

TFT LCD Approval Specification

MODEL NO.: M270H3-L01

Customer:	Common Model
Approved by:	
Note:	

核准時間	部門	審核	角色	投票
2010-01-29 09:08:52	MTR 產品管理處	吳 2010.01.29 柏 勳	Director	Accept

- CONTENTS -

REVISION HISTORY	
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS	5
3. ELECTRICAL CHARACTERISTICS	7
4. BLOCK DIAGRAM4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 LVDS DATA MAPPING TABLE 5.3 COLOR DATA INPUT ASSIGNMENT	12
6. INTERFACE TIMING6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	15
7. OPTICAL CHARACTERISTICS	18
8. PACKAGING8.1 PACKING SPECIFICATIONS 8.2 PACKING METHOD	21
9. DEFINITION OF LABELS	23
10. RELIABILITY TEST	24
11. PRECAUTIONS	25
12. MECHANICAL CHARACTERISTICS	26

REVISION HISTORY

Version	Date	Section	Description
Ver 3.0	27,Jan, 10'	-	M270H3 -L01 Approval specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

M270H3-L01 is a 27.0" TFT Liquid Crystal Display module with white LED Backlight unit and 30 pins 2ch-LVDS interface. This module supports 1920 x 1080 HD+ mode and can display up to 16.7M colors. The converter module for Backlight is not built in.

1.2 FEATURES

- Extra-wide viewing angle.
- High contrast ratio.
- Fast response time.
- Full HD (1920 x 1080 pixels) resolution.
- DE (Data Enable) only mode.
- LVDS (Low Voltage Differential Signaling) interface.
- RoHS compliance.

1.3 APPLICATION

- TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	597.89 (H) X 336.31 (V), (27.0 inch Diagonal)	mm	(1)
Bezel Opening Area	603.9 (W) x 342.3 (H)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.3114 (H) x 0.3114 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	AG type, 3H hard coating, Haze 25	_	-
Module Power Consumption	24	Watt	(2)

1.5 MECHANICAL SPECIFICATIONS

Ite	Item		Тур.	Max.	Unit	Note
	Horizontal(H)	629.5	630.0	630.5	mm	
Module Size	Vertical(V)	367.8	368.2	368.7	mm	(1)
	Depth(D)	13.6	14.1	14.6	mm	
We	ight	-	3050	3100	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Please refer to sec.3.1 & 3.2 for more information of power consumption.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max

- Note (3) 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

CHI MEI

Issued Date: 27, Jan, 2010 Model No.: M270H3-L01

Approval

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Syllibol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)
Logic Input Voltage	Vlogic	-0.3	+3.6	V	

Note (1) Permanent damage might occur if the module is operated at conditions exceeding the maximum values.

2.2.2 BACK LIGHT UNIT

Item	Symbol		Value		Unit Note		
item	Syllibol	Min.	Тур.	Max.	Offic	NOLE	
LED Forward Current Per Input Pin	I _F	0	20	30	mA	(1), (2)	
LED Reverse Voltage Per Input Pin	V_{R}			60	V	Duty=100%	
LED Pulse Forward Current Per Input Pin	l _P			80	mA	(1), (2) Pulse Width 10msec. and Duty 10%	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of input pin of LED light bar at Ta=25±2 (Refer to 3.2 and 3.3 for further information)

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol		Value		Unit	Note
Farame	:(0)	Symbol	Min.	Тур.	Max.	Offic	Note
Power Supply	/ Voltage	Vcc	4.5	5.0	5.5	V	-
Ripple Vo	ltage	V_{RP}			300	mV	-
Power on Rus	h Current	I _{RUSH}			3	Α	(2)
	White			0.65	0.78	Α	(3)a
Power Supply Current	Black			1.22	1.464	Α	(3)b
	Vertical Stripe			1.02	1.22	Α	(3)c
Power Cons	PLCD		6.1	7.32	Watt	(4)	
LVDS differential input voltage		Vid	200		600	mV	(5)
LVDS common input voltage		Vic		1.2		V	
Logic High Input Voltage		VIH	2.64		3.6	V	
Logic Low Inpu	ut Voltage	VIL	-0.3		0.66	V	

Note (1) The module should be always operated within above ranges.

Note (2) Power on rush current Measurement Conditions:

Vcc rising time is 470µs

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}\text{Hz}$, whereas a power dissipation check pattern below is displayed.

