Aircraft Flying Qualities

Robert Stengel, Aircraft Flight Dynamics MAE 331, 2008

- Flight test instrumentation
- · Flying qualities requirements
- Flying qualities specifications
- Pilot opinion ratings
- · CAP, C*, and other longitudinal criteria
- · Pilot-induced oscillations

Copyright 2008 by Robert Stengel. All rights reserved. For educational use only http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/Filight/Dynamics.html

Flight Testing Instrumentation: Then

 Flight recording instruments: drum/strip charts, inked needles, film, galvanometers connected to air vanes, pressure sensors, clocks

Flying (or Handling) Qualities

- Stability and controllability perceived by the pilot
- 1919 flight tests of Curtiss JN-4H Jenny at NACA Langley Laboratory by Warner, Norton, and Allen
 - Elevator angle and stick force for equilibrium flight
 - Correlation of elevator angle and airspeed with stability
 - Correlation of elevator angle and airspeed with wind tunnel tests of pitch moment

Flight Testing Instrumentation: Now

Nose Boom and Calibration Quadrants

First Flying Qualities Specification

- First flying qualities specification: 1935, Edward Warner for Douglas DC-4 transport
 - Interviews with pilots and engineers

Flying Qualities Research at NACA

- Hartley Soulé and Floyd Thompson (late 1930s)
 - Long- and short-period motions
 - Time to reach specified bank angle
 - Period and damping of oscillations
 - Correlation with pilot opinion
- Robert Gilruth (1941-3)
 - Parametric regions and boundaries
 - Multi-aircraft criteria
 - Control deflection, stick force, and normal load factor
 - Roll helix angle
 - Lateral control power

Modern Flight Research and Development

- Application of control theory
- Variable-stability research aircraft, e.g., TIFS, AFTI F-16, NT-33A, and VRA
- The Princeton Connection [Flight Research Laboratory]

Gilruth Roll-Rate Criterion [pb/2V]

- Helix angle formed by rotating wing tips, pb/2V
 - Roll rate, p, rad/s
 - Wing semi-span, b/2, m
 - Velocity, V, m/s
- · Robert Gilruth criterion
 - pb/2V > 0.07 rad

Cooper-Harper Handling Qualities Rating Scale

Simplified Roll-Rate Response

Tradeoff between high pb/2 V and high lateral stick forces prior to powered controls:

$$\begin{split} \dot{p}(t) &= [C_{l_p} p(t) + C_{l_{\delta A}} \delta A(t)] \overline{q} Sb / I_{xx} \\ &= a \, p(t) + c \, \delta A(t) \\ \overline{q} &= \frac{1}{2} \, \rho V^2, \, dynamic \, pressure, \, N / m^2 \end{split}$$

• Initial-condition response ($\delta A = 0$)

$$p(t) = p(0)e^{at}$$

• Step response [p(0) = 0]

$$p(t) = \frac{c}{a} \Big(e^{at} - 1 \Big) \delta A *$$

· Steady state response

$$p^* = -\frac{C_{l_{\delta A}}}{C_{l_p}} \delta A^*$$

Effect of Equivalent Time Delay on Cooper-Harper Rating

Rate of degraduation of Cooper-Harper pilot ratings increases with difficulty of task

Inverse Problem of Lateral Control

- Given a flight path, what is the control history that generates it?
 - Necessary piloting actions
 - Control-law design
- Aileron-rudder interconnect (ARI) simplifies pilot input

Aerial Refueling

- · Difficult flying task
- · High potential for PIO
- · Alternative designs
 - Rigid boom (USAF)
 - Probe and drogue (USN)

Formation Flying

- Coordination and precision
- · Potential aerodynamic interference
- US Navy Blue Angels (F/A-18)

Carrier Approach on Back Side of the Power/Thrust Curve

- Precise path and airspeed control while on the back side of the power curve
 - Slower speed requires higher thrust
 - Lightly damped phugoid mode requires coordination of pitch and thrust control
- Reference flight path generated by optical device, which projects a meatball relative to a datum line

Military Flying Qualities Specifications, MIL-F-8785C

- **Specifications** established during WWII
- US Air Force and Navy coordinated efforts beginning in 1945
- First version appeared in 1948, last in 1980
- Distinctions by flight phase, mission, and aircraft type

MIL-F-8785C Aircraft Types

- Small, light airplanes, e.g., utility aircraft and primary trainers
- Medium-weight, low-to-medium maneuverability airplanes, e.g., small transports or tactical bombers
- III. Large, heavy, low-to-medium maneuverability airplanes, e.g., heavy transports, tankers, or bombers
- IV. Highly maneuverable aircraft, e.g., fighter and attack airplanes

MIL-F-8785C Identifies Satisfactory, Acceptable, and **Unacceptable Response Characteristics**

