# Краткий вводный обзор Python-библиотек для data science

Сафин Руслан, технический директор Byndyusoft™





## Для кого этот доклад?

## Анализ данных

#### **Pandas**

import pandas as pd

## IBM HR Analytics Employee Attrition & Performance

Predict attrition of your valuable employees

https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset

df = pd.read\_csv('data/WA\_Fn-UseC\_-HR-Employee-Attrition.csv')

df.head()

|   | Age | Attrition | BusinessTravel    | DailyRate | Department                | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNum |
|---|-----|-----------|-------------------|-----------|---------------------------|------------------|-----------|----------------|---------------|-------------|
| 0 | 41  | Yes       | Travel_Rarely     | 1102      | Sales                     | 1                | 2         | Life Sciences  | 1             | 1           |
| 1 | 49  | No        | Travel_Frequently | 279       | Research &<br>Development | 8                | 1         | Life Sciences  | 1             | 2           |
| 2 | 37  | Yes       | Travel_Rarely     | 1373      | Research &<br>Development | 2                | 2         | Other          | 1             | 4           |

|   |   | Age | Attrition | BusinessTravel    | DailyRate | Department                | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNum |
|---|---|-----|-----------|-------------------|-----------|---------------------------|------------------|-----------|----------------|---------------|-------------|
| - | 3 | 33  | No        | Travel_Frequently | 1392      | Research &<br>Development | 3                | 4         | Life Sciences  | 1             | 5           |
| • | 1 | 27  | No        | Travel_Rarely     | 591       | Research &<br>Development | 2                | 1         | Medical        | 1             | 7           |

5 rows × 35 columns

```
df.columns
```

df.shape

(1470, 35)

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
                        1470 non-null int64
Age
Attrition
                          1470 non-null object
                      1470 non-null object
1470 non-null int64
BusinessTravel
DailyRate
                        1470 non-null object
Department
DistanceFromHome
                          1470 non-null int64
Education
                          1470 non-null int64
                         1470 non-null object
EducationField
EmployeeCount
                        1470 non-null int64
                         1470 non-null int64
EmployeeNumber
EnvironmentSatisfaction
                          1470 non-null int64
                         1470 non-null object
Gender
HourlyRate
                         1470 non-null int64
JobInvolvement
                         1470 non-null int64
JobLevel
                          1470 non-null int64
JobRole
                          1470 non-null object
                         1470 non-null int64
JobSatisfaction
                         1470 non-null object
MaritalStatus
                         1470 non-null int64
MonthlyIncome
MonthlyRate
                          1470 non-null int64
NumCompaniesWorked
                       1470 non-null int64
                         1470 non-null object
Over18
OverTime
                         1470 non-null object
PercentSalaryHike 1470 non-null int64
                          1470 non-null int64
PerformanceRating
RelationshipSatisfaction 1470 non-null int64
StandardHours
                         1470 non-null int64
StockOptionLevel
                         1470 non-null int64
TotalWorkingYears
                          1470 non-null int64
TrainingTimesLastYear
                          1470 non-null int64
WorkLifeBalance
                          1470 non-null int64
YearsAtCompany
                          1470 non-null int64
```

```
YearsInCurrentRole 1470 non-null int64
YearsSinceLastPromotion 1470 non-null int64
YearsWithCurrManager 1470 non-null int64
dtypes: int64(26), object(9)
memory usage: 402.0+ KB
```

