Revision Question 7 — 06/05/14

Let X be the set $\{a, b, c, d\}$.

- a) Which of the following define a topology on X? For those which do not, give a reason.
 - i) $\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$
 - ii) $\{\emptyset, \{d\}, \{a, d\}, \{b, d\}, \{a, b, d\}, \{a, b, c, d\}\}$
 - iii) $\{\emptyset, \{c\}, \{a, d\}, \{b, c\}, \{a, c, d\}, \{a, b, d\}, \{a, b, c, d\}\}.$

[3 marks]

Let \mathcal{O}_X be the topology on X given by

$$\{\emptyset, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\}\}.$$

b) What is the boundary of $\{b,c\}$ in X with respect to \mathcal{O}_X ? [5 marks]

View (S^1, \mathcal{O}_{S^1}) as $(I/\sim, \mathcal{O}_{I/\sim})$, where \sim is the equivalence relation on I generated by $0 \sim 1$.

c) Let

$$S^1 \xrightarrow{f} X$$

be the surjective map given by

$$[x] \mapsto \begin{cases} a & \text{if } x = 0, \\ b & \text{if } 0 < x < \frac{1}{2}, \\ c & \text{if } x = \frac{1}{2}, \\ d & \text{if } \frac{1}{2} < x < 1. \end{cases}$$

Prove that f is continuous, where X is equipped with the topology \mathcal{O}_X . Justify every assertion that you make that a given set belongs to any of the topologies that you consider. [7 marks]

d) Prove in two different ways that (S^1, \mathcal{O}_{S^1}) is not homeomorphic to (X, \mathcal{O}_X) . You may quote without proof any results from the course. [6 marks]

Let \mathcal{O}'_X be the topology on X given by

$$\{\emptyset, \{b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{a, b, c, d\}\}.$$

e) Demonstrate that the set

$$\{(a,b),(a,c),(b,b),(b,c),(b,d),(d,b),(d,c)\}$$

belongs to the product topology with respect to \mathcal{O}_X and \mathcal{O}_X' on $X \times X$.

Let \mathcal{O}_X'' be the topology on X given by

$$\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,d\}, \{a,b,d\}, \{a,c,d\}, \{a,b,c,d\}\} \,.$$

f) Is (X, \mathcal{O}_X'') homeomorphic to (X, \mathcal{O}_X) ? Justify your answer. [5 marks]