AC-2S AX-2S AP-8

Руководство пользователя

Изделие некоторым образом может отличаться от описанного в данном руководстве. Такие технические изменения в данное руководство могут вноситься без уведомления об этом клиентов.

Торговые марки и Авторское право

© Copyright 2006, Trimble Navigation Limited. Все права зарегистрированы. Логотип глобус в треугольнике, Trimble и Spectra Precision - торговые марки Trimble Navigation Limited.

Все прочие торговые марки – торговые марки соответствующих владельцев.

Версия 01.00

Напечатано в Китае 02.10. Издательский номер 571 703 260.

Содержание

Устройство	5
Подготовка к измерениям	6
Установка инструмента	6
Подготовка инструмента	6
Процедура измерения	7
Нивелирование	7
Перенос высоты	8
Измерение расстояний	8
Пример вычисления	8
Угловые измерения	9
Юстировка	9
Круглый уровень	9
Линия визирования	10
Эксплуатация и обслуживание	10
Технические характеристики	

Устройство

- 1. Кремальера
- 2. Визир
- 3. Диоптрийное кольцо изображения предмета
- 4. Диоптрийное кольцо сетки нитей
- 5. Окуляр
- 6. Метка горизонтального круга
- 7. Лимб
- 8. Подъемный винт
- 9. Нивелируемая базовая пластина
- 10. Юстировочный винт круглого уровня
- 11. Микрометренный винт
- 12. Круглый уровень
- 13. Призма, отражающая круглый уровень
- 14. Объектив

Рисунок 1: AC-2s

Подготовка к измерениям

Установка инструмента

Примечание: инструменту необходимо некоторое время, чтобы приспособиться к окружающей температуре перед началом измерений.

- 1. Ослабьте зажимы штатива и выдвиньте ножки штатива на удобную длину (зрительная труба должна быть приблизительно на уровне глаз), закрепите зажимы штатива.
- 2. Установите ножки штатива так, чтобы плоскость вершины штатива была приблизительно горизонтальна, и вдавите наконечники ножек штатива в землю.
- 3. Установите инструмент на штатив, закрепив становой винт в плоскости вершины штатива (9).
- 4. Используя подъемные винты, переместите пузырек круглого уровня в центр ампулы уровня (12).
- 5. Добейтесь четкого изображения сетки нитей зрительной трубы наведясь на яркий фон и вращая диоптрийное кольцо сетки нитей (4).

Подготовка инструмента

- 1. Используя визир на зрительной трубе (2) для грубого наведения, навидитесь на рейку.
- 2. Используя микрометренный винт (11) установите изображение цели в центре поля зрения и вращайте кремальеру (1) до появления в фокусе четкого изображения рейки.
- 3. Проверьте, чтобы изображение было без параллакса. Параллакса не будет, если, наблюдая через окуляр зрительной трубы и перемещая глаз, изображения сетки нитей и рейки совпадают.

Примечание: компенсатор исправляет наклон визирной оси инструмента и работает только после того, как **круглый уровень был приведен в центр**. Однако это **не устраняет** ошибку установки круглого уровня. Поэтому круглый уровень должен проверяться время от времени. (см. Юстировка).

Процедура измерения

Примечание: чтобы получить **надежные результаты**, удостоверьтесь, что следующие требования выполнены:

- приблизительно равное расстояние между рейками
- нивелирная рейка вертикально выровнена
- нет оседания штатива и рейки
- нет ошибок отсчета

Нивелирование

- 1. Установите инструмент приблизительно посередине между двумя рейками, установленными в точках A и B. Наведите инструмент на рейку и возьмите отсчет по центру перекрестия сетки нитей (A=1.726 м). Затем разверните инструмент к рейке B и возьмите отсчет по центру перекрестия сетки нитей (B=1.259 м).
- 2. Разница отсчетов (A-B) дает величину превышения H = + 0.467м между точками В и А. Точка В на 0.467м выше, чем точка А. (значение превышения Н будет отрицательным, если точка В ниже, чем точка А).

Примечание: небольшое отклонение линии визирования от горизонта не будет давать никакой ошибки при измерении, если инструмент установлен посередине между двумя рейками в точках A и B.

Рисунок 2: Нивелирование

Перенос высоты

- 1. Установите рейку в точке с известной высотой и возьмите отсчет по центру перекрестия сетки нитей. Добавьте отсчет к высоте известной точки (высота от линии визирования). Возьмите отсчет по рейке, установленной на определяемой точке. Вычтите отсчет из полученного значения высоты.
- 2. Устанавливайте рейку так, чтобы центр перекрестия сетки нитей попадал на значение отсчета, полученного на точке с известной высотой. Зафиксируйте основание рейки.

Измерение расстояний

- 1. Навидитесь на рейку. Возьмите отсчет по верхней дальномерной нити (O=1.436 м) и по нижней дальномерной нити (U=1.152 м).
- 2. Разница отсчетов, умноженная на коэффициент 100, дает расстояние (Е=28.4 м).

