Do not distribute course material

You may not and may not allow others to reproduce or distribute lecture notes and course materials publicly whether or not a fee is charged.

Topic 1 Subcategory of Supervised Learning A model assuming a linear relationship Linear Model between the input variables and the output variable

Simple Linear Regression

Studied for over 200 years

STATES OF LINEA CELLS

PROF. LINDA SELLIE

Some of the slides are from Prof. Sundeep Rangan

Some approaches are taken from CMU 18-661 Introduction to Machine Learning

Learning Objectives

- ☐ How to load data from a text file
- ☐ How to visualize data via a scatter plot
- ☐ Describe a linear model for data
 - Identify the label (target variable) and feature (predictor)
- ☐ Understand the objective function for linear regression
- ☐ Understand how partial derivatives can be used in a convex optimization problem
- □ Optimization:
 - Compute optimal parameters for the model using a closed form solution
 - Compute the optimal parameters for the model using gradient descent
- Evaluation:
 - Able to compute R^2
 - Able to visually determine goodness of fit and identify different causes for poor fit

Regression means real valued output

Used in statistics and Economics

THE TERM REGRESSION COMES FROM STATISTICS - WHENEVER HAVE A REAL VALUED OUTPUT WE CALL IT REGRESSION

Notation

We will use the notation (mostly...) from Stanford and the Deep Learning Book

- lacksquare Input (features): $\mathbf{x} \in \mathbb{R}^d$ ($\mathbf{x}^{(i)}$ for the ith example
- □ Output (target/label): $y \in \mathbb{R}$ ($y^{(i)}$ for the ith example)
- \Box Training data: $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)}),$

$$X = \begin{bmatrix} \mathbf{X}^{(1)T} \\ \mathbf{X}^{(2)T} \\ \vdots \\ \mathbf{X}^{(N)T} \end{bmatrix}$$
 design matrix

- ☐ The number of training examples: N
- □ Model class (hypothesis class): $h: \mathbf{x} \to y$, with $h(\mathbf{x}) = w_0 + \sum_{i=1}^{n} w_i x_i$

 w_0 , w_1 are the weights/parameters w_0 is the bias

Outline

- ☐ Motivating Example: Predicting the mpg of a car
 - Model: Linear Model
 - ☐ Objective function: Least Squares Fit Problem
 - ☐ Global Optimizer: LS Fit Solution
 - ☐ Local Optimizer: Gradient Descent
 - ☐ Assessing Goodness of Fit
 - ☐ Extra Slides: Global Optimizer for multivariate linear regression: Normal Equation

Predicting Trends

☐ Example: Predicting mpg for a car

Example: What Determines mpg in a Car?

- ■What engine characteristics determine fuel efficiency?
- □Why would a data scientist be hired to answer this question?
 - Not to help purchasing a specific car
 - The mpg for a currently available car is already known.
 - (If the car company isn't lying?)
 - To guide building new cars
 - Understand what is reasonably achievable before full design
 - To find cars that are outside the trend
 - Example: What cars give great mpg for the cost or size?

Choose the average MPG?

Keeping it simple

☐ Lets assume that *one* of the features can approximately predict the MPG

Lets plot the data

Demo on NYU Classes

Simple Linear Regression for Automobile mpg Data

Loading the Data

The python <u>pandas</u> library is a powerful package for data analysis. In this course, we will use a small portion of its features -- just reading and writing data from files. After reading the data, we will convert it to numpy for all numerical processing including running machine learning algorithms.

We begin by loading the packages.

In [86]:

```
import pandas as pd
import numpy as np
```

The data for this demo comes from a survey of cars to determine the relation of mpg to engine characteristics. The data can be found in the UCI library: https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg

You can directly read the data in the file, https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data We will load the data into ipython notebook, using the pandas library. Unfortunately, the file header does not include the names of the fields,

Pandas make it easy to work with two dimensional tables

The posted demo shows how to:

- . Load data from a text file using the pandas package
- · Create a scatter plot of data
- · Handle missing data
- Fit a simple linear model
- · Plot the linear fit with the test data
- · Use a nonlinear transformation for an improved fit

Getting Data

□Data from UCI dataset library: <u>UCI Machine Learning Repository</u>

Loading the Data in Jupyter Notebook Try 1: The Wrong Way!