```
df.describe()
```

```
.dataframe thead th {
    text-align: left;
}
.dataframe tbody tr th {
    vertical-align: top;
}
```

|       | Age         | DailyRate   | DistanceFromHome | Education   | EmployeeCount | EmployeeNumber | EnvironmentSatisfaction | HourlyRate  |
|-------|-------------|-------------|------------------|-------------|---------------|----------------|-------------------------|-------------|
| count | 1470.000000 | 1470.000000 | 1470.000000      | 1470.000000 | 1470.0        | 1470.000000    | 1470.000000             | 1470.000000 |
| mean  | 36.923810   | 802.485714  | 9.192517         | 2.912925    | 1.0           | 1024.865306    | 2.721769                | 65.891156   |
| std   | 9.135373    | 403.509100  | 8.106864         | 1.024165    | 0.0           | 602.024335     | 1.093082                | 20.329428   |
| min   | 18.000000   | 102.000000  | 1.000000         | 1.000000    | 1.0           | 1.000000       | 1.000000                | 30.000000   |
| 25%   | 30.000000   | 465.000000  | 2.000000         | 2.000000    | 1.0           | 491.250000     | 2.000000                | 48.000000   |
| 50%   | 36.000000   | 802.000000  | 7.000000         | 3.000000    | 1.0           | 1020.500000    | 3.000000                | 66.000000   |
| 75%   | 43.000000   | 1157.000000 | 14.000000        | 4.000000    | 1.0           | 1555.750000    | 4.000000                | 83.750000   |
| max   | 60.000000   | 1499.000000 | 29.000000        | 5.000000    | 1.0           | 2068.000000    | 4.000000                | 100.000000  |

#### 8 rows × 26 columns

```
#s = df.describe().loc['std']
```

```
#s[s == 0]
```

```
df.describe(include=['object', 'bool'])
```

```
.dataframe thead th {
    text-align: left;
}
.dataframe tbody tr th {
    vertical-align: top;
}
```

|        | Attrition | BusinessTravel | Department             | EducationField | Gender | JobRole         | MaritalStatus | Over18 | OverTime |
|--------|-----------|----------------|------------------------|----------------|--------|-----------------|---------------|--------|----------|
| count  | 1470      | 1470           | 1470                   | 1470           | 1470   | 1470            | 1470          | 1470   | 1470     |
| unique | 2         | 3              | 3                      | 6              | 2      | 9               | 3             | 1      | 2        |
| top    | No        | Travel_Rarely  | Research & Development | Life Sciences  | Male   | Sales Executive | Married       | Υ      | No       |
| freq   | 1233      | 1043           | 961                    | 606            | 882    | 326             | 673           | 1470   | 1054     |

```
df = df.drop(['Over18', 'EmployeeCount', 'StandardHours'], axis=1)
```

```
df.shape
```

```
(1470, 32)
df['Attrition'].value_counts()
        1233
Yes
        237
Name: Attrition, dtype: int64
df['JobRole'].value_counts()
Sales Executive
                                    326
Research Scientist
                                   292
Laboratory Technician
                                  259
Manufacturing Director
                                 145
Healthcare Representative 131
Manager
                                   102
Sales Representative
                                    83
Research Director
Human Resources
                                   52
Name: JobRole, dtype: int64
df['JobRole'].value_counts(normalize=True)
Sales Executive
                                0.221769
Research Scientist
                                0.198639
Laboratory Technician 0.176190
Manufacturing Director 0.098639
Healthcare Representative 0.089116
Manager
                                  0.069388
Sales Representative
                                 0.056463
Research Director
                                   0.054422
Human Resources
                                   0.035374
Name: JobRole, dtype: float64
df[df['Attrition'] == 'Yes'].mean()
                                      33.607595
Age
Age
DailyRate
DistanceFromHome
                                  750.362869
                                    10.632911
Education 2.839002
EmployeeNumber 1010.345992
EnvironmentSatisfaction 2.464135
65.573840
HourlyRate 65.573840
JobInvolvement 2.518987
JobLevel 1.637131
JobSatisfaction 2.468354
MonthlyIncome 4787.092827
MonthlyRate 14559.308017
NumCompaniesWorked 2.940928
NumCompaniesWorked 2.940928
PercentSalaryHike 15.097046
PerformanceRating 3.156118
RelationshipSatisfaction 2.599156
StockOptionLevel 0.527426
StockOptionLevel 0.527426
TotalWorkingYears 8.244726
TrainingTimesLastYear 2.624473
WorkLifeBalance
YearsInCurrentRole
YearsAtCompany
                                       5.130802
                                     2.902954
YearsSinceLastPromotion
                                   1.945148
```

