Formale Semantik 10. Montagues intensionale Logik

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Folien in Überarbeitung. Englische Teile (ab Woche 8) sind noch von 2007!

Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

- 1 New types and up/down
 - Denoting intensionsTechnical devices
- The IL of PTQ

- Syntax
- Semantics
- Technical refinements
- 3 Examples

Beyond truth functionality

- $\llbracket \phi \rrbracket^{\mathcal{M},w,i,g}$ and $\llbracket \mathbf{P} \rrbracket^{\mathcal{M},w,i,g}$ don't truth conditionally determine $\llbracket \mathbf{P} \phi \rrbracket^{\mathcal{M},w,i,g}$
- Iceland was once covered with a glacier.
- **F, B,** \Diamond , \square are not fully truth functional
- Leibnitz Law of identity of individuals for logics containing '=' failing in opaque contexts
- 'former', 'alleged', etc. are not intersective adjectives like 'red'
- Frege: sometimes expressions denote a sense
- again: individual concepts (variable function on indices) vs. names (constant)

$$\llbracket \alpha \rrbracket_{\mathbf{q}'}^{\mathcal{M},\mathbf{g}}$$

intension relative to models

$$\bullet \ \, \text{for a name } \textit{d} \colon \llbracket \textit{d} \rrbracket_{\not \varsigma}^{\mathcal{M},g} = \left[\begin{array}{ccc} \langle w_1,t_1 \rangle & \to & \textit{b} \\ \langle w_2,t_1 \rangle & \to & \textit{b} \\ \langle w_1,t_2 \rangle & \to & \textit{b} \\ \langle w_2,t_2 \rangle & \to & \textit{b} \\ \langle w_1,t_3 \rangle & \to & \textit{b} \\ \langle w_2,t_3 \rangle & \to & \textit{b} \end{array} \right]$$

$$\llbracket \alpha \rrbracket_{q'}^{\mathcal{M},g}$$

• for an individual concept denoting expression *m*:

$$\bullet \hspace{0.1cm} \llbracket m \rrbracket^{\mathcal{M},g}_{\mathscr{G}} = \left[\begin{array}{ccc} \langle w_1,t_1 \rangle & \rightarrow & a \\ \langle w_2,t_1 \rangle & \rightarrow & c \\ \langle w_1,t_2 \rangle & \rightarrow & b \\ \langle w_2,t_2 \rangle & \rightarrow & c \\ \langle w_1,t_3 \rangle & \rightarrow & c \\ \langle w_2,t_3 \rangle & \rightarrow & b \end{array} \right]$$

$$\llbracket \alpha \rrbracket_{\mathbf{q}}^{\mathcal{M},\mathbf{g}}$$

for a one place predicate B:

$$\bullet \hspace{0.1cm} \llbracket B \rrbracket^{\mathcal{M},g}_{\varsigma'} = \left[\begin{array}{ccc} \langle w_1,t_1 \rangle & \rightarrow & \{a,b\} \\ \langle w_2,t_1 \rangle & \rightarrow & \{b,c\} \\ \langle w_1,t_2 \rangle & \rightarrow & \{a,c\} \\ \langle w_2,t_2 \rangle & \rightarrow & \{a\} \\ \langle w_1,t_3 \rangle & \rightarrow & \{b,c\} \\ \langle w_2,t_3 \rangle & \rightarrow & \{a,b,c\} \end{array} \right]$$

Intensions of formulas

• formula ϕ : $[\![\phi]\!]_{\phi}^{\mathcal{M},g}$ is a function from indices to truth values

$$\bullet \quad \llbracket \mathcal{B}(m) \rrbracket_{\varphi}^{\mathcal{M},g} = \begin{bmatrix} \langle \mathbf{w}_1, \mathbf{t}_1 \rangle & \to & 1 \\ \langle \mathbf{w}_2, \mathbf{t}_1 \rangle & \to & 1 \\ \langle \mathbf{w}_1, \mathbf{t}_2 \rangle & \to & 0 \\ \langle \mathbf{w}_2, \mathbf{t}_2 \rangle & \to & 0 \\ \langle \mathbf{w}_1, \mathbf{t}_3 \rangle & \to & 1 \\ \langle \mathbf{w}_2, \mathbf{t}_3 \rangle & \to & 1 \end{bmatrix}$$

$$\bullet \quad \llbracket B(n) \rrbracket_{\varphi}^{\mathcal{M},g} = \begin{bmatrix} \langle \mathbf{w}_1, t_1 \rangle & \to & 0 \\ \langle \mathbf{w}_2, t_1 \rangle & \to & 1 \\ \langle \mathbf{w}_1, t_2 \rangle & \to & 1 \\ \langle \mathbf{w}_2, t_2 \rangle & \to & 0 \\ \langle \mathbf{w}_1, t_3 \rangle & \to & 1 \\ \langle \mathbf{w}_2, t_3 \rangle & \to & 1 \end{bmatrix}$$

