

Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Core Mathematics C12 (WMA01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020
Publications Code WMA01_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread, however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles.)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1.(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number		Scheme		Notes	Marks	
1.	$6x^3 + 5x^2$	$x^2 - 6x = 0$				
(a)	$x(6x^2 + 5x - 6) = 0$			For dividing or factorising out the 'x'. This may be awarded for an answer of $x = 0$ or for sight of $6x^2 + 5x - 6$ or $(3x - 2)(2x + 3)$ or attempting to apply the formula or complete the square on $6x^2 + 5x - 6 = 0$ }	M1	
		$x - 6 = 0$ or $x^2 + \frac{5}{6}x - 1 = 0 \implies$ $(-2)(2x + 3) = 0 \implies x =$	}	dependent on the previous M mark A valid correct method of solving their $3TQ = 0$ to give $x =$	dM1	
	$x=0,\frac{2}{3},$	$-\frac{3}{2}$		$x = 0, \frac{2}{3}, -\frac{3}{2}$ Note: Give A0 for any extra values	A1	
(b)	6:30.	$5\sin^2\theta - 6\sin\theta = 0; \ 0 \le \theta < 2$			(3)	
(0)	$\sin \theta = 0 \text{ or } \sin \theta = \frac{2}{3} \Rightarrow \theta = \dots$			Finds at least one value of θ for $\sin \theta = (\text{their } k \text{ from } (a)), \ 0 < k < 1$ (where $0 < \theta < \pi$) or for finds at least one of $\theta = 0$, awrt 0.73, awrt 2.41 Note: Allow equivalent answers in degrees. E.g. $\theta = \text{awrt } 41.8$, awrt 138	M1	
	$\theta = 0, 0.730, 2.41$		For at least two of $\theta = 0$, awrt 0.73 or awrt 2.41 Note: Allow equivalent answers in degrees. E.g. $\theta = \text{awrt } 41.8$, awrt 138		A1	
	Note: Ignore π			θ = 0, awrt 0.730, awrt 2.41 and no extra values within the range $0 \le \theta \le \pi$ rt 3.14 for the final A mark	A1 (3)	
	Question 1 Notes					
1. (a)	Note A valid correct attempt of solving their $6x^2 + 5x - 6 = 0$ or their $x^2 + \frac{5}{6}x - 1 = 0$ includes a • $(3x - 2)(2x + 3) = 0 \Rightarrow x =$ • $\left(x + \frac{5}{12}\right)^2 - \frac{25}{144} - 1 = 0 \Rightarrow x =$ • $x = \frac{-5 \pm \sqrt{5^2 - 4(6)(-6)}}{2(6)} \Rightarrow x =$ • using their calculator to write down at least one correct root for their $3TQ = 0$					
	Note					
		or for $\left(x \pm \frac{5}{12}\right)^2 \pm q \pm 1 = 0 \Rightarrow x = \dots; q \neq 0$				
	Note	, ,		$x = 0, \frac{2}{3}, -\frac{3}{2}$ from no working		
	Note			on only $x = \frac{2}{3}, -\frac{3}{2}$ from no working		

	Question 1 Notes Continued						
1. (a)	Note	Give M1 dM1 A0 for $\{6x^3 + 5x^2 - 6x = 0 \Rightarrow\} 6x^2 + 5x - 6 = 0 \Rightarrow x = \frac{2}{3}, -\frac{3}{2}$					
	Note	Give M1 dM1 A1 for $\{6x^3 + 5x^2 - 6x = 0 \Rightarrow\} 6x^2 + 5x - 6 = 0 \Rightarrow x = 0, \frac{2}{3}, -\frac{3}{2}$					
	Note	Give M1 dM1 A1 for $\{6x^3 + 5x^2 - 6x = 0 \Rightarrow\} x(6x^2 + 5x - 6) = 0 \Rightarrow x = 0, \frac{2}{3}, -\frac{3}{2}$					
(b)	Note	Give M1 A1 A1 for $\theta = 0, 0.730, 2.41, 3.14$					
	Note	Give M1 A1 A1 for $\theta = 0, 0.730, 2.41, \pi$					
	Note	Give M1 A1 A0 for $\theta = 0, 0.73, 2.41, \pi$					
	Note	Condone $x =$ instead of $\theta =$ if it is clear that they are working with angle $x \equiv \theta$					
		and not $x = \sin \theta$					
	Note	Allow 0.00 written in place of 0					

Question Number		Scheme	Notes			ïs
2.	$\int \left(15x^4 - \frac{1}{2}\right)^4 dx$	$+\frac{4}{3x^3}-4\bigg)\mathrm{d}x \; ; x>0$				
				At least one of either $15x^4 \rightarrow \pm Ax^5$,		
	$\int_{-1.5}^{1.5} \left(x^5 \right)$	$4(x^{-2})$	$\frac{4}{3x^3}$	$+\rightarrow \pm Bx^{-2}$ or $\pm \frac{B}{x^2}$, or $-4 \rightarrow -4x$; $A, B \neq 0$	M1	
	$=15\left(\frac{x^5}{5}\right) + \frac{4}{3}\left(\frac{x^{-2}}{-2}\right) - 4x + c$			At least two correct integrated terms which can be simplified or un-simplified	A1	
				At least three correct integrated terms which can be simplified or un-simplified	A1	
	$=3x^5-\frac{2}{3}$	$\int_{0}^{2} x^{-2} - 4x + c$ or $3x^{5} - \frac{2}{3x^{2}}$	-4x+c	Correct simplified integration contained on the same line of working	A1	
		Note: $+c$ is	counted as	an integrated term		(4)
						4
			Que	stion 2 Notes		
	Note You can ignore subsequent working after a correct final answer.					
	Note Poor notation (i.e. incorrect use of $\frac{dy}{dx}$ or \int) can be condoned for any or all of the					
	Note	+c is counted as 'integrated term' for all the A marks.				

Question Number		Scheme		Notes	Mar	ks
3.	$u_1 = 5, u_1$	$u_{n+1} = ku_n + 2 \iff u_2 = ku_1 + 2, \ u_3 = ku_2 + 2$				
(a)	$u_2 = 5k +$	2		$u_2 = 5k + 2 \text{ or } u_2 = 2 + 5k$	B1	
	$u_3 = k(5k)$	(z+2)+2	which	Substitutes their u_2 is in terms of k into $u_3 = ku_2 + 2$	M1	
	$u_3 = 5k^2 -$	+2k+2		$u_3 = 5k^2 + 2k + 2$	A1	
						(3)
(b) Way 1	$\{u_3 = 2 =$	$\Rightarrow \} 5k^2 + 2k + 2 = 2 \Rightarrow k = \dots \{k = -0.4\}$	in <i>k</i> , an a quad	s their $u_3 = 2$, where u_3 is a 3TQ and uses a valid method of solving ratic equation in k to give $k =$ Allow M1 if a relevant value of k is subsequently rejected.	M1	
	$u_2 = 5("-$	$(0.4") + 2 = 0 \implies \sum_{n=1}^{3} u_n = 5 + "0" + 2$	Uses	endent on the previous M mark is their value for k to calculate u_2 adds their value for u_2 to 5 and 2	dM1	l
		= 7 cso		7	A1	cso
		Note: Do not give dM1 for using $u_2 = 2$	(which is	found by using $k = 0$)		(3)
(b) Way 2	$\{u_3 = 2 =$	\Rightarrow $5k^2 + 2k + 2 = 2 \Rightarrow k = $	in <i>k</i> , an a quad	their $u_3 = 2$, where u_3 is a 3TQ ad uses a valid method of solving ratic equation in k to give $k =$ Allow M1 if a relevant value of k is subsequently rejected.	M1	
	2 `	0.4 ")(5) + 2 = 0, { u_3 = 2}, 0.4")(2) + 2 = 1.2	depe	endent on the previous M mark Uses their value for k		
		$\sum_{n=1}^{3} \left(\frac{u_{n+1} - 2}{k} \right) = \frac{1}{"-0.4"} ("0"+2 + "1.2" - 6)$		calculate u_2 and u_4 and applies $\frac{1}{\text{ir } k} (\text{their } u_2 + 2 + \text{their } u_4 - 6)$	dM1	l
		= 7 cso		7	A1	cso
		Note: Do not give dM1 for using $u_2 = 2$	(which is	found by using $k = 0$)		(3)
						6
			on 3 Note	S		
3. (a)	Note	Give M0 A0 for $u_3 = k(5k + 2)$				
(b)	Note	dM1 can also be given for a correct sub s			e	
		Give dM1 for $5+5(-0.4)+2+5(-0.4)^2$	+2(-0.4)	1+2		
		Give dM1 for $5(-0.4)^2 + 7(-0.4) + 9$ Give dM0 for $5(-0.4) + 7(-0.4) + 9 = 4$.	2) (Thi	g is a gamman array)		
	Note		2}. {IIII	s is a common error.}		
	Note	Way 1: Give M1 dM1 A0 for	2	3		
		• $5k^2 + 2k + 2 = 2 \Rightarrow k(5k+2) = 0 \Rightarrow k = 0$	$=\frac{1}{5}$; $u_2 =$	$=5(0.4) + 2 = 4 \Rightarrow \sum_{n=1}^{\infty} u_n = 5 + "4"$	+ 2 =	11
	Note	Way 1: Give M1 dM0 A0 for				
		• $5k^2 + 2k + 2 = 2 \Rightarrow k(5k+2) = 0 \Rightarrow k = 0$	$=\frac{2}{5}$; $u_2 =$	$= 5(0.4) + 2 = 4, u_3 = 5(0.4)^2 + 2(0.4)^$).4)+	2 = 3.6
		$\Rightarrow \sum_{n=1}^{3} u_n = 5 + 4 + 3.6 = 12.6$				
	Note	There must be some evidence of using th	eir k to fi	nd their value of u_2		

	Question 3 Notes Continued						
3. (b)	Note Give dM0 for an incorrect follow through value of u_2 from their k with no supporting						
		working.					
	Note	Note Send to review applying $u_3 = 3$ consistently to give					
		$\sum_{n=1}^{3} u_n = \text{any of } 9 - \sqrt{6}, 9 + \sqrt{6} \text{ or awrt } 6.55 \text{ or awrt } 11.4$					
		Otherwise give M0 dM0 A0 for applying $u_3 = 3$					

Question Number	Cheme			Notes	Marks	
4.	(i) $\frac{8^y}{4^{2x}} = \frac{\sqrt{2}}{32}$; (ii) $x\sqrt{3} = 4\sqrt{2} + x$					
(i) Way 1		$\frac{2^{3y}}{2^{4x}} = \frac{2^{\frac{1}{2}}}{2^{5}} \implies$	$2^{3y-4x} = 2^{\frac{1}{2}-5}$		M1 A1	
		$3y - 4x = -\frac{9}{2} \Rightarrow y = \frac{4}{3}x - \frac{4}{3}y = \frac{4}{3$	$\frac{3}{2}$ or $y = \frac{1}{6}(8x - \frac{1}{6}x - \frac$	-9) cso	dM1 A1 cso	
(i) Way 2		$\log\left(\frac{8^y}{4^{2x}}\right) = \log\left(\frac{\sqrt{2}}{32}\right) \Rightarrow y$	$\log 8 - 2x \log 4 =$	$\log\left(\frac{\sqrt{2}}{32}\right)$	M1	
		$y \log 8 - 2x \log 4 =$	$\log(\sqrt{2}) - \log(32)$)	A1	
		$2x \log 4 + \log(\sqrt{2}) - \log(32)$	$2x(2\log 2)$	$+\frac{1}{2}\log 2 - 5\log 2$		
	<i>y</i> :	$= \frac{2x \log 4 + \log(\sqrt{2}) - \log(32)}{\log 8} =$	$\Rightarrow y = {3}$	3 log 2	dM1	
		$\Rightarrow y = \frac{4}{3}x - \frac{3}{2} \text{ or } .$	$y = \frac{1}{6}(8x - 9) \mathbf{cs}$	so	A1 cso	
					(4	
(ii)	$x\sqrt{3}-x$	$=4\sqrt{2} \implies x(\sqrt{3}-1)=4\sqrt{2}$	For sight of a	an equation containing $(\pm\sqrt{3}\pm1)x$	M1	
	$x = \frac{4\sqrt{2}}{\sqrt{3} - 1}$		$x = \frac{4\sqrt{2}}{\sqrt{3}-1}$ or $x = \frac{-4\sqrt{2}}{1-\sqrt{3}}$ o.e.		A1	
	$x = \frac{4\sqrt{2}}{(\sqrt{3}-1)} \cdot \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}$		dependent on the previous M mark Attempt to rationalise the denominator			
	$x = \frac{4\sqrt{6} + 4\sqrt{2}}{2} \implies x = 2\sqrt{6} + 2\sqrt{2} \mathbf{csc}$		Uses a non-calculator process to obtain $x = 2\sqrt{6} + 2\sqrt{2}$ or equivalent		1 1 1 1	
					(4	
4 (1)	3.54		Question 4 N			
4. (i) Way 1	M1	Uses index laws to correctly combine two relevant terms as listed below: • $\frac{8^{y}}{4^{2x}} \rightarrow 2^{3y-4x}$ or $\frac{\sqrt{2}}{32} \rightarrow 2^{\frac{1}{2}-5}$ • $(8^{y})(32) \rightarrow 2^{3y+5}$ or $(4^{2x})(\sqrt{2}) \rightarrow 2^{4x+\frac{1}{2}}$ • $\frac{(8^{y})(32)}{4^{2x}} \rightarrow 2^{3y+5+\dots}$ or $2^{3y+5+\dots}$ or $2^{3y+4x+\dots}$				
		• $(8^y)(32) \rightarrow 2^{3y+5}$ or $(4^{2x})(\sqrt{2})$	$(2) \to 2^{4x+\frac{1}{2}}$	or 2^{5-4x+} or 2^{3y+}	5-4x	
	A1	Correct equation in powers of				
	dM1	dependent on the previous M				
		Writes their equation in the form $2^{} = 2^{}$, equates their powers of 2 and rearranges to the subject.				
	A1	Obtains $y = \frac{4}{3}x - \frac{3}{2}$ or $y = \frac{4}{3}x - 1.5$ or $y = \frac{1}{6}(8x - 9)$ or $y = \frac{8x - 9}{6}$ by correct solution				
4. (i) Way 2	M1	Starts from a correct equation and writes down a correct equation in logarithms with some evidence of applying either the addition or subtraction law of logarithms and the power law of logarithms.				
	A1					
	dM1	Rearranges to make y the subject and converts all logs in terms of log 2				
	A1	Uses a non-calculator proces	ss to obtain $y = \frac{4}{3}$	$\frac{1}{3}x - \frac{3}{2}$ or $y = \frac{4}{3}x - 1.5$ or exact equ	ivalent	
	by correct solution only.					

