Meson-baryon scattering

in manifest Lorentz invariant chiral perturbation theory

Maxim Mai

June 2nd 2010

MM, P. C. Bruns, B. Kubis and U.-G. Meißner Phys. Rev. D **80** (2009) 094006 (arXiv:0905.2810 (hep-ph))

■ Why and how...

- fundamental part of various processes
- large amount of data up to quite high energies

 \hookrightarrow GWU: 30K data points for $\pi N \to \pi N$

simplicity of the process

low energy \longrightarrow effective field theory:

χPT₂₍₃₎
...expanding the QCD Greens functions in {small meson momenta} and {up, down and (strange)} - quark masses

Weinberg (1979), Gasser and Leutwyler (1984)

■ How...

Power counting:

$$\mathcal{L}_{\phi} = \mathcal{L}_{\phi}^{(2)} + \mathcal{L}_{\phi}^{(4)} + \dots$$

$$\mathcal{L}_{\phi B} = \mathcal{L}_{\phi B}^{(1)} + \mathcal{L}_{\phi B}^{(2)} + \mathcal{L}_{\phi B}^{(3)} + \dots$$

$$\sum_{i=1}^{16} b_{i} \mathcal{O}_{i}^{2} \sum_{j=1}^{78} d_{i} \mathcal{O}_{i}^{3}$$
M. Frink, U.-G. Meißner (2006)

- ▶ 1st order: $\mathcal{L}_{\phi B}^{(1)}$ \longrightarrow WT and Born type: D, F, m_0
- ▶ 2nd order: $\mathcal{L}_{\phi B}^{(2)}$ \longrightarrow contact terms (11 LECs \leftarrow FIT)
- ▶ 3rd order:

$$\mathcal{L}_{\phi B}^{(3)} \longrightarrow \text{contact terms (13 LECs} \leftarrow \text{neglected)}$$
 $\mathcal{L}_{\phi B}^{(1)}, \mathcal{L}_{\phi}^{(2)}, \mathcal{L}_{\phi}^{(4)} \longrightarrow \text{wave function renormalization}$

■ How...

... $\mathcal{L}_{\phi B}^{(1)}$ — one loop diagrams (+crossed):

→ regularization:

■ *How...(regularization)*

- dim-Reg of the UV-divergencies
- **baryons carry intrinsic scale** $m_0 \sim 1$ GeV (even if $m_{u,d,s} = 0$)

$$\begin{split} \mathbf{H}(p^2,M^2,m_0^2) &= \frac{1}{i} \int \frac{d^dk}{(2\pi)^d} \frac{1}{(k^2-M^2)((k-p)^2-m_0^2)} = \frac{\Gamma(2-d/2)}{(4\pi)^{d/2}} \int_0^1 \Delta_z \frac{d}{z^2} - 2dz \\ \Delta_z &= m_0^2 z^2 - 2m_0 M \frac{p^2-M^2-m_0^2}{2m_0 M} z(1-z) + M^2(1-z)^2 \end{split}$$

→ Infrared Regularization of baryon loops:

(respects low energy PC) + (manifest Lorentz invariance)

 $\underbrace{\int_{0}^{1}(...)dz}_{\mathbf{H}} = \underbrace{\int_{0}^{\infty}(...)dz}_{\mathbf{I}} - \underbrace{\int_{1}^{\infty}(...)dz}_{\mathbf{R}}$ $\underbrace{\int_{0}^{\infty}(...)dz}_{\mathbf{R}} = \underbrace{\int_{0}^{\infty}(...)dz}_{\mathbf{I}} - \underbrace{\int_{1}^{\infty}(...)dz}_{\mathbf{R}}$ $\underbrace{\int_{0}^{\infty}(...)dz}_{\mathbf{R}} = \underbrace{\int_{0}^{\infty}(...)dz}_{\mathbf{R}} - \underbrace{\int_{1}^{\infty}(...)dz}_{\mathbf{R}}$

■ Result

scattering length:

$$a_{\phi B} = rac{m_B}{4\pi(m_B + M_\phi)} T_{\phi B}(s_{thr})$$

- ► F_{ϕ} , M_{ϕ} , D, F: fixed to the physical values, $m_0 = 1.15$ GeV, 0.938 GeV< μ <1.314 GeV
- ightharpoonup the HB result is obtained by expanding and truncating $T_{\phi B}$ at finite chiral order
- ► $\{b_0, b_D, b_F, b_1, ..., b_{11}\} \longleftrightarrow \{\sigma_{\pi N}, \{m_B\}, a_{\pi N}^+, a_{KN}^{(1)}, a_{KN}^{(0)}\}/d_0$ Ellis, Torikoshi (2000), Bernard, Kaiser, Meißner (1993) Schroeder (πN) (2001), Martin(KN) (1980)

