1^a Lista de Exercícios (ALI0001)

Prof. Helder G. G. de Lima¹

Legenda

☐ Cálculos ✓ Conceitos ✓ Teoria	☐ Software
---------------------------------	------------

Questões

- 1. Exiba matrizes quadradas A e B de ordem 2×2 que exemplifiquem as situações a seguir. Compare com o que ocorreria se A e B fossem números reais.
 - (a) É possível que $A^2 = B^2$ mesmo que $A \neq B$ e $A \neq -B$.
 - (b) $(AB)^2 \neq A^2B^2$.
 - (c) Pode ocorrer que $A^2 = 0$ apesar de $A \neq 0$.
 - (d) Há casos em que AB=0 ao mesmo tempo em que $0\neq A\neq B\neq 0$.
 - (e) Mesmo que $A \neq B$ pode existir uma matriz P tal que $A = P^{-1}BP$.
- 2. Calcule, se existir, a inversa de cada uma das matrizes a seguir:

(a)
$$D = \begin{bmatrix} 1 & -2 & -3 \\ 1 & -3 & 2 \\ -2 & 4 & 5 \end{bmatrix}$$
 (b) $T = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & -2 & 2 \end{bmatrix}$ (c) $U = \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 0 & -3 \\ 3 & 3 & -3 & -6 \\ 0 & 0 & 3 & 6 \end{bmatrix}$

3. Seja $M = (m_{ij})$ a matriz de ordem 7×7 cujo termo geral é $m_{ij} = \begin{cases} 1, & \text{se } i \leq j, \\ 0, & \text{se } i > j. \end{cases}$

Utilize a definição do produto de matrizes para obter uma fórmula (em função de i e j) para as seguintes entradas da matriz $C = M^2$:

(a) c_{1j} , sendo $1 \le j \le 7$.

(d) c_{ij} , quando $1 \le j < i \le 7$.

- (b) c_{4j} , quando $1 \le j < 4$.
- (c) c_{4j} , quando $4 \le j \le 7$.

- (e) c_{ij} , quando $1 \le i \le j \le 7$.
- 4. Uma matriz A é considerada **simétrica** se $A^T = A$ e **antissimétrica** se $A^T = -A$. Levando em conta as propriedades da transposição de matrizes, justifique as afirmações que forem verdadeiras e exiba um contra-exemplo para as falsas:
 - (a) Todas as entradas da diagonal de uma matriz antissimétrica devem ser nulas.
 - (b) Não existem matrizes simétricas que também sejam antissimétricas.

¹ Este é um material de acesso livre distribuído sob os termos da licença Creative Commons Atribuição-CompartilhaIgual 4.0 Internacional

- (c) Toda matriz simétrica é antissimétrica.
- (d) Toda matriz antissimétrica é simétrica.
- (e) Se uma matriz não é simétrica, então ela é antissimétrica.
- \blacksquare 5. Encontre uma matriz triangular superior equivalente por linhas a cada matriz P indicada a seguir, e utilize-as para calcular o determinante de P.

(a)
$$P = \begin{bmatrix} 0 & 5 & 21 \\ -3 & -7 & -13 \\ 1 & 2 & 3 \end{bmatrix}$$

(b)
$$P = \begin{bmatrix} 0 & 6 & 0 & 10 \\ 0 & 3 & -1 & 5 \\ 0 & 9 & -3 & 14 \\ 5 & 0 & 0 & 1 \end{bmatrix}$$

(c)
$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 2 & 4 & 2 & 0 \\ 0 & 3 & 0 & 3 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 5 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 6. Supondo que a matriz $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfaz det M = 9, calcule $\begin{vmatrix} a+c & a+b+c+d \\ 2a & 2(a+b) \end{vmatrix}$.
- 7. Dê exemplos de matrizes não nulas $A \in B$ de tamanho $n \times n$ (com $n \ge 2$) tais que:
 - (a) $\det(A+B) = \det(A) + \det(B)$
- (c) $\det(cA) = c \det(A)$, para algum $c \neq 0$
- (b) $det(A+B) \neq det(A) + det(B)$
- (d) $\det(cA) \neq c \det(A)$, para algum $c \neq 0$
- 8. Verifique que as matrizes $P = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 2 & -5 & -1 & 2 \end{bmatrix}$ e $Q = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & -1 & 5 & 0 \\ -1 & 2 & 0 & 7 \end{bmatrix}$ satisfazem:
 - (a) $\det(PQ) = \det(P) \det(Q)$
 - (b) $\det(QP) = \det(P) \det(Q)$
 - (c) $det(R^T) = det(R)$, sendo R = P + Q
 - $(d) \det(P^{-1}) = \frac{1}{\det(P)}$
- 9. Calcule o determinante das seguintes matrizes:

(a)
$$Q = \begin{bmatrix} \frac{1}{12} & \frac{2}{3} & -\frac{1}{4} \\ \frac{1}{3} & \frac{1}{6} & -\frac{3}{4} \\ -\frac{1}{12} & \frac{1}{6} & 0 \end{bmatrix}$$

(b)
$$R = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ -\frac{1}{2} & \frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

(c)
$$T = DD^T$$
, sendo $D = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 2 & 2 & 0 & -1 \end{bmatrix}$

(d) $U = D^T D$, sendo D como no item anterior

(e)
$$A = LU$$
, sendo $L = \begin{bmatrix} 2 & 0 & 0 \\ 1/2 & 3 & 0 \\ -5/4 & 9/2 & 1 \end{bmatrix}$ e $U = \begin{bmatrix} -1 & 1/2 & 0 \\ 0 & 2 & -3/2 \\ 0 & 0 & 1 \end{bmatrix}$

(f)
$$M = PQP^{-1}$$
, sendo $P = \begin{bmatrix} 1 & 0 & 5 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ e $Q = \begin{bmatrix} 1 & -1 & 20 & -7 \\ 3 & 1 & 21 & -1 \\ 0 & 0 & -3 & 1 \\ -1 & 0 & -7 & 1 \end{bmatrix}$

10. Mostre que

(a)
$$\begin{vmatrix} x & y & z \\ u & v & 0 \\ w & 0 & 0 \end{vmatrix} = -wvz$$
 (b) $\begin{vmatrix} a & b & c & d \\ e & f & g & 0 \\ h & i & 0 & 0 \\ j & 0 & 0 & 0 \end{vmatrix} = jigd$ (c) $\begin{vmatrix} a & b & c & d & e \\ f & g & h & i & 0 \\ x & y & z & 0 & 0 \\ w & 0 & 0 & 0 & 0 \end{vmatrix} = wvzie$

- \checkmark 11. Dê exemplos de matrizes A e B tais que
 - (a) A + B seja inversível, mas A e B não sejam
 - (b) A e B sejam inversíveis, mas A+B não seja
 - (c) $A, B \in A + B$ sejam inversíveis
- 2 12. Considere o sistema de equações lineares

$$\begin{cases} 2x - 3y = -4\\ 5x + y = 7 \end{cases}$$

e utilize um software como o GeoGebra² para:

(a) Plotar o conjunto A formado pelos pontos (x,y) cujas coordenadas satisfazem a primeira equação e o conjunto B dos que verificam a segunda equação.

Dica: Não é preciso um comando especial para representar equações polinomiais no GeoGebra. Basta digitá-las diretamente (mesmo se forem como 5xy^2+2y^3x^2=1).

- (b) Alterar algumas vezes os números do segundo membro, e perceber o tipo de mudança que ocorre na representação gráfica de A e B.
- (c) Verificar se com alguma escolha de valores os conjuntos se intersectam. Parece ser possível que isso não aconteça dependendo dos valores escolhidos?

Dica: O comando Interseção [p, q] gera a interseção dos objetos p e q.

☐ 13. Repita o exercício anterior para o seguinte sistema, em uma janela de visualização 3D:

$$\begin{cases} x - y + z = 1\\ 2x + y + z = 4\\ x + y + 5z = 7 \end{cases}$$

14. Considere os seguintes sistemas lineares nas variáveis $x,y\in\mathbb{R}$:

$$\begin{cases} x + 2y = 6 \\ 2x - cy = 0 \end{cases}$$
 (1)
$$\begin{cases} x + 2y = 6 \\ -cx + y = 1 - 4c \end{cases}$$
 (2)

 \blacksquare (a) Determinar para quais valores de c os sistemas lineares têm uma, nenhuma ou infinitas soluções.

²https://www.geogebra.org/download/

- \square (b) Obtenha as mesmas conclusões sobre c experimentalmente, usando o GeoGebra. Dica: defina por exemplo c=10 e use o botão direito do mouse para tornar o número visível como um "controle deslizante" e mova-o para ver o efeito deste parâmetro.
- 15. Determine para que valores de t o sistema linear (A tI)X = 0 possui mais de uma solução, sendo I a matriz identidade, A a matriz definida nos casos a seguir, (A - tI) a matriz de coeficientes do sistema, e 0 uma matriz coluna de ordem apropriada.

