EPITA

Mathématiques

Contrôle S2

durée: 3 heures

Mars 2022

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 35 points. La note sera ramenée à une note sur 20 par une règle de 3
Consignes:
 Lire le sujet en entier avant de commencer. Il y a en tout 7 exercices. Vous devez répondre directement sur les feuilles jointes. Pensez à regarder la taille (souvent surestimée) réservée

— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

à la réponse avant de commencer à rédiger.

— Aucune réponse au crayon de papier ne sera corrigée.

— Documents et calculatrices interdits.

Exercice 1 (5,5 points)

1.	Résoudre sur $I =]0, +\infty[$ l'équation différentielle (E) $xy' + \frac{1}{2}y = -2.$
2.	Résoudre dans \mathbb{R} l'équation différentielle (E) $2y'' + 8y' + 8y = 3e^{-2x}$

Exercice 2 (5 points)

Dans cet exercice, les questions sont indépendantes.

1. Soient f et g deux fonctions telles qu'au voisinage de 0 :

$f(x) = o(x^3)$ et $g(x) = x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$
(a) A t-on $f(x) = o(x^2)$ au voisinage de 0? $f(x) = o(x^4)$ au voisinage de 0? Justifier.
(a) A t-on $f(x) = o(x^-)$ at voisinage de 0 : $f(x) = o(x^-)$ at voisinage de 0 : Justiner.
(b) Déterminer le plus grand entier naturel n pour lequel on peut affirmer que $f(x) - 2g(x) = o(x^n)$ au voisinage de 0
2. Soient f et g deux fonctions telles qu'au voisinage de 0 :
$f(x) = 1 + x + x^2 + o(x^3)$ et $g(x) = 2x + x^2 - x^3 + o(x^3)$
Donner des équivalents simples en 0 de : $f(x)$, $g(x)$ et $2xf(x) - g(x)$.
3. Proposer un développement limité en 0 à l'ordre 3 d'une fonction h non nulle qui vérifierait en 0 :
$h(m) = 2m \text{ of } h(m) + 2m = 5m^2$

4. Proposer un développement limité en 0 à l'ordre 4 d'une fonction i non nulle qui vérifierait en 0 :

$$i(x) = o(x^3)$$
 et $\lim_{x \to 0} \frac{i(x)}{x^4} = 2$

.....

Exercice 3 (5 points)

Dans cet exercice, vous prendrez soin de mettre en évidence les développements limités usuels que vous utiliserez au fur et mesure.		
	. Donner le développement limité en 0 à l'ordre 3 de $f(x) = \sin(2x)e^{-x}$.	
1.	. Domier is developpement infines on θ a rotate θ de $f(x) = \sin(2x)e^{-x}$.	
2	. Donner le développement limité en 0 à l'ordre 3 de $g(x) = \ln(1 + x + \cos(x))$.	

Exercice 4 (5 points)

1.	Calculer $\lim_{x \to 0} \frac{\sqrt{1 + 2x^2 - \cos(2x^2) - x^2}}{e^{-x} + \sin(x) - 1}$
2.	Calculer $\lim_{x \to +\infty} \left(x \sin\left(\frac{1}{x}\right) \right)^{x^2}$.
2.	Calculer $\lim_{x \to +\infty} \left(x \sin\left(\frac{1}{x}\right) \right)^{x^2}$.
2.	Calculer $\lim_{x \to +\infty} \left(x \sin\left(\frac{1}{x}\right) \right)^{x^2}$.
2.	Calculer $\lim_{x \to +\infty} \left(x \sin\left(\frac{1}{x}\right) \right)^{x^2}$.
2.	Calculer $\lim_{x \to +\infty} \left(x \sin\left(\frac{1}{x}\right) \right)^{x^2}$.
2.	Calculer $\lim_{x \to +\infty} \left(x \sin\left(\frac{1}{x}\right) \right)^{x^2}$.
2.	Calculer $\lim_{x \to +\infty} \left(x \sin\left(\frac{1}{x}\right) \right)^{x^2}$.
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	
2.	

Exercice 5 (6 points)

	sembles suivants sont-ils des \mathbb{R} -espaces vectoriels? Justifiez rigoureusement votre réponse.
1.	$E = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, \forall n \in \mathbb{N}, u_n \ge -1\}.$
2.	$F = \{u \in \mathbb{R}^3, u = \alpha e_1 + \beta e_2; (\alpha, \beta) \in \mathbb{R}^2\} \text{ où } e_1 = (1, 1, 0) \text{ et } e_2 = (0, 5, 3).$
3.	$G = \{f : \mathbb{R} \longrightarrow \mathbb{R}, f(x) = o(x) \text{ au voisinage de } 0\}$

Exercice 6 (4,5 points)

	n entier $n \ge 5$. On considère le polynôme $P_n(X) = X^{n+1} - 2X^n + 2X^{n-1} - 2X^{n-2} + X^{n-3}$.
	Vérifier que 0 est une racine de P et donner, sans calcul, son ordre exact de multiplicité en justifiant.
2.	Montrer que 1 est une racine de P . Trouver son ordre exact de multiplicité.
3.	On prend dans cette question $n = 11$. Ainsi, $P_{11}(X) = X^{12} - 2X^{11} + 2X^{10} - 2X^9 + X^8$. En vous aidant des que
	précédentes, trouver la factorisation de P_{11} en polynômes irréductibles dans $\mathbb{R}[X]$.
	précédentes, trouver la factorisation de P_{11} en polynômes irréductibles dans $\mathbb{R}[X]$.

Exercice 7 (4 points)

Le but de l'exercice est de trouver tous les polynômes P de degré 3 tels que $(X-1)^2|P(X)-1$ et $(X+1)^2|P(X)+1$. Considérons pour cela $P(X)=aX^3+bX^2+cX+d$ avec $(a,b,c,d)\in\mathbb{R}^4$ vérifiant l'hypothèse :

$$(H)$$
: $(X-1)^2|P(X)-1$ et $(X+1)^2|P(X)+1$

Introduisons aussi les deux polynômes : A(X) = P(X) - 1 et B(X) = P(X) + 1.

1.	Citer toutes les informations concernant les polynômes A et B que l'on peut déduire de (H) ?
2.	En déduire $P(1)$, $P'(1)$, $P(-1)$ et $P'(-1)$.
3.	En déduire tous les polynômes P de degré 3 vérifiant (H) .