TI DSP, MCU 및 Xilinx Zynq FPGA 프로그래밍 전문가 과정

강사 - Innova Lee(이상훈)

gcccompil3r@gmail.com

학생 - 문한나

mhn97@naver.com

CAN통신과 PWM신호를 이용한 모터제어

can통신으로 방향과 각도를 전달하고, mcu가 값을 받아 모터를 제어한다.

HGC 설정

T	MS570LC	4357ZWT	PINMUX	RTI	GIO	ESM	SCI1	SCI2	SCI3	SCI4	LIN1
	General	Driver Ena	ble R5-N	1PU-PI	MU I	nterrupts	VIM	Genera	l VIM	1 RAM	VIM
		Enable Enable Enable	MIBSPI1 dri MIBSPI2 dri MIBSPI3 dri MIBSPI4 dri MIBSPI5 dri	ver ** ver ** ver **	En En	able SPI1 able SPI2 able SPI3 able SPI4 able SPI5	driver ** driver ** driver **				
	V	Enable	drivers CAN1 driver CAN2 driver CAN3 driver CAN4 driver								

	M EMIF SCI4 LIN				VM M				
General	ETPWM1	I ETPV	/M2	ETPW	VI3				
Enable	ETPWM mo	odules —			7				
	Enable ET	DW/M1							
	Ellable El	T VV IVI I							
	Enable ET	PWM2							
	Enable ET	PWM3							
	Enable ETPWM4								
	Enable ETPWM5								
	Enable ETPWM6								
	Enable ET	PWM7							

TMS57	'0LC435	57ZWT	PINMUX	RTI	GIO	ESM	SCI1	SCI2	SCI3	SCI4	LIN1	LIN2	MIBSPI1	MIBSPI2	MIBSPI3	MIBSPI4	MIBSPI5	SPI1
Pin M	luxing	Input F	Pin Muxing	Spec	ial Pir	n Muxing)											
	HET2 EMIF		Peripherals GIOA GIOB EQEP ECAP	MIBSPI2 MIBSPI MIBSPI4 MIBSPI AD1EVT MIBSPI AD2EVT 12C1		SPI3 SPI5	PI3 SCI4 MII		MII and alternate terminals. Remove CAN4 MII have dedicated pins. Alternation		Remove the s. Alternate to	ninals. The checkboxes enable be the unwanted teminal to avoid of te teminals are enabled using the not set the functional mode. Enat		id conflicts the MII ched	ckbox.			
Ba	all [Default M	ux	Mux (Option	1	Mus	x Option	2	Mux	Option	3	Mux Opt	ion 4	Mux Opti	ion 5	Conflict?	
A4		N2HET1[16] 	NON	E]—	NO —	NE	<u> </u>	ETF	PWM1S	(NCI	NONE		ETPWM	1SYNCO	-	
A1		N2HET1[17] 	EMIF.	_nOE	<u> </u>	SCI	4RX	1—	NOI	NE	<u> </u>	NONE		NONE			
A1		N2HET1[26]	NON	E	Н	MII	_RXD[1]	1—	RM	II_RXD[1] —	NONE		NONE			
B2		MIBSPI3N	ICS[2]	2C1_	SDA	<u> </u>	NO —[NE	<u> </u>	N2H	HET1[27] 	NONE		nTZ1_2 — <u> </u>			
B3		N2HET1[22]	EMIF.	_nDQN	M[3]	NO —	NE	<u> </u>	NOI	NE]—	NONE		NONE			
B4		N2HET1[12]	MIBS	PI4NC	S[5] —	MII	_CRS	1—	RM	II_CRS_	DV —	NONE		NONE			
B5		GIOA[5]		NON	E	<u> </u>	NO	NE		EXT	CLKIN	<u> </u>	NONE		eTPWM	1A		

GIOA[5]를 PWM 으로 쓴다

SERVO MOTOR SG90

Position "0" (1.5 ms pulse) is middle, "90" (~2ms pulse) is middle, is all the way to the right, "-90" (~1ms pulse) is all the way to the left.

모터 주기 : 20ms

동작주파수 : 50Hz

Dimensions & Specifications	
A (mm): 32	
B (mm): 23	
C (mm): 28.5	
D (mm): 12	
E (mm): 32	
F (mm): 19.5	
Speed (sec): 0.1	
Torque (kg-cm): 2.5	
Weight (g): 14.7	
Voltage: 4.8 - 6	

PLL 제어를 통하여 동작주파수 50hz를 맞춰주자

VCLK3 을 10Mhz 로 분주한다.

