



**ECE606: Solid State Devices Lecture 33: MOSCAP Electrostatics (II)** 

Muhammad Ashraful Alam alam@purdue.edu

#### Outline

- 1. Review
- 2. Induced charges in depletion and inversion
- 3. Exact solution of electrostatic problem
- 4. Conclusion

REF: Chapters 15-18 from SDF

# Topic Map

|          | Equilibrium | DC | Small signal | Large<br>Signal | Circuits |
|----------|-------------|----|--------------|-----------------|----------|
| Diode    |             |    |              |                 |          |
| Schottky |             |    |              |                 |          |
| BJT/HBT  |             |    |              |                 |          |
| MOSCAP   |             |    |              |                 |          |

#### Threshold for Inversion

$$V_G = \frac{qN_A x_0}{\kappa_{ox} \varepsilon_0} \sqrt{\frac{2\kappa_{ox} \varepsilon_0}{qN_A}} \sqrt{\psi_s} + \psi_s$$

$$V_{th} = \frac{qN_A x_0}{\kappa_{ox} \varepsilon_0} \sqrt{\frac{2\kappa_{ox} \varepsilon_0}{qN_A}} \sqrt{\frac{2\phi_F}{qN_A}} + 2\phi_F$$





# What happens when surface potential is $2\phi_F$ ?

$$V_{th} = \frac{qN_A x_0}{\kappa_{ox} \varepsilon_0} \sqrt{\frac{2\kappa_{ox} \varepsilon_0}{qN_A}} \sqrt{\frac{2\phi_F}{qN_A}} + 2\phi_F$$

$$\boldsymbol{n_{Is}} = n_i e^{(E_F - E_{is})\beta}$$

$$= n_{i}e^{(E_{F}-E_{i(bulk)})\beta} \times e^{(E_{i(bulk)}-E_{is})\beta}$$

$$= n_i e^{-\phi_F \beta} e^{(E_{i(bulk)} - E_{is})\beta}$$

$$\boldsymbol{n}_{1s} = n_i e^{-\phi_F \beta} e^{2\phi_F \beta}$$







Electron concentration equals background acceptor concentration

### A little bit about scaling ....

$$V_{th} = \frac{qN_A x_0}{\kappa_{ox} \varepsilon_0} \sqrt{\frac{2\kappa_{ox} \varepsilon_0}{qN_A}} \sqrt{\frac{2\phi_F}{qN_A}} + 2\phi_F + \varphi_F + \varphi_F$$

Reduce V<sub>th</sub> by ...

Reducing oxide thickness (from 1000 A in 1970s to 10 A now)

Increase dielectric constant (SiO<sub>2</sub> historically, HfO<sub>2</sub> now in Intel Penryn)



#### Outline

- 1. Review
- 2. Induced charges in depletion and inversion
- 3. Exact solution of electrostatic problem
- 4. Conclusion

### Induced charges below Threshold



#### Integrated charges below Threshold

$$\frac{Q_{i}}{q} = \int_{0}^{\infty} n(x) dx = \int_{0}^{\infty} \frac{n_{i}^{2}}{N_{B}} e^{q\psi(x)\beta} dx$$

$$= \frac{n_{i}^{2}}{N_{B}} \int_{0}^{\infty} e^{q\psi(x)\beta} \frac{1}{\frac{d\psi}{dx}} d\psi$$

$$= \frac{n_{i}^{2}}{N_{B}} \int_{0}^{\infty} e^{q\psi(x)\beta} \frac{1}{\mathcal{E}(x)} d\psi$$

$$\approx \frac{1}{\langle \mathcal{E}(x) \rangle} \frac{n_{i}^{2}}{N_{B}} \int_{0}^{\infty} e^{q\psi(x)\beta} d\psi$$

$$= \frac{\frac{k_{B}T}{q}}{\langle \mathcal{E}(x) \rangle} \times \frac{n_{i}^{2}}{N_{B}} e^{q\psi_{s}\beta} \equiv W_{inv} \times n_{s}$$



# Charges above Threshold



**Electrons** 

$$V_G = \psi_s + \mathcal{E}_{ox} x_o = \psi_s - \left[ \frac{Q_i(\psi_s) + Q_F}{\kappa_{ox} \varepsilon_0} \right] x_o$$

$$V_{th} = 2\phi_F + \mathcal{E}_{ox} x_o = 2\phi_F - \left(\frac{Q_i(2\phi_F) + Q_F}{\kappa_{ox} \mathcal{E}_0}\right) x_o + \frac{V_G V_G}{V_G V_G}$$

$$V_G - V_{th} = (\psi_s - 2\phi_F) + \frac{Q_i(\psi_s) - Q_i(2\phi_F)}{\kappa_{ox} \varepsilon_0} x_o$$

$$\underline{Q}_i = C_{ox} \left( V_G - V_{th} \right)$$



#### Linear Charge Build-up Above Threshold?



- Small changes  $\psi_s$  in changes  $Q_i$  a lot ...
- Change in  $Q_i$  changes  $E_{ox}$ , because  $E_{ox} = Q_i / \kappa_0 e_0$
- $V_{ox}$  is large because  $V_{ox} = E_{ox} x_{0}$ , i.e. most of the drop above  $2\psi_F$  goes to  $V_{ox}$ .
- Acts like a parallel plate capacitor, hence the inversion equation.



