

Prédiction de la maladie cardiaque à partir de données cliniques

Projet de machine learning supervisé

Contexte & Problématique

- Les maladies cardiovasculaires sont l'une des premières causes de mortalité mondiale.
- Identifier précocement les patients à risque permet de prévenir des complications graves.
- Question posée: Peut-on prédire la présence d'une maladie cardiaque à partir de simples données cliniques (âge, tension, cholestérol, ECG, etc.)?

Objectifs du projet

- Construire un modèle prédictif fiable et interprétable.
- Comparer plusieurs algorithmes de classification (Logistic Regression, Random Forest, Gradient Boosting).
- Identifier les **facteurs cliniques clés** associés au risque.
- Fournir une aide à la décision médicale simple à exploiter.

Données utilisées

- **Source :** Heart Disease Dataset UCI / Kaggle
- 1025 patients, 14 variables cliniques, dont :age, sex, trestbps, chol, thalach, oldpeak, etc.
- Variable cible : target (1 = malade, 0 = sain)
- Données équilibrées, peu de valeurs manquantes.

FR

Présentation des données

	age	Sex	trest bps	chol	fbs	reste cg	thala ch	exan g	oldp eak	slope	са	thal	targe t
0	52	1	0	125	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	1	1	106	0	1.9	1	3	2	0
5	58	0	0	100	0	0	122	0	1.0	1	0	2	1
6	58	1	0	114	0	2	140	0	4.4	0	3	1	0
7	55	1	0	160	0	0	145	1	0.8	1	1	3	0
8	46	1	0	120	0	0	144	0	0.8	2	0	3	0
9	54	1	0	122	0	0	116	1	3.2	1	2	2	0

Méthodologie

• Préparation des données :

- Standardisation des variables numériques
- Encodage OneHot des variables catégorielles

Modélisation :

- Régression Logistique
- Random Forest (tuning via GridSearchCV)
- Gradient Boosting

• Évaluation :

- Accuracy, F1, Recall, ROC-AUC
- Matrices de confusion
- Split 70/30 (train/test, stratifié)

FR

Résultats

Modèle	Accuracy	F1	ROC-AUC		
Régression Logistique	0.87	0.88	0.94		
Gradient Boosting	0.96	0.97	0.98		
Random Forest (Best)	0.98	0.98	0.995		

FR

Interprétation

- Variables les plus influentes :
- thalach (fréquence cardiaque max)
- oldpeak (anomalies ECG)
- cp (type de douleur thoracique)
- age et ca (vaisseaux obstrués)

Ces facteurs sont cohérents avec la littérature médicale sur les risques cardiovasculaires.

Visualisation & Confusion

- Trois matrices de confusion côte à côte (LogReg, RF, GB).
- Commente brièvement :
 - peu de faux négatifs avec Random Forest → bon rappel clinique.
 - modèle fiable pour le dépistage préventif.

Recommandations & perspectives

- Intégrer le modèle dans un outil d'aide à la décision hospitalier.
- Adapter le **seuil de décision** pour privilégier le *recall* (mieux vaut prévenir qu'omettre un malade).
- Étendre à des données réelles locales (Haïti, structures de santé publique).
- Utiliser SHAP/LIME pour interpréter patient par patient.

Conclusion

Le projet montre qu'un **modèle supervisé simple** peut prédire la maladie cardiaque avec une précision proche de 98 %.

Les facteurs clés identifiés sont cliniquement plausibles.

Approche **éthique et explicable** : l'IA en soutien, pas en remplacement du diagnostic médical.

Merci.

Amee Hashley JEUDY

ameehashleyjeudy@gmail.com

https://www.linkedin.com/in/ame e-hashley-jeudy-460449325