BVPs (and IVPs)

Pretty important for actually solving and modelling stuff

• An **extension** of a diagram $D_0 \colon \mathscr{J}_0 \to \mathscr{C}$ along a functor $R \colon \mathscr{J}_0 \to \mathscr{J}$ is a diagram $D \colon \mathscr{J} \to \mathscr{C}$ and a (backwards) morphism $(R, \rho) \colon (\mathscr{J}, D) \to (\mathscr{J}_0, D_0)$

- Given
 - 1. an extension of D_0 along R
 - 2. a lift $\overline{D_0}$ of D_0 through some functor $\pi \colon \mathscr{E} \to \mathscr{E}$

$$\begin{array}{ccc}
J_0 & \xrightarrow{\overline{D}_0} & \mathsf{E} \\
\downarrow^{R} & & \downarrow^{r} \\
\mathsf{J} & \xrightarrow{D} & \mathsf{C}
\end{array}$$

the **extension lifting problem** is to find an extension $(R, \overline{\rho}) \colon (\mathcal{J}, \overline{D}) \to (\mathcal{J}_0, \overline{D_0})$ of $\overline{D_0}$ along R such that \overline{D} is a lift of D through π in a "2-compatible way"

BVPs (and IVPs)

Pretty important for actually solving and modelling stuff

- D represents the whole system
- D_0 represents the boundary of the system
- $D \rightarrow D_0$ projects the system onto its boundary
- A lift $\overline{D_0}$ of D_0 is a choice of boundary data
- N.B. unlike in "classical" algebraic topology, we allow extension-lifting problems to be non-strict, i.e. to have non-trivial 2-cells