

Adaptive Methods for *Lecture* Data-based Decision Making 4

IN-STK 5000 / 9000

Autumn 2022

slides by Dr. Anne-Marie George, UiO

Course Overview

Adaptive Databased Decision Making

- Statistical Decision Making
- Causation
- Model Evaluation
- Online Learning

Business Application

- Business Cases
- Implementation / Tools
- Feature Selection
- Outlier Detection
- Model Interpretation

Responsible Data Science

- Correlation ≠ Causation
- Privacy
- Reproducibility
- Fairness

What we talk about today

The Ice Cream Van

<u>Data on the last few ice cream sales shows</u>: When you play a jingle, you sell a lot of ice cream!

What do you make out of that?

Spurious Correlations

Should Norway stop exporting oil?

• Mathematical relationship between events / variables that are associated but not *causally* related (coincidence, unseen factor, ...).

Correlation

≠ Causation

• Definition:

Two (or more) variables have a relation to one another.

Measure:

Pearson Coefficient, Spearman Rank, Kendall Tau Distance, ...

Let's start with this! ...
But first some reminders / basics.

- → Improve predictions
- → First step towards identifying causation

• <u>Definition</u>: Some variable(s) causes the behavior of another variable.

Measure:
 Hypothesis testing, ...

- → Influence future events
- → Improve decisions

Expectation, Variance and Standard Deviation

Random variable x with probability distribution p over outcomes $R \subseteq \mathbb{R}$.

Notation: $x \sim p$

Expectation / Mean:
$$\mu_x = \mathbb{E}_p[x] = \int_{r \in R} r \, dp(r) \, \underline{\text{or}} \, \sum_{r \in R} p(r) \cdot r$$

Variance:
$$\mathbb{V}[x] = var(x) = \mathbb{E}_p[x^2] - (\mathbb{E}_p[x])^2 = \sigma_x^2$$

Standard Deviation:
$$\sigma_x = \sqrt{\mathbb{V}[x]}$$

Gaussian Distribution aka. Normal Distribution

Normal distribution: $\mathcal{N}(\mu, \sigma)$ with mean μ and standard deviation σ (variance σ^2).

PDF:
$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- The higher the mean μ ...
 - ... the more the peak moves to the right.
- The higher the standard deviation σ ...
 - ... the flatter the curve.

Covariance and Pearson's Correlation

Real random variables x, y with probability distribution p over outcomes R.

Notation:

 $(x,y) \sim p$ where $p_x(y) = p(x,y)$ and $p_y(x) = p(x,y)$

Covariance:

$$cov(x,y) = \mathbb{E}_p \left[\left(x - \mathbb{E}_{p_y}[x] \right) \left(y - \mathbb{E}_{p_x}[y] \right) \right]$$
$$= \mathbb{E}_p[x \cdot y] - \mathbb{E}_{p_y}[x] \cdot \mathbb{E}_{p_x}[y]$$

Pearson's correlation coefficient:

$$ho_{x,y} = rac{cov(x,y)}{\sigma_x \cdot \sigma_y}$$
, if $\sigma_x \cdot \sigma_y > 0$ (non-zero st. dev.s)

Normalized covariance \rightarrow Values in [-1, +1]

Pearson's Correlation Coefficient

Measure of <u>linear</u> correlation

→ Other types of correlations are ignored

Source: Wikipedia

Sample Versions

But ...

How do I calculate

- the mean
- the covariance
- the variance
- the standard deviation
- the correlation

... for my data?!?

Sample Versions of Standard Notions

Unbiased version. (the biased version uses 1/N)

12

	General: $x \sim p, \ p: R \longrightarrow [0,1], \ R \subseteq \mathbb{R}$	Samples $x_1, \dots, x_N \in \mathbb{R}$
Expectation / Mean	$\mu_x = \mathbb{E}_p[x] = \int_{r \in R} r dp(r)$ (<i>R</i> continuous) or $= \sum_{r \in R} p(r) \cdot r$ (<i>R</i> discrete)	$\bar{x} = \frac{1}{N} \sum_{i=1,\dots,N} x_i$
Variance	$\mathbb{V}[x] = var(x) = \mathbb{E}_p[x^2] - (\mathbb{E}_p[x])^2 = \sigma^2$	$\bar{\sigma}^2 = \frac{1}{N-1} \sum_{i=1,\dots,N} (x_i - \bar{x})^2$
Standard Deviation	$\sigma = \sqrt{\mathbb{V}[x]}$	$\bar{\sigma} = \sqrt{sample \ variance}$

