Hodge の定理

mico

2025年2月9日

1 Hodge *作用素

以下、多様体、微分形式などはすべて C^{∞} のものを考える.

(M,g) を向きづけられた m 次元 Riemann 多様体とする. このとき各点 $p\in M$ における接ベクトル空間 T_pM 上に、内積 g_p が定まる. これを用いて T_pM の k 次交代テンソル積空間 $\wedge^k T_p^*M$ $(1\leq k\leq m)$ の上に内積を定める.

定義 1: $\wedge^k T_p^* M$ の内積

 $\{e_1,\cdots,e_m\}$ を T_pM の正規直交基底とする. このとき, この基底に関する T_p^*M の双対基底 $\{\theta^1,\cdots,\theta^m\}$ が定まる. これを用いて $\wedge^kT_p^*M$ の上に内積 g_p を, 基底

$$\{\theta^{i_1} \wedge \dots \wedge \theta^{i_k} | 1 \leq i_1 < \dots < i_k \leq m\}$$

が正規直交基底となるように定める.

ここで T_pM の内積と $\wedge^kT_p^*M$ の内積に共通の記号 g_p を用いたが、以降も混同の恐れがないかぎり共通の記号を用いる. また、この内積は正規直交基底 $\{e_1,\cdots,e_m\}$ によらず定まる.

続いて、Hodge * 作用素を定義する. 多様体 M に向きが定まっていることから、接ベクトル空間 T_pM にも自然に向きが定まる. 正の向きの T_pM の正規直交基底 $\{e_1,\cdots,e_m\}$ に対して、その双 対基底 $\{\theta^1,\cdots,\theta^m\}$ を考え、これから定まる m 次交代テンソル $v_{g_p}:=\theta^1\wedge\cdots\wedge\theta^m$ を (M,g) の p における体積要素と呼んでいた.これを用いて *: $\wedge^kT_p^*M\to\wedge^{m-k}T_p^*M$ を定める.

定義 2: Hodge * 作用素

 $\omega \in \wedge^k T_p^* M$ とする. このとき,

$$\eta \wedge (*\omega) = g_p(\omega, \eta) v_{g_p} \quad (\forall \eta \in \wedge^k T_p^* M)$$

なる $*\omega\in \wedge^{m-k}T_p^*M$ が一意に定まる.これにより定まる写像 $*:\wedge^kT_p^*M\to \wedge^{m-k}T_p^*M$ を Hodge * 作用素という.

命題 1

 $\operatorname{Hodge} *$ 作用素は $\wedge^k T_p^* M$ から $\wedge^{m-k} T_p^* M$ への線型同型を与える.

M 上の k 次微分形式全体からなる集合を $A^k(M)$ とする. 以上の定義は $A^k(M)$ 上に拡張することができる. すなわち, $\omega,\eta\in A^k(M)$ には, その各点 $p\in M$ における内積 $g_p(\omega_p,\eta_p)$ が定まり, これにより M 上の関数 $g(\omega,\eta):M\ni p\mapsto g_p(\omega_p,\eta_p)\in\mathbb{R}$ が定まる. また, $M\ni p\mapsto *\omega_p\in \wedge^{m-k}T_p^*M$ とすることで, $*\omega\in A^{m-k}(M)$ が定まる.

2 調和形式

前節の条件に加え、以降は M をコンパクトで境界を持たないものとする. このとき、 $A^k(M)$ 上に内積 (,) を定めることができる.

定義 3: $A^k(M)$ の内積

 $\omega, \eta \in A^k(M)$ に対し、内積 (ω, η) を

$$(\omega,\eta) := \int_M \eta \wedge (*\omega) = \int_M g(\omega,\eta) v_g$$

で定める. これにより $(A^k(M), (,))$ は内積空間となる.

 $A^*(M):=igoplus_{k=0}^m A^k(M)$ とする.ここで $0\leq k,l\leq m$ について $A^k(M)\perp A^l(M)$ と約束すれば, $A^*(M)$ にも内積構造が自然に定まる.よって, $A^k(M)$ 上の作用素が与えられればその共役作用素を考えることができる.

