

CS 564: Database Management Systems Lecture 9: Normalization I

Xiangyao Yu 2/12/2024

Module A2: Database Design

ER Model

Functional Dependency

Normalization I

Normalization II

Outline of this Lecture

The closure algorithm

Decomposition

Lossless-join decomposition

Boyce-Codd normal form (BCNF)

Normalization

Closure of Attribute Sets

Attribute Closure

If *X* is an attribute set, the closure *X*⁺ is the set of all attributes *B* such that:

$$X \longrightarrow B$$

In other words, X^+ includes all attributes that are functionally determined from X

Example

Product(name, category, color, department, price)

- $name \rightarrow color$
- $category \rightarrow department$
- $color, category \rightarrow price$

Attribute Closure:

- $\{name\}^+ =$
- $\{name, category\}^+ =$

Example

Product(name, category, color, department, price)

- $name \rightarrow color$
- $category \rightarrow department$
- color, category \rightarrow price

Attribute Closure:

- $\{name\}^+ = \{name, color\}$
- $\{name, category\}^+ = \{name, color, category, department, price\}$

Calculate Attribute Closure

```
Let X = \{A_1, A_2, ..., A_n\}
```

UNTIL X doesn't change **REPEAT**:

IF $B_1, B_2, ..., B_m \rightarrow C$ is an FD AND $B_1, B_2, ..., B_m$ are all in XTHEN add C to X

Output X

Attribute Closure – Example

```
R(A, B, C, D, E, F)
-A, B \rightarrow C
-A, D \rightarrow E
-B \rightarrow D
-A, F \rightarrow B
```

Compute the attribute closures:

 $- \{A, B\}^+ =$ $- \{A, F\}^+ =$

Attribute Closure – Example

```
R(A, B, C, D, E, F)
-A, B \rightarrow C
-A, D \rightarrow E
-B \rightarrow D
-A, F \rightarrow B
```

Compute the attribute closures:

 $- \{A, B\}^+ = \{A, B, C, D, E\}$ $- \{A, F\}^+ =$

Attribute Closure – Example

```
R(A, B, C, D, E, F)
-A, B \rightarrow C
-A, D \rightarrow E
-B \rightarrow D
-A, F \rightarrow B
```

Compute the attribute closures:

 $- \{A, B\}^+ = \{A, B, C, D, E\}$ $- \{A, F\}^+ = \{A, F, B, D, E, C\}$

FD Closure

FD Closure

If F is a set of FDs, the closure F^+ is the set of all FDs logically implied by F

Armstrong's axioms are:

- **Sound**: any FD generated by an axiom belongs in F^+
- Complete: repeated application of the axioms will generate all FDs in F^+

To compute the closure F^+ of FDs

- For each subset of attributes X, compute X^+
- For each subset of attributes $Y \subseteq X^+$, output the FD $X \longrightarrow Y$

Computing Keys and Superkeys

Compute X⁺ for all sets of attributes X

If $X^+ = all \ attributes$, then X is a superkey

If no subset of X is a superkey, then X is also a key

Outline of this Lecture

The closure algorithm

Decomposition

Lossless-join decomposition

Boyce-Codd normal form (BCNF)

Normalization

Schema Decomposition

We decompose a relation $\mathbf{R}(A_1, ..., A_n)$ by creating

```
R_1(B_1, ..., B_m)
R_2(C_1, ..., C_k)
where \{B_1, ..., B_m\} \cup \{C_1, ..., C_k\} = \{A_1, ..., A_n\}
```

The instance of R_1 is the projection of R onto B_1 , ..., B_m

The instance of \mathbb{R}_2 is the projection of \mathbb{R} onto \mathbb{C}_1 , ..., \mathbb{C}_1

In general we can decompose a relation into multiple relations.

Schema Decomposition – Example

<u>SSN</u>	name	rating	hourly_wages	hours_worked
123-22-3666	Attishoo	8	10	40
231-31-5368	Smiley	8	10	30
131-24-3650	Smethurst	5	7	30
434-26-3751	Guldu	5	7	32
612-67-4134	Madayan	8	10	40

R1:

<u>SSN</u>	name	rating	hours_worked
123-22-3666	Attishoo	8	40
231-31-5368	Smiley	8	30
131-24-3650	Smethurst	5	30
434-26-3751	Guldu	5	32
612-67-4134	Madayan	8	40

R2:

rating	hourly_wages
8	10
5	7

Properties of Decompositions

What should a good decomposition achieve?

