Adversarial Instance Re-weighting for Unsupervised Domain Adaptation

Itzel Belderbos

29 Oct, 2021

DKE supervisors: Drs. Mirela Popa Dr. Christof Seiler

External supervisor: Dr. Fabian Jansen

Contents

- 1. Introduction
 - 1. Problem statement
 - 2. Reseach goal & questions
- 2. Part 1: proof-of-concept
 - Methodology
 - 2. Results
- 3. Part 2: state-of-the-art comparison
 - 1. Methodology
 - 2. Results
- 4. Discussion
- 5. Conclusion

Problem statement

• Wanted:

 Train model on source dataset, test on target dataset

• Problem:

 Target dataset should have same distribution!

- → Labels target dataset not available
- → Data annotation is expensive

Examples

- Computer vision
 - From one weather condition to another
- Sentiment analysis
 - From book reviews to DVD reviews
- Speech recognition
 - o From one speaker to another speaker

→ Focus in this work on **images**

Domain adaptation

- Domain: a distribution within the feature space
- This work focuses to two types of DA:

Covariate shift

$$\mathcal{X}^{s} = \mathcal{X}^{t}$$

$$P(Y|X)^{s} = P(Y|X)^{t}$$

$$P(X)^{s} \neq P(X)^{t}$$

Prior probability shift

$$\mathcal{X}^{s} = \mathcal{X}^{t}$$

$$P(X|Y)^{s} = P(X|Y)^{t}$$

$$P(Y)^{s} \neq P(Y)^{t}$$

Research goal

Introduce weight network to transform distribution sample-wise

→ Goal

Investigate to which extent this weight network is able to benefit the domain adaptation, particularly for covariate shift

Research questions

- 1. Can we use non-generative adversarial networks to improve covariate shift adaptation?
 - a. How can we train a weight function, which converts source into target distribution?
 - b. What is the effect of the critic?

1. How can we measure the performance of the reconstructed target distribution and the adversarial network?

1. Are there other ways than a weight function to express source data into target data?

Methodology for proof-of-concept

The Wasserstein GAN vs our network

- Wasserstein GAN
 - Adversarial game between critic & generator

$$\min_{g} \max_{c} \mathbb{E}_{x \sim p_{data}(x)} \left[c(x) \right] - \mathbb{E}_{\sim p_{z}(z)} \left[c(g(z)) \right]$$

- Our weighted network
 - Adversarial game between critic & weight

$$\min_{w} \max_{c} \mathbb{E}_{x \sim s(x)} [c(x)w(x)] - \mathbb{E}_{x \sim t(x)} [c(x)]$$

Experiments

- Experiment 1: One-dimensional Gaussians
- Experiment 2: MNIST subset & class imbalance
- Experiment 3: MNIST subset & covariate shift

Evaluation metric

- → Binary domain classifier to evaluate *domain invariance*
 - Combine source and target dataset into 1 dataset
 - Label target as 0, source as 1
 - Check whether classifier can see difference
 - Ideal situation: accuracy of 50%

Results for proof-of-concept

Experiment 1 - Results

Weighted distribution: binary domain classifier cannot see difference

Experiment 1 - Limitations

- Target dataset cannot contain values which are not present is source dataset
 - Cannot re-weight values which do not exist

Experiment 2 - Prior probability shift

- 1000 samples; classes 0 and 1
- Imbalance between 2 classes

k	$P(Y=k)^s$	$P(Y=k)^t$	$\mathbb{E}[w(x)]$
0	0.20	0.80	4
1	0.80	0.20	$\frac{1}{4}$

Experiment 2 - Results

Histogram of weight outputs

k	$P(Y=k)^s$	$P(Y=k)^t$	$\mathbb{E}[w(x)]$
0	0.20	0.80	4
1	0.80	0.20	$\frac{1}{4}$

Experiment 2 - Results

Binary domain classifier

x-axis: epochsy-axis: accuracy

Experiment 3 - Covariate shift

- Source/target datasets consist of 10,000 samples with class 0-4
- Use KMeans to obtain 2 subclasses per class
- Create imbalance between 2 subclasses

Figure 3.17: t-SNE of subset with 5 classes

Experiment 3 - Results

class	cluster	expected	actual
		weight	weight
0	2	1	0.97
0	7	1	0.98
1	3	1	0.98
1	5	1	0.99
2	4	1	0.90
2	6	1	0.99
3	0	0.33	0.55
3	9	3	1.92
4	1	0.33	0.56
4	8	3	2.03

Table 3.3: Expected weight vs actual weight per cluster

Experiment 3 - Results

Binary domain classifier

Experiment 3 - Results

Methodology for state-of-the-art comparison

Large domain shift: different features

What to do when target features are not present is source data?

