Stochastik Formelsammlung

Inhaltsverzeichnis

Stochastik Formelsammlung	1
Kombinatorik	3
_Binomialkoeffizient	3
_Permutation (Anordnung)	3
_Zusammenfassung	3
_Laplace-Experiment	3
Deskriptive Statistik, Regression & Korrelation	4
_Datenaufbereitung	4
_ModelltypenS. 21	4
_BoxplotsS. 22	5
Statistische Masszahlen	5
_Arithmetisches Mittel AMS. 36	5
_ModusS. 39	5
_MedianS. 41	5
_AM, Modus und Median im VergleichS. 45	5
_Geometrisches Mittel GMS. 49	6
_Varianz und Standardabweichung	6
_Methode der kleinsten QuadrateS. 69	6
_RegressionsgeradeS. 69	6
_KorrelationS. 74	6
Wahrscheinlichkeitsrechnung	7
Statistische Masszahlen	7
_Laplace-ExperimentS. 7	7
-Wahrscheinlichkeitsrechnung mit einer Fläche modelliert S. 9	7
_Mengenlehre vs. WahrscheinlichkeitS. 15	7
_Axiome von KolmogorovS. 17	7
_Mehrstufige Experimente; BaumdiagrammS. 22	7
-Weitere Begriffsdefinitionen S. 27	7
_Bedingte WahrscheinlichkeitS. 30	8
_MultiplikationssatzS. 32	8
_Satz von BayesS. 34	8

_AdditionssatzS. 35	8
_Satz der totalen WahrscheinlichkeitS. 50	8
Zufallsvariable, diskrete und stetige Verteilung	9
-Wahrscheinlichkeitsverteilungen	9
_Diskrete WahrscheinlichkeitS. 7	9
Stetige Wahrscheinlichkeit S. 11	9
_Normalverteilung (Gauss'sche Glockenkurve)S. 12	9
Zufallsvariablen ZV S. 19 ff	9
Diskrete und stetige ZufallsgrössenS. 22	9
_Kennzahlen von ZufallsvariablenS. 23	10
_Diskrete Verteilungen	10
_Definitionen und EigenschaftenS. 30	10
Zusammenfassung: wichtige, diskrete Verteilungen	11
Stetige Verteilungen	12
_Definitionen und EigenschaftenS. 56	12
-QuantilS. 62	12
Zusammenfassung: wichtige, stetige Verteilungen	13
_StandardisierenS. 65	14
-Gegenüberstellung von diskreten und stetigen Verteilungen - S. 106	14
-Approximationen S. 107	14
Anhang A: Tabellen S. 110 ff	14
.Glossar	15

Kombinatorik

Binomialkoeffizient

Definition: Aus n Elementen werden k herausgenommen und beliebig kombiniert (ohne Berücksichtigung der Reihenfolge).

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \quad \text{für } n \ge k$$
Bsp: n = Zahlen 1, 2, 3
$$k = 2$$
Kombinationen: (1,2); (1,3); (2,3)
$$\rightarrow \text{Lösung: 3}$$

TR: ncr(n, k)

Permutation (Anordnung)

Definition: - Gegeben sei eine Menge von n Elementen.

- Jede Anordnung dieser Elemente in einer **bestimmten Reihenfolge** (mit oder ohne Wiederholung) heisst Permutation

Zusammenfassung

Art:	Ohne Wiederholung	Mit Wiederholung
Permutation	P(n) = n!	$P_n(k_1, k_2,, k_s) = \frac{n!}{k_1! \cdot k_2! \cdot \cdot k_s!}$
Kombination (= Kombination ohne Berücksichtigung der Reihenfolge)	$C(n;k) = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ $TR: ncr(n,k)$	$C_W(n;k) = \frac{(n+k-1)!}{k! \cdot (n-1)!} = {n+k-1 \choose k}$
Kombination (= Kombination mit Berücksichtigung der Reihenfolge)	$V(n;k) = \frac{n!}{(n-k)!} = \binom{n}{k} \cdot k!$ $TR: npr(n, k)$	$V_W(n;k) = n^k$

