

# Audiovizuální technika

# Obrazové displeje

Karel Fliegel (fliegek@fel.cvut.cz)



České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky

Technická 2 166 27 Praha 6 Česká republika



12/5/2025

# Obsah přednášky

- Motivace pro vývoj nových technologií displejů
  - Požadavky na parametry UHD, WCG, pozorovací vzdálenost, ...
- Displeje s vakuovou obrazovkou CRT
- Displeje s kapalnými krystaly LCD
  - Princip LCD, barevný obraz, varianty TN, VA, IPS, FFS, ...
- Displeje s organickými LED
  - \* Technologie OLED a porovnání základních parametrů s LCD, ...
- Projekční zobrazování
  - \* Technologie DLP, 1x DMD, 3x LCD, LCoS, ...
- Další technologie zobrazování
  - Vysoký dynamický rozsah HDR, stereoskopické zobrazování, ...
  - Plasmové displeje PDP, displeje s emisí pole FED, SED, ...



#### **Motivace**

#### Rostoucí požadavky na parametry zobrazovačů

- Souvislost se systémy UHDTV
  - Větší rozlišení a ostrost více detailů
  - Realističtější zobrazení
  - Přináší i rušivé jevy
    - Větší náchylnost k nevolnosti vyvolané rychlým nebo nepřirozeným pohybem
    - Nutnost zvyšovat snímkový kmitočet pro vjem plynulého pohybu



- Lepší "kvalita zážitku" QoE (Quality of Experience)
  - Větší prostor pro umělecké úpravy
  - Větší "pohlcení pozorovatele"
  - Požadavky na lepší parametry vedle rozlišení (UHD)
    - Barevný rozsah WCG (Wide Color Gamut)
    - Dynamický rozsah HDR (High Dynamic Range)
    - Snímkový kmitočet HFR (High Frame Rates)











#### **Motivace**

#### Rostoucí požadavky na parametry zobrazovačů

- Dopad kolorimetrie přenosových soustav
  - Moderní systémy pro reprezentaci obrazu s rozšířeným barevným rozsahem WCG (Wide Color Gamut)
  - Porovnání barevných gamutů
    - Standardní gamut...
      - TV doporučení ITU-R Rec. 601 a 709
      - Grafika prostor sRGB
    - Rozšířený gamut...
      - TV doporučení ITU-R Rec. 2020
      - Digitální kino DCI-P3, AMPAS
      - Grafika prostor Adobe RGB

| Parametr         | Rec. BT.709/<br>sRGB |        | Adobe RGB |        | DCI-P3 |       | Rec. BT.2020 |        | ACES    |         |
|------------------|----------------------|--------|-----------|--------|--------|-------|--------------|--------|---------|---------|
| CIE 1931         | X                    | У      | Х         | у      | X      | у     | Х            | у      | Х       | У       |
| R                | 0,640                | 0,330  | 0,640     | 0,330  | 0,680  | 0,320 | 0,708        | 0,292  | 0,7347  | 0,2653  |
| G                | 0,300                | 0,600  | 0,210     | 0,710  | 0,265  | 0,690 | 0,170        | 0,797  | 0,0000  | 1,0000  |
| В                | 0,150                | 0,060  | 0,150     | 0,060  | 0,150  | 0,060 | 0,131        | 0,046  | 0,0001  | -0,0770 |
| Bílý bod         | 0,3127               | 0,3290 | 0,3127    | 0,3290 | 0,314  | 0,351 | 0,3127       | 0,3290 | 0,32168 | 0,33767 |
| Pokrytí CIE 1931 | 35,9 %               |        | 52,1 %    |        | 53,6 % |       | 75,8 %       |        | 100 %   |         |



