Connectionist Computing COMP 30230/41390

Gianluca Pollastri

office: E0.95, Science East.

email: gianluca.pollastri@ucd.ie

Credits

- Geoffrey Hinton, University of Toronto.
 - borrowed some of his slides for "Neural Networks" and "Computation in Neural Networks" courses.

- slides from his CS4018.
- Paolo Frasconi, University of Florence.
 - slides from tutorial on Machine Learning for structured domains.

Lecture notes on Brightspace

- Strictly confidential...
- Slim PDF version will be uploaded later, typically the same day as the lecture.
- If there is demand, I can upload onto Brightspace last year's narrated slides.. (should be very similar to this year's material)

Connectionist Computing COMP 30230

Books

- No book covers large fractions of this course.
- Parts of chapters 4, 6, (7), 13 of Tom Mitchell's "Machine Learning"
- Parts of chapter V of Mackay's "Information Theory, Inference, and Learning Algorithms", available online at:

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

 Chapter 20 of Russell and Norvig's "Artificial Intelligence: A Modern Approach", also available at:

http://aima.cs.berkeley.edu/newchap20.pdf

More materials later...

Marking

- 3 landmark papers to read, and submit a 10-line summary on Brightspace about: each worth 6-7%
- a connectionist model to build and play with on some sets, write a report: 30%
- Final Exam in the RDS (50%)

Programming assignment

- Implement a Multi-Layer Perceptron, test it.
- The description on Brightspace.

- Submit through Brightspace code and test results by <u>Dector</u> the 5th at 23:59, any time zone of your choice (Baker Island?).
- 30% of the overall mark
- One third of a grade down every day late, that is: if you deserve an A and you're 1 day late you get an A-, 2 days late a B+, etc.

Deep learning

- Deep nets are expressive
- But gradients vanish
- A long history of ad hoc solutions
- Over the last ten years, new solutions

"New" deep learning 1.0

- Layer by layer pre-training based on:
 - auto-association
 - RBM (Deep Belief Networks)
- Hard targets for inner layers
- More CPU and patience

About pre-training

- If by auto-association, can be done on unlabelled data:
 - more data
 - generic compression
- Or, it can be done with a target (no autoassociation):
 - less data (needs to be labelled)
 - target-driven compression

It depends on the problem!

- Deep learning has produced some pretty stunning results in some fields (e.g. computer vision).
- In other fields, going from shallow to less shallow usually helps, but there is no need (or scope) for true deep learning.

Algorithms plus data plus CPU (or GPU) plus ease of use

- Many algorithms used in deep learning have been around for a while. At most they have been combined and shuffled cleverly.
- The big changes are:
 - immense amounts of data
 - faster computers and, especially, the ability to run training algorithms on graphics cards 1+ orders of magnitude faster, \$ for \$
 - A number of environments/libraries that have made formerly highly complicated implementations accessible
 - A LOT of buzz...

Next...

- A number of deep architectures I have worked with.
- Interestingly, most of them need only relatively lightweight (or no) deep learning techniques to be trained.

Structure and neural nets

- A great historical limitation of neural networks is that you have to decide beforehand how many inputs, outputs one has.
- This means that only maps/functions where inputs and outputs are vectors of fixed, known length can be dealt with directly.

Structure and neural nets (2)

- Data tend to not come in fixed lengths.
- We have to brutalise them into them.

 Think of the features used for handwritten digit recognition. They may be good or not. But there is a good chance that they don't contain the full information available in the raw data.

We should think ahead of the data

 As more data become available and more complex problems are tackled, clever machine learning methods that stand on a few more parameters and a few more layers of complexity may also become useful...

Sequences as structure: N to N

- Think of language (e.g. mapping words into sounds). It's an N-to-N map, where N is unknown a priori, and variable between different streams of text.
- Think of biological sequences (DNA, proteins). Their lengths are wildly variable.

