Multivariable Calculus (Lecture-10)

Department of Mathematics Bennett University India

20th November, 2018

Multiple Integration of (Scalar Valued Function of Vector Variable) (Scalar Field)

 $F: R \subseteq \mathbb{R}^n \to \mathbb{R}, \ n = 2, 3$

Learning Outcome of this lecture

In the next few lectures, we learn about the Riemann-Darboux integration of a bounded scalar valued function $f : \mathcal{R} \subseteq \mathbb{R}^n \to \mathbb{R}$ over simple and bounded region \mathcal{R} .

- Double Integrals
 - Double Integral of $f: \mathcal{R} \subseteq \mathbb{R}^2 \to \mathbb{R}$ where \mathcal{R} is a rectangular region in \mathbb{R}^2
 - \bullet Iterated Integrals of f and Fubinis Theorem

Recall: Riemann integration of $f:[a,b] \to \mathbb{R}$

Partition of [a, b]: $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$

For a partition $P = [x_0, x_1, \dots, x_n]$ of [a, b], let

$$M_i = \sup\{f(x): x \in [x_{i-1}, x_i]\}$$
 $m_i = \inf\{f(x): x \in [x_{i-1}, x_i]\}$

Lower and Upper sums:

$$L(\mathcal{P},f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}) \quad L(\mathcal{P},f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$$

Continuation of previous slide

Lower sum:
$$L(\mathcal{P},f) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$$

Upper sum:
$$U(\mathcal{P},f) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

Upper integral:
$$\int_{a}^{\overline{b}} f = \inf_{\mathcal{P}} U(\mathcal{P}, f)$$

Riemann integral: If Lower integral = Upper integral, then f is Riemann integrable on [a, b] and the common value is the Riemann integral of f on [a, b], denoted by $\int_a^b f$.

Note: Integration gives area bounded by the graph of the function and x-axis.

Riemann-integral of $f: \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$, where \mathcal{R} is a rectangular region in \mathbb{R}^2 .

Partition or Mesh or Grid of a Rectangular Region

Let \mathcal{R} be the bounded rectangular region given by

$$\mathcal{R} = \{(x, y) \subset \mathbb{R}^2 : a \le x \le b \text{ and } c \le y \le d\} \text{ where } a < b \& c < d.$$

Consider a partition P_x of [a, b] given by

$$P_x: a = x_0 < x_1 < x_2 < \cdots < x_{m-1} < x_m = b.$$

Consider a partition P_y of [c, d] given by

$$P_y: c = y_0 < y_1 < y_2 < \cdots < y_{n-1} < y_n = d.$$

Then $\mathcal{P} = (P_x, P_y)$ partitions \mathcal{R} into mn subrectangles or cells as follows. Set for $1 \le i \le m$ and $1 \le j \le n$,

$$R_{ij} = \{(x, y) \in \mathbb{R} : x_{i-1} \le x \le x_i \text{ and } y_{j-1} \le y \le y_j\}.$$

$$\mathcal{P} = \{R_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n\}.$$

Then \mathcal{P} is a partition or mesh or grid of the rectangular region \mathcal{R} .

Mesh Size or Grid Size or Norm of a Partition

Let \mathcal{R} be the bounded rectangular region given by

$$\mathcal{R} = \{(x, y) \subset \mathbb{R}^2 : a \le x \le b \text{ and } c \le y \le d\}.$$

Definition

If $\mathcal{P} = \{R_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n\}$ is a mesh or grid of the rectangular region \mathcal{R} then

• the diameter of the set R_{ij} given by

$$d(R_{ij}) = |R_{ij}| = \text{diam}(R_{ij}) = \sup\{|X - Y| : X \in R_{ij} \text{ and } Y \in R_{ij}\},\$$

ullet the mesh size or grid size or norm of ${\mathcal P}$ is defined by

$$||P|| = \sup \{ \operatorname{diam}(R_{ii}) : 1 \le i \le m \text{ and } 1 \le j \le n \}.$$