Bemerkung: Je nach Formelsammlung werden andere Schreibweisen verwendet. Für weitere Schreibweisen siehe Skript "Kombinatorik" S. 6

Laplace-Experiment

Definition: Bei einem Laplace-Experiment haben alle m Elementarereignisse (= Ergebnisse) die gleiche Wahrscheinlichkeit 1/m.

$$P(A) = rac{Anzahl\ g\ddot{u}nstige\ F\ddot{a}lle}{Anzahl\ m\ddot{o}gliche\ F\ddot{a}lle} = rac{Anzahl\ g\ddot{u}nstige\ F\ddot{a}lle}{m}$$

Deskriptive Statistik, Regression & Korrelation

- Allgemeine Begriffe zur Statistik: Skript "Stochastik 1" S. 10
- Diverse Merkmale für Statistiken: Skript "Stochastik 1" S. 12
- Verschiedene Skalen: Skript "Stochastik 1" S. 15

Datenaufbereitung

Vorgehen:

- Aufnahme von Daten → Urliste
- Einteilung der Resultate in (sinnvolle) Klassen
- Absolute und relative Häufigkeiten bestimmen
- Diagramme zeichnen (Balkendiagramm, aufwärtskumulierte relative Summenkurve, Kuchendiagram, usw.)

S. 22 **Boxplots**

oberer Zaun (*): 3.Quartil +1,5 QA

oberer Grenzwert: grösster Wert < oberer Zaun

3.Quartil

Median

Arithmetisches Mittel

1.Quartil

unterer Grenzwert: kleinster Wert > untere Zaun

unterer Zaun(*): 1.Quartil - 1,5 QA

("Ausreisser") "Ausserhalb-Punkt"

Position des 1. Quartils: $Q_1 = \frac{n+1}{4}$ Position des 3. Quartils: $Q_3 = \frac{3\cdot (n+1)}{4}$

Quartilsabstand = Q3 - Q1

Statistische Masszahlen

Arithmetisches Mittel AM

S. 36

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

AM bei linearer Transformation

Bei einer Transformation Z=aX+b der Variablen X gilt: $\overline{z}=a\overline{x}+b$

Modus S. 39

Definition: Der **Modus** ist das Merkmal, das am **häufigsten** vorkommt.

Median S. 41

Definition: Der Median (oder Zentralwert) ist der Wert einer geordneten Datenreihe, der die Daten in 2 gleich grosse Hälften teilt.

"Position" des Median =
$$\frac{Anzahl\ Werte + 1}{2}$$

→ Ist die Position eine natürliche Zahl, ist der Median gefunden, ansonsten ist der Median das AM der 2 benachbarten Werte.

AM, Modus und Median im Vergleich

S. 45

Geometrisches Mittel GM

S. 49

Die Hauptanwendung des GM ist die Berechnung von durchschnittlichen Faktoren wie Rendite, Gewin/Verlust, usw.

$$x_{GM} = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n} = \sqrt[n]{\prod_{i=1}^n x_i}$$

Varianz und Standardabweichung

Varianz S. 54

Definition: Varianz s^2 ist das arithmetische Mittel aus den quadrierten Abständen der Einzelwerte von \overline{x}

$$s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

Kovarianz S. 66

Definition: s_{xy} heisst Kovarianz und ist ein Mass für die gemeinsame Streuung von x und y bei einer Stichprobe, wo zwei quantitative Merkmale erfasst wurden.

$$s_{xy} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y}) = \frac{1}{n-1} \cdot \left[\left(\sum_{i=1}^{n} x_i \cdot y_i \right) - n \cdot \bar{x} \cdot \bar{y} \right]$$

Standardabweichung

S. 54

Definition: Standardabweichung s (= Streuung) ist die Quadratwurzel aus der Varianz

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

Wichtig:

