Mathematical Modelling of p53 Signalling in Response to DNA Damage

AMATH/BIOL 382
Presented by: Michelle Feng and Graeme Ko

Overview of presentation

- Introduction
 - Overview of gene regulatory networks (GRNs)
 - o p53's role in molecular oncology
 - Motivation for model
- Negative feedback model of p53-Mdm2
 - Summary and analysis of model
 - Implementation
 - Limitations
- Extending the model
 - Summary and analysis of model
- Next steps

Introduction

What are GRNs?

- Gene regulatory networks (GRNs) are mathematical descriptions of the interactions between genetic molecules
 - Molecules represent nodes, and their interactions represent edges in the graph
- Genetic interactions affect the production of molecules
 - Through activation or inhibition mechanisms
- GRNs are found across all cellular processes, and are an important resource to investigate cell behaviour
 - Helps to understand genetic reasoning behind deviation of cell behaviour (Ex. cancer)

p53's role in molecular oncology

Transcriptional activation of genes that lead to cell cycle arrest, apoptosis, or enhanced DNA repair

- Key player in molecular oncology
- p53 provides many regulatory functions
 - Regulates cellular process such as apoptosis and cell cycle arrest
- Extra- and intracellular stresses activate p53
 - Downstream effects depend on nature of stress
- This paper focused on the response of p53 to DNA damage
 - Irradiation causes DNA damage
 - Leads to phosphorylation of p53 that reduces its binding to Mdm2 (inhibitor)

Motivation for model development

- Time-lapse fluorescence microscopy experiments determined altered dynamics of p53
 - O Depending on source of irradiation, p53 exhibited periodic or sustained expression
- Dynamic behaviour of p53 is an important part of its function
 - Useful to investigate mechanisms within its pathway to determine what drives periodic vs sustained expression
 - Determining mechanisms which provoke oscillations in p53 GRNs has been a major focus
- A common feature of GRNs is negative feedback
- Response to DNA damage induced by radiotherapy
- Timing and pathway sensitivity to targeted drugs

p53-Mdm2 negative feedback loop

Summary of model

- Negative feedback occurs through p53's interaction with Mdm2
 - Mdm2 represses p53
 - Activated p53 activates Mdm2

Implementation of model

System of Ordinary Differential Equations (ODEs):

$$\dot{x}(t) = k_s - k_1 y(t) \frac{x(t)}{K_1 + x(t)} - d_x x(t),$$

$$\dot{y}(t) = k_2 \frac{x(t)^n}{K_2^n + x(t)^n} - d_y y(t).$$

Graphical model:

Limitations

- Modelling GRNs using ODEs showed that presence of negative feedback alone is insufficient to produce fluctuating protein levels
- An intermediate is required to push GRNs from sustained expression to periodic fluctuations
 - Time delay: time for processes to occur
 - Spatial effects: requirement for molecules to diffuse to certain spatial locations
 - Positive feedback: interactions with other molecules

Compartmental Model

Summary of model

- ATM and Wip1 modelled
 - DNA breaks activate ATM
 - ATM activates p53
 - p53 upregulates Wip1 and Mdm2
 - Wip1 deactivates p53 and ATM
- Diffusion effects between cytoplasm and nucleus must be considered

https://iopscience.iop.org/article/10.1088/1478-3975/11/4/045001/pdf

Implementation of model

Nucleus Equations:

$$\begin{array}{l} \frac{\mathrm{d}u_0}{\mathrm{d}t} = k_{dph1}u_5\frac{u_3}{K_{dph1}+u_3} - k_1u_1\frac{u_0}{K_1+u_0} - k_{ph1}u_4\frac{u_0}{K_{ph1}+u_0} \\ & - p_0V_r(u_0-v_0) \\ \\ \frac{\mathrm{d}u_1}{\mathrm{d}t} = -p_1V_r(u_1-v_1) - \delta_1u_1 \\ \\ \frac{\mathrm{d}u_2}{\mathrm{d}t} = k_{Sm} + k_{Spm}\frac{u_3^4}{K_{Spm}^4+u_3^4} - p_2V_ru_2 - \delta_2u_2 \\ \\ \frac{\mathrm{d}u_3}{\mathrm{d}t} = k_{ph1}u_4\frac{u_0}{K_{ph1}+u_0} - k_{dph1}u_5\frac{u_3}{K_{dph1}+u_3} \\ \\ \frac{\mathrm{d}u_4}{\mathrm{d}t} = k_{ph2}E\frac{ATM_{TOT}-u_4}{K_{ph2}+\frac{1}{2}(ATM_{TOT}-u_4)} - 2k_{dph2}u_5\frac{u_4^2}{K_{dph2}+u_4^2} \\ \\ \frac{\mathrm{d}u_5}{\mathrm{d}t} = p_5V_rv_5 - \delta_5u_5 \\ \\ \frac{\mathrm{d}u_6}{\mathrm{d}t} = k_{Sw} + k_{Spw}\frac{u_3^4}{K_{Spw}^4+u_3^4} - p_6V_ru_6 - \delta_6u_6 \end{array}$$

- $\begin{aligned} u_0 &= \left[p53 \right]^{(n)}, \ u_1 &= \left[Mdm2 \right]^{(n)}, \ u_2 &= \left[Mdm2_{mRNA} \right]^{(n)}, \\ u_3 &= \left[p53_p \right]^{(n)}, \ u_4 &= \left[ATM_p \right]^{(n)}, \ u_5 &= \left[Wip1 \right]^{(n)}, \\ u_6 &= \left[Wip1_{mRNA} \right]^{(n)} \end{aligned}$
- E = severity of DNA damage
- p = permeability of molecule
- Vr = volume ratio
- ATM_TOT = total ATM (assumed constant)
- δ basal degradation rate

Implementation of model

Cytoplasm Equations:

$$\frac{dv_0}{dt} = k_S - k_1 v_1 \frac{v_0}{k_1 + v_0} - p_0 (v_0 - u_0)$$

$$- \delta_0 v_0$$

$$\frac{dv_1}{dt} = k_{tm} v_2 - p_1 (v_1 - u_1) - \delta_1 v_1$$

$$\frac{dv_2}{dt} = p_2 u_2 - k_{tm} v_2 - \delta_2 v_2$$

$$\frac{\mathrm{d}v_3}{\mathrm{d}t} = 0$$

$$\frac{\mathrm{d}v_4}{\mathrm{d}t} = 0$$

$$\frac{dv_5}{dt} = k_{tw}v_6 - p_5v_5 - \delta_5v_5$$

$$\frac{dv_6}{dt} = p_6u_6 - k_{tw}v_6 - \delta_6v_6$$

$$v_{0} = [p53]^{(c)}, v_{1} = [Mdm2]^{(c)},$$

$$v_{2} = [Mdm2_{mRNA}]^{(c)}, v_{3} = [p53_{p}]^{(c)}, v_{4} = [ATM_{p}]^{(c)},$$

$$v_{5} = [Wip1]^{(c)}, v_{6} = [Wip1_{mRNA}]^{(c)}$$

Rate of p53-p and ATM-p are 0 given assumption that the molecules are phosphorylated in nucleus and the activated forms aren't diffusing into cytoplasm

Model Results

 $E = 0.1 \, \mu M$

Model Results - Damage Parameter

Model expansion: Preventing Dephosphorylation from Wip1

Model Setup

- Set rate of dephosphorylation by Wip1 to 0
- Concentration of Wip1 will have no effect on activated p53
- Will assume that Wip1 loses interaction with both p53 and ATM

$$k_{dph1} = dephosphorylation velocity of p53_p = 0$$

$$k_{dph2} = dephosphorylation velocity of ATM_p = 0$$

Model Extension Results

• Relevant for Wip1-targeting drugs such as GSK2830371 that have been seen to promote cancer cell death

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442293/

Future Considerations

- Stochastic population modelling
- Compartmental model that depends on both spatial and time parameters
- Bifurcation analysis on damage parameter
- Accounting for protein translation in endoplasmic reticulum is expected to make system more robust to high damage values

References (put in proper format later)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508851/pdf/ijms-22-10590.pdf

https://iopscience.iop.org/article/10.1088/1478-3975/11/4/045001/pdf

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442293/