ПЛН20

ΕΝΟΤΗΤΑ 4: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ

Μάθημα 4.1:

Βασικοί Ορισμοί Θεωρίας Γραφημάτων

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β.Θεωρία

- 1. Ορισμοί Γραφημάτων
 - 1. Μη Κατευθυνόμενο Γράφημα
 - 2. Κατευθυνόμενο Γράφημα
 - 3. Τύποι Ακμών
 - 4. Μονοπάτια
 - 5. Κύκλοι
- 2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων
 - 1. Απλό Γράφημα
 - 2. Πλήρες Γράφημα
 - 3. Συνδεόμενο Γράφημα
 - 1. Συνεκτικές Συνιστώσες
 - 2. Γέφυρες και Σημεία Κοπής
 - 4. Συμπλήρωμα
- 3. Μέρη Γραφήματος
 - 1. Υπογράφημα
 - 2. Επαγόμενο Υπογράφημα

Γ.Ασκήσεις

- 1. Ερωτήσεις
- 2. Εφαρμογές

Α. Σκοπός του Μαθήματος

Επίπεδο Α

 Οι εισαγωγικοί ορισμοί των γραφημάτων που είναι αντικείμενο του μαθήματος αυτού, αποτελούν την βάση για όλα τα επόμενα μαθήματα της θεωρίας γράφων.

Επίπεδο Β

> (-)

Επίπεδο Γ

> (-)

1. Ορισμοί Γραφημάτων

1. Μη Κατευθυνόμενο Γράφημα

<u>Ορισμός:</u> Ένα <u>Μη Κατευθυνόμενο Γράφημα</u> *G* είναι μία διατεταγμένη δυάδα (V, E) όπου:

- V είναι το σύνολο των κορυφών (ή κόμβων): $V = \{v_1, v_2, ..., v_n\}$
- Ε είναι το σύνολο των ακμών (ή πλευρών ή τόξων): $E = \{e_1, e_2, ..., e_m\}$
 - Κάθε ακμή συνδέει δύο κορυφές, δηλαδή $e_k = [v_i, v_j]$ ή $e_k = \{v_i, v_j\}$ με $v_i, v_j \in V$ για κάθε $k=1,\ldots,m$
 - Η ακμή θεωρείται μη διατεταγμένη (δηλαδή η ακμή $[v_i, v_j]$ είναι ίδια με την ακμή $[v_i, v_i]$), δηλαδή δεν υπάρχει κατεύθυνση.

1. Ορισμοί Γραφημάτων

2. Κατευθυνόμενο Γράφημα

<u>Ορισμός:</u> Ένα <u>Κατευθυνόμενο Γράφημα</u> *G* είναι μία διατεταγμένη δυάδα (V, E) όπου:

- V είναι το σύνολο των κορυφών (ή κόμβων): $V = \{v_1, v_2, ..., v_n\}$
- Ε είναι το σύνολο των ακμών (ή πλευρών ή τόξων): $E = \{e_1, e_2, ..., e_m\}$
 - Κάθε ακμή συνδέει δύο κορυφές, δηλαδή $e_k = (v_i, v_j)$ ή $e_k = < v_i, v_j > \mu$ ε $v_i, v_j \in \mathbb{V}$ για κάθε $k=1,\dots,m$
 - Η ακμή θεωρείται διατεταγμένη (δηλαδή η ακμή (v_i, v_j) είναι διαφορετική από την ακμή (v_j, v_i) , δηλαδή υπάρχει κατεύθυνση. Η κορυφή v_i καλείται αρχή τη ακμής και η κορυφή v_i λέγεται πέρας της ακμής.

Παράδειγμα:
$$G = (V, E)$$
 όπου: $V = \{v_1, v_2, v_3\}$ $E = \{(v_1, v_2), (v_1, v_3), (v_3, v_2)\}$

<u>Παράδειγμα:</u> G = (V, E) όπου:

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{(v_1, v_2), (v_2, v_3), (v_3, v_2), (v_4, v_4)\}\$$

Σχηματική Απεικόνιση:

www.psounis.gr

Β. Θεωρία

1. Ορισμοί Γραφημάτων

3. Τύποι Ακμών

Σε ένα γράφημα (κατευθυνόμενο ή μη)

- Συμβολίζουμε συνήθως με n=|V| το πλήθος (πληθάριθμο) των κορυφών.
- Συμβολίζουμε συνήθως με m=|E| το πλήθος (πληθάριθμο) των ακμών.
- Ένα γράφημα έχει τουλάχιστον 1 κορυφή (Δεν υπάρχει γράφημα χωρίς κορυφές)
- Οι ακμές που έχουμε χαρακτηρίζονται ως:
 - Ανακυκλώσεις (Είναι ακμές με αρχή και τέλος την ίδια κορυφή)

Σε Κ.Γ:

Σε Μ.Κ.Γ.

