Espaces vectoriels

STRUCTURE D'ESPACE VECTORIEL

Exercice 1 Voici deux définitions d'opérations sur $E = \mathbb{R}^2$ d'opérations $\oplus : \mathbb{R}^2 \to \mathbb{R}^2$ et $\odot: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$. Dans quel(s) cas la structure $(\mathbb{R}^2, \oplus, \odot)$ est-elle un espace vectoriel sur \mathbb{R} ?

- 1. $(x,y) \oplus (x',y') = (x+x',y+y')$ et $\lambda \odot (x,y) = (2x,0)$.
- 2. $(x,y) \oplus (x',y') = (y+y',x+x')$ et $\lambda \odot (x,y) = (\lambda x, \lambda y)$

Exercice 2 Pour x et y dans \mathbb{R}_+^* et λ réel, on pose

$$x \oplus y = xy$$
 et $\lambda \odot x = x^{\lambda}$.

Montrer que $(\mathbb{R}_{+}^{*}, \oplus, \odot)$ est un espace vectoriel sur \mathbb{R} .

Exercice 3 Soit $(E, +, \cdot)$ un expace vectoriel sur un corps K. On considère un ensemble A tel qu'il existe une bijection $f: A \to E$. Pour $a, b \in A$, et $\lambda \in K$, on pose : $a \oplus b = f^{-1}(f(a) + f(b))$ et $\lambda \odot a = f^{-1}(\lambda \cdot f(a))$. Montrer que (A, \oplus, \odot) est un espace vectoriel sur K.

Sous-espaces vectoriels

Exercice 4 Soit $(E, +, \cdot)$ un espace vectoriel sur un corps K. Montrer que les assertions suivantes sont équivalentes :

- 1. F est un sous-espace vectoriel de E;
- 2. $F \neq \emptyset$ et $\forall u, v \in F, \forall \lambda \in K, u + v \in F$ et $\lambda \cdot u \in F$;
- 3. $F \neq \emptyset$ et $\forall u, v \in F, \forall \lambda, \mu \in K, \lambda \cdot u + \mu \cdot v \in F$;
- 4. $0_E \in F$ et $\forall v_1, \ldots, v_n \in F, \forall \lambda_1, \ldots, \lambda_n \in K, \sum_{1 \le i \le n} \lambda_i \cdot v_i \in F$.

Exercice 5 Parmi les ensembles suivants lesquels sont des sous-espaces vectoriels de \mathbb{R}^3 ?

$$E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = x + y + z = 0\},\$$

$$E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + a = 0, \text{ et } x + 3az = 0\}, \text{ pour } a \text{ réel fixé}$$

 $E_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - z^2 = 0\},$

$$E_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - z^2 = 0\},\$$

$$E_A = \{(x, y, z) \in \mathbb{R}^3 \mid e^x e^y = 0\},\$$

$$E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid e^x e^y = 0\},\ E_5 = \{(x, y, z) \in \mathbb{R}^3 \mid z(x^2 + y^2) = 0\}.$$

Exercice 6 Parmi les ensembles suivants lesquels sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R},\mathbb{R})$?

$$E_1 = \{ f : \mathbb{R} \to \mathbb{R} \mid f(1) = 0 \},\$$

$$E_2 = \{ f : \mathbb{R} \to \mathbb{R} \mid f(0) = 1 \},$$

$$E_3 = \{ f : \mathbb{R} \to \mathbb{R} \mid \forall x \in \mathbb{R}, f(x) \leq 0 \},\$$

 $E_4 = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ est croissante ou } f \text{ est décroissante} \}.$

Exercice 7 Parmi les ensembles suivants lesquels sont des sous-espaces vectoriels de $\mathbb{R}[X]$?

$$E_1 = \{ P \in \mathbb{R}_n[X] \mid P' = 3 \},$$

$$E_2 = \{ P \in \mathbb{R}[X] \mid P(0) = 2P(1) \}.$$

Exercice 8 Soit E un espace vectoriel (sur \mathbb{R} ou \mathbb{C}).

1. Soient F et G deux sous-espaces de E. Montrer que

 $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$.

2. Soit H un troisième sous-espace vectoriel de E. Prouver que

$$G \subset F \Longrightarrow F \cap (G + H) = G + (F \cap H).$$

Exercice 9 Soient F_1, \ldots, F_k des sous-espaces vectoriels d'un K-ev E. On note $F_1 + \cdots + F_k = \{v_1 + \cdots + v_k \mid \forall i, v_i \in F_i\}$.