		Quest	tion 4 No	tes Continued			
4. (i)	Note	The following solution in powers	of 4 can	be marked using the same principles as W	/ay 1.		
		$\bullet \frac{8^{y}}{4^{2x}} = \frac{\sqrt{2}}{32} \Rightarrow \frac{4^{\frac{3}{2}y}}{4^{2x}} = \frac{4^{\frac{1}{4}}}{4^{\frac{5}{2}}} \Rightarrow 4^{\frac{3}{2}y - 2x} = 4^{\frac{1}{4} - \frac{5}{2}} \Rightarrow \frac{3}{2}y - 2x = -\frac{9}{4} \Rightarrow y = \frac{4}{3}x - \frac{3}{2} \text{ or } y = \frac{1}{6}(8x - 9)$					
	Note	Give M0 A0 dM0 A0 for $y = \log y$	()			
4. (ii)	Note	Exact equivalent forms of $x = 2\sqrt{6}$ $x = 2\sqrt{6} + \sqrt{8}$, $x = \sqrt{24} + 2\sqrt{2}$, e		include $x = 2\sqrt{2} + 2\sqrt{6}$, $x = \sqrt{24} + \sqrt{8}$, final A mark.			
	Note	Note • M0 A0 dM0 A0 for $x\sqrt{3} - x = 4\sqrt{2} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$ • M1 A0 dM0 A0 for $x(\sqrt{3} - 1) = 4\sqrt{2} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$ • (M1 A1) dM0 A0 for $x = \frac{4\sqrt{2}}{\sqrt{3} - 1} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$ • (M1 A1) dM1 A1 for $x = \frac{4\sqrt{2}}{\sqrt{3} - 1} \rightarrow x = \frac{4\sqrt{6} + 4\sqrt{2}}{2} \Rightarrow x = 2\sqrt{6} + 2\sqrt{2}$ • (M1 A1 dM1) A1 for $x = \frac{4\sqrt{2}}{(\sqrt{3} - 1)} \cdot \frac{(\sqrt{3} + 1)}{(\sqrt{3} + 1)} \rightarrow x = 2\sqrt{6} + 2\sqrt{2}$					
		with no intermediate working.					
Question Number		Scheme		Notes	Marks		
4.	(ii) $x\sqrt{3}$	$=4\sqrt{2}+x$					
(ii) Way 2	$3x^2 = 3$	$= (4\sqrt{2} + x)^{2}$ $2 + 4\sqrt{2}x + 4\sqrt{2}x + x^{2}$ $2x^{2} = 8\sqrt{2}x + 32$		Squares both sides, followed by an attempt to form a 3-term quadratic.	M1		
	or 2	$x^{2} = 4\sqrt{2}x + 16$ $2x^{2} - 8\sqrt{2}x - 32 = 0$ $x^{2} - 4\sqrt{2}x - 16 = 0$	Note: 2	A correct 3-term quadratic. $x^2 - 8\sqrt{2}x = 32$ or $x^2 - 4\sqrt{2}x - 16 = 0$ } are acceptable for this mark.	A1		
	or $(x-(x-(x-(x-(x-(x-(x-(x-(x-(x-(x-(x-(x-($	$\frac{\sqrt{2} \pm \sqrt{32 - 4(1)(-16)}}{2}$ $\sqrt{8} + \sqrt{24})(x - (\sqrt{8} + \sqrt{24})) = 0 \Rightarrow$ $\sqrt{2})^{2} - 8 - 16 = 0 \Rightarrow x =$	<i>x</i> =	dependent on the previous M mark Correct method (applying the quadratic formula, factorising or completing the square) for solving a 3TQ = 0 to find $x =$	dM1		
	$x = 2\sqrt{2} -$	$+2\sqrt{6}$ or $x = \sqrt{24} + 2\sqrt{2}$ o.e. cs	0	$x = 2\sqrt{6} + 2\sqrt{2}$ or equivalent			
			0 4:	A Ni-A	(4)		
4 (**)	TAT /		Question				
4. (ii)	Note	The 3-term quadratic must involve the 3-					
Way 2	Note Note	The 3-term quadratic must involve Give 2 nd A 0 for giving more than					
	Note Note	Give 2 nd A0 for giving more than	one answ	ver for x as their final answer.			
	Note	 M0 A0 dM0 A0 for x√3 (M1 A1) dM0 A0 for 2x 	$x^2 = 8\sqrt{2}x$				

Question Number		Sche	eme		Notes	Marks	3
5.	Area(R) =	$=9 \Rightarrow \int_{4}^{a} \frac{4}{\sqrt{x}} dx = 9$					
		Note	Note: You can mark part (a) and part (b) together.				
(a)(i) Way 1	$\left\{ \int_{a}^{a} \frac{4}{\sqrt{2\pi}} \right\}$		$dx = \begin{cases} \frac{1}{\sqrt{3}}(9) = 3\sqrt{3} \end{cases}$		For $\frac{1}{\sqrt{3}}(9)$ or awrt 5.2	M1	
Way 1	$\left \int_{4}^{4} \sqrt{3}x \right $	$\sqrt{3} \mathbf{J}_4 \sqrt{x}$) 43		$3\sqrt{3}$. Condone $\sqrt{27}$	A1	
(a)(ii) Way 1	$\left\{ \int_{1}^{a} \frac{4}{\sqrt{x}} dx \right\}$	$dx = \int_{1}^{4} \frac{4}{\sqrt{x}} dx + \frac{1}{\sqrt{x}} dx + \frac{1}{\sqrt{x}} dx$	$\int_{4}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x $				
	$= \left[\frac{4x^{\frac{1}{2}}}{\frac{1}{2}}\right]^4$	+ 9		$\frac{4}{\sqrt{3}}$	Integrates so that $\frac{4}{\sqrt{x}} \to kx^{\frac{1}{2}}$; $k \neq 0$, is seen anywhere in Q5. Also allow M1 for integrating so that $\frac{1}{x} \to kx^{\frac{1}{2}}$; $k \neq 0$ is seen anywhere in Q5.	M1	
				No	dependent on the previous M mark $\left[kx^{\frac{1}{2}}\right]_{1}^{4}$ and adding 9; $k \neq 0$, te: Limits need to be correct, but do not need to be evaluated for this mark	dM1	
	$= \left[8x^{\frac{1}{2}}\right]_1^4$	$+9 = 8\sqrt{4} - 8\sqrt{1}$	1+9=16-8+9				
	=17				17	A 1	
							(5)
(b)	$\left[\frac{4x^{\frac{1}{2}}}{\frac{1}{2}}\right]_4^a =$	= 9	Integrates to g	_	$\begin{bmatrix} \frac{1}{2} \end{bmatrix}_4^a, k \neq 0$, and sets this result equal to 9 Note: Limits need to be correct, t do not need to be applied for this mark	M1	
	$8\sqrt{a}-8\sqrt{a}$	$\overline{4} = 9$	Aj	pplies l	imits to obtain a correct equation in \sqrt{a}	A1	
	$\sqrt{a} = \frac{25}{8}$		Proce	eeds fro	dependent on the previous M mark om $p\sqrt{a} \pm b = 9$ to $\sqrt{a} = \lambda$; $p, b, \lambda \neq 0$	dM1	
	$a = \frac{625}{64}$				$a = \frac{625}{64}$ or $9\frac{49}{64}$ or 9.765625	A1	
		he mark scheme	for part (b) can be a	pplied	anywhere in a student's solution to Q5.		(4)
							9
		Γ			5 Notes		
5.	Note	Some students i	may use their answer	r to (b)	to answer (a)(i) and/or (a)(ii). See next p	age.	

Question Number	Scheme		Notes	Marks
5. (a)(i) Way 2	$\begin{cases} \int_{4}^{a} \frac{4}{\sqrt{3}x} dx = \frac{1}{\sqrt{3}} \int_{4}^{a} \frac{4}{\sqrt{x}} dx = \frac{1}{\sqrt{3}} \\ = \frac{8}{\sqrt{3}} \left(\sqrt{\frac{625}{64}} - \sqrt{4} \right) \end{cases}$	$\left[8x^{\frac{1}{2}}\right]_{4}^{\frac{625}{64}}$	dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\frac{8}{\sqrt{3}} \left(\sqrt{(\text{their } a)} - \sqrt{4} \right)$	dM1
	$= \frac{8}{\sqrt{3}} \left(\frac{25}{8} - 2 \right) = \frac{8}{\sqrt{3}} \left(\frac{9}{8} \right) = 3\sqrt{3}$		$3\sqrt{3}$. Condone $\sqrt{27}$	A1
(a)(i) Way 3	$\begin{cases} \int_{4}^{a} \frac{4}{\sqrt{3x}} dx = \int_{4}^{a} 4(3x)^{-\frac{1}{2}} dx = \left[\frac{8}{3}(3x)^{-\frac{1}{2}}\right] dx =$		dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\frac{8}{3} \left(\sqrt{(3)(\text{their } a)} - \sqrt{(3)(4)} \right)$ or $\frac{8}{\sqrt{3}} \left(\sqrt{(\text{their } a)} - \sqrt{4} \right)$	(2) dM1
	$= \frac{8}{\sqrt{3}} \left(\frac{25}{8} \sqrt{3} - 2\sqrt{3} \right) = \frac{8}{3} \left(\frac{9}{8} \sqrt{3} \right) = 3$	$3\sqrt{3}$	$3\sqrt{3}$. Condone $\sqrt{27}$	A1 (2)
(a)(ii) Way 2	$\left\{ \int_{1}^{a} \frac{4}{\sqrt{x}} \mathrm{d}x = \int_{1}^{\frac{625}{64}} \frac{4}{\sqrt{x}} \mathrm{d}x \right\}$			(-)
	625 64	_	Integrates so that $\frac{4}{\sqrt{x}} \to kx^{\frac{1}{2}}$; $k \neq 0$, is seen anywhere in Q5. Also allow M1 for integrating so that $\frac{4}{\sqrt{3x}} \to kx^{\frac{1}{2}}$; $k \neq 0$ is seen anywhere in Q5.	M1
	$= \left[\frac{4x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{\frac{625}{64}}$		dependent on the previous M mark, dependent on gaining both M marks in (b) and their $a > 4$ or their $\sqrt{a} > 2$ For $\left[kx^{\frac{1}{2}}\right]_{1}^{\text{their stated }a}$; $k \neq 0$ its do not need to be applied for this mark.	dM1
	$= \left[8x^{\frac{1}{2}}\right]_{1}^{\frac{625}{64}} = 8\sqrt{\frac{625}{64}} - 8\sqrt{1} = 25 - 8$		is do not need to be applied for this mark.	
	=17		17	A1 (3)
F (1)	N 4 0' NO 40 D 50 40 C		Totes Continued	10
5. (b)			rt (a)(i) answer (which is in terms of a) equ $\sqrt{a} - \sqrt{4}$) = 9 seen in part (b).	al to 9.