• Παράλληλες Ακμές (Είναι ακμές με κοινά άκρα και κοινή φορά)

Αντιπαράλληλες ακμές (Είναι ακμές με κοινά άκρα και αντίθετη φορά)

1. Ορισμοί Γραφημάτων

4. Μονοπάτια

Ορισμός (Εμπίπτει και σε Κ.Γ και σε Μ.Κ.Γ.):

- Μονοπάτι Ρ μήκους η από μία κορυφή ν₀ σε μία κορυφή ν_n είναι
 - μια ακολουθία η ακμών (ακολουθώντας τις τυχόν κατευθύνσεις τους)
 - (άρα n+1 κορυφών) που ξεκινά από την κορυφή v_0 και καταλήγει στην v_n
- Απλό μονοπάτι είναι ένα μονοπάτι χωρίς επαναλαμβανόμενες κορυφές (λέγεται και μονοκονδυλιά)

Άσκηση: Στο παρακάτω μη κατευθυνόμενο γράφημα

- 1. Ποιο είναι το μέγιστο μήκος μονοπατιού
- 2. Ποιο είναι το μέγιστο μήκος απλού μονοπατιού

1. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

5. Κύκλοι

Ορισμός (Εμπίπτει και σε Κ.Γ. και σε Μ.Κ.Γ):

- Κύκλος είναι ένα μονοπάτι χωρίς επαναλαμβανόμενες ακμές που αρχίζει και τελειώνει στην ίδια κορυφή
 - Επιτρέπεται να περάσουμε από την ίδια κορυφή.
 - Δεν επιτρέπεται να περάσουμε από την ίδια ακμή.
- Απλός Κύκλος είναι ένας κύκλος χωρίς επαναλαμβανόμενες κορυφές
 - Δεν επιτρέπεται να περάσουμε από την ίδια κορυφή
 - Δεν επιτρέπεται να περάσουμε από την ίδια ακμή

Άσκηση: Κατασκευάστε:

1. Ένα γράφημα 6 κορυφών που περιέχει έναν απλό κύκλο μήκους 6

2. Ένα γράφημα 5 κορυφών που περιέχει έναν μη απλό κύκλο μήκους 6

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

Οι ακόλουθοι ορισμοί αφορούν μόνο μη κατευθυνόμενα γραφήματα. Ένα γράφημα θα χαρακτηρίζεται:

- Απλό: Ένα γράφημα χωρίς ανακυκλώσεις και παράλληλες ακμές
- Πλήρες (ή κλίκα): Ένα απλό γράφημα με όλες τις δυνατές ακμές.
- Συνδεόμενο (ή συνδεδεμένο). Αν κάθε δύο κορυφές του γραφήματος συνδέονται με μονοπάτι.

Σε όλα τα επόμενα μαθήματα ασχολούμαστε κυρίως με μη κατευθυνόμενα γραφήματα και θα μελετήσουμε και άλλους ορισμούς (διχοτομίσιμο, κ-χρωματίσιμο, επίπεδο, κ.α.)

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

1. Απλό Γράφημα

<u>Ορισμός:</u> Ένα μη κατευθυνόμενο γράφημα θα λέγεται <u>απλό</u> αν δεν περιέχει ανακυκλώσεις και παράλληλες ακμές.

