# 第一章 线性规划及单纯形法

#### 1.4 单纯形法计算步骤

#### 修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

- 第一步: 列出初始单纯形表
  - 为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。为了书写规范和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表。

#### ■ 第一步: 列出初始单纯形表

- 为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。为了书写规范和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表。
- □ 考虑约束条件

$$\begin{cases} x_1 + a_{1,m+1}x_{m+1} + \dots + a_{1,n}x_n = b_1 \\ x_2 + a_{2,m+1}x_{m+1} + \dots + a_{2,n}x_n = b_2 \\ \dots \\ x_m + a_{m,m+1}x_{m+1} + \dots + a_{m,n}x_n = b_m \end{cases}$$

#### 系数矩阵

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 & a_{1,m+1} & \cdots & a_{1,n} \\ 0 & 1 & \cdots & 0 & a_{2,m+1} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & a_{m,m+1} & \cdots & a_{m,n} \end{bmatrix}$$

- 第一步: 列出初始单纯形表
  - □ 初始单纯形表

|                  | $c_j \rightarrow$  |       | $c_1$   |  | $c_m$   |  | $c_j$                                                                |  | $  c_n  $ |
|------------------|--------------------|-------|---------|--|---------|--|----------------------------------------------------------------------|--|-----------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_{B} $ | b     | $ x_1 $ |  | $ x_m $ |  | $  x_j  $                                                            |  | $  x_n  $ |
| $c_1$            | $  x_1  $          | $b_1$ | 1       |  | 0       |  | $a_{1j}$                                                             |  | $a_{1n}$  |
| $c_2$            | $x_2$              | $b_2$ | 0       |  | 0       |  | $a_{2j}$                                                             |  | $a_{2n}$  |
| :                | :                  | :     | ÷       |  | :       |  | :                                                                    |  | :         |
| $c_m$            | $x_m$              | $b_m$ | 0       |  | 1       |  | $\begin{vmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{vmatrix}$ |  | $a_{mn}$  |
|                  |                    |       |         |  |         |  | $\sigma_j$                                                           |  |           |

- $\Box$  检验数  $\sigma_j = c_j z_j = c_j \sum_{i=1}^m c_i a_{ij}$
- $\Box$  选取  $m \times m$  的单位矩阵作为可行基

- 第一步: 列出初始单纯形表
  - □ 例 1

$$\max z = 2x_1 + x_2$$
s.t. 
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

- 第一步: 列出初始单纯形表
  - □ 例 1

max 
$$z = 2x_1 + x_2$$
  
s.t. 
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

□ 标准化

$$\max z = 2x_1 + x_2$$
s.t. 
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

- 第一步: 列出初始单纯形表
  - □ 系数矩阵

$$A = \begin{bmatrix} 0 & 5 & 1 & 0 & 0 \\ 6 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- 第一步: 列出初始单纯形表
  - □ 系数矩阵

$$A = \begin{bmatrix} 0 & 5 & 1 & 0 & 0 \\ 6 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

#### □ 列出初始单纯形表

|                  | $c_j \rightarrow$                                  |    | 2     | 1     | 0     | 0     | 0     |
|------------------|----------------------------------------------------|----|-------|-------|-------|-------|-------|
| $\mathbf{C}_{B}$ | $\mathbf{X}_{B}$                                   | b  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
| 0                | $x_3$                                              | 15 | 0     | 5     | 1     | 0     | 0     |
| 0                | $x_4$                                              | 24 | 6     | 2     | 0     | 1     | 0     |
| 0                | $\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$ | 5  | 1     | 1     | 0     | 0     | 1     |
|                  | $z_j - z_j$                                        |    | 2     | 1     | 0     | 0     | 0     |

- 第二步: 最优性检验
  - $\Box$  计算各非基变量  $x_i$  的检验数

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

- 第二步: 最优性检验
  - $\Box$  计算各非基变量  $x_i$  的检验数

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

- ② 如果所有检验数  $\sigma_j \leq 0$ ,且基变量中不含有人工变量时,则停止迭代,得到最优解。
- $\square$  如果存在  $\sigma_i > 0$ ,且有  $\mathbf{P}_i \leq 0$ ,则停止迭代,问题为无界解。
- □ 否则转三步。