(a)
$$A = \begin{bmatrix} 0 & 3 \\ 1 & 2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 20 \\ 0 & 1 & -1 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 20 \\ 0 & 1 & -1 \end{bmatrix}$$
 (c) $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$

16. Obtenha a forma escalonada reduzida por linhas da matriz de coeficientes de cada um dos sistemas lineares a seguir, e partir dela determine as soluções dos sistemas:

(a)
$$\begin{cases} 5s - 5\pi t = -5\pi^2 \\ -s + (\pi + 3)t = \pi(\pi + 6) \end{cases}$$

(c)
$$\begin{cases} 3x_1 - 12x_2 - 6x_3 + 9x_5 = -21 \\ -x_1 + 4x_2 + 2x_3 - 3x_5 = 7 \\ \frac{1}{2}x_1 - 2x_2 - x_3 + x_4 - \frac{3}{2}x_5 = -\frac{5}{2} \\ -7x_1 + 28x_2 + 15x_3 - 23x_5 = 53 \end{cases}$$

(a)
$$\begin{cases} 5s - 5\pi t = -5\pi^2 \\ -s + (\pi + 3)t = \pi(\pi + 6) \end{cases}$$
(b)
$$\begin{cases} 4x_1 + 4x_2 = 16 \\ 5x_2 - 15x_4 = 2 \\ 2x_1 + 2x_2 + x_3 = 12 \\ -x_2 + 8x_4 = 3/5 \end{cases}$$
(c)
$$\begin{cases} 3x_1 - 12x_2 - 6x_3 \\ -x_1 + 4x_2 + 2x_3 \\ \frac{1}{2}x_1 - 2x_2 - x_3 \\ -7x_1 + 28x_2 + 15x_3 \end{cases}$$
(d)
$$\begin{cases} b + 6c = 6 \\ a + 6b - 5c = -3 \\ 3a + 20b - 3c = 1 \end{cases}$$

(d)
$$\begin{cases} b + 6c = 6 \\ a + 6b - 5c = -3 \\ 3a + 20b - 3c = 1 \end{cases}$$

- 17. Utilize matrizes inversas para resolver os sistemas anteriores, quando for possível.
- 18. Resolva os seguintes sistemas lineares sobre \mathbb{R} , usando matrizes inversas:

(a)
$$\begin{cases} -y+5z=2\\ x+2y+3z=7\\ 2x+4y+5z=13 \end{cases}$$
 (b)
$$\begin{cases} -v+5w=0\\ u+2v+3w=0\\ 2u+4v+5w=0 \end{cases}$$
 (c)
$$\begin{cases} -q+5r=-2\\ p+2q+3r=3\\ 2p+4q+5r=1 \end{cases}$$

(b)
$$\begin{cases} -v + 5w = 0\\ u + 2v + 3w = 0\\ 2u + 4v + 5w = 0 \end{cases}$$

(c)
$$\begin{cases} -q + 5r = -2\\ p + 2q + 3r = 3\\ 2p + 4q + 5r = 1 \end{cases}$$

- \blacksquare 19. Se A é uma matriz $p \times q$, B uma matriz $q \times r$ e C uma matriz $r \times q$, qual é o tamanho da matriz $M = (B + C^T)((AB)^T + CA^T)$?
- 20. Se X é uma matriz $m \times n$, para que valores de m e n as operações a seguir fazem sentido? Quais os tamanhos das matrizes obtidas? Quais delas são simétricas? Justifique.

(a)
$$XX^T$$

(b)
$$X^T X$$

(c)
$$X + X^T$$

(b)
$$X^T X$$
 (c) $X + X^T$ (d) $X^T + X$ (e) $X - X^T$

(e)
$$X - X^T$$

- 21. Seja $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{R})$ a matriz associada a um sistema linear homogêneo. Utilize a eliminação de Gauss-Jordan para provar que se $ad-bc \neq 0$ então o sistema possui somente a solução trivial.
- 22. Suponha que $M = \begin{bmatrix} -1 & 2 & 3 \\ 2 & -4 & 5 \\ -1 & 1 & 7 \end{bmatrix}$ e $X = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \in M_{3\times 3}(\mathbb{R})$ são tais que $MX = I_{3\times 3}$. Determine X, por meio da comparação das entradas de MX e I, e depois calcule XM.

- 23. Em um software de computação numérica (GNU Octave³, o Scilab⁴, MatLab, etc):
- (a) Sortear ao acaso 10 matrizes de ordem 7×7 e verificar quantas delas são inversíveis. **Dica**: o comando rand(m,n) gera aleatoriamente uma matriz de ordem $m \times n$, e o comando det(A) calcula o determinante da matriz A.
- (b) Repetir o experimento anterior com matrizes quadradas de algum outro tamanho. O que ocorre com a maioria das matrizes em cada uma das dimensões consideradas?
 - (c) Escolher matrizes triangulares superiores A_2 , A_3 e A_4 de ordens 2×2 , 3×3 e 4×4 respectivamente, todas com zeros na diagonal e então:
 - \square i. Calcular as potências A_2^2 , A_3^3 e A_4^4 .
 - \mathscr{O} ii. Com base nos resultados obtidos, formule uma conjectura a respeito da n-ésima potência das matrizes triangulares superiores $n \times n$, com zeros na diagonal.
 - \mathscr{O} iii. Prove que o seu palpite é realmente válido para **qualquer** matriz nas condições acima (pelo menos nos casos 2×2 e 3×3).
- \blacksquare 24. Para que valor(es) de $t \in \mathbb{R}$ a matriz $T = \begin{bmatrix} -1 & 9 & 1 \\ -1 & t & 3 \\ -1 & 9 & t+1 \end{bmatrix}$ é inversível? Qual é a inversa?
- 25. Existe algum $t \in \mathbb{R}$ para o qual $N = \begin{bmatrix} 2-t & 0 & -4 \\ 6 & 1-t & -15 \\ 2 & 0 & -4-t \end{bmatrix} \in M_{3\times 3}(\mathbb{R})$ não é inversível?
- ✓ 26. Justifique as afirmações verdadeiras e exiba um contra-exemplo para as demais:
 - (a) A matriz nula é uma matriz na forma escalonada reduzida por linhas.
 - (b) A matriz identidade 4×4 está na forma escalonada reduzida por linhas.
 - (c) Se uma matriz triangular superior é simétrica então ela é uma matriz diagonal.
 - (d) Se U e V são matrizes diagonais, então UV = VU.
 - (e) Se A é uma matriz antissimétrica, isto é, se $A^T=-A$, então A^T é antissimétrica.
 - (f) Se A é uma matriz $n \times n$ antissimétrica, então sua diagonal é igual a zero.
 - (g) Nenhuma matriz A $n \times n$ pode ser simétrica e antissimétrica simultaneamente.
- 27. Quantas matrizes diagonais D de ordem 2×2 satisfazem $D^2 = I$, isto é, quantas matrizes diagonais são "raizes quadradas" da matriz identidade de ordem 2? E se D for 3×3 ?
- 28. Encontre todas as matrizes diagonais D de ordem 3×3 tais que $D^2 7D + 10I = 0$.
- 29. Mostre que se S é uma matriz simétrica então S^2 também é simétrica. Decida se vale o mesmo para S^n , qualquer que seja $n \in \mathbb{N}$, e explique sua conclusão.
- 30. Se M é uma matriz quadrada n × n, a soma das entradas da diagonal de M é chamada de traço de M, e denotada por $tr(M) = m_{11} + m_{22} + \ldots + m_{nn}$. Explique por que são válidas as seguintes afirmações, para quaisquer matrizes A e B e todo c ∈ ℝ:
 - (a) tr(A+B) = tr(A) + tr(B)
 - (b) $tr(c \cdot A) = c \cdot tr(A)$
 - (c) $tr(A^T) = tr(A)$

³https://www.gnu.org/software/octave/download.html

⁴http://www.scilab.org/download/latest

Respostas

- 1. Em todos os itens há uma infinidade de matrizes que exemplificam as afirmações feitas. Seguem alguns exemplos:
 - (a) Para $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ é verdade que $A^2 = I = B^2$, mas $A \neq B$ e $A \neq -B$.
 - (b) Se $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix}$ então $(AB)^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ mas $A^2B^2 = \begin{bmatrix} 4 & 4 \\ 0 & 0 \end{bmatrix}$.
 - (c) Toda matriz $A = \begin{bmatrix} 0 & k \\ 0 & 0 \end{bmatrix}$ satisfaz $C^2 = 0$, até mesmo quando $k \neq 0$ (e então $A \neq 0$).
 - (d) Se $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ então $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ mas $0 \neq A \neq B \neq 0$.
 - (e) Se $P = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ então $A = P^{-1}BP = \begin{bmatrix} 7 & 4 \\ -3 & -2 \end{bmatrix}$ é diferente de B.
- 2. (a) $D^{-1} = \begin{bmatrix} -23 & -2 & -13 \\ -9 & -1 & -5 \\ -2 & 0 & -1 \end{bmatrix}$
 - (b) $T^{-1} = \begin{bmatrix} 1 & -1 & 2 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix}$
 - (c) $U^{-1} = \begin{bmatrix} 1/3 & -1/3 & 1/3 & 0 \\ -1/3 & 1/3 & 0 & 1/3 \\ 2/3 & 0 & 0 & -1/3 \\ -1/3 & 0 & 0 & 1/3 \end{bmatrix}$
- 3. (a) As entradas da primeira linha são dadas por $c_{1j} = j$ pois, por definição,

$$c_{1j} = \underbrace{m_{11}m_{1j} + m_{12}m_{2j} + \ldots + m_{1j}m_{jj}}_{j \text{ parcelas}} + \underbrace{\ldots + m_{17}m_{7j}}_{7-j \text{ parcelas}}$$

$$= \underbrace{1 + 1 + \ldots 1}_{j \text{ vezes}} + \underbrace{0 + \ldots 0}_{7-j \text{ vezes}} = j.$$