Question Number		Scheme		Notes	Marks	
6.	(a) $y = x$	(x+3)(x-2); (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} \ge 2$			
(a) Way 1	y = x($(x^2 - 2x + 3x - 6)$ $-2x^2 + 3x^2 - 6x$		$\{y = \} x^3 + Ax^2 + Bx; A, B \neq 0,$ where A, B can be simplified or un-simplified	M1 B1 on ePEN	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	-4x+6x-6		Obtains a cubic expression and differentiates to give either $x^3 \to \lambda x^2$, $Ax^2 \to \mu x$ or $Bx \to B$; $A, B, \lambda, \mu \neq 0$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$	+2x-6		Correct differentiation in simplest form	A1	
	d.				(3)	
(b)	$3x^2 + 2x - $	$+2x-6 \ge 2$ $-6 = 2 \Rightarrow 3x^2 + 2x - (x-4) = 0 \Rightarrow x = \dots$	-8=0	Sets their $\frac{dy}{dx} = 2$, forms a 3TQ = 0 and uses a correct valid method of solving their 3TQ = 0 to give $x =$	M1	
	{Critical	values are $x = -2$,	4/3	Critical values of $x = -2$, $\frac{4}{3}$ or $x = -2$, awrt 1.33, These may be implied by their inequalities	A1	
				Sets their $\frac{dy}{dx} = 2$, forms a 3TQ = 0 and uses their two istinct critical values to write down an <i>outside region</i>	M1	
				$x \le -2$ or $x \ge \frac{4}{3}$ o.e., e.g. $(-\infty, -2] \cup \left[\frac{4}{3}, \infty\right)$. 5,", "or" or a space between the answers but give final M1 A0 for $x \le -2$ and $x \ge \frac{4}{3}$ or for $-2 \ge x \ge \frac{4}{3}$ as their final answer.	A1ft	
		No	Note: $x \le \frac{4}{3}$ or $x \ge -2$ is final M0 A0		(4)	
	Question 6 Notes					
6. (b)	Note			the critical values are found from solving $\frac{dy}{dx} = 3x^2 + 2x$		
	Note	A valid correct attempt of solving their $3x^2 + 2x - 8 = 0$ or their $x^2 + \frac{2}{3}x - \frac{8}{3} = 0$ includes any of • $(x+2)(3x-4) = 0 \Rightarrow x =$ • $\left(x+\frac{1}{3}\right)^2 - \frac{1}{9} - \frac{8}{3} = 0 \Rightarrow x =$ • $x = \frac{-2 \pm \sqrt{2^2 - 4(3)(-8)}}{2(3)} \Rightarrow x =$ • using their calculator to write down at least one correct root for their $3TQ = 0$				
	Note	_		We 1 st M1 for either $3(x \pm \frac{1}{3})^2 \pm q \pm 8 = 0 \Rightarrow x =$		
		or for $\left(x \pm \frac{1}{3}\right)^2 \pm q$				
	Note:	E.g. $\{x: x \in \mathbb{R}, x \le \mathbb{R}\}$	$\{-2\} \cup \{x:$	$x \in \mathbb{R}, x \ge \frac{4}{3}$, o.e., is acceptable for the 2 nd A mark.		

Question Number	Scheme	Notes	Marks
6.	(a) $y = x(x+3)(x-2)$; (b) $\frac{dy}{dx} \ge 2$		
	Way 2, Way 3 and Way 4: Product Rule		
(a) Way 2	$y = (x^2 + 3x)(x - 2) \Rightarrow \begin{cases} u = x^2 + 3x & v = x - 2\\ \frac{du}{dx} = 2x + 3 & \frac{dv}{dx} = 1 \end{cases}$	Differentiates so that $x^2 + 3x \rightarrow Cx + 3$; $C \neq 0$	M1 B1 on ePEN
	$\frac{dy}{dx} = x^2 + 3x + (x - 2)(2x + 3)$	$\frac{dy}{dx} = x^2 + 3x + (x - 2)(Cx + 3); C \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 6$	Correct simplified differentiation	A1
			(3)
(a) Way 3	$y = (x^2 - 2x)(x+3) \Rightarrow u = x^2 - 2x v = x+3$ $\frac{du}{dx} = 2x - 2 \frac{dv}{dx} = 1$	Differentiates so that $x^2 - 2x \rightarrow Cx - 2$; $C \neq 0$	M1 B1 on ePEN
	$\frac{dy}{dx} = x^2 - 2x + (x+3)(2x-2)$	$\frac{dy}{dx} = x^2 - 2x + (x+3)(Cx-2); C \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 6$	Correct simplified differentiation	A1
			(3)
(a) Way 4	$y = x(x^{2} + x - 6)$ $\Rightarrow u = x v = x^{2} + x - 6$ $\Rightarrow \frac{du}{dx} = 1 \frac{dv}{dx} = 2x + 1$	Differentiates so that $x^2 - 2x + 3x - 6 \rightarrow Cx + 1$; $C \neq 0$	M1 B1 on ePEN
	$\frac{dy}{dx} = x^2 + x - 6 + x(2x+1)$	$\frac{dy}{dx} = x^2 + Ax - 6 + x(2x + A) \text{ or}$ $\frac{dy}{dx} = (x+3)(x-2) + x(2x+A); A \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 6$	Correct simplified differentiation	A1
			(3)
	Question 6 N	otes Continued	
6. (b)	Note The critical values found from solving $\frac{d}{d}$		
	$x = \frac{-1 \pm \sqrt{19}}{3}$ or $x = -1.78629, 1.1196$		

Question Number	Scheme	Notes	Mark	.s	
7.	(i) $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3$; (ii) $\log_4 2x + 2\log_4 x = 8$				
(i) Way 1	$\left(\frac{1}{2}\right)^{p-1} = \frac{1.3}{3} \left\{ \text{or } 2^{p-1} = \frac{3}{1.3} \right\}$				
	$\log\left(\frac{1}{2}\right)^{p-1} = \log\left(\frac{1.3}{3}\right) \Rightarrow (p-1)\log\left(\frac{1}{2}\right)$	$= \log\left(\frac{1.3}{3}\right) \Rightarrow p - 1 = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)}$	M1		
	$p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \implies p = \text{awrt } 2.20$	p = 2.206 (3 dp)	A1		
				(3)	
(i) Way 2	$\log\left(3\times\left(\frac{1}{2}\right)^{p-1}\right) =$	= log1.3	M1		
	$\log 3 + \log \left(\frac{1}{2}\right)^{p-1} = \log 1.3 \implies \log 3 + (p-1)\log \left(\frac{1}{2}\right) = \log 1.3 \implies p-1 = \frac{\log 1.3 - \log 3}{\log \left(\frac{1}{2}\right)}$				
	$p = \frac{\log 1.3 - \log 3}{\log(\frac{1}{2})} + 1 \implies p = \text{awrt } 2$.206 $\{ \Rightarrow p = 2.206 \text{ (3 dp)} \}$	A1		
				(3)	
(i) Way 3	$3\left(\frac{1}{2}\right)^p \left(\frac{1}{2}\right)^{-1} = 1.3 \implies 3(2)\left(\frac{1}{2}\right)^p = 1.3 =$	$\Rightarrow \left(\frac{1}{2}\right)^p = \frac{1.3}{6} \qquad \left\{ \text{or } 2^p = \frac{6}{1.3} \right\}$	M1		
	$\log\left(\frac{1}{2}\right)^p = \log\left(\frac{1.3}{6}\right) \Rightarrow p\log\left(\frac{1}{2}\right) = \log\left(\frac{1.3}{6}\right) \Rightarrow p = \frac{\log\left(\frac{1.3}{6}\right)}{\log\left(\frac{1}{2}\right)}$				
	$p = \text{awrt } 2.206 \ \{ \Rightarrow p = 2.206 \ (3 \text{ dp}) \}$				
			M1	(3)	
(i)	Way 1, Way 2, Way 3 and W	yay 4 (on next page)			
Notes	For correctly making $\left(\frac{1}{2}\right)^{p-1}$, 2^{p-1} , $\left(\frac{1}{2}\right)^p$ or 2^p the subject				
	or for writing a correct equation involving logarithms. Complete process of writing a correct equation involving logarithms and using correct log laws (and correct index laws, where appropriate) to make $p-1$ or p the subject.				
	p = awrt 2.2		A1		
	Note: See next page for how to man			(3)	
(ii)	$\log_4 2x + \log_4 x^2 = 8 \implies \log_4 (2x(x^2)) = 8$	orrect method for combining the log terms. $\log_4 2x + 2\log_4 x \rightarrow \log_4 (2x(x^2))$ Condone $\log_4 2x + 2\log_4 x \rightarrow \log(2x(x^2))$	M1		
		$\log_4(ax^n) = 8 \Rightarrow ax^n = 4^8 \text{ or } 2^{16} \text{ or } 65536,$ where $ax^n = 2x^3$, $4x^4$ or $2x^2$ only	M1		
	$x^3 = 32768 \Rightarrow x = (32768)^{\frac{1}{3}} \Rightarrow x = 32$	x = 32	A1		
				(3)	
				6	

Question Number		Scheme	Notes	Marks				
7. (i) Way 4	$\left\{3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \Rightarrow \right\} \left(\frac{1}{2}\right)^{p-1} = \frac{1.3}{3}$ M1							
	$\log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{p-1} = \log_{\frac{1}{2}} \left(\frac{1.3}{3}\right) \Rightarrow p - 1 = \log_{\frac{1}{2}} \left(\frac{1.3}{3}\right)$ $p = \log_{\frac{1}{2}} \left(\frac{1.3}{3}\right) + 1 \Rightarrow p = \text{awrt } 2.206 \ \{\Rightarrow p = 2.206 \ (3 \text{ dp})\}$ A1							
				(3)				
7 (i)	Note	Allow Special Case M1 M0 A0 (unless r	on 7 Notes					
7. (i)	Note	$\bullet 3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \rightarrow \log 3 + p - 11$	$\log\left(\frac{1}{2}\right) = \log 1.3$ (i.e. 'invisible' brackets)					
		• $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \rightarrow \left(\frac{1}{2}\right)^{p-1} = \frac{13}{20}$	(i.e. for a division slip)					
	Note	Give M1 M1 A1 (recovered bracketing s	lip) for					
		• $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \Rightarrow \log 3 + p - 1\log\left(\frac{1}{2}\right) = \log 1.3 \Rightarrow p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \Rightarrow p = 2.206$						
	Note	Give M0 M0 A0 for any of $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \implies \left(\frac{3}{2}\right)^{p-1} = 1.3$ or $\left(\frac{1}{2}\right)^{p-1} = -2.7$						
	Note	Give M0 M0 A0 for						
		• $3 \times \left(\frac{1}{2}\right)^{p-1} = 1.3 \Rightarrow \log 3 \times \log\left(\frac{1}{2}\right)^{p-1} = \log 1.3 \Rightarrow p = \frac{\log\left(\frac{1.3}{3}\right)}{\log\left(\frac{1}{2}\right)} + 1 \Rightarrow p = 2.206$						
	Note	Give M1 dM1 A1 {for using a calculator to write down} $p = \text{awrt } 2.206 \text{ from no working.}$						
	Note	Give M1 dM1 A1 for correct work leading to $p = \text{awrt } 2.206$ E.g.						
		• give M1 dM1 A1 for $\left(\frac{1}{2}\right)^{p-1} = \frac{1}{2}$						
		• give (M1) M1 A1 for log3+(p-	$-1)\log\left(\frac{1}{2}\right) = \log 1.3 \implies p = \text{awrt } 2.206$					
		with no intermediate working.						
	Note	Give M0 M0 A0 for $(\log 3)\log\left(\frac{1}{2}\right)^{p-1} = \log 1.3 \implies p = \text{awrt } 2.206 \text{ with no intermediate}$						
		working.		0.2010				
	Note		n decimals to at least 2 dp. (or 1 dp for log 2					
		• e.g. Give M1 M1 A0 for $\left(\frac{1}{2}\right)^{p-1}$	$=0.43 \Rightarrow p=1+\frac{(-0.37)}{(-0.3)} \Rightarrow p=2.233$ (3)	dp)				