- Bei Vollerhebungen kann mit obigen Formeln gerechnet werden
- Bei Stichproben wird mit (n-1) dividiert →
 - empirische Varianz
 - empirische Standardabweichung

Umrechnungen

Varianz ⇔ empirische Varianz

Standardabweichung ⇔ empirische Standardabweichung; → Skript S. 56

Methode der kleinsten Quadrate

S. 69

Regressionsgerade

S. 69

Korrelation S. 74

Definition: Der Korrelationskoeffizient r_{xy} ist ein Mass für die Stärke des linearen Zusammenhangs (\rightarrow gegenseitige Abhängigkeit zwischen zwei Variablen).

$$r_{xy} = \frac{s_{xy}}{s_x \cdot s_y}$$

Deutung des Korrelationskoeffizienten: siehe Skript S. 75

Wahrscheinlichkeitsrechnung

Statistische Masszahlen

Laplace-Experiment

S. 7

Wahrscheinlichkeit p:

$$p = \frac{Anzahl \ günstige \ Fälle}{Anzahl \ m\"{o}gliche \ F\"{a}lle}$$

Bsp: Wahrscheinlichkeit, eine 6 zu würfeln: p= 1/6

Wahrscheinlichkeitsrechnung mit einer Fläche modelliert

S. 9

Mengenlehre vs. Wahrscheinlichkeit

S. 15

Zeichen	Mengenlehre	Wahrscheinlichkeit
Ø	Leere Menge	Unmögliches Ereignis
Ω	Grundmenge Ω	Sicheres Ereignis Ω
$A \subset \Omega$	A ist Teilmenge von Ω	A ist ein Ereignis
$A \cap B$	A Durchschnitt B	Ereignis A und B treffen ein
$A \cup B$	A Vereinigung B	Ereignis A oder B trifft ein
\overline{A}	Komplementärmenge	Gegenereignis von A
		resp. A trifft nicht ein.
$A \subset B$	A ist Teilmenge von B	A zieht B nach sich.
		Immer wenn A eintritt, dann tritt auch B.
$A \cap B = \emptyset$	A und B sind disjunkt	A und B schliessen sich aus resp. sie sind
		"unvereinbar".
		Wenn A eintritt, dann kann B nicht
		eintreten, und umgekehrt.

Axiome von Kolmogorov

S. 17

Die Axiome beschreiben Rechenregeln, wie mit der Kombination von Wahrscheinlichkeiten gerechnet werden kann.

z.B.
$$P(A) = \frac{1}{3}$$

 $P(B) = \frac{1}{2}$
 $\Rightarrow P(A \cap B) = \frac{1}{2} * \frac{1}{3} = \frac{1}{6}$

Mehrstufige Experimente; Baumdiagramm

S. 22

Zusammenfassung der Allgemeinen Konstruktionsvorschriften eines Ereignisbaumes: siehe Skript S. 60

Weitere Begriffsdefinitionen

S. 27

Definition: Zwei Ereignisse A und B heissen **unvereinbar** oder **disjunkt**, wenn A \cap B = \emptyset

d.h. $P(A \cap B) = P(\emptyset) = 0$ die Eintretenswahrscheinlichkeit ist Null

Definition: Zwei Ereignisse A und B heissen **unabhängig**, wenn $P(A \cap B) = P(A) * P(B)$ gilt

"Das Eintreten des einen Ereignisses beeinflusst das Eintreten des Anderen nicht."

Definition: Zwei Ereignisse A und B heissen abhängig, wenn sie nicht unabhängig sind.

Bedingte Wahrscheinlichkeit

S. 30

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

→ "Bedingte Wahrscheinlichkeit, unter der Bedingung, dass A eingetreten ist."

Multiplikationssatz

S. 32

Für 2 nicht leere (\rightarrow P(A) > 0 und P(B) > 0) Ereignisse A & B gilt:

$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

Dieser Multiplikationssatz dient als Grundlage für den "Satz der totalen Wahrscheinlichkeit" und für den "Satz von Bayes".

