ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет информационных технологий и программирования

Дисциплина:

«Прикладная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2

Выполнил:

М33091 Ларин В. Д.

Проверила:

Москаленко М. А.

Задача 1.

1. Где строить? Две конкурирующие крупные торговые фирмы F_1 и F_2 , планируют построить в одном из четырех небольших городов G_1 , G_2 , G_3 , G_4 , лежащих вдоль автомагистрали, по одному универсаму. Взаимное расположение городов, расстояние между ними и численность населения показаны на следующей схеме:

140 км	30 км	40 км	50 км	150 км
	G_1	G_2	G_3	G_4
Число покупателей	30 тыс	50 тыс	40 тыс	30 тыс

Доход, получаемый каждой фирмой, определяется численностью населения городов, а также степенью удаленности универсамов от места жительства потенциальных покупателей. Специально проведенное исследование показало, что доход универсамов будет распределяться между фирмами так, как это показано в следующей таблице:

Условие		F_2
Универсам фирмы F_1 расположен от города ближе универсама фирмы F_2	75%	25%
Универсамы обеих фирм расположены на одинаковом расстоянии от города		40%
Универсам фирмы F_1 расположен от города дальше универсама фирмы F_2	45%	55%

Например, если универсам фирмы F_1 расположен от города G_1 ближе универсама фирмы F_2 , то доход фирм от покупок, сделанных жителями данного города, распределится следующим образом: 75% получит F_1 , остальное – F_2 .

- а) Представьте описанную ситуацию, как игру двух лиц;
- б) В каких городах фирмам целесообразно построить свои универсамы?

Матрица прибыли F1:

	G1	G2	G3	G4
G1	90	76.5	91.5	91.5
G2	103.5	90	91.5	103.5
G3	88.5	88.5	90	103.5
G4	88.5	76.5	76.5	90

Матрица прибыли F2:

	G1	G2	G3	G4
G1	60	73.5	58.5	58.5
G2	46.5	60	58.5	46.5
G3	61.5	61.5	60	46.5
G4	61.5	73.5	73.5	60

Компании F1 целесообразно выбирать город с наименьшим риском, то есть строку, в которой минимальное значение будет максимальным, - вторая относительно минимальных значений других строк.

Аналогично для компании F2, только в этот раз ищем по столбцам.

```
c = np.array([1, 1, 1, 1, 0, 0, 0, 0]) # * Коэффиценты функции

A = np.array([[60, 46.5, 61.5, 61.5, 1, 0, 0, 0],

[73.5, 60, 61.5, 73.5, 0, 1, 0, 0],

[58.5, 58.5, 60, 73.5, 0, 0, 1, 0],

[58.5, 46.5, 46.5, 60, 0, 0, 0, 1]]__) # * Ограничения

b = np.array([1, 1, 1, 1]) # * Свободные коэффициенты
```

```
min_x = [0. 0.01666667 0. 0. 0.225 0. 0.025 0.225 0. ]
f(min_x) = 0.02
```

В итоге получаем *седловую точку* (G2; G2)

Задача 2.

2. Двум погрузчикам разной мощности за 24 часа нужно погрузить на первой площадке 230 т, на второй - 68 т. Первый погрузчик на 1-ой площадке может погрузить 10 т в час, а на 2-ой - 12 т в час. Второй погрузчик на каждой площадке может погрузить по 13 т в час. Стоимость работ, связанных с погрузкой 1 т первым погрузчиком на первой площадке 8 руб., на второй - 7 руб., вторым погрузчиком на первой площадке - 12 руб., на второй - 13 руб. Нужно найти, какой объем работ должен выполнить каждый погрузчик на каждой площадке, чтобы стоимость всех работ по погрузке была минимальной.

 x_1 - время, потраченное 1-м погрузчиком на 1-й площадке

 $x_{_{_{2}}}$ - время, потраченное 1-м погрузчиком на 2-й площадке

х - время, потраченное 2-м погрузчиком на 1-й площадке

х - время, потраченное 2-м погрузчиком на 2-й площадке

$$f(x) = 80x_1 + 156x_2 + 84x_3 + 169x_4 \rightarrow min$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 24 \\ 10x_1 + 13x_2 = 230 \\ 12x_3 + 13x_4 = 68 \end{cases}$$

$$x_i \ge 0$$

Таким образом вывод программы:

Таким образом минимально затраченное время 3124.89 стоимость работ

Задача 3.

