^{(i)})}\right]^{1/2} e^{-Q(z-t)}$$

$$\epsilon_{gate}(\omega) = \epsilon_g(\omega)$$

$$isulator(\omega) = \epsilon_{ox}(\omega)$$

* $\epsilon_{gatc}(\omega) = \epsilon_g(\omega)$ * $\epsilon_{insulator}(\omega) = \epsilon_{ox}(\omega)$ * $\epsilon_{substrate}(Q, \omega) = \epsilon_s^{(2D)}(Q, \omega)$ the secular equation is equivalent to

 $\epsilon_{TOT}(Q,\omega)=0$

June 01 17

MVF

MVF

18

- Scattering field due to plasmon- and phonon-components:
- Plasmon: Set
- * $\epsilon_{substrate}(Q, \omega) = \epsilon_{Si}$, $\epsilon_{gate}(\omega) = \epsilon_{Si}$ (full plasma response lumped into the field)
- * $\epsilon_{insulator}(\omega) = \epsilon_{ox}^0$ (TO-response excluded from the field and fully lumped into the dielectric function) in $\epsilon_{TOT}(Q,\omega)$
- * Call it $\epsilon_{TOT}^{(PL)}(Q,\omega)$

Then, field due to gate-plasmons:

$$\phi_{Q,\omega_Q^{(i)}}^{(i,g,PL)}(z) = \left[\frac{\hbar \omega_Q^{(i)}}{2 \; Q \; \epsilon_{TOT}^{(PL)}(Q,\omega_Q^{(i)})} \; \Pi^{(G)}(\omega_Q^{(i)})\right]^{1/2} e^{-Q(z-t)}$$

- TO1-mode:
- * Let substrate and gate plasmas respond: $\epsilon_{substrate}(Q,\omega)=\epsilon_s(Q,\omega),\ \epsilon_{gate}(\omega)=\epsilon_g(\omega)\ (\text{so excluding plasmas from the potential})$
- * Define $\epsilon_{TOT,high}^{(TO1)}(Q,\omega_Q^{(i)})$ by setting

$$\epsilon_{insulator}(\omega) = \epsilon_{ox}^{\infty} \frac{\omega_{LO2}^2 - \omega^2}{\omega_{TO2}^2 - \omega^2}$$

(phonon 2 responds at the frequency $\omega_{\rm i}$ while phonon 1 does not respond).

* Define $\epsilon_{TOT,low}^{(TO1)}(Q,\omega_Q^{(i)})$ by setting

$$\epsilon_{insulator}(\omega) = \epsilon_{ox}^{\infty} \frac{\omega_{LO2}^2 - \omega^2}{\omega_{TO2}^2 - \omega^2} \left(\frac{\omega_{LO1}}{\omega_{TO1}} \right)^2$$

(phonon 2 responds at the frequency ω , while phonon 1 responds $\inf \{\alpha_i | \alpha_i \}$

Then, amplitude of (scattering) field due only to TO1 is:

$$\begin{cases} \frac{\phi^{(i,PH1)}(z)}{Q,\omega_Q^{(i)}}(z) = e^{-Q(z-t)} \times \\ \left\{ \frac{\hbar \omega_Q^{(i)}}{2Q} \left[\frac{1}{\epsilon_{TOT,high}^{(TO1)}(Q,\omega_Q^{(i)})} - \frac{1}{\epsilon_{TOT,low}^{(TO1)}(Q,\omega_Q^{(i)})} \right] \right. \Phi^{(TO1)}(\omega_Q^{(i)}) \right\} \end{cases}$$

– Note: Modes 5 and 6 are SO-modes at the far (gate-insulator) interface. At small K_F , large n_g , they are screened by gate-electrons, at large K_F their effect on the mobility is depressed by a factor $\exp(-2K_Ft)$... so, ignore them.

19

20

- Interesting limits:
- TO-mode (no plasma) in bulk: Scattering field \propto

$$\left[\frac{\hbar\omega_{LO}}{2q^2}\left(\frac{1}{\epsilon^\infty}-\frac{1}{\epsilon^0}\right)\right]^{1/2}$$

(usual Fröhlich coupling)

- Coupled TO-plasma modes in bulk:

$$\epsilon_{TOT}(Q,\omega) = \epsilon^{\infty}[(\omega^2 - \omega_{LO}^2)/(\omega^2 - \omega_{TO}^2) - (\omega_P/\omega)^2]$$

with dispersion:

$$\omega_{\pm}^2 = \frac{1}{2} \{ \omega_{LO}^2 + \omega_P^2 \pm [(\omega_{LO}^2 + \omega_P^2)^2 - 4\omega_{TO}^2 \omega_P^2]^{1/2} \}$$

and scattering field:

$$\left\{\frac{\hbar\omega_{\pm}}{2q^2} \left[\frac{1}{\epsilon^{\infty} - \epsilon^{\infty}\omega_P^2/\omega_{\pm}^2} - \frac{1}{\epsilon^0 - \epsilon^{\infty}\omega_P^2/\omega_{\pm}^2} \right] \left| \frac{\omega_{\pm}^2 - \omega_P^2}{\omega_{\pm}^2 - \omega_{-}^2} \right| \right\}^{1/2}$$

(cf. Varga 65, Kim-Das-Senturia 78, Ridley 88, Sanborn 95)

Single TO-mode at Si-insulator interface:

$$\epsilon_{TOT} = \epsilon_{ox}(\omega) + \epsilon_{Si}^{\infty}$$

with dispersion

$$\omega_{SO} = \omega_{TO} \left[\frac{\epsilon_{ox}^0 + \epsilon_{Si}^\infty}{\epsilon_{ox}^\infty + \epsilon_{Si}^\infty} \right]^{1/2}$$
 and the ω

and scattering strength \propto

$$\phi_{Q,\omega SO}^{(PH)}(z) = \left\{ \frac{\hbar \omega_{SO}}{2Q} \left[\frac{1}{\epsilon_{Si}^{\infty} + \epsilon_{ox}^{\infty}} - \frac{1}{\epsilon_{Si}^{\infty} + \epsilon_{ox}^{0}} \right] \right\}^{1/2} e^{-Q(z-t)}$$

(cf Wang-Mahan 72) which is also the unscreened $Qt
ightarrow \infty$ -limit of the general formula

June 01 21

MVF

Insulator parameters

- Select/compromise:
- from literature (theory, experiments: FTIR, Raman, tunneling spectroscopy)
 - From 'in-house' FTIR
- Complications:
- several modes: lump 2 stronger groups/bands into 2 discrete TO modes
- several forms (cubic, hexagonal, monoclinic, amorphous): find closest to 'in-house' FTIR-measured films
- process dependence (e.g., Al-ions in non-stoichiometric A_12O_3):
- interfacial layers (SiO $_2$ for oxides and silicates, Si $_3N_4$ for nitrides and oxynitrides): estimate effect assume 'ideal' films

ZrSiO ₄	11.75	9.73	4.20	38.62	116.00	0.0322	0.2942
HfO_2	22.00	6.58	5.03	12.40	48.35	0.3102	0.0362
ZrO_2	24.0	7.75	4.00	16.67	57.70	0.2504	0.0779
AIN	9.14	7.35	4.80	81.40	88.55	0.0248	0.0423
Al ₂ O ₃	12.53	7.27	3.20	48.18	71.41	0.0788	0.0814
SiO ₂	3.90	3.05	2.50	55.60	138.10	0.0248	0.0113
Material Quantity (units)	$\epsilon_{ox}^{0}\left(\epsilon_{0}\right)$	$\epsilon_{ox}^i\left(\epsilon_0 ight)$	$\epsilon_{ox}^{\infty}\left(\epsilon_{0}\right)$	ω_{TO1} (meV)	ω_{TO2} (meV)	α_1	α_2

$$\alpha_i = \frac{e^2}{4\pi\hbar} \left(\frac{m_t}{2\hbar\omega_{SOi}} \right)^{1/2} \left(\frac{1}{\epsilon_{Si}^{\infty} + \epsilon_{ox}^{\infty}} - \frac{1}{\epsilon_{Si}^{\infty} + \epsilon_{ox}^{0}} \right)$$

22

FTIR spectra (D. Neumayer)

Mobility

Scattering rate:

$$\frac{1}{\tau_{\mu\nu}({\rm K})} \, = \, \frac{2\pi}{\hbar} \, \sum_{{\rm Q}} \, |V_{\mu\nu}({\rm Q})|^2 \, \delta[E_{\mu}({\rm K}) - E_{\nu}({\rm K} + {\rm Q}) \pm \Delta E({\rm Q})]$$

$$V_{\mu\nu}({\bf Q}) \;=\; \int_0^\infty \,dz\; \zeta_\mu^*(z)\; \phi_{\bf Q}(z)\; \zeta_\nu(z)$$
 • Momentum relaxation rate (along x -axis):

$$\frac{1}{\tau_{\mu\nu}^{(p,x)}(\mathbf{K})} \approx \frac{2\pi}{\hbar} \sum_{\mathbf{Q}} |V_{\mu\nu}(\mathbf{Q})|^2 \; \left(\frac{Qx}{K}\right)$$

 $\times \delta[E_{\mu}(\mathbf{K}) - E_{\nu}(\mathbf{K} + \mathbf{Q}) \pm \Delta E(\mathbf{Q})]$

• Mobility along x-axis (assuming spherical dispersion):
$$\frac{n_{\nu}}{n_{\nu}} = \sum_{n_{\nu}} \frac{n_{\nu}}{n_{\nu}} = 0$$

$$\mu_{x,x} = \sum_{\nu} \mu_{\nu} \frac{n_{\nu}}{n_{s}} =$$

 $\sum_{\nu} \frac{en_{\nu}}{m_{x,\nu} k_B T n_s} \int_{E_{\nu}}^{\infty} dE \left(E - E_{\nu} \right) \rho_{\nu}(E) \, \tau_{\nu}^{(p,x)}(E) \, f_{\nu}(E) [1 - f_{\nu}(E)]$

Screening (dynamic):

$$V_{\mu\nu}^{(s)}(\mathbf{Q},\omega) \; = \; V_{\mu\nu}(\mathbf{Q}) - \sum_{\lambda\lambda'} \frac{\beta_{\lambda}(\mathbf{Q},\omega)}{Q} \; \mathcal{G}_{\mu\nu;\lambda\lambda'}(\mathbf{Q}) \; V_{\lambda\lambda'}^{(s)}(\mathbf{Q},\omega)$$

$$\mathcal{G}_{\mu\nu;\lambda\lambda\prime}(\mathbf{Q}) = \int_0^\infty dz \int_0^\infty dz' \, \zeta_\mu^*(z) \zeta_\nu^*(z') \, G_{\mathbf{Q}}(z,z') \, \zeta_\lambda(z) \zeta_{\lambda\prime}(z')$$
 where $G_{\mathbf{Q}}(z,z')$ is the Poisson Green's function.

In matrix form:

$$V^{(s)}(\mathbf{Q},\omega) = [1 - \Pi(\mathbf{Q},\omega)]^{-1} V(\mathbf{Q})$$

June 01 24

MVF

June 01 23

Scattering processes

Bulk Si phonons:

$$|V_{\mu\nu}(\mathbf{Q})|^2 \propto \frac{\Delta_Q^2}{\hbar\omega_Q} F_{\mu\nu}(Q)$$

- Example: for acoustic, intravalley, one-subband, variational wavefunction

$$\frac{1}{\tau(p)} \approx \frac{3m_zb}{64\hbar^3} \frac{\Delta_{ac}^2}{\rho c_s^2} \to \mu_{ph} \propto \, b^{-1} \propto n_s^{-1/3}$$

- In general, more complicated:
 Deformation potential is anisotropic:

$$\Delta_{LA} \rightarrow \Xi_d + \Xi_u \cos^2 \eta_Q$$

$$\Delta_{TA} \rightarrow \Xi_u \cos \eta_O \sin \eta_C$$

- $\Delta_{TA} \rightarrow \Xi_u \cos \eta_Q \sin \eta_Q$ 2. Subband dispersion is nonparabolic 3. Subband dispersion is non-spherical 4. Intervalley scattering (projected onto 2D BZ) 5. Are bulk Si phonons OK near the interface? 6. What about screening?
- Coulomb scattering (with dopants, oxide charges, etc):

$$V_{\mu
u}(Q) \propto rac{e^2 N_G^{1/2}}{Q^2} \, ilde{\mathcal{G}}_{\mu \mu;
u
u}(Q)$$

(must be screened!) and

$$\mu_C \propto \frac{n_s^{4/3}}{N_C}$$

Surface roughness:

Ando's model assumes 1st-order pertubation given by steps at interface of rms height Δ and correlation-distance Λ .

$$V_{\mu\nu}({\bf Q}) \propto \Delta \Lambda F_s \left\{ \begin{array}{l} e^{-Q^2 \Lambda^2/4} \\ (1+Q^2 \Lambda^2/2)^{-1} \end{array} \right.$$

(must be screened) and

$$\mu_{SR} \propto \Delta^2 \Lambda^2 \; n_s^{-2}$$

MVF

22

June 01

26

Subbands

Triangular-well approximation

Energy levels:

$$E_{\mu} \, = \, \left(rac{\hbar^2}{2m_z}
ight)^{1/3} \, \left[rac{3\pi F_s}{2} \left(\mu + rac{3}{4}
ight)
ight]^{2/3}$$

Wavefunctions:

$$\zeta_{\mu}(z) = N Ai \left[\left(\frac{2m_z e F_s}{\hbar^2} \right)^{1/3} \left(z - \frac{E_{\mu}}{e F_s} \right) \right]$$

Variational ground-state wavefunction:

$$b = \frac{3}{z_0} \propto n_s^{1/3}$$

 $pprox (z)_0$

with

June 01 27

 $k - k_0 (2\pi/a)$

z (nm)

Phonon-assisted intervalley scattering

MVF

June 01 29

MVF

The fight for the right phonon-limited mobility

IN-PLANE WAVEVECTOR Q (106 cm-1) (e) 9 June 01 The Si/SiO₂/Si system 10-8 10-2 r 10-8 10^{-2} 10₆ 10-2 104 10-e 108 104 9 (Va) _{q2}Λ+_{O2}Λ (Va) _{OS} ((√a) _{q2}Λ IN-PLANE WAVEVECTOR Q (106 cm⁻¹) <u>ပ</u> (a) æ $n_9 = 5x10^{19} \text{cm}^{-3}$ $n_8 = 10^{13} \text{cm}^{-2}$ $Si/SiO_2/Si$ $t_{ox} = 1.5 \text{ nm}$ MVF GENTE PLASMON CONTENT П^(G) PHONON CONTENT $\Phi^{(TO1)} + \Phi^{(TO2)}$ 1.0 200 150 9 (Vəm) ađ

June 01 31

¥ Þ

• HO₂

38

Effect of SiO₂ interfacial layer

- Interfacial layer probably unavoidable, possibly desirable (with moderation...)
- Full system Si/high-κ/SiO₂/Si too cumbersome... secular equation

$$(\epsilon_g + \epsilon_{\kappa})(\epsilon_s + \epsilon_{ox})(\epsilon_{ox} + \epsilon_{\kappa}) + (\epsilon_g - \epsilon_{\kappa})(\epsilon_s + \epsilon_{ox})(\epsilon_{ox} - \epsilon_{\kappa}) e^{-2Qt_{\kappa}}$$

$$- (\epsilon_g - \epsilon_{\kappa})(\epsilon_s - \epsilon_{ox})(\epsilon_{ox} + \epsilon_{\kappa}) e^{-2Q(t_{\kappa} + t_{ox})}$$

$$- (\epsilon_g + \epsilon_{\kappa})(\epsilon_s - \epsilon_{ox})(\epsilon_{ox} - \epsilon_{\kappa}) e^{-2Qt_{ox}} = 0$$

(16 coupled modes!)

- Consider instead 'unscreened' high- $\kappa/{
 m SiO_2/Si}$ system and only one TO
 - mode in each insulator.
- 1. ${\rm SiO_2~mode~}\Omega_{TO}$ localized at the ${\rm Si/SiO_2}$ interface: $3 \; \mathrm{modes} \; \mathrm{with} \; \mathrm{high-} Q ext{-frequencies}$:

$$\omega_Q^{(-)} \approx \Omega_{TO} \left[\frac{\epsilon_{ox}^0 + \epsilon_{Si}^\infty}{\epsilon_{ox}^1 + \epsilon_{Si}^\infty} \right]^{1/2}$$

2. ${\rm SiO_2~mode~}\Omega_{TO}$ localized at the high- $\kappa/{\rm SiO_2}$ interface:

$$\omega_Q^{(+)} \approx \Omega_{TO} \left[\frac{\epsilon_{ox}^0 + \epsilon_{\kappa}^\infty}{\epsilon_{ox}^i + \epsilon_{\kappa}^\infty} \right]^{1/2}$$

3. remote) high- κ mode ω_{TO} localized at the Si/SiO $_2$ interface: (negligible, as for modes 5 and 6 before)

$$\omega_Q^{(\kappa)} \approx \omega_{TO} \left[\frac{\epsilon_\kappa^0 + \epsilon_{S_i}^\infty}{\epsilon_\kappa^i + \epsilon_{S_i}^\infty} \right]^{1/2}$$

Effect of the SiO₂ interfacial layer

INTERFACIAL OXIDE THICKNESS (nm)

ا ا

HfO₂/SiO₂/Si

40

MVF

39

June 01

MVF

Conclusions

- Poor mobility observed almost always, but mainly due to poor material quality (traps, interface states, non-stochiometry, interfacial layers). Must solve these problems first! $n_{\mathcal{S}}$ hard to measure accurately. Experimental confirmation?
 - Parameters: what material do we really have? How far from 'ideal'?
- Callegari, 00-01), ZrSiO $_4$ somewhat better than ZrO $_2$ (Qi, 00), Al $_2$ O $_3$ - Still...trends show HfO2 and ZrO2 yield worst mobility (Ragnarsson, in-between, AIN very poor (but Si_3N_4 interfacial layer present)

If theory is right:

- Interfacial and many-body effects paramount in small devices:
 Coulomb effects make 'ballistic limit' only a theoretical dream (metal contacts?)
 - * there's no more 'bulk', only 'interfaces', in small devices
 - Must pay for high κ with poor mobility
 - Metal-oxides worst
 - Silicates promising
- AIN promising (if we only could get rid of the Si_3N_4 interfacial layer!)
 - Thin SiO₂ interfacial layer desirable
- Assessing whether this low mobility is a fatal flaw or not is up to the circuit designers. Alternatives to high- κ are even riskier propositions.

June 01 41

Full Bandstructure Calculations for Transport in Wide-Band-Gap Semiconductors*

Stephen M. Goodnick

Department of Electrical Engineering www.eas.asu.edu/~goodnick stephen.goodnick@asu.edu Arizona State University

'Supported by ONR and the DARPAIPhophor Technology Center of

Excellence

NRG/Maratea

Collaborators

- Richard Akis, Joy Barker, Manfred Dür*, David Ferry, Trevor Thornton, Arizona State University
 - ·Shankar Pennathur*, John Wager, Oregon State University
- ·Marco Saraniti, Illinois Inst. Tech.
- Niels Fitzer, Ronald Redmer, Martin Reigrotzki*, Universität Rostock
- Martin Städele* and Peter Vogl, Technische Universität München
- ·Randy Shul, Sandia National Labs
- Daniel Koleske, Naval Research Labs

Outline

- 1. Wide-Bandgap Materials
- 2. Electronic Structure Calculations
- 3. Impact lonization Rate
- 4. Electron-Phonon Interaction
- 5. Full-band Monte Carlo Simulation
- 6. Experimental Results

NRG/Maratea

Column IV

GaN

III-V Nitrides

ZuS, ZuSe, NuS, SrS, Ces II-VI Compounds

101 E (meV)

Compound Semiconductors: ionic zincblende→wurzite →rocksalt Breakdown field ~ 1 MV/cm $E_{\rm G}$ ~3-5 eV

Wide-Bandgap Semiconductor Applications

High-Frequency Power Amplifiers

- STESEES NO.
- · AGaNINGAN HENTS

Optical Sources

- *ZnS/ZnSe, AlGaN/InGaN LEDs/Lasers (Green-Blue-
- · Phosphor materials (ZnS:Mo, SiS:Ag, CeS:Mn)-FED,

High Field Transport in TFEL Devices

High field phenomena affecting TFEL performance:

- luminescent impurities · Impact excitation of
- · Band to band impact ionization of electrons and holes

Issues

- conduction bands occupied: Full bandstructure must be considered · Average carrier energies at 1-2 MV/cm are 2-3 eV, several
 - · Band to band impact ionization process in wide bandgap materials not well understood
 - · Electron-phonon interaction at high fields is unknown experimentally in phosphor materials

NRG/Maratea

Bandstructure for Cubic GaN, ZnS, and SrS

Empirical Pseudopotential Method

are calculated either from formfactors in literature, or derived Local and nonlocal bandstructures for cubic GaN, ZnS and SrS using least squares fit to existing critical point data.

- SHO.
- -Local: Walter and Cohen, Phys. Rev. 183, 763 (1969)
 - -Nonlocal: M. Dür et al., JAP 83, 3176 (1998)
- -Nonlocal- Reigrotski et al, JAP 86, 4458, (1999) · GaN
 - -Oguzman et al., JAP 80,4429 (1996)

-Xia et al., Phys. B 59,10119 (1999)

Ab Initio Bandstructure

EXX Results for Cubic Semiconductors

LDA

S

Calc. band gaps [eV]

ဖ

EXX-LDA (exact exchange-local density approximation) Method¹

- Kohn-Sham method is particular, exact realization of density functional theory which maps interacting system onto noninteracting system of the same density
- LDA approximates BOTH exchange and correlation potential within the Kohn-Sham model
- -Good ground state properties but poor band gaps
- EXX-LDA is a systematic step beyond LDA which treats the exchange potential EXACTLY
- -EXX+LDA yields excellent ground state properties AND band gaps

¹M. Städele, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev. Lett. 79, 2089 (1997)

9

Exp. band gaps [eV]

Comparison of EXX and EPM Results for SrS and ZnS to Experimental Data (in eV)

SrS: indirect

EPM	4.26	5.45	4.86
EXX	3.69	4.67	4.21
EXP	4.32	5.33	4.83
SrS	E(Γ _ν -Χ _c)	E(Lv-Lc)	E(Xv-Xc)

EXP: Kaneko and Koda, J. Cryst. Growth 86, 72 (1988)

ZnS: direct

SuZ	EXP	EXX	EPM
E(\(\Gamma\rac{1}{2}\)	3.68	3.73	3.73
E(Lv-Lc)	5.73	5.45	5.59
$E(X_v-X_c)$	6.31	6.43	6.58

EXP: Walter and Cohen, Phys. Rev. 183, 763 (1969)

NRG/Maratea

Impact Ionization Rate in Wide-Bandgap Materials

- from pseudopotential bandstructure (M. Reigrotzki et al., Band to band impact ionization rate calculated directly Phys. Rev. B 52, 1456 [1995]).
- Energy dependent scattering rate is fit to $R(E) = P \; (E \text{-} E_{th})^a$

NRG/Maratea

EXX Density of States for SrS, Zns, and GaN

EXX

Intercollisional Field Effect in Impact Ionization

- Quade et al. (PRB 50, 7398, 1994) ICFE in parabolic band approximation based on density matrix approach
- to full bandstructure, widebandgap materials using Zubarev Redmer et al (JAP 87, 781, 2000) Extension of Quade et al. nonequilibrium statistical operator approach.

$$\frac{\partial}{\partial t} f_{v,\mathbf{k}}(t) + e \vec{E}_0(t) \bullet \frac{\partial}{\partial \mathbf{k}} f_{v,\mathbf{k}}(t) = J_e(v,\mathbf{k},t)$$
• Treating only electron-electron interactions,

$$r_{ii}(\mathcal{E}_{1}, E_{0}) = C \int_{0}^{\infty} dE \left(\frac{E}{E_{th}}\right)^{a} \frac{1}{E_{F}^{ii}} Ai \left(\frac{E_{th} - \mathcal{E}_{1} + E}{E_{F}^{ii}}\right)$$

$$E_{F}^{ii} = \left[\frac{(1+\alpha)(eE_{0})^{2}}{8m_{e}\hbar}\right]^{1/3}$$

NRG/Maratea

Direct Calculation of Electron-Phonon Scattering Rate

MOLVALUM

- · The electron-phonon coupling is the dominant scattering process controlling the high field distribution
- · Deformation potential model relies on constants which are not known experimentally for phosphor materials of interest
- directly from the electronic and vibrational properties of the crystal · A method is required to obtain the electron-phonon coupling

METHOD

· Rigid-ion model (RIM) used2 in which the rigid displacement of the atomic pseudo-potential (from EPM calculation) due to lattice vibrations gives the interaction potential

²M. V. Fischetti and J. M. Higman, 1991

RIM electron-phonon coupling constant that enters into the scattering rate

Phonon modes calculated using an empirical valence-shell model for the lattice dynamics with parameters fit to measured phonon

Phonon Spectrum of ZnS

dispersion (Vagelatos et al., J. Phys. Chem. 60, 3613 [1974]).

neutron data

ZuS

R R S

2

$$\Delta_{j}(n \, \mathbf{k}; n' \, \mathbf{k}') = -\frac{i}{2} (M_{1} + M_{2})^{1/2}$$

$$\times \sum_{GG'} [C_{G}^{n}(\mathbf{k}) C_{G'}^{n}(\mathbf{k}')^{*} (\mathbf{Q} - \mathbf{G} + \mathbf{G}' - \mathbf{G}_{\mathbf{u}}) \xrightarrow{\text{require the electron potent}} \sum_{\alpha} \mathbf{e}_{\mathcal{G}'}^{\alpha} M_{\alpha}^{-1/2} V_{\alpha} (\mathbf{Q} - \mathbf{G} + \mathbf{G}' - \mathbf{G}_{\mathbf{u}}) \longrightarrow \xrightarrow{\text{the reciprocal lattice vecton}} \times e^{-i(\mathbf{G} + \mathbf{G}' - \mathbf{G}_{\mathbf{u}})^{-1/2}} \Delta_{\mathbf{k} - \mathbf{k}' + \mathbf{Q}, \mathbf{G}_{\mathbf{u}}}]$$

require the electron potential for

the reciprocal lattice vectors

the pseudo wavefunctions and the phonon dispersion relations To calculate this quantity, you need the band structure,

Interpolation of Local Pseudopotentials for ZnS

NRG/Maratea

Calculated average electron-phonon scattering rate versus energy for ZnS using the rigid-ion model compared to density of states.

K E E WAVE VECTOR

Fo fit the parameters of the model, calculated using a Keating model³ obtained using a ten parameter empirical Shell model¹ phonon frequencies2, as well as ¹ K Kunc, OH Neilson, Comput. Phys. Comm. 17, 413 (1979) several theoretically values ² T. Azuhata et al. J. Phys. Condens. Matter 7, L129 (1995) experimentally determined ³J. Zi et al. J. Phys. Condens. Matter 8, 6323 (1996) Phonon dispersion for zincblende GaN were used × 8 8

Density of states for the two cases:

NRG/Maratea

Interpolation schemes for the pseudopotentials

to fit the form factors of Oguzman et al. Model 1: use polynomial interpolation (J. Appl Phys. 80, 4429, 1996) but impose the condition:

 $V_1(0) = V_2(0) = 0$

factors used by Oguzman et. al. Circles represent actual

Model 2: Use the same functional (Phys. Rev. B 59, 10119, 1999): form and fits used by Xia et al.

$$V_i(g) = a_1(g^2 - a_2)/[1 + \exp(a_3(g^2 - a_2))]$$

more extreme values near zero Note that model 2 takes on

zincblende GaN was also considered Second phonon dispersion model for

valence shell fit to the data of

within the framework of self-consistent The data of Karch et al. was calculated density functional perturbation theory. K. Karch, J.-M. Wagner, and F. Bechstedt, Phys. Rev. B 57, 7043 (1998)

The frequencies attained by the TA branchs are significantly lower than for the Zi et al. case.

 $K_{rt} = 13.2 \times 10^8 \text{ eV/cm}$ K_{μ} is a fitted deformation potential constant and N(E) the final density of states Same fit works well For both models model 2 model 1 Comparison between fit and full calculations: 9 ω E (eV) NRG/Maratea Scattering rate $(10^{15} s^{-1})$

in wide band gap materials is dominated by optical phonon deformation

 $R(E) \sim K_{fit}^2 N(E')$

potential scattering:

Previous work on ZnS has suggested that the high field scattering rate

Phonon scattering rate results for the two phonon models

using Oguzman et al. pseudopotential parameters

NRG/Maratea

Full Band Ensemble Monte Carlo Model

- · Full band dispersion used for particle dynamics
- rates from full band model b) full anisotropic rates in CA · Scattering treated a) pseudo isotropic, energy averaged model
- chosen either from fit to experimental data or extracted · Deformation potential Ansatz assumed, with values from RIM calculation
- · Polar optical assuming Fröhlich coupling
- Ionized impurity, other elastic mechanisms included for low energies

Impact ionization Experimental coefficient assuming only electrons $\mathbf{0}$ Re-Evaluation

NRG/Maratea

Impact Ionization Coefficient for Electrons

onization coefficient in ZnS from multiplication measurements on photoinjected carriers in reverse biased Schottky barriers Thompson and Allen (J. Phys. C 1989) measured the impact They assumed the the e and h impact ionization rates were equal in order to relate multiplication to the ii coefficient

Assuming the hole ionization rate is negligible, the expression relating carrier multiplication to the ionization coefficient is given by

$$\ln M_n = \int_{\alpha_n} \alpha_n dx = \alpha_n (E_m) W_{eff}$$

coefficient derived by Thompson and Allen assuming equal ·Using this relation, we re-evaluated the impact ionization electron and hole coefficients

Comparison of steady-state particle distributions in ZnS at 2 MV/cm and 300 K using rigid-ion model and deformation potential sets D_{II} and D_{III}.

2.0

for

Characteristics

Calculated Velocity Field Characteristics

10%

Average Drift Velocity (cm/s)

simulations using

the fitted

Monte Carlo

results of full-band

Drift velocity

10₆

Field Strength (V/cm)

 10^{2}

potential at 300 K

deformation

High Field Transport in GaN: Experimental

Pulse I-V measurements of velocity field characteristics

Quantum Wells

Thick Films

Photo-chemical etching

ICP (Sandia)

Mesa Etch

Ti/Al Ohmic Contacts

ij

iii) Ti/Au Bond Pads

GaN Test Structure Process Flow

NRG/Maratea

sapphire

sapphire

Summary Sankstons

· Ab initio techniques more accurate, but not necessarily better than empirical methods for transport

inpact tenion Rate in Fasts in Passions

- · Narrow valence band structure for ZnS and SrS implies impact ionization due to holes should be weak process
- · Re-evaluation of Thompson-Allen data, comparable to theory
- · No effect of ICFE on impact ionization

The state of the second

- Deformation potential of $1.3{\times}10^9~eV/cm$ fits RIM calculation well: dominant mechanism above intervalley threshold
- · Comparison to experimental measurement by different techniques

Semiclassical modeling of small semiconductor devices

Max Fischetti

IBM Research Division T. J. Watson Research Center Yorktown Heights, NY 10598

June 2001

MVF

June 01 1

Semiclassical modeling

MVF

Various flavors:

- Strict: may use the bulk (3D) Boltzmann Transport Equation (BTE), à la Kohn-Luttinger (Liouville-von Neumann with infinitely-may randomly-distributed impurities), even if Quantum Mechanics is pervasive (bands, collisions, etc.)
- Somewhat looser: may use a lower-dimensional BTE (quantum confinement), or any Master equation (dots). No transport 'in the quantized direction'
- Very loose ('psychologically' classical): Approximate quantum effects so to allow the concept of 'particle' or 'trajectory' (Bohm trajectories, quantum potentials, effective potentials, Wigner paths/trajectories...)
- Anticipated failures:
 - Quantum confinement (strict): channels, wires, dots
 - Tunneling (somewhat looser): band-to-band, across barrier, resonant,
 - Interference effects (somewhat looser): Bohm-Aharonov, current oscillations in FN-tunneling and channel current (?!), ...
 - 2D/3D confinement-effects (somewhat-looser/very-loose?): narrow channels in double-gate, point contacts, strongly-coupled dots
 - High-energy, high-field, short-time effects (Somewhat/very loose):
 Collisional broadening, intracollisonal-field, coherent phenomena,...
- · Virtues of semiclassical modeling:
 - We have survived so far...
 - 'Intuitive', leading to deeper understanding
 - Simpler (or just...doable?), allowing more accurate description of effects which may be dominant in many real-life experiments/devices
 - Determination of 'bulk quantum properties' (band-structures, strain, electron-phonon coupling constants, Auger/impact processes)
 - Collective/many-body effects (Coulomb effects, quantum or MD)

Dopant fluctuations

Semiclassical modeling of small semiconductor devices

Discrete impurities and quantum potentials in MOSFET modeling

Effective potentials for quantum effects in MOSFETs

· Asen Asenov, Glasgow University,

Richard Akis, Arizona State University,

- Important (threshold control a crucial element in VLSI)...
- but complicated:

MVF

- BTE suspect
- Scatterers closer than mean-free-path:
 - * no rigorous use of mobility possible
 - * multiple-scattering, interference, non phase-breaking
- What's the scattering potential?
- So far limited to drift-diffusion and to electrostatics (probably good enough)

Quantum/effective potentials

- From Wigner or Bohm
- 'Phsychologically easy', mathematically hard
- So far approximated (equilibrium) or of a heuristic nature
- Of high appeal because of their 'intuitive' nature

MVF

June 01 4

Session 4 The Metal-Insulator Transition

- Moderator: Chihiro Hamaguchi, Osaka University
- 4A: Guenther Bauer, University of Linz, "The metal-insulator transition in d=2"
- 4B: Jonathan Bird, Arizona State University, "The metal-insulator transition in open quantum dots and arrays"

- For strong interactions it should end up as a Wigner crystal (or pinned Wigner crystal).
- Therefore, neither in the limit of weak nor in the limit of strong interactions, 2D systems should conduct for T→0.
- Early experiments confirmed these predictions.
- However, experiments with very clean high mobility samples contradict it.
- A non zero conductivity was found.
- Evidence for a metal-insulator transition

Metal-insulator transition in two dimensions

Guenther Bauer, University of Linz

- No metallic state in two dimensions in B = 0 (Abrahams et al. in 1979: Scaling theory).
- With decreasing temperature the resistance should rise logarithmically (weak localization) or even exponentially (strong localization) with R→ • for T→0.
- In the limit of weak localization R should grow logarithmically for $T \rightarrow 0$.

- A critical density was found::
- Below the system is insulating
- Above the system shows metallic behaviors
- Many explanations were put forward
- Si-MOS
- Experiments: weak localization
- → onset of metal-insulator transition: classical effect (screening, ionized impurity scattering,.....)

The metal-insulator transition in open quantum dots and arrays

Jonathan Bird, Arizona State University

- Much recent interest in the observation of a Kondo effect in Coulomb blockaded quantum dots.
- In open quantum dots the Coulomb blockade is suppre4ssed.

 Transport is found to be mediated by strongly
- scarred wavefunction states.

 The scars correspond to quasi-bound resonant states of the open system which are characterized by long trapping times at specific energies.

- The quasi-bound nature is expected to give rise to novel signatures in transport due to electron interactions.
- The behavior of the quasi-bound states will be explored in this presentation.

