А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Лекция 4

4.1. Банаховы пространства (продолжение)

Докажем одно несложное, но полезное свойство банаховых пространств. Его иногда называют теоремой о продолжении по непрерывности, хотя правильнее было бы, пожалуй, называть ее «теоремой о продолжении по равномерной непрерывности» (см. ниже замечание 4.1).

Теорема 4.1. Пусть X — нормированное пространство, $X_0 \subset X$ — плотное векторное подпространство, Y — банахово пространство. Тогда для любого $T_0 \in \mathscr{B}(X_0, Y)$ существует единственный $T \in \mathscr{B}(X, Y)$, продолжающий T_0 . При этом $||T|| = ||T_0||$. Если T_0 топологически инъективен или изометричен, то таков же u T.

Доказательство. Единственность T очевидна ввиду плотности X_0 в X. Существование доказывается «в лоб» первым приходящим в голову способом. А именно, возьмем произвольный $x \in X$ и подберем последовательность (x_n) в X_0 , сходящуюся к x. Ясно, что она фундаментальна, поэтому такова же и последовательность (T_0x_n) в Y (см. предложение 3.9). Но Y полно, поэтому существует $\lim_n T_0x_n = y$. Этот предел не зависит от выбора последовательности (x_n) , сходящейся к x: если (x'_n) — другая такая последовательность, то $x'_n - x_n \to 0$ и $T_0x'_n - T_0x_n \to 0$, так что $\lim_n T_0x'_n = \lim_n T_0x_n = y$. Поэтому, полагая Tx = y, мы получаем корректно определенное отображение из X в Y, продолжающее T_0 . Из линейности T_0 и непрерывности алгебраических операций в X и Y легко следует линейность T. Далее, если $||T_0x|| \leqslant C||x||$ или же $||T_0x|| \geqslant c||x||$ для всех $x \in X_0$ (где c, C > 0 — некоторые константы), то те же оценки справедливы и для T и для всех $x \in X$. Отсюда следуют оставшиеся утверждения.

Замечание 4.1. Напомним, что отображение $f: X \to Y$ между метрическими пространствами X и Y называется равномерно непрерывным, если для каждого $\varepsilon > 0$ найдется такое $\delta > 0$, что для всех $x, x' \in X$, удовлетворяющих условию $\rho(x, x') < \delta$, выполнено $\rho(f(x), f(x')) < \varepsilon$. Легко проверить (проверьте!), что ограниченный линейный оператор между нормированными пространствами равномерно непрерывен (это уточняет теорему 1.2), и что равномерно непрерывное отображение метрических пространств переводит фундаментальные последовательности в фундаментальные (это уточняет часть (i) предложения 3.9). Как следствие, полнота метрических пространств сохраняется при их равномерных изоморфизмах, т.е. равномерно непрерывных биекциях с равномерно непрерывным обратным (ср. замечание после предложения 3.9). Фактически при доказательстве теоремы 4.1 использовалась именно равномерная непрерывность оператора T_0 . В качестве упражнения попробуйте сформулировать и доказать аналог теоремы 4.1 для метрических пространств.

Лекция 4 27

4.2. Пополнение

Напомним, что *пополнением* метрического пространства X называется пара (\widetilde{X},J) , где \widetilde{X} — полное метрическое пространство, а $J\colon X\to \widetilde{X}$ — изометрическое отображение с плотным образом.

Определение 4.1. Пополнением нормированного пространства X называется пара (\widetilde{X},J) , где \widetilde{X} — банахово пространство, а $J\colon X\to \widetilde{X}$ — изометрический линейный оператор с плотным образом.

Таким образом, отличие этого определения от обычного определения пополнения метрического пространства состоит в том, что на \widetilde{X} должна иметься структура векторного пространства, метрика на \widetilde{X} должна порождаться некоторой нормой, и вложение J должно быть линейным.

Теорема 4.2. У каждого нормированного пространства есть пополнение.

