AD-A063 901

ARMY MISSILE RESEARCH AND DEVELOPMENT COMMAND REDSTO--ETC F/6 17/7

LANCE CONFIGURATION G-FLEX ACCELEROMETER DESIGN VERIFICATION. (U)

SEP 78 J S HUNTER

DRDMI-T-78-91

NL

END DATE FILMED 4.—79 ADA 063901

TECHNICAL REPORT T-78-91

LANCE CONFIGURATION Q-FLEX ACCELEROMETER DESIGN VERIFICATION

U.S. ARMY
MISSILE
RESEARCH
AND
DEVELOPMENT
COMMAND

Joe S. Hunter
Guidance and Control Directorate
Technology Laboratory

DOC FILE COPYS

6 September 1978

Approved for Public Release; Distribution Unlimited.

Redstone Arsenal, Alabama 35809

DMI FORM 1000, 1 APR 77

79 02 12 023

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 1. REPORT NUMBER T-78-91 5. TYPE OF REPORT & PERIOD COVERED TITLE (and Subtitle) Lance Configuration Q-Flex Accelerometer Technical Repert -Design Verification . 6. PERFORMING ONG, REPORT NUM 8. CONTRACT OR GRANT NUMBER(+) 7. AUTHOR(e) Joe S./Hunter PROGRAM ELEMENT, PROJECT, TASK PERFORMING ORGANIZATION NAME AND ADDRESS Commander US Army Missile Research & Development Command ATTN: DRDMI-TG Alabama Redstone Arsenal 35809 11. CONTROLLING OFFICE NAME AND ADDRESS 6 Sept Commander US Army Missile Research & Development Command ATTN: DRDMI-TI MUMBER OF PAGES 36 Redstone Arsenal Alabama 35800
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified DRDMI-T-78-91 154. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; unlimited distribution. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Accelerometer Sensor Guidance and Control ABSTRACT (Continue on reverse side if necessary and identify by block number) Sundstrand Data Control (SDC), Inc. was awarded a contract during August 1977 to perform design analysis, fabrication and testing on three (3) Quartz Flexure Accelerometers built to meet the requirements of Lance Missile Interim Specification (MIS) Number 13227C, dated 24 September 1975. The main thrust of the program with Sundstrand was to improve the Q-Flex Accelerometer performance in the area of bias thermal hysteresis (BTH) DD , FORM 1473

UNCLASSIFIED

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) The design analysis portion of the program was performed to establish alternative methods to improve BTH.

TABLE OF CONTENTS

Sec	tion Page
1	Introduction 5
2	Summary of SDC Test Program 7
3	Deisgn Verification Test Program at MIRADCOM 7
4	Conclusions and Recommendations
	Appendix A. Scale Factor and Bias Temperature Coefficient Test Data
	Appendix B. Vertical and Horizontal Alignment Temperature Sensitivity Test Results

MTIS .	finite section
006	Buit Section
UR ENGINEERS	(E) C
JUSTIFICAT	108
Ets vales	HON / ALLE ROILITY COURS
-	FION / ALLE ADELITY CODES AVAIL AND / SPECIAL
BIS TRUE IS	
BIS TRUE IS	

79 02 12 023

LIST OF ILLUSTRATIONS

Figu	Page Page
1	Lance TIP Accelerometer Design Verification Test High-g Linearity (S/N 101)
2	Lance TIP Accelerometer Design Verification Test High-g
	Linearity Conducted on SDC Centrifuge (S/N 102) 11
3	Lance TIP Accelerometer Design Verification Test High-g
	Linearity Conducted on SDC Centrifuge (S/N 103) 12
4	Bias Variation Over All Environments
5	Lance TIP Accelerometer Design Verification Test High-g
	Linearity Conducted on MIRADCOM
	Centrifuge (SN/101)
6	Lance TIP Accelerometer Design Verification Test High-g
	Linearity Conducted on MIRADCOM Centrifuge (S/N 102) 18
7	Lance TIP Accelerometer Design Verification Test High-g
	Linearity Conducted on MIRADCOM Centrifuge (S/N 103) 19
8	Bias Thermal Hysteresis (S/N 101)
9	Bias Thermal Hysteresis (S/N 102)
10	Bias Thermal Hystersis (S/N 103)
11	Scale Factor Thermal Hysteresis (S/N 101)
12	Scale Factor Thermal Hysteresis (S/N 102)
13	Scale Factor Thermal Hysteresis (S/N 103)

LIST OF TABLES

Tabl	le F	ag	gе
1	Lance ATP Data Summary	•	8
2	Lance Q-Flex Accelerometer Nonlinearity Test Summary (Tested at SDC)		9
3	Lance Bias Values	1	13
4	Summary of Accelerometer Performance Characteristics	1	13
5	Lance Q-Flex Accelerometer Nonlinearity Test Summary (Tested at MIRADCOM)	. 1	16
6	Scale Factor and Bias Stability Through Non-Operating Vibration (S/N 101)	. 2	27
7	Scale Factor and Bias Stability Through Non-Operating Vibration (S/N 102)	. :	28
8	Scale Factor and Bias Stability Through Non-Operating Vibration (S/N 103)	. :	29
9	Summary of Tests Conducted at SDC and MIRADCOM		30

1. INTRODUCTION

Sundstrand Data Control (SDC), Inc., was awarded a contract during August 1977, to perform design analysis, fabrication and testing on three Quartz Flexure Accelerometers built to meet the requirements of Lance Missile Interim Specification (MIS) Number 13227C, dated 24 September 1975.

