<u>2ième année Licence-Informatique</u> <u>module : Théorie des langages</u>

Année universitaire: 2015/2016

U.M.M.T.O - année: 2015/2016

CORRIGÉ ABRÉGÉ DE LA SÉRIE D'EXERCICES nº 1 de ThL

par : S. Khemliche, M.S. Habet, Y. Yesli

EXERCICE 1:

- 1) x = acabacbc
- 2) |x| = 8, $|x|_a = 3$, $|x|_b = 2$, et $|x|_c = 3$
- 3) acabac
- 4) acbc

EXERCICE 2:

- 1) Les mot w_1 et w_3 ne sont pas générés par G; les mots w_2 et w_4 sont générés par $G: S \vdash aS \vdash aaS \vdash aabA \vdash aabcA \vdash aabccA \vdash aabca \vdash$
- 2) Soit L = { a^ibc^j/i , $j \ge 0$ }. Montrons que L(G)=L en prouvant la double inclusion :
 - L(G) ⊆ L : soit w un mot de L(G), donc w est généré à partir de S en appliquant n fois les règles de production de G. Montrons par récurrence sur n que w ∈ L :
 - si n=2 alors on a : S ⊢ bA ⊢ b ; w=b ∈ L. Supposons que la propriété reste vraie jusqu'au rang n=k.
 - pour n=k+1, on a deux cas :
 - -- la première règle appliquée est $S \to aS$, puis k règles pour avoir un mot a.u. Puisque u est généré à partir de S avec application de k règles de G, et d'après l'hypothèse de récurrence, u est dans L, donc il s'écrit comme $u = a^ibc^j$ et ainsi le mot $a.u = a^{i+1}bc^j \in L$.
 - -- la première règle appliquée est $S \to bA$, puis à partir de A, on obtient c^j ($j \ge 0$), et on aura donc généré le mot $b.c^j$ qui $\in L$ (c'est : $a^i.b.c^j$ avec i=0).
 - $L \subseteq L(G)$: Soit $w \in L$. Donc w s'écrit comme $w = a^n b c^m$. w peut être dérivé de S en appliquant n fois la règle $S \to aS$ puis une fois la règle $S \to bA$, puis encore m fois la règle $A \to cA$ et enfin une fois la règle $A \to \epsilon$. Donc $w \in L(G)$.

EXERCICE 3:

- I) Nous donnons ici les types des G_i , (i=1,...,6), ainsi que les langages engendrés par les grammaires G_i (i=1,...,6). (Pour que la réponse soit complète, il faut le prouver comme c'est fait dans l'exercice 2 précédent).
 - 1) Type de $G_1 = 3$. $L(G_1) = \{ aa, aab, bb, bcb \}$.
 - 2) Type de $G_2 = 3$. $L(G_2) = \{ b.a^n / n \ge 0 \}$.
 - 3) Type de $G_3 = 2$. $L(G_3) = \{ a^n b^m c^n / n \ge 0, m \ge 1 \}$.
- 4) Type de $G_4 = 2$. $L(G_4) = \{ w \in \{a, b\}^* / |w|_a = |w|_b \text{ et } \forall \text{ u préfixe de } w, |u|_a \ge |u|_b \}$.
- 5) Type de $G_5 = 1$. $L(G_5) = \{ a^n b^n c^n / n \ge 1 \}$.

- 6) Type de $G_6 = 0$. $L(G_6) = \{ a^n b^{2 \cdot \lfloor n/2 \rfloor} / n \ge 0 \}$; ([x] est la partie entière de x) On peut aussi écrire $L(G_6)$ comme $\{ a^{2k+1} b^{2k} / k \ge 0 \} \cup \{ a^{2k} b^{2k} / k \ge 0 \}$.
- II) G_2 n'est pas de type 1 car elle contient la règle : $A \to \epsilon$; or dans les grammaires de type 1, le seul symbole qui peut produire la chaîne vide est S.

Cependant, on peut écrire une grammaire de type 1 équivalente à G₂ :

 G_2 ' a pour règles de production : $S \rightarrow Sa \mid b$; ce qui veut dire que $L(G_2)$ est de type 1.

III) Une grammaire de type 2 équivalente à G₆ :

 G_6 ' a pour règles de production : $S \rightarrow aaSbb \mid a \mid \epsilon$

EXERCICE 4:

