Prove the following propositions. Format your proof so each step of the proof is on its own line; each line should still be a complete sentence. Below, I have entered a nonsensical proof as a model.

Proposition 1. Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a or b is even.

Proof.

Suppose $a^2 + b^2 = c^2$ and it's not the case that a or b is even.

Therefore, a and b are both odd.

So a = 2x + 1 and b = 2y + 1 for some integers x and y.

Either c is even or odd.

Case 1: c is even.

Then c = 2z for some integer x.

The expression $a^2 + b^2 = c^2$ becomes $(2x + 1)^2 + (2y + 1)^2 = 4z^2$.

Expanding the expression yields $4x^2 + 4x + 1 + 4y^2 + 4y + 1 = 4z^2$.

Factoring yields $4(x^2 + y^2 + x + y) + 2 = 4z^2$.

Simplifying the expression shows 4k + 2 = 4j where k and j are the integers $x^2 + y^2 + x + y$ and $4z^2$ respectfully.

Observe that 2 = 4(k - j), thus 4|2.

We have arrived at contradiction.

Case 2: c is odd.

Then c = 2z + 1 for some integer x.

The expression $a^2 + b^2 = c^2$ becomes $(2x+1)^2 + (2y+1)^2 = (2z+1)^2$.

Expanded and factored yields $2(2x^2 + 2x + 2y^2 + 2y + 1) = 2(2z^2 + 2z) + 1$

Simplifying the expression shows that 2k = 2j + 1 for integers k and j.

Therefore, an even number equals an odd number. We have arrived at contradiction.

Proposition 2. Suppose $x, y \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.

Proof.

Suppose x + y is even.

Assume x and y do not have the same parity.

Then x is even and y odd without loss of generality.

So x = 2a and y = 2b + 1 for some integers a and b.

The expression x + y becomes 2a + 2b + 1 = 2(a + b) + 1.

Therefore x + y = 2m + 1 where m is the integer a + b.

So, x + y is odd. But, x + y is even.

We have arrived at contradiction.

Proposition 3. If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n).

Proof.

Suppose $a \equiv b \pmod{n}$.

Congruent modulo means two integers share the same remainder when the division algorithm is applied with the same divisor.

The division algorithm tells us that:

 $a = q_1 n + r$ and $b = q_2 n + r$, where $q_1, q_2, r \in \mathbb{Z}$ and $0 \le r < n$.

For all x where x|a