The effect of interaction on understanding variable contributions on linear projections

Nicholas Spyrison, Dianne Cook, Kimbal Marriott

Abstract

Principal component analysis is the classical standard for viewing projections of multivariate spaces. However, the full story of the data is rarely portrayed accurately in a few projections. More recently, grand tours offer an animation of random walks offering many angles to view embedded spaces. A manual tour provides a means of controlling the contribution of individual variables to a projected subspace. We have developed an application to facilitate the exploration of multivariate data though the use of various tour methods. To explore the efficacy of this tool we performed a comparative user study. Participants in our study performed several high-level analysis tasks across the three factors and provide subjective ratings. Accuracy, speed, and qualitative feedback are used to compare and rate analysts' ability to understand the importance of individual variables' contribution to distinguishing clustering with the data. User feedback suggests that...

Introduction

Multivariate data is ubiquitous. Yet exploratory data (Tukey 1977) analysis of such spaces becomes difficult, increasingly so as dimension increases. Numeric statistic summarization of data often doesn't explain the full complexity of the data or worse, can be downright deceptive (Anscombe 1973; Matejka and Fitzmaurice 2017). For these reasons, it is important to use visualizations of data spaces and extend the diversity of its application. However, visualizing data containing more than a handful of variables is not trivial.

For over a century principal component analysis (PCA) (Pearson 1901) has been used to explore such spaces. PCA redefines the axes basis as linear combinations of the original variables into principal components ordered by decreasing variation explained. This suggests several *discrete* pairs of components to view. This is sufficient for macro summarization of variance, however, it does not reveal finer structural features or classes-specific structure.

Alternatively, there are many techniques that identify one or more *discrete* projection bases. For instance, scatterplot matrices (Chambers et al. 1983) quickly view the supports of all variables. Linear discriminant analysis (Fisher 1936) and penalized discriminant analysis (???) both suggest projection bases that can be used for unsupervised classification.

Later, Asimov (Asimov 1985), coined *tour*, an animation of many projections across *continuous* changes in the basis. Exploring multivariate spaces this way offers a number of desirable features including more depth visual cues and extensible phase space exploration.

The various types of tours are distinguished by the method defining the path the basis animates. The original, and widest know, is the *grand* tour (Asimov 1985). In a grand tour, several target bases are identified by a constrained random walk. These target bases are then interpolated into many interim frames to be viewed as a more continuous animation.

The manual tour [Cook and Buja (1997);] defines its basis path by manipulating the basis contribution of a selected variable. Many such manipulations may be predefined and animated. Alternatively, these parameterized steps can allow human-in-the-loop (Karwowski 2006) interactive use.

Exploring and understanding the finer structural details is an under-serviced aspect of multivariate data analysis. This work contained below performs a within-participant exploratory study to shed light on techniques that may be most suited for such a task.

Section formalizes the hypothesis statement. Section explains the experimental deign, with sections and explaining the design factors and tasks. The results of the study are found in section . An accompanying tool is discussed in section . Disscussion is covered in section .

Hypothesis

Supporting and extending the applicability of data visualization is an important endeavor. There exist various linear projection techniques to explore multivariate data spaces.

Does the finer control afforded by the manual tour improve the ability of the analyst to understand the importance of variables contributing to the structure?

More recently there have been advances and fanfare in non-linear projections such as self-organizing maps (???), and t-SNE (Maaten and Hinton 2008). Because of the use of non-affine transformations, they offer arbitrary model spaces, without interoperability back to variable space. This precludes them as candidates for exploratory data analysis of the multivariate data in question. They can be useful for the rapid identification of possible candidates for outliers or classifications. However they can suffer from overfitting, and crucially cannot be interpreted in terms of the original variables.

Experimental design

Below we discuss the n = XX within-participant exploratory study across 3 factors,

Groups

Each participant was randomly split into one of three even groups. The group controls the order of the factors that the participant was evaluated in for a latin square of the 3 factors. For instance, the order of the first group was PCA, grand, manual. Group level only impacts the order the factors are displayed while task, block, and simulation order remained the same.

Factors

We explored performance across three factors. The first factor is Principal Component Analysis (PCA). The second factor is an animated walk of interpolation frames between target bases, called a *grand* tour. The third factor allows for the manual control of the individual variable's contribution to the projection, performing a *manual* tour.

All factors are shown as a scatterplot. The basis axes projection was also illustrated to the left of the plot. They are shown in a unit circle and show the magnitude and direction each variable contributes to the projection.

