DÉRIVATION – Chapitre 3/3

Tout le cours en vidéo : https://youtu.be/uMSNIIPBFhQ

Partie 1 : Étude des variations d'une fonction

1) Variations et signe de la dérivée

Théorème : Soit une fonction f définie et dérivable sur un intervalle I.

- Si $f'(x) \le 0$, alors f est décroissante sur I.
- Si $f'(x) \ge 0$, alors f est croissante sur I.

Remarques: - Si f'(x) = 0, alors f est constante sur I.

- Si f'(x) > 0, alors f est **strictement** croissante sur I.

Méthode : Comprendre le lien entre signe de la dérivée et variations de la fonction

Vidéo https://youtu.be/dPIITNyBCiw

a) Soit la fonction f définie sur \mathbb{R} , tel que f(2) = -1.

On donne le signe de la dérivée, compléter le tableau de variations.

х	-∞		2		+∞
f'(x)		-	Ф	+	
f(x)					

b) Soit la fonction f définie sur \mathbb{R} , tel que f(4) = 3.

On donne les variations de la fonction f, compléter le tableau avec le signe de la dérivée.

х	-∞	4	+∞
f'(x)		Ф	
f(x)			

c) On donne la représentation graphique de la fonction f, compléter le tableau de variations.

х	-∞	+∞
f'(x)	Ф	
f(x)		

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Correction

х	-∞	2		+∞
f'(x)	_	Ф	+	
f(x)		▲ -1 ~		

b)

х	-∞		4		+∞
f'(x)		+	Ф	_	
f(x)		\	3		_

c)

2) Étude des variations d'une fonction du second degré

Méthode: Étudier les variations d'une fonction polynôme du second degré

Vidéo https://youtu.be/EXTobPZzORo

Soit la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 - 8x + 1$.

- a) Calculer la fonction dérivée f' de f.
- b) Déterminer le signe de f' en fonction de x.
- c) Dresser le tableau de variations de f.

Correction

a)
$$f'(x) = 2 \times 2x - 8 = 4x - 8$$
.

b) Étude du signe de la dérivée :

On commence par résoudre l'équation f'(x) = 0.

Soit :
$$4x - 8 = 0$$

$$4x = 8$$

$$x = \frac{8}{4} = 2.$$

La fonction f' est une fonction affine représentée par une droite dont le coefficient directeur 4 est positif.

Donc f' est croissante. Elle est donc d'abord négative (avant x=2) puis positive (après x=2).

c) On dresse le tableau de variations en appliquant le théorème :

$$f(2) = 2 \times 2^2 - 8 \times 2 + 1 = -7.$$

2) Étude des variations d'une fonction du 3e degré

Méthode: Étudier les variations d'une fonction polynôme du 3e degré

Vidéo https://youtu.be/23 Ba3N0fu4

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + \frac{9}{2}x^2 - 12x + 5$.

- a) Calculer la fonction dérivée f de f.
- b) Déterminer le signe de f' en fonction de x.
- c) Dresser le tableau de variations de f.

Correction

a)
$$f'(x) = 3x^2 + \frac{9}{2} \times 2x - 12 = 3x^2 + 9x - 12$$
.

b) Étude du signe de la dérivée :

On commence par résoudre l'équation f'(x) = 0:

Le discriminant du trinôme $3x^2 + 9x - 12$ est égal à $\Delta = 9^2 - 4 \times 3 \times (-12) = 225$

L'équation possède deux solutions :
$$x_1 = \frac{-9 - \sqrt{225}}{2 \times 3} = -4$$
 et $x_2 = \frac{-9 + \sqrt{225}}{2 \times 3} = 1$

c) On dresse le tableau de variations en appliquant le théorème :

$$f(-4) = (-4)^3 + \frac{9}{2}(-4)^2 - 12 \times (-4) + 5 = 61$$

$$f(1) = 1^3 + \frac{9}{2} \times 1^2 - 12 \times 1 + 5 = -\frac{3}{2}$$

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

3) Étude des variations d'une fonction rationnelle

Méthode: Étudier les variations d'une fonction rationnelle

Vidéo https://youtu.be/5NrV-TXme_8

Soit la fonction f définie sur $\mathbb{R} \setminus \{2\}$ par $f(x) = \frac{x+3}{2-x}$

- a) Calculer la fonction dérivée f de f.
- b) Déterminer le signe de f ' en fonction de x.
- c) Dresser le tableau de variations de f.

