Funciones y principio del palomar

Clase 13

IIC 1253

Prof. Cristian Riveros

Outline

Funciones

Tipos de funciones

Principio del palomar

Outline

Funciones

Tipos de funciones

Principio del palomar

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una **función** si para cualquier elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

- 1. $\forall a \in A. \exists b \in B. (a,b) \in f.$
- 2. $\forall a \in A. \ \forall b_1, b_2 \in B. \ ((a, b_1) \in f \land (a, b_2) \in f) \rightarrow b_1 = b_2.$

Ejemplo

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. ¿cuáles son funciones?

$$f_1 = \{ (3,c), (1,a), (2,b), (3,d) \} \times 1 \longrightarrow a$$

$$2 \longrightarrow b$$

$$3 \longrightarrow c$$

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una **función** si para cualquier elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

- 1. $\forall a \in A. \exists b \in B. (a,b) \in f.$
- 2. $\forall a \in A. \ \forall b_1, b_2 \in B. \ ((a, b_1) \in f \land (a, b_2) \in f) \rightarrow b_1 = b_2.$

Ejemplo

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. ¿cuáles son funciones?

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una **función** si para cualquier elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

- 1. $\forall a \in A. \exists b \in B. (a,b) \in f.$
- 2. $\forall a \in A. \ \forall b_1, b_2 \in B. \ ((a, b_1) \in f \land (a, b_2) \in f) \rightarrow b_1 = b_2.$

Ejemplo

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. ¿cuáles son funciones?

$$f_3 = \{ (1,c), (3,c), (2,a) \}$$

1

2

b

3

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una **función** si para cualquier elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

- 1. $\forall a \in A. \exists b \in B. (a,b) \in f.$
- 2. $\forall a \in A. \ \forall b_1, b_2 \in B. \ ((a, b_1) \in f \land (a, b_2) \in f) \rightarrow b_1 = b_2.$

Si $f \subseteq A \times B$ es una función, entonces escribiremos:

- $f: A \rightarrow B$ para decir que f es una función de A a B.
- f(a) = b para decir que $(a, b) \in f$.
 - "b es la imagen de a en f"
 - "a es una preimagen de b en f"

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una **función** si para cualquier elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

- 1. $\forall a \in A$. $\exists b \in B$. $(a,b) \in f$.
- 2. $\forall a \in A. \ \forall b_1, b_2 \in B. \ ((a, b_1) \in f \land (a, b_2) \in f) \rightarrow b_1 = b_2.$

Una función siempre puede ser visto como una "tabla":

Funciones parciales

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una función parcial si para cualquier elemento $a \in A$ si existe un elemento $b \in B$ tal que $(a, b) \in f$, entonces b es único.

$$\forall\,a\in A.\ \forall\,b_1,b_2\in B.\ \left(\left(a,b_1\right)\in f\ \wedge\ \left(a,b_2\right)\in f\right)\ \rightarrow\ b_1=b_2$$

Funciones parciales

Sean A y B conjuntos no vacíos.

Definición

Una relación $f \subseteq A \times B$ es una función parcial si para cualquier elemento $a \in A$ si existe un elemento $b \in B$ tal que $(a, b) \in f$, entonces b es único.

$$\forall a \in A. \ \forall b_1, b_2 \in B. \ ((a, b_1) \in f \land (a, b_2) \in f) \rightarrow b_1 = b_2$$

Si $f \subseteq A \times B$ es una función parcial, entonces escribiremos:

- $f:A\to B$ para decir que f es una función parcial de A a B. (notar la diferencia en la flecha)
- f(a) = b para decir que $(a, b) \in f$.

Funciones parciales (mas definiciones)

Sean A y B conjuntos no vacíos $y f : A \rightarrow B$ una función parcial.

Definición

Se define el **dominio** e **imagen** de *f* como:

$$dom(f) = \pi_1(f) = \{ a \in A \mid \exists b \in B. (a, b) \in f \}.$$

$$img(f) = \pi_2(f) = \{ b \in B \mid \exists a \in A. (a, b) \in f \}.$$

Ejemplo

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$.