- 1. Montrer que $F_1 + \cdots + F_k$ est un sous-espace vectoriel de E.
- 2. Montrer que dans le cas k=2, on a bien la même caractérisation que dans le cours.
- 3. On dit que la somme $F_1 + \cdots + F_k$ est directe si $\forall v_1 \in F_1, \dots, \forall v_k \in F_k$, $v_1 + \cdots + v_k = 0 \Rightarrow v_1 = \cdots = v_k = 0$. Montrer que dans ce cas, tout vecteur $v \in F_1 + \cdots + F_k$ s'écrit de manière unique comme combinaison linéaire de vecteurs de F_1, \dots, F_k .
- 4. Montrer par récurrence sur k qu'une somme de k espaces vectoriels est directe si, et seulement si, $(V_1 + \cdots + V_{i-1}) \cap V_i = \{0\}, \forall i \in \{2, \dots k\}.$

Sous-espaces vectoriels engendrés

Exercice 10 Soient dans \mathbb{R}^4 les vecteurs $\vec{e_1}$: $\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ et $\vec{e_2}$ $\begin{pmatrix} 1 \\ -2 \\ 3 \\ -4 \end{pmatrix}$. Peut-on déterminer des réels x et y pour que $\begin{pmatrix} x \\ 1 \\ y \\ 1 \end{pmatrix} \in Vect \{\vec{e_1}, \vec{e_2}\}$? Et pour que $\begin{pmatrix} x \\ 1 \\ y \\ y \end{pmatrix} \in Vect \{\vec{e_1}, \vec{e_2}\}$?

Exercice 11 Soient E et F les sous-espaces vectoriels de \mathbb{R}^3 engendrés respectivement par les vecteurs $\left\{ \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \right\}$ et $\left\{ \begin{pmatrix} 3 \\ 7 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ -7 \end{pmatrix} \right\}$. Montrer que E et F sont égaux.

FAMILLES LIBRES, FAMILLES GÉNÉRATRICES, BASES

Exercice 12 Soit $\alpha \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ définie par $f_{\alpha}(\alpha) = 1$ et $f_{\alpha}(x) = 0, \forall x \neq \alpha$. Montrer que la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre.

Exercice 13 1. Montrer que les vecteurs $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ forment une base de \mathbb{R}^3 .

2. Calculer les coordonnées respectives des vecteurs $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ dans cette base.

2

3. Donner, dans \mathbb{R}^3 , un exemple de famille libre, qui n'est pas génératrice.

4. Donner, dans \mathbb{R}^3 , un exemple de famille génératrice, mais qui n'est pas libre.

Exercice 14 Vrai ou faux?

On désigne par E un \mathbb{R} -espace vectoriel de dimension finie.

- 1. Si les vecteurs x, y, z sont deux à deux non colinéaires, alors la famille x, y, z est libre.
- 2. Soit x_1, x_2, \ldots, x_p une famille de vecteurs. Si aucun n'est une combinaison linéaire des autres, la famille est libre.

Exercice 15

- 1. Montrer qu'on peut écrire le polynôme $F = 3X X^2 + 8X^3$ sous la forme $F = a + b(1 X) + c(X X^2) + d(X^2 X^3)$ et aussi sous la forme : $F = \alpha + \beta(1 + X) + \gamma(1 + X + X^2) + \delta(1 + X + X^2 + X^3)$ (calculer a, b, c, d et $\alpha, \beta, \gamma, \delta$ réels).
- 2. Soit \mathcal{P}_3 l'espace vectoriel des polynômes de degré au plus 3. Vérifier que les ensembles suivants sont des bases de \mathcal{P}_3 :

$$B_1 = (1, X, X^2, X^3),$$

$$B_2 = (1, 1 - X, X - X^2, X^2 - X^3),$$

$$B_3 = (1, 1 + X, 1 + X + X^2, 1 + X + X^2 + X^3).$$

Exercice 16 Déterminer pour quelles valeurs de $t \in \mathbb{R}$ les vecteurs $\begin{pmatrix} 1 \\ 0 \\ t \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ t \end{pmatrix}, \begin{pmatrix} t \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$ forment une base de \mathbb{R}^3 .