```
YearsWithCurrManager
                                2.852321
dtype: float64
df[df['Attrition'] == 'Yes']['YearsWithCurrManager'].mean()
2.852320675105485
df[df['Attrition'] == 'No']['YearsWithCurrManager'].mean()
4.367396593673966
df[(df['MaritalStatus'] != 'Married') & (df['BusinessTravel'] == 'Travel_Frequently')]['Attrition'].value_counts(normalize=True)
      0.685535
No
Yes
      0.314465
Name: Attrition, dtype: float64
df['Attrition'].value_counts(normalize=True)
      0.838776
Nο
      0.161224
Yes
Name: Attrition, dtype: float64
```

#### Группировка

```
\label{thm:continuous} $$ df.groupby(['Attrition'])[['DistanceFromHome','YearsWithCurrManager']]. describe(percentiles=[]) $$ df.groupby(['Attrition'])[['DistanceFromHome','YearsWithCurrManager']]. $$ df.groupby(['Attrition'])['DistanceFromHome','YearsWithCurrManager']]. $$ df.groupby(['Attrition'])['DistanceFromHome','YearsWithCurrMa
```

```
.dataframe thead th {
   text-align: left;
.dataframe tbody tr th {
   vertical-align: top;
}
```

|           | Distance | DistanceFromHome |          |     |     |      | YearsWi | Years With Curr Manager |          |     |     |      |
|-----------|----------|------------------|----------|-----|-----|------|---------|-------------------------|----------|-----|-----|------|
|           | count    | mean             | std      | min | 50% | max  | count   | mean                    | std      | min | 50% | max  |
| Attrition |          |                  |          |     |     |      |         |                         |          |     |     |      |
| No        | 1233.0   | 8.915653         | 8.012633 | 1.0 | 7.0 | 29.0 | 1233.0  | 4.367397                | 3.594116 | 0.0 | 3.0 | 17.0 |
| Yes       | 237.0    | 10.632911        | 8.452525 | 1.0 | 9.0 | 29.0 | 237.0   | 2.852321                | 3.143349 | 0.0 | 2.0 | 14.0 |

#### Сводные таблицы

```
pd.crosstab(df['Attrition'], df['MaritalStatus'])
```

```
.dataframe thead th \{
   text-align: left;
```

```
.dataframe tbody tr th {
    vertical-align: top;
}
```

| MaritalStatus | Divorced | Married | Single |
|---------------|----------|---------|--------|
| Attrition     |          |         |        |
| No            | 294      | 589     | 350    |
| Yes           | 33       | 84      | 120    |

```
pd.crosstab(df['Attrition'], df['MaritalStatus'], normalize=True)
```

```
.dataframe thead th {
    text-align: left;
}
.dataframe tbody tr th {
    vertical-align: top;
}
```

| MaritalStatus | Divorced | Married  | Single   |  |
|---------------|----------|----------|----------|--|
| Attrition     |          |          |          |  |
| No            | 0.200000 | 0.400680 | 0.238095 |  |
| Yes           | 0.022449 | 0.057143 | 0.081633 |  |

```
df.pivot_table(['DailyRate','Education','TotalWorkingYears'],
['Department'], aggfunc='mean')
```

```
.dataframe thead th {
    text-align: left;
}
.dataframe tbody tr th {
    vertical-align: top;
}
```

|                        | DailyRate  | Education | TotalWorkingYears |
|------------------------|------------|-----------|-------------------|
| Department             |            |           |                   |
| Human Resources        | 751.539683 | 2.968254  | 11.555556         |
| Research & Development | 806.851197 | 2.899063  | 11.342352         |
| Sales                  | 800.275785 | 2.934978  | 11.105381         |

