	Undirected	Directed
Mean Degree	$\bar{d} = \frac{\sum_{i=1}^g d(n_i)}{g} = \frac{2L}{g}.$	$\bar{d}_{l} = \frac{\sum_{i=1}^{g} d_{I}(n_{i})}{g}$ $\bar{d}_{O} = \frac{\sum_{i=1}^{g} d_{O}(n_{i})}{g}$ $\bar{d}_{I} = \bar{d}_{O} = \frac{L}{g}$
Variance of degree	$S_D^2 = \frac{\sum_{i=1}^g (d(n_i) - \bar{d})^2}{g}.$	$S_{D_I}^2 = \frac{\sum_{i=1}^g (d_I(n_i) - \bar{d}_I)^2}{g}$ $S_{D_O}^2 = \frac{\sum_{i=1}^g (d_O(n_i) - \bar{d}_O)^2}{g}$
Density	$\Delta = \frac{L}{g(g-1)/2} = \frac{2L}{g(g-1)}.$	$\Delta = \frac{L}{g(g-1)}$

BASIC GRAPH PROPERTIES			
Local Clustering			
Coefficient	$LCC(vi) = \frac{\#pairs\ of\ connected\ neighbours\ of\ vi}{\#pairs\ of\ neighbours\ of\ vi}$		
	$LCC(vi) = {\#pairs\ of\ neighbours\ of\ vi}$		
# Pairs of neighbours of vi		(d)	
d=degree(vi)		$\binom{2}{2}$	
Global Clustering	GCC = Transitivity		
Coefficient/ Transitivity	#closed triples	3 * #triangles	
	$={\#connected\ triples}$	3 * #triangles + #non triangle connected triples	
Density	#lines present		
	$Density = \frac{Max \ possible \ lines}{Max \ possible \ lines}$		
Reciprocity	#edges reciprocated		
	Reciprocity = $\frac{1}{\#edges\ in\ graph}$		
Sign of a cycle	Product(Signs on all edges)		
•	Balanced if sign>0		

SEQUENCE OF VERTICE	S AND EDGES	
Walk	sequence of nodes and lines, starting and ending with nodes, in which each node is incident with the lines following and preceding it in the sequence	
Trail	walk in which all of the lines are distinct , though some node(s) may be included more than once	
Path	walk in which all nodes and all lines are distinct	
venn diagram here		
Closed Walk	A walk that begins and ends at the same node	
Cycle	A closed walk of at least three nodes in which all lines are distinct, and all nodes except the beginning and ending nodes are distinct	
Tour	A closed walk in which each line in the graph is used at least once	
Eulerian Trail	special closed trails that include every line exactly once	
Hamiltonian Cycle	Cycle in which Every node in the graph is included exactly once	
venn diagram here		

SPECIAL SUBGRAPHS		Maximal?	
Maximal xyz	If this xyz is not subgraph of a larger xyz		
Clique	maximal complete subgraph of three or more nodes.		
n-clique	maximal (if not complete)subgraph in which the largest geodesic distance		
	between any two nodes is no greater than n.		
	Maximal subgraph		
	$d(i,j) \le n \forall vi, vj \in V$		
	diameter(G) may or may not $be = n$		
n-clan	n-clique in which the geodesic distance between all nodes in the subgraph		
	is no greater than n for paths within the subgraph.		
	$d(i,j) \le n \ \forall vi, vj \in V$		
	Paths within the subgraph		
	diameter(G) may or may not be = n		
-club maximal subgraph of diameter n.		_	
	Maximal subgraph		
	diameter(G) = n		
k-plex	maximal subgraph containing V nodes in which each node is adjacent to	_	
	no fewer than gs - k nodes in the subgraph		
	Maximal subgraph		
	$degree(i) \ge V - k$		
k-core	subgraph in which each node is adjacent to at least a minimum number k,		
	of the other nodes in the subgraph.		
	$degree(i) \ge k$		
k-shell subgraph which consists of nodes which are part of k core but not part			
	(k+1) core		

EGO N/W			
Size	$Size(G) = \#Alters\ of\ G = degree(G)$		
G=ego			
Alter=Direct neighbour			
Redundancy	$Redundancy(G's \ alter) = \frac{\#(G's \ alter)'s \ alters \ except \ G}{\#alters \ of \ G}$		
	$meaunancy(G \ s \ alter) = \frac{meaunancy(G \ s \ alter)}{meaunancy(G \ s \ alter)}$		
Effective Size	$Effective\ Size(G) = Size(G) - Sum(\ Redundancy\ of\ all\ G's\ alters)$		
Efficiency	$Efficiency = \frac{Effective\ Size(G)}{Size(G)}$		
	Size(G)		
Node with highest Efficiency is chosen as EGO			

