## Cơ chế gây bệnh của vi khuẩn

TS.BS. Huỳnh Minh Tuấn Bộ môn Vi sinh- Khoa Y Đại Học Y Dược TP. Hô Chí Minh

Email: <u>huynhtuan@ump.edu.vn</u>

Cell/Viber/Skype/WhatsApp: +84 90 934 9918

#### Mục tiêu học tập

- 1. Mô tả một tiến trình nhiễm khuẩn
- 2. Mô tả cơ chế gây bệnh của vi khuẩn
- 3. Trình bày cơ chế của vi khuẩn lẫn tránh đáp ứng miễn dịch ký chu

#### Nội dung

- Nhắc lại một số định nghĩa và thuật ngữ
- 2. Các giai đoạn của một tiến trình nhiễm khuẩn
- 3. Các cơ chế gây bệnh nhiễm khuẩn và lẫn tránh hệ đề kháng

#### Một số định nghĩa & thuật ngữ

- Độc lực
- LD50
- ID50
- Khả năng gây bệnh
- Tác nhân cơ hội
- Nhiễm khuẩn không triệu chứng, tình trạng mang trùng
- Khả năng lây nhiễm
- Dịch tễ: epidemic, endemic, pandemic
- Thường trú và chiếm cư

#### **LD50**

- LD<sub>50</sub> = số lượng vi sinh vật cần thiết để tiêu diệt phân nửa ký chủ.
  - Vi sinh vật có LD<sub>50</sub> càng thấp (hoặc ID<sub>50</sub>) thì càng có độc lực cao.

#### **ID50**

- ID<sub>50</sub> = số lượng vi sinh vật cần thiết để gây bệnh cảnh nhiễm khuẩn trên phân nửa ký chủ.
- Liều gây nhiễm thay đổi:
  - Shigella và Salmonella gây nhiễm khuẩn đường tiêu hóa (tiêu chảy)
    - Shigella it hon 100
    - Salmonella cần hơn 100,000

#### Tại sao con người mắc một bệnh lý nhiễm khuẩn?

- Vi sinh vật vượt trội hơn so với sức đề kháng
- Từ khía cạnh vi sinh vật:
  - Số lượng
  - Độc lực
- Từ khía cạnh hệ đề kháng:
  - Miễn dịch nguyên phát
  - Miễn dịch thu được
    - Trung gian kháng thể
    - Trung gian tế bào

#### Các giai đoạn của một tiến trình nhiễm khuẩn

- Vi sinh vật lây truyền từ nguồn bên ngoài đến ngô vào của ký chủ
- Xâm lấn hàng rào đề kháng nguyên thủy như da hoặc dịch dạ dày
- 3. Bám dính vào màng niêm mạc, thường dùng pili
- 4. Tăng sinh và chiếm cư tại vị trí bám dính
- 5. Gây triệu chứng nhiễm khuẩn: tiết độc tố hoặc xâm lấn đi kèm phản ứng viêm
- Các phản ứng của ký chủ, bao gồm cả miễn dịch đặc hiệu và không đặc hiệu trong các bước 3, 4, 5
- 7. Bệnh tiến triển nặng hoặc khỏi

#### Minh họa: Ngõ vào



#### Minh họa: Nguồn phát tán



## Các giai đoạn điển hình của một bệnh lý nhiễm khuẩn

- 1. Ủ bệnh
- 2. Khởi phát
- Toàn phát
- 4. Lui bệnh Hồi phục
- Sau thời kỳ hồi phục: có thể
  - Mang trùng mạn tính
  - Nhiễm khuẩn tiềm ẩn
- Nhiễm khuẩn không triệu chứng: kháng thể là bằng chứng

#### 2 cơ chế chính gây bệnh nhiễm khuẩn

- (1) sản xuất độc tố
- (2) xâm lấn và tạo viêm

#### Độc tố

- Ngoại độc tố: polypeptide (tế bào tiết ra)
- Nội độc tố
  - Lipopolysaccharides (LPS) (từ vách tế bào)
  - Trực khuẩn và cầu khuẩn Gram âm, gây sốt, sốc, và các triệu chứng toàn thân khác
- Cả 2 loại độc tố đều có thể tự thân gây ra các triệu chứng mà không cần sự hiện diện của vi khuẩn

