POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI

INFORMATYKA

WPROWADZENIE DO INFORMATYKI

Wykład organizacyjny

Dr hab. Małgorzata Charytanowicz

Plan

- Organizacja zajęć
- Zasady zaliczenia
- Cele przedmiotu
- Treści programowe
- Literatura
- Ważne daty

Wprowadzenie do informatyki

Prowadzący:

- dr hab. Małgorzata Charytanowicz
- konsultacje: środa, 10.00-11.00, sobota 16.00-17.00, ul. Nadbystrzycka 36B, p. 110 (Pentagon)
- e-mail: m.charytanowicz@pollub.pl
- strona www: cs.pollub.pl/staff/mcharytanowicz/

Materialy:

- https://moodle.cs.pollub.pl/
- kurs "Wprowadzenie do informatyki 2019/2020"
- testy sprawdzające po wykładach, zamieszczane na platformie Moodle
- egzamin pisemny, zaliczenie od 51%
- skala ocen wg §19 Regulaminu studiów, www.pollub.pl/pl/news/get/id/8324

Zaliczenie przedmiotu

- Przed przystąpieniem do zaliczenia lub egzaminu student ma obowiązek okazać dokument ze zdjęciem dla potwierdzenia tożsamości i kartę okresowych osiągnięć, jeśli została wydana.
- Usprawiedliwieniem nieobecności na zaliczeniu lub egzaminie może być wyłącznie choroba, zdarzenie losowe albo inne ważne okoliczności uznane przez dziekana. Dokument stanowiący podstawę usprawiedliwienia powinien być dostarczony w ciągu 7 dni od daty zaliczenia i egzaminu, osobiście lub pocztą do dziekanatu.
- W przypadku nieobecności nieusprawiedliwionej na zaliczeniu lub egzaminie student otrzymuje ocenę niedostateczną.
- W przypadku niezaliczenia co najmniej jednej formy zajęć w ramach danego modułu lub przedmiotu, ocena końcowa z modułu lub przedmiotu jest oceną niedostateczną.

Zaliczenie przedmiotu

- W przypadku nieuzyskania zaliczenia zajęć student ma prawo do dwóch terminów zaliczeń poprawkowych z danego modułu i przedmiotu przed sesją lub w jej trakcie.
- Student, który nie przystąpił do zaliczenia poprawkowego, traci prawo do przywrócenia terminu poprawkowego i otrzymuje ocenę niedostateczną.
- Za zgodą prowadzącego zajęcia student może przystąpić do egzaminu przed sesją w terminie "zerowym". Egzamin ten traktowany jest jako termin dodatkowy.
- Jeżeli podczas zaliczenia lub egzaminu prowadzący stwierdzi niesamodzielność pracy studenta, w szczególności korzystanie z niedozwolonych narzędzi lub materiałów, student uzyskuje ocenę niedostateczną.

Wprowadzenie do informatyki

Rodzaj przedmiotu	Kierunkowy
Rok/semestr	I/1
Liczba godzin	30 + 30
Liczba punktów ECTS	5
Snosóh zaliczenia	Fgzamin

Lubelskiej

Cele przedmiotu

- Zapoznanie studentów z podstawowymi technikami programowania i podstawami algorytmizacji, wprowadzenie do podstawowych algorytmów i struktur danych.
- Zapoznanie studentów z podstawowymi zagadnieniami teorii automatów i języków formalnych oraz maszyny Turinga.
- Zapoznanie studentów z elementami teorii złożoności obliczeniowej.

Treści programowe

- Informatyka, informacja, zadanie algorytmiczne, algorytm i sposoby jego zapisu.
- Podstawy algorytmizacji, schematy Nassi-Schneidermana.
- Język programowania, składnia, semantyka. Język proceduralny. Konstrukcje strukturalne i ich realizacja.
- Proste typy danych w językach programowania. Sposoby kodowania znaków. Liczby stałopozycyjne i zmiennopozycyjne. Strukturalne typy danych w językach programowania.
- Podejście zstępujące i wstępujące w programowaniu. Procedury i funkcje.
 Rekurencja w programowaniu. Problemy rozwiązywane z użyciem rekurencji.
 Modele danych.
- Podstawowe pojęcia ze złożoności obliczeniowej algorytmów. Złożoność obliczeniowa, funkcja złożoności obliczeniowej, rząd złożoności obliczeniowej.
- Podstawowe pojęcia lingwistyki matematycznej. Wzorce, automaty, wyrażenia regularne i gramatyki.
- Języki formalne, klasy P i NP, problemy NP-zupełne, teoria Turinga.

Literatura

- Abelson H., Sussman G. J., Sussman J., Struktura i interpretacja programów komputerowych. WNT, Warszawa 2002.
- Aho A. V., Ullman I. D., Projektowanie i analiza algorytmów. Helion, Gliwice 2003.
- Cormen T.H., Leirson Ch.E., Rivest R.L., Wprowadzenie do algorytmów. PWN, Warszawa 2013.
- Giaro K., Złożoność obliczeniowa algorytmów w zadaniach.
 Wyd. Politechniki Gdańskiej, Gdańsk 2011.
- Harel D., Rzecz o istocie informatyki. Algorytmika. WNT, Warszawa 2008.
- Homenda W., Elementy lingwistyki matematycznej i teorii automatów. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005.

Literatura

- Hopcroft J.E., Motwani R., Ullman J.D., Wprowadzenie do teorii automatów, języków i obliczeń. PWN, Warszawa 2005.
- Kwiatkowska A., Łukasik E., Schematy zwarte NS. Przykłady i zadania. Mikom, Warszawa 2004.
- Martin R. C., Czysty kod. Podręcznik dobrego programisty. Helion, Warszawa 2004.
- Wirth N., Algorytmy i struktury danych = programy.
 WNT, Warszawa 2004.
- Ząbek Ś., Podstawy algorytmizacji i programowania.
 Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej,
 Lublin 2012.

Ważne daty

Okres zajęć dydaktycznych

01.10.2019 r. – 23.12.2019 r.

Wakacje zimowe

24.12.2019 r. - 07.01.2020 r.

Okres zajęć dydaktycznych

08.01.2020 r. - 02.02.2020 r.

Sesja egzaminacyjna

03.02.2020 r. – 16.02.2020 r.

Przerwa międzysemestralna

17.02.2020 r. – 21.02.2020 r.

Informacja i zasady jej zapisu

Politechnik Lubelskiej ześć druga

Plan

- Informacja i jej własności
- Teoria informacji
- Informatyka i jej działy
- Reprezentacja informacji
- Kodowanie znaków

Informacja

Informacja – łac. *Informatio* to wyobrażenie, wyjaśnienie (źródło: Encyklopedia PWN).

Informacja – pojęcie niedefiniowalne ze względu na jego pierwotny charakter, rozpatrywane w trzech aspektach: syntaktycznym, semantycznym, pragmatycznym.

Informacja – w języku potocznym konstatacja stanu rzeczy, wiadomość.

Podstawowe cechy informacji istnieje obiektywnie podlega przetworzeniu podlega przenoszeniu podlega powielaniu posiada różnorodne równoważne reprezentacje bywa fragmentaryczna podlega zniekształceniu podlega interpretacji

Jednostka informacji

- Bit (ang. binary digit, cyfra dwójkowa), oznaczany przez "b". Wystarcza do zakomunikowania jednego z dwóch jednakowo prawdopodobnych zdarzeń.
- Bit przyjmuje jedną z dwóch wartości, które zwykle oznacza się jako "0" lub "1".
- Jest to oznaczenie stosowane w matematyce:
 - "0" fałsz,
 - "1" prawda.