The main thrust of the program with Sundstrand was to improve the Q-Flex Accelerometer performance in the area of bias thermal hysteresis (BTH). The design analysis portion of the program was performed to establish alternative methods to improve BTH. During the course of the analysis, the following areas were investigated:

- Magnet Matching
- Cubic Self-Heating
- Servo Loop Design
- Bobbin Material
- Use of Welded Pickoff and Torquer Leads
 - Proof Mass Assembly Sensitivity

The purpose of the magnet matching investigation for the Q-Flex sensor was to reduce the quadratic nonlinearity term. The effectiveness of the match was

determined through vibration rectification tests. Magnet matching does not directly affect BTH.

The cubic self-heating investigation resulted in the incorporation of a negative temperature coefficient resistor (NTCR) for use in the output circuit to reduce nonlinearity due to sensor self-heating.

The Lance servo electronics were reconfigured for use with the standard production Q-Flex sensor during the servo loop design investigation. The Q-Flex sensor uses air damping as one servo damping source. The standard production sensor has had a modification incorporated to eliminate errors due to static electricity. This modification reduced the air damping, necessitating a modification of the Lance electronics, originally configured for a special sensor for Lance, which had the higher air damping.

The first design area investigated which directly affects bias was torquer bobbin material. There are two torque coil bobbins in the Q-Flex sensor which are attached to the quartz reed with an adhesive. Any stress on the reed will cause it to warp and produce a bias error through the action of the servo electronics. The attachment of the bobbins to the quartz reed produces stress through differential expansion of dissimilar materials and, thus, produces

bias errors. The standard bobbin is made of aluminum, which has a relatively high temperature coefficient of expansion compared to quartz. As the temperature is varied, the aluminum expands or contracts more than the quartz reed, and this causes stress to build up at the interface in the adhesive. A bias error is produced when the stress in the adhesive is transferred to the quartz. This bias error changes with temperature. Bias instability will result if the adhesive yields with time and temperature. Bias instability can be reduced by fabricating the torquer bobbin from a low temperature coefficient of expansion material such as quartz.

The effects of welded pickoff and torquer leads were investigated to determine their contribution to bias error. In the past, Sundstrand has made pickoff and torquer lead connections with electrically conductive epoxy. Temperature variations cause a differential expansion between the conductive epoxy and the quartz reed substrate and produce output bias errors. These induced errors are not stable as a function of time and temperature. Similar problems exist when conductive epoxy is used on the torquer coil leads. The welded pickoff and torquer leads tasks were undertaken in an attempt to resolve these problems.

The last design analysis area to be investigated was related to proof mass assembly sensitivity. The proof mass assembly sensitivity investigation was designed to look at the effects of bias instability rather than the causes.

The three quartz flexure accelerometers were to be built to meet the design and performance requirements outlined in MIS 13227C, dated 24 September 1975. In addition to the requirements outlined in the above specification, the accelerometer bias at 80° F was specified to within plus and minus 50 μ g of its initial 80° F value after each period of stabilization above and below 80° F. High-reliability components were specified for all electronic parts.

Program testing was directed at verifying acceptable accelerometer performance under the requirements outlined in MIS 123227C. The following tests were performed by Sundstrand on the three quartz flexure accelerometers:

- Initial acceptance test procedure (ATP)
- High-g nonlinearity over the -40°F to 200°F temperature range
- Bias stability after exposure to temperature of -65° F and 200° F (25 cycles minimum each test unit)

- Non-operating vibration
- Final acceptance test procedure (ATP)

2. SUMMARY OF SDC TEST PROGRAM

The data generated during the SDC test program showed that all three accelerometers performed well within the Lance specification with the exception of spin sensitivity. Since the spin sensitivity results on the three accelerometers were near the specification limit, sensor yield became of some concern. To quantify this potential yield problem, SDC performed an analysis to determine the spin sensitivity magnitudes to be expected from various possible error sources. More than 100 sensors were tested to support the analysis. The analysis showed that the magnitudes experienced were essentially what would be expected based upon the part and assembly testing tolerances. The analysis and test data on the 100 units indicated that the yield in quantity production would be very high for this parameter and that no part, assembly, or tooling changes would be required.

Table 1 shows the data from the preenvironmental and post-environmental ATP's at Sundstrand. Accelerometer nonlinearity test results are summarized in Table 2. Figures 1, 2, and 3 depict the nonlinearity at ambient temperature and at the temperature extremes. Table 3 shows the bias stability through all environments, including both ATP's. Figure 4 is a plot of the bias through the entire test sequence at Sundstrand.

3. DESIGN VERIFICATION TEST PROGRAM AT MIRADCOM

Many of the tests that were conducted at SDC were repeated at MIRADCOM to provide added confidence in the performance of the accelerometers. Special emphasis was directed toward evaluating the accelerometer bias thermal hysteresis (BTH) characteristics because problems had been experienced in that area on a previous program. A Manufacturing Methods and Technology (MM&T) program, directed at improving BTH, was conducted concurrently with the Lance program. Many of the improvements made in BTH can be attributed to the successful MM&T program.

Table 4 provides a summary of some of the accelerometer performance characteristics evaluated at MIRADCOM. Scale factor and bias performance shown in the table represent the value of these parameters at the outset of the MIRADCOM test program. Scale Factor Temperature Coefficient (SFTC) performance proved to be extremely good, with performance

