Práctica 2

Sergio Guachalla

Método congruencial linear

Ejercicio 1: Se pide generar números aleatorios

Datos:
$$c = 89$$
; $x_0 = 5$; $m = 10^2$; $a = 81$

La formula para el método congruencial linear es: \$ x{i+1} = (axi + c) \mod m \$

Para n números aleatorios:

n X_n

0 5

 $1(81 \times 5 + 89) \mod 100 = 94$

 $2(81 \times 94 + 89) mod 100 = 3$

 $3(81 \times 3 + 89) mod 100 = 32$

 $4 (81 \times 32 + 89) mod 100 = 81$

 $5 (81 \times 81 + 89) mod 100 = 50$

Método congruencial multiplicativo

Ejercicio 1:

Datos: c = 16; $x_0 = 13$; $m = 10^8$; a = 211

 $X{n+1} = (8xn + 16) \mod 10^8; x_0 = 13$

1n

 X_n

0 13

1 $(211 \times 13 \times 16) \mod 10^8 = 0, 13$

2 $(211 \times 13 \times 16) \mod 10^8 = 0,438$

3 $(211 \times 43 \times 16) \mod 10^8 = 0.48$

4 $(211 \times 48 \times 16) mod 10^8 = 0,80$

5 $(211 \times 80 \times 16) mod 10^8 = 0.35$

Algoritmo de cuadrados medios

Datos iniciales: - Semilla: $X_0 = 9803$ - Constante: a = 6965 - Dígitos a considerar: D = 4 - Cantidad de números a generar: 5

Cálculo de los números:

Paso 1:

 $$ Y0 = a \times X0 = 6965 \times 9803 = 68261895 $ Tomamos los 4 dígitos centrales:$ **6189**Por lo tanto, <math>\$X1 = 6189yR1 = 0.6189\$

Paso 2:

 $$Y1 = a \times X1 = 6965 \times 6189 = 43138785$ Tomamos los 4 dígitos centrales: **1387** Por lo tanto, \$X2 = 1387yR2 = 0.1387\$

Paso 3:

 $$ Y2 = a \times X2 = 6965 \times 1387 = 9662355 $ Tomamos los 4 dígitos centrales:$ **6235**Por lo tanto, <math>\$X3 = 6235yR3 = 0.6235\$

Paso 4:

 $3 = a \times 3 = 6965 \times 6235 = 43432175$ Tomamos los 4 dígitos centrales: **4321** Por lo tanto, X4 = 4321yR4 = 0.4321

Paso 5:

 $4 = a \times X4 = 6965 \times 321 = 30094765 \times 44 = 6965 \times 321 = 30094765 \times 321 =$

Resultado Final:

Los 5 números generados son: R1 = 0.6189, Quad R2 = 0.1387, Quad R3 = 0.6235, Quad R4 = 0.4321, $Quad R_5 = 0.0947$

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js