Emission Sources - Maximum Allowable Emission Rates

Permit Number 171297

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission	Rates (6)
21113310111 01111110. (1)	Course Name (2)	All contaminant value (c)	lbs/hour	TPY (4)
MatHanA	Material Handling -	PM	0.95	1.00
	Plant A (EPNs 1A- 12A) (5)	PM ₁₀	0.32	TPY (4)
	, (=)	PM _{2.5}	0.04	0.04
13A	Silo #1	PM	0.05	0.02
		PM ₁₀	0.05	0.02
		PM _{2.5}	0.05	0.02
14A	Silo #2	PM	0.05	0.02
		PM ₁₀	0.05	0.02
		PM _{2.5}	0.05	0.02
15A	Dryer Stack	PM	8.35	1.00 0.33 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02
		PM ₁₀	5.83	5.83
		PM _{2.5}	5.58	5.58
		VOC	8.00	8.00
		NO _x	13.75	13.75
		SO ₂	14.50	14.50
		СО	32.50	32.50
16A	Silo Filling (5)	PM	0.15	0.15
		PM ₁₀	0.15	0.15
		PM _{2.5}	0.15	0.15
		VOC	3.05	3.05
		СО	0.29	0.29
17A	Truck Loadout (5)	PM	0.13	0.13
		PM ₁₀	0.13	0.13
		PM _{2.5}	0.13	0.13
		VOC	0.98	0.98
		со	0.34	0.34
	Hot Oil Heater	PM	0.04	0.08
		•		

