Расчет классических и квантовых статистических сумм слабосвязанных систем

Финенко Артем

14 марта 2019 г.

Структура доклада

- Два основных подхода к одномерной задаче Штурма-Лиувилля
- Метод Нумерова и его матричный аналог
- Обобщенный матричный метод Нумерова
- Метод Нумерова и трехточечная формула. Асимптотические разложения для собственных значений
- Экстраполяция Ричардсона для собственных значений
- Расчет колебательно-вращательных уровней в потенциале Морзе
- Классическая статистическая сумма
- Сравнение статсумм

Метод Нумерова – численный метод, позволяющий решать дифференциальные уравнения второго порядка a

$$\psi^{(2)}(x) = f(x)\psi(x), \quad f(x) = -\frac{2m}{\hbar^2} [E - V(x)], \quad \psi^{(n)}(x) = \frac{d^n}{dx^n} \psi(x). \quad (1)$$

Используя Тейлоровское разложение для волновой функции

$$\psi(x \pm h) = \psi(x) \pm h\psi^{(1)}(x) + \frac{1}{2!}h^2\psi^{(2)}(x) \pm \frac{1}{3!}h^3\psi^{(3)}(x) + \frac{1}{4!}h^4\psi^{(4)}(x) + O(h^5),$$

получим выражение для второй производной $\psi^{(2)}(x)$ с точностью до $O(h^4)$

$$\psi^{(2)}(x) = \frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{h^2} - \frac{1}{12}h^2\psi^{(4)}(x) + O(h^4). \tag{2}$$

^аМетод Нумерова допускает ненулевой свободный член в ДУ

Используем это выражение для получения четвертой производной $\psi^{(4)}(x)$ с точностью до $O(h^2)$

$$\psi^{(4)}(x) = \frac{d^2}{dx^2} \psi^{(2)}(x) = \frac{d^2}{dx^2} [f(x)\psi(x)] =$$

$$= \frac{f(x+h)\psi(x+h) + f(x-h)\psi(x-h) - 2f(x)\psi(x)}{h^2} + O(h^2).$$
(3)

Подставляем в выражение для второй производной (суммарный порядок остается $O(h^4)$)

$$f(x)\psi(x) = \frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{h^2} - \frac{f(x+h)\psi(x+h) + f(x-h)\psi(x-h) - 2f(x)\psi(x)}{12} + O(h^4).$$
(4)

При пропагировании на сетке используют вспомогательную функцию

$$\omega(x) = \left(1 - \frac{h^2}{12}\right)\psi(x) \tag{5}$$

$$\omega(x+h) = 2\omega(x) - \omega(x-h) + h^2 f(x)\psi(x). \tag{6}$$

Вводя обозначения

$$V_{i-1} \equiv V(x-h), \quad V_i \equiv V(x), \quad V_{i+1} \equiv V(x+h) \tag{7}$$

$$\psi_{i-1} \equiv \psi(x-h), \quad \psi_i \equiv \psi(x), \quad \psi_{i+1} \equiv \psi(x+h),$$
 (8)

получаем следующее выражение, удобное для матричной техники

$$-\frac{\hbar^2}{2m}\frac{\psi_{i+1}+\psi_{i-1}-2\psi_i}{h^2}+\frac{V_{i+1}\psi_{i+1}+V_{i-1}\psi_{i-1}+10V_i\psi_i}{12}=E\frac{\psi_{i-1}+10\psi_i+\psi_{i+1}}{12}$$

14 марта 2019 г. 5 / 1

Матричная формулировка метода Нумерова

$$-\frac{\hbar^2}{2m}\mathbb{A}\psi + \mathbb{B}\mathbb{V}\psi = E\mathbb{B}\psi, \quad \psi(a) = 0, \psi(b) = 0$$
 (9)

