PHYS121 Notes

Yash Thakur

Contents

1. Chapter 1	3
1.1. Distance vs Displacement	
1.2. Significant figures	
2. Chapter 2	4
2.1. Uniform Motion	4
2.2. Instantaneous Velocity	4
2.3. Acceleration	4
3. Chapter 3	5
3.1. Vectors	5
3.2. Projectile Motion	5
3.3. Circular Motion	5
3.4. Relative Velocity	5
4. Chapter 4	6
4.1. Motion and Forces	6
5. Chapter 5	
6. Chapter 6	8
6.1. Uniform Circular Motion	8
6.2. Dynamics of Uniform Circular Motion	8
6.3. Apparent Forces in Circular Motion}	
6.4. Circular Orbits and Weightlessness	8
6.5. Newton's Law of Gravity	8
6.6. Gravity and Orbits	8
7. Chapter 7	
7.1. Describing Circular and Rotational Motion	9
7.2. The Rotation of a Rigid Body	
7.3. Torque	
7.4. Gravitational Torque and the Center of Gravity	
7.5. Rotational Dynamics and Moment of Inertia	
7.5.1. Relationship between torque and angular acc	
7.5.2. Newton's Second Law for Rotational Motion	
8. Chapter 8: Equilibrium and Elasticity	
8.1. Torque and Static Equilibrium	
8.1.1. Choosing the Pivot Point	
8.2. Forces and Torques in the Body	
8.2.1. Mechanical Advantage	
8.3. Stability and Balance	
8.4. Springs and Hooke's Law	
8.5. Stretching and Compressing Materials	
8.5.1. Beyond the Elastic Limit	
9. Chapter 9: Momentum	
9.1. Impulse and Momentum	
9.2. Conservation of Momentum	
9.3. Explosions	
*	

9.4. Inelastic Collisions	15
9.5. Angular Momentum	15
9.5.1. Varying Moment of Inertia	15
10. Chapter 10: Energy and Work	16
10.1. The Basic Energy Model	16
10.1.1. Energy Transfers and Work	
10.1.2. Law of Conservation of Energy	16
10.2. Work	
10.2.1. Kinetic Energy	16
10.3. Potential Energy	
10.3.1. Gravitational Potential Energy	16
10.3.2. Elastic Potential Energy	
10.4. Conservation of Energy	17
10.5. Energy Diagrams	17
10.6. Power	17
11. Chapter 11: Using Energy	
11.1. Efficiency	
11.2. Energy in the Body	
11.3. Temperature, Thermal Energy, and Heat	
11.3.1.1. An Atomic Model of Heat	
11.4. The First Law of Thermodynamics	
11.4.1. Energy-Transfer Diagrams	
11.5. Heat Engines	
11.6. Heat Pumps	
11.6.1. Heat Pumps for Cooling	
11.6.2. Heat Pumps for Heating	
12. Chapter 12: Thermal Properties of Matter	
12.1. The Atomic Model of Matter	
12.1.1.1. Atomic Mass and Atomic Mass Number	
12.1.1.2. Moles	
12.1.2. Pressure	
12.2. Ideal Gas Law	
12.3. Ideal Gas Processes	
12.3.1. pV Diagrams	
12.3.2. Constant-Volume Processes	
12.3.3. Constant-Pressure Processes	
12.3.4. Constant-Temperature Processes	
12.3.5. Thermodynamics of Ideal-Gas Processes	
12.3.6. Adiabatic Processes	
12.4. Specific Heat and Heat of Transformation	
12.4.1. Phase Changes	
12.4.2. Heat of Transformation	
12.4.3. Evaporation	26

1.1. Distance vs Displacement

- Distance is an absolute value, how much you travelled
- Displacement is $\Delta x = \text{end} \text{start}$
 - Path doesn't matter
 - Vector quantity

1.2. Significant figures

- When multiplying or dividing, whichever operand had fewer significant figures, that's how many significant figures the result has
 - e.g. $3.73 \cdot 5.7 = 21$ (5.7 has 2 sig figs, so 21 does too)
- When adding or subtracting, whichever operand had the fewest decimal places, that's how many decimal places the result will have
 - e.g. 16.7 + 5.24 = 21.94 = 21.9 (16.7 has 1 decimal place, so the result does too)

2.1. Uniform Motion

Uniform motion (aka constant-velocity motion) is straight-line motion with equal displacements during anys uccessive equal-time intervals

An object's motion is uniform iff the position vs time graph is a straight line.

