Thesis Analysis

Rhea Sarma

11 January, 2025

Contents

Checking the relationship between BIS, BAS, meal intake and EAH intake variables.

AIM 1: Does BIS and BAS influences eating in absence of hunger?

```
library(haven)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
```

1. Load dataset

thesis_data<-read.csv("~/Desktop/Rhea MS thesis/MS_thesis/data/thesis_data.csv")

2. My IV's of interest are bis bas bas_funseeking bas_drive bas_rewardresp

 $My\ DV's\ of\ interest\ are\ {\tt meal_grams_consumed\ meal_kcal_consumed\ eah_grams_consumed_foodonly\ eah_kcal_consumed$

1. Checking normality and homogeneity of variance assumptions and conducting visualizations

```
# For variable BIS
qqnorm(thesis_data$bis)
qqline(thesis_data$bis)
```

('geom_point()').


```
shapiro.test(thesis_data$bis) #met normality
```

```
##
## Shapiro-Wilk normality test
##
## data: thesis_data$bis
## W = 0.98488, p-value = 0.05538

#Visualizing BIS data by Study, boxplot and histogram
ggplot(thesis_data, aes(x=Study, y=bis)) + geom_boxplot() + geom_jitter(height = NULL) #jit
## Warning: Removed 4 rows containing non-finite outside the scale range
## ('stat_boxplot()').
## Warning: Removed 4 rows containing missing values or values outside the scale range
```


ggplot(thesis_data,aes(bis))+ geom_histogram(bins=15)+facet_grid(.~Study)

Warning: Removed 4 rows containing non-finite outside the scale range
('stat_bin()').

For variable BAS
qqnorm(thesis_data\$bas)
qqline(thesis_data\$bas)

shapiro.test(thesis_data\$bas) #met normality

('stat_boxplot()').

```
##
## Shapiro-Wilk normality test
##
## data: thesis_data$bas
## W = 0.986, p-value = 0.07642

#Visualizing BAS data by Study, boxplot and histogram
ggplot(thesis_data, aes(x=Study, y=bas)) + geom_boxplot() + geom_jitter(height = NULL)
## Warning: Removed 3 rows containing non-finite outside the scale range
```

Warning: Removed 3 rows containing missing values or values outside the scale range
('geom_point()').

ggplot(thesis_data,aes(bas))+geom_histogram(bins=15)+facet_grid(.~Study)

Warning: Removed 3 rows containing non-finite outside the scale range
('stat_bin()').

For variable BAS funseeking
qqnorm(thesis_data\$bas_funseeking)
qqline(thesis_data\$bas_funseeking)


```
##
## Shapiro-Wilk normality test
##
## data: thesis_data$bas_funseeking
## W = 0.96485, p-value = 0.0002044

#Visualizing BAS funseeking data by Study, boxplot and histogram
```

('geom_point()').

```
## Warning: Removed 3 rows containing non-finite outside the scale range
## ('stat_boxplot()').
## Removed 3 rows containing missing values or values outside the scale range
```

ggplot(thesis_data, aes(x=Study, y=bas_funseeking)) +geom_boxplot() +geom_jitter(height = N

ggplot(thesis_data,aes(bas_funseeking))+geom_histogram(bins=15)+facet_grid(.~Study)

Warning: Removed 3 rows containing non-finite outside the scale range
('stat_bin()').

For variable BAS drive
qqnorm(thesis_data\$bas_drive)
qqline(thesis_data\$bas_drive)

shapiro.test(thesis_data\$bas_drive) #not normal

##

```
## Shapiro-Wilk normality test
##
## data: thesis_data$bas_drive
## W = 0.9687, p-value = 0.0005395

#Visualizing BAS drive data by Study, boxplot and histogram
ggplot(thesis_data, aes(x=Study, y=bas_drive)) + geom_boxplot() + geom_jitter(height = NULL)
```

Warning: Removed 3 rows containing non-finite outside the scale range
('stat_boxplot()').
Removed 3 rows containing missing values or values outside the scale range

Removed 3 rows containing missing values or values outside the scale range ## ('geom_point()').

ggplot(thesis_data,aes(bas_drive))+geom_histogram(bins=15)+ facet_grid(.~Study)

Warning: Removed 3 rows containing non-finite outside the scale range
('stat_bin()').

