

Special Distributions

Chapter 5 of Probability and Statistics

Yiping Cheng ypcheng@bjtu.edu.cn 10-Jul-2017

School of Electronic and Information Engineering Beijing Jiaotong University

Chapter Contents

- 1 Special Discrete Distributions
 Binomial Distributions
 Poisson Distributions
 Negative Binomial Distributions

Special Discrete Distributions

Bernoulli Distributions

Definition: A random variable *X* is said to have the *Bernoulli* distribution with parameter $p \ (0 \le p \le 1)$ if

$$P(X = 1) = p, \quad P(X = 0) = 1 - p.$$

$$E(X) = 1 \times p + 0 \times (1 - p) = p,$$

$$E(X^{2}) = 1^{2} \times p + 0^{2} \times (1 - p) = p,$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = p - p^{2} = p(1 - p).$$

Binomial Distributions

Definition [Binomial Distribution]: A random variable X is said to have the binomial distribution with parameters n and p (n positive integer, $0 \le p \le 1$) if

$$P(X = x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{for } x = 0, 1, \dots, n \\ 0 & \text{otherwise.} \end{cases}$$

Remark

The Bernoulli distributions are special cases of the binomial distributions (n = 1).

Mean and Variance of Binomial Distributions

Theorem

Let $X \sim \text{binomial}(n, p)$. Then

$$E(X) = np$$
 and $Var(X) = np(1 - p)$.

Proof.

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k} (1-p)^{n-k} = np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{l=0}^{n-1} \frac{(n-1)!}{l!(n-1-l)!} p^{l} (1-p)^{n-1-l} = np [p+(1-p)]^{n-1} = np.$$

$$E[X(X-1)] = \sum_{k=1}^{n} k(k-1) \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} k(k-1) \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=2}^{n} \frac{n!}{(k-2)!(n-k)!} p^{k} (1-p)^{n-k} = n(n-1)p^{2} \sum_{k=2}^{n} \frac{(n-2)!}{(k-2)!(n-k)!} p^{k-2} (1-p)^{n-k}$$

$$= n(n-1)p^{2} \sum_{l=0}^{n-2} \frac{(n-2)!}{l!(n-2-l)!} p^{l} (1-p)^{n-2-l} = n(n-1)p^{2} [p+(1-p)]^{n-2} = n(n-1)p^{2}.$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = E[X(X-1)] + E(X) - [E(X)]^{2} = n(n-1)p^{2} + np - n^{2}p^{2} = np(1-p).$$

Additive Property of Binomial Distributions

Theorem: If X_1, \ldots, X_k are independent random variables and if X_i has the binomial distribution with parameters n_i and p ($i = 1, \ldots, k$), then the sum $X_1 + \cdots + X_k$ has the binomial distribution with parameters $n_1 + \cdots + n_k$ and p.

Remark

- This theorem is a generalization of a similar result in Chapter 3. Its proof is omitted because that will involve the concept of characteristic functions which is beyond the scope of this course.
- It is essential that the component RVs be independent and their distributions have the same parameter *p*.

Poisson Distributions

The Poisson distributions are introduced as limiting distributions of the binomial distributions when n is very large but np is moderate. For example, suppose there is a shop in a town of 10000 people, and in a particular hour, each person in the town, independently, has 0.005 probability to come to the shop. The number of people that come to the shop in that hour is therefore a random variable having the binomial distribution with parameters n = 10000 and p = 0.005. We will later show that this distribution can be approximated by the Poisson distribution with parameter $10000 \times 0.005 = 50$.

Definition [Poisson Distribution]: A random variable *X* is said to have the Poisson distribution with parameter λ ($\lambda \geq 0$) if

$$P(X = x) = \begin{cases} \frac{\lambda^x}{x!} e^{-\lambda} & x = 0, 1, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Mean and Variance of Poisson Distributions

Theorem: Let $X \sim \text{Poisson}(\lambda)$. Then

$$E(X) = \lambda$$
 and $Var(X) = \lambda$.