		Question 7 Notes						
7. (ii)	Note	Give M1 M1 A1 {for using a calculator to write down} $x = 32$ from no working						
	Note	Give M1 M1 A1 for correct work leading to $x = 32$. E.g.						
		• give M1 M1 A1 for $\log_4 2x + \log_4 x^2 = 8 \implies x = 32$						
		• give M1 M1 A1 for $\log_4 2x + \log_4 x^2 = 8 \implies \log_4 (2x^3) = 8 \implies x = 32$						
	with no intermediate working.							
	Note Give M0 M1 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 8 \Rightarrow 2x^2 = 65536 \Rightarrow x = 2x^2 = 65566 \Rightarrow x = 2x^2 = 2x^2 = 2x^2 = 2x^2 = 2x^2 \Rightarrow x = 2x^2 = 2$							
	Note	Give M0 M1 (implied) A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 8 \Rightarrow x = 128\sqrt{2}$						
	Note	Give M0 M0 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow \log_4 2x^2 = 4 \Rightarrow x = 8\sqrt{2}$						
	Note	Give A0 for $x = \pm 32$ unless recovered						
	Note	Allow final A1 for (incorrect notation recovered) $x^3 = 32768 \Rightarrow x = \sqrt{32768} \Rightarrow x = 32$						
	Note	Give M0 M1 A0 for $\log_4 2x + 2\log_4 x = 8 \Rightarrow (\log_4 2x)(\log_4 x^2) = 8 \Rightarrow \log_4 2x^3 = 8 \Rightarrow x = 32$						

Question Number	Scheme		Notes	Marks	S
8.	34.059° 12.8871 122.940° 8.6] D	8.6 8.6 145.940°		
	Relevant ABCD for parts (b) and (c)	2.9455		
(a)	$\frac{\sin B\hat{C}A}{8.6} = \frac{\sin 23}{6}$ $\{B\hat{C}A = \} 34.05911 \text{ or } 145.94088$		Attempts sine rule with one unknown, $B\hat{C}A$, and with the edges and relevant angles in the correct position	M1	
			awrt 34 or awrt 146. This may be implied by $A\hat{B}C = \text{awrt } 123 \text{ or awrt } 11$	A1	
	$A\hat{B}C = 180 - 23 - 34.05911 = 122.94088.$ $A\hat{B}C = 180 - 23 - 145.94088 = 11.05911.$		dependent on the previous M mark Complete correct method to find at least one value of angle $A\hat{B}C$ Note: This mark can be implied by either $A\hat{B}C$ = awrt 123 or awrt 11 Both awrt 122.9 and awrt 11.1	dM1	
(b)			1		(4)
	E.g. • $AC^2 = 8.6^2 + 6^2 - 2(8.6)(6)\cos"122.9"$ • $\frac{AC}{\sin"122.9"} = \frac{6}{\sin 23}$ • $\frac{AC}{\sin"122.9"} = \frac{8.6}{\sin(180 - 23 - "122.9")}$	eith or us	blete correct method to find angle $A\hat{B}C$ and her uses the cosine rule to find AC^2 or AC with their obtuse angle $A\hat{B}C$ (and not $A\hat{B}C$ = their $B\hat{C}A$ = 145.9) her the sine rule with one unknown, AC , and with edges and relevant angles in the correct position	M1	
	AC = awrt 12.88 cm or awrt 12.89 cm		AC = awrt 12.88 or awrt 12.89 Note: Ignore the units.	A1	(2)
(c)	Area $ABCD = (8.6)(6) \sin"122.9"$ or $= 2 \times [(0.5)(8.6)(6) \sin"122.9"$ or $= (8.6)("12.89") \sin 23$ or $= (6)("12.89") \sin(180 - 23 - "12.89") \sin(180 - 23 - "12.89") \sin(180 - 23 - "12.89") \sin(180 - 23 - "12.89")$	122.9")	Complete correct method to find angle $A\hat{B}C \text{ and a correct complete method}$ for finding area $ABCD$, where angle $A\hat{B}C$ is obtuse	M1	(2)
	= awrt $43.3 \text{ (cm}^2\text{) (3 sf)}$		awrt 43.3 Note: Ignore the units.	A1	(2)
					8

		Que	stion 8 Notes						
8. (b)	Note	$A\hat{B}C = 122.9408861$ gives $AC = 12$	2.8871029						
	Note	$A\hat{B}C = 122.9$ gives $AC = 12.8847042$	2						
(c)	Note	Give M0 A0 for Area $ABCD = (8.6)($	6)sin"11.059"	= 9.897998172					
. ,	Note	Condone M1 for (8.6)(6)[sin (awrt 5]	ondone M1 for (8.6)(6)[sin (awrt 57.1)] and A1 for awrt 43.3; ignoring how (awrt 57.1) I						
		been derived in part (a) and/or part (b	en derived in part (a) and/or part (b).						
	Note	$(8.6)(6)\sin 122.9 = 43.32438501$	•						
	Note	$(8.6)(6)\sin 122.9408861 = 43.30437$	7342						
	Note	$(8.6)(12.89)\sin 23 = 43.31410852$							
	Note	$(8.6)(12.88)\sin 23 = 43.28050564$							
	Note	$(8.6)(12.8871029)\sin 23 = 43.30437$	7343						
ALT	Alternat	ive Method of initially using Cosine R	tule with 6, 8.	6 and $AC = x$					
(a), (b)	Note: M	ark part (a) and part (b) together if t	his alternative	e method is used					
ALT	$6^2 = 8.6^2$	$+x^2-2(8.6)(x)\cos 23$	Applies cosi	ine rule with edges in the	4.04.7				
	$x^2 - 2(8.0)$	$6)(x)\cos 23 + 8.6^2 - 6^2 = 0$	correct po	sition, forms a 3TQ and	1 st]	M1 in (a)			
	$x^2 - (17.2)$	$2\cos 23)x + 37.96 = 0$		ct method (e.g. quadratic	and	l			
	17.20	$\cos 23 \pm \sqrt{(17.2\cos 23)^2 - 4(1)(37.96)}$		completing the square or to solve their $3TQ = 0$ to					
	$x = \frac{1}{1}$	$\frac{2(1)}{2(1)}$		give at least one of $x =$	1 st]	M1 in (b)			
	15.83	$3268348\pm\sqrt{98.83386616}$	2	51, 6 at 16ast one of					
	$x = \frac{13.83}{}$	2							
		2	2.95 o	or awrt 2.9 or awrt 12.9	A1 in (a)				
	x = 2.945	5580577, 12.8871029		identifies in part (b) that					
	x - 2.712	7500577, 12.0071027				A1 in (b)			
	Г		Not	ote: Units are not required					
	E.g.	$8.6^2 + 6^2 - 12.9455^{-2}$		dependent on					
	• $\cos A\hat{B}$	$CC = \frac{8.6^2 + 6^2 - "2.9455^2"}{2(8.6)(6)} \Rightarrow A\hat{B}C = 1$	11.0591	complete method to find					
	• $\cos A\hat{B}$	$^{1}C = \frac{8.6^{2} + 6^{2} - "12.8871^{2}"}{2(8.6)(6)} \Rightarrow A\hat{B}C =$	122.9408 of angle Al			dM1 in (a)			
		2(0.0)(0)		Note: This mark can be					
				implied by ei					
	• For " /	$AC'' < 8.6, \ A\hat{B}C = \sin^{-1}\left("2.9455" \times \frac{\sin^{-1}(m^2 + 1)}{\sin^{-1}(m^2 + 1)}\right)$	<u>n 23</u>	$A\hat{B}C = \text{awrt } 123 \text{ or aw}$	rt 11				
			6)						
		= 11.0591		Both awrt 11.1 and eit	hor				
	• For "A	$AC'' > 8.6, \ A\hat{B}C = 180 - \sin^{-1}\left(\text{"12.8871}\right)$	$\dots" \times \frac{\sin 23}{}$	awrt 122.8 or awrt 12		2 nd A1			
			6)	or awrt 12		in (a)			
		= 122.9408		or awit 12					
						(4)			
8. ALT	Note	Only apply the alternative mark scher	ne if it is clear	that the candidate using the	he	(-)			
		Cosine Rule with 6, 8.6 and $AC = x$		C					
	Note	A calculator can be used to write dow	n at least one	correct root for their 3TQ	=0				
(c)	Note	Allow A1 for awrt 43.4 or awrt 43.3	in part (c) if	$A\hat{B}C = \text{awrt } 122.8^{\circ} \text{ is four}$	nd				
` *		using the ALT method in part (b)	/						

Question Number	Schem	Notes	Marks			
9.	(a) $y = \frac{2}{x} + k$; $k > 0$ (b) $y = 5$	-3x, l and	C do not meet			
(a)	у		or a	Either a hyperbolic branch awn in quadrant 1 only for $x > 0$ hyperbolic branch drawn in both drant 2 and quadratic 3 for $x < 0$	M1	
				Correct graph – see notes	A1	
				cuts or meets the axes once only		
			y = k where $y = k$	here $x < 0$ and $\left(-\frac{2}{k}, 0\right)$ is stated		
		x		$\frac{2}{k}$ marked on the negative <i>x</i> -axis.	B1	
	$\left(-\frac{2}{k},0\right)$		Allow	$\left(0, -\frac{2}{k}\right)$ rather than $\left(-\frac{2}{k}, 0\right)$ if		
				marked in the correct place on the <i>x</i> -axis.		
				Only asymptotes $x = 0$		
				and $y = k$ stated	B1	
	D			or seen stated in the correct		
	Note: If curve cuts/meets the n	egative x-ax	is once then allo	positions on their graph.	(4)	
(b)		Note: If curve cuts/meets the negative x-axis once then allow coordinates stated elsewhere. $\frac{2}{x} + k = 5 - 3x$ Sets $\frac{2}{x} + k = 5 - 3x$ and attempts to multiply both sides by x				
Way 1	$\frac{2}{x} + k = 5 - 3x$, A				
	$2 + kx = 5x - 3x^2$	and colle	ects all terms on	to one side. Allow e.g. ">0" or	M1	
	$3x^2 - 5x + 2 + kx = 0$	"<0" for "=". At least 3 of the terms must be multi by x , e.g. allow one slip. The '=0' may be imp				
	$3x^2 + (k-5)x + 2 = 0$			terms are not collected this mark		
	or $-3x^2 + (5-k)x - 2 = 0$	2011	- ' '	inplied by correct a , b and c stated	A1	
	or $a=3, b=k-5, c=2$			or applied in $b^2 - 4ac$		
	a2 4			heir a , b and c from their equation and $c = \pm 2$. This could be part		
	$\{b^2 - 4ac = \}$	of the q	M1			
	$(k-5)^2-4(3)(2)$	or as e.g				
		etc	. Note: There	must be no x 's in their $b^2 - 4ac$.		
				endent on the previous M mark		
	$\{b^2 - 4ac < 0 \Rightarrow (k-5)^2 - 24$	4<0}		a correct valid method of solving $c = 0$ to give two distinct critical		
			_	and applies $b^2 - 4ac < 0$ } to write		
	$(k-5)^2 - 24 = 0$			le region with both critical values	dM1	
	$k = 5 \pm \sqrt{24}$ or $k = \text{awrt } 0.1$	awrt 9.9	for <i>k</i> . Note: <i>A</i>	Allow this mark for $0.1 < k < 9.9$;	GIVII	
	$5 - 2\sqrt{6} < k < 5 + 2\sqrt{6}$		$5 - 2\sqrt{6} \le k$	$5 \le 5 + 2\sqrt{6}$; $[5 - \sqrt{24}, 5 + \sqrt{24}]$;		
	$3 - 2\sqrt{6} < k < 5 + 2\sqrt{6}$			Note: Give final dM0 A0 for		
	(Note: $5 + \sqrt{24} > k > 5 - \sqrt{24}$	$\sqrt{24}$		$5 + \sqrt{24} < k < 5 - \sqrt{24}$, o.e.		
	is a correct answer)			$k < 5 + 2\sqrt{6}$ or exact equivalent.		
	12 12 22 12 20 min (101)			cept e.g. $5 - \sqrt{24} < k < 5 + \sqrt{24}$;	A1	
			$(5-\sqrt{24})$	$(5+\sqrt{24}); k \in (5-\sqrt{24}, 5+\sqrt{24})$		
					(5)	
					9	