SIMILARITY INDICES	
Jaccard Similarity N(vi)=Neighbour set of node vi	$\sigma jaccard(vi, vj) = \frac{ N(vi) \cap N(vj) }{ N(vi) \cup N(vj) }$
Cosine Similarity	$\sigma cosine(vi, vj) = \frac{ N(vi) \cap N(vj) }{\sqrt{ N(vi) * N(vj) }}$

EVALUATION METRICS -CONFUSION MATRIX BASED

πn _ μn~:	re with same labels that are in same sommenite.			
TP = #Pairs with same labels that are in same community				
FP = #Pairs with different labels that are in same community $FN = #Pairs$ with same labels that are in different communities				
	,,			
$TN = \#Pairs \ with \ different \ labels \ that \ are \ in \ different \ communities$				
Accuracy	$Precision = \frac{11}{TD + FD + TN + FN}$			
Precision	TP + FP + TN + FN			
	$Precision = rac{TP}{TP + FP + TN + FN}$ $Precision = rac{TP}{TP + FP}$ $Recall = rac{TP}{TP + FN}$ $FMeasure = 2 * rac{Precision * Recall}{Precision + Recall}$			
Recall	TP TP			
	$Recall = {TP + FN}$			
F-measure	Precision * Recall			
	$\frac{PMeasure - 2 * Precision + Recall}{Precision}$			
EVALUATION METRICS-PURITY				
	N = #Items to be classified			
(Ci = set of elements in ith community			
	Lj = j th label			
$P_{\text{conitor}} = \frac{1}{N} \sum_{k=1}^{K} m_{\text{conitor}} G_{k} \leq L_{\text{conitor}} = \frac{1}{N}$	Items that have labels same as majority in the classified comm #Items to be classified	unity		
$Purity = \frac{1}{N} \sum_{i=1}^{N} max_{i} Ci \cap Lj = -$	#Items to be classified			
EVALUATION METRICS-NMI				
	Y = Class Labels			
	$C = Cluster\ Labels$			
	$Take \ 0 \times \log_2(0) = 0$			
Entropy of class labels		Y=1,2,3		
	$H(Y) = -\sum_{\substack{i=1\\ C }}^{ C } P(Y=i) \log_2 P(Y=i)$			
Entropy of cluster labels	C	C=1,2,3		
',	$H(C) = -\sum P(C = i) \log_2 P(C = i)$, ,		
Entropy of cluster labels $H(C) = -\sum_{i=1}^{ C } P(C=i) \log_2 P(C=i)$ Entropy of labels within each cluster $H(Y C) = \sum_{j=1}^{ C } \left[P(C=j) \left(-\sum_{i=1}^{ Y } P(Y=i C=j) \log_2 P(Y=i C=j) \right) \right] \begin{subarray}{c} Y=1 \mid C=1 \\ Y=2 \mid C=1 \\ \vdots \\ Y=2 \mid C=1 \\ \vdots \\ Y=2 \mid C=1 \\ \end{bmatrix}$				
Entropy of labels within each		Y=1 C=1		
cluster $H($	$Y(C) = \sum_{i=1}^{n} P(C=j) - \sum_{i=1}^{n} P(Y=i C=j) \log_2 P(Y=i C=j)$	Y=2 C=1		
$\left \begin{array}{c} \sum_{j=1}^{n} \left \begin{array}{c} \sum_{i=1}^{n} \left \begin{array}{c} \sum_{i=1}^{n} \left \sum$				
	, T (/ 1	Y=1 C=2		
Y=2 C=				
Mutual Information b/w Y and C	$I(Y;C) = H(Y) - H(Y C)$ $NMI(Y,C) = \frac{2 * I(Y;C)}{H(Y) + H(C)}$			
Normalised Mutual Information $2*I(Y;C)$				
$WMI(I,C) = \frac{1}{H(Y) + H(C)}$				
ALITER FORMULA				

BALANCED COMMUNI	TIES
	k = #Components after partitioning
	Pi = #Vertices in partition/cutset Pi
Complement Cut set	$\overline{P}i = V - Pi$
Size of cut	$cut(Pi, \overline{Pi}) = Sum$ (weights of edges in cut)
Ratio Cut	Ratio $Cut(P) = \frac{1}{k} \sum_{i=1}^{k} \frac{cut(Pi, \overline{P}i)}{ Pi }$

Volume of partition	$vol(Pi) = \sum_{v \in Pi} d(v) = Sum \ (degrees \ of \ vertices \ in \ partition \ Pi)$		
	In weighted graph, $Degree(v) = Sum(Weights of vertices that meet on v)$		
Normalised Cut	Normalised $Cut(P) = \frac{1}{k} \sum_{i=1}^{k} \frac{cut(Pi, \overline{Pi})}{vol(Pi)}$		
Adjacency Matrix	$Ai, j = \begin{cases} 1 & if \ vi \ adjacent \ to \ vj \\ 0 & otherwise \end{cases}$		
Degree Matrix	$Di, j = \begin{cases} degree(vi) & if i = j \\ 0 & otherwise \end{cases}$		
Laplacian Matrix	$L = \left\{egin{array}{ll} D-A & Ratio~Cut~Laplacian(Unnormalised~Laplacian) \ I-D^{-rac{1}{2}}AD^{-rac{1}{2}} & Normalised~Cut~Laplacian(Normalised~Laplacian) \end{array} ight.$		
Ratio Cut and Normalised Cut are NP Hard Problems			

