Algorithm/알고리즘

[알고리즘](Python) 5가지 정렬 알고리즘: 선택, 버블, 병합, 퀵 정렬

그리버 | 2023. 10. 3. 01:30 | 수정 | 삭제

정렬을 수행하는 방식에 따라 정렬 알고리즘이 달라진다.

그리고 그에 따라 연산량과 메모리 사용량 등의 성능이 달라지기 때문에

각 상황에 유리한 정렬 알고리즘을 알고 있어야 적재적소에 사용할 수 있다.

5가지 정렬 알고리즘을 비교해보자.

참고: https://bang-tori.tistory.com/4

1) 선택 정렬(Selection Sort)

선택 정렬의 개념

무작위의 순서로 나열된 배열이 존재한다고 하자.

이 배열을 순회하면서 배열에서 가장 작은 요소를 찾아내면 맨 앞 요소와 교체한다.

정렬된 앞 부분을 제외한 나머지도 반복하여 교체한다.

이 과정이 선택 정렬이다.

패스	테이블	최솟값
0	[9,1,6,8,4,3,2,0]	0
1	[0, 1,6,8,4,3,2,9]	1
2	[0,1, 6,8,4,3,2,9]	2
3	[0,1,2, 8,4,3,6,9]	3
4	[0,1,2,3, 4,8,6,9]	4
5	[0,1,2,3,4, 8,6,9]	6
6	[0,1,2,3,4,6, 8,9]	8

선택 정렬 코드 구현

선택 정렬의 장단점

장점

- 알고리즘이 단순하다.
- 메모리를 적게 사용한다.

단점

- for 반복문을 두 번 사용하여 시간 복잡도가 O(N^2)로 높다.
 - 데이터의 개수 n이 커질 수록 성능이 매우 저하된다.

2) 버블 정렬(Bubble Sort)

▋ 버블 정렬의 개념

버블 정렬은 배열에서 두 수 α,b를 선택하고

그 두 수가 정렬되어 있다면 그대로 두고 정렬되어 있지 않다면 서로 바꾸는 방식이다.

이를 배열의 처음부터 끝까지 반복한다.

선택 정렬 코드 구현

3) 병합 정렬(Merge Sort)

병합 정렬의 개념

병합 정렬은 분할 정복 알고리즘에 속한다.

분할 정복 알고리즘(Divide and conquer algorithm)

분할 정복 알고리즘은 해결할 수 없는 문제를 작은 문제로 분할해서 문제를 해결하는 방법이다.

퀵 정렬과 병합 정렬이 분할 정복 알고리즘에 속한다.

일반적으로 재귀 함수를 통해 분할 정복 알고리즘을 구현할 수 있다.

구조는 대개 아래와 같다.

그럼 병합 정렬 알고리즘을 살펴보자.

n-way 병합 정렬 알고리즘은 다음과 같다.

- 1. 정렬되지 않은 리스트를 각각 하나의 원소만 포함하는 n개의 부분리스트로 분할한다.
 - 한 원소만 들어있는 리스트는 이미 정렬된 것과 같으므로
- 2. 부분 리스트가 하나만 남을 때까지 반복해서 병합하며 정렬된 부분리스트를 생성한다.
- 3. 마지막으로 남은 부분리스트가 최종적으로 정렬을 마친 리스트이다.

top-down 2-way 병합 정렬

일반적으로 n-way 병합 정렬의 개념을 사용하여 2-way 병합 정렬을 구현해 사용한다.

- 1. 리스트의 길이가 1 이하이면 이미 정렬된 것으로 본다.
- 2. 그렇지 않은 경우에는
 - 1. 분할(divide): 정렬되지 않은 리스트를 절반으로 잘라 비슷한 크기의 두 부분리스트로 나눈다.
 - 2. 정복(conquer): 각 부분 리스트를 재귀적으로 병합 정렬을 이용해 정렬한다.
 - 3. 결합(combine): 두 부분 리스트를 다시 하나의 정렬된 리스트로 병합한다. 이를 임시배열에 저장한다.
 - 4. 복사(copy): 임시배열에 저장된 결과를 원래 배열에 복사한다.

병합 정렬 코드 구현

```
def sort(low, high):
   if high - low < 2:</pre>
```

4) 퀵 정렬(Quick Sort)

참고: https://www.daleseo.com/sort-quick/

퀵 정렬의 개념

퀵 정렬은 분할 정복 알고리즘 방법으로 정렬을 수행한다.

뤽 정렬 코드 구현

```
elif num > pivot:
```

https://www.acmicpc.net/problem/11650

11650번: 좌표 정렬하기

첫째 줄에 점의 개수 N ($1\le$ N \le 100,000)이 주어진다. 둘째 줄부터 N개의 줄에는 i번점의 위치 xi와 yi가 주어진다. (-100,000 \le xi, yi \le 100,000) 좌표는 항상 정수이고, 위치가 같은 두 점은 없다.

www.acmicpc.net

주제	정렬
시간 / 메모리 제한	1 左 / 256 MB
정답 비율	47.915%

2차원 평면 위에 점 N개가 주어진다.

좌표를 x좌표가 증가하는 순으로, x좌표가 같으면 y좌표가 증가하는 순으로 정렬한 다음 출력하는 프로그램을 작성하시오.

입력

- 첫째 줄에 N(1 ≤ N ≤ 100,000)이 주어진다.
- 둘째 줄부터 N개의 줄에는 i번점의 위치 xi와 yi가 주어진다. (-100,000 ≤ xi, yi ≤ 100,000)
 - 좌표는 항상 정수이고, 위치가 같은 두 점은 없다.

출력

- 첫째 줄부터 N개의 줄에 점을 정렬한 결과를 출력한다.
- 예제 입력 1

- 예제 출력 1

풀이

우선 반복문을 이용해 입력되는 x,y 좌표를 2차원 배열에 저장한다.

파이썬에서는 sort() 또는 sorted() 함수를 통해 TimSort라는 삽입 정렬과 병합 정렬을 조합한 알고리즘으로 정렬을 수행할 수 있다.

sorted() 함수는 원본 리스트를 변형하지 않고 정렬된 결과를 반환 값으로 내보내는 반면,

sort() 함수는 원본 리스트를 변형한다.

어차피 정렬 후 원본 리스트를 다시 조회할 필요가 없기 때문에

sort() 함수를 사용하는 것이 메모리 측면에서 이득이기에

sort() 함수를 이용해 코드를 작성하였다.

문제의 조건과 정확히 일치하게 된다.

정답 코드

공감

'<u>Algorithm</u> > **알고리즘**' 카테고리의 다른 글

```
    BOJ/(Python) 백준 2075번 N번째 큰 수 (0)
    2023.09.26

    [알고리즘/(Python)) 그래프 개념과 파이센 코드 구현 (3)
    2023.09.19

    [알고리즘/(Python)) 백준 2696번 중앙값 구하기 - 우선순위 큐 (0)
    2023.09.19

    [알고리즘/(Python)) 트리 (1)
    2023.09.12

    [알고리즘/(Python)) 백준 10828번 - 스택 (0)
    2023.09.12
```

'Algorithm/알고리즘' Related Articles

● Secret

안녕하세요! 어떤 댓글이든 환영합니다! ♥

댓글알기

DESIGN BY TISTORY | 관리자