■ 第二步: 最优性检验

□ 例 1

|                  | $c_j \rightarrow$                                  |    | 2     | 1     | 0     | 0     | 0     |
|------------------|----------------------------------------------------|----|-------|-------|-------|-------|-------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $                                   | b  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
| 0                | $\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$ | 15 | 0     | 5     | 1     | 0     | 0     |
| 0                | $x_4$                                              | 24 | 6     | 2     | 0     | 1     | 0     |
| 0                | $x_5$                                              | 5  | 1     | 1     | 0     | 0     | 1     |
| (                | $z_j - z_j$                                        |    | 2     | 1     | 0     | 0     | 0     |

■ 第二步: 最优性检验

□ 例 1

|                  | $c_j \rightarrow$                                  |    | 2       | 1     | 0     | 0     | 0     |
|------------------|----------------------------------------------------|----|---------|-------|-------|-------|-------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $                                   | b  | $ x_1 $ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
| 0                | $\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$ | 15 | 0       | 5     | 1     | 0     | 0     |
| 0                | $x_4$                                              | 24 | 6       | 2     | 0     | 1     | 0     |
| 0                | $x_5$                                              | 5  | 1       | 1     | 0     | 0     | 1     |
| -                | $z_j - z_j$                                        |    | 2       | 1     | 0     | 0     | 0     |

 $\Box$  检验数  $\sigma_j > 0$ ,因此初始基可行解不是最优解

■ 第二步: 最优性检验

□ 例 1

|                  | $c_j \rightarrow$                                  |    | 2       | 1     | 0     | 0     | 0     |
|------------------|----------------------------------------------------|----|---------|-------|-------|-------|-------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $                                   | b  | $ x_1 $ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
| 0                | $\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$ | 15 | 0       | 5     | 1     | 0     | 0     |
| 0                | $x_4$                                              | 24 | 6       | 2     | 0     | 1     | 0     |
| 0                | $x_5$                                              | 5  | 1       | 1     | 0     | 0     | 1     |
| (                | $z_j - z_j$                                        |    | 2       | 1     | 0     | 0     | 0     |

- $\Box$  检验数  $\sigma_i > 0$ ,因此初始基可行解不是最优解
- □ 按照单纯形法转第三步

- 第三步: 基可行解转化
  - 从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表。

- 第三步: 基可行解转化
  - 从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表。
    - 确定换入变量  $x_k$  (最大增加原则)

$$\sigma_k = \max_j \ \{ \sigma_j \mid \sigma_j > 0 \}$$

- 第三步: 基可行解转化
  - 从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表。
    - 确定换入变量  $x_k$  (最大增加原则)

$$\sigma_k = \max_j \ \{\sigma_j \mid \sigma_j > 0\}$$

• 确定换出变量  $x_l$  (最小比值原则)

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} \mid a_{ik} > 0 \right\} = \frac{b_l}{a_{lk}}$$

确定  $x_l$  为换出变量,  $a_{lk}$  为主元素。

- 第三步: 基可行解转化
  - © 用换入变量  $x_k$  替换基变量中的换出变量  $x_l$ , 得到一个新的基  $(\mathbf{P}_1,\ldots,\mathbf{P}_{l-1},\mathbf{P}_k,\mathbf{P}_{l+1},\ldots,\mathbf{P}_m)$ , 进行初等变换。

$$\mathbf{P}_k = egin{bmatrix} a_{1,k} \ a_{2,k} \ dots \ a_{l,k} \ dots \ a_{m,k} \end{bmatrix}$$
 高斯消元  $\mathbf{P}_l = egin{bmatrix} 0 \ 0 \ dots \ 1 \ dots \ 0 \ \end{bmatrix}$ 

■ 第三步: 基可行解转化

□ 例 1

|                  | $c_j \rightarrow$                                                |    | 2                   | 1         | 0       | 0       | 0     |
|------------------|------------------------------------------------------------------|----|---------------------|-----------|---------|---------|-------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $                                                 | b  | $ \underline{x_1} $ | $  x_2  $ | $ x_3 $ | $ x_4 $ | $x_5$ |
| 0                | $\begin{array}{ c c } x_3 \\ \underline{x_4} \\ x_5 \end{array}$ | 15 | 0                   | 5         | 1       | 0       | 0     |
| 0                | $x_4$                                                            | 24 | [6]                 | 2         | 0       | 1       | 0     |
| 0                | $\overline{x_5}$                                                 | 5  | 1                   | 1         | 0       | 0       | 1     |
|                  | $z_j - z_j$                                                      |    | 2                   | 1         | 0       | 0       | 0     |