SPECTRAL COMMUNITIES			
Adjacency Matrix	$Ai, j = \begin{cases} 1 & if \ vi \ adjacent \ to \ vj \\ 0 & otherwise \end{cases}$		
Degree Matrix	$Di, j = \begin{cases} degree(vi) & if i = j \\ 0 & otherwise \end{cases}$		
Laplacian Matrix/Admittance	L = D - A		
Matrix/Kirchoff Matrix/Discrete	(degree(vi)) if $i = j$		
Laplacian	$Li, j = \begin{cases} degree(vi) & if \ i = j \\ -1 & if \ i \neq j \ and \ vi \ is \ adjacent \ to \ vj \end{cases}$		
•	(0 otherwise		
1.Compute the first k eigenvectors of L to get Eigen vector matrix Y			
2 Cluster the column Yi into k clusters using the K-means algorithm			

MODULAR COMMUNITIES			
	m = E = #Edges in the graph		
Adjacency Matrix	$Ai, j = \begin{cases} 1 & if \ vi \ adjacent \ to \ vj \\ 0 & otherwise \end{cases}$		
Degree Matrix	$Di, j = \begin{cases} degree(vi) & if \ i = j \\ 0 & otherwise \end{cases}$		
Modularity Matrix	$B = A - \frac{dd^{T}}{2m}$ $Bi, j = Ai, j - \frac{didj}{2m}$		

- 1) Compute the Eigen values of B
- 2) Compute top k Eigenvectors of B corresponding to the largest positive eigen values 3) Run k-means on the k Eigenvectors to detect 'k' communities

NETWORK MODELS

	Degree Distribution	Clustering Coeff	Avg Path Length
Real World	Power Law	High	Small
ER Model	Binomial /Poisson	Low	Low
SW Model	Poisson	High	High
BA Model	Power Law	Low	Low

Red => Cause of concern

RANDOM GRAPH NETWORK

If c < 1:

- small, isolated clusters
- small diameters
- **short** path lengths

At c = 1:

- a **giant component** appears
- diameter peaks
- path lengths are long

For c > 1:

- almost all nodes connected
- diameter shrinks
- path lengths shorten

1. # Graphs with n nodes, m edges = C_m 2. # Edges in G(T,p) ded = C_p 3. Avg Degree / Expected Degree c-(n-p)4. Prof. of observing m edges = C_p C_m C_m C

PREFERENTIAL ATTACHMENT MODEL

• Degree Distribution: $P(d) = \frac{2m^2}{d^3}$

• Clustering Coefficient: $C = \frac{m_0 - 1}{8} \frac{(\ln t)^2}{t}$

• Average Path Length: $l \sim \frac{\ln |V|}{\ln(\ln |V|)}$

NAÏVE BAYES THEOREM	
	$X = Class\ label$
	Y = Item to be classified
Posterior Probability	$P(X Y) = \frac{P(X) \times P(Y X)}{P(Y)}$
NAÏVE BAYES FOR TEXT CLASSIFICA	TION
	$Ck = Class\ label$
	Target = Item to be classified
P(Ck Target) = Given a Target Probability that it belongs to class Ck
USING SENTENCES	USING TFIDF TABLE

$P(Ck Target) = \frac{P(Ck) \times P(Target Ck)}{P(Target)}$ $= \frac{P(Ck) \times \prod_{w \in Target} P(w Ck)}{P(Target)}$ $P(C1 Target) = \frac{P(C1) \times P(Target C1)}{P(Target)},$ $P(C2 Target) = \frac{P(C2) \times P(Target C2)}{P(Target)}, \dots$ No need to calculate $P(Target)$	$P(Ck Target) = \left(\sum_{w \in Target} TFIDF(w)\right)!$ $\times \prod_{w \in Target} \frac{(P(w Ck))^{TFIDF(w)}}{TFIDF(w)!}$				
$P(word = w Ck) = \frac{1}{Total \#Words}$	#Instances of w in Class Ck may not be unique) classified in Class $Ck = \frac{xk}{d}$				
If any $P(Target Ck) == 0$	$xk xk + \alpha$				
Apply Laplace Smoothing to all	$\overline{d} \to \overline{N + \alpha d}$				
If $\alpha=1$, called add-1 smoothing	N=# Unique Words in dataset (including words in Target)				
Assign $Target$ to class that has highest $P(Ck Target)$ value					

APRIORI ALGORITHM			
		_	
TRUST IN OSN			