Пример вычисления

Определение высоты	
Отсчет по центру перекрестия сетки нитей	1.295 м

Измерение расстояния	
Отсчет по верхней дальномерной нити	1.436 м
Отсчет по нижней дальномерной нити	1.152 м
Разница отсчетов (L)	0.284 м
Расстояние (Lx100)	28.4 м

Рисунок 3: Пример вычисления

Угловые измерения

- 1. Повесьте отвес на специальный крючок на штативе, и установите штатив таким образом, чтобы плоскость вершины штатива была приблизительно горизонтальна, а отвес был приблизительно над точкой. Вдавите наконечники ножек штатива в землю.
- 2. Установите инструмент на штатив. Добейтесь, чтобы отвес располагался точно над центром точки стояния, изменяя длину ножек штатива или перемещая инструмент на штативе.
- 3. Наведите зрительную трубу точно на первую цель, используя визир (2) и микрометренный винт (11). Первой целью должна быть известная точка. Поворачивайте лимб (7) пока метки горизонтального круга и индекса отсчета (6) не совпадут. (Приведение круга к нолю).
- 4. Наведите зрительную трубу на вторую цель, и считайте значение угла по метке индекса.

Юстировка

Круглый уровень

- 1. **Поверка:** Установите пузырек круглого уровня (12) точно по центру ампулы уровня, используя подъемные винты (8). Поверните зрительную трубу на 180°.
- 2. **Юстировка:** Если пузырек сместился из центра ампулы, переместите пузырек обратно к центру ампулы на одну половину величины его смещения, используя подъемные винты, а на другую половину величины его смещения при помощи двух юстировочных винтов круглого уровня (10).
- 3. Повторяйте поверку и процедуру юстировки, пока пузырек не остается в центре ампулы, не зависимо от направления зрительной трубы.

Рисунок 4: Поверка горизонтальности линии визирования

Линия визирования

1. Поверка: Установите инструмент посередине между двумя рейками, установленными в точках A и B приблизительно на расстоянии 30 - 40 м. Возьмите отсчет a1 по рейке A и отсчет b1 по рейке B (см. рисунок 4). Из-за идентичных расстояний, разница по превышениям будет корректна, даже если линия визирования не отъюстирована. Теперь установите инструмент на расстоянии около 2 м от рейки B и возьмите отсчет b2. Вычисленное значение c=b2+d должно быть равно отсчету a2 по рейке A, если линия визирования отъюстирована.

$$a1 = 2.423$$
 $b2 = 1.462$
 $-b1 = 0.936$ $+d = +1.487$
 $d = +1.487$ $c = 2.949$

Примечание: всегда записывайте знак значения d!

2. Если фактический отсчет по рейке отличается от расчетного значения больше чем на 4 мм, по рейке устанавливается значение вычисленного отсчета при помощи юстировочных винтов, которые становятся доступными, когда снято диоптрийное кольцо (4). С помощью верхних и нижних юстировочных винтов, которые являются диаметрально противоположными, осуществляют перемещение сетки нитей, винты не должны быть затянуты слишком сильно. Выполняйте поверку и юстировку пока значение с не будет рано а2.

Эксплуатация и обслуживание

- 1. Протирайте инструмент чистой тканью. Очищайте объектив и окуляр с большой осторожностью, используя чистую и мягкую ткань, хлопковую материю или мягкую щетку. **Не используйте никакой жидкости для очистки кроме чистого алкоголя**. Избегайте прикосновения к оптическим поверхностям пальцами.
- 2. После использования инструмента в пыльных местах и при дожде всегда тщательно вытирайте его сухой тряпочкой, и храните инструмент в сухом, темном помещении.
- 3. Транспортировка инструмента на большие расстояния должна осуществляться в транспортировочном ящике.

Технические характеристики

Таблица 1: Точность

Модель	AX-2S	AC-2S	AP-8
Точность на 1 км	+/- 2.5 мм	+/- 2.0 mm	+/- 1.5 mm
двойного хода	1/- 2.3 MIM	1/- 2.0 MIM	1/- 1.3 MM

Таблица 2: Зрительная труба

Модель	AX-2S	AC-2S	AP-8
Увеличение	20x	24x	28x
Диаметр объектива	30 мм	30 мм	36 мм
Изображение	прямое	прямое	прямое
Поле зрения	1° 30'	1° 30'	1° 30'
Минимальное расстояние фокусировки	0.75 м	0.75 м	0.75 м
Коэффициент дальномера	100	100	100
Дополнительная константа	+10 см	+10 см	+10 cm

Таблица 3: Размеры (Ш х Д х В в мм)

Модель	AL 120	AL 124	AL 228
Инструмент	130x210x130	130x210x130	130x190x135
Транспортировочный ящик	170x280x190	170x280x190	170x280x190

Таблица 4: Вес

Модель	AL 120	AL 124	AL 228
Инструмент	1.2 кг	1.2 кг	1.6 кг
Транспортировочный ящик	1.1 кг	1.1 кг	1.1 кг

Таблица 5: Компенсатор

Модель	AL 120	AL 124	AL 228

Тип	подвешенный на	подвешенный на	подвешенный на
	проволоке, с	проволоке, с	проволоке, с
	магнитным	магнитным	магнитным
	демпфером	демпфером	демпфером
Диапазон компенсации	±16'	±16'	±16'
Точность установки	±0.5"	±0.5"	±0.5"