世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07C 233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D 493/08, 495/08, A61K 31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38

(11) 国際公開番号

WO97/00853

(43) 国際公開日

1997年1月9日(09.01.97)

(21) 国際出願番号

PCT/JP96/01685

A1

(22) 国際出願日

1996年6月19日(19.06.96)

(30)優先権データ 特願平7/154575

1995年6月21日(21.06.95)

〒630-02 奈良県生駒市青山台117-42 Nara, (JP) (74) 代理人 弁理士 青山 葆, 外(AOYAMA, Tamotsu et al.)

本摩恒利(HONMA, Tsunetoshi)[JP/JP]

押理士 育山 保,外(AOYAMA, Tamotsu et al.)
 〒540 大阪府大阪市中央区域見1丁目3番7号
 IMPビル 青山特許事務所 Osaka, (JP)

(71) 出願人(米国を除くすべての指定国について)
 塩野義製薬株式会社(SHIONOGI & CO., LTD.)[JP/JP]
 〒541 大阪府大阪市中央区道修町三丁目1番8号 Osaka, (JP)
 (72) 発明者:および
 (75) 発明者/出願人(米国についてのみ)
 大谷光昭(OHTANI, Mitsuaki)[JP/JP]

〒630 奈良県奈良市高畑町1342 Nara, (JP) 有村昭典(ARIMURA, Akinori)[JP/JP]

〒651-11 兵庫県神戸市北区鈴蘭台北町9丁目20番6号 Hyogo, (JP)

岸野淳二(KISHINO, Junji)[JP/JP]

〒654-01 兵庫県神戸市須磨区神の谷3丁目3番17号 Hyogo, (JP)

(81) 指定国 AL, AU, BB, BG, BR, CA, CN, CZ, EE, GE, HU, IL, IS, JP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54)Title: BICYCLIC AMINO DERIVATIVES AND PGD₂ ANTAGONIST CONTAINING THE SAME

(54)発明の名称 ビシクロ環系アミノ誘導体およびそれを含有するPGD2拮抗剤

(57) Abstract

Compounds of general formula (I), salts thereof or hydrates thereof wherein (a) represents (b) or (c), for example, the compounds (d) and (e), which are useful as a PGD₂ antagonist and thus usable in, for example, a remedy for systemic mastocytosis or systemic mast cell activation disorders, a drug for bronchoconstriction, an antiasthmatic, a drug for allergic rhinitis agent, a drug for allergic conjunctivitis, a drug for urticaria, a remedy for ischemia reflow disorders or an antiinflammatory agent. It is particularly useful in the treatment of nasal occlusion.

式 (I):

(式中、

は、

を表し、一例として、

である化合物またはその塩もしくは水和物は、PGD2拮抗剤として有用であり、例えば全身性肥満細胞症や全身性肥満細胞活性化障害の治療剤、抗気管収縮剤、抗喘息剤、抗アレルギー性鼻炎剤、抗アレルギー性結膜炎剤、抗蕁麻疹剤、虚血再灌流傷害治療薬、抗炎症剤として用いることができる。特に鼻閉症の治療に有用である。

情報としての用途のみ PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

明細書

ピシクロ環系アミノ誘導体およびそれを含有するPGD₂拮抗剤

技術分野

本発明は、ビシクロ環系アミノ誘導体およびそれらを含有するプロスタグランジンD2(以下、PGD2という)拮抗剤に関する。

背景技術

本発明に関わるビシクロ環系アミノ誘導体の一部のものはトロンボキサン A_2 (TXA_2)拮抗剤として有用であることが知られている(特公平5-79060号明細書)。しかしながら、特公平5-79060号に記載された化合物については、いずれも TXA_2 拮抗剤としての有用性が開示されているにすぎず、本発明で明らかにされた PGD_2 拮抗剤としての用途については、何ら示唆されていない。

即ち、 TXA_2 は、その作用として血小板凝集作用、血栓形成作用等があることが知られているが、 TXA_2 拮抗剤は、 TXA_2 に拮抗することで、抗血栓剤、心筋梗塞、喘息の治療剤として有用であると考えられている。

一方、本発明のPGD₂拮抗剤は、PGD₂の生産過多に起因する症状の改善、 さらに詳しくは、肥満細胞機能不全が関与する疾患、例えば全身性肥満細胞症及 び全身性肥満細胞活性化障害の治療剤、さらには抗気管収縮剤、抗喘息剤、抗ア レルギー性鼻炎剤、抗アレルギー性結膜炎剤、抗蕁麻疹剤、虚血再灌流傷害治療 薬、抗炎症剤として有用である。

上記から明らかなように、TXA2拮抗剤とPGD2拮抗剤は、その作用点、機 序が異なると共に、適応も異なり、全く異なる性質のものであることから、ある 化合物がこれらの作用を同時に有するということは、まったく予測し得ないこと であった。

PGD₂は肥満細胞から産生遊離される最も主要なプロスタノイドであり、免疫学的あるいは非免疫学的刺激により活性化されたシクロオキシゲナーゼ

(cyclooxygenase)により、アラキドン酸(arachidonic acid)からPGG $_2$ 、PGH $_2$ を経て産生される。PGD $_2$ は種々の強力な生理的、病的な作用を有し、例えば、強い気管収縮を起こし気管支喘息の病態を形づくる、さらに全身性アレルギー状態においては末梢血管を拡張しアナフィラキシーショックの原因となる、などである。とりわけPGD $_2$ をアレルギー性鼻炎の鼻閉症状の発現の原因物質の一つであるとする考えが注目を集めている。そのため、鼻閉症状の軽減を目的とする薬物としてPGD $_2$ の生合成阻害剤、あるいは受容体拮抗剤の開発が考えられている。しかし、PGD $_2$ の生合成阻害剤は他の生体内でのプロスタグランジン類の合成に大きな影響を及ぼす可能性があることから、PGD $_2$ 受容体に特異的な、PGD $_2$ 受容体拮抗剤(遮断薬)の開発が望まれている。

発明の開示

本発明者らは、 PGD_2 受容体に特異的な PGD_2 受容体拮抗剤(遮断薬)を開発するために鋭意、研究した結果、下記一般式(I)で示される化合物またはその塩が PGD_2 受容体拮抗剤として強力な作用を有し、かつ化学的、生化学的に安定な化合物であることを見い出し、本発明を完成するに至った。

即ち、本発明は、式 (I) で示される化合物またはその塩もしくは水和物を有 効成分として含有する PGD 2 拮抗剤を提供するものである。:

(式中、

は、

を表わし、

Aはヘテロ原子もしくはフェニレンを介在していてもよく、オキソ基を有してい

てもよく、および/または不飽和結合を有していてもよいアルキレン;

Bは水素、アルキル、アラルキルまたはアシル;

R₁は水素またはアルキル;

R₂は水素またはアルキル;

 R_3 および R_4 はそれぞれ独立して水素、アルキル、ヒドロキシまたはアルキルスルホニル;

 X_1 は単結合、フェニレン、ナフチレン、チオフェンジイル、インドールジイル またはオキサゾールジイル;

 X_2 は単結合、-N=N-、-N=CH-、-CH=N-、-CH=N-N-、

-CH=N-O-, -C=NNHCSNH-, -C=NNHCONH-,

-CH=CH-, -CH(OH)-, -C(C1)=C(C1)-,

 $-(CH_2)$ n-, $\bot f \bot V V$, $-N(R_5)$ -, $-N(R_{51})$ CO-,

 $-N (R_{52}) SO_2^-, -N (R_{53}) CON (R_{54}) -,$

 $-CON(R_{55})$ -, $-SO_2N(R_{56})$ -, -O-, -S-, -SO-,

 $-SO_2$ -、-CO-、オキサジアゾールジイル、チアジアゾールジイル またはテトラゾールジイル:

 X_3 はアルキル、アルケニル、アルキニル、アリール、アラルキル、ヘテロ環、シクロアルキル、シクロアルケニル、チアゾリニリデンメチル、チアゾリジニリデンメチル、一 $CH=NR_6$ または $-N=C(R_7)R_8$;

 R_5 、 R_{51} 、 R_{52} 、 R_{53} 、 R_{54} 、 R_{55} および R_{56} は水素またはアルキル; R_6 は水素、アルキル、ヒドロキシ、アルコキシ、カルバモイルオキシ、チオカルバモイルオキシ、ウレイドまたはチオウレイド:

R,およびR₈はそれぞれ独立してアルキル、アルコキシまたはアリール; nは1または2;

Zは-SO₂-または-CO-;

mはOまたは1:

これらの定義において、置換基が環状のものはニトロ、アルコキシ、スルファ モイル、置換もしくは非置換アミノ、アシル、アシルオキシ、ヒドロキシ、ハロ

ゲン、アルキル、アルキニル、カルボキシ、アルコキシカルボニル、アラルコキシカルボニル、アリールオキシカルボニル、メシルオキシ、シアノ、アルケニルオキシ、ヒドロキシアルキル、トリフルオロメチル、アルキルチオ、 $-N=PPh_3$ 、オキソ、チオキソ、ヒドロキシイミノ、アルコキシイミノ、フェニルおよびアルキレンジオキシから選ばれる $1\sim3$ 個の基で置換されていてもよい)

発明を実施するための最良の形態

上記のPGD₂拮抗剤となり得る化合物を更に具体的に示せば、式 (I) で示される化合物において、

が、

を表わし、mが 0 であり、Z が S O_2 のとき、 X_1 および X_2 がともに単結合であり、 X_3 がアルキル、フェニル、ナフチル、スチリル、キノリルまたはチェニルを表わし、これらの置換基のうち、環状のものがニトロ、アルコキシ、置換もしくは非置換アミノ、ハロゲン、アルキルおよびヒドロキシアルキルから選ばれる $1\sim 3$ 個の基で置換されていてもよい化合物またはその塩もしくは水和物が挙げられる。

同様に、式(I)で示される化合物において、

が、

を表わし、mが1のとき、 X_1 および X_2 がともに単結合であり、 X_3 がハロゲンで置換されていてもよいフェニルである化合物またはその塩もしくは水和物が挙げられる。

同様に、式(I)で示される化合物において、

が、

を表わし、mが1のとき、 X_1 がフェニル、 X_2 が-C H_2 -または-N=N-であり、 X_3 がフェニルである化合物またはその塩もしくは水和物が挙げられる。

同様に、式(I)で示される化合物は、式(Ia):

$$\begin{array}{c}
A - R \\
N - SO_2 - X_1 - X_2 - X_3 \\
B
\end{array}$$
(Ia)

(式中、A、B、R、 X_1 、 X_2 および X_3 が前記と同意義である。

ただし、(1) X_1 および X_2 が単結合であり、 X_3 が置換もしくは非置換フェニルまたはナフチル、および(2) A が 5 一ヘプテニレン、R がC O OR_1 (R_1 は水素またはメチル)、 X_1 が 1、4 一フェニレン、 X_2 が単結合、 X_3 がフェニルである場合を除く)で示される化合物またはその塩もしくは水和物として例示される。

同様に、式(I)で示される化合物は、式(Ib):

(式中、

は、

を表わし、A、B、R、X₁、X₂およびX₃が前記と同意義である。ただし、X

 $_1$ および X_2 が単結合であり、 X_3 がフェニルである場合および X_1 が単結合で X_2 が-O-であるとき、 X_3 がベンジルである場合を除く)で示される化合物またはその塩もしくは水和物として例示される。

更に具体的には、式(Ia)で示される化合物において、 X_1 および X_2 が単結合であり、 X_3 がイソオキサゾリル、チアジアゾリル、イソチアゾリル、モルホリル、インドリル、ベンゾフリル、ジベンゾフリル、ジベンゾジオキシニル、ベンゾチエニル、ジベンゾチエニル、カルバゾリル、キサンテニル、フェナントリジニル、ジベンゾオキセピニル、ジベンゾチエピニル、シンノリル、クロメニル、ペンゾイミダゾリルまたはジヒドロベンゾチエピニルである化合物またはその塩もしくは水和物が挙げられる。

同様に、式(Ia)で示される化合物において、 X_1 が単結合、 X_2 がフェニレン、 X_3 がアルケニル、アルキニル、 $-CH=NR_6$ または $-N=C(R_7)R_8$ を表わす化合物またはその塩もしくは水和物が挙げられる。

同様に、式(I a)で示される化合物において、Rが $COOR_1$ 、 X_1 がフェニレンまたはチオフェンジイル、 X_2 が単結合、-N=N-、-CH=CH-、-CONH-、-NHCO-またはエチニレンおよび X_3 がフェニル、チアソリニリデンメチル、チアソリジニリデンメチルまたはチエニルを表わす化合物またはその塩もしくは水和物が挙げられる。

更に具体的には、式 (Ib)で示される化合物において、

が、

を表わす化合物またはその塩もしくは水和物が挙げられる。さらに好ましい態様としては、式(I b)で示される化合物において、R がC O O R $_1$ (R $_1$ は前記と同意義である)で示される化合物またはその塩もしくは水和物が挙げられる。

同様に、式(I b)で示される化合物において、 X_1 がフェニレンまたはチオフェンジイル、 X_2 が単結合、-N=N-、-C H=C H-、エチニレン、-O

ー、-Sー、-COー、-CON (R_{55}) $-(R_{55}$ は前記と同意義である)、-N (R_{51}) CO $-(R_{51}$ は前記と同意義である)および X_3 がフェニルである化合物またはその塩もしくは水和物が挙げられる。

更に具体的には、式(Ib)で示される化合物において、

が、

を表わす化合物またはその塩もしくは水和物が挙げられる。さらに好ましい態様としては、Bが水素、 X_1 および X_2 がともに単結合であり、 X_3 がチエニル、チアゾリル、チアジアゾリル、イソチアゾリル、ピロリル、ピリジル、ベンゾフリル、ペンゾイミダゾリル、ベンゾチエニル、ジベンゾフリル、ジベンゾチエニル、シベンゾフリル、ジベンゾチエニル、キノリルまたはインドリルである化合物またはその塩が挙げられる。同様に、 X_1 がフェニレン、チオフェンジイル、インドールジイルまたはオキサゾールジイル、 X_2 が単結合、-N=N-、-CH=CH-、エチニレン、-S-または-O-、および X_3 がアリールまたはヘテロ環である化合物またはその塩もしくは水和物が挙げられる。

尚、上記一般式(Ia)および(Ib)で示される化合物は本発明者らにより合成された新規化合物である。

本明細書において用いる各種語句の定義は、以下の通りである。

「アルキレン」とは、 $C_1 \sim C_9$ の直鎖状又は分枝状のアルキレンを意味し、例えば、メチレン、メチルメチレン、ジメチルメチレン、メチルエチルメチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレンまたはノナメチレン等が挙げられる。上記アルキレンは、ヘテロ原子(酸素原子、硫黄原子または窒素原子等)もしくはフェニレン(例えば、1、4-フェニレン、1、3-フェニレン、1、2-フェニレン等)を介在していてもよく、オキソ基を有してもよく、および/または二重結合または三重結合を鎖上に1個又はそれ以上、任意の位置に含んでいてもよい。例えば、

 $-(CH_2)_2-O-CH_2-, -(CH_2)_2-O-(CH_2)_2-, -(CH_2)$ $_{2}$ -O-(CH $_{2}$) $_{3}$ -, -(CH $_{2}$) $_{2}$ -O-(CH $_{2}$) $_{4}$ -, -(CH $_{2}$) $_{2}$ -O $-(CH_2)_5-.-(CH_2)_2-O-(CH_2)_6-.-(CH_2)_2-S-(CH_2)_3$ H_2) 2-. - (CH2) 3-S- (CH2) 2-. - CH2-S-CH2-. - CH $_{2}$ -S-(CH $_{2}$) $_{4}$ -.-CH $_{2}$ -N(CH $_{3}$)-CH $_{2}$ -.-CH $_{2}$ -NH-(C H_2) 2-. - (CH2) 2-N (CH2CH3) - (CH2) 3-. - (CH2) 2 H_2- , $-(CH_2)_2-O-1$, $2-7\pm 2\nu \nu - CH_2-$, $-(CH_2)_2-O$ -1, $4-7x=\nu\nu-CH_2-$, $-CH=CH-S-CH_2-1$, $4-7x=\nu$ ν -CH₂-、-CH=CH-S-1, 3-7x= $\nu\nu$ - (CH₂) ₂-、2- π キソプロピレン、3ーオキソベンチレン、5ーオキソヘキシレン、ビニレン、1 ープロペニレン、2ープロペニレン、1ープテニレン、2ープテニレン、3ープ テニレン、1, 2ープタジエニレン、1, 3ープタジエニレン、1ーペンテニレ ン、2一ペンテニレン、3一ペンテニレン、4一ペンテニレン、1, 2一ペンタ ジエニレン、1,3-ペンタジエニレン、1,4-ペンタジエニレン、2,3-ペンタジエニレン、2, 4ーペンタジエニレン、1ーヘキセニレン、2ーヘキセ ニレン、3-ヘキセニレン、4-ヘキセニレン、5-ヘキセニレン、1,2-ヘ キサジエニレン、1,3-ヘキサジエニレン、1,4-ヘキサジエニレン、1, 5 一ヘキサジエニレン、2, 3 一ヘキサジエニレン、2, 4 一ヘキサジエニレン、 2, 5-ヘキサジエニレン、3, 4-ヘキサジエニレン、3, 5-ヘキサジエニ レン、4,5-ヘキサジエニレン、1,1-ジメチル-4-ヘキセニレン、1-ヘプテニレン、2一ヘプテニレン、3一ヘプテニレン、4一ヘプテニレン、5一 ヘプテニレン、2, 2-ジメチルー5-ヘプテニレン、6-ヘプテニレン、1, 2-ヘプタジエニレン、1,3-ヘプタジエニレン、1,4-ヘプタジエニレン、 1, 5 一ヘプタジエニレン、1, 6 一ヘプタジエニレン、2, 3 一ヘプタジエニ レン、2、4-ヘプタジエニレン、2、5-ヘプタジエニレン、2、6-ヘプタ ジエニレン、3,4-ヘプタジエニレン、3,5-ヘプタジエニレン、3,6-ヘプタジエニレン、4,5-ヘプタジエニレン、4,6-ヘプタジエニレン又は 5, 6-ヘプタジエニレン、1-プロピニレン、3-プチニレン、2-ペンチニ

レン、 $5-\Lambda$ キシニレン、 $6-\Lambda$ プチニレン、 $-(CH_2)-CH=CH-O-(CH_2)_2-$ 、 $-(CH_2-S-(CH_2)_3-$ 、 $-(CH_2-S-CH=CH-1)_2 -(CH_2-S-CH=CH-1)_3 -(CH_2-S-CH=CH-1)_4 -(CH_2-S-CH=CH-1)_2 -(CH_2-S-CH=CH-1)_3 -(CH_2-S-CH=CH-1)_4 -(CH_2-S-CH-1)_4 -(CH_2-CH-1)_4 -(CH_2-CH-1)_4 -(CH_2-CH-1)_4 -(CH_2-CH-1)$

「アリール」とは、 $C_6 \sim C_{14}$ の単環または縮合環を意味し、フェニル、ナフチル(例えば、1ーナフチル、2ーナフチル)、アンスリル(例えば、1ーアンスリル、2ーアンスリル、9ーアンスリル)、フェナンスリル(例えば、2ーフェナンスリル、3ーフェナンスリル、9ーフェナンスリル)、フルオレニル(例えば、2ーフルオレニル)等が挙げられる。特に、フェニルが好ましい。

「アラルキル」とは、前記アルキル基に前記アリール基が置換したもので、これらは置換可能な全ての位置で結合しうる。例えば、ベンジル、フェネチル、フェニルプロピル (例えば、3ーフェニルプロピル)、ナフチルメチル (例えば、 α ーナフチルメチル)、アンスリルメチル (例えば、9ーアンスリルメチル)、フェナンスリルメチル (例えば、3ーフェナンスリルメチル)等が挙げられる。

「アシル」とは、脂肪族カルボン酸由来の $C_1 \sim C_9$ のアシルを意味し、例えば、ホルミル、アセチル、プロピオニル、ブチリル、パレリル等が挙げられる。

「アルキルスルホニル」とは、スルホニルに上記アルキルが置換したもので、例えば、メチルスルホニル、エチルスルホニル、プロピルスルホニル等が挙げられる。

「アルケニル」とは、上記アルキルに1個又はそれ以上の二重結合を有する直鎖または分岐状の $C_2 \sim C_{20}$ アルケニルを意味し、例えば、ビニル、1-プロペニル、2-プロペニル、1-プテニル、2-プテニル、3-プテニル、1, 2- プタジエニル、1-ペンテニル、1, 2-ペンタジエニル、2-ヘキセニル、1.

2-ヘキサジエニル、3-ヘプテニル、1, 5-ヘプタジエニル等が挙げられる。「アルキニル」とは、上記アルキルに1 個又はそれ以上の三重結合を有する直鎖または分岐状の $C_2 \sim C_{20}$ アルキニルを意味し、例えば、エチニル、1-プロピニル、2-プロピニル、1-プチニル、2-プチニル、3-プチニル等が挙げられる。

「ヘテロ環」とは、任意に選ばれる、酸素原子、硫黄原子および/または窒素 原子を環内に1個以上含み、かつ炭素環もしくは他のヘテロ環と縮合していても よい5~7員の環を意味し、これらは置換可能な任意の位置で結合しうる。例え ば、ピロリル(例えば、1一ピロリル、3一ピロリル)、インドリル(例えば、 2 一インドリル、3 一インドリル、6 一インドリル)、カルバゾリル (例えば、 2 一カルパソリル、3 一カルパソリル)、イミダソリル (例えば、1 一イミダソ ・ リル、4 一イミダゾリル)、ピラゾリル(例えば、1 一ピラゾリル、3 一ピラゾ リル)、ベンソイミダゾリル(例えば、2一ペンソイミダゾリル、5一ペンソイ ミダソリル)、インダソリル(例えば、3-インダソリル)、インドリジニル(例 えば、6 一インドリジニル)、ピリジル(例えば、2 一ピリジル、3 一ピリジル、 4 一ピリジル)、キノリル(例えば、8 一キノリル)、イソキノリル(例えば、 3 一イソキノリル)、アクリジル (例えば、1 一アクリジル)、フェナンスリジ ニル(例えば、2 ―フェナンスリジニル、3 ―フェナンスルジニル)、ピリダジ ニル(例えば、3 - ピリダジニル)、ピリミジニル(例えば、4 - ピリミジニル)、 ピラジニル (例えば、2-ピラジニル)、シンノリニル (例えば、3-シンノリ ニル)、フタラジニル(例えば、5一フタラジニル)、キナゾリニル(例えば、 2-キナゾリニル)、イソオキサゾリル(例えば、3-イソオキサゾリル、4-イソオキサゾリル)、ペンソイソオキサゾリル(例えば、1,2-ペンソイソオ キサゾールー4ーイル、2,1ーベンゾイソオキサゾールー3ーイル)、オキサ ゾリル(例えば、2一オキサゾリル、4一オキサゾリル、5一オキサゾリル)、 ペンソオキサゾリル(例えば、2一ペンソオキサゾリル)、ベンソオキサジアゾ リル(例えば、4一ペンソオキサジアソリル)、イソチアソリル(例えば、3一 イソチアゾリル、4 --イソチアゾリル)、ベンゾイソチアゾリル(例えば、1. 2-ペンゾイソチアゾール-3-イル、2、1-ペンゾイソチアゾール-5-イ

ル)、チアゾリル(例えば、2-チアゾリル)、ベンゾチアゾリル(例えば、2 ーペンゾチアソリル)、チアジアソリル(例えば、1,2,3ーチアジアソール ー4ーイル)、オキサジアゾリル(例えば、1,3,4ーオキサジアゾールー2 ーイル)、ジヒドロオキサジアゾリル(例えば、4,5-ジヒドロ-1,2,4 ーオキサジアソールー3ーイル)、フリル(例えば、2ーフリル、3ーフリル)、 ベンソフリル (例えば、3 - ベンソフリル)、イソベンソフリル (例えば、1 -イソベンゾフリル)、チエニル(例えば、2一チエニル、3一チエニル)、ベン ゾチエニル (例えば、1 ーペンゾチオフェンー2 一イル、2 ーペンゾチオフェン 一1一イル)、テトラソリル(例えば、5 ―テトラソリル)、ペンソジオキソリル (例えば、1,3-ペンゾジオキソール-5-イル)、ジペンゾフリル(例えば、 2 一ジペンゾフリル、3 一ジペンゾフリル)、ジペンゾオキセピニル (例えば、 ジベンゾ[b, f]オキセピン-2-イル)、ジヒドロジベンゾオキセピニル (例 えば、ジヒドロジペンソ[b, f]オキセピン-2-イル)、クロメニル(例えば、 2 Hークロメン-3-イル、4 H-クロメン-2-イル)、ジベンゾチエピニル (例えば、ジベンゾ[b, f]チエピン-3ーイル、ジヒドロジベンゾ[b, f]チエ ピン-3-イル)、モリホリニル(例えば、1,4-モルホリン-4-イル)、 フェノチアジニル(例えば、2 --- フェノチアジニル)、シクロペンタチエニル(例 えば、シクロペンタ[b]チオフェンー3一イル)、シクロヘキサチエニル(例え ば、シクロヘキサ[b]チオフェンー3-イル)等が挙げられる。

「シクロアルキル」とは、 $C_3 \sim C_8$ の環状アルキルを意味し、例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル等が挙げられる。

「シクロアルケニル」とは、 $C_3 \sim C_8$ の環状アルケニルを意味し、例えば、シクロプロペニル(例えば、1 ーシクロプロペニル)、シクロプテニル(例えば、2 ーシクロプテンー1 ーイル)、シクロペンテニル(1 ーシクロペンテンー1 ーイル)、シクロヘキセニル(例えば、1 ーシクロヘキセンー1 ーイル)等が挙げられる。

「アルコキシ」とは、 $C_1 \sim C_6$ のアルコキシを意味し、例えば、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-プトキシ等が挙げられる。

「置換もしくは非置換アミノ」における置換アミノとは、例えば、メチルアミ

ノ、エチルアミノ、ジメチルアミノ、シクロヘキシルアミノ、フェニルアミノ、 ジフェニルアミノ等のモノーもしくはジー置換アミノ、ピペリジノ、ピペラジノ、 モルホリノ等の環状アミノが挙げられる。

「アシルオキシ」とは、前記の「アシル」から誘導されるアシルオキシを意味 し、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、バレリル オキシ等が挙げられる。

「ハロゲン」とは、フッ素、塩素、臭素、ヨウ素を意味する。

「アルコキシカルボニル」とは、前記の「アルコキシ」から誘導されるアルコキシカルボニルを意味し、例えば、メトキシカルボニル、エトキシカルボニル、フェニルオキシカルボニル等が挙げられる。

「アラルキルオキシカルボニル」とは、前記の「アラルキル」から誘導される アラルキルオキシカルボニルを意味し、例えば、ベンジルオキシカルボニル、フ エネチルオキシカルボニル等が挙げられる。

「アリールオキシカルボニル」とは、前記の「アリール」から、誘導されるアリールオキシカルボニルを意味し、例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等が挙げられる。

「アルケニルオキシ」とは、前記の「アルケニル」から、誘導されるアルケニ ルオキシを意味し、例えば、ビニルオキシ、1-プロペニルオキシ、2-プテニ ルオキシ等が挙げられる。

「ヒドロキシアルキル」とは、前記の「アルキル」から、誘導されるヒドロキシアルキルを意味し、例えば、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシプロピル等が挙げられる。

「アルキルチオ」とは、前記の「アルキル」から、誘導されるアルキルチオを 意味し、例えば、メチルチオ、エチルチオ、プロピルチオ等が挙げられる。

「アルキレンジオキシ」とは、 $C_1 \sim C_3$ 、例えば、メチレンジオキシ、エチレンジオキシ、プロピレンジオキシ等が挙げられる。

「フェニレン」、「ナフチレン」、「チオフェンジイル」、「インドールジイル」、「オキサゾールジイル」、「オキサジアゾールジイル」、「テトラゾールジイル」においては、置換可能な任意の2箇所で、隣接する基と結合しうる。

また、前記の定義において、置換基が環状のものは、ニトロ、アルコキシ、スルファモイル、置換もしくは非置換アミノ、アシル、アシルオキシ、ヒドロキシ、ハロゲン、アルキル、アルキニル、カルボキシ、アルコキシカルボニル、アラルキルオキシカルボニル、アリールオキシカルボニル、メシルオキシ、シアノ、アルケニルオキシ、ヒドロキシアルキル、トリフルオロメチル、アルキルチオ、ーN=PPh $_3$ 、オキソ、チオキソ、ヒドロキシイミノ、アルコキシイミノ、フェニルおよびアルキレンジオキシから選ばれる $1\sim3$ 個の基で置換されていてもよいが、環上におけるそれらの置換基は、置換可能な任意の位置で置換していてもよい。

一般式(I)の化合物の塩としては、アルカリ金属塩(例えば、リチウム塩、ナトリウム塩もしくはカリウム塩等)、アルカリ土類金属塩、(例えば、カルシウム塩等)、有機塩基(例えば、トロメタミン、トリメチルアミン、トリエチルアミン、2ーアミノブタン、tーブチルアミン、ジイソプロピルエチルアミン、nーブチルメチルアミシクロヘキシルアミン、ジシクロヘキシルアミン、Nーイソプロピルシクロヘキシルアミン、フルフリルアミン、ベンジルアミン、メチルベンジルアミン、ジベンジルアミン、N、Nージメチルベンジルアミン、2ークロロベンジルアミン、4ーメトキシベンジルアミン、1ーナフチレンメチルアミン、ジフェニルベンジルアミン、トリフェニルアミン、1ーナフチルアミン、1ーアミノアントラセン、2ーアミノアントラセン、デヒドロアピエチルアミン、Nーメチルモリホリンもしくはピリジン)との塩、またはアミノ酸塩(例えば、リジン塩もしくはアルギニン塩等)を挙げることができる。

水和物とは、式 (I) で示される化合物またはその塩の水和物を意味し、例えば、1水和物、2水和物を挙げることができる。

本発明化合物は、一般式(I)で示され、その全ての立体異性体(ジアステレオマー、エピマー、エナンチオマーなど)又はラセミ体を含む。

一般式(I)で示される化合物の中、m=1の化合物、とくに、後記の表3bおよび3cに示した化合物は、特開平2-180862明細書に記載された公知化合物である。

一般式(I)で示される化合物の中、m=0の化合物 [一般式(I') で示される

化合物]は、下記反応式で示されるごとく、一般式(II)で示されるアミノ化合物に部分構造式 $Z-X_1-X_2-X_3$ に対応するスルホン酸またはカルポン酸の反応性誘導体を反応させることにより製造することができる。

(式中、A、B、R、 X_1 、 X_2 、 X_3 , YおよびZは前記と同意義である。)

部分構造式 $Z-X_1-X_2-X_3$ に対応するスルホン酸は一般式 $X_3-X_2-X_1-SO_2$ O H で表される化合物であり、また、カルボン酸とは $X_3-X_2-X_1-COO$ H で表される化合物を意味する。これらスルホン酸またはカルボン酸の反応性誘導体とは、対応する酸ハロゲン化物(例えば、塩化物、臭化物、沃化物)、酸無水物(例えば、ぎ酸もしくは酢酸との混合酸無水物)、活性エステル(例えば、スクシンイミドエステル)などを意味し、通常 Z=Z アシル化に使用するアシル化剤を包含する。また、カルボン酸 Z=Z Z=Z

反応は通常のアミノ基のアシル化反応の条件に従って行えばよく、例えば、酸ハロゲン化物による縮合反応の場合、溶媒としてエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン)、ベンゼン系溶媒(例えば、ベンゼン、トルエン、キシレン)、ハロゲン化炭化水素系溶媒(例えば、ジクロロメタン、ジクロロエタン、クロロホルム)、その他、酢酸エチル、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどを使用し、要すれば塩基(例えば、トリエチルアミン、ピリジン、N、Nージメチルアミノピリジン、Nーメチルモルホリンなどの有機塩基、あるいは水酸化ナトリウム、水酸化カリウム、炭酸カリウムなどの無機塩基)の存在下、冷却下ないし室温あるいは加熱下、好ましくは-20℃ないし氷冷下あるいは室温ないし反応系の加熱還流温度

で、数分ないし数十時間、好ましくは 0.5時間ないし 2.4 時間、より好ましくは 1.時間ないし 1.2 時間実施すればよい。

他の反応性誘導体あるいは遊離の酸とアミン(II)との反応においても、各 反応性誘導体あるいは遊離酸の性質に応じて、公知の方法に従い、反応条件を定 めればよい。

反応生成物は通常の精製法、例えば、溶媒抽出、クロマトグラフィー、再結晶 法などにより、精製することができる。

本反応法における原料化合物(II)の具体例を示すと、3-アミノ[2.2.1]ピシウロ環系化合物の具体例としては、7一(3一アミノビシクロ[2.2.1]ヘプ トー2ーイル) - 5-ヘプテン酸、7-(3-アミノビシクロ[2.2.1]ヘプトー 2-4 (N-メチル-3 - 2 - 2 +ピシクロ[2.2.1]ヘプトー2ーイル) ー5ーヘプテン酸、6-(3-rミノビシ 00[2.2.1]へプトー2ーイル) -5-ヘキセン酸等が例示される。また、2-アミノー6, 6 --ジメチル[3.1.1]ビシクロ環系化合物の具体例としては、7 --(2-7ミノー6,6-ジメチルビシクロ[3.1.1]ヘプト-3-イル)-5-ヘ プテン酸等が例示される。また、これら原料化合物のヘプテン酸鎖は飽和となっ てヘプタン酸となってもよいし、一O一、一S一、一NH一等のヘテロ原子もしく はヘテロ基あるいはフェニレンが鎖の途中に介在してもよいし、オキソ基で置換 されていてもよく、7--(3-r) (3ーアミノビシクロ[2.2.1]ヘプト-2-1 (3ーアミノビシクロ[2.2.1] タン酸、4-[2-(2-r)] (2-r) 2-r (3-r) 2-フェニル酢酸、7-(3-r = 1) アミノビシクロ[2.2.1] ヘプト-2-1 ル) -6-1キソヘプタン酸等が例示される。これらの原料化合物は、特公平5-79060 号明細書、特公平6-23170号明細書に記載された公知化合物であるか、あ るいはこれらの明細書に記載の方法に従って製造することができる。

部分構造式 $Z-X_1-X_2-X_3$ に対応するスルホン酸 $X_3-X_2-X_1-SO_2$ O H およびカルボン酸 $X_3-X_2-X_1-COOH$ とは、前記 X に対応する置換 基を有するスルホン酸またはカルボン酸、すなわち、アルカンスルホン酸またはカルボン酸、アルケンスルホン酸またはカルボン酸、アルキンスルホン酸またはカルボン酸、シクロアルカンスルホン酸またはカルボン酸、シクロアルカンスルホ

ン酸またはカルボン酸、アリールスルホン酸またはカルボン酸、アラルキルオキシスルホン酸またはカルボン酸、ヘテロ環置換スルホン酸またはカルボン酸、ヘテロアリールアルキルスルホン酸またはカルボン酸、および置換アミノスルホン酸またはまたはカルボン酸である。これらのスルホン酸およびカルボン酸は、それぞれ前記定義の置換基を有することができる。また、これらのスルホン酸およびカルボン酸は、市販品として入手可能であるか、あるいは既知の化合物から既知の方法に従って容易に合成できるものである。反応に際し、これらのスルホン酸およびカルボン酸は、必要に応じて、対応する上記の反応性誘導体とすることができる。例えば、酸ハロゲン化物とするときは、ハロゲン化チオニル(例えば、塩化チオニル)、ハロゲン化りン(例えば、三塩化リン、五塩化リン)、ハロゲン化オギザリル(例えば、塩化オギザリル)等と公知の方法(例えば、新実験化学講座22巻1787頁(1978);Synthesis 852-854(1986);新実験化学講座22巻175頁(1992))に従って反応させればよい。他の反応性誘導体についても同様に公知の方法で調製することができる。

本発明目的化合物(I)の中、側鎖 A が不飽和結合、特に二重結合を有する化合物は、下記一般式(I I I I)で表わされるアルデヒド誘導体に、側鎖 A-R 部分の残余部分に対応するイリド化合物をウィティッヒ(Wittig)反応の条件に従って反応させ製造することもできる。

(式中、A、B、R、X₁、X₂、X₃、YおよびZは前記と同意義である。)

原料化合物(I I I)は、例えば、特開平2-256650号明細書に記載の方法に従って製造することができる。また、側鎖A-R部分の残余部分に対応するイリド化合物は、対応するハロゲン化アルカン酸もしくはそのエステル誘導体、エーテル誘導体、アミド誘導体等とトリフェニルホスフィンとを塩基の存在下、公知の方法に従い反応させ合成することができる。

本発明目的化合物(1)においてRがCOOHである化合物は、所望により、

対応するエステル誘導体、アルコール誘導体、エーテル誘導体、アミド誘導体とすることもできる。例えば、エステル誘導体はカルボン酸を公知の方法に従いエステル化することにより製造することができる。また、エステル誘導体を還元すればアルコール誘導体とすることができるし、アミド化すればアミド誘導体とすることもできる。エーテル誘導体はアルコール誘導体を Oーアルキル化することによっても製造することができる。

本発明の化合物(I)はインビトロでPGD2受容体と結合することによるPGD2拮抗作用を示し、PGD2の生産過多に起因する肥満細胞機能不全と関連した疾患の治療剤として有用である。例えば全身性肥満細胞症や全身性肥満細胞活性化障害の治療剤、抗気管収縮剤、抗喘息剤、抗アレルギー性鼻炎剤、抗アレルギー性結膜炎剤、抗蕁麻疹剤、虚血再灌流傷害治療薬、抗炎症剤として用いることができる。特に、本発明化合物(I)は、インビボで鼻閉抑制作用を示すことから、鼻閉症の治療剤として有用である。

本発明の化合物(I)を治療に用いるには、通常の経口又は非経口投与用の製剤として製剤化する。本発明の化合物(I)を含有する医薬組成物は、経口及び非経口投与のための剤形をとることができる。即ち、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用溶液又は懸濁液、吸入薬、点眼薬、点鼻薬、坐剤、もしくは軟膏剤などの経皮投与用製剤などの非経口製剤とすることもできる。

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造することができる。例えば、錠剤の場合、活性成分と補助成分を一緒に圧縮又は成型する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤(例、トウモロコシでん粉)、充填剤(例、ラクトース、微結晶性セルロース)、崩壊剤(例、でん粉グリコール酸ナトリウム)又は滑沢剤(例、ステアリン酸マグネシウム)などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ剤、液剤、懸濁剤などの液体製剤の場合、例えば、懸濁化剤(例、メチルセルロース)、乳化剤(例、レシチン)、保存剤などを用いる。注射用製剤の場合、溶液、懸濁液又は油性もしくは水性乳濁液の形態のいずれでもよく、これらは懸濁安定剤又は分散剤などを含有していてもよい。吸入剤として使用する場合は吸入

器に適応可能な液剤として、点眼剤として使用する場合も液剤又は懸濁化剤として用いる。特に鼻閉症治療のための点鼻薬として用いる場合、通常の製剤化の方法に従って、液剤、懸濁化剤として用いるか、あるいは粉末化剤(例、ヒドロキシプロピルセルロース、カーボボール)等を加え、粉末剤として鼻孔に加える。あるいは、低沸点の溶媒とともに特殊な容器に充填し、噴射剤として用いることができる。

化合物(I)の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは併用される薬物(あるとすれば)などにより異なり、最終的には医師の判断に委ねられるが、経口投与の場合、体重1 kg あたり、1 日 0.0 $1 \sim 1$ 0 0 mg、好ましくは 0.0 $1 \sim 1$ 0 mg、より好ましくは $0.1 \sim 1$ 0 mg、非経口投与の場合、体重1 kg あたり、1 日 0.0 0 $1 \sim 1$ 0 0 mg、好ましくは 0.0 0 $1 \sim 1$ mg、より好ましくは 0.0 0 $1 \sim 1$ mg、より好ましくは 0.0 0 $1 \sim 1$ mg を投与する。これを $1 \sim 4$ 回に分割して投与すればよい。

以下に実施例を挙げて本発明を詳しく説明するが、これらは単なる例示であり 本発明はこれらに限定されるものではない。

実施例1

COOCH₃

$$(II-1)$$

$$(Ia-1)$$

$$(Ia-1)$$

$$(Ia-1)$$

$$(Ia-2)$$

$$(Ia-3)$$

$$(Ia-3)$$

4R) -3-(2-ジベンゾフリル) スルホニルアミノビシクロ [2.2.1] ヘプトー2ーイル] -5-ヘプテン酸メチル (1a-1) (342 mg, 0.710 mmol)を得た。収率 71%。

融点:115-116℃

元素分析 (C₂₇ H₃₁ NO₅ Sとして)

計算值(%): C,67.34;H,6.49;N,2.91;S,6.66

実測値 (%): C,67.16;H,6.47;N,2.99;S,6.66

IR (CHCl3): 3382,3024,2952,2874,1726,1583,1465,1442,1319,1245,1154,1121,1104,1071,1019,890,840,817/cm.

1H NMR(CDCl3) δ : 0.94-1.92(14H,m),2.15-2.24(3H,m),2.99-3.07(1H,m), 3.66(3H,s),4.98(1H,d,J=6.6Hz),5.10-5.22(2H,m),7.39-7.46(1H,m),7.51-7.70(3H,m),7.87-8.13(2H,m),8.53(1H,d,J=2.1Hz).

[α]D=-0.6° (CHCl3,c=1.01%,23°C).

 $([\alpha]365 = +37.0^{\circ} (CHCl3,c=1.01\%,23\%).$

(2) -7-[(1S, 2R, 3R, 4R) -3-(2-ジベンゾフリル) スルホニルアミノビシクロ[2.2.1] ヘプトー2ーイル] -5ーヘプテン酸メチル (1 a-1) (2 3 4 mg, 0.5 0 mmol)をメタノール(6 ml)ーテトラヒドロフラン(4 ml)に溶解し、氷冷下1N水酸化カリウム(1.5 0 ml, 1.5 0 mmol)を加えた後、室温まで昇温し、16時間反応させた。溶媒を溜去した後、残渣に酢酸エチル(5 0 ml)と水(1 0 ml)を加え、さらに1N塩酸(2.0 0 ml, 2.0 0 mmol)を加え、有機層を分取した。有機層を飽和食塩水で洗った後、無水硫酸ナトリウムで乾燥した。溶媒を溜去した後、残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン-酢酸エチル=1:1, 0.2%酢酸) で精製し、(2) -7ー[(1S, 2R, 3R, 4R) -3-(2ージベンゾフリル) スルホニルアミノビシクロ[2.2.1] ヘプトー2ーイル] -5ーヘプテン酸(1 a-2)(203 mg, 0.434 mmol)を得た。収率87%。

オイル

IR (CHCl3): 3266,3026,2952,2874,1708,1465,1443,1423,1319,1267,1245

,1153,1121,1104,1072,906 /cm.

1H NMR(CDCl3) δ : 0.93-1.94(14H,m),2.12-2.19(1H,m),2.26(2H,t,J=7.2H z),3.00-3.08(1H,m),5.12-5.25(2H,m),5.26(1H,d,J=6.6Hz),7.38-7.45(1H,m),7.51-7.70(3H,m),7.87-8.13(2H,m),8.54(1H,d,J=2.1Hz).

 $[\alpha]D=+6.8^{\circ}$ (CHCl3,c=1.08%,23°C).

(2) -7-[(1S, 2R, 3R, 4R) -3-(2ージベンゾフリル)スルホニルアミノビシクロ[2.2.1] ヘプトー2ーイル] -5-ヘプテン酸(1a-2)(453 mg, 0.97 mmol)をメタノール(5 ml)に溶解し、氷冷下1Nナトリウムメトキシド/メタノール溶液(1.034規定,0.937 ml, 0.97 mmol)を加えた後、室温まで昇温し、1時間反応させた。溶媒を溜去して、ナトリウム塩(1a-3)(457 mg, 0.933 mmol)を得た。収率96%。

無晶状粉末

元素分析 (C 26 H 28 N O 5 S N a ・ 0.6 H 2 O として)

計算值(%): C,62.41;H,5.88;N,2.80;S,6.41;Na,4.59

実測値(%): C,62.45;H,5.92;N,2.99;S,6.49;Na,4.46

IR (KBr): 3434,3280,3074,3007,2952,2873,1566,1467,1444,1417,1344,1

315,1270,1248,1200,1189,1154,1124,1107,1075,1058,895,842,818/cm.

1H NMR(CD3OD) δ : 1.02-2.05(16H,m),2.16-2.23(1H,m),2.94-3.00(1H,m), 4.98-5.05(2H,m),7.41-7.48(1H,m),7.53-7.62(1H,m),7.66(1H,d,J=8.4Hz),7.77(1H,d,J=8.4Hz),8.57(1H,d,J=2.1Hz).