Combination with feature-based domain adaptation

Learn a domain-invariant feature embedding with a feature encoder

$$P(X^s) \neq P(X^t)$$

$$P(\tau(X^s)) = P(\tau(X^t))$$

Baseline models

- Adversarial Discriminative Domain Adaptation (ADDA)
- Wasserstein Guided Respresentation Learning framework (WDGRL)

Adversarial game between discriminator/critic & feature encoder

ADDA

- Works like a GAN, instead of fake image it learns a fake feature representation
- Binary cross-entropy loss
- 2 separate encoders for source and target (asymmetric)

ADDA

- Works like a GAN, instead of fake image it learns a fake feature representation
- Binary cross-entropy loss
- 2 separate encoders for source and target (asymmetric)

discriminator	$\min_{d} L^{d} = -\mathbb{E}[\log d(\tau^{s}(x^{s}))] - \mathbb{E}[\log(1 - d(\tau^{t}(x^{t})))]$
target encoder	$\min_{\tau^t} L^{\tau_t} = -\mathbb{E}[\log d(\tau^t(x^t))]$

WDGRL

- Uses Wasserstein distance instead of BCE loss
- 1 encoder for both source and target (symmetric)
- Adds classification loss in feature loss
 - Feature loss = Wasserstein loss + source classification loss

domain invariance

class segregation

WDGRL

- Uses Wasserstein distance instead of BCE loss
- 1 encoder for both source and target (symmetric)
- Adds classification loss in feature loss
 - Feature loss = Wasserstein loss + source classification loss

$$\min_{d} L^d = \frac{1}{T} \sum_{x \in X^t} d\underbrace{(\tau^{s,t}(x^t))} - \frac{1}{S} \sum_{x \in X^s} d\underbrace{(\tau^{s,t}(x^s))} + \nu \frac{1}{E} \sum_{x \in X^s} (\|\nabla_e d\|_2 - 1)^2$$

$$\text{Wasserstein loss} \qquad \text{gradient penalty}$$

$$\min_{\tau^{s,t},c} L^{ce,wdgrl} L^\tau = \lambda \left[\frac{1}{S} \sum_{x \in X^s} d\underbrace{(\tau^{s,t}(x^s))} - \frac{1}{T} \sum_{x \in X^t} d\underbrace{(\tau^{s,t}(x^t))} \right] + L^{ce,wdgrl}$$

$$\underset{\text{balancing parameter}}{\text{balancing parameter}} \text{Wasserstein loss} \qquad \text{classification loss}$$

Introduction of weight network

- Regular domain adaptation methods assume class balance
- Mapping between target data and representations might go wrong

Proposed method

- Addition of weight
- Combination of ADDA and WDGRL
 - WDGRL: Wasserstein distance & addition of classification loss in feature loss
 - ADDA: 2 separate encoders for source and target

Proposed method

- 2 separate encoders for source and target (ADDA)
- Addition of classification loss in feature loss (WDGRL)
- Addition of weight

Datasets & backbone architectures

MNIST 3 2 5 2 6

USPS 46354

modified LeNet

ResNet-50

Experiments

- Experiment 4: unweighted feature-based adaptation
- Experiment 5: weighted feature-based adaptation
- Experiment 6: weighted feature-based imbalanced adaptation

Results for state-of-the-art comparison

Experiment 4: unweighted feature-based model

MNIST-USPS

Method		$M \to U$	$U \to M$
	Source only	0.761	0.588
	DANN [7]	0.771	0.750
	DDC [16]	0.791	0.698
	ADDA [1]	0.896	0.909
Previous work	WDGRL [6]	-	-
	CoGAN [8]	0.912	0.899
	DRAnet [11]	0.978	0.991
	WDGRL ^{ours}	0.920	0.898
This work	ADDA^{ours}	0.901	0.923
	ours	0.958	0.936

