Lecture 2: Girth, Connectivity and Bipartite Graphs

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Girth

• The minimum length of a cycle in a graph G is the girth g(G) of G

- Example: The Peterson graph is the unique 5-cage
 - cubic graph (every vertex has degree 3)
 - girth = 5
 - smallest graph satisfies the above properties

Girth (cont.)

- A tree has girth ∞
- Note that a tree can be colored with two different colors
- ⇒ A graph with large girth has small chromatic number?
- Unfortunately NO!
- Theorem (Erdős, 1959) For all k, l, there exists a graph G with g(G) > l and $\chi(G) > k$

Girth and diameter

• Proposition (1.3.2, D) Every graph G containing a cycle satisfies $g(G) \le 2 \operatorname{diam}(G) + 1$

When the equality holds?

Girth and minimal degree lower bounds graph size

•
$$n_0(\delta, g) \coloneqq \begin{cases} 1 + \delta \sum_{i=0}^{r-1} (\delta - 1)^i, & \text{if } g = 2r + 1 \text{ is odd} \\ 2 \sum_{i=0}^{r-1} (\delta - 1)^i, & \text{if } g = 2r \text{ is even} \end{cases}$$

- Exercise (Ex7, ch1, D) Let G be a graph. If $\delta(G) \ge \delta \ge 2$ and $g(G) \ge g$, then $|G| \ge n_0(\delta, g)$
- Corollary (1.3.5, D) If $\delta(G) \geq 3$, then $g(G) < 2 \log_2 |G|$

Triangle-free upper bounds # of edges

• Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in an n-vertex triangle-free simple graph is $\lfloor n^2/4 \rfloor$

- The bound is best possible
- There is a triangle-free graph with $\lfloor n^2/4 \rfloor$ edges: $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$
- Extremal problems

Connected, connected component

- A graph G is connected if $G \neq \emptyset$ and any two of its vertices are linked by a path
- A maximal connected subgraph of G is a (connected) component

Quiz

- Problem (1B, L) Suppose G is a graph on 10 vertices that is not connected. Prove that G has at most 36 edges. Can equality occur?
- More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not connected. What is the maximum size of G?

Connected vs. minimal degree

- Proposition (1.3.15, W) If $\delta(G) \ge \frac{n-1}{2}$, then G is connected
- (Ex16, S1.1.2, H; 1.3.16, W) If $\delta(G) \ge \frac{n-2}{2}$, then G need not be connected
- Extremal problems
- "best possible" "sharp"

Add/delete an edge

- Components are pairwise disjoint; no two share a vertex
- Adding an edge decreases the number of components by 0 or 1
 - ⇒ deleting an edge increases the number of components by 0 or 1
- Proposition (1.2.11, W) Every graph with n vertices and k edges has at least n-k components
- An edge e is called a bridge if the graph G e has more components
- Proposition (1.2.14, W) An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G
 - Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G

Cut vertex and connectivity

- A node v is a cut vertex if the graph G-v has more components
- A proper subset S of vertices is a vertex cut set if the graph G-S is disconnected, or trivial (with only one vertex)
- The connectivity, $\kappa(G)$, is the minimum size of a cut set of G
 - The graph is k-connected for any $k \le \kappa(G)$

Connectivity properties

- $\kappa(K^n) := n 1$
- If G is disconnected, $\kappa(G) = 0$
 - \Rightarrow A graph is connected $\Leftrightarrow \kappa(G) \ge 1$
- If G is connected, non-complete graph of order n, then $1 \le \kappa(G) \le n-2$

Connectivity properties (cont.)

Proposition (1.2.14, W)

An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

• Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G

- $\kappa(G) \ge 2 \iff G$ is connected and has no cut vertices
- A vertex lies on a cycle ⇒ it is not a cut vertex
 - \Rightarrow (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one cycle $\Rightarrow \kappa(G) \geq 2$
 - (Ex14, S1.1.2, H) $\kappa(G) \ge 2$ implies G has at least one cycle

• (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge

Connectivity and minimal degree

- (Ex15, S1.1.2, H)
- $\kappa(G) \leq \delta(G)$
- If $\delta(G) \ge n-2$, then $\kappa(G) = \delta(G)$

Edge-connectivity

- A proper subset $F \subset E$ is edge cut set if the graph G F is disconnected
- The edge-connectivity $\lambda(G)$ is the minimal size of edge cut set
- $\lambda(G) = 0$ if G is disconnected
- Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$

Average (minimal) degree implies connectivity

• Theorem (1.4.3, D, Mader 1972) Every graph G with $d(G) \ge 4k$ has a (k+1)-connected subgraph H such that d(H) > d(G) - 2k.

Bipartite graphs

Theorem (1.2.18, W, Kőnig 1936)
A graph is bipartite ⇔ it contains no odd cycle

Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Complete graph is a union of bipartite graphs

• The union of graphs G_1, \ldots, G_k , written $G_1 \cup \cdots \cup G_k$, is the graph with vertex set $\bigcup_{i=1}^k V(G_i)$ and edge set $\bigcup_{i=1}^k E(G_i)$

- ullet Consider an air traffic system with k airlines
 - Each pair of cities has direct service from at least one airline
 - No airline can schedule a cycle through an odd number of cities
 - Then, what is the maximum number of cities in the system?

• Theorem (1.2.23, W) The complete graph K_n can be expressed as the union of k bipartite graphs $\iff n \leq 2^k$

Bipartite subgraph is large

• Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph with at least |E|/2 edges