(b) Se $1 \le j < 4$, então $c_{4j} = 0$ pois

$$c_{4j} = m_{41}m_{1j} + m_{42}m_{2j} + m_{43}m_{3j} + m_{44}m_{4j} + \dots + m_{47}m_{7j}$$

$$= 0m_{1j} + 0m_{2j} + 0m_{3j} + 1m_{4j} + \dots + 1m_{7j}$$

$$= m_{4j} + \dots + m_{7j}$$

$$= 0 + \dots + 0 = 0.$$

- (c) Se $4 \le j \le 7$, então $c_{4j} = j i + 1$.
- (d) Se $1 \le j < i \le 7$, então $c_{ij} = 0$.
- (e) Se $1 \le i \le j \le 7$, então $c_{ij} = j i + 1$.
- 4. (a) **Verdadeira**, pois dada uma matriz antissimétrica $A \in M_{n \times n}(\mathbb{R})$, tem-se $[A]_{ij} = [A^T]_{ji} = -[A]_{ji}$. Em particular, se i = j, vale $[A]_{ii} = -[A]_{ii}$, o que implica que $2[A]_{ii} = 0$, isto é, $[A]_{ii} = 0$. Assim, todas as entradas da diagonal de A são nulas.

- (b) **Falsa**, pois a matriz nula $0 \in M_{n \times n}(\mathbb{R})$ é simétrica e antissimétrica simultaneamente.
- (c) Falsa, pois $C = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ é simétrica mas não é antissimétrica.
- (d) Falsa, pois $D=\begin{bmatrix}0&2\\-2&0\end{bmatrix}$ é antissimétrica mas não é simétrica.
- (e) **Falsa**, pois $E = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ não é uma matriz simétrica mas não é antissimétrica.

5. (a)
$$\det P = - \begin{vmatrix} 0 & 5 & 21 \\ 3 & 7 & 13 \\ 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 7 & 13 \\ 0 & 5 & 21 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 5 & 21 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{vmatrix} = 1$$

(b)
$$\det P = - \begin{vmatrix} 5 & 0 & 0 & 1 \\ 0 & 3 & -1 & 5 \\ 0 & 9 & -3 & 14 \\ 0 & 6 & 0 & 10 \end{vmatrix} = - \begin{vmatrix} 5 & 0 & 0 & 1 \\ 0 & 3 & -1 & 5 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 2 & 0 \end{vmatrix} = \begin{vmatrix} 5 & 0 & 0 & 1 \\ 0 & 3 & -1 & 5 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix} = -30$$

(c)

$$\det P = 2 \cdot 3 \cdot \begin{vmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 5 & 0 & 0 & 0 & 1 \end{vmatrix} = 6 \begin{vmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & -9 \end{vmatrix} = 6 \begin{vmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -9 \end{vmatrix}$$
$$= 6 \cdot 1 \cdot 1 \cdot (-2) \cdot (-3) \cdot (-9) = -324$$

6. Usando as propriedades dos determinantes relacionadas ao uso de operações elementares sobre as linhas e colunas da matriz S, resulta que:

$$\det S = \begin{vmatrix} a+c & a+b+c+d \\ 2a & 2(a+b) \end{vmatrix} = 2 \begin{vmatrix} a+c & a+b+c+d \\ a & a+b \end{vmatrix} = 2 \begin{vmatrix} a+c & b+d \\ a & b \end{vmatrix}$$
$$= 2 \begin{vmatrix} c & d \\ a & b \end{vmatrix} = -2 \begin{vmatrix} a & b \\ c & d \end{vmatrix} = -2 \det M = -18.$$

- 7. (a) Considere $A = I \in M_{3\times 3}(\mathbb{R})$ e $B = -I \in M_{3\times 3}(\mathbb{R})$. Então $\det(A + B) = \det(0) = 0 = 1 + (-1) = \det(A) + \det(B)$.
 - (b) Considere $A = B = I \in M_{2\times 2}(\mathbb{R})$. Então $\det(A) = \det(B) = 1$ e $\det(A + B) = \det(2I) = 4$, enquanto que $\det(A) + \det(B) = 1 + 1 = 2$.
 - (c) Sabe-se que para $A \in M_{n \times n}(\mathbb{R})$, vale $\det(cA) = c^n \det(A)$. Deste modo, $\det(cA) = c \det(A)$ se, e somente se, $c^n \det(A) = c \det(A)$. Ou seja, pode-se escolher qualquer matriz que não seja inversível, e o resultado será

$$c^n \det(A) = c^n 0 = 0 = c0 = c \det(A).$$

Outra opção é escolher c=1 e qualquer matriz inversível A.

- (d) Seguindo o raciocínio do item anterior, basta escolher uma matriz A inversível e qualquer $c \in \mathbb{R}$ tal que $c^n \neq c$, ou seja, $c \neq 1$ e $c \neq 0$.
- 8. (a) $\det(PQ) = -32 = (-8) \cdot 4 = \det(P) \cdot \det(Q)$
 - (b) $\det(QP) = -32 = (-8) \cdot 4 = \det(P) \cdot \det(Q)$

(c)
$$R = P + Q = \begin{bmatrix} 3 & 0 & 0 & -1 \\ 0 & -1 & -1 & 2 \\ 0 & 0 & 6 & 0 \\ 1 & -3 & -1 & 9 \end{bmatrix}$$
 e $\det(R)^T = -60 = \det(R)$.

(d)
$$\det(P^{-1}) = -1/8 = \frac{1}{-8} = \frac{1}{\det(P)} = \det(P)^{-1}$$

9. (a)
$$\det(Q) = \frac{5}{144}$$

(b)
$$\det(R) = 1$$

(c)
$$T = DD^T = \begin{bmatrix} 3 & 0 \\ 0 & 9 \end{bmatrix}$$
 e $\det(T) = 27$

(d)
$$U = D^T D = \begin{bmatrix} 5 & 3 & -1 & -2 \\ 3 & 5 & 1 & -2 \\ -1 & 1 & 1 & 0 \\ -2 & -2 & 0 & 1 \end{bmatrix}$$
 e $\det(T) = 0$

(e)
$$A = LU = \begin{bmatrix} -2 & 1 & 0 \\ -\frac{1}{2} & \frac{25}{4} & -\frac{9}{2} \\ \frac{5}{4} & \frac{67}{8} & -\frac{23}{4} \end{bmatrix}$$
 e $\det(T) = \det(L) \det(U) = (2 \cdot 3 \cdot 1) \cdot (-1 \cdot 2 \cdot 1) = -12$

(f)
$$M = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ -2 & 0 & -1 & 2 \\ -1 & 0 & 1 & -1 \end{bmatrix}$$
 e $\det(M) = \det(P) \det(Q) \det(P^{-1}) = \frac{\det(P) \det(Q)}{\det(P)} = \det(Q) = -1$

10. (a) $\begin{vmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ u & v & 0 \\ \mathbf{w} & \mathbf{0} & \mathbf{0} \end{vmatrix} = - \begin{vmatrix} \mathbf{w} & 0 & 0 \\ u & \mathbf{v} & 0 \\ x & y & \mathbf{z} \end{vmatrix} = -wvz$, pois o determinante de matrizes triangulares inferiores é o produto das entradas que aparecem na diagonal.

(b)
$$\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \\ e & f & g & 0 \\ h & i & 0 & 0 \\ \mathbf{j} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{vmatrix} = - \begin{vmatrix} j & 0 & 0 & 0 \\ \mathbf{e} & \mathbf{f} & \mathbf{g} & \mathbf{0} \\ \mathbf{h} & \mathbf{i} & \mathbf{0} & \mathbf{0} \\ a & b & c & d \end{vmatrix} = \begin{vmatrix} \mathbf{j} & 0 & 0 & 0 \\ h & \mathbf{i} & 0 & 0 \\ e & f & \mathbf{g} & 0 \\ a & b & c & \mathbf{d} \end{vmatrix} = jigd$$

(c)
$$\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{e} \\ f & g & h & i & 0 \\ x & y & z & 0 & 0 \\ u & v & 0 & 0 & 0 \end{vmatrix} = - \begin{vmatrix} w & 0 & 0 & 0 & 0 \\ \mathbf{f} & \mathbf{g} & \mathbf{h} & \mathbf{i} & \mathbf{0} \\ x & y & z & 0 & 0 \\ \mathbf{u} & \mathbf{v} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{vmatrix} = \begin{vmatrix} \mathbf{w} & 0 & 0 & 0 & 0 \\ u & \mathbf{v} & 0 & 0 & 0 \\ x & y & z & 0 & 0 \\ a & b & c & d & e \end{vmatrix} = \begin{vmatrix} \mathbf{w} & 0 & 0 & 0 & 0 \\ u & \mathbf{v} & 0 & 0 & 0 \\ x & y & \mathbf{z} & 0 & 0 \\ f & g & h & \mathbf{i} & 0 \\ a & b & c & d & \mathbf{e} \end{vmatrix} = wvzie$$

- 11. (a) Se $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, então $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$, que é inversível. Porém, A e B não são inversíveis, já que possuem uma coluna de zeros.
 - (b) Se $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, então $A + B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ não é inversível, pois AX = 0 tem uma solução não nula $X = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Porém, $A = A^{-1}$ e $B = B^{-1}$ são inversíveis.
 - (c) Se $A=B=\begin{bmatrix}1&0\\0&1\end{bmatrix}$, então $A+B=\begin{bmatrix}2&0\\0&2\end{bmatrix}$ e as matrizes A,B e A+B são inversíveis, sendo $A^{-1}=B^{-1}=I$ e $(A+B)^{-1}=(2I)^{-1}=\frac{1}{2}I$.