Proof.

$$E(X) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} = \lambda e^{\lambda} e^{-\lambda} = \lambda.$$

$$E[X(X-1)] = \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} = \lambda^2 \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} e^{-\lambda} = \lambda^2 e^{\lambda} e^{-\lambda} = \lambda^2.$$

$$Var(X) = E(X^2) - [E(X)]^2 = E[X(X-1)] + E(X) - [E(X)]^2$$

$$= \lambda^2 + \lambda - \lambda^2 - \lambda$$

Additive Property of Poisson Distributions

Theorem: If X_1, \ldots, X_k are independent random variables and if X_i has the Poisson distribution with parameters λ_i ($i = 1, \ldots, k$), then the sum $X_1 + \cdots + X_k$ has the Poisson distribution with parameter $\lambda_1 + \cdots + \lambda_k$.

Remark

This theorem can be easily proved using characteristic functions or moment generating functions. However, these two concepts are beyond this course.

Poisson Approximation to Binomial

Theorem: Suppose $np_n = \lambda$ for n = 1, 2, ... Then

$$\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Proof.

Denote
$$f_n(k) = \binom{n}{k} p_n^k (1 - p_n)^{n-k}$$
. Then

$$f_{n}(k) = \frac{n(n-1)\cdots(n-k+1)}{k!} p_{n}^{k} (1-p_{n})^{n-k}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{k!} (\frac{\lambda}{n})^{k} (1-\frac{\lambda}{n})^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \frac{n(n-1)\cdots(n-k+1)}{n^{k} (1-\frac{\lambda}{n})^{k}} (1-\frac{\lambda}{n})^{n}$$

$$= \frac{\lambda^{k}}{k!} (1-\frac{\lambda}{n})^{n} (1-\frac{\lambda}{n-\lambda}) (1-\frac{\lambda-1}{n-\lambda}) \cdots (1-\frac{\lambda-k+1}{n-\lambda}).$$

Since
$$\lim_{n\to\infty} (1-\frac{\lambda}{n-\lambda})(1-\frac{\lambda-1}{n-\lambda})\cdots(1-\frac{\lambda-k+1}{n-\lambda})=1$$
, we have

$$\lim_{n\to\infty} f_n(k) = \lim_{n\to\infty} \frac{\lambda^k}{k!} (1 - \frac{\lambda}{n})^n = \frac{\lambda^k}{k!} e^{-\lambda}.$$

H

Poisson Approximation to Binomial – Example

Diseased People. Suppose that in a large population the proportion of people who have a certain disease is 0.01. Determine the probability that in a group of 200 people at least four people will have the disease.

Solution Method 1: Let *X* be the number of people in the group who have the disease. Then $X \sim \text{binomial}(n = 200, p = 0.01)$, and

$$P(X \ge 4) = 1 - \sum_{i=0}^{3} P(X = i) = 1 - {200 \choose 0} 0.01^{0} \cdot 0.99^{200} - {200 \choose 1} 0.01^{1} \cdot 0.99^{199}$$
$$- {200 \choose 2} 0.01^{2} \cdot 0.99^{198} - {200 \choose 3} 0.01^{3} \cdot 0.99^{197} = 0.141965965555...$$

Poisson Approximation to Binomial – Example

Diseased People. Suppose that in a large population the proportion of people who have a certain disease is 0.01. Determine the probability that in a group of 200 people at least four people will have the disease.

Solution Method 1: Let X be the number of people in the group who have the disease. Then $X \sim \text{binomial}(n = 200, p = 0.01)$, and

$$P(X \ge 4) = 1 - \sum_{i=0}^{3} P(X = i) = 1 - {200 \choose 0} 0.01^{0} \cdot 0.99^{200} - {200 \choose 1} 0.01^{1} \cdot 0.99^{199}$$
$$- {200 \choose 2} 0.01^{2} \cdot 0.99^{198} - {200 \choose 3} 0.01^{3} \cdot 0.99^{197} = 0.141965965555...$$

Solution Method 2: Approximately let us assume $X \sim \text{Poisson}(\lambda = np = 2)$. Hence

$$P(X \ge 4) = 1 - \sum_{i=0}^{3} P(X = i) = 1 - (\frac{2^{0}}{0!} + \frac{2^{1}}{1!} + \frac{2^{2}}{2!} + \frac{2^{3}}{3!})e^{-2} = 0.1428765...$$

The error is quite small.

Introducing Negative Binomial Distributions

Sampling until a Fixed Number of Successes. Suppose that an infinite sequence of independent Bernoulli trials with probability of success *p* are available. Determine the p.f. of the random number *X* of failures that occur before the *r*th success.