For variable BAS reward responsive
qqnorm(thesis_data\$bas_rewardresp)
qqline(thesis_data\$bas_rewardresp)

shapiro.test(thesis_data\$bas_rewardresp) #not normal

Shapiro-Wilk normality test

##

```
##
## data: thesis_data$bas_rewardresp
## W = 0.92994, p-value = 1.603e-07

#Visualizing BAS reward responsive data by Study, boxplot and histogram
ggplot(thesis_data, aes(x=Study, y=bas_rewardresp)) +geom_boxplot() + geom_jitter(height = 1)
```

Warning: Removed 3 rows containing non-finite outside the scale range
('stat_boxplot()').
Removed 3 rows containing missing values or values outside the scale range
('geom_point()').

ggplot(thesis_data,aes(bas_rewardresp))+geom_histogram(bins=15)+ facet_grid(.~Study)

Warning: Removed 3 rows containing non-finite outside the scale range
('stat_bin()').

For variable Meal consumed in grams
qqnorm(thesis_data\$meal_grams_consumed)
qqline(thesis_data\$meal_grams_consumed)

shapiro.test(thesis_data\$meal_grams_consumed) #not normal

##

```
## Shapiro-Wilk normality test
##
## data: thesis_data$meal_grams_consumed
## W = 0.95722, p-value = 3.579e-05

#Visualizing Meal consumed in grams data by Study, boxplot and histogram
ggplot(thesis_data, aes(x=Study, y=meal_grams_consumed)) + geom_boxplot() + geom_jitter(heig)
## Warning: Removed 4 rows containing non-finite outside the scale range
## ('stat_boxplot()').

## Warning: Removed 4 rows containing missing values or values outside the scale range
## ('geom_point()').
```


ggplot(thesis_data,aes(meal_grams_consumed))+geom_histogram(bins=15)+facet_grid(.~Study)

Warning: Removed 4 rows containing non-finite outside the scale range
('stat_bin()').

For variable Meal consumed in kcal
qqnorm(thesis_data\$meal_kcal_consumed)
qqline(thesis_data\$meal_kcal_consumed)

shapiro.test(thesis_data\$meal_kcal_consumed) #not normal

```
##
## Shapiro-Wilk normality test
##
## data: thesis_data$meal_kcal_consumed
## W = 0.96846, p-value = 0.0005531
```

```
#Visualizing Meal consumed in kcal data by Study, boxplot and histogram
ggplot(thesis_data, aes(x=Study, y=meal_kcal_consumed)) + geom_boxplot() + geom_jitter(heighted)
```

```
## Warning: Removed 5 rows containing non-finite outside the scale range
## ('stat_boxplot()').
```

Warning: Removed 5 rows containing missing values or values outside the scale range ## ('geom_point()').

ggplot(thesis_data,aes(meal_kcal_consumed))+geom_histogram(bins=15)+facet_grid(.~Study)

Warning: Removed 5 rows containing non-finite outside the scale range ## ('stat_bin()').

For variable EAH consumed in grams
qqnorm(thesis_data\$eah_grams_consumed_foodonly)
qqline(thesis_data\$eah_grams_consumed_foodonly)

shapiro.test(thesis_data\$eah_grams_consumed_foodonly) #not normal

```
##
## Shapiro-Wilk normality test
##
## data: thesis_data$eah_grams_consumed_foodonly
## W = 0.97611, p-value = 0.003732

#Visualizing EAH consumed in grams data by Study, boxplot and histogram
ggplot(thesis_data, aes(x=Study, y=eah_grams_consumed_foodonly)) +geom_boxplot() + geom_jit:
## Warning: Removed 1 row containing non-finite outside the scale range
## ('stat_boxplot()').
## Warning: Removed 1 row containing missing values or values outside the scale range
## ('geom_point()').
```


ggplot(thesis_data,aes(eah_grams_consumed_foodonly))+geom_histogram(bins=15)+facet_grid(.~S

Warning: Removed 1 row containing non-finite outside the scale range
('stat_bin()').