[α]D=-15.2° (CH3OH,c=1.07%,22°C).

実施例2

(Z) -7-[(1S, 2R, 3R, 4R) -3-アミノビシクロ[2. 2.1] ヘプトー2ーイル] -5-ヘプテン酸メチル トリフルオロ酢酸塩 (II-2) (特公平5-79060号、参考例4に準じて製造) 232 mg (0.636 mmol) を塩化メチレン (5 ml) に溶解し、氷冷下、トリエチルアミン 0.2 7 9 ml(2.0 mmol)と4ーピフェニルカルポニルクロリドを加え、同温度で7時間 撹拌する。反応液をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサ ン=1:4) で精製し、(Z) -7-[(1S, 2R, 3R, 4R) -3-(4 ーピフェニル) カルボニルアミノビシクロ[2.2.1] ヘプトー2ーイル] ー 5-ヘプテン酸メチル(1k-11) 221 mg(0.512 mmol)を得た。こ の化合物 (1k-11) (190 mg, 0.440 mmol) をメタノール (6 ml) に溶解し、氷冷下1N KOH (1.10 ml. 1.10 mmol) を加え室温で15 時間撹拌した。反応液を減圧下濃縮した後、残渣に水(20 ml)と1N HC1 (2 ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗った後硫酸ナ トリウムで乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢 酸エチル: ヘキサン=1:1)(0.3%酢酸)で精製して(Z)-7-[(1S, 2R, 3R, 4R) -3-(4-ピフェニル) カルボニルアミノピシクロ [2.2. 1] ヘプトー2ーイル] ー5ーヘプテン酸(1k-12) 172 mg(0.4 12 mmol) を得た。収率94%。

下記に示す化合物は、以下の方法でも製造できる。

実施例3

窒素雰囲気下、4-カルボキシブチルトリフェニルホスホニウムブロマイド(14.8~g、33.3~mmol)およびテトラヒドロフラン(80~ml)から成る懸濁液にカリウム t-ブチレート(7.55~g、67.3~mmol)を室温で加える。室温のまま 1 時間撹拌した後、-20℃に冷却してN-[(1S,2S,3S,4R)-3-ホルミルメチルビシクロ[2.2.1] ヘプト-2-イル] ベンゼンスルホンアミ

ド(III—1) (特開平2—256650号、参考例2)(3.25g、11.1 mmol)のテトラヒドロフラン溶液(20 ml)をゆっくり加える。-20℃で約1時間半撹拌を続けた後、氷浴を除き、更に1時間撹拌する。反応液に2N塩酸を加え酢酸エチルで抽出し、水及び食塩水で洗浄後濃縮する。得られた粗生成物にトルエンと1N水酸化ナトリウム溶液を加えて水層を分取する。有機層をもう一度水洗し、先程の水層と合わせた後、2N塩酸を加える。酢酸エチルで抽出後、水及び食塩水で洗浄し、硫酸ナトリウムで乾燥後濃縮する。残渣をシリカゲルカラムクロマトグラフィーにより精製し、(Z) —7—[(1R, 2S, 3S, 4S) —3—フェニルスルホニルアミノビシクロ[2.2.1] ヘプトー2—イル] —5—ヘプテン酸カルシウム(1d—1)を得る(3.29g、収率79%)。

融点:62℃

元素分析(C 20 H 27 N O 4 S として)

計算值(%):C, 63.63;H, 7.21;N, 3.71;S, 8.49

実測値(%):C, 63.56;H, 7.21;N, 3.83;S, 8.43

 $[\alpha]D = +5.3 \pm 0.5$ ° (CHC13, C=1.003%,22°C)

 $[\alpha]D = +27.1 \pm 0.7^{\circ} (MeOH, C = 1.015\%, 24\%)$

IR(Nujol) 3282, 3260, 3300, 2400, 1708, 1268, 1248, 1202, 1162, 1153, 1095, 1076/cm

1H NMR δ 0.88-2.10(m, 14H), 2.14(br s, 1H), 2.34(t, J=7.2Hz, 2H), 2.95-3.07(m, 1H), 5.13-5.35(m, 3H), 7.45-7.64(m, 3H), 7.85-7.94(m, 2H), 9.52(br s, 1H)

上記実施例と同様にして製造した化合物を以下に示す。

表1a

No.	R ₁	X ₁ -X ₂ -X ₃
la-1	CH₃	<u></u>
1a-2	н	$\overline{}$
1a-3	Na	
1a-4	CH ₃	\rightarrow
1a-5	н	
1a-6	CH ₃	-
1a-7	H	
1a-8	CU	
12-9	CH₃ H	-()-()-CF ₃
	••	
1a-10	CH ₃	AA
18-11	Н	-\\-so ₂ NH ₂
1.44		
1a-12 1a-13	CH₃ H	-{_}-оснз
	n	
1a-14	СН₃	
1a-15	Н	
1a-16	CH3	
la-17	Н	_
1a-18 1a-19	CH₃	
10-17	н	's'
1a-20	СНз	
1a-21	н	
	••	S S
1a-22	н	
14.22	п	
		NO ₂
1a-23	н	-{_}}-(_)>-ОСН₃
	•	NO ₂

No.	R ₁	$X_{1}-X_{2}-X_{3}$
1a-24	CH ₃	
1a-25	н	
1a-26	Na	
1a-27	CH₃	
1a-28	Н	~__N=N-__N
1a-29	Na	
1a-30	CH₃	
1a-31	н	N=N-(OAc
		_
1a-32	СН₃	
1a-33	н	→ N=N-()—OH
1a-34	CH ₃	
10-37	2.13	N=CH-
1a-35	СНз	
1a-36	н	—(/)—cH=cH₂
1a-37	CH ₃	
1a-38	н	
1a-39	CH₃	
1a-40	н .	
1a-41	н	−осн₃
		00.13
1a-42	CH ₃	
1a-43	н	s
1a-44	CH₃	
1a-45	н	-_CH2CH2\\
		

No	R ₁	$X_1-X_2-X_3$	
1a -4 6	СН₃		
1a-47	н		
1a-48		→	
	Na		
1a-49	CH ₃		
1a-50	н	- \ \ -= \ - \ \	
		NO ₂	
1a-51	CH₃		
1a-52	н		
1a-53	СН₃	NH ₂	
1a-54			
	Н	s	
1a-55	CH ₃	→ .	
1a-56	н		
1a-57	СН₃	_~~	
1a-58			·
20.00	Н		
1a-59	CH ₃		
1a-60	H		
	••	HO	
la-61	CH ₃		
1a-62	н	→ >	
la-63	CH₃	$\overline{}$	
1a-64	н	(CH ₂) ₅ CH ₃	
1a-65			
	CH ₃		
1a-66	Н	—он	
10.67	C 11		
1a-67	CH ₃		
1a-68	н		

No.	R ₁	X_1 - X_2 - X_3
1a-69 1a-70	СН ₃ Н	-{
1a-71 1a-72	СН ₃ Н	
1a-73	CH ₃	
1a-74	. н	OAC
1a-75 1a-76	CH₃ H	-COOR1
1a-77	СН3	
12-78 12-79	H .	NO ₂
	н	-{
1a-80 1a-81	CH₃ H	NO ₂
1a-82	СН₃	NO ₂
1a-83	Н	NH ₂
1a-84	н	NO ₂ OCH ₃
1a-85	H	NH ₂ OCH ₃
1a-86	н	NO ₂
la-87	н	NH ₂

No.	R ₁	X ₁ -X ₂ -X ₃
1a-88 1a-89	СН ₃ Н	(C)-H-C-(C)
1a-90 1a-91	СН ₃ Н	
1a-92 1a-93	СН ₃ Н	<
1a-94	н	-C-H-C-OCH₃
1a-95	н	-С-й-С-й-
1a-96	н	—————————————————————————————————————
1a-97	н	-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
1a-98 1a-99	H Na	OCH3 OCH3

No.	R ₁	$X_1-X_2-X_3$
1a-100 1a-101	СН ₃ Н	NH S NH
1a-102	CH₃	NNa S NNa
1a-103 1a-104	СН ₃ Н	NH S NH
1a-105 1a-106	СН₃ Н	N-OCH₃
1a-107 1a-108	СН₃ Н	N-OC ₂ H ₅
1a-109 1a-110	СН ₃ Н	
1a-111 1a-112	CH ₃	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 a-113 1a-114	СН₃ Н	-√N=Ph Ph

No.	R ₁	X ₁ -X ₂ -X ₃
1a-115 1a-116 1a-117 1a-118	CH ₃ H Na i-Pr	——————————————————————————————————————
1a-119 1a-120 1a-121	CH₃ Na H	─
1a-122 1a-123	СН₃ Н	-____\
1a-124	CH ₃	-CH ₂ -OMs
1a-125 1a-126	СН ₃ н	-CH ₂ -COAc
1a-127 1a-128	СН ₃ Н	-СН₂-СОН
la-129	CH₃	-{
1a-130 1a-131	СН ₃ Н	— С—О—ОН
1a-132 1a-133	СН ₃	—————————————————————————————————————
1a-134	н	
1a-135 1a-136	СН ₃ Н	
1a-137 1a-138	СН₃ Н	
1a-139 1a-140	CH₃ H	-CH ₂ -

 No.	R ₁	$X_1-X_2-X_3$
1a-141 1a-142	CH₃ H	-CH ₂ -NC
la-143	Н	NO ₂
1a-144	. н	NH ₂
1a-145	Н	
la-146	н	NO ₂
1a-147	Ħ	OCH ₃
la-148	н	OCH ₃
1a-149	н	
1a-150	н	О́Н О́Н
1a-151	н	OCH ₃

No.	R ₁	X ₁ -X ₂ -X ₃
1a-152	н	
la-153	н	Ci
1a-15 4	. н	CH ₃ O
1a-155	н	
1a-156	H	
1a-157	н	-C>s
la-158	н	SO ₂
1a -1 59	, н	N-CH ₃
la-160	н	NH NH

No.	R ₁	X ₁ -X ₂ -X ₃
1a-161	н	
1a-162	н	CH ₃ O
1a-163	н .	HO
la-164	н	C ₂ H ₅ O
1a-165	н	CH ₃ O NO ₂
1a-166	н	CH ₃ O NO ₂
la-167	Н	
1a-168	н	
12-169	Н	N OCH3
1a-170	н	OCH ₃
1a-171	СН₃	H₂C
Ia-172	н	S_CI
• .		

No.	R ₁	X ₁ -X ₂ -X ₃
1a-173	н	
1a-17 4	н	
la-175 la-176	CH₃ H	
la-177 la-178	СН₃ Н	N OCH3
1a-179 1a-180	CH₃ H	н — Он
1a-181	н	N CH ₃
1a-182 1a-183	CH₃ H	-O-N-

No.	R ₁	X ₁ -X ₂ -X ₃
1a-184	н	
1a-185	н	NH NH
1a-186 1a-187	С Н 3	cı Cı
1a-188 1a-189	СН₃ Н	COOR ₁
1a-190 1a-191	СН ₃ Н	COOR ₁
1a-192 1a-193	СН ₃ Н	COOR ₁

No.	X ₁ -X ₂ -X ₃	
1a-19 4	CH ₃ O	
1a-195	CH₃O	
1a-196	CH ₃ O	
1a-197	CH ₃ O ————————————————————————————————————	
1a-198	OCH ₃	
1a-199	осн _з	
1a-200	CH ₃ O	
1a-0201	O ₂ N	
1a-202	-NO ₂	
1a-203	CH ₃ O NO ₂	

No.	X ₁ -X ₂ -X ₃
1a-204	CH ₃ O
1a-205	CH ₃ O
12-206	N=N-\OCH ₃ OCH ₃ OCH ₃
1a-207	
12-208	N=CH-\(\bigcirc\)OCH3
1a-209	CH ₃ O ————————————————————————————————————
12-210	CH³O
1a-211	CH ₃ O
1a-212	OCH ₃
. 1a-213	ОСН ₃ ОСН ₃ ОСН ₃

PCT/JP96/01685

Н	
No.	$X_1-X_2-X_3$
1a-214	CH ₃ O
1a-215	OCH ₃
1a-216	OCH ₃
1a-217	CH ₉ O
1a-218	CH ₃ O
la-219	-{\$\begin{array}{c} -\left\ -
1a -22 0	CH ₃ O S
la-221	-\rightarrow \rightarrow \rig
1a-222	
1a-223	О N-Ü-Ö-ОСН ₃

No.	X ₁ -X ₂ -X ₃
1a-224	CH ₃ OCH ₃
1a-225	O ₂ N
1a-226	CH ₃ O F
1a-227	CH ₃ O OCH ₃
1a-228	CH ₃ O H ₂ N
1a-229	CH ₃ O NH ₂
1a-230	CH ₃ O NO ₂
1a-231	СН₃О
la-232	-C-N-C-F
1a-233	-CI CI CI
1a-234	
1a-235	O C-N-OCH3

No. $X_1 \cdot X_2 \cdot X_3$ 1a-236 \longrightarrow NO_2 OCH ₃ 1a-237 \longrightarrow NO_2 OCH ₃ 1a-238 \longrightarrow NO_2 OCH ₃		н	
1a-236 1a-237 1a-238 1a-238 1a-239 1a-240 1a-241 1a-241 1a-242 1a-242 1a-242 1a-244 1a-244 1a-244 1a-245 1a-246 CH ₃ O OCH ₃		No.	X ₁ -X ₂ -X ₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		la-236	-√D-H-c-√OCH3
1a-238 CH ₃ O CH ₃ O		1a-237	O NO2
$\begin{array}{c} \text{La-239} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O}$		1a-238	—⟨¬¬-ё-⟨¬>осн₃
1a-241 CH ₃ O OCH ₃ 1a-241 CH ₃ O OCH ₃		1a-239	CH ₃ O OCH ₃ OCH ₃
1a-241 CH ₃ O OCH ₃ 1a-243 CH ₃ O OCH ₃		1a-240	CH ₃ O OCH ₃
1a-242 $ \begin{array}{c} CH_3O \\ CH_3O \end{array} $ $ \begin{array}{c} CH_3O \\ CH_3O \end{array} $ $ \begin{array}{c} CH_3O \\ CH_3 \end{array} $ $ \begin{array}{c} CH_3O \\ CH_3 \end{array} $ $ \begin{array}{c} CH_3O \\ CH_3 \end{array} $ $ \begin{array}{c} CCH_3 \\ CCH_3 \end{array} $ $ \begin{array}{c} CCH_3 \end{array} $ $ CCH_3 $ $ CCH_3$		1a-241	——N-c———och³
1a-243 CH ₃ O OCH ₃		1a-242	-_\rac{1}{2}-\rac{1}{
1a-244 OCH ₃		1a-243	CH ₃ O OCH ₃ OCH ₃
1a-245 CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃		la-244	OCH ₃ OCH ₃
1a-246 ————————————————————————————————————		18-245	- — Ту-ў-Ту-осн₃
	***	la-246	—————————————————————————————————————

H	4,43,43
No.	X ₁ -X ₂ -X ₃
1a-247	CH ₃ O O O O O O O O O O O O O O O O O O O
12-248	CH ₃ O OCH ₃
1a- 24 9	CH3O
1a-250	CH ₃ O OCH ₃
1a-251	CH ₃ O OCH ₃
1a-252	CH ₃ O OCH ₃ CH ₃ O OCH ₃
1a-253	OCH ₃ OCH ₃ OCH ₃
1a-254	CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃
1a-255	$ \begin{array}{c} O \\ -\ddot{C}-N \\ -\ddot{C}+M \\ -\ddot{C}+M_3 \end{array} $ $ \begin{array}{c} CH_3 \\ CH_3 \end{array} $
la-256	О СН ₃ О О О Э Э Э Э Э О О О О О О О О О О О О
1a-257	OCH ₃ OCH ₃ OCH ₃

No.	X ₁ -X ₂ -X ₃
1a-258	-{¯}-s-{¯¯
la-259	CH ₃ O ————————————————————————————————————
1a-260	CH ₃ O ————————————————————————————————————
1a-261	сн ₉ о
1a-262	CH ₃ ONH
la-263	CH ₂ ON
1a-264	СH ₃ O
12-265	
12-266	OCH3
1a-267	CH ₃ O
1a-268	S—S—S—OCH ₃
1a-269	CH ₃
1a-270	-√S-√S
1a-271	сн ₃

	No.	$X_{1}-X_{2}-X_{3}$
	1a-272	—————————————————————————————————————
	1a-273	OCH ₃ CH ₃ O
·	1a-274	-CH ₂ -COCH ₃
	1a-275	CH ₃ O CH ₂
	1a-276	
:	12-277	сн ₃ о
1	la-278	CH ₃ O
1:	a-279	ОСН ₃
1,	a-280	CH3O O
1:	a-281	—————————————————————————————————————
la	ı -2 82	
la	-283	-\f__\tag{-1\frac{1}{\sigma}}

	No.	X ₁ -X ₂ -X ₃	
	1a-284	$\rightarrow \bigcirc$	
	1a-285	сн ₃ о	
	1a-286	CH ₃ O	
	1a-287	CH ₃ O S	
	1a-288	CH3O NH	
	1a-289	CH ₃ O N-CH ₃	
	1a-290	CH ₃ O SO ₂	
	la-291	CH ₂ O	
	la-292	CH₃O NH	
1	a-293	CH ₃ O	
1.	a-294	CH ₃ O	

No.	$X_1-X_2-X_3$
1a-295	CH ₃ O
1a-296	CH3O H
1a-297	CH ₃ O CH ₃
1a-298	CH ₃ O H
1a-299	CH ₃ O H NO ₂
. 1a-300	CH ₃ O H
1a-30I	CH3O NH OCH
1a-302	CH ₃ O NH NO ₂
1a-303	CH ₃ O OCH ₃
1a-304	
1a-305	O ₂ N S NH

表1b

No.	R_1	X ₁ -X ₂ -X ₃
1b-1	CH ₃	
1b-2	CH ₃	-CH ₂ -CH ₂
1b-3	н	-CH ₂
1b-4	н	
1b-5	н	CH ₃ O
1b-6	н	CH ₃ O
1b-7	н	CH ₃ O
1b-8	н	CH ₃ O CH ₂
1b-9	н	CH ₃ O
16-10	н	CH ₃ O

WO 97/00853

No.	R ₁	$X_1-X_2-X_3$
1b-11	Н	OCH₃ OCH₃ OCH₃
1b-12	Н	OCH3 OCH3
1b-13	Н	CH ₃ O OCH ₃ OCH ₃ OCH ₃
1b-14	Н	CH ₃ O
1b-15	н	- √_>s-√_>

表1c

No.	R ₁	$X_{1}-X_{2}-X_{3}$
1c-1	СН₃	~\^__\
1c-2	CH ₃	-\(\)-\(\)-\(\)-\(\)-\(\)
1c-3	κ	-
1c-4	н	-CH ₂ -C
1c-5	н	
1c-6	н	OCH ₃ OCH ₃ OCH ₃
1c-7	н.	CH₃O
1c-8	н	
1c-9	н	
1c-10	н	CH₃O
1c-11	н	CH ₃ O OCH ₃ OCH ₃ OCH ₃
. 1c-12	н	CH ₃ O, OCH ₃

表1d

No.	R ₃ R ₄	X ₁ -X ₂ -X ₃
1d-1	H SO₂CH₃	-\(\)-N=N-\(\)
1d-2	н н	
1d-3	н он	—(¯)—c+,-(¯)
. 1d-4	H SO ₂ CH ₃	
1 d-5	H SO ₂ CH ₃	
1d-6	н so₂сн ₃	CH ₃ Q
1d-7	H SO ₂ CH ₃	CH ₃ O ————————————————————————————————————
· 1d-8	H SO₂CH₃	CH ₃ O CH ₂
1d-9	H SO₂CH₃	CH ₃ O
1d-10	н so₂cн₃	CH ₃ O

No.	R ₃ R ₄	$X_1-X_2-X_3$
1d-11	H SO₂CH₃	ОСН ₃ ОСН ₃
1d-12	H SO₂CH₃	О С-N-С-Ч-ОСН3
1d-13	н SO₂CH₃	СН ₃ О О С-N ОСН ₃ ОСН ₃
1d-14	н so₂cн₃	CH ₃ O
1d-15	H SO₂CH₃	(

表1e

No.	R ₁	$X_1-X_2-X_3$
16-1	н	
16-2	н	CH₃O CH₃O
1e-3	н .	——————————————————————————————————————
1e-4	н	
1e-5	н	ОСН ₃ ОСН ₃ ОСН ₃
le-6	Н	CH ₃ O
1e-7	н	CH ₃ O CH ₂
1e-8	н	CH ₃ O
1e-9	н	CH₃O OCH₃ OCH₃ OCH₃
1e-10	н	CH ₃ O

表11

No.	R ₂	X ₁ -X ₂ -X ₃
16-1	н	
1f-2	н	CH ₃ O
16-3	н	——————————————————————————————————————
16-4	н	
1f-5	H	OCH₃ OCH₃ OCH₃
11-6	н	CH3O
16-7	н	CH ₃ O CH ₂
1f-8	н	CH ₃ O
11-9	н	CH₃O OCH₃ OCH₃ OCH₃
1f-10	н	CH ₃ O

表1g

No.	R_1	$X_1-X_2-X_3$
1g-1	н	
1g-2	н	CH₃O
1g-3	н	-CH ₂ -(
1g-4	н	
1g-5	н	OCH3
1g-6	. н	сньо
1g-7	· н	- ⟨□}-∘-⟨□⟩
1g-8	н	CH ₃ O
1g-9	н	CH ₃ O
1g-10 .	н	CH ₃ O OCH ₃ OCH ₃ OCH ₃
1g-11	. н	CH ₃ O CH ₃ O

表[]

No.	R ₁	X ₁ -X ₂ -X ₃
1h-1	н	~~;
1h-2	Н	-CH ₂ -C
1h-3	Н	
1h-4	Н	О С-Й-С-Й-ОСН³
		осн _з сн _з о
1h-5	н	
1b-6	н	-
1 h-7	Н	CH ₃ O CH ₂
1h-8	н	CH ₃ O
1h-9	Н	CH₃O Ö Ö OCH₃ OCH₃
1 h-1 0	. Н	CH ₃ O

表1i

•			
	No.	R ₂	X ₁ -X ₂ -X ₃
	1i-1	н	
	1i-2	н	-CH ₂ -C
	1i-3	н	
	1i-4	н	OCH ₃
	1i-5	H	CH ₃ O OCH ₃
	1i-6	, н	
	1i-7	н	
	1i-8	Н	сн ₃ о
	1i-9	н	CH ₃ O CH ₂
	1i-10	н	сн ₃ о о осн ₃ .
	1i-11	н	сн _э о осн _э
	1i-12	н	CH ₃ O

表1j

No.	R ₁	X ₁ -X ₂ -X ₃
1j-1	СН₃	
1j-2	н	—()—CH₂-()
1j-3	Na	_
1j-4	н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1j-5	CH ₃	
1 j -6	CH ₃	
11-7	Н	
1j-8	СН₃	
1j-9	CH ₃	
1j-10	н	
1j-11	СН ₃	
1j-12	Н	0=ć
	n	◇ -◇
1j-13	CH₃	C=O
1j-14	н	
1j-15	CH ₃	A
1j-16	н	

No.	R ₁	X ₁ -X ₂ -X ₃	
1j-17	н		
lj-18 1j-19	CH₃ H		
1j-20 1j-21	СН ₃ Н		
1j-22	н	-C-N-N=PPh3	
1j-23 1j-24	СН ₃	-<	
1j-25 1j-26	CH₃ H	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1j-27	н	_й <u>-</u>	
1j-28 1j-29	CH₃ H	-N_O	

	No.	R ₁	$X_1-X_2-X_3$
	1j-30	Н	CH ₃ O ————————————————————————————————————
	1j-31	Н	-√_N=N-√_)-OCH3
	1j-32	Н	CH ₃ O
	1j-33	Н	CH ₃ O
·	1j-3 4	Н	CH ₃ O
·	1j-35	Н	CH ₃ O
	1j-36	н	OCH3 OCH3
	1j-37	н	—С-й-с-й-осн³
	1j-38	Н	CH ₃ O OCH ₃ OCH ₃ OCH ₃

表1k

No.	R ₁	X ₁ -X ₂ -X ₃
1k-1	н	-0-CH ₂ -
1k-2	CH₃	
1k-3	н	
1k-4	н	
1k-5	н	
1k-6	н	
1k-7	Н	-
1k-8	H	− С>−о-{}-он
1k-9	н	
1k-10	· н	
1k-11	CH ₃	$\overline{}$
1k-12	н	

No.	R ₁	$X_1-X_2-X_3$
1k-13	Н	-√N=N-√DCH ₃
1k-14	Н	
1k-15	н	CH3O
· 1k-16	Н	
1k-17	н	CH ₃ O
1k-18	Н	(CH₂-(C)
1k-19	н	OCH3 OCH3
1k-20	Н	s

表1四

No.	R ₁	X ₁ -X ₂ -X ₃
lm-1 lm-2	CH₃ H	─
1m-3	CH ₃	
1m-4	H' ·	
1m-5	CH ₃	
1m-6	н	~
1m-7 1m-8	СН ₃ Н	
1m-9	CH ₃	·
1m-10	Н	
1m-11 1m-12	CH₃ H	
1m-13 1m-14	CH₃ H	-√_>-O-√_>-OCH3
1m-15	CH ₃	
1m-16	н	OAC
lm-17 lm-18	СН ₃ Н	—————

No.	R_1	$X_{1}-X_{2}-X_{3}$
1m19 1m-20	СН₃ Н	—————осн3
1m-21	н	-=
1m-22	н	
1m-23 1m-24	CH₃ H	
1m-25 1m-26	CH₃ H	-OAc
1m-27 1m-28	СН ₃ Н	———он
1m-29 1m-30	СН ₃ Н	— С—осн₃
1m-31	н	C-HC
1m-32	н	
1m-33	н	

No.	R ₁	$X_1-X_2-X_3$
1m-34	. Н	CH ₃ O
1m-35	Н	CH ₃ O
1 m-3 6	Н	-\(-\)-OCH3
1m-37	Н	CH3O
1т-38	н	OCH3 OCH3
1m-39	Н	CH ₂ O OCH ₃ OCH ₃ OCH ₃
1m-40	Н	OCH ₃ OCH ₃ OCH ₃ OCH ₃

表2a

No.	R ₁	$X_1-X_2-X_3$	
2a-1 2a-2	сн ₃ н	-()-()	
2a-3 2a-4 2a-5	сн₃ н	√">_N=N-√">	
2a-6	Na CH ₃		
2a-7	н		
2a-8 2a-9	СН ₃ Н	-{	
2a-10 2a-11	сн ₃	-√SNH S-√NH	
2a-12 2a-13	СН ₃ . Н	→ NH	
2a-14 2a-15	сн₃ н		
2a-16 2a-17	С Н ₃ н		
2a-18 2a-19	с н₃ н		* •
2n-20 2n-21 2n-22	СН _а Н Na	$\rightarrow \bigcirc$	
2a-23 2a-24	CH₃ H	-C-C-C	

No.	R ₁	$X_1-X_2-X_3$
2a-25 2a-26	CH₃ H	-CH ₂
2a-27 2a-28	CH₃ H	
2a-29 2a-30	СН ₃ Н	N-o-N-o-
2a-31	СНз	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2a-32 2a-33	CH₃ H	-CH ₂ -N N
2a-34 2a-35	СН ₃ Н	
2a-36 2a-37	CH₃ H	-H-(C)-(C)
2a-38 2a-39	CH₃ H	√ N−он
2a-40 2a-41	CH₃ H	N N NH2
2a-42 2a-43	СН ₃ Н	NH ₂
2a-44 2a-45	СН ₃ Н	
2a-46 2a-47	CH₃ H	

No.	R ₁	X ₁ -X ₂ -X ₃
2a-48 2a-49	СН3 Н	-\(\sigma_{N=N}\).\(\vert_{N=N}\)
2a-50 2a-51	СН ₃ Н	N S-NH ₂
2a-52 2a-53	СН₃ Н	——————————————————————————————————————
2a-54 2a-55	СН ₃ Н	——————————————————————————————————————
2a-56 2a-57	СН ₃ Н	CH3 N-N N-N
2a-58 2a-59	CH₃ H	N=N N-N-CH ₃
2a-60 2a-61	CH₃ H	
2a-62 2a-63	СН₃ Н	
2a-64 2a-65	СН ₃ Н	
2a-66 2a-67	[.] СН ₃	

		•	
No.	R ₁ .	X ₁ -X ₂ -X ₃	·
2a-68 2a-69	СН ₃ Н		
2a-70 2a-71	СН ₃ Н		
2a-72 2a-73	СН ₃ Н		
2a-74 2a-75	СН ₃ Н	-(-)-OCH3	
2a-76 2a-77	CH₃ H	-(OAc	
2a-78 2a-79	. СН ₃ Н		
2a-80 2a-81	Н		
2a-82 2a-83	СН ₃ Н	——————————————————————————————————————	
2a-84 2a-85	СН ₃ Н	———он	
2a-86 2a-87	СН ₃ Н	(Ст)-осн₃	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-88 2a-89	СН ₃ Н		
2a-90 2a-91	сн₃ н	~ ~	
2a-92 2a-93	Сн ₃ Н		
2a-94 2a-95 2a-96 2a-97	CH₃ H Na		
2a-98 2a-99	Ca ^{1/2} CH ₃ H	~~~~	
2a-100 2a-101	CH₃ ¹H	N.O.	
2a-102 2a-103	CH₃ H	NO CH3	i.
2a-104 2a-105	CH₃ H	осн ₃	
2a-106 2a-107	СН ₃ Н		
2a-108 2a-109 2a-110	CH ₃ H Na	- √_5-s-√_>	
2a-111 2a-112	сн ₃ н	-(<u></u>)-cı	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-113 2a-114	СН ₃ Н	—(¯)−cF ₃	
2a-115 2a-116	СН₃ Н	— СН₃	•
2a-117 2a-118	сн₃ н	$\rightarrow \bigcirc$	
2a-119	н	OAc	
2a-120	н	OH OH	
2a-121	н	OCH ₃	
2a-122	н	-	
2a-123	н	-CH ₂ -	
2a-124	н	-CH₂-	
2a-125	н	0=	

No.	R ₁	$X_1-X_2-X_3$
2a-126	н	———Br
2a-127	н	
2a-128	н	-H-()
2a-129	н	
2a-130	н	
2a-131	н	
2a-132	н.	HO A
2a-133	н	HÖ
2a-134	н	-CH ₂ -O-
2a-135	н	
2a-136	н	

No.	R ₁	X_{1} - X_{2} - X_{3}
2a-137	н	
2a-138	н	-(-)-OCH(CH ₃) ₂
2a-139	н	
2a-140	н	
2a-141	н	-OCH3
2a-142	н	H ₃ CO
2a-143	н	HO
22-144	н	HÖ S
2a-145	н	-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2a-146	н	
2a-147	н	-√SCH ₃

No.	R ₁	X ₁ -X ₂ -X ₃
2a-148	н	
2a-149	н	-≡ √
2a-150	н	-\(\sigma_s^n\)
2a-151	н	Ts"
2a-152	н	H ₃ C N
2a-153	н	H ₃ C
2a-154	н	-√SI-CH ₃
2a-155	н	-
2a-156	н	H N N N N N N N N N N N N N N N N N N N
2a-157	н	H³C N N
2a-158	н	<u> </u>
2a-159	Н	—⟨¯>-n′,

 No.	R ₁	X ₁ -X ₂ -X ₃	
2a- 1 60	н	HOOC	
2a-161	н	H ₃ C-/ _S .N	
2a-162	Н	-NO ₂	
2a-163	н	$-\langle _{N}\rangle$	
2a-164	H	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2a-165	н	— N	
2a-166	н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2a-167	н		
2a-168	н		
2a-169	Н	-()-S-()-OCH3	
 2a-170	н	-(s)	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-171	н	у _в сн ₃	
2a-172	н	H ₃ C-S	
2a-173	н	S Br	
2a-174	н	S Br	
2a-175	н	H ₃ CS-S	
2a-176	н	∑ _S CH₃	
2a-177	н	SOCH₃	
2a-178	н	s-s-	
2a-179	н	Br S	
2a-180	н	S OCH3	-
2a-181	н	у scн ₃	
2a-182	н	S SCH₃	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-183	н	-\(\)-\(\)-\(\)-\(\)	
2a-184	н	-Cs s	
2a-185	н		
2a-186	н		
2a-187	н	H ₃ CO	
2a-188	`н	H	
2a-189	н	—(N ċн₃	
2a-190	Н	The state of the s	
2a-191	H	ÇH₃	
2a-192	н	N C ₂ H ₅	
2a-193	н	N Ac	

NT-	70		
No.	R ₁	X ₁ -X ₂ -X ₃	
2a-194	н		
2a-195	н	H ₃ C S	
2a-196	н	S CH3	
2a-197	н	S	
2a-198	. н		
2a-199	н	C) S OH	
2a-200	н	CSO	
2a-201	н		
2a-202	н	-\$-\$-\$-	
2a-203	Н		

$X_1-X_2-X_3$	· .
CH ₃	
SCF3	
S C ₂ H ₅	
S Сэнт	
S CH ₃	
S	
S C4H9	
S CH ₃	
CH ₃	·
S	
	CH ₃ CH ₃ CF ₃ CF ₃ CF ₃ CGH ₅ CGH ₅ CGH ₆ CGH ₃

No.	X ₁ -X ₂ -X ₃
2a-214	S C(CH ₃) ₃
2a-215	S
2a-216	S .
2a-217	S C
2a-218	S OCH3
2a-219	S H ₃ C
2a-220	S H₃CO
2a-221	S CH ₂ OH
2a-222	CH ₂ OCH ₃
2a-223	S_COCH3

No.	X ₁ -X ₂ -X ₃	
 2a-224		
2a-225	————————————————————————————————————	
2a-226	-√S-√S H ₃ CO	·
2a-227	-S-COCH ₃	
2a-228	CH ₃ -SSSSSSSSSSSSS-	
22-229	-√S-√S-CH₃	
2a-230	-CH ₃ -CH ₃ -CH ₃	
2a-231	H₃CO ————————————————————————————————————	
2a-232	H ₃ CO ————————————————————————————————————	•:
2a-233	H ₃ CO S-CH ₃	
	3	

No.	X ₁ -X ₂ -X ₃	
2a-234	H ₃ CO ————————————————————————————————————	
2a-235	H ₃ CO ————————————————————————————————————	
2a-236	H ₃ CO OCH ₃	
2a-237	H ₃ CO +3 ₃ CO	
2a-238	H ₃ CO H ₃ C ————————————————————————————————————	
2a-239	-S-COCH ₃	
2a-240	H ₃ C	
2a-241	н _э со сн _з ————————————————————————————————————	,
2a-242	-CH ₃ -S-COCH ₃	
2a-243	CH ₃ S-CO	

No.	$X_1-X_2-X_3$
2a-244	OCH ₃ H ₃ C
2a-245	OCH ₃
22-246	ОСН ₃ СН ₃ — СН ₃ — СН ₃
2a-247	OCH ₃ -S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
2a-248	→S→S→SOCH
2a-249	OCH ₃ -S-C-OCH ₃
2a-250	HOH ₂ C
2a-251	- S $ S$ $+$ S $+$

	No.	$X_1-X_2-X_3$
22	a-252	—————————————————————————————————————
24	a-253	-CH ₃ S-CH ₃
2a	1-254	CH ₃ S H ₃ CO
2 a	-255	H ₃ CO CH ₃ S
2a-	-256	H ₃ CO H ₃ CO
2 a	- 2 57	Соон

No.	$X_1-X_2-X_3$
2a-258	H ₃ CO
2a-259	H ₃ CO
2a-260	OCH ₃
2a-261	S OCH3
2a-262	ZS COCH₃
2a-263	S OCH3
2a-264	CH₃ S
2a-265	SCH3
2a-266	CH ₃
2a-267	CH ₃

No.	X ₁ -X ₂ -X ₃	
2a-268	500	
2a-269		
2a-270	S	
2a-271		
2a-272	HO	
2a-273		
2a-274	-Cys	
2a-275	HON	_
2a-276	HO	
2a-277	-CSO	

No.	X ₁ -X ₂ -X ₃	
2a-278	S N CH ₃	
2a-279	S N ₂ H ₅	
2a-280	S N COCH ₃	
22-281	S N	
2a-282	S N CH ₃	
2a-283	S N C ₂ H ₅	
2a-284	S N COCH ₃	
2a-285	N-N s	
2a -2 86		
2a-287	CH ₃	

No.	$X_{1}-X_{2}-X_{3}$	
2a-288	N C ₂ H ₅	_
2a-289	Nooch ₃	
2a-290		
2a-291	√ N _{CH₃}	
2a-292	N _{C₂H₅}	
2a-293	COCH₃	
22-294		
2a-295	————————————————————————————————————	
2a-296	OCH₃ OCH₃ OCH₃	

No.	X ₁ -X ₂ -X ₃
2a-297	—С-й-С-он
2a-298	—С- н —С- осн ₃
2a-299	H₃CO ОСН₃ ОСН₃ ОСН₃
2a-300	- CH₃ CH₃ CH₃
2a-301	-C-N
2a-302	
2a-303	
2a-304	OCH ₃ OCH ₃ OCH ₃
2a-305	—————————————————————————————————————
2 a-306	————————————————————————————————————

No.	X_1 - X_2 - X_3	
2a-307	H ₃ CO OCH ₃ OCH ₃ OCH ₃	
2a-308	—————————————————————————————————————	
2a-309	-C-H-C-C	
2a-310	OCH3 OCH3 OCH3	-
2a-311		
2a-312	—————————————————————————————————————	
2a-313	————————————————————————————————————	
2a-314	—————————————————————————————————————	
2a-315	H ₃ CO O O H-C-N OCH ₃ OCH ₃	

No.	R_1	$X_1-X_2-X_3$	
2b-1	. Н	-	

2b-2 H

表 2 c

 No.	R ₁	$X_1-X_2-X_3$	
2c-1	Н	-	
2c-2	н	-	
2c-3	н		

表 2 d

No.	R ₁	$X_1-X_2-X_3$	
2d-1	н		
2d-2	н		
2d-3	н	T _s)	

2e-1 H ———————————————————————————————————	No.	R ₁	$X_1 - X_2 - X_3$	
	2e-1	н		
	2e-2	н	→	
Ze-3 H	2e-3	н		

表21

No.	R ₁	X ₁ -X ₂ -X ₃	
2f-1	. Н		
2.6-2	н		
2f-3 _.	н		

表2g

No.	R ₃	R ₄	$X_1 - X_2 - X_3$	
2g-1	н	SO ₂ CH ₃	₹ _s	

表2h

No.	X ₁ -X ₂ -X ₃
2h-1	s
2h-2	S CH ₃
2h-3	
2h-4	-\
2h-5	─
2h-6	

表21

No.	X_1 - X_2 - X_3
2i-1	
2i-2	S CH ₃
2i-3	
21-4	-\$_\s-_\}
2i-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2i-6	
	. ()

表21

•		
	No.	X ₁ -X ₂ -X ₃
	2j-1	S
	2j-2	CH ₃
	2j-3	
	2j-4	-\(\sum_{\subseteq}^{\subseteq}\)-s-\(\sup_{\sup_{\subseteq}}^{\sup_{\subseteq}}\)
	2j-5	
	2 j-6	
表2k	NHCOX ₁ -X ₂ -X ₃	
	No.	X ₁ -X ₂ -X ₃
	. 2k-1	
	2k-2	S CH3
	2k-3	
	2k-4	()-s()
	2k-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	2k-6	

表3a

No.	R_1	X ₁ -X ₂ -X ₃	
3a-1 3a-2	CH₃ H		
3a-3 3a-4 3a-5 3a-6 3a-7	CH₃ H H₃N ⁺ C(CH₂OH)₃ Na 1/2 Ca		
3a-8	н	tBu	
3a-9	н		
3a-10 3a-11	сн₃ н	——————————————————————————————————————	
3a-12 3a-13	СН ₃ Н	Br	
3a-14	CH₃	Br	
3a-15 3a-16	СН₃ Н	~~~~	
3a-17 3a-18	СН ₃ Н	\sim	

No.	R ₁	$X_1-X_2-X_3$	
3a-19	CH₃	H ₃ C	
3a-20	н	— √Сн ₃	
		H ₃ C	
3a-21	CH ₃		
3a-22	н	—(s)⊥Br	
3a-23	СН₃		
3a-24	н	—(_)—CH₂OH	
3a-25	н	—(CH ₂)₃CH₃	
3a-26	СНз		
3a-27	н	(CH ₂) ₇ CH ₃	
3a-28	СН₃	-CI NO₂	
3a-29	. н	OCH ₃	
3a-30	СН₃	−(Cl NH ₂	
3a-31	СН3		
3a-32	н		
3a-33	Na		
3a-34	н		
3a-35	Na	アイツ	

表3b

No.	R ₁	X ₁ -X ₂ -X ₃
3b-1	CH ₃	(-)-CH ₂ (-)
3b-2	н .	
3b-3	н	N=N-
3b-4	н	. —Br

表3c

No.	R ₁	X ₁ -X ₂ -X ₃	
3c-1	н	-\(\big \rightarrow N=N-\(\big \rightarrow \)	

表3d

No.	R_1	X ₁ -X ₂ -X ₃	
3d-1 3d-2	1/2 Ca Na	-	
3d-3	Na	— Сн ₃	
3d-4	Na	-C)	
3d-5	CH ₃		
3d-6	н	\sim	
3d-7	СНэ		
3d-8	н	_(=\)	
3d-9	Na		
3d-10	CH₃		
3d-11	н	· -{_}	
3d-12	Na		
3d-13	1/2 Ca	<i>ن</i> ــن	
3d-14	н		
3d-15	Na		

COOR ₁

<u>·</u>				
No.	R ₁	$X_1-X_2-X_3$		
3d-16	. н	-(
3 d-1 7	н	-(CH ₂) ₄ (CH₃	
3d-18	н	-(CH ₂) ₃ CH ₃		
3d-19	CH₃			
3d-20	н	NНСН₃		
3d-21	CH₃			
3d-22	н		•	
3d-23	н	-Br		
3d-24	н .	~~~		
3d-25				
3d-26	H Na	-{-} C₂H₅	ラセミ体	
3d-27 3d-28	H Na	C ₂ H ₅	ラセミ体	
3d-29 3d-30	H Na	→(¯)→Br	ラセミ体	

表3e

 No.	R ₁	X_1 - X_2 - X_3
3e-1	1/2Ca	-{□}-сн₃

上記化合物の物性値を以下に示す。尚、上記化合物No.は、表中の化合物のNo.と対応する。

No.1 a - 4

 $[\alpha]D = -11.5^{\circ} (CHCl3, c=1.01, 23.5^{\circ}).$

No.1 a - 5

[α]D=-10.0° (CHCl3,c=1.01,25.0°C).

No.1 a - 6

CDC13 300MHz

 $0.93-1.96(14H,m), 2.20-2.26(3H,m), 3.03(1H,m), 3.67(3H,s), 4.99(1H,d,J=6.6Hz), \\ 5.10-5.24(2H,m), 7.37-7.51(3H,m), 7.54-7.64(3H,m), 7.76-7.88(2H,m), 8.11(1H,m), \\ 0.93-1.96(14H,m), 2.20-2.26(3H,m), 3.03(1H,m), 3.67(3H,s), 4.99(1H,d,J=6.6Hz), \\ 0.93-1.96(1H,m), 2.20-2.26(3H,m), 3.03(1H,m), 3.67(3H,s), 4.99(1H,d,J=6.6Hz), \\ 0.93-1.96(1H,m), 2.20-2.26(3H,m), 3.03(1H,m), 3.67(3H,s), 4.99(1H,d,J=6.6Hz), \\ 0.93-1.96(1H,m), 2.20-2.26(2H,m), 3.03(1H,m), 3.03(1H$

IR(CHCl3):3384,3278,3026,2952,2874,1727,1436,1411,1324,1155,1097 /cm. [α]D= -9.0° (CHCl3,c=1.04,22.0°C).

No.1 a - 7

CDC13 300MHz

 $0.93-2.00(14H,m), 2.18(1H,m), 2.28(2H,t,J=7.2Hz), 3.04(1H,m), 5.15-5.25(2H,m), \\ 5.28(1H,d,J=6.9Hz), 7.36-7.50(3H,m), 7.54-7.63(3H,m), 7.76-7.89(2H,m), \\ 8.12(1H,m) .$

IR(CHCl3):3268,3028,2952,2872,1708,1452,1410,1324,1155,1097 /cm. [α]D=-9.1° (CHCl3,c=1.01,24.0°C).

