البياب التشاني (MAC Table)

الاجهزة اللى بتستخدم كابل شبكة واحد لما جهاز بيوصله حزمة بيانات من جهازين او اكتر بيحصل مشاكل منها تضارب البيانات المرسلة ومن هنا ظهرت

CSMA/CD: تكنولوجيا تستخدم لجعل الاجهزة تتشارك في استخدام كابل الشبكة دون حدوث تصادم للبيانات المرسلة ويتم ذلك عن طريق ان اي جهاز يريد الارسال يقوم او لا بأختبار الكابل اذا كان خالى او مشغول فأذا وجده خالى فيتم ارسال البيانات اما اذا وجده مشغول فعليه الانتظار زمن معين

شبكة Ethernet : عبارة عن تكنولوجيا ارسال في الشبكات المحلية لذا فانها تمكن أجهزة الشبكات ان تتصل ببعضها مثل الكمبيوتر والطابعات

انواع الاتصالات بين الأجهزة

- ۱- unicast : يكون مصدر الرسالة جهاز وهدفه جهاز
- ۲- Multicast : يكون مصدر الرسالة جهاز و هدفه مجموعة من الاجهزة
 - Broadcast : يكون مصدر الرسالة جهاز وهدفه كل الإجهزة

أنواع الارسال بين الأجهزة

- ۱- Full Duplex : يسمح بالارسال والاستقبال في نقس الوقت مثل (الهاتف المحمول)
 - ٢- Half Duplex : يسمح بالارسال فقط او الاستقبال فقط مثل (اللاسلكي)

١

محتويات التغليف (Ethernet Frame)

7	1	6	6	2	46 to 1500	4
preamble	Start of frame	Destination address	Source address	Length /	802.2 header and data	Frame check sequence

Network latency: هو الوقت الذي تستغرقه حزم البيانات للوصول من المصدر للهدف

وتتقسم الى ثلاثة اجزاء

NIC delay -1

الوقت الذي يستغرقه Source NIC لوضع النبضات على السلك بالإضافة للوقت الذي يستغرقه الـ Source NIC لتقسير الإشارة

Device delay - "

يعتمد على أجهزة الشبكة الموجودة بين المصدر والهدف هل هي من الطبقة الأولى مثل (Hub) او الطبقة الثانية مثل (Hub) (Switch) او الطبقة الثالثة مثل (Router) فهى لا تعتمد على المسافة وعدد الاجهزة فقط بل ونوعها أيضا فالـ (Hub) يأخذ وقت قليل جدا لأنه عبارة عن وصله والـ (Switch) يأخذ وقت اقل من الـ (Router)

قارن بين أنظمة التحويل في السويتش

الطرق التي يستخدمها الـ Switch لتوجيه الـ Frame

Store and Forward	Cut through
 ينتظر السويتش استقبال الـ Frame بأكمله ثم 	 لا ينتظر السويتش اكتمال الـ Frame بل يبدأ في
يقوم بفحصه ثم يبدأ في الارسال	الارسال بمجرد معرفة الـ Destination MAC
 بطئ لكن يعتمد عليه 	 سریع لکن لا یعتمد علیه
• قليل الاخطاء	• كثير الاخطاء

(Frame انواع تخزين الـ Memory Buffering

Port based	Shared
يتم تخزين الـ Frame في قوائم انتظار خاصة بالمنفذ الذي	يتم تخزين الـ Frame داخل ذاكرة مشتركة تشترك فيها كل
استقبل الـ Frame (لكل منفذ ذاكرة)	منافذ السويتش (كل منافذ السويتش الواحد ذاكرة واحدة)

٣

قارن بین L3 Switch والـ Router

L3 Switch	Router			
ي الطبقة الثالثة لربط الشبكات المختلفة	جهاز سويتش يعمل ف	جهاز يعمل في الطبقة الثالثة لربط الشبكات المختلفة		
	يعمل في LAN - WAN			
و لات توجيه و السرعة في نقل البيانات	لا يعمل على بروتوك	يعمل في LAN - WAN يعمل على بروتوكولات التوجيه مثل (RIP – EIGRP – OSPF) يدعم Traffic Management		
		(RIP – EIGRP – OSPF)		
	يدعم	يدعم		
- Traffic Management		- Traffic Management		
- Wire speed Routing		- WIC Support		
		- Advanced Routing Protocols		

٤

قارن بين الـ Hub والـ Switch والـ Router و Layer 2 و Layer 2 و Layer 3

Hub
ليس للمنافذ عناوين
لا يفهم الا لغة الآله 0,1
لا يبنى اى جداول
من اجهزة الطبقة الاولى Layer 1
تتنقل البيانات خلال الكابل على شكل Bits
يستخدم مع الشبكات المحلية
Single Collision Domain
Single Broadcast Domain
كل المنافذ تعتبر في شبكة واحدة