TABLE 1. LANCE ATP DATA SUMMARY

执行	DATE OF					60	BEFORE ENVIRONMENTAL TESTS	ENVIR	ONME	NTAL	TESTS	97.5	21					
XX	SF AND	BREL	ATED V	SF AND B RELATED VALUES ALIGNMENT	ALIGNA	MENT		LINEARITY	YT!		VIB	VIBRATION	14.3	SPIN TESTS	ESTS	LEAK	LEAK RSS ERROR	ROR
LIND	SF	BIAS	SFTC	ВТС	W	MH	HIGH 9(%)	(%)6	IG (mg)	(6)	VRC (mg/g²)		ASF	SENS	ECM	RATE	BOOST SUST	SUST.
SN	(V/g)	(mg)	(36°F)	(mg/°F)	(mr)	(mr)	17-26 AVG	8	30°	.09	5.39	1.3g	8	(MB/S)	(in.)	sec)		
10	0.49996	-0.037	0.0002	0.0015	0.064	-0.015	0.001	0.002	-0.002	-0.004	-0.001	9000	0.002	-0.020	and the same	0.021 2 × 10 •	0.012	0.228
8	0.49997	-0.045	0.0002	0.0004	0.049	-0.030	0.009	0.012	900.0-	-0.002	0.002	0.00	0.00	0.034		0.022 2 x 10 *	2.024	0.374
8	0.49997	-0.012	0.0003	0.0006	-0.013	0.010	0.00	0.003	-0.003	0.00	0.001	0.00	0000	0.025		0.013 2 x 10 *	0.00	0.274
SPEC	0.50000	0.200 ABS	0.0100	0.0060	0.500	1.50	0.020	0.030	- 200	0.200	0.160	0.160	0.026	0.044		0.050 2 × 10 °	0.03	0.380

ri or		4		12			AFTER ENVIRONMENTAL TESTS	ENVIR	ONME	VTAL T	ESTS		33					
mer	SF AN) B REL	ATED V	ALUES	SF AND B RELATED VALUES ALIGNMENT	MENT		LINEARITY	RITY		VIB	VIBRATION	7	SPIN TESTS	ESTS	LEAK	LEAK RSS ERROR	RROR
TINO	SF	BIAS	SFTC	втс	N	HM	HIGH g (%)	(%)	IG (mg)		VRC (mg/g²)	9/9²)	ASF	SENS ECM	ECM	RATE	BOOST SUST.	SUST.
S/N	(6/A)	(mg)		(%/° F) (mg/° F)	(mr)	(mr)	17-26 AVG	33	30°	و00	5.3g 1.3g	1.3g	(%)	(mg)	(in.)	(cc/sec)		
10	01 0.50012	-0.00	0.0002	0.0015	0.022	0.00	0.001	100.0	-0.007	-0.003	-0.001	0.005	0.003	-0.019		0.029 2 × 10 °	0.010	0.216
02	02 0.50013	-0.042	0.0002	0.0004	-0.080	0.080	900:0	0.010	-0.013	-0.009	-0.001	9000	0.002	0.032		0.028 2 × 10 •	0.012	0.352
8	03 0.50014	0.00	0.0002	0.0004	0.020	-0.024	0.002	0.002	-0.00	0.002	0.002	0.007	0.003	0.024		0.022 2 × 10	0.007	0.263
SPEC	SPEC 0.50000 LIMIT ±.00125	0.200 ABS	0.0100	0.0060	0.500	1.50	0.020	0.030	0.200	0.200	0.160	0.160	0.026	0.044		0.050 2 × 10	0.038	0.330

TABLE 2. LANCE Q-FLEX ACCELEROMETER NONLINEARITY TEST SUMMARY (TESTED AT SDC)

-0.0019 -0.0018 -0.0028 0.0031 0.0026 -0.0022 -0.0011 -0.0038 -0.0012 -0.0020 339 NONLINEARITY (%) 0.0032 0.0028 0.0003 -0.0002 0.0023 0.0010 S/N 103 269 0.0016 0.0015 0.0032 0.0031 0.0019 0.0035 0.0027 0.0027 179 0.0079 0.0097 0.0092 0.0104 0.0081 0.0090 0.0068 0.0079 0.0098 0.0075 339 NONLINEARITY (%) 0.0079 0.0074 0.0085 0.0079 99000 0.0094 0.0080 0.0073 0.0067 0.0058 S/N 102 **269** 0.0051 0.0049 0.0059 0.0056 09000 0.0051 179 0.0015 -0.0055 -0.0057 -0.0039 -0.0050 -0.0061 -0.0093 -0.0088 -0.0003 -0.0081 339 NONLINEARITY (%) -0.0024 -0.0027 -0.0010 0.0025 0.0044 0.0005 -0.0020 -0.0030 S/N 101 269 0.0030 0.0009 0.0012 0.0003 0.0009 0.0026 179 TEMPERATURE (*F) AMBIENT (NOM. 72°) AVERAGE AVERAGE AVERAGE 200 9

Figure 1. Lance TIP accelerometer design verification high-g linearity conducted on SDC centrifuge (S/N 101).

Figure 2. Lance TIP accelerometer design verification test high-g linearity conducted on SDC centrifuge (S/N 102).

Figure 3. Lance TIP accelerometer design verification test high-g linearity conducted on SDC centrifuge (S/N 103).

TABLE 3. LANCE BIAS VALUES*

			EXTREM	EXTREME VALUES
NS.	(bd)	VALUE (μ9)	MAX (µg)	NIII
101	S	-28	8	\$5-
102	-23	84	91	8
103	25	22	257	-12

Distribution summary. All values after bias trim. All environments.

TABLE 4. SUMMARY OF ACCELEROMETER PERFORMANCE CHARACTERISTICS

•		_	_	_		_
	SPIN SENS.	mg/RPS²	-0.020	0.032	0.025	0.044
The second secon	(%	33g (200°F)	-0.017	0.001	-0.009	±0.030
-	NONLINEARITY (%)	33g (amb)	-0.013	-0.003	-0.015	±0.030
	NON	33g (-40°F)	1	1	-0.010	±0.030
1	VT TC	HORIZ (mr/°F)	0.000	0.000	0.000	0.010
The second second second second	ALIGNMENT TC	VERT (mr/°F)	0.001	0.000	0.000	0.010
The second secon	S	BTC (mg/°F)	1.4	0.4	0.3	6.0
	TED VALUE	SFTC (%V°F)	0.0001	0.0000	0.0002	0.0100
	SF AND BIAS RELATED VALUES	BIAS (mg)	-0.009	-0.039	0:030	0.200 ABS
	SF AN	SF (V/g)	0.499907	0.499906	0.499926	0.50000
A STATE OF THE PARTY OF THE PAR		S/N	101	102	103	SPEC