Damping Ratio

MIL-F-8785C Flight Phase

- A. Non-terminal flight requiring rapid maneuvering precise tracking, or precise flight path control
 - air-to-air combat
 - ground attack
 - in-flight refueling (receiver)
 - close reconnaissance
 - terrain following
 - close formation flying
- B. Non-terminal flight requiring gradual maneuvering
 - climb. cruise
 - in-flight refueling (tanker)
 - descent
- C. Terminal flight
 - takeoff (normal and catapult)
 - approach
 - wave-off/go-around
 - landing

MIL-F-8785C Levels of Performance

- 1. Flying qualities clearly adequate for the mission flight phase
- 2. Flying qualities adequate to accomplish the mission flight phase, with some increase in pilot workload or degradation of mission effectiveness
- 3. Flying qualities such that the aircraft can be controlled safely, but pilot workload is excessive or mission effectiveness is inadequate

Convair F-106 © an Brain FMSA acception and

Principal MIL-F-8785C Metrics

- Longitudinal flying qualities
 - static speed stability
 - phugoid stability
 - flight path stability
 - short period frequency and its relationship to command acceleration sensitivity
 - short period damping
 - control-force gradients

- Lateral-directional flying qualities
 - natural frequency and damping of the Dutch roll mode
 - time constants of the roll and spiral modes
 - rolling response to commands and Dutch roll oscillation
 - sideslip excursions
 - maximum stick and pedal forces
 - turn coordination

Long-Period Flying Qualities Criteria (MIL-F-8785C)

Flight Phase

- Non-terminal flight requiring rapid maneuvering
 Non-terminal flight requiring gradual maneuvering
- - Clearly adequate for the mission
 Adequate to accomplish the mission, with some increase in workload
 - Aircraft can be controlled safely, but workload is excessive

Level of Performance

- Static speed stability
 - No tendency for aperiodic divergence
 - Stable control stick gradient
 - Increasing "pull" force with decreasing speed
- Flight path stability [Phase C]
 - $1.(\Delta \gamma/\Delta V)_{SS} < 0.06 \text{ deg/kt}$
 - $2.(\Delta \gamma/\Delta V)_{SS} < 0.15 \text{ deg/kt}$
 - $3.(\Delta \gamma / \Delta V)_{SS} < 0.24 \text{ deg/kt}$

Long-Period Flying Qualities

Criteria (MIL-F-8785C)

1.Damping ratio ≥ 0.04

2.Damping ratio ≥ 0

3. "Time to double", $T_2 \ge 55$ sec

$$T_{2_{Ph}} = -0.693/\xi_{Ph}\omega_{n_{Ph}}$$

Short Period Criteria

- Important parameters
 - Short-period natural frequency
 - Damping ratio
 - Lift slope
 - Step response
 - · Initial lag
 - · Rise time
 - Over-/under-shoot
 - · Settling time
 - Pure time delay
 - Pitch angle response
 - Normal load factor response
 - Flight path angle response (landing)

Nichols Chart: Gain vs. Phase Angle

- Bode Plot
 - Two plots
 - Open-Loop Gain (dB) vs. log₁₀ω
 - Open-Loop Phase Angle vs. log₁₀ω

- Nichols Chart
 - Single crossplot; input frequency not shown
 - Open-Loop Gain (dB) vs. Open-Loop Phase Angle

Short-Period "Bullseye" or "Thumbprint"

Gain and Phase Margins

- Gain Margin: At the input frequency, ω , for which $\phi(j\omega)$ is -180°,the difference between 0 dB and the transfer function magnitude, 20 $\log_{10} AR(j\omega)$
- Phase Margin: At the input frequency, ω , for which 20 $\log_{10} AR(j\omega)$ is 0 dB, the difference between the phase angle $\phi(j\omega)$, and -180°
- Axis intercepts on the Nichols Chart identify GM and PM

Examples of Gain and Phase Margins

Bode Plot

· Nichols Chart

Significance of **Gain and Phase Margins**

Pilot H(s)Command

- Assume
 - Pilot tracks a single output using the elevator
 - Plant has 3rd-order transfer function
- Gain/phase-changing element, $Ke^{-j\phi}$, in the forward loop
- Gain margin = value of K that causes unstable control (e.g., root loci at right)
 - Crossover frequency predicted by open-loop Bode plot
- Phase margin = value of ϕ that causes unstable control

Short-Period Approximation Transfer Functions

· Elevator to pitch rate

· Pure gain or phase change in feedback control cannot produce instability

Short-Period Approximation Transfer Functions

Elevator to pitch angle

• Pure gain or phase change in feedback control cannot produce instability

Normal Load Factor

$$\Delta n_z = \frac{V_N}{g} (\Delta \dot{\alpha} - \Delta q) = -\frac{V_N}{g} \left(\frac{L_\alpha}{V_N} \Delta \alpha + \frac{L_{\delta E}}{V_N} \Delta \delta E \right)$$