- 12. (a) Digite 2x-3y=-4 para que o GeoGebra mostre a reta formada pelos pontos que satisfazem a primeira equação, e 5x+y=7 para representar a segunda reta.
 - (b) Ao trocar o −4 por um número maior, a reta correspondente se desloca para baixo, mantendo-se paralela à reta original. Ao diminuir este valor, a reta se desloca paralelamente para cima. Na segunda equação, a troca de 7 por um número maior resulta em um deslocamento para a direita, e a diminuição deste valor desloca a reta para a esquerda.
 - (c) As retas, que inicialmente se intersectam em (1, 2), têm sempre um ponto em comum, independentemente dos valores atribuídos ao segundo membro das equações. Isso reflete o fato de que as duas equações correspondem a retas que não são paralelas entre si, e sua direção permanece inalterada mesmo quando o segundo membro é modificado.
- 13. (a) Digite x-y+z=1 para que o GeoGebra mostre o plano formado pelos pontos (x, y, z) que satisfazem a primeira equação, e então 2x+y+z=4 e x+y+5z=7 para representar os planos correspondentes às demais equações.
 - (b) A trocar os valores do segundo membro de cada equação, o plano correspondente desloca-se no espaço mantendo-se paralelo à sua posição original.
 - (c) Como os planos se intersectam inicialmente no ponto (1, 1, 1), e sempre permanecem paralelos às suas posições iniciais, continua existindo um único ponto de interseção, quaisquer que sejam os valores do segundo membro do sistema.
- 14. (a) i. A matriz aumentada associada ao primeiro sistema pode ser levada à sua forma escalonada reduzida por linhas por meio das seguintes operações elementares:

$$\begin{bmatrix} 1 & 2 & 6 \\ 2 & -c & 0 \end{bmatrix} \xrightarrow{L_2 - 2L_1} \begin{bmatrix} 1 & 2 & 6 \\ 0 & -c - 4 & -12 \end{bmatrix} \xrightarrow{\frac{-1}{c+4}L_2} \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 & \frac{12}{c+4} \end{bmatrix} \xrightarrow{L_1 - 2L_2} \begin{bmatrix} 1 & 0 & \frac{6c}{c+4} \\ 0 & 1 & \frac{12}{c+4} \end{bmatrix}$$

Se c=-4 a segunda operação deixa de ser possível, e o sistema não tem solução. Por outro lado, se $c \neq -4$, todos os passos podem ser realizados e conclui-se que o sistema é possível e determinado, tendo como única solução o ponto $\left(\frac{6c}{c+4},\frac{12}{c+4}\right)$.

ii. A matriz aumentada associada ao segundo sistema pode ser levada à sua forma escalonada reduzida por linhas por meio das seguintes operações elementares:

$$\begin{bmatrix} 1 & 2 & 6 \\ -c & 1 & 1 - 4c \end{bmatrix} \xrightarrow{L_2 + cL_1} \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 + 2c & 1 + 2c \end{bmatrix} \xrightarrow{\frac{1}{1+2c}L_2} \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{L_1 - 2L_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \end{bmatrix}$$

Desta vez, se c=-1/2 a segunda linha zera após a primeira operação elementar, e o sistema tem mais de uma solução. De fato, o escalonamento mostra que o sistema original é equivalente a um sistema formado pela primeira equação e por uma equação do tipo 0=0, que não impõe qualquer restrição sobre os valores de x e y. Assim, todo par da forma (6-2y,y), com $y \in \mathbb{R}$, é solução deste sistema possível e indeterminado.

Por outro lado, nos casos em que $c \neq -1/2$, os três passos da eliminação de Gauss-Jordan podem ser realizados, e a conclusão é de que o sistema possui como única solução o ponto (4,1), sendo então possível e determinado.

(b) i. Geometricamente, nota-se que conforme o valor de c vai se aproximando de c=-4 a reta que corresponde à segunda equação gira em torno da origem até ficar paralela à reta da primeira equação. Quando isso ocorre, não há um ponto de interseção. Nos demais casos, as retas se intersectam em um único ponto.

- ii. Geometricamente, ao variar o valor de c, uma das retas gira em torno do ponto (4,1), em que elas se intersectam, e em um caso específico (quando c=-1/2) as duas retas coincidem, fazendo com que todos os seus pontos sejam pontos de interseção.
- 15. O sistema (A tI)X = 0 possui mais de uma solução se, e somente se, a matriz (A tI) não for inversível, isto é, se $\det(A tI) = 0$. Em cada um dos casos, esta condição resultará em uma equação polinomial na variável t, cujas soluções são dadas a seguir:
 - (a) t = 3 ou t = -1
 - (b) t = -5 ou t = 0 ou t = 4
 - (c) t = -3 ou t = 0 ou t = 1
- 16. (a) A matriz aumentada associada ao sistema dado é $A = \begin{bmatrix} 5 & -5\pi & -5\pi^2 \\ -1 & \pi+3 & \pi(\pi+6) \end{bmatrix}$ e sua forma escalonada reduzida é obtida por meio das seguintes operações elementares sobre as linhas:

$$A \xrightarrow{\frac{1}{5}L_{1}} \begin{bmatrix} 1 & -\pi & | & -\pi^{2} \\ -1 & \pi + 3 & | & \pi(\pi + 6) \end{bmatrix} \xrightarrow{L_{2}+L_{1}} \begin{bmatrix} 1 & -\pi & | & -\pi^{2} \\ 0 & 3 & | & 6\pi \end{bmatrix}$$
$$\xrightarrow{\frac{1}{3}L_{2}} \begin{bmatrix} 1 & -\pi & | & -\pi^{2} \\ 0 & 1 & | & 2\pi \end{bmatrix} \xrightarrow{L_{1}+\pi L_{2}} \begin{bmatrix} 1 & 0 & | & \pi^{2} \\ 0 & 1 & | & 2\pi \end{bmatrix}$$

Esta última matriz está associada às equações

$$\begin{cases} s = \pi^2 \\ t = 2\pi \end{cases},$$

e, portanto, $S = \{(\pi^2, 2\pi)\}$ é o conjunto das soluções do sistema proposto.

(b) A redução à forma escalonada reduzida da matriz associada ao sistema é obtida através das seguintes operações elementares:

$$\begin{bmatrix} 4 & 4 & 0 & 0 & | & 16 \\ 0 & 5 & 0 & -15 & | & 2 \\ 2 & 2 & 1 & 0 & | & 12 \\ 0 & -1 & 0 & 8 & | & 3/5 \end{bmatrix} \xrightarrow{\frac{1}{4}L_1} \begin{bmatrix} 1 & 1 & 0 & 0 & | & 4 \\ 0 & 5 & 0 & -15 & | & 2 \\ 2 & 2 & 1 & 0 & | & 12 \\ 0 & -1 & 0 & 8 & | & 3/5 \end{bmatrix} \xrightarrow{L_3-2L_1} \begin{bmatrix} 1 & 1 & 0 & 0 & | & 4 \\ 0 & 5 & 0 & -15 & | & 2 \\ 0 & 0 & 1 & 0 & | & 4 \\ 0 & -1 & 0 & 8 & | & 3/5 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{5}L_2} \begin{bmatrix} 1 & 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & -3 & | & 2/5 \\ 0 & 0 & 1 & 0 & | & 4 \\ 0 & -1 & 0 & 8 & | & 3/5 \end{bmatrix} \xrightarrow{L_4+L_2} \begin{bmatrix} 1 & 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & -3 & | & 2/5 \\ 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 5 & | & 1 \end{bmatrix} \xrightarrow{\frac{1}{5}L_4} \begin{bmatrix} 1 & 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & -3 & | & 2/5 \\ 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 1 & | & 1/5 \end{bmatrix}$$

$$\xrightarrow{L_2+3L_4} \begin{bmatrix} 1 & 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 1 & | & 1/5 \end{bmatrix}$$

$$\xrightarrow{L_1-L_2} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 1 & | & 1/5 \end{bmatrix}$$

Esta última matriz está associada às equações

$$\begin{cases} x_1 = 3 \\ x_2 = 1 \\ x_3 = 4 \\ x_4 = 1/5 \end{cases}$$

de modo que $S = \{(3, 1, 4, 1/5)\}$ é o conjunto das soluções do sistema proposto.