Diagram chromatičnosti CIE xy (1931) a porovnání barevných gamutů



#### **Motivace**

- Nutno zohlednit i pozorovací podmínky
  - Vzhledem k vlastnostem zrakového systému HVS
  - Vysoké rozlišení a jeho důsledky
    - Menší pozorovací vzdálenost...
      - **− SD (720 x 576) − okolo 6,0 H**
      - HD (1920 x 1080) okolo 3,2 H
      - UHD (3840 x 2160) okolo 1,6 H
        - H výška displeje
      - Doporučeno pro plnohodnotné
         docenění detailů v obrazu
    - Špatný zvyk pozorování z větší vzdálenosti



Optimální pozorovací vzdálenost vzhledem k

- Displeje podle principu vzniku obrazu
  - (1) Přímo vyzařující (zdroje) CRT, OLED, PDP, FED, SED, ...
  - (2) Nepřímo vyzařující (ventily) LCD, DMD, LCoS, ...

# Displeje s vakuovou obrazovkou

Barevná obrazovka CRT (Cathode Ray Tube)

Katodová trubice (elektronka)

 Evakuovaná baňka, jedno nebo více elektronových děl (zdroj svazku elektronů) a vrstva luminoforů

Černobílé obrazovky - jediný paprsek

Barevné obrazovky - tři paprsky s maskou

– Delta, in-line (štěrbinová), Trinitron (Sony)



– (1) elektronové dělo (katoda, řídicí mřížky)

(2) svazky elektronů

– (3, 4) zaostřovací a vychylovací cívky

- (5) anodové **napětí** (24  $\div$  32 kV!)

- (6, 7, 8) maska a vrstva luminoforů

Umožnila vznik elektronické TV

Hluboké, těžké, náchylné, nutnost VN... výroba skončila ~2010-2015



**TFT** 

XY adresace

(využití TFT)

# Displeje s kapalnými krystaly

#### Technologie LCD (Liquid Crystal Display)

- Stále asi nejrozšířenější technologie
  - Typický LCD má několik vrstev...
    - Podsvětlení, vrstva s molekulami LC, elektrody
    - Aktivní LCD matice tenkovrstvých tranzistorů TFT (Thin Film Transistor)
    - Dva polarizační filtry (polarizátor a analyzátor)
  - Podlouhlé molekuly LC stáčí rovinu polarizace
    - Využití tzv. twistově nematické (TN) struktury LC
    - Natočení molekul vlivem vnějšího elektrického pole
    - Světelný ventil tvořen Polarizátor + LC + Analyzátor
  - Podsvětlení...
    - První generace se zářivkou se studenou katodou CCFL (Cold Cathode Fluorescent Lamp)
      - Malý kontrast, omezená životnost (~10 let)
    - V současnosti s LED (Light Emitting Diode)
      - Vyšší kontrast, širší gamut, delší životnost (~15 let)



Schematické znázornění struktury TFT-LCD (edge-lit)



Základní princip funkce twistově nematické (Twisted Nematic) struktury LCD



# Displeje s kapalnými krystaly

#### Technologie LCD (Liquid Crystal Display)

- \* Tekuté krystaly (LC) neemitují světlo
  - Nutné použít podsvětlení BLU (Back-Light Unit)
  - Barevné LCD využití pole filtrů FA (Filter Array)
- Sendvičová struktura TFT-LCD (edge-lit, thin-film transistor LCD)
  - Podsvětlení BLU (Back-Light Unit)
    - Zdroj světla LED (Light Emitting Diode)
    - Světlovodná destička LGP (Light Guide Plate)
    - Rozptylná fólie pro jas BEF/DBEF
       (Brightness Enhancement Film)
  - Světelný modulátor
    - Polarizátor → TFT matice →
       tekuté krystaly (LC) → barevné filtry (RGB) → analyzátor





#### MTG

# Displeje s kapalnými krystaly

#### Technologie LCD (Liquid Crystal Display)

- \* Čtyři základní uspořádání LCD
  - TN (Twisted Nematic) ~1971
  - (M)VA (Multi domain –
     Vertical Alignment) ~1971/90s
  - IPS (In-Plane Switching) ~1973/90s
  - FFS (Fringe-Field Switching) ~1998

#### Uspořádání elektrod

Ovlivňuje vlastnosti displeje...