Satz von Bayes S. 34

Aus dem Multiplikationssatz folgt:

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)}$$
resp.
$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

Additionssatz S. 35

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Zur Berechnung von P(A∩B):

Formel	$P(A \cap B) =$	Bedingung	Wie berechnen?	
I)	0	⇔ A und B unvereinbar	Klar	
II)	$P(A) \cdot P(B)$	⇔ A und B unabhängig	klar	
III)	$P(A) \cdot P(B A)$	Gilt immer	Mit Satz von Bayes (*), dazu	
			muss aber P(A B) bekannt sein.	
IV)	$P(B) \cdot P(A B)$	Gilt immer	Mit Satz von Bayes (*), dazu	
			muss aber P(B A) bekannt sein.	
V)	$P(A \cap B)$		 Mit Entscheidungsbaum 	
			Ev. mit Laplace	

Satz der totalen Wahrscheinlichkeit

S. 50

$$P(A) = \sum_{k=1}^{n} P(A|B_k) \cdot P(B_k)$$

Obige Formel gilt, falls B₁, B₂, ..., B_n ein vollständiges System bilden.

Zufallsvariable, diskrete und stetige Verteilung

Wahrscheinlichkeitsverteilungen

Diskrete Wahrscheinlichkeit

S. 7

Definition: Die Summe aus sämtlichen (diskreten) Einzelwerten beträt 1.

Erwartungswert:

$$E[X] = \sum_{i=1}^{k} p_i \cdot x_i$$

Stetige Wahrscheinlichkeit

S. 11

Allgemeines:

Definition: Entspricht die Fläche unter der Funktionskurve 1, ist die Verteilung stetig.

Erwartungswert:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

- $f(x) \ge 0$ [→ f(x) liegt nur im 1. Quadranten

 $-\int_0^\infty f(x)dx=1$

- Die Funktion ist eine Wahrscheinlichkeitsdichte (kurz: Dichte) einer stetigen Verteilung

Normalverteilung (Gauss'sche Glockenkurve)

S. 12

Die Normalverteilung ist durch den Erwartungswert μ und der Varianz σ^2 vollständig bestimmt.

Schreibweise: $X \sim N(\mu, \sigma^2)$

Bemerkung: Bei Stichproben und Vollerhebungen wird die Varianz mit S_{n-1}^2 resp. S_{n}^2 , bei

Verteilungen mit σ^2 bezeichnet.

- Die Normalverteilung ist symmetrisch, die Symmetrieachse liegt beim Erwartungswert μ

- Median = Erwartungswert = Modus

- Im Intervall:

 $[\mu - \sigma; \mu + \sigma]$ befinden sich 68% aller Werte

 $[\mu - 2\sigma; \mu + 2\sigma]$ befinden sich über 95% aller Werte

 $[\mu - 3\sigma; \mu + 3\sigma]$ befinden sich über 99% aller Werte

- Jede Normalverteilung $X \sim N(\mu, \sigma^2)$ kann ohne Verlust in die **Standardnormalverteilung** $X \sim N(0, 1)$ transferiert werden.

- In der Standardnormalverteilung beträgt der Erwartungswert $\mu = 0$ und die Varianz $\sigma^2 = 1$.

Zufallsvariablen ZV S. 19 ff

Notationen: P(X=x): Wahrscheinlichkeit, dass die Zufallsvariable X den Wert x annimmt (z.B.

$$P(X=1) = \frac{1}{8}$$
.
 $P(X \le 1) = P(X=0) + P(X=1)$

Diskrete und stetige Zufallsgrössen

S. 22

Definition: Eine Zufallsgrösse heisst **diskret**, wenn sie nur endlich (oder abzählbar unendlich) viele Werte annimmt, d.h. 1, 2,..., n (Werte können abgezählt werden). Eine ZV heisst **stetig**, wenn sie überabzählbar viele Werte annimmt. D.h. die

Werte sind in ganz R oder in einem Intervall auf R.