For variable EAH consumed in kcal
qqnorm(thesis_data\$eah_kcal_consumed)
qqline(thesis_data\$eah_kcal_consumed)

shapiro.test(thesis_data\$eah_kcal_consumed) #not normal

Shapiro-Wilk normality test

##

```
##
## data: thesis_data$eah_kcal_consumed
## W = 0.96228, p-value = 9.95e-05

#Visualizing EAH consumed in kcal data by Study, boxplot and histogram
ggplot(thesis_data, aes(x=Study, y=eah_kcal_consumed)) + geom_boxplot() + geom_jitter(height)
```

Warning: Removed 1 row containing non-finite outside the scale range ('stat_boxplot()').
Removed 1 row containing missing values or values outside the scale range
('geom_point()').

ggplot(thesis_data,aes(eah_kcal_consumed))+geom_histogram(bins=15)+facet_grid(.~Study)

Warning: Removed 1 row containing non-finite outside the scale range
('stat_bin()').

While some of the variables didn't pass the shapiro normality test but after looking at the qqplots of these variables we can consider them as normal.

3. Corrplots

library(corrplot)

corrplot 0.95 loaded


```
# 1. Relationship between BIS and EAH
## BIS is not associated with EAH gram intake
cor.test(thesis_data$bis, thesis_data$eah_grams_consumed_foodonly,
        use = "pairwise.complete.obs")
##
##
   Pearson's product-moment correlation
##
## data: thesis_data$bis and thesis_data$eah_grams_consumed_foodonly
## t = -1.4532, df = 172, p-value = 0.148
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.25472716 0.03928264
## sample estimates:
##
          cor
## -0.1101308
## BIS is associated with EAH kcal intake
cor.test(thesis_data$bis, thesis_data$eah_kcal_consumed,
        use = "pairwise.complete.obs")
```

