Aufgabe 1 Stellen Sie eine Funktionstabelle der Funktion f mit f(x,y) = 2x - 3y + 1 auf, wobei den beiden Variablen jeweils die Werte von 0 bis 5 mit einer Schrittweite von Eins gegeben werden.

 $\mathbf{Aufgabe}\ \mathbf{2}$ Auf der Menge D sei die Funktion f gegeben. Skizzieren Sie für die ebenfalls gegebenen Zahlen c jeweils die Höhenlinie von f zur Höhe c in der x-y-Ebene. Gibt es Punkte aus D, in denen die Funktion f ihren höchsten bzw. niedrigsten Wert annimmt? Falls ja: Welche Punkte sind dies und wie lauten die zugehörigen Funktionswerte?

a)
$$f(x,y) = x + 2y$$
, $D = \{(x,y) \in \mathbf{R}^2 \mid x,y \in [-4,4]\},$ $c = -4, -2, 0, 2, 4$

b)
$$f(x,y) = \sqrt{2x^2 + y^2} - y$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x,y \in [-4,4]\}$, $c = 0,2,4,6$

b)
$$f(x,y) = \sqrt{2x^2 + y^2} - y$$
, $D = \{(x,y) \in \mathbf{R}^2 \mid x,y \in [-4,4]\}$, $c = 0,2,4,6$
c) $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$, $D = \{(x,y) \in \mathbf{R}^2 \mid x,y \in [-4,4], (x,y) \neq (0,0)\}$, $c = \frac{1}{4}, \frac{1}{2}, \frac{2}{3}, 1$

d)
$$f(x,y) = \frac{4}{x^2 - y^2}$$
, $D = \{(x,y) \in \mathbf{R}^2 \mid x, y \in [-4,4], \ |x| \neq |y|\}$, $c = -4, -1, 1, 4$

Aufgabe 3 Gegeben sei die auf ganz \mathbb{R}^2 definierte Funktion f mit f(x,y) = |x-1| + |y|. Skizzieren Sie zur Veranschaulichung des Verhaltens von f für verschiedene ganzzahlige Konstanten $c \in \mathbf{Z}$ jeweils die Höhenlinie von f zur Höhe c und die Schnittkurven von f parallel zur x-z- bzw. y-z-Ebene mit Achsenabschnitt c.

Aufgabe 4 Gegeben sei die auf $D = \{ \mathbf{x} \in \mathbb{R}^2 \mid \mathbf{x} = (x_1, x_2), x_1 \neq x_2 \}$ definierte Funktion f mit

$$f(\mathbf{x}) = \frac{x_1 + x_2}{x_1 - x_2}.$$

a) Geben Sie jeweils ein Beispiel für eine gegen (0,0) konvergente Punktfolge $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ im \mathbb{R}^2 an, so dass

i)
$$\lim_{k \to \infty} f(\mathbf{x}_k) = -1$$
 ii) $\lim_{k \to \infty} f(\mathbf{x}_k) = 1$ iii) $\lim_{k \to \infty} f(\mathbf{x}_k) = 2$.

- b) Zeigen Sie, dass eine reelle Zahlenfolge $\{f(\mathbf{x}_k)\}_{k\in\mathbb{N}}$, mit einer gegen (0,0) konvergenten Punktfolge $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ im \mathbb{R}^2 , gegen jeden beliebigen Grenzwert konvergieren kann, je nachdem, wie $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ gegen (0,0) konvergiert.
- c) Ist es möglich, den Definitionsbereich von f so um den Punkt (0,0) zu erweitern, dass f in (0,0)stetig ist?

Aufgabe 5 Untersuchen Sie folgende Funktionen f auf Stetigkeit.

a)
$$f(x,y) = \sin(xy + y^2)$$
 b) $f(x,y) = \ln(x^2 + \sqrt{xy})$

c)
$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1} & \text{für } (x,y) \neq (0,0) \\ 2 & \text{für } x = y = 0 \end{cases}$$
 d) $f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } x = y = 0 \end{cases}$

e)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } x = y = 0 \end{cases}$$
 f) $f(x,y) = \begin{cases} \frac{e^y - 1}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } x = y = 0 \end{cases}$

Aufgabe 6 Zeigen Sie für $f: \mathbb{R}^2 \to \mathbb{R}$ mit $\mathbf{x} = (x_1, x_2) \mapsto f(\mathbf{x}) = 3x_1 - 7x_2$ und $\mathbf{x}_0 = (2, 5)$, dass fin \mathbf{x}_0 stetig ist, indem Sie zu jedem $\epsilon > 0$ ein $\delta > 0$ so angeben, dass für alle \mathbf{x} mit $|\mathbf{x} - \mathbf{x}_0| < \delta$ gilt: $|f(\mathbf{x}) - f(\mathbf{x}_0)| < \epsilon$.

Lösungen zu Aufgabe 2

a)
$$\max f(D) = 12$$
, $f^{-1}(12) = \{(4,4)\}$, $\min f(D) = -12$, $f^{-1}(-12) = \{(-4,-4)\}$

b)
$$\max f(D) = \sqrt{48} + 4$$
, $f^{-1}(\sqrt{48} + 4) = \{(-4, -4), (4, -4)\}$, $\min f(D) = 0$, $f^{-1}(0) = \{(x, y) \in D \mid x = 0, y \ge 0\}$

c) kein Maximum,
$$\min f(D) = 1/\sqrt{32}, \ f^{-1}(1/\sqrt{32}) = \left\{ (-4,-4), (4,-4), (-4,4), (4,4) \right\}$$

d) kein Maximum, kein Minimum

Lösungen zu Aufgabe 4

a) i)
$$\mathbf{x}_k = \left(0, \frac{1}{k}\right)$$
 ii) $\mathbf{x}_k = \left(\frac{1}{k}, 0\right)$ iii) $\mathbf{x}_k = \left(\frac{3}{k}, \frac{1}{k}\right)$

c) nein

Lösungen zu Aufgabe 5

a) stetig auf \mathbb{R}^2

b) stetig auf $\{(x,y) \in \mathbf{R}^2 \mid x \neq 0, xy \geq 0\}$

c) stetig auf \mathbb{R}^2

d) stetig auf \mathbb{R}^2

e) stetig auf $\mathbb{R}^2 \setminus \{(0,0)\}$, unstetig bei (0,0)

f) stetig auf $\mathbb{R}^2 \setminus \{(0,0)\}$, unstetig bei (0,0)

Lösung zu Aufgabe 6 $\delta = \frac{1}{10}\epsilon$