MN-1 August 2012 QE

MN-1 page 1 of 1

- 1. (25 points) Discuss, conceptually, how energy bands arise in a crystalline material, such as a semiconductor. Key points that must be addressed are:
 - a. Periodic potentials
 - b. The Bloch Theorem
 - c. Band gap
 - d. Holes
 - e. Effective masses of holes and electrons
- 2. (25 points) Sketch the equilibrium energy band diagram (show E_C , E_V , E_F , and E_i) of a 1D semiconductor device that has the following properties:
 - a. A 1 micron thick (x = 0 to 1 micron) degenerately doped p-type semiconductor with a 2.0 eV band gap.
 - b. A 5 micron thick (x = 1 to 6 microns) lightly doped n-type semiconductor with a 1.0 eV band gap.
 - c. Assume that there is no valence band offset.
 - d. Assume that there a very large <u>positive</u> sheet charge at x = 6 microns.
- 3. (25 points) For a uniform nondegenerate semiconductor with band gap E_G , effective densities-of-state $N_C \& N_V$, and doped with both N_A acceptors and N_D donors (assume full ionization of the dopants) derive an expression for the equilibrium hole concentration, p, at temperature T in terms of only E_G , N_C , N_V , N_A , N_D , T, and k (Boltzmann's constant). Of course, you may also include dimensionless numbers (i.e. 2, e, π , etc.) as necessary.
- 4. (25 points) The Auger recombination rate can be written as $R = (C_{\rho} p + C_{n} n)(pn n_{i}^{2})$. For <u>high injection</u> conditions, derive an expression for $qV = F_{n} F_{\rho}$, the difference between the electron and hole quasi-Fermi energies, at temperature T in terms of only R, C_{ρ} , C_{n} , p, n, n_{i} , T, and k (Boltzmann's constant). Of course, you may also include dimensionless numbers (i.e. 2, e, π , etc.) as necessary. Assume Boltzmann statistics.

