Introduction to Cryptography and Information Security UEE4611, Spring Semester 20**20**

Ching-Yi Lai Institute of Communications Engineering National Chiao Tung University

Chapter 7: Block Cipher Operation

- Multiple Encryption and Triple DES
- Electronic Codebook
- Cipher Block Chaining Mode
- Cipher Feedback Mode
- Output Feedback Mode
- Counter Mode
- XTS-AES Mode for Block-Oriented Storage Devices
- Format-Preserving Encryption

Mattsple Encryption & Triple DES (data encryption) DES: Soils * Soils - Soils Standard) Key: 56 bits. 256 = 1,2 ×1016.

key: 56 bits. $2^{56} = 7.2 \times 10^{16}$.

Suffer to brute force attack today.

Double Encryption

$$K_1 K_2 K_3 K_4 K_5 K_5$$
 $M \longrightarrow E C$
 $C = E (E(M, K_1), K_2) \stackrel{?}{=} E(M, K_3)$
 $C \longrightarrow D D M$
 $M = D (D C, K_2), K_1$
 $K_2 k_3 k_4$
 $K_3 k_5 k_6$
 $K_4 k_5 k_6$
 $K_5 k_6$
 $K_5 k_6$
 $K_5 k_6$
 $K_7 k_7 k_8$
 $K_7 k_8$

Not equivalent to a single-stage DES. [CAMP 92].

Moet in the Middle Attack
Given a pair (M,C) , $C = E(E(M,K_1),K_2)$ try to find the unknown tegs K_1,K_2 .
try to find the unknown keys Kirks.
1. Construct a table with E(M, K) TRESON
o o + + a table with 1/C/K) TRESULT
$\mathcal{O}(2^{36})$
If a match occurs, then text the two
3. If a match occurs, then text the two resulting keys againsts a new known
If the two keys produce the correct ciphertext,
accept them as the correct region.
Given a plaintent M, there are 24 possible ciphertent There are 212 teys. Thus 2/264 keys may produce the same plaintent—ciphertent pair, but only one of them is the correct pair.
There are 2 teys: Thus 2/264 keys may
produce the same plantact-ciphertext pair, but only
one of them is the correct pair.

The additional known plaintaxt-ciphortext can reduce the false alarm rate to 2/4 = 2.

The probability that the correct keys are determined is $1-2^{16}$.

Triple DES with two keys Ki, Kz. This allows the users of 3DES to decrypt data encrypted by users of the No practical cryptanalytic attack on 3DES

brute fra: 2 ~ 5 x10.

Block cipher 50.13 × 50.13 × 50.13

If we have a plantext longer than b,

if we have a plantext longer than b,

if we have a plantext longer than b,

then encrypt each block using the same tay.

But a number of security issues arise when muttiple blocks of plaintent are encrypted using the same key.

NIST: fre modes of opterations.

Hectioniz Codebook (ECB) $M = M_1 M_2 - M_M \cdot |M_1| = 6.$ The same key 13 used.

Table 3.5 Average Time Required for Exhaustive Key Search

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 109 decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2^{55} ns = 1.125 years	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	$2^{127} \text{ ns} = 5.3 \times 10^{21}$ years	$5.3 \times 10^{17} \text{ years}$
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	$2^{167} \text{ ns} = 5.8 \times 10^{33}$ years	5.8×10^{29} years
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	$2^{191} \text{ ns} = 9.8 \times 10^{40}$ years	9.8×10^{36} years
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	$2^{255} \text{ ns} = 1.8 \times 10^{60}$ years	1.8×10^{56} years
26 characters (permutation)	Monoalphabetic	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \text{ ns} = 6.3 \times 10^9 $ years	6.3×10^6 years

Table 7.1 Block Cipher Modes of Operation

Mode	Description	Typical Application
Electronic Codebook (ECB)	Each block of plaintext bits is encoded independently using the same key.	•Secure transmission of single values (e.g., an encryption key)
Cipher Block Chaining (CBC)	The input to the encryption algorithm is the XOR of the next block of plaintext and the preceding block of ciphertext.	•General-purpose block- oriented transmission •Authentication
Cipher Feedback (CFB)	Input is processed <i>s</i> bits at a time. Preceding ciphertext is used as input to the encryption algorithm to produce pseudorandom output, which is XORed with plaintext to produce next unit of ciphertext.	•General-purpose stream- oriented transmission •Authentication
Output Feedback (OFB)	Similar to CFB, except that the input to the encryption algorithm is the preceding encryption output, and full blocks are used.	•Stream-oriented transmission over noisy channel (e.g., satellite communication)
Counter (CTR)	Each block of plaintext is XORed with an encrypted counter. The counter is incremented for each subsequent block.	•General-purpose block- oriented transmission •Useful for high-speed requirements

