¿Cuántas cadenas binarias de 10 bits existen?

$$\frac{2}{2} = \frac{2}{2} = \frac{2}{10} = \frac{2}{10}$$

¿De cuantas formas se pueden crear cadenas alfanuméricas de 2,3 y 4 caracteres?

$$T1 - 36^2$$
 $T2 - 36^3$
 $T3 - 36^3$

Se tienen palabras de 10 caracteres que

1) Empiezan por "o" y terminan en "u"
$$\frac{26}{1}$$

2) Empiezan por "o" o "u"

To
$$\frac{1}{26!}$$

To $\frac{1}{26!}$

Se tienen cadenas binarias de 15 bits que

1) Inician en 000
$$\leftarrow 2^{12}$$
 $-\frac{1}{2}$

Se tienen cadenas binarias de 15 bits que

3) Inician en 000 o 111
$$Tz \rightarrow 2^{12}$$

4) inician en 000 y terminan 110
$$\sim$$
 2^9

Se tienen cadenas binarias de 15 bits que

5) Inician en
$$000$$
 ò 111 y terminan en 110 $12 \leftarrow 2$, 210

$$+$$
6) Inician en 000 6 11) o terminan er 110 \leftarrow

T1 T2 T3 T3 =
$$2^{12}$$

C+c/uyente. ①

 $T_1 = 2^{12}$
 $T_2 = 2^{12}$
 $T_3 = 2^{12}$
 $T_1 = 2^{12}$
 $T_2 = 2^{12}$
 $T_2 = 2^{12}$
 $T_2 = 2^{12}$