• npn Current Repeater:

- > Uses multi-emitter BJTs
- ➤ Maximum number of emitters = 4
- > All emitters tied together
- > All Qs have same

 V_{BE}
- $ightharpoonup I_{REF} = (V_{CC} V_{BE})/R$

\triangleright Neglecting I_B :

$$I_{02} = I_{REF}, I_{03} = 2I_{REF}, I_{04} = 3I_{REF}, \dots$$

- > Limitations:
 - Output current can never be a non-integer ratio of $I_{REF} \Rightarrow$ no arbitrary scaling possible
 - Loading Problem:
 - \bullet I_{REF} not only supplies I_{CI} , but I_{BS} of all the Q_{S}
 - $As more Qs are added, I_Bs will keep on increasing$
 - $ightharpoonup I_{C1}$ starts to depart significantly from I_{REF}
 - \clubsuit It's not I_{REF} that's mirrored, it's I_{C1}
 - riangle A reduction in I_{C1} will affect all output currents
 - * Hence, this circuit is not very popular

• NMOS Current Repeater:

$$I_{REF} = I_{D1} = (V_{DD} - V_{GS})/R$$

$$I_{D1} = \frac{k'_{N}}{2} \left(\frac{W}{L}\right)_{1} V_{GT}^{2} \quad (assuming \ \lambda V_{DS} < 0.1)$$

 \triangleright All Ms have same V_{GS} and are matched

$$\Rightarrow I_{0i} = \frac{\left(W/L\right)_{i}}{\left(W/L\right)_{1}}I_{REF} \quad (i = 2, 3, 4, ...)$$

- > Tremendous flexibility
 - * Any arbitrary current ratio can be obtained
 - * No loading effect
 - * Highly popular and universal choice

- More on W/L Ratio:
 - ➤ Generally, in technology, W/L is kept between 0.01 and 100
 - > The ideal ratio is between 0.02 and 50
 - > Minimum Feature Size (MFS):
 - Minimum dimension that can be resolved in an IC chip
 - ❖ Has gone down from 10s of µm in 80s to a few nm now!
 - For W/L > 1 (or < 1), L (or W) is chosen equal to MFS
 - *Yields minimum possible device area* (W × L)

• npn CM With Better β Insensitivity:

- $ightharpoonup I_{REF} = (V_{CC} 2V_{BE})/R$
- \triangleright Neglecting I_{B3} :

$$I_{C1} = I_{REF}$$

> If Q_1 and Q_2 are matched:

$$I_0 = I_{C2} = I_{C1} = I_{REF}$$

 \Rightarrow *Simple CM*

The actual advantage of the circuit lies elsewhere!