#### Xâm lấn

- Tăng sinh số lượng trong cơ thể ký chủ
- Gây phản ứng viêm: sung, nóng, đỏ, đau

#### Enzyme: thuận lợi cho quá trình xâm lấn của vi khuẩn

- Collagenase và hyaluronidase: phân hủy collagen và hyaluronic acid
  - Bệnh cảnh cellulitis (viêm mô tế bào) do Streptococcus pyogenes
  - Coagulase (Staphylococcus aureus) đông máu (fibrinogen → fibrin): bảo vệ vi khuẩn khỏi hiện tượng thực bào
  - Immunoglobulin A (IgA) protease thoái hóa IgA: tạo thuận lợi cho vi khuẩn báo dính vào màng niêm mạc (N. gonorrhoeae, Haemophilus influenzae, và Streptococcus pneumoniae)
  - Leukocidin: tiêu diệt bạch cầu và đại thực bào

## Minh hoa: hyaluronidase và collagenase

#### Hyaluronidase and collagenase



Invasive bacteria reach epithelial surface



Bacteria produce hyaluronidase and collagenase



Bacteria invade deeper tissues

#### Minh hoa: coagulase



#### Minh hoa: IgA protease





#### Leukocidins

I am Valentine.. I will love you.



Panton-Valentine leukocidin

This love will be the death of me.



Leukocyte

© Immense Immunology Insight

#### Minh họa: leukocidin



Model depicting the role of LukAB in S. aureus-PMN interactions with extracellular versus phagocytosed S. aureus. Upon encountering PMNs *lukAB* is upregulated. If *S. aureus* remains extracellular (pathway 1), the bacteria secrete LukAB, which forms pores in PMN membranes causing extensive membrane damage and ultimately resulting in the killing of the PMNs. However, if *S. aureus* is phagocytosed (pathway 2), we propose that LukAB is produced by *S*. aureus within the phagosome (inset) and promotes the escape of *S. aureus* from the phagosome through pore formation and breakdown of the phagosomal membrane, which ultimately results in *S. aureus* escape from the PMN and subsequent PMN death.

#### Các yếu tố độc lực khác

- Nang polysaccharide (các vi khuẩn như S. pneumoniae và Neisseria meningitidis)
- 2. M protein của group A streptococci (S. pyogenes) và protein A của S. aureus.

#### Minh họa: nang

Images of phagocytosis

#### Streptococcus pneumoniae and capsule







#### Minh họa: M protein



#### Minh họa: nang ức chế thực bào





(c) Antiphagocytic factors

#### Hiện tượng opsonin hóa

Opsonization and phagocytosis



#### Minh họa: nang và M protein





#### Minh họa: M protein



Schematic model for M proteininduced inflammation. During *S*. pyogenes infection, M protein is released from the bacterial surface spontaneously, or via host- and bacteria-derived proteinases. Released M1 protein forms complexes with fibrinogen that trigger PMNs to release HBP. M protein can also directly activate monocytes by interacting with TLR2, resulting in the secretion of proinflammatory cytokines. Binding of HBP to  $\beta$ , integrins of monocytes potentiates M protein-induced inflammation and enhances cytokine secretion.

#### Minh họa: SpA



Mechanisms of SpA-mediated immune evasion. (Left panel) SpA (red crescent shape) present on the surface of *S. aureus* (SA) or SpA that is freely secreted binds the Fc region of antibody (Ab), thereby preventing normal phagocytosis (right panel). Alternatively, SpA binds the Fab regions of the B-cell receptor (lower left panel), which induces B-cell death and prevents the production of antibody specific for *S. aureus*. Ag, antigen; PMN, polymorphonuclear leukocyte.