Figure 4. Bias variation over all environments.

equal to or greater than two orders of magnitude better than the design specification on two out of three of the units tested. The Negative Temperature Coefficient Resistor (NTCR) performed exceptionally well in reducing the accelerometer SFTC characteristic. Bias Temperature Coefficienct (BTC) performance was also well within the design specification requirements. Both SFTC and BTC results are averages taken over the -40°F to 200°F temperature operating range. Scale factor and bias temperature coefficients for -40°F temperature increments are given in Appendix A. The changes in vertical and horizontal axis alignment temperature coefficients over the operating temperature range are negligible. Vertical and horizontal alignment temperature coefficients for -40°F temperature increments are contained in Appendix B. Nonlinearity tests were performed at -40° F, ambient and 200° F temperatures on S/N 103. Serial numbers 101 and 102 were subjected to nonlinearity testing at ambient and 200° F temperatures only. A summary of the nonlinearity results obtained on all three accelerometers is contained in Table 4. Spin sensitivity is the only parameter measured which was near the Lance specification limit. The spin sensitivity test results obtained at MIRADCOM (Table 4) were almost identical to the results obtained at SDC (Table 1).

The results of the complete nonlinearity tests series on the three accelerometers evaluated at MIRADCOM are contained in Table 5. Comparing these test results with the results obtained at SDC's facility, it is noted that there is an average difference of approximately 0.012% (i.e., the results obtained at SDC were approximately 0.012% more positive than MIRADCOM's test results). However, the results obtained at both facilities were well within Lance specifications. Figures 5 and 6 show the nonlinearity of S/N's 101 and 102 at ambient temperatures at the high temperature extreme. Figure 7 shows the nonlinearity of S/N 103 at ambient temperature and the two temperature extremes.

The bias thermal hysteresis (BTH) test results on the three accelerometers are shown in Figures 8 through 10. The instruments were stabilized at the hot (200° F) and cold (-40° F) temperatures for a nominal 4 hours each. The initial bias reading (153 µg) taken on S/N 101 after 16 hours of stabilization at ambient temperature during run 5 (Figure 8) is assumed to be in error. The unit was allowed to remain at ambient over a weekend for a total of 64 hours when a bias reading of $12 \mu g$ above the run 0 bias was recorded. Fifteen additional runs were taken on S/N 101 without incurring any large

TABLE

	101	S/N 101	ne gi	12.0	S/N 102	26 (2)(1		S/N 103)() (20)
8. 75 850 970	NON	NONLINEARITY (%)		NON	NONLINEARITY (%)	nter a Pliza Pales	NON	NONLINEARITY (%)	e alli
TEMPERATURE (°F)	971	269	339	9/1	269	339	6/1	269	339
9	# 83 # 13 # 14	SSV Fi	100 to 10	lana cest	10 °5 18/5/3 3/4.1	21(1) 21(1)	-0.0101	-0.0110	-0.0108 -0.0092
AVERAGE	9763 (923 de de			10 (A) 23 (A)	3.0 (7)		-0.0073	-0.0098	-0.0100
AMBIENT (NOM. 72)	-0.0085 -0.0076 -0.0069	0.0111 0.0105 0.0113	-0.0106 -0.0147 -0.0134	-0.0079 -0.0062 -0.0043	-0.0056 -0.0027 -0.0027	-0.0029 -0.0048 -0.0021	-0.0133 -0.0141 -0.0107	-0.0137 -0.0130 -0.0102	-0.0146 -0.0152 -0.0146
AVERAGE	-0.0077	-0.0110	-0.0129	-0.0061	-0.0037	-0.0033	-0.0127	-0.0123	-0.0148
200	-0.0141	-0.0197	-0.0235	-0.0043	-0.0005	-0.0044	-0.0073	-0.0062	-0.0096
AVERAGE	-0.0108	-0.0151	-0.0169	-0.0029	0.0014	9000:0	-0.0059	-0.0070	-0.0094

Figure 5. Lance TIP accelerometer design verification test high-g linearity conducted on MIRADCOM centrifuge (S/N 101).

Figure 6. Lance TIP accelerometer design verification test high-g linearity conducted on MIRADCOM centrifuge (S/N 102).

Figure 7. Lance TIP accelerometer design verification test high-g linearity conducted on MIRADCOM centrifuge (S/N 103).

Figure 8. Bias thermal hysteresis (S/N 101).

Figure 9. Bias thermal hysteresis (S/N 102).

shifts. All post hot and cold readings were taken after at least four hours of stabilization at ambient temperatures.

Scale factor hysteresis information is presented in *Figures 11* through 13. There appears to be a slight trend of increasing scale factor (5.8 to 7.3 μ V/g per nanoscript) on each of the three accelerometers as they progress through the series of hot and cold environments.

The last test series to be conducted was scale factor and bias stability through non-operating vibration. Ten scale factor and bias runs were made before and after the units were subjected to the non-operational vibration environment specified in the Lance Accelerometer MIS. The three accelerometers were vibrated along each of the three orthogonal axes. Test results are presented in Tables 6, 7 and 8.

4. CONCLUSIONS AND RECOMMENDATIONS

Table 9 presents an abbreviated summary of the tests conducted at SDC

and MIRADCOM and can be used for a quick comparison between the test results from both facilities. All parameters listed in *Table 9* meet the requirements outlined in the Lance MIS.

The bias thermal hysteresis design goal of $\pm 50~\mu$ g's from the initial bias reading was met on every run except one. Run 4 on S/N 103 showed a deviation of 68 μ g's. This value, however, was still within the Lance specification of 200 μ g's absolute.

The overall design, fabrication and test program on the Lance Q-Flex Accelerometer has been a success.

