High-level Programming in the Situation Calculus: Golog and ConGolog

Yves Lespérance

Sapienza University of Rome, April 2024

Outline

- High-Level Programming in the Situation Calculus: The Approach
- Golog
- ConGolog
- Formal Semantics
- Implementation

Outline

- High-Level Programming in the Situation Calculus: The Approach
- Golog
- ConGolog
- Formal Semantics
- Implementation

High-Level Programming in the Situation Calculus - Motivation

Motivation

We want to be able to:

- express complex actions/programs for an agent
- reason about their possible executions, preconditions, effects, etc.
- use them to control the agent

High-Level Programming in the SitCalc - The Approach

High-Level Programing as a Middle Ground between Planning and Programming

- Plan synthesis can be very hard
- But often we can sketch what a good plan might look like
- Instead of planning, view the agent's task as executing a high-level plan/program
- But allow nondeterministic programs to leave some choices to be made at execution time through reasonin
- Then, can direct interpreter to search for a way to execute the program
- Can still do planning/deliberation
- Can also completely script agent behaviors when appropriate
- Can adjust amount of nondeterminism/search needed as appropriate
- Provides a middle ground between planning and standard programming
- Related to work on planning with domain specific search control information.

High-level Programming in the SitCalc - The Approach

Differences with Standard Programming:

- Programs are high-level
- Use primitive actions and test conditions that are domain dependent.
- Programmer specifies preconditions and effects of primitive actions and what is known about initial situation in a logical theory, a basic action theory in the situation calculus
- Interpreter uses this in search/lookahead and in updating world model

Outline

- Migh-Level Programming in the Situation Calculus: The Approach
- Golog
- ConGolog
- Formal Semantics
- Implementation

Golog [LRLLS97]

Golog means "AIGOI in LOGic".

Golog Constructs:

 $\pi \vec{x} [\delta]$

 $\begin{array}{l} \alpha\\ \phi?\\ (\delta_1;\delta_2)\\ \text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endIf}\\ \text{while } \phi \text{ do } \delta \text{ endWhile,}\\ \text{proc } \beta(\vec{x}) \ \delta \text{ endProc}\\ \beta(\vec{t}),\\ (\delta_1 \mid \delta_2) \end{array}$

primitive action
test a condition
sequence
conditional
loop
procedure definition
procedure call

8/61

nondeterministic branch nondeterministic choice of arguments nondeterministic iteration

Golog Semantics

Golog Overall Semantics:

- High-level program execution task is a special case of planning
- Program execution task: Given domain theory \mathcal{D} and program δ , find a sequence of actions \vec{a} such that:

$$\mathcal{D} \models Do(\delta, S_0, do(\vec{a}, S_0))$$

where $Do(\delta, s, s')$ means that program δ when executed starting in situation s has s' as a legal terminating situation.

- ullet Since Golog programs can be nondeterministic, there may be several terminating situations s'.
- Will see how Do can be defined later

Nondeterminism in Golog

• A nondeterministic program may have several possible executions. E.g.:

$$ndp_1 = (a \mid b); c$$

Assuming actions are always possible, we have:

$$Do(ndp_1, S_0, s) \equiv s = do([a, c], S_0) \lor s = do([b, c], S_0)$$

- Above uses abbreviation $do([a_1, a_2, \dots, a_{n-1}, a_n], s)$ meaning $do(a_n, do(a_{n-1}, \dots, do(a_2, do(a_1, s))))$
- In Golog, the interpreter searches all the way to a final configuration of the program, and only then starts executing
 the corresponding sequence of actions

Nondeterminism in Golog (cont.)

• When condition of a test action or action precondition is false, interpreter backtrack and tries different nondeterministic choices. E.g.:

$$ndp_2 = (a \mid b); c; P?$$

• If P is true initially, but becomes false iff a is performed, then

$$Do(ndp_2, S_0, s) \equiv s = do([b, c], S_0)$$

and interpreter will find it by backtracking

Using Nondeterminism in Golog: A Simple Example

A program to clear blocks from table

$$(\pi \, b \, [OnTable(b)?; putAway(b)])^*; \neg \exists b \, OnTable(b)?$$

Interpreter will find way to unstack all blocks – putAway(b) is only possible if b is clear

Golog Example: Controlling an Elevator

```
Primitive actions: up(n), down(n), turnoff(n), open, close. Fluents: floor(s) = n, on(n,s). Fluent abbreviation: next\_floor(n,s). Action Precondition Axioms: Poss(up(n),s) \equiv floor(s) < n. \\ Poss(down(n),s) \equiv floor(s) > n. \\ Poss(open,s) \equiv True. \\ Poss(close,s) \equiv True. \\ Poss(turnoff(n),s) \equiv on(n,s). \\ Poss(no-op,s) \equiv True.
```

