Equazioni differenziali 1

Definizioni e terminologia

Si dice equazione differenziale (ordinaria) di ordine n una relazione del tipo

$$F(t, y(t), y'(t), ..., y^{(n)}(t)) = 0,$$

dove F è una assegnata funzione, definita in un aperto $D \subset \mathbb{R}^{n+2}$, mentre y(t) è la funzione incognita che compare nell'equazione con le sue derivate fino all'ordine n incluso.

Si dice *soluzione o integrale* dell'equazione differenziale una funzione $\varphi(t)$, definita e derivabile n volte in un intervallo $I \subseteq R$, tale che

$$F(t, \varphi(t), \varphi'(t), ..., \varphi^{(n)}(t)) = 0, \quad \forall t \in I.$$

Con il termine *integrale generale* si intende una famiglia di funzioni, dipendente da uno o più parametri, che rappresenta l'insieme di tutte le soluzioni di un'equazione differenziale.

Equazioni differenziali 1 2 / 21

Si chiamano equazioni lineari (di ordine n) le equazioni della forma

$$a_n(t)y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + ... + a_1y'(t) + a_0(t)y(t) = b(t)$$

Se b(t) = 0, l'equazione lineare si dice *omogenea*.

Infine, se un'equazione differenziale è scritta nella forma

$$y^{n}(t) = f(t, y(t), y'(t), ..., y^{(n-1)}(t)), \quad \text{con } f: \mathbb{R}^{n+1} \to \mathbb{R},$$

si dice che è in forma normale.

Un'equazione lineare si può scrivere in forma normale se $a_n(t) \neq 0$.

Osservazione sulle notazioni:

in diversi contesti le equazioni possono essere scritte con altre notazioni, sia per la funzione incognita che per la variabile indipendente:

$$x(t)$$
, $y(x)$, $u(x)$, ...

Equazioni differenziali 1 3 / 21

Esempi.

Data una funzione di due variabili f(t, y), l'equazione

$$y'(t)=f(t,y(t)),$$

è del primo ordine in forma normale.

L'equazione della caduta libera dei gravi (nel vuoto)

$$y''(t) = -g$$

è *lineare* del *secondo* ordine (in forma normale). L'*integrale generale* dell'equazione si scrive

$$y(t) = -\frac{1}{2}gt^2 + c_1t + c_2,$$

con c_1 , c_2 costanti arbitrarie.

L'equazione

$$y(t) = t y'(t) + y'(t)^2,$$

è del primo ordine non in forma normale.

Problema di Cauchy (o dei valori iniziali).

Trovare una soluzione dell'equazione

$$y^{(n)} = f(t, y'(t), ..., y^{(n-1)}(t)),$$

che in un punto dato t_0 soddisfa le n condizioni aggiuntive (condizioni iniziali)

$$y(t_0) = y_0, \quad y'(t_0) = y_1, ..., y^{(n-1)}(t_0) = y_{n-1},$$

dove $y_0, y_1,...,y_{n-1}$ sono costanti assegnate.

Per soluzione di un problema di Cauchy si intende una funzione *definita in un intervallo I* che contiene t_0 e che soddisfa l'equazione in tutto I e le condizioni iniziali in t_0 .

Esempio.

Un problema di Cauchy per l'equazione y'' = -g è: trovare la soluzione che soddisfa le condizioni y(0) = H, y'(0) = 0 (caduta da un'altezza H, da fermo).

Soluzione:
$$\varphi(t) = -\frac{1}{2}gt^2 + H$$
.

Equazioni differenziali 1 5 / 21

Equazioni a variabili separabili

Sono equazioni del primo ordine della forma

$$y'=a(t)b(y)\,,$$

dove a(t) e b(y) sono funzioni *continue* in intervalli di \mathbb{R} .

Una prima osservazione:

se un numero \bar{y} risolve $b(\bar{y}) = 0$, allora la *funzione* costante $y(t) = \bar{y}$ è soluzione dell'equazione.

Infatti, poiché la derivata di una costante è zero, inserendo $y(t) = \bar{y}$ nell'equazione si ottiene 0 = 0.

