The Fundamental Group

The Fundamental Groupoid

Exercise 3.1. The homotopy $H: X \times \mathbb{I} \to Z$ given by

$$H: (x,t) \mapsto \begin{cases} g_0(F(x,2t)) & \text{if } t \le \frac{1}{2}, \\ G(f_1(x),2t-1) & \text{if } t \ge \frac{1}{2} \end{cases}$$

works. Continuity follows because $g_0(F(x,1)) = G(f_1(x),0)$.

Moreover, this homotopy is indeed rel A. For a detailed argument why this is so, simply suppose that

 $a \in A$ and $t \in I$. If $t \leq \frac{1}{2}$, then $F(a, 2t) = f_0(a)$ by definition of F. Hence $H(a, t) = g_0(f_0(a))$. Similarly, we can show that if $t \geq \frac{1}{2}$, then $H(a, t) = g_1(f_1(a))$. This follows because $f_1(a) \in B$ and G is a homotopy rel B.

It thus suffices to show that $g_0(f_0(a)) = g_1(f_1(a))$. But this is obvious because f_0 and f_1 agree on A, and g_0 and g_1 agree on $B \supseteq f_0(A)$.

Exercise 3.2.

(i) First, note that f' is well-defined because f(0) = f(1). It is obvious by continuity of f and f' is

Moreover, consider the map

$$H': (e^{2\pi i\theta}, t) \mapsto H(\theta, t).$$

This is clearly continuous, for the same reasons that f' was continuous. If t=0, clearly $H'(e^{2\pi i\theta},t)=$ $H(\theta,0) = f(\theta) = f'(e^{2\pi i\theta})$, and similarly for t = 1. Thus H is indeed a homotopy from f' to g'. To see that it is a homotopy rel $\{1\}$, simply note that $e^{2\pi i\theta} = 1$ corresponds to $\theta = 0, 1$. Thus it

follows that

$$H'(1,t) = H(1,t) = f(1)$$

for all t, proving the result.

(ii) Theorem 3.1 implies that $f*g \simeq f_1*g_1 \text{ rel } \dot{\mathbb{I}}$. Using the previous part, we find that $(f*g)' \simeq (f_1*g_1)' \text{ rel } \{1\}$. Now, using the observation that (f * g)' = f' * g', we find that $f' * g' \simeq f_1' * g_1' \text{ rel}\{1\}$, as desired.

Exercise 3.3. The forward direction is trivial.

For the converse, note that g' is a constant map, and so f' is nullhomotopic. Then Theorem 1.6 implies that $f' \simeq g' \operatorname{rel}\{1\}$. In particular, note that $g' : S^1 \to X$ takes every element of S^1 to $g'(1) = g(0) = x_0$. Observe that $f'(1) = x_0$ as well, and so it follows that $f' \simeq g \operatorname{rel}\{1\}$, as desired.

Exercise 3.4.

(i) Instead of applying Theorem 1.6, I constructed an explicit homotopy. (If you are interested in a proof using Theorem 1.6, my guess would be that it relies on the fact that $\Delta^2 \approx D^2$. However, I have not gone through the details.)

The effective idea of the homotopy I constructed is to, at time $t \in [0,1]$, return the function which traverses the first t units of the face opposite e_0 , then goes along a segment to the point t units away from e_1 on the fact opposite e_2 , before returning back to e_1 , as shown in the red path below.

The specific homotopy $H: \mathbb{I} \times \mathbb{I} \to X$ from $(\sigma_0 * \sigma_1^{-1}) * \sigma_2$ to the constant map at e_1 is as follows:

$$H(x,t) = \begin{cases} \sigma_0(4(1-t)x) & \text{if } x \le \frac{1}{4}, \\ \sigma((1-x)\varepsilon_0(1-t) + x\varepsilon_2(t)) & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ \sigma(2tx - (2t-1)) & \text{if } x \ge \frac{1}{2}. \end{cases}$$

We leave it to the reader to check that this works.

- (ii) One can generate a similar homotopy, which we do not do here.
- (iii) This time, we use the homotopy which goes up along γ for t units, before going parallel to β and coming back down along δ^{-1} . The particular formula is as follows:

$$H(x,t) = \begin{cases} F(0,4tx) & \text{if } x \le \frac{1}{4}, \\ F(4x-1,t) & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ F(1,2t(1-x)) & \text{if } \frac{1}{2} \le x. \end{cases}$$

Once again, we leave the details to the reader to check

Exercise 3.5. Simply use the homotopy $H: \mathbb{I} \times \mathbb{I} \to X \times Y$ which takes (s,t) to (F(s,t),G(s,t)). This is clearly a homotopy from (f_0,g_0) to (f_1,g_1) . To see that it is still rel $\dot{\mathbb{I}}$, simply observe that H(0,t) = (F(0,t),G(0,t)). Because F and G are both rel $\dot{\mathbb{I}}$, it follows that H(0,t) never changes. A similar argument shows that H(1,t) is always the same, and so H is indeed a homotopy rel $\dot{\mathbb{I}}$.