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b, \quad h = \frac{b-a}{n}$$
 (10)

$$\psi = [\psi_i, i = 1 \dots n - 1]^\top, \quad \mathbb{V} = \text{diag}\{V_i, i = 1 \dots n - 1\}$$
 (11)

$$\mathbb{A} = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots \\ 1 & -2 & 1 & 0 & \dots \\ 0 & 1 & -2 & 1 & \dots \\ 0 & 0 & 1 & -2 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \quad \mathbb{B} = \frac{1}{12} \begin{bmatrix} 10 & 1 & 0 & 0 & \dots \\ 1 & 10 & 1 & 0 & \dots \\ 0 & 1 & 10 & 1 & \dots \\ 0 & 0 & 1 & 10 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 (12)

$$\mathbb{H}\psi = E\psi, \quad \mathbb{H} = -\frac{\hbar^2}{2m}\mathbb{B}^{-1}\mathbb{A} + \mathbb{V}$$
 (13)

Обобщенный метод Нумерова

Для получения метода порядка N=2r+2, выразим вторую производную $\psi^{(2)}(x)$ с точностью до порядка N+2

$$\psi(x+h) + \psi(x-h) = 2\psi(x) + \sum_{k=1}^{r+1} \frac{2h^{2k}}{(2k)!} \psi^{(2k)}(x) + O(h^{2r+4}), \tag{14}$$

$$\psi^{(2)}(x) = \frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{h^2} - \sum_{k=0}^{r-1} \frac{2h^{2k+2}}{(2k+4)!} \psi^{(2k+4)}(x) + O(h^{2r+2}).$$

Неизвестными являются производные $\{\psi^{(2k+4)}(x), k=0\dots r-1\}$, которые мы найдем из системы линейных уравнений

$$\begin{cases}
\frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{2} = \sum_{k=1}^{r} \frac{h^{2k}}{(2k)!} \psi^{(2k)}(x) + O(h^{2r+2}) \\
\dots \\
\frac{\psi(x+r \cdot h) + \psi(x-r \cdot h) - 2\psi(x)}{2} = \sum_{k=1}^{r} \frac{(r \cdot h)^{2k}}{(2k)!} \psi^{(2k)}(x) + O(h^{2r+2})
\end{cases}$$
(15)

Обобщенный метод Нумерова

В результате решения линейной системы получаем наборы коэффициентов $\left\{c_i\right\}_{i=1}^r$, $\left\{k_i\right\}_{i=1}^r$, позволяющие получить выражения

$$\psi^{(2)}(x) = \frac{1}{h^2} \sum_{i=-r}^{r} c_i \psi_i - \frac{2h^{2r}}{(2r+2)!} \psi^{(2r+2)}(x) + O(h^{2r+2})$$
 (16)

$$\psi^{(2r)}(x) = \frac{1}{h^{2r}} \sum_{i=-r}^{r} k_i \psi_i \tag{17}$$

Воспользуемся приемом из стандратного метода Нумерова для нахождения $\psi^{(2r+2)}(x)$

$$\psi^{(2r+2)}(x) = \frac{d^r}{dx^r} \left(f(x)\psi(x) \right) = \frac{1}{h^{2r}} \sum_{i=-r}^r k_i f_i \psi_i. \tag{18}$$

Собирая полученные выражения, получаем уравнения обобщенного метода Нумерова r r r r r r

$$\frac{1}{h^2} \sum_{i=-r}^{r} c_i \psi_i = f_i \psi_i + \sum_{i=-r}^{r} \frac{2}{(2r+2)!} k_i f_i \psi_i.$$
 (19)

