Probability Theory

IX Metrics on Probability Measures

Seongho Joo

ullet For a function $f:S o {\sf r},$ let us define a Lipschitz semi-norm by

$$||f||_{\mathbf{L}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}$$

Clearly, $\|f\|_L=0$ if and only if f is constant so $\|f\|_L$ is not a norm, even though it satisfies the triangle inequality.

Let us define a bounded Lipschitz norm by

$$||f||_{\mathsf{BL}} = ||f||_{L} + ||f||_{\infty} \tag{1.1}$$

where $||f||_{\infty} = \sup_{s \in S} |f(s)|$. Let

$$BL(S,d) = \left\{ f: S \to \mathsf{r} \,|\, \|f\|_{\mathsf{BL}} < \infty \right\}$$

be the set of all bounded Lipschitz functions on (S,d). We will now prove several facts about these functions.

ullet For a function $f:S o {\sf r},$ let us define a Lipschitz semi-norm by

$$||f||_{L} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)}$$

Clearly, $\|f\|_L=0$ if and only if f is constant so $\|f\|_L$ is not a norm, even though it satisfies the triangle inequality.

Let us define a bounded Lipschitz norm by

$$||f||_{\mathsf{BL}} = ||f||_{L} + ||f||_{\infty} \tag{1.1}$$

where $||f||_{\infty} = \sup_{s \in S} |f(s)|$. Let

$$BL(S,d) = \left\{ f: S \to \mathsf{r} \,|\, \|f\|_{\mathsf{BL}} < \infty \right\}$$

be the set of all bounded Lipschitz functions on (S,d). We will now prove several facts about these functions.

Lemma 1

If
$$f,g \in BL(S,d)$$
 then $fg \in BL(s,d)$ and $\|fg\|_{\mathsf{BL}} \le \|f\|_{\mathsf{BL}} \|g\|_{\mathsf{BL}}$.

Notation. Let $* = \land$ or \lor .

Lemma 2

The following inequalities hold:

$$||f_1 * \cdots * f_k||_{\mathsf{L}} \le \max_{1 \le i \le k} ||f_i||_{\mathsf{L}},$$

$$||f_1 * \cdots * f_k||_{\mathsf{BL}} \le 2 \max_{1 \le i \le k} ||f_i||_{\mathsf{BL}}.$$

Another important fact is the following.

Notation. Let $* = \land$ or \lor .

Lemma 2

The following inequalities hold:

$$||f_1 * \cdots * f_k||_{\mathsf{L}} \le \max_{1 \le i \le k} ||f_i||_{\mathsf{L}},$$

 $||f_1 * \cdots * f_k||_{\mathsf{BL}} \le 2 \max_{1 \le i \le k} ||f_i||_{\mathsf{BL}}.$

Another important fact is the following.

Theorem 1 (Extension theorem)

Given a set $A\subseteq S$ and a bounded Lipschitz function $f\in BL(A,d)$ on A, there exists an extension $h\in BL(S,d)$ such that f=h on A and $\|h\|_{\mathsf{BL}}=\|f\|_{\mathsf{BL}}$.

To prove the next property of bounded Lipschitz functions, let us first recall the following famous generalization of the Weierstras theorem.

Theorem 2 (Stone-Weierstrass)

Let (S,d) be a compact metric space and $\mathcal{F}\subseteq C(S)$ is such that

- $\blacksquare \ \mathcal{F} \text{ is algebra, i.e. for all } f,g \in \mathcal{F},\ c \in \mathbf{r}, \text{ we have } cf+g \in \mathcal{F}, fg \in \mathcal{F}.$
- ${\bf Z}$ ${\cal F}$ separates points, i.e. $x\neq y\in S$ then there exists $f\in {\cal F}$ such that $f(x)\neq f(y).$
- \mathcal{F} contains constants.

Then \mathcal{F} is dense in $(C(S), d_{\infty})$.

Corollary 1

If (S,d) is a compact space then the set of bounded Lipschiz functions BL(S,d) is dense in $(C(S),d_{\infty})$.

• We will also need another well-known result from analysis. A set $A\subseteq S$ is totally bounded if for any $\varepsilon>0$ there exists a finite ε -cover of A, i.e. a set of points $a_1,\ldots a_N$ such that $A\subseteq\bigcup_{i< N}B(a_i,\varepsilon)$, where $B(a,\varepsilon)$ is a ball of radius ε centered at a.

