Chap 2. Arrays and Structures (2)

Contents

- 2.1 Arrays
- 2.2 Dynamically Allocated Array
- 2.3 Structures and Unions
- 2.4 Polynomials
- 2.5 Sparse Matrices
- 2.6 Representation of Multidimensional Arrays
- 2.7 Strings

2.5 Sparse Matrix

Standard representation of a matrix

A[MAX_ROWS][MAX_COLS]

(a)

	col 0	col 1	col 2	col 3	col	4 col 5	
row 0	15	0	0	22	0	-15	
row 1		11			0	0	
row 2	0	0	0	-6	0	0	
	0	0	0	0	0	0	
row 4		0			0	0	
row 5	0	0	28	0	0	0	
L	_					_	
			(b)				

Sparse matrix

•
$$m \times n$$
 matrix A : $\frac{no.of\ nonzero\ elemnets}{m \times n} \ll 1$

2.5.2 Sparse Matrix Representation

- An array of triples
 - <row, column, value> : 3-tuples (triples)
- #define MAX-TERMS 101 /* maximum number of terms +1*/ typedef struct {

```
int col;
int row;
```

int value;

} term;

term a[MAX-TERMS];

	col 0	col 1	col 2	col 3	col 4	4 col 5
row 0	15	0	0	22	0	-15
row 1	0	11	3	0	0	0
row 2	0	0	0	-6	0	0
row 3	0	0	0	0	0	0
row 4	91	0	0	0	0	0
row 5	0	0	28	0	0	0
	_					_

	row	col	value
a[0]	6	6	8
[1]	0	0	15
[2]	0	3	22
[3]	0	5	-15
[4]	1	1	11
[5]	1	2	3
[6]	2	3	-6
[7]	4	0	91
[8]	5	2	28

Use an array of triples (cont')

a[0].row: the number of rows

a[0].col : the number of columns

a[0].value: the total number of nonzero entries

The triples are ordered by row and within rows by columns.

(row major ordering)

	col 0	col 1	col 2	col 3	col	4 col 5
row 0	15	0	0	22	0	-15
row 1	0	11	3	0	0	0
row 2	0	0	0	-6	0	0
row 3	0	0	0	0	0	0
row 4		0			0	0
row 5	0	0	28	0	0	0

	row	col	value
a[0]	6	6	8
[1]	0	0	15
[2]	0	3	22
[3]	0	5	-15
[4]	1	1	11
[5]	1	2	3
[6]	2	3	-6
[7]	4	0	91
[8]	5	2	28

ADT SparseMatrix is

objects: a set of triples, <*row*, *column*, *value*>, where *row* and *column* are integers and form a unique combination, and *value* comes from the set *item*.

functions:

for all $a, b \in SparseMatrix, x \in item, i, j, maxCol, maxRow \in index$

SparseMatrix Create(maxRow, maxCol) ::=

return a *SparseMatrix* that can hold up to $maxItems = maxRow \times maxCol$ and whose maximum row size is maxRow and whose maximum column size is maxCol.

SparseMatrix Transpose(a) ::=

return the matrix produced by interchanging the row and column value of every triple.

SparseMatrix Add(a, b) ::=

if the dimensions of a and b are the same return the matrix produced by adding corresponding items, namely those with identical row and column values.

else return error

SparseMatrix Multiply(a, b) ::=

if number of columns in a equals number of rows in b

return the matrix d produced by multiplying a by b according to the formula: $d[i][j] = \sum (a[i][k] \cdot b[k][j])$ where d(i, j) is the (i, j)th element

else return error.

for $j \leftarrow 1$ to n do for $i \leftarrow 1$ to m do $b(j, i) \leftarrow a(i, j)$ end end

	col 0	col 1	col 2	col 3	col	4 col 5
row 0	15	0	0	22	0	-15
row 1	0	11	3	0	0	0
row 2	0	0	0	-6	0	0
row 3	0	0	0	0	0	0
row 4	91	0	0	0	0	0
row 5	0	0	28	0	0	0

15	0	0	0	91	0
0	11	0	0	0	0
0	3	0	0	0	28
22	0	-6	0	0	0
0	0	0	0	0	0
-15	0	0	0	0	0

	row	col	value		row	col	value
a[0]	6	6	8	b[0]	6	6	8
[1]	0	0	15	[1]	0	0	15
[2]	0	3	22	[2]	0	4	91
[3]	0	5	-15	[3]	1	1	11
[4]	1	1	11	[4]	2	1	3
[5]	1	2	3	[5]	2	5	28
[6]	2	3	-6	[6]	3	0	22
[7]	4	0	91	[7]	3	2	-6
[8]	5	2	28	[8]	5	0	-15
	(a	1)			(b)	

