COVID-19 ICU Admissions

Agenda

Problem Overview

Data Trends

Predictive Modeling

Model Justification

Problem Overview

Predicting COVID-19 ICU Admissions

Tasks At Hand

- 1. Predict admission to ICU of confirmed COVID-19 Cases
 - Is it feasible to predict which patients will need ICU support? Why?
 - The goal is to provide tertiary & quarternary hospitals with the most accurate answer so ICU resources can be arranged or patient transfer can be scheduled.
- 2. Predict NOT admission to the ICU of confirmed COVID-19 cases
 - Is it feasible to predict which patients will NOT need ICU support? Why?
 - To provide local & temporary hospitals a good enough answer so frontline physicians can safely discharge and remotely follow up with these patients.

Trends in the Data

- Dataset from Hospital Sao Paulo and Brasilia
- All anonymized
- All scaled between -1 and 1
- Breakdown of Data:
 - Patient Demographic Info (3)
 - Patient Previous Grouped Diseases (6)
 - Blood results (36)*
 - Vital Signs (6)*

^{*} Each of these is expanded to show minimum, maximum, mean, median, difference, and relative difference calculations.

Patient Demographics

First ICU Admissions

Explore a Patient Profile

⊘ Live data ∧

«

No Vitals or Bloodwork Taken

Predictive Models

(Let's get to the gist of the techy stuff)

Capstone_Covid19_BBrown.ipynb

This is the code behind building the machine learning models (double-click to open)

Model Evaluation

Model	Accuracy
Logistic Regression	97.2%
Decision Tree Classifier	94.1%
Random Forest	96.5%
Support Vector Machines	86.8%
Naïve Bayes	94.1%

Key Influencers

Final Takeaways

Why use this model?

- Strong precision, recall, and f1-scores = high predictive capabilities
- Can provide data points as markers for likelihood of ICU admittance (or non-admittance)
- Load & analyze data specific to your city/region/hospital
- Keep up with changes in patient vital signs

Thank you