Доказательство. Пусть (\widetilde{X},J) — пополнение X как метрического пространства. Отождествим X с J(X) посредством J (т.е. договоримся отождествлять точки $x\in X$ и $J(x)\in J(X)$). Таким образом, X становится плотным подмножеством в \widetilde{X} . Зафиксируем $x,y\in \widetilde{X},\ \lambda\in \mathbb{K},\$ и подберем последовательности (x_n) и (y_n) в X так, чтобы $x_n\to x$ и $y_n\to y$ при $n\to\infty$. Положим по определению

$$x + y = \lim_{n \to \infty} (x_n + y_n),$$
$$\lambda x = \lim_{n \to \infty} \lambda x_n,$$
$$\|x\| = \lim_{n \to \infty} \|x_n\|.$$

Несложная проверка, аналогичная той, которая была проделана в доказательстве теоремы 4.1, показывает, что указанные пределы существуют и не зависят от выбора последовательностей (x_n) и (y_n) , сходящихся к x и y. Выполнение аксиом векторного пространства и аксиом нормы в \widetilde{X} также проверяется без труда. Очевидно, что при так определенных операциях в \widetilde{X} вложение J становится линейным.

Замечание 4.2. Через некоторое время мы сможем предъявить более простое доказательство существования пополнения для нормированных пространств, не требующее (по сравнению с доказательством, приведенным выше) никаких дополнительных проверок.

Следующее свойство пополнения — больше чем просто свойство; на самом деле оно полностью характеризует пополнение с точностью до изометрического изоморфизма (см. соответствующую задачу в листке 4). Полезно сравнить следующую теорему с теоремой 3.4.

Теорема 4.3. Пусть X — нормированное пространство. Тогда для любого банахова пространства Y и любого оператора $T \in \mathcal{B}(X,Y)$ существует единственный оператор $\widetilde{T} \in \mathcal{B}(\widetilde{X},Y)$, делающий следующую диаграмму коммутативной:

$$\widetilde{X} - \widetilde{T} > Y$$

$$\downarrow J \qquad \qquad T$$

$$X$$

 Πpu этом $\|\widetilde{T}\| = \|T\|$.

Доказательство. Достаточно отождествить X с подпространством $J(X)\subset\widetilde{X}$ и воспользоваться теоремой 4.1.

По-другому теорему 4.3 можно переформулировать так:

Теорема 4.4. Для любого банахова пространства У отображение

$$\mathscr{B}(\widetilde{X},Y) \to \mathscr{B}(X,Y), \quad S \mapsto S \circ J,$$

является изометрическим изоморфизмом.

В качестве следствия теоремы 4.3 получаем следующее утверждение о единственности пополнения.

Следствие 4.5. Пусть (\widetilde{X},J) и (\widehat{X},J') — пополнения нормированного пространства X. Тогда существует единственный изометрический изоморфизм $I\colon \widetilde{X}\to \widehat{X}$, делающий следующую диаграмму коммутативной:

$$\widetilde{X} - - \widetilde{I} - - * \widehat{X}$$

$$J$$

$$X$$

$$(4.1)$$

Доказательство. При X=0 утверждение очевидно, поэтому мы будем считать, что $X\neq 0$. Из теоремы 4.3 следует, что существует единственный оператор $I\in \mathscr{B}(\widetilde{X},\widehat{X})$, делающий диаграмму (4.1) коммутативной; при этом $\|I\|=\|J'\|=1$. Из той же теоремы (примененной на этот раз к пополнению (\widehat{X},J')) следует, что существует единственный оператор $I'\in \mathscr{B}(\widehat{X},\widetilde{X})$, делающий следующую диаграмму коммутативной:

$$\widetilde{X} \leftarrow -\frac{I'}{J} - -\widehat{X} \tag{4.2}$$

При этом ||I'|| = ||J|| = 1. Рассмотрим теперь диаграмму

$$\widetilde{X} - - - - - > \widetilde{X}$$

$$X$$

$$(4.3)$$

Из коммутативности диаграмм (4.1) и (4.2) следует, что диаграмма (4.3) также будет коммутативной, если в качестве горизонтальной стрелки взять оператор $I' \circ I$. Но та же диаграмма (4.3), очевидно, будет коммутативной, если в качестве горизонтальной стрелки взять тождественный оператор $\mathbf{1}_{\widetilde{X}}$. Применяя утверждение о единственности из теоремы 4.3, получаем равенство $I' \circ I = \mathbf{1}_{\widetilde{X}}$. Меняя ролями пополнения (\widetilde{X}, J) и (\widehat{X}, J') и повторяя те же рассуждения, получаем равенство $I \circ I' = \mathbf{1}_{\widehat{X}}$. Следовательно, I — топологический изоморфизм и $I' = I^{-1}$. Наконец, из уже доказанных равенств $\|I\| = \|I^{-1}\| = 1$ следует, что I — изометрический изоморфизм.