L'insieme delle altre soluzioni (non costanti) è dato *in forma implicita* dalla formula

$$\int \frac{1}{b(y)} dy = \int a(t) dt + c, \qquad c \in \mathbb{R}.$$

Infatti, se y(t) ($t \in I$) è soluzione e $b(y(t)) \neq 0$, possiamo scrivere

Equazioni differenziali 1 6 / 21

$$\frac{y'(t)}{b(y(t))} = a(t), \qquad \forall \ t \in I.$$

Prendendo l'integrale indefinito (cioè le primitive):

$$\int rac{y'(t)}{b(y(t))} dt = \int a(t) dt + c$$
 .

Nel primo integrale facciamo il cambio di variabile y = y(t), dy = y'(t)dt e otteniamo la formula

$$\int \frac{1}{b(y)} dy = \int a(t) dt + c, \qquad c \in \mathbb{R}.$$

Suggerimento per ricordare la formula: scrivere l'equazione con la notazione di Leibniz

$$\frac{dy}{dt} = a(t)b(y),$$

e trattare la derivata come un quoziente:

$$\frac{dy}{b(y)} = a(t)dt.$$

Integrando (a sinistra in y, a destra in t) si ricava la formula.

() Equazioni differenziali 1 7 / 21

Esempi.

Trovare tutte le soluzioni dell'equazione

$$y'=2t(y-1)^2.$$

Determinare le soluzioni che soddisfano rispettivamente le condizioni iniziali:

$$y(0) = 0$$
, $y(0) = 1$, $y(0) = 2$.

Soluzione:

L'equazione ha la soluzione costante y(t) = 1, che ovviamente soddisfa anche la condizione aggiuntiva y(0) = 1.

Le altre soluzioni sono definite (in forma implicita) dall'equazione

$$\int \frac{1}{(y-1)^2} dy = \int 2t \, dt + c.$$

Integrando si ottiene

$$-\frac{1}{v-1}=t^2+c.$$

Equazioni differenziali 1 8 / 21

Infine, risolvendo rispetto a *y*:

$$y(t)=1-\frac{1}{t^2+c}, \qquad c\in\mathbb{R}.$$

La soluzione $\varphi(t)$ che passa per l'origine (0,0) si ottiene risolvendo

$$0=1-\frac{1}{c}, \qquad \Rightarrow \qquad c=1.$$

Abbiamo allora

$$\varphi(t)=1-\frac{1}{t^2+1}\,,\qquad t\in\mathbb{R}\,.$$

La soluzione $\psi(t)$ che passa per il punto (0,2) corrisponde al valore di c che risolve l'equazione

$$2=1-\frac{1}{c}, \qquad \Rightarrow \qquad c=-1.$$

Quindi

$$\psi(t) = 1 - \frac{1}{t^2 - 1}, \qquad t \in (-1, 1).$$

Tempo di svuotamento di un serbatoio.

Risolvere il problema di Cauchy

$$\label{eq:continuity} \left\{ \begin{array}{l} y'(t) = -k\sqrt{y(t)}, \\ y(0) = H, \end{array} \right.$$

dove k, H, sono costanti positive. Calcolare in quale istante t la soluzione si annulla.

Soluzione:

Osserviamo subito che l'equazione ha la soluzione costante y(t) = 0, che però non soddisfa la condizione iniziale; le altre soluzioni sono date dalla formula

$$\int rac{1}{\sqrt{y}} dy = - \int k \, dt + c \, ,$$

da cui la forma implicita

$$2\sqrt{y}=-kt+c.$$

La condizione iniziale è soddisfatta per $c = 2\sqrt{H}$.

Risolvendo per y si ricava

$$y = \left(\sqrt{H} - \frac{k}{2}t\right)^2.$$

Il tempo di svuotamento è quindi $\bar{t} = 2\sqrt{H}/k$.

Osservazione.

Nel primo esempio, si verifica facilmente che per ogni punto (t_0, y_0) del piano esiste *un'unica soluzione* dell'equazione (definita almeno in un intervallo che contiene t_0) passante per quel punto.

Nel secondo caso, l'unicità non vale per i punti $(t_0, 0)$ sull'asse t, dove le soluzioni non costanti 'incontrano' la soluzione y = 0.