•

 How do you design a network that can deal with ALL the different lengths?

N-to-N: traditional solution

- N is variable, and this is a problem.
- Neural networks (and SVM, etc. etc.) like fixed sizes..
- Split N-to-N into N W-to-1 maps (W fixed).

Problem

- If we cut up the input string into windows of size W, we only see what is inside the window..
- We consider only a few letters, we ignore most of them.
- But we know that letters that matter may be anywhere, in some cases.
- Infinite trial and error W? Overfitting?

Recurrent Neural Networks (RNN)

- One of the earliest versions: Jeffrey Elman, 1990, Cognitive Science.
- Problem: it isn't easy to represent time with Feedforward Neural Nets: usually time is represented with space.
- Attempt to design networks with memory.

RNNs

- The idea is having discrete time steps, and considering the hidden layer at time t-1 as an input at time t.
- This effectively removes cycles: we can model the network using an FFNN, and model memory explicitly.

d = delay element

BPTT

- BackPropagation Through Time.
- If Ot is the output at time t, It the input at time t, and Xt the memory (hidden) at time t, we can model the dependencies as follows:

$$X_t = f(X_{t-1}, I_t)$$
$$O_t = g(X_t, I_t)$$

BPTT

- We can model both f() and g() with (possibly multilayered) networks.
- We can transform the recurrent network by unrolling it in time.
- Backpropagation works on any Directed Acyclic Graph (DAG). An RNN becomes one once it's unrolled.

d = delay element

gradient in BPTT

```
• GRADIENT(I,O,T) {

    # I=inputs, O=outputs, T=targets

• T := size(O);
• X_0 := 0;
• for t := 1..T
       X_t := f(X_{t-1}, I_t);
• for t := 1..T {
       O_t := g(X_t, I_t);
      g.gradient(Ot - Tt);
       \delta_t = g.deltas(O_t - T_t);
• for t := T..1
       f.gradient(\delta_t);
       \delta_{t-1} += f.deltas(\delta_t);
```


Past and future

- RNN are OK (ish) for time dependency.
- E.g. one would expect the past text to be more important than the future text to interpret language (though a little lookahead is necessary).
- But what about sequences in <u>space</u>?
- With a time metaphor, you'll need to know the past and the future.

Exploiting the past and the future in protein secondary structure prediction

Pierre Baldi^{1,*}, Søren Brunak², Paolo Frasconi³, Giovanni Soda³ and Gianluca Pollastri⁴

¹Department of Information and Computer Science, and Department of Biological Chemistry, College of Medicine, University of California, Irvine, Irvine, CA 92697-3425, USA, ²Center for Biological Sequence Analysis, The Technical University of Denmark, DK-2800 Lyngby, Denmark, ³Department of Informatics and Systems, University of Florence, 50139 Florence, Italy and ⁴Department of Information and Computer Science, University of California, Irvine, Irvine, CA 92697-3425, USA

Abstract

Motivation: Predicting the secondary structure of a protein (alpha-helix, beta-sheet, coil) is an important step towards elucidating its three-dimensional structure, as well as its function. Presently, the best predictors are based on machine learning approaches, in particular neural network architectures with a fixed, and relatively short, input window of amino acids, centered at the prediction site. Although a fixed small window avoids overfitting problems, it does not permit capturing variable

as a result of genome and other sequencing projects. One significant step towards elucidating the structure and function of a protein is the prediction of its secondary structure (SS). The SS consists of local folding regularities maintained by hydrogen bonds and traditionally subdivided into three classes: alpha-helices, beta-sheets and coils representing all the rest. In alpha-helices, backbone hydrogen bonds link residues i and i+4, whereas in beta-sheets, hydrogen bonds link two sequence segments, in either parallel or antiparallel fashion. The SS can be

Bidirectional Recurrent Neural Networks (BRNN)