(c) A redução à forma escalonada reduzida da matriz associada ao sistema é obtida através das seguintes operações elementares:

$$\begin{bmatrix} 3 & -12 & -6 & 0 & 9 & | & -21 \\ -1 & 4 & 2 & 0 & -3 & | & 7 \\ 1/2 & -2 & -1 & 1 & -3/2 & | & -5/2 \\ -7 & 28 & 15 & 0 & -23 & | & 53 \end{bmatrix} \xrightarrow{\frac{1}{3}L_1} \begin{bmatrix} 1 & -4 & -2 & 0 & 3 & | & -7 \\ -1 & 4 & 2 & 0 & -3 & | & 7 \\ 1/2 & -2 & -1 & 1 & -3/2 & | & -5/2 \\ -7 & 28 & 15 & 0 & -23 & | & 53 \end{bmatrix}$$

$$\xrightarrow{L_2+L_1} \begin{bmatrix} 1 & -4 & -2 & 0 & 3 & | & -7 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & -3 & | & 1 \\ 0 & 0 & 1 & 0 & -2 & | & 4 \end{bmatrix} \xrightarrow{L_2\leftrightarrow L_4} \begin{bmatrix} 1 & -4 & -2 & 0 & 3 & | & -7 \\ 0 & 0 & 1 & 0 & -2 & | & 4 \\ 0 & 0 & 0 & 1 & -3 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\xrightarrow{L_1+2L_2} \begin{bmatrix} 1 & -4 & 0 & 0 & -1 & | & 1 \\ 0 & 0 & 1 & 0 & -2 & | & 4 \\ 0 & 0 & 0 & 1 & -3 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Esta última matriz está associada às equações

$$\begin{cases} x_1 - 4x_2 - x_5 = 1 \\ x_3 - 2x_5 = 4 \\ x_4 - 3x_5 = 1 \\ 0 = 0. \end{cases}$$

Logo, o conjunto das soluções do sistema proposto é

$$S = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 = 1 + 4x_2 + x_5, x_2 = 4 + 2x_5, x_4 = 1 + 3x_5\}$$

= \{(1 + 4x_2 + x_5, 4 + 2x_5, x_3, 1 + 3x_5, x_5) \cdot x_3, x_5 \in \mathbb{R}\}.

(d) A matriz aumentada associada ao sistema dado é $[A|B] = \begin{bmatrix} 0 & 1 & 6 & 6 \\ 1 & 6 & -5 & -3 \\ 3 & 20 & -3 & 1 \end{bmatrix}$ e sua forma escalonada reduzida é obtida por meio das seguintes operações elementares

sobre as linhas:

$$\begin{bmatrix} A|B \end{bmatrix} \overset{L_1 \leftrightarrow L_2}{\longrightarrow} \begin{bmatrix} 1 & 6 & -5 & | & -3 \\ 0 & 1 & 6 & | & 6 \\ 3 & 20 & -3 & | & 1 \end{bmatrix} \overset{L_3 - 3L_1}{\longrightarrow} \begin{bmatrix} 1 & 6 & -5 & | & -3 \\ 0 & 1 & 6 & | & 6 \\ 0 & 2 & 12 & | & 10 \end{bmatrix} \overset{L_3 - 2L_1}{\longrightarrow} \begin{bmatrix} 1 & 6 & -5 & | & -3 \\ 0 & 1 & 6 & | & 6 \\ 0 & 0 & 0 & | & -2 \end{bmatrix} \overset{-\frac{1}{2}L_3}{\longrightarrow} \begin{bmatrix} 1 & 6 & -5 & | & -3 \\ 0 & 1 & 6 & | & 6 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \overset{L_2 - 6L_3}{\longrightarrow} \begin{bmatrix} 1 & 6 & -5 & | & 0 \\ 0 & 1 & 6 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} \overset{L_1 - 6L_2}{\longrightarrow} \begin{bmatrix} 1 & 0 & -41 & | & 0 \\ 0 & 1 & 6 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

Como a última linha corresponde a uma equação da forma 0 = 1, o sistema é impossível, ou seja, $S = \emptyset$.

(a) Primeiro é preciso determinar a inversa de A, e para isso serão usadas as mesmas 17. operações elementares que produziram a forma escalonada reduzida de A:

$$\begin{bmatrix} 5 & -5\pi & 1 & 0 \\ -1 & \pi + 3 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{5}L_1} \begin{bmatrix} 1 & -\pi & 1/5 & 0 \\ -1 & \pi + 3 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 + L_1} \begin{bmatrix} 1 & -\pi & 1/5 & 0 \\ 0 & 3 & 1/5 & 1 \end{bmatrix}$$
$$\xrightarrow{\frac{1}{3}L_2} \begin{bmatrix} 1 & -\pi & 1/5 & 0 \\ 0 & 1 & 1/15 & 1/3 \end{bmatrix} \xrightarrow{L_1 + \pi L_2} \begin{bmatrix} 1 & 0 & 1/5 + \pi/15 & \pi/3 \\ 0 & 1 & 1/15 & 1/3 \end{bmatrix}$$

Assim,
$$A^{-1} = \begin{bmatrix} 1/5 + \pi/15 & \pi/3 \\ 1/15 & 1/3 \end{bmatrix} = \frac{1}{15} \begin{bmatrix} 3 + \pi & 5\pi \\ 1 & 5 \end{bmatrix}$$
.

Sempre que AX = B e A é inversível, vale $X = A^{-1}B$. Assim, para $B = \begin{bmatrix} -5\pi^2 \\ \pi(\pi+6) \end{bmatrix}$, tem-se

$$X = \frac{1}{15} \begin{bmatrix} 3+\pi & 5\pi \\ 1 & 5 \end{bmatrix} \cdot \begin{bmatrix} -5\pi^2 \\ \pi(\pi+6) \end{bmatrix} = \frac{1}{15} \begin{bmatrix} -5\pi^2(3+\pi) + 5\pi^2(\pi+6) \\ -5\pi^2 + 5\pi(\pi+6) \end{bmatrix} = \begin{bmatrix} \pi^2 \\ 2\pi \end{bmatrix}.$$

(b) Primeiro, determina-se A^{-1} usando as mesmas operações elementares que produziram a forma escalonada reduzida de A:

$$\begin{bmatrix} 4 & 4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & -15 & 0 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 8 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{4}L_1} \begin{bmatrix} 1 & 1 & 0 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 5 & 0 & -15 & 0 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 8 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$L_{3-2L_1} \begin{bmatrix} 1 & 1 & 0 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 5 & 0 & -15 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1/2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1/2 & 0 & 1 & 0 \\ 0 & -1 & 0 & 8 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{5}L_2} \begin{bmatrix} 1 & 1 & 0 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 & 0 & 1/5 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1/2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1/2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 5 & 0 & 1/5 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{5}L_4} \begin{bmatrix} 1 & 1 & 0 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 & 0 & 1/5 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1/2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1/25 & 0 & 1/5 \end{bmatrix}$$

$$L_{2+3L_4} \xrightarrow{L_2+3L_4} \begin{bmatrix} 1 & 1 & 0 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 8/25 & 0 & 3/5 \\ 0 & 0 & 1 & 0 & -1/2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1/2 & 0 & 1 & 0 \\ 0$$

$$\text{Assim, } A^{-1} = \begin{bmatrix} 1/4 & -8/25 & 0 & -3/5 \\ 0 & 8/25 & 0 & 3/5 \\ -1/2 & 0 & 1 & 0 \\ 0 & 1/25 & 0 & 1/5 \end{bmatrix} = \frac{1}{100} \begin{bmatrix} 25 & -32 & 0 & -60 \\ 0 & 32 & 0 & 60 \\ -50 & 0 & 100 & 0 \\ 0 & 4 & 0 & 20 \end{bmatrix} \text{ e a solução}$$

 $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ do sistema é obtida através da seguinte multiplicação:

$$X = A^{-1}B = \frac{1}{100} \begin{bmatrix} 25 & -32 & 0 & -60 \\ 0 & 32 & 0 & 60 \\ -50 & 0 & 100 & 0 \\ 0 & 4 & 0 & 20 \end{bmatrix} \cdot \begin{bmatrix} 16 \\ 2 \\ 12 \\ 3/5 \end{bmatrix} = \frac{1}{100} \begin{bmatrix} 300 \\ 100 \\ 400 \\ 20 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 4 \\ 1/5 \end{bmatrix}$$

- (c) A matriz (não aumentada) associada ao sistema não é quadrada.
- (d) A matriz associada ao sistema não é inversível, pois sua forma escalonada reduzida não é a matriz identidade.

