- 9. For each of the following pairs of functions, indicate whether the first function of each of the following pairs has a lower, same, or higher order of growth (to within a constant multiple) than the second function.
 - **a.** n(n+1) and $2000n^2$
- **b.** $100n^2$ and $0.01n^3$
- c. $\log_2 n$ and $\ln n$
- **d.** $\log_2^2 n$ and $\log_2 n^2$
- **e.** 2^{n-1} and 2^n
- **f.** (n-1)! and n!

Or) $n(n+1) = n^2 + 0$ There rendered and of growth

b) 160 1²

 $\lim_{n\to\infty} \frac{\log n}{\log n} = \frac{\log n}{\log n}$ $\lim_{n\to\infty} \frac{\log n}{\log n} = \frac{\log n}{\log n}$

d) $log_2 = log_2 \cdot log_2$ $log_2 = log_2$ $log_2 = log_2 \cdot log_2 = log_2 \cdot log_2 = log_2 \cdot log_2 \cdot$

e)
$$\frac{n-1}{2} = \frac{2}{2}$$
 The how same end of prowth

$$f) (n-1)! = 0 (n-1)! \longrightarrow h^{os} h^{sh} or from the of your than the order of your than the y$$

2.2

2. Use the informal definitions of O, Θ , and Ω to determine whether the following assertions are true or false.

a.
$$n(n+1)/2 \in O(n^3)$$
 b. $n(n+1)/2 \in O(n^2)$

b.
$$n(n+1)/2 \in O(n^2)$$

c.
$$n(n+1)/2 \in \Theta(n^3)$$
 d. $n(n+1)/2 \in \Omega(n)$

d.
$$n(n+1)/2 \in \Omega(n)$$

a)
$$\frac{n(n+1)}{2} \in O(n^3) \times \frac{2}{2}$$
ES (n^2)
ES (n^2)
 $\frac{2}{2}$
ES (n^2)

c)
$$\frac{2}{2}$$

$$\frac{1}{2}$$
 $\frac{n(n+1)}{2}$ $\in A(n)$ $\forall me$

3. For each of the following functions, indicate the class $\Theta(g(n))$ the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions.

a.
$$(n^2+1)^{10}$$

b.
$$\sqrt{10n^2+7n+3}$$

c.
$$2n \lg(n+2)^2 + (n+2)^2 \lg \frac{n}{2}$$
 d. $2^{n+1} + 3^{n-1}$

d.
$$2^{n+1} + 3^{n-1}$$

a)
$$(n^2H)^{10}$$

 $(n^2H)^{10} \approx (n^2)^{10} = n^2 \in \Theta(n^2)$
b) $\sqrt{(n^2+7n+3)} \approx \sqrt{(n^2)^2} = 100 \in \Theta(n^2)$

c)
$$2n \lg (n+2)^2 + (n+2)^2 \lg \frac{n}{2}$$

 $2 \cdot 22 \lg (n+2) + (n+2)^2 \lg \frac{n}{2} = \Theta(n^2 \lg n)$
 $\Theta(n \lg n) = \Theta(n^2 \lg n)$

$$d) 2^{n+1} + 3^{n-1} \in \Theta(.)$$

$$() 2.2^{n} + \frac{3^{n}}{3}$$

$$() 2.2^{n} + \frac{3$$

e)
$$\lfloor |g_2^{\circ}| \rfloor$$
 $\lfloor |g_2^{\circ}| \rfloor \approx |g_2^{\circ}| \Leftrightarrow (|g_2^{\circ}|)$
 $\times 1 \leq 1 \leq 1$

5. List the following functions according to their order of growth from the lowest to the highest:

$$(n-2)!, 5\lg(n+100)^{10}, 2^{2n}, 0.001n^4 + 3n^3 + 1, \ln^2 n, \sqrt[3]{n}, 3^n.$$

$$(n-2)!, \Theta((n-2)!)$$

$$\Im(n-2)!, \Theta((n-2)$$

$$5 \frac{1}{9} \left(\frac{1}{2} + \frac{1}{2} \right)^{1}$$
 $\frac{2}{3}$
 $\frac{2}{3}$
 $\frac{2}{3}$

- 2. Find the order of growth of the following sums. Use the $\Theta(g(n))$ notation with the simplest function g(n) possible.

the simplest function
$$g(n)$$
 possible.

a. $\sum_{i=0}^{n-1}(i^2+1)^2$
b. $\sum_{i=2}^{n-1}\lg i^2$
c. $\sum_{i=1}^{n}(i+1)2^{i-1}$
d. $\sum_{i=0}^{n-1}\sum_{j=0}^{i-1}(i+j)$

A)

$$\sum_{i=0}^{n-1}\binom{n}{2}+1$$

$$\sum_{i=0$$

 $\sum_{i=1}^{n-1} i = n^{-1-o-1} = n \in O(n)$ $\Theta(n^5) + \Theta(n^2) + \Theta(n) = \Theta(n^5)$

b)
$$\frac{1}{1} = \frac{1}{2} = \frac$$

$$\frac{1}{12} \left(\frac{1}{12} \right) = \frac{1}{12} \left(\frac{1}{12} \right) \left(\frac{1}{12} \right) = \frac{$$

Consider the following algorithm.

