Rappel: Oscillation libre non Amort

- L'élongation X est sinusoïdale périodique. subie des oscillations sans diminution d'amplitude.
- Les caractéristiques d'oscillation. $\begin{cases} N0 &= \frac{1}{2\pi} \sqrt{\frac{\kappa}{m}}.\\ T0 &= 2\pi \sqrt{\frac{m}{K}}.\\ Wo &= \sqrt{\frac{\kappa}{m}}. \end{cases}$

Les oscillations forcée.

A- Etude expérimentale

Production des oscillations mécaniques forcées

À l'aide d'un moteur (excitateur), on excite le pendule élastique (résonateur) en y appliquant une force excitatrice sinusoïdale F(t)=F_msin(ωt+φ_F) En faisant varier la fréquence de l'excitateur et on mesure la fréquence d'oscillations du solide (en mesurant la durée de 10 oscillations). On trouve que la fréquence du résonateur est égale à celle de l'excitateur, on dit que les oscillations du solide sont imposées par l'excitateur. l'oscillateur n'est pas libre et les oscillations du solide sont dites forcées

- Lorsque Le pendule élastique est soumis à des excitations périodique de la forme $F(t) = F_m \sin(w t + \mathcal{E}_F)$. imposées par le dispositif d'entretien (Moteur) ou N est la fréquence de rotation, le pendule commence a' osciller avec la fréquence N.
- Les Oscillations sont dite forcées.
- Le pendule se comporte comme un oscillateur qui réalise des oscillations forcées.

 Le dispositif d'entretient moteur est appelé excitateur, le pendule est appelé résonateur.

- L'expérience montre que l'élongation X(t) est une fonction sinusoïdale périodique du temps $x(t) = x_m \sin(wt + \mathcal{E}_x).$
- On donne les deux courbes X = f(t) et F = f(t). F(t) et toujours en avance de phase par apport a' X(t).

- Influence de l'excitateur N sur l'amplitude
 - On fait varie La fréquence de l'excitateur, l'amplitude X_m atteint sa valeur maximale on dit alors que l'oscillateur est en résonance d'élongation.
 - X_m augmente, atteint un maximum puis diminue.
 - A' la résonance d'élongation ou d'amplitude c.-à-d. X_m est maximale on a

$$N_r^2 = N_o^2 - \frac{h^2}{8 \pi^2 m^2}$$
. $(N_r < N_0)$ et $w_r^2 = w_o^2 - \frac{h^2}{2 m^2}$: $(w_r < N_0)$

Wo).

B- Etude théorique

Solution En applique la **RFD**: $\Sigma \overrightarrow{F}_{app} = m \overrightarrow{a}$ $\vec{P} + \vec{T} + \vec{f} + \vec{F} + \vec{R} = m\vec{a}$

Par projection sur (x x')

$$-Kx - hv + F = ma \implies m \frac{d^2x}{dt^2} + h \frac{dx}{dt} + Kx = F$$

L'équation différentielle admet comme solution

$$x = x_m \sin(wt + \mathcal{E}_x)$$
 et $F(t) = F_m \sin(wt + \mathcal{E}_F)$

- A la fonction $KX(t) = Kx_m \sin(wt + \mathcal{E}_x)$. On associer un vecteur $\overrightarrow{V1}$ (Kx_m , \mathcal{E}_x).
- A la fonction $h \frac{dx}{dt} = h w x_m \sin(w t + \mathcal{E}_x + \frac{\pi}{2})$. On associer un vecteur $\overrightarrow{V2}$ ($h w x_m$, $\mathcal{E}_x + \frac{\pi}{2}$).
- A la fonction $m \frac{d^2x}{dt^2} = m w^2 x_m \sin(w t + \mathcal{E}_x + \pi)$. On associer un vecteur $\overrightarrow{V3}$ ($m w^2 x_m$, \mathcal{E}_x $+\pi$).

- A la fonction $F(t) = F_m \sin(wt + \mathcal{E}_F)$. On associer un vecteur \vec{V} (F_m , \mathcal{E}_F).
 - \triangleright Soit $\overrightarrow{V} = \overrightarrow{V1} + \overrightarrow{V2} + \overrightarrow{V3}$.

3- Détermination de X $_m$ et \mathcal{E}_s par la méthode de Fresnei

 $\frac{1^{er} \cos :}{w^2 < \frac{K}{m} = w_0^2 \qquad \qquad \square \qquad \qquad N < N_0$

$$(\mathcal{E}_F - \mathcal{E}_X) \mathbb{Z}[0; \frac{\pi}{2}[\Longrightarrow tg (\mathcal{E}_F - \mathcal{E}_X)]$$

$$\implies tg(\mathcal{E}_F - \mathcal{E}_X) = \frac{hw}{K - mw^2}$$

F est en avance de phase par rapport a X.