Note (4)The power consumption is specified at the pattern with the maximum current Note (5) VID waveform condition

3.1.1 Vcc Power Dip Condition:

Dip condition: 4.0V: Vcc: 4.5V, Td: 20ms

3.2 BACKLIGHT UNIT (LED matrix is 12S6P)

Ta = 25 ± 2 °C

	`	,					
Parameter Svm			Value	Unit	Note		
r arameter	Symbol	Min.	Тур.	Max.	Offic	Note	
LED Light Bar Input Voltage Per Input Pin	V _{PIN}	33.6	37.2	40.8	LED Light Bar Input Voltage Per Input Pin	V_{PIN}	
LED Light Bar Current Per Input Pin	I _{PIN}	0	20	30	LED Light Bar Current Per Input Pin	I _{PIN}	
LED Life Time	L _{LED}	30000			LED Life Time	L_LED	
Power Consumption	P _{BL}		17.9		Power Consumption	P _{BL}	

- Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:
- Note (2) $P_{BL} = I_{PIN} \times V_{PIN} \times 12$ input pins , LED light bar circuit is 12 Series, 24 Parallel.
- Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 ± 2 and I= 20 mA (per chip) until the brightness becomes 50% of its original value.

Issued Date: 27, Jan, 2010 Model No.: M270H3-L01

Approval

3.3 LIGHTBAR Connector Pin Assignment

Connector: 7083K-F12N-00L (ENTERY) or Equivalent

Input	connector	
(vendor) (ENTERY)	(type) 7083K-F12N-00L	Comments
Pin	Function	
1	NC	No connect
2	LED1	Channel 1
3	LED2	Channel 2
4	LED3	Channel 3
5	NC	No connect
6	VLED (37.2V)	Input voltage Power Supply + (37.2V.typ)
7	VLED (37.2V)	Input voltage Power Supply + (37.2V.typ)
8	NC	No connect
9	LED4	Channel 4
10	LED5	Channel 5
11	LED6	Channel 6
12	NC	No connect

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	Not connection, this pin should be open.
26	NC	Not connection, this pin should be open.
27	VCC	+5.0V power supply
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.: 093G30-B2001A (STARCONN) or MSCKT2407P30HA (STM).

Note (2) Mating FFC Cable Connector Part No.: 7083K-F12N-00L (ENTERY).

Note (3) The first pixel is odd.

Note (4) Input signal of even and odd clock should be the same timing.

Issued Date: 27, Jan, 2010 Model No.: M270H3-L01

Approval

5.2 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel Ou	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVDS Channel E0	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Channel E2	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS CHAIIIEI ES	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

Issued Date: 27, Jan, 2010 Model No.: M270H3-L01

Approval

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da		Sigr											
	Color				Re									reer						-	Bli				
	Disak	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	В0 0
	Black Red	0 1	0	0	0 1	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	Ö	Ö	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
00.0.0	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	U	U	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(0) / Dark Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	5146(2)														.								.		
Scale				:				:	:	:	:	:	:									:			
Of	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(254)	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	54.54	74	98	MHz	-
	Period	Tc	-	13.5	-	ns	
	Input cycle to cycle jitter	T_{rcl}	-0.02*Tc	-	0.02*Tc	ns	(1)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod	0.98*Fc		1.02*Fc	MHz	(2)
	Spread spectrum modulation frequency	F_{SSM}			200	KHz	(2)
	High Time	Tch	-	4/7	-	Tc	-
	Low Time	Tcl	_	3/7	-	Tc	-
LVDS Data	Setup Time	Tlvs	600	ı	-	ps	(3)
LVDS Data	Hold Time	Tlvh	600	ı	-	ps	(3)
	Frame Rate	Fr	47	60	75	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Tv	1105	1125	1136	Th	-
vertical Active Display Territ	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	Tv-Tvd	45	Tv-Tvd	Th	_
	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	960	960	960	Tc	-
	Blank	Thb	Th-Thd	140	Th-Thd	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Timing Specifications:

0.5< t1	10 msec
0 < t2	50 msec
0 < t3	50 msec
t4	500 msec
t5	450 msec
t6	90 msec
5< t7	100 msec

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) CMO won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "t7 spec".