		Quest	ion 9 Notes		
9. (a)	M1	For $x > 0$, condone the hyperbolic bran	anch being asymptotic to both the <i>x</i> -axis and <i>y</i> -axis.		
		Condone the hyperbolic branch signific	eantly 'bending back up' when $x \to \infty$		
		Condone the hyperbolic branch signific	cantly 'bending back down' for $x \rightarrow -\infty$		
		Condone the hyperbolic branch 'bendin	ng back' when approaching the y-axis asymptote.		
		Condone the hyperbolic branch touchin	g the y-axis or touching the horizontal asymptote.		
	A1	The graph must not touch the y-axis and	d must not touch the horizontal asymptote (where the		
		horizontal asymptote is clearly above the	ne y-axis). Note: The horizontal and/or vertical		
		asymptotes do not need to be marked or	r labelled for the A mark.		
		The hyperbolic branch must not signification	cantly 'bend back up' for $x \to \infty$		
		The hyperbolic branch must not signification	cantly 'bend back down' for $x \to -\infty$		
		The hyperbolic branch must not signification	cantly 'bend back' when approaching the y-axis		
		asymptote.			
	Note	Allow 2^{nd} B1 for $y = 0$ marked on the	x-axis in addition to $x = 0$ and $y = k$ marked		
		in the correct positions.			
	Note	Do not allow 2 nd B1 for y-axis stated as	their asymptote without reference to $x = 0$		
Egs.			1		
		(li		
	K		1/		
			1/		
			//		
	y=K				
	** * *	$\left(\frac{2}{\kappa}l_0\right)$			
) 2/4-1/-0		
			2/ = -K		
		1 1	2/= - K		
		: 1	1/2		
	E.ş	g. 1: Scores M1 A1 (just), B1 B0	E.g. 2: Scores M1 A0		
			9)		
		1	The state of the s		
		V-Je			
	-				
		-3- V-0X15			
			(0) -2/k)		
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\		
		V			
		4.001			
	E.g	. 3: Scores M1, A1 (just), B1, B1	E.g. 4: Scores M1 A1 (just) B1 B1		
		· ,	• ,		

Question Number		Scheme		Notes	Marks		
9.	(a) $y = \frac{2}{x}$	$\frac{2}{x} + k$; $k > 0$ (b) $y = 5 - 3x$, l and	C do not meet				
(b) Way 2	$\left\{ \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{2}{x} + \frac{1}{x} \right) \right\}$	$-k$ $= -3 \Rightarrow $ $-\frac{2}{x^2} = -3$		$y = \frac{2}{x} + k$ to give $\frac{dy}{dx} = \pm Ax^{-2}$; 0, and sets the result equal to -3	M1		
	$\begin{cases} x^2 = \frac{2}{3} \end{cases}$	$\left\{ \Rightarrow \right\} x = \pm \sqrt{\frac{2}{3}}$	$x = \pm \sqrt{\frac{2}{3}} \mathbf{or}$	$x = \pm \text{ awrt } 0.82 \text{ or } x = \pm \frac{1}{3} \sqrt{6}$	A1		
	$\left\{ \frac{2}{x} + k = 5 - 3x, x = \sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{3}} \implies \right\}$ Either $\frac{2}{\sqrt{\frac{2}{3}}} + k = 5 - 3\left(\sqrt{\frac{2}{3}}\right)$ or $\frac{2}{-\sqrt{\frac{2}{3}}} + k = 5 - 3\left(-\sqrt{\frac{2}{3}}\right)$		Substitutes at least one of their x , (which has been found from solving $\pm Ax^{-2} = -3$), into the equation $\frac{2}{x} + k = 5 - 3x$		M1		
		$k = 5 - 2\sqrt{6}$, $5 + 2\sqrt{6}$ or $k = \text{awrt } 0.1$, awrt 9.9		ndent on the previous M mark plete method to find both critical and writes down an inside region with both critical values for k.	dM1		
		$5 - 2\sqrt{6} < k < 5 + 2\sqrt{6}$	$5 - 2\sqrt{6} < k$	$k < 5 + 2\sqrt{6}$ or exact equivalent.	A1		
		0	tion O Notes Com	4:d	(5)		
9. (b)	Note		Question 9 Notes Continued For the final A mark accept exact equivalents such as $\frac{10 - \sqrt{96}}{2} < k < \frac{10 + \sqrt{96}}{2}$; $k > 5 - 2\sqrt{6}$ and $k < 5 + 2\sqrt{6}$.				
	Note	Give final dM0 A0 (unless recov $k > 5 - 2\sqrt{6}$, $k < 5 + 2\sqrt{6}$	Give final dM0 A0 (unless recovered) for $k > 5 - 2\sqrt{6}$ or $k < 5 + 2\sqrt{6}$; $k > 5 - 2\sqrt{6}$, $k < 5 + 2\sqrt{6}$				
	Note	Give final dM1 A0 (unless recov	ered) for $5-2\sqrt{6}$	$< x < 5 + 2\sqrt{6}$, o.e.			
	Note	$3x^2 + kx - 5x + 2 = 0$ by itself is is final 1 st A1 (implied), 2 nd M1	1^{st} A0, but $3x^2 + k$	(x-5x+2=0 followed by (k-5)	$(5)^2 - 4(3)(2)$		

Question Number	Scheme				Notes	Marks	Ş
10.	(a) $\left(2 - \frac{1}{3}x\right)^9$ (b) $f(x) = \left(3 + \frac{a}{x}\right)\left(2 - \frac{1}{3}x\right)^9$; coefficie	nt of x in $f(x)$ is	0			
(a)	20 0 2 428 (1) 0 2 427 (1) ²	1)3	Co	onstant term of 2° or 512	B1		
Way 1	$=2^{9} + {}^{9}C_{1}(2)^{8} \left(-\frac{1}{3}x\right) + {}^{9}C_{2}(2)^{7} \left(-\frac{1}{3}x\right)^{2} + {}^{9}C_{2}$	$C_3(2)^{\circ}$	$\left(\frac{1}{3}x\right) + \dots$		See notes	<u>M1</u>	
					See notes	<u>A1</u>	
	$\left\{ = 512 + (9)(256) \left(-\frac{1}{3}x \right) + (36)(128) \left(\frac{1}{9}x^2 \right) \right\}$	+ (84)(64)	$\left(-\frac{1}{27}x^3\right)+\ldots\right\}$				
	$=512-768x+512x^2-\frac{1792}{9}x^3+\dots$				ectly simplified erm or x^3 term	<u>A1</u>	
	$\frac{1}{12-768x+1}$				$12x^2 - \frac{1792}{9}x^3$	A1	
	Note: Any of the final two A marks may not be found on the final line of working. Note: Work for the final A mark must be seen on one line and you can apply isw						(5)
(2)	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	$(1)^3$		See notes	B1		
(a) Way 2	$\left\{ 2^{9} \left(1 - \frac{1}{6} x \right)^{9} \right\} = 2^{9} \left(1 + {}^{9}C_{1} \left(-\frac{1}{6} x \right) + {}^{9}C_{2} \left(-\frac{1}{6} x \right) \right)$	$\left[\frac{7}{6}x \right] + \dots$		See notes	<u>M1</u>		
	S				See notes	<u>A1</u>	
	$ \begin{cases} = 512 \left(1 + (9) \left(-\frac{1}{6}x \right) + (36) \left(\frac{1}{36}x^2 \right) + (84) \left$	$\left(-\frac{1}{216}x^3\right)$	+)}				
	1702				ectly simplified	<u>A1</u>	
	$=512-768x+512x^2-\frac{1792}{9}x^3+\dots$		$\frac{x \text{ term or } x^2 \text{ term or } x^3 \text{ term}}{512 - 768x + 512x^2 - \frac{1792}{1000}x^3}$				
			512-768	5x + 5	$\frac{12x^{2}x^{3}}{9}$	A1	
	(~)(1702	`					(5)
(b)	$f(x) = \left(3 + \frac{a}{x}\right) \left(512 - 768x + 512x^2 - \frac{1792}{9}x\right)$.3					
	Either $f(x) = 1536 - 2304x + 1536x^2 - \frac{1792}{3}$		±3('768')x ± '51		er writes down as part of their		
	$+\frac{512a}{x}-768+\frac{512ax}{9}$	$\frac{92}{2}ax^{2}$.,	_	ansion of $f(x)$	3.61	
)			their x terms as $8'$) $x \pm '512'ax$	M1	
	or x terms: $3(-768)x + 512ax$		or identifies the				
	or coefficient of x: $3(-768) + 512a$		dependent on th		(768') ± '512' <i>a</i>		
	$\int_{0}^{\infty} (-708)x + 312ux = 0 \implies u = \dots$ Sets their x term equal		m equal to 0 or	dM1			
	$3(-768) + 512a = 0 \Rightarrow a =$ sets their coefficient of x equand solves to give			-			
	$\left\{a = \frac{3(768)}{512} \Longrightarrow\right\} a = \frac{9}{2}$	Correct s	simplified a. E.g.			A1	
							(3)
							8

		Question 10 Notes
10. (a)	B1	Constant term of 2^9 or 512. Do not allow B1 for $512x^0$ unless simplified to 2^9 or 512.
Way 1	1st M1	$({}^{9}C_{1})()(x) \text{ or } ({}^{9}C_{2})()(x^{2}) \text{ or } ({}^{9}C_{3})()(x^{3}).$
		Requires correct binomial coefficient in any form with the correct power of x , but the other
		part of the coefficient may be wrong or missing.
	1st A1	At least two correct terms from ${}^{9}C_{1}(2)^{8}\left(-\frac{1}{3}x\right) + {}^{9}C_{2}(2)^{7}\left(-\frac{1}{3}x\right)^{2} + {}^{9}C_{2}(2)^{6}\left(-\frac{1}{3}x\right)^{3}$,
		or equivalent, which can be un-simplified or simplified.
	Note	${}^{9}C_{1}(2)^{8} - \frac{1}{3}x + {}^{9}C_{2}(2)^{7} - \frac{1}{3}x^{2} + {}^{9}C_{2}(2)^{6} - \frac{1}{3}x^{3} + \dots$ {bad bracketing} scores M0 unless later work
		implies a correct method.
	Note	The common error $2^9 + {}^9C_1(2)^8 \left(-\frac{1}{3}x\right) + {}^9C_2(2)^7 \left(-\frac{1}{3}x^2\right) + {}^9C_3(2)^6 \left(-\frac{1}{3}x^3\right)$
		$512 - 768x + 1536x^2 - 1792x^3$ is B1 M1 A0 A1 A0
	Note	The common error ${}^{9}C_{1}(2)^{8} \left(\frac{1}{3}x\right) + {}^{9}C_{2}(2)^{7} \left(\frac{1}{3}x\right)^{2} + {}^{9}C_{3}(2)^{6} \left(\frac{1}{3}x\right)^{3}$
		$512 + 768x + 562x^2 + \frac{1792}{9}x^3$ is B1 M1 A0 A1 A0
	Note	$2^{9} + {}^{9}C_{8}(2)^{8} \left(-\frac{1}{3}x\right) + {}^{9}C_{7}(2)^{7} \left(-\frac{1}{3}x\right)^{2} + {}^{9}C_{6}(2)^{6} \left(-\frac{1}{3}x\right)^{3} + \dots \text{ is also a correct expansion.}$
(a)	B1	$2^9(1\pm)$ or $512(1\pm)$. Award when first seen.
Way 2	1 st M1	Expands $(1 \pm kx)^9$; $k \neq \pm \frac{1}{3}$ to give either $({}^9C_1)()(x)$ or $({}^9C_2)()(x^2)$ or $({}^9C_3)()(x^3)$.
		Requires correct binomial coefficient in any form with the correct power of <i>x</i> , but the other part of the coefficient may be wrong or missing.
	1st A1	At least two correct terms from ${}^{9}C_{1}\left(-\frac{1}{6}x\right) + {}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2} + {}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}$ or $-\frac{3}{2}x + x^{2} - \frac{7}{18}x^{3}$,
		or equivalent, which can be un-simplified or simplified.
	SC	Allow Special Case B1 M1 A1 for Way 2: $K\left(1 + {}^{9}C_{1}\left(-\frac{1}{6}x\right) + {}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2} + {}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}\right)$
		or $K\left(1 - \frac{3}{2}x + x^2 - \frac{7}{18}x^3\right)$ where $K \neq 2^9$ or $K \neq 512$
	Note	$2\left(1+{}^{9}C_{1}\left(-\frac{1}{6}x\right)+{}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2}+{}^{9}C_{3}\left(-\frac{1}{6}x\right)^{3}+\right) \text{ would get SC B1 M1 A1 A0 A0}$
(a)	Note	E.g. $\binom{9}{3}$ or $\frac{9(8)(7)}{3!}$ or $\frac{9!}{3!6!}$ or 84 or even $\left(\frac{9}{3}\right)$ can be written in place of 9C_3
	Note	Condone giving the final A mark for a 'simplified' $512 + -768x + 512x^2 + -\frac{1792}{9}x^3$.
	Note	$-\frac{1792}{9}x^3$ may be written as either $-199\frac{1}{9}x^3$ or $-199.1x^3$ but do not allow $-199.1x^3$
		or $-199x^3$
	Note	Condone terms in reverse order $-\frac{1792}{9}x^3 + 512x^2 - 768x + 512$ for B1 M1 A1 A1 A1.

