1 Sets: finite, countable, uncountable. Characterization of finite sets

Определение

Множество A называется **конечным**, тогда и только тогда, когда оно равномощно некоторому натуральному числу n, число n называется его **мощностью**. Множество A называется **счётным**, тогда и только тогда, когда оно равномощно множеству натуральных чисел ω , ω - его мощность. Если множество не является ни конечным, ни счётным, оно называется **несчётным**. Два множества имеют одинаковую мощность, тогда и только тогда, когда они равномощны.

Примеры несчётных множеств

Множество $\mathcal{P}(\omega)$ несчётно по теореме Кантора, и его мощность называется **континуумом**. Множество всех действительных чисел \mathbb{R} также несчётно, и равномощно $\mathcal{P}(\omega)$, следовательно, его мощность также равна континууму.

Теорема

Множество A конечно тогда и только тогда, когда любое из его подмножеств $B \subsetneq A$ не равномощно $A: B \not\approx A$.

Доказательство

Пусть A конечно, без ограничения общности можно предположить, что $A=n\in\omega$ и что существует биекция $f:n\to B$, где $B\subsetneq n$. Рассматривая |B| вместо B можно предположить, что B=m< n также является натуральным числом, и f сохраняет порядок на натуральных числах. Докажем теперь, что это невозможно индукцией по n. Если n=1, то m=0 - пустое множество, но оно должно содержать f(0) - противоречие. Теперь шаг индукции: $n=\{0,1,\ldots,n-1\}>1$. Тогда введём ограничение f' для f на множестве $n-1=\{0,1,\ldots,n-2\}$. Это биекция $f':n-1\to m-1$. По предположению индукции это возможно только если n-1=m-1, следовательно, n=m - противоречие. Теперь возьмем A - множество, которое не равномощно ни одному из своих подмножеств.

Докажем, что существует такое n, что $A \leq n$. Если такого n не существует, то для любого n, $n \leq A$, т.е. существует $f_n : n \mapsto A$. Выберем такие отображения, что если $n \leq m$, то $f_n \subseteq f_m$. Действительно, учитывая f_n , построим f_{n+1} , обладающее этим свойством. Отметим, что

$$cod(f_{n+1}) \not\subseteq cod(f_n)$$

потому что иначе $n+1 \leq n$, что неверно. Тогда существует некоторое $a \in cod(f_{n+1}) \setminus cod(f_n)$ Следовательно, $f'_{n+1} = f_n \cup \{(n,a)\}$ является инъективным. Рассматривая объединение $\bigcup \{f_n | n \in \omega\}$, получаем инъективное отображение ω в A, тогда существует подмножество $A' \subsetneq A$ такое, что $A' \approx A$

2 The sequential propositional calculus: linear proofs, deduction trees, characterization theorem about proofs

Определение

Линейное доказательство (или **линейный вывод**) из множества секвенций H в исчислении высказываний - это последовательность секвенций (s_1, s_2, \ldots, s_n) такая, что каждая секвенция s_i :

- аксиома исчисления высказываний, т.е. $s_i \in A_{PC}$
- или $s_i \in H$
- или получена из некоторых секвенций $s_{j_1}, s_{j_2}, \ldots, s_{j_k}$, где $j_1, j_2, \ldots, j_k < i$, по одному из правил вывода, т.е.

$$\frac{s_{j_1}, s_{j_2}, \dots, s_{j_k}}{s_i} \in R_{PC}$$

Множество H называется множеством **предпосылок** или **предположений**, и если не указано, то будем считать, что $H = \emptyset$.

Определение

Секвенция s называется **выводимой** (или **доказуемой**, **допустимой**) в исчислении высказываний из множества секвенций H, тогда и только тогда, когда существует линейное доказательство (s_1, \ldots, s_n) из множества предпосылок H, такое, что $s = s_n$. Обозначается следующим образом:

$$H \rhd s$$

Если $H = \emptyset$, то можно писать просто $\triangleright s$.

Определение

Формула ϕ называется **выводимой** (или **доказуемой**, **допустимой**) в исчислении высказываний, тогда и только тогда, когда секвенция $\vdash \phi$ может быть выведена из пустого множества предпосылок, т.е. $\rhd \vdash \phi$. Обозначается как $\rhd \phi$.

Определение

Теперь по индукции определим **дерево секвенций** T, его высоту h(T), корень r(T) и множество листьев l(T).

