Tire Slip & Modeling

Course 1, Module 4, Lesson 7

Learning Objectives

- Study tire slip angle and slip ratio in more detail
- Define tire models that capture forces produced by tires

Importance of Tire Modeling

The tire is the interface between the vehicle and road

Vehicle Slip Angle

Vehicle (Bicycle) Slip Angle

Slip angle

$$\beta = \tan^{-1} \frac{V_y}{V_x} = \tan^{-1} \frac{\dot{y}}{\dot{x}}$$

• Using small angle assumption, $\beta \approx \frac{\dot{y}}{\dot{x}}$

Tire Slip Angles

 Tire slip angle is the angle between the direction in which a wheel is pointing and the direction in which it is actually travelling

Slip Ratios

Longitudinal slip (also called slip ratio)

Tire Modeling

Tire Model

Inputs to the tire model

Tire Slip Angle Slip Ratio Normal Force Friction Coefficient Camber Angle Tire properties

Outputs of the tire model

Lateral Force
Longitudinal Force
Self-Aligning Moment
Rolling Resistance
Moment
Overturning Moment

Tire Modeling

- Analytical Brush, Fiala, Linear
 - Tire physical parameters are explicitly employed
 - Low precision, but simple
- Numerical
 - Look up tables instead of mathematical equations
 - No explicit mathematical form
 - Geometry and material property of tire are considered
- Parameterized Linear, Pacejka, Dugoff
 - Need experiments for each specific tire
 - Formed by fitting model with experimental data
 - Match experimental data very well
 - Used widely for vehicle dynamics simulation studies and control design

Linear Tire Model

 Assumption: the relationship between slip angle and force is linear

o Piecewise linear curves:
$$F(x) = \begin{cases} Cx & \text{if } |x| < x_{max} \\ F_{max} & \text{if } |x| \ge x_{max} \end{cases}$$

Pacejka Tire Model

- Also called Magic Formula tire model
 - Widely used in model-based control development.

 $F(x, F_Z) = D \sin(C \tan^{-1}(Bx - E(Bx - \tan^{-1}(Bx))))\mu F_Z$

x could be either slip ratio or slip angle (in tire modeling)

road friction coefficient

tire vertical force

- B Stiffness Factor
- C Shape Factor
- D Peak Factor
- E Curvature Factor

Forces vs Slips

Normalized Longitudinal Force vs. Slip Ratio

Normalized Lateral Force vs. Slip Angle

Lesson Summary

What we have learned from this lesson:

- The role of tire in vehicle dynamics
- The terminology used in tire modelling such as slip angle and slip ratio
- The linear and Pacejka tire models

Module Summary

What we have learned from this module:

- Kinematic and dynamic modeling of vehicles
- Kinematic bicycle model
- Lateral and longitudinal dynamic modeling
- Actuator and tire subsystem modeling

What is next?

 The basics of controller design and its application to vehicle longitudinal control