Quantum Potentials in MOSFET Intrinsic Fluctuations and

"The tyranny of the large numbers"

Modelling

A. Asenov

A. R. Brown, S. Kaya, J. Watling, J. H. Davies, G. Slavcheva Department of Electronics and Electrical Engineering University of Glasgow

DEVICE OF SECURITY OF SECURITY

© A. Asenov 2001

CANGES IN COLUMN CANAGES IN CO

Summary

☐ Introduction

□ Quantum corrections

□ Random Dopant Fluctuations

□ Oxide Thickness Fluctuations

□ Conclusions

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

Scaling of MOSFETs to decanano dimensions (International Roadmap for Semiconductors - 1999 Edition)

2004 | 2008 | 2011 | 2014

1999 2001 0.40

CLASCOM Of CLASCOM

MPU Gate Length (nm)

Oxide thickness (nm)

international Technology Roadmap

5-1.9 1.2-1.5

42-70 30-50

Drain extensions (nm)

ntel Roadmap

Conventional MOSFET with 20 nm gate length

2007 2009

2005

2003

2000

1998

Technology node (nm)

Gate length (nm)

Solution Being Pursued No Known Solutions

Solution exists

5 20

Vg = 0.85V

Robert Chaw Si Nanoel. Workshop 01

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

Machine Control

@ A. Asenov 2001

ق ق Ö Quantum Transport in Semiconductors Maratea, June 2001

Vertical confinement

Double gate MOSFET with 8 nm gate length

Random Dopants Fluctuations (RDF)

Quantum Transport in Semiconductors Maratea, June 2001

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

DEVIG PREVIOUS GREETING

Numbers and position fluctuations

0.9

0.8-

r = 0.55 V

nm MOSFET

ξ ξ [Λ]¹Λ

140 160 180 200
Dopants in the depletion layer

0.4

0.5

 $V_T = 0.67 \text{ V}$

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

 $V_T = 0.80 \text{ V}$

CLASSIN CLASSIN

(A 50×50 nm MOSFET) The poly-Si gate

Grain boundaries

@ A. Asenov 2001

ON THE SECOND

Quantum Transport in Semiconductors Maratea, June 2001

STATE OF THE STATE

Single charge trapping

Classical
 Quantum

Device size 30х30 пт

40x40 nm 50x50 nm

\$ \$ [%] a_I /a_{IV}

Quantum Transport in Semiconductors Maratea, June 2001

@ A. Asenov 2001

(A 50x50 nm MOSFET with discrete dopants)

PALIFECT CELLEGOR

Single charge trapping

Oxide Thickness Fluctuations (OTF)

TEK T

§ [%] ^al/^alV

%09

M. Niva et al.
Jpn. J. Appl. Phys Quantum Transport in Semiconductors
Maratea, June 2001

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

MEVICA STATES

Line edge roughness (LER)

200

Line Width [nm] 100 150

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

Summary

- ☐ Introduction
- ☐ Quantum corrections
- ☐ Random Dopant Fluctuations
- □ Oxide Thickness Fluctuations
- ☐ Conclusions

@ A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

A ASSESSME

Solution domain in 3D 'atomistic' simulation

- ☐ 3D DD simulations + quantum corrections
- ☐ Fine grain discretisation
- □ Statistical ensembles of microscopically different devices
- □ Estimation of averages and standard deviations
- 50×50 nm MOSFET

ORVIGE OF STREET

© A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

The Density Gradient (DG) approach (C.S. Rafferty et al., SISPAD'98)

DG introduces QM corrections by introducing an extra term into carrier flux expression

$$F_n = n\mu_n \nabla \psi - D_n \nabla n + 2\mu \nabla \left(b_n \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} \right)$$

where

$$b_n = \hbar / (12qm_n^*)$$

Generalised quasi-Fermi potential

$$F_n = n\mu_n \nabla \phi_n$$

© A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

Quantum mechanical threshold voltage shift

DD with DG corrections for unipolar device

(C.S. Rafferty et al., SISPAD'98)

WORST TO

Effective Potential
 Density Gradient
 Jallepalli (Pvisson-Schrodinger)

γ₁(QM) - γ₁(Classical) [V]

Substrate Doping [cm.3]

Quantum Transport in Semiconductors Maratea, June 2001

 ψ, ϕ_n, \sqrt{n}

The variables

Quantum Transport in Semiconductors Maratea, June 2001

 $\nabla \cdot (\varepsilon \nabla \psi) = -q(p - n + N_D^+ - N_A^-)$

The system

 $\nabla \cdot (n\mu_n \nabla \phi_n) = 0$

 $2b_n \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} = \phi_n - \psi + \frac{kT}{q} \ln \frac{n}{n_i}$

© A. Asenov 2001

Summary

- □ Introduction
- ☐ Quantum corrections
- ☐ Random Dopant Fluctuations
- □ Oxide Thickness Fluctuations
 - ☐ Conclusions

© A. Asenov 2001

COUNTY OF THE PARTY OF THE PART

Quantum Transport in Semiconductors Maratea, June 2001

Potential and electron distribution (A 50×50 nm MOSFET)

Potential

Electron concentration

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

Electron equiconcentration distribution

(A 50×50 nm MOSFET)

Number of Calvision

Threshold voltage as a function of the gate

DEVICE OF STREET

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

STANCOM.

Threshold voltage standard deviation as a function of the gate length

Walliesen.

© A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

PEVIC DI

Threshold voltage standard deviation as a

function of the oxide thickness

Summary

- ☐ Introduction
- ☐ Quantum corrections

 $= 5 \times 10^{18} \text{ cm}^{-3}$

N

 $\Delta = 0.37 \text{ nm}$

-90.0

 $[V]_T^{VO}$

0.02

0.04

 $W_{eff} = 50 \text{ nm}$ $N_A = 5 \times 10^{18} \text{ cr}$ $L_{eff} = 50 \text{ nm}$

Classical metal gate
Quantum metal gate
Quantum + poly-Si
Classical corrected

<u>.</u>. 0.08

þ

0.14_T 0.12-

Charge and Charge and

- □ Oxide Thickness Fluctuations □ Random Dopant Fluctuations
 - ☐ Conclusions

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

t_{ox} [nm]

CEVIC OF STREET

© A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

Exponential power

spectrum

Gaussian power

spectrum

| Lo. = 12.A|

8

and Throndhalasa

Frequency

d III HATTA A = 5 run

(A 30x30 nm MOSFET)

0.02 0.04 0.06 Threshold voltage [V]

8

Quantum Transport in Semiconductors Maratea, June 2001

 $N_A^{"} = 5 \times 10^{18} \text{ cm}^{-3}$

 $W_{eff} = 30 \text{ nm}$ $L_{eff} = 30 \text{ nm}$

 $\langle t_{ox} \rangle = 10.5 \text{ Å}$

Threshold voltage standard deviation as a

function of the correlation length

Classical Quantum

40.04

CLASSOM

0 0

30.0

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

@ A. Asenov 2001

A [nm]

PRANCE OF THE PARTY OF THE PART

Xurtosis

10.0

[Vm]_TVo

Threshold voltage standard deviation as a function of the oxide thickness

Threshold voltage standard deviation as a function of the doping concentration

 $L_{eff} = 30 \text{ nm}$ $W_{eff} = 30 \text{ nm}$ $< t_{ox} > = 10.5 \text{ Å}$

Carvid Carvid

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

Quantum Transport in Semiconductors Maratea, June 2001

© A. Asenov 2001

DEVIG MEDITING GROUPING

☐ The DG approach provides relatively simple means to include quantum correction in the 3D DD 'atomistic'

Conclusions

ARMANIA

☐ The inclusion of the QM corrections increases the

MOSFET simulation.

intrinsic parameter fluctuations associated with

discrete random dopants and oxide thickness

Quantum Transport in Semiconductors Maratea, June 2001

@ A. Asenov 2001

variation.

PRIVICE OF STREET

Effective Potentials for Quantum Effects in MOSFE Dr. Richard Akis Department of Electrical Eng Who else is to blame: and, in partic Ď. K. Ferry D. Vasileska S. N. Milicic L. Shifren S. Ramey

A Major Concern for Future ICs

While current production devices are only at $0.18~\mu m$, predictions are that they will be at 50~nm by year 2012. At these sizes, we should begin to see quantum effects, as λ₀~3-5 nm at 300 K. The questions are:

- In quantum mechanics, electrons no longer behave as point particles. How "large" is the electron wave packet?
 - How can we include space quantization effects efficiently into what are otherwise classical device simulators?

Introduction

the effective potential-what is it and why should you care

Including the effective potential in device simulations 2D simulation of a "standard" MOSFET simulation of a quantum point contact 1D simulation of a MOSFET channel simulation of SOI devices

Conclusions

Nanostructures Research Group CENTER FOR STATE ELECTRONICS RESEARCH

of momentum states

Width of order 8-9 nm

Nanostructures Research Group GENER FOR SOLID STATE ELECTRONICS RESEARCH

MOSFET conduction band profile along the growth direction

carriers at interface trapped in ____ creation of 1D subbands inversion layer formed a triangular well

that leads to charge set back

Nanostructures Research Group

Quantum method of finding the wave functions and energy levels

$$n(x) = -e \sum_{i} |\psi_{i}(x)|^{2}$$

$$\frac{d^2V(x)}{dx^2} = -e\frac{e}{\varepsilon} \left[n(x) - N_A \right]$$

Extra factors, as V(x) is

potential energy, not electrostatic potential.

yes

Nanostructures Research Group CENTER FOR STATE ELECTROMICS RESEARCH

Quantization in the Channel of the MOSFET

well between the oxide and the conduction band. The actual motion normal to the interface is quantized by the potential width of the inversion layer is found from the Schrödinger The electrons in the inversion layer are quantized—their equation.

Nanostructures Research Group

✓ The concept of the effective potential was introduced by Feynman, and has been extended by several authors.

Classically, we use $e^{-\beta V_{\gamma}}$ thus, the idea of the effective potential is to seek a modified potential Vert by which we can write the density as

$$n = n_0 e^{-\beta V_{eff}}$$

→ Sharp potentials no longer appear in the problem. Rather, these are "smoothed" by a Gaussian function, here derived from the effective minimal size of the electron wave packet in the system under study.

By replacing the sharp potentials by smoothed potentials, we can return to using quasi-classical point charges in our simulations, confident that the results will be quite

$$V_{eff}(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(x') \exp\left(-\frac{(x-x')^2}{2a_0^2}\right) dx'$$

Effective Potential Approach

potential can be rewritten in terms of the non-local density as (Ferry et al. 1): In principle, the effective role of the

$$\vec{V} = \int d\mathbf{r}'(\mathbf{r}) \sum_{i} n_{i}(\mathbf{r})$$

$$\sim \int d\mathbf{r} V(\mathbf{r}) \sum_{i} \int d\mathbf{r}' \exp \left(-\frac{|\mathbf{r} - \mathbf{r}'|^{2}}{\alpha^{2}}\right) \mathbb{E}(\mathbf{r}' - \mathbf{r}_{i})$$

$$\sim \sum_{i} \int d\mathbf{r} \mathbb{E}(\mathbf{r} - \mathbf{r}_{i}) \int d\mathbf{r}' V(\mathbf{r}') \exp \left(-\frac{|\mathbf{r} - \mathbf{r}'|^{2}}{\alpha^{2}}\right)$$

$$\sim \sum_{i} \int d\mathbf{r} \mathbb{E}(\mathbf{r} - \mathbf{r}_{i}) V_{eff}(\mathbf{r})$$
Classical density
Smoothed,
Smoothed,

Classical density

Smoothed, effective potential

Nanostructures Research Group CENTER OF STATE ELECTRONICS RESEARCH

D. K. Ferry, Superlatt. Microstruc. 27, 59 (2000); VLSI Design, in press.

Electron Density Distribution

I_D-V_D Characteristics

 $T_{Si}=10 \text{ nm}$

0.3

os os Drain Voitage (Voite) Decreasing silicon film thickness increases drive current and reduces V_T.

Gate Voltage = 1.0 Volt Nanostructures Research Group center constructures assessed

Drain Voltage = 0.1 Volts NA=5x10¹⁸ cm⁻³

Nanostructures Research Group

Madelung and Bohm's reformulation of quantum mechanics

Insert
$$\psi = Re^{iS/\hbar}$$
, $R = \sqrt{n} = |\psi|$ \longrightarrow $-\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi = i\hbar \frac{\partial \psi}{\partial t}$

real part yields the quantum Hamilton-Jacobi equation:

$$\frac{\partial S}{\partial t} + \frac{(VS)^{-}}{2m} + V + Q =$$

where
$$S \to action$$
, and $Q = -\frac{\hbar^2}{2m^*} \frac{\nabla^2 |\psi|}{|\psi|}$ is the

$$=-\frac{\hbar^2}{2} \left| \nabla^2 |\psi| \right|$$
 is the "support

and
$$Q = -\frac{\hbar^2}{2m^*} \frac{\nabla^2 |\psi|}{|\psi|}$$
 is the "

=
$$-\frac{\hbar^2}{2m^*} \frac{\nabla^2 |\psi|}{|\psi|}$$
 is the "quantum potential"

equations of motion:
$$v(\mathbf{x},t) = \frac{\nabla S(\mathbf{x},t)}{\hbar} \frac{\hbar \operatorname{Im}(\psi \nabla V)}{\hbar}$$

 $\mathbf{v}(\mathbf{x},t) = \frac{\nabla S(\mathbf{x},t)}{1} = \frac{\hbar}{1} \frac{\mathrm{Im}(\psi \nabla \psi)}{1}$ $\mathbf{a}(\mathbf{x},t) = -\frac{\nabla(V+Q)}{2}$

CENTER FOR SOLID STATE ELECTROMICS RESEARCH

Connection with the effective potential

$$V_{eff}(x) = \frac{1}{\sqrt{2\pi}\alpha} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} V(x+\xi)e^{-\xi^2/2\alpha^2} d\xi$$

$$\equiv \frac{1}{\sqrt{2\pi}\alpha} \int_{-\infty}^{\infty} \left[V(x) + \xi \frac{\partial V}{\partial x} + \frac{\xi^2}{2} \frac{\partial^2 V}{\partial x^2} + \dots \right] e^{-\xi^2/2\alpha^2} d\xi.$$

$$V_{eff}(x) = V(x) + \alpha^2 \frac{\partial^2 V}{\partial x^2} + \dots$$

In semiconductors, typically the dependence of the density upon the potential is as a factor $exp(-\beta V)$

$$V_{eff}(x) = V(x) - \frac{2\alpha^2}{\beta} \frac{\partial^2 \ln(\sqrt{n/n_0})}{\partial x^2} + \dots$$

$$x) - \frac{2\alpha^2}{\beta\sqrt{n}} \frac{\partial^2 \sqrt{n}}{\partial x^2} + \dots$$
Within a function is no term is no density graph
$$Q = \frac{\hbar^2}{2m^*} \frac{\nabla^2 |\psi|}{|\psi|}$$
potential

density gradient term, but is more Within a factor of 2, the second term is now recognized as the

commonly known as the Bohm

quantum point contact

- We start by consider a quantum wire with constriction
- We solve the system with and without self-consistently 7
- solution to obtain the effective We smooth the self-consistent potential 3
- generate classical trajectories and the self-consistent solution to generate We use the effective potential to quantum trajectories 4.

Nanostructures Research Group

Self-Consistent Solutions

- Boundary conditions for the Poisson solver and the Schrödinger solver
- Calculating the Hartree potential (via the Poisson solver) and included the exchange and correlation potentials તં
- Maintaining a constant density in the system. A build up of density occurs due to the inclusion of the correlation potential which drops the conduction band edge 3
- (Taking into account the contributions of the positive ions Using the correct electron density in the Poisson solver. in the system) 4.

the lowering conduction band

maintain a constant density

(propagating modes)

edge during iteration to

Nanostructures Research Group

Positive Ion Contribution $\rho(\mathbf{r})$ $\nabla^2 \phi(\mathbf{r}) = -\frac{e}{r}$ Self-Consistent Solutions When solving the Poisson equation, we need to make electron charges over-count free sure we do not in the system

· We know there is a potential

drop after the constriction

the Hartree potential to be the · We can interpret the drop in expected drop in the Fermi Nanostructures Research Group CENTER OF SOLID STATE ELECTRONGS RESEARCH

400

009

800 400 200

(y) ñ

1000 009 400

1000 009

consistent potential

Density (Å-2)

Calculation with quantum + selfCalculation with

the effective

potential

involving no self-

Calculation

consistency

Conclusions

The effective potential approach in many cases allows for a quite accurate approximation of the quantization effects in real semiconductor devices

The numerical cost of including the effective potential is low – "more bang for the buck"

Some challenges remain....

Model valid only within the random phase approximation.

It is still "quasi-local", so it does not allow proper treatment phase interference effects

computations of transport in quantum dots and arrays Wave function approaches for self-consistent

D. K. Ferry

Center for Solid State Electronics Research and Department of Electrical Engineering

Arizona State University, Tempe, AZ 85287-5706

GaAs/AlGaAs heterojunction: all parameters will be for electrons in ◆ Throughout this discussion, we will consider the region of interest to be the quasi-two-dimensional electron gas at the interface of a GaAs and confining potentials will be imposed upon this 2D gas.

The Schrödinger equation, in 2D, can be written as

$$-\frac{\hbar^2}{2m^*} \left(\frac{d^2}{dx^2} + \frac{d^2}{dy^2} \right) \psi(x, y) + V(x, y) \psi(x, y) = E \psi(x, y)$$

where V(x,y) is the local "site potential." This potential will be the selfconsistent potential in later usage.

CEWTER FOR BOLID STATE ELECTRONICS RESEARCH

Outline

- Discretization of the Schrödinger equation
- The Usuki mode matching technique
- Application to quantum dots
- Incorporation of Poisson's equation
- Further application to quantum dots

without which there would be no content to this talk. Also, discussions Special thanks to R. Akis, L. Shifren, J. Harris for their contributions, with C. Jacoboni on quantum computing have been most helpful.

Nanostructures Research Group

We now discretize the Schrödinger equation, using the 5-point scheme shown at left. This is a form of central differencing, that will introduce some unfortuante byproducts that will have to be addressed.

The Schrödinger equation, in its discretized form, now takes the shape of

$$-t \left[\psi(i+1,j) + \psi(i-1,j) + \psi(i,j+1) + \psi(i,j-1) \right]$$

$$+ \left[V(i,j) + 4t \right] \psi(i,j) = E \psi(i,j)$$

$$t = \frac{\hbar^2}{1 + 2}$$
 is the "hopping" energy.

Nanostructures Research Group CENTER FOR STATE ELECTRONICS RESEARCH

There are two approaches that can be developed now to "iterate" the solutions from one end to the other. These are:

- function is developed for each slice, and coupling from The "recursive" Green's function, in which a Green's one slice to the next is carried out by use of Dyson's equation.
- We use the wave functions directly, matching the wave and its derivative from one slice to the next-unstable, but can be stabilized by use of the scattering matrix.

central iterations. They differ somewhat in the end-point processing and in extraction of the density and wave function. These two approaches are very nearly identical in procedure and in

We use the latter approach, since it allows us to actually follow individual modes.

Nanostructures Research Group center for solio 3174TE ELECTROMICS RESEARCH

In general, this discretized Schrödinger equation can now be written in the form of coupled "slices" (columns j) as

$$\mathbf{H}_0(s)\bar{\psi}(s) - t\mathbf{I}\,\bar{\psi}(s+1) - t\mathbf{I}\,\bar{\psi}(s-1) = E\,\bar{\psi}(s)$$

with

$$\mathbf{H}_{0}(s) = \begin{bmatrix} [V(M,s)+4t] & -t & 0 & \dots \\ -t & [V(M-1,s)+4t] & -t & \dots \\ \dots & -t & [V(2,s)+4t] & -t \\ \dots & 0 & -t & [V(1,s)+4t] \end{bmatrix}$$

Nanostructures Research Group CENTER FOR SOLD STATE ELECTROMICS RESEARCH

Nanostructures Research Group Genter for State & ECTROMICS RESEARCH

Nanostructures Research Group

QPC opening = 12 sites

a = 5 nm

Because we initialize at one end of the structure, the result is *not* symmetric in the long axis. Thus, there is a definite input side and a definite output side, which is not often recognized.

states. The Open Dot Dot:

Opening the dot does NOT destroy the quantization within the dot!

(entangle) with the environment The dot states hybridize

parameters (ops., var.) states $\{|lpha_{_d} \rangle\}$

parameters (ops., var.) Environment: states $\{\!|\alpha_{\epsilon}\rangle\!\}$

 $H = H_d + H_e + H_{ed}$

Nanostructures Research Group

Nanostructures Research Group

Dot modes, which are excited, work to provide modulation of the overall transmission.

The Open Dot

Define the system density matrix

and the reduced, device density matrix $p_d = Tr_e\{p_s\}$

$$H = H_d + H_e + H_{ed}$$

Use a projection super-operator \hat{P} to remove the environment variables

This leads to the new Liouville equation for the device density matrix:

$$i\hbar \frac{\partial \rho_d}{\partial t} = \left(\hat{H}_d + \hat{H}_{ed} + \hat{\Sigma}(t \to \infty)\right) \rho_d$$

Where (in Laplace transform notation):

$$\hat{H}_{ed} \rho_d(s) \equiv Tr \left\{ \hat{P} \hat{H}_{ed}^{\blacktriangleleft} \hat{P} \rho_s(s) \right\}$$

$$\hat{\Sigma}(s) = \hat{P}\hat{H}\hat{Q}(i\hbar s - \hat{Q}\hat{H}\hat{Q})^{-1}\hat{Q}\hat{H}\hat{P}^{\blacktriangle}$$

Superlattice effects from device array environment

spectrum by the Modifications of

Nanostructures Research Group

The Open Dot

⇒ We determine the

open dot from the "spectrum" of the

conductance

through the dot:

Nanostructures Research Group CENTRE RECTRONICS RESEARCH

Let us now turn to the problem of self-consistency of the potential in the calculation-- The potential that is included in the site energy V(i,j) can be included as a self-consistent quantity. Here, the charge density is

$$\rho(x,y) = -\frac{e}{\varepsilon_s} \left(\psi(x,y) \right|^2 - 1 \eta_0$$

Uniform electron density set by remote dopants in AlGaAs

Nanostructures Research Group

Nanostructures Research Group
CENTER FOR SOLID STATE ELECTRONICS RESEARCH

Bohm trajectories

200

400

low density

- ❖ V(x,y) is not a simple function
- A magnetic field is applied

Then the modes can no longer be expressed as well characterized analytical functions.

Example: a realistic quantum dot potential obtained by a self-consistent calculation

For better flexibility and accuracy it is advantageous to do the problem on a discrete lattice.

Our use of a solver for the modes, with a lattice representation solves this problem.

The Printing Potentials has the form of a

- Mode matching approaches are a viable method of computing the conduction in
 - mesoscopic systems. This can easily be incorporated with the Poisson equation for self-consistent solutions.
- In addition, the energy dependence can be converted to a temperature dependence for near-equilibrium systems. It is also possible to do non-equilibrium approaches with only slight changes in the program (in principle).

in quantum mechanics **Trajectories**

Department of Electronics and Electrical Engineering Nanoelectronics Research Centre University of Glasgow John. R. Barker

Quantum Transport in Semiconductors Advanced Research Workshop

1. Without any extension of quantum theory we may define velocity flows. 2. With special assumptions we may define trajectories

Bohm has also proposed deterministic extension to QM which uses trajectories calculated in 1 or 2. က်

4. Others have defined stochastic trajectories in extensions to QM Position- momentum uncertainty relations

Non-locality of quantum mechanics

P. J.P. Biston 2001, Estimately of Oleston, This

Conventional device modelling:semi-classical

2 2 2

Hydrodynamic **Drift Diffusion** Empirical

Monte Carlo

Particle trajectories Velocity flows

Self-consistent via Poisson equation

Can we obtain a trajectory description of quantum transport? In principle, the the surprising answer is yes

cloud chamber

(stationary states only) no compact support Wigner trajectories

bubble chamber

A rigorous approach to trajectories

Velocity Flow Picture

Probability density n(x,t)

Particle Current density j(x,t)

Define a velocity field:

 $\mathbf{v}(\mathbf{x},t) = \mathbf{j}(\mathbf{x},t)/n(\mathbf{x},t)$

What do we want from a quantum transport theory?

A self-consistent treatment of the local charge and current density fields which describe

tunnelling scattering interference effects size quantisation time-dependence de-coherence effects many-body issues

FOR FINITE REGIONS OF OPEN SYSTEMS

Non-stationary states show trajectories

2018 Botter 2001, University of Obeyon, 145 minorithms

Schrödinger Equation

$$i\hbar \frac{\partial \Psi}{\partial t} = H\Psi(x,t)$$
$$H = -\frac{\hbar^2}{2m} \nabla^2 + \Phi$$

$$n(x,t) = \Psi^*(x,t)\Psi(x,t)$$

$$\mathbf{j}(x,t) = \frac{-i\hbar}{2m} \{ \Psi * \nabla \Psi - \Psi \nabla \Psi * \}$$

Take the gradient of the phase equation

mdv/dt

$$m \frac{\partial v}{\partial t} + m v \cdot \nabla v = -\nabla \Phi(\mathbf{x}, t) - \nabla V_{\mathbb{Q}}(\mathbf{x}, t)$$

Quantum Euler Eqn

$$\frac{\partial n}{\partial t} + \nabla . n \mathbf{v} = 0$$

Continuity Equation

quite correct and we need further constraints as we The first equation is not shall see

$$V_Q = -\frac{\hbar^2}{2m} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} \quad n = R^2 \quad mv = \nabla S$$

A posteriori quantum hydrodynamics

Express wave function in polar form: $\Psi = R \exp(iS/\hbar)$ $\frac{\partial n}{\partial t} + \nabla . n \mathbf{v} = 0$

$$\frac{\partial n}{\partial t} + \nabla . n \mathbf{v} = 0$$

$$\frac{\partial S}{\partial t} + \frac{\nabla S.\nabla S}{2m} + \Phi(x,t) + V_Q(x,t) = 0$$

$$V_Q = -\frac{\hbar^2}{2m} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}} \qquad n = R^2 \quad m\mathbf{v} = \nabla S$$

Quantum potential

Quantum corrected Drift - diffusion

Newton's 2nd law for carriers:

$$m^* \frac{d\mathbf{v}}{dt} = q\nabla(\psi - \varphi) - \frac{D}{n\mu}\nabla n - q\frac{\mathbf{v}}{\mu}$$

Density gradient model

• $\phi \rightarrow \phi - 2b \frac{\nabla^2 \sqrt{n}}{\sqrt{n}}$ electrostatic potential(diffusion coefficient chemical potential mobility

Poisson-Schrödinger equation

effective mass

Quantum potential causes repulsion from boundaries But also lowers barrier energies to allow tunnelling

2-slit interference

First reported by Dewdney et al

in steady state equivalent to Trajectories streamlines

Interpretation: discover a trajectory

Uncertainty Relations

$$\Delta x \Delta p \ge \hbar/2$$

$$\Delta x = <(x - < x >)^2 >^{1/2} = \{ \int x^2 n(x) dx - [\int x \ n(x) dx]^2 \}^{1/2}$$

$$\Delta p = <(p-< p>)^2>^{1/2} =$$

$$\{ \int (p^2(x) + 2mV_Q(x))n(x)dx - [\int p(x) \ n(x)dx]^2 \}^{1/2}$$

 $p = \partial S/\partial x$

Barker (1992)

Configuration Space

 $\Psi(\mathbf{r}_1, \mathbf{r}_2) = C[\Psi_{\alpha}(\mathbf{r}_1)\Psi_{\beta}(\mathbf{r}_2) + \Psi_{\gamma}(\mathbf{r}_1)\Psi_{\beta}(\mathbf{r}_2)]$

No overlap: effective statistical mixture, System point is in one or the other sub-state

Entanglement

Factorisable wave-function -> physical independence Sum of factorisable wave-functions :

- 1. Effective statistical mixture
- 2. Entangled state: correlation

Configuration Space

 $\Psi(\mathbf{r}_1, \mathbf{r}_2) = C[\Psi_{\alpha}(\mathbf{r}_1)\Psi_{\beta}(\mathbf{r}_2) + \Psi_{\gamma}(\mathbf{r}_1)\Psi_{\beta}(\mathbf{r}_2)]$

Overlap: entangled state,

Correlation

Fermions

 $\Psi(\mathbf{r}_1, \mathbf{r}_2) = C[\Psi(\mathbf{r}_1, \mathbf{r}_2) - \Psi(\mathbf{r}_2, \mathbf{r}_1)]$ Effectively factorisable at long distances

Topological properties of quantum flows

Velocity v derived from gradient of phase S

Wave function R exp(iS/h) is single-valued

Streamlines do not cross

Velocity circulation is quantised

Position coordinates form an autonomous system: flow determined topologically by fixed points in the flow.

2 fermions in a harmonic oscillator potential

Vigier, Dewdney, Holland and Kypriandis (1987)

2D example

$$\frac{dx}{dt} = v_x = m^{-1} \frac{\partial S}{\partial x}; \quad \frac{dy}{dt} = v_y = m^{-1} \frac{\partial S}{\partial y}$$

$$\frac{dy}{dx} = \frac{\frac{\partial S(x,y)}{\partial y}}{\frac{\partial S(x,y)}{\partial x}}$$

Flow near singularities

At velocity nodes

At density nodes

Vortices occur at strong nodal points/lines (Barker 2001)

X

 $R \approx |\mathbf{r} - \mathbf{x}_i|^{N_i}$

Or generally,

$$R \approx [(\mathbf{r} - \mathbf{x}_i).\Lambda.(\mathbf{r} - \mathbf{x}_i)]^{N_i/2}$$

$$V_Q = -(\hbar^2/2m)\nabla^2 R/R \approx -(\hbar^2/2m)N_i^2/|\mathbf{r} - \mathbf{x}_i|^2$$

The quantisation of velocity circulation

The a posteriori QHD equations automatically satisfy the velocity circulation theorem:

$$\oint \nabla S. dr = Nh \quad (N: \text{ integer})$$

$$\oint v.dr = Nh/m$$

 $\mathbf{x}_{i}(s)$ Vortex line

 $\nabla \times \mathbf{v} = N_i(h/m) \int \delta(\mathbf{r} - \mathbf{x}_i(s)) (d\mathbf{x}_i/ds) ds$

Near the strong nodal point:

$$\frac{1}{2} mv^2 \approx -V_Q = (\hbar^2 / 2m) \nabla^2 R / R$$
$$\approx (\hbar^2 / 2m) N_i^2 / |\mathbf{r} - \mathbf{x}_i|^2$$

Non-singular current density

Singular velocity

Analogous to classical Eulerian vortex filament

$S = N_k Arc Tan(y/x) \quad x, y \neq 0$ Phase

$$\Psi \approx |\mathbf{r} - \mathbf{x}_k|^{N_k} \exp[iN_k \phi]$$

Re-constructed wave-function

$$\oint \nabla S. d\mathbf{r} = N_k h$$

Traversal Time

requires Bohm interpretation

$$t = \int_{1}^{2} \frac{\mathbf{v.dr}}{\mathbf{v}^2}$$

$$\int_{\eta}^{\pi} \frac{\mathbf{p.dr}}{2T}$$

Kinetic energy appears as metric

On a vortex, one loop executed in time t=Nh/2T

Barker (1992)

Ballistic flow in open quantum dots

To describe vortex motion with *ab initio* quantum hydrodynamics we need to introduce a vector quantum potential $\mathbf{a_q}(\mathbf{r},t)$

$$\oint_C \mathbf{a}_Q \cdot \mathbf{dr} = nh$$

$$m \frac{\partial \mathbf{v}}{\partial t} + m \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \Phi(\mathbf{x}, t)$$
$$-m \mathbf{v} \times \nabla \times \mathbf{a}_{\mathcal{Q}}(\mathbf{x}, t) - \nabla V_{\mathcal{Q}}(\mathbf{x}, t)$$

where

$$\nabla \times \mathbf{a}_{Q} = \sum_{i} N_{i}(h/m) \int \delta(\mathbf{r} - \mathbf{x}_{i}(s)) (d\mathbf{x}_{i}/ds) ds$$

Quantum smoke ring

Compare Lord Kelvin's cigar box!

2. 18 Not et Net, University of Obespeer The a

QuickTimeTM and a Animation decompressor are needed to see this picture.

QuickTimeTM and a Animation decompressor are needed to see this picture.

Transmission Maximum

Travelling wave in single transverse mode

2) The Earlier 2001, Chakes around thoughts. This is

2 Saddles

Density plot

QuickTimeTM and a Animation decompressor are needed to see this picture.

Lower energy, transmission minimum (reflection)

Density Current And

density Particle

QuickTimeTM and a
Animation decompressor
are needed to see this picture.

Smoke ring

2 vortices formed

Compare Lent (1990)

Total wave-vector

Angular momentum

$$\mathbf{l} = \mathbf{r} \times \nabla S$$

$$\mathbf{l_z} = N\hbar$$

$$\mathbf{L}^2 = l^2 + L_Q^2$$

Leads to stability

Example: Wave incident on a 2DEG throttle

Incident travelling wave in high transverse mode

Detail of upstream density and velocity flow

Quantum Flows

Barker Ferry & Akis (2000)

- · Velocity field in quantum dot
- Meandering open orbits
- Trapped flows vortices

Upstream flow: full form

Flow of an extended wave packet in a double throttle = open quantum dot

A posteriori quantum hydrodynamics

Calculate J and n, form v

Quantum Euler equations automatically satisfied, including quantization of circulation.

Ab initio quantum hydrodynamics

To be of predictive power rather than purely explanatory the velocity flow approach must become ab initio.

Quantum Euler equations ,+ scalar & vector quantum potentials A neat way to put QM in Monte Carlo, Hydrodynamic, DD models.

Difficult to solve in general.

Classical and quantum ray paths

conjecture

The open quantum dot analysis suggests:
Can we construct the quantum flow by first
constructing the classical flow and then replacing
any trajectory crossing points by flow separation?

Spatially correlated virtual particles

Dissipative quantum hydrodynamics

Conventional QHD has used classical HD model for scattering processes. Less empirical approach

Use transient scattered wave or use non-hermitian

Hamiltonian: leads to description of trapping/de-trapping, elastic and inelastic scattering

with extended collision zones and intra-collisional field effect Barker and Ferry, APL 74 582 (1999), Barker and Watling, Superlattices and microstructures, 27, 347 (2000)

New Topological features

Inelastic Scattering

Flow occurs in configuration space
Electron coordinate r
Scatterer generalised coordinate(s)

Trajectories cannot cross in configuration space.

But trajectories may now cross in real space PROVIDED.... Scatterer coordinates are different - a new result.

Inelastic Scattering

Inelastic Scattering

superposition of randomly selected output trajectories -> Boltzmann transport theory

Dissipation may be shown to leads to crossings of quantum trajectories in the carrier space.

The trajectories in the full phase space do not cross.

Pure state, coherent

$$f(x, p; t) = n(x, t)\delta(p - \nabla S)$$

Pure state developing incoherence

f -> solution of a BTE-like transport eqn.

corresponds to evolution of mixed states

Recall the temperature tensor: the covariance matrix of the velocity

$$k\mathbf{T} = m < (\mathbf{v} - \mathbf{V})(\mathbf{v} - \mathbf{V}) >$$

Taking quantum mechanical averages this is just:

$$kT_Q = m < w > -m < V > < V)>$$

$$NkT_Q = mV^2 + 2V_Q - mV^2 = 2V_Q$$

$$(N = 1, 2, 3)$$

Comparison between finite temperature mixed state quantum hydrodynamics and pure state QHD (vortex free)

$$\frac{\partial(nP)}{\partial t} + \frac{\partial(nU)}{\partial x} + n\frac{\partial}{\partial x} \left(\varphi + \frac{1}{3} V_{\mathcal{Q}} \right) = 0 \qquad U = mV^2 + kT$$

$$\frac{\partial(nP)}{\partial t} + \frac{\partial(nU_0)}{\partial x} + n\frac{\partial}{\partial x}(\varphi + V_Q) = 0 \qquad U_0 = mV^2$$

Paradox: Pure state is not zero temperature limit?

Choosing N = 3 we get

$$\frac{\partial(nP)}{\partial t} + \frac{\partial(n[U_0 + kT_Q))}{\partial x} + n\frac{\partial}{\partial x}(\varphi + \frac{1}{3}V_Q) = 0$$

$$U = U_0 + kT_Q$$

which is essentially the finite temperature QHD result

A more detailed examination of the closure relations indicates further reconciliation of the two pictures although the finite temperature case involves coupling to a full hierarchy of moment equations.

Mixed states

For mixed states, existing quantum hydrodynamic and density gradient models are not complete.

If vortex formation may be ignored then empirical quantum potential Is the most pragmatic approach.

constraint of a generalised velocity circulation theorem However, if coherent flow occurs with scattering off and QHD and DD needs to be solved under the more than one obstacle we expect vortex flows By solving for nodal lines and computing the Vector quantum potential.

Digitisation of the Si/SiO₂ interface topology

Application to MOS device modelling

At Glasgow, we have begun a systematic inclusion of quantum effects into finite MOSFET models at decanano dimensions.

The first level uses a phenomenological quantum potential model. The effect is to keep charge away from interfaces and to induce some tunnelling effects.

The fluctuation landscape admits flows which involve multiply-connected paths:

Diffraction, interference effects-> vortex flows And meandering orbits. Possibility of

Quantum Classical

Conclusions

 Quantum flow formalism is close to spirit of drift diffusion and hydrodynamic models.

