

UNIVERSIDAD POLITÉCNICA DE CHIAPAS

INGENIERÍA MECATRÓNICA

DISEÑO Y CONTROL DE BRAZO ROBÓTICO ANTROPOMÓRFICO DE 6 GRADOS DE LIBERTAD.

El presente artículo describe las secciones necesarias para el diseño, ensamble y control de un brazo robótico antropomórfico de 6 grados de libertad, considerando la cinemática directa mediante el algoritmo de Denavit-Hartenberg. Mientras que las velocidades lineales son posibles de obtener mediante el Jacobiano del manipulador.

DIAGRAMA DE BLOQUES

ALGORITMO DE CONTROL

ESQUEMA ELECTRÓNICO

VISTA EXPLOSIONADA

SIMULACIÓN EN ROBODK

REFERENCIAS

- Skyentific. (2018). 6 Degreeds of freedom 3D Printed Robot Arm.
- Miranda Colorado, R. (2016). Cinemática y Dinámica de Robots Manipuladores. CDMX: Alfaomega.
- FU, K. S. (s.f.). Robótica: Control, detección, visión e inteligencia. McGraw-Hill.

UNIVERSIDAD POLITÉCNICA DE CHIAPAS

INGENIERÍA MECATRÓNICA

Alejandro Tevera Ruiz, Luis G. Gamboa Genovez; Juan C. Bolaños Marín, Mario W. Morales Coutiño.

CÁLCULO DE POSICIÓN, VELOCIDADES LINEALES Y ANGULARES DE UN MANIPULADOR DE 6 GDL.

El presente artículo describe la cinemática directa mediante el algoritmo de Denavit-Hartenberg y las velocidades lineales y angulares del TCP (Tool Center Point) mediante la matriz Jacobiana.

(1)

Introducción: El modelo cinemático directo consiste en calcular la posición del efector final con base a los ángulos otorgados de cada grado de libertad del brazo robótico.

El objeto de estudio es un manipulador de 6 GDL, con eslabones definidos por a1, a2, a3, a4, a5, a6 y grados de libertad rotacionales: Θ 1, Θ 2. Θ 3, Θ 4, Θ 5.

Para continuar con el algoritmo, se obtiene la tabla de parámetros del manipulador (1),

	•			
GDL	θ	d	а	α
0	0	a_1	0	0°
1	θ_1	0	a_2	-90°
2	θ ₂ – 90°	0	a_3	0°
3	θ_3	0	a_4	-90°
4	θ_4	a ₅	0	90°
5	$\theta_{5} + 90^{\circ}$	0	a_6	-90°

Realizando una matriz por cada articulación con los parámetros de la tabla anterior (1) como se muestra a continuación (2).

$$\begin{bmatrix} \cos \theta_n & -\cos \alpha_n \sin \theta_n & \sin \alpha_n \sin \theta_n & a_n \cos \theta_n \\ \sin \theta_n & \cos \alpha_n \cos \theta_n & -\sin \alpha_n \cos \theta_n & a_n \sin \theta_n \\ 0 & \sin \alpha_n & \cos \alpha_n & d_n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2)

Resolviendo el producto de las matrices de cada sistema de referencia, es posible obtener la matriz de transformación homogénea denotada de la siguiente forma:

$${}^{0}T_{6} = \begin{bmatrix} P11 & P12 & P13 & PX \\ P21 & P22 & P23 & PY \\ P31 & P32 & P33 & PZ \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)

REFERENCIAS

- Skyentific. (2018). 6 Degreeds of freedom 3D Printed Robot Arm.

- Miranda Colorado, R. (2016). Cinemática y Dinámica de Robots Manipuladores. CDMX: Alfaomega.

Para conocer la posición en X, Y, Z del efector final se usan las ecuaciones PX, PY, PZ obtenidas de (3).

$$Px = a_{2}C_{1}a_{5}S_{23}C_{1}a_{3}C_{1}C_{2}a_{6}C_{5}(S_{4}S_{1} + C_{4}C_{1}C_{2}C_{3}-C_{4}C_{1}S_{2}S_{3})-a_{6}S_{23}C_{1}S_{5} + a_{4}C_{1}C_{2}C_{3}a_{4}S_{1}S_{2}S_{3}$$
(4)

$$Py=a_{2}S_{1}-a_{5}S_{23}S_{1}+a_{3}C_{2}S_{1}-a_{6}C_{5}(C_{1}C_{4}-S_{4}C_{2}C_{3}S_{1}+C_{4}S_{1}S_{2}S_{3})-a_{6}S_{23}S_{5}S_{1}+a_{4}C_{2}C_{3}S_{1}a_{4}S_{1}S_{2}S_{3}$$
(5)

$$Pz=a_1-a_5C_{23}-a_4S_{23}-a_3S_{2}-$$

$$(a_6C_{45}S_{23})/2-$$

$$a_6C_{23}S_5(a_6C_2S_{23})/2$$
(6)

JACOBIANO

Introducción: La matriz Jacobiana nos permite conocer las velocidades angulares y lineales del TCP en función de las velocidades angulares de cada grado de libertad.

Para obtener la matriz Jacobiana de velocidad lineal y velocidad angular, se considera respectivamente:

$$J_{v} = \begin{bmatrix} \frac{\partial Px}{\partial \theta_{1}} & \frac{\partial Px}{\partial \theta_{2}} & \frac{\partial Px}{\partial \theta_{3}} & \frac{\partial Px}{\partial \theta_{4}} & \frac{\partial Px}{\partial \theta_{5}} & \frac{\partial Px}{\partial \theta_{6}} \\ \frac{\partial Py}{\partial \theta_{1}} & \frac{\partial Py}{\partial \theta_{2}} & \frac{\partial Py}{\partial \theta_{3}} & \frac{\partial Py}{\partial \theta_{4}} & \frac{\partial Py}{\partial \theta_{5}} & \frac{\partial Py}{\partial \theta_{6}} \\ \frac{\partial Pz}{\partial \theta_{1}} & \frac{\partial Pz}{\partial \theta_{2}} & \frac{\partial Pz}{\partial \theta_{3}} & \frac{\partial Pz}{\partial \theta_{4}} & \frac{\partial Pz}{\partial \theta_{5}} & \frac{\partial Pz}{\partial \theta_{6}} \end{bmatrix}$$

$$(7)$$

$$J_{w} = \begin{bmatrix} P_{13} \\ P_{23} \\ P_{33} \end{bmatrix}$$
 (8)

Las velocidades angulares características de este manipulador son las siguientes.

GDL	Tiempo [ms]	Resolución	Relación Mecánica	ω [rad/s]	
1	6		7.1	37.1755	
2	10		5.75	18.641	(9)
3	8	0.031415	5	19.6349	
4	4		2.8	21.9911	
5	2		2.1	32.9867	

Para obtener la matriz Jacobiana se realiza el producto de las matrices de velocidad lineal (7) y angular (8) con las velocidades angulares del manipulador (9).

$$\begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \\ \omega_{x} \\ \omega_{y} \end{bmatrix} = \begin{bmatrix} J_{v} \\ J_{w} \end{bmatrix} \begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \omega_{3} \\ \omega_{4} \\ \omega_{5} \\ \omega_{4} \end{bmatrix}$$
(10)