- 1. Minimize redundancy
- 2. Avoid information loss (This lecture)
 - Lossless-join
- 3. Preserve the FDs (Next lecture)
 - Dependency preserving
- 4. Ensure good query performance

name	age	phoneNumber
Paris	24	608-374-8422
John	24	608-321-1163
Arun	20	206-473-8221

Decompose into:

R₁(name, age)

R₂(age, phoneNumber)

name	age	
Paris	24	
John	24	
Arun	20	

age	phoneNumber
24	608-374-8422
24	608-321-1163
20	206-473-8221

We can't figure out which phoneNumber corresponds to which person!

Outline of this Lecture

The closure algorithm

Decomposition

Lossless-join decomposition

Boyce-Codd normal form (BCNF)

Normalization

Lossless-Join Decomposition

A schema decomposition is <u>lossless-join</u> if $\mathbf{R} = \mathbf{R'}$ for any initial instance \mathbf{R}

R

S	P	D
s1	p1	d1
s2	p2	d2
s3	p1	d3

Decompose

R1

R

S	Р	D
s1	p1	d1
s2	p2	d2
s3	p1	d3

Decompose

S	Р
s1	p1
s2	p2
s3	p1

 R2
 P
 D

 p1
 d1

 p2
 d2

 p1
 d3

R

S	Р	D
s1	p1	d1
s2	p2	d2
s3	p1	d3

Decompose

R1

S	Р
s1	p1
s2	p2
s3	p1

R2

Р	D
p1	d1
p2	d2
p1	d3

Natural Join

R1 Joins R2

S	Р	D
s1	p1	d1
s2	p2	d2
s3	p1	d3
s1	p1	d3
s3	p1	d1

R1 Joins R2 \neq R

Lossless-Join Decomposition – Example

F	?		
•	•	•	

<u>SSN</u>	name	rating	hourly_wages	hours_worked
123-22-3666	Attishoo	8	10	40
231-31-5368	Smiley	8	10	30
131-24-3650	Smethurst	5	7	30
434-26-3751	Guldu	5	7	32
612-67-4134	Madayan	8	10	40

R1:

<u>SSN</u>	name	rating	hours_worked
123-22-3666	Attishoo	8	40
231-31-5368	Smiley	8	30
131-24-3650	Smethurst	5	30
434-26-3751	Guldu	5	32
612-67-4134	Madayan	8	40

R2:

rating	hourly_wages
8	10
5	7

R1 Joins R2 = R

Test for Lossless Join

Theorem

Let R be a relation and F be a sets of FDs that hold over R. The decomposition of R into relations with attribute sets R1 and R2 is lossless **if and only if** F^+ contains either the FD $R1 \cap R2 \longrightarrow R1$ or the FD $R1 \cap R2 \longrightarrow R2$.

The attributes common to R1 and R2 must contain a key for either R1 or R2

Test for Lossless Join

Theorem

Let R be a relation and F be a sets of FDs that hold over R. The decomposition of R into relations with attribute sets R1 and R2 is lossless **if and only if** F^+ contains either the FD $R1 \cap R2 \longrightarrow R1$ or the FD $R1 \cap R2 \longrightarrow R2$.

The attributes common to R1 and R2 must contain a key for either R1 or R2

If an FD $X \rightarrow Y$ holds over a relation R and $X \cap Y$ is empty, the decomposition of R into R - Y and XY is lossless

Lossless Join

If an FD $X \rightarrow Y$ holds over a relation R and $X \cap Y$ is empty, the decomposition of R into R - Y and XY is lossless

R:

<u>SSN</u>	name	rating	hourly_wages	hours_worked
123-22-3666	Attishoo	8	10	40
231-31-5368	Smiley	8	10	30
131-24-3650	Smethurst	5	7	30
434-26-3751	Guldu	5	7	32
612-67-4134	Madayan	8	10	40

R (SSN, name, rating, hourly_wages, hours_worked)

- rating → hourly_wages
- R1(SSN, name, rating, hous_worked)
- R2(rating, hourly_wages)

Lossless-Join Decomposition – Exercise

```
R(A, B, C, D)
- FD: A, B \rightarrow C
```

Theorem

Let R be a relation and F be a sets of FDs that hold over R. The decomposition of R into relations with attribute sets R1 and R2 is lossless **if and only if** F^+ contains either the FD R1 $\cap R2 \longrightarrow R1$ or the FD $R1 \cap R2 \longrightarrow R2$.

