# **Exploratory Data Analysis**

#### **Overview of the dataset:**

- In this project, 50 pages from Flipkart smart phones data has been scrapped
- Population dataset contains 996 rows/observations and 16 columns/fields

| Field Name         | Data Type | Blanks | <b>Unique Values</b> |
|--------------------|-----------|--------|----------------------|
| Product_Name       | String    | 0      | 382                  |
| Rating             | float64   | 0      | 22                   |
| Display            | float64   | 0      | 43                   |
| Battery            | int32     | 0      | 57                   |
| Price              | int32     | 0      | 219                  |
| RAM                | String    | 0      | 8                    |
| ROM                | String    | 0      | 15                   |
| Expandable_Memory  | String    | 258    | 10                   |
| Rear_Camera        | String    | 0      | 72                   |
| Front_Camera       | String    | 92     | 22                   |
| Processor          | String    | 0      | 163                  |
| Brand_Name         | category  | 0      | 13                   |
| Processor_Category | category  | 0      | 5                    |
| Price_Category     | category  | 0      | 9                    |
| Battery_Category   | category  | 0      | 6                    |
| Rating_Category    | category  | 0      | 6                    |

- Input and data cleansing files:
  - o Input Flipkart scrapped file
  - Data cleansing:
    - Processor category to tag all processors from specific brand into one group
    - Brand Name Based on product name bunch of phones from same brand are grouped into one

#### Below is the sample dataset:

| Product_Name                                         | Rating | Display | Price | RAM         | ROM              | Expandable_Memory         | Rear_Camera               | Front_Camera | Battery | Processor                        | Brand_Name | Processor_Category |
|------------------------------------------------------|--------|---------|-------|-------------|------------------|---------------------------|---------------------------|--------------|---------|----------------------------------|------------|--------------------|
| Realme Narzo<br>10 (That White,<br>128 GB)           | 4.5    | 6.5     | 11999 | 4 GB<br>RAM | 128<br>GB<br>ROM | Expandable Upto 256<br>GB | 48MP + 8MP<br>+ 2MP + 2MP | 16MP         | 5000    | MediaTek<br>Helio G80<br>(12 nm) | Realme     | MediaTek           |
| Realme Narzo<br>10 (That White,<br>128 GB)           | 4.5    | 6.5     | 11999 | 4 GB<br>RAM | 128<br>GB<br>ROM | Expandable Upto 256<br>GB | 48MP + 8MP<br>+ 2MP + 2MP | 16MP         | 5000    | MediaTek<br>Helio G80<br>(12 nm) | Realme     | MediaTek           |
| Realme Narzo<br>10 (That Green,<br>128 GB)           | 4.5    | 6.5     | 11999 | 4 GB<br>RAM | 128<br>GB<br>ROM | Expandable Upto 256<br>GB | 48MP + 8MP<br>+ 2MP + 2MP | 16MP         | 5000    | MediaTek<br>Helio G80<br>(12 nm) | Realme     | MediaTek           |
| Realme Narzo<br>10 (That Green,<br>128 GB)           | 4.5    | 6.5     | 11999 | 4 GB<br>RAM | 128<br>GB<br>ROM | Expandable Upto 256<br>GB | 48MP + 8MP<br>+ 2MP + 2MP | 16MP         | 5000    | MediaTek<br>Helio G80<br>(12 nm) | Realme     | MediaTek           |
| Motorola G8<br>Power Lite<br>(Arctic Blue, 64<br>GB) | 4.5    | 6.5     | 8999  | 4 GB<br>RAM | 64<br>GB<br>ROM  | Expandable Upto 256<br>GB | 16MP + 2MP<br>+ 2MP       | 8MP          | 5000    | MediaTek<br>Helio P35            | Motorola   | MediaTek           |

#### **Exploratory Data Analysis:**

#### Which brand phone do you use?

```
x = data1.groupby('Brand_Name')['Product_Name'].count().sort_values(ascending=False)
ax = x.plot(kind='bar', figsize=(10, 5), zorder=2, width=0.85)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
#ax.spines['left'].set_visible(False)
#ax.spines['bottom'].set_visible(False)
ax.set_title('Brands Considered in the Analysis', weight='bold', size=20)
ax.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on")
vals = ax.get_xticks()
for tick in vals:
    ax.axvline(x=tick, linestyle='dashed', alpha=0.4, color='#eeeeee', zorder=1)
# Set x-axis label
ax.set_xlabel("Brands Name", labelpad=10, size=12)
# Set y-axis label
ax.set_ylabel("Number of Phones", labelpad=20, weight='bold', size=10)
#for p in ax.patches:
    #width, height = p.get_width(), p.get_height()
    #x,y = p.get_xy()
    #ax.annotate('(:.0%)'.format(height), (x,y + height + 0.1))
```