Dunque, la soluzione di un problema di Cauchy del tipo

$$\begin{cases} y'(t) = a(t) b(y), \\ y(t_0) = y_0, \end{cases}$$

non è sempre univocamente determinata.

Si può dimostrare che *se* $b(y_0) \neq 0$, esiste un'unica soluzione definita in un intorno di t_0 .

Equazioni differenziali 1 11 / 21

Equazioni lineari del primo ordine

La generica equazione lineare del primo ordine ha la forma

$$a_1(t)y'(t) + a_0(t)y(t) = b(t).$$

Se $a_1(t) \neq 0$, possiamo dividere per questo coefficiente e scrivere l'equazione in *forma normale*

$$y'(t) + a(t) y(t) = f(t).$$

Assumiamo a(t) e f(t) continue in un intervallo $I \subseteq \mathbb{R}$.

Si può ricavare una formula per l'integrale generale di queste equazioni:

Sia $A(t)=\int a(t)\,dt$ una qualsiasi primitiva di a(t); moltiplicando l'equazione per $e^{A(t)}$, abbiamo

$$e^{A(t)}y'(t) + a(t) e^{A(t)}y(t) = e^{A(t)}f(t).$$

A sinistra si riconosce la derivata di un prodotto:

$$\frac{d}{dt}\big[e^{A(t)}y(t)\big]=e^{A(t)}f(t).$$

Equazioni differenziali 1 12 / 21

Integrando si ottiene

$$e^{A(t)}y(t)=\int e^{A(t)}f(t)\,dt+c\,,$$

e infine

$$y(t) = c\,e^{-A(t)} + e^{-A(t)}\int e^{A(t)}f(t)\,dt\,, \qquad c\in\mathbb{R}\,,$$

dove $A(t) = \int a(t) dt$.

Osservazione. L'arbitrarietà nella scelta delle primitive nei due integrali indefiniti della formula equivale a una ridefinizione dell'*unica* costante arbitraria *c*.

Esempi.

Trovare l'integrale generale dell'equazione

$$y'-\frac{2}{t}\,y=t^2\,.$$

Abbiamo a(t) = -2/t, $f(t) = t^2$. Dunque $A(t) = -2 \ln |t| = -\ln t^2$. Inserendo nella formula troviamo

$$y(t) = c t^2 + t^2 \int \frac{1}{t^2} t^2 dt = c t^2 + t^3, \qquad c \in \mathbb{R}.$$

Equazioni differenziali 1 13 / 21

Circuito resistenza-induttanza.

$$L\frac{dI}{dt}+RI=E(t)\,,$$

dove I = I(t) intensità di corrente, E(t) f.e.m., R resistenza, L induttanza.

Poniamo: y(t) = I(t), k = R/L, f(t) = E(t)/L. L'equazione diventa

$$y'(t) + k y(t) = f(t).$$

Integrale generale:

$$y(t) = c e^{-kt} + e^{-kt} \int e^{kt} f(t) dt$$

Esercizio

Calcolare l'integrale generale nei casi :

1)
$$f(t) = \frac{1}{L} E_0$$
 (costante); 2) $f(t) = \frac{E_0}{L} \cos(\omega t)$.

Equazioni differenziali 1 14 / 21

Problema di Cauchy per le equazioni lineari.

Data un'equazione lineare del primo ordine con coefficienti continui in un intervallo I, sia $t_0 \in I$ e sia $y_0 \in \mathbb{R}$.

Allora esiste un'unica soluzione dell'equazione, definita in I, che verifica la condizione $y(t_0) = y_0$.

Dimostrazione.

Facciamo vedere che nella formula dell'integrale generale si può sempre scegliere il valore di *c* in modo da soddisfare il problema di Cauchy. Infatti, se nella formula scegliamo come primitive le *funzioni integrali*

$$A(t) = \int_{t_0}^t a(s) \, ds \,, \qquad \int e^{A(t)} f(t) \, dt \, = \int_{t_0}^t e^{A(s)} f(s) \, ds \,,$$

queste ultime sono nulle in t_0 ; quindi, la soluzione che soddisfa $y(t_0) = y_0$ è

$$y(t) = y_0 e^{-A(t)} + e^{-A(t)} \int_{t_0}^t e^{A(s)} f(s) ds,$$

Equazioni differenziali 1 15 / 21

Discussione del problema di Cauchy.