- a) pour L_1 : il est engendré par $G_1 = (\{0\}, \{S\}, S, P_1)$, où P_1 : $S \rightarrow 00S \mid \epsilon$
- b) pour L_2 : il est engendré par $G_2 = (\{0, 1\}, \{S\}, S, P_2)$, où P_2 : $S \rightarrow 0S1 \mid \varepsilon$
- c) pour L₃ : il est engendré par G₃ = ({a, b}, {S}, S, P₃), où P₃ : $S \rightarrow aSbb \mid \epsilon$
- d) pour L_4 : il est engendré par $G_4 = (\{a, b\}, \{S, B\}, S, P_4),$

où
$$P_4: S \rightarrow aSbB \mid \varepsilon: B \rightarrow b \mid \varepsilon$$

e) pour L_5 : il est engendré par $G_5 = (\{a, b, 0, 1\}, \{S, A\}, S, P_5),$

où P₅:
$$S \rightarrow 0S1 \mid A$$
;
 $A \rightarrow aAa \mid bAb \mid \epsilon$

f) pour L_6 : il est engendré par $G_6 = (\{a, b\}, \{S, A\}, S, P_6)$,

où P₆:
$$S \rightarrow aSb \mid aAb$$
;
 $A \rightarrow bAa \mid ba$

g) pour L_7 : il est engendré par $G_7 = (\{a, b\}, \{S, A\}, S, P_7),$

où P₇:
$$S \rightarrow AAAS \mid AAA$$
;
 $A \rightarrow a \mid b$

h) pour L_8 : il est engendré par $G_8 = (\{0, 1\}, \{S\}, S, P_8)$,

où
$$P_8: S \rightarrow 0S1 \mid 0S \mid \varepsilon$$

i) $L_9 = \{ 0^i 1^j / i > j \} \cup \{ 0^i 1^j / i < j \} ; L_9 \text{ est engendré par } G_9 = (\{0, 1\}, \{S, S_0, S_1\}, S, P_9), \}$

où P₉:
$$S \to S_0 \mid S_1$$
;
 $S_0 \to 0S_01 \mid 0S_0 \mid 0$;
 $S_1 \to 0S_11 \mid S_11 \mid 1$

j) L_{10} : il est engendré par $G_{10} = (\{0, 1\}, \{S, A, B, C, D\}, S, P_{10}),$

où
$$P_{10}: S \rightarrow BCD$$

$$C \rightarrow AC \mid a$$

$$Aa \rightarrow aaA$$

$$AD \rightarrow D$$

$$Ba \rightarrow aB$$

$$BD \rightarrow \epsilon$$

EXERCICE 5:

Soient les langage $L = \{0, 1\}^*$ et $L' = \{0^n 1^n / n \ge 0\}$. L'est de type 3 (vérifier le!); mais L', qui est inclus dans L, n'est pas de type 3 (il est de type 2).

EXERCICE 6:

1) L peut être généré par la grammaire, de type 3, G = ({a, b, c}, {S, C}, S, P)

où P : S
$$\rightarrow$$
 aaS | bcC

$$C \rightarrow ccC \mid \epsilon$$

2) Une autre grammaire de type 2, et qui n'est pas de type 3, qui engendre L :

$$G' = (\{a, b, c\}, \{S, A, C\}, S, P')$$

où P':
$$S \rightarrow AbcC$$

$$A \rightarrow aaA \mid \epsilon$$

$$C \rightarrow ccC \mid \epsilon$$

EXERCICE 7:

1) L peut être généré par la grammaire, de type 3, $G = (\{0, 1\}, \{S, A\}, S, P)$

où P : S
$$\rightarrow$$
 0S | 1A | ϵ
A \rightarrow 0A | 1S

2) Une autre grammaire de type 2, et qui n'est pas de type 3, qui engendre L :

$$G' = (\{0, 1\}, \{S\}, S, P')$$

où P' : S
$$\rightarrow$$
 0S | S1S1S | ϵ

EXERCICE 8:

1)
$$L(G) = \{ a^n b^m / n \le m \le 2*n \}$$

2) Grammaire à contexte libre équivalente à $G : G' = (\{a, b\}, \{S, B\}, S, P')$

P':
$$S \rightarrow aSbB \mid \varepsilon$$

 $B \rightarrow b \mid \varepsilon$

EXERCICE 9:

1)
$$L(G) = \{ a^n b^{2n} / n \ge 0 \};$$

2) Grammaire de type 2 équivalente à $G : G' = (\{a, b\}, \{S\}, S, P')$

où P':
$$S \rightarrow aSbb \mid \epsilon$$

EXERCICE 10:

Une grammaire de type 2 pour L pourrait être $G = (\pi, N, S, P)$; où $N = \{S\}$

et P:
$$S \rightarrow S+S \mid S*S \mid a \mid (S)$$

EXERCICE 11:

Pour générer ces identificateurs on utilisera la grammaire $G = (\pi, N, < Id1>, P)$;

où
$$\pi = \{A..Z, a..z, 0..9\}$$
; $N = \{\langle Id1 \rangle, \langle Id2 \rangle, \langle Id3 \rangle, \langle Lettre \rangle, \langle Chiffre \rangle\}$

et P :
$$\langle Id1 \rangle \rightarrow \langle Lettre \rangle \langle Id2 \rangle$$

$$< Id2 > \rightarrow < Id3 > < Id2 > | \epsilon$$

$$< Id3 > \rightarrow < Lettre > | < Chiffre >$$

$$\langle Lettre \rangle \rightarrow A \mid B \mid ... \mid Z \mid a \mid b \mid ... \mid z$$

$$<$$
Chiffre $> \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$