PyTorch Capstone Project

Cat Breed Classification System

Wiwat Pholsomboon

April 8, 2025

Deep Learning with Pytorch - INFO-6147-(01)-25W

Introduction

- Study on using PyTorch models to classify cat breeds
- Implementation of Grad-CAM for visual explanation
- Integration with ChatGPT-4o-mini for image identification
- Interactive quiz system to compare model accuracy with human performance
- Github: https://github.com/innozent/pytorch_capstone

Dataset

- Source: Kaggle 'Geno Cat Breed Image Collection'
- Size: 15 cat breeds with 375 photos each (5,625 total)
- Preprocessing pipeline:
 - Resize to 256×256 pixels
 - Random crop to 224×224 pixels
 - Random horizontal flip for augmentation
 - Random rotation for variety
 - Conversion to PyTorch tensors
 - Normalization using ImageNet statistics

Model Architecture

Custom CNN:

- 5 Convolutional layers
- 2 Fully connected layers
- Dropout for regularization
- ReLU activation functions

Transfer Learning Models:

- ResNet18
- EfficientNetB2
- VGG16
- All pre-trained with ImageNet weights

Model Comparison

Transfer Learning Models Comparison

VGG16	ResNet18	EfficientNetB2
Parameters: 138M	Parameters: 11.7M	Parameters: 9.2M
Layers: 16	Layers: 18	Layers: 82
Key Features:	Key Features:	Key Features:
- Simple architecture	- Residual blocks	- Compound scaling
- 3x3 convolutions	- Skip connections	- MBConv blocks
- Max pooling	- Batch normalization	- Swish activation
- Dense layers	- Global average pool-	- Squeeze-and-
	ing	excitation

Training Methodology

Consistent hyperparameters across all models:

Batch size: 128

Learning rate: 0.001

Momentum: 0.9

• Epochs: 5

Loss function: Cross Entropy

Optimizer: SGD

Results and Evaluation

- Comparison of model accuracy and loss
- Interactive quiz implementation for human vs AI performance analysis

Visualization and Interpretability

- Grad-CAM visualization highlights regions of interest
- ChatGPT-4o-mini provides reasoning for predictions
- Interactive interface for user engagement

Evaluation Results

- Side-by-side comparison of accuracy:
 - Human participants
 - ChatGPT-4o-mini
 - PyTorch models (CNN, ResNet, EfficientNet, VGG)

Challenges and Solutions

Challenges:

- Different target layers for Grad-CAM across models
- Low accuracy with custom CNN model

Solutions:

- Manual selection of appropriate CNN layers
- Transfer learning to leverage pre-trained weights

Future Improvements

Potential Enhancements

- User management system to track quiz performance over time
- Enhanced data augmentation techniques for better generalization
- Additional model architectures for comparison
- More comprehensive evaluation metrics beyond accuracy
- Fine-tuning of transfer learning models

Conclusion

- ChatGPT-4o-mini demonstrates superior accuracy due to advanced image understanding capabilities
- Transfer learning models perform moderately well with limited training
- Custom CNN model shows potential but requires more extensive training
- Visualization tools provide valuable insights into model decision-making

Thank you!