Wstęp do uczenia maszynowego

Analiza skupień

Ewa Szczurek + BW (modyfikacje)

bartek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski

PCA a klasteryzacja

- PCA pozwala znaleźć nisko wymiarową reprezentację obserwowanych danych, która pozwala wyjaśnić dużą część zmienności (wariancji) w danych.
- Klasteryzacja stara się znaleźć homogeniczne grupy wśród obserwowanych danych.
- Dwie metody:
 - Metoda K-średnich
 - Hierarchiczna klastryzacja

Metoda K-średnich

- Dane: obserwacje (wektory $x_1, \ldots, x_n \in \mathbb{R}^p$).
- Szukane: podział zbioru obserwacji na K niepustych i rozłącznych bloków (K jest ustaloną stałą) C_1, \ldots, C_K
 - $C_1 \cup C_2 \cup ... \cup C_K = \{x_1, ..., x_n\}$
 - $C_k \cap C_{k'} = \emptyset$, dla $k \neq k'$.
 - minimalizującego sumę kwadratów euklidesowych odległości pomiędzy wektorami w ramach każdego bloku podziału podzieloną przez liczbę wektorów w tym bloku.
 - Czyli minimalizujemy po C_1, \ldots, C_K funkcję celu ($|C_k|$ jest liczbą elementów w klastrze C_k):

$$\sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \|x_i - x_{i'}\|^2.$$

 Ten problem jest trudny obliczeniowo (decyzyjna wersja jest NP-trudnym problemem).

Przykład klasteryzacji metodą K-średnich dla różnych K

- dane symulowane, dla 150 obserwacji w dwuwymiarowej przestrzeni
- intuicyjnie, K-means szuka klastrowania, dla którego wariancja wewnątrz klastrów jest jak najmniejsza.

Heurystyczny algorytm klasteryzacji K-średnich

- Losowo przypisz n obserwacji do K grup.
- Powtarzaj poniższe kroki tak długo jak zmienia się przypisanie obserwacji do klastrów:
 - (a) Dla każdego klastra wyznacz centroid dla tego klastra (wektor, który jest średnią po współrzędnych dla wszystkich obserwacji z tego klastra).
 - (b) Każdą obserwację przypisz do tego klastra, dla którego euklidesowa odległość tej obserwacji od centroidu jest najmniejsza.

Przykładowy wynik algorytmu K-średnich (K = 3)

6 wyników algorytmu dla różnych inicjalizacji

Nad wykresami wartości funkcji celu (czerwona oznacza najlepsze

Nietrywialna równość

Udowodnimy następującą równość

$$\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^p (x_{ij} - \bar{x}_{kj})^2,$$

gdzie

$$\bar{x}_{kj} = \frac{1}{|C_k|} \sum_{i' \in C_k} x_{i'j},$$

jest j-tą współrzędną centroida dla k-tej klasy.

Z tej równości wynika, że heurystyczny algorytm na każdym kroku poprawia funkcję celu, a zatem zbiega do **minimum lokalnego**. Trzeba wykonywać wiele losowych inicjalizacji i wybrać tę dającą najlepszy wynik.

Dowód równości – zapis wektorowy

Niech $x_i = [x_{i1} \dots x_{ip}]^T \in \mathbb{R}^p$ oraz niech $c = |C_k|$. Wówczas równość, którą chcemy udowodnić to

$$(1/c)\sum_{i,i'}\|x_i-x_{i'}\|^2=2\sum_i\|x_i-(1/c)\sum_{i'}x_{i'}\|^2.$$

Lewa strona

$$L = (1/c) \sum_{i,i'} \|x_i - x_{i'}\|^2 = (2/c) \sum_{i < i'} \|x_i - x_{i'}\|^2$$

$$= (2/c) \sum_{i < i'} (x_i - x_{i'})^T (x_i - x_{i'}) = (2/c) \sum_{i < i'} (\|x_i\|^2 + \|x_{i'}\|^2 - 2x_i^T x_{i'})$$

$$= \frac{2(c-1)}{c} \sum_{i} \|x_i\|^2 - \frac{4}{c} \sum_{i' < i''} x_{i''}^T x_{i''}.$$

Ostatnia równość wynika stąd, że każde $||x_i||^2$ występuje w c-1 parach: $1i, 2i, \ldots, (i-1)i, i(i+1), \ldots, ic$.

