RESOLVENT CONVERGENCE OF STURM-LIOUVILLE OPERATORS WITH SINGULAR POTENTIALS

ANDRII GORIUNOV, VLADIMIR MIKHAILETS

ABSTRACT. In this paper we consider the Sturm-Liuoville operator in the Hilbert space L_2 with the singular complex potential of W_2^{-1} and two-point boundary conditions. For this operator we give sufficient conditions for norm resolvent approximation by the operators of the same class.

1. Main result

Let on a compact interval [a, b] the formal differential expression

(1)
$$l(y) = -y''(t) + q'(t)y(t), \qquad q(\cdot) \in L_2([a, b], \mathbb{C}) =: L_2.$$

be given.

This expression can be defined as the Shin-Zettl [1] quasi-differential expression with following quasi-derivatives [2]:

$$D^{[0]}y=y, \quad D^{[1]}y=y'-qy, \quad D^{[2]}y=-(D^{[1]}y)'-qD^{[1]}y-q^2y.$$

In this paper we consider the set of quasi-differential expressions $l_{\varepsilon}(\cdot)$ of the form (1) with potentials $q_{\varepsilon}(\cdot) \in L_2$, $\varepsilon \in [0, \varepsilon_0]$. In the Hilbert space L_2 with norm $\|\cdot\|_2$ each of these expressions generates a dense closed quasi-differential operator $L_{\varepsilon}y := l_{\varepsilon}(y)$,

$$Dom(L_{\varepsilon}) := \{ y \in L_2 : \exists D_{\varepsilon}^{[2]} y \in L_2; \quad \alpha(\varepsilon) \mathcal{Y}_a(\varepsilon) + \beta(\varepsilon) \mathcal{Y}_b(\varepsilon) = 0 \},$$

where matrices $\alpha(\varepsilon), \beta(\varepsilon) \in \mathbb{C}^{2\times 2}$, and vectors

$$\mathcal{Y}_a(\varepsilon) := \{ y(a), D_{\varepsilon}^{[1]} y(a) \}, \quad \mathcal{Y}_b(\varepsilon) := \{ y(b), D_{\varepsilon}^{[1]} y(b) \} \in \mathbb{C}^2.$$

Recall that operators L_{ε} converge to L_0 in the sense of norm resolvent convergence, $L_{\varepsilon} \stackrel{R}{\to} L_0$, if there exists a number $\mu \in \mathbb{C}$ such that $\mu \in \rho(L_0)$ and $\mu \in \rho(L_{\varepsilon})$ (for all sufficiently small ε) and

$$||(L_{\varepsilon} - \mu)^{-1} - (L_0 - \mu)^{-1}|| \to 0, \quad \varepsilon \to +0.$$

This definition does not depend on the point $\mu \in \rho(L_0)$ [3].

For the case where matrices $\alpha(\varepsilon)$, $\beta(\varepsilon)$ do not depend on ε , paper [2] gives following

Theorem 1. Suppose $||q_{\varepsilon} - q_0||_2 \to 0$ for $\varepsilon \to +0$ and the resolvent set of the operator L_0 is not empty. Then $L_{\varepsilon} \stackrel{R}{\to} L_0$.

Our goal is to generalize Theorem 1 onto the case of boundary conditions depending on ε and to weaken conditions on potentials applying results of papers [4, 5].

Denote by $c^{\vee}(t) := \int_a^t c(x)dx$ and by $\|\cdot\|_C$ the sup-norm.

²⁰¹⁰ Mathematics Subject Classification. Primary 34L40; Secondary 34B08, 47A10.

Key words and phrases. Sturm-Liouville operator, resolvent convergence of operators, singular potential, quasi-differential expression, quasi-derivative, Green function, Green matrix.

Theorem 2. Suppose the resolvent set of the operator L_0 is not empty and for $\varepsilon \to +0$:

- $||q_{\varepsilon}||_2 = O(1);$

- 2) $\|(q_{\varepsilon} q_0)^{\vee}\|_C \to 0;$ 3) $\|(q_{\varepsilon}^2 q_0^2)^{\vee}\|_C \to 0;$ 4) $\alpha(\varepsilon) \longrightarrow \alpha(0), \quad \beta(\varepsilon) \longrightarrow \beta(0).$

Then $L_{\varepsilon} \stackrel{R}{\to} L_0$.

Note that condition 3) is not additive.