It is recommended that additional scale factor hysteresis tests be conducted on the accelerometers to establish the trend reversal. It is also recommended that the source of the nonlinearity difference between the SDC and MIRADCOM centrifuge be determined.

Figure 11. Scale factor thermal hysteresis (S/N 101).

Figure 12. Scale factor thermal hysteresis (S/N 102).

Figure 13. Scale factor thermal hysteresis (S/N 103).

TABLE 6. SCALE FACTOR AND BIAS STABILITY THROUGH NON-OPERATING VIBRATION (\$/N 101)

	BON NO.	N-OP. SINE SWEEP A	S/N 161 SCALE FACTOR AND BIAS BEFORE NON-OP. SINE SWEEP AND SINUBOIDAL DWELL	ברו ב	
RUN NO.	Vo (+ 1g)	Vo (- 1g)	S.F. (V/9)	BIAS (µg)	AVG. TEMP. (°F)
	0.499850	0.499890	0.499865	08-	72
2	0.499962	0.499688	0.499875	8 2	22
8	0.499663	0.499690	0.499677	-51	72
•	0.499662	0.499692	0.499877	8.	72
9	0.499662	0.499692	0.499877	8.	72
•	0.499866	0.499884	0.499675	8 2	72
1	0.499859	0.499890	0.499875	5	72
8	0.499859	0.499890	0.499875	-3-	72
6	0.499857	0.499892	0.499875	\$ 5	72
10	0.499860	0.499883	0.499872	-23	72
AVG	0.499860	0.499888	0.499874	-28.9	3.1
	W	FTER SINE SWEEP A	AFTER SINE SWEEP AND SINUSOIDAL DWELL	111	
•	0.499860	0.499888	0.499874	-28	14
2	0.499858	0.499886	0.499872	-58	7
6	0.499860	0.499887	0.499874	-27	7
•	0.499859	0.499888	0.499874	62-	7
9	0.499860	0.499890	0.499875	e	7
9	0.499861	0.499888	0.499875	-27	F
1	0.499860	0.499889	0.499875	82-	7
	0.499861	0.499890	0.499876	6 2 -	7
6	0.499861	0.499889	0.499875	-58	7
10	0.499861	0.499890	0.499876	-58	71
AVG	0.499860	0.499889	0.499875	-28.4	

TABLE 7. SCALE FACTOR AND BIAS STABILITY THROUGH NON-OPERATING VIBRATION (S/N 102)

P

RUN NO.	2	TOTAL SHIPE	NON-UP. SINE SWEEP AND SINGSOIDAL DWELL	112	
	Vo (+ 1g)	Vo (- 1g)	S. F. (V/g)	BIAS (µg)	AVG. TEMP. (°F)
	0.499857	-0.499914	0.499886	19-	72
8	0.49960	-0.499916	0.499888	\$	72
6	0.499857	-0.499917	0.499887	8	22
•	0.499857	-0.499920	0.499889	\$	22
	0.499657	-0.499920	0.499889	\$	22
9	0.499858	-0.499922	0.499890	\$	22
7	0.499655	-0.499920	0.499888	\$	72
60	0.499653	-0.499919	0.499886	*	22
6	0.499853	-0.499921	0.499887	*	22
10	0.499852	-0.499920	0.499886	88	72
AVG	0.499856	-0.499919	0.499888		
		TER SINE SWEEP A	AFTER SINE SWEEP AND SINUSOIDAL DWELL	n	
•	0.499850	0.499910	0.499880	8	8
2	0.499848	0.499912	0.499880	\$	8
8	0.499849	0.499913	0.499881	*	8
•	0.499849	0.499915	0.499882	*	8
9	0.499849	0.499916	0.499883	-67	8
9	0.499850	0.499916	0.499883	98	8
1	0.499850	0.499919	0.499885	8	8
∞	0.499848	0.499918	0.499883	02-	
6	0.499848	0.499916	0.499682	3	8
10	0.499848	0.499918	0.499883	-70	69
AVG	0.499849	0.499915	0.499882	+99-	HALL ALBERTHON

TABLE 8. SCALE FACTOR AND BIAS STABILITY THROUGH NON-OPERATING VIBRATION (S/N 103)

	. ON	BIN 103 SCALE FACTION-OP. SINE SWEEP A	S/N 103 SCALE FACTOR AND BIAS BEFORE NON-OP. SINE SWEEP AND SINUSOIDAL DWELL	ELL ELL	
RUN NO.	Vo (+ 1g)	Vo (- 1g)	S.F. (V/9)	BIAS (µg)	AVG. TEMP. (°F)
1.000	0.499869	0.499837	0.499853	32	22
2	0.499874	0.499836	0.499855	8	22
e	0.499877	0.499837	0.499857	\$	22
•	0.499879	0.499839	0.499659	\$	72
2	0.499878	0.499839	0.499359	8	72
9	0.499878	0.499839	0.499659	8	72
7	0.499879	0.499838	0.499859	4	72
•	0.499676	0.499839	0.499858	37	72
0	0.499876	0.499839	0.499858	37	22
10	0.499875	0.499637	0.499856	88	72
AVG	0.499676	0.499838	0.499857	38.1	2
	W	TER SINE SWEEP A	AFTER SINE SWEEP AND SINUSOIDAL DWELL	n	
	0.499882	0.499839	0.499861	£3	22
2	0.499880	0.499838	0.499859	88	72
9	0.499880	0.499838	0.499859	42	72
•	0.499881	0.499839	0.499860	42	72
2	0.499881	0.499839	0.499860	42	22
9	0.499883	0.499840	0.499862	2	22
7	0.499882	0.499839	0.499861	3	72
	0.499884	0.499840	0.499862	7	22
•	0.499886	0.499841	0.499864	\$	72
10	0.499886	0.499840	0.499863	46	72
AVG	0.499883	0.499839	0.499861	43.2	ACCUPATION OF THE

