

# SSC338D/SSC338Q High-Integrated IP Camera SoC Processor

Preliminary Product Brief Version 0.8





© 2021 SigmaStar Technology. All rights reserved.

SigmaStar Technology makes no representations or warranties including, for example but not limited to, warranties of merchantability, fitness for a particular purpose, non-infringement of any intellectual property right or the accuracy or completeness of this document, and reserves the right to make changes without further notice to any products herein to improve reliability, function or design. No responsibility is assumed by SigmaStar Technology arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

SigmaStar is a trademark of SigmaStar Technology. Other trademarks or names herein are only for identification purposes only and owned by their respective owners.





# **REVISION HISTORY**

| Revision No. | Description                                                                                                                     | Date       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|------------|
| 0.1          | Initial release                                                                                                                 | 01/17/2020 |
| 0.2          | Added DLA function                                                                                                              | 03/02/2020 |
| 0.3          | <ul><li>Updated Features</li><li>Updated Mechanical Dimensions</li></ul>                                                        | 05/11/2020 |
| 0.4          | Updated CA7 Spec.                                                                                                               | 05/29/2020 |
| 0.5          | <ul><li> Updated Features</li><li> Added Interface Characteristics and Thermal Resistance Data</li></ul>                        | 09/28/2020 |
| 0.6          | Added Minimum Order Quantity and Moisture Sensitivity Level                                                                     | 01/21/2021 |
| 0.7          | <ul><li>Updated audio spec. and I2C SDA Hold Time min. value</li><li>Added Ambient Temperature during OTP programming</li></ul> | 04/26/2021 |
| 0.8          | Updated Recommended Operating Conditions                                                                                        | 06/30/2021 |





### TABLE OF CONTENTS

| RE\ | /ISIO  | N HISTORY                        |          |
|-----|--------|----------------------------------|----------|
| TAE | BLE OF | F CONTENTS                       | i        |
| 1.  | CHIP   | OVERVIEW                         | 1        |
| 2.  | BLO    | CK DIAGRAM                       | 2        |
| 3.  | FEAT   | TURES                            | 3        |
| 4.  | PACK   | KAGE DESCRIPTION                 | 5        |
|     | 4.1.   | Pin Diagram                      | 5        |
|     | 4.2.   | Signal Description               | <i>6</i> |
|     | 4.3.   | Mechanical Dimensions            | 11       |
| 5.  | ELEC   | CTRICAL CHARACTERISTIC           | 12       |
|     |        | Interface Characteristics        |          |
|     | 5.2.   | Absolute Maximum Ratings         | 13       |
|     |        | Recommended Operating Conditions |          |
| 6.  | Ther   | mal Resistance                   | 15       |
|     | 6.1.   | Thermal simulation mode          | 15       |
| 7.  | ORDI   | ERING GUIDE                      | 16       |
|     | 7.1.   | Marking Information              | 16       |



### 1. CHIP OVERVIEW

The SSC338D/SSC338Q series products are highly integrated multimedia System-on-Chip (SoC) products for high-resolution intelligent video recording applications like IP camera, CAR camera, and USB camera.

The chip includes a 32-bit dual-core RISC processor, advanced Image Signal Processor (ISP), high performance MJPEG/H.264/H.265 video encoder, Deep Learning Accelerator (DLA), Intelligent Video Engine (IVE), as well as high speed I/O interfaces like MIPI, and Ethernet.

Advanced low-power, low-voltage architecture and optimized design flow are implemented to fulfill long time usage applications. Hardwired AES/DES/3DES cipher engines are integrated to support secure boot, authentication, and video/audio stream encryption in security system.

The SSC338D/SSC338Q, powered by SigmaStar Technology, comes with a complete hardware platform and software SDK, allowing customers to speed up "Time-to-Market."



# 2. BLOCK DIAGRAM

Figure 2-1 shows the major functional blocks of SSC338D/SSC338Q series chip.



