

NV32F100x 参考手册 V1.0 勘误表

■ 1.1 概述

本文档对 NV32100x 参考手册版本号: V1.0 的错误之处做了修改, 特别是 Flash 和 ETM 模块修改内容较多, 勘误表如下:

■ 1.2 勘误表

页码	章节位置	原文	改成
23	表 2-1	时钟分频器寄存器(SIM_CLKDIV)	时钟分频器寄存器(SIM_BUSDIV)
	SIM 存储器映射		
27	19	总线时钟输出使能	总线时钟输出使能
	CLK0E	0 总线时钟输出在 P T H2 上禁用。	0 总线时钟输出在 PH2 上禁用。
		1 总线时钟输出在 P T H2 上使能。	1 总线时钟输出在 PH2 上使能。
33	2. 2. 3. 6	2.2.3.6 通用唯一标识符中低位寄存	2.2.3.6 通用唯一标识符中位寄存器
		器(SIM_UUIDML)	(SIM_UUIDM)
34	2. 2. 3. 7	2.2.3.7 通用唯一标识符中高位寄存	2.2.3.7 通用唯一标识符高位寄存器
		器(SIM_UUIDMH)	(SIM_UUIDH)
67	3. 3. 5. 1 ICS 控制	IREFS 复位值 0	IREFS 复位值 1
	寄存器 1		
68	表 3-9 ICS_C1 字	内部 IRC 时钟源使能	内部 IRC 时钟源使能
	段描述 IRCLKEN	0 内部 IRC 不工作	0 ICSIRCLK 输出无效
		1 内部 IRC 工作	1 ICSIRCLK 输出使能
77	表 4-1	NV32F100x Flash 存储期大小	NV32F100x Flash 存储器大小
77	表 4-1	NV32F100A/B/C 64KB	NV32F100D 32KB
		全局地址:0x0000_0000-0x0000_FFFF	全局地址:0x0000_0000-0x0000_7FFF
		NV32F100D/E/F 128KB	NV32F100E 64KB
		全局地址:0x0000_0000-0x0001_FFFF	全局地址:0x0000_0000-0x0000_FFFF
			NV32F100F 128KB
			全局地址:0x0000_0000-0x0001_FFFF
77	表 4-2	0x4002_0016h 偏移量 16H	0x4002_0018h 偏移量18H
	Flash 存储器映	0x4002_0018h 偏移量 18H	0x4002_001Ah 偏移量1AH
	射		
83	4. 2. 4. 7 EFM 状态	地址: 0x4002_0000h(基址) + 16h(偏	地址:0x4002_0000h(基址) + 18h(偏
	寄存器	移量)= 4002_0016h	移量)= 4002_0018h
83	4. 2. 4. 8 EFM 命令	地址: 0x4002_0000h(基址) + 18h(偏	地址:0x4002_0000h(基址) + 1Ah(偏
	寄存器	移量)= 4002_0018h	移量)= 4002_001Ah
85	4. 2. 6. 1 初始化	= 2.85 *100000000L/BUS_CLK_HZ;	= 2.85 *BUS_CLK_HZ/1000000L;
	Flash	= 1000000000L/6.75*BUS_CLK_HZ;	= 6.75*BUS_CLK_HZ/1000000L;

