Midterm Notes

1 traterm 1	V - 100
Decimal to Anything & Divide by t	he deviced bose. If decimal, multiply.
Anything to Decimal = aixbit.	+ 92 x b2 + 91 x b' + 90 x b + 9-1 x b-1+
Hexa to Binary and Vice-Versa =	
Octal to Binary and Vice-Versa =	
	al \$ First convert to bihary. Then, anvent to what you are lacking for
Decimal to OCD => Consider each	digit separately into 4 bits.
BCD to Declaral = Break up e	ach section into 4 bits.
Boolean Algebra	(9)
Postulate 2	X10=X X.1=X
Postulate S	x+x'=1 $ xx'=0 $
Theorem 1	x + x = x
Theorem 2	x+1=1 x.0=0
Theorem 3 (involution)	(x')'= x
Postulate 3 (commutative)	X+Y=Y+X XY=YX
Theorem 4 (cssociative)	x+(y+z)=(x+y)+2 x(yz)-(xy)z
Postulate 4 (distributive)	x (y+2)=xy+x2 x+y2=(x+y)(x+2)
Theorem 5 (de Morgans Law) Theorem 6 (absorption)	(x+x)=x $(x+y)=x$
	x+xy=x $x(x+y)=x'$
minterm => 1 (multiplication)	output = Em (row #'s)
maxterm 70 (addition)	output = MM (now #19)

Note: The duration of this test is 1:15min.

- 1. (10 points total)
 - a) Write the truth table for an AND logic gate (3 pts)

X	14	1F
0	0	0
0	1	0
1	0	0
1	1	11

b) Write the truth table for an XOR logic gate (3pts)

X	Y	1F
0	0	0
0	1	1
1	0	11
1	1	0

c) Apply DeMorgan's theorem to the following (4pts) (Hint: Function Complement)

i.
$$(xy'+z')' = (x\overline{y} + \overline{z})$$

$$= (\overline{x} + y)(z)$$
ii. $(A'BC')' = (\overline{A}B\overline{C})$

$$= \overline{A} + \overline{B} + \overline{C}$$

ii.
$$(A'BC')' = \overline{(\overline{A} \overline{B} \overline{C})}$$

$$= \overline{(A'BC')'} = \overline{(\overline{A} \overline{B} \overline{C})}$$

2. (10 points total)

a) Convert $(30.625)_{10}$ to binary (base 2) (go out to maximum of 3 bits for the fractional part) (5pts)

	Result Remainde	
2130	15 0	1 × 0.625
2.115	7.5 1	10 000 WI=1
217	3.5 1	11200000
253	1.5 1	0.250000
251	0.5 1	2.06 × 0.25
(11	110.101)2	1000 Z.0 W2=0
		to hexadecimal (base 16) (5pts)
01.87	5 Result Rema	inder 0.0
16/30.00	0 1.875 16.	000
-16	x 00.	875
140	1,800	000
-128	1120	000
	0 + 128000	000
-117	14000	000
	8 0	(() E) (
=	80	(1E) ₁₆
10		
0.062	~	16.0000
1651.000	X	00.0625
46	1	800000
-32	1 1 3	200000
- 8	V	000000
	9	

- 3. (15 points total)
 - a) Convert 01100 to 2's complement (do not add signed bit) (5pts)

(10|00)23

b) 00111 - 01100 using 2's complement (hint: convert 01100 to 2's complement and add)

c) Write the answer to part b in decimal (base 10) with a negative or positive sign (3pts)

$$(00101)_2$$
 $(1 \times 2^2) + (1 \times 2^\circ) =$
 (-5)

- 5. (25 points total)
- a) Given the Minterm list, write the 1) truth table and 2) Sum of Products form (SOP) 3) Product of Sum (POS) (9 pts)

$F = \sum m(0,1,4,7)$		X	У	12	1 F		2 yz	ÿ 2	y2	42
min	0	0	6	6		X	10/	111	3 0	1201
Prin	1	0	0	1		N 0	19	L	0	10
max	2	0	1	6	0	и [14/1/	50	21	60
max	3	0	l	11	0		1	å		
min	ч	I	0	6				F=	Xy-	+ 42
pack	5	1	0	11	0				- 1	'
n _A X	6	1	1	0	0					
nin	7	TI	11	11	11					

 Using any method that you choose to write the above truth table in simplified Sum of Products form (5pts)

$$F = (\bar{x} \cdot \bar{y} \cdot \bar{z}) + (\bar{x} \cdot \bar{y} \cdot z) + (x \cdot \bar{y} \cdot \bar{z}) + (x \cdot \bar{y} \cdot \bar{z}) + (x \cdot \bar{y} \cdot \bar{z})$$

$$F = \sum_{n} (0, 1, 4, 7)$$

c) Using any method that you choose to write the above truth table in simplified Product of Sums form (5pts)

$$F=(x+\bar{y}+z)(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)$$

$$F=TM(2,3,5,6)$$

d) Draw the circuit described in the expression derived in part (a) of this problem (6pts)

6. (15 points)

Simplify the following expression using a 3 variable K-map

$$F = xyz' + x'yz + xyz + x'yz'$$

7. (15 points)

Use a 4 variable (A, B, C, D) K-map to minimize the following minterms

$$F = \sum m(0,1,2,4,5,6,8,9,10)$$

