Formal Models of Distributed Systems

Seif Haridi - Royal Institute of Technology Peter Van Roy - Université catholique de Louvain haridi(at)kth.se peter.vanroy(at)uclouvain.be

2/20/12

Formal Modeling

2/20/12

Models

- What is a model?
 - Abstraction of relevant system properties
- Why construct or learn a model?
 - Real world is complex, model simplifies

2/20/12

ID2203- Based on Ali Ghodsi's slide 2009

2

Modeling

- What can modeling do for us?
 - □ Help *solve* problems
 - Making algorithms
 - □ Help *analyze* problems/solutions
 - Analysis, proofs, simulations
- Very important skill

2/20/12

ID2203- Based on Ali Ghodsi's slides

Modeling

- Different types of models:
 - Discrete event models
 - Often described by state transition systems: system evolves, moving from one state to another at discrete time steps
 - Continuous models
 - Often described by differential equations involving variables which can take real (continuous) values
- This course: models of distributed computing (discrete)

2/20/12

ID2203- Based on Ali Ghodsi's slide: 2009

adi o diaco

Granularity of Models

- Biggest challenge of modeling
 - Choosing the right level of abstraction!
- Model must be powerful enough to construct
 - Impossibility proofs
 - A statement about all possible algorithms in a system
- Our model should therefore be:
 - Complete: explain all relevant properties
 - Correct: behave as the system does (without error)
 - Concise: explain a class of distributed systems compactly

ID2203- Based on Ali Ghodsi's slides

2/20/12

Model of Distributed Systems

Based on model from Attiya & Welch

2/20/12

Model of Distributed Computing

- What is a distributed system?
 - bunch of nodes/processes
 - sending messages over a network
 - □ to solve a common goal (algorithm)

How do we model this?

2/20/12

2009

2008

Modeling a Node

- A single node has a bunch of neighbors
 - Can send and receive messages
 - Can do local computations
- Model node by state transition system (STS)
 - Like a finite state machine, except
 - Need not be finite
 - No input

2/20/12

ID2203- Based on Ali Ghodsi's slide: 2009

_

State Transition System - Informal

- A state transition system consists of
 - A set of states
 - Rule for which state to go to from each state (transition function/binary relation)
 - The set of starting states (initial states)

ID2203- Based on Ali Ghodsi's slides

10

2/20/12

State Transition System - Example

Example algorithm:

X:=0;
while (X<2) do
 X := X + 1;
endwhile
X:=1</pre>

Using graphs:

- Formally:
 - □ States {X0, X1, X2, X1'}
 - □ Transition function $\{X0 \rightarrow X1, X1 \rightarrow X2, X2 \rightarrow X1'\}$
 - □ Initial states {X0}

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

11

Modeling a Node

- State machine of node i
 - Set of states Q_i
- Each state consists of
 - □ 1 inbuffer set for each neighbor
 - 1 outbuffer set for each neighbor
 - Other data relevant to algorithm
- Initial states
 - inbuf[j] is empty for all j

2/20/12

D2203- Based on Ali Ghodsi's slide: 2009

2009

Transition functions

- All of the state except outbufs is called the accessible state of a node
 - when in outbuf, can't read it any more
- Transition function f

2/20/12

- takes accessible state and gives full state, and
- adds at most 1 new msg in each outbuf[i] of new state.
- all inbuf[i] of new state must be empty

Transition functions formally

- Model in Attiya & Welch is a little bit broken
 - Output buffers are not read, yet they must be passed on
 - This is a tedious fix...
- State of a node (with k channels) is triple <1,0,s>
 - □ I is a vector of inbufs, <I[1],...,I[k]>
 - □ O is a vector of outbufs, <O[1],...,O[k]>
 - s is the local state
- We require that for any two

```
f(\langle l_1, O_1, s_1 \rangle) = \langle l_2, O_2, s_2 \rangle and f(\langle l_3, O_3, s_3 \rangle) = \langle l_4, O_4, s_4 \rangle
```

- $I_2 = I_4 = \langle \emptyset, ..., \emptyset \rangle$, i.e. all inbufs are empty, and
- If $I_1=I_3$ and $S_1=S_3$ then
 - \square $s_2=s_4$, i.e. don't "observe" channel (1),
 - \bigcirc $O_1[i]\subseteq O_2[i]$ and $O_3[i]\subseteq O_4[i]$, i.e. only add messages to outbufs, and
 - $O_2[i] O_1[i] = O_4[i] O_3[i]$, i.e. don't "observe" channel (2)

ID2203- Based on Ali Ghodsi's slides

2/20/12 15

Single node perspective

- This is how computers in a distributed system work:
 - □ 1. Wait for message
 - 2. When received message, do some local computation, send some messages
 - Goto 1.
- Is this a correct model? [d]
 - Determinism?
 - I/O?
 - Atomicity?

