Recommending Products Based on the Nearest Neighbors Model

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand the nearest neighbors model for collaborative filtering

Measure similarity of users using distance metrics

Find the top 10 book recommendations for a user

Book Crossing

A network of book lovers

Finding Book Recommendations

You know what books a user already likes

- User ratings database

Find the top N books to recommend to that user

Recommendation Algorithms

Content based filtering

Find products with "similar" attributes

: Collaborative : filtering

Find products liked by "similar" users

Association rules learning

Find "complementary" products

Collaborative filtering

Find products liked by "similar" users

Rating Matrix

Users

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	-	-	•
U ₂	3	2	-	-	5
U ₃	-	2	-	5	4
U ₄	-	-	4	-	-
U ₅	1	-	-	-	-
U ₆	3	4	-	-	5

Products

Collaborative filtering

Find products liked by "similar" users

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	-	ı	-
U ₂	3	2	-	-	5
U ₃	-	2	-	5	4
U ₄	-	-	4	-	-
U ₅	1	-	-	-	-
U ₆	3	4	•	•	5

Collaborative Filtering Techniques

Nearest Neighbors Model

Use the ratings of "most similar" users

Latent Factor Analysis

Solve for underlying factors that drive the ratings

Understanding the Nearest Neighbors Model

The rating data is represented using a matrix

Users

Rating Matrix

Books

Ratings are on a scale of 1-5

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	1	•	4
U ₂	3	5	3	4	5
U ₃	4	2	-	5	4
U ₄	3	-	4	5	2
U ₅	1	-	4	2	1
U ₆	3	4	-	2	5

User 1 has read books 1, 2, 5

	P ₁	P ₂	P ₃	P ₄	P ₅
\bigcup_1	3	4	-	-	4
U_2	3	5	3	4	5

User 1 has not read books 3, 4

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4 (-	-	4
U ₂	3	5	3	4	5

Estimate the ratings for unrated books

Sort them in descending order

Pick the top 10

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4 (-	•	4
U_2	3	5	3	4	5

How do we estimate user 1's rating for book 3?

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4 (-	-	4
U ₂	3	5	3	4	5

An option:

Weighted average of ratings given by the "most similar" users

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	-	-	4
U ₂	3	5	3	4	5
U ₃	4	2	-	5	4
U ₄	3	-	4	5	2
U ₅	1	-	4	2	1
U ₆	3	4	-	2	5

User 2 is "more similar" to user 1

User 2 gets a higher weight

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	-	-	4
U ₂	3	5	3	4	5
Uз	4	2	-	5	4

User 5 is "less similar" to user 1

User 5 gets a lower weight

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	ı	ı	4
U ₂		5	3	4	5
U ₅	1	-	4	2	1
U ₆	3	4		2	5

Each user is represented as a set of numbers

How do we measure "similarity"?

How do we measure "similarity"?

How do we measure "similarity"?

"Similarity" is measured using distance metrics

Finding Top 10 Book Recommendations

Nearest neighbors of user 1

- 1. Find the K nearest neighbors of a user
- 2. Average the ratings of nearest neighbors for unrated books
- 3. Sort in descending order
- 4. Pick the top 10

Measuring Distance Between Users

Measure the distance between users

Measure the distance between users

Distance Metrics

Distance

Correlation Distance

Hamming Distance

Euclidean Distance

Euclidean Distance

Correlation Distance

Correlation Distance

Correlation Distance

Correlation Distance

Mean

$$Corr(x, y) = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum (x_{i} - \bar{x})^{2}} \sqrt{\sum (y_{i} - \bar{y})^{2}}}$$

Correlation Distance

Correlation is a measure of similarity

Lies in the range of [-1, 1]

Correlation distance = 1 - Correlation

Hamming Distance

Hamming Distance = % Disagreement

Hamming Distance

U ₂	4	5	2	2	1

Hamming Distance

Disagreement = 0.6

Distance Metrics

Distance

Correlation Distance

Hamming Distance

Implementing the Nearest Neighbors Model

Set up the data

Functions to access relevant information

Find the K Nearest Neighbors

Construct a rating matrix

The representation needed for collaborative filtering

Find the top N recommendations

Use the average ratings of the K nearest neighbors

Set up the data

Functions to access relevant information

Load 2 files

Ratings

User	ISBN	Rating

Book Metadata

ISBN	Title	Author

Set up the data

Functions to access relevant information

A function to lookup metadata for an ISBN

A function to find the favorite books for a user

Set up the data

Functions to access relevant information

Find the K Nearest Neighbors

Construct a rating matrix

The representation needed for collaborative filtering

Find the top N recommendations

Use the average ratings of the K nearest neighbors

Construct a rating matrix

The representation needed for collaborative filtering

User	ISBN	Rating

	P ₁	P ₂	P ₃	P ₄	P ₅
U ₁	3	4	-	-	4
U ₂	3	5	3	4	5
U ₃	4	2	-	5	4
U ₄	3	-	4	5	2
U ₅	1	-	4	2	1
U ₆	3	4	-	2	5

pandas.pivot_table

Construct a rating matrix

The representation needed for collaborative filtering

The rating matrix is sparse

Restrict the size of the matrix for better computational performance

Set up the data

Functions to access relevant information

Find the K Nearest Neighbors

Construct a rating matrix

The representation needed for collaborative filtering

Find the top N recommendations

Use the average ratings of the K nearest neighbors

Find the K Nearest Neighbors

Find the K Nearest Neighbors

Set up the data

Functions to access relevant information

Find the K Nearest Neighbors

Construct a rating matrix

The representation needed for collaborative filtering

Find the top N recommendations

Use the average ratings of the K nearest neighbors

Find the top N recommendations

Use the average ratings of the K nearest neighbors

- 1. Average the ratings of nearest neighbors for unrated books
- 2. Sort in descending order
- 3. Pick the top N

Set up the data

Functions to access relevant information

Demo

Download the Book Crossing ratings dataset

Set up a function to find book metadata

Set up a function to find the favorite books for a user

User Id	Location	Age

ISBN	Title	Author	Year of Publication	Publisher

User	ISBN	Rating

Set up the data

Functions to access relevant information

Construct a rating matrix

The representation needed for collaborative filtering

Demo

Construct a rating matrix using book ratings in Python

Set up the data

Functions to access relevant information

Find the K Nearest Neighbors

Construct a rating matrix

The representation needed for collaborative filtering

Find the K Nearest Neighbors

Demo

Compute the distance between a pair of users

Set up the data

Functions to access relevant information

Find the K Nearest Neighbors

Construct a rating matrix

The representation needed for collaborative filtering

Find the K Nearest Neighbors

Demo

Find the nearest neighbors for a user

Set up the data

Functions to access relevant information

Find the K Nearest Neighbors

Construct a rating matrix

The representation needed for collaborative filtering

Find the top N recommendations

Use the average ratings of the K nearest neighbors

Demo

Average the ratings of nearest neighbors for unrated books

Sort in descending order

Pick the top N

Summary

Understand the nearest neighbors model for collaborative filtering

Measure similarity of users using distance metrics

Find the top 10 book recommendations for a user