影像處理

(Image Processing)

Course 14 影像編碼與壓縮 真理大學 資訊工程系 吳汶涓老師

Outline

- 14.1 無失真與失真壓縮
- 14.2 Huffman編碼
- 14.3 行程長度編碼
- 14.4 JPEG演算法

14.1 無失真與失真壓縮

- 影像檔案可能會十分龐大,不管是為了儲存或 傳輸,都會希望檔案能夠縮小。
- 兩種不同類型的壓縮方法:
 - □ 無失真壓縮 (lossless compression)
 - 保留所有的資訊
 - 特別是醫學影像(X光片)
 - □ 失真壓縮 (lossy compression)
 - 某些資訊會被省略
 - 得到較高的壓縮比(原影像的資料量/壓縮影像資料量)

為什麼需要資料壓縮?

786488 bytes

23116 bytes, Cr=34.0

為什麼需要資料壓縮?

786488 bytes

49746 bytes, Cr=15.80

14.2 Huffman編碼

灰階值	機率	固定長度編碼	變動長度編碼
0	0.2	00	000
1	0.4	01	1
2	0.3	10	01
3	0.1	11	001

■ 每個像素的平均位元數按照機率計算:

$$(0.2 \times 3) + (0.4 \times 1) + (0.3 \times 2) + (0.1 \times 3) = 1.9$$

$$H = -\sum_{i=0}^{L-1} p_i \log_2(p_i) \longrightarrow H = -(0.2 \log_2(0.2) + 0.4 \log_2(0.4) + 0.3 \log_2(0.3) + 0.1 \log_2(0.1)) = 1.8464$$

酒:在不流失任何資訊下,每個像素所需的最小位元數

求得影像Huffman編碼的方法如下:

- 1. 決定影像中灰階值的出現機率。
- 2. 取最小的兩個數值,將機率兩兩相加,建構 二元編碼樹。
- 3. 從編碼樹頂端開始,每一分支任意指定0與1。
- 4. 從上至下讀取編碼。

Gray value	0	1	2	3	4	5	6	7
probability	0.19	0.25	0.21	0.16	0.08	0.06	0.03	0.02

圖 14.1 建構 Huffman 編碼樹

灰階值	Huffman 編碼
0	00
1	10
2	01
3	110
4	1110
5	11110
6	111110
7	111111

圖 14.2 分支指定 0 與 1

■ 我們可以計算像素平均位元數:

$$(0.19 \times 2) + (0.25 \times 2) + (0.21 \times 2) + (0.16 \times 3)$$
$$+ (0.08 \times 4) + (0.06 \times 5) + (0.03 \times 6) + (0.02 \times 6) = 2.7$$

■ Huffman 編碼符合唯一解碼性質,即字串的解碼

結果只有一種

$$\underbrace{1 \ \ \, 1 \ \ \, 0}_{3} \quad \underbrace{1 \ \ \, 1 \ \ \, 1 \ \ \, 0}_{4} \quad \underbrace{0 \ \ \, 0}_{0} \quad \underbrace{0 \ \ \, 0}_{0} \quad \underbrace{1 \ \ \, 0}_{1} \quad \underbrace{0 \ \ \, 1}_{2} \quad \underbrace{1 \ \ \, 1 \ \ \, 1 \ \ \, 1}_{5}$$

灰階值	Huffman 編碼
0	00
1	10
2	01
3	110
4	1110
5 6	11110
6	111110
7	111111

14.3 行程長度編碼

- 行程長度編碼(run-length encoding, RLE)的概念: 按照字串中0與1重複的長度進行編碼
 - □ 應用於傳真機上。
 - □ 其中一種方法是從0的長度開始計算,對各列分別進行編碼。

```
0 1 1 0 0 0

0 0 1 1 1 0

1 1 1 0 0 1

0 1 1 1 0 0 1

0 1 1 1 1 0 (123)(231)(0321)(141)(33)(0132)

0 0 0 1 1 1

1 0 0 0 1 1
```

□ 另一種編碼方法是將各列編成一組組的數字。第一個數字代表1開始的位置,第二個數字則是1字串的長度。

```
0 1 1 0 0 0

0 0 1 1 1 0

1 1 1 0 0 1

0 1 1 1 1 0 (22)(33)(1361)(24)(43)(1152)

0 0 0 1 1 1

1 0 0 0 1 1
```

