

Continuous Assessment Tour

Programme	B.Tech	rest I – October 2022	
Course	Calculus	Semester Code	: FALLSEM 2022-23 : BMAT1011
Time	: Dr. R. Radha	Slot	: A1+TA1
	Dr. N. Nathiya Dr. Sowndarrajan P T Dr. Manoj Kumar Singh Dr. Harshavarthini Shanmugam Dr. Manimaran J	- Class Number	CH2022231700297- CH2022231700423- CH2022231700424- CH2022231700298 CH2022231700617- CH2022231700608
	172 Hours	Max. Marks	: 50

0 N		Answer ALL the Questions ($5 \times 10 = 50 \text{ marks}$)	
Q.No.	Sec	Question Description	Marks
1.	a.	Suppose that $f(x)$ is continuous and differentiable on the interval $[-2,2]$ such that $f(-2) = 3$ and $f'(x) \le 4$. What is the largest possible value for $f(2)$?	5
		Find the intervals in which the given function $f(x) = \frac{1}{2x^2+5}$ is increasing, decreasing, concave up and concave down.	5
7.		Find the dimensions of a right circular cylinder of maximum volume that can be inspired in a sphere of radius 10 cm. What is the maximum volume?	10
1		Find the volume of the solid generated by revolving the region in the first	10

- quadrant bounded above by the curve $y = x^2$, below by x-axis and on the right side by x = 1 about the line x = -1.
- Show that the function $f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ is continuous. 10 4.

If
$$x = u - y - z$$
, $y = uv - z$, $z = uvw$ and
$$u = \frac{x_2 x_3}{x_1}, \quad v = \frac{x_3 x_1}{x_2}, \quad w = \frac{x_1 x_2}{x_3}, \quad \text{find} \quad \frac{\partial(x_1, y_2)}{\partial(x_1, x_2, x_3)}.$$