Указания за работа с програмата Logic x.x.xx

На снимката е показан началния екран на софтуера към устройството за реализиране на анализ на различни цифрови интерфейси. Възможно е снемането на 8 индивидуални сигнала, тяхното изобразяване и декодиране. Основно изискване е амплитудата на тези сигнали да не надвишава 5V. По надолу са дадени подробни разяснения за ползването на уреда по време на различните упражнения.

Стартирайте програмата и задайте честота на семплиране и време на измерването:

4 MS/s и 2 seconds

Свържете канали 1 и 2 от уреда с изводи Р2.6 и Р2.7 на макета. Натиснете бутон старт и изчакайте визуализацията на събраната информация. Чрез скролване с мишката може да се доближи и отдалечи осцилограмата.

От менюто Annotations изберете Measurement:

След което изберете за визуализиране Width, Frequency, Average Duty Cycle:

С десен бутон натиснете двете стрелки пред Measurement:

Разположете така получения курсор по показания на фигурата начин и направете скрийншот на прозореца

Повторете процеса и за останалите задачи

Стартирайте програмата и задайте честота на семплиране и време на измерването:

4 MS/s и 2 seconds

От менюто с анализаторите, изберете **SPI**:

Ще ви се отвори прозореца за настройка на интерфейса. За момента натиснете SAVE

Натиснете зъбното колело в дясно от избрания интерфейс и в отворения прозорец изберете опцията Ascii & Hex

Свържете канали 1, 3 и 4 от уреда с изводи РЗ.1, РЗ.0 и Р4.3 на макета.

Натиснете бутон старт и изчакайте визуализацията на събраната информация. Чрез скролване с мишката може да се доближи и отдалечи осцилограмата.

Направете скрийншот и чрез менюто за настройка променяйте CPOL и CPHA и снемете сигналите за останалите задачи

Стартирайте програмата и задайте честота на семплиране и време на измерването:

4 MS/s и 2 seconds

От менюто с анализаторите, изберете I2C:

Ще ви се отвори прозореца за настройка на интерфейса. За момента натиснете SAVE

Натиснете зъбното колело в дясно от избрания интерфейс и в отворения прозорец изберете опцията Ascii & Hex

Свържете канали 1 и 2 от уреда с изводи Р4.0 и Р4.1 на макета. Натиснете бутон старт и изчакайте визуализацията на събраната информация. Чрез скролване с мишката може да се доближи и отдалечи осцилограмата.

Направете скрийншот и повторете за останалите задачи

Стартирайте програмата и задайте честота на семплиране и време на измерването:

4 MS/s и 2 seconds

От менюто с анализаторите, изберете Async Serial:

Ще ви се отвори прозореца за настройка на интерфейса. Въведете 9600 в полето Bit Rate (Bits/s) и натиснете SAVE

Натиснете зъбното колело в дясно от избрания интерфейс и в отворения прозорец изберете опцията Ascii & Hex

Свържете канал 1 от уреда с извод P4.2 на макета. Натиснете бутон старт и изчакайте визуализацията на събраната информация. Чрез скролване с мишката може да се доближи и отдалечи осцилограмата.

Направете скрийншот и повторете за останалите задачи