FMADM — SAW

FMADM

- Fuzzy Multiple Attribute Decision Making (FMADM) adalah suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu. Inti dari FMADM adalah menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif yang sudah diberikan.
- Pendekatan untuk mencari nilai bobot atribut, yaitu pendekatan subyektif, pendekatan obyektif dan pendekatan integrasi antara subyektif & obyektif

- Pendekatan subyektif, nilai bobot ditentukan berdasarkan subyektifitas dari para pengambil keputusan, sehingga beberapa faktor dalam proses perankingan alternatif bisa ditentukan secara bebas.
- Pendekatan obyektif, nilai bobot dihitung secara matematis sehingga mengabaikan subyektifitas dari pengambil keputusan.
- Metode yang dapat digunakan untuk mnyelesaikan masalah FMADM. antara lain
 - a. Simple Additive Weighting Method (SAW)
 - b. Weighted Product (WP)
 - c. ELECTRE
 - d. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
 - e. Analytic Hierarchy Process (AHP)

Simple Additive Weighted (SAW)

- Metode SAW dikenal juga dengan istilah metode penjumlahan terbobot
- Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Fishburn, 1967)(MacCrimmon, 1968)
- Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke sebuah skala yang dapat diperbandingkan dengan semua rating alternatif yang ada

• Formula untuk melakukan normalisasi adalah sebagai berikut:

$$r_{ij} = \begin{cases} \frac{X_{ij}}{Max \, X_{ij}} \, jika \, j \, adalah \, atribut \, keuntungan \, (benefit) \\ \\ \frac{Min \, X_{ij}}{X_{ij}} \, jika \, j \, adalah \, atribut \, biaya \, (cost) \end{cases}$$

• dimana r_{ij} adalah rating kinerja ternormalisasi dari alternatif A_i pada atribut C_j ; i = 1,2,...,m dan j = 1,2,...,n

• Nilai preferensi untuk setiap alternatif (V_i) sebagai berikut:

$$V_i = \sum_{j=1}^n w_j r_{ij}$$

 Nilai V_i yang lebih besar mengindikasikan bahwa alternatif A_i lebih terpilih

Contoh

Sebuah perusahaan akan mempromosikan seorang karyawannya menjadi Kepala Unit Sistem Informasi

Ada empat kriteria yang digunakan untuk melakukan penilaian, yakni:

- C1 = tes pengetahuan sistem informasi (35%)
- C2 = praktek instalasi jaringan (25%)
- C3 = tes kepribadian (25%)
- C4 = tes pengetahuan agama (15%)
- $C1 C4 \rightarrow Benefit$

Ada enam orang karyawan yang menjadi kandidat untuk dipromosikan:

- A1
- A2
- A3
- A4
- A5
- A6

Tabel alternatif tiap kriteria

- C1 = tes pengetahuan sistem informasi (35%)
- C2 = praktek instalasi jaringan (25%)
- C3 = tes kepribadian (25%)
- C4 = tes pengetahuan agama (15%)

Alternatif	Kriteria					
Alternatii	C1	C2	C3	C4		
A1	70	50	80	60		
A2	50	60	82	70		
А3	85	55	80	75		
A4	82	70	65	85		
A5	75	75	85	74		
A6	62	50	75	80		

		Krit	eria	
Alternatif	C1	C2	С3	C4
A1	70	50	80	60
A2	50	60	82	70
А3	85	55	80	75
Α4	82	70	65	85
A5	75	75	85	74
A6	62	50	75	80

Normalisasi

$$r_{11} = \frac{70}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{70}{85} = 0.82$$

$$r_{21} = \frac{1}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{1}{85} = 0.59$$

$$r_{31} = \frac{1}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{1}{85} = 1.00$$

$$r_{41} = \frac{1}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{1}{85} = 0.96$$

$$\text{dst...}$$

	Kriteria				
Alternatif	C1	C2	С3	C4	
A1	70	50	80	60	
A2	50	60	82	70	
А3	85	55	80	75	
A4	82	70	65	85	
A 5	75	75	85	74	
A6	62	50	75	80	

$r_{21} = \frac{\max\{70; 50; 85; 82; 75; 62\}}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{85}{85} = 0,59$	70	70	. 0.02
$r_{31} = \frac{\max\{70; 50; 85; 82; 75; 62\}}{85} = \frac{85}{85} = 1,00$ $r_{41} = \frac{82}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{85}{85} = 1,00$	$r_{11} = \frac{1}{\max\{70; 50; 85; 82; 75; 62\}}$	<u>85</u>	: 0,82
$r_{31} = \frac{\max\{70; 50; 85; 82; 75; 62\}}{85} = \frac{85}{85} = 1,00$ $r_{41} = \frac{82}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{85}{85} = 1,00$	$r_{24} = \frac{50}{100}$	50 — =	- 0.59
$max{70; 50; 85; 82; 75; 62}$ 85 $r_{11} = \frac{82}{100} = \frac{82}{100} = 0.96$	max{70; 50; 85; 82; 75; 62}		0,00
$r_{11} = \frac{82}{1000} = \frac{82}{1000} = 0.96$	$r_{31} = \frac{1}{m_{31}(70.50.95.93.75.63)} =$	<u>05</u>	= 1,00
$\frac{741 - \frac{7}{2}}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{7}{85}$	82	82	- 0 96
dst	$\frac{741}{\max\{70; 50; 85; 82; 75; 62\}}$	85	- 0,90
	dst		