Prawa strona (1)

$$P = 2 \sum_{i} \|x_{i} - (1/c) \sum_{i'} x_{i'}\|^{2} = \frac{2}{c^{2}} \sum_{i} \|(c - 1)x_{i} - \sum_{i' \neq i} x_{i'}\|^{2}$$

$$= \frac{2}{c^{2}} \sum_{i} ((c - 1)x_{i} - \sum_{i' \neq i} x_{i'})^{T} ((c - 1)x_{i} - \sum_{i' \neq i} x_{i'})$$

$$= \frac{2}{c^{2}} \sum_{i} \left[(c - 1)^{2} \|x_{i}\|^{2} - 2(c - 1) \sum_{i' \neq i} x_{i}^{T} x_{i'} + \sum_{i' \neq i} \|x_{i'}\|^{2} \right]$$

$$= \frac{2}{c^{2}} \sum_{i} \left[((c - 1)^{2} - 1) \|x_{i}\|^{2} - 2c \sum_{i' \neq i} x_{i}^{T} x_{i''} + \sum_{i' \neq i} \|x_{i'}\|^{2} \right]$$

$$= \frac{2}{c^{2}} \sum_{i} \left[((c - 1)^{2} - 1) \|x_{i}\|^{2} - 2c \sum_{i' \neq i} x_{i'}^{T} x_{i''} + \sum_{i' \neq i} \|x_{i'}\|^{2} \right]$$

Prawa strona (2)

$$P = \frac{2}{c^2} \sum_{i} \left[((c-1)^2 - 1) \|x_i\|^2 - 2c \sum_{i' \neq i} x_i^T x_{i'} + \frac{2}{c} \sum_{i' < i''} x_{i''}^T x_{i''} + \sum_{i'} \|x_{i'}\|^2 \right]$$

$$= \frac{2}{c} \left[(c-2) \left(\sum_{i} \|x_i\|^2 \right) - 2 \left(\sum_{i} \sum_{i' \neq i} x_i^T x_{i'} \right) + \frac{2}{c} \left(\sum_{i' < i''} x_{i''}^T x_{i''} \right) + \sum_{i'} \|x_{i'}\|^2 \right]$$

$$= \frac{2(c-1)}{c} \sum_{i} \|x_i\|^2 + \frac{2}{c} \left[2 \sum_{i' < i''} x_{i'}^T x_{i''} - 2 \cdot 2 \sum_{i' < i''} x_{i'}^T x_{i''} \right]$$

$$= \frac{2(c-1)}{c} \sum_{i} \|x_i\|^2 - \frac{4}{c} \sum_{i' < i''} x_{i''}^T x_{i''}.$$

Lewa strona (3)

Przedostatnia równość wynika stąd, że

$$\sum_{i} \sum_{i' \neq i} x_{i}^{T} x_{i'} = 2 \sum_{i' < i''} x_{i'}^{T} x_{i''}.$$

Hierarchiczna klasteryzacja

- Algorytmy hierarchicznej klastryzacji produkują dendrogramy.
- Dendrogram jest drzewem, które reprezentuje wiele różnych klastrowań (w zależności od poziomu cięcia tego drzewa).
- Liście odpowiadają poszczególnym obserwacjom.
- Struktura dendrogramu opisuje strukturę podobieństwa pomiędzy obserwacjami
 - poziom podobieństwa pomiędzy dwoma obserwacjami reprezentowany jest wysokością najniższego wspólnego przodka tych obserwacji (least common ancestor (LCA)).
 - Im ta wysokość jest mniejsza tym obserwacje są do siebie bardziej podobne.

Przykład: Dane losowe

45 obserwacji, 3 klastry. Spróbujmy je odtworzyć!

Przykład: Dendrogram i dwa różne klastrowania

- Klastrowanie hierarchiczne, pełne wiązanie.
- Wysokość cięcia determinuje liczbę klastrów

Dendrogram dla 9 obserwacji w przestrzeni 2-wymiarowej

- Obserwacje 5 i 7 są blisko siebie i klastrują się jako pierwsze
- Podobieństwo wg odległości euklidesowej
- Błędem jest stwierdzenie, że 9 i 2 są podobne, bo usytuowane blisko siebie na dendogramie!
- 9 nie musi być bardziej podobna do 2 niż do 8, 5, czy 7.
- O podobieństwie (odległości) wnioskujemy na podstawie osi

Algorytm hierarchicznego klastrowania

Dendrogramy są konstruowane w stylu *bottom-up* – zaczynamy od liści i tworzymy coraz większe klastry idąc w kierunku korzenia.