The user interface was kept the same whenever possible, but the control inputs did change slightly to accommodate the differences between factors. PCA had two side-by-side radio button inputs that select principal components to display on the x- and y-axes. The manual tour had the same axes selection, with the addition of a drop-down bar and slider control. The drop-down selects the variable to manipulate the contribution of, while the slider controlled the magnitude [0-1] of the contribution of that variable on the projection. Performing this manipulation does require the contributions of the other variables to change if they are to keep their orthogonal relationship. The grand tour comes precompiled as an animation of a

	Period 1		Period 2		Period 3		
Gp1 (1/3*n)	Factor 1		Factor 2		Factor 3		
Gp2 (1/3*n)	Factor 2		Factor 3		Factor 1		
Gp3 (1/3*n)	Factor 3		Factor 1		Factor 2		
	 			l I			
	P1.T1	P1.T2	P2.T1	P2.T2	P2.T1	P2.T2	Distribution
Block 1	Sim1	Sim4	Sim7	Sim10	Sim13	Sim16	~mtvN(easy)
Block 2	Sim2	Sim5	Sim8	Sim11	Sim14	Sim17	~mtvN(medium)
Block 3	Sim3	Sim6	Sim9	Sim12	Sim15	Sim18	~mtvN(hard)

Factor 1	PCA	Task 1	Number of clusters
Factor 2	Grand tour	Task 2	Importance of each variable
Factor 3	Manual tour		for distinguishing a cluster

Figure 1: Experimental design setup. Participants are assigned to one of 3 even groups controlling the factor order. Within each factor, users perform 3 difficulty blocks of task 1 and then of task 2 before proceeding to the next factor. Simulations are used in a fixed order (while factor order changes). Simulations for the first block difficulty are unique samples drawn from the same distribution. Similarly, the second and third block difficulties are drawn from increasing complex distributions.

Factor 1	PCA	Task 1	Number of clusters
Factor 2	Grand tour	Task 2	Importance of each variable
Factor 3	Manual tour		for distinguishing a cluster

Figure 2: Example case. Person 'A' is assigned to group 2, where they will use factor 2 (grand tour) for the first period. They perform 3 block difficulties of task 1 on simulations of increasing difficulty. Then 3 block difficulties of task 2 on unique simulations sampled from the same distributions of increasing difficulty. After this, they proceed to period 2, where they are use factor 3 (manual tour) to perform 3 block difficulties of each task. Lastly, in the third period, they use factor 1 (PCA) to perform the tasks.

15 second showing 90 frames at 6 frames per second. The user can control the location or play/pause the animation at will. Each frame is a geodesic interpolation that is close to 0.1 radians away from the previous frame. These frames will typically include 6 or 7 bases identified randomly.

Tasks

Within each factor, participants performed 2 tasks in a fixed order. The first task asked participants to identify the number of clusters present in the data. In this task, clusters were unsupervised, where all observations appeared as black circles. This task does not give insight to the hypothesis, but rather served as a standard for assessing the general aptitude for this sort of high dimensional analysis as it was simpler. In application, linear discriminant analysis (Fisher 1936) or penalized discriminant analysis (???) are better suited for classifying such unsupervised data.

The second task is focused on the hypothesis of the study, it asked participants to identify any/all variables that were very important and somewhat important for distinguishing a given cluster from the others. For instance, which variables are very- and somewhat- important for distinguishing clusters 'A' and 'B'. This task was supervised by cluster; observations were assigned shape and (color-blind friendly) color according to their cluster. A legend identifying cluster by letter is used for the second task.

Block difficulty

Participants were randomly assigned to 1 of 3 even groups. Each group had a different factor order containing all factors. Both tasks were performed in the same order. Each task had 3 repetitions performed on new simulations that were drawn from 3 parameterizations in increasing difficulty. Each participant went through the simulations in the same order, while their factor order will vary. Fixing block difficulty order while varying factors should mitigate potential learning bias.

Data simulations

The data used for the study were sampled from 4 multivariate normal distributions. The distributions were parameterized with the number of clusters, the number of noise variables, and the number of variables. Each simulation contained either 3 or 4 clusters, with each cluster containing a random number of observations between 30 and 150. Each simulation contained 3 or 4 noise variables, which were distributed as $\mathcal{N}(0, \sigma^2)$. Non-noise variables were distributed $\mathcal{N}(\mu, \sigma^2) \mid \mu \in \{-9, -8, ...9\}$. The variance-covariance matrix was constrained with non-diagonal elements selected between -0.1 to 0.6, before being constrained into a positive definitive matrix.

From the 4 sets of parameterizations, 20 simulations were drawn. The 2 most simple simulations were used during the training section of the study. All participants were exposed to the same training data sets, shown in the same order to standardize training. The remaining 18 simulations were drawn such that the remaining 3 parameterizations were sampled 6 times each. These correspond to the 3 block difficulties of a given factor and task with increasing difficulty. Referring to the middle of figure 1, a participant would perform each factor-task for 3 block difficulties with increasing difficultly before proceeding. The next factor-task has 3 new data sets but parameterized for the same order of increasing difficulty. All participants experience the same order of simulations while the order of the factor (visualization) was changed as controlled by a partition into 3 even groups (top of the same figure).

