The Handbook of Fixed Income Securities

Author: Frank J. Fabozzi
Type: #source #textbook

Topics: Interest Rates Trading Macroeconomics Bonds Risk

1 - Overview of the Types and Features of Fixed Income Securities

- A bond is an instrument of debt; bond issuers borrow money from bond investors
 - The indenture is a legal document describing agreement between investors and issuer
- Largest bond issuers: domestic corporations, municipal govts, and federal govts/agencies
- Maturity of a bond
 - Term-to-maturity or term is number of years until borrower redeems issue and pays face value to investor
 - Maturity is the date when a borrower can redeem an issue and
 - Shape of yield curve determines how maturity will affect yield
- Certain provisions of a bond may modify maturity (e.g. call privilege, sinking fund provisions, serial bonds)
- Short-term bonds usually have maturity from 1-5 yrs, intermediate term / notes have maturity from 5-12 yrs, long-term bonds have maturity greater than 12 years
- Coupon rate is the interest rate paid by issuers to bond investors
 - Paid semiannually (US) or annually (European) (note MBS/ABS have monthly payments)
 - Coupon structures
 - Zero-coupon bonds are usually bought below par and held until maturity
 - Inflation-linked bonds have principal tied to the rate of inflation
 - · Treasury-Inflation Protected Securities (TIPS) are inflation-linked bonds issued by the US Treasury
 - Reference rates used include CPI (US), RPI (UK), etc.
 - Step-up notes have a coupon that increases incrementally over time (e.g. stairway notes increase until
 they reach LIBOR/SOFR)
 - **Floating-rate securities** ("floaters") are securities with variable interest rates, which depend on a variable rate + a spread (max/min rates are called **caps/floors**)
 - Reference rate not restricted an interest rate index; can be commodity prices, equity indices, bond indices, etc.
 - Inverse/reverse floaters are floaters whose coupon rate moves in opposite dir from ref rate
 - Secured Overnight Financing Rate (SOFR)
 - Volume-weighted median rate based on tri-party repo rates (banks/dealers required to submit repo trade to Fed via DTCC)
- Par value is the basis on coupon rate/periodic interest payments
 - · Repaid at maturity or when bond is retired
- Bearer bonds require investors to clip coupons and send to obligors for payments; registered bonds automatically send payment to investors (new bond issues are required to be registered)
- · Quoting conventions: bond prices are quoted as percentages of the par/face value
- Embedded options allow issuers and bondholders to alter maturity of a bond
 - Call features give issuers the right to retire debt before maturity
 - Callable bonds therefore have higher yields and have a call premium
 - Noncallable bonds (bonds noncallable for life) are referred to as bullet bonds

- A make-whole call provision allows an issuer to completely pay off debt before maturity
- Municipal bonds can be prerefunded before maturity (debt is funded via risk-free securities such as USTs)
- · A put provision allows investors to sell bond back to issuer at par on a certain date
 - Hard puts require the bond to be sold for cash, whereas soft puts can allow the bond to be redeemed for cash, another stock, or another debt instrument (or a combo)
- Convertible bonds are bonds able to be converted into common stock
 - The conversion ratio specifies how many shares can be converted and the conversion price is the price at which the common stock are issued
- Exchangeable bonds can be exchanged for common stock of a corporation other than the bond issuer
- · Warrants are options that allow holder to buy certain amt of common stock at an exercise price
- Bond yields
 - A yield to worst is quoted as min(yield-to-maturity, yields to all possible call dates, yields to all possible put dates)
 - Negative yields do not mean negative return, as the bond can be sold before maturity at a higher price if its yield decreases
- Medium-term notes are debt instruments with maturity 9-30 yrs (usually noncallable, unsecured)
 - Structured (medium-term) notes are debt instruments linked to a derivative position
- Preferred stock is not a debt instrument but has similarities between commons stock and debt
 - · Pays dividend at the dividend rate
- Mortgage-backed securities
 - Residential mortgage-backed securities (RMBS) are MBS whose cash flow depends on cash flow of underlying mortgage pool
 - · Agency vs. non-agency (private-label) MBS
 - Non-agency RMBS divided into prime vs. subprime RMBS
 - Forms: mortgage pass-through securities, collateralized mortgage obligations (CMOs), stripped MBS
 - Commercial mortgage-backed securities are MBS backed by commercial mortgage loans on incomeproducing property
- Asset-backed securities are backed by non-mortgage loans (structuring is similar to MBS)
- Covered bonds are debt instruments secured by a specific pool of assets