Loading the Data in Jupyter Try 2: Fixing the Errors

You can display a first few lines of the dataframe by using head command:

In [126]: df.head(6)

Out[126]:

:		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
	0	18	8	307	130	3504	12.0	70	1	chevrolet chevelle malibu
	1	15	8	350	165	3693	11.5	70	1	buick skylark 320
	2	18	8	318	150	3436	11.0	70	1	plymouth satellite
	3	16	8	304	150	3433	12.0	70	1	amc rebel sst
	4	17	8	302	140	3449	10.5	70	1	ford torino
	5	15	8	429	198	4341	10.0	70	1	ford galaxie 500

- ☐ Fix the arguments in read_csv
- pd.read_csv has many options to deal with a wide variety of differently formatted data sets
- ☐ When you get a problem:
 - Google is your friend!
 - You are not the first to have these problems
 - Official documentation exists
- ☐ Ask questions on Brightspace if you get stuck

Visualizing the Data using a scatter plot

```
xstr = 'horsepower'
In [150]:
           X = np.array(df[xstr])
           y = np.array(df['mpg'])
```

import matplotlib In [146]: import matplotlib.pyplot as plt %matplotlib inline

- $(\mathbf{x}^{(1)} = 130, \ y^{(1)} = 18)$
- $(\mathbf{x}^{(2)} = 165, \ y^{(2)} = 15)$
- $(\mathbf{x}^{(3)} = 150, \ y^{(3)} = 18)$
- $(\mathbf{x}^{(4)} = 150, \ \mathbf{y}^{(4)} = 17)$

- ☐ We will plot data in Python using Matplotlib
- ☐ A nice tutorial: https://matplotlib.org/users/ pyplot_tutorial.html
- ☐ How could you predict the mpg of a car not in the data as a function of the horsepower? Pair share

$$\mathbf{x}^{(1)} = 130 \quad \mathbf{x}^{(2)} = 165$$

 $\mathbf{x}^{(3)} = 150$

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐ Model: Linear Model
- ☐ Objective function: Least Squares Fit Problem
- ☐ Global Optimizer: LS Fit Solution
- ☐ Local Optimizer: Gradient Descent
- ☐ Assessing Goodness of Fit
- ☐ Extra Slides: Global Optimizer for multivariate linear regression: Normal Equation

Approach $y \approx w_0 + w_1 \mathbf{x}$

approx. equal

$$y \approx w_0 + w_1 \mathbf{x}$$

Warning! Stanford notes use θ instead of w for the parameters

MPG
$$\approx w_0 + w_1$$
 Horsepower

Learn parameters w_0 , w_1 of the green line

Car 1:
$$w_0 + w_1 \cdot 130 = 18$$

Car 2:
$$w_0 + w_1 \cdot 165 = 15$$

We are changing the notation from what you are used to seeing when we describe a line. Instead of mx + b = y, we are using $w_0 + w_1 \mathbf{x}$ 18

Approach

$$y \approx w_0 + w_1 \mathbf{x}$$

MPG $\approx w_0 + w_1$ Horsepower

Learn parameters w_0, w_1 of the green line

Car 1:
$$w_0 + w_1 \cdot 130 = 18$$

Car 2:
$$w_0 + w_1 \cdot 165 = 15$$

We can compactly represent this in matrix notation:

$$\begin{bmatrix} 1 & 130 \\ 1 & 165 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 18 \\ 15 \end{bmatrix}$$

Finding w_0 , w_1 if we only use two examples

$$\begin{bmatrix} 1 & 130 \\ 1 & 165 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 18 \\ 15 \end{bmatrix}$$

$$\begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \left(\begin{bmatrix} 1 & 130 \\ 1 & 165 \end{bmatrix} \right)^{-1} \begin{bmatrix} 18 \\ 15 \end{bmatrix}$$

$$= \begin{bmatrix} 4.71 & -3.71 \\ -.03 & .03 \end{bmatrix} \begin{bmatrix} 18 \\ 15 \end{bmatrix}$$

$$= \begin{bmatrix} 29.14 \\ -0.09 \end{bmatrix}$$

If we use more data, how can we estimate w_0, w_1 ?

