Системный анализ

Тема 2. Классификация систем

Лектор: Захарова Александра Александровна д.т.н., доцент

Содержание

- 1. Принципы классификации систем
- 2. Классификация систем на основе дескриптивного определения системы
- 3. Классификация систем с управлением
- 4. Классификация систем по степени организованности

Принципы классификации систем

Два основных подхода к классификации систем:

- предметный —выделяются основные виды конкретных систем, существующих в природе и обществе:
 - ✓ по виду отображаемого объекта (технические, биологические, экономические и т.д.);
 - ✓ по научному направлению, используемого для моделирования систем (математические, физические, химические и т.д.);
- категориальный системы разделяются по общим характеристикам, присущим любым системам независимо от их материального воплощения:
 - ✓ <u>эмпирический</u> перечисляются некоторые виды систем, существенные с точки зрения решаемых задач, при этом не обосновываются принципы выбора признаков и полнота классификации;
 - ✓ <u>логико-теоретический</u> признаки деления пытаются вывести из определения системы и сначала выделить все возможные виды систем, а затем интерпретировать их как реальносуществующие и практически значимые объекты.

Принципы классификации систем

Системы	Простые (состоящие из небольшого числа элементов)	Сложные (достаточно разветвлённые, но поддающиеся описанию)	Очень сложные (не поддающиеся точному и подробному описанию)
Детерминированные	Оконная задвижка Проект механических мастерских	Компьютер Автоматизация	
Вероятностные	Подбрасывание монеты Движение медузы Статистический контроль качества продукции	Хранение запасов Условные рефлексы Прибыль промышленного предприятия	Экономика Мозг Фирма

Эмпирическая классификация Ст. Бира

Принципы классификации систем:

Тип	Уровень сложности	Примеры
Неживые системы	Статические структуры (остовы). Простые динамические структуры с заданным законом поведения. Кибернетические системы с управляемыми циклами обратной связи	Кристаллы. Часовой механизм. Термостат
Живые системы	 Открытые системы с самосохраняемой структурой (первая ступень, на которой возможно разделение на живое и неживое). Живые организмы с низкой способностью воспринимать информацию. Живые организмы с более развитой способностью воспринимать информацию, но не обладающие самосознанием. Системы, характеризующиеся самосознанием, мышлением и нетривиальным поведением. Социальные системы. Трансцендентные системы или системы, лежащие в настоящий момент вне нашего познания 	Клетки, гомеостат. Растения. Животные. Люди. Социальные организации -

Эмпирическая классификация К. Боулдинга

Принципы классификации систем:

Пример логико-теоретического подхода:

А.И. Уёмов на основе предложенного им определения системы, включающего в себя три компонента (вещи, свойства и отношения), предлагает строить все возможные классификации систем в зависимости от:

- типов вещей (элементов, из которых состоит система),
- свойств
- отношений, характеризующих системы различного вида.

Разнообразие типов систем, которые можно выделить таким путем, практически бесконечно.

Возникает вопрос: каков объективный критерий для выделения из бесконечного множества возможностей наиболее подходящих типов систем

Принципы классификации систем:

- В.Н. Сагатовский предлагает преодолеть недостатки обоих подходов (эмпирического и логического) на основе их комбинирования:
- Все системы делятся на разные типы в зависимости от характера их основных компонентов: свойств системы, составляющих ее элементов и отношений между элементами. Т.е., основанием классификации является дескриптивное определение системы.
- Каждый из указанных компонентов оценивается с точки зрения определенного набора категориальных характеристик. Например, отношения между элементами могут быть статическими или динамическими, система может проявлять свойства детерминированного или вероятностного поведения и т.д.
- В конечном счете получим полную (относительно определенного уровня знаний) классификацию систем, в рамках которой каждое из предложенных и имеющих хоть какое-то реальное содержание определений системы должно оказаться определением одного из возможных типов систем.
- Из полной классификации выделяются те типы систем, знание которых наиболее важно с точки зрения определенной задачи (например, с точки зрения проектирования автоматизированных систем управления).

Содержание

- 1. Принципы классификации систем
- 2. Классификация систем на основе дескриптивного определения системы
- 3. Классификация систем с управлением
- 4. Классификация систем по степени организованности

Классификация систем на основе дескриптивного определения системы:

<u>Категориальные характеристики:</u> количественные, составные и структурные.

Компоненты системы по количественному признаку:

- Монокомпоненты (один элемент, одно отношение);
- Поликомпоненты (много свойств, много элементов, много отношений.

Компоненты системы по составу:

- Статические (такая система находится в состоянии относительного покоя, ее состояние с течением времени остается постоянным)
- Динамические (система изменяет состояние во времени):
 - ✓ функционирующие (без перехода в новое качество);
 - ✓ развивающиеся (с переходом в новое качество).

Классификация систем на основе дескриптивного определения системы

<u>Категориальные характеристики:</u> количественные, составные и структурные.