TABLE 9. SUMMARY OF TESTS CONDUCTED AT SDC AND MIRADCOM

PERFORMANCE	SPEC.	SVN	S/N 101	S/N	L/N 102	8/1	S/N 103
PARAMETER	VALUE	ogs	MIRADCOM	SDC	MIRADCOM	SDC	MIRADCOM
SCALE FACTOR (V/g)	0.5 ± 0.25%	0.499960	0.499907	0.499970	0.499906	0.499970	0.499926
·BIAS (µ9)	200 ABS	37	9	97	89	-12	8
SFTC (NOF)	0.0100	0.0002	10000	0.0002	00000	0.00025	0.0002
BTC (LOV-F)	9	1.5	1.1	4.0	₽:0	0.5	0.3
VERT MISAL (mr)	0.500	0.043	1	-0.065	1	00.00	1
HORIZ MISAL (mr)	1.50	-0.633	1	0.025	1	-0.00	1
VMTC (mr/F)	0.010	ı	1000	1	0000	1	0000
HMTC (mr/F)	0.010	1	0000	1	0000	1	0000
NONLIN. at 33g (%)	0.030	-0.0050	-0.013	0.0075	-0.003	-0.0022	-0.015
VRC at 5.3g (mg/g²)	0.160	-0.00	1	-0.002	1	1000	1
SPIN SEN (mg/RPS2)	0.044	-0.020	-0.020	0.034	0.032	0.025	0.025
ECM (inches)	0.050	0.025	ı	0.025	,	910.0	1
BIAS TH. HYSTERESIS							
INITIAL BIAS (49)	200 ABS	ď	Ŧ	-23	ş	2	9
FINAL BIAS (40)	200 ABS	-58	7	7	8	27	2
BIAS EXTREMES							
MIN BIAS (40)	200 ABS	સ્	*	8	*	-12	-16
MAX BIAS (ug)	200 ABS	8		9	-12	25	2
S.F. TH HYSTERESIS							
INITIAL S.F. (V/d)	0.5+0.25%		0.499820		0.499804		0.499829
FINAL S.F. (V/g)	0.5 + 0.25%		0.499936		0.499950		0.499051
S.F. EXTREMES		STATE OF THE STATE					
MIN S.F. (V/g)	0.5 ± 0.25%		0.499726		0.499764		0.499790
MAX S.F. (V/g)	0.5 ± 0.25%	10.1	0.499940		0.499950		0.499056
BIAS: BEFORE VIB.	200 ABS		-28.9		63.0		38.1
AFTER VIB.	200 ABS		-28.4		-86.4		43.2
S.F.: BEFORE VIB.	0.5 ± 0.25%		0.499674		0.499888		0.499857
AFTER VIB.	0.5 ± 0.25%		0.499875		0.499882		0.499861

INITIAL VALUES (BEFORE ENVIRONMENTAL TESTS)
 AVERAGE OF BEFORE AND AFTER ENVIRONMENTAL TEST RESULTS

APPENDIX A

SCALE FACTOR AND BIAS TEMPERATURE COEFFICIENT TEST DATA

TEMP	S/N 101	SCALE FACTOR	S/N 101 SCALE FACTOR AND BIAS TESTS		S.F.	BIAS TEMB SENS
	Vo (+ 1g)	Vo (-1g)	S.F. (V/g)	81AS (4g)	(4.4)	(Hov.F)
	0.499765	-0.499957	0.499861	-192		
9	0.499769	-0.499964	0.499867	-185		
	0.499773	-0.499966	0.499870	-193		
	AVERAGE S.F. & BIAS	F. & BIAS	0.499866	-193		89
	0.499839	-0.499964	0.499902	-127		
	0.499643	-0.499965	0.499904	-122		
•	0.499844	-0.499968	0.499906	-124		
	AVERAGE S.F. & BIAS	F. & BIAS	0.499904	-124	0.0002	1.72
	0.499856	-0.499938	0.499897	-82		
\$	0.499855	-0.499939	0.499897	484		
}	0.499865	-0.499941	0.499903	9/-		
	36	S.F. & BIAS	0.499899	180	0.0000	1.07
	0.499923	-0.499939	0.499931	-16		
8	0.499931	-0.499940	0.499936	6-		
8		-0.499940	0.499934	-12		
	AVERAGE S	S.F. & BIAS	0.499934	-12	0.0002	1.72
	0.499916	-0.499878	0.499897	88		
8	0.499933	-0.499890	0.499912	43		
3	0.499924	-0.499882	0.499903	42		
	AVERAGE S.F. & BIAS	.F. & BIAS	0.499904	4	-0.0002	1.32
	0.499835	-0.499754	0.499795	18		
8	0.499838	-0.499757	0.499798	18		
}	0.499839	-0.499760	0.499800	82		
	AVERAGE S.F. & BIAS	F. & BIAS	0.499798	18	-0.0005	1.00
	0.499825	-0.499675	0.499750	150		
	0.499824	-0.499669	0.499747	155		
82	0.499826	-0.499678	0.499752	148		
100	AVERAGE S.F. & BIAS	.F. & BIAS	0.499750	151	-0.0002	1.75
	To the second			0.1	20.000	