Theorem 3 (Arzela-Ascoli)

If (S,d) is a compact metric space then a subset $\mathcal{F}\subseteq C(S)$ is totally bounded in d_∞ metric if and only if \mathcal{F} is equicontinuous and uniformly bounded.

The following fact was used in the proof of the Selection Theorem.

• We will also need another well-known result from analysis. A set $A\subseteq S$ is *totally bounded* if for any $\varepsilon>0$ there exists a finite ε -cover of A, i.e. a set of points $a_1,\ldots a_N$ such that $A\subseteq\bigcup_{i< N}B(a_i,\varepsilon)$, where $B(a,\varepsilon)$ is a ball of radius ε centered at a.

Theorem 3 (Arzela-Ascoli)

If (S,d) is a compact metric space then a subset $\mathcal{F}\subseteq C(S)$ is totally bounded in d_∞ metric if and only if \mathcal{F} is equicontinuous and uniformly bounded.

The following fact was used in the proof of the Selection Theorem.

Corollary 2

If (S,d) is a compact space then C(S) is separable in d_{∞} .

Convergence of empirical measures

• Let $(\Omega,\mathcal{A},\mathbb{P})$ be a probability space and $X_1,X_2\cdots:\Omega\to S$ be an i.i.d sequence of random variables with values in a metric space (S,d). Let μ be the law of X_i on S. Let us define the random empirical measures on μ_n on the Borel σ -algebra $\mathcal B$ on S by

$$\mu_n(A)(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i(w) \in A), \ A \in \mathcal{B}$$

By the strong law of large numbers, for any $f \in C_b(S)$,

$$\int f \, \mathrm{d}\mu_n = \frac{1}{n} \sum_{i=1}^n f(X_i) \to \mathbb{E} f(X_1) = \int f \, \mathrm{d}\mu \ a.s.$$

However, the set of measures zero where this convergence is violated *depends* on f and it is not right away clear that the convergence holds for all $f \in C_b(S)$ with probability one. We will need the following lemma:

Lemma 3

If (S,d) is separable then there exists a metric e on S such that (S,e) it totally bounded, and e and d define the same topology, i.e. $e(s_n,s)\to 0$ if and only if $d(s_n,s)\to 0$.

Convergence of empirical measures

Theorem 4 (Varadarajan)

Let (S,d) be a separable metric space. Then μ_n converges to μ weakly almost surely, $\mathbb{P}(w:\mu_n(\cdot)(w)\to\mu \text{ weakly })=1.$

• Next, we will introduce two metrics on the set of all probability measures on (S,d) with the Borel σ -algebra $\mathcal B$ and, under some mild conditions, prove that they metrize the weak convergence. For a set $A\subseteq S$, let us denote by

$$A^{\varepsilon} = \{ y \in S \, | \, d(x,y) < \varepsilon \text{ for some } x \in A \}$$

its open arepsilon-neighborhood. If $\mathbb P$ and $\mathbb Q$ are probability distributions on S then

$$\rho(\mathbb{P}, \mathbb{Q}) = \inf \left\{ \varepsilon > 0 \, | \, \mathbb{P}(A) \leq \mathbb{Q}(A^{\varepsilon}) + \varepsilon \text{ for all } A \in \mathcal{B} \right\}$$

is called the *Levy-Prohorov* distance between $\mathbb P$ and $\mathbb Q$.

Lemma 4

 ρ is a metric on the set of probability laws on $\mathcal{B}.$

 \bullet Given probability distributions \mathbb{P},\mathbb{Q} on the metric space (S,d), we define the bounded Lipschitz distance between them by

$$\beta(\mathbb{P}, \mathbb{Q}) = \sup \left\{ \left| \int f \, d\mathbb{P} - \int f \, d\mathbb{Q} \right| \mid ||f||_{\mathsf{BL}} \le 1 \right\}$$

Lemma 5

 β is a metric on the set of probability laws on \mathcal{B} .

