Functional Specification

Due: Oct 25th 2023

NanoOpt- Nanopore Protocol Optimization Toolkit

Overview

Project Name: NanoOpt
Objective: To develop a Python package aimed at optimizing nanopore sequencing
protocols, specifically focusing on probe design and sequence validation.

Features

1. Universal Probe Design

Inputs

- Target DNA/RNA sequences
- Constraints (e.g., GC content, melting temperature)

Outputs

- Optimized probe sequence for PCR amplification and nanopore sequencing
- Potential dimerization issues flagged

Functionality

- Utilize algorithms to find the most efficient probe sequences for target sequences.
- Evaluate dimerization risks and suggest mitigation strategies.

2. Sequence Validation

Inputs

- Sequenced fragments (40-100 bases)
- Known reference sequence

Outputs

- Accuracy score
- Mismatches and their locations

Functionality

- Map nanopore sequenced fragments to known reference sequence.
- Calculate and report accuracy metrics.

Due: Oct 25th 2023

Workflow

- 1. Data Input: Import target sequences and constraints.
- 2. Probe Design: Run the probe design algorithm.
 - Output optimized probe.
 - Check for dimerization risks.
- 3. Sequencing & Data Collection: Collect nanopore sequence data.
- 4. Sequence Validation: Import sequenced fragments and known reference.
 - Map fragments to reference.
 - Output accuracy metrics.