Intensions of formulas

- ullet again, the proposition $[\![Bm]\!]_{arphi}^{\mathcal{M},g}$ is a set of indices $(\langle w_i,t_j
 angle)$
- from the extension at all indices, compute the intension
- $\llbracket \alpha \rrbracket_{\alpha'}^{\mathcal{M},g}(\langle \mathbf{w}_i, \mathbf{t}_j \rangle) = \llbracket \alpha \rrbracket^{\mathcal{M},\mathbf{w}_i,\mathbf{t}_j,g}$

Intensions of variables

- constant function on indices
- will play a great role, so remember!
- $\bullet \ \llbracket u \rrbracket^{\mathcal{M},g}_{q'}(\langle w_i,t_j \rangle) = g(u)$

What expressions denote

- sometimes expressions denote individuals, sets of individuals, truth values...
- and sometimes they denote intensions (functions)
- alternatively: introduce rules which access an expression's extension/intension as appropriate

Up and down

- Church/Montague: for an extension-denoting expression α , $\hat{\alpha}$ denotes α 's intension
- $\bullet \ \llbracket \hat{\ } \mathsf{Bm} \rrbracket^{\mathcal{M},\mathsf{w},\mathsf{i},\mathsf{g}} = \llbracket \mathsf{Bm} \rrbracket^{\mathcal{M},\mathsf{g}}_{\mathsf{g}'}$
- α and $\hat{\alpha}$ are just denoting expressions
- $\bullet \ \ \text{for an intension-denoting expression} \ \alpha \textbf{:} \ \big[\![\check{\ } \alpha]\!]^{\mathcal{M}, \mathbf{w}, i, g} = \big[\![\alpha]\!]^{\mathcal{M}, g} (\langle \mathbf{w}, \mathbf{t} \rangle)$

Down-up and up-down

- observe: $\llbracket \hat{\alpha} \rrbracket^{\mathcal{M}, w, i, g} = \llbracket \alpha \rrbracket^{\mathcal{M}, w, i, g}$ for any $\langle w, t \rangle$
- but not always: $\llbracket \tilde{\alpha} \rrbracket^{\mathcal{M},w,i,g} = \llbracket \alpha \rrbracket^{\mathcal{M},w,i,g}$ for any $\langle w,t \rangle$
- can easily be the case for intension-denoting expressions

Non-equality

Non-equality

• k' extension (e.g., at $\langle w_1, t_2 \rangle$): $\llbracket k \rrbracket_{\not C}^{\mathcal{M}, g}(\langle w_1, t_2 \rangle) =$

$$\bullet \quad \llbracket \mathbf{k} \rrbracket^{\mathcal{M}, \mathbf{w}_1, \mathbf{t}_2, \mathbf{g}} = \left[\begin{array}{ccc} \langle \mathbf{w}_1, \mathbf{t}_1 \rangle & \rightarrow & \mathbf{a} \\ \langle \mathbf{w}_1, \mathbf{t}_2 \rangle & \rightarrow & \mathbf{b} \\ \langle \mathbf{w}_2, \mathbf{t}_1 \rangle & \rightarrow & \mathbf{c} \\ \langle \mathbf{w}_2, \mathbf{t}_2 \rangle & \rightarrow & \mathbf{d} \end{array} \right]$$

- $\bullet \quad \text{however: } \llbracket {}^{\sim} k \rrbracket^{\mathcal{M}, w_1, t_2, g} = \left[\begin{array}{ccc} \langle w_1, t_1 \rangle & \rightarrow & a \\ \langle w_1, t_2 \rangle & \rightarrow & b \\ \langle w_2, t_1 \rangle & \rightarrow & d \\ \langle w_2, t_2 \rangle & \rightarrow & b \end{array} \right]$
- since: $[\![k]\!] \mathcal{M}, w_1, t_1, g = a$ $[\![k]\!] \mathcal{M}, w_1, t_2, g = b$ $[\![k]\!] \mathcal{M}, w_2, t_1, g = d$ $[\![k]\!] \mathcal{M}, w_2, t_2, g = b$

