Nom:	Groupe:
LIFLC – Interro nº4'	
Lire les questions. Répondre dans le cadre. Écrire au stylo (pas de crayon). T Question 1. On considère les signatures suivantes: — Symboles de termes: {rouget:0, requin:0, thon:0, laitue_de_mer:0 — Symboles de prédicats: {=:2, Mange:2, Poisson:1, Algue:1}. Modéliser en logique du premier ordre les propositions suivantes: 1. Il y a un poisson qui mange une algue mais aucun poisson. 2. Si un poisson est mangée par un unique poisson alors il existe une algue poisson.	0},
Question 2. Soit E un ensemble défini inductivement par $\left\{ \begin{array}{ccc} & \to & F \\ e & \to & Z(n,e) \text{ pour tout } n \in \mathbb{N} \\ e_1,e_2 & \to & W(e_1,e_2) \end{array} \right.$	
 Décrire (détailler les cas) comment prouver par induction qu'une propriété élément de E. Que peut-on dire de E si on n'a pas la première règle? 	T est vermee par tout
Question 3. On considère les signatures suivantes : — Symboles de termes : $\{a:0,b:0\}$ — Symboles de prédicats : $\{A:1,B:1,C:1,D:1\}$ Montrer que le séquent suivant est prouvable à l'aide de la déduction naturelle :	
$\{(\exists z, C(z)), (\forall x, C(x) \Rightarrow A(x) \Rightarrow D(x)), \forall x, A(x)\} \vdash \exists y, D(x) $	
Assez difficile, on vérifiera bien que l'arbre de preuve décrit en partant des axiomes la c	construction an sequent.

$$\frac{\Gamma \vdash F}{\Gamma, G \vdash F} \text{ (aff)}$$

$$\frac{\Gamma, F \vdash G}{\Gamma \vdash F \Rightarrow G} \ (\Rightarrow_i) \qquad \qquad \frac{\Gamma \vdash F \Rightarrow G \quad \Gamma \vdash F}{\Gamma \vdash G} \ (\Rightarrow_e)$$

$$\frac{\Gamma \vdash F \quad \Gamma \vdash G}{\Gamma \vdash F \land G} \ (\land_i) \qquad \qquad \frac{\Gamma \vdash F \land G}{\Gamma \vdash F} \ (\land_e^g) \quad \frac{\Gamma \vdash F \land G}{\Gamma \vdash G} \ (\land_e^d)$$

$$\frac{\Gamma \vdash F}{\Gamma \vdash F \lor G} \ (\vee_i^g) \quad \frac{\Gamma \vdash G}{\Gamma \vdash F \lor G} \ (\vee_i^d)$$

$$\frac{\Gamma \vdash F \lor G \quad \Gamma, F \vdash H \quad \Gamma, G \vdash H}{\Gamma \vdash H} \ (\lor_e)$$

$$\frac{\Gamma, F \vdash \bot}{\Gamma \vdash \neg F} \; (\neg_i) \qquad \qquad \frac{\Gamma \vdash \neg F \quad \Gamma \vdash F}{\Gamma \vdash \bot} \; (\neg_e) \qquad \qquad \frac{\Gamma, \neg F \vdash \bot}{\Gamma \vdash F} \; (\bot_c)$$

$$\frac{\Gamma \vdash F \text{ où } x \text{ non libre dans } \Gamma}{\Gamma \vdash \forall x, F} \ (\forall_i)$$

$$\frac{\Gamma \vdash \forall x, F}{\Gamma \vdash F[x \to t]} \ (\forall_e)$$

$$\frac{\Gamma \vdash F[x \to t]}{\Gamma \vdash \exists x, F} \ (\exists_i) \qquad \qquad \frac{\Gamma \vdash \exists x, F \quad \Gamma \cup \{F\} \vdash G \quad x \text{ libre } ni \text{ dans } \Gamma \text{ } ni \text{ dans } G}{\Gamma \vdash G} \ (\exists_e)$$

