Лабораторная работа № 2.2.6: *Определение энергии активации* по температурной зависимости вязкости жидкости.

Зотов Алексей, 497

20 октября 2016 г.

Цель работы:

- 1. Измерение скорости падения шариков при разной температуре жидкости.
- 2. Вычисление вязкости жидкости по закону Стокса и рассчет энергии активации.

В работе испольуются: Стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; микроскоп; мелкие стеклянные и стальные шарики(диаметром около 1 мм).

Теория. Молекулы, медленно перемещаясь внутри жизкости, пребывая часть времени около определённых мест равновесия и образуя картину меняющейся со временем пространственной решётки. Для перехода в новое состояние, молекула должна преодолеть участки с большой потенциальной энергией, превышающей среднюю энергию молекул. Для этого тепловая энергия молекул должна увеличиться на величину W, называемую энергией активации.

$$\eta \sim Ae^{W/kT} \tag{1}$$

Энергию активации молекулы жидкости можно получить, отложив $y(\frac{1}{T}) = \ln \eta$, как угловой коэффициент получившейся прямой.

Для исследования температурной зависимотси вязкости жидкости используется метод Стокса, основанный на измерении скорости свободного падения шарика в жидкости.

При ламинарном обтекании шарика безграничной жидкостью, сила сопротивления выражается как:

$$F = 6\pi \eta r v \tag{2}$$

На шарик действуют три силы: сила тяжести, архимедова сила, сила вязкости, зависящая от скорости. Тогда уравнение движения шарика в жидкости по второму закону Ньютона выглядит как:

$$Vg(\rho - \rho_{lq}) - 6\pi\eta rv = V\rho \frac{dv}{dt}$$
(3)

где V — объем шарика, ρ — его плотность, ρ_{lq} — плотность жидкости, g — ускорение свободного падения.

Отсюда находим:

$$v(t) = v_{st} - [v_{st} - v(0)]e^{-t/\tau}$$
(4)

Где v(0) - скорость шарика в момент начала его движения, v_{st} - установившаяся скорость, τ - время релаксации.

$$v_{st} = \frac{Vg(\rho - \rho_{lq})}{6\pi\eta rv} = \frac{2}{9}gr^2\frac{(\rho - \rho_{lq})}{\eta}, \quad \tau = \frac{V\rho}{6\pi\eta rv} = \frac{2r^2\rho}{9\eta}$$
 (5)

Как видно, скорость шарика экспоненциально приближается к установившейся скорости. Установление скорости определяется величиной τ , имеющей размерность времени и называющейся временем релаксации. Если вре мя падения в несколько раз больше времени релаксации, процесс установления скорости можно считать закончившимся. Измеряя на опыте установившуюся скорость, можно определить вязкость жидкости по формуле:

$$\eta = \frac{2}{9}gr^2 \frac{(\rho - \rho_{lq})}{v_{st}} \tag{6}$$

Экспериментальная установка

Схема установки

 $L_1 = L_2 = 10$ cm.

Применимость формулы Стокса

Определим характер обтекания:

$$Re = \frac{vr\rho_{lq}}{\eta} \tag{7}$$

Обтекание является ламинарным при Re < 10

Определим также допустимое расстояние между границей жидкости и верхней меткой:

$$S = v_{st}\tau(\frac{t}{\tau} - 1 + e^{-t/\tau}) \tag{8}$$

Ход работы. Будем считать $v_{st} = \frac{L}{t_2 - t_1}$, то есть как скорость на втором участке.

Определим погрешность:

$$\left(\frac{\sigma_{\eta}}{\eta}\right)^{2} = 2^{2} \left(\frac{\sigma_{r}}{r}\right)^{2} + \left(\frac{\sigma_{t}}{t}\right)^{2} + \varepsilon_{\rho_{gl}}^{2} \tag{9}$$

 $arepsilon_{
ho_{gl}}=0.05,\,\sigma_{dx}=0.05$ мм , $\sigma_t=0.1~{
m c},\!\sigma_T=0.1C^o$. Из (1) получим:

$$\ln \eta = \frac{W}{k} \cdot \frac{1}{T} + \text{const} \tag{10}$$

тогда $W=a\cdot k$, где ax+b - зависимость $\ln\eta(x=\frac{1}{T})$

Найдем:

$$a = \left\langle \frac{\Delta y_i}{\Delta x_i} \right\rangle, y_i = \ln \eta_i, x_i = \frac{1}{T_i}$$
(11)

$$\sigma_a = \frac{1}{n} \sqrt{\sum \sigma^2 \left(\frac{\Delta y_i}{\Delta x_i}\right)} \tag{12}$$

$$\varepsilon_{\frac{\Delta y}{\Delta x}}^2 = \varepsilon_{\Delta y}^2 + \varepsilon_{\Delta x}^2 \tag{13}$$