Kennzahlen von Zufallsvariablen

S. 23

i.
$$Var[X] = E[X^2] - (E[X])^2 = E[X - E[X]]^2$$

ii.
$$Y = aX + b \Rightarrow E[Y] = aE[X] + b$$

iii.
$$Z = X + Y \Rightarrow E[Z] = E[X] + E[Y]$$

iv.
$$Z = aX + bY \Rightarrow E[Z] = aE[X] + bE[Y]$$

v.
$$Y = aX + b \Rightarrow Var[Y] = a^2Var[X]$$

vi.
$$Z = X + Y$$
 und $X & Y$ unabhängige $ZV's \Rightarrow Var[Z] = Var[X] + Var[Y]$

vii.
$$Z = aX \pm bY + c$$
 und $X & Y \underline{unabh}$ $ZV's \Rightarrow Var[Z] = a^2Var[X] + b^2Var[Y]$

viii.
$$Z = X * Y \text{ und } X & Y \underline{unabhängige} ZV's \Rightarrow E[Z] = E[X*Y] = E[X] * E[Y]$$

Anwendungsbeispiele zu obigen Formeln im Skript auf S. 24 - 25

Diskrete Verteilungen

Definitionen und Eigenschaften

S. 30

$$f(x) = P(X = x) \begin{cases} p_i, & x = x_i, i = 1, ..., n \\ 0, & Alle "brigen x \end{cases}$$

$$mit: f(x_i) \ge 0 \quad und \quad \sum_{i=1}^n (x_i) = 1$$

Zusammenfassung der Bezeichnungen

- F_x(x) die (kumulative) Verteilungsfunktion
- $f(x) = P_x(X=x)$ die Wahrscheinlichkeitsverteilung
- $E[X] = \mu_x$ oder einfach μ
- $Var[X] = \sigma_{x}^{2}$ oder oft einfach σ^{2}

Zusammenfassung der allgemeinen Formeln

and der allgemeinen Formeln
$$F_x(x) = P_x(X \le x) = \sum_{x_i \le x} p(x_i)$$

$$E[X] = \mu_x = \sum_{i=1}^n p(x_i) \cdot x_i$$

$$Var[X] = \sum_{i=1}^n p(x_i) \cdot (x_i - \mu_x)^2 = \sum_{i=1}^n x_i^2 \cdot p(x_i) - \mu_x^2$$

→ Obige Gleichheit gilt analog zur Berechnung von s_n² in Aufgabe 5.6 in Stochastik I