Různá uspořádání elektrod LCD

|                                            | TN         | MVA                      | IPS                          | FFS                               |  |
|--------------------------------------------|------------|--------------------------|------------------------------|-----------------------------------|--|
| Propustnost (% TN)                         | 100 %      | 70-80 %                  | 70-80%                       | 88-98%                            |  |
| Kontrastní poměr                           | ~ 1000:1   | ~ 5000:1                 | ~ 2000:1                     | ~ 2000:1                          |  |
| Pozorovací úhel                            | Uspokojivý | Dobrý                    | Výborný                      | Výborný                           |  |
| Odezva                                     | ~ 5 ms     | ~ 5 ms                   | ~ 10 ms                      | ~ 10 ms                           |  |
| Dotykový panel                             | Ne         | Ne                       | Ano                          | Ano                               |  |
| Primární aplikace Hodinky, laptop, desktop |            | TV, desktop,<br>notebook | Desktop,<br>notebook, tablet | Smartphone,<br>tablet,<br>desktop |  |

#### Technologie OLED (Organic Light Emitting Diode)

- Podobná struktura jako aktivní TFT LCD
  - Organická vrstva mezi elektrodami místo LC
  - Vrstva tvoří PN přechod z organických materiálů
  - Vrstva vyzařuje světlo po přiložení napětí
    - Tvořena deposicí monomerů ve vakuu
    - Nebo častěji přímým tiskem polymerovými inkousty
- Hlavní výhody OLED
  - Přímé vyzařování (nepotřebuje podsvětlení)
  - Malá tloušťka a hmotnost
- Hlavní nevýhody OLED (většinou již zvládnuté)
  - Nižší životnost organických materiálů
    - Náročné technologie zpracování organických vrstev
    - Zlepšení rovnoměrnosti substrátu
  - Náročná technika řízení jasu





První komerční OLED display Sony XEL-1 z roku 2007



- Technologie OLED (Organic Light Emitting Diode)
  - Organické LED emitují světlo
    - Původní základní struktura (Tang a VanSlyke, 1987)
      - Organické vrstvy mezikatodou a anodou (tenké < 1 μm)</li>
      - Elektrony (electron) a díry (hole) rekombinují → emise světla
- Katoda

  EIL (electron-injection)

  EML (emitting)

  HTL (hole-transporting)

  Anoda

  Katoda

  EIL (electron-transporting)

  EML (emitting)

  HTL (hole-transporting)

  HIL (hole-injection)

  Anoda

Schematický diagram OLED (základní a vícevrstvá struktura )

- Současné vícevrstvé struktury
  - Emisní vrstva EML (dopanty, vysoká QE)
  - Transportní vrstvy (ETL, HTL) přivádí elektrony/díry do EML k rekombinaci
  - Injekční vrstvy (EIL, HIL) usnadňují přenos nosičů do organických vrstev
  - Elektrony/díry z katody/anody  $\rightarrow$  transport do EML  $\rightarrow$  rekombinace  $\rightarrow$  světlo
- Vrstvy OLED velmi tenké (< 1 μm bez substrátu)</p>
  - Ideální pro flexibilní displeje
    - Barevné (RGB) OLED → vhodné pro menší displeje
    - Bílé OLED s RGB barevnými filtry (CF) → vhodné pro větší displeje

Chen, H.-W., Lee, J.-H., Lin, B.-Y., Chen, S., Wu, S.-T, Liquid crystal display and organic light-emitting diode display: present status and future perspectives, Nature - Light: Science and Applications, 20

- Vybrané charakteristiky pro technologie OLED a LCD
  - Kontrastní poměr CR (Contrast Ratio)
    - OLED teoreticky nekonečný ( $CR\sim\infty:1$ ) u LCD konečný ( $CR\sim1000:1$ )
  - \* Ambientní kontrastní poměr ACR (Ambient Contrast Ratio)
    - Kvantifikuje kvalitu vjemu s ohledem na dosažitelný kontrast
    - OLED → teoreticky nekonečný CR → realističtější ACR

$$ACR = \frac{T_{\text{on}} + A}{T_{\text{off}} + A}$$

- $-T_{\rm on}$  ( $T_{\rm off}$ ) zapnutý/vypnutý jas displeje
- -A jas odraženého světla
- ACR uvažuje kontrast ovlivněný odrazy
  - Zrcadlové odrazy (A1) lze většinou eliminovat
  - Rozptýlené odrazy (A2) nelze eliminovat

