

TS3021, TS3021A

Rail-to-rail 1.8 V high-speed comparator

Datasheet - production data

Features

- Propagation delay: 38 ns
- Low current consumption: 73 μA
- Rail-to-rail inputs
- Push-pull outputs
- Supply operation from 1.8 to 5 V
- Wide temperature range: -40 °C to 125 °C
- High ESD tolerance: 5 kV HBM, 300 V MM
- Latch-up immunity: 200 mA
- SMD packages
- Automotive qualification

Related products

- TS3022 for a dual comparator with similar performances
- TS3011 for a high-speed comparator

Applications

- Telecom
- Instrumentation
- Signal conditioning
- High-speed sampling systems
- Portable communication systems

Description

The TS3021 single comparator features highspeed response time with rail-to-rail inputs. With a supply voltage specified from 2 to 5 V, this comparator can operate over a wide temperature range: -40 °C to 125 °C.

The TS3021 comparator offers micropower consumption as low as a few tens of microamperes thus providing an excellent ratio of power consumption current versus response time

The TS3021 includes push-pull outputs and is available in small packages (SOT23-5 and SC70-5).

Contents TS3021, TS3021A

Contents

1	Absolut	te maximum ratings and operating conditions	3
2	Electric	al characteristics	4
3	Electric	al characteristic curves	10
4	Packag	e information	15
	4.1	SOT23-5 package information	16
	4.2	SC70-5 (or SOT323-5) package information	17
5	Orderin	g information	18
6	Revisio	n history	10

1 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parameter		Value	Unit		
Vcc	Supply voltage, $V_{CC} = (V_{CC+}) - (V_{CC-})^{(1)}$	5.5				
V _{ID}	Differential input voltage (2)		±5	V		
VIN	Input voltage range		(V_{CC-}) - 0.3 to (V_{CC+}) + 0.3			
D	Thermal registance junction to embient (3)	SOT23-5	250			
R _{thja}	Thermal resistance junction-to-ambient (3)	SC70-5	205	°C/W		
D	Thermal registance junction to eace (3)	SOT23-5	81			
R _{thjc}	Thermal resistance junction-to-case (3)	SC70-5	172			
T _{stg}	Storage temperature	-65 to 150				
Tj	Junction temperature		150	°C		
TLEAD	Lead temperature (soldering 10 s)	260				
	HBM: human body model (4)		HBM: human body model (4)		5000	
ESD	MM: machine model (5)	300	V			
	CDM: charged device model ⁽⁶⁾	1500				
	Latch-up immunity		200	mA		

Notes:

Table 2: Operating conditions

Symbol	Parar	Value	Unit		
Vcc	Cupply voltage	0 °C < Tamb < 125 °C	1.8 to 5		
	Supply voltage	-40 °C < Tamb < 125°C	2 to 5	V	
	Common mode input	-40 °C < Tamb < 85 °C	(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2	V	
V _{icm}	voltage range	85 °C < Tamb < 125 °C	(Vcc-) to (Vcc+)		
T _{oper}	Operating temperature rang	-40 to 125	°C		

⁽¹⁾All voltage values, except the differential voltage are referenced to (Vcc-)

⁽²⁾ The magnitude of the input and output voltages must never exceed the supply rail ±0.3 V

⁽³⁾Short circuits can cause excessive heating. These values are typical

 $^{^{(4)}}$ Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

 $^{^{(5)}}$ Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.

⁽⁶⁾Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

2 Electrical characteristics

Table 3: Electrical characteristics at VCC = 2 V, Tamb = 25 ° C, and full Vicm range (unless otherwise specified)

Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit	
		TS3021A		0.5	2		
	lanut effect veltere	TS3021		0.5	6	mV	
Vio	Input offset voltage	-40 °C < Tamb < 125 °C, TS3021A 4					
		-40 °C < Tamb < 125 °C, TS3021			7		
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < Tamb < 125 °C		3	20	μV/°C	
l	Input offeet current (2)	Tamb		1	20		
Iю	Input offset current (2)	-40 °C < Tamb < 125 °C			100	~ Λ	
I	Input bias current (2)	Tamb		86	160	nA	
Iв	input bias current 19	-40 °C < Tamb < 125 °C			300		
		No load, output high, Vicm = 0 V		73	90		
	Own the summer	No load, output high, Vicm = 0 V, -40 °C < Tamb < 125 °C			115		
Icc	Supply current	No load, output low, Vicm = 0 V		84	105	μА	
		No load, output low, Vicm = 0 V, -40 °C < Tamb < 125 °C			125		
	Short-circuit current	Source		9		4	
Isc		Sink		10		mA	
	Output valta sa hish	Isource = 1 mA	1.88	1.92			
V _{OH}	Output voltage high	-40 °C < Tamb < 125 °C	1.80			V	
\ <i>/</i>	Output valta na lavv	Isink = 1 mA		60	100	>/	
Vol	Output voltage low	-40 °C < Tamb < 125 °C			150	mV	
CMRR	Common mode rejection ratio	0 < Vicm < 2 V		67		dB	
SVR	Supply voltage rejection	ΔVcc = 2 to 5 V	58	73			
TD	Propagation delay, low to	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		38	60		
TP _{LH}	high output level (3)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		48	75		
TD	Propagation delay, high to	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		40	60	20	
TP _{HL}	low output level (4)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		49	75	ns	
T _F	Fall time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		8			
T _R	Rise time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		9			

Notes:

⁽¹⁾All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits

 $^{(2)}$ Maximum values include unavoidable inaccuracies of the industrial tests

 $^{(3)}$ Response time is measured 10%/90% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm - 100 mV to Vicm + overdrive.

 $^{(4)}$ Response time is measured 10%/90% of the final output value with the following conditions: Inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm - overdrive.

Table 4: Electrical characteristics at VCC = 3.3 V, Tamb = 25 $^{\circ}$ C, and full Vicm range (unless otherwise specified)

Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit		
		TS3021A		0.5	2			
	Input offset voltage	TS3021		0.5	6] ,,		
Vio	Input offset voltage	-40 °C < Tamb < 125 °C, TS3021A			4	mV		
		-40 °C < Tamb < 125 °C, TS3021			7			
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < Tamb < 125 °C		3	20	μV/°C		
1	Input offset surrent (2)	Tamb		1	20			
lιο	Input offset current (2)	-40 °C < Tamb < 125 °C			100	nA		
1	Input bigg gurrant (2)	Tamb		86	160			
Iв	Input bias current (2)	-40 °C < Tamb < 125 °C			300			
		No load, output high, Vicm = 0 V		75	90			
		No load, output high, Vicm = 0 V, -40 °C < Tamb < 125 °C			120	μA		
Icc	Supply current	No load, output low, Vicm = 0 V		86	110			
		No load, output low, Vicm = 0 V, -40 °C < Tamb < 125 °C			125			
Isc	Short-circuit current	Source		26		mA		
		Sink		24				
	Output valta as high	Isource = 1 mA	3.20	3.25		V		
V _{OH}	Output voltage high	-40 °C < Tamb < 125 °C	3.10					
V/	Output voltage law	Isink = 1 mA		40	80	m\/		
Vol	Output voltage low	-40 °C < Tamb < 125 °C			150	mV		
CMRR	Common mode rejection ratio	0 < Vicm < 3.3 V		75		dB		
SVR	Supply voltage rejection	ΔVcc = 2 to 5 V	58	73				
TD	Propagation delay, low to	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		39	65			
TP _{LH}	high output level (3)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		50	85			
TD	Propagation delay, high to	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		41	65			
TP _{HL}	low output level (4)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		51	80	ns		
T _F	Fall time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		5				
T _R	Rise time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		7				

Notes:

⁽¹⁾All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits

 $^{(2)}$ Maximum values include unavoidable inaccuracies of the industrial tests

 $^{(3)}$ Response time is measured 10%/90% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm - 100 mV to Vicm + overdrive.

 $^{(4)}$ Response time is measured 10%/90% of the final output value with the following conditions: Inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm - overdrive.