```
pd.crosstab(df['Attrition'], df['BusinessTravel'], margins=True)
```

```
.dataframe thead th {
    text-align: left;
}
.dataframe tbody tr th {
    vertical-align: top;
}
```

| BusinessTravel | Non-Travel | Travel_Frequently | Travel_Rarely | All  |
|----------------|------------|-------------------|---------------|------|
| Attrition      |            |                   |               |      |
| No             | 138        | 208               | 887           | 1233 |

| BusinessTravel | Non-Travel | Non-Travel Travel_Frequently |      | All  |
|----------------|------------|------------------------------|------|------|
| Attrition      |            |                              |      |      |
| Yes            | 12         | 69                           | 156  | 237  |
| All            | 150        | 277                          | 1043 | 1470 |

## Визуализация данных

## Seaborn и Matplotlib

```
%matplotlib inline
import seaborn as sns
import matplotlib.pyplot as plt
#графики в svg выглядят более четкими
#%config InlineBackend.figure_format = 'svg'

#увеличим дефолтный размер графиков
from pylab import rcParams
rcParams['figure.figsize'] = 10, 8;
```

```
BIGGER_SIZE = 18

plt.rc('font', size=BIGGER_SIZE)  # controls default text sizes
plt.rc('axes', titlesize=BIGGER_SIZE)  # fontsize of the axes title
plt.rc('axes', labelsize=BIGGER_SIZE)  # fontsize of the x and y labels
plt.rc('xtick', labelsize=BIGGER_SIZE)  # fontsize of the tick labels
plt.rc('ytick', labelsize=BIGGER_SIZE)  # fontsize of the tick labels
plt.rc('legend', fontsize=BIGGER_SIZE)  # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title
```

```
df['Attrition'].value_counts().plot(kind='bar', label='Attrition')
plt.legend()
plt.title('Attrition distribution');
```



```
pd.crosstab(df['Attrition'], df['BusinessTravel'], margins=True)
```

```
.dataframe thead th {
    text-align: left;
}
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
```

| BusinessTravel | Non-Travel | Travel_Frequently | Travel_Rarely | All  |
|----------------|------------|-------------------|---------------|------|
| Attrition      |            |                   |               |      |
| No             | 138        | 208               | 887           | 1233 |
| Yes            | 12         | 69                | 156           | 237  |
| All            | 150        | 277               | 1043          | 1470 |

```
sns.countplot(x='BusinessTravel', hue='Attrition', data=df);
```



```
sns.countplot(x='MaritalStatus', hue='Attrition', data=df);
```



```
pd.crosstab(df['Attrition'], df['StockOptionLevel'], margins=True)
```

```
.dataframe thead th {
    text-align: left;
}
.dataframe tbody tr th {
    vertical-align: top;
}
```

| StockOptionLevel | 0   | 1   | 2   | 3  | All  |
|------------------|-----|-----|-----|----|------|
| Attrition        |     |     |     |    |      |
| No               | 477 | 540 | 146 | 70 | 1233 |
| Yes              | 154 | 56  | 12  | 15 | 237  |
| All              | 631 | 596 | 158 | 85 | 1470 |

```
sns.countplot(x='StockOptionLevel', hue='Attrition', data=df);
```



```
#df['Risk'] = ((df['MaritalStatus'] != 'Married') & (df['BusinessTravel'] == 'Travel_Frequently') &(df['StockOptionLevel'] ==
0)).astype('int')
```

```
#df[['Risk','MaritalStatus','BusinessTravel', 'StockOptionLevel']].head(6)
```

```
#pd.crosstab(df['Attrition'], df['Risk'])
```

```
#sns.countplot(x='Risk', hue='Attrition', data=df);
```

### Scatter plot matrix