□ 灰階影像可以分解成位元平面再加以編碼

每個平面可以使用適合的RLE 運算方式分別進行編碼

- 但是,使用位元平面有個問題就是灰階值小幅的 變動可能會造成位元完全改變。
 - □ 可使用灰階值的二元Gray 碼 (Gray codes)來改善
 - □ 將固定長度的二位元字串依某種順序排列的編碼,使得兩個相鄰的字串之間只有一個位元不同

```
8
                             8
                                          1000
                                                1000
                                                       0111
                                                             1000
                                                                      1100
                                                                            1100
                                                                                  0100
                                                                                         1100
                                    8
                                          1000
                                                0111
                                                       1000
                                                             0111
                                                                      1100
                                                                            0100
                                                                                   1100
                                                                                         0100
                          8
                                8
15
     1
                0
         0
            0
                             7
                                          0111
                                                0111
                                                       1000
                                                             0111
                                                                     0100
                                                                            0100
                                                                                   1100
                                                                                         0100
14
     1
         0
            0
                 1
                             8
                                          0111
                                                1000
                                                       0111
                                                                            1100
                                                                                  0100
                                                             0111
                                                                     0100
                                                                                         0100
13
     1
         0
                                              Binary code
                                                                             Gray code
12
     1
                0
         0
11
                0
                         0
                             0
                                    0
                                                              0
                                                                         0
                                           0
                                                      0
                                                                 0
                                                                                        0
                                                                                            1
10
                         0
                             1
                                           0
                                               1
                                                              0
                                                                     0
                                                                                    0
                                                                                            0
                                                   0
 9
                                                                                            0
             0
                                               0
                                                                 0
                                                                                 0
                                                                                        0
                                                                                            0
 8
                             0
            0
                0
                                             第一平面
                                                               第二平面
     0
                          第零平面
                                                                                  第三平面
            0
                0
     0
            0
 6
 5
     0
                                 0
                                                   0
                         0
                             0
                                     0
                                            0
                                               0
                                                       0
                                                                                         0
     0
                0
                         0
                             0
                                 0
                                     0
                                            0
                                               0
                                                   0
                                                       0
                                                                                     0
                                                                                            0
 3
     0
         0
                0
                                                   0
                                                                                 0
                          0
                             0
                                 0
                                     0
                                            0
                                               0
                                                       0
                                                                                     0
                                                                                            0
 2
     0
                 1
         0
                          0
                             0
                                     0
                                            0
                                               0
                                                   0
                                                       0
                                                              1
                                                                                 0
                                                                                         0
                                                                                            0
                                 0
 1
            0
         0
                           第零平面
                                             第一平面
                                                               第二平面
                                                                                  第三平面
 0
    0
         0
            0
                0
```

■ MATLAB中的行程長度編碼

```
L=prod(size(im));
im=reshape(im',1,L);
```

```
min(find(im==1))
```

影像	尋找	位置	RLE 輸出
			[]
[0 0 1 1 1 0 0 0 1]	1	3	[2]
[1 1 1 0 0 0 1]	0	4	[2 3]
[0 0 0 1]	1	4	[2 3 3]
[1]	0	未找到	[2 3 3 1]

```
function out=rle(image)
   Example:
     rle([1 1 1 0 0;0 0 1 1 1;1 1 0 0 0])
     ans = 0 3 4 5
                                            二元里白圖
L=prod(size(image));
                                 > c=imread('circles.tif');
im=reshape(image',1,L);
                                 > cr=rle(c);
x=1;
                                 > whos c cr
out=[];
                                           Size
                                                               Class
                                  Name
                                                         Bytes
while L ~= 0,
                                         256x256
                                                        65536
                                                               uint8 array (logical)
  temp=min(find(im == x));
                                           1x693
                                                          5544
                                                               double array
  if isempty(temp),
                                 >> cr=uint16(cr);
    out=[out L];
    break
                                 >> whos cr
                                   Name
                                              Size
                                                             Bytes Class
  end;
  out=[out temp-1];
                                                              1386
                                              1x693
                                                                     uint16 array
                                   Cľ
  x=1-x;
  im=im(temp:L);
  L=L-temp+1;
                                                  65536/8 = 8,192 bytes
end:
```