• Let us now show that on separable metric space, the metric ρ and β metrize weak convergence. Before We prove this, let us recall the statement of Ulam's theorem. Namely, every probability law $\mathbb P$ on a complete separable metric space (S,d) is tight, which means that for any $\varepsilon>0$ there exists a compact $K\subseteq S$ such that $\mathbb P(S\setminus K)\le \varepsilon.$

Theorem 5

If (S,d) is separable or $\mathbb P$ is tight then the following are equivalent:

- $\mathbb{P}_n \to \mathbb{P}$.
- **2** For all $f \in BL(S, d)$, $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$.
- $\beta(\mathbb{P}_n,\mathbb{P}) \to 0.$
- $\rho(\mathbb{P}_n,\mathbb{P})\to 0.$

Convergence and uniform tightness

Next, we will make a connection between the above metrics and uniform tightness. First, we will show that, in some case, uniform tightness is necessary for the convergence of laws.

Theorem 6

If $\mathbb{P}_n \to \mathbb{P}_0$ weaky and each \mathbb{P}_n is tight for $n \geq 0$, then $(\mathbb{P}_n)_{n \geq 0}$ is uniformly tight.

In particular, by Ulam's theorem, any convergent sequence of laws on a complete separable metric space is uniformly tight.

Convergence and uniform tightness

Next, on complete separable metric spaces, we will complement the Selection
Theorem by showing how uniform tightness can be expressed in the above metrics.

Theorem 7

Let (S,d) be a complete separable metric space and $\mathscr P$ be a subset of probability laws on S. Then the following are equivalent.

- $\begin{tabular}{ll} \hline \textbf{2} & \text{For any sequence } \mathbb{P}_n \in \mathscr{P} \text{ there exists a converging subsequence } \mathbb{P}_{n(k)} \to \mathbb{P} \\ & \text{where } \mathbb{P} \text{ is a law on } S. \\ \end{tabular}$
- **I** \mathscr{P} has the compact closure on the space of probability laws equipped with the Levy-Prohorov or bounded Lipschitz metrics ρ or β .
- **4** \mathscr{P} is totally bounded with respect to ρ or β .

Theorem 8 (Prokohorov)

The set of probability laws on a complete separable metric space is complete with respect to the metrics ρ and β .

Metric for convergence in probability

• Let $(\Omega,\mathcal{B},\mathbb{P})$ be a probability space, (S,d) - a separable metric space and $X,Y:\Omega\to S$ - random variables with values in S. The quantity

$$\alpha(X,Y) = \inf \{ \varepsilon > 0 \mid \mathbb{P}(d(x,y) > \varepsilon) \le \varepsilon) \}$$

is called the Ky Fan metric on the set $\mathcal{L}^0(\Omega,S)$ of classes of equivalence of such random variables.

Metric for convergence in probability

• Let $(\Omega,\mathcal{B},\mathbb{P})$ be a probability space, (S,d) - a separable metric space and $X,Y:\Omega\to S$ - random variables with values in S. The quantity

$$\alpha(X,Y) = \inf \left\{ \varepsilon > 0 \, | \, \, \mathbb{P}(d(x,y) > \varepsilon) \leq \varepsilon) \right\}$$

is called the Ky Fan metric on the set $\mathcal{L}^0(\Omega,S)$ of classes of equivalence of such random variables.

Lemma 6

The Ky Fan metric α on $\mathcal{L}^0(\Omega,S)$ metrizes convergence in probability.

Lemma 7

For $X,Y\in\mathcal{L}^0(\Omega,S)$, the Levy-Prohorov metric ρ satisfies

$$\rho(\mathcal{L}(X), \mathcal{L}(Y)) \le \alpha(X, Y).$$

Metric for convergence in probability

Question: Can we construct random variables s_1 and s_2 with laws $\mathbb P$ and $\mathbb Q$, that are defined on the same probability space and are close to each other in the Ky Fan metric α ?

The following result will be a key tool in the proof of the main result of this section. Consider two sets X and Y. Given a subset $K\subseteq X\times Y$ and $A\subseteq X$ we define a K-image of A by

$$A^K = \{ y \in Y \mid \exists x \in A, (x, y) \in K \}.$$

A K-matching f of X into Y is one-to-one function (injection) $f:X\to Y$ such that $(x,f(X))\in K$. We will need the following well-known matching theorem.

Theorem 9 (Hall's marriage theorem)

If X, Y are finite and, for all $A \subseteq X$,

$$card(A^K) \ge card(A)$$

then there exists a K-matching f of X into Y.

