1. Use a quantum circuit to prepare Ψ^+

Circuit:

Statevector:

Measurement Probabilities:

2. Use a quantum circuit to prepare $\Psi^{\scriptscriptstyle -}$ Circuit:

Statevector:

Measurement Probabilities:

3. Use a quantum circuit to distinguish Ψ^+ and $\Psi^ \Psi^+$ and Ψ^- could be distinguished by making a measurement on q_0 after applying a CNOT gate and an H gate at q_0 . For Ψ^+ , the outcome would be 0. For Ψ^- , the outcome would be 1.

Circuit for Ψ^+ :

Circuit for Ψ^- :

