Surface Slicer

Briefing

-Daten Eingabe: STL oder andere Formate (Export Rhino)

-Daten Ausgabe: G-Code für 3D Printer

- als eigenständiges Programm für Mac und PC

- Eingabe von Flächen keine geschlossenen Volumenkörper

- keine Boden oder Deckflächen keine Füllungen

- Spiralförmiger Werkzeugweg von unten nach oben

- wenn Objekt nicht in einem durchgehenden Strang möglich, dann Option für zufällige Lehrwege

- Moglichkeit nur eine Kurfe zu Laden und daraus den G-Code zu erzeugen

-Schichthöhe einstellbar 0.1mm bis 10mm

Beispiel: -Schichthöhe ist auf 1mm eingestellt

- Beispielobjekt ist ein 10 mm hoch extrudierter Kreis

Optimales Slicer Ergebnis:

Zuerst beschreibt der Gcode den Ersten Layer auf Z = 0 anschliesend eine Gleichmäßige Helix: startend bei

Z=1 und endend bei Z = 10

- Einsetzen von individuellem Gcode

- Am Anfang / Ende (z.B für Geschwindigkeitsbefehle ect.)

- Einsetzen z.B. immer bei Z-Höhe 5mm*

- sich schneidende Flächen*

*Optionen die Interessant währen

Beispielcode:	G1 X168.000 Y146.098
·	G1 X167.636 Y146.067
	G1 X167.282 Y145.972
	G1 X166.951 Y145.817
	G1X166.651Y145.608
	G1 X166.392 Y145.349
	G1 X166.183 Y145.049
	G1 X166.028 Y144.718
1. Layer Z=0	G1 X165.933 Y144.364
	G1 X165.902 Y144.000
	G1 X165.933 Y143.636
	G1 X166.028 Y143.282
	G1 X166.183 Y142.951
	G1 X166.324 Y142.749
	G1 Z0.8
	G1 Z0.807 X166.392 Y142.651
	G1 Z0.829 X166.651 Y142.392
	G1 Z0.852 X166.951 Y142.183
Helix-Anstieg	G1 Z0.874 X167.282 Y142.028
_	G1 Z0.896 X167.636 Y141.933
nach erster	G1 Z0.918 X168.000 Y141.902 G1 Z0.941 X168.364 Y141.933
Dunda	G1 Z0.941 X168.364 Y141.933 G1 Z0.963 X168.718 Y142.028
Runde	G1 Z0.985 X169.049 Y142.026
	G1 Z1.007 X169.349 Y142.392
	G1Z1.029 X169.608 Y142.651
	G1Z1.052 X169.817 Y142.951
	G1Z1.074X169.972Y143.282
	G1 Z1.096 X170.067 Y143.636
	G1 Z1.118 X170.098 Y144.000
	G1 Z1.141 X170.067 Y144.364
	G1 Z1.163 X169.972 Y144.718
	G1 Z1.185 X169.817 Y145.049
	G1Z1.207X169.608Y145.349
	G1Z1.229X169.349Y145.608
	G1 Z1.252 X169.049 Y145.817
	G1Z1.274X168.718Y145.972
	G1 Z1.296 X168.364 Y146.067

(Machbarkeit und Aufwand prüfen)

Notizzen Dennis 12.04.16

- primäre Schnittstelle ist Rhino.
- Spiraldruck (wichtig)
- Aber auch Druck mit Naht (auswählbar)
- selbstkreuzende Flächen drücken (Flächenschneidung ist einfach erlaubt)
- Leerfahrten minimieren (der Benutzer gibt Objekte ein die keine Leerfahrten enthalten müssen) evtl. einfärben welche Stelle kritisch sind.
- Boden und Decke wegmachen
- Flächen mit extrem flachem winkel aussortieren (evtl. rot markieren)
- Der Benutzer entfernt schon Boden und Deckel
- Der Benutzer verbindet zwei Objekte selber, man muss ihm nur sagen ob und wo es Probleme gibt
- Startpunkt entweder Nahtpunkt oder nächste Punkt zu origin

Input:

- offset zur Druckhöhe
- Layerstärke
- Wert der bestimmt wie exakt das Polynom für die Kurven ist
- Eingabekörper (evtl mehrere) Vorzugsweise eingabe von Nurb-Flächen (Polygonflächen währen aber auch denkbar
- Für Spirale: Startpunkt <-> Endpunkt Berechnung für mehrere Objekte.
- Naht definieren (wenn Naht gewollt)
- Geschwindigkeit als Eingabe
- Druckerspezifische Angaben: (alles was vor den Move Befehlen steht)

Eingabe Feld für Anfangsbefehle

Besipiel:

G28 ; home all axis

G1 F1000 ; befehl für Schrittgeschwindigkeit

...

Eingabefeld für Befehle am Ende des Druckens

Beispiel:

G28 X0 Y0; home x and y axis

...

Objekt plazierung auf dem Druckbett immer mittig und Z=0

- Breite/Höhe/Weite von Arbeitbereich eingeben.
- Delta x, y, z für Verschiebung auf dem Arbeitbereich.
- Überprüfen ob es in den Arbeitbereich passt.