Lecture Notes by Jonathan Alcaraz (UCR)

Complex Analysis

Math 210A Fall 2017

Based on Lectures by

Dr. Wee Lang Gan University of California, Riverside

Lecture 1 29 Sep 2017

THE TOPOLOGY OF THE COMPLEX PLANE

Definition 1.1 Given $a \in \mathbb{C}$, r > 0, define an *open ball* by

$$B(a,r) = \{ z \in \mathbb{C} : |z - a| < r \}$$

and a *closed ball* by

$$\overline{B}(a,r) = \{ z \in \mathbb{C} : |z - a| \le r \}$$

Definition 1.2 Take sets $A \subseteq G \subseteq \mathbb{C}$. A is said to be *open in* G if for any $a \in A$, there is some r > 0 such that $B(a, r) \cap G \subseteq A$. A is said to be *closed in* G if $G \setminus A$ is open in G.

Definition 1.3 A subset $G \subseteq \mathbb{C}$ is said to be *connected* if it has either of the following properties:

- If $G = A \bigcup B$ where A, B are open and disjoint, the $A = \emptyset$ or $B = \emptyset$.
- If $A \subseteq G$ is both open in G and closed in G, then $A = \emptyset$ or A = G.

Definition 1.4 A segment between complex numbers z and w, denoted [z, w] is the set $\{tw + (1 - t)z : t \in [0, 1]\}$.

Definition 1.5 A polygon from a to b is a set $[a, z_1] \cup [z_1, z_2] \cup \cdots \cup [z_n, b]$.

Theorem 1.6 An open set G is connected if and only if, for every $a, b \in G$ there is a polygon from a to b.

Definition 1.7 Given a subset $A \subseteq \mathbb{C}$, we say $z \in \mathbb{C}$ is a *limit point* of A if there exists a sequence $\{a_n\}$ of distinct points in A such that $z = \lim_{n \to \infty} a_n$.

Corollary 1.8 A subset A is closed if and only if A contains all of its limit points.

Definition 1.9 A subset $A \subseteq \mathbb{C}$ is *complete* if every Cauchy sequence in A converges in A.

Corollary 1.10 A is complet if and only if A is closed.

Definition 1.11 A subset A of \mathbb{C} is *compact* if every open cover of A has a finite subcover. A is *sequentially compact* if every sequence in A has a subsequence which converges in A.

Definition 1.12 A set $A \subseteq \mathbb{C}$ is *totally bounded* if for every $\varepsilon > 0$ there exists $a_1, \ldots, a_n \in A$ such that $A \subseteq \bigcup_{i=1}^n B(a_i, \varepsilon)$.

Theorem 1.13 The following are equivalent:

- (i) A is compact;
- (ii) Every infinie set in A has limit point in A;
- (iii) A is sequentially compact;
- (iv) A is complete and totally bounded.

Corollary 1.14 A is compact if and only if A is closed and bounded.

Lecture 2 2 Oct 2017