Condition 1) (taking into account 2), 3)) may be weakened in several directions.

Actually we will prove a stronger statement on the considered operators' Green functions' convergence with respect to the norm $\|\cdot\|_{\infty}$ of the space L_{∞} on the square $[a,b]\times[a,b]$.

2. Comparison of Theorems 1 and 2

We are going to show that if $||q_{\varepsilon} - q_0||_2 \to 0$, $\varepsilon \to +0$, then conditions 1), 2), 3) of Theorem 2 are true.

Indeed, $||q_{\varepsilon}||_2 \le ||q_{\varepsilon} - q_0||_2 + ||q_0||_2 = O(1)$.

Also

$$\begin{split} |\int_{a}^{t} (q_{\varepsilon} - q_{0})ds| &\leq \int_{a}^{b} |q_{\varepsilon} - q_{0}|ds \leq (\int_{a}^{b} |q_{\varepsilon} - q_{0}|^{2}ds)^{1/2} (b - a)^{1/2} \to 0, \ \varepsilon \to +0. \\ |\int_{a}^{t} (q_{\varepsilon}^{2} - q_{0}^{2})ds| &\leq \int_{a}^{b} |q_{\varepsilon}^{2} - q_{0}^{2}|ds \leq \int_{a}^{b} |q_{\varepsilon} - q_{0}||q_{\varepsilon} + q_{0}|ds \leq \\ &\leq (\int_{a}^{b} |q_{\varepsilon} - q_{0}|^{2}ds)^{1/2} (\int_{a}^{b} |q_{\varepsilon} + q_{0}|^{2}ds)^{1/2} \to 0, \quad \varepsilon \to +0. \end{split}$$

Following example proves Theorem 2 to be stronger than Theorem 1.

EXAMPLE 1. Suppose $q_0(t) \equiv 0$, $q_{\varepsilon}(t) = e^{it/\varepsilon}$, $t \in [0,1]$.

The set of operators L_{ε} defined by these potentials does not satisfy assumptions of Theorem 1 because

$$||q_{\varepsilon} - q_0||_2^2 = ||q_{\varepsilon}||_2^2 = \int_0^1 |q_{\varepsilon}|^2 ds \equiv 1.$$

It is evident that functions $q_{\varepsilon}(\cdot)$ do not converge to 0 even with respect to the Lebesgue measure. However, they satisfy conditions 1), 2), 3) of Theorem 2. Indeed, $||q_{\varepsilon}||_2 \leq 1$. Moreover,

$$\|q_{\varepsilon}^{\vee}\|_{C} = \|\int_{0}^{t} e^{is/\varepsilon} ds\|_{C} \le 2\varepsilon \to 0, \quad \varepsilon \to +0.$$

$$\|(q_{\varepsilon}^{2})^{\vee}\|_{C} = \|\int_{0}^{t} (e^{is/\varepsilon})^{2} ds\|_{C} \le \varepsilon \to 0, \quad \varepsilon \to +0.$$

3. Preliminary result

Consider a boundary-value problem

$$y'(t;\varepsilon) = A(t;\varepsilon)y(t;\varepsilon) + f(t;\varepsilon), \quad t \in [a,b], \quad \varepsilon \in [0,\varepsilon_0]$$

$$U_{\varepsilon}y(\cdot;\varepsilon) = 0,$$

$$(3.1_{\varepsilon})$$

where matrix functions $A(\cdot, \varepsilon) \in L_1^{m \times m}$, vector-functions $f(\cdot, \varepsilon) \in L_1^m$, and linear continuous operators $U_{\varepsilon}: C([a,b];\mathbb{C}^m) \to \mathbb{C}^m$.

We recall from [4, 5]

Definition Denote by $\mathcal{M}^m[a,b] =: \mathcal{M}^m, m \in \mathbb{N}$ the class of matrix functions $R(\cdot;\varepsilon) : [0,\varepsilon_0] \to L_1^{m \times m}$, such that the solution of the Cauchy problem

$$Z'(t;\varepsilon) = R(t;\varepsilon)Z(t;\varepsilon), \quad Z(a;\varepsilon) = I_m$$

satisfies the limit condition

$$\lim_{\varepsilon \to +0} \|Z(\cdot; \varepsilon) - I_m\|_C = 0.$$

Sufficient conditions for $R(\cdot;\varepsilon) \in \mathcal{M}^m$ derive from [6]. To prove Theorem 2 we apply the simplest of them

$$||R(\cdot;\varepsilon)||_1 = O(1), \quad ||R^{\vee}(\cdot;\varepsilon)||_C \to 0,$$

where $\|\cdot\|_1$ is the norm in $L_1^{m\times m}$.

