Diszkrét Matematika 1. Írásbeli vizsga, 2016. január 7. (90 perc)

NÉV:

NEPTUN kód:

(Leendő) szakirány:
1. Alapvető fontosságú fogalmak
A következő hat kérdésre 1-1 pont kapható. Ebből legalább 4 pontot kell szerezni.
1. Számolja ki a következő két komplex szám reciprokát, és adja meg algebrai alakban $(a+bi$ -ként): 7-12 – 5 i .
2. Melyek injektívek az alábbi függvények közül? Húzza alá őket: négyzetre emelés a valós számo halmazán; négyzetre emelés a pozitív egészek halmazán; abszolút érték a valósok halmazán; $x\mapsto -x$ valósakon.
3. Mikor nevezünk részbenrendezésnek egy binér relációt?
4. Hányféleképp tudunk 4 különböző csokit odaajándékozni egy 30 fős osztályból négy gyereknek (eg gyerek csak egyet kaphat)?
5. Bontsa fel a zárójelet: $(2x + 2k)^3$.
6. Definiálja a kitüntetett (más néven legnagyobb) közös osztó fogalmát az egészek körében.

2. Definíciók, tételkimondások

A következő nyolc kérdésre 1-1 pont kapható.

1. Írja fel a hatványozás Moivre-féle képletét.

 $2.\,$ Definiálja a dichotómiát.

3. Mikor mondjuk, hogy egy $f\colon A\to B$ függvény szürjektív?

4. Definiálja a művelettartó függvény fogalmát binér műveletekre.

5. Adjon példát asszociatív, de nem kommutatív műveletre. Adja meg az alaphalmazt is.	
6. Hogy szól a polinomiális tétel?	
7. Mikor mondjuk, hogy két egész relatív prím?	
8. Melyek oldhatók meg az egészek körében? Húzza alá: $5x+2y=8$; $10x+7y=3z$; $57x-12y=10x+35y=100$.	y = 14;

3. Bizonyítások

A következő három bizonyításra 3-3 pont kapható. Ebből legalább 3 pontot el kell érni (tételkimondásért nem jár pont). Az összpontszám alapján a ponthatárok: 10-től 2-es, 14-től 3-as, 18-tól szóbelizhet a 4-es, illetve 5-ös osztályzatért.

- 1. Mondja ki és bizonyítsa az ekvivalenciarelációk és az osztályozások kapcsolatáról szóló tételt.
- 2. Mondja ki és igazolja az ismétléses variációk számára vonatkozó állítást.
- 3. Mondja ki és igazolja az Euler–Fermat-tételt.

4. Szóbeli kiváltását lehetővé tevő opcionális tétel

Ez a feladat maximálisan 5 pontot ér. Ha ebből legalább 3 pont megvan, és az összpontszám eléri a 20, illetve 24 pontot, akkor 4-es, illetve 5-ös érdemjegyet ajánlunk. Az alábbi kérdéseknél indoklást is várunk.

- 1. Nevezzünk trinzitívnek egy R binér relációt, ha minden a,b,c,d esetén $(a,b),(b,c),(c,d) \in R$ -ből következik $(a,d) \in R$. Melyek trinzitívek a következők közül: "osztója" az egészek halmazán; "egyenlő" az egészek halmazán; $\{(x,y) \mid x,y \in \mathbb{Z}, |x-y| \text{ páratlan}\}$ [3 pont]?
- 2. Igaz-e, hogy egy reláció pontosan akkor trinzitív, ha az inverze is az?
- 3. Igaz-e, hogy minden tranzitív reláció trinzitív? És fordítva?