• 因  $\sigma_1 > \sigma_2$ , 确定  $x_1$  为换入变量

- 第三步: 基可行解转化
  - □ 例 1

|                  | $c_j \rightarrow$                                                |    | 2                   | 1         | 0         | 0         | 0       |
|------------------|------------------------------------------------------------------|----|---------------------|-----------|-----------|-----------|---------|
| $\mathbf{C}_{B}$ | $\mid \mathbf{X}_B$                                              | b  | $ \underline{x_1} $ | $  x_2  $ | $  x_3  $ | $  x_4  $ | $ x_5 $ |
| 0                | $  x_3  $                                                        | 15 | 0                   | 5         | 1         | 0         | 0       |
| 0                | $x_4$                                                            | 24 | [6]                 | 2         | 0         | 1         | 0       |
| 0                | $\begin{array}{ c c } x_3 \\ \underline{x_4} \\ x_5 \end{array}$ | 5  | 1                   | 1         | 0         | 0         | 1       |
| (                | $c_j - z_j$                                                      |    | 2                   | 1         | 0         | 0         | 0       |

- 因  $\sigma_1 > \sigma_2$ , 确定  $x_1$  为换入变量
- $\theta = \min\left\{\infty, \frac{24}{6}, \frac{5}{1}\right\} = 4$ , 因此确定 6 为主元素

- 第三步: 基可行解转化
  - □ 例 1

|                  | $c_j \rightarrow$                                                |    | 2                   | 1         | 0         | 0       | 0       |
|------------------|------------------------------------------------------------------|----|---------------------|-----------|-----------|---------|---------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $                                                 | b  | $ \underline{x_1} $ | $  x_2  $ | $  x_3  $ | $ x_4 $ | $ x_5 $ |
| 0                | $\begin{array}{ c c } x_3 \\ \underline{x_4} \\ x_5 \end{array}$ | 15 | 0                   | 5         | 1         | 0       | 0       |
| 0                | $x_4$                                                            | 24 | [6]                 | 2         | 0         | 1       | 0       |
| 0                | $\overline{x_5}$                                                 | 5  | 1                   | 1         | 0         | 0       | 1       |
|                  | $z_j - z_j$                                                      |    | 2                   | 1         | 0         | 0       | 0       |

- 因  $\sigma_1 > \sigma_2$ , 确定  $x_1$  为换入变量
- $\theta = \min\left\{\infty, \frac{24}{6}, \frac{5}{1}\right\} = 4$ , 因此确定 6 为主元素
- x<sub>4</sub> 为换出变量

- 第三步: 基可行解转化
  - □ 具体过程



■ 第四步: 重复二、三步

□ 例 1

|                  | $c_j \rightarrow$ |    | 2       | 1                   | 0     | 0                                           | 0       |
|------------------|-------------------|----|---------|---------------------|-------|---------------------------------------------|---------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $  | b  | $ x_1 $ | $  \underline{x_2}$ | $x_3$ | $x_4$                                       | $ x_5 $ |
| 0                | $  x_3  $         | 15 | 0       | 5                   | 1     | 0                                           | 0       |
| 2                | $x_1$             | 4  | 1       | 2/6                 | 0     | 1/6                                         | 0       |
| 0                | $\underline{x_5}$ | 1  | 0       | [4/6]               | 0     | $\begin{vmatrix} 0\\1/6\\-1/6\end{vmatrix}$ | 1       |
| (                | $z_j - z_j$       |    | 0       | 1/3                 | 0     | -1/3                                        | 0       |

