Table I. Constructive details of six datasets.

	Label	c	Algorithms	Num	Corpus					
					M-Mix	N-Mix	T-Mix	M-M	M-N	M-T
Meta-Train	0	0	ALL	200	Movie Review [5]	News [3]	Twitter [2]	Movie Review	Movie Review	Movie Review
	1	1	BLOCK [1]	50						
	2	2	GAN-VLC [11]	50						
	3	3	Markov [7]	50						
	4	4	FLC [8]	50						
	5	5	Markov	50						
	6	1	GAN-VLC	50						
	7	2	BLOCK	50						
	8	3	FLC	50						
	9	4	Markov	50						
	10	1	FLC	50						
	11	2	VAE [9]	50						
	12	3	BLOCK	50						
	13	4	GAN-VLC	50						
	14	1.5	ADG [10]	50						
Meta-Test	15	0	ALL	100	Twitter	News	Movie Review	Moview Review	News	Twitter
	16	1	Markov	20	Twitter	Movie Review	Twitter			
	17	2	GAN-VLC	20	News	News	Movie Review			
	18	3	PD-HC [6]	20	Movie Review	Twitter	Twitter			
	19	4	BLOCK	20	COCO [4]	COCO	COCO			
	20	5	VAE	20	News	News	News			
	21	1.77	ADG	20	Twitter	News	Movie Review			

References

- [1] T. Fang, M. Jaggi, and K. Argyraki. Generating steganographic text with LSTMs. In A. Ettinger, S. Gella, M. Labeau, C. O. Alm, M. Carpuat, and M. Dredze, editors, *Proceedings of ACL 2017, Student Research Workshop*, pages 100–106, Vancouver, Canada, July 2017. Association for Computational Linguistics. URL https://aclanthology. org/P17-3017.
- [2] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision. CS224N project report, Stanford, 1(12):2009, 2009.
- [3] kaggle. Bbc news dataset. 2018. URL https://www.kaggle.com/c/ learn-ai-bbc.
- [4] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In *European conference on computer vision*, pages 740–755. Springer, 2014.
- [5] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies*, pages 142–150, 2011.
- [6] B. Yang, W. Peng, Y. Xue, and P. Zhong. A generation-based text steganography by maintaining consistency of probability distribution. KSII Transactions on Internet & Information Systems, 15(11), 2021.
- [7] Z. Yang, S. Jin, Y. Huang, Y. Zhang, and H. Li. Automatically generate steganographic text based on markov model and huffman coding. arXiv preprint arXiv:1811.04720, 2018.
- preprint arXiv:1811.04720, 2018.

 [8] Z.-L. Yang, X.-Q. Guo, Z.-M. Chen, Y.-F. Huang, and Y.-J. Zhang. Rnnstega: Linguistic steganography based on recurrent neural networks.

 IEEE Transactions on Information Forensics and Security, 14(5), 2019.

 doi: 10.1109/TIFS.2018.2871746.
- [9] Z.-L. Yang, S.-Y. Zhang, Y.-T. Hu, Z.-W. Hu, and Y.-F. Huang. Vaestega: linguistic steganography based on variational auto-encoder. *IEEE Transactions on Information Forensics and Security*, 16:880–895, 2020.
- [10] S. Zhang, Z. Yang, J. Yang, and Y. Huang. Provably secure generative linguistic steganography. arXiv preprint arXiv:2106.02011, 2021.
- [11] X. Zhou, W. Peng, B. Yang, J. Wen, Y. Xue, and P. Zhong. Linguistic steganography based on adaptive probability distribution. *IEEE Trans*actions on Dependable and Secure Computing, 2021.