Vortex motion is ubiquitous

In the immediate future, density gradient QHD may be parameterised from deeper quantum simulations in analogy with using BTE to re-parameterise Drift Diffusion and HD models beyond their normal range of validity.

P. M. Farber (Pd.), Châter de cale salem - Thir described and a segment of a publish of endant paren

4

Coulomb correlations in semiconductors and transient phenomena. Nonequilibrium Greens functions and beyond

Michael Bonitz, Universität Rostock

Workshop "Quantum Transport in Semiconductors"

further line 17, 2010

C Mehrel Bonitz all rights reserved

In collaboration with

- 1. Dirk Semkat (Rostock). Nai Kwong, Sigurd Köhler, Rolf Binder (Tueson)
- 2. Antigoni Alexandrou (Paliseaou)
- 3. Hartmut Haug (Frankfurt), Ronald Redmer, Justino Madureira (Rostock)
- 4, Vladimir Filinov (Moseow), Stephan Koch, Walter Hoyer (Marburg)
- 5. Alexei Filinov, Yuri Lozovik (Moscow)

Outline

- 1. Introduction: Coulomb correlations in semiconductors
- 2. Short-time phenomena and Initial correlations
- 3. Nonequilibrium Greens functions:
- main ideas
- application to optics and high field transport
- 4. Strong correlations in semiconductors: excitons, biexcitons, electron-hole liquid
- Wigner crystal
- 5. Summary and Outlook

1. Introduction: Coulomb correlations in semiconductors

Coulomb correlations in semiconductors

Coulomb interaction between electrons / holes $U(r) = \pm e^2/r$ Coupling strength: Ratio of Interaction energy/kinetic energy

$$\Gamma \equiv \langle U(r) \rangle / k_{\rm B} T$$

$$r_s \equiv \langle U \rangle / E_F \propto \langle r \rangle / a_B$$

Quantum degeneracy: $\chi \equiv n\lambda^d$

 E_F - Fermi energy a_B - exciton Bohr radius

 λ - electron quantum wave length, d - dimension

Statistical treatment of correlations

Pair distribution function $g_{ab}(r)$; a, b-electrons, holes

= probability of finding particle a at distance r from particle b

Interaction energy: $\langle U \rangle = \int U(r) g_{ab}(r) dV$ Normalization: $\int g_{ab}(r) dV = 1$

Non-interacting particles

Interacting 2D e-h plasma

Pair correlation function: $c_{ab}(r) \equiv g_{ab}(r) - 1$

Coulomb correlations in section 2

$$\Gamma = \langle U(r) \rangle / k_B T$$
 $r_s = \langle U \rangle / E_F \propto \langle r \rangle / a_B$

$$E_F$$
 - Fermi energy a_B - exciton Bohr radius

 $\chi \equiv n\lambda^3$

$$\lambda$$
 - electron quantum wave length

Relaxation processes in electron-hole systems

Pre-excited e-h plasma (doping/prepulse, correlated contacts etc.)

Creation of nonequilibrium electrons/holes Excitation: e.g. optical or electric field

Relaxation towards equilibrium/stationary state Formation of stationary distribution $f^{EQ}_{e,h}: t \le t_{rel}$

 $t = t_0$ Initially correlated e-h ensemble

 Δau_{exc} Finite duration

 $t \leq \tau_{cor}$ Decay of initial correlations Correlation buildup

correlated Wigner function f EQ e.4 - Fermi distribution or

$$t_{rrl} \sim 100 fs...1ps$$

$$\tau_{cor} \propto \frac{2\pi}{\omega_{pl}}; \frac{2\pi}{\omega_{ph}} \sim 20...100 fs$$

Example: buildup of Coulomb correlations/screening e-h pairs created uncorrelated

$$au_{cor} \sim r_D / v_{th} \sim 2\pi / \omega_{pl}$$
 v_{th}

When are initial correlations important?

Transient processes before stationary state

- 1. Short times: $t_0 \le t \le \tau_{cor}$ (Or high-frequency switching: $\omega_s \ge 2\pi/\tau_{cor}$)
- 2. Strongly correlated initial state: $|\langle U_{corr} \rangle| (t_0) \ge \langle E_{kin} \rangle (t_0)$
- materials with strong electron-phonon coupling
 - materials with strong Coulomb interaction

In this case also: $\tau_{corr} \ge t_{rel}$

- 3. "bottel neck" situations, threshold processes:
- carrier excitation below phonon energy, impact ionization etc.
- modified plasmon spectrum in p-doped semiconductors
- 4. Long-living initial correlations: e.g. bound states (excitons, impurities etc.), Wigner crystal, Bose condensate etc.
- weak damping (slow decay) of initial correlations

Idea of Green's functions

1. Classical N-body system: statistical properties given by distribution function f(r,p,t)

 $\int \frac{d^3p}{(2\pi h)^3} f(r, p, t) = n(r, t), \quad \int d^3r \, n(r, t) = N(t)$

2. Quantum N-body system: \int - Wigner ("quasi")-distribution function f(r, p, t)

- Wave properties, energy "spectrum" A(E)

E- independent variable Idea: combine into "generalized distribution" g(r, p, t; E)

Green's function

Equilibrium: g(p; E) = if(E)A(p, E), $f(E) = 1/(e^{\beta(E-\mu)} + 1)$

- non-interacting particles: $A(p,E) = 2\pi \delta(E - p^2/2m)$

- interacting (correlated) particles: $A(p,E) \propto \frac{1}{(E-p^2/2m+\Delta)^2 + \gamma^2}$ Correlated Wigner distribution g(p)

Finite line width (finite life time), related to pair correlations c(r)

 $\eta^{\prime 2}$ $(\text{fw-E}_{\gamma} + \Delta_{\gamma})^{2} + \gamma^{2}$ S(Riv-II) Quasiparticles

→ Correlations included into single-particle properties (quasi-particle)

Nonequilibrium Green's functions

g(r,p,t;E) Equivalent to function of two-times:

I. Fourier transform: $\int dE \ g(r,p,t;E) \ e^{iEt/\hbar} \to g(r,p,t,\tau)$

 $\rightarrow g(r, p, t_1, t_2)$ $t_{1,2}=t\pm\tau/2$ III. Build in spin: relate g to fermion field operators: $\psi^+(r,t), \ \psi(r,t)$

 $\psi^{+}(r_{1},t)\psi(r_{2},t)+\psi(r_{2},t)\psi^{+}(r_{1},t)=\delta(r_{1}-r_{2})$ Anticommutation:

 $\langle \psi^+(2)\psi(1)\rangle \to g^<(1,2); 1 \equiv r_1, t_1, s_1$ $\langle \psi(1)\psi^+(2)\rangle \rightarrow g^+(1,2)$ IV. Two-operator averages – two possibilities: (two independent functions)

 $g^{<}(r_1,t,r_2,t) \propto f(r_1,r_2,t)$ Density matrix, Wigner distribution etc. V. Physical contents: on time diagonal:

Across diagonal:

Spectral function, Density of states etc. $g^{>}(1,2) - g^{<}(1,2) \sim A(1,2)$

VI. Heisenberg equations for $\Psi^+, \Psi^- \Longrightarrow (Kadanoff-Baym/Keldysh)$ equations of motion for g^+, g^-

Clear recipe for treatment of complex processes and systematic approximations Fully selfconsistent treatment of relaxation, correlations and energy spectrum

Direct Solution of the Kadanoff-Baym equations

Imaginary part of $g'(k, t_1, t_2)$ for fixed momentum k

1. Relaxation of nonequilibrium electron distribution (peaked at k=3.9/ao)

2. Build up of electron spectrum (of Coulomb correlations) across time diagonal

k=2.7/a0

k=3.9/a0

Homogeneous bulk GaAs $n = 10^{17} cm^{-3}$

Dirk Semkat/Michael Bonitz

Spectral function of interacting electrons

 E_p - Kinetic (quasiparticle) energy

Exponential damping
Lorentzian power-law tail,
wrong at large frequency! γ, Δ_p imaginary and real part of selfenergy

Solution of the two-time

Kadanoff-Baym equations.

Zero slope at tau=0!

Exact spectral function with Coulomb scattering

Spektralfunktion

 $A(t,t') = i\hbar[g^{>}(t,t') - g^{<}(t,t')]$

Semkat/Kwong/Köhler/Binder/MB

Kadanoff-Baym equations with initial correlations

N-particle system, binary interaction V(r), external potential U(r)

Nonequilibrium: Greens functions on time contour
$$C$$
 (Keldysh, Schwinger)
$$g_{1...s}(1...s,1'...s') = \left(\frac{1}{i}\right)^{d} \left\langle T_{c} \left[\Psi(1)...\Psi(s)\Psi^{+}(s')...\Psi^{+}(1')\right] \right\rangle$$
Equation of motion for $g_{1}(t_{1},t_{1}')$: (Martin/Schwinger)

$$\int_{C} d\bar{1} \left\{ g_{1}^{0^{-1}}(1,\bar{1}) - U(1,\bar{1}) \right\} g_{1}(\bar{1},1';U')$$

$$= \delta(1-1') \pm i \int d2 V(1-2) g_{12}(12,1'2^{+})$$

with
$$g_l^{0^{-1}}(1,1') = \left(i\frac{\partial}{\partial t_1} + \frac{\nabla_1^2}{2m}\right)\delta(1-1')$$

GeneBolbulargary $\lim_{t_1 = t_0 \to -\infty} g_{12}(12, 1/2)|_{k_0} = [g_1(1, 1')g_1(2, 2') \pm g_1(1, 2')g_1(2, 1')]|_{k_0}$

* In: "Progress in Nonequilibrium Green's functions", M. Bonitz (Ed.), 2000 $+c(\mathbf{r}_1\mathbf{r}_2,\mathbf{r}_1'\mathbf{r}_2';t_0)$

Correlated initial state: e.g. Fujita, Hill, Danielewicz, Wagner

Haug/Jauho "Quantum Kinetics....

Generalized Kadanoff-Baym equations

$$\begin{split} \int_{C} d\tilde{\mathbf{i}} \left[g_{1}^{0^{-1}}(1\tilde{\mathbf{i}}) - U(1\tilde{\mathbf{i}}) - \Sigma^{HF}(1\tilde{\mathbf{i}}) \right] g_{1}(\tilde{\mathbf{i}}1') \\ &= \delta(1 - 1') + \int_{C} d\tilde{\mathbf{i}} \left[\Sigma^{c}(1\tilde{\mathbf{i}}) + \Sigma^{tn}(1\tilde{\mathbf{i}}) \right] g_{1}(\tilde{\mathbf{i}}1') \end{split}$$

Matrix equations on the time contour

Result on the physical (real) time axis:

$$\left(i\frac{\partial}{\partial t_1} + \frac{\nabla_1^2}{2m}\right) g_1^2(11') - \int d\bar{1} U(1\bar{1}) g_1^2(\bar{1}1') - \int d\bar{t}_1 \Sigma^{HP}(1\bar{1}) g_1^2(\bar{1}1')$$

$$= \int_{t_0}^{\infty} d\bar{1} \Sigma^R(1\bar{1}) g_1^2(\bar{1}1') + \int_{t_0}^{\infty} d\bar{1} \left[\Sigma^2(1\bar{1}) + \Sigma'^n(1\bar{1})\right] g_1^A(\bar{1}1')$$

Result for selfenergy:

$$\begin{split} \Sigma^{in}(11') &= \pm i \int d2 \, V(1-2) \int d\vec{r}_1 d\vec{r}_2 d\vec{\overline{r}}_1 d\vec{\overline{r}}_2 \\ &\times g_{12}^R(12, \vec{r}_1 t_0, \vec{r}_2 t_0) c(\vec{r}_1 t_0, \vec{r}_2 t_0, 1', \vec{\overline{r}}_2 t_0) g_1^A(\vec{r}_2 t_0, 2^+) \delta(t_1' - t_0). \end{split}$$

Selfconsistent evolution and decay of initial correlations

Kadanoff-Baym equations with initial correlations, contd.

Formal closure of hicrarchy (generalized*): introduce selfenergy

$$\int_{C} d\bar{1} \, \Sigma(1,\bar{1}) g_1(\bar{1},1') = \pm i \int d2 \, V(1-2) g_{12}(12,1'2^+)$$

$$= \pm i \int d2 \, V(1-2) \left\{ \pm \frac{\delta g_1(1,1';U)}{\delta U(2^+,2)} + g_1(1,1') g_1(2,2^+) \right\}$$

Boundary condition:

$$\lim_{t_1=t_1'\to t_0} \int d\bar{\mathbf{I}} \, \Sigma(1,\bar{1}) g_1(\bar{\mathbf{I}},1') = \pm i \int d\mathbf{r}_2 \, V(\mathbf{r}_1-\mathbf{r}_2) \left[c(\mathbf{r}_1\mathbf{r}_2,\mathbf{r}_1',\mathbf{r}_2';t_0) + g_1(\mathbf{r}_1\mathbf{r}_1',t_0)g_1(\mathbf{r}_2\mathbf{r}_2',t_0) \pm g_1(\mathbf{r}_1\mathbf{r}_2',t_0)g_1(\mathbf{r}_2\mathbf{r}_1',t_0) \right]$$

Result: additional selfenergy contribution

$$\Sigma(1,1') = \Sigma^{HF}(1,1') + \Sigma^{c}(1,1') + \Sigma^{in}(1,1')$$

$$\Sigma^{in}(1,1') = \Sigma^{in}(1,r_{1}^{i}t_{0})\delta(t_{1}^{i} - t_{0})$$

*Semkat, Kremp, MB, J. Math. Phys., 41, 7458 (2000)

Short-time relaxation with initial correlations

Solution of KB-equations with initial correlation selfenergy

Example: bulk GaAs, uncorrelated vs. over-correlated initial state

Correct conservation of total energy (kinetic + correlation)

- Energy relaxation reflects correlation build up/decay for $\,t \leq au_{cor}$

 $n = 0.277a_B^{-3}$ (intermediate coupling)

 $n = 2.77a_B^{-3}$ (weak coupling)

Dynamic Structure factor of interacting electrons

Solution of inhomogeneous Kadanoff-Baym Equations

Start from correlated initial state
At t=0 monochromatic perturbation

Density fluctuation

(Landau plus collisional damping)

Kwong, Bonitz, Phys. Rev. Lett. 84, 1768 (2000)

(Born approximation plus

vertex corrections)

Selfconsistent dynamic

Structure factor with

Correlations

Electron dynamics in semiconductors

Example: Optical Excitation

Nonequilibrium

Electron distribution $E_{c} = E_{c}(t)$ $E_{c} = E_{c}(t)e^{-t\sigma_{c}} + C.C.$ $E_{c} = E_{c}(t)e^{-t\sigma_{c}} + C.C.$

Interband-Kadanoff-Baym equations

 $\mu_1,\,\mu_2$ – Band indices, $E_\mu(p)$ – Semiconductor band structure

$$\left\{i\hbar\frac{\partial}{\partial t_1}-\epsilon_{\mu_1}\right\}g_{\mu_1\mu_2}^\gtrless(t_1t_2)-\sum_{\vec{\mu}}\hbar\Omega_{\mu_1\vec{\mu}}(t_1)g_{\vec{\mu}\mu_2}^\gtrless(t_1t_2)=I_{\mu_1\mu_2}^\gtrless(t_1t_2)$$

$$\left\{-i\hbar\frac{\partial}{\partial t_2}-\epsilon_{\mu_2}\right\}g_{\mu_1\mu_2}^{\gtrless}(t_1t_2)-\sum_{\vec{\mu}}g_{\mu_1\vec{\mu}}^{\gtrless}(t_1t_2)\hbar\Omega_{\vec{\mu}\mu_2}(t_2)=-I_{\mu_2\mu_1}^{\gtrless}(t_2t_1)$$

$$\hbar\Omega_{\mu_1\mu_2}(t) = -\mathbf{d}_{\mu_1\mu_2}\mathcal{E}(t)(1-\delta_{\mu_1\mu_2}) + i\hbar\sum_{k}g^<_{\mu_1\mu_2}(k'tt)V_{\mu_1\mu_2}(k-k')$$
 Dipole moment

 $I_{\mu_1\mu_2}^{\gtrless}(t_1t_2) = \sum_{ii} \int_{t_0}^{t_1} d\tilde{t} \left[\sigma_{\mu_1 ii}^{<}(t_1\tilde{t}) - \sigma_{\mu_1 ii}^{<}(t_1\tilde{t}) \right] g_{\mu_1 ii}^{\gtrless}(\tilde{t}t_2)$

Correlations (collisions)
(with phonons, electrons, defects etc.)

σ – self energies

 $-\sum_{i_1} \int_{t_0}^{t_2} d\tilde{t} \, \sigma_{\mu_1 \tilde{\mu}}^{\gtrless}(t_1 \tilde{t}) \left[g_{\nu_1 \tilde{\mu}}^{>}(\tilde{t}t_2) - g_{\mu_1 \tilde{\mu}}^{<}(\tilde{t}t_2) \right]$

Kwong, Bonitz, Binder, Köhler, phys. stat. sol. (b) 206, 197 (1998)

Laser pulse excitation of a s.c. quantum well

Damping of the Electrons and Renormalization of the energy bands

Electron dynamics in a semiconductor

Laser "lifts" Electrons from valence band to conduction band (50fs-Pulse, Maximum at t=0)

Relaxation in the presence of preexcited electrons/holes

Impact Ionization rates in semiconductors

Strong Coulomb correlations

$$\Gamma \equiv \langle U \rangle / k_{\rm B} T \qquad r_{\rm f} \equiv \langle U \rangle / E_F \propto < r > / a_{\rm B}$$

$$E_F \ \, - {\rm Fermi \, energy} \qquad a_{\rm B} - {\rm exciton \, Bohr \, radius}$$

Expected behavior:

Greens functions treatment of Strong Coulomb correlations

not possible in Born approximation

Need selfenergies in T-matrix (ladder) approximation

Electron spectrum: continuum and bound states

 $h\omega(E_R)$

Problem: strong Coulomb correlations, bound states, exciton formation etc.

Bound state (peak) modified by surrounding e-h-plasma (Mott Effekt)

Screening parameter $\kappa = 4\pi ne^2/kT$

Semkat, Bonitz, Kremp (2001)

× [a₀]

ឺ

Wigner crystallization of electron clusters

Variation of temperature or density (confinement)

Existence of two crystal phases: intra-shell and inter-shell ordering

A. Filinov, M. Bonitz, and Yu. Lozovik, Phys. Rev. Lett. 86, 3851 (2001)

Mesoscopic electron clusters

Question: possibility of Wigner crystallization? Easy realization of strong correlations Is there a metal-insulator transition?

Problem: simultaneous account of correlations, quantum and spin effects many-body approaches (including NGF) not applicable

→ Path integral Monte Carlo

Phase diagram of the mesoscopic Wigner crystal

RM - Radial melting, OM - Orientational melting

Crystal melting and mobility increase

At the melting point: drastic increase of angular and radial distance fluctuations

Mobility and conductivity increase

Relative distance fluctuations

References

Quantum kinetic theory with density operators and Greens functions, see M. Bonitz "Quantum Kinetic Theory." B.G. Teubner. Stuttgart-Leipzig 1998 An overview freview articles) on Kadanoff-Bayin equations can be found in a Triegres in Nonequilibrium Greens Functions", M. Bonitz (ed.).

World Scientific, Singapore 2000

Kadanoff-Bayan equations with initial correlations; see
 D. Sernkat, D. Kremp, and M. Bonitz, J. Math. Phys. 41, 7458 (2000) and references therein
 Greens functions applications to high-field transport, see e.g.
 Maduretra, Semkat, Bonitz, Redmer, JAP 90, 829 (2001)

Greens functions applications to semiconductor opines, see e.g. Kwong, Bonitz, Binder, Köhler, phys.stat.sol. (b) 206, 197 (1998)

Awong, Douter, Purses, Pryssociasor, 197 (1996).
Lermionic path integral Monte Carlo (bound state formation etc.); see V.S. Lilmov, M. Bonitz, W. Ebeling, and V.E. Lortov.

Plasma Phys. Contr. Fusion 43, 743 (2001) and references therein Wigner crystallization in mesoscopic electron clusters (open quantum dots): A. Filmov, M. Bonitz, and Yu. Lozovik, Phys. Rev. Lett. 86, 3851(2001); Physical Review Focus April 19 (2001)

For updated references, please book at bup, while asperim-rostoct, de mb

Summary and Outlook

- 1. Nonequilibrium Greens functions powerful tool
- extended to arbitrary initial correlations
- + well applicable to ultrafast/transient phenomena
- useful for high field transport
- 11. Strong correlations in semiconductors
- excitons, droplets, Wigner crystal
- quantum Monte Carlo and molecular dynamics

III. Future: combination of NGF and quantum simulations

"The metal-insulator transition in d=2" Gunther Bauer, University of Linz,

Importance Electron-Electron Interaction

Coulomb energy versus Fermi energy:

$$= \frac{E_{c.i.}}{E_{ine}} \propto \frac{1}{E_f} \propto \frac{\sqrt{n_{\gamma_f}}}{n_{\gamma_f}} \propto \frac{m^*}{\epsilon_f} \frac{1}{\sqrt{n_{\gamma_f}}}$$

Publicated and an artist and artist artist and artist artist and artist artist and artist artist artist and artist		0 0	n (10° cm·)
IP-SI-MOS	0.19	9.7	6.7
p-SiGe/Si	0.3	12.6	6.4
n-Si/SiGe	019	11.7	3.0
p-GaAs/AlGaAs	0.32	10.9	9.8
n-GaAs/AlGaAs	0.067 10.9	10.9	0.43

Transport measurements in zero B-field Temperature dependence of the resistivity

Comparison of different samples

The exponential drop increases with the peak mobility!

Possible explanations for the phenomenon

Failure of the quasi-particle picture of Landau due to EEI

new groundstate: Non-Fermi liquid

Superconductivity

or just a 'classical' effect?

Weak Localization

Overview

Quantum mechanical interference enhances back scattering

- 2 features of weak localization are important:(1) logarithmic temperature dependence of the conductivity(2) negative magnetoresistance

red curve ... disappearance of the weak localization

... border for the EEI

Trap Model after B.L. Altshuler and D.L. Maslow

Assumptions:

- traps are distributed homogenously in the oxide all the traps have the same energy $\epsilon_{\mathbf{t}}$ traps are due to weak Si-Si bonds
- (occupied by 1e⁻ or 2e⁻) traps can be easily charged and discharged

Charge state of the trap depends on the Fermi energy of the 2D electron gas

Conclusions

- The experimentally determined phase coherence time is about 10 smaller than theoretically predicted, but is in agreement with prior works on low-mobility samples
- From analysis of the weak localization, quantum interference can be excluded as an origin for the metallic state and the MIT
- There is no indication of a non-Fermi liquid in the metallic regime → no quantum phase
- The trap model can explain qualitatively certain feature of the MIT, but fails to give quantitative results

Trap Model

The effect of the magnetic field

Splitting of the trap energy levels in a magnetic field

The "Metal-Insulator Transition" in Open Quantum Dots & Dot Arrays

Center for Solid State Electronics Research Department of Electrical Engineering &

Arizona State University Tempe, AZ 85287-5706

84700 15.0kV 12.3mm x11.0k SE(U) 5/31/00 15:31

S

NANOSTRUCTURES RESEARCH GROUP

TA STATE OF THE PARTY OF THE PA

Work at ASU is Supported By:

Office of Naval Research

NANOSTRUCTURES RESEARCH GROUP

OUTLINE

- · INTRODUCTION
- · TRANSPORT IN QUANTUM DOTS
- DEVICE FABRICATION & BASIC CHARACTERIZATION
- · EXPERIMENTAL RESULTS
- · CONCLUSIONS

- The study of the transport properties of LOW-DIMENSIONAL systems has lead to the discovery of a number of novel MANY-BODY effects in recent years
- Striking examples include the recent discovery of COMPOSITE FERMIONS in the fractional quantum-Hall effect and the METAL-INSULATOR TRANSITION in two dimensions

R. Willet et al. Phys. Rev. Lett. <u>59</u>, 1776 (1987)

V. M. Pudalov et al. Physica E 3, 79 (1998)

W.

NANOSTRUCTURES RESEARCH GROUP

- When the dots are coupled to their external reservoirs by means of WEAK tunnel barriers many-body effects have been argued to give rise to KONDO-LIKE behavior
- Here electrons confined WITHIN the dot play the role of the magnetic impurity in the more conventional Kondo effect

D. Goldhaber-Gordon et al. Nature <u>231</u>, 156 (1998) J. Schmid et al. Phys. Rev. Lett. <u>24</u>, 5824 (2000) Science <u>289</u>, 2105 (2000)

S

- In mesoscopic QUANTUM DOTS electron interactions are known to play an important role when the dots are coupled to their reservoirs by means of weakly transmitting TUNNEL BARRIERS
- * In this regime the COULOMB BLOCKADE of transport gives rise to SINGLE-ELECTRON behavior which can be used to demonstrate SHELL-LIKE filling of electron states

S. Tarucha of el. Phys. Rev. Lett. 77, 3613 (1996)

NANOSTRUCTURES RESEARCH GROUP

- · In contrast to these studies our interest will lie in a discussion of transport in OPEN quantum
- * These dots are coupled to their external reservoirs by means of quantum-point-contact LEADS that are configured to support a SMALL number of PROPAGATING modes
- * Since transport through these structures is typically BALLISTIC in nature their electrical properties strongly reflect the details of the electron BOUNDARY scattering they generate

- While the Coulomb blockade is QUENCHED in open dots electrons may still be confined for LONG times in such structures
- We might therefore expect that the transport properties of open dots should exhibit NOVEL signatures that arise due to the MANY-BODY interactions of carriers trapped within them
- * FEW studies to date appear to have expiored this possibility however

R. Akis of al. Physica E Z. 745 (2000)

NANOSTRUCTURES RESEARCH GROUP

- · INTRODUCTION
- · TRANSPORT IN QUANTUM DOTS
- DEVICE FABRICATION & BASIC CHARACTERIZATION
- · EXPERIMENTAL RESULTS
- · CONCLUSIONS

NANOSTRUCTURES RESEARCH GROUP

- We investigate evidence for MANY-BODY interactions in open quantum dots and quantum-dot arrays by studying the variation of their resistance with TEMPERATURE
- * We find evidence for novel LOCALIZATION behavior that we speculate arises due to an ENHANCED electron-electron interaction in these mesoscopic structures

A. Shallos et al. Phys. Rev. B 53, 241302 (2001)

NANOSTRUCTURES RESEARCH GROUP

- · It is well known that at low temperatures the DISCRETE level spectrum of ISOLATED quantum dots can be RESOLVED in experiment
- * When the dot is OPENED to the outside world the coupling between to the reservoirs gives rise to a NON-UNIFORM broadening of the dot states
- * Discrete states that SURVIVE the coupling can be driven past the Fermi level by applying a magnetic field or gate voltage which gives rise to OSCILLATIONS in the conductance

J, P. Bird et el. Europhys, Lett. 35, 529 (1996)

- The particular states that persist in the open dots are found to correspond to strongly SCARRED wavefunctions
- * The conductance oscillations observed in experiment therefore represent MEASURABLE signatures associated with these wavefunction scars

AMPLITUDE (arb. units)

R. Akis et al.
Phys. Rav. Lett. 79, 173 (1997)
J. P. Bird et al.
Phys. Rev. Lett. 82, 4691 (1999)
R. Akis et al.
Physica E I, 745 (2000)

NANOSTRUCTURES RESEARCH GROUP

- PHASE-BREAKING time which is a measure of the time over which the coherent WAVE-LIKE nature of the electron is PRESERVED within the dot · From an analysis of the magneto-conductance fluctuations we can determine the electron
- * At low temperatures this time scale is several ORDERS of magnitude longer than the time required to traverse the dot thus allowing confinement effects to be strongly RESOLVED

R. Akis et al. Phys. Rev. B <u>54</u>, 17705 (1996) Phys. Rev. Lett. <u>79</u>, 123 (1997)

TEMPERATURE (KELVIN)

J. P. Bird et al. Phys. Rev. B <u>51</u>, 18037 (1995) D. P. Pivin, Jr. et al. Phys. Rev. Lett. <u>82</u>, 4687 (1999)

ě

70

- By changing the ORIENTATION of the leads that couple the dot to the reservoirs DIFFERENT groups of states can be selected to mediate the transport behavior
- * Evidence for this process of SCAR SELECTION can be observed directly in experiment

Lead-Orientation-Dependent Wave Function Scarring in Open Quantum Dots PHYSICAL REVIEW LETTERS VOLUME \$2, NUMBER 23

NANOSTRUCTURES RESEARCH GROUP

- · INTRODUCTION
- · TRANSPORT IN QUANTUM DOTS
- DEVICE FABRICATION & BASIC CHARACTERIZATION
- · EXPERIMENTAL RESULTS
- · CONCLUSIONS

NANOSTRUCTURES RESEARCH GROUP

- · In this report we discuss the transport properties of multiply-coupled QUANTUM-DOT ARRAYS
- applied to lithographically-defined Schottky gates to induce LATERAL confinement of the * The arrays are realized using the SPLIT-GATE technique in which a depleting voltage is high-mobility two-dimensional electron gas formed at the heterointerface

NANOSTRUCTURES RESEARCH GROUP

- Some further COMMENTS on the transport characteristics of the arrays
- * The carrier density within the arrays is found to remain UNCHANGED with gate voltage
- * The transport mean free path (>10 µm) is very much LONGER than the size of the arrays so that transport within them is expected to be highly BALLISTIC in nature
- * At low temperatures the electron phase-breaking length is of order 100 ps corresponding to a TOTAL coherent path length in EXCESS of 50 µm

• Measurements of the carrier density of the underlying two-dimensional electron gas indicate a value for the INTERACTION PARAMETER $r_{_{\rm a}}$ that is close to UNITY

NANOSTRUCTURES RESEARCH GROUP

* Electron transport within the two-dimensional layer is therefore expected to exhibit WEAKLY-INTERACTING behavior

$$E_{ee} = \frac{e^2}{4\pi\varepsilon} \frac{1}{r} = \frac{e^2}{4\pi\varepsilon} \sqrt{m_i} \qquad E_F = \frac{\hbar^2 l}{2l}$$

$$r_s = \frac{E_{ee}}{E_F} = \frac{m^* e^2}{4\pi e \hbar^2} \frac{1}{\sqrt{\pi n_s}}$$

$$r_r(GaAs) = \frac{0.067 \times 9.1 \times 10^{-31} \times 2.6 \times 10^{-38}}{12.6 \times (12.4 \times 8.954 \times 10^{-12}) \times 1.1 \times 10^{-68}} \frac{1}{\sqrt{3.1 \times 5 \times 10^{15}}} \approx 0.9$$

NANOSTRUCTURES RESEARCH GROUP

OUTLINE

- · INTRODUCTION
- · TRANSPORT IN QUANTUM DOTS
- DEVICE FABRICATION & BASIC CHARACTERIZATION
- EXPERIMENTAL RESULTS
- · CONCLUSIONS

* These studies reveal evidence for behavior reminiscent of a METAL-INSULATOR transition

A. Andresen et al. Phys. Rev. B <u>60</u>, 16050 (1999) A. Shattos et al. Phys. Rev. B <u>63</u>, 241302 (2001)

NANOSTRUCTURES RESEARCH GROUP

 The main characteristics of the metal-insulator behavior are an EXPONENTIAL increase of the resistance at intermediate temperatures and for ALL gate voltages

* This gives way to a LOGARITHMIC variation of the resistance at lower temperatures that may be either METALLIC or INSULATING in nature

A. Andresen et al. Phys. Rev. B <u>60</u>, 16050 (1999) A. Shallos et al. Phys. Rev. B <u>63</u>, 241302 (2001)

NO evidence for the temperature-dependent variations found in the arrays is seen in studies performed with the gates GROUNDED

* This indicates that these variations are INTRINSIC to the dot ARRAYS rather than being a property of the two-dimensional electron-gas layer

L.-H. Lin et al.
Phys. Rev. B <u>60</u>, R16299 (1999)
A. Shallos et al.
Phys. Rev. B <u>63</u>, 241302 (2001) A. Andresen et al. Phys. Rev. B <u>60</u>, 16050 (1999)

NANOSTRUCTURES RESEARCH GROUP

An important clue as to the origin of the exponential variation is provided by numerical studies where the conductance is CONVOLVED with the derivative of the Fermi function

* This reveals a regime of increasing resistance with decreasing temperature PRIOR to the emergence of conductance oscillations

$$G(T, E_F) = \int G(E) \left[-\frac{df(T, E - E_F)}{dE} \right] dE$$

\$ RESISTANCE (KD) A. Shailos et al. submitted for publication

* This assertion is further supported by studies of the temperature dependence of the MAGNETO-RESISTANCE which show a large change in amplitude in the exponential regime

A. Shallos et al.

Z

NANOSTRUCTURES RESEARCH GROUP

 The amplitude of the logarithmic term is found to be LARGER in the arrays composed of smaller dots * We quantify this effect in terms of the SLOPE of the logarithmic variation () in this regime

A. Shallos et al. Phys. Rev. B <u>63,</u> 241302 (2001)

- While our simulations show features reminiscent of the exponential regime found in experiment they are UNABLE to reproduce the LOGARITHMIC behavior seen at much lower temperatures
- * To further investigate the properties of this term we have fabricated quantum dot arrays of DIFFERENT size

DOT SIZE (μm²)	0.8 x 1.3	0.6 x 1.0	0.4 × 0.7
ARRAY	Æ	8	ပ

Z

NANOSTRUCTURES RESEARCH GROUP

 Averaging the results of measurements performed at a NUMBER of different gate voltages we find that the logarithmic terms scales INVERSELY with dot size

A. Shallos et sl. Phys. Rev. B 63, 241302 (2001)

- We also find that the magnitude of the logarithmic term is iNSENSITIVE to the application of a magnetic field sufficient to BREAK time-reversal symmetry
- * This indicates that this term is NOT associated with a weak-localization effect in the dots

A. Shallos et el. Phys. Rev. B <u>63</u>, 241302 (2001)

*

NANOSTRUCTURES RESEARCH GROUP

- Based on experiment we have suggested that the logarithmic term in the conductance results from an ENHANCEMENT of the electron-electron interaction inside the dots
- * The basic idea is that confining electrons within the bailistic dots should AMPLIFY the Coulomb many-body interaction by SUPPRESSING the tendency for charge separation
- * In fact the SCALING of the logarithmic term with INVERSE dot size is consistent with an interaction that scales in inverse proportion to the PERIMETER LENGTH

A. Shallos et el. Phys. Rev. B §3, 241302 (2001)

- Logarithmic conductance variations are well known from studies of DISORDERED mesoscopic systems in which they can result from WEAK LOCALIZATION or ELECTRON INTERACTIONS
- * In order to distinguish between these two effects it is necessary to apply a sufficient MAGNETIC FIELD to break time-reversal symmetry and so quench weak localization

G. J. Dolan and D. C. Osheroff Phys. Rev. Lett. <u>43</u>, 721 (1979)

NANOSTRUCTURES RESEARCH GROUP

- In the absence of any formal theory we consider it INTRIGUING that a logarithmic variation of the conductance has also been found in studies of the KONDO EFFECT in tunnel-coupled dots
- While there are important DIFFERENCES with the behavior we observe in open dots this
 comparison appears to SUPPORT our assertion that the logarithmic term we observe does
 result from MANY-BODY effects

W. G. van der Wiel Science 289, 2105 (2000)

NANOSTRUCTURES RESEARCH GROUP

NANOSTRUCTURES RESEARCH GROUP

- · We therefore arrive at the following MODEL to account for the different temperature variations
- * At temperatures in EXCESS of a few Kelvin the discrete dot states are thermally OBSCURED
- * Lowering the temperature in this regime allows the dot states to become RESOLVED and it is this transition that is reflected in the EXPONENTIAL resistance

A. Shailos et al. submitted for publication

NANOSTRUCTURES RESEARCH GROUP

CONCLUSIONS

- WE HAVE STUDIED THE TEMPERATURE-DEPENDENT TRANSPORT IN COUPLED QUANTUM-DOT ARRAYS AND FIND VERY DIFFERENT BEHAVIOR COMPARED TO THAT OF THE UNDERLYING TWO-DIMENSIONAL ELECTRON GAS
- THE REGIME OF EXPONENTIAL RESISTANCE VARIATION IS SUGGESTED TO SIGNIFY THE EMERGENCE FROM THERMALLY-BROADENED TO ENERGETICALLY-RESOLVED DOT LEVELS WITH DECREASING TEMPERATURE
- THE LOGARITHMIC VARIATION SEEN AT EVEN LOWER TEMPERATURES CANNOT BE ACCOUNTED FOR BY EXISTING THEORIES AND MAY SIGNIFY THE EMERGENCE OF A NOVEL MANY-BODY STATE AT LOW TEMPERATURES THAT RESULTS FROM AN ENHANCEMENT OF ELECTRON INTERACTIONS IN THE CONFINED DOTS
- IT IS OUR HOPE THAT THIS WORK WILL STIMULATE RENEWED THEORETICAL INTEREST IN THE STUDY OF ELECTRON INTERACTIONS IN OPEN MESOSCOPIC SYSTEMS

- As the temperature is lowered below a KELVIN we enter the regime of strongly-resolved dot states and it is here that the LOGARITHMIC variation of resistance is observed
- * An INTRIGUING issue concerns whether this variation signals the emergence of some NOVEL many-body state once the quantum nature of these structures is well resolved?

