Lecture 6: Stationary iterative methods

School of Mathematical Sciences, Xiamen University

1. Splitting and stationary iterative method

Definition 1

A splitting of $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a decomposition $\mathbf{A} = \mathbf{M} - \mathbf{K}$, with \mathbf{M} nonsingular.

Remark 2

A splitting yields an iterative method as follows. The equation

$$\mathbf{A}\mathbf{x} = (\mathbf{M} - \mathbf{K})\mathbf{x} = \mathbf{b}$$

implies

$$\mathbf{x} = \mathbf{M}^{-1}\mathbf{K}\mathbf{x} + \mathbf{M}^{-1}\mathbf{b} := \mathbf{R}\mathbf{x} + \mathbf{c}.$$

Given a starting vector $\mathbf{x}^{(0)}$, we obtain an iterative method

$$\mathbf{x}^{(m)} = \mathbf{R}\mathbf{x}^{(m-1)} + \mathbf{c}, \quad m = 1, 2, \dots$$

2. Convergence criterion

Definition 3

The spectral radius of a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is $\rho(\mathbf{A}) = \max_{\lambda \in \Lambda(\mathbf{A})} |\lambda|$.

Exercise. If **A** is singular and $\mathbf{A} = \mathbf{M} - \mathbf{K}$ with **M** nonsingular, then $\rho(\mathbf{M}^{-1}\mathbf{K}) \geq 1$.

Proposition 4

Let $\|\cdot\|$ denote a matrix norm on $\mathbb{C}^{n\times n}$ induced by a vector norm on \mathbb{C}^n . For any $\mathbf{A} \in \mathbb{C}^{n\times n}$, we have $\rho(\mathbf{A}) \leq \|\mathbf{A}\|$.

Lemma 5

For any given $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\varepsilon > 0$ there exists an induced matrix norm $\|\cdot\|_{\star}$ such that

$$\|\mathbf{A}\|_{\star} \leq \rho(\mathbf{A}) + \varepsilon.$$

The norm $\|\cdot\|_{\star}$ depends on both **A** and ε .

Proof.

Let $\mathbf{A} = \mathbf{SJS}^{-1}$ be a Jordan form of \mathbf{A} . Let

$$\mathbf{D}_{\varepsilon} = \operatorname{diag}\{1, \varepsilon, \varepsilon^2, \cdots, \varepsilon^{n-1}\}.$$

Now for all $\mathbf{x} \in \mathbb{C}^n$ and for all $\mathbf{B} \in \mathbb{C}^{n \times n}$, define the vector norm

$$\|\mathbf{x}\|_{\star} := \|(\mathbf{S}\mathbf{D}_{\varepsilon})^{-1}\mathbf{x}\|_{\infty}$$

and the corresponding induced matrix norm

$$\begin{split} \|\mathbf{B}\|_{\star} &:= \sup_{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_{\star}}{\|\mathbf{x}\|_{\star}} = \sup_{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\|(\mathbf{S}\mathbf{D}_{\varepsilon})^{-1}\mathbf{B}\mathbf{x}\|_{\infty}}{\|(\mathbf{S}\mathbf{D}_{\varepsilon})^{-1}\mathbf{x}\|_{\infty}} \\ &= \sup_{\mathbf{y} \in \mathbb{C}^{n}, \mathbf{y} \neq \mathbf{0}} \frac{\|(\mathbf{S}\mathbf{D}_{\varepsilon})^{-1}\mathbf{B}(\mathbf{S}\mathbf{D}_{\varepsilon})\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{\infty}} \\ &= \|\mathbf{D}_{\varepsilon}^{-1}\mathbf{S}^{-1}\mathbf{B}\mathbf{S}\mathbf{D}_{\varepsilon}\|_{\infty}. \end{split}$$

The statement follows from $\|\mathbf{A}\|_{\star} = \|\mathbf{D}_{\varepsilon}^{-1}\mathbf{J}\mathbf{D}_{\varepsilon}\|_{\infty} \leq \rho(\mathbf{A}) + \varepsilon$.

Theorem 6

The iteration $\mathbf{x}^{(m)} = \mathbf{R}\mathbf{x}^{(m-1)} + \mathbf{c}$ converges to the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ for all starting vectors $\mathbf{x}^{(0)}$ if and only if $\rho(\mathbf{R}) < 1$.

Proof.