```
cols = ['DailyRate','Age','TotalWorkingYears']
sns_plot = sns.pairplot(df[cols], size = 4)
sns_plot.savefig('pairplot.png')
```



Гистограмма и KDE ( kernel density estimation)

sns.distplot(df.Age)

<matplotlib.axes.\_subplots.AxesSubplot at 0x10f61c88>



sns.jointplot(df.YearsAtCompany, df.MonthlyIncome, size =10)

<seaborn.axisgrid.JointGrid at 0xfd3f2b0>



## Box plot

sns.boxplot(y="Department", x="YearsAtCompany", data=df, orient="h")

<matplotlib.axes.\_subplots.AxesSubplot at 0x1117af60>



Вох plot состоит из коробки (поэтому он и называется box plot), усиков и точек. Коробка показывает интерквартильный размах распределения, то есть соответственно 25% (Q1) и 75% (Q3) перцентили. Черта внутри коробки обозначает медиану распределения. С коробкой разобрались, перейдем к усам. Усы отображают весь разброс точек кроме выбросов, то есть минимальные и максимальные значения, которые попадают в промежуток (Q1 - 1.5\*IQR, Q3 + 1.5\*IQR), где IQR = Q3 - Q1 — интерквартильный размах. Точками на графике обозначаются выбросы (outliers) — те значения, которые не вписываются в



промежуток значений, заданный усами графика.

#### Heat map

<matplotlib.axes.\_subplots.AxesSubplot at 0x11514b00>



```
df['Attrition'] = (df['Attrition']=='Yes').astype('int64')
```

```
corr_matrix = df.corr()
```

```
corr_matrix.head()
```

```
.dataframe thead th {
    text-align: left;
}
.dataframe tbody tr th {
    vertical-align: top;
}
```

|                  | Age       | Attrition | DailyRate | DistanceFromHome | Education | EmployeeNumber | EnvironmentSatisfaction | HourlyRate |
|------------------|-----------|-----------|-----------|------------------|-----------|----------------|-------------------------|------------|
| Age              | 1.000000  | -0.159205 | 0.010661  | -0.001686        | 0.208034  | -0.010145      | 0.010146                | 0.024287   |
| Attrition        | -0.159205 | 1.000000  | -0.056652 | 0.077924         | -0.031373 | -0.010577      | -0.103369               | -0.006846  |
| DailyRate        | 0.010661  | -0.056652 | 1.000000  | -0.004985        | -0.016806 | -0.050990      | 0.018355                | 0.023381   |
| DistanceFromHome | -0.001686 | 0.077924  | -0.004985 | 1.000000         | 0.021042  | 0.032916       | -0.016075               | 0.031131   |
| Education        | 0.208034  | -0.031373 | -0.016806 | 0.021042         | 1.000000  | 0.042070       | -0.027128               | 0.016775   |

5 rows × 25 columns

```
sns.heatmap(corr_matrix);
```



df[features[:9]].hist(figsize=(20,16));



sns.pairplot(df[['DistanceFromHome','YearsWithCurrManager','Attrition']], hue='Attrition', size = 4);



```
cnt = 3
fig, axes = plt.subplots(nrows=cnt, ncols=cnt, figsize=(25, 10))

for idx, feat in enumerate(features[:9]):
    sns.boxplot(x='Attrition', y=feat, data=df, ax=axes[idx / cnt, idx % cnt])
    axes[idx / cnt, idx % cnt].legend()
    axes[idx / cnt, idx % cnt].set_xlabel('Attrition')
    axes[idx / cnt, idx % cnt].set_ylabel(feat);
```

C:\Anaconda2\lib\site-packages\matplotlib\axes\\_axes.py:545: UserWarning: No labelled objects found. Use label='...' kwarg on individual plots.

warnings.warn("No labelled objects found. "



```
_, axes = plt.subplots(1, 2, sharey=True, figsize=(16,6))

sns.boxplot(x='Attrition', y='JobLevel', data=df, ax=axes[0]);
sns.violinplot(x='Attrition', y='JobLevel', data=df, ax=axes[1]);
```





```
_, axes = plt.subplots(1, 2, sharey=True, figsize=(16,6))

sns.boxplot(x='Attrition', y='MonthlyIncome', data=df, ax=axes[0]);
sns.violinplot(x='Attrition', y='MonthlyIncome', data=df, ax=axes[1]);
```





