Aula 13 - Redes Sem Fio: Redes Celular/Mobilidade: Introdução

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula...

- Redes Múltiplos Saltos: Motivação.
 - **Estender alcance** das redes sem fio tradicionais.
 - Enlaces curtos, mas comunicação em múltiplos saltos.
 - Hardware barato, comum.
 - Tolerância a falhas.
 - Aumento de capacidade.
- MANETs:
 - Formada apenas por clientes,
 potencialmente móveis.
 - Topologia altamente variável, instável.
- Redes em Malha Sem Fio:
 - Alguns roteadores fixos.
 - Reduz instabilidade da topologia.
 - Simplifica roteamento.

- Redes Veiculares:
 - Clientes móveis, altas velocidades.
 - Topologia ainda mais instável.
- Redes de Sensores Sem Fio:
 - Coleta/monitoramento de dados.
 - Dispositivos de baixa capacidade.
 - Severas restrições energéticas.
- Desempenho vs. número de saltos.
- Roteamento:
 - Reagir rapidamente.
 - Lidar com alta variabilidade dos enlaces.
 - Lidar com interferências inter- e intra-fluxos.
- Economia de energia:
 - Ligar rádio apenas se necessário.
 - Evitar overheads de coordenação.

Redes Celular

Histórico: 1G

- Evolução das redes celular se deu em "gerações".
 - 1G, 2G, 3G, ...
- Primeira geração:
 - Rede de voz.
 - Analógica.
 - FDMA.
 - Pouca interoperabilidade.

Histórico: GSM (2G)

- Global System for Mobile Communications.
 - Ou, originalmente: Groupe Spécial Mobile.
- Padrão europeu.
 - Primeira implementação: Finlândia, 1991.
 - Mas eventualmente adotado no mundo todo.
- Características:
 - Rede de voz.
 - Digital.
 - Interoperabilidade (por conta da ampla adoção).

Histórico: 2.5G

- Expansão do 2G para permitir tráfego de dados.
- GSM + GPRS.
 - GPRS: General Packet Radio Service.
- Serviço de **melhor esforço**.

Histórico: Outras Evoluções

- 3G.
 - Voz e dados.
 - Digital.
 - Várias tecnologias proveem taxas de transmissão diferentes.
 - 3.5G, 3.75G, ...
- 4G.
 - Próxima evolução.
 - Principais tecnologias candidatas: LTE, Mobile WiMAX.
 - Embora o LTE pareça estar em vantagem hoje.
 - Maior compatibilidade com padrões anteriores.
 - Tecnologia 4G dominante no Brasil.

Componentes da Arquitetura da Rede Celular

• Célula:

- Cobre região geográfica.
- Estação base (BS): análogo ao AP no 802.11.
- Usuários móveis se conectam à rede através do BS.
- Interface aérea: camadas física e de enlace entre usuário móvel e BS.

MSC (Mobile Switching Center)

- Conecta células à rede cabeada de telefone.
- Gerencia estabelecimento de ligações (detalhes mais tarde).
- Lida com a mobilidade (detalhes mais tarde).

Rede Celular: Primeiro Salto

- Duas técnicas usadas para lidar com acesso múltiplo:
 - Combinação de FDMA e TDMA:
 - Divide espectro em canais de frequências diferentes.
 - Cada canal é dividido em slots.
 - CDMA:
 - Códigos diferentes são atribuídos para usuários.

Arquitetura das Redes 2G (Voz)

Arquitetura das Redes 3G (Voz+Dados) (I)

- Núcleo da rede de voz permanece idêntico.
- Rede de dados opera paralelamente.

Arquitetura das Redes 3G (Voz+Dados) (II)

O Que É Mobilidade?

- Há vários **níveis** de mobilidade.
- Espectro de mobilidade, do ponto de vista da **rede**:

Mobilidade: Jargão

Mobilidade: Jargão (Mais)

Como Você Contacta um Amigo Móvel?

- Considere uma amiga que constantemente muda de endereço. Como encontrá-la?
 - Procurar em todas as listas telefônicas?
 - Ligar para os pais dela?
 - Aguardar até que ela entre em contato avisando onde está?

