Cálcu	lo
Teste	2

Nome completo Número

JUSTIFIQUE CUIDADOSAMENTE TODAS AS SUAS RESPOSTAS.

Relativamente às questões deste grupo indique se a afirmação é verdadeira ou falsa.

1. Se
$$f$$
 é uma função ímpar e $\int_{-2}^{0} f(x) dx = 4$ então $\int_{0}^{2} f(x) dx = 4$.

2. Se
$$f$$
 é contínua em $[1,2]$ então $\int_1^2 x f(x) dx = x \int_1^2 f(x) dx$.

3. Se
$$f$$
 é contínua e $G(x)=\int_1^{x^2}\,f(t)\,dt$ então $G'(x)=2xf(x^2).$

4. Se a sucessão de termo geral u_n é convergente então $\sum_{n\geq 1} u_n$ é convergente.

1. (2 valores)

Considere o integral $\int_1^2 \frac{1}{t} \, dt$.

- (a) Calcule uma soma inferior, com n=2 que aproxime o valor do integral.
- (b) Estabeleça uma comparação entre o valor obtido na alínea anterior e ln 2.

2. (3 valores)

Considere o integral $\int_1^2 \frac{e^x}{1 - e^{2x}} \, dx$.

- (a) Usando a substituição $x=\ln t$, mostre que o integral anterior se pode escrever como $\int_e^{e^2} \frac{1}{1-t^2} \, dt$.
- (b) Calcule o integral dado.

3. (2 valores)

Estabeleça um integral que lhe permita determinar o comprimento da curva de equação $y=\sqrt{1-x^2}$ entre os pontos cujas abcissas são 0 e $\frac{\sqrt{2}}{2}$.

4. (3 valores)

Calcule, se possível,
$$\int_0^1 \frac{1}{\sqrt{1-x}} \, dx$$
.

5. (3 valores)

Considere a série
$$\sum_{n\geq 1} \frac{\cos n}{n^3}$$
.

- (a) Defina o termo geral da sucessão geradora da série.
- (b) Indique o termo de ordem 5 da sucessão das somas parciais.
- (c) Estude a natureza da série.

6. (3 valores)

Escreva a série de Taylor em torno de a=0 da função $f(x)=\ln(1+x)$ indicando o seu domínio de convergência