Wejście: n obserwacji oraz miara odległości pomiędzy klastrami.

- Inicjujemy *n* klastrów, wszystkie jednoelementowe.
- 2 Dla $i = n, n 1, \dots, 2$ wykonuj
 - (a) Mamy i klastrów oraz obliczone odległości dla wszystkich $\binom{i}{2}=i(i-1)/2$ par klastrów. Wybierz dwa klastry, które są do siebie najbardziej podobne (najmniej odległe). Połącz je w nowy klaster, tworząc w ten sposób i-1 klastrów. Długość gałęzi w dendrogramie prowadzących do tych dwóch klastrów odpowiada odległości pomiędzy nimi (im mniej podobne tym krawędzie są dłuższe).
 - (b) Oblicz odległości pomiędzy nowym klastrem i wszystkimi pozostałymi i-2 klastrami.

Cztery sposoby obliczania odległości d(-,-) pomiędzy klastrami C,C'

lm większa wartość d(x, x') tym mniej x oraz x' są do siebie podobne,

- (Pełne wiązanie, (complete linkage)): maksimum odległości pomiędzy elementami klastrów $\max\{d(x,x')\mid x\in C,x'\in C'\}$.
- (Pojedyncze wiązanie (single linkage)): minimum odległości pomiędzy elementami klastrów $\min\{d(x,x')\mid x\in C,x'\in C'\}$.
- (Wiązanie średnich (average linkage)): średnia z odległości pomiędzy elementami klastrów $\frac{1}{|C||C'|}\sum_{x\in C}\sum_{x'\in C'}d(x,x')$.
- (Wiązanie centroidów (centroid linkage)): odległość pomiędzy centroidami $d(\frac{1}{|C|}\sum_{x\in C}x,\frac{1}{|C'|}\sum_{x'\in C'}x')$.

Musi być określone dodawanie elementów i mnożenie ich przez skalar.

Kilka kroków algorytmu hierarchicznego klastrowania dla metody pełnego wiązania. Dane 2-wymiarowe

Dendrogramy otrzymane dla tych samych danych trzema metodami wiązań. Wiązania pełne i średnich dają bardziej zbalansowane dendrogramy

Różne miary podobieństwa

- Na przykład, można stosować:
 - Odległość euklidesową
 - Odległość opartą na korelacji
- Dendrogramy otrzymane dla różnych miar podobieństwa mogą być bardzo różne.
- Wybór miary podobieństwa zależy od rodzaju problemu.

Porównanie trzech obserwacji przy pomocy odległości euklidesowej i odległości korelacyjnej

Obserwacje 1 i 3 są bliskie euklidesowo, a obserwacje 1 i 2 są bliskie korelacyjnie.

Podejmowane decyzje przed wykonaniem klasteryzacji

- Czy obserwacje powinny być standaryzowane przed klasteryzacją (np. czy zmienne mają zostać scentrowane (średnia=0, a standardowe odchylenie=1)?
- W przypadku hierarchicznego klastrowania:
 - Jakiej miary podobieństwa użyć?
 - Jaki wybrać typ wiązań?
 - Na jakiej wysokości wyznaczyć cięcie dendrogramu?
- W przypadku klasteryzacji metodą K-średnich, jak duże ma być K?

Czemu warto skalować zmienne

- # par skarpet i komputerów. Kolory: kupujący (obserwacje)
- Skarpety dominują odległość

- Te same dane po skalowaniu
- Komputery mają teraz większy wpływ

- Dolary wydane na skarpety i na komputery
- Komputery (dużo droższe) dominują

Zalety K-means

- Gdy struktura klastrowania nie jest zagnieżdżona, lepsze od hiearchicznego
 - Przykład: dane o kobietach i mężczyznach, trzech narodowości.
 Podział na narodowości (3 klastry) nie jest zagnieżdżony w podziale na płcie.