Figure 2-1: SSC338D/SSC338Q Block Diagram



#### 3. FEATURES

#### ■ High Performance Processor Core

- ARM Cortex-A7 Dual Core
- Clock rate up to 1.2GHz
- Neon and FPU
- Memory Management Unit for Linux support
- DMA Engine

#### Image/Video Processor

- Supports 8/10/12-bit parallel interface for raw data input
- Supports MIPI interface with 2/4 data lanes and 1 clock lane
- Supports one MIPI interface
- Supports sensor interface with both parallel and MIPI
- Supports 8/10-bit CCIR656 interface
- Supports max. 4K (3840x2160) pixels video recording and image snapshot
- Bad pixel compensation
- Temporal-domain Noise Reduction (3DNR)
- Bayer domain Spatial-domain Noise Reduction (2DNR)
- Bayer domain filter to remove purple false color in highlight regions
- Optical black correction
- Lens shading compensation
- Auto White Balance (AWB) / Auto Exposure
   (AE) / Auto Focus (AF)
- CFA color interpolation
- Color correction
- Gamma correction
- Video stabilization
- High Dynamic Range (HDR) with two exposure frames and de-ghost function
- Frame buffer data compression and decompression to save memory bandwidth
- Wide Dynamic Range (WDR) with local tone mapping

- Flip, Mirror, and Rotation with 90 or 270 degree
- Lens distortion correction (LDC/FishEye)
- Rolling shutter compensation
- Fully programmable multi-function scaling engines

#### Advanced Color Engine

- Luma gain/offset adjustment
- Supports 2D peaking with user definition filter
- Horizontal noise masking
- Direct Luma Correction (DLC)
- Black/White Level Extension (BLE/WLE)
- IHC/ICC/IBC for chroma adjustment
- Histogram statistics
- Spatial domain IIR filter to reduce noise

#### ■ H.265/HEVC

- Supports H.265/HEVC main profile
- Supported Prediction Unit (PU) size: 32x32, 16x16, 8x8
- Supported Transform Unit (TU) size: 32x32 to 4x4
- Search range [H: +/-128, V: +/-64]
- Supports up to quarter-pixel
- Supports frame level and MB level rate control
- Supports ROI encoding with custom QP map
- Supports max. 4K with 20 fps encoding

#### ■ H.264 Encoder

- Supports H.264 baseline, constrained baseline, main, and high profile
- Supports 16x16, 8x8 and 4x4 block sizes
- Search range [H: +/-64, V: +/-32]
- Supports up to quarter-pixel
- Supports frame level and MB level rate control
- Supports ROI encoding with custom QP map
- Supports max. 4K with 20 fps encoding





#### JPEG Encoder

- · Supports JPEG baseline encoding
- Supports YUV422 or YUV420 formats
- · Supports max. 4K with 20 fps encoding
- Supports real-time mode and frame encode mode

#### ■ Video Encoding Performance

- Supports 4K + HD + D1 20fps H.265/HEVC encoding
- Supports 4K + HD + D1 20fps H.264 encoding
- Supports MJPEG up to 4K 20 fps encoding

#### Deep Learning Accelerator

- Pure hardwired accelerator
- Supports various video analysis functions like FD/FR, human detection, MD/OD, object tracking, etc.

#### Audio Processor

- One stereo ADC for microphone input
- 2-pin DMIC input
- One mono DAC for lineout
- Supports 8K/16K/32KHz/48KHz sampling rate audio recording
- · Digital and analog gain adjustment
- I2S digital audio input and output with TDM up to 8-ch input and 2-ch output

#### NOR/NAND Flash Interface

- Compliant with standard, dual and quad SPI Flash memory components
- High speed clock/data rate up to 108MHz

#### ■ SD Card/eMMC Interface

- Compatible with SD spec. 2.0, data bus 1/4 bit mode
- Supports eMMC 4.3 interface

#### ■ SDIO 2.0 Interface

- Compatible with SDIO spec. 2.0, data bus 1/4 bit mode
- Compatible with SD spec. 2.0, data bus 1/4 bit mode

#### USB Interface

- One USB 2.0 configurable host or device
  - Host mode supports EHCI specification
  - Device mode supports up to 8 endpoints
- Supports suspend/hibernation/wake-up power saving mode

