نظریه الگوریتمی بازیها

نيمسال دوم ۱۴۰۲ -۱۴۰۳

دانشکدهی مهن*دسی* کامپیوتر

دكتر فضلى

مرين ششم

مسئلهی ۱.

الف

 $\alpha(\mathcal{C}) = \frac{k}{\pi}$ مجموعه \mathcal{C} مجموعه تمام توابع نامنفی، صعودی و مقعر باشد. نشان دهید

ب

 $lpha(\mathcal{C})=$ ۱ مجموعه توابع به فرم f(x)=ax باشد که $a\geqslant \cdot$ نشان دهید

مسئلهي ۲.

تابع زمان انتظار یک صف بر حسب را در نظر بگیرید:

$$c_e(x) = \begin{cases} \frac{1}{u_e - x} & x < u_e \\ +\infty & x \geqslant u_e \end{cases}$$

نشان دهید در یک شبکه راهیابی اگر برای هر یال در حالت تعادل داشته باشیم $f_e \leqslant (1-\beta)u_e$ در آنصورت

$$POA \leqslant \frac{1}{7}(1 + \sqrt{\frac{1}{\beta}})$$

مسئلهي ٣.

هزینه آشوب را برای شبکهای که توابع هزینهاش چندجملهایهایی با ضرایب نامنفی و با درجه حداکثر d هستند ساسد.

مسئلهی ۴.

تابع هزینه یک شبکه آشوب را بجای جمع هزینه مسیرها، بیشترین هزینه در میان مسیرها تعریف میکنیم. یعنی

$$C(f) = \max_{p \in \mathcal{P}, f_p > \bullet} \sum c_e(f_e)$$

و فرض کنید تمام توابع هزینه خطی هستند (affine). در اینصورت مثال Pigou به ما هزینه آشوب ۱ را میدهد (چرا؟). نشان دهید هزینه آشوب در حالت کلی ﷺ است.

مسئلەي ۵.

نشان دهید در یک شبکه با هزینههای خطی تحت شار بهینه، نسبت طول (مدت زمان مورد نیاز) بلند ترین مسیر به کوتاه ترین مسیر حداکثر ۲ است. نشان دهید این نسبت قابل تحقق است.

مسئلەي ۶.

در این مسئله میخواهیم هزینه آشوب را برای Atomic Selfish Routing Problem در حالتی که هر شخص یک ترافیک در این مسئله میخواه r_i دارد (نسخه وزن دار مسئله) و همچنین توابع هزینه ترافیک Affine هستند کران بالا بزنیم. فرض کنید تابع رفاه اجتماعی C(f) برای یک شار f باشد و آنرا جمع هزینه افراد در بازی تعریف میکنیم.

الف

اگر f بیانگر شار در تعادل و f^* بیانگر شار بهینه باشد، نشان دهید

$$C(f) \leqslant C(f^*) + \sum_{e \in E} a_e f_e f_e^*$$

 $c_e(f) = a_e f_e + b_e$ که در اینجا

ب

نشان دهید

$$\sum_{e \in E} a_e f_e f_e^* \leqslant \sqrt{C(f)} \sqrt{C(f^*)}$$

ج

نشان دهید

$$POA \leqslant \frac{\Upsilon + \sqrt{\Delta}}{\Upsilon} \approx \Upsilon / \mathcal{F} \Lambda$$