$$Var[X] = E[X^2] - (E[X])^2 = E[(X - E[X])^2]$$

Zusammenfassung: wichtige, diskrete Verteilungen

Verteilung	Wahrscheinlichkeitsverteilung	Kurzschreib weise	Erwartungswert	Varianz	Bemerkungen
Diskrete Gleichverteilung S. 33	$P(X=x_i)=rac{1}{k}$ k= Anzahl Ausprägungen	$X{\sim}U(k)$ U steht für "uniform"	$E[X] = \frac{k+1}{2}$	$Var[X] = \frac{k^2 - 1}{12}$	n kann mit: $n = 2 \cdot E[X] - 1$ Berechnet werden
Binomialverteilung S. 35	$P(X = x_k) = \binom{n}{x_k} \cdot p^{x_k} \cdot (1 - p)^{n - x_k}$ $(0 \le x_k \le n \text{ und } x_k \in \mathbb{N})$	$X \sim B(n, p)$	$E[X] = n \cdot p$	$Var[X] = n \cdot p \cdot (1 - p)$	 Die Binomialverteilung ist für p=½und grosse n quasi die diskrete Normalverteilung
Geometrische Verteilung 1 (Anzahl Versuche bis zum Erfolg) S. 40	$P(X=k)=p(1-p)^{k-1}$ k= Anzahl Versuche bis zum 1. Erfolg	keine Bekannt	$E[X] = \frac{1}{p}$	$Var[X] = \frac{1}{p} \cdot \left(\frac{1}{p} - 1\right) = \frac{1 - p}{p^2}$	- Die zwei geom. Verteilungen gehen ineinander über
Geometrische Verteilung 2 (Anzahl Versuche bis zum Misserfolg) S. 41	$P(X=k)=p^k\cdot (1-p)$ k= Anzahl Versuche bis zum 1. (Miss)Erfolg	keine Bekannt	$E[X] = \frac{p}{1 - p}$	$Var[X] = \frac{p}{(1-p)^2}$	Es ist egal mit welchem Model wir arbeiten Oft ist 1-p und nicht p gegeben
Poisson-Verteilung S. 43	$P(X=k) = \frac{\lambda^k}{k!} \cdot \exp(-\lambda)$ Geg: $\lambda > 0$; k= Anzahl Ereignisse	X~Poi(λ)		$E[X] = Var[X] = \lambda$	Die Binomialvert. kann für grosse n und kleine p durch die Poissonvert. angenähert werden: $\lambda = n \cdot p$
Hypergeometrische Verteilung S. 47	$P(X=k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}$ N Kugeln, M weisse, N-M schwarze in Urne n Kugeln ziehen k= Anzahl weisse Kugeln gezogen von n	$X \sim H(N, n, M)$	$E[X] = n \cdot \frac{M}{N}$	$Var[X] = n \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right) \cdot \left(\frac{N-n}{N-1}\right)$	

Stetige Verteilungen

Definitionen und Eigenschaften

S. 56

Zusammenfassung der Bezeichnungen

- F_x(x) die Verteilungsfunktion
- Die Ableitung der Verteilungsfunktion ist die Dichte
- $f_x(x)$ oder f(x) die Dichte (tritt an die Stelle der Wahrscheinlichkeitsverteilung) Definition: Eine Funktion f(x) heisst Dichte, wenn gilt:
 - 1. $f(x) \ge 0$ [d.h. f(x) liegt nur im 1. und 2. Quadranten]
 - 2. Die Fläche beträgt 1, d.h. $\int_{-\infty}^{\infty} f(x) dx = 1$
- $E[X] = \mu_x$ oder oft einfach μ
- $Var[X] = \sigma_x^2$ oder oft einfach σ^2

Die Eintretenswahrscheinlichkeiten sind Flächen unter der Dichtefunktion, d.h.:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx = F(b) - F(a)$$

Zusammenfassung der allgemeinen Formeln

menfassung der allgemeinen Formeln
$$F_X(b) = P_X(X \le b) = \int_{-\infty}^b f(x) dx$$

$$P_X(X \ge b) = 1 - P_X(X \le b) = 1 - F_X(b) = 1 - \int_{-\infty}^b f(x) dx = \int_b^\infty f(x) dx$$

$$P_X = a \le X \le b = \int_{-\infty}^b f(x) dx - \int_{-\infty}^a f(x) dx = \int_a^b f(x) dx$$

$$\frac{d}{dx} F(x) = f(x)$$

$$P_X(a \le X \le b) = P_X(a < X \le b) = P_X(a \le X < b) = P_X(a < X < b)$$

$$E[X] = \int_{-\infty}^\infty x \cdot f(x) dx$$

$$Var[X] = \int_{-\infty}^\infty (x - \mu_X)^2 \cdot f(x) dx = \int_{-\infty}^\infty x^2 \cdot f(x) dx - \mu_X^2$$

