Progress Report 1

Nested Data Parallelism for Image Processing Algorithms

Chandrakant Swaneet Kumar Sahoo

06.05.2015

1 Leading question

How can we implement this high-level irregularly-parallel algorithm such that it compiles to efficient mashine level code?

Subquestions

- How much faster is a parallel variant against the sequential one?
- How much faster is a compiled variant to human-written low-level parallel code?

2 What I have done

I have read further papers on how Nested Data Parallel works. I have also decided to manually transform/vectorize the program, because the generated program is hard to read/too long... and sometimes GHC can't compile. (NDP is still work in progress!)

I have chosen Histogram-Balancing as my algorithm. The algorithm has sufficient opportunities to demonstrate the powers of NDP and is small enough to be manually transformed - as opposed to ShortestPaths, Connected Components Labeling, etc...

3 What I will do next

I will test my implementation and complete the transformations. This will take a while. Then I am ready to do the other two (easier) implementations P_s and P_m .

4 Progress

- 80% Read more papers on Nested Data Parallel Haskell
- 60% Read more papers on Analysis of Parallel Progrmas
- 100% Decide on an algorithm (Histogram Balancing)
- 50% Program Transformation:

100% Desugar

- 50% Vectorization
- 0% Inlining & Fusioning $_{(m)}eans$ Optimization
- 0% Implement sequential variant
- 0% Implement manually-parallelized variant
- 0% Answer first subquestion
- $0\%\,$ Answer second subquestion
- ?% stuff
- 0% Written thesis
- 0% Colloquium

5 Time Table

Table 1: Time table

Current Week	CW	monday	thesis work
	17	20.04	reading remaining papers, reading parallel complexity theory
	18	27.04	deciding on an algorithm
now	19	4.05	implementing P_{np} , vectorizing and optimizing P_{np}
	20	11.05	implementing P_{np} , vectorizing and optimizing P_{np}
	21	18.05	implementing P_s and P_m
	22	25.05	analysis & comparision
	23	1.06	puffer
	24	8.06	puffer
	25	15.06	Begin to write down, prepare for exams
	26	22.06	Writing, prepare for exams
	27	29.06	Writing, prepare for exams
	28	6.07	Prepare Colloquium, Writing, exams week 1
	29	13.07	Prepare Colloquium, Finalize writing, exams week 1
	30	20.07	Colloquium and Release
	31	27.07	Last week for Colloquium and Release
	32	3.08	Fin :D