REPORT
ON THE
1989 DISCHARGES
FROM
MUNICIPAL
SEWAGE TREATMENT PLANTS
IN ONTARIO

JUNE 1991

TD 527 05 R46 MOE

C.2

Environment Environnement Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

REPORT ON THE 1989 DISCHARGES FROM MUNICIPAL STPs IN ONTARIO

Report prepared for : Water Resources Branch Ontario Ministry of the Environment

JUNE 1991

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1991
This publication may be reproduced for non-commercial purposes with appropriate attribution

PIBS 1598

TD 527 05 R46 MOE COPY 2 ADRY

EXECUTIVE SUMMARY

The 1989 Municipal Discharge Report provides a comprehensive summary of the performance of all municipal and Ministry of Environment (MOE) operated Sewage Treatment Plants (STPs) in Ontario. Three parameters, Biochemical Oxygen Demand (BOD), Suspended Solids (SS) and Total Phosphorus (TP) were assessed. These parameters constitute MOE sewage effluent quality guidelines as defined in Policy 08-01 and the Canada-U.S. Water Quality Agreement.

Four hundred and twelve plants were operating in 1989. Of these, 48 plants were not assessed. Two were new plants commissioned in 1989. One had samples broken in transit before analyses were done. Thirty-five plants did not discharge to surface water in 1989. Ten plants provided insufficient data for assessment without providing reason to the MOE, as compared to 14 from 1988.

Of the 364 plants assessed, 108 (30%) exceeded the Ministry sewage effluent quality guidelines. There has not been a significant change in compliance since last year when 109 STPs out of 362 (30%) plants assessed exceeded the limits.

Specifically, 16 STPs (4% of the total number of STPs assessed) failed BOD in 1989, as compared to 15 (4%) in 1988. Forty-one (11%) failed SS in 1989, as compared to 47 (13%) in 1988. Sixty-four continuous discharge STPs and 12 non-continuous discharge lagoons (21%) failed the monthly TP requirement this year as compared to a total of 78 (22%) in 1988. Of the continuous discharge STPs in 1989, 24 plants failed TP for one month, 13 for 2 months, and 26 plants exceeded for 3 or more months.

Fifty plants failed to meet Ministry effluent guidelines for 3 successive years. Forty-six of them have improvements planned or underway. Four STPs did not report remedial action to the MOE.

Twenty STPs were assessed against the effluent limits stipulated in their Certificates of Approval (C of A). Effluent requirements in the C of A are site-specific and are generally more stringent than the Ministry guideline limits.

Kingsville Lagoon in the Southwest region did not provide sufficient data for C of A assessment. Fifteen out of the 19 plants assessed complied with their Cs of A. Four plants failed to meet their C of A limits. Two of the plants that failed their C of A limits also failed the general effluent quality criteria.

This report summarizes bypass data for mechanical plants only. The extraneous flows in those municipalities served by lagoons are bypassed at the sewer systems rather than at the plant site. Bypasses within the sewer system are regarded as combined sewer overflows and are outside the scope of this assessment report. In 1989, 177 of 244 (73%) mechanical STPs reported bypass data. This is an improvement over 1988, in which only 54% of the mechanical plants reported bypass data.

However, in 1989, only thirty-four out of 177 (19%) plants submitted the complete data set which includes volume, duration and number of instances for primary bypass and secondary bypass that occurred. Primary bypass is defined as the raw sewage that is discharged prior to primary clarification. Secondary bypass is defined as the sewage that has received solids removal at primary clarifiers but bypassed secondary biological treatment process before discharge.

In 1989, a total of $5.7 \times 10^6 \text{ m}^3$ of primary bypass and $2.3 \times 10^6 \text{ m}^3$ of secondary bypass were discharged. These volumes represent 3.0% and 1.0% of the total volume of treated effluent, respectively. The Stamford WPCP in Niagara Falls reported the highest volume of primary bypass $(1.2 \times 10^6 \text{ m}^3 \text{ or } 60\%$ of its treated effluent volume). Belleville STP, however, is designed to provide only primary treatment for flows that exceed $55 \times 10^3 \text{ m}^3$. Belleville is allowed by its C of A to bypass secondary treatment when the raw sewage exceeds this volume during wet weather. Both the primary and the secondary bypasses are generally disinfected before discharge.

	TABLE OF CONTENTS	PAGE NUMBER
	Executive Summary	i
1.0	Introduction	1
2.0	Significance of BOD, SS and TP	2
3.0	MOE Guideline Assessment Criteria	2
4.0	MOE Certificate of Approval Assessment Criteria	4
5.0	Sampling and Reporting Requirements	4
6.0	Background Information of STPs	5
7.0	1989 Status on Effluent Guideline Assessment	10
	 7.1 Plants not Assessed in this Report 7.2 Plants Meeting Effluent Guidelines 7.3 Plants Exceeding Effluent Guidelines 7.4 Plants Exceeding Effluent Limits for Three Successive Years 	10 13 13 17
8.0	1989 Status on C of A Assessment	24
	8.1 Plants not Assessed Against C of A8.2 Plants Complying with C of A8.3 Plants Non-Complying with C of A	24 24 24
9.0	Remedial Measures	27
	9.1 Time Required for Remedial Measures to Take Effect	27
	9.2 Status of Remedial Measures	27
10.0	Abatement of STP Operations	28
11.0	Enforcement	29
12.0	Historical Review	30
13.0	Bypasses	33
14.0	Enquiries	35

LIST OF APPEND	DICES	PAGE	NUMBER
Appendix A	Sewage Treatment Plants Exceeding Effluent Requirements for 1988		A-1
Appendix B	Sewage Treatment Plants Exceeding Certificate Of Approval Limits for 1988		B-1
Appendix C	Sewage Treatment Plants Listing and Operating Data for 1987		C-1
	Index of Appendix C by Municipality Plants Assessed by C of A		C-462
	Index of Appendix C by Municipality Plants Assessed by Effluent Guidelines		C-463
	Index of Appendix C by Plant Name Plants Assessed by C of A		C-471
	Index of Appendix C by Plant Name Plants Assessed by Effluent Guidelines		C-472
Appendix D	Sewage Treatment Plants Plant and Secondary Bypass Data for 1987		D-1
LIST OF DIAGRAM	<u>(8</u>		
Diagram 1	Continuous Discharge Plants Exceeding Total Phosphorus Limits		16

LIST OF TABLES

Table	1	Ministry General Effluent Requirements	3
Table	2	Design Capacity Summary	7
Table	3	Average Daily Flow Summary	8
Table	4	Loading of BOD, SS and TP to the Minor Basins	9
Table	5	Sewage Treatment Plants with No Discharge to Surface Waters	11
Table	6	Sewage Treatment Plants Reporting a Reason for Insufficient Data for Assessment	12
Table	7	Sewage Treatment Plants Reporting Insufficient Data for Assessment	12
Table	8	Summary for STPs Meeting Effluent Guidelines Criteria	14
Table	9	Summary for STPs Exceeding Effluent Guidelines Criteria	15
Table	10	Continuous Discharge Plants Exceeding Total Phosphorus Limits	16
Table	11	Plants Exceeding Effluent Guidelines for Three Successive Years	18-23
Table	12	Summary for STPs Meeting C of A Criteria	25
Table	13	Summary for STPs Exceeding C of A Criteria	26
Table	14	Summary of STPs Reporting Remedial Actions	28
Table	15	Enforcement Activities that have Gone to Court Against Municipal STPs in 1989	29
Table	16	Number of STPs Exceeding MOE Effluent Guideline Limits (1986-1989)	31

LIST OF TABLES-CONTINUED

Table 17	Number of STPs Exceeding Monthly Total Phosphorus Limits (1985-1989)	31
Table 18	Number of STPs Exceeding Effluent BOD Guideline Limits (1985-1989)	32
Table 19	Number of STPs Exceeding Effluent SS Guideline Limits (1985-1989)	32
Table 20	Summary of Plant and Secondary Bypass	34

1.0 INTRODUCTION

The 1989 Municipal Discharge Report provides a comprehensive summary of the performance of all the municipal and Ministry of Environment (MOE) operated Sewage Treatment Plants (STPs) in Ontario. Three parameters, Biochemical Oxygen Demand (BOD), Suspended Solids (SS) and Total Phosphorus (TP) were assessed against Ministry sewage effluent quality guidelines. Twenty STPs were also assessed against the BOD, SS and TP limits stipulated in their Certificates of Approval (Cs of A).

This report provides useful information for the Ministry to prioritize STPs for remedial actions. Remedial actions can ensure that fewer plants will be out of compliance in the future, improving the quality of Ontario's surface waters. The main text of this report presents a brief summary of the number of plants failing BOD, SS and/or TP requirements as outlined in the Ministry effluent guidelines and C of A limits. A comparison of plants exceeding Ministry effluent guidelines between 1986 and 1989 is also discussed. In addition, plants that did not provide sufficient data for assessment and plants that exceeded Ministry effluent guidelines in three successive years are highlighted in the text.

Four appendices accompany this report. Appendix A lists all the plants exceeding Ministry effluent guidelines and indicates if they have proposed or undertaken remedial actions.

Appendix B is a summary of the plants that did not comply with their C of A. The number of plants assessed against their C of A is limited. In 1989, 183 Cs of A were reviewed but only 57 of these which were issued in recent years had compliance limits. The remaining Cs of A contain only specifications and design objectives of treatment processes and equipment to be installed. Due to data processing problems, only 20 STPs were assessed against their Cs of A in this report. Compliance against C of A limits in the remaining 37 STPs was checked by the regional staff during the once per year plant inspection.

Appendix C provides a plant by plant summary of monthly averages for flows, concentrations and loadings of the parameters assessed, effluent guidelines, C of A limits and remedial actions.

Appendix D provides a monthly summary of duration, volume and number of instances of primary bypass and secondary bypass data. Primary bypass is defined as the raw sewage that is discharged prior to treatment at primary clarifiers. Secondary bypass is defined as the sewage that has received solids removal at primary clarifiers but bypassed secondary biological treatment process before discharge.

2.0 SIGNIFICANCE OF BOD, SS AND TP

BOD, SS and TP have traditionally been used by pollution control engineers as indicators of plant performance and effluent quality. These parameters are used by the Ministry to assess STP compliance.

The strength of sewage is often measured by the 5 day Biochemical Oxygen Demand (BOD5) test. This is the amount of oxygen required by microorganisms to reduce the organic content in sewage to carbon dioxide, measured over a 5 day period. High BOD concentrations in the effluent is an indication of high organic content remaining in the effluent, therefore ineffective treatment was provided. Discharge of such effluent may cause oxygen depletion in receiving waters and other environmental impairment.

Removal of suspended solids in sewage effluent is important since excessive amounts of solids discharged to a water course can cause aesthetic problems and kill fish by clogging their respiratory passages (gills). Also, many trace contaminants such as metals and toxic organics are often associated with the solids.

Total Phosphorus has been identified as a major factor in the eutrophication of receiving waters. Excessive amounts of phosphorus cause rapid growth of algae and weeds. When algae and weeds die, they decompose and use up dissolved oxygen. Lack of dissolved oxygen can kill aquatic organisms.

3.0 MOE GUIDELINE ASSESSMENT CRITERIA

In this report, all STPs are assessed against the Ministry's general effluent guidelines. BOD and SS are assessed on an annual average, based on the general operating requirements of Policy 08-01, "Levels of Treatment for Municipal and Private Sewage Treatment Works Discharging to Surface Waters".

Currently, TP is assessed on a monthly average basis as specified in the Canada-U.S. Agreement on Great Lakes Water Quality (October 1983).

Table 1 summarizes the effluent requirements for various types of STPs.

TABLE 1 MINISTRY GENERAL EFFLUENT REQUIREMENTS (Based on Policy 08-01 and Canada-U.S. Agreement, 1983)

	PARAMETER								
Type of Treatment	BOD	Suspended Solids	Total Phosphorus						
	(Annual Average	(Annual Average	(Monthly Average						
	Basis)	Basis)	Basis)						
PRIMARY: Without TP Removal With TP Removal SECONDARY: Without TP Removal With TP Removal	30% removal	50% removal	n/a						
	50% removal	70% removal	1.0 mg/l						
	25 mg/l	25 mg/l	n/a						
	25 mg/l	25 mg/l	1.0 mg/l						
LAGOONS: Without TP Removal Continuous TP Removal Batch TP removal	30 mg/l	40 mg/l	n/a						
	30 mg/l	40 mg/l	1.0 mg/l						
	25 mg/l	25 mg/l	1.0 mg/l						

n/a - not applicable

4.0 MOE CERTIFICATE OF APPROVAL ASSESSMENT CRITERIA

A C of A is a legal document issued by MOE approving the construction and operation of a STP. Cs of A issued in recent years are also used to stipulate the effluent quality and/or loadings of contaminants the STPs are allowed to discharge.

Prior to the construction of a STP, an environmental assessment must be performed to assess the impact of the effluent on the receiving stream. The municipality submits this assessment to MOE for consideration.

Once the site has been approved by MOE, guidelines for the operation of the STP and compliance limits for specific contaminants are established in the C of A.

Failure to comply with C of A can result in enforcement action under the Ontario Water Resources Act or the Environmental Protection Act.

5.0 SAMPLING AND REPORTING REQUIREMENTS

Under the requirements outlined in Policy 08-06, "Policy to Govern Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works (Liquid Waste Streams Only)", STPs are required to provide a Ministry laboratory with a minimum of one influent and one effluent sample per month for analysis. Many facilities supplement this minimum requirement by doing additional analyses at their own laboratories.

Plant operators report monthly average STP flow, influent and effluent concentrations for BOD, TP and SS to the Ministry. Data are checked for accuracy at the Regional Office and then forwarded to the Ministry corporate database for processing.

In addition to reporting effluent quality, STPs also report the following information:

- Municipality
- Plant name
- Treatment type
- Region and District
- Operating authority
- Watercourse, Major Basin and Minor Basin
- IJC Designation

- Design Capacity
- Population Served
- Primary (Plant) Bypass
- Secondary Bypass

This information is available in Appendix C. The Appendix is arranged by Region (Southwest, West Central, Central, Southeast, Northeast and Northwest) and by municipality. Compliance status and remedial measures are also indicated. Regional boundaries and District Offices are shown at the beginning of each section. A summary of facilities by treatment type, operating authority and estimated hydraulic loading design capacity as well as annual average daily flow is also available at the beginning of each section. Appendix D contains the bypass data.

6.0 BACKGROUND INFORMATION OF SEWAGE TREATMENT PLANTS

At the end of 1989, sanitary sewage from systems serving over 7.2 million people was collected and treated by 412 STPs in Ontario.* Many of these plants also receive and treat wastewater discharged by industries. Some plants receive more than 40% of their flow from industries.

Sanitary sewage from the remaining population, for the most part located in rural areas, are treated by individual household septic tank and tile field systems.

Three plants started operation in 1989. They are:

Purcell Southeast Region Colchester Southwest Region Maxville Lagoon Southeast Region

Six plants were phased out in 1989. They are:

Carleton Lodge WPCP Southeast Region
Garden-City-Raceway West Central Region
West Plant West Central Region
Tottenham Lagoon Central Region
Holtyre Northeast Region
Kapuskasing West End Northeast Region

Table 2 summarizes STPs by treatment type, operating agency and hydraulic loading design capacity. Table 3 summarizes STPs by treatment type, operating agency and actual annual average daily flow.

*NOTE: A STP may comprise a number of either influent or effluent discharge pipes.