	Question 10 Notes Continued								
10. (a)	Note	The term	ns may be "listed" rather than added for any of the first 4 marks.						
	Note	Any high	ner order terms can be ignored in part (a).						
	SC	Special (Case: If a candidate expands in descending powers of x ,						
		i.e. $\left\{ \left(2 - \frac{1}{2} \right) \right\}$	i.e. $\left\{ \left(2 - \frac{1}{3}x\right)^9 \right\} = \left(-\frac{1}{3}x\right)^9 + {}^9C_1(2)^1 \left(-\frac{1}{3}x\right)^8 + {}^9C_2(2)^2 \left(-\frac{1}{3}x\right)^7 + {}^9C_3(2)^3 \left(-\frac{1}{3}x\right)^6$						
			$= -\frac{1}{19683}x^9 + (9)(2)\left(\frac{1}{6561}x^8\right) + (36)(4)\left(-\frac{1}{2187}x^7\right) + (84)(8)\left(\frac{1}{729}x^6\right)$						
			$= -\frac{1}{19683}x^9 + \frac{2}{729}x^8 - \frac{16}{243}x^7 + \frac{224}{243}x^6$						
		then they	y can gain SC: B1 M1 A1 A0 A0						
		B1	For a simplified $-\frac{1}{19683}x^9$						
		M1:	$({}^{9}C_{1})()(x^{8}) \text{ or } ({}^{9}C_{2})()(x^{7}) \text{ or } ({}^{9}C_{3})()(x^{6})$						
			or $({}^{9}C_{8})()(x^{8})$ or $({}^{9}C_{7})()(x^{7})$ or $({}^{9}C_{6})()(x^{6})$						
		1 st A1:	At least two correct terms from ${}^{9}C_{1}(2)^{1}\left(-\frac{1}{3}x\right)^{8} + {}^{9}C_{2}(2)^{2}\left(-\frac{1}{3}x\right)^{7} + {}^{9}C_{3}(2)^{3}\left(-\frac{1}{3}x\right)^{6}$						
			which can be un-simplified or simplified.						
10. (b)	Note		M0 (unless recovered) for any extra x terms in their expansion of $f(x)$ or for any all x terms in $\pm 3('768')x \pm '512'ax$ or for any additional terms in $\pm 3('768') \pm '512'a$.						
	Note	Give M1	dM1 for $\pm 3('768')x \pm '512'ax \Rightarrow a =$ or for $\pm 3('768') \pm '512'a = 0 \Rightarrow a =$						
	Note	Valid sol	lutions include $2^9 a - 9(2^8) = 0$ or $\frac{36(2^7)}{9} a - \frac{(3)(9)(2^8)}{3} = 0 \implies a = \frac{9}{2}$						
	Note	Allow 1s	of M1 for $3(-768x) + \frac{a}{x}(512x^2) = 0$ or $0x$						
	Note	M1 dM1 A1 can be given for $K\left(1 + {}^{9}C_{1}\left(-\frac{1}{6}x\right) + {}^{9}C_{2}\left(-\frac{1}{6}x\right)^{2} +\right)$							
		where K	$K \neq 2^9$ or $K \neq 512$ leading to $a = \frac{9}{2}$ in Q10(b).						
		E.g. K	$= \frac{1}{512} \text{ gives } \frac{a}{512} - \frac{3(3)}{1024} = 0 \Rightarrow a = \frac{9}{2}$						

Question Number		Scheme		Notes	Marks	
11.	f(x) = 13 + 3x + (x+2)	$(x+k)^2$; given $(x+k)^2$	3) is a factor of $f(x)$			
(a)(i),(ii)	f(-3) = 13 + 3(-3) + (-3)	$(3+2)(-3+k)^2 = 0$		3) to obtain an expression in ts their expression equal to 0	M1	
	$(-3+k)^{2} = 4$ $-3+k=\pm 2$	$4 - (k^2 - 6k + 9)$ $k^2 - 6k + 5 = 0$	depende Corr	ent on the previous M mark rect valid method for solving their quadratic in k to give at least one value of $k =$	dM1	
	k = 5, 1	(k-5)(k-1) = k = 5, 1	Con	rect method for finding $k = 5$ wer is given) and finds $k = 1$	A1	
						(3)
(a)	$\{x=-3, k=5 \Rightarrow \}$		Use this	Alt method for 1st M1 only		
(i) Alt	f(-3) = 13 + 3(-3) + (-3) + (-3) = 13 - 9 - 4 = 13 - 9 - 4			k = 5 to correctly show that $k = 0$ and concludes that $k = 5$	M1	
						(1)
(b) (i)	f(x) = 13 + 3x + (x+2)	$(x+5)^2$	_	multiply out $f(x)$ with $k = 5$		
	= 13 + 3x + (x+2)(x+2)	,		we a 4-term cubic of the form $\pm Ax^3 \pm Bx^2 \pm Cx \pm D$;	M1	
	$= 13 + 3x + x^3 + 10x$	$x^2 + 25x + 2x^2 + 20x$	+ 50	$A, B, C, D \neq 0$		
	$= x^3 + 12x^2 + 48x + $	63		$x^3 + 12x^2 + 48x + 63$	A1	
	Hence $f(x) = (x+3)(x^2)$	+ 9 <i>x</i> + 21)	attemp e.g. Attempts to division to giv e.g. factorising/ed	lified cubic and $(x+3)$ in an at to find the quadratic factor. divide by $(x+3)$ using long we $x^2 \pm kx +, k = \text{value} \neq 0$ quating coefficients to obtain c), $k = \text{value} \neq 0$, c can be 0	M1	
			` '`	$^2 + 9x + 21$) seen on one line	A1	
			r attempting to divide quating coefficients to	by $(x-3)$ give $(x-3)(x^2 \pm kx \pm c)$		(4
	Note: You can recover work for (b)(i) in (b)(ii)					
(b)(ii) Way 1	$\{b^2 - 4ac = \} 9^2 - 4(1)(2)$	1 1	This could be	$+9x + 21$ " where $a, b, c \ne 0$. part of the quadratic formula rt) or embedded in $b^2 < 4ac$.	M1	
	e.g. $b^2 - 4ac = -3 < 0 =$	⇒ no solution and so	x = -3	Finds $b^2 - 4ac = -3$, states $-3 < 0 \Rightarrow$ no solution		
	e.g. $b^2 - 4ac = -3 < 0 = $ comes from $x + 3 = 0$	⇒ no solution and th		and either $x = -3$ or only plution comes from $x + 3 = 0$	A1 cs	SO
	Note: Give A0 for stating ' $(x+3)$ is the only solution'. Note: If they refer to the solution of $x=-3$ it must be correct (not e.g. $x=3$) for A1 cso Note: Give A0 for $b^2-4ac=-3<0 \Rightarrow$ no solution and $x^2+9x+21<0 \Rightarrow x=-3$ Note: $x=-3$ must clearly be a part of their solution for A1 Note: The solution $x=-3$ must be referred to in (b)(ii)					(2

Question Number		Scheme	Notes	Marl	ΚS
11. (ii)(b) Way 2	$\left(x+\frac{9}{2}\right)^2$	$+21) = 0 \implies \}$ $-\frac{81}{4} + 21 = 0$ $= -\frac{3}{4} \text{ or } x + \frac{9}{2} = \pm \sqrt{-\frac{3}{4}}$	Completes the square on their " $x^2 + bx + c$ " where $b, c \ne 0$ to make $\left(x + \frac{b}{2}\right)^2$ or $\left(x + \frac{b}{2}\right)$ the subject.	M1	
	e.g. {Qua	adratic} has no solutions and so $x = -3$	$\left(x + \frac{9}{2}\right)^2 = -\frac{3}{4}$ or $x + \frac{9}{2} = \pm \sqrt{-\frac{3}{4}}$	A1	200
		adratic} has no solutions and so the only tion comes from $x + 3 = 0$	or $x + \frac{9}{2} = \sqrt{-\frac{3}{4}}$, \Rightarrow no solution (or maths error) and either $x = -3$ or only solution comes from $x + 3 = 0$	Al	cso
					(2)
11. (ii)(b) Way 3	$\{(x^2+9x$	$+21) = 0 \Rightarrow $ $x = \frac{-9 \pm \sqrt{81 - 4(1)(21)}}{2}$	Applies $b^2 - 4ac$ on their " $x^2 + 9x + 21$ " where $a, b, c \neq 0$. Note: This must be seen as part of the quadratic formula.	M1	
	e.g. $x = -3$	$\frac{-9 \pm \sqrt{-3}}{2} \Rightarrow \{\text{Quadratic}\} \text{ has no solutions and }.$	$x = \frac{-9 \pm \sqrt{-3}}{2}$		
		$\frac{-9 \pm \sqrt{-3}}{2} \Rightarrow \{\text{Quadratic}\} \text{ has no solutions and}$ y solution comes from $x + 3 = 0$	⇒ no solution (or maths error) and either $x = -3$ or only solution comes from $x + 3 = 0$	A1	cso
					(2)
		Question 11	Notes		` /
11. (a)	Note	'= 0' can be implied in their working for A1			
	Note	1st M can be given for applying f(±3) to their	r manipulated $f(x) =$		
	Note	ALT: $f(-3) = 13 + 3(-3) + (-3 + 2)(-3 + 5)^2 =$	$= 0 \Rightarrow k = 5$ is sufficient for 1 st M1		
	Note	Give dM0 for simplifying $13 + 3(-3) + (-3 + 2)$	$(2)(-3+k)^2 = 0$ to give		
		$13-9+(-1)(-3+k)^2=0 \Rightarrow 3(-3+k)^2=0$			
	Note	Give dM0 for simplifying $13 + 3(-3) + (-3 + 2)$			
		• $4-(-3+k)^2=0 \Rightarrow 4-9-k^2=0$ or $4-(-3+k)^2=0$			
	Note	Condone writing $-k^2 + 6k + 5 = 0 \Rightarrow (k-5)(k-5)$			
	Note	Give final A1 for $-k^2 + 6k - 5 = 0$ or $k^2 - 6k$	$+5=0 \Rightarrow k=5,1$ with no intermediat	te wor	king.

	Question 11 Notes Continued					
11. (b)(i)	Note	Condone $(x+5)^2 \rightarrow x^2 + 25$ as part of their working for the 1 st M mark.				
	Note	Condone 2 nd M1 e.g. for $x^3 + 12x^2 + 48x + 63 \rightarrow (x+3)(x^2 + 12x + 48)$				
(b)(ii)	Note	When a student refers to 'solution' it is assumed that they mean a 'real solution'.				
	Note	'<0' or 'it is negative' must also be stated in a discriminant method for A1				
	Note	A correct discriminant calculation, e.g. $9^2 - 4(1)(21)$, $81 - 84$ or -3 is sufficient as part of their				
		working for A1. E.g. Give M1 A1 for $b^2 - 4ac = 81 - 84 < 0$, so no solution $\Rightarrow x = -3$				
	Note	Give A0 for incorrect working, e.g. $9^2 - 4(1)(21) = -5 < 0$				
	Note	Give M1 A1 cso for $x = -\frac{9}{2} \pm \frac{\sqrt{3}}{2}i$, -3				
	Note	Allow the statement				
		'as $y = f(x)$ is a cubic {function}, and cubic functions have at least one solution, $f(x) = 0$ }				
		has one solution'				
		written in place of either 'either $x = -3$ or only solution comes from $x + 3 = 0$ ' for the A1 mark				

Question Number	Scheme		Notes	Marks	
12.	$y = \tan x, \ y = 5\cos x \ ; \ 0 < x \le 2\pi$				
(a)	$5\cos x = \tan x$		B1		
. ,	$5\cos x = \frac{\sin x}{\cos x} \{ \Rightarrow 5\cos^2 x = \sin x \}$	or	M1		
	$5(1-\sin^2 x) = \sin x$		M1		
	$5\sin^2 x + \sin x - 5 = 0 *$		an equation in just $\sin x$ Correct proof with no notational errors	A1 * cso	
			•	(4)	
(b)	(b) $ \sin x = \frac{-1 \pm \sqrt{1 - 4(5)(-5)}}{10} $ $ \left\{ = \frac{-1 \pm \sqrt{101}}{10} = 0.9049, -1.1049 \right\} $ $ \cdot 5 \left(\sin x + \frac{1}{10} \right)^2 - \frac{1}{20} - 5 = 0 \implies \sin x = $ $ \left(\sin x + \frac{1}{10} \right)^2 - \frac{1}{100} - 1 = 0 \implies \sin x = $		Attempts to solve the quadratic = 0 by correct quadratic formula or by completing the square to give $\sin x =$, (but condone just $x =$). Note: Factorisation attempts score M0. Note: The negative square root can be omitted in their working.		
	x = 1.13135, 2.01024	Uses (in: Accep	dM1		
	$\{ \Rightarrow x_A = 1.13, x_B = 2.01 \text{ (2 dp)} \}$	At leas	A1		
		and 01	A1		
	Note: Work for part (b) can	recovered in part (c).	(4)		
(c) (i)	22		22	B1	
	 2 solutions every 2π (or 360°) plus 2 solution the final π (or 180°) or states 2(10) + 2 20 solutions in 20π (or 1800°) plus two solution the final π (or 180°) or states 20 + 2 20 solutions for 0 < x < 20π so 22 solutions to 0 < x ≤ 21π each solution is repeated another 10 more time 	tions	dependent on the previous B mark Acceptable reason or acceptable calculation.	dB1	
(ii)	40		40	B1	
	• 2 solutions every π (or 180°) or states 2(20) • 4 solutions every 2π (or 360°) or states 4(10	dependent on the previous B mark Acceptable reason or acceptable calculation.	dB1		
				(4)	
				12	

