JORDANIAN DOUBLE EXTENSIONS OF A QUADRATIC VECTOR SPACE AND SYMMETRIC NOVIKOV ALGEBRAS

MINH THANH DUONG, ROSANE USHIROBIRA

ABSTRACT. First, we study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra. We give an isomorphic characterization of 2-step nilpotent pseudo-Euclidean Jordan algebras. Next, we find a Jordan-admissible condition for a Novikov algebra \mathfrak{N} . Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7.

0. Introduction

All algebras considered in this paper are finite-dimensional algebras over \mathbb{C} . The general framework for our study is the following: let \mathfrak{q} be a complex vector space equipped with a non-degenerate bilinear form $B_{\mathfrak{q}}$ and $C:\mathfrak{q}\to\mathfrak{q}$ be a linear map. We associate a vector space

$$\mathfrak{J} = \mathfrak{a} \stackrel{\perp}{\oplus} \mathfrak{t}$$

to the triple $(\mathfrak{q}, B_{\mathfrak{q}}, C)$ where $(\mathfrak{t} = \operatorname{span}\{x_1, y_1\}, B_{\mathfrak{t}})$ is a 2-dimensional vector space and $B_{\mathfrak{t}} : \mathfrak{t} \times \mathfrak{t} \to \mathbb{C}$ is the bilinear form defined by

$$B_{\mathfrak{t}}(x_1, x_1) = B_{\mathfrak{t}}(y_1, y_1) = 0, B_{\mathfrak{t}}(x_1, y_1) = 1.$$

Define a product \star on the vector space \mathfrak{J} such that \mathfrak{t} is a subalgebra of \mathfrak{J} ,

$$y_1 \star x = C(x), \ x_1 \star x = 0, \ x \star y = B_{\mathfrak{q}}(C(x), y)x_1$$

for all $x, y \in \mathfrak{q}$ and such that the bilinear form $B_{\mathfrak{J}} = B_{\mathfrak{q}} + B_{\mathfrak{t}}$ is associative (that means $B_{\mathfrak{J}}(x \star y, z) = B_{\mathfrak{J}}(x, y \star z)$, $\forall x, y, z \in \mathfrak{J}$). We call \mathfrak{J} is a double extension of \mathfrak{q} by C. It can be completely characterized by the pair $(B_{\mathfrak{q}}, C)$ combined with some properties of the 2-dimensional subalgebra \mathfrak{t} .

A rather interesting note is that such algebras \mathfrak{J} can also be classified up to isometric isomorphisms (or i-isomorphisms, for short) or isomorphisms. This is successfully done for the case of $B_{\mathfrak{q}}$ symmetric or skew-symmetric, C skew-symmetric (with respect to $B_{\mathfrak{q}}$) and $B_{\mathfrak{t}}$ symmetric (see [FS87], [DPU] and [Duo10]). In these cases, a double extension of \mathfrak{q} by C is a quadratic Lie algebra or a quadratic Lie superalgebra. Their classification is connected to the well-known classification of adjoint orbits in classical Lie algebras theory[CM93]. That is, there is a one-to-one

Date: December 30, 2010.

²⁰⁰⁰ Mathematics Subject Classification. 17C10, 17C30, 17C50, 17D25, 17A30.

Key words and phrases. Jordanian double extension. 2-step nilpotent pseudo-Euclidean Jordan algebras. T^* -extension. Jordan-admissible. Symmetric Novikov algebras.

correspondence between isomorphic classes of those algebras and adjoint G-orbits in $\mathbb{P}^1(\mathfrak{g})$, where G is the isometry group of $B_{\mathfrak{q}}$ and $\mathbb{P}^1(\mathfrak{g})$ is the projective space associated to the Lie algebra \mathfrak{g} of G. Therefore, it is natural to consider similar algebras corresponding to the remaining different cases of the pair $(B_{\mathfrak{g}}, C)$.

Remark that the above definition of a double extension is a special case of a one-dimensional extension in terms of the double extension notion initiated by V. Kac to construct quadratic solvable Lie algebras [Kac85]. This notion is generalized effectively for quadratic Lie algebras [MR85] and many other non-anticomutative algebras (see [BB99], [BB] and [AB10]) to obtain an inductive characterization (also called *generalized double extension*). Unfortunately, the classification (up to isomorphisms or i-isomorphisms) of the algebras obtained by the double extension or generalized double extension method seems very difficult, even in nilpotent or low dimensional case. For example, nilpotent pseudo-Euclidean Jordan algebras up to dimension 5 are listed completely but only classified in cases up to dimension 3 [BB].

In Section 2, we apply the work of A. Baklouti and S. Benayadi in [BB] for the case of a one-dimensional double extension of the pair (B_q, C) to obtain pseudo-Euclidean (commutative) Jordan algebras (i.e. Jordan algebras endowed with a non-degenerate associative symmetric bilinear form). Consequently, the bilinear forms B_q , B_t are symmetric, C must be also symmetric (with respect to B_q) and the product \star is defined by:

$$(x + \lambda x_1 + \mu y_1) \star (y + \lambda' x_1 + \mu' y_1) := \mu C(y) + \mu' C(x) + B_{\mathfrak{q}}(C(x), y) x_1 + \varepsilon ((\lambda \mu' + \lambda' \mu) x_1 + \mu \mu' y_1),$$

 $\varepsilon \in \{0,1\}$, for all $x,y \in \mathfrak{q}, \lambda, \mu, \lambda', \mu' \in \mathbb{C}$.

Since there exist only two one-dimensional Jordan algebras, one Abelian and one simple, then we have two types of extensions called respectively *nilpotent double extension* and *diagonalizable double extension*. The first result (Proposition 2.1, Corollary 2.2, Corollary 2.7 and Appendix) is the following:

THEOREM 1:

- (1) If \mathfrak{J} is the nilpotent double extension of \mathfrak{q} by C then $C^3 = 0$, \mathfrak{J} is 3-step nilpotent and \mathfrak{t} is an Abelian subalgebra of \mathfrak{J} .
- (2) If \mathfrak{J} is the diagonalizable double extension of \mathfrak{q} by C then $3C^2 = 2C^3 + C$, \mathfrak{J} is not solvable and $\mathfrak{t} \star \mathfrak{t} = \mathfrak{t}$. In the reduced case, y_1 acts diagonalizably on \mathfrak{J} with eigenvalues 1 and $\frac{1}{2}$.

In Propositions 2.5 and 2.8, we characterize these extensions up to i-isomorphisms, as well as up to isomorphisms and obtain the classification result:

THEOREM 2:

(1) Let $\mathfrak{J} = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$ and $\mathfrak{J}' = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1' \oplus \mathbb{C}y_1')$ be nilpotent double extensions of \mathfrak{q} by symmetric maps C and C' respectively. Then there exists a Jordan algebra isomorphism A between \mathfrak{J} and \mathfrak{J}' such that $A(\mathfrak{q} \oplus \mathbb{C}x_1) = \mathfrak{q} \oplus \mathbb{C}x_1'$ if and only if there exist an invertible map $P \in \operatorname{End}(\mathfrak{q})$ and a nonzero $\lambda \in \mathbb{C}$ such that $\lambda C' = PCP^{-1}$ and $P^*PC = C$, where P^* is the adjoint map of P with respect to P. In this case P i-isomorphic then $P \in O(\mathfrak{q})$.

(2) Let $\mathfrak{J} = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$ and $\mathfrak{J}' = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1' \oplus \mathbb{C}y_1')$ be diagonalizable double extensions of \mathfrak{q} by symmetric maps C and C' respectively. Then \mathfrak{J} and \mathfrak{J}' are isomorphic if and only if they are i-isomorphic. In this case, C and C' have the same spectrum.

In Section 3, we introduce the notion of generalized double extension but with a restricting condition for 2-step nilpotent pseudo-Euclidean Jordan algebras. As a consequence, we obtain in this way the inductive characterization of those algebras (Proposition 3.11):

THEOREM 3:

Let \mathfrak{J} be a 2-step nilpotent pseudo-Euclidean Jordan algebra. If \mathfrak{J} is non-Abelian then it is obtained from an Abelian algebra by a sequence of generalized double extensions.

To characterize (up to isomorphisms and i-isomorphisms) 2-step nilpotent pseudo-Euclidean Jordan algebras we need to use the concept of a T^* -extension in [Bor97] as follows. Given a complex vector space \mathfrak{a} and a non-degenerate cyclic symmetric bilinear map $\theta: \mathfrak{a} \times \mathfrak{a} \to \mathfrak{a}^*$, define on the vector space $\mathfrak{J} = \mathfrak{a} \oplus \mathfrak{a}^*$ the product

$$(x+f)(y+g) = \theta(x,y)$$

then \mathfrak{J} is a 2-step nilpotent pseudo-Euclidean Jordan algebra and it is called a T^* -extension of \mathfrak{a} by θ (or a T^* -extension, simply). Moreover, we have the following result (Proposition 3.14):

THEOREM 4:

Every reduced 2-step nilpotent pseudo-Euclidean Jordan algebra is i-isomorphic to some T^* -extension.

Theorem 4 allows us to consider only isomorphic classes and i-isomorphic classes of T^* -extensions to represent all 2-step nilpotent pseudo-Euclidean Jordan algebras. An i-isomorphic and isomorphic characterization of T^* -extensions is given by:

THEOREM 5:

Let \mathfrak{J}_1 and \mathfrak{J}_2 be T^* -extensions of \mathfrak{a} by θ_1 and θ_2 respectively. Then:

(1) there exists a Jordan algebra isomorphism between \mathfrak{J}_1 and \mathfrak{J}_2 if and only if there exist an isomorphism A_1 of \mathfrak{a} and an isomorphism A_2 of \mathfrak{a}^* satisfying:

$$A_2(\theta_1(x,y)) = \theta_2(A_1(x), A_1(y)), \forall x, y \in \mathfrak{a}.$$

(2) there exists a Jordan algebra i-isomorphism between \mathfrak{J}_1 and \mathfrak{J}_2 if and only if there exists an isomorphism A_1 of \mathfrak{a}

$$\theta_1(x,y) = \theta_2(A_1(x), A_1(y)) \circ A_1, \forall x, y \in \mathfrak{a}.$$

As a consequence, the classification of i-isomorphic T^* -extensions of $\mathfrak a$ is equivalent to the classification of symmetric 3-forms on $\mathfrak a$. We detail it in the cases of $\dim(\mathfrak a)=1$ and 2.

In the last Section, we study Novikov algebras. These objects appear in the study of the Hamiltonian condition of an operator in the formal calculus of variations [GD79] and in the classification of Poisson brackets of hydrodynamic type [BN85].

A detailed classification of Novikov algebras up to dimension 3 can be found in [BM01].

An associative algebra is both Lie-admissible and Jordan-admissible. This is not true for Novikov algebras although they are Lie-admissible. Therefore, it is natural to search a condition for a Novikov algebra to become Jordan-admissible. The condition we give here (weaker than associativity) is the following (Proposition 4.17):

THEOREM 6:

A Novikov algebra \mathfrak{N} is Jordan-admissible if it satisfies the condition

$$(x,x,x) = 0, \forall x \in \mathfrak{N}.$$

A corollary of Theorem 6 is that Novikov algebras are not power-associative since there exist Novikov algebras not Jordan-admissible.

Next, we consider symmetric Novikov algebras. A Novikov algebra $\mathfrak N$ is called *symmetric* if it is endowed with a non-degenerate associative symmetric bilinear form. In this case, $\mathfrak N$ will be associative, its sub-adjacent Lie algebra $\mathfrak g(\mathfrak N)$ is a quadratic 2-step nilpotent Lie algebra [AB10] and the associated Jordan algebra $\mathfrak J(\mathfrak N)$ is pseudo-Euclidean. Therefore, the study of quadratic 2-step nilpotent Lie algebras ([Ova07], [Duo10]) and pseudo-Euclidean Jordan algebras is closely related to symmetric Novikov algebras.

By the results in [ZC07] and [AB10], we have that every symmetric Novikov algebra up to dimension 5 is commutative and a non-commutative example is given in the case of dimension 6. This algebra is 2-step nilpotent. In this paper, we show that every symmetric non-commutative Novikov algebra of dimension 6 is 2-step nilpotent.

As for quadratic Lie algebras and pseudo-Euclidean Jordan algebras, we define the notion of a *reduced* symmetric Novikov algebra. Using this notion, we obtain (Proposition 4.29):

THEOREM 7:

Let \mathfrak{N} be a symmetric non-commutative Novikov algebra. If \mathfrak{N} is reduced then

$$3 \le \dim(\operatorname{Ann}(\mathfrak{N})) \le \dim(\mathfrak{N}) \le \dim(\mathfrak{N}) - 3$$
.

In other words, we do not have $\mathfrak{NN} = \mathfrak{N}$ in the non-commutative case. Note that this may be true in the commutative case (see Example 4.13). As a result, we obtain the following result for the case of dimension 7 (Proposition 4.32):

THEOREM 8:

Let $\mathfrak N$ be a symmetric non-commutative Novikov algebra of dimension 7. If $\mathfrak N$ is reduced then there are only two cases:

- (1) \mathfrak{N} is 3-step nilpotent and indecomposable.
- (2) \mathfrak{N} is decomposable by $\mathfrak{N} = \mathbb{C}x \stackrel{\perp}{\oplus} \mathfrak{N}_6$, where $x^2 = x$ and \mathfrak{N}_6 is a symmetric non-commutative Novikov algebra of dimension 6.

Finally, we give an example for 3-step nilpotent symmetric Novikov algebras of dimension 7. By the above theorem, it is indecomposable.

Acknowledgments. We heartily thank Didier Arnal for many discussions and suggestions for the improvement of this paper.

This article is dedicated to our mentor Georges Pinczon (1948 - 2010), an admirable mathematician, a very fine algebrist and above all, a very good friend.

1. PSEUDO-EUCLIDEAN JORDAN ALGEBRAS

Definition 1.1. A (non-associative) algebra \mathfrak{J} over \mathbb{C} is called a (commutative) *Jordan algebra* if its product is commutative and satisfies the following identity (*Jordan identity*):

(I)
$$(xy)x^2 = x(yx^2), \forall x, y, z \in \mathfrak{J}.$$

For instance, any commutative algebra with an associative product is a Jordan algebra.

Given an algebra A, the *commutator* [x,y] := xy - yx, $\forall x,y \in A$ measures the commutativity of A. Similarly the *associator* defined by

$$(x, y, z) := (xy)z - x(yz), \ \forall \ x, y, z \in A.$$

measures the associativity of A. In terms of associators, the Jordan identity in a Jordan algebra \mathfrak{J} becomes

(II)
$$(x, y, x^2) = 0, \forall x, y, z \in \mathfrak{J}.$$

An algebra A is called a power-associative algebra if the subalgebra generated by any element $x \in A$ is associative (see [Sch66] for more details). A Jordan algebra is an example of a power-associative algebra. A power-associative algebra A is called *trace-admissible* if there exists a bilinear form τ on A that satisfies:

- (1) $\tau(x,y) = \tau(y,x)$,
- (2) $\tau(xy,z) = \tau(x,yz)$,
- (3) $\tau(e,e) \neq 0$ for any idempotent e of A,
- (4) $\tau(x,y) = 0$ if xy is nilpotent or xy = 0.

It is a well-known result that simple (commutative) Jordan algebras are trace-admissible [Alb49]. A similar fact is proved for any *non-commutative* Jordan algebras of characteristic 0 [Sch55]. Recall that non-commutative Jordan algebras are algebras satisfying (I) and the *flexible* condition (xy)x = x(yx) (a weaker condition than commutativity).

A bilinear form B on a Jordan algebra \mathfrak{J} is associative if

$$B(xy,z) = B(x,yz), \forall x,y,z \in \mathfrak{J}.$$

The following definition is quite natural:

Definition 1.2. Let \mathfrak{J} be a Jordan algebra equipped with an associative symmetric non-degenerate bilinear form B. We say that the pair (\mathfrak{J}, B) is a *pseudo-Euclidean Jordan algebra* and B is an *associative scalar product* on \mathfrak{J} .

Recall that a real finite-dimensional Jordan algebra \mathfrak{J} with a unit element e (that means, xe = ex = x, $\forall x \in \mathfrak{J}$) is called *Euclidean* if there exists an associative inner

product on \mathfrak{J} . This is equivalent to say that the associated trace form $\mathrm{Tr}(xy)$ is positive definite, where $\mathrm{Tr}(x)$ is the sum of eigenvalues in the spectral decomposition of $x \in \mathfrak{J}$. To obtain a pseudo-Euclidean Jordan algebra, we replace the base field \mathbb{R} by \mathbb{C} and the inner product by a non-degenerate symmetric bilinear form (considered as a generalized inner product) on \mathfrak{J} keeping its associativity.

