

Multi-Round Influence Maximization

Lichao Sun, Weiran Huang, Philip S. Yu, Wei Chen University of Illinois at Chicago, Microsoft Research, Tsinghua University

Roadmap

Company

Find Influential member

Find a set of Influential members

Single-Round Influence Maximization

- Influence maximization is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. (Kempe, and Kleinberg, 2003)
 - Influence cascade models: (1) Independent cascade model
 (2) Linear-threshold model (3) Triggering Model
 - Activation probability is known
- Find the optimal solution is NP-hard question (Set cover problem). (Kempe, Kleinberg, and Tardos 2003)
 - Greedy
 - Monto-Carlo simulation

Find the best one which can produce largest network impact with seed set

Summary: Single-Round Influence Maximization

- Given a probability Graph G and budget k
- Greedy algorithm to pick k nodes as a seed set
- Every node can be activated at most once
- Every node can not be duplicated in the seed set

If company wants to do advertisements twice with total 2k budget, how to design the node selection strategy?

Multi-round Influence Maximization

Summary: Multi-Round Influence Maximization

- Given a probability Graph G, budget k and round T
- Greed pick Tk nodes as a seed set
- Every node can be activated at most once in each round
- Every node can not be duplicated in the seed set in each round
- Every node can be activated more than once in multiple round (no double count score but can share information)
- Every node can be duplicated in the seed set in multiple round

Adaptive Multi-Round Influence Maximization

Adaptive Multi-Round Influence Maximization

Adaptive Multi-Round Influence Maximization

Summary: Adaptive versus Non-Adaptive

- Non-adaptive algorithm:
 - select all seeds at the beginning
 - do not need to wait for the information feedbacks from previous rounds
- Adaptive algorithm
 - use all influence information in previous rounds for next node selection
 - generally better performance than non-adaptive algorithm

Non-Adaptive Cross-Round Node Selection

Non-Adaptive Cross-Round Node Selection

Summary: Within-round versus Cross-round

- Within-round setting
 - adaptive and non-adaptive
 - faster due to small search space
- Cross-round setting
 - non-adaptive only
 - better performance due to global greedy (large search space)

Summary: Multi-Round Influence Maximization

- Non-adaptive model
 - cross-round seed selection (good performance)
 - within-round seed selection (fast)
- Adaptive model
 - within-round seed selection (fast, good performance, feedbacks)

Theorem 3.2. Let S^* be the optimal solution of the non-adaptive MRIM under cross-round setting. For every $\varepsilon > 0$ and $\ell > 0$, with probability at least $1 - \frac{1}{n^{\ell}}$, the output S^o of CR-Greedy satisfies

$$\rho(S^o) \ge \left(\frac{1}{2} - \varepsilon\right) \rho(S^*),$$

if CR-Greedy uses $R = \lceil 31k^2T^2n\log(2kn^{\ell+1})/\epsilon^2 \rceil$ as input. In this case, the total running time is $O(k^3\ell T^4n^2m\log(n)/\epsilon^2)$, assuming each simulation finishes in O(m) time.

Theorem 3.3. Let S^* be the optimal solution of the non-adaptive MRIM under within-round setting. For every $\varepsilon > 0$ and $\ell > 0$, with probability at least $1 - \frac{1}{n^{\ell}}$, the output S^o of WR-Greedy satisfies

$$\rho(\mathcal{S}^o) \ge \left(1 - e^{-\left(1 - \frac{1}{e}\right)} - \varepsilon\right) \rho(\mathcal{S}^*),$$

if WR-Greedy uses $R = \lceil 31k^2n\log(2kn^{\ell+1}T)/\varepsilon^2 \rceil$ as input. In this case, the total running time is $O(k^3\ell Tn^2m\log(nT)/\varepsilon^2)$, assuming each simulation finishes in O(m) time.

THEOREM 4.3. Let π^{ag} represents the policy corresponding to the AdaGreedy algorithm. For any $\varepsilon > 0$ and $\ell > 0$, if we use $R = \lceil 31k^2n\log(2kn^{\ell+1}T)/\varepsilon^2 \rceil$ simulations for each influence spread estimation, then with probability at least $1 - \frac{1}{n^{\ell}}$,

$$f_{\text{avg}}(\pi^{\text{ag}}) \ge \left(1 - e^{-\left(1 - \frac{1}{e}\right)} - \varepsilon\right) f_{\text{avg}}(\pi^*).$$

In this case, the total running time for T-round AdaGreedy is $O(k^3\ell Tn^2m\log(nT)/\epsilon^2)$.

Time: Non-adaptive CR > Adaptive WR = Non-adaptive WR

Performance: Non-adaptive CR >= Non-adaptive WR Adaptive WR >= Non-adaptive WR Theorem 3.2. Let S^* be the optimal solution of the non-adaptive MRIM under cross-round setting. For every $\varepsilon > 0$ and $\ell > 0$, with probability at least $1 - \frac{1}{n^{\ell}}$, the output S^o of CR-Greedy satisfies

$$\rho(S^o) \ge \left(\frac{1}{2} - \varepsilon\right) \rho(S^*),$$

if CR-Greedy uses $R = \lceil 31k^2T^2n\log(2kn^{\ell+1})/\epsilon^2 \rceil$ as input. In this case, the total running time is $O(k^3\ell T^4n^2m\log(n)/\epsilon^2)$, assuming each simulation finishes in O(m) time.

