

Поставленные задачи:		
1.	Ознакомление с СТО 56947007- 29.200.10.235-2016	
2.	Определить допустимое расстояние съёмки в автономном режиме БПЛА	
3.	Выбор полезной нагрузки БПЛА	
4.	Выбор подходящей платформы	

1. ОЗНАКОМЛЕНИЕ С МЕТОДИЧЕСКИМИ УКАЗАНИЯМИ ПО ПРИМЕНЕНИЮ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ДЛЯ ОБСЛЕДОВАНИЯ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ И ЭНЕРГЕТИЧЕСКИХ ОБЪЕКТОВ

Произведено ознакомление со СТО 56947007 - 29.200.10.235-2016 «Методические указания по применению беспилотных летательных аппаратов для обследования воздушных линий электропередачи и энергетических объектов», в котором 96 страниц.

Данный стандарт состоит из следующих разделов:

- Область применения.
- Нормативные ссылки.
- Обозначения и сокращения.
- Общие положения.
- Методичка и алгоритм использования комплекса БПЛА.

Также в СТО содержаться следующие приложения:

- Обобщение опыта анализа фото-видео изображений объектов, в том числе, в инфракрасном и ультрафиолетовом спектре для выявлений различных дефектов на воздушной линии электропередачи (Приложение А).
- Алгоритм проведения планового и внеочередного мониторинга воздушной линии электропередачи, включая алгоритмы определения дефектов, рекомендации по мониторингу мест аварийно-восстановительных работ, алгоритм для краткосрочного прогнозирования распространения лесного пожара, алгоритм для построения 3D моделей элементов ВЛ. (Приложения Б1-Б4).
- Рекомендации по сбору и синтезу картографического массива данных его анализа, хранения и экспорта в геоинформационную систему ПАО «ФСК ЕЭС» (Приложение В).
- Рекомендации по внедрению технологий с использованием БПЛА в производственный процесс (Приложение Г).

• Описание основных аспектов правового регулирования применения БПЛА в			
РФ, перспективы развития законодательства и требований к организации			
работ с применением БПЛА. (Приложение Д).			
• Образцы документов для согласования полета БПЛА (Приложение Е).			

2. ОПРЕДЕЛЕНИЕ ДОПУСТИМОГО РАССТОЯНИЯ СЪЁМКИ В АВТОНОМНОМ РЕЖИМЕ БПЛА

Ссылаясь на СТО 56947007- 29.200.10.235-2016, а именно пункт 4.3. подпункт б, можно установить, что расстояние до исследуемого объекта (линий

электропередачи ЛЭП) составляет 20-50 метров. Следовательно, минимальное допустимое расстояние будет 20 метров . Аналогичное мнение у лектора данного курса.							
Есть примечание, что минимальное допустимое расстояние может быть 5 метров, но оно рассчитано по данному СТО для ручного режима управления.							

3. ВЫБОР ПОЛЕЗНОЙ НАГРУЗКИ БПЛА

Целевой объект диагностики:

• Провод АС 240/32 для ЛЭП 330кВ (на основе ГОСТ 839-80 и Приказа Минэнерго России от 20.05.2003 N 187 (ред. от 20.12.2017)) . Его наружный диаметр составляет 21,6 мм.

Для данного объекта диагностики была выбрана тепловизионная экшенкамера FLIR Duo Pro R 640 с тепловой линзой 25мм (25×20°). Ниже представлена таблица с техническими характеристиками данного устройства.

Таблица 1. Технические характеристики FLIR Duo Pro R 640 25мм

Тип детектора	Неохлаждаемый микроболометр VOx
Спектральный диапазон	7,5 — 13,5 мкм
Температурная	< 50 мК
чувствительность	
Разрешение детектора	640×512
Объективы тепловизора	13 мм: 45×37°
	19 мм: 32×26°
	25 мм: 25×20° (выбран)
Погрешность измерения	±5 °C или 5% показаний в диапазоне от -25 до +135
	°C
	±20 °C или 20% от показаний в диапазоне от -40 до
	+550 °C
Частота кадров	30 Гц
Разрешение	4000×3000
видеокамеры	
Поле зрения	56×45°
видеокамеры	
Входное напряжение	5.5 - 26.0 B (10-pin JST Port)
	5.0 B (USB-C Port)
Размер (Д х Ш х В)	85 х 86.5 х 68.5 мм
Bec	375 г

Особенности:

- несколько параметров отображения: видимое, тепловое с режимом MSX, «картинка в картинке»;
- передача изображения в режиме реального времени на приёмное устройство;
- широкий диапазон напряжения питания для работы с разными дронами, 5 26 B;
- два варианта вывода видеоизображения: аналоговое видео или цифровое видео по micro-HDMI;
- возможность переключаться между тепловизором и цветными изображениями в полёте;
- запись фото и видео на две карты microSD.

 Для наглядности была найдена 3D модель FLIR Duo Pro R 640 (рис. 1).

Рис. 1. Габаритные размеры тепловизионной экшен-камеры FLIR Duo Pro R 640 25мм объектива

Для проверки минимальный размера объекта, приходящегося на один пиксель детектора был использована программа для вычисления FOV (Field of View) по ссылки http://www.thermoview.ru/articles/fov/. Итог составил 1.386 см (рис. 2).