Solution: The event X = k occurs if and only if exactly r - 1 successes occur among the first r - 1 + k trials and the (r + k)th trial is successful. Since all trials are independent, it follows that

$$P(X = k) = {r-1+k \choose k} p^{r-1} (1-p)^k \cdot p$$
$$= {r-1+k \choose k} p^r (1-p)^k.$$

Negative Binomial Distributions

Definition [Negative Binomial Distribution]: A random variable X is said to have the negative binomial distribution with parameters r and p (r positive integer, 0) if

$$P(X = x) = \begin{cases} \binom{r-1+x}{x} p^r (1-p)^x & \text{for } x = 0, 1, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Example

Defective Parts. A machine produces parts that can be either good or defective. Assume that the parts are good or defective independently of each other with p for all parts. An inspector observes the parts produced by this machine until she sees four defectives. Let X be the number of good parts observed by the time that the fourth defective is observed. Then $X \sim \text{negative_binomial}(4, p)$.

Geometric Distributions

The geometric distributions are special cases of the negative binomial distributions (r = 1). Usually a geometric distribution will be used to model the number of failures until the first success.

Definition [Geometric Distribution]: A random variable X is said to have the geometric distribution with parameter p (0) if it has the negative binomial distribution with parameters <math>r = 1 and p, which means

$$P(X = x) = \begin{cases} p(1-p)^x & \text{for } x = 0, 1, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Mean and Variance of Negative Binomial Distributions

The following theorem verifies that the previously given negative binomial p.f. is indeed a p.f. and give the expectation and variance of the negative binomial distributions. Its proof is not given because they will require the *generalized binomial theorem* which is beyond the scope of this course.

Theorem: Suppose that r is a positive integer, 0 , then

- **2** Let $X \sim \text{negative_binomial}(r, p)$. Then

$$E(X) = \frac{r(1-p)}{p}$$
 and $Var(X) = \frac{r(1-p)}{p^2}$.

Additive Property of Negative Binomial Distributions

Theorem: If X_1, \ldots, X_k are independent random variables and if X_i has the negative binomial distribution with parameters r_i and p $(i = 1, \ldots, k)$, then the sum $X_1 + \cdots + X_k$ has the negative binomial distribution with parameters $r_1 + \cdots + r_k$ and p.

Remark

- This theorem is a generalization of Theorem 5.5.2 (P298). Its
 proof is omitted because that will involve the concept of
 characteristic functions which is beyond the scope of this course.
- It is essential that the component RVs be independent and their distributions have the same parameter *p*.

Poisson Approximation to Negative Binomial

Theorem: When $r \to \infty$ and $r(1 - p_r) = \lambda$, the negative binomial distribution with parameters r and p_r tends to the Poisson distribution with parameter λ , i.e.

$$\lim_{r\to\infty}\binom{r-1+k}{k}p_r^r(1-p_r)^k=\frac{\lambda^k}{k!}e^{-\lambda}.$$

Special Continuous Distributions

Uniform Distributions

Definition [Uniform Distribution]: A random variable X is said to have the uniform distribution on interval [a, b] (a < b) if X has a continuous distribution with the following p.d.f.

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise.} \end{cases}$$

$$Var(X) = \int_{a}^{b} (x - \frac{a+b}{2})^{2} \frac{1}{b-a} dx = \frac{(b-a)^{2}}{12}.$$

Normal Distributions

Definition [Normal Distribution]: A random variable X is said to have the normal distribution with mean μ and variance σ^2 ($\sigma > 0$) if X has a continuous distribution with the following p.d.f.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

 μ

Verification of Normal PDF

Lemma: Let a > 0, then $\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$.

Proof.

Let
$$I = \int_{-\infty}^{\infty} e^{-ax^2} dx$$
, then $I = \int_{-\infty}^{\infty} e^{-ay^2} dy$, and

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-a(x^{2}+y^{2})} dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-ar^{2}} r dr$$
$$= \pi \int_{0}^{\infty} e^{-ar^{2}} dr^{2} = \pi \left(-\frac{e^{-\infty}}{a} - \frac{-e^{0}}{a} \right) = \frac{\pi}{a}.$$

Hence $I = \sqrt{\frac{\pi}{a}}$.