Correction

a)
$$f(x) = \frac{x+3}{2-x} = \frac{u(x)}{v(x)}$$

avec
$$u(x) = x + 3 \to u'(x) = 1$$

$$v(x) = 2 - x \rightarrow v'(x) = -1$$

Donc:
$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$$

$$= \frac{1 \times (2 - x) - (x + 3) \times (-1)}{(2 - x)^2}$$

$$= \frac{2 - x + x + 3}{(2 - x)^2}$$

$$= \frac{5}{(2 - x)^2}$$

b) Étude du signe de la dérivée :

 $(2-x)^2$ est un carré donc toujours positif.

Donc f'(x) > 0.

c) On dresse alors le tableau de variations :

La double-barre dans le tableau signifie que la fonction n'est pas définie pour x = 2.

Partie 2: Extremum d'une fonction

La fonction admet un **maximum** au point où la dérivée s'annule et change de signe.

La fonction admet un **minimum** au point où la dérivée s'annule et change de signe.

<u>Théorème</u>: Soit une fonction f dérivable sur un intervalle ouvert I. Si la dérivée f' s'annule et change de signe en un réel c alors f admet un extremum en c = c.

Méthode: Déterminer un extremum d'une fonction

Vidéo https://youtu.be/zxyKLqnlMlk

Soit la fonction f définie sur \mathbb{R} par $f(x) = 5x^2 - 10x + 1$.

- a) Calculer la fonction dérivée f de f.
- b) Déterminer le signe de f' en fonction de x.
- c) Dresser le tableau de variations de f.
- d) En déduire que la fonction f admet un extremum sur \mathbb{R} . On précisera la valeur où il est atteint.
- e) Déterminer l'équation de la tangente à la courbe au point de l'extremum.

Correction

a)
$$f'(x) = 10x - 10$$

b) Étude du signe de la dérivée :

On commence par résoudre l'équation f'(x) = 0.

Soit :
$$10x - 10 = 0$$

 $10x = 10$

$$x = \frac{10}{10} = 1.$$

La fonction f' est une fonction affine représentée par une droite dont le coefficient directeur 10 est positif.

f' est croissante. Elle est donc d'abord négative (avant x=1) puis positive (après x=1).

c) On dresse alors le tableau de variations :

$$f(1) = 5 \times 1^2 - 10 \times 1 + 1 = -4$$

d) On lit dans le tableau de variations que la fonction f admet un minimum égal à -4 en x=1.

e) Au point de l'extremum de la fonction, la dérivée s'annule. On a f'(1)=0.

La tangente est donc de pente nulle et parallèle à l'axe des abscisses.

Comme f(1) = -4, l'équation de la tangente est y = -4.

Méthode: Tracer une courbe à l'aide du tableau de variations

Vidéo https://youtu.be/gPhyoY-d_VU

On donne le tableau de variations de la fonction f définie sur l'intervalle [-5;7] Tracer dans un repère une représentation graphique de la fonction f.

х	-5 -	1	4		7
f'(x)	+ (D –	Ф	+	
f(x)	2	5	-2	/	1

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Correction

On commence par placer les points de la courbe de coordonnées (-5; 2), (-1; 5), (4; -2) et (7; 1).

La dérivée s'annule en -1, la courbe possède donc une tangente horizontale d'équation y=5 en -1.

De même en 4, la courbe possède une tangente horizontale d'équation y=-2. On trace ces deux tangentes au voisinage de -1 pour l'une et de 4 pour l'autre.