- секвенция s является деревом, h(s) = 0, r(T) = s, $l(T) = \{s\}$
- ullet если T_1,\ldots,T_n деревья, а s секвенция, то

$$T = \frac{T_1 \dots T_n}{s}$$

- является деревом:
 - высоты $h(T) = \max(\{h(T_i)|i \le n\}) + 1$
 - с корнем r(T) = s
 - с листьями $l(T) = \bigcup \{l(T_i) | i \leq n\}$

переход в дереве секвенций T - 'это поддерево высоты 1, т.е. поддерево в T вида: $\frac{s_1\ s_2\ ...\ s_n}{s_0}$

Определение

Дерево секвенций T называется **деревом вывода** секвенции s из множества предпосылок H, тогда и только тогда, когда:

- 1. r(T) = s
- 2. все секвенции из множества листьев l(T) являются аксиомами исчисления высказываний или элементами H, т.е. $l(T) \subseteq H \cup A_{PC}$
- 3. все переходы $\frac{s_1 \ s_2 \ \dots \ s_n}{s_0}$ из T являются Правилами вывода исчисления высказываний, т.е.

$$\frac{s_1 \ s_2 \ \dots \ s_n}{s_0} \in R_{PC}$$

Теорема

Для любого множества секвенций H и секвенции s, $H \rhd s \Leftrightarrow$ для s существует дерево вывода из предпосылок H.

Доказательство

 \Rightarrow

Пусть для s существует линейное доказательство (s_1,\ldots,s_n) из предпосылок H. Индукцией по n докажем, что для s существует дерево вывода. Основание индукции: если n=1, то $s=s_1\in H\cup A_{PC}$ - аксиома или предпосылка, тогда T=s - дерево вывода для s. Шаг индукции. Предположим, что утверждение верно для всех i< n, т.е. для секвенций s_1,\ldots,s_{n-1} существуют деревья вывода T_1,\ldots,T_{n-1} с предпосылками H. По индукции линейного доказательства существуют такие $s_{j_1},\ldots s_{j_k}$, что $j_1,\ldots,j_k< n$ и $\frac{s_{j_1}\ldots s_{j_k}}{s_n}$ - правило вывода. Тогда

$$\frac{T_{j_1} \dots T_{j_k}}{s_n}$$

будет деревом вывода для s_n . Обратное включение. \Leftarrow .

Пусть существует дерево вывода T для s с предпосылками H. Индукцией по высоте T докажем, что для любого дерева вывода T с предпосылками H его корень линейно доказуем из H. Основание индукции: если h(T)=0, то T=s, следовательно, $s\in H\cup A_{PC}$ - аксиома или предпосылка, тогда s очевидно доказуем из H. Шаг индукции. Предположим, что

утверждение верно для всех деревьев высоты $< n, T = \frac{T_1 \dots T_n}{S}$ - дерево вывода высоты n. Тогда $h(T_i) < n$ для всех $1 \le i \le n$, следовательно, все корни $r(T_i) = s_i$ линейно доказуемы из H. Пусть P_i - линейное доказательство s_i . Последний переход в дереве T выглядит следующим образом: $\frac{s_1 \dots s_n}{s}$ и происходит по какому-либо правилу вывода. Тогда секвенция $P = P_1 \ P_2 \ \dots \ P_n \ s$ будет линейным доказательством s с предпосылками H. \square

3 Unifiers, most general unifiers

Определение (унификатор)

Дано множество выражений E и подстановка θ , θ называется **унификатором** E тогда и только тогда, когда для любых $e_1, e_2 \in E$, $\theta(e_1) = \theta(e_2)$.

Унификатор может как существовать, так и нет. Кроме того, в абсолютном смысле он не единственен, потому что, комбинируя унификатор с заменой переменных, можно получить другой унификатор.

Определение

Даны две подстановки θ_1 и θ_2 , Подстановка θ_1 называется **более общий** чем θ_2 , тогда и только тогда, когда существует такая подстановка δ , что $\theta_2 \subseteq \theta_1 \circ \delta$. Это отношение обозначается как $\theta_1 \geq \theta_2$.

пример: $\{x_1/f(y_1), x_2/y_2\}$ более общая чем $\{x_1/f(g(z_1,z_2)), x_2/h(z_1)\}$, потому что

$$\{x_1/f(g(z_1,z_2)),x_2/h(z_1)\}\subseteq \{x_1/f(y_1),x_2/y_2\}\circ \{y_1/g(z_1,z_2),y_2/h(z_1)\}$$

Определение (наиболее общий унификатор)

Дано множество выражений E и подстановка θ , θ называется **наиболее** общим унификатором тогда и только тогда, когда

- θ является унификатором для E,
- для любого другого унификатора θ' выражения E верно, что $\theta \ge \theta'$, т.е. θ более общий чем θ' .

Отметим, что наиболее общий унификатор не единственен (если он существует), потому что унификатор, полученный в результате комбинации любого наиболее общего унификатора θ с заменой переменных, также является наиболее общим.

Алгоритм унификации

Существует эффективный алгоритм, вычисляющий некоторый наиболее общий унификатор для любого множества выражений E или определяющий, что наиболее общего унификатора для E не существует.