Credit Card Default Risk Analysis

A Case Study of 2 Classification Models

Why did you build a model?

Purpose of Project

- Conduct quantitative analysis on credit default risk by applying two interpretable machine learning models without utilizing credit score or credit history.
- To predict customers who would potentially default.

Who Should Care?

Credit Card Companies

Commercial Banks

^{*} Image source:Google image

Approach Overview

Data Cleaning

Understand and Clean

- Find information on undocumented columns values
- Clean data to get it ready for analysis

Data Exploration Graphical & Statistical

- Exam data with visualization
- Verify findings with statistical tests

Predictive Modeling

Machine Learning

- Logistic Regression
- Random Forest

Part 1

Exploratory Data
Analysis

What demographics factors impact payment default risk?

Gender Variable

30% of males and 26% of females have payment default.

Education Variable

Higher education level, **lower** default risk.

"Others" only consists 1.56% of total customers even if they appear to have the least default.

Age Variable

30-50: Lowest risk

< 30 or>50: Risk increases

Marital Status Variable

No significant correlations of default risk and marital status

Credit Limit Variable

Higher credit limits, **lower** default risk

Part 2

Predictive Modeling

Modeling Overview

Define Problem:

Supervised learning / binary classification

Imbalanced Classes:

78% non-default vs. 22%default

Tools Used:

Scikit learn library and imblearn

Models Applied:

Logistic Regression / Random Forest

Modeling Steps

Data Preprocessing

- Feature selection
- Feature engineering
- Train-test data splitting (70%/30%)
- Training data rescaling
- SMOTE oversampling

Fitting and Tuning

- Start with default model parameters
- Hyperparameters tuning
- Measure ROC_AUC on training data

Model Evaluation

- Models testing
- Precision_Recall score
- Compare with sklearn dummy classifier
- Compare within the 2 models

Correct Imbalanced Classes

- Fit every model without and with SMOTE (synthetic minority oversampling technique) oversampling for comparison.
- Training AUC scores improved significantly with SMOTE.

Models	AUC Without SMOTE	AUC With SMOTE	
Logistic Regression	0.726	0.797	
Random Forest	0.764	0.916	

Hyperparameters Tuning

- Randomized Search on Logistic Regression since C has large search space.
- Grid Search on Random Forest on limited parameters combinations.

Model Comparisons

- Compare the models to Scikit-learn's dummy classifier.
- All models performed better than dummy model.

Models	Precision	Recall	F1 Score	Conclusion
Dummy Model	0.217	0.500	0.303	Benchmark
Logistic Regression	0.384	0.566	0.457	Best recall
Random Forest	0.513	0.514	0.514	Best F1

Model Comparisons

- Compare within 2 models.
- Random Forest (black line) has the best precision_recall score.

Terminology/Layman terms:

- Recall: Out of all the
 defaulters, how many
 did the model actually
 get correct?
 Precision: How correct is the
 model based on
- ★ it's own predictions? Precision and recall
- ★ trade-off: high recall will cause low precision

Model Usage - Recommendation

I.e. recall = 0.8. Threshold can be adjusted to reach higher recall.

Feature Importances

Best model Random Forest feature importances plot.

- ★ PAY_1: most recent month's payment status.
- ★ PAY_2: the month prior to current month's payment status.
- ★ BILL_AMT1: most recent month's bill amount.
- ★ LIMIT_BAL: credit limit

Limitations & Future

Limitations

Best model Random Forest can only

- detect 51% of default.
 Model can only be served as an aid in
- decision making instead of replacing human decision.

Future Work

- Other models could perform better.
- Models such as Neural networks.
 More
- useful features.l.e.customer income.

Conclusions

- Recent 2 payment status and credit limit are the strongest default predictors.
- Random Forest has the best precision and recall balance.
- Higher recall can be achieved if low precision is acceptable.

Thank you