THEOREM 4.3. Let π^{ag} represents the policy corresponding to the AdaGreedy algorithm. For any $\varepsilon > 0$ and $\ell > 0$, if we use $R = \lceil 31k^2n\log(2kn^{\ell+1}T)/\varepsilon^2 \rceil$ simulations for each influence spread estimation, then with probability at least $1 - \frac{1}{n^{\ell}}$,

mation, then with probability at least
$$1 - \frac{1}{n^{\ell}}$$
,
$$f_{\text{avg}}(\pi^{\text{ag}}) \ge \left(1 - e^{-(1 - \frac{1}{e})} - \varepsilon\right) f_{\text{avg}}(\pi^*).$$

In this case, the total running time for T-round AdaGreedy is $O(k^3\ell Tn^2m\log(nT)/\epsilon^2)$.

Which is better??? Non-adaptive CR, Adaptive WR ???

Optimization: Reverse Reachable Set

Optimization: Reverse Reachable Set

We implement all multi-round model with reverse reachable set algorithm.

Speed up 1000 times!!!

Dataset	Description	node	edge
Flixster	movie social	29357	212614
NetHEPT	author/co- author	15233	62774

Table 1: The performance of influence spread on NetHEPT.

Method/Simulations	Round				
Method/Simulations	1	2	3	4	5
SG	290.1	505.7	688.6	868.2	1027.3
(R = 10000)	[288.8, 291.4]	[504.0, 507.3]	[686.6, 690.4]	[866.2, 870.2]	[1025.2, 1029.4]
SG-R	289.5	516.3	714.0	884.9	1042.0
(R = 10000)	[288.2, 290.8]	[514.6, 518.0]	[712.0, 716.0]	[882.7, 887.1]	[1039.7, 1044.2]
E-WR-Greedy	290.7	528.9	738.8	930.2	1097.6.9
(R = 10000)	[289.4, 292.0]	[527.2, 530.6]	[736.9, 740.8]	[928.0, 932.3]	[1095.3, 1099.8]
WR-IMM	290.9	532.8	745.3	930.1	1093.1
(R = 10000)	[289.7, 292.3]	[531.1, 534.5]	[743.2, 747.3]	[928.0, 932.2]	[1090.8, 1095.3]
CR-Greedy	267.8	528.7	730.4	938.5	1121.3
(R = 10000)	[266.5, 269.1]	[527.2, 530.4]	[728.5, 732.4]	[933.7, 937.8]	[1119.0, 1123.5]
CR-IMM	283.0	517.4	721.9	931.6	1129.7
(R = 10000)	[281.7, 284.2]	[515.7, 519.2]	[720.0, 723.9]	[929.4, 933.7]	[1127.7, 1131.9]
AdaGreedy	288.3	533.4	758.1	960.1	1141.5
(R = 150)	[276.7, 299.7]	[519.4, 547.3]	[743.6, 772.7]	[943.9, 976.3]	[1123.7, 1160.0]
AdalMM	291.8	544.4	761.8	965.8	1146.3
(R = 150)	[281.3, 302.4]	[531.6, 557.2]	[746.6, 776.9]	[949.7, 982.0]	[1129.1, 1163.5]

Table 3: Influence spread with different adaptive degree.

Num. of Rounds	1	2	5	10
Num. of Seeds	50	25	10	5
AdalMM	883.0	1040.3	1141.0	1204.7
(R = 100)	[856.0, 910.1]	[1022.6, 1058.1]	[1119.3, 1162.6]	[1178.2, 1231.3]

Table 4: Running time of the algorithms, in seconds.

	SG	SG-R	E-WR-Greedy	WR-IMM
NetHEPT	439.2	87.8	551.2	1.97
(R = 5)	[407, 470.94]	[81.5, 94.2]	[527.9, 574.4]	[1.91, 2.03]
Flixster	4862.3	972.5	2478.9	3.16
(R = 5)	[4773.3, 4951.3]	[990.3,954.7]	[2422.4, 2535.5]	[3.14, 3.18]

	CR-Greedy	CR-IMM	AdaGreedy	AdalMM
NetHEPT	2105.6	2.13	465.4	2.01
(R = 5)	[2036.2, 2175.0]	[2.05, 2.21]	[473.8, 457.0]	[1.93, 2.09]
Flixster	9587.6	3.61	2305.5	3.23
(R = 5)	[9145.3.10029.9]	[3.59, 3.63]	[2161.0, 2450.0]	[3.16, 3.30]

Summary and Future Plan

- Non-adaptive model
 - cross-round seed selection (good performance)
 - within-round seed selection (fast)
- Adaptive model
 - within-round seed selection (fast, good performance, feedbacks)

 Multi-round is not only a new model, but an idea brings more research opportunities. Thank you