

Série C - session 2009 : problème 1 - corrigé

A - Construction

B - Utilisation des nombres complexes

a) Affixes de D et A

Posons $z_c = a$ et $z_E = b$

D est l'image de C par la rotation de centre O et d'angle $\frac{\pi}{2}$ alors $z_D = e^{\frac{i\pi}{2}}z_C$ i.e z_D = ia.

A est l'image de E par la rotation de $r_{(0,\frac{\pi}{2})}$ alors $z_A = e^{\frac{i\pi}{2}} z_E$ i.e $z_A = ib$.

Remarque: a et b sont des complexes quelconques

b) Affixes des vecteurs \overrightarrow{CA} et \overrightarrow{OG}

On a
$$Z = z_{\overrightarrow{CA}} = z_A - z_C = ib - a$$
 d'où $Z = -a + ib$.

G étant le milieu de [DE], alors
$$z_G = \frac{z_D + z_E}{2} = \frac{b + ai}{2}$$

D'où
$$Z' = z_{\overrightarrow{OG}} = z_G = \frac{b + ai}{2}$$
; $Z' = \frac{1}{2}(b + ai)$

c) Expression de Z' en fonction de Z

On
$$\alpha Z' = \frac{1}{2}(b + ai) = -\frac{i}{2}(ib - a)$$
. D'où $Z' = -\frac{i}{2}Z$

d) Démontrons que $\overrightarrow{CA} \perp \overrightarrow{OG}$ et que CA = 2 OG

Comparons les arguments et modules de Z et Z'

- Argument : on a
$$arg(Z') = arg(-\frac{i}{2}Z) = arg(-\frac{i}{2}) + arg(Z)$$

D'où
$$arg(Z') = -\frac{\pi}{2} + arg(Z)$$
 i.e $arg(Z') - arg(Z) = -\frac{\pi}{2}$ alors $(\overrightarrow{CA}, \overrightarrow{OG}) = \frac{\pi}{2}$

- module : on a
$$\left| Z' \right| = \left| -\frac{i}{2}Z \right| = \left| -\frac{i}{2} \right|$$
. $\left| Z \right|$ d'où $\left| Z' \right| = \frac{1}{2}\left| Z \right|$ i.e OG = $\frac{1}{2}$ CA

On conclusion: \overrightarrow{CA} et \overrightarrow{OG} sont orthogonaux et CA = 2 OG

2. Utilisation des propriétés géométriques des transformations.

a) Nature de s = roh

s est la composée d'une homothétie $h=h_{(D;2)}$ de rapport positif et d'un déplacement r (ici la rotation $r=r_{(0,\frac{\pi}{2})}$),

alors s = roh est une similitude directe de rapport k = 2 et d'angle $\theta = \frac{\pi}{2}$

b) Détermination des images s(G) et s(O) de G et O par s.

• calcul de s(G)

on a
$$s(G) = roh(G) = r[h(G)]$$

- posons G' = h(G), on a : $\overrightarrow{DG'} = 2\overrightarrow{DG}$ (d'après la définition de h) or G est le milieu de [DE], i.e.

$$\overrightarrow{DE} = 2 \overrightarrow{DG}$$
, d'où $G' = E$. Ainsi $s(G) = r[h(G)] = r(E)$

- Déterminons ensuite r(E).

Soit E'= r(E), on a (
$$(\overrightarrow{OE}, \overrightarrow{OE'}) = \frac{\pi}{2}$$
 et OE'= OE

Comme (O E A) est isocèle directe, on a OA= OE et $(\overrightarrow{OE}, \overrightarrow{OA}) = \frac{\pi}{2}$ d'où E'=A

Alors
$$s(G) = r(E) = A$$

i.e
$$s(G) = A$$

• Calcul de s(O):

On a
$$s(O) = roh(O) = r[h(O)]$$

- Soit
$$O' = h(O)$$
, d'après la définition de h on a $\overrightarrow{DO'} = 2\overrightarrow{DO}$

Donc O est le milieu de [DO']

D'où
$$s(O) = r[h(O)] = r(O')$$

- Déterminons ensuite r(O').

Soit O" = r(O'), on a
$$(\overrightarrow{OO}'; \overrightarrow{OO}") = \frac{\pi}{2}$$
 et OO' = OO"

On a (OD)
$$\perp$$
 (OC) , et comme $\overrightarrow{DO'} = 2\overrightarrow{DO}$ alors (OO') \perp (OC)

Donc
$$(\overrightarrow{OO'}, \overrightarrow{OC}) = \frac{\pi}{2}$$
. Ainsi O" appartient à la demi-droite $[OC)$.

De plus OCD est un triangle isocèle, ce qui implique OC = OD et OD = OO '

alors OC = OO'. D'où O " = C

Conclusion
$$s(O) = r(O') = C$$

• Donc
$$s(G) = A$$
 et $s(O) = C$

c) S est une similitude directe de rapport k = 2 et d'angle $\frac{\pi}{2}$ qui transforme (G ; O) en (A ; C) alors

$$(\overrightarrow{OG}, \overrightarrow{AC}) = \frac{\pi}{2}$$
 et $AC = 2 OG$.