Modélisation du transport d'un polluant

Projet d'introduction à la recherche

Léo Baty, Chiheb Eddine Najjar, Nathan Godey, Régis Santet, Song Phuc Duong,
Clément Lasuen
sous la direction de
Damiano Lombardi et Sebastien Boyaval
Laboratoire INRIA

2 juin 2018

Sommaire

- Introduction
- Méthodes
 - Proper Orthogonal Decomposition
 - Champs de vitesse étudiés
 - Approche eulerienne
 - Approche lagrangienne
- Résultats et interpretations
 - Approche eulerienne
 - Champ de vitesse uniforme
 Écoulements cellulaires
 - Approche lagrangienne
 - Champ de vitesse uniforme
 - Écoulements cellulaires
 - Ochamp de vitesse de Lamb-Oseen
- Conclusion

Introduction

FIGURE 1: Explosion de Deepwater Horizon, 20/04/2010

Equation de transport

$$\partial_t c + u \cdot \nabla c = 0$$

c(x,t) : concentration en polluant à la position $x \in (0,1)^2 = \Omega$ à l'instant $t \in [0,T]$ u : champ de vitesse, dépend a priori de x et de t

Champs de vitesse étudiés

Champ de vitesse uniforme

$$\begin{cases} u_x = ||u||\cos(\theta) \\ u_y = ||u||\sin(\theta) \end{cases}$$

 ${\tt Figure}$ 2: Écoulement constant avec un angle θ

Champs de vitesse étudiés Écoulements cellulaires

$$\psi(x,y) = \sin(2\pi x)\sin(2\pi y) + \theta_0\cos(2\pi\theta_1 x)\cos(2\pi\theta_2 y)$$

$$\theta_0 \in [0, 2.5] \text{ et } (\theta_1, \theta_2) \in [0.5, 4]^2$$

FIGURE 3: Champs de vitesse pour deux jeux de paramètres

Champs de vitesse étudiés

Champ de vitesse de Lamb-Oseen

$$\mathbf{V}(r,\theta,t) = \frac{\Gamma}{2\pi r} \left(1 - \exp\left(\frac{-r^2}{4\nu t + r_c^2}\right) \right) \mathbf{u}_{\theta}$$

FIGURE 4: Écoulement Lamb-Oseen

FIGURE 5: Condition initiale...

FIGURE 6: ... et après un certain temps

Méthode des volumes finis

Approche eulerienne Modèle réduit

Approche lagrangienne

 $X(\xi,t)\in\mathbb{R}^{n\times 2}$ désigne les positions, à l'instant $t\in[0,T]$, des particules qui étaient initialement aux positions $\xi\in\mathbb{R}^{n\times 2}$

$$\begin{cases} \partial_t X = v(X(\xi, t), t) \\ X(\xi, 0) = \xi \end{cases}$$

Hypothèses

$$v\in\mathcal{C}^0(\mathbb{R}^{n\times 2}\times\mathbb{R})\bigcap W^{1,\infty}(\mathbb{R}^{n\times 2}\times\mathbb{R})$$

Théorème de Cauchy-Lipschitz

Existence et unicité d'une solution locale pour des temps arbitraires

Conséquence

Le transport est à vitesse finie

Approche lagrangienne

Résolution numérique

Schéma de Crank-Nicholson :

$$X^{(k+1)} = X^{(k)} + \frac{\Delta t}{2} (v(X^{(k)}, t^k) + v(X^{(k+1)}, t^{k+1}))$$

Algorithme du point fixe :

$$\left\{ \begin{array}{c} X_0^{(k+1)} = X^{(k)} \\ X_1^{(k+1)} = X^{(k)} + \Delta t v(X^{(k)}, t^k) \\ X_{r+1}^{(k+1)} = X^{(k)} + \frac{\Delta t}{2} (v(X^{(k)}, t^k) + v(X_r^{(k+1)}, t^{k+1})) \end{array} \right.$$

Champ de vitesse uniforme

16 simulations, $\theta \in [0, \frac{\pi}{2}]$

 ${\bf Figure} \ {\bf 7:} \ {\bf Trac\'e} \ {\bf du} \ {\bf log} \ {\bf des} \ {\bf valeurs} \ {\bf singuli\`eres} \ {\bf en} \ {\bf fonction} \ {\bf du} \ {\bf rang}$

Champ de vitesse uniforme

Rôle des modes propres :

Champ de vitesse uniforme

Condition initiale, 10 modes

Condition initiale, 20 modes

Champ de vitesse uniforme

Condition initiale, 50 modes

Condition initiale, 100 modes

Champ de vitesse uniforme

Condition initiale, 200 modes

Condition initiale, 500 modes

Champ de vitesse uniforme

A mi-parcours, 10 modes

A mi-parcours, 20 modes

Champ de vitesse uniforme

A mi-parcours, 50 modes

A mi-parcours, 100 modes

Champ de vitesse uniforme

A mi-parcours, 200 modes

A mi-parcours, 500 modes

Ecoulements cellulaires

64 simulations

• $(x_0, y_0, \theta_0) \in [0.25, 0.75] \times [0.25, 0.75] \times [0, 2.5]$ tirés uniformément

•

Approche eulerienne Ecoulements cellulaires

Ecoulement cellulaire

Approche eulerienne Ecoulements cellulaires

Approche lagrangienne Champ de vitesse uniforme

FIGURE 8: log des valeurs singulières pour 8000 particules

FIGURE 9: log des valeurs singulières pour 500 particules

FIGURE 10: simulation pour 100 particules, $\theta_0 = \theta_1 = \theta_2 = 0.5$

FIGURE 11: simulation pour 100 particules, $\theta_0 = \theta_1 = \theta_2 = 0.5$

FIGURE 12: simulation pour 100 particules, $\theta_0 = \theta_1 = \theta_2 = 0.5$

FIGURE 13: simulation pour 100 particules, $\theta_0=\theta_1=\theta_2=0.5$

Approche lagrangienne Champ de vitesse de Lamb-Oseen

FIGURE 14: log des valeurs singulières pour 100 particules

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.