For all $\mathbf{x}^{(0)}$, we have $\mathbf{x}^{(m)} - \mathbf{x} = \mathbf{R}(\mathbf{x}^{(m-1)} - \mathbf{x}) = \cdots = \mathbf{R}^m(\mathbf{x}^{(0)} - \mathbf{x})$. If $\rho(\mathbf{R}) \geq 1$, choose $\mathbf{x}^{(0)} - \mathbf{x}$ to be an eigenvector of \mathbf{R} with eigenvalue λ where $|\lambda| = \rho(\mathbf{R})$. Then $\mathbf{x}^{(m)} - \mathbf{x} = \lambda^m(\mathbf{x}^{(0)} - \mathbf{x})$ will not approach $\mathbf{0}$. If $\rho(\mathbf{R}) < 1$, by Lemma 5 there exists an induced matrix norm $\|\cdot\|_{\star}$ such that $\|\mathbf{R}\|_{\star} < 1$, then we have $\|\mathbf{x}^{(m)} - \mathbf{x}\|_{\star} \leq \|\mathbf{R}\|_{\star}^m \|\mathbf{x}^{(0)} - \mathbf{x}\|_{\star} \to 0$ for all $\mathbf{x}^{(0)}$.

Remark 7

The goal is to choose a splitting $\mathbf{A} = \mathbf{M} - \mathbf{K}$ so that both

- (1) $\mathbf{R}\mathbf{v} = \mathbf{M}^{-1}\mathbf{K}\mathbf{v}$ and $\mathbf{c} = \mathbf{M}^{-1}\mathbf{b}$ are easy to evaluate, and
- (2) $\rho(\mathbf{R})$ is small (< 1).

- (1) and (2) are conflicting goals, and need to be balanced.
- If $\Lambda(\mathbf{R}) \subset (-\rho(\mathbf{R}), \rho(\mathbf{R}))$, then Chebyshev acceleration technique can be used. See Demmel's book ANLA, section 6.5.6.

3. Classical stationary iterative methods

- Let $\mathbf{A} = \mathbf{D} \mathbf{L} \mathbf{U}$, where
 - **D** is the diagonal matrix with diagonal entries $d_{ii} = a_{ii}$,
 - $-\mathbf{L}$ is the strictly lower triangular part of \mathbf{A} ,
 - $-\mathbf{U}$ is the strictly upper triangular part of \mathbf{A} .
- Assume that **A** has no zero diagonal entries. We will introduce
 - (1) Jacobi's method,
 - (2) Gauss–Seidel method,
 - (3) Successive overrelaxation: $SOR(\omega)$,
 - (4) Symmetric successive overrelaxation: $SSOR(\omega)$.

3.1. Jacobi's method

• The splitting is

$$\mathbf{A} = \mathbf{D} - (\mathbf{L} + \mathbf{U}),$$

and the corresponding

$$\mathbf{R} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$$
 and $\mathbf{c} = \mathbf{D}^{-1}\mathbf{b}$.

Algorithm 1: Jacobi's method

for j = 1 to n

$$x_j^{(m+1)} = \frac{1}{a_{jj}} \left(b_j - \sum_{k \neq j} a_{jk} x_k^{(m)} \right)$$

end

Theorem 8

If **A** is Hermitian and $a_{ii} > 0$ for all i, then Jacobi's method converges for all starting vectors if and only if **A** and $2\mathbf{D} - \mathbf{A}$ are both HPD.

3.2. Gauss-Seidel method

• The splitting is

$$\mathbf{A} = (\mathbf{D} - \mathbf{L}) - \mathbf{U},$$

and the corresponding

$$\mathbf{R} = (\mathbf{D} - \mathbf{L})^{-1} \mathbf{U},$$

and

$$\mathbf{c} = (\mathbf{D} - \mathbf{L})^{-1} \mathbf{b}.$$

Algorithm 2: Gauss-Seidel method

for j = 1 to n

$$x_j^{(m+1)} = \frac{1}{a_{jj}} \left(b_j - \sum_{k=1}^{j-1} a_{jk} x_k^{(m+1)} - \sum_{k=j+1}^n a_{jk} x_k^{(m)} \right)$$

end

3.3. Successive overrelaxation: $SOR(\omega), \ \omega \in \mathbb{R}$

• The splitting is $\omega \mathbf{A} = (\mathbf{D} - \omega \mathbf{L}) - ((1 - \omega)\mathbf{D} + \omega \mathbf{U})$, and the corresponding

$$\mathbf{R} = (\mathbf{D} - \omega \mathbf{L})^{-1} ((1 - \omega)\mathbf{D} + \omega \mathbf{U}),$$

and

$$\mathbf{c} = \omega (\mathbf{D} - \omega \mathbf{L})^{-1} \mathbf{b}.$$

- $\omega = 1$: Gauss–Seidel method
- $0 < \omega < 2$: Necessary in some sense (see Theorem 13)
- Optimal ω :