STPs are operated by MOE or the municipality. Larger facilities are usually owned and operated by the municipality(ies) they serve, whereas the Ministry generally operates facilities for smaller municipalities.

In 1989, 241 STPs were operated by the Ministry and 171 were operated by municipalities. Although the Ministry operated a greater number of STPs, Table 3 shows that municipalities treated about 4 times the actual average daily flow treated by the Ministry. Conventional Activated Sludge plants treated 70% of the flow.

STPs in Ontario have a total hydraulic loading design capacity of approximately 6,040 x 1000 m³ day ranging from 818 x 1000 m³ at the Toronto Main STP to 0.045 x 1000 m³ at Porquis Junction. Total annual average daily flow is 5,151 x 1000 m³ ranging from 779 x 1000 m³ at the Toronto Main to zero flow at those plants with no discharge in 1989. The lowest daily average flow in 1989 was .043 x 1000 m³, which occurred at the Cana Water Pollution Control Plant (WPCP) in Pittsburg, Ontario.

Table 4 summarizes annual average daily loadings of BOD, SS and TP to Minor Basins. In 1989, a total of 92 tonnes/day of BOD, 100 tonnes/day of SS and approximately 4.5 tonnes/day of TP were discharged to receiving waters by STPs. Of the Minor Basins, Lake Ontario received the greatest loadings of all 3 parameters in 1989.

TABLE 2

DESIGN CAPACITY SUMMARY - 1989

	Numb	er		Design Capa		
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Primary	8	20	28	108.10	943.18	1,051.28
Convent. Activated Sludge	32	56	88	1,004.16	3,213.67	4,217.83
Modified Activated Sludge	1	0	1	12.27	0.00	12.27
Contact Stabilization	6	8	14	23.09	46.81	69.91
Extended Aeration	66	29	95	131.50	88.60	220.10
Trickling Filter	0	1	1	0.00	0.91	0.91
High Rate	3	2	5	18.68	77.28	95.96
Oxidation Ditch	9	2	11	11.04	9.45	20.50
Communal Septic Tank	2	3	5	2.01	1.04	3.06
Aerated Lagoon	4	3	7	8.48	12.67	21.15
Convent. Lagoon Continuous	7	9	16	7.23	29.76	36.99
Convent. Lagoon Seasonal	73	24	97	65.53	82.70	148.23
Lagoon and Spray	3	1	4	1.51	0.36	1.88
Aerated Cell Plus Lagoon	14	6	20	53.01	10.44	63.46
Conventional Lagoon Annual	9	2	11	5.53	1.78	7.31
Exfiltration Lagoon	4	4	8	4.41	3.56	7.97
Rotat. Biological Contactor	0	1	1	0.00	58.18	58.18
Total	241	171	412	1,456.55	4,580.46	6,037.08

1000M³/D: Thousands of cubic meters per day

TABLE 3

AVERAGE DAILY FLOW SUMMARY - 1989

	Number			Average Daily Flow (1000M ³ /D)					
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total			
Primary	8	20	28	81.44	892.72	974.16			
Convent. Activated Sludge	32	56	88	737.07	2,891.80	3,628.87			
Modified Activated Sludge	1	0	1	7.92	is.	7.92			
Contact Stabilization	6	8	14	20.06	29.46	49.52			
Extended Aeration	66	29	95	87.70	64.81	152.51			
Trickling Filter	o	1	1	=	20.30	20.30			
High Rate	3	2	5	12.64	65.72	78.36			
Oxidation Ditch	9	2	11	7.08	3.56	12.64			
Communal Septic Tank	2	3	5	0.09	0.11	0.21			
Aerated Lagoon	4	3	7	5.59	8.10	13.69			
Convent. Lagoon Continuous	7	9	16	8.07	20.27	28.34			
Convent. Lagoon Seasonal	73	24	97	49.66	28.65	78.31			
Lagoon and Spray	3	1	4	1.11	0.00	1.11			
Aerated Cell Plus Lagoon	14	6	20	33.41	9.12	42.53			
Conventional Lagoon Annual	9	2	11	2.23	0.69	2.92			
Exfiltration Lagoon	4	4	8	2.82	3.06	5.88			
Rotat. Biological Contactor	0	1	1	=	56.38	56.38			
Total	241	171	412	1,056.89	4,094.75	5,151.64			

1000M³/D: Thousands of cubic meters per day

TABLE 4

LOADING OF BIOCHEMICAL OXYGEN DEMAND, SUSPENDED SOLIDS,

AND TOTAL PHOSPHOROUS TO THE MINOR BASINS

	NO OF	AVG. CONCENTRATION (MG/L)			AVERAGE LOADING (TONNES/DAY)			
MINOR BASIN	NO. OF PLANTS	1000 M3/D	BOD	ss	TP	BOD	ss	TP
ERIE	104	860.54	14.79	13.49	0.70	12.73	11.61	0.61
HURON	112	390.51	15.69	13.90	0.95	6.13	5.43	0.37
*JAMES BAY	31	67.66	20.90	26.98	2.58	1.41	1.83	0.17
*LK WINNIPEG EAST	13	34.71	18.17	21.76	1.30	0.63	0.76	0.05
ONTARIO	75	2912.04	13.95	16.06	0.68	40.63	46.76	1.99
OTTAWA RIVER	50	588.03	35.10	42.58	1.71	20.64	25.04	1.00
ST. LAWRENCE	15	150.64	26.18	21.19	0.94	3.94	3.19	0.14
SUPERIOR	12	90.48	60.11	63.35	1.58	5.44	5.73	0.14
TOTAL	412	5094.61		9		91.55	100.33	4.47

<u>Note</u>: *TP removal is not required for those plants discharging into these Water Basins. (MOE Policy 08-04)

ADF = Average Daily Flow

7.0 1989 STATUS ON EFFLUENT GUIDELINE ASSESSMENT

7.1 PLANTS NOT ASSESSED IN THIS REPORT

Of the 412 STPs in Ontario, 48 were not assessed because they did not provide sufficient data for assessment. Many of these did not discharge in 1989. Sufficient data is defined as 9 or more monthly observations for continuous discharge facilities in 1989 and 1 sample/month of discharge for seasonal and annual lagoons. The 48 plants can be divided into the following categories:

No discharge to surface water

Thirty-five of the 48 plants did not discharge to surface waters. Many of these are exfiltration facilities or lagoons that did not require discharge in 1989. Table 5 summarizes these plants.

New STPs

Two STPs were not assessed because they started operations in 1989. These plants are included in Table 6.

Samples lost/broken during transit

One STP was not assessed because its effluent samples were broken in transit to the laboratory. This plant is included in Table 6.

Insufficient data with no reason

The remaining 10 facilities did not provide a satisfactory explanation to the Ministry for failure to report sufficient data for assessment. These plants are listed in Table 7.

TABLE 5- STPs WITH NO DISCHARGE TO SURFACE WATER

SOUTHWEST

Kingsville No Discharge
Markdale Lagoon Exfiltration
McGregor Lagoon Lagoon and Spray
Tobermory Lagoon Exfiltration

WEST CENTRAL

Airport WPCP No Discharge
Townsend Lagoon* No Discharge

CENTRAL

Beaverton (Sunderland)

Beeton Lagoon*

Omemee Lagoon*

Wasaga Beach WPCP*

Oshawa Harmony Creek WPCP No.1

Oshawa Harmony Creek WPCP No.2

No Discharge

SOUTHEAST

Embrun PV Lagoon No Discharge
Lansdowne Lagoon* Lagoon and Spray
Maxville Lagoon New Plant
Munster Lagoon Lagoon and Spray
Williamsburgh Lagoon* No Discharge

NORTHEAST

Belle Vallee No Discharge Capreol Lagoon Exfiltration Dubreuiville Lagoon* Exfiltration Joques Lagoon No Discharge Kapuskasing West End* Being Phased Out Killarney Lagoon* No Discharge Larder Lake WPCP Exfiltration Mattawa Lagoon Exfiltration Opasatika Lagoon* No Discharge Temagami Lagoon* No Discharge Wahnapitae No Discharge Warren Lagoon* No Discharge White River Lagoon* No Discharge

NORTHWEST

Beardmore Lagoon* Exfiltration
Caramat Lagoon Exfiltration
Madsen WPCP* No Discharge
Terrace Bay Lagoon Exfiltration
Terrace Bay WPCP Exfiltration

* = MOE operated

TABLE 6 SEWAGE TREATMENT PLANTS REPORTING A REASON FOR INSUFFICIENT DATA FOR ASSESSMENT

SOUTHWEST

Colchester South Lagoon*

New Plant

SOUTHEAST

Iroquois WPCP Purcell WPCP Samples Broken

New Plant

TABLE 7 SEWAGE TREATMENT PLANTS REPORTING INSUFFICIENT DATA FOR ASSESSMENT

SOUTHWEST

Kingsville Lagoon Tilbury Lagoon

CENTRAL

Colborne WPCP (TP only)
Lakeview WPCP (BOD only)
Sutton WPCP (TP only)

NORTHEAST

Cecile Trailer Park Lagoon*
Cochrane WPCP
Earlton Lagoon
Ramore Lagoon*
Smooth Rock Falls WPCP*

(SS only)

* = MOE operated

7.2 PLANTS MEETING EFFLUENT GUIDELINES

A total of 364 plants were assessed against MOE effluent guidelines. Table 8 shows that 256 plants (70% of the total assessed) met all of the Ministry effluent guideline requirements. This compliance rate is the same as in 1988, when 70% or 253 out of 362 plants assessed were in compliance.

This year, 96% of the STPs assessed met the annual requirement for BOD and 89% of the STPs met the SS annual guideline.

Policy 08-04 and the Canada-U.S. Agreement require all municipal STPs discharging into Lake Erie and recreational waterways, and STPs with a design capacity of 4546 m³/d or more and discharging into the Lake Ontario, St. Lawrence River, Lake Huron, Georgian Bay, and Ottawa River Basins to practice TP removal. Seventy-nine percent of the STPs met the monthly guideline for TP.

7.3 PLANTS EXCEEDING EFFLUENT GUIDELINES

One hundred and eight (30%) of the 364 plants assessed exceeded the Ministry's effluent guidelines by one or more parameters. Table 9 summarizes the number of STPs that exceeded guidelines. Further analysis indicates the following:

- Sixteen (4%) STPs failed BOD guidelines.
- A total of 41 (11%) STPs exceeded the guidelines for SS.
 Twenty-one of the plants are lagoons. Frequently, lagoons
 are high in SS due to algal blooms and scouring of bottom
 sediment from wind action. Controlling algae in lagoon
 effluent is a universal problem unless sand filters are
 used.
- Sixty-four continuous discharge STPs and 12 seasonal or annual lagoons (21% of the total STPs assessed) exceeded the limit for TP for one or more months in 1989. Of the continuous discharge plants, 24 exceeded the limit one month, 24 exceeded 2 or 3 months and 17 exceeded more than 3 months. This implies that about 7% of all the plants assessed are frequent offenders with respect to TP. Table 10 summarizes the number of continuous discharge plants exceeding TP limits on a per month basis. Diagram 1 depicts this trend schematically.

TABLE 8
SUMMARY FOR SEWAGE TREATMENT PLANTS
MEETING EFFLUENT GUIDELINES CRITERIA

	Total	Number	Number of STPs Meeting Criteria for						
Region			All Para- meters	*BOD	* SS	**TP			
SOUTHWEST	105	99	67	98	85	78			
WEST CENTRAL	55	52	34	49	47	38			
CENTRAL	76	68	53	66	64	57			
SOUTHEAST	67	60	38	56	50	44			
NORTHEAST	82	63	45	57	57	51			
NORTHWEST	27	22	19	22	20	20			
TOTAL ()	412	364	256 (70%)	348 (96%)	323 (89%)	288 (79%)			

The figures within the parentheses are the percentage plants complying with the parameter assessed.

^{*} SS and BOD are assessed on an annual basis.

^{**} TP is assessed on a monthly basis; one or more months out of compliance means the plant is out of compliance for the year.

SUMMARY FOR SEWAGE TREATMENT PLANTS
EXCEEDING EFFLUENT GUIDELINES CRITERIA

			STPs Not Me	riteria for			
Region	Total Number of STPs		One or MORE Parameters	*BOD	* SS	**TP	
SOUTHWEST	105	99	32	1	14	21	
WEST CENTRAL	55	52	18	3	5	14	
CENTRAL	76	68	15	2	4	11	
SOUTHEAST	67	60	22	4	10	16	
NORTHEAST	82	63	18	6	6	12	
NORTHWEST	27	22	3	0	2	2	
TOTAL ()	412	364	108 (30%)	16 (4%)	41 (11%)	76 (21%)	

The figures within the parentheses are the percentage plants non-complying with the parameter assessed.

^{*} SS and BOD are assessed on an annual basis.

^{**} TP is assessed on a monthly basis; one or more months out of compliance means the plant is out of compliance for the year.

TABLE 10
CONTINUOUS DISCHARGE PLANTS EXCEEDING
TOTAL PHOSPHORUS LIMITS

	NUMBER OF MONTHS EXCEEDING TP LIMIT											
REGION	1	2	3	4	5	6	7	8	9	10	11	12
SOUTHWEST	7	2	2	1	0	0	1	1	0	1	1	0
WEST CENTRAL	5	4	3	0	1	0	1	0	0	0	0	0
CENTRAL	6	2	1	О	0	0	1	0	0	1	0	0
SOUTHEAST	3	2	3	1	0	0	0	0	1	1	0	2
NORTHEAST	3	2	1	1	1	0	0	0	0	0	0	0
NORTHWEST	0	1	0	0	0	0	0	1	0	o	0	0
TOTAL	24	13	10	3	2	0	3	2	1	3	1	2

OVERALL TOTAL = 64 STPs

DIAGRAM 1 CONTINUOUS DISCHARGE PLANTS EXCEEDING TOTAL PHOSPHORUS LIMITS

7.4 PLANTS EXCEEDING EFFLUENT LIMITS FOR THREE SUCCESSIVE YEARS

Fifty plants failed to meet Ministry guidelines three years in a row. Table 11 lists these plants and the parameters they failed.

