ELECTROMAGNETICS Tutorial: Electric Field

Electric Field Intensity and Electric Flux Density

- 1. A point charge if 12nC is located at the origin. Four uniform line charges are located in the x=0 plane as follow: 80nc/m at y=-1 and -5m, -10 nC/m at y=-2 and -4m. Find the electric flux density D at P (0, -3, 2).
- 2. An infinite uniform line charge $\rho_l = 2$ nC/m lies along the x-axis in free space, while the point charge of 8nC each are located at (0, 0, 1). Find \vec{E} at (2, 3, -4).
- 3. A uniform line charge density of 2-nC/m is located at y = 3 and z = 5. Find \vec{E} at P (5, 6, 1).
- 4. Alone the z-axis there is a uniform line of charge $\rho_L = 4\pi$ Cm⁻¹ and the x = 1 plane there is a surface charge with $\rho_s = 20$ cm⁻². Find the Electric Flux Density at (0.5, 0, 0).
- 5. Find the Electric flux density at point P (5, 4, 3) due to a uniform line charge of 2nC/m at x = 5, y=3, point charge 12 nC at Q(2, 0, 6) and uniform surface charge density of 0.2 nC/m^2 at x=2.
- 6. A uniform line charge density of 150μ C/m lies at x=2, z=-4 and a uniform sheet of change equal to 25 nC/m^2 is placed at z=5 plane. Find \vec{D} at point (1, 2, 4) and convert it to the spherical coordinate system.
- 7. Find the electric field intensity in all three regions due to an infinite sheet parallel plate capacitor having surface charge density ρ_s c/m² and $-\rho_s$ c/m² and placed at y 0 and y = respectively.
- 8. Let a uniform line charge density, 3 nC/m, at y = 3; uniform surface charge density, 0.2 nC/m² at x = 2. Find \vec{E} at the origin.
- 9. Find D at the point (-3, 4, 2) if the following charge distributions are present in free space point charge: +2 nC, at P (2, 0, 6); uniform line charge density, 3 nC/m, at x = -2, y = 3; uniform surface charge density, 0.2 nC/m² at x=2.
- 10. Surface charge densities of 200, -50 and ρ μ C/m² are located at r=3, 5 and 7cm respectively. Find \vec{D} at (i) r = 1cm (ii) r = 4.8cm (iii) r = 6.9cm. Find ρ if \vec{D} = 0 at r = 9cm
- 11. An infinite uniform line charge $\rho L = 2nC/m$ lies along the x-axis in free space, while point charges of 8nC each are located at (0, 0, 1) and (0, 0, -1). (a)Find \overrightarrow{D} at (2, 3, 4).
- 12. Two uniform line charges, each 20 $_{\rm n}$ C/m, are located at y= 1, z= ± 1 m. Find the total electric flux leaving the surface of a sphere having a radius of 2 m, if it is centred at A (3, 1, 0).

Divergence and Divergence Theorem

- 13. State the physical significance of divergence. Derive the divergence theorem. Given the potential $V = \frac{10}{r^2} \sin\theta \cos\emptyset$; find the electric density \vec{D} at $(2, \frac{\pi}{2}, 0)$.
- 14. Evaluate both sides of divergence theorem for the field $\mathbf{D} = 2xy \, \mathbf{a}_x + x^2 \, \mathbf{a}_y \, \text{C/m2}$ and the rectangular parallelopiped formed by the planes $\mathbf{x} = 0$ and 1, $\mathbf{y} = 0$ and 2, and $\mathbf{z} = 0$ and 3.
- 15. Given the field $\vec{D} = \frac{20}{\rho^2} (-\sin^2 \phi \ \vec{a}_r + \sin 2\phi \ \vec{a}_\phi)$, evaluate both sides of the divergence theorem for the region bounded $1 < \rho < 2$, $0 < \phi < 90^\circ$, 0 < z < 1.
- 16. Given the flux density $\vec{D} = (2\cos\cos\theta/r^3) \vec{a}_r + (\sin\theta/r^3) \vec{a}_\theta \text{ C/m}^2$, evaluate both sides of the divergence theorem for the region defined by 1 < r < 2, $0 < \frac{\pi}{2}$, $0 < \emptyset < \frac{\pi}{2}$.

BY ER. SHIV SHANKAR SAH

ELECTROMAGNETICS Tutorial: Electric Field

- 17. Given the field, $\overrightarrow{D} = \frac{5sinsin(\theta)cos(\emptyset)}{r} a_r C/m^2$, find: (a) the volume charge density; (b) the total charge contained in the region r<2m; (c) the value of D at the surface r=2.
- 18. Verify the divergence theorem (evaluate both sides of the divergence theorem) for the function $\vec{A} = r^2 \vec{a}_r + r \sin\theta \cos\phi \vec{a}_{\theta}$, over the surface of quarter of a hemisphere defined by: 0 < r < 3, $0 < \phi < \frac{\pi}{2}$, $0 < \theta < \pi/2$.