Lemma 1.3. Let (\mathfrak{J},B) be a pseudo-Euclidean Jordan algebra and I be a **non-degenerate ideal** of \mathfrak{J} , that is, the restriction $B|_{I\times I}$ is non-degenerate. Then I^{\perp} is also an ideal of \mathfrak{J} , $II^{\perp}=I^{\perp}I=\{0\}$ and $I\cap I^{\perp}=\{0\}$.

Proof. Let $x \in I^{\perp}, y \in \mathfrak{J}$, one has B(xy,I) = B(x,yI) = 0 then $xy \in I^{\perp}$ and I^{\perp} is an ideal.

If $x \in I^{\perp}$ such that $B(x, I^{\perp}) = 0$ then $x \in I$ and B(x, I) = 0. Since I is non-degenerate then x = 0. That implies that I^{\perp} is non-degenerate.

Since
$$B(II^{\perp}, \mathfrak{J}) = B(I, I^{\perp}\mathfrak{J}) = 0$$
 then $II^{\perp} = I^{\perp}I = \{0\}$.
 If $x \in I \cap I^{\perp}$ then $B(x, I) = 0$. Since I non-degenerate, then $x = 0$.

By the proof of above Lemma, given a non-degenerate subspace W of \mathfrak{J} then W^{\perp} is also non-degenerate and $\mathfrak{J} = W \oplus W^{\perp}$. In this case, we use the notation:

$$\mathfrak{J} = W \stackrel{\perp}{\oplus} W^{\perp}.$$

Remark 1.4. A pseudo-Euclidean Jordan algebra does not necessarily have a unit element. However if that is the case, this unit element is certainly unique. A Jordan algebra with unit element is called a *unital* Jordan algebra. If \mathfrak{J} is not a unital Jordan algebra, we can extend \mathfrak{J} to a unital Jordan algebra $\overline{\mathfrak{J}} = \mathbb{C}e \oplus \mathfrak{J}$ by the product

$$(\lambda e + x) \star (\mu e + y) = \lambda \mu e + \lambda y + \mu x + xy.$$

More particularly, $e \star e = e$, $e \star x = x \star e = x$ and $x \star y = xy$. In this case, we say $\overline{\mathfrak{J}}$ the *unital extension* of \mathfrak{J} .

Proposition 1.5. If (\mathfrak{J}, B) is unital then there is a decomposition:

$$\mathfrak{J} = \mathfrak{J}_1 \stackrel{\perp}{\oplus} \ldots \stackrel{\perp}{\oplus} \mathfrak{J}_k,$$

where \mathfrak{J}_i , i = 1, ..., k are unital and indecomposable ideals.

Proof. The assertion is obvious if \mathfrak{J} is indecomposable. Assume that \mathfrak{J} is decomposable, that is, $\mathfrak{J} = I \oplus I'$ with I, $I' \neq \{0\}$ proper ideals of \mathfrak{J} such that I is non-

degenerate. By the above Lemma, $I' = I^{\perp}$ and we write $\mathfrak{J} = I \oplus I^{\perp}$. Assume that \mathfrak{J} has the unit element e. If $e \in I$ then for x a nonzero element in I^{\perp} , we have $ex = x \in I^{\perp}$. This is a contradiction. This happens similarly if $e \in I^{\perp}$. Therefore, $e = e_1 + e_2$ where $e_1 \in I$ and $e_2 \in I^{\perp}$ are nonzero vectors. For all $x \in I$, one has:

$$x = ex = (e_1 + e_2)x = e_1x = xe_1.$$

It implies that e_1 is the unit element of I. Similarly, e_2 is also the unit element of I^{\perp} . Since the dimension of \mathfrak{J} is finite then by induction, one has the result. \square

Example 1.6. Let us recall an example in Chapter II of [FK94]: consider \mathfrak{q} a vector space over \mathbb{C} and $B: \mathfrak{q} \times \mathfrak{q} \to \mathbb{C}$ a symmetric bilinear form. Define the product below on the vector space $\mathfrak{J} = \mathbb{C}e \oplus \mathfrak{q}$:

$$(\lambda e + u)(\mu e + v) := (\lambda \mu + B(u, v))e + \lambda v + \mu u,$$

for all $\lambda, \mu \in \mathbb{C}, u, v \in \mathfrak{q}$. In particular, $e^2 = e$, ue = eu = u and uv = B(u, v)e. This product makes \mathfrak{J} a Jordan algebra.

Now, we add the condition that B is non-degenerate and define a bilinear form $B_{\mathfrak{J}}$ on \mathfrak{J} by:

$$B_{\mathfrak{J}}(e,e) = 1$$
, $B_{\mathfrak{J}}(e,\mathfrak{q}) = B_{\mathfrak{J}}(\mathfrak{q},e) = 0$ and $B_{\mathfrak{J}}|_{\mathfrak{q} \times \mathfrak{q}} = B$.

Then $B_{\mathfrak{J}}$ is associative and non-degenerate and \mathfrak{J} becomes a pseudo-Euclidean Jordan algebra with unit element e.

Example 1.7. Let us slightly change Example 1.6 by setting

$$\mathfrak{J}':=\mathbb{C}e\oplus\mathfrak{q}\oplus\mathbb{C}f.$$

Define the product of \mathfrak{J}' as follows:

$$e^{2} = e$$
, $ue = eu = u$, $ef = fe = f$, $uv = B(u, v) f$ and $uf = fu = ff = 0$,

for all $u, v \in \mathfrak{q}$. It is easy to see that \mathfrak{J}' is the unital extension of the Jordan algebra $\mathfrak{J} = \mathfrak{q} \oplus \mathbb{C}f$, where the product on \mathfrak{J} is defined by:

$$uv = B(u, v)f$$
, $uf = fu = 0, \forall u, v \in \mathfrak{q}$.

Moreover, \mathfrak{J}' is a pseudo-Euclidean Jordan algebra with the bilinear form $B_{\mathfrak{J}'}$ defined by:

$$B_{\mathfrak{I}'}(\lambda e + u + \lambda' f, \mu e + v + \mu' f) = \lambda \mu' + \lambda' \mu + B(u, v).$$

We will meet this algebra again in the next Section.

Recall the definition of a representation of a Jordan algebra:

Definition 1.8. A *Jacobson representation* (or simply, a *representation*) of a Jordan algebra \mathfrak{J} on a vector space V is a linear map $\mathfrak{J} \to \operatorname{End}(V)$, $x \mapsto S_x$ satisfying for all $x, y, z \in \mathfrak{J}$,

(1)
$$[S_x, S_{yz}] + [S_y, S_{zx}] + [S_z, S_{xy}] = 0$$
,

(2)
$$S_x S_y S_z + S_z S_y S_x + S_{(xz)y} = S_x S_{yz} + S_y S_{zx} + S_z S_{xy}$$
.

Remark 1.9. An equivalent definition of a representation of \mathfrak{J} can be found for instance in [BB], as a necessary and sufficient condition for the vector space $\mathfrak{J}_1 = \mathfrak{J} \oplus V$ equipped with the product:

$$(x+u)(y+v) = xy + S_x(v) + S_y(u), \forall x, y \in \mathfrak{J}, u, v \in V$$

to be a Jordan algebra. In this case, Jacobson's definition is different from the usual definition of representation, that is, as a homomorphism from $\mathfrak J$ into the Jordan algebra of linear maps.

For $x \in \mathfrak{J}$, let $R_x \in \operatorname{End}(\mathfrak{J})$ be the endomorphism of \mathfrak{J} defined by:

$$R_x(y) = xy = yx, \forall y \in \mathfrak{J}.$$

Then the Jordan identity is equivalent to $[R_x, R_{x^2}] = 0, \forall x \in \mathfrak{J}$ where $[\cdot, \cdot]$ denotes the Lie bracket on End(\mathfrak{J}). The linear maps

$$R: \mathfrak{J} \to \operatorname{End}(\mathfrak{J})$$
 with $R(x) := R_x$

and
$$R^*: \mathfrak{J} \to \operatorname{End}(\mathfrak{J}^*)$$
 with $R^*(x)(f) = f \circ R_x, \forall x \in \mathfrak{J}, f \in \mathfrak{J}^*$,

are called respectively the *adjoint representation* and the *coadjoint representation* of \mathfrak{J} . It is easy to check that they are indeed representations of \mathfrak{J} . Recall that there exists a natural non-degenerate bilinear from $\langle \cdot, \cdot \rangle$ on $\mathfrak{J} \oplus \mathfrak{J}^*$ defined by $\langle x, f \rangle := f(x), \ \forall x \in \mathfrak{J}, \ f \in \mathfrak{J}^*$. For all $x, y \in \mathfrak{J}, f \in \mathfrak{J}^*$, one has:

$$f(xy) = \langle xy, f \rangle = \langle R_x(y), f \rangle = \langle y, R_x^*(f) \rangle.$$

That means that R_x^* is the adjoint map of R_x with respect to the bilinear form $\langle \cdot, \cdot \rangle$. The following proposition gives a characterization of pseudo-Euclidean Jordan algebras. A proof can be found in [BB], Proposition 2.1 or [Bor97], Proposition 2.4.

Proposition 1.10. Let \mathfrak{J} be a Jordan algebra. Then \mathfrak{J} is pseudo-Euclidean if, and only if, its adjoint representation and coadjoint representation are equivalent.

We will need some special subspaces of an arbitrary algebra \mathfrak{J} :

Definition 1.11. Let \mathfrak{J} be an algebra.

(1) The subspace

$$(\mathfrak{J},\mathfrak{J},\mathfrak{J}) := \operatorname{span}\{(x,y,z) \mid x,y,z \in \mathfrak{J}\}$$

is the associator of \mathfrak{J} .

(2) The subspaces

$$LAnn(\mathfrak{J}) := \{ x \in \mathfrak{J} \mid x\mathfrak{J} = 0 \},$$

$$RAnn(\mathfrak{J}) := \{ x \in \mathfrak{J} \mid \mathfrak{J}x = 0 \} \text{ and }$$

$$Ann(\mathfrak{J}) := \{ x \in \mathfrak{J} \mid x\mathfrak{J} = \mathfrak{J}x = 0 \}$$

are respectively the *left-annulator*, the *right-annulator* and the *annulator* of \mathfrak{J} . Certainly, if \mathfrak{J} is commutative then these subspaces coincide.

(3) The subspace

$$N(\mathfrak{J}) := \{ x \in \mathfrak{J} \mid (x, y, z) = (y, x, z) = (y, z, x) = 0, \forall y, z \in \mathfrak{J} \}$$

is the *nucleus* of \mathfrak{J} .

The proof of the Proposition below is straightforward and we omit it.

Proposition 1.12. If (\mathfrak{J}, B) is a pseudo-Euclidean Jordan algebra then

(1) the nucleus $N(\mathfrak{J})$ coincide with the **center** $\mathsf{Z}(\mathfrak{J})$ of \mathfrak{J} where $\mathsf{Z}(\mathfrak{J}) = \{x \in N(\mathfrak{J}) \mid xy = yx, \forall y \in \mathfrak{J}\}$, that is, the set of all elements x that commute and associate with all elements of \mathfrak{J} . Therefore

$$N(\mathfrak{J}) = \mathsf{Z}(\mathfrak{J}) = \{ x \in \mathfrak{J} \mid (x, y, z) = 0, \forall y, z \in \mathfrak{J} \}.$$

- (2) $\mathsf{Z}(\mathfrak{J})^{\perp} = (\mathfrak{J}, \mathfrak{J}, \mathfrak{J}).$
- (3) $(Ann(\mathfrak{J}))^{\perp} = \mathfrak{J}^2$.

Just as in [DPU] where we have defined reduced quadratic Lie algebras, we can define here:

Definition 1.13. A pseudo-Euclidean Jordan algebra (\mathfrak{J}, B) is *reduced* if

- (1) $\mathfrak{J} \neq \{0\},\$
- (2) Ann(\mathfrak{J}) is totally isotropic, that means B(x,y) = 0 for all $x,y \in \text{Ann}(\mathfrak{J})$.

Proposition 1.14. Let \mathfrak{J} be non-Abelian pseudo-Euclidean Jordan algebra. Then $\mathfrak{J} = \mathfrak{z} \stackrel{\perp}{\oplus} \mathfrak{l}$, where $\mathfrak{z} \subset \mathrm{Ann}(\mathfrak{J})$ and \mathfrak{l} is reduced.

Proof. The proof is completely similar to Proposition 6.7 in [PU07]. Let $\mathfrak{z}_0 =$ $\operatorname{Ann}(\mathfrak{J}) \cap \mathfrak{J}^2$, \mathfrak{z} is a complementary subspace of \mathfrak{z}_0 in $\operatorname{Ann}(\mathfrak{J})$ and $\mathfrak{l} = \mathfrak{z}^{\perp}$. If x is an element in \mathfrak{z} such that $B(x,\mathfrak{z})=0$ then $B(x,\mathfrak{Z}^2)=0$ since $\mathrm{Ann}(\mathfrak{Z})=(\mathfrak{Z}^2)^{\perp}$. As a consequence, $B(x,\mathfrak{z}_0)=0$ and therefore $B(x,\mathrm{Ann}(\mathfrak{J}))=0$. That implies $x\in\mathfrak{J}^2$. Hence, x = 0 and the restriction of B to \mathfrak{z} is non-degenerate. Moreover, \mathfrak{z} is an ideal then by Lemma 1.3, the restriction of B to I is also a non-degenerate and that $\mathfrak{z} \cap \mathfrak{l} = \{0\}.$

Since \mathfrak{J} is non-Abelian then \mathfrak{l} is non-Abelian and $\mathfrak{l}^2 = \mathfrak{J}^2$. Moreover, $\mathfrak{Z}_0 = \mathrm{Ann}(\mathfrak{l})$ and the result follows.

Next, we will define some extensions of a Jordan algebra and introduce the notion of a double extension of a pseudo-Euclidean Jordan algebra [BB].

Definition 1.15. Let \mathfrak{J}_1 and \mathfrak{J}_2 be Jordan algebras and $\pi:\mathfrak{J}_1\to \operatorname{End}(\mathfrak{J}_2)$ be a representation of \mathfrak{J}_1 on \mathfrak{J}_2 . We call π an admissible representation if it satisfies the following conditions:

- (1) $\pi(x^2)(yy') + 2(\pi(x)y')(\pi(x)y) + (\pi(x)y')y^2 + 2(yy')(\pi(x)y)$ = $2\pi(x)(y'(\pi(x)y)) + \pi(x)(y'y^2) + (\pi(x^2)y')y + 2(y'(\pi(x)y))y$, (2) $(\pi(x)y)y^2 = (\pi(x)y^2)y$,
- (3) $\pi(xx')y^2 + 2(\pi(x')y)(\pi(x)y) = \pi(x)\pi(x')y^2 + 2(\pi(x')\pi(x)y)y$,

for all $x, x' \in \mathfrak{J}_1, y, y' \in \mathfrak{J}_2$. In this case, the vector space $\mathfrak{J} = \mathfrak{J}_1 \oplus \mathfrak{J}_2$ with the product defined by:

$$(x+y)(x'+y') = xx' + \pi(x)y' + \pi(x')y + yy', \ \forall x, x' \in \mathfrak{J}_1, y, y' \in \mathfrak{J}_2$$

becomes a Jordan algebra.

Definition 1.16. Let (\mathfrak{J}, B) be a pseudo-Euclidean Jordan algebra and C be an endomorphism of \mathfrak{J} . We say that C is *symmetric* if

$$B(C(x), y) = B(x, C(y)), \forall x, y \in \mathfrak{J}.$$

Denote by $\operatorname{End}_{\mathfrak{s}}(\mathfrak{J})$ the space of symmetric endomorphisms of \mathfrak{J} .

The definition below was introduced in [BB], Theorem 3.8.

Definition 1.17. Let (\mathfrak{J}_1, B_1) be a pseudo-Euclidean Jordan algebra, \mathfrak{J}_2 be an arbitrary Jordan algebra and $\pi : \mathfrak{J}_2 \to \operatorname{End}_s(\mathfrak{J}_1)$ be an admissible representation. Define a symmetric bilinear map $\varphi : \mathfrak{J}_1 \times \mathfrak{J}_1 \to \mathfrak{J}_2^*$ by: $\varphi(y, y')(x) = B_1(\pi(x)y, y'), \forall x \in \mathfrak{J}_2, y, y' \in \mathfrak{J}_1$. Consider the vector space

$$\overline{\mathfrak{J}} = \mathfrak{J}_2 \oplus \mathfrak{J}_1 \oplus \mathfrak{J}_2^*$$

endowed with the product:

$$(x+y+f)(x'+y'+f') = xx'+yy'+\pi(x)y'+\pi(x')y+f'\circ R_x+f\circ R_{x'}+\varphi(y,y')$$

for all $x, x' \in \mathfrak{J}_2, y, y' \in \mathfrak{J}_1, f, f' \in \mathfrak{J}_2^*$. Then $\overline{\mathfrak{J}}$ is a Jordan algebra. Moreover, define a bilinear form B on $\overline{\mathfrak{J}}$ by:

$$B(x+y+f,x'+y'+f') = B_1(y,y') + f(x') + f'(x), \forall x,x' \in \mathfrak{J}_2, y,y' \in \mathfrak{J}_1, f,f' \in \mathfrak{J}_2^*.$$

Then $\overline{\mathfrak{J}}$ is a **pseudo-Euclidean Jordan algebra**. The Jordan algebra $(\overline{\mathfrak{J}}, B)$ is called the *double extension* of \mathfrak{J}_1 by \mathfrak{J}_2 by means of π .

