Bauhaus-Universität Weimar Fakultät Medien Studiengang Medieninformatik

Echtzeit Hinderniserkennung für unbemannte Flugsysteme unter Benutzung eines Stereo Kamera Systems

Bachelorarbeit

Hagen Hiller Geboren am 04.06.1992 in Berlin Matrikelnummer 110514

1. Gutachter: Prof. Dr. Volker Rodehorst

2. Gutachter: TBA

Datum der Abgabe: 25.01.2016

Erklärung					
Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.					
Weimar, den 25.01.2016					
Hagen Hiller					

Zusammenfassung

Lorem ipsum dolor sit Amet.

Inhaltsverzeichnis

1	\mathbf{Ein}	führung	3			
	1.1	Unbemannte Flugsysteme	3			
	1.2	Hinderniserkennung	3			
	1.3	Anwendungsmöglichkeiten	3			
	1.4	Ziel der Arbeit				
2	Anforderungsanalyse 4					
	2.1	Bildaufnahme und Preprocessing	1			
	2.2	Erfassung von Hindernissen				
	2.3	Performanz	1			
	2.4	Positionsinformationen	1			
3	State of the Art Algorithmen 5					
	3.1	Kamerabasierte Hinderniserkennung	5			
	3.2	Sensorbasierte Hinderniserkennung				
4	Zugrunde liegende Konzepte und Algorithmen 6					
	4.1	Epipolargeometrie	3			
	4.2	Semi Global Block Matching (SGBM)	3			
	4.3	mvStereoVision Framework				
5	Sub	pimage Detection 7	7			
	5.1	Konzept	7			
	5.2	Subimages				
	5.3	foo				
6	San	aplepoint Detection 8	3			
-		Konzept	_			
		Erkennung				
		foo				

INHALTSVERZEICHNIS

7	Kor	nflikte in der Erkennung und Lösungsansätze	9
	7.1	Frame Skipping	9
	7.2	Hindernisgröße	
	7.3	Position Mapping	
8	Eva	luierung	10
	8.1	Aufbau des Testsetups	10
	8.2	Evaluierung Subimage Detection	
		8.2.1 Robustheit	
		8.2.2 Performanz	
	8.3	Evaluierung Samplepoint Detection	10
		8.3.1 Robustheit	10
		8.3.2 Performanz	
9	Dis	kussion	11
	9.1	Anforderungsevaluierung	11
	9.2	Gegenüberstellung	
10	Fazi	it und zukünftige Arbeiten	12

Einführung

- 1.1 Unbemannte Flugsysteme
- 1.2 Hinderniserkennung
- 1.3 Anwendungsmöglichkeiten
- 1.4 Ziel der Arbeit

Anforderungsanalyse

Lorem Ipsum dolor sit amet.

2.1 Bildaufnahme und Preprocessing

Anforderung 1 Fehleingaben durch gleichzeitiges Interagieren verschiedener Nutzer mit dem Bildschirmtisch sollen vermieden werden.

2.2 Erfassung von Hindernissen

Anforderung 2 Konflikten der Tiefenwahrnehmung durch Berührung negativparallaxer Bildareale sollte entgegen gewirkt werden.

2.3 Performanz

Anforderung 3 Manipulationen der Applikation sollen basierend auf den Interaktionszielen der Nutzer bestimmt werden.

2.4 Positionsinformationen

Anforderung 4 Das System soll auch für unerfahrene Nutzer leicht benutzbar sein.

State of the Art Algorithmen

- 3.1 Kamerabasierte Hinderniserkennung
- 3.2 Sensorbasierte Hinderniserkennung

Zugrunde liegende Konzepte und Algorithmen

- 4.1 Epipolargeometrie
- 4.2 Semi Global Block Matching (SGBM)
- 4.3 mvStereoVision Framework

Subimage Detection

- 5.1 Konzept
- 5.2 Subimages
- **5.3** foo

Samplepoint Detection

- 6.1 Konzept
- 6.2 Erkennung
- 6.3 foo

Konflikte in der Erkennung und Lösungsansätze

- 7.1 Frame Skipping
- 7.2 Hindernisgröße
- 7.3 Position Mapping

Evaluierung

- 8.1 Aufbau des Testsetups
- 8.2 Evaluierung Subimage Detection
- 8.2.1 Robustheit
- 8.2.2 Performanz
- 8.3 Evaluierung Samplepoint Detection
- 8.3.1 Robustheit
- 8.3.2 Performanz

Diskussion

- 9.1 Anforderungsevaluierung
- 9.2 Gegenüberstellung

Kapitel 10 Fazit und zukünftige Arbeiten