### **Tunneling Current**

$$\begin{split} J_T &= J_{s \to g} - J_{g \to s} \\ &= \left[ Q_i(V_G) e^{-\Delta E_C \beta} - q n_m e^{-\Delta E_C \beta} e^{-q V_{ox} \beta} \right] \upsilon_{th} \\ &= \left[ Q_i(V_G) - q n_m e^{-q V_{ox} \beta} \right] \upsilon_{th} T \qquad T \equiv e^{-\Delta E_C \beta} \end{split}$$

$$J_{T} = \left[ Q_{i}(V_{G}) - q n_{m} e^{-qV_{G}\beta} \right] \upsilon_{th} \left\langle T(E) \right\rangle$$



#### Outline

- 1. Review
- 2. Induced charges in depletion and inversion
- 3. Exact solution of electrostatic problem
- 4. Conclusion

# A step back: 'Exact' Solution of $Q_S(\psi_S)$

$$\nabla \bullet \vec{D} = \rho$$

$$\nabla \bullet (\vec{J}_n/-q) = (G-R)$$

$$\nabla \bullet (\vec{J}_p / q) = (G - R)$$

$$\frac{d^2\psi}{dx^2} = \frac{-q}{\kappa_{si}\varepsilon_0} \left[ p_0(x) - n_0(x) + N_D^+ - N_A^- \right]$$

Approximate ...  $V_G = \frac{qN_A x_0}{\kappa_{ox} \varepsilon_0} \sqrt{\frac{2\kappa_{ox} \varepsilon_0}{qN_A}} \sqrt{\frac{\psi_s}{qN_A}} + \psi_s$ 



## Normalized Variable (to save some writing)...



# Normalized Variable (to save some writing!)



### Poisson-Boltzmann Equation

$$\frac{d^{2}\psi}{dx^{2}} = \frac{-q}{\kappa_{s}\varepsilon_{0}} \left[ p(x) - n(x) + N_{D}^{+} - N_{A}^{-} \right]$$

$$\frac{q}{k_{B}T} \frac{d^{2}U}{dx^{2}} = \frac{-qn_{i}}{\kappa_{s}\varepsilon_{0}} \left[ e^{+(U_{F}-U)} - e^{-(U_{F}-U)} + n_{i}e^{-U_{F}} - n_{i}e^{U_{F}} \right] \equiv g(U, U_{F})$$

$$\left(2\frac{dU}{dx}\right) \times \frac{d^2U}{dx^2} = -\left(\frac{n_i k_B T}{\kappa_s \varepsilon_0}\right) g(U, U_F) \times \left(2\frac{dU}{dx}\right)$$

Can be evaluated at any U

$$\frac{d}{dx} \left( \frac{dU}{dx} \right)^2 dx = -\frac{1}{2I_F^2} g(U, U_F) \left( 2 \frac{dU}{dx} \right) dx$$

$$\int_{0}^{-q\mathcal{E}(x)/kT} d\left(\frac{dU}{dx}\right)^{2} = -\frac{1}{L_{D}^{2}} \int_{0}^{U(x)} g(U, U_{F}) dU$$

Alam ECE-606 S09

## **Exact Solution (continued)**

$$\int_{0}^{-q\mathcal{E}(x)/kT} d\left(\frac{dU}{dx}\right)^{2} = -\frac{1}{L_{D}^{2}} \int_{0}^{U(x)} g(U, U_{F}) dU$$

$$\left[\frac{q\mathcal{E}(x)}{kT}\right]^2 = \frac{1}{L_D^2} \int_0^{U(x)} g(U, U_F) dU \equiv \frac{F^2(U, U_F)}{L_D^2}$$

$$\mathcal{E}_{s} = \frac{k_{B}T}{qL_{D}}F(U_{S}, U_{F})$$

$$\left( \begin{array}{c} \text{Compare ...} \\ V_G = \frac{qN_Ax_0}{\kappa_{ox}\varepsilon_0} \sqrt{\frac{2\kappa_{ox}\varepsilon_0}{qN_A}} \sqrt{\frac{\psi_s}{q}} + \psi_s \end{array} \right)$$

$$V_G = \psi_s + \left[\frac{\kappa_s}{\kappa_{ox}} \mathcal{E}_s\right] x_0 = \psi_s + \frac{\kappa_s}{\kappa_{ox}} \frac{k_B T}{q L_D} F(U_s, U_F) x_0$$

Alam ECE-606 S09

### How does the calculation go ...

$$\left[\frac{q\mathcal{E}(x)}{kT}\right]^2 = \frac{1}{L_D^2} \int_0^{U(x)} g(U, U_F) dU \equiv \frac{F^2(U, U_F)}{L_D^2}$$

$$V_G = \psi_s + \frac{\kappa_s}{\kappa_{ox}} \mathcal{E}_s x_0 = \psi_s + \frac{\kappa_s}{\kappa_{ox}} \frac{k_B T}{q L_D} F(U_s, U_F) x_0$$

Begin with a surface potential

Calculate U<sub>s</sub> and then divide U<sub>s</sub> by N points.

Calculate  $g(U, U_F)$  at those points and integrate to find  $F(U_s, U_F)$ 

Find V<sub>G</sub>.



# "Exact" solution is not really exact ...



$$\left| \frac{d^2 \psi}{dx^2} \right| = \frac{-q}{\varepsilon} \left[ p(x) - n(x) \left| \psi(x) \right|^2 + N_D^+ - N_A^- \right]$$

wavefunction, not potential!

Wave function should be accounted for

Bandgap widening near the interface must also should be accounted for.

Assumption of nondegeneracy may not always be valid

#### Conclusion

Our discussion today was focused on calculating the induced charge in the depletion and inversion region as a function of gate bias.

We found that we could calculate the tunneling current from the inversion changes by using the thermionic emission theory.

We also discussed the "exact" solution of the MOScapacitor electrostatics. The "exact" solution is mathematically exact, but not necessarily physically exact solution of the electrostatic problem.