#### Sản xuất độc tố

- Ngoại độc tố
- Nội độc tố

## Các đặc điểm chính của ngoại độc tố và nội độc tố

| Property                                                      | Comparison of Properties                                |                    |
|---------------------------------------------------------------|---------------------------------------------------------|--------------------|
| Exotoxin                                                      | Endotoxin                                               | Source             |
| Certain species of gram-positive and gram-negative bacteria   | Cell wall of gram-negative bacteria                     | Secreted from cell |
| Yes                                                           | No                                                      | Chemistry          |
| Polypeptide                                                   | Lipopolysaccharide                                      | Location of genes  |
| Plasmid or bacteriophage                                      | Bacterial chromosome                                    | Toxicity           |
| High (fatal dose on the order of 1 µg)                        | Low (fatal dose on the order of hundreds of micrograms) | Clinical effects   |
| Various effects (see text)                                    | Fever, shock                                            | Mode of action     |
| Various modes (see text)                                      | Includes TNF and interleukin-1                          | Antigenicity       |
| Induces high-titer antibodies called antitoxins               | Poorly antigenic                                        | Vaccines           |
| Toxoids used as vaccines                                      | No toxoids formed and no vaccine available              | Heat stability     |
| Destroyed rapidly at 60°C (except staphylococcal enterotoxin) | Stable at 100°C for 1 hour                              | Typical diseases   |

TNF = tumor necrosis factor.

#### Cấu trúc tiểu đơn vị A-B

- A (active)
- B (binding)
- Quan trong: diphtheria toxin, tetanus toxin, botulinum toxin, cholera toxin, và enterotoxin của E. coli

#### Minh họa: cấu trúc tiểu đơn vị A-B của độc tố bạch hầu



Source: Warren Levinson: Review of Medical Microbiology and Immunology, 14th Edition, www.accessmedicine.com Copyright © McGraw-Hill Education. All rights reserved.

Mode of action of diphtheria toxin. The toxin binds to the cell surface via its binding subunit, and the active subunit enters the cell. The active subunit is an enzyme that catalyzes the addition of ADP-ribose (ADP-R) to elongation factor-2 (EF-2). This inactivates EF-2, and protein synthesis is inhibited.

#### Các loại ngoại độc tố quan trọng

| Bacterium                      | Disease                     | Mode of Action                                                                                                                 | Toxoid<br>Vaccine |
|--------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ram-positive rods              |                             |                                                                                                                                |                   |
| Corynebacterium<br>liphtheriae | Diphtheria                  | Inactivates EF-2 by ADP-ribosylation                                                                                           | Yes               |
| Clostridium tetani             | Tetanus                     | Blocks release of the inhibitory neurotransmitter glycine by proteolytic cleavage of releasing proteins                        | Yes               |
| Clostridium<br>botulinum       | Botulism                    | Blocks release of acetylcholine by proteolytic cleavage of releasing proteins                                                  | Yes¹              |
| Clostridium<br>difficile       | Pseudomembranous<br>colitis | Exotoxins A and B inactivate GTPases by glucosylation                                                                          | No                |
| Clostridium<br>perfringens     | Gas gangrene                | Alpha toxin is a lecithinase; enterotoxin is a superantigen                                                                    | No                |
| Bacillus anthracis             | Anthrax                     | Edema factor is an adenylate cyclase; lethal factor is a protease that cleaves MAP kinase, which is required for cell division | No                |

| Bacterium              | Disease                  | Mode of Action                                                                                           | Toxoid Vaccine   |
|------------------------|--------------------------|----------------------------------------------------------------------------------------------------------|------------------|
| Gram-positive cocci    |                          |                                                                                                          |                  |
| Staphylococcus aureus  | 1. Toxic shock syndrome  | Is a superantigen; binds to class II MHC protein and T-cell receptor; induces IL-1 and IL-2              | No               |
|                        | 2. Food poisoning        | Is a superantigen acting locally in the gastrointestinal tract                                           | No               |
|                        | 3. Scalded skin syndrome | Is a protease that cleaves desmoglein in desmosomes                                                      | No               |
| Streptococcus pyogenes | Scarlet fever            | Is a superantigen; action similar to toxic shock syndrome toxin of S aureus                              | No               |
| Gram-negative rods     |                          |                                                                                                          |                  |
| Escherichia coli       | 1. Watery diarrhea       | Labile toxin stimulates adenylate cyclase by ADP-ribosylation; stable toxin stimulates guanylate cyclase | No               |
|                        | 2. Bloody diarrhea       | Shiga toxin inhibits protein synthesis in enterocytes by removing adenine from 28S ribosomal RNA         | No               |
| Shigella dysenteriae   | Bloody diarrhea          | Shiga toxin inhibits protein synthesis in enterocytes by removing adenine from 28S ribosomal RNA         | No               |
| Vibrio cholerae        | Cholera                  | Stimulates adenylate cyclase by ADP-ribosylation                                                         | No               |
| Bordetella pertussis   | Whooping cough           | Stimulates adenylate cyclase by ADP-ribosylation; inhibits chemokine receptor                            | Yes <sup>2</sup> |