Wedenesday, June 20

Session 5:

- David Awschalom, "Spin coherence and optical measurements"
 - Daniel Loss, "Quantum Computing in semiconductor systems"
- Sankar Das Sarma, "Few electron (and few impurity) systems"

3-2 Puller et al.

3-10 I dinov et al.

Workshop "Quantum Transport in Semiconductors"

Maratea, June 17-22 2001

Welcome to the spin doctors!

- 1. What desease?
- III. What is the cure?

Workshop "Quantum Transport in Semiconductors"

Maratea, June 17-22 2001

В

Spins and few particle problems in semiconductors Introduction to

13.50

Michael Bonitz, Universität Rostock

Workshop "Quantum Transport in Semiconductors"

Maratea, June 17-22 2001

Spintronics (alternative medicine ?)

Idea: control devices by controling the electron spin (instead of the charge)

Spin already in use: M-RAMS, read heads of hard drives etc.

But: metal based, Challenge: semiconductors (integrability)

4. Improve classical devices (computers)

Many-electron problem

Replace current $j \to j_{\uparrow}$ voltage $U = \phi_{\downarrow} - \phi_{\bot} \to N_{\uparrow} - N_{\downarrow}$

Gate field E o B

M

 $j_{\uparrow} + j_{\downarrow}$

Example:

Analyzer Polarizer (Magnetizer) .. (possible side effects?) Problems: creation/injection/transport/storage....

Spintronics II.

- 11. Create new quantum computers (few-body problem)
- Use quantum states (aqubits") (0), 1),....
- And their linear combinations $C = a \mid 0 \rangle + b \mid 1 \rangle + \dots$
- 3. Build quivity from

↑↓

- True quantum-mechanical approach (use amplitude
- Optical analogue: holography

Electrons in E/B-fields, contd.

3. Spin meets optics

-spin-sensitive absorption/emission of

circular-polarized light (old)

Experiment and theory

 $\left\lceil \frac{\partial}{\partial t} + i \frac{\widetilde{\mathcal{E}}_{\pm}(k)}{\hbar} \right\rceil M_{\pm} = i g \widetilde{\mu}_{\pm} B(t) \left[\int_{c_{+}} (t) - f_{c_{-}}(t) \right]$ -spin-modulated polarization of laser emission [Hallstein et al. PRB 56, R7076 (1997)]

4. Spin meets intraband transport

- "Conversion of spin into directed electric current in Quantum Wells", Ganichev et al. PRL 86, 4356 (2001)

Unbalanced

- B-field induced separation of +3/2 and -3/2 hh bands in k-space
- current direction determined by helicity of light polarization

Semiconductor electrons in E/B fields

E-Field (couples to charge)

B-Field (couples to mag, moment)

 $e : e\vec{E} \to \vec{v} \to \vec{j}$ current

- Larmor precession

 $\vec{s} \rightarrow \vec{m}$: $\vec{m}\vec{B} \rightarrow \omega_L = g\mu_B B/\hbar$ Transport (intraband)

 M_{\pm}

 $e \rightarrow d_{cv} \sim e \int dV \psi_c(r) r \psi_v(r)$

2. Interband transport (optics)

Interband current (polarization) P

M-magnetization

 $\left[\frac{\partial}{\partial t} + i\frac{\widetilde{\mathcal{E}}_{o}(k)}{\hbar}\right]_{P_{t}} = -i\widetilde{d}_{o}E(t)\left[f_{ok}(t) - f_{ok}(t)\right] \left[\frac{\partial}{\partial t} + i\frac{\widetilde{\mathcal{E}}_{\pm}(k)}{\hbar}\right]_{M_{\pm}} = ig\widetilde{\mu}_{\pm}B(t)\left[f_{c+}(t) - f_{c-}(t)\right]$

 $\widetilde{\mathcal{E}}_{\pm k}$ III -renormalized gap

-Coherent oscillations of M. "Larmor flops"

 very long dephasing times spin echos?

- bound states (cooper pairs) 92

 $\sim -\frac{P_{cv}}{T_2}$

Dephasing due to scattering

coherent excitons, biexcitons Rabi flops, photon echo etc..

- Coherent oscillations of P,

Outlook

Number of quantum computing papers (title and abstract): from 1994-2001 (June14): 1, 6, 10, 15, 38, 59, 81, 122

→ On track with Moore's law

from 1999-2001 (June 14 11.32 a.m. ET): 2, 8, 10 Number of spintronies papers:

→ Way ahead of Moore's law

True reason for Intel's rush ahead of the road map

Workshop "Quantum Transport in Semiconductors"

Maratea, June 17-22 2001

Listen to (and interrupt!) the spin doctors!

Workshop "Quantum Transport in Semiconductors"

ELECTRONICS SPIN

Group of Sankar Das Sarma, University of Maryland Igor Žutić, Jaroslav Fabian, Xuedong Hu, et al.

- semiconductors (magnetic and nonmagnetic) and their heterostructures theory of bipolar spin-polarized transport in inhomogeneous
- p n junctions and solar cells, magnetic field sensors, spin transistors, ... spin devices: proposal and modeling of spin-polarized and magnetic
- dynamical mean field theory for critical temperature in ferromagnetic semiconductors (e.g., GaMnAs)
- assessment of feasibility for spin-based quantum computing spin entangelment and interactions in quantum dots:

Junction П 0 Spin - Polarized

Group Publications (partial list):

Theory of spin-polarized transport in inhomogeneous magnetic semiconductors, LANL preprint cond-mat/0106085

Spin Electronics and Spin Computation, to appear in Solid State Commun., LANL preprint cond-mat/0105247

A proposal for spin-polarized solar battery. to appear in Appl. Phys. Lett. (8/27/01); LANL preprint cond-mat/0104416

Spin transport in ihomogeneous magnetic fields: a proposal for Stern-Gerlach-like experiments with conduction electrons, LANL preprint cond-mat/0104146 Spin injection throught the depletion layer: a theory of spin-polarized p-n junctions and solar cells, to appear in Phys. Rev. B. Rapid Commun. (8/15/01); LANL preprint cond-mat/0103473

Issues, Concepts, and Challenges in Spinronics, IEEE 58th DRC Device Research Conference Digest, p. 95 (2000)

Theoretical Perspectives on Spintronics and Spin-Polarized Transport. IEEE Trans. Magn. 36, 2821 (2000)

Issues Concepts, and Challenges in Spintronics, Superlatice Microst. 27, 289 (2000)

Spin-polarized transport and Andreev reflection in semiconductor/superconductor hybrid structures. Phys. Rev. B 60 Rapid Commun., R16 322 (1999).

http://www.physics.umd.edu/rgroups/spin/papers.html publicatioons also available at:

Solar Batteries Magnetic p - n Junctions and Spin-Polarized and

spin-polarized p - n junction -- building block for semiconductor spin electronics, feasible with the current technology and available materials (e.g., GaAs with the appropriate doping)

spin polarization can be created by circularly polarized light, electrical spin injection, applied magnetic field, ...

Example: Spin-Polarized Solar Battery

Spin Amplification

spin

organes efection-hole pairs circularly-polarized light

depletion region with strong built-in field which separates electrons and holes n-region spin down electrons o unpolarized holes p-region spin up electrons

(typical in GaAs)

generates spin-polarized current and net voltage illumination + built-in field

in the interior of nonmagnetic material! Near the depletion region, electron spin (magnetization) increases n-region population increases p-region

Spin - Polarized Drift - Diffusion Equations

$$\nabla^2 \phi = -\frac{e}{\epsilon} (p - n + N_A - N_D)$$

4 Continuity equations for n_{\downarrow} , n_{\downarrow} , p_{\downarrow} and p_{\downarrow}

Generation - Recombination (τ_n, τ_p)

Spin Relaxation (T₁)

Results based on realistic GaAs parameters

$$\mathbf{b}_{\mathbf{i}} = \mathbf{b}_{\mathbf{i}}$$

 $T_1 \sim 0.2 ns$

Spin Injection through the p-n junction

Continuity Equation for n₊

$$J_{n_{\downarrow}} = - \ n_{\downarrow} \ \mu_{n_{\downarrow}} E - D_{n_{\downarrow}} \ \nabla \ n_{\downarrow} \qquad \text{particle current} \label{eq:correction}$$
 (for nonmagnetic $\,p$ - n junction)

$$\frac{d\mathbf{n}_{\uparrow}}{dt} + \nabla \cdot \mathbf{J}_{\mathbf{n}_{\downarrow}} = - w_{\mathbf{n}_{\downarrow}} (\mathbf{n}_{\uparrow} \mathbf{p} - \frac{\mathbf{n}_{0} \mathbf{p}_{0}}{2}) - \frac{\mathbf{n}_{\downarrow} - \mathbf{n}_{\downarrow}}{2T_{\downarrow}} + G_{\downarrow}$$

 $\mathbf{W}\mathbf{n}_{\boldsymbol{\varphi}}$ - Generation -Recombination rate

G₁ - Photo-excitation rate for n₁

Aplications of Spin-Polarized and Magnetic p - n Junctions and Solar Batteries

- Generation of spin and charge currents
- Spin injection through the depletion layer
- Electronically tunable spin polarization
- Amplification of spin density
- Extension of the spin-diffusion range
- Exponentional magnetoresistance and spinvoltaic effect
- Magnetic field sensors
- Electrical detection of spin polarization and spin relaxation

J

Applications of quantum transport in devices

Gerhard Klimeck

California Institute of Technology Jet Propulsion Laboratory,

gekco@jpl.nasa.gov, 818-354-2182 http://hpc.jpl.nasa.gov/PEP/gekco

Gerhard Klimeck

Advanced Research Workshop on Quantum Transport in Semiconductors

Quantitative Modeling of Devices

Quick review of DC transport simulations in RTDs - NEMO 1-D

Realistic contacts:

Quantized and continuous states in the emitter

Realistic bandstructure:

·Band-non parabolicity - emitter states and RTD state alignment

Putting it together:

Valley current at high temperatures due to bandstructure effects (thermionic emission)

·Bistability (in symmetric structures) a numerical problem due to limited device models

Test matrix - comparison to experiment

Work on this slide performed by NEMO team at Texas Instruments / Raytheon 1995-1997 Gerhard Klimeck

Advanced Research Workshop on Quantum Transport in Semice

Application of Quantum Transport in Devices

·What is the focus of the research?

Quantum Transport => Devices/Structures are a tool to explore the needed theory

Relevant Theories:

Green Functions, Wigner Functions, Rate Equations

·Relevant Structures:

quantum dots/wires, molecules, RTDs (for time dependence only)

Devices / Applications => Quantum transport is a tool to design/optimize devices

·Need quantitative agreement between experiment and theory Relevant devices: super-scaled FETs, RTDs, Esaki diodes

•DC, high bias performance

AC / time-dependent high bias performance

Need realistically sized devices - contacts/reservoirs.

Need realistic electron interactions with environment: phonons, light, bandstructure.

Gerhard Klimeck

Realistic Devices have Extended Contacts 220 240 Length (nm) Density of States Energy (eV) 0.3 0.4 0.1

Work on this slide performed by NEMO team at Texas Instruments / Raytheon 1995-1997 Quantum selfconsistent potential

Gerhard Klimock

1 Band 1 Band 2 Bands 2 Bands Potential Current

Advanced Research Workshop on Quantum Transport in Semiconductors

Band non-parabolicity modifies

momentum dependence in emitter-RTD coupling

Energy (eV)

Density of States (k_x=0.03)

Resonance coupling depends on the transverse momentum

Gerhard Klimeck

Work on this slide performed by NEMO team at Texas Instruments / Raytheon 1995-1997

Advanced Research Workshop on Quantum Transport in Semiconductor

More Physics -> Better results Full band integration + Exchange&Correlation Spurious Bistability:

- Exchange and correlation energy does not eliminate (in general) the bistability, it does reduce it however.

Work on this slide performed by NEMO team at Texas Instruments / Raytheon 1995-1997 ·Inclusion of scattering in the simulation reduces the bistability region as well.

Advanced Research Workshop on Quantum Transport in Semiconductors

Full Band Simulation of Electron Transport

- 1D integration assuming parabolic subbands can lead to unphysical current overshoots. 2 Examples on InGaAs/InAIAs simulations:
 - ·Sp3s* simulation with partial charge self-consistency -> sharp spike at turn-off
- •Parameterized single band simulation which incorporates the band-non-parabolicity -> overall current overshoot.
- -> 2D integration with good bandstructure fixes these unphysical results.

Work on this slide performed by NEMO team at Texas Instruments / Raytheon 1995-1997 12 0.4 0.6 Applied Bias (V)

Gerhard Klimeck

Advanced Research Workshop on Quantum Transport in Semiconductors

Scattering also reduces the numerical bi-stability

self-consistent elastic and single tridiagonal POP scattering

Hartree self-consistency Potential Models:

NS forward
SS forward
SS forward
SS back

89

8000

4000

Current (A/cm²)

2000

- selfconsistent elastic and tridiagonal POP scattering no scattering

Compare forward to reverse bias

0.3

0.25

0.15

Voltage (V) 0.2

- Scattering reduces the width of the bistability region.
- not shown: inclusion of exchange correlation does not change the width of the bistability in this device

Work on this slide performed by NEMO team at Texas Instruments / Raytheon 1995-1997

Advanced Research Workshop on Quantum Transport in Semiconductors

J

Testmatrix-Based Verification (room temperature)

Strained InGaAs/AIAs 4 Stack RTD with Asymmetric Barrier Variation

V744 #2, Nom.: 07/17/08 ml, Sim.: 09/18/10 ml 6000 4000 2000 0000 8000 8000 2000 V744 91, Nom: 0717707 m, Sim: 09/1809 m length | 18000 m 9.0 0.4 0.6 Applied Bias (V) Vary One Barrier **LnGaAs** Thickness ≥Ĵ **sAIA** eAs Dr.I sAIA. InGaAs

0.4 0.6 Applied Bias (V)

20/50/23 Angstrom 20/50/25 Angstrom 20/50/27 Angstrom 0/50/23 Angstrom 0/50/25 Angstrom Four increasingly 20 Angstrom mmetric

744 #4, Nom.: 07/17/10 ml, Sim.: 09/18/12 ml 9.0 0.4 0.6 Applied Bias (V) Simulation + Rev. Bias 900 900 9009 500 300 2000 0006 Presented at IEEE DRC 1997 744 #3, Nom.: 07/17/09 ml, Sim.: 09/18/11 ml 8.0 0.4 0.6 Applied Bins (V) Forw. Bias Simulation 8000 8000 8000 3000 2000 1000

Gerhard Klimeck

Work on this slide performed by NEMO team at Texas Instruments / Raytheon 1995-1997

Nano-scale Device Analysis / Synthesis Advanced Research Workshop on Quantum Transport in Se

Development of a Bottom-Up Nanoelectronic Modeling Tool (NEMO-3D)

Environment Analyze Devices and Failures

Structures (~20nm)

Atomic Orbitals size: 0.2nm

NASA Relevance:

missions beyond existing industry roadmap:

• Water detection -> 2-5 im Lasers and Enable new devices needed for NASA

materials, compositions, doping, size, shape

Nanoscale structures are built today! The design space is huge: choice of

Assertions / Problems:

Radiation on today's sub-micron devices

modifies the electronics on a nanoscale.

- Avionics -> High density, low power computing. detectors.
- Europa -> Radiation and low temperature Analyze state-of-the-art devices for noneffects. Aging and failure modes. commercial environments:

Approach:

Deliver a 3-D atomistic simulation tool

Enable analysis of arbitrary crystal structures. particles, atom compositions and

bond/structure at arbitrary temperatures and

ambient electric and magnetic fields.

- Venus -> high temperature materials: SiGe Jovian system -> Magnetic field effects
 - Impact: Collaborators:
 • U. of Alabama, Ames. Purdue. Ohio State, NIST

Low cost development of revolutionary techn.

Modeling will narrow the empirical search space! **Gerhard Klimock**

Advanced Research Workshop on Quantum Transport in Semiconductors

Tow Temperature: Polar Optical Phonon and Interface Roughness Scattering

Gerhard Klimeck

Work on this slide performed by NEMO team at Texas Instruments / Raytheon 1995-1997

Advanced Research Workshop on Quantum Transport in Semiconductors

Speakers in the Program

- Carlo Jacoboni,
- Modena University, "The Wigner function and quantum transport"
- Harold Grubin,
- SRA, Inc., "Modeling resonant tunneling diodes with Wigner functions and density matrices"
- Dejan Jovanovic, Motorola,
- "Non-equilibrium Green's functions for MOSFET modeling"

Gerhard Klimeck

Advanced Research Workshop on QUANTUM TRANSPORT IN SEMICONDUCTORS Maratea, Italy, 17-22 June 2001

WIGNER-FUNCTION AND QUANTUM TRANSPORT IN SEMICONDUCTORS

Carlo Jacoboni

INFM - Istituto Nazionale per la Fisica della Materia Dipartimento di Fisica - Università di Modena Via Campi 213/A - I 41100 Modena, ITALY

Partially supported by O.N.R. and MURST

Rossella Brunetti Paolo Bordone Andrea Bertoni Stefano Monastra Antonio Abramo Marco Pascoli Fausto Rossi

- Spectral density

Contents

Elementary definition and
properties
Dynamical equations
- Classical force
- Infinite potential barrier
Electron - phonon
interaction
Wigner paths and MC
simulation
- Paths and diagrams
 Multiplicity of Wigner paths
- Quantum self scattering
Two-time Wigner function
$f_w(p, \omega)$

THE WIGNER FUNCTION

The Wigner-function approach is a phase-space formulation of quantum mechanics that allows to establish many analogies with the semiclassical theory based on the concept of distribution function

Elementary definition:

 $\rho(\mathbf{r}_1,\mathbf{r}_2)$

$$f_w(r, p, t) = \int ds \, e^{-ips/\hbar} \overline{\Psi(r+s/2, t) \Psi^*(r-s/2, t)}$$

Properties of the Wigner function

$$\frac{1}{h^3} \int f_w(\boldsymbol{r}, \boldsymbol{p}, t) \, d\boldsymbol{p} = \left| \Psi \left(\boldsymbol{r}, t \right) \right|^2$$

$$\frac{1}{h^3} \int f_w(r, p, t) dr = \left| \Phi(p, t) \right|^2$$

 $\langle A \rangle = \frac{1}{h^3} \int d\mathbf{r} \int d\mathbf{p} \ f_w(\mathbf{r}, \mathbf{p}, t) \ A_w(\mathbf{r}, \mathbf{p})$

$$A_w$$
 ∂_{r} p $T = Z$ s $e^{-ips/\hbar} \langle r+s/2|A|r-s/2 \rangle$

Linear in f

NOT positive definite Strong oscillations $\neq 0$ also where $\Psi = 0$

WIGNER FUNCTION

Ground state in a box:

WIGNER FUNCTION

Potential step with scattering states:

WIGNER FUNCTION FOR A DOUBLE BARRIER

COHERENT PROPAGATION OF THE W.F.

If

$$\mathbf{H}|\varphi_{n}\rangle = \hbar\omega_{n}|\varphi_{n}\rangle$$

then

$$\begin{split} f_{w}\left(\boldsymbol{r},\boldsymbol{p},t\right) &= \\ &\sum_{n,m} f_{n,m}\left(\boldsymbol{r},\boldsymbol{p}\right) e^{-i(\omega_{n}-\omega_{m})(t-t_{o})} \frac{1}{h^{3}} \int d\boldsymbol{r}' \int d\boldsymbol{p}' f^{*}_{n,m}\left(\boldsymbol{r}',\boldsymbol{p}'\right) f_{w}\left(\boldsymbol{r}',\boldsymbol{p}',t_{o}\right) \\ &Linear \end{split}$$

where

$$f_{n,m}(r,p) = \int ds \ e^{-ips/\hbar} \langle r + s/2 | \varphi_n \rangle \langle \varphi_m | r - s/2 \rangle$$

DYNAMICAL EQUATION OF THE W.F. (2)

Collecting the above:

$$\left. \frac{\partial}{\partial t} f_{w}(\mathbf{r}, \mathbf{p}, t) + \frac{\mathbf{p}}{m} \frac{\partial}{\partial \mathbf{r}} f_{w} = \frac{\partial f_{w}}{\partial t} \right|_{V}$$

For "regular" potential (up to quadratic):

$$\frac{\partial}{\partial t} f_w \left(\boldsymbol{r}, \boldsymbol{p}, t \right) + \frac{\boldsymbol{p}}{m} \frac{\partial}{\partial \boldsymbol{r}} f_w + \boldsymbol{F} \frac{\partial}{\partial \boldsymbol{p}} f_w = 0$$

as in Liouville theorem.

WIGNER PATHS:

The Wigner function of electrons in presence of potentials up to quadratic evolves as an ensemble of classical particles: each point follows a classical path in the Wigner phase space (Wigner path)

DYNAMICAL EQUATION OF THE W.F. (1)

From the Liouville - Von Neumann

$$i\hbar \frac{d}{dt} \rho = [H, \rho]$$

with

$$\mathbf{H} = \mathbf{H}_a + \mathbf{V}(\mathbf{r})$$

$$\mathbf{H}_o = -\frac{\hbar^2}{2m} \nabla^2$$

Ohtair

$$\frac{\partial}{\partial t} f_w(\mathbf{r}, \mathbf{p}, t) = \int ds \, e^{-i\mathbf{p}\mathbf{r}/\hbar} \times \langle \mathbf{r} + \mathbf{s}/2 \big| \, \frac{1}{2} \mathcal{I}_h[\mathbf{H}_s + \mathbf{V}(\mathbf{r}), \rho] \big| \, \mathbf{r} - \mathbf{s}/2 \rangle$$

With standard elaboration:

$$\int ds \; e^{-ips/\hbar} \left\langle r + s/2 \right| \mathcal{V}_{i\hbar} [\mathbf{H}_o, \rho] \left| r - s/2 \right\rangle = -\frac{p}{m} \nabla f_w$$

and

$$\int ds \, e^{-ips/\hbar} \left\langle r + s/2 \right| \mathcal{Y}_{i\hbar} [\mathbf{V}(r), \rho] | r - s/2 \rangle$$

$$= \left[dp' V_{\omega}(r, p - p') f_{\omega}(r, p', t) \right]$$

where

$$V_{w}(\mathbf{r}, \mathbf{p}) = \frac{1}{i\hbar} \frac{1}{\hbar^{3}} \int ds \, e^{i\mathbf{p}s/\hbar} \left[V(\mathbf{r} - s/2) - V(\mathbf{r} + s/2) \right]$$

Quantum mechanics

Time evolution of the Wigner Function of a wave packet

Time evolution of the Wigne Function reflected by an infinite potential barrier

WIGNER PATHS WITH POTENTIAL SCATTERING

$$V = V_o + V'$$
 $F = -\nabla V_o$

Vo linear or quadratic - Integro-differential equation

$$\frac{\partial}{\partial t} f_{\rm w}(\boldsymbol{r},\boldsymbol{p},t) + \frac{p}{m} \frac{\partial}{\partial r} f_{\rm w} + F \frac{\partial}{\partial p} f_{\rm w} = \mathbb{Z} p^{\rm t} V_{\rm w}(\boldsymbol{r},\boldsymbol{p}-p^{\rm t}) f_{\rm w}(\boldsymbol{r},p^{\rm t},t)$$

where
$$V_w(r,p) = \frac{1}{h^3} \sqrt{\frac{ds}{ds}} e^{-ips/h} [V^1(r+s/2) - V^1(r-s/2)]$$
 path variables:

$$r(\tilde{t}) = r - 2t' p(t') / m$$
 $p(\tilde{t}) = p - 2(r(t')) dt'$

time integration:

 $f_w(\mathbf{r}, \mathbf{p}, t)$

$$= f_{w}(\boldsymbol{r}(t_{o}), \boldsymbol{p}(t_{o}), t_{o}) + \boldsymbol{Z} \underline{d}t' \boldsymbol{Z} \underline{p}' V_{w}(\boldsymbol{r}(t'), \boldsymbol{p}' - \boldsymbol{p}(t')) f_{w}(\boldsymbol{r}(t'), \boldsymbol{p}', t')$$

as in Chambers kinetic integral equation, without scattering "out", with similar interpretation:

Neumann expansion

Boundary conditions

Phys.Rev.B 58, 3503 (1998)

Phys.Rev.B 59, 3060 (1999)

Single barrier (4nm x .05eV)

Obtained by means of W. Paths with potential scattering in a Monte Carlo approach

16

18

Wigner Function confined by an infinite potential barrier(ii)

In the derivation of the dynamical egiation, the derivatives at the boundaries do not vanish, and we have an extra integral term

$$\begin{split} \frac{\partial f_{w}}{\partial t} + \frac{p}{m} \frac{\partial f_{w}}{\partial x} &= \frac{1}{h} \int dp' V_{w}(x, p - p') f_{w}(x, p', t) \\ &+ \frac{1}{h} \int dp' B(x, p - p') \frac{\partial}{\partial x} f_{w}(x, p', t) \end{split}$$

where

$$B(x, p) = \frac{2\hbar}{m} \sin \left[\frac{p}{\hbar} \xi(x) \right]$$

simulation ...

Wigner Function confined by an infinite potential barrier

For the infinite barrier the Schroed, eq. holds only inside. For a box (a,b)

$$f_{w}(x, p, t) = \int_{-\xi(x)}^{\xi(x)} ds \, e^{-ips/\hbar} \overline{\Psi(x + s/2, t) \, \Psi^{*}(x - s/2, t)}$$

where

$$\xi(x) = V(r+s/2) \begin{cases} 2(x-a) & \text{if } x < (a+b)/2 \\ 2(b-x) & \text{if } x \ge (a+b)/2 \end{cases}$$

SEPARATION BETWEEN CLASSICAL FORCE AND QUANTUM EFFECTS

$$\frac{\partial f_{w}}{\partial t} + \frac{\mathbf{p}}{m} \frac{\partial f_{w}}{\partial \mathbf{r}} = \frac{1}{h^{3}} \int_{-\infty}^{\infty} d\mathbf{p}' V_{w}(\mathbf{r}, \mathbf{p} - \mathbf{p}') f_{w}(\mathbf{r}, \mathbf{p}', t)$$

$$V_{w}(\mathbf{r}, \mathbf{p}) = \frac{1}{i\hbar} \int d\mathbf{s} \, e^{-i\mathbf{p}\mathbf{r}/\hbar} \beta(\mathbf{r}, \mathbf{s})$$
$$\beta(\mathbf{r}, \mathbf{s}) = V(\mathbf{r} + \mathbf{s}/2) - V(\mathbf{r} - \mathbf{s}/2)$$

$$\frac{\partial f_{w}}{\partial t} + \frac{p}{m} \frac{\partial f_{w}}{\partial r} + F \frac{\partial f_{w}}{\partial p} = \frac{1}{h^{3}} \int_{-\infty}^{\infty} dp' \tilde{V}_{w}(r, p - p') f_{w}(r, p', t)$$

where

$$F = -\frac{\partial V f_w}{\partial r}$$

$$\tilde{V}_w(r, p) = \frac{1}{i\hbar} \int ds \, e^{-i\rho s + \hbar} \, \tilde{\beta}(r, s)$$

$$\tilde{\beta}(r, s) = \left[V(r + s/2) - \frac{\partial V}{\partial r} \, s/2 \right] - \left[V(r - s/2) + \frac{\partial V}{\partial r} \, s/2 \right]$$

ELECTRON-PHONON SCATTERING WITH THE WIGNER FUNCTION

Extend the definition of Wigner function:

$$f_w(r, p, \{n_q\}, \{n'_q\}, t)$$

$$= \overline{Z_s} e^{-ips/\hbar} \langle r + s/2, \{n_q\} | \rho(t) | r - s/2, \{n_q\} \rangle$$

Hamiltonian:

$$H = H_o + H_{ph} + H_{e-p} + V_o(r) + V'(r)$$

$$\begin{split} \mathbf{H}_{o} &= -\frac{\hbar^{2}}{2m} \nabla^{2} \\ \mathbf{H}_{e-p} &= \sum_{q} \hbar F(q) (\mathbf{b}_{q} e^{iq\mathbf{r}} - \mathbf{b}_{q}^{} e^{-iq\mathbf{r}}) \end{split} \qquad \mathbf{V}_{o}(\mathbf{r}) = eE \cdot \mathbf{r} \end{split}$$

V'(r) = potential profile

Differentiate the definition above and use

$$i\hbar \frac{d}{dt} \rho = [H, \rho]$$

20

PHONON AVERAGE

Reduction to electron Wigner function Trace over phonon variables:

$$f_w \mathbf{a}_l p_{,t} \mathbf{1} = \sum_{\mathbf{n}, \mathbf{n}} f_w \mathbf{a}_l p_{,t} \mathbf{n}_q \mathbf{s}_l \mathbf{n}_q \mathbf{n}_q \mathbf{s}_l \mathbf{n}_q \mathbf{n}_$$

Assume separate equilibrium initial density matrix:

$$f_{\mathbf{w}} \mathbf{G}_{\mathbf{p}}, \mathbf{n}_{\mathbf{q}} \mathbf{S} \mathbf{n}_{\mathbf{q}} \mathbf{S} = 0 \mathbf{I} \propto \prod_{\mathbf{q}} P_{\mathbf{e}\mathbf{q}} \mathbf{G}_{\mathbf{q}} \mathbf{I}$$

For final diagonal terms, with initial diagonal W.f., each Monte Carlo term contains a phonon mode twice and has factors like

$$\Delta f_{w} \mathbf{d}_{p}, \mathbf{n}_{q} \mathbf{S} \mathbf{n}_{q} \mathbf{S} \mathbf{i} \propto n_{q_{1}} ... \mathbf{d}_{q_{2}} + 1 \mathbf{i} ... f_{w} \mathbf{d}_{p}, \mathbf{n}_{q} \mathbf{S} \mathbf{n}_{q} \mathbf{S} \mathbf{i}$$

The simulation must be thought of as repeated a 'large number' of times for each {nq}. Then, if hot-phonon effects are ignored,

$$\sum_{\mathbf{R},\mathbf{T}} P_{eq} \mathbf{G}_q \mathbf{I} \mathbf{1}$$

$$\sum_{n_q} \mathbf{G}_q + 1 \mathbf{n}_{q} \mathbf{G}_q + 1 \mathbf{n}_{q} \mathbf{G}_q + 1 \mathbf{n}_{q} \mathbf{n}_{q}$$

$$\sum_{n_q} \mathbf{G}_q + 1 \mathbf{n}_{eq} \mathbf{G}_q + 1 \mathbf{n}_{eq} \langle n_q \rangle$$

$$\Rightarrow \text{ for real or virtual emissions:}$$

$$\sum_{n_q} n_q P_{eq} \mathbf{G}_q - 1 \mathbf{n}_{eq} \langle n_q + 1 \rangle$$

$$\sum_{n_q} \mathbf{G}_q + 1 \mathbf{n}_{eq} \mathbf{G}_q + 1 \mathbf{n}_{eq} \langle n_q + 1 \rangle$$

ELECTRON-PHONON SCATTERING WITH THE WIGNER FUNCTION- II

Several terms:

$$\overline{\underline{\mathcal{J}}_{S}} e^{-i\rho r} \langle r+s/2, \{n_{q}\} | \mathcal{Y}_{\Delta}[\mathbf{H}_{o}, \rho] | r-s/2, \{n_{q}^{r}\} \rangle = -\frac{p}{m} \nabla f_{\omega}$$

$$\overline{Z_S} e^{-\varphi s} \langle r+s/2, \{n_q\} | \mathcal{Y}_{a}[\mathbf{H}_{ph}, \rho] | r-s/2, \{n_q\} \rangle = -\mathcal{Y}_{b}[\mathcal{E}(\{n_q\}) - \mathcal{E}(\{n_q\})] f_w$$

$$\overline{\mathbf{Z}} s \, e^{-ips} \langle \mathbf{r} + \mathbf{s} / 2, \{ n_q \} \big| \, \mathcal{V}_{\Delta}[\mathbf{v}_a(\mathbf{r}), \rho] | \mathbf{r} - \mathbf{s} / 2, \{ n_q' \} \big\rangle = -F \, \frac{\partial}{\partial p} \, f_{\omega}$$

$$\overline{\underline{Z}}_{S} e^{-ips} \langle r + s/2, \{n_{s}\} | Y_{a}[\nabla^{t}(r), \rho] | r - s/2, \{n_{s}^{t}\} \rangle$$

$$= \overline{\underline{Z}}_{D}^{t} V_{w}(r, p - p^{t}) f_{w}(r, p^{t}, \{n_{s}^{t}\}, \{n_{s}^{t}\}, t)$$

Electron-phonon term:

$$\begin{split} & \underline{\mathcal{A}} e^{-iw} \langle r + s/2, \{n_i\} | \mathcal{Y}_0[\mathbf{H}_{r-p}, \rho] | r - s/2, \{n_i^*\} \rangle = \\ & \sum_{q'} \mathsf{F} \left(q' \right) \left\{ e^{iq'r} \sqrt{n_{q'} + 1} \ f_w(r, p - \frac{hq'_2}{2}), n_1 ... n_{q'} + 1 ..., \{n'_{q}\}, t \right\} \\ & - e^{-iq'r} \sqrt{n_{q'}} \ f_w(r, p + \frac{hq'_2}{2}), n_1 ... n_{q'} - 1 ..., \{n'_{q}\}, t \right) \\ & - e^{iq'r} \sqrt{n'_{q'}} \ f_w(r, p + \frac{hq'_2}{2}), \{n_{q}\}, n'_1 ... n'_{q'} - 1 ..., t \right) \\ & + e^{-iq'r} \sqrt{n'_{q'} + 1} \ f_w(r, p - \frac{hq'_2}{2}), \{n_{q}\}, n'_1 ... n'_{q'} + 1 ..., t \right) \} \end{split}$$

Path pariables, time integration, Neumann expansion ...

21

Phonon scattering

Real emission ("in")

Virtual emission ("out")

Multiple scattering

Intracollisional field effect, interference with potential scattering, ...

MONTE CARLO

Multiplicity of Wigner paths

Each multiple path can be obtained with different diagrams

Each graph contributes with a factor

$$e^{i(qr_{ij}-\omega t_{ij})}$$

Summing up all terms, the contribution becomes

$$2\cos(qr_{ij}-\omega t_{ij})2\cos(q'r_{il}-\omega't_{il})\rightarrow 2''\prod\cos$$

Potential step — one phonon scattering

Double barrier — one phonon scattering

25

Quantum self-scattering

IN STRICT FORMAL ANALOGY WITH SELF SCATTERING IN SEMICLASSICAL TRANSPORT SIMULATION

Define:

$$\tilde{f}_{w}(\mathbf{r}, \mathbf{p}, \{n_{q}\}, \{n_{q}\}, t) = e^{\Gamma(t-t_{q})} f_{w}$$

By substitution into the dynamical equation, an extra term is added to the interaction, proportional to Γ .

Each "free flight" in the Wigner paths is multiplied by a factor

$$e^{-\Gamma(\iota_i-\iota_j)}$$

corresponding to an approximate constant life-time of the electron state (imaginary part of the self energy).

At each "scattering event" a choice is made between self or actual scattering, thus correcting, at each order, the approximate self energy with the exact one.

