lecture 17

Converse to theorem?

VXF= = F conservative?

Will stablish by:

TXF=0 at all points depends only on Start point and in U:

The conservative in U cross depends only on Start point and end point of C in U.

The conservative in U.

The conservative in U.

means that F has a Potential in domain U

* A assumes that UCR3 is simply connected open set.

PROOF of A constant to end course (Stokes theorems)

* B assumes that UCR3 is "path connected" open set; a set in space is path connected if any two points in that set can be joined by a continuous path in that set.

* For F= <F, Fz>, replace PR3 with PR2, replace curl F=0 with (Fi)y=(Fz)2

(I) -> let E be closed curve (same stat and end point) Czer Divid Einto CIXC2

(proof of B)

(€) Suppose F= VØ, some Ø in U. for any Cin U param as rct), ast ≤b

$$\int_{C} \vec{F} \cdot dr = \int_{\alpha}^{b} F(r(t)) \cdot r'(t) dt = \int_{\alpha}^{b} \varphi(r(t)) \cdot r'(t) dt = \varphi(r(t)) \int_{r(\alpha)}^{r(b)} \varphi(r(t)) - \varphi(r(a))$$

chains rule dt [(r(t))]

 $\frac{d}{dt} \left[\beta \left(\lambda(t), y(t), -1 \right) \right] = \phi_{\lambda} \cdot \lambda_t + \phi_y \cdot y_t + \dots = \nabla \phi \cdot r(t)$

i.e. SF. dr is path indep!

because the final value depends on start and end point only,

(→) suppose \F.dr is path indep. for all c in U:

define function on U as:

Fix some point &Q in U, for all P in U, let Cp be some curve from

Q to P: $\phi(p) = \int_{CP} \overline{F} \cdot dr$ for all p in U

* Can always join Q to any P in U by assumption of

"U is pash connected & open".

Now must prove $\vec{F} = \nabla \vec{p}$: ie) $\begin{cases} \phi_{n} = \vec{F}_{n} \\ \phi_{y} = \vec{F}_{z} \end{cases}$

fix some P= (a,b,c) in U Consider Pt = (a+t,b,c) for small t

 $\Phi(P_t) = \int_{CP_t} \vec{F} \cdot dr = \int_{CP} \vec{F} \cdot dr = \Phi(P) + \int_{0}^{t} F(\alpha + u, b, c) \cdot 1 du \quad \vec{F}(w) = \langle \alpha + u, b, c \rangle$ inition

by path independence $V(u) = \langle 1, 0, 0 \rangle$ $V(u) = \langle 1, 0, 0 \rangle$

Straight line segment Pt(att,b,c) / P(a,b,c)

Lis line segment from P to Pt

$\Rightarrow \emptyset \frac{d}{dt} \varphi(P_t) \Big _{t=0} = \frac{d}{dt} (\varphi(P)) + F_t(\alpha,b,c)$
by definition (since does to the orem Calculus - If Fine = fit dt => shen F(x) = f(x)
$\varphi_n(p) = F_i(p)$
likwise for ϕ_y , ϕ_z \Longrightarrow Therefore: $F = \nabla \phi$ means that F is conservative!
#illustrations of path Connected Sets in IR2
(you can joint every two points)
disk with removel point at the center
disk
X is not path connected
Excludel x-axis
#illustration of simply connectedness of u in R2 - means any closed loop in U can be contracted continuously to a point, all within U
closely Xxx2 origin = excluded origin

Exp) Show that the line integral $\int_C (n^2 + y^2) dn + 2ny dy$ is path independent. 5Also, show that this line integral along any curve C going from (0,0) to (1,2)Will always be 13/3:

Sol: Fis Path independent $\rightarrow F = \nabla \phi$ for some function g(y) $\phi = \pi^2 + y^2 \rightarrow \phi = \frac{1}{3}\pi^3 + \pi y^2 + g(y)$ $\phi = 2\pi y \Rightarrow 2\pi y = (\frac{1}{3}\pi^3 + \pi y^2 + g(y))_y = 2\pi y + g'(y) \rightarrow g'(y) = C \text{ (any constant like zero)}$

 \Rightarrow potential exists for $F: \phi = \frac{n^3}{3} + ny^2$ $\Rightarrow \int_C F. dr$ is path independent

* $\int_{C} F. dr = \phi(1,2) - \phi(0,0) = \frac{1}{3} + 4 - 0 = \frac{13}{3}$