Lema. Dokazati da je

$$a^{k} - 1 = (a - 1)(a^{k-1} + a^{k-2} + \dots + a + 1)$$

za svaki realan broj a i svaki prirodan broj $k \geq 2$.

Dokaz. Direktnim računom.

Teorema (Mersenovi brojevi). Ako je $2^n - 1$ prost broj onda je i n prost broj, za svako $n \in \mathbb{N}$.

Dokaz. Pretpostavimo da n nije prost broj. Ako je n=1 onda je $2^n-1=1$, što nije prost broj. Pretpostavimo, zato, da je $n\geq 2$. Kako n nije prost broj, postoje prirodni brojevi $m\geq 2$ i $k\geq 2$ takvi da je n=mk. Sada je

$$2^{n} - 1 = 2^{mk} - 1 = (2^{m})^{k} - 1 = a^{k} - 1,$$

gde smo stavili $a=2^m$ da bismo lakše pratili nastavak dokaza. Prema Lemi je

$$a^{k} - 1 = (a - 1)(a^{k-1} + a^{k-2} + \dots + a + 1)$$

i zato je

$$2^{n} - 1 = (a - 1)(a^{k-1} + a^{k-2} + \dots + a + 1).$$

Kako je $a=2^m$ i $m\geq 2$ zaključujemo da je $a-1\geq 3$. S druge strane iz $k\geq 2$ i $a\geq 4$ sledi da je $a^{k-1}+a^{k-2}+\ldots+a+1\geq 5$. Dakle, 2^n-1 je složen broj