TWO-TIME WIGNER FUNCTION

 $\rho(\mathbf{r}_1,t_1;\,\mathbf{r}_2,t_2)$

$$\begin{split} f_{w} \mathbf{\hat{a}}, p, \omega, t \mathbf{\hat{b}} &= \\ &= \mathbf{Z} \tau e^{i\omega\tau} \mathbf{Z} s e^{-ips/\hbar} \langle \mathbf{r} + s/2 | \Psi \mathbf{d} + \tau/2 \mathbf{\hat{i}} \rangle \langle \Psi \mathbf{d} - \tau/2 \mathbf{\hat{i}} | \mathbf{r} - s/2 \rangle \end{split}$$

TWO-TIME WIGNER F. WITH PHONONS (1)

$$\begin{split} G^{<}\left(\mathbf{r}_{1},t_{1};\mathbf{r}_{2},t_{2}\right) &= \frac{i}{\hbar} \left\langle \Psi^{\dagger}\left(\mathbf{r}_{2},t_{2}\right) \Psi\left(\mathbf{r}_{1},t_{1}\right) \right\rangle \\ &= \frac{i}{\hbar} \overline{\left\langle \Phi\left(t_{2}\right) \middle| \Psi^{\dagger}\left(\mathbf{r}_{2}\right) U\left(t_{2},t_{1}\right) \Psi\left(\mathbf{r}_{1}\right) \middle| \Phi\left(t_{1}\right) \right\rangle} \\ \Phi\left(\mathbf{r},\left\{n_{q}\right\},t\right) &= \left\langle \mathbf{r},\left\{n_{q}\right\} \middle| \Phi\left(t\right) \right\rangle \\ \mathbb{H} &= \mathbb{H}_{e} + \mathbb{H}_{p} + \mathbb{H}_{ep} \\ G^{<} &= \frac{i}{\hbar} \overline{\sum_{\left\{\mathbf{r}_{q}\right\}}} \sum_{\left\{\mathbf{r}_{q}\right\}} \left\langle 0,\left\{n_{q}\right\} \middle| e^{-i\theta_{p}\left(t_{2}-t_{1}\right)rh} \middle| 0,\left\{n_{q}\right\} \right\rangle \Phi^{*}\left(\mathbf{r}_{2},\left\{n_{q}\right\},t_{2}\right) \Phi\left(\mathbf{r}_{1},\left\{n_{q}\right\},t_{1}\right)} \\ &= \frac{i}{\hbar} \overline{\sum_{\left\{n_{q}\right\}}} \ e^{-i\theta_{p}\left(t_{2}-t_{1}\right)} \Phi^{*}\left(\mathbf{r}_{2},\left\{n_{q}\right\},t_{2}\right) \Phi\left(\mathbf{r}_{1},\left\{n_{q}\right\},t_{1}\right)} \end{split}$$

Pm

$$g(\mathbf{r},\{n_a\},t) = e^{i\omega(\{n_q\})t}\Phi(\mathbf{r},\{n_a\},t)$$

Ther

$$G^{*}(\mathbf{r}_{1},t_{1};\mathbf{r}_{2},t_{2}) = \frac{i}{\hbar} \sum_{\{n_{q}\}} g^{*}(\mathbf{r}_{2},\{n_{q}\},t_{2}) g(\mathbf{r}_{1},\{n_{q}\},t_{1})$$

28

TWO-TIME WIGNER F. WITH PHONONS (3)

Dynamical equation

$$\frac{\partial}{\partial t} f_{\star}(\mathbf{r}, \mathbf{p}, \{n_{\star}\}, \{n'_{\star}\}, t, \omega) = \int_{\mathbf{r}} e^{i\mathbf{r}\cdot\mathbf{r}\cdot\mathbf{r}} d\mathbf{r}'$$

$$\int_{\mathbf{r}} e^{-i\omega\mathbf{r}} d\tau \left\{ \left[\frac{\partial}{\partial t} g\left(\mathbf{r} - \mathbf{r}'/2, \{n_{\star}\}, t - \tau/2\right) \right] g^{\star}\left(\mathbf{r} + \mathbf{r}'/2, \{n'_{\star}\}, t + \tau/2\right) + g \frac{\partial}{\partial t} g^{\star} \right\}$$

$$\frac{\partial}{\partial t} g\left(\mathbf{r}, \{n_{q}\}, t\right) = i\omega\left(\left\{n_{q}\right\}\right) g + \frac{1}{i\hbar} \mathbf{H} g$$

If

$$\mathbb{H} = \mathbb{H}_e + \mathbb{H}_p + \mathbb{H}_{ep}$$

with

$$\mathbf{H}_{p} = \sum \mathbf{b}_{q}^{\dagger} \mathbf{b}_{q} \hbar \boldsymbol{\omega}_{q}$$

then

$$\begin{split} \frac{\partial}{\partial t} g \Big(r, \left\{ n_q \right\}, t \Big) &= i \omega \Big(\left\{ n_q \right\} \Big) g + \frac{1}{i \hbar} \Big(\mathbf{H}_e + \mathbf{H}_p + \mathbf{H}_{q_p} \Big) g \\ &= i \omega \Big(\left\{ n_q \right\} \Big) g + \frac{1}{i \hbar} \Big(\mathbf{H}_e + \mathbf{H}_{q_p} \Big) g + \frac{1}{i \hbar} \hbar \omega \Big(\left\{ n_q \right\} \Big) g \end{split}$$

Thus the free-phonon dynamics is eliminated

TWO-TIME WIGNER F. WITH PHONONS (2)

Performe traditional transformation:

$$t = \frac{t_1 + t_2}{2}$$
, $\tau = t_2 - t_1$ $r = \frac{r_1 + r_2}{2}$, $r' = r_2 - r_1$

and Fourier transform:

$$\begin{split} f_{w}\left(\boldsymbol{r},\boldsymbol{p},t,\omega\right) &= -i\hbar G^{c}\left(\boldsymbol{r},\boldsymbol{p},t,\omega\right) = \sum_{\left[n_{q}\right]} \int_{-\infty}^{\infty} e^{i\boldsymbol{p}\boldsymbol{r}^{\gamma}\hbar} d\boldsymbol{r}^{\gamma} \\ &\int_{-\infty}^{\infty} e^{-i\omega\tau} d\tau \overline{g\left(\boldsymbol{r}-\boldsymbol{r}^{\gamma}/2,\left\{n_{q}\right\},t-\tau/2\right)} g^{*}\left(\boldsymbol{r}+\boldsymbol{r}^{\gamma}/2,\left\{n_{q}\right\},t+\tau/2\right) \end{split}$$

For dynamical equation generalize to non diagonal phonon states:

$$f_{w}(\mathbf{r}, \mathbf{p}, \{n_{q}\}, \{n_{q}^{1}\}, t, \omega) = \int_{-\infty}^{\infty} e^{i\mathbf{p}\mathbf{r}^{1}h} d\mathbf{r}^{1}$$

$$\int_{-\infty}^{\infty} e^{-i\omega t} d\tau \overline{g(\mathbf{r} - \mathbf{r}^{1}/2, \{n_{q}\}, t - \tau/2)} g^{*}(\mathbf{r} + \mathbf{r}^{1}/2, \{n_{q}^{1}\}, t + \tau/2)$$

$$f_{w}(\mathbf{r}, \mathbf{p}, t, \omega) = \sum_{\{n_{n}\}} f_{w}(\mathbf{r}, \mathbf{p}, \{n_{q}\}, \{n_{q}\}, t, \omega)$$

29

TWO-TIME WIGNER F. WITH PHONONS (4)

The various terms in the dynamical equations are treated as in the standard case:

$$\mathbb{H}_{_{o}} = -\frac{\hbar^2}{2m} \nabla^2$$

yelds

$$\left. \frac{\partial}{\partial t} \right|_{o} f_{w} \left(\boldsymbol{r}, \boldsymbol{p}, \left\{ n_{q} \right\}, \left\{ n'_{q} \right\}, t, \boldsymbol{\omega} \right) = -\frac{\boldsymbol{p}}{m} \nabla_{r} f_{w}$$

$$\mathbb{V} = V(r)$$

yelds

$$\frac{\partial}{\partial t} \int_{V} f_{w}(\mathbf{r}, \mathbf{p}, \{n_{q}\}, \{n_{q}\}, t, \omega)$$

$$= \int_{-\infty}^{\infty} d\mathbf{p}' V_{w}(\mathbf{r}, \mathbf{p} - \mathbf{p}') f_{w}(\mathbf{r}, \mathbf{p}', \{n_{q}\}, \{n_{q}'\}, t, \omega)$$

where

$$V_{\text{\tiny m}}\left(\boldsymbol{r},\boldsymbol{p}\right) = \frac{1}{i\hbar} \frac{1}{\left(2\pi\hbar\right)^3} \int d\boldsymbol{r}' e^{i\boldsymbol{p}\boldsymbol{r}'\cdot\boldsymbol{b}} \left[V\left(\boldsymbol{r}-\boldsymbol{r}'/2\right)-V\left(\boldsymbol{r}+\boldsymbol{r}'/2\right)\right]$$

For a constant or harmonic force F

$$\left. \frac{\partial}{\partial t} \right|_{s} f_{s} \left(\mathbf{r}, \mathbf{p}, \left\{ n_{s} \right\}, \left\{ n_{s}^{*} \right\}, t, \omega \right) = -\mathbf{F} \frac{\partial}{\partial \mathbf{p}} f_{s}$$

TWO-TIME WIGNER F. WITH PHONONS (5)

Taking into account that

$$\begin{split} \mathbf{b}_{q} \cdot g \left(\mathbf{r} - \mathbf{r}' / 2, \left\{ n_{q} \right\}, t - \tau / 2 \right) \\ &= e^{i\omega \left\{ \left[n_{q} \right\} \right\} \left(t - \tau / 2 \right)} \left\langle \mathbf{r} - \mathbf{r}' / 2, \left\{ n_{q} \right\} \middle| \mathbf{b}_{q} \cdot \middle| \Psi \left(t - \tau / 2 \right) \right\rangle \\ &= e^{-i\omega_{q} \cdot \left(t - \tau / 2 \right)} \sqrt{n_{q} + 1} g \left(\mathbf{r} - \mathbf{r}' / 2, \left\{ n_{1}, ..., n_{q} + 1, ... \right\}, t - \tau / 2 \right) \end{split}$$

and similar.

the electron-phonon interaction

$$\mathbb{H}_{ep} = i\hbar \sum_{\mathbf{q}'} F(\mathbf{q}') \left(\mathbb{b}_{\mathbf{q}'} e^{i\mathbf{q}'\mathbf{r}} - \mathbb{b}^{\dagger}_{\mathbf{q}'} e^{-i\mathbf{q}'\mathbf{r}} \right)$$

yields

$$\begin{split} \frac{\partial}{\partial t}\bigg|_{ep} f_w\left(\mathbf{r},\mathbf{p},&\{n_q\},&\{n'_q\},t,\omega\right) = \sum_{\mathbf{q'}} F\left(\mathbf{q'}\right)\Big\{\\ e^{i(\mathbf{q'}-\omega_{\mathbf{q'}})} \sqrt{n_{\mathbf{q'}}+1} f_w\left(\mathbf{r},\mathbf{p}-\hbar\mathbf{q'}/2,&\{n_1,\dots,n_q,+1,\dots\},\{n'_q\},t,\omega-\omega_{\mathbf{q'}}/2\right)\\ -e^{-i(\mathbf{q'}-\omega_{\mathbf{q'}})} \sqrt{n_{\mathbf{q'}}} f_w\left(\mathbf{r},\mathbf{p}+\hbar\mathbf{q'}/2,&\{n_1,\dots,n_q,-1,\dots\},\{n'_q\},t,\omega+\omega_{\mathbf{q'}}/2\right)\\ +e^{-i(\mathbf{q'}-\omega_{\mathbf{q'}})} \sqrt{n'_q+1} f_w\left(\mathbf{r},\mathbf{p}-\hbar\mathbf{q'}/2,&\{n_q\},&\{n'_1,\dots,n'_q,+1,\dots\},t,\omega-\omega_{\mathbf{q'}}/2\right)\\ -e^{i(\mathbf{q'}-\omega_{\mathbf{q'}})} \sqrt{n'_{\mathbf{q'}}} f_w\left(\mathbf{r},\mathbf{p}+\hbar\mathbf{q'}/2,&\{n_q\},&\{n'_1,\dots,n'_q,-1,\dots\},t,\omega+\omega_{\mathbf{q'}}/2\right)\Big\} \end{split}$$

32

Spectral Density $A(p, \omega)=fw(p, \omega)/fw(p)$

GaAs
Polar optical phonons
T=300 K
up to 3 scattering
t=150 fs

TWO-TIME WIGNER F. WITH PHONONS (6)

The general equantion

$$\frac{\partial}{\partial t} f_{\star}(\mathbf{r}, \mathbf{p}, \{n_{\star}\}, \{n_{\star}'\}, t, \omega) + \frac{\mathbf{p}}{m} \frac{\partial}{\mathbf{r}} f_{\star}' + F \frac{\partial}{\partial \mathbf{p}} f_{\star} = \frac{\partial f_{\star}}{\partial t} \Big|_{t} + \frac{\partial f_{\star}}{\partial t} \Big|_{t}$$
here
$$\frac{\partial}{\partial t} \Big|_{t} f_{\star}(\mathbf{r}, \mathbf{p}, \{n_{\star}\}, \{n_{\star}'\}, t, \omega) = \int_{t}^{\infty} d\mathbf{p}' V_{\star}(\mathbf{r}, \mathbf{p} - \mathbf{p}') f_{\star}(\mathbf{r}, \mathbf{p}', \{n_{\star}\}, \{n_{\star}'\}, t, \omega)$$

 $V_{w}(r,p) = \frac{1}{i\hbar} \frac{1}{(2\pi\hbar)^{3}} \int dr' e^{ipr'\hbar} \left[V(r-r'/2) - V(r+r'/2) \right]$

and

$$\begin{split} \frac{\partial}{\partial t}\bigg|_{r_{p}}f_{w}\Big(r,p,&\{n_{q}\},\{n_{q}\},t,\omega\Big) = \sum_{\mathbf{q}'}F\big(q'\big)\Big\{\\ e^{i(\mathbf{q}'r-\omega_{\mathbf{q}'})}\sqrt{n_{q'}+1}f_{w}\Big(r,p-\hbar q'/2,\{n_{1},...,n_{q'}+1,...\},\{n_{q}'\},t,\omega-\omega_{\mathbf{q}'}/2\Big)\\ -e^{-i(\mathbf{q}'r-\omega_{\mathbf{q}'})}\sqrt{n_{q'}}f_{w}\Big(r,p+\hbar q'/2,\{n_{1},...,n_{q'}-1,...\},\{n_{q}'\},t,\omega+\omega_{\mathbf{q}'}/2\Big)\\ +e^{-i(\mathbf{q}'r-\omega_{\mathbf{q}'})}\sqrt{n_{q'}+1}f_{w}\Big(r,p-\hbar q'/2,\{n_{q}\},\{n_{1},...,n_{q'}'+1,...\},t,\omega-\omega_{\mathbf{q}'}/2\Big)\\ -e^{i(\mathbf{q}'r-\omega_{\mathbf{q}'})}\sqrt{n_{q'}'}f_{w}\Big(r,p+\hbar q'/2,\{n_{q}\},\{n_{1},...,n_{q'}'-1,...\},t,\omega+\omega_{\mathbf{q}'}/2\Big) \end{split}$$

- The left hand side of the above equation is the same Liouvillian as in the Boltzann equation
- · Path variables and integral form of the transport equation
- · Neumann expansion
- Wigner Paths
- · Monte Carlo
- At each interaction "vertex" half phonon momentum and half phonon energy is trasferred to or taken from the electron

33

Conclusions

Wigner paths can be defined as ballistic "flights" separated by scattering processes The Wigner-function approach allows a description of quantum transport in terms of phase-space analogous to the semiclassical case

A Monte Carlo algorithm can be implemented that accounts for given initial and boundary conditions

Momentum and frequency can be considered as independent variables in a two-time Green function approach, maintaining the path Monte Carlo approach

PROBLEMS ...

I I CONTINUE.

Modeling Resonant Tunneling Devices With Wigner Functions and Density Matrices

H. L. Grubin
Scientific Research Associates, Inc
hal@srassoc.com

SRA

- Collaborators:
 - R.C. Buggeln and J. P. Kreskovsky
- Supported by Office of Naval Research

SRA

Nanostructures & Transien

Quantum Transport RTD Studies

- Use Wigner Function (primarily) and Density Matrix to describe *transient* transport in nanoscale devices
- Go beyond using switching speed as a primary characteristic of a device. Instead we also determine the *recovery* time.
- We do this within the framework of an RTD as a self-excited sustained relaxation oscillator (RTD/RO) and seek the highest frequency of oscillation.

SRA

Simulation Requirements

- Suitable transient quantum transport equation—Wigner equation/Density Matrix
- Poisson's equation + flat band boundary conditions
- Circuit equations/transmission line equations—treated as boundary conditions
- Suitable description of reservoirs and dissipation

SRA

Nanostructures & Transien

WF/DM Equation

 Can be obtained in simple cases directly from Schrodinger's equation or formally as follows:

Density Operator

 $\rho_{op}(t) = \sum |i(t) > P(i) < i(t)|$

Single time
Density Operator,

SRA

Nanostructures & Transient

SRA

Nanostructures & Transients

Density Operator

$$\rho_{op}(t) = \sum |i(t) > P(i) < i(t)|$$

Coordinate representation

$$\langle \mathbf{x} | \rho_{np}(t) | \mathbf{x}' \rangle = \sum_{i} \langle \mathbf{x} | i(t) \rangle P(i) \langle i(t) | \mathbf{x}' \rangle$$

$$= \sum_{i} P(i) \Psi_{i}(\mathbf{x}', t) \Psi_{i}(\mathbf{x}, t)$$

$$i\hbar \frac{d\rho_{ep}(t)}{dt} = \left[H(t), \rho_{ep}(t)\right]$$

$$i\hbar \frac{\partial \langle \mathbf{x} | \rho(t) | \mathbf{x}' \rangle}{\partial t}$$

$$= \left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial \mathbf{x}^2} - \frac{\partial^2}{\partial \mathbf{x}'^2}\right) + \Gamma(\mathbf{x}) - \Gamma(\mathbf{x}') \right\} \langle \mathbf{x} | \rho(t) | \mathbf{x}' \rangle$$
SRA
$$dissipation \longrightarrow +i\hbar \left\{ \frac{\partial \langle \mathbf{x} | \rho | \mathbf{x}' \rangle}{\partial t} \right\}$$

Density & Current Density Matrix

$$\rho(\mathbf{x}, \mathbf{x}') = <\mathbf{x} | \rho_{np}(t) | \mathbf{x}'>$$

Density
$$\rho(\mathbf{x}) = \langle \mathbf{x} | \rho_{op}(t) | \mathbf{x} \rangle$$

$$\mathbf{j}(\mathbf{x}, \mathbf{x}') = \frac{\hbar}{2mi} \left(\nabla_{\mathbf{x}} - \nabla_{\mathbf{x}'} \right) < \mathbf{x} \mid \rho_{op}(t) \mid \mathbf{x}' >$$

Current Density
$$\mathbf{j}(\mathbf{x}) = Lim \, \mathbf{j}(\mathbf{x}, \mathbf{x}')$$

Density Matrix Heterostructure

Real Part Flat Profile,

300K

Quantum Van der Pol Oscillator

- It should be of interest to physicists because it is capable of providing a practical measure of the speed and response time of resonant tunneling diode.
 - How?
 - Determine the maximum frequency of a controlled oscillation that can *drive or affect* the total system
 - Use the RTD/RO as a clock.

SRA

There are non-Van der Pol Oscillations

We have observed weak (above threshold)
 voltage oscillations at frequencies near 700
 GHz!

SRA

Nanostructures & Transier

We will concentrate on the Wigner Function

- · More success than with using the DM.
- · Not as fast as the DM.

SRA

Nanostructures & Transients

Wigner Function/Equation from the Density Matrix through the Weyl Transformation

$$f_{ii}(\mathbf{k},\mathbf{r}) = \frac{1}{2} \int d\mathbf{s} < \mathbf{r} + \frac{\mathbf{s}}{2} | \rho_{iij}(t) | \mathbf{r} - \frac{\mathbf{s}}{2} > \exp(-i\mathbf{k} \cdot \mathbf{s})$$

SRA

Numstructures & Transients

The Wigner Equation

Transient Dissipation $0 = \frac{\partial f_{-1}(\mathbf{k}, x)}{\partial t} + \frac{f_{-1}(\mathbf{k}, x) - f_{-1}(\mathbf{k}, x)}{\tau(x)} + \frac{hk_{-1}}{m} \frac{\partial f_{-1}(\mathbf{k}, x)}{\partial x}$ $-\frac{1}{\pi h} \lim_{t \to -\infty} \int_{-1}^{L} d\zeta \left[\begin{array}{c} V(x + \zeta) \\ -V(x - \zeta) \end{array} \right] \int dk_{-1}^{-1} f_{-1}(k_{-1}, k_{-1}, k_{-1}, k_{-1}) \sin[2(k_{-1} - k_{-1})\zeta]$

Quantum Mechanics: The Wigner integral represents a correlation of states in the coordinate representation.

SRA

The Wigner Integral Treated Analytically-Highlights Correlations

$$\lim_{t \to \infty} \int_{t}^{t} dy \begin{bmatrix} V(x+y) \\ -V(x-y) \end{bmatrix} \sin[2(k, -k, y)]$$

$$= \frac{2V_{0} \sin[2(k, -k, y)(x_{0}-x)] \sin[(k, -k, y)\Delta]}{i(k, -k, y)}$$

SRA

Nanostructures & Transient

V(x)-V(x') for a single asymmetrically placed barrier

The Five Zone Structure

- · Five zone structure:
 - The end regions (two) represent the contact regions;
 - The central region (one)-- incorporates the quantum barriers and wells;
 - The transition region (two)
- Variable scattering time, smallest in contact region.

SPA

Nanostructures & Transier

Structure Emphasized The Baseline Studies

- 200 nm, DBRTD, 250/300mev-5nm-5nm-5nm, low doped central region
- DC and transient studies
- Hysteresis studies
- (Note: In the absence of barriers can compute IV of an NIN structure as well as linear resistor)

SRA

Structure Emphasized *The Baseline Study, cont.*

- New derivative boundary conditions on Wigner function show flat-band and qualitative displacement momentum contributions.
- Do not need to assert displaced Fermi boundary conditions.
- Equilibrium distribution obtained first.

SRA

Structure Emphasized *The Baseline Study, cont.*

- Converged de solutions via small bias increments show no hysteresis!
- Large signal transients show hysteresis.
- Relaxation to steady state occurs within a pico-see and is bias dependent
- Devices sustain steady relaxation oscillations!

SRA

RO Equations
$$\frac{dv_D}{dt} = \frac{2\pi Z_0}{R_D} \left\{ i(t) - i_D(v_D) \right\}$$

$$\frac{di}{dt} = \frac{R_D}{2\pi Z_0} \left\{ v_{1PPL/ED}(t) - v_D(t) + i(t) \frac{R_{LO,1D}}{R_D} \right\}$$

$$v_D = V_D / V_P, \quad i = I / I_P, \quad t = \tau / T_{ref}$$

$$Z_0 = \sqrt{L/C_D}, T_{ref} = 2\pi \sqrt{LC_D}, R_D = V_P / I_P$$
RA
most negative A Transverts.

RO Equation Parameters
$$Z_0 = \sqrt{L/C_D}$$

$$T_{ref} = 2\pi \sqrt{LC_D}$$

$$R_D = V_P/I_P$$

Observation: For a fixed Z, oscillation characteristics are the same for all oscillatory periods provided the NDR is not dynamic.

SKA Nanostructures & Transien

Details of the RO at 11.5 GHz: Particle Current Density and Potential Energy Drop

- First part of the oscillation
 Linear I versus V, L R rise time
- Second part of the oscillation
 Drop in particle current and increase in potential drop
- Third part of the oscillation
 Decrease in potential drop, particle current remains below values associated with first part of the oscillation.

SRA

'Temporal Invariance'

When the device oscillates, its characteristics are independent of oscillatory period!

SRA Nanostructures & Transients

Observations

- Increasing circuit frequency results in increased looping of IV.
- Oscillations cease at approximately 120GHz for these device parameters.
- There is an invariant quantity prior to the current drop-back. This quantity is the "Bohm Quantum Potential".
- Oscillations are stable to circuit noise and device fluctuations.
- Noise characteristics can probably be explained by early discussions of M. Lax.

SRA

The Bohm Quantum Potential and the Steady State Schrodinger Equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} + V(x)\psi = E\psi$$

$$\psi(x) = R \exp[iS(x)/\hbar]$$

SRA

Quantum Potential a. $\frac{(\partial_{x} S)^{2}}{2m} + V + Q = E$ b. $\frac{\partial}{\partial x} \left(R^{2} \frac{\partial_{x} S}{m} \right) = 0$ c. $Q = -\frac{\hbar^{2}}{2m} \frac{\partial_{x_{1}} R}{R}$ Q represents the ground state for simple double barrier problems

Quantum Potential, Within and to the Left of the Barrier—For Different Values of Bias

Quantum Potential (meV) versus Distance (nm)

400
Barriers

Quantum
Potential

Quantum
Potential

-200
-400
-600
-20 -15 -10 -5 0

Conclusions Suggested by the Quantum Potential

- Simulations are consistent with the filling of a well defined quantum state prior to the drop-back in current.
- Quantum potential is not well defined after the drop-back.

Certainly there are computational difficulties with small values of charge. But we may be dealing with a mixture of a large number of quantum states, scattering states and dissipation.

SRA

Nanostructures & Transien

Noise Considerations

- For nonlinear systems amplitude noise is not an issue (M. Lax and our studies)
- · Phase noise is additive.
- Amount of phase noise depends on time of disturbance.
- Recovery from disturbance occurs within one cycle.
- · Illustrate with ODE and Quantum RO

Injected Current Source at a
Particular Instant of Time

O.4

O.4

O.4

O.4

O.5

SRA
Nanostructures & Transients

Nanostructures & Transient

Conclusions

- Quantum Van der Pol oscillator provides quantitative values for the large signal switching and recovery times of RTD.
- Large signal frequencies near 120 GHz for nonoptimized structure.
- Small signal oscillations sustained at higher frequencies. (f>670 GHz).
- Quantum Van der Pol oscillators recover from fluctuations within one cycle.
- · Phase noise dominates.

That house domina

Speculations

- Periodic invariance is probably due to time increments. If use was made of femtosecond increments would probably see high frequency contributions.
- Quantum potential interpretation not as simple for higher (>300 meV) barriers.

SRA

Nanostructures & Transients

Non-Equilibrium Green's Functions for MOSFET Modeling

Deian Jovanovic Benjamin Liu **Roland Stumpf** Keith Beardmore Ramesh Venugopa (Purdue) Mark Lundstrom (Purdue) Supriyo Datta (Purdue)

Motorola Computational Materials Group 4200 W. Jemez Rd., Suite 300 Los Alamos, NM 87544

Physical Sciences Research Laboratory

Conventional TCAD

- Process-Device simulation (TCAD) is used by the semiconductor industry to expedite and optimize process development
- TCAD enables the efficient use of experimental cycles and provides major cost/time savings during early design iterations
- TCAD device models are based on semi-classical transport theory which relies on approximations to facilitate performance efficiency
- Semiclassical transport models will become increasingly inaccurate with decreasing L_{gate} due to the onset of quantum effects

Experimental calibration will be increasingly required to calibrate TCAD device simulators which will undermine their usefulness

Physical Sciences Research Laboratory

Device Model Deployment WIN STATISTICS **Compact Models** TCAD **Advanced Models** PURPOSE: Enable PURPOSE: Create Rev. 0 PURPOSE: Calibrate TCAD compact models and circuit-level simulation models for sub-0.1µm Tech support lot design Nodes and provide platform High-performance for novel structures Physics-based device device models based on models with emphasis on analytic equations Full physics models with emphasis on global Provide interface Provide interface between between devices and circuits behavior Requires experimental Provide detailed Will require experimental transport and material (~100 days) or TCAD-(~100 days) or advanced model (~7 days) calibratio based (~30 days) understanding Minimal calibration calibration required SPICE: BSIM3, SSIM, etc. Drift-diffusion Monte-Carlo Hydrodynamic Density Gradiant Quantum Transport

OFSIGN:

Physical Sciences Research Laboratory

· Principal Equations - Impulse response $\left| E - \hat{H}_o(\vec{k}_\perp) - \hat{\Sigma}^R(E, \vec{k}_\perp) \right| \hat{G}^R(E, \vec{k}_\perp) = \hat{I}$ $G_{i,j}^{<}(E,\vec{k}_{\perp}) = \sum_{i} G_{i,k}^{R}(E,\vec{k}_{\perp}) \Sigma_{k,j}^{<}(E,\vec{k}_{\perp}) G_{i,j}^{A}(E,\vec{k}_{\perp}) + g_{i,j}^{<}(E,\vec{k}_{\perp}) \xrightarrow{} \text{Convolution Integral}$ Scattering $\Sigma_{i,j}^R(E,\vec{k}_\perp) = \frac{1}{(2\pi)^3} \sum_k \int dE' \int d\vec{k}_\perp' V_{i,k}(E,\vec{k}_\perp,E',\vec{k}_\perp') G_{k,j}^R(E',\vec{k}_\perp')$ $\Sigma_{i,j}^{c}(E,\vec{k}_{\perp}) = \frac{1}{(2\pi)^{3}} \sum_{i} \int dE' \int d\vec{k}_{\perp}' V_{i,k}(E,\vec{k}_{\perp},E',\vec{k}_{\perp}') G_{k,j}^{c}(E',\vec{k}_{\perp}')$ $\frac{1}{\tau_{ii}^{tot}(E)} \Leftrightarrow -\frac{2}{\hbar} \operatorname{Im} \left[\Sigma_{ij}^{R}(E, \vec{k}_{\perp}) \right]$

Scattering is both the key and impediment to numerical quantum transport simulation

Definitions

 $\hat{H}_{\sigma}(\vec{k}_{\perp})$ - Tight-binding Hamiltonian

 $g_{ij}^*(E, k_\perp)$ - Zero-order correlation function $\Sigma_{ij}^*(E, \vec{k}_\perp)$ - Causal Self-Energy (in-scattering)

 $\hat{\Sigma}^{R}(E, \vec{k}_{\perp})$ - Retarded self-energy (out-scattering) $\hat{G}^{\it R}(E, \vec{k}_{\scriptscriptstyle \perp})$ - Retarded Green Function (Propagator)

 $G_{ij}^{<}(E, \tilde{k}_{\perp})$ - Full correlation function

 $V_{ij}(E, \vec{k}_{\perp}, E', \vec{k}'_{\perp})$ - Interaction Potential (Green Function)

--- Physical Sciences Research Laboratory -

Computational Materials Group

Nonequilibrium Quantum Field Theory Physical Observables

· Density of States

 $A_{ij}(E, \vec{k}_{\perp}) = -2 \operatorname{Im} \left[G^{R}_{ij}(E, \vec{k}_{\perp}) \right]$ (quantum mechanical DOS)

Flectrons

 $G_{\mu}^{<}(E, \vec{k}_{\perp}) = if(E, \phi_F)A_{\mu}(E, \vec{k}_{\perp})$

$$=if(E,\phi_F^L)A_{ii}^L(E,\vec{k}_\perp)+if(E,\phi_F^R)A_{ii}^R(E,\vec{k}_\perp)$$

(equilibrium) (non-equilibrium)

$$n_i = -2i \int \frac{dE}{2\pi} \int \frac{d\vec{k}_{\perp}}{(2\pi)^2} G_{ii}^{\epsilon}(E, \vec{k}_{\perp})$$

(electron density)

$$2\pi^{2}(2\pi)^{2}$$

$$J_{i} = \frac{2e}{\hbar} \int \frac{d\vec{k}}{2\pi} \int \frac{d\vec{k}_{\perp}}{(2\pi)^{3}} \left[H_{i,i+1}(\vec{k}_{\perp}) G_{i+1,i}^{\epsilon}(E,\vec{k}_{\perp}) - G_{i,i+1}^{\epsilon}(E,\vec{k}_{\perp}) H_{i+1,i}(\vec{k}_{\perp}) \right] \text{ (electron current)}$$

$$G_{\mu}^{*}(E, \vec{k}_{\perp}) = -i[1 - f(E, \phi_{F})]A_{\mu}(E, \vec{k}_{\perp})$$

(equilibrium)

$$=-i\big[1-f(E,\phi_F^L)\big]A_{\scriptscriptstyle H}^L(E,\vec{k}_\perp)-i\big[1-f(E,\phi_F^R)\big]A_{\scriptscriptstyle H}^R(E,\vec{k}_\perp) \qquad \text{(non-equilibrium)}$$

$$p_i = -2i \int \frac{dE}{2\pi} \int \frac{d\vec{k}_{\perp}}{(2\pi)^2} G_{ii}^{>}(E, \vec{k}_{\perp})$$

$$J_i = \frac{2e}{\hbar} \int \frac{d\vec{k}_{\perp}}{2\pi} \int \frac{d\vec{k}_{\perp}}{(2\pi)^2} \left[H_{i,i+1}(\vec{k}_{\perp}) G_{i+1,i}^{>}(E,\vec{k}_{\perp}) - G_{i,i+1}^{>}(E,\vec{k}_{\perp}) H_{i+1,i}(\vec{k}_{\perp}) \right] \quad \text{(hole current)}$$

- Physical Sciences Research Laboratory -

Nonequilibrium Quantum Field Theory **Spatial Discretization**

- · Presently using multi-valley effective-mass based discretization
- Simulated bandstructure is intrinsically linked to grid morphology in lateral (z)

 $E(k_z) = \frac{\hbar^2}{m_z^2 \Delta_z} \left[1 - \cos(k_z \Delta_z) \right]$

- · Uniform grid is required for the lateral (z) direction to avoid spurious reflections
- · Non-uniform grid can be used in vertical (y) direction

- Physical Sciences Research Laboratory -

Nonequilibrium Quantum Field Theory **Boundary Conditions for Green's and Correllation Functions**

- · Boundary condition assumptions
 - Contacts are modeled as translationally invariant open boundaries and are assumed to be in local equilibrium
 - Closed boundaries are set where GR and Gr can be safely assumed to be

Boundary eigenvalue problem

$$\left[Z_m + (Z_m)^{-1} - \frac{E - \varepsilon_j}{t_j}\right] \phi_{j,m} = 0$$

· Boundary Green's function

$$\widetilde{g}_{01}^{R} = QZQ^{-1}\widetilde{g}_{00}^{R}$$

$$\widetilde{g}_{0,0}^{R} = \left[E - \hat{\varepsilon} - \hat{\iota} Q Z Q \right]^{-1}$$

$$\widetilde{g}_{0,0}^{s} = -i2f(\phi_F^s) \operatorname{Im} \left[\widetilde{g}_{0,0}^R \right]$$

- Physical Sciences Research Laboratory ---

Nonequilibrium Quantum Field Theory Recursive Solution of Dyson and Kinetic Equations

General Dyson equations for G^R and G[<]

$$\begin{split} \hat{G}_{i,i'}^{s} &= \hat{g}_{i,j}^{s} + \sum_{j,k} \hat{g}_{i,j}^{s} \hat{\Sigma}_{j,k}^{s} \hat{G}_{k,i'}^{s} \\ \hat{G}_{i,i'}^{s} &= \hat{g}_{i,j}^{s} + \sum_{j,k} \hat{g}_{i,j}^{s} \hat{\Sigma}_{j,k}^{s} \hat{G}_{k,i'}^{s} + \sum_{j,k} \hat{g}_{i,j}^{s} \hat{\Sigma}_{j,k}^{s} \hat{G}_{k,i'}^{s} + \sum_{j,k} \hat{g}_{i,j}^{s} \hat{\Sigma}_{j,k}^{s} \hat{G}_{k,i'}^{s} \end{split}$$

- Recursive Greens Function (RGF) Technique

 - Direct solution of the Green's functions is computationally prohibited (N₂N₃)³ Physical observables are clustered along the Green's function diagonals Dyson equations can be used to recursively construct Green and correlation
 - Function diagonals in a two-step manner N₂N₃³

 Perturbative elements are the off-diagonal elements of the Hamiltonian

$$\widetilde{g}_{i,i'}^R = g_{i,i'}^R + \sum_{j,k} g_{i,j}^R t_{j,k} \widetilde{g}_{k,i'}^R$$

$$\widetilde{g}_{i,i'}^< = g_{i,i'}^< + \sum_{j,k} g_{i,j}^< t_{j,k} \widetilde{g}_{k,i'}^A + \sum_{j,k} g_{i,j}^R t_{j,k} \widetilde{g}_{k,i'}^<$$

- Self-consistent scattering can be efficiently incorporated into the RGF approach