Remark 1.18. If γ is an associative bilinear form (not necessarily non-degenerate) on \mathfrak{J}_2 then $\overline{\mathfrak{J}}$ is again pseudo-Euclidean thanks to the bilinear form

$$B_{\gamma}(x+y+f,x'+y'+f') = \gamma(x,x') + B_{1}(y,y') + f(x') + f'(x)$$

for all $x, x' \in \mathfrak{J}_2$, $y, y' \in \mathfrak{J}_1$, $f, f' \in \mathfrak{J}_2^*$.

2. JORDANIAN DOUBLE EXTENSION OF A QUADRATIC VECTOR SPACE

Let $\mathbb{C}c$ be a one-dimensional Jordan algebra. If $c^2 \neq 0$ then $c^2 = \lambda c$ for some nonzero $\lambda \in \mathbb{C}$. Replace $c := \frac{1}{\lambda}c$, we obtain $c^2 = c$. Therefore, there exist only two one-dimensional Jordan algebras: one Abelian and one simple. Next, we will study double extensions of a quadratic vector space by these algebras.

Let us start with $(\mathfrak{q}, B_{\mathfrak{q}})$ a **quadratic vector space**, that is, $B_{\mathfrak{q}}$ is a non-degenerate symmetric bilinear form on the vector space \mathfrak{q} . We consider $(\mathfrak{t} = \operatorname{span}\{x_1, y_1\}, B_{\mathfrak{t}})$ a 2-dimensional quadratic vector space with the bilinear form $B_{\mathfrak{t}}$ defined by

$$B_{\mathfrak{t}}(x_1, x_1) = B_{\mathfrak{t}}(y_1, y_1) = 0, B_{\mathfrak{t}}(x_1, y_1) = 1.$$

Let $C: \mathfrak{q} \to \mathfrak{q}$ be a nonzero symmetric map and consider the vector space

$$\mathfrak{J}=\mathfrak{q}\stackrel{\perp}{\oplus}\mathfrak{t}$$

equipped with a product defined by

$$(x + \lambda x_1 + \mu y_1) \quad (y + \lambda' x_1 + \mu' y_1) := \\ \mu C(y) + \mu' C(x) + B_{\mathfrak{q}}(C(x), y) x_1 + \varepsilon \left(\left(\lambda \mu' + \lambda' \mu \right) x_1 + \mu \mu' y_1 \right),$$

 $\varepsilon \in \{0,1\}$, for all $x, y \in \mathfrak{q}, \lambda, \mu, \lambda', \mu' \in \mathbb{C}$.

Proposition 2.1. *Keep the notation just above.*

- (1) Assume $\varepsilon = 0$. Then \mathfrak{J} is a Jordan algebra if, and only if, $C^3 = 0$. In this case, we call \mathfrak{J} a nilpotent double extension of \mathfrak{q} by C.
- (2) Assume $\varepsilon = 1$. Then \mathfrak{J} is a Jordan algebra if, and only if, $3C^2 = 2C^3 + C$. Moreover, \mathfrak{J} is pseudo-Euclidean with the bilinear form $B = B_{\mathfrak{q}} + B_{\mathfrak{t}}$. In this case, we call \mathfrak{J} a diagonalizable double extension of \mathfrak{q} by C.

Proof.

(1) Let $x, y \in \mathfrak{q}, \lambda, \mu, \lambda', \mu' \in \mathbb{C}$. One has

$$((x+\lambda x_1+\mu y_1)(y+\lambda' x_1+\mu' y_1))(x+\lambda x_1+\mu y_1)^2=2\mu B_{\mathfrak{q}}(C^2(\mu y+\mu' x),C(x))x_1$$
 and

$$(x + \lambda x_1 + \mu y_1)((y + \lambda' x_1 + \mu' y_1)(x + \lambda x_1 + \mu y_1)^2) = 2\mu^2 \mu' C^3(x) + 2\mu \mu' B_{\mathfrak{q}}(C(x), C^2(x))x_1.$$

Therefore, \mathfrak{J} is a Jordan algebra if and only if $C^3 = 0$.

(2) The result is achieved by checking directly the equality (I) for \mathfrak{J} .

2.1. Nilpotent double extensions.

Consider $\mathfrak{J}_1 := \mathfrak{q}$ an Abelian algebra, $\mathfrak{J}_2 := \mathbb{C}y_1$ the nilpotent one-dimensional Jordan algebra, $\pi(y_1) := C$ and identify \mathfrak{J}_2^* with $\mathbb{C}x_1$. Then by Definition 1.17, $\mathfrak{J} = \mathfrak{J}_2 \oplus \mathfrak{J}_1 \oplus \mathfrak{J}_2^*$ is a pseudo-Euclidean Jordan algebra with a bilinear form B given by $B := B_{\mathfrak{q}} + B_{\mathfrak{t}}$. In this case, C obviously satisfies the condition $C^3 = 0$.

An immediate corollary of the definition is:

Corollary 2.2. If $\mathfrak{J} = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$ is the nilpotent double extension of \mathfrak{q} by C then

$$y_1x = C(x), xy = B(C(x), y)x_1$$
 and $y_1y_1 = x_1\mathfrak{J} = 0, \forall x \in \mathfrak{q}$.

As a consequence, $\mathfrak{J}^2 = \operatorname{Im}(C) \oplus \mathbb{C}x_1$ and $\operatorname{Ann}(\mathfrak{J}) = \ker(C) \oplus \mathbb{C}x_1$.

Remark 2.3. In this case, \mathfrak{J} is *k*-step nilpotent, $k \leq 3$ since $R_x^k(\mathfrak{J}) \subset \text{Im}(C^k) \oplus \mathbb{C}x_1$.

Definition 2.4. Let (V,B) and (V',B') be two quadratic vector spaces. An *isometry* is a bijective map $A:V\to V'$ that satisfies

$$B'(A(v),A(w)) = B(v,w), \forall u,v \in V.$$

The group of isometries of V is denoted by O(V,B) (or simply O(V)). In the case (\mathfrak{J},B) and (\mathfrak{J}',B') are pseudo-Euclidean Jordan algebras, if there exists a Jordan algebra isomorphism A between \mathfrak{J} and \mathfrak{J}' such that it is also an isometry then we say \mathfrak{J} , \mathfrak{J}' are i-isomorphic and A is an i-isomorphism.

Proposition 2.5. Let (\mathfrak{q}, B) be a quadratic vector space. Let $\mathfrak{J} = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$ and $\mathfrak{J}' = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1' \oplus \mathbb{C}y_1')$ be nilpotent double extensions of \mathfrak{q} , by symmetric maps C and C' respectively. Then:

- (1) there exists a Jordan algebra isomorphism A between \mathfrak{J} and \mathfrak{J}' such that $A(\mathfrak{q} \oplus \mathbb{C}x_1) = \mathfrak{q} \oplus \mathbb{C}x_1'$ if, and only if, there exists an invertible map $P \in \operatorname{End}(\mathfrak{q})$ and a nonzero $\lambda \in \mathbb{C}$ such that $\lambda C' = PCP^{-1}$ and $P^*PC = C$, where P^* is the adjoint map of P with respect to B.
- (2) there exists a Jordan algebra i-isomorphism A between \mathfrak{J} and \mathfrak{J}' such that $A(\mathfrak{q} \oplus \mathbb{C}x_1) = \mathfrak{q} \oplus \mathbb{C}x_1'$ if, and only if, there exists a nonzero $\lambda \in \mathbb{C}$ such that C and $\lambda C'$ are conjugate by an isometry $P \in O(\mathfrak{q})$.

Proof.

(1) Assume $A: \mathfrak{J} \to \mathfrak{J}'$ be an isomorphism such that $A(\mathfrak{q} \oplus \mathbb{C}x_1) = \mathfrak{q} \oplus \mathbb{C}x_1'$. Since $x_1 \in \mathfrak{J}^2$, then there exist $x,y \in \mathfrak{J}$ such that $xy = x_1$ (by Proposition 2.1). Therefore $A(x_1) = A(x)A(y) \in (\mathfrak{q} \oplus \mathbb{C}x_1')(\mathfrak{q} \oplus \mathbb{C}x_1') = \mathbb{C}x_1'$. That means $A(x_1) = \mu x_1'$ for some nonzero $\mu \in \mathbb{C}$. Write $A|_{\mathfrak{q}} = P + \beta \otimes x_1'$ with $P \in \operatorname{End}(\mathfrak{q})$ and $\beta \in \mathfrak{q}^*$. If $x \in \ker(P)$ then $A\left(x - \frac{1}{\mu}\beta(x)x_1\right) = 0$, so x = 0 and therefore, P is invertible. For all $x, y \in \mathfrak{q}$, one has

$$\mu B(C(x), y)x'_1 = A(xy) = A(x)A(y) = B(C'(P(x)), P(y))x'_1.$$

So we obtain $P^*C'P = \mu C$. Assume $A(y_1) = y + \delta x_1' + \lambda y_1'$, with $y \in \mathfrak{q}$. For all $x \in \mathfrak{q}$, one has

$$P(C(x)) + \beta(C(x))x'_1 = A(y_1x) = A(y_1)A(x) = \lambda C'(P(x)) + B(C'(y), P(x))x'_1.$$

Therefore, $\lambda C' = PCP^{-1}$. Combine with $P^*C'P = \mu C$ to get $P^*PC = \lambda \mu C$. Replace P by $\frac{1}{(\mu \lambda)^{\frac{1}{2}}}P$ to obtain $\lambda C' = PCP^{-1}$ and $P^*PC = C$.

Conversely, define $A: \mathfrak{J} \to \mathfrak{J}'$ by $A(y_1) = \lambda y_1', A(x) = P(x), \forall x \in \mathfrak{q}$ and $A(x_1) = \frac{1}{\lambda} x_1'$ then it is easy to check A is an isomorphism.

(2) If $A: \mathfrak{J} \to \mathfrak{J}'$ is an i-isomorphic then the isomorphism P in the proof of (1) is also an isometry. Hence $P \in O(\mathfrak{q})$. Conversely, define A as in (1) then it is obvious that A is an i-isomorphism.

Proposition 2.6. Let (\mathfrak{q},B) be a quadratic vector space, $\mathfrak{J} = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$, $\mathfrak{J}' = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1' \oplus \mathbb{C}y_1')$ be nilpotent double extensions of \mathfrak{q} , by symmetric maps C and C' respectively. Assume that $\operatorname{rank}(C') \geq 3$. Let A be an isomorphism between \mathfrak{J} and \mathfrak{J}' . Then $A(\mathfrak{q} \oplus \mathbb{C}x_1) = \mathfrak{q} \oplus \mathbb{C}x_1'$.

Proof. We assume that there is $x \in \mathfrak{q}$ such that $A(x) = y + \beta x_1' + \gamma y_1'$, where $y \in \mathfrak{q}, \beta, \gamma \in \mathbb{C}, \gamma \neq 0$. Then for all $q \in \mathfrak{q}$ and $\lambda \in \mathbb{C}$, we have

$$A(x)(q+\lambda x_1')=\gamma C'(q)+B(C'(y),q)x_1'.$$

Therefore, $\dim(A(x)(\mathfrak{q} \oplus \mathbb{C}x_1')) \ge 3$. But *A* is an isomorphism, hence

$$A(x)(\mathfrak{q} \oplus \mathbb{C}x'_1) \subset A(xA^{-1}(\mathfrak{q} \oplus \mathbb{C}x'_1)) \subset A(x(\mathfrak{q} \oplus \mathbb{C}x_1 \oplus \mathbb{C}y_1)) \subset A(\mathbb{C}C(x) \oplus \mathbb{C}x_1).$$

This is a contradiction. Hence $A(\mathfrak{q} \oplus \mathbb{C}x_1) = \mathfrak{q} \oplus \mathbb{C}x_1'$.

2.2. Diagonalizable double extensions.

Lemma 2.7. Let $\mathfrak{J} = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$ be the diagonalizable double extension of \mathfrak{q} by C. Then

$$y_1y_1 = y_1, y_1x_1 = x_1, y_1x = C(x), xy = B(C(x), y)x_1 \text{ and } x_1x = x_1x_1 = 0, \forall x \in \mathfrak{q}.$$

Note that $x_1 \notin \operatorname{Ann}(\mathfrak{J})$. Let $x \in \mathfrak{q}$. Then $x \in \operatorname{Ann}(\mathfrak{J})$ if and only if $x \in \ker(C)$. Moreover, $\mathfrak{J}^2 = \operatorname{Im}(C) \oplus (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$. Therefore \mathfrak{J} is reduced if, and only if, $\ker(C) \subset \operatorname{Im}(C)$.

Let $x \in \text{Im}(C)$. Then there exists $y \in \mathfrak{q}$ such that x = C(y). Since $3C^2 = 2C^3 + C$, one has $3C(x) - 2C^2(x) = x$. Therefore, if \mathfrak{J} is reduced then $\ker(C) = \{0\}$ and C is invertible. That implies that $3C - 2C^2 = \text{Id}$ and we have the following proposition:

Proposition 2.8. Let (\mathfrak{q}, B) be a quadratic vector space. Let $\mathfrak{J} = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$ and $\mathfrak{J}' = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1' \oplus \mathbb{C}y_1')$ be diagonalizable double extensions of \mathfrak{q} , by invertible maps C and C' respectively. Then there exists a Jordan algebra isomorphism A between \mathfrak{J} and \mathfrak{J}' if and only if there exists an isometry P such that $C' = PCP^{-1}$. In this case, \mathfrak{J} and \mathfrak{J}' are also i-isomorphic.

Proof. Assume \mathfrak{J} and \mathfrak{J}' isomorphic by A. Firstly, we will show that $A(\mathfrak{q} \oplus \mathbb{C}x_1) = \mathfrak{q} \oplus \mathbb{C}x_1'$. Indeed, if $A(x_1) = y + \beta x_1' + \gamma y_1'$, where $y \in \mathfrak{q}, \beta, \gamma \in \mathbb{C}$, then

$$0 = A(x_1x_1) = A(x_1)A(x_1) = 2\gamma C'(y) + (2\beta\gamma + B(C'(y), y))x_1' + \gamma^2 y_1'.$$

Therefore, $\gamma = 0$. Similarly, if there exists $x \in \mathfrak{q}$ such that $A(x) = z + \alpha x_1' + \delta y_1'$, where $z \in \mathfrak{q}$, $\alpha, \delta \in \mathbb{C}$. Then

$$B(C(x),x)A(x_1) = A(xx) = A(x)A(x) = 2\delta C'(y) + (2\alpha\delta + B(C'(z),z))x_1' + \delta^2 y_1'.$$

That implies $\delta = 0$ and $A(\mathfrak{q} \oplus \mathbb{C}x_1) = \mathfrak{q} \oplus \mathbb{C}x_1'$.

The rest of the proof follows exactly the proof of Proposition 2.5, one has $A(x_1) = \mu x_1'$ for some nonzero $\mu \in \mathbb{C}$ and there is an isomorphism P of \mathfrak{q} such that $A|_{\mathfrak{q}} = P + \beta \otimes x_1'$, where $\beta \in \mathfrak{q}^*$. Similarly as in the proof of Proposition 2.5, one also has $P^*C'P = \mu C$, where P^* is the adjoint map of P with respect to P^* . Assume $P^*A(y_1) = \lambda y_1' + y + \delta x_1$. Since $P^*A(y_1) = \lambda (y_1)$, one has $P^*A(y_1) = \lambda (y_1)$, one has $P^*A(y_1) = \lambda (y_1)$. Replace $P^*A(y_1) = \lambda (y_1)$ to get $P^*PC = \lambda (y_1)$ is invertible then $P^*P = \mathbb{R}$. That means that $P^*A(y_1) = \lambda (y_1)$ is an isometry of \mathbb{R} .

Conversely, define $A: \mathfrak{J} \to \mathfrak{J}'$ by $A(x_1) = x_1', A(y_1) = y_1'$ and $A(x) = P(x), \forall x \in \mathfrak{q}$ then A is an i-isomorphism.