horsepower	mpg		
130.0	18.0		
165.0	15.0		
150.0	18.0		
150.0	16.0		

Problem! There isn't a w_0 , w_1 that will satisfy all the equations

Want to predict the best MPG based on the horsepower

MPG = $w_0 + w_1$ horsepower + unexplainable_stuff

horsepower	mpg
130.0	18.0
165.0	15.0
150.0	18.0
150.0	16.0

Prediction car 1: $w_0 + w_1 \cdot 130$

Prediction car 2: $w_0 + w_1 \cdot 165$

Prediction car 3: $w_0 + w_1 \cdot 150$

Prediction car 4: $w_0 + w_1 \cdot 150$

•••

Learn w_0 and w_1

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George Box

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐ Model: Linear Model
- ☐ Objective function: Least Squares Fit Problem
- ☐ Global Optimizer: LS Fit Solution
- ☐ Local Optimizer: Gradient Descent
- ☐ Assessing Goodness of Fit
- ☐ Extra Slides: Global Optimizer for multivariate linear regression: Normal Equation

Linear Model

Pair share

What does it mean for one line to be better than another line?

How do we decide which line is 'best'?

HOW MUCH DOES A POINT NOT ON THE LINE **COST**?

WE COULD CREATE A **COST FUNCTION**. THE BEST LINE HAS THE LOWEST COST WHEN SUMMED OVER ALL THE EXAMPLES

WHAT **COST FUNCTION** SHOULD WE USE?

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- Model: Linear Model
- ☐ Objective function: Least Squares Fit Problem
- ☐ Global Optimizer: LS Fit Solution
- ☐ Local Optimizer: Gradient Descent
- ☐ Assessing Goodness of Fit
- ☐ Extra Slides: Global Optimizer for multivariate linear regression: Normal Equation

We choose to minimize the variation around the line

How to measure errors?

☐ Absolute value of difference?

$$|y - \hat{y}| = |MPG|$$
 predicted MPG|

$$|18 - (w_0 + w_1 * 130)|$$
+ $|15 - (w_0 + w_1 * 165)|$
+ $|18 - (w_0 + w_1 * 150)|$
+ $|16 - (w_0 + w_1 * 150)|$

$$|18 - (w_0 + w_1 * 130)| + |15 - (w_0 + w_1 * 165)| + |18 - (w_0 + w_1 * 150)| + |16 - (w_0 + w_1 * 150)| + |16 - (w_0 + w_1 * 150)|$$
Note that
$$|y - \hat{y}| = |\hat{y} - y|$$
E.g. $|w_0 + w_1 * 130 - 18|$

$$= |18 - (w_0 + w_1 * 130)|$$

☐ Squared value of difference?

$$(y - \hat{y})^2 = (MPG - predicted MPG)^2$$

$$(18 - (w_0 + w_1 * 130))^2 + (15 - (w_0 + w_1 * 165))^2 + (18 - (w_0 + w_1 * 150))^2 + (16 - (w_0 + w_1 * 150))^2$$

Note that
$$(y - \hat{y})^2 = (\hat{y} - y)^2$$

E.g. $(w_0 + w_1 * 130 - 18)^2$
 $= (18 - (w_0 + w_1 * 130 - 18))^2$

mpg

horsepower

Least Squares Model Objective function

- lacksquare Model relationship between horsepower and mpg as a line $\hat{y} = h(\mathbf{w}) = w_0 + w_1 \mathbf{x}$
- □ Objective function: Find parameters $w=(w_0,w_1)^T$ to minimize cost

$$\mathsf{RSS}(w_0, w_1) = \sum_{i=1}^{N} \left(y^{(i)} - (w_0 + w_1 \mathbf{x}^{(i)}) \right)^2 = \sum_{i=1}^{N} \left(y^{(i)} - \hat{y}^{(i)} \right)^2$$

$$MSE(w_0, w_1) = \frac{1}{N}RSS(w_0, w_1) = E_{in}(w_0, w_1)$$

Residual Sum of Squares
Also called the sum of squared residuals (SSR) and sum of squared errors (SSE)