Are the following decompositions lossless?

- -R1(A, B, C), R2(D)
- -R1(A, B, D), R2(B, C)
- -R1(A, B, D), R2(A, B, C)
- -R1(A, B, C), R2(B, C, D)

Lossless-Join Decomposition – Exercise

$$R(A, B, C, D)$$

- FD: A, B \rightarrow C

Theorem

Let R be a relation and F be a sets of FDs that hold over R. The decomposition of R into relations with attribute sets R1 and R2 is lossless **if and only if** F^+ contains either the FD R1 $\cap R2 \longrightarrow R1$ or the FD $R1 \cap R2 \longrightarrow R2$.

Are the following decompositions lossless?

-R1(A,	B C)	R2(D)	No	
$ \Gamma$ Γ	$D, C_{J},$	RZ(D)	INC	_

Repeated Decomposition

```
R(A, B, C, D)
- FD1: A \rightarrow B
- FD2: C \rightarrow D
```

Repeated Decomposition

```
R(A, B, C, D)
- FD1: A \rightarrow B
- FD2: C \rightarrow D
```

Decompose R into R1(A, C, D) and R2(A, B)

Repeated Decomposition

```
R(A, B, C, D)
- FD1: A \rightarrow B
- FD2: C \rightarrow D
```

Decompose R into R1(A, C, D) and R2(A, B) Decompose R1 into R11(A, C) and R12(C, D)

Test for Lossless Join (Multiple Relations)

If a table is decomposed into more than two tables, how to test whether it is lossless?

Solution 1: Identify repeated lossless-join decompositions

Solution 2: Chase test

Relation R(A,B,C,D,E)

FDs: $\{AB \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$.

Is the decomposition {ABC, BCD, ADE} a lossless-join decomposition?

Relation R(A,B,C,D,E)

FDs: $\{AB \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$.

Is the decomposition {ABC, BCD, ADE} a lossless-join decomposition?

Solution 1:

{R1=ABCD, R2=ADE} is a lossless-join decomposition of R

Relation R(A,B,C,D,E)

FDs: $\{AB \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$.

Is the decomposition {ABC, BCD, ADE} a lossless-join decomposition?

Solution 1:

{R1=ABCD, R2=ADE} is a lossless-join decomposition of R {ABC, BCD} is a lossless-join decomposition of R1=ABCD

Therefore, {ABC, BCD, ADE} is a lossless-join decomposition of R

Relation R(A,B,C,D,E)

FDs: $\{AB \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$.

Is the decomposition {ABC, BCD, ADE} a lossless-join decomposition?

А	В	С	D	П
а	b	С	d1	e1
a2	b	С	d	e2
а	b3	сЗ	d	е

Construct a tableau; insert one row for each table.

- Use distinguished variable (a,b,c,...) if the attribute is in the table
- Otherwise use a non-distinguished symbol (e1, e2, b3,...)

Chase Test Example

Relation R(A,B,C,D,E)

FDs: $\{AB \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$.

Is the decomposition {ABC, BCD, ADE} a lossless-join decomposition?

А	В	С	D	E
а	b	С	d1 d	e1
a2	b	С	d	e2
а	b3	сЗ	d	е

Chase the tableau by applying FDs

Since first two rows agree on B and C, they must agree on D as well

Chase Test Example

Relation R(A,B,C,D,E)

FDs: $\{AB \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$.

Is the decomposition {ABC, BCD, ADE} a lossless-join decomposition?

А	В	С	D	E
а	b	С	d	e1 e
a2	b	С	d	e2
а	b3	сЗ	d	е

Chase the tableau by applying FDs

- Since 1st and 3rd rows agree on A and D, they must agree on E as well

Chase Test Example

Relation R(A,B,C,D,E)

FDs: $\{AB \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$.

Is the decomposition {ABC, BCD, ADE} a lossless-join decomposition?

А	В	С	D	Е
a	b	C	d	е
a2	b	С	d	e2
а	b3	сЗ	d	е

Row 1 contains only distinguished symbols, hence the decomposition is lossless

39

Chase Test – Exercise

Relation R(A,B,C,D,E)

FDs: $\{AB \rightarrow C, BC \rightarrow D, AD \rightarrow E\}$.