An invertible symmetric endomorphism of q satisfying $3C-2C^2=\text{Id}$ is diagonalizable by an orthogonal basis of eigenvectors with eigenvalues 1 and $\frac{1}{2}$ (see Appendix). Therefore, we have the following corollary:

Corollary 2.9. Let (\mathfrak{q}, B) be a quadratic vector space. Let $\mathfrak{J} = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$ and $\mathfrak{J}' = \mathfrak{q} \stackrel{\perp}{\oplus} (\mathbb{C}x_1' \oplus \mathbb{C}y_1')$ be diagonalizable double extensions of \mathfrak{q} , by invertible maps C and C' respectively. Then \mathfrak{J} and \mathfrak{J}' are isomorphic if, and only if, C and C' have same spectrum.

Example 2.10. Let $\mathbb{C}x$ be one-dimensional Abelian algebra, $\mathfrak{J} = \mathbb{C}x \stackrel{\perp}{\oplus} (\mathbb{C}x_1 \oplus \mathbb{C}y_1)$ and $\mathfrak{J}' = \mathbb{C}x \stackrel{\perp}{\oplus} (\mathbb{C}x_1' \oplus \mathbb{C}y_1')$ be diagonalizable double extensions of $\mathbb{C}x$ by

C = Id and $C' = \frac{1}{2} \text{Id}$. In particular, the product on \mathfrak{J} and \mathfrak{J}' are defined by:

$$y_1^2 = y_1, y_1 x = x, y_1 x_1 = x_1, x^2 = x_1;$$

 $(y_1')^2 = y_1', y_1' x = \frac{1}{2} x, y_1 x_1 = x_1, x^2 = \frac{1}{2} x_1.$

Then \mathfrak{J} and \mathfrak{J}' are not isomorphic. Moreover, \mathfrak{J}' has no unit element.

Remark 2.11. The i-isomorphic and isomorphic notions are not coincident in general. For example, the Jordan algebras $\mathfrak{J}=\mathbb{C}e$ with $e^2=e$, B(e,e)=1 and $\mathfrak{J}'=\mathbb{C}e'$ with e'e'=e', $B(e',e')=a\neq 1$ are isomorphic but not i-isomorphic.

3. PSEUDO-EUCLIDEAN 2-STEP NILPOTENT JORDAN ALGEBRAS

Quadratic 2-step nilpotent Lie algebras are characterized up to isometric isomorphisms and up to isomorphisms in [Ova07]. There is a similar natural property in the case of pseudo-Euclidean 2-step nilpotent Jordan algebras.

3.1. 2-step nilpotent Jordan algebras.

Let us redefine 2-step nilpotent Jordan algebras in a more convenient way:

Definition 3.1. An algebra \mathfrak{J} over \mathbb{C} with a product $(x,y) \mapsto xy$ is called 2-step nilpotent Jordan algebra if it satisfies xy = yx and (xy)z = 0 for all $x, y, z \in \mathfrak{J}$. Sometimes, we use **2SN-Jordan Algebra** as an abbreviation.

The method of double extension is a fundamental tool used in describing algebras that are endowed with an associative non-degenerate bilinear form. This method is based on two principal notions: central extension and semi-direct sum of two algebras. In the next part, we will recall some definitions given in Section 3 of [BB] but with a restricting condition for pseudo-Euclidean 2-step nilpotent Jordan algebras.

Proposition 3.2. Let \mathfrak{J} be a 2SN-Jordan algebra, V be a vector space, $\varphi : \mathfrak{J} \times \mathfrak{J} \to V$ be a bilinear map and $\pi : \mathfrak{J} \to \operatorname{End}(V)$ be a representation. Let

$$\overline{\mathfrak{J}} = \mathfrak{J} \oplus V$$

equipped with the following product:

$$(x+u)(y+v) = xy + \pi(x)(v) + \pi(y)(u) + \varphi(x,y), \forall x,y \in \mathfrak{J}, u,v \in V.$$

Then $\overline{\mathfrak{J}}$ is a 2SN-Jordan algebra if and only if for all $x, y, z \in \mathfrak{J}$:

- (1) φ is symmetric and $\varphi(xy,z) + \pi(z)(\varphi(x,y)) = 0$,
- (2) $\pi(xy) = \pi(x)\pi(y) = 0$.

Definition 3.3. If π is the trivial representation in Proposition 3.2, the Jordan algebra $\overline{\mathfrak{J}}$ is called the *2SN-central extension* of \mathfrak{J} by V (by means of φ).

Remark that in a 2SN-central extension $\overline{\mathfrak{J}}$, the annulator $Ann(\overline{\mathfrak{J}})$ contains the vector space V.

Proposition 3.4. Let \mathfrak{J} be a 2SN-Jordan algebra. Then \mathfrak{J} is a 2SN-central extension of an Abelian algebra.

Proof. Set $\mathfrak{h}:=\mathfrak{J}/\mathfrak{J}^2$ and $V:=\mathfrak{J}^2$. Define $\varphi:\mathfrak{h}\times\mathfrak{h}\to V$ by $\varphi(p(x),p(y))=xy,\forall x,y\in\mathfrak{J}$, where $p:\mathfrak{J}\to\mathfrak{h}$ is the canonical projection. Then \mathfrak{h} is an Abelian algebra and $\mathfrak{J}\cong\mathfrak{h}\oplus V$ is the 2SN-central extension of \mathfrak{h} by means of φ .

Remark 3.5. It is easy to see that if \mathfrak{J} is a 2SN-Jordan algebra, then the coadjoint representation R^* of \mathfrak{J} satisfies the condition on π in Proposition 3.2 (2). For a trivial φ , we conclude that $\mathfrak{J} \oplus \mathfrak{J}^*$ is also a 2SN-Jordan algebra with respect to the coadjoint representation.

Definition 3.6. Let \mathfrak{J} be a 2SN-Jordan algebra, V and W be two vector spaces. Let $\pi: \mathfrak{J} \to \operatorname{End}(V)$ and $\rho: \mathfrak{J} \to \operatorname{End}(W)$ be representations of \mathfrak{J} . The *direct sum* $\pi \oplus \rho: \mathfrak{J} \to \operatorname{End}(V \oplus W)$ of π and ρ is defined by

$$(\pi \oplus \rho)(x)(v+w) = \pi(x)(v) + \rho(x)(w), \forall x \in \mathfrak{J}, v \in V, w \in W.$$

Proposition 3.7. Let \mathfrak{J}_1 and \mathfrak{J}_2 be 2SN-Jordan algebras and $\pi: \mathfrak{J}_1 \to \text{End}(\mathfrak{J}_2)$ be a linear map. Let

$$\mathfrak{J} = \mathfrak{J}_1 \oplus \mathfrak{J}_2$$
.

Define the following product on \mathfrak{J} :

$$(x+y)(x'+y') = xx' + \pi(x)(y') + \pi(x')(y) + yy', \forall x, x' \in \mathfrak{J}_1, y, y' \in \mathfrak{J}_2.$$

Then \mathfrak{J} *is a 2SN-Jordan algebra if and only if* π *satisfies:*

(1)
$$\pi(xx') = \pi(x)\pi(x') = 0$$
,

(2)
$$\pi(x)(yy') = (\pi(x)(y))y' = 0$$
,

for all $x, x' \in \mathfrak{J}_1, y, y' \in \mathfrak{J}_2$.

In this case, π satisfies the conditions of Definition 1.15, it is called a **2SN-admissible representation** of \mathfrak{J}_1 in \mathfrak{J}_2 and we say that \mathfrak{J} is the **semi-direct sum** of \mathfrak{J}_2 by \mathfrak{J}_1 by means of π .

Proof. For all $x, x', x'' \in \mathfrak{J}_1, y, y', y'' \in \mathfrak{J}_2$, one has:

$$((x+y)(x'+y'))(x''+y'') = \pi(xx')(y'') + \pi(x'')(\pi(x)(y') + \pi(x')(y) + yy') + (\pi(x)(y') + \pi(x')(y))y''.$$

Therefore, \mathfrak{J} is 2-step nilpotent if, and only if, $\pi(xx')$, $\pi(x)\pi(x')$, $\pi(x)(yy')$ and $(\pi(x)y)y'$ are zero, $\forall x, x' \in \mathfrak{J}_1, y, y' \in \mathfrak{J}_2$.

Remark 3.8.

- (1) The adjoint representation of a 2SN-Jordan algebra is an 2SN-admissible representation.
- (2) Consider the particular case of $\mathfrak{J}_1=\mathbb{C}c$ a one-dimensional algebra. If \mathfrak{J}_1 is 2-step nilpotent then $c^2=0$. Let $D:=\pi(c)\in \operatorname{End}(\mathfrak{J}_2)$. The vector space $\mathfrak{J}=\mathbb{C}c\oplus\mathfrak{J}_2$ with the product:

$$(\alpha c + x)(\alpha' c + x') = \alpha D(x') + \alpha' D(x) + xx', \forall x, x' \in \mathfrak{J}_2, \alpha, \alpha' \in \mathbb{C}.$$

is a 2-step nilpotent if and only if $D^2 = 0$, D(xx') = D(x)x' = 0, $\forall x, x' \in \mathfrak{J}_2$.

(3) Let us slightly change (2) by fixing $x_0 \in \mathfrak{J}_2$ and setting the product on $\mathfrak{J} = \mathbb{C}c \oplus \mathfrak{J}_2$ as follows:

$$(\alpha c + x)(\alpha' c + x') = \alpha D(x') + \alpha' D(x) + xx' + \alpha \alpha' x_0,$$

for all $x, x' \in \mathfrak{J}_2, \alpha, \alpha' \in \mathbb{C}$. Then \mathfrak{J} is a 2SN-Jordan algebra if, and only if:

$$D^{2}(x) = D(xx') = D(x)x' = D(x_{0}) = x_{0}x = 0, \ \forall x, x' \in \mathfrak{J}_{2}.$$

In this case, we say (D, x_0) a 2SN-admissible pair of \mathfrak{J}_2 .

Next, we see how to obtain a 2SN-Jordan algebra from a pseudo-Euclidean one.

Proposition 3.9. Let (\mathfrak{J},B) be a 2-step nilpotent pseudo-Euclidean Jordan algebra (or **2SNPE-Jordan algebra** for short), \mathfrak{h} be another 2SN-Jordan algebra and π : $\mathfrak{h} \to \operatorname{End}_s(\mathfrak{J})$ be a linear map. Consider the bilinear map $\varphi : \mathfrak{J} \times \mathfrak{J} \to \mathfrak{h}^*$ defined by $\varphi(x,y)(z) = B(\pi(z)(x),y), \forall x,y \in \mathfrak{J}, z \in \mathfrak{h}$. Let

$$\overline{\mathfrak{J}} = \mathfrak{h} \oplus \mathfrak{J} \oplus \mathfrak{h}^*.$$

Define the following product on $\overline{\mathfrak{J}}$:

$$(x+y+f)(x'+y'+f') = xx'+yy'+\pi(x)(y')+\pi(x')(y)+f'\circ R_x+f\circ R_{x'}+\varphi(y,y')$$

for all $x, x' \in \mathfrak{h}, y, y' \in \mathfrak{J}, f, f' \in \mathfrak{h}^*$. Then $\overline{\mathfrak{J}}$ is a 2SN-Jordan algebra if and only if π is a 2SN-admissible representation of \mathfrak{h} in \mathfrak{J} . Moreover, $\overline{\mathfrak{J}}$ is pseudo-Euclidean with the bilinear form

$$\overline{B}(x+y+f,x'+y'+f') = B(y,y') + f(x') + f'(x), \forall x,x' \in \mathfrak{h}, y,y' \in \mathfrak{J}, f,f' \in \mathfrak{h}^*.$$

In this case, we say that $\overline{\mathfrak{J}}$ is a 2-step nilpotent double extension (or 2SN-double extension) of \mathfrak{J} by \mathfrak{h} by means of π .

Proof. If $\overline{\mathfrak{J}}$ is 2-step nilpotent then the product is commutative and ((x+y+f)(x'+y'+f'))(x''+y''+f'')=0 for all $x,x',x''\in\mathfrak{h},y,y',y''\in\mathfrak{J},f,f',f''\in\mathfrak{h}^*$. By a straightforward computation, one has that π is a 2SN-admissible representation of \mathfrak{h} in \mathfrak{J} .

Conversely, assume that π is a 2SN-admissible representation of \mathfrak{h} in \mathfrak{J} . First, we set the extension $\mathfrak{J} \oplus \mathfrak{h}^*$ of \mathfrak{J} by \mathfrak{h}^* with the product:

$$(y+f)(y'+f') = yy' + \varphi(y,y'), \forall y,y' \in \mathfrak{J}, f,f' \in \mathfrak{h}^*.$$

Since $\pi(z) \in \operatorname{End}_s(\mathfrak{J})$ and $\pi(z)(yy') = 0$, $\forall z \in \mathfrak{h}, y, y' \in \mathfrak{J}$, then one has φ symmetric and $\varphi(yy', y'') = 0$ for all $y, y', y'' \in \mathfrak{J}$. By Definition 3.3, $\mathfrak{J} \oplus \mathfrak{h}^*$ is a 2SN-central extension of \mathfrak{J} by \mathfrak{h}^* .

Next, we consider the direct sum $\pi \oplus R^*$ of two representations: π and R^* of \mathfrak{h} in $\mathfrak{J} \oplus \mathfrak{h}^*$ (see Definition 3.6). By a straightforward computation, we check that $\pi \oplus R^*$ satisfies the conditions of Proposition 3.7 then the semi-direct sum of $\mathfrak{J} \oplus \mathfrak{h}^*$ by \mathfrak{h} by means of $\pi \oplus R^*$ is 2-step nilpotent. Finally, the product defined in $\overline{\mathfrak{J}}$ is exactly the product defined by the semi-direct sum in Proposition 3.7. Therefore we obtain the necessary and sufficient conditions.

As a consequence of Definition 1.17, \overline{B} is an associative scalar product of $\overline{\mathfrak{J}}$, then $\overline{\mathfrak{J}}$ is a 2SNPE-Jordan algebra.

The notion of 2SN-double extension **does not characterize** all 2SNPE-Jordan algebras: there exist 2SNPE-Jordan algebras that can be not described in term of 2SN-double extensions, for example, the 2SNPE-Jordan algebra $\mathfrak{J}=\mathbb{C} a\oplus\mathbb{C} b$ with $a^2=b$ and B(a,b)=1, zero otherwise. Therefore, we need a better characterization given by the Proposition below, its proof is a matter of a simple calculation.

Proposition 3.10. Let (\mathfrak{J}, B) be a 2SNPE-Jordan algebra, $(D, x_0) \in \operatorname{End}_s(\mathfrak{J}) \times \mathfrak{J}$ be a 2SN-admissible pair with $B(x_0, x_0) = 0$ and $(\mathfrak{t} = \mathbb{C}x_1 \oplus \mathbb{C}y_1, B_{\mathfrak{t}})$ be a quadratic vector space satisfying

$$B_{\mathfrak{t}}(x_1, x_1) = B_{\mathfrak{t}}(y_1, y_1) = 0, B_{\mathfrak{t}}(x_1, y_1) = 1.$$

Fix α *in* \mathbb{C} *and consider the vector space*

$$\overline{\mathfrak{J}} = \mathfrak{J} \stackrel{\perp}{\oplus} \mathfrak{t}$$

equipped with the product

 $y_1 \star y_1 = x_0 + \alpha x_1, \ y_1 \star x = x \star y_1 = D(x) + B(x_0, x)x_1, \ x \star y = xy + B(D(x), y)x_1$ and $x_1 \star \overline{\mathfrak{J}} = \overline{\mathfrak{J}} \star x_1 = 0, \forall x, y \in \mathfrak{J}$. Then $\overline{\mathfrak{J}}$ is a 2SNPE-Jordan algebra with the bilinear form $\overline{B} = B + B_{\mathfrak{L}}$.

In this case, $(\overline{\mathfrak{J}}, \overline{B})$ is called a **generalized double extension** of \mathfrak{J} by means of (D, x_0, α) .

Proposition 3.11. Let (\mathfrak{J},B) be a 2SNPE-Jordan algebra. If \mathfrak{J} is non-Abelian then it is obtained from an Abelian algebra by a sequence of generalized double extensions.

Proof. Assume that (\mathfrak{J},B) is a 2SNPE-Jordan algebra and \mathfrak{J} is non-Abelian. By Proposition 1.14, \mathfrak{J} has a reduced ideal \mathfrak{l} that is still 2-step nilpotent. That means $\mathfrak{l}^2 \neq \mathfrak{l}$, so $\mathrm{Ann}(\mathfrak{l}) \neq \{0\}$. Therefore, we can choose nonzero $x_1 \in \mathrm{Ann}(\mathfrak{l})$ such that $B(x_1,x_1)=0$. Then there exists an isotropic element $y_1 \in \mathfrak{J}$ such that $B(x_1,y_1)=1$.

