1 Definición Una función f es continua en un número x = a si

$$\lim_{x \to a} f(x) = f(a)$$

Note que la definición 1 requiere implícitamente tres cosas. Si f es continua en a, entonces: y
ightharpoonup y = f(x)

- 1. f(a) está definida (esto es, a está en el dominio de f)
- 2. $\lim_{x \to a} f(x)$ existe
- $3. \lim_{x \to a} f(x) = f(a)$

Geométricamente, una función continua en cada número de un intervalo puede pensarse como una función cuya gráfica no tiene interrupciones. La gráfica puede dibujarse sin levantar la pluma del papel.

Si f está definida cerca de a (en otras palabras, f está definida sobre un intervalo abierto que contiene a a, excepto quizás en a), decimos que f es **discontinua en** a (o f tiene una **discontinuidad** en a) si f no es continua en a.

Clasificación de las discontinuidades

Discontinuidades
$$\begin{cases} Evitables & \begin{cases} \exists f(a) \land \exists \lim_{x \to a} f(x) \\ \exists f(a) \land \exists \lim_{x \to a} f(x) \land f(a) \neq \lim_{x \to a} f(x) \end{cases} \\ \text{No evitables} & \begin{cases} \exists \lim_{x \to a^{+}} f(x) \land \exists \lim_{x \to a^{-}} f(x) \land \lim_{x \to a^{-}} f(x) \Rightarrow \lim_{x \to a^{-}} f(x) \end{cases} \\ \lim_{x \to a^{+}} f(x) = \underbrace{\pm \infty} \bigvee_{x \to a^{-}} f(x) = \underline{\pm \infty} \end{cases}$$

EJEMPLO 1 La figura 2 muestra la gráfica de una función f. ¿Para qué valores de x = a, f es discontinua? ¿Por qué?

FIGURA 2

SOLUCIÓN Pareciera que hay una discontinuidad cuando a=1 porque la gráfica tiene una ruptura allí. La razón formal de que f es discontinua en 1 es que f(1) no está definida.

La gráfica también tiene una ruptura cuando a = 3, pero la razón para la discontinuidad es diferente. Aquí, f(3) está definida, pero $\lim_{x\to 3} f(x)$ no existe (porque los límites por la izquierda y por la derecha son diferentes), así que f es discontinua en x = 3.

¿Qué hay en relación con a = 5? Aquí, f(5) está definida y el lím $_{x\to 5} f(x)$ existe (porque los límites por la izquierda y por la derecha son iguales). Pero

$$\lim_{x \to 5} f(x) \neq f(5)$$

EJEMPLO 2 ¿Dónde es discontinua cada una de las siguientes funciones?

a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

b)
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

SOLUCIÓN

- a) Note que f(2) no está definida, así que f es discontinua en x = 2. Más tarde veremos por qué f es continua en todos los otros números.
- b) Aquí f(0) = 1 está definida, pero

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2}$$

no existe. (Véase el ejemplo 8 de la sección 2.2.) Así que f es discontinua en x = 0.

c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{si } x \neq 2\\ 1 & \text{si } x = 2 \end{cases}$$

SOLUCIÓN

c) Aquí f(2) = 1 está definida y

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{x \to 2} (x + 1) = 3$$

existe. Pero

$$\lim_{x \to 2} f(x) \neq f(2)$$

así que f no es continua en x = 2.

La figura 3 muestra las gráficas de las funciones del ejemplo 2. En cada caso la gráfica no puede ser dibujada sin levantar el lápiz del papel porque hay un agujero o ruptura o salto en la gráfica. El tipo de discontinuidad ilustrada en los incisos a) y c) se llama **removible** porque podemos remover la discontinuidad redefiniendo f sólo en x = 2. [La función g(x) = x + 1 es continua.] La discontinuidad en el inciso b) se llama **discontinuidad infinita**. Las discontinuidades en el inciso d) se llaman **discontinuidades de salto** porque la función "salta" de un valor a otro.

FIGURA 3

2 Definición Una función f es continua por la derecha de un número x = a si

$$\lim_{x \to a^+} f(x) = f(a)$$

y f es continua por la izquierda de x = a si

$$\lim_{x \to a^{-}} f(x) = f(a)$$

3 Definición Una función f es **continua sobre un intervalo** si es continua en cada número en el intervalo. (Si f está definida sólo en un lado de un punto extremo del intervalo, entendemos por *continua* en el punto extremo, como *continua por la derecha* o *continua por la izquierda*.)

Teorema Si f y g son continuas en x = a y x = c es una constante, entonces las siguientes funciones son también continuas en x = a:

1.
$$f + g$$

2.
$$f-g$$

5.
$$\frac{f}{g}$$
 si $g(a) \neq 0$

5 Teorema

- a) Cualquier función polinomial es continua en todo su dominio; es decir, es continua sobre $\mathbb{R} = (-\infty, \infty)$.
- b) Cualquier función racional es continua siempre que esté definida; esto es, es continua en su dominio.

7 Teorema Los siguientes tipos de funciones son continuas en todo número de sus dominios:

funciones polinomiales funciones racionales funciones raíz
funciones trigonométricas funciones trigonométricas inversas
funciones exponenciales funciones logarítmicas

Asíntotas

Intuitivamente decimos que una recta es asíntota de una curva en el plano cartesiano, si al alejarnos del origen la recta y la curva se acercan.

Asíntota vertical

La recta x=a es una asíntota vertical de y=f(x), si $\lim_{x\to a^-} f(x)=\pm\infty$, ó $\lim_{x\to a^+} f(x)=\pm\infty$, ó $\lim_{x\to a^+} f(x)=\pm\infty$,

$$y = \frac{2x}{x-3}$$

$$x = 3$$

Asíntota horizontal

La recta y=b es una asíntota horizontal de y=f(x), si $\lim_{x\to +\infty}f(x)=b,$ ó $\lim_{x\to -\infty}f(x)=b.$

Asíntota oblicua

La recta y = mx + b, con $m \neq 0$, es una asíntota oblicua de y = f(x), si $\lim_{x \to +\infty} [f(x) - (mx + b)] = 0$, ó $\lim_{x \to -\infty} [f(x) - (mx + b)] = 0$.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = m.$$

$$\lim_{x \to +\infty} \left[f\left(x\right) - mx \right] = b.$$