Some equations:

$$v_x = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

$$x_f = x_i + v_x \Delta t$$

$$\Delta x = v_x \Delta t$$

2.2. Instantaneous Velocity

Speed and direction at a specific instant of time t

2.3. Acceleration

$$\begin{split} a_x &= \frac{\Delta v_x}{\Delta t} = \frac{v_{x_f} - v_{x_i}}{\Delta t} \\ v_{x_f} &= v_{x_i} + a_x \Delta t \\ x_f &= x_i + v_{x_i} \Delta t + \frac{1}{2} a_x \Delta t^2 \\ \left(v_{x_f}\right)^2 &= \left(v_{x_i}\right)^2 + 2 a_x \Delta x \end{split}$$

3.1. Vectors

• $A_x = A\cos(\theta)$ and $A_y = A\sin(\theta)$ $\theta = \tan^{-1}\left(\frac{A_y}{A_x}\right)$

3.2. Projectile Motion

Projectile An object that moves in 2 dimensions under the influence of gravity and nothing else **Launch angle** Angle of the initial velocity above the horizontal (x-axis)

Range The range of aprojectile is the horizontal distance travelled

- Horizontal direction has uniform motion
- Vertical direction has free-fall motion
- For smaller objects, air resistance is critical
 - Maximum range comes at an angle less than 45°

3.3. Circular Motion

Centripetal acceleration Acceleration pointing towards the center of a circle

 $\frac{\Delta v}{v} = \frac{d}{r}$, where d is displacement

Centripetal acceleration is $a = \frac{v^2}{r}$, towards the center of the circle

3.4. Relative Velocity

???

4.1. Motion and Forces

Newton's first law An object willre main at rest or continue moving in a straight line at the same speed unless it has forces acting on it

Contact forces Forces that act on an object by touching it **Long-range forces** Forces that act on an object without physical contact

Examples of forces:

• Weight (\vec{w})

6.1. Uniform Circular Motion

Speed is constant but not velocity, because direction is constantly changing.

Centripetal acceleration for uniform circular motion: $a=\frac{v^2}{r}=\left(\frac{2\pi}{T}\right)^2\!r$

Period: Time taken to go around circle one time.

Frequency: Number of revolutions per second: $f = \frac{1}{T}$ (unit is \mathbf{s}^{-1})

Angular velocity: $\omega = 2\pi f$

Speed: Time taken to make one revolution: $v = \frac{2\pi r}{T} = (2\pi f r) = r\omega$

6.2. Dynamics of Uniform Circular Motion

Net force producing the centripetal acceleration of uniform circular motion: $\hat{F}_{\rm net}=m\hat{a}$ (towards the center of the circle)

When a car turns in an *unbanked* (horizontal/level) circle, static friction is the force that causes centripetal acceleration.

When a car turns in a *banked* circle, normal force is the force that causes centripetal acceleration instead.

6.3. Apparent Forces in Circular Motion}

Apparent weight equals normal force.

Critical speed: v_c is the speed for which $\hat{n} = 0$.

For roller coaster, $v_c = \sqrt{gr}$

The critical speed is the slowest speed at which the car can complete a roller coaster circle.

6.4. Circular Orbits and Weightlessness

Orbit: If the launch speed of a projectile is sufficiently large, there comes a point at which the curve of the trajectory and the curve of the Earth are parallel. Such a **closed trajectory** is called an orbit.

8

An orbiting projectile is in free fall.

 $v_{\rm orbit} = \sqrt{gr}$ - satellites need to maintain this speed to avoid falling into the planet.

