ÇEV 361 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama

Uzaktan Algılamada Görüntü İşleme

© Doç. Dr. Özgür ZEYDAN

http://www.ozgurzeydan.com/

Uzaktan Algılamada Görüntü Önişleme

- Bozuklukların düzeltilmesi
 - Radyometrik bozukluklar
 - Sensör kaynaklı
 - Atmosferik bozukluklar
 - Geometrik bozukluklar
 - Sistematik
 - Sistematik olmayan

- Görüntünün iyileştirilmesi
- Yeni görüntü oluşturma (dönüşüm)

Bozuklukların Düzeltilmesi: Görüntü Haritaya Kodlama

http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9403

Görüntü Örnekleme Yöntemleri

 Geometrik kaydetme için piksellerdeki dijital rakam (DN) değerlerinin tekrar hesaplanmasıdır.

- 1. En Yakın Komşuluk
- 2. BiDoğrusal İnterpolasyon
- 3. Kübik Fonksiyon

En Yakın Komşuluk (Nearest neighbour)

Görüntü Örnekleme Yöntemleri

BiDoğrusal İnterpolasyon (Bilinear interpolation)

Kübik Fonksiyon (Cubic convolution)

http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9403

Görüntü Örnekleme Yöntemleri

	En yakın komşuluk	BiDoğrusal İnterpolasyon	Kübik Fonksiyon
Geometrik özellikler	Kötü	İyi	En İyi
Radyometrik özellikler	En İyi	İyi	Kötü
Bilgisayardaki işlem süresi	Hızlı	Orta	Yavaş

Görüntünün İyileştirilmesi: Kontrastın Ayarlanması

http://www.tankonyvtar.hu/hu/tartalom/tamop425/0027_DAI6/ch01s04.html

TNTMips – Kontrast Ayarla

LEOWorks - Histogram

Inspect > Histogram

Görüntünün İyileştirilmesi: Filtreler

 Belirli bir hücredeki DN değerinin, bu hücrenin etrafındaki komşu hücrelerin DN değerlerinin kullanılması ile değiştirilmesi için yapılan aritmetik ve mantıksal işlemler.

Filtre Hesaplama Örneği

Kenar iyileştirme vb. filtrelerde faktörün 0 olması durumunda faktör 1'e eşitlenir.

Değerlerin 0 ile 255 arasında çıkması için offset değeri eklenir.

http://studentguru.gr/b/jupiter/archive/2009/10/14/creating-an-image-processing-library-with-c-part-1

Yüksek Geçirgen (High Pass) Filtre

Görüntüyü keskinleştirmek için kullanılır.

12	61	123
44	110	99
26	32	142

-1	-1	-1
-1	16	-1
-1	-1	-1

12	61	123
44	152	99
26	32	142

Orijinal görüntü

Filtre

Filtrelenmiş Görüntü

Düşük Geçirgen (Low Pass) Filtre

Görüntüyü bulanıklaştırmak için kullanılır.

12	61	123	1	1	1	12	61	123
44	110	99	1	1	1	44	72	99
26	32	142	1	1	1	26	32	142

$$\frac{1*12+1*61+1*123+1*44+1*110+1*99+1*26+1*32+1*142}{1+1+1+1+1+1+1+1+1} = 72,111 \Rightarrow 72$$

Kenar İyileştirmesi (Edge Detection)

 Geometrik detayların arttırılması için kullanılır.

12	61	123
44	110	99
26	32	142

-1	-1	-1
-1	ω	-1
-1	-1	-1

12	61	123
44	255	99
26	32	142

Yeni Görüntü Oluşturma (Dönüşüm)

- Çoklu bant işlemleri ile yeni görüntüler oluşturulur.
 - RGB görüntüleme
 - İndekslerin hesaplanması
 - Jeoformül

Normalleştirilmiş Fark Bitki İndeksi

- Normalized Difference Vegetation Index (NDVI)
- -1 ile +1 arasındadır.
- +1'e yakın değerler bitki varlığını gösterir.

$$NDVI = \frac{(NIR - R)}{(NIR + R)}$$

$$NDVI_{L8} = \frac{Band_5 - Band_4}{Band_5 + Band_4}$$
 Landsat 8 OLI
 $NDVI_{L5} = \frac{Band_4 - Band_3}{Band_4 + Band_3}$ Landsat 5 TM
 $NDVI_{S2} = \frac{Band_8 - Band_4}{Band_9 + Band_4}$ Sentinel 2 MSI

https://www.geo.university/pages/spectral-indices-with-multispectral-satellite-data

Landsat TM Bant Özelliklerine Göre Endeksler

Endeksler	İşlemler
Bitki indeksi	B4-B3
Normalize Fark Bitki İndeksi (NDVI)	(B4-B3) / (B4+B3)
Demir Oksit	B3/B1
Kil Mineralleri	B5/B7
Demirli Mineraller	B5/B4
Mineral Kompozisyonu	B5/B7, B5/B4, B3/B1
Hidrotermal Kompozisyon	B5/B7, B3/B1, B4/B3

Table 2. Satellite-derived indexes used for water features extraction (in Landsat imagery: Green = Band 2, Red = Band 3, NIR (near-infrared) = Band 4, MIR (middle-infrared) = Band 5, SWIR (shortwave-infrared) = Band 7).

