(Contests

All Contests > May World CodeSprint > Square-Ten Tree

Square-Ten Tree

Problem Submissions Leaderboard Discussions

Q

andreidiego 💙

Submissions: 80

Difficulty: Moderate

Max Score: 60

More

The square-ten tree decomposition of an array is defined as follows:

- The lowest (0th) level of the square-ten tree consists of single array elements in their natural order.
- ullet The k^{th} level (starting from 1) of the square-ten tree consists of subsequent array subsegments of length $10^{2^{k-1}}$ in their natural order. Thus, the 1^{st} level contains subsegments of length $10^{2^{1-1}}=10$, the 2^{nd} level contains subsegments of length $10^{2^{2-1}}=100$, the 3^{rd} level contains subsegments of length $10^{2^{3-1}}=10000$

In other words, every k^{th} level (for every $k \geq 1$) of square-ten tree consists of array subsegments indexed as:

$$\left[1,\ 10^{2^{k-1}}\right], \left[10^{2^{k-1}}+1,\ 2\cdot 10^{2^{k-1}}\right], \ldots, \left[i\cdot 10^{2^{k-1}}+1,\ (i+1)\cdot 10^{2^{k-1}}\right], \ldots$$

Level 0 consists of array subsegments indexed as $[1,\ 1],[2,\ 2],\ldots,[i,\ i],\ldots$

The image below depicts the bottom-left corner (i.e., the first 128 array elements) of the table representing a square-ten tree. The levels are numbered from bottom to top:

Given the borders of array subsegment [L,R], find its decomposition into a minimal number of nodes of a squareten tree. In other words, you must find a subsegment sequence $[l_1,r_1],[l_2,r_2],\ldots,[l_m,r_m]$ such as $l_{i+1}=r_i+1$ for every $1 \leq i < m$, $l_1 = L$, $r_m = R$, where every $[l_i, r_i]$ belongs to any of the square-ten tree levels and m is minimal amongst all such variants.

Input Format

The first line contains a single integer denoting L. The second line contains a single integer denoting R.

Constraints

- $1 \le L \le R \le 10^{10^6}$
- The numbers in input do not contain leading zeroes.

Output Format

As soon as array indices are too large, you should find a sequence of m square-ten tree level numbers, s_1, s_2, \ldots, s_m , meaning that subsegment $[l_i, r_i]$ belongs to the s_i^{th} level of the square-ten tree.

Print this sequence in the following compressed format:

- On the first line, print the value of n (i.e., the compressed sequence block count).
- For each of the n subsequent lines, print 2 space-separated integers, t_i and c_i ($t_i \ge 0$, $c_i \ge 1$), meaning that the number t_i appears consequently c_i times in sequence s. Blocks should be listed in the order they appear in the sequence. In other words, $s_1, s_2, \ldots, s_{c_1}$ should be equal to $t_1, s_{c_1+1}, s_{c_1+2}, \ldots, s_{c_1+c_2}$ should be equal to t_2 , etc.

Thus $\sum c_i = m$ must be true and $t_i
eq t_{i+1}$ must be true for every $1 \le i < n$. All numbers should be printed without leading zeroes.

Sample Input

1 10

Sample Output

1 1 1

Explanation

Segment [1, 10] belongs to level 1 of the square-ten tree.