BRNN

$$F_{t} = \phi(F_{t-1}, U_{t})$$

$$B_{t} = \beta(B_{t+1}, U_{t})$$

$$Y_{t} = \eta(F_{t}, B_{t}, U_{t})$$

- $\phi() \beta()$ ed $\eta()$ are realised with NN
- ϕ (), β () and η () are independent from to stationary

BRNN

$$F_{t} = \phi(F_{t-1}, U_{t})$$

$$B_{t} = \beta(B_{t+1}, U_{t})$$

$$Y_{t} = \eta(F_{t}, B_{t}, U_{t})$$

- $\phi() \beta()$ ed $\eta()$ are realised with NN
- ϕ (), β () and η () are independent from to stationary

BRNN

$$F_{t} = \phi(F_{t-1}, U_{t})$$

$$B_{t} = \beta(B_{t+1}, U_{t})$$

$$Y_{t} = \eta(F_{t}, B_{t}, U_{t})$$

- $\phi() \beta()$ ed $\eta()$ are realised with NN
- ϕ (), β () and η () are independent from to stationary

Inference in BRNNs

```
FORWARD(U) {
• T ← size(U);
• F_0 \leftarrow B_{T+1} \leftarrow 0;
• for t ← 1..T
         F_t = \phi(F_{t-1}, U_t);
  for t ← T..1
         B_{t} = \beta(B_{t+1}, U_{t});
• for t ← 1..T
         Y_{t} = \eta(F_{t}, B_{t}, U_{t});
  return Y;
```


Learning in BRNNs

```
GRADIENT(U,Y) {

    T ← size(U);

• F_0 \leftarrow B_{T+1} \leftarrow 0;
  for t \leftarrow 1..T
            F_{t} = \phi(F_{t-1}, U_{t});
    for t \leftarrow T..1
            B_{t} = \beta(B_{t+1}, U_{t});
    for t \leftarrow 1..T {
            Y_{t} = \eta(F_{t}, B_{t}, U_{t});
            [\delta_{F_t}, \delta_{B_t}] =
    η.backprop&gradient( Y, - Y,
```

```
• for t \leftarrow T..1

• \delta_{F_{t-1}} +=

• \phi.backprop\&gradient(\delta_{F_t});

• for t \leftarrow 1..T

• \delta_{B_{t+1}} +=

\beta.backprop\&gradient(\delta_{B_t});

• }
```


What's good with BRNN

- They find the ideal "window size" by themselves. In theory they see the whole input.
- They are DEEP (or, most paths are). Which means they are clever.

 They have proven to be one of the best models for processing biological sequences.

Once started...

- Sequences are dealt with.
- But structured problems do not stop there.
- In general one would like to be able to deal with graphs of any type (even undirected ones containing cycles).
- Sequences are 1D entities. But what about 2D? E.g. images?

Example: Distance maps

3D

$$\begin{cases} O_{ij} = \mathcal{N}_{O}(I_{ij}, H_{i,j}^{NW}, H_{i,j}^{NE}, H_{i,j}^{SW}, H_{i,j}^{SE}) \\ H_{i,j}^{NE} = \mathcal{N}_{NE}(I_{i,j}, H_{i-1,j}^{NE}, H_{i,j-1}^{NE}) \\ H_{i,j}^{NW} = \mathcal{N}_{NW}(I_{i,j}, H_{i+1,j}^{NW}, H_{i,j-1}^{NW}) \\ H_{i,j}^{SW} = \mathcal{N}_{SW}(I_{i,j}, H_{i+1,j}^{SW}, H_{i,j+1}^{SW}) \\ H_{i,j}^{SE} = \mathcal{N}_{SE}(I_{i,j}, H_{i-1,j}^{SE}, H_{i,j+1}^{SE}) \end{cases}$$