6.5. Newton's Law of Gravity

$$F_g = \frac{Gm_1m_2}{r^2}$$

Gravitational constant: $G = 6.67 \times 10^{-11} \frac{\mathrm{Nm^2}}{\mathrm{ke^2}}$

$$g_{ ext{planet}} = rac{GM_{ ext{planet}}}{R_{ ext{planet}}^2}$$

6.6. Gravity and Orbits

7.1. Describing Circular and Rotational Motion

Rotational motion Motion of objects that spin about an axis.

Angular position θ is angular position of particle when measured counterclockwise from positive x-axis. Uses radians.

Arc length The arc length $s=r\theta$ is the distance a particle has traveled along its circular path.

Angular velocity
$$\omega = \frac{\Delta \theta}{t}$$

Every point on a rotating body has the same angular velocity.

Relationship between speed and angular speed: $v = \omega r$

Angular acceleration
$$\alpha = \frac{\Delta \omega}{t}$$
 (units are $\frac{\text{rad}}{\text{s}^2}$)

 $\Delta\theta=\omega_0t+\frac{1}{2}\alpha t^2,$ just like with linear motion with constant acceleration.

Distance: $S = r\Theta$

7.2. The Rotation of a Rigid Body

Rigid body An extended object whose shape and size do not change as it moves.

7.3. Torque

The ability of a force to cause rotation depends on:

- The magnitude F of the force
- The distance r from the pivot to the point at which force is applied
- The angle at which the force is applied

Equation for torque $\tau = rF_{\perp} = rF\sin\varphi$ (units: N · m).

 φ is measured from the radial line to the direction of the force.

Radial line Line starting at the pivot and going through the point where force is applied.

Line of action Line that is in the direction of the force and passes through the point at which the force acts.

Moment arm/lever arm Perpendicular distance from line of action to pivot.

Alternative equation for torque $\tau = r_{\perp}F$

7.4. Gravitational Torque and the Center of Gravity

Every particle in an object experiences torque due to the force of gravity. The gravitational torque can be calculated by assuming that the net force of gravity (the object's weight) acts as a single point. This single point is the **center of gravity**.

7.5. Rotational Dynamics and Moment of Inertia

7.5.1. Relationship between torque and angular acceleration

Torque causes angular acceleration.

The tangential acceleration is $a_t = \frac{F}{m}$

Tangential and angular acceleration are related by $a_t=\alpha r$, so we can rewrite equation as $\alpha=\frac{F}{mr}$

We can connect this angular acceleration to torque: $\tau=rF$

Relationship between torque and angular acceleration: $\alpha = \frac{\tau}{mr^2}$

7.5.2. Newton's Second Law for Rotational Motion

For a rigid body rotating about fixed axis, can think of object as consisting of multiple particles. Can calculate torque on each particle.

Each particle has the same angular acceleration because the object rotates together.

Net torque:

$$\tau_{\rm net} = \tau_1 + \tau_2 + \ldots = m_1 r_1^2 \alpha + m_2 r_2^2 \alpha + \ldots = \alpha \sum m_i r_i^2$$

Moment of Inertia (*I*) The proportionality constant between angular acceleration and net torque. Units are $kg \cdot m^2$

$$I = \sum m_i r_i^2$$

Moment of inertia **depends on axis of rotation**. It depends on how the mass is distributed around rotation axis, not just how much mass there is.

The moment of inertia is the rotational equivalent of mass, i.e., $F_{\rm net}=ma, au_{\rm net}=I\alpha$

Newton's second law for rotation An object that experiences a net torque τ_{net} about the axis of rotation undergoes an angular acceleration of:

$$lpha = rac{ au_{
m net}}{I}$$

8. Chapter 8: Equilibrium and Elasticity

8.1. Torque and Static Equilibrium

An object at rest is in **static equilibrium**.

As long as the object can be modeled as a particle, static equilibrium is achieved when the net force on the particle is 0.

However, for extended objects that can rotate, we need to also consider torque: the object is only in static equilibrium if **both net force** *and* **net torque** are 0.

