APM 598: Homework 2 (02/26)

1 Two-layers neural networks

Ex 1.

Suppose $\mathbf{x} \in \mathbb{R}^2$. We consider two-layers neural networks (n.n.) of the form (see fig. 1):

$$f(\mathbf{x}) = \mathbf{b}_2 + W_2 (\sigma(\mathbf{b}_1 + W_1 \cdot \mathbf{x})), \tag{1}$$

where $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{R}^2$ are 'bias' vectors, $W_1, W_2 \in \mathcal{M}_{2\times 2}(\mathbb{R})$ are matrices (2×2) and the activation function σ is the ReLu function (i.e. $\sigma(x) = \max(x, 0)$). We denote by $\mathbf{s} = f(\mathbf{x})$ the score predicted by the model with $\mathbf{s} = (s_1, s_2)$ where s_1 is the score for class 1 and s_2 the score for class 2.

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

Figure 1: Illustration of a two-layer neural network using ReLu activation function.

a) Consider the points given in figure 2-left where each color correspond to a different class:

class 1:
$$\mathbf{x}_1 = (1,0) \text{ and } \mathbf{x}_2 = (-1,0),$$

class 2: $\mathbf{x}_3 = (0,1) \text{ and } \mathbf{x}_4 = (0,-1).$

Find some parameters \mathbf{b}_1 , \mathbf{b}_2 , W_1 and W_2 such that the scores \mathbf{s} satisfy:

$$s_1 > s_2$$
 for \mathbf{x}_1 and \mathbf{x}_2 , $s_1 < s_2$ for \mathbf{x}_3 and \mathbf{x}_4 .

Figure 2: Data points to classify.

b) Consider now the data-set given in figure 2-right (see code below to load the data). Train a two-layer neural network of the form (1) to classify the points. Provide the accuracy of the model (percentage of correctly predicted labels).

Ex 2.

The goal of this exercise is to show that two-layers neural networks with ReLu activation can approximate any continuous functions. To simplify, we restrict our attention to the one-dimensional case:

$$g:[0,1]\longrightarrow \mathbb{R}$$
 (continuous).

We claim that for any $\varepsilon > 0$, there exists f two-layers n.n. such that:

$$\max_{x \in [0,1]} |g(x) - f(x)| < \varepsilon. \tag{2}$$

In contrast to $\mathbf{E}\mathbf{x}$ 1, f will be taken with a *large* hidden layers, i.e. $\mathbf{z} \in \mathbb{R}^m$ with $m \gg 1$ (see figure 3-left). To prove this result, we are going to show that f can be used to perform piece-wise linear interpolation (see figure 3-right).

a) Denote $y_0 = g(0)$ and $y_1 = g(1)$. Find a two layers n.n. such that $f(0) = y_0$ and $f(1) = y_1$.

- b) Consider now three points: $y_0 = g(0)$, $y_1 = g(1/2)$, $y_2 = g(1)$. Find f such that: $f(0) = y_0$, $f(1/2) = y_1$ and $f(1) = y_2$.
- c) Generalize: write a program that take as inputs $\{(x_i, y_i)\}_{0 \le i \le N}$ with $x_i < x_{i+1}$ and return a two layers n.n. such that $f(x_i) = y_i$ for all i = 0 ... N.

Extra) Prove (2).

Hint: use that g is uniformly continuous on [0,1].

Figure 3: **Left**: two layers neural network used to approximate continuous function. The *hidden* layer (i.e. $\mathbf{z} = (z_1, \dots, z_m)$) is in general quite large. **Right:** to approximate the continuous function g, we interpolate some of its values (x_i, y_i) by a piece-wise linear function.

2 Convolutional Neural Networks

Ex 3.

Using convolutional layers, max pooling and ReLu activation functions, build a classifier for the Fashion-MNIST database (see a sketch example in figure 4). The accuracy of your network on the test set will be your score on this exercise (+5 points for the group with the highest accuracy).

Figure 4: Schematic representation of neural network for image classification.