1. Стеклянные шарики.

$$\overline{\rho = \rho_{\rm ct} = 2.5 \Gamma/{\rm cm}^3}$$

Стеклянные шарики

T, C^o	20.6	20.6	25.0	29.8	29.8	34.9	34.9	40.4	40.4	45.0	45.0	50.0	50.0
t_1, c	15.2	15.5	13.6	9.9	9.4	6.2	6.3	4.6	4.7	3.7	3.3	2.9	2.8
t_2, c	30.9	31.4	27.2	20.0	18.8	11.9	12.2	8.7	8.7	7.2	6.7	5.9	5.6
dx, mm,	0.8	0.77	0.9	0.83	0.85	0.9	0.83	0.8	0.75	0.73	0.7	0.7	0.7
$v_{st}, cm/c$	0.64	0.63	0.74	0.99	1.06	1.75	1.69	2.44	2.5	2.86	2.94	3.33	3.57
$\rho_{gl}g/cm^3$,	1.263	1.263	1.26	1.258	1.258	1.254	1.254	1.251	1.251	1.248	1.248	1.245	1.245
η , м Π а · c	1777.4	1713.3	1619.6	1148.1	1175.3	618.7	640.4	468.7	435.2	420.8	408.8	344.6	337.5
σ_{η} , м $\Pi \mathbf{a} \cdot c$	124.7	121.6	112.5	81.0	81.2	45.1	46.6	34.7	32.6	31.4	30.7	26.7	26.2
ε_{η}	0.07	0.071	0.069	0.071	0.069	0.073	0.073	0.074	0.075	0.075	0.075	0.077	0.078
S_{τ} , cm	0.131	0.13	0.151	0.203	0.219	0.359	0.347	0.498	0.511	0.582	0.599	0.678	0.726
Re	0.1	0.1	0.1	0.2	0.2	0.7	0.7	1.3	1.4	1.8	1.9	2.5	2.8

$$\sigma_{tg\alpha} = 124.6, \varepsilon_{tg\alpha} = 0.024$$
 tg $\alpha \approx 5104.87 \implies W = (7.05 \pm 0.17) * 10^{-20}$ [Дж] ≈ 0.44 [эВ].

2. Металлические шарики. $\rho = \rho_{\rm ir} = 7.8 {\rm r/cm}^3$

Металлические шарики

T, C^o	21.7	24.9	25.0	30.0	30.0	34.9	35.0	40.3	40.4	45.0	45.0	50.0	50.0
t_1, c	21.6	18.6	14.6	10.0	9.3	6.0	7.9	4.9	6.7	4.6	6.2	4.7	3.4
t_2, c	43.2	36.0	29.3	20.8	19.5	12.3	14.5	10.3	13.6	10.1	12.1	9.5	6.8
dx, mm,	0.8	0.77	0.9	0.83	0.85	0.9	0.83	0.8	0.75	0.73	0.7	0.7	0.7
$v_{st}, cm/c$	0.46	0.57	0.68	0.93	0.98	1.59	1.52	1.85	1.45	1.82	1.69	2.08	2.94
$\rho_{gl}g/cm^3$,	1.262	1.26	1.26	1.257	1.257	1.254	1.254	1.251	1.251	1.248	1.248	1.245	1.245
η , м Π а · c	1968.3	1469.3	1695.9	1060.2	1050.1	727.5	648.2	492.9	553.6	418.2	412.5	335.8	237.8
$σ_η$, м Π a · c	265.1	204.7	207.0	138.6	134.6	89.4	85.1	67.0	79.2	61.5	62.8	51.3	36.7
ε_{η}	0.135	0.139	0.122	0.131	0.128	0.123	0.131	0.136	0.143	0.147	0.152	0.153	0.154
S_{τ} , cm	0.056	0.07	0.083	0.113	0.119	0.193	0.184	0.225	0.176	0.221	0.206	0.253	0.357
Re	0.0	0.0	0.0	0.1	0.1	0.2	0.2	0.4	0.2	0.4	0.4	0.5	1.1

$$\sigma_{tg\alpha} = 293.5, \varepsilon_{tg\alpha} = 0.05$$
 tg $\alpha \approx 5906.8 \implies W = (8.16 \pm 0.40) * 10^{-20}$ [Дж] ≈ 0.51 [эВ].

При рассчитанной достаточно малой погрешности в 2-5%, мы получили достаточно большую разницу результатов (около 12 - 14%). Это может говорить о том, что несферическая форма металлических шариков (для которых применима формула Стокса) внесла большую погрешность, чем мы учли.