Active Dynamic Vibration Absorber

- It may be noted that Passive Neutralizer eliminates primary response only at a particular frequency.
- Use of active element for example, a hydraulic actuator would increase the advantage
 of tuned mass damping for a broad frequency range.

Here, m_1 denotes the **primary mass** and k_1 the **primary stiffness**. The **damping** of the **primary system** is neglected. The system is subjected to a harmonic excitation $\overline{F}e^{j\omega t}$.

The primary system is **attached** to a secondary system of fixed mass $\mathbf{m_2}$ and stiffness $\mathbf{k_2}$. However, there is an additional spring element with **variable stiffness** ' $\mathbf{k_e}$ ' representative of a hydraulic actuator.

The governing EOM of the two DOF system may be written as

$$m_1\ddot{x_1} + k_1x_1 + k_2(x_1 - x_2) = \bar{F}e^{j\omega t} + k_ex_2$$
 (1)

$$m_2\ddot{x_2} + k_2(x_2 - x_1) = k_e x_2 \tag{2}$$

Using $x_1 = X_1 e^{j\omega t}$ and $x_2 = X_2 e^{j\omega t}$, we get

From equation (2),

$$-\omega^2 m_2 X_2 + k_2 (X_2 - X_1) = -k_e X_2$$

or

$$(k_2 - m_2\omega^2 + k_e)X_2 = k_2X_1$$

or

$$X_2 = \frac{k_2}{k_2 - m_2 \omega^2 + k_e} X_1 \tag{3}$$

$$m_1\ddot{x_1} + k_1x_1 + k_2(x_1 - x_2) = \bar{F}e^{j\omega t} + k_ex_2$$

$$(k_1 - \omega^2 m_1)X_1 + k_2(X_1 - X_2) = \overline{F} + k_e X_2$$

or

$$(k_1+k_2-\omega^2m_1)X_1-(k_2+k_e)X_2=\bar{F}$$

or

$$(k_1 + k_2 - \omega^2 m_1) X_1 - (k_2 + k_e) X_2 = \bar{F}$$

or

$$\left[(k_1 + k_2 - \omega^2 m_1) - \frac{k_2^2 + k_e k_2}{k_2 - \omega^2 m_2 + k_e} \right] X_1 = \overline{F}$$

$$\[\left[(k_1 + k_2 - \omega^2 m_1) - \frac{k_2^2 + k_e k_2}{k_2 - \omega^2 m_2 + k_e} \right] X_1 = \overline{F} \]$$

Thus, when the hydraulic actuator is switched on the active displacement of the primary mass X_{1a} may be written as:

$$X_{1a} = \bar{F} \frac{(k_2 - \omega^2 m_2 + k_e)}{(k_1 + k_2 - \omega^2 m_1)(k_2 - \omega^2 m_2 + k_e) - k_2^2 - k_e k_2}$$

When the hydraulic system is switched off, the passive displacement of the primary mass X_{1p} may be written as:

$$X_{1p} = \bar{F} \frac{(k_2 - \omega^2 m_2)}{(k_1 + k_2 - \omega^2 m_1)(k_2 - \omega^2 m_2) - k_2^2}$$

The ratio of active and passive displacement of the primary mass brings out the efficiency of the new system. Therefore,

$$\frac{X_{1a}}{X_{1p}} = \frac{(k_2 - \omega^2 m_2 + k_e)}{(k_2 - \omega^2 m_2)} \times \frac{(k_1 + k_2 - \omega^2 m_1)(k_2 - \omega^2 m_2) - k_2^2}{(k_1 + k_2 - \omega^2 m_1)(k_2 - \omega^2 m_2 + k_e) - k_2^2 - k_e k_2}$$

$$\frac{X_{1a}}{X_{1p}} = \frac{(k_2 - \omega^2 m_2 + k_e)}{(k_2 - \omega^2 m_2)} \times \frac{(k_1 + k_2 - \omega^2 m_1)(k_2 - \omega^2 m_2) - k_2^2}{(k_1 + k_2 - \omega^2 m_1)(k_2 - \omega^2 m_2 + k_e) - k_2^2 - k_e k_2}$$