Schematické znázornění nežádoucích odrazů na ploše displeje





- Vybrané charakteristiky pro technologie OLED a LCD
  - \* Kontrastní poměr CR (Contrast Ratio)
    - OLED teoreticky nekonečný ( $CR\sim\infty:1$ ) u LCD konečný ( $CR\sim1000:1$ )
  - Ambientní kontrastní poměr ACR (Ambient Contrast Ratio)



#### Spočítaný ambientní kontrast ACR pro různé pozorovací podmínky

#### Schematické znázornění nežádoucích odrazů na ploše displeje



# vizuální technika

# Displeje s organickými LED

#### Vybrané charakteristiky pro technologie OLED a LCD

Barevný rozsah (color gamut)

- YAG-WLED ~ 50 % Rec. 2020
- Různé varianty konvenční technologie LCD
  - WLED (white LED)  $\rightarrow$  YAG (yttrium-aluminium garnet) luminofor  $\rightarrow$  ~ 50 % Rec. 2020

  - **QDEF** (quantum dot enhancement film)  $\rightarrow$  **FWHM** (~ 20 nm)  $\rightarrow$  ~ **90** % Rec. 2020
    - RoHS (těžké kovy Cd) → InP (indium phosphide)
       → ~ 70-80 % Rec. 2020





- RGB OLED  $\rightarrow$  3x RGB EML (deep blue fluorescent / deep red phosphorescent)  $\rightarrow$  ↓ FWHM  $\rightarrow$  > 90 % Rec. 2020
- CFA OLED  $\rightarrow$  white OLED + filtry  $\rightarrow$   $^{\sim}$  90 % Rec. 2020







Emisní spektra LED a propustnosti filtrů LCD



#### Vybrané charakteristiky pro technologie OLED a LCD

- Životnost...
  - TFT LCD → bezproblémové → > 10 let
  - OLED
    - Degradace  $\rightarrow$  RG OLED  $T_{50@1000~cd~m^{-2}}$   $> 80~000~h \rightarrow$  bezproblémové
    - Původní řešení  $\rightarrow$  Blue OLED  $T_{50@1000~cd~m^{-2}} \sim 3~700~h \rightarrow \downarrow 20~\times$  RG OLED
    - Moderní materiály  $\Rightarrow$  Blue OLED  $T_{50@1000~cd~m^{-2}} \sim 56~000~h$

#### Energetické účinnost

- TFT LCD vs. OLED → účinnější světlý vs. tmavý obraz
  - Mez okolo ~ 65/30 % (průměrný jas pro RGB/CFA OLED)



Zahnuté (curved) TFT LCD vs. plně ohebné (foldable) OLED





**Degradace OLED** (pokles jasu s časem)

# MTG

# Projekční zobrazování

- Základní technologie pro projekční zobrazování
  - \* Přímá nebo zadní (tzv. projekční TV) projekce
    - V posledních letech dosaženo vynikající kvality
    - Aplikace pro prezentace
    - Domácí kino a profesionální digitální kinosály
    - Využití prostorových modulátorů/ventilů SLM (Spatial Light Modulator)
  - Současné technologie
    - DLP (Digital Light Processing) od Texas Instruments
      - Matice mikrozrcátek DMD (Digital Micromirror Device) na čipu
      - Velice rozšířená a perspektivní technologie
    - micro-LCD
      - Miniaturní prosvětlované LCD
    - LCoS (Liquid Crystal on Silicon)
      - Kapalné krystaly na křemíku
      - Modulace světla odrazem (zrcadlo) s možností lepšího chlazení