Teoria informacji

- Claude Elwood Shannon (30.04.1916 24.02.2001) amerykański matematyk i inżynier, profesor Massachusetts Institute of Technology.
- Jeden z twórców teorii informacji, zajmował się informacją w ujęciu ilościowym. Jako jeden z pierwszych docenił znaczenie kodu binarnego, twierdził, że ciągami zer i jedynek da się opisać tekst, obraz i dźwięk.
- W pracy A mathematical theory of communication (1948 r.)
 przedstawił najważniejsze zagadnienia z dziedziny teorii informacji.
 Jej celem były zastosowania techniczne związane z kodowaniem.
- Zajmując się zagadnieniem przepustowości linii telefonicznych, Shannon opracował ważne do dziś podstawy matematyczne, stanowiące podstawę teorii informacji.
- Jego twierdzenia nabrały szczególnego znaczenia praktycznego po wynalezieniu układów scalonych.
- Laureat Nagrody Kioto w dziedzinie nauk podstawowych z 1985 roku.

Teoria informacji

- Przesyłanie informacji wymaga ustalenia zrozumiałego zarówno przez nadajnik, jak i odbiornik zasobu znaków, co do których są one zgodne.
- Z punktu widzenia techniki najbardziej odpornym na zakłócenia
 i prostym w przetwarzaniu jest system binarny, w systemie tym możliwe
 jest prowadzenie rachunku logicznego algebry Boole'a.
- Według teorii Shannona, każdemu znakowi odpowiada ciąg znaków dwójkowych tzw. bitów. Ciąg bitów jest nazywany kodem danego znaku lub słowem kodowym, liczba bitów to długość słowa kodowego.
- Słowa kodowe różnych komunikatów wytwarzanych przez dane źródło mogą być różnej długości i występować z różnymi prawdopodobieństwami.
- Liczbę jednostek informacji słowa kodowego występującego z prawdopodobieństwem p_i dana jest wzorem:

$$\log_2(1/p_i)$$

Entropia

Entropia – średnia ilość informacji przypadająca na pojedynczą wiadomość ze źródła informacji,

tzn. średnia ważona ilości informacji niesionej przez pojedynczą wiadomość z wagami równymi prawdopodobieństwu p_i , i=1,...,n, nadania poszczególnych wiadomości

$$H = \sum_{i=1}^{n} p_i \log_2\left(\frac{1}{p_i}\right) \quad [bit] \quad .$$

Entropia:

- jest nieujemna,
- jest maksymalna, gdy prawdopodobieństwa zajść zdarzeń są równe,
- jest równa 0, gdy stany systemu przyjmują wartości 0 albo 1,
- gdy dwa systemy są niezależne to entropia sumy systemów równa się sumie entropii, jest to tzw. własność superpozycji.

Informatyka

- Informatyka kompleks dyscyplin teoretycznych (naukowo-badawczych) i praktycznych (technicznych), związanych bezpośrednio z zadaniami automatycznego przetwarzania informacji przy pomocy komputerów .
- **1962** Francuzi zaproponowali termin *informatique*: informacja + automatyka.

Działy informatyki

- · Administracja sieciowa
- Administracja systemów
- Algorytmika
- Architektura procesorów
- Bezpieczeństwo komputerowe
- Grafika komputerowa
- Inżynieria oprogramowania
- Języki programowania
- Programowanie
- Sprzęt komputerowy
- Symulacja komputerowa
- Sztuczna inteligencja
- Teoria informacji
- Webmastering

Reprezentacja informacji prostych

- **Znaki alfanumeryczne** (litery, cyfry, znaki interpunkcji, działań arytmetycznych itp.), za pomocą których człowiek komunikuje się z komputerem, zostają przetworzone automatycznie na zrozumiałe dla komputera znaki zapisane w systemie binarnym (dwójkowym).
- Najmniejszy element danych w komputerze nazywany jest **bitem**, która może przyjmować jedną z dwóch wartości, 0 lub 1. **Bajt** składa się z 8 bitów. Jest to najmniejsza jednostka pamięci komputera.
- Charakterystyczny dla danego komputera ciąg bitów będący wielokrotnością bajta to słowo maszynowe.
- Dla programistów praca z danymi na poziomie bitów jest uciążliwa. Dogodniej jest pracować z danymi w formie cyfr dziesiętnych i liter alfabetu łacińskiego oraz symboli specjalnych.
- Cyfry, litery i symbole specjalne nazywane są znakami. Każdy znak jest reprezentowany przez sekwencję zer i jedynek, do reprezentowania znaków w komputerze używany jest jednobajtowy typ znakowy (lub beznakowy) char.
 W sposób jednoznaczny znakom przyporządkowane są liczby od 0 do 255.

Kodowanie znaków

Kod ASCII (ang. American Standard Code for Information Interchange),
 opracowany dla urządzeń dalekopisowych, później przyjęty dla
 komputerów. Jest to 7-bitowy kod przyporządkowujący liczby z zakresu
 0-127 literom alfabetu angielskiego, cyfrom, znakom przestankowym
 i innym symbolom oraz poleceniom sterującym.

Dec	Hex	Char	Dec	Hex	Char
32	20	Spacja	65	41	Α
33	21	!	66	42	В
34	22	"	67	43	С
48	30	0	68	44	D
49	31	1	97	61	а
50	32	2	98	62	b
51	33	3	99	63	С
52	34	4	100	64	d

Kodowanie znaków

W 1981 r. IBM wprowadził kod rozszerzony do 8 bitów:

128-255 rozszerzone kody ASCII, w zależności od strony kodowej (kraju),

0 -127 podstawowy standard ASCII:

 litery, cyfry oraz inne znaki drukowane tworzą zbiór znaków ASCII, jest to 95 znaków o kodach od 32 do 126,

 pozostałe 33 kody (0-31 i 127) to tzw. kody sterujące służące do sterowania urządzeniem odbierającym komunikat.

0-31, 127 znaki specjalne

32 spacja

48-57 cyfry

65-90 wielkie litery

97-122 male litery

Pozostałe znaki: 33-47, 56-64, 91-96, 123-127.

Kod UNICODE

- 256 znaków alfanumerycznych jakie można zakodować za pomocą rozszerzonego kodu ASCII nie dawało możliwości zakodowania znaków diakrytycznych wielu języków np. japońskiego czy arabskiego.
- UNICODE ma obejmować wszystkie języki używane na świecie.
- Wprowadzono kod UNICODE o długości 16 bitów dla każdego znaku, co daje możliwość zakodowania 2¹⁶ czyli 65536 znaków.

Plan

- Systemy liczbowe
- System binarny
- Schemat Hornera
- Reprezentacja stałopozycyjna i zmiennopozycyjna
- Zapis obrazów cyfrowych

- Ogół zasad umożliwiających przedstawianie liczb za pomocą umownych znaków przyjęto nazywać systemem liczbowym, a znaki służące do zapisywania liczb – cyframi.
- Wyraz cyfra pochodzi od arabskiego wyrazu sifr, oznaczającego zero.
 Zero przejęli Arabowie od Hindusów. Wprowadzenie tego symbolu ułatwiło zapisywanie liczb i wykonywanie działań.
- Wśród systemów liczbowych wyróżniamy:
 - systemy pozycyjne znaczenie cyfry jest zależne od pozycji w liczbie, wartość cyfry na określonej pozycji obliczana jest poprzez pomnożenie tej cyfry przez odpowiednią potęgę podstawy systemu,
 - systemy inne niż pozycyjne znaczenie cyfry jest niezależne od miejsca położenia w liczbie, np. liczbowy system rzymski pochodzenia etruskiego.

