Macchina termica

- · Sistema a contatto con l'esterno a 2 T diverse
 - Pozzo di calore T_c
 - Sorgente T_H

fredda, producendo lavoro

 Non è possibile trasformare tutto il calore assorbito in lavoro (2° principio)

$$\cdot W = Q_H - Q_C$$

 Q_{H}

Rendimento

- Capacità della macchina di convertire calore in lavoro: la macchina assorbe calore e lo converte in lavoro $\eta = \frac{W}{Q_{ass}}$
- Nel caso di macchine FRIGORIGENE: calore assorbito dalla sorgente fredda rispetto al lavoro fatto dal motore $\eta = \frac{Q_{ass}}{W}$

Ancora sul rendimento

- · Enunciato del 2° principio:
 - Nessuna macchina può avere rendimento maggiore di una macchina termica reversibile che lavora alle stesse temperature
- . La macchina termica reversibile è la macchina ideale T_C $\eta = 1 \frac{T_C}{T_M}$

· Maggiore è la differenza tra le temperature, maggiore è il rendimento teorico

Esempi ed esercizi

- · Rendimento atteso:
 - · Auto a benzina 14-25%
 - · Auto diesel 25-35%
- Rendimento teorico (se fosse una macchina termica)
 - $T_{H} = 1000^{\circ} C$
 - \cdot T_c = 100°C

Cicli

· Le macchine termiche devono lavorare in modo

ciclico (ΔU=0)

· Ciclo di Carnot

- · 2 isoterme, 2 adiabatiche
- Nelle isoterme sia calore che lavoro
- · Nelle adiabatiche solo lavoro
- · 1→2 espansione isoterma: fa lavoro assorbendo $Q=W=nRT_1 \ln \left| \frac{V_2}{V_1} \right|$
- · $2\rightarrow 3$ espansione adiabatica Q=0
- · 3 → 4 compressione isoterma: subisce lavoro $Q = W = nRT_2 \ln \left(\frac{V_4}{V_3} \right)$
- · $4\rightarrow 1$ compressione adiabatica Q=0

Ancora sui cicli

- · Tutte le macchine lavorano ciclicamente
- · Con Carnot si dimostra il rendimento delle macchine
- · Il lavoro che estraggo è dato dall'area della figura
 - · È positivo se la curva viene percorsa in senso orario
- · Altri tipi di cicli:
 - Stirling

- · Otto (o Beau de Rochas, motore a benzina)
- · Diesel