#### DRAM Memory

• Embedded 1Gb or 2Gb 16-bit DDR3 memory with max. 2133Mbps

#### Connectivity

- Built-in 10/100M Ethernet MAC and Ethernet PHY
- USB 2.0 Host Controller could be used for USB Wi-Fi Dongle or Module
- One SDIO 2.0 Host Controller could be used for SDIO Wi-Fi module
- Supports Wake-on-LAN (WOL)
- Supports BT.656 8-bit output with max.
   75MHz clock rate (single clock edge)
- Supports BT.656 YUV422 format and progressive mode

#### Security Engines

- Supports AES/DES/3DES/RSA/SHA-I/SHA-256
- Supports secure booting

#### ■ Real Time Clock (RTC)

- Built-in RTC working with 32.768 KHz crystal
- Alarm interrupt for wakeup
- Tick time interrupt (millisecond)
- Built-in regulator
- Supports low leakage RTC-mode for long battery application

#### Peripherals

- Dedicated GPIOs for system control
- Supports max. 11 PWM outputs
- Three generic UARTs and one fast UART with flow control
- Three generic timers and one watchdog timer
- Two SPI masters
- Four I2C Masters
- Built-in SAR ADC with 4-channel analog inputs for different kinds of applications
- Supports internal temperature sensor

#### Operating Voltage Range

- Core: Typ. 0.9V
- I/O: 1.8/3.3V
- DRAM: 1.5V (DDR3) or 1.35V (DDR3L)
- Power Consumption: TBD

## Package

- QFN with 128 pins, 12.3mm x 12.3mm
- Moisture Sensitivity Level: 3



# 4. PACKAGE DESCRIPTION

# 4.1. Pin Diagram





# 4.2. Signal Description

| Signal Name           | Signal     | Function                                                                            | QFN128       |
|-----------------------|------------|-------------------------------------------------------------------------------------|--------------|
| System Reset Interfa  | Type<br>ce |                                                                                     | Pin Location |
| RESET                 | I          | System Reset (Active High)                                                          | 83           |
| Debug UART Interfac   | e          |                                                                                     | 1            |
| PM_UART_RX            | I          | Debug UART Receive Data Input with Pull Up<br>Resistor /<br>Slave I2C Serial Clock  | 50           |
| PM_UART_TX            | 0          | Debug UART Transmit Data Output with Pull<br>Up Resistor /<br>Slave I2C Serial Data | 51           |
| PM_UART_RX1           | I          | PM_UART1 Receive Data Input with Pull Up<br>Resistor in Power Manage group domain   | 52           |
| PM_UART_TX1           | 0          | PM_UART1 Transmit Data Output with Pull Up<br>Resistor in Power Manage group domain | 53           |
| System Interface      |            |                                                                                     |              |
| XTAL_IN               | I          | 24MHz Crystal Input                                                                 | 117          |
| XTAL_OUT              | 0          | 24MHz Crystal Output                                                                | 118          |
| XTAL_IN_32K           | I          | 32.768KHz Crystal Input                                                             | 85           |
| XTAL_OUT_32K          | 0          | 32.768KHz Crystal Output                                                            | 86           |
| SE_XTAL_OUT           | 0          | 24MHz Clock Output                                                                  | 119          |
| 8051 SPI Flash Interf | ace        | 7                                                                                   |              |
| PM_SPI_CZ             | 0          | SPI Flash Chip Select<br>(Active Low)                                               | 66           |
| PM_SPI_CK             | 0          | SPI Flash Clock                                                                     | 67           |
| PM_SPI_DI             | 0          | SPI Flash Serial Data To Device (MOSI)                                              | 68           |
| PM_SPI_DO             | I          | SPI Flash Serial Data From Device (MISO)                                            | 69           |
| PM_SPI_WPZ            | 0          | SPI Flash Write Protect                                                             | 70           |
| PM_SPI_HLD            | 0          | SPI Flash Hold                                                                      | 71           |
| GPIO Interface        |            |                                                                                     |              |
| GPIO0                 | I/O        | General Purpose Input/Output 0                                                      | 94           |
| GPIO1                 | 1/0        | General Purpose Input/Output 1                                                      | 95           |
| GPIO8                 | 1/0        | General Purpose Input/Output 8                                                      | 121          |
| GPIO9                 | 1/0        | General Purpose Input/Output 9                                                      | 122          |
| GPIO12                | 1/0        | General Purpose Input/Output 12                                                     | 123          |
| GPIO13                | 1/0        | General Purpose Input/Output 13                                                     | 124          |