8.1.1. Choosing the Pivot Point

For an object in static equilibrium, the net torque about **every point** must be 0.

You can choose *any* point as a pivot point for calculating torque.

Natural axis: Axis about which rotation would occur if the object were not in static equilibrium.

8.2. Forces and Torques in the Body

8.2.1. Mechanical Advantage

If a nutcracker applies 3 times as much force to the nut as the force applied by the hand, it has a mechanical advantage of 3.

8.3. Stability and Balance

An extended object has a **base of support** on which it rests when in static equilibrium.

A wider base of support and/or a lower center of gravity improves stability.

As long as the object's center of gravity remains over the base of support, torque due to gravity will rotate the object back towards its stable equilibrium position. The object is **stable**.

If the object's center of gravity moves outside the base of support, it is **unstable**.

Critical angle Angle where center of gravity is directly above pivot.

$$\theta_c = \tan^{-1} \left(\frac{\frac{1}{2}t}{h} \right)$$

8.4. Springs and Hooke's Law

Restoring force Force that restores system to an equilibrium position

Elastic systems Systems that exhibit restoring forces, e.g. springs and rubber bands

Spring constant k, units: N/m

Spring force: $F_{\rm spring} = -k\Delta x$ (Hooke's Law)

8.5. Stretching and Compressing Materials

Most solid materials can be modeled as being made up of particle-like atoms connected by spring-like bonds.

Pulling on a steel rod will slightly stretch the bonds between particles and the rod will stretch.

Rigid Rigid materials only experience small changes in dimension under normal forces (e.g., steel)Pliant Pliant materials can be stretched easily or show large deformations with small forces (e.g., rubber bands)

For a rod, the spring constant depends on the cross-sectional area A, the length of the rod L, and the material from which it is made:

$$k = \frac{YA}{L}$$

Young's modulus (Y) The constant Y is a property of the material from which the rod is made (higher for stronger materials). Units are N/m^2

The restoring force can be written in terms of the change in length ΔL :

$$F = \frac{YA}{L}\Delta L$$

Useful to rearrange this to put in terms of **stress** and **strain**:

$$\frac{F}{A} = Y\left(\frac{\Delta L}{L}\right)$$

Strain Strain is $\frac{\Delta L}{L}$ (unitless)

Stress Stress is $\frac{F}{A}$, units are N/m²

Tensile stress Stress due to stretching

8.5.1. Beyond the Elastic Limit

As long as the stretch stays within the **linear region**, a solid rod acts like a spring and obeys Hooke's law.

Elastic limit The end of the elastic region.

As long as the stretch is less than the elastic limit, the rod returns to its initial length when force is removed.

Ultimate stress/tensile strength The ultimate stress/tensile strength of a rod or cable of a particular material is the largest stress the material can take before breaking (A is cross-section area):

$$\text{Tensile strength} = \frac{F_{\text{max}}}{A}$$

9. Chapter 9: Momentum

9.1. Impulse and Momentum

Collision Short-duration interaction between two objects.

During a collision, it takes time to compress the object, and it takes time for the object to re-expand.

The duration of a collision depends on the materials.

Impulse force A large force exerted during a short interval of time

The effect of an impulsive force is proportional to the area under the force vs time curve

Impulse The area under a force vs time curve (integral of force with respect to time?)

It's a vector quantity pointing in the same direction as the average force (units of $N \cdot s$):

$$\vec{J} = \vec{F}_{\mathrm{avg}} \Delta t$$

Momentum Product of mass and velocity: $\vec{p} = m\vec{v}$

Impulse-momentum theorem

Impulse is change in momentum:

$$\vec{J} = \Delta \vec{p}$$

Total momentum (\vec{P}) Sum of momenta of all particles in system

The impulse approximation states that we can ignore the small forces that act during the brief time of the impulsive force (only consider momenta and velocities immediately before and immediately after collision).

9.2. Conservation of Momentum

i Law of conservation of momentum

The total momentum of the system is conserved as long as there are no external forces.