ALGORITHM Mystery(n)

//Input: A nonnegative integer n

$$S \leftarrow 0$$

for
$$i \leftarrow 1$$
 to n do
$$S \leftarrow S + i * i$$
return S

b) mutaplication ~d scannation

c) ((n) = \frac{51}{51} = \frac{1}{5}

 $\frac{d}{d} = \frac{2}{1-2} = \frac{2n+1}{6}$

(1)

5. Consider the following algorithm.

```
ALGORITHM Secret(A[0..n - 1])

//Input: An array A[0..n - 1] of n real numbers

minval \leftarrow A[0]; maxval \leftarrow A[0]

for i \leftarrow 1 to n - 1 do

if A[i] < minval

minval \leftarrow A[i]

if A[i] > maxval

maxval \leftarrow A[i]

return maxval - minval
```

Consider the following algorithm.

ALGORITHM
$$Enigma(A[0..n-1, 0..n-1])$$

//Input: A matrix $A[0..n-1, 0..n-1]$ of real numbers
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
if $A[i, j] \neq A[j, i]$
return false

return true

$$= (n-1) \left[2n-2 - n+1 \right]$$

$$= (n-1) \cdot (n)$$

e) No 1

2.4

1. Solve the following recurrence relations.

a.
$$x(n) = x(n-1) + 5$$
 for $n > 1$, $x(1) = 0$

b.
$$x(n) = 3x(n-1)$$
 for $n > 1$, $x(1) = 4$

c.
$$x(n) = x(n-1) + n$$
 for $n > 0$, $x(0) = 0$

d.
$$x(n) = x(n/2) + n$$
 for $n > 1$, $x(1) = 1$ (solve for $n = 2^k$)

e.
$$x(n) = x(n/3) + 1$$
 for $n > 1$, $x(1) = 1$ (solve for $n = 3^k$)

a) $x(n) = x(n-1) + 5 / 60 \times 7.1$ x(n) = 0x(n-1) = (x(n-2) + 5)

$$X(\eta) = n^2 + 2$$

$$\begin{array}{l} d) \times (n) = \times (n/2) + n \quad \text{der } n \text{ of } \\ = \times (n/2) + 2 \\ \times (n/2) = \times (n/2) + 2 \\ \times (n/2) = \times (n/2) + 2 \\ \times (n/2) = \times (n/2) + 2 \\ =$$

$$= \frac{1}{2} + \frac{$$

$$= \times (1) + (k)$$
 $= 1 + \log_3 n$
 $\times (n) = 1 + (9_3 n)$

3. Consider the following recursive algorithm for computing the sum of the first n cubes: $S(n) = 1^3 + 2^3 + \cdots + n^3$.

ALGORITHM S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes

if n = 1 return 1 else return S(n-1) + n * n * n

- a. Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed.
- b. How does this algorithm compare with the straightforward nonrecursive algorithm for computing this sum?

of) Busscreet: multiplecation M(n) M(n) = M(n-1) + 2, M(q) = 0 = M(n-1-1) + 2 + 2= M(n-2) + 2+2

2 2 1 60

$$= M(n-3) + 2+2+--+2$$

$$= M(n-n+1) + 2+2+--+2$$

$$= M(1) + 2(n-1)$$

$$= 2(n-1)$$

$$= 2(n-1)$$
NonRecS(n)
$$S = 2 \text{ for } i = 2 \text{ for } n \text{ do}$$

$$S = 3 + i \times i \times i \times i$$

$$redu = S$$

4. Consider the following recursive algorithm.

ALGORITHM Q(n)

//Input: A positive integer n

if
$$n = 1$$
 return 1
else return $Q(n-1) + 2 * n - 1$

- a. Set up a recurrence relation for this function's values and solve it to determine what this algorithm computes.
- b. Set up a recurrence relation for the number of multiplications made by this algorithm and solve it.
- c. Set up a recurrence relation for the number of additions/subtractions made by this algorithm and solve it.

a)
$$O(n) = O(n-1) + 2n-1$$

 $O(2) = O(1) + 2n-1 = 4$
 $O(2) = O(2) + 3n-1 = 2$
 $O(3) = O(3) + 24-1 = 16$
 $O(a) = O(3) + 24-1 = 16$
 $O(n) = n^2$
 $O(n) = m(n-1) + 1 + 1 + m(n-2) + 2$
 $O(n-1-1) + 1 + 1 = m(n-2) + 2$

= M(n-3) + 3

$$= M(n-n+1) + n-1 =$$

$$= M(n) + n-1 = n-1$$

$$= M(n) + n-1 = n-1$$

$$= C(n-1) + C(n) = 0$$

$$= (C(n-1) + 3) + 3$$

$$= C(n-2) + 3+3$$

$$= C(n-2) + 3+3$$

$$= C(n-1) + 3(n-1)$$

$$= C(n) + 3(n-1) = 3(n-1)$$

$$= 0 + 3(n-1) = 3(n-1)$$

$$= 0 + 3(n-1) = 3(n-1)$$

$$= 2(n-1)$$