

École nationale Supérieure d'Informatique, Alger 1CS 2023/2024

Contrôle Final (CF)

Théorie des langages de programmation et applications (THP)

Jeudi 25 janvier 2024 [12h15-14h15]

Documents non autorisés (l'enseignant est considéré comme document)

Exercice 01: Un peu de calculabilité (2pts)

- 1. Rappeler la règle de récursion et la règle de composition.
- 2. Montrer que la fonction g(x,y) définie comme suit est primitive récursive :

$$g(x, y) = \begin{cases} 0 & \text{si } x + y = 0 \\ 1 & \text{sinon} \end{cases}$$

3. Rappeler la thèse de Church-Turing.

Exercice 02: Langages Réguliers (6pts)

Soit E l'expression régulière suivante :

$$E = ((a*b)*aU(ba*Ua)*)b$$

- 1. Donner l'automate d'états finis reconnaissant L(E).
- Donner la grammaire G<X, V, P, S> régulière gauche engendrant le miroir de L(E). (Donner toutes les étapes).
- 3. Donner l'automate qui reconnaît le complément de L(E).
- Donner l'expression régulière qui dénote le complément de L(E).

Exercice 03: Automates (8pts)

Soient L₁, L₂ et L₃ trois langages définis ci-dessous :

- $L_1 = \{(aa)^i b^j (cc)^k / j = i + k \text{ et } j = 1[2]\}$
- L₂ = complément de L₁
- $L_3 = FG(L)$ avec $L = \{(aa)^i b^j c^k / i + k = 2[3] \text{ et } j > 0\}$

Donner l'automate déterministe le plus adéquat pour chaque langage.

Si vous tournez la page, vous serez choqués

Exercice 04: Automate à bornes linéaires (5pts)

Soit L le langage à contexte lié suivant :

$$L = \{a^i \text{ avec } i=2^n, n>0\}$$

Donner l'automate à bornes linéaire reconnaissant L.

Nous voulons simuler un automate à bornes linéaires en utilisant un automate à 2 piles P1 et P2, AP1,P2.

- 2. Définir formellement l'automate A_{P1,P2} décrivant les opérations sur chaque pile et entre les 2 piles. La tête de lecture avance après chaque opération. Pour chaque pile, il ne peut y avoir que l'empilement ou dépilement d'une seule lettre à la fois.
- 3. Donner l'automate $A_{P1,P2}$ reconnaissant le langage $L = \{ a^n b^n c^n, n \ge 0 \}$.

FIN

Ceci ne fait pas parti de l'examen ; c'est juste notre façon de dire : bonne chance

# S ₀ b → # S ₁	$0 S_3 0 \rightarrow 0 S_2$	$o S_5 e \rightarrow o S_6$	$o S_0 h \rightarrow o S_0$	#S ₁₀ C → #S ₁₁
$\#S_1 \circ \rightarrow \#\circ S_3$	$0 S_2 n \rightarrow 0 S_4$	$0 S_6 \rightarrow 0 S_7$	$o S_0 a \rightarrow S_0$	$\#S_{11} e \rightarrow \#S_{12}$
$0 S_2 0 \rightarrow 0 0 S_3$	$0 S_4 n \rightarrow 0 S_5$	$o S_7 c \rightarrow o S_8$	$\# S_0 n \rightarrow \# S_{10}$	$\#S_{12} \rightarrow \#S_{1}$

S_0 bo⁴n²e_cha²nce \vdash # S_1 o⁴n²e_cha²nce \vdash # S_3 o³n²e_cha²nce \vdash #o S_2 o²n²e_cha²nce \vdash #o² S_3 on²e_cha²nce \vdash #o² S_5 e_cha²nce \vdash #o² S_6 _cha²nce \vdash #o² S_6 _cha²nce \vdash #o² S_7 cha²nce \vdash #o² S_8 ha²nce \vdash #o² S_9 a²nce \vdash #o S_9 ance \vdash # S_{10} ce \vdash # S_{11} e \vdash # S_{12} \vdash # S_1

