KAGGLE COMPETITION

Multi-Class Prediction of Obesity Risk

CONTENT

KAGGLE COMPETITION

Part 1.	Introduction
Part 2.	EDA
Part 3.	Statistical Analysis
Part 4.	Machine Learning
Part 5.	Conclusion

1. Introduction

Overview of Competition

Multi-Class Prediction of Obesity Risk

Playground Series - Season 4, Episode 2

Competition Timeline	February 1st, 2024 ~ February 29th, 2024(11:59 PM UTC)		
Prizes	1st - Choice of Kaggle merchandise 2nd - Choice of Kaggle merchandise 3rd - Choice of Kaggle merchandise		
Duration Participation	4 days (February 26th, 2024 ~ February 29th, 2024)		
Participants	1 person		
Kaggle Notebook	[Beginner Friendly] Obesity Risk Prediction(92%)		

Development Environment

I. What is LightGBM?

LightGBM(Light Gradient Boosting Machine) is a framework for tree-based learning algorithms using the gradient boosting technique.

II. The Features of LightGBM

a. Algorithms of LightGBM

- Leaf-Wise Tree Growth algorithm
- Histogram-Based Splitting

b. Sampling methods of LightGBM

- Gradient-based One-Side Sampling(GOSS)
- Exclusive Feature Bundling(EFB)

c. Training with Category Type Variables

- Facilitating the understanding of dataset characteristics with categorical variables.

III. Hyperparameter Tuning

```
param = {"objective": "multiclass",
    "metric": "multi logloss",
    "verbosity": -1,
    "boosting type": "gbdt",
    "random state": 42,
    "num class": 7,
    'learning rate': 0.030962211546832760,
    'n estimators': 500,
    'lambda 11': 0.009667446568254372,
    'lambda 12': 0.04018641437301800,
    'max depth': 10,
    'colsample_bytree': 0.40977129346872643,
    'subsample': 0.9535797422450176,
    'min child samples': 26}
```


Hyperparameter tuning for optimal performance!

Goal

The goal of this competition is to use various factors to predict obesity risk in individuals, which is related to cardiovascular disease.

Process

EDA X => Pattern does not exist.

Data Description

Column	Full Form	Description						
'id'	id	Unique for each person(row)						
'Gender'	Gender	person's Gender						
'Age'	Age	Dtype is float. Age is between 14 years to 61 years						
'Height'	Height	Height is in meter it's between 1.45m to 1.98m						
'Weight'	Weight	Weight is between 39 to 165. I think it's in KG.						
'family_history_with_overweight'	family history with overweight	yes or no question						
'FAVC'	Frequent consumption of high calorie food	it's yes or no question. I think question they asked is do you consume high calorie food						
'FCVC'	Frequency of consumption of vegetables	Similar to FAVC, this is also yes or no question						
'NCP'	Number of main meals	dtype is float, NCP is between 1 & 4.1 think it should be 1,2,3,4 but our data is synthetic so it's taking float values						
'CAEC'	Consumption of food between meals	takes 4 values Sometimes , Frequently , no & Always						
'SMOKE'	Smoke	yes or no question, i think the question is "Do you smoke?"						
'CH2O'	Consumption of water daily	CH2O takes values between 1 & 3. again it's given as float may be because of synthetic data, it's values should be 1,2 or 3						
'SCC'	Calories consumption monitoring	yes or no question						
FAF	Physical activity frequency	FAF is between 0 to 3, 0 means no physical activity and 3 means high workout, and again, in our data it's given as float						
'TUE'	Time using technology devices	TUE is between 0 to 2.1 think question will be "How long you have been using technology devices to track your health." in our data it's given as float						
'CALC'	Consumption of alcohol	Takes 3 values: Sometimes , no , Frequently						
'MTRANS'	Transportation used	MTRANS takes 5 values Public_Transportation , Automobile , Walking , Motorbike , & Bike						
'NObeyesdad'	TARGET	This is our target, takes 7 values, and in this comp. we have to give the class name (Not the Probability, which is the case in most comp.)						

Categorical Features

Using the characteristics of numbers by changing the frequency of 'CAEC', 'CALC' to numbers?

Numerical Features

Numerical Features

Correlation Matrix

The correlation between height and weight variables is higher than that of other variables.

It is worth creating a BMI variable using height and weight variables.

=> BMI = Weight / Height ** 2

1) ANOVA

2) Chi-square test

3) Variance Inflation Factor

Independence test(Chi-square test) - UDF_Categorical Features

Cross-tabulation

1

Interpreting Results

Independence test(Chi-square test) - UDF_Categorical Features

Cross-tabulation

Family history with overweight and the obesity risk is dependent.

Interpreting Results

Independence test(Chi-square test) - UDF_Categorical Features

Cross-tabulation

Each Categorical Features on the obesity risk is dependent.