Successor State Axioms:

$$\begin{split} floor(do(a,s)) &= m \equiv \\ a &= up(m) \lor a = down(m) \lor \\ floor(s) &= m \land \neg \exists n \ a = up(n) \land \neg \exists n \ a = down(n). \\ on(m,do(a,s)) &\equiv \\ a &= push(m) \lor on(m,s) \land a \neq turnoff(m). \end{split}$$

Fluent abbreviation:

$$\begin{split} next_floor(n,s) &\stackrel{\text{def}}{=} on(n,s) \, \wedge \\ \forall m.on(m,s) \supset |m-floor(s)| \geq |n-floor(s)|. \end{split}$$

```
Golog Procedures: proc serve(n)
```

```
\begin{split} &go\_floor(n); turnoff(n); open; close \\ \textbf{endProc} \\ &\textbf{proc} \quad go\_floor(n) \\ & \quad [floor = n? \mid up(n) \mid down(n)] \\ \textbf{endProc} \\ &\textbf{proc} \quad serve\_a\_floor \\ & \quad \pi \, n \, [next\_floor(n)?; serve(n)] \\ \textbf{endProc} \\ \end{split}
```

```
Golog Procedures (cont.):  \begin{aligned} & \text{proc } control \\ & \text{while } \exists n \ on(n) \ \text{do } serve\_a\_floor \ \text{endWhile}; \\ & park \\ & \text{endProc} \\ & \text{proc } park \\ & \text{if } floor = 0 \ \text{then } open \\ & \text{else } down(0); open \\ & \text{endIf} \\ & \text{endProc} \end{aligned}
```

Initial situation:

$$floor(S_0) = 4, on(5, S_0), on(3, S_0).$$

Querying the theory:

$$Axioms \models \exists s \, Do(control, S_0, s).$$

Successful proof might return

$$\begin{split} s &= do(open, do(down(0), do(close, do(open,\\ do(turnoff(5), do(up(5), do(close, do(open,\\ do(turnoff(3), do(down(3), S_0))))))))). \end{split}$$

Using Nondeterminism to Do Planning: A Mail Delivery Example

This control program searches to find a schedule/route that serves all clients and minimizes distance traveled:

A Control Program that Plans (cont.)

```
proc serve\_all\_clients\_within(distance)
\neg \exists c \ Client\_to\_serve(c)? % if no clients to serve, we're done | % or
\pi c, d \ [(Client\_to\_serve(c) \land \% \ choose \ a \ client
d = distance\_to(c) \land d \leq distance?);
go\_to(c); % and serve him
serve\_client(c);
serve\_all\_clients\_within(distance - d)]
endProc
```

Outline

- High-Level Programming in the Situation Calculus: The Approach
- Golog
- ConGolog
- Formal Semantics
- Implementation

ConGolog Motivation

Motivation: Golog lacks concurrency

- A key limitation of Golog is its lack of support for concurrent processes
- Can't specify an agent's behavior using concurrent processes
- Inconvenient when you want to program reactive or event-driven behaviors
- Also, can't easily program several agents within a single Golog program

ConGolog Motivation

ConGolog (Concurrent Golog) extends Golog and handles:

- concurrent processes with possibly different priorities
- high-level interrupts
- arbitrary exogenous actions

Concurrency in ConGolog

- We model concurrent processes as interleavings of the primitive actions in the component processes.
- E.g.: $cp_1 = (a; b) \parallel c$
- Assuming actions are always possible, we have:

$$Do(cp_1, S_0, s) \equiv s = do([a, b, c], S_0) \lor s = do([a, c, b], S_0) \lor s = do([c, a, b], S_0)$$

Concurrency in ConGolog (cont.)

- Important notion: process becoming blocked. Happens when a process δ reaches a primitive action whose preconditions are false or a test action ϕ ? and ϕ is false
- Then execution need not fail as in Golog. May continue provided another process executes next. The process is blocked
- E.g.: $cp_2 = (a; P?; b) \parallel c$
- If a makes P false, b does not affect it, and c makes it true, then we have

$$Do(cp_2, S_0, s) \equiv s = do([a, c, b], S_0).$$

• If no other process can execute, then backtrack. Interpreter still searches all the way to a final situation of the program before executing any actions

New ConGolog Constructs

New ConGolog Constructs

```
(\delta_1 \parallel \delta_2),

(\delta_1 \rangle\rangle \delta_2),

\delta^{\parallel},

<\phi \to \delta>.
```

concurrent execution priorituzed concurrent execution concurrent iteration interrupt

25 / 61

In $(\delta_1 \rangle \delta_2)$, δ_1 has higher priority than δ_2 , and δ_2 only executes when δ_1 is finished or blocked

 δ^{\parallel} is like nondeterministic iteration δ^* , but the instances of δ are executed concurrently rather than in sequence; useful to implement "server" agent behavior

ConGolog Interrupts

- An interrupt $\langle \phi \rightarrow \delta \rangle$ has trigger condition ϕ and body δ .
- If interrupt gets control from higher priority processes and condition ϕ is true, it triggers and the body is executed concurrently with the rest of the program.
- Once body completes execution, it may trigger again.