• Let \mathcal{R} be the bounded rectangular region given by

$$\mathcal{R} = \{(x, y) \subset \mathbb{R}^2 : a \le x \le b \text{ and } c \le y \le d\}.$$

- Let $f : \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ be a bounded function on \mathcal{R} .
- Let $\mathcal{P} = \{R_{ij} : 1 \le i \le m \text{ and } 1 \le j \le n\}$ be a mesh of the rectangular region \mathcal{R} .
- On each subrectangle/ cell R_{ij} , $1 \le i \le m$, $1 \le j \le n$, set

$$M_{ij} = \sup\{f(x,y) : (x,y) \in R_{ij}\}$$

 $m_{ij} = \inf\{f(x,y) : (x,y) \in R_{ij}\}$
 $\Delta A_{ij} = \text{Area of } R_{ij} = (x_i - x_{i-1})(y_j - y_{j-1}) = \Delta x_i \Delta y_j,$

where $\Delta x_i = x_i - x_{i-1}$ and $\Delta y_j = y_j - y_{j-1}$.

Upper Sum, Lower Sum, Upper Integral, Lower Integral

Upper Riemann sum :
$$U(\mathcal{P},f) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \Delta A_{ij}$$

Lower Riemann sum :
$$L(\mathcal{P},f) = \sum_{i=1}^{m} \sum_{i=1}^{n} m_{ij} \Delta A_{ij}$$

Upper integral of
$$f$$
 over \mathcal{R} : $\iint_{\mathcal{R}} f = \inf_{\mathcal{P} \in \mathcal{I}} U(\mathcal{P}, f)$

where Π denotes the collection of all meshes \mathcal{P} of the rectangular region \mathcal{R} .

Riemann Integral / Double Integral of f

Let $f : \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ be a bounded function on \mathcal{R} .

Definition

The function f is said to be (Riemann) integrable or simply integrable over \mathcal{R} if

$$\overline{\iint_{\mathcal{R}}} f = \underline{\iint_{\mathcal{R}}} f$$

In this case, the common value is called the (Riemann) integral of f over \mathcal{R} and is denoted by

$$\iint_{\mathcal{R}} f \quad \text{or} \quad \iint_{\mathcal{R}} f(x, y) dA \quad \text{or} \quad \iint_{\mathcal{R}} f(x, y) dx dy.$$

Since f is a real valued function of two variables, it is also called the double integral of f over the region \mathcal{R} .

Note: Double integral gives the volume of the solid bounded by the surface z = f(x, y) and xy-plane.

An Example of Integrable Function

Let $\mathcal{R} = \{(x, y) \subset \mathbb{R}^2 : a \le x \le b \text{ and } c \le y \le d\}$. Let f(x, y) = k for $(x, y) \in \mathcal{R}$ where k is a real constant. Then for any mesh \mathcal{P} of \mathcal{R}

Upper (Riemann) Sum
$$= U(\mathcal{P},f) = k(b-a)(d-c)$$

Lower (Riemann) Sum $= L(\mathcal{P},f) = k(b-a)(d-c)$

Therefore

Upper integral of
$$f = \int \int_{\mathcal{R}} f = \inf_{\mathcal{P}} (U(\mathcal{P}, f)) = k(b - a)(d - c)$$

Lower integral of $f = \int \int_{\mathcal{R}} f = \sup_{\mathcal{P}} (L(\mathcal{P}, f)) = k(b - a)(d - c)$

So

$$\iint_{\mathbb{R}} f(x, y) dA = k(b - a)(d - c).$$

An Example of Non-Integrable Function

Let $\mathcal{R} = \{(x,y) \subset \mathbb{R}^2 : a \le x \le b \text{ and } c \le y \le d\}$. Let f(x,y) = 1 for $(x,y) \in \mathcal{R}$ with $x \in \mathbb{Q} \& y \in \mathbb{Q}$, and f(x,y) = 0 otherwise. Then for any mesh \mathcal{P} of \mathcal{R}