2/20/12 2009

ID2203- Based on Ali Ghodsi's slides

Single Node to a Distributed System

A configuration is snapshot of state of all nodes

 \Box C = $(q_0,q_1,...,q_{n-1})$ where q_i is state of node p_i

An initial configuration is a configuration where each q_i is an initial state

2/20/12

17

Single Node to a Distributed System

- The system evolves through events
 - Computation event at node i, comp(i)
 - □ Delivery event of msg m from i to j, del(i,j,m)
- Computation event comp(i)
 - □ Apply transition function f on node i's state
- Delivery event del(i,j,m)
 - □ Move message m from outbuf of p_i to inbuf of p_i

ID2203- Based on Ali Ghodsi's slide

2/20/12

Execution

- An execution is an infinite sequence of
 - □ config₀, event₁, config₁, event₂, config₂...
 - □ config₀ is an initial configuration
- If event_k is comp(i)
- If event_k is del(i,j,m)

ID2203 - Based on Ali Ghodsi's slides 2/20/12 2009

Some definitions for later use...

- Each comp(i) is associated with a transition
 - □ If *f* of process i maps state₁ to state₂: the triple (state₁, state₂, i) is called a transition
- Transition (s₁,s₂,j) is applicable in configuration c if
 - □ The accessible state of node j is s₁ in c
- A del(i,j,m) is applicable in configuration c if $\ \square$ m is in outbuf for link i-j of node i in c

2009

21

2/20/12

Some definitions for later use... (2)

- If transition e=(s1,s2,i) is applicable to conf c
 - □ Then app(e,c) gives new configuration after the event comp(i)
- If e=del(i,j,m) is applicable to conf c
 - Then app(e,c) gives new configuration after the event del(i,j,m)

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

23

Schedules (Asynchronous Model)

- Our processes are deterministic
 - Given some message, update state, send some messages, and wait...
- Non-determinism comes from asynchrony
 - Messages take arbitrary time to be delivered
 - Processes execute at different speeds
- A schedule is the sequence of events
 - Message asynchrony determined by del(i,j,m)
 - Process speeds determined by comp(i)
 - All non-determinism embedded in schedule!

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

Schedules (2)

- Given the initial configuration
 - □ The schedule determines the whole execution
- Not all schedules allowed for an initial conf.
 - del(i,j,m) only allowed if m is in outbuf of i in previous configuration

2/20/12

ID2203- Based on Ali Ghodsi's slide: 2009

25

Admissible executions (aka fairness)

- An execution is admissible if
 - each process has infinite number of comp(i), and
 - every message m sent is eventually del(i,j,m)
- Why infinity?
 - Executions are infinite (this permits messages to wait arbitrary long finite times before being delivered!)
 - When algorithm is finished, only make dummy transitions (same state)

2/20/12

ID2203- Based on Ali Ghodsi's slides

Synchronous Systems

- Lockstep execution
 - Execution partitioned into non-overlapping rounds
- Informally, in each round
 - Every process can send a message to each neighbor
 - All messages are delivered
 - Every process computes based on message received

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

27

Synchronous Systems Formally

- Execution partitioned into disjoint rounds
- Round consists of
 - Deliver event for every message in all outbufs
 - One computation event on every process
- Every execution is admissible
 - Executions by definition infinite
 - Processes take infinite steps
 - Every message is delivered

2/20/12

ID2203- Based on Ali Ghodsi's slides

Time, clocks & order of events

2/20/12

Order of Events

- The following theorem shows an important result:
 - The order in which two applicable computation events or two applicable delivery events are executed is irrelevant!
 - (make a picture!)
- Theorem:
 - □ Let a and b be two different comp events applicable in c, then
 - a is applicable to app(b, c)
 - b is applicable to app(a, c)
 - = app(b, app(a, c)) = app(a, app(b, c))

ID2203- Based on Ali Ghodsi's slides 2/20/12 2009

Ordering Proof

- a and b are associated with transitions
 - a and b cannot be on the same node, since two different events cannot be applicable at the same time
 - a=(s1,s2,i) and b=(s3,s4,j) for $i\neq j$
 - □ Since a is applicable in c, state of node i is s1 in c
 - Since b is applicable in c, state of node j is s3 in c
 - Since transition b only changes state of node j in c
 - State of node i is still s1 in app(b, c)
 - Thus, a is applicable in app(b, c)
 - Similarly, b will be applicable in app(a,c)
 - app(a, app(b, c)) = app(b, app(a, c)) since a and b do not change the other one's state

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

31

Order sometimes matters

- The theorem says nothing in two cases
 - □ If both are comp(i) on same node i
 - One delivers message m, other outputs or consumes m through a comp(i)
- In above cases both events cannot be applicable in C
- In above cases the two events are causally related

