Metodi Matematici per l'Informatica

Prof. Rocco Zaccagnino 2022/2023

Scopo del corso

- Fornire i concetti matematici fondamentali per l'attività scientifica e lavorativa di qualsiasi esperto di Informatica
- Insegnare a sviluppare ragionamenti matematici corretti al fine di poterli utilizzare essi in campo informatico

Lo studente deve imparare a pensare in maniera logica e matematica

Scopo del corso

Lo studente deve imparare a pensare in maniera logica e matematica

- Formalizzare i problemi da risolvere
- Imparare:
 - **strumenti** che sono di aiuto nella soluzione dei problemi
 - tecniche di dimostrazione che gli consentono di provare che la soluzione pensata è corretta

Logica matematica

La logica (**proposizionale**, **predicativa**) è alla base di tutti i ragionamenti matematici e automatizzati

La logica è uno strumento indispensabile per una effettiva conoscenza e capacità di utilizzo delle principali tecniche di dimostrazione, dell'induzione, etc.

Logica matematica

• Progettazione dei circuiti di un computer:

 Porte AND, OR, NOT su cui e basato il progetto logico dei moduli combinatori, dell'ALU (unita aritmetico-logica), dei flip-flop ...

• Intelligenza artificiale:

- Scopo: costruire entità intelligenti.
- Agente: qualsiasi sistema che percepisce il suo ambiente mediante sensori e agisce su di esso mediante attuatori.
- Semantica formale dei linguaggi di programmazione
 - Scopo: fornire basi per capire il comportamento dei programmi e ragionare su di esso.

Database

Query SQL

Dimostrazioni

Nelle *Scienze Naturali* la verità è stabilita attraverso mezzi empirici che coinvolgono:

- 1. osservazione
- 2. misure
- 3. esperimenti

In *Matematica* la verità è determinata attraverso la costruzione di una dimostrazione

La dimostrazione è un ragionamento logico che stabilisce la verità di una affermazione

Dimostrazioni

Dimostrazioni, nell'ambito informatico, sono usate per verificare la correttezza di un sistema:

- verificare che un programma produce l'output corretto dato un qualunque input
- verificare che un algoritmo produce sempre risultati corretti

Induzione e Ricorsione

La **ricorsione** è presente in molti concetti matematici, ed interviene nel progetto di algoritmi e nella programmazione

Per progettare un **algoritmo ricorsivo** o scrivere un programma ricorsivo è utile fornire una **definizione induttiva** del modello dei dati utilizzato (liste, alberi, sequenze di simboli) o della funzione che si intende calcolare

individuare la ricorsione è fondamentale per impostare dimostrazioni per induzione

Induzione e Ricorsione

Esempio

Abbiamo un insieme di palline, tutte uguali nella forma e tutte dello stesso peso tranne una, che ha peso maggiore delle altre

Vogliamo individuare tale pallina

Disponiamo di una bilancia con due piatti, in grado solo di confrontare il peso di due sottogruppi di palline

Vogliamo effettuare il minor numero di pesate

Ipotesi: il numero delle palline è una potenza di 3

Induzione e Ricorsione

Algoritmo ricorsivo

- 1. Dividiamo il gruppo di palline in tre sottogruppi **A, B, C**, ognuno contenente lo stesso numero di palline
- 2. Eseguiamo una pesata, confrontando il peso di A e B
- Se A e B hanno lo stesso peso, allora la pallina più pesante si trova in C, quindi scartiamo A e B. Altrimenti:
 - se **A** ha peso maggiore di **B**, allora la pallina più pesante si trova in **A**, quindi scartiamo **B** e **C**
 - altrimenti (A ha peso minore di B), la pallina più pesante si trova in B, quindi scartiamo A e C
- 4. Se il sottogruppo che non abbiamo scartato contiene una sola pallina, abbiamo individuato la pallina più pesante e l'algoritmo termina.

 Altrimenti, ritorna al passo 1 sul sottogruppo che non abbiamo scartato.