MA5701 Optimización no Lineal

Profesor: Alejandro Jofré **Auxiliar:** Benjamín Vera Vera

Auxiliar 8

Método del gradiente conjugado 6 de junio de 2025

- **P1.** Sea $A \in \mathbb{R}^{n \times n}$ simétrica definida positiva.
 - a) Decimos que la colección $\{p_j\}_{j=0}^l$ es conjugada con respecto a A si

$$\forall i \neq j : p_i^{\top} A p_j = 0.$$

Pruebe que si $\{p_j\}_{j=0}^l$ es conjugado con respecto a A, entonces es linealmente independiente.

b) Considere la función cuadrática $\varphi: \mathbb{R}^n \to \mathbb{R}$ dada por

$$\varphi(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x$$

en que $b \in \mathbb{R}^n$. Sea $\{p_0, p_1, \dots, p_{n-1}\}$ conjugado con respecto a A en \mathbb{R}^n y $x_0 \in \mathbb{R}^n$. Consideremos la secuencia dada por

$$x_{k+1} = x_k + \alpha_k p_k \tag{1}$$

con α_k escogido para minimizar $\alpha \mapsto \varphi(x_k + \alpha p_k)$. Pruebe que $\{x_k\}$ generado por 1 alcanza la solución x^* del sistema lineal Ax = b en a lo más n pasos.

c) Sean $\{p_i\}_{i=0}^{n-1}$ direcciones conjugadas y sea $\{x_k\}$ la secuencia generada desde $x_0 \in \mathbb{R}^n$ por 1 con α_k escogido como en b). Pruebe que

$$\forall i \in \{0, \dots, k-1\} : r_k^{\top} p_i = 0$$

en que $r_k = \nabla f(x_k)$ y que x_k minimiza $\varphi(x)$ en el conjunto

$$x_0 + \langle p_0, \dots, p_{k+1} \rangle$$
.

P2. En el método del gradiente conjugado, las direcciones de búsqueda de obtienen mediante la siguiente fórmula recursiva

$$p_k = -r_k + \beta_k p_{k-1}, \qquad p_0 = -r_0$$

en que β_k es escogido de tal manera que p_{k-1} y p_k sean conjugados con respecto a A.

- a) Obtenga una fórmula explícita para β_k y detalle el algoritmo resultante.
- b) (**propuesto**) Suponga que $\{x_k\}$ generada por el método del gradiente conjugado no es la solución x^* . Pruebe que se tienen las siguientes cuatro propiedades:

$$r_k^{\top} r_i = 0 \qquad \forall i = 0, \dots, k - 1$$
$$\langle r_0, \dots, r_k \rangle = \langle r_0, A r_0, \dots, A^k r_0 \rangle$$
$$\langle p_0, \dots, p_k \rangle = \langle r_0, A r_0, \dots, A^k r_0 \rangle$$
$$p_k^{\top} A p_i = 0 \qquad \forall i = 0, \dots, k - 1.$$

Concluya que entones $\{x_k\}$ converge a x^* en a lo más n pasos.