### Cơ chế của ngoại độc tố

| Mechanism of Action | Exotoxin                                                                                     |
|---------------------|----------------------------------------------------------------------------------------------|
| ADP-ribosylation    | Diphtheria toxin, cholera toxin, Escherichia coli heat-<br>labile toxin, and pertussis toxin |
| Superantigen        | Toxic shock syndrome toxin, staphylococcal enterotoxin, and erythrogenic toxin               |
| Protease            | Tetanus toxin, botulinum toxin, lethal factor of anthrax toxin, and scalded skin toxin       |
| Lecithinase         | Clostridium perfringens alpha toxin                                                          |

## Exotoxins increase intracellular cyclic AMP

| Bacterium            | Exotoxin                         | Mode of Action                                                                                              |
|----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|
| Vibrio cholerae      | Cholera toxin                    | ADP-ribosylates G <sub>s</sub> factor,<br>which activates it, thereby<br>stimulating adenylate<br>cyclase   |
| Escherichia coli     | Labile toxin                     | Same as cholera toxin                                                                                       |
| Bordetella pertussis | Pertussis toxin                  | ADP-ribosylates G <sub>i</sub> factor,<br>which inactivates it,<br>thereby stimulating<br>adenylate cyclase |
| Bacillus anthracis   | Edema factor of anthrax<br>toxin | Is an adenylate cyclase                                                                                     |

# Main location of symptoms of diseases caused by bacterial exotoxins

| Main Location of       | 0                                          | NG 1 CA CA CA                                      |
|------------------------|--------------------------------------------|----------------------------------------------------|
| Symptoms               | Organism                                   | <b>Mode of Action Exotoxin</b>                     |
| Gastrointestinal tract |                                            |                                                    |
| 1. Gram-positive cocci | Staphylococcus aureus                      | Enterotoxin is a                                   |
|                        | C1 1. 1. CC 1                              | superantigen<br>Inactivates GTPases in             |
| 2. Gram-positive rods  | Clostridium difficile                      |                                                    |
|                        |                                            | enterocytes                                        |
|                        | Clostridium perfringens<br>Bacillus cereus | Superantigen                                       |
|                        | Bacıllus cereus                            | Superantigen<br>Stimulates adenylate               |
| 3. Gram-negative rods  | Vibrio cholerae                            |                                                    |
|                        |                                            | cyclase                                            |
|                        | Toxigenic Escherichia coli                 | Stimulates adenylate                               |
|                        | F 1 ' 1' 1' 0                              | cyclase                                            |
|                        | Escherichia coli O157                      | Inactivates protein synthesis                      |
| N.T.                   |                                            | syntnesis                                          |
| Nervous system         |                                            | T 1 11 1 1 1                                       |
| 1. Gram-positive rods  | Clostridium tetani                         | Inhibits glycine release<br>Inhibits acetylcholine |
|                        | Clostridium botulinum                      | Inhibits acetylcholine                             |
|                        |                                            | release                                            |