Hasil normalisasi

$$r = \begin{bmatrix} 0,82 & 0,67 & 0,94 & 0,71 \\ 0,59 & 0,80 & 0,96 & 0,82 \\ 1,00 & 0,73 & 0,94 & 0,88 \\ 0,96 & 0,93 & 0,76 & 1,00 \\ 0,88 & 1,00 & 1,00 & 0,87 \\ 0,73 & 0,67 & 0,88 & 0,94 \end{bmatrix}$$

Bobot

$$w = [0,35 \quad 0,25 \quad 0,25 \quad 0,15]$$

Proses perankingan

$$V_1 = (0.35 \times 0.82) + (0.25 \times 0.67) + (0.25 \times 0.94) + (0.15 \times 0.71) = 0.796$$

 $V_2 = (0.35 \times 0.59) + (0.25 \times 0.80) + (0.25 \times 0.96) + (0.15 \times 0.82) = 0.770$
 $V_3 = (0.35 \times 1.00) + (0.25 \times 0.73) + (0.25 \times 0.94) + (0.15 \times 0.88) = 0.900$
 $V_4 = (0.35 \times 0.96) + (0.25 \times 0.93) + (0.25 \times 0.76) + (0.15 \times 1.00) = 0.909$
 $V_5 = (0.35 \times 0.88) + (0.25 \times 1.00) + (0.25 \times 1.00) + (0.15 \times 0.87) = 0.939$
 $V_6 = (0.35 \times 0.73) + (0.25 \times 0.67) + (0.25 \times 0.88) + (0.15 \times 0.94) = 0.784$

Nilai terbesar terdapat pada V_5 , sehingga alternatif A_5 yang terpilih sebagai alternatif terbaik

Atau dengan kata lain A₅ akan terpilih/diprioritaskan untuk menjadi Kepala Unit Sistem Informasi perusahaan

Latihan 1

- Sebuah perusahaan makanan ringan akan menginvestasikan sisa usahanya dalam satu tahun
- Beberapa alternatif investasi telah diidentifikasi
- Pemilihan alternatif terbaik ditujukan selain untuk keperluan investasi, juga dalam rangka meningkatkan kinerja perusahaan ke depan

• Kriteria:

- C1 = Harga
- C2 = Nilai investasi 10 tahun ke depan
- C3 = Daya dukung terhadap produktivitas perusahaan (1: kurang mendukung;
 2: cukup mendukung;
 3: sangat mendukung)
- C4 = Prioritas kebutuhan (1: sangat berprioritas; 2: berprioritas; 3: cukup berprioritas)
- C5 = Ketersediaan/kemudahan (1: sulit diperoleh; 2: cukup mudah diperoleh;
 3: sangat mudah diperoleh)

• Bobot:

- C1 = 25%
- C2 = 15%
- C3 = 30%
- C4 = 25%
- C5 = 5%
- C1 & C4 → Cost
- C2, C3, C5 \rightarrow Benefit

Alternatif:

- A1 = Membeli mobil box untuk distribusi barang ke gudang
- A2 = Membeli tanah untuk membangun gudang baru
- A3 = Maintenance sarana teknologi informasi
- A4 = Pengembangan produk baru

• Nilai setiap alternatif pada setiap kriteria:

Altomotif	Kriteria						
Alternatif	C1	C2	C3	C4	C5		
A1	150	15	2	2	3		
A2	500	200	2	3	2		
A3	200	10	3	1	3		
A4	350	100	3	1	2		

• Tentukan alternatif manakah yang harus diambil perusahaan?

FMADM – WP

Dendi MS

IMG Sunarya

Weighted Product (WP)

- Metode WP menggunakan perkalian untuk menghubungkan rating atribut, dimana rating setiap atribut harus dipangkatkan dulu dengan bobot atribut yang bersangkutan
- Proses ini sama halnya dengan proses normalisasi

• Preferensi untuk alternatif A_i diberikan sebagai berikut:

$$S_i = \prod_{j=1}^n X_{ij}^{w_j}$$

- dengan i = 1,2,...,m; dimana $\Sigma w_j = 1$
- w_j > pangkat bernilai positif untuk atribut keuntungan, dan bernilai negatif untuk atribut biaya