##

```
## Pearson's product-moment correlation
##
## data: thesis_data$bis and thesis_data$eah_kcal_consumed
## t = -2.0264, df = 172, p-value = 0.04427
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.294774354 -0.004022544
## sample estimates:
##
        cor
## -0.152701
#2. Relationship between BAS and EAH
## BAS is not associated with EAH gram intake
cor.test(thesis_data$bis, thesis_data$eah_grams_consumed_foodonly,
        use = "pairwise.complete.obs")
##
## Pearson's product-moment correlation
## data: thesis_data$bis and thesis_data$eah_grams_consumed_foodonly
## t = -1.4532, df = 172, p-value = 0.148
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.25472716 0.03928264
## sample estimates:
          cor
## -0.1101308
## BAS is not associated with EAH kcal intake
cor.test(thesis_data$bas, thesis_data$eah_kcal_consumed,
        use = "pairwise.complete.obs")
##
##
  Pearson's product-moment correlation
## data: thesis_data$bas and thesis_data$eah_kcal_consumed
## t = -0.34611, df = 173, p-value = 0.7297
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1739694 0.1225161
## sample estimates:
##
           cor
## -0.02630509
#3. Relationship between BAS funseeking and EAH
## BAS funseeking is not associated with EAH gram intake
cor.test(thesis_data$bas_funseeking,
         thesis_data$eah_grams_consumed_foodonly, use = "pairwise.complete.obs")
```

```
##
## Pearson's product-moment correlation
## data: thesis_data$bas_funseeking and thesis_data$eah_grams_consumed_foodonly
## t = -0.18597, df = 173, p-value = 0.8527
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1621409 0.1344873
## sample estimates:
## -0.01413783
## BAS funseeking is not associated with EAH kcal intake
cor.test(thesis_data$bas_funseeking,
        thesis_data$eah_kcal_consumed, use = "pairwise.complete.obs")
##
## Pearson's product-moment correlation
##
## data: thesis_data$bas_funseeking and thesis_data$eah_kcal_consumed
## t = -0.34928, df = 173, p-value = 0.7273
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1742029 0.1222788
## sample estimates:
##
          cor
## -0.0265458
#4. Relationship between BAS drive and EAH
## BAS drive is not associated with EAH gram intake
cor.test(thesis_data$bas_drive,
        thesis_data$eah_grams_consumed_foodonly, use = "pairwise.complete.obs")
##
## Pearson's product-moment correlation
##
## data: thesis_data$bas_drive and thesis_data$eah_grams_consumed_foodonly
## t = -0.23044, df = 173, p-value = 0.818
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1654303 0.1311669
## sample estimates:
          cor
## -0.01751707
## BAS drive is not associated with EAH kcal intake
cor.test(thesis_data$bas_drive,
        thesis_data$eah_kcal_consumed, use = "pairwise.complete.obs")
```

```
##
##
   Pearson's product-moment correlation
## data: thesis_data$bas_drive and thesis_data$eah_kcal_consumed
## t = -0.58045, df = 173, p-value = 0.5624
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1911803 0.1049419
## sample estimates:
## -0.04408754
#5. Relationship between BAS reward responsive and EAH
## BAS reward responsive is not associated with EAH gram intake
cor.test(thesis_data$bas_rewardresp,
         thesis_data$eah_grams_consumed_foodonly, use = "pairwise.complete.obs")
##
   Pearson's product-moment correlation
##
## data: thesis_data$bas_rewardresp and thesis_data$eah_grams_consumed_foodonly
## t = 0.47405, df = 173, p-value = 0.6361
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1129282 0.1833816
## sample estimates:
##
          cor
## 0.03601829
## BAS reward responsive is not associated with EAH kcal intake
cor.test(thesis_data$bas_rewardresp,
         thesis_data$eah_kcal_consumed, use = "pairwise.complete.obs")
##
##
   Pearson's product-moment correlation
##
## data: thesis_data$bas_rewardresp and thesis_data$eah_kcal_consumed
## t = 0.2106, df = 173, p-value = 0.8334
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1326488 0.1639631
## sample estimates:
##
          cor
## 0.01600938
```

Based on the correlations and corr plots we can see that bis is negativley related with eah_kcal_consumed

4. Conducting levene's test on bis and eah_kcal_consumed by Study and then t-test on bis and eah_kcal_consumed to see if there is study effect.

```
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
#For bis
leveneTest(
bis~as.factor(Study), data=thesis_data)
## Levene's Test for Homogeneity of Variance (center = median)
        Df F value Pr(>F)
## group 1 0.0027 0.9584
        173
#For eah_kcal_consumed
leveneTest(
eah_kcal_consumed~as.factor(Study), data=thesis_data)
## Levene's Test for Homogeneity of Variance (center = median)
##
         Df F value Pr(>F)
## group 1 1.5361 0.2169
        176
#Assumptions for homegenity in variances are met
#Conducting indepedent t-test on bis to see study effect
t.test(thesis_data[thesis_data$Study == "REACH",]$bis,
      thesis_data[thesis_data$Study == "FOOD_BRAIN",]$bis,
       alternative = "two.sided", var.equal = TRUE)
##
## Two Sample t-test
## data: thesis_data[thesis_data$Study == "REACH", ]$bis and thesis_data[thesis_data$Study
## t = 3.6665, df = 173, p-value = 0.000327
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1057088 0.3522326
## sample estimates:
## mean of x mean of y
     2.97619
##
               2.74722
```

```
#Conducting indepedent t-test on bis to see study effect
t.test(thesis_data[thesis_data$Study == "REACH",]$eah_kcal_consumed, thesis_data[thesis_data
alternative = "two.sided", var.equal = TRUE)
```

```
## Two Sample t-test
##

## data: thesis_data[thesis_data$Study == "REACH", ]$eah_kcal_consumed and thesis_data[thesis_data[thesis_data]]
## t = 0.23976, df = 176, p-value = 0.8108

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:
## -39.40483 50.30346

## sample estimates:
## mean of x mean of y

## 282.5406 277.0913
```