圖 14.3 求得二元數位影像行程長度編碼的 MATLAB 函數

```
>> t=imread('text.tif');
>> tr=rle(t);
>> whos t tr
 Name Size
                     Bytes Class
 t 256x256
                    65536 uint8 array (logical)
 tr 1x2923
                       23384 double array
>> tr=uint16(tr);
>> whos tr
 Name Size
                      Bytes Class
          1x2923
                        5846 uint16 array
 tr
```

14.4 JPEG演算法

- 失真壓縮是容許資料的損失換取更高的壓縮率。
- 其中以聯合影像專家小組(Joint Photographic Experts Group, JPEG)所發展的演算法最為普遍。
- 這演算法使用的是轉換編碼(transform coding) 不是直接以像素值來編碼,而是使用轉換的結果 運算。
 - □ 離散餘弦轉換 (discrete cosine transform, DCT)

- □ 離散餘弦轉換 (discrete cosine transform, DCT)
 - 若f(j, k) 為一8×8 區塊,則正向(二維)DCT 定義如下:

$$F(u,v) = \frac{C(u)C(v)}{4} \sum_{j=0}^{7} \sum_{k=0}^{7} f(j,k) \cos\left(\frac{(2j+1)u\pi}{16}\right) \cos\left(\frac{(2k+1)v\pi}{16}\right)$$

■ 而對應的反DCT為:

$$f(j,k) = \sum_{u=0}^{7} \sum_{v=0}^{7} f(u,v)C(u)c(v)\cos\left(\frac{(2j+1)u\pi}{16}\right)\cos\left(\frac{(2k+1)v\pi}{16}\right)$$

$$C(w) = \begin{cases} \frac{1}{\sqrt{2}} & \text{ if } w = 0 \\ 0 & \text{ if } w = 0 \end{cases}$$

- DCT 的幾項性質特別適合用於壓縮:
 - 1. 均為實數,因此不須處理複數。
 - 2. 濃縮能力強,只要幾個係數就可以承載大量資訊。
 - 3. 在硬體中的運算效率高。
 - 4. 和FFT 一樣,轉換法另有「快速」版本。
 - 5. 轉換所使用的基底函數與輸入資料無關。

```
>> a=[10:15:115]
a =
   10
         25 40
                  55
                       70
                               85
                                  100
                                        115
>> fa=fft(a);
>> fa(5:8)=0;
>> round(abs(ifft(fa)))
ans =
   49
         41 56
                    57 71
                               70
                                     85
                                          90
>> da=dct(a);
>> da(5:8)=0;
>> round(idct(da))
ans =
    11
         23
              41
                     56
                          69
                                84
                                    102
                                         114
```


圖 14.4 比較 FFT 與 DCT

■ JPEG的演算法

- 1. 影像切割成8×8 大小的區塊,分別轉換各區塊。
- 2. 每個區塊的數值均平移(減去)128。
- 3. 將平移後的區塊代入DCT。(matlab: dct()函式)
- 4. 將DCT 值除以正規化矩陣Q。正規化的動作讓區塊裡大部分的元素都變成零,因此壓縮了影像。(Quantization)
- 5. 將矩陣轉換為一維向量,從左上角開始以鋸齒狀的方式讀取所有非零數值。(Zig-zag scan)

$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	6 2	11 12	10 14	16 19	24 26	40 58	51 60	61 55
1	4	13	16	24	40	57	69	56
1	4	17	22	29	51	87	80	62
$: _1$	8	22	37	56	68	109	103	77
2	4	35	55	64	81	104	113	92
4	9	64	78	87	103	121	120	101
[7	2	92	95	98	112	100	103	99
	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 4 \\ 7 \end{bmatrix}$	16 12 14 14 18 24 49 72	16 11 12 12 14 13 14 17 18 22 24 35 49 64 72 92	16 11 10 12 12 14 14 13 16 14 17 22 18 22 37 24 35 55 49 64 78 72 92 95	16 11 10 16 12 12 14 19 14 13 16 24 14 17 22 29 18 22 37 56 24 35 55 64 49 64 78 87 72 92 95 98	16 11 10 16 24 12 12 14 19 26 14 13 16 24 40 14 17 22 29 51 18 22 37 56 68 24 35 55 64 81 49 64 78 87 103 72 92 95 98 112	16 11 10 16 24 40 12 12 14 19 26 58 14 13 16 24 40 57 14 17 22 29 51 87 18 22 37 56 68 109 24 35 55 64 81 104 49 64 78 87 103 121 72 92 95 98 112 100	16 11 10 16 24 40 51 12 12 14 19 26 58 60 14 13 16 24 40 57 69 14 17 22 29 51 87 80 18 22 37 56 68 109 103 24 35 55 64 81 104 113 49 64 78 87 103 121 120 72 92 95 98 112 100 103