Theorem 10 (Strassen)

Suppose that (S,d) is a separable metric space and $\alpha,\beta>0$. Suppose the laws $\mathbb P$ and $\mathbb Q$ are such that, for all measurable sets $F\subseteq S$,

$$\mathbb{P}(F) \le \mathbb{Q}(F^{\alpha}) + \beta \tag{3.1}$$

Then for any $\varepsilon>0$ there exist two non-negative measures η,γ on $S\times S$ such that

- $\blacksquare \ \mu = \eta + \gamma \text{ is a law on } S \times S \text{ with marginals } \mathbb{P} \text{ and } \mathbb{Q}.$

- μ is a finite sum of product measures.

Remark. In the above statement, it is enough to assume that (3.1) holds only for closed sets or only for open sets F; moreover, one can replace an open α -neighbourhood $F^{\alpha} = \{s \in S \mid d(s,F) < \alpha\}$ by a closed α — neighborhood F^{α}]. This is because the set F^{ε} is open and F^{ε}] is closed, and, for example the condition (3.1) for closed set implies

$$\mathbb{P}(F) \le \mathbb{P}(F^{\varepsilon]}) \le \mathbb{Q}((F^{\varepsilon]})^{\alpha}) + \beta \le \mathbb{Q}(F^{\alpha + 2\varepsilon}) + \beta$$

for all measurables sets F, which simply replaces α by $\alpha + 2\varepsilon$ in (3.1).

The following relationship between Ky Fan and Levy-Prohoorv metrics is an immediate consequence of Strassen's theorem.

Theorem 11

If (S,d) is a separable metric space and \mathbb{P},\mathbb{Q} are laws on S then, for any $\varepsilon>0$, there exists random variables X and Y on the same probability space with the distributions $\mathcal{L}(X)=\mathbb{P}$ and $\mathcal{L}(Y)=\mathbb{Q}$ such that

$$\alpha(X,Y) \le \rho(\mathbb{P},\mathbb{Q}) + \varepsilon$$
 (3.2)

If \mathbb{P}, \mathbb{Q} are tight, one can take $\varepsilon = 0$.

 \bullet There is also relationship between the bounded Lipschitz metric β and Levy-Prohorov metic $\rho.$

Lemma 8

If (S,d) is a separable metric space then

$$\beta(\mathbb{P}, \mathbb{Q}) \le 2\rho(\mathbb{P}, \mathbb{Q}) \le 4\sqrt{\beta(\mathbb{P}, \mathbb{Q})}$$

 \bullet Let (S,d) be separable metric space. Denote by \mathscr{P}_1 the set of all laws on S such that for some $z\in S$

$$\int_{S} d(x, z) \, \mathrm{d} \, \mathbb{P}(x) < +\infty$$

Let us consider a set

$$M(\mathbb{P}, \mathbb{Q}) = \{ \mu \mid \mu \text{ is a law on } S \times S \text{ with marginals } \mathbb{P} \text{ and } Q \}$$

For $\mathbb{P}, \mathbb{Q} \in \mathscr{P}_1$, the qunaity

$$W(\mathbb{P}, \mathbb{Q}) = \inf \left\{ \int d(x, y) \, \mathrm{d}\mu(x, y) \, | \, \mu \in M(\mathbb{P}, \mathbb{Q}) \right\}$$

is called the Wasserstein distance between $\mathbb P$ and $\mathbb Q$. If $\mathbb P$ and $\mathbb Q$ are tight, this infimum is attained.

Given any two laws $\mathbb P$ and $\mathbb Q$ on S, let us define

$$\gamma(\mathbb{P}, \mathbb{Q}) = \sup \left\{ \left| \int f \, \mathrm{d} \, \mathbb{P} - \int f \, \mathrm{d} \mathbb{Q} \right| \mid \|f\|_{\mathsf{L}} \le 1 \right\}$$

and

$$m_d(\mathbb{P},\mathbb{Q}) = \sup \left\{ \int f \, \mathrm{d}\, \mathbb{P} + \int g \, \mathrm{d}\mathbb{Q} \, | \, f,g \in C(S), f(x) + g(x) < d(x,y) \right\}$$

Notice that, for $\mathbb{P},\mathbb{Q}\in\mathscr{P}_1(S)$, both $\gamma(\mathbb{P},\mathbb{Q}),m_d(\mathbb{P},\mathbb{Q})<\infty$. Let us show that these two quantities are equal.

Lemma 9

We have $\gamma(\mathbb{P},\mathbb{Q})=m_d(\mathbb{P},\mathbb{Q})$.

