Robotic Navigation and Exploration

Final Project

Min-Chun Hu <u>anitahu@cs.nthu.edu.tw</u> CS, NTHU

Basic-Automatic tracking schematic map

You should let your jetbot follow the line in the demo.

Advance – Parking schematic map

• Try to park on the end sign as near as you can.

Advance – Avoidance schematic map

You should bypass the obstacles to reach the goal.

Score

	Simulation (70%)	Real world (30%)
Automatic tracking	35%	12%
Parking	15%	9%
Avoidance	20%	9%

Simulation Environment

JetBot Simulator

Link: https://reurl.cc/z8EK3e (for windows)

Message Server

- Dataserver.exe
 - Run Server
 - Run Unity3D Simulator
 - Run Python Client

Run Server

Run Python Client

Run Unity3D Simulator

Unity3D Simulator

Obstacles

Camera Switch

- Free Camera: The camera can be controlled by mouse.
- 3rd Person Camera: The camera is above behind the vehicle.
- Top Camera: The camera is above the vehicle and captures the top view with orthogonal projection.

3rd Person Camera

Top Camera

Python Wrapper

- jetbotSim
 - Camera
 - Wait for the camera data published by Unity3D simulator and invoke the callback function.
 - Robot
 - Send JSON-format control message to Unity3D simulator.

Note: The websocket library is required pip install websocket pip install websocket-client

Example

```
from jetbotSim import Robot, Camera
import cv2
frames = 0
def execute(change):
    global robot, frames
    print("\rFrames", frames, end="")
    frames += 1
    # Control Example
    if frames == 1:
        robot.forward(0.2)
    if frames == 80:
        robot.left(0.05)
    # Visualize
    img = cv2.resize(change["new"],(640,360))
    cv2.imshow("camera", img)
robot = Robot()
camera = Camera()
camera.observe(execute)
```

Control API

- robot.set_left_motor(value)
 - Left_motor = value
- robot.set_right_motor(value)
 - Right_motor = value
- robot.set_motor(value_I, value_r)
 - Left_motor = value_l
 - Right_motor = value_r
- robot.add_motor(value_I, value_r)
 - Left_motor += value_l
 - Right_motor += value_r

Note:

The unit of motor value shown on Unity3D simulator (deg/sec) is different from the unit of control value in python wrapper (m/sec).

Control API

- robot.forward(value)
 - Left_motor = value
 - Right_motor = value
- robot.backward(value)
 - Left_motor = -value
 - Right_motor = -value
- robot.left(value)
 - Left_motor = -value
 - Right_motor = value
- robot.right(value)
 - Left_motor = value
 - Right_motor = -value

Control API

- robot.stop()
 - Left_motor = 0
 - Right_motor = 0
- robot.reset()
 - Left_motor = 0
 - Right_motor = 0
 - Set to origin

Hint

• You can apply image processing and simple rule-base algorithm to detect the center of road and utilize P-control to track the road.

Example

Real World Demo

Real world score – 30 points

	Test map	Real map
Automatic tracking	4 points	8 points
Parking	3 points	6 points
Avoidance	3 points	6 points
	You can only restart at the origin	You can restart at the previous position 3 times

Demo Process

- The demo process contains two parts (for both test and final map).
 - First part
 - Automatic tracking & Parking
 - Second part
 - Automatic tracking & Parking & Avoidance

Example - first

Example - second

Example of obstacle

Real world score – Details

	Test map	Real map	
Automatic tracking	Tracking red line: 4 points	Tracking red line: 8 points	
Parking	Basic line: 1 point Perfect line: 3 points	Basic line: 2 points Perfect line: 6 points	
Avoidance	1 obstacle:3 points(A little collision is ok)	6 obstacles: 1 point/obstacle (A little collision is ok)	
	You can only restart at the origin	You can restart at the previous position 3 times	

Test Map Making & Demo Date

- There are three days for final project demo, which is 6/8, 6/16 and 6/17
- Please fill in the date of test map making and final project demonstration at the following cite:
 - https://docs.google.com/spreadsheets/d/1cMxmE_K6hs7cNGocLFmGNg UBz0EyDH9iO4YaoMjSa_o/edit#gid=0
- Please contact TAs if you cannot demo in these timeslots or have any problems.

Project場地製作問	時間	Project Demo時間					
2022/05/13	地點: 台達館7樓討論區	2022/6/8	地點: 台達館7樓討論區	2022/6/16	地點: 台達館7樓討論區	2022/6/17	地點: 台達館7樓討論區
3:00-3:15pm		2:00-2:40pm		2:00-2:40pm		2:00-2:40pm	
3:20-3:35pm		3:00-3:40pm		3:00-3:40pm		3:00-3:40pm	
3:40-3:55pm		4:00-4:40pm		4:00-4:40pm		4:00-4:40pm	
4:00-4:15pm		5:00-5:40pm		5:00-5:40pm		5:00-5:40pm	
4:20-4.35pm		6:00-6:40pm		6:00-6:40pm		6:00-6:40pm	
4:40-4:55pm							
5:00-5:15pm							
5:20-5:35pm							

Demo Position: 台達管7樓討論區

Hint 1 - memory usage

- sudo -H pip3 install jetson-stats
- sudo jtop

memory

Hint 2 - reference code

JupyterLab http://<jetbot_ip_address>:8888

🛖 > Notebooks > notebooks			
Name	Last Modified		
a basic_motion	4 days ago		
collision_avoidance	2 days ago		
object_following	3 days ago		
road_following	2 days ago		
teleoperation	a month ago		

Hint 3 - others

• Recommend model: lightweight model, ex: **shufflenet**, **mobilenet**

Do not update pytorch

- If your jetbot have any problem, you can restart the jetbot first!!!
 - (Ex: camera dead)