Unsupervised Learning with Clustering

K-means

Why Clustering

- A good grouping implies some structure
- In other words, given a good grouping, we can then:
 - Interpret and label clusters
 - Identify important features
 - Characterize new points by the closest cluster (or nearest neighbors)
 - Use the cluster assignments as a compression or summary of the data

Clustering

- Basic idea: Group similar things together
- Unsupervised Learning Useful when no other info is available
- K-means
 - Partitioning instances into k disjoint clusters
 - Measure of similarity

Clustering

Clustering Techniques

- K-means clustering
- Hierarchical clustering
- Conceptual clustering
- Probability-based clustering
- Bayesian clustering

Clustering Techniques

- K-means clustering
- Hierarchical clustering
- Conceptual clustering
- Probability-based clustering
- Bayesian clustering

Clustering Applications

- Example: Clustering of a large number of gene experiments
- Multiple sequence alignment of genes closely clustered together
- Search for metabolic pathways genes may be involved with
- Possible functional classification of genes in the same cluster
- Identifying co-regulated genes from expression arrays

Common uses of Clustering

- Often used as an exploratory data analysis tool
- In one-dimension, a good way to quantify realvalued variables into k non-uniform buckets
- Used on acoustic data in speech understanding to convert waveforms into one of k categories (known as Vector Quantization)
- Also used for choosing color palettes on old fashioned graphical display devices
- Color Image Segmentation

Clustering

- Unsupervised: no target value to be predicted
- Differences ways clustering results can be produced/represented/learned
 - Exclusive vs. overlapping
 - Deterministic vs. probabilistic
 - Hierarchical vs. flat
 - Incremental vs. batch learning

Clustering Objective

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures
 - Euclidean distance
 - Manhattan distance
 - Mahalanobis
 (Euclidean w/dimensions rescaled by variance)

Clustering Objective

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures
 - Euclidean distance = $sqrt[(a1 b1)^2 + (a2 b2)^2 + ...)]$
 - Manhattan distance
 [la1 b1l+ la2 b2l+...)]
 - Cosine (insensitive to size)
 Euc Dist/

$$sqrt[(a1)^2 + (a2)^2..]*sqrt[(b1)^2 + ...)]$$

Euclidean Vs. Manhattan

"Euclidean and Manhattan Voronoi diagram" by Balu Ertl - Own work. Licensed under CC BY-SA 4.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg#/media/ File:Euclidean_Voronoi_diagram.svg SDSC UC San Diego

The k-means Algorithm Iterative Distance Based Clustering

- Clusters the data into k groups where k is specified in advance
 - 1. Cluster centers are chosen at random
 - 2. Instances are assigned to clusters based on their distance to the cluster centers
 - 3. Centroids of clusters are computed "means"
 - 4. Go to 1st step until convergence

K-means Clustering

A simple, effective, and standard method

Start with K initial cluster centers

Loop:

Assign each data point to nearest cluster center Calculate mean of cluster for new center

Stop when assignments don't change

Issues:

How to choose K?

How to choose initial centers?

Will it always stop?

K-Means Clustering Pros & Cons

- Simple and reasonably effective
- The final cluster centers do not represent a global minimum but only a local one
- Result can vary significantly based on initial choice of seeds
 - Completely different final clusters can arise from differences in the initial randomly chosen cluster centers
- Algorithm can easily fail to find a reasonable clustering

Getting Trapped in a Local Minimum

- Example: four instances at the vertices of a twodimensional rectangle
 - Local minimum: two cluster centers at the midpoints of the rectangle's long sides

 Simple way to increase chance of finding a global optimum: restart with different random seeds

Clustering

- Partition unlabeled examples into disjoint subsets of *clusters*, such that:
 - Examples within a cluster are very similar
 - Examples in different clusters are very different
- Discover new categories in an unsupervised manner (no sample category labels provided)

K-Means Algorithm

Let d be the distance measure between instances.

Select k random instances $\{s_1, s_2, \dots s_k\}$ as seeds.

Until clustering converges or other stopping criterion:

For each instance x_i :

Assign x_i to the cluster c_j such that $d(x_i, s_j)$ is minimal.

(Update the seeds to the centroid of each cluster)

For each cluster c_i

$$S_{\mathbf{j}} = \mathbf{X}(C_{\mathbf{j}})$$

K Means Example (K=2)

Seed Choice

- Results can vary based on random seed selection
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusters
- Select good seeds using a heuristic or the results of another method

 For K=1, using Euclidean distance, where will the cluster center be?

 For K=1, the overall mean minimizes Sum Squared Error (SSE), aka Euclidean distance

Simple example:
#choose 1 data point as initial K centers
#10 is max loop iterations
#1 is number of initial sets to try

Choosing K for K-means

- Not much improvement after K=2 ("elbow")

Choosing K for K-means

K=1 to 10

- Smooth decrease at K ≥ 2, harder to choose
- In general, smoother decrease => less structure

K-means Guidelines

Choosing K:

- "Elbow" in total-within-cluster SSE as K=1...N
- Cross-validation: hold out points, compare fit as K=1...N

Choosing initial starting points:

 take K random data points, do several K-means, take best fit

Stopping:

- may converge to sub-optimal clusters
- may get stuck or have slow convergence (point assignments bounce around), 10 iterations is often good

K-means Clustering Issues

Scale:

Dimensions with large numbers may dominate distance metrics

Outliers:

Outliers can pull cluster mean, K-mediods uses median instead of mean

Summary

- Labeled clusters can be interpreted by using supervised learning - train a tree or learn rules
- Can be used to fill in missing attribute values
- All methods have a basic assumption of independence between the attributes
 - Some methods allow the user to specify in advanced that two of more attributes are dependent and should be modeled with a joint probability

K-Means Exercise

Download the Bank data set:

http://

facweb.cs.depaul.edu/ mobasher/classes/ect584/ WEKA/k-means.html