

by James Chiu, Johnson Hsiao 12, 22, 2023

Q: Why doing this topic? A: Make money easily with stats.

Preview and abstract

Base(Benchmark) → Long a unit evey minutes and close 1 hour later.

- 1. Win rate = win / total tades = 50.378%
 - \rightarrow It make sense because the market is the approximate 0-sum game.
- 2. Profit Facotr = 1.014251,
 - →It means you can only earn 1.01425 dollar by losing 1 dollar in 3 years

Hence, our target is predict the correct direction of hourly return to imporove the win rate and PF.

Study Plan

DATA

Original

Open, High, Low, Close

Indicator and Algorithm

```
rsi = momentum
amount_spread = volume differrence
bar_rtn_sum = momentum
volatility_0 = volatility
price_vol_corr = corr (price and volume)
zscore = rolling price change zscore
x_s_ratio = vwap / avg(rtn)
high_low_dis = high and low distance rolling sum
```

Feature engineering Method 1

raw OHLCV data technical indicators Strategies PCA

Feature engineering Method 2

Feature

RSI

amount_spread

Feature

Volatility

Feature Price_vol_corr

Zscore

Feature x s ratio

high_low_dis

ML Model

Logistic Regression

Functionality:

Models the probability that an instance belongs to a particular category.

Random Forest

Functionality:

Constructs a multitude of decision trees during training and outputs the mode of the classes or mean prediction of the individual trees.

XGBoost

Functionality:

Builds a series of weak learners (usually decision trees) sequentially, where each new learner corrects the errors made by the previous ones.

Principal Component Analysis

Logistic Regression

Random Forest

Random Forest (only use OHLC)

XGBoost

Result (Without PCA)

	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.509	0.5100	0.6490	0.5712
Random Forest	0.8991	0.9049	0.8937	0.8993
XGBoost	0.7255	0.7286	0.7254	0.7270

PCA

Choosing N

	Logistic Regression	Random Forest	XGBoost
10 principal component	0.5067	0.5532	0.5563
50 principal component	0.5067	0.6952	0.6263
100 principal component	0.5067	0.7286	0.6365
158(all) principal component	0.5067	0.7584	0.6608

Result (With PCA)

	Accuracy	Precision	Recall	F1 score
Logistic Regression	0.5067	0.5165	0.3282	0.4014
Random Forest	0.8991	0.9049	0.78937	0.8993
XGBoost	0.6608	0.6643	0.6608	0.6625

Result

Strategy: If predict is 1, long the position and close it 1 hour later.

Win rate is improved from 50% to 69.35%

Profit Facotr is improved from 1.01 to 2.996

Which is the more profitable strategy by Machine Learning.

$$PF = \frac{avg(profit\ per\ trades)}{avg(loss\ per\ trades)} = 2.99615391136621$$

Win rate = win / total tades = 0.693475