INSTITUT de FINANCEMENT du DEVELOPPEMENT du MAGHREB ARABE

CONCOURS DE RECRUTEMENT de la XXXVI PROMOTION (Assurance)

Samedi 14 Mai 2016 Epreuve de Méthodes Quantitatives Durée : 1h30 Nombre de pages :02

Aucun document n'est autorisé

Exercice 1: (8 points 1+1+1+1,5+1,5+2)

On considère une variable aléatoire X pouvant prendre les trois valeurs suivantes : X = -1, X = 0 et X = 1 avec les probabilités : $P[X = -1] = \frac{1}{3}$; P[X = 0] = a où a est un réel positif plus petit que 1.

- 1- Calculer P[X = 1] en fonction de a
- 2- Déterminer la valeur de a pour que l'espérance mathématique de X soit nulle.
 - 3- Calculer la variance de X ainsi que la variance de $Y = X^2$.
- 4- Calculer la covariance entre *X* et *Y*. En déduire le coefficient de corrélation linéaire entre *X* et *Y*. Commenter ce résultat.
- 5- On pose $\varphi(X) = e^{-X}$. Calculer l'espérance mathématique $E(\varphi(X))$ et comparer cette valeur à $\varphi(E(X))$. Commenter.
- 6- On dispose de n réalisations indépendantes de la variable Y définie dans la question 3, notées Y_1, Y_2, \ldots, Y_n . Déterminer la densité de probabilité de cet ensemble d'observations ainsi que la loi de probabilité de la somme $:Y_1+Y_2+\ldots+Y_n$

Exercice 2 : (12 points: 1+2+2+2+2+3)

On considère la régression entre le logarithme des exportations (y) et le logarithme de l'investissement industriel (x) pour une période de T=24 années:

$$y_t = \alpha + \beta x_t + \epsilon_t, \quad t = 1, 2, \dots, 24$$

où ϵ_t sont des termes aléatoires identiquement et indépendamment distribués d'espérance mathématique zéro et de variance σ^2 , α et β sont des paramètres à

estimer. On dispose des statistiques suivantes: $\sum_{t=1}^{24} y_t = 81$; $\sum_{t=1}^{24} x_t = 185$;

$$\sum_{t=1}^{24} (y_t - \bar{y})^2 = 106; \quad \sum_{t=1}^{24} (x_t - \bar{x})^2 = 860; \text{ et } \sum_{t=1}^{24} (x_t - \bar{x})(y_t - \bar{y}) = 300$$

 \bar{y} et \bar{x} sont les moyennes empiriques de y et de x.

1. Donner l'interprétation économique de la relation définie précédemment ainsi que celle des paramètres α et β

- **2.** Estimer par la méthode des moindres carrés ordinaires les paramètres α et β , que l'on note $\widehat{\alpha}$ et $\widehat{\beta}$.
- **3.** Donner la valeur numérique de l'estimateur sans biais de la variance des termes d'erreur, notée $\widehat{\sigma^2}$.
- **4.** Calculer la variance estimée de $\widehat{\beta}$. La variable x est-elle significative? Justifier votre réponse.
- **5.** Quelle sera l'expression de l'estimation du paramètre β par les moindres carrés ordinaires si on oublie que le modèle comporte la constante α ?

Prouver que cette dernière estimation de β est biaisée. Evaluer ce biais.

6. En fait, un traitement économétrique plus approfondi a permis de trouver le modèle estimé suivant :

$$\hat{y}_t = 0.2 y_{t-1} + 0.8 x_t + 1.5$$

Interpréter ce nouveau modèle Ecrire sa forme en retards échelonnés Evaluer les effets de x sur y sur le court terme et sur le long terme.