Nom:	Groupe:	
LIFLC – Interro nº4		
Lire les questions. Répondre dans le cadre. Écrire au stylo (pas de crayon). Question 1. On considère les signatures suivantes: — Symboles de termes: {papillon:0, mante:0, frelon:0, mirabelle} — Symboles de prédicats: {Mange:2, insecte:1, fruit:1}. Modéliser en logique du premier ordre la proposition suivante: 1. Il y a un insecte qui mange tous les insectes mais aucun fruit. 2. S'il y a un insecte qui mange un insecte alors tout insecte est mangé par un fruit (le même pour tous).	: 0},	
Question 2. Soit E un ensemble défini inductivement par $ \begin{cases} & \to & V(n) \text{ pour tout } n \in \mathbb{N} \\ e_1, e_2 & \to & R(e_1, e_2) \\ e_1, e_2 & \to & S(e_1, e_2) \end{cases} $		
 Décrire (détailler les cas) comment prouver par induction qu'une proprié élément de E. Que peut-on dire de E si on n'a pas la première règle? 	ete 1 est verifice pai tout	
Question 3. On considère les signatures suivantes : — Symboles de termes : $\{e_1:0,e_2:0\}$ — Symboles de prédicats : $\{H:1,I:1,J:1,K:1\}$ Montrer que le séquent suivant est prouvable à l'aide de la déduction naturelle :		
$\{(\forall x, J(x)), (\forall x, J(x) \Rightarrow I(x) \Rightarrow H(x)), \exists x, I(x)\} \vdash \exists y, I$ Assez difficile, on vérifiera bien que l'arbre de preuve décrit <i>en partant des axiomes</i>		

$$\frac{\Gamma \vdash F}{\Gamma, G \vdash F} \text{ (aff)}$$

$$\frac{\Gamma, F \vdash G}{\Gamma \vdash F \Rightarrow G} \ (\Rightarrow_i) \qquad \qquad \frac{\Gamma \vdash F \Rightarrow G \quad \Gamma \vdash F}{\Gamma \vdash G} \ (\Rightarrow_e)$$

$$\frac{\Gamma \vdash F \quad \Gamma \vdash G}{\Gamma \vdash F \land G} \ (\land_i) \qquad \qquad \frac{\Gamma \vdash F \land G}{\Gamma \vdash F} \ (\land_e^g) \quad \frac{\Gamma \vdash F \land G}{\Gamma \vdash G} \ (\land_e^d)$$

$$\frac{\Gamma \vdash F}{\Gamma \vdash F \lor G} \ (\vee_i^g) \quad \frac{\Gamma \vdash G}{\Gamma \vdash F \lor G} \ (\vee_i^d)$$

$$\frac{\Gamma \vdash F \lor G \quad \Gamma, F \vdash H \quad \Gamma, G \vdash H}{\Gamma \vdash H} \ (\lor_e)$$

$$\frac{\Gamma, F \vdash \bot}{\Gamma \vdash \neg F} \; (\neg_i) \qquad \qquad \frac{\Gamma \vdash \neg F \quad \Gamma \vdash F}{\Gamma \vdash \bot} \; (\neg_e) \qquad \qquad \frac{\Gamma, \neg F \vdash \bot}{\Gamma \vdash F} \; (\bot_c)$$

$$\frac{\Gamma \vdash F \text{ où } x \text{ non libre dans } \Gamma}{\Gamma \vdash \forall x, F} \ (\forall_i)$$

$$\frac{\Gamma \vdash \forall x, F}{\Gamma \vdash F[x \to t]} \ (\forall_e)$$

$$\frac{\Gamma \vdash F[x \to t]}{\Gamma \vdash \exists x, F} \ (\exists_i) \qquad \qquad \frac{\Gamma \vdash \exists x, F \quad \Gamma \cup \{F\} \vdash G \quad x \text{ libre } ni \text{ dans } \Gamma \text{ } ni \text{ dans } G}{\Gamma \vdash G} \ (\exists_e)$$