## §6.7 Hyperbolic Functions

**In-class Activity 6.7** 



Dr. Jorge Basilio

gbasilio@pasadena.edu

#### **Activity 1:**

Verify the following properties of hyperbolic functions:

(a) 
$$\cosh(-x) = \cosh(x)$$

(b) 
$$\cosh^2(x) - \sinh^2(x) = 1$$

#### **Activity 2: test**

- (a) Verify the DR for  $\cosh(x)$ , i.e. show from the definition that  $\frac{d}{dx}[\cosh(x)] = \sinh(x)$
- (b) Verify the DR for  $\tanh(x)$ , i.e. show that  $\frac{d}{dx}[\tanh(x)] = \mathrm{sech}^2(x)$

## **Activity 3: test**

(a) Find 
$$y'$$
 given that  $y = e^x \tanh(x)$ 

(b) If 
$$s(t) = \cosh(\ln(t))$$
, what is  $\frac{ds}{dt}$ ?

## **Activity 4:**

Verify: 
$$\cosh^{-1}(x) = \ln\left(x + \sqrt{x^2 - 1}\right), \quad x \in [1, \infty)$$

#### **Activity 5:**

Verify DR1 
$$\frac{d}{dx} \left[ \sinh^{-1}(x) \right] = \frac{1}{\sqrt{1+x^2}}$$
 in two ways:

- (a) using "brute force" (i.e. differentiate the formula given in Theorem 6 (a))
- (b) using an "elegant technique" (i.e. switch  $y = \sinh^{-1}(x)$  into the equivalent equation  $\sinh(y) = x$  and use implicit differentiation)

# **Activity 6:**

Evaluate:

(a) 
$$\frac{d}{dx} \left[ \ln(\tanh^{-1}(x)) \right]$$

(b) 
$$\int \frac{1}{1-x^2} \, dx$$

(c) 
$$\int_0^1 \frac{1}{\sqrt{1+x^2}} \, dx$$