# **University of Asia Pacific (UAP)**

# **Department of Electrical and Electronic Engineering (EEE)**

#### **Course Outline**

**Program:** B.Sc. in Electrical and Electronic Engineering (EEE)

Course Title: VLSI Design I

Course Code: EEE 423

**Semester:** Spring-2022

**Level:** 4<sup>th</sup> Year 1<sup>st</sup> Semester

Credit Hour: 3.0

Name & Designation of Teacher: Md. Moshiur Rahman, Assistant Professor, Department of EEE

**Office/Room:** Department of EEE, 5<sup>th</sup> floor, 501.

Class Hours: Monday: 03:30 pm -05:00 pm & Thursday: 09:30 am -11:00 am[A]

Tuesday: 09:30 am -11:00 am & Thursday: 08:00 am -09:30 am[B]

**Consultation Hours:** Monday: 02:00 pm - 03:30 pm, Wednesday: 11.00am-02.00pm

E-mail: sourov.eee@uap-bd.edu

**Mobile:** 01670064572

Rationale: This is an optional course that will help the students to

understand the fabrication process and CMOS circuits design of

digital IC's and logic devices.

**Pre-requisite** (if any): EEE 209

Course Synopsis: Fabrication process and CMOS circuit design of different logic

devices. Layout design rules and physical design of simple logic circuits. Review of MOS transistor theory, NMOS and CMOS inverter. CMOS circuit characteristics and performance

estimation.

**Course Objectives :** The objectives of this course are to:

1. Introduce with fabrication process of MOSFET and Logic

circuits

2. Design of CMOS circuits and Layout of different logic

devices.

- **3.** Discuss different memory and arithmetic devices and their design procedures.
- **4.** Develop the skills regarding efficient, economic and precise design procedures of different logic devices.
- **5.** Provide a clear idea about CMOS circuit characteristics and performance estimation.

# $Course\ Outcomes\ (CO)\ and\ their\ mapping\ with\ Program\ outcomes\ (PO)\ and\ Teaching-Learning\ Assessment\ methods:$

| CO  | CO Statements:                                                                                        | Corresponding       | Bloom's                                      | Delivery methods                                  | Assessment                                                         |
|-----|-------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|
| No. | Upon successful completion of the course, students should be able to:                                 | POs<br>(Appendix-1) | taxonomy<br>domain/level<br>(Appendix-<br>2) | and activities                                    | Tools                                                              |
| CO1 | Interpret the fabrication process and design the CMOS circuit of logic devices.                       | 3 (WK5)             | Apply                                        | Class lecture and discussion                      | Assignment, Class<br>Performance,<br>Quiz, Mid Term,<br>Final Exam |
| CO2 | Layout design of<br>different Memory,<br>logical unit and<br>Arithmetic devices                       | 3 (WK5)             | Apply                                        | Class Lecture,<br>discussion &<br>Problem solving | Assignment, Class<br>Performance,<br>Quiz, Mid<br>Term, Final Exam |
| CO3 | Identify the controlling design parameters for efficient devices development of NMOS circuits.        | 2 (WK2)             | Analyze                                      | Class Lecture,<br>discussion &<br>Problem solving | Assignment, Class<br>Performance,<br>Quiz, Mid<br>Term, Final Exam |
| CO4 | Identify efficient and economic CMOS circuit development, also calculate power consumption and delay. | 2 (WK2)             | Analyze                                      | Class Lecture,<br>discussion &<br>Problem solving | Assignment, Class<br>Performance,<br>Quiz, Mid<br>Term, Final Exam |

## **Weighting COs with Assessment methods:**

| AssessmentType                                       | %<br>Weight | CO1   | CO2   | CO3   | CO4   |
|------------------------------------------------------|-------------|-------|-------|-------|-------|
| Final Exam                                           | 30%         | 14.17 |       | 14.17 | 21.67 |
| Mid Term                                             | 20%         | 6.67  | 13.33 |       |       |
| Class performance,                                   |             |       |       |       |       |
| Quizzes,                                             |             |       |       |       |       |
| Presentation, open<br>book exam,<br>Assignment, Viva | 30%         | 10    | 10    | 10    |       |
| Total                                                | 100%        | 30.84 | 23.33 | 24.17 | 21.67 |