18. Os três sistemas podem ser escritos na forma AX=B com uma mesma matriz $A=\begin{bmatrix}0&-1&5\\1&2&3\\2&4&5\end{bmatrix}$, então será preciso calcular apenas uma matriz inversa:

$$\begin{bmatrix} 0 & -1 & 5 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 2 & 4 & 5 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & -1 & 5 & 1 & 0 & 0 \\ 2 & 4 & 5 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 \to 2L_1} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & -1 & 5 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -2 & 1 \end{bmatrix} \xrightarrow{L_3 \to 2L_1} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & -2 & 1 \end{bmatrix} \xrightarrow{L_2 \to 2L_2} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & -5 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -2 & 1 \end{bmatrix} \xrightarrow{L_3 \to 2L_2} \begin{bmatrix} 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & -5 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & -1 \end{bmatrix} \xrightarrow{L_1 \to 3L_3} \begin{bmatrix} 1 & 2 & 0 & 0 & -5 & 3 \\ 0 & 1 & 0 & -1 & 10 & -5 \\ 0 & 0 & 1 & 0 & 2 & -1 \end{bmatrix} \xrightarrow{L_1 \to 3L_3} \begin{bmatrix} 1 & 2 & 0 & 0 & -5 & 3 \\ 0 & 1 & 0 & -1 & 10 & -5 \\ 0 & 0 & 1 & 0 & 2 & -1 \end{bmatrix} \xrightarrow{L_1 \to 3L_3} \xrightarrow{L_1 \to 3L_3} \begin{bmatrix} 1 & 2 & 0 & 0 & -5 & 3 \\ 0 & 1 & 0 & -1 & 10 & -5 \\ 0 & 0 & 1 & 0 & 2 & -1 \end{bmatrix}.$$

Disto resulta que $A^{-1} = \begin{bmatrix} 2 & -25 & 13 \\ -1 & 10 & -5 \\ 0 & 2 & -1 \end{bmatrix}$.

(a) Se
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 e $B = \begin{bmatrix} 2 \\ 7 \\ 13 \end{bmatrix}$ então: $X = A^{-1}B = \begin{bmatrix} 2 & -25 & 13 \\ -1 & 10 & -5 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 7 \\ 13 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$.

(b) Se
$$X = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
 e $B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ então $X = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ pois A é inversível.

(c) Se
$$X = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
 e $B = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$ então: $X = A^{-1}B = \begin{bmatrix} 2 & -25 & 13 \\ -1 & 10 & -5 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -66 \\ 27 \\ 5 \end{bmatrix}$.

- 19. A matriz $(B + C^T)((AB)^T + CA^T)$ tem tamanho $q \times p$, pois
 - $B \in C^T$ têm tamanho $q \times r$, de modo que $B + C^T$ também é $q \times r$.
 - AB têm tamanho $p \times r$, de modo que $(AB)^T$ é $r \times p$.
 - A^T têm tamanho $q\times p,$ de modo que CA^T é $r\times p.$
 - \bullet O produto de qualquer matriz $q\times r$ por uma matriz $r\times p$ tem tamanho $q\times p.$
- 20. (a) Para quaisquer m e n, se X é $m \times n$ então sua transposta X^T é $n \times m$. Em particular, o número de colunas de X é sempre igual ao número de linhas de X^T , e estas matrizes podem ser multiplicadas (nesta ordem), gerando um produto que é $m \times m$. Além disso, XX^T é simétrica pois

$$(XX^T)^T = (X^T)^T X^T = XX^T.$$

(b) De forma análoga ao item anterior, o número de colunas de X^T é sempre igual ao número de linhas de X, e estas matrizes podem ser multiplicadas (nesta ordem), desta vez gerando um produto que é $n \times n$. Além disso, X^TX também é simétrica:

$$(X^T X)^T = X^T (X^T)^T = X^T X.$$

(c) Para que seja possível calcular $X + X^T$, é necessário que X e X^T tenham o mesmo tamanho. Como uma delas é $m \times n$ e a outra é $n \times m$, a adição só será possível se m = n. Neste caso, a soma será uma matriz simétrica, pois

$$(X + X^T)^T = X^T + (X^T)^T = X^T + X = X + X^T.$$

(d) Como no item anterior, para que X^T+X faça sentido é preciso que X e X^T tenham o mesmo tamanho, isto é, que m=n. Neste caso, a soma também será uma matriz simétrica, já que

$$(X^T + X)^T = (X^T)^T + X^T = X + X^T = X^T + X.$$

(e) Novamente, é preciso que m=n para que a operação $X-X^T$ seja possível. No entanto, neste caso

$$(X - X^T)^T = X^T - (X^T)^T = X^T - X = -(X - X^T).$$

No entanto, $D = X - X^T$ só será igual a $-(X - X^T)$ se $d_{ij} = -d_{ij}$, para cada i, j, e isso só é possível se todos os d_{ij} forem nulos. Em outras palavras, $X - X^T$ só é uma matriz simétrica se $X - X^T = 0$.

- 21. Há duas possibilidades, dependendo das entradas da primeira coluna:
 - (a) Se $a \neq 0$ então a redução à forma escalonada reduzida começa com as seguintes operações elementares:

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \end{bmatrix} \xrightarrow{\frac{1}{a}L_1} \begin{bmatrix} 1 & \frac{b}{a} & 0 \\ c & d & 0 \end{bmatrix} \xrightarrow{L_2 - cL_1} \begin{bmatrix} 1 & \frac{b}{a} & 0 \\ 0 & d - c\frac{b}{a} & 0 \end{bmatrix} = \begin{bmatrix} 1 & \frac{b}{a} & 0 \\ 0 & \frac{ad-bc}{a} & 0 \end{bmatrix}$$

Neste ponto, a hipótese de que $ad-bc \neq 0$ pode ser usada para concluir a eliminação:

$$\begin{bmatrix} 1 & \frac{b}{a} & 0 \\ 0 & \frac{ad-bc}{a} & 0 \end{bmatrix} \xrightarrow{\frac{a}{ad-bc}L_2} \begin{bmatrix} 1 & \frac{b}{a} & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{L_1 - \frac{b}{a}L_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Assim, o sistema MX = 0 só tem a solução trivial X = 0.

(b) Se a=0 então uma troca da primeira linha com a segunda faz com que o problema recaia no caso anterior, em que a primeira entrada da primeira linha não é zero. Note que neste caso c não será zero, pois senão ocorreria $ad-bc=0\cdot d-b\cdot 0=0$.

Observação: Note que ad-bc é justamente a fórmula do determinante da matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

22. Como

$$MX = \begin{bmatrix} -1 & 2 & 3 \\ 2 & -4 & 5 \\ -1 & 1 & 7 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} -a + 2d + 3g & -b + 2e + 3h & -c + 2f + 3i \\ 2a - 4d + 5g & 2b - 4e + 5h & 2c - 4f + 5i \\ -a + d + 7g & -b + e + 7h & -c + f + 7i \end{bmatrix}$$

e por hipótese MX = I, uma comparação das entradas de MX com as de I mostra que as incógnitas que formam as colunas de X devem ser soluções dos sistemas lineares

$$\begin{cases}
-a+2d+3g=1 \\
2a-4d+5g=0 \\
-a+d+7g=0
\end{cases} -a+2d+3g=0 \\
2a-4d+5g=1 e \\
-a+d+7g=0
\end{cases} -a+2d+3g=0 \\
2a-4d+5g=1 \\
-a+d+7g=0$$

Como todos os sistemas têm a mesma matriz de coeficientes, os três podem ser escalonados simultaneamente como segue:

$$\begin{bmatrix} -1 & 2 & 3 & 1 & 0 & 0 \\ 2 & -4 & 5 & 0 & 1 & 0 \\ -1 & 1 & 7 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-L_1} \begin{bmatrix} 1 & -2 & -3 & -1 & 0 & 0 \\ 2 & -4 & 5 & 0 & 1 & 0 \\ -1 & 1 & 7 & 0 & 0 & 1 \end{bmatrix}$$

$$\stackrel{L_2-2L_1}{\longrightarrow} \begin{bmatrix} 1 & -2 & -3 & -1 & 0 & 0 \\ 0 & 0 & 11 & 2 & 1 & 0 \\ -1 & 1 & 7 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_3+L_1} \begin{bmatrix} 1 & -2 & -3 & -1 & 0 & 0 \\ 0 & 0 & 11 & 2 & 1 & 0 \\ 0 & -1 & 4 & -1 & 0 & 1 \end{bmatrix}$$

$$\stackrel{L_2 \leftrightarrow L_3}{\longrightarrow} \begin{bmatrix} 1 & -2 & -3 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & 1 \\ 0 & 0 & 11 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{-L_2} \begin{bmatrix} 1 & -2 & -3 & -1 & 0 & 0 \\ 0 & 1 & -4 & 1 & 0 & -1 \\ 0 & 0 & 11 & 2 & 1 & 0 \end{bmatrix}$$

$$\xrightarrow{\stackrel{1}{\longrightarrow}} \begin{bmatrix} 1 & -2 & -3 & -1 & 0 & 0 \\ 0 & 1 & -4 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2/11 & 1/11 & 0 \end{bmatrix} \xrightarrow{L_2+4L_3} \begin{bmatrix} 1 & -2 & -3 & -1 & 0 & 0 \\ 0 & 1 & 0 & 19/11 & 4/11 & -1 \\ 0 & 0 & 1 & 2/11 & 1/11 & 0 \end{bmatrix}$$

$$\xrightarrow{L_1+3L_3} \begin{bmatrix} 1 & -2 & 0 & -5/11 & 3/11 & 0 \\ 0 & 1 & 0 & 19/11 & 4/11 & -1 \\ 0 & 0 & 1 & 2/11 & 1/11 & 0 \end{bmatrix} \xrightarrow{L_1+2L_2} \begin{bmatrix} 1 & 0 & 0 & 3 & 1 & -2 \\ 0 & 1 & 0 & 19/11 & 4/11 & -1 \\ 0 & 0 & 1 & 2/11 & 1/11 & 0 \end{bmatrix}$$

Assim, $X=\begin{bmatrix}3&1&-2\\19/11&4/11&-1\\2/11&1/11&0\end{bmatrix}$. Multiplicando esta matriz à esquerda de M, obtém-se:

$$XM = \begin{bmatrix} 3 & 1 & -2 \\ 19/11 & 4/11 & -1 \\ 2/11 & 1/11 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 & 3 \\ 2 & -4 & 5 \\ -1 & 1 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Isto quer dizer que a matrix X que atua como inversa à direita de A também é uma inversa à esquerda de A, pois ambos os produtos (AX e XA) resultam na matriz identidade.

