Datum		Třída
8.1.2020	SPŠ Chomutov	A4
Číslo úlohy		Jméno
13	Model ohmmetru v programu VEE	PAIKRT

Zadání

Vytvoř program ve VEE pro měření připojeného odporu pomocí R/U převodníku.

Schéma zapojení

Tabulka použitých přístrojů

Zařízení	Značka	Údaje	Evidenční číslo
Stejnosměrný zdroj	Ucc	Symetrické zapojení, ±15V/1A	LE2 1027
Referenční zdroj	Ur	10V/1A	-
Operační zesilovač	OZ	MAA 741	LE2 380
Dekády	10k 100k	0-1111110Ω 0-1111110Ω	LE2 5057 LE2 5058
Sada odporů	Rx	390Ω - 100kΩ ±5%, Pmax = 2W	-
Multiplexer	-	HP 34901A – 20Ch.MPX	LE3 672
Měřící ústředna	MÚ	HP 34970A	LE3 106
Přepínač Switch 1		HP 34903A – 20Ch.switch	-

Teorie

1) Jaké je nejvýšší teoreticky možné cýstupní napětí převodníku R na U? Zvol rozsahy multimetru.

$$\begin{array}{ll} \textit{Ucc} = \pm 15\textit{V} & \rightarrow \textit{Usat} \, \doteq 12\textit{V} \\ \textit{P\'ri} \,\, 1\textit{V} \, \triangleq \, 10k\Omega \, \rightarrow \, 1,2\textit{V} \, \leq \textit{U} \, \leq \, 12\textit{V} \, \rightarrow \, \textit{rozsah} \,\, 12k\Omega \,\, \textit{až} \,\, 120k\Omega \\ & \rightarrow \, \textit{U} > 12\textit{V} \, \rightarrow \, \textit{Nekone\'cn\'y} \\ \textit{P\'ri} \,\, 1\textit{V} \, \triangleq \, 1k\Omega \,\, \rightarrow \,\, 0,012\textit{V} \, \leq \textit{U} \, < \, 12\textit{V} \, \rightarrow \, \textit{rozsah} \,\, 12\Omega \,\, \textit{až} \,\, 12k\Omega \\ & \rightarrow \, \textit{U} \, < \, 0,012\textit{V} \, \rightarrow \, \textit{ZERO} \end{array}$$

Diagram

Program

- 1) Konstanta, která nastaví pozici přepínače na výšší rozsah
- 2) Nastavení přepínače a změření napětí na měřící ústředně
- 3) Převedení napětí na real64 (Desetiné číslo ze stringu)
- 4) Spojení výstupů ze všech možností v jeden výstup
- 5) Box kde se vypíše výsledek
- 6) Rozhodnutí, zda je napětí větší jak 12 V, pokud ano vypíše se Nekonečno a ukončí se program. V opačném případě se pokračuje na blok 7.
- 7) Rozhodnutí, zda je napětí větší jak 1,2V, pokud ano vypíše naměřené napětí vynásobené 10 a výsledek je v k Ω (Blok 8). V opačném případě se pokračuje blokem 10.
- 8) Vynásobení napětí 10 a přidání jednotky kΩ a výsledek je zaoktouhlen na jedno desetiné místo.
- 9) Vypsání textu Infinity -> "nekonečný" odpor
- 10) Konstanta, která nastaví pozici přepínače na nižší rozsah
- 11) Nastavení přepínače a měření napětí na měřící ústředně
- 12) Převedení napětí na real64 (viz. blok 3)
- 13) Rozhodnutí, zda je napětí větší než 0,012V, pokud ano vypíše naměřené napětí vynásobené 1000 a výsledek je v Ω (Blok 14). V opačném případě vypíše slovo ZERO.
- 14) Vynásobení napětí 1000 a přidání jednotky Ω a výsledek je zaokrouhlen na jedno desetiné místo.
- 15) Vypsání textu ZERO -> "Nulový" odpor

Tabulka hodnot

R ±5%	R _{naměřené}	Je odpor správný?
100kΩ	100,5kΩ	Ano
82kΩ	82,6kΩ	Ano
39kΩ	39,8kΩ	Ano
27kΩ	27,5kΩ	Ano
10kΩ	10,1kΩ	Ano
4k7Ω	4,7kΩ	Ano
820Ω	817,0Ω	Ano
390Ω	386,3Ω	Ano

Závěr

Z měření jsme zjistili, že námi navržené řešení je funkční a odpory, které jsme měřili jsou v toleranci od výrobce. V nekonečné smyčce se dá z programu udělat živé měření odporu. Tuto funkci jsme i vyzkoušilim, ale měřící ústředna vydávala nepřijemný cvakací zvuk při měření napětí.