```
#sns.countplot(x='JobLevel', hue='Attrition', data=df);
```

```
#_, axes = plt.subplots(1, 2, sharey=True, figsize=(16,6))

#sns.countplot(x='MaritalStatus', hue='Attrition', data=df, ax=axes[0]);
#sns.countplot(x='Department', hue='Attrition', data=df, ax=axes[1]);
```

#### t-SNE (t-distributed Stohastic Neighbor Embedding)

```
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler
```

```
X = df.drop(['Attrition', 'JobRole', 'BusinessTravel', 'Department', 'EducationField', 'MaritalStatus'], axis=1)
X['Gender'] = pd.factorize(X['Gender'])[0]
X['OverTime'] = pd.factorize(X['OverTime'])[0]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

```
%%time
tsne = TSNE(random_state=17)
tsne_representation = tsne.fit_transform(X_scaled) #1min
```

#### Wall time: 17.4 s

```
plt.scatter(tsne_representation[:, 0], tsne_representation[:, 1]);
```













#### Машинное обучение

Scikit-learn. Деревья решений и метод ближайших соседей

```
df['Department'] = pd.factorize(df['Department'])[0]
df['Gender'] = pd.factorize(df['Gender'])[0]
df['JobRole'] = pd.factorize(df['JobRole'])[0]
df['MaritalStatus'] = pd.factorize(df['MaritalStatus'])[0]
df['OverTime'] = pd.factorize(df['OverTime'])[0]
df['EducationField'] = pd.factorize(df['EducationField'])[0]
df['BusinessTravel'] = pd.factorize(df['BusinessTravel'])[0]
```

```
y = df['Attrition']

df.drop(['Attrition'], axis=1, inplace=True)
```

```
y.value_counts(normalize=True)
```

```
0
   0.838776
   0.161224
Name: Attrition, dtype: float64
from \ sklearn.model\_selection \ import \ train\_test\_split, \ Stratified KFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
X_train, X_holdout, y_train, y_holdout = train_test_split(df.values, y, test_size=0.3,
random_state=17)
tree = DecisionTreeClassifier(max_depth=5, random_state=17)
knn = KNeighborsClassifier(n\_neighbors=10)
tree.fit(X_train, y_train)
knn.fit(X\_train, y\_train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           \verb|metric_params=None, n_jobs=1, n_neighbors=10, p=2, \\
           weights='uniform')
from sklearn.metrics import accuracy_score
tree_pred = tree.predict(X_holdout)
accuracy_score(y_holdout, tree_pred)
0.83673469387755106
knn_pred = knn.predict(X_holdout)
accuracy_score(y_holdout, knn_pred)
0.8344671201814059
from sklearn.model_selection import GridSearchCV, cross_val_score
tree_params = {'max_depth': range(1,4),'max_features': range(10,20)}
tree_grid = GridSearchCV(tree, tree_params, cv=5, n_jobs=-1, verbose=True)
tree_grid.fit(X_train, y_train) #12sec
Fitting 5 folds for each of 30 candidates, totalling 150 fits
Wall time: 5.06 s
                                                          4.6s finished
[Parallel(n_jobs=-1)]: Done 150 out of 150 | elapsed:
```

```
GridSearchCV(cv=5, error_score='raise',
      estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=5,
           max_features=None, max_leaf_nodes=None,
           min_impurity_split=1e-07, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           presort=False, random_state=17, splitter='best'),
      fit_params={}, iid=True, n_jobs=-1,
      param\_grid=\{\text{'max\_features': [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], \text{'max\_depth': [1, 2, 3]}\},
      pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
      scoring=None, verbose=True)
tree_grid.best_params_
{'max_depth': 3, 'max_features': 13}
tree_grid.best_score_
0.86297376093294464
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
knn_pipe = Pipeline([('scaler', StandardScaler()), ('knn', KNeighborsClassifier(n_jobs=-1))])
knn_params = {'knn__n_neighbors': range(1, 10)}
knn_grid = GridSearchCV(knn_pipe, knn_params,
cv=5, n jobs=-1,
verbose=True)
knn_grid.fit(X_train, y_train) #10sec
Fitting 5 folds for each of 9 candidates, totalling 45 fits
Wall time: 7.97 s
[Parallel(n_jobs=-1)]: Done 45 out of 45 | elapsed:
                                                    7.6s finished
C:\Anaconda2\lib\site-packages\sklearn\utils\validation.py:429: DataConversionWarning: Data with input dtype int64 was converted
to float64 by StandardScaler.
 warnings.warn(msg, _DataConversionWarning)
GridSearchCV(cv=5, error_score='raise',
      KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
          metric_params=None, n_jobs=-1, n_neighbors=5, p=2,
          weights='uniform'))]),
      fit_params={}, iid=True, n_jobs=-1,
      param_grid={'knn__n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9]},
```

```
\verb|pre_dispatch='2*n_jobs'|, \verb|refit=True|, \verb|return_train_score=True|, \\
          scoring=None, verbose=True)
   knn_grid.best_params_, knn_grid.best_score_
   ({'knn_n_neighbors': 8}, 0.84839650145772594)
   import numpy as np
   from sklearn.tree import export_graphviz
   #!pip install pydotplus
   #!pip install graphviz
   from sklearn import tree
   from IPython.display import Image
   import pydotplus
   dot_data = tree.export_graphviz(tree_grid.estimator, feature_names=df.columns, out_file=None)
   graph = pydotplus.graph_from_dot_data(dot_data)
   graph.write_pdf('df_train.pdf')
   graph.write_png('df_train.png')
   Image(graph.create_png())
Случайный лес
   from sklearn.ensemble import RandomForestClassifier
   forest = RandomForestClassifier(n_estimators=100, n_jobs=-1, random_state=17)
   print(np.mean(cross_val_score(forest, X_train, y_train, cv=5))) # 0.859
   0.859131853286
   forest_params = {'max_depth': range(10,11),
   'max_features': range(10,15)}
   forest_grid = GridSearchCV(forest, forest_params,
   cv=5, n_jobs=-1,
   verbose=True)
```

```
%%time
forest_grid.fit(X_train, y_train) #50sec
```

```
forest_grid.best_params_, forest_grid.best_score_ #0.864
```

```
({'max_depth': 10, 'max_features': 12}, 0.86394557823129248)
```