Physical Sciences Research Laboratory

Nonequilibrium Quantum Field Theory Recursive Solution of Semi-infinite Green/Correlation Functions

$$\begin{split} \widetilde{g}_{i,i}^R &= g_{i,i}^R + g_{i,i}^R t_{i,i+1} \widetilde{g}_{i+1,i}^R \\ &= g_{i,i}^R + g_{i,i}^R t_{i,i+1} \widetilde{g}_{i+1,i+1}^R t_{i+1,i} \widetilde{g}_{i,i}^R \end{split}$$

$$\widetilde{\boldsymbol{g}}_{i,i}^{\prec} = \boldsymbol{g}_{i,i}^{\prec} + \boldsymbol{g}_{i,i}^{\prec} \boldsymbol{t}_{i,i+1} \widetilde{\boldsymbol{g}}_{i+1,i}^{A} + \boldsymbol{g}_{i,i}^{R} \boldsymbol{t}_{i,i+1} \widetilde{\boldsymbol{g}}_{i+1,i}^{\prec}$$

$$=g_{i,i}^{<}+g_{i,i}^{<}t_{i,i+1}\widetilde{g}_{i+1,i+1}^{A}t_{i+1,i}\widetilde{g}_{i,i}^{A}+g_{i,i}^{R}t_{i,i+1}\widetilde{g}_{i+1,i+1}^{<}t_{i+1,i}\widetilde{g}_{i,i}^{A}+g_{i,i}^{R}t_{i,i+1}\widetilde{g}_{i+1,i+1}^{R}t_{i+1,i}\widetilde{g}_{i,i}^{A}$$

$$\widetilde{g}_{i,j}^{R} = \left[\left(g_{i,j}^{R} \right)^{-1} - t_{i,i+1} \widetilde{g}_{i+1,j+1}^{R} t_{i+1,j} \right]^{-1}$$

$$\widetilde{g}_{i,i}^{\prime} = \widetilde{g}_{i,i}^{R} \left[\sigma_{i,i}^{\prime} + t_{i,i+1} \widetilde{g}_{i+1,i+1}^{\prime} t_{i+1,i} \right] \widetilde{g}_{i,i}^{A}$$

Physical Sciences Research Laboratory ---

Nonequilibrium Quantum Field Theory Recursive Solution of Full Green/Correlation Functions

$$\begin{split} G^{R}_{i,j} &= \widetilde{g}^{R-}_{i,i} + \widetilde{g}^{R-}_{i,i} t_{i,i+1} G^{R}_{i+1,i+1} t_{i+1,j} \widetilde{g}^{R-}_{i,i} \\ &= \left[\left(\widetilde{g}^{R-}_{i,j} \right)^{-1} - t_{i,i+1} \widetilde{g}^{R+}_{i,i+1} t_{i+1,j} \right]^{-1} \\ G^{\varsigma}_{i,i} &= \widetilde{g}^{\varsigma, \varsigma}_{i,j} + \widetilde{g}^{\varsigma, \varsigma}_{i,i+1} t_{i+1,j} \widetilde{g}^{A-}_{i,j} + \widetilde{g}^{R-}_{i,j+1} G^{R}_{i+1,i+1} t_{i+1,j} \widetilde{g}^{\varsigma, \varsigma}_{i,j} + \widetilde{g}^{R-}_{i,j+1} t_{i+1,j} \widetilde{g}^{\varsigma, \varsigma}_{i,j} \\ &= G^{R_{i,j}}_{i,j} \left[\sigma^{\varsigma}_{i,j} + t_{i,j-1} \widetilde{g}^{\varsigma, \varsigma}_{i-1,j-1} t_{i+1,j} \right] G^{A}_{i,j} \\ &= G^{R_{i,j}}_{i,j} \left[\sigma^{\varsigma}_{i,j} + t_{i,j-1} \widetilde{g}^{\varsigma, \varsigma}_{i-1,j-1} t_{i+1,j} \right] G^{A}_{i,j} \end{split}$$

Nonequilibrium Quantum Field Theory Parallel Implementation of the Recursive Green's Function Method

Parallel energy integration

- Green's function calculations at each energy are distributed to slave processors
- Found to be highly inefficient for scattering simulations due to varying execution time per node

Parallel Recursive Green's function algorithm

- Spatial grid topology is distributed across processors
- Cross element coupling terms are calculated in parallel
- Boundary Green's functions are calculated and distributed to enable parallel calculation of GR
- Correlation functions are then iteratively calculated until scattering selfconsistency is achieved

~ 80% parallel efficiency is exhibited for 60 processor simulations

- Physical Sciences Research Laboratory -

Quantum Mechanical Simulation of MOSFETs Numerical Issues and Computational Platforms

· Algorithms

Numerical NQFT solutions rely heavily on matrix inversion and multiplication

· Computing Platforms

- Commodity clusters are the enabling platforms for 2D NQFT simulation
- All runs were performed on a 110 node 2xPII! 450MHz Linux cluster which cost under \$250,000

Performance

- 90nm Ballistic simulations:
- ~1 hour/bias point
- 90nm Scattering simulations:
- ~8 hour/bias point

Physical Sciences Research Laboratory

Scattering Model

Kinetic Equation

$$\begin{aligned} \left\{ \left[\frac{\partial}{\partial t} + \frac{\partial}{\partial r'} \right] + \frac{1}{h} \left[H_o(\vec{r}) - H_o(\vec{r}') \right] \right\} G^c(\vec{x}, \vec{x}') \\ &= \frac{i}{h} \int_{\Omega} d\vec{x}_i \left[\Sigma^R(\vec{x}, \vec{x}_i) G^c(\vec{x}_i, \vec{x}') - G^c(\vec{x}, \vec{x}_i) \Sigma^A(\vec{x}_i, \vec{x}') + \Sigma^c(\vec{x}, \vec{x}_i) G^A(\vec{x}_i, \vec{x}') - G^R(\vec{x}, \vec{x}_i) \Sigma^c(\vec{x}_i, \vec{x}') \right] \end{aligned}$$

Current Continuity

$$\begin{split} \left\{ \left[\frac{\partial}{\partial t} + \frac{\partial}{\partial t'} \right] + \frac{i}{\hbar} \left[H_{\sigma}(\vec{r}) - H_{\sigma}(\vec{r}') \right] \right\} G^{\epsilon}(\vec{x}, \vec{x}') &= \frac{\partial}{\partial t} n(\vec{r}, t) + \vec{\nabla} \cdot \vec{J}(\vec{r}, t) = 0 \\ & \int_{\Omega} d\vec{x}_1 \left[\Gamma(\vec{x}, \vec{x}_1) G^{\epsilon}(\vec{x}_1, \vec{x}') - \Sigma^{\epsilon}(\vec{x}, \vec{x}_1) \mathcal{A}(\vec{x}_1, \vec{x}') \right] = 0 \end{split}$$
• Rate-Based Scattering Model

$$\begin{split} \Sigma_{i,j,f,f}^{R}(E,\bar{k}) & \equiv i\delta_{i,f}\delta_{j,f} \int \frac{dE'}{2\pi} \int \frac{dk'}{2\pi} \lambda_{i,j}(E,\bar{k},E',\bar{k}') = -i \frac{\Gamma_{i,f}(E,\bar{k})}{2} \\ \Sigma_{i,f,f,f}^{\varsigma}(E,\bar{k}) & = -2\delta_{i,f}\delta_{j,f} \frac{G_{i,f}^{\varsigma}(E,\bar{k})}{A_{i,j}(E,\bar{k})} \int \frac{dE'}{2\pi} \int \frac{dk'}{2\pi} \lambda_{i,j}(E',\bar{k}',E,\bar{k}) \equiv \frac{\widetilde{\Gamma}_{i,f}(E,\bar{k})}{A_{i,j}(E,\bar{k})} G_{i,f}^{\varsigma}(E,\bar{k}) \end{split}$$

$$\Gamma_{i,j}(E,\vec{k}) = \widetilde{\Gamma}_{i,j}(E,\vec{k}) \equiv \Gamma_{i,j}^{o}(E_z)\delta_{i,j}$$

- Enables efficient self-consistent scattering calculation
- Simple calibration
- Accounts for resistive effects (e.g. L_{eff} scaling)

Physical Sciences Research Laboratory -

1

Empirical Scattering Model

Resistive electron wave-guide

Ballistic Case

- Subband structure is apparent and retained up to 100nm
- Variation in L causes subband smearing but no change in transmission envelope
- Resistive effects are not accounted for Constant-Rate model

- Accounts for incoherence effects and
- back-scattering Subband structure disappears for 1 = 100 nm
- Attenuation of transmission envelope
- occurs for increasing L

 Can account for resistive effects with
- proper calibration

MIT Reference MOSFETs MIT 50nm MOSFET MIT 25nm MOSFET MIT 90nm MOSFET • L_{poly}≃50nm · L_{poly}=0.13μm _{voly}=85nm

Physical Sciences Research Laboratory

Physical Sciences Research Laboratory -

- Spatial localization of Γ induces coupling between sub-bands which smears the transmission characteristics
- Increase in Γ causes decline in transmission envelope due to back-scattering

- Physical Sciences Research Laboratory -

Quantum Mechanical Effects in MOSFETs **Charge Centroid Shift**

- · Charge centroid shift is the predominant quantum effect in MOSFETs with highly scaled tox
- Inversion layer charge shift increases effective t_{ox} , reduces C_{ox} , induces V_t shift and degrades sub-threshold performance
- · Source/Drain centroid shift induces the formation of an interface dipole with a corresponding charge build-up to satisfy macroscopic charge neutrality

Quantum Mechanical Effects in MOSFETs Charge Centroid Shift

- · Source/Drain centroid shift induced dipole creates a large electric field along the extension interface
- · Current density is tightly distributed along the interface implying that current crowding may be exaggerated in conventional series resistance calculations

Double-Gate 10nm/2.5nm L MOSFET

- Physical Sciences Research Laboratory -

Intrinsic Mode Coupling in MOSFETs

90nm L Bulk MOSFET

Quantum Mechanical Effects in MOSFETs **Ballistic Sub-band Mixing**

· Schrodinger Equation in Spatial Representation

$$\left[\frac{-\hbar^2}{2m}\left(\nabla_y^2 + \nabla_z^2\right) + E_c(y, z)\right]\psi(y, z) = E\psi(y, z)$$

· Discretized Schrodinger Equation in Mode Representation

$$\begin{split} \left(E - \varepsilon_{i} - E_{i}^{m}\right) & \eta_{i}^{m} - t_{i,i+1} \sum_{n} r_{i,i+1}^{mn} \eta_{i+1}^{n} - t_{i,i-1} \sum_{n} r_{i,i-1}^{mn} \eta_{i-1}^{n} = 0 \\ & r_{i}^{mn} = \int dy \phi_{i}^{m^{n}}(y) \phi_{i}^{n}(y) \end{split}$$

· Double-Gate MOSFET

Bulk MOSFET

Modes are coherently coupled

- Physical Sciences Research Laboratory

Quantum Mechanical Effects in MOSFETs Sub-Threshold Tunneling Sub-threshold tunneling through the source barrier enhances off-state leakage and compromises the Im-Inf trade-off • 50nm Leff MOSFET exhibits a ~25% loff increase • 25nm Leff MOSFET exhibits a ~40% Ioff increase Further complications may arise from trap-assisted tunneling due to S/D extension lateral dopant diffusion into the channel Normalized Transmission **Normalized Current Density** - MIT 90nm (V_{De}=1.0V) - MIT 50nm (V_{De}=1.2V) - MIT 25nm (V_{De}=1.0V) MIT 50nm (V_s=1.2V) MIT 25nm (V_=1.0V)

Energy (eV)

10

10

u.35 8.4 Energy (eV)

Quantum Mechanical Effects in MOSFETs Ip-V_{GS} Saturation T_{ox}=1.5nm The continue Simulation Boundary Double-Gate MOSFETs are predicted to display optimal scaling properties and carry the potential of realizing (sub?) 10nm L_G technologies However, electrostatics dictates that L_G/T_{GI} remain roughly constant to suppress short-channel effects and achieve target I_{co}/_{coff} Scaling Study • Set L_G/T_{sl} = 4 to control SCE ... keeping t_{ox} =1.5nm constant • Evaluate device performance for 10nm < L_G < 80nm Physical Sciences Research Laboratory

Physical Sciences Research Laboratory

Quantum Transport Simulations of MOSFETs Scattering Model Calibration

- Discrepancy in quantum mechanical sub-threshold current is due to non-locality of self-consistent charge
- · Device drive current is 25% of theoretical limit

Physical Sciences Research Laboratory

MIT 90nm Device Quantum Mechanical vs Semiclassical Transport

- · Hydrodynamic model shows minor current discrepancy in sub-threshold regime
- · Drift-diffusion model shows minor current discrepancy for saturation biases
- · Quantum-mechanical simulation using single parameter rate-based scattering model shows good overall fit with experimental data

- Physical Sciences Research Laboratory -

CMOS Effective Mobility

- Effective mobility is a measure of the local mobility averaged over the vertical carrier density in the channel
- · Both nMOS and pMOS show a decrease in effective mobility with increasing effective field (inversion charge density)
- · Roll-off of mobility has been generally attributed to interface roughness
- Atomistic interpretation has been lacking

- Physical Sciences Research Laboratory -

Non-Equilibrium Quantum Field Theory Calibration **Mobility Model**

Linear Response Conductivity

$$\begin{split} \langle \sigma_z \rangle &= \lim_{\omega \to 0} \mathrm{Im} \left\{ \frac{\Pi(\vec{x}, \vec{x}^*)}{\omega} \right\} \\ &= \frac{e^2 \hbar^1}{8 m^2} \lim_{\vec{r}_1 \to \vec{r}_2} \left[\nabla_{\vec{x}} - \nabla_z \right] \int \frac{dE}{2\pi} \frac{\partial f(E)}{\partial E} \int \frac{dk_x}{2\pi} \int d\vec{r}_{\perp 1} \lim_{\vec{r}_{\perp 1} \to \vec{r}_{\perp 1}} \left[\nabla_{z_1} - \nabla_{z_1} \right] A(\vec{r}_1', \vec{r}_{\perp 1}, k_x, E) A(\vec{r}_{\perp 2}, \vec{r}_{\perp}, k_z, E) \end{split}$$

$$\sigma_{j}^{z} = \frac{2e^{2}}{h} \int dE \frac{\partial f(E)}{\partial E} \int \frac{dk_{v}}{2\pi} \sum_{\mathbf{m}} \phi_{j\mathbf{m}} \phi_{\mathbf{m}j}^{*} a \operatorname{Re} \left\{ \frac{\left(e^{(\lambda_{\mathbf{m}}} - e^{-i\lambda_{\mathbf{m}}} \right)^{2}}{\nu_{\mathbf{m}} \Gamma_{\mathbf{m}}(E)} + \frac{\left(e^{(2\lambda_{\mathbf{m}}} - e^{-i2\lambda_{\mathbf{m}}} \right)^{2}}{\nu_{\mathbf{m}}^{2}} \right\}$$

Effective Mobility and Corresponding MOSFET Test Structure

$$\mu_{eff} = \frac{\sum_{j} \sigma_{j}^{2}}{e \sum_{j} n_{j}}$$

V_{DS} → 0mV

 V_{GS} modifies $ec{\xi}_{\mathscr{I}}$ Physical Sciences Research Laboratory

Non-Equilibrium Quantum Field Theory Mobility Model Single Parameter Scattering

- Single-parameter scattering model brings mobility into empirical range for Γ=8meV
- Univsersal mobility behavior is exhibited with the NQFT mobility model
- Strong disagrement with empirical universal mobility curve begins to occur for high effective fields (E_{eff} > 0.3 MV/cm)
- Single-parameter scattering model alone is insufficient for capturing effective mobility behavior

Physical Sciences Research Laboratory -

Computational CMG Materials Group

Quantum Transport Simulated Mobility: Bulk + Interface Scattering Model

- Interface model assumes a strong peak of localized states exists in the Si conduction band due to atoms in the Si-SiO₂ transition layer
- Qualitative view of the interface suggests that there should be a transition layer that averages Si and SiO₂ conduction/valence band
- · Bulk + interface scattering model produces universal mobility behavior

- Physical Sciences Research Laboratory -

QUARTZ vs Experiment: MIT 90nm nMOS

Calibrated bulk+interface scattering model shows good agreement between theory and experiment

Band-gap re-normalization leads to states extending into the Si band-gap

Model agrees with recent gap-state measurements by Lacaita, Pacelli, et al.

Bulk vs. Interface Spectral Density

QUARTZ vs Experiment: MIT 90nm nMOS

Outperference: V_m-0.51V

QUARTZ vs Experiment: MIT 90nm nMOS

Outperference: V_m-0.51V

Outperference: V_m-0.51V

Experiment: V_m-0.51V

Outperference: V_m-0.51V

Outperfe

Galibrated localized interface scattering model shows poor agreement with both experimental data and drift-diffusion simulation for high V_{GS} MIT 90nm MOSFET I₂-V_{GS} MIT 90nm MOSFET I₃-V_{GS} Quantum Transport Drift-Diffusion V_{GS} = 1.01V V_{GS} = 1.01V Physical Sciences Research Laboratory Computational Materials Group

Si-SiO₂ Mobility Model Validation Validation: · Direct experimental validation is difficult due to mixing of interface and bulk states Density Functional Theory (DFT) electronic structure calculations can provide information on structure and density of states · Existing DFT work has not focused on the detailed interface properties DFT Calculations (Liu and Stumpf) · Performed using VASP on CMG Linux cluster · Examined three interface structures: - Si - SiO₂ (β-quartz) - Si - SiO₂ (trydimite) - Si - SiO₂ (β-crystalobalite) Two basic interface Si-O-Si bonding structures observed: - Si-O-Si Bridging bonds - Si-O-Si Extended bonds The bridging and extended interface bonds are present in all SiO₂ structures and are periodically distributed along the Computational Materials Group - Physical Sciences Research Laboratory

Effective Mobility Dependence on Si Orientation

- · Interface scattering may depend on
 - Non-tetrahedral atomic arrangement of bridging and extended interfacial O atoms
 - Distortion of Si atomic positions below the Si-SiO₂ interface
- If interfacial O and/or distorted Si atomic positions are responsible for high-field μ_{eff} behavior, there should be some correlation to Si areal density (ρ_{Bi})
- Takagi's data shows that (110) Si orientation should have the strongest interface scattering followed by (111) then (100)

Scattering from Interfacial O and/or distorted SI lattice as the cause of interfacial $\mu_{\rm eff}$ degradation is supported by experimental data for orientation dependence

- Physical Sciences Research Laboratory — Materials Gro

nal Sol

Proposed Model for Effective Mobility Degradation due to Atomic Interface Scattering

The Coherent Picture

- As V_{GS} increases, carriers are increasingly driven into the interfacial O layers where there is a modification to the crystalline periodicity and DOS leading to coherent back-scattering
- As V_{cs} increases, carriers are also increasingly driven into the region with interfacial Si distortion where there is additional modification to the crystalline periodicity and DOS leading to coherent back-scattering
- Long range distortion of the interfacial atomic positions corresponds to interface roughness which may also play role ...

The Incoherent Picture

- Phonon-assisted trapping in the interfacial O atoms de-phases electrons and leads to incoherent backscattering
- · Other mechanisms ??
- Model is supported by SI orientation studies on μ_{eff} behavior
- Anomalous enhancement of nMOS mobility in strained SI devices may be explained by modification of interfacial atomic position leading to μ_{eff} enhancement

--- Physical Sciences Research Laboratory -

Computationa — Materials Grou

Quantum Transport Simulated Mobility: Atomistic Interface Scattering Model Calibration

Interface scattering model calibration:

- A monotonically increasing Σ^R is used to account for the increasing interfacial O and distorted Si DOS
- The Interface model is spatially extended 0.5nm into both the SiO2 and Si to account for the spatial extent of the Interfacial O and distorted Si
- Model is calibrated to effective mobility data

Physical Sciences Research Laboratory

Computational laterials Group

Quantum Transport Simulated Mobility: Atomistic Interface Scattering Model Calibration

- Incorporation of the effective mobility calibrated interface model leads to excellent theory-experiment agreement for 2D MOSFET quantum transport simulation
- Quantum transport MOSFET simulation can now serve as the basis for TCAD device simulator calibration and device engineering studies

- Physical Sciences Research Laboratory

Computational

Materials Group

Quantum Transport Simulated Mobility: Ballistic Transport vs Scattering

- Ballistic quantum transport simulations reveal that the MiT 25nm device is operating at ~30% of the ballistic limit
- Interface scattering dominates 25nm MIT device I_{Deat}
- If the atomic interface scattering model is to be believed, there is little hope of ever achieving ballistic performance in MOSFETs

Physical Sciences Research Laboratory

Computational S

MIT MOSFET Simulation Comparison

Comparison Summary

- Centrold induced V_s shift is approximately 50meV for the 50nm MIT MOSFET (t_{ox}=2nm) and 100mev for the 25nm MIT MOSFET (t_{ox}=1.5nm) as compared to drift diffusion data
- Increasing DIBL, sub-threshold slope, and I_{off} are observed with decreasing L_{poly} (and t_{ox}) indicating the centroid shift may be compromising resistance to short channel effects
- Sub-threshold slope and $\mathbf{I}_{\mathrm{off}}$ increase are also influenced by increasing sub-threshold tunneling with decreasing $\mathbf{L}_{\mathrm{poly}}$... further study into relative effects of sub-threshold tunneling and centroid shift is required
- · Drift-diffusion model show excellent agreement with calibrated quantum transport theory in predicting post-threshold behavior

Conclusion

Appropriately calibrated effective potential corrections applied to drift diffusion models will provide all the essential physics required for TCAD device simulation for the

- Physical Sciences Research Laboratory -

femtosecond time scale in optical excitation of semiconductors Quantum kinetics and the

Tilmann Kuhn

V.M. Axt, M. Glanemann, M. Herbst, J. Schilp, T. Wolterink

WILHELMS-UNIVERSITÄT MÜNSTER WESTFÄLISCHE

Institut für Festkörpertheorie

network "Ultrafast Quantum Optoelectronics") and by the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm Work supported by the European Commission (TMR "Quantenkohärenz in Halbleitern") ARW Quantum Transport in Semiconductors Maratea, 17-22 June 2001

Quantum kinetics in semiconductors overview

Introduction

Phonon quantum kinetics in homogeneous systems scattering between renormalized states intracollisional field effect nonequilibrium phonons energy-time uncertainty phonon quantum beats density-matrix theory relation to NGFs

Phonon quantum kinetics in inhomogeneous systems carrier-trapping dynamics different representations wave-packet dynamics coherent phonons

Conclusions

Quantum kinetics in semiconductors introduction Semiclassical transport and kinetics

Free flights

electrons accelerated by local electric field (\sim grad V)

different mechanisms additive between well-defined k-states instantaneous in time Scattering processes local in space

Boltzmann equation Dynamical equation

Carrier-phonon interaction 1-band model

 $H = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}^{\dagger} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} + \sum_{\mathbf{q}} \hbar \omega_{\mathbf{q}} b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}} + \sum_{\mathbf{k},\mathbf{q}} \left(g_{\mathbf{q}}^{\dagger} c_{\mathbf{k}+\mathbf{q}}^{\dagger} b_{\mathbf{q}} c_{\mathbf{k}} + h.c. \right)$ Hamiltonian

dynamical variables

 $n_q = \langle b_q^{\dagger} b_q \rangle$ distribution functions $f_k^c = \langle c_k^\dagger c_k \rangle$ phonon-assisted density matrix

 $S_{\mathbf{k}+\mathbf{q},\mathbf{k}}^{\epsilon} = \frac{i}{\hbar} g_{\mathbf{q}}^{\epsilon} \langle c_{\mathbf{k}+\mathbf{q}}^{\dagger} b_{\mathbf{q}} c_{\mathbf{k}} \rangle$

⇒ correlations between electrons and phonons

equations of motion

 $\frac{d}{dt}f_k \ = \ \sum_{\mathbf{q}} \left[2 \mathrm{Re} \left\{ S_{\mathbf{k}+\mathbf{q},\mathbf{k}}^* \right\} - 2 \mathrm{Re} \left\{ S_{\mathbf{k},\mathbf{k}-\mathbf{q}}^* \right\} \right]$

 $\frac{d}{dt}n_{\mathbf{q}} \ = \ \sum_{\mathbf{k}} 2\mathrm{Re}\left\{S_{\mathbf{k}+\mathbf{q},\mathbf{k}}^{\mathbf{c}}\right\}$

Quantum effects on short

Quantum kinetics in semiconductors

introduction

time and length scales

single-particle energies not conserved on short time-scales Energy-time uncertainty

well-defined momentum states no local transitions between Momentum-position uncertainty

polarizations non-local in time and space dynamics of distribution functions and Memory effects

scattering between renormalized states Quantum-mechanical correlations phonon-assisted transitions intracollisional field effect Electron-phonon quantum kinetics hierarchy

equation of motion for S

involves expectation values of 4 operators

⇒ hierarchy of equations of motion (ck-qck+qckck)

truncation by factorization

 \Rightarrow neglecting higher order correlations $\langle c_{k'-q'}^\dagger c_k b_q^\dagger b_q \rangle \approx f_k^* \, n_q \, \delta_{k,k'-q} \, \delta_{q,q'}$

factorized equation of motion

 $\frac{d}{dt}S_{k,k}^{r} = \frac{i}{\hbar} \left(\epsilon_{k}^{r} - \epsilon_{k}^{r} - \hbar \omega_{q}\right) S_{k,k}^{r}$

 $+\frac{1}{\hbar^{2}}\left|g_{\mathbf{q}}^{e}\right|^{2}\left[f_{\mathbf{k}}^{e}\left(1-f_{\mathbf{k}}^{e}\right)\left(n_{\mathbf{q}}+1\right)-\left(1-f_{\mathbf{k}}^{e}\right)f_{\mathbf{k}}^{e}n_{\mathbf{q}}\right]$

⇒ quantum kinetic second Born approximation

Electron-phonon quantum kinetics memory effects and Markov limit

formal solution

$$\begin{split} &S_{k,k}^{c}(t) = S_{k,k}^{0} \exp \left[\frac{i}{\hbar} \left(c_{k}^{c} - c_{k}^{c} - \hbar \omega_{q} \right) t \right] \\ &+ \frac{1}{\hbar^{2}} |S_{q}^{c}|^{2} \int_{0}^{t} d\tau \exp \left[\frac{i}{\hbar} \left(c_{k}^{c} - c_{k}^{c} - \hbar \omega_{q} \right) \tau \right] \end{split}$$

$$\times \left[f_{k}^{s} \left(1 - f_{k}^{s} \right) \left(n_{q} + 1 \right) - \left(1 - f_{k}^{s} \right) f_{k}^{s} n_{q} \right]_{(t - \tau)}$$

⇒ Dynamics with memory

$$\underline{Markov\ limit}$$

$$\frac{d}{dt}f_k^t = \frac{2\pi}{\hbar} \sum_{q, \pm} |g_q^{q}|^2 \Big\{ \delta(c_k^t - c_{k-q}^t \mp \hbar \omega_q) \Big\}$$

$$\times \left[\left. \left(1 - f_{k}^{\mu} \right) \left(n_{q} + \frac{1}{2} \mp \frac{1}{2} \right) f_{k-q}^{\mu} - f_{k}^{\mu} \left(1 - f_{k-q}^{\mu} \right) \left(n_{q} + \frac{1}{2} \pm \frac{1}{2} \right) \right] \right.$$

$$\frac{d}{dt}n_{\mathbf{q}} = \frac{2\pi}{\hbar} \sum_{\mathbf{k}} \left| g_{\mathbf{q}}^{\dagger} \right|^2 \delta(\epsilon_{\mathbf{k}}^{\star} - \epsilon_{\mathbf{k} - \mathbf{q}}^{\star} - \hbar \omega_{\mathbf{q}})$$

$$\begin{split} \times & \left[\left(1 - f_k^c \right) n_q f_{k-q}^c - f_k^c \left(1 - f_{k-q}^c \right) \left(n_q + 1 \right) \right] \\ \Rightarrow & \text{Boltzmann equations} \end{split}$$

Electron-phonon quantum kinetics diagonal approximation

Classification of higher-order contributions

equation of motion for $S_{\mathbf{k},\mathbf{k}'}$ involves terms

assumption: (b) small due to random phases of S(b) $\sim \sum_{\mathbf{q},\mathbf{q}'} S_{\mathbf{k}+\mathbf{q},\mathbf{k}'+\mathbf{q}'}$

 \Rightarrow diagonal approximation: k-components decoupled

Markov approximation for $T^{(i)}$

$$\frac{d}{dt}S_{k,k}^{\alpha} = \left[\frac{i}{\hbar}\left(\epsilon_{k}^{\alpha} - \epsilon_{k}^{\alpha} - \hbar\omega_{q}\right) - \Gamma_{k} - \Gamma_{1}\right]S_{k,k}^{\alpha}$$

 $+\frac{1}{\hbar^{2}}|g_{q}^{e}|^{2}\left[f_{k'}^{e}\left(1-f_{k}^{e}\right)\left(n_{\mathbf{q}}+1\right)-\left(1-f_{k'}^{e}\right)f_{k}^{e}n_{\mathbf{q}}\right]$

$$\begin{split} \Gamma_k &= \frac{\pi}{\hbar} \sum_{q, \pm} \left| g_q^4 \right|^2 \delta(c_k^4 - c_{k+q}^4 \pm \hbar \omega_q) \\ &\times \left[(n_q + \frac{1}{2} \pm \frac{1}{2}) f_{k+q}^2 + (n_q + \frac{1}{2} \mp \frac{1}{2}) (1 - f_{k+q}^4) \right] \end{split}$$

- ⇒ polaron self energy (real part neglected)
- ⇒ quantum kinetics with damped memory

Electron-phonon quantum kinetics two-particle correlations

including deviations from factorization:

$$T_{k,k,q}^{(1)} \ = \ \frac{g_q g_{k-k}^*}{\hbar^2} \Big[(c_{k+q}^\dagger b_{k-k}^\dagger b_q c_k) - \delta_{k-k,q} f_k^* n_q \Big]$$

$$T_{k,k,q}^{(2)} = \frac{g_0g_{k-k}}{\hbar^2} (c_{k+q}^{\dagger} b_k - k b_q c_k)$$

$$T_{k,k,q}^{(3)} = \frac{[g_q]^2}{\hbar^2} [(c_{k+q}^{\dagger} c_k c_{k+q} c_k) + \delta_{k,k} f_k^{c} f_{k+q}^{c}]$$

$$\begin{split} \frac{d}{dt} \mathcal{S}_{K,k}^{\ell} &= \frac{i}{\hbar} \left(c_{K}^{\ell} - c_{k}^{\ell} - \hbar \omega_{0} \right) \, \mathcal{S}_{K,k}^{\ell} \\ &+ \frac{1}{\hbar^{2}} \left[g_{0}^{\dagger} \right]^{2} \left[f_{K}^{\ell} (1 - f_{k}^{\ell}) \left(n_{q} + 1 \right) - (1 - f_{k}^{\ell}) f_{K}^{\ell} n_{q} \right] \\ &+ \sum_{k} \left[T_{k,k',q}^{(1)} - T_{k',k,n}^{(2)} + T_{k',k',q}^{(2)} \right] \\ &+ \left[with \ q = k - K \right] \end{split}$$
 (with $q = k - K$)

required: equations of motion for $T^{(i)}$

Electron-phonon quantum kinetics density matrices and Greens functions

Generalized Kadanoff-Baym Equation

$$\frac{d}{dt}f_{\mathbf{k}}^{r}(t) = -i\frac{d}{dt}G_{\mathbf{k}}^{<}(t,t)$$

$$= -\int_{-\infty}^{t} dt' \Big[\Sigma_{k}^{k}(t,t') \, G_{k}^{k}(t',t) - \Sigma_{k}^{k}(t,t') \, G_{k}^{k}(t',t) - C_{k}^{k}(t,t') \, G_{k}^{k}(t',t) - C_{k}^{k}(t,t') \, \Sigma_{k}^{k}(t',t) \Big]$$

$$- G_{k}^{k}(t,t') \, \Sigma_{k}^{k}(t',t) + G_{k}^{k}(t,t') \, \Sigma_{k}^{k}(t',t) \Big]$$

$$\Sigma_{k}^{\lessgtr}(t,t') = \frac{i}{\hbar^{2}} \sum_{i} |g_{q}^{*}|^{2} D_{k}^{\lessgtr}(t,t') G_{k-q}^{\lessgtr}(t,t')$$

Generalized Kadanoff-Baym Ansatz (GKBA) $G_k^{<}(t,t') = -G_k^*(t,t')\,f_k^*(t') + f_k^*(t)\,G_k^*(t,t')$

second Born approximation:

GKBA with $G^{r(0)}, G^{a(0)}$ (no Σ)

fourth Born approximation, diagonal terms:

GKBA with $G^r.G^a$ including Σ

Electron-phonon quantum kinetics two-particle correlations

truncation by factorization on 5-point level

$$\langle c_k^\dagger b_q^\dagger b_{q^\prime} b_{q^\prime} c_k \rangle \approx \delta_{\mathbf{q},\mathbf{q}^\prime} \, n_{\mathbf{q}} \, \langle c_k^\dagger b_{q^\prime} c_{k^\prime} \rangle + \delta_{\mathbf{q},\mathbf{q}^\prime} \, n_{\mathbf{q}} \, \langle c_k^\dagger b_{\mathbf{q}^\prime} c_{k^\prime} \rangle$$

factorized equation of motion for ${\it T}$

$$\begin{split} &\frac{d}{dl} T_{k,k'q}^{(1)} = \frac{i}{\hbar} \left(\epsilon_{k+q} - \epsilon_{k'}' + \hbar \omega_{q'} - \hbar \omega_{q} \right) T_{k,k'q}^{(1)} \\ &+ \frac{1}{\hbar^{2}} |g_{q}'|^{2} \left[(1 + n_{q'} - f_{k+q}') S_{k+q,k}' - (n_{q'} + f_{k'}') S_{k+q,k}' \right] \\ &+ \frac{1}{\hbar^{2}} |g_{q}'|^{2} \left[(1 + n_{q} - f_{k}') S_{k+q,k+q}' - (n_{q} + f_{k+q}') S_{k,k}' \right] \\ &+ \frac{1}{\hbar^{2}} |g_{q}'|^{2} \left[(1 + n_{q} - f_{k}') S_{k+q,k+q}' - (n_{q} + f_{k+q}') S_{k,k}'' \right] \end{split}$$

formal solution yields $T_{k,k'q}^{(1)}(t) = T_{k,k'q}^{(1)}\Big[f_k^s,n_{\mathbf{q}_i},S_{k,k'}^c\Big]_{(t-\tau)}$

⇒ quantum kinetic fourth Born approximation

 \Rightarrow closed integro-differential equation for S

Carrier-phonon interaction

Boltzmann

quantum kinetic

relaxation from given initial distribution ⇒ time-dependent broadening

Carrier-phonon interaction I-band model

mean energy per electron ⇒ energy conservation with interaction

Equations of motion phonon-assisted density matrices

$$\begin{split} \frac{d}{dt} S_{k,k}^{r} &= \frac{i}{\hbar} \left(\vec{c}_{k} - \vec{c}_{k} - \hbar \omega_{m} \right) S_{k,k}^{r} \\ &+ i \, \vec{\mu}_{k} \, T_{-k,k}^{(+)} - i \, \vec{\mu}_{k} \, T_{-k,k}^{(-)} \\ &+ \frac{1}{\hbar^{2}} \left[g_{q}^{-1} \right]^{2} \left[\left(n_{q} + 1 \right) \left(1 - f_{k} \right) f_{k}^{r} - n_{q} f_{k}^{r} \left(1 - f_{k}^{r} \right) \right] \\ &- \frac{1}{\hbar^{2}} \, g_{q} g_{q}^{r} \, \partial_{r}^{r} \, \partial_{r}^{r} \, \partial_{r}^{r} \, \partial_{r}^{r} \end{split}$$

with
$$\hbar \mu_k = M_k \cdot E_0(t) e^{-i\omega_k t} - \sum_q V_q p_k +_q$$

$$\overline{c}_k^{t,h} = c_k^{t,h} - \sum_q V_q f_q^{t,h}$$

cross terms (renormalizations)

'Boltzmann" terms (scattering processes)

polarization scattering (eh-coherence)