Theorem [Verification of Normal PDF]:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1.$$

Mean and Variance of Normal Distributions

Theorem: Let $X \sim \text{normal}(\mu, \sigma^2)$. Then

$$E(X) = \mu$$
 and $Var(X) = \sigma^2$.

Proof.

$$E(X) = \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{\infty} \frac{z+\mu}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}} dz$$
$$= \underbrace{\int_{-\infty}^{\infty} \frac{z}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}} dz}_{-\infty} + \int_{-\infty}^{\infty} \frac{\mu}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}} dz = \mu.$$

=0, and absolutely integrable

$$\operatorname{Var}(X) = \int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{\infty} \frac{\sigma^2 t^2}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
$$= \frac{\sigma^2}{\sqrt{2\pi}} (-te^{-\frac{t^2}{2}}|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt) = \frac{\sigma^2}{\sqrt{2\pi}} \cdot \sqrt{2\pi} = \sigma^2.$$

Curve Shape of Normal PDF

- The curve is symmetric with respect to $x = \mu$. It is bell-shaped. Changing μ only shifts the curve.
- The shape of the curve is mainly determined by σ . Bigger σ means fatter curve.

Invariance of Normality under Linear Transformations

Theorem: If *X* has the normal distribution with mean μ and variance σ^2 and if Y = aX + b, where *a* and *b* are given constants and $a \neq 0$, then *Y* has the normal distribution with mean $a\mu + b$ and variance $a^2\sigma^2$.

Proof.

Let f_Y be the p.d.f. of Y. Since Y = r(X) = aX + b, we have $r^{-1}(y) = \frac{y-b}{a}$.

Thus,
$$f_Y(y) = f_X[r^{-1}(y)] \left| \frac{dr^{-1}(y)}{dy} \right| = f_X\left[\frac{y-b}{a} \right] \left| \frac{1}{|a|} \right|$$

$$=\frac{1}{\sqrt{2\pi}|a|\sigma}e^{-\frac{(y-a\mu-b)^2}{2a^2\sigma^2}},$$

which means $Y \sim \text{normal}(a\mu + b, a^2\sigma^2)$.

Corollary: If $X \sim \text{normal}(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma} \sim \text{normal}(0, 1)$.

The Standard Normal Distribution

Definition: The normal distribution with mean 0 and variance 1 is called the *standard normal distribution*.

The p.d.f. of the standard normal distribution is usually denoted by the symbol φ , and the c.d.f. is denoted by the symbol Φ . Thus,

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad \Phi(x) = \int_{-\infty}^{x} \varphi(t) dt.$$

A Consequence of Even PDF

Theorem: $\Phi(-x) = 1 - \Phi(x)$.

Proof.

$$\Phi(-x) = \int_{-\infty}^{-x} \varphi(t)dt = \int_{u=\infty}^{u=x} \varphi(-u)d(-u) = \int_{x}^{\infty} \varphi(-u)du.$$

Since $\varphi(u) = \varphi(-u)$,

$$\Phi(-x) = \int_{-\infty}^{\infty} \varphi(u) du = 1 - \Phi(x).$$

Finding Probabilities for Normal Distributions

Let *X* have the normal distribution with mean μ and variance σ^2 . Let *F* be the c.d.f. of *X*. Then $Z = (X - \mu)/\sigma$ has the standard normal distribution, and for all *x*,

$$F(x) = P(X \le x) = P(Z \le \frac{x - \mu}{\sigma}) = \Phi(\frac{x - \mu}{\sigma}).$$

Example

Suppose that *X* has the normal distribution with mean 5 and standard deviation 2. Determine the value of P(1 < X < 8).

Solution: Let Z = (X - 5)/2, then Z has the standard normal distribution and

$$P(1 < X < 8) = P(\frac{1-5}{2} < \frac{X-5}{2} < \frac{8-5}{2}) = P(-2 < Z < 1.5)$$

= $P(Z < 1.5) - P(Z \le -2) = \Phi(1.5) - \Phi(-2) = \Phi(1.5) - [1 - \Phi(2)].$

From the Φ -table, it is found that $\Phi(1.5)=0.9332$ and $\Phi(2)=0.9773$. Therefore, P(1 < X < 8)=0.9105.