 $\vec{F}_{\rm net}$ is the net force due to external forces.

If $\vec{F}_{\text{net}} = \vec{0}$, the total momentum does not change.

Isolated system System with no net external force acting on it, leaving the momentum unchanged.

9.3. Explosions

Explosion When the particles of a system move apart after a brief, intense interaction (opposite of collision)

The forces in an explosion are **internal** forces, so if the system is isolated, the total momentum is 0

9.4. Inelastic Collisions

Perfectly inelastic collision Two objects stick together and move with common final velocity (e.g. clay hitting the floor)

Perfectly elastic collision Mechanical energy is conserved

Info

Although momentum is conserved in all collisions, mechanical energy is only conserved in a perfectly elastic collision.

In an inelastic collision, some mechanical energy is converted to thermal energy.

9.5. Angular Momentum

Angular momentum (*L*) Analogue of linear momentum for circular motion, since linear momentum is not conserved for spinning objects $(kg \cdot m^2/s)$

$$L = I\omega$$

Can be written like the linear impulse-momentum equation:

$$\tau_{\rm net} \Delta t = \Delta L$$

9.5.1. Varying Moment of Inertia

Unlike linear momentum, an isolated, rotating object can change its angular velocity

Moment of inertia can change because the distribution of mass can change

10. Chapter 10: Energy and Work

10.1. The Basic Energy Model

Every system has a total energy E

10.1.1. Energy Transfers and Work

Energy can be transferred between a system and its environment through work and heat

Work Mechanical transfer of energy to or from a system by pushing or pulling on it

Heat Nonmechanical transfer of energy between system and environment due to temperature difference between the two

Work is change in total energy:

$$W = \Delta E$$

Work is positive when energy transferred into system and negative when energy transferred out of system

Isolated system No energy transferred into or out of system

10.1.2. Law of Conservation of Energy

The total energy of an isolated system remains constant

10.2. Work

Work is done on a system by external forces

$$W = Fd$$

Work is a **scalar** even though force and displacement are vectors

Units of work are J (joules), same as energy

A force does no work on an object if the object undergoes no displacement (or the force is perpendicular to the displacement)

10.2.1. Kinetic Energy

Translational kinetic energy Energy of motion in a line

$$K = \frac{1}{2}mv^2$$

Rotational kinetic energy Way of expressing sum of kinetic energy of all parts of a rotating object. Moment of inertia takes place of mass and angular velocity takes place of linear velocity.

$$K_{
m rot} = rac{1}{2}I\omega^2$$

10.3. Potential Energy

Conservative forces Forces that can store useful energy, e.g. gravity, elastic forces **Nonconservative forces** Forces that can't store useful energy, e.g. friction

10.3.1. Gravitational Potential Energy

$$U_{\sigma} = mgh$$

Only the height (h) matters, not the path the object took to get there

10.3.2. Elastic Potential Energy

$$U_{\rm s} = \frac{1}{2}kx^2$$

10.4. Conservation of Energy

In an isolated system, W=0

Carefully choose an isolated system to solve problems in

10.5. Energy Diagrams

Energy diagrams graph potential energy as a function of position

- Free fall energy diagrams are linear graphs of gravitational potential energy
- A spring's energy diagram is a parabola showing spring potential energy

Free Fall

Horizontal Spring

- The distance from the axis to the PE line is the potential energy
- The distance from the PE line to the energy line E is the kinetic energy
- The object cannot be at a position where the PE curve is above the E line (because E is total energy)
- A position where the E line crosses the PE curve is a turning point where the object reverses direction
- If the E line crosses the PE curve at two positions, the object will oscillate between those two positions
- Speed will be at a maximum where the PE curve is a minimum (because that's where KE is at a maximum)

10.6. Power

Power Rate at which energy is transformed or transferred (scalar), measured in watts (W)

$$P = \frac{\Delta E}{\Delta t} = \frac{W}{\Delta t}$$

Output power A force doing work transfers energy, and the rate at which the force transfers energy is called output power

$$P = Fv$$

where P is F's output power, and v is the velocity of the object that F is acting on