Below, we will need the following version of the Hahn-Banach theorem.

Theorem 12 (Hahn-Banach)

Let V be a normed vector space, E- a linear subspace of V and U- an open convex set in V such that $U\cap E\neq\emptyset$. If $r:E\to r$ is a linear non-zero functional on E then there exists a linear functional $\rho:V\to r$ such that $\rho|_E=r$ and $\sup_U \rho(x)=\sup_{U\cap E} r(x)$.

Using this, we will prove the following Kantorovich-Rubinstein theorem for compact metric spaces.

Below, we will need the following version of the Hahn-Banach theorem.

Theorem 12 (Hahn-Banach)

Let V be a normed vector space, E- a linear subspace of V and U- an open convex set in V such that $U\cap E\neq\emptyset$. If $r:E\to r$ is a linear non-zero functional on E then there exists a linear functional $\rho:V\to r$ such that $\rho|_E=r$ and $\sup_U\rho(x)=\sup_{U\cap E}r(x)$.

Using this, we will prove the following Kantorovich-Rubinstein theorem for compact metric spaces.

Theorem 13

If S is a compact metric space then $W(\mathbb{P},\mathbb{Q})=m_d(\mathbb{P},\mathbb{Q})=\gamma(\mathbb{P},\mathbb{Q})$ for $\mathbb{P},\mathbb{Q}\in\mathscr{P}_1.$

Wasserstein distance and entropy

Wasserstein distance and entropy

 In this section we will make several connections between the Wasserstein distance and other classical objects, with application to Gaussian concentration

Theorem 14 (Brunn-Minkowski inequality on ℝ)

If γ is the Lebesgue measure and A,B are two non-empty Borel sets on $\mathbb R$ then $\gamma(A+B) \geq \gamma(A) + \gamma(B)$, where A+B $\{a+b \mid a \in A, b \in B\}$.

Using this, we will prove another classical inequality.

Theorem 15 (Prekopa-Leindler inequality)

Consider nonnegative integrable functions $w,u,v\to\mathbb{R}^n\to[0,\infty)$ such that for some $\lambda\in[0,1]$,

$$w(\lambda x + (1 - \lambda)y) \ge u(x)^{\lambda} v(y)^{1-\lambda}$$
 for all $x, y \in \mathbb{R}^n$

Then,

$$\int w \, \mathrm{d}x \ge \left(\int u \, \mathrm{d}x\right)^{\lambda} \left(\int v \, \mathrm{d}x\right)^{1-\lambda}$$

Cont.

Using the Prekopa-Leindler inequality one can prove that the Lebesgue measure γ on ${\bf r}^n$ satisfies the Brunn-Minkowski inequality

$$\gamma(A)^{1/n} + \gamma(B)^{1/B} \le \gamma(A+B)^{1/n}.$$
 (5.1)

From this one can easily deduce the famous isoperimetric property of Euclidean balls with respect to the Lebesgue measure. If B is a unit open ball in \mathbb{R}^d and $\gamma(A) = \gamma(B)$ then, by (5.1),

$$\gamma(A^{\varepsilon}) = \gamma(A + \varepsilon B) \ge (\gamma(A)^{1/n} + \gamma(\varepsilon B)^{1/n})^n$$
$$= (\gamma(B)^{1/n} + \gamma(\varepsilon B)^{1/n})^n = (1 + \varepsilon)^n \gamma(B) = \gamma(B^{\varepsilon})$$

In other words, volume of A grows faster than B as we expand the sets, which means that the surface area of B is smaller.

Wasserstein distance and entropy

Entropy and the Kullback-Leibler divergence. Consider a probability measure $\mathbb P$ on some measurable space and a nonnegative function $u:\Omega\to\mathbb R_+$. We define the entropy of u with respect to $\mathbb P$ by

$$\mathsf{Ent}_{\mathbb{P}}(u) = \int u \log u \, \mathrm{d} \, \mathbb{P} - \int u \, \mathrm{d} \, \mathbb{P} \cdot \log \int u \, \mathrm{d} \, \mathbb{P},$$

Notice that $\mathrm{Ent}_{\mathbb{P}}(u) \geq 0$ by Jensen's inequality, since $u \log u$ is a convex function. Entropy has the following variational representation, know in physics and the Gibss variational principle.