**Grading Policy:** As per the approved grading policy of UAP (Appendix-3)

## **Course Content Outline and mapping with Cos**

| Weeks | Topics / Content                                                                                                                                                                        | Course<br>Outcome | Delivery methods and activities | Reading<br>Materials                                 |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|------------------------------------------------------|--|
| 1     | Introductory discussion on VLSI design and MOS characteristics, fabrication technology of CMOS transistor.                                                                              | CO1               | Class lecture and discussion    | D.A. Pucknell and Linda E.M. Brackenbury Chapter - 1 |  |
| 2-3   | CMOS and NMOS circuit design process, stick diagram of different logic gates and devices.                                                                                               | CO1               | Class lecture and discussion    | D.A. Pucknell                                        |  |
| 4     | NMOS & PMOS pass transistor,<br>CMOS pass transistor,<br>Implementation of logic circuits:<br>multiplexer, adder, subtractor<br>using NMOS, PMOS pass<br>transistor & Transmission gate | CO1<br>CO2        | Class lecture and discussion    | D.A. Pucknell                                        |  |
|       | Quiz-01                                                                                                                                                                                 |                   |                                 |                                                      |  |

| 5     | Introduction on Verilog code, Design and implementation techniques of different logic circuits using Verilog code.                             | CO2                | Class lecture and discussion    | Class Lectures                            |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|-------------------------------------------|
| 6     | Bus arbitration logic circuit,<br>Parity generator circuit, and<br>ALU.                                                                        | CO2                | Class lecture and discussion    | D.A. Pucknell                             |
|       |                                                                                                                                                | Quiz-02            |                                 |                                           |
| 7     | PLA circuits                                                                                                                                   | CO2                | Class lecture and discussion    | D.A. Pucknell                             |
|       | Mi                                                                                                                                             | dterm Exam         |                                 |                                           |
| 8     | Review of MOS transistor theory, threshold voltage, body effect, I-V equations and characteristics.                                            | CO3                | Class lecture<br>and discussion | Linda E.M.<br>Brackendury,<br>Chapter – 2 |
| 9-10  | NMOS Inverter: NMOS Inverter circuit with resistive, enhancement and depletion types load, power consumption, delay, aspect ratio calculation. | CO3<br>C04         | Class lecture<br>and discussion | Linda E.M.<br>Brackendury,<br>Chapter – 2 |
|       |                                                                                                                                                | Quiz-03            |                                 |                                           |
| 11-12 | CMOS inverter: Power consumption, delay, aspect ratio calculation, voltage transfer characteristics                                            | CO3<br>CO4         | Class lecture<br>and discussion | Linda E.M.<br>Brackendury,                |
| 13    | Buffer chain design for high capacitive load, RC delay calculation for CMOS circuits.                                                          | CO4                | Class lecture<br>and discussion | Linda E.M.<br>Brackendury,                |
|       |                                                                                                                                                | Quiz-04            |                                 | T                                         |
| 14    | Review & problem-solving  I                                                                                                                    | All COs Final Exam | Discussion                      |                                           |

#### **Required Reference(s):**

- 1. D.A. Pucknell & K. Eshraghian, Basic VLSIDesign
- **2.** Design of VLSI Systems A Practical Introduction, Linda E.M. Brackenbury.
- **3.** CMOS VLSI Design, N.H.E. Weste, D. Harris & A. Banerjee.

#### **Recommended Reference(s):**

- 1. Microelectronic Circuits, Sedra & Smith
- 2. CMOS Circuit Design, Layout and Simulation, R.J. Baker.