3. При составлении суточного рациона кормления скота используют сено и силос. Рацион должен обладать определенной питательностью и содержать белка не менее 1 кг, кальция не менее 100 г и фосфора не менее 80 г. При этом количество питательного рациона должно быть не менее 60 кг. Содержание питательных компонентов в 1 кг сена и силоса приведено в следующей таблице. В ней указана также стоимость единицы того или иного корма. Требуется определить оптимальный суточный рацион кормления животных, обеспечивающий минимальную стоимость корма.

Название ингредиента	Норма (г)	Содержание ингредиента в 1 кг корма (г/кг)		
		Сено	Силос	
Белок	1000	40	10	
Кальций	100	1,25	2,5	
Фосфор	80	2	1	
Стоимость ед. корма	(ден. ед.)	12	8	

У нас даны все ограничения, составим функцию и систему неравенств по условию задачи: $f(x) = 12x_1 + 8x_2 \rightarrow min$,

$$\begin{cases} x_1 + x_2 \ge 60 \\ 2x_1 + x_2 \ge 80 \\ 1.25x_1 + 2.5x_2 \ge 100 \\ 40x_1 + 10x_2 \ge 1000 \end{cases}$$

$$x_i \ge 0$$

Приводим к каноническому виду:

```
min_x = [ 20. 40. 0. 0. 220. 20. 0.]
f(min_x) = 560.00
```

У нас все готово для применения симплекс-метода, посчитаем результат:

Ответ: Исходя из полученного результата мы видим, что нам необходимо 20 кг сена и 40 кг силоса. И минимум функции равен 560.

Задача 4.

4 задание

4. Пусть матрица проигрышей (в млн руб.) первого игрока имеет вид

$$\begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$$

Решить матричную игру, перейдя к задаче линейного программирования. Найти оптимальную смешанную стратегию для первого игрока (использовать симплекс-метод).

Сведем задачу к ЛП:

$$\begin{cases} 4x_1 + 2x_2 \ge 1\\ 2x_1 + 23x_2 \ge 1 \end{cases}$$

$$F(x) = x_1 + x_2 \rightarrow \min$$

Используя симплекс-метод, решаем данную ЗЛП:

```
Result: [0.125 0.25 0. 0. ]
Function value: 0.375
```

Нормализуя ответ, получаем: относительная частота первой стратегии - 0.333, относительная частота второй стратегии - 0.666

Ответ: [1/3, 2/3]

Задача 5.

5. Пусть матрица проигрышей (в млн руб.) первого игрока имеет вид

$$\begin{pmatrix} 8 & 4 & 6 \\ 4 & 8 & 5 \end{pmatrix}$$

Решить матричную игру, перейдя к задаче линейного программирования. Найти оптимальную смешанную стратегию для первого игрока (использовать симплекс-метод).

$$\begin{cases} 8x_1 + 4x_2 + 6x_3 \ge 1 \\ 4x_1 + 8x_2 + 5x_3 \ge 1 \end{cases}$$

$$F(x) = x_1 + x_2 + x_3 \rightarrow \min$$

$$x_i \ge 0$$

Final dot: [0.083 0.083 0. 0. 0.083]
Target function: 0.167

$$x1 = 1/12$$
; $x2 = 1/12$

Нормализуя, получаем ответ: $[\frac{1}{2}, \frac{1}{2}]$

Задача 6.

6. Пусть матрица проигрышей первого игрока имеет вид

$$\begin{pmatrix}
7 & 2 & 5 & 1 \\
2 & 2 & 3 & 4 \\
5 & 3 & 4 & 4 \\
3 & 2 & 1 & 6
\end{pmatrix}$$

Решить соответствующую матричную игру. Чему равно математическое ожидание проигрыша первого игрока, если и первый игрок, и второй игрок используют свои оптимальные стратегии?

