第二十四讲 工具变量法

内生性

模型 $y = a + bx + \varepsilon$,

内生性(endogeneity): ε 与x不独立 外生性(exogeneity): ε 与x不独立

例1. 回归方程中没有控制相关变量/丢失了某些变量

假设正确模型为

$$y = a + bx + cz + \delta, \delta \perp x;$$

其中 z 与 x 相关。如果我们没有测量,或者没有在上述模型中控制z,那么工作模型:

$$y = a + bx + \varepsilon$$
,

中 $\varepsilon = cz + \delta$ 与x不独立(假设E(z) = 0)。

2

例2. 响应变量是某个或某些自变量的原因 (reverse causation)。

假设正确模型为

$$y = a + bx + \varepsilon$$
, $\varepsilon \perp x$;

但实际操作中工作模型取为:

$$x = c + dy + \delta$$

从正确模型我们知道

$$x = -a/b - y/b - \varepsilon/b$$
,
所以工作模型中 $\delta = -\varepsilon/b$ 与 y 有关。

例3. 自变量带误差模型 (Error in Variable, EV模型)

正确模型: $y = a + bx_0 + \varepsilon_0$, $x_0 \perp \varepsilon_0$,

假设对于 x_0 的测量有误差,即我们只能测量到 $x = x_0 + \delta$,其中 $x_0 \perp \delta$.

贝

$$y = a + b(x - \delta) + \varepsilon_0 = a + bx + (\varepsilon_0 - b\delta) \hat{=} a + bx + \varepsilon$$

显然 x 与 $\varepsilon = \varepsilon_0 - b\delta$ 相关.

例4. 结构方程模型 (structural equation models, SEM)

假设z以如下形式影响 $x: x = cz + \delta, \delta \sim (0, \tau^2)$

假设x以如下形式影响y: $y = bx + \varepsilon$, $\varepsilon \sim (0, \sigma^2)$

但 δ , ε 不独立,因此x与 ε 不独立. z与(δ , ε)独立。目标是估计b

如果对模型: $y_i = bx_i + \varepsilon_i$, $E(\varepsilon_i) = 0$, $var(\varepsilon_i) = \sigma^2$ 应用OLS, 得到的LS估计 $b_{OLS} = \frac{\sum x_i y_i}{\sum x_i^2}$ 是有偏的.

例5. 联立方程模型(simultaneous equations model)

商品供、求的数量和价格分别为Q和P,

市场上供应和需求一直在变化:

如果需求增加,则价格上涨;而价格上涨导致需求减少

第三个图表示在自由市场(free market)供求双方达成一致/均衡: 供求数量相同(market clearing)。

6

第三个图表示市场动态变化时,在不同的时间(比如季节)达成均衡的点。

假设某种商品在自由市场上的(均衡)数量和价格分别为 Q_i 和 P_i ,满足如下方程(省略下标t):

Supply: $Q = a + bP + \beta'C + \varepsilon$ Demand: $Q = c + dP + \gamma'S + \delta$

Q: 数量,P: 价格,C: 成本,S: 替代品价格 其中, ε 与 δ 一般不独立; ε 与C独立, δ 与S独立

解方程得 $P = \frac{a - c + (\beta'C - \gamma'S) + (\varepsilon - \delta)}{d - b},$ $Q = \frac{ad - bc + (d\beta'C - b\gamma'S) + (d\varepsilon - b\delta)}{d - b}$

P与 ε , δ 有关,称为内生变量。Q也是内生的。 与此相对,与模型内变量无关的变量称为外生变量或政策性变量

工具变量法 (Instrumental Variable method)

模型 $y = a + bx + \varepsilon$, $x = \varepsilon$ 不独立 (内生, endogeneous)

可以利用外生变量 z, 将x中与 ε 相关的部分过滤掉: 分解 $x = \hat{x} + x^{\perp}$,其中 $\hat{x} = P_x x$, 然后使用 \hat{x} 代替x.