Лекция 4 29

Следующее свойство пополнения называют его «естественностью», или «функториальностью».

Следствие 4.6. Для каждой пары нормированных пространств X и Y и каждого оператора $T \in \mathcal{B}(X,Y)$ определен единственный оператор $\widetilde{T} \in \mathcal{B}(\widetilde{X},\widetilde{Y})$, делающий следующую диаграмму коммутативной:

$$\begin{array}{c|c}
\widetilde{X} & \xrightarrow{\widetilde{T}} & \widetilde{Y} \\
\downarrow^{J_X} & & \downarrow^{J_Y} \\
X & \xrightarrow{T} & Y
\end{array}$$

 Πpu этом $\|\widetilde{T}\|=\|T\|.$ Кроме того, $\widetilde{\mathbf{1}}_X=\mathbf{1}_{\widetilde{X}}\ u\ (S\circ T)^\sim=\widetilde{S}\circ\widetilde{T}\$ для любого $S\in\mathscr{B}(Y,Z).$

Доказательство. Существование оператора \widetilde{T} , его единственность и равенство $\|\widetilde{T}\| = \|T\|$ следуют из теоремы 4.3, примененной к оператору J_YT . Остальные утверждения легко выводятся из утверждения о единственности.

Замечание 4.3. Обозначим через $\mathcal{B}an$ (соответственно, $\mathcal{B}an_1$) полную подкатегорию в категории $\mathcal{N}orm$ (соответственно, в категории $\mathcal{N}orm_1$; см. замечание 2.2), объектами которой являются банаховы пространства. Следствие 4.6 утверждает, что пополнение может рассматриваться как функтор из $\mathcal{N}orm$ в $\mathcal{B}an$ (или из $\mathcal{N}orm_1$ в $\mathcal{B}an_1$). При этом теорема 4.4 означает, что функтор пополнения сопряжен слева к вложению $\mathcal{B}an$ в $\mathcal{N}orm$ (соответственно, $\mathcal{B}an_1$ в $\mathcal{N}orm_1$). В этом свете следствие 4.5 становится частным случаем теоремы о единственности представляющего объекта — в данном случае для функтора $Y \mapsto \operatorname{Hom}_{\mathcal{N}orm_1}(X,Y)$, определенного на категории $\mathcal{B}an_1$.

4.3. Гильбертовы пространства

Гильбертовы пространства, о которых пойдет речь ниже, играют весьма важную роль как в самом функциональном анализе, так и в различных его приложениях к дифференциальным уравнениям, геометрии, матфизике, теории представлений и многим другим областям. Определяются они как банаховы пространства, норма в которых порождена скалярным произведением (подробности см. ниже). Наличие скалярного произведения позволяет значительно лучше понять строение гильбертовых пространств, чем это возможно в случае банаховых пространств, и в конечном итоге полностью их классифицировать. Кроме того — и это, пожалуй, еще важнее — для каждого линейного оператора в гильбертовом пространстве определен его так называемый сопряженный оператор, действующий в том же пространстве. Наличие операции перехода к сопряженному оператору существенно обогащает теорию операторов и расширяет спектр ее возможных приложений. В частности, самосопряженные операторы (т.е. операторы, совпадающие со своими сопряженными) являются одним из важнейших ингредиентов математического аппарата квантовой механики, с которым мы познакомимся в конце нашего курса.

Понятие скалярного произведения, на котором основано определение гильбертова пространства, вводится аксиоматически. Начнем мы с несколько более общего понятия полуторалинейной формы.