	General: $(x, y) \sim p, p: R^2 \longrightarrow [0,1], R \subseteq \mathbb{R}$	Samples $(x_1, y_1), \dots, (x_N, y_N) \in \mathbb{R}$
Covariance	$cov(x, y) = \mathbb{E}_p[x \cdot y] - \mathbb{E}_{p_y}[x] \cdot \mathbb{E}_{p_x}[y]$	$\overline{cov}(x,y) = \frac{1}{N-1} \sum_{i=1,\dots,N} (x_i - \bar{x})(y_i - \bar{y})$
Pearson's Correlation Coeff.	$ ho_{x,y} = rac{cov(x,y)}{\sigma_x \cdot \sigma_y}$, if $\sigma_x \cdot \sigma_y > 0$	$\bar{\rho}_{x,y} = \frac{\overline{cov}(x,y)}{\overline{\sigma_x} \cdot \overline{\sigma_y}}$, if $\overline{\sigma_x} \cdot \overline{\sigma_y} > 0$

Sample Covariance

Samples $(x_1, y_1), ..., (x_N, y_N) \in \mathbb{R}^2$.

Covariance:

$$\overline{cov}(x,y) = \frac{1}{N-1} \sum_{i=1,\dots,N} (x_i - \overline{x})(y_i - \overline{y})$$

 \rightarrow For data with K features: The covariance is a $K \times K$ matrix. "When x increases, y decreases"

"No trend between x and y"

"When x increases, y increases"

Source: Wikipedia

Rank Correlations

Samples $(x_1, y_1), ..., (x_N, y_N) \in \mathbb{R}$. Rankings of values R(x) and R(y).

x	R(x)	у	R(y)
0.4	1	0.1	1
0.7	2	1.6	3
1.9	3	1.3	2

- Spearman's Rank Correlation Coefficient: $\rho_{R(x),R(y)} = \frac{cov(R(x),R(y))}{\sigma_{R(x)}\cdot\sigma_{R(y)}}$
- Kendall's Rank Correlation Coefficient:

$$au_{x,y} = \frac{\text{\# concordant pairs } -\text{\# discordant pairs}}{\text{\# all pairs}}$$

→ Can be applied for "ranking data" from e.g. user ratings.

Example 1: Differences in Rank Correlations

		x	R(x)	у	R(y)
Data		0.4	1	0.1	1
Data		0.7	2	1.6	3
		1.9	3	1.3	2
Mean	$\bar{x} = \frac{1}{N} \sum_{i=1,\dots,N} x_i$	1.0	² Exerc	.1.0	2
Variance	$\sigma^2 = \frac{1}{N-1} \sum_{i=1,,N} (x_i - \bar{x})^2$	0.63	1 Colou	0.63	1
Standard dev.	σ	~0.8	1 Calcu	late the	yaiues
Covariance	$\overline{cov}(x,y) = \frac{1}{N-1} \sum_{i=1,\dots,N} (x_i - x_i)^{-1}$	0.3(5~5 Minutes,			
Pearson's Coeff.	$\bar{\rho}_{x,y} = \frac{\overline{cov}(x,y)}{\overline{\sigma_x} \cdot \overline{\sigma_y}}$	~o. with your neighbor)			
Rank Covar.	$\overline{cov}(R(x),R(y))$	0.5			
Spearman's Coeff. $\bar{\rho}_{R(x),R(y)}$			0.5		
Kendall's Coeff.	$ au_{x,y}$	1/3			

A. George

IN-STK5000, Autumn 2022

15

Example 2: Pearson's vs. Rank Correlation

		х	R(x)	у	R(y)	
Data		0.4	1	0.1	1	
		0.7	2	1.3	2	
		1.9	3	1.6	3	
Mean	$\bar{x} = \frac{1}{N} \sum_{i=1,\dots,N} x_i$	1.0	2	1.0	2	
Variance	$\bar{\sigma}^2 = \frac{1}{N-1} \sum_{i=1,,N} (x_i - \bar{x})^2$	0.63	1	0.63	1	
Standard dev.	Standard dev. $ar{\sigma}$		1	~0.8	1	
Covariance	$\overline{cov}(x,y) = \frac{1}{N-1} \sum_{i=1,\dots,N} (x_i - x_i)^{-1}$	$\overline{cov}(x,y) = \frac{1}{N-1} \sum_{i=1,\dots,N} (x_i - \overline{x})(y_i - \overline{y})$		0.495		
Pearson's Coeff.	$\bar{\rho}_{x,y} = \frac{\overline{cov}(x,y)}{\overline{\sigma_x} \cdot \overline{\sigma_y}}$	~0.77				
Rank Covar.	$\overline{cov}(R(x),R(y))$	1				
Spearman's Coeff.	$\bar{ ho}_{R(x),R(y)}$	1				
Kendall's Coeff.	$ au_{x,y}$		1			

A. George

IN-STK5000, Autumn 2022

16

Anscombe's quartet

All data sets have the same:

- Mean
- Variance

- Pearson's Correlation
- Regression Line

l		II		III		IV	
X	y	Х	у	Х	у	Х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Source: Wikipedia

IN-STK5000, Autumn 2022

Let's take a break...

