DSP VLSI Architecture Design

Final Project

Sine-Cosine Computation Using CORDIC Algorithm

學號:110521168

姓名: 陳旻盛

授課老師:蔡宗漢 教授

1. CORDIC Algorithm 原理

Coordinate Rotation Digital Computer,又稱 CORDIC,是一種座標旋轉的計算方法,於 1959 年由 J.D.Volder 提出,主要用於三角函數、雙曲線、指數、對數的運算。此算法通過基本的加法和移位運算代替乘法運算,使得向量的旋轉和定向計算不再需要三角函數、乘法、開平方、反三角等函數。

以右圖的二維平面為例,當點 Vo 逆時

鐘旋轉到 Vn 時,可以根據旋轉矩陣的運算得知:

$$x_n = x_0 \cos\theta - y_0 \sin\theta = \cos\theta(x_0 - y_0 \tan\theta)$$

$$y_n = y_0 \cos\theta + x_0 \sin\theta = \cos\theta(y_0 + x_0 \tan\theta)$$

此時,我們將旋轉角 θ 細分為 θ i ,且滿足 $\tan\theta$ i = 2^{-1} ,i 為非負整數。由於每次的旋轉角度 θ i 是固定不變的,如果一直朝著同一方向旋轉一定會超過 θ ,所以另兩方向 d = 1 代表逆時針,d = -1 代表順時針,可以得到每次旋轉的角度為 $d\theta$ i ,剩餘的角度為 Z_{i+1} ,則 Z_{i+1} = Z_i $-d\theta$ i 。

且因為
$$\theta$$
 max = $\Sigma \tan^{-1} 2^{-1}$ = 99.7°

$$\theta \min = \sum \tan^{-1} 2^{-1} = -99.7^{\circ}$$

所以我們需要確保在每一次計算的過程中,輸入向量都在第一、四象限。 在計算 X_n 和 y_n 的時候,我們可以發現透過不斷提出 $\cos\theta$ 以及用 2^{-1} 來取代 $\tan\theta$,即可做到在運算過程中都只有加法以及移位操作。

可得結論:
$$X_n = \frac{1}{\pi \cos \theta i} (x_0 \cos \theta - y_0 \sin \theta d)$$

$$y_n = \frac{1}{\pi \cos \theta i} (y_0 \cos \theta + x_0 \sin \theta d)$$

所以當我們給定初始值 $x_0 = \pi cos\theta i$, $y_0 = 0$,代入上式可得 $x_n = cos\theta$ $y_n = sin\theta$,即可實現 sine 和 cosine 的計算。

2. 架構設計

此次以 16 級 pipeline 來設計架構,在每一次迭代的過程中,將迭代後更新的值放入下一級 pipeline 中,讓每一級 pipeline stage 都只要經過一個 clock cycle 就能完成運算,並且每個 clockcycle 都能得到輸出。

因為要確保維持在第一、第四象限,所以需要調整在第二、三象限時的角度。若位於第二象限則須順時針旋轉 90 度到第一象限,第三象限則需逆時針旋轉 90 度到第四象限。

3. Verilog 實作

因為在 testbench 中,角度會一直在 $0\sim359$ 循環,所以 \sin 和 \cos 的波型也一直循環下去。

且因迭代 16 次使得誤差非常小,所以整個訊號曲線會非常平滑。 在過程中也透過將角度的變量放大,避免了浮點數的運算,用以滿足精度的要求:

```
// avoid floating point, enlarge all angle variables
     `define rot0 32'd2949120
     `define rot1 32'd1740992
                                     //26.5651*2^16
     `define rot2 32'd919872
                                     //14.0362*2^16
     `define rot3 32'd466944
                                     //7.1250*2^16
17
     `define rot4 32'd234368
                                      //3.5763*2^16
     `define rot5 32'd117312
                                     //1.7899*2^16
     `define rot6 32'd58688
20
                                     //0.8952*2^16
     `define rot7 32'd29312
21
                                     //0.4476*2^16
     `define rot8 32'd14656
                                     //0.2238*2^16
22
     `define rot9 32'd7360
23
                                     //0.1119*2^16
24
     `define rot10 32'd3648
                                     //0.0560*2^16
25
     `define rot11 32'd1856
                                     //0.0280*2^16
     `define rot12 32'd896
                                     //0.0140*2^16
     `define rot13 32'd448
                                     //0.0070*2^16
     `define rot14 32'd256
                                     //0.0035*2^16
     `define rot15 32'd128
29
                                      //0.0018*2^16
```