Exercice 17 1. Montrer que les vecteurs $\mathbf{w}_1 = \begin{pmatrix} 1 \\ -1 \\ i \end{pmatrix}$, $\mathbf{w}_2 = \begin{pmatrix} -1 \\ i \\ 1 \end{pmatrix}$, $\mathbf{w}_3 = \begin{pmatrix} i \\ 1 \\ -1 \end{pmatrix}$ forment une base de \mathbb{C}^3 .

2. Calculer les composantes de $\mathbf{w} = \begin{pmatrix} 1+i\\1-i\\i \end{pmatrix}$ dans cette base.

Exercice 18 Soit E un K-espace vectoriel, V et W deux sous-espaces vectoriels de E. On considère une base (e_1, \ldots, e_n) de V et une base (f_1, \ldots, f_m) de W.

- 1. Montrer que $(e_1, \ldots, e_n, f_1, \ldots, f_m)$ est une famille génératrice de V + W.
- 2. Montrer que si $V \cap W = \{0\}$, alors $(e_1, \dots, e_n, f_1, \dots, f_m)$ est une base de $V \oplus W$.
- 3. Montrer que si $(e_1, \ldots, e_n, f_1, \ldots, f_m)$ est une base de V + W, alors $V \cap W = \{0\}$.
- 4. Trouver un contre-exemple montrant que $(e_1, \ldots, e_n, f_1, \ldots, f_m)$ n'est pas toujours une base de V + W.
- 5. Une suite dont les éléments sont ceux de $\{e_1, \ldots, e_n\} \cap \{f_1, \ldots, f_m\}$ est-elle une base de $V \cap W$?

Sous-espaces supplémentaires

Exercice 19 Soient
$$\vec{e_1} \begin{pmatrix} 0 \\ 1 \\ -2 \\ 1 \end{pmatrix} \vec{e_2} \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix}$$
, $\vec{e_3} \begin{pmatrix} 3 \\ 2 \\ 2 \\ -1 \end{pmatrix}$, $\vec{e_4} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ et $\vec{e_5} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ des vecteurs de \mathbb{R}^4 . Les propositions suivantes sont-elles vraies ou fausses? Justifier votre réponse.

1.
$$Vect \{\vec{e_1}, \vec{e_2}, \vec{e_3}\} = Vect \left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\-4\\2 \end{pmatrix} \right\}.$$

2.
$$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \in Vect \{\vec{e_1}, \vec{e_2}\} \cap Vect \{\vec{e_2}, \vec{e_3}, \vec{e_4}\}.$$

- 3. $dim(Vect\{\vec{e_1},\vec{e_2}\} \cap Vect\{\vec{e_2},\vec{e_3},\vec{e_4}\}) = 1.$
- 4. $Vect \{\vec{e_1}, \vec{e_2}\} + Vect \{\vec{e_2}, \vec{e_3}, \vec{e_4}\} = \mathbb{R}^4$.
- 5. $Vect \{\vec{e_4}, \vec{e_5}\}$ est un sous-espace vectoriel de supplémentaire $Vect \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ dans \mathbb{R}^4 .

Exercice 20 On considère les vecteurs de \mathbb{R}^4 :

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

- 1. Vect $\{v_1, v_2\}$ et Vect $\{v_3\}$ sont-ils supplémentaires dans \mathbb{R}^4 ?
- 2. Même question pour Vect $\{v_1, v_3, v_4\}$ et Vect $\{v_2, v_5\}$.
- Exercice 21 1. Soit E l'ensemble des suites réeles convergentes. Montrer que l'ensemble des suites constantes et l'ensemble des suites convergeant vers 0 sont des sous-espaces supplémentaires de E.
 - 2. Montrer que l'ensemble des fonctions paires et des fonctions impaires sont des sous-espaces supplémentaires de $\mathcal{F}(\mathbb{R},\mathbb{R})$.

DIMENSION

4

Exercice 22 On considère, dans \mathbb{R}^4 , les vecteurs :

$$e_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, e_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}, e_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, e_4 = \begin{pmatrix} -1 \\ 0 \\ -1 \\ 2 \end{pmatrix}, e_5 = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 1 \end{pmatrix}.$$

Soient E l'espace vectoriel engendré par e_1, e_2, e_3 et F celui engendré par e_4, e_5 . Calculer les dimensions respectives de E, F, $E \cap F$, E + F.