Обобщенный метод Нумерова

Пример. Порядок
$$N=8, (r=3)$$
.
$$\mathbb{H}\psi=E\psi, \quad \mathbb{H}=-\frac{\hbar^2}{2m}\mathbb{B}^{-1}\mathbb{A}+\mathbb{V} \tag{20}$$

$$\mathbb{A}=\frac{1}{180\hbar^2}\begin{bmatrix} 490&270&-27&2&0&\dots\\270&490&270&-27&2&\dots\\-27&270&490&270&-27&\dots\\2&-27&270&490&270&\dots\\0&2&-27&270&490&\dots\\\vdots&\vdots&\vdots&\vdots&\vdots&\ddots \end{bmatrix}, \tag{21}$$

$$\mathbb{B} = \frac{1}{20160} \begin{bmatrix} 20140 & 15 & -6 & 1 & 0 & \dots \\ 15 & 20140 & 15 & -6 & 1 & \dots \\ -6 & 15 & 20140 & 15 & -6 & \dots \\ 1 & -6 & 15 & 20140 & 15 & \dots \\ 0 & 1 & -6 & 15 & 20140 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 (22)

1 U P 1 OF P 1 E P 1 E P 2 Y 1 O Y 1 T O

«Базельская задача»

$$\frac{\pi^2}{6} = \sum_{k=1}^{\infty} \frac{1}{k^2}, \quad S_N = \sum_{k=1}^N \frac{1}{k^2}$$
 (23)

Предположим следующее асимптотическое для частичных сумм ряда

$$S_N \sim S + \frac{a}{N} + \frac{b}{N^2} + \frac{c}{N^3} + O(N^{-4})$$
 (24)

Рассмотрим асимптотическое разложение для двух последовательных частичных сумм

$$S_N \sim S + \frac{a}{N} + \frac{b}{N^2} + O(N^{-3})$$
 (25)

$$S_{N+1} \sim S + \frac{a}{N+1} + \frac{b}{(N+1)^2} + O(N^{-3})$$
 (26)

Скомбинируем выражения, чтобы избавить от линейного члена по $1/\emph{N}$

$$R_1 \equiv (N+1)S_{N+1} - NS_N \sim S - \frac{b}{N(N+1)} + O(N^{-2}) \sim S + O(N^{-2})$$
 (27)

«Базельская задача»

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \approx 1.644934066848$$

N	10 ³	10 ⁴	10 ⁵	10 ⁶			
S_N	1.643934566682	1.644834071848	1.644924066898	1.644933066849			
$R_1 \equiv (N+1)S_{N+1} - NS_N, R_2 \equiv \frac{1}{2} \left[(N+2)^2 S_{N+2} - 2(N+1)^2 S_{N+1} + N^2 S_N \right]$							

Ν	S_N R_2		R_4	R_6	
1	1.000000000000	1.625000000000	1.644965277778	1.644935185185	
5	1.463611111111	1.644166666667	1.644935811130	1.644934060147	
10	1.549767731167	1.644809053481	1.644934195433	1.644934066526	
15	1.580440283445	1.644893408445	1.644934089858	1.644934066812	
20	1.596163243913	1.644916078380	1.644934073240	1.644934066841	
25	1.605723403591	1.644924587023	1.644934069153	1.644934066845	

Трехточечная оценка второй производной

Использование трехточечной формулы для оценки второй производной $\psi^{(2)}(x)$ приводит к матричной задаче, похожей на Нумеровскую a

$$-\frac{\hbar^2}{2m}\psi^{(2)}(x) + V(x)\psi(x) = E\psi(x), \tag{28}$$

$$-\frac{\hbar^2}{2m}\psi^{(2)}(x) + V(x)\psi(x) = E\psi(x), \tag{28}$$

$$\psi^{(2)}(x) = \frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{h^2} + O(h^2) \tag{29}$$

$$\mathbb{H} = -\frac{\hbar^2}{2m} \mathbb{A} + \mathbb{V} \tag{30}$$

$$\mathbb{A} = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots \\ 1 & -2 & 1 & 0 & \dots \\ 0 & 1 & -2 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
(31)

^aD Goorvitch и DC Galant. «Schrödinger's radial equation: solution by extrapolation». B: Journal of Quantitative Spectroscopy and Radiative Transfer 47.5 (1992), c. 391—399.