Project Number: 351543

18A

Emission Sources - Maximum Allowable Emission Rates

PM2.5		1	PM ₁₀	0.03	0.06
Mode 0.02 0.04 No. 0.22 0.48 No. 0.22 0.48 SO2 0.02 0.05 CO 0.01 0.03 STK Expense (S) PM 1.10 PM18 0.17 0.17 MatHanB Plant B (EPNs 1B) 12B) (5) PM 1.53 1.00 PM19 0.51 0.33 1.00 PM2s 0.06 0.04 PM2s 0.06 0.04 PM2s 0.05 0.02 PM2s 0.05 0.02 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
NO₂ 0.22 0.48 SO₂ 0.02 0.05 SO₂ 0.02 0.05 STK Stockpiles (5) PM 2.20 PM₁₀ 0.17 PM₂₅ 0.17 Material Handling Plant B (EPNs 1B²¹2B) (5) PM₂₅ 0.17 PM₂₀ 0.51 0.33 PM₂₀ 0.06 0.04 13B PM₃₀ 0.05 0.02 PM₂₀ 0.05 0.02 PM₂₅ 0.05 0.02 PM₂₀ 0.05 0.02 PM₂₅ 0.05 0.02 PM₂₀					
SO2 0.02 0.05 CO 0.01 0.03 STK Stockpiles (5) PM 2.20 PM ₃₀ 1.10 PM ₂₅ 0.17 PM ₂₅ 0.17 PM ₂₅ 0.17 PM ₂₅ 0.17 PM ₂₅ 0.51 0.33 PM ₂₀ 0.51 0.33 PM ₂₀ 0.51 0.33 PM ₂₀ 0.06 0.04 PM ₃₀ 0.05 0.02 PM ₂₅ 0.05 0.0					
STK Stockpiles (5)			NO _x	0.22	0.48
STK Stockpiles (5) PM - 2.20 PM10 - 1.10 PM25 - 0.17 MatHanB Material Handling - Plant B (EPNs 1B-12B) (5) PM 1.53 1.00 PM10 0.51 0.33 0.04 PM25 0.06 0.04 0.05 0.02 PM10 0.05 0.02 0.02 PM25 0.05 0.02 0.02 PM25 0.05 0.02 PM25 8.92 5.58 VOC 12.80 8.00 NOx 22.00 13.75 SO2 23.20 14.50 CO 52.00 32.50 PM10 0.23 0.15 <			SO ₂	0.02	0.05
PM ₁₀			СО	0.01	0.03
MatHanB Material Handling - PM	STK	Stockpiles (5)	PM		2.20
MatHanB Material Handling - Plant B (EPNs 1B-12B) (5) PM 1.53 1.00 13B Silo #3 PM 0.05 0.02 PM₁0 0.05 0.02 PM₂5 8.92 5.83 PM₂5 8.92 5.58 VOC 12.80 8.00 NO₂ 22.00 13.75 SO₂ 23.20 14.50 CO 52.00 32.50 16B PM₁0 0.23 0.15 PM₂5 0.23 0.15			PM ₁₀		1.10
Plant B (EPNs 1B- 12B) (5) PM ₁₀ 0.51 0.33 PM ₂₅ 0.06 0.04 13B Silo #3 PM 0.05 0.02 PM ₁₀ 0.05 0.02 PM ₁₀ 0.05 0.02 PM ₂₅ 0.06 0.02 PM ₁₀ 0.05 0.02 PM ₂₅ 0.05 0.02 PM ₁₀ 0.05 0.02 PM ₁₀ 0.05 0.02 PM ₁₀ 0.05 0.02 PM ₁₀ 0.05 0.02 PM ₂₅ 0.05 0.02 15B PM ₁₀ 9.32 5.83 PM ₂₅ 8.92 5.58 VOC 12.80 8.00 NO _x 22.00 13.75 SO ₂ CO 52.00 32.50 16B PM ₁₀ 0.23 0.15 PM ₁₀ PM ₂₅ 0.23 0.15			PM _{2.5}		0.17
$\begin{array}{c} 12B) (5) & PM_{10} & 0.51 & 0.33 \\ PM_{25} & 0.06 & 0.04 \\ \hline \\ 13B & PM & 0.05 & 0.02 \\ \hline \\ PM_{10} & 0.05 & 0.02 \\ \hline \\ PM_{10} & 0.05 & 0.02 \\ \hline \\ PM_{25} & 0.05 & 0.02 \\ \hline \\ PM_{25} & 0.05 & 0.02 \\ \hline \\ PM_{10} & 0.05 & 0.02 \\ \hline \\ PM_{10} & 0.05 & 0.02 \\ \hline \\ PM_{10} & 0.05 & 0.02 \\ \hline \\ PM_{25} & 0.05 & 0.02 \\ \hline \\ PM_{10} & 9.32 & 5.83 \\ \hline \\ PM_{25} & 8.92 & 5.58 \\ \hline \\ VOC & 12.80 & 8.00 \\ \hline \\ NO_{4} & 22.00 & 13.75 \\ \hline \\ SO_{2} & 23.20 & 14.50 \\ \hline \\ CO & 52.00 & 32.50 \\ \hline \\ 16B & Silo Filling (5) & PM & 0.23 & 0.15 \\ \hline \\ PM_{10} & 0.23 & 0.15 \\ \hline \\ PM_{25} & 0.23 & 0.15 \\ \hline \end{array}$	MatHanB		РМ	1.53	1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12B) (5)	PM ₁₀	0.51	0.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM _{2.5}	0.06	0.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13B	Silo #3	РМ	0.05	0.02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM ₁₀	0.05	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM _{2.5}	0.05	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14B	Silo #4	РМ	0.05	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM ₁₀	0.05	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM _{2.5}	0.05	0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15B	Dryer Stack	РМ	13.36	8.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM ₁₀	9.32	5.83
$\begin{array}{ c c c c c c }\hline NO_x & 22.00 & 13.75\\ \hline SO_2 & 23.20 & 14.50\\ \hline CO & 52.00 & 32.50\\ \hline \\ 16B & Silo Filling (5) & PM & 0.23 & 0.15\\ \hline PM_{10} & 0.23 & 0.15\\ \hline PM_{2.5} & 0.23 & 0.15\\ \hline \end{array}$			PM _{2.5}	8.92	5.58
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			VOC	12.80	8.00
CO 52.00 32.50 16B Silo Filling (5) PM 0.23 0.15 PM ₁₀ 0.23 0.15 PM _{2.5} 0.23 0.15			NO _x	22.00	13.75
16B Silo Filling (5) PM 0.23 0.15 PM ₁₀ 0.23 0.15 PM _{2.5} 0.23 0.15			SO ₂	23.20	14.50
PM ₁₀ 0.23 0.15 PM _{2.5} 0.23 0.15			со	52.00	32.50
PM _{2.5} 0.23 0.15	16B	Silo Filling (5)	РМ	0.23	0.15
			PM ₁₀	0.23	0.15
107			PM _{2.5}	0.23	0.15
VOC 4.87 3.05			voc	4.87	3.05

Project Number: 351543

Emission Sources - Maximum Allowable Emission Rates

		со	0.47	0.29
17B	Truck Loadout (5)	РМ	0.21	0.13
		PM ₁₀	0.21	0.13
		PM _{2.5}	0.21	0.13
		VOC	1.56	0.98
		СО	0.54	0.34
18B	Hot Oil Heater	PM	0.04	0.08
		PM ₁₀	0.03	0.06
		PM _{2.5}	0.02	0.05
		VOC	0.02	0.04
		NO _x	0.22	0.48
		SO ₂	0.02	0.05
		СО	0.01	0.03

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

			fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

total particulate matter equal to or less than 10 microns in diameter, including 1 M_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Planned startup and shutdown emissions are included. Maintenance activities are not authorized by this permit.

Date:	July 7. 2023	

Project Number: 351543