##

```
#Visualizing
ggplot(thesis_data, aes(x=Study, y=bis)) +
geom_boxplot() +
geom_jitter(height = NULL)
```

```
## Warning: Removed 4 rows containing non-finite outside the scale range
## ('stat_boxplot()').
```

Warning: Removed 4 rows containing missing values or values outside the scale range ## ('geom_point()').


```
ggplot(thesis_data, aes(x=Study, y=eah_kcal_consumed)) +
geom_boxplot() +
geom_jitter(height = NULL)
```

Warning: Removed 1 row containing non-finite outside the scale range
('stat_boxplot()').

Warning: Removed 1 row containing missing values or values outside the scale range
('geom_point()').

thesis_data\$Age.in.years

```
[1] 8.30 9.60 9.80 7.30 8.50 8.80 8.10 8.00 7.60 9.40 7.70 7.60 7.80 7.30 9.60
##
    [16] 9.10 8.20 8.80 8.50 8.40 9.20 7.40 9.70 8.20 7.70 8.70 8.10 7.60 8.80 7.70
##
    [31] 9.90 8.50 8.90 9.50 7.50 7.30 8.00 8.40 8.60 7.20 8.80 8.80 7.70 7.70
    [46] 9.30 7.70 7.80 9.80 7.10 7.30 8.20 7.70 8.00 7.60 8.70 8.10 8.30 7.20 9.20
##
    [61] 9.60 9.50 7.20 9.40 8.20 7.30 8.60 8.80 8.80 9.90 7.30 8.30 8.00 8.40 7.20
##
    [76] 9.20 8.90 7.40 7.80 8.50 9.20 7.10 9.80 7.70 8.84 7.46 7.07 7.38 7.82 7.03
##
    [91] 8.65 7.18 7.68 7.00 7.48 8.22 7.67 7.39 7.18 7.77 8.81 7.68 7.79 8.32 7.25
## [106] 7.26 8.12 7.47 7.06 7.22 7.25 8.66 8.99 7.40 7.36 7.47 7.53 7.02 8.81 8.48
## [121] 8.14 7.34 7.86 8.92 8.26 7.79 8.47 8.33 7.05 8.91 7.17 8.24 7.33 7.41 7.24
## [136] 7.86 8.30 8.50 7.53 7.73 7.97 8.50 8.41 8.41 8.58 8.32 7.86 7.23 7.17 8.44
## [151] 8.71 8.61 7.44 8.51 8.07 7.33 7.26 7.33 7.42 7.80 8.44 8.63 7.36 8.51 7.84
## [166] 7.14 8.30 8.79 8.91 7.25 7.99 8.16 7.22 7.03 7.93 7.04 7.51 8.96 7.58
```

Based on these results, BIS scores are higher in REACH study and EAH consumption in kcal was similar in both the studies.

5. Linear regressions predicting EAH with covariates [sex + child bmi + age in years+ pre eah fullness, income] (no interactions) – no effects