No.1 a - 8

CDC13 300MHz

 $0.94 \cdot 1.99(14H,m), 2.21 \cdot 2.29(3H,m), 3.05(1H,m), 3.67(3H,s), 4.92(1H,d,J=6.3Hz), \\ 5.14 \cdot 5.30(2H,m), 7.70 \cdot 7.78(6H,m), 7.96 \cdot 8.01(2H,m).$

IR(CHCl3):3376,3272,3018,2946,2868,1727,1616,1435,1388,1324,1162,1130,1 069 /cm.

 $[\alpha]D=+1.6^{\circ}$ (CHCl3,c=1.01,24.0°C). mp.117-119°C.

No.1 a - 9

CDC13 300MHz

0.95-2.08(14H,m), 2.19(1H,m), 2.32(2H,t,J=7.2Hz), 3.06(1H,m), 5.20-5.30(2H,m), 5.34(1H,d,J=6.6Hz), 7.69-7.78(6H,m), 7.96-8.03(2H,m).

IR(CHCl3):3260,3020,2950,2868,1708,1389,1324,1162,1130,1069 /cm.

 $[\alpha]D = +13.3^{\circ} (CHCl3, c=1.05, 24.0^{\circ}).$

mp.118-120℃

No.1 a - 1 0

CDCl3 300MHz

0.96-1.98(14H,m), 2.15-2.32(3H,m), 3.04(1H,m), 3.66(3H,s), 5.12-

5.26(5H, m), 7.67-7.78(4H, m), 7.93-8.07(4H, m).

IR(CHCl3):3276,3018,2946,2868,1726,1595,1435,1341,1162,1095 /cm.

[α]D= -1.5° (CHCl3,c=1.01,25.0°C).

mp.133-139℃.

No.1 a - 11

CD3OD 300MHz

 $1.05 - 1.98(14 \mathrm{H,m}), 2.13 - 2.22(3 \mathrm{H,m}), 2.97(1 \mathrm{H,m}), 5.09 - 5.22(2 \mathrm{H,m}), 7.85 - 1.00$

7.92(4H,m),7.95-8.05(4H,m).

IR(KBr):3385,3261,3069,3003,2954,2872,1708,1596,1428,1413,1378,1343,132 6,1236,1186,1160,1096 /cm.

mp.144-146℃.

No.1 a - 1 2

CDC13 300MHz

 $0.96 \cdot 1.96(14H,m), 2.22 \cdot 2.27(3H,m), 3.03(1H,m), 3.66(3H,s), 3.87(3H,s), 4.86(1H,m), 3.66(9Hz), 5.18 \cdot 5.24(2H,m), 6.99 \cdot 7.02(2H,m), 7.55 \cdot 7.66(2H,m), 7.66 \cdot 7.69(2H,m), 7.89 \cdot 7.92(2H,m).$

IR(CHCl3):3374,3270,3016,2948,2870,1726,1608,1518,1487,1458,1437,1248,1 157,1037.

[α]D=+4.2° (CHCl3,c=1.01,24°C). mp.85-87°C.

No.1 a -13

CDCl3 300MHz

0.97-1.99(14H,m), 2.18(1H,m), 2.30(2H,t,J=7.2Hz), 3.04(1H,m), 3.86(3H,s), 5.18(1H,d,J=5.7Hz), 5.23-5.26(2H,m), 6.99-7.02(2H,m), 7.55-7.58(2H,m), 7.66-7.68(2H,m), 7.89-7.92(2H,m).

IR(CHCl3):3380,3260,3020,2948,2868,1708,1608,1519,1487,1458,1306,1293,1 248,1156 /cm.

 $[\alpha]D=+18.3^{\circ}$ (CHCl3,c=1.00,25.5°C).

No.1 a - 1 4

CDC13 300MH₂

0.98-2.00(14H,m), 2.20(1H,m), 2.25(2H,t,J=7.2Hz), 3.02(1H,m), 3.67(3H,s), 4.85(1H,d,J=6.3Hz), 5.19-5.25(2H,m), 7.13(1H,dd,J=4.8,3.6Hz), 7.39(1H,d,J=4.8Hz), 7.40(1H,d,J=3.6Hz), 7.71-7.74(2H,m), 7.86-7.89(2H,m).

IR(CHCl3):3374,3270,3018,2946,2868,1727,1593,1434,1322/cm.

 $[\alpha]D = +5.6^{\circ} (CHCl3, c = 1.01, 24^{\circ}C).$

mp.69.71℃.

No.1 a - 15

CDC13 300MHz

0.95-2.00(14H,m), 2.17(1H,m), 2.32(2H,t,J=7.2Hz), 3.03(1H,m), 5.20(1H,d,J=6.9Hz), 5.24-5.28(2H,m), 7.13(1H,dd,J=4.8,3.3Hz), 7.38(1H,d,J=4.8Hz), 7.43(1H,d,J=3.3Hz), 7.73(2H,d,J=8.4Hz), 7.87(2H,d,J=8.4Hz).

IR(CHCl3):3260,3022,2948,2868,1709,1593,1404,1321,1154/cm.

 $[\alpha]D = +20.8^{\circ} (CHC13, c=1.07, 23^{\circ}).$

mp.71-73℃.

No.1 a - 16

CDC13 300MHz

0.98-2.00(14H,m), 2.27(2H,t,J=7.5Hz), 2.28(1H,m), 3.13(1H,m), 3.66(3H,s), 4.90(1H,d,J=6.9Hz), 5.25-5.29(2H,m), 7.40-7.65(6H,m), 7.76(1H,d,J=8.4Hz), 7.90-8.02(4H,m).

IR(CHCl3):3376,3276,3018,2946,2868,1726,1593,1435,1394,1322,1159/cm. [α]D= +7.0° (CHCl3,c=1.07,24°C).

No.1 a - 17

CDC13 300MHz

1.02-2.07(14H,m),2.25(1H,m),2.34(2H,t,J=6.6Hz),3.14(1H,m),5.28-5.33(3H,m),7.39-7.57(4H,m),7.62-7.65(2H,m),7.76(1H,d,J=8.1Hz),7.89-8.02(4H,m). IR(CHCl3):3260,2948,2868,1709,1593,1394,1324,1157/cm. [α]D=+20.2° (CHCl3,c=1.02.24°C).

No.1 a - 18

CDC13 300MHz

1.05-1.97(14H,m), 2.25(2H,t,J=7.2Hz), 2.33(1H,m), 3.12(1H,m), 3.67(3H,s), 4.91(1H,d,J=6.6Hz), 5.24-5.29(2H,m), 7.24(1H,d,J=3.9Hz), 7.39-7.45(3H,m), 7.56(1H,d,J=3.9Hz), 7.59-7.62(2H,m).

IR(CHCl3):3372,3272,,3018,2946,2868,1727,1433,1331,1152/cm. [α]D=-5.7° (CHCl3,c=1.01,23°C).

No.1 a - 19

CDC13 300MHz

 $1.05 \cdot 2.05(14H,m), 2.28 \cdot 2.33(3H,m), 3.13(1H,m), 5.18(1H,d,J=6.3Hz), 5.27 \cdot 5.31(2H,m), 7.24(1H,d,J=4.2Hz), 7.39 \cdot 7.42(3H,m), 7.56(1H,d,J=4.2Hz), 7.58 \cdot 7.62(2H,m)$

IR(CHCl3):3372,3254,3018,2948,2868,1707,1431,1328,1151/cm.

 $[\alpha]D = +4.5^{\circ} (CHC13,c=1.01,21.5^{\circ}).$

No.1 a - 20

CDC13 300MHz

1.05-2.00(14H,m), 2.26(2H,t,J=7.5Hz), 2.33(1H,m), 3.11(1H,m), 3.68(3H,s), 4.92(1H,d,J=6.0Hz), 5.27(2H,m), 7.05(1H,m), 7.10(1H,d,J=3.6Hz), 7.25(1H,m), 7.32(1H,m), 7.49(1H,d,J=3.6Hz).

IR(CHCl3):3372,3272,3018,2946,2686,1727,1438,1417,1333,1151/cm.

 $[\alpha]D=-9.2^{\circ}$ (CHCl3,c=1.01,25°C).

No.1 a - 2 1

CDC13 300MHz

 $1.02 \cdot 2.01(14H,m), 2.28 \cdot 2.34(3H,m), 3.13(1H,m), 5.12(1H,d,J=6.9Hz), 5.28 \cdot 5.32(2H,m), 7.06(1H,m), 7.10(1H,d,J=3.9Hz), 7.25(1H,m), 7.32(1H,m), 7.50(1H,d,J=3.9Hz)$

IR(CHCl3):3350,3250,2948,1709,1440,1420,1330,1151.

[α]D=+2.5° (CHC13,c=1.00,25°C).

No.1 a - 2 2

CDC13 300MHz

•

d7.8Hz), 8.35(1H, d, J=1.8Hz).

IR(CHCl3):3384,3271,3025,2958,1708,1608,1559,1537,1357,1168/cm.

[α]D=+18.3(CHCl3,C=0.31,22 $^{\circ}$).

No.1 a - 23

CDC13 300MHz

 $0.97 - 2.07(14 \mathrm{H,m}), 2.24(1 \mathrm{H,m}), 2.35(2 \mathrm{H,t,J} = 6.9 \mathrm{Hz}), 3.09(1 \mathrm{H,m}), 3.86(3 \mathrm{H,s}), 5.24 - 6.9 \mathrm{Hz}$

5.35(2H,m), 5.44(1H,d,J=6.3Hz), 6.97-7.00(2H,m), 7.26-7.28(2H,m), 7.59(1H,d,J=6.3Hz), 6.97-7.00(2H,m), 7.26-7.28(2H,m), 7.26-7.28(2H,m

=8.1Hz),8.06(1H,d.d,J=2.1and8.1Hz),8.29(1H,d,J=2.1Hz).

IR(CHCl3):3384,3270,2959,1709,1609,1535,1519,1357,1302,1255,1226,1169/c

m.

 $[\alpha]D=+17.0^{\circ}(CHCl3,C=1.00,21^{\circ}).$

No.1No.1 a - 24

CDC13 300MHz

0.95-2.00(14H,m), 2.20-2.25(1H,m), 2.26(2H,t,J=7.2Hz), 3.02-3.10(1H,m),

3.66(3H,s), 4.92(1H,d,J=6.6Hz), 5.16-5.31(2H,m), 7.52-7.60(3H,m), 7.94-6.6Hz

8.06(6H,m).

IR(CHCl3):3376,3020,2946,2868,1726,1436,1366,1298,1164,1090,890/cm.

 $[\alpha]D=+11.2\pm0.5^{\circ}(CHCl3,c=1.04,23.5^{\circ}C)$

mp.101-103℃

No.1 a - 25

CDC13 300MHz

 $0.95 - 2.08(14 \text{H}, \text{m}), 2.15 - 2.22(1 \text{H}, \text{m}), 2.33(2 \text{H}, \text{t}, \text{J} = 6.9 \text{Hz}), 3.02 - 3.10(1 \text{H}, \text{m}), \quad 5.21 - 3.02 - 3.10(1 \text{H}, \text{m}), \quad 5.21 - 3.02 - 3.0$

5.31(2H,m), 5.34(1H,d,J=6.3Hz), 7.51-7.59(3H,m), 7.92-8.07(6H,m).

IR(CHCl3):3258,3022,2948,2868,1707,1399,1328,1298,1163,1089,1051,892/cm

[α]D==+29.8 ± 0.7° (CHCl3,c=1.05,25°C)

mp.158-160℃

No.1 a - 26

Anal. Calcd for C26H30N3O4SNa 0.8H2O:C,60.29;H,6.15;N,8.11;S,6.19;Na, 4.44.

Found: C,60.15; H,6.19; N,8.15; S,6.03; Na,4.98.

[α]D= ·16.6° (CHCl3,c=1.04,25.0°C).

No.1 a - 27

CDCl3 300MHz

0.92-1.98(14H,m),2.20(1H,m),2.26(2H,t,J=7.5Hz),3.03(1H,m),3.12(6H,s),3.66(3H,s),4.87(1H,d,J=6.6Hz),5.16-5.32(2H,m),6.73-6.80(2H,m),7.88-8.00(6H,m). IR(CHCl3):3376,3020,2946,1726,1601,1518,1442,1419,1362,1312,1163,1133,1088/cm.

[α]D==+55.3° (CHCl3,c=0.53,24.0°).

mp.158-168℃

No.1 a - 28

CDCl3+CD3OD 300MHz

0.99-2.14(14H,m), 2.21(1H,m), 2.31(2H,t,J=7.2Hz), 2.94(1H,m), 3.12(6H,s), 5.22-5.38(2H,m), 6.73-6.81(2H,m), 7.87-8.00(6H,m).

IR(KBr):3434,3309,2946,1708,1604,1520,1442,1416,1366,1312,1252,1164,115 5,1134,1091/cm.

[α]D= 測定不能 (着色 , エネルギー不足)

mp.193-196℃

No.1 a - 29

:

CD3OD 300MHz

1.02-1.96(14H,m),2.10(2H,t,J=7.8Hz),2.16(1H,m),2.98(1H,m),3.11(6H,s),5.07-

5.27(2H,m), 6.80-6.87(2H,m), 7.84-8.00(6H,m).

IR(KBr):3433,3087,3004,2949,2871,1604,1565,1520,1444,1420,1364,1312,125 3,11638,1136,1090/cm.

[α]D= 測定不能

No.1 a - 30

CDCl3 300MHz

 $0.95-1.99(14H,m), 2.22(1H,m), 2.26(2H,t,J=7.2Hz), 2.35(3H,s), 3.06(1H,m), 3.66(3H,s), 4.95(1H,d,J=6.9Hz), 5.15-5.30(2H,m), 7.26-7.32(2H,m), 7.97-8.06(6H,m). \\ IR(CHCl3): 3374, 2996, 2946, 2868, 1763, 1728, 1591, 1495, 1435, 1368, 1299, 1228, 1192, 1163, 1139 /cm.$

[α]D==+12.9° (CHCl3,c=1.04,26.0°).

No.1 a - 31

CDCl3 300MHz

0.93-2.01(14H,m), 2.19(1H,m), 2.31(2H,t,J=7.2Hz), 2.35(3H,s), 3.06(1H,m), 5.17-5.32(2H,m), 7.25-7.32(2H,m), 7.96-8.07(6H,m).

IR(CHCl3):3267,3028,2952,2874,1759,1708,1592,1495,1368,1328,1299,1163,1 138,1088,1050,1008/cm.

[α]D=+21.7° (CHCl3,C=0.51,22°C).

No.1 a - 32

CDC13 300MHz

0.93-1.99(14H,m),2.21(1H,m),2.27(2H,t,J=7.2Hz),3.05(1H,m),3.67(3H,s),4.92(1H,d,J=6.6Hz),5.15-5.30(2H,m),6.72(1H,s),6.96-7.00(2H,m),7.86-8.04(6H,m). IR(CHCl3):3374,3276,3018,2946,2686,1725,1605,1589,1502,1433,1396,1330,1 271,1164,1135,1089 /cm. [α]D= +18.6° (CHCl3,c=1.00,26.0°C).

No.1 a - 3 3

```
CDC13+CD3OD 300MHz
```

0.98-2.08(14H,m), 2.20(1H,m), 2.28(2H,t,J=7.2Hz), 2.98(1H,m), 5.18-5.32(2H,m), 6.92-6.99(2H,m), 7.85-8.02(6H,m).

IR(KBr):3385,3248,2948,2876,1717,1601,1505,1430,1399,1296,1280,1219,116 5,1136,1092 /cm.

[α]D= -16.0° (CH3OH,c=1.08,26.0°C).

mp.208-210℃

No.1 a - 34

mp.82-83°C [α]D= +10.6° (CHCl3,c=1.01,23.5°C).

No.1 a - 35

mp.80-82°C [α]D= -1.8° (CHCl3,c=1.07,22.0°C).

No.1 a - 36

TLC Rf=0.25 (酢酸エチルーn-ヘキサン=1:1 (0.3%酢酸))

No.1 a - 37

CDC13 300MHz

0.92 - 1.96(14H,m), 2.21(1H,m), 2.27(2H,t,J=7.4Hz), 3.01(1H,m), 3.66(3H,s), 4.71(1H,d,J=6.6Hz), 5.14 - 5.29(2H,m), 7.12(1H,d,J=16.2Hz), 7.24(1H,d,J=16.2Hz), 7.28 - 7.42(3H,m), 7.52 - 7.56(2H,m), 7.62(2H,d,J=8.7Hz), 7.85(2H,d,J=8.7Hz).

IR(CHCl3):3384,3283,3023,2954,2876,1730,1595,1494,1317,1163,1147/cm.

 $[\alpha]D = +10.5^{\circ} (CHCl3,c=1.01,24^{\circ}).$

mp 116-117 ℃.

No.1 a - 38

CDCl3 300MHz

0.92-1.99(14H,m), 2.17(1H,m), 2.32(2H,t,J=7.2Hz), 3.02(1H,m), 5.23-5.29(3H,m),

7.11(1H,d,J=16.2Hz),7.23(1H,d,J=16.2Hz),7.28-7.41(3H,m),7.52-7.55(2H,m),7.61(2H,d,J=8.7Hz),7.86(2H,d,J=8.7Hz).

IR(CHCl3):3515,3384,3270,3022,3015,2957,2876,2669,1708,1595,1496,1320,1 157/cm.

[α]D= +27.1° (CHCl3,c=1.02,24°C).

No.1 a - 39

CDCl3 300MHz

 $0.92 \cdot 1.99(14H,m), 2.15(1H,m), 2.28(2H,t,J=7.4Hz), 3.01(1H,m), 3.68(3H,s), 4.96(1H,d,J=6.6Hz), 5.16 \cdot 5.32(2H,m), 6.60(1H,d,J=12.0Hz), 6.74(1H,d,J=12.0Hz), 7.16 \cdot 7.23(5H,m), 7.35(2H,d,J=8.4Hz), 7.72(2H,d,J=8.4Hz).$

IR(CHCl3):3384,3283,3023,3015,2954,2876,1730,1595,1493,1324,1163,1147/cm.

[α]D= +13.7° (CHCl3,c=1.00,24°C).

No.1 a - 40

CDC13 300MHz

0.90-2.16(14H,m), 2.12(1H,m), 2.34(2H,t,J=7.2Hz), 3.02(1H,m), 5.16(1H,d,J=6.9Hz), 5.23-5.34(2H,m), 6.60(1H,d,J=12.3Hz), 6.74(1H,d,J=12.3Hz), 7.14-7.24(5H,m), 7.35(2H,d,J=8.1Hz), 7.72(2H,d,J=8.1Hz).

IR(CHCl3):3515,3384,3269,3025,3021,3014,2957,2876,2668,1709,1595,1322,1 162,1147/cm.

 $[\alpha]D = +26.4^{\circ} (CHCl3,c=1.00,24^{\circ}).$

No.1 a - 41

CDC13 300MHz

0.98-1.99(14H,m), 2.17(1H,m), 2.32(2H,t,J=7.2Hz), 3.00(1H,m), 3.84(3H,s), 5.20-5.26(3H,m), 6.90-6.95(2H,m), 6.98(1H,d,J=16.2Hz), 7.17(1H,d,J=16.2Hz), 7.49(2H,m), 7.58(2H,d,J=8.4Hz), 7.83(2H,d,J=8.4Hz).

IR(CHCl3):3258,3018,3002,2950,1709,1590,1509,1457,1404,1302,1250,1153 /cm.

[α]D= +30.2° (CHCl3,c=1.00,23°C).

mp.99-100 ℃

No.1 a - 42

CDCl3 300MHz

1.01-1.99(14H,m), 2.28(2H,t,J=7.2Hz), 2.30(1H,m), 3.10(1H,m), 3.66(3H,s), 5.07(1H,br), 5.25-5.30(2H,m), 6.98-7.04(2H,m), 7.16(1H,d,J=16.2Hz), 7.28-7.37(3H,m), 7.47-7.50(3H,m).

IR(CHCl3):3372,3276,3020,2946,2870,1727,1491,1433,1331,1152 /cm. [α]D= -11.5° (CHCl3,c=1.07,21.5°C).

No.1 a - 43

CDCl3 300MHz

0.98-2.00(14H,m),2.11-2.36(3H,m),3.12(1H,m),5.10(1H,d,J=6.6Hz),5.29-5.32(2H,m),6.99-7.04(2H,m),7.23(1H,d,J=21.6Hz),7.32-7.49(6H,m). IR(CHCl3):3380,3248,3020,2948,2868,1709,1491,1430,1329,1151/cm. [α]D= +3.4° (CHCl3,c=1.03,25 $^{\circ}$).

No.1 a - 44

CDC13 300MHz

 $1.00-2.00(14H,m), 2.13(1H,m), 2.29(2H,t,J=7.4Hz), 2.90-3.13(5H,m), 3.68(3H,s), \\ 4.74(1H,d,J=6.6Hz), 5.15-5.30(2H,m), 7.18-7.29(7H,m), 7.76(2H,d,J=8.1Hz). \\ IR(CHCl3): 3384, 3282, 3063, 3028, 3023, 3016, 2953, 2876, 1730, 1599, 1496, 1319, 1157 /cm.$

[α]D=+2.3° (CHCl3,c=1.00,25°C). mp.85.0-86.0°C

No.1 a - 45

CDCl3 300MHz

0.90-2.05(14H,m), 2.09(1H,m), 2.35(2H,t,J=6.9Hz), 2.90-3.13(5H,m), 5.18(1H,d,J=6.6Hz), 5.24-5.34(2H,m), 7.10-7.27(7H,m), 7.76(2H,d,J=8.4Hz).

IR(CHCl3):3510,3384,3270,3087,3063,3026,3018,3014,2955,2876,2670,1708,1 599,1496,1318,1157/cm.

[α]D=+8.5° (CHCl3,c=1.01,25°C).

No.1 a - 46

[α]D=+6.8° (CHCl3,c=1.05,25°C). mp.99-100°C.

No.1 a - 47

CDC13 300MHz

0.97-2.01(14H,m), 2.14(1H,m), 2.36(2H,t,J=7.2Hz), 3.02(1H,m), 5.23(1H,d,J=5.4Hz), 5.26-5.30(2H,m), 7.37-7.39(3H,m), 7.54-7.58(2H,m), 7.63-7.66(2H,m), 7.85-7.88(2H,m).

IR(CHCl3):3375,3260,3022,2948,2212,1707,1596,1497,1396,1322,1160/cm. [α]D=+25.0° (CHCl3,c=1.02,24°C). mp.117-118°C.

No.1 a - 48

CD3OD 300MHz

1.05-1.93(14H,m), 2.10-2.15(3H,m), 2.96(1H,m), 5.08-5.28(2H,m), 7.38-7.40(3H,m), 7.554-7.56(2H,m), 7.69(1H,d,J=8.4Hz), 7.87(1H,d,J=8.4Hz).

No.1 a - 49

CDCl3 300MHz

 $0.96 \cdot 1.97(14H,m), 2.24(1H,m), 2.31(2H,t,J=6.9Hz), 3.05(1H,m), 3.69(3H,s), 5.15(1H,d,J=6.6Hz), 5.25 \cdot 5.27(2H,m), 7.40 \cdot 7.43(3H,m), 7.61 \cdot 7.64(2H,m), 7.85(1H,d,J=8.1Hz), 8.07(1H,dd,J=8.1,1.8Hz), 8.58(1H,d,J=1.8Hz).$

IR(CHCl3):3374,3020,2948,2870,2212,1726,1606,1530,1493,1437,1345,1167/c m.

[α]D=+2.4° (CHCl3,c=1.03,25°C). mp.77-79°C.

No.1 a - 50

CDCl3 300MHz

 $1.00-2.02(14H,m), 2.20(1H,m), 2.34(2H,t,J=6.6Hz), 3.08(1H,m), 5.26-5.29(2H,m), \\ 5.41(1H,d,J=6.9Hz), 7.40-7.43(3H,m), 7.61-7.64(2H,m), 7.84(1H,d,J=8.1Hz), 8.07 \\ (1H,dd,J=8.4,1.8Hz), 8.57(1H,dd,J=1.8Hz).$

IR(CHCl3):3380,3254,2952,2880,2212,1707,1606,1531,1493,1409,1344,1166. [α]D=+23.4° (CHCl3,c=1.00,25 $^{\circ}$).

No.1 a - 5 1

CDC13 300MHz

0.95 - 1.98(14H,m), 2.23(1H,m), 2.30(2H,t,J=7.2Hz), 3.00(1H,m), 3.66(3H,s), 4.56(2H,br), 4.70(1H,d,J=6.9Hz), 5.20-5.29(2H,m), 7.15(1H,dd,J=7.8,1.8Hz), 7.23(1H,d,J=1.8Hz), 7.36-7.39(3H,m), 7.46(1H,d,J=7.8Hz), 7.53-7.56(2H,m).

IR(CHCl3):3494,3386,3028,2952,2874,1725,1611,1559,1497,1422,1317,1162/c m.

No.1 a - 52

CDC13 300MHz

0.96-2.04(16H,m), 2.20(1H,m), 2.36(2H,t,J=6.9Hz), 2.99(1H,m), 5.17(1H,d,J=6.3Hz), 5.28-5.31(2H,m), 7.18(1H,dd,J=9.6,1.8Hz), 7.25(1H,m), 7.36-7.39(3H,m), 7.46(1H,d,J=7.8Hz), 7.52-7.56(2H,m).

IR(CHCl3):3482,3378,3260,3022,2948,2868,1708,161

2,1495,1422,1317/cm.

 $[\alpha]D=+15.0^{\circ} (CHCl3,c=1.00,24^{\circ}).$

No.1 a - 53

CDC13 300MHz

1.01-2.05(15H,m), 2.31(2H,t,J=7.2Hz), 3.10(1H,m), 3.67(3H,s), 5.02(1H,br), 5.26-5.33(2H,m), 7.18(1H,d,J=4.2Hz), 7.36-7.39(3H,m), 7.48(1H,d,J=4.2Hz), 7.51-7.55(2H,m).

IR(CHCl3):3372,3270,3018,3004,2946,2868,2202,1726,1486,1433,1336,1154/cm.

[α]D=+0.6° (CHCl3,c=1.11,25°C), [α]436 +17.8° (CHCl3,c=1.11,25°C).

No.1 a - 54

CDC13 300MHz

0.99-2.11(14H,m), 2.27(1H,m), 2.37(2H,t,J=7.5Hz), 3.13(1H,m), 5.16(1H,d,J=6.6Hz), 5.31-5.35(2H,m), 7.18(1H,d,J=3.6Hz), 7.37-7.39(3H,m), 7.50(1H,d,J=3.6Hz), 7.52-7.55(2H,m).

IR(CHCl3):3484,3370,3246,2948,2868,2202,1708,1486,1429,1335,1153/cm. [α]D=+17.8° (CHCl3,c=1:00,24°C). mp.95-96°C

No.1 a - 55

CDC13 300MHz

0.95-1.92(14H,m),2.15(1H,m),2.24(2H,t,J=7.5Hz),3.00(1H,m),3.66(3H,s),5.10-5.30(3H,m),7.40-7.60(7H,m),7.70(1H,d,J=7.8Hz),8.08(1H,d,J=8.1Hz). IR(CH Cl3):3356,3020,2948,2868,2210,1727,1490,1458,1437,1341,1165/cm. [α]D=-58.4° (CHCl3,c=1.00,26°C). mp.84-85°C.

No.1 a - 56

CDC13 300MHz

 $0.95-1.95(14H,m), 2.10(1H,m), 2.27(2H,t,J=6.9Hz), 3.00(1H,m), 5.17-5.21(2H,m), \\ 5.38(1H,d,J=6.9Hz), 7.39-7.60(7H,m), 7.70(1H,dd,J=7.8,1.5Hz), 8.07(1H,J=6.6,1.5Hz).$

IR(CHCl3):3364,3026,2952,2874,2212,1707,1597,1491,1458,1411,1341,1164/c m.

[α]D=-43.1° (CHCl3,c=1.00,25°C).

No.1 a - 57

CDC13 300MHz

0.99-1.97(14H,m), 2.23-2.30(3H,m), 3.01(1H,m), 3.67(3H,s), 5.17-5.26(3H,m), 7.36-7.38(3H,m), 7.50-7.56(3H,m), 7.60(1H,m), 7.83(1H,m), 8.05(1H,m).

IR(CHCl3):3376,3020,2946,2870,1727,1598,1491,1437,1412,1330,1245,1163/cm.

[α]D=-12.7° (CHCl3,c=1.00,24°C).

No.1 a - 5 8

CDC13 300MHz

 $0.97-1.98(14H,m), 2.20(1H,m), 2.33(2H,t,J=6.9Hz), 3.02(1H,m), 5.19-5.28(3H,m), \\7.36-7.38(3H,m), 7.47-7.55(3H,m), 7.69(1H,m), 7.83(1H,m), 8.04(1H,m).$

IR(CHCl3):3376,3260,3022,3002,2948,2868,2220,1708,1598,1490,1455,1412,1 327,1162/cm.

[α]D=-8.6° (CHCl3,c=1.01,24°C).

No.1 a - 59

CDC13 300MHz

 $0.95 \cdot 1.99(24H,m), 2.20(1H,m), 2.28(2H,t,J=7.8Hz), 2.53(1H,s), 2.96(1H,m), 3.69(3H,s), 4.99(1H,d,J=6.6Hz), 5.18 \cdot 5.20(2H,m), 7.53(2H,d,J=8.4Hz), 7.82(2H,d,J=8.4Hz).$

IR(CHCl3):3583,3376,3002,2936,2852,1725,1591,1490,1437,1393,1325,1160/cm.

[α]D=-8.8° (CHCl3,c=1.00,24°C).

No.1 a - 60

CDCl3 300MHz

0.96-2.05(24H,m), 2.22(1H,m), 2.33(2H,m), 2.88(1H,m), 5.22-5.26(2H,m), 5.30(1H,d,J=5.7Hz), 7.50(2H,d,J=8.7Hz), 7.80(2H,d,J=8.7Hz).

IR(CHCl3):3376,3260,3022,2936,2852,1710,1592,1491,1452,1395,1325,1159/c m.

[α]D=-8.9° (CHCl3,c=1.06,24°C), mp.88-91°C

No.1 a - 61

CDC13 300MHz

0.95-2.24(23H,m), 2.29(2H,m), 2.99(1H,m), 3.69(3H,s), 4.76(1H,d,J=6.3Hz), 5.21-5.24(2H,m), 6.28(1H,m), 7.50-7.53(2H,m), 7.77-7.80(2H,m).

IR(CHCl3):3374,3270,3018,2942,2868,2196,1726,1589,1490,1435,1324,1158/c m.

[α]D=+7.7° (CHCl3,c=1.02,24°C), mp.93-95°C

No.1 a - 62

CDC13 300MHz

0.96-2.45(23H,m),2.36(2H,d,J=6.9Hz),2.99(1H,m),5.24(1H,d,J=6.3Hz),5.24-5.3 2(2H,m),6.28(1H,m),7.50-7.53(2H,m),7.78-7.81(2H,m). IR(CHCl3):3468,3374, 3260,3020,2942,2868,2196,1598,1490,1455,1398,1322,1157/cm. [α]D=+19.4° (CHCl3,c=1.03.24°C).

No.1 a - 63

CDC13 300MHz

 $0.93 \cdot 1.95(25H,m), 2.16(1H,m), 2.29(2H,t,J=7.2Hz), 2.43(2H,t,J=6.9Hz), 2.94(1H,m), 3.69(3H,s), 4.95(1H,d,J=6.9Hz), 5.21-5.24(2H,m), 7.49(2H,d,J=8.7Hz), 7.79(2H,J=8.7Hz).$

IR(CHCl3):3376,3018,2946,2866,2222,1727,1592,1456,1435,1325,1158/cm. [α]D=+3.7° (CHCl3,c=1.00,25 $^{\circ}$).

No.1 a - 6 4

CDC13 300MHz

0.93-1.97(26H,m),2.35(2H,t,J=7.2Hz),2.43(2H,t,J=7.2Hz),3.00(1H,m),5.08(1H,d,J=6.6Hz),5.26-5.27(2H,m),7.49(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz).

IR(CHCl3):3260,3020,2948,2864,2222,1708,1592,1489,1456,1397,1324,1156/c m.

[α]D=+14.4° (CHCl3,c=1.00,25°C) mp.70-71°C.

No.1 a - 65

CDC13 300MHz

0.95-1.98(14H,m), 2.18(1H,m), 2.30(2H,t,J=7.2Hz), 3.00(1H,m), 3.67(3H,s), 4.83(1H,d,J=6.9Hz), 5.22-5.25(2H,m), 5.54(1H,br), 6.82-6.85(2H,m), 7.42-7.45(2H,m), 7.59-7.62(2H,m), 7.82-7.85(2H,m).

IR(CHCl3):3576,3374,3018,2946,2868,2208,1725,1607,1587,1514,1435,1325,1 270,1162,1133/cm.

[α]D=+9.1° (CHCl3,c=1.03,24°C), mp.111-112°C

No.1 a - 66

CDC13 300MHz

0.97-2.03(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.5Hz), 3.00(1H,m), 5.17(1H,d,J=6.6Hz), 5.26-5.30(2H,m), 6.82-6.85(2H,m), 7.42-7.45(2H,m), 7.59-7.62(2H,m), 7.82-7.85(2H,m).

IR(CHCl3):3260,2948,2870,2208,1709,1607,1587,1514,1396,1325,1270,1162,1 133/cm.

[α]D=-21.0° (CHCl3,c=1.00,23°C), mp.161-162°C

No.1 a - 67

CDCl3 300MHz

0.95 - 1.98(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.2Hz), 3.01(1H,m), 3.67(3H,s), 4.82(1H,d,J=6.6Hz), 5.19 - 5.27(2H,m), 7.05 - 7.10(2H,m), 7.51 - 7.56(2H,m), 7.61 - 7.64(2H,m), 7.84 - 7.87(2H,m).

IR(CHCl3):3374,3280,3020,2946,2868,2214,1727,1589,1509,1435,1327,1233,1 161,1134/cm.

[α]D=+6.7° (CHCl3,c=1.01,24°C), mp.84-85°C

No.1 a - 68

CDC13 300MHz

0.96-2.01(14H,m), 2.15(1H,m), 2.34(2H,t,J=6.9Hz), 3.02(1H,m), 5.23-5.27(3H,m), 7.04-7.10(2H,m), 7.51-7.56(2H,m), 7.61-7.64(2H,m), 7.85-7,88(2H,m).

IR(CHCl3):3374,3258,3020,2948,2868,2214,1708,1589,1509,1455,1398,1322,1 156/cm.

[α]D=+22.6° (CHCl3,c=1.02,24°C), mp.135-136°C

No.1 a - 69

CDCl3 300MHz

 $0.95 \cdot 1.98(14H,m), 2.19(1H,m), 2.29(2H,t,J=7.2Hz), 2.39(3H,s), 3.01(1H,m), 3.69(3H,s), 4.80(1H,d,J=6.6Hz), 5.20 \cdot 5.29(2H,m), 7.18(2H,d,J=8.1Hz), 7.44(2H,d,J=8.1Hz), 7.62(2H,d,J=8.4Hz), 7.84(2H,d,J=8.4Hz).$

IR(CHCl3):3374,3022,2946,2868,2210,1727,1589,1511,1436,1323,1161,1133/c m.

 $[\alpha]D=+9.2^{\circ} (CHCl3,c=1.02,24^{\circ}).$

mp.116-118℃

No.1 a - 70

CDC13 300MHz

1.15-2.00(14H,m), 2.13(1H,m), 2.33-2.38(5H,m), 3.04(1H,m), 5.14(1H,d,J=6.6Hz), 5.25-5.30(2H,m), 7.17(2H,d,J=7.8Hz), 7.44(2H,d,J=7.8Hz), 7.62(2H,d,J=8.4Hz), 7.85(2H,d,J=8.4Hz).

IR(CHCl3):3380,3260,3020,2948,2868,2210,1708,1590,1511,1396,1324,1160,1 133/cm. [α]D=+24.6° (CHCl3,c=1.00,24 $^{\circ}$ C).

No.1 a - 71

CDC13 300MHz

 $0.95 \cdot 1.96(14H,m), 2.19(1H,m), 2.29(2H,t,J=7.2Hz), 3.00(1H,m), 3.20(1H,s), 3.65(3H,s), 4.81(1H,d,J=6.6Hz), 5.20-5.27(2H,m), 7.46-7.54(4H,m), 7.62-7.65(2H,m), 7.85-7.88(2H,m).$

IR(CHCl3):3374,3290,3018,3002,2946,2868,2212,2110,1726,1591,1507,1435, 1401,1324,1161/cm.

 $[\alpha]D=+9.6^{\circ}$ (CHCl3,c=1.01,24°C), mp.136-138°C,

No.1 a - 72

CDC13 300MHz

0.96-2.01(14H,m), 2.14(1H,m), 2.35(2H,t,J=7.2Hz), 3.05(1H,m), 3.20(1H,s), 5.16(1H,d,J=7.2Hz), 5.26-5.29(2H,m), 7.45-7.53(4H,m), 7.63(2H,d,J=8.4Hz), 7.87(2H,d,J=8.4Hz).

IR(CHCl3):3462,3374,3290,3024,2948,2868,2212,2110,1708,1591,1508,1455,1401,1321,1274,1160,1132/cm.

[α]D=+24.3° (CHCl3,c=1.03,24°C), mp.96-99°C

No.1 a - 73

•

CDCl3 300MH₂

0.95-1.98(14H,m),2.19(1H,m),2.27-2.32(5H,m),3.01(1H,m),3.67(3H,s),4.80(1H,d,J=6.6Hz),5.20-5.27(2H,m),7.12(2H,m),7.56(2H,m),7.63(2H,m),7.84(2H,m). IR(CHCl3):3374,3276,3018,2946,2868,2214,1762,1730,1589,1506,1435,1368,1

161/cm.

[α]D=+7.8° (CHCl3,c=1.02,24°C), mp.102-104°C

No.1 a - 74

CDC13 300MHz

 $0.95-2.05(14H,m), 2.15(1H,m), 2.32-2.37(5H,m), 3.02(1H,m), 5.14(1H,d,J=6.6Hz), \\5.26-5.30(2H,m), 7.10-7.13(2H,m), 7.54-7.57(2H,m), 7.62-7.64(2H,m), 7.84-7.87(2H,m).$

IR(CHCl3):3482,3250,3022,2946,2868,2214,1716,1709,1589,1507,1454,1396,1 368,1322,1195,1161/cm.

[α]D=+15.0° (CHCl3,c=1.00,24°C), mp.129-131°C

No.1 a - 75

CDC13 300MHz

0.95-1.99(14H,m), 2.20(1H,m), 2.30(2H,t,J=7.2Hz), 3.02(1H,m), 3.67(3H,s), 3.94(3H,s), 4.79(1H,d,J=6.6Hz), 5.19-5.29(2H,m), 7.60-7.63(2H,m), 7.65-7.67(2H,m), 7.86-7.89(2H,m), 8.04-8.06(2H,m).

IR(CHCl3):3378,3018,2946,2880,1720,1604,1435,1307,1276,1161,1106 /cm. [α]D=+7.3° (CHCl3,c=1.01,25°C), mp.132-133°C

No.1 a - 76

CDC13+CD3OD 300MHz

 $1.04-2.05(14H,m), 2.19(1H,m), 2.32(2H,t,J=6.9Hz), 2.93(1H,m), 5.27-5.31(2H,m), \\7.60-7.63(2H,m), 7.65-7.68(2H,m), 7.86-7.89(2H,m), 8.05-8.07(2H,m).$

IR(CHCl3):3402,3299,2955,2876,2665,2549,1455,1422,1313,1281,1164 /cm.

[α]D=-21.1° (CH3OH,c=1.03,23°C), mp.227-229(dec.)

No.1 a - 77

CDC13 300MHz

0.96-1.99(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),3.02(1H,m),3.68(3H,s),4.88(1H,d,J=6.3Hz),5.19-5.29(2H,m),7.67-7.72(4H,m),7.89-7.91(2H,m),8.24-8.27(2H,m).

IR(CHCl3):3376,3276,3020,2946,2870,2214,1726,1594,1519,1455,1435,1389, 1344,1161/cm.

[α]D=+7.7° (CHCl3,c=1.02), mp.87-89°C

No.1 a - 78

CDC13 300MHz

 $0.98 \cdot 2.00(14 H,m), 2.18(1 H,m), 2.34(2 H,t,J=7.2 Hz), 3.02(1 H,m), 5.24 \cdot 5.28(2 H,m), \\ 5.32(1 H,d,J=5.7 Hz), 7.67 \cdot 7.72(4 H,m), 7.89 \cdot 7.92(2 H,m), 8.23 \cdot 8.26(2 H,m). \\ IR(CHCl3): 3374, 3260, 2948, 2214, 1708, 1595, 1344, 1160/cm.$

 $[\alpha]D=+23.3^{\circ}$ (CHCl3,c=1.00).

mp.102-103℃

No.1 a - 79

CDCl3 300MHz

0.93-2.02(14H,m), 2.13(1H,m), 2.36(2H,t,J=7.1Hz), 3.05(1H,m), 3.84(3H,s), 5.18(1H,br), 5.27-5.31(2H,m), 6.88-6.91(2H,m), 7.48-7.50(2H,m), 7.60-7.63(2H,m), 7.85(2H,m).

IR(CHCl3):3380,3252,3020,2950,2868,2208,1708,1589,1511,1457,1396,1321,1 286,1160/cm.

[α]D=+26.7° (CHCl3,C=1.00). mp.75-77°C

No.1 a - 80

CDC13 300MHz

 $0.96 \cdot 1.99(14H,m), 2.21(1H,m), 2.30(2H,t,J=7.8Hz), 3.02(1H,m), 3.68(3H,s), 4.80(1H,d,J=6.6Hz), 5.19 \cdot 5.28(2H,m), 7.51 \cdot 7.77(5H,m), 7.87 \cdot 7.90(2H,m), 8.13(1H,m).$ IR(CHCl3): 3374, 3270, 3018, 2946, 2868, 2216, 1726, 1607, 1567, 1527, 1495, 1456, 1607,

436,1344,1296,1161/cm.

[α]D=+7.4° (CHCl3,c=1.00,22°), mp.68-70°

No.1 a - 81

CDC13 300MHz

0.97-2.01(14H,m), 2.16(1H,m), 2.34(2H,t,J=7.2Hz), 3.01(1H,m), 5.22-5.28(3H,m), 7.51(1H,m), 7.65(1H,m), 7.70-7.76(3H,m), 7.88-7.91(2H,m), 8.12(1H,dd,J=6.9Hz, 1.5Hz).

IR(CHCl3):3480,3382,3262,3026,2952,2872,2218,1708,1607,1567,1526,1396,1 343,1225,1160/cm.

[α]D=+22.0° (CHCl3,c=1.00), mp.92-94°C

No.1 a - 82

CDCl3 300MHz

0.95-1.98(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.2Hz), 3.01(1H,m), 3.67(3H,s), 4.30(2H,br), 4.79(1H,d,J=6.9Hz), 5.20-5.29(2H,m), 6.71-6.76(2H,m), 7.18(1H,m), 7.37(1H,dd,J=7.8,1.2Hz), 7.61-7.65(2H,m), 7.83-7.87(2H,m).

IR(CHCl3):3376,3020,2946,2868,2202,1725,1613,1589,1484,1454,1315,1253,1 161/cm.

[α]D=+8.9° (CHCl3,c=1.00,22°). mp.68-70°

No.1 a - 8 3

CDC13 300MHz

 $0.97-1.99(14H,m), 2.17(1H,m), 2.33(2H,t,J=6.9Hz), 2.99(1H,m), 5.20-5.28(2H,m), \\ 5.37(1H,d,J=6.9Hz), 6.45(2H,br), 6.71-6.76(2H,m), 7.19(1H,dd,J=7.8,6.6Hz), 7.3 \\ 7(1H,m), 7.62(2H,d,J=8.4Hz), 7.85(2H,d,J=8.4Hz).$

IR(CHCl3):3478,3378,3260,3022,2950,2868,2204,1708,1613,1589,1484,1454,1 396,1316,1160/cm.

 $[\alpha]D=+17.1^{\circ}$ (CHCl3,c=1.01).

No.1 a - 84

CDCl3 300MHz

1.00-2.08(14H,m),2.21(1H,m),2.37(2H,t,J=6.9Hz),3.06(1H,m),3.86(3H,s),5.29-

5.33(2H,m),5.45(1H,d,J=6.6Hz),6.91-6.94(2H,m),7.56-7.59(2H,m),7.81(1H,d.t,

J=8.1Hz), 8.04(1H,d.d,J=8.1&1.8Hz), 8.57(1H,d,J=2.1Hz).

IR(CHCl3):3492,3254,3028,2954,2202,1708,1597,1512,1344,1291,1250/cm.

[α]D=+27.4° (CHCl3,C=0.53,23°C).

