AMIR HASSANZADEH

□ ah7557@rit.edu

\$585-771-0680

amirhszd.github.io

in linkedin.com/in/amirhassanzadeh

RESEARCH INTERESTS

Remote Sensing (RS), Machine Learning (ML), Deep Learning (DL), Computer Vision (CV), Geospatial Problem-Solving

EDUCATION

AUG 2017 - Current	Ph.D. in IMAGING SCIENCE Chester F. Carlson Center for Imaging Science Rochester Institute of Technology, Rochester, NY Advisor: Dr. Jan van Aardt Thesis Title: On the Use of Imaging Spectroscopy from UAS to Model Yield and Assess Growth Stages of a Broadacre Crop
SEP 2011 - JUL 2016	B.S. in CHEMICAL ENGINEERING Faculty of Engineering, University of Guilan, Rasht, Iran Thesis Title: Numerical Simulation of Oil Extraction from Plants

PUBLICATIONS

TBD	Hassanzadeh, A. & van Aardt, J. Hyperspectral Denoising Using Generative Adversarial Networks. <i>Under Preparation</i>
TGRS	Hassanzadeh, A., Zhang, F., Murphy, S. P., Pethybridge, S. J., & van Aardt, J. (2021). Toward Crop Maturity Assessment via UAS-based Imaging Spectroscopy - A Snap Bean Pod Size Classification Field Study. <i>TGRS</i> , <i>Under Review</i>
RS	Hassanzadeh, A. , Zhang, F., van Aardt, J., Murphy, S. P., & Pethybridge, S. J. (2021). Broadacre crop yield estimation using imaging spectroscopy from unmanned aerial systems (UAS): A field-based case study with snap bean. <i>Remote Sensing</i> , 13(16), 3241.
RS	Zhang, F., Hassanzadeh , A. , Kikkert, J., Pethybridge, S. J., & van Aardt, J. (2021). Comparison of UAS-Based Structure-from-Motion and LiDAR for Structural Characterization of Short Broadacre Crops. <i>Remote Sensing</i> , 13(19), 3975.
RS	Hassanzadeh, A., Murphy, S. P., Pethybridge, S. J., & van Aardt, J. (2020). Growth Stage Classification and Harvest Scheduling of Snap Bean Using Hyperspectral Sensing: A Greenhouse Study. <i>Remote Sensing</i> , 12(22), 3809.
JARS	Hassanzadeh, A., van Aardt, J., Murphy, S. P., & Pethybridge, S. J. (2020). Yield modeling of snap bean based on hyperspectral sensing: a greenhouse study. <i>Journal of Applied Remote Sensing</i> , 14(2), 024519

CONFERENCE PAPERS & TALKS

SciPy	Hassanzadeh, A., van Aardt, J. (2021). <i>Jostar</i> : A Feature Selection Library for Data Sciences in Python. SciPy 2021 [github.com/amirhszd/jostar]
IGARSS	Hassanzadeh, A., van Aardt, J., Kikkert, J., Pethybridge, S. J., Murphy, S. P., Cross, D. (2021). Plant Counts in Dense Red Beet Crops: A Computer Vision Approach. IGARSS, 6508-6511

AGU Hassanzadeh, A., van Aardt, J., Zhang, F., Murphy, S. P., Pethybridge, S. J. (2021). Multi-objective

Wavelength Selection for Snap-bean Yield Assessment Using Remote Sensing: A Field Study.

AGU Fall Meeting Abstracts, B004-0006

IGARSS Zhang, F., Hassanzadeh, A., Kikkert, J., Pethybridge, S. J., van Aardt, J. (2020). Toward a

Structural Description of Row Crops Using UAS-Based LiDAR Point Clouds. IGARSS, 465-468

RESEARCH EXPERIENCE

IUL 2021 -MACHINE LEARNING INTERN

OCT 2021 **AGERpoint**

Mentor: Dr. Bobby Vick

Highlights: Developed end-to-end deep learning pipelines to assess corn damage using UAV.

REMOTE SENSING INTERN JUN 2020 -

PrecisionHawk, Raleigh, NC SEP 2020

Mentor: Dr. Colin Axel | Group: Data Services

Highlights: Implemented deep learning approaches to solve geospatial problems tied to LiDAR point cloud segmentation, semantic segmentation, and time series (video) classification.

IUN 2018 -RESEARCH ASSISTANT

AUG 2018 Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY

Mentor: Dr. Anthony Vodacek

Highlights: Developed computer vision and statistical approaches to evaluate cloud height via

LANDSAT-8 Thermal (TIRS) data.

TEACHING EXPERIENCE

SEP 2017 -**TEACHING ASSISTANT**

APR 2021 Chester F. Carlson Center for Imaging Science,

Rochester Institute of Technology, Rochester, NY

Highlights: Organized and instructed a two-week workshop on Applications of Deep Learning in Hyperspectral Remote Sensing for Advanced Environmental Applications of Remote Sensing Course. Teaching assistant for Imaging System Analysis course.

HONORS & AWARDS

- Top third (among 20 students) in Ph.D. qualification exam.
- Top 2% (among 300,000 candidates) in undergraduate university entrance exam.
- Top student (among 90 students) in undergraduate level for three consecutive semesters.

Professional Services

Journal Reviewing	
Plant Disease Journal	2021
Field Crop Research	2021
Journal of Applied Remote Sensing (JARS)	2021
Journal of Open Source Software (JOSS)	2021
Journal of Supercomputing (SUPE)	2020, 2021
Conference Reviewing	
International Conscience and Demote Sensing Symposium	(ICADSS) 2020 2021

International Geoscience and Remote Sensing Symposium (IGARSS) 2020, 2021

Scientific Computing with Python (SciPy) 2021

SKILLS

- Deep Learning Frameworks: PyTorch, Tensorflow, Keras
- Scientific Computing Packages: Numpy, Scipy, OpenCV, Scikit-learn, Pandas, Geopandas, RasterIO, Shapely, GDAL
- **Programming (Proficient)**: Python
- Programming (Basic/Past): C, C++, MATLAB
- **Software/others:** Git, LATEX, QGIS, Cloud Compare, ENVI, ArcGIS, LAStools, Pix4D, LaTeX, Office, Photoshop, InDesign, Microsoft Office