| Signal Name        | Signal<br>Type                                             | Function                                                           | QFN128<br>Pin Location |
|--------------------|------------------------------------------------------------|--------------------------------------------------------------------|------------------------|
| GPIO14             | 1/0                                                        | General Purpose Input/Output 14                                    | 125                    |
| GPIO15             | 1/0                                                        | General Purpose Input/Output 15                                    | 126                    |
| PM GPIO Interface  | <u> </u>                                                   |                                                                    |                        |
| PM_GPIO0           | PIO0 I/O Power Manage Group General Purpose Input/Output 0 |                                                                    | 56                     |
| PM_GPIO1           | 1/0                                                        | Power Manage Group General Purpose Input/Output 1                  | 57                     |
| PM_GPIO2           | 1/0                                                        | Power Manage Group General Purpose Input/Output 2                  | 58                     |
| PM_GPIO3           | 1/0                                                        | Power Manage Group General Purpose Input/Output 3                  | 59                     |
| PM_GPIO4           | 1/0                                                        | Power Manage Group General Purpose Input/Output 4                  | 60                     |
| PM_GPIO5           | 1/0                                                        | Power Manage Group General Purpose Input/Output 5                  | 61                     |
| PM_GPIO6           | 1/0                                                        | Power Manage Group General Purpose Input/Output 6                  | 62                     |
| PM_GPIO7           | 1/0                                                        | Power Manage Group General Purpose Input/Output 7                  | 63                     |
| PM_GPIO8           | 1/0                                                        | Power Manage Group General Purpose Input/Output 8                  | 64                     |
| SAR ADC Interface  | 9                                                          | ~~~                                                                |                        |
| SAR_GPIO0          | ı                                                          | General Purpose Input/Output or<br>Muxed to SARADC Input Channel 0 | 74                     |
| SAR_GPI01          |                                                            | General Purpose Input/Output or<br>Muxed to SARADC Input Channel 1 | 75                     |
| SAR_GPIO2          | 1                                                          | General Purpose Input/Output or<br>Muxed to SARADC Input Channel 2 | 76                     |
| SAR_GPIO3          | 10                                                         | General Purpose Input/Output or<br>Muxed to SARADC Input Channel 3 | 77                     |
| CA7 SPI Flash Inte | erface                                                     |                                                                    |                        |
| SPI_CZ             | О                                                          | Master SPI Chip Select (Active Low)                                | 128                    |
| SPI_CK             | 0                                                          | Master SPI Serial Clock                                            | 1                      |
| SPI_DI             | 1/0                                                        | Master SPI Serial Data To Device (MOSI) / SDIO0 - 4x IO mode       | 2                      |
| SPI_DO             | 1/0                                                        | Master SPI Serial Data From Device (MISO) / SDIO1 - 4x IO mode     | 3                      |
| SPI_WPZ            | 1/0                                                        | Master SPI Write Protect (Active Low) / SDIO2 - 4x IO mode         | 4                      |
| SPI_HLD            | 1/0                                                        | Master SPI Hold input (Active Low) / SDIO3 - 4x IO mode            | 5                      |



