Exersise 8.1

Notice that the set of left proper ideals of R form a partially ordered set P with inclusion as the ordering relation $(K \leq J \Leftrightarrow K \subseteq J)$. We know that P is not empty since $I \in P$. If we show that every chain in P has an upper bound in P since then by Zorn's Lemma P has a maximal element (which is a maximal ideal). Considering any chain of proper ideals.

$$I_1 \subset I_2 \subset I_3 \subset \dots$$

we have that

$$U = \bigcup_{i=1}^{\infty} I_i \in P$$

U is an ideal since for any $x, y \in U, r \in R$, there exists I_n such that $x, y \in I_n$ then $x + y \in I_n \subseteq U, rx \in I_n \subseteq R$. U is proper since $1 \notin I_i \forall i$ so $1 \notin U$. We have that

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq U$$

So every chain is bounded. Thus we are done.

Exersise 8.2

(a) For any $a \in D$, if we consider the set $1, a, a^2, a^3, \dots a^n$ where n is the dimension of D over k. We have n+1 elements and thus they are linearly dependent. So there exists a nonzero polinomial

$$f(a) = k_n a^n + k_{n-1} a^{n-1} + \dots + k_1 a + k_0 = 0$$

(b) D = k since for any $a \in D$ and $f \in k[x]$, f(a) = 0 we can factor f completely since k is completely

$$f(a) = (a - a_n)(a - a_{n-1})\dots(a - a_0)$$

Where $a_n, a_{n-1}, \dots a_0 \in k$. Since D is a domain we know $a = a_i$ for one of the a_i and thus $a \in k$

Exersise 8.3

If M is some k[G] module with submodule $N \subset M$, we have the surjective homomorphism $\pi: M \to M/N$. Since k is a subring of k[G] M and M/N are k vectorspaces. We have a k linear section $s: M/N \to M$ such that $\pi \circ s = \mathrm{id}$. The reason for this is because M/N has a basis B as a vectorspace so for each $b \in B$ there is some $m \in M$ with $\pi(m) = b$ then we define s(b) = m. s is a fully defined k linear map from where it sends its basis. We have that

$$s'(x) = \frac{1}{|G|} \sum_{g \in G} e_g s(e_{g^{-1}}x)$$

is a k[G] module homomorphism. Checking the properties: s'(x+y) = s'(x) + s'(y), we can use the fact that s(x+y) = s(x) + s(y)

$$s'(x+y) = \frac{1}{|G|} \sum_{g \in G} e_g s(e_{g^{-1}}(x+y)) = \frac{1}{|G|} \sum_{g \in G} e_g s(e_{g^{-1}}x) + e_g s(e_{g^{-1}}y)) = s'(x) + s'(y)$$

For s'(rx) = rs'(x) for $r \in k[G]$ we have that $r = e_{g_1}k_1 + e_{g_2}k_2 + \dots + e_{g_n}k_n$ so

$$s'(rx) = s'(e_{g_1}k_1x + e_{g_2}k_2x + \dots + e_{g_n}k_nx) = k_1s'(e_{g_1}x) + k_2s'(e_{g_2}x) + \dots + k_ns'(e_{g_n}x)$$

We know s' is k linear since

$$s'(kx) = \frac{1}{|G|} \sum_{g \in G} e_g s(e_{g^{-1}}kx) = \frac{1}{|G|} \sum_{g \in G} e_g ks(e_{g^{-1}}x) = ks'(x)$$

Thus we must only check that $s'(e_h x) = e_h s'(x)$.

$$s'(e_h x) = \frac{1}{|G|} \sum_{g \in G} e_g s(e_{g^{-1}h} x)$$

We can relabel $z = h^{-1}g$ and $z^{-1} = g^{-1}h$. Since $h^{-1}G = G$ we have the same sum

$$\frac{1}{|G|} \sum_{z \in G} e_{hz} s(e_{z^{-1}}x) = \frac{e_h}{|G|} \sum_{z \in G} e_z s(e_{z^{-1}}x) = e_h s'(x)$$

Thus s' is a k[G] module homomorphism.

Letting Q=s'(M/N) we have that $M=N\oplus Q$ and thus M is semisimple. We can show $M=N\oplus Q$ by showing $Q\cap N=0$ and Q+N=M thus from the chinese remainder theorem $M\cong M/N\oplus M/Q$

Exersise 8.4

Consider $R = \mathbb{Z}$ for some prime p we have the chain of R modules

$$0 \to \mathbb{Z}/(p) \to \mathbb{Z}/(p^2) \to (\mathbb{Z}/(p^2))/(\mathbb{Z}/(p)) \cong \mathbb{Z}/(p) \to 0$$

We know $\mathbb{Z}/(p)$ is simple, yet $\mathbb{Z}/(p^2) \not\cong \mathbb{Z}/(p) \oplus \mathbb{Z}/(p)$ since the generator must map to an element of order p^2 , so $\mathbb{Z}/(p^2)$ is not simple

Exersise 8.5

(a)

$$(i \Rightarrow ii)$$

This follows directly from the definition. Letting $N=P, \pi=p, f=\mathrm{id}$. By the definition of a projective there exists $s:P\to M$ with $p\circ s=\mathrm{id}$. $(ii\Rightarrow iii)$

$$(iii \Rightarrow i)$$

For any R module M, N, surjective homomorphism $\pi: M \to N$ and homomorphism $f: M \to N$

 $P \to N$ we can extend f as $f: (P \oplus Q) \to N$ by setting $f(0 \oplus Q) = 0$. We have that $P \oplus Q$ is free so has some generators g_1, g_2, \ldots . Since π is surjective, there exists $m_1, m_2, \cdots \in M$ where $\pi(m_1) = f(g_1), \pi(m_2) = f(g_2) \ldots$. Thus we can define a homomorphism using the universal property of free modules

$$g: P \oplus Q \to M$$
 where $g_1 \to m_1, g_2 \to m_2 \dots$

We have that $\pi(g(g_i)) = g_i$ and thus since homomorphisms from free modules are entirely determined by the image of the generators, $\pi \circ g = \text{id}$. Thus if we restrict g to the submodule P we get the mapping showing P is projective.

$$\begin{array}{c}
 \text{(b)} \\
 (i \Rightarrow ii)
 \end{array}$$

This follows directly from the definition. To use the same notation in the assignments description of injective, letting $M=I,\ N=M,\ \pi=s,\ f=\mathrm{id}$ it follows from the definition of injective there exists $p:M\to I$ with $p\circ s=\mathrm{id}$. $(ii\Rightarrow i)$

Exersise 8.6

(a) (b) (c)

Exersise 8.7

 $(i \Rightarrow ii)$

 $(ii \Rightarrow iii)$

 $(iii \Rightarrow i)$