Codificação Áudio e Vídeo

Trabalhos Práticos de Codificação de Vídeo

Arquitectura do Software

Primeira implementação

- A arquitectura não foi bem definida
 - Apesar dos algoritmos estarem bem implementados

Abordagem:

Nova Arquitectura Base

Classes Base

YuvFrame

Block

Manipulação Básica

YuvReader

YuvWriter

YuvDisplay

Manipulação Avançada

YuvEffects

TSubSampler

YuvAnalyse

Codificação

IntraCoder

InterCoder

HybCoder

DCTCoder

Golomb

Predictor

BitStream

YuvFrame

- Armazena os dados de **uma** frame
- Permite converter entre formatos
 - YUV444
 - o YUV422
 - o YUV420
- Escrita e leitura em qualquer dos formatos é transparente ao utilizador
- Operação ao nível:
 - o do buffer
 - o do bloco
 - do píxel

Workflow

Implementação

- Algumas classes não foram portadas:
 - YuvEffects
 - TSubSampler
- Apesar das interfaces estarem definidas não eram necessárias para esta iteração

Codificação: Algoritmos auxiliares

Codificação de entropia

Golomb

- Utilizando códigos de Rice (m=2^k)
- Melhor^[1] k, para a média μ, está entre k_{min}, k_{max}:

$$egin{aligned} k_{min}(\mu) &= max\{0, \lfloor log_2(2/3(\mu+1))
floor \} \ & \ k_{max}(\mu) &= max\{0, \lceil log_2\mu
ceil \} \end{aligned}$$

[1]: Kiely, A. (2004). Selecting the Golomb Parameter in Rice Coding, 2, 2-3.

Preditores

- 7 Preditores lineares do JPEG
- 1 Preditor não linear do JPEG-LS

JPEG-LS - Non Linear Predictor

```
int v = 0;
int max_ = max(aV, bV);
int min_ = min(aV, bV);

if (cV >= max_) {
    v = min_;
} else if (cV <= min_) {
    v = max_;
} else {
    v = aV + bV - cV;
}</pre>
```

Codificadores

Codificação intra-frame com preditores

- Para cada frame
 - Para cada pixel
 - O preditor estima um valor do pixel
 - O erro entre a estimativa e o valor atual é codificado para o ficheiro resultante
 - Este erro pode ser quantizado.

Codificação inter-frame

Compensação de movimento

• Os buffers (Y, U, V) são tratados independentemente

Codificação intra-frame com DCT

- Transforma uma função numa soma de cosenos a diferentes frequências
- São guardados os coeficientes produzidos
- Utilidade?
 - Coeficientes são valores reais, mas mais pequenos.
 - Codificação lossless é ineficiente (espaço).
 - Arredondamento introduz perdas.
 - Os primeiros coeficientes são mais importantes
 - Podem ser quantizados ou até omitidos
 - Depois de quantizados, pelo menos metade são zero.
 - Standard JPEG define matrizes de quantização para luminância (Y) e crominância (U/Cb, V/Cr)

Resultados

Efeito dos preditores

- O preditor não-linear revelou-se o melhor
- São bons para frames com blocos de cor
- O melhor preditor depende das características da frame

Codificador híbrido

- Compensação de movimento
 - Eficaz para situações de continuidade de cena
 - Má para mudanças de cena
 - Má para cenas com muito movimento

- Melhor altura para introduzir uma keyFrame
 - Seleccionada automaticamente com base no erro

Compensação de movimento (1)

Efeito do tamanho do bloco

Compensação de movimento (2)

• Efeito da área de pesquisa

Compensação de movimento (3)

Efeito do período da keyFrame

DCT

- Devia produzir melhor taxa de compressão
- No entanto:

	PNSR	Compressão
Intra quantized(4, 8, 8)	39,55	45%
DCT quantized(1.0)	34,82	48%
Intra quantized(8,16,16)	33,56	48%
DCT quantized(2.5)	32,40	50%

- A nossa implementação não usa RLE
 - o Cada zero é codificado com 4 bits.

Conclusões

Golomb

- o Bom para codificar valores com pouco variância
- É importante escolher um bom M
- Codificador aritmético adaptativo daria melhores ganhos
 - Implementação é mais complexa

DCT

- Melhor taxa de compressão (quando bem implementado)
- o Lossy
- Introduz alguns artefactos