CARDIFF UNIVERSITY EXAMINATION PAPER

Academic Year: 2009/2010

Examination Period: Autumn

Examination Paper Number: CM0340

Examination Paper Title: Multimedia

Duration: 2 hours

Do not turn this page over until instructed to do so by the Senior Invigilator.

Structure of Examination Paper:

There are 3 pages.

There are 4 questions in total.

There are no appendices.

The maximum mark for the examination paper is 80 and the mark obtainable for a question or part of a question is shown in brackets alongside the question.

Students to be provided with:

The following items of stationery are to be provided:

ONE answer book.

Instructions to Students:

Answer 3 questions.

The use of translation dictionaries between English or Welsh and a foreign language bearing an appropriate departmental stamp is permitted in this examination.

Q1.	(a)	What is the <i>distinction</i> between lossy and lossless data compression? Give <i>one example</i> of a lossy and lossless compression algorithm.	[2] [2]
	(b)	List <i>three pattern substitution</i> based compression algorithms.	[3]
	(0)	For each algorithm, give one application where it is used with respect to multimedia data.	[3]
	(c)	What is the basic concept used in defining an <i>Information Theoretic</i> approach data compression?	h to [2]
	(d)	Why is the <i>Huffman coding</i> algorithm <i>better</i> at data compression that the <i>Shannon-Fano</i> Algorithm?	[2]
	(e)	What <i>advantages</i> does the <i>arithmetic coding</i> algorithm offer over <i>Huffman coding</i> algorithm with respect to data compression?	[3]
		Are there any disadvantages with the arithmetic coding algorithm?	[2]
	(f)	Given the following Differential Pulse Code Modulated (DPCM) Sequence <i>reconstruct</i> the <i>original signal</i> .	
		+4+2+3-2+3-1+1+1	
			[4]
	(g)	Given the following Run Length Encoded (RLE) Sequence <i>reconstruct</i> the <i>original 2D 8x8 (binary) data array</i> .	L'J
		(0,8), $(0,1), (1,1), (0,4), (1,1), (0,1),$ $(0,1), (1,2), (0,2), (1,2), (0,1),$ $(0,1), (1,6), (0,1),$ $(0,2), (1,4), (0,2),$ $(0,3), (1,2), (0,3),$ $(0,2), (1,1), (0,2), (1,1), (0,2),$ $(0,1), (1,1), (0,4), (1,1), (0,1)$	[4]
Q2.	(a)	What is <i>MIDI</i> ?	[1]
	(b)	What features of MIDI make it <i>suitable</i> for use in the <i>MPEG-4 audio compression standard</i> ?	[2]
	(c)	Briefly outline the MPEG-4 structured audio standard.	[6]
	(d)	What features of MIDI make it suitable for controlling software or hardy devices?	vare [6]
	(e)	With relation to <i>controlling devices</i> , what <i>limitations</i> does MIDI have in term the level of control, the number of devices and the number of independent contrems within a device?	
		Suggest a solution that can employed to remedy <i>each</i> of these problems us <i>standard</i> MIDI devices.	sing [6]

Q3.	(a)	Briefly, with the aid of suitable diagrams, outline the <i>JPEG/MPEG I-Frame</i>		
		compression pipeline and list the constituent compression algorithms	employed	
		at each stage in the pipeline.	[9]	

What are the *key differences* between the JPEG and MPEG I-Frame compression pipeline? [4]

(b) *Motion JPEG (or M-JPEG)* is a video format that uses JPEG picture compression for *each frame* of the video. Why is M-JPEG *not widely used* as a video compression standard? [2] Briefly state what *additional approaches* are used by MPEG video compression algorithms to improve on M-JPEG. [2]

(c) What processes, outlined in (a), give rise to the *lossy* nature of JPEG/MPEG video compression? [4]

(d) Given the following portion from a *block* (assumed to be 4x4 pixels to simplify the problem) from an image after the Discrete Cosine Transform stage of the compression pipeline has been applied:

128	32	64	160
32	16	12	32
128	64	46	128
4	31	40	32

- i. What is the result of the *quantisation step* of the MPEG video compression method assuming that a constant quantisation value of 32 is used? [3]
- ii. What is the result of the following *zig-zag step* being applied to the quantised block? [3]
- Q4. (a) In MPEG audio compression, what is *frequency masking*? [2]
 - (b) Briefly describe the cause of frequency masking in the human auditory system?

[3]

- (c) In MPEG audio compression, what is *temporal masking*? [2]
- (d) Briefly describe the *cause* of temporal masking in the human auditory system?

[3]

- (e) Briefly describe, using a suitable diagram if necessary, the *MPEG-1 audio* compression algorithm, outlining how frequency masking and temporal masking are encoded. [10]
- (f) Given two stereo channels of audio:

Left Channel: 14 11 10 16 17 20 Right Channel: 11 14 16 5 44 20

- i. Apply *Middle/Side (MS) stereo redundancy coding* to the sequence. [3]
- ii. How may this result be employed to achieve *compression* of the audio signal? Illustrate your answer with respect to the above data. [4]