

Essential Mathematical Methods for Engineers

Lecture 7: Linear algebra 2

Outline

- orthogonality
 - projections
 - least squares approximation
 - Gram-Scmidt
- eigenvales and eigenvectors
 - diagonalisation
 - symmetric matrices
 - singular value decomposition (SVD)
- numercial linear algebra
 - iterative methods
 - norms and condition number
 - ill conditioning

Orthogonality

- the row space is perpendicular to the nullspace
 - every row of A is perpendicular to every solution of Ax = 0
- the column space is perpendicular to the left nullspace
 - every column of A is perpendicular to every solution of $A^{T}y = 0$
- two spaces are perpendicular when
 - -v.w=0 or $v^Tw=0$ for all v in V and w in W
- about the left nullspace
 - it is never reached by Ax
 - when b is outside the column space we cannot solve Ax = b
 - the left nullspace contains the error in the least squares solution

EURECOM

2nd Fundamental Theorem of Linear Algebra

- the fundamental subspaces are not only orthogonal
 - they are <u>orthogonal complements</u>

the nullspace is the orthogonal complement of the row space (in \mathbb{R}^n)

the left nullspace is the orthogonal complement of the column space (in \mathbb{R}^m)

2nd Fundamental Theorem of Linear Algebra

- every vector x can be split into
 - row space component x_r
 - nullspace component x_n so we really have $A(x_r + x_n)$
 - $-Ax_r = Ax$
 - $-Ax_n=0$
- every vector goes to the column space
 - every vector in the column space comes from one and only one vector in the row space
 - there is an invertible matrix hiding in A
 - the pseudoinverse

2nd Fundamental Theorem of Linear Algebra

- we are given
 - a point $b = (b_1, ..., b_m)$ in m-dimensional space
 - a line through the origin $a = (a_1, ..., a_m)$
- we want the point p on a that is closest to b
 - the line connecting p and b is perpendicular to a

subspaces & column spaces

- p is a multiple of $a:p=\hat{x}a$
- the dotted line b p is : $b p = b \hat{x}a$
- noting perpendicularity

$$a \cdot (b - \hat{x}a) = 0$$
 or $a \cdot b - \hat{x}a \cdot a = 0$ or $\hat{x} = \frac{a \cdot b}{a \cdot a} = \frac{a^T b}{a^T a}$

the projection of b onto the line through a is the vector

$$p = \hat{x}a = \frac{a^T b}{a^T a}a$$

• the length of the line is $/|p|/=|/b|/\cos\theta$

the projection matrix is given by

$$p = a\hat{x} = a\frac{a^Tb}{a^Ta} = Pb$$
 thus $P = \frac{aa^T}{a^Ta}$

- what is the rank of P?
- two special cases
 - if b = a then $\hat{x} = 1 a$ is projected onto itself
 - if b is perpendicular to a then $a^Tb = 0$

Example

Find the projection matrix onto the line through $a = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$

Example

Project $b = [1 \ 1 \ 1]^T$ onto $a = [1 \ 2 \ 2]^T$ to find p

What happens if we project this new vector again?

- with n linearly independent vectors in \mathbb{R}^m find the combination that is closest to a given vector b
 - each b in R^m is projected onto a's subspace

- e goes from b to the nearest point $A\hat{x}$ in the subspace
 - the error vector $e = b A\hat{x}$ is perpendicular to the subspace
 - it makes a right angle with all the vectors $a_1, ..., a_n$

$$a_1^T (b - A\hat{x}) = 0$$

$$\vdots$$

$$a_n^T (b - A\hat{x}) = 0$$
or
$$\begin{bmatrix} -a_1^T - \\ \vdots \\ -a_n^T - \end{bmatrix} \begin{bmatrix} b - A\hat{x} \end{bmatrix} = \begin{bmatrix} 0 \\ \end{bmatrix}$$

$$A^{T}(b-A\hat{x})=0$$
 or $A^{T}A\hat{x}=A^{T}b$

- A^TA is symmetric and it's invertible if the a's are independent $\hat{x} = (A^TA)^{-1}A^Tb$
- the projection of b onto the subspace is the vector

$$p = A\hat{x} = A(A^T A)^{-1} A^T b$$

- and the $n \times n$ projection matrix that produces p = Pb is

$$P = A(A^T A)^{-1} A^T$$

- the key equation $A^{T}(b-A\hat{x})=0$ is given by linear algebra
 - the subspace is the column space of A
 - $-e = b A\hat{x}$ is perpendicular to the column space
 - $b A\hat{x}$ is in the left nullspace, therefore $A^{T}(b A\hat{x}) = 0$

- thus the left nullspace is important in projections and contains the error vector $e = b A\hat{x}$
 - b is split into the projection p and the error e = b p

Example

Find \hat{x} , p and P when

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

Question

What is the effect of multiplying a projected vector by the same *P* again?