Проверим матрицу проигрышей на наличие седловой точки, выделив получаем, что значение минимакса и максимина совпадают и равны 3. Следовательно, совпадает наибольшая и наименьшая цена игры -> мат.ожидание проигрыша первого игрока равно 3. Допустим, мы пропустили данную проверку, сведем матричную игру к задаче линейного программирования:

Тогда для выигрыша получим: $F(x) = x1 + x2 + x3 + x4 \rightarrow max$

$$7x_{1} + 2x_{2} + 5x_{3} + 1x_{4} \leq 1,$$

$$2x_{1} + 2x_{2} + 3x_{3} + 4x_{4} \leq 1,$$

$$5x_{1} + 3x_{2} + 4x_{3} + 4x_{4} \leq 1,$$

$$3x_{1} + 2x_{2} + 1x_{3} + 6x_{4} \leq 1,$$

$$x_{i} \geq 0$$

Посчитаем с помощью симплекс метода:

Final dot: [0. 0.333 0. 0. 0.333 0.333 0. 0.333]
Target function: 0.333

$$F(x) = \frac{1}{3}$$

g = 1 : $\frac{1}{3}$ = 3 - нижняя цена игры
p = (0, 1, 0, 0)

Теперь необходимо решить двойственную задачу линейного программирования:

$$F(x) = x_1 + x_2 + x_3 + x_4 \rightarrow min$$

$$7x_1 + 2x_2 + 5x_3 + 3x_4 \ge 1,$$

$$2x_1 + 2x_2 + 3x_3 + 2x_4 \ge 1,$$

$$5x_{1} + 3x_{2} + 4x_{3} + 1x_{4} \ge 1,$$

$$1x_{1} + 4x_{2} + 4x_{3} + 6x_{4} \ge 1,$$

$$x \ge 0$$

0.333 0. 0.667 0. Final dot: [0. 0.333 0.333]

Target function: 0.333

$$F(x) = \frac{1}{3}$$

 $g = 1: \frac{1}{3} = 3$ - верхняя цена игры

q = (0, 0, 1, 0)

Посчитаем мат.ожидание: E = p * A * q = 3

Задача 7.

Пусть первый игрок придерживается следующей смешанной стратегии: (6/13, 3/13, 4/13), а второй (6/13, 4/13, 3/13). Вычислить математическое ожидание проигрыша первого игрока.

7. Платежная матрица в некоторой игре имеет вид

$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{pmatrix}$$

Пусть первый игрок придерживается следующей смешанной стратегии: (6/13, 3/13, 4/13), а второй (6/13, 4/13, 3/13). Вычислить математическое ожидание проигрыша первого игрока.

 $M(p,q) = \sum_{i=1}^{m} \sum_{j=1}^{n} W(x,y) p_i q_j$, где рi - относительная частота Воспользуемся ф-лой: стратегии 1-ого игрока, qi - относительная частота стратегии 2-ого игрока, А платёжная матрица.

$$\begin{bmatrix} \frac{6}{13} & \frac{3}{13} & \frac{4}{13} \end{bmatrix} * \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{bmatrix} * \begin{bmatrix} \frac{6}{13} & \frac{4}{13} & \frac{3}{13} \end{bmatrix} = \frac{1}{13} \approx 0.0769$$

8

Ответ: мат. ожидание проигрыша 1-ого игрока равно 1/13 или 0.0769

Задача 8.

8. Перейти от следующей задачи линейного программирования: $L(x) = x_1 + x_2 \rightarrow \min$

$$\begin{cases} 7x_1 + 2x_2 \ge 1, \\ x_1 + 11x_2 \ge 1, \\ x_1 \ge 0, \quad x_2 \ge 0 \end{cases}$$

к матричной игре. Решить Матричную игру любым известным способом.

