Development of dynamic traffic signal control based on Monte Carlo simulation approach

Christian Mahonry Colorado Bulbarela

Computational Statics Physics UNAM

28 September 2022

Outline

- Context
- 2 Theory
- Monte Carlo Algorithm
- Results

Context

Intersection for the study. Aegean, Turkey.

Why is traffic signal control important?

- Optimizing signal timings allow more fluent traffic flow and less delay.
- Avoid queuing.
- Minimized fuel consumption and emissions.

Theory

The queue length and vehicle arrived time are they key parameters.

Frequency analysis of the intersection

Best fit distribution for each link:

- North: Generalized Extreme Values (R 92.5%)
- East: Birnbaum-Saunders (R 75.8%)
- South: Generalized Extreme Values (R 90.9%)
- West: Generalized Extreme Values (R 92.9%)

Queue Formation and Vehicle Delay

For queue formation:

$$Q_{total} = Q_{first} + V_{rend}$$

$$\begin{split} Q_{first} = \begin{cases} 0 & \text{if}(Q_0 + V_{rfirst} + V_g - S_g) \leq 0 \\ (Q_0 + V_{rfirst} + V_g - S_g) & \text{if}(Q_0 + V_{rfirst} + V_g - S_g) > 0 \end{cases} \\ S_g = t_g * \frac{s}{3600} \end{split}$$

Where:

- ullet Q_{total} : Total queue length.
- Q_{first} : Initial queue.
- Q₀: Residue queue.
- ullet V_{rfirst} : Arrival flow at the first red time.
- V_q : Arrival flow at green time.
- t_g : Green time.
- S: Saturated flow rate.

Delays:

$$\begin{split} D_r &= Q * t_r + \left(\sum_{i=1}^n \left(t_r - \sum_{k=1}^n \Delta t_i \right) \right) \\ D_g &= \begin{cases} \left(\sum_{i=1}^k \frac{i}{\frac{s}{3600}} \right) & \text{if} & k = Q_o + V_g \\ \left(\sum_{i=1}^k \frac{i}{\frac{s}{3600}} \right) + (Q_0 + V_g - k) * t_g & \text{if} & k = \frac{t_g * s}{3600} \end{cases} \\ k &= \min \left(\frac{t_g * s}{3600}, Q_0 + V_g \right) \end{split}$$

Where:

• D_r : Delay occurred on the red time.

ullet D_g : Delay occurred on the green time.

Monte Carlo Algorithm

28 September 2022

 Table 4

 Statistical parameters calculated for the Monte Carlo simulated flow's time intervals for the one hour and comparison with the real field data.

Parameters	North		East		South		West	
	S*	R*	S*	R*	S*	R*	S*	R*
Count of Data (vehicle)	614	614	179	179	692	692	330	330
Peak Value (s)	2.5	2	7.5	6	2	2	2.5	2.5
Median Value (s)	4	3	13	11.5	3.5	3	5	5.5
Aritmetic Mean (s)	5.27	5.86	16.30	20.04	4.72	5.16	10.21	10.88
Standard Deviation	4.14	6.98	12.82	22.55	3.57	6.26	12.05	13.56
Variance	17.12	48.72	164.25	508.31	12.78	39.24	145.13	183.97
Skew Coefficient	1.56	2.97	1.33	2.10	1.37	3.53	2.10	2.65

^{*}S – simulated data; R – real data.

Parameters	North	East	South	West
Count Of Data (Vehicle)	616	181	686	324
Median Value (s)	3.46	19.83	3.57	5.67
Arithmetic Mean (s)	5.85	20.06	5.26	11.15
Standard Desviation	7.93	6.76	6.18	15.9
Skew Coefficient	3.46	0.309	5.85	3.9

North

South

West

Original Research

Vehicle Stopping

Delays

Thank You.

Code at:

https://github.com/Mahonry/ProjectStatiscalPhysics/

References I

[Eriskin et al., 2022] Eriskin, E., Terzi, S., and Ceylan, H. (2022).

Development of dynamic traffic signal control based on monte carlo simulation approach. *Measurement*, 188:110591.