РЕШЕНИЕ ЗАДАЧИ О РЮКЗАКЕ АЛГОРИТМОМ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ

Задача о рюкзаке (англ. Knapsack problem) — дано n предметов, предмет i имеет массу $w_i > 0$ и стоимость $p_i > 0$. Необходимо выбрать из этих предметов такой набор, чтобы суммарная масса не превосходила заданной величины W (вместимость рюкзака), а суммарная стоимость была максимальна.

Рассмотрим задачу **Неограниченный рюкзак** (англ. Unbounded Knapsack Problem), в которой любой предмет может быть выбран любое количество раз.

Формулировка Задачи

Каждый предмет может быть выбран любое число раз. Задача выбрать количество x_i предметов каждого типа так, чтобы

```
максимизировать общую стоимость: \sum_{i=1}^n p_i x_i; выполнялось условие совместности: \sum_{i=1}^n w_i x_i \leq W; где x_i \geq 0 целое, для всех i=1,2,\ldots,n.
```

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

```
Решить здачу: \max 1x_1 + 3x_2 + 4x_3 s.t. 2x_1 + 2x_2 + 3x_3 \le 6 x_1, x_2, x_3 \ge 0 — целые.
```

Для заполнения таблицы будем использовать следующий алгоритм:

KNAPSACK(n, W)

```
1: for w = 1 to W do
      f[0, w] = 0;
3: end for
4: for i = 1 to n do
     for w = 1 to W do
        f[i, w] := \max\{f[i-1, w], v_i + f[i-1, w-w_i]\};
6:
        if f[i, w] = f[i - 1, w] then
7:
          p[i, w] := 0
8:
        else
9:
          p[i, w] := 1
10:
        end if
11:
      end for
12:
13: end for
14: return f[n, W];
```

Решение:

w	f_1	p_1	f_2	p_2	f_3	p_3
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	1	1	3	1	0	0
3	1	1	3	1	4	1
4	2	1	6	1	6	0
5	2	1	6	1	6	0
6	3	1	9	1	9	0

Оптимальное решение задачи: $OPT = f_3(6) = 9$.

```
Обратный ход: 
Стартуем с x_1=x_2=x_3=0. p_3(6)=0, следовательно x_3=x_3+0. 
Объем не изменился, осталось 6 единиц. p_2(6)=1\Rightarrow x_2=x_2+1; 
Объем изменился, осталось 6-2=4 единицы. p_2(4)=1\Rightarrow x_2=x_2+1; 
Объем изменился, осталось 4-2=2 единицы. p_2(2)=1\Rightarrow x_2=x_2+1; 
Объем изменился, осталось 2-2=0 единиц. 
Стоп. Оптимальное решение задачи: x_1=0, x_2=3, x_3=0.
```

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Решите следующую задачу о рюкзаке, записав результаты рекурсии динамического программирования в таблицу. Напишите алгоритм обратного хода. Вы не получите очков только за то, что записали ответ:

```
1. \max 3x_1 + 6x_2 + 8x_3
   s.t. 2x_1 + 3x_2 + 3x_3 \le 8
   x_1, x_2, x_3 \ge 0 — целые.
2. \max 3x_1 + 8x_2 + 12x_3
   s.t. 2x_1 + 3x_2 + 3x_3 \le 8
   x_1, x_2, x_3 \ge 0 — целые.
3. \max 4x_1 + 9x_2 + 16x_3
   s.t. 2x_1 + 3x_2 + 5x_3 \le 9
   x_1, x_2, x_3 \ge 0 — целые.
4. \max 3x_1 + 8x_2 + 15x_3
   s.t. 2x_1 + 3x_2 + 5x_3 \le 9
   x_1, x_2, x_3 > 0 — целые.
5. \max 3x_1 + 8x_2 + 14x_3
   s.t. 2x_1 + 3x_2 + 5x_3 \le 9
   x_1, x_2, x_3 \ge 0 — целые.
6. \max 3x_1 + 7x_2 + 12x_3
   s.t. 2x_1 + 3x_2 + 5x_3 \le 9
   x_1, x_2, x_3 \ge 0 — целые.
7. \max 3x_1 + 8x_2 + 13x_3
   s.t. 2x_1 + 3x_2 + 5x_3 \le 9
   x_1, x_2, x_3 \ge 0 — целые.
8. \max 3x_1 + 7x_2 + 15x_3
   s.t. 2x_1 + 3x_2 + 6x_3 \le 9
   x_1, x_2, x_3 \geq 0 — целые.
9. \max 3x_1 + 7x_2 + 14x_3
   s.t. 2x_1 + 3x_2 + 6x_3 \le 9
   x_1, x_2, x_3 \ge 0 — целые.
10. \max 3x_1 + 7x_2 + 17x_3
   s.t. 2x_1 + 3x_2 + 7x_3 \le 9
   x_1, x_2, x_3 \ge 0 — целые.
11. \max 3x_1 + 7x_2 + 17x_3
   s.t. 2x_1 + 3x_2 + 6x_3 \le 9
   x_1, x_2, x_3 \ge 0 — целые.
```

12. $\max 3x_1 + 7x_2 + 17x_3$

- s.t. $2x_1 + 3x_2 + 6x_3 \le 9$ $x_1, x_2, x_3 \ge 0$ — целые.
- 13. $\max 3x_1 + 7x_2 + 17x_3$
 - s.t. $2x_1 + 3x_2 + 6x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- 14. $\max 3x_1 + 7x_2 + 15x_3$
 - s.t. $2x_1 + 3x_2 + 6x_3 \le 10$
- $x_1, x_2, x_3 \ge 0$ целые.
- 15. $\max 3x_1 + 7x_2 + 16x_3$
 - s.t. $2x_1 + 3x_2 + 6x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- 16. $\max 2x_1 + 6x_2 + 8x_3$
 - s.t. $2x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- 17. $\max 3x_1 + 8x_2 + 12x_3$
 - s.t. $2x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- 18. $\max 3x_1 + 7x_2 + 12x_3$
 - s.t. $2x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- 19. $\max 4x_1 + 8x_2 + 13x_3$
- s.t. $3x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- 20. $\max 4x_1 + 8x_2 + 13x_3$
 - s.t. $3x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- $21. \max 5x_1 + 8x_2 + 15x_3$
- s.t. $3x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- 22. $\max 4x_1 + 8x_2 + 15x_3$
 - s.t. $3x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- $23. \max 4x_1 + 8x_2 + 15x_3$
 - s.t. $3x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.
- 24. $\max 4x_1 + 8x_2 + 13x_3$
 - s.t. $3x_1 + 4x_2 + 5x_3 \le 10$
- $x_1, x_2, x_3 \ge 0$ целые. 25. $\max 4x_1 + 8x_2 + 13x_3$
- s.t. $3x_1 + 4x_2 + 5x_3 \le 10$
 - $x_1, x_2, x_3 \ge 0$ целые.