Матрица

Пусть матрица выигрышей первого игрока имеет вид:

$$\begin{pmatrix} 7 & 2 \\ 1 & 11 \end{pmatrix}$$

$$\begin{cases}
7x_1 + x_2 \le 1 \\
2x_1 + 11x_2 \le 1 \\
x_j \ge 0
\end{cases}$$

$$F(x) = x_1 + x_2 \to max$$

Получаем решение прямой задачи:

$$x1 = 3/25$$
; $x2 = 2/25$

Находим линейную форму оптимальных планов как сумму найденных координат:

$$F(x) = 1/5$$

$$\begin{cases} 7y_1 + 2y_2 \ge 1 \\ y_1 + 11y_2 \ge 1 \\ y_j \ge \mathbf{0} \end{cases}$$

$$F(x) = y_1 + y_2 \rightarrow min$$

Получаем решение двойственной задачи:

Находим линейную форму оптимальных планов как сумму найденных координат:

$$G(x) = 1/5$$

Находим цену игры:

$$V = \frac{1}{F(x)} = \frac{1}{G(x)} = 5$$

Находим оптимальную смешанную стратегию первого игрока:

$$p = V * x_i = (0.6, 0.4)$$

Находим оптимальную смешанную стратегию второго игрока:

$$q = V * y_i = (0.666666667, 0.3333333333)$$

Задача 9.

9. Перейти от следующей задачи линейного программирования: $L(x) = x_1 + x_2 \to \max$

$$\begin{cases} 7x_1 + 2x_2 + 5x_3 + x_4 \le 1, \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 \le 1, \\ 5x_1 + 3x_2 + 4x_3 + 4x_4 \le 1, \\ 3x_1 + 2x_2 + x_3 + 6x_4 \le 1, \\ x_1 \ge 0, \dots, \quad x_2 \ge 0 \end{cases}$$

к матричной игре. Можно ли упростить матричную игру, используя понятие доминирования стратегий? Решить матричную игру любым известным вам способом.

Упростить можно: если *i-я строка* поэлементно не меньше (≥) ј-й строки, то говорят, что **i-я строка доминирует над ј-й строкой.** Поэтому игрок A не использует ј-ю стратегию, так как его выигрыш при i-й стратегии не меньше, чем при ј-й стратегии, вне зависимости от того, как играет игрок B. Аналогично, если *i-й столбец поэлементно не меньше* (≥) *j-го столбца*, то говорят, **что ј-й столбец доминирует над i-м столбцом**. Поэтому игрок B не использует i-ю стратегию, так как его проигрыш (равный выигрышу игрока A) при ј-й стратегии не больше (≤), чем при i-й стратегии, вне зависимости от того, как играет игрок A. Стратегии, над которыми доминируют другие стратегии, надо отбросить и приписать им нулевые вероятности. На цене игры это никак не скажется.

Проведем упрощение:

Можно удалить вторую строку, так как строка 3 доминирует над ней. Можно отбросить столбец 1, так как над ним доминирует столбец 3. Получаем новую систему неравенств:

$$2x_{1} + 5x_{2} + 1x_{3} \leq 1,$$

$$3x_{1} + 4x_{2} + 4x_{3} \leq 1,$$

$$2x_{1} + 1x_{2} + 6x_{3} \leq 1,$$

$$x \geq 0$$

Мы уменьшили размер матрицы с 4х4 до 3х3, теперь можно перейти к задаче линейного программирования: $F(x) = x_1 + x_2 + x_3 \rightarrow max$

$$2x_{1} + 5x_{2} + 1x_{3} \le 1,$$

$$3x_{1} + 4x_{2} + 4x_{3} \le 1,$$

$$2x_{1} + 1x_{2} + 6x_{3} \le 1,$$

$$x \ge 0$$

Final dot: [0.333 0. 0. 0.333 0. 0.333]
Target function: 0.333

$$F(x) = \frac{1}{3}$$

g = 1 : $\frac{1}{3}$ = 3 - нижняя цена игры
p = (1, 0, 0)

Решим двойственную задачу линейного программирования:

$$F(x) = x_1 + x_2 + x_3 \rightarrow min$$

$$2x_{1} + 3x_{2} + 2x_{3} \ge 1,$$

$$5x_{1} + 4x_{2} + 1x_{3} \ge 1,$$

$$1x_{1} + 4x_{2} + 6x_{3} \ge 1,$$

$$x \ge 0$$

Final dot: [0. 0.333 0. 0. 0.333 0.333]
Target function: 0.333

$$F(x) = \frac{1}{3}$$

g = 1 : $\frac{1}{3}$ = 3 - верхняя цена игры $q = (0, 1, 0)$

Ответ: [0, 1, 0], [0, 1, 0]