 $\frac{2^{\text{ème}} \cos :}{w^2} \quad w^2 \quad \stackrel{K}{\longrightarrow} \quad \Rightarrow \quad w > w_o \quad \Rightarrow \quad N \quad \stackrel{>}{\longrightarrow} \quad N_o$

$$(\mathcal{E}_F - \mathcal{E}_x) \mathbb{Z} \left[\frac{\pi}{2}; \pi \left[\Longrightarrow \right] tg(\mathcal{E}_F - \mathcal{E}_x) < 0. \right]$$

$$\implies tg (\mathcal{E}_F - \mathcal{E}_X) = \frac{h w}{K - m w^2}$$

F est en avance de phase par rapport à X.

 $\frac{3^{\underline{\underline{eme}}} cas:}{m w^2} = K \implies w = w_0 \implies N = N_0$

$$\mathcal{E}_F - \mathcal{E}_X = \frac{\pi}{2}$$
 et $\mathcal{E}_F > \mathcal{E}_X$: $X_m = \frac{Fm}{hw}$.

F est en quadrature avance par rapport à x.

D'après Pythagore

$$(h X_m w)^2 + [K X_m - m w^2 X_m]^2 = Fm^2$$

$$X_m = \frac{Fm}{\sqrt{h^2 w^2 + (k - m w^2)^2}}$$

Remarque

$$V_m = X_m w = \frac{Fm}{\sqrt{h^2 + (\frac{k}{w} - mw)^2}}$$

hωXm

kXm

et
$$\mathcal{E}_{v} = \mathcal{E}_{x} + \frac{\pi}{2}$$
.

Fm

4- Détermination de N_r à la résonance d'élongation

- À la résonance d'élongation X_m est maximal.
- Pour que X_m soit maximal il faut que f(w) soit minimal
- ightharpoonup avec: $f(w) = h^2 w^2 + (k m w^2)^2$

I)	
----	--

Cour physique : Mécanique forcée

4éme M-S exp

$$f'(w) = 0$$
 \longrightarrow $W_r = 0$ ou $W_r^2 = W_0^2 - \frac{h^2}{2m^2} \longrightarrow$ $N_r^2 = N_0^2 - \frac{h^2}{8\pi^2m^2}$

A' la résonance d'élongation ou d'amplitude c.-à-d. X_m est maximale on a

$$N_r^2 = N_o^2 - \frac{h^2}{8 \pi^2 m^2}$$
. (N_r < N₀.) et $w_r^2 = w_o^2 - \frac{h^2}{2 m^2}$: (w_r < w₀).

Cas du rupture du ressort.

- $ightharpoonup L'équation différentielle devient : <math>m \frac{d^2x}{dt^2} + Kx = F$
- La construction de Fresnel

$$\frac{1^{er} cas:}{\mathcal{E}_{F}} m w^{2} < K \implies w < w_{0} \implies N < N_{0}$$

$$\mathcal{E}_{F} = \mathcal{E}_{x} \implies F \text{ et } x \text{ sont en phase}$$

$$X_{m} = \frac{Fm}{(K - mw^{2})}$$

$$KX_{m}$$

$$2^{\frac{2^{n}me}{n}}$$
 cas: $m w \rightarrow K \Rightarrow w \rightarrow w_0 \Rightarrow N \rightarrow N_0$

$$\mathcal{E}_{F} = \mathcal{E}_{x} + \pi \implies F \text{ et } x \text{ sont en opposition de phase}$$

$$X_{m} = \frac{Fm}{(mw^{2} - K)} \qquad m w^{2} X_{m}$$

$$Fm \qquad KX_{m}$$

à la resonance :
$$X_m \longrightarrow +\infty \longrightarrow K-mw^2 \longrightarrow 0 \longrightarrow w \longrightarrow w$$

$$\longrightarrow N \longrightarrow N_0 \longrightarrow Rupture de$$

ressort

6- Conclusion

L'amplitude X_m

$$X_{m} = \frac{F_{m}}{\sqrt{h^{2}\omega^{2} + (K - m\omega^{2})^{2}}}$$

Le déphasage Δφ = φ_F - φ_x

$$tg\Delta \varphi = tg(\varphi_F - \varphi_x) = \frac{h\omega}{K - m\omega^2}$$

7- Résonance de vitesse

a- L'équation différentielle :
$$m \frac{dv}{dt} + hv + K \int v dt = F(t)$$
.

$$V = V_m \sin(wt + \mathcal{E}_v)$$
 et $F = F_m \sin(wt + \mathcal{E}_F)$.

b- La construction de Fresnel

 $m\omega_e v_m$

F est en avance de phase par rapport à v.