Upper (Riemann) Sum =
$$U(\mathcal{P}, f) = (b - a)(d - c)$$

Lower (Riemann) Sum = $L(\mathcal{P}, f) = 0$

Therefore

Upper integral of
$$f = \int \int_{\mathcal{R}} f = \inf_{\mathcal{P}} (U(\mathcal{P}, f)) = (b - a)(d - c)$$

Lower integral of $f = \int \int_{\mathcal{R}} f = \sup_{\mathcal{P}} (L(\mathcal{P}, f)) = 0$

So

$$\iint_{\mathbb{R}} f(x,y)dA \quad \text{does not exist.}$$

Iterated Integrals of f

Let $f: \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ be a bounded function on

$$\mathcal{R} = \{(x, y) \subset \mathbb{R}^2 : a \le x \le b \text{ and } c \le y \le d\}.$$

The following integrals

$$\int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} f(x,y) dy \right) dx \quad \text{and} \quad \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} f(x,y) dx \right) dy$$

are called iterated integrals of f over \mathcal{R} .

Double integral of
$$f$$
 over $\mathcal{R} = \iint_{\mathcal{R}} f(x, y) dA$.

Fubini's Theorem for rectangular regions

Let $f: \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ be a bounded function on

$$\mathcal{R} = \{(x, y) \subset \mathbb{R}^2 : a \le x \le b \text{ and } c \le y \le d\}.$$

Theorem

If f is continuous in \mathcal{R} then the double integral of f over \mathcal{R} exist and both the iterated integrals of f also exist, and

$$\iint_{\mathcal{R}} f(x, y) dA = \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} f(x, y) dy \right) dx$$
$$= \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} f(x, y) dx \right) dy.$$

The above theorem gives a method to evaluate the double integral of f through evaluation of iterated integrals of f.

Another Version of Fubini's Theorem

Theorem

Let $f: \mathcal{R} \to \mathbb{R}$ be integrable over

$$\mathcal{R} = \{(x, y) \subset \mathbb{R}^2 : a \le x \le b \text{ and } c \le y \le d\}.$$

• For each $y \in [c,d]$, define the function $F_y(x) = f(x,y)$ for $x \in [a,b]$. If $F_y : [a,b] \to \mathbb{R}$ is integrable over [a,b] for each y then

$$\iint_{\mathcal{R}} f(x, y) dA = \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} f(x, y) dx \right) dy.$$

• For each $x \in [a, b]$, define the function $F_x(y) = f(x, y)$ for $y \in [c, d]$. If $F_x : [c, d] \to \mathbb{R}$ is integrable over [c, d] for each x then

$$\iint_{\mathcal{R}} f(x, y) dA = \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} f(x, y) dy \right) dx.$$

Example: Evaluating the Iterated Integrals

Let $f(x, y) = x^2 y$ for $(x, y) \in \mathbb{R} = [-1, 2] \times [0, 2]$. Compute $\iint_{\mathbb{R}} f(x, y) dA$ by means of computing its iterated integrals.

$$\int_{y=0}^{y=2} \left(\int_{x=-1}^{x=2} x^2 y \, dx \right) dy = \int_{y=0}^{y=2} y \left(\int_{x=-1}^{x=2} x^2 dx \right) dy =$$

$$\int_{y=0}^{y=2} y \left(\left[\frac{x^3}{3} \right]_{x=-1}^2 \right) dy = \int_{y=0}^{y=2} 3y dy = \left[\frac{3y^2}{2} \right]_{y=0}^2 = 6$$

$$\int_{x=-1}^{x=2} \left(\int_{y=0}^{y=2} x^2 y \, dy \right) dx = \int_{x=-1}^{x=2} x^2 \left(\int_{y=0}^{y=2} y \, dy \right) dx =$$

$$\int_{x=-1}^{x=2} x^2 \left(\left[\frac{y^2}{2} \right]_{y=0}^2 \right) dx = \int_{x=-1}^{x=2} 2x^2 dx = \left[\frac{2x^3}{3} \right]_{x=-1}^2 = 6$$