- 5. 每個向量的第一個係數是向量中最大的元素,稱為**DC係數**。 DC 的編碼是使用每個區塊的DC 係數與前一區塊DC 係數之間 的差值,再使用RLE 壓縮數值。
- 6. 其他數值稱為AC係數(AC coefficients),使用Huffman編碼進行壓縮。

DC	AC_1	AC ₃	AC ₆	
AC_2	AC4	AC7	:	
AC ₅	AC ₈			
AC ₉				
:				

圖7-12 JPEG 壓縮流程圖

壓縮範例:

```
>> c=imread('caribou.tif');
```

>> x=151;y=90;

>> block=c(x:x+7,y:y+7)

block =							
87	95	92	73	59	57	57	55
74	71	68	59	54	54	51	57
64	58	57	55	58	65	66	65
57	63	68	66	74	89	98	104
95	109	117	114	119	134	145	140
128	139	146	139	140	148	151	143
137	135	125	118	137	156	154	132
122	119	113	110	128	144	140	142


```
>> bd=dct2(b)
bd =
 -225.3750
            -30.7580
                        17.3864
                                   5.6543
                                            -22.3750
                                                       -1.8591
                                                                   3.7575
                                                                             1.7196
                                              8.1434
                                                        1.8639
 -241.5333
             52.0722
                         0.8745
                                 -21.2434
                                                                   0.9420
                                                                            -1.3369
   -2.5427
             50.9316
                         5.0847
                                   9.1573
                                            1.5820
                                                       -3.8454
                                                                  1.5706
                                                                            -0.6043
  102.5557
                       -11.5151
             23.3927
                                 -12.7655
                                           -10.6629
                                                        2.8179
                                                                  -3.6743
                                                                            1.2462
                                 -10.3182
   -2.3750
           -20.7081
                         3.5090
                                             -1.3750
                                                       -2.4723
                                                                  0.3054
                                                                            -0.7308
                                                        1.0922
  -12.7510
              1.5740
                         2.7664
                                   8.1034
                                             -5.2779
                                                                  -1.6694
                                                                            1.0561
    6.6005
              7.8668
                        -4.9294
                                  -7.0092
                                             2.1860
                                                        0.8872
                                                                   0.6653
                                                                            -0.1783
   10.6630
              0.4486
                        -0.1019
                                   7.9728
                                             -4.0241
                                                        2.4364
                                                                  -2.3823
                                                                             0.6011
```

```
\Rightarrow q = [16 11 10 16 24 40 51 61;...
12 12 14 19 26 58 60 55;...
14 13 16 24 40 57 69 56;...
  17 22 29 51 87 80 62;...
                                正規化矩陣
  22 37 56 68 109 103 77;...
24 35 55 64 81 104 113 92;...
49 64 78 87 103 121 120 101;...
72 92 95 98 112 100 103 991;
>> bg=round(bd./g)
bq =
  -14 -3 2
  -20 4 0
         4
      -1 0
   -1
        0
          0
                     0
    0
```

-14 -3 -20 0 4 2 0 0 4 7 0 1 0 -1 -1 0 0 0 -1 0 -1 EOB

解壓縮範例

```
>> ba2=ba.*a
bq2 =
  -224
            -33
                     20
                              0
                                   -24
                                              0
                                                      0
                                                             0
  -240
             48
                      0
                           -19
                                      0
                                              0
                                                      0
                                                              0
      0
             52
                      0
                                              0
                                                      0
                              0
                                      0
                                                              0
     98
             17
                   -22
                              0
                                      0
                                              0
                                                      0
                                                              0
      0
           -22
                      0
                              0
                                      0
                                              0
                                                      0
                                                              0
                                      0
                                                      0
    -24
              0
                      0
                              0
                                              0
                                                              0
      0
              0
                                      0
                                                      0
                                                              0
                                              0
      0
              0
                      0
                              0
                                      0
                                                      0
                                                              0
```

