Test : logique, ensembles, récurrence

Beaucoup de réponses sont évidentes, on n'attend pas vraiment de justifications.

1. Écrire la table de vérité de $A \Rightarrow B$.

$[A]_{\sigma}$	$[B]_{\sigma}$	$[A \Rightarrow B]_{\sigma}$

Solution:

$[A]_{\sigma}$	$[B]_{\sigma}$	$A\Rightarrow B]_{\sigma}$
ff	ff	tt
ff	tt	tt
tt	ff	ff
tt	tt	tt

2. Écrire explicitement $\{0,1\} \cup \{1,3\}$

Solution: $\{0, 1, 3\}$

3. Écrire explicitement $\{0,1\} \cap \{1,3\}$

Solution: $\{1\}$

4. Écrire explicitement $\{0,1\} \setminus \{1,3\}$

Solution: $\{0\}$

5. Donner le cardinal de $\{0, 1, 3\}$.

Solution: $\{0,1,3\}$ a 3 éléments.

6. Écrire explicitement $\mathcal{P}(\{0,1,3\})$.

Solution:

$$\mathcal{P}\left(\{0,1,3\}\right) = \{\varnothing,\{0\},\{1\},\{3\},\{1,3\},\{0,3\},\{0,1\},\{0,1,3\}\}$$

7. Donner le cardinal de $\mathcal{P}(\{0,1,3\})$.

Solution: $\{0,1,3\}$ a 3 éléments, donc l'ensemble de ses parties a $2^3=8$ éléments.

- 8. Donner à chaque fois un exemple (celui que vous préférez) d'élément de
 - (a) $\mathbb{Z} \times \mathbb{R}$

Solution:

(0,0)

(b) $(\mathbb{R} \setminus \mathbb{N})^2$ (Rappel: pour tout ensemble A, la notation A^2 signifie $A \times A$.)

Solution:

$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

(c) $\{2017\}^2$

Solution:

(2017, 2017)

- 9. On se donne A et B des ensembles quelconques. Les propriétés suivantes sontelles vraies ?
 - (a) $A \cup B = B \cup A$

Solution: Oui.

(b) $A \setminus B = B \setminus A$

Solution: Non.

(c) $\emptyset \in \{1, \{3\}\}$

Solution: Non.

(d) $\varnothing \subseteq \{1, \{3\}\}$

Solution: Oui.

10. Montrer par récurrence que :

$$\forall n \in \mathbb{N}^*, \ \sum_{i=1}^n (2i-1) = n^2$$

Rappel: la notation $\sum_{i=1}^{n} (2i-1) \text{ signifie } (2 \times 1 - 1) + (2 \times 2 - 1) + \dots + (2 \times n - 1).$

Solution: Soit P(n) le prédicat sur $n \in \mathbb{N}^*$ suivant :

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

Initialisation Montrons P(1), c'est-à-dire $\sum_{i=1}^{1} (2i-1) = 1^2$:

$$\sum_{i=1}^{1} (2i - 1) = 2 \times 1 - 1 = 1$$

et par ailleurs $1^2 = 1$. D'où P(1).

Hérédité Soit $n \in \mathbb{N}^*$, on suppose P(n) vérifié. Montrons P(n+1). On a :

$$\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + (2(n+1)-1)$$

$$= n^2 + (2n+2-1)$$

$$= n^2 + 2n + 1$$

$$= (n+1)^2$$
 par identité remarquable.

On vient bien de montrer P(n+1), ce qui clôt l'hérédité.

Conclusion Par le principe de récurrence, P(n) est bien vérifié pour tout $n \in \mathbb{N}^*$.