Let $\mathfrak{J} = (\mathbb{C}x_1 \oplus \mathbb{C}y_1) \stackrel{\perp}{\oplus} W$, where $W = (\mathbb{C}x_1 \oplus \mathbb{C}y_1)^{\perp}$. We have that $\mathbb{C}x_1$ and $x_1^{\perp} = \mathbb{C}x_1 \oplus W$ are ideals of \mathfrak{J} as well.

Let $x, y \in W$, $xy = \beta(x, y) + \alpha(x, y)x_1$, where $\beta(x, y) \in W$ and $\alpha(x, y) \in \mathbb{C}$. It is easy to check that W with the product $W \times W \to W$, $(x, y) \mapsto \beta(x, y)$ is a 2SN-Jordan algebra. Moreover, it is also pseudo-Euclidean with the bilinear form $B_W = B|_{W \times W}$.

Now, we show that \mathfrak{J} is a generalized double extension of (W, B_W) . Indeed, let $x \in W$ then $y_1x = D(x) + \varphi(x)x_1$, where D is an endomorphism of W and $\varphi \in W^*$. Since $y_1(y_1x) = y_1(xy) = (y_1x)y = 0, \forall x, y \in W$ we get $D^2(x) = D(x)y = D(xy) = 0, \forall x, y \in W$. Moreover, $B(y_1x, y) = B(x, y_1y) = B(y_1, xy), \forall x, y \in W$ implies that $D \in \operatorname{End}_s(W)$ and $\alpha(x, y) = B_W(D(x), y), \forall x, y \in W$.

Since B_W is non-degenerate and $\varphi \in W^*$ then there exists $x_0 \in W$ such that $\varphi = B_W(x_0,.)$. Assume that $y_1y_1 = \mu y_1 + y_0 + \lambda x_1$. The equality $B(y_1y_1,x_1) = 0$ implies $\mu = 0$. Moreover, $y_0 = x_0$ since $B(y_1x,y_1) = B(x,y_1y_1), \forall x \in W$. Finally, $D(x_0) = 0$ is obtained by $y_1^3 = 0$ and this is enough to conclude that \mathfrak{J} is a generalized double extension of (W, B_W) by means of (D, x_0, λ) .

3.2. T^* -extensions of pseudo-Euclidean 2-step nilpotent.

Given a 2SN-Jordan algebra $\mathfrak J$ and a symmetric bilinear map $\theta: \mathfrak J \times \mathfrak J \to \mathfrak J^*$ such that $R^*(z)(\theta(x,y)) + \theta(xy,z) = 0$, $\forall x,y,z \in \mathfrak J$, then by Proposition 3.2, $\mathfrak J \oplus \mathfrak J^*$ is also a 2SN-algebra. Moreover, if θ is cyclic (that is, $\theta(x,y)(z) = \theta(y,z)(x), \forall x,y,z \in \mathfrak J$), then $\overline{\mathfrak J}$ is a pseudo-Euclidean Jordan algebra with the bilinear form defined by

$$B(x+f,y+g) = f(y) + g(x), \ \forall x,y \in \mathfrak{J}, f,g \in \mathfrak{J}^*.$$

In a more general framework, we can define:

Definition 3.12. Let \mathfrak{a} be a complex vector space and $\theta: \mathfrak{a} \times \mathfrak{a} \to \mathfrak{a}^*$ a cyclic symmetric bilinear map. Assume that θ is non-degenerate, i.e. if $\theta(x,\mathfrak{a}) = 0$ then x = 0. Consider the vector space $\mathfrak{J} := \mathfrak{a} \oplus \mathfrak{a}^*$ equipped the product

$$(x+f)(y+g) = \theta(x,y)$$

and the bilinear form

$$B(x+f,y+g) = f(y) + g(x)$$

for all $x + f, y + g \in \mathfrak{J}$. Then (\mathfrak{J}, B) is a 2SNPE-Jordan algebra and it is called the T^* -extension of \mathfrak{a} by θ .

Lemma 3.13. Let \mathfrak{J} be a T^* -extension of \mathfrak{a} by θ . If $\mathfrak{J} \neq \{0\}$ then \mathfrak{J} is reduced.

Proof. Since θ is non-degenerate, it is easy to check that $Ann(\mathfrak{J}) = \mathfrak{a}^*$ is totally isotropic by the above definition.

Proposition 3.14. Let (\mathfrak{J},B) be a 2SNPE-Jordan algebra. If \mathfrak{J} is reduced then \mathfrak{J} is isometrically isomorphic to some T^* -extension.

Proof. Assume \mathfrak{J} is a reduced 2SNPE-Jordan algebra. Then one has $\mathrm{Ann}(\mathfrak{J})=\mathfrak{J}^2$, so $\mathrm{dim}(\mathfrak{J}^2)=\frac{1}{2}\,\mathrm{dim}(\mathfrak{J})$. Let $\mathfrak{J}=\mathrm{Ann}(\mathfrak{J})\oplus\mathfrak{a}$, where \mathfrak{a} is a complementary subspace of $\mathrm{Ann}(\mathfrak{J})$ in \mathfrak{J} . Then $\mathfrak{a}\cong\mathfrak{J}/\mathfrak{J}^2$ as an Abelian algebra. Since \mathfrak{a} and $\mathrm{Ann}(\mathfrak{J})$ are maximal totally isotropic subspaces of \mathfrak{J} , we can identify $\mathrm{Ann}(\mathfrak{J})$ to \mathfrak{a}^* by the isomorphism $\varphi:\mathrm{Ann}(\mathfrak{J})\to\mathfrak{a}^*$, $\varphi(x)(y)=B(x,y), \forall x\in\mathrm{Ann}(\mathfrak{J}), y\in\mathfrak{a}$. Define $\theta:\mathfrak{a}\times\mathfrak{a}\to\mathfrak{a}^*$ by $\theta(x,y)=\varphi(xy), \forall x,y\in\mathfrak{a}$.

Now, set $\alpha: \mathfrak{J} \to \mathfrak{a} \oplus \mathfrak{a}^*$ by $\alpha(x) = p_1(x) + \varphi(p_2(x)), \forall x \in \mathfrak{J}$, where $p_1: \mathfrak{J} \to \mathfrak{a}$ and $p_2: \mathfrak{J} \to \mathrm{Ann}(\mathfrak{J})$ are canonical projections. Then α is isometrically isomorphic.

Proposition 3.15. Let \mathfrak{J}_1 and \mathfrak{J}_2 be two T^* -extensions of \mathfrak{a} by θ_1 and θ_2 respectively. Then:

(1) there exists a Jordan algebra isomorphism between \mathfrak{J}_1 and \mathfrak{J}_2 if and only if there exist an isomorphism A_1 of \mathfrak{a} and an isomorphism A_2 of \mathfrak{a}^* satisfying:

$$A_2(\theta_1(x,y)) = \theta_2(A_1(x), A_1(y)), \forall x, y \in \mathfrak{a}.$$

(2) there exists a Jordan algebra i-isomorphism between \mathfrak{J}_1 and \mathfrak{J}_2 if and only if there exists an isomorphism A_1 of \mathfrak{a}

$$\theta_1(x,y) = \theta_2(A_1(x), A_1(y)) \circ A_1, \forall x, y \in \mathfrak{a}.$$

Proof.

(1) Let $A: \mathfrak{J}_1 \to \mathfrak{J}_2$ be a Jordan algebra isomorphism. Since $\mathfrak{a}^* = \operatorname{Ann}(\mathfrak{J}_1) = \operatorname{Ann}(\mathfrak{J}_2)$ is stable by A then there exist linear maps $A_1: \mathfrak{a} \to \mathfrak{a}, A_1': \mathfrak{a} \to \mathfrak{a}^*$ and $A_2: \mathfrak{a}^* \to \mathfrak{a}^*$ such that:

$$A(x+f) = A_1(x) + A'_1(x) + A_2(f), \ \forall x+f \in \mathfrak{J}_1.$$

Since A is an isomorphism one has A_2 also isomorphic. We show that A_1 is an isomorphism of \mathfrak{a} . Indeed, if $A_1(x_0) = 0$ with some $x_0 \in \mathfrak{a}$ then $A(x_0) = A_1'(x_0)$ and

$$0 = A(x_0)\mathfrak{J}_2 = A(x_0A^{-1}(\mathfrak{J}_2)) = A(x_0\mathfrak{J}_1).$$

That implies $x_0 \mathfrak{J}_1 = 0$ and so $x_0 \in \mathfrak{a}^*$. That means $x_0 = 0$, i.e. A_1 is an isomorphism of \mathfrak{a} .

For all x and $y \in \mathfrak{a}$, one has $A(xy) = A(\theta_1(x,y)) = A_2(\theta_1(x,y))$ and

$$A(x)A(y) = (A_1(x) + A'_1(x))(A_1(y) + A'_1(y)) = A_1(x)A_1(y) = \theta_2(A_1(x), A_1(y)).$$

Therefore, $A_2(\theta_1(x,y)) = \theta_2(A_1(x),A_1(y)), \forall x,y \in \mathfrak{a}.$

Conversely, if there exist an isomorphism A_1 of \mathfrak{a} and an isomorphism A_2 of \mathfrak{a}^* satisfying:

$$A_2(\theta_1(x,y)) = \theta_2(A_1(x), A_1(y)), \forall x, y \in \mathfrak{a},$$

then we define $A: \mathfrak{J}_1 \to \mathfrak{J}_2$ by $A(x+f) = A_1(x) + A_2(f), \forall x+f \in \mathfrak{J}_1$. It is easy to see that A is a Jordan algebra isomorphism.

(2) Assume $A: \mathfrak{J}_1 \to \mathfrak{J}_2$ is a Jordan algebra i-isomorphism then there exist A_1 and A_2 defined as in (1). Let $x \in \mathfrak{a}, f \in \mathfrak{a}^*$, one has:

$$B'(A(x),A(f)) = B(x,f) \Rightarrow A_2(f)(A_1(x)) = f(x).$$

Hence, $A_2(f) = f \circ A_1^{-1}, \forall f \in \mathfrak{a}^*$. Moreover, $A_2(\theta_1(x,y)) = \theta_2(A_1(x), A_1(y))$ implies that

$$\theta_1(x,y)) = \theta_2(A_1(x), A_1(y)) \circ A_1, \forall x, y \in \mathfrak{a}.$$

Conversely, define $A(x+f) = A_1(x) + f \circ A_1^{-1}, \forall x+f \in \mathfrak{J}_1$ then A is an i-isomorphism.

Example 3.16. We keep the notations as above. Let \mathfrak{J}' be the T^* -extension of \mathfrak{a} by $\theta' = \lambda \theta, \lambda \neq 0$ then \mathfrak{J} and \mathfrak{J}' is i-isomorphic by $A : \mathfrak{J} \to \mathfrak{J}'$ defined by

$$A(x+f) = \frac{1}{\alpha}x + \alpha f, \forall x + f \in \mathfrak{J}.$$

where $\alpha \in \mathbb{C}$, $\alpha^3 = \lambda$.

For a non-degenerate cyclic symmetric map θ of \mathfrak{a} , define a trilinear form

$$I(x, y, z) = \theta(x, y)z, \forall x, y, z \in \mathfrak{a}.$$

Then $I \in S^3(\mathfrak{a})$, the space of symmetric trilinear forms on \mathfrak{a} . The non-degenerate condition of θ is equivalent to $\frac{\partial I}{\partial p} \neq 0, \forall p \in \mathfrak{a}^*$.

Conversely, let \mathfrak{a} be a complex vector space and $I \in \mathsf{S}^3(\mathfrak{a})$ such that $\frac{\partial I}{\partial p} \neq 0$ for all $p \in \mathfrak{a}^*$. Define $\theta : \mathfrak{a} \times \mathfrak{a} \to \mathfrak{a}^*$ by $\theta(x,y) := I(x,y,.), \forall x,y \in \mathfrak{a}$ then θ is symmetric and non-degenerate. Moreover, since I is symmetric, then θ is cyclic and we obtain a reduced 2SNPE-Jordan algebra $T^*_{\theta}(\mathfrak{a})$ defined by θ . Therefore, there is a one-to-one map from the set of all T^* -extensions of a complex vector space \mathfrak{a} onto the subset $\{I \in \mathsf{S}^3(\mathfrak{a}) \mid \frac{\partial I}{\partial p} \neq 0, \forall p \in \mathfrak{a}^*\}$, such elements are also called *non-degenerate*.

Corollary 3.17. Let \mathfrak{J}_1 and \mathfrak{J}_2 be T^* -extensions of \mathfrak{a} with respect to I_1 and I_2 non-degenerate. Then \mathfrak{J} and \mathfrak{J}' are i-isomorphic if and only if there exists an isomorphism A of \mathfrak{a} such that

$$I_1(x,y,z) = I_2(A(x),A(y),A(z)), \forall x,y,z \in \mathfrak{a}.$$

In particular, \mathfrak{J} and \mathfrak{J}' are i-isomorphic if and only if there is a isomorphism tA on \mathfrak{a}^* which induces the isomorphism on $\mathsf{S}^3(\mathfrak{a})$, also denoted by tA such that ${}^tA(I_1) = I_2$. In this case, we say that I_1 and I_2 are *equivalent*.

Example 3.18. Let $\mathfrak{a} = \mathbb{C}a$ be one-dimensional vector space then $\mathsf{S}^3(\mathfrak{a}) = \mathbb{C}(a^*)^3$. By Example 3.16, T^* -extensions of \mathfrak{a} by $(a^*)^3$ and $\lambda(a^*)^3$, $\lambda \neq 0$, are i-isomorphic (also, these trilinear forms are equivalent). Hence, there is only one i-isomorphic class of T^* -extensions of \mathfrak{a} , that is $\mathfrak{J} = \mathbb{C}a \oplus \mathbb{C}b$ with $a^2 = b$ and B(a,b) = 1, the other are zero.

Now, let $\mathfrak{a} = \mathbb{C}x \oplus \mathbb{C}y$ be a 2-dimensional vector space then

$$S^{3}(\mathfrak{a}) = \{a_{1}(x^{*})^{3} + a_{2}(x^{*})^{2}y^{*} + a_{3}x^{*}(y^{*})^{2} + a_{4}(y^{*})^{3}, a_{i} \in \mathbb{C}.$$

It is easy to prove that every bivariate homogeneous polynomial of degree 3 is reducible. Therefore, by a suitable basis choice (certainly isomorphic), a non-degenerate element $I \in S^3(\mathfrak{a})$ has the form $I = ax^*y^*(bx^* + cy^*)$, $a, b \neq 0$. Replace $x^* := \alpha x^*$ with $\alpha^2 = ab$ to get the form $I_{\lambda} = x^*y^*(x^* + \lambda y^*)$, $\lambda \in \mathbb{C}$.

Next, we will show that I_0 and I_{λ} , $\lambda \neq 0$ are not equivalent. Indeed, assume the contrary, i.e. there is an isomorphism tA such that ${}^tA(I_0) = I_{\lambda}$. We can write

$${}^{t}A(x^{*}) = a_{1}x^{*} + b_{1}y^{*}, {}^{t}A(y^{*}) = a_{2}x^{*} + b_{2}y^{*}, a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{C}.$$

Then

$${}^{t}A(I_{0}) = (a_{1}x^{*} + b_{1}y^{*})^{2}(a_{2}x^{*} + b_{2}y^{*}) = a_{1}^{2}a_{2}(x^{*})^{3} + (a_{1}^{2}b_{2} + 2a_{1}a_{2}b_{1})(x^{*})^{2}y^{*} + (2a_{1}b_{1}b_{2} + a_{2}b_{1}^{2})x^{*}(y^{*})^{2} + b_{1}^{2}b_{2}(y^{*})^{3}.$$

Comparing the coefficients we will get a contradiction. Therefore, I_0 and I_{λ} , $\lambda \neq 0$ are not equivalent.

However, two forms I_{λ_1} and I_{λ_2} where $\lambda_1, \lambda_2 \neq 0$ are equivalent by the isomorphism tA satisfying ${}^tA(I_{\lambda_1}) = I_{\lambda_2}$ defined by:

$${}^{t}A(x^{*}) = \alpha y^{*}, {}^{t}A(y^{*}) = \beta x^{*}$$

where $\alpha, \beta \in \mathbb{C}$ such that $\alpha^3 = \lambda_1 \lambda_2^2$, $\beta^3 = \frac{1}{\lambda_1^2 \lambda_2}$. This implies that there are only two i-isomorphic classes of T^* -extensions of \mathfrak{a} .