Index	Equation	Remark	Reference
Normalized Difference	NDWI = (Green - NIR)/(Green +	Water has positive value	[24]
Water Index	NIR)	Water has positive value	[24]
Normalized Difference	NDMI = (NIR - MIR)/(NIR +	Water has positive value	[26]
Moisture Index	MIR)	Water has positive value	[36]
Modified Normalized	MNDWI = (Green - MIR)/(Green	Water has positive value	F197
Difference Water Index	+ MIR)	Water has positive value	[18]
Water Ratio Index	WRI = (Green + Red)/(NIR +	Value of water body is	[27]
water Katio index	MIR)	greater than 1	[37]
Normalized Difference	NDVI = (NID = D ad)/(NID + D ad)	Water has possilies value	[20]
Vegetation Index	NDVI = (NIR - Red)/(NIR + Red)	Water has negative value	[38]
Automated Water	$AWEI = 4 \times (Green-MIR) - (0.25)$	Water has mositive 1	[20]
Extraction Index	\times NIR + 2.75 \times SWIR)	Water has positive value	[39]

Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. *Remote Sens.* **2014**, *6*, 4173-4189.

LEOWorks - NDVI

Tools > NDVI

Normalized Difference Vegetation Index

GVI Normalized Difference Vegetation Index: NOV 30 2014

-0.10 -0.08 -0.02 0.020 0.080 0.190 0.140 0.180 0.220 0.280 0.200 0.240 0.250 0.420 0.480 0.200 0.240 0.250 0.680 0.700

Jeoformül Oluşturma

 Mevcut bantların bir aritmetik ifade içerisinde kullanılmasıyla yeni bir görüntü oluşturma.

- Örnek:
- Transformed Vegetation Index (TVI) hesaplanması

•
$$TVI = \sqrt{(NDVI + 0.5)}$$

LEOWorks – Band Aritmethic

Tools > Band Aritmethic

LEOWorks – TVI

Bitki İndeksleri

Applied Computing and Geosciences 7 (2020) 100032

Table 3List of vegetation indices.

INDICES	FORMULA	DATE
Normalized Differential Vegetation Index (NDVI)	(NIR – Red)/(NIR + Red)	(Rouse et al., 1973)
Soil-Adjusted Vegetation Index (SAVI)	[(NIR - Red)/(NIR + Red + 0.5)] * (1 + 0.5)	Huete (1988)
Atmospherically Resistant Vegetation Index (ARVI)	(NIR - (Red -1*(Blue - Red)))/(NIR + (Red	(Kaufman and Tanre et al.,
Enhanced Vegetation Index (EVI)	-1*(Blue - Red))) 2.5*((NIR - Red)/((NIR + 6*Red -7.5*Blue)+1))	1992) (Huete <i>et. al.,</i> 2002)

Jeoformül – Su Kalitesi

Table 1 Regression equations for prediction of Secchi disk transparency from Landsat TM data

Image date	Equation	r^2
7/3/73	ln(SDT) = 2.965(MSS1:MSS2) - 0.0847(MSS1) - 2.99	0.791
8/7/75	ln(SDT) = 5.230(MSS1:MSS2) - 0.245(MSS1) - 2.37	0.759
9/6/83	ln(SDT) = 3.029(MSS1:MSS2) - 0.264(MSS1) - 0.384	0.599
8/21/86	ln(SDT) = 1.324(TM1:TM3) + 0.00777(TM1) - 4.87	0.867
8/26/88	ln(SDT) = 0.657(TM1:TM3) - 0.0114(TM1) - 2.39	0.929
6/16/91	ln(SDT) = 0.546(TM1:TM3) + 0.0562(TM1) - 4.43	0.526
7/18/91	ln(SDT) = 0.882(TM1:TM3) + 0.0754(TM1) - 7.07	0.756
9/4/91	ln(SDT) = 1.073(TM1:TM3) + 0.0828(TM1) - 8.23	0.816
9/20/91	ln(SDT) = 1.113(TM1:TM3) + 0.115(TM1) - 10.14	0.608
8/24/93	ln(SDT) = 1.162(TM1:TM3) + 0.0352(TM1) - 6.05	0.722
7/29/95	ln(SDT) = 1.262(TM1:TM3) + 0.0376(TM1) - 6.25	0.902
7/15/96	ln(SDT) = 1.066(TM1:TM3) - 0.0588(TM1) - 0.557	0.771
9/7/98	ln(SDT) = 0.953(TM1:TM3) - 0.00815(TM1) - 3.18	0.841

Kloiber S M, Brezonik P L, Bauer M E (2002) Application of Landsat imagery to regional-scale assessments of lake clarity, Water Research, 36, 4330–4340.

Görüntülerin Sınıflandırılması

Görüntülerin Sınıflandırılması

https://seos-project.eu/classification/classification-c04-p01.html

Sınıflandırma

Kaynaklar

 Düzgün Ş. (2010) Uzaktan Algılamaya Giriş Uzaktan Algılamaya Giriş ders notları Ünite 5 - Veri Görüntü Önişleme http://www.acikders.org.tr/mod/resource/view.php?id=373