6. Model-free Control

2019 Fall

Yusung Kim yskim525@skku.edu

Model-free Reinforcement Learning

- Model-free prediction (evaluation)
 - Estimate the value function of an unknown MDP
 - How good is this given policy?
- Model-free control (improvement)
 - Optimize the value function of an unknown MDP
 - How can we learn a better policy?

Uses of Model-Free Control

- Many applications can be modeled as a MDP:
 - Backgammon, Go, Robot locomotion, Helicopter flight, Robocup soccer, Autonomous driving, Customer ad selection, Patient treatment
- For most of these problems, either:
 - MDP model is unknown, but experience can be sampled
 - MDP model is known, but is computationally infeasible to use directly, except through sampling
- Model-free control can solve these problems

On and Off-Policy Learning

- On-policy learning
 - Direct experience
 - * Learn to estimate and evaluate a policy π from experience obtained from following that policy π
- Off-policy learning
 - * Lear to estimate and evaluate a policy π using experience gathered from following a different policy π'

Generalized Policy Iteration (Remind)

Policy evaluation Estimate v_{π} Any policy evaluation algorithm Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Generalized Policy Iteration with MC Evaluation

Policy evaluation Monte-Carlo policy evaluation, $V = v_{\pi}$? Policy improvement Greedy policy improvement?

Model-Free Policy Improvement

 ullet Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \, \mathcal{R}_s^a + \mathcal{P}_{ss'}^a V(s')$$

• Greedy policy improvement over Q(s,a) is model-free

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

Generalized Policy Iteration with Q-Function

Policy evaluation Monte-Carlo policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

Example of Greedy Action Selection

return 0
return 0
return 0
return 100
return 0
return 0
return 0
return 0
return 100
return 100

Which door would you open?

return 1
return 3
return 3
return 1
return 1
return 3
return 3
return 1
return 1

Exploration and Exploitation

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy from its experiences of the environment without losing too much reward along the way
- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward
- It is usually important to explore as well as exploit.

E-Greedy Exploration

- E-greedy Exploration
 - simplest idea for ensuring continual exploration
 - all m actions are tried with non-zero probability
 - with probability 1 E choose the greedy action
 - with probability ϵ choose an action at random

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ Q(s,a) \ & a \in \mathcal{A} \ \epsilon/m & ext{otherwise} \end{array}
ight.$$

where m is the number of actions

```
eps = 0.1

if rand() > eps :
        a = argmax(Q(s,a))
else:
        a = random_action()
```

E-Greedy Policy Improvement

Theorem

For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to q_{π} is an improvement, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$q_{\pi}(s,\pi'(s)) = \sum_{a \in \mathcal{A}} \pi'(a|s)q_{\pi}(s,a)$$

$$= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s,a)$$

$$= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \epsilon/m}{1-\epsilon} q_{\pi}(s,a)$$
 분모, 분자에 1-epsilon곱해줌.
$$= \sum_{a \in \mathcal{A}} \pi(a|s)q_{\pi}(s,a) = v_{\pi}(s)$$

Therefore from policy improvement theorem, $v_{\pi'}(s) \geq v_{\pi}(s)$

(Model-Free) Monte-Carlo Policy Iteration

Policy evaluation Monte-Carlo policy evaluation, $Q=q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Variant Monte-Carlo Policy Iteration

Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Greedy in the Limit with Infinite Exploration (GLIE)

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

■ All state-action pairs are explored infinitely many times, 모든 state, action 의 pair에 대해서 무한번 돌리면 무한번 방문해야 한다.