Figure 2.5: Sparse matrix and its transpose stored as triples

Is this a good algorithm for transposing a matrix?

for each row i of original matrix

take element <i, j, value> and store it as element <j, i, value> of the transpose;

	row	col	value
$\overline{a[0]}$	6	6	8
[1]	0	0	15
[2]	0	3	22
[3]	0	5	-15
[4]	1	1	11
[5]	1	2	3
[6]	2	3	-6
[7]	4	0	91
[8]	5	2	28

а		b
(0, 0, 15) (0, 3, 22) (0, 5, -15) (1, 1, 11) (1, 2, 3)	→ → → → ···	(0, 0, 15) (3,0, 22) (5, 0, -15) (1, 1, 11) Data movement (2, 1, 3) data movement

We must move elements to maintain the correct order!

Using column indices

for all elements in column j

place element <i, j, value> in element <j, i, value>

	row	col	value
$\overline{a[0]}$	6	6	8
[1]	0	0	15
[2]	0	3	22
[3]	0	5	-15
[4]	1	1	11
[5]	1	2	3
[6]	2	3	-6
[7]	4	0	91
[8]	5	2	28

а		b
(0, 0, 15) (4, 0, 91) (1, 1, 11) (2, 1, 3) (5, 2, 28)	→ → → → → ::	(0, 0, 15) (0, 4, 91) (1, 1, 11) (2, 1, 3) (2, 5, 28)

We can avoid data movement!


```
typedef struct {
    int col;
    int row;
    int value;
    } term;
term a[MAX_TERMS];
```

	row	col	value		row	col	value
a[0]	6	6	8	<i>b</i> [0]	6	6	8
[1]	0	0	15	[1]	0	0	15
[2]	0	3	22	[2]	0	4	91
[3]	0	5	-15	[3]	1	1	11
[4]	1	1	11	[4]	2	1	3
[5]	1	2	3	[5]	2	5	28
[6]	2	3	-6	[6]	3	0	22
[7]	4	0	91	[7]	3	2	-6
[8]	5	2	28	[8]	5	0	-15
-	(a	1)			(b)	

Figure 2.5: Sparse matrix and its transpose stored as triples

```
void transpose(term a[], term b[])
{/* b is set to the transpose of a */
  int n,i,j, currentb;
  n = a[0].value;
                   /* total number of elements */
  b[0].row = a[0].col; /* rows in b = columns in a */
  b[0].col = a[0].row; /* columns in b = rows in a */
  b[0].value = n;
  if (n > 0) { /* non zero matrix */
     currentb = 1;
    for (i = 0; i < a[0].col; i++) //a의 열 인덱스
     /* transpose by the columns in a *///원소의 개수 만큼, a의 행 인덱스
       for (j = 1; j \le n; j++)
       /* find elements from the current column */
          if (a[j].col == i) {
          /* element is in current column, add it to b */
            b[currentb].row = a[j].col;
            b[currentb].col = a[j].row;
            b[currentb].value = a[j].value;
            currentb++;
```

Program 2.8: Transpose of a sparse matrix

Time complexity: O(columns · elements)

Analysis of transpose

- Nested for loops are the decisive factor.
- The remaining part requires only constant time.
- Time complexity : O(columns · elements)
- If elements = rows · columns, O(columns² · rows)
 - To conserve space, we have traded away too much time.
- cf) If the matrices are represented as 2D arrays,

for
$$(j = 0; j < columns; j++)$$

for $(i = 0; i < rows; i++)$
 $b[j][i] = a[i][j];$

O(columns · rows)

Fast transpose of a sparse matrix

① calculation of rowTerms

Fast transpose of a sparse matrix(cont')

$$\bullet$$
 3 b(j,i) \leftarrow a(i,j)

	row	col	value		row	col	value
$\overline{a[0]}$	6	6	8	b[0]	6	6	8
[1]	0	0	15	[1]	0	0	15
[2]	0	3	22	[2]	0	4	91
[3]	0	5	-15	[3]	1	1	11
[4]	1	1	11	[4]	2	1	3
[5]	1	2	3	[5]	2	5	28
[6]	2	3	-6	[6]	3	0	22
[7]	4	0	91	[7]	3	2	-6
[8]	5	2	28	[8]	5	0	-15

현재 처리시 0 행의 시작 주소는 2, 처리 후 1증가

$$rowTerms = \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix}$$

 $startingPos = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix}$

완료 후 StartingPos 값 → 3 4 6 8 8 9

Fast transpose of a sparse matrix(cont')

