Lecture 7: Dataflow Analysis Termination and Correctness

17-355/17-655/17-819: Program Analysis

Rohan Padhye and Jonathan Aldrich

February 24, 2021

* Course materials developed with Claire Le Goues

Motivation: Value Set Analysis

- Goal: track the set of integers each variable could have
 - $\circ \ \sigma : Var \rightarrow Set[Int]$
 - Generalizes constant propagation to track multiple possibilities
- What challenges might there be with this analysis?

Motivation: Value Set Analysis

- Goal: track the set of integers each variable could have
 - $\circ \sigma : Var \rightarrow Set[Int]$
 - Generalizes constant propagation to track multiple possibilities
- What challenges might there be with this analysis?
- Consider the following program

```
1. x := 0
```

$$2. \times := \times + 1$$

3. if x < limit goto 2

Termination of Kildall's Algorithm

- Recall our analysis of performance
- Key observation: running a flow function on a statement the second time either results in no change, or output information that is *higher* in the lattice.
 - Let's formalize this using ascending chains

Ascending Chain A sequence σ_k is an *ascending chain* iff $n \leq m$ implies $\sigma_n \sqsubseteq \sigma_m$

Heights of chains and lattices

We can use this to define lattice and chain heights

Ascending Chain A sequence σ_k is an ascending chain iff $n \leq m$ implies $\sigma_n \subseteq \sigma_m$

N height = 2

Height of an Ascending Chain An ascending chain σ_k has finite height h if it contains h+1 distinct elements.

Height of a Lattice

A lattice (L, \sqsubseteq) has finite height h if there is an ascending chain in the lattice of height h, and no ascending chain in the lattice has height greater than h

Termination also requires monotonicity

• Intuition: program analysis will terminate if the lattice height is finite, and if analysis information at each program point only ascends in the lattice.

Careful – we don't compare the input and output of a flow function. Rather we compare successive output information at a given program point.

We need a new property for this—monotonicity!

Monotonicity

A function f is monotonic iff $\sigma_1 \sqsubseteq \sigma_2$ implies $f(\sigma_1) \sqsubseteq f(\sigma_2)$

Worklist algorithm, revisited

- Slight variant from earlier notes
 - We compute input when we visit a node, rather than when updating its predecessors
 - We test for output change rather than input change
- Goal: make correctness, termination more obvious
 - Exercise to reader: show this is the same as the previous version

```
worklist = \emptyset
for Node n in cfg
    input[n] = output[n] = \bot
    add n to worklist
output[programStart] = initialDataflowInformation
while worklist is not empty
    take a Node n off the worklist
    input[n] = \bigsqcup_{k \in preds(n)} output[k]
    newOutput = flow(n, input[n])
    if newOutput \neq output[n]
         output[n] = newOutput
         for Node j in succs(n)
            add j to worklist
```

Dataflow Analysis Termination Theorem

Theorem 1 (Dataflow Analysis Termination). *If a dataflow lattice* (L, \sqsubseteq) *has finite height, and the corresponding flow functions are monotonic, the worklist algorithm will terminate.*

Proof: consider the following termination metric: $M = |worklist| + EpN * LC(\sigma)$

- |worklist| is the length of the worklist
- EpN is the maximum outgoing Edges per Node
- $LC(\sigma)$ is the longest ascending chain from σ to T

We must show that M is finite and decreases with each loop iteration.

M is finite because...?

Dataflow Analysis Termination Theorem

Theorem 1 (Dataflow Analysis Termination). *If a dataflow lattice* (L, \sqsubseteq) *has finite height, and the corresponding flow functions are monotonic, the worklist algorithm will terminate.*

Proof: consider the following termination metric: $M = |worklist| + EpN * LC(\sigma)$

- |worklist| is the length of the worklist
- EpN is the maximum outgoing Edges per Node
- $LC(\sigma)$ is the longest ascending chain from σ to T

We must show that M is finite and decreases with each loop iteration.

M is finite because |worklist| is bounded by the number of nodes in the program, because EpN is finite, and because the lattice has finite height.