Example 3.19. Let $\mathfrak{J}_0 = \operatorname{span}\{x,y,e,f\}$ be a T^* -extension of a 2-dimensional vector space \mathfrak{a} by $I_0 = (x^*)^2 y^*$, with $e = x^*$ and $f = y^*$, that means B(x,e) = B(y,f) = 1, the other are zero. It is easy to compute the product in \mathfrak{J}_0 defined by $x^2 = f$, xy = e. Let $I_\lambda = x^* y^* (x^* + \lambda y^*)$, $\lambda \neq 0$ and $\mathfrak{J}_\lambda = \operatorname{span}\{x,y,e,f\}$ be another T^* -extension of the 2-dimensional vector space \mathfrak{a} by I_λ . The products on \mathfrak{J}_λ are $x^2 = f$, $xy = e + \lambda f$ and $yy = \lambda e$. These two algebras are neither i-isomorphic nor isomorphic. Indeed, if there is $A: \mathfrak{J}_0 \to \mathfrak{J}_\lambda$ an isomorphism. Assume $A(y) = \alpha_1 x + \alpha_2 y + \alpha_3 e + \alpha_4 f$ then

$$0 = A(yy) = (\alpha_1 x + \alpha_2 y + \alpha_3 e + \alpha_4 f)^2 = \alpha_1^2 x^2 + 2\alpha_1 \alpha_2 xy + \alpha_2^2 y^2.$$

We obtain $(\lambda \alpha_2^2 + 2\alpha_1 \alpha_2)e + (2\lambda \alpha_1 \alpha_2 + \alpha_1^2)f = 0$. Hence, $\alpha_1 = \pm \lambda \alpha_2$. Both cases imply $\alpha_1 = \alpha_2 = 0$ (a contradiction).

We can also conclude that there are only two isomorphic classes of T^* -extensions of \mathfrak{a} .

4. Symmetric Novikov algebras

Definition 4.1. An algebra \mathfrak{N} over \mathbb{C} with a bilinear product $\mathfrak{N} \times \mathfrak{N} \to \mathfrak{N}$, $(x,y) \mapsto xy$ is called a *left-symmetric algebra* if it satisfies the identity:

(III)
$$(xy)z - x(yz) = (yx)z - y(xz), \forall x, y, z \in \mathfrak{N}.$$

or in terms of associators

$$(x, y, z) = (y, x, z), \forall x, y, z \in \mathfrak{N}.$$

It is called a *Novikov algebra* if in addition

$$(IV) (xy)z = (xz)y$$

holds for all $x,y,z\in\mathfrak{N}$. In this case, the commutator [x,y]:=xy-yx of \mathfrak{N} defines a Lie algebra, denoted by $\mathfrak{g}(\mathfrak{N})$, which is called the *sub-adjacent Lie algebra* of \mathfrak{N} . It is known that $\mathfrak{g}(\mathfrak{N})$ is a solvable Lie algebra [Bur06]. Conversely, let \mathfrak{g} be a Lie algebra with Lie bracket [.,.]. If there exists a bilinear product $\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g},(x,y)\mapsto xy$ that satisfies (III), (IV) and $[x,y]=xy-yx, \forall x,y\in\mathfrak{J}$ then we say that \mathfrak{g} admits a *Novikov structure*.

Example 4.2. Every 2-step nilpotent algebra \mathfrak{N} satisfying $(xy)z = x(yz) = 0, \forall x, y, z \in \mathfrak{N}$, is a Novikov algebra.

For $x \in \mathfrak{N}$, denote by L_x and R_x respectively the left and right multiplication operators $L_x(y) = xy$, $R_x(y) = yx$, $\forall y \in \mathfrak{N}$. The condition (III) is equivalent to $[L_x, L_y] = L_{[x,y]}$ and (IV) is equivalent to $[R_x, R_y] = 0$. In the other words, the left-operators form a Lie algebra and the right-operators commute.

It is easy to check two Jacobi-type identities:

Proposition 4.3. Let \mathfrak{N} be a Novikov algebra then for all $x, y, z \in \mathfrak{N}$:

$$[x,y]z + [y,z]x + [z,x]y = 0,$$

$$x[y,z] + y[z,x] + z[x,y] = 0.$$

Definition 4.4. Let \mathfrak{N} be a Novikov algebra. A bilinear form $B: \mathfrak{N} \times \mathfrak{N} \to \mathbb{C}$ is called *associative* if

$$B(xy,z) = B(x,yz), \forall x,y,z \in \mathfrak{N}.$$

We say that \mathfrak{N} is a *symmetric Novikov algebra* if it is endowed a non-degenerate associative symmetric bilinear form B.

Let (\mathfrak{N}, B) be a symmetric Novikov algebra and S be a subspace of \mathfrak{N} . Denote by S^{\perp} the set $\{x \in \mathfrak{N} \mid B(x,S) = 0\}$. If $B|_{S \times S}$ is non-degenerate (resp. degenerate) then we say that S is non-degenerate (resp. degenerate).

The proof of Lemma 4.5 and Proposition 4.6 below is lengthy, but straight forward then we omit it.

Lemma 4.5. Let (\mathfrak{N}, B) be a symmetric Novikov algebra and I be an ideal of \mathfrak{N} then

- (1) I^{\perp} is also an ideal of $\mathfrak N$ and $II^{\perp} = I^{\perp}I = \{0\}$
- (2) If I is non-degenerate then so is I^{\perp} and $\mathfrak{N} = I \stackrel{\perp}{\oplus} I^{\perp}$.

Proposition 4.6. We call the set $C(\mathfrak{N}) := \{x \in \mathfrak{N} \mid xy = yx, \forall y \in \mathfrak{N}\}$ the **center** of \mathfrak{N} and denote by $As(\mathfrak{N}) = \{x \in \mathfrak{N} \mid (x,y,z) = 0, \forall y,z \in \mathfrak{N}\}$. One has

- (1) If $\mathfrak N$ is a Novikov algebra then $C(\mathfrak N) \subset N(\mathfrak N)$, where $N(\mathfrak N)$ is the nucleus of $\mathfrak N$ defined in Definition 1.11 (3). Moreover, if $\mathfrak N$ is also commutative then $N(\mathfrak N) = \mathfrak N = As(\mathfrak N)$ (that means $\mathfrak N$ is an associative algebra).
- (2) If (\mathfrak{N}, B) is a symmetric Novikov algebra then
 - (i) $C(\mathfrak{N}) = [\mathfrak{g}(\mathfrak{N}), \mathfrak{g}(\mathfrak{N})]^{\perp}$.
 - (ii) $N(\mathfrak{N}) = As(\mathfrak{N}) = (\mathfrak{N}, \mathfrak{N}, \mathfrak{N})^{\perp}$.
 - (iii) $L \operatorname{Ann}(\mathfrak{N}) = R \operatorname{Ann}(\mathfrak{N}) = \operatorname{Ann}(\mathfrak{N}) = (\mathfrak{N}\mathfrak{N})^{\perp}$.

Proposition 4.7. Let \mathfrak{N} be a Novikov algebra then

- (1) $C(\mathfrak{N})$ is a commutative subalgebra.
- (2) $As(\mathfrak{N})$, $N(\mathfrak{N})$ are ideals.

Proof.

- (1) Let $x, y \in C(\mathfrak{N})$ then $(xy)z = (xz)y = (zx)y = z(xy) + (z, x, y) = z(xy), \forall z \in \mathfrak{N}$. Therefore, $xy \in C(\mathfrak{N})$ and then $C(\mathfrak{N})$ is a subalgebra of \mathfrak{N} . Certainly, $C(\mathfrak{N})$ is commutative.
- (2) Let $x \in As(\mathfrak{N}), y, z, t \in \mathfrak{N}$. By the equality

$$(xy,z,t) = ((xy)z)t - (xy)(zt) = ((xz)t)y - (x(zt))y = (x,z,t)y = 0,$$

one has $xy \in As(\mathfrak{N})$. Moreover,

$$(yx,z,t) = ((yx)z)t - (yx)(zt) = (y(xz))t - y(x(zt))$$

= $(y,xz,t) + y((xz)t) - y(x(zt)) = y(x,z,t) = 0$

since $xz \in As(\mathfrak{N})$. Therefore $As(\mathfrak{N})$ is an ideal of \mathfrak{N} .

Similarly, let $x \in N(\mathfrak{N}), y, z, t \in \mathfrak{N}$ one has:

$$(y,z,xt) = (yz)(xt) - y(z(xt)) = ((yz)x)t - (yz,x,t) - y((zx)t - (z,x,t))$$
$$= ((yz)x)t - (y(zx))t + (y,zx,t) = (y,z,x)t = 0$$

and

$$(y,z,tx) = (yz)(tx) - y(z(tx)) = ((yz)t)x - (yz,t,x) - y((zt)x - (z,t,x))$$
$$= ((yz)x)t - y((zx)t) = (y,z,x)t + (y,z,x)t = 0.$$

Then $N(\mathfrak{N})$ is also an ideal of \mathfrak{N} .

Lemma 4.8. Let (\mathfrak{N}, B) be a symmetric Novikov algebra then $[L_x, L_y] = L_{[x,y]} = 0$ for all $x, y \in \mathfrak{N}$. Consequently, for a symmetric Novikov algebra, the Lie algebra formed by the left-operators is Abelian.

Proof. It follows the proof of Lemma II.5 in [AB10]. Fix $x, y \in \mathfrak{N}$, for all $z, t \in \mathfrak{N}$ one has

$$B([L_x,L_y](z),t)=B(x(yz)-y(xz),t)=B((tx)y-(ty)x,z)=0.$$
 Therefore, $[L_x,L_y]=L_{[x,y]}=0, \forall x,y\in\mathfrak{N}.$

Corollary 4.9. Let (\mathfrak{N}, B) be a symmetric Novikov algebra then the sub-adjacent Lie algebra $\mathfrak{g}(\mathfrak{N})$ of \mathfrak{N} with the bilinear form B becomes a quadratic 2-step nilpotent Lie algebra.

Proof. One has

$$B([x,y],z) = B(xy - yx,z) = B(x,yz) - B(x,zy) = B(x,[y,z]), \forall x,y,z \in \mathfrak{N}.$$

Hence, $\mathfrak{g}(\mathfrak{N})$ is quadratic. By Lemma 4.8 and 2(iii) of Proposition 4.6 one has $[x,y] \in L \operatorname{Ann}(\mathfrak{N}) = \operatorname{Ann}(\mathfrak{N}), \ \forall x,y \in \mathfrak{N}$. That implies $[[x,y],z] \in \operatorname{Ann}(\mathfrak{N})\mathfrak{N} = \{0\}, \forall x,y \in \mathfrak{N}$, i.e. $\mathfrak{g}(\mathfrak{N})$ is 2-step nilpotent.

It results that the classification of quadratic 2-step nilpotent Lie algebras ([Ova07], [Duo10]) is closely related to the classification of symmetric Novikov algebras. For instance, by [DPU], every quadratic 2-step nilpotent Lie algebra of dimension ≤ 5 is Abelian so that every symmetric Novikov algebra of dimension ≤ 5 is commutative. In general, in the case of dimension ≥ 6 , there exists a non-commutative symmetric Novikov algebra by Proposition 4.11 below.

Definition 4.10. Let $\mathfrak N$ be a Novikov algebra. We say that $\mathfrak N$ is an *anti-commutative Novikov algebra* if

$$xy = -yx, \forall x, y \in \mathfrak{N}.$$

Proposition 4.11. Let \mathfrak{N} be a Novikov algebra. Then \mathfrak{N} is anti-commutative if, and only if, \mathfrak{N} is a 2-step nilpotent Lie algebra with the Lie bracket defined by $[x,y]:=xy, \forall x,y\in\mathfrak{N}$.

Proof. Assume that \mathfrak{N} is a Novikov algebra such that $xy = -yx, \forall x, y \in \mathfrak{N}$. Since the commutator [x,y] = xy - yx = 2xy is a Lie bracket, so the product $(x,y) \mapsto xy$ is also a Lie bracket. The identity (III) of Definition 4.1 is equivalent to $(xy)z = 0, \forall x, y, z \in \mathfrak{N}$. It shows that \mathfrak{N} is a 2-step nilpotent Lie algebra.

Conversely, if \mathfrak{N} is a 2-step nilpotent Lie algebra then we define the product $xy := [x,y], \forall x,y \in \mathfrak{N}$. It is obvious that the identities (III) and (IV) of Definition 4.1 are satisfied since $(xy)z = 0, \forall x,y,z \in \mathfrak{N}$.

By the above Proposition, the study of anti-commutative Novikov algebras is reduced to the study of 2-step nilpotent Lie algebras. Moreover, the formula in this proposition also can be used to define a 2-step nilpotent symmetric Novikov algebra from a quadratic 2-step nilpotent Lie algebra. Recall that there exists only one non-Abelian quadratic 2-step nilpotent Lie algebra of dimension 6 up to isomorphism [DPU] then there is only one anti-commutative symmetric Novikov algebra of dimension 6 up to isomorphism. However, there exist non-commutative symmetric Novikov algebras that are not 2-step nilpotent [AB10]. For instance,

let $\mathfrak{N}=\mathfrak{g}_6 \oplus \mathbb{C}c$, where \mathfrak{g}_6 is the 6-dimensional elementary quadratic Lie algebra [DPU] and $\mathbb{C}c$ is a pseudo-Euclidean simple Jordan algebra with the bilinear form $B_c(c,c)=1$ (obviously, this algebra is a symmetric Novikov algebra and commutative). Then \mathfrak{N} become a symmetric Novikov algebra with the bilinear form defined by $B=B_{\mathfrak{g}_6}+B_c$, where $B_{\mathfrak{g}_6}$ is the bilinear form on \mathfrak{g}_6 . We can extend this example

for the case $\mathfrak{N}=\mathfrak{g}\stackrel{\perp}{\oplus}\mathfrak{J}$, where \mathfrak{g} is a quadratic 2-step nilpotent Lie algebra and \mathfrak{J} is a symmetric Jordan-Novikov algebra defined below. However, these algebras are decomposable. An example in the indecomposable case of dimension 7 can be found in the last part of this paper.

Proposition 4.12. Let \mathfrak{N} be a Novikov algebra. Assume that its product is commutative, that means $xy = yx, \forall x, y \in \mathfrak{N}$. Then the identities (III) and (IV) of Definition 4.1 are equivalent to the only condition:

$$(x, y, z) = (xy)z - x(yz) = 0, \forall x, y, z \in \mathfrak{N}.$$

It means that $\mathfrak N$ is an associative algebra. Moreover, $\mathfrak N$ is also a Jordan algebra. In this case, we say that $\mathfrak N$ is a **Jordan-Novikov algebra**. In addition, if $\mathfrak N$ has a non-degenerate associative symmetric bilinear form, then we say that $\mathfrak N$ is a symmetric Jordan-Novikov algebra.

Proof. Assume \mathfrak{N} is a commutative Novikov algebra. By (1) of Proposition 4.6, the product is also associative. Conversely, if one has the condition:

$$(xy)z - x(yz) = 0, \forall x, y, z \in \mathfrak{N}$$

then (III) identifies with zero and (IV) is obtained by $(yx)z = y(xz), \forall x, y, z \in \mathfrak{N}$.

Example 4.13. Recall the pseudo-Euclidean Jordan algebra \mathfrak{J} in Example 2.10 spanned by $\{x, x_1, y_1\}$, where the commutative product on \mathfrak{J} is defined by:

$$y_1^2 = y_1, y_1 x = x, y_1 x_1 = x_1, x^2 = x_1.$$

It is easy to check that this product is also associative. Therefore, \mathfrak{J} is a symmetric Jordan-Novikov algebra with the bilinear form B defined $B(x_1,y_1)=B(x,x)=1$ and the other zero.

Example 4.14. Pseudo-Euclidean 2-step nilpotent Jordan algebras are symmetric Jordan-Novikov algebras.

Remark 4.15.

- (1) By Lemma 4.8, if the symmetric Novikov algebra $\mathfrak N$ has $\mathrm{Ann}(\mathfrak N)=\{0\}$ then $[x,y]=xy-yx=0, \forall x,y\in\mathfrak N$. It implies that $\mathfrak N$ is commutative and then $\mathfrak N$ is a symmetric Jordan-Novikov algebra.
- (2) If the product on \mathfrak{N} is associative then it may not be commutative. An example can be found in the next part.
- (3) Let \mathfrak{N} be a Novikov algebra with unit element e; that is ex = xe = x, $\forall x \in \mathfrak{N}$. Then xy = (ex)y = (ey)x = yx, $\forall x, y \in \mathfrak{N}$ and therefore \mathfrak{N} is a Jordan-Novikov algebra.
- (4) The algebra given in Example 4.13 is also a Frobenius algebra, that is, a finite-dimensional associative algebra with unit element equipped with a non-degenerate associative bilinear form.

