CS 229, Fall 2018 Problem Set #3 Solutions: Deep Learning & Unsupervised learning

1. A Simple Neural Network

a) Gradient w.r.t $w_{1,2}^{[1]}$.

Denote the hidden layer output as o, the final output \tilde{y} . Forward propagation:

$$z^{[1]} = W^{[1]}^T x^{(i)}$$

$$o = g(z^{[1]})$$

$$z^{[2]} = W^{[2]}^T h$$

$$\tilde{y}^{(i)} = g(z^{[2]})$$

Cost function:

$$\ell = \frac{1}{m} \Sigma_{i=1}^{m} (\tilde{y}^{(i)} - y^{(i)})^{2}$$

Derivative of W⁽²⁾ (W⁽²⁾ $\in R^3$, $h \in R^3$, \tilde{y} and y are scalars).

$$\begin{split} &\frac{\partial \ell}{\partial W^{[2]}} = \frac{\partial}{\partial W^{[2]}} \big(\tilde{y}^{(i)} - y^{(i)} \big)^2 \\ &= 2 \big(\tilde{y}^{(i)} - y^{(i)} \big) \frac{\partial}{\partial W^{[2]}} \big(g \big(z^{[2]} \big) \big) \\ &= 2 \big(\tilde{y}^{(i)} - y^{(i)} \big) g \big(z^{[2]} \big) \, \Big(1 - g \big(z^{[2]} \big) \Big) \, o \\ &= 2 \big(\tilde{y}^{(i)} - y^{(i)} \big) \tilde{y}^{(i)} \big(1 - \tilde{y}^{(i)} \big) o \end{split}$$

Derivative of $W^{[1]} \in \mathbb{R}^{2 \times 3}$, $\frac{\partial \ell}{\partial W^{[1]}}$ has the same dimension.

$$\begin{split} \frac{\partial \ell}{\partial W^{[1]}} &= \frac{\partial \ell}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial o} \frac{\partial o}{\partial z^{[1]}} \frac{\partial z^{[1]}}{\partial W^{[1]}} \\ &= 2(\tilde{y} - y)\tilde{y}(1 - \tilde{y})W^{[2]}o(1 - o) \circ x \end{split}$$

Here • means outer product. Add subscription and sum up

$$\frac{\partial \ell}{\partial W_{1,2}^{[1]}} = \frac{1}{m} \sum_{i=1}^{m} 2(\tilde{y}^{(i)} - y^{(i)}) \tilde{y}^{(i)} (1 - \tilde{y}^{(i)}) W^{[2]} o^{(i)} (1 - o^{(i)}) \circ x^{(i)}$$

The update rule: $W_{1,2}^{[1]} = W_{1,2}^{[1]} - \alpha * \frac{\partial \ell}{\partial W_{1,2}^{[1]}}$

b) In the dataset plot, find three points clock wise which can form a triangle to separate the dataset in two:

$$a^{(1)} = (0.5, 0.5)$$

 $a^{(2)} = (0.5, 3.5)$

$$a^{(3)} = (3.5, 0.5)$$

Subtract with the next to form three vectors, and add intercept in front:

$$v^{(1)} = (0, -3.0)$$

 $v^{(2)} = (-3.0, 3.0)$
 $v^{(3)} = (3.0, 0)$

Equations for the above three vectors. For $v^{(1)}$ and $v^{(2)}$:

$$\frac{\mathbf{x}_1 - \mathbf{a}_1^{(2)}}{\mathbf{v}_1^{(1)}} = \frac{\mathbf{x}_2 - \mathbf{a}_2^{(2)}}{\mathbf{v}_2^{(1)}}$$

Which can re rewritten as:

$$v_2^{(1)}x_1 - v_1^{(1)}x_2 + \left(v_1^{(1)}a_2^{(2)} - v_2^{(1)}a_1^{(2)}\right) = 0$$

This gives us the first component of matrix $W^{[1]}$:

$$W_1^{[1]} = \begin{pmatrix} v_2^{(1)} \\ -v_1^{(1)} \\ v_1^{(1)} a_2^{(2)} - v_2^{(1)} a_1^{(2)} \end{pmatrix} = \begin{pmatrix} -3.0 \\ 0 \\ 1.5 \end{pmatrix}$$

Similarly, for $v^{(2)}$ and $v^{(3)}$ we have:

$$W_2^{[1]} = \begin{pmatrix} v_2^{(2)} \\ -v_1^{(2)} \\ v_1^{(2)} a_2^{(3)} - v_2^{(2)} a_1^{(3)} \end{pmatrix} = \begin{pmatrix} 3.0 \\ 3.0 \\ -12.0 \end{pmatrix}$$

And for $v^{(3)}$ and $v^{(1)}$ we have:

$$W_3^{[1]} = \begin{pmatrix} v_2^{(3)} \\ -v_1^{(3)} \\ v_1^{(3)} a_2^{(1)} - v_2^{(3)} a_1^{(1)} \end{pmatrix} = \begin{pmatrix} 0 \\ -3.0 \\ 1.5 \end{pmatrix}$$

Stack them to from a matrix $W^{[1]}$:

$$W^{[1]} = \begin{pmatrix} -3.0 & 3.0 & 0\\ 0 & 3.0 & -3.0\\ 1.5 & -12.0 & 1.5 \end{pmatrix}$$

Explanation: given any point x, if its projection on the normal of vector $v^{(i)}$ is positive then it is on the right hand of $v^{(i)}$, otherwise on the left. If it lies on the right of all the vectors, it is inside the triangle. (note the intercept is the last component of W which can be easily adjusted to be the first component)

Output layer matrix can be:

$$W^{[2]} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 2.5 \end{pmatrix}$$

Because the input can only be one of the eight values of h:

$$h = \begin{pmatrix} 0/1\\0/1\\0/1\\1 \end{pmatrix}$$

This guarantees that only for dataset inside the triangle could the product $W^{[2]}h$ be negative, which will then make f(x) = 0. All the other cases will have $W^{[2]}h \ge 0$, which makes f(x) = 1.

c) The activation function for h_1 , h_2 , h_3 is changed to f(x) = x, provide a set of weights that makes it achieve 100% accuracy.

Answer:

If the activation function is just f(x)=x, the NN is degraded to logistic regression. It is impossible to achieve 100% accuracy since the feature mappings doesn't include high order components. The decision boundary is going to be a straight line and will have misclassification.

2. KL divergence

2 KL divergence and Maximum Likelihood

(a) Nonnegativity

Prove the following:

And

$$orall P,Q,D_{\mathit{KL}}(P\parallel Q)\geq 0$$

$$D_{KL}(P||Q) = 0 \iff P = Q$$

PROOF 1:

$$\begin{split} D_{KL}(P \parallel Q) &= \underset{x}{\Sigma} P(x) log \frac{P(x)}{Q(x)} \\ &= -\underset{x}{\Sigma} P(x) log \frac{Q(x)}{P(x)} \\ > &= -log(\underset{x}{\Sigma} P(x) \frac{Q(x)}{P(x)}) \\ &= -log(\underset{x}{\Sigma} Q(x)) \\ &= -log(1) = 0 \end{split}$$

PROOF 2:

$$D_{KL}(P \parallel Q) = 0 \iff P = Q$$

a. If
$$P = Q$$
 , $D_{KL}(P \parallel Q) = \sum_{x \in X} P \log rac{P}{Q} = \sum_{x \in X} P \log (1) = 0$

b. If $D_{\mathit{KL}}(P \parallel Q) = 0$, given $-\log x$ is strictly convex, then

$$\begin{split} E[-log(\frac{P}{Q})] &\geq -log(E[\frac{P}{Q}]) = 0 \\ &= log(E[\frac{Q}{P}]) \\ &= log(\sum[P\frac{Q}{P}]) \\ &= log(1) \\ &= 0 \end{split}$$

The equality holds iff $\frac{Q}{R}$ is a constant with probability 1, given the fact that both P and Q are pdf, we can only have P=Q.

(b) Chain rule for KL divergence

Prove that:

$$D_{\mathit{KL}}\left(P(X,Y) \parallel \mathit{Q}(X,Y)\right) = D_{\mathit{KL}}(P(X) \parallel \mathit{Q}(X)) + D_{\mathit{KL}}(P(Y|X) \parallel \mathit{Q}(Y|X))$$

PROOF:

$$\begin{split} D_{KL}(P(X) \parallel Q(X)) + D_{KL}(P(Y|X) \parallel Q(Y|X)) &= \sum_{x} P(x) \log \frac{P(x)}{Q(x)} + \sum_{x} P(x) (\sum_{y} P(y|x) \log \frac{P(y|x)}{Q(y|x)}) \\ &= \sum_{x} P(x) \bigg(\log \frac{P(x)}{Q(x)} + \sum_{y} P(y|x) \log \frac{P(y|x)}{Q(y|x)} \bigg) \\ &= \sum_{x} P(x) \bigg(\sum_{y} P(y|x) \log \frac{P(x)}{Q(x)} + \sum_{y} P(y|x) \log \frac{P(y|x)}{Q(y|x)} \bigg) \\ &= \sum_{x} P(x) \bigg(\sum_{y} P(y|x) \bigg(\log \frac{P(x)}{Q(x)} + \log \frac{P(y|x)}{Q(y|x)} \bigg) \bigg) \\ &= \sum_{x} \bigg(\sum_{y} P(y|x) P(x) (\log \frac{P(x) P(y|x)}{Q(x) Q(y|x)} \bigg) \\ &= \sum_{x} \sum_{y} P(x,y) \log \frac{P(x,y)}{Q(x,y)} \\ &= D_{KL}(P(X,Y) \parallel Q(X,Y)) \end{split}$$

(c) KL and maximum likelihood

Prove that

$$\begin{split} \arg\min_{\theta} D_{KL}(\hat{P} \parallel P_{\theta}) &= \arg\max_{\theta} \sum_{i=1}^{m} \log P_{\theta}(x^{(i)}) \\ D_{KL}(\hat{P} \parallel P_{\theta}) &= \sum_{x} \hat{P}(x) \log \frac{\hat{P}(x)}{P_{\theta}(x)} \\ &= -\sum_{x} \hat{P}(x) \log \frac{P_{\theta}(x)}{\hat{P}(x)} \\ &= -\sum_{x} \frac{1}{m} \sum_{i=1}^{m} 1\{x^{(i)} = x\} \log \frac{P_{\theta}(x)}{\frac{1}{m} \sum_{i=1}^{m} 1\{x^{(i)} = x\}} \\ &= -\frac{1}{m} \sum_{i=1}^{m} \log \frac{P_{\theta}(x^{(i)})}{\frac{1}{m} \sum_{i=1}^{m}} \\ &= -\frac{1}{m} \sum_{i=1}^{m} \log P_{\theta}(x^{(i)}) \\ &= -\frac{1}{m} \log -\text{likelihood} \end{split}$$

Which implies that

$$rg \min_{ heta} D_{\mathit{KL}}(\hat{P} \parallel P_{ heta}) = rg \max_{ heta} \sum_{i=1}^m \log P_{ heta}(x^{(i)})$$

3. KL divergence, Fisher Information, Natural gradient

(For simplicity, $\nabla_{\theta'} \log p(y; \theta') | \theta' = \theta$ is simply written as $\nabla_{\theta} \log p(y; \theta)$, $E_{y \sim p(y; \theta)}$ is sometimes simply written as E_{θ} as it is in some Statistics textbooks.)

4. Semi-supervised EM

			28 EZW - W - / - / -
450	mi-supervised I	M SON E (V)	19x1-1014 7 5 101
	· DROOF.	Tale Calendard	Lan Y. E. A. Shire h
got	For ease of a	and writing we	(10) as Isan:-sup(0).
	10000 2100001	a Dite talle	
	(O) = 2 log =	E, P(xce), Zce); 0)+	- d = 10 b (x = 20) 20
وأكول	= 100000	() () () () () () () () () ()	Q(Z(U) + 2(Elgp(X), Z
1 200	> 22, Q.	Q:(Z(Z(Z)) +	- 2(€ log P(x (2) ≥ (2) 50 (x (2) x (2) (2) + 2(€ log p(x (2) Z (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
			e that the tight equality
	ON U hannoha	06 1	V
1001	Qic	(C)) = D(X(1) X(1)); (9), Suppose or
	uppose of is the	current tight pour	1;0), suppose or nt, it moons: 2;0(2)) + d(\subseteq logp(\chicker) \chicker); 800
)(O(x1) = \$3	O (Zi) Dog Co	(ZCi) + d (Zlogp(XC)Zi); 8
- 1	Ocatal man	meter (CET) will	have a (201)
L	XIV Z	Q: Color	(i) taling MX, & jo
	omillo the world w	A CHARLE	1 0 01 1.00
		17 (1
C	onsider the right p	art again, because are night part).	we again have.
C	onsider the right p	art again, because are night part).	we again have.
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	oct) is an arg max (9) (
he	onsider the right p	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	we again have.
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	we again have.
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	we again have.
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	we again have.
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	orth) is an arg max (9) (wo again have X (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	School is an arg max (9) (wo again have z(1); (2); (2); (3); (3); (4); (5); (6); (7); (7); (7); (7); (7); (7); (7); (7
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	orth) is an arg max (9) (wo again have X (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	School is an arg max (9) (wo again have z(1); (2); (2); (3); (3); (4); (5); (6); (7); (7); (7); (7); (7); (7); (7); (7
he	onsider the right property denotes the al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	School is an arg max (9) (wo again have z(1); (2); (2); (3); (3); (4); (5); (6); (7); (7); (7); (7); (7); (7); (7); (7
So	e denotes the all all all all all all all all all al	art again, because are right part). (\$\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\overline{2}\overline{1}\ov	School is an arg max (9) (wo again have z(1); (2); (2); (3); (3); (4); (5); (6); (7); (7); (7); (7); (7); (7); (7); (7