| Signal Name          | Signal<br>Type | Function                               | QFN128<br>Pin Location |
|----------------------|----------------|----------------------------------------|------------------------|
| 12S Interface        |                |                                        |                        |
| I2SO_MCLK            | 0              | I2S Master Clock                       | 14                     |
| I2SO_BCK             | 0              | I2S Bit Clock                          | 15                     |
| I2SO_WCK             | 0              | I2S Word Clock                         | 16                     |
| 12S0_DI              | I              | I2S Data Input                         | 17                     |
| 12S0_DO              | 0              | I2S Data Output                        | 18                     |
| Master I2C Interface | 1              |                                        |                        |
| I2CO_SCL             | 0              | Non-PM Domain I2C 0 Master I2C Clock   | 19                     |
| I2CO_SDA             | I/O            | Non-PM Domain I2C 0 Master I2C Data    | 20                     |
| PM_I2CM_SCL          | 0              | PM Domain I2C Master I2C Clock         | 54                     |
| PM_I2CM_SDA          | I/O            | PM Domain I2C Master I2C Data          | 55                     |
| Fast UART Interface  |                |                                        |                        |
| FUART_RX             | I              | Fast UART Receive Data Input           | 90                     |
| FUART_TX             | 0              | Fast UART Transmit Data Output         | 91                     |
| FUART_CTS            | I              | Fast UART Clear to Send                | 92                     |
| FUART_RTS            | 0              | Fast UART Request to Send              | 93                     |
| Image Sensor Interfa | ce             | XO                                     |                        |
| SR0_IO00             | 1/0            | Sensor General Purpose Input/Output 0  | 98                     |
| SR0_IO01             | 1/0            | Sensor General Purpose Input/Output 1  | 99                     |
| SR0_IO02             | 1/0            | Sensor General Purpose Input/Output 2  | 100                    |
| SR0_IO03             | 1/0            | Sensor General Purpose Input/Output 3  | 101                    |
| SR0_IO04             | 1/0            | Sensor General Purpose Input/Output 4  | 102                    |
| SR0_IO05             | 1/0            | Sensor General Purpose Input/Output 5  | 103                    |
| SR0_IO06             | 1/0            | Sensor General Purpose Input/Output 6  | 104                    |
| SR0_IO07             | 1/0            | Sensor General Purpose Input/Output 7  | 105                    |
| SR0_IO08             | 1/0            | Sensor General Purpose Input/Output 8  | 106                    |
| SR0_IO09             | 1/0            | Sensor General Purpose Input/Output 9  | 107                    |
| SR0_IO10             | 1/0            | Sensor General Purpose Input/Output 10 | 108                    |
| SR0_IO11             | 1/0            | Sensor General Purpose Input/Output 11 | 109                    |
| SR0_IO14             | 1/0            | Sensor General Purpose Input/Output 14 | 110                    |
| SR0_IO16             | 1/0            | Sensor General Purpose Input/Output 16 | 111                    |



| Signal Name           | Signal   | Function                                                                                                                | QFN128       |
|-----------------------|----------|-------------------------------------------------------------------------------------------------------------------------|--------------|
|                       | Type     |                                                                                                                         | Pin Location |
| SR0_IO17              | 1/0      | Sensor General Purpose Input/Output 17                                                                                  | 112          |
| SR0_IO18              | 1/0      | Sensor General Purpose Input/Output 18                                                                                  | 113          |
| SR0_IO19              | 1/0      | Sensor General Purpose Input/Output 19                                                                                  | 114          |
| 10/100M Ethernet Ir   | iterface |                                                                                                                         |              |
| ETH_RN                | 1        | 10/100M Ethernet Differential Pair of Receiver Signal Negative                                                          | 25           |
| ETH_RP                | I        | 10/100M Ethernet Differential Pair of Receiver Signal Positive                                                          | 26           |
| ETH_TN                | О        | 10/100M Ethernet Differential Pair of Transmitter Signal Negative                                                       | 27           |
| ETH_TP                | О        | 10/100M Ethernet Differential Pair of Transmitter Signal Positive                                                       | 28           |
| ETH_LED0              | 0        | 10/100M Ethernet LED0 Control<br>Driven Active When Linked                                                              | 21           |
| ETH_LED1              | 0        | 10/100M Ethernet LED1 Control Driven Active When Linked in 100 Base-TX and Blinking When Transmitting or Receiving Data | 22           |
| SD 2.0 Card Interface | )        |                                                                                                                         |              |
| SD0_CLK               | 0        | SD 2.0 Clock                                                                                                            | 10           |
| SD0_CMD               | 0        | SD 2.0 Command                                                                                                          | 11           |
| SD0_D0                | 1/0      | SD 2.0 Data Bus 0                                                                                                       | 9            |
| SD0_D1                | 1/0      | SD 2.0 Data Bus 1                                                                                                       | 8            |
| SD0_D2                | 1/0      | SD 2.0 Data Bus 2                                                                                                       | 13           |
| SD0_D3                | 1/0      | SD 2.0 Data Bus 3                                                                                                       | 12           |
| SD0_CDZ               |          | Power Manage SD 2.0 Card Detect                                                                                         | 7            |
| SD0_GPIO0             | 1/0      | SD0 General Purpose Input/Output 0                                                                                      | 6            |
| Audio Line Out Interf | ace      |                                                                                                                         |              |
| AUD_LINEOUT_L0        | 0        | Audio Left Channel Line Output                                                                                          | 39           |
| AUD_VAG               | 0        | Audio Reference Voltage from 1/2 AVDD_AUD                                                                               | 33           |
| AUD_VRM_ADC           | I        | Audio Reference Voltage for ADC                                                                                         | 34           |
| Analog Microphone I   | nterface | 1                                                                                                                       | 1            |
| AUD_MICINO            | I        | Audio Left Channel Microphone Positive Input                                                                            | 35           |
| AUD_MICCM0            | I        | Audio Left Channel Microphone Negative Input                                                                            | 36           |
| AUD_MICIN1            | I        | Audio Right Channel Microphone Positive Input                                                                           | 37           |
| AUD_MICCM1            | 1        | Audio Right Channel Microphone Negative Input                                                                           | 38           |