		행	열	값
	a[0]	6	6	8
→	a[1]	0	0	15
	a[2]	0	3	22
	a[3]	0	5	-15
	a[4]	1	1	11
	a[5]	1	2	3
	a[6]	2	3	-6
→	a[7]	4	0	91
	a[8]	5	2	28

rowTerms[MAX_COL]

[0]	2	[0]	1
[1]	1	[1]	3
[2]	2	[2]	4
[3]	2	[3]	6
[4]	0	[4]	8
[5]	1	[5]	8

startingPos[MAX_COL]

	행	열	값
b[0]	6	6	8
b[1]	0	0	15
b[2]	0	4	91
b[3]	1	1	11
b[4]	2	1	3
b[5]	2	5	28
b[6]	3	0	22
b[7]	3	2	-6
b[8]	5	0	-15

```
void fastTranspose(term a[], term b[])
             {/* the transpose of a is placed in b */
                int rowTerms[MAX_COL], startingPos[MAX_COL];
                int i, j, numCols = a[0].col, numTerms = a[0].value;
               b[0].row = numCols; b[0].col = a[0].row;
               b[0].value = numTerms;
                if (numTerms > 0) { /* nonzero matrix */
                  for (i = 0; i < numCols; i++)
                                                      rowTerms =
                     rowTerms[i] = 0;
 calculation of
                                                      startingPos =
                  for (i = 1; i \le numTerms; i++)
 rowTerms
                     rowTerms[a[i].col]++;
                  startingPos[0] = 1;
                  for (i = 1; i < numCols; i++)
 calculation of
                     startingPos[i] =
                                 startingPos[i-1] + rowTerms[i-1];
 startingPos
                  for (i = 1; i \le numTerms; i++) {
                     j = startingPos[a[i].col]++;
b(j,i) \leftarrow a(i,j)
                     b[j].row = a[i].col; b[j].col = a[i].row;
                     b[j].value = a[i].value;
```

Program 2.9: Fast transpose of a sparse matrix

O(columns + elements)

Fast transpose of a sparse matrix(cont')

Analysis of fastTranspose

- The number of iterations of the four loops
 - numCols, numTerms, numCols-1, numTerms, respectively
- The statements within the loops require constant time.
- Time complexity : O(columns+ elements) (columns · (rows+1))
- If elements = columns · rows, O(columns · rows)
 - equals that of the 2D array representation
- However, if elements << columns rows,
 - much faster than 2D array representation
- Thus, in this representation we save both time and space.

2.6 Representation of Multidimensional Arrays

Array of arrays in C (Section 2.2.2)

- store it in consecutive memory like1D array
- $a[upper_0][upper_1]...[upper_{n-1}]$
- The number of elements = $\prod_{i=0}^{n-1} upper_i$

Row Major Order

Declaration: A[2][3][2][2]

- the range of index values
 - 0...1, 0...2, 0...1, 0...1
- order to store

A[0][0][0][0], A[0][0][0][1], A[0][0][1][0], A[0][0][1][1] A[0][1][0][0], A[0][1][0][1], A[0][1][1][0], A[0][1][1][1] ...

A[1][2][0][0], A[1][2][0][1], A[1][2][1][0], A[1][2][1][1]

• A synonym for row major order is *lexicographic order*!!

Row Major Order (cont')

* a[upper_o][upper₁]

	address
a[0][0]	α
a[i][0]	$\alpha + i \cdot upper_I$
a[i][j]	$\alpha + i \cdot upper_I + j$

• $a[upper_0][upper_1]][upper_2]$

a[0][0][0]	α
a[i][0][0]	$\alpha + i \cdot upper_1 \cdot upper_2$
a[i][j][k]	$\alpha + i \cdot upper_1 \cdot upper_2 + j \cdot upper_2 + k$

Row Major Order(cont')

$a[upper_0][upper_1]...[upper_{n-1}]$

```
a[0][0] \dots [0]
                             α
a[i_0][0][0]...[0] \mid \alpha + i_0 upper_1 upper_2 ... upper_{n-1}
a[i_0][i_1][0]...[0] | \alpha + i_0 upper_1 upper_2 ... upper_{n-1}
                                +i_1upper_2upper_3...upper_{n-1}
a[i_0][i_1] \dots [i_{n-1}] \qquad \alpha + i_0 upper_1 upper_2 \dots upper_{n-1}
                                   +i_1upper_2upper_3...upper_{n-1}
                                   +i_2upper_3upper_4...upper_{n-1}
                                   +i_{n-2}upper_{n-1}
                                   +i_{n-1}
                             = \alpha + \sum_{j=0}^{n-1} i_j a_j \text{ where: } \begin{cases} a_j = \prod_{k=j+1}^{n-1} upper_k & 0 \le j < n-1 \\ a_{n-1} = 1 \end{cases}
```