Funciones parciales (mas definiciones)

Sean A y B conjuntos no vacíos y $f:A \rightarrow B$ una función parcial.

Definición

Se define el **dominio** e **imagen** de *f* como:

$$dom(f) = \pi_1(f) = \{ a \in A \mid \exists b \in B. (a, b) \in f \}.$$

$$img(f) = \pi_2(f) = \{ b \in B \mid \exists a \in A. (a, b) \in f \}.$$

Proposición

Sea $f: A \rightarrow B$ una función parcial. Entonces:

$$f$$
 es una función ssi $dom(f) = A$

Ejemplos de funciones

Ejemplos

Sea $A = B = \mathbb{R}$.

$$f_2(x) = \left[x + \sqrt{x} \right]$$

$$f_3(x) = 0$$

$$f_4(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

 $f_1(x) = x^2$

Ejemplos de funciones

Algunas preguntas

- ¿es necesario definir funciones de mayor dimensiones?
 - Por ejemplo: $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ o $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$
- Si $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, ¿qué es dom(f)?

Tanto el **dominio** como la **imagen** de una función pueden ser números, conjuntos, relaciones, grafos, palabras, . . .

Mas ejemplos de funciones

Ejemplos

Las siguientes son funciones de A en 2^A :

$$g_1: A \to 2^A$$
 $g_1(a) = \{a\}$
 $g_2: A \to 2^A$ $g_2(a) = A - \{a\}$
 $g_3: A \to 2^A$ $g_3(a) = \emptyset$

Secuencias infinitas (otro ejemplo de funciones)

Sea A un conjunto cualquiera.

Definición

Una secuencia S sobre A es una función $S: \mathbb{N} \to A$.

Ejemplo

$$S_1: \mathbb{N} \to \mathbb{Q}$$

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots, \frac{(-1)^n}{n+1}, \ldots$$

$$S_2: \mathbb{N} \to \mathbb{N}$$

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

$$S_3: \mathbb{N} \to \{0, 1, 2 \dots, 9\}$$

$$3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9, \dots$$

Outline

Funciones

Tipos de funciones

Principio del palomar

Sea A y B dos conjuntos no vacíos.

Definiciones

Una función $f: A \rightarrow B$ se dice:

1. inyectiva si no existen dos elementos en A con la misma imagen.

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

¿cuál de las siguientes funciones son inyectivas?

Alternativamente, $\forall a_1, a_2 \in A. \ a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$

Sea A y B dos conjuntos no vacíos.

Definiciones

Una función $f: A \rightarrow B$ se dice:

1. inyectiva si no existen dos elementos en A con la misma imagen.

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

2. sobreyectiva si todo elemento en *B* tienen una preimagen.

$$\forall b \in B. \exists a \in A. f(a) = b$$

¿cuál de las siguientes funciones son sobreyectivas?

Sea A y B dos conjuntos no vacíos.

Definiciones

Una función $f: A \rightarrow B$ se dice:

1. inyectiva si no existen dos elementos en A con la misma imagen.

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

2. sobreyectiva si todo elemento en *B* tienen una preimagen.

$$\forall b \in B. \exists a \in A. f(a) = b$$

3. biyectiva si es inyectiva y sobreyectiva a la vez.

Notación

- inyectica \equiv 1-a-1.
- sobreyectica ≡ función sobre o onto.
- biyectica ≡ epiyectiva.

Definiciones

- 1. inyectiva: $\forall a_1, a_2 \in A$. $f(a_1) = f(a_2) \rightarrow a_1 = a_2$.
- 2. sobreyectiva: $\forall b \in B$. $\exists a \in A$. f(a) = b.
- 3. biyectiva si es inyectiva y sobreyectiva a la vez.

¿cuál es el tipo de cada función?