	Question 12 Notes							
12. (b)	Note	Note Completing the square: Give M1 for either $5(\sin x \pm \frac{1}{10})^2 \pm q \pm 5 = 0 \Rightarrow \sin x =$						
		or for $\left(\sin x \pm \frac{1}{10}\right)^2 \pm q \pm 1 = 0 \Rightarrow \sin x = \dots; q \neq 0$						
	Note	Give M0 dM0 A0 A0 for writing down $x = 1.13, 2.01$ from no working.						
	Note	Give M0 dM0 A0 A0 for writing down $x =$ awrt 1.13, awrt 2.01, awrt 64.82 or awrt 115.18						
		from no working.						
	Note	Condone 1 st M1 for writing down (from their graphical calculator) $\sin x = \text{awrt } 0.9$						
	Note Give M1 dM1 A1 A0 for ' $\sin x = 0.9 \Rightarrow x = 1.13$ '							
	Note	Give M1 dM1 A1 A1 for ' $\sin x = 0.9 \Rightarrow x = 1.13, 2.01$ '						
	Note Give 2^{nd} A0 for incorrectly deducing $x_A = \text{awrt } 2.01$ and $x_B = \text{awrt } 1.13$							

Question Number	Scheme		Notes	Marks	3
13. (a)	$\frac{1}{2}r^2\theta = 200 \left(\text{or } \frac{\theta}{2\pi} = \frac{200}{\pi r^2}\right)$	States or uses $\frac{1}{2}r^2\theta = 200$, o.e.	B1		
	$P = r + r + r\theta$	States or uses $\{P = \} = 2r + r\theta$ o.e. Allow B1 for $\{P = \}2r + l$, $l = r\theta$	B1		
	$\frac{1}{2}r^2\theta = 200 \implies$ $ \cdot r\theta = \frac{400}{r} \implies P = 2r + \frac{400}{r} *$	Applies a complete process of substituting $r\theta =$ or $\theta =$, where ',,,'=f(r) into an expression for the perimeter which is of the form $P = \lambda r + \mu \theta$; $\lambda, \mu \neq 0$	M1		
	• $\theta = \frac{400}{r^2} \Rightarrow P = 2r + r\left(\frac{400}{r^2}\right) \Rightarrow P = 2r$	$r + \frac{400}{r}$	Correct proof with some reference to $P = P \rightarrow P$: as part of their proof. Note: 'Perimeter' can be written in place of P .	A1 *	(4)
(1.)			, , , , , , , , , , , , , , , , , , ,		(4)
(b)	d <i>P</i> 2 400 =2		Differentiates $Cr + \frac{D}{r}$ to give	M1	
	$\frac{\mathrm{d}P}{\mathrm{d}r} = 2 - 400r^{-2}$	$P + Qr^{-2}; C, D, P, Q \neq 0$ $\left\{ \frac{dP}{dr} = \right\} 2 - 400r^{-2}, \text{ o.e.}$	A1		
	$\left\{ \frac{\mathrm{d}P}{\mathrm{d}r} = 0 \Rightarrow \right\} 2 - \frac{400}{r^2} = 0$ $\Rightarrow 2r^2 - 400 = 0 \Rightarrow r^2 = \dots $ \{=	2003	Sets their $\frac{dP}{dr} = 0$ and rearranges to give $r^{\pm n} = k, k > 0, n = 2$ or 3	M1	
	<i>⇒ 21</i> +00 − 0 <i>⇒ 1</i> − {−	2003			
	$\{r = 10\sqrt{2} \implies \}$	dependent on the previous mark itutes their r (where $r > 0$), which has been found by solving $\frac{dP}{dr} = 0$, into $P = 2r + \frac{400}{r}$	dM1		
	$P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$		$P = 40\sqrt{2}$ or $\sqrt{1600}$ or $20\sqrt{8}$ or $\frac{80}{\sqrt{2}}$ any exact equivalent in the form $a\sqrt{b}$ or $\frac{a}{\sqrt{b}}$	A1	
			\sqrt{b}		
()			D:00		(5)
(c) Way 1	d^2P ,		Differentiates to give $\left\{ \frac{d^2 P}{dr^2} = \right\} \pm K r^{-3}, K \neq 0$	M1	
	$\frac{d^2 P}{dr^2} = 800r^{-3} > 0 \implies \text{Minimum {value}}$	of <i>P</i> }	$800r^{-3}$, > 0 and minimum Note: ft is only allowed on their ' $r = \sqrt{200}$ ' value from (b), where $r > 0$	A1 ft	cso
	NB: A1 is \mathbf{cso} , so calculations for P'' us	ir ' $r = \sqrt{200}$ ' must be correct to at least 2 sf		(2)	
(c) Way 2	$\{r = 10\sqrt{2} = 14.142 \Rightarrow \}$ $r = 14.1 \Rightarrow \frac{dP}{dr} = -0.01197 < 0$		Applies a value on each side of their $r = 10\sqrt{2}$ (where $r > 0$) to an expression of the form $P + Qr^{-2}$; $P, Q \ne 0$	M1	
	$r = 14.2 \Rightarrow \frac{dP}{dr} = 0.01626 > 0$ \$\Rightarrow\$ Minimum {value of }P\$		Correct evaluations to at least 1 sf, <0,>0 and minimum	A1 ft	
					(2)
					11

	Question 13 Notes						
13. (b)	b) Note The 2 nd M mark can be implied.						
		Give 2^{nd} M for $2 - \frac{400}{r^2} = 0 \rightarrow r = \sqrt{200}$ or $r = 10\sqrt{2}$ or $r = \text{awrt } 14.1$					
	Note	Give final dM1 A0 for $r = 14.14 \Rightarrow P = \text{awrt } 56.6$ without reference to a correct					
		exact value for <i>P</i> .					
	Note	Give 2^{nd} M0 for $2 - \frac{400}{r^2} < 0 \implies r < 10\sqrt{2}$					
		but give 2 nd M1 dM1 2 nd A1 for $2 - \frac{400}{r^2} < 0 \implies r < 10\sqrt{2} \implies P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$					
	Note	Give 2^{nd} M0 for $2 - \frac{400}{r^2} > 0 \implies r > 10\sqrt{2}$					
		but give 2 nd M1 dM1 2 nd A1 for $2 - \frac{400}{r^2} > 0 \implies r > 10\sqrt{2} \implies P = 2(10\sqrt{2}) + \frac{400}{10\sqrt{2}} = 40\sqrt{2}$					
(c)	Note	Ignore poor differentiation notation or the lack of differentiation notation in part (c).					
	Note	Condone ' $\frac{d^2P}{dr^2} = 800r^{-3} > 0 \implies \text{Minimum value of } r$ ' for final A1					
	Note	Using their $r = 10\sqrt{2}$ from (b), give M1 A1 for any of					
		$\bullet \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{800}{(10\sqrt{2})^3} > 0 \implies \text{Minimum}$					
		• $\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 0.2828 > 0 \implies \text{Minimum}$					
		$\bullet \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 0.2828 > 0 \implies P_{\min}$					
		• $\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = 800r^{-3} \implies \frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{\sqrt{2}}{5} \dots > 0 \Rightarrow \text{Minimum}$					
	Note	Using their $r = 10\sqrt{2}$ from (b), give M1 A0 for any of					
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = \frac{800}{10\sqrt{2}^3} > 0 \implies \text{Minimum {poor bracketing}}$					
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = \frac{800}{(40\sqrt{2})^3} = 0.0044 > 0 \implies Minimum$					
		• $\frac{d^2 P}{dr^2} = 800r^{-3} \implies \frac{d^2 P}{dr^2} = 0.282 \implies \text{Minimum}$ {No reference to > 0}					
		• $\frac{d^2P}{dr^2} = 800r^{-3} \implies \frac{d^2P}{dr^2} = \frac{800}{(10\sqrt{2})^3} = 8 > 0 \implies \text{Minimum {incorrect evaluation}}$					

Question Number	Scheme			Notes	Marks
14.	(i) $G_1 = 22$, $G_5 = 130$; G_1 , G_2 , G_3 , is a geometric sequence (ii) $T_1 = 208$, $T_2 = 207.2$; T_1 , T_2 , T_3 , is a arithmetic sequence				
(i)	$a = 22$, $ar^4 = 130$ or $22r^4 = 130$	Writes	down $a = 22$ and $ar^4 = 130$ in a correct equation in r only.	M1	
	$r = \sqrt[4]{\frac{130}{22}} \ \{=1.559122245\}$		$r = {4 \over 1}$	$\sqrt{\frac{130}{22}}$ or $\sqrt[4]{\frac{65}{11}}$ or awrt 1.56	A1
	$\{G_2 = ar \Rightarrow\} G_2 = 22('1.5591')$		ident on the previous M mark Obtains im $r^4 = \frac{130}{22}$ o.e. and applies 22(their r)		dM1
	$= 34.3 \text{ (km h}^{-1}) \text{ cao}$		34.3	cao Note: Ignore the units	A1 cao
	Note: Condone a copying error (or slip)	on one of	either '22'	or '130' for the M marks.	(4)
(ii)	$\{T_n = 0 \implies a + (n-1)d = 0 \implies \}$				
(a) Way 1	e.g. • $208 + (n-1)(-0.8) = 0 \implies n = 261$			applies $a + (n-1)d = 0$ with 208, $d = -0.8$ to find $n =$	M1
	• $n = \frac{208}{0.8} \implies n = 260$			or deduces $n = \frac{208}{0.8}$	A 1
	0.0)	1 1	Finds $n = 261$ or $n = 260$	A1
	$\cdot S_{261} = \frac{261}{2}(2(208) + (260)(-0.8)) = \frac{261}{2}$	(208)		ent on the previous M mark	
	• $S_{260} = \frac{260}{2}(2(208) + (259)(-0.8))$ {= 1300	J		applies $S_n = \frac{n}{2}(2a + (n-1)d)$	
	• $S_{260} = \frac{1}{2} (2(208) + (239)(-0.8)) $ {= 130((200.0)}		a = 208, d = -0.8, n = "261"	
			or with	a = 208, d = -0.8, n = "260"	dM1
	$\bullet S_{261} = \frac{261}{2}(208+0) \left\{ = \frac{261}{2}(208) \right\}$			or applies $S_n = \frac{n}{2}(a+l)$	
	• $S_{260} = \frac{260}{2}(208 + 0.8)) = \{ = 130(208.8) \}$			with $a = 208$, $n = "261"$, $l = 0$	
			or wit	h $a = 208$, $n = "260"$, $l = 0.8$	
	{Maximum value of S_n } = 27144 c :		27144	A1 cao	
(a)	70				(4)
(a) Way 2	$S_n = \frac{n}{2}(2(208) + (n-1)(-0.8)) = \frac{n}{2}(416 - 0.8)$	8n + 0.8)	A	applies $S_n = \frac{n}{2}(2a + (n-1)d)$	
	$= \frac{n}{2}(416.8 - 0.8n) = 208.4n - 0.4n^2$		(with a	d = 208, $d = -0.8$) and either	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			valid attempt (i.e. $n^k \to n^{k-1}$)	M1
	$\frac{dS_n}{dn} = 208.4 - 0.8n = 0 \implies n = \frac{208.4}{0.8}$		to c	lifferentiate with respect to <i>n</i> , sets the result equal to 0	IVII
			(condor	ne > 0 or < 0) to find $n =$	
	$S_n = -0.4(n^2 - 521n) = -0.4((n - 260.5)^2 - 6n^2 - 6n^$	$(260.5)^2$)	or a	valid attempt to complete the	
	n = 260.5	Igag a gam	raat alaahu	square a to find or deduce $n = 260.5$	
	or $S_n = -0.4((n-260.5)^2 - (260.5)^2)$		•	$= -0.4(n - 260.5)^2 + 27144.1$	A1
			ent on the previous M mark		
		Applies an integer value for n which either sides n			
	• $S_{261} = 208.4(261) - 0.4(261)^2$	$S_{\text{cr}} = 208.4(261) - 0.4(261)^2$ their			dM1
	201		formula for S_n . (See notes)		
	{Maximum value of S_n } = 27144 cao			udes maximum sum is 27144	A1 cao
(ii) (b)	522 522			B1 cao	
()	322			(1)	
					9