Regression line

 $mpg = w_0 + w_1 horsepower$

Linear Model

horsepower	mpg				
130.0	18.0				
165.0	15.0				
150.0	18.0				
150.0	16.0				

$$RSS(39.9, -0.2)$$

= $(39.9 + (-0.2) * 130 - 18)^2 + (39.9 + (-0.2) * 165 - 15)^2 + \cdots$
= 18142.38

$$RSS(39.94, -0.16)$$
= $(39.94 + (-0.16) * 130 - 18)^2 + (39.94 + (-0.16) * 165 - 15)^2 + \cdots$
= 9385.92

Finding Parameters via Optimization A general ML recipe

General ML problem

Simple linear regression

Data: $(\mathbf{x}^{(i)}, y^{(i)}), i = 1, ..., N$

Find a hypothesis class/model class with parameters

Linear model: $\hat{y} = w_0 + w_1 \mathbf{x}$

Pick a loss function

Loss function: $RSS(w) = \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$

- Function of the parameters
- Find parameters that minimizes loss

Select w=
$$\begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$
 to minimize loss function

Remember $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$

How do we find function? global minimizes the function?

I.e. how do we find the line that minimizes the cost function?

min RSS(w)

Which values for w_0, w_1 minimizes RSS(\mathbf{w})?

Convex function

Not a convex function

Slide from Machine Learning Refined: Foundations, Algorithms, and Applications

...this would be even more difficult if we had more dimensions

I think we need an algorithmic approach to find the optimal value

Mathematical optimization

Pair share

Discuss various methods for finding the optimal parameters, i.e. values for $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$

Discussion of ideas

Global optimization methods

Local optimization methods

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- Model: Linear Model
- ☐ Objective function: Least Squares Fit Problem
- ☐ Global Optimizer: LS Fit Solution
- ☐ Local Optimizer: Gradient Descent
- ☐ Assessing Goodness of Fit
- ☐ Extra Slides: Global Optimizer for multivariate linear regression: Normal Equation

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- Model: Linear Model
- ☐ Objective function: Least Squares Fit Problem
- ☐ Global O☐ LS Fit Solution
- ☐ Local Optimizer: Gradient Descent
- Assessing Goodness of Fit
- ☐ Extra Slides: Global Optimizer for multivariate linear regression: Normal Equation

Global optimization for Linear regression

Given a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(N)}, y^{(N)})\}$ how do we find the optimal weight vector \mathbf{w} to minimize $\mathrm{RSS}(w_0, w_1) = \sum_{i=1}^N \left(y^{(i)} + (-w_0 + -w_1\mathbf{x}^{(i)})\right)^2$

- \square We don't know the parameters w_0, w_1 (they are also called coefficients)
- ☐ We could look over all possible lines to find the optimum...
- ☐ We can derive the partial derivative and then set the derivative to zero to find the minimum value
- □ Notice that since the error function is convex (we cannot get trapped at a local minimum the solution is unique)

$$\frac{\partial RSS}{\partial w_0} = \sum_{i=1}^{N} 2(y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(-1) = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)}) = \mathbf{0}$$

$$\frac{\partial RSS}{\partial w_1} = \sum_{i=1}^{N} 2(y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(-\mathbf{x}^{(i)}) = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(\mathbf{x}^{(i)}) = \mathbf{0}$$

$$\nabla RSS(w_0, w_1) = \begin{bmatrix}
-2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)}) \\
-2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(\mathbf{x}^{(i)})
\end{bmatrix}$$

Background on the gradient: https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/

Method 1: Closed Form solution

$$RSS(w_0, w_1) = \sum_{i=1}^{N} (y^{(i)} + (-w_0 + -w_1 \mathbf{x}^{(i)}))^2$$

$$\frac{\partial RSS}{\partial w_0} = \sum_{i=1}^{N} 2(y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(-1) = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)}) = \mathbf{0}$$

$$\frac{\partial RSS}{\partial w_1} = \sum_{i=1}^{N} 2(y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(-\mathbf{x}^{(i)}) = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(\mathbf{x}^{(i)}) = \mathbf{0}$$