• $f_1: A \to 2^A$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

• $f_2: \mathbb{R} \to \mathbb{N}$ tal que para todo $r \in \mathbb{R}$:

$$f_2(r) = | \lfloor r \rfloor |$$

Definiciones

- 1. inyectiva: $\forall a_1, a_2 \in A$. $f(a_1) = f(a_2) \rightarrow a_1 = a_2$.
- 2. sobreyectiva: $\forall b \in B$. $\exists a \in A$. f(a) = b.
- 3. biyectiva si es inyectiva y sobreyectiva a la vez.

¿cuál es el tipo de cada función?

• $f_3: \{0,1\}^* \to \{0,1\}^*$ tal que para todo $w = a_0 \dots a_n \in \{0,1\}^*$:

$$f_3(w) = a_n a_{n-1} \dots a_1 a_0$$

• $f_4: \{0,1\}^* \to \mathbb{N}$ tal que para todo $w = a_0 \dots a_n \in \{0,1\}^*$:

$$f_4(w) = \sum_{i=0}^n a_i \cdot 2^i$$

Definiciones

- 1. inyectiva: $\forall a_1, a_2 \in A$. $f(a_1) = f(a_2) \rightarrow a_1 = a_2$.
- 2. sobreyectiva: $\forall b \in B$. $\exists a \in A$. f(a) = b.
- 3. biyectiva si es inyectiva y sobreyectiva a la vez.

¿cuál es el tipo de cada función?

• $f_5: A \to A/\sim$ tal que para todo $a \in A$:

$$f_5(a) = [a]_{\sim}$$

Recordatorio: operaciones entre relaciones

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Inverso: R^{-1} son todos los pares (x, y) tal que $(y, x) \in R$.

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

Composición: $R_1 \circ R_2$ son todos los elementos (x, y) tal que existe un z que cumple $(x, z) \in R_1$ y $(z, y) \in R_2$.

$$R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. \ (x,z) \in R_1 \land (z,y) \in R_2\}$$

Inverso y composición de funciones

■ Dado que $f : A \rightarrow B$ es una relación,

¿qué significa
$$f^{-1}$$
?

... la relación inversa, no necesariamente una función.

■ Dado que $f_1: A \rightarrow B$ y $f_2: B \rightarrow C$ son relaciones,

¿qué significa
$$f_1 \circ f_2$$
?

... la composición de dos funciones.

Proposición (ejercicio)

Sea $f_1: A \to B$ y $f_2: B \to C$, entonces para todo $a \in A$ y $c \in C$:

$$(a,c) \in f_1 \circ f_2$$
 si, y solo si, $f_2(f_1(a)) = c$

En este curso, anotaremos la composición de dos funciones como $f_1 \circ f_2$.

Caracterización de funciones

Teorema

Sea $f: A \rightarrow B$ una función. Entonces:

- 1. f es inyectiva si, y solo si, f^{-1} es una función parcial.
- 2. f es sobreyectiva si, y solo si, img(f) = B.

Demostración $(1. \Rightarrow)$

Sea f inyectiva.

Para todo $a_1, a_2 \in A$, si $f(a_1) = f(a_2)$, entonces $a_1 = a_2$.

PD:
$$\forall b \in B$$
. $\forall a_1, a_2 \in A$. $((b, a_1) \in f^{-1} \land (b, a_2) \in f^{-1}) \rightarrow a_1 = a_2$

Suponga $(b, a_1) \in f^{-1}$ y $(b, a_2) \in f^{-1}$.

$$\Rightarrow$$
 $f(a_1) = b$ y $f(a_2) = b$ \Rightarrow $f(a_1) = f(a_2)$ \Rightarrow $a_1 = a_2$.

Caracterización de funciones

Teorema

Sea $f: A \rightarrow B$ una función. Entonces:

- 1. f es inyectiva si, y solo si, f^{-1} es una función parcial.
- 2. f es sobreyectiva si, y solo si, img(f) = B.