٥

MAC Address

يتكون عنوان الـ MAC من (binary) = 48 bit (binary) من

امثلة على اشكال عنوان الـ MAC

00-08-1C-78-00 أو 00:04:9B:1C:78:00 أو 00-00-9B-1

OUI				Vendor Assignment Number							
4 bit	4 bit	4 bit	4 bit	4 bit	4 bit	4 bit	4 bit				

OUI : عبارة عن (24 bit) تعرف الشركة المصنعة لكارت الشبكة و لا يكرر مع شركة أخرى

Vendor Assignment Number : عبارة عن (24 bit) تعرف كارت الشبكة و لا يكرر مع اى كارت اخر

قواعد حل مسائل MAC Table

بناء الـ MAC Table يعتمد على Source MAC

في البداية يكون الجدول فارغ ويعتمد في بناءه على الـ Source MAC

Source	اذا كان مصدر الرسالة متعرف في الجدول لا نفعل شيء
304.60	اذا كان المصدر غير متعرف فيتم تعريفه Learning
Destination	اذا كان الهدف متعرف فيتم توجيهه Forwarding
Destination	اذا كان الهدف غير متعرف فيتم عمل إذاعة Flooding

اسألة الباب الثاني

س ا : ماذا يحدث في Switch 1 اذا كان MAC Table بهذا الشكل :

MAC	Port
А	1
С	3
D	4
B	2

Source MAC	Destination MAC	Switch
А	В	Flooding to all ports except port 1
D	С	Learning D on port 4
		Forwarding to port 3
С	Α	
		Forwarding to port 1
В	A	Learning B on port 2
Б	, ,	Forwarding to port 1

EDUCATIONAL ENCYCLOPEDIA

س ٢ : ماذا يفعل السويتش عند استقبال هذا الـ Frame في حالة كان محتويات جدول Content Addressable في حالة كان محتويات جدول Memory كما هو موضح بالجدول الاتى :

CAM Table							
Station	Port 1	Port 2	Port 3	Port 4			
00-00-3D-1F-11-01			×				
00-00-3D-1F-11-02				×			
00-00-3D-1F-11-03	×						

Received Frame

Destination	Source	Data	CRC
00-00-3D-1F-11-05	00-00-3D-1F-11-01		

Flooding to all ports except port 3

CAM				
Station	Port 1	Port 2	Port 3	Port 4
00-00-3D-1F-11-01			×	
00-00-3D-1F-11-02				×
00-00-3D-1F-11-03	×			

Received Frame

Destination	Source	Data	CRC
00-00-3D-1F-11-02	00-00-3D-1F-11-01		

Forwarding to port 4

EDUCATIONAL ENCYCLOPEDIA

س ٣ : ماذا يحدث في Switch 1 , Switch 2 اذا كان MAC Table بهذا الشكل :

Switch 1		Switch 2		
MAC	Port	MAC	Port	
Α	1	В	4	
D	4	F	3	
В	2	A	4	
С	3	С	4	
		D	1	

S	D	Switch 1	Switch 2	
A B			Learning A on port 4	
		Flooding to all ports except port 1	Forwarding to port 4	
В	Δ	Learning B on port 2		
В		Forwarding to port 1		
C F		Learning C on port 3	Learning C on port 4	
		Flooding to all ports except port 3	Forwarding to port 3	
D	А		Learning D on port 1	
		Forwarding to port 1	Forwarding to port 4	
D E				
		Flooding to all ports except port 4	Flooding to all ports except port 1	

EDUCATIONAL ENCYCLOPEDIA

س ٤ : ماذا يحدث في Switch 1 , Switch 2 , Switch 3 اذا كان MAC Table بهذا الشكل :

Switch 2		Switch 1		Switch 3	
MAC	Port	MAC	Port	MAC	Port
Α	3	В	2	А	3
С	1	D	3	D	3
Е	4	F	3	E	1
D	2	Α	1	С	3
F	4	Е	3	F	2
		С	3		

S	D	Switch 1	Switch 2	Switch 3
Α	В	Learning A on port 1		
		Forwarding to port 2		
		Learning E on port 3		
Ε	F	Forwarding to port 3	Flooding to all ports except	Flooding to all ports except
			port 4	port 1
		Learning C on port 3		Learning C on port 3
С	D	Forwarding to port 3	Flooding to all ports except	Forwarding to port 3
			port 1	
D) A		Learning D on port 2	
		Forwarding to port 1	Forwarding to port 3	
F	Α		Learning F on port 4	Learning F on port 2
		Forwarding A to port 1	Forwarding to port 3	Forwarding to port 3

١.