idsim Package Demonstration

Aaron Gerding

12/4/2021

```
cum_inc_final <- simulate_trajs(</pre>
 n_{simu} = 100, n_{days} = 30,
 ntot = 1000,
 n0 = 5, n_{days_inf} = 5,
 prob_infect = .1
cum_inc_final %>% head(3)
## $simu_1
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 27 28 29 30
  7 7 7 7
##
##
## $simu 2
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 27 28 29 30
## 7 7 7 7
##
## $simu_3
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 27 28 29 30
## 8 8 8 8
result <- cum_inc_final %>%
 bind_rows(.id = "simu") %>%
 pivot_longer(cols = -simu, names_to = "day", values_to = "cum_incidence")
result_sum <- result %>%
 group_by(day) %>%
 summarize(
   median1 = median(cum_incidence),
   upper = quantile(cum_incidence, .95),
   lower = quantile(cum_incidence, .05)
 )
 ggplot(
   data = result,
   aes(x = as.integer(day), y = cum_incidence, group = simu)
 ) +
 geom_line(alpha=.1) +
```

```
geom_smooth(
  data = result_sum,
  stat = "identity",
  aes(x = as.integer(day), y = median1, ymax = upper, ymin = lower, group = 1)) +
ylim(0, NA) +
labs(y = "Cumulative incidence", x = "Day")
```


We see here a sample of 100 different cumulative incidence trajectories, or "epidemic curves", under the stochastic disease model described by the function <code>simu_cum_incidence</code>. The median and .05 and .95 lower quantiles of these 100 curves are also shown. We can see under the parameters chosen the epidemic dies out very quickly and very rarely leads to more than 15 infections and often leads to no further infections beyond the initial ones.

To see what might happen under different circumstances we can repeat the simulation with a great probability of infection and longer period of infectiousness.

```
result_sum2 <- result2 %>%
  group_by(day) %>%
  summarize(
    median1 = median(cum_incidence),
    upper = quantile(cum_incidence, .95),
    lower = quantile(cum_incidence, .05)
  )
ggplot(data = result2,
       aes(x = as.integer(day), y = cum_incidence, group = simu)) +
  geom_line(alpha = .1) +
  geom_smooth(
    data = result_sum2,
    stat = "identity",
     x = as.integer(day),
     y = median1,
     ymax = upper,
     ymin = lower,
      group = 1
    )
  ) +
  ylim(0, NA) +
  labs(y = "Cumulative incidence", x = "Day")
```


Help file

simulate_trajs

Simulate infectious disease trajectories

Description

Simulate infectious disease trajectories

Usage

```
simulate_trajs(n_simu, ntot, n_days, n0, n_days_inf, prob_infect)
```

Arguments

Argument	Description
n_simu	integer, number of simulated trajectories
ntot	integer, total number of individuals
n_days	integer, number of days in trajectory
n0	integer, number infected on day 1
n_days_inf	integer, for someone infected on day t, we assume that
	they are infectious on day (t, t+n_days_inf)
<pre>prob_infect</pre>	numeric in $(0,1)$, probability that a susceptible individual
	gets infected is n_infectious/ntot*prob_infect

Value

list of simulated trajectories