Finding Quantiles for Normal Distributions

Theorem: Let $X \sim \text{normal}(\mu, \sigma^2)$ and F be the c.d.f. of X. Then

$$F^{-1}(p) = \mu + \sigma \Phi^{-1}(p),$$

$$\Phi^{-1}(p) = -\Phi^{-1}(1-p).$$

Proof

1. Follows directly from

$$F[\mu + \sigma \Phi^{-1}(p)] = P[X \le \mu + \sigma \Phi^{-1}(p)]$$
$$= P[\frac{X - \mu}{\sigma} \le \Phi^{-1}(p)] = \Phi[\Phi^{-1}(p)] = p.$$

2. Follows directly from

$$\Phi[-\Phi^{-1}(1-p)] = 1 - \Phi[\Phi^{-1}(1-p)] = 1 - (1-p) = p.$$

Finding Quantiles for Normal Distributions – Example

Suppose that X has the normal distribution with mean 1.329 and standard deviation 0.4844. Find the 0.05 quantile of X.

Solution: We have $\Phi^{-1}(p) = -\Phi^{-1}(1-p)$.

So to find $\Phi^{-1}(0.05)$, look up 0.95 in the $\Phi(x)$ column of the Φ -table to find x=1.645 and conclude that $\Phi^{-1}(0.05)=-1.645$. The 0.05 quantile of X is then

$$F^{-1}(0.05) = 1.329 + 0.4844 \times (-1.645) = 0.5322.$$

Additive Property of Normal Distributions

Theorem: If random variables X_1, \ldots, X_k are independent, X_i has the normal distribution with mean μ_i and variance σ_i^2 ($i = 1, \ldots, k$), and a_1, \ldots, a_k and b are constants for which at least one of a_1, \ldots, a_k is not 0, then $a_1X_1 + \cdots + a_kX_k + b$ has the normal distribution with mean $a_1\mu_1 + \cdots + a_k\mu_k + b$ and variance $a_1^2\sigma_1^2 + \cdots + a_k^2\sigma_k^2$.

This theorem can be proved using convolution of p.d.fs or characteristic functions. However, the proof is a bit complicated so it is omitted here.

Example – Determining a Sample Size

Definition [Sample and Sample Mean]: Suppose that X_1, \ldots, X_n are independent random variables all having the same distribution. Then they are collectively called a random sample from that distribution. n is the sample size. The average of these n random variables, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, is called the sample mean.

Let $X_1, ..., X_n$ be a random sample from the distribution normal $(\mu, 9)$. What is the minimum sample size for which $P(|\bar{X} - \mu| \le 1) \ge 0.95$?

Example – Determining a Sample Size

Definition [Sample and Sample Mean]: Suppose that X_1, \ldots, X_n are independent random variables all having the same distribution. Then they are collectively called a random sample from that distribution. n is the sample size. The average of these n random variables, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, is called the sample mean.

Let X_1, \ldots, X_n be a random sample from the distribution normal $(\mu, 9)$. What is the minimum sample size for which $P(|\bar{X} - \mu| \le 1) \ge 0.95$?

Solution: It follows from the additive property that $\bar{X} \sim \text{normal}(\mu, \frac{9}{n})$. Let $Z = \frac{\bar{X} - \mu}{3/\sqrt{n}}$. Then

$$P(|\bar{X} - \mu| \le 1) = P(|Z| \le \frac{\sqrt{n}}{3}) = \Phi(\frac{\sqrt{n}}{3}) - \Phi(\frac{-\sqrt{n}}{3}) = 2\Phi(\frac{\sqrt{n}}{3}) - 1.$$

Since it is required that $P(|\bar{X} - \mu| \le 1) \ge 0.95$, we have $2\Phi(\frac{\sqrt{n}}{3}) - 1 \ge 0.95$, i.e. $\Phi(\frac{\sqrt{n}}{3}) \ge 0.975$, and $\frac{\sqrt{n}}{3} \ge \Phi^{-1}(0.975) = 1.96$, and then $n \ge 34.6$. The sample size must be at least 35.

Multivariate Normal Distributions

Definition [Multivariate Normal Distribution]: The random variables X_1, \ldots, X_n are said to have the n-variate normal distribution with mean $\mu = (\mu_1, \ldots, \mu_n)^T$ and covariance matrix Σ (Σ is positive definite) if X_1, \ldots, X_n have a continuous joint distribution with the following p.d.f.

$$f(x_1,\ldots,x_n) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} e^{-\frac{(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}{2}}$$

where **x** = $(x_1, ..., x_n)^T$.

