Reinforcement Learning: Overview

Prabuchandran K.J.

Assistant Professor, IIT Dharwad

5 March 2020

• Faces of Reinforcement Learning (RL)

- Faces of Reinforcement Learning (RL)
 - $\blacktriangleright \ \, \mathsf{Computer} \ \, \mathsf{Science} \, \to \, \mathsf{Machine} \, \, \mathsf{Learning} \, \to \, \mathsf{Reinforcement} \, \, \mathsf{Learning}$

- Faces of Reinforcement Learning (RL)
 - lacktriangleright Computer Science o Machine Learning o Reinforcement Learning
- Sequential Decision Making (SDM) problems

- Faces of Reinforcement Learning (RL)
 - ightharpoonup Computer Science ightharpoonup Machine Learning ightharpoonup Reinforcement Learning
- Sequential Decision Making (SDM) problems
 - How to solve SDM Problems?

- Faces of Reinforcement Learning (RL)
 - ightharpoonup Computer Science ightharpoonup Machine Learning ightharpoonup Reinforcement Learning
- Sequential Decision Making (SDM) problems
 - How to solve SDM Problems?

Reinforcement Learning Methods

Examples and successful RL solutions

- Faces of Reinforcement Learning (RL)
 - lacktriangleright Computer Science o Machine Learning o Reinforcement Learning
- Sequential Decision Making (SDM) problems
 - How to solve SDM Problems?

Reinforcement Learning Methods

- Examples and successful RL solutions
- Mathematical frameworks for studying SDM Problems

Faces of Reinforcement Learning

Machine Learning

Traditional Programming vs Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Reinforcement Learning Problem

Supervised vs Reinforcement Learning

Supervised Learning

- Examples with target
- (images, labels)
- Instructive Feedback

Reinforcement Learning

- Examples without target
- (states,actions,rewards)
- Evaluative Feedback

Characteristics of Reinforcement Learning

• Decision Making in the face of uncertainty

Characteristics of Reinforcement Learning

Decision Making in the face of uncertainty

Delayed rewards

Characteristics of Reinforcement Learning

- Decision Making in the face of uncertainty
- Delayed rewards

Credit assignment Problem

Sequential Decision Making (SDM) Problems

Examples of SDM problems

Strategic Games

Traffic Signal Control

Robo Soccer

Inventory Management

• Long-term goal that needs to be achieved

- Long-term goal that needs to be achieved
- Uncertainity in the evolution of configuration (state)

- Long-term goal that needs to be achieved
- Uncertainity in the evolution of configuration (state)
- Decisions (actions) need to be taken in stages

- Long-term goal that needs to be achieved
- Uncertainity in the evolution of configuration (state)
- Decisions (actions) need to be taken in stages
- Simple feedback signal (reward/cost) how good is the action for the given state

- Long-term goal that needs to be achieved
- Uncertainity in the evolution of configuration (state)
- Decisions (actions) need to be taken in stages
- Simple feedback signal (reward/cost) how good is the action for the given state
- Available information or experience state, action and reward

How do we model?

Bandits/ Markov Decision Process

How to learn from experience?

Reinforcement Learning and Stochastic Optimization algorithms

How to analyse these algorithms?

How do we model?

Bandits/ Markov Decision Process

How to learn from experience?

Reinforcement Learning and Stochastic Optimization algorithms

low to analyse these algorithms?

How do we model?

Bandits/ Markov Decision Process

How to learn from experience?

Reinforcement Learning and Stochastic Optimization algorithms

How to analyse these algorithms?

How do we model?

Bandits/ Markov Decision Process

How to learn from experience?

Reinforcement Learning and Stochastic Optimization algorithms

Neimorcement Learning and Stochastic Optimization algorithms

How to analyse these algorithms?

How do we model?

Bandits/ Markov Decision Process

How to learn from experience?

Reinforcement Learning and Stochastic Optimization algorithms

How to analyse these algorithms?

How do we model?

Bandits/ Markov Decision Process

How to learn from experience?

Reinforcement Learning and Stochastic Optimization algorithms

How to analyse these algorithms?

Solution to SDM problems

Stochastic Approximation Algorithms

Reinforcement Learning Methods

Successful Reinforcement Learning (RL) solutions

- Q-learning / Deep Q-Networks (DQN)
- Actor-Critic methods (AC) / Policy gradient methods
- \bullet Upper Confidence Tree (UCT) / Monte-Carlo Tree Search algorithm

Deep Q-Networks

Break out and Space Invaders

Deep Q-Network

Deep Deterministic Policy Gradient

TORCS car simulation

Actor-Critic Network

Upper Confidence Tree (UCT)

Alpha Zero

Looking ahead (w/ Monte Carlo Search Tree)

UCT algorithm

Reason for Success

Rule Based Methods

↓

Feature Based Methods

Reason for Success

Rule Based Methods

 \Downarrow

Feature Based Methods

Reason for Success

Rule Based Methods

 \Downarrow

Feature Based Methods

Mathematical Framework for solving SDM Problems

Questions

Thank you!