**Liquid Crystal on Silicon (LCoS)** 

DMD

Objektiv'

Filtrové kolo

Kondenzor

# Projekční zobrazování

#### **Technologie DLP (Digital Light Processing)**

- DMD (Digital Micromirror Device)
  - Mikro-elektromechanická zrcátka  $^{\sim}10 \times 10 \mu m$
  - Elektrostatické vychylování (on, off, klidová poloha)
  - Jas ovládán PWM (pulsně šířková modulace, ~kHz)
    - 1992 patenty XEROX, vývoj Texas Instruments
- 1x DMD s filtrovým kolečkem nebo 3x DMD

Projekční objektiv

Projekční

plocha

Světelný zdroj





Optika

DLP deska Procesor



DLP projekce se třemi DMD



**Princip DMD** (Digital Micromirror Device)







# MTG

# Projekční zobrazování

#### Dvě základní technologie 3x LCD nebo 1x DMD

#### 3x LCD transmisní

- Světlodělící soustava a 3 LCD modulátory
- Výhody
  - Světelná účinnost, barevná sytost, bez blikání
- Nevýhody
  - Horší konvergence, nehomogenita po ploše
  - Nižší odolnost vůči prachu, časová a tepelná nestabilita



Projekce s třemi LCD

#### 1x DLP reflexní

- Výhody
  - Chlazení z druhé strany, vysoká odolnost
     vůči prachu, vysoká linearita, nepohlcuje
     lze velmi zatížit, vysoký kontrast, stabilita
- Nevýhody jednočipového uspořádání
  - Blikání, pohyblivý prvek, rainbow effect
  - Filtrové kolečko přidává bílou a další barvy (až 7 filtrů)



DLP projekce s jedním DMD

# Displeje pro HDR

- Vysoký dynamický rozsah HDR (High Dynamic Range)
  - Běžný displej nestačí pro přímé zobrazení HDR mapy jasů
    - Běžný LCD s neproměnným podsvětlením
      - Výbojka CCFL (Cold Cathode Fluorescent Lamp) nebo celoplošné LED
      - Dynamický rozsah 300:1 až 1000:1
      - Černá 0,1-1 cd/m², bílá maximálně 300-500 cd/m²
  - Princip zobrazování s vysokým dynamickým rozsahem
    - Systém využívající v čase a po ploše proměnné podsvětlení (nebo OLED)
      - Pole LED (local dimming) nebo zadní projekce → dynamický rozsah ~200 000:1 Distribuce podsvětlení Zobrazený snímek

Podsvětlení LCD pomocí zadní projekce







# Displeje pro HDR

#### Vysoký dynamický rozsah HDR (High Dynamic Range)

Podsvětlení oblastí maticí LED (local dimming)

- Například profesionální SIM2 HDR 47E S 4K
- 2202 oblastí 1920 x 1080 pixelů
- Maximální jas 4000 cd/m², kontrast 20 000:1
- Zobrazování v profesionálním HDR displeji



Matice

podsvětlení

#### Zdánlivá poloha objektu v prostoru





- Historie 3D zobrazování
  - Téměř 200 let historického vývoje
    - 1853 princip anaglyfu s barevnými filtry





- Polarizační brýle (1891) lepší vlastnosti
- 1903 Frederic Eugene Ives popsal použití paralaxní bariéry (bez brýlí)
  - U.S. Patent No. 725, 547 (15. 4. 1903)





#### Princip klasických projekčních systémů

- Nejběžnější projekční řešení
  - (a) Pasivní stereoskopický systém s polarizačními brýlemi
    - Výhody: Kvalita obrazu, vysoké rozlišení, bez blikání, výhodné pro velké sály
    - Nevýhody: Dva projektory, speciální "stříbrné" plátno, přeslechy
  - (b) Aktivní stereoskopický systém s časovým multiplexem
    - Výhody: Barevnost, běžné plátno, běžné zobrazovače, dobrá separace
    - Nevýhody: Nákladné přepínané brýle, blikání