Back on in 5 min!

Takeaway: Q: What have we learned so far?

- 1. Correlation coefficients show relation between variables / features.
- 2. Correlation \neq Causation (but Causation \Longrightarrow Correlation)
- Identifying correlations helps to make better predictions!
- 4. The correlation coefficients can give different results:
 - Pearson's Coeff. considers linear correlations
 - Rank coeff. disrespect the actual values (consider only their ordinal relations)
- 5. It is important to plot your data!

... Identifying (and eliminating) outliers can help finding correlations!

A. George IN-STK5000, Autumn 2022

19

Outliers (Anomalies)

Outlier = data point that looks different than the rest of the data

20

Causes:

- Faulty sensor, mistakes in entering data.
- Special events (holiday, extreme weather, ...)
- Purposeful manipulations (fraud, strategic behaviour, ...)

Effect:

- Model fitting / training is skewed
- Error metrics are inflated

Anomaly Detection

Application Examples:

- Fraud Detection:
 Identify unusual behavior of users.
- Predictive Maintenance: Identify machines that might break soon.
- Monitoring:
 Recognise changes in behavior.

21

Machine Learning - Overview

- Supervised Learning
 - Learning a function from *labeled* training data: Classification & Regression

 \rightarrow Function: F(\nearrow) = DOG

- Unsupervised Learning
 - Learning patterns / structure from unlabeled data

→ Clusters: STANDING SITTING ?

- Reinforcement Learning
 - Learning good actions from feedback [interactive!]

Clustering

Standing Sitting???

IN-STK5000, Autumn 2022

scikit-learn algorithm cheat-sheet

Density-based method: Clustering → k-Means

Tipps:

- Run k-means several times to avoid local optima.
- Try out different *k* and compare outcomes.

Outlier: Has a "high" distance to its cluster center

In practice: See, e.g. Scikit Learn documentation

Algorithm Example: k-Means (for k = 2)

0. Insert k random cluster *centroids* (e.g. on k data points)

1. Repeat: Cluster Assignment + Move Centroid to cluster average

Statistical Method:

Z-Score (also Standard Score)

Data: Samples $x_1, ..., x_N \in \mathbb{R}$

Data has only one feature!

曲	Mean	$\bar{x} = \frac{1}{N} \sum_{i=1,\dots,N} x_i$
SAMPI	Variance	$\bar{\sigma}^2 = \frac{1}{N-1} \sum_{i=1,,N} (x_i - \bar{x})^2$
S	Standard dev.	$ar{\sigma}$

• Z-Score:
$$z_i = \frac{x_i - \bar{x}}{\bar{\sigma}}$$

 $\rightarrow z_1, ..., z_N$ have mean 0 and standard deviation 1

 \rightarrow Usually used when x follows a Normal distribution.

User-defined lower bound l and upper bound u• Bounds:

$$x_i$$
 is outlier \iff $z_i < l$

$$z_i < l$$

$$z_i > u$$

Statistical Method: Distance to the Mean

• Data: Samples $x_1, ..., x_N \in \mathbb{R}^d$

Sample-Mean

$$\bar{x} = \frac{1}{N} \sum_{i=1,\dots,N} x_i \in \mathbb{R}^d$$

- Distances: $d_i = \sqrt{\sum_{j=1,\dots,N} (x_{i,j} \bar{x_j})^2}$ \rightarrow Euclidean dist. to mean $\bar{d} = \text{mean}, \ \bar{\sigma} = \text{st. dev.}$
- Z-Score: $z_i = \frac{d_i \overline{d}}{\overline{\sigma}}$
- Bounds: User-defined upper bound u

 x_i is outlier \iff $z_i > u$

Other Methods / Tools

"Looking at the data": Box Plot

Support Vector Machines

Neural Networks

• ... (see <u>Wikipedia</u> for a more comprehensive list, or <u>Scikit Learn</u> for some methods used in practice)

30

The Ice Cream Van

<u>Data on the last few ice cream sales shows</u>: When you play a jingle, you sell a lot of ice cream!

... so how do we check causation???

A. George <u>IN-STK5000</u>, Autumn 2022 31

Causation

<u>Definition</u>: A discussion in metaphysics / philosophy... *A* "causes" *B* if:

 \rightarrow A and B are correlated

 \rightarrow Time dependency: A appears before B (in time)

 \rightarrow Counterfactual notion: B occurs if and only if A has occurred.

"You pass you MSc iff you have passed your defense."

 \rightarrow Probabilistic notion: If A occurs, B's is likelier to occur.

"If you smoke you are at increased risk of getting cancer."

32

$$P(B|A) > P(B)$$

→ Check this by <u>Hypothesis Testing</u> methods!