For a simple case, use $k_1 = k_2 = k$, $m_1 = m_2 = m$, $\Omega^2 = \frac{\omega^2}{(k/m)}$

$$\frac{X_{1a}}{X_{1p}} = \frac{\left(1 + \frac{ke}{k} - \Omega^2\right)}{1 - \Omega^2} \times \frac{\left(2 - \Omega^2\right)\left(1 - \Omega^2\right) - 1}{\left(2 - \Omega^2\right)\left(1 + \frac{ke}{k} - \Omega^2\right) - 1 - \frac{ke}{k}}$$

As a test case,

for
$$\frac{k_e}{k} = -2$$
, $\frac{X_{1_a}}{X_{1_n}} = \left| \frac{\Omega^6 - 2\Omega^4 - 2\Omega^2 + 1}{\Omega^6 - 2\Omega^4 + 1} \right|$

for
$$\frac{k_e}{k} = +2$$
, $\frac{X_{1_a}}{X_{1_p}} = \left| \frac{\Omega^6 - 6\Omega^4 + 10\Omega^2 - 3}{\Omega^6 - 6\Omega^4 + 8\Omega^2 - 3} \right|$

From these expressions, one can check that the negative feedback system with $k_{\rm e}/k$ = -2 works better for a wider frequency range.

Active DVA

Another Active DVA – **Proof Mass Actuator**

- A Proof mass m_p is connected to a magnetic base with spring k and damper c.
- The proof mass is placed over a solenoid in which magnetic field could be generated by passing current through coils.
- The resistance of the coil is R, inductance L, current passing through the coil is
 i and the proportionality constant corresponding to back EMF is k_b.

What is **back EMF**?

- When device like a refrigerator or an air conditioner (anything with a motor) first turns on in our house, the lights often dim momentarily.
- Because, a motor has coils turning inside magnetic field, and a coil turning inside a magnetic field induces a back emf, which acts against the applied voltage and reduces the current flowing through the coils of the motor.

If the applied voltage is ΔV , then the initial current flowing through a motor with coils of resistance R is:

$$I = \frac{\Delta V}{R}$$
, for example I = 120/6 = 20A

- A device drawing that much current reduces the voltage and current provided to other electrical equipment in your house, causing lights to dim.
- When the motor is spinning and generating a back emf E_b the current is reduced to:

$$I = \frac{\Delta V - E_b}{R}$$
, for example $I = \frac{120 - 108}{6} = 2A$
$$E_b = \frac{PZ}{A} \frac{\emptyset N}{60} = k_b \frac{\emptyset N}{60}$$

Back EMF regulates the flow of armature current i.e., it automatically changes the armature current to meet the load requirement.

P – Number of poles of the machine

 ϕ – Flux per pole in Weber.

Z – Total number of armature conductors.

N – Speed of armature in r.p.m.

A - Number of parallel paths in the armature winding

The EOM are:

$$Ri + L\frac{di}{dt} = V - k_b \dot{x} \tag{1}$$

$$m_p \ddot{x} + k_p x + c_p \dot{x} = k_a i \tag{2}$$

 k_a = Current constant k_p = Proof mass stiffness c_p = Proof mass damping m_p = Proof mass L = inductance k_b = back emf constant

Converting equation (1) into frequency domain using Laplace transform,

$$RI + LsI = \bar{V} - k_b sX$$

$$I = \frac{1}{R + Ls} (\bar{V} - k_b sX)$$
(3)

Similarly for equation (2),

$$s^2 m_p X + k_p X + c_p s X = k_a I$$

$$(s^2 m_p + k_p + c_p s)X = k_a I (4)$$

Now, using equation (3) in (4), we get

$$(s^{2}m_{p} + k_{p} + c_{p}s)X = k_{a}\frac{1}{R + Ls}(\overline{V} - k_{b}sX)$$

$$Denoting, \frac{1}{R + Ls} = \frac{1}{\mathbf{Z}(s)} = \widetilde{\mathbf{A}}(\mathbf{s})$$

$$(s^{2}m_{p} + k_{p} + c_{p}s + sk_{a}k_{b}\widetilde{\mathbf{A}}(s))X = k_{a}\widetilde{\mathbf{A}}(s)\overline{V}$$

$$X = \frac{k_{a}\widetilde{\mathbf{A}}(s)}{(s^{2}m_{p} + k_{p} + s(c_{p} + k_{a}k_{b}\widetilde{\mathbf{A}}(s))}\overline{V}$$
(5)

 k_a = Current constant k_p = Proof mass stiffness c_p = Proof mass damping m_p = Proof mass L = inductance k_b = back emf constant Z(s) = Impedance $\widetilde{A}(s)$ = Admittance

