AerialVLN: Vision-and-Language Navigation for UAVs

(2023 ICCV)

Content

- Introduction
- Motivation
- Method
- Exprtiment
- Results
- Conclusion

Introduction

 UAV-based applications: goods delivery, traffic/security patrol, scenery tour

Vision-and-Language
Navigation (VLN) tasks have
drawn significant attention

Motivation

- Research Gaps
 - Existing VLN tasks are for navigation on the ground (indoors / outdoors)
 - Navigating in the sky is more complicated than on the ground
 - Larger action space
 - Complex spatial relationship reasoning
 - Longer path
 - Avoid getting stuck on objects in 3D space

Propose AerialVLN: UAV-based and towards outdoor environments

Method

- Task
 - Input: front view perceptions (RGB & depth images)
 - Output: the agent predict a series of actions

- Dataset Creation
 - 3D simulator
 - 25 city-level scenarios
 - Supports continuous navigation

Model

Method - Dataset Collection

Two Steps

Path Generation

- Human manipulators: pass several random-selected landmarks from a pre-defined landmarker set
- In simulator, provide hints about directions & distances to the next landmark to the manipulators
- Output: multirotor's pose trace
- Remove redundant motion for smoother ground truth trajectories

Instruction collection

Show videos of drone flight and require annotators to give natural language commands that can lead a pilot to complete the flying

Method - Dataset Analysis

Comparision: AerialVLN dataset vs other popular VLN datasets

- Largest average path length
- Most average actions per path
- Number of instructions

Dataset Split

train, val_seen, val_unseen, test (unseen)

Method - Model

Five baseline models are evaluated on the task

- Random action reflect the size of solution space
- Action sampling according to the action distribution of the training set measure the similarity of the action distribution on evaluation and training splits
- LingUNet
- Sequence-to-Sequence ResNet (img) + LSTM(instruction) + GRU + Linear
- Cross-Modal Attention

Method - Model (Cross-Modal Attention (CMA))

Figure 4: Main architecture of the Cross-Modal Attention model

Method - Model (Look-ahead Guidance (LAG))

Motivation: in student-forcing fashion, ground-truth actions are usually determined via the shortest path from the current location to the destination

However, instructions do not describe the shortest path from the starting to the destination

Method - Model (Look-ahead Guidance (LAG))

3 Steps

- 1. Find the shortest path to return to the ground-truth (point B)
- 2. Navigate along the ground-truth path 10 steps (reach C)
- 3. The look-ahead path is the shortest path from X to location C, and the ground-truth action for the nexxt step is the first step on this path

- (a) Shortest path guidance
- (b) Look-ahead guidance

'A' denotes starting location; "denotes destination; 'X' denotes current location; Blue path denotes ground-truth; Yellow path denotes "generated ground-truth" when the agent deviates from the real ground-truth path.

Experiment - Metrics

- Success Rate agent stops within 20m of the destination
- Oracle Success Rate distance between the destination and any point on the trajectory < 20 m
- Navigation Error distance between stop location to the destination
- Success rate weighted by Normalised Dynamic Time Wraping considers both the navigation success rate the similarity between ground truth path and the model predicted path

Results

#	AerialVLN	Validation Seen				Validation Unseen				Test Unseen			
		NE/m↓	SR/% ↑	OSR/% ↑	SDTW/% ↑	NE/m↓	SR/% ↑	OSR/% ↑	SDTW/% ↑	NE/m↓	SR/%↑	OSR/% ↑	SDTW/%↑
1	Random	300.8	0.0	0.0	0.0	351.0	0.0	0.0	0.0	356.3	0.0	0.0	0.0
2	Action Sampling	383.1	0.1	2.1	0.1	434.9	0.2	2.1	0.1	441.9	0.2	1.8	0.1
3	Seq2Seq	480.4	2.9	10.2	1.0	551.8	1.1	5.6	0.3	558.8	1.0	4.9	0.3
4	CMA	293.5	2.3	6.5	0.8	360.7	1.6	4.4	0.5	358.6	1.6	4.1	0.5
5	Human	=	-	-	-	-	-	8	-	73.5	80.8	80.8	14.2
#	AerialVLN-S	Validation Seen				Validation Unseen				Test Unseen			
		NE/m↓	SR/%↑	OSR/% ↑	SDTW/%↑	NE/m↓	SR/% ↑	OSR/% ↑	SDTW/%↑	NE/m↓	SR/% ↑	OSR/% ↑	SDTW/%↑
S1	Random	109.6	0.0	0.0	0.0	149.7	0.0	0.0	0.0	148.5	0.0	0.0	0.0
S2	Action Sampling	213.8	0.9	5.7	0.3	237.6	0.2	1.1	0.1	242.0	0.7	2.5	0.3
S3	LingUNet	383.8	0.6	6.9	0.2	368.4	0.4	3.6	0.9	399.8	0.1	3.1	0.1
S4	Seq2Seq	146.0	4.8	19.8	1.6	218.9	2.3	11.7	0.7	214.6	2.2	9.4	0.7
S5	CMA	121.0	3.0	23.2	0.6	172.1	3.2	16.0	1.1	178.5	3.9	13.1	1.4
S6	Seq2Seq-DA	85.5	9.9	24.1	4.5	143.5	4.0	10.9	0.7	140.2	3.5	9.5	0.6
S7	CMA-DA	92.2	9.9	26.5	3.7	122.7	4.5	13.9	1.0	125.4	4.3	14.8	1.2
S8	Ours (LAG)	90.2	7.2	15.7	2.4	127.9	5.1	10.5	1.4	128.3	4.5	11.6	1.3

Table 4: Performance of baselines on our AerialVLN task (Row 1-5) and AerialVLN-S task (Row S1-S7). There is a significant gap to human performance.

Results

Instruction: Ascend ¹ into the air then turn right ² above the railway. Turn right ³ parallel with the curb. Descend ⁵ towards the electrical post at the intersection of the road. Turning right ⁹ down into the dark alleyway. Fly to ¹¹ the end of the dark alleyway then turning right ¹⁴ at the intersection. Stop ¹⁸ near the payphones on the right side of the road.

Conclusion

Introduce the AerialVLN task

Approach to create & analyse datasets

Model architecture