Problem Set 8 Real Analysis I

Bennett Rennier barennier@gmail.com

January 15, 2018

Ex 6.2 Let X be a set and \mathcal{A} the collection of all subsets of X. Pick $y \in X$ and let δ_y be the point mass at y, defined in Example 3.4. Prove that if $f: X \to \mathbb{R}$, then

$$\int f \, d\delta_y = f(y)$$

Proof. Since \mathcal{A} is the set of all subsets, f is trivally measurable. If f(y) < 0, let f be f^- , otherwise, take f to be f^+ in the following. Let s be a simple function where $0 \le s \le f$. Represent s in the canonical form of

$$s = \sum_{i=1}^{n} a_i \chi_{E_i}$$

where the E_i 's are disjoint. Since the E_i 's are disjoint, y is in at most one of them. If y is in none of them then the integral is 0. If y is in one of them, suppose E_j , then

$$\int s \, d\delta_y = \sum_{i=1}^n a_i \delta_y(E_i) = a_j = s(y) \le f(y)$$

Since $\int f d\delta_y$ is by definition the supremum of such simple functions, this proves that $\int f d\delta_y \le f(y)$. Consider the simple function $s = f(y)\chi_{\{y\}}$. We see that $0 \le s \le f$, and so, $\int f d\delta_y \ge \int s d\delta_y = f(y)$. Thus, $\int f d\delta_y = f(y)$.

Ex 6.3 Let X be the positive integers and \mathcal{A} the collection of all subsets of X. If $f: X \to \mathbb{R}$ is non-negative and μ is counting measure defined in Example 3.2, prove that

$$\int f \, d\mu = \sum_{k=1}^{\infty} f(k)$$

This exercise is very useful because it allows one to derive many conclusions about series from analogous results about general measure spaces.

Proof. Again, since the \mathcal{A} is the set of all subsets, f is trivally measurable. Let $s_n = \sum_{k=1}^n f(k)\chi_{\{k\}}$. We see that s_n is simple and that $s_n \leq f$. Thus, $\int s \, d\mu \leq \int f \, d\mu$. Also, we see that $\int s_n \, d\mu = \sum_{k=1}^n f(k)\mu(\{k\}) = \sum_{k=1}^n f(k)$. This means that $\sum_{k=1}^n f(k) \leq \int f \, d\mu$ for all n, and thus $\sum_{k=1}^\infty f(k) \leq \int f \, d\mu$.

Let $s = \sum_{k=1}^{n} a_k \chi_{E_k}$ be a simple function represented in its canonical form where $0 \le s \le f$. If $x \in E_j$, then, since s is canonical, it doesn't appear in any other E_k . This means that $s(x) = a_j$, and since $s \le f$, this shows that $a_j \le f(x)$ where $x \in E_j$. With this, we see that

$$\int s \, d\mu = \sum_{k=1}^{n} a_k |E_k| = \sum_{k=1}^{n} a_k \sum_{x \in E_k} 1 = \sum_{k=1}^{n} \sum_{x \in E_k} a_k \le$$

$$\sum_{k=1}^{n} \sum_{x \in E_k} f(x) \le \sum_{x \in \cup_k E_k} f(x) \le \sum_{x \in X} f(x) \le \sum_{k=1}^{\infty} f(k)$$

Since $\sum_{k=1}^{\infty} f(k)$ is greater than any simple function less than or equal to f, it's greater than the supremum of all such simple functions, which is, by definition $\int f d\mu$. Thus, $\int f d\mu \leq \sum_{k=1}^{\infty} f(k)$. This proves that $\int f d\mu = \sum_{k=1}^{\infty} f(k)$.

Ex 6.5 Let f be a non-negative measurable function. Prove that

$$\lim_{n \to \infty} \int (f \wedge n) = \int f$$

Proof. We see that $f \wedge n \leq f$, and thus $\int (f \wedge n) d\mu \leq \int f d\mu$ for any n. This proves that $\lim_{n\to\infty} \int (f \wedge n) d\mu \leq \int f d\mu$.