On trace la courbe passant par les quatre points en s'appuyant sur les deux tangentes.

Partie 3 : Applications

1) Étude du signe d'une fonction

Méthode : Étudier le signe d'une fonction à l'aide de ses variations

Vidéo https://youtu.be/nLoOEQ9mLW0

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + 4x - 5$.

- a) Démontrer que la fonction f est strictement croissante.
- b) Vérifier que 1 est une racine de f.
- c) Dresser le tableau de variations de f et en déduire le signe de f en fonction de x.

Correction

a)
$$f'(x) = 3x^2 + 4$$

Comme un carré est toujours positif, f'(x) > 0.

On en déduit que la fonction f est strictement croissante.

b)
$$f(1) = 1^3 + 4 \times 1 - 5 = 0$$

Donc 1 est une racine de f.

c)

x	-∞	1	+∞
f'(x)		+	
f(x)		0	*

D'après le tableau de variations :

- f est négative sur $]-\infty$; 1],
- f est positive sur $[1; +\infty[$.

2) Étudier la position de deux courbes

Méthode: Étudier la position relative de deux courbes

Vidéo https://youtu.be/ON14GJOYogw

Soit f et g deux fonctions définies sur $[2; +\infty[$ par $: f(x) = x^3$ et g(x) = -5x + 18. Étudier la position relative des courbes représentatives C_f et C_g .

Correction

On va étudier le signe de la différence f(x) - g(x):

On pose :
$$h(x) = f(x) - g(x) = x^3 - (-5x + 18) = x^3 + 5x - 18$$
.

On a :
$$h'(x) = 3x^2 + 5$$

Donc h'(x) > 0.

On en déduit que la fonction h est strictement croissante sur $[2; +\infty[$.

On dresse le tableau de variations :

$$h(2) = 2^3 + 5 \times 2 - 18 = 0$$

D'après le tableau de variations, on a : $h(x) \ge 0$.

Soit : $f(x) - g(x) \ge 0$ et donc $f(x) \ge g(x)$.

On en déduit que la courbe C_f est au-dessus de la courbe C_g sur l'intervalle [2; $+\infty$ [.

3) Résoudre un problème d'optimisation

Méthode: Résoudre un problème d'optimisation

Vidéo https://youtu.be/V0gLF8iWARs

Une entreprise fabrique des composants pour ordinateur. Pour une quantité x, exprimée en milliers de composants, le coût total en milliers d'euros est :

$$C(x) = 0.2x^2 + 24x + 20$$
 avec $x \in [0; 30]$.

La recette est alors égale à : R(x) = 30x.

Le bénéfice est la différence entre la recette et le coût total.

Déterminer le bénéfice maximal et le nombre de composants correspondants à produire.

Correction

• On calcule l'expression de la fonction B donnant le bénéfice :

$$B(x) = R(x) - C(x)$$

$$= 30x - (0.2x^{2} + 24x + 20)$$

$$= 30x - 0.2x^{2} - 24x - 20$$

$$= -0.2x^{2} + 6x - 20$$

• On calcule la dérivée B' :

$$B'(x) = -0.2 \times 2x + 6 = -0.4x + 6$$

• On résout l'équation B'(x) = 0:

$$-0.4x + 6 = 0$$

 $x = \frac{-6}{-6} = 15$

$$x = \frac{-6}{-0.4} = 15$$

La fonction B' est une fonction affine représentée par une droite dont le coefficient directeur -0.4 est négatif.

B' est décroissante, elle est donc d'abord positive (avant x=15) puis négative (après x = 15).

• Tableau de variations :

$$B(15) = -0.2 \times 15^2 + 6 \times 15 - 20 = 25$$

• On lit dans le tableau que la fonction B atteint son maximum en 15 et ce maximum est égal à 25. Le bénéfice maximal est donc de 25 000 € pour 15 000 composants produits.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales