MATHEMATICS METHODS

MAWA Semester 2 (Unit 3&4) Examination 2018 Calculator-free

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

The items that are contained in this examination are to be used solely in the school for which they

- are purchased.

 They are not to be shared in any manner with a school which has not purchased their own licence.

 The items and the solutions/marking keys are to be kept confidentially and not copied or made.
- available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, Fri October 12th 2018

CALCULATOR-FREE SEMEINATION 2&4) EXAMINATION

MATHEMATICS METHODS

τ	 justifies nature of 2nd stationary point
τ	 justifies nature of first stationary point
τ	• equates $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$
τ	 differentiates correctly
Marks	Mathematical behaviours
	and f has a local maximum at $(3,3^3e^{-3})$
θΛ-	f has a point of inflection at $[0,0]$ f
3+	Since $f'(x) \ge 0$ if $x < 3$ and $f'(x) < 0$ if $x > 3$,
	$f(0)$ =0, $f(3)$ =3 $^3 e^{-3}$, so f has stationary points at $[0,0]$ and at $(3,3^3e^{-3})$
	$f'(x)=0 \Rightarrow x=0 \text{ or } x=3.$
	$I_{x}(x)=3x_{5}e_{-x}-x_{3}e_{-x}=x_{5}(3-x)e_{-x}$
	noitulo2
(4 marks)	(a) 7 noiteau9

8

• gives a valid reason	τ
gives correct answer	τ
Mathematical behaviours	Marks
Reason: $f(3)=3^3e^{-3}=\left(\frac{3}{e}\right)^3>1$ since 0	
Yes.	
noitulo2	
Question 7 (b)	(S marks)

@ MAWA 2018

evaluates result

CALCULATOR-FREE SEMESTER 1 (UNIT 3&4) EXAMINATION

MATHEMATICS METHODS

Section One: Calculator-free

(54 Marks)	١
------------	---

Question 1 (a)	(3 marks)

2

C	\- · · · - /
Solution	
$\int_{1}^{4} \left(6x^2 + \frac{1}{2\sqrt{x}} \right) dx$	
$= \left[2x^3 + \sqrt{x}\right]_1^4$	
=(2(64)+2)-(2+1)=127	
Mathematical behaviours	Marks
integrates square root function correctly	1
substitutes limits into correct anti-derivative	1

Question 1 (b) (2 marks)

Question I (b)	(2 mans)
Solution	
x+1	
$g'(x) = e^{-\frac{x}{2}}$	
$g(x) = 2e^{\frac{x+1}{2}} + c$	
$(3,e^2) \Rightarrow e^2 = 2e^2 + c \Rightarrow c = -e^2$	
$\therefore g(x) = 2e^{\frac{x+1}{2}} - e^2$	
$\therefore g(x) = 2e^{-2} - e^2$	
Mathematical behaviours	Marks
anti-differentiates correctly	1
• substitutes in $(3,e^2)$ to determine c	1
Substitutes in V / to determine c	

Question 1 (c) (2 marks)

Solution	
$\int_{0}^{\frac{\pi}{2}} \frac{d}{du} \sin u \ du = \left[\sin u \right]_{0}^{\frac{\pi}{2}} = 1$	
Mathematical behaviours	Marks
applies the fundamental theorem	1
evaluates result	1

Mathematical behaviours	Marks
states correct derivative	1
integrates both sides	1
applies Fundamental Theorem	1
rearranges to arrive at correct result	1

Ouestion 6 (a) (2 marks

Question 6 (a)	(2 marks)
Solution	
$\hat{p} = 1 \Rightarrow 5$ heads in 5 tosses	
$\therefore \text{ probability} = \left(\frac{1}{2}\right)^5 = \frac{1}{32}$	
Mathematical behaviours	Marks
identifies that each toss must result in a head	1
determines probability	1

Question 6(b) (4 marks)

Solution
\hat{p} is normally distributed with
$\mu = 0.5$ and $\sigma = \sqrt{\frac{0.5 \times 0.5}{100}} = .05$
$z_{0.55} = \frac{0.55 - 0.5}{0.05} = 1$
Hence, $P(\hat{p} > 0.55) = P(z > 1) \approx 0.16$

	Mathematical behaviours	Marks
•	identifies that \hat{p} will be normally distributed	1
•	determines mean and standard deviation for distribution of \hat{p}	1
	determines Z score associated with $\hat{p}=0.55$ determines probability	1 1

Question 6 (c) (3 marks)

Solution	
$P(\widehat{p}_1 = \widehat{p}_2) = P(\widehat{p}_1 = \widehat{p}_2 = 0) + P(\widehat{p}_1 = \widehat{p}_2 = \frac{1}{3}) + P(\widehat{p}_1 = \widehat{p}_2 = \frac{2}{3}) + P(\widehat{p}_1 = \widehat{p}_2 = 1) $ (*)	
$\dot{c} \left(\frac{1}{8}\right)^2 + \left(\frac{3}{8}\right)^2 + \left(\frac{3}{8}\right)^2 + \left(\frac{1}{8}\right)^2 = \frac{20}{64} = \frac{5}{16}$	
Mathematical behaviours	Marks
• determines \hat{p} values $0, \frac{1}{3}, \frac{2}{3}, 1$	1
 states calculation required to determine probability evaluates required sum	1 1

© MAWA 2018 © MAWA 2018

(S marks) Question 2 (a)

3

τ	Adetermines number of students above Joanne
τ	 states that 63% represents 2 std deviations above the mean
Marks	Mathematical behaviours
	ie approximately 4 students scored above Joanne.
	0.025×150=3.75
	£3 sovods zi notisluqoq 941 to %2.S
	ie 63 represents 2 std deviations above the mean
	$\zeta = \frac{6}{52 - 50} = 65$
	(_₹ 6°2)N~ X
	noitulo2

