Stable Models Semantics and Answer Set Programming

CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

General Logic Programs

- A program is a collection of rules of the form $a \leftarrow a_1, ..., a_n$, not a_{n+1} , not a_{n+k} .
- Let Π be a program and X be a set of atoms, by Π^X (Gelfond-Lifschitz transformation) we denote the positive program obtained from ground(Π) by:
 - Deleting from ground(Π) any rule $a \leftarrow a_1, ..., a_n$, not a_{n+1} , not a_{n+k} . for that $\{a_{n+1}, ..., a_{n+k}\} \cap X \neq \emptyset$, i.e., the body of the rule contains a naf-atom not al and al belongs to X; and
 - Removing all of the naf-atoms from the remaining rules.

General Logic Programs

- A set of atoms X is called an answer set of a program Π if X is the minimal model of the program Π^X
- Theorem: For every positive program Π , the minimal model of Π , M_{Π} , is also the unique answer set of Π .
- Example: Consider $\Pi 2 = \{a \leftarrow \text{not b. b} \leftarrow \text{not a.}\}$. We will show that its has two answer sets $\{a\}$ and $\{b\}$

$S_1 = \emptyset$	$S_2 = \{a\}$	$S_3 = \{b\}$	$S_4 = \{a, b\}$
$\Pi_2^{S_1}$:	$\Pi_2^{S_2}$:	$\Pi_2^{S_3}$:	$\Pi_2^{S_4}$:
$a \leftarrow$	$a \leftarrow$		
$b \leftarrow$		$b \leftarrow$	
$M_{\Pi_2^{S_1}} = \{a, b\}$	$M_{\Pi_2^{S_2}} = \{a\}$	$M_{\Pi_2^{S_3}} = \{b\}$	$M_{PS_4} = \emptyset$
$M_{\Pi_2^{S_1}} \neq S_1$	$M_{\Pi_2^{S_2}} = S_2$	$M_{\Pi_2^{S_3}} = S_3$	$M_{\Pi_2^{S_4}} \neq S_4$
NO	YES	\overline{YES}	NO

General Logic Programs

- $\Pi = \{p \leftarrow \text{not p.}\}\ \text{does not have an answer set.}$
 - S1 = \emptyset , then Π S1 = {p \leftarrow } whose minimal model is {p}. {p} $\neq \emptyset$ implies that S1 is not an answer set of Π .
 - S2 = {p}, then Π S2 = \emptyset whose minimal model is \emptyset . {p} $\neq \emptyset$ implies that S2 is not an answer set of Π 4. This shows that P does not have an answer set.
- A program may have zero, one, or more than one answer sets.
 - $\Pi 1 = \{a \leftarrow \text{not b.}\}\$ has a unique answer set $\{a\}$.
 - $\Pi 2 = \{a \leftarrow \text{not b. b} \leftarrow \text{not a.}\}\$ has two answer sets: $\{a\}$ and $\{b\}$.
 - $\Pi 3 = \{p \leftarrow a. a \leftarrow \text{not b. b} \leftarrow \text{not a.}\}\ \text{has two answer sets: } \{a, p\} \text{ and } \{b\}$
 - $\Pi 4 = \{a \leftarrow \text{not b. b} \leftarrow \text{not c. d} \leftarrow .\}$ has one answer set $\{d, b\}$.
 - $\Pi 5 = \{p \leftarrow \text{not p.}\}\ \text{No answer set.}$
 - $\Pi 6 = \{p \leftarrow \text{not } p, d. r \leftarrow \text{not } d. d \leftarrow \text{not } r.\}$ has one answer set $\{r\}$.

Entailment w.r.t. Answer Set Semantics

- For a program Π and an atom a, Π entails a, denoted by $\Pi \mid = a$, if $a \in S$ for every answer set S of Π .
- For a program Π and an atom a, Π entails $\neg a$, denoted by $\Pi \mid = \neg a$, if $a \notin S$ for every answer set S of Π
- If neither $\Pi \mid = a$ nor $\Pi \mid = \neg a$, then we say that a is unknown with respect to Π .
- Examples:
 - $\Pi 1 = \{a \leftarrow \text{not b.}\}\$ has a unique answer set $\{a\}$. $\Pi 1 \mid = a, \Pi 1 \mid = \neg b$.
 - $\Pi 2 = \{a \leftarrow \text{not b. b} \leftarrow \text{not a}\}\ \text{has two answer sets: } \{a\} \text{ and } \{b\}$. Both a and b are unknown w.r.t. $\Pi 2$.
 - $\Pi 3 = \{p \leftarrow a. a \leftarrow not b. b \leftarrow not a.\}$ has two answer sets: $\{a, p\}$ and $\{b\}$. Everything is unknown.

(c) Paul Fodor (CS Stony Brook) and Elsevier

• $\Pi 4 = \{p \leftarrow \text{not p.}\}\ \text{No answer set. p is unknown.}$

Answer Sets of Programs with Constraints

• For a set of ground atoms S and a constraint c

$$\leftarrow a_1, ..., a_n, \text{ not } a_{n+1}, \text{ not } a_{n+k}$$

- we say that c is satisfied by S if $\{a_1, ..., a_n\} \setminus S \neq \emptyset$ or $\{a_{n+1}, ..., a_{n+k}\} \cap S \neq \emptyset$.
- Let Π be a program with constraints.
- Let $\Pi O = \{r \mid r \in \Pi, r \text{ has non-empty head} \}$ (ΠO is the set of normal logic program rules in Π) and $\Pi C = \Pi \setminus \Pi O$ (ΠC is the set of constraints in Π).
- A set of atoms S is an answer sets of a program Π if it is an answer set of Π O and satisfies all the constraints in ground(Π C).