Channel	=	$\mathcal{O}(q^1)$	$+\mathcal{O}(q^2)_{IR[HB]}$	$+\mathcal{O}(q^3)_{IR[HB]}$	$\sum_{IR[HB]}$	
$a_{\pi N}^{(3/2)}$	=	-0.12	+0.05[+0.05]	+0.04[-0.06]	$-0.04^{+0.07}_{-0.07}[-0.13^{+0.03}_{-0.03}] -0.13 \pm 0.01$	1
$a_{\pi N}^{(1/2)}$	=	+0.21	+0.05[+0.05]	-0.19[+0.00]	$+0.07^{+0.07}_{-0.07}[+0.26^{+0.03}_{-0.03}] -0.25 \pm 0.03$	
$a_{\pi}^{(3/2)}$	=	-0.12	+0.04[+0.04]	+0.10[-0.09]	$+0.02^{+0.06}_{-0.07}[-0.17^{+0.03}_{-0.03}]$	
$a_{\pi \Xi}^{(1/2)}$	=	+0.23	+0.04[+0.04]	-0.24[-0.03]	$+0.02^{+0.08}_{-0.10}[+0.23^{+0.03}_{-0.03}]$	
$a_{\pi\Sigma}^{(2)}$	=	-0.24	+0.10[+0.07]	+0.15[-0.07]	$+0.01^{+0.04}_{-0.04}[-0.24^{+0.01}_{-0.01}]$	
$a_{\pi\Sigma}^{(1)}$	=	+0.22	+0.09[+0.11]	-0.21[+0.00]	+0.10 ^{+0.16} _{-0.17} [+0.33 ^{+0.06} _{-0.06}]	
$a_{\pi\Sigma}^{(0)}$	=	+0.46	+0.11[-0.01]	-0.47[+0.04]	$+0.10^{+0.17}_{-0.19}[+0.49^{+0.07}_{-0.08}]$	
$a_{\pi \Lambda}^{(1/2)}$	=	-0.01	+0.03[+0.03]	-0.03[-0.11]	$-0.01^{+0.04}_{-0.04}[-0.09^{+0.01}_{-0.01}]$	

■ Result

Ch	nannel	=	$\mathcal{O}(q^1)$	$+\mathcal{O}(q^2)_{IR}$	$+\mathcal{O}(q^3)_{IR}$	\sum_{IR}	
$a_k^{(}$	1) (N	=	-0.45	+0.60	-0.48	$-0.33^{+0.32}_{-0.32}$	-0.33
a _k	0) (N	=	+0.04	-0.15	+0.13	$+0.02^{+0.64}_{-0.64}$	+0.02
$a_{\bar{k}}^{(}$	1)	=	+0.20	+0.22	-0.26 + 0.18i	$+0.16^{+0.39}_{-0.44} + 0.18i$	+0.37 + 0.60i
$a_{\bar{k}}^{()}$	Ö)	=	+0.53	+0.97	-0.40 + 0.22i	$+1.11^{+0.47}_{-0.59} + 0.22i$	-1.70 + 0.68i
a _k	(N (N (D) (N (3/2) (S	=	-0.31	+0.33	-0.30 + 0.12i	$-0.28^{+0.52}_{-0.49} + 0.12i$	
a _k	1/2) (Σ	=	+0.47	+0.19	+0.20 + 0.01i	$+0.87^{+0.55}_{-0.64} + 0.01i$	
a	0/2)	=	-0.22	+0.24	-0.35 + 0.08i	$-0.33^{+0.44}_{-0.47} + 0.08i$	
$a_{\bar{k}}^{()}$	Σ 1/2) Σ	=	+0.34	+0.38	+0.27 + 0.01i	$+0.98^{+0.59}_{-0.59} + 0.01i$	
a _k	ĺ) (Ξ	=	+0.15	+0.34	-0.02 + 0.17i	$+0.48^{+0.43}_{-0.43} + 0.17i$	
$a_k^{(i)}$	0) (Ξ	=	+0.66	+0.98	-0.62 + 0.14i	$+1.02^{+0.51}_{-0.68} + 0.14i$	
$a_{\bar{k}}^{(}$	(1) (5) (7/2) (1/2)	=	-0.50	+0.66	-0.42	$-0.26^{+0.34}_{-0.34}$	
$a_{\bar{k}}^{()}$	<u>o</u> j ∕=	=	-0.15	+0.02	+0.13	+0.00 ^{+0.78} -0.68	
a _k	T/2) (Λ	=	-0.04	+0.50	-0.27 + 0.14i	$+0.19^{+0.55}_{-0.56} + 0.14i$	
$a_{\bar{k}}^{(}$	1/2) (A	=	-0.05	+0.50	-0.40 + 0.18i	$+0.04^{+0.55}_{-0.56} + 0.18i$	
(1/2)	=	-0.01	+0.26	-0.13 + 0.19i	$+0.13^{+0.60}_{-0.65} + 0.19 i$	+0.62 + 0.30i
a ⁽⁾	ηŃ 1/2) πΞ	=	-0.09	+0.84	-0.49 + 0.17i	$+0.25^{+0.74}_{-0.73} + 0.17i$	
$a_r^{(r)}$	Ί) Σ	=	-0.04	+0.22	-0.15 + 0.13i	$+0.03^{+0.24}_{-0.24} + 0.13i$	
a_r^0	Ό) γΛ	=	-0.04	+0.70	-0.51 + 0.38i	$+0.15^{+0.51}_{-0.55} + 0.38i$	+0.64 + 0.80i