Experiment 4: unweighted feature-based model

MNIST-USPS

Figure 5.3: Example feature representation for ADDA Figure 5.4: Example feature representation for WDGRL

Figure 5.5: Example feature representation for our method

Experiment 4: unweighted feature-based model

Office-31

Method		$A \to W$	$D \to W$	$W \to A$
	Source only	0.626	0.961	0.610
	DANN [7]	0.730	0.964	0.675
Previous work	ADDA [I]	0.751	0.970	-
	DDC [16]	0.618	0.950	-
	WDGRL [6]	0.895	0.979	0.937
	DADA [18]	0.924	0.993	0.743
This work	ADDA ours	0.765	0.972	0.697
	ours	0.803	0.980	0.709

Experiment 4: Office-31

Experiment 5: integration with weight

Large design choice space

$$\min_{d} L^{d} = \frac{1}{T} \sum_{x \in X^{t}} d(\tau^{t}(x^{t})) - \frac{1}{S} \sum_{x \in X^{s}} d(\tau(x^{s})) w(\tau^{s}(x^{s})) + \nu \frac{1}{E} \sum_{x \in X^{c}} (\|\nabla_{e} d(e)\|_{2} - 1)^{2}$$
 feature encoder
$$\min_{\tau^{t}} L^{\tau} = \lambda^{\tau^{t}} \left[-\frac{1}{T} \sum_{x \in X^{t}} d(\tau^{t}(x^{t})) \right] + L^{cc,ours}$$
 weight
$$\min_{w} L^{w} = \lambda^{w} \left[\frac{1}{S} \sum_{x \in X^{s}} d(\tau^{s}(x^{s})) w(\tau^{s}(x^{s})) \right] + L^{cc,ours}$$

Experiment 5: integration with weight

Method	$\lambda_{ au}$	λ_w	$L^{ce,ours}$	$L^{ce,ours}$	w in	w_{pas}	$_{s}$ activation	acc_{target}
			for $ au$	for w	$L^{ce,ours}$			
Source-only								0.761
Unweighted _{ours}								0.958
trial 1	✓	✓	✓	×	✓	×	softmax	0.834
trial 2	\checkmark	×	\checkmark	×	\checkmark	×	softmax	0.818
trial 3	×	×	\checkmark	✓	\checkmark	×	softmax	0.792
trial 4	✓	×	\checkmark	✓	\checkmark	×	$_{ m relu}$	0.801
trial 5	✓	×	\checkmark	×	\checkmark	×	$_{ m relu}$	0.799
trial 6	\checkmark	\checkmark	\checkmark	✓	\checkmark	×	softmax	0.842
trial 7	✓	✓	✓	✓	✓	✓	$\operatorname{softmax}$	0.862

Table 5.3: Results for weighted domain adaptation on MNIST-USPS transfer

Experiment 6: imbalanced domain adaptation

x-axis: class

• **y-axis:** probability

$$KL = 0.04$$

$$KL = 0.40$$

$$KL = 0.74$$

Experiment 6: imbalanced domain adaptation

Method		$M \to U$	
KL(S,T)	0.04	0.40	0.74
Unweighted	0.872	0.609	0.640
Weighted	0.865	0.714	0.643

Discussion & Conclusion

- Research focus
 - Investigate whether an adversarial instance re-weighting framework, inspired by Wasserstein GAN, is able to enhance unsupervised domain adaptation problem
- Proof-of-concept: small domain shift
 - **Experiment 1:** one-dimensional Gaussians
 - Source and target domain should have sufficient overlap
 - **Experiment 2:** MNIST, class imbalance
 - Algorithm is able to re-weight based on class
 - **Experiment 3:** MNIST, covariate shift
 - Algorithm is able to re-weight based on features

Discussion & Conclusion

- Comparison with state-of-the-art: large domain shift
 - Experiment 4: unweighted feature-based adaptation
 - Our method improved ADDA and WDGRL for MNIST-USPS and Office-31
 - Did not improve state-of-the-art
 - Experiment 5: weighted feature-based adaptation
 - Large choice space leads to difficult optimization
 - Improves source-only; does not improve unweighted methods
 - Experiment 6: weighted feature-based & imbalanced adaptation
 - For a KL-divergence of 0.40 between MNIST and USPS, weighted method outperforms unweighted method