A typed higher order λ language with = and $^{^{\wedge}}/^{^{\sim}}$

- \neg , \wedge , \vee , \rightarrow , \leftrightarrow , \mathbf{F} , \mathbf{P} , \square , = (syncategorematically)
- t, e ∈ Type (Con_{type}, Var_{type})
- if $a, b \in Type$, then $\langle a, b \rangle \in Type$
- if $a \in Type$, then $\langle s, a \rangle \in Type$
- s ∉ Type

Meaningful expressions

- ME_{type}
- abstraction: if $\alpha \in ME_a$, $\beta \in Var_b$, $\lambda \beta \alpha \in ME_{\langle b,a \rangle}$
- FA: if $\alpha \in ME_{\langle a,b \rangle}$, $\beta \in ME_a$ then $\alpha(\beta) \in ME_b$
- if $\alpha, \beta \in ME_a$ then $\alpha = \beta \in ME_t$

Interpretations of ^ and *

- if $\alpha \in ME_a$ then $\hat{\alpha} \in ME_{s,a}$
- if $\alpha \in ME_{\langle s,a \rangle}$ then $\alpha \in ME_a$

	type	variables	constants
•	е	X, y, Z	a, b, c
	$\langle s, \pmb{e} angle$	X, y, z	_
	$\langle \boldsymbol{e}, \boldsymbol{t} \rangle$	X, Y	walk′, A, B
	$\langle\langle s, e \rangle, t \rangle$	Q	rise′, change′
	$\langle s, \langle e, t \rangle \rangle$	P	_
	$\langle oldsymbol{e}, oldsymbol{e} angle$	P	Sq
	$\langle \boldsymbol{e}, \langle \boldsymbol{e}, \boldsymbol{t} \rangle \rangle$	R	Gr, K
	$\langle e, \langle e, e \rangle \rangle$	_	Plus

The model

- $\langle A, W, T, <, F \rangle$
- $D_{\langle a,b\rangle} = D_b^{D_a}$
- $D_{\langle s,a\rangle} = D_a^{W\times T}$
- 'senses' = **possible** denotations
- actual intensions chosen from the set of senses
- now: F(expression)=intenstion (itself a function)
- s.t. intension(index)=extention
- instead of: F(expression)(index)=extemsion

Some interpretations

- $[\![\lambda u\alpha]\!]^{\mathcal{M},w,i,g}$, $u \in Var_b$, $\alpha \in ME_a$ is a function h with domain D_b s.t. $x \in D_b$, $h(x) = [\![\alpha]\!]^{\mathcal{M},w,t,g'}$ with g' exactly like g except g'(u) = x
- $\llbracket \hat{\alpha} \rrbracket^{\mathcal{M}, w, i, g}$ is a function h from $W \times T$ to denotations of α 's type s.t. at every $\langle w', t' \rangle \in W \times T \llbracket \alpha \rrbracket^{\mathcal{M}, w', t', g} = h(\langle w', t' \rangle) = \llbracket \hat{\alpha} \rrbracket^{\mathcal{M}, w, i, g}(\langle w', t' \rangle)$

Some examples

- $\alpha = \beta$ at $\langle w, t \rangle$ might be true, but $\hat{\alpha} = \hat{\beta}$ need not be 1 at that same index
- on types:
 - e individuals
 - \triangleright $\langle s, e \rangle$ individual concepts ('present Queen of England')
 - $\langle s, \langle e, t \rangle \rangle$ properties of inidviduals
 - $\langle e,t \rangle$ sets of individuals
 - $\langle \langle s, e \rangle, t \rangle$ sets of individual concepts

Some examples

- on properties:
 - \triangleright $\langle s, \langle a, t \rangle \rangle$ properties of denotations of *a*-type expressions
 - $\langle s, \langle e, t \rangle \rangle$ properties of individuals
 - $\langle s, \langle \langle s, t \rangle, t \rangle \rangle$ properties of propositions
- from relations $\langle e, \langle e, t \rangle \rangle$ to relations-in-intensions $\langle s, \langle e, \langle e, t \rangle \rangle \rangle$

