

+16/1/30+

IPS - S7P - Jean-Matthieu Bourgeot

CC4

IPS Controle du 18/12/2013

Nom et prénom : GALLE Aymeric

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.

Exercice Pont diviseur

On dispose d'une batterie de 9V, et l'on souhaite alimenter un circuit polarisé en 3V. Le but de cet exercice est donc d'étudier l'alimentation de ce montage. Le cahier des charges nous donne les contraintes suivantes :

- · courant maximum consommé par le circuit à alimenter $i_S \leq 10 \text{mA}$
- tension d'entrée du circuit à alimenter $2.5 \le$ $Vs \leq 3.5V$

Figure 1: Alimentation

Partie I - Pont diviseur

On commence par utiliser un pont diviseur de tension pour abaisser la tension de 9 à 3V.

Figure 3: Montage equivalent de thevenin

Figure 2: Pont diviseur

Question 1 • A vide (c-a-d avec $i_S = 0$), quelle relation doit vérifier R_1 et R_2 pour avoir $V_S = 3V$. Si on choisit $R_1 = 500\Omega$, calculer la valeur de R_2 .

 $R_2 = 2250\Omega$

Question 2 • On étudie maintenant le fonctionnement en charge : Si $i_S = 10 \text{mA}$, que vaut V_S

aide: je vous conseille de calculer le circuit équivalent de thevenin du montage entre les point A et B, puis de calculer la chute de tension au bornes de r_t lorsque $i_S = 10$ mA. (e_t correspond à la tension à vide, et r_t correspond à la résistance équivalente entre A et B lorsque la source V_E est court-circuité.)

 $V_S = 1.75V$

 $V_S = 4.67V$ $V_S = 1.33V$ $V_S = 7.33V$ $V_S = 3.00V$

0/1

1/1