#### Логистическая регрессия

```
from sklearn.linear_model import LogisticRegression
```

```
%%time
logit = LogisticRegression(n_jobs=-1, random_state=7)
logit.fit(X_train, y_train)
print(round(logit.score(X_train, y_train), 3), round(logit.score(X_holdout, y_holdout), 3))
```

```
(0.869, 0.846)
Wall time: 47 ms
```

```
def visualize_coefficients(classifier, feature_names, n_top_features=25):
# get coefficients with large absolute values
    coef = classifier.coef_.ravel()
    positive_coefficients = np.argsort(coef)[-n_top_features:]
    negative_coefficients = np.argsort(coef)[:n_top_features]
    interesting_coefficients = np.hstack([negative_coefficients, positive_coefficients])
# plot them
    plt.figure(figsize=(15, 5))
    colors = ["red" if c < 0 else "blue" for c in coef[interesting_coefficients]]
    plt.bar(np.arange(2 * n_top_features), coef[interesting_coefficients], color=colors)
    feature_names = np.array(feature_names)
    plt.xticks(np.arange(1, 1 + 2 * n_top_features), feature_names[interesting_coefficients], rotation=60, ha="right", size=10);</pre>
```

```
#def plot_grid_scores(grid, param_name):
# plt.plot(grid.param_grid[param_name], grid.cv_results_['mean_train_score'],
```

```
# color='green', label='train')
# plt.plot(grid.param_grid[param_name], grid.cv_results_['mean_test_score'],
# color='red', label='test')
# plt.legend();
```

visualize\_coefficients(logit, df.columns)



## Ссылки

http://ods.ai/

https://habr.com/company/ods/blog/322626/

## Вопросы?