Issued Date: 27, Jan, 2010 Model No.: M2<u>70H3-L01</u>

Approval

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25 ± 2	°C
Ambient Humidity	На	50 ± 10	%RH
Supply Voltage	V_{CC}	5	V
Input Signal	According to typical va	alue in "3. ELECTRICAL	CHARACTERISTICS"
Light Bar Input Voltage Per Input Pin	V_{PIN}	37.2 ±3.6	V
LED Light Bar Input Current Per Input Pin	I _{PIN}	20 ± 0.6	mA
PWM Duty Ratio	D	100	%
LED Light Bar Test Converter		CMO 27-D041745	

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.644			
	Red	Ry			0.339			
	Green	Gx			0.311			
Color Chromaticity	Green	Gy		-0.03	0.613	+0.03	_	(1) (5)
(CIE 1931)	Blue	Bx	0 -00 0 -00	-0.03	0.152	+0.03	_	(1), (5)
(8.2 1881)	blue	Ву	θ_x =0°, θ_Y =0° CS-2000		0.069			
	White	Wx	00-2000		0.313			
	vviille	Wy			0.329			
Center Lumina (Center of		L _C		250	300	-	-	(4), (5)
Contrast	Ratio	CR		800	1200	-	-	(2), (5)
		T_R		-	0.8	2.5		
Respons	e Time	T_F	θ_{x} =0°, θ_{Y} =0°	-	2.6	5.5	ms	(3)
		TTotal			3.4	8.0		
White Va	riation	δW	θ_x =0°, θ_Y =0° USB2000	-	-	1.33	-	(5), (6)
Viousing Angle	Horizontal	θ_{x}	CR 10	150	170	-	Dog	(1) (5)
Viewing Angle	Vertical	θ_{Y}	USB2000	140	160	_	Deg.	(1), (5)
Viouring Angle	Horizontal	θ_{x}	CR 5	160	178		Dog	(1) (F)
Viewing Angle	Vertical	θ_{Y}	CR 0	150	170		Deg.	(1), (5)

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_C = L(1)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = Maximum [L (1), L (2)L (8), L (9)] / Minimum [L (1), L (2)L (8), L (9)]$

20 / 28

8. PACKAGING

8.1 PACKING SPECIFICATIONS

(1) 7 LCD modules / 1 Box

(2) Box dimensions: 720(L) X 360(W) X 480(H) mm

(3) Weight: 25.83 Kg (7 modules per box)

8.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 1 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	·
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, TBD 45.7cm	Non Operation

Figure. 8-1 Packing method

For ocean shipping

Sea and land transportation

For air transport

Figure. 8-2 Packing method

Air transportation

Figure. 8-3 Packing method

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: M270H3-L01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) CMO barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
Х	CMO internal use	-
XX	CMO internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) Customer's barcode definition:

Serial ID: CM-27H31-X-X-X-X-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	CMO=CM
20031	Model number	M270H3-L01= 27H31
Х	Revision code	Non ZBD: 1,2,~,8,9 / ZBD: A~Z
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C, OKI=D, Philips=E, Renasas=F,
Х	Gate driver IC code	Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan Taiwan=TN, Ningbo China=CN
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN ; Ningbo China=NP
L	Module line #	1,2,~,9,A,B,~,Y,Z
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	By LCD supplier

(e) FAB ID(UL Factory ID):

Region	Factory ID
TWCMO	GEMN
NBCMO	LEOO
NBCME	CANO
NHCMO	CAPG

Issued Date: 27, Jan, 2010 Model No.: M270H3-L01

Approval

10. Reliability Test

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50 , 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50 , 50%RH , 240hours	
Low Temperature Operation (LTO)	Ta= 0 , 240hours	
High Temperature Storage (HTS)	Ta= 60 , 240hours	
Low Temperature Storage (LTS)	Ta= -20 , 240hours	
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Half-sine Frequency: 10 - 300 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 11 ms Direction: ± X, ± Y, ± Z.(one time for each Axis)	
Thermal Shock Test (TST)	-20 /30min , 60 / 30min , 100 cycles	
On/Off Test	25 ,On/10sec , Off /10sec , 30,000 cycles	
ESD (Electro Static Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω) Air Discharge: ± 15KV, 150pF(330Ω)	
Altitude Test	Operation:10,000 ft / 24hours Non-Operation:30,000 ft / 24hours	

Approval

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

11.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

11.4. Storage

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 And relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

11.5. Operation condition guide

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Issued Date: 27, Jan, 2010 Model No.: M270H3-L01

Approval

Temperature : 20±15 Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude, display pattern or operation time etc...It is strongly recommended to contact CMO for application engineering advice. Otherwise, Its reliability and function may not be guaranteed.

11.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

12. MECHANICAL CHARACTERISTICS

[Refer to the next 2 pages]