Forty-six of these plants have remedial action plans in place. Depending on the causes of non-compliance, remedial action plans can take several months to several years to take effect (see section 9.0 for more details on the remedial measures program). Four plants have failed effluent quidelines three years in a row and have not reported any remedial actions to the MOE. These plants are:

Brighton Lagoon Warkworth Lagoon Russell Lagoon Russell Lagoon Southeast Region Virginia Town and Kearns Northeast Region

Central Region Central Region

TABLE 11-1

PLANTS EXCEEDING EFFLUENT GUIDELINES FOR THREE SUCCESSIVE YEARS

REGION: SOUTHWEST

		1989			1988		1987			REMEDIAL
FACILITY	BOD	ss	TP	BOD	ss	TP	BOD	ss	TP	PROGRAM
*BLENHEIM LAGOON		*			*	*		*		YES
CHESLEY LAGOON			*						*	YES
*COTTAM LAGOON		*			*			*		YES
*DRESDEN WPCP			*		*	*			*	YES
*DUTTON LAGOON		*			*			*	*	YES
*FOREST LAGOON		*			*			*		YES
GODERICH WPCP			*			*			*	YES
*GRAND BEND LAGOON		*			*	*		*		YES
*INGERSOLL NEW WPCP			*			*			*	YES
*LISTOWEL LAGOON			*			*			*	YES
*MERLIN PV LAGOON		*			*			*		YES
*POINT EDWARD WPCP	*	*	*	*		*				YES
*PORT BURWELL WPCP			*			*			*	YES
*RIDGETOWN LAGOON		*	*		*	*	*	*	*	YES
*RODNEY LAGOON		*			*		*	*	*	YES
*STONEY PT. P.V. LAGOON		*			*			*		YES

^{*} Operated by the Ministry of the Environment

TABLE 11-2

PLANTS EXCEEDING EFFLUENT GUIDELINES FOR THREE SUCCESSIVE YEARS

REGION: WEST CENTRAL

	1989			1988			1987			DEVENTAL
FACILITY	BOD	ss	TP	BOD	ss	TP	BOD	ss	TP	PROGRAM
ANGER AVE. WPCP		*	*	*						YES
*BRANTFORD WPCP						*				YES
CRYSTAL BEACH WPCP			*					*	•	YES
*ELMIRA WPCP			*						*	YES
*FERGUS WPCP		*			*			*		YES
*HESPELER WPCP			*		*	*			•	YES
*PORT DOVER WPCP			*			*			•	YES
*ST. JACOBS PV WPCP			*		*	*			*	YES
*WATERLOO WPCP			*						•	YES

^{*} Operated by the Ministry of the Environment

TABLE 11-3

PLANTS EXCEEDING EFFLUENT GUIDELINES FOR THREE SUCCESSIVE YEARS

REGION: CENTRAL

	1989		1988			1987			REMEDIAL	
FACILITY	BOD	SS	TP	BOD	SS	TP	BOD	ss	TP	PROGRAM
BALA WPCP BRIGHTON LAGOON COBOURG WPCP NO. 1 LINDSAY LAGOON		*	*	*	*	*		*	* * * *	YES NO YES YES
STAYNER LAGOON		*		*	*	*	*	*	*	YES
WARKWORTH LAGOON		*			*			*		NO

^{*} Operated by the Ministry of the Environment

TABLE 11-4

PLANTS EXCEEDING EFFLUENT GUIDELINES FOR THREE SUCCESSIVE YEARS

REGION: SOUTHEAST

	1989			1988				1987	REMEDIAL	
FACILITY	BOD	ss	TP	BOD	ss	TP	BOD	ss	TP	PROGRAM
*AMHERSTVIEW LAGOON	*	*			*			*		YES
ARNPRIOR WPCP	*	*	*	*	*		*	*	*	YES
BROCKVILLE WPCP		*	*						*	YES
*CARLETON PLACE WPCP	*	*	*		*	*		*	*	YES
GREEN CREEK WPCP		*	*	*	*	*		*	*	YES
KEMPTVILLE WPCP			*		*	*		*	*	YES
*MERRICKVILLE WPCP			*			*		*	*	YES
NAPANEE WPCP			*			*		*	*	YES
*RUSSELL LAGOON		*			*			*		NO
SMITHS FALLS WPCP			*			*		*	*	YES
WESTPORT LAGOON			*			*			*	YES

^{*} Operated by the Ministry of the Environment

TABLE 11-5

PLANTS EXCEEDING EFFLUENT GUIDELINES FOR THREE SUCCESSIVE YEARS

REGION: NORTHEAST

		1989			1988			1987		REMEDIAL
FACILITY	BOD	SS	TP	BOD	SS	TP	BOD	SS	TP	PROGRAM
BOB'S LAKE LAGOON	*			*			*			YES
FALCONBRIDGE TOWNSITE WPCP	*	*	13	*	*		*	*		YES
*KIRKLAND LAKE WPCP			*			*			*	YES
*LAKE TEMISKAMING OLD WPCP			*			*			*	YES
*STURGEON FALLS WPCP			*			*			*	YES
VIRGINIATOWN AND KEARNS WPCP	*	*	,	*	*	3 3 0	*	*		NO

^{*} Operated by the Ministry of the Environment

TABLE 11-6

PLANTS EXCEEDING EFFLUENT GUIDELINES FOR THREE SUCCESSIVE YEARS

REGION: NORTHWEST

		1989		1988			1987			DEMEDIAL
FACILITY	BOD	SS	TP	BOD	SS	TP	BOD	SS	TP	REMEDIAL PROGRAM
*ATIKOKAN WPCP			*			*			*	YES
THUNDER BAY WPCP		*	*		*	*			*	YES

^{*} Operated by the Ministry of the Environment

8.0 1989 STATUS ON C OF A ASSESSMENT

8.1 PLANTS NOT ASSESSED AGAINST C of A

Most certificates issued before 1985 did not specify compliance limits, but rather design or objective limits. Sixty-nine (126 of 183) percent of the Cs of A identified to date fall into this category. These C of A will not be assessed in this Discharge Report, since they were intended as a guidance rather than a regulatory document.

In recent years, more Cs of A have clearly outlined compliance limits. Many of the older Cs of A are being replaced as STPs are upgraded or expanded.

The complexity of each C of A, as well as the limitations of the MOE computer system, limited the number of STPs that could be assessed in 1989. As a result, only 20 out of 57 STPs were evaluated against their C of A in this report. The effluent limits stipulated in these C of A are presented in Appendix C along with the plant monthly average data. Compliance with C of A limits in the other 37 STPs was checked by regional staff during plant inspections.

8.2 PLANTS COMPLYING WITH C of A

Fifteen of the 19 plants assessed complied with the limits outlined in their C of A. Table 12 summarizes the number of plants, by Region, that meet their C of A limits. Kingsville Lagoon provided insufficient data for assessment.

8.3 PLANTS NOT COMPLYING WITH C of A

The following plants failed to comply with the limits as set out in their C of A:

Tavistock Lagoon Port Weller WPCP Orillia WPCP

Southwest Region West Central Region Central Region Green Creek WPCP Southeast Region

Table 13 summarizes the number of plants by Region, failing their C of A limits.

TABLE 12
SUMMARY FOR SEWAGE TREATMENT PLANTS
MEETING CERTIFICATE OF APPROVAL CRITERIA

			Number of	STPs Me	eting (Criteria
Region	Total Number of STPs	Number of STPs Assessed	All Para- meters	*BOD	*SS	**TP
SOUTHWEST	8	7	6	7	6	7
WEST CENTRAL	2	2	1	1	2	2
CENTRAL	5	5	4	5	5	4
SOUTHEAST	2	2	1	1	1	1
NORTHEAST	3	3	3	3	3	3
NORTHWEST	0	0	0	0	0	o
TOTAL ()	20	19	15 (79%)	17 (89%)	17 (89%)	17 (89%)

The figures within the parentheses are the percentage plants complying with the parameter assessed.

TABLE 13
SUMMARY FOR SEWAGE TREATMENT PLANTS
EXCEEDING CERTIFICATE OF APPROVAL CRITERIA

			STPs Not Me	Not Meeting Criteria fo					
Region	Total Number of STPs		One or MORE Parameters	*BOD	* SS	** TP			
SOUTHWEST	8	7	1	0	1	0			
WEST CENTRAL	2	2	1	1	0	0			
CENTRAL	5	5	1	0	0	1			
SOUTHEAST	2	2	1	1	1	1			
NORTHEAST	3	3	0	0	0	0			
NORTHWEST	0	0	0	0	0	0			
TOTAL ()	20	19	4 (21%)	2 (11%)	2 (11%)	2 (11%)			

The figures within the parentheses are the percentage plants non-complying with the parameter assessed.

9.0 REMEDIAL MEASURES

9.1 TIME REQUIRED FOR REMEDIAL MEASURES TO TAKE EFFECT

There can be many reasons for STP non-compliance. Non-compliance can arise as a result of inadequate process operations, equipment breakdowns, industrial spills into the municipal sewerage systems. These problems can be quickly corrected by improving the plant operations and maintenance program, and enforcing the industrial sewer use control program more diligently. Non-compliance can also be caused by poor process design, hydraulic overloads due to wet weather run-offs or rapid population growth. In these cases, the problems must be corrected by plant modification or expansion which can require up to 5 years to complete.

Plant modification/expansion entail several steps. The owner of the plant first initiates a class environmental assessment which involves a review of the problem and determination of the remedial options by a consultant. The consultant proposal and funding requirements must be approved by the municipal council and the Ministry of Environment before detailed plant design and construction can begin. As an example, the Hespeler STP started its class environmental assessment process in 1985 and is beginning to construct the final phase of plant expansion this year.

9.2 STATUS OF REMEDIAL MEASURES

Forty-two STPs which exceeded effluent guidelines in 1988 (35 of which reported remedial programs) improved their operations or upgraded their facilities sufficiently to meet Ministry guidelines in 1989. Appendix A shows that sixty-seven STPs continued to exceed effluent guidelines in 1989. Forty-one plants that complied in 1988 exceeded the limits in 1989.

Currently, 91 (84%) of the 108 plants exceeding effluent guidelines have some form of remedial action. Appendix A includes a summary of plants which have remedial action in 1989. Appendix C elaborates on these remedial actions on a plant-specific basis.

The number of plants that reported remedial action is summarized in Table 14. Four plants have failed effluent guideline limits for three successive years and have not reported any remedial programs to the MOE.

TABLE 14
SUMMARY OF STPS REPORTING REMEDIAL ACTIONS

Region Number of STPs Exceeding Guidelines		Number of STPs Reporting Remedial Actions	% of STPs Reporting Remedial Action		
SW	32	29	91		
WC	18	18	100		
c	15	8	53		
C SE	22	18	82		
NE	18	15	83		
NW	3	3	100		

10.0 ABATEMENT OF STP OPERATIONS

In 1989, Regions initiated a program to inspect plants for compliance with Ministry Acts, Regulations, Policies and Cs of A. All Ministry and municipally-operated STPs are inspected once per year by Regional MOE Environmental Inspectors. Detailed inspections of plant operations, maintenance procedures, process equipment and records are carried out less frequently. After an inspection, the operating authority and the Ministry abatement staff are informed of any deficiencies by way of Inspection Reports.

If significant abatement measures are required, the Abatement Section will be responsible for ensuring that these are undertaken by the Operating Authority within a specified time frame. For Ministry-operated plants, the Utility operations Section would initiate measures to abate the problem or upgrade the facility.

For miner problems, the Environmental Inspector arranges for the Operating Authority to advise the Abatement Section when the deficiencies have been corrected.

Failure of the Operating Authority to comply with Regulations, Acts or Cs of A may result in prosecution by the Ministry's Investigations and Enforcement Branch.

11.0 ENFORCEMENT

The Investigations and Enforcement Branch (IEB) are alerted to action through the Occurrence Report, when a STP fails to comply with a Control Document or reports an environmental incident eq. a spill.

The current procedure for responding to an environmental incident requires a Provincial Officer or Environmental Response Person (ERP) to make an initial response. Information obtained during this initial response is essential to the success of any investigation that follows.

Prosecution may follow for any of the following reasons: the violation poses a significant risk or adverse effect to the environment or humans; the violation is deliberate in nature or if there is a degree of negligence involved; the violation is repeated or warning is disregarded; the violator has concealed information; or, the violator has an unsatisfactory record with Ministry orders.

Guidelines themselves are not legally enforceable but may form the basis to prove an offence through expert testimony in court. The expert must provide evidence to show the violation leads to a significant impairment of the receiving water body.

Enforcement actions that took place in 1989 against STPs are summarized in Table 15.

TABLE 15
ENFORCEMENT ACTIVITIES THAT HAVE GONE TO COURT AGAINST
MUNICIPAL SEWAGE TREATMENT PLANTS

MUNICIPALITY	OFFENCE DESCRIPTION	DISPOSITION
Regional Municipality of Sudbury N.E. Region	Lagoon - Illegal discharge of cell contents	Went to court in 1991
District Municipality of Muskoka Central Region	Lagoon Works - Bypass at pumping station	Guilty Plea Fine -\$2500.00

12.0 HISTORICAL REVIEW

Table 16 compares the number of STPs exceeding MOE guideline limits from 1986 to 1989. Some improvement in compliance with Ministry guidelines occurred over the past 4 years.

Table 17 compares the total number of facilities exceeding monthly TP requirements from 1986 to 1989. A steady improvement in compliance with TP has been observed over the past four years; for example, 49% of the plants requiring phosphorus removal were out of compliance in 1985 but only 29% were out of compliance in 1989.

Table 18 and 19 indicate that there has been little change in compliance with BOD and SS over 4 years.

TABLE 16
NUMBER OF SEWAGE TREATMENT PLANTS
EXCEEDING MOE EFFLUENT GUIDELINE LIMITS
1986 - 1989

Year	Total Number of Facilities Assessed	Number of Facilities Exceeding Guidelines	% Facilities Exceeding Limits
1986	362	151	42
1987	371	138	37
1988	362	109	30
1989	364	108	30

TABLE 17
NUMBER OF SEWAGE TREATMENT PLANTS
EXCEEDING MONTHLY TOTAL PHOSPHORUS LIMITS
1986-1989

Total Number of Facilities with Year Phosphorus Removal		Number of Facilities Exceeding Monthly Requirements	<pre>% Facilities Exceeding Monthly Requirements</pre>
1986	258	126	49
1987	262	100	38
1988	265	78	30
1989	265	76	29

TABLE 18
NUMBER OF SEWAGE TREATMENT PLANTS
EXCEEDING EFFLUENT BOD GUIDELINE LIMITS
1985-1989

Year	Total Number of Facilities Assessed	Number of Facilities Exceeding Requirements	<pre>% Facilities Exceeding Limits</pre>
1986	362	16	4
1987	362	17	5
1988	362	15	4
1989	364	16	4

TABLE 19
NUMBER OF SEWAGE TREATMENT PLANTS
EXCEEDING EFFLUENT 88 GUIDELINE LIMITS
1985-1989

Year	Total Number of Facilities with Phosphorus Removal	Number of Facilities Exceeding Requirements	% Facilities Exceeding Limits
1986	362	47	13
1987	371	53	14
1988	362	47	13
1989	364	41	11

13.0 BYPASSES

This report only summarizes the bypass that occurs within the boundary of a STP. Bypass occurring outside an STP, including pumping stations located outside the plant property is considered to be a combined sewer overflow and is assessed by regional staff on a case-by-case basis.

Primary bypass is the discharge of raw sewage. Secondary bypass is the sewage that has undergone solids removal at the primary clarifiers of an STP but bypassed the biological treatment process before discharge.

Bypasses may occur for a number of reasons such as:

- An increase in hydraulic loading due to infiltration or inflow from a storm event or spring thaw;
- 2. Operational problems, eg., equipment breakdown; or,
- 3. STP is under-sized.

Bypasses often occur during storm events or spring thaw as a way of preventing micro-organisms from being washed out from the biological treatment process in a secondary plant, or to prevent flooding of the STPs and surrounding areas. Bypasses under dry weather conditions are not allowed since they can be prevented by expanding the treatment plant or properly maintaining process equipment.

STPs are required to report the volume, duration and number of instances of bypasses. Appendix D summarizes the 1989 monthly bypass data for mechanical STPs only. Lagoons typically bypass at off-site locations which are considered as Combined Sewer Overflows.

One hundred and seventy-seven or 73% of the total number of mechanical STPs (244) reported bypass data in 1989. The number of plants reporting bypass data to the Ministry has improved. In 1988, only 54% of the mechanical STPs reported bypass data.

A number of deficiencies in the 1989 database were identified as follows:

 Only 34 out of 177 (19%) mechanical plants submitted the complete data set which includes volume, duration and number of instances for either primary bypass or secondary bypass. This is an improvement over last year in which only 6 STPs reported complete data sets.