Answer Sets of Programs with Constraints

- Example:
 - $\Pi 1 = \{a \leftarrow \text{not b. b} \leftarrow \text{not a.} \}$ has two answer sets $\{a\}$ and $\{b\}$.
 - But, $\Pi 2 = \{a \leftarrow \text{not b. b} \leftarrow \text{not a.} \leftarrow \text{not a}\}$ has only one answer set $\{a\}$.

Computing Answer Sets

- Complexity: The problem of determining the existence of an answer set for finite propositional programs (programs without function symbols) is NP-complete.
- For programs with disjunctions, function symbols, etc. it is much higher.
- A consequence of this property is that there exists no polynomial-time algorithm for computing answer sets.

Answer set solvers

- Programs that compute answer sets of (finite and grounded) logic programs.
- Two main approaches:
 - Direct implementation: Due to the complexity of the problem, most solvers implement a variation of the generate-and-test algorithm.
 - Smodels http://www.tcs.hut.fi/Software/smodels/
 - DLV http://www.dbai.tuwien.ac.at/proj/dlv/
 - deres http://www.cs.engr.uky.edu/ai/deres.html
 - Using SAT solvers: A program Π is translated into a satisfiabilty problem $F\Pi$ and a call to a SAT solver is made to compute solution of $F\Pi$. The main task of this approach is to write the program for the conversion from Π to $F\Pi$.
 - Potassco: http://potassco.sourceforge.net/ (clasp, gringo, ...)
 - Cmodels http://www.cs.utexas.edu/users/tag/cmodels.html
 - ASSAT http://assat.cs.ust.hk/

Example: Graph Coloring

- Given a (bi-directed) graph and three colors red, green, and yellow. Find a color assignment for the nodes of the graph such that no edge of the graph connects two nodes of the same color.
 - Graph representation:
 - The nodes: node(1). ... node(n).
 - The edges: edge(i, j).
 - Each node is assigned one color:
 - the weighted rule $1\{\operatorname{color}(X,\operatorname{red}),\operatorname{color}(X,\operatorname{yellow}),\operatorname{color}(X,\operatorname{green})\}1 \leftarrow \operatorname{node}(X).$
 - or the three rules:
 color(X, red) ← not color(X, green), not color(X, yellow).
 color(X, green) ← not color(X, red), not color(X, yellow).
 color(X, yellow) ← not color(X, green), not color(X, red).
 - No edge connects two nodes of the same color:
 - $\leftarrow edge(X,Y), color(X,C), color(Y,C).$ (c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Graph Coloring

```
%% representing the graph
node(1). node(2). node(3). node(4). node(5).
edge(1,2). edge(1,3). edge(2,4). edge(2,5). edge(3,4). edge(3,5).
%% each node is assigned a color
color(X,red):- node(X), not color(X,green), not color(X, yellow).
color(X,green):-node(X), not color(X,red), not color(X, yellow).
color(X,yellow):- node(X), not color(X,green), not color(X, red).
%% constraint checking
:= edge(X,Y), color(X,C), color(Y,C).
```

Try with clingo —n 0 color.lp and see the result.

Example: n-Queens

- Place n queens on a $n \times n$ chess board so that no queen is attacked (by another one).
 - ullet the chess board can be represented by a set of cells cell(i, j) and the size n.
 - Since two queens can not be on the same column, we know that each column has to have one and only one queen

```
1\{\operatorname{cell}(I, J) : \operatorname{row}(J)\}1 \leftarrow \operatorname{col}(I).
```

No two queens on the same row

$$\leftarrow$$
 cell(I, J1), cell(I, J2), J1 \neq J2.

• No two queens on the same column (not really needed)

```
\leftarrow cell(I1, J), cell(I2, J), I1 \neq I2.
```

No two queens on the same diagonal

$$\leftarrow$$
 cell(I1, J1), cell(I2, J2), |I1 - I2| = |J1 - J2|

Example: n-Queens

```
%% representing the board, using n as a constant
col(1..n). % n column
row(1..n). % n row
%% generating solutions
1 \{\operatorname{cell}(I,J) : \operatorname{row}(J)\} :- \operatorname{col}(I).
% two queens cannot be on the same row/column
:- col(I), row(J1), row(J2), neq(J1,J2), cell(I,J1), cell(I,J2).
:-row(J), col(I1), col(I2), neq(I1,I2), cell(I1,J), cell(I2,J).
% two queens cannot be on a diagonal
:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 > I2,
cell(I1,J1), cell(I2,J2), eq(I1 - I2, J1 - J2).
:-row(J1), row(J2), J1 > J2, col(I1), col(I2), J1 < J2,
cell(I1, J1), cell(I2, J2), eq(I2 - I1, J1 - J2).
```

• Command line: lparse -c n=?? prog2 | smodels (c) Paul Fodor (CS Stony Brook) and Elsevier