model1 <- lm(eah_kcal_consumed ~ bis + Sex + Age.in.years + Child.BMI

```
+ Income + pre eah fullness, data = thesis data)
summary(model1)
##
## Call:
## lm(formula = eah_kcal_consumed ~ bis + Sex + Age.in.years + Child.BMI +
##
       Income + pre_eah_fullness, data = thesis_data)
##
## Residuals:
                                3Q
       Min
                1Q
                    Median
                                       Max
## -323.69 -104.78 -21.01
                             86.86
                                    510.66
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
                                     202.0066 -0.225
## (Intercept)
                          -45.4120
                                                        0.8224
## bis
                          -59.3086
                                      28.3446 -2.092
                                                        0.0380 *
## SexMale
                           23.8666
                                      23.8026
                                                1.003
                                                        0.3175
## Age.in.years
                           38.7347
                                      17.2203
                                                2.249
                                                        0.0259 *
## Child.BMI
                            7.4366
                                       8.2491
                                                0.902
                                                        0.3687
## Income>$100,000
                          110.8061
                                     108.2938
                                                1.023
                                                        0.3078
## Income$20,000-$35,000
                           99.4185
                                     125.0848
                                                0.795
                                                        0.4279
## Income$36,000-$50,000
                          162.0122
                                     115.3090
                                                1.405
                                                        0.1620
## Income$51,000-$75,000
                          110.9349
                                     110.5712
                                                1.003
                                                        0.3172
## Income$76,000-$100,000 90.7284
                                     109.3554
                                                0.830
                                                        0.4080
## pre_eah_fullness
                           -0.6637
                                       0.3435 - 1.932
                                                        0.0551 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 149.8 on 159 degrees of freedom
     (9 observations deleted due to missingness)
## Multiple R-squared: 0.1077, Adjusted R-squared: 0.0516
## F-statistic: 1.919 on 10 and 159 DF, p-value: 0.04608
```

Based on the summary of the model of this multiple regression model we can see that higher BIS scores predicts a lower food intake in kcal (B=-60, p=0.04) in EAH paradigm.

AIM 2: Does maternal risk status moderates the relationship between BIS, BAS and EAH

```
#Conducting 2 way ANOVA to see the effect of maternal risk status on EAH in kcal across bot
thesis_data$Maternal.risk.status <- as.factor(thesis_data$Maternal.risk.status)
thesis_data$Study <- as.factor(thesis_data$Study)</pre>
anova_model <- aov(eah_kcal_consumed ~ Maternal.risk.status * Study, data = thesis_data)</pre>
summary(anova_model)
##
                               Df Sum Sq Mean Sq F value Pr(>F)
## Maternal.risk.status
                                1
                                      702
                                               702
                                                     0.030 0.862
## Study
                                      530
                                               530
                                                     0.023 0.880
                                1
## Maternal.risk.status:Study
                                       655
                                               655
                                                     0.028 0.867
                               1
## Residuals
                              173 4009072
                                             23174
## 2 observations deleted due to missingness
#Visualization
maternal_data <- thesis_data %>% filter(!is.na(Study), !is.na(Maternal.risk.status))
library(ggplot2)
ggplot(maternal_data, aes(x = Study, y = eah_kcal_consumed, fill = Maternal.risk.status)) +
  geom_boxplot() +
  labs(title = "Effect of Maternal Risk Status on EAH Intake Across Studies",
       x = "Study",
       y = "EAH Intake (grams)",
       fill = "Maternal Risk Status")
## Warning: Removed 1 row containing non-finite outside the scale range
## ('stat_boxplot()').
```

