Diseño de Bases de Datos

Refinamiento de esquemas y Normalización

El problema de la redundancia

- » se realiza sobre el esquema relacional
- » por anticipación, se hace sobre el ERD
- Redundancia: almacenar información en más de un sitio
 - Almacenamiento redundante
 - Posibilidad de inconsistencia
 - Anomalías
 - actualización
 - inserción
 - borrado

- - -

Empleado

<u>dni</u>	nombre	nreg	cat	horas_ sem	sueldo_ base
2354	García	48	8	40	10
9625	Aragón	22	8	30	10
5557	Pozo	35	5	35	7
2121	Sainz	35	5	40	7

- la combinación 8 -> 10 y 5 -> 7 es redundante
- actualización de base_sueldo: en todas las tuplas
- inserción de empleado: sólo si se sabe la base de su categoría —dejar null?
- borrado de todas las tuplas de una categoría: se pierde la base_sueldo

Descomposición

» sustituir una relación por otras dos (o más) cada una con un subconjunto de campos y, conjuntamente, incluyendo todos los originales

Empleado(<u>dni</u>,nombre,nreg,cat,horas_sem)
Sueldo(<u>cat</u>,base_sueldo)

Requisitos descomposición

- Reunión sin pérdida
- Conservación de las dependencias
- Consultas pueden obligar a la reunión de las relaciones descompuestas
 - penalización en el rendimiento
 - ży si la eficiencia resultante no fuera aceptable?

Dependencias funcionales

DF, clave → todos los atributos *—definición relacional*

- la dependencia no exige que la clave sea mínima

DF, $X \rightarrow todos los atributos$

- si X no es mínimo, entonces es una superclave

Formas Normales

- » si el esquema se encuentra en una de estas formas normales, ciertos tipos de problemas serán eliminados / minimizados
- Basadas en DF
 - 1NF, 2NF, 3NF, BCNF
 - 3NF y BCNF son importantes en el diseño de bases de datos
- Basadas en otros tipos de dependencias
 - multivaluadas (DM): 4NF, reunión (DR): 5NF
- 1NF: no existencia de grupos repetitivos

BCNF

- » —intuitivamente— permitir solo las dependencias con la clave
- Rel R, DFs F, subconj. atributos X, atrib. A R está en BCNF si, para cada DF X → A,
 - $-A \in X$, DF trivial, o
 - X contiene una clave de R
- Ej. no BCNF
 - Empleado(dni,nombre,nreg,cat,horas_sem,sueldo_base)
 DF cat → base_sueldo
 - Reserva(<u>dni,matr,fecha</u>,tarjeta), dni ¹—¹ tarjeta
 DF dni → tarjeta
- Solución por descomposición

3NF

- Problema técnico con BCNF
 - —múltiples claves candidatas solapadas
 - Reserva(<u>dni,matr,fecha</u>,tarjeta), dni ¹—* tarjeta
 - tengo que anotar la tarjeta con la que se pagó, pero
 - DF tarjeta → dni, y esto <u>no</u> cumple BCNF
 - tarjeta, matr, fecha podría ser clave primaria
- Rebajo las condiciones y permito una cierta redundancia: 3NF
 - tercera posibilidad: A es parte de alguna clave de R

Descomposición de una relación

- » en dos (o más) que se reparten los atributos, garantizando reunión sin pérdida y conservación de dependencias
- Algoritmo de descomposición en BCNF
 - 1. R no en BCNF, $X \subset R$, A atributo, $X \to A$ que provoca el no cumplimiento
 - 2. Descomponer en R-A y XA
 - 3. Si R-A o XA no en BCNF, aplicar recursivamente
- Ej. Contratos con atributos <u>C</u>PYDRNV (<u>idC</u>,idProve,idProy,idDepto,idRepuesto,cantidad,valor)
 y DFs PD → R, Y → P

. . .

- 1. guiado por PD \rightarrow R
 - PDR y CPYDNV, ahora aplicar para Y \rightarrow P
 - PDR, YP y CYDNV
- 2. guiado por $Y \rightarrow P$
 - YP y CYDRNV
 - la otra dependencia ya no desnormaliza
- Distintas alternativas, cuya elección se hará respecto a la semántica de la aplicación

ER -> Rel -> Rel Normalizado

- ¿Se puede directamente producir un ER libre de problemas de redundancia?
 - ER es un proceso complejo y subjetivo (piénsese en esquemas con más de 100 tablas)
 - Determinadas restricciones / dependencias no se pueden expresar en ER (al menos fácilmente)
 - Técnica formal para tratar un diseño original que da como resultado un diseño mejor