| data1['Brand_Name'].value_counts(sort=False) |           | <pre>(data1['Brand_Name'].value_counts(sort=False)/     data1['Brand_Name'].count())*100</pre> |                       |  |
|----------------------------------------------|-----------|------------------------------------------------------------------------------------------------|-----------------------|--|
| Google                                       | 6         | Google                                                                                         | 0.602410              |  |
| Micromax<br>Nokia                            | 40<br>74  | Micromax                                                                                       | 4.016064              |  |
| Xiaomi<br>Panasonic                          | 78<br>12  | Nokia<br>Xiaomi                                                                                | 7.429719<br>7.831325  |  |
| LG                                           | 32        | Panasonic<br>LG                                                                                | 1.204819<br>3.212851  |  |
| Motorola<br>Alcatel                          | 46<br>14  | Motorola                                                                                       | 4.618474              |  |
| Realme                                       | 86        | Alcatel<br>Realme                                                                              | 1.405622<br>8.634538  |  |
| Samsung<br>Lenovo                            | 356<br>20 | Samsung<br>Lenovo                                                                              | 35.742972<br>2.008032 |  |
| Vivo<br>Asus                                 | 218<br>14 | Vivo<br>Asus                                                                                   | 21.887550<br>1.405622 |  |
| ,,,,,,,                                      | ±         | Asus                                                                                           | 1.403022              |  |

- There are 13 companies considered in this analysis
- Maximum number of records scrapped are from Samsung followed by Vivo, Realme and Xiaomi, top 4 brands constitute to 74% of the total data scrapped
- Google has least number of phones with 0.6% of the data

#### How much do you rate your phone?

```
x = data1.groupby('Rating_Category')['Product_Name'].count()
ax = x.plot(kind='bar', figsize=(8, 4), zorder=2, width=0.55)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
#ax.spines['left'].set_visible(False)
#ax.spines['bottom'].set_visible(False)
ax.set_title('Summary on Ratings', weight='bold', size=20)
ax.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on")
vals = ax.get_xticks()
for tick in vals:
    ax.axvline(x=tick, linestyle='dashed', alpha=0.4, color='#eeeeee', zorder=1)
# set x-axis label
ax.set_xlabel("Rating Category", labelpad=20, weight='bold', size=10)
# set y-axis label
ax.set_ylabel("Number of Phones", labelpad=20, weight='bold', size=10)
```



| data1['Rating_ | <pre>Category'].value_counts(sort=False)</pre> | <pre>(data1['Rating_Category'].value_counts(sort=False)/     data1['Rating_Category'].count())*100</pre> |           |  |  |
|----------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|--|--|
| a. 1-3         | 12                                             |                                                                                                          | <u> </u>  |  |  |
| b. 3-4         | 178                                            | a. 1-3                                                                                                   | 1.204819  |  |  |
| c. 4-4.25      | 164                                            | b. 3-4                                                                                                   | 17.871486 |  |  |
| d. 4.25-4.35   | 166                                            | c. 4-4.25                                                                                                | 16.465863 |  |  |
| e. 4.35-4.45   | 280                                            | d. 4.25-4.35                                                                                             | 16.666667 |  |  |
|                |                                                | e. 4.35-4.45                                                                                             | 28.112450 |  |  |
| f. 4.45-5      | 196                                            | f. 4.45-5                                                                                                | 19.678715 |  |  |

- There are 190 records with rating <3, 19% of the population
- Between rating 4-5 we have 18% of the data i.e. 806 records. Rating 4-5 is further split to better understand the data.
- 61 % data is present within the range 4-4.45



- In our analysis 71% of the data has price range 6,000 to 20,000
- Using box plot we observe below Q1 and above Q3 line is near 40,000; after which we can consider it as outliers
- From the summary, records below 6K is 24 records and above 40K is 102 records. Together after excluding outliers we will be loosing 126 records which is 13% of the population
- Out of curiosity want to know which brands these 126 records belongs to:

| Price_Category | Brand_Name | Product_Name |
|----------------|------------|--------------|
| a. 3.6K-6K     | Alcatel    | 2            |
|                | Micromax   | 12           |
|                | Nokia      | 4            |
|                | Panasonic  | 2            |
|                | Samsung    | 4            |
| h. 40K-60K     | LG         | 6            |
|                | Realme     | 6            |
|                | Samsung    | 36           |
|                | Xiaomi     | 2            |
| i. 60k-1.2L    | Google     | 2            |
|                | Motorola   | 4            |
|                | Samsung    | 46           |