Effect of Maternal Risk Status on EAH Intake Across Studies

There wasn't any main effect of maternal risk status (p=0.87) and study(p=0.89) on EAH intake. Moreover, there wasn't any interaction effect between maternal risk status and study on EAH intake (p=0.87). Hence we can conclude that effect of maternal risk status on EAH paradigm was consistent in both the studies.

```
#Conducting moderation analysis adjusting for covariates
lm_eah_kcal_risk <- lm(eah_kcal_consumed ~ bis*Maternal.risk.status + pre_eah_fullness + Status
summary(lm_eah_kcal_risk)</pre>
```

```
##
## Call:
## lm(formula = eah_kcal_consumed ~ bis * Maternal.risk.status +
##
       pre_eah_fullness + Study + Child.BMI + Age.in.years + Sex +
##
       Income, data = thesis_data)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
           -93.64 -22.07
##
  -324.31
                              79.93
                                     464.74
##
## Coefficients:
##
                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                     -185.0340
                                                  222.3309
                                                           -0.832
                                                                     0.4066
## bis
                                        5.2541
                                                   39.8523
                                                             0.132
                                                                      0.8953
## Maternal.risk.statuslow-risk
                                      362.4266
                                                  158.3605
                                                             2.289
                                                                      0.0235 *
## pre_eah_fullness
                                                    0.3444
                                                            -2.039
                                       -0.7023
                                                                     0.0431 *
## StudyREACH
                                       -9.8158
                                                   25.7839
                                                            -0.381
                                                                     0.7040
```

```
## Child.BMI
                                      6.6367
                                                          0.773
                                                 8.5817
                                                                  0.4405
## Age.in.years
                                     41.6538
                                                17.7052
                                                          2.353
                                                                  0.0199 *
## SexMale
                                     26.8206
                                                23.7586
                                                          1.129
                                                                  0.2607
## Income>$100,000
                                     66.6211
                                               109.1398
                                                          0.610
                                                                  0.5425
## Income$20,000-$35,000
                                     46.2477
                                               125.7886
                                                          0.368
                                                                  0.7136
## Income$36,000-$50,000
                                    102.8750
                                               116.4163
                                                          0.884
                                                                  0.3782
## Income$51,000-$75,000
                                     62.6119
                                               111.2272
                                                          0.563
                                                                  0.5743
## Income$76,000-$100,000
                                     40.9441
                                               110.2610
                                                          0.371
                                                                  0.7109
## bis:Maternal.risk.statuslow-risk -131.0926
                                                54.3772 -2.411
                                                                  0.0171 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 148.3 on 155 degrees of freedom
     (10 observations deleted due to missingness)
## Multiple R-squared: 0.1424, Adjusted R-squared: 0.07048
## F-statistic: 1.98 on 13 and 155 DF, p-value: 0.02573
```

After adjusting for sex, child age, child bmi, parent income, Pre EAH fullness scores and study, we conducted moderation analysis. The results revealed a significant interaction between BIS_total and maternal risk status but only for children with low-risk of obesity (B= -131.1, p=0.02), indicating that children at low risk for obesity, a 1 unit increase in BIS corresponds to 131 less kcal consumed during EAH , while children at high risk for obesity, the association between BIS and EAH is not significant.

Making plots

```
# remove rows with missing values for model variables -- will make it easier to save predic
MISSING <- is.na(thesis_data$eah_kcal_consumed) |</pre>
           is.na(thesis_data$bis) |
           is.na(thesis_data$pre_eah_fullness) |
           is.na(thesis_data$Study) |
           is.na(thesis_data$Child.BMI) |
           is.na(thesis_data$Age.in.years) |
          is.na(thesis_data$Sex) | is.na(thesis_data$Maternal.risk.status)
thesis_data_no_na <- subset(thesis_data,</pre>
                      subset = !MISSING)
#Visualizations
# plot kcal (raw values)
ggplot(thesis_data, aes(x = bis, y = eah_kcal_consumed, color = factor(Maternal.risk.status)
  geom_point() +
  geom_smooth(method = "lm", se = TRUE, aes(group = Maternal.risk.status)) +
  labs(x = "bis", y = "eah_kcal_consumed", color = "Maternal.risk.status") + ylim(0, 900)
## 'geom_smooth()' using formula = 'y ~ x'
## Warning: Removed 5 rows containing non-finite outside the scale range
## ('stat_smooth()').
## Warning: Removed 5 rows containing missing values or values outside the scale range
## ('geom_point()').
```



```
#3
ggplot(thesis_data_no_na, aes(x = bis, y = eah_kcal_consumed, color = factor(Maternal.risk.s
geom_point() +
geom_smooth(method = "lm", se = TRUE, aes(group = Maternal.risk.status)) +
labs(x = "bis", y = "eah_kcal_consumed (adjusted)", color = "Maternal.risk.status")
```

'geom_smooth()' using formula = 'y ~ x'