Παραδείγματα:

To G₁ είναι απλό

Το G_2 δεν είναι απλό (περιέχει ανακύκλωση)

Το G₃ δεν είναι απλό (περιέχει παράλληλες ακμές)

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

2. Πλήρες Γράφημα (ή κλίκα)

<u>Ορισμός:</u> Πλήρες γράφημα ή κλίκα η κορυφών (συμβολισμός K_n)

- Είναι απλό γράφημα G=(V,E) με η κορυφές που περιέχει όλες τις δυνατές ακμές. Τυπικά:
- Για κάθε $v_i, v_j \in V$ με $i \neq j$ η ακμή $[v_i, v_j] \in E$

Σημαντικό:

• Η κλίκα η κορυφών έχει n(n-1)/2 ακμές. (Είναι οι συνδυασμοί των η κορυφών ανά 2)

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

2. Πλήρες Γράφημα (ή κλίκα)

<u>Άσκηση:</u> Ποια από τα παρακάτω γραφήματα είναι πλήρη; Αν είναι πλήρες δώστε τον αντίστοιχο συμβολισμό Κ_n. Αν δεν είναι πλήρες, πόσες ακμές πρέπει να προσθέσουμε για να γίνει πλήρες;

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

3. Συνδεόμενο Γράφημα

Ορισμός: Συνδεόμενο (ή συνδεδεμένο) θα καλείται ένα Μ.Κ.Γ. που

- Οποιεσδήποτε δύο διαφορετικές κορυφές συνδέονται με τουλάχιστον ένα μονοπάτι.
 Τυπικά:
- Για κάθε $v_i, v_j \in V$ με $i \neq j$ υπάρχει μονοπάτι από την v_i στην v_j

Σχεδόν όλα τα γραφήματα που είδαμε μέχρι τώρα ήταν συνδεόμενα. Παραδείγματα μη

συνδεόμενων Γραφημάτων:

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

3. Συνδεόμενο Γράφημα (Συνεκτικές Συνιστώσες)

Ορισμός: Αν ένα γράφημα είναι μη συνδεόμενο:

Κάθε μεγιστοτικό (ως προς τις κορυφές) συνδεόμενο υπογράφημά του λέγεται συνεκτική συνιστώσα ή ασύνδετο τμήμα

Πρακτικά, συνεκτική συνιστώσα είναι ένα «κομμάτι» του γραφήματος που μπορούμε να μεταβούμε (μέσω μονοπατιού) από κάθε κορυφή σε κάθε άλλη.

Γενικά ένα γράφημα θα είναι:

- Είτε συνδεόμενο, οπότε θα αποτελείται από 1 συνεκτική συνιστώσα.
- Είτε μη συνδεόμενο (οπότε θα αποτελείται από τουλάχιστον 2 συνεκτικές συνιστώσες)
 - Αν σε μια εκφώνηση συναντήσουμε μη συνδεόμενο γράφημα στο θα πρέπει να οραματιζόμαστε τουλάχιστον 2 συνεκτικές συνιστώσες που η κάθε μία είναι ένα συνδεόμενο υπογράφημα του αρχικού γραφήματος:

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

2. Πλήρες Γράφημα (ή κλίκα)

<u>Άσκηση:</u> Ποια από τα παρακάτω γραφήματα είναι συνδεόμενα; Αν δεν είναι συνδεόμενα, από πόσες συνεκτικές συνιστώσες αποτελούνται και πόσες ακμές πρέπει να προσθέσουμε για να γίνουν συνδεόμενα.

www.psounis.gr

Β. Θεωρία

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

3. Συνδεόμενο Γράφημα (Γέφυρες και Σημεία Κοπής)

Ορισμός: Σε ένα συνδεόμενο γράφημα:

- Κάθε κορυφή, που αν αφαιρεθεί (μαζί με τις ακμές της) κάνει το γράφημα μη συνδεόμενο λέγεται σημείο κοπής ή σημείο άρθρωσης
- Κάθε ακμή, που αν αφαιρεθεί κάνει το γράφημα μη συνδεόμενο λέγεται γέφυρα ή ακμή τομής

Άσκηση: Εντοπίστε τις γέφυρες και τα σημεία κοπής στα ακόλουθα γραφήματα:

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

4. Συμπλήρωμα Γραφήματος

<u>Ορισμός:</u> Έστω ένα απλό γράφημα G = (V, E). **Συμπλήρωμα του G,** καλείτει το γράφημα $\overline{G} = (\overline{V}, \overline{E})$. που

- Έχει τις ίδιες κορυφές με το G
- Έχει ως ακμές αυτές που δεν περιέχονται στο G.

