武汉大学计算机学院

2006-2007 学年第二学期 2006 级《数字逻辑》

期末考试试题A卷参考答案

一、填空题(每空1分,共14)

解答:

- 1. $(21.5)_{10}$ = $(10101, 1)_{2}$ = $(25.4)_{8}$ = $(15.8)_{16}$
- 2. $[x]_{*}=1.0011$

3. 100000001001

4.0

- 5. 组合逻辑电路, 时序逻辑电路
- 6. 逻辑表达式,流程表,总态图
- 7. $\overline{F} = \overline{A}\overline{B} + C\overline{D}$
- 8. 指与非门的输出端连接同类门的最多个数,它反映了与非门的带负载能力。
- 9. BC

二、选择题(每空2分,共16分)

解答

- 1. D 2. D 3. B 4. C 5. B
- 5. B 6. B
- 7. A 8. A

三、逻辑函数化简(6分)

解答

先画出函数 F (A.B.C.D) 的卡诺图

化简得最简与__或表达式: $F = \overline{AC} + AC$

四、分析题(每小题12分,共24分)

- 1. 解答
- ① 逐级写出输出函数表达式

1

②列真值表

输入F

输入 ABCD

 $0\ 1\ 0\ 1 \\ 0\ 1\ 1\ 0$

$$\begin{split} P_1 &= \overline{\overline{A}B} \\ P_2 &= P_1 + D = \overline{\overline{A}B} + D \\ P_3 &= \overline{B+C} \\ F &= \overline{P_2 \cdot P_3} = \overline{(\overline{\overline{A}B} + D) \cdot \overline{B+C}} = \overline{\overline{\overline{A}B} + D} + B + C \\ &= \overline{A}B \cdot \overline{D} + B + C = B + C \end{split}$$

③功能说明

由真值表可知,当输入 ABCD 取值为 0010、0011、0100、0101、0110、0111、1010、1011、1100、1101、1110、1111 时输出 F 为 1,否则 F 为 0。或者说当输入 ABCD 中 B 或 C 为 1 时, F 为 1,否则 F 为 0。

2. 解答

① 输出函数和激励函数表达式

$$Z = xy_1$$
 电路属 Mealy 模型

$$J_2 = k_2 = 1$$
 $c_2 = y_1$ $(cp_2 = y_1)$
 $J_1 = k_1 = 1$ $c_1 = x$ $(cp_1 = x)$

② 列次态真值表,作状态表和状态图

	输入	现态		激励	J函数		输出	次态
N	\boldsymbol{x}	<i>y</i> 2 <i>y</i> 1	J_2k_2	C_2	J_1 k_1	C_1	Z	$y_2^{m+1}y_1^{n+1}$
/	1	0 0	1 1		1 1	+	0	0 1
	1	0 1	1 1	\downarrow	1 1	\downarrow	0	1 0
	1	1 0	1 1		1 1	\downarrow	0	1 1
	1	1 1	1 1	↓	1 1	\downarrow	1	0 0

状态表

现在 <i>y</i> 2 <i>y</i> 1	次真 y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹ / Z			
0 0	0 1/0			
0 1	1 0/0			
1 0	1 1/0			
1 1	0 0/1			

③ 电路功能: 异步模 4 加 1 计数器,输出 Z 表示进位

④ 时间图

五、设计题(每小题 10 分, 共 20 分)

1. 解答 设初态为 (A/0) 原始状态图如下

原始状态表

	\.I	1.		
现态	次	输出		
少心心	<i>x</i> =0	<i>x</i> =1	制山	
A	A	В	0	
В	A	C C	0	
C	D	C	0	
D	Α	Е	0	
Е	A	В	1	

2. 解答

(1) 作输出函数和激励函数真值表

//	输入	次态	激励函数	输出
	x y2 y1	y2 ⁿ⁺¹ y1 ⁿ⁺¹	D_2 D_1	Z
	0 0 0	0 1	0 1	0
	0 0 1	1 1	1 1	0
	0 1 1	0 1	0 1	0
	0 1 0	0 0	0 0	0
/	1 0 0	1 0	1 0	0
	1 0 1	1 0	1 0	0
	1 1 1	0 0	0 0	0
	1 1 0	1 1	1 1	1

(2) 确定输出函数和激励函数

$$D_2 = x\overline{y}_1 + \overline{y}_2 y$$

$$D_2 = x\overline{y}_1 + \overline{y}_2 y_1 \qquad D_1 = \overline{x} \ \overline{y}_2 + \overline{x}y_1 + xy_2 \overline{y}_1 \qquad Z = xy_2 \overline{y}_1$$

(3) 画逻辑电路图

注: D₂、D₁亦可化成与非__与非的形式。

六、综合应用题(每小题 10 分, 共 20 分)

- 1. 解答
- ① 列其值表

设输入为 A, B, C: 1: 赞同 0: 反对

输出为F : 1: 通过 0: 否决

列其值表如下:

/	输入	输出
	ABC	F
	000	0
	001	0
	010	0
	0 1 1	1
	100	0
	101	1
	110	1 (
	111	1
	•	

- ② 输出函数表达式 $F=\sum m(3,5,6,7)$
- ③ 变换表达式形式 $F = m_3 + m_5 + m_6 + m_7$ $= m_3 \cdot m_5 \cdot m_6 \cdot m_7$ ④画逻辑图

2. 解答

① 把74193设计成8进制计数器,计数规律为QDQcQBQA:

$$0000 \! \to \! 0001 \! \to \! 0010 \! \to \! 0011$$

 $0111 \leftarrow 0110 \leftarrow 0101 \leftarrow 0100$

- 当 $Q_DQ_CQ_BQ_A$ 向 1000 进位时,强迫计数器产生清 0 信号,所以 $CLR=Q_D$
- ② 用 QcQBQA 作八选一数据选择的地址选择端
- ③ 数据选择器的输入端 D₀~D₇ 依次接入待产生序列的各位 10010010
- ④ 设置工作启动按钮,提供清 0 脉冲, CPu 外接工作脉冲, CPD 按"1"
- ⑤ 逻辑图如下