- Most STPs do not have flow monitoring devices for bypasses; this results in poorly estimated volume.
- 3. Frequently, there are no devices to record the occurrence of a bypass. A bypass occurring when the plant is not staffed would go unnoticed. As a result, the number of instances and duration of bypasses can be higher than the data reported.
- 4. This year a number of interpretation problems was evident. Many plants have reported the number of days in a month as opposed to the number of times a bypass occurred in a month.

Keeping these deficiencies in mind, Table 20 should be treated as cursory information only. This table summarizes the total volume, duration, number of instances and ratio of volume of bypass to treated effluent for raw sewage bypass and secondary bypass.

TABLE 20
ANNUAL SUMMARY OF PRIMARY AND SECONDARY BYPASSES

		PRIMARY BYP		SECONDARY BYPASS				
	VOLUME (1000m ³)	DURATION (HOURS)	NO. OF TIMES	*RATIO	VOLUME (1000m ³)	DURATION (HOURS)	NO. OF TIMES	*RATIO
TOTAL	5702.79	4,070.9	3893	3.00%	2277.91	5,476.1	1772	1.0%
MAXIMUM	1246.05	1,043.0	364	60.00%	802.95	1,813.0	363	7.5%
PLANT	STAMFORD WPCP	CARLETON PLACE WPCP		STAMFORD WPCP	BELLEVILLE WPCP	BELLEVILLE WPCP		BELLEVILLE WPCP
MINIMUM	0.01	0.1	1	<0.01%	0.15	0.5	1	0.08%
PLANT	EAR FALLS WPCP	SAULT STE. MARIE-WEST END		EAR FALLS WPCP	WELLINGTON WPCP	OAKVILLE SOUTHWEST WPCP		WELLINGTON WPCP

N.B. Ratio (%) is the ratio of bypass effluent over treated effluent (expressed as a percent) at the plants reporting a bypass.

The maximum and minimum data reported are the values for bypassed effluent for a given plant on an annual basis. The plant that bypassed the maximum volume did not necessarily have the maximum duration time nor the number of occurrences.

The longest duration of secondary bypass occurred at Belleville. Belleville was designed to provide only primary treatment for flows in excess of 55 X 10³ m³ during wet weather.

14.0 ENQUIRIES

Enquiries about specific STPs may be directed to the Ministry's Regional Offices or District Offices. These addresses and phone numbers are available in Appendix B at the beginning of each Regional section.

Copies of this report are available from:

Communications Branch,
Ministry of the Environment,
135 St. Clair Ave. W., 6th Floor,
Toronto, Ontario
M4V 1P5
323-4321

Enquiries concerning this report may be directed to:

Ministry of the Environment, MISA Municipal Office, Water Resources Branch, 1 St. Clair Ave. W., 9th Floor, Toronto, Ontario. M4V 1K6 323-4980

APPENDIX A

WASTEWATER TREATMENT FACILITIES EXCEEDING EFFLUENT REQUIREMENTS FOR 1989

EXPLANATORY NOTES FOR APPENDIX A

BOD and SS are assessed on an annual basis.

TP is assessed on a monthly basis. The value associated with the TP column is the number of months per year that the TP limit was exceeded.

REGION: SOUTHWEST

	1989 EXCEEDANCES				DEMEDIAL	ANTIGIDATED	
PLANT NAME	BOD	SS	TP	1988	1987	REMEDIAL PROGRAM	ANTICIPATED COMPLIANCE
+AILSA CRAIG WPCP			1		*	YES	1989/09
+BELMONT LAGOON			1		*	YES	1989/05
+BLENHEIM LAGOON) (1) (건	33.4		*	*	YES	1990/04
+BRIGDEN P.V. LAGOON	9 8	44.3		a		YES	1990/04
CHESLEY LAGOON	1		4	*	*	YES	1989/09
+COTTAM LAGOON		75.3		*	*	YES	1990/04
+DRESDEN WPCP			1	*	*	YES	
+DUTTON LAGOON		36.7		*	*	YES	1991/12
+FOREST LAGOON		74.7		*	*	YES	1990/04
+GLENCOE LAGOON		36.9	1	*		YES	1990/04
GODERICH WPCP			1	*	*	YES	
+GRAND BEND LAGOON		36.7		*	*	YES	1990/04
+INGERSOLL NEW WPCP			8	*	*	YES	1990/01
+INGERSOLL OLD WPCP			10			YES	1990/01
+KINCARDINE LAGOON			7	*		YES	1990/01
LEAMINGTON WPCP			1			NO	
+LISTOWEL LAGOON CONT DI			3	*	*	YES	
+MERLIN PV LAGOON		93.6		*	*	YES	1990/04
+MILDMAY WPCP			1			YES	1989/11
+MITCHELL'S BAY LAGOON		100.3		*		YES	1990/04

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: SOUTHWEST

	1989 I	1989 EXCEEDANCES		REMEDIAL	ANTICIPATED		
PLANT NAME	BOD	SS	TP	1988	1987	PROGRAM	COMPLIANCE
+OIL SPRINGS LAGOON		29.4			*	YES	1990/04
+POINT EDWARD WPCP	21%	43%	11	*	*	YES	1992/01
+PORT BURWELL WPCP			1	*	*	YES	1989/07
+PORT STANLEY LAGOON			1			YES	1990/04
+RIDGETOWN LAGOON		46.4	2	*	*	YES	1990/04
+RODNEY LAGOON		31.3		*	*	YES	
SARNIA WPCP			1	*		NO	
ST THOMAS WPCP			3	*		YES	
+STONEY POINT P.V. LAGOON		25.1		*	*	YES	
STRATHROY LAGOON			2		*	YES	1991/06
+WALLACEBURG WPCP			2	*		YES	1990/01
WESTERLY WPCP			1			NO	

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: WEST CENTRAL

	1989	EXCEEDAN	CES				
PLANT NAME	BOD	SS	TP	1988	1987	REMEDIAL PROGRAM	ANTICIPATED COMPLIANCE
ANGER AVE.WPCP	33.6	28.7	2	*	*	YES	1990
+BRANTFORD WPCP			1	*	*	YES	1990/01
CRYSTAL BEACH WPCP			3	*	*	YES	
+DUNNVILLE WPCP			1			YES	1989/06
+ELMIRA WPCP (COMBINED F			3	*	*	YES	1990
ELORA WPCP			1			YES	1990/01
+FERGUS WPCP		25 .9		*	*	YES	
+HESPELER WPCP		38.6	7	*	*	YES	
+JARVIS LAGOON	3	34.2			*	YES	1990
PORT DALHOUSIE WPCP		25.1	1			YES	"
+PORT DOVER WPCP			2	*	*	YES	1993
PORT WELLER WPCP	26.3	is .				YES	1990
+PRESTON WPCP			3			YES	
SEAWAY WPCP	26.7			*		YES	1991
+SHELBURNE WPCP			1	*		YES	1991/01
+ST.JACOBS PV WPCP		91	2	*	*	YES	1994
+WATERLOO WPCP			5	*	*	YES	1990
WELLAND WPCP			2		*	YES	1991

^{+ =} MOE OPERATED PLANT

^{*} INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: CENTRAL

	1989 EXCEEDANCE		CES			REMEDIAL	ANTICIPATED
PLANT NAME	BOD	SS	TP	1988	1987	PROGRAM	COMPLIANCE
						vmo.	1001
BALA WPCP		44%		*	*	YES	1991
BRIGHTON LAGOON		200	1	*	*	NO	
COBOURG WPCP NO 1			7	*	*	YES	1989/12
DUFFIN CREEK WPCP	25.1		1	*		YES	1990/01
FOX ST. WPCP			1			YES	
GEORGETOWN WPCP			1			NO	
HARMONY CREEK 1&2	26.5		1			YES	1990/01
LAKEFIELD LAGOON			1	*		NO	
LINDSAY LAGOON			3	*	*	YES	
MIDLAND WPCP			1		*	NO	
MOUNT ALBERT WPCP		26.0			*	NO	
NORTH TORONTO WPCP			2	*		YES	1989/05
PENETANGUISHENE WPCP			2	*		NO	
STAYNER LAGOON		26.3		*	*	YES	1991/08
WARK WORTH LAGOON		29		*	*	NO	

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: SOUTHEAST

	1989 EXCEEDANCES				-	DEMEDIAL	ANTIGIPATED
PLANT NAME	BOD	SS	TP	1988	1987	REMEDIAL PROGRAM	ANTICIPATED COMPLIANCE
+ALFRED LAGOON	31.5					NO	
+AMHERSTVIEW LAGOON	30.5	64.6		*	*	YES	
ARNPRIOR WPCP	32%	58%	1	*	*	YES	1992
+BATAWA WPCP			2			NO	
BROCKVILLE WPCP		64%	9	*	*	YES	
+CARLETON PLACE WPCP	31.4	57.5	10	*	*	YES	1992
DEEP RIVER WPCP		42%			*	YES	
GREEN CREEK WPCP		65%	12	*	*	YES	1991
KEMPTVILLE WPCP	10		12	*	*	YES	1995
+MERRICKVILLE WPCP			3	*	*	YES	
MORRISBURG WPCP		40%			*	YES	
NAPANEE WPCP			3	*	*	YES	1990
+ODESSA WPCP			4	*		YES	1990
+PETAWAWA WPCP			1		*	YES	1990
+RUSSELL LAGOON		72.3		*	*	NO	
SMITHS FALLS WPCP			3	*	*	YES	1993
+ST.ISIDORE LAGOON		296.7				YES	1990
STIRLING LAGOON		43.3	1	*		YES	1990
+TWEED LAGOON			1	*		YES	1990
WATTS CREEK WPCP			1			NO	

^{+ =} MOE OPERATED PLANT

^{*} INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: SOUTHEAST

	1989	1989 EXCEEDANCES				REMEDIAL	ANTICIPATED	
PLANT NAME	ANT NAME BOD		TP	1988 1987		PROGRAM	COMPLIANCE	
WELLINGTON WPCP			2	*		YES	1990	
+WESTPORT LAGOON		1	1	*	*	YES		

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: NORTHEAST

	1989	EXCEEDAN	CES			REMEDIAL	ANTICIDATED
PLANT NAME	BOD	SS	TP	1988	1987	PROGRAM	ANTICIPATED COMPLIANCE
BOB'S LAKE LAGOON	32.3	,		*	*	YES	1992
+CALLANDER LAGOON		32.8	1			YES	1989/09
CHELMSFORD WPCP			2			YES	1991/01
+ENGLEHART LAGOON			2	*		YES	
+ESPANOLA WPCP		48%			*	YES	
ESTEN LAKE WPCP	97.6					NO	
FALCONBRIDGE TOWNSITE WP	38.6	44.3		*	*	YES	1990/12
HARTY LAGOON			1			NO	
+KIRKLAND LAKE WPCP			3	*	*	YES	
+LAKE TEMISKAMING NEW WPC			1			YES	
+LAKE TEMISKAMING OLD WPC			1	*	*	YES	
+MOOSONEE WPCP (OLD TOWNS	42.3	45.7		*		YES	
+NEW LISKEARD LAGOON			5			YES	
a							
+ST.CHARLES LAGOON			1	*		YES	
+STURGEON FALLS WPCP			4	*	*	YES	
VIRGINIATOWN AND KEARNS	21%	10%		*	*	NO	
+WAWA LAGOON	6.7	7.6	1			YES	
+WEST END WPCP			1			YES	
	8						

^{+ =} MOE OPERATED PLANT

^{*} INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: NORTHWEST

	1989	EXCEEDAN	CES			REMEDIAL	ANTICIPATED	
PLANT NAME	PLANT NAME BOD SS TP		TP	1988	1987	PROGRAM	COMPLIANCE	
+ATIKOKAN WPCP	3,50		2	*	*	YES	1990	
SIOUX LOOKOUT WPCP		30.9				YES		
THUNDER BAY WPCP		67%	8	*	*	YES		

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

APPENDIX B

WASTEWATER TREATMENT FACILITIES EXCEEDING C OF A REQUIREMENTS FOR 1989

EXPLANATORY NOTES FOR APPENDIX B

Each STP has a site specific C of A. Monitoring frequencies indicated on the C of A may vary depending on stream sensitivity and parameter being assessed. Therefore, this appendix only highlights, by an asterisk, which parameter has been exceeded. For more detailed assessment see individual plants in Appendix C.

REGION: SOUTHWEST

	NON	-COMPLIA	ANCE	REMEDIAL	ANTICIPATED COMPLIANCE	
PLANT NAME	BOD	SS	TP	PROGRAM(S)		
+TAVISTOCK LAGOON		*		NO		

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: WEST CENTRAL

	NON-	-COMPLIA	NCE	REMEDIAL	ANTICIPATED	
PLANT NAME	BOD	SS	TP	PROGRAM(S)	COMPLIANCE	
PORT WELLER WPCP	*			YES	1990	

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION: CENTRAL

	NON	-COMPLIA	ANCE	REMEDIAL	ANTICIDATED	
PLANT NAME	I I I I I I I I I I I I I I I I I I I		PROGRAM(S)	ANTICIPATED COMPLIANCE		
ORILLIA WPCP				YES		

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

REGION : SOUTHEAST

	NON-	-COMPLIA	ANCE	REMEDIAL	ANTICIDATED	
PLANT NAME	BOD	SS	TP	PROGRAM(S)	ANTICIPATED COMPLIANCE	
GREEN CREEK WPCP	*	*	*	YES		

- + = MOE OPERATED PLANT
- * INDICATES PLANT WAS OUT OF COMPLIANCE FOR THAT YEAR

APPENDIX C

WASTEWATER TREATMENT FACILITIES LISTINGS AND OPERATING DATA FOR 1989

ABBREVIATIONS FOR APPENDIX C

AVGAverage
BODBiochemical Oxygen Demand
INFInfluent
kg/dKilograms per day
m3Cubic metres
mg/lMilligrams per litre
Number ExceedNumber of months per year a STP has exceeded the effluent limit
P.VPolice Village
SSSuspended Solids
TPTotal Phosphorus
WPCP

1988 EFFLUENT GUIDELINES ASSESSMENT

Number of months per HUNICIPALITY : CHESLEY REGION : SOUTHWEST PLANT : CHESLEY LAGOON MUN.OP.JAN'87 year a STP has exceeded DISTRICT : BRUCE WORKS NUMBER : 110000105 OPERATING AUTHORITY : HUNICIPAL the effluent limit. TREATHENT : CONVENTIONAL LAGOON CONTINUOUS WATERCOURSE : NORTH SAUGEEN RIVER : PHOSPHORUS REMOVAL-CONTINUOUS MINOR BASIN : HURON MAJOR BASIN : GREAT LAKES DESIGN CAPACITY 1.45 (1000 H3) POPULATION SERVED 1.883 ANNUAL NUMBER JAN FEB MAD ADD MAY JUN JUL AUG SEP OCT NOV DEC AVERAGE EXCEED AVG. DAILY FLOW (1000 H3) 0.66 0.82 1.23 0.74 0.48 0.37 0.33 0.44 0.37 0.65 0.88 0.66 0.64 LAGOON DISCHARGE ND An annual concentration limit INFLUENT (HG/L) 84.0 __60.6___68.0 ___69.0 __21.4 __103.0 94.0 26.0 93.0 73.0 EFFLUENT (MG/L) ND 2.8 CONCENTRATION LIMIT (MG/L) 30.0 LOADING (KG/D) 3.85 0.62 1.51 2.21 2.46 SUSPENDED SOLIDS INFLUENT (MG/L) _89.1 ___66.1 ___74.0 ___70.0 ___47.9 __111.6 ___5.1 ____8.4 ___24.8 ____4.2 ____8.2 ____8.6 ND __114.2 __88.6 __22.2 _122.0 87.5 EFFLUENT (HG/L) ND 13.7 2.7 1.4 CONCENTRATION LIMIT (HG/L) 40.0 LOADING (KG/D) 4.18 10.33 18.35 2.01 3.03 2.83 5.06 2.47 2.37 0.92 TOTAL PHOSPHOROUS INFLUENT (MG/L) 2.1 __4.7 ___8.0 6.8 5.5 4.7 0.9 0.9 1.1* EFFLUENT (HG/L) 0.9 1.6 ND 0.5 1.8* 0.6 0.4 0.9 CONCENTRATION LIMIT (HG/L) 71.0 1.0 71.0 1.0 1.0 1.0 1.0 1.0 LOADING (KG/D) 0.59 0.73 1.35 0.33 0.52 0.66 0.39 0.35 0.33 0.58 SUHHARY BOD - ASSESSED ANNUALLY COMPLIES SS - ASSESSED ANNUALLY CRITERIA WITH CONC TP - ASSESSED MONTHLY BOD 30.0 MG/L YES # - EXCEEDS EFFLUENT CRITERIA SS The value indicating the 40.0 MG/L YES SPACE (EG. " ") INDICATES A VALUE OF ZERO A monthly concentration limit 1.0 MG/L NO ND - NO DATA number of months per year NA - NOT APPLICABLE a STP has exceeded the NO REMEDIAL MEASURES REPORTED effluent limit