- 23. (a) Ao sortear 10 matrizes 7×7 aleatoriamente, é bem provavel que **todas** as matrizes obtidas sejam inversíveis (execute o comando mais de 10 vezes se não estiver convencido).
 - (b) Repetindo o experimento com matrizes quadradas de qualquer outro tamanho, há grandes chances de não encontrar uma única matriz que não seja inversível. De fato, ao sortear aleatoriamente uma matriz quadrada, há **probabilidade zero** (não é só pequena, é zero!) de ser escolhida uma matriz não inversível. Elas são raras, mas pode se deparar com elas se estiver com sorte (ou se o sorteio não for realmente aleatório).

(c) Sejam
$$A_2 = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$$
, $A_3 = \begin{bmatrix} 0 & -2 & 1 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$ e $A_4 = \begin{bmatrix} 0 & -1 & 2 & 3 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Então:

i.

- ii. Com base nos exemplos anteriores, é natural suspeitar que a n-ésima potência de uma matriz triangular superior $n \times n$ qualquer, com zeros na diagonal, é sempre a matriz nula $n \times n$.
- iii. As matrizes triangulares superiores de tamanho 2×2 , com zeros na diagonal, têm a forma $A_2 = \begin{bmatrix} 0 & c \\ 0 & 0 \end{bmatrix}$, em que c pode ser qualquer escalar. Então:

$$A_2^2 = \begin{bmatrix} 0 & c \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & c \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Já no caso 3×3 , tem-se $A_3=\begin{bmatrix}0&a&b\\0&0&c\\0&0&0\end{bmatrix}$ e então:

$$A_3^3 = \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}^2 \cdot \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Mais geralmente, se $A = (a_{ij})$ for uma matriz triangular superior de tamanho $n \times n$ com diagonal nula, então as primeiras i entradas da linha i são todas nulas. Ao elevar A ao quadrado, a matriz obtida terá as primeiras i+1 entradas da linha i iguais a zero. Analogamente, ao calcular A^3 , a matriz resultante terá i+2 entradas da linha i igual a zero. Como a matriz tem n colunas, procedendo desta maneira até obter A^n o resultado final será uma matriz com zeros em todas as n colunas de cada linha.

$$\begin{bmatrix}
\mathbf{0} & a_{12} & a_{13} & \dots & a_{1n} \\
0 & \mathbf{0} & a_{23} & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & a_{n-1,n} \\
0 & 0 & 0 & \dots & \mathbf{0}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\mathbf{a}^2 & & & & & & & & & & & & \\
0 & \mathbf{0} & a_{13} & \dots & a_{1n} \\
0 & 0 & \mathbf{0} & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & \mathbf{0} \\
0 & 0 & 0 & \dots & \mathbf{0}
\end{bmatrix}$$

O padrão acima também pode ser percebido ao calcular explicitamente as entradas dos produtos. Como a matriz A é triangular superior e tem zeros na

diagonal, tem-se $a_{ij}=0$ sempre que $i\geq j$. Consequentemente, se $i\geq j-1$ a entrada ij de A^2 é dada por

$$[A^{2}]_{ij} = [A \cdot A]_{ij} = (a_{i1}a_{1j} + \ldots + a_{ii}a_{ij}) + (a_{i,i+1}a_{i+1,j} + \ldots + a_{in}a_{nj})$$
$$= (0a_{1j} + \ldots + 0a_{ij}) + (a_{i,i+1}0 + \ldots + a_{in}0) = 0.$$

Do mesmo modo, $[A^3]_{ij} = 0$ para $i \ge j - 2$:

$$[A^{3}]_{ij} = [A^{2} \cdot A]_{ij} = ([A^{2}]_{i1}a_{1j} + \dots + [A^{2}]_{i,i+1}a_{i+1,j}) + ([A^{2}]_{i,i+2}a_{i+2,j} + \dots + [A^{2}]_{in}a_{nj}) = (0a_{1j} + \dots + 0a_{i+1,j}) + ([A^{2}]_{i+2,j+1}0 + \dots + [A^{2}]_{in}0) = 0.$$

Procedendo da mesma maneira até a n-ésima potência de A, consegue-se todas as entradas iguais a zero.

24. Para que a matriz $T = \begin{bmatrix} -1 & 9 & 1 \\ -1 & t & 3 \\ -1 & 9 & t+1 \end{bmatrix}$ seja inversível, sua forma escalonada reduzida

por linhas deve ser a matriz identidade. Procedendo com a eliminação de Gauss-Jordan, seriam realizadas as seguintes operações elementares sobre as linhas:

$$\begin{bmatrix} -1 & 9 & 1 \\ -1 & t & 3 \\ -1 & 9 & t+1 \end{bmatrix} \xrightarrow{-L_1} \begin{bmatrix} 1 & -9 & -1 \\ -1 & t & 3 \\ -1 & 9 & t+1 \end{bmatrix} \xrightarrow{L_2+L_1} \begin{bmatrix} 1 & -9 & -1 \\ 0 & t-9 & 2 \\ -1 & 9 & t+1 \end{bmatrix} \xrightarrow{L_3+L_1} \begin{bmatrix} 1 & -9 & -1 \\ 0 & t-9 & 2 \\ 0 & 0 & t \end{bmatrix}$$

Neste ponto, para conseguir um pivô igual a 1 na segunda coluna da segunda linha, seria necessária uma divisão da segunda linha por t-9, e isso significa que se t=9 a matriz não será inversível. Além disso, no passo seguinte, será necessário dividir a terceira linha por t, de modo que para t=0 a matriz também não será inversível. Supondo que $t\neq 0$ e $t\neq 9$, basta realizar mais algumas operações elementares e obtém-se a identidade:

$$\begin{bmatrix} 1 & -9 & -1 \\ 0 & t - 9 & 2 \\ 0 & 0 & t \end{bmatrix} \xrightarrow{\frac{1}{t-9}L_2} \begin{bmatrix} 1 & -9 & -1 \\ 0 & 1 & \frac{2}{t-9} \\ 0 & 0 & t \end{bmatrix} \xrightarrow{\frac{1}{t}L_3} \begin{bmatrix} 1 & -9 & -1 \\ 0 & 1 & \frac{2}{t-9} \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 - \frac{2}{t-9}L_3} \begin{bmatrix} 1 & -9 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{L_1 + L_3} \begin{bmatrix} 1 & -9 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_1 + 9L_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Portanto, T é inversível se, e somente se, $t \notin \{0,9\}$. Aplicando a mesma sequência de operações elementares à matriz identidade, o resultado é a inversa de T: 0

$$I \xrightarrow{-L_1} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_2 + L_1} \begin{bmatrix} -1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{t-9}L_2} \begin{bmatrix} -1 & 0 & 0 \\ \frac{-1}{t-9} & \frac{1}{t-9} & 0 \\ \frac{-1}{t} & 0 & \frac{1}{t} \end{bmatrix}$$

$$L_2 \xrightarrow{\frac{2}{t-9}} L_3 \begin{bmatrix} -1 & 0 & 0 \\ \frac{2-t}{(t-9)t} & \frac{1}{t-9} & \frac{-2}{(t-9)t} \\ \frac{-1}{t} & 0 & \frac{1}{t} \end{bmatrix} \xrightarrow{L_1 + L_3} \begin{bmatrix} \frac{-t-1}{t} & 0 & \frac{1}{t} \\ \frac{2-t}{(t-9)t} & \frac{1}{t-9} & \frac{-2}{(t-9)t} \\ \frac{-1}{t} & 0 & \frac{1}{t} \end{bmatrix}$$

$$L_1 + 2L_3 \xrightarrow{\frac{2-t}{(t-9)t}} \xrightarrow{\frac{1}{t-9}} \xrightarrow{\frac{1-t}{(t-9)t}} \xrightarrow{\frac{1-t}{t}} \xrightarrow{\frac{2-t}{(t-9)t}} \xrightarrow{\frac{1-t}{t}} \xrightarrow{\frac{1-t}{$$

25. As operações elementares a seguir mostram que N é equivalente por linhas à identidade, desde que seja possível dividir por 1-t e depois por t(t+2). Isto significa que para $t \in \{-2,0,1\}$ a matriz N não é inversível, pois apareceria uma linha nula em um dos passos da eliminação de Gauss-Jordan.