주파수 설정 중에 주의해야할 것은 TBPRD레지스터의 임계값이 65536(2 ^ 16)이라는 것이다. 이 값을 넘지 않게 조정해준다.

35.4.1.4 Time-Base Period Register (TBPRD)

Figure 35-66. Time-Base Period Register (TBPRD) [offset = 08h]

LEGEND: R/W = Read/Write; -n = value after reset

Table 35-26. Time-Base Period Register (TBPRD) Field Descriptions

Bits	Name	Description
15-0	TBPRD	These bits determine the period of the time-base counter. This sets the PWM frequency.
		Shadowing of this register is enabled and disabled by the TBCTL[PRDLD] bit. By default this register is shadowed.
		 If TBCTL[PRDLD] = 0, then the shadow is enabled and any write or read will automatically go to the shadow register. In this case, the active register will be loaded from the shadow register when the time- base counter equals 0.
		 If TBCTL[PRDLD] = 1, then the shadow is disabled and any write or read will go directly to the active register, that is the register actively controlling the hardware.
		The active and shadow registers share the same memory map address.

CAN 통신을 위하여 Message1 은 TX 로, Message2 는 RX 로 각각 설정해준다

ccs 코드

```
#include "HL_sys_common.h"
#include "HL_system.h"
#include "HL_can.h"
#include "HL_etpwm.h"
#include "HL esm.h"
#include "HL sys core.h"
#include "stdio.h"
#define D_COUNT 8
#define D SIZE 8
uint32 cnt = 0;
uint32 error = 0;
uint32 tx_done = 0;
uint8 tx_data[D_COUNT] = { 1, 2, 3, 4, 4, 3, 2, 1 }; //전송 데이터
uint8 rx_data [D_COUNT] = { 0 };
uint32_t checkPackets(uint8_t *src_packet, uint8_t *dst_packet, uint32_t psize);
void delay(int time)
   int i:
   for (i = 0; i < time; i++)</pre>
}
int main(void)
{
   etpwmInit();
   canInit();
   //dcan_enable_int();
/* Pin MUX 레지스터에 접근(gpio핀에 etPWM을 연결) */
   etpwmStartTBCLK();
   printf("start\n");
   canEnableErrorNotification(canREG1);
   //canIoSetDirection(canREG1, canMESSAGE_BOX1, canMESSAGE_BOX2);
   while (1)
   {
       printf("transmit CAN message\n");
       delay(10000000);
        /*HCG에서 canMESSAGE BOX1을 TX로 설정*/
       canTransmit(canREG1, canMESSAGE_BOX1, (const uint8 *)&tx_data[0]);
        /*HCG에서 canMESSAGE BOX2을 RX로 설정*/
       if (canIsRxMessageArrived(canREG1, canMESSAGE_BOX2))
       {
           canGetData(canREG1, canMESSAGE_BOX2, (uint8 *) &rx_data[0]);
          /*받은 데이터의 첫번 째 배열에 있는 값 확인*/
           if(*rx_data == 0){
              printf("직진\n");
           }else if(*rx_data == 1){
              printf("우회전\n");
           }else if(*rx_data == 2){
```

```
printf("좌회전\n");
          }else
             printf("error\n");
          printf("rx_data : %x\n", rx_data[1]);
          if(rx data[0] == 1) //우회전
             etpwmREG1->CMPA = 1875 + (20 * rx_data[1]);
          else if(rx_data[0] == 2) //좌회전
             etpwmREG1->CMPA = 1875 - (20 * rx_data[1]);
          else if(rx data[0] == 0) //직진
             etpwmREG1->CMPA = 1875;
          else
             printf("error");
      }
   }
}
/** - Sets time period or frequency for ETPWM block both PWMA and PWMB*/
   etpwmREG1->TBPRD = 24999U;
/** - Setup the duty cycle for PWMA */
   etpwmREG1->CMPA = 1250U;
TBPRD값의 5%인 1250이 CMPA의 값이 된다.
SERVO MOTOR SG90은 5% ~ 10%까지 컨트롤이 가능
따라서 25000의 5% ~ 10%인 1250 ~ 2500까지를 etpwmREG1->CMPA에 넣어서
모터의 각도를 제어했다.
```

CMPA	1250	1875	2500
%	5%	7.5%	10%
각도	-30	0	30

결과

데이터 00전송

```
transmit CAN message
직진
rx_data : 45
transmit CAN message
```

데이터 0130 전송

```
transmit CAN message
우회전
rx_data : 30
transmit CAN message
<
```

문제점

소수점 단위 처리불가