Τυπικά:

• $\mathsf{I}\mathsf{G}\mathsf{X}\mathsf{U}\mathsf{E}\mathsf{I}\,\overline{\mathsf{V}} = V\;\mathsf{K}\mathsf{G}\mathsf{I}\;\mathsf{e} \in \overline{\mathsf{E}}\;\mathsf{G}\mathsf{V}\;\mathsf{K}\mathsf{G}\mathsf{I}\;\mathsf{\mu}\mathsf{O}\mathsf{V}\mathsf{O}\;\mathsf{G}\mathsf{V}\;\mathsf{e} \notin \mathsf{E}$

Σημαντικό: Ακμές Γραφήματος+Ακμές Συμπληρώματος = Ακμές Κλίκας

•
$$|\mathbf{E}| + |\overline{\mathbf{E}}| = n(n-1)/2$$

2. Ορισμοί Μη Κατευθυνόμενων Γραφημάτων

4. Συμπλήρωμα Γραφήματος

<u>Άσκηση:</u> Σχεδιάστε το συμπλήρωμα σε κάθε ένα από τα ακόλουθα γραφήματα και επαληθεύεστε με τον τύπο ότι όντως έχετε βάλει όλες τις ακμές που απαιτούνται.

Β. Θεωρία3. Μέρη Γραφήματος

Δύο σημαντικοί ορισμοί απαιτούνται για να αναφερθούμε σε ένα κομμάτι ενός γραφήματος

- Υπογράφημα: Είναι οποιοδήποτε «κομμάτι» του γραφήματος
 - Επιλέγουμε όποιες κορυφές θέλουμε
 - Επιλέγουμε όποιες ακμές θέλουμε
- Επαγόμενο Υπογράφημα: Είναι κομμάτι του γραφήματος που
 - Επιλέγουμε όποιες κορυφές θέλουμε
 - Υποχρεωτικά επιλέγουμε τις ακμές που συνδέεουν αυτές τις κορυφές στο αρχικό γράφημα.

3. Μέρη Γραφήματος

1. Υπογράφημα

Ορισμός: Έστω ένα γράφημα G = (V, E). Υπογράφημα του G, καλείτει το γράφημα G' = (V', E'). που

- Περιέχει κάποιες κορυφές του G (1...όλες)
- Περιέχει κάποιες ακμές του G που συνδέεουν αυτές τις κορυφές Τυπικά:
- Ισχύει $V' \subseteq V$ και $E' \subseteq E$ και για κάθε $[v_i, v_j] \in E'$ ισχύει ότι $v_i, v_j \in V'$

ΠΡΟΣΟΧΗ: Απαγορεύεται στο υπογράφημα να έχουμε ακμή που δεν ανήκει στο αρχικό γράφημα

3. Μέρη Γραφήματος

1. Υπογράφημα

Άσκηση: Δίνεται το γράφημα 3 κορυφών:

Ποια από τα παρακάτω γραφήματα είναι υπογραφήματα του γραφήματος;

3. Μέρη Γραφήματος

2. Επαγόμενο Υπογράφημα

Ορισμός: Έστω ένα γράφημα G = (V, E). Επαγόμενο Υπογράφημα του G, καλείτει το γράφημα G' = (V', E'). που

- Περιέχει κάποιες κορυφές του G (1...όλες)
- Περιέχει ΟΛΕΣ τις ακμές του G που συνδέεουν αυτές τις κορυφές Τυπικά:
- Ισχύει $V' \subseteq V$ και $E' \subseteq E$ και για κάθε $[v_i, v_j] \in E$ με $v_i, v_j \in V'$ ισχύει $[v_i, v_j] \in E'$

ΠΡΟΣΟΧΗ: Απαγορεύεται στο επαγόμενο υπογράφημα να μην έχουμε όλες τις ακμές των κορυφών που έχουμε επιλέξει

3. Μέρη Γραφήματος

1. Υπογράφημα

Άσκηση: Δίνεται το γράφημα 3 κορυφών:

Ποια από τα παρακάτω γραφήματα είναι επαγόμενα υπογραφήματα του γραφήματος;

Γ. Ασκήσεις Άσκηση Κατανόησης 1

Κατασκευάστε όλα τα δυνατά απλά μη κατευθυνόμενα γραφήματα 4 κορυφών με ακριβώς 2 ακμές (υπόδειξη: είναι C(6,2)=15) Και για κάθε ένα από αυτά εξετάστε αν είναι συνδεόμενα.