ConGolog Tests, Conditional Branch, and Loop Constructs

In Golog:

```
 \begin{split} &\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endIf} \stackrel{\text{def}}{=} (\phi?;\delta_1) | (\neg \phi?;\delta_2) \\ &\text{while } \phi \text{ do } \delta \text{ endWhile} \stackrel{\text{def}}{=} (\phi?;\delta)^*; \neg \phi? \end{split}
```

In ConGolog [DLL00]:

- Satisfying a test ϕ ? is a step and can be interleaved with other steps (primitive actions or tests), so the test condition may no longer be true when the next step occurs
- So they add if ϕ then δ_1 else δ_2 endlf, synchronized conditional
- if ϕ then δ_1 else δ_2 endlf differs from $(\phi?; \delta_1)|(\neg \phi?; \delta_2)$ in that no action (or test) from another process can occur between the test and the first action (or test) in the if branch selected $(\delta_1 \text{ or } \delta_2)$.
- Similarly they add while ϕ do δ endWhile, synchronized loop

But this complicates semantics and some later works do not consider satisfying a test to be a step and leave out synchronized versions of if and while and use Golog's.

Congolog Exogenous Actions

One may also specify exogenous actions that may occur as determined by the environment.

This can be useful for simulation.

This is specified by defining the *Exo* predicate:

$$Exo(a) \equiv a = a_1 \lor \ldots \lor a = a_n$$

Executing a program δ with the above amounts to executing

$$\delta \parallel a_1^* \parallel \ldots \parallel a_n^*$$

In some implementations the programmer can specify probability distributions.

But has a strange semantics in combination with search; better handled in IndiGolog.

Congolog E.g. Two Robots Lifting a Table

• Objects:

```
Two agents: \forall r \, Robot(r) \equiv r = Rob_1 \lor r = Rob_2.
Two table ends: \forall e \, Table End(e) \equiv e = End_1 \lor e = End_2.
```

• Primitive actions:

```
grab(rob, end)

release(rob, end)

vmove(rob, z)
```

Primitive fluents:

```
Holding(rob, end)

vpos(end) = z
```

• Initial state:

$$\forall r \forall e \neg Holding(r, e, S_0)$$

 $\forall e \ vpos(e, S_0) = 0$

• Preconditions:

```
\begin{aligned} Poss(grab(r,e),s) &\equiv \forall r^* \neg Holding(r^*,e,s) \land \forall e^* \neg Holding(r,e^*,s) \\ Poss(release(r,e),s) &\equiv Holding(r,e,s) \\ Poss(vmove(r,z),s) &\equiv True \end{aligned}
```

move robot arm up or down by \boldsymbol{z} units.

height of the table end

Congolog E.g. 2 Robots Lifting Table (cont.)

Successor state axioms:

```
\begin{split} Holding(r,e,do(a,s)) &\equiv a = grab(r,e) \lor \\ &\quad Holding(r,e,s) \land a \neq release(r,e) \\ vpos(e,do(a,s)) &= p \equiv \\ &\exists r,z(a = vmove(r,z) \land Holding(r,e,s) \land p = vpos(e,s) + z) \lor \\ &\exists r = release(r,e) \land p = 0 \lor \\ &p = vpos(e,s) \land \forall r \ a \neq release(r,e) \land \\ &\neg (\exists r,z \ a = vmove(r,z) \land Holding(r,e,s)) \end{split}
```

Congolog E.g. 2 Robots Lifting Table (cont.)

- Goal is to get the table up, but keep it sufficiently level so that nothing falls off.
- $TableUp(s) \stackrel{\text{def}}{=} vpos(End_1, s) \ge H \land vpos(End_2, s) \ge H$ (both ends of table are higher than some threshold H)
- $Level(s) \stackrel{\text{def}}{=} |vpos(End_1, s) vpos(End_2, s)| \le T$ (both ends are at same height to within a tolerance T)
- $Goal(s) \stackrel{\mathsf{def}}{=} TableUp(s) \land \forall s^* \leq s \ Level(s^*).$

```
Goal can be achieved by having Rob_1 and Rob_2 execute the same procedure ctrl(r): \operatorname{proc}\ ctrl(r) \pi\ e\ [TableEnd(e)?;\ grab(r,e)]; while \neg TableUp\ do SafeToLift(r)?; vmove(r,A) endWhile endProc where A is some constant such that 0 < A < T and SafeToLift(r,s) \stackrel{\mathrm{def}}{=} \exists e,e'\ e \neq e' \land TableEnd(e) \land TableEnd(e') \land A > T
```

Proposition

$$Ax \models \forall s.Do(ctrl(Rob_1) \parallel ctrl(Rob_2), S_0, s) \supset Goal(s)$$

