1.2.12 始対象と終対象

通常の圏論と同様に、高次圏における終対象と始対象を定義する。位相的圏 $\mathfrak C$ に対して、射空間の位相を無視して $\mathfrak C$ を通常の圏とみなしたときの終対象を $\mathfrak C$ における終対象と定義することが考えられる。しかし、この定義は強すぎることが分かる。例えば、 $\mathfrak C\mathfrak G$ において、 $\mathfrak 1$ 点からなる位相空間 $\mathfrak m$ はこの意味の終対象である。しかし、 $\mathfrak m$ と同値な (つまり、任意の可縮空間) 位相空間は $\mathfrak m$ と同相ではなく、 $\mathfrak C\mathfrak G$ における終対象ではない。 $\mathfrak m$ 圏における概念は同値で保たれるべきであるので、これよりも弱い定義が必要である。

定義 1.2.12.1 (終対象). ${\mathbb C}$ を単体的集合 (位相的圏, 単体的圏), ${\mathbb C}$ のホモトピー圏 ${\mathbb h}{\mathbb C}$ を ${\mathbb H}$ 豊穣圏とみなす. ${\mathbb C}$ の対象 X が ${\mathbb h}{\mathbb C}$ における通常の終対象のとき, X を終対象 (final object) という.

注意 1.2.12.2. 定義 1.2.12.1 の定義において、ホモトピー圏の情報しか用いていないので、ここまで で紹介した操作と同値に対して、終対象性は不変である.

 ∞ 圏の枠組みにおいては、より良い定義として強終対象がある。 系 1.2.12.5 で、 ∞ 圏において、これが終対象と同値な定義であることを見る.

定義 1.2.12.3 (強終対象). $\mathfrak C$ を単体的集合, X を $\mathfrak C$ の対象とする. 射影 $\mathfrak C_{/X}\to\mathfrak C$ が自明な Kan ファイブレーションのとき, X を強終対象 (strongly final object) という.

命題 1.2.12.4. \mathcal{C} を ∞ 圏, Y を \mathcal{C} の対象とする. このとき, 次は同値である.

- (1) Y は強終対象である.
- (2) $\mathfrak C$ の任意の対象 X に対して, $\mathrm{Hom}^\mathrm{R}_{\mathfrak C}(X,Y)$ は可縮な Kan 複体である.

Proof. $\operatorname{Hom}_{\mathbb{C}}^{\mathbb{R}}(X,Y)$ の定義より、 $\operatorname{Hom}_{\mathbb{C}}^{\mathbb{R}}(X,Y)$ はファイバー $(\mathbb{C}_{/Y})_X=\mathbb{C}_{/Y}\times_{\mathbb{C}}\{X\}$ と同一視できる。

- (1) から (2) を示す. Y が強終対象のとき、射影 $p: \mathcal{C}_{/Y} \to \mathcal{C}$ は自明な Kan ファイブレーションである. 自明な Kan ファイブレーションの集まりはプルバックで閉じるので、ファイバー $\mathcal{C}_{/Y} \times_{\mathcal{C}} \{X\}$ は可縮な Kan 複体である.
- (2) から (1) を示す。 $\mathfrak C$ の任意の対象 X に対して, $\mathrm{Hom}^{\mathrm R}_{\mathfrak C}(X,Y)=(\mathfrak C_{/Y})_X$ が可縮であるとする。 命題 2.1.2.1 より,p は右ファイブレーションである。 補題 2.1.3.4 より,p は自明な Kan ファイブレーションである。

系 1.2.12.5. ${\mathbb C}$ を単体的集合とする. ${\mathbb C}$ における任意の強終対象は終対象である. 逆は ${\mathbb C}$ が ∞ 圏のときに成立する.

注意 1.2.12.6. 終対象の双対として $, \infty$ 圏における始対象が考えられる.

例 1.2.12.7. C を通常の圏とする. N(C) における対象が終 (始) 対象であることと, C において通常

の意味で終 (始) 対象であることは同値である. これは圏同値 $\mathrm{hN}(\mathcal{C})\cong\mathcal{C}$ が成立することから従う.

注意 1.2.12.8. 定義 1.2.12.3 は $\mathfrak C$ が ∞ 圏の場合でないと意味をなさない。例えば、 $\mathfrak C$ が ∞ 圏でないとき、 $\mathfrak C$ の強終点の集まりが同値で安定とは限らない。

通常の圏における終対象は同型を除いて一意に定まる。 ∞ 圏における終対象も同様の主張ができるが、「一意に」という概念をホモトピー論的な言葉に置き換える必要がある。実際、終対象は可縮な空間の選択を除いて一意に定まる。

命題 1.2.12.9 (Joyal). \mathcal{C} を ∞ 圏, \mathcal{C}' を \mathcal{C} の終対象のなす \mathcal{C} の充満部分圏とする. このとき, \mathcal{C}' は 空または可縮な Kan 複体である.

Proof. C' が空でないとする. 次の図式がリフトを持つことを示せばよい.

n=0 のとき, \mathcal{C}' は空でない仮定から従う. $n\geq 1$ のとき, $\partial \Delta^n$ の対象 $\Delta^{\{n\}}$ が終対象にうつること から従う.