命題 2

外微分 $d:A^*(M)\to A^*(M)$ の共役作用素を δ とする. このとき δ は $\omega\in A^k(M)$ ($\forall k\in M$)に対して

$$\delta(\omega) = (-1)^k *^{-1} d * \omega$$

なるものである.

 $Proof.\ k$ 次微分形式 ω と k+1 次微分形式 η について, $(d\omega,\eta)=(\omega,\delta\eta)$ となることを示せれば十分である. $(d\omega)\wedge *\eta$ を計算すると,

$$(d\omega) \wedge (*\eta) = d(\omega \wedge (*\eta)) - (-1)^k \omega \wedge (d*\eta)$$
$$= d(\omega \wedge (*\eta)) + \omega \wedge ((-1)^{k+1} d*\omega)$$
$$= d(\omega \wedge (*\eta)) + \omega \wedge (*\delta\eta).$$

ここで

 $\delta:A^k(M) \stackrel{*}{\longrightarrow} A^{m-k}(M) \stackrel{d}{\longrightarrow} A^{m-k+1}(M) \stackrel{*^{-1}}{\longrightarrow} A^{k-1}(M) \stackrel{(-1)^k}{\longrightarrow} A^{k-1}(M)$ より $\delta\eta \in A^k(M)$ であることに注意すると、両辺はともに m 次微分形式になっていることがわかる.よって、M 上で積分すると

$$\int_{M} (d\omega) \wedge (*\eta) = \int_{M} d(\omega \wedge (*\eta)) + \int_{M} \omega \wedge (*\delta\eta).$$

ここで $A^*(M)$ 上の内積の定義より

$$\int_{M} (d\omega) \wedge (*\eta) = (d\omega, \eta), \quad \int_{M} \omega \wedge (*\delta \eta) = (\omega, \delta \eta).$$

また、Stokes の定理より

$$\int_{M} d(\omega \wedge (*\eta)) = 0.$$

したがって, $(d\omega, \eta) = (\omega, \delta\eta)$.

定義 4: ラプラシアン, 調和形式

外微分 d と、その共役作用素 δ から定まる作用素

$$\Delta := \delta d + d\delta : A^k(M) \to A^k(M)$$

をラプラシアンという. また, $\omega \in A^*(M)$ が

$$\Delta\omega = 0$$

を満たすとき、 ω は調和形式であるという.

命題3

 $\omega \in A^*(M)$ が調和形式であるための必要充分条件は, $d\omega = \delta\omega = 0$ となることである.

Proof. Δ の定義より $d\omega = \delta\omega = 0 \Rightarrow \Delta\omega = 0$ は明らか. 逆を示す.

 $\Delta\omega=0$ であるとき,

$$0 = (\Delta\omega, \omega) = (\delta d\omega + d\delta\omega, \omega) = (d\omega, d\omega) + (\delta\omega, \delta\omega) = |d\omega|^2 + |\delta\omega|^2.$$

よって, $d\omega = \delta\omega = 0$.

3 Hodge 分解, Hodge の定理

 $\mathbb{H}^k(M)$ を M 上の調和 k 次微分形式全体からなる集合とする. $\mathbb{H}^k(M)$ について, 次の命題が成り立っている.

命題 4

 $A^k(M)$ の部分空間 $\mathbb{H}^k(M)$, $dA^{k-1}(M)$, $\delta A^{k+1}(M)$ は内積 (,) について各々直交している. また, 直和 $\mathbb{H}^k(M) \oplus dA^{k-1}(M) \oplus \delta A^{k+1}(M)$ と直交するような $A^k(M)$ の元は 0 に限る.

Proof. 前半について示す. $\omega \in \mathbb{H}^k(M), \eta \in A^{k-1}(M), \theta \in A^{k+1}(M)$ とする. 命題 3 及び δ が d の共役作用素であることより

$$(\omega, d\eta) = (\delta\omega, \eta) = 0, \quad (\omega, \delta\theta) = (d\omega, \theta) = 0, \quad (d\eta, \delta\theta) = (d^2\eta, \theta) = 0$$

である. これで前半は示された.

