Desafío: Carga y descarga progresiva de un condensador grande usando uno más pequeño

Objetivos

- Comprender experimentalmente el principio de conservación de la carga en un sistema de condensadores conectados.
- Diseñar y ejecutar dos procedimientos repetitivos de carga y descarga entre dos condensadores.
- Analizar la evolución del voltaje del sistema con el número de pasos realizados.
- Desarrollar un modelo matemático predictivo del voltaje en función del número de pasos.
- Comparar el modelo con los datos experimentales y discutir discrepancias.

Preparación previa

Antes de la sesión experimental, los estudiantes deben investigar y entender:

- Conservación de la carga en conexiones de condensadores.
- Cálculo del voltaje común al conectar dos condensadores en paralelo.
- Comportamiento exponencial en sistemas físicos iterativos.
- Cómo realizar una descarga segura de un condensador.

Materiales

- \bullet Condensadores electrolíticos: $C_1=50\,\mu F,\,C_2=2.2\,\mu F$
- Fuente de voltaje (9 V)
- Multímetro digital
- Cables y caimanes
- Protoboard (opcional)

Conexiones

- Ciencia: Leyes de conservación de carga y energía en sistemas eléctricos.
- Tecnología: Uso de herramientas de medición (multímetro).
- Ingeniería: Diseño de procedimientos experimentales repetitivos y confiables.
- Matemáticas: Ajuste de curvas, funciones exponenciales, y modelado iterativo.

Parte I: Carga Progresiva

Pasos:

- 1. Cargar C_2 con batería de 9 V.
- 2. Desconectar la batería y conectar C_2 a C_1 inicialmente descargado. Medir voltaje común.
- 3. Desconectar los condensadores.
- 4. Volver a cargar C_2 con la batería y repetir el proceso ${\bf n}$ veces.
- 5. Registrar el voltaje después de cada paso y graficar V_n vs. n.

Desafío: Hallar la función f(n) en $V_n = f(n)$ y que obedecen los datos de la curva al gráfico experimental.

Parte II: Descarga Progresiva

Pasos:

- 1. Cargar C_1 con batería de 9 V.
- 2. Desconectar batería y conectar C_1 a C_2 descargado. Medir voltaje común.
- 3. Desconectar los condensadores.
- 4. Cortocircuitar C_2 para descargarlo completamente.
- 5. Repetir el procedimiento n veces. Registrar el voltaje tras cada iteración.

Desafío: Hallar la función g(n) en $V_n = g(n)$ que obedecen los datos de la curva al gráfico experimental.

Sesiones

- Sesión 1 (1.5 h): Ejecución del experimento completo de carga y descarga.
- Sesión 2 (1.5 h): Presentación del informe escrito y sustentación oral por parte de los grupos.

Presentación y Sustentación

Cada grupo debe sustentar su trabajo en una exposición oral de máximo 10 minutos, en la cual se discuta:

- Metodología experimental.
- Comparación entre modelo y datos.
- Justificación del modelo matemático propuesto.
- Análisis de errores y mejoras posibles.

Rúbrica del Informe (5.0 puntos)

Criterio	Puntaje
Planteamiento claro del problema y objetivos	1.0
Explicación detallada del procedimiento experimental	1.0
Construcción del modelo y ajuste de curva	1.0
Análisis de resultados y discusión crítica	1.0
Presentación general, ortografía y referencias	1.0
Total	5.0

Rúbrica de la Exposición (5.0 puntos)

Criterio	Puntaje
Claridad en la presentación del experimento y modelo	1.0
Interpretación crítica de los resultados obtenidos	1.0
Uso adecuado de apoyos visuales (gráficas, ecuaciones)	1.0
Participación equitativa del grupo	1.0
Capacidad de respuesta a preguntas del jurado	1.0
Total	5.0

Nota final: Promedio entre la nota del informe y la nota de la exposición.