Feedback - XIII. Clustering

You submitted this quiz on **Sat 15 Jun 2013 12:53 PM PDT (UTC -0700)**. You got a score of **5.00** out of **5.00**.

Question 1

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

Your Answer		Score	Explanation
■ Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.	~	0.25	Such a prediction is a regression problem, and K-means does not use labels on the data, so it cannot perform regression.
Given historical weather records, predict the amount of rainfall tomorrow (this would be a real-valued output)	•	0.25	K-means cannot give real-valued outputs like regression, as the data have no real-valued labels.
From the user usage patterns on a website, figure out what different groups of users exist.	~	0.25	We can cluster the users with K-means to find different, distinct groups.
Given a set of news articles from many different news websites, find out what are the main topics covered.	~	0.25	K-means can cluster the articles and then we can inspect them or use other methods to infer what topic each cluster represents
Total		1.00 / 1.00	

Question 2

Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$.

Furthermore, we have a training example $x^{(i)} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?

Your Answer		Score	Explanation
$lue{}$ $c^{(i)}$ is not assigned			
$ c^{(i)} = 3 $			
$c^{(i)} = 2$			
	~	1.00	$x^{(i)}$ is closest to μ_1 , so $c^{(i)}=1$
Total		1.00 / 1.00	

Question 3

K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?

Your Answer		Score	Explanation
Feature scaling, to ensure each feature is on a comparable scale to the others.	~	0.25	Feature scaling is outside the scope of the K-means algorithm itself.
Using the elbow method to choose K.	~	0.25	The choice of K must be made before running the main body of the K-means algorithm.
$\ensuremath{\checkmark}$ Move the cluster centroids, where the centroids μ_k are updated.	•	0.25	The cluster update is the second step of the K-means loop.
$\ensuremath{\checkmark}$ The cluster assignment step, where the parameters $c^{(i)}$ are updated.	•	0.25	This is the correst first step of the K-means loop.
Total		1.00 / 1.00	

Question 4

Suppose you have an unlabeled dataset $\{x^{(1)}, \dots, x^{(m)}\}$. You run K-means with 50 different random initializations, and obtain 50 different clusterings of the data. What is the recommended way for choosing which one of these 50 clusterings to use?

Your Answer	S	core	Explanation
The only way to do so is if we also have labels $y^{(i)}$ for our data.			
Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.			
Manually examine the clusterings, and pick the best one.			
© Compute the distortion function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$, and pick the one that minimizes this.	✓ 1.	.00	A lower value for the distortion function implies a better clustering, so you should choose the clustering with the smallest value for the distortion function.
Total		.00 /	

Question 5

Which of the following statements are true? Select all that apply.

Your Answer		Score	Explanation
The standard way of initializing K-means is setting $\mu_1=\cdots=\mu_k$ to be equal to a vector of zeros.	V	0.25	This is a poor initialization, since every centroid needs to start in a different location. Otherwise, each will be updated in the same way at each iteration and they will never spread out into different clusters.

Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible.	•	0.25	Too many clusters will still overfit the data, as it will find "structure" that is purely ficticious and not truly present in the data.
A good way to initialize K-means is to select K (distinct) examples from the training set and set the cluster centroids equal to these selected examples.	~	0.25	This is the recommended method of initialization.
on every iteration of K-means, the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$ (the distortion function) should either stay the same or decrease; in particular, it should not increase.	V	0.25	Both the cluster assignment and cluster update steps decrese the cost / distortion function, so it should never increase after an iteration of K-means.
Total		1.00 / 1.00	