Also, force exerted by the proof mass actuator on the base is ${\bf F}(t)=-m_p\ddot{x}$

Using Laplace transform, thus, $F(s) = -s^2 m_p X$

Using equation (5), we get

$$\mathsf{F(s)} = \frac{-s^2 m_p k_a \tilde{A}(s)}{(s^2 m_p + k_p + s(c_p + k_a k_b \tilde{A}(s)))} \overline{V} \tag{6}$$

This relationship tells us how force F will be generated by the proof mass actuator upon application of voltage \overline{V} .

Application of active DVA

Consider a SDOF system (undamped, mass m₁) subjected to base excitation.

$$m_1\ddot{x_1} + k_1(x_1 - y) = F(t)$$

Converting above equation into frequency domain,

$$s^2 m_1 X_1 + k_1 X_1 - k_1 Y = F(s)$$

$$(s^2m_1 + k_1)X_1 = F(s) + k_1 Y$$

Therefore,

$$X_1 = \frac{F(s) + k_1 Y}{s^2 m_1 + k_1}$$

Now, we already derived this equation

$$\mathsf{F(s)} = \frac{-s^2 m_p k_a \tilde{A}(s)}{(s^2 m_p + k_p + s(c_p + k_a k_b \tilde{A}(s)))} \overline{V} \tag{6}$$

Plugging the output of the Active DVA into the system and using Equation (6), we get the new displacement of m_1 as

$$X_{1} = \frac{k_{1}Y}{s^{2}m_{1} + k_{1}} - \frac{s^{2}m_{p}k_{a}\tilde{A}(s)}{(s^{2}m_{p} + k_{p} + s(c_{p} + k_{a}k_{b}\tilde{A}(s)))}\overline{V}$$
(7)

A Special case:

When
$$\tilde{A}(s)$$
 is constant, $\omega_1^2 = \frac{k_1}{m_1}$ $\omega_p^2 = \frac{k_p}{m_p}$, $\bar{V} = kX_1$

$$X_1 = \frac{\omega_1^2}{s^2 + \omega_1^2} Y - \frac{\overline{\alpha}s^2}{(s^2 + \overline{\beta}s + \omega_p^2)} X_1$$

where,

$$\bar{\alpha} = \frac{\tilde{A}k_a}{k} \qquad \bar{\beta} = \frac{c_p + \tilde{A}k_a k_b}{m_p}$$

Therefore,
$$(1 + \frac{\overline{\alpha}s^2}{(s^2 + \overline{\beta}s + \omega_p^2)})X_1 = \frac{\omega_1^2}{s^2 + \omega_1^2}Y$$

One can show a wide band amplitude reduction of the primary mass (X_1) by

suitably choosing k_a and k_b in equation (7)

$$\frac{X_1}{Y} = \frac{\omega_1^2(s^2 + \bar{\beta}s + \omega_p^2)}{(s^2 + \omega_1^2)[(s^2(1 + \bar{\alpha}) + \bar{\beta}s + \omega_p^2)]}$$

$$\frac{X_1}{Y} = \frac{\omega_1^2(s^2 + \bar{\beta}s + \omega_p^2)}{(s^2 + \omega_1^2)[(s^2(1 + \bar{\alpha}) + \bar{\beta}s + \omega_p^2]}$$

$$\mathbf{F(t)} = \mathbf{F}e^{j\omega t}$$

$$= \frac{\omega_1^2}{1 + \bar{\alpha}} \frac{s^2 + \bar{\beta}s + \omega_p^2}{(s^2 + \omega_1^2)[s^2 + \frac{\bar{\beta}}{1 + \bar{\alpha}}s + \frac{\omega_p^2}{1 + \bar{\alpha}}]}$$

$$\bar{\alpha} = \frac{\tilde{A}k_a}{k} \qquad \bar{\beta} = \frac{c_p + \tilde{A}k_a k_b}{m_p}$$