No.1 a - 85

CDC13 300MHz

 $0.96 \cdot 2.05(14H,m), 2.20(1H,m), 2.35(2H,t,J=6.9Hz), 2.99(1H,m), 3.84(3H,s), 5.22-6.9Hz$

5.31(3H,m), 6.89(2H,d,J=8.7Hz), 7.19(1H,brs), 7.29(1H,brs), 7.45-7.50(3H,m).

IR(CHCl3):3478,3378,3020,2950,2868,2202,1708,1606,1511,1421,1311,1287, 1248,1155/cm.

 $[\alpha]D=+17.1^{\circ} (CHCl3, C=1.00, 23^{\circ}C).$

No.1 a - 86

CDC13 300MHz

1.03-2.05(14H,m), 2.21(1H,m), 2.37(2H,t,J=6.9Hz), 3.04(1H,m), 5.29-5.33(2H,m), 5.57(1H,d,J=6.3Hz), 6.84-6.87(2H,m), 7.50-7.53(2H,m), 7.79(1H,d,J=8.1Hz), 8.03

(1H,d,d,J=1.5and8.1Hz),8.57(1H,d,J=1.5Hz).

IR(CHCl3):3250,3024,2950,2868,2200,1707,1515,1344,1271,1166,1143/cm.

[α]D=+21.2° (CHCl3,C=0.26,22°).

No.1 a - 87

CD3OD 300MHz

1.04-2.00(14H,m), 2.18(1H,m), 2.26(2H,t,J=5.4Hz), 2.93(1H,m), 5.19-5.24(2H,m), 3.19-5.24(2H,m), 3.19-5.24(

 $6.77 - 6.80(2 \text{H,m}), 7.05(1 \text{H,d.d,J} = 2.1 \text{and} \\ 8.1 \text{Hz}), 7.22(1 \text{H,d,J} = 2.1 \text{Hz}), 7.38 - 7.42(3)$

H,m).

IR(CHCl3):3377,2952,2873,2204,1705,1607,1515,1425,1312,1267,1222,1153/cm.

[α]D=-15.6° (CH3OH,C=1.02,22°C).

No.1 a - 8 8

CDCl3 300MHz

 $0.90-1.96(14H,m), 2.22-2.31(3H,m), 2.95(1H,m), 3.65(3H,s), 4.87(1H,d,J=6.6Hz), \\ 5.13-5.28(2H,m), 7.46-7.62(3H,m), 7.82-7.89(4H,m), 7.90-7.96(2H,m), 8.42(1H,brs).$

IR(CHCl3):3376,3016,2946,2868,1720,1677,1592,1514,1498,1429,1376,1314,1 241,1156,1094 /cm.

[α]D= -10.7° (CHCl3,c=1.04,22.0°) mp.134-136°C

No.1 a - 89

CDCl3+CD3OD 300MHz

0.96-2.08(14H,m), 2.23(1H,m), 2.28(2H,t,J=7.2Hz), 2.89(1H,m), 5.20-5.32(2H,m), 7.46-7.62(3H,m), 7.82-7.97(6H,m).

IR(KBr):3272,3007,2952,2874,1708,1660,1592,1527,1498,1433,1400,1317,126 0,1152,1094 /cm.

[α]D= -24.4° (CH3OH,c=1.02,25.0°C).

No.1 a - 90

. CDCl3 300MHz

0.89-1.96(14H,m),2.23-2.33(3H,m),2.92(1H,m),3.67(3H,s),4.85(1H,d,J=6.3Hz), 5.10-5.25(2H,m),7.81-7.90(4H,m),8.10-8.18(2H,m),8.31-8.40(2H,m),8.77(1H,s). IR(CHCl3):3372,3018,2946,2868,1718,1685,1592,1527,1436,1397,1346,1318,1 256,1154,1099 /cm.

 $[\alpha]D = -16.1^{\circ} (CHCl3, c=1.00, 23.0^{\circ}).$

No.1 a - 91

CDCl3+CD3OD 300MHz

0.94-2.02(14H,m), 2.18-2.36(3H,m), 2.87(1H,m), 5.15-5.30(2H,m), 7.82-7.92(4H,m), 8.09-8.16(2H,m), 8.30-8.37(2H,m).

IR(KBr):3284,3112,3006,2952,2874,1707,1593,1528,1498,1399,1348,1320,125 9,1153,1093 /cm.

[α]D= -26.3° (CH30H,c=1.01,22°).

No.1 a - 92

CDC13 300MHz

0.93-1.95(14H,m), 2.22-2.31(3H,m), 2.98(1H,m), 3.68(3H,s), 5.07(1H,d,J=6.9Hz), 5.10-5.24(2H,m), 7.18(1H,m), 7.35-7.43(2H,m), 7.70(2H,d,J=7.8Hz), 7.88-8.05(4H,m), 8.50(1H,brs).

IR(CHCl3):3382,3008,2952,1720,1675,1599,1525,1499,1438,1321,1253,1161,1 087 /cm.

[α]D= -16.6° (CHCl3,c=1.03,24.0°) mp.100-101°

No.1 a - 9 3

CDCl3+CD3OD 300MHz

0.96-2.00(14H,m), 2.18-2.35(3H,m), 2.90(1H,m), 5.15-5.30(2H,m), 7.18(1H,m), 7.33-7.42(2H,m), 7.65-7.74(2H,m), 7.90-8.08(4H,m).

IR(KBr):3347,3194,3011,2955,2875,1706,1650,1602,1544,1499,1443,1325,12 65,1165,1091 /cm.

[α]D= -19.4° (CH3OH,c=1.00,24.0°C) mp.158-159°C

No.1 a - 94

CD3OD 300MHz

1.05-2.00(14H,m), 2.14(1H,m), 2.23(2H,t,J=7.2Hz), 2.98(1H,m), 3.80(3H,s), 5.13-10.05(2H,m), 2.14(1H,m), 2.23(2H,t,J=7.2Hz), 2.98(1H,m), 3.80(3H,s), 5.13-10.05(2H,m), 2.23(2H,t,J=7.2Hz), 2.98(2H,m), 3.80(3H,s), 5.13-10.05(2H,m), 3.80(3H,m), 3.80

5.27(2H,m), 6.88-6.98(2H,m), 7.54-7.64(2H,m), 7.94-8.12(4H,m).

IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,130 2,1248,1162,1107,1090.1032/cm

[α]D= -19.1° (CH3OH,c=1.01,24°C).

 $No.1 \cdot a - 95$

CD3OD 300MHz

1.04-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.93-3.02(7H,m),5.13-5.27(2

H,m),6.82-6.92(2H,m),7.51-7.59(2H,m),7.95-8.02(2H,m),8.04-8.11(2H,m).

IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,130 2,1248,1162,1107,1090,1032/cm.

[α]D==-17.6° (CH3OH,c=1.01,24°C).

No.1 a - 96

CD3OD 300MHz

1.05-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.98(1H,m),5.13-5.27(2H,m),6.75-6.84(2H,m),7.43-7.52(2H,m),7.94-8.12(4H,m).

IR(KBr):3339,3197,2953,2875,1707,1644,1606,1541,1514,1446,1325,1293,125 9,1240,1225,1161,1091/cm.

[α]D= -18.7° (CH3OH,c=1.00,24°C). mp.193-196°C

No.1 a - 97

d6-DMSO 300MHz

1.05-2.08(15H,m), 2.15(2H,t,J=7.5Hz), 2.89(1H,m), 5.18-5.28(2H,m), 6.78-7.12(3H,m), 7.73(1H,d,d,J=1.4and7.8Hz), 7.91-7.95(3H,m), 8.14(2H,d,J=8.4Hz), 9.71(1H,s).

IR(KBr):3407,3191,2953,1711,1646,1614,1603,1537,1457,1326,1162,1151/cm

[α]D=-20.7° (CH3OH,C=1.01,21°C).

No.1 a - 98

CDC13 300MHz

 $0.93-2.00(14H,m), 2.21(1H,m), 2.31(2H,t,J=7.2Hz), 2.93(1H,m), 3.84(3H,s), 3.85(6H,s), 5.15-5.30(2H,m), 5.45(1H,d,J=6.3Hz), 7.04(2H,s), 7.78-7.86(2H,m), 7.90-7.\\98(2H,m), 8.58(1H,s).$

IR(CHCl3):3264,3008,2954,2874,1707,1670,1607,1537,1506,1451,1421,1308,1 158,1129,1088/cm.

[α]D= -7.2° (CHCl3,C=1.01,23.5°). mp.147-149°C

No.1 a - 99

CD3OD 300MHz

1.04-1.98(14H,m),2.21(1H,m),2.10(2H,t,J=7.2Hz),2.95(1H,m),3.76(3H,s),3.86(6H,s),5.07-5.24(2H,m),7.19(2H,s),7.99(2H,d,J=8.7Hz),8.13(1H,d,J=8.7Hz). IR(KBr):3354,3002,2950,2874,1656,1607,1570,1508,1452,1413,1314,1233,118 5,1157,1127,1092/cm.

[α]D= -20.3° (CH3OH,C=1.00,23.5°C).

No.1 a - 1 0 0

CDCl3 300MHz

 $1.14 \cdot 1.97(14H,m), 2.19(1H,m), 2.28(2H,t,J=7.4Hz), 3.04(1H,m), 3.69(3H,s), 5.03(1H,d,J=6.9Hz), 5.15 \cdot 5.29(2H,m), 7.65(2H,d,J=8.4Hz), 7.87(1H,s), 7.98(2H,d,J=8.4Hz).$

IR(CHCl3):3386,3271,3025,3015,2955,2877,1755,1712,1608,1331,1162/cm. [α]D= -29.4° (CH3OH,c=1.01,25°C).

No.1 a - 101

d6-DMSO

1.00-2.20(17H,m), 2.84(1H,m), 5.00-5.20(2H,m), 7.78(2H,d,J=8.2Hz), 7.84(1H,s),

7.89-7.95(3H,m).

IR(KBr):3269,3065,3008,2952,2874,2763,1746,1707,1607,1322,1157 /cm. [α]D= -26.2° (CH3OH,c=1.01,25°C).

No.1 a - 1 0 2

CD3OD

1.00-2.25(17H,m), 2.92(1H,s), 3.64(3H,s), 5.07-5.21(2H,m), 7.53(1H,s), 7.77(2H,d), J=8.6Hz, 7.90(2H,d,J=8.6).

IR(KBr):3430,3277,3006,2952,2873,1720,1687,1620,1571,1438,1312,1156 /cm.

[α]D= -27.3° (CH3OH,c=0.51,26°C). mp 230-232°C

No.1 a - 1 0 3

CDC13 300MHz

 $0.94 \cdot 1.96(14H,m), 2.19(1H,m), 2.28(2H,t,J=7.2Hz), 3.04(1H,m), 3.69(3H,s), 5.11(1H,d,J=6.6Hz), 5.15 \cdot 5.28(2H,m), 7.60(2H,d,J=8.4Hz), 7.67(1H,s), 7.98(2H,d,J=8.4Hz).$

IR(CHCl3):3381,3021,2955,2876,1735,1605,1437,1411,1325,1231,1177 /cm. $[\alpha]D=+8.6^{\circ}$ (CHCl3,c=1.00,23°C).

No.1 a - 1 0 4

CDCl3 300MHz

0.94-1.96(14H,m), 2.21(1H,m), 2.31(2H,t), J=6.8Hz), 2.99(1H,m), 5.18-5.28(2H,m), 5.45(1H,d), J=6.6Hz), 7.61(2H,d), J=8.7Hz), 7.67(1H,s), 7.99(2H,d), J=8.7Hz).

IR(CHCl3):3382,3222,3028,3019,2957,2876,1736,1709,1604,1412,1322,1301,1 286,1179,1162 /cm.

 $[\alpha]D = +10.4^{\circ} (CHC13, c=1.00, 23^{\circ}).$

No.1 a - 105

CDCl3 300MHz

0.92-1.98(14H,m), 2.17(1H,m), 2.26(2H,d,J=7.5Hz), 3.01(1H,m), 3.69(3H,s), 4.01(3H,s), 4.84(1H,d,J=6.3Hz), 5.14-5.30(2H,m), 7.71(2H,d,J=8.7Hz), 7.87(2H,d,J=8.7Hz), 8.09(1H,s).

IR(CHCl3):3385,3284,3025,3015,2954,2877,2821,1730,1598,1459,1438,1403,1 341,1160,1052 /cm.

 $[\alpha]D= +3.6^{\circ} (CHCl3,c=1.00,26^{\circ}).$

No.1 a - 1 0 6

CDCl3 300MHz

0.92-2.08(14H,m), 2.14(1H,m), 2.34(2H,d,J=7.2Hz), 3.02(1H,m), 4.01(3H,s), 5.19(1H,d,J=6.9Hz), 5.23-5.32(2H,m), 7.71(2H,d,J=8.4Hz), 7.88(2H,d,J=8.4Hz), 8.09(1H,s).

IR(CHCl3):3510,3384,3268,3028,3021,3014,2957,2877,2821,2667,2821,2666,1 707,1598,1459,1404,1341,1324,1160,1052 /cm.

[α]D= +11.8° (CHCl3,c=1.01,25°C). mp 95-96°C

No.1 a - 1 0 7

CDC13 300MHz

0.92 - 1.97(14H,m), 1.34(3H,t,J=7.2Hz), 2.18(1H,m), 2.28(2H.d,J=7.4Hz), 3.01(1H,m), 3.68(3H,s), 4.26(2H,q,J=7.2Hz), 4.86(1H,d,J=6.6Hz), 5.15-5.29(2H,m), 7.71(2H,d,J=8.7Hz), 7.87(2H,d,J=8.7Hz), 8.09(1H,s).

IR(CHCl3):3385,3282,3025,3026,3015,2954,2877,1729,1599,1480,1458,1438,1 403,1338,1161 /cm.

[α]D=+4.4° (CHCl3,c=1.00,25°C).

No.1 a - 1 0 8

CDC13 300MHz

0.90-2.04(14H,m), 1.34(3H,t,J=7.2Hz), 2.14(1H,m), 2.34(2H,d,J=7.1Hz), 3.01(1H,m), 2.34(2H,d,J=7.1Hz), 3.01(2H,d,J=7.1Hz), 3.01(2

m),4.27(2H,q,J=7.2Hz),5.20(1H,d,J=6.6Hz), $5.21\cdot5.35(2H,m)$,7.71(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz),8.10(1H,s).

IR(CHCl3):3514,3384,3270,3025,3015,3015,2957,2877,1708,1599,1458,1403,1 324,1324,1160,1050 /cm.

 $[\alpha]D= +12.7^{\circ} (CHCl3,c=1.00,25^{\circ}).$

No.1 a - 109

[α]D=+8.5° (CHCl3,c=1.00,25°C). mp109.0-111.0°C

No.1 a - 1 1 0

CDC13:CD3OD(95:5)

 $0.92-2.06(14H,m), 2.20(1H,m), 2.30(2H,d,J=7.2Hz), 2.99(1H,m), 5.22-5.33(2H,m), \\7.54-7.66(3H,m), 8.07(2H,d,J=9.0Hz), 8.12-8.20(2H,m), 8.29(2H,d,J=9.0Hz).$

IR(Nujol):3270,2956,2924,2854,1716,1548,1485,1319,1167/cm.

[α]D=+17.0° (CHCl3,c=1.00,25°C). mp.166.5-168°C

No.1 a - 1 1 1

[α]D=+2.6° (CHCl3,c=1.00,24°C). mp120.0-121.0°C

No.1 a - 1 1 2

CDCl3 300MHz

0.96-2.04(14H,m), 2.19(1H,m), 2.33(2H,d,J=7.1Hz), 3.07(1H,m), 5.28-5.31(2H,m), 5.33(1H,d,J=6.6Hz), 7.54-7.63(3H,m), 8.05(2H,d,J=8.4Hz), 8.18-8.23(2H,m), 8.41(2H,d,J=8.4Hz).

IR(CHCl3):3384,3269,3025,3015,2957,2877,1708,1598,1496,1457,1417,1326,1 164 /cm.

[α]D= +12.2° (CHCl3,c=1.00,24°C). mp.163-164°C

No.1 a - 1 1 3

[α]D= +22.1° (CHCl3,c=1.05,25°C). mp.90-92°C

No.1 a - 1 1 4

 $[\alpha]D = +2.2^{\circ} (CHC13,c=1.02,25^{\circ}).$

No.1 a - 1 1 5

CDC13 300MHz

0.90-1.98(14H,m), 2.15-2.22(1H,m), 2.27(2H,t,J=7.2Hz), 2.95-3.04(1H,m),

3.68(3H,s),4.04(2H,s),4.85(1H,d,J=6.6Hz),5.10-5.27(2H,m),7.12-

7.34(7H,m),7.76-7.82(2H,m).

IR(CHCl3):3384,3026,2952,1727,1595,1493,1436,1318,1155,1091,890/cm.

 $[\alpha]D==0$

 $[\alpha]436=+4.9\pm0.4^{\circ}(CHCl3,c=1.05,23^{\circ})$

No.1 a - 1 1 6

CDC13 300MHz

0.90-2.10(14H,m), 2.10-2.18(1H,m), 2.32(2H,t,J=7.2Hz), 2.96-3.04(1H,m),

4.04(2H,s),5.14(1H,d,J=6.6Hz),5.16-5.28(2H,m),7.12-7.34(7H,m),7.76-

7.82(2H,m).

IR(CHCl3):3260,3020,2950,1709,1407,1318,1154,1091,892/cm.

 $[\alpha]D=+9.1\pm0.5^{\circ}(CHC13,c=1.04,23^{\circ})$

No.1 a - 1 1 7

CD3OD 300MHz

0.96-2.18(17H,m), 2.89-2.92(1H,m), 4.05(2H,s), 4.95-5.22(2H,m), 7.15-

7.42(7H,m),7.75-7.81(2H,m).

IR(KBr):3429,3279,2951,2872,1563,1494,1453,1408,1313,1155,1093,1057/cm.

 $[\alpha]D=-16.3\pm0.5^{\circ}(CH3OH,c=1.06,25^{\circ})$

No.1 a - 1 1 8

CDC13 300MHz

0.98-1.70(15H,m), 1.80-2.00(5H,m), 2.20-2.40(3H,m), 2.98(1H,m), 4.06(2H,s), 4.72(1H,d,J=6.3Hz), 5.00-5.23(3H,m), 7.16(2H,d,J=8.4Hz), 7.26-7.33(5H,m), 7.79(2H,d,J=8.1Hz).

IR(CHCl3):3376,3020,2948,2868,1716,1596,1492,1453,1407,1318,1155,1105/c m.

[α]D=+2.4° (CHCl3,c=1.08,24°C).

No.1 a - 1 1 9

CDC13 300MHz

0.90-2.02(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.2Hz), 3.00(1H,m), 3.68(3H,s), 4.86(1H,d,J=6.9Hz), 5.13-5.34(2H,m), 7.00-7.09(4H,m), 7.22(1H,m), 7.37-7.45(2H,m), 7.79-7.86(2H,m).

IR(CHCl3):3376,3018,2946,2868,1727,1582,1486,1321,1243,1151,1093 /cm. [α]D= +4.5° (CHCl3,c=1.05,23.5°C).

No.1 a - 1 2 0

CD3OD 300MHz

 $1.00-2.00(14H,m), 2.13(2H,t,J=7.5Hz), 2.16(1H,m), 2.91(1H,m), 5.05-5.33(2H,m), \\7.04-7.11(4H,m), 7.18-7.25(1H,m), 7.38-7.48(2H,m), 7.80-7.87(2H,m).$

IR(KBr):3430,3278,3006,2952,2873,1583,1487,1410,1322,1298,1245,1152,109 5 /cm.

 $[\alpha]D = -8.8^{\circ} (CH3OH, c=1.05, 25.0^{\circ}).$

No.1 a - 1 2 1

CDC13 300MHz

0.90-2.10(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.2Hz), 3.01(1H,m), 5.20(1H,d,J=6.9)

Hz),5.22-5.35(2H,m),7.00-7.09(4H,m),7.18-7.25(1H,m),7.37-7.45(2H,m),7.79-7.86(2H,m).

IR(CHCl3):3260,3020,2948,2868,1708,1582,1486,1409,1321,1296,1243,1151,1 093 /cm.

 $[\alpha]D = +13.1^{\circ} (CHCl3, c=1.04, 24.0^{\circ}).$

No.1 a - 1 2 2

CDC13 300MHz

0.90-2.00(14H,m), 2.23(1H,m), 2.28(2H,t,J=7.5Hz), 2.96(1H,m), 3.67(3H,s), 4.69(1H,d,J=6.6Hz), 5.15-5.32(2H,m), 6.22(1H,s), 6.98-7.40(5H,m), 7.30-7.38(2H,m), 7.68-7.74(2H,m).

IR(CHCl3):3416,3370,3018,2946,2868,1725,1587,1508,1437,1400,1320,1149,1 094 /cm.

 $[\alpha]D = +6.2^{\circ} (CHCl3,c=1.04,25.0^{\circ}).$

No.1 a - 1 2 3

CDC13 300MHz

 $0.90-2.04(14H,m), 2.18(1H,m), 2.33(2H,t,J=7.2Hz), 2.96(1H,m), 5.04-5.35(3H,m), \\ 6.98-7.12(3H,m), 7.12-7.20(2H,m), 7.28-7.38(2H,m), 7.66-7.74(2H,m).$

IR(CHCl3):3424,3270,3028,2952,2872,1708,1587,1508,1445,1399,1320,1148,1 092 /cm.

 $[\alpha]D = +20.9^{\circ} (CHC13, c=1.06, 23.0^{\circ}).$

No.1 a - 1 2 4

CDC13 300MHz

0.90-2.00(14H,m), 2.18(1H,m), 2.28(2H,t,J=7.2Hz), 3.00(1H,m), 3.14(3H,s), 3.68(3H,s), 4.56(2H,s), 4.84(1H,d,J=6.3Hz), 5.10-5.29(2H,m), 7.16-7.26(4H,m), 7.26-7.34(2H,m), 7.78-7.84(2H,m).

IR(CHCl3):3384,3028,2952,2874,1727,1598,1501,1435,1410,1370,1329,1172,1

148,1091 /cm.

[α]D= +2.7° (CHCl3,c=1.09,23.0°C).

No.1 a - 1 2 5

CDC13 300MHz

 $0.90-2.00(14H,m), 2.18(1H,m), 2.28(2H,t,J=7.2Hz), 2.29(3H,s), 3.00(1H,m), 3.68(3H,s), 4.04(2H,s), 4.80(1H,d,J=6.6Hz), 5.11-5.29(2H,m), 6.99-7.06(2H,m), 7.12-7. \\19(2H,m), 7.31(2H,d,J=8.1Hz), 7.79(2H,d,J=8.1Hz).$

IR(CHCl3):3382,3280,3024,2950,2874,1730,1596,1504,1435,1407,1367,1318,1 196,1155,1091 /cm.

 $[\alpha]D = +2.9^{\circ} (CHC13,c=1.06,23.0^{\circ}).$

No.1 a - 1 2 6

CDC13 300MHz

0.90-2.02(14H,m), 2.14(1H,m), 2.29(3H,s), 2.32(2H,t,J=7.2Hz), 3.01(1H,m), 4.03(2H,s), 5.10(1H,d,J=6.6Hz), 5.15-5.30(2H,m), 6.98-7.06(2H,m), 7.11-7.18(2H,m), 7.30(2H,d,J=8.1Hz), 7.79(2H,d,J=8.1Hz).

IR(CHCl3):3374,3260,3020,2948,2868,1749,1708,1596,1504,1407,1369,1317,1 195,1155,1091 /cm.

 $[\alpha]D = +10.0^{\circ} (CHCl3, c=1.09, 23.0^{\circ}).$

No.1 a - 1 2 7

CDC13 300MHz

 $0.87 \cdot 1.95(14H,m), 2.18 \cdot 2.32(3H,m), 2.95(1H,m), 3.69(3H,s), 3.96(2H,s), 4.79(1H,d,J=6.6Hz), 4.97 \cdot 5.17(2H,m), 5.54(1H,s), 6.75 \cdot 6.82(2H,m), 6.97 \cdot 7.05(2H,m), 7.25 \cdot 7.33(2H,m), 7.75 \cdot 7.81(2H,m).$

IR(CHCl3):3382,3026,2950,2874,1722,1595,1511,1436,1407,1317,1257,1154,1 090 /cm.

 $[\alpha]D = -2.1^{\circ} (CHC13, c=1.00, 21.5^{\circ}).$

No.1 a - 1 2 8

CDCl3 300MHz

0.85-2.02(14H,m),2.18(1H,m),2.31(2H,t,J=7.2Hz),2.96(1H,m),3.95(2H,s),5.05-5.27(3H,m),6.73-6.82(2H,m),6.96-7.04(2H,m),7.25-7.32(2H,m),7.74-7.81(2H,m)

).

IR(CHCl3):3262,3020,2948,2868,1708,1596,1511,1407,1315,1242,1154,1091 / cm:

 $[\alpha]D=+4.8^{\circ} (CHCl3,c=1.04,22^{\circ}).$

No.1 a - 1 2 9

CDCl3 300MHz

 $0.89 - 1.98(14H,m), 2.18(1H,m), 2.27(2H,t,J=7.2Hz), 2.99(1H,m), 3.68(3H,s), 3.79(3H,s), 3.98(2H,s), 4.81(1H,d,J=6.6Hz), 5.10-5.27(2H,m), 6.81-6.87(2H,m), 7.03-7. \\ 10(2H,m), 7.25-7.32(2H,m), 7.75-7.82(2H,m).$

IR(CHCl3):3382,3276,3006,2950,2874,1726,1609,1509,1457,1436,1407,1315,1 244,1154,1091,1033/cm.

[α]D=+19.3° (CHCl3,C=1.05,23°C).

No.1 a - 1 3 0

CDC13 300MHz

0.90-2.00(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),2.98(1H,m),3.69(3H,s),4.81(1H,d,J=6.6Hz),5.12-5.32(2H,m),5.46(1H,brs),6.84-7.01(6H,m),7.76-7.83(2H,m) IR(CHCl3):3380,3284,3024,2952,2874,1724,1588,1504,1488,1436,1321,1296,1149,1091/cm.

[α]D=+28.9° (CHCl3,C=1.01,23°C).

No.1 a - 1 3 1

CDC13 300MHz

0.92-2.10(14H,m), 2.18(1H,m), 2.34(2H,t,J=6.9Hz), 2.96(1H,m), 5.18-5.35(3H,m), 6.84-7.01(6H,m), 7.75-7.83(2H,m).

IR(CHCl3):3270,3028,2952,2874,1708,1589,1505,1489,1456,1322,1297,1238,1 148,1091/cm.

[α]D=+7.7° (CHCl3,C=1.09,24°C).

No.1 a - 1 3 2

CDC13 300MHz

0.91-2.02(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),2.99(1H,m),3.68(3H,s),3.83(3H,s),4.82(1H,d,J=6.6Hz),5.14-5.33(2H,m),6.90-7.04(6H,m),7.76-7.83(2H,m). IR(CHCl3):3384,3006,2952,2874,1727,1589,1502,1488,1459,1438,1321,1295,1231,1150,1092,1033/cm.

[α]D=+3.1° (CHCl3,C=1.01,23°C).

No.1 a - 1 3 3

TLC Rf=0.21 (酢酸エチル:n-ヘキサン=1:1 (0.3%酢酸))

No.1 a - 1 3 4

CDC13 300MHz

 $0.97-2.10(14H,m), 2.20(1H,m), 2.36(2H,t,J=6.9Hz), 3.04(1H,m), 5.22-5.33(2H,m), \\ 5.41(1H,d,J=6.6Hz), 7.02(1H,d,J=9.0Hz), 7.09-7.13(2H,m), 7.26-7.32(1H,m), 7.43 \\ -7.49(2H,m), 7.93(1H,d,d,J=2.4and9.0Hz), 8.46(1H,d,J=2.4Hz).$

[α]D=+20.9° (CHCl3,C=0.51,22°).

No.1 a - 1 3 5

CDC13 300MHz

0.96 - 2.02(14 H, m), 2.21(1 H, m), 2.29(2 H, t, J = 7.2 Hz), 3.07(1 H, m), 3.68(3 H, s), 5.04(1 H, m), 2.21(1 H, m)

1H,d,J=6.9Hz), 5.16-5.33(2H,m), 7.48-7.55(2H,m), 7.64(1H,m), 7.76-7.82(2H,m), 7.88-7.94(2H,m), 7.98-8.04(2H,m).

IR(CHCl3):3384,3282,3026,2952,2874,1727,1663,1596,1446,1396,1316,1274,1 163,1090 /cm.

 $[\alpha]D=+3.1^{\circ} (CHCl3,c=1.03,22.0^{\circ}).$

No.1 a - 1 3 6

CDCl3 300MH₂

 $0.95-2.05(14H,m), 2.19(1H,m), 2.34(2H,t,J=7.2Hz), 3.08(1H,m), 5.10-5.40(2H,m), \\ 5.35(1H,d,J=6.8Hz), 7.45-7.58(2H,m), 7.64(1H,m), 7.74-7.84(2H,m), 7.84-7.95(2H,m), 7.95-8.06(2H,m).$

IR(CHCl3):3260,3018,2950,2870,1708,1662,1595,1446,1395,1316,1274,1162,1 090 /cm.

[α]D= +12.9° (CHCl3,c=1.05,21.5°C).

No.1 a - 1 3 7

CDCl3 300MHz

0.97-2.04(14H,m), 2.27(1H,m), 2.31(2H,t,J=7.2Hz), 3.07(1H,m), 3.70(3H,s), 5.15-5.30(3H,m), 7.48-7.68(5H,m), 7.96-8.02(2H,m).

IR(CHCl3):3382,3030,2952,2878,1725,1446,1329,1154,1098 /cm.

[α]D= -12.1° (CHCl3,c=1.03,22.0°C).

No.1 a - 1 3 8

CDC13 300MHz

 $0.95-2.04(14H,m), 2.25(1H,m), 2.35(2H,t,J=7.2Hz), 3.08(1H,m), 5.15-5.34(2H,m), \\ 5.41(1H,d,J=6.6Hz), 7.48-7.68(5H,m), 7.98-8.03(2H,m).$

IR(CHCl3):3370,3242,3022,2950,2870,1707,1445,1408,1329,1154,1099 /cm. $[\alpha]D=0.6^{\circ}$ (CHCl3,c=1.06,21.5°C) $[\alpha]365+30.7^{\circ}$ (CHCl3,c=1.06,21.5°C).

No.1 a - 1 3 9

CDC13 300MHz

0.92-2.19(14H,m), 2.27-2.34(3H,m), 3.26(1H,m), 3.65(3H,s), 4.28(2H,s), 4.37(1H,d,J=7.4Hz), 5.34-5.50(2H,m), 7.37-7.62(9H,m).

IR(CHCl3):3389,3294,3028,3015,2954,2877,1730,1600,1488,1325,1151,1129 / cm.

[α]D= -24.8° (CHCl3,c=1.01,24°C).

No.1 a - 1 4 0

CDCl3 300MHz

0.92-2.22(15H,m), 2.34(2H,t,J=7.1Hz), 3.24(1H,m), 4.29(2H,s), 4.81(1H,d,J=7.4Hz), 5.32-5.52(2H,m), 7.36-7.62(9H,m).

IR(CHCl3):3510,3388,3251,3031,3015,2956,2877,2668,1708,1601,1488,1318,1 151,1129 /cm.

 $[\alpha]D = -24.6^{\circ} (CHC13,c=1.02,25^{\circ}).$

No.1 a - 1 4 1

CDC13 300MHz

0.92-2.19(15H,m), 2.32(2H,t,J=7.2Hz), 3.26(1H,m), 3.65(3H,s), 4.31(2H,s), 4.48(1H,d,J=7.4Hz), 5.33-5.49(2H,m), 7.42-7.80(8H,m).

IR(CHCl3):3388,3285,3018,2955,2877,2225,1730,1597,1479,1320,1152,1129 / cm.

[α]D= -20.1° (CHCl3),c=0.96,25°C).

No.1 a - 1 4 2

CDC13 300MHz

0.92-2.22(15H,m),2.35(2H,t,J=6.8Hz),3.25(1H,m),4.32(2H,s),4.86(1H,d,J=7.4Hz),5.33-5.53(2H,m),7.43-7.80(8H,m).

IR(CHCl3):3512,3388,3258,3031,3023,3014,2956 2877,2225,1708,1597,1479,

1319,1151,1128 /cm.

 $[\alpha]D = -19.3^{\circ} (CHCl3, c=1.09, 23^{\circ}).$

No.1 a - 1 4 3

7

CDC13 300MHz

 $1.00-1.93(14H,m), 2.17(1H,m), 2.27(2H,t,J=7.2Hz), 3.07(1H,m), 5.17-5.22(2H,m), \\ 5.36(1H,d,J=6.9Hz), 7.77(1H,d,J=9.0Hz), 8.11-8.17(2H,m), 8.36(1H,d,d,J=2.1andd-9.0Hz), 8.51(1H,d,J=1.8Hz), 8.65(1H,d,J=2.1Hz).$

IR(CHCl3):3382,3266,3026,2954,2874,1708,1632,1585,1528,1458,1419,1345,1 153/cm.

[α]D=+7.6° (CHCl3,C=1.04,22°C).

No.1 a - 1 4 4

CDCl3 300MHz

0.95-1.90(14H,m), 2.17(1H,m), 2.25(2H,t,J=7.5Hz), 3.02(1H,m), 5.09(1H,d,J=6.6Hz), 5.15-5.21(2H,m), 6.72(1H,d,J=8.4Hz), 6.85(1H,s), 7.54(1H,d,J=8.4Hz), 7.72(1H,d,J=9.0Hz), 7.83(1H,d,d,J=1.8and9.0Hz), 8.32(1H,d,J=1.8Hz).

IR(CHCl3):3380,3260,3022,2948,2868,2352,1709,1636,1460,1425,1313,1291,1 265,1148,1130/cm.

[α]D=+12.9° (CHCl3,C=1.02,22.5°).

No.1 a - 1 4 5

CDC13 300MHz

 $0.97 \cdot 1.90(14H,m), 2.15(1H,m), 2.27(2H,t,J=6.9Hz), 3.02(1H,m), 3.08(6H,s), 5.12(1H,d,J=6.3Hz), 5.19 \cdot 5.25(2H,m), 6.78 \cdot 6.84(2H,m), 7.53(1H,d,J=8.7Hz), 7.76 \cdot 7.83(2H,m), 8.30(1H,d,J=1.8Hz).$

IR(CHCl3):3272,3030,2950,2874,1708,1635,1601,1511,1457,1425,1357,1328,1 151,1124/cm.

[α]D=+6.3° (CHCl3,C=1.04,23°C).

No.1 a - 1 4 6

CDC13 300MHz

 $0.95 - 2.00(14 \mathrm{H,m}), 2.16(1 \mathrm{H,m}), 2.29(2 \mathrm{H,t,J} = 7.2 \mathrm{Hz}), 3.05(1 \mathrm{H,m}), 4.10(3 \mathrm{H,s}), 5.13 - 2.00(14 \mathrm{H,m}), 2.10(10 \mathrm{H,m}$

5.28(2H,m), 5.38(1H,d,J=6.9Hz), 7.67-7.74(2H,m), 8.08(1H,d,d,J=1.8and9.0Hz),

8.11(1H,s),8.61(1H,d,J=1.8Hz).

IR(CHCl3):3260,3020,2948,2868,1708,1639,1606,1528,1470,1455,1424,1349,1

311,1238,1174,1149,1120,1079,1060,1022/cm.

[α]D=+7.8° (CHCl3,C=1.00,23°C).

No.1 a - 1 4 7

CDC13 300MHz

 $0.92 - 1.92(14 \text{H,m}), 2.17(1 \text{H,m}), 2.25(2 \text{H,t,J} = 7.2 \text{Hz}), 3.01(1 \text{H,m}), 3.97(3 \text{H,s}), 5.10 - 1.00(1 \text{H,m}), 5.10(1 \text{H$

5.27(5H,m), 6.92(1H,s), 7.29(1H,s), 7.52(1H,d,J=8.7Hz), 7.82(1H,d,d,J=2.1and8.

7Hz),8.33(1H,d,J=2.1Hz).

IR(CHCl3):3380,3264,3002,2950,2868,1708,1634,1476,1452,1426,1317,1264,1

218,1169,1147,1115,1068,1031/cm.

[α]D=+5.6° (CHCl3,C=1.02,23°C).

No.1 a - 1 4 8

CDC13 300MHz

0.90-1.98(14H,m), 2.15(1H,m), 2.28(2H,t,J=6.9Hz), 2.91(6Hs), 3.03(1H,m), 4.01(3Hz), 4.01(3H

=2.1and8.7Hz),8.40(1H,d,J=2.1Hz).

IR(CHCl3):3384,3266,2956,1709,1632,1602,1495,1473,1458,1430,1317,1231,1

148,1121/cm.

[α]D=+11.2° (CHCl3,C=1.01,23°).

No.1 a - 149

CDCl3 300MHz

 $0.99-1.90(14H,m), 2.17(1H,m), 2.28(2H,t,J=7.2Hz), 3.00(1H,m), 5.13-5.19(2H,m), \\ 5.43(1H,d,J=6.0Hz), 7.02(1H,d,d,J=2.4and9.0Hz), 7.38-7.41(2H,m), 7.58(1H,d,J=8.7Hz), 7.96(1H,d,d,J=1.8and8.7Hz), 8.45(1H,d,J=1.8Hz).$

IR(CHCl3):3270,3020,2948,2868,1709,1601,1478,1448,1419,1315,1147,1120/c m.

[α]D=-11.4° (CHCl3,C=1.01,23°C).

No.1 a - 150

CDC13 300MHz

0.97-1.88(14H,m), 2.12-2.31(3H,m), 2.38(3H,s), 3.01(1H,m), 5.14-5.19(2H,m), 5.39(1H,d,J=6.6Hz), 7.24(1H,d,d,J=2.4and9.0Hz), 7.59(1H,d,J=6.3Hz), 7.66(1H,d,J=8.7Hz), 7.72(1H,d,J=2.4Hz), 8.01(1H,d,d,J=1.8and8.7Hz), 8.49(1H,d,J=1.8Hz). IR(CHCl3): 3470, 3374, 3260, 3018, 2950, 2868, 1709, 1474, 1444, 1412, 1370, 1319, 1266, 1162, 1145, 1118/cm.

[α]D=+4.9° (CHCl3,C=1.00,24°C).

No.1 a - 151

CDC13 300MHz

0.97 - 1.89(14H,m), 2.17(1H,m), 2.25(2H,t,J=7.2Hz), 3.03(1H,m), 3.92(3H,s), 5.15 - 5.20(2H,m), 5.32(1H,d,J=6.6Hz), 7.11(1H,d,d,J=2.4and9.3Hz), 7.45(1H,d,J=2.4Hz), 7.50(1H,d,J=9.3Hz), 7.62(1H,d,J=8.7H), 7.97(1H,d,d,J=2.1and8.7Hz), 8.50(1H,d,J=2.1Hz).

IR(CHCl3):3260,3018,2948,1708,1483,1454,1432,1314,1287,1268,1188,1169,1 147/cm.

[α]D=+4.9° (CHCl3,C=1.01,23.5°C).

No.1 a - 152

•

CDC13 300MHz

 $0.98-2.04(14H,m), 2.15(1H,m), 2.30(2H,t,J=6.6Hz), 3.04(1H,m), 5.17-5.29(3H,m), \\7.41(1H,d,d,J=1.5and8.1Hz), 7.64-7.68(2H,m), 7.92(1H,d,J=8.4Hz), 8.00(1H,d,d,d,d), \\J=1.8and8.4Hz), 8.49(1H,d,J=1.8Hz).$

IR(CHCl3):3266,3028,2952,2872,1707,1629,1591,1456,1416,1318,1275,1150/c m.

[α]D=+3.2° (CHCl3,C=1.04,23°C).

No.1 a - 1 5 3

CDCl3 300MHz

 $0.97 \cdot 1.88(14H,m), 2.16(1H,m), 2.26(2H,t,J=7.2Hz), 3.03(1H,m), 4.64 \cdot 4.65(2H,m), \\ 5.16 \cdot 5.50(5H,m), 6.13(1H,m), 7.14(1H,d.d,J=2.7and9.0Hz), 7.46 \cdot 7.52(2H,m), 7.6 \\ 3(1H,d,J=8.7Hz), 7.97(1H,d.d,J=1.8and8.7Hz), 8.49(1H,d,J=1.8Hz).$

IR(CHCl3):3374,3260,3020,2948,2868,1708,1599,1478,1446,1414,1314,1284,1 268,1184,1148,1120/cm.

[α]D=+5.3° (CHCl3,C=1.00,23°C).

No.1 a - 154

CDC13 300MHz

 $0.99 \cdot 2.00(15H,m), 2.26(2H,t,J=7.2Hz), 3.03(1H,m), 4.07(3H,s), 5.23 \cdot 5.27(2H,m), \\ 5.36(1H,d,J=7.2Hz), 7.20(1H,s), 7.36 \cdot 7.48(2H,m), 7.55 \cdot 7.58(1H,m), 7.91 \cdot 7.93(1H,m), 8.52(1H,s).$

IR(CHCl3):3362,3257,3020,2948,2868,1708,1637,1602,1579,1488,1457,1437,1413,1345,1318,1301,1276,1182,1104/cm.

[α]D= +19.4° (CHCl3,C=1.01,25°C). mp.88-90°C

No.1 a - 155

CDC13 300MHz

0.92-2.02(14H,m), 2.15(1H,m), 2.31(2H,t,J=7.2Hz), 3.01(1H,m), 4.10(2H,s), 5.10(2H,s), 5.

1H,d,J=6.6Hz), 5.18-5.35(2H,m), 7.04-7.26(5H,m), 7.67-7.76(2H,m).

IR(CHCl3):3266,3028,2952,2952,2872,1708,1599,1574,1478,1457,1418,1301,1 258,1147,1124,1101,1080/cm

[α]365 +33.4° (CHCl3,C=1.00,23°C).

No.1 a - 1 5 6

CDCl3 300MHz

0.91-2.21(15H,m), 2.33(2H,t,J=6.9Hz), 3.01(1H,m), 5.11(1H,d,J=6.6Hz), 5.27-5.3

5(2H,m),6.85-6.96(5H,m),7.35(1H,d,J=2.1Hz),7.42(1H,d,d,J=2.1and8.7Hz).

IR(CHCl3):3384,3263,2957,1708,1587,1489,1462,1416,1290,1222,1151,1123/c m.

[α]D=+6.4° (CHCl3,C=1.00,23°).

No.1 a - 1 5 7

CDC13 300MHz

 $0.97 \cdot 1.91(14H,m), 2.18(1H,m), 2.26(2H,t,J=6.9Hz), 3.04(1H,m), 5.18 \cdot 5.26(3H,m), 7.52 \cdot 7.56(2H,m), 7.88 \cdot 8.00(3H,m), 8.25(1H,m), 8.69(1H,m).$

IR(CHCl3):3382,3268,2952,2874,1707,1457,1425,1409,1318,1152/cm.

 $[\alpha]D=+4.4^{\circ}$ (CHCl3,C=1.02,22°C).

No.1 a - 158

CDCl3 300MHz

1.02-1.97(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.2Hz), 3.06(1H,m), 5.19-5.24(2H,m), 3.06(1H,m), 3.06(1H,m

 $5.58(1\mathrm{H,d,J=6.6Hz}), 7.62(1\mathrm{H,m}), 7.72(1\mathrm{H,m}), 7.86-7.91(2\mathrm{H,m}), 7.96(1\mathrm{H,d,J=7.8H})$

z),8.04(1H,d.d,J=1.5and8.1Hz),8.34(1H,d,J=1.2Hz).

IR(CHCl3):3490,3260,3020,2950,2870,1707,1456,1399,1312,1165/cm.

[α]D=-8.3° (CHCl3,C=1.00,23°).

No.1 a - 159

CDCl3 300MHz

 $0.92 \cdot 1.88(14H,m), 2.13(1H,m), 2.24(2H,m), 3.02(1H,m), 3.90(3H,s), 5.12 \cdot 5.26(3H,m), 7.29 \cdot 7.58(4H,m), 7.97(1H,d.d,J=1.8and7.5Hz), 8.13(1H,d,J=7.5Hz), 8.64(1H,d,J=1.8Hz).$

IR(CHCl3):3382,3266,3018,2956,1708,1629,1594,1476,1467,1325,1245,1227,1158,1146/cm.

[α]D=+14.6° (CHCl3,C=1.00,22°C).

No.1 a - 1 6 0

CDCl3 300MHz

0.93-1.88(14H,m),2.18-2.24(3H,m),3.00(1H,m),5.08-5.21(3H,m),7.28-7.33(1H,m),7.47-7.51(3H,m),7.90(1H,d.d,J=1.5and7.8Hz),8.10(1H,d,J=7.8Hz),8.63-8.64 (2H,m).

