



Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2020-2024 > Semester-I Cohort 2020-24 > EECE105L-Odd 2020 > 18 December - 24 December > Quiz 5

Started on Friday, 12 February 2021, 7:09 PM

**State** Finished

Completed on Friday, 12 February 2021, 7:54 PM

Time taken 45 mins 1 sec

**Grade** 5.00 out of 5.00 (100%)

### Question 1

Correct

Mark 1.00 out of 1.00 The circuit shown below is a \_\_\_\_\_\_ with a cut off frequency of \_\_\_\_\_\_.

Given R=39 k $\Omega$  and C=79 nF.



#### Select one:

- Low pass filter with cut off frequency of 51.683 Hz
- High pass filter with cut off frequency of 51.683 Hz
- High pass filter with cut off frequency of 0.052 Hz
- Low pass filter with cut off frequency of 0.052 Hz

Your answer is correct.

The correct answer is: Low pass filter with cut off frequency of 51.683 Hz



# Question 2

Correct

Mark 2.00 out of 2.00

Determine the type and cut off frequency (in kHz) of the filter circuit shown below. Input signal is applied between nodes **A** and **B** and the output is observed between nodes **B** and **C**. Given  $R_1$ =16 k $\Omega$ ,  $R_2$ =79 k $\Omega$ ,  $R_3$ =36 k $\Omega$ ,  $R_4$ =2 k $\Omega$ ,  $R_5$ =49 k $\Omega$ ,  $L_1$ =41 mH,  $L_2$ =24 mH,  $L_3$ =33 mH.



### Select one:

- Low pass filter, with cut off frequency 167.40
- Low pass filter, with cut off frequency 951.25
- High pass filter, with cut off frequency 951.25
- High pass filter, with cut off frequency 167.40

Your answer is correct.

The correct answer is: Low pass filter, with cut off frequency 167.40



# Question 3

Correct

Mark 2.00 out of

2.00

The equivalent impedance  $(\Omega)$  of the circuit shown in figure below in Cartesian form can be represented as,  $Z_{eq} = a + jb$  where  $j^2 = -1$ . The input signal to the circuit is  $V_i =$  $V_m$ Sin $\omega$ t. Determine the values of *a* and *b*.

Given  $\rm V_m$  =10.6 V,  $\omega$  =1081 radians/second, R = 232  $\Omega,$  C = 4  $\mu F,$  L = 8 mH.



#### Select one:

- a=232.00 and b=8.98
- a=240.65 and b=8.98
- a=232.00 and b=280748288.01
- a=270250232.00 and b=280748288.01

Your answer is correct.

The correct answer is: a=232.00 and b=8.98