2 - Risks Associated with Investing in Fixed Income Securities

- Interest rate risk is risk associated with changes in interest rates; it is split into level risk and yield-curve risk
 - Level risk
 - Bond market is often represented by yields on Treasury securities
 - Measures duration (approximate change in bond price due to 100bp change in yields)
 - Yield-curve risk
 - Exposure of a portfolio to change in shape of yield curve
 - Often measured by key rate duration
- Reinvestment risk is risk associated with variance in returns of reinvesting returns
 - Greater for longer holding periods
 - "Opposite" of yield-curve risk, as it is the risk of interest rates falling
- Call/prepayment risk is risk associated with a call provision on a callable bond
 - Investor becomes exposed to reinvestment rate as well, since call provisions are exercised when interest rates are lower
 - Leads to reduced capital appreciation potential
 - Called prepayment risk for MBS (such investors also exposed to contraction/extension risk)

Corporate credit risk

- · The credit risk of a bond includes:
 - 1. Risk of a borrower defaulting on their obligation (default risk)
 - 2. Declining bond value due to increased credit spreads or decreased credit ratings (downgrade risk
- Credit risk models: used to compute VaR, conditional VaR
 - Divided into structural, reduced-form, and incomplete-information models

Sovereign credit risk

- While governments are sometimes thought of as being risk-free, since Global Financial Crisis/COVID, they have intervened via QE, etc. by buying debt
- Further, while there are limited legal means to ensure contract between govt borrower and investor, defaults have negative implications

Inflation/purchasing-power risk

- Ex: Coupon rate of 7% but rate of inflation is 8%
- Most bonds have inflation risk (exception is inflation-linked ("linkers"))

Liquidity risk

- Measured by small bid/ask spreads given by dealers
- Overall market computes bid/ask spread by taking highest bid between dealers and lowest offer at which dealers are willing to sell
- Bond market has become less liquid post-GFC due to shrinking dealer inventories
- Fixed income ETFs can be traded in conditions with poor liquidity, but ETF prices and NAVs could be significantly different

Exchange-rate/currency risk

A non-dollar denominated currency is exposed to risks in changing currencies, as well as foreign interest rate
risks

Volatility risk

Bonds with embedded options, as well as callable bonds and MBS, are exposed to volatility (vega) risk

Political/legal risk

- Government bonds may be exposed to risk incurred by new legal structures/regulations
- Tax risk is another risk incurred by changing tax rates (e.g. for tax-exempt municipal bonds, increasing tax rates will cause increasing prices and vice versa)
- Event risk is risk incurred by natural disasters/industrial takeovers or takeover/corporate restructuring
- **Sector risk** is risk incurred based on the specific sector of the bond market a security is in (e.g. corporate vs. mortgage-backed bonds, discount vs. premium bonds, etc.)
- Basis risk consists of all risk other than market risk (term used in marketplace)
- Statistical measures of risk: stdev of returns, VaR, DaR (drawdown at risk), symmetry of a return distribution (skewness), kurtosis
 - Mean/stdev of returns, portfolio return benchmark return,
 - Tracking error risk is the stdev of active return (portfolio return benchmark return)
 - Backwards vs. forward-looking/ex-ante tracking error

3 - The Structure of Interest Rates

- The base interest rate or benchmark interest rate is the minimum interest rate that investors ask when investing in
 a non-Treasury security and is usually set to a comparable maturity for an on-the-run Treasury
- A risk premium is the spread between a non-UST and on-the-run UST at a comparable maturity
 - Interest rate on a non-UST = Base interest rate + spread (or Base interest rate + risk premium)
- Factors affecting spread: issuer, issuer creditworthiness, taxability, embedded options, expected liquidity, maturity