Solution (S marks) Question 2 (b)

(3 marks) Question 2 (c)

τ	• determines b value
τ	 d not solve to solve for betates
τ	 uses standard deviations to determine a
Marks	Mathematical behaviours
	$Z = d_{i} \frac{Z}{E} = b.$
	q = SZ
	$q + St \times \frac{S}{\zeta} = SS$
	$\frac{\varepsilon}{z} = \frac{6}{9} = D$
	$q + \chi p = \chi$
	$h^{\lambda} = 22^{\circ}$ $Q^{\lambda} = 0$
	$6= {}^{x}O$ $5p= {}^{x}n'$
	noitulo2

(3 ացւkշ) Question 5 (a)

9

	applies chain rule correctly and simplifies
τ	χ χp səsn •
τ	$\frac{1}{\tau} = x \operatorname{ul} \frac{1}{p}$
τ	• expresses $y = \ln \sqrt{\frac{1}{x} - x}$ as $y = \frac{1}{2} \ln \left(\frac{1}{x} - x \right)$ of $x = x$
Marks	Mathematical behaviours
	$\frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{2x - x^2} \cdot \frac{1}{2x - x^2} \cdot \frac{1}{2x - x^2} = \frac{\sqrt{2x - x^2}}{2}$
	$= \frac{5}{1} \text{ m} (3x - x_5)$
	$\lambda = \ln \lambda \times x \times x_{5}$
	noitulo2

Question 5 (b) (3 ացւkշ)

τ	evaluates result
τ	$\frac{1}{\overline{\zeta V}} = \frac{\pi}{4} \text{ mis}$ substitutes in limits of integration correctly using •
τ	 states anti-derivative of function with bounds
Marks	Mathematical behaviours
	$\int_{0}^{\frac{\pi}{2}} x^{2} \operatorname{dis} + I \Big nI = $ $ I nI - \Big \frac{I}{2} + I \Big nI = $ $2 \pi I - \varepsilon \pi I \text{ To } \frac{\varepsilon}{2} \pi I = $
	$xb\frac{x\cos x \operatorname{nis} L}{x^{2}\operatorname{nis} + 1} \int_{0}^{\frac{\pi}{h}} = xb\frac{x \operatorname{Lis}}{x^{2}\operatorname{nis} + 1} \int_{0}^{\frac{\pi}{h}}$
	noitulo2

(4 marks) Question 5 (c)

$\int x \sin x dx = \sin x - x \cos x + c$	əi
$x \operatorname{uis} + xp x \operatorname{uis} x \int - = x \operatorname{sox} x$	θİ
$x \cos x = \int x \sin x dx + c$	θi
$ \log \int \frac{dx}{dy} dx = \int (-x \sin x + \cos x) dx$	ӘН
$x \cos + x \operatorname{mis} x -= \frac{\sqrt{p}}{xp}$	
$\lambda = x \cos x$	τеτ
noitulo2	

@ MAWA 2018

CALCULATOR-FREE SEMESTER 1 (UNIT 3&4) EXAMINATION **MATHEMATICS METHODS**

Que	Question 3 (a)			
		Solutio	n	
	X	5	(-3)	
	P(<i>X</i> = <i>x</i>)	$\frac{1}{4}$	3/4	
	1	Mathematical behavior	urs	Marks
	correct entries for X vs	alues		1

	matromatical soliciticals	
•	correct entries for X values	1
•	determines probabilities correctly	1

Question 3 (b) (2 marks)

	•	•
Solution		
$E(X) = 5 \times \frac{1}{4} + (-3) \times \frac{3}{4}$		
$=\frac{5}{4}-\frac{9}{4}$		
= (-1)		
On average Michael will lose \$1 per toss		

0.	raverage, whenaer will lose of per toss	
	Mathematical behaviours	Marks
•	determines expected gain correctly	1
•	explains meaning of the negative value	1

Question 3 (c) (2 marks)

Solution

With a loss of \$1 per toss, this is not a "fair" game.

A game is considered "fair" if Michael will, on the average, come out even. That is, an expected gain of zero will define a "fair" game.

	Mathematical behaviours	Marks
•	states game is "not fair"	1
•	valid explanation	1

Question 4 (a) (3 marks)

5

Solution	
$16^x - 5 \times 8^x = 0$	
ie $2^{4x} = 5 \times 2^{3x}$	
ie $4x \log 2 = \log 5 + 3x \log 2$	
ie $x \log 2 = \log 5$	
ie $x = \frac{\log 5}{\log 2}$	
$\frac{16 \times -\log 2}{\log 2}$	

Mathematical behaviours	Marks
rearranges equation and writes in exponential form	1
applies log laws to each term of equation	1
rearranges equation to arrive at result	1

Question 4 (b)	(3 marks
Solution	
$5^{(2+\log_5 3)} + \log_{\frac{1}{5}} 125$	
$=5^{2}.5^{\log_{5}3} + \log_{\frac{1}{5}}(\frac{1}{5})^{-3}$	
=25×3-3	
=75 - 3	
=72 .	
Mathematical behaviours	Marks
• uses a^m . $a^n = a^{m+n}$ and $a^{\log_a b} = b$	1
.1. ⁻³	1
• expresses $\log_{\frac{1}{5}} 125 as \log_{\frac{1}{5}} (\frac{1}{5})^{-3}$, hence value of (-3)	1
evaluates expression	

© MAWA 2018 © MAWA 2018