Mobilidade: Abordagens

• Deixar que o roteamento resolva:

- Nós móveis possuem endereços permanentes.
- Quando nó se move para uma nova rede, roteador anuncia endereço específico através dos protocolos normais.
- Tabelas de roteamento indicam localização do nó.
- Não são necessárias alterações nos sistemas finais.
- Deixar que os sistemas finais resolvam:
 - Roteamento indireto: comunicação com nó móvel intermediada pelo home agent, que realiza o encaminhamento.
 - Roteamento direto: nó remoto obtém o care-of-address do nó móvel, transmite diretamente.

Mobilidade: Abordagens

- Deixar que o roteamento resolva:
 - Nós móveis possuem endereço Não Escalável
 - Quando nó se move para uma de Usuários através dos protocolos normais Móveis
 - Tabelas de roteamento indicam la do nó.
 - Não são necessárias alterações nos sistemas finais.
- Deixar que os sistemas finais resolvam:
 - Roteamento indireto: comunicação com nó móvel intermediada pelo home agent, que realiza o encaminhamento.
 - Roteamento direto: nó remoto obtém o care-of-address do nó móvel, transmite diretamente.

Mobilidade: Registro

- Resultado:
 - Foreign Agent conhece nó móvel.
 - Home Agent conhece localização do nó móvel.

Mobilidade Através de Roteamento Indireto

Roteamento Indireto: Observações

- Usuário móvel utiliza dois endereços:
 - Endereço permanente (home address): usado pelo nó remoto.
 - Logo, localização do nó móvel é transparente para o remoto.
 - Endereço temporário (care-of-address): usado pelo home agent para encaminhar pacotes ao usuário móvel.
- Funções do foreign agent podem ser feitas pelo próprio nó móvel.
- Roteamento triangular: remoto → rede de origem → nó móvel
 - Ineficiente quando nó móvel e remoto estão na mesma rede.

Roteamento Indireto: Migrando para uma Nova Rede

- Suponha que o nó móvel migra para uma nova rede.
 - Se registra com o novo foreign agent.
 - Novo foreign agent se registra com o home agent.
 - Home agent atualiza endereço temporário do nó móvel.
 - Pacotes continuam sendo encaminhados para o nó móvel.
 - Mas com o novo endereço temporário.
- Mobilidade e mudança de rede são transparentes: conexões em andamento podem ser mantidas!

Mobilidade Através de Roteamento Direto

Mobilidade Através de Roteamento Direto: Observações

- Resolve problema de roteamento triangular.
- Mas não é transparente para o nó remoto:
 - Nó remoto precisa obter endereço temporário com o home agent.
 - O que acontece se nó móvel visita outra rede?

Mobilidade Através de Roteamento Direto: Lidando com Mudanças de Rede

- Foreign agent âncora: FA da primeira rede visitada.
- Dados sempre são encaminhados através do FA âncora.
- Quando nó móvel visita nova rede:
 - Novo FA pede que FA antigo encaminhe os dados para ele (encadeamento).

Resumo da Aula...

- Redes celular: arquitetura.
 - Célula: região de cobertura.
 - Composta por estação base, usuários móveis.
 - Células se conectam à rede cabeada de telefone por um MSC.
 - Responsável por ligações, mobilidade.
- Redes celular: comunicação entre usuário e estação.
 - Pode ser combinação de FDMA e TDMA.
 - Ou **CDMA**.
- Redes celular: evolução.
 - 2G: somente voz.
 - 3G: rede de voz idêntica, rede de dados paralela.

- Mobilidade: vários tipos.
 - Dentro de um mesmo ponto de acesso.
 - Entre redes, obtendo novo IP.
 - Entre pontos de acesso, mantendo conexões.
- Mobilidade: Jargão.
 - Rede de origem: home network,
 home agent, endereço permanente.
 - Rede de destino: **foreign-agent**.
- Mobilidade: possíveis abordagens.
 - Atualização de tabelas de roteamento: não escala.
 - Sistemas finais: roteamento direto ou indireto.

Leitura e Exercícios Sugeridos

- Redes Celular.
 - Páginas 401 a 405 do Kurose (Seção 6.4).
 - Questões dissertativas 2 e 5 do capítulo 6 do Kurose.
- Princípios de Mobilidade.
 - Páginas 405 a 412 do Kurose (Seção 6.5).
 - Exercícios de fixação 16 e 17 do capítulo 6 do Kurose.
 - Problemas 11 e 12 do capítulo 6 do Kurose.

Próxima Aula...

- Continuaremos discutindo mobilidade:
 - IP Móvel.
 - Mobilidade em redes celular.
 - Comparações entre as duas abordagens.