4.3.1. Полуторалинейные формы

Пусть H — векторное пространство над \mathbb{C} .

Определение 4.2. Отображение $f \colon H \times H \to \mathbb{C}$ называется *полуторалинейной формой*, если

- 1) $f(\lambda x + \mu y, z) = \lambda f(x, z) + \mu f(y, z)$,
- 2) $f(x, \lambda y + \mu z) = \bar{\lambda}f(x, y) + \bar{\mu}f(x, z)$

для всех $x, y, z \in H$ и $\lambda, \mu \in \mathbb{C}$.

Определение 4.3. Отображение $q: H \to \mathbb{C}$ называется комплексно-квадратичной формой, если существует такая полуторалинейная форма $f: H \times H \to \mathbb{C}$, что q(x) = f(x, x) для всех $x \in H$. В этой ситуации говорят, что q ассоциирована с f, и пишут $q = q_f$.

На первый взгляд, комплексно-квадратичная форма q_f содержит в себе меньше информации, чем полуторалинейная форма f. Однако это не так: на самом деле f полностью восстанавливается по q_f .

Предложение 4.7 (тождество поляризации). Для любой полуторалинейной формы $f: H \times H \to \mathbb{C}$ справедливо тождество

$$f(x,y) = \frac{1}{4} \sum_{k=0}^{3} i^k q_f(x + i^k y).$$

Доказательство этого тождества — простое вычисление, которое мы опускаем.

Следствие 4.8. Пусть $f,g: H \times H \to \mathbb{C}$ — полуторалинейные формы. Тогда $f=g \iff q_f=q_g$.

Замечание 4.4. Обратите внимание, что для билинейных форм утверждение, аналогичное следствию 4.8, неверно: например, любой кососимметрической билинейной форме отвечает квадратичная форма, тождественно равная нулю.

Обозначение 4.1. Пусть $f: H \times H \to \mathbb{C}$ — полуторалинейная форма. Для каждых $x,y \in H$ положим $f^*(x,y) = \overline{f(y,x)}$. Очевидно, $f^*: H \times H \to \mathbb{C}$ также является полуторалинейной формой.

Определение 4.4. Полуторалинейная форма f называется эрмитовой, если $f = f^*$, т.е. $f(y,x) = \overline{f(x,y)}$ для всех $x,y \in H$.

Следствие 4.9. Полуторалинейная форма f эрмитова тогда и только тогда, когда $q_f(x) \in \mathbb{R}$ для всех $x \in H$.

Доказательство. В силу следствия 4.8, f эрмитова тогда и только тогда, когда $q_f = q_{f^*}$, т.е. когда $f(x,x) = \overline{f(x,x)}$ для всех $x \in H$. Это и означает, что $f(x,x) = q_f(x) \in \mathbb{R}$ для всех $x \in H$.

Лекция 4 31

4.3.2. Предгильбертовы пространства

Определение 4.5. Полуторалинейная форма $f \colon H \times H \to \mathbb{C}$ называется *скалярным* произведением, если

- 1) f эрмитова;
- 2) $f(x,x) \geqslant 0$ для всех $x \in H$;
- 3) f(x,x) = 0 только для x = 0.

Замечание 4.5. Согласно следствию 4.9, условие (2) в определении скалярного произведения влечет условие (1).

Определение 4.6. Предгильбертовым пространством называется векторное пространство над \mathbb{C} , снабженное скалярным произведением (точнее, пара (H, f), состоящая из векторного пространства H и скалярного произведения f на нем).

Обозначение 4.2. В дальнейшем скалярное произведение на предгильбертовом пространстве H будет обозначаться символом $\langle x, y \rangle$.

Пример 4.1. Пространство \mathbb{C}^n является предгильбертовым пространством относительно скалярного произведения

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}.$$

Пример 4.2. Пространство ℓ^2 является предгильбертовым пространством относительно скалярного произведения

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y_i}.$$

Абсолютная сходимость этого ряда вытекает из очевидного неравенства $ab \leqslant a^2 + b^2$, справедливого для всех $a,b \geqslant 0$.