$$N = \begin{bmatrix} 2-t & 0 & -4 \\ 6 & 1-t & -15 \\ 2 & 0 & -4-t \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_3} \begin{bmatrix} 2 & 0 & -4-t \\ 6 & 1-t & -15 \\ 2-t & 0 & -4 \end{bmatrix} \xrightarrow{\frac{1}{2}L_1} \begin{bmatrix} 1 & 0 & -2-\frac{t}{2} \\ 6 & 1-t & -15 \\ 2-t & 0 & -4 \end{bmatrix}$$

$$\xrightarrow{L_2-6L_1} \begin{bmatrix} 1 & 0 & -2-\frac{t}{2} \\ 0 & 1-t & 3(t-1) \\ 2-t & 0 & -4 \end{bmatrix} \xrightarrow{L_3-(2-t)L_1} \begin{bmatrix} 1 & 0 & \frac{-4-t}{2} \\ 0 & 1-t & 3(t-1) \\ 0 & 0 & -\frac{t(t+2)}{2} \end{bmatrix} \xrightarrow{\frac{1}{1-t}L_2} \begin{bmatrix} 1 & 0 & \frac{-4-t}{2} \\ 0 & 1 & -3 \\ 0 & 0 & -\frac{t(t+2)}{2} \end{bmatrix}$$

$$\xrightarrow{-\frac{2}{t(t+2)}L_2} \begin{bmatrix} 1 & 0 & \frac{-4-t}{2} \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_2+3L_3} \begin{bmatrix} 1 & 0 & \frac{-4-t}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_1-\frac{4+t}{2}L_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- 26. (a) A matriz nula é uma matriz na forma escalonada reduzida por linhas, pois
 - Não há nenhuma linha não nula em que o primeiro elemento não nulo seja diferente de 1 (nem sequer existem linhas não nulas);
 - Todas as linhas nulas estão na parte inferior
 - Não há pivôs mais a esquerda dos pivôs de linhas anteriores (já que não há pivôs)
 - Não há elementos não nulos acima ou abaixo de nenhum pivô
 - (b) A matriz identidade $I_{4\times4}$ está na forma escalonada reduzida por linhas pois
 - Em todas as linhas o o primeiro elemento não nulo é 1;
 - Não há linhas nulas
 - Todos os pivôs estão na diagonal
 - Exceto pelos pivôs que estão na diagonal, as colunas só contém zeros
 - (c) Em uma matriz triangular superior $S \in M_{n \times n}(K)$, todos os elementos abaixo da diagonal principal são nulos, ou seja, $s_{ij} = 0$ sempre que i > j. Se S é simétrica, então $s_{ij} = s_{ji}$, sendo $1 \le i, j \le n$. Em particular, se i < j então $s_{ij} = s_{ji} = 0$, pois j > i. Logo, T é uma matriz diagonal, já que $s_{ij} = 0$ sempre que que i > j ou i < j, isto é, para $i \ne j$.
 - (d) Se $U, V \in M_{m \times m}(K)$ são matrizes diagonais, então UV = VU. De fato, se $i \neq j$ então $u_{ij} = v_{ij} = 0$ e além disso

$$[UV]_{ij} = \sum_{k=1}^{m} u_{ik} v_{kj} = u_{i1} v_{1j} + u_{i2} v_{2j} + \ldots + u_{im} v_{mj}.$$

Nesta soma, tem-se $u_{ik}=0$, exceto possivelmente quando k=i. Mesmo assim, a parcela $u_{ii}v_{ij}$ será nula, pois $k=i\neq j\Rightarrow v_{kj}=v_{ij}=0$. Assim, todos os termos da soma são nulos, e as entradas $[UV]_{ij}$ são nulas sempre que $i\neq j$. De forma análoga, tem-se $[VU]_{ij}=0$ para $i\neq j$, ou seja, UV e VU coincidem fora da diagonal principal. Por outro lado, na diagonal principal tem-se i=j e então

$$[UV]_{ij} = u_{ii}v_{ii} = v_{ii}u_{ii} = [VU]_{ij}$$
.

(e) Seja A antissimétrica. Então $A^T = -A$ e resulta que $(A^T)^T = A = -A^T$, ou seja, A^T também é antissimétrica.

- (f) Dada uma matriz antissimétrica $A \in M_{n \times n}(\mathbb{R})$, tem-se $[A]_{ij} = [A^T]_{ji} = -[A]_{ji}$. Em particular, se i = j, vale $[A]_{ii} = -[A]_{ii}$, o que implica que $2[A]_{ii} = 0$, isto é, $[A]_{ii} = 0$. Assim, todas as entradas da diagonal de A são nulas.
- (g) A matriz nula $0 \in M_{n \times n}(\mathbb{R})$ é simétrica e antissimétrica simultaneamente.
- 27. Seja $D \in M_{2\times 2}(\mathbb{R})$ uma matriz diagonal. Então $D = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}$, com $x_1, x_2 \in \mathbb{R}$ e tem-se

$$D^2 = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}^2 = \begin{bmatrix} x_1^2 & 0 \\ 0 & x_2^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Assim, os escalares x_1 e x_2 satisfazem $x_i^2 = 1$, ou seja, $x_i = 1$ ou $x_i = -1$. Logo, D pode ser uma destas 4 matrizes:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} e \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

No caso de matrizes 3×3 , cada uma das três entradas da diagonal pode ser igual a 1 ou a -1, e consequentemente $I = I_3$ tem 8 raízes quadradas distintas.

28. Seja $D \in M_{3\times 3}(\mathbb{R})$ uma matriz diagonal. Então $D = \begin{bmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \end{bmatrix}$, com $x_1, x_2, x_3 \in \mathbb{R}$ e tem-se

$$D^{2} - 7D + 10I = \begin{bmatrix} x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3} \end{bmatrix}^{2} - 7 \begin{bmatrix} x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3} \end{bmatrix} + 10 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} x_{1}^{2} - 7x_{1} + 10 & 0 & 0 \\ 0 & x_{2}^{2} - 7x_{2} + 10 & 0 \\ 0 & 0 & x_{3}^{2} - 7x_{3} + 10 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Assim, se $D^2 - 7D + 10I = 0$ os escalares x_1 , x_2 e x_3 são soluções de $x_i^2 - 7x_i + 10 = 0$, ou seja, de $(x_i - 2)(x_i - 5) = 0$. Portanto, cada x_i pode assumir os valores 2 ou 5, e há as seguintes possibilidades para D:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} e \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

29. Seja S uma matriz simétrica $n \times n$, isto é, $S^T = S$. As entradas de S^2 e de $(S^2)^T$, são dadas por

$$[S^2]_{ij} = \sum_{k=1}^n s_{ik} s_{kj} = s_{i1} s_{1j} + s_{i2} s_{2j} + \ldots + s_{in} s_{nj}$$
(3)

e

$$[(S^2)^T]_{ij} = [S^2]_{ji} = \sum_{k=1}^n s_{jk} s_{ki} = s_{j1} s_{1i} + s_{j2} s_{2i} + \dots + s_{jn} s_{ni}$$

respectivamente. Mas as entradas de S satisfazem a igualdade $s_{ij} = s_{ji}$, então resulta desta última equação, permutando os índices de cada termo, que

$$[(S^{2})^{T}]_{ij} = s_{j1}s_{1i} + s_{j2}s_{2i} + \dots + s_{jn}s_{ni}$$

= $s_{1j}s_{i1} + s_{2j}s_{i2} + \dots + s_{nj}s_{in}$
= $s_{i1}s_{1j} + s_{i2}s_{2j} + \dots + s_{in}s_{nj}$,

onde a última igualdade deve-se à propriedade comutativa dos escalares s_{ij} . Comparando com (3), conclui-se que $[(S^2)^T]_{ij} = [S^2]_{ij}$, ou seja, que $(S^2)^T = S^2$, o que significa que S^2 é simétrica.

Observação: Para uma verificação mais direta, sem comparar entradas individuais das matrizes, poderia ser usada o fato de que $(AB)^T = B^T A^T$:

$$(S^2)^T = (SS)^T = S^T S^T = SS = S^2.$$

Por este raciocínio fica fácil ver que as potências de uma matriz simétrica são simétricas:

$$(S^n)^T = (S \cdot \ldots \cdot S)^T = S^T \cdot \ldots \cdot S^T = S \cdot \ldots \cdot S = S^n.$$

30. (a) Usando a definição de traço e as propriedades da adição, resulta que:

$$tr(A+B) = [A+B]_{11} + [A+B]_{22} + \dots + [A+B]_{nn}$$

$$= ([A]_{11} + [A]_{11}) + ([A]_{22} + [B]_{22}) + \dots + ([A]_{nn} + [B]_{nn})$$

$$= ([A]_{11} + \dots + [A]_{nn}) + ([B]_{11} + \dots + [B]_{nn})$$

$$= tr(A) + tr(B).$$

(b) Segue da definição de traço e das propriedades da multiplicação por escalar que:

$$tr(cB) = [cA]_{11} + [cA]_{22} + \dots + [cA]_{nn}$$

= $c[A]_{11} + c[A]_{22} + \dots + c[A]_{nn}$
= $c([A]_{11} + \dots + [A]_{nn})$
= $c \cdot tr(A)$.

(c) Como a diagonal principal não é alterada pela transposição de matrizes, e o traço só depende destas entradas, tem-se:

$$tr(A^{T}) = [A^{T}]_{11} + [A^{T}]_{22} + \dots + [A^{T}]_{nn}$$

= $[A]_{11} + [A]_{22} + \dots + [A]_{nn}$
= $tr(A)$.