 $Holding(r, e, s) \land vpos(e) \leq vpos(e') + T - A$

Congolog E.g. A Reactive Elevator Controller

ordinary primitive actions:

```
goDown(e)

goUp(e)

buttonReset(n)

toggleFan(e)

ringAlarm
```

exogenous primitive actions:

```
reqElevator(n)

changeTemp(e)

detectSmoke

resetAlarm
```

primitive fluents:

```
floor(e, s) = n

temp(e, s) = t

FanOn(e, s)

ButtonOn(n, s)

Smoke(s)
```

move elevator down one floor move elevator up one floor turn off call button of floor n change the state of elevator fan ring the smoke alarm

call button on floor n is pushed the elevator temperature changes the smoke detector first senses smoke the smoke alarm is reset

the elevator is on floor $n,\,1\leq n\leq 6$ the elevator temperature is t the elevator fan is on call button on floor n is on smoke has been detected

Congolog E.g. Reactive Elevator (cont.)

• defined fluents:

$$TooHot(e, s) \stackrel{\text{def}}{=} temp(e, s) > 3$$

 $TooCold(e, s) \stackrel{\text{def}}{=} temp(e, s) < -3$

initial state:

$$\begin{array}{ll} floor(e,S_0) = 1 & \neg FanOn(e,S_0) & temp(e,S_0) = 0 \\ ButtonOn(3,S_0) & ButtonOn(6,S_0) \end{array}$$

exogenous actions:

$$\forall a.\mathsf{Exo}(a) \equiv a = detectSmoke \lor a = resetAlarm \lor \\ \exists e \ a = changeTemp(e) \lor \exists n \ a = reqElevator(n)$$

precondition axioms:

```
\begin{array}{l} Poss(goDown(e),s)\!\equiv\!floor(e,s)\neq 1\\ Poss(goUp(e),s)\!\equiv\!floor(e,s)\neq 6\\ Poss(buttonReset(n),s)\!\equiv\!True, Poss(toggleFan(e),s)\!\equiv\!True\\ Poss(reqElevator(n),s)\!\equiv\!(1\leq n\leq 6) \land \neg ButtonOn(n,s)\\ Poss(ringAlarm)\!\equiv\!True, Poss(changeTemp,s)\!\equiv\!True\\ Poss(detectSmoke,s)\!\equiv\!\neg Smoke(s), Poss(resetAlarm,s)\!\equiv\!Smoke(s)\\ \end{array}
```

Congolog E.g. Reactive Elevator (cont.)

successor state axioms:

```
\begin{split} floor(e, \textit{do}(a, s)) &= n \equiv \\ & (a = goDown(e) \land n = floor(e, s) - 1) \lor \\ & (a = goUp(e) \land n = floor(e, s) + 1) \lor \\ & (n = floor(e, s) \land a \neq goDown(e) \land a \neq goUp(e)) \\ temp(e, \textit{do}(a, s)) &= t \equiv \\ & (a = changeTemp(e) \land FanOn(e, s) \land t = temp(e, s) - 1) \lor \\ & (a = changeTemp(e) \land \neg FanOn(e, s) \land t = temp(e, s) + 1) \lor \\ & (t = temp(e, s) \land a \neq changeTemp(e)) \\ FanOn(e, \textit{do}(a, s)) \equiv \\ & (a = toggleFan(e) \land \neg FanOn(e, s)) \lor \\ & (a \neq toggleFan(e) \land FanOn(e, s)) \\ ButtonOn(n, \textit{do}(a, s)) \equiv \\ & a = reqElevator(n) \lor ButtonOn(n, s) \land a \neq buttonReset(n) \\ Smoke(\textit{do}(a, s)) \equiv \\ & a = detectSmoke \lor Smoke(s) \land a \neq resetAlarm \\ \end{split}
```

```
In Golog, might write elevator controller as follows:
```

```
\begin{array}{l} \mathbf{proc} \ control G(e) \\ \mathbf{while} \ \exists n.Button On(n) \ \mathbf{do} \\ \qquad \qquad \pi \ n \ [Best Button(n)?; serve Floor(e,n)]; \\ \mathbf{end While} \\ \mathbf{while} \ floor(e) \neq 1 \ \mathbf{do} \ go Down(e) \ \mathbf{end While} \\ \mathbf{end Proc} \\ \mathbf{proc} \ serve Floor(e,n) \\ \mathbf{while} \ floor(e) < n \ \mathbf{do} \ go Up(e) \ \mathbf{end While}; \\ \mathbf{while} \ floor(e) > n \ \mathbf{do} \ go Down(e) \ \mathbf{end While}; \\ button Reset(n) \\ \mathbf{end Proc} \\ \end{array}
```

Using this controller, get execution traces like:

$$Ax \models \textit{Do}(controlG(e), S_0, \\ \textit{do}([u, u, r_3, u, u, u, r_6, d, d, d, d, d], S_0))$$

where u = goUp(e), d = goDown(e), $r_n = buttonReset(n)$ (no exogenous actions in this run).