- sometimes, for example when we have too many equations, there is no solution to Ax = b
 - e.g. when m > n, the n columns span a small part of the mdimensional space
 - unless all measurements are perfect $e = b Ax \neq 0$
 - when e = 0, x is an exact solution to Ax = b
 - when ||e|| is as small as possible \hat{x} is a least squares solution
- when there is no solution, we instead solve $A^T A \hat{x} = A^T b$
 - every vector in b has a part in the column space (p) and another perpendicular part in the left nullspace (e) so remove e

Ax = b = p + e is impossible; Ax = p is solvable

Linear algebra

• the solution \hat{x} to Ax = p makes the error as small as possible because for any x

$$||Ax-b||^2 = ||Ax-p||^2 + ||e||^2$$

this is simply $a^2 + b^2 = c^2$ for a right angle triangle

- vector Ax p in the column space is perpendicular to e in the left nullspace
- Ax p is reduced to zero by choosing x to be \hat{x}
 - this leaves the smallest possible error, i.e. e

Example

Find a line b = C+Dt through the three points (0,6), (1,0) and (2,0).

- the solution is C = 5 and D = -3, i.e. b = 5 3t is the best line
 - note the vertical error distances e_1 , e_2 , e_3 chosen to minimise the total error $E = e_1^2 + e_2^2 + e_3^2$

URECOM

and in 3 dimensions

$$A^T A \hat{x} = A^T b$$

- b is not in the column space of A hence there's no solution
 - the smallest error is $e = b A\hat{x}$ which is perpendicular to the plane

- here we are splitting up b
 - instead of solving Ax = b we solve $A\hat{x} = p$
 - error e = b p

Fitting a straight line

• we wish to fit a line to some points (t_i,b_i)

$$Ax = b \quad \text{is} \quad \begin{array}{c} C + Dt_1 = b_1 \\ C + Dt_2 = b_2 \\ \vdots \\ C + Dt_m = b_m \end{array} \quad \text{and} \quad A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}$$

the column space is so thin that *b* most probably lies outside

- components of e are the vertical distances $e_1, ..., e_m$ to the closest line which has heights $p_1, ..., p_m$
- the equations $A^T A \hat{x} = A^T b$ give $\hat{x} = (C, D)$
 - the errors are $e_i = b_i C Dt_i$

Linear algebra

Fitting a straight line

• b = C + Dt exactly fits the data points if

$$C + Dt_1 = b_1$$

$$\vdots$$

$$C + Dt_m = b_m$$
or
$$\begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

• the columns are independent so we multiply by A^T to get

$$A^T A \hat{x} = A^T b$$

$$A^{T} A = \begin{bmatrix} 1 & \cdots & 1 \\ t_{1} & \cdots & t_{m} \end{bmatrix} \begin{bmatrix} 1 & t_{1} \\ \vdots & \vdots \\ 1 & t_{m} \end{bmatrix} = \begin{bmatrix} m & \sum t_{i} \\ \sum t_{i} & \sum t_{i}^{2} \end{bmatrix}$$

$$A^{T}b = \begin{bmatrix} 1 & \cdots & 1 \\ t_{1} & \cdots & t_{m} \end{bmatrix} \begin{bmatrix} b_{1} \\ \vdots \\ b_{m} \end{bmatrix} = \begin{bmatrix} \Sigma b_{i} \\ \Sigma t_{i}b_{i} \end{bmatrix}$$

Fitting a straight line

the line C + Dt which minimises $e_1^2 + ... + e_m^2$ is determined by $A^T A \hat{x} = A^T b$

$$\begin{bmatrix} m & \Sigma t_i \\ \Sigma t_i & \Sigma t_i^2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} \Sigma b_i \\ \Sigma t_i b_i \end{bmatrix}$$