Table 5: Electrical characteristics at VCC = 5 V, Tamb = 25 $^{\circ}$ C, and full Vicm range (unless otherwise specified)

Symbol	Parameter	Test conditions (1)	Min.	Тур.	Max.	Unit		
		TS3021A		0.5	2			
.,		TS3021		0.5	6	m\/		
V _{IO}	Input offset voltage	-40 °C < Tamb < 125 °C, TS3021A			4	mV		
		-40 °C < Tamb < 125 °C, TS3021			7	ı		
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < Tamb < 125 °C		3	20	μV/°C		
	La a contact at the annual state (2)	Tamb		1	20			
lιο	Input offset current (2)	-40 °C < Tamb < 125 °C			100	nA		
	lanut hisa surrent (2)	Tamb		86	160			
I _{IВ}	Input bias current (2)	-40 °C < Tamb < 125 °C			300			
		No load, output high, Vicm = 0 V		77	95			
		No load, output high, Vicm = 0 V, -40 °C < Tamb < 125 °C			125	μΑ		
Icc	Supply current	No load, output low, Vicm = 0 V		89	115			
		No load, output low, Vicm = 0 V, -40 °C < Tamb < 125 °C			135			
	Short-circuit current	Source		51		A		
Isc		Sink		40		mA		
	Output valta sa hish	Isource = 4 mA	4.80	4.84		V		
V_{OH}	Output voltage high	-40 °C < Tamb < 125 °C	4.70					
Vol	Output voltage low	Isink = 4 mA		130	180	mV		
VOL	Output voltage low	-40 °C < Tamb < 125 °C			250	IIIV		
CMRR	Common mode rejection ratio	0 < Vicm < 5 V		79		dB		
SVR	Supply voltage rejection	ΔVcc = 2 to 5 V	58	73				
TP _{LH}	Propagation delay, low to	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		42	75			
IPLH	high output level (3)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		54	105			
TD	Propagation delay, high to	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV		45	75			
TP _{HL}	low output level (4)	Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV		55	95	ns		
T _F	Fall time	$f = 10 \text{ kHz}$, $CL = 50 \text{ pF}$, $RL = 10 \text{ k}\Omega$, overdrive = 100 mV		4				
T_R	Rise time	f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV		4				

Notes:

- ⁽¹⁾All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits
- $^{(2)}$ Maximum values include unavoidable inaccuracies of the industrial tests
- $^{(3)}$ Response time is measured 10%/90% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm 100 mV to Vicm + overdrive.
- $^{(4)}$ Response time is measured 10%/90% of the final output value with the following conditions: Inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm overdrive.

3 Electrical characteristic curves

Figure 2: Current consumption vs. supply voltage (Vicm = Vcc output high)

115

100

105

100

105

100

105

100

105

100

105

100

105

100

105

100

105

100

105

100

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

105

1

57

Figure 8: Output voltage vs. sink current, Vcc = 3.3 V $V_{cc} = 3.3V$ output LOW 0.25 0.20 +125°C 0.15 +25°C 0.10 -40°C 1.0 1.5 2.0 2.5 3.0 3.5 I_{SINK} (mA)

Figure 9: Output voltage vs. source current, Vcc = 5 V 4.95 -40°C \$\\ \frac{4.90}{5}\\ \frac{4.85}{1.85}\end{align*} 4.80 $V_{cc} = \overline{5V}$ +125°C output HIGH 4.75 L 0.0 1.0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 I_{SOURCE} (mA)

Figure 13: Current consumption vs. commutation frequency

600

CLOAD = 500F

400

100

100

Trequency (Hz)

Figure 14: Propagation delay (HL) vs. overdrive at Vcc = 2 V, Vicm = 0 V

Figure 15: Propagation delay (HL) vs. overdrive at Vcc = 2 V, Vicm = Vcc

100
90
80
TP_{HL}
T= 125°C
TP_{HL}
T= -40°C
TP_{HL}
T= -40°C
V_{ov}(mV)

Figure 16: Propagation delay (LH) vs. overdrive at Vcc = 2 V, Vicm = 0 V

Figure 20: Propagation delay (LH) vs. overdrive at Vcc = 3.3 V, Vicm = 0 V

TS3021, TS3021A Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 SOT23-5 package information