Interpreting Results

Variance Inflation Factor (VIF)- UDF

Calculating VIF

Showing Results

Variance Inflation Factor (VIF)- UDF

High VIF

Problems

- 1. Interpretation of the model
- 2. Model stability
- 3. Statistical significance

Solution

- 1. Variable Selection
- 2. Dimensionality Reduction
- 3. Variable Transformation
- 4. Tree-based Model

4. Machine Learning

4. Machine learning

	Model	Data processing	Data preprocessing	Hyperparameter	accuracy	accuracy_rate	recall	precision	F1 Score	F1 Score_rate
case1	LGBMClassifier	X			90.6069%				89.5777%	
case2	Random Forest	X			89.5713%	▼1.0356%			88.4281%	▼1.1496%
case3	LGBMClassifier	0	standard Scaler OneHotEncoder	n_iter = 3, cv=2,	90.6792%	▲0.0723%	89.6663%	89.6914%	89.6618%	▲0.0841%
case4	LGBMClassifier	O	Robust Scaler OneHotEncoder	n_iter = 3, cv=2,	90.6310%	▲0.0241%	89.6101%	89.6371%	89.6026%	▲0.0841%
case5	XGBoost	O	Robust Scaler OneHotEncoder		90.2697%	▼0.3372%	89.2019%	89.2315%	89.1924%	▼0.3853%
case6	Random Forest	O	Robust Scaler OneHotEncoder		90.2697%	▼0.3372%	87.0129%	87.0738%	87.0110%	▼2.5667%
case7	LGBMClassifier	O	standard Scaler OneHotEncoder	"clfnum_leaves": cv=2,	90.5347%	▼0.0723%	89.4956%	89.5202%	89.4910%	▼0.0867%
case8	LGBMClassifier	0	standard Scaler OneHotEncoder	n_iter = 5, cv=2,	90.6792%	▲ 0.0723%	89.6663%	89.6914%	89.6618%	▲ 0.0841%
case9	LGBMClassifier	0	standard Scaler OneHotEncoder	n_iter = 5, cv=3,	90.6792%	▲ 0.0723%	89.6663%	89.6914%	89.6618%	▲ 0.0841%
case10	LGBMClassifier	О	RobustScaler OneHotEncoder	n_iter = 5, cv=4,	90.6310%	▲ 0.0241%	89.6101%	89.6371%	89.6026%	▲ 0.0249%
case11	LGBMClassifier	О	RobustScaler OneHotEncoder	n_iter = 3, cv=5, random_state = 30	90.5347%	▼0.0723%	89.5015%	89.5539%	89.5072%	▼0.0705%
case12	LGBMClassifier	O	RobustScaler OneHotEncoder	n_iter = 3, cv=2, num_class = 7	90.6310%	▲ 0.0241%	89.6101%	89.6371%	89.6026%	▲ 0.0249%
case13	LGBMClassifier	0	standard Scaler OneHotEncoder	n_iter = 3, cv=2, num_class = 7	90.6792%	▲0.0723%	89.6663%	89.6914%	89.6618%	▲0.0841%

→ LGBMClassifier models perform better than
Random Forest and XGBoost models under the same conditions

DATA

- 'FCVC', 'NCP', 'CH2O', 'FAF', 'TUE' categorization
- StandardScaler, OneHotEncoder

MODEL

- Using Pipeline, LGBMClassifier, optuna(n_trials=100)
- + Find the optimal params: 0.90281
- + y-value label encoding: 0.90426
- + label encoding & BMI columns create: 0.8992

```
train['BMI'] = train['Weight'] / (train['Height'] ** 2)
test['BMI'] = test['Weight'] / (test['Height'] ** 2)
```


Delete SMOKE variables with low feature importance

- DATA
 - StandardScaler, OneHotEncoder, LabelEncoder(y value)
- MODEL
 - Using Pipeline, LGBMClassifier, optuna(n_trials=50)
- + **Delete SMOKE** : 0.90715
- + No preprocessing: 0.91112
- + Reduce run time (12. 4s_[50.1s→37.7s]) : 0. 91112
- + Modifying params (n_trials=100) : 0.90932

	Gender	Age	Height	Weight
0	Male	24.443011	1.699998	81.669950
1	Female	18.000000	1.560000	57.000000
2	Female	18.000000	1.711460	50.165754
3	Female	20.952737	1.710730	131.274851
4	Male	31.641081	1.914186	93.798055

		Gender	Age	Height	Weight		
	0	Male	20.0	1.699998	81.669950		
	1	Female	10.0	1.560000	57.000000		
	2	Female	10.0	1.711460	50.165754		
	3	Female	20.0	1.710730	131.274851		
	4	Male	30.0	1.914186	93.798055		

DATA

- Age grouping
- StandardScaler, OneHotEncoder, LabelEncoder(y_value)

