Harnessing uncertainty

The role of probabilistic time series forecasting in the renewable energy transition

Alexander Backus

Data Science Manager

www.dexterenergy.ai

15 September 2023

The energy sector accounts for over **73%*** of greenhouse gas emissions

A balancing act on the energy grid: Supply needs to equal demand at any moment

Renewable generation is non-steerable and intermittent

6

Energy markets match supply and demand through price

imbalance cost = Δ power • Δ price = (100 - 80 MWh) × (300 - 100 EUR/MWh) = **4000 EUR**

Dexter Energy provides short-term power forecasting and trade optimization for renewable portfolios

Making renewable energy more predictable and profitable

Founded in 2016, Amsterdam ~50 FTE and growing

Two key unknown quantities: volume and price

How price forecasts can help balance the grid

Time	1 day before (12:00)	Time of delivery	
Market	Day-ahead market	Balancing market	
Power	75 MWh (sold)	80 MWh (generated)	
Power forecast	NA	80 MWh	
Price	120 EUR/MWh	220 EUR/MWh	
Price forecast	100 EUR/MWh	300 EUR/MWh	

How do we help balance the grid? Sell: 0

- A) As much as we can
- B) Nothing
- C) A bit more
- D) A bit less

Lower ∆price and less grid imbalance! ▲

imbalance cost =
$$\Delta$$
power • Δ price
= -5 MWh × 100 EUR/MWh = -500 EUR

How price forecasts can help balance the grid

Time	1 day before (12:00)	Time of delivery	
Market	Day-ahead market Balancing market		
Power	O MWh (sold)	80 MWh (generated)	
Power forecast	NA	80 MWh	
Price	150 EUR/MWh	-10 EUR/MWh ▼▼	
Price forecast	100 EUR/MWh	300 EUR/MWh	

How do we help balance the grid? Sell: 0

- A) As much as we can
- B) Nothing
- C) A bit more
-) A bit less

Market flipped into a surplus state!

imbalance cost = Δ power · Δ price = -80 MWh × -160 EUR/MWh = **12800 EUR**

Quantify uncertainty to allow risk-based steering

Quantify uncertainty to allow risk-based steering

How to obtain probabilistic forecasts?

Time series regression problem

Residuals of a calibration set give a baseline estimate of the typical uncertainty profile

Training Calibration **Testing** 1. 3. 2. Train point forecast model Predict on calibration set and Overlay error distribution on get error distribution new point predictions $\hat{y} = f(X)$ ŷ Error Price

15

Calibration and sharpness define the quality of a probabilistic forecast

Continuous Ranked Probability Score is a single metric to evaluate probabilistic forecasts

$$CRPS(\hat{F}, y) = \int_{-\infty}^{\infty} \left(\hat{F}(x) - \mathbb{1}(x - y)\right)^2 dx$$

Continuous Ranked Probability Score is a single metric to evaluate probabilistic forecasts

$$CRPS(\hat{F}, y) = \int_{-\infty}^{\infty} \left(\hat{F}(x) - \mathbb{1}(x - y)\right)^2 dx$$

Three methods to obtain conditional uncertainty estimates

Quantile loss

Quantile forest

Quantile binning

Quantile loss: asymmetrically weight errors during model training

Quantile forest: aggregate ensemble predictions

Quantile forest: aggregate ensemble predictions

Quantile binning: reduce quantile regression problem to a classification problem

Features	Target y	$y \in [0, 10)$	$y \in [10, 20)$	$y \in [20, 30)$
X ₁	23	0	1	0
X ₂	8	1	0	0
X _{n+1}	?	0.04	0.87	0.09

- 1. Bin continuous target into intervals
 - ▶ sklearn.preprocessing.KBinsDiscretizer
- 2. Train a multiclass classifier
 - sklearn.multiclass.OneVsRestClassifier
- 3. Predict and combine

Conformal prediction can be used to obtain calibrated uncertainty estimates

Training

1.

Train quantile regression model

 $f_{\mathsf{q}40}\left(X
ight)$

▶ mapie.time_series_regression. MapieTimeSeriesRegressor Calibration

2.

Predict on calibration set and extract correction value from error distribution

Testing

3.

Add correction value to original quantile prediction to ensure coverage

$$\hat{y}_{q40} = f_{q40}(X) + \mathbf{c}$$

Combining probabilistic price with power forecasts

Key takeaways

Existing machine learning models can be extended to estimate quantiles

Probabilistic forecasting can help accelerate the **energy transition**

