Welcome to

CS 3516: Computer Networks

Prof. Yanhua Li

Time: 9:00am –9:50am M, T, R, and F

Location: AK219

Fall 2018 A-term

Chapter I: roadmap

- I.I what is the Internet?
 "nuts and bolts" view
 service view
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure

A closer look at network structure:

- network edge:
 - hosts: clients and servers
 - servers often in data centers
 - access networks, physical media: wired, wireless communication links

- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

Access net: home network

Chapter I: roadmap

- I.I what is the Internet?"nuts and bolts" viewservice view
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure

The network core

mesh of interconnected routers with three key aspects in network core

- Link: Switching, Resource allocation (chp 1.3)
- Node: Routing &
 Forwarding (to be discussed in Network layer chp 4)
- Network: Network Core Structure / Management / Coordination (chp 1.3)

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- end-end delay = 2L/R (assuming zero propagation delay)

one-hop numerical example:

- L = 7.5 Mbits
- *R* = 1.5 Mbps
- one-hop transmission delay = 5 sec

more on delay shortly ...

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

transmission delay time needed to transmit
$$L$$
-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Packet Switching: queueing delay, loss

queuing and loss:

- if arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Two key network-core functions

Alternative core: circuit switching

end-end resources allocated to, reserved for "call" between source & dest:

- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and Ist circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

Circuit switching: FDM versus TDM

Analogy to Road Networks

End systems=buildings
Packet switches=intersections
Links=road segments

Packet switching versus circuit switching

is packet switching a "slam dunk winner?"

- Pros: great for bursty data (advantages)
 - resource sharing
 - simpler, no call setup
- Cons: excessive congestion possible:
 - packet delay and loss
 - protocols needed for reliable data transfer, congestion control

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

Like parking lots.

Packet switching versus circuit switching

packet switching allows more users to use network!

example:

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, probability > 10 active at same time is less small

Q: probability of $u_1, u_2, ..., u_{10}$ are active, and u_{11} - u_{35} inactive?

 $(1/10)^{10}*(9/10)^{25}$

^{*} Check out the online interactive exercises for more examples

The network core

Three key aspects in network core

- Link: Switching, Resource allocation (chp 1.3)
- Node: Routing &
 Forwarding (to be discussed in Network layer chp 4)
- Network: Network Core
 Structure / Management /
 Coordination (chp 1.3)

Lab-assignment I

http://users.wpi.edu/~yli15/courses/CS3516Fall18A/labs/Lab1/lab1.html