後半について示す。 $\omega \in A^k(M)$ が $dA^{k-1}(M)$ の任意の元 $d\eta$ と直交すると仮定する。このとき, $0=(\omega,d\eta)=(\delta\omega,\eta)$ より $\delta\omega=0$ である。同様に $\delta A^{k+1}(M)$ の任意の元 $\delta\theta$ と直交することを仮定すれば, $d\omega=0$ であることがわかる。よって,命題 3 より $\omega\in\mathbb{H}^k(M)$ である。さらに, ω が $\mathbb{H}^k(M)$ と直交していることを用いれば, $(\omega,\omega)=0$ で $\omega=0$ を得る.

実は,次の定理が成り立っている.

定理 1: Hodge 分解

向きづけられたコンパクト Riemann 多様体上において, 直交直和分解

$$A^k(M) = \mathbb{H}^k(M) \oplus dA^{k-1}(M) \oplus \delta A^{k+1}(M)$$

が成立している.

Hodge の定理の主張を述べるため、de Rham コホモロジーの定義を確認する.

定義 5: de Rham コホモロジー群

外微分 d は $d^2 = 0$ を満たすため, d による複体

$$0 \longrightarrow A^0(M) \stackrel{d}{\longrightarrow} A^1(M) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} A^m(M) \longrightarrow 0$$

が定まる. これを用いて $0 \le k \le m$ に対して部分空間 $Z_k, B_k \subset A^k(M)$ を

$$Z_k := \left\{ \omega \in A^k(M) \middle| d\omega = 0 \right\}, \quad B_k := \left\{ d\omega \middle| \omega \in A^{k-1}(M) \right\}$$

で定める. このとき定まる商空間

$$H_{DR}^k(M) := Z_k/B_k$$

を, M の k 次 de Rham コホモロジー群という.

命題 3 より $\mathbb{H}^k(M)\subset Z_k(M)$ である. よって、各 $\omega\in\mathbb{H}^k(M)$ に対して ω が属する $H^k_{DR}(M)$ の同値類を考えることにより自然な写像 $\phi:\mathbb{H}^k(M)\to H^k_{DR}(M)$ を考えることができる.

定理 2: Hodge の定理

写像 $\phi: \mathbb{H}^k(M) \to H^k_{DR}(M)$ は線型同型である.

Proof. ϕ が線型であることは明らか. 単射であることを示す. 単射であることを示すには, $\omega\in\mathbb{H}^k(M)$ について $\phi(\omega)=0$, すなわち ω が完全形式であるならば, $\omega=0$ であることを示せばよい. 実際に $\omega=d\eta$ とすると, 命題 3 より

$$(\omega, \omega) = (\omega, d\eta) = (\delta\omega, \eta) = 0.$$

よって, $\omega = 0$ で, これより ϕ は単射であることがわかる.

次に ϕ が全射であることを示す.これの証明には定理 1 を用いる. $\omega \in A^k(M)$ を任意の閉形式とする.このとき定理 1 より

$$\omega = \omega_H + d\eta + \delta\theta$$

なる $\omega_H \in \mathbb{H}^k(M), \eta \in A^{k-1}(M), \theta \in A^{k+1}(M)$ が一意に存在する. ω は閉形式だったので、命題 3 より $0 = d\omega = d\delta\theta$ である. よって、 $0 = (d\delta\theta, \theta) = (\delta\theta, \delta\theta)$ で、 $\delta\theta = 0$. すなわち $\omega = \omega_H + d\eta$ である. 以上より $\omega - \omega_H = d\eta \in B_k$ なので、 Z_k/B_k において ω と ω_H は同じ同値類に属する. すなわち $\phi\omega_H = \omega$ で、 ϕ は全射である. したがって ϕ は線型同型.

この定理は、各 de Rham コホモロジー群の元 (de Rham コホモロジー類) に対して、それを代表 するような調和形式が一意に存在することを主張している.

参考文献

- [1] 森田茂之, 微分形式の幾何学 2, 岩波書店, 1997.
- [2] 浦川肇, 変分法と調和写像 (復刊), 裳華房, 2022