Lemma 10

The enropy can be written as

$$\operatorname{Ent}_{\mathbb{P}}(u) = \sup \left\{ \int uv \, d\mathbb{P} \mid \int e^{v} \, d\mathbb{P} \le 1 \right\}. \tag{5.2}$$

Talagrand's cost inequality for Gaussian measures.

• In this subsection we consider a non-degerate normal distribution N(0,C) with the covariance matrix C such that $\det(C) \neq = 0$. We know that this distribution has density $e^{-V(x)}$, where

$$V(x) = \frac{1}{2} \left\langle C^{-1}x, x \right\rangle + const$$

If We denote
$$A=C^{-1}/2$$
 then, for any $t\in[0,1]$,
$$tV(x)+(1-t)V(y)-V(tx+(1-t)y)$$

$$=t\left\langle Ax,x\right\rangle +(1-t)\left\langle Ay,y\right\rangle -\left\langle A(tx+(1-t)y),(tx+(1-t)y)\right\rangle$$

$$=t(1-t)\left\langle A(x-y),x-y\right\rangle$$

$$\geq\frac{1}{2\lambda_{\max}(C)}t(1-t)|x-y|^2=Kt(1-t)\left\|x-y\right\|^2$$

where $\lambda_{\max}(C)$ is the largest eigenvalue of C and $K=1/(2\lambda_{\max}(C))$. We will use this to prove the following useful inequality for the Wasserstein distance W_2 .

Talagrand's cost inequality for Gaussian measures.

Theorem 16

If $\mathbb{P}=N(0,c)$ and Q is absolutely continuous with respect to \mathbb{P} with $\int |x|^2\,\mathrm{d}\mathbb{Q}(x)$ then

$$W_2(\mathbb{Q}, \mathbb{P})^2 \le 2\lambda_{\mathsf{max}}(C)D(\mathbb{Q}||\,\mathbb{P}). \tag{5.3}$$

Concentration of Gaussian measure.

Given a measurable set $A\subseteq\mathbb{R}^n$ with $\mathbb{P}(A)>0$, define the distribution \mathbb{P}_A by

$$\mathbb{P}_{A}(C) = \frac{\mathbb{P}(C \cap A)}{\mathbb{P}(A)}$$

Then, clearly, the Radon-Nikodym derivative

$$\frac{\mathrm{d}\,\mathbb{P}_A}{\mathrm{d}\,\mathbb{P}} = \frac{1}{\mathbb{P}(A)}\mathbf{1}_A$$

and the Kullback-Leibler divergence

$$D(\mathop{\mathbb{P}}_A || \mathop{\mathbb{P}}) = \int_A \log \frac{1}{\mathop{\mathbb{P}}(A)} \operatorname{d} \mathop{\mathbb{P}}_A = \log \frac{1}{\mathop{\mathbb{P}}(A)}.$$

Since W_2 is a metric, for any two Borel sets A and B,

$$W_2(\underset{A}{\mathbb{P}},\underset{B}{\mathbb{P}}) \leq W_2(\underset{A}{\mathbb{P}},\mathbb{P}) + W_2(\underset{B}{\mathbb{P}},\mathbb{P}) \leq \sqrt{2\lambda_{\mathsf{max}}(C)} \left(\log^{1/2}\frac{1}{\mathbb{P}(A)} + \log^{1/2}\frac{1}{\mathbb{P}(B)}\right)$$

using (5.3). Suppose that the sets A and B are apart from each other by distance t, i.e. $d(A,B) \geq t > 0$. Then any two points in the support of measures \mathbb{P}_A and \mathbb{P}_B are at a distance at least t from each other, which implies that the transportation distance $W_2(\mathbb{P}_A,\mathbb{P}_B) \geq t$.

Cont.

Therefore,

$$\begin{split} t &\leq W_2(\mathbb{P},\mathbb{P}) \leq \sqrt{2\lambda_{\mathsf{max}}(C)} \left(\log^{1/2} \frac{1}{\mathbb{P}(A)} + \log^{1/2} \frac{1}{\mathbb{P}(B)} \right) \\ &\leq \sqrt{4\lambda_{\mathsf{max}}(C)} \log^{1/2} \frac{1}{\mathbb{P}(A)\,\mathbb{P}(B)} \end{split}$$

Therefore,

$$\mathbb{P}(B) \leq \frac{1}{\mathbb{P}(A)} \exp\left(-\frac{t^2}{4\lambda_{\mathsf{max}}(C)}\right).$$

In particular, if $B = \{x \mid d(x, A) \ge t\}$ then

$$\mathbb{P}(d(x,A) \ge t) \le \frac{1}{\mathbb{P}(A)} \exp\left(-\frac{t^2}{4\lambda_{\mathsf{max}}(C)}\right).$$

If the set A is not too small, e.g. $\mathbb{P}(A) \geq 1/2$, this implies that

$$\mathbb{P}(d(x,A) \ge t) \le 2 \exp\left(-\frac{t^2}{4\lambda_{\mathsf{max}}(C)}\right).$$

This shows that the Gaussian measure is exponentially concentrated near any "large" enough set.