工具变量最小二乘法 (IVLS) 或 两阶段最小二乘法(2SLS, S=Stage)

模型: $Y = X_{n \times p} \beta_{p \times 1} + \varepsilon$, $E(\varepsilon) = 0$, $var(\varepsilon) = \sigma^2 I_n$, $\varepsilon 与 X 不独立$

假设存在q个工具变量(外生变量),与 ϵ 独立,与X相关. 设 Z_{psq} 为q个工具变量的n个观察,假设

- (1) $q \ge p$,
- (2) Z列满秩,Rank(Z'X) = p

分解 $X = \hat{X} + X^{\perp}$, 其中 $\hat{X} = P_Z X$ 。重写模型: $Y = X\beta + \varepsilon = \hat{X}\beta + \left\{X^{\perp}\beta + \varepsilon\right\} = \hat{X}\beta + \delta$ 其中 $\delta = X^{\perp}\beta + \varepsilon$ 与 \hat{X} 独立。这是因为 $X^{\perp}\beta = \hat{X}$ 正交, ε 只与Z有关故与 \hat{X} 独立。

10

工具变量法分两步(2-Stage):

第一步. X向Z空间投影,得拟合 $\hat{X} = P_Z X$; 第二步. OLS拟合 $Y = \hat{X}\beta + \delta$, 得 $\hat{\beta}_{IVLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'Y = (X'P_Z X)^{-1}X'P_Z Y$

> 第一步: $lm(X\sim Z) \Rightarrow \hat{X}$ (理解为X各列对Z回归) 第二步: $lm(Y\sim \hat{X}) \Rightarrow \hat{\beta}_{IVIS}$

注: 当p = q时, $\hat{\beta}_{IVLS} = (Z'X)^{-1}Z'Y$ 这可以看作模型 $Y = X\beta + \varepsilon$ 两边同乘Z'(pre-conditioning) 并舍弃Z' $\varepsilon \approx 0$,解方程Z' $Y = Z'X\beta$ 得 $\hat{\beta}_{IVLS} = (Z'X)^{-1}Z'Y$ 性质:

(a) IVLS估计是渐近无偏的:

$$E(\hat{\beta}_{IVLS} \mid Z) \approx \beta \ (\stackrel{\text{def}}{=} n \to \infty, E(\hat{\beta}_{2SLS} \mid Z) \to \beta)$$

(b) $\operatorname{var}(\hat{\beta}_{IVLS} \mid Z) = \sigma^2 (\hat{X}' \hat{X})^{-1} = \sigma^2 (X' Z (Z' Z)^{-1} Z' X)^{-1}$ $\hat{\sigma}^2 = ||Y - X \hat{\beta}_{IVLS}||^2 / (n - p) \quad (?)$

工具变量的例子

例1. 观察研究抽烟(x)是否导致健康状况(y)下降。

工具变量z可取为z=烟草税率.

例2. 家庭调查中,"income"数据通常很不准确(有测量误差),因此 $y=\beta_0+\beta_1 \times Income +\beta_2 \times w + \varepsilon$

y =教育支出, ε 中含Income的测量误差,所以Income是内生变量。

Z= 开具支票个数,与Income有关,但应与 ε 无关

例3. 模型

 $wage = \beta_0 + \beta_1 \times schooling + \varepsilon$

中, ɛ含有与wage, schooling都有关的因素,比如ability.

z=?有人曾建议使用离住地最近的学校的距离。

例3. 假设z以如下形式影响x: $x = cz + \delta$, $\delta \sim (0, \tau^2)$,

假设x以如下形式影响y: $y = bx + \varepsilon$, $\varepsilon \sim (0, \sigma^2)$

 δ, ε 不独立。但z与 (δ, ε) 独立

z是外生的, z与x相关。 所以为了估计b, z可用来做工具变量.

14

应用两阶段LS:

(1) 拟合 $x_i = cz_i + \delta_i$, 得

$$\hat{c} = \frac{\sum z_i x_i}{\sum z_i^2}, \quad \hat{x}_i = \hat{c} z_i$$

(2) 拟合 $y_i = b\hat{x}_i + \varepsilon_i^*$,得

$$\hat{b}_{\text{IVLS}} = \frac{\sum \hat{x}_i y_i}{\sum \hat{x}_i^2} = \frac{\sum z_i y_i}{\sum z_i x_i}$$

爷爷身高 \hat{x} 父亲身高的预测值 儿子身高

13