1. Treść zadania

Napisać program obliczający wartość momentu bezwładności stożka powstałego poprzez obrót prostej y=ax+b wokół osi x ograniczonej prostą y=c. Skorzystać z następującego wzoru:

$$I = \frac{1}{2} m \frac{\int_0^c y^4(x) \, dx}{\int_0^c y^2(x) \, dx}$$

gdzie m – masa stożka.

Wartość występujących w powyższym wzorze całek obliczyć korzystając z numerycznego całkowania metodą prostokątów.

$$\int_{x_n}^{x_k} f(x) dx \approx \frac{x_k - x_p}{n} \sum_{i=1}^n f\left(x_p + i \frac{x_k - x_p}{n}\right)$$

gdzie: x_p – początek przedziału całkowania,

 x_k – koniec przedziału całkowania,

n – ilość prostokątów.

Program powinien wyznaczyć (oraz wypisać na standardowe wyjście) wartość momentu bezwładności po czym zakończyć swoje działanie. Program powinien zakładać poprawność wprowadzanych danych.

2. Schemat blokowy algorytmu

Schemat blokowy funkcji main () oraz funkcji calka () w załączniku.

3. Założenia i opis metody

Wykorzystano całkowanie numeryczne metodą prostokątów z nadmiarem, co sprowadza się do obliczenia pola pod wykresem funkcji. W tym celu przedział całkowania dzieli się na równe, możliwie małe części dx. Całka jest w przybliżeniu równa sumie pól prostokątów, których jednym bokiem jest odcinek dx, a drugim wartość funkcji dla argumentu, który jest końcem danego odcinka dx.

Uwaga: Jeżeli we wzorze zamiast sumować od i=1 wykonano by sumowanie od i=0, zastosowano by metodę prostokątów z niedomiarem.

Przy projektowaniu zostały nałożone następujące ograniczenia na zmienne:

a, b, c, m zmienne typu double, wprowadzane przez użytkownika

n zmienna typu int, wprowadzana przez użytkownika

moment zmienna typu double

Zmienne w funkcji calka():

4. Realizacja

W programie została użyta funkcja własna calka() obliczająca wartość konkretnych całek potrzebnych do obliczenia momentu bezwładności. Wymagane jest dołączenie biblioteki math.h w celu skorzystania z funkcji pow() użytej w funkcji calka() oraz biblioteki stdio.h w celu skorzystania z funkcji scanf() oraz printf().

Funkcja calka (double xp, double xk, int n, double a, double b, double potega) przyjmuje w parametrach wartości:

	parametr	typ	opis		
	хp	double	początek przedziału całkowania		
	xk	double	koniec przedziału całkowania		
	n	int	liczba prostokątów		
	a	double	współczynnik kierunkowy prostej		
	b	double	wyraz wolny prostej		
	potega	double	wykładnik potęgi funkcji całkowanej – odpowiednio 4 dla całki w liczniku i 2 dla całki w mianowniku		

Funkcja zwraca wartość całki określonej odpowiedniej funkcji jako liczbę typu double.

Program wypisuje na standardowe wyjście wartość momentu bezwładności w formacie naukowym \$E.

5. Testowanie

Ponieważ program zgodnie z zadaniem powinien zakładać poprawność wprowadzanych danych, zostały wykonane tylko testy dla danych poprawnych.

Program przetestowano dla różnej liczby prostokątów w celu dobrania wartości wystarczającej.

Dane wejściowe			Wynik			
		n = 10	n = 100	n = 1000	n = 10000	analityczny
a	0.1	3,29000E-06	3,02990E-06	3,00300E-06	3,00030E-06	3,00000E-06
b	0.0					
С	0.1					
m	0.1					
a	3.28	3,75456E+04	3,47020E+04	3,44092E+04	3,43798E+04	3,43766E+04
b	4.78					
С	25.34					
m	14.83					
a	-2.67	2,26805E+03	2,24651E+03	2,24435E+03	2,24414E+03	2,24411E+03
b	40					
С	-1.7					
m	2.5					
a	-12	6,42222E+08	5,91212E+08	5,85934E+08	5,85405E+08	5,85346E+08
b	-8.345					
С	-125					
m	876.9094					
а	0.0005	1,59780E+03	1,59798E+03	1,59800E+03	1,59800E+03	1,59800E+03
b	-20					
С	50					
m	8					