Twierdzenie 1.

Dla każdej liczby naturalnej $L \in N$ oraz liczby naturalnej p > 1 istnieje jednoznacznie wyznaczony ciąg

$$c_{n-1}c_{n-2}...c_1c_0$$
, $c_i \in \{0,1,...,p-1\}$, $i = 0,1,...,n-1$,

taki, że

$$L = \sum_{i=0}^{n-1} c_i p^i$$

Cyfra o indeksie n-1 to cyfra najbardziej znacząca (ang. MSD – most significant digit). Ciąg $c_{n-1}c_{n-2}...c_1c_0$ nazywamy reprezentacją (rozwinięciem) liczby L w systemie u podstawy p.

Podstawa pozycyjnego systemu liczbowego odpowiada ilości cyfr wykorzystywanych do przedstawienia liczb w tym systemie.

7 1 1	10146 '	and the second of the second o
Liczby z zakresu	od 0 do 16 zanisane i	w systemie o postawie p
Dicaby a addition	ou o do 10 Zupibune	w by became o poblawie p

<i>p</i> = 10	<i>p</i> = 2	<i>p</i> = 8	<i>p</i> = 16
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Schemat Hornera

$$L = \sum_{i=0}^{n-1} c_i \cdot 2^i = c_{n-1} 2^{n-1} + c_{n-2} 2^{n-2} + \dots + c_2 2^2 + c_1 2 + c_0 =$$

$$= (c_{n-1} 2^{n-1} + c_{n-2} 2^{n-2} + \dots + c_2 2 + c_1) \cdot 2 + c_0 = \dots =$$

$$= (\dots((c_{n-1} 2 + c_{n-2}) \cdot 2 + c_{n-3}) \cdot 2 + \dots + c_1) \cdot 2 + c_0$$

$$\begin{cases} w = c_{n-1} & \text{dla } i = n-2, n-3, \dots, 0 \\ w = w \cdot 2 + c_i & \text{dla } i = n-2, n-3, \dots, 0 \end{cases}$$

Przykład.
$$L = (01010110)_2$$
 $n = 8$

i	7	6	5	4	3	2	1	0
$c_{_i}$	0	1	0	1	0	1	1	0
p=2	0	1	2	5	10	21	43	86

W celu określenia maksymalnej wartości liczby całkowitej, jaką można zapisać należy za wszystkie cyfry c_i podstawić wartość maksymalną, równą p-1:

$$L_{\max} = \sum_{i=0}^{n-1} (p-1)p^{i} = (p-1)\sum_{i=0}^{n-1} p^{i} = (p-1)\frac{1-p^{n}}{1-p} = p^{n}-1.$$

Ilość różnych liczb wynosi $L_{\text{max}} + 1 = p^n$.

W systemach liczbowych powszechne uznanie zyskały systemy:

- dwójkowy (binarny), $p = 2, c_i \in \{0, 1\},\$
- ósemkowy, $p = 8, c_i \in \{0, 1, 2, 3, 4, 5, 6, 7\}$,
- dziesiętny (dziesiątkowy, decymalny), p = 10, $c_i \in \{0,1,2,3,4,5,6,7,8,9\}$,
- szesnastkowy (heksadecymalny), p = 16, $c_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$.

Zamiana liczby o podstawie 2 na liczbę o podstawie 16:

- grupujemy od prawej po 4 bity rozwinięcia binarnego,
- odczytujemy wartość dziesiętna każdej grupy bitów,
- podstawiamy odpowiednią cyfrę z systemu szesnastkowego.

Zamiana liczby o podstawie 16 na liczbę o podstawie 2:

 każdą cyfrę szesnastkową zapisujemy na 4 bitach (w razie potrzeby uzupełniamy od przodu odpowiednia liczbą zer).

Ćwiczenie 1.

Przedstawić liczby w zależności od cyfr i podstawy, podać wartości dziesiętne:

```
(430)10 = 0 \cdot 100 + 3 \cdot 100 + 4 \cdot 102

(1101)2 = 1 \cdot 20 + 0 \cdot 21 + 1 \cdot 22 + 1 \cdot 23 = 13

(FF)16 = 15 \cdot 160 + 15 \cdot 161 = 255

(01010110)2 = 1 \cdot 21 + 1 \cdot 22 + 1 \cdot 24 + 1 \cdot 26 = 86
```

Ćwiczenie 2.

Zapisać w systemie szesnastkowym (heksadecymalnym) liczbę (101001)₂ $(101001)_2 = (00101001)_2 = (29)_{16}$

System binarny

Ćwiczenie 3.

Zapisać w systemie dwójkowym liczbę (41)₁₀

<i>n</i> div 2	<i>n</i> mod 2	cyfra
41	1	<i>C</i> ₀
20	0	c_1
10	0	<i>C</i> ₂
5	1	<i>C</i> ₃
2	0	<i>C</i> ₄
1	1	C 5
0	STOP	

div – dzielenie całkowite

mod – reszta z dzielenia

$$(41)_{10} = (101001)_2$$

Należy wykonać dzielenie całkowite przez 2 aż do uzyskania ilorazu równego 0, cyfry liczby binarnej to kolejne reszty (zapisywane od końca, pierwsza wyliczona reszta to c_0 , druga to c_1 , itd.).

System binarny

Reprezentacja stałopozycyjna operuje na ustalonej liczbie cyfr. Liczbę całkowitą L przedstawiamy za pomocą rozwinięcia dwójkowego

$$L = s \sum_{i=0}^{n-1} c_i 2^i$$

gdzie s jest znakiem liczby (równym +1 lub -1), $c_{n-1} \neq 0$ dla liczby $L \neq 0$ oraz $c_i = 0$ lub $c_i = 1$, $i = n-2, n-3, \ldots, 0$.

Na reprezentację liczby przeznaczone jest słowo o skończonej długości, np. d+1 bitów. Jeżeli $n\leqslant d$, to liczba L jest reprezentowana w rozpatrywanej arytmetyce:

Liczby te należą do przedziału $[-2^d+1, 2^d-1]$.

System binarny

- System znak moduł
 - zero kodowane jest na dwa sposoby jako zero nieujemne i zero niedodatnie, trzeba pilnować, by nie potraktować ich jako różne,
 - przy dodawaniu trzeba ustalać znak wyniku.
- System znak moduł odwrotny
 - system podobny do poprzedniego z tą różnicą, że jeżeli pierwszy bit jest 1 to pozostałe reprezentują negatyw modułu liczby,
 - tu również występuje podwójne kodowanie zera.
- System uzupełnień do dwóch
 - każda wartość jest reprezentowana jednoznacznie.

Reprezentacja uzupełnieniowa

Reprezentacja uzupełnieniowa to najczęściej stosowana reprezentacja.

Najstarszy bit n-bitowej reprezentacji uzupełnieniowej $c_{n-1}c_{n-2}\dots c_1c_0$ traktowany jest jako -2^{n-1} i przyjmuje wartość 0, jeśli liczba jest dodatnia oraz 1, jeśli liczba jest ujemna. Pozostałe n-1 bity traktowane są tradycyjnie jako $2^{n-2},\dots,2^0$. Zatem

- dla liczb dodatnich jest to reprezentacja binarna x, gdzie $0 \le x \le 2^{n-1} 1$,
- dla liczb ujemnych jest to reprezentacja binarna liczby $x_{uz} = 2^n |x|$, gdzie $-2^{n-1} \le x < 0$.