- the vertical errors at the m points on the line are the components of $e = b p = b A\hat{x}$ which is perpendicular to the columns of A
- it is in the nullspace of A^T and the best $\hat{x} = (C, D)$ minimises the total error E, the sum of the squares

$$E(x) = ||Ax - b||^2 = (C + Dt_1 - b_1)^2 + \dots + (C + Dt_m - b_m)^2$$

Fitting a parabola

- problems with parabolas $b = C + Dt + Et^2$ are still problems in <u>linear</u> algebra
- e.g. fitting $b_1,...,b_m$ at times $t_1,...,t_m$ to such a parabola

$$C + Dt_1 + Et_1^2 = b_1$$

$$\vdots$$
has the *m* by 3 matrix
$$A = \begin{bmatrix} 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_m & t_m^2 \end{bmatrix}$$

the best parabola chooses $\hat{x} = (C, D, E)$ to satisfy the three normal equations

$$A^T A \hat{x} = A^T b$$

2

Orthogonal bases and Gram-Schmidt

- orthogonal vectors are good
 - can make A^TA diagonal we want to be able to choose orthogonal vectors
- vectors $q_1,...,q_n$ are orthogonal when their dot products are zero, i.e. $q_i \cdot q_j$ or $q_i^T q_j = 0$ for $i \neq j$
- they are orthonormal if for each i, $//q_i//=1$
- the matrix of orthonormal vectors is written Q
 - Q is easy to work with since $Q^TQ = I$ and $Q^T = Q^{-1}$
 - if its only orthogonal then it's still diagonal

EURECOM

Orthogonal bases and Gram-Schmidt

 Q matrices are important for numerical computation because

$$||Qx||^2 = ||x||^2$$

because $(Qx)^T (Qx) = x^T Q^T Qx = x^T Ix = x^T x$

numbers can never grow too large when vectors of fixed length are used – computer codes which use Q matrices are numerically stable

Projections using orthogonal bases

when we have Q instead of A projection formulae become
The state of A projection formulae

$$A^{T}A\hat{x} = A^{T}b$$
 $\hat{x} = Q^{T}b$ $p = A\hat{x}$ $p = Q\hat{x}$

$$P = A(A^T A)^{-1} A^T \qquad P = QQ^T$$

and there are no matrices to invert

• there are n separate 1-dimensional projections and there is no coupling (A^TA) from A matrices

Linear algebra

Projections using orthogonal bases

- when Q is square the subspace is the whole space
 - $Q^T = Q^{-1}$ and $\hat{x} = Q^T b$ is equal to $x = Q^{-1}b$
 - b's projection onto the whole space is b itself
 - $-P=QQ^T=I$ and the solution is exact!
- when p = b the formulae decomposes b into its constituent 1-dimensional projections

$$b = q_1(q_1^T b) + \dots + q_n(q_n^T b)$$

the vector is decomposed into perpendicular components

– Fourier!

Projections using orthogonal bases

Example

The orthogonal matrix has orthonormal columns q^1 , q^2 and

$$Q = \frac{1}{3} \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix} \text{ has first column } q_1 = \begin{bmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$$

the separate projections of b = (0, 0, 1) onto the columns is

$$q_1(q_1^T b) = \frac{2}{3}q_1$$
 and $q_2(q_2^T b) = \frac{2}{3}q_2$ and $q_3(q_3^T b) = -\frac{1}{3}q_3$

their sum is the projection of b onto the whole space, b

$$\frac{2}{3}q_1 + \frac{2}{3}q_2 - \frac{1}{3}q_3 = \frac{1}{9} \begin{bmatrix} -2 + 4 - 2 \\ 4 - 2 - 2 \\ 4 + 4 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = b$$

The Gram-Schmidt Process

- a means of obtaining orthonormal vectors
- we start with (e.g. 3) vectors a, b, c and want to determine a number of orthonormal bases, say A, B, C
- begin by choosing A = a as the first direction
- the next direction B must be perpendicular to A
 - start with b and remove its projection onto A

$$B = b - \frac{A^T b}{A^T A} A$$

The Gram-Schmidt Process

- by taking dot products we can verify that A and B are perpendicular, $A^TB = 0$
- B is the error vector e, that is perpendicular to A
- the third direction starts with c

$$C = c - \frac{A^T c}{A^T A} A - \frac{B^T c}{B^T B} B$$

The Gram-Schmidt Process

Example

Calculate an orthonormal basis for the three vectors

$$a = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} \quad \text{and} \quad c = \begin{bmatrix} 3 \\ -3 \\ 3 \end{bmatrix}$$