Problem with this: at end, elevator goes to ground floor and stops even if buttons are pushed.

Better solution in ConGolog, use interrupts:

```
<\exists n \ ButtonOn(n) \rightarrow \\ \pi \ n \ [BestButton(n)?; serveFloor(e, n)] > \\ \rangle \rangle \\ < floor(e) \neq 1 \rightarrow goDown(e) >
```

Easy to extend to handle emergency requests. Add following at higher priority:

```
<\exists n \ EButtonOn(n) \rightarrow \\ \pi \ n \ [EButtonOn(n)?; serveEFloor(e,n)] >
```

If we also want to control the fan, as well as ring the alarm and only serve emergency requests when there is smoke, we write:

```
\begin{array}{l} \textbf{proc} \ control(e) \\ (< TooHot(e) \ \land \ \neg FanOn(e) \ \rightarrow \ toggleFan(e) \ > \ | \\ < TooCold(e) \ \land \ FanOn(e) \ \rightarrow \ toggleFan(e) \ > \ | \rangle \\ < \exists n \ EButtonOn(n) \ \rightarrow \\ \qquad \qquad \pi \ n \ [EButtonOn(n)?; serveEFloor(e,n)] \ > \rangle \\ < Smoke \ \rightarrow \ ringAlarm \ > \ | \rangle \\ < \exists n \ ButtonOn(n) \ \rightarrow \\ \qquad \qquad \pi \ n \ [BestButton(n)?; serveFloor(e,n)] \ > \rangle \\ < floor(e) \ \neq \ 1 \ \rightarrow \ goDown(e) \ > \\ \textbf{endProc} \end{array}
```

- To control a single elevator E_1 , we write $control(E_1)$.
- To control n elevators, we can simply write:

$$control(E_1) \parallel \ldots \parallel control(E_n)$$

- Note that priority ordering over processes is only a partial order.
- In some cases, want unbounded number of instances of a process running in parallel. E.g. FTP server with a manager process for each active FTP session. Can be programmed using concurrent iteration δ^{\parallel} .

Outline

- High-Level Programming in the Situation Calculus: The Approach
- Golog
- ConGolog
- Formal Semantics
- Implementation

An Evaluation Semantics for Golog

In [LRLLS97], $Do(\delta, s, s')$ is simply introduced as a macro/abbreviation for a formula of the situation calculus

It is defined inductively as follows:

Golog Semantics

$$\begin{split} & \operatorname{Do}(a,s,s') \stackrel{\text{def}}{=} \operatorname{Poss}(a[s],s) \wedge s' = \operatorname{do}(a[s],s) \\ & \operatorname{Do}(\phi?,s,s') \stackrel{\text{def}}{=} \phi[s] \wedge s = s' \\ & \operatorname{Do}(\delta_1;\delta_2,s,s') \stackrel{\text{def}}{=} \exists s''. \ \operatorname{Do}(\delta_1,s,s'') \wedge \operatorname{Do}(\delta_2,s'',s') \\ & \operatorname{Do}(\delta_1 \mid \delta_2,s,s') \stackrel{\text{def}}{=} \operatorname{Do}(\delta_1,s,s') \vee \operatorname{Do}(\delta_2,s,s') \\ & \operatorname{Do}(\pi x.\delta(x),s,s') \stackrel{\text{def}}{=} \exists x. \operatorname{Do}(\delta(x),s,s') \\ & \operatorname{Do}(\delta^*,s,s') \stackrel{\text{def}}{=} \forall P.\{ \ \forall s_1.P(s_1,s_1) \wedge \\ & \forall s_1,s_2,s_3.[P(s_1,s_2) \wedge \operatorname{Do}(\delta,s_2,s_3) \supset P(s_1,s_3)] \, \} \\ & \supset P(s,s'). \end{split}$$

Golog Evaluation Semantics (cont.)

For nondeterministic iteration, have:

$$\begin{array}{l} \textit{Do}(\delta^*, s, s') \stackrel{\text{def}}{=} \forall P. \{ \ \forall s_1. \ P(s_1, s_1) \land \\ \forall s_1, s_2, s_3. [P(s_1, s_2) \land \textit{Do}(\delta, s_2, s_3) \supset P(s_1, s_3)] \ \} \\ \supset \ P(s, s'). \end{array}$$

i.e., doing action δ zero or more times takes you from s to s' iff (s,s') is in every set (and thus, the smallest set) s.t.:

- $oldsymbol{0}$ (s_1,s_1) is in the set for all situations s_1
- **3** Whenever (s_1, s_2) is in the set, and doing δ in situation s_2 takes you to situation s_3 , then (s_1, s_3) is in the set

The above is the standard second-order way of expressing this set; must use second-order logic because transitive closure is not first-order definable

Recursive procedures can be handled using second-order quantification as well, see [LRLLS97] for details

Golog semantics specifies what the complete executions of a program are; it is an evaluation semantics

A Transition Semantics for ConGolog

Possible to develop a Golog-style semantics for ConGolog with $Do(\delta, s, s')$ as a macro, but this makes handling prioritized concurrency very difficult

So instead [DLL00] define a computational semantics based on transition systems, a fairly standard approach in the theory of programming languages [NN92].

