

HUNGARIAN ALGORITHM

ISIS 2801

Hungarian algorithm

The Hungarian algorithm is used for assignment problems

Hungarian algorithm

The Hungarian algorithm is used for assignment problems

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

Which person should do which task to have the least total cost?

The Hungarian algorithm is used for assignment problems

Try all posible assignments

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

The Hungarian algorithm is used for assignment problems

Try all posible assignments

```
(A,S)(B,W)(C,C)
(A,W)(B,C)(C,S)
(A,C)(B,S)(C,W)
(A,S)(B,C)(C,W)
(A,W)(B,S)(C,C)
(A,C)(B,W)(C,S)
```

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

The Hungarian algorithm is used for assignment problems

Try all posible assignments

```
(A,S)(B,W)(C,C)
(A,W)(B,C)(C,S)
(A,C)(B,S)(C,W)
(A,S)(B,C)(C,W)
(A,W)(B,S)(C,C)
(A,C)(B,W)(C,S)
```

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

O(n!)

The Hungarian algorithm is used for assignment problems

Try all posible assignments

```
(A,S)(B,W)(C,C)
(A, W) (B, C) (C, S)
(A, C) (B, S) (C, W)
(A,S)(B,C)(C,W)
(A, W) (B, S) (C, C)
(A, C)(B, W)(C, S)
```

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

O(n!)

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

1. Subtract the smallest element of each row, to all elements in the row

	Swipe	Wash	Clean
Alice	4		3
Bob	3	_	1
Carl	5	_	4

- 1. Subtract the smallest element of each **row**, to all elements in the **row**
- 2. Subtract the smallest element of each **column**, to all elements in the **column**

	Swipe	Wash	Clean
Alice	1	_	2
Bob		_	
Carl	2	_	3

- 1. Subtract the smallest element of each row, to all elements in the row
- 2. Subtract the smallest element of each **column**, to all elements in the **column**
- 3. Cover all zeros in the matrix using the minimum number of horizontal and vertical lines

- 1. Subtract the smallest element of each row, to all elements in the row
- 2. Subtract the smallest element of each column, to all elements in the column
- 3. Cover all zeros in the matrix using the minimum number of horizontal and vertical lines
- 4. If n lines cover the matrix, the remaining is the assignment

- 1. Subtract the smallest element of each row, to all elements in the row
- 2. Subtract the smallest element of each column, to all elements in the column
- 3. Cover all zeros in the matrix using the minimum number of horizontal and vertical lines
- 4. If n lines cover the matrix, the remaining is the assignment
- 5. If not, take the smallest entry, subtract it from every uncovered row, add it elements covered twice. go back to 3

	Swipe	Wash	Clean
Alice		_	1
Bob	_	_	_
Carl	1	_	2

- 1. Subtract the smallest element of each row, to all elements in the row
- 2. Subtract the smallest element of each column, to all elements in the column
- 3. Cover all zeros in the matrix using the minimum number of horizontal and vertical lines
- 4. If n lines cover the matrix, the remaining is the assignment
- 5. If not, take the smallest entry, subtract it from every uncovered row, add it to every covered column go back to 3

	Swipe	Wash	Clean
Alice		_	1
Bob	_	1	_
Carl	1	_	2

- 1. Subtract the smallest element of each row, to all elements in the row
- 2. Subtract the smallest element of each column, to all elements in the column
- 3. Cover all zeros in the matrix using the minimum number of horizontal and vertical lines
- 4. If n lines cover the matrix, the remaining is the assignment
- 5. If not, take the smallest entry, subtract it from every uncovered row, add it elements covered twice. go back to 3

- 1. Subtract the smallest element of each row, to all elements in the row
- 2. Subtract the smallest element of each column, to all elements in the column
- 3. Cover all zeros in the matrix using the minimum number of horizontal and vertical lines
- 4. If n lines cover the matrix, the remaining is the assignment
- 5. If not, take the smallest entry, subtract it from every uncovered row, add it to every covered column go back to 3

	Swipe	Wash	Clean
Alice		_	1
Bob		1	
Carl	1		2

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

The assignment is chosen from the combination with the least cost

(A,S)(B,C)(C,W)

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

The assignment is chosen from the combination with the least cost

(A,S)(B,C)(C,W)

 $O(n^3)$

	Swipe	Wash	Clean
Alice	8	4	7
Bob	5	2	3
Carl	9	4	8

The assignment is chosen from the combination with the least cost

(A,S)(B,C)(C,W)