Paper [5] gives the following general

Theorem 3. Suppose

- 1) the homogeneous limit boundary-value problem $(3.1_0), (3.2_0)$ with $f(\cdot; 0) \equiv 0$ has only zero solution;
- 2) $A(\cdot; \varepsilon) A(\cdot; 0) \in \mathcal{M}^m$;
- 3) $||U_{\varepsilon} U_0|| \to 0$, $\varepsilon \to +0$.

Then for sufficiently small ε Green matrices $G(t, s; \varepsilon)$ of problems (3.1_{ε}) , (3.2_{ε}) exist and on the square $[a, b] \times [a, b]$

(4)
$$||G(\cdot,\cdot;\varepsilon) - G(\cdot,\cdot;0)||_{\infty} \to 0, \quad \varepsilon \to +0.$$

Condition 3) of Theorem 3 cannot be replaced by a weaker condition of the strong convergence of the operators $U_{\varepsilon} \stackrel{s}{\to} U_0$ [5]. However, one may easily see that for multi-point "boundary" operators

$$U_{\varepsilon}y := \sum_{k=1}^{n} B_k(\varepsilon)y(t_k), \quad \{t_k\} \subset [a,b], \quad B_k(\varepsilon) \in \mathbb{C}^{m \times m}, \quad n \in \mathbb{N},$$

both conditions of strong and norm convergence are equivalent to

$$||B_k(\varepsilon) - B_k(0)|| \to 0, \quad \varepsilon \to +0, \quad k \in \{1, ..., n\}.$$

4. Proof of Theorem 2

We give two lemmas to apply Theorem 3 to proof of Theorem 2.

Lemma 1. Function y(t) is a solution of a boundary-value problem

(5)
$$D_{\varepsilon}^{[2]}y(t) = f(t;\varepsilon) \in L_2, \quad \varepsilon \in [0,\varepsilon_0],$$

(6)
$$\alpha(\varepsilon)\mathcal{Y}_a(\varepsilon) + \beta(\varepsilon)\mathcal{Y}_b(\varepsilon) = 0.$$

if and only if vector-function $w(t) = (y(t), D_{\varepsilon}^{[1]}y(t))$ is a solution of a boundary-value problem

(7)
$$w'(t) = A(t; \varepsilon)w(t) + \varphi(t; \varepsilon),$$

(8)
$$\alpha(\varepsilon)w(a) + \beta(\varepsilon)w(b) = 0,$$

where matrix function

(9)
$$A(\cdot;\varepsilon) := \begin{pmatrix} q_{\varepsilon} & 1 \\ -q_{\varepsilon}^2 & -q_{\varepsilon} \end{pmatrix} \in L_1^{2\times 2},$$

and $\varphi(\cdot;\varepsilon) := (0, -f(\cdot;\varepsilon)).$

PROOF. Consider the system of equations

$$\begin{cases} (D_{\varepsilon}^{[0]}y(t))' = q_{\varepsilon}(t)D_{\varepsilon}^{[0]}y(t) + D_{\varepsilon}^{[1]}y(t) \\ (D_{\varepsilon}^{[1]}y(t))' = -q_{\varepsilon}^{2}(t)D_{\varepsilon}^{[0]}y(t) - q_{\varepsilon}(t)D_{\varepsilon}^{[1]}y(t) - f(t;\varepsilon) \end{cases}$$

If $y(\cdot)$ is a solution of equation (5), then definition of quasi-derivatives derives that $y(\cdot)$ is a solution of this system. On the other hand with

$$w(t) = (D_{\varepsilon}^{[0]}y(t), D_{\varepsilon}^{[1]}y(t))$$
 and $\varphi(t; \varepsilon) = (0, -f(t; \varepsilon))$

this system may be rewritten in the form of equation (7).

As $\mathcal{Y}_a(\varepsilon) = w(a)$, $\mathcal{Y}_b(\varepsilon) = w(b)$ then it is evident that boundary conditions (6) are equivalent to boundary conditions (8).