		Question 14 Notes						
14. (ii)	Note	Condone 1 st M1 1 st A1 for $208 + (n)(-0.8) = 0 \implies n = 260$						
, ,	Note	Give 1 st M0 1 st A0 for $208 + (n-1)(0.8) = 0 \implies n = -261$						
		but allow 1 st M1 1 st A1 for 208 + $(n-1)(0.8) = 0 \implies n = -261 \implies n = 261$ (recovered)						
	Note	Way 1: If a valid method gives a decimal value for n , then dM1 will then be given for						
		a correct method using $S_n = \frac{n}{2}(2a + (n-1)d)$ or $S_n = \frac{n}{2}(a+l)$ with $\lfloor n \rfloor$						
		(i.e. where $\lfloor n \rfloor$ the integer part of n)						
	Note	Way 2: If a valid method gives a decimal value for <i>n</i> , then dM1 mark will then be given for						
		a correct method of applying S_n with integer n which is either side of their decimal value of n .						
		E.g. If $n = 260.5$ then either $n = 260$ or $n = 261$ must be applied to an S_n expression for dM1.						
	Note	Way 2: If a valid method gives an integer value for n, then dM1 mark will then be given for						
		a correct method of applying S_n with either n or $n-1$						
		E.g. If $n = 250$ then either $n = 250$ or $n = 249$ must be applied to an S_n expression for dM1.						
	Note	Give final dM0 A0 for finding $S_{260.5} = \frac{260.5}{2}(2(208) + (260.5)(-0.8)) = 27144.1$ or 27144						
		without reference to either $S_{261} = \frac{261}{2}(2(208) + (260)(-0.8)) = 27144$						
		or $S_{260} = \frac{260}{2}(2(208) + (259)(-0.8)) = 27144$						
	Note	Allow 1 st M1 1 st A1 for finding $S_n = 208.4n - 0.4n^2$ and using their calculator						
		to deduce $n = 260.5$						

Question Number		Scheme			Notes	Marks	
15.	$C_1: x^2 +$	$(y-3)^2 = 26$, centre S; $C_2:(x-6)^2 + y^2 = 17$, centre Q					
	States or implie				plies that S and Q are	distances 3 and 6 from O	M1
(a)	$\{SQ =\} $	${SQ = }\sqrt{3^2 + 6^2} = 3\sqrt{5}$			Applies $SQ = \sqrt{3^2 + 6^2}$ or $SQ^2 = 3^2 + 6^2$		
						$3\sqrt{5}$	A1 cao
							(3)
(b)(i)		$C_1: x^2 + y^2 - 6y + 9 =$	26		•	nultiply out both brackets	
	$C_2: x^2 - 12x + 36 + y^2 = 17$ followed by a correct me			ect method of eliminating from their simultaneous	M1		
	Subtracti	ng gives: $-6y + 9 - (-1)$	2x + 36	=9	both x and y	equations.	
	_	-6y + 9 + 12x - 36 = 9		Cor	rect proof with no em	ors seen in their working.	
		12x - 36 = 6y		Coi		ondone omission of $'=0'$	A1 *
		y = 2x - 6 *				where appropriate.	
(b)(ii)	$(x-6)^2 +$	$(2x-6)^2=17$,	Substitutes $v = 2x - 6$	into either of their circle	
Way 1	$x^2 - 12x$	$+36+4x^2-24x+36=1$	17		•	ions and proceeds to form	M1
	$5x^2 - 36x$	x + 72 = 17			•	a 3TQ in either x or y	
	$5x^2 - 36x$	x + 55 = 0		5	$x^2 - 36x + 55 = 0$	$\{ \text{or } 5y^2 - 12y - 32 \{ = 0 \} \}$	A1
		11)			_	on the previous M mark	
	(x-5)(5)	$(x-5)(5x-11) = 0 \implies x = \dots$			Correct method for solving their $3TQ = 0$ to find $x =$		dM1
	• x = 5 =	$\Rightarrow v = (2)(5) - 6 = 4$			Substitutes at least		
		$\Rightarrow y = (2)(2.2) - 6 = -1$	1.6		original equation	dM1	
	P(5, 4)	and $R(2.2, -1.6)$			P(5,4) and $P(5,4)$	$R(2.2, -1.6)$ or $R(\frac{11}{5}, -\frac{8}{5})$	A1
		Note: $P: x = 5$,	y = 4 an	d R: .	x = 2.2, $y = -1.6$ is fin	ne for A1	(7)
(b)(ii)	$y = \sqrt{26}$	$-x^2 + 3$, $y = \sqrt{17 - (x - 6)^2}$					
Way 2		$+3 = \sqrt{17 - (x-6)^2}$	Ź		Substitutes one circle into the other circle and uses valid algebra to form a 3TQ in		
v		$6\sqrt{26-x^2} + 9 = 17 - x^2$	$^{2} \pm 12 r = ^{2}$	36			M1
		$\frac{3}{x^2} = 12x - 54 \Rightarrow \sqrt{26 - x}$				either x or y .	
	•	$=4x^2-36x+81$	-2x-	9			
		x + 55 = 0			$5x^2 - 36x + 55 = 0$		A1
	30.		ntinue to	apply	the scheme for Way .		111
	1			1	, , , , , , , , , , , , , , , , , , ,		
(c)	$PR = \sqrt{6}$	$(5-2.2)^2+(4-1.6)^2$		1	Uses the distance form	nula to find the length PR	I M1
(c) Way 1		$\frac{(5-2.2)^2+(41.6)^2}{(5-2.2)^2+(41.6)^2}$		1	Uses the distance form	nula to find the length PR	M1
(c) Way 1			>	1	Uses the distance form	nula to find the length PR	M1
	$\left\{=\sqrt{\frac{1}{2}}\right\}$	$\frac{96}{5}$ or $\sqrt{39.2}$ or $\frac{14}{5}\sqrt{5}$	'				M1
	$\left\{=\sqrt{\frac{1}{2}}\right\}$	$\frac{96}{5}$ or $\sqrt{39.2}$ or $\frac{14}{5}\sqrt{5}$	'		dependent	on the previous M mark	M1
	$\left\{=\sqrt{\frac{1}{2}}\right\}$	$\frac{96}{5}$ or $\sqrt{39.2}$ or $\frac{14}{5}\sqrt{5}$ $QR) = \frac{1}{2} (3\sqrt{5}) \left(\frac{14}{5}\sqrt{5}\right)$	'		dependent	on the previous M mark thod to find Area(SPQR)	dM1
	$\left\{=\sqrt{\frac{1}{2}}\right\}$	$\frac{96}{5}$ or $\sqrt{39.2}$ or $\frac{14}{5}\sqrt{5}$	'		dependent	on the previous M mark	dM1 A1 cao
	$\left\{=\sqrt{\frac{1}{2}}\right\}$	$\frac{96}{5}$ or $\sqrt{39.2}$ or $\frac{14}{5}\sqrt{5}$ $QR) = \frac{1}{2} (3\sqrt{5}) \left(\frac{14}{5}\sqrt{5}\right)$	'		dependent Complete correct me	on the previous M mark thod to find Area(SPQR)	dM1
Way 1	$\begin{cases} = \sqrt{\frac{1}{2}} \\ Area(SP) \end{cases}$	$\frac{96}{5} \text{ or } \sqrt{39.2} \text{ or } \frac{14}{5} \sqrt{5}$ $QR) = \frac{1}{2} \left(3\sqrt{5}\right) \left(\frac{14}{5}\sqrt{5}\right)$ $= 21 \text{ (units)}^2$		Qu	dependent Complete correct me	on the previous M mark thod to find Area(SPQR)	dM1 A1 cao (3) 13
	$\left\{=\sqrt{\frac{1}{2}}\right\}$	$\frac{96}{5} \text{ or } \sqrt{39.2} \text{ or } \frac{14}{5} \sqrt{5}$ $QR) = \frac{1}{2} \left(3\sqrt{5} \right) \left(\frac{14}{5} \sqrt{5} \right)$ $= 21 \text{ (units)}^2$ An alternative method	d of comp	Qu	dependent Complete correct me estion 15 Notes g (b)(i) is to substitute	on the previous M mark thod to find Area($SPQR$) 21 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20	dM1 A1 cao (3) 13 $y = 2x - 6$
Way 1	$\begin{cases} = \sqrt{\frac{1}{2}} \\ Area(SP) \end{cases}$ Note	$\frac{96}{5} \text{ or } \sqrt{39.2} \text{ or } \frac{14}{5} \sqrt{5}$ $QR) = \frac{1}{2} \left(3\sqrt{5}\right) \left(\frac{14}{5}\sqrt{5}\right)$ $= 21 \text{ (units)}^2$ An alternative method into C_2 and verify that	d of comp	Qu pletinguatio	dependent Complete correct me estion 15 Notes g (b)(i) is to substitute ns can be manipulate	on the previous M mark thod to find Area($SPQR$) 21 21 22 23 24 25 26 27 28 29 20 20 21 21 20 21 21 21 21 21	dM1 A1 cao (3) 13 $y = 2x - 6$ $6x + 55 = 0$
Way 1	$\begin{cases} = \sqrt{\frac{1}{2}} \\ Area(SP) \end{cases}$	$\frac{96}{5} \text{ or } \sqrt{39.2} \text{ or } \frac{14}{5} \sqrt{5}$ $QR) = \frac{1}{2} \left(3\sqrt{5}\right) \left(\frac{14}{5}\sqrt{5}\right)$ $= 21 \text{ (units)}^2$ An alternative method into C_2 and verify that	d of comp	Qu pletinguatio	dependent Complete correct me estion 15 Notes g (b)(i) is to substitute ns can be manipulate	on the previous M mark thod to find Area($SPQR$) 21 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20	dM1 A1 cao (3) 13 $y = 2x - 6$ $6x + 55 = 0$

Question Number	Scheme	Notes	Marks				
15.	$S(0,3)$ $\frac{9\sqrt{5}}{5}$ $R(0,3)$	$P(5,4)$ Area = 4.2 $M(3.6,1.2)$ $\frac{6\sqrt{5}}{5}$ $Q(6,0)$ $SQ = 3\sqrt{5} = \sqrt{45}$					
(c)	Let <i>M</i> be the midpoint of <i>PR</i>						
Way 2	$M(3.6, 1.2)$ $PM = \sqrt{(5-3.6)^2 + (4-1.2)^2} \left\{ = \frac{7\sqrt{5}}{5} \right\}$ $SM = \sqrt{(0-3.6)^2 + (3-1.2)^2} \left\{ = \frac{9\sqrt{5}}{5} \right\}$ $MQ = \sqrt{(3.6-6)^2 + (1.2-0)^2} \left\{ = \frac{6\sqrt{5}}{5} \right\}$	Finds the midpoint of PR and finds lengths PM , SM , MQ . Note: S and Q must be of the form $S(0, \alpha)$ and $Q(\beta, 0)$; $\alpha, \beta \neq 0$	M1				
	Area(SPQR) $= 2\left(\frac{1}{2}\left(\frac{9\sqrt{5}}{5}\right)\left(\frac{7\sqrt{5}}{5}\right) + \frac{1}{2}\left(\frac{9\sqrt{5}}{5}\right)\left(\frac{7\sqrt{5}}{5}\right)\right)$	dependent on the previous W mark					
	$= 2(6.3 + 4.2) = 21 \text{ (units)}^2$						
			(3)				
(c) Way 3	$\cos(\hat{SPQ}) = \frac{(\sqrt{26})^2 + (\sqrt{17})^2 - (\sqrt{45})^2}{2(\sqrt{26})(\sqrt{17})}$ \$\Rightarrow \hat{SPQ} = 92.7263 or 1.6183	Uses SP , PQ and SQ in a correct method of using the cosine rule to find angle $S\hat{P}Q =$ Note: S and Q must be of the form $S(0, \alpha)$ and $Q(\beta, 0)$; $\alpha, \beta \neq 0$	M1				
	Area($SPQR$) = $2\left(\frac{1}{2}\sqrt{26}\sqrt{17}\sin 92.7263\right)$	dependent on the previous M mark Complete correct method to find Area(SPQR)	dM1				
	$= 21 \text{ (units)}^2$	21	A1 cao				
			(3)				
4 2 4 1 4 1		uestion 15 Notes					
15. (b)(ii)		nt obtains a 3TQ in y, but this has come from an i					
		to incorrectly obtain the line $(26 - (y - 3)^2 + 36)$	+y = 1/				
	$x = \sqrt{26 - (y - 3)^2}, (x - 6)^2 + y^2 =$	$17 \Rightarrow \left(\sqrt{26 - (y - 3)^2} - 6\right)^2 + y^2 = 17$					
	$\Rightarrow (26 - (y - 3)^2 + 36) + y^2 = 17 \Rightarrow -2y^2 + 6y + 36 = 0$						
	Therefore this solution gets M0 A	0 dM0 dM0 A0					