Name: Swagat Panda ID: 2017B5A30983P

Lab 8

Study the sinusoidal and non-sinusoidal oscillators using LM741

Objectives

To study the sinusoidal and non-sinusoidal oscillators using op-amp IC LM741

- 1. RC phase shift oscillator
- 2. Wein Bridge oscillator

and draw output waveforms in each case.

Also draw the schematic for each filter and compare theoretical values with simulated ones.

Oscillator Circuits

An **oscillator** is a circuit which produces a continuous, repeated, alternating waveform without any input. Oscillators basically convert unidirectional current flow from a DC source into an alternating waveform which is of the desired frequency, as decided by its circuit components.

RC Phase Shift Oscillator

Wein Bridge Oscillator

1. RC Phase Shift Oscillator

 $\underline{C} = 0.1 \mu F$ Schematic and Waveform

 $\underline{C = 0.2\mu F}$ Schematic and Waveform

2. Wein Bridge Oscillator

 $\underline{C = 0.1 \mu F}$ Schematic and Waveforms

 $\underline{C = 0.2 \mu F}$ Schematic and Waveforms

Results

Oscillator	Theoretical value of oscillator frequency	Best simulated value of oscillator frequency
RC phase shift oscillator $C = 0.1 uF$	$\frac{1}{2\pi RC\sqrt{6}} = \frac{1}{2\pi \times 0.1\mu \times 100\sqrt{6}}$ = 6.497 kHz	6.060 kHz
RC phase shift oscillator $C = 0.2uF$	$\frac{1}{2\pi RC\sqrt{6}} = \frac{1}{2\pi \times 0.2\mu \times 100\sqrt{6}}$ = 3.249 kHz	3.085 kHz
Wein Bridge oscillator C= 0.1uF	$\frac{1}{2\pi RC} = \frac{1}{2\pi \times 0.1\mu \times 100}$ $= 15.915 \text{ kHz}$	13.705 kHz
Wein Bridge oscillator C= 0.2uF	$\frac{1}{2\pi RC} = \frac{1}{2\pi \times 0.2\mu \times 100}$ $= 7.958 \text{ kHz}$	7.437 kHz