Algorithm 3: $SOR(\omega)$, here ω is the relaxation parameter

for j = 1 to n

$$x_j^{(m+1)} = (1 - \omega)x_j^{(m)} + \frac{\omega}{a_{jj}} \left(b_j - \sum_{k=1}^{j-1} a_{jk} x_k^{(m+1)} - \sum_{k=j+1}^n a_{jk} x_k^{(m)} \right)$$

end

3.4. Symmetric successive overrelaxation: $SSOR(\omega)$, $\omega \in \mathbb{R}$

• This method uses two splittings:

$$\omega \mathbf{A} = (\mathbf{D} - \omega \mathbf{L}) - ((1 - \omega)\mathbf{D} + \omega \mathbf{U})$$
$$= (\mathbf{D} - \omega \mathbf{U}) - ((1 - \omega)\mathbf{D} + \omega \mathbf{L}),$$

and the corresponding

$$\mathbf{R} = (\mathbf{D} - \omega \mathbf{U})^{-1} ((1 - \omega)\mathbf{D} + \omega \mathbf{L})(\mathbf{D} - \omega \mathbf{L})^{-1} ((1 - \omega)\mathbf{D} + \omega \mathbf{U}),$$

$$\mathbf{c} = \omega (2 - \omega)(\mathbf{D} - \omega \mathbf{U})^{-1} \mathbf{D}(\mathbf{D} - \omega \mathbf{L})^{-1} \mathbf{b}.$$

Algorithm 4: $SSOR(\omega)$

for
$$j = 1$$
 to n

$$x_j^{(m+1/2)} = (1-\omega)x_j^{(m)} + \frac{\omega}{a_{jj}} \left(b_j - \sum_{k=1}^{j-1} a_{jk} x_k^{(m+1/2)} - \sum_{k=j+1}^n a_{jk} x_k^{(m)} \right)$$

end

for j = n to 1

$$x_j^{(m+1)} = (1 - \omega)x_j^{(m+1/2)} + \frac{\omega}{a_{jj}} \left(b_j - \sum_{k=1}^{j-1} a_{jk} x_k^{(m+1/2)} - \sum_{k=i+1}^n a_{jk} x_k^{(m+1)} \right)$$

end

3.5. Convergence (see Demmel's book ANLA, section 6.5.5)

Definition 9

 ${f A}$ is an irreducible matrix if there is no permutation matrix such that

$$\mathbf{P}\mathbf{A}\mathbf{P}^{ op} = \left[egin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{0} & \mathbf{A}_{22} \end{array}
ight].$$

Definition 10

A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is weakly row diagonally dominant if for all i,

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$

with strict inequality at least once. A matrix \mathbf{A} is strictly row diagonally dominant if for all i:

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|.$$

Theorem 11

If **A** is strictly row diagonally dominant, then both Jacobi's and Gauss-Seidel methods converge. In fact $\|\mathbf{R}_{GS}\|_{\infty} \leq \|\mathbf{R}_{J}\|_{\infty} < 1$.

Theorem 12

If ${\bf A}$ is irreducible and weakly row diagonally dominant, then both Jacobi's and Gauss–Seidel methods converge, and $\rho({\bf R}_{\rm GS})<\rho({\bf R}_{\rm J})<1$.

Theorem 13

For any matrix **A**, it holds $\rho(\mathbf{R}_{SOR(\omega)}) \ge |\omega - 1|$. Therefore $0 < \omega < 2$ is required for the convergence of $SOR(\omega)$ for all starting vectors.

Theorem 14

If **A** is Hermitian positive definite, then $\rho(\mathbf{R}_{SOR(\omega)}) < 1$ for all $0 < \omega < 2$, i.e., $SOR(\omega)$ converges for all $0 < \omega < 2$. Gauss–Seidel (SOR(1)) converges for Hermitian positive definite **A**.