• 因  $\sigma_2 > 0$ , 确定  $x_2$  为换入变量

- 第四步: 重复二、三步
  - □ 例 1

|                  | $c_j \rightarrow$ |    | 2       | 1                 | 0     | 0                                           | 0       |
|------------------|-------------------|----|---------|-------------------|-------|---------------------------------------------|---------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $  | b  | $ x_1 $ | $\underline{x_2}$ | $x_3$ | $x_4$                                       | $ x_5 $ |
| 0                | $  x_3  $         | 15 | 0       | 5                 | 1     | 0                                           | 0       |
| 2                | $x_1$             | 4  | 1       | 2/6               | 0     | 1/6                                         | 0       |
| 0                | $\underline{x_5}$ | 1  | 0       | [4/6]             | 0     | $\begin{vmatrix} 0\\1/6\\-1/6\end{vmatrix}$ | 1       |
| - (              | $z_j - z_j$       |    | 0       | 1/3               | 0     | -1/3                                        | 0       |

- 因  $\sigma_2 > 0$ , 确定  $x_2$  为换入变量
- $\theta = \min\left\{\frac{15}{5}, \frac{4}{2/6}, \frac{1}{4/6}\right\} = \frac{6}{4}$ , 因此确定 4/6 为主元素

- 第四步: 重复二、三步
  - □ 例 1

|                  | $c_j \rightarrow$  |    | 2       | 1                   | 0     | 0                                                 | 0       |
|------------------|--------------------|----|---------|---------------------|-------|---------------------------------------------------|---------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_{B} $ | b  | $ x_1 $ | $  \underline{x_2}$ | $x_3$ | $x_4$                                             | $ x_5 $ |
| 0                | $  x_3  $          | 15 | 0       | 5                   | 1     | $\begin{array}{c c} 0 \\ 1/6 \\ -1/6 \end{array}$ | 0       |
| 2                | $x_1$              | 4  | 1       | 2/6                 | 0     | 1/6                                               | 0       |
| 0                | $\underline{x_5}$  | 1  | 0       | [4/6]               | 0     | -1/6                                              | 1       |
| - (              | $z_j - z_j$        |    | 0       | 1/3                 | 0     | -1/3                                              | 0       |

- 因  $\sigma_2 > 0$ , 确定  $x_2$  为换入变量
- $\theta=\min\left\{\frac{15}{5},\frac{4}{2/6},\frac{1}{4/6}\right\}=\frac{6}{4}$ , 因此确定 4/6 为主元素
- $x_5$  为换出变量

■ 第四步: 重复二、三步

□ 例 1

|                  | $c_j \rightarrow$ |      | 2     | 1       | 0       | 0                                                  | 0     |
|------------------|-------------------|------|-------|---------|---------|----------------------------------------------------|-------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $  | b    | $x_1$ | $ x_2 $ | $ x_3 $ | $x_4$                                              | $x_5$ |
| 0                | $  x_3  $         | 15/2 | 0     | 0       | 1       | $\begin{vmatrix} 5/4 \\ 1/4 \\ -1/4 \end{vmatrix}$ | -15/2 |
| 2                | $x_1$             | 7/2  | 1     | 0       | 0       | 1/4                                                | -1/2  |
| 1                | $x_2$             | 3/2  | 0     | 1       | 0       | -1/4                                               | 3/2   |
|                  | $c_j - z_j$       | j    | 0     | 0       | 0       | -1/4                                               | -1.2  |

■ 第四步: 重复二、三步

□ 例 1

|                  | $c_j \rightarrow$ |      | 2     | 1     | 0     | 0       | 0     |
|------------------|-------------------|------|-------|-------|-------|---------|-------|
| $\mathbf{C}_{B}$ | $\mathbf{X}_{B}$  | b    | $x_1$ | $x_2$ | $x_3$ | $x_4$   | $x_5$ |
| 0                | $x_3$             | 15/2 | 0     | 0     | 1     | 5/4 1/4 | -15/2 |
| 2                | $x_1$             | 7/2  | 1     | 0     | 0     | 1/4     | -1/2  |
| 1                | $x_2$             | 3/2  | 0     | 1     | 0     | -1/4    | 3/2   |
|                  | $c_j - z$         | j    | 0     | 0     | 0     | -1/4    | -1.2  |

