计算机系统结构作业二

7.4 设有一个"Cache-主存"层次。Cache 为 4 块, 主存为 8 块, 试分别对于以下 三种情况, 画出其映像关系示意图, 并计算访存地址为 5 时的索引。(1): 全相连; (2): 组相连。每组两块; (3): 直接映像。

解答: 块地址 (5)10=(101)2

(1) 全相连

全相连中没有索引。

(2) 组相连

Index = $(5)_{10}$ mod $(2)_{10}$ = $(1)_{10}$ = $(1)_2$ 2 个 cache 块组,只需 1 位作为索引

(3) 直接映像

	主存
	0
Cache	2 3
1	4
2 3	5 6
	7

Index = $(5)_{10}$ mod $(4)_{10}$ = $(1)_{10}$ = $(01)_2$ 4 个 cache 块,需低 2 位作为索引

PS: 很多同学认为全相连中索引可取 0~3,是错误的!! 实际上全相连因为可以映射到任意位置,所以不需要索引~

7.8 假设对指令 Cache 的访问占全部访问的 75%; 而对数据 Cache 的访问占全部访问的 25%。Cache 的命中时间为 1 个时钟周期,失效开销为 50 个时钟周期,在混合 Cache 中一次 load 或 store 操作访问 Cache 的命中时间都要增加一个时钟周期,32KB 的指令 Cache 的失效率为 0.39%,32KB 的数据 Cache 的失效率为 4.82%,64KB 的混合 Cache 的失效率为 1.35%。又假设采用写直达策略,且有一个写缓冲器,并且忽略写缓冲器引起的等待。试问指令 Cache 和数据 Cache 容量均为 32KB 的分离 Cache 和容量为 64KB 的混合 Cache 相比,哪种 Cache 的失效率更低?两种情况下平均访存时间各是多少?

解答:

(1) 分离 Cache 失效率:

 $75\% \times 0.39\% + 25\% \times 4.82\% = 1.4975\%$

混合 Cache 失效率:

1.35%

所以混合 Cache 的失效率更低

(2) 分离 Cache 的平均访存时间:

 $75\% \times (1+0.39\% \times 50) + 25\% \times (1+4.82\% \times 50) = 1.74875$ 混合 Cache 的平均访存时间:

 $75\% \times (1+1.35\% \times 50) + 25\% \times (1+1+1.35\% \times 50) = 1.925$

PS: 平均访存时间 = 命中时间+不命中率×不命中开销

在计算混合 Cache 的平均访存时间时,因为题目中指出"一次 load 或 store 操作 访问 Cache 的命中时间都要增加一个时钟周期",这里有的同学将其作为对数据 Cache 的访问,因此只在 25%的指令里增加了命中时间。而有的同学则认为全部指令都增加了命中时间,毕竟如果指令 Cache 不命中时也是需要 load 操作,因此结果如下:

 $2+1.35\% \times 50 = 2.675$

助教想说毕竟题目也没有完全说清楚,所以两者都算对,重要的是大家要理解如何计算平均访存时间的公式!!

- 7.10 给定以下的假设,试计算直接映象 Cache 和两路组相联 Cache 的平均访问时间以及 CPU 的性能。由计算结果能得出什么结论?
- (1) 理想 Cache 情况下的 CPI 为 2.0, 时钟周期为 2ns, 平均每条指令访存 1.2 次;
- (2) 两者 Cache 容量均为 64KB, 块大小都是 32 字节;
- (3) 组相联 Cache 中的多路选择器使 CPU 的时钟周期增加了 10%;
- (4) 这两种 Cache 的失效开销都是 80ns;
- (5) 命中时间为1个时钟周期:

(6) 64KB 直接映象 Cache 的失效率为 1.4%, 64KB 两路组相联 Cache 的失效率为 1.0%。

解答:

(1) Cache 的平均访问时间

直接映像 $T_1 = 1 \times 2.0 \text{ns} + 1.4\% \times 80 \text{ns} = 3.12 \text{ ns};$