 $NE \ i,j$ $NW \ i,j$ $SW \ i,j$ $SW \ i,j+1$ $SE \ i,j+1$ $SE \ i,j+1$

Pollastri & Baldi 2002, *Bioinformatics* Baldi & Pollastri 2003, *JMLR*

$$\begin{cases} O_{ij} = \mathcal{N}_{O}(I_{ij}, H_{i,j}^{NW}, H_{i,j}^{NE}, H_{i,j}^{SW}, H_{i,j}^{SE}) \\ H_{i,j}^{NE} = \mathcal{N}_{NE}(I_{i,j}, H_{i-1,j}^{NE}, H_{i,j-1}^{NE}) \\ H_{i,j}^{NW} = \mathcal{N}_{NW}(I_{i,j}, H_{i+1,j}^{NW}, H_{i,j-1}^{NW}) \\ H_{i,j}^{SW} = \mathcal{N}_{SW}(I_{i,j}, H_{i+1,j}^{SW}, H_{i,j+1}^{SW}) \\ H_{i,j}^{SE} = \mathcal{N}_{SE}(I_{i,j}, H_{i-1,j}^{SE}, H_{i,j+1}^{SE}) \end{cases}$$

$$\begin{cases} O_{ij} = \mathcal{N}_{O}(I_{ij}, H_{i,j}^{NW}, H_{i,j}^{NE}, H_{i,j}^{SW}, H_{i,j,}^{SE}) \\ H_{i,j}^{NE} = \mathcal{N}_{NE}(I_{i,j}, H_{i-1,j}^{NE}, H_{i,j-1}^{NE}) \\ H_{i,j}^{NW} = \mathcal{N}_{NW}(I_{i,j}, H_{i+1,j}^{NW}, H_{i,j-1}^{NW}) \\ H_{i,j}^{SW} = \mathcal{N}_{SW}(I_{i,j}, H_{i+1,j}^{SW}, H_{i,j+1}^{SW}) \\ H_{i,j}^{SE} = \mathcal{N}_{SE}(I_{i,j}, H_{i-1,j}^{SE}, H_{i,j+1}^{SE}) \end{cases}$$

$$\begin{cases} O_{ij} = \mathcal{N}_{O}(I_{ij}, H_{i,j}^{NW}, H_{i,j}^{NE}, H_{i,j}^{SW}, H_{i,j,}^{SE}) \\ H_{i,j}^{NE} = \mathcal{N}_{NE}(I_{i,j}, H_{i-1,j}^{NE}, H_{i,j-1}^{NE}) \\ H_{i,j}^{NW} = \mathcal{N}_{NW}(I_{i,j}, H_{i+1,j}^{NW}, H_{i,j-1}^{NW}) \\ H_{i,j}^{SW} = \mathcal{N}_{SW}(I_{i,j}, H_{i+1,j}^{SW}, H_{i,j+1}^{SW}) \\ H_{i,j}^{SE} = \mathcal{N}_{SE}(I_{i,j}, H_{i-1,j}^{SE}, H_{i,j+1}^{SE}) \end{cases}$$

$$\begin{cases} O_{ij} = \mathcal{N}_{O}(I_{ij}, H_{i,j}^{NW}, H_{i,j}^{NE}, H_{i,j}^{SW}, H_{i,j}^{SE}) \\ H_{i,j}^{NE} = \mathcal{N}_{NE}(I_{i,j}, H_{i-1,j}^{NE}, H_{i,j-1}^{NE}) \\ H_{i,j}^{NW} = \mathcal{N}_{NW}(I_{i,j}, H_{i+1,j}^{NW}, H_{i,j-1}^{NW}) \\ H_{i,j}^{SW} = \mathcal{N}_{SW}(I_{i,j}, H_{i+1,j}^{SW}, H_{i,j+1}^{SW}) \\ H_{i,j}^{SE} = \mathcal{N}_{SE}(I_{i,j}, H_{i-1,j}^{SE}, H_{i,j+1}^{SE}) \end{cases}$$