Wartość liczby o reprezentacji uzupełnieniowej $c_{n-1}c_{n-2}\dots c_1c_0$ jest równa $\sum_{i=0}^{n-2}c_i2^i-c_{n-1}2^{n-1}$.

Algorytmy zamiany U2

Reprezentacja uzupełnieniowa n-bitowa:

$$\operatorname{reprezentacja}(\mathbf{x}) = \left\{ \begin{array}{ll} \operatorname{reprezentacja}(x) & 0 \leqslant x \leqslant 2^{n-1} - 1 \\ \operatorname{reprezentacja}(2^n - |x|) & -2^{n-1} \leqslant x < 0 \end{array} \right.$$

Schemat Hornera: liczba binarnej $c_{n-1}c_{n-2}...c_0$ zapisana w n-bitowej reprezentacji uzupełnieniowej $\begin{cases} w=-c_{n-1} \\ w=w*2+c_i \end{cases}$ dla i=n-2,n-3,...,0

Algorytm zamiany na reprezentację uzupełnieniową (dla liczb ujemnych)

- wyznaczyć n-bitową reprezentację binarną liczby |x|,
- w uzyskanej reprezentacji zamienić 0 na 1 i 1 na 0,
- do wyniku dodać 1.

Aby z reprezentacji uzupełnieniowej wyznaczyć |x|

- od reprezentacji uzupełnieniowej odjąć 1,
- zamienić 0 na 1 i 1 na 0,
- wyznaczyć wartość dziesiętną.

Reprezentacja stałopozycyjna

• W systemie stałopozycyjnym liczby rzeczywiste mają część całkowitą i ułamkową. Liczba bitów tych części jest stała. Jest to nieekonomiczne, gdy operujemy na bardzo dużych lub bardzo małych liczbach.

Ułamek to liczba postaci $0.c_{-1}c_{-2}...c_{-k}$

- Wykorzystujemy ujemne potęgi dwójki (½, ¼, itp.) $(0.110)_2 = 1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 0.5 + 0.25 + 0 = 0.75$
- Zamiana ułamka dziesiętnego na binarny:
 - Ułamek mnożymy przez 2 i wypisujemy kolejne cyfr przed kropką.
 - Liczbę złożoną z cyfr za kropką dziesiętna dalej mnożymy przez 2 aż do uzyskania wartości 0.
- Zwykle rozwinięcia te są nieskończone (okresowe).

```
0.125*2 = 0.25 0

0.25*2 = 0.5 0

0.5*2 = 1.0 1

0 \text{ STOP}

0.125 = (0.001)_2
```

Reprezentacja zmiennopozycyjna

Każdą liczbę reczywistą x, różną od zera można zapisać jednoznacznie w postaci

$$x = s \cdot 2^c m$$

gdzie s równe +1 lub -1 jest znakiem liczby, c jest liczbą całkowitą zwaną cechą, natomiast $m\in \left[\frac{1}{2},1\right)$ jest liczbą rzeczywistą zwaną mantysą.

Cechę zapisujemy w sposób stałopozycyjny na d-t bitach słowa maszynowego. Pozostałych t bitów przeznaczamy na zapis mantysy.

Reprezentacja zmiennopozycyjna

Przykład 1. Zapis liczby dziesiętnej 0.1 na 16 bitach w postaci $m_0 c_1 c_2 c_3 c_4 c_5 m_{-1} ... m_{-10}$

- m_0 znak mantysy (1 liczba ujemna, 0 liczba dodatnia),
- $m_{-1}...m_{-10}$ mantysa w postaci znormalizowanej, mantysę po normalizacji należy zaokrąglić (dodać 1 do 11-ego bitu mantysy i obciąć do 10 bitów),
- $c_1c_2c_3c_4c_5$ cecha w postaci uzupełnieniowej (na 5 bitach).

Reprezentacja:

- Liczba rzeczywista pojedynczej precyzji 4 bajty (8 bitów cechy, 23 bity mantysy).
- Liczba rzeczywista podwójnej precyzji 8 bajtów (11 bitów cechy, 52 bity mantysy).

Zapis obrazów cyfrowych

- Obraz cyfrowy zapisywany jest w postaci tablicy pikseli.
- Do zapisu koloru każdego piksela wykorzystywany jest model RGB (red, green, blue). Najczęściej stosowany jest 24-bitowy (3 bajty) zapis kolorów, po 8 bitów na każdą z barw.
- W modelu RGB wartość 0 wszystkich składowych daje kolor czarny, natomiast 255 – kolor biały.
- Kolor RGB można obliczyć ze wzoru
 R·65536 + G·256 + B,
 gdzie składowe R, G i B przyjmują wartość od 0 do 255.
- Kolor piksela obrazu w odcieniach szarości jest zapisywany na 8 bitach i przyjmuje wartości 0-255.

Algorytmy i struktury danych

Politechnik Lubelskiej ześć druga

Plan

- Trochę historii
- Dane, rodzaje danych
- Podstawowe struktury danych
- Notacja ONP

- XVII wiek budowano pierwsze maszyny liczące.
- 1854 r. George Boole, matematyk angielski, jako pierwszy tworzy podwaliny nowoczesnej logiki komputerowej, punktem wyjścia stał się system dwójkowy (Leibniz, 1679 r.). Boole znaczył "1" jako prawda i "0" jako fałsz, wprowadził pojęcie stanu logicznego "i", "lub", "nie".
- 1872 r. w Stanach Zjednoczonych zbudowano maszynę sumującą wyposażoną w klawiaturę, wykonywała 4 podstawowe działania, następnie Wetzer (Niemcy) udoskonalił maszynę tak, by drukowała wyniki na pasku papieru.
- 1879 r. w USA zbudowano pierwszą kasę rejestracyjną, by uniemożliwić kradzież pieniędzy przez pracowników. W późniejszym czasie połączono mechanizm liczący z blokadą szuflady z gotówką.
- 1880 -1886 r. Hollerith pracując przy spisie ludności w USA zastosował kartę dziurkowaną jako nośnik danych, które mogły być czytane maszynowo.

- 1909 r. w Niemczech w czasie spisu powszechnego ludności wykorzystano udoskonaloną maszynę Holleritha.
- 1911 r. urządzenie do przetwarzania danych przy pomocy kart dziurkowanych zastosowano w dużych przedsiębiorstwach.
- 1919 r. fizycy Eccles i Jordan skonstruowali dwustanowy przełącznik.
- 1930 r. w Cambridge (USA) pracuje pierwszy elektromagnetyczny komputer analogowy.
- 1932 r. Austria, Tauschek buduje pierwszą pamięć bębnową.
- 1936 r. Francja, Valtat zgłosił do opatentowania maszynę liczącą, której zasada działania oparta była na systemie dwójkowym.
- 1941 r. prezentacja cyfrowej maszyny liczącej Zuse Z3, wartości liczbowe wprowadzane były z klawiatury w systemie dziesiętnym, maszyna realizowała wyznaczanie pierwiastka kwadratowego.
- 1942 r. pierwsza sprawna maszyna licząca w technice lampowej, Atanasoff (USA).