两路组相连 $T_1 = 1.1 \times 2.0 \text{ns} + 1.0\% \times 80 \text{ns} = 3.0 \text{ ns};$

因此, 两路组相连的平均访问时间比较低

(2) CPU 的性能

直接映像 CPU 时间= $IC \times (2.0 \times 2 + 1.2 \times 1.4\% \times 80) = 5.344 \times IC$;

两路组相连 CPU 时间= IC×(2.0×1.1×2+1.2×1.0%×80)=5.36×IC;

直接映射的 CPU 性能比较高。这是因为在两路组相连的情况下,虽然不命中次数减少了,但所有指令的时钟周期时间都增加了 10%。由于 CPU 时间是进行评价的基准,而且直接映像的 Cache 的实现更为简单,所以本题中直接映射 Cache 是较好的选择

PS: 本题与教材 204 页的例 7.2 几乎完全相同。主要就是两个公式的运用: 平均访存时间 = 命中时间+不命中率×不命中开销 CPU 时间 = IC×(CPI×时钟周期时间+每条指令的平均访存次数×不命中率 ×不命中开销×时钟周期时间)

- 7.14 假设一台计算机具有以下特性:
- (1) 95%的访存在 Cache 中命中:
- (2) 块大小为两个字, 且失效时整个块被调入;
- (3) CPU 发出访存请求的速率为 10⁹ 字/s;
- (4) 25%的访存为写访问;
- (5) 存储器的最大流量为 10⁹ 字/s(包括读和写);
- (6) 主存每次只能读或写一个字:
- (7) 在任何时候, Cache 中有 30%的块被修改过:
- (8) 写失效时, Cache 采用按写分配法。

现欲给该计算机增添一台外设,为此首先想知道主存的频带已用了多少。试 对于以下两种情况计算主存频带的平均使用比例。

- (1) 写直达 Cache:
- (2) 写回法 Cache。

解答:

(1) 写直达 Cache

操作	事件频率	每次字数	流量	说明
读命中	75%*95%	0	0	
读失效,写回	75%*5%*30%	0	0	写直达法不
				需要写回
读失效,读入	75%*5%	2	10^9*75%*5%*2	每次读1块
写命中	25%*95%	1	10^9*25%*95%	每次写1字
写失效,按写	25%*5%*30%	0	0	写直达法不
分配,写回				需要写回
写失效,按写	25%*5%	2	10^9*25%*5%*2	每次读1块
分配,读入				
写失效,按写	25%*5%	1	10^9*25%*5%*1	每次写1字
分配读入后				
再写				

因此, 主存频带的平均使用比例:

 $10^9 \times [75\% \times 5\% \times 2 + 95\% \times 5\% \times 1 + 25\% \times 5\% \times (2+1)] \div 10^9 = 35\%$

(2) 写回法 Cache

操作	事件频率	每次字数	流量	说明
读命中	75%*95%	0	0	
读失效,写	75%*5%*30%	2	10^9*75%*5%*30%*2	整块写回
回				
读失效,读	75%*5%	2	10^9*75%*5%*2	每次读1块
入				
写命中	25%*95%	0	0	写回法不
				访问主存
写失效,按	25%*5%*30%	2	10^9*25%*5%*30%*2	整块写回
写分配,写				
回				
写失效,按	25%*5%	2	10^9*25%*5%*2	每次读1块
写分配,读				
入				
写失效,按	25%*5%	0	0	写回法不
写分配读入				访问主存
后再写				

因此, 主存频带的平均使用比例:

 $10^9 \times [75\% \times 5\% \times (2+2\times 30\%) + 25\% \times 5\% \times (2+2\times 30\%)] \div 10^9 = 13\%$

PS:本题的关键在于对写直达、写回和写分配的理解。写直达是在每次写操作的时候直接对内存进行更改。因为知道更改的是那个字,所以按照题目假设,只进行1次写即可。但是对于读或写不命中时,将内存中的数据读入 Cache 则需要将整个块读入,即2次访存操作。

写回则是当脏块替换出去时才对内存进行写操作,且需要进行整个块的操作,因为不知道脏块中的哪个字发生了变动。