On indices

- In IL indices are never denoted by expressions!
- Expressions denote functions in the domain of indices.
- hence: $\langle s, a \rangle$ never applied to some typed argument (s is not a type!)
- useful thing: We never talk about indices!
- since often $\check{\ }\alpha(\beta)$ is needed for $\alpha\in \mathit{ME}_{\langle \mathsf{s},\langle e,\mathsf{t}\rangle\rangle}$ and $\beta\in \mathit{ME}_e$, abbr. $\alpha\{\beta\}$

Examples

Nec

- former problem with **Nec** as $\langle t, t \rangle$: non-compositional extensional interpretation
- Nec \in ME $_{(\langle \mathbf{s}, \mathbf{t} \rangle, \mathbf{t} \rangle}$ $\{0, 1\}^{(\{0, 1\}^{\mathsf{W} \times \mathsf{T}})}$
- from (from indices to truth values = propositions) to truth values
- we could give $\Box \phi$ as $\mathbf{Nec}(\hat{\ }\phi)$

For

- 'former' as in 'a former member of this club'
- instead of $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$
- intensionally: $\langle \langle s, \langle e, t \rangle \rangle, \langle e, t \rangle \rangle$
- extensions at all indices accessible via intension: those individuals bearing property $\langle e, t \rangle$ not at current but at some past index qualify
- formally: $[\![\mathbf{For}]\!]_{\varphi}^{\mathcal{M},g}$ is a func. h s.t. for any property k, $h(\langle w,t\rangle)(k)$ is the set $k(\langle w,t'\rangle)$ for all t' < t.
- So, for any individual x $h(\langle w, t \rangle)(k)(x) = 1$ iff $k(\langle w, t' \rangle)(x) = 1$ for some t' < t.

Bel

- relations between individuals and propositions
- ⟨⟨s,t⟩, ⟨e,t⟩⟩
- $Bel(\hat{B}(m))(j)$ John believes that Miss America is bald.
- take the model from page 134 (Dowty et al.):
- $[B(m)]^{M,w_2,t_1,g} = 1$ since $[m]^{M,w_2,t_1,g} = [n]^{M,w_2,t_1,g}$
- however: $[\hat{A}(B(m))]^{M,w_2,t_1,g} \neq \hat{A}(B(n))^{M,w_2,t_1,g}$

de dicto

- Bel($\hat{B}(m)(j)$) 'John believes that Miss America is bald.'
- Bel($\hat{B}(n)(j)$) 'John believes that Norma is bald.'
- needn't be equal: John can take worlds other than $\langle w_2,t_1 \rangle$ into account where $[\![n]\!] \neq [\![m]\!]$
- $\alpha = \beta \to \left[\phi \leftrightarrow \phi^{[\alpha/\beta]}\right]$ is true iff α is not in the scope of $\hat{\ }, \mathbf{F}, \mathbf{P}, \square$ (oblique contexts)
- however: $\hat{\alpha} = \hat{\beta} \rightarrow [\phi \leftrightarrow \phi^{[\alpha/\beta]}]$

de re

- like so: $\lambda x [\mathbf{Bel}(\hat{\ } [B(x)])(j)](m)$
- the above is true at an index $\langle w, t \rangle$ iff $[\![\mathbf{Bel}(\hat{\ }[\mathcal{B}(x)])(j)]\!]^{w,t} = 1$ if $[\![m]\!]^{w,t} = x$, i.e. if John is in a believe-rel with $\hat{\ }(\mathcal{B}(x))$ s.t. g(x) = m (by semantics of λ)
- Why is $\hat{B}(B(x))$ not equal to $\hat{B}(B(m))$?
- constant m: non-rigid designator relativized to indices
- variable x: a rigid designator by def. of g (for the relevant checking case with g(x) = MissAmerica
- the above: a belief about 'whoever m is'
- λ conversion is restricted in IL!

Once again

- John believes that a republican will win.
- $\exists x [Rx \land \mathbf{Bel}(j, \hat{\ } [\mathbf{F}W(x)])]$
- $\mathbf{Bel}(j, \mathbf{F} \exists x [R(x) \land W(x)])$

Literatur I

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.