The factorisation A = QR

- there is a matrix connecting A and Q
- we can see it easily already

$$\begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} q_1^T a & q_1^T b & q_1^T c \\ q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} q_1^T a & q_1^T b & q_1^T c \\ q_2^T b & q_2^T c \\ q_3^T c \end{bmatrix} \quad \text{or} \quad A = QR$$

e.g. from the last example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & -3 \\ 0 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{18} \\ 0 & \sqrt{6} & -\sqrt{6} \\ 0 & 0 & \sqrt{3} \end{bmatrix} = QR$$

EURECOM

The factorisation A = QR

- the square matrix R is upper triangular with positive diagonal
- it's useful for least squares

$$A^T A = R^T Q^T Q R = R^T R$$

the least squares equation simplifies to

$$R^T R \hat{x} = R^T Q^T b$$
 or $R \hat{x} = Q^T b$

• instead of solving Ax = b, which is impossible, we solve $R\hat{x} = Q^Tb$ by back substitution – which is very fast

The factorisation A = QR

Example

Determine the QR decomposition of

$$A = \begin{bmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{bmatrix}$$

For your own time if you wish - you will **not** have a question like this in your exam, but you **should** understand the concepts.

Eigenvalues and Eigenvectors

take a matrix and look at its powers

$$\begin{bmatrix}
0.8 & 0.3 \\
0.2 & 0.7
\end{bmatrix}
\begin{bmatrix}
0.7 & 0.45 \\
0.3 & 0.55
\end{bmatrix}
\begin{bmatrix}
0.650 & 0.525 \\
0.350 & 0.475
\end{bmatrix}
\begin{bmatrix}
0.6000 & 0.6000 \\
0.4000 & 0.4000
\end{bmatrix}$$

- A¹⁰⁰ was found by looking at eigenvalues
- certain special vectors x do not change direction when multiplied by A – they are the eigenvectors of A
- they can, however, change their length and do so according to the corresponding eigenvalue, λ

EURECOM

Linear algebra 38

the basic equation

$$Ax = \lambda x$$

example

$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$

$$S = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix}$$

$$V = \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}$$

what happens if we multiply by A again?

$$A^{99} \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix} \text{ is really } x_1 + (0.2) \left(\frac{1}{2}\right)^{99} x_2 = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} + \begin{bmatrix} \text{very small number} \end{bmatrix}$$

40

- eigenvector x_1 is a steady-state that doesn't change
 - $-\lambda_1=1$
- eigenvector x_2 is a decaying mode
 - $-\lambda_1 = 0.5$
- the higher the power of A the closer its columns approach the steady state
- A is a Markov matrix
 - largest eigenvalue of 1
 - [0.6 0.4]' is the steady state

Example

The projection matrix P has eigenvalues of 0 and 1. Its eigenvectors are x_1 =(1,1) and x_2 =(1,-1).

- each column of P adds up to 1, so $\lambda = 1$ is an eigenvalue
- P is singular, so $\lambda = 0$ is an eigenvalue
- P is symmetric, so x_1 and x_2 are perpendicular

What can you say about nullspace and the column space?

Example

The reflection matrix *R* has eigenvalues of 1 and -1.

- eigenvector x_1 =(1,1) is unchanged
- eigenvector x_2 =(-1,1) is reflected
- the eigenvectors are the same as for P

The eigenvalue problem

refers to the seeking of non-trivial solutions to

$$Ax = \lambda x$$
$$(\lambda I - A)x = 0$$

values of the scalar λ are the eigenvalues and the corresponding values of $x \neq 0$ are the eigenvectors which make up the nullspace of $A - \lambda I$

- a non-trivial solution exists if $A \lambda I$ is not invertible, or if $\det(A \lambda I) = 0$
- for a matrix A of size $n \times n$, there will be n eigenvalues
- each eigenvalue leads to a corresponding eigenvector

The eigenvalue problem

Example

Calculate the eigenvalues and eigenvectors of:

$$A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

Example

Calculate the eigenvalues and eigenvectors of:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

where we have repeated eigenvalues

Properties of eigenvalues for $n \times n$ matrices

Property 1

The sum of the eigenvalues:

$$\sum_{i=1}^{n} \lambda_i = \text{trace } A = \sum_{i=1}^{n} a_{ii}$$

Property 2
The product of the eigenvalues:

$$\prod_{i=1}^n \lambda_i = |A|$$

Property 3

The eigenvalues of the inverse, if it exists, are:

$$\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$$

Property 4

The eigenvalues of the transpose are:

$$\lambda_1, \lambda_2, \cdots, \lambda_n$$

Property 5

If k is a scalar then the eigenvalues of kA are: $k\lambda_1, k\lambda_2, \dots, k\lambda_n$

