1 Aufgabe 7a

Zuerst werden die Werte aus 1 in einem Diagramm dargestellt. Dazu werden auch noch Fehlerbalken dargestellt, welche die Unsicherheit der Messwerte von \sqrt{N} anzeigen. Es sieht folgendermaßen aus:

1.1 Länge des Plateau-Bereichs

In diesem Diagramm ist ein Plateau zu erkennen. Es erstreckt sich von einer Spannung von 370V bis zu einer Spannung von 640V. Die Länge dieses Plateau-Bereichs beträgt also 270V.

1.2 Plateau-Steigung

Für die Plateau-Steigung wurde eine Ausgleichsrechnung mit der Python-Funktion " $curve_fit$ " aus "scipy.optimize", im Plateau-Bereich, durchgeführt. Dafür wurde eine Funktion der folgenden Form verwendet:

$$y = mx + n$$

Für die Parameter m und n ergibt sich:

Parameter	Wert	\pm Unsicherheit
m	1.151888	± 0.223673
n	9584.29638	38 ± 114.390865

Dabei ist zu sagen, dass der Parameter m
 den Wert $\frac{1}{60Vs}$ und der Parameter n die Einheit $\frac{1}{60c}$ hat.

Die geforderte Plateau-Steigung ergibt sich durch folgende Gleichung:

$$PS = \frac{m}{60}$$
 Umrechnung auf 1/V
$$PS = \frac{m}{60} * 100\%$$

Die Plateau-Steigung in $\frac{\%}{100V}$ hat den Wert:

$$(1.9198 \pm 0.3728) \frac{\%}{100V}$$

2 Aufgabe 7b

3 Aufgabe 7c

Die Totzeit des Zählrohrs lässt sich mit der Zwei-Quellen-Methode durch folgende Formel bestimmen:

$$T = \frac{N_1 + N_2 - N_{1+2}}{2N_1 N_2}$$

Mit den Werten:

$$N_1 = (96041 \pm 309.9048) \frac{1}{120s} = (800.3 \pm 2.6) \frac{1}{s}$$

$$N_{1+2} = (158479 \pm 398.0942) \frac{1}{120s} = (1320.7 \pm 3.3) \frac{1}{s}$$

$$N_2 = (76518 \pm 276.6189) \frac{1}{120s} = (637.6 \pm 2.3) \frac{1}{s}$$

ergibt sich die Totzeit zu $(115 \pm 4)\mu s$.

4 Tabellen

Spannung [V]	Impulse $[Imp/60s]$
320	9672
330	9689
340	9580
350	9837
360	9886
370	10041
380	9996
390	9943
400	9995
410	9980
420	9986
430	9960
440	10219
450	10264
460	10174
470	10035
480	10350
490	10290
500	10151
510	10110
520	10255
530	10151
540	10351
550	10184
560	10137
570	10186
580	10171
590	10171
600	10253
610	10368
620	10365
630	10224
640	10338
650	10493
660 670	10467
670 680	10640
	10939 11159
690	
700	11547

Table 1: Gemessene Impulse bei verschiedenen Spannungen