• 所有检验数  $\sigma_j \leq 0$ , 得到最优解  $\mathbf{X} = (7/2, 3/2, 15/2, 0, 0)^{\top}$ 

■ 第四步: 重复二、三步

□ 例 1

|                  | $c_j \rightarrow$ |      | 2       | 1         | 0       | 0                                                    | 0     |
|------------------|-------------------|------|---------|-----------|---------|------------------------------------------------------|-------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $  | b    | $ x_1 $ | $  x_2  $ | $ x_3 $ | $  x_4  $                                            | $x_5$ |
| 0                | $x_3$             | 15/2 | 0       | 0         | 1       | 5/4                                                  | -15/2 |
| 2                | $x_1$             | 7/2  | 1       | 0         | 0       | 1/4                                                  | -1/2  |
| 1                | $x_2$             | 3/2  | 0       | 1         | 0       | $ \begin{vmatrix} 5/4 \\ 1/4 \\ -1/4 \end{vmatrix} $ | 3/2   |
|                  | $c_j - z$         | j    | 0       | 0         | 0       | -1/4                                                 | -1.2  |

- 所有检验数  $\sigma_j \leq 0$ , 得到最优解  $\mathbf{X} = (7/2, 3/2, 15/2, 0, 0)^{\top}$
- 代入目标函数得最优值  $z = 2x_1 + x_2 = 17/2$

- 例 2
  - 🛮 用单纯形法求解线性规划问题

max 
$$z = 2x_1 + 3x_2$$
  
s.t. 
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

- 例 2
  - 🛘 用单纯形法求解线性规划问题

$$\max z = 2x_1 + 3x_2$$
s.t. 
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

□ 标准化

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t. 
$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 4x_1 + x_4 = 16 \\ 4x_2 + x_5 = 12 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 例 2

□ 第一步: 求初始基可行解, 列出初始单纯形表

|                  | $c_j \rightarrow$                                  |    | 2       | 3     | 0     | 0     | 0     |
|------------------|----------------------------------------------------|----|---------|-------|-------|-------|-------|
| $\mathbf{C}_{B}$ | $\mathbf{X}_{B}$                                   | b  | $ x_1 $ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
| 0                | $\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$ | 8  | 1       | 2     | 1     | 0     | 0     |
| 0                | $x_4$                                              | 16 | 4       | 0     | 0     | 1     | 0     |
| 0                | $x_5$                                              | 12 | 0       | 4     | 0     | 0     | 1     |
| (                | $z_j - z_j$                                        |    | 2       | 3     | 0     | 0     | 0     |

□ 第二步: 检验数大于零, 因此初始基可行解不是最优解

■ 例 2

□ 第三步: 基可行解的转换

|                  | $c_j \rightarrow$                                              |    | 2       | 3                   | 0         | 0       | 0       |
|------------------|----------------------------------------------------------------|----|---------|---------------------|-----------|---------|---------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $                                               | b  | $ x_1 $ | $  \underline{x_2}$ | $  x_3  $ | $ x_4 $ | $ x_5 $ |
| 0                | $  x_3  $                                                      | 8  | 1       | 2                   | 1         | 0       | 0       |
| 0                | $x_4$                                                          | 16 | 4       | 0                   | 0         | 1       | 0       |
| 0                | $\begin{array}{c c} x_3 \\ x_4 \\ \underline{x_5} \end{array}$ | 12 | 0       | [4]                 | 0         | 0       | 1       |
| (                | $z_j - z_j$                                                    |    | 2       | 3                   | 0         | 0       | 0       |

- 因  $\sigma_2 > \sigma_1$ , 确定  $x_2$  为换入变量
- $\theta = \min\left\{\frac{8}{2}, \infty, \frac{12}{4}\right\} = 3$ , 因此确定 4 为主元素
- x<sub>5</sub> 为换出变量

