Nome _	
Cognome _	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica Appello 14 Settembre 2010

1.	(3 punti) Convertire in base 4 il numero intero $CEF97_{16}$.
2.	$(5~{\rm punti})$ Determinare il numero reale rappresentato dalla seguente sequenza di bit nella codifica IEEE-754 formato base ad ampiezza singola.
	(a) 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1

3. (8 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di verità utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	-
0	1	0	0	-
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	-
1	0	1	0	1
1	0	1	1	-
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

4. (7 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x_1) e singola uscita (z) tale che $z_j = 1$ se e solo se le sottosequenze 01 finora lette sono pari.

5. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati già codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimmali e disegnare la rete sequenziale corrispondente.

\boldsymbol{x}	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

$j_1 :$	
k_1 :	
$j_2 :$	
k_2 :	
~ •	

Disegno della rete :

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.