Wichtige Unterschiede zur diskreten Verteilung

- Die Wahrscheinlichkeit, dass ein Wert X = x exakt angenommen wird, ist Null, d.h. P(X=x) =0

$$P_X(X=a) = P_X(a \le X \le a) = \int_a^a f(x)dx = 0$$

- Als Folgerung ergibt sich:

$$F(x) = P(X \le x) = P(X < x) + P(X = x) = P(X < x) + 0 = P(X < x)$$

S. 62 Quantil

Zusammenfassung: wichtige, stetige Verteilungen

Verteilung	Verteilungsfunktion	Dichtefunktion	Kurzschreib weise	Erwartungswert	Varianz
Stetige Gleichverteilung (=Rechteckvertei- lung) S. 66	$F_{R}(x) = \begin{cases} 0 & \text{für } x < a \\ \frac{1}{b-a} \cdot x - \frac{a}{b-a} & \text{für } a \le x \le b \\ 1 & \text{für } x > b \end{cases}$	$f_R(x) = \begin{cases} \frac{1}{b-a} & \text{für } a \le x \le b \\ 0 & \text{sonst} \end{cases}$	I	$E[X] = \frac{a+b}{2}$	$Var[X] = \frac{(a-b)^2}{12} = \frac{(b-a)^2}{12}$
Exponentialver- teilung S. 68	$F(X) = P(X < x) \begin{cases} 1 - e^{-\lambda x} & \text{für } x \ge 0 \\ 0 & \text{sonst} \end{cases}$		$X{\sim}Exp(\lambda)$	$E[X] = \frac{1}{\lambda}$	$Var[X] = \frac{1}{\lambda^2}$
Normalverteilung S. 72	$F(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2 \cdot \sigma^2}} dt$ $f \ddot{u} r - \infty < x < \infty$	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}}$ $f\ddot{u}r - \infty < x < \infty, \ \sigma > 0 \text{ und } \mu \in \mathbb{R}$	$X \sim N(\mu, \sigma^2)$	$E[X] = \mu$	$Var[X] = \sigma^2$
Standardnormalv erteilung S. 72	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$	$f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$	(1) ·	-6-1 6	, (E-1)
Chiquadrat- Verteilung S. 79	Werden nicht explizit angegeben		$X \sim \chi_n^2$	E[X] = n	$Var[X] = 2 \cdot n$ n = Anzahl Freiheitsgrade
T-Verteilung S. 82	Werden nicht explizit angegeben		$X \sim t_n$	$E[X] = Modus$ $= Median = 0$ für n \ge 2	$Var[X] = \frac{n}{n-2}$ für n \ge 3
F-Verteilung S. 84	Werden nicht explizit angegeben		$X \sim F_{m,n}$	Werde	n nicht explizit angegeben

Standardisieren S. 65

Definition: Ist X eine Zufallsvariable mit dem Erwartungswert μ und der Standardabweichung $\sigma > 0$, dann heisst die transformierte Zufallsvariable:

$$Z \coloneqq \frac{X - \mu}{\sigma}$$

Verschiebung von X um μ und anschliessende **Streckung** um den Faktor $1/\sigma$.

Mit den Erwartungswerten und Varianzen geschieht beim Standardisieren folgendes:

Verschiebungen	X	$Y:=X-\mu$	$Z := \frac{X - \mu}{\sigma}$
Erwartungswert	$E[X] = \mu$	E[Y] = 0	E[X] = 0
Varianz	$Var[X] = \sigma^2$	$Var[Y] = \sigma^2$	Var[X] = 1

Gegenüberstellung von diskreten und stetigen Verteilungen

S. 106

Approximationen

S. 107

Anhang A: Tabellen

S. 110 ff

Glossar

Begriff	Definition	Bemerkung
Modus	Merkmal, das am häufigsten vorkommt	
Median (= Zentralwert)	Wert einer geordneten Datenreihe, der die Daten in 2 gleich grosse Hälften teilt.	
Spannweite Variationsbreite	Differenz zwischen dem grössten und kleinsten Wert (in einer Reihe von Merkmalswerten)	
Varianz s²	Ist das arithmetische Mittel aus den quadrierten Abständen der Einzelwerte von $\overline{\mathbf{x}}$	Sind die 2 wichtigsten
Standardabweichung s (= Streuung)	Quadratwurzel aus der Varianz	Streuungsparameter
Ergebnismenge Ω (= Ergebnisraum)	Menge der möglichen Ergebnisse eines Zufallsexperimentes	