Оценка второй производной конечными разностями

Если $V \in C^{(2m+1)}[a,b]$, то a

$$\lambda_k(h) = \lambda_k + \sum_{l=1}^m c_k^l h^{2l} + O(h^{2m+1}), \tag{32}$$

$$\phi_k(h) = \phi_k + \sum_{l=1}^m \xi_k^l h^{2l} + O(h^{2m+1}), \tag{33}$$

где $\{c_k^I\}$, $\{\xi_k^I\}$ не зависят от h.

- Экстраполяция по Ричардсону
- Алгоритм Эйткена-Невилла

^aHeinz-Otto Kreiss. «Difference approximations for boundary and eigenvalue problems for ordinary differential equations». B: *Mathematics of Computation* 26.119 (1972), c. 605—624.

Рассмотрим асимптотическое разложение j-ого собственного значения по длине шага h

$$E_j(h) \sim E_j + k_0 h^N + k_1 h^{N+2} + O(h^{N+4})$$
 (34)

Используем последовательное уменьшение шага, чтобы избавиться от ведущих членов в этом разложении

$$\bar{E}_{j}^{1}(h) \sim E_{j} + \tilde{k}_{1}h^{N+2} + O(h^{N+4}),$$
 (35)

$$\bar{E}_j^2(h) \sim E_j + O(h^{N+4}),$$
 (36)

где

$$\bar{E}_{j}^{1} = \frac{2^{N}E_{j}(\frac{h}{2}) - E_{j}(h)}{2^{N} - 1}, \quad \bar{E}_{j}^{2} = E_{j}(\frac{h}{4}) + \frac{(5 \cdot 2^{N} - 1)E_{j}(\frac{h}{4}) - 5 \cdot 2^{N}E_{j}(\frac{h}{2}) + E_{j}(h)}{(2^{N+2} - 1) \cdot (2^{N} - 1)}$$

Частица в потенциальном ящике

$$-\psi^{(2)} + Ey = 0, \quad y(0) = 0, \quad y(\pi) = 0.$$
 (37)

Таблица: Матричный метод Нумерова 4-го порядка, $h \approx 0.0785, n = 40$

Ej	$\Delta E_j(h)$	$\Delta E_j(h/2)$	$\Delta E_j(h/4)$	$\Delta ar{E}^1_j$	$\Delta ar{\mathcal{E}}_j^2$
1	$1.586\mathrm{e}{-7}$	$9.910\mathrm{e}{-9}$	$6.187e{-10}$	$6.837e{-13}$	$6.632e{-13}$
4	$1.016\mathrm{e}{-5}$	$6.343 \mathrm{e}{-7}$	$3.964\mathrm{e}{-8}$	$7.529e{-12}$	$2.163e{-13}$
9	$1.158e{-4}$	$7.228e{-6}$	$4.515e{-7}$	$1.988e{-10}$	$8.669 \mathrm{e}{-13}$
16	$6.519\mathrm{e}{-4}$	$4.063e{-5}$	2.537e - 6	1.983e - 9	$1.380 \mathrm{e}{-11}$
25	$2.492e{-3}$	$1.551\mathrm{e}{-4}$	$9.680\mathrm{e}{-6}$	$1.180\mathrm{e}{-8}$	$1.244\mathrm{e}{-10}$

Трехточечная оценка второй производной

Набор собственных значений $\{\lambda_k\}_{k=1}^n$ мы приближаем набором собственных значений $\{\lambda_k^{(N)}\}_{k=1}^n$ матрицы $\mathbb H$ размерности N. Если потенциальная энергия $V\in C^{(2)}[a,b]$, то разница ведет себя как $|\lambda_k-\lambda_k^{(N)}|=O(k^4h^2)^a$.

^a John W Paine, Frank R de Hoog и Robert S Anderssen. «On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems». В: *Computing* 26.2 (1981), с. 123—139.