# TDL\_YISKJ-003\_协议规范-V1.0

-----2024.01.12

### 1.连接约定

APP 端扫描蓝牙设备时,仅 UUID 为 0000ffb0-0000-1000-8000-00805f9b34fb 的蓝牙设备 APP 端才会主动连接。

示例:

#### × YISKJ-003

Flags:

00000110 = 0x06

LE Limited Discoverable Mode

LE General Discoverable Mode

BR/EDR Not Supported

LE and BR/ERD Capable (Controller)

LE and BR/ERD Capable (Host)

Reserved

Complete List of 16-bit Service Class UUIDs:

0000ffb0-0000-1000-8000-00805f9b34fb

示例:



Advertising type: Legacy
Flags: GeneralDiscoverable,
BrEdrNotSupported
Complete list of 16-bit Service UUIDs: 0xFFB0
Manufacturer data (Bluetooth Core 4.1):
Company: Zhuhai Jieli technology Co.,Ltd
<0x05D6> 0x8167240FD5EF

Complete Local Name: YISKJ-003

CLONE RAW MORE

#### 示例:



设备的 MAC 地址可作为每个设备的设备 ID。

APP 端所有数据下发通过 FFB1。

设备所有数据上报通过 FFB2。

### 2.通讯协议

#### 2.1 通讯规则

- 1) 16 个字节为一条消息明文,不足长度的填充随机数。
- 2) 设备通过密钥对需要发送的明文指令进行加密,然后再通过蓝牙发送给 APP。
- 3) APP 端接收设备发来的消息密文,需要通过密钥进行解密后,才得到消息明文。
- 4) 将消息明文和协议文档对照,找到文档中对应的消息解读。
- 5) 加密算法约定为 AES-128 ECB。

#### 2.2 加密协议

参考以下 AES-128 数据加密的 C 语言实现:

```
bool tdl_ble_aes128_ecb_encrypt(uint8_t *key, uint8_t *input, uint16_t input_len, uint8_t *output)
{
    uint16_t length;
    mbedtls_aes_context aes_ctx;
    //
    if (input_len % 16) {
        return FALSE;
    }

    length = input_len;
    mbedtls_aes_init(&aes_ctx);

    mbedtls_aes_setkey_enc(&aes_ctx, key, 128);

    while (length > 0) {
        mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT, input, output);
        input += 16;
        output += 16;
        length -= 16;
    }

    mbedtls_aes_free(&aes_ctx);
    return TRUE;
}
```

参考以下 AES-128 数据解密的 C 语言实现:

```
bool tdl_ble_aes128_ecb_decrypt(uint8_t *key, uint8_t *input, uint16_t input_len, uint8_t *output)
{
    uint16_t length;
    mbedtls_aes_context aes_ctx;
//
    if (input_len % 16) {
        return FALSE;
    }

    length = input_len;
    mbedtls_aes_init(&aes_ctx);

    mbedtls_aes_setkey_dec(&aes_ctx, key, 128);

    while (length > 0) {
        mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_DECRYPT, input, output);
        input += 16;
        output += 16;
        length -= 16;
    }

    mbedtls_aes_free(&aes_ctx);
    return TRUE;
}
```

#### 2.3 通讯指令

#### AES-128 密钥固定为:

|    |    |    |    |    |    |    |    | 8  |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| F6 | 38 | ВС | 9C | FA | 47 | 74 | 80 | AB | 32 | 42 | F6 | В0 | 45 | 57 | A1 |

下文将结合实例来描述加密解密的过程:

### 2.3-1 控制蠕动泵

APP 控制蠕动泵工作的明文指令如下:

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 15 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BF | OF | A0 | 01 | 01 | 00 | 3C | 5A | 15 | D8 | 1E | C2 | D3 | 72 | 4A | 63 |

绿色填充部分为控制蠕动泵的指令。

蓝色填充部分为蠕动泵的工作状态,00:停止;01:正转;02:反转。 黄色填充部分为蠕动泵的工作时间,范围为:0x0000-0xFFFF,单位:秒。

橙色填充部分为随机填充字节。

用 AES-128 加密后,得到的密文如下:



#### 2.3-2 控制抽水泵

APP 控制抽水泵工作的明文指令如下:



绿色填充部分为控制抽水泵的指令。

蓝色填充部分为抽水泵的工作状态,00:停止;01:正转。

黄色填充部分为抽水泵的工作时间,范围为: 0x0000-0xFFFF,单位: 秒。

橙色填充部分为随机填充字节。

### 2.3-3 暂停工作

明文指令如下:

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 15 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BF | OF | Α0 | 03 | 9B | 2F | 53 | CO | 15 | 74 | 5D | E1 | A6 | 39 | В4 | 78 |

绿色填充部分为暂停工作的指令。 橙色填充部分为随机填充字节。

设备收到 APP 下发的暂停工作的指令后,蠕动泵和抽水泵都将停止工作。

### 2.3-4 查询工作状态

明文指令如下:

|    | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BF | OF | A0 | 04 | 9B | 2F | 53 | C0 | 15 | 74 | 5D | E1 | A6 | 39 | B4 | 78 |

绿色填充部分为查询工作状态的指令。

橙色填充部分为随机填充字节。

设备收到 APP 端查询工作状态的指令后,将上报蠕动泵和抽水泵的工作状态,明文指令如下:

|    |    |    |    |    |    |    |    |    |    |    |    |    | 13 |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BF | OF | ВО | 01 | 01 | 00 | 14 | 0A | CE | 01 | 53 | C0 | 15 | 74 | 46 | 4D |

绿色填充部分为上报工作状态的指令。

蓝色填充部分为蠕动泵的工作状态,00:停止;01:正转;02:反转。

黄色填充部分为抽水泵的工作状态,00:停止;01:正转。

橙色填充部分为随机填充字节。

用 AES-128 加密后,得到的密文如下:

| 0  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 8B | 3D | 70 | 15 | 08 | CO | 5F | FE | F9 | 0B | C3 | 58 | 76 | 35 | F8 | C4 |

## 2.3-5 上报压力值

每 0.2 秒设备将上报一次压力值给 APP,设备上报的明文指令如下:

|    |    |    |    |    | 5  |    |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BF | OF | В0 | 02 | 01 | 03 | 02 | 10 | CE | 01 | 53 | C0 | 15 | 74 | 46 | 4D |

绿色填充部分为上报压力值的指令。

蓝色填充部分为压力传感器 A 的数值,范围为: 0x0000-0xFFFF。 黄色填充部分为压力传感器 B 的数值,范围为: 0x0000-0xFFFF。

橙色填充部分为随机填充字节。

### 2.3-6 获取电量

APP 下发的获取电量的明文如下:

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 15 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BF | OF | A0 | 05 | 9B | 2F | 53 | CO | 15 | 74 | 5D | E1 | A6 | 39 | B4 | 78 |

绿色填充部分为获取电量的指令。橙色填充部分为随机填充字节。

设备收到 APP 端获取电量的指令后,将上报电量给 APP,明文指令如下:

|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 15 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| BF | OF | ВО | 03 | 10 | 74 | 5D | E1 | CE | 01 | 74 | 46 | 4D | 53 | C0 | 15 |

绿色填充部分为上报电量的指令。

蓝色填充部分为上报的电量,范围为: 0x00-0x64。

橙色填充部分为随机填充字节。

## 3.修订记录

2024.01.12-----初次编写, 版号 V1.0。