| Signal Name       | Signal<br>Type    | Function                                                           | QFN128<br>Pin Location              |
|-------------------|-------------------|--------------------------------------------------------------------|-------------------------------------|
| USB 2.0 Interface | 1,700             |                                                                    | THI Education                       |
| USB2_DM           | 1/0               | USB 2.0 Differential Pair, Negative                                | 30                                  |
| USB2_DP           | 1/0               | USB 2.0 Differential Pair, Positive                                | 31                                  |
| Test Interface    | l                 |                                                                    |                                     |
| NC_0              | 1/0               | RTC Test Pin (NC)                                                  | 82                                  |
| NC_1              | 1/0               | RTC Test Pin (NC)                                                  | 81                                  |
| NC_2              | 1/0               | RTC Test Pin (NC)                                                  | 80                                  |
| NC_4              | 1/0               | RTC Test Pin (NC)                                                  | 79                                  |
| NC_5              | 1/0               | RTC Test Pin (NC)                                                  | 78                                  |
| Power pins        |                   |                                                                    |                                     |
| VDD               | Core Power        | Digital Core Power                                                 | 23, 45, 47, 87, 88,<br>96, 115, 120 |
| VDDP_0            | 3.3V Power        | Digital Input/Output Power for Domain 0                            | 127                                 |
| VDDP_1            | 1.8/3.3V<br>Power | Digital Input/Output Power for Domain 1                            | 89                                  |
| VDDP_2A           | 1.8/3.3V<br>Power | Digital Input/Output Power for Domain 2A (Sensor IO Group 0 Power) | 97                                  |
| DVDD_DDR_RX       | Core Power        | Digital Power for DDR RX LDO (0.1uF CAP to GND)                    | 43                                  |
| DVDD_DDR          | Core Power        | Digital Power for DDR TX                                           | 44                                  |
| VDDIO_DATA        | DDR Power         | IO Power for DDR Data                                              | 41, 46                              |
| VDDIO_MCLK        | DDR Power         | IO Power for DDR Clock                                             | 48                                  |
| AVDDIO_DRAM       | DDR Power         | IO Power for embedded DRAM                                         | 40, 49                              |
| AVDD_NODIE        | 3.3V Power        | Analog Power for PM Domain                                         | 65                                  |
| DVDD_NODIE        | Output            | PM Domain LDO Output (1uF Cap to GND)                              | 73                                  |
| AVDD_PM_SPI       | 3.3V Power        | Analog Power for PM SPI Domain                                     | 72                                  |
| AVDD_PLL          | 3.3V Power        | Analog Power for PLL                                               | 42                                  |
| AVDD_XTAL         | 3.3V Power        | Analog Power for XTAL                                              | 116                                 |
| AVDD_RTC          | 3.3V Power        | Analog Power for RTC                                               | 84                                  |
| AVDD3P3_USB       | 3.3V Power        | Analog Power for USB2.0 29                                         |                                     |
| AVDD_ETH          | 3.3V Power        | Analog Power for Ethernet                                          | 24                                  |
| AVDD_AUD          | 3.3V Power        | Analog Power for Audio                                             | 32                                  |
| GND               | GND               | Ground                                                             | ePad                                |