**Grading System:** As per the approved grading scale of University of Asia Pacific (Appendix-2).

#### **Special Instructions:**

- Minimum 70% attendance is required to attend the semester final exam.
- There is no mark for class attendance. However, there is mark for class performance.
- There will be no make-up for quizzes and mid-term exam.
- No plagiarism would be allowed in assignments. Cases of copying one another in assignments or class tests would be dealt very strictly.
- Students must come to the class prepared for the course material covered in the previous class.
- Do not do anything which may disturb the class (such as passing irrelevant and negative comments etc.); you will be monitored, and disciplinary actions will be taken.

| Prepared by                                             | Checked by               | Approved by            |
|---------------------------------------------------------|--------------------------|------------------------|
| Md. Moshiur Rahman Assistant Professor Department of EE | Chairman, PSAC committee | Head of the Department |

#### Appendix-1:

### Washington Accord Program Outcomes (PO) for engineering programs:

| No. | PO                    | Differentiating Characteristic             |
|-----|-----------------------|--------------------------------------------|
| 1   | Engineering Knowledge | Breadth and depth of education and type of |

|    |                                  | knowledge, both theoretical and practical                                                                                                                        |
|----|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Problem Analysis                 | Complexity of analysis                                                                                                                                           |
| 3  | Design/ development of solutions | Breadth and uniqueness of engineering problems i.e. the extent to which problems are original and to which solutions have previously been identified or codified |
| 4  | Investigation                    | Breadth and depth of investigation and experimentation                                                                                                           |
| 5  | Modern Tool Usage                | Level of understanding of the appropriateness of the tool                                                                                                        |
| 6  | The Engineer and Society         | Level of knowledge and responsibility                                                                                                                            |
| 7  | Environment and Sustainability   | Type of solutions.                                                                                                                                               |
| 8  | Ethics                           | Understanding and level of practice                                                                                                                              |
| 9  | Individual and Team work         | Role in and diversity of team                                                                                                                                    |
| 10 | Communication                    | Level of communication according to type of activities performed                                                                                                 |
| 11 | Project Management and Finance   | Level of management required for differing types of activity                                                                                                     |
| 12 | Lifelong learning                | Preparation for and depth of Continuing learning.                                                                                                                |

## **Knowledge Profile:**

| WK  | Attribute                                                                                                                                                                                                                                                                                             |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| WK1 | A systematic, theory-based understanding of the natural <b>sciences</b> applicable to the discipline.                                                                                                                                                                                                 |  |  |
| WK2 | Conceptually based <b>mathematics</b> , numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline.                                                                                                      |  |  |
| WK3 | A systematic, theory-based formulation of <b>engineering fundamentals</b> required in the engineering discipline                                                                                                                                                                                      |  |  |
| WK4 | Engineering specialization knowledge that provides theoretical frameworks and bodie of knowledge                                                                                                                                                                                                      |  |  |
|     | for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.                                                                                                                                                                                            |  |  |
| WK5 | Knowledge that supports engineering <b>design</b> in a practice area.                                                                                                                                                                                                                                 |  |  |
| WK6 | Knowledge of engineering practice ( <b>technology</b> ) in the practice areas in the engineering discipline.                                                                                                                                                                                          |  |  |
| WK7 | Comprehension of the role of engineering in <b>society</b> and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability |  |  |

## Appendix-2



#### Appendix-3

#### **UAP Grading Policy:**

| Numeric Grade        | Letter Grade | Grade Point |
|----------------------|--------------|-------------|
| 80% and above        | A+           | 4.00        |
| 75% to less than 80% | A            | 3.75        |
| 70% to less than 75% | A-           | 3.50        |
| 65% to less than 70% | B+           | 3.25        |
| 60% to less than 65% | В            | 3.00        |
| 55% to less than 60% | B-           | 2.75        |
| 50% to less than 55% | C+           | 2.50        |
| 45% to less than 50% | С            | 2.25        |
| 40% to less than 45% | D            | 2.00        |
| Less than 40%        | F            | 0.00        |