Zalety klastrowania hierarchicznego

- Brak konieczności zadania K przed klastrowaniem
- Dobór K często na podstawie oglądu dendogramu

Ocena jakości klastrowania

Intuicja:

- dobre klastrowanie to takie, gdzie elementy wewnątrz klastrów są bardziej podobne do siebie niż pomiędzy klastrami. Przykład: silhouette score
- **2** dobre klastrowanie to takie, które jest podobne do jakiegoś innego klastrowania. Przykład: *rand index*

Silhouette score

Niech $i \in C_I$ punkt danych w klastrze C_I , d(i,j) odległość między punktami i oraz j

• Średnia odległość punktu i od innych punktów wewnątrz klastra

$$a(i) = \frac{1}{|C_I| - 1} \sum_{j \in C_I, i \neq j} d(i, j)$$

(dzielimy przez $|C_I|-1$ bo nie uwzględniamy odległości i od siebie

• Najmniejsza średnia odległość do punktów z innych klastrów

$$b(i) = \min_{J \neq I} \frac{1}{|C_J|} \sum_{j \in C_J} d(i, j)$$

Silhouette score

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}, \, \mathrm{dla}|C_I| > 1$$

oraz

$$s(i) = 0 \ dla \ |C_I| = 1$$

Silhouette score

Ten sam wzór

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}, \, \mathrm{dla}|\mathcal{C}_I| > 1$$

oraz

$$s(i) = 0 \ dla \ |C_I| = 1$$

można zapisać inaczej

$$s(i) = \begin{cases} 1 - a(i)/b(i), & \text{dla } a(i) < b(i) \\ 0, & \text{dla } a(i) = b(i) \\ b(i)/a(i) - 1, & \text{dla } a(i) > b(i) \end{cases}$$

A zatem mamy $-1 \le s(i) \le 1$.

Uwaga: dla klastrów wielkości 1 ustawiamy s(i) = 0.

Silhouette score

Silhouette Coefficient

- Współczynnik s(i) jest zdefiniowany dla pojedyńczej obserwacji i w klastrze C_I .
- Możemy też zdefiniować współczynnik średni s, będący średnią wartością s(i) po wszystkich obserwacjach we wszystkich klastrach.
- Jeżeli chcemy wybrać najlepsze k, w sensie Silhouette score, dla klastrowania k-średnich, możemy to zrobić znadjując

$$argmax_k \bar{s}(k)$$

gdzie $\bar{s}(k)$ jest współczynnikiem średniego silhouette dla wyniku k-średnich przy parametrze k

Rand index

Zadane:

- zbiór *n* punktów $S = \{o_1, \ldots, o_n\}$
- dwa klastrowania zbioru S, które porównujemy: $X=\{X_1,\ldots,X_r\}$ (podział na r podzbiorów) i $Y=\{Y_1,\ldots,Y_s\}$ (podział na s podzbiorów

Oznaczenia:

- a: liczba par punktów z S, które są w tych samych podzbiorach w
 X oraz w tych samych podzbiorach w Y
- b: liczba par punktów z S, które są w innych podzbiorach w X oraz w innych podzbiorach w Y
- c: liczba par punktów z S, które są w tych samych podzbiorach w
 X oraz w innych podzbiorach w Y
- c: liczba par punktów z S, które są w innych podzbiorach w X oraz w tych samych podzbiorach w Y

Rand index

Oznaczenia:

- a: liczba par punktów z S, które są w tych samych podzbiorach w
 X oraz w tych samych podzbiorach w Y
- b: liczba par punktów z S, które są w innych podzbiorach w X oraz w innych podzbiorach w Y
- c: liczba par punktów z S, które są w tych samych podzbiorach w
 X oraz w innych podzbiorach w Y
- c: liczba par punktów z S, które są w innych podzbiorach w X oraz w tych samych podzbiorach w Y

Rand index:

$$RI = \frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{n}{2}}$$

A zatem $RI \in <0,1>$

Adjusted rand index: intuicja

Idea: poprawić, unormować Rand index, tak, aby uwzględnić zgodność podziałów występującą 'przez przypadek'. Intuicyjnie,

$$ARI = \frac{RI - ExpectedRI}{MaxRI - ExpectedRI}$$

Adjusted rand index

Zgodność podziałów X i Y może być podsumowana tablicją kontyngencji $[n_{ij}]$, w której każde wejście n_{ij} oznacza kardynalność przecięcia zbiorów X_i i Y_j , czyli $n_{ij} = |X_i \cap Y_j|$:

X^{Y}	Y_1	Y_2		Y_s	sumy
X_1	n_{11}	n_{12}	• • •	n_{1s}	a ₁
X_2	n ₂₁	n_{22}	• • •	n_{2s}	a ₂
:		:	•	•	
X_r	n_{r1}	n_{r2}		n _{rs}	a _r
sumy	b_1	b_2		bs	

Wówczas

$$ARI = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}\right] - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}$$

Podsumowanie

- k-means
- klastrowanie hierarchiczne
- Silhouette score
- Rand index