IR(CHCl3):3465,3380,3275,3020,2957,2876,1708,1627,1604,1495,1473,1457,1 328,1240,1222,1156,1149/cm.

 $[\alpha]D=+8.2^{\circ}$ (CHCl3,C=1.01,22°).

No.1 a - 1 6 1

CDC13 300MHz

 $0.98-1.88(14H,m), 2.17(1H,m), 2.24(2H,t,J=7.2Hz), 3.05(1H,m), 5.16-5.20(2H,m), \\ 5.35(1H,d,J=6.6Hz), 7.40(1H,m), 7.55(1H,m), 7.63(1H,d,J=8.1Hz), 7.89(1H,d,d,J=1.5and8.1Hz), 8.01(1H,m), 8.06(1H,d,J=8.1Hz), 8.12(1H,d,J=1.5Hz). \\ IR(CHCl3):3478,3266,3028,2952,2874,1708,1454,1417,1323,1196,1148/cm. \\ [\alpha]D=+21.9° (CHCl3,C=1.01,23°C).$

No.1 a - 1 6 2

CDCl3 300MHz

0.96 - 1.98(14H,m), 2.02(1H,m), 2.25(2H,t,J=7.2Hz), 3.05(1H,m), 4.10(3H,s), 5.14 - 5.25(2H,m), 5.41(1H,d,J=7.2Hz), 7.35 - 7.42(1H,m), 7.51 - 7.64(3H,m), 7.94 - 8.00(1H,m), 7.51 - 7.64(3H,m), 7.94 - 8.00(1H,m), 7.00(1H,m)

H,m),8.16(1H,s).

IR(CHCl3):3368,3274,3028,2952,2874,1708,1633,1583,1465,1452,1438,1413,1 315,1151,1103,1053,1024/cm.

 $[\alpha]D=+15.1^{\circ} (CHCl3,C=1.01,23^{\circ}). mp.108-110^{\circ}$

No.1 a - 1 6 3

:

d6-DMSO 300MHz

 $0.97 \cdot 1.84(14H,m), 1.92(1H,m), 2.04(2H,t,J=7.5Hz), 2.90(1H,m), 5.08 \cdot 5.23(2H,m), \\7.32(1H,s), 7.38 \cdot 7.61(2H,m), 7.62(1H,s), 7.68 \cdot 7.71(1H,m), 7.92(1H,s), 8.14 \cdot 8.17(1H,m), 10.7(1H,s), 11.9(1H,s).$

IR(KBr):3350,3295,2952,2874,1707,1636,1601,1466,1431,1389,1315,1251,117 4,1146,1106/cm.

[α]D= -25.3° (CH3OH,C=1.01,25°C). mp.159-162°C

No.1 a - 1 6 4

CDCl3 300MHz

0.98-1.96(17H,m), 2.05(1H,m), 2.25(2H,t,J=7.2Hz), 3.07(1H,m), 4.32(2H,q,J=7.2Hz), 5.19-5.23(2H,m), 5.31(1H,d,J=7.8Hz), 7.38(1H,m), 7.41-7.62(3H,m), 7.95(1H,m), 8.15(1H,s).

IR(CHCl3):3360,3018,2946,2870,1709,1633,1457,1445,1425,1394,1314,1176,1 152,1105/cm.

[α]D= +12.7° (CHCl3,C=1.02,25°C). mp.108-109°C

No.1 a - 165

CDC13 300MHz

 $0.95 \cdot 1.98(15H,m), 2.26(2H,t,J=7.5Hz), 3.04(1H,m), 4.15(3H,s), 5.20 \cdot 5.26(2H,m), \\ 5.34(1H,d,J=6.9Hz), 7.41 \cdot 7.47(1H,m), 7.65 \cdot 7.68(2H,m), 7.89 \cdot 7.92(1H,m), 8.32(1H,s).$

IR(CHCl3):3366,3087,3022,2957,1708,1632,1538,1463,1408,1364,1346,1308,1

227,1212,1205,1167/cm.

 $[\alpha]D = +19.6^{\circ} (CHCl3, C=1.01, 25^{\circ}C).$

No.1 a - 166

CDC13 300MHz

 $0.97-2.02(15H,m), 2.27(2H,t,J=6.9Hz), 3.07(1H,m), 4.14(3H,s), 5.21-5.27(2H,m), \\ 5.47(1H,d,J=6.9Hz), 7.64(1H,s), 7.72(1H,d,d,J=0.6and9.0Hz), 8.25(1H,s), 8.47(1H,d,d,J=2.4and9.0Hz), 8.94(1H,d,d,J=0.6and2.4Hz).$

IR(CHCl3):3373,2957,1708,1639,1587,1528,1467,1428,1415,1345,1221,1184,1 155/cm.

 $[\alpha]D= +14.4^{\circ} (CHCl3, C=0.50, 25^{\circ})$

No.1 a - 1 6 7

CDCl3 300MHz

0.92-2.00(14H,m), 2.15(1H,m), 2.27(2H,t,J=7.2Hz), 3.04(1H,m), 3.97(2H,s), 5.15-5.30(3H,m), 7.35-7.47(2H,m), 7.55-7.63(1H,m), 7.80-7.96(3H,m), 8.05(1H,d,J=0.3Hz).

IR(CHCl3):3260,3020,2948,2868,1707,1451,1413,1319,1172,1144,1101,1071/c m.

 $[\alpha]D=+18.2^{\circ}$ (CHCl3,C=1.04,22°C).

No.1 a - 1 6 8

CDCl3 300MHz

 $0.90-1.88(14H,m), 2.16(1H,m), 2.25(2H,t,J=6.9Hz), 3.00(1H,m), 5.00-5.19(2H,m), \\ 5.35(1H,d,J=6.6Hz), 7.25-7.30(1H,m), 7.48-7.50(2H,m), 7.73(1H,d,d,J=1.5and8.1Hz), 8.08-8.14(3H,m), 8.93(1H,s).$

IR(CHCl3):3466,3380,3276,3016,2957,1708,1630,1495,1458,1324,1241,1150/c m.

[α]D=+18.0° (CHCl3,C=1.00,22°).

No.1 a - 1 6 9

CDCl3 300MHz

0.87-1.86(14H,m), 2.15(1H,m), 2.25(2H,t,J=6.9Hz), 2.98(1H,m), 3.89(3H,s), 5.00-6.87-1.86(14H,m), 2.15(1H,m), 2.25(2H,t,J=6.9Hz), 2.98(1H,m), 3.89(3H,s), 5.00-6.9Hz

5.22(2 H,m), 5.27(1 H,d,J = 6.9 Hz), 6.88(1 H,d.d,J = 2.1 and 8.4 Hz), 6.94(1 H,d,J = 2.1 Hz), 6.94(1 H,d,J,J = 2.1 Hz), 6.9

Hz),7.69(1H,d.d,J=1.5and7.8Hz),7.92-8.01(3H,m),8.83(1H,s).

IR(CHCl3):3465,3378,3276,3022,2957,1708,1630,1609,1569,1459,1433,1314,1 281,1229,1151/cm.

[α]D=+19.3° (CHCl3,C=1.01,21°C).

No.1 a - 170

CDC13 300MHz

0.88-2.25(17H,m), 3.04(1H,m), 3.84(3H,s), 3.95(3H,s), 5.06-5.26(3H,m), 6.87-6.93 (2H,m), 7.69(1H,d.d,J=1.6and8.2Hz), 7.93-9.05(3H,m).

IR(CHCl3):3026,2957,1708,1630,1601,1460,1331,1243,1224,1152/cm.

[α]D=+17.2° (CHCl3,C=1.00,22°C).

No.1 a - 171

CDC13 300MHz

0.95-2.00(14H,m),2.16-2.32(3H,m),2.66(3H,s),3.14(1H,m),3.68(3H,s),5.09(1H,d.1-6.0H,s),5.10.5.00(1H,m),2.16.5.0

d,J=6.8Hz),5.10-5.28(2H,m),7.45(1H,d.d.,J=1.8&8.6Hz),7.75-7.84(2H,m).
IR(CHCl3):3374,3018,2946,2868,1725,1585,1513,1436,1340,1278,1153,1112 /

cm.

 $[\alpha]D = -14.7^{\circ} (CHCl3, c=1.07, 25.0^{\circ}).$

No.1 a - 1 7 2

CDCl3 300MHz

0.97 - 2.02(14 H, m), 2.23(1 H, m), 2.28(2 H, t, J = 7.2 Hz), 2.66(3 H, s), 3.14(1 H, m), 5.12 - 2.2 Hz

5.22(2 H, m), 5.41(1 H, d, J = 7.2 Hz), 7.45(1 H, d.d., J = 2.1 & 8.7 Hz), 7.76(1 H, d, J = 8.7 Hz), 7.45(1 H, d.d., J = 2.1 & 8.7 Hz), 7.76(1 H, d, J = 8.7 Hz), 7.76(1 H, d., J = 8.7 Hz), 7.76(1 H, J = 8.7 Hz), 7.76(1 H, J = 8.7

),7.78(1H,d,J=2.1Hz).

IR(CHCl3):3372,3250,3022,2950,2868,1707,1514,1419,1336,1279,1154,1112 / cm.

 $[\alpha]D=-4.1^{\circ} (CHCl3,c=1.08,26.0^{\circ})$ m.p.141-143°C

No.1 a - 173

CDCl3 300MHz

 $1.15 \cdot 2.42(17H,m), 2.91(1H,m), 5.15(1H,d,J=4.2Hz), 5.25 \cdot 5.40(2H,m), 7.85(1H,t,J=7.2Hz), 8.00(1H,t,J=8.1Hz), 8.15 \cdot 8.20(2H,m), 8.67(1H,d,J=8.1Hz), 8.73(1H,d,J=8.1Hz), 8.83(1H,s), 9.43(1H,s).$

IR(KBr):3422,3269,3046,2952,2871,1711,1617,1447,1333,1243,1161,1146/cm.

[α]D=-41.0° (CH30H,C=1.01,23°C).

No.1 a - 174

CDC13+d6-DMSO 300MHz

 $1.00-1.92(14H,m), 2.20(2H,t,J=6.6Hz), 2.35(1H,m), 2.92(1H,m), 5.05-5.22(2H,m), \\ 6.63(1H,d,J=5.4Hz), 7.77-7.92(3H,m), 8.31(1H,d,d,J=1.8and8.7Hz), 8.59(1H,d,J=8.7Hz), 8.73(1H,d,J=8.7Hz), 9.01(1H,s), 9.55(1H,d,J=1.8Hz).$

IR(KBr):3433,3252,2952,2871,1696,1578,1423,1335,1308,1219,1185,1160,110 6/cm.

[α]D=-19.3° (DMSO,C=0.50,23°C).

No.1 a - 175

CDCl3 300MHz

 $0.96-1.87(14H,m), 2.20-2.25(3H,m), 2.95(1H,m), 3.66(3H,s), 4.74(1H,d,J=6.6Hz), \\ 5.10-5.12(2H,m), 6.88(1H,d,J=1.2Hz), 7.37-7.50(3H,m), 7.56(1H,dd,J=8.7,1.5Hz), \\ 7.68-7.77(3H,m), 8.06(1H,s), 9.44(1H,dd,J=1.2Hz).$

IR(CHCl3):3462,3374,3026,3006,2952,2872,1724,1610,1580,1484,1452,1358,1

309,1147.

:

[α]D=+16.4° (CHCl3,c=1.05,26°C). mp.130-132°C.

No.1 a - 176

CDCl3+CD3OD 300MHz

1.00-2.02(14H,m),2.22(1H,m),2.29(2H,t,J=6.9Hz),2.88(1H,m),5.16-5.26(2H,m),6.87(1H,s),7.28-7.57(4H,m),7.69(1H,d,J=8.4Hz),7.75-7.78(2H,m),7.99(1H,s). IR(KBr):3254,2944,1704,1484,1453,1358,1305,1147.

[α]D=+13.0° (CH3OH,c=1.02,24°C), mp.160-161°C

No.1 a - 177

CDC13 300MHz

0.96-1.88(14H,m),1.88-2.26(3H,m),2.94(1H,m),3.67(3H,s),3.87(3H,s),4.67(1H,brs),5.08-5.14(2H,m),6.77(1H,d,J=1.5Hz),6.99-7.02(2H,m),7.53-7.57(1H,m),7.65-7.70(3H,m),8.00(1H,s),9.27(1H,brs).

IR(CHCl3):3426,3376,3006,2952,1724,1610,1495,1438,1357,1308,1282,1249,1 177,1147/cm.

[α]D=+18.1° (CHCl3,C=1.02,22°).

No.1 a - 178

CDCl3+CD3OD 300MHz

0.96-1.91(14H,m), 2.19(1H,m), 2.27(2H,t,J=6.0Hz), 2.85(1H,m), 3.87(3H,s), 5.16-5.23(2H,m), 6.99-7.02(2H,m), 7.41(1H,m), 7.64-7.73(3H,m), 7.92(1H,m).

IR(CHCl3):3366,3261,3004,2954,2873,1705,1611,1496,1458,1438,1304,1286,1 253,1180,1149,1128/cm.

[α]D=+14.6° (CHCl3,C=1.02,22°).

No.1 a - 179

\$

CDCl3+CD3OD 300MHz

 $0.96 \cdot 1.87(14H,m), 2.15 \cdot 2.23(3H,m), 2.93(1H,m), 3.85(3H,s), 5.10 \cdot 5.16(2H,m), 6.9$ $0.6.93(2H,m), 7.50(1H,m), 7.60 \cdot 7.65(3H,m), 7.91(1H,d,J=0.9Hz).$

IR(CHCl3):3369,3270,2950,2873,1719,1612,1498,1456,1440,1359,1306,1269,1 219,1146,1127/cm.

[α]D=+18.1° (CH3OH,C=1.00,22°C).

No.1 a - 1 8 0

CDCl3+CD3OD 300MHz

1.03-1.86(14H,m), 2.08-2.17(3H,m), 2.91(1H,m), 5.06-5.10(2H,m), 6.76(1H,m), 6.86-6.90(2H,m), 7.48(1H,m), 7.61-7.69(3H,m), 7.89(1H,m).

IR(CHCl3):3360,3259,2954,2873,1706,1612,1497,1457,1360,1306,1272,1230,1 176,1148,1126/cm.

 $[\alpha]D=+20.3^{\circ}$ (CH3OH, C=1.00, 22°C).

No.1 a - 181

CDCl3 300MHz

0.97-1.96(14H,m), 2.15(1H,m), 2.29(2H,t,J=6.9Hz), 3.05(1H,m), 3.81(3H,s), 5.08(1H,d,J=6.9Hz), 5.23-5.25(2H,m), 6.62(1H,s), 7.47-7.54(5H,m), 7.59(1H,m), 7.70(1H,m), 7.97(1H,m).

IR(CHCl3):3380,3260,3020,2946,2868,1708,1466,1388,1328,1149/cm. [α]D=+32.9° (CHCl3,c=1.07.22°).

No.1 a - 1 8 2

CDCl3 300MHz

 $0.94 \cdot 1.90(14 H,m), 2.25(2 H,t,J=7.5 Hz), 2.30(1 H,m), 2.98(1 H,m), 3.70(3 H,s), 4.83(1 H,d,J=6.6 Hz), 5.13 \cdot 5.16(2 H,m), 6.95(1 H,d,J=1.5 Hz), 7.11 \cdot 7.23(2 H,m), 7.43(1 H,d,J=8.1 Hz), 7.65(1 H,d,J=8.1 Hz), 7.79 \cdot 7.93(4 H,m), 9.08(1 H,br).$

IR(CHCl3):3458,3372,3020,3002,2946,2868,1719,1598,1452,1422,1321,1300,1 157/cm.

[α]D=-6.6° (CHCl3,c=1.00), mp150-151°C

No.1 a - 183

:

CDCl3 300MHz

 $0.95 \cdot 1.94(14H,m), 2.26(1H,m), 2.28(2H,t,J=7.5Hz), 3.00(1H,m), 5.16 \cdot 5.19(2H,m), \\ 5.32(1H,d,J=7.2Hz), 6.93(1H,d,J=1.2Hz), 7.13(1H,m), 7.22(1H,dd,J=7.8,6.6Hz), \\ 7.42(1H,d,J=7.8Hz), 7.63(1H,d,J=7.8Hz), 7.76(2H,d,J=8.4Hz), 7.90(2H,d,J=8.4Hz), \\ 8.95(1H,br).$

IR(CHCl3):3458,3374,3260,3020,3002,2948,2868,1708,1598,1452,1422,130 1,1156/cm.

[α]D=+17.9° (CHCl3,c=1.01,22°).

No.1 a - 1 8 4

CDCl3 200MHz

 $0.92 \cdot 2.00(14H,m), 2.20(1H,m), 2.34(2H,t,J=6.8Hz), 3.05(1H,m), 5.20 \cdot 5.36(3H,m), \\7.39 \cdot 7.44(2H,m), 7.61 \cdot 7.66(1H,m), 7.80 \cdot 7.84(1H,m), 8.05(2H,d,J=8.6Hz), 8.40(2H,d,J=8.6Hz).$

IR(CHCl3):3384,3271,3019,2958,1709,1615,1599,1551,1453,1405,1344,1326,1 243,1163/cm.

[α]D=+18.5° (CHCl3,C=1.00,21°C).

No.1 a - 185

CDC13 300MHz

 $0.89-2.20(15H,m), 2.26(2H,d.t,J=2.1and7.2Hz), 2.99(1H,m), 5.08(1H,d,J=6.3Hz), \\ 5.09-5.24(2H,m), 6.90(1H,d,J=1.2Hz), 7.32-7.48(4H,m), 7.64-7.72(3H,m), 8.20(1H,d,J=1.2Hz), 9.00(1H,s).$

IR(CHCl3):3464,3375,3275,3022,2956,1707,1605,1490,1449,1356,1322,1219,1 147,1131/cm.

[α]D=+21.6° (CHCl3,C=1.01,23°C).

No.1 a - 186

CDCl3:300MHz

1.36-2.24(14H,m), 2.31(2H,t,J=7.4Hz), 2.49(1H,bs), 3.37(1H,m), 3.67(3H,s), 5.38-5.50(2H,m), 7.40-7.68(9H,m).

IR(CHCl3):3375,1727,1602,1435,1362,1221,1207,1168,1045/cm.

No.1 a - 1 8 7

CDCl3:300MHz

1.10-2.25(14H,m), 2.36(2H,t,J=7.2Hz), 2.47(1H,m), 3.37(1H,m), 5.35-5.54(2H,m), 5.62(1H,d,J=7.2Hz), 7.39-7.70(9H,m).

IR(CHCl3):3674,3496,3376,3234,3012,2952,2880,2650,1725(sh),1709,1602,14 85,1420,1360,1167/cm.

 $[\alpha]D=+32^{\circ} (CHC13,c=1.69).$

No.1 a - 188

CDCl3 200MHz

0.86-1.92(14H,m), 2.22(3H,m), 2.36(3H,s), 2.95(1H,m), 3.67(3H,s), 3.93(3H,s), 4.8 1(1H,d,J=6.2Hz), 5.04-5.20(2H,m), 7.02-7.05(2H,m), 7.31(1H,d,J=8.6Hz), 7.39(1H,d,J=7.8Hz), 7.79-7.89(3H,m).

IR(CHCl3):3385,3286,3029,3019,3015,2954,2877,1718,1617,1598,1567,1507,1 311,1269,1153 /cm.

[α]D= -29.4° (CHCl3,c=1.01,25°C).

No.1 a - 189

[α]D=-7.7° (CHCl3,c=1.00,24°C).

No.1 a - 190

[α]D=-17.3° (CHCl3,c=1.00,24°C).

No.1 a - 1 9 1

CDC13 300MHz

0.95-2.20(14H,m), 2.30(1H,m), 2.36(2H,d,J=6.9Hz), 3.21(1H,m), 4.25(2H,s), 5.07(1H,d,J=7.8Hz), 5.35-5.48(2H,m), 7.25(1H,dd,J=1.8 and 8.1Hz), 7.32-7.35(2H,m), 7.59(1H,d,J=8.1Hz), 7.94(1H,s), 8.14(1H,d,J=2.7Hz), 8.23(1H,d,d,J=2.7and8.7 Hz).

IR(CHCl3):3386,3026,3015,2957,2877,2633,1702,1617,1573,1530,1348,1123 / cm.

[α]D= -6.1° (CHCl3,c=1.01,25°C).

No.1 a - 192

CDC13 300MHz

0.92-2.20(14H,m), 2.13(3H,m), 3.23(1H,m), 3.64(3H,s), 3.94(3H,s), 4.22(2H,s), 4.36(1H,d,J=7.8Hz), 5.37-5.42(2H,m), 7.16-7.42(6H,m), 7.53(1H,d,J=8.4Hz), 7.94(1H,s).

IR(CHCl3):3389,3022,3013,2953,2877,1716,1616,1560,1485,1340,1326,1124 / cm.

[α]D= -15.2° (CHCl3,c=1.01,25°C).

No.1 a - 193

CDC13 300MHz

0.92-2.20(14H,m), 2.25(1H,m), 2.35(2H,t,J=7.2Hz), 3.17(1H,m), 4.22(2H,s), 4.91(1H,d,J=7.5Hz), 5.37-5.42(2H,m), 7.13-7.43(6H,m), 7.60(1H,d,J=8.1Hz), 8.05(1H,s).

IR(CHCl3):3511,3387,3029,3020,3011,2957,2877,2651,1698,1614,1560,1505,1 320,1280,1252,1126 /cm.

[α]D= -0.9° (CHCl3,c=1.00,25°C).

No.1b-1

CDC13 300MHz

0.98-1.56(15H,m), 1.85-1.90(5H,m), 2.23(1H,m), 3.05(1H,m), 3.66(3H,s), 4.77(1H,m), 4.77(

 $d_{J}=6.0Hz$), 5.08-5.28(2H,m), 7.46(3H,m), 7.38-7.54(2H,d,J=7.5Hz), 7.72(2H,d,J=7.5Hz)

8.4Hz), 7.93(2H,d,J=8.4Hz).

IR(CHCl3):3384,3028,2952,2876,1719,1595,1391,1322,1155/cm.

[α]436 +4.0~+6.0(CHCl3,c=1.00,23°C).

mp.96-98℃

No.1b-2

CDC13 300MHz

0.98-1.52(15H,m), 1.85-1.90(5H,m), 2.17(1H,m), 3.00(1H,m), 3.67(3H,s), 4.05(2H,m), 3.67(3H,s), 4.05(2H,m), 3.67(3H,s), 4.05(2H,m), 3.67(3H,s), 4.05(2H,m), 3.67(3H,s), 4.05(2H,m), 3.00(1H,m), 3.00(

s),4.83(1H,d,J=6.0Hz),5.05-5.23(2H,m),7.14(2H,d,J=7.2Hz),7.17-7.32(5H,m),7.

78(2H,d,J=8.4Hz).

IR(CHCl3):3384,3026,2952,2874,1719,1595,1453,1407,1320,1180/cm.

[α]D=+2.5° (CHCl3,c=1.02,24°C).

No.1b-3

CDCl3 300MHz

 $0.96 - 2.05(20 \, \mathrm{H,m}), 2.07(1 \, \mathrm{H,m}), 3.07(1 \, \mathrm{H,m}), 4.04(2 \, \mathrm{H,s}), 5.21 - 5.35(2 \, \mathrm{H,m}), 5.55(1 \, \mathrm{H,m}), 6.06(1 \, \mathrm{H,$

 $d_{J}=6.9Hz$), $7.14(2H, d_{J}=6.6Hz)$, $7.20 \cdot 7.32(5H, m)$, $7.78(2H, d_{J}=8.1H)$.

IR(CHCl3):3250,3022,2950,1699,1596,1495,1453,1405,1318,1153/cm.

[α]D= +17.1° (CHCl3,c=1.01,25°C).

mp.129-131℃.

No.1b-4

CDC13 200MHz

0.90-2.10(15H,m), 1.19(3H,s), 1.20(3H,s), 3.11(1H,m), 5.24-5.32(2H,m), 5.70(1H,d,J=6.6Hz), 7.38-7.68(4H,m), 7.96-8.04(2H,m), 8.53(1H,d,J=1.4Hz).

IR(CHCl3):3384,3246,2958,1701,1632,1595,1468,1445,1322,1216,1202,1190,1 155,1122/cm.

[α]D=+10.8° (CHCl3,C=0.51,23°C).

No.1b-5

 $1.02 \cdot 2.10(15 \text{H,m}), 1.16(6 \text{H,s}), 3.02(1 \text{H,m}), 4.09(3 \text{H,s}), 5.23 \cdot 5.28(2 \text{H,m}), 5.76(1 \text{H,d}), 2 = 7.2 \text{Hz}, 7.36 \cdot 7.63(4 \text{H,m}), 7.97(1 \text{H,d}, J = 7.8 \text{Hz}), 8.16(1 \text{H,s}).$

IR(CHCl3):3369,2959,1702,1635,1585,1468,1454,1441,1415,1318,1222,1189,1 170,1154/cm.

[α]D=+9.9° (CHCl3,C=1.00,23°).

No.1c-1

CDCl3 300MHz

1.10-2.02(14H,m), 2.27(2H,t,J=7.5Hz), 2.50(1H,m), 2.89(3H,s), 3.31(1H,m), 3.64(3H,s), 5.16-5.30(2H,m), 7.34-7.42(3H,m), 7.50-7.59(2H,m), 7.62-7.68(2H,m), 7.76-7.82(2H,m).

IR(CHCl3):3020,2946,2868,2212,1727,1596,1495,1437,1339,1156,1135,1084 / cm.

[α]D=-16.1° (CHCl3,c=1.05,25.0°C).

m.p.100-102℃

No.1c-2

CDC13 300MHz

1.10-2.05(14H,m), 2.23(2H,t,J=7.5Hz), 2.53(1H,m), 2.91(3H,s), 3.35(1H,m), 3.62(3H,s), 5.02-5.30(2H,m), 7.50-7.60(3H,m), 7.90-8.08(6H,m).

IR(CHCl3):3016,2946,2868,1728,1437,1398,1340,1160,1086 /cm.

[α]D=-32.5° (CHCl3,c=1.00,25.0°C).

No.1c-3

CD3OD 300MHz

1.15-2.05(14H,m), 2.13(2H,t,J=7.2Hz), 2.47(1H,m), 2.91(3H,s), 3.27(1H,m), 4.90-5.30(2H,m), 7.37-7.44(3H,m), 7.53-7.61(2H,m), 7.71-7.77(2H,m), 7.81-7.87(2H,m), 0.

IR(KBr):3412,2999,2951,2871,2217,1560,1399,1243,1159,1137,1103,1084. [α]D=-8.6° (CH3OH,c=1.03,23°C).

No.1d-1

CDC13 300MHz

1.00-2.16(15H,m), 2.36(2H,t,J=7.2Hz), 3.17(1H,m), 3.33(3H,s), 5.23-5.43(3H,m), 7.51-7.59(3H,m), 7.91-8.10(6H,m), 9.02(1H,brs).

IR(CHCl3):3382,3268,3028,2954,2874,1715,1442,1400,1337,1162,1120,1089/c m.

[α]D=+40.0° (CHCl3,C=0.53,22°).

No.1d-2

CDC13 300MHz

1.03-2.30(17H,m), 3.03(1H,m), 4.03(2H,s), 5.26(2H,m), 5.84(1H,br), 5.25-5.29(1H,d,J=6.6Hz), 6.03(1H,br), 7.14(2H,d,J=8.1Hz), 7.26-7.31(5H,m), 7.80(2H,d,J=8.1Hz).

IR(CHCl3):3376,3002,2946,1669,1595,1492,1454,1406,1318,1154/cm. [α]D=+4.3° (CHCl3,c=1.00,23°C).

No. 1d - 3

CDC13 300MHz

0.96-2.17(17H,m),2.33(2H,t,J=6.9Hz),3.01(1H,m),4.04(2H,s),5.10(1H,d,J=6.6Hz),5.21-5.26(2H,m),7.14(2H,d,J=8.7Hz),7.16-7.32(5H,m),7.78(2H,d,J=8.4Hz). IR(CHCl3):3260,3020,2946,1711,1596,1492,1457,1407,1318,1154/cm. [α]D=+9.3° (CHCl3,c=1.09,25 $^{\circ}$).

No.1d-4

CDCl3 300MHz

0.95-2.14(15H,m), 2.34(2H,t,J=7.2Hz), 3.09(1H,m), 3.30(3H,s), 4.04(2H,s), 5.19(1H,d,J=7.2Hz), 5.22-5.39(2H,m), 7.10-7.35(7H,m), 7.81(2H,d,J=8.1Hz), 9.10(1H,b)rs).

IR(CHCl3):3382,3260,3028,2952,2874,2670,1713,1595,1492,1450,1405,1338,1 160,1120,1092/cm.

 $[\alpha]D=+22.2^{\circ}$ (CHCl3,C=1.07,22°).

No.1d-5

CDCl3 300MHz

1.00-2.10(14H,m),2.30-2.39(3H,m),3.15(1H,m),3.35(3H,s),5.18-5.40(3H,m),7.4 1(1H,d.t.,J=0.9and7.8Hz),7.50-7.69(3H,m),7.88-8.15(2H,m),8.60(1H,d,J=1.5Hz),9.06(1H,s).

IR(CHCl3):3382,3268,3028,2954,2874,1714,1442,1402,1338,1188,1155,1 121,1072/cm.

 $[\alpha]D=+15.3^{\circ}$ (CHCl3,C=1.00,22°).

No. le-1

CDCl3 300MHz

1.19-2.45(19H,m), 2.58(1H,m), 5.63(1H,d,J=3.0Hz), 7.42-7.65(4H,m), 7.94-8.03(2H,m), 8.49-8.50(1H,m).

IR(CHCl3):3293,3024,1710,1595,1584,1467,1445,1410,1324,1222,1213,1206,1 190,1160/cm.

 $[\alpha]D=-41.1^{\circ} (CHC13, C=1.01, 23^{\circ}).$

No.1e - 2

CDC13 300MHz

1.10-2.25(19H,m), 2.94(1H,m), 4.12(3H,s), 5.53(1H,d,J=7.2Hz), 7.39(1H,m), 7.50-7.62(3H,m), 7.96(1H,d,J=7.5Hz), 8.13(1H,s).

IR(CHCl3):3367,3025,2955,1711,1634,1600,1584,1468,1454,1440,1415,1342,1 317,1222,1189,1157/cm.

 $[\alpha]D=+1.2^{\circ} (CHCl3, C=1.00, 25^{\circ}C).$

No.1f-1

CDC13 300MHz

1.08-2.47(19H,m), 2.56(1H,m), 3.52(2H,t,J=6.6Hz), 5.59(1H,d,J=2.4Hz), 7.40-7.66(4H,m), 7.95-8.04(2H,m), 8.50(1H,d,J=1.8Hz).

IR(CHCl3):3624,3383,3295,2950,2877,1705,1595,1584,1468,1445,1405,1347,1 337,1324,1224,1190,1160/cm.

[α]D=-54.1° (CHCl3,C=1.01,23°C).

No.1f- 2

CDCl3 300MHz

1.08-2.24(19H,m), 2.94(1H,m), 3.53(2H,t,J=6.3Hz), 4.13(3H,s), 5.47(1H,d,J=6.6Hz), 7.36-7.63(4H,m), 7.96(1H,d,J=6.3Hz), 8.14(1H,s).

IR(CHCl3):3625,3368,3025,3013,2949,2877,1710,1634,1600,1584,1468,1454,1 440,1415,1342,1317,1232,1220,1189,1157/cm.

 $[\alpha]D=-5.6^{\circ}$ (CHCl3,C=1.00,25°C).

No.1g-1

CDC13 200MHz

1.17-2.34(15H,m), 3.22(1H,m), 5.10-5.16(2H,m), 5.45(1H,d,J=7.0Hz), 7.35-7.66(4H,m), 7.95-8.01(2H,m), 8.51(1H,d,J=2.0Hz).

IR(CHCl3):3383,3275,2959,1707,1595,1584,1468,1445,1425,1319,1269,1248,1 190,1149,1123/cm.

 $[\alpha]D=+64.3^{\circ}$ (CHCl3,C=1.01,23°C).

No.1g-2

CDCl3 300MHz

1.10-2.15(13H,m), 2.36(2H,t,J=7.2Hz), 3.21(1H,m), 4.09(3H,s), 5.10-5.22(2H,m),

5.43(1H,d,J=7.8Hz),7.36-7.62(4H,m),7.96(1H,d,J=7.8Hz),8.12(1H,s).

IR(CHCl3):3366,2959,1708,1635,1600,1585,1467,1454,1440,1415,1345,1318,1 233,1189,1152/cm.

 $[\alpha]D=+103.1^{\circ}$ (CHCl3,C=1.01,23°C).

No.1h-1

CDC13 300MHz

0.90-1.60(17H,m), 1.83(1H,m), 2.11(1H,m), 2.22(2H,t,J=7.2Hz), 3.07(1H,m), 5.11(1H,d,J=7.2Hz), 7.38-7.47(1H,m), 7.50-7.60(1H,m), 7.60-7.72(2H,m), 7.88-8.12(2H,m), 8.54(1H,d,J=0.9Hz).

IR(CHCl3):3382,3274,2926,1707,1464,1442,1318,1266,1188,1153,1121,1105,1071,1019/cm.

 $[\alpha]D=-2.8^{\circ}$ (CHCl3,C=1.01,23°C).

No.1i-1

 $[\alpha]365 +50.9^{\circ} (CHCl3,c=1.01,24^{\circ}).$

No.1i-2

CDC13 300MHz

0.98-1.70(11H,m), 1.80-2.00(5H,m), 2.19(1H,m), 3.03(1H,m), 3.64(2H,t,J=6.6Hz), 4.05(2H,s), 4.69(1H,d,J=6.6Hz), 5.15(1H,m), 5.25(1H,m), 7.16(2H,d,J=7.2Hz), 7.27-7.32(5H,m), 7.77(2H,d,J=8.4Hz).

IR(CHCl3):3376,3004,2946,2316,1596,1492,1453,1407,1318,1154/cm.

 $[\alpha]D= +3.5^{\circ} (CHCl3,c=1.00,22^{\circ}).$

mp.80.5-82.0℃

```
No.1j-1
          [\alpha]436=-7.5\pm0.5^{\circ} (CHCl3,c=1.05,22°C).
           No.1j-2
          [\alpha]D=-9.7\pm0.5^{\circ}(CHCl3,c=1.06,22^{\circ}).
         No.1j-3
         [\alpha]D==+15.0±0.5°(CH3OH,c=1.06,24.5°C).
         mp.101-108℃
       No.1j-4
      [\alpha]D=-28.0\pm0.6^{\circ}(CHCl3,c=1.06,24^{\circ}C).
      mp.159-161℃
     1j-5
    [\alpha]D==-12.5 ± 0.5* (CHCl3,c=1.04,23°C).
    mp.99-101℃
    No.1j-6
    CDCl3 300MHz
  0.90 - 2.03(14 \text{H}, \text{m}), 2.20(1 \text{H}, \text{m}), 2.30(2 \text{H}, \text{t}, \text{J} = 7.3 \text{Hz}), 3.00(1 \text{H}, \text{m}) \\ 3.68(3 \text{H}, \text{s}), 4.76(1 \text{H}, \text{m}), 2.20(1 \text{H}, \text{m}), 2.30(2 \text{H}, \text{t}, \text{J} = 7.3 \text{Hz}), 3.00(1 \text{H}, \text{m}) \\ 3.68(3 \text{H}, \text{s}), 4.76(1 \text{H}, \text{m}), 2.20(1 \text{H}, \text{m}), 2.30(2 \text{H}, \text{t}, \text{J} = 7.3 \text{Hz}), 3.00(1 \text{H}, \text{m}) \\ 3.68(3 \text{H}, \text{s}), 4.76(1 \text{H}, \text{m}), 2.20(1 \text{H}, \text{m}), 2.30(2 \text{H}, \text{t}, \text{J} = 7.3 \text{Hz}), 3.00(1 \text{H}, \text{m}) \\ 3.68(3 \text{H}, \text{s}), 4.76(1 \text{H}, \text{m}), 2.20(1 \text{H}, \text{m}), 2.30(2 \text{H}, \text{t}, \text{J} = 7.3 \text{Hz}), 3.00(1 \text{H}, \text{m}), 3.68(3 \text{H}, \text{s}), 4.76(1 \text{H}, \text{m}), 3.68(1 \text{H}, \text{s}), 4.76(1 \text{H}, \text{s}), 4.
  H,d,J=6.8Hz), 5.13-5.35(2H,m), 7.01-7.08(4H,m), 7.19-7.26(1H,m), 7.37-7.46(2H,m)
  m),7.80-7.84(2H,m).
 IR(CHCl3):3382,3280,3080,3016,2952,2900,1727,1582,1486,1432,1322,1150/c
  m.
[\alpha]D= -31.0° (CHCl3,c=1.05,26°C).
```

No.1j-7

CDC13 300MHz

 $0.91 \cdot 2.09(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.5Hz), 3.01(1H,m), 5.17(1H,d,J=6.8Hz), 5.21 \cdot 5.34(2H,m), 7.01 \cdot 7.08(4H,m), 7.15 \cdot 7.27(1H,m), 7.37 \cdot 7.43(2H,m), 7.80 \cdot 7.85(2H,m).$

IR(CHCl3):3474,3386,3270,3024,2958,2900,2675,1711,1584,1488,1420,1323,1 298,1150/cm.

[α]D= -13.4° (CHCl3,c=1.01,26°C).

No.1j-8

;

CDC13 300MHz

0.95-2.14(13H,m), 2.30(2H,t,J=7.5Hz), 2.36(1H,m), 2.84(1H,m), 2.91(1J=4.8Hz), 3.66(3H,s), 5.33-5.52(2H,m), 6.82-6.87(1H,m), 6.93-7.00(2H,m), 7.09-7.15(4H,m),7.28-7.36(2H,m), 7.54-7.59(1H,m).

IR(CHCl3):3350,3010,2950,2880,1728,1603,1582,1489 1461,1438,1360,1160/c m.

 $[\alpha]D = +75.1^{\circ} (CHCl3,c=1.13,26^{\circ}).$

No.1j-9

CDC13 300MHz

0.95-2.03(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.5Hz), 3.06(1H,m), 3.68(3H,s), 4.98(1H,d,J=7.4Hz), 5.14-5.34(2H,m), 7.46-7.54(2H,m), 7.60-7.68(1H,m), 7.75-7.80(2H,m), 7.88-7.92(2H,m), 7.99-8.03(2H,m).

IR(CHCl3):3384,3280,3020,2960,2888,1727,1662,1600,1316,1273,1163/cm. [α]D= -41.0° (CHCl3,c=1.17,26 $^{\circ}$).

No.1j-10

CDCl3+CD3OD 300MHz

 $0.94 - 2.08(14H,m), 2.21(1H,m), 2.34(2H,t,J=6.2Hz), 3.04(1H,m), 5.21 - 5.35(2H,m), \\ 5.40(1H,m), 7.49 - 7.58(2H,m), 7.64 - 7.68(1H,m), 7.79 - 8.06(6H,m).$

IR(CHCl3):3475,3370,3250,3018,2956,2976,2650,1709,1662,1595,1445,1420, 1395,1317,1274,1163/cm.

 $[\alpha]D = -17.1^{\circ} (CHCl3, c=1.13, 25^{\circ}C).$

No.1j-11

CDCl3 300MH₂

1.06-1.98(14H,m),2.24-2.29(3H,m),3.13(1H,m),3.66(3H,s),5.10-5.24(2H,m),5.4 0(1H,d,J=6.3Hz),7.39-7.49(3H,m),7.59-7.64(3H,m),7.80-7.83(2H,m),8.08-8.11(1H,m).

IR(CHCl3):3302,3012,2948,2905,1727,1661,1593,1435,1332,1312,1287,1271,1 165/cm.

 $[\alpha]D = +15.6^{\circ} (CHCl3, c=1.03, 26^{\circ}).$

No.1j-12

CDCl3 300MHz

1.08-1.98(14H,m),2.23(1H,m),2.33(2H,t,J=7.5Hz),3.16(1H,m),5.18-5.26(2H,m), 5.39-5.45(1H,m),7.39-7.49(3H,m),7.60-7.64(3H,m),7.80-7.83(2H,m),8.09-8.12(1H,m).

IR(CHCl3):3325,3022,2956,2872,2680,1708,1662,1603,1598,1425,1340,1316,1 288,1271,1165/cm.

 $[\alpha]D= +9.7^{\circ} (CHC13,c=0.52,25^{\circ}C).$

No.1j-13

CDC13 300MHz

0.95-2.00(14H,m), 2.20(1H,m), 2.27(2H,t,J=6.3Hz), 3.03(1H,m), 3.67(3H,s), 4.99(1H,d,J=6.6Hz), 5.12-5.31(2H,m), 7.47-7.55(2H,m), 7.60-7.69(2H,m), 7.76-7.81(2H,m), 7.96-8.05(1H,m), 8.08-8.14(1H,m), 8.27-8.28(1H,m).

IR(CHCl3):3674,3538,3376,3276,3012,2948,2860,1726,1662,1595,1440,1335,1 317,1297,1274,1166,1150/cm.

 $[\alpha]D=+10.2^{\circ}$ (CHCl3,c=1.00,25°C).

No.1j-14

CDC13 300MHz

 $0.93 \cdot 2.08(14H,m), 2.21(1H,m), 2.32(2H,t,J=6.3Hz), 3.00(1H,m), 5.20 \cdot 5.36(2H,m), \\ 5.38(1H,d,J=6.2Hz), 7.50 \cdot 7.55(2H,m), 7.63 \cdot 7.71(2H,m), 7.77 \cdot 7.81(2H,m), 7.99 \cdot 8. \\ 04(1H,m), 8.10 \cdot 8.18(1H,m), 8.32 \cdot 8.36(1H,m).$

IR(CHCl3):3674,3480,3374,3258,3012,2950,2875,2650,1709,1662,1598,1418,1 335,1317,1274,1143/cm.

[α]D=+61.0° (CHCl3,c=1.19,25°C).

No.1j-15

CDC13 300MHz

0.90-2.00(14H,m), 2.19(1H,m), 2.30(2H,t,J=7.3Hz), 3.01(1H,m), 3.67(3H,s), 4.82(1H,d,J=6.6Hz), 5.14-5.34(2H,m), 7.36-7.39(3H,m), 7.53-7.57(2H,m), 7.62-7.66(2H,m), 7.83-7.88(2H,m).

IR(CHCl3):3376,3276,3010,2948,2868,2212,1727,1597,1500,1437,1325,1161/c m.

[α]D=-7.2° (CHCl3,c=1.00,26°C).

No.1j - 16

CDCl3 300MHz

0.93-2.03(14H,m), 2.15(1H,m), 2.36(2H,t,J=7.5Hz), 3.05(1H,m), 5.20-5.40(3H,m), 7.36-7.39(3H,m), 7.55-7.66(4H,m), 7.84-7.88(2H,m).

IR(CHCl3):3470,3376,3260,3012,2950,2868,2675,2212,1708,1596,1503,1416,1 396,1322,1160.

 $[\alpha]D=.22.4^{\circ}$ (CHCl3,c=1.00,26°C).

No.1j-17

CDC13 300MHz

1.00-1.60(9H,m), 1.79-1.89(5H,m), 2.17(1H,bs), 2.23(2H,t,J=7.2Hz), 3.03(1H,m),

5.10-5.23(2H,m), 5.49(1H,d,J=6.6Hz), 7.40(1H,t,J=7.4Hz), 7.53(1H,t,J=7.2Hz), 7.53(1H,t,J=7.2Hz)

60-7.68(2H,m), 7.98-8.03(2H,m), 8.55(1H,d,J=1.5Hz).

IR(CHCl3):3516,3384,3270,2666,1708,1632,1595,1584,1467,1445,1425,1374,1 345,1321,1269,1248,1218/cm.

 $[\alpha]D = -7.8$ ° (CHCl3,c=1.01,22°).

No.1j - 18

CDCl3 300MHz

0.90-2.03(14H,m),2.19(1H,m),2.30(2H,t,J=7.5Hz),3.00(1H,m),3.67(3H,s),4.80(1H,d,J=6.4Hz),5.14-5.35(2H,m),6.99-7.04(2H,m),7.16-7.22(2H,m),7.34-7.49(4H,m),7.57-7.61(1H,m).

IR(CHCl3):3376,3276,3012,2948,2875,1727,1583,1488,1471,1432,1330,1311,1 150/cm.

 $[\alpha]D=+54.0^{\circ} (CHCl3,c=0.99,25^{\circ}).$

No.1j - 19

CDCl3 300MHz

0.91-2.09(14H,m), 2.15(1H,m), 2.34(2H,t,J=7.5Hz), 3.01(1H,m), 5.16(1H,d,J=6.6Hz), 5.24-5.40(2H,m), 7.01-7.08(2H,m), 7.15-7.25(2H,m), 7.35-7.53(4H,m), 7.59-7.65(1H,m).