Exercise 3.6.

- (i) It is obvious that the homotopy $H':(x,t)\mapsto H(x,1-t)$ works.
- (ii) This is just some slightly annoying manipulation. In particular, note that

$$(f * g)(x) = \begin{cases} f(2x) & \text{if } x \le \frac{1}{2}, \\ g(2x - 1) & \text{if } x \ge \frac{1}{2}. \end{cases}$$

By replacing x with 1-x to get the inverse, we find that

$$(f * g)^{-1}(x) = \begin{cases} f(2-2x) & \text{if } x \ge \frac{1}{2}, \\ g(1-2x) & \text{if } x \le \frac{1}{2}. \end{cases}$$

However, note that

$$(g^{-1} * f^{-1})(x) = \begin{cases} g^{-1}(2x) & \text{if } x \ge \frac{1}{2}, \\ f^{-1}(2x - 1) & \text{if } x \ge \frac{1}{2} \end{cases}$$
$$= \begin{cases} g(1 - 2x) & \text{if } x \le \frac{1}{2}, \\ f(2 - 2x) & \text{if } x \ge \frac{1}{2}. \end{cases}$$

Thus the two are indeed the same.

- (iii) Take the closed path $f(t) = e^{2\pi i t}$ on S^1 . Then note that $(f * f^{-1})(\frac{1}{8}) = f(\frac{1}{4}) = i$, while $(f^{-1} * f)(\frac{1}{8}) = f^{-1}(\frac{1}{4}) = -i$.
- (iv) Suppose $i_p * f = f$ and f is not constant. Note that continuity implies that there must exist some 0 < t < 1 so that $f(t) \neq p$. Thus there exists some $k \in \mathbb{N}$ so that $t < 1 2^{-k}$.

We claim, however, that f must be constant on $[0,1-2^{-n}]$ for every $n \in \mathbb{N}$. We prove this inductively. Clearly, it is true on n=0. If it is true on n-1, then we know that i_p*f must be equal to p on $[0,\frac{1}{2}]$, as well as on $[\frac{1}{2},1-2^{-n}]$ (note that $1-2^{-n}$ comes from $2(1-2^{-n})-1$, which itself comes from the equation for the star operator). Thus f is constant on $[0,1-2^{-n}]$, as desired.

Thus it follows that f(t) = p, a contradiction. Thus f must have been constant in the first place.

Exercise 3.7. Recall that we defined the $\sin(1/x)$ space as the union of $A = \{(0,y) : -1 \le y \le 1\}$ and $G = \{(x,\sin(1/x)) : 0 < x \le 1/2\pi\}$. We also know that A and G are the path components of the $\sin(1/x)$ space. Moreover, both A and G are contractible, and so every path in either A or G is nullhomotopic. In particular, we conclude that the fundamental group at any basepoint is trivial.

Exercise 3.8. Let X be the $\sin(1/x)$ space. We know that CX is contractible. But consider an open ball around the point x = ((0,0),0), that is, the point (0,0) on the "zeroth" level of the cone. Consider a small neighborhood (not including the points (t,1), in particular) around this point and pick some element $y = ((\varepsilon, \sin(1/\varepsilon)), 0)$ in the neighborhood. Now observe that any path between x and y can be projected down to a path between (0,0) and $(\varepsilon, \sin(1/\varepsilon))$ in X, which we know does not exist. Hence CX is contractible but not locally path connected.

Exercise 3.9. Note that composition is associative because \circ is. Moreover, the path class of the trivial loop based at p is the identity on p. Thus this is a category.

To see that each morphism in \mathscr{C} , simply note that the inverse path, i.e., the path f^{-1} taking t to f(1-t), gives a path class $[f^{-1}]$ which works as an inverse to $[f] \in \text{Hom}(p,q)$.

Exercise 3.10. We simply let π_0 take $(X, x_0) \in \mathbf{Sets}_*$ to the set of all path components of X, with basepoint equal to the path component containing x_0 . It takes a morphism $f \in \mathrm{Hom}((X, x_0), (Y, y_0))$ to the map $\pi_0(f)$ which takes each path component A of X to the path component B of Y which contains f(A).

Note that this is possible because continuous images of path connected spaces are path connected and hence contained within a single path component of Y. Moreover, this is indeed a pointed map because the path component containing x_0 must be contained in the path component containing $f(x_0) = y_0$, which is the basepoing of $\pi_0((Y, y_0))$.

It is easy to check functoriality, completing the proof.

Exercise 3.11. Evidently the only possible path is the constant path at x_0 . Hence $\pi_1(X, x_0)$ is the trivial group, i.e., $\{1\}$.