Is the decomposition {ABC, BCD, ADE} a lossless-join decomposition?

А	В	С	D	E

Outline of this Lecture

The closure algorithm

Decomposition

Lossless-join decomposition

Boyce-Codd normal form (BCNF)

Normalization

Boyce-Codd Normal Form (BCNF)

A relation **R** is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a superkey in **R**

Equivalent definition: for every attribute set *X*

- either $X^+ = X$
- or $X^+ = all \ attributes$

The only nontrivial dependencies are those in which a key determines some attributes.

A relation **R** is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a superkey in **R**

<u>SSN</u>	name	age	<u>phoneNumber</u>
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

 $SSN \rightarrow name, age$

 $\mathbf{key} = \{SSN, phoneNumber\}$

Is this relation in BCNF?

A relation **R** is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a superkey in **R**

<u>SSN</u>	name	age	<u>phoneNumber</u>
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

 $SSN \rightarrow name, age$

 $\mathbf{key} = \{SSN, phoneNumber\}$

 $SSN \rightarrow name, age$ is a "bad" FD

The above relation is **not** in BCNF!

<u>SSN</u>	name	age
934729837	Paris	24
123123645	John	30
384475687	Arun	20

$$SSN \rightarrow name, age$$

$$key = \{SSN\}$$

Is this relation in BCNF?

A relation **R** is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a superkey in **R**

<u>SSN</u>	name	age
934729837	Paris	24
123123645	John	30
384475687	Arun	20

$$SSN \rightarrow name, age$$

$$key = \{SSN\}$$

The above relation is in BCNF!

A relation **R** is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a superkey in **R**

A relation **R** is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a superkey in **R**

<u>SSN</u>	<u>phoneNumber</u>
934729837	608-374-8422
934729837	603-534-8399
123123645	608-321-1163
384475687	206-473-8221

key = {SSN, phoneNumber}
Is this relation in BCNF?

A relation **R** is in **BCNF** if whenever $X \rightarrow B$ is a non-trivial FD, then X is a superkey in **R**

SSN	phoneNumber
934729837	608-374-8422
934729837	603-534-8399
123123645	608-321-1163
384475687	206-473-8221

 $\mathbf{key} = \{SSN, phoneNumber\}$

The above relation is in BCNF!

Outline of this Lecture

The closure algorithm

Decomposition

Lossless-join decomposition

Boyce-Codd normal form (BCNF)

Normalization

Decomposition into BCNF

Find an FD that violates the BCNF condition

$$A_1, A_2, \dots, A_n \longrightarrow B_1, B_2, \dots, B_m$$

Decompose R to R_1 and R_2 :

Continue until no BCNF violations are left

Always possible to obtain a lossless-join decomposition into a collection of BCNF relation schemas

SSN	name	age	phoneNumber
934729837	Paris	24	608-374-8422
934729837	Paris	24	603-534-8399
123123645	John	30	608-321-1163
384475687	Arun	20	206-473-8221

The FD $SSN \rightarrow name, age$ violates BCNF Split into two relations R_1 , R_2 as follows:

 $SSN \rightarrow name, age$

SSN	name	age
934729837	Paris	24
123123645	John	30
384475687	Arun	20

SSN	phoneNumber
934729837	608-374-8422
934729837	603-534-8399
123123645	608-321-1163
384475687	206-473-8221

```
Contracts(contractid, supplierid, projectid, deptid, partid, qty, value)

C S J D P Q V

- C → SJDPQV (C is the primary key)

- J → S (each project deals with a single supplier)

- SD → P (a department purchases at most one part from a supplier)
```

Contracts(contractid, supplierid, projectid, deptid, partid, qty, value)

C
S
J
D
P
Q
V

- $-C \rightarrow SJDPQV$ (C is the primary key)
- $-J \rightarrow S$ (each project deals with a single supplier)
- SD → P (a department purchases at most one part from a supplier)

Contracts(contractid, supplierid, projectid, deptid, partid, qty, value)

- $-C \rightarrow SJDPQV$ (C is the primary key)
- $-J \rightarrow S$ (each project deals with a single supplier)
- SD → P (a department purchases at most one part from a supplier)

Summary

The closure algorithm

- Attribute closure; FD closure

Decomposition

Lossless-join decomposition

- Chase test

Boyce-Codd normal form (BCNF)

Normalization

- Decompose into BCNF