A A2
A2
A1
A2
E

Figure 28: SOT23-5 package outline

Table 6: SOT23-5 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.90	1.20	1.45	0.035	0.047	0.057	
A1			0.15			0.006	
A2	0.90	1.05	1.30	0.035	0.041	0.051	
В	0.35	0.40	0.50	0.014	0.016	0.020	
С	0.09	0.15	0.20	0.004	0.006	0.008	
D	2.80	2.90	3.00	0.110	0.114	0.118	
D1		1.90			0.075		
е		0.95			0.037		
Е	2.60	2.80	3.00	0.102	0.110	0.118	
F	1.50	1.60	1.75	0.059	0.063	0.069	
L	0.10	0.35	0.60	0.004	0.014	0.024	
K	0 degrees		10 degrees	0 degrees		10 degrees	

4.2 SC70-5 (or SOT323-5) package information

DIMENSIONS IN MM

SIDE VEW

GAUGE PLANE

GAUGE PLANE

GAUGE PLANE

GAUGE PLANE

D

GAUGE PLANE

GAUGE PLANE

A1

GAUGE PLANE

GAUGE PLANE

D

GAUGE PLANE

GAUGE PLANE

TOP VIEW

Figure 29: SC70-5 (or SOT323-5) package outline

Table 7: SC70-5 (or SOT323-5) mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	0.80		1.10	0.032		0.043		
A1			0.10			0.004		
A2	0.80	0.90	1.00	0.032	0.035	0.039		
b	0.15		0.30	0.006		0.012		
С	0.10		0.22	0.004		0.009		
D	1.80	2.00	2.20	0.071	0.079	0.087		
Е	1.80	2.10	2.40	0.071	0.083	0.094		
E1	1.15	1.25	1.35	0.045	0.049	0.053		
е		0.65			0.025			
e1		1.30			0.051			
L	0.26	0.36	0.46	0.010	0.014	0.018		
<	0°		8°	0°		8°		

5 Ordering information

Table 8: Order codes

Order code	Temperature range	Package	Packaging	Marking
TS3021ILT		COTOO F		K520
TS3021IYLT (1)	40 to 425 °C	SOT23-5	Ton a on ducal	K529
TS3021ICT	-40 to 125 °C	SC70-5	Tape and reel	K52
TS3021AILT		SOT23-5		K522

Notes:

 $^{^{(1)}}$ Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent.

TS3021, TS3021A Revision history

6 Revision history

Table 9: Document revision history

Date	Revision	Changes
01-Jun-2006	1	Initial release
01-Sep-2006	2	Dual version added Pinout of single TS3021 corrected Modified temperature range for input common mode voltage
22-Feb-2007	3	Addition of MiniSO-8 package for dual version
17-Oct-2007	4	Marking corrected for SO-8 package Thermal resistance values corrected in AMR table Notes on ESD added in AMR table
04-Dec-2008	5	Dual version (TS3022) removed ESD tolerance modified in Table 1: Absolute maximum ratings Made the following changes in Table 3: - modified Vio typical value and maximum limits - modified lib typical value - modified lcc typical values and corrected maximum limits - modified lsc typical values - modified lsc typical values - modified Voh and Vol typical values - modified CMRR and SVR typical values - modified TPhI and TPIh typical values All curves modified
03-Jan-2013	6	Features: added "automotive qualification"; added Related products. Table 1 and Table 2: Vdd and Vcc replaced by (Vcc-) and (Vcc+) respectively. Table 3, Table 4, and Table 5: replaced ΔVio symbol with ΔVio/ΔT. Table 6 and Table 7: minor update (added angle dimensions to "inches" columns). Table 8: added automotive order code
02-Jun-2015	7	Table 3, Table 4, and Table 5: updated Vio parameter Table 6: small "rounding-off modifications to inches parameter Table 8: added order code TS3021AILT
07-Jul-2016	8	Added new part number TS3021A Updated document layout Table 3, Table 4, and Table 5: updated V _{IO} test conditions and values.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