AME	3	B/N 102 SCALE FACTOR AND BIAS TEST	R AND BIAS TEST	-		-
	Vo (+ 1g)	Ve (-1g)	8.F. (V/g)	(m) SV18	CAPP)	(MO'F)
	0.490654	-0.499625	0.499840	239		
	0.490662	-0.499640	0.499651	37		
9	0.499660	-0.499643	0.499852	17		
	AVERAGE S.F.	. & BIAS	0.499648	28		
	0.499690	-0.499906	0.499903	9		
•	0.499693	-0.499907	0.499900	4-		
•	0.499604		0.499903	-17		
	AVERAGE 8.F.	9	0.499902	-13	0.0003	-1.02
	0.499664	-0.499927	0.499906	7		
5	0.499686	-0.499830	0.499908	7		
3	0.49966	-0.499932	0.499909	9		
	AVERAGE 8.F	. A BIAS	0.499908	7	0,0000	-0.78
	0.499836	-0.499978	0.499957	7		
1	0.499834	-0.499978	0.499956	7		
3	0.499934	-0.499978	0.499956	7		
	AVERAGE S.F. A	3	0.499956	+3	0.0002	20:00
	0.499905	-0.499960	0.499933	55		
5	0.499904	-0.499965	0.499935	-61		
}	0.499902	-0.499961	0.499932	-59		
	AVERAGE 8.F	. A BIAS	0.499833	85-	-0.0001	-0.38
	0.499816	-0.499876	0.499846	8		
	0.499815	-0.498875	0.499845	8		
3	0.499815	-0.499874	0.499645	-29		
	AVERAGE 8.F	. A BIAS	0.499845	09-	-0.0004	-0.06
	0.499781	-0.499825	0.499603	7		
8	064669*0	-0.499836	0.499813	-46		
3	0.499782		0.499808	-51		
	AVERAGE S.F. &	. F BIAS	0.499808	47	-0.0002	0.32
SPEC			STATE OF STATE		± 0.010%F	# 6 MOFF

-F Vo (+1g) Vo (-1g) S.F. -40 -40 -40 -40 -40 -40 -40 -4	S.F. (V/g) 0.499922 0.499933 0.499930 0.499900 0.49994 0.499927 0.499927 0.499960 0.499901 0.499901	86 94 94 93 182 103 126 126 138 141 60 113 38	(%/°F) (%/°F) 0.0000 -0.0003	(μg/°F)
0.499993 0.499983 0.499982 0.499984 AVERAGE SF & BIAS 0.499996 0.499996 0.499996 0.499900 0.499900 0.499900 0.499900 0.499901 0.499901 0.499901 0.499901 0.499902 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499700 0.499750 0.499750 0.499750 0.499750 0.499750 0.499750 0.499750 0.499750 0.499750 0.499750 0.499750 0.499750	0.489926 0.499933 0.499930 0.499930 0.499927 0.499857 0.499857 0.499860 0.499873 0.499873	98 99 99 99 99 99 99 99 99 99 99 99 99 9	0000'0-	0.62
0.499922 -0.499984 AVERAGE SF & BIAS 0.499925 -0.499988 0.499926 -0.499988 0.499926 -0.499789 0.499920 -0.499789 0.499920 -0.499789 0.499920 -0.499789 0.499920 -0.499789 0.499920 -0.499789 0.499940 0.499985 0.499940 0.499985 0.499863 0.499864 AVERAGE SF & BIAS 0.499863 0.499864 AVERAGE SF & BIAS 0.499875 0.499759 0.499750 0.499759 0.499760 0.499759 0.499760 0.499759	0.499932 0.499933 0.499930 0.499900 0.499937 0.499927 0.499857 0.499867 0.499873 0.499873	98 99 99 103 103 103 103 103 103 103 103 103 103	00000	0.62
0.499922 -0.499984 AVERAGE SF & BIAS 0.4999891 -0.4999892 0.499985 -0.4998892 0.499980 -0.499889 0.499941 -0.499891 AVERAGE SF & BIAS 0.499940 0.499990 0.499940 0.499990 0.499940 0.499980 0.499980 0.499980 0.49980 0.499980 0.49980 0.499980 0.49980 0.499980 0.49980 0.499980 0.49980 0.499980 0.49980 0.499859 0.49980 0.499859 0.49980 0.499859 0.499780 0.499759 0.499780 0.499759	0.499833 0.499830 0.499930 0.499937 0.499857 0.499857 0.499863 0.499873 0.499873	98 98 182 193 193 193 193 193 193 193 193 193 193	0000'0	0.82
AVERAGE SF & BIAS 0.499965 0.499966 0.499966 0.499960 0.499901 0.499901 0.499901 0.499901 0.499901 0.499901 0.499902 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499900 0.499000	0.499330 0.499300 0.499944 0.499927 0.499857 0.499860 0.499873 0.499873	93 103 126 138 141 133 38 38	0000'0-	0.82
0.499995 -0.499809	0.499900 0.499944 0.499937 0.499857 0.499860 0.499873 0.499873	182 103 126 138 141 113 113 113	0000'0-	0.82
0.49996 -0.49968	0.499944 0.499937 0.499857 0.499860 0.499801 0.499873 0.499921	103 126 138 141 113 113 113	0000'0-	0.82
0.499966 -0.499866 0.499626 -0.499789 0.499620 -0.499789 0.499621 -0.49971 0.499621 -0.499871 0.499641 0.499899 0.499641 0.499899 0.499640 0.499865 0.499680 0.499865 0.499680 0.499862 0.499680 0.499862 0.499680 0.499862 0.499789 0.499759 0.499789 0.499759 0.499789 0.499759 0.499789 0.499759 0.499789 0.499759 0.499786 S. & BIAS	0.499937 0.499857 0.499860 0.499801 0.499873 0.499921	126 138 141 60 113	0000'0	0.82
0.499626 -0.499789 0.499630 -0.499719 0.499631 -0.499871 AVERAGE SF & BIAS 0.499941 0.499899 0.499940 0.499899 0.499940 0.499899 0.499941 0.499899 0.499800 0.499862 0.499800 0.499862 0.499800 0.499862 0.499759 0.499759 0.499759 0.499759 0.499759 0.499759	0.499927 0.499857 0.499860 0.499901 0.499873 0.499921	126 138 141 60 113 38	0000'0	0.82
0.499230 -0.499789 0.499230 -0.499789 0.499931 -0.499871 0.499940 0.499899 0.499940 0.499899 0.499940 0.499899 0.499800 0.499862 0.499800 0.499862 0.499800 0.499864 AVERAGE SF & BIAS 0.499757 0.499759 0.499750 0.499759 0.499750 0.499759 0.499760 0.499759	0.499857 0.499860 0.499801 0.499821	138 141 160 183 183 183 184 184 185 185 185 185 185 185 185 185 185 185	-0.0003	
0.499530 -0.499789 0.499531 -0.499871 AVERAGE SF & BIAS 0.499940 0.499895 0.499941 0.499895 AVERAGE SF & BIAS 0.499800 0.499865 0.499800 0.499865 0.499800 0.499864 AVERAGE SF & BIAS 0.499759 0.499759 0.499750 0.499759 0.499760 0.499759 0.499760 0.499759	0.499860 0.499901 0.499873 0.499821	141 88 88 84	-0.0003	
AVERAGE SF & BIAS 0.499940 0.499940 0.499940 0.499990 0.499941 0.499996 0.499990 0.499980 0.499980 0.499980 0.499980 0.499980 0.499750 0.499750 0.499750 0.499754 0.499724 0.499724	0.499901 0.499873 0.499921	113	-0.0003	
AVERAGE SF & BIAS 0.499940 0.4999902 0.499941 0.499996 AVERAGE SF & BIAS 0.499983 0.499983 0.499983 0.499983 0.499750 0.499750 0.499750 0.499754 0.499724 0.499724 0.499724	0.499873	113	-0.0003	
0.49940 0.49902 0.49940 0.499899 0.499841 0.499865 0.499800 0.499865 0.499800 0.499862 0.499803 0.49962 0.499759 0.499759 0.499750 0.499757 AVERAGE SF & BIAS 0.499760 0.499757	0.499921	38		-0.32
0.49940 0.49989 0.499841 0.499866 AVERAGE SF & BIAS 0.499800 0.499865 0.499800 0.499864 AVERAGE SF & BIAS 0.499757 0.499759 0.499750 0.499757 AVERAGE SF & BIAS 0.499724 0.499714		.,		
0.499841 0.499866 AVERAGE SF & BIAS 0.499880 0.499862 0.499880 0.499864 AVERAGE SF & BIAS 0.499757 0.499758 0.499757 0.499757 AVERAGE SF & BIAS 0.499774 0.499774	0.499920	-		
AVERAGE SF & BIAS 0.499880 0.499862 0.499880 0.499864 AVERAGE SF & BIAS 0.499757 0.499759 0.499757 0.499750 AVERAGE SF & BIAS 0.499724 0.499714	0.499919	45		
0.499850 0.499855 0.499883 0.499864 AVERAGE SF & BIAS 0.499757 0.499759 0.499760 0.499757 AVERAGE SF & BIAS 0.499774 0.499774	0.499920	41	0.0002	-1.80
0.499662 0.499662 0.499663 0.499664	0.499873	15		
0.49964 AVERAGE SF & BIAS 0.499759 0.499757 0.499757 AVERAGE SF & BIAS 0.499724 0.499724 0.499714	0.499871	18		
AVERAGE SF & BIAS 0.499759 0.499759 0.499760 0.499757 AVERAGE SF & BIAS 0.499724 0.499714	0.499874	19		
0.499759 0.499759 0.499757 0.499758 0.499760 0.499757 AVERAGE SF & BIAS 0.499724 0.499714	0.499873	- 17	-0.0002	-0.60
0.499757 0.499758 0.499760 0.499757 AVERAGE SF & BIAS 0.499724 0.499714	0.499759	0		
0.499760 0.499757 AVERAGE SF & BIAS 0.499724 0.499714	0.499758			
14	0.499759	. 8		
14	0.499759		9000:0-	-0.40
	0.499719	10		
0.499726 0.499712	0.499719	14		
200 0.499725 0.499709 0.49	0.499717	16		
AVERAGE SF & BIAS 0.45	0.499719	13	-0.0002	0:30
J909			30 70000	30/-00 3"