This semantics involves two new predicates:

- $Trans(\delta, s, \delta', s')$, sometimes written $(\delta, s) \to (\delta', s')$, meaning that configuration (δ, s) , involving program δ in situaton s, can make a **transition** to configuration (δ', s') , by executing a **single step**, a primitive action or a test/wait
- $Final(\delta, s)$, meaning that in configuration (δ, s) , the computation may be considered completed

Gongolog Semantics - Trans

$$\begin{aligned} & \operatorname{Trans}(\operatorname{nil},s,\delta,s') \equiv \operatorname{False} \\ & \operatorname{Trans}(\alpha,s,\delta,s') \equiv \operatorname{Poss}(\alpha[s],s) \wedge \delta = \operatorname{nil} \wedge s' = \operatorname{do}(\alpha[s],s) \\ & \operatorname{Trans}(\phi?,s,\delta,s') \equiv \phi[s] \wedge \delta = \operatorname{nil} \wedge s' = s \\ & \operatorname{Trans}([\delta_1;\delta_2],s,\delta,s') \equiv & \operatorname{Final}(\delta_1,s) \wedge \operatorname{Trans}(\delta_2,s,\delta,s') \vee \\ & \exists \delta'.\delta = (\delta';\delta_2) \wedge \operatorname{Trans}(\delta_1,s,\delta',s') \\ & \operatorname{Trans}([\delta_1 \mid \delta_2],s,\delta,s') \equiv \operatorname{Trans}(\delta_1,s,\delta,s') \vee \operatorname{Trans}(\delta_2,s,\delta,s') \\ & \operatorname{Trans}(\pi x \delta,s,\delta',s') \equiv \exists x.\operatorname{Trans}(\delta,s,\delta',s') \\ & \operatorname{Trans}(\delta^*,s,\delta,s') \equiv \exists \delta'.\delta = (\delta';\delta^*) \wedge \operatorname{Trans}(\delta,s,\delta',s') \\ & \operatorname{Trans}([\delta_1 \parallel \delta_2],s,\delta,s') \equiv \exists \delta'. \\ & \delta = (\delta' \parallel \delta_2) \wedge \operatorname{Trans}(\delta_1,s,\delta',s') \vee \\ & \delta = (\delta_1 \parallel \delta') \wedge \operatorname{Trans}(\delta_2,s,\delta',s') \\ & \operatorname{Trans}([\delta_1 \parallel \delta_2],s,\delta,s') \equiv \exists \delta'. \\ & \delta = (\delta' \parallel \delta_2) \wedge \operatorname{Trans}(\delta_1,s,\delta',s') \vee \\ & \delta = (\delta_1 \parallel \delta') \wedge \operatorname{Trans}(\delta_2,s,\delta',s') \wedge \neg \exists \delta'',s''.\operatorname{Trans}(\delta_1,s,\delta'',s'') \\ & \operatorname{Trans}(\delta^\parallel,s,\delta',s') \equiv \\ & \exists \delta''.\delta' = (\delta'' \parallel \delta^\parallel) \wedge \operatorname{Trans}(\delta,s,\delta'',s') \end{aligned}$$

Gongolog Semantics – Final

```
\begin{aligned} & Final(nil,s) \equiv True \\ & Final(\alpha,s) \equiv False \\ & Final(\phi?,s) \equiv False \\ & Final([\delta_1;\delta_2],s) \equiv Final(\delta_1,s) \land Final(\delta_2,s) \\ & Final([\delta_1 \mid \delta_2],s) \equiv Final(\delta_1,s) \lor Final(\delta_2,s) \\ & Final(\pi \, x \, \delta,s) \equiv \exists x. Final(\delta,s) \\ & Final(\delta^*,s) \equiv True \\ & Final([\delta_1 \parallel \delta_2],s) \equiv Final(\delta_1,s) \land Final(\delta_2,s) \\ & Final([\delta_1 \mid \rangle \delta_2],s) \equiv Final(\delta_1,s) \land Final(\delta_2,s) \\ & Final(\delta^\parallel,s) \equiv True \end{aligned}
```