Contoh

- Sebuah perusahaan di Yogya ingin membangun sebuah gudang untuk menyimpan sementara hasil produksinya
- Ada tiga lokasi yang menjadi alternatif:
 - A1 = Kalasan
 - A2 = Kota Gedhe
 - A3 = Maguwoharjo

- Ada 5 kriteria yang dijadikan acuan dalam pengambilan keputusan, yaitu:
 - C1 = jarak dengan pasar terdekat (km)
 - C2 = kepadatan penduduk di sekitar lokasi (orang/km²)
 - C3 = jarak dari pabrik (km)
 - C4 = jarak dengan gudang yang sudah ada (km)
 - C5 = harga tanah untuk lokasi (x1000 Rp/m²)

- Tingkat kepentingan setiap kriteria dinilai dengan 1 sampai 5:
 - 1 = Sangat rendah
 - 2 = Rendah
 - 3 = Cukup
 - 4 = Tinggi
 - 5 = Sangat tinggi
- Pengambil keputusan memberikan bobot preferensi sebagai berikut:
 - $W = \{5, 3, 4, 4, 2\}$

• Nilai setiap alternatif untuk setiap kriteria:

Altonostif	Kriteria					
Alternatif	C1	C2	C3	C4	C5	
A1	0,75	2000	18	50	500	
A2	0,50	1500	20	40	450	
A3	0,90	2050	35	35	800	

- ◆ Kriteria C2 dan C4 → Kriteria keuntungan
- Kriteria C1, C3, C5 → Kriteria biaya
- Bobot dinormalisasi agar $\Sigma w_i = 1$;
- Diketahui w = $\{5, 3, 4, 4, 2\} \rightarrow \text{total} = 18$
 - $W_1 = 5/18 = 0.28$
 - $W_2 = 3/18 = 0.17$
 - $W_3 = 4/18 = 0.22$
 - $W_4 = 4/18 = 0.22$
 - $W_5 = 2/18 = 0.11$

- C1 = jarak dengan pasar terdekat (km)
- C2 = kepadatan penduduk di sekitar lokasi (orang/km²)
- C3 = jarak dari pabrik (km)
- C4 = jarak dengan gudang yang sudah ada (km)
- C5 = harga tanah untuk lokasi (x1000 Rp/m²)

Kriteria C2 dan C4 → Kriteria keuntungan Kriteria C1, C3, C5 → Kriteria biaya

Altounatif	Kriteria				
Alternatif	C1	C2	С3	C4	C5
A1	0,75	2000	18	50	500
A2	0,50	1500	20	40	450
А3	0,90	2050	35	35	800

•
$$W_1 = 5/18 = 0.28$$

•
$$W_2 = 3/18 = 0.17$$

•
$$W_3 = 4/18 = 0,22$$

•
$$W_5 = 2/18 = 0.11$$

Selanjutnya hitung vektor S sebagai berikut:

$$S_1 = (0.75^{-0.28})(2000^{0.17})(18^{-0.22})(50^{0.22})(500^{-0.11}) = 2.4187$$

$$S_2 = (0.50^{-0.28})(1500^{0.17})(20^{-0.22})(40^{0.22})(450^{-0.11}) = 2.4270$$

$$S_3 = (0.90^{-0.28})(2050^{0.17})(35^{-0.22})(35^{0.22})(800^{-0.11}) = 1.7462$$

 Nilai vektor V yang akan digunakan untuk perankingan dapat dihitung sebagai berikut:

$$V_1 = \frac{2,4187}{2,4187 + 2,4270 + 1,7462} = 0,3669$$

$$V_2 = \frac{2,4270}{2,4187 + 2,4270 + 1,7462} = 0,3682$$

$$V_3 = \frac{1,7462}{2,4187 + 2,4270 + 1,7462} = 0,2649$$

 Nilai terbesar ada pada V₂, sehingga alternatif A2 merupakan alternatif terbaik, atau dengan kata lain Kota Gedhe akan terpilih sebagai lokasi untuk mendirikan gudang baru

Latihan 2

- Diketahui tiga buah warung yang akan dinobatkan sebagai warung terbaik di Singaraja, yakni:
 - A1 = Mailaku
 - A2 = Nangkring
 - A3 = Umah Ketipat

- Adapun kriteria yang dijadikan acuan penilaian yakni:
 - C1 = kualitas makanan
 - C2 = harga makanan
 - C3 = pelayanan
 - C4 = suasana
 - C5 = jarak
- Bobot preferensinya adalah W = {5, 5, 4, 4, 2}
- C1, C3, C4 → benefit
- C2 & C5 \rightarrow cost

• Nilai setiap alternatif untuk setiap kriteria:

Altomotif			Kriteria		
Alternatif	C1	C2	C3	C4	C5
A1	42	93.000	60	75	1,4
A2	50	66.000	72	80	2,3
А3	63	51.500	65	60	1,2

 Tentukan warung manakah yang layak dinobatkan sebagai warung terbaik?