Is your display and battery dependent on each other?



| data1['Battery_Category'].value_counts(sort=False) | <pre>(data1['Battery_Category'].value_counts(sort=False)/</pre> |  |  |  |
|----------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| a. 1200-2100 40                                    | a. 1200-2100 4.016064                                           |  |  |  |
| b. 2100-3000 248                                   | b. 2100-3000 24.899598                                          |  |  |  |
| c. 3000-3500 188                                   | c. 3000-3500 18.875502                                          |  |  |  |
| d. 3500-4000 210                                   | d. 3500-4000 21.084337                                          |  |  |  |
| e. 4000-5000 302                                   | e. 4000-5000 30.321285                                          |  |  |  |
| f. 5000-6000 8                                     | f. 5000-6000 0.803213                                           |  |  |  |

- 95% has battery ranging from 2100 5000 mAh
- Looking at the summary table we can observe the categories with battery range 1200-2100 and 5000-6000 together constitutes to 4.8% of the population which is 48 records
- Is battery dependent on other features of the phone?
   We will look into it in bivariate analysis!

#### **Processor Category:**

```
labels = data1['Processor_Category'].astype('category').cat.categories.tolist()
counts = data1['Processor_Category'].value_counts()
sizes = [counts[var_cat] for var_cat in labels]
fig1, ax1 = plt.subplots()
ax1.pie(sizes, labels=labels, autopct='%1.1f%%', radius=2) #autopct is show the % on plot
#ax1.axis('equal')
plt.show()
```



| data1['Pro        | cessor_Category'].value_counts(sort=False) | <pre>(data1['Processor_Category'].value_counts(sort=False)/     data1['Processor_Category'].count())*100</pre> |                        |  |
|-------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------|--|
| Blank<br>MediaTek | 270                                        | Blank                                                                                                          | 27.108434              |  |
| Exvnos            | 182<br>184                                 | MediaTek                                                                                                       | 18.273092              |  |
| Qualcomm          | 350                                        | Exynos<br>Oualcomm                                                                                             | 18.473896<br>35.140562 |  |
| Intel             | 10                                         | Intel                                                                                                          | 1.004016               |  |

- Multiple versions from Processor are grouped into each of the above values
- Qualcomm takes a major share of 35% in the entire population; however, 27% is blank.
- If we consider in the data available; then Qualcomm share increases to 48%
- There is only 1% of data available with Intel processor, which is 10 record and can be removed as outlier

## **Bi-Variate Analysis**

#### **Correlation**

```
corelation = data2.corr()
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x1b8db360088>



#### Insights:

Display and battery are strongly dependent on each other

In the next category we have Rating dependent on Display and Battery

### Pairpolt:



#### **Relation between Brand Name Price and Rating:**

Brand\_Name

```
sns.relplot(x='Brand_Name', y='Price', hue='Expandable_Memory', data=data1)
plt.xticks(rotation='vertical')
#sns.barplot(carrier_count.index, carrier_count.values, alpha=0.9)
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
 <a list of 13 Text xticklabel objects>)
   120000
   100000
    80000
                                                        Expandable_Memory
                                                        Expandable Upto 256 GB
                                                        Expandable Upto 512 GB
    60000
                                                        Expandable Upto 1 TB
                                                        Blank
                                                         Expandable Upto 128 GB
    40000
                                                         Expandable Upto 400 GB
                                                        Expandable Upto 32 GB
                                                        Expandable Upto 2 TB
    20000
                                                        Expandable Upto 64 GB
                                                        Expandable Upto 200 GB
        0
```

#### **Insights:**

Very strong positive correlation would be between Display and Battery

Very weak positive correlation would be between Battery and Price

#### **Relation between RAM, Price and Rating:**

```
sns.relplot(x='RAM', y='Price', hue='Rating_Category', data=data1)
plt.xticks(rotation='vertical')
#sns.barplot(carrier_count.index, carrier_count.values, alpha=0.9)
```

([0, 1, 2, 3, 4, 5, 6, 7], <a list of 8 Text xticklabel objects>)