<u> </u>			, , ,
122	6.3.1 简介	Enhance Timer 模块(ETM)是一种两	NV32 系列的 Enhance Timer 模块(ETM)
		通道至八通道的多功能定时器	是一种两通道至八通道的多功能定时
			器, 而 NV32F100x 系列型号的 ETM 模
			块最多有 6 个通道
122	6. 3. 2	其中 ETMO 有 8 个通道, 可用于电机或	其中 ETMO 和 ETM1 各只有 2 个通道,
	ETM 的基本理念	舵机的 PWM 输出。ETM1 和 ETM2 具备	而 ETM2 有 6 个通道,ETM2 可用于电
		正交解码功能,但是 ETM1 和 ETM2 各	机或舵机的 PWM 输出。如果同时使能
		只有两个通道。	3 个 ETM 模块,最多可以 10 个通道有
			效,但 NV32F100x 的 3 个 ETM 模块都
			不具备正交解码功能。
125	6.3.7.2 寄存器	访问保留地址会导致传输错误。用于	访问无效寄存器地址会导致传输错
	说明	不存在的通道的寄存器即视为无效寄	误,程序会跑飞。用于不存在的通道
		存器。	的寄存器即视为无效寄存器。
125	表 6-12	ETMO 基址: 4006_8000h ETM1 基址:	ETMO 基址: 4003_8000h (2 个通道有
	ETM 存储器映射	4006_9000h ETM2 基址: 4006_A000h	效, 4003_801C ~ 4003_8098 寄存器
			无效,不可以读写操作)
			ETM1 基址: 4003_9000h (2 个通道有
			效, 4003_901C ~ 4003_9098 寄存器
			无效,不可以读写操作)
			ETM2 基址: 4003_A000h (6个通道有
			效,除 ETM2_C6/7SC, ETM2_C6/7V 4 个
			寄存器无效外,其他寄存器均有效,4
40/	± / 40	1000 kg5.4 与片体 2000 2000	个无效寄存器不可以读写操作)
126	表 6-12	4003_*054 复位值: 0000_0000h	4003_*054 复位值: 0000_0004h
126	ETM 存储器映射 表 6-12	4002 *074 按陪摄书状太宏左婴	
120	表 0-12 ETM 存储器映射	4003_*074 故障模式状态寄存器 (FTMO_FMS)	_
147	表 6-34	ETMx_FILTER 字段描述	(ETMx_FMS) ETMx_FLTCTRL 字段描述
147	3 € 0 ⁻ 34	EIMX_FILIEN 子段抽处	CIMX_FLIGIRE 子权加处
232	表 7-15	在传输开始前 C1 [TX]位必须正确反	在传输开始前 C1 [TX]位必须正确反
		映主从模式传输所需方向。例如,如	映主从模式传输所需方向。例如, I2C
		果 I2C 模块配置为主机发送但是主机	模块配置为主机发送模式,但是主机
		收到命令,读取数据寄存器就不会启	却收到"接收"命令,这时读取数据
		动接收。	寄存器就不会启动接收。
		当 I2C 模块配置为主接收或从机接收	当 I2C 模块配置为主接收或从机接收
		模式,读取数据寄存器会返回最后接	模式,读取数据寄存器会返回最后接
		收到的字节。数据寄存器并不反映 I2	收到的字节。数据寄存器并不反映 I2C
		总线 C 发送的每个字节,也不罐软件	总线上发送的每个字节, 软件也不会
		验证一个字节已被写入到数据寄存器	通过回读来验证某个字节是否正确的
		正确通过读回去。	写入到数据寄存器。
		在主传输模式,跟随 MST 的断言(开	在主传输模式,MST(开始位)或 RSTA
		始位)或断言 RSTA(重复启动位)向	(重复启动位)有效后,向数据寄存
		数据寄存器写入第一个字节数据是用	器写入第一个字节数据是用于地址传
		于地址传输, 其中必须包含与命令 R /	输,其中必须包含与命令 R / W 位(位

www. navota. com 2 纳瓦特

勘误表

		W 位 (位置位 0) 连接在一起的呼叫地	置位 0)连接在一起的呼叫地址(位
		址(位 7-1)。	7-1) 。
236	7. 3. 7. 12	120 低位低超时寄存器低电平	I2C 低位超时寄存器低电平
236	表 7-22	SCL 最低有效位低超时值决定了 SCL	SCL 最低有效的低超时值决定了 SCL
		低超时周期	低超时的周期
252	表 8-2 信号说明	TCLKn	ETMn_CLK
252	表 8-2 信号说明		增加: ETMn_FLT[2:1] ETM 故障输入,
			需要使能 ETM2_FLTCTRL 寄存器的故
			障输入位
257	表 8-4	11-10 FLTG	11-10 FLTF
	PORT_IOFLT 字段		
	描述		