Measures and survey

The plot display of the first task was limited to 1 minute and 3 minutes on the second task. Responses we available during and after the timer was running. The value and time of each response were captured in a

temporary variable that was written to the response table once the user proceeded to the next page. The number of plot manipulations and response entries was also captured for each page including training.

After responses for each task were collected, participants were given a short survey containing questions gauging demographics, experience, and subjective evaluation of each factor on a 9-point Likert scale. The questions and possible responses as follows:

- What gender are you? [decline, F, M, Intergender/other]
- What age are you? [decline, 19 or younger, 20 to 29, 30 to 39, 40 or older]
- What is your highest completed education? [decline, highschool, undergraduate, honors/masters/mba, doctorate]
- I am experienced with data visualization. [likert 1-9]
- educated in multivariate statistical analysis [likert 1-9]
- previous familiar with visualization [likert 1-9] x3 factors
- I was already familiar with this visualization. [likert 1-9] x3 factors
- I found this visualization easy to use. [likert 1-9] x3 factors
- I felt confident in my answers with this visualization. [likert 1-9] x3 factors
- I liked using this visualization. [likert 1-9] x3 factors

Log files were kept where all inputs were tracked with corresponding timestamps allowing for reproduction if need. Log files, response files, their analyses, and study application are made publicly available at on GitHub at github.com/nspyrison/spinifex_study

Training

The training was controlled for all participants as much as possible. All participants received the same written interface instructions and watched the same training video introducing the methods and the same task prompts were displayed for their respective tasks. The factor-, interface-, and task- training took place in a continuous block where questions were invited. Questions were disallowed once the formal evaluation section started.

Participant population

A sample of convenience was taken from postgraduate students in the department of econometrics and business statistics and the faculty of information technology at Monash University, based in Melbourne, Australia. Participants were required to have prior knowledge of multivariate data visualizations.

Results

#TODO: Need to run study and add results here.

Accompanying tool: spinifex application

To accompany this study we have produced a more general use tool to perform such exploratory analysis of high dimensional data. The R package, spinifex, {(???)} R package (version 0.2.0 and up) contains a free, open-source version of a shiny (Chang et al. 2018) application. The application allows users to explore their own data with either interactive or predefined manual tours without the need for any coding. Limited implementations of grand, little, and local tours are also made available. Data can be imported in .csv and .rda format, and projections or animations can be saved as .png, .gif, and .csv formats where applicable. Run the following R code for help getting started.

```
install.packages("spinifex", dependencies = TRUE)
spinifex::run_app("intro")
spinifex::run_app("primary")
```

Discussion

Acknowledgments

This article was created in R (R Core Team 2019), using knitr (Xie 2014) and rmarkdown (Xie, Allaire, and Grolemund 2018), with code generating the examples inline. The source files for this article be found at github.com/nspyrison/spinifex_study/. The source code for the spinifex package and accompanying shiny application can be found at github.com/nspyrison/spinifex/.

Bibliography

Anscombe, F. J. 1973. "Graphs in Statistical Analysis." *The American Statistician* 27 (1): 17–21. https://doi.org/10.2307/2682899.

Asimov, Daniel. 1985. "The Grand Tour: A Tool for Viewing Multidimensional Data." SIAM Journal on Scientific and Statistical Computing 6 (1): 128–43. https://doi.org/https://doi.org/10.1137/0906011.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. "Graphical Methods for Data Analysis."

Chang, Winston, Joe Cheng, J. J. Allaire, Yihui Xie, and Jonathan McPherson. 2018. *Shiny: Web Application Framework for R.* https://CRAN.R-project.org/package=shiny.

Cook, Dianne, and Andreas Buja. 1997. "Manual Controls for High-Dimensional Data Projections." *Journal of Computational and Graphical Statistics* 6 (4): 464–80. https://doi.org/10.2307/1390747.

Fisher, Ronald A. 1936. "The Use of Multiple Measurements in Taxonomic Problems." *Annals of Eugenics* 7 (2): 179–88.

Karwowski, Waldemar. 2006. International Encyclopedia of Ergonomics and Human Factors, -3 Volume Set. CRC Press.

Maaten, Laurens van der, and Geoffrey Hinton. 2008. "Visualizing Data Using T-SNE." Journal of Machine Learning Research 9 (Nov): 2579–2605.

Matejka, Justin, and George Fitzmaurice. 2017. "Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics Through Simulated Annealing." In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI '17*, 1290–4. Denver, Colorado, USA: ACM Press. https://doi.org/10.1145/3025453.3025912.

Pearson, Karl. 1901. "LIII. On Lines and Planes of Closest Fit to Systems of Points in Space." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (11): 559–72.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Tukey, John W. 1977. Exploratory Data Analysis. Vol. 32. Pearson.

Xie, Yihui. 2014. "Knitr: A Comprehensive Tool for Reproducible Research in R." In *Implementing Reproducible Computational Research*, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.

Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. *R Markdown: The Definitive Guide*. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.