Γ. Ασκήσεις Άσκηση Κατανόησης 2

Κατασκευάστε όλα τα δυνατά επαγόμενα υπογραφήματα του γραφήματος που είναι ένας κύκλος 4 κορυφών

Υπόδειξη: Είναι 24-1

Γ. Ασκήσεις Άσκηση Κατανόησης 3

Κατασκευάστε όλα τα δυνατά επαγόμενα υπογραφήματα του Κ₄ με 3 κορυφές

<u>Γ. Ασκήσεις</u> Άσκηση Κατανόησης 4

Για τα ακόλουθα 3 γραφήματα:

- 1. Εξετάστε αν είναι
 - 1. Απλό
 - 2. Πλήρες
 - 3. Συνδεόμενο.
- 2. Αν έχουν κύκλο 3 κορυφών
 - 1. Σαν υπογράφημα
 - 2. Σαν επαγόμενο υπογράφημα
- 3. Αν έχουν μονοπάτι 3 κορυφών
 - 1. Σαν υπογράφημα
 - 2. Σαν επαγόμενο υπογράφημα
- 4. Ποιο είναι το πλήθος των ακμών:
 - 1. Του μέγιστου μονοπατιού;
 - 2. Του μέγιστου απλού μονοπατιού;
 - 3. Του μέγιστου κύκλου;
 - 4. Του μέγιστου απλού κύκλου;
- 5. Αν περιέχουν:
 - 1. Γέφυρα
 - 2. Σημείο κοπής

 G_1

 G_2

 G_3

<u>Γ. Ασκήσεις</u> Άσκηση Κατανόησης 5

Για τα ακόλουθα 3 γραφήματα:

- 1. Εξετάστε αν είναι
 - 1. Απλό
 - 2. Πλήρες
 - 3. Συνδεόμενο.
- 2. Αν έχουν κύκλο 3 κορυφών
 - 1. Σαν υπογράφημα
 - 2. Σαν επαγόμενο υπογράφημα
- 3. Αν έχουν μονοπάτι 3 κορυφών
 - 1. Σαν υπογράφημα
 - 2. Σαν επαγόμενο υπογράφημα
- 4. Ποιο είναι το πλήθος των ακμών:
 - 1. Του μέγιστου μονοπατιού;
 - 2. Του μέγιστου απλού μονοπατιού;
 - 3. Του μέγιστου κύκλου;
 - 4. Του μέγιστου απλού κύκλου;
- 5. Αν περιέχουν:
 - 1. Γέφυρα
 - 2. Σημείο κοπής

 G_5

 G_6

Γ. Ασκήσεις Ερωτήσεις 1

Έστω απλό, μη κατευθυνόμενο γράφημα 5 κορυφών:

1. Αν το γράφημα είναι κλίκα, τότε έχει 10 ακμές.

2. Αν το γράφημα είναι συνδεόμενο τότε έχει τουλάχιστον 4 ακμές.

3. Αν το γράφημα έχει 5 ακμές, τότε το συμπλήρωμά του έχει 4 ακμές.

4. Αν το γράφημα είναι πλήρες, τότε κάθε επαγόμενο υπογράφημά του είναι επίσης πλήρες.

Γ. Ασκήσεις Ερωτήσεις 2

Εξετάστε αν οι ακόλουθες προτάσεις που αφορούν απλά, μη κατευθυνόμενα γραφήματα είναι αληθείς ή όχι.

1. Κάθε απλό γράφημα είναι συνδέομενο.

2. Κάθε πλήρες γράφημα είναι συνδέομενο.

3. Κάθε πλήρες γράφημα είναι απλό

4. Κάθε συνδεόμενο γράφημα είναι πλήρες.

Γ. Ασκήσεις Ερωτήσεις 3

Εξετάστε αν οι ακόλουθες προτάσεις που αφορούν απλά, μη κατευθυνόμενα γραφήματα είναι αληθείς ή όχι.

1. Υπάρχει πλήρες γράφημα που περιέχει γέφυρα.

2. Υπάρχει συνδεόμενο γράφημα που περιέχει σημείο κοπής.

3. Υπάρχει μη συνδεόμενο γράφημα που είναι πλήρες.

4. Υπάρχει γράφημα 6 κορυφών που δεν είναι συνδεόμενο και έχει 6 ακμές.