- 1943 r. próba zastąpienia przekaźników elektromagnetycznych lampami elektronowymi.
- 1945 r. Uniwersytet Pensylwania, uruchomiono pierwszą wielką maszynę liczącą ENIAC (Electronic Numerical Integrator and Computer), maszyna zajmowała 140 m² i ważyła 30 ton, twórcami byli J. Presper Eckert, J.W. Mauchly.
- 1948 r. "krok binarny" określono jako bit (matematyk J. Tukey), znaczenia nabiera algebra Boole'a.
- 1949 r. Uniwersytet Menchester (Anglia), skonstruowano komputer EDSAC (Electronic Delay Storage Automatic Computer) z programowaniem pamięciowym. Program i dane były zakodowane w pamięci, program zawierał rozkazy warunkowe.
- 1950 r. wykorzystano pamięci zbudowane w oparciu o rdzenie ferrytowe.

- 1950 r. pamięć magnetyczna (peryferyjna) dla elektronicznych maszyn cyfrowych, zastępuje karty perforacyjne lub taśmę dziurkowaną.
- 1954 r. J.W. Backhus rozwija język programowania Fortran, w niedługim czasie powstaje biblioteka programów.
- 1955 r. Bell Laboratory (USA), tranzystorowa maszyna licząca TRADIC, komputer drugiej generacji.
- 1955 r. angielska firma EMI, pierwszy skaner.
- 1958 r. amerykańska firma Texas Instruments, pierwszy układ scalony.
- 1963 r. IBM, szybka drukarka wierszowa.
- 1967 r. N. Kitz, pierwsza biurowa maszyna matematyczna.
- 1975 r. IBM, pierwsza drukarka laserowa "IBM 3800".
- 1980 r. Sharp, Casio, Sanyo, Panasonic, pierwsze komputery kieszonkowe, wyposażone w uproszczony BASIC.

- 1980 r. rozwój układów scalonych o dużej skali integracji (ROM, PROM, EPROM, RAM).
- 1983 r. upowszechnienie dyskietek.
- 1987 r. prace nad skonstruowaniem optoelekrycznego komputera.
- 1988 r. tytuł arcymistrzowski dla Deep Thought, symulujący grę w szachy, przewidywał 10-11 ruchów, do 30 w sytuacji kryzysowej.
- 1989 r. rozpowszechniają się wirusy komputerowe, w USA w ciągu ośmiu miesięcy zaatakowały 48 000 komputerów.
- 1996 r. Deep Blue, zwycięstwo Kasparowa, 3 zwycięstwa, 2 remisy, jedna porażka.
- 1997 r. wygrywa komputer, przeprowadzona partia zakończyła się przed rozegraniem 20 posunięcia. Komputer zawierał 256 procesorów.

INTERNET – symbol ery informacyjnej

INTERNET = INTERconnection + NETwork.

- 1957 r. wystrzelenie przez Związek Radziecki pierwszego sztucznego satelity Ziemi, Sputnika.
- Powołanie w ramach amerykańskiego Departamentu Obrony agencji ARPA (Advanced Research Project Agency), w polu zainteresowania ARPA znalazły się sieci komputerowe.
- 1969 r. na uniwersytetach w USA w ramach eksperymentu finansowanego przez ARPA zainstalowano pierwsze węzły sieci ARPANET, bezpośredniego przodka Internetu.
- 1971 r. pierwszy program poczty elektronicznej działający w sieci ARPANET; ostateczne specyfikacje: protokół telnet (1972 r.), protokół FTP (1973 r.), poczta elektroniczna (1977 r.).
- 1983 r. komputery sieci ARPANET przeszły na stosowanie protokołu TCP/IP; pojawiła się wersja systemu Unix.
- 1984 r. Internet został przekazany pod zarząd Narodowego Funduszu Nauki.
- 1991 r. rozwój Internetu w Polsce.

Dana, rodzaje danych

- Dana w algorytmice to zapis informacji mający swą tożsamość (nazwę) i treść (wartość).
- Nazwa danej jest wyrażona za pomocą napisu złożonego ze znaków pewnego alfabetu.
- Wyróżniamy:
 - dane stałe (stałe) nie mogą zmieniać swej wartości w czasie procesu przetwarzania,
 - dane zmienne (zmienne) na ogół podlegają zmianom w miarę wykonywania poleceń zawartych w programie, jej wartość można zmienić przez przypisanie.
- W praktyce języki programowania dopuszczają do użytku takie wartości proste, które są liczbami, wartościami logicznymi lub wartościami znakowymi.

Liczby

- We współczesnych językach programowania stała, zmienna, wyrażenie, czy funkcja są określonego typu. Typ danych wyznacza:
 - zbiór wartości,
 - zbiór operacji, jakie można wykonać na elementach tego zbioru.
- Wśród skalarnych typów danych liczbowych wyróżniamy:
 - typ integer obejmuje podzbiór zbioru liczb całkowitych, zwykle mniejszych co do wartości bezwzględnej od pewnej wartości maksymalnej; pomijając sytuację wystąpienie nadmiaru należy zauważyć, że wszystkie operacje wykonane na argumentach tego typu dają wartości dokładne (np. dodawanie, odejmowanie, mnożenie, dzielenie całkowite),
 - **typ real** obejmuje skończony podzbiór zbioru liczb rzeczywistych, skutki wykonywanych obliczeń zależą od problemu i stosowanego algorytmu, wyniki przybliżają wyniki prawdziwe.

Dana, rodzaje danych

- Wartością danej złożonej jest zbiór danych prostszych.
- Skończony zbiór danych odróżnialnych od siebie, mających różne nazwy, nosi nazwę struktury danych. Wartość danej złożonej jest strukturą danych. Daną złożoną nazywa się również daną strukturalną.
- Dana, która sama nie wchodzi w skład wartości innej danej nazywana jest daną całościową. W przeciwnym razie nosi nazwę danej składowej.
- W większości języków programowania jako oznaczenia danej całościowej przyjęto używać zastrzeżonego dla niej identyfikatora, tzn. wybranego przez programistę napisu, rozpoczynającego się literą i złożonego z liter i/lub cyfr, nierozdzielonych żadnym innym znakiem, np. odstępem.

Instrukcja przypisania

Instrukcja przypisania ma kształt:

```
nazwa_zmiennej := wyrażenie
```

i nakazuje wykonanie następujących działań:

- obliczenie wartości wyrażenia zapisanego po prawej stronie znaku :=
- przypisanie tej wartości do nazwy zmiennej figurującej po lewej stronie tego znaku.

Fizycznie to przypisanie oznacza umieszczenie zapisu wartości w miejscu nośnika pamięciowego skojarzonego z tą nazwą i przechowanie jej tam do kolejnego przypisania.

Logicznie jest to skojarzenie nazwy danej zmiennej z tak obliczoną wartością, czyli utworzenie nowej (o innej wartości niż poprzednio) danej.

W części języków programowania operator przypisania oznaczany jest znakiem równości =.

Instrukcja przypisania

Przykład 1.

$$delta := b*b-4*a*c$$

Zmienna po lewej stronie znaku przypisania jest bierna, tzn. nie uczestniczy w obliczaniu wyrażenia po prawej stronie, jedynie przyjmuje nową wartość.

Przykład 2.

$$n := n+1$$

Zmienna o identyfikatorze **n** najpierw jest użyta jako źródło dostarczające wartości składnika sumy po prawej stronie znaku przypisania, następnie zaś jako bierne miejsce przechowania zwiększonej o 1 od dotychczasowej, wartości wynikowej wyrażenia **n+1**.

