

实验03 简单时序逻辑电路 2022/10/20

实验安排

数字电路实验关键时间节点

时间	实验发布(23: 59前)	实验讲解(上课时间)	检查截止(21:30前)	报告提交截止(23:59前)
第四周(09.22)	实验01_Logisim入门			
第五周 (09. 29)	实验02_简单组合逻辑电路	实验01_Logisim入门		
第七周(10.13)	实验03_简单时序逻辑电路	实验02_简单组合逻辑电路	实验01_Logisim入门	
第八周(10.20)	实验04_Verilog硬件描述语言	实验03_简单时序逻辑电路	实验02_简单组合逻辑电路	实验01_Logisim入门
第九周(10.27)	实验05_使用Vivado进行仿真	实验04_Verilog硬件描述语言	实验03_简单时序逻辑电路	实验02_简单组合逻辑电路
第十周(11.03)	实验06_FPGA原理及Vivado综合	实验05_使用Vivado进行仿真	实验04_Verilog硬件描述语言	实验03_简单时序逻辑电路
十一周 (11.10)	实验07_FPGA实验平台及IP核	实验06_FPGA原理及Vivado综合	实验05_使用Vivado进行仿真	实验04_Verilog硬件描述语言
十二周(11.17)	实验08_信号处理及有限状态机	实验07_FPGA实验平台及IP核	实验06_FPGA原理及Vivado综合	实验05_使用Vivado进行仿真
十三周 (11.24)	实验09_竞争冒险及流水线技术	实验08_信号处理及有限状态机	实验07_FPGA实验平台及IP核	实验06_FPGA原理及Vivado综合
十四周(12.01)	实验10_综合实验	实验09_竞争冒险及流水线技术	实验08_信号处理及有限状态机	实验07_FPGA实验平台及IP核
十五周 (12.08)		实验10_综合实验	实验09_竞争冒险及流水线技术	实验08_信号处理及有限状态机
十六周 (12. 15)			实验10_综合实验	实验09_竞争冒险及流水线技术
十七周 (12. 22)				实验10_综合实验

实验目的

- 掌握时序逻辑相关器件的原理及底层结构
- ■能够用基本逻辑门搭建各类时序逻辑器件
- 能够使用Verilog HDL设计简单逻辑电路

实验环境

- vlab.ustc.edu.cn
- **Logisim**
- verilogoj.ustc.edu.cn

- Step1: 双稳态电路
 - ■双稳态电路是组合逻辑与时序逻辑之间的过渡
 - ■由两个非门交叉耦合构成,电路内形成了反馈
 - ■电路存在两个稳定状态
 - ■没有输入信号,也没有实用价值

- Step2: SR锁存器
 - ■将双稳态电路中的非门替换成或非门
 - ■多出来的两个端口作为输入(<u>S</u>et、<u>R</u>eset)
 - ■可以通过两个输入端口改变电路状态

S	R	Q
0	0	保持状态
0	1	0
1	0	1
1	1	非法状态

- Step3: D锁存器
 - ■在SR锁存器的基础上添加2个与门、1个非门
 - ■消除了S、R同时为1的非法状态
 - ■分为"保持"、"跟随"两个状态,由CLK控制

CLK	D	Q	说明
0	x	不变	保持状态
1	Х	D	跟随状态

- Step4: D触发器
 - ■由2个D锁存器和1个非门构成
 - ■只有在CLK信号从0变为1的时刻,Q才会更新
 - ■从电平控制转变为了边沿控制
 - ■是时序逻辑电路的核心部件

- Step5: 寄存器
 - ■寄存器本质上来说就是D触发器
 - ■n-bit寄存器中包含了n个D触发器

```
module REG4(
input CLK, RST N,
input [3:0] D IN,
output reg [3:0] q);
always@(posedge CLK)
begin
      if(RST N==0)
D OUT <= 4' b0;
      else
       D OUT \leftarrow D IN;
end
endmodule
```


- Step6: 时序逻辑电路
 - ■加法器为组合逻辑部件
 - ■寄存器为时序逻辑部件
 - ■两者一起构成了有实际作用的功能电路

```
module CNT4(
input CLK, RST_N,
output reg [3:0] CNT);
always@(posedge CLK)
begin
    if(RST_N==0)
        CNT <= 4' b0;
    else
        CNT <= CNT + 4' b1;
end
endmodule</pre>
```


实验检查

- 完成实验指导手册中的练习题
- 按时提交检查并提交实验报告
- 登录verilogoj.ustc.edu.cn进行编码练习

谢谢!