Обучение взаимосвязанных информативных представлений в задаче генерации образов

Охотников Никита Владимирович

МФТИ

2023-2024

Введение

Исследуется задача поиска наилучшего дополнения образа — множества взаимосвязанных элементов (на примере элементов одежды) — элементами конечной коллекции.

Проблемы

- ▶ Взаимосвязь элементов в образе имеет неизвестную структуру.
- ▶ Точное решение задачи дополнения требует полного перебора.

Задача

Предложить применимый на практике приближенный алгоритм дополнения образа несколькими элементами.

Предлагается

На основе известной функции оценки образа построить функцию для генерации зависимых скрытых представлений элементов, использующихся далее для выбора элементов дополнения на основе близости в латентном пространстве.

Постановка задачи

Основные понятия и обозначения

- Основная единица данных, рассматривающаяся в работе элемент одежды, далее будем называть его объектом или элементом, множество всех рассматриваемых объектов – X
- Каждый объект $X \in \mathcal{X}$ есть пара X = (I, T) из соответственно изображения о текстового описания.
- ▶ Далее под объектом $X \in \mathcal{X}$ будем понимать его векторное представление $X \in \mathbb{R}^d$ в общем для всех элементов признаковом пространстве.
- ▶ Непустые подмножества множества элементов $O = \{X_i\}_{i=1}^k \subset \mathcal{X}, O \neq \{\emptyset\}$ будем называть *образами*. Множество образов обозначим \mathcal{O} .
- Для оценки образов введем функцию оценки или совместимости его элементов:

$$\mathcal{S}: \ 2^{\mathcal{X}} \longrightarrow [0,1]$$
 $\forall O \in \mathcal{O}: \ \mathcal{S}(O) > 0$

Совместимостью или оценкой образа O будем называть $\mathcal{S}(O)$

Постановка задачи

Задача дополнения образа

▶ Дано:

$$O_n \in \mathcal{O}, \ |O| = n$$
 — исходный образ $k \in \mathbb{N}, \ k$ — количество элементов дополнения

Требуется:

Найти наилучшее в смысле максимизации функции оценки $\mathcal S$ дополнение образа O_n k элементами $\{\hat X_i\}_{i=1}^k \subset \mathcal X$ т.е. решить следующую оптимизационную задачу

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

ightharpoonup Точное решение для известной \mathcal{S} : полный перебор всех подмножеств \mathcal{X} размера k.

Асимптотика: $|\mathcal{X}|^k$ вызовов функции \mathcal{S}

Теоретическая часть

- В качестве аппроксимации функции оценки S далее будем рассматривать предобученную модель Outfit Transformer¹.
- ▶ Для задачи дополнения

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

существует 2 глобальных подхода

- Дискретный оптимизация полного перебора
- Непрерывный решение релаксированной задачи в \mathbb{R}^d и поиск ближайших к решению элементов \mathcal{X}

¹https://doi.org/10.48550/arXiv.2204.04812

Дискретный подход

- ▶ Решение задачи приближенным перебором
- Бейзлайн: жадные алгоритмы

$$\text{$\langle 1$-step} \; X_1 = \underset{X \in \mathcal{X}}{\operatorname{argmax}} \; \mathcal{S}(O_n \cup X), \; \ldots, X_k = \underset{X \in \mathcal{X}}{\operatorname{argmax}} \; \mathcal{S}(O_n \cup X)$$

Асимптотика: $|\mathcal{X}|$ вызовов функции \mathcal{S}

«k-step»
$$X_1 = \underset{X \in \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}(O_n \cup X), \dots, X_k = \underset{X \in \mathcal{X} \setminus \bigcup_{i=1}^k X_i}{\operatorname{argmax}} \, \, \mathcal{S}(O_n \cup X_1 \dots X_{k-1} \cup X)$$

Асимптотика: $k \cdot |\mathcal{X}|$ вызовов функции \mathcal{S}

• Альтернатива: алгоритм beam-search, активно применяемый в языковых моделях. В граничных случаях вырождается либо в полный перебор, либо в k-step алгоритм выше. Асимптотика: $\geqslant k \cdot |\mathcal{X}|$ вызовов функции \mathcal{S}

Непрерывный подход (градиентный спуск)

- ightharpoonup Функция S непрерывно дифференцируема почти всюду и с ограниченным по норме градиентом, а значит липшицева с некоторой константой M
- ▶ Есть доступ не только к значению функции оценки, но и к ее градиенту
- ▶ Идея: заменим дискретную задачу непрерывной:

$$\{\tilde{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathbb{R}^d}{\operatorname{argmax}} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

lacktriangle Далее выберем $\{\hat{X}_i\}\subset\mathcal{X}$ как ближайшие к решениям в смысле функции близости ho:

$$\hat{X}_i = \underset{X \subseteq \mathcal{X}}{\operatorname{argmin}} \rho(\tilde{X}_i, X)$$

- Полученная задача разрешима за разумное время с помощью стохастического градиентного спуска.
- Асимптотика n вызовов функции оценки и ее градиента, где n количество шагов градиентного спуска (не зависит от $|\mathcal{X}|$)

Непрерывный подход (градиентный спуск)

- ▶ S М-липшицева
- ightharpoonup рассмотрим L_p метрику в качестве ho, тогда

$$\sum_{i=1}^{k} \rho(\hat{X}_{i}, \tilde{X}_{i}) < \varepsilon \longrightarrow \left| \mathcal{S}\left(O_{n} \cup \{\tilde{X}_{i}\}_{i=1}^{k}\right) - \mathcal{S}\left(O_{n} \cup \{\hat{X}_{i}\}_{i=1}^{k}\right) \right| < M \cdot \varepsilon$$

