



**Problem R-86F and R-86G**. The 270 MHz <sup>1</sup>H spectra provided are of the compounds below:



(a) Analyze the multiplets and assign the signals by placing the data on the proper row (use the format  $\delta$  0.25, dt, J = 3, 9 Hz).

|       | R-86F | R-86G |
|-------|-------|-------|
| $H^1$ | δ     | δJ =  |
| $H^2$ | δ     | δJ =  |
| $H^3$ | δJ =  | δJ =  |
| $H^4$ | δJ =  | δJ =  |
| $H^5$ | δ     | δJ =  |
| $H^6$ | δ     | δJ =  |

(b) A typical conformation (MM2) of this type of molecule is shown below. Attach substituents and identify the spectrum (i.e., say 1 = 86F or 1 = 86G). Briefly explain the basis for your choice. Discuss at least  $H^1$ ,  $H^2$  and  $H^4$ .



Note: either one of these conformations could be the enantiomer of the structures shown above.

(c) Explain why the lowest field signal at  $\delta$  6.1 in **86F** is only a doublet, whereas the one at  $\delta$  6.4 in **86G** is a doublet of doublets.





**Problem R-86F and R-86G**. The 270 MHz <sup>1</sup>H spectra provided are of the compounds below:

(a) Analyze the multiplets and assign the signals by placing the data on the proper row (use the format  $\delta$  0.25, dt, J = 3, 9 Hz).

R-86F
 R-86G

 H¹
 
$$\delta$$
 $4.01$ ,  $d$ 
 $J$ 
 $J$ 

(b) A typical conformation (MM2) of this type of molecule is shown below. Attach substituents and identify the spectrum (i.e., say 1 = 86F or 1 = 86G). Briefly explain the basis for your choice. Discuss at least  $H^1$ ,  $H^2$  and  $H^4$ .



Note: either one of these conformations could be the enantiomer of the structures shown above.

The small H¹-H² as well as H²-H³ coupling in R-86F (each 4 Hz) means these three protons are all equatorial, the three substituents are axial. This unusual conformation is an example of a buttressing effect - in the all-equatorial conformation the *cis* oriented methyl group interacts with the equatorial groups, which also interact with each other, making the all-axial conformer the stable one (it helps the three of the carbons in the ring are sp², with no axial groups). In R-86G the methyl group is oriented away from the substituents, and a normal, all-equatorial conformation results.

(c) Explain why the lowest field signal at  $\delta$  6.1 in **86F** is only a doublet, whereas the one at  $\delta$  6.4 in **86G** is a doublet of doublets.

The long-range  ${}^4J$  H ${}^3$ -H ${}^5$  coupling is substantial in R-86G because the axial H ${}^3$  proton has an optimal relationship with H ${}^5$  - C-H ${}^3$  is perpendicular to the plane of the double bond. In R-86-F the equatorial proton in near the plane of the double bond, and  ${}^4J$  is small.

The same relationships work in opposite direction for  ${}^3J$  between H $^3$  and H $^4$ . The near 90 $^*$  degree relationship in R-86G means small  ${}^3J$ , whereas the near coplanar dihedral angle in R-86F results in a significant coupling ( $J_{3-4} = 5$  Hz).

## Problem R-86F, G

