北京十一学校 2015 级常规初中第 7 学段教与学质量诊断(2017.4) 数学 ${ m II}$

一、填空题

- 1. 将方程 $x^2 2(x-1) = 4x$ 化为一般形式为 . .
- 2. 在下列图案中,是中心对称图形的是_____. (填序号)

- 3. 一元二次方程 $x^2 7x = 0$ 的解为
- 4. 如图,菱形 ABCD 中,对角线 AC = 10 , BD = 7 ,则此菱形的面积为____

5. 如图, $\triangle ABC$ 中,点D、E分别是AB、AC的中点,若DE=2,则BC的长为_____.

- 6. 一元二次方程 $(x-1)^2 = 4$ 的解为_____.
- 7. 如图,将 $\triangle ABC$ 绕点 A 逆时针旋转 30° 得到 $\triangle ADE$. 若点 D 恰好落在 BC 上,则 $\angle ADE$ 的度数为 .

8. 已知一元二次方程 $x^2 - 5x + 3 = 0$ 的两根为 $x_1 \times x_2$,则 $x_1 + x_2$ 的值为______. $x_1 \cdot x_2$ 的

值为 .

9. 如图,在 $\triangle ABC$ 中, $\angle ACB$ = 90°,CD为 AB 边上的中线,将 $\triangle CDB$ 沿 CD 折叠得到 $\triangle CDB'$.若 $\angle B$ 的度数为 α ,则 $\angle B'CD$ 的度数为 . (用含 α 的代数式表示)

- 10. 我们规定,若关于 x 的方程 $x^2 + ax + b = 0$ 的两根分别为 $x_1 = m$ 、 $x_2 = n$, $x^2 + cx + d = 0$ 的两根分别为 $x_1 = -m$ 、 $x_2 = -n$,则称方程 $x^2 + ax + b = 0$ 与 $x^2 + cx + d = 0$ 互为匹配方程,例如,方程 $x^2 + 2x 8 = 0$ 与 $x^2 2x 8 = 0$ 互为匹配方程.已知方程 $x^2 3x + 2 = 0$,写出此方程的匹配方程.
- 二、解答题
- 11. 解方程: (1) $x^2 + 4x 26 = 0$;

(2)
$$(x-1)^2 = (2x+3)^2$$

(3)
$$x^2 + \sqrt{2}x - 3 = 0$$
;

(4)
$$x^2 - (m+1)x + m = 0$$
 (m 为常数).

12. 已知 $\triangle ABC$, 以点 C 为旋转中心,把 $\triangle ABC$ 顺时针旋转 90° , 画出旋转后的图形.

- 13. 如图,在 $\triangle ABC$ 中,D为BC边上一点,E为AC的中点,过点A作AF // BC 交DE 的 延长线于点F,连接AD、FC.
- (1) 求证: 四边形 ADCF 是平行四边形;
- (2) 若∠*ACB* = 30°, ∠*EDC* = 45°, *EC* = 2,则*DC* 的长为_____

- 14. 关于x的一元二次方程 $mx^2 + 2x + 1 = 0$, 当m取何值时,方程有两个不相等的实数根.
- 15. 如图,在 Y ABCD 中, $\angle BAD$ 的平分线交 BC 于点 E , $\angle ABC$ 的平分线交 AD 于点 F , AE 、 BF 交于点 O ,连接 EF .
- (1) 由题意补全图形:
- (2) 求证: 四边形 ABEF 为菱形.

- 16. 已知关于x的方程 $x^2 + (a-3)x 3a = 0$,求证:不论a取何值,方程总有实数根.
- 17. 在一次数学探究活动中,小明遇到这样一个问题:

如图, $\triangle ABC$ 中,AB=AC,BC=4,点D从B出发沿BC向点C以每秒 1 个单位长度的速度运动,过A作AE///BC,过D作DE///////AB,AE、DE交于点E,连接AD、CE.

小明通过观察、分析后提出猜想: 当点 D 运动到 2 秒时,点 D 恰好是 BC 的中点,此时,四边形 ADCE 是矩形.

小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法:

想法 1: 根据"有一个角是直角的平行四边形是矩形",只需证明四边形 ADCE 是平行四边形及 $\angle ADC = 90^{\circ}$ 即可.

想法 2: 根据"对角线相等的平行四边形是矩形",只需证明四边形 ADCE 是平行四边形及 AC = DE 即可.

请你参考上面想法,选择其中一种写出完整的证明过程.

18. 列方程解应用题:

据北京统计信息网资料显示,2014年,北京市城镇居民人均消费支出2.8万元,消

费支出是指住户用于满足家庭日常生活消费需要的全部支出,包括用于消费品的支出和用于服务性消费的支出. 2016 年,北京市城镇居民人均消费支出3.85万元,求北京市城镇居民人均消费支出的年平均增长率.(准确到0.1)

三、解答题

- 19. 己知,四边形 ABCD 中, P 为对角线 BD 上的一点,将 PC 绕点 P 顺时针旋转,使点 C 落在 CB 延长线上,记为点 Q,连接 PA .
- (1) 如图 1, 若四边形 ABCD 为正方形,
 - ①由题意补全图形;
 - ② ∠APQ 的度数为_____;
 - ③求证: PQ = PA;
- (2) 如图 2,若四边形 ABCD 为菱形,设 $\angle ADB = \alpha$,则 $\angle APQ$ 的度数为_____ (用含 α 的代数式表示)

20. 在平面直角坐标系 xOy 中,对于直线 l 及点 P 给出如下定义:若 P 关于原点对称的点在直线 l 上,则称点 P 为直线 l 的关联点.例如,点 A(1,2) 是直线 y=-x-3 的关联点.根据阅读材料,解决下列问题.

如图,在平面直角坐标系xOy中,已知直线l: y = x + 1.

- (1) 已知点M(2,1), N(0,-1), P(3,-2), 上述各点是直线l 的关联点是 ;
- (2) 若点Q(-1,2) 是直线 y = 2x + b 的关联点,则b 的值为______;
- (3) 点 A 是直线 l 的关联点,过 A 作 $AB \perp l$ 于点 B ,以 AB 为边作正方形,则正方形的面积为

