Примеры задач

1. Найти положения равновесия автономной системы

$$\begin{cases} (x+3)\dot{x} + (\dot{x}+y)\dot{y} + 3x + y - 5 = 0, \\ y\dot{x} + \dot{y} + x^2 + 3y - 7 = 0. \end{cases}$$

2. Известно, что точка (2;1) является положением равновесия системы

$$\begin{cases} \dot{x} = x^2 + \alpha y - 5, \\ \dot{y} = 3x + 2y + \beta. \end{cases}$$

Найти значения параметров α и β .

3. Система уравнений

$$\begin{cases} \dot{x} = x^2 + \alpha y - 7, \\ \dot{y} = 3x - 2y + \beta \end{cases}$$

имеет решение $x \equiv 2, y \equiv 1$, которое не зависит от t. Найти значения параметров α и β . Как называются такие решения автономных систем?

- 4. Вычислить производную в силу системы $\dot{x} = x^2 y, \, \dot{y} = x y^3$ от функции xy.
- 5. Проверив, что $v(x,y) = x^2 + y^2$ является функцией Ляпунова для системы

$$\begin{cases} \dot{x} = -2y - x^3, \\ \dot{y} = 2x - y^3, \end{cases}$$

доказать, что нулевое положение равновесия этой системы устойчиво по Ляпунову.

- 6. Система $\dot{x} = Ax$, где $x \in R^3$, A постоянная матрица, имеет частное решение, у которого известна только первая координата: $x_1 = e^{-t} + \cos t$. Устойчиво ли нулевое решение?
- 7. Исследовать на устойчивость нулевое положение равновесия линейной системы

$$\begin{cases} \dot{x} = 3x + 4y, \\ \dot{y} = 2x + y. \end{cases}$$

8. Исследовать на устойчивость нулевое положение равновесия системы

$$\begin{cases} \dot{x} = x^2 + 3x + 2y, \\ \dot{y} = 2xy + 4x + y. \end{cases}$$

9. Найти все значения параметра k, при которых нулевое положение равновесия системы

$$\begin{cases} \dot{x} = -6x + 2ky, \\ \dot{y} = 3kx - 9y \end{cases}$$

будет устойчивым по Ляпунову.

10. Найти уравнения траекторий автономной системы

$$\begin{cases} \dot{x} = 5x + y, \\ \dot{y} = 4x + 5y, \end{cases}$$

которые являются прямыми линиями.

11. Определить тип нулевого положения равновесия системы в зависимости от значения параметра α

$$\begin{cases} \dot{x} = \alpha x - 2y, \\ \dot{y} = 2x + \alpha y. \end{cases}$$

- 12. Матрица системы $\dot{x} = \alpha x + \beta y$, $\dot{y} = \gamma x + \delta y$ имеет собственные значения $\lambda_1 = 3$, $\lambda_2 = 5$. Определить тип положения равновесия. Будет ли оно устойчивым?
- 13. Известно, что матрица линейной однородной системы второго порядка с постоянными коэффициентами является невырожденной, а одно из ее собственных чисел $\lambda_1 = 4$. Найти положение равновесия данной системы. Какого типа оно может быть (перечислить все возможные варианты, выписать соответствующие условия на λ_2).
- 14. Решить уравнение в частых производных

$$x\frac{\partial z}{\partial x} + (5y + x^6)\frac{\partial z}{\partial y} = 0.$$

15. Найти решение уравнения в частых производных

$$x\frac{\partial z}{\partial x} - 2y\frac{\partial z}{\partial y} = z,$$

удовлетворяющее условию $z=y^2$ при x=1.

16. При решении уравнения в частных производных первого порядка

$$f(x, y, z) \frac{\partial z}{\partial x} + g(x, y, z) \frac{\partial z}{\partial y} = h(x, y, z)$$

было выписана характеристическая система

$$\frac{dx}{x^4} = \frac{dy}{-y^2} = \frac{dz}{3z^3}.$$

Найти общее решение уравнения в частных производных. Определить, каковы в этом случае могут быть функции f(x, y, z), g(x, y, z) и h(x, y, z) (достаточно привести хотя бы один пример этих функций).