Unsupervised Deep Embedding for Clustering Analysis

Bachelorseminar Data Mining

Lukas Mahr

Ludwig-Maximilians-Universität München

Roadmap

- Clustering of high dimensional data
- 2 Einleitung zu Neuronalen Netzen
 - Idee
 - Künstliches Neuron
 - Layer/Schicht
 - Aktivierungsfunktion
 - Loss/Kostenfunktion
 - Backpropagation mit Gradient descent
- 3 Autoencoders
 - Idee
 - Aufbau
- 4 Stecked Autoencoders
 - Idee
 - Aufbau

Clustering of high dimensional data

- Probleme
 - unwichtige Features
 - lange Cluster Zeiten
 - Komplexität von z.B. KMeans
 - $O(n^{dk+1})^{[1]}$ k=anz. Clusters, n=anz. Elemente, d=Dimension
- Idee / Lösungsansatz
 - Feature/Dimension Reduktion
 - in Abhängigkeit der Clustere

Idee — ? —

Künstlichen Neurons

Figure: Darstellung eines künstlichen Neurons mit seinen Elementen https://de.wikipedia.org/wiki/Datei:ArtificialNeuronModel_deutsch.png

Layer/Schichten

Figure: Deep learning Künstliches neuronales Netz maschinelles lernen Apache MXNet - mehrschichtige PNG https://de.cleanpng.com/png-x3zkr7/

Aktivierungsfunktionen

Figure: Rectifier-Aktivierungsfunktion
https://de.wikipedia.org/wiki/Datei:Activation_rectified_linear.svg

Figure: Sigmoide Funktion mit Steigungsmaß a=5 sowie a = 10 https://de.wikipedia.org/wiki/Datei:Sigmoid-function.svg

Loss/Kostenfunktion

Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Mean absolute error

$$MAE = \frac{\sum_{i=1}^{n} |\hat{y}_i - y_i|}{n}$$

Binary Cross-Entropy

$$H(y, \hat{y}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i)$$

Figure: https://en.wikipedia.org/wiki/Mean_squared_error#Predictor
https://en.wikipedia.org/wiki/Mean_absolute_error
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

Backpropagation mit Gradient descent

Figure: Illustration of gradient descent on a series of level sets https://en.wikipedia.org/wiki/File:Gradient_descent.svg

Autoencoders

Idee Aufbau Bottelneck

Stacked Autoencoders

Idee Aufbau

Vorherige Arbeiten

andere Clustering algorithmen? andere Dimensions-Reduktions-algorithmen

Von wem ist das Paper

macvht hier kein sinn kommt am anfang

Referenzen

k-means clustering
https://en.wikipedia.org/wiki/K-means_clustering#
Complexity