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

Causal Order

- The relation \leq_H on the events of an execution (or schedule), called causal order, is defined as follows
 - \Box If a occurs before b on the same process, then a $\prec_H b$
 - \Box If a produces (comp) m and b delivers m, then a $<_{\rm H} b$
 - \Box If a delivers m and b consumes (comp) m, then a <_H b

 - $\begin{tabular}{ll} \square &<_H$ is transitive. \\ & \bullet & \text{I.e. If a} <_H$b and b} <_H$c then a} <_Hc
- Two events, a and b, are concurrent if not a $\leq_H b$ and not b $\leq_H a$

2/20/12 2009

Similarity of executions

- The view of p_i in E, denoted E|p_i, is
 - the subsequence of execution E restricted to events and state of p_i
- Two executions E and F are similar w.r.t p_i if
 - \Box $E|p_i = F|p_i$
- Two executions E and F are similar if
 - □ E and F are similar w.r.t every node

2/20/12

ID2203- Based on Ali Ghodsi's slide 2009

35

Equivalence of Executions: *Computations*

- Computation Theorem:
 - □ Let E be an execution $(c_0,e_1,c_1,e_2,c_2,...)$, and V the schedule of events $(e_1,e_2,e_3,...)$
 - I.e. app $(e_i, c_{i-1}) = c_i$
 - Let P be a permutation of V, preserving causal order
 - P=(f₁, f₂, f₃...) preserves the causal order of V when for every pair of events, f_i <_H f_j implies i<j</p>
 - □ Then E is similar to the execution starting in c₀
 with schedule P

2/20/12

ID2203- Based on Ali Ghodsi's slide

Equivalence of executions

- If two executions F and E have the same set of events, and their causal order is preserved, then F and E are said to be similar executions, written F~E
 - □ *F* and *E* could have different permutation of events as long as causality is preserved!

2/20/12

ID2203- Based on Ali Ghodsi's slide 2009

37

Computations

- Similar executions form equivalence classes where every execution in class is similar to the other executions in the class.
- I.e. the following always holds for executions:
 - ~ is reflexive
 - I.e. a~ a for any execution
 - □ ~ is symmetric
 - I.e. If a~b then b~a for any executions a and b
 - ~ is transitive
 - If a-b and b-c, then a-c, for any executions a, b, c
- Equivalence classes of executions are called computations

2/20/12

ID2203- Based on Ali Ghodsi's slide: 2009

Two important results (1)

- Computation theorem implies two important results
- Result 1: There is no algorithm that can observe the order of the sequence of events (that can "see" the time-space diagram) for all executions

Proof:

- Assume such an algorithm exists. Assume node p knows the order in the final repeated configuration.
- Take two distinct similar executions of algorithm that preserve causality
- Computation theorem says their final repeated configurations are the same, therefore the algorithm cannot have observed the actual order of events as they differ

Two important results (2)

 Result 2: The computation theorem does not hold if the model is extended such that each process can read a local hardware clock

Proof:

- Assume a distributed algorithm in which each process reads the local clock each time a local event occurs
- The final (repeated) configuration of different causality preserving executions will have different clock values, which would contradict the computation theorem

2/20/12

ID2203- Based on Ali Ghodsi's slide: 2009

41

Observing Causality

- So causality is all that matters...
- ...how to locally tell if two events are causally related?

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

.009

Lamport Clock

- Each process has a local logical clock, kept in variable t, initially t=0
 - □ Node p piggybacks (t, p) on every sent message
- On each event update t:

```
\Box t := max(t, t<sub>o</sub>)+1 (delivery)
```

- When p receives message with timestamp (t_q, q)
- □ t := t + 1 for every transition (comp)

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

43

Lamport Clock (2)

- Comparing two timestamps (t_p,p) and (t_q,q)
 - \Box $(t_p,p)<(t_q,q)$ iff $(t_p< t_q \text{ or } (t_p=t_q \text{ and } p< q))$
 - □ i.e. break ties using node identifiers
 - \Box e.g. $(5,p_5)<(7,p_2), (4,p_2)<(4,p_3)$
- Lamport logical clocks guarantee that:
 - \Box If a <_H b, then t(a) < t(b),
 - where t(a) is Lamport clock of event a

2/20/12

ID2203- Based on Ali Ghodsi's slide

Example of Lamport logical clock

2/20/12

Based on Ali Ghodsi's slide: 2009

45

Vector Clock

- \blacksquare Each process p has local vector \boldsymbol{v}_{p} of size n
 - $v_p[i]=0$ for all i
- For each transition update local v_p by
 - $v_p[p] := v_p[p] + 1$
 - - $\,\blacksquare\,$ where $\boldsymbol{v}_{\boldsymbol{q}}$ is clock in message received from node \boldsymbol{q}