Lemma 2. Let the assumption

(\mathcal{E}) Homogeneous boundary-value problem $D_0^{[2]}y(t) = 0$, $\alpha(0)\mathcal{Y}_a(0) + \beta(0)\mathcal{Y}_b(0) = 0$ has only zero solution

be fulfilled. Then for sufficiently small ε Green function $\Gamma(t,s;\varepsilon)$ of the semi-homogeneous boundary problem (5), (6) exists and

$$\Gamma(t, s; \varepsilon) = -g_{12}(t, s; \varepsilon)$$
 a. e.,

where $g_{12}(t,s;\varepsilon)$ is the corresponding element of the Green's matrix

$$G(t, s; \varepsilon) = (g_{ij}(t, s; \varepsilon))_{i,j=1}^{2}$$

of two-point vector boundary-value problem (7), (8).

PROOF. Taking into account Theorem 3 and Lemma 1 assumption (\mathcal{E}) derives that homogeneous boundary-value problem

$$w'(t) = A(t; \varepsilon)w(t), \quad \alpha(\varepsilon)w(a) + \beta(\varepsilon)w(b) = 0$$

for sufficiently small ε has only zero solution.

Then for problem (7), (8) Green matrix

$$G(t, s, \varepsilon) = (g_{ij}(t, s))_{i,j=1}^2 \in L_{\infty}^{2 \times 2}$$

exists and the unique solution of (7), (8) is written in the form

$$w_{\varepsilon}(t) = \int_{a}^{b} G(t, s; \varepsilon) \varphi(s; \varepsilon) ds, \quad t \in [a, b], \quad \varphi(\cdot; \varepsilon) \in L_{2}.$$

The last equality can be written in the form

$$\begin{cases} D_{\varepsilon}^{[0]}y_{\varepsilon}(t) = \int_{a}^{b} g_{12}(t,s;\varepsilon)(-\varphi(s;\varepsilon))ds \\ D_{\varepsilon}^{[1]}y_{\varepsilon}(t) = \int_{a}^{b} g_{22}(t,s;\varepsilon)(-\varphi(s;\varepsilon))ds, \end{cases}$$

where $y_{\varepsilon}(\cdot)$ is the unique solution of problem (5), (6). This implies the assertion of Lemma 2. Now, passing to the proof of Theorem 2, we note that since

$$(q_{\varepsilon} + \mu)^2 - (q_0 + \mu)^2 = (q_{\varepsilon}^2 - q_0^2) + 2\mu(q_{\varepsilon} - q_0),$$

in view of conditions 2), 3) we can assume without loss of generality that $0 \in \rho(L_0)$. Let's prove that

$$\sup_{\|f\|_2=1} \|L_{\varepsilon}^{-1} f - L_0^{-1} f\| \to 0, \quad \varepsilon \to +0.$$

Equation $L_{\varepsilon}^{-1}f = y_{\varepsilon}$ is equivalent to the relation $L_{\varepsilon}y_{\varepsilon} = f$, that is y_{ε} is the solution of the problem (5), (6) and due to inclusion $0 \in \rho(L_0)$ the assumption (\mathcal{E}) of Lemma 2 holds. Conditions 1)–3) of Theorem 2 imply that $A(\cdot;\varepsilon) - A(\cdot;0) \in \mathcal{M}^2$, where $A(\cdot;\varepsilon)$ is given by (9). Therefore assumption of Theorem 2 derives that assumption of Theorem 3 for problem (7), (8) is fulfilled. This means that Green matrices $G(t,s;\varepsilon)$ of the problems (7), (8) exist and limit relation (4) holds. Taking into account Lemma 2, this implies the limit equality

$$\|\Gamma(\cdot,\cdot;\varepsilon) - \Gamma(\cdot,\cdot;0)\|_{\infty} \to 0, \quad \varepsilon \to +0.$$

Then
$$\|L_{\varepsilon}^{-1} - L_{0}^{-1}\| = \sup_{\|f\|_{2} = 1} \|\int_{a}^{b} [\Gamma(t, s; \varepsilon) - \Gamma(t, s; 0)] f(s) ds\|_{2} \le$$

$$(b - a)^{1/2} \sup_{\|f\|_{2} = 1} \|\int_{a}^{b} |\Gamma(t, s; \varepsilon) - \Gamma(t, s; 0)| |f(s)| ds\|_{C} \le$$

$$(b - a) \|\Gamma(\cdot, \cdot; \varepsilon) - \Gamma(\cdot, \cdot; 0)\|_{\infty} \to 0, \quad \varepsilon \to +0,$$

which implies the assertion of Theorem 2.