IR(CHCl3):3470,3376,3260,3012,2950,2875,2640,1708,1583,1488,1471,1430,1 335,1305,1149/cm.

 $[\alpha]D = -21.0^{\circ} (CHCl3, c=1.30, 25^{\circ}).$

No.1j - 20

CDC13 300MHz

1.17(1H,m), 1.26-1.34(2H,m), 1.54-2.24(11H,m), 2.31(2H,t,J=7.4Hz), 2.48(1H,bs),

3.37(1H,m),3.67(3H,s),5.35-5.50(2H,m),7.39-7.68(9H,m). IR(CHCl3):3377,1727,1601,1435,1362,1168/cm.

No.1j - 21

•

CDC13 300MHz

1,10-2.25(14H,m),2.36(2H,t,J=7.2Hz),2.47(1H,m),2.89(1H,m),5.35-5.53(2H,m),5.63(1H,d,J=7.2Hz),7.40-7.71(9H,m).

IR(CHCl3):3674,3496,3374,3234,3010,2952,2870,2640,1730(sh),1710,1605,14 85,1425,1360,1167/cm.

[α]D=-43.0° (CHCl3,c=1.01,25°C).

No.1j - 2 2

CDC13 300MHz

0.98-1.95(14H,m), 2.25-2,31(3H,m), 2.95(1H,m), 5.19-5.30(2H,m), 5.33(1H,d,J=3.8)

9Hz),6.58(1H,d,J=7.5Hz),6.80(1H,t,J=7.5Hz),6.99-7.05(1H,m),7.44-7.53(6H,m),

7.60-7.73(9H,m), 7.94-7.73(3H,m), 8.23-8.26(2H,m), 10.66(1H,s).

IR(CHCl3):3475,3372,3260,3008,2952,2868,2722,1725,1710(sh),1663,1590,1571,1525,1448,1437,1345,1314,1161,1112/cm.

[α]D=+12.9° (CHCl3,c=0.12,23°C).

No.1j - 23

CDC13 300MHz

 $0.94 \sim 1.94(14H,m), 2.23 - 2.30(3H,m), 2.98(1H,m), 3.68(3H,s), 5.09(1H,d,J=6.2Hz), \\ 5.15 - 5.28(2H,m), 7.14 - 7.22(1H,m), 7.34 - 7.42(2H,m), 7.68 - 7.73(2H,m), 7.89 - 8.03(4H,m), 8.51(1H,s).$

IR(CHCl3):3372,3275,1724,1673,1599,1438,1320,1161/cm.

 $[\alpha]D= +17.0$ ° (CHCl3,c=1.38,25°C).

No.1j - 24

CDCl3+CD3OD 300MHz

0.96-2.05(14H,m), 2.25-2.34(3H,m), 2.92(1H,m), 5.16-5.34(2H,m), 7.14-7.22(1H,m), 7.29-7.42(2H,m), 7.70(2H,d,J=7.6Hz), 7.92-8.05(4H,m).

IR(CHCl3):3616,3426,3375,3010,2950,2828,2645,1708,1672,1599,1439,1323,1 161/cm.

 $[\alpha]D=+21.0^{\circ} (CH3OH,c=1.00,22^{\circ}).$

No.1j-25

CDC13 300MHz

 $1.03(1H,m), 1.18-2.01(13H,m), 2.20(1H,bs), 2.27(2H,t,J=7.4Hz), 3.08(1H,m), 3.66\\ (3H,s), 5.11(1H,d,J=6.6Hz), 5.14-5.34(2H,m), 7.54-7.62(3H,m), 8.04-8.32(6H,m).\\ IR(CHCl3): 3384, 3278, 1726, 1605, 1484, 1448, 1331, 1161/cm.$

No.1j - 2 6

CDCl3+CD3OD 300MHz

1,03-2.10(14H,m),2.22(1H,m).2.31(2H,t,J=7.5Hz),2.98(1H,m),5.23-5.38(2H,m),7.55-7.66(3H,m),8.05-8.08(2H,m),8.14-8.18(2H,m),8.28-8.31(2H,m).

IR(Nujol):3260,2720,2660,1711,1545,1460,1317,1163/cm.

[α]D=+15.8° (CH30H,c=1.01,22°).

No.1j-27

 $[\alpha]D = +16.7^{\circ} (CHCl3, c=1.00, 23^{\circ}).$

No.1j - 2.8

CDC13 300MHz

 $1.01(1H,m), 1.14 \cdot 1.29(2H,m), 1.46 \cdot 2.19(11H,m), 2.33(2H,t,J=7.2Hz), 2.41(1H,bs), \\ 3.18 \cdot 3.21(5H,m), 3.68(3H,s), 3.73 \cdot 3.76(4H,m), 4.37(1H,d,J=7.2Hz), 5.35 \cdot 5.45(2H,m), \\ 3.18 \cdot 3.21(5H,m), 3.68(3H,s), 3.73 \cdot 3.76(4H,m), 4.37(1H,d,J=7.2Hz), 5.35 \cdot 5.45(2H,m), \\ 3.18 \cdot 3.21(5H,m), 3.68(3H,s), 3.73 \cdot 3.76(4H,m), 4.37(1H,d,J=7.2Hz), \\ 5.35 \cdot 5.45(2H,m), 3.68(3H,s), 3.73 \cdot 3.76(4H,m), 4.37(1H,d,J=7.2Hz), \\ 5.35 \cdot 5.45(2H,m), 3.68(3H,s), 3.73 \cdot 3.76(4H,m), 4.37(1H,d,J=7.2Hz), \\ 5.35 \cdot 5.45(2H,m), 3.68(3H,s), 3.73 \cdot 3.76(4H,m), 4.37(1H,d,J=7.2Hz), \\ 5.35 \cdot 5.45(2H,m), 3.68(3H,s), 3.73 \cdot 3.76(4H,m), 4.37(1H,d,J=7.2Hz), \\ 5.35 \cdot 5.45(2H,m), 3.68(3H,s), 3.73 \cdot 3.76(4H,m), 4.37(1H,d,J=7.2Hz), \\ 5.35 \cdot 5.45(2H,m), 3.68(2H,m), 4.37(2H,m), 4.37($

m).

IR(CHCl3):3392,1727,1435,1335,1148/cm.

 $[\alpha]D = +10.7$ ° (CHCl3,c=1.39,26°C).

No.1j - 29

CDCl3 300MHz

1.00(1H,m), 1.20-1.29(2H,m), 1,48-2.25(12H,m), 2.37(2H,t,J=7.2Hz), 3.17-3.22(5H,m), 3.74-3.79(4H,m), 4.79(1H,d,J=7.8Hz), 5.34-5.54(2H,m).

IR(CHCl3):3470,3390,3270,2675,1709,1455,1420,1315,1147/cm.

 $[\alpha]D= +16.8$ ° (CHCl3,c=1.42,26°C).

No.1k-1

 $[\alpha]D = -25.4^{\circ} (CHCl3, c=1.08, 23^{\circ}).$

No.1k-2

CDC13 200MHz

1.07-2.28(14H,m), 2.32(2H,t,J=7.4Hz), 2.63(1H,m), 3.63(3H,s), 3.93(1H,m), 5.30-2.28(14H,m), 2.32(2H,t,J=7.4Hz), 2.63(1H,m), 3.63(3H,s), 3.93(1H,m), 3.63(2H,s), 3.93(1H,m), 3.63(2H,s), 3.93(2H,s), 3.93(2H,s),

5.52(2H,m),6.35(1H,d,J=7.0Hz),7.48-7.60(3H,m),7.88-8.02(6H,m).

IR(CHCl3):3438,3002,2946,2868,1727,1652,1514,1485,1363,1310,1245,1154 / cm.

[α]D==-80.4° (CHCl3,c=1.01,24.0°).

No.1k-3

CDC13 200MHz

1.10-2.26(14H,m), 2.37(2H,t,J=7.2Hz), 2.60(1H,m), 3.93(1H,m), 5.30-5.50(2H,m),

6.33(1H,d,J=7.5Hz),7.48-7.58(3H,m),7.88-7.99(6H,m).

IR(CHCl3):3446,3004,2952,2874,1709,1652,1515,1485,1305,1153 /cm.

[α]D==-96.4° (CHCl3,c=1.05,23.0°C).

No.1k-4

CDC13 300MHz

1.05-2.17(14H,m),2.38(2H,t,J=7.2Hz),2.52(1H,m),3.81(1H,m),5.33-5.50(2H,m),6.08(1H,d,J=7.6Hz),7.39-7.53(3H,m),7.57-7.62(6H,m).

IR(CHCl3):3420,3250,3008,2948,2870,2660,2208,1735(sh),1705,1640,1500/cm

 $[\alpha]D=-21.9\pm0.6^{\circ}$ (CHCl3,c=1.02,22°).

No.1k-5

CDC13 300MHz

1.05-2.14(14H,m),2.38(2H,t,J=7.2Hz),2.51(1H,m),3.81(1H,m),5.34-5.46(2H,m),6.07(1H,d,J=7.6Hz),7.33-7.56(5H,m).

IR(CHCl3):3422,3250,3010,2950,2876,2664,2558,2210,1735(sh),1705,1645,15 02,1441,1410,1307,1276/cm.

[α]D=-63.6±1.9° (CHCl3,c=0.56,22°C).

No.1k-6

CDC13 300MHz

1.04-2.24(14H,m),2.36(2H,t,J=7.5Hz),2.58(1H,m),3.88(1H,m),5.30-5.43(2H,m),6.21(1H,d,J=7.2Hz),7.41-7.49(3H,m),7.73-7.77(2H,m).

IR(CHCl3):3447,3011,2955,1708,1653,1603,1578,1515,1486,1457,1312,1211,1 164/cm.

[α]D=-60.3° (CHCl3,C=1.00,23°C).

No.1k-7

CDC13 300MHz

 $1.04-2.22(14H,m), 2.36(2H,t,J=7.2Hz), 2.57(1H,m), 3.87(1H,m), 5.30-5.44(2H,m), \\ 6.17(1H,d,J=8.7Hz), 6.99-7.40(7H,m), 7.73(2H,d,J=7.5Hz).$

IR(CHCl3):3449,3013,2955,1739,1708,1651,1609,1588,1522,1487,1243,1227,1 169/cm.

[α]D=-60.2° (CHCl3,C=0.92,23°C).

No.1k-8

CDCl3 300MHz

1.04 - 2.25(14 H,m), 2.34(2 H,t,J = 7.5 Hz), 2.56(1 H,m), 3.87(1 H,m), 5.30 - 5.44(2 H,m), 3.87(1 H,m),

6.19(1H,d,J=7.5Hz),6.83-6.94(6H,m),7.69(2H,d,J=8.7Hz).

IR(CHCl3):3599,3455,3012,2955,1711,1644,1604,1577,1524,1507,1492,1290,1 236,1197,1170/cm.

 $[\alpha]D=.47.7^{\circ}$ (CHCl3,C=1.01,22°).

No.1k-9

CDC13 300MHz

1.04-2.20(14H,m),2.31(3H,s),2.36(2H,t,J=7.2Hz),2.56(1H,m),3.86(1H,m),5.30

5.43(2H,m), 6.16(1H,d,J=7.2Hz), 7.00-7.11(6H,m), 7.74(2H,d,J=8.7Hz).

IR(CHCl3):3450,3010,2955,1750,1709,1651,1609,1596,1523,1489,1370,1247,1 227,1183/cm.

[α]D=-54.7° (CHCl3,C=1.01,22°C).

No.1k-10

CDCl3 300MHz

1.04-2.22(14H,m),2.35(2H,t,J=7.2Hz),2.56(1H,m),3.82(3H,s),3.86(1H,m),5.30-

5.43(2H,m), 6.17(1H,d,J=6.9Hz), 6.89-7.01(6H,m), 7.70(2H,d,J=8.7Hz).

IR(CHCl3):3023,2955,1742,1708,1649,1613,1602,1577,1522,1507,1490,1227,1 210,1170/cm.

[α]D=-58.1° (CHCl3,C=1.01,22°C).

No.1m-1

CDC13 300MHz

1.06-2.25(14H,m),2.32(2H,t,J=7.4Hz),2.61(1H,m),3.63(3H,s),3.91(1H,m),5.33-

H,m).

IR(CHCl3):3438,3008,2946,2875,2212,1732,1650,1605,1519,1496/cm.

 $[\alpha]D = +76^{\circ} (CHCl3,c=1.39,24^{\circ}C)$

No.1m-2

CDC13 300MHz

1.05 - 2.20(14 H,m), 2.36(2 H,t,J = 6.2 Hz), 2.59(1 H,m), 3.89(1 H,m), 5.29 - 5.48(2 H,m), 3.89(1 H,m),

6.26(1H,d,J=7.0Hz),7.26-7.38(3H,m),7.52-7.60(4H,m),7.73-7.77(2H,m)

IR(CHCl3):3444,3012,2952,2874,2664,2214,1718(sh),1708,1649,1605,1520,14 98/cm.

 $[\alpha]D = +81.4^{\circ} (CHCl3, c=1.01, 23^{\circ})$

No.1m-3

CDC13 300MHz

1.06-2.23(14H,m),2.32(2H,t,J=7.0Hz),2.62(1H,m),3.63(3H,s),3.93(1H,m),5.30-5.50(2H,m),6.28(1H,d,J=7.0Hz),7.38-7.51(3H,m),7.58-7.67(4H,m),7.83-7.88(2H,m),

IR(CHCl3):3438,3008,2948,2875,1783(w),1727,1650,1608,1580(w),1523,1501, 1482/cm.

 $[\alpha]D= +59^{\circ} (CHCl3,c=1.49,25^{\circ})$

No.1m-4

CDC13 300MHz

1.08-2.25(14H,m), 2.36(2H,t,J=7.4Hz), 2.59(1H,m), 3.91(1H,m), 5.28-5.48(3H,m), 6.86(1H,t), 7.47(1H,t), 7.47(1H,t

6.29(1H,d,J=7.4Hz),7.38-7.50(3H,m),7.61-7.67(4H,m),7.81-7.86(2H,m).

IR(CHCl3):3436,3010,2948,2868,1727,1715(sh),1649,,1615(w),1524,1502,1482, 1372/cm.

 $[\alpha]D = +72^{\circ} (CHCl3,c=0.98,25^{\circ})$

No.1m-5

CDC13 300MHz

1.09-2.20(14H,m),2.32(2H,t,J=7.2Hz),2.63(1H,m),3.63(3H,s),3.92(1H,m),5.31-

5.51(2H,m), 6.35(1H,d,J=7.0Hz), 7.51-7.60(3H,m), 7.92-7.97(6H,m).

IR(CHCl3):3436,3008,2946,2875,1727,1652,1608(w),1515,1484/cm.

 $[\alpha]D = +82^{\circ} (CHC13,c=0.99,25^{\circ})$

No.1m-6

CDC13 300MHz

1.09-2.23(14H,m), 2.37(2H,t,J=7.2Hz), 2.60(1H,m), 3.92(1H,m), 5.30-5.49(2H,m), 6.32(1H,d,J=7.4Hz), 7.51-7.55(3H,m), 7.85-7.98(6H,m).

IR(CHCl3):3436,3010,2950,2875,2670,1727,1715(sh),1650,1605(w),1515,1484/cm.

 $[\alpha]D = +84^{\circ} (CHC13, c=1.54, 25^{\circ})$

No.1m-7

CDC13 300MHz

1.03-2.18(14H,m), 2.32(2H,t,J=7.4Hz), 2.59(1H,m), 3.64(3H,s), 3.89(1H,m), 5.29-5.49(2H,m), 6.16(1H,d,J=7.8Hz), 6.98-7.06(4H,m), 7.14-7.20(1H,m), 7.34-7.41(2H,m), 7.14-7.20(1H,m), 7.14-7.20(1H,m), 7.14-7.20(1H,m), 7.34-7.41(2H,m), 7.14-7.20(1H,m), 7.14-7.20(1H,m

H,m),7.73-7.78(2H,m).

IR(CHCl3):3438,3008,2946,2868,1727,1648,1610,1586,1519,1485/cm.

 $[\alpha]D = +54^{\circ} (CHC13,c=1.29,25^{\circ}).$

No.1m-8

CDC13 300MHz

 $1.06-2.21(14H,m), 2.36(2H,t,J=7.5Hz), 2.58(1H,m), 3.88(1H,m), 5.31-5.46(2H,m), \\ 6.17(1H,d,J=6.9Hz), 6.99-7.05(4H,m), 7.15-7.21(1H,m), 7.36-7.41(2H,m), 7.72-7. \\ 75(2H,m).$

IR(CHCl3):3436,3010,2948,2868,2675,1730(sh),1709,1647,1608,1586,1520,14

85/cm.

 $[\alpha]D = +56^{\circ} (CHCl3,c=0.97,25^{\circ})$

No.1m-9

CDC13 300MHz

1.05-2.18(14H,m), 2.29-2.34(5H,m), 2.59(1H,m), 3.64(3H,s), 3.89(1H,m), 5.32-5.4 6(2H,m), 6.16(1H,d,J=7.5Hz), 7.00-7.11(6H,m), 7.74-7.77(2H,m).

IR(CHCl3):3440,3010,2946,2868,1729,1649,1595,1519,1488/cm.

[α]D= +47° (CHCl3,c=0.82,25°C).

No.1m-10

CDC13 300MHz

 $1.04-2.20(14H,m), 2.31\cdot 2.39(5H,m), 2.57(1H,m), 3.87(1H,m), 5.28-5.47(2H,m), 6.17(1H,d,J=7.0Hz), 6.99-7.12(6H,m), 7.72-7.76(2H,m).$

IR(CHCl3):3674,3572,3438,3010,2948,2868,2626,1748,1710,1648,1615,1595,1 520,1489/cm.

 $[\alpha]D = +51^{\circ} (CHC13,c=0.91,25^{\circ})$

No.1m-11

CDC13 300MHz

1.04-2.16(14H,m),2.31(2H,t,J=7.2Hz),2.59(1H,m),3.63(3H,s),3.89(1H,m),5.29-

5.49(2H,m), 6.24(1H,d,J=7.4Hz), 6.54(1H,s), 6.83-6.93(6H,m), 7.69-7.73(2H,m).

IR(CHCl3):3674,3588,3438,3296,3010,2946,2868,1725,1646,1603,1520,1504,1489/cm.

 $[\alpha]D = +51^{\circ} (CHCl3, c=0.91, 25^{\circ})$

No.1m-12

CDC13 300MHz

1.04 - 2.21(14 H, m), 2.33(2 H, t, J = 8.0 Hz), 2.56(1 H, m), 3.87(1 H, m), 5.28 - 5.48(2 H, m), 3.87(1 H

6.23(1H,d,J=8.0Hz),6.75(1H,m),6.87-6.94(6H,m),7.66-7.71(2H,m),9.63(1H,bs). IR(CHCl3):3674,3582,3436,3275,3010,2950,2868,2675,1727,1710(sh),1643,16 03,1522,1504,1490/cm.

 $[\alpha]D= +30^{\circ} (CHCl3,c=0.97,25^{\circ})$

No.1m-13

CDCl3 300MHz

1.01-2.18(14H,m), 2.31(2H,t,J=7.4Hz), 2.58(1H,m), 3.63(3H,s), 3.82(3H,s), 3.89(1H,m), 5.29-5.48(2H,m), 6.14(1H,d,J=7.0Hz), 6.88-7.02(6H,m), 7.70-7.74(2H,m). IR(CHCl3): 3442, 3402, 3004, 2946, 2868, 1727, 1648, 1600, 1518, 1499/cm. $[\alpha]D=+42^{\circ} (CHCl3, c=1.82, 26^{\circ}C)$

No.1m-14

CDC13 300MHz

 $1.05 \cdot 2.21(14H,m), 2.35(2H,t,J=7.2Hz), 2.55(1H,m), 3.82(3H,s), 3.88(1H,m), 5.27-5.46(2H,m), 6.16(1H,d,J=7.2Hz), 6.88-7.02(6H,m), 7.68-7.73(2H,m).$

IR(CHCl3):3438,3012,2948,2870,2650,1730(sh),1709,1647,1615(sh),1601,1519, 1492/cm.

 $[\alpha]D=+64^{\circ} (CHC13,c=0.70,25^{\circ})$

No.1m-15

CDC13 300MHz

1.05-2.20(14H,m),2.29-2.36(5H,m),2.62(1H,m),3.63(3H,s),3.92(1H,m),5.30-5.5 0(2H,m),6.25(1H,d,J=7.2Hz),7.16-7.21(2H,m),7.59-7.64(4H,m),7.83-7.87(2H,m).

IR(CHCl3):3446,3010,2946,2868,1745(sh),1728,1650,1615,1525,1507,1486/cm.

 $[\alpha]D=+65.0^{\circ} (CHCl3,c=1.02,23^{\circ})$

No.1m-16

CDC13 300MHz

1.08-2.21(14H,m), 2.34-2.40(5H,m), 2.59(1H,m), 3.90(1H,m), 5.29-5.48(2H,m), 6.2 9(1H,d,J=7.0Hz), 7.18(2H,d,J=8.6Hz), 7.58-7.64(4H,m), 7.83(2H,d,J=8.2Hz). IR(CHCl3): 3438, 3012, 2948, 2870, 2622, 1749, 1710, 1649, 1610, 1526, 1508, 1487/c

 $[\alpha]D=+66^{\circ} (CHCl3,c=1.21,24^{\circ})$

No.lm-17

m.

CDC13 300MHz

1.06-2.19(14H,m), 2.32(2H,t,J=7.2Hz), 2.62(1H,m), 3.63(3H,s), 3.93(1H,m), 5.30-5.50(2H,m), 6.32(1H,d,J=7.6Hz), 6.41(1H,s), 6.94(2H,d,J=9.0Hz), 7.47(2H,d,J=9.0Hz), 7.58(2H,d,J=8.6Hz), 7.81(2H,d,J=8.6Hz).

IR(CHCl3):3580,3434,3284,3010,2946,2868,1726,1646,1606,1528,1490/cm. [α]D=+62.4° (CHCl3,c=1.01,23 $^{\circ}$)

No.1m-18

CDCl3+CD3OD 300MHz

 $1.11-2.18(14H,m), 2.32(2H,t,J=7.4Hz), 2.59(1H,m), 3.88(1H,m), 5.30-5.49(2H,m), \\ 6.55(1H,d,J=7.0Hz), 6.92(2H,d,J=8.6Hz), 7.47(2H,d,J=8.6Hz), 7.59(2H,d,J=8.6Hz), \\ 7.79(2H,d,J=8.2Hz).$

IR(Nujol):3398,3175,2725,1696,1635,1601,1531,1510/cm.

 $[\alpha]D=+99.5^{\circ} (CH3OH,c=1.011,25^{\circ})$

No.1m-19

CDC13 300MHz

1.05-2.20(14H,m), 2.32(2H,t,J=7.4Hz), 2.61(1H,m), 3.63(3H,s), 3.86(3H,s), 3.94(1H,m), 5.30-5.50(2H,m), 6.24(1H,d,J=7.0Hz), 6.99(2H,d,J=8.6Hz), 7.53-7.63(4H,m), 7.82(2H,d,J=8.6Hz).

IR(CHCl3):3440,3006,2946,2875,1726,1649,1606,1527,1510,1489/cm. [α]D=+68° (CHCl3,c=0.88,26°C)

No.1m-20

CDC13 300MHz

1.09-2.20(14H,m), 2.35(2H,t,J=7.3Hz), 2.58(1H,m), 3.85(3H,s), 3.89(1H,m), 5.28-5.48(2H,m), 6.35(1H,d,J=7.2Hz), 6.98(2H,d,J=8.8Hz), 7.51-7.61(4H,m), 7.81(2H,d,J=8.4Hz), 8.34(1H,bs).

IR(CHCl3):3446,3012,2952,2881,2640,1730(sh),1707,1647,1606,1527,1510,14 89/cm.

[α]D=+83° (CHCl3,c=1.00,25°C).

No.1m-21

CDCl3 300MHz

 $1.05-2.14(14H,m), 2.37(2H,t,J=7.2Hz), 2.51(1H,m), 3.81(1H,m), 5.34-5.46(2H,m), \\ 6.11(1H,d,J=7.5Hz), 7.33-7.48(3H,m), 7.53-7.55(2H,m).$

IR(CHCl3):3420,3250,3008,2948,2870,2660,2210,1735(sh),1705,1645,1503,1441,1409/cm.

[α]D=+59.2±1.0° (CHCl3,c=1.023,22°).

No.1m-22

CDCl3 300MHz

1.05-2.17(14H,m), 2.37(2H,t,J=7.2Hz), 2.52(1H,m), 3.82(1H,m), 5.32-5.47(2H,m), 6.20(1H,d,J=7.6Hz), 7.38-7.53(3H,m), 7.58-7.61(6H,m), 9.11(1H,bs).

IR(CHCl3):3420,3250,3010,2984,2870,2675,2208,1730(sh),1705,1640,1500,14 06/cm.

[α]D=+57.4° (CHCl3,c=1.83,23°C).

No.1m - 23

CDC13 300MHz

1.05-2.18(14H,m), 2.31(2H,t,J=7.5Hz), 2.60(1H,m), 3.63(3H,s), 3.90(1H,m), 5.32-1.05

5.47(2H,m), 6.22(1H,d,J=6.9Hz), 7.40-7.49(3H,m), 7.76-7.79(2H,m).

IR(CHCl3):3438,3008,2946,2868,1727,1651,1603,1585,1512,1484/cm.

[α]D=+52° (CHCl3,c=1.49,25°C).

No.1m-24

CDC13 300MHz

1.05-2.21(14H,m), 2.36(2H,t,J=7.2Hz), 2.57(1H,m), 3.89(1H,m), 5.28-5.47(2H,m), 6.22(1H,d,J=7.0Hz), 7.39-7.55(3H,m), 7.73-7.79(2H,m).

IR(CHCl3):3676,3572,3436,3010,2948,2875,1730(sh),1709,1650,1600,1580,15 14,1484/cm.

[α]D=+57° (CHCl3,c=0.97,26°C).

No.1m-25

CDCl3 300MHz

1.04-2.18(14H,m),2.28-2.35(5H,m),2.59(1H,m),3.62(3H,s),3.88(1H,m),5.29-5.4 9(2H,m),6.20(1H,d,J=7.2Hz),7.15(2H,d,J=9.0Hz),7.80(2H,d,J=8.8Hz). IR(CHCl3):3436,3010,2946,2868,1752,1727,1653,1602,1519,1491/cm. [α]D=+53° (CHCl3.c=1.63.25°).

No.1m-26

CDC13 300MHz

1.05-2.19(14H,m), 2.32-2.38(5H,m), 2.56(1H,m), 3.88(1H,m), 5.29-5.47(2H,m), 6.2 5(1H,d,J=7.4Hz), 7.15(2H,d,J=9.0Hz), 7.78(2H,d,J=8.6Hz).

IR(CHCl3):3434,3016,3006,2948,2880,2622,1752,1730(sh),1710,1651,1605,15 20,1492/cm.

[α]D=+58° (CHCl3,c=3.68,24°C)

No.1m-27

CDCl3 300MHz

1.05-2.16(14H,m),2.30(2H,t,J=7.5Hz),2.57(1H,m),3.62(3H,s),3.87(1H,m),5.27-5.47(2H,m),6.32(1H,d,J=7.4Hz),6.85(2H,d,J=8.6Hz),7.62(2H,d,J=8.6Hz),8.35(1H,s).

IR(CHCl3):3580,3450,3216,3010,2946,2868,1726,1640,1608,1584,1528,1496/c m.

 $[\alpha]D=+56.2^{\circ} (CHCl3,c=0.713,23^{\circ})$

No.1m-28

CDCl3 200MHz

1.10-2.25(14H,m),2.32(2H,t,J=7.2Hz),2.55(1H,bs),3.82-3.93(1H,m),5.27-5.47(2 H,m),6.25(1H,d,J=7.4Hz),6.86(2H,d,J=8.6Hz),7.62(2H,d,J=8.6Hz).
IR(CHCl3):3438,3242,2675,1730(sh),1708,1639,1607,1585/cm.

No.1m-29

CDC13 300MHz

1.05-2.18(14H,m), 2.31(2H,t,J=7.4Hz), 2.58(1H,m), 3.64(3H,s), 3.85(3H,s), 3.89(1H,m), 5.29-5.48(2H,m), 6.14(1H,d,J=6.6Hz), 6.92(2H,d,J=9.0Hz), 7.74(2H,d,J=9.0Hz). 0Hz).

IR(CHCl3):3445,3008,2946,2868,1727,1646,1606,1578,1523,1493/cm. $[\alpha]D=+53^{\circ}$ (CHCl3,c=2.03,24°C)

No.1m - 30

CDC13 300MHz

1.04-2.21(14H,m), 2.36(2H,t,J=7.3Hz), 2.56(1H,m), 3.85(3H,s), 3.88(1H,m), 5.27-5.46(2H,m), 6.15(1H,d,J=7.2Hz), 6.92(2H,d,J=8.6Hz), 7.73(2H,d,J=8.6Hz). IR(CHCl3): 3440, 3010, 2950, 2870, 2645, 1727, 1710(sh), 1646, 1606, 1575, 1524, 1494/cm.

 $[\alpha]D=+62^{\circ} (CHCl3,c=1.10,24^{\circ}).$

No.1m - 31

CDCl3+CD3OD 300MHz

1.16-2.20(14H,m), 2.31(2H,t,J=7.2Hz), 2.59(1H,m), 3.85(1H,m), 5.31-5.51(2H,m),

7.13-7.21(1H,m), 7.31-7.42(2H,m), 7.68-7.93(6H,m).

IR(Nujol):3344,3175,2715,2675,1699,1631,1566/cm.

 $[\alpha]D=+67^{\circ}$ (CH3OH,c=1.01,24°C).

No.1m-32

CDCl3 200MHz

 $1.09 \cdot 2.23(14H,m), 2.33(2H,t,J=7.1Hz), 2.57(1H,bs), 3.40-3.93(9H,m), 4.41(1H,bs),$

5.29-5.48(2H,m), 6.44(1H,d,J=7.4Hz), 7.43(2H,d,J=8.2Hz), 7.80(2H,d,J=7.8Hz).

IR(CHCl3):3434,3354,1726,1720(sh),1660(sh),1626/cm.

No.1m - 33

CDCl3 200MHz

1.14-2.25(14H,m), 2.37(2H,t,J=7.3Hz), 2.64(1H,bs), 3.93-4.01(1H,m), 5.30-5.51(2H,m), 2.37(2H,t,J=7.3Hz), 2.64(1H,bs), 3.93-4.01(1H,m), 2.37(2H,t,J=7.3Hz), 2.64(1H,bs), 3.93-4.01(1H,m), 2.30-5.51(2H,m), 2.30-5

H,m, 6.47(1H,d, J=7.4Hz), 7.63-7.74(2H,m), 7.79(2H,s), 7.89-7.93(1H,m), 8.00(1H,s)

dd, J=2.3, 1.0Hz), 8.30(1H, d, J=1.0Hz), 8.65-8.73(2H, m).

IR(CHCl3):3450,2675,1728,1707,1649,1528,1509/cm.

[α]D=+82.8±1.2° (CHCl3,c=1.01,23°).

No.2a-1

 $[\alpha]D=+69.0^{\circ} (MeOH, c=1.01, 25^{\circ})$

No.2a-2

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.30(1

H,m),5.35-5.52(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),7.66 and 7.80(each 2H,each d,J=8.7Hz).

IR(CHCl3):3116,3014,2925,2870,2663,1708,1651,1610,1524,1504,1484,1472 / cm.

 $[\alpha]D = +64.1^{\circ} (MeOH, c=1.02, 25^{\circ}).$

No.2a-3

 $[\alpha]D=+76.6^{\circ} (MeOH,c=1.18,26^{\circ}).$

No.2a-4

CDCl3 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.25(each 3H,each s),1.64-2.51(14H,m),4.31(1 H,m),5.36-5.53(2H,m),6.33(1H,d,J=8.4z),7.50-7.56(3H,m),7.85-7.98(6H,m). IR(CHCl3):3515,3452,3014,2925,2870,1740,1708,1654,1517,1486,1470 /cm. $[\alpha]D=+79.5^{\circ}$ (MeOH,c=1.18, 22°C).

No.2a-5

CD3OD 300MHz

0.98(1H,d,J=9.9Hz),1.18 and 1.25(each 3H,each s),1.56-1.71(3H,m),1.98-2.4 0(11H,m),4.17(1H,m),5.41-5.52(2H,m),7.52-7.61(3H,m),7.91-8.01(6H,m). IR(KBr):3416,3063,2983,2921,2869,1704,1643,1566,1518,1488,1408 /cm. [α]D= +62.0° (MeOH,c=1.00, 25°C).

No.2a-6

 $[\alpha]D=+64.1^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-7

 $[\alpha]D=+65.3^{\circ} (MeOH,c=0.99,25^{\circ}).$

```
No.2a-8
```

[α]D=+74.0° (MeOH,c=1.01,25°C).

No.2a-9

 $[\alpha]D=+71.0^{\circ} (MeOH,c=1.10,25^{\circ}).$

No.2a-10

 $[\alpha]D=+74.7^{\circ} (MeOH,c=1.00,25^{\circ}C).$

No.2a-11

[α]D=+72.1° (MeOH,c=1.00,25°C).

No.2a-12

[α]D=+53.1° (CHCl3,c=1.01,26°C).

m.p.155.0-156.0℃

No.2a-13

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.18 and $1.25(each\ 3H,each\ s),1.63-2.40(14H,m),4.30(1.25)$

H,m),5.46-5.58(2H,m),6.44(1H,d,J=8.4Hz),7.49 and $7.77(each\ 2H,each\ d,J=8.4Hz)$

7Hz), 7.54(1H,s).

IR(CHCl3):3689,3378,3028,3014,2924,1713,1652,1602,1522,1496 /cm.

[α]D= +78.3° (MeOH,c=0.84,25°C).

m.p.205.0-206.0℃

No.2a-14

 $[\alpha]D=+72.5^{\circ} (MeOH,c=1.07,25^{\circ}).$

No.2a-15

CDCl3 300MHz

0.99(1H,d,J=9.9Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),4.27(1H,m),5.30-5.50(2H,m),6.29(1H,d,J=9.0Hz),7.11 and 7.20(each 1H,each d,J=16.2Hz),7.29-7.55(5H,m),7.57 and 7.72(each 2H,each d,J=8.7Hz).

IR(CHCl3):3453,3083,3022,3013,2925,2870,1708,1650,1607,1560,1522,1496 / cm.

[α]D= +72.3° (MeOH,c=1.00,27°C). m.p.115.0-117.0°C

No.2a-16

CDCl3 300MHz

0.92(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.48(14H,m),3.62(3 H,s),4.29(1H,m),5.30-5.50(2H,m),6.20(1H,d,J=8.7Hz),6.59 and 6.68(each 1H, each,d,J=12.3Hz),7.23(5H,s),7.29 and 7.59(each 2H,each d,J=8.1Hz). IR(CHCl3):3453,3024,3016,2924,2870,1730,1651,1607,1520,1495 /cm. $[\alpha]D=+56.8^{\circ}$ (MeOH,c=1.04,24°C).

No.2a-17

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.38(14H,m),4.26(1H,m),5.30-5.50(2H,m),6.23(1H,d,J=8.4Hz),6.59 and 6.70(each 1H,each d,J=12.3Hz),7.23(5H,s),7.30 and 7.57(each 2H,each d,J=8.7Hz).

IR(CHCl3):3452,3081,3019,3014,2925,2870,2665,1708,1650,1607,1521,1495 / cm.

[α]D= +61.6° (MeOH,c=1.00,27°C).

No.2a-18

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each,s),1.50-2.50(14H,m),3.61(3

H,s),4.31(1H,m),5.35-5.51(2H,m),6.33(1H,d,J=8.4Hz),7.48-7.64(4H,m),7.79-7. 83(2H,m),7.91(1H,dt,J=1.5 and 7.8Hz),8.01(1H,dt,J=1.5 and 7.8Hz),8.13(1H,t,J=1.5Hz).

IR(CHCl3):3450,3026,3013,2925,2870,1730,1659,1600,1510 /cm. [α]D= +56.0° (MeOH,c=1.01,25°C).

No.2a-19

CDC13 300MHz

 $0.95(1H,d,J=9.9Hz),1.14 \ and \ 1.21(each \ 3H,each \ s),1.53\cdot2.60(14H,m),4.25(1H,m),5.35\cdot5.64(2H,m),7.21(1H,d,J=7.8Hz),7.49\cdot7.68(4H,m),7.76\cdot7.84(3H,m),8.25(1H,m),8.43(1H,m).$

IR(CHCl3):3382,3196,3025,3015,2925,2870,1725,1652,1599,1577,1521 /cm. [α]D= +55.9° (MeOH,c=1.00,25°C).

No.2a-20

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.62(3 H,s),4.31(1H,m),5.35-5.51(2H,m),6.24(1H,d,J=8.4Hz),7.40-7.52(3H,m),7.71-7.76(2H,m).

IR(CHCl3):3453,3025,3013,2925,2870,1730,1753,1579,1514,1486 /cm. [α]D= +61.2° (MeOH,c=1.04.25°).

No.2a-21

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.28(1 H,m),5.34-5.51(2H,m),6.27(1H,d,J=8.7Hz),7.41-7.53(3H,m),7.71-7.74(2H,m). IR(CHCl3):3452,3063,3027,3014,2925,2871,1708,1652,1578,1515,1486 /cm. $[\alpha]D=+62.0^{\circ}$ (MeOH,c=1.01,27°C).

No.2a-22

d6-DMSO 300MHz

0.86(1H,d,J=9.9Hz),1.10 and 1.16(each 3H,each s),1.42-1.52(3H,m),1.85-2.4 6(11H,m),3.98(1H,m),5.32-5.43(2H,m),7.41(3H,m),7.88(2H,d,J=6.6Hz),8.19(1H,d,J=6.6Hz).

IR(KBr):3367,3060,2984,2922,2868,1634,1563,1529,1487/cm.

 $[\alpha]D=+47.7^{\circ} (MeOH,c=1.00,25^{\circ}).$

No.2a-23

 $[\alpha]D=+62.7^{\circ}$ (MeOH,c=1.01,27°C).

No.2a-24

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.25(each 3H,each s),1.52-2.50(14H,m),4.31(1H,m),5.36-5.52(2H,m),6.34(1H,d,J=8.4Hz),7.47-7.52(2H,m),7.59-7.64(1H,m),7.78-7.83(6H,m).

IR(CHCl3):3449,3027,3013,2925,2869,1708,1656,1599,1518,1493 /cm.

[α]D= +63.1° (MeOH,c=1.00,25°C).

No.2a-25

[α]D=+35.1° (MeOH,c=1.00,25°C).

No.2a-26

[α]D=+35.5° (MeOH,c=1.02,25°C).

No.2a-27

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.50(14H,m),3.63(3H,s),4.29(1H,m),5.36-5.51(2H,m),6.18(1H,d,J=8.4Hz),7.01 and 7.71(each 2H,m)

each d,J=8.7Hz,),6.98-7.05(2H,m),7.16(1H,t,J=7.5Hz),7.34-7.41(2H,m). IR(CHCl3):3455,3024,3016,2924,2870,1730,1651,1588,1520,1487 /cm. [α]D=+56.4° (MeOH,c=1.01,25°C).

No.2a-28

CDC13 300MHz

 $0.98(1H,d,J=10.2Hz),1.12 \ and \ 1.23(each \ 3H,each \ s),1.52-2.50(14H,m),4.26(1H,m),5.34-5.51(2H,m),6.20(1H,d,J=9.0Hz),7.01 \ and \ 7.70(each \ 2H,each \ d,J=9.0Hz),6.98-7.15(2H,m),7.17(1H,t,J=7.5Hz),7.34-7.40(2H,m).$

IR(CHCl3):3454,3031,3018,2925,2870,1708,1650,1588,1523,1487/cm.

[α]D= +56.2° (MeOH,c=1.00,25°C).

No.2a-29

 $[\alpha]D=+53.0^{\circ} (MeOH,c=1.03,25^{\circ}).$

No.2a-30

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.25(1H,m),5.30-5.50(2H,m),6.23(1H,d,J=8.7Hz),6.36(1H,s),7.26-7.39(10H,m),7.60 and 7.68(each 2H,each d,J=8.4Hz).

IR(CHCl3):3451,3088,3064,3029,3014,2925,2869,1707,1652,1522,1495 /cm. [α]D=+54.2° (MeOH,c=1.00,25°C).

No.2a-31

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.63(3H,s),4.31(1H,m),5.30-5.50(2H,m),6.26(1H,d,J=8.4Hz),6.90(1H,t,J=7.4Hz),7.13(1H,d,J=8.7Hz),7.29(2H,t,J=8.0Hz),7.67-7.75(5H,m),7.82(1H,s).

IR(Nujol):3380,3244,1723,1638,1601,1578,1535,1495 /cm.

```
[\alpha]D=+73.6° (MeOH,c=0.50,26°C).
m.p.133.0-134.0°C
```

No.2a-32

 $[\alpha]D=+56.1^{\circ} (MeOH, c=1.02, 26^{\circ}).$

No.2a-33

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.21(each,3H,each s),1.50-2.50(14H,m),4.25(1H,m),5.13(2H,s),5.30-5.70(3H,m),6.41(1H,d,J=8.2Hz),6.89(1H,s),7.09(1H,s),7. 17 and 7.72(each 2H,each d,J=8.2Hz),7.62(1H,s).

IR(CHCl3):3450,3125,3031,3013,2925,2870,2467,1917,1708,1654,1615,1575,1 523,1497 /cm.

[α]D=+55.2° (MeOH,c=1.01,26°C).

No.2a-34

 $[\alpha]D=+72.9^{\circ} (MeOH,c=1.03,25^{\circ}).$

No.2a-35

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.28(1H,m),5.35-5.51(2H,m),6.28(1H,d,J=8.7Hz),7.34-7.37(3H,m),7.52-7.55(2H,m),7.58 and 7.71(each 2H,each d,J=8.7Hz).

IR(CHCl3):3515,3452,3030,3012,2925,2870,1739,1708,1652,1607,1555,1521,1 497 /cm.

[α]D=+74.3° (MeOH,c=1.01,25°C).

No.2a-36

[α]D=+23.4° (MeOH,c=1.07,25°C).

```
No.2a-37
```

CDCl3 300MHz

0.83(1H,d,J=10.5Hz),0.95 and 1.18(each 3H,each s),1.44-2.46(14H,m),3.92(1H,m),5.34-5.52(3H,m),7.26-7.54(9H,m),7.62(1H,s).

IR(CHCl3):3432,3310,3189,3023,3014,2924,2870,1704,1610,1594,1523,1487 / cm.

[α]D=+25.3° (MeOH,c=1.00,26°C).

No.2a-38

[α]D=+70.9° (MeOH,c=1.02,25°C).

No.2a-39

[α]D=+70.6° (MeOH,c=1.01,25°C).

No.2a-40

 $[\alpha]D=+74.7^{\circ} (MeOH,c=1.00,25^{\circ}).$

No.2a-41

[α]D=+72.1° (MeOH,c=1.01,24°C).

No.2a-42

[α]D=+69.2° (MeOH,c=1.00,25°C).

No.2a-43

 $[\alpha]D=+70.8^{\circ} (MeOH,c=1.00,25^{\circ}).$

No.2a-44

 $[\alpha]D=+60.4^{\circ} (MeOH,c=1.00,26^{\circ}).$

No.2a-45

CDC13 300MHz

0.97(1H,d,J=9.9Hz),1.13 and $1.23(each 3H,each s),1.55\cdot2.52(14H,m),4.29(1H,m),5.34\cdot5.54(2H,m),6.33(1H,d,J=9.0Hz),7.10(1H,t,J=7.4Hz),7.34(2H,t,J=7.4Hz),7.52(2H,m),7.68$ and 7.75(each 2H,each d,J=8.4Hz),7.80(1H,s),8.10(1H,s),10.09(1H,s).

IR(CHCl3):3393,3195,3093,3033,3013,2925,2870,1698,1656,1598,1537,1498 / cm.

[α]D=+59.4° (MeOH,c=1.01,24°C).

No.2a-46

 $[\alpha]D=+63.5^{\circ}$ (MeOH,c=1.00,25°C).

No.2a-47

CDC13 300MHz

0.97(1H,d,J=9.9Hz),1.12 and 1.23(each 3H,each s),1.54-2.48(14H,m),4.29(1H,m),5.35-5.52(2H,m),6.32(1H,d,J=8.7Hz),7.26(1H,m),7.41(2H,t,J=7.8Hz),7.6 4(2H,d,J=7.5Hz),7.73 and 7.77(each 2H,each d,J=8.4Hz),7.95(1H,s),9.20(1H,s),10.38(1H,s).