Southwestern Region (

REGIONAL OFFICE

London 985 Adelaide St. South N6E 1V3 (519) 661-2200

DISTRICT OFFICES

London South 985 Adelaide St. South N6E 1V3 (519) 661-2200

London North 985 Adelaide St. South N6E 1V3 (519) 661-2200

Owen Sound 1180 20th St. East N4K 6H6 (519) 371-2901

Sarnia 265 North Front St. N7T 7X1 (519) 336-4030

Windsor 250 Windsor Ave. N9A 6V9 (519) 254-2546

SUB-OFFICES

Chatham c/o Ministry of Agriculture & Food 435 Grand Ave. West N7M 5L1 (519) 354-2150

Clinton c/o Ministry of Agriculture & Food P.O. Box 688 NOM 1L0 (519) 482-3428

SOUTHWEST SUMMARY - 1989

		Number		Design	Capacity (10	000M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Primary	2	3	5	27.14	237.34	264.48
Conventional Activated Sludge	8	12	20	57.09	359.41	416.50
Contact Stabilization	0	1	1	#	1.82	1.82
Extended Aeration	18	2	20	32.63	23.17	55.80
High Rate	1	0	1	3.90	-	3.90
Oxidation Ditch	2	1	3	3.75	6.45	10.20
Aerated Lagoon	2	2	4	2.94	8.58	11.52
Convent. Lagoon Continuous	2	1	3	3.61	1.46	5.07
Conventional Lagoon Seasonal	31	3	34	34.71	6.31	41.02
Lagoon and Spray	1	0	1	0.57	(-	0.57
Aerated Cell Plus Lagoon	7	1	8	20.22	0.17	20.39
Conventional Lagoon Annual	5	0	5	2.15	, -	2.15
TOTALS	79	26	105	188.71	644.71	833.42

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

SOUTHWEST SUMMARY - 1989

~	1	Number		Annu	al ADF (1000	M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Primary	2	3	5	15.18	159.35	174.53
Conventional Activated Sludge	8	12	20	44.61	310.14	354.75
Contact Stabilization	0	1	1	0.00	1.62	1.62
Extended Aeration	18	2	20	17.68	22.21	39.89
High Rate	1	0	1	2.89	0.00	2.89
Oxidation Ditch	2	1	3	1.49	3.97	5.46
Aerated Lagoon	2	2	4	1.21	5.02	6.23
Convent. Lagoon Continuous	2	1	3	3.79	0.79	4.58
Conventional Lagoon Seasonal	31	3	34	23.78	9.06	32.84
Lagoon and Spray	1	0	1	0.57	0.00	0.57
Aerated Cell Plus Lagoon	7	1	8	13.64	0.00	13.64
Conventional Lagoon Annual	5	0	5	1.40	0.00	1.40
TOTALS	79	26	105	126.24	512.16	638.40

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

1989 EFFLUENT GUIDELINES ASSESSMENT

MUNICIPALITY

: ALVINSTON

PLANT

: ALVINSTON WPCP

WORKS NUMBER

: 110002069

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.60 (1000 M3)

DISTRICT : SOUTHWEST : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SYDENHAM RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

690

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.25	0.19	0.20	0.25	0.18	0.19	0.16	0.15	0.18	0.16	0.18	0.24	0.19	
BOD5 INFLUENT (MG/L)	90.0	116.0	129.0	90.0	163.0	150.0	141.0	150.0	104.0					
EFFLUENT (MG/L)	3.0	4.9	4.1	4.7	-	152.0	141.0	158.0	184.0	142.0	118.0	123.0	133.8	
CONCENTRATION LIMIT (MG/L)	3.0_	4.7	4.1	4.7	5.4	3.3	1.7	3.4	2.7	0.1	3.6	4.8	3.5	
LOADING (KG/D)	0.75	0.07	0.00	1 17	0.07								25.0	
LOADING (KG/D)	0.75	0.93	0.82	1.17	0.97	0.62	0.27	0.51	0.48	0.01	0.64	1.15	0.67	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	105.0	123.0	121.0	72.0	175.0	162.0	129.0	161.0	207.0	152.0	109.0	74.0	132.5	
EFFLUENT (MG/L)	8.5	8.2	9.7	4.2	3.4	5.0	4.6	3.1	5.2	5.4	4.1	4.4	5.5	
CONCENTRATION LIMIT (MG/L)									7.1.				25.0	
LOADING (KG/D)	2.12	1.55	1.94	1.05	0.61	0.95	0.73	0.46	0.93	0.86	0.73	1.05	1.05	
TOTAL PHOSPHOROUS											80000			
INFLUENT (MG/L)	5.6	10.2	6.8	6.8	6.8	6.8	8.8	7.1	9.1	6.8	7.2	6.5	7.4	
EFFLUENT (MG/L)	0.3	0.8	0.5	0.2	0.2	0.3	0.5	0.6	0.3	0.3	0.4	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.4	
LOADING (KG/D)	0.07	0.15	0.10	0.05	0.03	0.05	0.08	0.09	0.05	0.04	0.07	0.09	0.08	-min

				_	
SL	IM	м	А	D	v
3	117	r.	m	п	

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: AMHERSTBURG

PLANT

: AMHERSTBURG WPCP

WORKS NUMBER

: 120001087

TREATMENT

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

7.76 (1000 M3)

REGION : SOUTHWEST DISTRICT : ESSEX

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : DETROIT RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 8,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	6.43	5.43	6.06	7.60	5.83	6.45	ND	6.20	7.22	5.66	5.83	5.44	6.20	
BOD5														
INFLUENT (MG/L)	59.0	167.0	167.0	39.0	55.0	ND	31.0	20.0	23.0	91.0	101.0	ND	75.3	1
EFFLUENT (MG/L)	7.0	12.2	12.2	12.8	17.9	ND	27.2	ND	11.3	8.6	18.0	ND	14.1	
CONCENTRATION LIMIT (MG/L)					7,									
LOADING (KG/D)	45.01	66.24	73.93	97.28	104.35	ND	ND	ND	81.58	48.67	104.94	ND	87.42	
LOADING LIMIT (KG/D)										102-102-1		·		
SUSPENDED SOLIDS				-										
INFLUENT (MG/L)	176.0	96.0	161.0	169.0	89.0	88.0	121.0	131.0	129.0	128.0	133.0	136.0	129.8	
EFFLUENT (MG/L)	28.6	28.2	28.1	27.0	22.7	28.9	26.8	28.8	28.9	28.8	29.0	29.0	27.9	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	183.89	153.12	170.28	205.20	132.34	186.40	ND	178.56	208.65	163.00	169.07	157.76	172.98	
LOADING LIMIT (KG/D)														
TOTAL PHOSPHOROUS							12							1
INFLUENT (MG/L)	4.5	4.2	2.3	2.4	3.3	4.3	2.5	3.2	3.5	3.7	3.5	3.6	3.4	
EFFLUENT (MG/L)	1.0	1.0	0.9	0.9	0.9	0.8	1.0	1.0	1.0	1.0	1.0	0.9	1.0	
CONCENTRATION LIMIT (MG/L)								713					1.0	
LOADING (KG/D)	6.43	5.43	5.45	6.84	5.24	5.16	ND	6.20	7.22	5.66	5.83	4.89	6.20	
LOADING LIMIT (KG/D)			-											

		SUMMARY		
			COMPL	IES WITH
PARM	CRITERIA	LOADING	CONC	LOADING
BOD	NA	NA	NA	NA
SS	30.0 MG/L	NA	YES	NA
TP	1.0 MG/L	NA	YES	NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

1989 EFFLUENT GUIDELINES ASSESSMENT

MUNICIPALITY

: AMHERSTBURG

PLANT

: AMHERSTBURG WPCP

WORKS NUMBER

: 120001087

:

TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 7.76 (1000 M3) DISTRICT REGION : SOUTHWEST : ESSEX

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : DETROIT RIVER

MINOR BASIN : ERIE MAJOR BASIN : GREAT LAKES POPULATION SERVED : 8,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	6.43	5.43	6.06	7.60	5.83	6.45	ND	6.20	7.22	5.66	5.83	5.44	6.20	
BOD5 INFLUENT (MG/L)	59.0	167.0	167.0	39.0	55.0	ND	31.0	20.0	27.0	01.0	101.0			
EFFLUENT (MG/L)	7.0	12.2	12.2	12.8	17.9	ND	27.2	20.0 ND	23.0 11.3	91.0		ND ND	75.3	
LOADING (KG/D)	45.01	66.24	73.93	97.28	104.35	ND	ND	ND	81.58	8.6 48.67	18.0	ND ND	14.1	
PERCENT REMOVAL	88	93	93	67	67		12		51	91	82	עט	87.42 81	
PERCENT REMOVAL LIMITS	N												50	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	176.0	96.0	161.0	169.0	89.0	88.0	121.0	131.0	129.0	128.0	133.0	136.0	129.8	
EFFLUENT (MG/L)	28.6	28.2	28.1	27.0	22.7	28.9	26.8	28.8	28.9	28.8	29.0	29.0	27.9	
LOADING (KG/D)	183.89	153.12	170.28	205.20	132.34	186.40	ND	178.56	208.65	163.00	169.07	157.76	172.98	
PERCENT REMOVAL	84	71	83	84	74	67	78	78	78	78	78	79	79	
PERCENT REMOVAL LIMITS													70	*****
TOTAL PHOSPHOROUS						100,000								
INFLUENT (MG/L)	4.5	4.2	2.3	2.4	3.3	4.3	2.5	3.2	3.5	3.7	3.5	3.6	3.4	
EFFLUENT (MG/L)	1.0	1.0	0.9	0.9	0.9	0.8	1.0	1.0	1.0	1.0	1.0	0.9	1.0	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	6.43	5.43	5.45	6.84	5.24	5.16	ND	6.20	7.22	5.66	5.83	4.89	6.20	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	50%	YES	
SS	70%	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: ANDERDON

PLANT

: EDGEWATER BEACH LAGOON

WORKS NUMBER

: 110002407

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

1.61 (1000 M3)

REGION : SOUTHWEST

DISTRICT : ESSEX

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: DETROIT RIVER WATERCOURSE

: ERIE MINOR BASIN

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,869

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.56	0.49	0.56	0.88	0.54	0.83	0.73	0.59	0.58	0.50	0.52	0.50	0.61	
LAGOON DISCHARGE	ND	ND	ND	11.82	91.57	44.32	ND	ND	ND	ND	108.42	14.31	54.09	
BOD5		100												
INFLUENT (MG/L)	166.0	124.0	116.0	53.0	155.0	70.0	90.0	146.0	97.0	128.0	134.0	174.0	121.1	
EFFLUENT (MG/L)	ND	ND	ND	2.5	4.1	4.4	ND	ND	ND	ND	4.2	16.5	6.3	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	2.20	2.21	3.65	ND	ND	ND	ND	2.18	8.25	3.84	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	90.0	89.0	133.0	42.0	119.0	63.0	74.0	106.0	78.0	74.0	64.0	88.0	85.0	
EFFLUENT (MG/L)	ND	ND	ND	4.8	4.9	6.4	ND	ND	ND	ND	7.9	22.3	9.3	
CONCENTRATION LIMIT (MG/L)													40,0	
LOADING (KG/D)	ND	ND	ND	4.22	2.64	5.31	ND	ND	ND	ND	4.10	11.15	5.67	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.3	7.8	7.2	2.6	10.5	5.1	6.7	7.3	5.9	6.7	7.3	7.7	6.9	
EFFLUENT (MG/L)	ND	ND	ND	0.1	0.2	0.5	ND	ND	ND	ND	0.3	0.6	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.08	0.10	0.41	ND	ND	ND	ND	0.15	0.30	0.18	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30.0 MG/L	YES	
SS	40.0 MG/L	YES	

1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: ANDERDON

PLANT

: MCGREGOR LAGOON

WORKS NUMBER

: 110002096

TREATMENT

: LAGOON AND SPRAY

: NO DISCHARGE

DESIGN CAPACITY

.

