Face Recognition HOG + SVM

Bakytbek uulu Nurzhigit

HSE

Introduction to the HOG Feature Descriptor

HOG is a feature descriptor that is often used to extract features from image data. It is widely used in computer vision tasks for object detection.

Step 1: Preprocess the Data

Choose convenient proportion of image

Colored to grayscale

Step 2: Calculating Gradients (direction x and y)

			-1	
-1	0	1	0	•Change in X direction(G_x) = 89 - 78 = 11
	<u>'</u>		1	•Change in Y direction(G_y) = 68 – 56 = 8

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

Step 3: Calculate the Magnitude and Orientation

Total Gradient Magnitude = $\sqrt{[(G_x)^2 + (G_y)^2]}$

Total Gradient Magnitude = $\sqrt{(11)^2+(8)^2}$ = 13.6

 $\Phi = atan(Gy / Gx)$

A histogram is a plot that shows the frequency distribution of a set of continuous data. (Another methods)

Step 4: Calculate Histogram of Gradients in 8×8 cells (9×1)

121	10	78	96	125
48	152	68	125	111
145	78	85	89	65
154	214	56	200	66
214	87	45	102	45

Magnitude		1							
Bin	0	20	40	60	80	100	120	140	160


```
import matplotlib.pyplot as plt
from skimage.feature import hog
from skimage import data, exposure
image = data.astronaut()
fd, hog_image = hog(image, orientations=8, pixels_per_cell=(16, 16),
                    cells_per_block=(1, 1), visualize=True, channel_axis=-1)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)
ax1.axis('off')
ax1.imshow(image, cmap=plt.cm.gray)
ax1.set_title('Input image')
# Rescale histogram for better display
hog image rescaled = exposure.rescale intensity(hog image, in range=(0, 10))
ax2.axis('off')
ax2.imshow(hog image rescaled, cmap=plt.cm.gray)
ax2.set title('Histogram of Oriented Gradients')
plt.show()
```

Input image

Histogram of Oriented Gradients

Classification metrics: confusion matrix

		True co	ndition			
	Total population	Condition positive	Condition negative	$= \frac{\text{Prevalence}}{\sum \text{ Total population}}$	Accuracy Σ True positive + Σ Total po	Σ True negative
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery Σ False Σ Predicted cor	positive
condition	Predicted condition negative	False negative.		False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Σ False negative _ Σ True negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$ Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	Diagnostic odds ratio (DOR) = \frac{LR+}{LR-}	$F_{1} \text{ score} = \frac{1}{\frac{1}{\text{Recall}} + \frac{1}{\text{Precision}}}$

Accuracy: what a problem?

Predicted/Classified

Actual

	Negative	Positive
Negative	998	0
Positive	1	1

What the positive over here is actually someone who is sick and carrying a virus that can spread very quickly?

Recall

Predicted

Actual	

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

$$\begin{aligned} \text{Recall} &= \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Negative}} \\ &= \frac{\textit{True Positive}}{\textit{Total Actual Positive}} \end{aligned}$$

Recall shall be the model metric we use to select our best model when there is a high cost associated with False Negative.

Precision

Actual

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive}$$
$$= \frac{True \ Positive}{Total \ Predicted \ Positive}$$

Precision is a good measure to determine, when the costs of False Positive is high. For instance, email spam detection.

Predicted

F1 Score

$$F1 = 2 \times \frac{Precision*Recall}{Precision*Recall}$$

F1 Score is needed when you want to seek a balance between Precision and Recall.

Introduction to Support Vector Machine

Support Vector Machines

In this case, the **Maximum**Margin Classifier would be super close to the *obese*observations...

To make a threshold that is not so sensitive to outliers we must **allow misclassifications**.

When we allow misclassifications, the distance between the observations and the threshold is called a **Soft Margin**.

When we use a **Soft Margin** to determine the location of a threshold...

...then we are using a **Soft Margin Classifier** aka a **Support Vector Classifier** to classify observations.

Support Vector Classifiers seem pretty cool because they can handle...

...but what if this was our training data and we had tons of overlap?

In order to make the mathematics possible, Support Vector Machines use something called Kernel Functions to systematically find Support Vector Classifiers in higher dimensions. *y*-axis Dosage (mg):

Resources

- 1. https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/
- 2. https://habr.com/ru/post/306568/
- 3. https://www.youtube.com/watch?v=Xm00CSsKg88
- 4. https://scikit-learn.org/0.19/datasets/labeled-faces.html
- 5. https://towardsdatascience.com/building-a-face-recognition-system-using-scikit-learn-in-python-163fd423513b
- 6. https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
- 7. https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
- 8. https://scikit-learn.org/0.19/auto_examples/applications/plot_face_recognition.html#sphx-glr-auto-examples-applications-plot-face-recognition-py
- 9. https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
- 10. https://www.youtube.com/watch?v=efR1C6CvhmE
- 11. https://colab.research.google.com/drive/1PRjzNOGKCANGM-TYMKG6W7ohd7-07pZD?usp=sharing