2.7 Strings

```
ADT String is
  objects: a finite set of zero or more characters.
  functions:
     for all s, t \in String, i, j, m \in non-negative integers
     String Null(m)
                                      return a string whose maximum length is
                               ::=
                                      m characters, but is initially set to NULL
                                      We write NULL as "".
                                      if s equals t return 0
     Integer Compare(s, t)
                               ::=
                                      else if s precedes t return -1
                                           else return +1
     Boolean IsNull(s)
                                      if (Compare(s, NULL)) return FALSE
                               ::=
                                      else return TRUE
     Integer Length(s)
                                      if (Compare(s, NULL))
                               ::=
                                      return the number of characters in s
                                      else return 0.
     String Concat(s, t)
                                      if (Compare(t, NULL))
                               ::=
                                      return a string whose elements are those
                                      of s followed by those of t
                                      else return s.
     String Substr(s, i, j)
                                      if ((j > 0) && (i + j - 1) < \text{Length}(s))
                               ::=
                                      return the string containing the characters
                                      of s at positions i, i + 1, \dots, i + j - 1.
                                      else return NULL.
```

ADT 2.4: Abstract data type String

2.7.3 Pattern matching

* Easiest way to determine if pat is in string or not using the built-in function strstr() statement identifying whether pat is in string

Although strstr appears to be well-suited for pattern matching,
 let's develop our own pattern matching function

```
#include <stdio.h>
#include <string.h>
void main()
char *string = "This is a test program for strsrt function ";
char *pat = "test";
char *t;
if (t = strstr(string, pat))
          printf("The string from strstr is : %s\n", t);
else
          printf("The pattern was not found with strstr\n");
C:\WINDOWS\system32\cmd.exe
The string from strstr is : test program for strsrt function
계속하려면 아무 키나 누르십시오 . . .
```

nfind simulation

nfind simulation

- Assume pat = "aab," and string = "ababbaabaa"
 - Point end of string to <u>lastp</u>,
 - Point end of pat array to <u>lasts</u>
- Compare string [endmatch] with pat [lastp]
 If they match, use i, j to move two strings until pat is matched.
- The variables start and endmatch are incremented.

- **Pattern matching that checks the last character of the pattern first**
- Time complexity: O(lasts*lastp)

```
int nfind(char *string, char *pat)
{ /* Match the last character in the pattern first, then match it from the beginning.
     int i=0, j=0, start = 0;
     int lasts = strlen(string) - 1;
     int lastp = strlen(pat) - 1;
     int endmatch = lastp;
     for (i=0; endmatch <= lasts; endmatch++, start++) {
          if (string[endmatch] = = pat[lastp])
               for (j=0, i=start; j< lastp &&
                                      string[i] = pat[j]; i++, j++);
          if (j = = lastp)
              return start; /* success */
     return -1;
```

- KMP (Knuth, Morris, Pratt) Pattern matching
- failure function
 - String: abcabcabcabcabacc
 - Pattern: a b c a b c a b d a

- 실패함수: 패턴에 대한 정보를 제공,
- 현재의 비교가 실패했을때, 패턴의 몇 번째 문자와 비교해야 할까에 대한 정보를 제공

- KMP (Knuth, Morris, Pratt) Pattern matching
- failure function
 - String: abcabcabcabdabcc
 - Pattern: a b c a b c a b d a

j:pattern의 index

f: pattern에 있는 문자들이 패턴의 시작 위치에서 부터 일치하는 문자 index 위의 strin에서 8번째 문자 'c'와 pattern 'd'가 다름 pattern의 7번째 문자 'b'는 pattern의 처음부터 4 번째까지 일치함으로, string에서 8번째 문자 'c'와 pattern의 5번째 문자 'c'와 비교를 수행

실패함수(failure function)

• 정의 : 임의의 패턴 $p = p_0 p_1 \dots p_{n-1}$ 이 있을 때 이 패턴의 실패함수(f)는 다음과 같이 정의한다.

$$\mathbf{f(j)} = \left(\begin{array}{c} \text{Max(i)}: \ i < j, \ \text{여기서} \ p_0p_1...p_i = p_{j-i}p_{j-i+1}...p_j \text{인 i} \ge 0 \text{이 존재시} \\ -1 : 그 이외의 경우 \end{array} \right.$$

• ex) 패턴 pat = abcabcaab에 대해 f는 다음과 같다.