 $tg(\mathcal{E}_{F} - \mathcal{E}_{v}) = \frac{mw - \frac{k}{w}}{h}$ $| Elaboré par Afdal Ali \qquad GSM : 265482$

 $\omega_e < \omega_0$

F est retard de phase par rapport à v.

$$3^{\frac{2me}{n}}$$
 cas: $w = w_o \implies N = N_o$

$$\mathcal{E}_{\scriptscriptstyle F} = \mathcal{E}_{\scriptscriptstyle V} \implies Fet \, v \, sont \, en \, phase.$$

$$V_m = \frac{Fm}{h}$$
. V_m et maximale.

C'est la résonance de vitesse.

Pour les trois cas, et d'après Pythagore

$$V_m = \frac{Fm}{\sqrt{h^2 + (\frac{k}{w} - mw)^2}}:$$

V_m est une fonction de N

la résonance de vitesse a' lieu lorsque la fréquence l'excitateur est égale a' la fréquence propre du résonateur.

l'amplitude V_m est maximale $V_m = \frac{Fm}{h}$ et $\mathcal{E}_F = \mathcal{E}_V$ Pour $N = N_o$.

$$V_m = \frac{Fm}{h}$$

Temarque:
$$X_m = \frac{Vm}{w} = \frac{Fm}{\sqrt{h^2 w^2 + (\frac{k}{m} - mw)^2}}$$
. $\mathcal{E}_x = \mathcal{E}_v - \frac{\pi}{2}$.

$$\mathcal{E}_x = \mathcal{E}_v - \frac{\pi}{2}$$

3- Puissance moyenne absorbé par le résonateur

$$P = \frac{Fm.Vm}{2} \cos(\xi_F - \xi_V) \quad \text{avec} \quad \cos(\xi_F - \xi_V) = \frac{h.Vm}{Fm} = \frac{h}{Z}$$

$$\text{avec Z} = \sqrt{h^2 + (\frac{k}{w} - mw)^2} \quad \text{et} \quad F_m = hV_m$$

avec Z =
$$\sqrt{h^2 + \frac{1}{2}}$$

 $P = \frac{1}{2} h V_m^2$

A' la résonance de vitesse, V_m est maximale c-a-d N = N_o.

$$V_m = \frac{Fm}{h}$$
 \longrightarrow $P_{max} = \frac{1}{2h} F_m^2$.

A' la résonance de vitesse $N = N_o$ on a $\begin{cases} Vm = \frac{Fm}{h} \end{cases}$

 \triangleright Le vecteur de Fresnel associe au force de frottement est \vec{f} ($f_m = h \ V_m : \mathcal{E}_f = \mathcal{E}_v + \pi$) car $\vec{f} = -h$

 \triangleright Le vecteur de Fresnel associe au force moteur est \vec{F} ($F_m = hV_m : E_F = E_v$).

F(t) et f(t) sont en opposition de phase et ayant la même amplitude.

$$L'$$
équation différentielle devient : $m \frac{d^2x}{dt^2} + Kx = 0$

Le pendule se comporte comme un oscillateur libre non amortie.

6 Elaboré par Afdal Ali GSM : 26548242

Valeur limite du coefficient de l'amortissement h.

- A' la résonance d'élongation on a $w_r^2 = w_o^2 \frac{h^2}{2 m^2}$.
- Pour qu'il y a résonance d'élongation il faut que

$$w_0^2 - \frac{h^2}{2 m^2} \ge 0$$
. \longrightarrow $h \le \sqrt{2 m k}$ \longrightarrow $h_{\text{limite}} = \sqrt{2 m k}$.

Résonance d'élongation et de vitesse.

Résonance d'élongation

$$X_{m} = \frac{F_{m}}{\sqrt{h^{2}\omega^{2} - (k-m\omega^{2})^{2}}}$$

Condition de résonance :

$$\omega_r^2 = \omega_0^2 - \frac{h^2}{2m^2}$$

$$N_r^2 = N_0^2 - \frac{h^2}{8\pi^2 m^2}$$

Résonance de vitesse

$$V_{m} = \omega X_{m} \frac{F_{m}}{\sqrt{h^{2} + (\frac{k}{\omega} - m\omega)^{2}}}$$

$$\omega_r^2 = \omega_0^2$$

$$\omega_r^2 = \omega_0^2$$

$$N_r^2 = N_0^2$$

La résonance d'élongation est obtenue pour une fréquence $N_r < N_0$ à laquelle il y a une résonance de vitesse.