### 4.3. Mechanical Dimensions





# 5. ELECTRICAL CHARACTERISTIC

# 5.1. Interface Characteristics

| Parameter                 | Symbol      | Min.         | Тур.     | Max.         | Unit |
|---------------------------|-------------|--------------|----------|--------------|------|
| DIGITAL INPUTS            |             |              |          |              |      |
| Input Voltage, High       | VIH         | VDDP*0.7Note |          |              | V    |
| Input Voltage, Low        | VIL         |              | <b>•</b> | VDDP*0.2Note | V    |
| Input Current, High       | Ітн         |              |          | -1.0         | uA   |
| Input Current, Low        | lıL         |              |          | 1.0          | uA   |
| Input Capacitance         |             |              | 5        |              | рF   |
| DIGITAL OUTPUTS           |             |              |          |              |      |
| Output Voltage, High      | Voh         | VDDP-0,1Note |          |              | V    |
| Output Voltage, Low       | Vol         |              |          | 0.1          | V    |
| SAR ADC Input             |             | 0            |          | 3.3          | V    |
| AUDIO OUTPUTS             |             |              |          |              |      |
| Line-Out                  |             |              | 2.54     |              | Vp-p |
| 24MHz XTAL Specifications |             |              |          |              |      |
| Input Voltage, High       | VIH         | 2.0          |          | 3.6          | V    |
| Input Voltage, Low        | VIL         | -0.3         |          | 0.8          | V    |
| Clock frequency           |             |              | 24       |              | MHz  |
| Crystal accuracy          |             |              | +/-30    |              | ppm  |
| Long-term jitter          |             |              | +/-500   |              | ps   |
| 32KHz XTAL Specifications |             |              |          |              |      |
| XIN Vswing                | $V_{swing}$ | 140          |          |              | mV   |
| XOUT Vswing               | $V_{swing}$ | 175          |          |              | mV   |
| Crystal accuracy          |             |              |          | 20           | ppm  |

Note: VDDP typical voltage is 3.3V or 1.8V





# 5.2. Absolute Maximum Ratings

| Parameter                            | Symbol                | Min  | Тур. Мах. | Unit   |
|--------------------------------------|-----------------------|------|-----------|--------|
| Core Power Supply Voltage            | VDD                   | -0.3 | 1.26      | V      |
| 3.3V I/O Supply Voltage              | VDDP_0<br>AVDD_PM_SPI | -0.3 | 3.63      | \<br>\ |
| 1.8/3.3V I/O Supply Voltage          | VDDP_1<br>VDDP_2A     | -0.3 | 3.63      | V      |
| DDR Digital Power Supply Voltage     | DVDD_DDR*             | -0.3 | 1.26      | V      |
| DDR IO Power Supply Voltage (DDR3/L) | VDDIO_*<br>AVDD*_DRAM | -0.3 | 1.8       | V      |
| PM IO Power Supply Voltage           | AVDD_NODIE            | -0.3 | 3.63      | V      |
| 3.3V Analog Power Supply Voltage     | AVDD*                 | -0.3 | 3.63      | V      |
| 0.9V Analog Power Supply Voltage     | AVDDL*                | -0.3 | 1.26      | V      |
| Storage Temperature                  | Tstg                  | -40  | 150       | °C     |

Note: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and does not imply functional operation of device. Exposure to absolute maximum ratings for extended periods may affect device reliability.

