Principal Component Analysis

Quiz, 5 questions

1 point

1.

Consider the following 2D dataset:

Which of the following figures correspond to possible values that PCA may return for $u^{(1)}$ (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).

Principal Component^s Analysis
Quiz, 5 questions

Principal Component^s Analysis
Quiz, 5 questions

1 point

2.

Which of the following is a reasonable way to select the number of principal Principal Component Analysis

Quiz, 5 questions

(Recall that n is the dimensionality of the input data and m is the number of input examples.)

- Choose k to be the largest value so that at least 99% of the variance is retained
- Choose k to be the smallest value so that at least 99% of the variance is retained.
- Choose k to be 99% of m (i.e., k=0.99*m, rounded to the nearest integer).
- Use the elbow method.

1 point

3.

Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an equivalent statement to this?

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{\text{approx}}^{(i)}\|^2} \ge 0.05$$

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{\text{approx}}^{(i)}\|^2} \le 0.95$$

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{\text{approx}}^{(i)}\|^2} \le 0.05$$

$$\frac{\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{\text{approx}}^{(i)}||^2}{\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2} \le 0.05$$

1 point

4.

Which of the following statements are true? Check all that apply.

Principal (Quiz, 5 questions	Given input data $x \in \mathbb{R}^n$, it makes sense to run PCA only with values of k Compensite n is possible but not helpful, and $k > n$ does not make sense.)
	Even if all the input features are on very similar scales, we should still perform mean normalization (so that each feature has zero mean) before running PCA.
	Given only $z^{(i)}$ and $U_{\rm reduce}$, there is no way to reconstruct any reasonable approximation to $x^{(i)}$.
	PCA is susceptible to local optima; trying multiple random initializations may help.
	1 point
	5. Which of the following are recommended applications of PCA? Select all that apply.
	Data visualization: To take 2D data, and find a different way of plotting it in 2D (using k=2).
	Data compression: Reduce the dimension of your input data $x^{(i)}$, which will be used in a supervised learning algorithm (i.e., use PCA so that your supervised learning algorithm runs faster).
	As a replacement for (or alternative to) linear regression: For most learning applications, PCA and linear regression give substantially similar results.
	Data compression: Reduce the dimension of your data, so that it takes up less memory / disk space.
	I, George Wolberg , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code
	Submit Quiz