Dalla risoluzione dei diversi problemi di Cauchy per le precedenti equazioni, evidenziamo le seguenti proprietà delle soluzioni ottenute :

- Per le equazioni a variabili separabili y' = a(t)b(y), una soluzione che soddisfa $y(t_0) = y_0$ esiste se t_0 e y_0 appartengono ad intervalli dove a(t) e b(y) sono continue. L' unicità non è garantita in queste sole ipotesi. In ogni caso, l'intervallo di definizione di una soluzione dipende dai dati iniziali e in generale non è determinato *a priori*.
- Per le equazioni lineari y'+a(t)y=f(t), abbiamo esistenza e unicità della soluzione passante per (t_0,y_0) se t_0 appartiene all'intervallo I dove a(t) e f(t) sono continue, e $per\ ogni\ y_0\in\mathbb{R}$. Inoltre, la soluzione è sempre definita su tutto I.

teoria delle equazioni differenziali, che prendono il nome di *teoremi di* esistenza e unicità, locale e globale, delle soluzioni del problema di Cauchy. Grazie a questi teoremi si possono ricavare informazioni *qualitative* sulle soluzioni di un'equazione a prescindere dall'esistenza di metodi espliciti di risoluzione.

Queste differenti proprietà si spiegano alla luce di importanti risultati della

<u>Teorema</u> (Esistenza e unicità locale).

Sia $f: D \to \mathbb{R}$, con $D \subseteq \mathbb{R}^2$ aperto. Supponiamo che $f \in \partial_y f$ siano continue in D e sia $(t_0, y_0) \in D$.

Esiste allora un intorno I di t_0 tale che il problema di Cauchy

$$\begin{cases} y'=f(t,y), \\ y(t_0)=y_0, \end{cases}$$

ammette una soluzione φ definita in I. Tale soluzione è unica nel senso che ogni altra soluzione coincide con φ nell'intervallo comune di definizione. \diamond

A volte si usa la notazione $\varphi = \varphi(t; t_0, y_0)$ per evidenziare la dipendenza della soluzione dai dati iniziali.

Non dimostriamo il teorema, ma faremo numerose osservazioni sulle sue ipotesi e sulle proprietà delle soluzioni.

Equazioni differenziali 1 17 / 21

Sulle ipotesi del teorema:

i) La sola continuità della f garantisce l'esistenza di almeno una soluzione del problema di Cauchy (Peano), ma non l'unicità.

Questo spiega, nel caso delle equazioni a variabili separabili y' = a(t)b(y), la mancanza di unicità delle soluzioni del problema di Cauchy in certi punti dove b(y) è continua ma non derivabile.

ii) L'ipotesi di continuità della derivata parziale $\partial_{\nu} f$ si può indebolire.

Basta richiedere che f soddisfi la proprietà seguente: per ogni insieme chiuso e limitato $K \subset D$ esiste una costante L_K tale che

$$|f(t, y_1) - f(t, y_2)| \le L_k |y_1 - y_2|$$
 per ogni $(t, y_1), (t, y_2) \in K$.

In questo caso si dice che f soddisfa (localmente) la *condizione di Lipschitz* rispetto ad y, uniformemente rispetto a t.

Se $\partial_y f$ esiste continua, si dimostra che f soddisfa la condizione di Lipschitz; ovviamente il viceversa non vale in generale.

Equazioni differenziali 1 18 / 21

Regolarità delle soluzioni.

Una soluzione φ del problema di Cauchy è di classe $\mathcal{C}^1(I)$.

Infatti, φ è derivabile (e dunque continua) e soddisfa $\varphi'(t) = f(t, \varphi(t)), t \in I$.

Ma la funzione $t\mapsto f(t,\varphi(t))$ è continua per il teorema di continuità delle funzioni composte. Dunque, anche $\varphi'(t)$ è continua in I.

Iterando l'argomento, si dimostra che $f \in C^k(D) \Rightarrow \varphi \in C^{k+1}(I)$.

Intervallo di esistenza delle soluzioni.