- An intermarket spread is a spread between comparable bonds in different sectors; an intramarket spread is a spread between comparable bonds in the same sector
- A credit spread or quality spread is the spread between USTs and comparable bonds with everything alike except for their "quality" (rating by commercial rating companies)
- Bonds with taxable yields vs. tax-exempt yields trade at a spread (we can calculate the after-tax yield vs
 equivalent yield based on the marginal tax rates)
- Term structure of interest rates
 - Graph of yield on USTs at different maturities is called the **yield curve**; this curve functions as a benchmark to price bonds and set yields in other parts of the debt market
 - Shapes: normal, inverted, flat
 - Bonds can be viewed as a series of zero-coupon payments; this view can be used to price bonds by using the
 yield on a zero-coupon UST with the same maturity as each payment (called the spot-rate)
 - A spot-rate curve depicts the yield on zero-coupon UST and its maturities
 - However, because Treasury only issues zero-coupon UST with maturity date ≤ 1 year, we need to derive a
 theoretical spot-rate curve
 - · Constructing theoretical spot rate curve
 - Bootstrapping is using observed T-bill yields and Treasury coupon securities to create the theoretical spotrate curve, but this does not work because the zero-coupon securities with maturity > 1yr in the market do not accurately represent spot rates
 - The yield-to-maturity of a T-bill is the annualized yield
 - Why USTs are priced using spot rates
 - Motivation: What economic force ensures UST price does not change from theoretical price?
 - Process of coupon stripping and reconstituting
 - Forward rates
 - Ex: The yield on a six-month T-bill six months from now is called a forward rate
 - Using theoretical spot rates to compute the forward rate yields an implied forward rate
 - The relationship between a t-period spot rate and the current six-month spot rate is

$$z_t = [(1+z_1)(1+f_1)(1+f_2)\cdots(1+f_{t-1})]^{1/t}-1$$

where z_t is the t-period spot rate and f_i is the implied forward rate i six-month periods from the present

- Shape of the term structure: two major theories attempt to explain yield curve shape
 - The expectations theory hypothesizes about the future of short-term forward rates and is split into three subtheories
 - The pure expectations theory states that forward rates exclusive represent market's expectations of future rates
 - Curve will steepen when future interest rates are projected higher, flatten when future interest rates are projected lower based on demand for short-term bonds
 - Shortcoming: theory does not take into account risks of investing in bonds
 - Price risk is the risk of a bond price being lower than expected over an investment horizon
 - Interpretations: broad, local-expectations, return-to-maturity
 - The **liquidity theory** states that investors will hold bonds with longer maturities if they are offered a long-term rate higher than average expected future rates (this difference is called a **liquidity premium**)
 - The **preferred-habitat theory** implies that the shape of the yield curve is determined by expectations of future interest rates and a positive (or negative) risk premium to induce market participants to get out of their preferred habitat
 - The market segmentation theory asserts that the shape of the yield curve is determined by supply/demand of securities in each maturity sector and implies that neither investors nor borrowers are willing to switch maturity sectors to take advantage of better forward rates/expectations

4 - Bond Pricing, Yield Measures, and Total Return

Bond Pricing

- Price of any financial instrument is equal to present value of expected cash flow
 - Interest rate used to compute this present value is yield offered on comparable securities
- Determining cash flow for option-free bonds
 - Cash flow of a bond consists of periodic coupon interest payments + par value payment
 - Most bonds in US pay coupons semiannually; we also assume this
 - Price is therefore sum of discounted cash flows of periodic coupon interest payments (annuity) + par value payment
 - Required yield is determined by yield offered on comparable (option-free, same credit quality/maturity) bonds in market
- Determining price
 - Formula to price a bond with n periods, semiannual coupon payment of c, i as the periodic interest rate, and M paid at maturity is

$$c\left\lceilrac{1-rac{1}{(1+i)^n}}{i}
ight
ceil+rac{M}{(1+i)^n}$$

- Relationship between required yield and price
 - Price and yield are inversely correlated; shape of price vs. yield curve is convex (this is explored in Ch. 5)
 - Properties
 - Coupon rate = required yield implies bond price is equal to par
 - Price = par value implies coupon rate is equal to yield
 - Coupon rate < required yield implies price is is less than par value (and vice versa)
 - Coupon rate > required yield implies price is greater than par value (and vice versa)
- · Time path of a bond
 - If required yield is unchanged, price of bond is only unchanged if coupon rate is equal to required yield
 - If coupon rate > required yield (premium bond), bond price will decrease
 - If coupon rate < required yield (discount bond), bond price will increase
- Why bond prices change
 - Interest rate level shifts in economy (i.e. because of Fed policy)
 - Changes in the bond price as bond moves towards maturity (described above)
 - · Perceived credit quality of issuer
 - Factors affecting embedded options (if bonds have embedded options)
- Pricing a zero-coupon bond: same as coupon bond (except without annuity/coupon payments, as only cash flow is maturity value)
 - Number of periods used is twice num. of years to maturity
- Determining price when settlement date is between coupon payments
 - Day count convention: actual/actual (num days in month/year) for UST, 30/360 for credit/municipal bonds/agency securities
 - Ratio $w=rac{ ext{num of days between settlement and next coupon period}}{ ext{num of days in coupon period}}$
 - Updated present value calculations: for a bond with n remaining coupon payments, ratio w, semiannual coupon payment m, the price of a bond is