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

The policy converges on a greedy policy,

개선시키고 있는 policy가 결국은 greedy하게 된다.

$$\lim_{k\to\infty} \pi_k(a|s) = \mathbf{1}(a = \underset{a'\in\mathcal{A}}{\operatorname{argmax}} Q_k(s, a'))$$

epsilon값을 1로 놓고 모든 state를 두루두루 보다가 epsilon값을 점점 감소시키면서 greedy하게 만듦. For example, ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k = \frac{1}{k}$

Monte-Carlo Control

- Sample k^{th} episode using $\pi: \{S_1, A_1, R_2, \ldots, S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Improve policy based on new action-value function

$$\epsilon \leftarrow \frac{1}{k}$$

$$\pi \leftarrow \epsilon - greedy(Q)$$

Monte-Carlo Control in Blackjack

MC vs. TD Control

- TD learning has several advantages over MC learning
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC
 - Apply TD to Q(S,A)
 - Use ∈ ¬greedy policy improvement
 - Update every time-step

Model-free Policy Iteration with TD Methods

- Use temporal difference methods for policy evaluation step
- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q_π using temporal difference updating with $\epsilon-greedy$ policy
 - Policy improvement: same as Monte Carlo policy improvement, set π to $\epsilon-greedy$ (Q_{π})

Updating Action-Value Functions with SARSA

Policy Control with SARSA

- Every time-step:
 - policy evaluation SARSA, $Q \approx q_\pi$
 - Policy improvement $\epsilon-greedy$ policy improvement

SARSA Algorithm

```
Sarsa (on-policy TD control) for estimating Q \approx q_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s, a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Loop for each step of episode:
       Take action A, observe R, S'
      Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
      Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]
       S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Windy Gridworld Example

- Reward = -1 per time-step until reaching goal
- $\epsilon = 0.1, \alpha = 0.5$
- Undiscounted

SARSA on Windy Gridworld

one step TD TD(0) 둘은 거의 동일한 결과를 냄.

n-Step SARSA

• Consider the following n-step returns for $n=1,2,...\infty$:

$$n = 1$$
 (Sarsa) $q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1})$
 $n = 2$ $q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2})$
 \vdots \vdots \vdots $n = \infty$ (MC) $q_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$

• Define the n-step Q-return

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

• n-step SARSA updates Q(s,a) towards the n-step Q-return

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

Off-Policy Learning

• Evaluate target policy $\pi(a|s)$ to compute $v_\pi(s)$ or $q_\pi(s,a)$ while following behavior policy $\mu(a|s)$

$$\{S_1, A_1, R_2, \dots, S_T\} \sim \mu$$

- Why is this important?
 - Learn from observing humans or other agents
 - Re-use experience generated from old policies π_1 , π_2 ,..., π_{t-1}
 - Learn about optimal policy while following exploratory policy
- Learn about multiple policies while following one policy

Importance Sampling

• Estimate the expectation of a different distribution

$$\mathbb{E}_{X \sim P}[f(X)] = \sum_{X \sim P} P(X)f(X)$$

$$= \sum_{X \sim Q} Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

Importance Sampling for O-Policy Monte-Carlo

- Use returns generated from μ to evaluate π
- * Weight return G_t according to similarity between policies
- Multiply importance sampling corrections along whole episode

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \dots \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

importance sampling rate을 쭉 곱해주면 현재 policy의 기대치를 구할 수 있음.

• Update value towards corrected return 이론적으로는 맞는 말이지만 쉽게 적용하기 힘듦. 유값이 아주 작아지거나 하면 굉장히 큰 값으로 발산할 수도 있음.(variation이 큼.)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{G_t^{\pi/\mu}}{T} - V(S_t) \right)$$

- Cannot use if μ is zero
- Importance sampling can dramatically increase variance

Importance Sampling for O-Policy TD

- Use TD targets generated from to evaluate π
- Weight TD target $R_{t+1} + \gamma V(S_{t+1})$ by importance sampling
- Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(S_t, A_t)}{\mu(S_t, A_t)} \left(R_{t+1} + \gamma V(S_{t+1}) \right) - V(S_t) \right)$$

Much lower variance than Monte-Carlo importance sampling

Q-Learning: Off-policy TD Control

- We now consider off-policy learning of action-values Q(S,A)
- No importance sampling is required
- Next action is chosen using behavior policy $A_{t+1} \sim \mu(S_t)$
- But we consider alternative successor action $A' \sim \pi(S_t)$
- And update $Q(S_t, A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

Q-Learning: Off-policy TD Control

importance sampling을 사용하지 않고 두가지 policy가 있을 때 q값을 update.

- We now allow both behavior and target policies to improve
- The target policy π is greedy w.r.t. Q(s, a)

$$\pi(S_t) = \operatorname*{argmax}_{a'} Q(S_{t+1}, a')$$

- The behavior policy μ is e.g. ϵ greedy w.r.t. Q(s,a)
- The Q-learning target then simplifies:

sarsa 같은 경우 실제로 환경과 상호작용해서 값을 얻어오는데 q-learning은 그러지 않고 그냥 갖고 있던 q값 중에 가장 큰 값을 가져옴.

$$R_{t+1} + \gamma Q(S_{t+1}, A') = R_{t+1} + \gamma Q\left(S_{t+1}, \operatorname{argmax}_{a'} Q(S_{t+1}, a')\right)$$
$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$

value iteration 방식.

Q-Learning Algorithm

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
       Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
       S \leftarrow S'
   until S is terminal
```