A well-known result is that every associative algebra $\mathfrak N$ is Lie-admissible and Jordan-admissible; that is, if $(x,y) \mapsto xy$ is the product of $\mathfrak N$ then the products

$$[x,y] = xy - yx \qquad \text{and}$$
$$[x,y]_+ := xy + yx$$

define respectively a Lie algebra structure and a Jordan algebra structure on \mathfrak{N} . There exist algebras satisfying each one of these properties. For example, the non-commutative Jordan algebras are Jordan-admissible [Sch55] or the Novikov algebras are Lie-admissible. However, remark that a Novikov algebra may not be Jordan-admissible by the following example:

Example 4.16. Consider the 2-dimensional algebra $\mathfrak{N} = \mathbb{C}a \oplus \mathbb{C}b$ such that ba = -a, zero otherwise. Then \mathfrak{N} is a Novikov algebra [BMH02]. One has [a,b] = a and $[a,b]_+ = -a$. For $x \in \mathfrak{N}$, denote by ad_x^+ the endomorphism of \mathfrak{N} defined by $\mathrm{ad}_x^+(y) = [x,y]_+ = [y,x]_+, \ \forall y \in \mathfrak{N}$. It is easy to see that

$$\operatorname{ad}_a^+ = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$
 and $\operatorname{ad}_b^+ = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$.

Let $x = \lambda a + \mu b \in \mathfrak{N}$, $\lambda, \mu \in \mathbb{C}$, one has $[x, x]_+ = -2\lambda \mu a$ and therefore:

$$\mathrm{ad}_{x}^{+} = \begin{pmatrix} -\mu & -\lambda \\ 0 & 0 \end{pmatrix} \text{ and } \mathrm{ad}_{[x,x]_{+}}^{+} = \begin{pmatrix} 0 & 2\lambda\mu \\ 0 & 0 \end{pmatrix}.$$

Since $[ad_x^+,ad_{[x,x]_+}^+] \neq 0$ if $\lambda,\mu \neq 0$, then $\mathfrak N$ is not Jordan-admissible.

We will give a condition for a Novikov algebra to be Jordan-admissible as follows:

Proposition 4.17. Let \mathfrak{N} be a Novikov algebra satisfying

$$(\mathbf{V}) \qquad (x, x, x) = 0, \forall x \in \mathfrak{N}.$$

Define on \mathfrak{N} the product $[x,y]_+ = xy + yx, \forall x,y \in \mathfrak{N}$ then \mathfrak{N} is a Jordan algebra with this product. In this case, it is called the **associated Jordan algebra** of \mathfrak{N} and denoted by $\mathfrak{J}(\mathfrak{N})$.

Proof. Let $x, y \in \mathfrak{N}$ then we can write $x^3 = x^2x = xx^2$. One has

$$[[x,y]_+, [x,x]_+]_+ = [xy + yx, 2x^2]_+$$

$$= 2(xy)x^2 + 2(yx)x^2 + 2x^2(xy) + 2x^2(yx)$$

$$= 2x^3y + 2(yx)x^2 + 2x^2(xy) + 2x^2(yx)$$

and

$$[x, [y, [x,x]_+]_+]_+ = [x, 2yx^2 + 2x^2y]_+$$

= $2x(yx^2) + 2x(x^2y) + 2(yx^2)x + 2(x^2y)x$
= $2x(yx^2) + 2x(x^2y) + 2(yx)x^2 + 2x^3y$.

Therefore, $[[x,y]_+,[x,x]_+]_+ = [x,[y,[x,x]_+]_+]_+$ if and only if $x^2(xy) + x^2(yx) = x(yx^2) + x(x^2y)$. Remark that we have following identities:

$$\begin{aligned} x^2(xy) &= x^3y - (x^2, x, y) = x^3y - (x, x^2, y), \\ x^2(yx) &= (x^2y)x - (x^2, y, x) = x^3y - (y, x^2, x), \\ x(yx^2) &= (xy)x^2 - (x, y, x^2) = x^3y - (y, x, x^2), \\ x(x^2y) &= x^3y - (x, x^2, y). \end{aligned}$$

It means that we have only to check the formula $(y, x^2, x) = (y, x, x^2)$. It is clear by the identities (III) and (V). Then we can conclude that $\mathfrak{J}(\mathfrak{N})$ is a Jordan algebra.

Corollary 4.18. *If* (\mathfrak{N}, B) *is a symmetric Novikov algebra satisfying* (V) *then* $(\mathfrak{J}(\mathfrak{N}), B)$ *is a pseudo-Euclidean Jordan algebra.*

Proof. It is obvious since
$$B([x,y]_+,z) = B(xy+yx,z) = B(x,yz+zy) = B(x,[y,z]_+),$$
 $\forall x,y,z \in \mathfrak{J}(\mathfrak{N}).$

Remark 4.19. Obviously, Jordan-Novikov algebras are power-associative but in general this is not true for Novikov algebras. Indeed, if Novikov algebras were power-associative then they would satisfy (V). That would imply they were Jordan-admissible. But, that is a contradiction as shown in Example 4.16.

Lemma 4.20. Let \mathfrak{N} be a Novikov algebra then $[x, yz]_+ = [y, xz]_+, \ \forall x, y, z \in \mathfrak{N}$.

Proof. By (III), for all $x, y, z \in \mathfrak{N}$ one has (xy)z + y(xz) = x(yz) + (yx)z. Combine with (IV), we obtain:

$$(xz)y + y(xz) = x(yz) + (yz)x.$$

That means $[x, yz]_+ = [y, xz]_+, \ \forall x, y, z \in \mathfrak{N}.$

Proposition 4.21. *Let* (\mathfrak{N}, B) *be a symmetric Novikov algebra then following identities:*

- (1) x[y,z] = [y,z]x = 0. Consequently, $[x,yz]_+ = [x,zy]_+$.
- (2) $[x,y]_+z = [x,z]_+y$,
- (3) $[x,yz]_+ = [xy,z]_+ = x[y,z]_+ = [x,y]_+z$
- (4) $x[y,z]_+ = [y,z]_+x$.

hold for all $x, y, z \in \mathfrak{N}$.

Proof. Let x, y, z, t be elements $\in \mathfrak{N}$,

- (1) By Proposition 4.6 and Lemma 4.8, $L_{[y,z]} = 0$ so one has (1).
- (2) B([x,y]+z,t) = B(y,[x,zt]+) = B(y,[z,xt]+) = B([z,y]+x,t). Therefore, [x,y]+z = [z,y]+x. Since the product [.,.]+ is commutative then [y,x]+z = [y,z]+x.
- (3) By (1) and Lemma 4.20, $[x, yz]_+ = [x, zy]_+ = [z, xy]_+ = [xy, z]_+$. Since B is associative with respect to the product in \mathfrak{N} and in $\mathfrak{J}(\mathfrak{N})$ then

$$B(t, [xy, z]_{+}) = B([t, xy]_{+}, z) = B([t, yx]_{+}, z) = B([y, tx]_{+}, z) = B(tx, [y, z]_{+}) = B(t, x[y, z]_{+}).$$

It implies that $[xy,z]_+ = x[y,z]_+$. Similarly,

$$B([x,y]_+z,t) = B(x,[y,zt]_+) = B(x,[y,tz]_+) = B(x,[t,yz]_+) = B([x,yz]_+,t).$$

So $[x,y]_+z = [x,yz]_+.$

(4) By (2) and (3),
$$x[y,z]_+ = [x,y]_+ z = [y,x]_+ z = [y,z]_+ x$$
.

Corollary 4.22. Let (\mathfrak{N},B) be a symmetric Novikov algebra then $(\mathfrak{J}(\mathfrak{N}),B)$ is a symmetric Jordan-Novikov algebra.

Proof. We will show that $[[x,y]_+,z]_+ = [x,[y,z]_+]_+, \forall x,y,z \in \mathfrak{N}$. Indeed, By Proposition 4.21 one has

$$[[x,y]_+,z]_+ = [2xy,z]_+ = 2[z,xy]_+ = 2[x,yz]_+ = [x,[y,z]_+]_+.$$

Hence, the product $[.,.]_+$ are both commutative and associative. That means $\mathfrak{J}(\mathfrak{N})$ be a Jordan-Novikov algebra.

It results that for symmetric Novikov algebras the condition (V) is not necessary. Moreover, we have the much stronger fact as follows:

Proposition 4.23. *Let* \mathfrak{N} *be a symmetric Novikov algebra then the product on* \mathfrak{N} *is associative, that is* $x(yz) = (xy)z, \forall x, y, z \in \mathfrak{N}$.

Proof. Firstly, we need the lemma:

Lemma 4.24. Let \mathfrak{N} be a symmetric Novikov algebra then $\mathfrak{N}\mathfrak{N} \subset C(\mathfrak{N})$.

Proof. By Lemma 4.8, one has $[x,y] = xy - yx \in \text{Ann}(\mathfrak{N}) \subset C(\mathfrak{N}), \forall x,y \in \mathfrak{N}$. Also, by (4) of Proposition 4.21, $x[y,z]_+ = [y,z]_+x$, $\forall x,y,z \in \mathfrak{N}$, that means $[x,y]_+ = xy + yx \in C(\mathfrak{N}), \forall x,y \in C(\mathfrak{N})$. Hence, $xy \in C(\mathfrak{N}), \forall x,y \in C(\mathfrak{N})$, i.e. $\mathfrak{NN} \subset C(\mathfrak{N})$.

Let $x, y, z \in \mathfrak{N}$. By above Lemma, one has (yz)x = x(yz). Combine with (IV), (yx)z = x(yz). On the other hand, $[x,y] \in \text{Ann}(\mathfrak{N})$ implies (yx)z = (xy)z. Therefore, (xy)z = x(yz).

A general proof of the above Proposition can be found in [AB10], Lemma II.4 which holds for all symmetric left-symmetric superalgebras.

By Corollary 4.9, if $\mathfrak N$ is a symmetric Novikov algebra then $\mathfrak g(\mathfrak N)$ is 2-step nilpotent. However, $\mathfrak J(\mathfrak N)$ is not necessarily 2-step nilpotent, for example the one-dimensional Novikov algebra $\mathbb C c$ with $c^2=c$ and B(c,c)=1. If $\mathfrak N$ is a symmetric 2-step nilpotent Novikov algebra then $(xy)z=0, \forall x,y,z\in \mathfrak N$. So $[[x,y]_+,z]_+=0, \ \forall x,y,z\in \mathfrak N$. That implies $\mathfrak J(\mathfrak N)$ is also a 2-step nilpotent Jordan algebra. The converse is also true.

Proposition 4.25. Let \mathfrak{N} be a symmetric Novikov algebra. If $\mathfrak{J}(\mathfrak{N})$ is a 2-step nilpotent Jordan algebra then \mathfrak{N} is a 2-step nilpotent Novikov algebra.

Proof. Since (4) of Proposition 4.21, if $x, y, z \in \mathfrak{N}$ then one has

$$[[x,y]_+,z]_+ = [x,y]_+z + z[x,y]_+ = 2[x,y]_+z = 0.$$

It means $[x,y]_+ = xy + yx \in Ann(\mathfrak{N})$. On the other hand, $[x,y] = xy - yx \in Ann(\mathfrak{N})$ then $xy \in Ann(\mathfrak{N}), \forall x, y \in \mathfrak{N}$. Therefore, \mathfrak{N} is 2-step nilpotent.

By Proposition 4.11, since the lowest dimension of non-Abelian quadratic 2-step nilpotent Lie algebras is six then examples of symmetric non-commutative Novikov algebras must be at least six dimensional. One of those can be found in [ZC07] and it is also described in term of double extension in [AB10]. We recall this algebra as follows:

Example 4.26. Firstly, we define the **character matrix** of a Novikov algebra $\mathfrak{N} = \text{span}\{e_1, \dots, e_n\}$ by

$$\begin{pmatrix} \sum_{k} c_{11}^{k} e_{k} & \dots & \sum_{k} c_{1n}^{k} e_{k} \\ \vdots & \ddots & \vdots \\ \sum_{k} c_{n1}^{k} e_{k} & \dots & \sum_{k} c_{nn}^{k} e_{k} \end{pmatrix},$$

where c_{ij}^k are the **structure constants** of \mathfrak{N} , i. e. $e_i e_j = \sum_k c_{ij}^k e_k$.

Now, let \mathfrak{N}_6 be a 6-dimensional vector space spanned by $\{e_1,...,e_6\}$ then \mathfrak{N}_6 is a symmetric non-commutative Novikov algebras with character matrix

and the bilinear form *B* defined by:

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Obviously, in this case, \mathfrak{N}_6 is a 2-step nilpotent Novikov algebra with $\mathrm{Ann}(\mathfrak{N})=\mathfrak{M}\mathfrak{N}$. Moreover, \mathfrak{N}_6 is indecomposable since it is non-commutative and all of symmetric Novikov algebras up to dimension 5 are commutative.

We need the following lemma:

Lemma 4.27. Let \mathfrak{N} be a non-Abelian symmetric Novikov algebra then $\mathfrak{N} = \mathfrak{z} \stackrel{\perp}{\oplus} \mathfrak{l}$, where $\mathfrak{z} \subset \operatorname{Ann}(\mathfrak{N})$ and \mathfrak{l} is a reduced symmetric Novikov algebra, that means $\mathfrak{l} \neq \{0\}$ and $\operatorname{Ann}(\mathfrak{l}) \subset \mathfrak{l}$.

Proof. Let $\mathfrak{z}_0 = \operatorname{Ann}(\mathfrak{N}) \cap \mathfrak{NN}$, \mathfrak{z} is a complementary subspace of \mathfrak{z}_0 in $\operatorname{Ann}(\mathfrak{N})$ and $\mathfrak{l} = (\mathfrak{z})^{\perp}$. If x is an element in \mathfrak{z} such that $B(x,\mathfrak{z}) = 0$ then $B(x,\mathfrak{NN}) = 0$ since $\operatorname{Ann}(\mathfrak{N}) = (\mathfrak{NN})^{\perp}$. As a consequence, $B(x,\mathfrak{z}_0) = 0$ and then $B(x,\operatorname{Ann}(\mathfrak{N})) = 0$. Hence, x must be in \mathfrak{NN} since $\operatorname{Ann}(\mathfrak{N}) = (\mathfrak{NN})^{\perp}$. It shows that x = 0 and \mathfrak{z} is non-degenerate. By Lemma 4.5, \mathfrak{l} is a non-degenerate ideal and $\mathfrak{N} = \mathfrak{z} \stackrel{\perp}{\oplus} \mathfrak{l}$.

Since $\mathfrak N$ is non-Abelian then $\mathfrak l \neq \{0\}$. Moreover, $\mathfrak l = \mathfrak N \mathfrak N$ implies $\mathfrak z_0 \subset \mathfrak l \mathfrak l$. It is easy to see that $\mathfrak z_0 = \mathrm{Ann}(\mathfrak l)$ and the lemma is proved.

Proposition 4.28. Let \mathfrak{N} be a symmetric non-commutative Novikov algebras of dimension 6 then \mathfrak{N} is 2-step nilpotent.

Proof. Let $\mathfrak{N} = \operatorname{span}\{x_1, x_2, x_3, z_1, z_2, z_3\}$. By [DPU], there exists only one non-Abelian quadratic 2-step nilpotent Lie algebra of dimension 6 (up to isomorphisms) then $\mathfrak{g}(\mathfrak{N}) = \mathfrak{g}_6$. We can choose the basis such that $[x_1, x_2] = z_3$, $[x_2, x_3] = z_1$, $[x_3, x_1] = z_2$ and the bilinear form $B(x_i, z_i) = 1$, i = 1, 2, 3, the other are zero.

Recall that $C(\mathfrak{N}) := \{x \in \mathfrak{N} \mid xy = yx, \forall y \in \mathfrak{N}\}$ then $C(\mathfrak{N}) = \{x \in \mathfrak{N} \mid [x,y] = 0, \forall y \in \mathfrak{N}\}$. Therefore, $C(\mathfrak{N}) = \operatorname{span}\{z_1, z_2, z_3\}$ and $\mathfrak{NN} \subset C(\mathfrak{N})$ by Lemma 4.24. Consequently, $\dim(\mathfrak{NN}) \leq 3$.

By the above lemma, if $\mathfrak N$ is not reduced then $\mathfrak N=\mathfrak z\stackrel{\perp}{\oplus}\mathfrak l$ with $\mathfrak z\subset \mathrm{Ann}(\mathfrak N)$ is a non-degenerate ideal and $\mathfrak z\neq\{0\}$. It implies that $\mathfrak l$ is a symmetric Novikov algebra having dimension ≤ 5 and then $\mathfrak l$ is commutative. This is a contradiction since $\mathfrak N$ is non-commutative. Therefore, $\mathfrak N$ must be reduced and $\mathrm{Ann}(\mathfrak N)\subset \mathfrak N\mathfrak N$. Moreover, $\dim(\mathfrak N\mathfrak N)+\dim(\mathrm{Ann}(\mathfrak N))=6$ so we have $\mathfrak N\mathfrak N=\mathrm{Ann}(\mathfrak N)=C(\mathfrak N)$. It shows $\mathfrak N$ is 2-step nilpotent.