$$\begin{cases} O_{ij} = \mathcal{N}_{O}(I_{ij}, H_{i,j}^{NW}, H_{i,j}^{NE}, H_{i,j}^{SW}, H_{i,j,}^{SE}) \\ H_{i,j}^{NE} = \mathcal{N}_{NE}(I_{i,j}, H_{i-1,j}^{NE}, H_{i,j-1}^{NE}) \\ H_{i,j}^{NW} = \mathcal{N}_{NW}(I_{i,j}, H_{i+1,j}^{NW}, H_{i,j-1}^{NW}) \\ H_{i,j}^{SW} = \mathcal{N}_{SW}(I_{i,j}, H_{i+1,j}^{SW}, H_{i,j+1}^{SW}) \\ H_{i,j}^{SE} = \mathcal{N}_{SE}(I_{i,j}, H_{i-1,j}^{SE}, H_{i,j+1}^{SE}) \end{cases}$$

2D-RNNs

Excellent model, very DEEP!

Top results where applied.

Finds incredibly long-ranged dependencies.

Complexity?

- A 2D-RNN contains 5xNxN individual neural networks.
- For a 1024x1024 pixel image that is 5+ million nets.
- Most synapses are shared, so there isn't an overfitting problem.
- But it's tens of billions of weights to train.
- Months of 1-core training, in some cases.

N-to-1

 ${\tt RPYACPVESCDRRFSQSGSLTRHIRIHTGQKPFQCRICMRNFSRSDHLTTHIRTHTGEKPFACDICGRK}$

Red/green/blue

Notice: N is variable, which is a problem..

Composition vs. sequence

- A simple solution would be to look at the frequencies of letters (composition).
- All positional information is lost!
- Same composition:
- AVAVCVAAVCVAAVCVAVA
- And we know that motifs are important in most interesting problems.

Motifs are hard to deal with

- Can't compute stats for all motifs of n letters: there are 20ⁿ of them, and only hundreds of examples.
- Tried before. It didn't work even on motifs of 2 or 3 letters, unless one has *millions* of examples.

Compress!

- We need to compress the representation:
- Create a bottleneck: represent zillions of different motifs with only hundreds of parameters.
- And we need to do this with an N to 1 wiring.

N to 1 Neural Networks

N-to-1 by neural networks

- Map W=2c+1 letters into a hidden vector f.
- Use the same function (network) for each of the N windows in a sequence.
- Now we have N hidden vectors.
- Just add them up!

$$f = k \sum_{i=1}^{N} \mathcal{N}^{(h)}(r_{i-c}, \dots, r_{i+c})$$

N-to-1 neural networks (2)

$$f = k \sum_{i=1}^{N} \mathcal{N}^{(h)}(r_{i-c}, \dots, r_{i+c})$$

- f is a vector which contains information about all 2c+1-substrings in a sequence. Say c=7 (15 letters).
- Say |f|=3: ~1000 parameters in total to represent a monster space.
- (The trick is that we repeat the same net)

N-to-1 neural networks (3)

$$f = k \sum_{i=1}^{N} \mathcal{N}^{(h)}(r_{i-c}, \dots, r_{i+c})$$

$$o = \mathcal{N}^{(o)}(f)$$

 Map f into output: another net. Now we have a full input-output (N to 1) map

N-to-1 neural networks (4)

$$f = k \sum_{i=1}^{N} \mathcal{N}^{(h)}(r_{i-c}, \dots, r_{i+c})$$

$$o = \mathcal{N}^{(o)}(f)$$

 Training: this is a trivial feed-forward Neural Network (with many shared weights) –backpropagation.

f

- Vector f is a property-driven, adaptive compression of the whole sequence: fixed size!
- What does it tell us about whatever sequences we are dealing with?
- Can we explore/map the space of sequences by looking at their f?

N-to-1 NN results

- Best systems in the world for protein subcellular localisation prediction.
- Spare capacity. As sets grow bigger, it may do better and better.