<u>Структурно</u> (то есть по характеру отношений между компонентами систем, а также системы и среды) системы классифицируются:

- Открытые и закрытые
- Детерминированные и вероятностные
- Простые и сложные

Классификация систем по изолированности

По степени изолированности от окружающей среды системы подразделяются на два класса:

- 1) закрытые изолированные системы, не взаимодействующие со средой;
- 2) открытые системы, взаимодействующие со средой, обменивающиеся с ней материей, энергией, информацией.

Классификация систем по детерминированности

- 1) Детерминированная знание в данный момент времени множества входящих в систему элементов и отношений позволяет установить состояние системы в любой последующий или предшествующий момент времени. То есть поведение детерминированной системы полностью объяснимо и предсказуемо на основе информации о системе заданный в момент времени.
- 2) Вероятностная (случайная, стохастическая) знание в данный момент времени множества входящих в систему элементов и отношений позволяет только предсказать вероятность нахождения системы в том или ином состоянии в последующие моменты времени. То есть поведение вероятностной системы определяется не только конечным множеством составляющих данной системы, но и объектами, не входящими в данное множество. Это системы с элементами случайности.

Следует различать понятия «сложная» и «большая» система.

Два принципиально различных подхода к определению сложности.

1) связывает сложность не с особенностями самой системы, а с уровнем знаний исследователя о системе, с особенностями формирования и использования модели системы.

Исходя из данной точки зрения на сложность, одна и та же система может быть идентифицирована как сложная (если недостаток информации о системе не позволяет успешно управлять ею или предсказывать ее поведение) и как простая (если исследователь хорошо представляет себе структуру системы и законы ее функционирования).

Берг А.И. и Черняк Ю.И. определяют сложную систему как систему, которую можно описать не менее чем на двух различных математических языках (например, на языке дифуравнений и языке булевой алгебры).

Сагатовкий В.Н. называет систему простой, если её результат на выходе, соответствующий поставленной цели, достигается с помощью заданных средств (например, с помощью органов чувств, интеллекта автоматизированных систем и т.п.). Если же этих средств недостаточно — то система сложная.

Перегудов Ф.И. характеризует сложность систем относительно их моделей: если модель достаточно точно (адекватно) отображает поведение системы, то система простая по отношению к модели; если модель неадекватна, то система сложная по отношению к модели.

Два принципиально различных подхода к определению сложности.

- 2) Другой подход заключается в определении понятия сложных систем через выделение характерных особенностей этих систем. К числу этих особенностей относятся:
- **многомерность**, обусловливаемая как наличием большого числа подсистем, так и наличием большого числа связей между подсистемами;
- многообразие природы подсистем и связей, которое характеризуется их различной физической сущностью;
- **многообразие структуры**, обусловливаемое как разнообразием структур подсистем, так и разнообразием объединения подсистем в единую систему;
- многокритериальность, обусловливаемая разнообразием целей отдельных подсистем, а также разнообразием требований, предъявляемых со стороны других систем.

Примеры:

- 1) малые простые системы исправные бытовые приборы (для пользователя), неисправные приборы (для мастера), шифрозамок (для хозяина сейфа);
- 2) малые сложные системы неисправные бытовой прибор (для пользователя);
- 3) большие простые шифрозамок для похитителя, поезд (состав из вагонов);
- 4) большие сложные мозг, экономика, живой организм, система образовани.

Классификация систем на основе дескриптивного определения системы

1	′ `		
Категориальные характеристики	Свойства	Элементы	Отношения
Моно			
Поли			
Статические			
Динамические (функционирующие)			
Открытые			
Закрытые			
Детерминированные			
Вероятностные			
Простые			
Сложные			

Классификация систем В.Н. Сагатовского

Содержание

- 1. Принципы классификации систем
- 2. Классификация систем на основе дескриптивного определения системы
- 3. Классификация систем с управлением
- 4. Классификация систем по степени организованности

Классификация систем с управлением

Система управления и ее взаимодействие со средой

F— канал воздействия среды на объект;

У— канал воздействия объекта на среду;

U — канал воздействия управления на объект

Система управления (система с управлением) - такая совокупность объекта управления и управляющего объекта, процесс взаимодействия которых приводит к выполнению поставленной цели управления.

Объект управления - объект, для достижения желаемых результатов функционирования которого необходимы и допустимы специально организованные воздействий.

Управление - организация и реализация целенаправленного воздействия на объект управления, т.е. управление представляет собой процесс выработки и осуществления управляющего воздействия по переводу объекта в желаемое состояние.

Алгоритм управления - инструкция о том, как добиваться целей управления в различных ситуациях. Алгоритм управления реализуется управляющим устройством (управляющим объектом).

Классификация систем с управлением

Признаки для классификации систем с управлением:

- описание природы (происхождения) системы S;
- задание типов входных и выходных переменных системы, а также переменных состояния системы S;
- конкретизация типа оператора A системы S;
- описание способа управления (управляющего воздействия) U;
- задание условий получения U (обеспеченности ресурсами).