Property 6

If k is a scalar then the eigenvalues of A + kI are:

$$\lambda_1 \pm k, \lambda_2 \pm k, \dots, \lambda_n \pm k$$

Property 6

If k is a positive integer then the eigenvalues of A^k are:

$$\lambda_1^k, \lambda_2^k, \cdots, \lambda_n^k$$

- when x is an eigenvector multiplication by A is equivalent to multiplication by a single number: $Ax = \lambda x$
- it is like having a diagonal matrix
 - the 100th power of a diagonal matrix is easy to compute

 here we show that A turns into a diagonal matrix when the eigenvalues are properly used

Linear algebra 47

- suppose $n \times n$ matrix A has n linearly independent eigenvectors
- if we put them into the columns of an eigenvector matrix, S, then

$$S^{-1}AS = \Lambda = egin{bmatrix} \lambda_1 & & & \ & \ddots & & \ & & \lambda_n \end{bmatrix}$$

Proof:

$$AS = A \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix}$$

$$\begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & x_n \end{bmatrix} = S\Lambda$$

$$AS = S\Lambda$$
 is $S^{-1}AS = \Lambda$ or $A = S\Lambda S^{-1}$

some points:

- S has an inverse because we assumed the eigenvectors were linearly independent
 - without linearly independent eigenvectors we can't diagonalise the matrix
- matrices A and Λ have the same eigenvalues but different eigenvectors
 - the eigenvectors in S diagonalise A
 - the eigenvectors of Λ are NOT the same as those of A and are the columns of I
 - diagonalisation aligns the new eigenvectors with the coordinate axes

EURECOM

Linear algebra 49

An example for the projection matrix *P* which has eigenvalues of 1 and 0 and corresponding eigenvectors (1,1) and (-1,1)

$$\begin{bmatrix} .5 & .5 \\ -.5 & .5 \end{bmatrix} \begin{bmatrix} .5 & .5 \\ .5 & .5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$S^{-1} \qquad P \qquad S \qquad = \Lambda$$

Note that

- $P^2 = P$
- $-\Lambda^2 = \Lambda$
- the column space has swung around from (1,1) to (1,0)
- the nullspace has swung around from (-1,1) to (0,1)
- diagonalisation lines up the **new** eigenvectors with the coordinate axes

- suppose all eigenvalues of A are different
 - then the eigenvectors are independent
 - then A is diagonalisable

proofs in course text

- the eigenvector matrix is not unique
 - multiplying its columns by any non-zero constant gives the same Λ
- to diagonalise A we must use an eigenvector matrix
- matrices with repeated eigenvalues (too few) are not diagonalisable

our Markov matrix A can be diagonalised as follows

$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix} = S\Lambda S^{-1}$$

note also that, along the same lines as before

$$A^{k} = S\Lambda^{k}S^{-1} = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1^{k} & 0 \\ 0 & 0.5^{k} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix}$$

$$A^{\infty} = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix} = \begin{bmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{bmatrix}$$

- what's the point?
- we've already seen their use in calculating matrix powers
- there are more applications
 - Fibonacci sequences
 - Markov processes
 - differential equations
 - exponential of a matrix
 - quadratic forms

Symmetric matrices

- $A = S\Lambda S^{-1}$ has particular properties when A is symmetric
- the <u>spectral theorem</u> tells us that for a symmetric matrix
 - the eigenvalues are real
 - the eigenvectors can be chosen to be orthonormal
- we denote such a diagonalisation by $A = Q\Lambda Q^{-1} = Q\Lambda Q^{T}$
- to see that $Q\Lambda Q^{T}$ is symmetric take its transpose

$$\left(Q\Lambda Q^{T}\right)^{T} = \left(Q^{T}\right)^{T} \Lambda^{T} Q^{T} = Q\Lambda Q^{T}$$

Linear algebra

Symmetric matrices

Example

Obtain the eigenvalues and corresponding orthogonal eigenvectors of the symmetric matrix

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

and show that the normalised eigenvectors form an orthonormal set.

