CLAIMS

What is claimed is:

Fax:7132668510

1 1. (currently amended) An apparatus for use in a borehole in an earth formation 2 comprising: 3 (a) a conducting tubular, said conducting tubular having a damping portion for reducing a flow of eddy currents; 5 (b) at least one transmitter on said conducting tubular which propagates an electromagnetic field in the earth formation; 7 (c) at least one receiver on said conducting tubular which receives a temporal 8 transient signal resulting from interaction of said electromagnetic field 9 with said earth formation; and 10 (d) a processor for determining which determines from said temporal transient 11 signal a resistivity of said earth formation. 12 2. (previously presented) The apparatus of claim 1, wherein said damping portion 1 2 further comprises at least one cut in said damping portion of said conducting 3 tubular. 4 3. (original) The apparatus of claim 2, wherein a non-conductive material is 1 2 disposed within said cut. 3 4. (currently amended) The apparatus of claim 1, wherein said damping portion 1 2 further comprises comprises:

}		(i)	a first segment having a cut, and
1		(ii)	a second segment with non-conductive material positioned on an outer
		(II)	
5			face of said segment.
5			
	5.	(origi	nal) The apparatus of claim 1, wherein said damping portion further
2		comp	rises a segment of pipe with a non-conductive material positioned on an
3		outer	face of said segment.
į.			
Į	6.	(previ	iously presented) The apparatus of claim 1 wherein said damping portion
2		comp	rises a ferrite.
3			
l	7.	(previ	iously presented) The apparatus of claim 1 wherein said damping portion
2		comp	rises a material with low magnetostriction.
3			
l	8.	(curre	ently amended) The apparatus of claim 1, wherein said at least one
2		transı	nitter further comprises at least one coil oriented so as to induce a magnetic
3		mome	ent in one of (i) a longitudinal direction parallel to an axis of said tubular,
1		and, ((ii) a direction inclined to said longitudinal axis.
5			
ì	9.	(prev	iously presented) The apparatus of claim 1, wherein said at least one receive
2		furthe	er comprises at least one coil having an orientation selected from (i) parallel
3		to an	axis of said tubular, and, (ii) inclined to an axis of said tubular.
4			

1	10.	(previously presented) The apparatus of claim 2 wherein said cut comprises a
2		longitudinal cut.
3		·
1	11.	(previously presented The apparatus of claim 2 wherein said cut comprises a
2		transverse cut.
3		
1	12.	(currently amended) The apparatus of claim 1 further comprising a device for
2		extending which extends said borehole.
3		
1	13.	(original) The apparatus of claim 1 wherein said processor further determines a
2		distance to a bed boundary in said earth formation.
3		
1	14.	(currently amended) A method of drilling an earth formation comprising:
2		(a) conveying a bottom hole assembly (BHA) into said earth formation, said
3		BHA including a tubular having a damping portion for reducing a flow of
4		eddy currents;
5		(b) using at least one transmitter on said tubular for producing an
6		electromagnetic field in the earth formation;
7		(c) using at least one receiver on said tubular for receiving a temporal
8		transient signal resulting from interaction of said first signal
9		electromagnetic field with said earth formation; and
10		(d) determining from said tomporal transient signal said a resistivity of said
11		earth formation.

1	2

1 15. (original) The method of claim 14, wherein said damping portion further

2 comprises at least one cut.

3

1 16. (original) The method of claim 15, wherein a non-conductive material is disposed

2 within said cut.

3

1 17. (currently amended) The method of claim 14, wherein said damping portion

2 further eemprises-comprises:

3 (i) a first segment having a cut, and

4 (ii) a second segment with non-conductive material positioned on an outer

5 face of said segment.

6

1

2

18. (original) The method of claim 14, wherein said damping portion further

comprises a segment of pipe with a non-conductive material positioned on an

3 outer face of said segment.

4

1 19. (original) The method of claim 18 further comprising using a ferrite for said non-

2 conductive material.

3

1 20. (original) The method of claim 18 further comprising using a material with low

2 magnetostriction for said non-conductive material.

3

1	21.	(currently amended) The method of claim 14, wherein said at least one transmitter
2		further comprises at least one coil oriented so as to induce a magnetic moment in
3		one of (i) a longitudinal direction parallel to an axis of said tubular, and, (ii) a
4		direction inclined to said longitudinal axis.
5		
1	22.	(previously presented) The method of claim 14, wherein said at least one receiver
2		further comprises at least one coil having an orientation selected from (i) parallel
3		to an axis of said tubular, and, (ii) inclined to an axis of said tubular.
4		
1	23.	(previously presented) The method of claim 15 wherein said cut comprises a
2		longitudinal cut.
3		·
1	24.	(previously presented) The method of claim 15 wherein said cut comprises a
2		transverse cut.
3		
1	25.	(original) The method of claim 14 further comprising using a device on said BHA
2		for extending said borehole.
3		
1	26.	(original) The method of claim 14 further comprising determining a distance to ar
2		interface in said earth formation.
3		
1	27.	(original) The method of claim 25 wherein (a) - (d) are carried out during
2		continuing rotation of said BHA.

31 28.

28. (original) The method of claim 26 further comprising using said determined

2 distance for controlling a drilling depth of said BHA.

3

1 29. (original) The method of claim 26 wherein said interface comprises a bed

2 boundary.

3

1 30. (original) The method of claim 26 wherein said interface comprises a fluid

2 interface.

3

1 31. (previously presented) The apparatus of claim 1 wherein said at least one

2 transmitter and said at least one receiver are positioned on said conducting tubular

3 on opposite sides of said damping portion.

4

1 32. (previously presented) The method of claim 14 further comprising positioning

2 said at least one transmitter and said at least one receiver on opposite sides of said

3 damping portion.

4