Классификация систем по происхождению

- 1) природные (естественные) системы, существующие в живой и неживой природе, возникшие без участия человека. Примеры таких систем атом, молекула, организм, популяция;
- 2) искусственные системы, созданные человеком:
- материальные (реальные), состоящие из физических объектов, собранных человеком в систему с некоторой целью (механизмы, машины, автоматы, роботы, технические комплексы);
- абстрактные (идеальные) системы представлений, созданные средствами мышления (учения, теории, методологии, проекты, языки).
- 3) **смешанные** системы, представляющие собой объединения природных и искусственных объектов (эргономические системы (комплексы «человек машина»); организационные системы (включающие людей, а также технические устройства).

Классификация систем по типу переменных системы

- дискретная система есть хотя бы один дискретный элемент, поэтому выходной сигнал меняется дискретно.
- непрерывная система нет дискретных элементов, поэтому выходные сигналы меняются непрерывно

Классификация систем по типу их операторов

Классификация систем по способу управления

- 1) В зависимости от того, входит ли управляющий блок в систему или является внешним по отношению к ней, выделяют классы самоуправляемых систем, управляемых извне и с комбинированным управлением.
- 2) По тому, используется ли в процессе управления обратная связь, различают системы с программным управлением (без обратной связи) и регулируемые (с обратной связью).
- 3) По виду изменений в объекте управления, осуществляемых блоком управления, различают системы с управлением по параметрам (управление состоит в подстройке параметров) и с управлением по структуре (управление состоит в подстройке структуры)

Содержание

- 1. Принципы классификации систем
- 2. Классификация систем на основе дескриптивного определения системы
- 3. Классификация систем с управлением
- 4. Классификация систем по степени организованности

Классификация систем по степени организованности

• **Хорошо организованные** — исследователю удается определит все элементы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей.

В этом случае задачи выбора целей и определения средств их достижения (элементы и связи). Проблемная ситуация может быть описана в виде выражений (в виде критерия функционирования, целевой функции, критерия эффективности и т.д.), связывающих цель со средствами, которые могут быть представлениями уравнениями, формулами и т.д.

• Плохо организованные (диффузные) — система характеризуется некоторым набором макропараметров и закомерностей, которые выявляются на основе исследования не всего объекта или класса явлений, а путем изучения определенной по правилам достаточно представительной выборки компонентов, характеризующих данный объект или процесс. В результате определяются закономерности, которые распространяются на поведение системы в целом.

Классификация систем по характеру функционирования

По характеру функционирования (по способности менять свою структуру и поведение) и по характеру изменений системы можно отнести к одному из следующих классов.

- 1. Стабильные системы, структура и функции которых практически не изменяются в течение всего периода их существования. Как правило, качество функционирования стабильных систем со временем только ухудшается. К данному классу относится, прежде всего, широкий круг неживых систем, как естественных, так и искусственных.
- 2. Развивающиеся системы, структура и функции которых с течением времени претерпевают существенные изменения. Качество функционирования данных систем со временем может повышаться. Примерами развивающихся систем могут служить живые организмы, социальные системы (предприятия, учреждения, компании).

Классификация систем по характеру функционирования

Среди развивающихся систем можно выделить подклассы самостабилизирующихся (адаптивных) и самоорганизующихся систем, в которых происходят соответственно процессы самостабилизации и самоорганизации.

- 1) самостабилизация (адаптация) способность системы в ответ на поток возмущений из внешней среды вырабатывать соответствующие корректирующие действия, возвращающие систему в устойчивое состояние динамического баланса с внешней средой (живые организмы, рыночная система спрос-предложение);
- 2) самоорганизация (развитие) способность системы в ответ на поток возмущений из внешней среды реорганизовать свою внутреннюю структуру. Самоорганизация выражается в новых устойчивых состояниях, которые более стойки к возмущениям, чем предыдущие.

Адаптивные системы выживают в средах, в которых возмущения находятся в пределах диапазона их корректирующих действий; самоорганизующиеся системы эволюционируют в более сложные и более жизнеспособные системы

Классификация систем по способу задания цели

- 1) класс систем, для которых цели задаются извне,
- 2) класс систем, в которых цели формируются внутри системы.

Как правило, первому из этих классов соответствует класс стабильных систем, так как стабильные системы не способны к каким-либо активным изменениям, для них цель определяется извне, исходя из задач их использования.

К классу систем, самостоятельно формирующих свои цели, относятся развивающиеся системы, т. к. они способны к выбору своего поведения в соответствии с внутренне присущей целью.

Список источников

- Основы теории систем и системного анализа: Учебное пособие / Силич М. П., Силич В. А. 2013. 342 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/5452, дата обращения: 01.09.2020.
- Кориков А.М. Теория систем и системный анализ: учебн. пособие. / А.М. Кориков, С.Н. Павлов. Томск: ТУСУР, 2007.- 344 с.