Wzajemna wymiana wartości

Wzajemna wymiana wartości między dwiema zmiennymi zawsze wymaga dodatkowej zmiennej pomocniczej (roboczej).

```
robocza := zmiennaPierwsza
zmiennaPierwsza := zmiennaDruga
zmiennaDruga := robocza
```

Zmienne robocze służą do tymczasowego przechowywania wartości częściowych wyników przetwarzania, które mają być wykorzystane albo w późniejszych fazach wykonania algorytmu, albo w bezpośrednio następnych wielokrotnie.

Struktury danych

- Algorytm operuje na danych różnego typu:
 - mają one przeważnie określoną formę zapewniającą pożądane właściwości,
 - do ich przechowywania i wykorzystania potrzebne stworzenie algorytmów zapewniających dostęp do wszystkich elementów i modyfikację zawartości.
- Struktury danych są pojemnikami na dane, które gromadzą je i układają w odpowiedni sposób.
- Ich różnorodność jest ogromna, a dla każdej znaleziono wiele zastosowań oraz algorytmów.
- Powszechnie spotykane jest używanie jednych struktur danych do przetwarzania informacji zgromadzonych w innych.
- Są one fundamentalnym narzędziem programisty, ich znajomość jest niezbędna.

Algorytmy i struktury danych

Niklaus Wirth – szwajcarski elektronik i informatyk.

- Wniósł duży wkład w zakresie języków programowania, analizy składniowej, konstrukcji kompilatorów i translatorów.
- Twórca języków programowania Pascal (1971), Modula (1973-1976), Modula-2 (1978–1980).
- Zaprojektował mikrokomputer Lilith.
- Od 1999 jest emerytowanym pracownikiem Instytutu Systemów Komputerowych Politechniki Federalnej w Zurychu.
- Autor książki Algorytmy + Struktury Danych = Programy
- Laureat Nagrody Turinga w 1984 r.

Podstawowe struktury danych

- Stos
- Kolejka
- Lista
- Drzewa

Stos LIFO — Last In First Out

Stos to abstrakcyjna struktura danych, do której dostęp możliwy jest tylko od strony wierzchołka, udostępniająca m.in. następujące operacje:

- empty zwraca true jeżeli stos jest pusty,
- push odkłada element na wierzchołek stosu,
- pop zdejmuje element z wierzchołka stosu, rozważa się wersje stosu, w której operacja pop zwraca wartość usuwanego elementu.

Notacja ONP

- Odwrotna notacja polska jest sposobem zapisu wyrażeń arytmetycznych, w których znak wykonywanej operacji umieszczony jest po operandach (zapis postfiksowy) a nie pomiędzy nimi jak w zapisie algebraicznym (zapis infiksowy).
- Nie wymaga używania nawiasów.
- Obliczenia w ONP stają się bardzo łatwe do przeprowadzania na komputerze.
- Operacje obliczania wartości wyrażenia wykorzystują stos.

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

$$((1+3)*2-12)/4 \rightarrow 13+2*12-4/$$

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

$$((1+3)*2-12)/4 \rightarrow 13+2*12-4/$$

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

8

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

Rozwoju Politechnik Lubelskiei -

8

12

-4 /

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

$$((1+3)*2-12)/4 \rightarrow 13+2*12-4/$$

Rozwoju Politechnik Lubelskiej -

-4

4

/

ONP

$$((1+3)*2-12)/4 \rightarrow 13+2*12-4/$$

Rozwoju Politechniki Lubelskiej -

-4

4

ONP

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

ONP

$$((1+3)*2-12)/4 \rightarrow 1 3 + 2 * 12 - 4 /$$

Kolejka FIFO – First In First Out

Kolejka to abstrakcyjny typ danych, w której nowe dane dopisywane są na końcu kolejki, a dane do dalszego przetwarzania pobierane są z początku kolejki. Dostęp do danych jest w takiej kolejności, w jakiej zostały zapisane. Kolejka udostępnia następujące operacje:

- empty zwraca true, jeżeli kolejka jest pusta,
- push wstawia element na koniec kolejki element,
- pop usuwa pierwszy element; rozważa się wersje kolejki, w której operacja pop zwraca wartość usuwanego elementu,
- front zwraca wartość pierwszego elementu.

Kolejki

- Kolejka priorytetowa każda ze znajdujących się w kolejce danych ma przypisany priorytet, który modyfikuje kolejność późniejszego wykonania, oznacza to, że pierwsza na wyjściu pojawią się dane o największym priorytecie.
- Kolejka priorytetowa ma zastosowanie w systemach operacyjnych, przy przydzielaniu zasobów sprzętowych uruchomionym procesom.
- Kolejka cykliczna pierwszy element o indeksie 0 uważany jest za następny w stosunku do ostatniego elementu.

Lista

Lista jest to liniowo uporządkowany zbiór elementów, z którego w dowolnym miejscu można usunąć element i w dowolne miejsce można dołączyć element.

- Rodzaje list:
 - jednokierunkowa,
 - dwukierunkowa,
 - cykliczna.

Drzewa

Drzewo jest to struktura abstrakcyjna, wzbogacona o kierunek. Jest to zbiór T jednego lub więcej elementów zwanych węzłami:

- Istnieje pierwszy, wyróżniony węzeł zwany korzeniem drzewa. Kolejne obiekty są jego potomkami i nazywane są węzłami. Pozostałe węzły są podzielone na m rozłącznych zbiorów T_1 , ..., T_m , z których każdy jest drzewem. Drzewa T_1 , ..., T_m nazywane są poddrzewami korzenia.
- Liście są to węzły nie mające potomków. Droga w drzewie to sekwencja węzłów odpowiadających przejściu w kierunku od korzenia do liścia.
- Długość ścieżki od korzenia do węzła x nazywamy głębokością węzła x w drzewie T.
- Największa głębokość węzła w drzewie T jest wysokością drzewa T.
- Każdy węzeł y leżący na ścieżce z korzenia do węzła x nazywamy przodkiem węzła x, węzeł x jest wtedy potomkiem węzła y.
 Bezpośredni potomkowie są synami, węzeł natomiast jest ojcem.

Drzewo binarne

Drzewo binarne – struktura abstrakcyjna, drzewo uporządkowane z korzeniem, w którym każdy węzeł ma co najwyżej dwóch potomków, lewego i prawego.

- Drzewa binarne mogą być wykorzystane do reprezentacji wyrażeń arytmetycznych.
- Drzewo wyrażeń jest to drzewo binarne, które przedstawia wyrażenie arytmetyczne. Liście drzewa reprezentują argumenty, a wewnętrzne węzły operacje arytmetyczne. Do tworzenia drzewa używamy notacji ONP, stosu i drzewa binarnego.

Drzewo wyrażeń algebraicznych

Czytamy argumenty znak po znaku odkładając je na stos.

W momencie pojawienia się jakiegoś operatora ze stosu zdejmowana jest odpowiednia liczba argumentów – wynik operacji kładziemy na stos jako kolejny argument.

tworzymy węzeł z argumentem 1 i na stosie umieszczamy wskaźnik do tego elementu

$$1 3 + 2 * 12 - 4 /$$

tworzymy węzeł z argumentem 3 i na stosie umieszczamy wskaźnik do tego elementu

tworzymy węzeł dla operatora + . Ze stosu pobieramy adresy węzłów i tworzymy z nich lewego i prawego syna dla węzła z operatorem +, po czym na stosie umieszczamy wskaźnik do tego węzła.

Postępowanie kontynuujemy aż do wyczerpania elementów.

