

3253 - Analytic Techniques and Machine Learning

Module 4: Clustering and Unsupervised Learning

Course Plan

Module Titles

- Module 1 Introduction to Machine Learning
- Module 2 End to End Machine Learning Project
- Module 3 Classification

Module 4 – Current Focus: Clustering and Unsupervised Learning

- Module 5 Training Models and Feature Selection
- Module 6 Support Vector Machines
- Module 7 Decision Trees and Ensemble Learning
- Module 8 Dimensionality Reduction
- Module 9 Introduction to TensorFlow
- Module 10 Introduction to Deep Learning and Deep Neural Networks
- Module 11 Distributing TensorFlow, CNNs and RNNs
- Module 12 Final Assignment and Presentations (no content)

Learning Outcomes for this Module

- Distinguish and describe unsupervised learning
- Identify clustering concepts
- Become familiar with clustering algorithms: k-means, DBSCAN, hierarchical

Topics for this Module

- 4.1 Unsupervised learning
- 4.2 Clustering
- 4.3 k-Means clustering
- 4.4 DBSCAN clustering
- 4.5 Hierarchical clustering
- 4.6 Resources and Wrap-up

Module 4 – Section 1

Unsupervised Learning

Supervised vs. Unsupervised Learning

- Algorithms used to build classifiers need supervised data examples
- The input data to the learner consists of examples $(x_1, y_1), ... (x_n, y_n)$
- An example (x_i, y_i) shows the correct response y_i to the input x_i
- In <u>unsupervised</u> ML the learner does not have labels, only examples $x_1, ..., x_n$

Unsupervised Learning

- A clustering algorithm will still produce an output C(x) = c given an input x
- However, there is no way to know if the output is correct or not
- The learning algorithm does not optimize a cost function based on labels
- But some classification algorithms do optimize a cost function based on the input examples $x_1, ..., x_n$

Unsupervised Algorithms

- Tasks to consider:
 - Reduce dimensionality
 - Find clusters
 - Model data density
 - Find hidden causes
- Key utility
 - Compress data
 - Detect outliers
 - Facilitate other learning

Unsupervised Algorithms

- Approaches in unsupervised learning fall into three classes:
 - Dimensionality reduction: represent each input case using a small number of variables (e.g., principal components analysis, factor analysis, independent components analysis)
 - Clustering: represent each input case using a prototype example (e.g. k-means, mixture models)
 - Density estimation: estimating the probability distribution over the data space

Module 4 – Section 2

Clustering

Clustering Goal

 The aim is to group points (examples) into a small number of clusters

Clustering Goal (cont'd)

- Similar examples should go to a same cluster; while different examples should be in different clusters
- There are many different clustering methods
- The clustering algorithm also learns how to assign a cluster to an example seen later
- Applications:
 - Automatic topic detection of documents
 - Customer segmentation
 - Variable selection

Clustering Algorithms

- Input: n vectors, m-dimensional, represent the objects to be clustered:
- Can start with object themselves (e.g. documents), but need a vector representation
 - Document → vector of word counts
- Vectors have same (fixed length) but clustering can be done over sequences of different length (the matrix of distances is needed)

More on Clustering

- Motivation: prediction; lossy compression; outlier detection
- We assume that the data was generated from a number of different classes. The aim is to cluster data from the same class together.
 - How many classes?
 - Why not put each datapoint into a separate class?
 - What is the objective function that is optimized by sensible clustering?

More on Clustering (cont'd)

- Assume the data {x(1), . . .
 , x(N)} lives in a Euclidean space, x(n) ∈ Rd
- Assume the data belongs to K classes (patterns)
- How can we identify those classes (data points that belong to each class)?

Clustering and Outliers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Clustering and Feature Selection

- An important part of building models is feature selection
- Many variables could be available to predict a target, but many of them could carry no information about the target
- There are many method for feature selection: univariate methods, regularization, feature importance, etc.
- Clustering the features (columns, instead of rows) is a way to reduce the dimensionality by picking a representative on each cluster
- Python Scikit-Learn provides this with FeatureAgglomeration

Module 4 – Section 3

K-Means

k-means Algorithm

- Input: vectors $S = \{x^{(1)}, ..., x^{(n)}\}$ k = number of desired clusters
- Output: a partition of S into k clusters, and the clusters' average (centroid)
- Goal: $S_1, ..., S_k$ should minimize the square distances between each example x_i and its closest centroid $c(x_i)$: $\sum_{j=1}^{n} ||x_i c(x_i)||^2$
- Lloyd's algorithm finds (a good enough) solution

k-means

- Initialization: randomly initialize cluster centers
- The algorithm iteratively alternates between two steps:
 - Assignment step: Assign each data point to the closest cluster
 - Refitting step: Move each cluster center to the center of gravity of the data assigned to it

k-means (cont'd)

k-means Algorithm

Steps:

- 0) Start with a set of k centroids (random points from S)
- 1) Assign each point to the centroid to which it is closest: this defines clusters
- 2) Update the centroids as the mean within each cluster
- 3) Repeat (1) and (2) until the centroids change is very small (threshold)

JavaScript implementation of K-means algorithm

K-means clustering animations

k-means Optimization

Find cluster centers m and assignments r to minimize the sum of squared distances of data points $\{x^{(n)}\}$ to their assigned cluster centers

$$\min_{\{\mathbf{m}\},\{\mathbf{r}\}} J(\{\mathbf{m}\},\{\mathbf{r}\}) = \min_{\{\mathbf{m}\},\{\mathbf{r}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^{(n)} ||\mathbf{m}_k - \mathbf{x}^{(n)}||^2$$
s.t.
$$\sum_{k} r_k^{(n)} = 1, \forall n, \text{ where } r_k^{(n)} \in \{0,1\}, \forall k, n$$

where $r_k^{(n)} = 1$ means that $x^{(n)}$ is assigned to cluster k (with center m_k)

k-means Algorithm

- k is a hyper-parameter: input to the algorithm. User specifies it.
- Sometimes the value for k is known for the application (e.g. the goal is to find 5 segments)
- The value of k can be data-driven:
 - inertia:
 - inertia/inertia2
 - silhouette

k-means for Image Segmentation

k-means Challenges

- High-dimensional spaces look different:
 - Almost all pairs of points are at about the same distance
- There is nothing to prevent k-means getting stuck at local minima.

Module 4 – Section 4

DBSCAN Clustering

DBSCAN Clustering

k-means clusters tend to be delimited by convex regions

- Both k-means and hierarchical clusters assign a cluster to every point
 - outliers are forced to belong to a cluster

DBSCAN Clustering (cont'd)

- DBSCAN is an algorithm that allows:
 - clusters with non-convex shapes
 - outlier detection
- Other algorithms allow non-convex shaped clusters:
 - agglomerative with ward linkage
 - spectral clustering
- Demo:

DBSCAN Clustering (cont'd)

- Parameters:
 - min_samples (non-negative integer)
 - epsilon (positive number)
- A core point is a point that has at least min_samples points within epsilon distance
- Core points are determined first
- Core points belonging to a cluster are computed iteratively:
 - take a core point
 - find all core points within epsilon distance
 - repeat until no more core points exist within epsilon
 - continue creating other clusters until no core points exists
- Non-core points:
 - Add to each cluster non-core points within epsilon distance from a core point
- Points that do not belong to any cluster are outliers
- Note that the number of clusters is not decided by the user

Module 4 – Section 5

Hierarchical Clustering

Hierarchical Clustering

- A bottom-up hierarchical clustering starts with as many clusters as points, and merges them iteratively
- Steps:
 - 0) Make each data point a distinct cluster
 - 1) Find the two closest clusters and merge them
 - 2) Repeat (1) until all points belong to one single cluster

Hierarchical Clustering (cont'd)

- Key operation: Repeatedly combine two nearest clusters
- How to represent a cluster of many points?
 - Key problem: As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?
 - Euclidean case: each cluster has a centroid = average of its (data) points
- How to determine "nearness" of clusters?
 - Measure cluster distances by distances of centroids

Hierarchical Clustering (cont'd)

- There are different ways to determine the 2 clusters that are joined in each step:
 - Ward's method: minimize variance
 - average: minimize average distance between every pair of points (one in each cluster)
 - complete: minimize maximum distance between a pair of points, one in each cluster
- The user decides the number of clusters to use

Hierarchical Clustering Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Module 4 – Section 6

Resources and Wrap-up

Resources

- Clustering:
- Data Science from Scratch, Joel Grus
- An Introduction to Statistical Learning, James, G.; Witten, D.; Hastie, T.; Tibshirani, R

Homework

- Complete the notebook in the assignments section for this week
- Submit your solution <u>here</u>
- Make sure you rename your notebook to
 - W4_UTORid.ipynb
 - Example: W4_adfasd01.ipynb

Next Class

- Training Models and Features Selection
- Reading Hands-on ML (Chapter 4)

Follow us on social

Join the conversation with us online:

- f facebook.com/uoftscs
- @uoftscs
- in linkedin.com/company/university-of-toronto-school-of-continuing-studies
- @uoftscs

Any questions?

Thank You

Thank you for choosing the University of Toronto School of Continuing Studies