Comparing Simulated and Observed Gross Primary Productivity

Kevin Schaefer, Altaf Arain, Alan Barr, Jing Chen, Ken Davis, Dimitre Dimitrov, Ni Golaz, Timothy Hilton, David Hollinger, Elyn Humphreys, Benjamin Poulter, Brett Raczka, Andrew Richardson, Alok Sahoo, Christopher Schwalm, Peter Thornton, Rodrigo Vargas, Hans Verbeeck, Chris Williams

NACP Synthesis Management Team

Ameriflux and Fluxnet Canada Investigators

Modeling Team Investigators

Objectives

 Quantify how well models simulate GPP

• Identify sources of error

32 Flux Tower Sites

21 Models, 3 MODIS, 2 Model Mean

AGROIBIS LPJ

BEPS MODIS_alg

BIOMEBGC MODIS_C5

CAN-IBIS MODIS_C5.1

CNCLASS ORCHIDEE

DLEM SIB

DNDC SIBCASA

ECLUEEDCM SIBCROP

ECOSYS SSIB2

ED2 TECO

ISAM TRIPLEX

ISOLSM Mean (all)

LOTEC Mean (diurnal)

Model Runs

- Gap-filled observed weather
- Steady state
- Observed NEE partitioned into GPP & respiration
- GPP Uncertainty
 - Random
 - U* filtering
 - Gap-filling
 - Partitioning

Model-Data Comparison

- Daily average GPP
- Performance Measures
 - Chi-squared statistic
 - Root Mean Squared Error
 - Normalized Mean Absolute Error
 - Bias

Overall Model Performance

Typical GPP

Monthly Average GPP for CA-Ca1

Light Use Efficiency Curves

Daily Average GPP for CA-Ca1

Temperature Response Curves

Daily Average GPP for CA-Ca1

Conclusions

- Models don't simulate GPP well
- Bias in seasonal amplitude
- Improve LUE
- Improve Temperature Response

Acknowledgments

 Funding provided by NASA, NOAA, and NSF

Statistics

Chi-squared

$$X^{2} = \frac{1}{n} \sum \left(\frac{GPP_{mod} - GPP_{est}}{\varepsilon_{GPP}} \right)^{2}$$
 \(\text{\$\text{\$X\$}^{2} \sim 1\$ model matches data within uncertainty } \)

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{n} \sum (GPP_{mod} - GPP_{est})^2}$$
 $RMSE = 0$ perfect fit with data

Normalized Mean Absolute Error

$$NMAE = \frac{1}{\overline{GPP_{est}}n} \sum |GPP_{mod} - GPP_{est}|$$
 $NMAE = 0$ perfect fit with data

$$B = \frac{1}{n} \sum (GPP_{mod} - GPP_{est})$$
 $B > 0$ model greater than data

Overall Performance by Model

Ratio of Annual GPP Amplitude

GPP Total Uncertainty for CA-Ca1

GPP Uncertainty for CA-Ca1

Daily Average GPP