#### ■ 例 2

□ 具体过程

|                  | $c_j \rightarrow$        |    | 2       | 3            | 0       | 0       | 0         |
|------------------|--------------------------|----|---------|--------------|---------|---------|-----------|
| $\mathbf{C}_{B}$ | $\mid \mathbf{X}_B$      | b  | $  x_1$ | $ x_2 $      | $ x_3 $ | $ x_4 $ | $ x_5 $   |
| 0                | $x_3$                    | 8  | 1       | 2            | 1       | 0       | 0         |
| 0                | $x_4$                    | 16 |         | 0            | 0       | 1       | 0         |
| 0                | $\underline{x_5}$        | 12 | 0       | [4]          | 0       | 0       | 1         |
|                  | $c_j - z$                | j  | 2       | 3            | 0       | 0       | 0         |
|                  |                          |    |         | $\Downarrow$ |         |         | _         |
|                  | $c_j \rightarrow$        |    | 2       | 3            | 0       | 0       | 0         |
| $\mathbf{C}_B$   | $\mid \mathbf{X}_B \mid$ | b  | $ x_1 $ | $ x_2 $      | $ x_3 $ | $ x_4 $ | $  x_5  $ |
| 0                | $  x_3  $                | 2  | 1       | 0            | 1       | 0       | -1/2      |
| 0                | $x_4$                    | 16 | 4       | 0            | 0       | 1       | 0         |
| 3                | $x_2$                    | 3  | 0       | 1            | 0       | 0       | 1/4       |
| C                | $z_j - z_j$              |    | 2       | 0            | 0       | 0       | -3/4      |

■ 例 2

□ 第四步: 重复二、三步

|                  | $c_j \rightarrow$ |    | 2                   | 3     | 0     | 0     | 0                                                   |
|------------------|-------------------|----|---------------------|-------|-------|-------|-----------------------------------------------------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $  | b  | $ \underline{x_1} $ | $x_2$ | $x_3$ | $x_4$ | $x_5$                                               |
| 0                | $  x_3  $         | 2  | [1]                 | 0     | 1     | 0     | $ \begin{array}{c c} -1/2 \\ 0 \\ 1/4 \end{array} $ |
| 0                | $\overline{x_4}$  | 16 | 4                   | 0     | 0     | 1     | 0                                                   |
| 3                | $x_2$             | 3  | 0                   | 1     | 0     | 0     | 1/4                                                 |
| -                | $z_j - z_j$       |    | 2                   | 0     | 0     | 0     | -3/4                                                |

- 因  $\sigma_1 > 0$ , 确定  $x_1$  为换入变量
- $\theta = \min\left\{\frac{2}{1}, \frac{16}{4}, \infty\right\} = 2$ , 因此确定 1 为主元素
- x<sub>3</sub> 为换出变量

#### ■ 例 2

□ 具体过程

|                  | $c_j \rightarrow$        |    | 2                   | 3            | 0     | 0     | 0     |
|------------------|--------------------------|----|---------------------|--------------|-------|-------|-------|
| $\mathbf{C}_{B}$ | $\mid \mathbf{X}_B \mid$ | b  | $  \underline{x_1}$ | $x_2$        | $x_3$ | $x_4$ | $x_5$ |
| 0                | $\underline{x_3}$        | 2  | [1]                 | 0            | 1     | 0     | -1/2  |
| 0                | $x_4$                    | 16 | 4                   | 0            | 0     | 1     | 0     |
| 3                | $x_2$                    | 3  | 0                   | 1            | 0     | 0     | 1/4   |
| -                | $z_j - z_j$              |    | 2                   | 0            | 0     | 0     | -3/4  |
|                  |                          |    |                     | $\Downarrow$ |       |       |       |
|                  | $c_j \rightarrow$        |    | 2                   | 3            | 0     | 0     | 0     |
| $\mathbf{C}_{B}$ | $  \mathbf{X}_B  $       | b  | $ x_1 $             | $x_2 \mid$   | $x_3$ | $x_4$ | $x_5$ |
| 2                | $  x_1  $                | 2  | 1                   | 0            | 1     | 0     | -1/2  |
| 0                | $x_4$                    | 8  | 0                   | 0            | -4    | 1     | 2     |
| 3                | $x_2$                    | 3  | 0                   | 1            | 0     | 0     | 1/4   |
| -                | $z_j - z_j$              |    | 0                   | 0            | -2    | 0     | 1/4   |

