Curso de Tecnologia em Sistemas de Computação Disciplina Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein GABARITO DA AP2 - Segundo Semestre de 2008

Questões:

1. (1.5) Usando o Teorema das Colunas mostre que:

$$1 + 2 + 3 + 4 + \cdots + n = \frac{n(n+1)}{2}$$

Resposta:

2. (1.5) Determine o coeficiente de x^8 no desenvolvimento de $(x^4 - \frac{1}{x^4})^{28}$. Justifique a resposta.

Resposta: Temos $n=28,\,a=x^4$ e $b=-\frac{1}{x^4}.$

Daí, para $0 \le k \le 28$ temos:

$$\begin{array}{lll} T_{k+1} & = & C_n^k a^{n-k} b^k & = \\ & = & C_{28}^k \left(x^4 \right)^{28-k} \left(-\frac{1}{x^4} \right)^k & = \\ & = & C_{28}^k \left(x^{112-4k} \frac{(-1)^k}{x^{4k}} \right) & = \\ & = & C_{28}^k \left(-1 \right)^k x^{112-4k-4k} & = \\ & = & C_{28}^k \left(-1 \right)^k x^{112-8k} & \end{array}$$

Devemos determinar k tal que $T_{k+1} = C_{28}^k (-1)^k x^8$.

Portanto, deve ser $112 - 8k = 8 \Rightarrow 8k = 104 \Rightarrow \boxed{k=13}$

Logo, o coeficiente de x^8 em $\left(x^4 - \frac{1}{x^4}\right)^{28}$ é C_{28}^{13} $(-1)^{13} = -\frac{28!}{13!15!}$.

3. (1.0) Encontre a fórmula fechada da relação de recorrência: $a_n=a_{n-1}+3^{n-1}$ para $n\geq 2, n$ natural. $a_1=2$ Justifique.

Resposta:

$$a_{n} = a_{n-1} + 3^{n-1} =$$

$$= (a_{n-2} + 3^{n-2}) + 3^{n-1} =$$

$$= a_{n-2} + 3^{n-2} + 3^{n-1} =$$

$$= (a_{n-3} + 3^{n-3}) + 3^{n-2} + 3^{n-1} =$$

$$= a_{n-3} + 3^{n-3} + 3^{n-2} + 3^{n-1} =$$

$$\vdots$$

$$= a_{n-k} + 3^{n-k} + 3^{n-k+1} + \dots + 3^{n-1}$$

Como conhecemos o valor de a_1 , então devemos tomar n-k=1, isto é, k=n-1. Desta maneira, obtemos:

$$a_n = a_1 + 3^1 + 3^2 + \ldots + 3^{n-1}$$

= $a_1 + 3(3^0 + 3^1 + \ldots + 3^{n-2})$

Usando a condição $a_1 = 2$ e o fato que $3^0 + 3^1 + \ldots + 3^{n-2}$ são os n-1 primeiros termos de uma progressão geométrica de razão 3, obtemos:

$$a_n = 2 + 3 \left(\frac{3^{n-1} - 1}{3 - 1} \right) = 2 + \frac{3^n - 3}{2} = \frac{4 + 3^n - 3}{2} = \frac{3^n + 1}{2}.$$

4. (1.5) Determine o número de vértices de um grafo G (simples) com 15 arestas, 3 vértices de grau 4 e todos os outros vértices de grau 3. Justifique.

Resposta: Seja n o número de vértices do grafo G (simples), com $m=15,\ d(v_1)=d(v_2)=d(v_3)=4,\ \text{para algum}\ v_1,v_2,v_3\in V(G)$ e $d(v_i)=3,\ \text{para todos os}\ v_i\in V(G)$ tal que $4\leq i\leq n.$

Sabemos que $\sum_{v \in V(G)} d(v) = 2m$. Logo, $3 \times 4 + (n-3) \times 3 = 2 \times 15 \Rightarrow 3n = 30 - 3 \Rightarrow \boxed{n = 9}$.

5. (4.5) Considere os grafos G_1 e G_2 dados abaixo: (Respostas sem justificativas não serão consideradas.)

(a) Mostre que G_1 e G_2 não são isomorfos.

Resposta: G_1 e G_2 não são isomorfos dado que a sequência dos graus do grafo G_1 é (3,3,3,3,3,3,2,2) e a sequência de graus do grafo G_2 é (4,4,3,3,2,2,2,2).

(b) G_1 é bipartido? Justifique. Caso seja, determine sua bipartição.

Resposta: Sim, pois como G_1 não possui ciclos ímpares então, pelo teorema de caracterização dos grafos bipartidos, G_1 é bipartido.

 G_1 pode ser particionado em 2 conjuntos independentes A e B tal que $A = \{1, 4, 6, 8\}$ e $B = \{2, 3, 5, 7\}$.

(c) G_1 é euleriano? Justifique. Caso seja, dê um circuito euleriano de G_1 .

Resposta: Não, pois um grafo é euleriano se e somente se todo vértice têm grau par, e d(1) = d(3) = d(4) = d(5) = d(6) = d(7) = 3 têm grau ímpar.

Logo, G_1 não é euleriano.

(d) G_1 é hamiltoniano? Justifique. Caso seja, dê um ciclo hamiltoniano de G_1 .

Resposta: Sim, pois G_1 possui o seguinte ciclo hamiltoniano: 1, 2, 4, 3, 6, 7, 8, 5, 1.

Portanto, G_1 é hamiltoniano.

(e) G_2 é planar? Justifique. Caso seja, determine o número de faces de G_2 usando a fórmula de Euler.

 $Resposta: G_2$ é um grafo planar, pois admite a seguinte representação plana:

Seja f o número de faces de G_2 . Como G_2 é conexo e planar, a fórmula de Euler nos diz que n-m+f=2. Como n=8 e m=11, então $f=m-n+2 \Rightarrow f=11-8+2 \Rightarrow \boxed{f=5}$.