$$p = rac{c}{(1+i)^w} + rac{c}{(1+i)^{1+w}} + rac{c}{(1+i)^{2+w}} + \cdots + rac{c}{(1+i)^{n-1+w}} + rac{M}{(1+i)^{n-1+w}}$$

- · This price is called full price or dirty price
- Accrued interest (AI) if coupon payment is c:

$$ext{AI} = c \left(rac{ ext{num of days from last coupon payment to settlement date}}{ ext{num of days in coupon period}}
ight)$$

- Full/dirty price does not include accrued interest seller is entitled tor receive, whereas clean/flat price is full price minus AI
- Accrued interest is an undiscounted value, so yield is slightly lower if settlement date is not a coupon date
- U.S. bond market convention: clean/flat price is quoted, but buyer pays full price

Conventional Yield Measures

- A bond can expect to receive a dollar return from following sources:
 - Coupon interest payments
 - Capital gain when bond is sold
 - Reinvestment income from coupon payments
- Yield measures: currently yield, yield-to-maturity, yield-to-call (expressed as a percent return as opposed to dollar return)
 - Current yield relates annual coupon interest to market price
 - Annual dollar coupon interest/price
 - Does not consider reinvestment income or and other realized capital gain/loss
 - Yield-to-maturity considers coupon income and any gain/loss investor realizes by holding bond to maturity; it
 also considers reinvestment income but assumes the interest rate for reinvestment is equal to yield-to-maturity
 - · Reinvestment risk is determined by maturity length and coupon rate
 - A zero-coupon bond has no reinvestment risk
 - Interest-rate risk is determined by current interest rates if an investor has to sell the bond before maturity
 - Yield-to-maturity for a zero-coupon bond
 - If n is double the number of years, $y = (\text{future value per dollar invested})^{1/n} 1$ where y is one-half the YTM and the future value per dollar invested is $\frac{\text{maturity value}}{\text{price}}$
 - Doubling semiannual yield is the convention in the bond market and called bond-equivalent yield, even though this is technically underestimates the effective annual yield of the bond
 - Yield-to-call is the interest rate that makes present value of cash flows if a bond is held to assumed call date
 equal to the price of the bond
 - Conservative investors make compute YTC and YTM and select lower of two as a measure of potential return (some investors calculate all possible call dates)
 - Assumes investor will hold bond until call date and that issuer will call bond on a specific date
- Yield/internal rate of return for a portfolio
 - Computed via determining cash flows for portfolio and finding interest rate that will make PV of cash flows equal to portfolio's market value
- Yield for floating-rate securities
 - As reference rate in future is unknown, it is not possible to determine future cash flows (so YTM cannot be computed)
 - A security's discount margin estimates average spread/margin over ref rate investor can expect to earn over life
 of security
 - For a security selling at par, discount margin is spread over ref rate
 - Drawbacks of discount margin: does not take into account cap or floor and does not account for ref rate changing
- Total return analysis

- The total/horizon return considers all three sources of potential dollar return
 - Steps to compute:
 - 1. Compute total coupon payments + interest-on-interest based on assumed reinvestment rate
 - 2. Determine projected sale price at end of investment horizon
 - 3. Add values obtained in steps 1-2 (this is total future dollars) received from investment given assumed reinvestment rate
 - 4. Use $\left(rac{ ext{total future dollars}}{ ext{bond purchase price}}
 ight)^{1/h}-1$ to obtain semiannual return
 - 5. Double semiannual return or find effective annual interest rate using $(1 \text{semiannual total return})^2 1$
- Types of bond swaps
 - A pure yield pickup swap is switching from a bond to another with higher yield (higher coupon income or YTM)
 - A rate-anticipation swap is switching to a bond based on expectations of future direction of interest rates
 - Ex: In anticipation of falling rates, bonds with greater price vol switched to bonds with lower price vol to take advantage of larger change in price if rates do decline
 - An intermarket-spread swap is taken based on current yield spread between two bonds in a market that that should realign at end of investment horizon
 - A substitution swap occurs when two identical bonds (except one has a higher YTM) are swapped