Recall: $\mathcal{L}_{\phi B}^{(3)}$ contact terms are neglected

■ Low energy constants (LECs)

▶ integrating out strange quark $SU(3) \longrightarrow SU(2)$

- ▶ double scale expansion: $m_0 \gg M_K \gg M_\pi$
 - 1. IR-regularized loop integrals in three-flavor formulation
 - 2. expand in $\{(t-2M_{\pi}^2), M_{\pi}^2, (s-m_0)^2\}$
 - 3. expand in $\{M_K\}$ to first order

■ Low energy constants (LECs)

$$c_{1} = b_{0} + \frac{b_{D}}{2} + \frac{b_{F}}{2} + \frac{M_{K}}{256\pi F_{\pi}^{2}} \left[5D^{2} - 6DF + 9F^{2} + \frac{2}{3\sqrt{3}} (D - 3F)^{2} \right] + \mathcal{O}(M_{K}^{2}),$$

$$c_{2} = b_{8} + b_{9} + b_{10} + 2b_{11} - \frac{M_{K}}{128\pi F_{\pi}^{2}} \left[6 + \frac{19}{3}D^{4} + 4D^{3}F + \frac{58}{3}D^{2}F^{2} - 12DF^{3} + 25F^{4} - \frac{8(D - 3F)^{2}(D + F)^{2}}{3\sqrt{3}} \right] + \mathcal{O}(M_{K}^{2}),$$

$$c_{3} = ..., c_{4} = ...$$

▶ shifts:

$$\Delta c_1 = +0.2 \,\text{GeV}^{-1}$$
, $\Delta c_2 = -2.1 \,\text{GeV}^{-1}$
 $\Delta c_3 = +1.6 \,\text{GeV}^{-1}$, $\Delta c_4 = +2.0 \,\text{GeV}^{-1}$ $\Delta (c_2 + c_3 - 2c_1) = -0.1 \,\text{GeV}^{-1}$

▶ the same is performed for the $\pi\Xi$, $\pi\Sigma$ and $\pi\Lambda$ sector

■ Low energy theorems (LETs)

 \blacktriangleright πB LETs are useful for chiral extrapolations of LQCD results:

$$\begin{split} T_{\pi N}^{+} &= \frac{M_{\pi}^{2}}{F_{\pi}^{2}} \left\{ -\frac{g^{2}}{4m_{N}} + 2(c_{2} + c_{3} - 2c_{1}) + \frac{3g^{2}M_{\pi}}{64\pi F_{\pi}^{2}} + \mathcal{O}(M_{\pi}^{2}) \right\} \\ T_{\pi N}^{-} &= \frac{M_{\pi}}{2F_{\pi}^{2}} \left\{ \frac{1}{1} + \frac{g^{2}M_{\pi}^{2}}{4m_{N}^{2}} + \frac{M_{\pi}^{2}}{8\pi^{2}F_{\pi}^{2}} \left(1 - 2\log\frac{M_{\pi}}{\mu} \right) + M_{\pi}^{2} \mathcal{O}_{\pi N}^{I}(\mu) + \mathcal{O}(M_{\pi}^{4}) \right\} \end{split}$$

 πN isovector combination is stable with respect to the kaon mass effects (known)

Bernard et al. 1995

▶ also can be done for the $\pi\Xi$, $\pi\Sigma$ and $\pi\Lambda$ sector

$$\begin{split} \bar{T}_{\pi\Sigma}^{-} &= \frac{2M_{\pi}}{F_{\pi}^{2}} \left\{ 1 + \frac{\mathcal{G}_{\Sigma}^{2} \mathcal{M}_{\pi}^{2}}{16m_{\Sigma}^{2}} + \frac{\mathcal{G}_{\Sigma\Lambda}^{2} \mathcal{M}_{\pi}^{2}}{4(m_{\Lambda} + m_{\Sigma})^{2}} + \mathcal{M}_{\pi}^{2} \mathcal{O}_{\pi\Sigma}^{I}(\mu) \right. \\ &\left. + \frac{\mathcal{M}_{\pi}^{2}}{8\pi^{2} F_{\pi}^{2}} \left(1 - 2\log \frac{M_{\pi}}{\mu} \right) + \mathcal{O}(\mathcal{M}_{\pi}^{3}) \right\} \end{split}$$

$$(new)$$

■ Low energy theorems (LETs)

٠.,

$$a_{\pi^{+}\Sigma^{+}} = -0.197 \pm 0.011$$
fm

$$a_{\pi^{+}=0} = -0.098 \pm 0.017$$
 fm

Torok et al. 2009

Summary

- ▶ scattering lengths calculated to one loop in $SU(3) \chi PT$: very slow convergence of the chiral series.(without third order contact terms)
- within the $\pi N, \pi \Xi$, $\pi \Sigma$ and $\pi \Lambda$ sector constraints on the LECs to NLO are calculated.
- novel low-energy theorems in the pion-hyperon sector are derived.