- 例 2
  - □ 第四步: 重复二、三步

|                  | $c_j \rightarrow$ |   | 2       | 3         | 0         | 0         | 0                                                    |
|------------------|-------------------|---|---------|-----------|-----------|-----------|------------------------------------------------------|
| $\mathbf{C}_{B}$ | $\mathbf{X}_{B}$  | b | $ x_1 $ | $  x_2  $ | $  x_3  $ | $  x_4  $ | $  \underline{x_5} $                                 |
| 2                | $x_1$             | 2 | 1       | 0         | 1         | 0         | -1/2                                                 |
| 0                | $x_4$             | 8 | 0       | 0         | -4        | 1         | [2]                                                  |
| 3                | $\overline{x_2}$  | 3 | 0       | 1         | 0         | 0         | $ \begin{vmatrix} -1/2 \\ [2] \\ 1/4 \end{vmatrix} $ |
| c                | $j-z_j$           |   | 0       | 0         | -2        | 0         | 1/4                                                  |

- 因  $\sigma_5 > 0$ , 确定  $x_5$  为换入变量
- $\theta = \min\left\{-, \frac{8}{2}, \frac{3}{1/4}\right\} = 4$ , 因此确定 2 为主元素
- x<sub>4</sub> 为换出变量

■ 例 2

□ 具体过程

|                                             | $c_j \rightarrow$                                                |                                                | 2           | 3                                                       | 0              | 0                                                                  | 0                                                 |
|---------------------------------------------|------------------------------------------------------------------|------------------------------------------------|-------------|---------------------------------------------------------|----------------|--------------------------------------------------------------------|---------------------------------------------------|
| $\mathbf{C}_{B}$                            | $\mid \mathbf{X}_B$                                              | b                                              | $  x_1$     | $  x_2 $                                                | $ x_3 $        | $x_4 \mid \underline{s}$                                           | <u>v<sub>5</sub></u>                              |
| 2<br>0<br>3                                 | $\begin{array}{ c c } x_1 \\ \underline{x_4} \\ x_2 \end{array}$ | $\begin{array}{ c c } 2 \\ 8 \\ 3 \end{array}$ | 1<br>0<br>0 | $\left \begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right $ | 1<br>-4<br>0   | 1 [                                                                | 1/2 $2$ $/4$                                      |
|                                             | $z_j - z_j$                                                      |                                                | 0           | 0                                                       | -2             | 0   1                                                              | /4                                                |
|                                             |                                                                  |                                                |             | $\Downarrow$                                            |                |                                                                    |                                                   |
| C                                           | $c_j 	o$                                                         |                                                | 2           | 3                                                       | 0              | 0                                                                  | 0                                                 |
| $\mathbf{C}_{B}\mid$                        | $\mathbf{X}_{B}$                                                 | b                                              | $x_1$       | $x_2$                                                   | $x_3$          | $  x_4$                                                            | $ \underline{x_5} $                               |
| $\begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$ | $\begin{bmatrix} x_1 \\ x_5 \\ x_2 \end{bmatrix}$                | 4<br>4<br>2                                    | 1<br>0<br>0 | $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$             | 0<br>-2<br>1/2 | $ \begin{array}{ c c c }  & 1/4 \\  & 1/2 \\  & -1/8 \end{array} $ | $\begin{array}{ c c }\hline 0\\1\\0\\\end{array}$ |
| $c_{j}$                                     | $-z_j$                                                           |                                                | 0           | 0                                                       | -3/2           | -1/8                                                               | 0                                                 |

■ 例 2

□ 第四步: 重复二、三步

|                  | $c_j \rightarrow$ |   | 2         | 3         | 0         | 0                                                         | 0                   |
|------------------|-------------------|---|-----------|-----------|-----------|-----------------------------------------------------------|---------------------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $  | b | $  x_1  $ | $  x_2  $ | $  x_3  $ | $  x_4  $                                                 | $ \underline{x_5} $ |
| 2                | $ x_1 $           | 4 | 1         | 0         | 0         | 1/4                                                       | 0                   |
| 0                | $x_5$             | 4 | 0         | 0         | -2        | 1/2                                                       | 1                   |
| 3                | $x_2$             | 2 | 0         | 1         | 1/2       | $ \begin{array}{ c c c } 1/4 \\ 1/2 \\ -1/8 \end{array} $ | 0                   |
| c <sub>.</sub>   | $j-z_j$           |   | 0         | 0         | -3/2      | -1/8                                                      | 0                   |