Bivariate Normal Distributions

Bivariate normal distributions are special cases of multivariate normal distributions when n = 2. Let

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

where $\sigma_1 > 0$, $\sigma_2 > 0$, $-1 < \rho < 1$, which ensures Σ positive definite. Then the joint p.d.f. of X_1 and X_2 is

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{1 - \rho^2}\sigma_1\sigma_2} \exp\{\frac{-1}{2(1 - \rho^2)}\}$$

$$\left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right] \right\}.$$

Properties of Bivariate Normal Distributions

Suppose that X_1, X_2 have the bivariate normal distribution with mean $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$ and covariance matrix $\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$. Then

- **2** Cov $(X_1, X_2) = \rho \sigma_1 \sigma_2$ and $\rho(X_1, X_2) = \rho$.
- 3 X_1 and X_2 are independent if and only if $\rho = 0$.
- **4** [Linear Combination of Bivariate Normals] Let $Y = a_1X_1 + a_2X_2 + b$ where a_1, a_2, b are constants. Then

$$Y \sim \text{normal}(a_1\mu_1 + a_2\mu_2 + b, \quad a_1^2\sigma_1^2 + a_2^2\sigma_2^2 + 2a_1a_2\rho\sigma_1\sigma_2).$$

Fundamental Theorem of Multivariate Normal Distributions

Suppose that X_1, \ldots, X_n have the multivariate normal distribution with mean μ and covariance matrix Σ . If random vector $\mathbf{Y} = (Y_1, \ldots, Y_k)^T$ is obtained by

$$\mathbf{Y} = \mathbf{AX} + \mathbf{b},$$

where **A** is an $k \times n$ full row-rank constant matrix, $\mathbf{X} = (X_1, \dots, X_n)^T$, and $\mathbf{b} = (b_1, \dots, b_k)^T$ is a constant column vector, then

 Y_1, \ldots, Y_k have the multivariate normal distribution with

mean $\mathbf{A}\mu + \mathbf{b}$ and covariance matrix $\mathbf{A}\Sigma\mathbf{A}^T$.

Further Properties of Multivariate Normal Distributions

Suppose that X_1, \ldots, X_n have the multivariate normal distribution with mean μ and covariance matrix Σ . Then

- \bullet $X_i \sim \text{normal}(\mu_i, \Sigma_{ii}) \text{ for } i = 1, \dots, n.$
- 3 Any subset of X_1, \ldots, X_n also have a multivariate normal distribution.
- 4 Any subset of X_1, \ldots, X_n are mutually independent if and only if they are pairwise uncorrelated.

The Gamma Function

Definition [Gamma Function]: For each positive number α , let the value $\Gamma(\alpha)$ be defined by the following integral:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx.$$

Theorem: $\Gamma(\alpha)$ exists as a finite number for any $\alpha > 0$.

Proof.

It is easy to see that there is some $h \ge e$ such that for all $x \ge h$, $\frac{x}{\ln(x)} \ge 2(\alpha - 1)$, and thus $x^{\alpha - 1}e^{-x} \le e^{\frac{-x}{2}}$. We then have

$$\Gamma(\alpha) = \int_0^1 x^{\alpha - 1} e^{-x} dx + \int_1^h x^{\alpha - 1} e^{-x} dx + \int_h^\infty x^{\alpha - 1} e^{-x} dx$$

$$\leq \underbrace{\int_0^1 x^{\alpha - 1} dx}_{=1/\alpha} + \underbrace{\int_1^h x^{\alpha - 1} e^{-x} dx}_{finite} + \underbrace{\int_h^\infty e^{\frac{-x}{2}} dx}_{-2, \frac{-h}{2}}.$$

Curve of the Gamma Function

Properties of the Gamma Function

Theorem: For all $\alpha > 0$, $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

Proof.

$$\Gamma(\alpha+1) = \int_0^\infty x^{\alpha} e^{-x} dx = \int_{x=0}^{x=\infty} -x^{\alpha} de^{-x}$$
$$= -x^{\alpha} e^{-x} \Big|_{x=0}^{x=\infty} + \int_{x=0}^{x=\infty} e^{-x} dx^{\alpha} = \int_0^\infty \alpha e^{-x} x^{\alpha-1} dx$$
$$= \alpha \Gamma(\alpha).$$