# 5.3. Recommended Operating Conditions

| Parameter   | Description                                                        | Min. | Typ. | Max  | Unit |
|-------------|--------------------------------------------------------------------|------|------|------|------|
| VDD         | Digital Core Power                                                 | 0.87 | 0.9  | 1.05 | V    |
| VDDP_0      | Digital Input/Output Power for Domain 0                            | 2.97 | 3.3  | 3.63 | V    |
| VDDD 1      | Digital Input/Output Power for Domain 1                            | 2.97 | 3.3  | 3.63 | V    |
| VDDP_1      | Digital Input/Output Power for Domain 1                            | 1.62 | 1.8  | 1.98 | V    |
| VDDD 2A     | Digital Input/Output Power for Domain 2A (Sensor IO Group 0 Power) | 2.97 | 3.3  | 3.63 | V    |
| VDDP_2A     | Digital Input/Output Power for Domain 2A (Sensor IO Group 0 Power) | 1.62 | 1.8  | 1.98 | \ \  |
| DVDD_DDR_RX | Digital Power for DDR RX LDO (0.1uF CAP to GND)                    | TBD  | 0.9  | TBD  | V    |
| DVDD_DDR    | Digital Power for DDR TX                                           | TBD  | 0.9  | TBD  | V    |
| VDDIO_DATA  | (DDR3) IO Power for DDR Data                                       | 1.45 | 1.5  | 1.55 | V    |
| VDDIO_MCLK  | (DDR3) IO Power for DDR Clock                                      | 1.45 | 1.5  | 1.55 | V    |
| AVDDIO_DRAM | (DDR3) IO Power for embedded DRAM                                  | 1.45 | 1.5  | 1.55 | V    |
| AVDD_NODIE  | Analog Power for PM Domain                                         | 2.97 | 3.3  | 3.63 | V    |
| DVDD_NODIE  | PM Domain LDO Output (1uF Cap to GND)                              | TBD  | 0.9  | TBD  | V    |
| AVDD_PM_SPI | External power supply for 3.3V IO                                  | 2.97 | 3.3  | 3.63 | V    |
| AVDD_PLL    | Analog Power for PLL                                               | 3.14 | 3.3  | 3.46 | V    |





| Parameter                      | Description               | Min. | Тур.         | Max  | Unit |
|--------------------------------|---------------------------|------|--------------|------|------|
| AVDD_XTAL                      | Analog Power for XTAL     | 3.14 | 3.3          | 3.46 | V    |
| AVDD_RTC                       | Analog Power for RTC      | 1.6  | 3            | 3.6  | V    |
| AVDD3P3_USB                    | Analog Power for USB2.0   | 3.14 | 3.3          | 3.46 | V    |
| AVDD_ETH                       | Analog Power for Ethernet | 3.14 | 3.3          | 3.46 | V    |
| AVDD_AUD                       | Analog Power for Audio    | 3.14 | 3.3          | 3.46 | V    |
|                                | Main Die                  |      |              | 125  | 0.0  |
| Junction Temperature           | DDR3 Die                  |      |              | 125  | °C   |
| Ambient Temperature during OTP |                           | 0    | <b>:</b> (0) | 125  | °C   |
| programming                    |                           |      |              |      |      |



### 6. THERMAL RESISTANCE

### 6.1. Thermal simulation mode

PCB condition: JEDEC JESD51-5

PCB layers: 4L

PCB dimensions: 76.2 x 114.3 (mm x mm)

PCB thickness: 1.6 (mm)

| Part Number     | Package          |           | Thermal Resistance<br>(°C/W) |             |
|-----------------|------------------|-----------|------------------------------|-------------|
|                 |                  | PCB Layer | <b>O</b> JA                  | <b>O</b> JC |
| SSC338D/SSC338Q | QFN128_12.3x12.3 | 4L PCB    | 25.4                         | 7.6         |



#### 7. ORDERING GUIDE

| Part Number     | Temperature Range | Package Description | Package Option | Minimum Order Quantity |
|-----------------|-------------------|---------------------|----------------|------------------------|
| SSC338D/SSC338Q | -20°C to +60°C    | QFN                 | 128            | 1216ea                 |

# 7.1. Marking Information



### DISCLAIMER

SIGMASTAR TECHNOLOGY RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. NO RESPONSIBILITY IS ASSUMED BY SIGMASTAR TECHNOLOGY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.



Electrostatic charges accumulate on both test equipment and human body and can discharge without detection. SSC338D/SSC338Q comes with ESD protection circuitry; however, the device may be permanently damaged when subjected to high energy discharges. The device should be handled with proper ESD precautions to prevent malfunction and performance degradation.