Termination Theorem Proof, Continued

 $M = |worklist| + EpN * LC(\sigma)$ decreases with each loop iteration. Why?

|worklist| generally decreases each iteration because we remove one node from it

But—we add to |worklist| when outputs change. This only happens when newOutput is different—and therefore higher in the lattice than output[n]. Thus, $LC(\sigma)$ decreased by at least one. Since we add at most EpN edges to the worklist, the $EpN * LC(\sigma)$ factor cancels out the added edges, and we still have a net decrease.

```
worklist = \emptyset
for Node n in cfg
    input[n] = output[n] = \bot
    add n to worklist
output[programStart] = initialData
while worklist is not empty
    take a Node n off the worklist
    input[n] = \bigsqcup_{k \in preds(n)} output[k]
    newOutput = flow(n, input[n])
    if newOutput ≠ output[n]
         output[n] = newOutput
         for Node j in succs(n)
            add j to worklist
```

Does Zero Analysis terminate?

Theorem 1 (Dataflow Analysis Termination). *If a dataflow lattice* (L, \sqsubseteq) *has finite height, and the corresponding flow functions are monotonic, the worklist algorithm will terminate.*

- We know it has a finite height a height of 2 for each variable
- Need to show that the flow functions are monotonic

Zero Analysis flow functions are monotonic

Monotonicity

A function f is monotonic iff $\sigma_1 \sqsubseteq \sigma_2$ implies $f(\sigma_1) \sqsubseteq f(\sigma_2)$

Case
$$f_Z[x := 0](\sigma) = \sigma[x \mapsto Z]$$
:

Zero Analysis flow functions are monotonic

Monotonicity

A function f is monotonic iff $\sigma_1 \sqsubseteq \sigma_2$ implies $f(\sigma_1) \sqsubseteq f(\sigma_2)$

Case
$$f_Z[x := y](\sigma) = \sigma[x \mapsto \sigma(y)]$$
:

What does it mean for an analysis to be correct?

- Intuition: we would like the program analysis results to correctly describe the result of every actual execution of the program
- We'll formalize this using traces

Program Trace

A trace T of a program P is a potentially infinite sequence $\{c_0, c_1, ...\}$ of program configurations, where $c_0 = E_0, 1$ is called the initial configuration, and for every $i \ge 0$ we have $P \vdash c_i \leadsto c_{i+1}$

What does it mean for an analysis to be correct?

- Intuition: we would like the program analysis results to correctly describe the result of every actual execution of the program
- Now we can define soundness:

Dataflow Soundness Analysis

The result $\{\sigma_n \mid n \in P\}$ of a program analysis running on program P is sound iff, for all traces T of P, for all i such that $0 \le i < length(T)$, $\alpha(c_i) \sqsubseteq \sigma_{n_i}$

Exercise 1: Show that a flow function is unsound

Consider the following (incorrect) flow function for Zero Analysis

$$f_Z[x := y + z](\sigma) = \sigma[x \mapsto Z]$$

• Write a program that, when run, will generate a trace proving that this analysis is unsound, i.e. $\alpha(c_i) \not \sqsubseteq \sigma_{n_i}$ for some i in the trace.

Local Soundness shows that flow functions are correct

- Intuition: we want a flow function to map $\sigma_{\rm in}$ to $\sigma_{\rm out}$ in a way that matches the instruction's concrete semantics
- This is formalized by *local soundness:*

Local Soundness

A flow function f is locally sound iff $P \vdash c_i \rightsquigarrow c_{i+1}$ and $\alpha(c_i) \sqsubseteq \sigma_{n_i}$ and $f[P[n_i]](\sigma_{n_i}) = \sigma_{n_{i+1}}$ implies $\alpha(c_{i+1}) \sqsubseteq \sigma_{n_{i+1}}$

Local Soundness

A flow function
$$f$$
 is locally sound iff $P \vdash c_i \leadsto c_{i+1}$ and $\alpha(c_i) \sqsubseteq \sigma_{n_i}$ and $f[P[n_i]](\sigma_{n_i}) = \sigma_{n_{i+1}}$ implies $\alpha(c_{i+1}) \sqsubseteq \sigma_{n_{i+1}}$

Case
$$f_Z[x := 0](\sigma_{n_i}) = \sigma_{n_i}[x \mapsto Z]$$
:

Local Soundness

A flow function f is locally sound iff $P \vdash c_i \leadsto c_{i+1}$ and $\alpha(c_i) \sqsubseteq \sigma_{n_i}$ and $f[P[n_i]](\sigma_{n_i}) = \sigma_{n_{i+1}}$ implies $\alpha(c_{i+1}) \sqsubseteq \sigma_{n_{i+1}}$

Case $f_Z[x := m](\sigma_{n_i}) = \sigma_{n_i}[x \mapsto N]$ where $m \neq 0$:

Local Soundness

A flow function f is locally sound iff $P \vdash c_i \rightsquigarrow c_{i+1}$ and $\alpha(c_i) \sqsubseteq \sigma_{n_i}$ and $f[P[n_i]](\sigma_{n_i}) = \sigma_{n_{i+1}}$ implies $\alpha(c_{i+1}) \sqsubseteq \sigma_{n_{i+1}}$

Case
$$f_Z[x := y \text{ op } z](\sigma_{n_i}) = \sigma_{n_i}[x \mapsto \top]$$
:

Local Soundness

A flow function f is locally sound iff $P \vdash c_i \rightsquigarrow c_{i+1}$ and $\alpha(c_i) \sqsubseteq \sigma_{n_i}$ and $f[P[n_i]](\sigma_{n_i}) = \sigma_{n_{i+1}}$ implies $\alpha(c_{i+1}) \sqsubseteq \sigma_{n_{i+1}}$

Exercise 2: prove the case for $f_Z[x := y](\sigma) = \sigma[x \mapsto \sigma(y)]$

Proving Dataflow Analysis Soundness

- We'd like to prove that a dataflow analysis is sound. Local soundness is part of it.
- We also need Kildall's algorithm to compute an analysis fixed point:

Fixed Point

A dataflow analysis result $\{\sigma_i \mid i \in P\}$ is a fixed point iff $\sigma_0 \sqsubseteq \sigma_1$ where σ_0 is the initial analysis information and σ_1 is the information before the first instruction, and for each instruction i we have $\bigsqcup_{j \in \mathtt{preds}(i)} f[P[j]](\sigma_j) \sqsubseteq \sigma_i$.

Kildall's Algorithm computers a fixed point

Fixed Point

A dataflow analysis result $\{\sigma_i \mid i \in P\}$ is a fixed point iff $\sigma_0 \sqsubseteq \sigma_1$ where σ_0 is the initial analysis information and σ_1 is the information before the first instruction, and for each instruction i we have $\bigsqcup_{j \in \mathtt{preds}(i)} f[P[j]](\sigma_j) \sqsubseteq \sigma_i$.

- Kildall's Algorithm computes a fixed point when it terminates.
- Proof: the following is a loop invariant of Kildall's Algorithm $\forall i . (\exists j \in preds(i) \ such \ that \ f[P[j]](\sigma_j) \not \sqsubseteq \sigma_i) \Rightarrow i \in \texttt{worklist}$
- Trivially true at beginning, since everything is on the worklist
- When instruction i is removed from the worklist, the invariant is established
- When the worklist is empty, the above is equivalent to a fixed point

Finally, we prove global soundness

Theorem 2 (A fixed point of a locally sound analysis is globally sound). *If a dataflow analysis's flow function f is monotonic and locally sound, and for all traces T we have* $\alpha(c_0) \sqsubseteq \sigma_0$ *where* σ_0 *is the initial analysis information, then any fixed point* $\{\sigma_n \mid n \in P\}$ *of the analysis is sound.*

• Consider an arbitrary trace T. The proof is by induction on the configurations c_i in the trace.

Finally, we prove global soundness

Theorem 2 (A fixed point of a locally sound analysis is globally sound). *If a dataflow analysis's flow function f is monotonic and locally sound, and for all traces T we have* $\alpha(c_0) \sqsubseteq \sigma_0$ *where* σ_0 *is the initial analysis information, then any fixed point* $\{\sigma_n \mid n \in P\}$ *of the analysis is sound.*

Case c_0 :

Finally, we prove global soundness

Theorem 2 (A fixed point of a locally sound analysis is globally sound). *If a dataflow analysis's flow function f is monotonic and locally sound, and for all traces T we have* $\alpha(c_0) \sqsubseteq \sigma_0$ *where* σ_0 *is the initial analysis information, then any fixed point* $\{\sigma_n \mid n \in P\}$ *of the analysis is sound.*

Case c_{i+1} :