0.56 (1000 M3)

REGION : SOUTHWEST DISTRICT : ESSEX

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : NO DISC TO SURFACE WATER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,734

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.55	0.48	0.52	0.60	0.57	0.67	0.79	0.50	0.56	0.52	0.61	0.49	0.57	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	13.60	117.34	ND	ND	ND	ND	65.47	
BOD5 INFLUENT (MG/L)	116.0	130.0	159.0	84.0	162.0	87.0	115.0	136.0	130.0	104.0	159.0	163.0	128.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	8.0	5.0	ND	ND	ND	ND	6.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	6.32	2.50	ND	ND	ND	ND	3.71	
SUSPENDED SOLIDS INFLUENT (MG/L)	120.0	128.0	164.0	88.0	129.0	120.0	83.0	128.0	122.0	122.0	97.0	117.0	118.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	18.2	12.1	ND	ND	ND	ND	15.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	14.37	6.05	ND	ND	ND	ND	8.66	************
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.5	8.3	9.0	4.7	6.0	6.6	6.8	6.7	6.7	5.6	6.9	8.5	6.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	0.3	0.3	ND	ND	ND	ND	0.3	
CONCENTRATION LIMIT (MG/L)									V-11-					
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	0.23	0.15	ND	ND	ND	ND	0.17	

SUMMA	ARY	
	COMPLIES	
CRITERIA	WITH CONC	
NA	NO DIRECT	DISCHARGE
NA	NO DIRECT	DISCHARGE
NA	NO DIRECT	DISCHARGE
	CRITERIA NA NA	NA NO DIRECT NA NO DIRECT

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: ARRAN

PLANT : TARA LAGOON

WORKS NUMBER

: 110003237

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.65 (1000 M3)

REGION : SOUTHWEST

DISTRICT : BRUCE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: SAUBLE RIVER

MINOR BASIN

: HURON

MAJOR BASIN : GRE POPULATION SERVED :

: GREAT LAKES : 637

300	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.25	0.22	0.33	0.23	0.20	0.21	0.20	0.19	0.20	0.21	0.23	0.23	0.23	
LAGOON DISCHARGE	ND	ND	ND	56.09	ND	ND	ND	ND	ND	ND	21.72	ND	38.91	
BOD5														
INFLUENT (MG/L)	137.0	158.0	137.0	132.0	180.0	194.0	188.0	134.0	262.0	121.0	130.0	172.0	162.1	
EFFLUENT (MG/L)	ND	ND	ND	9.5	ND	ND	ND	ND	ND	ND	2.0	ND	5.8	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	2.18	ND	ND	ND	ND	ND	ND	0.46	ND	1.33	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	187.0	226.0	110.0	208.0	150.0	269.0	124.0	101.0	367.0	101.0	83.0	118.0	170.3	
EFFLUENT (MG/L)	ND	ND	ND	32.8	ND	ND	ND	ND	ND	ND	8.2	ND	20.5	Construction I Secure State
CONCENTRATION LIMIT (MG/L)								W. 11. 70.					40.0	
LOADING (KG/D)	ND	ND	ND	7.54	ND	ND	ND	ND	ND	ND	1.88	ND	4.72	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.9	8.0	7.0	10.2	8.2	8.9	8.0	6.3	13.0	7.5	5.9	6.2	8.2	
EFFLUENT (MG/L)	ND	ND	ND	0.8	ND	ND	ND	ND	ND	ND	0.6	ND	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.18	ND	ND	ND	ND	ND	ND	0.13	ND	0.16	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	30.0 MG/L	YES
SS	40.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: AYLMER

PLANT

: AYLMER LAGOON

WORKS NUMBER

: 110000891

TREATMENT

: AERATED CELL PLUS LAGOON

: SUMMER STORAGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

5.23 (1000 M3)

REGION : SOUTHWEST DISTRICT

: ELGIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : CATFISH CREEK

WATERCOURSE MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES POPULATION SERVED : 5,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	3.65	3.18	3.35	4.44	3.53	3.47	2.60	2.50	2.58	2.65	3.52	2.77	3.19	
LAGOON DISCHARGE	ND	ND	168.68	ND	199.59	ND	ND	ND	ND	ND	541.81	ND	303.36	***************************************
BOD5	100100000000000000000000000000000000000	0000000 VA	5,400 (State) (B4)	Sectional Contract	to the same of the	According to	The second second							
INFLUENT (MG/L)	122.0	105.0	143.0	150.0	173.0	137.0	252.0	105.0	199.0	213.0	191.0	248.0	169.8	
EFFLUENT (MG/L)	ND	ND	18.4	ND	2.7	ND	ND	ND	ND	ND	1.5	ND	7.5	
CONCENTRATION LIMIT (MG/L)	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0		
LOADING (KG/D)	ND	ND	61.64	ND	9.53	ND	ND	ND	ND	ND	5.28	ND	23.93	
LOADING LIMIT (KG/D)														-
SUSPENDED SOLIDS										-311				
INFLUENT (MG/L)	125.0	81.0	87.0	156.0	86.0	75.0	101.0	80.0	100.0	70.0	75.0	88.0	93.7	
EFFLUENT (MG/L)	ND	ND	9.3	ND	4.0	ND	ND	ND	ND	ND	2.2	ND	5.2	
CONCENTRATION LIMIT (MG/L)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0		
LOADING (KG/D)	ND	ND	31.15	ND	14.12	ND	ND	ND	ND	ND	7.74	ND	16.59	
LOADING LIMIT (KG/D)								100						
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.3	10.7	13.9	6.3	7.0	7.6	9.5	9.5	16.0	20.2	13.0	10.9	11.0	
EFFLUENT (MG/L)	ND	ND	0.8	ND	0.4	ND	ND	ND	ND	ND	0.4	ND	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	2.68	ND	1.41	ND	ND	ND	ND	ND	1.40	ND.	1.60	
LOADING LIMIT (KG/D)	One Contract													

		SUMMARY		
			COMPL	IES WITH
PARM	CRITERIA	LOADING	CONC	LOADING
BOD	25.0 MG/L	NA	YES	NA
SS	30.0 MG/L	NA	YES	NA
TP	1.0 MG/L	NA	YES	NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED MONTHLY

SS - ASSESSED MONTHLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: AYLMER

PLANT

: AYLMER LAGOON

WORKS NUMBER

: 110000891

TREATMENT

: AERATED CELL PLUS LAGOON

: SUMMER STORAGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 5.23 (1000 M3)

: SOUTHWEST REGION

DISTRICT : ELGIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : CATFISH CREEK

MINOR BASIN : ERIE

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 5,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.65	3.18	3.35	4.44	3.53	3.47	2.60	2.50	2.58	2.65	3.52	2.77	3.19	
LAGOON DISCHARGE	ND	- ND	168.68	ND	199.59	ND	ND	ND	ND	ND	541.81	ND	303.36	
BOD5														
INFLUENT (MG/L)	122.0	105.0	143.0	150.0	173.0	137.0	252.0	105.0	199.0	213.0	191.0	248.0	169.8	S IIVA
EFFLUENT (MG/L)	ND	ND	18.4	ND	2.7	ND	ND	ND	ND	ND	1.5	ND	7.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	61.64	ND	9.53	ND	ND	ND	ND	ND	5.28	ND	23.93	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	125.0	81.0	87.0	156.0	86.0	75.0	101.0	80.0	100.0	70.0	75.0	88.0	93.7	
EFFLUENT (MG/L)	ND	ND	9.3	ND	4.0	ND	ND	ND	ND	ND	2.2	ND	5.2	Vision
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	31.15	ND	14.12	ND	ND	ND	ND	ND	7.74	ND	16.59	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.3	10.7	13.9	6.3	7.0	7.6	9.5	9.5	16.0	20.2	13.0	10.9	11.0	
EFFLUENT (MG/L)	ND	ND	0.8	ND	0.4	ND	ND	ND	ND	ND	0.4	ND	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	2.68	ND	1.41	ND	ND	ND	ND	ND	1.40	ND	1.60	

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES SS 40.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BELMONT

PLANT

: BELMONT LAGOON

WORKS NUMBER

: 110002032

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.56 (1000 M3)

REGION : SOUTHWEST DISTRICT

: ELGIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : KETTLE CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,150

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.41	0.36	0.42	0.54	0.39	0.44	0.40	0.37	0.41	0.37	0.48	0.39	0.42	
LAGOON DISCHARGE	ND	ND	ND	64.80	ND	ND	ND	ND	ND	52.00	62.76	ND	59.85	
BOD5 INFLUENT (MG/L)	81.0	79.0	113.0	84.0	120.0	100.0	110.0	100.0	110 0	170.0				
EFFLUENT (MG/L)	ND	ND	ND	make the first transfer of the same	128.0	109.0	118.0	102.0	119.0		80.0	114.0	104.9	
	ND.		NU	13.2	ND	ND	ND_	ND	ND	3.0	3.5	ND	6.6	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	7.12	ND	ND	ND	ND	ND	1.11	1.68	ND	2.77	
SUSPENDED SOLIDS			2000	200										
INFLUENT (MG/L)	87.0	112.0	116.0	58.0	83.0	123.0	97.0	94.0	105.0	125.0	72.0	238.0	109.2	
EFFLUENT (MG/L)	ND	ND	ND	12.5	ND	ND	ND	ND	ND	6.2	9.0	ND	9.2	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	6.75	ND	ND	ND	ND	ND	2.29	4.32	ND	3.86	
TOTAL PHOSPHOROUS						10.00								
INFLUENT (MG/L)	6.2	6.5	7.6	4.8	6.7	7.4	6.2	5.5	6.8	8.5	5.0	606.0	56.4	
EFFLUENT (MG/L)	ND	ND	ND	1.3×	ND	ND	ND	ND	ND	0.6	0.1	ND	0.7	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
LOADING (KG/D)	ND	ND	ND	0.70	ND	ND	ND	ND	ND	0.22	0.04	ND	0.29	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

1989/05

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED 1989/05 1989/10 OPERATIONAL/PROCESS - CONDUCTING TREATABILITY STUDIES

1989/10 1990/12

MUNICIPALITY

: BLANDFORD-BLENHEIM : PLATTSVILLE LAGOON

PLANT WORKS NUMBER

: 110003022

TREATMENT

: AERATED CELL PLUS LAGOON

: SEASONAL DISCHARGE

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

: 0.59 (1000 M3)

REGION : SOUTHWE DISTRICT : OXFORD : SOUTHWEST

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE MINOR BASIN

: NITH RIVER

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 795

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.42	0.45	0.46	0.42	0.34	0.42	0.36	0.42	0.33	0.37	0.40	0.38	0.40	
LAGOON DISCHARGE	ND	ND	ND	ND										
BOD5 INFLUENT (MG/L)	274.0	90.0	ND	130.0	ND	86.0	266.0	254.0	161.0	164.0	123.0	188.0	173.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	18.2	ND	ND	ND	ND	ND	1.4	ND	9.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	6.18	ND	ND	ND	ND	ND	0.56	ND	3.92	
SUSPENDED SOLIDS	700.0	101.0	ND	227.0	ND	115.0	474.0	160.0	101.0	150.0	117.0	146.0	100.0	
INFLUENT (MG/L)	300.0	101.0	ND ND	227.0	ND ND	115.0	474.0	162.0	191.0 ND	159.0 ND	113.0	146.0 ND	198.8	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	ND	ND	ND	ND	26.6	ND	ND	ND	NU	ND_	6.6_		25.0	
LOADING (KG/D)	ND	ND	ND	ND	9.04	ND	ND	ND	ND	ND	2.72	ND	6.68	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.7	4.2	ND	5.1	ND	3.5	15.4	4.0	5.3	6.3	5.4	6.4	6.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.6	ND	ND	ND	ND	ND	0.1	ND	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	0.20	ND	ND	ND	ND	ND	0.04	ND	0.16	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES BOD SS 25.0 MG/L YES

TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED START DATE END DATE COMPLIANCE

1988/02

1990/01

REMEDIAL MEASURES

MUNICIPALITY

: BLENHEIM

PLANT

: BLENHEIM LAGOON

WORKS NUMBER

: 120001666

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

1.95 (1000 M3)

REGION : SOUTHWEST

DISTRICT

: KENT OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: CAMERON DR - MCGREGOR CK

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

4,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.56	1.39	1.55	1.65	2.10	1.84	1.57	1.82	1.52	1.30	1.29	1.19	1.57	
LAGOON DISCHARGE	ND	ND	ND	255.59	ND	ND	ND	ND	ND	ND	354.40	ND	305.00	
BOD5 INFLUENT (MG/L)	146.0	139.0	124.0	148.0	134.0	148.0	172.0	159.0	572.0	144.0	170.0	160.0	184.7	
EFFLUENT (MG/L)	ND	ND	ND	19.3	ND	ND	ND	ND	ND	ND	25.1	ND	22.2	
CONCENTRATION LIMIT (MG/L)									1250				25.0	
LOADING (KG/D)	ND	ND	ND	31.84	ND	ND	ND	ND	ND	ND	32.37	ND	34.85	
SUSPENDED SOLIDS INFLUENT (MG/L)	244.0	208.0	102.0	114.0	91.0	144.0	170.0	135.0	443.0	143.0	154.0	113.0	171.8	
EFFLUENT (MG/L)	ND	ND	ND	27.2	ND	ND	ND	ND	ND	ND	39.6	ND	33.4*	
CONCENTRATION LIMIT (MG/L)											1	**	25.0	
LOADING (KG/D)	ND	ND	ND	44.88	ND	ND	ND	ND	ND	ND	51.08	ND	52.44	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.0	8.3	7.4	8.2	7.0	7.6	6.7	7.7	10.0	7.6	8.4	8.2	7.8	
EFFLUENT (MG/L)	ND	ND	ND	0.6	ND	ND	ND	ND	ND	ND	0.6	ND	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.99	ND	ND	ND	ND	ND	ND	0.77	ND	0.94	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L NO

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE END DATE COMPLIANCE

1988/02

1990/01

1990/04

MUNICIPALITY : BLYTH

PLANT : BLYTH WPCP WORKS NUMBER : 110002247

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY : 0.73 (1000 M3)

: SOUTHWEST REGION DISTRICT

: HURON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BLYTH CREEK

MINOR BASIN : HURON

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 890

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.42	0.40	0.42	0.42	0.37	0.28	0.29	0.30	0.27	0.29	0.34	0.33	0.34	
BOD5 INFLUENT (MG/L)	94.0	152.0	187.0	77.0	128.0	117.0	166.0	112.0	158.0	121.0	108.0	120.0	128.3	
EFFLUENT (MG/L)	1.1	3.7	1.9	2.3	2.6	2.3	2.2	1.3	1.2	1.8	6.0	2.1	2.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.46	1.48	0.79	0.96	0.96	0.64	0.63	0.39	0.32	0.52	2.04	0.69	0.82	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	153.0	180.0	306.0	70.0	124.0	98.0	255.0	215.0	191.0	130.0	91.0	192.0	167.1	
EFFLUENT (MG/L)	0.6	5.2	2.1	3.9	1.5	1.8	2.5	1.7	2.2	1.2	2.6	4.9	2.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.25	2.08	0.88	1.63	0.55	0.50	0.72	0.51	0.59	0.34	0.88	1.61	0.85	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.7	8.6	9.2	5.8	7.1	6.4	9.5	8.1	14.0	7.1	5.6	9.5	8.1	
EFFLUENT (MG/L)	0.2	0.7	0.2	0.4	0.2	0.2	0.3	0.2	0.4	0.2	0.3	0.3	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.08	0.28	0.08	0.16	0.07	0.05	0.08	0.06	0.10	0.05	0.10	0.09	0.10	

01	114			n	
sι	m	м	A	ĸ	

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES SS 25.0 MG/L YES TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: BRUSSELS

WORKS NUMBER

: BRUSSELS WPCP

: 110002354

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

0.88 (1000 M3)

REGION

: SOUTHWEST DISTRICT : HURON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: MAITLAND RIVER

MINOR BASIN MAJOR BASIN : HURON

: GREAT LAKES

POPULATION SERVED :

1,010

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.32	0.37	0.45	0.46	0.35	0.48	0.32	0.31	0.30	0.32	0.40	0.37	0.37	
BOD5														
INFLUENT (MG/L)	93.0	174.0	159.0	277.0	169.0	121.0	51.0	48.0	128.0	137.0	189.0	261.0	150.6	
EFFLUENT (MG/L)	2.5	3.1	3.4	3.4	3.8	2.0	3.3	1.5	1.9	1.9	3.0	1.8	2.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.80	1.14	1.53	1.56	1.33	0.96	1.05	0.46	0.57	0.60	1.20	0.66	0.96	
SUSPENDED SOLIDS INFLUENT (MG/L)	150.0	246.0	237.0	403.0	243.0	132.0	168.0	218.0	108.0	268.0	253.0	250.0	223.0	
EFFLUENT (MG/L)	1.3	1.9	2.8	2.1	1.8	1.2	2.2	2.8	1.9	1.7	2.6	4.6	2.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.41	0.70	1.26	0.96	0.63	0.57	0.70	0.86	0.57	0.54	1.04	1.70	0.81	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.9	12.6	9.7	18.3	11.2	8.5	9.6	10.4	8.6	11.3	10.8	12.5	10.0	
EFFLUENT (MG/L)	0.1	0.2	0.2	0.2	0.2	0.1	0.2	0.3	0.3	0.2	0.2	0.1	10.9	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.2	
LOADING (KG/D)	0.03	0.07	0.09	0.09	0.07	0.04	0.06	0.09	0.09	0.06	0.08	0.03	0.07	