7 - U.S. Treasury Securities

- U.S. Treasury securities are bonds issued by U.S. Department of the Treasury (backed by full faith/credit of U.S. govt, so considered free of credit risk)
 - · Highly liquid, narrow bid/ask spreads
 - Marketable securities are traded on a secondary market, whereas nonmarketable securities are not
- Types of securities
 - Discount securities are issued at a price below face value and pay face value at maturity
 - Coupon securities are issued at a price close to par, pay interest every six months, and
 - Bills are Treasury coupon securities with maturities 1yr or less
 - Notes are Treasury coupon securities with maturities greater 1yr but less than 10yr
 - Bonds are Treasury coupon securities with maturities of more than 10yr (20/30 yr)
 - Treasury Inflation-Protected Securities (TIPS) are Treasury coupon securities whose principal (and therefore coupon payments) is inflation-adjusted
 - Floating-rate notes are fixed-principal securities paying interest dependent on short-term rates
- Primary Treasury market
 - Marketable Treasury securities are sold in primary market through sealed-bid, single-price (uniform-price)
 auctions
 - Competitive vs. noncompetitive bids
 - Highest yield accepted is stop-out yield
 - Historically, the Treasury auctioned securities through multiple-price (or discriminatory) auctions
- Primary dealers
 - Primary government dealers are counterparties of NY Fed and have the following mandates:
 - Participating in open market operations conducted by NY Fed trading desk
 - Provide NY Fed with market developments
 - Participate competitively in all Treasury auctions
 - Make markets for NY Fed on behalf of its foreign account holders
 - As of 12/31/2019, there are 24 primary dealers

- Auction schedule
 - · Bills are auctioned weekly
 - · Notes (except 10yr) are auctioned monthly
 - 10yr notes and 30yr bonds are auctioned at Treasury quarterly refunding
 - Treasury tries to maintain a regular issuance cycle and stable size for issues of a given maturity
- · Reopenings are when the Treasury offers additional amounts of outstanding securities
- The Treasury uses buybacks to redeem outstanding unmatured Treasury securities by purchasing them in secondary market via reverse auctions
 - No meaningful buyback operation since 2002 (though 1-2 every year)
- Secondary market
 - Main trading hubs: Tokyo, London, New York
 - Primary dealers are principal market makers
- Interdealer brokers facilitate trades via dealers via trading platforms that post best bid/offers (charging a small fee)
 - BrokerTec now facilitates most of electronic Treasury securities trading
 - In addition to government dealers, hedge funds and HFT firms also trade on electronic platforms
- Federal Reserve
 - NY Fed buys/sells Treasury securities to implement FOMC monetary policy
- Trading activity
 - Most recently issued Treasury securities are on-the-run (the rest are off-the-run)
 - When-issued securities have been announced for auction but not yet issued
 - Facilitates price discovery for new issues, can reduce uncertainty about bidding levels near auctions, allows dealers to bid competitively with little risk
- Quoting conventions for Treasuries
 - Bills
 - Rate on a discount basis is computed as $Y_d = \frac{F-P}{F} \times \frac{360}{t}$ where Y_d is rate on a discount basis, F is face value, P is price, t is number of days until maturity
 - Treasury coupon securities
 - Quoted in secondary market on a price basis (1 point = 1 percent of par)
 - Split into units of 32nds (e.g. 97-14 = 97 14/32 = 97.4375)
 - +/- implies addition/subtraction of 1/64
 - A third number (e.g. in 97-142) indicates how many 1/256 are added to price
- Zero-coupon Treasury securities
 - Created from existing Treasury notes/bonds via coupon stripping
 - · Sell at deep discounts to face value
 - STRIPS (Separate Trading of Registered Interest and Principal Securities) program allows individual components of Treasury securities to be held separately in Fed book-entry system
 - Coupon strips can also be reassembled into fully constituted form

15 - Inflation-Linked Bonds

 Treasury Inflation-Protected Securities (TIPS) are bonds with principal and coupon payments adjusted based on changes in CPI

0