(pt of females (fg. fg) In the population, males can invest 't' portion of their fitness f_m. (1-t)f_m is the fitness left for their physiological activities. In the population, females are choosy. Choosiness does not affect the female's fitness f_f. But, after every mating event, a female loses a part of her fitness. Let us (> Why this? Is this because of the fende's choosiness? It's not clear. assume that it is Δx . Steps: 1. Identify a male(i) based on his investment (t). According to this logic the threshold could be really 2. Choose a random number, r_1 . low and flustrating too. r1*max. fitness= f_{threshold} -> If the fitness of the ith male is less than f_{threshold}, choose a new male. 3. Identify a female(j) based on her choosiness(p). - How does this identification work.

4. Choose a random number r₂. r2*max. fitness = $f_{threshold2}$ & $f_{threshold2} >= \Delta x$. If the fitness of the j^{th} female is less than $f_{threshold2}$, choose a new female. After a successful mating event, fitness of the female that mated $(f_f - \Delta x)$ The rationale for this variable and finduating The male's fitness reduces because of his investment in making an ornament, while thresholds 's the female's fitness reduces because she participates in a mating event. ust clear. Not sine about this. The [1] [1] (or week) the grands of my totales along " but done it had day not (At 1x) for a story Each inciment wating from nice to now aftering, is we've been

Each successful making gives rise to now offspring, as we've been deing easter.