Let $s = \sum_{k=1}^n a_k \chi_{E_k}$ be a simple function in its canonical form where $0 \le s \le f$. Let $x \in X$. Then x lies in at most one of these E_k 's. If it's in none, then s(x) = 0, if it's in one, then $s(x) = a_j$ for some j. Thus, for any $x \in X$, $s(x) \le \max\{a_k\}$. Let n be an integer greater than this maximum. Since $s \le f$ and $s \le n$, this means that $s \le f \land n$. Thus, $\int s \, d\mu \le \int (f \land n) \, d\mu \le \lim_{n \to \infty} \int (f \land n) \, d\mu$. If one takes the supremum of all such s, we see that $\int f \, d\mu \le \lim_{n \to \infty} \int (f \land n) \, d\mu$. This proves the statement.

Ex 6.6 Let (X, \mathcal{A}, μ) be a measure space and suppose μ is σ -finite. Suppose f is integrable. Prove that given ε there exists δ such that

$$\int_{A} |f(x)| \, \mu(dx) < \varepsilon$$

whenever $\mu(A) < \delta$.

Proof. Let $\varepsilon > 0$. We see that since $|f|\chi_A \le |f|$ that $\int |f|\chi_A d\mu \le \int |f| d\mu < \infty$. This proves that $|f|\chi_A$ is integrable. Since it's finite, this means that there's a simple function s such that $0 \le s \le |f|\chi_A$ and where $\int |f|\chi_A d\mu - \int s d\mu < \frac{\varepsilon}{2}$.

Since $0 \le s \le |f|\chi_A$, we can see that this means that s(x) = 0 for all $x \in A$. Thus, $s = s\chi_A$. Let $\sum_{k=1}^n a_k \chi_{E_k}$ be the conanical form of s. This means that $s = s\chi_A = \chi_A \sum_{k=1}^n a_k \chi_{E_k} = \sum_{k=1}^n a_k \chi_{E_k \cap A}$. Thus

$$\int s \, d\mu = \int s \chi_A \, d\mu = \sum_{k=1}^n a_k \mu(A \cap E_k)$$

If we let $\mu(A) < \delta = \frac{\varepsilon}{2\sum_{k=1}^{n} a_k}$, we see that

$$\int s \, d\mu \le \sum_{k=1}^n a_k \mu(A) = \mu(A) \sum_{k=1}^n a_k < \frac{\varepsilon}{2 \sum_{k=1}^n a_k} \sum_{k=1}^n a_k = \frac{\varepsilon}{2}$$

This shows that

$$\int_{A} |f| \, d\mu = \int |f| \chi_{A} \, d\mu < \frac{\varepsilon}{2} + \int s \, d\mu < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

This proves the statement.

Ex 6.8 If f_n is a sequence of non-negative integrable functions such that $f_n(x)$ decreases to f(x) for every x, prove that

$$\int f_n \, d\mu \to \int f \, d\mu$$

Proof. Since f is the limit of decreasing non-negative functions, we see that $f \geq 0$. Thus, $0 \leq f \leq f_n$. This means that $\int |f| d\mu = \int f d\mu \leq \int f_n d\mu = \int |f_n| d\mu$. Since f_n is integrable, this means that f is integrable.

Let $g_n = f_1 - f_n$. Since f_n was decreasing, then g_n is increasing. We see that $g_n = f_1 - f_n \ge 0$, and also that that $g_n \uparrow (f_1 - f_n)$. Thus, using the Monotone Convergence Theorem and the fact that the Lebesgue integral is linear on integrable functions, we see that:

$$\int f_1 d\mu - \lim_{n \to \infty} \int f_n d\mu = \lim_{n \to \infty} \left(\int f_1 d\mu - \int f_n d\mu \right) = \lim_{n \to \infty} \int (f_1 - f_n) d\mu =$$

$$\int \lim_{n \to \infty} (f_1 - f_n) d\mu = \int (f_1 - f) d\mu = \int f_1 d\mu - \int f d\mu$$

Since f_1 is integrable, its integral is finite. Thus, we can subtract it from both sides and multiply by -1, which gives that

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu$$