11. Chapter 11: Using Energy

11.1. Efficiency

Efficiency [What you get] divided by [what you had to pay]

Two reasons for reductions in energy:

- **Process limitations**, which cause energy loss due to practical reasons. You can design better, more efficient process
- Fundamental limitations, which cause energy loss due to physical laws that can't be circumvented

11.2. Energy in the Body

Hopefully this won't be on the exam because it's pretty boring stuff

11.3. Temperature, Thermal Energy, and Heat

Temperature Average energy of atoms in an object **Thermal energy** Total energy of atoms in an object

Kelvin scale (K):

- 0 degrees is where kinetic energy of the atoms is 0
- Since kinetic energy always positive, 0 K is an absolute zero
- Often called the absolute temperature scale
- Spacing between degrees is same as Celsius
- Absolute zero is about −273°C

Heat Energy transferred between two objects because of a temperature difference between them

Heat (Q) always flows from the hotter object to the cooler one

11.3.1.1. An Atomic Model of Heat

- Thermal energy is transferred from the faster moving atoms on the warmer side to the slower moving atoms on the cooler side
- Transfer is due to collisions in the middle

• Transfer will continue until **thermal equilibrium** reached (final temperatures same)

11.4. The First Law of Thermodynamics

Heat is positive when heat is transferred into a system

Thermodynamics is about systems that are not moving and are not changing chemically, but whose temperatures can change

4

First Law of Thermodynamics

For systems in which only thermal energy changes, the change in thermal energy is equal to the energy transferred into or out of the system as work W, heat Q, or both:

$$\Delta E_{\rm th} = W + Q$$

11.4.1. Energy-Transfer Diagrams

Energy reservoir An object or a part of the environment so large that that its temperature doesn't noticeably change when heat is transferred between the system and the reservoir, e.g., a block of ice.

Hot reservoir A reservoir at higher temperatures $(T_{\rm H})$

Cold reservoir A reservoir at higher temperatures (T_C)

 $Q_{
m H}$ and $Q_{
m C}$ are the amount of heat transferred from or to a hot and cold reservoir, respectively

By definition, they are **positive quantities**

In energy-transfer diagrams, the hot reservoir is drawn at the top and the cold reservoir at the bottom.

The "pipes" connect the reservoir and system and show the energy transfers.

Spontaneous transfers only ever go from hot to cold, never from cold to hot

11.5. Heat Engines

Heat engine As thermal energy is naturally transferred from a hot reservoir to a cold reservoir, a heat engine takes some of that energy and converts it to other forms.

The heat engine does some useful work $W_{\rm out}$ and the rest is waste heat that goes to the cold reservoir.

$$W_{\text{out}} = Q_{\text{H}} - Q_{\text{C}}$$

Heat engine's efficiency:

$$e = \frac{\text{what you get}}{\text{what you had to pay}} = \frac{W_{\text{out}}}{Q_{\text{H}}} = \frac{Q_{\text{H}} - Q_{\text{C}}}{Q_{\text{H}}}$$

No heat engine can operate without exhausting some fraction of the heat into a cold reservoir. This is a fundamental law of nature.

The max efficiency is given by the second law of thermodynamics:

Second Law of Thermodynamics

$$e_{\rm max} = 1 - \frac{T_{\rm C}}{T_{\rm H}}$$

where $T_{\rm C}$ and $T_{\rm H}$ are the temperatures of the cold and hot reservoirs, respectively, in Kelvin

11.6. Heat Pumps

Heat pump Heat pumps transfer energy from cold reservoir to hot reservoir (usually used for cooling by transferring heat elsewhere)

For heat pumps, use **coefficient of performance (COP)** instead of efficiency:

$$COP = \frac{\text{what you get}}{\text{what you had to pay}}$$

A larger COP means a more efficient heat pump.