Drzewo binarne, a wyrażenie algebraiczne

Algorytmy i sposoby ich zapisu

Politechnik Lubelskiej część druga

Plan

- Algorytm, własności algorytmu
- Notacje zapisu algorytmów
- Algorytm Euklidesa
- Schematy N-S zasady konstruowania
- Przykłady algorytmów
- Zapis algorytmu w języku programowania
- Język Python wprowadzenie

Algorytm

- Słowo algorytm pochodzi od nazwiska perskiego matematyka o nazwisku Chuwarizmi Al- Muhammad Ibn Musa, które w formie zlatynizowanej brzmi Algorithmus^{1.}
- Chuwarizmi Al- Muhammad Ibn Musa urodził się ok. 780 roku w Chorezmie, zmarł ok. 850 r.; matematyk, astronom, geograf i kartograf. Dzięki jego pracom:
 - zaczęto stosować w Europie pochodzący z Indii dziesiętny system liczenia i pozycyjny system zapisu liczb,
 - cyfry arabskie wyparły cyfry rzymskie w Europie,
 - wprowadzono pojęcia zera, ułamków, funkcje trygonometryczne i elementy algebry.

¹https://pl.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Chuwarizm

Algorytm - definicje

- Algorytm jest to sposób rozwiązania danego problemu, podany w formie przepisu określającego skończoną liczbę operacji oraz kolejność w jakiej operacje te powinny być wykonywane.
- **Program** to algorytm zapisany w języku zrozumiałym dla komputera. Komputer rozwiązuje problemy dające się zapisać w postaci algorytmu.
- Własności algorytmu:
 - Określoność znane są wszystkie przypadki, jakie mogą zaistnieć w czasie realizacji algorytmu.
 - **Skończoność** wszystkie obliczenia zawarte w algorytmie powinny zostać zrealizowane w skończonej liczbie kroków.
 - Wykonalność właściwe zdefiniowanie poszczególnych kroków algorytmu, tak aby możliwe było jego efektywne wykonanie.
- Zasady budowy algorytmu:
 - prostota budowy,
 - minimalizacja liczby wykonywanych działań (optymalizacja),
 - dokładność przeprowadzonych obliczeń.

Wybór algorytmu

- Należy implementować algorytm najprostsze, które wykonują określone zadanie.
 - łatwiejsza implementacja, czytelniejszy kod,
 - łatwość testowania,
 - łatwość pisania dokumentacji.
- Algorytm powinien być efektywny
 - zajętość pamięci,
 - czas potrzebny na jego wykonanie,
 - obciążenie sieci komputerowej,
 - liczba danych odczytywanych i zapisywanych na dysku.

Notacje zapisu algorytmów

- Język naturalny, zapis słowny
 - pozwala określić kierunek działań i odpowiedzieć na pytanie, czy zagadnienie jest możliwe do rozwiązania.
- Lista kroków
 - zapis bardziej konkretny, wymaga określenia danych i wyniku oraz zapisania kolejnych kroków.
- Zapis graficzny:
 - Schematy blokowe (sieć działań), schematy N-S Nassi Schneidermana
- Pseudo-kod
- Języki programowania

Algorytmy i ich rodzaje

Algorytm liniowy

- ma postać ciągu kroków, które muszą zostać bezwarunkowo wykonane jeden po drugim,
- nie zawiera żadnych warunków ani rozgałęzień.

Przykład

- Sformułowanie zadania: oblicz sumę S dwóch liczb naturalnych a, b.
- Dane wejściowe: dwie liczby a i b.
- Cel obliczeń: obliczenie sumy S = a + b.

Dodatkowe ograniczenia:

 sprawdzenie warunku dla danych wejściowych np. czy a, b są naturalne. Sprawdzenie warunków sprawia, że algorytm przestaje być liniowy.

Algorytm Euklidesa

- Pomysłodawcą algorytmu był Eudoksos z Knidos, w IV wieku p.n.e. Euklides zawarł ten algorytm i udowodnił jego poprawność w dziele *Elementy*.
- Największy Wspólny Dzielnik (NWD) dwóch liczb jest największą liczbą naturalną spośród tych, które dzielą obie te liczby bez reszty.

Algorytm

WE: dwie dodatnie liczby całkowite a i b

WY: największy wspólny dzielnik NWD(a,b).

Krok 1. Podziel **a** przez **b** i niech **r** oznacza resztę z tego dzielenia ($\mathbf{r} < \mathbf{b}$):

Krok 2. Jeżeli r == 0 zakończ algorytm; wynikiem jest b.

Krok 3. W przeciwnym razie wykonaj

$$a = b$$

$$b = r$$

i wróć do Kroku 1.

Algorytm Euklidesa

Instrukcje

- Sekwencja
- Instrukcje warunkowe (wariantowe)
- Instrukcje iteracyjne (pętle)
- 1966 r. Corrado Bohm i Giuseppe Jacopini udowodnili, że te trzy rodzaje instrukcji wystarczają dla wyrażenia każdego sensownego algorytmu.
- **Twierdzenie** to stało się fundamentem **strukturalnych** metod i technik programowania.

Podstawowe symbole w schematach blokowych

Początek, Koniec (Start, Stop)

Przetwarzanie

Proces uprzednio zdefiniowany

WE / WY

Decyzja

Kierunek przepływu danych

Łączenie dróg przepływu danych

Schematy N-S

- Schematy N-S składają się ze zwartych bloków uniemożliwiają zapis skoków wewnątrz algorytmu, zmuszając programistę do myślenia strukturalnego.
- Sposób rozwiązania danego problemu zapisany w postaci schematu zwartego jest łatwiejszy do zrozumienia. Zapis algorytmu w postaci schematu N-S ułatwia sprawdzenie jego poprawności, programy pisane według tego schematu zawierają mniej błędów.
- Konstruowanie schematu zaczynamy od prostokąta symbolizującego cały algorytm, o wystarczająco dużych rozmiarach – cały arkusz z pozostawieniem marginesu na komentarze.
- Kolejne podziały klatki dokonujemy kolejno według schematu sekwencji, proporcjonalnie do przewidywanych rozmiarów zawartości.
- Również proporcjonalnie planujemy podziały liniami pionowymi.
- Nie umieszczamy zbyt wiele podklatek na jednym rysunku, w razie potrzeby wyodrębniamy podschematy dla większych fragmentów algorytmu.

Podstawowe symbole w schematach N-S

Wczytaj a

Instrukcja WE

Instrukcje

Przetwarzanie

Wydrukuj a

Instrukcja WY

Instrukcja warunkowa
(dwuwariantowa)
jeżeli (warunek) to
 Instrukcje1;
w przeciwnym razie
 Instrukcje2;

Sekwencja

Instrukcja 1

Instrukcja 2

Instrukcja 3

Instrukcja 1 a następnie

Instrukcja 2 a następnie

Instrukcja 3

Instrukcje warunkowe

dwuwariantowa

```
Jeżeli (warunek) to
Instrukcje1;
w przeciwnym razie
Instrukcje2;
```

z jednym wariantem pustym

```
Jeżeli (warunek) to Instrukcjel;
```

Instrukcje warunkowe – wybór wielowariantowy

Pętla "dopóki"


```
dopóki (warunek)
{
  refren petli
}
```

Konstrukcja schematu N-S dla pętli "dopóki" dopóki Warunek jest spełniony powtarzaj Refren

Pętla "aż do"

Konstrukcja schematu N-S dla pętli "aż do" powtarzaj Refren aż do chwili, gdy stwierdzisz, że Warunek jest spełniony

Rozwiązać równanie kwadratowe ax²+bx+c=0

Schemat N-S (suma n wczytywanych liczb)