APPENDIX B

VERTICAL AND HORIZONTAL ALIGNMENT TEMPERATURE SENSITIVITY TEST RESULTS

	S/N 101	101	S/N 102	102	S/N 103	103
(°F)	VA TEMP SEN. (mr/° F)	VA TEMP SEN. HA TEMP SEN. (mr/° F)	VA TEMP SEN. (mr/°F)	VA TEMP SEN. HA TEMP SEN. (mr/° F)	VA TEMP SEN. (mr/°F)	VA TEMP SEN. HA TEMP SEN. (mr/°F)
920	1000	0.003	0.001	0.000	0.001	000:0
- 2 4	100.0	0.000	-0.001	0.000	0.000	0.000
\$ 5 8	0.001	0.001	0.000	0.000	0000	0.000
80 to 120	0.001	0000	00000	0.001	-0.001	0.000
120 to 160	0.000	0.001	0000	0.001	0.000	0.000
160 to 200	0.002	0.000	0.001	0.001	0.000	0.000
SPEC			±0.010 mr/° F	mr/° F		

DISTRIBUTION

		No. of Copies
Defense Do	cumentation Center	
Cameron St	ation	12
Alexandria,	Virginia 22314	
IIT Research	n Institute	
ATTN: GA	CIAC	1
10 West 35th	Street	
Chicago, Illi	nois 60616	
DRSMI-LP,	Mr. Voigt	1
DRDMI-T,	Dr. Kobler	1
DRDMI-TBC		3
DRDMI-TI	(Reference Copy)	1
DRDMI-TI	(Record Set)	1
DRDMI-TG.	Mr. Huff	1
DRDMI-TGL	., Mr. Stripling	3
DRCPM-LC	Mr. B. Wilson	2
DRCPM-LC	E Mr. J. Parish	1