Расчет:		
Введите размер детектора (матрицы) тепловизора(кол-во элементов в приемнике излучения), в пикселях (по		
горизонтали х по вертикали):		
640 X 512		
Введите оптическое поле зрения (FOV-Field of View), в градусах (по горизонтали х по вертикали):		
25 20		
Введите расстояние до объекта в метрах (разделяя точкой целую и дробную часть):		
20		
Рассчитать		
Результаты расчета:		
Ширина обзора по горизонтали (в поле зрения попадает по горизонтали) Х = 8.868 метра.		
Ширина обзора по вертикали (в поле зрения попадает по вертикали) Y = 7.053 метра.		
Минимальный размер объекта (сторона квадрата) - S(приходящийся на один пиксель детектора) = 1.386 см. *		

Рис. 2. Результат проверки поля зрения для минимального размера установленного объекта диагностики

Как можно заметить, **представленная экшен-камера может быть** использована и для более маленьких объектов при ранее указанном расстоянии.

4. ВЫБОР ПОДХОДЯЩЕЙ ПЛАТФОРМЫ

Для данной ПН возможные многие варианты платформ. Выбрана была конфигурация DJI Matrice 600 Pro + Gremsy S1 (в настоящее время актуальна S1V3) с демпфиром + FLIR DUO PRO R 640. Также в конфигурации с данной платформой и камерой можно использовать Gremsy T1 с демпфиром.

4.1. Тепловизионная экшен-камера FLIR DUO PRO R 640

Тепловезинная камера была ранее рассмотрена. Стоит повторить, что масса экшен-камеры составляет 375 г.

Рис. 3. Внешний вид FLIR DUO PRO R 640

4.2. Подвес Gremsy S1V3

Рис. 4. Габаритные размеры подвеса Gremsy S1V3

Рассматриваются следующие технические характеристики:

- Масса подвеса составляет 830 г.
- Максимальная полезная нагрузка составляет 750 г.

Рис. 5. Совместимость Gremsy S1V3 с FLIR DUO PRO R 640

4.3. Подвес Gremsy T1

Рис. 6. Габаритные размеры подвеса Gremsy T1

Рассматриваются следующие технические характеристики:

- Вес подвеса составляет 750 г.
- Максимальная полезная нагрузка составляет 700 г.

4.4. Демпфер

В данных случаях для соединения подвеса с платформой необходим демпфер от производителя Gremsy (рис. 7). Поддерживает все подвесы серии Т и S, кроме Gremsy T7.

Рис. 7. Габаритные размеры демпфера для подвеса Gremsy S или T серий и DJI Matrice 600 Pro

4.5. Платформа DJI Matrice 600 Pro

Рис. 8 .Внешний вид DJI Matrice 600 Pro

Таблица 2. Технические характеристики DJI Matrice 600 Pro

пропеллеры, лучи и крепление С учетом шасси) 437×402×553 мм (если сле пропеллеры, лучи и крепление GF учета шасси)	крыты GPS, с	
учетом шасси) 437×402×553 мм (если сле пропеллеры, лучи и крепление GF учета шасси)		
437×402×553 мм (если сле пропеллеры, лучи и крепление GF учета шасси)	эжены	
пропеллеры, лучи и крепление GF учета шасси)	эжены	
учета шасси)		
• /	S, без	
Размеры в упаковке $525 \times 480 \times 640 \text{ мм}$		
Масса (с 6 аккумуляторами ТВ47S) 9,5 кг		
Масса (с 6 аккумуляторами ТВ48S) 10 кг		
Максимальный взлетный вес 15,5 кг		
Точность позиционирования (В По вертикали: ±0,5 м, по горизо	нтали:	
режиме позиционирования, при ±1,5 м		
работающей GPS)		
Максимальная угловая скорость Поворот: 150°/с		
Наклон: 300°/с,		
Максимальный угол наклона 25°		
Максимально допустимая скорость 8 м/с		
ветра		
Максимальная скорость набора 5 м/с		
высоты		
Максимальная скорость снижения 3 м/с		
Максимальная скорость (без ветра) 65 км/ч		
Макс.высота полета над уровнем С пропеллерами 2170R: 2500 м,		
моря С пропеллерами 2195: 4500 м		
Полетный контроллер АЗ Рго		
Модель двигателей DJI 6010	DJI 6010	
Модель пропеллеров DJI 2170R	DJI 2170R	
Wiodens infonessiebos D31 2170K		

Таблица 3. Характеристики зарядного устройства (модель MC6S600)

Напряжение	26,1 B
Номинальная мощность	600 Bt
Мощность одного аккумулятора на выходе	100 B _T

Таблица 4. Характеристики аккумулятора ТВ47S

Вместимость	4500 мАч
Напряжение	22,2 B
Энергия	99,9 Втч

Таблица 5. Характеристики аккумулятора TB48S

Вместимость	5700 мАч
Напряжение	22,8 B
Энергия	129,96 Втч

Данный Коптер предназначен для работы при хороших и умеренных погодных условиях. К неблагоприятным погодным условиям относятся: ветер свыше 8 м/с, снег, дождь, смог, град, гроза, торнадо или ураган.

Далее представлен график зависимости времени полёт от полезной нагрузки (рис. 9).

Рис. 9. График зависимости времени полёт от полезной нагрузки: синяя - с аккумулятором модели ТВ47S, зелёная - с аккумулятором модели ТВ48S