Homework Number: hw04

Name: Shu Hwai Teoh ECN Login: teoh0

Due Date: Tuesday 2/18/2020 at 4:29PM

1. Theory Problems

I. Determine the following in GF(11), please show your work:

i.
$$(3x^4 + 5x^2 + 10) - (8x^4 + 5x^2 + 2x + 1)$$

= $-5x^4 - 2x - 9$

ii.
$$(5x^2 + 2x + 7) \times (5x^3 + 3x^2 + 3x + 2)$$

= $25x^5 + 15x^4 + 15x^3 + 10x^2 + 10x^4 + 6x^3 + 6x^2 + 4x + 35x^3 + 21x^2 + 21x + 14$
= $25x^5 + 25x^4 + 56x^3 + 37x^2 + 25x + 14$
= $3x^5 + 3x^4 + x^3 + 4x^2 + 3x + 3$

iii.
$$\frac{x^5 + 8x^4 + x^3 + 4x^2 + 8x}{6x^3 + 3x^2 + 2}$$

$$1/6 = 1 \times 6^{-1} = 1 \times 2 = 2 \mod 11 = 2$$

Product of $2x^2$ and $6x^3 + 3x^2 + 2$ is $x^5 + 6x^4 + 4x^2$, subtract it from the dividend $x^5 + 8x^4 + x^3 + 4x^2 + 8x$, result is $2x^4 + x^3 + 8x$.

$$2/6 = 2 \times 6^{-1} = 2 \times 2 = 4 \mod 11 = 4$$

Product of 4x and $6x^3 + 3x^2 + 2$ is $2x^4 + x^3 + 8x$, subtract it from the dividend $2x^4 + x^3 + 8x$, result is 0.

Therefore,
$$\frac{x^5+8x^4+x^3+4x^2+8x}{6x^3+3x^2+2} = 2x^2+4x$$

II. For the finite field GF(2^3), calculate the following for the modulus polynomial $x^3 + x^2 + 1$

i.
$$(x^2 + x + 1) \times (x + 1)$$

= $(x^2 + x + 1) \times (x + 1) \mod (x^3 + x^2 + 1)$
= $(x^3 + 2x^2 + 2x + 1) \mod (x^3 + x^2 + 1)$
= $x^2 + 2x$

ii.
$$(x^2 + 1) - (x^2 + x + 1)$$

=-x mod $(x^3 + x^2 + 1) = x$

iii.
$$\frac{x^2 + x + 1}{x^2 + 1} = 1 + \frac{x}{x^2 + 1}$$

2. Programming Problem