Taylor's Theorem Notes

Quin Darcy

Feb, 3 2022

1 Needed Results

Theorem 1 (Mean value Theorem). If f is a continuous function on [a,b] which is differentiable in (a,b), then there is a point $x \in (a,b)$ at which

$$f(b) - f(a) = (b - a)f'(x).$$

2 Two Variations of Taylor's Theorem

Theorem 2 (Rudin). Suppose f is a real function of [a,b], n is a positive integer, $f^{(n-1)}$ is continuous on [a,b], $f^{(n)}(t)$ exists for all $t \in (a,b)$. Let α,β be distinct points of [a,b], and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k.$$
 (1)

Then there exists a point x between α and β such that

$$f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n.$$
 (2)

Proof. Let M be the number that satisfies

$$f(\beta) = P(\beta) + M(\beta - \alpha)^{n}.$$
 (3)

With this M in hand, define

$$g(t) = f(t) - P(t) - M(t - \alpha)^n \quad (a \le t \le b).$$

$$(4)$$

We have to show that $n!M = f^{(n)}(x)$ for some x between α and β . Now consider

$$g(t) = f(t) - \left(f(\alpha) + f'(\alpha)(t - \alpha) + \frac{f''(\alpha)}{2!}(t - \alpha)^2 + \dots + \frac{f^{(n-1)}(\alpha)}{(n-1)!}(t - \alpha)^{n-1}\right) - M(t - \alpha)^n$$

$$\Rightarrow g'(t) = f'(t) - \left(f'(\alpha) + \dots + \frac{f^{(n-1)}(\alpha)}{(n-2)!}(t - \alpha)^{n-2}\right) - nM(t - \alpha)^{n-1}$$

$$\Rightarrow g''(t) = f''(t) - \left(f''(\alpha) + \dots + \frac{f^{(n-1)}(\alpha)}{(n-3)!}(t - \alpha)^{n-3}\right) - n(n-1)M(t - \alpha)^{n-2}$$

$$\vdots$$

$$\Rightarrow g^{(n-1)}(t) = f^{(n-1)}(t) - \left(f^{(n-1)}(\alpha)\right) - n(n-1)\dots(2)M(t - \alpha)$$

$$\Rightarrow g^{(n)}(t) = f^{(n)}(t) - n!M,$$

For all a < t < b. Hence, the proof will be complete if we can show $g^{(n)}(x) = 0$ for some x between α and β .

Note that $P(\alpha) = f(\alpha)$ since all the other terms in the sum have a $(t - \alpha)^k$ attached, which goes to zero when evaluated at α . Moreover, $P'(\alpha) = f'(\alpha)$ for the same reason, except the first $f(\alpha)$ is elimiated by the derivative. Generally, we have $P^{(k)} = f^{(k)}(\alpha)$, for each $k = 0, 1, \ldots, n-1$. Thus

$$g(\alpha) = g'(\alpha) = \dots = g^{(n-1)}(\alpha) = 0$$

Also note that our choice of M in (2) gives that

$$M = \frac{f(\beta) - P(\beta)}{(\beta - \alpha)^n}$$

which implies

$$g(\beta) = f(\beta) - P(\beta) - \left(\frac{f(\beta) - P(\beta)}{(\beta - \alpha)^n}\right) (\beta - \alpha)^n$$
$$= f(\beta) - P(\beta) - f(\beta) + P(\beta)$$
$$= 0.$$

Thus we have that g is a continuous function on $[\alpha, \beta]$ which is differentiable in (α, β) , and so by Theorem (MVT), there exists $x_1 \in (\alpha, \beta)$ such that $g'(x_1) = (f(\beta) - f(\alpha))/(\beta - \alpha) = 0$. Since $g'(x_1) = 0$, then we can conclude that $g''(x_2) = 0$ for some $x_2 \in (\alpha, x_1)$. Continuing in this manner for n steps, we arrive at some $x_n \in (\alpha, x_{n-1})$ such that $g^{(n)}(x_n) = 0$. And since $x_n \in (\alpha, \beta)$, then we have shown what we needed.

Theorem 3 (Bloch). Let $[a,b] \subseteq \mathbb{R}$ be a non-degenerate (i.e., (a,b), [a,b], (a,b], etc.) closed bounded interval, let $c \in (a,b)$, let $f : [a,b] \to \mathbb{R}$ be a function and let $n \in \mathbb{N} \cup \{0\}$. Suppose that $f^{(k)}$ exists and is continuous on [a,b] for each $k \in \{0,\ldots,n\}$, and that $f^{(n+1)}$ exists on (a,b). Let $x \in [a,b]$ then there is some p strictly between x and c (except that p = c when x = c) such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^k + \frac{f^{(n+1)}(p)}{(n+1)!} (x-c)^{n+1}.$$

Proof. For x = c, the theorem holds trivially since everything else zeros out leaving f(c) = f(c).

Now suppose that $x \neq c$. Then there is a unique $B \in \mathbb{R}$ such that the following equation holds (simply solve for B):

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + B(x - c)^{n+1}$$