IR(CHCl3):3450,3339,3003,2992,2925,2870,1706,1653,1596,1523,1495/cm. [α]D=+63.3° (MeOH,c=1.00,25 $^{\circ}$).

No.2a-48

[α]D=+63.8° (MeOH,c=1.00,24°C).

No.2a-49

CDC13 300MHz

1.00(1H,d,J=10.5Hz),1.17 and 1.26(each 3H,each s),1.55-2.52(14H,m),4.34(1

```
H,m),5.36-5.54(2H,m),6.35(1H,d,J=9.0Hz),7.50-7.62(3H,m),7.90 and 8.33(eac h 2H,each d,J=8.4Hz),8.21(2H,m).
```

IR(CHCl3):3451,3029,3022,3016,2925,2870,1708,1655,1542,1508,1498,1471,1 459 /cm.

 $[\alpha]D=+63.5^{\circ} (MeOH,c=1.02,25^{\circ}).$

m.p.135.0-137.0℃

No.2a-50

[α]D=+68.9° (MeOH,c=1.01,24°C).

No.2a-51

d6-DMSO 300MHz

0.87(1H,d,J=9.9Hz),1.10 and 1.17(each 3H,each s),1.40-1.60(3H,m),1.90-2.4 0(11H,m),3.98(1H,m),5.35-5.46(2H,m),7.64(1H,s),7.65 and 7.91(each 2H,each d,J=8.7Hz),8.06(1H,d,J=6.0Hz),9.32(1H,bs).

IR(KBr):3385,2962,1734,1707,1632,1529,1498 /cm.

[α]D=+68.4° (MeOH,c=1.01,24°C).

No.2a-52

[α]D=+76.2° (MeOH,c=1.01,24°C).

No.2a-53

[α]D=+73.9° (MeOH,c=1.02,24°C).

No.2a-54

[α]D=+68.1° (MeOH,c=1.00,24°C).

No.2a-55

[α]D=+67.8° (MeOH,c=1.00,24°C).

No.2a-56

 $[\alpha]D=+65.4^{\circ} (MeOH,c=1.03,25^{\circ}).$

No.2a-57

 $[\alpha]D=+63.4^{\circ} (MeOH, c=1.01, 24^{\circ}).$

No.2a-58

 $[\alpha]D=+66.6^{\circ}$ (MeOH,c=1.01,24°C).

No.2a-59

 $[\alpha]D=+65.5^{\circ}$ (MeOH,c=1.00,24°C).

No.2a-60

[α]D=+60.9° (MeOH,c=1.02,25°C).

No.2a-61

CDC13 300MHz

0.97(1H,d,J=10.0Hz),1.10 and 1.22(each 3H,each s),1.50-2.50(14H,m),4.26(1H,m),5.30-5.54(2H,m),6.28(1H,d,J=8.6Hz),6.60 and 6.82(each 1H,each d,J=12.4Hz),7.12(2H,d,J=6.0Hz),7.25 and 7.62(each 2H,each d,J=8.6Hz),8.47(2H,d,J=6.0Hz).

IR(CHCl3):3452,3027,3019,3013,2925,2870,2480,1708,1651,1606,1520,1494 / cm.

 $[\alpha]D=+61.6^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-62

 $[\alpha]D=+72.0^{\circ} (MeOH, c=0.93, 25^{\circ}).$

No.2a-63

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.29(1H,m),5.36-5.55(2H,m),6.35(1H,d,J=9.1Hz),7.04 and 7.27(each 1H,each d,J=16.5Hz),7.37(2H,d,J=6.6Hz),7.56 and 7.76(each 2H,each d,J=8.4Hz),8.57(2H,d,J=6.6Hz).

IR(CHCl3):3452,3024,3018,3014,2925,2870,2470,1933,1708,1652,1605,1521,1 496 /cm.

[α]D=+69.2° (MeOH,c=1.01,25°C).

No.2a-64

[α]D=+56.9° (MeOH,c=1.24,25°C).

No.2a-65

CDC13 300MHz

 $0.98(1H,d,J=10.5Hz),1.12 \ and \ 1.23(each \ 3H,each \ s),1.54-2.46(14H,m),4.27(1H,m),5.23(2H,s),5.34-5.52(2H,m),6.26(1H,d,J=8.4Hz),7.32-7.45(5H,m),7.64 \ and \ 7.71(each \ 2H,each \ d,J=8.4Hz),8.15(1H,s).$

IR(CHCl3):3452,3088,3065,3032,3013,2925,2870,1708,1653,1611,1559,1522,1 496 /cm.

 $[\alpha]D=+61.0^{\circ} (MeOH, c=0.91, 25\%).$

No.2a-66

 $[\alpha]D=+76.0^{\circ} (MeOH, c=1.01, 25\%).$

No.2a-67

CDC13 300MHz

 $0.98(1H,d,J=10.4Hz),1.14 \ and \ 1.24(each \ 3H,each \ s),1.54\cdot2.46(14H,m),4.28(1H,m),5.32\cdot5.53(2H,m),6.27(1H,d,J=8.6Hz),6.92\cdot7.31(each \ 1H,each \ d,J=16.4Hz)$

z),7.02(1H,dd,J=5.8 and 3.6Hz),7.12(1H,d,J=3.6Hz),7.24(1H,d,J=5.8Hz),7.51 and 7.70(each 2H,each d,J=8.4Hz).

IR(CHCl3):3453,3029,3013,2925,2870,1739,1650,1604,1524,1515,1494 /cm. [α]D=+76.2° (MeOH,c=1.00,24°C).

m.p.104.0·106.0℃

No.2a-68

,

[α]D=+57.7° (MeOH,c=1.01,25°C).

No.2a-69

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.54-2.48(14H,m),4.28(1H,m),5.34-5.53(2H,m),6.29(1H,d,J=9.0Hz),6.54-6.74(each 1H,each d,J=12.0Hz),7.02(1H,dd,J=4.8 and 3.3Hz),6.97(1H,dd,J=3.3 and 1.2Hz),7.13(1H,dd,J=4.8 and 1.2Hz),7.44 and 7.70(each 2H,each d,J=8.7Hz).

IR(CHCl3):3453,3025,3010,2925,2870,1708,1650,1607,1559,1523,1493 /cm. [α]D=+58.4° (MeOH,c=1.00,25°C).

No.2a-70

 $[\alpha]D=+48.6^{\circ} (MeOH,c=1.00,25^{\circ}).$

No.2a-71

CDCl3 300MHz

 $0.98(1H,d,J=10.2Hz),1.12 \ and \ 1.23(each \ 3H,each \ s),1.52\cdot2.46(14H,m),2.31(3H,s),4.26(1H,m),5.33\cdot5.52(2H,m),6.20(1H,d,J=9.3Hz),7.02\cdot7.11(6H,m),7.70(2H,d,J=9.0Hz).$

IR(CHCl3):3460,3031,3022,3011,2925,2870,1750,1708,1650,1608,1597,1523,1 490 /cm.

 $[\alpha]D=+48.9^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-72

[α]D=+51.2° (MeOH,c=1.02,25°C).

No.2a-73

CDCl3 300MHz

0.97(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.54-2.48(14H,m),4.27(1H,m),5.32-5.52(2H,m),6.24(1H,d,J=9.0Hz),6.83-6.94(6H,m),7.65(2H,d,J=9.0Hz).

IR(CHCl3):3598,3451,3199,3033,3012,2925,2870,1708,1642,1604,1524,1507,1 491 /cm.

[α]D=+52.2° (MeOH,c=1.01,25°C).

No.2a-74

 $[\alpha]D=+51.5^{\circ}$ (MeOH,c=0.92,25°C).

No.2a-75

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.46(14H,m),3.82(3H,s),4.25(1H,m),5.32-5.52(2H,m),6.19(1H,d,J=8.7Hz),6.89-7.01(6H,m),7.65-7.68(2H,m).

IR(CHCl3):3450,3025,3008,2925,2870,2837,1741,1649,1612,1521,1505,1490 / cm.

[α]D=+51.1° (MeOH,c=1.00,25°C).

No.2a-76

[α]D=+60.4° (MeOH,c=0.98,25°C).

No.2a-77

CDCl3 300MHz

0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),2.34(3H,s),4.29(1H,m),5.32-5.54(2H,m),6.32(1H,d,J=8.4Hz),7.19 and 7.60(each 2H,each d,J=8.4Hz),7.63 and 7.79(each 2H,each d,J=8.4Hz).

IR(CHCl3):3452,3027,3012,2925,2870,1751,1709,1651,1611,1560,1527,1509,1 489 /cm.

[α]D=+61.2° (MeOH,c=1.00,25°C).

No.2a-78

7

[α]D=+67.4° (MeOH,c=1.01,25°C).

No.2a-79

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.54-2.54(14H,m),4.31(1H,m),5.32-5.54(2H,m),6.36(1H,d,J=8.2Hz),6.93 and 7.48(each,2H,each d,J=8.6Hz),7.59 and 7.75(each 2H,each d,J=8.4Hz).

IR(CHCl3):3593,3448,3192,3030,3010,2925,2870,1708,1644,1608,1591,1559,1 530,1516,1491 /cm.

[α]D=+65.8° (MeOH,c=1.01,25°C).

No.2a-80

[α]D=+66.9° (MeOH,c=1.01,25°C).

No.2a-81

CDCl3 300MHz

0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),3.86(3H,s),4.29(1H,m),5.34-5.52(2H,m),6.20(1H,d,J=8.7Hz),6.99 and 7.55(each 2H,each d,J=9.0Hz),7.61 and 7.77(each 2H,each d,J=8.7Hz).

IR(CHCl3):3450,3009,2925,2870,2838,1740,1708,1650,1608,1557,1528,1512,1

491 /cm.

 $[\alpha]D=+66.2^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-82

[α]D=+57.7° (MeOH,c=1.02,24°C).

No.2a-83

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.54-2.48(14H,m),2.33(3H,s),4.26(1H,m),5.32-5.52(2H,m),6.25(1H,d,J=8.7Hz),7.16 and 7.75(each 2H,each d,J=8.7Hz).

IR(CHCl3):3452,3030,3022,3012,2925,2870,1754,1709,1654,1604,1585,1522,1 493 /cm.

 $[\alpha]D=+57.4^{\circ} (MeOH,c=1.01,24^{\circ}).$

No.2a-84

 $[\alpha]D=+57.8^{\circ} (MeOH, c=1.01, 24^{\circ}).$

No.2a-85

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.12 and $1.22(each\ 3H,each\ s),1.54\cdot2.48(14H,m),4.25(1H,m),5.32\cdot5.52(2H,m),6.28(1H,d,J=8.7Hz),6.87$ and $7.57(each\ 2H,each\ d,J=9.0Hz).$

IR(CHCl3):3590,3450,3166,3019,3012,2925,2871,1708,1637,1608,1583,1531,1 498 /cm.

 $[\alpha]D=+56.0^{\circ} (MeOH,c=1.01,24\%).$

No.2a-86

[α]D=+59.3° (MeOH,c=1.01,22°C).

No.2a-87

CDC13 300MHz

0.98(1H,d,J=10.0Hz),1.13 and 1.23(each 3H,each s),1.54-2.48(14H,m),3.85(3 H,s),4.25(1H,m),5.32-5.53(2H,m),6.19(1H,d,J=8.8Hz),6.93 and 7.69(each 2H, each d,J=9.0Hz).

IR(CHCl3):3450,3030,3017,3012,2925,2870,2840,1740,1708,1647,1606,1575,1 525,1496 /cm.

[α]D=+58.2° (MeOH,c=0.99,22°C).

No.2a-88

[α]D=+50.9° (MeOH,c=1.02,25°C).

No.2a-89

CDC13 300MH₂

0.99(1H,d,J=10.2Hz),1.18 and 1.26(each 3H,each s),1.56-2.48(14H,m),4.29(1H,m),5.36-5.54(2H,m),7.03(1H,d,J=8.7Hz),7.21(1H,s),7.43(2H,m),7.74(1H,ddd,J=1.8,6.9 and 8.7Hz),8.22(1H,dd,J=1.8 and 8.1Hz).

IR(CHCl3):3443,3087,3023,3014,2925,2870,1708,1685,1658,1630,1517,1466 / cm.

[α]D=+57.1° (MeOH,c=1.01,22°). m.p.117.0-118.0°

No.2a-90

[α]D=+54.1° (MeOH,c=1.01,22°C).

No.2a-91

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.24(1

H,m),5.34-5.52(2H,m),6.49-6.53(2H,m),7.11(1H,dd,J=0.9 and 3.6Hz),7.44(1H,dd,J=0.9 and 1.8Hz).

IR(CHCl3):3437,3033,3022,3014,2925,2870,1739,1708,1655,1595,1520,1472 / cm.

[α]D=+55.0° (MeOH,c=1.00,22°C).

No.2a-92

[α]D=+50.3° (MeOH,c=1.00,22°C).

No.2a-93

CDC13 300MHz

0.95(1H,d,J=10.5Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.25(1H,m),5.34-5.52(2H,m),6.12(1H,d,J=8.7Hz),7.07(1H,dd,J=3.9 and 5.1Hz),7.45-7.48(2H,m).

IR(CHCl3):3450,3023,3011,2925,2870,1739,1708,1645,1531,1501,1471 /cm. [α]D=+49.1° (MeOH,c=1.02,24°C).

No.2a-94

[α]D=+51.5° (MeOH,c=1.00,24°C).

No.2a-95

CDC13 300MHz

 $0.96(1H,d,J=10.5Hz),1.11 \ and \ 1.23(each \ 3H,each \ s),1.52-2.46(14H,m),4.25(1H,m),5.34-5.56(2H,m),6.14(1H,d,J=8.7Hz),7.34(2H,d,J=2.0Hz),7.85(1H,t,J=2.0Hz).$

IR(CHCl3):3452,3114,3030,3013 2925,2870,1708,1649,1535,1498,1471 /cm. [α]D=+55.5° (MeOH,c=1.00,25 $^{\circ}$). m.p.87.0-88.0 $^{\circ}$

No.2a-96

CD3OD 300MHz

0.94(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.50-1.76(3H,m),1.94-2. 39(11H,m),4.11(1H,m),5.39-5.49(2H,m),7.43-7.51(2H,m),8.05(1H,m).

IR(KBr):3369,3084,2985,2921,2868,1630,1566,1538,1503 /cm.

[α]D=+38.8° (MeOH,c=1.01,22°C).

No.2a-97

CD3OD 300MHz

0.93(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.48-1.58(3H,m),1.96-2.3 6(11H,m),4.10(1H,m),5.35-5.50(2H,m),7.42-7.51(2H,m),8.06(1H,m).

IR(KBr):3447,3087,2987,2922,2868,1629,1545,1501 /cm.

[α]D=+52.9° (MeOH,c=1.01,24°C).

No.2a-98

[α]D=+53.2° (MeOH,c=1.02,23°C).

No.2a-99

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.26-2.45(24H,m),4.25(2 H,m),5.34-5.52(2H,m),6.18(1H,d,J=8.7Hz),6.91 and 7.66(each 2H,each d,J=9.0Hz).

IR(CHCl3):3455,3029,3019,2939,2862,1738,1709,1645,1605,1523,1494 /cm. [α]D=+51.4° (MeOH,c=1.00,23°C).

No.2a-100

 $[\alpha]D=+49.3^{\circ}$ (MeOH,c=1.00,24°C).

No.2a-101

[α]D=+51.3° (MeOH,c=1.00,24°C).

No.2a-102

[α]D=+48.8° (MeOH,c=1.01,23°C).

No.2a-103

CDC13 300MHz

0.94(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.48(3 H,d,J=0.3Hz),4.20(1H,m),5.32-5.54(2H,m),6.46(1H,bs),7.12(1H,d,J=9.0Hz). IR(CHCl3):3415,3144,3029,3011,2926,2871,1708,1671,1598,1538,14564 /cm. $[\alpha]D=+49.6^{\circ}$ (MeOH,c=1.01,23 $^{\circ}$).

No.2a-104

 $[\alpha]D=+77.0^{\circ} (MeOH,c=1.02,23^{\circ}).$

No.2a-105

CDC13 300MHz

0.93(1H,d,J=9.9Hz),1.09 and $1.21(each 3H,each s),1.51\cdot2.44(14H,m),3.90(6 H,s),4.20(1H,m),5.38\cdot5.50(2H,m),5.87(1H,d,J=9.0Hz),6.25$ and 7.54(each 1H,each d,J=15.6Hz),6.84(1H,d,J=8.1Hz),7.03(1H,d,J=1.8Hz),7.09(1H,dd,J=1.8 and 8.1Hz).

IR(CHCl3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 / cm.

[α]D=+77.3° (MeOH,c=1.01,23°C).

No.2a-106

[α]D=+67.0° (MeOH,c=1.00,25°C).

No.2a-107

```
[\alpha]D=+66.6° (MeOH,c=1.01,24°C).
m.p.168.0-170.0°C
```

No.2a-108

•

7

[α]D=+61.8° (MeOH,c=1.00,22°C).

No.2a-109

CDCl3 300MHz

0.96(1H,d,J=10.2Hz),1.10 and 1.22(each 3H,each s),1.51-2.45(14H,m),4.25(1H,m),5.33-5.49(2H,m),6.21(1H,d,J=8.7Hz),7.25 and 7.60(each 2H,each d,J=8.7Hz),7.33-7.41(5H,s).

IR(CHCl3):3453,3062,3028,3014,2925,2870,1739,1708,1651,1594,1557,1515,1 481 /cm.

 $[\alpha]D=+61.0^{\circ} (MeOH, c=1.01, 22^{\circ}).$

No.2a-110

CD3OD 300MHz

0.94(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.54-2.37(14H,m),4.12(1 H,m),5.38-5.49(2H,m),7.25 and 7.68(each 2H,each d,J=8.7Hz),7.41(5H,s). IR(KBr):3435,3058,2986,2920,2866,1635,1595,1562,1521,1482,1439,1411 /cm

 $[\alpha]D=+47.3^{\circ} (MeOH,c=1.01,23^{\circ}).$

No.2a-111

 $[\alpha]D=+65.6^{\circ} (MeOH,c=1.01,24^{\circ}).$

No.2a-112

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.27(1

H,m),5.35-5.50(2H,m),6.22(1H,d,J=8.4Hz),7.40 and $7.66(each\ 2H,each\ d,J=9.0Hz)$.

IR(CHCl3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 / cm.

[α]D=+65.6° (MeOH,c=1.01,22°C).

No.2a-113

[α]D=+59.6° (MeOH,c=1.00,24°C).

No.2a-114

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.12 and 1.24(each 3H,each s),1.52-2.46(14H,m),4.29(1 H,m),5.35-5.51(2H,m),6.28(1H,d,J=8.4Hz),7.70 and 7.83(each 2H,each d,J=8.4Hz).

IR(CHCl3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 / cm.

[α]D=+60.6° (MeOH,c=1.01,22°C).

No.2a-115

[α]D=+59.7° (MeOH,c=0.99,24°C).

No.2a-116

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.39(3H,s),4.27(1H,m),5.33-5.51(2H,m),6.24(1H,d,J=9.0Hz),7.23 and 7.62(each 2H,each d,J=8.4Hz).

IR(CHCl3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513/c m.

[α]D=+59.7° (MeOH,c=0.99,24°C).

No.2a-117

[α]D=+56.7° (MeOH,c=1.00,23°C).

No.2a-118

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.44(14H,m),4.23(1H,m),5.34-5.51(2H,m),6.02(2H,s),6.13(1H,d,J=8.7Hz),6.83(1H,dd,J=1.2 and 7.8Hz),7.22-7.25(2H,m).

IR(CHCl3):3453,3031,3020,3012,2924,2870,1740,1708,1650,1619,1605,1519,1 504,1480 /cm.

[α]D=+57.2° (MeOH,c=1.02,23°C).

No.2a-119

CDC13 300MHz

0.96(1H,d,J=10.5Hz),1.07 and 1.23(each 3H,each s),1.51-2.44(14H,m),2.32(3H,s),4.26(1H,m),5.37-5.52(2H,m),6.40(1H,d,J=9.0Hz),7.09(1H,m),7.30(1H,m),7.46(1H,m),7.66(1H,m).

IR(CHCl3):3443,3028,3012,2925,2870,1766,1747,1709,1657,1607,1516,1479 / cm.

[α]D=+53.2° (MeOH,c=0.99,21°C).

No.2a-120

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.53-2.44(14H,m),4.30(1H,m),5.35-5.52(2H,m),6.42(1H,d,J=8.7Hz),6.85(1H,m),6.99(1H,dd,J=1.2 and 8.4Hz),7.27(1H,m),7.39(1H,m).

IR(CHCl3):3463,3033,3021,3014,2992,2924,2870,1708,1643,1597,1523,1488 / cm.

```
[\alpha]D=+46.3^{\circ} (MeOH,c=1.01,21^{\circ}).
```

No.2a-121

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.47-2.47(14H,m),3.95(3H,s),4.31(1H,m),5.32-5.50(2H,m),6.98(1H,dd,J=0.9 and 8.4Hz),7.09(1H,ddd,J=0.9,7.7 and 8.4Hz),7.45(1H,m),8.19(1H,dd,J=2.1 and 8.1Hz),8.32(1H,d,J=9.0Hz).

IR(CHCl3):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600,1 536,1483,1470 /cm.

[α]D=+38.1° (MeOH,c=1.02,23°C).

No.2a-122

[α]D=+42.3° (MeOH,c=0.99,23°C).

No.2a-123

[α]D=+38.7° (MeOH,c=1.00,21°C).

No.2a-124

[α]D=+45.0° (MeOH,c=1.01,21°C).

m.p.119.0·120.0℃

No.2a-125

 $[\alpha]D=+49.8^{\circ} (MeOH,c=1.01,22^{\circ}).$

No.2a-126

CDC13 300MHz

 $0.97(1H,d,J=10.2Hz),1.11 \ and \ 1.23(each \ 3H,each \ s),1.52-2.47(14H,m),4.26(1H,m),5.34-5.50(2H,m),6.22(1H,d,J=8.7Hz),7.55-7.61(4H,m).$

IR(CHCl3):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600,1 536,1483,1470 /cm.

[α]D=+63.0° (MeOH,c=1.01,23°C).

No.2a-127

CDCl3 300MHz

0.91(1H,d,J=10.2Hz),1.10 and 1.20(each 3H,each s),1.50-2.42(14H,m),4.23(1 H,m),5.31-5.51(2H,m),6.45(1H,d,J=8.4Hz),7.01(1H,t,J=7.4Hz),7.22-7.27(2H,m),7.33-7.40(4H,m),7.53(2H,d,J=9.0Hz),8.30 and 8.48(each 1H,each s). IR(CHCl3):3452,3028,3022,3015,2925,2870,1708,1654,1590,1514,1478 /cm. $\{\alpha\}D=+59.5^{\circ}$ (MeOH,c=1.01,23 \mathcal{C}).

No.2a-128

d6-DMSO 300MHz

0.84(1H,d,J=9.9Hz),1.06 and 1.19(each 3H,each s),1.37-2.37(14H,m),3.79(1H,m),5.35-5.51(2H,m),6.08(1H,d,J=8.7Hz),6.85-6.90(1H,m),7.18-7.23(2H,m),7.35-7.38(2H,m),8.42(1H,s),12.00(1H,s).

IR(Nujol):3395,3345,2925,2866,2623,2506,1697,1658,1638,1597,1557 /cm. [α]D=+26.0° (MeOH,c=1.01,23 $^{\circ}$).

m.p.164.0·166.0℃

No.2a-129

CDC13 300MHz

 $1.01(1H,d,J=10.0Hz),1.17 \ and \ 1.25(each \ 3H,each \ s),1.54-2.52(14H,m),4.34(1H,m),5.36-5.57(2H,m),6.42(1H,d,J=8.6Hz),7.51-7.60(2H,m),7.77(1H,dd,J=1.8) \\ and \ 8.6Hz),7.85-7.96(3H,m),8.24(1H,bs).$

IR(CHCl3):3451,3060,3028,3010,2925,2870,1708,1652,1629,1600,1517,1502 / cm.

[α]D=+68.6° (MeOH,c=1.00,22°).

```
No.2a-130
```

CDCl3 300MHz

1.02(1H,d,J=10.2Hz),1.04 and 1.26(each 3H,each s),1.54-2.52(14H,m),4.41(1

H,m),5.41-5.58(2H,m),6.14(1H,d,J=9.0Hz),7.43-7.59(4H,m),7.85-7.92(2H,m),8.

27(1H,dd,J=1.8 and 7.2Hz).

IR(CHCl3):3436,3032,3010,2924,2870,2664,1708,1652,1512,1498 /cm.

 $[\alpha]D=+93.9^{\circ} (MeOH, c=1.00, 22^{\circ})$

m.p.94.0-96.0℃

No.2a-131

[α]D=+50.2° (MeOH,c=0.95,21°C).

No.2a-132

[α]D=+10.9° (MeOH,c=0.92,21°C).

No.2a-133

[α]D=+60.4° (MeOH,c=1.00,21°C).

No.2a-134

[α]D=+38.5° (MeOH,c=1.01,23°C).

No.2a-135

[α]D=+52.5° (MeOH,c=1.01,23°C).

m.p.180.0-182.0℃

No.2a-136

 $[\alpha]D=+35.3^{\circ} (MeOH, c=1.02, 23^{\circ}).$

m.p.79.0-80.0℃

No.2a-137

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.43(3H,t,J=6.9Hz),1.52 -2.44(14H,m),4.03(2H,q,J=6.9Hz),4.26(1H,m),5.33-5.50(2H,m),6.19(1H,d,J=8.7Hz),6.88-7.00(6H,m),7.65-7.68(2H,m).

IR(CHCl3):3455,3031,3024,3014,2988,2925,2870,1741,1708,1649,1602,1521,1 504,1490 /cm.

 $[\alpha]D=+52.0^{\circ} (MeOH, c=1.01, 23^{\circ}).$

No.2a-138

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.35(6H,d,J=6.0Hz),1.53 -2.46(14H,m),4.25(1H,m),4.51(1H,m),5.33-5.50(2H,m),6.12(1H,d,J=9.0Hz),6.8 7-6.99(6H,m),7.65-7.68(2H,m).

IR(CHCl3):3454,3031,3014,2980,2925,2870,1741,1708,1649,1602,1522,1490 / cm.

[α]D=+50.0° (MeOH,c=1.05,22°).

No.2a-139

CDC13 300MHz

 $1.00(1H,d,J=10.2Hz),1.16 \ and \ 1.24(each \ 3H,each \ s),1.59-2.52(14H,m),4.31(1H,m),5.40-5.53(2H,m),6.36(1H,d,J=8.7Hz),6.70(1H,d,J=1.5Hz),7.12(1H,m),7.30(1H,m),7.47(1H,dd,J=0.6 \ and \ 8.1Hz),7.61(1H,d,J=8.4Hz).$

IR(CHCl3):3449,3243,3029,3022,3013,2925,2871,1707,1631,1542,1505 /cm. [α]D=+63.4° (MeOH,c=1.00,23°C).

m.p.178.0-179.0℃

No.2a-140

CDC13 300MHz

 $0.97(1H,d,J=10.2Hz),1.18 \ and \ 1.23(each \ 3H,each \ s),1.57-2.50(14H,m),4.35(1H,m),5.32-5.55(2H,m),6.42(1H,d,J=8.7Hz),6.70(1H,d,J=1.5Hz),7.21-7.24(2Hm),7.46(1H,m),7.76(1H,m),7.86(1H,d,J=3.0Hz),10.20(1H,s).$

IR(CHCl3):3465,3010,2924,1739,1604,1546,1504 /cm.

 $[\alpha]D=+39.4^{\circ} (MeOH,c=1.01,22^{\circ}).$

m.p.167.0-168.0℃

No.2a-141

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),3.84(3H,s),4.27(1H,m),5.34-5.52(2H,m),6.28(1H,d,J=9.0Hz),6.91 and 7.47(each 2H,each d,J=9.0Hz),6.98 and 7.14(each 1H,each d,J=16.5Hz),7.54 and 7.70(each 2H,eachd,J=8.7Hz).

IR(CHCl3):3453,3025,3015,2925,2870,2839,1740,1708,1649,1602,1510,1493,1 470 /cm.

 $[\alpha]D=+73.4^{\circ} (MeOH,c=1.02,22^{\circ}).$

m.p.155.0-157.0℃

No.2a-142

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.79(3H,s),4.27(1H,m),5.34-5.50(2H,m),6.24(1H,d,J=9.0Hz),6.49 and 6.62(each 1H,each d,J=12.3Hz),6.77 and 7.16(each 2H,each d,J=8.7Hz),7.32 and 7.59(each 2H,each d,J=8.1Hz).

IR(CHCl3):3453,3025,3014,2925,2870,2839,1739,1708,1649,1606,1510, 1494 /cm.

[α]D=+60.7° (MeOH,c=0.99,22°).

No.2a-143

[α]D=+57.3° (MeOH,c=1.01,23°).

No.2a-144

 $[\alpha]D=+12.2^{\circ} (MeOH, c=1.00.23^{\circ}).$

m.p.114.0-116.0℃

No.2a-145

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.21(each 3H,each s),1.52-2.44(14H,m),4.25(1H,m),5.33-5.49(2H,m),6.37(1H,d,J=8.7Hz),7.45-7.47(3H,m),7.62-7.66(2H,m),7.69 and 7.80(each 2H,each d,J=7.5Hz,).

IR(CHCl3):3449,3058,3027,3012,2925,2870,1708,1655,1513,1481,1043 /cm. $[\alpha]D=+61.0^{\circ}$ (MeOH,c=1.01,23 $^{\circ}$).

No.2a-146

CDC13 300MHz

0.95(1H,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.41(14H,m),4.25(1H,m),5.33-5.49(2H,m),6.33(1H,d,J=8.4Hz),7.49-7.61(3H,m),7.91-7.92(2H,m),7.82 and 7.97(each 2H,each d,J=8.7Hz,).

IR(CHCl3):3447,3029,3023,3015,2925,2870,1708,1660,1514,1484,1321,1161 / cm.

[α]D=+62.0° (MeOH,c=1.00,22°C).

No.2a-147

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.51(3H,s),4.26(1H,m),5.34-5.51(2H,m),6.23(1H,d,J=8.4Hz),7.26 and 7.64(each 2H,each d,J=8.4Hz).

IR(CHCl3):3453,3027,3015,2925,2870,2665,1708,1648,1596,1516,1484 /cm. [α]D=+67.7° (MeOH,c=0.82,22 $^{\circ}$).

No.2a-148

 $[\alpha]D=+72.5^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-149

 $[\alpha]D=+67.8^{\circ} (MeOH, c=0.98, 25^{\circ}).$

No.2a-150

CDC13 300MHz

0.94(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.22(1H,m),5.36-5.55(2H,m),6.48(1H,d,J=8.4Hz),8.35(1H,s),8.90(1H,s).

IR(CHCl3):3443,3374,3091,3024,3012,2925,2871,1709,1652,1525,1494 /cm.

 $[\alpha]D=+58.1^{\circ} (MeOH,c=1.01,23^{\circ}).$

m.p.120.0-122.0℃

No.2a-151

[α]D=+40.6° (MeOH,c=1.01,23°C).

No.2a-152

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.10 and 1.24(each 3H,each s),1.50-2.50(14H,m),2.71(3H,s),4.26(1H,m),5.37-5.51(2H,m),6.02(1H,d,J=9.0Hz),8.73(1H,s).

IR(CHCl3):3463,3435,3087,3025,3014,2925,2870,1708,1649,1523,1503 /cm. [α]D=+54.1° (MeOH.c=1.02.22°).

No.2a-153

CDC13 300MHz

0.95(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.50(14H,m),2.50(3H,s),4.26(1H,m),5.36-5.51(2H,m),6.01(1H,d,J=8.4Hz),6.88(1H,d,J=5.1Hz),7.26(1H,d,J=5.1Hz).

IR(CHCl3):3469,3431,3025,3013,2925,2871,2664,1708,1639,1544,1505 /cm. [α]D=+35.8° (MeOH,c=1.03,22°C).

No.2a-154

CDC13 300MH₂

0.95(1H,d,J=9.9Hz),1.10 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.51(3H,d,J=1.2Hz),4.26(1H,m),5.34-5.50(2H,m),6.00(1H,d,J=8.4Hz),6.73(1H,dd,J=5.1 and 3.6Hz),7.29(1H,d,J=3.6Hz).

IR(CHCl3):3450,3431,3026,3011,2925,2869,1739,1708,1639,1547,1508 /cm. [α]D=+50.5° (MeOH,c=1.01,22°C).

No.2a-155

CDCl3 300MHz

0.99(1H,d,J=10.2Hz),1.19 and 1.25(each 3H,each s),1.53-2.48(14H,m),4.31(1H,m),5.36-5.51(2H,m),6.79(1H,d,J=9.3Hz),7.29(1H,m),7.41(1H,m),7.48(1H,s),7.51(1H,m),7.66(1H,d,J=8.1Hz).

IR(CHCl3):3436,3029,3024,3015,2925,2871,2670,1708,1659,1598,1510 /cm. [α]D=+69.1° (MeOH,c=1.01,22 $^{\circ}$).

No.2a-156

CDCl3:CD3OD=10:1 300MHz

0.99(1H,d,J=9.9Hz),1.11 and 1.21(each 3H,each s),1.56-2.58(14H,m),4.22(1 H,m),5.35-5.59(2H,m),6.83(1H,d,J=8.4Hz),7.48(1H,d,J=8.4Hz),7.61(1H,dd,J=1.5 and 8.4Hz),8.09(1H,d,J=1.5Hz),8.12(1H,s). IR(KBr):3422,3115,2985,2922,2869,2609,1708,1636,1578,1529,1470 /cm. $[\alpha]D=+62.8^{\circ}$ (MeOH,c=1.01,22°C).

No.2a-157

 $[\alpha]D=+40.0^{\circ} (MeOH,c=0.95,22^{\circ}).$

No.2a-158

CDC13 300MHz

1.00(1H,d,J=10.5Hz),1.17 and 1.24(each 3H,each s),1.54-2.50(14H,m),4.34(1H,m),5.36-5.52(2H,m),7.80(1H,d,J=9.0Hz),9.30(1H,s).

IR(CHCl3):3410,3122,3030,3012,2925,2871,2668,1709,1667,1538,1466 /cm. [α]D=+44.9° (MeOH,c=0.99,22°C).

No.2a-159

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.55-2.43(14H,m),3.03(6 H,s),4.23(1H,m),5.32-5.51(2H,m),6.16(1H,d,J=8.7Hz),6.87 and 7.63(each 2H,each d,J=8.7Hz).

IR(CHCl3):3457,3028,3006,2924,2870,2654,1739,1709,1637,1608,1608,1534,1 501 /cm.

[α]D=+64.8° (MeOH,c=1.01,22°C).

No.2a-160

d6-DMSO 300MHz

0.83(1H,d,J=9.9Hz),1.02 and 1.19(each 3H,each s),1.38-1.61(3H,m),1.90-2.3 2(11H,m),3.90(1H,m),5.41-5.44(2H,m),7.32(1H,dd,J=0.9 and 7.2Hz),7.45-7.60 (2H,m),7.77(1H,dd,J=0.9 and 7.8Hz),8.03(1H,d,J=6.9Hz),12.40(1H,s). IR(Nujol):3315,2924,2856,2656,2535,1737,1703,1637,1598,1581,1541 /cm. [α]D=+78.5° (MeOH,c=1.01,24 γ). m.p.161.0-162.0 γ

No.2a-161

 $[\alpha]D=+65.3^{\circ} (MeOH,c=1.00,22^{\circ}).$

No.2a-162

CDCl3 300MHz

0.99(1H,d,J=10.2Hz),1.13 and 1.25(each 3H,each s),1.53-2.45(14H,m),4.30(1H,m),5.36-5.51(2H,m),6.32(1H,d,J=8.4Hz),7.88 and 8.28(each 2H,each d,J=9.0Hz).

IR(CHCl3):3448,3029,3016,2925,2870,1708,1664,1602,1527,1484,1347 /cm. [α]D=+72.7° (MeOH,c=1.02,22°C).

No.2a-163

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.51(14H,m),4.26(1H,m),5.36-5.57(2H,m),6.68(1H,d,J=7.8Hz),7.41(1H,dd,J=4.8 and 8.1Hz),8.20(1H,d,J=8.1Hz),8.66(1H,d,J=4.8Hz),9.00(1H,s).

IR(CHCl3):3448,3026,3013,2925,2870,2534,1709,1658,1590,1515,1471 /cm. [α]D=+71.3° (MeOH,c=1.01,22°C).

No.2a-164

[α]D=+40.8° (MeOH,c=0.98,22°).

No.2a-165

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.11 and 1.24(each 3H,each s),1.55-2.52(14H,m),4.24(1H,m),5.37-5.57(2H,m),6.63(1H,d,J=7.8Hz),7.59 and 8.63(each 2H each d,J=6.0Hz).

IR(CHCl3):3447,3346,3028,3016,2925,2870,2538,1941,1708,1662,1556,1516 / cm.

[α]D=+75.4° (MeOH,c=1.01,22°).

No.2a-166

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.51-2.44(14H,m),2.95(6H,s),4.25(1H,m),5.33-5.50(2H,m),6.19(1H,d,J=8.7Hz),6.77 and 6.97(each 2H,each d,J=8.4Hz),6.94 and 7.65(each 2H,each d,J=9.0Hz).

IR(CHCl3):3453,3024,3016,2924,2871,2806,1739,1708,1647,1612,1604,1515,1 490 /cm.

[α]D=+53.1° (MeOH,c=1.02,23°C).

m.p.104.0-105.5℃

No.2a-167

CDCl3 300MHz

1.01(1H,d,J=9.9Hz),1.19 and 1.26(each 3H,each s),1.56-2.53(14H,m),4.37(1H,m),5.35-5.55(2H,m),6.47(1H,d,J=8.4Hz),7.61-7.71(2H,m),7.79(2H,s),7.89-7.97(2H,m),8.27(1H,d,J=2.1Hz),8.66-8.73(2H,m).

IR(CHCl3):3450,3024,3014,2925,2870,2667,1707,1650,1531,1509 /cm. [α]D=+70.5° (MeOH,c=1.00,22°).

No.2a-168

CDCl3 300MHz

 $1.02(1H,d,J=10.2Hz),1.20 \ and \ 1.26(each \ 3H,each \ s),1.56-2.50(14H,m),4.38(1H,m),5.36-5.56(2H,m),6.51(1H,d,J=8.4Hz),7.61-7.93(7H,m),8.74(1H,d,J=8.4Hz),9.15(1H,s).$

IR(CHCl3):3517,3451,3060,3028,3011,2925,2870,2664,1709,1651,1519,1498/c m.

[α]D=+54.4° (MeOH,c=1.00,23°C).

No.2a-169

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.44(14H,m),3.85(3H,s),4.24(1H,m),5.32-5.48(2H,m),6.19(1H,d,J=8.4Hz),6.94 and 7.45(each 2H,each d,J=9.0Hz),7.11 and 7.45(each 2H,each d,J=8.7Hz).

IR(CHCl3):3516,3453,3029,3009,2925,2870,2840,2665,1708,1650,1593,1515,1 493,1482 /cm.

[α]D=+57.8° (MeOH,c=1.00,23°C).

No.2a-170

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.52-2.50(14H,m),4.28(1H,m),5.33-5.54(2H,m),6.25(1H,d,J=8.2Hz),7.38-7.44(2H,m),7.74(1H,s),7.81-7.86(2H,m).

IR(CHCl3):3517,3448,3427,3024,3013,2925,2870,2669,1708,1650,1562,1535,1 500 /cm.

 $[\alpha]D=+61.6^{\circ} (MeOH,c=1.00,23^{\circ}C).$

No.2a-171

CDC13 300MHz

0.96(1H,d,J=10.2Hz,1.11 and 1.22(each 3H,each s),1.52-2.42(14H,m),2.48(3H,s),4.21(1H,m),5.31-5.52(2H,m),6.06(1H,d,J=8.2Hz),6.97 and 7.59(each 1H,each d,J=1.2Hz).

IR(CHCl3):3452,3113,3028,3007,2925,2870,2669,1708,1645,1554,1509 /cm. [α]D=+52.4° (MeOH,c=1.00,23°C).

No.2a-172

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.09 and 1.28(each 3H,each s),1.50-2.40(14H,m),2.69(3

H,s, 4.24(1H,m), 5.35-5.51(2H,m), 5.96(1H,d,J=8.7Hz), 7.03 and 7.07(each 1H, each d, J=5.4Hz).

IR(CHCl3):3451,3031,3013,2925,2870,2666,1708,1647,1542,1497 /cm. [α]D=+51.2° (MeOH,c=1.00,23°C).

No.2a-173

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.10 and $1.23(each 3H,each s),1.50\cdot2.45(14H,m),4.22(1H,m),5.35\cdot5.49(2H,m),6.05(1H,d,J=8.4Hz),7.26$ and 7.75(each 1H,each d,J=1.5Hz).

IR(CHCl3):3451,3011,3029,3011,2925,2870,1708,1652,1538,1500 /cm. [α]D=+50.6° (MeOH,c=1.01,23 $^{\circ}$ C).

No.2a-174

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.29(1H,m),5.35-5.51(2H,m),7.02(1H,d,J=8.4Hz),7.32 and 8.16(each 1H,each d,J=3.9Hz).

IR(CHCl3):3417,3115,3023,3014,2925,2870,1708,1645,1530 /cm. [α]D=+48.8° (MeOH,c=1.02,23°C).

No.2a-175

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.50-2.52(14H,m),2.52(3H,s),4.29(1H,m),5.34-5.51(2H,m),7.78(1H,d,J=9.0Hz),7.24 and 7.52(each 1H,each d,J=5.4Hz).

IR(CHCl3):3329,3093,3023,3015,2924,2871,1708,1640,1526 /cm. α D=+45.0° (MeOH,c=1.01,23°C).

No.2a-176

CDCl3 300MHz

0.95(1H,d,J=10.5Hz),1.09 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.40(3H,d,J=0.9Hz),4.24(1H,m),5.35-5.51(2H,m),6.05(1H,d,J=8.7Hz),6.95(1H,m),7.57(1H,d,J=3.3Hz).

IR(CHCl3):3517,3444,3103,3024,3013,2926,2870,1739,1708,1649,1636,1507/c m.

 $[\alpha]D=+54.8^{\circ}$ (MeOH,c=1.01,23°C).

m.p.97.0-99.0℃

No.2a-177

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.93(3H,s),4.27(1H,m),5.34-5.50(2H,m),6,35(1H,d,J=3.3Hz),7.80(1H,d,J=8.7Hz),8.10 (1H,d,J=3.3Hz).

IR(CHCl3):3395,3121,3031,3019,3012,2925,2871,1739,1709,1640,1557,1533 / cm.

 $[\alpha]D=+22.8^{\circ}$ (MeOH,c=1.01,23°C).

m.p.109.0-112.0℃

No.2a-178

CDC13 300MHz

 $0.96(1H,d,J=10.5Hz),1.10 \ and \ 1.23(each \ 3H,each \ s),1.51-2.45(14H,m),4.24(1H,m),5.35-5.50(2H,m),6.09(1H,d,J=8.4Hz),7.17-7.31(6H,m),7.95(1H,d,J=1.5Hz).$

IR(CHCl3):3510,3451,3062,3031,3022,3011,2925,2870,2662,1708,1651,1582,1 5351497,1477/cm.

 $[\alpha]D=+47.9^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-179

CDCl3 300MHz

0.96(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.30(1 H,m),5.36-5.52(2H,m),6.73(1H,d,J=9.0Hz),6.26 and 7.37(each 1H,each d,J=6.0Hz).

IR(CHCl3):3509,3429,3115,3094,3025,3014,2925,2871,2666,1708,1649,1529,1 510 /cm.

[α]D=+51.0° (MeOH,c=1.02,25°C).

No.2a-180

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.46(14H,m),3.89(3 H,s),4.21(1H,m),5.35-5.50(2H,m),6.05(1H,d,J=8.4Hz),6.46 and 7.04(each 1H,each d,J=1.8Hz).

IR(CHCl3):3516,3450,3114,3031,3010,2925,2871,1708,1648,1546,1511,1477 / cm.

[α]D=+49.1° (MeOH,c=1.01,25°C).

No.2a-181

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.52-2.48(14H,m),2.42(3H,s),4.31(1H,m),5.34-5.52(2H,m),8.07(1H,d,J=9.3Hz),7.27 and 8.17(each 1H,each d,J=3.3Hz).

IR(CHCl3):3510,3301,3112,3023,3007,2924,2871,2663,1708,1636,1534 /cm. [α]D=+41.0° (MeOH,c=0.96,25 $^{\circ}$ C).

No.2a-182

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.46(14H,m),2.51(3

H,s, 4.21(1H,m), 5.35-5.51(2H,m), 6.05(1H,d,J=8.1Hz), 7.26 and 7.78(each 1H, each d, J=1.8Hz).