Corrections:

d) Unsupervised GMM predictions, , run three times, not stable

e) Semi-supervised GMM predictions, run three times, stable

f) Comparison of Unsupervised and Semi-supervised EM

i) Number of iterations taken to converge

Answer:

Unsupervised EM takes 162,118,117 iterations to converge. Three runs are shown below:

Unsupervised EM: converged in 162 iterations, log-likelihood=-1831.349043 Unsupervised EM: converged in 118 iterations, log-likelihood=-1835.448461 Unsupervised EM: converged in 117 iterations, log-likelihood=-1835.444311

Semi-supervised EM only takes 15,31,31 iterations to converge.

Semi-supervised EM: converged in **15 iterations**, **log-likelihood=-2344.767485**, Il_sup=-552.478311, Il_unsup=-1792.289174

Semi-supervised EM: converged in 31 iterations, log-likelihood=-2344.614540, Il_sup=-

553.009998, Il_unsup=-1791.604542

Semi-supervised EM: converged in 31 iterations, log-likelihood=-2344.613954, Il_sup=-

553.011754, Il_unsup=-1791.602200

ii) Stability

Answer:

As can be seen in the above plot, Unsupervised EM is very sensitive to initialization and the class assignment changes dramatically with different random initializations. Semi-supervised EM is very stable and class assignments do not change much.

iii) Overall quality of assignments

Answer:

Overall the Semi-supervised EM has a much better quality compared to Unsupervised EM.

5. K-means for compression.

a) K-means compression implementation.

```
from matplotlib.image import imread
import matplotlib.pyplot as plt
import numpy as np
def kmeans_compress(X, n = 16):
   X = X.reshape(-1, 3)
    centroids = X[np.random.choice(np.arange(X.shape[0]), size=n, replace=False)]
    centers = np.zeros([n, 3])
   while not np.array_equal(centers, centroids):
        centers = centroids
        norms = [np.sqrt(np.sum((centers[i] - X) ** 2, axis=1)) for
            i in range(0, len(centers))]
        idxs = np.stack(norms).argmin(axis=0)
        #recalc centroids
        centroids = np.array([np.mean(X[np.where(idxs == i,True,False)],
            axis = 0).round() for i in range(n)])
    return np.uint8(centroids), np.uint8(idxs)
def show img(X, ax, s):
    ax.imshow(X)
    ax.set_title(s)
def main():
    fig, axes = plt.subplots(2, 1, figsize=(12, 4))
    axb1, axb2 = axes.ravel()
    A1 = imread('..\data\peppers-small.tiff')
    centroids,idxs = kmeans_compress(A1)
    B1 = np.array([centroids[idxs[i]] for i in range(0, len(idxs))])
    B1 = B1.reshape(A1.shape)
    show_img(B1, axb1,'compressed peppers-small')
   A2 = imread('..\data\peppers-large.tiff')
   centroids,idxs = kmeans_compress(A2)
    B2 = np.array([centroids[idxs[i]] for i in range(0, len(idxs))])
    B2 = B2.reshape(A2.shape)
    show_img(B2, axb2, 'compressed peppers-small')
    plt.show()
if __name__ == '__main__':
   main()
```

Compressed images:

b) K-means compression Factor

Answer:

To store the original image, each pixel requires 24bit for the RGB value (255 x 255 x 255 colors);

To store the compressed image, each pixel will only need 16 colors, which need only 4bit storage.

The compression factor is thus 24:4 = 6:1.