In this case, the character matrix of \mathfrak{N} in the basis $\{x_1, x_2, x_3, z_1, z_2, z_3\}$ is given by:

$$\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$$
,

where A is a 3×3 -matrix defined by the structure constants $x_i x_j = \sum_k c_{ij}^k z_k$, $1 \le i, j, k \le 3$, and B has the matrix:

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Since $B(x_i x_j, x_r) = B(x_i, x_j x_r) = B(x_j, x_r x_i)$ then one has $c_{ij}^r = c_{jr}^i = c_{ri}^j$, $1 \le i, j, k \le 3$.

Next, we give some simple properties for symmetric Novikov algebras as follows:

Proposition 4.29. Let $\mathfrak N$ be a symmetric non-commutative Novikov algebra. If $\mathfrak N$ is reduced then

$$3 \leq \dim(\mathrm{Ann}(\mathfrak{N})) \leq \dim(\mathfrak{N}\mathfrak{N}) \leq \dim(\mathfrak{N}) - 3.$$

Proof. By Lemma 4.24, $\mathfrak{NN} \subset C(\mathfrak{N})$. Moreover, \mathfrak{N} non-commutative implies that $\mathfrak{g}(\mathfrak{N})$ is non-Abelian and by [PU07], $\dim([\mathfrak{N},\mathfrak{N}]) \geq 3$. Therefore, $\dim C(\mathfrak{N}) \leq \dim(\mathfrak{N}) - 3$ since $C(\mathfrak{N}) = [\mathfrak{N},\mathfrak{N}]^{\perp}$. Consequently, $\dim(\mathfrak{NN}) \leq \dim(\mathfrak{N}) - 3$ and then $\dim(\mathrm{Ann}(\mathfrak{N})) \geq 3$.

Corollary 4.30. Let \mathfrak{N} be a symmetric non-commutative Novikov algebra of dimension 7. If \mathfrak{N} is 2-step nilpotent then \mathfrak{N} is not reduced.

Proof. Assume that \mathfrak{N} is reduced then $\dim(\operatorname{Ann}(\mathfrak{N})) = 3$ and $\dim(\mathfrak{N}\mathfrak{N}) = 4$. It implies that there must have a nonzero element $x \in \mathfrak{N}\mathfrak{N}$ such that $x\mathfrak{N} \neq \{0\}$ and then \mathfrak{N} is not 2-step nilpotent.

Now, we give a more general result for symmetric Novikov algebra of dimension 7 as follows:

Proposition 4.31. Let \mathfrak{N} be a symmetric non-commutative Novikov algebra of dimension 7. If \mathfrak{N} is reduced then there are only two cases:

- (1) \mathfrak{N} is 3-step nilpotent and indecomposable.
- (2) \mathfrak{N} is decomposable by $\mathfrak{N} = \mathbb{C}x \stackrel{\perp}{\oplus} \mathfrak{N}_6$, where $x^2 = x$ and \mathfrak{N}_6 is a symmetric non-commutative Novikov algebra of dimension 6.

Proof. Assume that $\mathfrak N$ is reduced then $\dim(\operatorname{Ann}(\mathfrak N))=3$, $\dim(\mathfrak N\mathfrak N)=4$ since $\operatorname{Ann}(\mathfrak N)\subset\mathfrak N\mathfrak N$ and $\operatorname{Ann}(\mathfrak N)=(\mathfrak N\mathfrak N)^\perp$. By [Bou59], $\operatorname{Ann}(\mathfrak N)$ is totally isotropic, then there exist a totally isotropic subspace V and a nonzero x of $\mathfrak N$ such that

$$\mathfrak{N} = \mathrm{Ann}(\mathfrak{N}) \oplus \mathbb{C}x \oplus V,$$

where $\operatorname{Ann}(\mathfrak{N}) \oplus V$ is non-degenerate, $B(x,x) \neq 0$ and $x^{\perp} = \operatorname{Ann}(\mathfrak{N}) \oplus V$. As a consequence, $\operatorname{Ann}(\mathfrak{N}) \oplus \mathbb{C}x = (\operatorname{Ann}(\mathfrak{N}))^{\perp} = \mathfrak{N}\mathfrak{N}$.

Consider the left-multiplication operator $L_x : \mathbb{C}x \oplus V \to \operatorname{Ann}(\mathfrak{N}) \oplus \mathbb{C}x$, $L_x(y) = xy$, $\forall y \in \mathbb{C}x \oplus V$. Denote by p the projection $\operatorname{Ann}(\mathfrak{N}) \oplus \mathbb{C}x \to \mathbb{C}x$.

- If $p \circ L_x = 0$ then $(\mathfrak{NN})\mathfrak{N} = x\mathfrak{N} \subset \text{Ann}(\mathfrak{N})$. Therefore, $((\mathfrak{NN})\mathfrak{N})\mathfrak{N} = \{0\}$. That implies \mathfrak{N} is 3-nilpotent. If \mathfrak{N} is decomposable then \mathfrak{N} must be 2-step nilpotent. This is in contradiction to Corollary 4.30.
- If $p \circ L_x \neq 0$ then there is a nonzero $y \in \mathbb{C}x \oplus V$ such that xy = ax + z with $0 \neq a \in \mathbb{C}$ and $z \in \text{Ann}(\mathfrak{N})$. In this case, we can choose y such that a = 1. It implies that $(x^2)y = x(xy) = x^2$.

If $x^2 = 0$ then $0 = B(x^2, y) = B(x, xy) = B(x, x)$. This is a contradiction. Therefore, $x^2 \neq 0$. Since $x^2 \in \text{Ann}(\mathfrak{N}) \oplus \mathbb{C}x$ then $x^2 = z' + \mu x$, where $z' \in \text{Ann}(\mathfrak{N})$ and $\mu \in \mathbb{C}$ must be nonzero. By setting $x' := \frac{x}{\mu}$ and $z'' = \frac{z'}{\mu^2}$, we get $(x')^2 = z'' + x'$. Let $x_1 := (x')^2$, one has:

$$x_1^2 = (x')^2 (x')^2 = (z'' + x')(z'' + x') = x_1.$$

Moreover, for all $t = \lambda x + v \in \mathbb{C}x \oplus V$, we have $t(x^2) = (x^2)t = x(xt) = \lambda \mu(x^2)$. It implies that $\mathbb{C}x^2 = \mathbb{C}x_1$ is an ideal of \mathfrak{N} .

Since $B(x_1, x_1) \neq 0$, by Lemma 4.5 one has $\mathfrak{N} = \mathbb{C}x_1 \stackrel{\perp}{\oplus} (x_1)^{\perp}$. Certainly, $(x_1)^{\perp}$ is a symmetric non-commutative Novikov algebra of dimension 6.

Proposition 4.32. Let \mathfrak{N} be a symmetric Novikov algebra. If $\mathfrak{g}(\mathfrak{N})$ or $\mathfrak{J}(\mathfrak{N})$ is reduced then \mathfrak{N} is reduced.

Proof. Assume that \mathfrak{N} is not reduced then there is a nonzero $x \in \text{Ann}(\mathfrak{N})$ such that B(x,x) = 1. Since $[x,\mathfrak{N}] = [x,\mathfrak{N}]_+ = 0$ then $\mathfrak{g}(\mathfrak{N})$ and $\mathfrak{J}(\mathfrak{N})$ are not reduced. \square

Corollary 4.33. Let \mathfrak{N} be a symmetric Novikov algebra. If $\mathfrak{g}(\mathfrak{N})$ is reduced then \mathfrak{N} must be 2-step nilpotent.

Proof. Since $\mathfrak{g}(\mathfrak{N})$ is reduced then $\mathrm{Ann}(\mathfrak{N}) \subset \mathfrak{NN}$. On the other hand, $\dim(C(\mathfrak{N})) = \dim([\mathfrak{N},\mathfrak{N}]) = \frac{1}{2}\dim(\mathfrak{N})$ so $\dim(\mathrm{Ann}(\mathfrak{N})) = \dim(\mathfrak{NN})$. Therefore, $\mathrm{Ann}(\mathfrak{N}) = \mathfrak{NN}$ and \mathfrak{N} is 2-step nilpotent.

Example 4.34. By Example 4.2, every 2-step nilpotent algebra is Novikov then we will give here an example of symmetric non-commutative Novikov algebras of dimension 7 which is 3-step nilpotent. Let $\mathfrak{N} = \mathbb{C}x \oplus \mathfrak{N}_6$ be a 7-dimensional vector space, where \mathfrak{N}_6 is the symmetric Novikov algebra of dimension 6 in Example 4.26. Define the product on \mathfrak{N} by

$$xe_4 = e_4x = e_1, e_4e_4 = x, e_4e_5 = e_3, e_5e_6 = e_1, e_6e_4 = e_2,$$

and the symmetric bilinear form B defined by

$$B(x,x) = B(e_1,e_4) = B(e_2,e_5) = B(e_3,e_6) = 1$$

 $B(e_4,e_1) = B(e_5,e_2) = B(e_6,e_3) = 1,$
0 otherwise.

Note that in above Example, $\mathfrak{g}(\mathfrak{N})$ is not reduced since $x \in C(\mathfrak{N})$.

5. APPENDIX

Lemma 5.1. Let (V,B) be a quadratic vector space, C be an invertible endomorphism of V such that

(1)
$$B(C(x), y) = B(x, C(y)), \forall x, y \in V.$$

(2)
$$3C - 2C^2 = Id$$

Then there is an orthogonal basis $\{e_1,...,e_n\}$ of B such that C is diagonalizable with eigenvalues 1 and $\frac{1}{2}$.

Proof. Firstly, one has (2) equivalent to $C(C-\mathrm{Id})=\frac{1}{2}(C-\mathrm{Id})$. Therefore, if x is a vector in V such that $C(x)-x\neq 0$ then C(x)-x is an eigenvector with respect to eigenvalue $\frac{1}{2}$. We prove the result by induction on $\dim(V)$. If $\dim(V)=1$, let $\{e\}$ be a orthogonal basis of V and assume $C(e)=\lambda e$ for some $\lambda\in\mathbb{C}$. Then by (2) one has $\lambda=1$ or $\lambda=\frac{1}{2}$.

Assume that the result is true for quadratic vector spaces of dimension $n, n \ge 1$. Assume $\dim(V) = n + 1$. If $C = \operatorname{Id}$ then the result follows. If $C \ne \operatorname{Id}$ then there exists $x \in V$ such that $C(x) - x \ne 0$. Let $e_1 := C(x) - x$ then $C(e_1) = \frac{1}{2}e_1$.

If $B(e_1,e_1)=0$ then there is $e_2\in V$ such that $B(e_2,e_2)=0$, $B(e_1,e_2)=1$ and $V=\sup\{e_1,e_2\}$ $\stackrel{\perp}{\oplus}$ V_1 , where $V_1=\sup\{e_1,e_2\}$ $\stackrel{\perp}{\to}$. Since $\frac{1}{2}=B(C(e_1),e_2)=B(e_1,C(e_2))$ one has $C(e_2)=\frac{1}{2}e_2+x+\beta e_1$, where $x\in V_1,\beta\in\mathbb{C}$. Let $f_1:=C(e_2)-e_2=-\frac{1}{2}e_2+x+\beta e_1$ then $C(f_1)=\frac{1}{2}f_1$ and $B(e_1,f_1)=-\frac{1}{2}$. If $B(f_1,f_1)\neq 0$ then let $e_1:=f_1$. If $B(f_1,f_1)=0$ then let $e_1:=e_1+f_1$. In the both cases, we have $B(e_1,e_1)\neq 0$ and $C(e_1)=\frac{1}{2}e_1$. Let $V=\mathbb{C}e_1\stackrel{\perp}{\oplus}e_1^\perp$ then e_1^\perp is non-degenerate, C maps e_1^\perp into itself. Therefore the result follows the induction assumption. \square

REFERENCES

- [AB10] I. Ayadi and S. Benayadi, *Symmetric Novikov superalgebras*, Journal of Mathematical Physics **51** (2010), no. 2, 023501. ↑2, 4, 23, 24, 27, 28
- [Alb49] A. A. Albert, *A theory of trace-admissible algebras*, Proceedings of the National Academy of Sciences of the United States of America **35** (1949), no. 6, 317–322. ↑5
- [BB] A. Baklouti and S. Benayadi, *Pseudo-euclidean Jordan algebras*, arXiv:0811.3702v1. ↑2, 7, 8, 9, 10, 14
- [BB99] H. Benamor and S. Benayadi, *Double extension of quadratic Lie superalgebras*, Communications in Algebra **27** (1999), no. 1, 67 − 88. ↑2
- [BM01] C. Bai and D. Meng, The classification of Novikov algebras in low dimensions, J. Phys. A: Math. Gen. 34 (2001), 1581 – 1594. ↑4
- [BM02] $\frac{}{502.\uparrow}$, Bilinear forms on Novikov algebras, Int. J. Theor. Phys. **41** (2002), no. 3, 495 –
- [BMH02] C. Bai, D. Meng, and L He, *On fermionic Novikov algebras*, J. Phys. A: Math. Gen. **35** (2002), no. 47, 10053 − 10063. ↑25
- [BN85] A. A. Balinskii and S. P. Novikov, *Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras*, Dokl. Akad. Nauk SSSR **283** (1985), no. 5, 1036 − 1039. ↑4
- [Bor97] M. Bordemann, *Nondegenerate invariant bilinear forms on nonassociative algebras*, Acta Math. Univ. Comenianae **LXVI** (1997), no. 2, 151 − 201. ↑3, 8
- [Bou59] N. Bourbaki, Eléments de Mathématiques. Algèbre, Formes sesquilinéaires et formes quadratiques, Vol. Fasc. XXIV, Livre II, Hermann, Paris, 1959. ↑30
- [Bur06] D. Burde, Classical r-matrices and Novikov algebras, Geometriae Dedicata 122 (2006), 145–157. ↑21
- [CM93] D. H. Collingwood and W. M. McGovern, Nilpotent Orbits in Semisimple Lie. Algebras, Van Nostrand Reihnhold Mathematics Series, New York, 1993. ↑2
- [DPU] M. T. Duong, G. Pinczon, and R. Ushirobira, *A new invariant of quadratic Lie algebras*, arXiv:1005.3970v2. \(\daggerarrow 1, 9, 23, 24, 29 \)
- [Duo10] M. T. Duong, Thèse de l'Université de Bourgogne (2010), in preparation. \$\dagger\$1, 4, 23
- [FK94] J. Faraut and A. Koranyi, *Analysis on symmetric cones*, Oxford Mathematical Monographs, 1994. ↑7
- [FS87] G. Favre and L. J. Santharoubane, *Symmetric, invariant, non-degenerate bilinear form on a Lie algebra*, Journal of Algebra **105** (1987), 451–464. ↑1
- [GD79] I. M. Gel'fand and I. Ya. Dorfman, *Hamiltonian operators and algebraic structures related to them*, Funct. Anal. Appl 13 (1979), no. 4, 248 − 262. ↑4
- [Jac51] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc **70** (1951), 509–530. ↑
- [Kac85] V. Kac, *Infinite-dimensional Lie algebras*, Cambrigde University Press, New York, 1985. ↑2

- [MR85] A. Medina and Ph. Revoy, *Algèbres de Lie et produit scalaire invariant*, Ann. Sci. École Norm. Sup. **4** (1985), 553 − 561. ↑2
- [Ova07] G. Ovando, Two-step nilpotent Lie algebras with ad-invariant metrics and a special kind of skew-symmetric maps, J. Algebra and its Appl. 6 (2007), no. 6, 897 − 917. ↑4, 14, 23
- [PU07] G. Pinczon and R. Ushirobira, *New Applications of Graded Lie Algebras to Lie Algebras, Generalized Lie Algebras, and Cohomology*, Journal of Lie Theory **17** (2007), no. 3, 633 − 668. ↑9, 30
- [Sch55] R. D. Schafer, *Noncommutative Jordan algebras of characteristic 0*, Proceedings of the American Mathematical Society **6** (1955), no. 3, 472 − 475. ↑5, 25
- [Sch66] _____, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966. ↑5
- [ZC07] F. Zhu and Z. Chen, *Novikov algebras with associative bilinear forms*, Journal of Physics A: Mathematical and Theoretical **40** (2007), no. 47, 14243–14251. ↑4, 28

Institut de Mathématiques de Bourgogne, Université de Bourgogne, B.P. 47870, F-21078 Dijon Cedex, France

E-mail address: Thanh.Duong@u-bourgogne.fr

E-mail address: Rosane. Ushirobira@u-bourgogne.fr