Remember:
$$\frac{\partial (-a+b)^2}{\partial a} = 2(-a+b)^{2-1}(-1)$$

Simplify

$$\sum_{i} y^{(i)} = Nw_0 + w_1 \sum_{i} \mathbf{x}^{(i)}$$

$$\sum_{i} y^{(i)} \mathbf{x}^{(i)} = w_0 \sum_{i} \mathbf{x}^{(i)} + w_1 \sum_{i} \mathbf{x}^{(i)2}$$

Solving these we get the *least squares coefficient estimates* (posted slides will show the calculations)

$$w_0 = \overline{y} - w_1 \overline{x}$$

$$\sum_{i=1}^{N} (\mathbf{x}^{(i)} - \overline{x})(y^{(i)} - \overline{y})$$

$$\sum_{i=1}^{N} (\mathbf{x}^{(i)} - \overline{x})^2$$

$$\bar{y} = \frac{1}{N} \sum_{i} y^{(i)}$$
 $\bar{\mathbf{x}} = \frac{1}{N} \sum_{i} \mathbf{x}^{(i)}$

The next slide was not covered in class

Take the partial derivatives
$$RSS(\mathbf{w}) = (\epsilon^{(1)})^2 + (\epsilon^{(2)})^2 + \dots + (\epsilon^{(N)})^2 = \sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})^2$$

$$\frac{\partial RSS}{\partial w_0} = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})$$

$$\frac{\partial RSS}{\partial w_1} = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(x^{(i)})$$

$$\frac{\partial RSS}{\partial w_1} = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(x^{(i)})$$

$$\frac{\partial RSS}{\partial w_1} = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(x^{(i)})$$
Set the partial derivatives to solve for the parameter

$$\frac{\partial RSS}{\partial w_1} = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 x^{(i)})(x^{(i)})$$

$$\frac{\partial RSS}{\partial w_0} = \sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)}) = 0$$

$$Nw_0 = \sum_{i=1}^{N} y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)}$$

Closed form
$$s_{n,0}$$
 attions $\frac{\partial RSS}{\partial w_1} = -2\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 x^{(i)})(x^{(i)})$

Solve for the parameter

$$Nw_0 = \sum_{i=1}^{N} y^{(i)} - \sum_{i=1}^{N} w_1 \mathbf{x}^{(i)}$$

$$w_0 = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} - \frac{1}{N} w_1 \sum_{i=1}^{N} \mathbf{x}^{(i)} = \overline{y} - w_1 \overline{x}$$

$$\frac{\partial RSS}{\partial w_1} = -\sum_{i=1}^{N} (y^{(i)} - w_0 - w_1 \mathbf{x}^{(i)})(\mathbf{x}^{(i)}) = 0 = \sum_{i=1}^{N} (y^{(i)} - \overline{y} + w_1 \overline{x} - w_1 \mathbf{x}^{(i)})(\mathbf{x}^{(i)}) = \sum_{i=1}^{N} (\mathbf{x}^{(i)} y^{(i)} - \mathbf{x}^{(i)} \overline{y}) - w_1 \sum_{i=1}^{N} ((\mathbf{x}^{(i)})^2 - \mathbf{x}^{(i)} \overline{x})$$

Dobserve that:
$$\sum_{i=1}^{N} (\overline{x}^2 - \mathbf{x}^{(i)} \overline{x}) = 0$$

$$\sum_{i=1}^{N} (\overline{x} \overline{y} - y^{(i)} \overline{x}) = 0$$

$$\sum_{i=1}^{N} (\mathbf{x}^{(i)} y^{(i)} - \mathbf{x}^{(i)} \overline{y}) + \sum_{i=1}^{N} (\overline{x} \overline{y} - y^{(i)} \overline{x})$$

$$\sum_{i=1}^{N} (\mathbf{x}^{(i)} y^{(i)} - \overline{x})(y^{(i)} - \overline{y})$$
This is the second of the property of the second of the property of the prop

$$V_{1} = \frac{\sum_{i=1}^{N} (\mathbf{x}^{(i)} y^{(i)} - \mathbf{x}^{(i)} \overline{y}) + \sum_{i=1}^{N} (\overline{x} \overline{y} - y^{(i)} \overline{x})}{\sum_{i=1}^{N} ((\mathbf{x}^{(i)})^{2} - \mathbf{x}^{(i)} \overline{x}) + \sum_{i=1}^{N} (\overline{x}^{2} - \mathbf{x}^{(i)} \overline{x})} = \frac{\sum_{i=1}^{N} (\mathbf{x}^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum_{i=1}^{N} (\mathbf{x}^{(i)} - \overline{x})^{2}} = \frac{COV(X, y)}{VAR(X)} = \frac{S_{xy}}{S_{xx}}$$