11.6.1. Heat Pumps for Cooling

If we use the heat pump for cooling, COP defined as

$$\mathrm{COP} = \frac{\mathrm{energy\ removed\ from\ cold\ reservoir}}{\mathrm{work\ required\ to\ perform\ transfer}} = \frac{Q_\mathrm{C}}{W_\mathrm{in}}$$

Theoretical maximum COP of a heat pump used for cooling:

$$\mathrm{COP}_{\mathrm{max}} = \frac{T_{\mathrm{C}}}{T_{\mathrm{H}} - T_{\mathrm{C}}}$$

11.6.2. Heat Pumps for Heating

If we use the heat pump for heating, COP defined as

$$\mathrm{COP} = \frac{\mathrm{energy~added~to~hot~reservoir}}{\mathrm{work~required~to~perform~transfer}} = \frac{Q_\mathrm{H}}{W_\mathrm{in}}$$

Theoretical maximum COP of a heat pump used for heating:

$$\mathrm{COP}_{\mathrm{max}} = \frac{T_{\mathrm{H}}}{T_{\mathrm{H}} - T_{\mathrm{C}}}$$

12. Chapter 12: Thermal Properties of Matter

12.1. The Atomic Model of Matter

Gas System in which each particle moves freely through space until it occasionally collides with another particle or the wall

Liquid Weak bonds permit motion while keeping the particles close together

Solid Particles are connected by stiff spring-like bonds. Solids have a definite shape and can be compressed only slightly

12.1.1.1. Atomic Mass and Atomic Mass Number

Atomic mass number A is the sum of the number of protons and neutrons in an atom

Atomic mass The atomic mass scale is established by defining the mass of Carbon-12 to be exactly 12 u

Atomic mass unit $1u = 1.66 \times 10^{-27}$

Molecular mass Sum of the atomic masses of the atoms that form the molecule

12.1.1.2. Moles

Mole 1 mole (abbr. mol) is 6.02×10^{23} basic particles

This is **Avogadro's number** (N_A) . N_A has units mol^{-1}

The number n of moles in a substance containing N basic particles is $\frac{N}{N_A}$

The basic particle depends on the substance:

- Monatomic gas means that the basic particles are atoms, e.g., helium
- Diatomic gas means that the basic particle is a two-atom diatomic molecule, e.g., ${\rm O}_2$

Molar mass $\,$ Molar mass $(M_{\rm mol})$ is mass in grams of 1 mol of substance:

$$n = \frac{M \text{ (in grams)}}{M_{\text{mol}}}$$

12.1.2. Pressure

- Particles in a gas move around in a container, they sometimes bounce off the walls, creating a force on the walls
- The collisions with the wall create a force perpendicular to the wall

Pressure The pressure of a gas is the ratio of the force to the area

$$p = \frac{F}{A}$$

SI unit for pressure is pascal (Pa), equal to $\frac{N}{m^2}$

Standard atmosphere Pressure from atmosphere at sea level: 1 atm = 101,300 Pa = 14.7 psi

The net pressure force is exterted only **where there is a pressure difference** between the two sides of a surface

$$F_{\mathrm{net}}=F_2-F_1=p_2A-p_1A=A(p_2-p_1)=A\Delta p$$

 Δp is gauge pressure

Vacuum Enclosed space with $p \ll 1$ atm

Perfect vacuum Vacuum with p = 0 Pa, but impossible to remove every molecule

Absolute pressure $p = \frac{F}{A}$

Gauge pressure p_g is the difference between the absolute pressure and the atmospheric pressure

12.2. Ideal Gas Law

Version with N as number of molecules:

$$pV = Nk_{\rm B}T$$

Version with n as number of moles:

$$pV = nRT$$

- *p* is absolute pressure
- V is volume of sample (m^3)
- ullet n is number of moles in the sample/container of gas
- R is gas constant $(R = N_A k_B = 8.31 \frac{J}{\text{mol}} \cdot \text{K})$
- T is temperature in Kelvin

12.3. Ideal Gas Processes

Ideal gas processes have the following properties:

- · Quantity of gas is fixed
- Well-defined initial state. Initial values of pressure, volume, and temperature written as p_i , V_i , T_i
- Well-defined final state where pressure, volume, and temperature are p_f, V_f , and T_f

Initial and final states related by:

$$\frac{p_f V_f}{T_f} = \frac{p_i V_i}{T_i}$$

p and V can be in any units since they appear on both sides, but T must be in Kelvin since it needs to start at 0.