"Suma =

suma

Schemat blokowy (sieć działań)

Zapis algorytmu w języku programowania

1. Obliczenie objętości kuli

```
'Obliczanie objętości kuli '
r
pi = 3.14159265
v = 4.0/3.0 * pi * r * r * r
v
```

```
print('Obliczanie objętości kuli ')
r = float(input('r= '))
pi = 3.14159265
v = 4.0/3.0 * pi * r * r * r
print('v = ',v)
```

2. Maksimum z trzech liczb


```
print('Maksimum z trzech liczb')
a = int(input('a= '))
b = int(input('b= '))
c = int(input('c= '))
if a > b:
  if a > c:
     print(a)
  else:
     print(c)
else:
  if b > c:
     print(b)
  else:
     print(c)
```

Wprowadzenie do języka Python

- Twórcą języka Python jest holenderski programista Guido van Rossum,
- interpretowalny język skryptowy, typu open source, zoptymalizowany pod kątem jakości, wydajność, przenośności i integracji, zwiększa wydajność programistów,
- zorientowany obiektowo, posiadający czytelną składnię, bogaty zbiór interfejsów, bibliotek i narzędzi programistycznych,
- łatwy w użyciu, pasuje do naszego toku myślenia.

Dlaczego warto używać Pythona?

Przenośność

Integracja

Prostota

Elastyczność

Możliwości

Organizacja kodu

 Krótkie komentarze zaznacza się znakiem # na początku wiersza

komentarz

- Bloki instrukcji wyróżniane są za pomocą wcięcia, nie stosuje się żadnych znaków specjalnych, jak w innych językach programowania.
- Każdy kolejny poziom zagnieżdżenia w bloku kodu poprzedza odstęp w postaci wielokrotności czterech spacji. Jest to pojedyncza wartość wcięcia.

Liczby

Systemy liczbowe

- Można używać innych systemów niż dziesiętny.
- Liczbę w systemie ósemkowym zapisujemy poprzedzając jej wartość znakiem zera.
- Liczbę w systemie szesnastkowym zapisujemy poprzedzając jej wartość dwuznakiem 0x.

Typy liczb

- liczby całkowite,
- liczby rzeczywiste: 6.24, 6.1e-3,
- liczby zespolone: 2+4j.

Zmienne

Zmienne posiadają swoje nazwy, które je identyfikują.

- Pierwszym znakiem identyfikatora musi być mała lub duża litera alfabetu albo znak podkreślenia, lecz takie zmienne mają specjalne znaczenie.
- Pozostałe znaki mogą zawierać małe lub duże litery alfabetu łacińskiego, znak podkreślenia oraz cyfry (0–9).
- Wielkość znaków w identyfikatorze jest ważna, dlatego
 - nazwaZmiennej
 - nazwazmiennej

to dwie różne zmienne.

Zmienne

- Python pozwala używać zmiennych do przechowywania wartości dowolnego typu.
- Utworzenie zmiennej polega na nadaniu jej wartości początkowej:

```
a = 4
x = float(a)
y = int(x)
```

Funkcje konwersji:

```
int(x) na liczby całkowite,long(x) na duże liczby całkowite,float(x) na liczby wymierne,complex(x) na liczby zespolone.
```

Napisy

- Łańcuchy można umieszczać w apostrofach lub cudzysłowach
 - w napisach ograniczonych apostrofami możemy używać cudzysłowów,
 - w napisach ograniczonych cudzysłowami możemy używać apostrofów.
- W łańcuchach można używać znaków specjalnych, np. znaku nowej linii \n :
 - "Pierwszy wiersz\nDrugi wiersz"

Operatory matematyczne

Operatory relacji

większe od >

mniejsze od <

większe lub równe z >=

mniejsze lub równe z <=

równe z ==

różne od !=

Operatory logiczne

suma logiczna or alternatywa

iloczyn logiczny and koniunkcja

negacja not

Priorytety i kolejność wykonywania operatorów:

- 1.Operatory porównania <, >, <=, >=, ==, !=
- 2. Operator negacji (not)
- 3. Operator iloczynu logicznego (and)
- 4. Operator sumy logicznej (or).

Operatory – przykłady użycia

$\frac{a+b}{c+d}$	(a+b)/(c+d)
$x \in [0, 6]$	x >= 0 and x <= 6
$x \in (-\infty, -2] \cup [2, \infty)$	x <= -2 or x >= 2
$\frac{-b}{2a}$	-b/(2.0*a)
$\frac{-b}{2a}$	-b/2.0/a
Sprawdzenie, czy liczba a jest liczbą parzystą	a%2 == 0
Wyznaczenie cyfry jedności liczby a	cyfra = a%10

Instrukcja warunkowa

if WARUNEK1:

Jeśli jest spełniony wykonaj blok instrukcji

Instrukcja1

Instrukcja2

elif WARUNEK2:

Jeśli nie to zbadaj kolejny warunek

Instrukcja3

Instrukcja4

else:

Jeśli nie jest spełniony wykonaj blok instrukcji

Instrukcja5

Instrukcja6

Instrukcja7

Instrukcja następna po instrukcji warunkowej

Części elif oraz else są opcjonalne.

Każda część instrukcji warunkowej kończy się dwukropkiem.

Zagnieżdżanie

Instrukcje warunkowe można zagnieżdżać, co zaznaczone jest poprzez odpowiednio duże wcięcia

if WARUNEK1:

instrukcji

Instrukcja1

if WARUNEK2:

Instrukcja2

else:

Instrukcja3

else:

Instrukcja4

Jeśli jest spełniony wykonaj blok

Zagnieżdżona instrukcja warunkowa

Zakończenie bloku instrukcji sygnalizowane jest przez zmniejszenie wcięcia.

Instrukcja pętli for ... in

Instrukcja pętli for ... in służy do iterowania po dowolnej sekwencji obiektów, gdzie sekwencja to uporządkowany zbiór elementów:

```
for i in range(1,5): i przyjmie wart. od 1 do 4
    Instrukcja1
    Instrukcja2
```

else:

Instrukcja3

Instrukcja4

Element else jest opcjonalny Instrukcja3 po zakończeniu pętli Instrukcja następna po pętli

for i in range(x,y) w Pythonie odpowiada instrukcji
for (int i=x; i<y; i++) w C</pre>

Instrukcja pętli while

Instrukcja pętli while pozwala na kilkukrotne wywołanie bloku poleceń tak długo, jak długo warunek będzie prawdziwy:

while WARUNEK:
 Instrukcja1
 Instrukcja2
else:
 Instrukcja3

Jeśli jest spełniony wykonaj blok

Element else jest opcjonalny Instrukcja3 wykonana po pętli

Przykład.

Algorytm Euklidesa

```
print("Podaj dwie liczby naturalne ")
a = int(input("a = "))
b = int(input("b = "))
# ustalenie, która spośród nich jest mniejsza
if a > b:
    w = a
    m = b
else:
    w = b
    m = a
r = w % m
while r:
    w = m
    m = r
     r = w % m
print("NWD liczb %i i %i wynosi %i, ich NWW wynosi %i" % (a, b, m, a*b/m))
```

POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI

INFORMATYKA

Materiały zostały opracowane w ramach projektu "Zintegrowany Program Rozwoju Politechniki Lubelskiej – część druga", umowa nr POWR.03.05.00-00-Z060/18-00 w ramach Programu Operacyjnego Wiedza Edukacja Rozwój 2014-2020 współfinansowanego ze środków Europejskiego Funduszu Społecznego

