

Model Optimization and Tuning Phase Template

Date	14th July 2024
Team ID	SWTID1720243396
Project Title	Panic Disorder Detection
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
KNN(with hyper-paramete risation Tuning)	<pre>knn_params={'n_neighbors':([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])} knn=KNeighborsClassifier() knn_cv=GridSearchCV(cv=5,estimator=KNeighborsClassifier(),param_grid=knn_params) knn_cv.fit(X_train,Y_train) # cv stands for cross-validatory Classification print("Best score:"+str(knn_cv.best_score_)) print("Best parameters: "+str(knn_cv.best_params_))</pre>
	Best score:0.9389632668581207 Best parameters: {'n_neighbors': 5}


```
svc_params={"C":np.arange(1,8)}
          svc=SVC(kernel="linear",class_weight='balanced', probability=True)
         svc_cv_model=GridSearchCV(svc,svc_params,cv=3,n_jobs=1,verbose=2)
         svc_cv_model.fit(X_train,Y_train)
         print("Best Parameter: "+str(svc_cv_model.best_params_))
         Fitting 3 folds for each of 7 candidates, totalling 21 fits
         SVM(Linear)
         [CV] END ......C=3; total time= 1.6min
         (with
         [CV] END ......C=4; total time= 1.9min
Hyper-paramete
         rization Tuning)
          [CV] END ......C=5; total time= 2.3min
         Best Parameter: {'C': 6}
          rf_params ={"max_depth": [10,20,30,40,50],
             "min_samples_split":[2,5,7,9,11],
"max_features":["sqrt","log2"],
"n_estimators":[100,200, 400, 600],
Random Forest
             "min_samples_split":[2,5,7,9],
             'bootstrap': [True]}
(With
          rf model=RandomForestClassifier(
          rf_cv_model=GridSearchCV(rf_model,rf_params,cv=3,n_jobs=-1,verbose=2)
Hyper-paramete
          rf_cv_model.fit(X_train,Y_train)
          print("Best Parameter:"+str(rf_cv_model.best_params_))
rization Tuning)
          Fitting 3 folds for each of 160 candidates, totalling 480 fits
          Best Parameter:{'bootstrap': True, 'max_depth': 10, 'max_features': 'sqrt', 'min_samples_split': 9, 'n_estimators': 100}
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning

KNN(with	
hyper-parameterisati	
on Tuning)	