>> b2=r	ound (be	12+128)				
b2 =							
80	89	88	74	62	59	58	53
75	81	77	63	54	56	59	58
57	62	58	48	47	58	68	70
60	66	68	66	73	90	102	104
98	106	111	113	123	137	143	139
130	135	137	137	143	153	152	144
131	133	129	126	133	144	144	136
125	124	118	114	124	141	147	143

>> bd2=idct2(bq2)

bd2 =

```
-39.4257
                                                  -68.5089
                                                             -70.4960
-48.1431
                    -39.8246
                             -53.5852
                                         -65.6253
                                                                       -74.9017
-52.5762
          -46.8345
                    -50.6187
                              -65.1825
                                        -74.3228
                                                  -71.8983
                                                             -68.6282
                                                                       -69.8981
-70.6699
          -66.1335
                   -69.6750
                              -80.0362
                                        -81.2435
                                                  -69.9392
                                                             -59.8115
                                                                       -57.6095
-68.4457
          -61.8134
                    -60.1283
                             -62.2478
                                        -54.7898
                                                  -37.7751
                                                             -26.0007
                                                                       -24.2342
-29.6526
          -21.6215
                   -16.7263
                             -14.7648
                                        -5.2632
                                                    9.2177
                                                             14.8476
                                                                        11.3981
           7.3329
 1.6297
                                                             24.0240
                     9.2805
                               8.8036
                                         15.4106
                                                   24.9217
                                                                        15.7152
 3.0533
           4.5797
                     1.2799
                               -2.1680
                                         4.6076
                                                   15.8252
                                                              16.2949
                                                                        8.4867
                                                   13.2610
                                                              19.3977
 -2.8366
           -4.0640
                    -10.3394
                              -14.0550
                                         -3.8001
                                                                        14.9470
```

```
function out=jpg_in(x,n)
                                         function out=jpg_out(x,n)
                                         q=[16 11 10 16 24 40 51 61;...
q=[16 11 10 16 24 40 51 61;...
                                            12 12 14 19 26 58 60 55;...
   12 12 14 19 26 58 60 55;...
                                            14 13 16 24 40 57 69 56; ...
   14 13 16 24 40 57 69 56;...
                                            14 17 22 29 51 87 80 62;...
   14 17 22 29 51 87 80 62;...
                                            18 22 37 56 68 109 103 77;...
   18 22 37 56 68 109 103 77;...
                                            24 35 55 64 81 104 113 92;...
   24 35 55 64 81 104 113 92;...
                                            49 64 78 87 103 121 120 101;...
   49 64 78 87 103 121 120 101;...
                                            72 92 95 98 112 100 103 991;
  72 92 95 98 112 100 103 99];
                                         out=round(idct2(x.*q*n)+128);
bd=dct2(double(x)-128);
out=round(bd./(q*n));
```

圖 14.5 執行 JPEG 壓縮的 MATLAB 函數

(a)與(b)的差異

影像執行 JPEG 壓縮與解壓縮之前後對照

■ 參數n為2 ,讓更多的DCT 數值變成0

圖 14.8 縮放係數為 2 的 JPEG 壓縮

```
>> cj1=blkproc(c,[8,8],'jpg_in',1);
>> length(find(cj1==0))

ans =

51940
```

```
>> cj2=blkproc(c,[8,8],'jpg_in',2);
>> length(find(cj2==0))

ans =

56729
```


圖 14.10 縮放係數為 10 的 JPEG 壓縮

練習

■使用灰階的engineer.tif影像,並對影像使用JPEG 壓縮,自設定五個不同的參數,來比較壓縮後的 結果,其中每個不同的參數下有多少資訊流失(為 0),有多少個資訊留下呢? 另請問你覺得影像仍可辨識的最大量化縮放係數 為何?

PS: 上傳時,需繳交.m與相關的程式、word報告