CODE No.: 16BT60401 SVEC-16

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

III B.Tech II Semester (SVEC-16) Regular/Supplementary Examinations August - 2021

ANTENNAS AND WAVEGUIDES [Electronics and Communication Engineering]

Time: 3 hours

Max. Marks: 70

Answer One Question from each Unit All questions carry equal marks

UNIT-I

- 1. a) Derive the wave equation for a TM wave and obtain the expression for CO1 8 Marks the field component in a rectangular wave guide.
 - b) An air-filled rectangular waveguide of inside dimensions 7 x 3.5cm CO1 $^{\circ}$ 6 Marks operates in the dominant TE₁₀ mode.
 - i) Find the cutoff frequency.
 - ii) Determine the phase velocity of the wave in the guide at a frequency of 3.5 GHz.
 - iii) Determine the guided wavelength at the same frequency.

(OR)

2. Derive the wave equation for TM wave and TE wave. Obtain the CO1 14 Marks expression for the field component in a rectangular wave guide.

UNIT-II

3. a) Explain the following terms:

CO2 8 Marks

- i) Antenna effective height.
- ii) Antenna aperture.
- iii) Current distribution on a thin wire antenna.
- b) An antenna has a radiation resistance of 72Ω , a loss resistance of 8Ω and CO3 6 Marks a power gain of 12-dB. Determine the antenna efficiency and its directivity.

(OR)

- 4. a) Define radiation resistance of an antenna. Calculate the radiation CO4 7 Marks resistance of a λ /10wire dipole in free space.
 - b) Explain the concept of short magnetic dipole.

CO4 7 Marks

(UNIT-III)

- 5. a) What is the requirement for tapering of arrays? Describe the applications CO5 8 Marks of arrays.
 - b) Calculate:

CO2 6 Marks

- i) HPBW.
- ii) Solid angle, if a linear array having 10 isotropic point source with $\lambda/2$ spacing and phase difference δ =900.

(OR)

- 6. a) What is a broadside array? Explain in detail the structure, radiation CO5 7 Marks pattern and the principle of operation of such an antenna.
 - b) Write a brief note on binomial arrays.

CO5 7 Marks

UNIT-IV

8 Marks

With a neat sketch, explain the different types of horn antennas. Mention CO4 merits and demerits of each type. A Parabolic dish provides a power gain of 50dB at 10GHz, with 70% CO2 6 Marks efficiency. Find out i) HPBW. ii) BWFN.

(OR)

What is spillover with reference to parabolic reflectors? Explain the CO4 8. 7 Marks a) remedial measures to reduce spillover.

Explain the principle of parabolic reflector antenna and discuss on CO5 b) 7 Marks different types of feeds.

UNIT-V

9. Write short notes on source of errors and radiation pattern lobes. CO₆ 7 Marks

Select a suitable coordinate system for antenna measurements and explain CO₅ 7 Marks b) about it.

(OR)

10. Evaluate the directivity of: CO₅ 7 Marks a)

i) An isotropic source.

7.

ii) Source with bidirectional cosθ power pattern.

b) Explain in detail the terms beam efficiency and directivity. Use relevant CO6 7 Marks expression a diagram.

> (A) (A)