5. Three extensions of Theorem 2

As was already noted, the assumptions of Theorem 2 may be weakened. Let

$$R(\cdot;\varepsilon) := A(\cdot;\varepsilon) - A(\cdot;0)$$

where $A(\cdot; \varepsilon)$ is given by (9).

Theorem 4. In the statement of Theorem 2, condition 1) can be replaced by any one of the following three more general (in view of 2) and 3)) asymptotic conditions as $\varepsilon \to +0$:

- (I) $||R(\cdot;\varepsilon)R^{\vee}(\cdot;\varepsilon)||_1 \to 0;$
- (II) $||R^{\vee}(\cdot;\varepsilon)R(\cdot;\varepsilon)||_1 \to 0$;
- (III) $||R(\cdot;\varepsilon)R^{\vee}(\cdot;\varepsilon)| R^{\vee}(\cdot;\varepsilon)R(\cdot;\varepsilon)||_1 \to 0.$

PROOF. The proof of Theorem 4 is similar to the proof of Theorem 2 with following remark to be made. Condition 2) of Theorem 3 holds if (see [6]) $||R^{\vee}(\cdot;\varepsilon)||_C \to 0$ and either the condition $R(\cdot;\varepsilon)||_1 = O(1)$ (as in Theorem 2), or any of three conditions (I), (II), (III) of Theorem 4 holds.

Following example shows each part of Theorem 4 to be stronger than Theorem 2.

Example 2. Let $q_0(t) \equiv 0$, $q_{\varepsilon}(t) = \rho(\varepsilon)e^{it/\varepsilon}$, $t \in [0,1]$.

One may easily calculate that conditions

$$\rho(\varepsilon) \uparrow \infty, \quad \varepsilon \rho^3(\varepsilon) \to 0, \quad \varepsilon \to +0,$$

imply assumptions 2), 3) of Theorem 2 and any one of assumptions (I), (II), (III) of Theorem 4. But assumption 1) of Theorem 2, does not hold because $||q_{\varepsilon} - q_0||_2 \uparrow \infty$.

For Schrödinger operators of the form (1) on \mathbb{R} with real-valued periodic potential q', where $q \in L_2^{loc}$, self-adjointness and sufficient conditions for norm resolvent convergence were established in [7]. For other problems related to those studied in [2], see also [8], [9].

REFERENCES

- [1] W. N. Everitt, L. Markus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators, Mathematical Surveys and Monographs, 61, American Mathematical Society, Providence, 1999.
- [2] A. M. Savchuk, A. A. Shkalikov, Sturm-Liouville operators with singular potentials, Math. Notes 66 (1999), no. 5-6, 741-753.
- [3] T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
- [4] V. A. Mikhailets, N. V. Reva, Generalizations of Kiguradze's theorem on the well-posedness of linear boundary-value problems. (Russian), Dopov. Nats. Akad. Nauk Ukr. (2008), no. 9, 23–27.
- [5] V. A. Mikhailets, N. V. Reva, Continuous dependence on parameter of solutions of general boundary-value problems (Russian), Proc. Inst. Mat. Nats. Akad. Nauk Ukr. 5 (2008), no. 1, 227–239.
- [6] A. Ju. Levin, Passage to the limit for nonsingular systems $\dot{X} = A_n(t)X$., Soviet Math. Dokl. 8 (1967), 1194–1197.
- [7] V. A. Mikhailets, V. M. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials, Methods Funct. Anal. Topology 14 (2008), no. 2, 184–200.
- [8] A. S. Goriunov, V. A. Mikhailets, On extensions of symmetric quasi-differential operators of even order (Russian), Dopov. Nats. Akad. Nauk Ukr. (2009), no. 4, 19–24.
- [9] A. S. Goriunov, V. A. Mikhailets, On extensions of symmetric quasi-differential operators of odd order (Russian), Dopov. Nats. Akad. Nauk Ukr. (2009), no. 9, 27–31.

Institute of Mathematics of National Academy of Sciences of Ukraine, Tereshchenkivska str., 3, Kyiv-4, Ukraine, 01601

E-mail address, Andrii Goriunov: goriunov@imath.kiev.ua

E-mail address, Vladimir Mikhailets: mikhailets@imath.kiev.ua