We will provide an example of how you can run a logistic regression in R when the data are grouped. Let's provide some random sample data of 200 observations.

Output:

df

```
# A tibble: 200 x 3
   Gender Age Group Response
1 f
         [65+]
                           0
2 m
         [30-65]
                           0
 3 m
         [65+]
                           0
 4 m
         [30-65]
 5 m
         [<30]
                           0
         [<30]
                           0
 6 m
7 m
         [30-65]
                           0
8 m
         [30-65]
                           0
9 f
         [<30]
10 f
         [<30]
                           0
# ... with 190 more rows
```

Logistic Regression on Non-Aggregate Data

The logistic regression model is the following:

```
model1<-glm(Response ~ Gender+Age_Group, data = df, family =
binomial("logit"))
summary(model1)
```

Output:

```
Call:
glm(formula = Response ~ Gender + Age_Group, family =
binomial("logit"),
    data = df)

Deviance Residuals:
    Min    1Q   Median    3Q   Max
-0.7039   -0.6246   -0.6094   -0.5677    1.9754

Coefficients:
    Estimate Std. Error z value Pr(>|z|)
```

Logistic Regression on Aggregate Data

Assume now that you have received the data in an aggregated form and you were asked to run logistic regression. First, we need to generate the aggregate data.

```
df_agg<-df%>%group_by(Gender, Age_Group)%>%summarise(Impressions=n(),
Responses=sum(Response))%>%
   ungroup()%>%mutate(RR=Responses/Impressions)

df_agg
```

Output:

```
# A tibble: 6 \times 5
 Gender Age Group Impressions Responses
                                           RR
1 f
        [<30]
                           21
                                      6 0.286
2 f
        [30-65]
                           49
                                      7 0.143
3 f
                           9
                                      1 0.111
        [65+]
                                      5 0.167
4 m
        [<30]
                            30
                                     13 0.197
5 m
         [30-65]
                            66
                            25
                                      4 0.16
6 m
         [65+]
```

Below we will represent three different solutions.

Logistic Regression with Weights

```
m2<-glm(RR ~ Gender+Age_Group, data=df_agg, weights = Impressions,
family = binomial("logit"))
summary(m2)</pre>
```

Output:

```
Call:
glm(formula = RR ~ Gender + Age Group, family = binomial("logit"),
   data = df agg, weights = Impressions)
Deviance Residuals:
               3 4 5
0.8160 -0.5077 -0.2754 -0.7213 0.4145 0.1553
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
              Genderm 0.05402 0.38042 0.142 0.88707
Age_Group[30-65] -0.26642 0.42010 -0.634 0.52596
Age Group[65+] -0.47482 0.59460 -0.799 0.42455
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2.4477 on 5 degrees of freedom
Residual deviance: 1.7157 on 2 degrees of freedom
AIC: 29.167
Number of Fisher Scoring iterations: 4
Logistic Regression with cbind
We will need to create another column called of the No Responses and then we can use the
cbind:
df agg$No Responses <- df agg$Impressions- df agg$Responses</pre>
m3<-glm(cbind(Responses, No Responses) ~ Gender+Age Group, data=df agg,
family = binomial("logit"))
summary(m3)
Output:
Call:
glm(formula = cbind(Responses, No_Responses) ~ Gender + Age_Group,
   family = binomial("logit"), data = df agg)
Deviance Residuals:
        2
                                  5
                 3 4
0.8160 -0.5077 -0.2754 -0.7213 0.4145 0.1553
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
             -1.32296 0.40899 -3.235 0.00122 **
Genderm
               0.05402
                         0.38042 0.142 0.88707
Age_Group[65+] -0.47482 0.59460 -0.799 0.42455
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2.4477 on 5 degrees of freedom

Residual deviance: 1.7157 on 2 degrees of freedom

AIC: 29.167
```

Number of Fisher Scoring iterations: 4

Expand the Aggregate Data

Finally, another approach will be to transform the aggregate data to the binary form of 0 and 1. Let's do it:

Output:

# A tibble: 200 x 7 Gender Age_Group Impressions Responses RR No_Responses						
New Response						
<u>-</u>						
1 f	[<30]	21	6	0.286	15	
1						
2 f	[<30]	21	6	0.286	15	
1						
3 f	[<30]	21	6	0.286	15	
1						
4 f	[<30]	21	6	0.286	15	
1						
5 f	[<30]	21	6	0.286	15	
1						
6 f	[<30]	21	6	0.286	15	
1						
7 f	[<30]	21	6	0.286	15	
0						
8 f	[<30]	21	6	0.286	15	
0						
9 f	[<30]	21	6	0.286	15	
0						
10 f	[<30]	21	6	0.286	15	
0						
# with 190 more rows						

And now we can run similarly with what we did at the beginning.

```
model4<-glm(New_Response ~ Gender+Age_Group, data = df2, family =</pre>
```

```
Output:
Call:
glm(formula = New Response ~ Gender + Age Group, family =
binomial("logit"),
   data = df2)
Deviance Residuals:
   Min 1Q Median 3Q Max
-0.7039 -0.6246 -0.6094 -0.5677 1.9754
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.32296 0.40899 -3.235 0.00122 **
               0.05402 0.38041 0.142 0.88707
Genderm
Age Group[30-65] -0.26642 0.42010 -0.634 0.52596
Age Group[65+] -0.47482 0.59460 -0.799 0.42455
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 188.56 on 199 degrees of freedom
Residual deviance: 187.83 on 196 degrees of freedom
AIC: 195.83
```

The Takeaway

Number of Fisher Scoring iterations: 4

binomial("logit"))
summary(model4)

With all 4 models, we came up with the same coefficients and p-values. However, in the aggregate form, we get different output regarding the deviance and the AIC score compared to the binary form.