Data Driven Optimized Budget allocation for maximizing healthcare benefits while minimizing overall expenditure

Amritanshu Raj

102001005

Term Project Optimization Techniques in Engineering (CE5516)

Faculty: Dr.B.K.Bhavathrathan

November 24,2023

OVERVIEW

Introduction

Motivation

Problem Formulation

Study Area

Analysis

Interpretation

Conclusions

References

Introduction

- In today's rapidly evolving healthcare landscape, optimizing the allocation of resources is paramount for ensuring the well-being of a nation's population.
- The challenge lies in distributing limited budgets across diverse healthcare domains, including the treatment of specific diseases, funding for research initiatives, and investments in infrastructure.
- The optimization process becomes crucial as countries strive to enhance the overall health outcomes of their citizens while grappling with constrained financial resources.

Introduction (Cont...)

- The objective of this study is to formulate a robust strategy for healthcare expenditure optimization at the global level.
- This entails the identification and allocation of optimal budgets to address various diseases.
- To achieve this, a Linear Programming (LP) model will be constructed, integrating a comprehensive set of variables and constraints to simulate the complexities of the healthcare ecosystem.
- The remedy to the cost crisis does not require medical science breakthroughs or new governmental regulation. It simply requires a new way to accurately measure costs and compare them with outcomes.

Motivation

- Motivation for this study lies in the imperative to develop a forward-thinking, transparent, and data-driven strategy for healthcare expenditure optimization that considers the diverse global health challenges, economic constraints, and the potential for positive, widespread impact on public health outcomes.
 - Rising Healthcare Costs
 - ② Diversity of Healthcare Needs
 - Stimited Resources and Budget Constraints
 - Global Health Inequities
 - Advancements in Data Analytics and Modeling Techniques
 - O Public Health Impact
 - Adaptability to Changing Healthcare Landscapes

Problem Formulation

 This study aims to formulate a comprehensive Linear Programming (LP) model. The primary objective is to identify and allocate optimal budgets efficiently, ensuring the effective management of resources to combat a diverse range of diseases prevalent in the global healthcare landscape.

Study Area

Country	Region	Income Bracket			
USA	N.America	High			
Japan	Asia	High			
Germany	Europe	High			
U.K	Europe	High			
Brazil	S.America	Upper Middle			
China	Asia	Upper Middle			
Indonesia	Asia	Upper Middle			
India	Asia	Lower Middle			
Nigeria	Africa	Lower Middle			
D.R. Congo	Africa	Low			

Table: Americas: 2, Europe: 2, Asia: 4, Africa: 2

Decision variables

We assumed expenditure on each disease in million USD units as decision variables.

- Decision variable: X_{ij}
- Where X_{ij} is in million USD terms
- i represents ith country and j represents jth disease, total variables = $10 \times 10 = 100$.

Diseases	Туре
Tuberculosis (TB)	infectious
Malaria	parasite
Heart diseases	Life style
Cancer	Complex
Covid-19	Pandemic
Asthma	Respiratory (Air pollution)
Nutrional	Poverty
infant mortality	Backwardness
trauma	injury
Parkinson's disease	Nervous system disorder

Fig: Diseases selected

Decision variables (Contd...)

Country	Tuberculosis (TB)	Malaria	Cardiovascular Disease	Cancer	Covid-19	Asthma	Malnutrition	infant mortality	trauma	Parkinson's disease
USA	x11	x12	x13	x14	x15	x16	x17	x18	x19	x110
Brazil	x21	x22	x23	x24	x25	x26	x27	x28	x29	x210
Japan	x31	x32	x33	x34	x35	x36	x37	x38	x39	x310
China	x41	x42	x43	x44	x45	x46	x47	x48	x49	x410
India	x51	x52	x53	x54	x55	x56	x57	x58	x59	x510
Indonesia	x61	x62	x63	x64	x65	x66	x67	x68	x69	x610
Nigeria	x71	x72	x73	x74	x75	x76	x77	x78	x79	x710
D.R Congo	x81	x82	x83	x84	x85	x86	x87	x88	x89	x810
Germany	x91	x92	x93	x94	x95	x96	x97	x98	x99	x910
U.K	x101	x102	x103	x104	x105	x106	x107	x108	x109	x1010

