Case Study using Posto

Lucky M. Kispotta

luckymk.mcs2024@cmi.ac.in

Chennai Mathematical Institute

2025-10-28

Table of Contents

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Content

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Introduction

Given an autonomous system which evolves in discrete times.

Devise a statistical method to monitor an autonomous system independent of it's nature (Linear / Non-linear).

Introduction

Given an autonomous system which evolves in discrete times.

Devise a statistical method to monitor an autonomous system independent of it's nature (Linear / Non-linear).

This method could be used to argue the safety of a self-driving car system is > c. Here c is the confidence.

System I/O execution model

Definition

The system I/O model is defined as:

$$f_{\mathrm{sys}}: 2^{\mathbb{R}^n} \times \mathbb{R} \times \bigcup_{i \in [t-1]} o_i \to 2^{\mathbb{R}^n}$$

$$f_{\text{sys}}(\theta_0, t, [O]_{t-1}) = \theta_t$$

where,
$$\theta_0, \theta_1 \subset \mathbb{R}^n$$
 , $\forall_{i \in [t-1]} o_i \subset \mathbb{R}^n$

Intuitively, f defines a transition function which maps the initial state to the next "t" th step w.r.t to some environment inputs.

Log

Definition

Given a system I/O execution model a finite size log of the system is defined as follows:

$$l = \left\{ \left(\hat{\theta}, t \right) \mid \theta_t \subseteq \hat{\theta}, t \leq H \right\}$$

where,

$$t, H \in R$$

Log

2) Visualization of Log

Figure 4: Given T=20 and Porbablilty $\log=20$ a) The visualization of bounds of states for uncertain \log .

b) The visualization of log where state has a single value.

Trajectory

Definition

A trajectory τ of the system is an ordered sequence of states given as follows: $\tau = \{x_0, x_1, \cdots, x_H\}$ where $\forall t \in [0, H]$ and $f_{sys}(x_0, t, [O]_{t-1}) = x_t$.

Trajectory

Definition

A trajectory τ of the system is an ordered sequence of states given as follows: $\tau = \{x_0, x_1, \cdots, x_H\}$ where $\forall t \in [0, H]$ and $f_{sys}(x_0, t, [O]_{t-1}) = x_t$.

Here, each $q_i \in \mathbb{R}^2$. Since we are trying to model a system which represents the movement of an object in a space (here 2d).

Valid trajectories

Definition

A trajectory
$$\tau = \{x_0, x_1, \cdot \cdot \cdot, x_H\}$$
 is said to be valid with respect to a given $\log l = \left\{\left(\hat{\theta}_t, t\right) \mid \theta_t \subseteq \hat{\theta}_t, t \leq H\right\}$ if $\forall_{\left(\widehat{\theta}_t, t\right) \in l} x_t \in \hat{\theta}_t$.

Intuitively,

Random Trajectory

Definition

Let a trajectory τ be randomly chosen from the set of all valid trajectories τ_{val} (w.r.t. to and environmental inputs $[O]_H$).

This is randomly drawn according to the distribution D, and formally expressed as $\tau = \operatorname{Sample}(f_{sys}(\cdot), l, [O]_H, D)$

Visualization of Random Trajectory 1)

Figure 8: 3D trajectory plot.

Figure 9: Random Trajectories.

Problem Statement

Now we formally define the Problem statement in hand.

Problem Statement

Now we formally define the Problem statement in hand.

Problem Statement

Given,

- 1. The system I/O model that is f_{sys} .
- 2. An uncertain $\log l$.
- 3. Environment inputs $[O]_H$
- 4. The probabilistic distribution D 5. An unsafe set of trajectories \mathcal{U} .
- 6. A confidence parameter $c \in (0,1)$ desired.

The problem is to perform monitoring to ensure safety of the system with confidence c as defined by Jeffery Bayes Factor based hypothesis testing.

Question

I was given a Non-Linear System to monitor.

$$x_{i+1} = x_i - dt(y_i + 1.5x_i + 1.5x_i^2)$$

$$y_{i+1} = y_i + dt(3x_i^2 - y_i)$$

 Lucky Kispotta
 2025-10-28
 Case Study
 13 / 27

Content

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Overview

Overview

- Let *K* be the number of trajectories that need to be checked.
- The goal of this method is to correctly devise a value for K such that it "guarantees" that the system will work correctly with confidence > c.
- To enable hypothesis testing : Formulate two hypothesis.
- First one (H_0) represents the undesired result and the second one (H_1) represents the desired result.
- For each sample or trajectory check if it supports hypothesis H_0 or H_1 .
- If any sample is in favour of H_0 (safe with probability < c) [includes unsafe case] return **False**.
- else return **True**.

