

Técnicas de Programación Concurrente I Redes de Petri

Ing. Pablo A. Deymonnaz pdeymon@fi.uba.ar

Facultad de Ingeniería Universidad de Buenos Aires

Índice

- 1. Red Ordinaria de Petri
- Redes Generales de Petri
- Ejemplos

Red Ordinaria de Petri

Es un grafo dirigido bipartito que cumple con:

$$PN = (T,P,A)$$

donde:

- $T = t_1, t_2, ..., t_n$ es un conjunto de nodos llamado transiciones
- $P = p_1, p_2, ..., p_n$ es un conjunto de nodos llamado lugares
- $ightharpoonup A \subset (T \times P) \cup (P \times T)$ es un conjunto de arcos

Red Ordinaria de Petri (cont.)

Ejemplo:

donde:

- p_i son los estados del sistema
- t_i son los eventos que ocasionan los cambios de estado

Función de Marca

Se define como:

$$M: P \rightarrow N \cup 0$$

Cuando el token está en el lugar p_1 , entonces $M(p_1) = 1$ y $M(p_2) = 0$. Por lo tanto $M_0 = (1, 0)$

Funciones de Entrada y Salida

Sea $t \in PN = (T, P, A)$ una transición tSe definen las funciones:

- $I(t) = p/p \in P/(p, t) \in A \subset P$ es la entrada o input de la transición t
- \triangleright $O(t) = p/p \in P/(t,p) \in A \subset P$ es la salida o output de la transición t

Ejemplo 1

Ejemplo 1 - Grafo de Alcance

Ejemplo 2

Ejemplo 2 - Grafo de Alcance

8/1

Algunas interpretaciones

Lugares de entrada	Transiciones	Lugares de salida
Precondiciones	Eventos	Postcondiciones
Datos de entrada	Cómputos	Datos de salida
Señales de entrada	Procesamiento de Señales	Señales de salida
Bufferes de entrada	Procesador	Bufferes de salida

Índice

- 1. Red Ordinaria de Petri
- 2. Redes Generales de Petri
- Ejemplos

Red General de Petri

Es un grafo dirigido bipartito que cumple con:

$$PN = (T, P, A, W, M_0)$$

donde:

- $T = t_1, t_2, ..., t_n$ es un conjunto de nodos llamado transiciones
- $ightharpoonup P = p_1, p_2, ..., p_n$ es un conjunto de nodos llamado *lugares*
- $ightharpoonup A \subseteq (T \times P) \cup (P \times T)$ es un conjunto de arcos
- \triangleright W : A \rightarrow \mathbb{N} es la función de peso
- ▶ $M_0: P \rightarrow N \cup \{0\}$ es la función de marca inicial

Ejemplo

Reglas Generales de Disparo de

Transiciones

- La transició t está habilitada si y sólo si $M(p) \geq W(p, t) : \forall p \in I(t)$
- Cuando t se dispara:
 - $\forall p \in I(t) : M(p) \leftarrow M(p) W(p, t)$
 - $\forall p' \in O(t) : M(p') \leftarrow M(p') + W(p', t)$

Índice

- 1. Red Ordinaria de Petri
- Redes Generales de Petri
- 3. Ejemplos

Ejemplo

Productor Consumidor con Bufer Infinito

Productor Consumidor con Bufer Acotado

Cliente - Servidor

Bibliografía

► Apunte de Redes de Petri.