12.3.1. pV Diagrams

In a pV diagram, each point on the graph represents a single, unique state of the gas

Assuming that n is known for a sealed container, we can find T from the ideal-gas law since we know p and V

TODO insert images

12.3.2. Constant-Volume Processes

Isochoric An isochoric process is a **constant-volume process**

Warming a gas will raise its pressure without changing its volume. This is an example of a constant-volume process

A constant-volume process appears on a pV diagram as a vertical line.

12.3.3. Constant-Pressure Processes

Isobaric An isobaric process is a constant-pressure process

A constant-pressure process appears on a pV diagram as a horizontal line.

TODO insert image of piston

12.3.4. Constant-Temperature Processes

Isothermal An isothermal process is a **constant-temperature process**

TODO insert image of piston (the other one)

Isotherm A graph of an isothermal process

The location of the isotherm depends on temperature. The direction along the isotherm depends on the process.

TODO insert image of pV diagram example

12.3.5. Thermodynamics of Ideal-Gas Processes

- · Heat and work are just two different ways to add energy to a system
- When gases expand, they do work on the piston
- If the gas expands under constant pressure, pushing the piston (with area A) from x_i to x_f , then the work done is:

à

Work done by a gas in a constant-pressure process

$$W_{\mathrm{gas}} = F_{\mathrm{gas}} d = (pA) \big(x_f - x_i \big) = p \big(x_f A - x_i A \big) = p \big(V_f - V_i \big) = p \Delta V$$

To calculate work, pressure must be in Pa and volume in m^3

 $x_i A$ is the initial volume and $x_f A$ is the final volume

For all ideal-gas processes, the work is the area under the pV graph between V_i and V_f : TODO: insert image of work done by gas

i Info

No work is done in a constant-volume process.

12.3.6. Adiabatic Processes

Adiabatic processes Processes where heat is not transferred, i.e., Q=0

An adiabatic expansion lowers the temperature of a gas

- Expansion means the gas does the work
- This means work is negative
- So $\Delta E_{
 m thermal}$ is negative
- Thus, temperature decreases

An adiabatic compression raises the temperature of a gas

Adiabatic processes allow you to use work rather than heat to change temperature of the gas

12.4. Specific Heat and Heat of Transformation

Specific heat The specific heat (c) of a substance is the amount of heat that raises the temperature of 1 kg of that substance by 1 K

Heat needed to produce a temperature change T for mass M with specific heat c:

$$Q = Mc\Delta T$$

Substances with large c, like water, are slow to warm up and cool down. Described as having a large thermal inertia.

12.4.1. Phase Changes

Melting point Temperature at which solid becomes liquid

Freezing point Temperature at which liquid becomes solid

Condensation point Temperature at which gas becomes liquid

Boiling point Temperature at which liquid becomes gas

Phase changes Melting and freezing are phase changes

Phase equilibrium A system at the melting point is in phase equilibrium

12.4.2. Heat of Transformation

A phase change is characterized by a change in thermal energy without a change in temperature

Heat of transformation L is the amount of heat energy that causes 1 kg of a substance to undergo a phase change

Heat of fusion L_f is the heat of transformation between a solid and a liquid

Heat of vaporization L_v is the heat of transformation between a liquid and a gas

Heat needed to melt/freeze mass M: $Q=\pm ML_f$ Heat needed to boil/condense mass M: $Q=\pm ML_v$

12.4.3. Evaporation

Evaporation Process of some molecules moving from liquid to gas phase at temperatures lower than boiling point

At any temperature, some of the molecules are moving fast enough to go into the gas phase, carrying away thermal energy and reducing the average kinetic energy (temperature) of the liquid