Carrier-phonon interaction 2-band model

dynamical variables

distribution functions

$$f_k^a = \langle c_k^\dagger c_k \rangle \qquad f_k^h = \langle d_k^\dagger d_k \rangle \qquad n_q = \langle b_q^\dagger b_q \rangle$$

interband polarization

$$p_k = \langle d_{-k}c_k \rangle$$

phonon-assisted density matrices

$$S_{k,k}^{\varepsilon} = \frac{i}{\hbar} g_{\mathbf{q}}^{\varepsilon} \left\langle c_{k}^{\dagger} b_{\mathbf{q}} c_{k} \right\rangle \quad S_{-k,-k}^{b} = \frac{i}{\hbar} g_{\mathbf{q}}^{b} \left\langle d_{-k}^{\dagger} b_{\mathbf{q}} d_{-k} \right\rangle$$

$$T_{-k,k}^{(+)} = \frac{i}{\hbar} g_{\bf q}^{s} \langle d_{-k} b_{\bf q} c_k \rangle \quad T_{-k,k}^{(-)} = \frac{i}{\hbar} g_{\bf q}^{s} \langle c_{\bf k}^{\dagger} b_{\bf q} d_{-k}^{\dagger} \rangle$$

Carrier-phonon interaction 2-band model

Boltzmann generation and scattering

coherent generation, Boltzmann scattering

excitation with 100 fs pulse ⇒ broadening of generation

Equations of motion distribution functions and polarization

$$\frac{d}{dt}f_k^c = 2\Re\{i\bar{\mu}_k^*p_k\}$$

$$+ \sum_{\bf q} \left[2\Re \left\{ S_{{\bf k}+{\bf q},{\bf k}}^{\dagger} \right\} - 2\Re \left\{ S_{{\bf k},{\bf k}-{\bf q}}^{\dagger} \right\} \right]$$

$$\frac{d}{dt} f_{-{\bf k}}^{b} = 2\Re \left\{ i \tilde{\mu}_{\bf k}^{*} p_{\bf k} \right\}$$

$$\frac{d}{dt}n_{q} = \sum_{k} \left[2\Re \left\{ S_{k+q,k}^{k} \right\} + 2\Re \left\{ S_{-k+q-k}^{h} \right\} \right]$$

 $+ \sum_{a} \left[2\Re \left\{ S_{-k+q,-k}^{h} \right\} - 2\Re \left\{ S_{-k,-k-q}^{h} \right\} \right]$

$$\begin{split} \frac{d}{dt}p_{k} &= -i\Omega_{k}^{\prime}p_{k} - i\bar{p}_{k}\left(1 - f_{k}^{\prime} - f_{-k}^{\prime}\right) \\ &+ \sum\left[T_{k-q,k}^{(+)} - T_{-k+q,k}^{(-)*} - T_{-k,k-q}^{(+)} + T_{-k,k+q}^{(-)*}\right] \end{split}$$

q
 ⇒ semiconductor Bloch equations

with
$$\hbar \tilde{\mu}_k = M_k \cdot E_0(t) e^{-i\omega_t t} - \sum_q V_q p_k + q$$

$$\hbar\Omega_k^p = \xi + \xi^{\dagger}$$

$$\zeta_k^{a,b} = \zeta_k^{a,b} - \sum_q V_q J_{k+q}^{a,b}$$

Carrier-phonon interaction 2-band model

quantum kinetic

িলগেশিল্য quantum kinetic with renormalizations

excitation with 100 fs pulse ⇒ time-dependent broadening

Carrier-phonon interaction 2-band model

decay of incoherently summed polarization ⇒ phonon quantum beats $(P = \sum |p_k|)$

Electron-phonon quantum kinetics spatially inhomogeneous system

density matrix theory: dynamical variables

distribution functions
$$f_{kk}^{k}=(c_{k}^{k}c_{k}) \qquad f_{kk}^{k}=(d_{k}^{k}d_{k})$$
 interband polarization
$$p_{kk}=(d_{-k}c_{k}) \qquad p_{kk}^{k}=(c_{k}^{k}d_{-k}^{k})$$
 coherent phonon amplitudes

incoherent phonon distribution function phonon assisted density matrices $n_{\mathrm{qq'}} = \langle (b_{\mathrm{q}}^\dagger - B_{\mathrm{q}}^*)(b_{\mathrm{q'}} - B_{\mathrm{q'}}) \rangle$

 $B_q = \langle b_q \rangle$ $B_q^* = \langle b_q^{\dagger} \rangle$

$$S_{k',q,k}^{c} = \frac{i}{\hbar} g_q \langle c_k^{\dagger} (b_q - B_q) c_k \rangle \qquad S_{k',q,k}^{\dagger} = -\frac{i}{\hbar} g_q \langle d_k^{\dagger} (b_q - B_q) d_k \rangle$$

$$T_{k,q,k}^{(+)} = \frac{i}{\hbar} g_q (d_{-k}(b_q - B_q)c_k) \quad T_{k,q,k}^{(-)} = -\frac{i}{\hbar} g_q (d_{-k}(b_q^{\dagger} - B_q^{*})c_k)$$

2-band model with constant field equations of motion

$$\begin{split} \frac{d}{dt}f_k' &= \frac{e^E}{\hbar} \frac{\partial}{\partial k_z} f_k' + 2 \text{Re} \left\{ i \tilde{\mu}_k' p_k \right\} \\ &+ \sum_q \left[2 \text{Re} \left\{ S_k' + a_k \right\} - 2 \text{Re} \left\{ S_k' k - a_l \right\} \right] \end{split}$$

$$\frac{d}{dt}p_k = \frac{cE}{\hbar} \frac{\partial}{\partial k_k} p_k - i \left(\vec{c_k} + \vec{c_k} \right) p_k - i \vec{p}_k \left(1 - f_k^\mu - f_{-k}^h \right)$$

$$v_{k} = \frac{eE}{\hbar} \frac{\partial}{\partial k_{x}} p_{k} - i \left(\vec{q}_{x} + \vec{q}_{y}^{\dagger} \right) p_{k} - i \vec{p}_{k} \left(1 - f_{k}^{*} - f_{-k}^{*} \right)$$

$$+ \sum_{Q} \left[T_{-k-q,k}^{(+)} - T_{-k+q,k}^{(-)} - T_{-k,k-q}^{(+)} + T_{-k,k+q}^{(-)*} \right]$$

$$\frac{d}{dt}S_{k',k} \ = \ \frac{eE}{\hbar} \left(\frac{\partial}{\partial k_z} + \frac{\partial}{\partial k_z^2} \right) S_{k',k}^c + \frac{i}{\hbar} \left(\vec{e_k} - \vec{e_k} - \hbar \omega_{LO} \right) S_{k',k}^c$$

$$\begin{split} &+i\; \tilde{\mu}_{k}^{*}T_{-k',k}^{(+)} - i\tilde{\mu}_{k}T_{-k',k}^{(-)} - \frac{1}{\hbar^{2}} g_{q}^{q}g_{q}^{h} \; p_{k}^{*} \; p_{k} \\ &+ \frac{1}{\hbar^{2}} \left| g_{q}^{q} \right|^{2} \left[\left(n_{q} + 1 \right) \left(1 - f_{k}^{*} \right) f_{k}^{*} - n_{q} f_{k}^{*} \left(1 - f_{k}^{*} \right) \right] \end{split}$$

$$\hbar \tilde{\mu}_{\mathbf{k}} = -M.E - \mathbf{M}_{\mathbf{k}} \cdot \mathbf{E}_{\mathbf{0}}(t) e^{-i\omega_{\mathbf{k}}t} - \sum_{\mathbf{q}} V_{\mathbf{q}} p_{\mathbf{k}+\mathbf{q}}$$

 $\vec{\epsilon}_{\mathbf{k}}^{c,h} = \epsilon_{\mathbf{k}}^{c,h} - \sum_{\mathbf{q}} V_{\mathbf{q}} f_{\mathbf{k}+\mathbf{q}}^{c,h}$

acceleration terms

Zener term

Spatially inhomogeneous system equations of motion

distribution functions

$$\frac{d}{dl}f_{kk'} \; = \; \frac{i}{\hbar} \sum_{k'} \left[\mathcal{E}_{kk'}^{\ell} f_{k'k}^{\ell} - \mathcal{E}_{k'k}^{\ell} f_{kk'}^{\ell} + \mathcal{U}_{k'k'pk'k'}^{\ell} - \mathcal{U}_{k'k'pk'k'} \right]$$

$$+ \sum_{\mathbf{q}} \left[S_{\mathbf{k}+\mathbf{q},\mathbf{q},\mathbf{k}}^{x} - S_{\mathbf{k},\mathbf{q},\mathbf{k}-\mathbf{q}}^{x*} + S_{\mathbf{k}+\mathbf{q},\mathbf{q},\mathbf{k}}^{x*} - S_{\mathbf{k},\mathbf{q},\mathbf{k}-\mathbf{q}}^{x} \right]$$

coherent phonon amplitude

$$\frac{d}{dt}B_{q} = -i\omega_{qp}B_{q} + \frac{i}{\hbar}g_{q} \sum_{k} \left[f_{k,k+q}^{*} - f_{k,k+q}^{k}\right]$$

energy matrices:

$$\begin{split} \mathcal{C}_{kk'}^{a,b} &= \left[c_k^{a,b} \pm \frac{ieE}{2} \left(\frac{\partial}{\partial k_z} - \frac{\partial}{\partial k_z} \right) \right] \delta_{k,k} + V_{k-k'}^{ap} \\ &- \sum_{\mathbf{q}} \left[V_{\mathbf{q}}^{a,b} + \mathbf{q}_{k+\mathbf{q}}^{a} - V_{k-k'} \left(V_{\mathbf{q},q-3k+k} - V_{a,q-3k+k'}^{a} - V_{a,q-3k+k'} - V_{a,q-3k+k'}^{a} \right) \right] \end{split}$$

 $\pm g_{|\mathbf{k}-\mathbf{k}|} \left(B_{\mathbf{k}}|\mathbf{k}-B_{\mathbf{k}-\mathbf{k}}\right)$ effective field matrices:

$$U_{kk}=EM_k\delta_{k,k}+M_{\frac{1}{2}C_k+k)}\cdot E_{k-k}^{+\dagger}(t)-\sum_q \Gamma_q\rho_{k+q,k+q}$$
 single-particle potential

exchange energy and Coulomb enhancement external field (drift and Zener term) induced field (Hartree Lerm) coherent phonons

2-band model, quantum wire Intracollisional field effect

drift term for f, p, S, Tdefit term for J.S.T. drift term for f,p

Spatially inhomogeneous system equations of motion

phonon assisted density matrices

$$\frac{d}{dt}S_{k,q,k}^r = \frac{i}{\hbar}\sum_{k'}\left(\mathcal{E}_{kk'}^rS_{k',q,k'}^r - \mathcal{E}_{k'k'}^rS_{k,q,k'}^r\right) - i\omega_{op}S_{k,q,k'}^r$$

$$+\frac{i}{\hbar^i}\sum_{k'}\left(\mathcal{U}_{kk'}^*T_{k'\cdot q\cdot k'}^{(+)}-\mathcal{U}_{k'\cdot k'}T_{k'\cdot q\cdot k'}^{(-)}\right)$$

$$+\frac{1}{\hbar^2}\sum_{q,k'}g_{q}g_{q'}^{\star}\left[\left(n_{\mathbf{q}\mathbf{q}}+\delta_{\mathbf{q}\mathbf{q}}\right)f_{k,k'+\mathbf{q}}^{\star}\left(\delta_{\mathbf{k'k'}}-f_{k'k'}^{\star}\right)\right.$$

$$\begin{split} &-n_{\mathbf{q},\mathbf{q}}f_{\mathbf{k},\mathbf{k}}^{a}\left(\delta\mathbf{r}^{a},\mathbf{k}-\mathbf{q}-f_{\mathbf{k}^{a},\mathbf{k}-\mathbf{q}}\right)]\\ &-\frac{1}{\hbar^{2}}\left[g_{\mathbf{q}}\right]^{2}p_{\mathbf{k}'\mathbf{k}}^{a}p_{\mathbf{k}''-\mathbf{q},\mathbf{k}} \end{split}$$

renormalization of scattering dynamics due to: external field (intracollisional field effect)

exchange energy and Coulomb enhancement spatial inhomogeneities coherent phonons

Spatially inhomogeneous system Wigner representation

Spatially resolved kinetics

density and mean energy

dynamical variables:

$$f'(\mathbf{k}, \mathbf{r}) = \sum_{e^{i\mathbf{q}\mathbf{r}} \langle c_{\mathbf{k}-\frac{1}{2}\mathbf{q}}^{\dagger} c_{\mathbf{k}+\frac{1}{2}\mathbf{q}} \rangle$$

t = 200 fs

t = 100 fs

9

10-2

(''mɔ) °q gol

$$p(\mathbf{k}, \mathbf{r}) = \sum_{\mathbf{q}} e^{i\mathbf{q}\mathbf{r}} (d_{-\mathbf{k} + \frac{1}{2}\mathbf{q}} C_{\mathbf{k} + \frac{1}{2}\mathbf{q}})$$

$$B(\mathbf{r}) = \sum_{\mathbf{q}} e^{i\mathbf{q}\mathbf{r}} B_{\mathbf{q}}$$

spatially resolved variables:

electron density
$$n'(\mathbf{r}) = \sum f'(\mathbf{k}, \mathbf{r})$$

energy density
$$u'(\mathbf{r}) = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}}' f'(\mathbf{k}, \mathbf{r})$$

mean kinetic energy per carrier
$$E(\mathbf{r}) = \frac{u^*(\mathbf{r})}{n^*(\mathbf{r})}$$

-200 -100

-300 -200 -100 0 100 200

z (nm)

z (nm)

lattice polarization
$$P(\mathbf{r}) = \frac{-i\epsilon_0}{e} \sum_{\mathbf{q}gqe^{i\mathbf{q}\mathbf{r}}} (B_{\mathbf{q}} - B_{\mathbf{-q}}^{\bullet})$$

Spatially resolved kinetics Wigner function

Spatially resolved kinetics Wigner function

Kinetics of charge separation coherent phonons

without/with incoherent phonons

t = 100 fs

8

10°6

energy (meV)

8

Dynamics with inhomogeneous potential carrier trapping process

transitions between states of different dimensions

Ch. Lienau et al., phys. stat. sol. (a) 178, 471 (2000)

Carrier trapping in dot states

1200 800 400

1200

(cm.) ed

Carrier trapping in dot states shallow smooth potential

Carrier trapping in dot states density matrix of bound states

Carrier trapping in dot states resonant case

initial energy: 18 meV, width: 7.5 meV

Carrier trapping in dot states square well potential

Carrier trapping in dot states square well potential

Quantum kinetics in semiconductors conclusions

Phonon quantum kinetics in homogeneous systems density-matrix theory relation to NGFs energy-time uncertainty nonequilibrium phonons scattering between renormalized states phonon quantum beats intracollisional field effect

Phonon quantum kinetics in inhomogeneous systems different representations wave-packet dynamics coherent phonons carrier-trapping dynamics

Single-Electron Tunneling through

(Single-Electron Charging in Quantum Dot Arrays) **Ouantum Dots**

Rolf J. Haug

University of Hannover Germany

nanostrukturen un hemone

Advanced Research Workshop on Quantum Transport in Semiconductors, 23.6.2001

Charging Effects

Coulomb Blockade

V (mV) TSchaidt of d.

ante voltage (v) des estal. Single-Electron -10 Transistor

Overview:

- Single-Electron Tunneling
- Transport through Quantum Dots

Barr. 30

2056

- Influence of Emitter States
 - Spin Effects
 - Conclusions

Transport through a Quantum Dot:

Tunneling:

- Spectroscopy

£ = 02 Charging Energy (Capacitance C) (Confinement)

4

• Discrete Energy Levels

Double-barrier quantum-dot

Coupled Quantum Dots

V(1)<V<V(2)

V=V(1)

0=7

He ↑

V (mV)

√(2)

(An) I

E>

6.1

V=0mV

4

V(N) - |L(N) = E(N) - E(N-1)

0.5

4.0

Quantum Dot as Spectrometer

(10nm) local density of states fluctuations

Spectrometer discrete and localized in space

Quantum interference in high magnetic fields

■ Magnetic field used for Landau quantization

E = 100 (n + 1) + Eth (kz)

Interference-induced 1D resonances α

E ... (K,) = EE

Two Spin-Levels in the Dot

- Itskevich et al PRB 54, 16 401 (1936) - Suzuki etal Jan. J. Popl. Phys. 26, 7397 (1739) - Havilino etal. Popl. Phys. Left. 70, mS (1939)

other works:

(single dotal) (from otherwogentic shift) In As dots p= ++--

Exponents

 $I \propto \left(V - V_c\right)^{-\alpha}$ Temperature dependence $I_{\it Peak} \propto T^{-\alpha}$ Voltage dependence

Peaks:

(Mahan 1967) Fermi-Edge Singularity

Interaction of Charge on Dot with States in the Emitter

see Geim et al. Phys. Rev. Lett. 72, 2061 Cobden et al. Phys. Rev. Lett. 75, 4274 FES in Tunneling:

nanostrukturen uni hemoser

Conclusions

- Quantum Dot Arrays Single and Coupled Quantum Dots - Transport through
- Local Density of States of Emitter - Lateral and Vertical Devices Spectroscopy Relaxation
- Interaction Effects (FES) - In As-Quantum Dots

InAs quantum dots

High magnetic fields

I. Hapke-Wurst

- U.F. Keyser
 - J. Кöпетапп
- H.W. Schumacher
 - U. Zeitler
- T. Schmidt
- H. Frahm V. Fal'ko
- E. McCann
- A. G. M. Jansen
- K. Pierz
- A. Förster, H. Lüth
 - K. Eberl

nanostrukturen

Theory:

Covert Landau level aro

7- (5, 0) ~ 5" enp (-, 1 p. + 1) wave funding to the (g, 0) six ke &

main effect:

FES for founding from lowest a-state (is a dot dismeter)

Modeling Ballistic Current Flow in Carbon Nanotube Wires

M. P. Anantram

Nanoelectronics & Device Modeling Group NASA Ames Research Center Moffett Field, CA

U. S. A.

Acknowledgements:

Outline:

T. R. Govindan

Jie Han

Supriyo Datta

Liu Yang

Natalio Mingo

- * Role of Defects
- * Bragg reflection
- * Metal-nanotube coupling
- wave vector conservation
- Armchair versus Zigzag

- * Bragg reflec.: Intrinsic mechanism, which exists even in an ideal situation
- * = This Talk

- Close to E=0, Resistance = 6 k Ω ; At higher energies, less than 300 Ω
- · Experimentally:
 - Max. small bias conductance ~ 12.5 k Ω
 - Max. large bias conductance ~ 4 k Ω

- . E=0, Crossing bands: Large velocity (dE/dk)
- Large velocity states () at higher energies are prone to REFLECTION as they couple to low velocity states (are

- · FERMI ENERGY AT THE BAND CENTER; GOOD WIRE

Current-carrying capacity of carbon nanotubes

- Close to E=0, only two sub-bands, $Conduc \tan ce = \frac{4e^2}{b}$ (6 kΩ)
- At higher energies, $Conduc \tan ce = \frac{(20-30)e^2}{h}$ (< 1k Ω)

An important question is if subbands at higher energies be accessed to drive large currents through these molecular wires?

Experiments by various groups have shown that the differential resistance of a nanotube decreases by small amounts with increase in applied voltage. i.g. the current carrying capacity does not increase better than an ordinary resistor with applied bias.

At what applied voltage are electrons injected into higher subbands?

Bias at which electrons are injected into non crossing subbands is ΔE_{NC}

7Å				56Å	
size	(5,5)	(10,10)	(20,20)	(40,40)	
ΔE _{NC} (eV)	1.9	0.98	0.5	0.25	

For example, in a (20,20) nanotube electrons are injected into over 20 subbands at an energy of 2.5 eV.

The maximum conductance if the Fermi energy is at 2.5 eV is ≈ 40e²/h

One exception is the experiment by Frank et. al in Science 280 (1998) which showed a modest decrease in differential resistance with bias.

Main experimental features are:

- V_{APPLIED} < 200mV, conductance = G₀
- V_{APPLIED} > 200mV, conductance increases modestly to about 1.75 G₀
- For large diameter nanotubes such as used in the experiments, the noncrossing subbands open at about 100 meV.
- Further there are about 80 subbands at an energy of about 2 eV.
- Yet the conductance is only \sim 1.75 $\rm G_0$

Semiclassical picture is useful

- The strength of the two processes are determined by:
 - Tunneling distance (X_{tunnel}) → Screening length
 - Barrier height, 2∆E_{NC}

12

10

8

6

2

0

(20, 20)

(16.16)

(10,10)

2 3 Voltage (V)

- · Scattering and Defects
- ΔE_{NC} α 1/Diameter. So, the importance of Zener tunneling increases with increase in nanotube diameter.

Model

- pi-orbital based tight binding calculation [Phys. Rev. B 58, 4882 (1998)]
- · Ideal contacts reflection less contacts
- · Electrostatic potential drop
 - Linear
 - Exponential (Screening length, L_{sc})

- L=2400 Å, L_{sc}=6, 50, 500 Å
- · e-e and e-p scattering are not included

• L=10 Å

- dl/dV = $4e^2/h$ for $V_a < 2\Delta E_{NC}$
- Threshold changes with diameter
- Barrier height (ΔE_{NC}) decreases with increase in diameter
- Total Current increases with increase in diameter
- di/dV > 0 for V_a > 3.1 V, except for the (5,5) nanotube
- (5,5) nanotube ΔE_{NC}≈ 1.9eV

The differential conductance is NOT comparable to the increase in the number of subbands.

For a (20,20) nanotube, there are 35 subbands at $E = \pm 3.5V$.

Bragg reflection severely limits the current carrying capacity

The crossing metallic-type bands conduct current. The non crossing semiconducotr type bands do not conduct current

Large diameter nanotubes: non-crossing bands will partially conduct due to Zener-type tunneling.

How do we model the system?

- · Same code as in our MOSFET work
- π electron tight binding model
- · Metal is modeled as a free electron gas (k_F)

- Phys. Rev. B, v.58, p. 4882 (1998) and v. 61, p. 14219 (2000)
- · Compute self energy due to: (i) metal & (ii) semi-infinite CNT leads

Calculation of the total transmission from nanotube to metal, T_{ML} are presented for armchair and zigzag nanotubes:

ARMCHAIR	ZIGZAG	
E=0 at k _y = 2π/3a ₀ = 0.85 Å ⁻¹	E=0 at k _y = 0	
Metal with k _{Fermi} < 0.85 Å ⁻¹ couples weakly	No threshold for k _{Fermi}	

Coupling of carbon nanotubes to metallic contacts

The electronic properties of nanotubes are closely related to chirality. The metallic versus semicondting nature of nanotubes and the bandgap change with deformation depend on chirality.

- · Is there a preferable nanotube chirality to maximize current flow?
- · Role of wave vector conservation?
- Explain experimentally observed scaling of conductance with contact

NANOTUBE

Parameters that influence current flow:

electrical contact

METAL

- · Strength of coupling to metal
- · Length of metal-nanotube contact
- Defects
- · Metal Fermi wave vector

Scattering rate

The wave function of a nanotube is $\ \Psi = e^{ink_xL} \phi$ n is an integer and ϕ is wave func. of atoms in a 1D unit cell The scattering rate from metal to nanotube (Born approx.) is,

$$\begin{split} 1/\tau & \alpha \mid <\Psi_{nt} \mid V_{m-nt} \mid \Phi_m > \mid^2 \\ & \delta(k_x - k_x^m) & |< \phi \mid V_{m-nt} \mid \phi_m > \mid^2 \end{split}$$

This implies that

- · kx is conserved
- · k_v conservation is relaxed due to finite width of contact area

As a result of the difference in k_y corresponding to E=0 (Fermi energy), important differences should arise as a function of chirality.

Note that threshold value is the value of k_f below which the transmission does not scale with contact length

- The main differences between the armchair and zigzag case are: Threshold value of k_f is $\frac{2\pi}{3\mu}$ =0.85 Å⁻¹ for armchair nanotubes (see k_f = 0. 75A⁻¹) and is 0 for zigzag hanotubes (see k_f = 0.4Å⁻¹).
- Beyond the threshold k_f, transmission increases with contact length as seen in experiment by Tans et. al., Nature, vol. 386, 474 (1997)
- For zigzag tubes, T_{LM} is small for k_f≤1.2 A⁻¹ as a result of the large angular momentum in the circumferential direction.

Diameter dependence of Transmission

Transmission decreases as the diameter increases because the nanotube tends to a graphite sheet.

The previous values of T are small compared to the maximum possible value of 2. Two possible scenarios to increase T are:

* Large contact length - Small coupling

NANOTUBE

electrical contact in its i

* Small contact length - Large coupling

electrical contact length

- · For nanoelectronics, the second option (right) is better.
- We model a contact length of 30 unit cells (72 Å for armchair and 125 Å for zigzag nanotubes), and vary the coupling strength. The main results of the calculation are rather surprising and are presented below:

Conclusions

 dl/dV versus V does not increase in a manner commensurate with the increase in number of subbands.

- The increase in dl/dV with bias is much smaller than the increase in the number of subbands - a consequence of bragg reflection
- · Requirement for axial wave vector conservation:

ARMCHAIR
cut-off $K_{Fermi} = 2\pi/3a_0 = 0.85 \text{Å}^{-1}$

zigzag cut-off K_{Fermi} = 0

- Our calculations show an increase in transmission with length of contact, as seen in experiments.
- It is desirable for molecular electronics applications to have a small contact area, yet large coupling. In this case, the circumferential dependence of the nanotube wave function dictates:
 - Transmission in armchair tubes saturates around unity
 - · Transmission in zigzag tubes saturates at two

A POSSIBLE LOOPHOLE IN THE THEOREM OF BELL

Karl Hess¹ and Walter Philipp²

Beckman Institute, Department of Electrical Engineering and Department of Physics, University of Illinois, Urbana, Il 61801
 Beckman Institute, Department of Statistics and Department of Mathematics, University of Illinois, Urbana, Il 61801

Abstract

The celebrated inequalities of Bell are based on the assumption that local hidden parameters exist. When combined with conflicting experimental results these inequalities appear to prove that local hidden parameters cannot exist. This suggests to many that only instantaneous action at a distance can explain Einstein, Podolsky, Rosen (EPR) type of experiments. The Bell inequalities are based on a simple mathematical model of the EPR- experiments. They have no experimental confirmation since they contradict the results of EPR-experiments. Furthermore, in addition to the assumption that hidden parameters exist, Bell tacitly makes a variety of other assumptions which could contribute to his being able to obtain the desired contradiction. For instance, Bell assumes that the hidden parameters are governed by a single probability measure independent of the analyzer settings. Moreover, we argue that the mathematical model of Bell excludes a large set of local hidden variables and a large variety of probability densities of these local (in the sense of Einstein) variables. These exclusions have neither a physical nor a mathematical basis but are based on Bell's translation of the concept of Einstein locality into the language of probability theory. Our additional set of local hidden variables includes time like correlated parameters and a generalized probability density. We prove that our extended space of local hidden variables does not permit Bell-type proofs to go forward. This opens the possibility to explain EPRexperiments within Einstein's space-time continuum, with a finite velocity of light and without recourse to spooky action at a distance.

1 Introduction

Einstein, Podolsky and Rosen (EPR) [1] challenged Bohr [2] and the completeness of quantum mechanics by designing a "Gedanken" experiment that suggested the existence of "hidden parameters" and of a theory that was more complete than quantum mechanics. The

EPR design was later realized in various implementations [3] with experimental results close to the quantum mechanical prediction. These experimental results by themselves do not have any bearing on the EPR claim that quantum mechanics was incomplete, nor on the existence of hidden parameters. However, inequalities derived by Bell [4] that are based on the assumption that local hidden parameters exist, taken together with the experimental results that happen to be inconsistent with the result of the Bell inequalities, do appear to prove that local hidden parameters cannot exist. This has been discussed in great detail in [5] and [6].

The Bell theorem is based on a mathematical model of the EPR- experiments. It has, by itself, no experimental confirmation since its result contradict the results of the EPRexperiments. The standing of the Bell theorem has therefore unique features in the history of modern physics: the mathematical model and the theorem of Bell are taken to be correct and seen by many as valid as the second law of thermodynamics is, while there exists no experimental confirmation. However, instead of discarding altogether a mathematical model that contradicts experiment, the contradiction to the experiment is used to prove that the basic assumption of the theorem, the existence of local hidden parameters is incorrect. The framework of research that has developed around the Bell theorem claims the necessity of "gross non-localities". In simple words, the correlated spins of the EPR-experiment are in some contact over arbitrary space like distances of our space-time continuum and if one spin is measured in one station, the correlated spin in another station is instantaneously influenced. This contradicts the locality conditions of Einstein and Einstein's very argument for the lack of completeness of quantum mechanics. Einstein called the instantaneous interaction of the spatially separated spins "spukhafte Fernwirkungen (spooky action at a distance)". He did not accept the possibility of such spooky action and since quantum mechanics appeared to demand it, it had to be at least incomplete. The Bell theorem and its standard interpretation has turned the logic around. Its supporters now claim that local hidden parameters do not exist and cannot explain the EPR-experiments. Quantum mechanics does agree with experiments and spooky action at a distance must be accepted as a fact of nature. However, it has been shown in a serious of papers of which we cite only two of the more recent [7] [8], that Bell's theorem does contain more than self-evident locality assumptions. These are related to the role of time in the experiments and the admissibility of more general probability measures.

We show in this paper that the assumption of the existence of local hidden variables is not the only assumption in the proof of the Bell inequalities. We show that the mathematical model of Bell excludes a large set of hidden variables and a large variety of probability densities of these variables that all fulfill Einstein's locality conditions perfectly. This exclusion has neither a physical nor a mathematical basis but is based on Bell's mathematical interpretation of what Einstein locality means in terms of probability theory. Our additional set of hidden variables or, as we will call them, parameter random variables includes time like correlated parameters and a generalized probability density which is a sum of what we later define as setting dependent subspace product measures (SDSPM's). We demonstrate that Bell type proofs cannot go forward using our extended space of hidden variables.

The paper is organized as follows. We first review the theorem of Bell. We then analyze

the restrictions that Bell's proof puts on the parameter space and probability measure and show that a much larger space and a more general probability measure can be constructed without violation of Einstein locality conditions. We demonstrate that a variety of proofs of theorems similar to that of Bell cannot be performed in this larger parameter space and with the more general probability measure, and that these theorems and inequalities are therefore not valid in this space. We finally point toward a mathematical model that uses this larger space and permits the construction of a hidden parameter theory that does agree with EPR-experiments.

2 The theorem of Bell

We first present a short summary of the work of Bell. In EPR experiments, two particles having their spins in a singlet state are emitted from a source and are sent to spin analyzers (instruments) at two spatially separated stations, S_1 and S_2 . The spin analyzers are described by Bell using unit vectors $\mathbf{a}, \mathbf{b}, etc.$ of three dimensional Euclidean space and functions A = ± 1 (operating at station S_1) and $B = \pm 1$ (operating at station S_2): furthermore A does not depend on the settings b of station S_2 , nor B on the settings a of station S_1 (Einstein separability or locality). Bell permits particles emitted from the source to carry arbitrary hidden parameters λ of a set Ω that fully characterize the spins and are "attached" to the particles with a probability density ρ (we denote the corresponding probability measure by μ). Neither the parameters λ nor the probability measure μ are permitted to depend on the settings at the stations. Einstein separability is again cited as the reason for this restriction. The analyzer settings are changed rapidly in the experiments and do change after emission from the source. Therefore the source parameters and their probability measure must not depend on the settings at the time of measurement. Bell further assumes that the values of the functions A and B are determined by the spin analyzer settings and by the parameters such that:

$$A = A_{\mathbf{a}}(\lambda) = \pm 1 \text{ and } B = B_{\mathbf{b}}(\lambda) = \pm 1$$
 (1)

Thus $A_{\mathbf{a}}(\lambda)$ and $B_{\mathbf{b}}(\lambda)$ can be considered as stochastic processes on Ω , indexed by the unit vectors \mathbf{a} and \mathbf{b} respectively. Quantum theory and experiments show that, for a given time of measurement for which the settings are equal in both stations, we have for singlet state spins

$$A_{\mathbf{a}}(\lambda) = -B_{\mathbf{a}}(\lambda) \tag{2}$$

with probability one. Bell further defines the spin pair expectation value $P(\mathbf{a}, \mathbf{b})$ by

$$P(\mathbf{a}, \mathbf{b}) = \int_{\Omega} A_{\mathbf{a}}(\lambda) B_{\mathbf{b}}(\lambda) \rho(\lambda) d\lambda = -\int_{\Omega} A_{\mathbf{a}}(\lambda) A_{\mathbf{b}}(\lambda) \mu(d\lambda)$$
(3)

From Eqs.(1)-(3), Bell derives his celebrated inequality [4]

$$1 + P(\mathbf{b}, \mathbf{c}) \ge |P(\mathbf{a}, \mathbf{b}) - P(\mathbf{a}, \mathbf{c})| \tag{4}$$

Figure 1: Light cone used by Bell. X denotes the space coordinate and t the time

and observes that this inequality is in contradiction with the result of Quantum Mechanics:

$$P(\mathbf{a}, \mathbf{b}) = -\mathbf{a} \cdot \mathbf{b} \tag{5}$$

Here $\mathbf{a} \cdot \mathbf{b}$ is the scalar product of \mathbf{a} and \mathbf{b} .

The proof of Bell's inequality is based on the obvious fact that for $x, y, z = \pm 1$ we have

$$|xz - yz| = |x - y| = 1 - xy$$
 (6)

Substituting $x = A_{\mathbf{b}}(\lambda)$, $y = A_{\mathbf{c}}(\lambda)$, $z = A_{\mathbf{a}}(\lambda)$ and integrating with respect to the measure μ one obtains Eq.(4) in view of Eq.(3). Thus, from the vantage point of mathematics, the Bell inequality is a straight-forward consequence of the set of hypotheses and assumptions that are imposed.

3 Extension of Bell's parameter space and probability measure

We are going to argue below that Bell's parameter space is not general enough and excludes without any necessity a manifold of parameters that has at least the cardinality of the continuum. Bell's probability measure is, correspondingly, not as general as the physics of relativity would permit. To show this we start with a discussion of the parameter space and corresponding probabilities out of Bell's book [9].

Bell [9] defines the following parameter sets that are in the backward light cone, as defined by relativity and as illustrated in Fig. 1. He lets N denote the specification of all entities that are represented by parameters and belong to the overlap of the backward light cones

of both space-like separated stations S_1 and S_2 . In addition he considers sets of parameters $L_{\bf a}$ (our notation) that are in the remainder of the backward light cone of S_1 and $M_{\bf b}$ for S_2 respectively. Bell (see p56 of ref. [9]) denotes the conditional probability that the function $A_{\bf a}$ assumes a certain value with $A_{\bf a}=\pm 1$ by $\{A_{\bf a}|L_{\bf a},N\}$ and similarly for $B_{\bf b}=\pm 1$. Then he claims that in a local causal theory we have:

$$\{A_{\mathbf{a}}|L_{\mathbf{a}}, N, B_{\mathbf{b}}\} = \{A_{\mathbf{a}}|L_{\mathbf{a}}, N\} \text{ and } \{B_{\mathbf{b}}|M_{\mathbf{b}}, N, A_{\mathbf{a}}\} = \{B_{\mathbf{b}}|M_{\mathbf{b}}, N\}$$
 (7)

Eq.(7) appears entirely plausible as a consequence of the finite speed of light: whatever happens at station S_1 to the result of A_a cannot be causally connected to the result of B_b in station S_2 within a local theory. When the switching of the settings is fast enough, the probability that A_a assumes a certain value must be the same no matter what value B_b might assume. While this conclusion is undoubtedly correct at a given instance of measurement, Bell's use of Eq.(7) as identical and valid for all times of measurement with a given setting is fatally flawed. The reason is the possible dependence of A_a and B_b on time-like correlated parameters that may be setting dependent. The mathematics of Bell-type proofs requires complete statistical independence of A_a and B_b for the whole set of measurements and not only at a given time. It also contains the assumption of identical L_a and M_b for all measurements of a run. This, however, cannot be guaranteed because physical phenomena other than the setting of the polarizer by the experimenter can occur in the stations and these can be correlated.

