Compression Methods for Monocular Depth Estimation Tudelft

Group 3 | M.B. Büller | T. van Dijk | R.R. Feith | J.J. Hagenaars | D.B. de Jong | M.J. Mollema

Introduction

- CNN + monocular camera are used for depth estimation
- State-of-the-art performance, even compared to stereo imaging
- Due to computational burden: not applicable in small, on-board systems
- Our goal: reduce computational complexity while maintaining accuracy

"How are the accuracy and size of the MonoDepth network^[1] affected by the various model compression methods?"

Methods

Removing layer(s)

- Reduce parameters by removing intermediate layer(s)
- Train from scratch on KITTI

Pruning

- Reduce memory footprint by setting small weights to 0 (increase sparsity)[3]
- Retrain from checkpoint on KITTI subset SqueezeNet^[2]

Reduce 3x3 filter channels by preceding them with multiple 1x1 filters

Train from scratch on KITTI

MonoDepth Network

Left image used to predict disparities for both images, thus enforcing mutual consistency

Results

Discussion

Removing layers

- Reducing number of parameters up to 25% without significant loss in performance
- Disparity maps become less 'smooth' with decreasing number of layers

Pruning

- Similar and sometimes even better performance up to a sparsity of 0.7, which might indicate overfitting of original network
- However, clear visual reduction in detail and contrast from a sparsity of 0.5 onwards

SqueezeNet

- Removes a lot of parameters, up to 90% of original network
- Suffers from a somewhat larger reduction in performance
- Disparity map becomes more blurry, likely due to the change in decoder (the encoder of the original Squeezenet was good)

References

- [1] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised Monocular Depth Estimation with Left-Right Consistency. In CVPR, volume 2, page 7, 2017
- [2] F. N. landola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360, 2016.
- [3] M. Zhu and S. Gupta. To prune or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.