• Therefore, with negligible $L_{\delta E}$ (aft tail/canard effect)

$$\frac{\partial \Delta n_z(s)}{\partial \Delta \delta E(s)} = \frac{1}{g} \left(L_\alpha \frac{\partial \Delta \alpha(s)}{\partial \Delta \delta E(s)} + L_{\delta E} \right) \approx \left(\frac{L_\alpha}{g} \right) \frac{\partial \Delta \alpha(s)}{\partial \Delta \delta E(s)}$$
• Elevator to angle of attack ($L_{\delta E} = 0$)
$$\Delta \alpha(s) \qquad k_\alpha$$

$$\frac{\Delta \alpha(s)}{\Delta \delta E(s)} \approx \frac{k_{\alpha}}{s^2 + 2\zeta_{SP}\omega_{n_{SP}}s + \omega_{n_{SP}}^2}$$

Control Anticipation Parameter, CAP

- · Inner ear senses angular acceleration
- · Inner ear cue should aid pilot in anticipating commanded normal acceleration

$$\Delta \dot{q}(0) = \left(M_{\delta E} - \frac{M_{\alpha}}{V_{N} + L_{\alpha}} L_{\delta E}\right) \Delta \delta E_{SS}$$

$$\Delta n_{SS} = \frac{V_{N}}{g} \Delta q_{SS} = -\left(\frac{V_{N}}{g}\right) \frac{\left(M_{\delta E} L_{\alpha} / V_{N} - M_{\alpha} L_{\delta E} / V_{N}\right)}{\left(M_{q} L_{\alpha} / V_{N} + M_{\alpha}\right)} \Delta \delta E_{SS}$$

$$CAP = \frac{\Delta \dot{q}(0)}{\Delta n_{SS}} = \frac{-\left(M_{\delta E} - \frac{M_{\alpha}}{V_{N} + L_{\alpha}} L_{\delta E}\right) \left(M_{q} \frac{L_{\alpha}}{V_{N}} + M_{\alpha}\right)}{\left(L_{\alpha} M_{\delta E} - L_{\delta E} M_{\alpha}\right)/g}$$

MIL-F-8785C **Short-Period Flying Qualities Criterion**

Control Anticipation Parameter vs. Short-Period Damping Ratio

(MIL-F-8785C, Category A)

$$\omega_{n_{SP}} = \sqrt{CAP \frac{n_z}{\alpha}}$$

- arly adequate for the mission equate to accomplish the

Gibson Dropback Criterion for Pitch Angle Control

- Step response of pitch rate should have overshoot for satisfactory pitch and flight path angle response
- · When criterion is satisfied.

$$\frac{\Delta q(s)}{\Delta \delta E(s)} = \frac{k_q(s - z_q)}{s^2 + 2\xi_{SP}\omega_{n_{SP}}s + \omega_{n_{SP}}^2}$$

$$= \frac{k_q(s + \omega_{n_{SP}}/\xi_{SP})}{s^2 + 2\xi_{SP}\omega_{n_{SP}}s + \omega_{n_{SP}}^2}$$

Large Aircraft Flying Qualities

- High wing loading, W/S
- Distance from pilot to rotational center
- · Slosh susceptibility of large tanks
- High wing span -> short relative tail length
 - Higher trim drag
 - Increased yaw due to roll, need for rudder coordination
 - Reduced rudder effect
- Altitude response during approach
 - Increased non-minimum-phase delay in response to elevator
 - Potential improvement from canard
- Longitudinal dynamics
 - Phugoid/short-period resonance
- Rolling response (e.g., time to bank)
- · Reduced static stability
- Off-axis passenger comfort in BWB turns

C* Criterion

- · Hypothesis
 - C* blends normal load factor and pitch rate
 - Step response of C* should lie within acceptable envelope
 - Below $V_{crossover}$, Δq is pilot's primary control objective
 - Above $V_{crossover}$, Δn_{pilot} is the primary control objective
- Pilot opinion does not always support the hypothesis

Control Design for Satisfactory Flying Qualities

- Satisfy procurement requirement (e.g., Mil Standard)
- Satisfy test pilots (e.g., Cooper-Harper ratings)
- Avoid pilot-induced oscillations (PIO)
- Minimize time-delay effects
- Frequency domain criteria
 - Crossover model
 - Neal-Smith criterion
 - Bandwidth-phase delay criteria
 - Smith-Geddes PIO criterion
- Elevator-to-pitch angle Nichols chart (gain vs. phase angle)

Pilot-Induced Oscillations

- MIL-F-8785C specifies no tendency for pilot-induced oscillations (PIO)
 - Uncommanded aircraft is stable but piloting actions couple with aircraft dynamics to produce instability

Space Shuttle Enterprise Approach and Landing Test #5 260CT1977 Dryden Flight Research Center

YF-16 Test Flight Zero

- · High-speed taxi test; no flight intended
- Pilot-induced oscillations induced by overly sensitive roll control
- Tail strike
- · Pilot elected to go around rather than eject

Pilot-Induced Oscillations

- · Category I: Linear pilot-vehicle system oscillations
- · Category II: Quasilinear events with nonlinear contributions
- · Category III: Nonlinear oscillations with transients

Hodgkinson, Neal, Smith, Geddes, Gibson et al

Next Time:
Fourth-Order Longitudinal
Dynamics