IR(CHCl3):3509,3450,3109,3024,3012,2925,2870,2666,1708,1650,1535,1 498,1471 /cm.

 $[\alpha]D=+52.9^{\circ} (MeOH,c=0.95,25^{\circ}).$

No.2a-183

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),4.25(1H,m),5.33-5.51(2H,m),6.17(1H,d,J=8.7Hz),7.01-7.05(3H,m).7.14 and 7.62(each 2H,each d,J=8.7Hz),7.27-7.34(2H,m).

IR(CHCl3):3428,3026,3015,2925,2870,2666,1739,1708,1643,1613,1594,1526,1 499 /cm.

[α]D=+64.8° (MeOH,c=1.02,23°C).

No.2a-184

CDC13 300MHz

 $1.01(1H,d,J=10.2Hz),1.18 \ and \ 1.26(each \ 3H,each \ s),1.55-2.50(14H,m),4.35(1H,m),5.35-5.55(2H,m),6.42(1H,d,J=8.7Hz),7.46-7.52(2H,m).7.73(1H,dd,J=1.8)$ and 8.4Hz),7.83-7.89(2H,m),8.21(1H,m),8.59(1H,d,J=1.5Hz).

IR(CHCl3):3451,3031,3014,2925,2870,2660,1739,1708,1650,1604,1513,1463 / cm.

 $[\alpha]D=+58.3^{\circ} (MeOH,c=1.00,23^{\circ}).$

No.2a-185

CDC13 300MHz

 $1.00(1H,d,J=10.2Hz),1.18 \ and \ 1.25(each \ 3H,each \ s),1.55\cdot2.50(14H,m),4.34(1H,m),5.35\cdot5.54(2H,m),6.36(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.50(1H,m),7.5$ $7-7.59(2H,m),7.79(1H,dd,J=1.8 \ and \ 8.1Hz),7.99(1H,d,J=7.8Hz),8.39(1H,d,J=7.8Hz)$

1.8Hz).

IR(CHCl3):3451,3030,3020,2870,2665,1708,1652,1632,1603,1586,1514,1469,1 448 /cm.

[α]D=+59.4° (MeOH,c=1.01,24°C).

No.2a-186

CDC13 300MHz

 $1.00(1H,d,J=10.5Hz),1.17 \ and \ 1.25(each \ 3H,each \ s),1.54-2.50(14H,m),4.33(1H,m),5.35-5.54(2H,m),6.37(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.51(1H,t,J=7.8Hz),7.56(1H,m),7.70(1H,dd,J=1.2 \ and \ 8.4Hz),7.97(3H,m).$

IR(CHCl3):3451,3030,3014,2924,2870,2671,1739,1708,1652,1577,1517,1488,1 471 /cm.

[α]D=+72.2° (MeOH,c=1.00,24°C).

No.2a-187

CDCl3 300MHz

 $1.00(1H,d,J=9.8Hz), 1.18 \ and \ 1.25(each \ 3H,each \ s), 1.54\cdot2.53(14H,m), 4.07(3H,s), 4.37(1H,m), 5.30\cdot5.54(2H,m), 7.34(1H,m), 7.47(1H,s), 7.47\cdot7.60(2H,m), 7.93(1H,d,J=7.8Hz), 8.43(1H,s), 8.49(1H,d,J=9.0Hz).$

IR(CHCl3):3397,3074,3027,3020,3009,2924,1738,1708,1647,1633,1534,1465,1 453 /cm.

 $[\alpha]D=+43.7^{\circ} (MeOH, c=1.01, 25^{\circ}).$

No.2a-188

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.50(14H,m),4.23(1H,m),5.37-5.50(2H,m),6.10(1H,d,J=9.0Hz),6.20(1H,m),6.51(1H,m),6.97(1H,m),10.81(1H,bs).

IR(CHCl3):3450,3236,3112,3029,3015,2925,2871,2645,1701,1616,1558,1516

/cm.

[α]D=+50.6° (MeOH,c=1.01,24°C).

No.2a-189

CDCl3 300MHz

0.94(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.46(14H,m),3.93(3H,s),4.18(1H,m),5.35-5.52(2H,m),6.03(1H,d,J=9.3Hz),6.09(1H,m),6.48(1H,m),6.73(1H,m).

IR(CHCl3):3452,3102,3028,3007,2925,2871,2666,1739,1708,1650,1536,1499,1 471 /cm.

[α]D=+49.8° (MeOH,c=1.01,23°C).

m.p.101.5-103.5°C

No.2a-190

CDC13 300MHz

0.94(1H,d,J=10.2Hz),1.11 and 1.21(each 3H,each s),1.54-2.47(14H,m),4.23(1H,m),5.33-5.52(2H,m),6.06(1H,d,J=9.0Hz),6.34(1H,m),6.75(1H,m),6.36(1H,m),9.71(1H,bs).

IR(CHCl3):3470,3215,3030,3020,3010,2925,2871,2664,1709,1613,1564,1510 /cm.

[α]D=+43.3° (MeOH,c=1.01,24°C).

No.2a-191

CDCl3 300MH₂

 $0.96(1H,d,J=10.2Hz),1.11 \ and \ 1.22(each \ 3H,each \ s),1.55-2.44(14H,m),3.66(3H,s),4.20(1H,m),5.35-5.51(2H,m),5.93(1H,d,J=8.4Hz),6.27(1H,dd,J=1.8 \ and \ 2.7Hz),6.56(1H,t,J=2.7Hz),7.19(1H,t,J=1.8Hz).$

IR(CHCl3):3452,3031,3018,3006,2925,2871,2662,1736,1710,1634,1609,1556,1 498 /cm.

[α]D=+43.1° (MeOH,c=1.01,23°C).

No.2a-192

CDCl3 300MHz

 $0.96(1H,d,J=10.5Hz),1.11 \ and \ 1.21(each \ 3H,each \ s),1.43(3H,t,J=7.5Hz),1.54$ $\cdot 2.44(14H,m),3.93(2H,q,J=7.5Hz),4.21(1H,m),5.33\cdot5.51(2H,m),5.94(1H,d,J=8.$ $4Hz),6.27(1H,dd,J=1.8 \ and \ 2.7Hz),6.62(1H,t,J=2.7Hz),7.26(1H,t,J=1.8Hz).$ $IR(CHCl3):3630,3452,3032,3018,3006,2925,2871,2661,1735,1710,1633,1610,1555,1497 \ /cm.$

 $[\alpha]D=+40.1^{\circ} (MeOH, c=1.00, 23^{\circ}).$

No.2a-193

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.22(each 3H,each s),1.53-2.49(14H,m),2.58(3H,s),4.21(1H,m),5.35-5.54(2H,m),6.15(1H,d,J=8.1Hz),6.52(1H,dd,J=1.8 and 3.6Hz),7.29(1H,t,J=3.6Hz),7.94(1H,t,J=1.8Hz).

IR(CHCl3):3516,3450,3410,3152,3027,3015,2925,2871,2670,1732,1648,1574,1 509 /cm.

[α]D=+45.0° (MeOH,c=1.01,25°C).

No.2a-194

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.11 and 1.24(each 3H,each s),1.52-2.53(14H,m),4.34(1H,m),5.33-5.57(2H,m),6.21(1H,d,J=8.6Hz),7.35-7.50(2H,m),7.83(1H,s),7.86(1H,m).8.31(1H,m).

IR(CHCl3):3443,3067,3013,2925,2870,2665,1708,1651,1515,1493 /cm. [α]D=+55.7° (MeOH,c=1.01,23°C).

No.2a-195

CDCl3 300MHz

1.01(1H,d,J=10.0Hz),1.06 and 1.26(each 3H,each s),1.50-2.64(14H,m),2.68(3H,s),4.40(1H,m),5.36-5.61(2H,m),6.02(1H,d,J=9.4Hz),7.30-7.42(2H,m),7.73-7.86(2H,m).

IR(CHCl3):3510,3434,3062,3029,3014,2924,2871,2669,1708,1650,1563,1539,1 500 /cm.

[α]D=+72.4° (MeOH,c=1.00,23°C).

m.p.111.0-112.0°C

No.2a-196

CDC13 300MHz

0.42 and 1.04(each 3H,each s),0.80(1H,d,J=10.0Hz),1.11-2.48(14H,m),2.24(3 H,s),4.02(1H,m),5.23-5.44(2H,m),5.53(1H,d,J=8.8Hz),7.27-7.31(2H,m),7.42-7.48(3H,m),7.93(1H,s).

IR(CHCl3):3419,3114,3025,3006,2924,2871,2662,1737,1709,1636,1540,1519 / cm.

[α]D=+43.7° (MeOH,c=1.01,23°C).

No.2a-197

CDCl3 300MHz

0.95(1H,d,J=10.0Hz),1.09 and 1.23(each 3H,each s),1.54-2.46(18H,m),2.77(4H,bs),4.21(1H,m),5.32-5.54(2H,m),6.02(1H,d,J=8.6Hz),7.43(1H,s).

IR(CHCl3):3445,3101,3024,3014,2928,2865,2661,1739,1708 1646,1550,1507 / cm.

 $[\alpha]D=+51.9^{\circ} (MeOH,c=1.01,23^{\circ}).$

No.2a-198

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.50-2.44(14H,m),4.24(1

 $\begin{array}{l} H,m), 4.42(2H,s), 5.35 \cdot 5.49(2H,m), 6.25(1H,d,J=8.1Hz), 7.33(1H,m), 7.43(1H,dd,J=1.5and 7.5Hz), 7.49(1H,d,J=8.1Hz), 7.60 \cdot 7.63(1H,m), 7.68(1H,dd,J=1.8 and 7.8Hz), 8.02(1H,d,J=1.8Hz), 8.19(1H,dd,J=1.5 and 8.1Hz). \end{array}$

IR(CHCl3):3448,3030,3012,2925,2870,1739,1708,1671,1588,1559,1514,1472 / cm.

[α]D=+56.9° (MeOH,c=1.01,24°C).

No.2a-199

CDCl3 300MHz

 $0.96(1H,d,J=10.2Hz),1.11 \ and \ 1.22(each \ 3H,each \ s),1.51-2.46(14H,m),3.40(1H,m),3.76(1H,m),4.24(1H,m),5.33-5.51(3H,m),6.25(1H,m),7.16(1H,m),7.24-7.3$ $3(2H,m),7.46(1H,d,J=7.5Hz),7.52-7.60(2H,m),7.85(1H,dd,J=1.8 \ and \ 4.5Hz).$ IR(CHCl3):3583,3447,3062,3028,3013,2924,2871,2663,1708,1651,1600,1557,1 $514,1471 \ /cm.$

[α]D=+54.8° (MeOH,c=1.00,23°C).

No.2a-200

CDCl3 300MHz

0.96(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.25(1H,m),5.34-5.51(2H,m),6.25(1H,d,J=8.4Hz),7.02 and 7.10(each,1H,each d,J=12.3Hz),7.23-7.33(4H,m),7.50(1H,m),7.64(1H,dd,J=1.8 and <math>7.8Hz),7.82(1H,d,J=1.8Hz).

IR(CHCl3):3450,3060,3025,3014,2925,2871,2662,1708,1653,1596,1542,1513,1 473 /cm.

[α]D=+62.5° (MeOH,c=1.00,24°C).

No.2a-201

CDC13 300MHz

0.95(1H,d,J=9.9Hz),1.15 and 1.22(each 3H,each s),1.55-2.60(14H,m),4.26(1

H,m),5.35-5.63(2H,m),7.14(1H,d,J=9.9Hz),7.34 and 7.40(each,1H,each d,J=1 2.9Hz),7.62-7.73(4H,m),8.25-8.30(2H,m),8.72(1H,d,J=1.5Hz).

IR(CHCl3):3443,3389,3297,3061,3030,3016,2925 2870,1726,1708 1652,1603, 1521,1483,1472,1309 /cm.

 $[\alpha]D=+61.1^{\circ} (MeOH,c=1.01,23^{\circ}).$

No.2a-202

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.09 and 1.22(each 3H,each s),1.52-2.43(14H,m),2.63(3H,s),4.25(1H,m),5.33-5.49(2H,m),6.19(1H,d,J=8.4Hz),7.10 and 7.58(each,2H,each d,J=9.0Hz),7.21(1H,m),7.30-7.32(2H,m),7.46(1H,d,J=7.5Hz).

IR(CHCl3):3511,3453,3062,3032,3014,2925 2870,1739,1708,1650,1595,1556,1 516,1482,1471 /cm.

[α]D=+60.2° (MeOH,c=1.01,25°C).

No.2a-203

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.09 and 1.23(each 3H,each s),1.52-2.43(14H,m),4.23(1H,m),5.35-5.51(2H,m),5.93(1H,d,J=8.7Hz),6.56(1H,dd,J=0.9 and 1.8Hz),7.43(1H,t,J=1.8Hz),7.92(1H,dd,J=0.9 and 1.8Hz).

IR(CHCl3):3517,3450,3134,3031,3008,2925,2870,2667,1708,1656,1588,1570,1 514 /cm.

[α]D=+46.7° (MeOH,c=0.92,25°C).

No.2b-1

 $[\alpha]D = +25.6^{\circ} (MeOH, c=1.01.23^{\circ}).$

No.2b-2

 $[\alpha]D = +38.9^{\circ} (MeOH, c=1.01, 24^{\circ}).$

No2c-1

 $[\alpha]D= +60.5^{\circ} (MeOH,c=1.01,22^{\circ}).$

No.2c-2

 $[\alpha]D = +55.8^{\circ} (MeOH, c=0.92, 22^{\circ}).$

No.2c-3

 $[\alpha]D = +54.7^{\circ} (MeOH, c=1.01, 22^{\circ}).$

No.2d-1

 $[\alpha]D = -6.2^{\circ} (MeOH, c=1.00, 21^{\circ}).$

No.2d-2

 $[\alpha]D=+15.8^{\circ}$ (MeOH,c=0.34,22°C).

No.2d-3

[α]D=+31.6° (MeOH,c=1.01,22°C).

No.2e-1

 $[\alpha]D = -9.4^{\circ} (MeOH, c=1.00, 22^{\circ}).$

No.2e-2

[α]D= -1.8° (MeOH,c=1.02,23°C).

No.2e-3

 $[\alpha]D = -6.7^{\circ} (MeOH, c = 1.01, 23^{\circ}).$

No.2f-1

```
[\alpha]D = +6.8^{\circ} \text{ (MeOH,c=1.01,23}^{\circ}\text{C}).
```

No.2f-2

 $[\alpha]D = -2.6^{\circ} (MeOH, c=1.00, 22^{\circ}).$

No.2f-3

 $[\alpha]D = -3.5^{\circ} (MeOH, c=1.01, 22^{\circ}).$

No.2g-1

 $[\alpha]D = +54.6^{\circ} (MeOH, c=1.01.24^{\circ}).$

No.3a-2

CDCl3 300MHz

0.98-2.15(14H,m),2.31(2H,t,J=7.2Hz),2.35-2.40(1H,m),3.10-3.20(1H,m), 5.00(1H,d,J=6.9Hz),5.30-5.48(2H,m),6.75(1H,d,J=10.2Hz),7.38-7.52(6H,m). IR(CDCl3):3266,3028,2954,2874,1709,1620,1448,1412,1318,1141,970,892/cm. $[\alpha]D=+20.3\pm0.6$ (CHCl3,c=1.05,24°C).

No.3a-3

CDCl3 300MHz

0.95-2.00(14H,m), 2.20-2.29(3H,m), 3.00-3.08(1H,m), 3.66(3H,s), 5.00(1H,d, J=6.6Hz), 5.13-5.29(2H,m), 7.38-7.52(3H,m), 7.59-7.65(2H,m), 7.69-7.75(2H,m), 7.92-7.98(2H,m).

IR(CHCl3):3376,3018,2946,2868,1727,1594,1436,1395,1322,1157,1095,890/cm.

[α]D=+2.3±0.4° (CHC13,c=1.03,22°C).

mp.65-66.5℃

No.3a-4

CDCl3 300MHz

0.93-2.05(14H,m), 2.15-2.22(1H,m), 2.31(2H,t,J=7.2Hz), 3.01-3.10(1H,m),

5.18-5.31(3H,m),7.38-7.52(3H,m),7.58-7.66(2H,m),7.69-7.76(2H,m),7.92-

7.98(2H,m)

IR(CHCl3):3374,3260,3020,2948,2868,1708,1594,1479,1396,1319,1156,1095,1 052,891/cm.

 $[\alpha]D=+13.1\pm0.5^{\circ}(CHCl3,c=1.16,24^{\circ}C).$

No.3a-6

CD3OD 300MHz

1.04-1.95(14H,m),2.07(2H,t,J=7.8Hz),2.14-2.22(1H,m),2.94-3.00(1H,m), 5.04-5.25(2H,m),7.36-7.52(3H,m),7.66-7.71(2H,m),7.78-7.85(2H,m),7.91-7.97(2H,m).

IR(KBr):3421,3278,2951,2872,1562,1481,1409,1317,1156,1097,1057,895/cm. [α]D=-15.3 \pm 0.5 $^{\circ}$ (CHCl3,c=1.06,23 $^{\circ}$). mp.105-112 $^{\circ}$ C

No.3a-11

CDCl3 300MHz

0.90-2.04(14H,m), 2.08-2.19(1H,m), 2.35(2H,t,J=7.2Hz), 2.95-3.04(1H,m), 5.17-5.32(3H,m), 7.56-7.63(2H,m), 7.83-7.95(2H,m).

IR(CHCl3):3260,3020,2948,2868,1707,1569,1456,1383,1325,1268,1160,1088, 1053,1006,892/cm.

 $[\alpha]D=+8.3\pm0.5^{\circ}(CHCl3,c=1.00,22^{\circ}).$

No.3a-16

CDCl3 300MHz

0.80-1.90(14H,m),1.98-2.04(1H,m),2.27(2H,t,J=7.2Hz),2.88(6H,s),2.90-2.98(1H,m),4.88-5.00(2H,m),5.13(1H,d,J=7.2Hz),7.18(1H,d,J=7.5Hz),7.48-

7.60(2H,m), 8.25-8.33(2H,m), 8.53(1H,d,J=8.7Hz).

IR(CHCl3):3272,3020,2946,2866,2782,1708,1573,1455,1407,1311,1229,1160, 1142,1070,942,891/cm.

 $[\alpha]D=.19.7\pm0.6^{\circ}(CHC13,c=1.08,23.5^{\circ}C).$

No.3a-31

5.

CDCl3 300MHz

0.80-1.85(14H,m), 2.02-2.08(1H,m), 2.20(2H,t,J=7.2Hz), 2.85-2.95(1H,m),

3.68(3H,s), 4.80-4.92(2H,m), 4.96(1H,d,J=6.9Hz), 7.50-7.70(3H,m), 7.92-

7.98(1H,m), 8.07(1H,d,J=8.4Hz), 8.29(1H,dd,J=1.5&7.5Hz), 8.65

(1H,d,J=8.7Hz).

IR(CHCl3):3374,3016,2946,2868,1727,1506,1435,1318,1160,1133,1105,1051, 984,890/cm.

 $[\alpha]D=39.3\pm0.8$ (CHCl3,c=1.07,22°).

No.3a-32

CDC13 300MHz

 $0.80 - 1.90(14 \text{H}, \text{m}), 1.95 - 2.05(1 \text{H}, \text{m}), 2.27(2 \text{H}, \text{t}, \text{J} = 7.2 \text{Hz}), 2.90 - 2.96(1 \text{H}, \text{m}), \quad 4.85 - 2.05(1 \text{H}, \text{m}), \quad 4.85 - 2$

5.00(2H,m), 5.23(1H,d,J=6.6Hz), 7.50-7.72(3H,m), 7.95(1H,d,J=8.1Hz),

8.07(1H,d,J=8.4Hz), 8.29(1H,dd,J=1.2&7.5Hz), 8.66(1H,d,J=9.0Hz).

IR(CHCl3):3270,3020,2948,2868,1708,1455,1412,1317,1159,1132,1104,1079,1051,983,891/cm.

[α]D=-29.2 \pm 0.6° (CHCl3,c=1.08,22°C).

No.3a-33

CD3OD 300MHz

0.94-1.84(14H,m), 1.96-2.08(3H,m), 2.77-2.84(1H,m), 4.67-4.84(2H,m), 7.55-4.84(2H,m), 7.5

7.75(3H,m), 8.02(1H,d,J=7.8Hz), 8.12-8.26(2H,m), 8.74(1H,d,J=8.7Hz).

IR(KBr): 3432, 3298, 2951, 2872, 1564, 1412, 1315, 1159, 1134, 1107, 1082, 1058, 10680, 1068,

986/cm.

 $[\alpha]D=.79.9\pm1.2$ (CH3OH, c=1.00,23°C).

No.3a-34

CDC13 300MHz

 $0.97 - 1.91(14H,m), 2.13 - 2.20(1H,m), 2.42(2H,t,J=7.2Hz), 3.00 - 3.07(1H,m), \quad 5.06 - 3.07(1H,m), \quad 5.07(1H,m), \quad 5.07$

5.24(2H,m), 5.33(1H,d,J=6.9Hz), 7.57-7.68(2H,m), 7.82-8.00(4H,m),

8.45(1H,d,J=1.2Hz)

IR(CHCl3):3260,3020,2948,1708,1408,1319,1154,1129,1073,953,893/cm.

[α]D=+20.7±0.6° (CHCl3,c=1.07,22°C).

No.3a-35

CD3OD 300MHz

1.03-2.20(m,17H), 2.97(m,1H), 5.02(m,2H), 7.64(m,2H), 8.00(m,4H), 8.43(S,1H).

IR(KBr):3360,3285,1562,1407,1316,1153,1130,1075/cm.

 $[\alpha]D==0$

 $[\alpha]365=+20.9\pm0.6$ (CH3OH,c=1.04,23°C).

No.3d-1

CDCl3 300MHz

0.93-2.55(m,17H),3.02(m,1H),5.24(m,2H),6.48(m,1H),7.35-7.60(m,3H),7.85-7.60(m,3H)

8.00(m, 2H)

. IR(Nujol): 3275,1548,1160,1094,758,719,689,591,557/cm.

 $[\alpha]D=+19.0\pm0.6^{\circ}$ (CH3OH,c=1.010,26.5°C).

元素分析(C 20 H 26 N O 4 S・1 / 2 C a・1.0 H 2 O として)

計算值: C, 57.94; H, 6.82; N, 3.38; Ca, 4.83;

H2O, 4.35

実測値: C, 57.80; H, 6.68; N, 3.68; Ca, 5.06;

H2O, 4.50

```
No.3d-6
```

[α]D=-20.7 \pm 0.6° (CHCl3,c=1.00,24°C).

No.3d-7

[α]D=-3.2 \pm 0.4° (CHCl3:c=1.03,22°).

mp.65-67℃

No.3d-8

 $[\alpha]D=-14.5\pm0.5^{\circ}(CHCl3,c=1.07,24^{\circ}).$

No.3d-9

[α]D=+12.2±0.5*(CH3OH,c=1.00,23°C).

mp.119-125℃

No.3d-10

 $[\alpha]D=+39.7\pm0.8^{\circ}(CHC13,c=1.07,22^{\circ}C).$

No.3d-11

[α]D=+29.2 ± 0.7° (CHCl3,c=1.06,22°C).

No.3d-12

 $[\alpha]D=+76.4\pm1.1^{\circ}(CH3OH,c=1.03,24^{\circ}).$

No.3d-14

 $[\alpha]D=-20.6\pm0.6^{\circ}(CHCl3,c=1.07,22^{\circ}).$

No.3d-15

[α]365=-28.0 ± 0.7' (CH3OH,c=1.03,24.5°C).

```
No.3d-16
```

 $[\alpha]D=-8.7\pm0.5^{\circ}(CHC13,c=1.06,22^{\circ}).$

No.3d-17

CDC13 300MHz

 $0.80-2.15(m,24H),2.32(t,J=7Hz,2H),2.68(t,J=7Hz,2H),3.02(m,1H),2.15\\ (m,24H),2.32(t,J=7Hz,2H),2.68(t,J=7Hz,2H),3.02(m,1H),5.22(m,2H),5.38(d,J=7Hz,1H),7.30(A2B2q-Apart,J=8Hz,2H),7.81(A2B2qBpart,J=8Hz,2H),9.86$

(br.s, 1H). $[\alpha]D==0$

 $[\alpha]365=-9.7\pm0.5^{\circ}$ (CHCl3,c=1.03,22°C).

No.3d-24

 $[\alpha]D=+19.2\pm0.6$ (CHCl3,c=1.05,23°C).

No.3d-26

CD3OD 300MHz

0.90-2.20(20H,m), 2.88(1H,m), 3.07(2H,q,J=7.0Hz), 5.00-5.40(2H,m), 7.20-7.60(4H,m), 7.95(1H,m).

IR(KBr):3415,3254,1698,1564,1314,1154/cm.

No.3d-28

CD3OD 300MHz

0.90-2.20(20H,m), 2.73(2H,q,J=7.0Hz), 2.93(1H,m), 5.00-5.30(2H,m), 7.40-5.30(2H,m), 7.40-

7.50(2H,m),7.60-7.77(2H,m).

IR(KBr):3435,3280,1562,1323,1304,1151/cm.

No.3d-30

元素分析 C20H25BrNO4SNa

Calc.C50.21;H5.27;Br16.70;N2.93;S6.70;Na4.81

found.C50.22;H5.40;Br15.57;N2.88;S6.41;Na5.10

IR(KBr):3425,3280,3085,1697,1570,1410,1321,1165,1155/cm.

No.3e-1

CD3OD 300MHz

 $0.71(1H,d,J=10.2Hz),1.04(3H,s),1.12(3H,s),1.35-2.28(14H,m),\ 2.42(3H,s),3.17-1.04(3H,s),1.12(3H,s),1.35-2.28(14H,m),\ 2.42(3H,s),3.17-1.04(3H,s),1.12(3H,s),1.35-2.28(14H,m),\ 2.42(3H,s),3.17-1.04(3H,s),1.35-2.28(14H,m),\ 2.42(3H,s),3.17-1.04(3H,s),1.35-2.28(14H,m),\ 2.42(3H,s),3.17-1.04(3H,s),3.17-1$

3.25(1H,m), 5.18-5.39(2H,m), 7.37(2H,d,J=8.4Hz), 7.75(2H,d,J=8.4Hz).

IR(CHCl3):3400,3289,2986,2924,2870,1559,1424,1322,1305,1160,1095,1075,1030/cm.

[α]D=+25.9±0.7' (CH3OH,c=1.00,23°C).

上記実施例で得た化合物につき、以下の実験例に示す方法で、インビボ及びインビトロ活性を試験した。

実験例1 PGD2受容体の結合実験

試験材料及び試験方法

(1)ヒト血小板膜画分の調製

健常人(成人男性及び女性)の静脈より3.8%クエン酸ナトリウムの入ったプラスチック製シリンジにて採血した血液をプラスチック製試験管に入れ、軽く転倒混和した後、室温で、1800 rpm、10分間遠心分離し、上清の多血小板血漿[PRP (Platelet rich plasma)]を採取した。この PRPをさらに室温、2300 rpm、22分間の遠心分離に付し、血小板を得た。得られた血小板は homogenizer (Ultra-Turrax)を用いてホモジナイズした後、4℃、20000 rpm、10分間遠心分離を3回行い、血小板膜画分を得た。膜画分は蛋白定量後、2 mg/mlとし、結合実験に供するまで−80℃で冷凍保存した。

(2) PGD₂受容体の結合実験

結合反応液(50 m M Tris/HCl, pH7.4, 5 m M MgCl2) 0.2 mlに、とト血小板膜画分(0.1 mg)及び5 n M [3 H] PGD $_2$ (1.1.5 Ci/mmol) を加え、4 CTC 9 O分間反応させた。反応後ガラス繊維濾紙を用いて濾過し、冷生理食塩水で数回洗浄し、濾紙に残った放射活性を測定した。特異的結合量は全結合量から非特異的結合量($1.0 \text{ } \mu \text{M} \text{ PGD}_2$ 存在下での結合量)を差し引いた値とした。各化合物の結合阻害活性は、化合物非存在下での結合量を1.00 Sとし、各化合物存在下での結合量(%)を求めて置換曲線を作成することにより、5.0 S抑制濃度(1.0 C C C C C C C D D を算出した。結果を以下に示す。

化合物番号	結合活性 (μ M)	化合物番号	結合活性(μ M)
3a-4	0.6	2a-4	0.54
la-115	8. 6	2a-17	0.12
1a-28	0.045	2a-21	5. 2
la-47	0.0086	2a-28	0.046

la-100	0.56	2a-95	1.6
la-176	0.047	2a-109	0.003
la-2	0.13		,
la-162	0.027		

実験例2 ヒト血小板を使ったPGD2受容体の拮抗活性

あらかじめ 1/9量のクエン酸ーデキストロース液を添加したシリンジで健常人から末梢血を採取し、180gで10分間遠心した後、上清(PRP: platelet rich plasma)を採取する。得られたPRPを洗浄パッファーで 3回遠心洗浄した後、血小板数をミクロセルカウンターでカウントする。最終濃度 5×10^8 個/ml となるように調製した血小板浮遊液を 37℃に加温後、3 一イソプチルー 1 一メチルキサンチン(0.5 mM)で 5 分間前処置し、種々の濃度に希釈した化合物を添加し、その 10 間後に $0.1\sim2.0$ μ M の PGD $_2$ を添加して反応を惹起した。15 分後に塩酸を加えて反応を停止し、超音波ホモジナイザーにて血小板を破壊し、遠心後その上清中の cAMP を放射アッセイにて定量する。薬物のPGD $_2$ 受容体拮抗活性はPGD $_2$ 添加によって増加した cAMP 量に対する抑制率を各濃度で求め、50%の阻害を示す薬物濃度を算出して評価した。結果を以下に示す。

11. 口彻备亏	<u> ヒト皿小板 cAMP 上昇阻害 I C 5 0 (μ M)</u>
3a-16	0.37
1a-121	2.11
1a-28	0.30
la-47	2.09
2a.2	0.77
2a-4	0.94
2a-35	1. 5 2
2a.75	0.71

実験例3 鼻閉モデルによる実験

モルモットを用いる鼻腔抵抗の測定及び抗鼻閉作用の評価の方法を以下に示す。 1%卵白アルブミン (OVA) 溶液を超音波ネブライザーでエアロゾル化し、これをハートレイ (Hartley) 系雄性モルモットに1週間隔で2回、各10分間吸入させて感作し、その7日後に抗原を暴露して反応を惹起した。ベントバルビタール (30 mg/kg, i.p.) 麻酔下にモルモットの気管を切開して鼻腔側と肺側にそれぞれカニューレを装着し、肺側には毎分60回、1回4 ml の空気を送気する人工呼吸器を接続した。ガラミン (2 mg/kg, i.v.)でモルモットの自発呼吸を停止させた後、鼻腔側のカニューレより人工呼吸器を用いて毎分70回、1回4 ml の空気を鼻吻側に送り、この送気に必要な空気圧を側枝に装着したトランスデューサーを介して測定し、鼻腔抵抗の指標とした。抗原の暴露は3%OVA溶液のエアロゾルを人工呼吸器と鼻腔カニューレの間に3分間発生させることにより行った。被検薬物は抗原暴露の10分前に静注した。成績は0から30分間の鼻腔抵抗を連続的に測定し、その30分間のAUC (縦軸に鼻腔抵抗(cm H2O)、横軸に時間(0~30分間))を指標に、ビークルに対する抑制率として表示した。結果を以下に示す。

化合物番号	抑制率 (%)	備考
	1 mg/Kg(i.v.)	
1a-28	4 4	
1a-98	6 9	
1a-100	5 0	
la-115	6 6	
la-116	4 8	
1a-120	5 8	3mg/Kg(i.v.)
1a-2	8 2	
1a-162	8 0	
la-176	6 0	
1a-267	6 2	

2a-4	6 0	
2a-21	5 2	
2a-28	5 4	
2a-95	7 7	
2a-96	7 7	10mg/Kg(p.o.)
2a-109	7 3	
2a-110	6 6	10mg/Kg(p.o.)
2a-194	7 9	

製剤例1

錠剤の製造

40mgの有効成分を含有する錠剤を常法により製造した。40mg錠の組成を以下に示す。

製剤例2

顆粒剤の製造

WO 97/00853	PCT/JP96/01685

ポロクサマー188	20.0mg
結晶セルロース	70.0mg
トウモロコシデンプン	300.0mg
乳糖	<u>440.0mg</u>
	会計 1000 0-

請求の範囲

1. 式(I):

(式中、

は、

を表わし、

Aはヘテロ原子もしくはフェニレンを介在していてもよく、オキソ基を有していてもよく、および/または不飽和結合を有していてもよいアルキレン;

Bは水素、アルキル、アラルキルまたはアシル;

R t C O O R₁, C H₂ O R₂ a t t t C O N (R₃) R₄;

R₁は水素またはアルキル;

R₂は水素またはアルキル;

 R_3 および R_4 はそれぞれ独立して水素、アルキル、ヒドロキシまたはアルキルスルホニル;

 X_1 は単結合、フェニレン、ナフチレン、チオフェンジイル、インドールジイルまたはオキサゾールジイル;

 X_2 は単結合、-N=N-、-N=CH-、-CH=N-、-CH=N-N-、

$$-CH=N-O-$$
, $-C=NNHCSNH-$, $-C=NNHCONH-$,

$$-CH = CH - CH (OH) - CC (CI) = CC (CI) - CC (CI)$$

$$-(CH_2)$$
 $n-$, $IF=LVV$, $-N(R_5)$ $-$, $-N(R_{51})$ $CO-$.

$$-N (R_{52}) SO_2-, -N (R_{53}) CON (R_{54}) -.$$

$$-CON(R_{55})$$
 -, $-SO_2N(R_{56})$ -, $-O-$, $-S-$, $-SO-$.

$$-SO_2-$$
、 $-CO-$ 、オキサジアソールジイル、チアジアソールジイル

またはテトラゾールジイル;

 X_3 はアルキル、アルケニル、アルキニル、アリール、アラルキル、ヘテロ環、シクロアルキル、シクロアルケニル、チアゾリニリデンメチル、チアゾリジニリデンメチル、一 $CH=NR_6$ または $-N=C(R_7)R_8$;

 R_5 、 R_{51} 、 R_{52} 、 R_{53} 、 R_{54} 、 R_{55} および R_{56} は水素またはアルキル; R_6 は水素、アルキル、ヒドロキシ、アルコキシ、カルバモイルオキシ、チオカルパモイルオキシ、ウレイドまたはチオウレイド;

 R_7 および R_8 はそれぞれ独立してアルキル、アルコキシまたはアリール; nは1または2;

Zは-SO2-または-CO-:

mは0または1:

これらの定義において、置換基が環状のものはニトロ、アルコキシ、スルファモイル、置換もしくは非置換アミノ、アシル、アシルオキシ、ヒドロキシ、ハロゲン、アルキル、アルキニル、カルボキシ、アルコキシカルボニル、アラルコキシカルボニル、アリールオキシカルボニル、メシルオキシ、シアノ、アルケニルオキシ、ヒドロキシアルキル、トリフルオロメチル、アルキルチオ、 $-N=PPh_3$ 、オキソ、ヒドロキシイミノ、アルコキシイミノ、フェニルおよびアルキレンジオキシから選ばれる $1\sim3$ 個の基で置換されていてもよい)である化合物またはその塩もしくは水和物を有効成分として含有する PGD_2 拮抗剤。

2. 有効成分が式(I)で示される化合物において、

が、

を表わし、mが0であり、ZがS O_2 のとき、 X_1 および X_2 がともに単結合であり、 X_3 がアルキル、フェニル、ナフチル、スチリル、キノリルまたはチェニルを表わし、これらの置換基のうち、環状のものがニトロ、アルコキシ、置換もし

くは非置換アミノ、ハロゲン、アルキルおよびヒドロキシアルキルから選ばれる $1 \sim 3$ 個の基で置換されていてもよい化合物またはその塩もしくは水和物である 請求の範囲第 1 項記載の P G D $_2$ 拮抗剤。

3. 有効成分が式 (I) で示される化合物において、

が、

を表わし、mが1のとき、 X_1 および X_2 がともに単結合であり、 X_3 がハロゲンで置換されていてもよいフェニルである化合物またはその塩もしくは水和物である請求の範囲第1項記載の PGD_2 拮抗剤。

4. 有効成分が式 (I) で示される化合物において、

が、

を表わし、mが1のとき、 X_1 がフェニル、 X_2 が $-CH_2$ -または-N=N-であり、 X_3 がフェニルである化合物またはその塩もしくは水和物である請求の範囲第1項記載の PGD_2 拮抗剤。

- 5. 鼻閉治療剤である請求の範囲第1項記載のPGD2拮抗剤。
- 6. 式(Ia):

$$\bigvee_{\substack{N \\ B}} A - R$$

$$(Ia)$$

(式中、A、B、R、 X_1 、 X_2 および X_3 が前記と同意義である。

ただし、(1) X_1 および X_2 が単結合であり、 X_3 が置換もしくは非置換フェニルまたはナフチル、および(2) Aが 5 - へ プテニレン、<math>R が C O OR_1 $(R_1$ は水素またはメチル)、 X_1 が 1 、4 - 7 ェニレン、 X_2 が単結合、 X_3 が 7 ェニルである場合を除く)で示される化合物またはその塩もしくは水和物。

7. X_1 および X_2 が単結合であり、 X_3 がイソオキサゾリル、チアジアゾリル、イソチアゾリル、モルホリル、インドリル、ベンゾフリル、ジベンソフリル、ジベンゾフリル、ジベンゾチエニル、カルバゾリル、キサンテニル、フェナントリジニル、ジベンゾオキセピニル、ジベンゾチエピニル、シンノリル、クロメニル、ベンゾイミダゾリルまたはジヒドロベンゾチエピニルであり、A、B、R、は前記と同意義である諸求の範囲第6項記載の化合物またはその塩もしくは水和物。

- 8. X_1 が単結合、 X_2 がフェニレン、 X_3 がアルケニル、アルキニル、一 $CH=NR_6$ または-N=C(R_7) R_8 を表わし、A、B、R、 R_6 、 R_7 および R_8 は前記と同意義である請求の範囲第 6 項記載の化合物またはその塩もしくは水和物。
- 9. Rが $COOR_1$ 、 X_1 がフェニレンまたはチオフェンジイル、 X_2 が単結合、-N=N-、-CH=CH-、-CONH-、-NHCO-またはエチニレンおよび X_3 がフェニル、チアゾリニリデンメチル、チアゾリジニリデンメチルまたはチエニルを表わし、A、B、 R_1 、 R_6 、 R_7 および R_8 は前記と同意義である請求の範囲第 6 項記載の化合物またはその塩もしくは水和物。

10. 式(Ib):

$$\begin{array}{c}
A - R \\
N - CO - X_1 - X_2 - X_3 \\
B
\end{array}$$
(Ib)

(式中、

は、

を表わし、A、B、R、 X_1 、 X_2 および X_3 が前記と同意義である。ただし、 X_1 および X_2 が単結合であり、 X_3 がフェニルである場合および X_1 が単結合で X_2 が-O-であるとき、 X_3 がペンジルである場合を除く)で示される化合物またはその塩もしくは水和物。

11. 式(Ib)で示される化合物において、

が、

を表わし、A、B、R、 X_1 、 X_2 および X_3 は前記と同意義である請求の範囲第10項記載の化合物またはその塩もしくは水和物。

- 1.2. Rが $COOR_1$ (R_1 は前記と同意義である)で示される請求の範囲第1.1項記載の化合物またはその塩もしくは水和物。
- $1\ 3$. X_1 がフェニレンまたはチオフェンジイル、 X_2 が単結合、-N=N-、-CH=CH-、エチニレン、-O-、-S-、-CO-、-CON(R_{55}) $-(R_{55})$ は前記と同意義である)または-N(R_{51})+CO-0($+R_{51}$ 0 に対記と同意義で

ある)および X_3 がフェニルまたはチエニルである請求の範囲第11項記載の化合物またはその塩もしくは水和物。

14. 式(Ib)で示される化合物において、

が、

を表わし、A、B、R、 X_1 、 X_2 、 X_3 およびZが前記と同意義である請求の範囲第10記載の化合物またはその塩もしくは水和物。

15. Bが水素、 X_1 および X_2 がともに単結合であり、 X_3 がチエニル、チアソリル、チアジアソリル、イソチアソリル、ピロリル、ピリジル、ベンソフリル、ペンソイミダソリル、ベンソチエニル、ジベンソフリル、ジベンソチエニル、キノリルまたはインドリルである請求の範囲第14記載の化合物またはその塩もしくは水和物。

 $16. X_1$ がフェニレン、チオフェンジイル、インドールジイルまたはオキサゾールジイル、 X_2 が単結合、-N=N-、-CH=CH-、エチニレン、-S-または-O-、および X_3 がアリールまたはヘテロ環である請求の範囲第15記載の化合物またはその塩もしくは水和物。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/01685

A CT ACCURATE TO THE TANK OF THE TANK	FC17	0196/01682		
A. CLASSIFICATION OF SUBJECT MATTER Int. C16 C07C233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D493/08, 495/08, A61K31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38 According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
495/08, A61K31/16, 31/18, 31/	Minimum documentation searched (classification system followed by classification symbols) Int. C1 ⁶ C07C233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D493/08, 495/08, A61K31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38			
Documentation searched other than minimum documentation to the				
Electronic data base consulted during the international search (name CAS ONLINE	ne of data base and, where practicable, search	terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.		
X JP, 6-279395, A (Ono Pharm October 4, 1994 (04. 10. 9 & EP, 608847, A	naceutical Co., Ltd.),	1 - 16		
1 10449 43, 4330 (13, 07, 90)	<pre>X JP; 2-180862, A (Ono Pharmaceutical Co., Ltd.), July 13, 1990 (13. 07. 90) & EP, 312906, A & US, 5168101, A</pre>			
X JP, 63-139161, A (Shionogi & Co., Ltd.), June 10, 1988 (10. 06. 88) & EP, 226346, A & US, 4861913, A & US, 4960909, A & US, 4976891, A & US, 5041635, A & US, 5043451, A & US, 5043456, A				
<pre>X JP, 60-178876, A (E.R. Squibb & Sons, Inc.), September 12, 1985 (12. 09. 85) & EP, 150709, A & US, 4526901, A</pre>				
Further documents are listed in the continuation of Box C	See patent family annex.			
 Special categories of cited documents: "A" document defining the general state of the art which is not considere to be of particular relevance 	the principle of theory underlying the	ation but cited to undominad		
"L" document but published on or after the international filing dat "L" document which may throw doubts on priority claim(s) or which cited to establish the publication date of another citation or other special reason (as specified)	"L" document but published on or after the international filing date "L" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone			
"O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing data but been the document is being obvious to a person skilled in the art				
"&" document member of the same patent family				
Date of the actual completion of the international search September 13, 1996 (13. 09. 96) Date of mailing of the international search report September 24, 1996 (24. 09. 96)				
ame and mailing address of the ISA/ Authorized offices				
Japanese Patent Office				
acsimile No. Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1992)

A. 発明の属する分野の分類 (国際特許分類 (IPC)) Int. Cl° C07C233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D493/08, 495/08, A61K31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC)) Int. Cl^e C07C233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D493/08, 495/08, A61K31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連する	ると認められる文献	
引用文献の カテゴリー*		関連する 請求の範囲の番号
X	JP, 6-279395, A (小野薬品工業株式会社) 4.10月.1994 (04	1-16
	. 10. 9'4) &EP, 608847, A	
x	JP, 2-180862, A (小野薬品工業株式会社) 13.7月.1990 (13	1-16
	. 07. 90) &EP, 312906, A, &US, 5168101, A	
x	JP, 63-139161, A (塩野義製薬株式会社) 10.6月.1988 (10	
	. 06. 88) &EP, 226346, A, &US, 4861913, A, &US,	1-16

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 13.09.96 国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100 東京都千代田区霞が関三丁目4番3号 国際調査報告の発送日 24.09.96 特許庁審査官(権限のある職員) 位藤 修 電話番号 03-3581-1101 内線 3445

			国際出願番号 PCT/JP	96/01685
C (続き).	関連すると認められ	1る文献		
引用文献の カテゴリー*	引用文献名	及び一部の箇所が関連するときに	は、その関連する箇所の表示	関連する 請求の範囲の番号
ļ	1	A, &US, 4976891, A,		
	US, 504345	51, A, &US, 5043456	6, A	
x	JP, 60-178	3876, A (イー・アール・スク	クイブ・アンド・サンズ・イン:	1-16
	ーポレイテツド) 1	2. 9月. 1985 (12. 09	9. 85), &EP, 1507(
	9, A, &US, 4	526901, A	·	
				·
		ŕ		
			·	
		·		
			•	
		·		
	•			