-		
SL	JMMA	YN/

COMPLIES CRITERIA WITH CONC

PARM BOD

25.0 MG/L YES 25.0 MG/L YES

SS TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY : CHATHAM

PLANT : CHATHAM WPCP WORKS NUMBER : 110000098

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY : 35.91 (1000 M3)

REGION : SOUTHWEST

DISTRICT : KENT

OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : THAMES RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 41,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	21.12	22.35	25.45	31.40	31.09	30.41	24.53	26.13	26.74	27.12	27.29	22.16	26.32	
BOD5 INFLUENT (MG/L)	127.0	171.0	178.0	187.0	161.0	131.0	136.0	137.0	155.0	145.0	180.0	195.0	158.6	
EFFLUENT (MG/L)	4.3	7.1	10.2	6.9	5.7	3.4	7.1	6.9	6.5	5.1	10.5	6.5	6.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	90.81	158.68	259.59	216.66	177.21	103.39	174.16	180.29	173.81	138.31	286.54	144.04	176.34	
SUSPENDED SOLIDS INFLUENT (MG/L)	210.0	189.0	193.0	196.0	223.0	150.0	174.0	213.0	358.0	216.0	192.0	251.0	213.8	
EFFLUENT (MG/L)	9.1	12.6	23.7	14.8	13.2	13.2	20.5	26.2	26.8	25.1	22.1	12.7	18.3	
CONCENTRATION LIMIT (MG/L)									-				25.0	
LOADING (KG/D)	192.19	281.61	603.16	464.72	410.38	401.41	502.86	684.60	716.63	680.71	603.10	281.43	481.66	
TOTAL PHOSPHOROUS	Service Part	construction of		1000 - DO 1000 -		naver 700	nones men	Disert ser		320 200	774040 III			
INFLUENT (MG/L)	13.3	17.1	13.8	11.1	11.7	10.4	11.8	8.8	9.6	8.1	12.6	10.3	11.6	
EFFLUENT (MG/L)	0.8	0.9	0.6	0.5	0.4	0.4	0.5	0.5	0.4	0.5	0.3	0.5	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	16.89	20.11	15.27	15.70	12.43	12.16	12.26	13.06	10.69	13.56	8.18	11.08	13.16	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES
	PARM BOD SS TP	BOD 25.0 MG/L SS 25.0 MG/L

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - ASSESSED MONTHLY
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA

MUNICIPALITY

: CHESLEY

:

PLANT

: CHESLEY LAGOON

WORKS NUMBER

: 110000105

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

1.45 (1000 M3)

REGION : SOUTHWEST DISTRICT : BRUCE

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NORTH SAUGEEN RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,883

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.67	0.48	1.17	0.76	0.85	0.82	0.66	0.63	0.76	0.72	1.10	0.86	0.79	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND								
BOD5									-					
INFLUENT (MG/L)	96.0	122.0	144.0	90.0	93.0	78.0	118.0	67.0	113.0	73.0	49.0	85.0	94.0	
EFFLUENT (MG/L)	6.4	4.7	11.5	23.6	21.6	2.8	1.8	0.1	3.0	2.2	2.2	5.1	7.1	
CONCENTRATION LIMIT (MG/L)													30.0	****
LOADING (KG/D)	4.28	2.25	13.45	17.93	18.36	2.29	1.18	0.06	2.28	1.58	2.42	4.38	5.61	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	145.0	165.0	45.0	82.0	104.0	174.0	209.0	82.0	104.0	97.0	58.0	267.0	127.7	
EFFLUENT (MG/L)	6.6	9.0	7.2	7.6	22.6	2.9	32.3	2.3	2.6	2.0	3.8	3.1	8.5	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	4.42	4.32	8.42	5.77	19.21	2.37	21.31	1.44	1.97	1.44	4.18	2.66	6.72	
TOTAL PHOSPHOROUS														100
INFLUENT (MG/L)	6.1	7.4	2.5	5.2	4.4	5.0	7.1	4.7	8.5	5.4	2.4	4.5	5.3	
EFFLUENT (MG/L)	1.1*	1.5*	1.8×	1.0	0.9	1.6*	1.0	0.5	0.8	0.6	0.4	0.3	1.0	4
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.73	0.72	2.10	0.76	0.76	1.31	0.66	0.31	0.60	0.43	0.44	0.25	0.79	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY
TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED

1989/09

MUNICIPALITY

: CLEARWATER TOWN

PLANT

: BRIGHT'S GROVE LAGOON

WORKS NUMBER

: 110001989

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

1.75 (1000 M3)

REGION : SOUTHWEST DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CREEK TO L.HURON

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 4,150

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.21	1.09	1.24	1.21	1.30	1.20	1.17	1.13	1.27	1.25	1.30	1.21	1.22	
LAGOON DISCHARGE	ND	- ND	ND	ND	128.70	ND	128.70	×						
BOD5														
INFLUENT (MG/L)	208.0	179.0	285.0	292.0	91.0	146.0	103.0	141.0	388.0	133.0	176.0	225.0	197.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	8.3	ND	ND	ND	ND	2.8	ND	ND	5.6	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	10.79	ND	ND	ND	ND	3.50	ND	ND	6.83	1
SUSPENDED SOLIDS														
INFLUENT (MG/L)	590.0	194.0	1,885.0	1,208.0	80.0	232.0	103.0	124.0	94.0	101.0	110.0	71.0	399.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	15.6	ND	ND	ND	ND	30.0	ND	ND	22.8	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	20.28	ND	ND	ND	ND	37.50	ND	ND	27.82	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	14.5	8.0	25.0	15.6	6.7	8.9	7.4	8.0	9.7	7.8	8.0	10.7	10.9	l
EFFLUENT (MG/L)	ND	ND	ND	ND	2.3	ND	ND	ND	ND	4.5	ND	ND	3.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	2.99	ND	ND	ND	ND	5.62	ND	ND	4.15	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 30.0 MG/L YES

BOD SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02 1990/01

MUNICIPALITY : CLINTON PLANT : CLINTON

PLANT : CLINTON WPCP WORKS NUMBER : 120000925

TREATMENT : CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT FILTRATION

DESIGN CAPACITY : 1.81 (1000 M3)

REGION : SOUTHWEST DISTRICT : HURON

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : BAYFIELD RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 3,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)	2.20	1.76	2.00	2.65	1.69	1.50	0.99	1.00	1.04	1.21	1.80	1.60	1.62	
BOD5 INFLUENT (MG/L)	79.0	84.0	78.0	60.0	106.0	143.0	141.0	127.0	125.0	137.0	93.0	111.0	107.0	
EFFLUENT (MG/L)	7.0	4.0	5.6	6.8	4.7	1.5	5.4	0.7	2.3	0.9	3.1	2.6	3.7	
CONCENTRATION LIMIT (MG/L)			The second second second second										25.0	
LOADING (KG/D)	15.40	7.04	11.20	18.02	7.94	2.25	5.34	0.70	2.39	1.08	5.58	4.16	5.99	
SUSPENDED SOLIDS INFLUENT (MG/L)	85.0	101.0	80.0	46.0	93.0	219.0	118.0	146.0	130.0	187.0	82.0	71.0	113.2	
EFFLUENT (MG/L)	5.0	3.5	3.8	9.6	6.1	3.2	3.5	0.3	3.2	2.0	2.6	2.1	3.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	11.00	6.16	7.60	25.44	10.30	4.80	3.46	0.30	3.32	2.42	4.68	3.36	5.99	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.8	5.0	4.2	2.7	3.9	6.1	6.9	6.2	6.9	6.9	5.1	4.6	5.2	
EFFLUENT (MG/L)	0.6	0.5	0.6	0.6	0.7	0.6	0.6	0.8	0.5	0.3	0.4	0.4	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.32	0.88	1.20	1.59	1.18	0.90	0.59	0.80	0.52	0.36	0.72	0.64	0.97	

SUMMARY

CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: COLCHESTER SOUTH

PLANT

: COLCHESTER SOUTH TWP (OP APRIL 89)

WORKS NUMBER

: 110002595

TREATMENT

: AERATED LAGOON

: CONTINUOUS DISCHARGE

DESIGN CAPACITY

: PHOSPHORUS REMOVAL-CONTINUOUS

1.81 (1000 M3)

REGION : SOUTHWEST

DISTRICT : ESSEX

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: LAKE ERIE

MINOR BASIN MAJOR BASIN : ERIE : GREAT LAKES

POPULATION SERVED :

2,058

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	1.16	0.91	0.90	0.71	0.62	0.45	0.79	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	36.05	28.31	26.97	21.87	18.55	13.98	24.29	
BOD5 INFLUENT (MG/L)	ND	ND	ND	ND	ND	NE	14.0	47.0		100.0		74.0		
EFFLUENT (MG/L)	ND ND	ND ND	ND ND	ND ND	ND	ND	14.0	43.0	5.0	100.0	94.0	76.0	55.3	
CONCENTRATION LIMIT (MG/L)	ND ND	ND	עא	ND	ND	ND	0.1	1.2	1.2	1.0	1.4	2.0	1.2	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	0.11	1.09	1.08	0.71	0.86	0.90	30.0 0.95	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND_	ND	ND	ND	ND	ND	32.0	167.0	4.0	73.0	207.0	75.0	93.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	3.7	0.6	2.0	2.6	1.5	2.8	2.2	
CONCENTRATION LIMIT (MG/L)												N	40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	4.29	0.54	1.80	1.84	0.93	1.26	1.74	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND								
EFFLUENT (MG/L)	ND	ND D	ND ND	ND ND	ND ND	ND	1.3	2.1	0.4	2.7	4.7	3.5	2.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	ND 1 0	1 0	1 0	1 ^	0.1		0.1		
LOADING (KG/D)	ND ND	ND	ND	ND	ND	1.0 ND	1.0	1.0	1.0	1.0	1.0	1.0		
LUADING (RO/D)	ND	ND	ND	ND	ND	NU				0.07		0.04		

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 30.0 MG/L INSUFFICIENT DATA SS 40.0 MG/L INSUFFICIENT DATA

TP 1.0 MG/L INSUFFICIENT DATA

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: COLLINGWOOD TWP

PLANT

: CRAIGLEIGH WPCP

WORKS NUMBER

: 120001951

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT FILTRATION

DESIGN CAPACITY

4.07 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: GREY

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: GEORGIAN BAY

MINOR BASIN

: HURON

MAJOR BASIN POPULATION SERVED :

: GREAT LAKES 3,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.01	0.91	1.13	0.82	0.84	1.00	1.00	1.03	0.80	0.81	0.90	1.06	0.94	
BOD5			1,000	1000			22.2	.15		272				
INFLUENT (MG/L)	19.0	58.0	44.0	65.0	18.0	48.0	24.0	ND	11.0	206.0	16.0	16.0	47.7	
EFFLUENT (MG/L)	1.0	0.7	1.9	1.2	2.0	1.4	0.7_	ND	1.6	1.1	1.2	1.1	1.3	
CONCENTRATION LIMIT (MG/L)													15.0	
LOADING (KG/D)	1.01_	0.63	2.14	0.98	1.68	1.40	0.70	ND	1.28	0.89	1.08	1.16	1.22	
LOADING LIMIT (KG/D)					0000								61.20	
SUSPENDED SOLIDS				44.0	<i>(</i>	40.0		105.0	47.0	104.0	45.0	146.0	74.6	
INFLUENT (MG/L)	65.0	71.0	59.0_	46.0	65.0	42.0	64.0_	105.0	43.0	124.0	65.0	146.0	74.6	
EFFLUENT (MG/L)	2.2	4.3	1.9	0.5	1.8	0.5	1.3	3.3	2.5	0.6	0.8	1.0	1.7	
CONCENTRATION LIMIT (MG/L)													15.0	
LOADING (KG/D)	2.22	3.91	2.14	0.41	1.51	0.50	1.30	3.39	2.00	0.48	0.72	1.06	1.60	
LOADING LIMIT (KG/D)													61.20	
TOTAL PHOSPHOROUS													-71	
INFLUENT (MG/L)	2.0	2.9	2.3	1.7	1.6	2.3	2.1	2.6	2.8	4.6	1.8	3.1	2.5	
EFFLUENT (MG/L)	0.3	0.3	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.2	0.3	0.3	
CONCENTRATION LIMIT (MG/L)													0.3	
LOADING (KG/D)	0.30	0.27	0.11	0.16	0.16	0.20	0.30	0.30	0.24	0.24	0.18	0.31	0.28	22-17-15-12-15
LOADING LIMIT (KG/D)						=							1.22	

		SUMMARY		
			COMPL	IES WITH
PARM	CRITERIA	LOADING	CONC	LOADING
BOD	15.0 MG/L	61.20 KG/D	YES	YES
SS	15.0 MG/L	61.20 KG/D	YES	YES
TP	0.3 MG/L	1.22 KG/D	YES	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: COLLINGWOOD TWP

PLANT WORKS NUMBER : CRAIGLEIGH WPCP : 120001951

: EXTENDED AERATION

TREATMENT

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT FILTRATION :

DESIGN CAPACITY

4.07 (1000 M3)

REGION

: SOUTHWEST

DISTRICT : GREY

OPERATING AUTHORITY : MUNICIPAL

: GEORGIAN BAY

WATERCOURSE MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

3,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.01	0.91	1.13	0.82	0.84	1.00	1.00	1.03	0.80	0.81	0.90	1.06	0.94	
BOD5 INFLUENT (MG/L)	19.0	58.0	44.0	65.0	18.0	48.0	24.0	ND	11.0	206.0	16.0	16.0	47.7	
EFFLUENT (MG/L)	1.0	0.7	1.9	1.2	2.0	1.4	0.7	ND	1.6	1.1	1.2	1.1	1.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.01	0.63	2.14	0.98	1.68	1.40	0.70	ND	1.28	0.89	1.08	1.16	1.22	
SUSPENDED SOLIDS INFLUENT (MG/L)	65.0	71.0	59.0	46.0	65.0	42.0	64.0	105.0	43.0	124.0	65.0	146.0	74.6	
EFFLUENT (MG/L)	2.2	4.3	1.9	0.5	1.8	0.5	1.3	3.3	2.5	0.6	0.8	1.0	1.7	
CONCENTRATION LIMIT (MG/L)							-ceally to						25.0	
LOADING (KG/D)	2.22	3.91	2.14	0.41	1.51	0.50	1.30	3.39	2.00	0.48	0.72	1.06	1.60	
TOTAL PHOSPHOROUS	• •											7.1		
INFLUENT (MG/L)	2.0	2.9	2.3	1.7	1.6	2.3	2.1	2.6	2.8	4.6	1.8	3.1	2.5	
EFFLUENT (MG/L)	0.3	0.3	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.2	0.3	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0 0.31	0.30	
LOADING (KG/D)	0.30	0.27	0.11	0.16	0.16	0.20	0.30	0.30	0.24	0.24	0.18	0.31	0.28	ł

	SUMMA	RY	
	.5-47-22-02-02-02-02-02-02-02-02-02-02-02-02-	COMPLIES	
PARM PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: DOVER

PLANT

: MITCHELL'S BAY LAGOON

WORKS NUMBER

: 110002087

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.50 (1000 M3)