Gaussian concentration via infimum-convolution

If we denote $c:=1/\lambda_{\max}(C)$ then setting t=1/2 in,

$$V(x) + V(y) - 2V(\frac{x+y}{2}) \ge \frac{c}{4}|x-y|^2.$$

Given a function f on \mathbb{R}^n , let us define its infimum-convolution by

$$g(y) = \inf_{x} \left(f(x) + \frac{c}{4} |x - y|^2 \right).$$

Then, for all x and y, we have the inequality

$$g(y) - f(x) \le \frac{c}{4}|x - y|^2 \le V(x) + V(y) - 2V\left(\frac{x + y}{2}\right).$$
 (5.4)

If we consider the functions $u(x)=e^{-f(x)-V(x)}, v(y)=e^{g(y)-V(y)}$ and $w(z)=e^{-V(z)}$, then (5.4) implies that

$$w\left(\frac{x+y}{2}\right) \ge u(x)^{1/2}v(y)^{1/2}$$

and the Prekopa-Leindler inequality with $\lambda = 1/2$ implies that

$$\int e^g \, \mathrm{d}\,\mathbb{P} \int e^{-f} \, \mathrm{d}\,\mathbb{P} \le 1. \tag{5.5}$$

Gaussian concentration via infimum-convolution

Given a measurable set A let f be equal to 0 on A and $+\infty$ on the complement of A.

Then $g(y) = \frac{c}{4}d(x,A)^2$ and (5.5) implies

$$\int \exp \frac{c}{4} d(x, A)^2 d \mathbb{P}(x) \le \frac{1}{\mathbb{P}(A)}.$$

By chebyshev's inequaltiy,

$$\mathbb{P}(d(x,A) \geq t) \leq \frac{1}{\mathbb{P}(A)} \exp\left(-\frac{ct^2}{4}\right) = \frac{1}{\mathbb{P}(A)} \exp\left(-\frac{t^2}{4\lambda_{\mathsf{max}}(C)}\right),$$

which is the same Gaussian concentration inequality we proved above.

 \bullet The total variation distance between two probability measures $\mathbb P$ and $\mathbb Q$ on a measurable space $(S,\mathcal B)$ is defined by

$$\mathsf{TV}(\mathbb{P}, \mathbb{Q}) = \sup_{A \in \mathcal{B}} |\mathbb{P}(A) - \mathbb{Q}(A)|$$

• Using the Hahn-Jordan decomposition, we can represent a signed measure $\mu=\mathbb{P}-\mathbb{Q}$ as $\mu=\mu^+-\mu^-$ such that, for some set $D\in\mathcal{B}$ and for any set $E\in\mathcal{B}$,

$$\mu^{+}(E) = \mu(ED) \ge 0 \text{ and } \mu^{-}(E) = -\mu(ED^{c}) \ge 0$$

Therefore, for any $A \in \mathcal{B}$,

$$\mathbb{P}(A) - \mathbb{Q}(A) = \mu^{+}(AD) - \mu^{-}(AD^{c}),$$

which makes it clear that

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(A) - \mathbb{Q}(A)| = \mu^{+}(D).$$

• Let us describe some connections of the total variation distance to the Kullback-Leibler divergence and the Kantorovich-Rubinstein theorem.

