Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Diciembre 2021

Prólogo

Este trabajo ha sido el resultado de un esfuerzo constante por más 10 años en mi labor como docente impartiendo las materias de Matemáticas Actuariales del Seguro de Personas I y II.

El objetivo de las notas es facilitar la comprensión y entendimiento de las matemáticas actuariales aplicadas los seguros de vida bajo tres enfoques:

- Clásico: a partir de tablas de mortalidad y valores conmutados.
- Probabilístico: Considerando variables aleatorias discretas y continuas.
- Estocástico: a partir de cadenas de Markov en tiempo discreto y tiempo continúo.

En cada capítulo encontrarán explicaciones, demostraciones y aplicaciones.

Contenido

Vidas Múltiples

Recordemos:

- Vidas conjuntas: $T_{xy} = min(T_x, T_y)$
- Último sobreviviente: $T_{\overline{xy}} = max(T_x, T_y)$

Tambíen podemos afirmar:

$$E(T_{xy} + T_{\overline{xy}}) = E(T_x + T_y)$$

$$E(T_{xy}) + E(T_{\overline{xy}}) = E(T_x) + E(T_y)$$

$$T_{xy} \cdot T_{\overline{xy}} = T_x \cdot T_y$$

Ahora vamos a medir la correlación entre los dos estatus:

$$Cov(T_{xy}, T_{\overline{xy}}) = E(T_{xy}T_{\overline{xy}}) - E(T_{xy})E(T_{\overline{xy}})$$
$$= E(T_xT_y) - \mathring{e}_{xy} \cdot \mathring{e}_{\overline{xy}}$$

Notemos que:

$$Cov(T_x, T_y) = E(T_x T_y) - E(T_x)E(T_y)$$

$$\Rightarrow E(T_x T_y) = Cov(T_x, T_y) + \mathring{e}_x \mathring{e}_y$$

Retomando la igualdad.

$$Cov(T_{xy}, T_{\overline{xy}}) = Cov(T_x, T_y) + \mathring{e}_x \mathring{e}_y - \mathring{e}_{xy}(\mathring{e}_x + \mathring{e}_y - \mathring{e}_{xy})$$

$$= Cov(T_x, T_y) + \mathring{e}_x \mathring{e}_y - \mathring{e}_{xy} \mathring{e}_x - \mathring{e}_{xy} \mathring{e}_y + \mathring{e}_{xy^2}$$

$$= Cov(T_x, T_y) + (\mathring{e}_x - \mathring{e}_{xy})(\mathring{e}_y - \mathring{e}_{xy})$$

Por lo tanto,

$$Cov(T_{xy}, T_{\overline{xy}}) = Cov(T_x, T_y) + (\mathring{e}_x - \mathring{e}_{xy})(\mathring{e}_y - \mathring{e}_{xy})$$

Si T_x y T_y son independientes:

$$Cov(T_{xy}, T_{\overline{xy}}) = (\mathring{e}_x - \mathring{e}_{xy})(\mathring{e}_y - \mathring{e}_{xy})$$

Finalmente, calculamos el coeficiente de correlación.

$$\rho_{T_{xy},T_{\overline{xy}}} = \frac{Cov(T_{xy}, T_{\overline{xy}})}{(\sigma_{T_{xy}})(\sigma_{T_{\overline{xy}}})}$$

$$= \frac{Cov(T_x, T_y) + (\mathring{e}_x - \mathring{e}_{xy})(\mathring{e}_y - \mathring{e}_{xy})}{\sqrt{^2\mathring{e}_{xy} - (\mathring{e}_{xy})^2} \sqrt{^2\mathring{e}_{xy} - (\mathring{e}_{xy})^2}}$$

Si Tx y Ty son independientes:

$$\rho_{Txy,T_{xy}} = \frac{(\mathring{e}_{x} - \mathring{e}_{xy})(\mathring{e}_{y} - \mathring{e}_{xy})}{\sqrt{2\mathring{e}_{xy} - (\mathring{e}_{xy})^{2}}\sqrt{2\mathring{e}_{xy} - (\mathring{e}_{xy})^{2}}}$$

Contenido

Vidas Múltiples

Bibliografia

- Título: Models for Quantifying Risk. Autor: Stephen Camilli
- Título: Actuarial Mathematics for Life Contingent Risks. Autor: David Dickson
- Título: Actuarial Mathematics. Autor: Newton Bowers
- Título: Basic Life Insurance Mathematics Autor: Ragnar Norberg
- Título: Actuarial Mathematics and Life-Table Statistics Autor: Eric Slud
- Título: Life Contingencies Autor: Chester Wallace Jordan
- Título: Matemáticas Actuariales y Operaciones de Seguros Autor: Sandoya

Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Diciembre 2021