SARSA vs. Q-Learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \Big]$$
 epsilon greedy로 뽑아냄.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Example: Cliff Walking

Of course, if ϵ were gradually reduced, then both methods would asymptotically converge to the optimal policy

Relationship Between DP and TD (1/2)

		Full Backup (DP)	Sample Backup (TD)
	Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$ $v_{\pi}(s') \leftrightarrow s'$	
_	Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning
policy iteration	Bellman Expectation	$q_{\pi}(s,a) \longleftrightarrow s,a$ r s' $q_{\pi}(s',a') \longleftrightarrow a'$	S,A R S'
_	Equation for $q_{\pi}(s, a)$	Q-Policy Iteration	Sarsa
value iteration	Bellman Optimality Equation for $q_*(s,a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

Relationship Between DP and TD (2/2)

알파라는 learning rate가 필요. sampling한 값은 정확히 믿을 수 없는 값임. Sample Backup (TD) Full Backup (DP) Iterative Policy Evaluation TD Learning $V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$ $V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S') \mid s\right]$ Sarsa Q-Policy Iteration $Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$ $Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$ Q-Learning Q-Value Iteration $Q(s,a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S',a') \mid s,a\right] \mid Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$

where
$$x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$$

Maximization Bias

- Consider single-state MDP with 2 actions, and both actions have 0-mean random rewards, $\mathbb{E}(r|a=a_1)=\mathbb{E}(r|a=a_2)=0$.
- Then $Q(s, a_1) = Q(s, a_2) = 0$
- Assume there are prior samples of taking action a_1 and a_2
- Let $\widehat{\mathbb{Q}}(s,a_1)$, $\widehat{\mathbb{Q}}(s,a_2)$ be the finite sample estimate of \mathbb{Q}
- Let $\hat{\pi} = \operatorname*{argmax}_{a'} \widehat{\mathbb{Q}}(s,a)$ be the greedy policy w.r.t. the estimated $\widehat{\mathbb{Q}}$
- The maximum of the estimates would be positive not zero.

Double Learning

- The greedy policy w.r.t. estimated Q values can yield a maximization bias during finite-sample learning
- ullet Due to using Q both to determine the maximizing action and to estimate its value.
- Use two independent unbiased estimates of $\,Q_1$ and $\,Q_2$
 - Use one estimate to select max action: $a^* = \underset{a}{\operatorname{argmax}} Q_1(s, a)$
 - Use other estimate to estimate value of a^* : $Q_2(s, a^*)$

Maximization Bias Example

Double Learning Algorithm

```
Double Q-learning, for estimating Q_1 \approx Q_2 \approx q_*
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q_1(s, a) and Q_2(s, a), for all s \in S^+, a \in A(s), such that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using the policy \varepsilon-greedy in Q_1 + Q_2
       Take action A, observe R, S'
       With 0.5 probability:
           Q_1(S, A) \leftarrow Q_1(S, A) + \alpha \left(R + \gamma Q_2(S', \operatorname{arg\,max}_a Q_1(S', a)) - Q_1(S, A)\right)
       else:
          Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \Big(R + \gamma Q_1(S', \operatorname{arg\,max}_a Q_2(S', a)) - Q_2(S, A)\Big)
       S \leftarrow S'
   until S is terminal
```