Lemma 11

If f is a meausrable function on S such that $|f|\leq 1$ and $\int f\,\mathrm{d}\,\mathbb{P}=0$ than for any $\lambda\in\mathbf{r}$,

$$\int e^{\lambda f} \, \mathrm{d} \, \mathbb{P} \le e^{\frac{\lambda^2}{2}}.$$

ullet Let us now consider a discrete metric on S given by

$$d(x,y) = \mathbf{1}_{x \neq y}$$

Then a 1-Lipschitz function f w.r.t the metric d, $||f||_{\mathsf{L}} \ge 1$, is defined by the condition that for all $x, y \in S$,

$$|f(x) - f(y)| \le 1$$

Formally, the Kantorovich-Rubinstein theorme in this case would state that

$$\begin{split} W(\mathbb{P},\mathbb{Q}) &= \inf \left\{ \int \mathbf{1}_{x \neq y} \, \mathrm{d} \mu(x,y) \, | \, \nu \in M(\mathbb{P},\mathbb{Q}) \right\} \\ &= \sup \left\{ \left| \int f \, \mathrm{d} \mathbb{Q} - \int f \, \mathrm{d} \, \mathbb{P} \right| \, | \, \|f\|_{\mathsf{L}} \leq 1 \right\} := \gamma(\mathbb{P},\mathbb{Q}) \end{split}$$

• However, since any uncountable set S is not separable w.r.t. the discrete metric d, we can not apply the Kantorovich-Rubinstein theorem directly. In this case, one can use the Hahn-Jordan decomposition to show that W coincides with the total variation distance $W(\mathbb{P},\mathbb{Q})=\mathsf{TV}(\mathbb{P},\mathbb{Q})$. One can also check that $\gamma(\mathbb{P},\mathbb{Q})=\mathsf{TV}(\mathbb{P},\mathbb{Q})$. Thus, for the discrete metric d,

$$W(\mathbb{P}, \mathbb{Q}) = \mathsf{TV}(\mathbb{P}, \mathbb{Q}) = \gamma(\mathbb{P}, \mathbb{Q}).$$

• We have the following analogue of the Kullback-Leiber divergence bound for the Gaussian measure in the previsou theorem.

Theorem 17 (Pinsker's inequality)

If $\mathbb Q$ is absolutely continous with respect to $\mathbb P$ then

$$\mathsf{TV}(\mathbb{P}, \mathbb{Q}) \le \sqrt{2D(\mathbb{Q}||\,\mathbb{P})}.$$

Hamming metric on a product space

 \bullet Let us consider a finite set A and, given integer $n\geq 1,$ consider the following Hamming metirc on $A^n,$

$$d_H(x,y) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{i} (x_i \neq y_i)$$

For two measurs μ and ν on A^n , consider corredsponding Wasserstein distance

$$1W_H(\mu,\nu) = \inf \left\{ \int d_H(x,y) \, d\lambda(x,y) \, | \, \lambda \in M(\mu,\nu) \right\}$$
$$= \inf \left\{ \frac{1}{n} \sum_{i=1}^n \lambda(x_i \neq y_i) \, | \, \lambda \in M(\mu,\nu) \right\}.$$

Since $d_H(x,y) \leq \mathbf{1}(x \neq y)$, by Pinsker's inequality,

$$W_H(\mu,\nu) \le \mathsf{TV}(\mu,\nu) \le \sqrt{2D(\mu||\nu)}.\tag{5.6}$$

• On the other hand, on the product space A^n , one is often interested to understand how different a measure μ is from some (or any) product measure $\nu=\nu_1\times\cdots\times\nu_n$ w.r.t the above Wasserstein metric. Consider the function

$$\phi_A(x) = -x \log x - (1-x) \log(1-x) + x \log \text{card}(A), \ x \in [0,1].$$

This function concave, $\phi_A(x) \ge 0$ and it is equal to zero only at x = 0.

Hamming metric on a product space

The following reverse analog of the above's Pinsker's inequality holds.

Lemma 12

If $\mu_1\dots\mu_n$ are the marginals of μ then, for any product measures $\nu=\nu_1\times\dots\times\nu_n$ on A^n ,

$$\phi_A(W_H(\mu,\nu)) \ge \frac{1}{2n} D(\mu||\mu_1 \times \dots \times \mu_n). \tag{5.7}$$

In particular,

$$\phi_A(W_H(\mu, \mu_1 \times \dots \times \mu_n)) \ge \frac{1}{2n} D(\mu||\mu_1 \times \dots \times \mu_n).$$

Remark. The inequality then shows that the KL divergence between μ and the product measures with the same marginals $\mu_1 \times \cdots \times \mu_n$, can be used to control from below the Wasserstein distance $W_H(\mu,\nu)$ between μ and an arbitrary product measure ν with w.r.t the Hamming distance d_H .