







# Manipulación de Estructuras NumPy

Objetivo: Manipular arreglos multidimensionales en NumPy aplicando selección condicional, operaciones agregadas, álgebra lineal básica, limpieza de datos, análisis de correlación y reducción de dimensionalidad.



## Contexto

Como analista de datos para un laboratorio de ingeniería, recibes una base de datos de 30 sensores industriales, cada uno midiendo 96 valores horarios de tres variables distintas: temperatura (°C), presión (kPa) y humedad (%). Los datos presentan valores atípicos, valores perdidos y patrones que requieren pre-procesamiento y análisis exploratorio profundo.

Debes realizar, con NumPy, un procesamiento avanzado de estos datos en una matriz tridimensional y responder a retos de análisis y transformación que combinan álgebra lineal, filtrado condicional, operaciones vectorizadas y resumen estadístico.



### Requerimientos técnicos

- Python 3.x y NumPy (puedes usar Jupyter, Colab o IDE de preferencia).
- El código debe estar correctamente comentado, bien estructurado y todas las respuestas deben tener justificación breve.
- Entrega: archivo .py, .ipynb o notebook de Colab con código, salidas y respuestas argumentadas.

### Entregable:

- Notebook o script comentado, salidas, respuestas numéricas y justificaciones.
- Modalidad de trabajo: grupal.
- Tiempo estimado de desarrollo: 75 minutos.



# Requerimientos:

- 1. Genera un arreglo 3D llamado D de tamaño (30, 96, 3), con datos aleatorios de sensores:
  - Temperatura: entre 5°C y 110°C
  - Presión: entre 80 y 140 kPa
  - Humedad: entre 15% y 85%

(Usa np.random.uniform para cada canal y concatena por la tercera dimensión)

- 2. Introduce valores perdidos y atípicos:
  - Escoge aleatoriamente 30 valores del arreglo total y asígnales np.nan (simulando sensores defectuosos).
  - Introduce valores extremos (3 valores mayores al rango superior y 3 menores al rango inferior en cada canal).
- 3. Limpieza inicial:
  - Identifica y cuenta el número de valores perdidos por variable.
  - Sustituye los valores perdidos por la media de la variable correspondiente (por sensor).
- 4. Filtrado y análisis condicional:
  - Selecciona todos los sensores cuya temperatura máxima registrada supere los 100°C y cuya humedad mínima sea inferior a 20%.
  - ¿Cuántos sensores cumplen ambas condiciones?
- 5. Normalización y reducción:
  - Normaliza los datos de presión de todos los sensores a rango [0, 1] por sensor.
  - Calcula la media, mediana y desviación estándar de cada variable para estos sensores filtrados.
- 6. Correlación y análisis avanzado:
  - Para los sensores seleccionados, calcula la matriz de correlación entre las tres variables usando todos sus registros.
  - ¿Qué variable está más correlacionada con la temperatura en este subconjunto?
- 7. Álgebra lineal aplicada:
  - Para el sensor con mayor varianza en temperatura, calcula la matriz de covarianza entre sus tres variables.
  - Realiza una descomposición en valores y vectores propios de la matriz de covarianza, e interpreta el resultado (¿qué variable aporta más a la variabilidad?)