Fig: All decision variables summarized

Objective

- To maximize budget allocation efficiency for healthcare
- To minimize overall expenditure to help countries with constraints

To reduce bias in budget allocation

- To develop a transparent mechanism for budget allocation
- To develop a LP model which can be applied easily in similar budget distribution at national level or state level

Constraints

Country level constraints

- 2 A country i will have its own health budget λ_i
- 3 Develop countries can overspend by 10% of their budget
- Developing countries can overspend by 2% of their budget (international donors)
- Disease level constraints

 - ② There are existing guidelines by WHO global expenditure required for a disease λ_j to eradicate it by 2030 (Malaria, TB etc)
 - **③** For other diseases we used total death caused by that disease to total deaths by all 10 diseases and then fixed its budget λ_j using that fraction.

Analysis

- If we look closely we can see that the LP now resembles Transportation problem.
- All we need is cost matrix
- For cost matrix we used deaths per million from each disease in each country p_{ij}
- Then cost (marginal cost) would be $t_{ij}=rac{C}{p_{ij}}.$ Where C is a constant
- We choose the value of C as 1,00,000 as it was reducing the rounding error when converting to integer.

Analysis (Cont...)

Cost Matrix	Tuberculosis (TB)	Malaria	Cardiovascular Disease	Cancer	Covid-19	Asthma	Malnutrition	infant mortality	trauma	Parkinson's disease
USA	55548	3332876	75	73	94	11903	11110	20005	734	2198
Brazil	2796	371230	161	87	111	9174	3623	8	459	5208
Japan	6782	1000000000	119	88	3,616	27806	24391	50	2,395	4292
China	4413	14121750	136	71	29,488	7752	12820	20	540	2532
India	295	1523842	114	120	951	541	14286	4	683	2188
Indonesia	250	23832	113	89	1,234	746	874	5	720	2083
Nigeria	146	113	305	102	16,954	934	4237	1	614	1786
D.R Congo	188	15	355	97	16,226	482	840	2	361	2703
Germany	75071	1000000000	54	71	179	21726	66730	33	2,527	2353
U.K	33486	2232380	73	66	71	11627	111619	25	3,306	2321

Fig: Cost Matrix

- Objective function: $\min \sum_{i \le 10} \sum_{j \le 10} t_{ij} * X_{ij}$
- Subject to:

 - **3** $X_{ij} \ge 0 \forall i \le 10 \& j \le 10$
- We used python to solve above formulated LP as Lingo has rate limit

Interpretation

On solving we get optimum healthcare expenditure globally = \$ 9
trillion. for Other results check Juypter notebook. Analysing 3
diseases across three countries High (US), Middle(India), Low(DRC):

(a) Death caused by Malaria each country in 2020

(b) Optimized Budget as per our LP

14

Fig: Malaria and DRC

Interpretation (contd...)

(a) Death caused by Covid-19 each country in 2020

(b) Optimized Budget as per our LP

Fig: Covid-19 and USA

Interpretation (contd...)

(a) Infant deaths each country in 2019

(b) Optimized Budget as per our LP

Fig: Infant Mortality and India

Conclusions

- This allocation promises to not only address the immediate health challenges faced by nations but also lay the groundwork for a resilient and responsive healthcare system capable of adapting to future needs.
- Through the meticulous identification of crucial variables and the establishment of constraints, a comprehensive understanding of the nation's health landscape was achieved.
- The linear program, constructed with precision and powered by software despite the challenges posed by rate limits, will be a guiding light for decision-makers.

References

- https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022/tb-disease-burden/2-2-tb-mortality
- World Malaria report 2022 (WHO)
- WHO state of global health report 2020
- US CDC
- Detailed references in final paper.

"Healthy citizens are the greatest asset any country can have. "
-Winston Churchill

Thank You