Fission2019 实验数据说明文档

• 硅条探测器数据处理流程教程-word文档

目录

- 一. SSD能量刻度总结
- 二. 实验数据文件说明
 - 。 2.1 硅条刻度文件
 - 2.1.1 硅条 Pulser 刻度
 - 2.1.2 硅条 *α* 刻度文件
 - 。 2.2 PPAC 刻度文件
 - 2.2.1 PPAC 束流刻度
 - 2.2.2 PPAC ²⁵²Cf 刻度
 - 。 2.3 实验数据文件

一. SSD能量刻度总结

• gfh-硅条能量刻度问题总结-PPT-文档

二. 实验数据文件说明

- qfh-Fission2019实验记录本
- gfh-Fission2019实验值班记录表格
- gfh-Fission2019实验文件说明-excel统计
- 探测器刻度分: SSD刻度 与 PPAC刻度
- SSD 刻度包括: Pulser 刻度 与 α 源刻度
- PPAC 刻度包括: 束流刻度 与 $^{252}\mathrm{Cf}$ 源刻度

2.1 硅条刻度文件

2.1.1 硅条 Pulser 刻度

- SSD PulserCali Pedestal.0000
 - 。 刻度 SSD L1 与 SSD L2的零点道

Pulser刻度	刻度条件说明	刻度点数目	备注
SSD_PulserCali_Pedestal.0000	同时刻度L1, L2的零点道	1	

- SSD_L1 拨档法(Switch)
 - 。 拨档法, 即使用精密脉冲发生器 Ortec-419 前面板的拨档进行信号衰减!

- 。 α 源对 SSD_L1 进行刻度时, 发现 SSD1,SSD2 信号很小甚至看不到, 因此需要改变主放的 gain, 同时 Pulser 刻度也需要重新刻度.
- 。 SSD1_L1主放gain修改: 由 $2 \times 4 \Rightarrow 2 \times 20$ SSD2_L1主放gain修改: 由 $2 \times 7.4 \Rightarrow 2 \times 20$

Pulser刻度	刻度条件说明	刻度点数目	备注
SSD1_L1_PulserCali_Switch.0000	衰减因子: 1,2,4,5,10,20,40,50	8	衰减100倍CO4020闪亮
SSD2_L1_PulserCali_Switch.0000	衰减因子: 1,2,4,5,10,20	6	
SSD3_L1_PulserCali_Switch.0000	衰减因子: 1,2,4,5,10	5	
SSD4_L1_PulserCali_Switch.0000	衰减因子: 1,2,4,5,10	5	
SSD1_L1_PulserReCali_Gain4_Switch.0000	衰减因子: 1,2,4,5,10,20,40,50	8	
SSD1_L1_PulserReCali_Gain20_Switch.0000	衰减因子: 4,5,10,20,40,50	6	
SSD2_L1_PulserReCali_Gain7.4_Switch.0000	衰减因子: 1,2,4,5,10,20	6	
SSD2_L1_PulserReCali_Gain20_Switch.0000	衰减因子: 4,5,10,20,40	5	

• SSD_L1 等间距法(Height)

- 。 等间距法, 是指用 Ortec-419 前面板的旋钮进行等间距信号衰减!
- 。 α 源对 SSD_L1 进行刻度时, 发现 SSD1,SSD2 信号很小甚至看不到, 因此需要改变主放的 gain, 同时 Pulser 刻度也需要重新刻度.
- 。 SSD1_L1主放gain修改: 由 2 × 4 \Rightarrow 2 × 20 SSD2_L1主放gain修改: 由 2 × 7.4 \Rightarrow 2 × 20

Pulser刻度	刻度条件说明	刻度点数目	备注
SSD1_L1_PulserCali_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	
SSD2_L1_PulserCali_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	
SSD3_L1_PulserCali_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1	10	
SSD4_L1_PulserCali_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1	10	0.5的统计~20! SSD4_L1刻度时有噪 声

Pulser刻度	刻度条件说明	刻度点数目	备注
SSD1_L1_PulserReCali_Gain4_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	
SSD1_L1_PulserReCali_Gain20_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1	10	
SSD2_L1_PulserReCali_Gain7.4_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	
SSD2_L1_PulserReCali_Gain20_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	

• SSD_L2 拨档法(Switch)

。 拨档法, 即使用精密脉冲发生器 Ortec-419 前面板的拨档进行衰减!

Pulser刻度	刻度条件说明	刻度点数目	备注
SSD1_L2_PulserCali_Switch.0000	衰减因子: 1,2,4,5,10,20,40,50,100	9	
SSD2_L2_PulserCali_Switch.0000	衰减因子: 1,2,4,5,10,20,40,50	8	
SSD3_L2_PulserCali_Switch.0000	衰减因子: 1,2,4,5,10,20	6	
SSD4_L2_PulserCali_Switch.0000	衰减因子: 1,2,4,5,10,20,40,50	8	

• SSD_L2 等间距法(Height)

。 等间距法, 是指用 Ortec-419 前面板的旋钮进行等间距信号衰减!