• 所有检验数  $\sigma_i \leq 0$ , 得到最优解

■ 例 2

□ 第四步: 重复二、三步

|                  | $c_j \rightarrow$ |   | 2         | 3         | 0         | 0                                                         | 0                   |
|------------------|-------------------|---|-----------|-----------|-----------|-----------------------------------------------------------|---------------------|
| $\mathbf{C}_{B}$ | $ \mathbf{X}_B $  | b | $  x_1  $ | $  x_2  $ | $  x_3  $ | $  x_4  $                                                 | $ \underline{x_5} $ |
| 2                | $  x_1  $         | 4 | 1         | 0         | 0         | 1/4                                                       | 0                   |
| 0                | $x_5$             | 4 | 0         | 0         | -2        | 1/2                                                       | 1                   |
| 3                | $x_2$             | 2 | 0         | 1         | 1/2       | $ \begin{array}{ c c c } 1/4 \\ 1/2 \\ -1/8 \end{array} $ | 0                   |
|                  | $j-z_j$           |   | 0         | 0         | -3/2      | -1/8                                                      | 0                   |

- 所有检验数  $\sigma_i \leq 0$ , 得到最优解
- 最优解  $X = (4, 2, 0, 0, 4)^{\top}$
- 最优值  $z = 2x_1 + 3x_2 = 14$

- 课堂练习 1
  - □ 用单纯形法求解线性规划问题

max 
$$z = 50x_1 + 100x_2$$
  
s.t. 
$$\begin{cases} x_1 + x_2 \le 300 \\ 2x_1 + x_2 \le 400 \\ x_2 \le 250 \\ x_1, x_2 \ge 0 \end{cases}$$

#### ■ 课堂练习 1

□ 经过分析得到

|                  | $c_j \rightarrow$                                  |     | 50    | 100   | 0         | 0     | 0                 |
|------------------|----------------------------------------------------|-----|-------|-------|-----------|-------|-------------------|
| $\mathbf{C}_{B}$ | $\mathbf{X}_{B}$                                   | b   | $x_1$ | $x_2$ | $  x_3  $ | $x_4$ | $\underline{x_5}$ |
| 50               | $x_1$                                              | 50  | 1     | 0     | 1         | 0     | -1                |
| 0                | $x_4$                                              | 50  | 0     | 0     | -2        | 1     | 1                 |
| 100              | $\begin{array}{c c} x_1 \\ x_4 \\ x_2 \end{array}$ | 250 | 0     | 1     | 0         | 0     | 1                 |
|                  | $c_j - z_j$                                        | ī   | 0     | 0     | -50       | 0     | -50               |

 $\square$  所有检验数  $\sigma_j \leq 0$ , 得到唯一最优解

#### ■ 课堂练习 1

□ 经过分析得到

| $c_j 	o$         |                                                    |     | 50    | 100   | 0         | 0     | 0                 |
|------------------|----------------------------------------------------|-----|-------|-------|-----------|-------|-------------------|
| $\mathbf{C}_{B}$ | $\mathbf{X}_{B}$                                   | b   | $x_1$ | $x_2$ | $  x_3  $ | $x_4$ | $\underline{x_5}$ |
| 50               | $x_1$                                              | 50  | 1     | 0     | 1         | 0     | -1                |
| 0                | $x_4$                                              | 50  | 0     | 0     | -2        | 1     | 1                 |
| 100              | $\begin{array}{c c} x_1 \\ x_4 \\ x_2 \end{array}$ | 250 | 0     | 1     | 0         | 0     | 1                 |
| $c_j - z_j$      |                                                    |     | 0     | 0     | -50       | 0     | -50               |

- $\square$  所有检验数  $\sigma_i \leq 0$ ,得到唯一最优解
- $\Box$  最优值  $z = 50x_1 + 100x_2 = 27500$

#### ■ 小结

- □ 单纯形表
- □ 检验数
- □ 计算步骤

• 第一步: 列出初始单纯形表

• 第二步: 最优性检验

• 第三步: 基可行解转化

• 第四步: 重复二、三步, 一直到计算结束为止

#### ■ 小结

- □ 单纯形表
- □ 检验数
- □ 计算步骤

• 第一步: 列出初始单纯形表

• 第二步: 最优性检验

• 第三步: 基可行解转化

• 第四步: 重复二、三步, 一直到计算结束为止

# $Q\&\mathcal{A}$

# Thank you! 感谢您的聆听和反馈