 \bullet Let Null hypothesis be $H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$

- \bullet Let Null hypothesis be $H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$
- This is the probability that a random trajectory is safe with probability less than c.

- $\bullet \,$ Let Null hypothesis be $H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$
- This is the probability that a random trajectory is safe with probability less than c.
- Let alternative hypothesis be $H_1: r\big[f_{sys}(.), l, \mathcal{D}, \mathcal{U}\big] \geq c$

- \bullet Let Null hypothesis be $H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$
- This is the probability that a random trajectory is safe with probability less than c.
- Let alternative hypothesis be $H_1: r\big[f_{sys}(.), l, \mathcal{D}, \mathcal{U}\big] \geq c$
- This is the probability that a random trajectory is safe with probability $\geq c$.

- $\bullet \ \ \text{Let Null hypothesis be} \ H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$
- This is the probability that a random trajectory is safe with probability less than c.
- Let alternative hypothesis be $H_1: r\big[f_{sys}(.), l, \mathcal{D}, \mathcal{U}\big] \geq c$
- This is the probability that a random trajectory is safe with probability $\geq c$.
- ullet We want the hypothesis testing to conclude that that the H_1 is true.

Derivation of K

The probability that set of trajectories X is safe with probability m is m^K .

Derivation of K

The probability that set of trajectories X is safe with probability m is m^K .

Therefore the probability that the set of trajectories is safe given probability of a random trajectory is safe < c is :

$$\Pr[\forall \tau \in X : \tau \cap = \emptyset \mid H_0] = \int_0^c q^K dq = \frac{c^{K+1}}{K+1}$$

Derivation of K

The probability that set of trajectories X is safe with probability m is m^K .

Therefore the probability that the set of trajectories is safe given probability of a random trajectory is safe < c is :

$$\Pr[\forall \tau \in X : \tau \cap = \emptyset \mid H_0] = \int_0^c q^K dq = \frac{c^{K+1}}{K+1}$$

Therefore the probability that the set of trajectories is safe given probability of a random trajectory is safe $\geq c$ is :

$$\Pr[\forall \tau \in X : \tau \cap = \emptyset \mid H_1] = \int_c^1 q^K dq = \frac{1 - c^{K+1}}{K+1}$$

Bayes Factor

In any hypothesis testing problem the Bayes Factor measures how much likely is the data under H_1 than H_0 .

Bayes Factor

In any hypothesis testing problem the Bayes Factor measures how much likely is the data under H_1 than H_0 .

Bayes Factor

Bayes Factor is formally defined as the ratio:

$$\frac{\Pr[D \mid H_1]}{\Pr[D \mid H_0]}$$

Here, D are K safe trajectories.

Bayes Factor

Interpretation of Bayes Factor

If Bayes Factor is > 1 implies the data is more in favour of H_1 .

B=10 implies "the observed data is 10 times more likely under H_1 than H_0 ".

The paper uses a "hardcoded" Bayes Factor as a threshold to accept the hypothesis H_1 . Hence,

$$\frac{1-c^{K+1}}{c^{K+1}} > B \Longleftrightarrow K > -\log_c(B+1)$$

Intuition : is to find a K such that if K trajectories are safe then Bayes Factor of observed data > B.

Content

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Flowchart

Figure 10: Flowchart of the algorithm

Content

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Few Results (Logging Probability as variable)

Figure 11: The values of constraints are : unsafe = 0.7, op = 'ge', state = 1 (y)

Figure 12: As the Logging Probability increases the time increases. The color of the points depend on the ratio $\frac{|\text{valid trajectories}|}{|\text{total trajectories}|}$. Green implies safe and red implies not safe. The values of constraints are : unsafe = -0.1, op = 'le', state = 0 (x)

More Results (Logging Probability as variable)

Figure 13: The values of constraints are : unsafe = 0, op = 'le', state = 0 (x)

Figure 14: This is a very strict safety condition. The values of constraints are : unsafe = 0.1, op = 'ge', state = 0 (x)

Few Results (Confidence as variable)

An observation to make is that the algorithm immediately produces counter examples.

Figure 15: The values of constraints are : unsafe = 0.7, op = ge, Figure 16: The values of constraints are : unsafe = -0.1, op = le, state = 0 (x)

More Results (Confidence as variable)

0.005 - 0.004 - 0.002 - 0.000

Figure 17: The values of constraints are : unsafe = 0, op = 'le', state = 0 (x)

Figure 18: This is a very strict safety condition. The values of constraints are : unsafe = 0.1, op = 'ge', state = 0 (x)

Thanks for Listening.

Bye Bye

