CHAPTER - 07 REDOX REACTIONS

PART I - (JEEMAIN LEVEL)

- 1. 2 $S + 2e^- \rightarrow S^{2-}$
- Oxidation number of P in P₄ = 0, KH₂PO₂ = +1 and PH₃ = -3. Thus P is both oxidised and reduced in the given reaction.
- 3. 2 H_2O_2 can undergo oxidation as well as reduction since oxygen is present in –1 oxidation state. Thus H_2O_2 acts as both oxidant and reductant.
- Species 4. 3 Oxidation number of Mn KMnO, +7 MnO_4^{2-} +6 +4 MnO₂ Mn_2O_3 +3 5. 2 Compound Oxidation number of N NO +2 N₂O +1 NH₂OH -1 N₂H₄ -2
- 6. 4 Reaction (IV) is not a redox reaction

Brilliant STUDY CENTRE

7. 1
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O \times 2$$

$$C_2O_4^{2-} \rightarrow 2CO_2 + 2e^- \times 5$$

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

Thus the coefficient of MnO_4^- , $C_2O_4^{2-}$ and H^+ in the above balanced equation respectively are 2, 5, 16.

8. 1
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

 $(Sn^{2+} \rightarrow Sn^{4+} + 2e^-) \times 3$
 $Cr_2O_7^{2-} + 14H^+ + 3Sn^{2+} \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O$

It is clear from this equation that 3 moles of $\rm Sn^{2+}$ reduce one mole of $\rm Cr_2O_7^{2-}$, hence 1 mol. of $\rm Sn^{2+}$ will reduce $\frac{1}{3}$ moles of $\rm Cr_2O_7^{2-}$.

- 9. 1 The balanced equation is , $S_8 + 12OH^- \longrightarrow 4S^{2-} + 2S_2O_3^{2-} + 6H_2O$
- 10. 3 Oxidising power increases with increase in E° value
- 11. 4 E_{x_2/x^-}^0 for halogens follows the order $F_2 > Cl_2 > Br_2 > l_2$

Thus, I- is the strongest reducing agent among halide ions

12. 4
$$O = \begin{array}{cccc} O & O & O \\ \parallel_{+6} & \parallel_{+4} & \parallel_{+6} \\ Br - Br - Br = O \\ \parallel & \parallel & \parallel \\ O & O & O \end{array}$$

$$K_2O_2$$
 -1

$$KO_2$$
 $\frac{-1}{2}$

14. 18 KMnO₄ oxidises Fe²⁺ to Fe³⁺ and C₂O₄²⁻ to CO₂ and itself gets reduced to Mn²⁺ under acidic conditions. The given mixture contains 1 mol Fe²⁺ (1 equiv) and 4 mol C₂O₄²⁻ (8 equiv)

Thus, equivalents of KMnO₄ required = 9 equiv and moles of KMnO₄ required = $\frac{9}{5}$ = 1.8 mol or 18 × 10⁻¹ mol

- 15. D Oxidation state is zero for C in HCHO, C in $\mathrm{CH_2Cl_2}$ middle C in $\mathrm{C_3O_2}$ and two middle S atoms in $\mathrm{S_4O_6}^{2-}$
- 16. C $H_2O_2^{-1}$, $^{44}_{SO_2}$ and $H_{NO_2}^{+3}$ can act as both oxidant and reductant because they can be both oxidised and reduced
- 17. A As Eº increases, reducing power of the metal decreaes
- D 12H₂O + 8Al → 4Al₂O₃ + 24H⁺ + 24e⁻

24 electrons are transferred from reductant to oxidant

19. D
$$H_3 \stackrel{+1}{P}O_2 \xrightarrow{+4e^-} \stackrel{-3}{P}H_3; H_3 \stackrel{+1}{P}O_2 \xrightarrow{-2e^-} H_3 \stackrel{+3}{P}O_3$$

∴ Equivalent mass of
$$H_3PO_2 = \frac{M}{(4/3)}$$
 (∴ n - factor = 4/3)

SECTION - IV (More than one correct answer)

20. AB Reactions A and B are not disproportionation

+8

21. ABC Element Highest O.S

Os

Xe +8

Cr +6

Mn +7

- 22. AC
- 23. ABD Question: 100mL of 0.01M Ca(MnO₄)₂ in acidic medium can be 'reduced' completely with:

Substance

Milliequivalents

 $100 \text{mL} \times 0.1 \text{MCa}(\text{MnO}_4)$

 $100 \times 0.1 \times 10 = 100$

100mL×1M FeSO₄(A)

 $100 \times 1 \times 1 = 100$

$$\frac{100}{3}$$
 mL×1MFe₂C₂O₄(B)

 $\frac{100}{3} \times 1 \times 3 = 100$

 $75mL \times 1M K_2C_2O_4(D)$

 $75 \times 1 \times 2 = 150$

Thus, solution (A), (B) and (D) will completely reduce 100mL of 0.1M Ca(MnO₄)₂ in the acidic medium

24. AB milliequiv. of S₂O₃2⁻ = milliequiv. of CrO₄2⁻

 $0.25 \times 8 \times 40 = 0.154 \times 3 \times v \implies v = 173.16$ mL

Brilliant STUDY CENTRE

SECTION - V (Numerical Type - Upto two decimal place)

25.
$$4.00 \text{ NO}^+ + 3\text{H}^+ + 4\text{e}^- \longrightarrow \text{NH}_2\text{OH}$$

27. 2.00 Equivalents of
$$A^{n+}$$
 = Eqs. of MnO_4^-

$$2.68 \times 10^{-3} \times (5-n) = 1.61 \times 10^{-3} \times 5$$
; $\therefore n = 2$

28.
$$6.00 \ 2IO_3^- + 10I^- \rightarrow 6I_2$$

$$I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$$

Three moles of I, requires Six moles of S₂O₃²⁻

Question: 1L of 0.1M Ba(MnO₄)₂ in acidic medium can 'react' completely with

Solution: Equivalents of Ba(MnO₄)₂ = Equivalents of Fe₂(C₂O₄)₃

$$0.1 \times 10 \times 1 \qquad = x \times 6 \times \frac{1}{6}$$

SECTION - VI (Matrix Matching)

$$(N_2H_5)_2SO_4$$
 -2