- A is an $m \times n$ matrix, square or rectangular
 - row space is r-dimensional in Rⁿ
 - column space is r-dimensional in R^m
 - we will choose orthonormal bases for these spaces
 - row space basis $v_1,...,v_r$
 - column space basis $u_1,...,u_r$
- e.g. for an invertible 2×2 matrix where m=n=r=2
 - row space is the plane R²
 - we want v_1 and v_2 to be perpendicular unit vectors
 - an orthogonal basis
 - also want Av_1 and Av_2 to be perpendicular
 - unit vectors $u_1 = Av_1/||Av_1||$ and $u_2 = Av_2/||Av_2||$ will be orthogonal

URECOM

Linear algebra

for the matrix

$$A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$$

note that

- no single orthogonal basis Q will make Q-1AQ diagonal
- we cannot use the eigenvectors of A to form the basis as they aren't orthonormal
- A is not symmetric and we need two different orthogonal matrices to diagonalise it

- inputs v_1 and v_2 give outputs Av_1 and Av_2
 - we want them to line up with u_1 and u_2
- the basis vectors have to give $Av_1 = \sigma_1 u_1$ and $Av_2 = \sigma_2 u_2$
 - $-\sigma_1$ and σ_2 are just the lengths $||Av_1||$ and $||Av_2||$
- with v_1 and v_2 as columns

$$A\begin{bmatrix} \vdots & \vdots \\ v_1 & v_2 \\ \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots \\ \sigma_1 u_1 & \sigma_2 u_2 \\ \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots \\ u_1 & u_2 \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}$$

$$AV = U\Sigma$$

$$A\begin{bmatrix} \vdots & \vdots \\ v_1 & v_2 \\ \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots \\ \sigma_1 u_1 & \sigma_2 u_2 \\ \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots \\ u_1 & u_2 \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}$$

$$AV = U\Sigma$$

- Σ is diagonal and like the matrix Λ
 - $-\Lambda$ contained the eigenvalues
 - $-\Sigma$ contains the singular values σ_1 and σ_2
- when U and V both equal S we have $AS = S\Lambda$ which gives $S^{-1}AS = \Lambda$ it is diagonalised
 - but the vectors in S are not generally orthogonal

EURECOM

- we require U and V to be orthogonal
 - basis vectors in their columns must be orthonormal

$$V^T V = \begin{bmatrix} \cdots & v_1^T & \cdots \\ \cdots & v_2^T & \cdots \end{bmatrix} \begin{bmatrix} \vdots & \vdots \\ v_1 & v_2 \\ \vdots & \vdots \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- thus $V^TV = I$ which means $V^T = V^{-1}$
 - similarly $U^TU = I$ and $U^T = U^{-1}$
- this is the SVD

$$AV = U\Sigma$$
 and then $A = U\Sigma V^{-1} = U\Sigma V^{T}$

where U and V are orthogonal

Linear algebra

• to see V by itself multiply A^T by A

$$A^{T} A = (U \Sigma V^{T})^{T} (U \Sigma V^{T}) = V \Sigma^{T} U^{T} U \Sigma V^{T}$$

$$= V \Sigma^{T} \Sigma V^{T}$$

$$= V \begin{bmatrix} \sigma_{1}^{2} \\ \sigma_{2}^{2} \end{bmatrix} V^{T}$$

which is an ordinary factorisation exactly like $A = Q\Lambda Q^T$

- except that A is really A^TA
- the columns of V are now the eigenvectors of A^TA !!!

URECOM

Linear algebra 61

Example

Show that the SVD of

$$A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$$

is given by

$$A = U\Sigma V^{T}$$

$$\begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

we can also calculate the u's first, then the v's

$$AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T}$$

$$= U\Sigma^{T}\Sigma U^{T}$$

$$= U\left[\begin{matrix}\sigma_{1}^{2} \\ \sigma_{2}^{2}\end{matrix}\right]U^{T}$$

- we have an ordinary factorisation of AAT
 - columns of *U* are its eigenvectors
- we can show that it gives the same result as in the previous example

EURECOM

A different example: V^T 3 -2 -2 -2 -2 -3 -3 -2 -2 0 2 -2 0 2 0 2 -2 0 2 A

Example

Find the SVD of the following singular matrix:

$$A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$

Remember that it is singular!

$$A = U\Sigma V^T$$

$$\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{10} & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- U and V contain orthonormal bases for all four subspaces
 - first r columns of V: row space of A
 - last n-r columns of V: nullspace of A
 - first r columns of U: column space of A
 - last m-r columns of U: nullspace of A^T
- some points:
 - the v's are eigenvectors of A^TA
 - the u's are eigenvectors of AA^T
 - $-A^{T}A$ and AA^{T} have the same eigenvalues
 - Av_i has to fall in the direction of u_i , $Av_i = \sigma_i u_i$