report_timing

```
clock clk (rise edge)
                                                                1.90
                                                                            1.90
clock network delay (ideal)
                                                               0.50
                                                                            2.40
                                                                            2.30
clock uncertainty
                                                               -0.10
y10_reg[23]/CK (DFFRX4)
library setup time
                                                               0.00
                                                                            2.30 r
                                                                            2.26
                                                               -0.04
data required time
                                                                            2.26
data required time
                                                                            2.26
data arrival time
                                                                           -2.26
slack (MET)
                                                                            0.00
```

report area

```
**********
Report : area
Design : CORDIC
Version: R-2020.09
Date : Wed Jan 11 19:40:55 2023
Library(s) Used:
    slow (File: /cad/CBDK/CBDK_IC_Contest_v2.1/SynopsysDC/db/slow.db)
Number of ports:
                                        8882
Number of nets:
                                       33809
Number of cells:
                                       26907
Number of combinational cells:
                                       25042
Number of sequential cells:
                                        1552
Number of macros/black boxes:
                                          Θ
Number of buf/inv:
                                        5771
Number of references:
                                         196
Combinational area:
                               174752.420040
Buf/Inv area:
                                24753.183823
Noncombinational area:
                                65202.224575
                                    0.000000
Macro/Black Box area:
Net Interconnect area:
                         undefined (No wire load specified)
Total cell area:
                               239954.644615
```

report power

Power Group	Internal Power	Switching Power	Leakage Power	Total Power	(%)	Attrs
io pad	0.0000	0.0000	0.0000	0.0000	(0.00%)	
memory	0.0000	0.0000	0.0000	0.0000	(0.00%)	
black box	0.0000	0.0000	0.0000	0.0000	(0.00%)	
clock network	0.0000	0.0000	0.0000	0.0000	(0.00%)	
register	26.8652	0.5707	5.6839e+07	27.4927	(84.02%)	
sequential	0.0000	0.0000	0.0000	0.0000	į.	0.00%)	
combinational	2.6111	2.5014	1.1788e+08	5.2304	Ĺ	15.98%)	
Total	29.4763 mW	3.0721 mW	1.7472e+08 pW	32.7231 m	W		

可以看到因為迭代了16,所以需要很多額外的硬體來儲存變數,導致面積以及功耗較大,但是可以得到非常精準的三角函數運算值。

若大幅減少迭代次數到1次,可以節省大量的面積以及功耗,但由於迭代次數少,角度的修正十分有限,所以得到的誤差值會非常大,以下為只跌代1次的結果:


```
***********
Report : area
Design : CORDIC
Version: R-2020.09
Date : Wed Jan 11 21:25:15 2023
***********
Library(s) Used:
    slow (File: /cad/CBDK/CBDK_IC_Contest_v2.1/SynopsysDC/db/slow.db)
Number of ports:
                                         180
Number of nets:
                                         874
Number of cells:
                                         773
Number of combinational cells:
                                         597
Number of sequential cells:
                                         152
Number of macros/black boxes:
Number of buf/inv:
                                          0
                                         230
Number of references:
Combinational area:
                                 4518.478730
                                 1045.598382
5185.556854
Buf/Inv area:
Noncombinational area:
Macro/Black Box area:
                                    0.000000
                          undefined (No wire load specified)
Net Interconnect area:
Total cell area:
                                 9704.035585
```

Power Group	Internal Power	Switching Power	Leakage Power	Total Power	(%)	Attrs
io pad	0.0000	0.0000	0.0000	0.0000	(0.00%)	
memory	0.0000	0.0000	0.0000	0.0000	(0.00%)	
black box	0.0000	0.0000	0.0000	0.0000	į.	0.00%)	
clock network	0.0000	0.0000	0.0000	0.0000	(0.00%)	
register	1.9193	0.1546	4.7016e+06	2.0786	(90.57%)	
seguential	0.0000	0.0000	0.0000	0.0000	į.	0.00%)	
combinational	0.1115	0.1011	3.7261e+06	0.2164	Ĺ	9.43%)	
Total	2.0308 mW	0.2557 mW	8.4277e+06 pW	2.2949 m	ıW		

可以看到雖然面積和功耗小了很多,但因為只迭代一次,角度只能有正負 45 度的修正,所以得到的值只會有兩種, sin 和 cos 的波型就會變成方波, 使其誤差非常大。

4. 參考資料

[1] E. O. Garcia, R. Cumplido, and M. Arias, "Pipelined CORDIC design on FPGA for a digital sine and cosine waves generator," in *2006 3rd international Conference on Electrical and Electronics Engineering*, 2006: IEEE, pp. 1-4.