Electric Potential and Energy

- 19. Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at x = -1, y = 2 in free space. If the potential at the origin is 100V, find V at P (4, 1, 3).
- 20. A uniform sheet of charge ρ_s =40 C/m² is located in the plane x = 0 in free space. A uniform line charge ρ_L = 0.6 nC/m lies along the line x = 9, y = 4 in free space. Find the potential at point P (6, 8, -3) if V = 10V at A (2, 9, 3).
- 21. Find the energy stored in free space for the region 2mm< r < 3mm, $0 < \theta < 90^{\circ}$, $0 < \emptyset < 90^{\circ}$, find the potential field if V=:
 - a) $\frac{200}{r}V$ and b) $\frac{300}{r^2}\cos\theta V$.
- 22. Derive an expression to calculate the potential due to a dipole in terms of the dipole moment (\vec{P}) . A dipole for which $\vec{P} = 3\vec{a_x} 5\vec{a_y} + 10\vec{a_z}$ nCm is located at the point (1, 2, -4). Find \vec{E} at P.
- 23. A line charge of 8nC/m is located at x = -1, y = 2, a point charge of 6mC at y = -4 and a surface charge of 30 ρ C/m² at z = 0. If the potential at origin is 100V, find the potential at P (4, 1, 3).
- 24. Given the potential function $V = \frac{20\cos\theta}{r^2}V$ in free space and point P is located at r = 3m, $= 60^{\circ}$, $\emptyset = 30^{\circ}$. Find a) \vec{E}_p b) $\frac{dV}{dN}$ at P c) unit normal vector at p d) ρ_v at P.
- 25. The conducting planes 2x+3y=12 and 2x+3y=18 are at potentials of 100V and 0, respectively. Let $\epsilon = \epsilon_0$ and find: a) V at p (5, 2, 6); b) E at p (5, 2, 6).
- 26. Given the potential field $V = 100xz/(x^2+4)$ volts in free space:
 - a) Find \vec{D} at the surface, z=0
 - b) Show that the z=- surface is an equipotential surface
 - c) Assume that the z=0 surface is a conductor and find the total charge on that portion of the conductor defined by 0 < x < 2, -3 < y < 0.

Current and Current Density

- 27. Derive the integral and point forms of continuity equation. In certain region, $\vec{j} = 3r^2 \cos\theta \vec{a_r} r^2 \sin\theta \vec{a_\theta}$ A/m². Find the current crossing the surface define by $\theta = 30^\circ$, $0 < \emptyset < 2\pi$, 0 < r < 2.
- 28. Using the continuity equation elaborate the concept of Relaxation Time Constant (RTC) with the necessary derivations. Let $\vec{J} = \frac{e^{-10^{4t}}}{\rho^2} \widehat{a}_{\rho} A/m^2$ be the current density in a

BY ER. SHIV SHANKAR SAH

ELECTROMAGNETICS Tutorial: Electric Field

- given region. At t=10 ms, calculate the amount of current passing through surface $\rho = 2m$, $0 \le z \le 3m$, $0 \le \emptyset \le 2\pi$.
- 29. Define Relaxation Time Constant (RTC). Derive an expression for RTC. Given the vector current density $\vec{J} = 10\rho^2 z \vec{a_\rho} 4\rho \cos^2 \theta \vec{a_\phi} \text{ mA/m}^2$. Find the current flowing outward through the circular band $\rho = 3$, $0 < \theta < 2\pi$, 2 < z < 2.8.
- 30. Explain the continuity equation. The current density in certain region is approximated by $\vec{J} = (\frac{0.1}{r})e^{-10^6t} \vec{a_r}$ A/m² in spherical coordinates. (a) How much current is crossing the surface R = 50cm at t = 1 μ S? (b) Find $\rho_v(r, t)$ assuming that $\rho_v \rightarrow 0$ as $t \rightarrow \infty$.

Boundary Condition

- 31. Let the region z<0 be composed of a uniform dielectric material for which ε_{R1} =3.2, while the region z>0 is characterized by ε_{R2} =2. Let D_1 = -30 a_x +50 a_y +70 a_z nC/m² and find:
 - a) D_{t1} (Tangential component of E in Region 1);
 - b) Polarization (p₁);
 - c) E_{n2} (Normal component of E in Region 2)
 - d) E₁₂ (Tangential component of E in Region 2)
- 32. The region z<0 contains a dielectric material for which $\varepsilon_{r1} = 2.5$ while the region z > 0 is characterized by ε_{r2} 4. Let $\overrightarrow{E_1} = -30\hat{a}_x + 50\hat{a}_y + 70\hat{a}_z$ V/m. Find: a) \vec{E}_2 (b) \vec{D}_2 (c) Polarization in region 2 (\vec{P}_2).
- 33. Consider the region y<0 be composed of a uniform dielectric material for which the relative permittivity (ε_1) is 3.2 while the region y>0 is characterized by $\varepsilon_1 = 2$. Let the flux density in region 1 be $\vec{D}_1 = -30\vec{a}_x + 50\vec{a}_y + 70\vec{a}_z$ nC/m². Find:
 - a) Magnitude of Flux density and Electric fields intensity at region 2.
 - b) Polarization (\vec{P}) in region 1 and 2.
- 34. Use boundary condition to find \vec{E}_2 in the medium 2 with boundary located at plane z=0. Medium 1 is perfect dielectric characterized by ε_{r1} =2.5, medium 2 is perfect dielectric characterized by ε_{r2} =5, electric field in medium is \vec{E}_1 = \vec{a}_x +3 \vec{a}_y +3 \vec{a}_z v/m.
- 35. The region X<0 is composed of a uniform dielectric material for which ε_{r1} =3.2, while the region X>0 is characterized by ε_{r2} =2. The electric flux density at region X<0 is \vec{D}_1 =-30 \vec{a}_x +50 \vec{a}_y +70 \vec{a}_z nC/m² then find polarization (\vec{P}) and electric field intensity (\vec{E}) in both regions.

BY ER. SHIV SHANKAR SAH