Demostración $(1. \Leftarrow)$

Sea f^{-1} una función parcial.

$$\forall b \in B. \ \forall a_1, a_2 \in A. \ ((b, a_1) \in f^{-1} \land (b, a_2) \in f^{-1}) \rightarrow a_1 = a_2$$

PD: Para todo $a_1, a_2 \in A$, si $f(a_1) = f(a_2)$, entonces $a_1 = a_2$.

Supongamos
$$f(a_1) = f(a_2) = b$$
 para algún $b \in B$.

$$\Rightarrow$$
 $(b, a_1) \in f^{-1}$ y $(b, a_2) \in f^{-1}$ \Rightarrow $a_1 = a_2$.

Caracterización de funciones

Teorema

Sea $f: A \rightarrow B$ una función. Entonces:

- 1. f es inyectiva si, y solo si, f^{-1} es una función parcial.
- 2. f es sobreyectiva si, y solo si, img(f) = B.

Corolario

Sea $f: A \rightarrow B$ una función. Entonces:

f es biyectiva si, y solo si, f^{-1} es una función.

Composición de funciones

Teorema

Sea $f_1: A \to B$ y $f_2: B \to C$. Entonces:

- Si f_1 y f_2 son inyectivas, entonces $f_1 \circ f_2$ es inyectiva.
- Si f_1 y f_2 son **sobreyectivas**, entonces $f_1 \circ f_2$ es **sobreyectiva**.

Demostración

(ejercicio)

¿es verdadero el inverso de cada implicación?

Outline

Funciones

Tipos de funciones

Principio del palomar

¿cómo demostrarían estas afirmaciones?

- En esta sala hay dos alumnos que nacieron en el mismo año.
- En Santiago, hay dos personas que tienen la misma cantidad de pelos en la cabeza.
- Si 5 elementos son seleccionados del conjunto $\{1, 2, ..., 8\}$, tiene que haber por lo menos un par que suma 9.
- Sea $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1. Siempre hay dos números en S tal que uno divide al otro.

Principio

"Si N palomas se distribuyen en M palomares y tengo mas palomas que palomares (N > M), entonces al menos habrá un palomar con más de una paloma"

Principio (en nuestros términos)

Si $f: A \rightarrow B$ y |B| < |A|, entonces f **NO** puede ser **inyectiva**, esto es:

$$\exists a_1, a_2 \in A. \quad a_1 \neq a_2 \land f(a_1) = f(a_2)$$

Principio muy útil y usado en matemáticas y computación!!

Ejemplos

 En esta sala hay dos alumnos que nacieron en el mismo año.

Demostración:

cantidad de alumnos > 100 cantidad de años < 70.

 En Santiago, hay dos personas que tienen la misma cantidad de pelos en la cabeza.

Demostración: cantidad de personas > 6.300.000

cantidad de pelos en un cabeza < 300.000

Ejemplos

Si 5 elementos son seleccionados del conjunto $\{1, 2, \dots, 8\}$, tiene que haber por lo menos un par que suma 9.

Demostración:

Sea a_1, a_2, a_3, a_4, a_5 los cinco números distintos seleccionados.

Palomas: a_1, a_2, a_3, a_4, a_5

Palomares: $\{1,8\}, \{2,7\}, \{3,6\}, \{4,5\}$

Función: $f(a_i) = \text{el conjunto que contiene a } a_i$.

Ejemplos

Sea $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1. Siempre hay dos números en S tal que uno divide al otro.

Demostración:

- Sea $a_1, a_2, \ldots, a_{n+1}$ los números seleccionados.
- Para todo $a \in A$, sea $a = 2^k \cdot m$ donde m es un número impar.

```
Palomas: a_1, a_2, \ldots, a_{n+1}
```

Palomares:
$$\{a \in \mathbb{N} \mid a \le 2n-1 \text{ y } a \text{ es impar } \}$$

Función:
$$F(a_i) = m$$