Corollary: For all positive integer n, $\Gamma(n) = (n-1)!$

Gamma Distributions

Definition [Gamma Distribution]: Let α and β be positive numbers. A random variable X is said to have the Gamma distribution with parameters α and β if X has a continuous distribution with the following p.d.f.

$$f(x) = \begin{cases} \frac{\beta}{\Gamma(\alpha)} (\beta x)^{\alpha - 1} e^{-\beta x} & \text{for } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Curve Shape of Gamma PDF

- For $\alpha < 1$, the p.d.f. is strictly decreasing from $f(0) = \infty$ to $f(\infty) = 0$.
- For $\alpha = 1$, the p.d.f. is strictly decreasing from $f(0) = \beta$ to $f(\infty) = 0$.
- For $\alpha > 1$, the p.d.f. has a peak at $x = \frac{\alpha 1}{\beta^2}$. Before the peak, it is strictly increasing and after the peak, it is strictly decreasing.

Mean and Variance of Gamma Distributions

Theorem: Let $X \sim \text{Gamma}(\alpha, \beta)$. Then

$$E(X) = \frac{\alpha}{\beta}$$
 and $Var(X) = \frac{\alpha}{\beta^2}$.

$$E(X) = \int_0^\infty x \frac{\beta}{\Gamma(\alpha)} (\beta x)^{\alpha - 1} e^{-\beta x} dx = \int_0^\infty \frac{1}{\Gamma(\alpha)} (\beta x)^{\alpha} e^{-\beta x} dx$$

$$= \int_0^\infty \frac{1}{\beta \Gamma(\alpha)} (\beta x)^{\alpha} e^{-\beta x} d\beta x = \frac{1}{\beta \Gamma(\alpha)} \Gamma(\alpha + 1) = \frac{1}{\beta \Gamma(\alpha)} \alpha \Gamma(\alpha) = \frac{\alpha}{\beta}.$$

$$E(X^2) = \int_0^\infty x^2 \frac{\beta}{\Gamma(\alpha)} (\beta x)^{\alpha - 1} e^{-\beta x} dx = \int_0^\infty \frac{1}{\beta \Gamma(\alpha)} (\beta x)^{\alpha + 1} e^{-\beta x} dx$$

$$= \int_0^\infty \frac{1}{\beta^2 \Gamma(\alpha)} (\beta x)^{\alpha + 1} e^{-\beta x} d\beta x = \frac{1}{\beta^2 \Gamma(\alpha)} \Gamma(\alpha + 2)$$

$$= \frac{1}{\beta^2 \Gamma(\alpha)} (\alpha + 1) \alpha \Gamma(\alpha) = \frac{(\alpha + 1)\alpha}{\beta^2}.$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{\alpha}{\beta^2}.$$

Additive Property of Gamma Distributions

Theorem: If X_1, \ldots, X_k are independent random variables and if X_i has the Gamma distribution with parameters α_i and β ($i = 1, \ldots, k$), then the sum $X_1 + \cdots + X_k$ has the Gamma distribution with parameters $\alpha_1 + \cdots + \alpha_k$ and β .

Exponential Distributions

The exponential distributions are special cases of the Gamma distributions where the parameter $\alpha=1$.

Definition [Exponential Distribution]: Let $\beta > 0$. A random variable X is said to have the exponential distribution with parameter β if X has a continuous distribution with the following p.d.f.

$$f(x) = \begin{cases} \beta e^{-\beta x} & \text{for } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Memoryless Property of Exponential Distributions

Theorem: Let *X* have the exponential distribution with parameter β , and let t > 0. Then for every h > 0,

$$P(X \ge t + h | X \ge t) = P(X \ge h).$$

Proof.

For each t > 0,

$$P(X \ge t) = \int_{t}^{\infty} \beta e^{-\beta x} dx = e^{-\beta t}.$$

Hence, for each t > 0 and each h > 0,

$$P(X \ge t + h | X \ge t) = \frac{P(X \ge t + h)}{P(X \ge t)} = \frac{e^{-\beta(t+h)}}{e^{-\beta t}} = e^{-\beta h} = P(X \ge h).$$

Homework for Chapter 5

- P280: 4, 8
- P296: 2, 4, 12, 13
- P301: 2, 6
- P315: 2, 5, 10, 11
- P325: 4, 6, 8
- P345: 2, 3, 4, 6, 13