

## There are TWO exercises to be completed.

### Two pieces of work need to be submitted:

- 1. Fill in this lab sheet and submit it to Moodle. You don't need to attach your source code in this form. You need to upload your source code separately.
- 2. Submit all the required source code to Moodle. Make sure your source code is tested in Eclipse and is executable.
- 3. Make sure you provide detailed comments in the source code:
  - a. Identify the fault(s) in the source code.
  - b. How did you fixed the fault(s)?

# **Program 1**

The program called *Lab5\_Program1* has been implemented for calculating tax relief for the year 2020 for the Revenue Office in Ireland. The specification of the program is as follows: The tax relief is applied to persons aged over 17. If a person is single, aged up to 55, the tax relief is  $\in$ 800, but if he/she is over 55, the tax relief is  $\in$ 1600. If a person is not single (married/widow/with partner, etc.), aged up to 55, the tax relief is  $\in$ 1600, but if he/she is over 55, the tax relief is  $\in$ 3200.

#### Task 1

Based on the source code (as shown in Figure 1), construct the Control Flow Graph of the program.

```
public class Lab5_Program1 {
        public int taxRelief(int age, boolean single) {
            int taxRelief;
4
            if (age < 18)
                 taxRelief = 0;
            else if (single) {
                if (age <= 55)
                     taxRelief = 800;
9
10
                     taxRelief = 1600;
            } else {
11
                if (age > 55)
12
13
                     taxRelief = 1600;
14
                     taxRelief = 3200;
15
16
17
            return taxRelief;
18
19
        }
```

Figure 1



Task 2
From the Control Flow Graph constructed in Task 1, identify the paths for a test using the Branch Coverage technique.

| Test Cases | Edge |
|------------|------|
| BC-1       | a    |
| BC-2       | b    |
| BC-3       | c    |
| BC-4       | d    |
| BC-5       | e    |
| BC-6       | f    |
| BC-7       | g    |
| BC-8       | h    |
| BC-9       | i    |
| BC-10      | j    |
| BC-11      | k    |
| BC-12      | 1    |
| BC-13      | m    |
| BC-14      | n    |

**Task 3**Based on the paths identified in Task 2 and the program specification given at the beginning of the Problem 1, generate test data for the branch coverage test.

| Test<br>ID | Test Cases Covered | Inputs |        | Expected<br>Output |
|------------|--------------------|--------|--------|--------------------|
| שו         |                    | age    | single | taxRelief          |
| T5.1       | BC-1,9             | 17     | true   | 0                  |
| T5.2       | BC-2,3,5,10        | 18     | true   | 800                |
| T5.3       | BC-[2,3],6,11      | 56     | true   | 1600               |
| T5.4       | BC-[2],4,7,12,14   | 56     | false  | 1600               |
| T5.5       | BC-[2,4],8,13,14   | 18     | false  | 3200               |

#### Task 4

Based on the specification given above, write your testing code in JUnit 5 to test the source code of the program provided on Moodle ("*Lab5\_Program1.java*"). Make sure your test code is named as "*Lab5\_Task1.java*".

Task 5
Based on the test results, provide the correct version of the "Lab5\_Program1.java", and rename it to "La5\_Program1\_Fix.java".

# **Program 2**

The program "*Lab5\_Program2*" computes the cost of a smartphone insurance policy and outputs a value for the premium as denoted by *p*. It takes two inputs of integer *age* and Char *OS* (Operating System) type.

If the age entered is less than 16 or greater than 99 the program returns a premium of zero, p=0. The input for OS takes the form of 'I' for iOS, 'A' for Android, and 'W' for Windows. If an incorrect value for the OS is entered, the program returns p=0.

In general, the insurance premium is  $\in 50$ , p=50. However, if a person has an iPhone and is under 25 then an extra  $\in 25$  is added to the premium, p=75. If the person is aged between 40 and 60 (inclusive) and they have an Android phone the premium falls by  $\in 10$ , p=40. If the person is aged between 61 and 65 inclusive the premium falls by  $\in 5$ , p=45.

#### Task 1

Based on the source code (as shown in Figure 2), construct the Control Flow Graph of the program.

```
public class Lab5 Program2 {
        public int phoneInsurance(int age, char OS) {
 2⊝
 3
            if ((age < 16) || (age > 99) || (0S != 'I' && 0S != 'A' && 0S != 'W'))
 4
 5
                p = 0;
 6
            else {
                p = 50;
 7
                if ((age < 25) && (0S == 'I'))
 8
 9
                    p += 25;
                else {
10
                    if ((age > 40) && (age <= 60) && OS == 'A')
11
12
                    else if ((age >= 61) && (age <= 65) && OS == 'W')
13
14
                        p -= 10;
15
                }
16
17
            return p;
        }
19 }
```

Figure 2



**Task 2**From the Control Flow Graph constructed in Task 1, identify the paths for a test using the Branch Coverage technique.

| <b>Test Cases</b> | Edge |
|-------------------|------|
| BC-1              | a    |
| BC-2              | b    |
| BC-3              | c    |
| BC-4              | d    |
| BC-5              | e    |
| BC-6              | f    |
| BC-7              | g    |
| BC-8              | h    |
| BC-9              | i    |
| BC-10             | j    |
| BC-11             | k    |
| BC-12             | 1    |
| BC-13             | n    |
| BC-14             | m    |

**Task 3**Based on the paths identified in Task 2 and the program specification given at the beginning of the Problem 1, generate test data for the branch coverage test.

| Test ID | Test Cases Covered       | Inputs |    | Expected<br>Output |
|---------|--------------------------|--------|----|--------------------|
|         |                          | age    | OS | p                  |
| T5.1    | BC-1,2                   | 15     | A  | 0                  |
| T5.2    | BC-3,4,5,14              | 24     | I  | 75                 |
| T5.3    | BC-[3],6,7,9,13,[14]     | 63     | W  | 45                 |
| T5.4    | BC-[3,6],8,10,11,[13,14] | 50     | A  | 40                 |
| T5.5    | BC-[3,6,8],12,[13,14]    | 50     | W  | 50                 |

# Task 4

Based on the specification given above, write your testing code in JUnit 5 to test the source code of the program provided on Moodle ("*Lab5\_Program2.java*"). Make sure your test code is named as "*Lab5\_Task2.java*".

# Task 5 Based on the test results, provide the correct version of the "Lab5\_Program2.java", and rename it to "La5\_Program2\_Fix.java".