

Setting up your ML application

Train/dev/test sets

Applied ML is a highly iterative process

layers# hidden unitslearning ratesactivation functions

NLP, Vision, Speech, Structural dorta

Andrew Ng

Train/dev/test sets

Andrew Ng

Mismatched train/test distribution

Corts

Training set:
Cat pictures from
webpages

Make sure der al test come from same distibution.

Training set:
Cat pictures from
users using your app

That I test

That I test

That I test

The standard of the set is the set

Not having a test set might be okay. (Only dev set.)

Setting up your ML application

Bias/Variance

Bias and Variance

Bias and Variance 4=1 4-0 Cat classification Optul (Bayes) error: 1/8% 15%. Blury images

Andrew Ng

High bias and high variance

Setting up your ML application

Basic "recipe" for machine learning

Basic "recipe" for machine learning

Basic recipe for machine learning

Regularizing your neural network

Regularization

Logistic regression

$$\min_{w,b} J(w,b) \qquad \qquad \omega \in \mathbb{R}^{n_{x}}, \quad b \in \mathbb{R} \qquad \lambda = regularization \quad porometer \\
J(\omega,b) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} J(y,y) + \int_{\infty}^{\infty} ||\omega||_{2}^{2} + \int_{\infty}^{\infty} \int_{\infty}^{\infty} ||\omega||_{2}^{2} + \int_{\infty}^{\infty} \int_{\infty}^{\infty} ||\omega||_{2}^{2} + \int_{\infty$$

Neural network

Andrew Ng

Neural network

$$J(\omega^{r0}, b^{r0}, ..., \omega^{r0}, b^{r0}) = \frac{1}{m} \sum_{i=1}^{m} d(y^{i}, y^{i}) + \frac{1}{2m} \sum_{k=1}^{m} ||\omega^{r0}||^{2}$$

How does regularization prevent overfitting?

How does regularization prevent overfitting?

Regularizing your neural network

Why regularization reduces overfitting

How does regularization prevent overfitting?

How does regularization prevent overfitting?

Setting up your ML application

Basic "recipe" for machine learning

Basic "recipe" for machine learning

Basic recipe for machine learning

Andrew

Regularizing your neural network

Dropout regularization

Dropout regularization

Andrew Ng

Implementing dropout ("Inverted dropout")

Illubrate with lay
$$l=3$$
. teep-prob= $\frac{0.8}{2}$
 $\Rightarrow d3 = np. random. rand (a3. shape To3, a3. shape To3) < teep-prob

 $a3 = np. multiply (a3, d3)$
 $\Rightarrow d3 \neq d3 \neq d3$
 $\Rightarrow d3 \neq d$$

Making predictions at test time

Regularizing your neural network

Understanding dropout

Why does drop-out work?

Intuition: Can't rely on any one feature, so have to spread out weights. Shrink weights.

Regularizing your neural network

Other regularization methods

Data augmentation

Andrew Ng

Setting up your optimization problem

Normalizing inputs

Normalizing training sets

Why normalize inputs?

rmalize inputs:
$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Setting up your optimization problem

Vanishing/exploding gradients

Single neuron example

Andrew Ng

Setting up your optimization problem

Numerical approximation of gradients

Checking your derivative computation

Checking your derivative computation

Setting up your optimization problem

Gradient Checking

Gradient check for a neural network

Take $W^{[1]}$, $b^{[1]}$, ..., $W^{[L]}$, $b^{[L]}$ and reshape into a big vector θ . $\mathcal{J}(\omega^{(1)}, b^{(1)}, \dots, \omega^{(L)}, b^{(L)})^2 = \mathcal{J}(\theta)$

Take $dW^{[1]}$, $db^{[1]}$, ..., $dW^{[L]}$, $db^{[L]}$ and reshape into a big vector $d\theta$.

Is do the gradet of I(0)?

Gradient checking (Grad check)

Andrew Ng

Setting up your optimization problem

Gradient Checking implementation notes

Gradient checking implementation notes

- Don't use in training — only to debug

- If algorithm fails grad check, look at components to try to identify bug.

- Remember regularization.

- Doesn't work with dropout.

- Run at random initialization; perhaps again after some training.