| Main Location of Symptoms    | Organism                               | Mode of Action Exotoxin                                           |
|------------------------------|----------------------------------------|-------------------------------------------------------------------|
| Respiratory tract            |                                        |                                                                   |
| 1. Gram-positive rods        | Corynebacterium<br>diphtheriae         | Inactivates protein synthesis                                     |
| 2. Gram-negative rods        | Bordetella pertussis                   | Stimulates adenylate cyclase; inhibits chemokine receptor         |
| Skin, soft tissue, or muscle |                                        |                                                                   |
| 1. Gram-positive cocci       | S. aureus (scalded skin syndrome)      | Protease cleaves desmosome in skin                                |
|                              | S. aureus (MRSA strains)               | PV leukocidin is a pore-forming toxin that disrupts cell membrane |
|                              | Streptococcus pyogenes (scarlet fever) | Erythrogenic toxin is a superantigen                              |
| 2. Gram-positive rods        | C. perfringens                         | Lecithinase cleaves cell membranes                                |
|                              | Bacillus anthracis                     | Edema factor is an adenylate cyclase; lethal factor is a protease |
| Systemic                     |                                        |                                                                   |
| 1. Gram-positive cocci       | S. aureus                              | Toxic shock syndrome toxin is a superantigen                      |

#### 1. Độc tố bạch hầu

 Corynebacterium diphtheriae: gây ức chế tổng hợp protein (ADP-ribosylation of EF-2)



Source: Warren Levinson: Review of Medical Microbiology and Immunology, 14th Edition, www.accessmedicine.com Copyright © McGraw-Hill Education. All rights reserved.

Mode of action of diphtheria toxin. The toxin binds to the cell surface via its binding subunit, and the active subunit enters the cell. The active subunit is an enzyme that catalyzes the addition of ADP-ribose (ADP-R) to elongation factor-2 (EF-2). This inactivates EF-2, and protein synthesis is

#### Minh họa: màng giả trong độc tố bạch hầu

 The consequent death of the cells leads to two prominent symptoms of diphtheria: pseudomembrane formation in the throat and myocarditis.





#### 2. Tetanus toxin

- Clostridium tetani
- Độc tố thần kinh

#### 3. Botulinum toxin

- Clostridium botulinum
- Độc tố thần kinh

#### Nội độc tố



Mode of action of endotoxin. Endotoxin is the most important cause of septic shock, which is characterized primarily by fever, hypotension, and disseminated intravascular coagulation (DIC). Endotoxin causes these effects by activating three critical processes: (1) activating macrophages to produce interleukin-1 (IL-1), tumor necrosis factor (TNF), and nitric oxide; (2) activating complement to produce C3a and C5a; and (3) activating tissue factor, an early component of the coagulation cascade.



Source: Pathogenesis, Review of Medical Microbiology and Immunology, 14e

Citation: Levinson W. Review of Medical Microbiology and Immunology, 14e; 2016 Available at:

http://accessmedicine.mhmedical.com/content.aspx?bookid=1792&sectionid=120715777 Accessed: June 08, 2017

#### Tác động của nội độc tố

| Clinical Findings <sup>1</sup> | Mediator or Mechanism                                                   |
|--------------------------------|-------------------------------------------------------------------------|
| Fever                          | Interleukin-1 and interleukin-6                                         |
| Hypotension (shock)            | Tumor necrosis factor, nitric oxide, and bradykinin                     |
| Inflammation                   | C5a produced via alternative pathway of complement attracts neutrophils |
| Coagulation (DIC)              | Activation of tissue factor                                             |

DIC = disseminated intravascular coagulation.

<sup>1</sup>Tumor necrosis factor triggers many of these reactions.

#### Tác động có lợi và có hại của TNF

Beneficial effects of small amounts of TNF

Inflammation (e.g., vasodilation), increased vascular permeability

Adhesion of neutrophils to endothelium

Enhanced microbicidal activity of neutrophils

Activation and adhesion of platelets

Increased expression of class I and II MHC proteins

Harmful effects of large amounts of TNF

Septic shock (e.g., hypotension and high fever)

Disseminated intravascular coagulation

Inflammatory symptoms of some autoimmune diseases

TNF = tumor necrosis factor; MHC = major histocompatibility complex.

#### Kết luận

- Cơ chế gây bệnh của vi khuẩn
  - Xâm lấn và tạo viêm
  - Độc tố
    - Ngoại độc tố
    - Nội độc tố

## Kết thúc bài giảng

## Chân thành cảm ơn các bạn đã chú ý lắng nghe

Các bạn sinh viên vui lòng thực hiện đánh giấ phản hồi về nội dung và phương pháp giảng dạy của bài giảng hôm nay.