2/20/12

ID2203- Based on Ali Ghodsi's slide

2009

Comparing Vector Clocks

- $V_p \le V_q$ iff
 - o v_p[i]≤v_q[i] for all i
- V_p < V_q iff
 - $v_p \le v_q$ and for some i, $v_p[i] < v_q[i]$
- v_p and v_q are concurrent (v_p || v_q) iff
 not v_p<v_q, and not v_q<v_p
- Vector clocks guarantee
 - \Box If v(a) < v(b) then $a <_H b$, and
 - \Box If a <_H b, then v(a) < v(b)
 - where v(a) is the vector clock of event a

2/20/12

d on Ali Ghodsi's slides

47

Example of Vector Clocks

Great! But cannot be done with smaller vectors than size n, for n nodes

2/20/12

ID2203- Based on Ali Ghodsi's slide

2009

Partial and Total Orders

- Is it a partial order or a total order? [d]
 - □ the relation <_H on events in executions
 - Partial: <_H doesn't order concurrent events
 - the relation < on Lamport logical clocks
 - Total: any two distinct clock values are ordered
 - the relation < on vector timestamps
 - Partial: timestamp of concurrent events not ordered

2/20/12

2009

49

Lamport Clock vs. Vector Clock

- Lamport clock
 - \Box If a <_H b then t(a) < t(b)

(1)

(1)

- Vector clock
 - \Box If a <_H b then t(a) < t(b)
 - \Box If t(a) < t(b) then $a <_H b$ (2)
- Which of (1) and (2) is more useful? [d]
- What extra information do vector clocks give? [d]

2/20/12

ID2203- Based on Ali Ghodsi's slide

Complexity

2/20/12

51

Complexity of Algorithms

- We care about
 - Number of messages used before terminating
 - Time it takes to terminate
- Termination
 - $\ \ \square$ A subset of the states Q_i are terminated states
- Algorithm has terminated when
 - All states in a configuration are terminated
 - No messages in {in,out}bufs

2/20/12

ID2203- Based on Ali Ghodsi's slide

Message Complexity

- Maximum number of messages until termination for all admissible executions
 - □ This is worst-case message complexity...

(Admissible ≈ fairness ≈ all messages sent eventually delivered + executions infinitely long)

2/20/12

ID2203- Based on Ali Ghodsi's slide: 2009

53

Time Complexity

- Basic idea of time complexity
 - Message delay is at most 1 time unit
 - Computation events take 0 time units
- Formally, timed execution is an execution s.t.
 - □ Time is associated with each comp(i) event
 - First event happens at time 0
 - □ Time can never decrease & strictly increases locally
 - Max time between comp(i) sending m and comp(j) consuming m is 1 time unit
 - Time complexity is maximum time until termination for all admissible timed executions

2/20/12

ID2203- Based on Ali Ghodsi's slides 2009

Time Complexity (2)

- Why at most 1?
 - Why not assume every msg takes exactly 1 time unit?
- Would not model reality
 - Some algorithms would have misleading time complexity

2/20/12

ID2203- Based on Ali Ghodsi's slide: 2009

55

At most is less or more than equal?

- Compare "at most" vs. "exactly" 1 time unit
 - How do they compare? [d]

2/20/12

ID2203- Based on Ali Ghodsi's slides

2009

Time Complexity: broadcasting

Init: parent = null n = total number of nodessend <a> to all neighbors wait to receive n-1 Others: when receive <a> from p: if parent==null: parent := p forward <a> to all neighbors except <parent> send to parent when receive : send to parent What is the time complexity if every message takes At most 1 time unit? Exactly 1 time unit? ID2203- Based on Ali Ghodsi's slides 2/20/12 57

"At most" can only raise complexity

2009

- "at most" can increase time complexity
 - Every timed execution with "exactly" 1 time unit is possible in the "at most" model
 - □ The "at most" model has other executions too
 - Time complexity considers the maximum time
 - Time complexity of "at most" can only increase over "exactly"
- In broadcast example:
 - <a> takes 0 or 1 time unit
 - takes 1 time unit
 - Long <a> paths can be fast
 - But path will be very slow!

ID2203- Based on Ali Ghodsi's slides 2/20/12 2009

Summary

- The total order of executions of events is not always important
 - Two different executions could yield the same "result"
- Causal order matters:
 - $\hfill \square$ Order of two events on the same process
 - Order of two events, where one is a send and the other one a corresponding receive
 - Order of two events, that are transitively related according to above
- Executions which contain permutations of each others events such that causality is preserved are called similar executions
- Similar executions form equivalence classes called computations
 - Every execution in a computation is similar to every other execution in the computation
- Vector timestamps can be used to determine causality
 - Cannot be done with smaller vectors than size n, for n processes

ID2203- Based on Ali Ghodsi's slides

2/20/12 2009 59