Gongolog Semantics - Synchronized if and while

```
 \begin{array}{l} \textit{Trans}(\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endIf}, s, \delta, s') \equiv \\ \phi(s) \wedge \textit{Trans}(\delta_1, s, \delta, s') \vee \neg \phi(s) \wedge \textit{Trans}(\delta_2, s, \delta, s') \\ \textit{Trans}(\text{while } \phi \text{ do } \delta \text{ endWhile}, s, \delta', s') \equiv \phi(s) \wedge \\ \exists \delta''. \ \delta' = (\delta''; \text{while } \phi \text{ do } \delta \text{ endWhile}) \wedge \textit{Trans}(\delta, s, \delta'', s') \\ \textit{Final}(\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endIf}, s) \equiv \\ \phi(s) \wedge \textit{Final}(\delta_1, s) \vee \neg \phi(s) \wedge \textit{Final}(\delta_2, s) \\ \textit{Final}(\text{while } \phi \text{ do } \delta \text{ endWhile}, s) \equiv \\ \phi(s) \wedge \textit{Final}(\delta, s) \vee \neg \phi(s) \\ \end{array}
```

Here, Trans and Final are predicates that take programs as arguments

So need to introduce terms that denote programs (i.e., reify programs)

In tests, ϕ is term that denotes formula; $\phi[s]$ stands for $Holds(\phi, s)$, which is true iff formula denoted by ϕ is true in s

Details in [DLL00]

Given Trans and Final, we can define $Do(\delta, s, s')$, meaning that process δ , when executed starting in situation s, has s' as a legal terminating situation:

$$Do(\delta, s, s') \stackrel{\text{def}}{=} \exists \delta'. Trans^*(\delta, s, \delta', s') \land Final(\delta', s')$$

where $Trans^*$ is the transitive closure of Trans, i.e.,

$$\begin{array}{l} \textit{Trans}^*(\delta,s,\delta',s') \stackrel{\text{de}}{=} \forall T[\ldots \supset T(\delta,s,\delta',s')] \\ \text{where } \ldots \text{stands for:} \\ \forall s,\delta. \ T(\delta,s,\delta,s) \quad \land \\ \forall s,\delta',s',\delta'',s''. \ T(\delta,s,\delta',s') \land \\ \textit{Trans}(\delta',s',\delta'',s'') \supset T(\delta,s,\delta'',s'') \end{array}$$

That is, $Do(\delta, s, s')$ holds iff the starting configuration (δ, s) can evolve into a configuration (δ, s') by doing a finite number of transitions and $Final(\delta, s')$.

Interrupts

Interrupts can be defined in terms of other constructs:

$$<\!\phi \rightarrow \delta\!>^{\text{def}}_{=} \quad \text{while } Interrupts_running \text{ do} \\ \qquad \qquad \text{if } \phi \text{ then } \delta \text{ else } False? \text{ endIf} \\ \qquad \qquad \text{endWhile} \\$$

Uses special fluent *Interrupts_running*.

To execute a program δ containing interrupts, actually execute:

$$start_interrupts$$
; $(\delta \rangle\rangle stop_interrupts)$

This stops blocked interrupt loops in δ at lowest priority, i.e., when there are no more actions in δ that can be executed.

Outline

- High-Level Programming in the Situation Calculus: The Approach
- Golog
- ConGolog
- Formal Semantics
- Implementation

ConGolog Implementation in Prolog

```
trans(act(A),S,nil,do(AS,S)):-
    sub(now,S,A,AS), poss(AS,S).

trans(test(C),S,nil,S):- holds(C,S).

trans(seq(P1,P2),S,P2r,Sr):-
    final(P1,S), trans(P2,S,P2r,Sr).
trans(seq(P1,P2),S,seq(P1r,P2),Sr):- trans(P1,S,P1r,Sr).

trans(choice(P1,P2),S,Pr,Sr):-
    trans(P1,S,Pr,Sr); trans(P2,S,Pr,Sr).

trans(conc(P1,P2),S,conc(P1r,P2),Sr):- trans(P1,S,P1r,Sr).

trans(conc(P1,P2),S,conc(P1r,P2),Sr):- trans(P2,S,P2r,Sr).
...
```

ConGolog Implementation in Prolog (cont.)

```
final(seq(P1,P2),S):- final(P1,S), final(P2,S).
...
trans*(P,S,P,S).
trans*(P,S,Pr,Sr):- trans(P,S,PP,SS), trans*(PP,SS,Pr,Sr).
do(P,S,Sr):- trans*(P,S,Pr,Sr).final(Pr,Sr).
```

ConGolog Implementation in Prolog (cont.)

```
holds(and(F1,F2),S):- holds(F1,S), holds(F2,S).
holds(or(F1,F2),S):- holds(F1,S); holds(F2,S).
holds(neg(and(F1,F2)),S):- holds(or(neg(F1),neg(F2)),S).
holds(neg(or(F1,F2)),S):- holds(and(neg(F1),neg(F2)),S).
holds(some(V,F),S):- sub(V,_,F,Fr), holds(Fr,S).
holds(neg(some(V,F)),S):- not holds(some(V,F),S). /* NAF! */
...
holds(P_Xs,S):-
P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),
P_Xs\=all(_,_),P_Xs\=some(_._),
sub(now,S,P_Xs,P_XsS), P_XsS.
holds(neg(P_Xs),S):-
P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),
P_Xs\=all(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),
sub(now,S,P_Xs,P_XsS), not P_XsS. /* NAF! */
```