Пример 4.3. Для любого пространства с мерой (X,μ) пространство $L^2(X,\mu)$ является предгильбертовым пространством относительно скалярного произведения

$$\langle f, g \rangle = \int_X f(x) \overline{g(x)} \, d\mu(x).$$

Существование этого интеграла следует из задачи 1.12 (см. листок 1).

Замечание 4.6. Отметим, что примеры 4.1 и 4.2 — частные случаи примера 4.3, соответствующие считающей мере μ на $X=\{1,\ldots,n\}$ или на $X=\mathbb{N}$ (см. также замечание 1.1).

Заметим, что предгильбертовы пространства из приведенных выше примеров являются нормированными пространствами относительно норм $\|x\| = \sqrt{\langle x, x \rangle}$ (см. примеры 1.4, 1.5 и 1.12). Это наводит на мысль, что той же формулой можно ввести норму в любом предгильбертовом пространстве.

Обозначение 4.3. Пусть H — предгильбертово пространство. Для каждого $x \in H$ положим по определению $||x|| = \sqrt{\langle x, x \rangle}$.

Разумеется, надо еще доказать, что введенная таким образом «норма» действительно является нормой, т.е. удовлетворяет аксиомам 1–3 из определения 1.1. Прежде чем это делать, докажем одно важное неравенство.

Предложение 4.10 (неравенство Коши-Буняковского-Шварца). Для всех $x, y \in H$ справедливо неравенство $|\langle x, y \rangle| \leq ||x|| ||y||$.

Доказательство. Очевидно, мы можем считать, что $x \neq 0$ и $y \neq 0$. Для каждого $\lambda \in \mathbb{C}$ имеем $\langle x - \lambda y, x - \lambda y \rangle \geqslant 0$, т.е.

$$||x||^2 - \bar{\lambda}\langle x, y\rangle - \lambda\langle y, x\rangle + |\lambda|^2 ||y||^2 \geqslant 0.$$

Подставляя сюда
$$\lambda = \frac{\langle x,y \rangle}{\|y\|^2},$$
 получаем $\|x\|^2 - \frac{|\langle x,y \rangle|^2}{\|y\|^2} \geqslant 0.$ Дальше ясно. \square

Предложение 4.11. Функция $\|\cdot\|: H \to [0, +\infty)$, заданная формулой $\|x\| = \sqrt{\langle x, x \rangle}$, является нормой на H.

Доказательство. Применяя неравенство Коши-Буняковского-Шварца, для любых элементов $x, y \in H$ получаем:

$$||x+y||^2 = ||x||^2 + \langle x, y \rangle + \langle y, x \rangle + ||y||^2 = ||x||^2 + 2\operatorname{Re}\langle x, y \rangle + ||y||^2 \le$$

$$\le ||x||^2 + 2|\langle x, y \rangle| + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Это доказывает справедливость неравенства треугольника. Остальные свойства нормы очевидны. \Box

В дальнейшем каждое предгильбертово пространство будет рассматриваться как нормированное относительно введенной выше нормы.

Предложение 4.12 (тождество параллелограмма). В предгильбертовом пространстве справедливо тождество

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Доказательство. Прямая проверка.

Из тождества параллелограмма нетрудно вывести, что далеко не всякая норма порождается скалярным произведением; более того, далеко не всякая норма эквивалентна норме, порожденной скалярным произведением (см. задачи листка 4). Так что предгильбертовы пространства — это весьма специальный класс нормированных пространств.

Предложение 4.13. Для любого предгильбертова пространства H скалярное произведение $\langle \cdot, \cdot \rangle \colon H \times H \to \mathbb{C}$ — непрерывная функция.

Докажите это утверждение сами в качестве упражнения.

Определение 4.7. Гильбертово пространство — это предгильбертово пространство, полное относительно нормы $||x|| = \sqrt{\langle x, x \rangle}$.

Примеры 4.4. Предгильбертовы пространства из примеров 4.1–4.3 являются гильбертовыми пространствами (см. следствие 3.11 и пример 3.4). Пространство C[a,b], снабженное унаследованным из $L^2[a,b]$ скалярным произведением, является неполным предгильбертовым пространством (см. задачу 3.9 из листка 3).