Pulser刻度	刻度条件说明	刻度点数目	备注
SSD1_L2_PulserCali_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	
SSD2_L2_PulserCali_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	T115000,T115001信号是其他的一半
SSD3_L2_PulserCali_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	
SSD4_L2_PulserCali_Height.0000	相对幅度: 10,9,8,7,6,5,4,3,2,1,0.5	11	

2.1.2 硅条 α 刻度文件

• 硅条 L1 刻度

○ SSD的Layer1刻度时,作了以下改变:

SSD1_L1主放gain修改: 由 $2 \times 4 \Rightarrow 2 \times 20$ SSD2_L1主放gain修改: 由 $2 \times 7.4 \Rightarrow 2 \times 20$

。 第一次开靶室: SSD_L1 α 刻度

备注1: SSD3、SSD4部分 strips 计数率过低!

备注2: T120000 空谱, 即 SSD4_L1_CH0 为空, 实验中也是空谱!

Alpha刻度	刻度条件说明	备注
SSD_L1_AlphaCali.0000	Trigger: SSD 单举	SSD3_L1, SSD4_L1 部分统计低, T120000空谱
SSD_L1_AlphaCali.0001	Trigger: SSD 单举	SSD3_L1, SSD4_L1 部分统计低, T120000空谱
SSD_L1_AlphaCali.0003	Trigger: SSD 单举	SSD3_L1, SSD4_L1 部分统计低, T120000空谱
SSD_L1_AlphaCali.0004	Trigger: SSD 单举	SSD3_L1, SSD4_L1 部分统计低, T120000空谱

。 第二次开靶室: SSD_L1 α 刻度

备注1: 改变 α 源的位置, 主要对 SSD3, SSD4 进行刻度!

备注2: T120000 空谱, 即 SSD4_L1_CH0 为空, 实验中也是空谱!

Alpha刻度	刻度条件说明	备注
SSD_L1_AlphaCali.0005	Trigger: SSD 单举	主要对SSD3与SSD4 重新刻度
SSD_L1_AlphaCali.0006	Trigger: SSD 单举	主要对SSD3与SSD4 重新刻度
SSD_L1_AlphaCali.0007	Trigger: SSD 单举	主要对SSD3与SSD4 重新刻度
SSD_L1_AlphaCali.0008	Trigger: SSD 单举	主要对SSD3与SSD4 重新刻度

• 硅条 L2 刻度

。 第三次开靶室: SSD_L2 α 刻度

备注1: T112014统计很低!

备注2: T121013 与 T121014 出现两组"三峰", 分别在 [150,180] 与 [330,380]

Alpha刻度	刻度条件说明	备注
SSD_L2_AlphaCali.0000	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0001	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0002	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0003	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0004	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0005	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0006	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0007	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!

Alpha刻度	刻度条件说明	备注
SSD_L2_AlphaCali.0008	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0009	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0010	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0011	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0012	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0013	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0014	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0015	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0016	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0017	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0018	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0019	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0020	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0021	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0022	SSD1的Trig: SSD1_L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0023	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0024	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0025	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0026	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0027	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0028	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0029	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0030	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0031	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0032	Trigger: SSD 单举-L2F	T112014统计很低! T121013 & T121014信号异常!

。 第四次开靶室: SSD_L2 α 刻度

备注1: 为了刻度 T112014. 不过此时 T112028 统计很低!

备注2: T121013 与 T121014 出现两组"三峰", 分别在 [150,180] 与 [330,380]

Alpha刻度	刻度条件说明	备注
---------	--------	----

Alpha刻度	刻度条件说明	备注
SSD_L2_AlphaCali.0033	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0034	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0035	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0036	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0037	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0038	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0039	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0040	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0041	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0042	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0043	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0044	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0045	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0046	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0047	STrigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!
SSD_L2_AlphaCali.0048	Trigger: SSD 单举-L2B	T112028统计很低! T121013 & T121014信号异常!

2.2 PPAC 刻度文件

- PPAC1 只有束流刻度
- PPAC2 束流刻度与 Cf252 放射源刻度
- PPAC3 只有 Cf252 放射源刻度

2.2.1 PPAC 束流刻度

PPAC 束流刻度	刻度条件说明	备注
PPAC1_BeamCalibration.0000	Trigger: PPAC 单举	数据无效: 开DAQ时, PPAC1 噪声起来了
PPAC1_BeamCalibration.0001	Trigger: PPAC 单举	PPAC1 -465V, PPAC2,3电压0
PPAC1_BeamCalibration.0002	Trigger: PPAC 单举	PPAC1 -465V, PPAC2,3电压0
PPAC2_BeamCalibration.0000	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC2_BeamCalibration.0001	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_BeamCalibration.0000	Trigger: PPAC 单举	统计过低, 放弃束流刻度!

2.2.2 PPAC $^{252}\mathrm{Cf}$ 刻度

PPAC ²⁵² Cf 刻度	刻度条件说明	备注
PPAC2_Cf252Calibration.0000	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0000	Trigger: PPAC 单举	PPAC3 -460V, PPAC1,2电压0
PPAC3_Cf252Calibration.0001	Trigger: PPAC 单举	PPAC3 -460V, PPAC1,2电压0
PPAC3_Cf252Calibration.0002	Trigger: PPAC 单举	PPAC3 -460V, PPAC1,2电压0
PPAC3_Cf252Calibration.0003	Trigger: PPAC 单举	PPAC3 -460V, PPAC1,2电压0
PPAC3_Cf252Calibration.0004	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0005	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0006	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0007	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0008	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0009	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0010	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0011	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0
PPAC3_Cf252Calibration.0012	Trigger: PPAC 单举	PPAC2 -460V, PPAC1,3电压0

2.3 实验数据文件