Code Notation

- □The homework(lab = homework assignment)/Demos will use the following notation
- ■We will try to be consistent
- □Note: Other texts use different notations

Notation			
Statistic	Notation	Formula	Python
Mean	\bar{x}	$\frac{1}{N} \sum_{i=1}^{N} x^{(i)}$	xm = np.mean(x)
(Population) variance	$s_x^2 = s_{xx}$	$\frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \bar{x})^2$	SXX = np.mean((x-xm)**2)
(Population) covariance	S_{XY}	$\frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \bar{x})(y^{(i)} - \bar{y})$	SXY = np.mean((x-xm)*(y-ym))

Auto Example

$$w_0 = \overline{y} - w_1 \overline{x}$$

$$w_1 = \frac{\sum_{i=1}^{N} (\mathbf{x}^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum_{i=1}^{N} (\mathbf{x}^{(i)} - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

xm = np.mean(X)

$$\bar{x} = (130 + 165 + 150 + \dots + 215)/392 = 104.47$$
 $\bar{y} = (18 + 15 + 18 + \dots + 14)/392 = 23.45$

$$S_{xy} = ((130 - 104.47)(18 - 23.45) + \dots + (215 - 104.47)(14 - 23.45))/392 = -233.26$$

$$S_{xx} = ((130 - 104.47)^2 + (165 - 104.47)^2 + \dots + (215 - 104.47)^2))/392 = 1477.79$$

$$w_1 = (-233.26)/1477.79 = -0.16$$

$$w_0 = 23.45 - (-0.16)(104.47) = 39.94$$

yhat=
$$w0+w1*X$$

RSS = np.sum((yhat-y)**2)
MSE = np.mean((yhat-y)**2)# or RSS/N
$$MSE(39.94, -0.16) = 9385.92$$

$$MSE(39.94, -0.16) = 24.00$$

$$RSS(39.94, -0.16) = 9385.92$$

 $MSE(39.94, -0.16) = 24.00$

Prediction

$$\hat{\mathbf{y}} = h(\mathbf{x}) = w_0 + w_1 \mathbf{x}$$

$$w_0 = 39.94$$

$$w_1 = -0.16$$

MPG \approx 39.94 + (-0.16) Horsepower

$$y \approx \hat{y} = 39.94 + (-0.16) \cdot 170 = 12.74$$

$$y \approx \hat{y} = 39.94 + (-0.16) \cdot 100 = 23.94$$

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- Model: Linear Model
- ☐ Objective function: Least Squares Fit Problem
- ☐ Global Optimizer: LS Fit Solution
- ☐ Local Optimizer: Gradient Descent
- ☐ Assessing Goodness of Fit
- ☐ Extra Slides: Global Optimizer for multivariate linear regression: Normal Equation

Local Optimization

How can we make a small improvement in our parameters?

ANY IDEAS?

Contour Plots

Graphical technique for representing a 3-D surface in 2-D plane

- Contour curve: a 3-D contour curve can be formed on the 3-D surface by finding all the points which have the same Z value (e.g. $RSS(w_0, w_1)=k$, where k is a constant value)
- Level curve: are in the the 2-D plane and can be created by projecting the contour curve onto 2-D plane (e.g. the w_0 , w_1 axis)
- Contour plot: a 2-D plot containing level curves of a function

RSS(39.94, -0.16) = 9385.92

Read more at: https://ocw.mit.edu/courses/mathematics/18-02sc-multivariable-calculus-fall-2010/2.-partial-derivatives/part-a-functions-of-two-variables-tangent-approximation-and-optimization/session-25-level-curves-and-contour-plots/MIT18_02SC_notes_15.pdf