URECOM

- starting from $A^TAv_i = \sigma_i^2 v_i$ and multiplying
 - first by v_i^T

$$v_i^T A^T A v_i = \sigma_i^2 v_i^T v_i$$
 gives $||Av_i||^2 = \sigma_i^2$ so that $||Av_i|| = \sigma_i$
were we used $(v_i^T A^T)(Av_i) = /|Av_i|/2$

- then by A

$$AA^{T}Av_{i} = \sigma_{i}^{2}Av_{i}$$
 gives $u_{i} = Av_{i}/\sigma_{i}$ as a unit eigenvector of AA^{T}

- this gives us the proof that $Av_i = \sigma_i u_i$
 - A is diagonalised by the two bases

$$A = U\Sigma V^T$$

the norm of a matrix A is the maximum ratio

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

- e.g. the norm of I is 1 since the ratio is always $\frac{|x|}{|x|}$
- e.g. the norm of a diagonal matrix is its largest entry

The norm of
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
 is $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{x \neq 0} \frac{\sqrt{2^2 x_1^2 + 3^2 x_2^2}}{\sqrt{x_1^2 + x_2^2}} = 3$

its maximum is when $x_1 = 0$ and $x_2 = 1$

- $-x = (0,1)^{T}$ is an eigenvector with $Ax = (0,3)^{T}$
- the eigenvalue is 3 and it equals the norm

URECOM

- for a positive definite symmetric matrix the norm is $//A//=\lambda_{max}$ no other vector other than the corresponding eigenvector can make the norm larger
 - $-A = Q\Lambda Q^{T}$ neither Q nor Q^{T} change the length
 - the ratio to maximise is really $/|\Lambda x|//|x|/$
- for symmetric matricies (not positive definite) $//A//=/\lambda_{max}/$
 - norm is concerned with length, $/|Ax|/ = /|\lambda x|/ = /\lambda|.||x|/$
- for unsymmetric matrices we cannot generally use eigenvalues e.g.

$$A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$$
 has $\lambda_1 = \lambda_2 = 0$ but $||A|| = \frac{||Ax||}{||x||} = 2$

- so how do we calculate norms generally?
- for the last example vector x = (0,1) which gives Ax = (2,0)
 - -x = (0,1) is an eigenvector of $A^{T}A$
- the rule is

$$\|A\|^2 = \max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \max_{x \neq 0} \frac{x^T A^T A x}{x^T x} = \lambda_{\max} (A^T A)$$

when x is the eigenvector corresponding to λ_{max} the ratio is $x^T A^T A x = x^T (\lambda_{\text{max}}) x$ divided by $x^T x$

- for this particular x, the ratio equals λ_{\max}

7

- the matrix A^TA has orthonormal eigenvectors $q_1,...,q_n$
 - every x is a combination of these vectors
 - putting this combination into the ratio gives

$$\frac{x^{T}A^{T}Ax}{x^{T}x} = \frac{(c_{1}q_{1} + \dots + c_{n}q_{n})^{T}(c_{1}\lambda_{1}q_{1} + \dots + c_{n}\lambda_{n}q_{n})}{(c_{1}q_{1} + \dots + c_{n}q_{n})^{T}(c_{1}q_{1} + \dots + c_{n}q_{n})} = \frac{c_{1}^{2}\lambda_{1} + \dots + c_{n}^{2}\lambda_{n}}{c_{1}^{2} + \dots + c_{n}^{2}}$$

- remember that $q_i^T q_j = 0$
- this ratio cannot be larger than λ_{max} which occurs when all c's are zero except the one that multiplies λ_{max}

- the ratio on the last slide is the Rayleigh quotient for the matrix A^TA
 - the maximum is the largest eigenvalue $\lambda_{max}(A^TA)$
 - the minimum is the smallest eigenvalue $\lambda_{\min}(A^TA)$
- the norm /|A|/ is equal to the largest singular value $\sigma_{\rm max}$ of A the singular values are equal to the square roots of the positive eigenvalues of A^TA

- indicates sensitivity to errors
 - when Ax = b and the right side changes to $b + \Delta b$
 - the solution changes to $x + \Delta x$ but how big is Δx ?