MODE

- Using Pipeline, LGBMClassifier, optuna
- + Find the optimal params: 0.90751

DATA

- 'CAEC', 'CALC' mapping Always, Frequently, Sometimes, no → (4, 3, 2, 1)
- StandardScaler, pandas_get_dummies, LabelEncoder(y_value)

MODEL

- Using LGBMClassifier, optuna(n_trial: 100)
- + predict : 0.90751

DATA

- Create BMI & Delete SMOKE
- StandardScaler, LabelEncoder(object), LabelEncoder(y_value)

MODE

- Using LGBMClassifier, optuna(n_trial: 120)
- + predict_proba : 0.87391

DATA

- Add original data Use to increase the number of data
- StandardScaler, LabelEncoder (object, y_value)

MODEL

Using LGBMClassifier, optuna(n_trials=100, Adjusting thresholds)

```
param = {"objective": "multiclass",
    "metric": "multi_logloss",
    "verbosity": -1,
    "boosting_type": "gbdt",
    "random_state": 42,
                                                 threshold= {'threshold_0': 0.724201213234911, 'threshold_1': 0.6161299800571379, 'threshold_2': 0.
    "num_class": 7,
                                                 29138887902587174, 'threshold_3': 0.3145837593497076, 'threshold_4': 0.8469398340837189, 'threshol
    'learning rate': 0.030962211546832760.
    'n estimators': 500.
                                                 d_5': 0.6800824438387787, 'threshold_6': 0.35886959729223455}
    'lambda | 11': 0.009667446568254372.
    'lambda 12': 0.04018641437301800.
    'max_depth': 10,
    'colsample_bytree': 0.40977129346872643,
    'subsample': 0.9535797422450176.
    'min_child_samples': 26}
```

⇒ SELECTED : 0.92196

		Model	Data processing	Data preprocessing	Hyperparameter	Public Score	Public Score_rate
	case1	LGBMClassifier Pipeline	O_categorization	Standard Scaler OneHotEncoder	optuna	90.281%	baseline score
	case2	LGBMClassifier Pipeline	O_categorization	Standard Scaler OneHotEncoder LabelEncoder(y)	optuna	90.426%	▲0.145%
	case3	LGBMClassifier Pipeline	O_categorization, create BMI	Standard Scaler OneHotEncoder LabelEncoder(y)	optuna	89.920%	▼0.361%
	case4	LGBMClassifier Pipeline	O_delete SMOKE	Standard Scaler OneHotEncoder LabelEncoder(y)	optuna	90.715%	▲0.434%
	case5	LGBMClassifier Pipeline	X	Standard Scaler OneHotEncoder LabelEncoder(y)	optuna	91.112%	▲0.831%
	case6	LGBMClassifier Pipeline	X	Standard Scaler OneHotEncoder LabelEncoder(y)	optuna Modification	90.932%	▲ 0.651%
	case7	LGBMClassifier Pipeline	O_Age grouping	Standard Scaler OneHotEncoder LabelEncoder(y)	optuna	90.751%	▲ 0.470%
	case8	LGBMClassifier	O_mapping	Standard Scaler pandas_get_dummies LabelEncoder(y)	optuna	90.751%	▲ 0.470%
	case9	LGBMClassifier	O_create BMI, delete SMOKE	Standard Scaler LabelEncoder(object) LabelEncoder(y)	optuna	87.391%	▼2.890%
	case10	LGBMClassifier	O add original_data	Standard Scaler LabelEncoder(object) LabelEncoder(y)	optuna Adjusting thresholds	92.196%	▲1.915%

Summary

- Data preprocessing,
 such as case3 and case9,
 does not score well
- Better score for case10 with increased number of data

Final model

• Final model Kaggle Leaderboard Public

→ Ranked **167**th out of a total of **3589** participating teams

WHAT WE LEARNED

- It is important to process data for use in predictive models.
- It is important to know the data through statistical analysis.
- While experimenting with various combinations, we have gained experience in machine learning.
- Predictions can be made using the LightGBM and pipeline methods.

• Final model Kaggle Leaderboard Private

- → Ranked **1075**th out of a total of **3589** participating teams
- → Ranked 908 down

Regret Points

- There is a big difference between the public score and the private score. This suggests that overflitting has occurred.

Public Score: Calculated with approximately 20% of the test data.

Private Score: Calculated with approximately 80% of the test data.

Regret Points

Adjusting the size of test data (from 0.2 to 0.3)

Private Score

from 0.90643

to

0.90661

Regret Points

Other solutions available

- 1. Cross-validation
- Considering using other models
 3.

Statistical Theory

- Data Selection
- The Curse of Dimensionality
 - Preprocessing (binning, derived variables)
 - Variable Selection
- Hyperparameter Tuning

Statistical Theory

- Data Selection
- The Curse of Dimensionality
 - Preprocessing (binning, derived variables)
 - Variable Selection
- Hyperparameter Tuning

Practical Situations

Thank You