Note: makes closed-world assumption; must have complete knowledge!

```
/* Precondition axioms */
poss(grab(Rob,E),S):-
   not holding(,E,S), not holding(Rob, ,S).
poss(release(Rob, E), S):- holding(Rob, E, S).
poss(vmove(Rob, Amount),S):- true.
/* Successor state axioms */
val(vpos(E,do(A,S)),V) :-
  (A=vmove(Rob.Amt), holding(Rob.E.S),
     val(vpos(E,S),V1), V is V1+Amt);
  (A=release(Rob,E), V=0);
  (val(vpos(E.S),V), not((A=vmove(Rob,Amt),
     holding(Rob,E,S))), A = release(Rob,E)).
holding(Rob, E, do(A,S)) :-
   A=grab(Rob.E) : (holding(Rob.E.S), A\=release(Rob.E)).
```

```
/* Defined Fluents */
tableUp(S) := val(vpos(end1,S),V1), V1 >= 3,
             val(vpos(end2,S),V2), V2 >= 3.
safeToLift(Rob.Amount.Tol.S) :-
   tableEnd(E1), tableEnd(E2), E2\=E1, holding(Rob,E1,S),
   val(vpos(E1,S),V1), val(vpos(E2,S),V2),
   V1 =< V2+Tol-Amount.
/* Initial state */
val(vpos(end1,s0),0).
                          /* plus by CWA:
val(vpos(end2,s0),0).
tableEnd(end1).
                           /* not holding(rob1, .s0) */
tableEnd(end2).
                           /* not holding(rob2, .s0) */
```

Implemented E.g. 2 Robots (cont.)

Running 2 Robots E.g.

```
?- do(pcall(jointLiftTable),s0,S).
S = do(vmove(rob2,1), do(vmove(rob1,1), do(vmove(rob2,1),
  do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
  do(vmove(rob1.1), do(vmove(rob1.1), do(grab(rob1.end1),
  s0)))))))));
S = do(vmove(rob2.1), do(vmove(rob1.1), do(vmove(rob2.1),
  do(vmove(rob1,1), do(vmove(rob2,1), do(grab(rob2,end2),
  do(vmove(rob1.1), do(vmove(rob1.1), do(grab(rob1.end1),
  s())))))))):
S = do(vmove(rob1.1), do(vmove(rob2.1), do(vmove(rob2.1),
  do(vmove(rob1.1), do(vmove(rob2.1), do(grab(rob2.end2),
  do(vmove(rob1,1), do(vmove(rob1,1), do(grab(rob1,end1),
  s0)))))))))
Yes
```

IndiGolog

- In Golog and ConGolog, the interpreter must search over the whole program to find an execution before it starts doing anything. Not good for long running agents.
- Also, agent may have incomplete knowledge and need to do sensing before deciding on the subsequent course of action
- IndiGolog extends ConGolog to support interleaving search and execution, including performing online sensing, and detecting exogenous actions

Available Implementations

- A simple Golog interpreter with examples implemented in Prolog comes with Reiter's book
- Also simple ConGolog interpreter implemented in Prolog in [DLL00] paper
- A much more developed and usable implementation of IndiGolog in Prolog due to Sardina and Vassos; supports some forms of incomplete knowledge
- Levesque's well developed Ergo implementation of IndiGolog in Scheme; suports forms of incomplete knowledge and probabilistic reasoning, and interfaces to Unity and the LEGO robot
- Another well-developed implementation in Prolog is ReadyLog from RWTH Aachen University's Knowledge-Based Systems Group; supports forms of decision-theoretic planning
- golog++ is a recent interfacing and development framework for GOLOG languages from the same group; its backend is an abstract C++ interface, making integration into any robotics framework staightforward
- See www.eecs.yorku.ca/~lesperan for more details.

References

- G. De Giacomo, Y. Lespérance, H.J. Levesque, and S. Sardina, IndiGolog: A High-Level Programming Language for Embedded Reasoning Agents, in R.H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni (Eds.) Multi-Agent Programming: Languages, Tools, and Applications, 31–72, Springer, 2009.
- G. De Giacomo, Y. Lespérance, and H.J. Levesque, ConGolog, a Concurrent Programming Language Based on the Situation Calculus, *Artificial Intelligence*, **121**, 109–169, 2000.
- H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin and R. Scherl, GOLOG: A Logic Programming Language for Dynamic Domains. *Journal of Logic Programming*, 31, 59–84, 1997.
- Chapter 6 of R. Reiter, Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, 2001.
- H.R. Nielson and F. Nielson, Semantics with Applications: A Formal Introduction. Wiley Professional Computing, Wiley, 1992.