Consider, for example, two clocks, one in each station. These clocks may have different settings (e.g. pendulum length and/or starting time etc.). The time that one clock shows is certainly not the causal reason for the time of the other clock. It is the same physical law that is at work in both stations and that causes a correlation in the periodicity of the processes in the clocks or in some general periodic processes for that matter. It is, of course well known that two gyroscopes in the two stations could also be used as clocks as they may indicate the rotation of the earth. As mentioned, there may be also other periodic processes that cause correlations and these correlations may be influenced by the settings $\bf a$ and $\bf b$. Although there are clear analogies of gyroscopes and spin properties, we do not wish to push this comparison too far. We do, however, wish to point out the dangers of using of Eq.(7) without proper caution. Bell's argument resulting in Eq.(7) does not include the vital fact that the experiments are made in a time sequence and that the backward light cones change and evolve with time. The situation is illustrated in Fig.2 which shows that for each instant of measurement there is a different light cone. Fig. 2 illustrates our point for measurements at two different times t_1 and t_2 .

The backward light cones contain sets of parameters $L_{\mathbf{a},t_1}$, $M_{\mathbf{b},t_1}$, N_{t_1} and $L_{\mathbf{a},t_2}$, $M_{\mathbf{b},t_2}$, N_{t_2} respectively. It is clear, that the set $L_{\mathbf{a},t_1}$ and the set $L_{\mathbf{a},t_2}$ may contain setting dependent parameters $\lambda_{\mathbf{a}}^*$ with different probability densities. It is also clear from the discussion with clocks that the sets $L_{\mathbf{a},t_1}$, $L_{\mathbf{a},t_2}$, $M_{\mathbf{b},t_1}$, $M_{\mathbf{b},t_2}$ etc. need not be statistically independent. This has several consequences that do not permit Bell-type proofs to go forward. We outline below the most crucial problems.

Bell uses combinations of Eq.(7) for different settings in his proofs as follows (see e.g.

Figure 2: Light cones at randomly chose times t_1 and t_2 of the measurements. The clocks indicate time-like and setting dependent correlations of parameters in stations S_1 and S_2 (in this example, the difference between the times indicated by the clocks in the two stations stays constant).

Bell's Eq.(10) of ref. [9] on page 56):

$${A_{\mathbf{a}}|L_{\mathbf{a}}, N, B_{\mathbf{b}}} = {A_{\mathbf{a}}|L_{\mathbf{a}}, N, B_{\mathbf{c}}} = {A_{\mathbf{a}}|L_{\mathbf{a}}, N}$$
 (8)

However, since the measurements with setting b and c are necessarily taken at different times, this needs to be written in the form:

$$\{A_{\mathbf{a}}|L_{\mathbf{a},t_1}, N_{t_1}, B_{\mathbf{b},t_1}\} = \{A_{\mathbf{a}}|L_{\mathbf{a},t_2}, N_{t_2}, B_{\mathbf{c},t_2}\}$$
(9)

which is, in general, clearly incorrect.

The above arguments also demonstrate that Bell's use of a single probability density $\rho(\lambda)$ that is valid for all times of a run of measurements is in contradiction to physical intuition and facts: the parameter space related to light cones changes and evolves, in general, with time. To describe this physical reality (if this word is permitted), one needs at least to admit a time dependence of $\rho(\lambda)$ i.e. one needs to replace $\rho(\lambda)$ by

$$\sum_{t_i} \rho_{t_i}(\lambda) \tag{10}$$

In addition one needs to include, again in general, setting dependent parameters denoted e.g. by $\lambda_{\mathbf{a}}^*(t)$ in station S_1 and by $\lambda_{\mathbf{b}}^{**}(t)$ in station S_2 with

$$\lambda_{\mathbf{a}}^{*}(t) = \lambda_{\mathbf{a}}^{**}(t) \tag{11}$$

if $\mathbf{b} = \mathbf{a}$ in order to make it possible to fulfill Eq.(2). Bell has included into his later proofs (after publication of reference [10]) setting dependent parameters. However, he and everyone

else assumed that the λ_a^* and λ_b^{**} be statistically independent. He argued this independence from the fact that the parameters are in different stations and he did not consider timelike correlations as described above. Bell assumes that setting dependent parameters in the stations analyzers (called instruments by Bell) must be statistically independent or do not exist. This is explicitly stated in his book (9 p 38): "...it is necessary that the equality holds in (8) (which is equal to our Eq.(1)), i.e. for this case the possibility of the results depending on hidden variables in the instruments can be excluded from the beginning ..". Of course, in a run with all different settings that still would be true. However, $P(\mathbf{a}, \mathbf{b})$ is evaluated from measurements with fixed a and b. Therefore a possible time dependence can cause statistical correlations. To visualize this, assume that the parameters λ_a^* and λ_b^{**} are identified with the the hour pointers of two clocks in the two stations. The clock in station S_1 is connected to a plane that is perpendicular to the setting a and the clock in station S_2 to a plane perpendicular to b. Let the direction of the pointers be idealized by unit vector $\lambda_{\mathbf{a}}^*$ in station S_1 and $\lambda_{\mathbf{b}}^{**}$ in S_2 at each instant of measurement. Clearly, these parameters will exhibit time correlations. Note that it is of no concern that the measurements are taken at random times. It is the time correlation in the two stations at any given time that matters.

In addition to the generalization of Bell's probability densities shown in Eq.(10), one needs a further generalization and replace $\rho(\lambda)$ by

$$\sum_{t_i} \rho_{t_i}(\lambda, \lambda_{\mathbf{a}}^*, \lambda_{\mathbf{b}}^{**}) \tag{12}$$

Of course, to obey Einstein locality, $\lambda_{\bf a}^*$ and $\lambda_{\bf b}^{**}$ must be station specific and can only be correlated by time like correlations i.e. by some relation to local periodic processes. It is also important to note that the station parameters $\lambda_{\bf a}^*$ and $\lambda_{\bf b}^{**}$ cannot be emulated by the parameter pair ${\bf a}, \lambda$ or ${\bf b}, \lambda$, as always implied by Bell by use of his functions A and B. The source parameters λ of Bell appear with a given probability density. Since the parameters $\lambda_{\bf a}^*$ and $\lambda_{\bf b}^{**}$ can have different probability distributions for different ${\bf a}$ and ${\bf b}$, that are not related in any way to the parameters λ , it becomes clear that the joint density $\rho_{t_i}(\lambda,\lambda_{\bf a}^*,\lambda_{\bf b}^{**})$ can depend, a priori, on the setting vectors ${\bf a}$ and ${\bf b}$. It is irrelevant that by lucky coincidence, the triples $({\bf a},\lambda,\lambda_{\bf a}^*)$ and $({\bf b},\lambda,\lambda_{\bf b}^{**})$ could perhaps be written as ${\bf a},\Lambda$ and ${\bf b},\Lambda$ for some Λ incorporating λ and the station parameters. The probability density that must be considered, in general, for all these parameters is therefore also different from that of Bell and must exhibit a time dependence. This implies the necessity of a more general probability measure that includes time-like correlated parameters.

We have shown [8], that a properly chosen sum of what we call setting dependent subspace product measures (SDSPM) does not violate Einstein-separability and does lead to the quantum result of Eq.(5) while still always fulfilling Eq.(2). By this we mean the following. The probability space Ω is partitioned into a finite number M of subspaces Ω_m

$$\Omega = \bigcup_{m=1}^{M} \Omega_m \tag{13}$$

For given **a** and **b**, a setting dependent measure $(\mu_{ab})_m$ is defined on each subspace Ω_m . This measure can be extended to the entire space Ω by setting

$$(\mu_{\mathbf{a}\mathbf{b}})_m(\Omega_j) = 0 \text{ if } j \neq m \tag{14}$$

The final measure μ is then defined on the entire space Ω by

$$\mu = \sum_{m=1}^{M} (\mu_{\mathbf{a}\mathbf{b}})_m \tag{15}$$

and the index m indicates the time correlations. In the above notation we would have $m = t_i$. We have shown in reference [8] that a product measure can be found such that

$$(\mu_{\mathbf{a}\mathbf{b}})_m = (\mu_{\mathbf{a}} \times \mu_{\mathbf{b}})_m \tag{16}$$

This is of minor concern for the main argument presented here but does provide flexibility to completely avoid any hint of spooky action within our system of setting dependent subspace product measures (SDSPM's).

It is clear that Bell's proof does not go through with such a probability measure since integrating Eq.(6) to obtain Eq.(4) works only with a single setting independent probability measure. In addition, one can show in a rather intricate proof [8] that the quantum result of Eq.(5) can be obtained with a probability measure as in Eq.(15). In other words hidden parameters are possible if the parameter space is properly extended. We also have shown in [8] that the parameters that are considered that way show no trace of spooky action.

4 Conclusions

We have presented a mathematical framework that is more extensive than that of Bell and permits the possibility of describing the spin-pair correlation in EPR-type experiments by use of hidden parameters. A key-element of our approach is contained in the introduction of time-like correlated parameter random variables that also depend on the setting of the station in which they influence the measurements. This leads in a natural way to a setting dependent probability measure composed of subspace product measures (SDSPM's). Use of such SDSPM's does not permit the proof of Bell to go forward (nor any other proofs of similar theorems known to us as given e.g. in references [9] and [11]). We conclude that setting and time dependent parameter random variables present a possible loophole in theorems a la Bell.

5 Acknowledgement

The work was supported by the Office of Naval Research N00014-98-1-0604.

References

- [1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. Vol. 47, 777 (1935).
- [2] N. Bohr, Phys. Rev. Vol. 48, 696 (1935).
- [3] A. Aspect, J. Dalibard and G.Roger, Phys. Rev. Letters Vol. 49, 1804 (1982)

- [4] J. S. Bell, Physics, Vol. 1, 195 (1964).
- [5] N. D. Mermin, Physics Today, Vol. 38, No. 4, 38-47 (1985).
- [6] A. J. Leggett, The Problems of Physics, Oxford University Press (1987).
- [7] Y. Aharonov, A. Botero and M. Scully, Z. Naturforsch. Vol. 56 a, 5-15 (2001).
- [8] Karl Hess and Walter Philipp, quant-ph, see http//xxx.lanl.gov/abs/quant-ph/0103028, March 7 (2001).
- [9] J.S. Bell, "Speakable and Unspeakable in Quantum Mechanics", Cambridge University Press, 1993
- [10] L.E. Ballentine and Jon P. Jarrett, Am. J. Phys. Vol. 55, 696 (1987)
- [11] D. M. Greenberger, M. A. Horne, A. Shimony and A. Zeilinger, Am. J. Phys. Vol. 58, 1131 (1990)

First principles modelling of electron transport in atomic-scale systems

Antti-Pekka Jauho
MIC, Technical University of Denmark

- 1) Motivation: Atomic/Molecular-scale Electronics
- 2) Modelling: Challenges
- 3) Nonequilibrium Green function formalism
- 4) The TranSIESTA ab initio transport program.
- 5) Results for atomic gold wires.
- 6) A toy molecular device.

Collaboration of several groups:

Mads Brandbyge, Kurt Stokbro, Jeremy Taylor, MIC, Denmark Pablo Ordejon, Jose-Luis Mozos, UAB, Spain

Molecular-scale Electronics - Why ??

Smallest functional unit: The single molecule (Aviram & Ratner, 1974)

• "Top-down" silicon technology cannot continue to shrink in component size (dissipation, tunneling,cost of fabs...)
"End of the road map"

- "Bottom-up": The single molecule = Smallest functional unit
- Chemists can synthesize organic molecules with a range of properties
- Use novel quantum effects

J. Reichert¹, R. Ochs¹, D. Berkmann¹, H. B. Weber¹, M. Mayor¹, and H. v. Löhneysen^{2,3} ² Forschungszentrum Karkruhe, Institut für Festkörperphysik, D-76021 Karlsruhe ¹ Forschungszentrum Karlsruhe, Institut für Nanotechnologie, D-76021 Karlsruhe ³Physikalisches Institut, Universität Karlsruhe, D-76128 Karlsruhe

(June 12, 2001)

Current-voltage characteristics (IVs) of the metal-molecule-metal system are observed. These IVs reproduce the spatial symmetry of the molecules with respect to the direction of current flow. We hereby unambigously detect an intrinsic property of the molecule, and are able to distinguish the influence of both the molecule and the contact to the metal electrodes on the transport properties trolled break-junctions are used to couple thiol endgroups of single molecules to two gold electrodes. We investigate electronic transport through two types of conjugated molecules. Mechanically conof the compound system.

FIG. 1. Scheme of the experimental setup: a spatially symmetric

(9,10-Bis((2'-para-mercaptophenyl)-ethinyl)-anthracene) and an asymmetric molecule (1,4-Bis((2'-para-mercaptophenyl)-ethinyl)-2-acetyl-amino-5-nitro-benzene) in between two gold electrodes.

FIG. 2. Scanning electron microscope picture of the lithographically fabricated break junction. The setup consists of a metallic plate, covered by an insulating layer of polyimide. On top of this, a gold film with a small constriction (smallest diameter 50*50 nm²) is deposited, laterally structured by e-beam lithography. Two electrodes lead outside to connect the bridge electrically. The polyimide is partially etched away so that in the constriction region, the bridge is freely suspended over the polyimide substrate.

FIG. 3. Transport data of the asymmetric molecule. a) Current-voltage (IV) raw data (dashed lines, nine subsequent voltage sweeps) on a stable junction and the numerically differentiated data dI/dV (solid lines) from the above IV, b) Data from a subsequent junction.

Mechanical Break Junction Experiments

No Molecules/Solution

Conductance Quantization: Atomic short circuit

time (s)

Molecules in solution

"Conductance of a Molecular Junction," M.A. Reed et al., Science, 278, 252 (1997).

"Single" Molecule Experiments

Nano-pore

- C. Zhou et al., "Nanoscale Metal/Self-Assembled Monolayer/Metal Heterostructures", Appl. Phys. Lett., 71, 611 (1997)
- J. Chen et al., "Room-Temperature Negative Differential Resistance in Nanoscale Molecular Junctions", Appl. Phys. Lett., 21, 1224 (2000)

Negative Differential Resistance

The Tour wire: "Giant" NDR

NDR has strange temperature dependence

The Tour wire: Mechanism???

No explanation yet

From Mark A. Reed and James M. Tou, Scientific Am. June 2000

Possible factors:

- A) Change in molecular states
- B) Change in geometry
- C) Change in charge states
- D) Interaction of molecular dipole with external field

Only calculations for the *isolated* molecule has been published

Modelling atomic-scale conducters: Challenges

- Model a molecule coupled to bulk (infinite) electrodes
- Model the molecule-electrode system from "first principles": No parameters fitted to the particular system
- Include finite bias voltage/current
- Calculate the conductance (quantum transmission through the molecule)
- Determine geometry: Relax the atomic positions to an energy minimum

Density Functional Theory

Challenge: Many interacting

electrons

Interacting electrons + real potential

DFT gives a good description of energy and geometry of isolated molecules and perfect crystals

Way out: DFT

If the electron density is correct so is the total energy, W. Kohn. Nobel prize 1998.

Non-interacting, fictitious particles + effective potential(V_{eff}) $V_{eff}[n(r)]$, n(r) is the electron density

Schrödingers equation

 $H\Psi = E\Psi, H = T + V_{eff}$

instead of solving this we solve for G: $\mathrm{G}(\mathbf{z}) = (\mathbf{z} - \mathbf{H})^{-1}$

We can get the density from G

(can be calculated from $1/(z-H^{bulk})$)

Summary of important relations from Nonequilibrum Green Function Theory

We consider the Hamiltonian:

$$H = \sum_{k,\alpha} \epsilon_{\alpha}(t) c_{k,\alpha}^{\dagger} c_{k;\alpha} + \sum_{k,\alpha;n} \left[V_{k,\alpha;n}(t) c_{k,\alpha}^{\dagger} d_n + \text{h.c.} \right] + H_{\text{cen}}[\{d_n\}, \{d_n^{\dagger}\}, t]$$

Current is calculated as follows (Caroli et al. (70's), Meir and Wingreen (1992), Jauho et al. (1994)):

$$\begin{split} J_L(t) &= \langle (-e)\dot{N}_L(t)\rangle \\ &= \frac{2e}{\hbar}\mathrm{Re}\left\{\sum_{k,\alpha:n}V_{k,\alpha:n}(t)G^<_{n,k\alpha}(t,t)\right\} \\ &= -\frac{2e}{\hbar}\int_{-\infty}^t dt_1\int d\epsilon\mathrm{Im}\mathrm{Tr}\Big\{e^{-i\epsilon(t_1-t)}\Gamma^L(\epsilon,t_1,t) \\ &\left[\mathbf{G}^<(t,t_1)+f^0_L(\epsilon)\mathbf{G}^r(t,t_1)\right]\Big\} \,. \end{split}$$

Here the Green functions are matrices in the indices (m, n), and the linewidth functions Γ are defined as (here given for time-independent situation)

$$[\mathbf{\Gamma}^L(\epsilon_k)]_{mn} = 2\pi \sum_{\alpha \in L} \rho_{\alpha}(\epsilon_k) V_{\alpha;m}^*(\epsilon_k) V_{\alpha;n}(\epsilon_k)$$

Time-independent case (Meir-Wingreen):

$$\begin{split} J &= \frac{ie}{2h} \int d\epsilon \mathrm{Tr} \Big\{ \big[\mathbf{\Gamma}^L(\epsilon) - \mathbf{\Gamma}^R(\epsilon) \big] \mathbf{G}^<(\epsilon) \\ &+ \big[f_L^0(\epsilon) \mathbf{\Gamma}^L(\epsilon) - f_R^0(\epsilon) \mathbf{\Gamma}^R(\epsilon) \big] \big[\mathbf{G}^r(\epsilon) - \mathbf{G}^a(\epsilon) \big] \Big\} \\ &= \frac{e}{h} \int d\epsilon \big[f_L^0(\epsilon) - f_R^0(\epsilon) \big] \mathrm{Tr} \Big\{ \mathbf{G}^a \mathbf{\Gamma}^R \mathbf{G}^r \mathbf{\Gamma}^L \Big\} \;, \end{split}$$

where the second line holds, if the central region can be described in terms of an effective one-body potential (such as in density-functional theory).

Finite Voltage Bias/Current

Challenge: non-equilibrium electron distribution

 $ho_{lpha,eta}^L(E)=rac{1}{\pi}(\mathrm{G}(\mathbf{E}+\mathrm{i}\delta)\,\mathrm{Im}\left[\Sigma_{\mathrm{L}}(\mathbf{E}+\mathrm{i}\delta)
ight]\,\mathrm{G}^\dagger(\mathbf{E}+\mathrm{i}\delta))_{lpha,eta}$

Conductance = Transmission

Conductance (Landauer-Büttiker)

$$I = \frac{2e^2}{h} \int dE (f_R(E) - f_L(E)) T_{\text{tot}}(E)$$

 $T_{tot}(E)$: Total Quantum Transmission $T_{\mathsf{tot}}(E) = \mathsf{Tr}[\mathbf{t}^{\dagger}\mathbf{t}](E)$

$$\mathbf{t}(E) = \left(\operatorname{Im}\left[\Sigma_{\mathrm{R}}\right](E)\right)^{1/2} \mathbb{G}(E) \left(\operatorname{Im}\left[\Sigma_{\mathrm{L}}\right](E)\right)^{1/2}$$

Implementation: TranSIESTA

Setup

(x,y)

Benchmark atomic-scale conductors: Single-atom gold contacts

Atomic short circuit: Single-atom contact

3-atom Au chain connecting Au(100) electrodes.

3♦3 unit cell, &-point approximation

Single atomic contact: 1 Volt Bias

FIG. 1. First-principles, density-functional results for the bond angle α (a), and bond length r (b) in a monatomic gold wire with zigzag geometry, as a function of its length per atom. (c) Binding energy E in the zigzag (solid symbols) and linear wires (open symbols).

5 atom long gold chain

Benzene-1,4-dithiolate coupled to gold chains: Finite Bias

Summary

- ♦ Many exciting and promising experiments on atomic/molecular scale conductors.
- ♣ Many unknown factors in most experiments.
- **♥** We are developing a tool for first principles modelling (*Tran*SIESTA)

Landauer / McKelvey Approach to MOSFET Modeling

Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN

- 1. Introduction
- 2. Landauer/McKelvey Theory of the MOSFET
- 3. The Ballistic MOSFET
- 4. Back-scattering in MOSFET's
- 5. Discussion
- 6. Summary

Lundstrom

additional information at: www.ece.purdue.edu/celab

Purdue

Acknowledgements

Professor Supriyo Datta

students:

Zhibin Ren, Ramesh Venugopal, Jung-Hoon Rhew Dave Rumsey, Anisur Rahman, Jing Guo, Sayed Hasan

sponsors:

NSF

SRC

MARCO/DARPA

Indiana 21st Century Research and Technology Fund

Lundstrom

1. Introduction

nanoscale MOSFETs

Lundstrom

Purdue

1. Introduction

conceptual approach

$$G = \frac{2e^2}{h}TM$$

McKelvey, 1961

$$\frac{J^{+}(x)}{\xi} \underbrace{J^{+}(x+dx)}_{J^{-}(x)}$$

$$\frac{dJ^+}{dx} = -\xi J^+ + \xi' J^-$$

$$\frac{dJ^-}{dr} = -\xi J^+ + \xi' J^-$$

Lundstrom

2. Landauer/McKelvey Theory of the MOSFET

Landauer/McKelvey model

$$\begin{split} I_{DS} &= WC_{ox} \Big(V_{GS} - V_T \Big) \tilde{v}_T \Bigg(\frac{T}{2 - T} \Bigg) \times \\ &\frac{F_{1/2} \Big(\eta_F \Big)}{\ln(1 + e^{\eta_F})} \times \Bigg\{ \frac{1 - \frac{F_{1/2} \Big(\eta_F - U_{DS} \Big)}{F_{1/2} \Big(\eta_F \Big)}}{1 + \Big(\frac{T}{2 - T} \Big) \frac{\ln(1 + e^{\eta_F} - U_{DS})}{\ln(1 + e^{\eta_F})} \Bigg] \end{split}$$

$$T = \frac{\lambda_o}{\lambda_o + \left(k_B T / e V_{DS}\right)^{\alpha}}$$

Lundstrom

Purdue

3. The Ballistic MOSFET.... thermionic emission Source I_D $E_C(x)$ Drain

was approved acceptance of the control of the contr

3. The Ballistic MOSFET.....

3. The Ballistic MOSFET.....

Why does a ballistic MOSFET have a finite channel resistance?

comparison with measurements....

$$R_{SD} = R_{par} + R_{ballistic} + R_0 \frac{L}{W}$$

Lundstrom

Purdue

3. The Ballistic MOSFET.....

Summary

- the ballistic I-V is readily computed and the ballistic MOSFET is readily understood
- present day devices operate at ~ 50% of the ballistic limit
- · future devices will have to operate even closer
- backscattering limits the performance of realistic devices

Lundstrom

4. Back-Scattering in MOSFETs.....

M.S. Lundstrom, "Elementary scattering theory of the MOSFET," *EDL*, **18**, 361, 1997 S. Datta, et. al, "The MOSFET from a Tranmission Viewpoint," Superlatrtices and Microstructures, 1998

Lundstrom

Purdue

4. Back-Scattering in MOSFETs.....

computing T: low V_{DS}

$$T = \frac{\lambda_0}{L + \lambda_0}$$

$$T = \frac{\lambda_0}{L + \lambda_0}$$

$$I_{DS} = WC_{ox} \left(\frac{v_T}{k_B T/q}\right) T(V_{GS} - V_T) V_{DS}$$

$$I_{DS} = \mu_{eff} C_{ox} \left(\frac{W}{L + \lambda_0}\right) (V_{GS} - V_T) V_{DS}$$
Lundstrom

ETs.... computing T: high $V_{
m DS}$

$$T = \frac{\lambda_o}{\ell + \lambda_o}$$

Bethe condition for a MOSFET:

ballistic current. $\ \ell < \lambda$

not:

$$L < \lambda$$

mobility is important for nanoscale FETs

Purdue

4. Back-Scattering in MOSFETs.....

See: P.J. Price, *Semiconductors and Semimetals*, **14**, 249-334, 1979

H. U. Baranger and J.W. Wilkins, *Phys. Rev. B*, **36**, 1487-1502, 1987.

Purdue

Lundstrom

Lundstrom

4. Back-Scattering in MOSFETs.....

Landauer/McKelvey model

Landauer / McKelvey Approach to MOSFET Modeling

Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN

- 1. Introduction
- 2. Landauer/McKelvey Theory of the MOSFET
- 3. The Ballistic MOSFET
- 4. Back-scattering in MOSFET's
- 5. Discussion
- 6. Summary

Lundstrom

essential physical picture....

See: "Essential physics of carrier Transport in nanoscale MOSFETs," M. Lundstrom, et al.

 $r = (1 - t) = \frac{\ell}{\ell + \lambda_o}$

 $r \approx 50\% \Rightarrow \ell \approx \lambda_o$

Lundstrom

Purdue

5. Discussion....

interpreting simulations

how does T scale?

1.00

1.0 104

Purdue

$$T = \frac{\lambda}{\ell + \lambda} \approx 50\%$$

 $\ell \approx \lambda$

≥ 1.5 10 ≥ 1.0 1ð

0.0 18

0.0 10

How does T scale?

 $L\downarrow$... $\ell\downarrow$ and $\lambda\downarrow$

x (cm)

Lundstrom

Scaling maintains a constant T (at min L)

5. Discussion....

How to increase T?

To reduce backscattering:

- 1) increase mfp λ (μ)
- 2) decrease ℓ

Lundstrom

5. Discussion....

The role of mobility

Backscattering is related to λ_o and λ_o is related to mobility

Scattering theory gives:

$$\frac{\delta I_D}{I_D} = \frac{\delta \mu}{\mu} (1 - B)$$

$$B = \frac{I_D}{I_D(ballistic)}$$

$$B \equiv \frac{I_D}{I_D(ballistic)}$$

i) linear region: $B \approx 0.2$

$$\frac{\delta I_D}{I_D} \approx \frac{\delta \mu}{\mu}$$

ii) saturated region: $B \approx 0.5$

$$\frac{\delta I_D}{I_D} \approx 0.5 \frac{\delta \mu}{\mu}$$

Lundstrom

Purdue

Lundstrom

5. Discussion....

connections to traditional theory

5. Discussion....

connections to traditional theory

Scattering theory

Linear (low V_{DS}) drain current

Scattering theory
$$I_{D} = W C_{ox} \left(\frac{v_{T}}{2k_{B}T/q} \right) T (V_{GS} - V_{T}) V_{DS}$$

$$T = \frac{\lambda_{o}}{L + \lambda_{o}}$$

Conventional theory

$$I_D = W \,\mu_{eff} C_{ox} \frac{W}{\left(L + \lambda_o\right)} \left(V_{GS} - V_T\right) V_{DS}$$

Lundstrom

5. Discussion....

connections to traditional theory

Scattering theory

 $I_{D} = W C_{ox} v_{T} \left(\frac{T}{2 - T} \right) (V_{GS} - V_{T})$ $T = \frac{\lambda_{o}}{\ell + \lambda_{o}} \qquad \ell = \left(\frac{k_{B} T / q}{V_{DS}} \right) L$

on-current

Conventional theory

$$I_D = \frac{W C_{ox} v_T m (V_{GS} - V_T) V_{DS}}{1 + m V_{DS}}$$

$$m = \left(\frac{\mu}{2L v_T}\right)$$

Veeraraghavan and Fossum *IEEE TED*, **35**, p. 1866, 1988

Lundstrom

- 6. Summary
 - Nanoscale transistor physics is simply understood by beginning at the ballistic limit
 - Scattering theory provides a simple, physical view of nanotransistors and compact, analytical models
 - · Useful for interpreting simulations and guiding experiments
 - A bridge to post-CMOS devices

Lundstrom

Diffusion and Clustering of Impurities – "a Problem that Cannot be Ignored"

Wolfgang Windl

Digital DNATM Laboratories, Motorola, Inc. Austin, TX

in collaboration with

Benjamin Liu, Dejan Jovanovic, Mike Masquelier (Motorola Labs) Blas Uberuaga, Hannes Jónsson, Scott Dunham (UW)

© 2001 Wolfgang Windl (Motorola, Inc.). All rights reserved.

MOSFET Basics

Metal Oxide Semiconductor Field Effect Transistor

Doping: N: e-, e.g. As P: holes, e.g. B (Donor) (Acceptor)

• Analog: Amplification

• Digital: Logic gates

Semiconductor Technology Scaling

• Feature size shrinks on average by 12% p.a. (f = 0.88)

• Chip size increases on average by 2.3% p.a. (d = 1.023)

of transistors / area ($\sim d^2/f^2$) \uparrow by 35% p.a. Switching speed ($\sim 1/f$) \uparrow by 14% p.a.

Overall performance: ↑ by ~55% p.a. or ~ doubling every 18 months ("Moore's Law")

MOSFET Scaling Challenges

ITRS Requirements & Solubility Limit

How Are We Doing?

- 1 keV implants + optimum anneals can meet 2005 ITRS requirements (100 nm).
- Further reduction in implant energy can perhaps meet 70 nm (2008) needs, but cannot meet needs beyond this node.
- Need to find way to exceed $2e20 \text{ cm}^{-3}$ concentration limit for n and p dopants, or need new device structures (double gate, surround gate, superhalo, etc.).

intelligence A everywhere

MOTOROLA

digital dna

Ion Implantation and Annealing

- Dopants inserted by ion implantation damage
- Damage healed by annealing
- During annealing, dopants diffuse fast (assisted by defects)

important to optimize anneal

intelligence A everywhere

*S. Srinivasan, K. Beardmore, N. Jensen

TED & Deactivation

What you expect: Intrinsic diffusion

digital dna

What you get: TED:

- •fast diffusion
- •immob. peak

MOTOROLA ;

B Diffusion in Bulk Si: Qualitative Picture

- B diffusion exclusively mediated by Si self-interstitials*
- B diffusion limited by self-interstitial diffusion**

*A. Ural, P. B. Griffin, and J. D. Plummer, J. Appl. Phys. 85, 6440 (1999)

** W. Windl, M.M. Bunea, R. Stumpf, S.T. Dunham, and M.P. Masquelier, Proc. MSM99 (Cambridge, MA, 1999), p. 369; MRS Proc. 568, 91 (1999); Phys. Rev. Lett. 83, 4345 (1999).

MOTOROLA :

Reason for TED: Implant Damage

Interstitial assisted two-step mechanism:

Intrinsic diffusion:

Create interstitial, B captures interstitial, diffuse together

Diffusion barrier: $E_{\text{form}}(I) - E_{\text{bind}}(BI) + E_{\text{mig}}(BI)$ 4 eV 1 eV $0.6 \text{ eV} \sim 3.6 \text{ eV}$

After implant:

Interstitials for "free" diffusion barrier ~ 0.6 eV

W. Windl, M.M. Bunea, R. Stumpf, S.T. Dunham, and M.P. Masquelier, Proc. MSM99 (Cambridge, MA, 1999), p. 369; MRS Proc. 568, 91 (1999); Phys. Rev. Lett. 83, 4345 (1999)

Reason for Deactivation?

Phenomenological considerations:

- Boron is smaller than Si substitutional B strains Si lattice
- Boron crystal structure: Icosahedron (buckyball), threefold coord. at higher B concentrations: New structures form, bind & deactivate B

Experimental findings:

- Structures too small to be seen in EM only "few" atoms
- Clustering dependent on B concentration and I concentration formation of $B_m I_n$ clusters postulated; experimental estimate: $m / n \sim 1.5*$

Approach:

Calculate clustering energies from first principles up to "max." m, n Build kinetic Monte Carlo / continuum model from it

*S. Solmi et al., J. Appl. Phys. 88, 4547 (2000).

Previous Work - More Motivation

De la Rubia's group (LLNL) predicts with *ab intio* based kMC model* (up to B_4I_2) a B "activation window" for annealing activation *M. J. Caturla et al, APL **72**, (1998) p. 2736

However:

Experiment* finds *no* activation window, once activated stays activated.

*Mokhberi, Griffin, Plummer (Stanford).

Calculation of the Clustering Energies

- DFT plane-wave code VASP (Technische Universität Wien), LDA and GGA
- Simulation cells of 64 atoms (converged ~7% vs. 216 atoms), $E_{\text{cut}} = 230 \text{ eV}$, 4³ k-points
- Relax many different, "guessed" initial structures for each cluster; dangerous, can miss groundstate!

MOTOROLA digital dna

B-I Cluster Structures from *Ab Initio* Calculations

Influence of B Clustering on I Clustering!?

•With B: Ring has lowest energies
B promotes ring growth!?

"Silisils" (Demkov, Windl, Sankey, PRB 1996)

B-I Clustering Reaction Paths & Binding Energies

DFT Flavors: GGA and LDA

For some cases, energetics differ considerably:

Reaction binding energy:

1.5 eV GGA

0.9 eV LDA.

Calibration with SIMS Measurements

- Continuum model recalibration of ab initio numbers necessary
- Genetic Algorithm:
 - Start with many random parameter sets within boundaries
 - Select pairs of parameter sets ("parents"), biased by χ^2
 - Mate parents (mix parameters randomly), add child to population
- Nearly all fitted parameters between LDA and GGA values

Depth (arb. u.)

Activation Results

Expt: A. Mokhberi, P. B. Griffin, J. D. Plummer fit from SIMS

- *No* activation window in agreement with expt.
- SIMS calibration leads to good prediction of activation model (hopefully) reasonably physical.
- 1200 Assume only B_s active

Activation and Clusters

- LDA, GGA, fit do not give consistent clustering pattern:
- GGA: Dominated by $B_3\Gamma$ cluster (also $B_2I_3^0$)
- LDA: Dominated by $B_2I_3^0$ cluster (also $B_3\Gamma$)
- Fit: Dominated by $B_4I_2^{0}$

Uniqueness of Clustering Model!?

Energy filtered TEM B maps from (a) asimplanted (1 keV, 5e15 cm⁻³) and (b) 900 °C annealed sample; (c) bright field image of (b). [Wang *et al.*, APL 77, 3586 (2000)].

Application: Well Tempered MOSFET (MIT)

Cluster Energy and Band Structure

Evidence of Stress Effect under Metal Gate

1000Å TiN/600Å poly-Si

250Å TiN/1300Å poly-Si

†M. Laudon, N. N. Carlson, M. P. Masquelier,

M. S. Daw, and W. Windl, APL78 (2001).

Poly-Si

Experiments by Maiti et al.:*

- $L_{\rm eff}$ function of TiN thickness
- Stress estimate $\sim L_{\rm eff}$ Stress effect

*B. Maiti et al., IEDM, Session 29, 1998.

Stress Dependence of Diffusivities

• Diffusivity:

$$D = D_0 \exp(-E/kT)$$

• Under hydrostatic pressure: $E \rightarrow E + p \Delta V$

Perfect Si (or reference sys.):

Create defect (B_s, I, V,...) ΔV :

*M. S. Daw, W. Windl, N. N. Carlson, M. Laudon, and M. P. Masquelier (PRB July 2001).

Cell Volume and Charge in Si

- For all defects, cell sizes, etc., every additional electron adds $\sim 15 \text{ Å}^3$ to the volume
- Is this real or an artifact of the charged calculation?

Electron Volume and Maxwell Relations

• Maxwell relation:

$$\frac{\partial V}{\partial N} = \frac{\partial \mu}{\partial p}$$

$$E_F(p) = E_F(0) + V_e p$$

• Pressure dependence of bands can be calculated in good agreement with experiment. TABLE IV. First- and second-order coefficients describing the dependence of the direct hand gap at I (E_0) under hydrostatic pressure $[E_0(P)=E_0+aP+bP^2]$ for Si, Ge, and GaAs. The experimental results are from Goñi. Syassen, and Cardona (Ref. 1).

Semiconductor	E_0		a (meV/GPa)		h (mcV/GPa2)	
	Theor.	Expt.	Theor.	Expt.	Theor.	Expt
Si	3.273		100.8		0.05	
Ge	-0.084	0.795	125.4	121	0.2	0.2
GaAs	0.41	1.43	99.1	108	-0.1	-0.1

Alouani and Wills, PRB 54 (1996).

• We calculate again 15 Å³ for the electron volume in Si

seems to be real

• Ferry * ~ 5 nm (de Broglie).

intelligence sverywhere*

*D. K. Ferry and H. L.Grubin, IEEE 1998.

MOTOROLA 💸

Conclusions & Outlook

- Ab-initio methods are being used to provide predictive capability for dopant/defect profile evolution.
- With recalibration, boron clustering model can predict quantitatively activation and SIMS over a wide range of temperatures and annealing times.
- Dopant deactivation can easily be 50%; concentrations > 2e20 cm⁻³ not achievable. Deactivation can easily change I_{Dsat} by 10s of percents.
- TED can change junction depth substantially (factor 2 even at "good" annealing conditions) short channel effects; resistance.
- We calculate the volume of an electron in Si to be 15 Å³.