▶ Проблема подхода: $\exists \{\hat{X}_i\} \subset \mathcal{X}: \sum_{i=1}^k \rho(\hat{X}_i, \tilde{X}_i) < \varepsilon$ — очень сильное условие и требует по крайней мере

$$\exists \{\hat{X}_i\}_{i=1}^k \subset \mathcal{X}: \ \mathcal{S}\left(O_n \cup \{\hat{X}_i\}_{i=1}^k\right) \geqslant \max_{\{X_i\}_{i=1}^k \subset \mathbb{R}^d} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) - M\varepsilon$$

$$\max_{\{X_i\}_{i=1}^k \subset \mathcal{X}} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) \geqslant \max_{\{X_i\}_{i=1}^k \subset \mathbb{R}^d} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) - M\varepsilon$$

Непрерывный подход (генерация скрытых представлений)

- lacktriangle Предлагается *полностью* отказаться от вызовов функции ${\mathcal S}$
- ▶ Переформулируем задачу как поиск аппроксимации функции

$$\mathcal{F}_k: \mathcal{O} \longrightarrow \mathcal{X}^k, \quad O_n \in \mathcal{O}, \ \mathcal{F}_k(O_n) = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \ \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

Композицией функций

$$egin{aligned} F_k^{ heta}: \mathcal{O} &\longrightarrow \mathbb{R}^d, \ F_k^{ heta}(\mathcal{O}_n) = \{ ilde{X}_i\}_{i=1}^k \end{aligned}$$
 и $ho_{\mathcal{X}}: \mathbb{R}^d \longrightarrow \mathcal{X}, \
ho_{\mathcal{X}}(ilde{X}_i) = rgmax_i
ho(ilde{X}_i, \hat{X}_i)$

ightharpoonup d лоэтому далее, следуя рекомендациям из статьи 2 будем в эксперименте использовать в качестве ho косинусную близость

²https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144059

Непрерывный подход (генерация скрытых представлений)

• Свели исходную задачу к задаче генерации скрытых представлений недостающих элементов $\{ ilde{X}_i\}\subset\mathbb{R}^d$, наиболее близких в смысле функции ho к точным решениям задачи

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

с помощью функции F_k^{θ} с вектором параметров θ .

- Рассмотрим образы $\mathcal{O}_n = \{O^i\}_{i=1}^n \subset \mathcal{O}$ и множество известных точных решений задачи дополнения для них $\mathcal{X}_n = \{\{\hat{X}_i^i\}_{j=1}^k\}_{i=1}^n \subset \mathcal{X}^k$
- ightharpoonup Тогда на параметры heta получаем следующую оптимизационную задачу:

$$\theta = \underset{\hat{\theta}}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \rho \left(X_{j}^{i}, [F_{k}^{\hat{\theta}}(O^{i})]_{j} \right) \right)$$

Непрерывный подход (генерация скрытых представлений)

- ▶ Задача симметрична к перестановке \Longrightarrow разумно рассматривать операции эквивариантные относительно группы перестановок.
- lacktriangle Тогда представим функцию $F_k^{ heta}$ с помощью графовой нейронной сети (GNN)
- ▶ Вершины графа представления элементов образа
- Общий вид преобразования $h_i^{(t)}$ скрытого состояния i-ой вершины на шаге t в message passing GNN³:

$$h_i^{(t)} = \gamma^{(t)} \left(h_i^{(t-1)}, \bigoplus_{j \in \overline{1,n}} \phi^{(t)} \left(h_i^{(t-1)}, h_j^{(t-1)} \right) \right),$$

где $\gamma^{(t)}, \phi^{(t)}$ – дифференцируемые функции, \bigoplus — дифференцируемая аггрегирующая функция, инвариантная к перестановкам (в эксперименте будем использовать сумму)

³https://arxiv.org/pdf/1704.01212

Непрерывный подход (генерация скрытых представлений)

- lacktriangle Асимптотика: один вызов функции $F_k^{ heta}$
- Аппроксимация напрямую решений дискретной, а не релаксированной задачи
- Позволяет получать произвольное количество скрытых представлений для элементов дополнения за один проход
- ▶ Моделирует зависимости между элементами дополнения
- ightharpoonup В качестве \mathcal{X}_n можно рассмотреть набор решений задачи многошаговым жадным алгоритмом

Условия эксперимента

- ▶ Данные: датасет Polyvore⁴ 17000 образов из 65000 объектов
- ▶ Случайно выберем 1000 образов
- ightharpoonup Зафиксируем количество элементов дополнения k=2
- Оцениваем алгоритмы на основании распределения оценок дополненных образов
- ▶ Бейзлайн: рапределение оценок исходных образов

⁴http://arxiv.org/abs/1707.05691

Дискретный подход (жадные алгоритмы)

Показывают хороший результат, но требуют слишком много времени

Непрерывный подход (градиентный спуск)

Результат заметно хуже чем для жадных алгоритмов, а время вычислений все еще не позволяет использовать такой подход на практике

Непрерывный подход (генераций представлений)

Выносится на защиту

- ▶ Предложен эффективный алгоритм дополнения образа произвольным числом взаимосвязанных элементов
- ▶ Предложен способ пополнения обучающих данных для модели в условиях недостатка образов с высокой оценкой
- Реализован программный код для вычислительного эксперимента и проведена оценка предложенных подходов