МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.3.1 **Изучение удельного заряда электрона**

Б03-102 Куланов Александр

1 Метод магнитной фокусировки

- **Цель работы:** Определение значения магнитных полей, при которых происходит фокусировка электронного пучка, и по результатам измерений считать удельный заряд электрона e/m.
- В работе используются: Электронно-лучевая трубка и блок питания к ней; источник постоянного тока; соленоид; электростатический вольтметр; милливеберметр; ключи.

1.1 Описание установки

Рис. 1: Схема установки

Основной частью установки является электронный осциллограф, трубка которого вынута и установлена в длинном соленоиде, создающим магнитное поле. Напряжение на отклоняющие пластины и питание подводятся к трубке многожильным кабелем.

Пучок электронов, вылетающих из катода с разными скоростями, ускоряется анодным напряжением. Пропустив пучок сквозь две узкие диафрагмы, можно выделить электроны с практически одинаковой продольной скоростью. Небольшое переменное напряжение, поступающее с клеммы "Контрольный сигнал" осциллографа на отклоняющие пластины, изменяет только поперечную составляющую скорости. При увеличении магнитного поля линия на экране стягивается в точку, а затем снова удлиняется.

Магнитное поле создается постоянным током, величина которого регулируется ручками источника питания и измеряется амперметром. Ключ служит для изменения направления поля в соленоиде.

Величина магнитного поля определяется с помощью милливеберметра.

На точность результатов может влиять внешнее магнитное поле, особенно продольное.

Измерения магнитного поля с помощью милливеберметра обычно проводятся в предварительных опыта: при отключении ключа устанавливается связь между силой тока и индукцией магнитного поля в соленоиде.

1.2 Теоретические сведения

Удельный заряд электрона определяется по формуле

$$\frac{e}{m_e} = \frac{8\pi^2 V}{l^2} \left(\frac{n^2}{B_{\Phi}^2}\right),\tag{1}$$

где V - ускоряющий потенциал в электронной трубке, l - путь электрона, B_{Φ} - фокусирующее поле, n - номер фокуса.

1.3 Обработка результатов

Приведем сведения об установке:

Величина	Значение	
l, м	$0,\!265$	
SN, м ²	0,3	
0,116	1,8	

Таблица 1: Данные установки

Данные, полученные во время опыта занесем в таблицу:

В прямом направлении		В обратном направлении			
I, A (Калибровка)	I, A	Ф, мВб	I, A (Калибровка)	I, A	Поток, мВб
0,64	0,80	0,85	4,18	4,75	0,85
1,34	1,60	1,60	3,51	3,69	1,70
2,06	2,39	2,60	2,80	3,18	2,50
2,77	3,17	3,40	2,10	2,38	3,30
3,47	4,06	4,20	1,32	1,58	4,00
4,14	4,89	4,90	0,60	0,80	5,00

Таблица 2: Данные

2 Приложение