Dalla dimostrazione del teorema di esistenza e unicità locale si ricava che la soluzione $\varphi(t;t_0,y_0)$ è definita almeno in un intervallo $I=[t_0-\delta,t_0+\delta]$, dove $\delta>0$ dipende da f e dal punto (t_0,y_0) ; il grafico di $\varphi(t)$, $t\in I$, è contenuto in D.

Si può allora *prolungare* la soluzione a destra e a sinistra di questo intervallo considerando i problemi di Cauchy rispettivamente con i dati $(t_0 + \delta, \varphi(t_0 + \delta))$ e $(t_0 - \delta, \varphi(t_0 - \delta))$.

Infatti, sempre per il teorema di esistenza e unicità locale, ciascun problema ha un'*unica soluzione*, definite rispettivamente in un intorno I_1 di $t_0 + \delta$ e in un intorno I_2 di $t_0 - \delta$.

Per l'unicità, tali soluzioni coincidono con $\varphi(t; t_0, y_0)$ rispettivamente in $I \cap I_1$ e in $I \cap I_2$ e quindi realizzano l'estensione della soluzione ad un intervallo più ampio.

Equazioni differenziali 1 19/21

Iterando il procedimento nelle due direzioni, si arriva a definire un *intervallo* massimale di esistenza (t_{\min}, t_{\max}) della soluzione $\varphi(t; t_0, y_0)$, dove:

$$t_{\max} = \sup \{ t \text{ t.c. } \varphi \text{ è definita in } [t_0, t] \};$$

 $t_{\min} = \inf \{ t \text{ t.c. } \varphi \text{ è definita in } [t, t_0] \}.$

Si dimostra che per $t \to t_{\rm max}^-$ e per $t \to t_{\rm min}^+$ il grafico di φ esce *definitivamente* da ogni insieme chiuso e limitato contenuto D.

Esempio.

Consideriamo l'equazione (logistica) y' = y(1 - y), con la condizione iniziale $y(0) = \alpha$, dove $0 < \alpha < 1$.

Osserviamo che per questa equazione le ipotesi del teorema di esistenza e unicità locale valgono in tutto \mathbb{R}^2 .

Possiamo allora affermare che la soluzione $\varphi_{\alpha}(t)$ è *limitata*; infatti, il suo grafico non può intersecare le due rette y=0 e y=1, che sono pure soluzioni (costanti), per cui sarà sempre $0<\varphi_{\alpha}(t)<1$.

Segue allora che $t_{\max}=+\infty$ e $t_{\min}=-\infty$, cioè φ_{α} è definita su tutto \mathbb{R} . Inoltre φ_{α} è strettamente crescente ($\varphi'_{\alpha}(t)>0$) e si dimostra che ha le due rette come asintoti orizzontali.

Verificare le previsioni qualitative risolvendo esplicitamente l'equazione.

Equazioni differenziali 1 20 / 21

<u>Teorema</u> (Esistenza e unicità globale).

Sia $S := (a, b) \times \mathbb{R}$ e supponiamo che $f \in \partial_y f$ siano continue in \overline{S} . Esistano inoltre due numeri positivi h, k tali che

$$|f(t,y)| \leq h + k|y| \qquad \forall (t,y) \in \bar{S}.$$

Allora ogni soluzione dell'equazione y' = f(t, y) con valori iniziali $(t_0, y_0) \in S$ è definita su tutto [a, b].

Osservazioni.

L'ipotesi sulla crescita di f nella striscia \bar{S} è verificata in particolare se: i) f è limitata in \bar{S} , oppure ii) $\partial_{\nu} f$ è limitata in \bar{S} .

Nel caso delle equazioni lineari y' = -a(t)y + b(t), le ipotesi del teorema valgono se i coefficienti a(t) e b(t) sono funzioni continue in [a,b]. Infatti, in tal caso abbiamo

$$|-a(t)y+b(t)| \le |b(t)|+|a(t)||y| \le h+k|y|$$
,

dove $h = \max_{[a,b]} |b(t)|, \ k = \max_{[a,b]} |a(t)|.$

Vengono così giustificati gli intervalli di esistenza delle soluzioni di queste equazioni.

Equazioni differenziali 1 21 / 21