Confounders

→ Heat <u>confounds</u> the relation between Ice Cream Sales and Shark Attacks, since it causally influences both!

33

Source: Twitter

Null Hypothesis Testing

• Null Hypothesis: H_0 The hypothesis we want to test.

"A does not have a causal effect on B", i.e., P(B|A) = P(B)

• Alternate Hypothesis: Negation of null-hypothesis

"A has a causal effect on B", i.e., $P(B|A) \neq P(B)$

Desired value for $P(rejecting H_0 \mid H_0 \ true)$. Typically, $\alpha = 0.05$.

• Perform a Hypothesis Test: t-test, Z-test, Chi-sq. ... \rightarrow get p-value \leftarrow least as extreme,

• If $p < \alpha$:

(result significant)

Reject the null hypothesis!

(Enough evidence to say that "A has a causal effect on B"!)

• If $p \ge \alpha$:
(result not significant)

Cannot reject the null hypothesis!

(Not enough evidence to say whether A has a causal effect on B, or not!)

Probability of obtaining data at least as extreme, given that the null hypothesis is true.

34

Correlation of Categorical Features

- Samples $(x_1, y_1), ..., (x_N, y_N)$ with categorical domains \mathcal{X}, \mathcal{Y} , e.g., Y/N
- Null-Hypothesis H_0 : "x and y are NOT correlated." (variables are independent)
- Chi-Square Test:
 - 1. Calculate observations $O_{ab} = \#(both \ a \ \&b)$ and expectations $E_{ab} = \frac{\#a \cdot \#b}{Total}$
 - 2. Calculate $X^2 = \sum_{a \in \mathcal{X}, b \in \mathcal{Y}} \frac{(O_{ab} E_{ab})^2}{E_{ab}}$ and p-value (\rightarrow accept/reject H_0).

Data = 0 / E / $\frac{(0-E)^2}{E}$	Sweden Democrats	Social Dem. Party	Other	Total
Male	27.5 % 18.75 4.08	22.5 % <mark>28.75</mark> 1.36	50.0 % <mark>52.50</mark> 0.12	100 %
Female	10.0 % 18.75 4.08	35.0 % <mark>28.75</mark> 1.36	55.0 % <mark>52.50</mark> <mark>0.12</mark>	100 %
Total	37.5 %	57.5 %	105 %	200 %

Calculate X^2 , look up the p-value ... or just use, e.g. **chi2_contingency()** from **scipy.stats!**

Alternative Approaches

- Testing correlation between two (numerical / categorical) features:
 - If there is a correlation, then we could predict one from the other
 - Fit a classifier!
 - If it "works well" then features are correlated
 - → Careful: You need to know how to evaluate your classifier!
 - → Next week: Evaluation metrics, fairness & privacy + guest lecture on GDPR
- Good Reads: [1, 2, 3, 4, 5, 6, 7, ...]
- Other Material: Christos Dimitrakakis' lectures from last year!

A. George IN-STK5000, Autumn 2022

36

Summary

Correlation

Covariance:

$$cov(x, y) = \mathbb{E}_p[x \cdot y] - \mathbb{E}_{p_y}[x] \cdot \mathbb{E}_{p_x}[y]$$

Pearson's correlation:

$$\rho_{x,y} = \frac{cov(x,y)}{\sigma_x \cdot \sigma_y}, \text{ if } \sigma_x \cdot \sigma_y > 0$$

Spearman's Rank Correlation Coefficient:

$$\rho_{R(x),R(y)} = \frac{cov(R(x),R(y))}{\sigma_{R(x)} \cdot \sigma_{R(y)}}$$

Kendall's Rank Correlation Coefficient:

$$\tau_{x,y} = \frac{\text{\# concordant pairs} - \text{\# discordant pairs}}{\text{\# all pairs}}$$

Basics

Variance:

$$\mathbb{V}[x] = var(x) = \mathbb{E}_p[x^2] - (\mathbb{E}_p[x])^2$$

Standard Deviation: $\sigma_x = \sqrt{\mathbb{V}[x]}$

Outliers / Anomalies

Z-Score: $z_i = \frac{x_i - \bar{x}}{\bar{\sigma}}$, with mean \bar{x} , var. $\bar{\sigma}$ x_i outlier $\iff z_i \notin [l, u]$

Clustering:

Box-Plot:

Causation

Necessary Conditions:

Time: a occurs before b

Correlation: a and b are correlated

Non-Confounded: $\nexists c$ that causes a and b

Hypothesis Testing:

Null-Hypothesis H_0 : "no correlation"

Alt. Hypothesis H_1 : "exists correlation"

1. Do desired statistic, e.g. Chi-Square

2. Determine significance (p-value < α)

3. Accept / reject the hypothesis.

→ Applicable for determining correlations