Subtract
$$Ax = b$$
 from $A(x + \Delta x) = b + \Delta b$ to find $A(\Delta x) = \Delta b$

- the error is $\Delta x = A^{-1} \Delta b$
 - large when A^{-1} is large (it's nearly singular)
 - especially large when Δb points in the worst direction
 - the worst error has $/|\Delta x|/=|/A^{-1}/|.|/\Delta b|/$
- we really want to know the relative error

• we find that the solution error is less than $c = /|A|/./|A^{-1}|/$ times the problem error

$$\frac{\left\|\Delta x\right\|}{\left\|x\right\|} \le c \frac{\left\|\Delta b\right\|}{\left\|b\right\|}$$

- for proof, note that from b = Ax and $\Delta x = A^{-1}\Delta b$ we note that $\|b\| \le \|A\| \|x\|$ and $\|\Delta x\| \le \|A^{-1}\| \|\Delta b\|$. Multiplying left and right sides and then dividing by //b//.//x//
 - the left side gives relative error $/|\Delta x|//|x|/|$
 - the right side is the equation above

EURECOM

Linear algebra

if the error is in A then

$$\frac{\left\|\Delta x\right\|}{\left\|x + \Delta x\right\|} \le c \frac{\left\|\Delta A\right\|}{\left\|A\right\|}$$

• for proof we subtract Ax = b from $(A + \Delta A)(x + \Delta x) = b$ to find $A(\Delta x) = -(\Delta A)(x + \Delta x)$ and multiply the last equation by A^{-1} and take norms to reach the above equation

$$\|\Delta x\| \le \|A^{-1}\| \|\Delta A\| \|x + \Delta x\|$$
 or $\frac{\|\Delta x\|}{\|x + \Delta x\|} \le \|A\| \|A^{-1}\| \frac{\|\Delta A\|}{\|A\|}$

- errors occur either in
 - b: depends on original measurement or computer roundoff
 - A: also depends on elimination steps
 - small pivots tend to produce large errors in L and U
- errors in A or in b are amplified into the solution error Δx
 - errors are bounded relative to x by the condition number, c
 - when the condition number is too large errors in the solution can become unacceptable

Linear algebra

Example

When A and A^{-1} are symmetric, $c = /|A/|./|A^{-1}|/$ comes from the eigenvalues:

$$A = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$$
 has norm 6. $A^{-1} = \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ has norm $\frac{1}{2}$

This A is symmetric positive definite. Its norm is $\lambda_{\text{max}} = 6$. The norm of A^{-1} is $1/\lambda_{\text{min}} = \frac{1}{2}$. Multiplying these norms gives the condition number:

$$c = ||A|| \cdot ||A^{-1}|| = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} = 3$$

From $c = /|A/|./|A^{-1}|/= 3$ the solution error is less than 3 times the problem error.

III conditioning

suppose we have to solve $x - \alpha y = 0$ where $\alpha = 1 \pm 0.05$ has some error

we obtain
$$x = 0.3\alpha/(1+2\alpha)$$
$$y = 0.3/(1+2\alpha)$$

- so $0.0983 \le x \le 0.1016$ and $0.0968 \le y \le 0.1034$
- an error of $\pm 5\%$ in the value of α produces errors in x of up to $\pm 2\%$ and in y of up to $\pm 3\%$

• changing to
$$\begin{cases} 2x + y = 0.3 \\ x + \alpha y = 0.3 \end{cases}$$
 where $\alpha = 0.4 \pm 0.05$ we have $\begin{cases} x = 0.3(1 - \alpha)/(1 - 2\alpha) \\ y = -0.3/(1 - 2\alpha) \end{cases}$

- so $0.65 \le x \le 1.65$ and $-3 \le y \le -1$.
- now an error of $\pm 12.5\%$ in the value of α produces errors in x and y of up to 100%

III conditioning

- a small change in $x \alpha y = 0$ makes only a small difference
- a large difference for $x + \alpha y = 0.3$ which is almost parallel

III conditioning

- one means of identifying the problem comes from looking at the determinant
 - the determinants are small thus the associated equations are nearly singular

e.g.:

$$\begin{vmatrix} 2 & 1 \\ 1 & 0.5001 \end{vmatrix} = 0.0002 \qquad \begin{vmatrix} 2 & 1 \\ 1 & 0.4999 \end{vmatrix} = -0.0002 \qquad \begin{vmatrix} 2 & 1 \\ 1 & 0.4 \pm 0.05 \end{vmatrix} = -0.2 \pm 0.12$$

Summary

- You should be able to
 - work comfortably with matrices
 - calculate matrix determinants and inverses
 - solve linear equations via matrix methods
 - understand the concept of a matrix rank
 - understand the principles of orthogonality and the 4 subspaces
 - determine eigenvalues and eigenvectors
 - determine matrix decompositions

EURECOM