

planetmath.org

Math for the people, by the people.

Moore-Penrose generalized inverse

Canonical name MoorePenroseGeneralizedInverse

Date of creation 2013-03-22 14:31:31 Last modified on 2013-03-22 14:31:31

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 15A09
Classification msc 60J10

Synonym Moore-Penrose pseudoinverse

Related topic DrazinInverse Related topic Pseudoinverse Let A be an $m \times n$ matrix with entries in \mathbb{C} . The Moore-Penrose generalized inverse, denoted by A^{\dagger} , is an $n \times m$ matrix with entries in \mathbb{C} , such that

- 1. $AA^{\dagger}A = A$
- $2. A^{\dagger}AA^{\dagger} = A^{\dagger}$
- 3. AA^{\dagger} and $A^{\dagger}A$ are both Hermitian

Remarks

- The Moore-Penrose generalized inverse of a given matrix is unique.
- If A^{\dagger} is the Moore-Penrose generalized inverse of A, then $(A^{\dagger})^{\mathrm{T}}$ is the Moore-Penrose generalized inverse of A^{T} .
- If A = BC such that
 - 1. $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times r}$, and $C \in \mathbb{C}^{r \times n}$,
 - 2. $r = \operatorname{rank}(A) = \operatorname{rank}(B) = \operatorname{rank}(C)$, then

$$A^{\dagger} = C^*(CC^*)^{-1}(B^*B)^{-1}B^*.$$

For example, let

$$A = \begin{pmatrix} 1 & 1 & i \\ 0 & 1 & 0 \end{pmatrix}.$$

Transform A to its row echelon form to get a decomposition of A = BC, where

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } C = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & 0 \end{pmatrix}.$$

It is readily verified that $2 = \operatorname{rank}(A) = \operatorname{rank}(B) = \operatorname{rank}(C)$. So

$$A^{\dagger} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 0 & 2 \\ -i & i \end{pmatrix}.$$

We check that

$$AA^{\dagger} = I \text{ and } A^{\dagger}A = \frac{1}{2} \begin{pmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ -i & 0 & 1 \end{pmatrix}$$

are both Hermitian. Furthermore, $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$. So, A^{\dagger} is the Moore-Penrose generalized inverse of A.