(b) Aktivní stereoskopický systém

www.gali-3d.com



#### Technologie interferenčních filtrů

- Používané v současných 3D kinech
  - Pasivní stereoskopický systém s brýlemi
    - Dolby 3D Digital Cinema
    - Jednoduchá instalace do 2D digitálních projektorů
    - Rotační filtrové kolo
      - Instalované mezi světelný zdroj a modulátor
    - Řídicí jednotka synchronizuje filtrové kolo a projektor
    - Lehké brýle pro několikanásobné použití
  - Založeno na technologii INFITEC
    - INterference Filter TEChnology
    - Interferenční filtry v projektoru a v brýlích
    - Vlnový multiplex...
      - Levé oko
- Červená 629nm, Zelená 532nm, Modrá 446nm
- Pravé oko
- Červená 615nm, Zelená 518nm, Modrá 432nm







#### Autostereoskopické systémy bez brýlí

- Typy autosteresokopických zobrazovačů
  - Dvoupohledové zobrazovače (pro levé a pravé oko)
  - Zobrazovače se sledováním polohy hlavy (standardně dvoupohledové)

• Zobrazovace se siedovanim polony mavy (standardne dvoupomedove)







# Plasmové displeje

Technologie PDP (Plasma Display Panel)

#### Tvorba obrazu v PDP

- Luminofory červené, zelené, modré
- Komůrky s inertním plynem (xenon, neon, helium, argon)
- Více jak milion miniaturních zářivek
- Výboj v ionizovaném plynu → UV záření
- Přeměna na viditelné světlo luminoforem



Jasný obraz (nejde o ventil), pozorovací úhel, velké plochy (150", ~3,5m)

#### Nevýhody oproti LCD

- Nižší životnost, větší energetická náročnost, větší hmotnost
- Vypalování obrazu potlačení (speciální luminofor, posouvání obrazu)
- Omezení funkčnosti ve vyšších nadmořských výškách
- ❖ Výroba PDP ukončena ~2016



# MTG

# Displeje s emisí pole

#### Technologie FED (Field Emission Display)

- Princip podobný jako u obrazovky CRT
  - Elektrony uvolňované ze studené katody
  - Miliony miniaturních elektronových děl
    - Realizace pomocí nanotrubic
    - Každá trubice budí vymezenou plošku luminoforu
    - Lepší energetická účinnost než u PDP a LCD
    - Lepší kontrastní poměr ale problém vypalování obrazu
- Varianta technologie SED (Surface conduction Electron emitter Display)
  - Luminofor je buzen emisí elektronů díky povrchové vodivosti
- Pouze prototypy komerční vývoj neúspěšně ukončen
  - Vývoj FED zejména Sony, vývoj ukončen 2010
  - Vývoj SED zejména Toshiba a Canon, vývoj přerušen 2010
  - Pouze speciální aplikace v medicíně a filmovém průmyslu, ...





# MTG

# Použitá a doporučená literatura

- Wolfe, J.M., et al., Sensation and perception, Sinauer Associates, 2018.
- Westheimer, G., Depth rendition of three-dimensional displays, J. Opt. Soc. Am. A 28, 1185-1190, 2011.
- □ Son, J.-Y., Javidi, B., Kwack, K.-D., **Methods for displaying three-dimensional Images**, Proceedings of the IEEE, 2006.
- Dogson, N. A., Autostereoscopic 3D displays, IEEE Computer, 2005.
- Bovik, A. C. Handbook of Image and Video Processing, Elsevier, 2005.
- Schreer, O., Kauff, P., Sikora, T., 3D Videocommunication, Wiley, 2005.
- Chen, H.-W., Lee, J.-H., Lin, B.-Y., Chen, S., Wu, S.-T, Liquid crystal display and organic light-emitting diode display: present status and future perspectives, Nature Light: Science and Applications, 2018.



### Audiovizuální technika

# Děkuji za pozornost!



České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky

Technická 2 166 27 Praha 6 Česká republika



12/5/2025