REGION : SOUTHWEST

DISTRICT : KENT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE ST. CLAIR

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 378

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.10	0.10	0.10	0.14	0.14	0.20	0.18	0.15	0.15	0.14	0.41	0.11	0.16	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.19	ND	ND	6.19	
BOD5			EUS - 58											
INFLUENT (MG/L)	205.0	94.0	160.0	59.0	110.0	59.0	96.0	65.0	ND	14.0	84.0	ND	94.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.0	ND	ND	4.0	
CONCENTRATION LIMIT (MG/L)													25.0	4
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.56	ND	ND	0.64	
SUSPENDED SOLIDS								Secretaria de la constitución de						
INFLUENT (MG/L)	168.0	85.0	193.0	89.0	86.0	80.0	130.0	144.0	ND	59.0	65.0	ND	109.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	100.3	ND	ND	100.3×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.04	ND	ND	16.05	
TOTAL PHOSPHOROUS		- 11.2.401												
INFLUENT (MG/L)	6.5	6.2	11.3	ND	4.1	5.8	6.8	2.8	ND	0.9	3.5	ND	5.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	ND	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	****	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	ND	ND	0.03	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L NO

TP 1.0 MG/L YES

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

1990/04

START DATE END DATE COMPLIANCE

1988/02 1990/01

MUNICIPALITY

: DRESDEN

PLANT

: DRESDEN WPCP

WORKS NUMBER

: 110002014

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

4.54 (1000 M3)

REGION

: SOUTHWEST

DISTRICT : KENT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SYDENHAM RIVER

MINOR BASIN

MAJOR BASIN

: ERIE : GREAT LAKES

POPULATION SERVED :

2	,	כ	0	Ö	
	•				

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.64	1.73	1.46	1.55	1.40	1.66	1.41	1.55	2.02	1.56	1.92	2.16	1.67	
BOD5 INFLUENT (MG/L)	147.0	162.0	90.0	152.0	122.0	69.0	116.0	57.0	35.0	69.0	153.0	64.0	103.0	
EFFLUENT (MG/L)	5.1	8.5	10.2	9.2	15.6	14.1	3.6	23.2	11.7	6.0	9.2	7.8	10.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	8.36	14.70	14.89	14.26	21.84	23.40	5.07	35.96	23.63	9.36	17.66	16.84	17.37	
SUSPENDED SOLIDS INFLUENT (MG/L)	287.0	111.0	188.0	261.0	337.0	315.0	136.0	125.0	42.0	350.0	144.0	136.0	202.7	
EFFLUENT (MG/L)	17.0	13.3	21.1	21.1	19.8	20.7	12.7	26.8	13.4	19.2	17.4	12.3	17.9	
CONCENTRATION LIMIT (MG/L)												THE REAL PROPERTY OF THE PERSON NAMED IN	25.0	
LOADING (KG/D)	27.88	23.00	30.80	32.70	27.72	34.36	17.90	41.54	27.06	29.95	33.40	26.56	29.89	
TOTAL PHOSPHOROUS						• • •	• • •	7.0		7.7	7.4	2.8	3.3	
INFLUENT (MG/L)	4.6	2.9	1.1	1.5	4.4	2.9	2.9	3.0	2.8	7.7	3.4	0.2	0.5	1
EFFLUENT (MG/L)	0.3	0.3	0.2	0.2	0.3	0.4	0.3	0.6	0.8	0.6	1.2×	1.0		
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		0.04	
LOADING (KG/D)	0.49	0.51	0.29	0.31	0.42	0.66	0.42	0.93	1.61	0.93	2.30	0.43	0.84	1

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES TP

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1988

REMEDIAL MEASURES

COLLECTION SYSTEM - ENFORCING SEWER-USE BYLAWS SLUDGE DISPOSAL/REMOVAL - UPGRADING WASTE DISPOSAL SITE

C-29

MUNICIPALITY

: DUNDALK

PLANT

: DUNDALK LAGOON

WORKS NUMBER

: 110001471

TREATMENT

: AERATED CELL PLUS LAGOON

: SUMMER STORAGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

1.05 (1000 M3)

REGION : SOUTHWEST

DISTRICT : GREY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : FOLEY DRAIN TO GRAND R.

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,400

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.92	0.79	1.26	1.35	0.97	0.98	0.65	0.62	0.63	0.73	1.07	0.80	0.90	
LAGOON DISCHARGE	80.02	29.21	37.20	57.68	ND	ND	ND	ND	ND	ND	9.76	61.88	45.96	
BOD5	Control 1000	outroperson in the	277-100	2007.00	When the same									
INFLUENT (MG/L)		The second second second second second	138.0	The second secon	40.0	The second secon		48.0	56.0	68.0	73.0	75.0	71.5	
EFFLUENT (MG/L)	2.2	4.0	11.2	16.5	ND	ND	ND	ND	ND	ND	2.2	2.0	6.4	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	2.02	3.16	14.11	22.27	ND	ND	ND	ND	ND	ND	2.35	1.60	5.76	
SUSPENDED SOLIDS INFLUENT (MG/L)	91.0	189.0	218.0	47.0	31.0	52.0	47.0	108.0	140.0	147.0	153.0	112.0	111.3	
EFFLUENT (MG/L)	6.9	8.7	15.8	25.2	ND	ND	ND	ND	ND	ND	9.3	4.5	11.7	
CONCENTRATION LIMIT (MG/L)											The Tare		40.0	
LOADING (KG/D)	6.34	6.87	19.90	34.02	ND	ND	ND	ND	ND	ND	9.95	3.60	10.53	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.5	8.5	10.9	3.1	2.7	3.8	2.9	4.3	4.6	4.9	4.8	7.4	5.1	1
EFFLUENT (MG/L)	0.4	0.2	0.7	0.6	ND	ND	ND	ND	ND	ND	0.3	0.7	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.36	0.15	0.88	0.81	ND	ND	ND	ND	ND	ND	0.32	0.56	0.45	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NOTE:

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: DURHAM

PLANT

: DURHAM MUN WPCP

WORKS NUMBER

: 110000999

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

2.18 (1000 M3)

: SOUTHWEST REGION

: GREY DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: SAUGEEN RIVER WATERCOURSE

: HURON MINOR BASIN

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 2,332

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.93	0.87	0.99	1.15	0.99	0.96	0.83	0.80	0.79	0.83	0.79	1.00	0.91	
BOD5 INFLUENT (MG/L)	161.0	153.0	194.0	192.0	195.0	193.0	227.0	154.0	ND		132.0	135.0	177.6	
EFFLUENT (MG/L)	4.4	3.2	3.8	4.0	0.9	2.3	1.6	1.3	ND	0.9	ND	2.6	2.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.09	2.78	3.76	4.60	0.89	2.20	1.32	1.04	ND	0.74	ND	2.60	2.28	
SUSPENDED SOLIDS INFLUENT (MG/L)	532.0	514.0	595.0	773.0	501.0	1,025.0	812.0	450.0	ND	710.0	536.0	408.0	623.3	
EFFLUENT (MG/L)	16.4	22.7		11.6		7.4	5.0	4.2	ND	7.9	ND	11.8	10.8	
CONCENTRATION LIMIT (MG/L)											The state of the s		25.0	
LOADING (KG/D)	15.25	19.74	13.06	13.34	7.32	7.10	4.15	3.36	ND	6.55	ND	11.80	9.83	-2.80.22
TOTAL PHOSPHOROUS	10.7	0.7		11.8	9.4	10.5	11.2	7.1	ND	13.6	10.6	6.7	10.0	
INFLUENT (MG/L)	10.7	8.3	9.9	0.4	0.1	0.2	0.2	0.2	ND	0.3	ND	0.5	0.3	
EFFLUENT (MG/L)	0.5	0.7	0.3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	0.46	0.60	1.0 0.29	0.46	0.09	0.19	0.16	0.16	ND	0.24	ND	0.50	0.27	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA NA - NOT APPLICABLE

MUNICIPALITY

DESIGN CAPACITY

: DUTTON

PLANT

: DUTTON LAGOON

WORKS NUMBER

: 110001266

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

0.31 (1000 M3)

REGION : SOUTHWEST

DISTRICT : ELGIN

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: BENNETT CK. TO L. ERIE

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 977

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.36	0.38	0.40	0.43	0.46	0.47	0.59	0.46	0.46	0.46	0.47	0.47	0.45	
LAGOON DISCHARGE	ND	ND	ND	42.41	ND	ND	ND	ND	ND	46.30	ND	ND	44.36	
BOD5							777							
INFLUENT (MG/L)	200.0	148.0	131.0	183.0	82.0	145.0	222.0	301.0	164.0	193.0	34.0	ND	163.9	
EFFLUENT (MG/L)	ND	ND	ND	15.5	ND	ND	ND	ND	ND	10.1	ND	ND	12.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	6.66	ND	ND	ND	ND	ND	4.64	ND	ND	5.76	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	135.0	131.0	107.0	116.0	41.0	168.0	140.0	136.0	181.0	334.0	24.0	ND	137.5	
EFFLUENT (MG/L)	ND	ND	ND	34.1	ND	ND	ND	ND	ND	39.2	ND	ND	36.7×	
CONCENTRATION LIMIT (MG/L)											10 10 10 10 10 10 10 10 10 10 10 10 10 1		25.0	
LOADING (KG/D)	ND	ND	ND	14.66	ND	ND	ND	ND	ND	18.03	ND	ND	16.52	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.6	7.6	9.2	7.2	4.8	7.9	9.6	7.9	9.7	8.6	2.6	ND	7.6	
EFFLUENT (MG/L)	ND	ND	ND	0.7	ND	ND	ND	ND	ND	0.5	ND	ND	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.30	ND	ND	ND	ND	ND	0.23	ND	ND	0.27	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L NO

TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

ANTICIPATED

1988

1991/12

1991/12

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

MUNICIPALITY

: EAST WILLIAMS

PLANT

: AILSA CRAIG WPCP

WORKS NUMBER

: 110002050

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.60 (1000 M3)

: SOUTHWEST REGION DISTRICT : MIDDLESEC

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: AUSABLE RIVER WATERCOURSE

: HURON MINOR BASIN

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 897

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.45	0.42	0.42	0.46	0.36	0.33	0.25	0.26	0.27	0.28	0.33	0.32	0.35	
BOD5 INFLUENT (MG/L)	126.0	144.0	142.0	127.0	129.0	140.0	114.0	123.0	175.0	141.0	117.0	106.0	132.0	
EFFLUENT (MG/L)	4.6	3.4	5.8	7.1	2.0	3.0	2.0	2.4	2.4	2.4	4.5	1.8	3.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.07	1.42	2.43	3.26	0.72	0.99	0.50	0.62	0.64	0.67	1.48	0.57	1.23	
SUSPENDED SOLIDS INFLUENT (MG/L)	196.0	220.0	158.0	121.0	151.0	190.0	137.0	136.0	227.0	138.0	89.0	167.0	160.8	
EFFLUENT (MG/L)	9.3	9.6	12.4	6.4	8.3	13.4	7.3	10.3	9.5	10.3	15.6	1.2	9.5	
CONCENTRATION LIMIT (MG/L)												7,000	25.0	
LOADING (KG/D)	4.18	4.03	5.20	2.94	2.98	4.42	1.82	2.67	2.56	2.88	5.14	0.38	3.33	
TOTAL PHOSPHOROUS		Podes 100	50 0000	OW 122:	NOTE OF	121.72		447 1047	_				7.0	
INFLUENT (MG/L)	7.4	8.1	6.4	6.2	14.1	8.6	6.3	6.4	8.9	7.5	6.1	8.3	7.9	ļ
EFFLUENT (MG/L)	0.4	0.4	0.6	0.5	0.4	0.6	1.0	1.4×	0.8	0.7	0.7	0.7	0.7	11
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.18	0.16	0.25	0.23	0.14	0.19	0.25	0.36	0.21	0.19	0.23	0.22	0.25	1

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES

25.0 MG/L YES SS TP

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1988/07

1989/09

REMEDIAL MEASURES

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED

1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY : EAST ZORRA-TAVISTOCK PLANT : TAVISTOCK LAGOON

PLANT : TAVISTOCK LAGOON WORKS NUMBER : 110000720

TREATMENT : AERATED CELL PLUS LAGOON

: SEASONAL DISCHARGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 0.77 (1000 M3)

REGION : SOUTHWEST DISTRICT : OXFORD

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : TRIBUTARY TO THAMES R.

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,952

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.02	0.91	0.96	1.14	0.91	1.13	0.83	0.81	0.76	0.85	0.94	0.90	0.93	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23.80	23.80	
BOD5	ed the measure w													
INFLUENT (MG/L)	ND	ND	233.0	156.0	188.0	206.0	398.0	378.0	259.0	327.0	330.0	160.0	263.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.8	4.8	111111111111111111111111111111111111111
CONCENTRATION LIMIT (MG/L)	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.32	4.46	
LOADING LIMIT (KG/D)														
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	ND	105.0	82.0	126.0	187.0	227.0	172.0	155.0	203.0	196.0	106.0	155.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	34.5×	34.5	T
CONCENTRATION LIMIT (MG/L)	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	31.05	32.09	
LOADING LIMIT (KG/D)														100 000 100
TOTAL PHOSPHOROUS	.,													
INFLUENT (MG/L)	ND	ND	8.0	6.3	12.1	16.5	29.9	27.0	18.9	12.5	19.8	11.9	16.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	0.19	
LOADING LIMIT (KG/D)				6 (2)			- I Color					H4 (min. %) 4-0		

		SUMMARY			
		,	COMPL	IES WITH	
PARM	CRITERIA	LOADING	CONC	LOADING	
BOD	25.0 MG/L	NA	YES	NA	
SS	25.0 MG/L	NA	NO	NA	
TP	1.0 MG/L	NA	YES	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED MONTHLY SS - ASSESSED MONTHLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: EAST ZORRA-TAVISTOCK

PLANT

: TAVISTOCK LAGOON

WORKS NUMBER

: 110000720

TREATMENT

: AERATED CELL PLUS LAGOON

: SEASONAL DISCHARGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 0.77 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: OXFORD

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: TRIBUTARY TO THAMES R.

WATERCOURSE MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 1,952

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.02	0.91	0.96	1.14	0.91	1.13	0.83	0.81	0.76	0.85	0.94	0.90	0.93	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	23.80	23.80	
B0D5					0.882.2					707.0	770.0	160.0	067 5	
INFLUENT (MG/L)	ND	ND	233.0	156.0	188.0	206.0	398.0	378.0	259.0	327.0	330.0	160.0	263.5	
EFFLUENT (MG/L)	ND_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.8	4.8	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.32	4.46	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	105.0	82.0	126.0	187.0	227.0	172.0	155.0	203.0	196.0	106.0	155.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	34.5×	34.5	, •.
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	31.05	32.09	
TOTAL PHOSPHOROUS											.en - c	VV 181 - 6041	97 - 52 - 9881	
INFLUENT (MG/L)	ND	ND	8.0	6.3	12.1	16.5	29.9	27.0	18.9	12.5	19.8	11.9	16.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	0.19	

	M	м		n	v
U	М	М	A	к	1

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES 40.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: ENNISKILLEN

PLANT

: OIL CITY LAGOON

WORKS NUMBER

: 110001738

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

:

0.18 (1000 M3)

REGION : SOUTHWEST

DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : BLACK CREEK

MINOR BASIN

: ERIE MAJOR BASIN

: GREAT LAKES POPULATION SERVED : 170

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.06	0.05	0.05	0.07	0.05	0.06	0.05	0.05	0.06	0.06	0.07	0.06	0.06	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5														
INFLUENT (MG/L)	93.0	107.0	46.0	94.0	130.0	132.0	125.0	162.0	129.0	137.0	118.0	74.0	112.3	
EFFLUENT (MG/L)	ND	ND	ND	4.0	ND	ND	4.0							
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	0.28	ND	ND	0.24							
SUSPENDED SOLIDS														
INFLUENT (MG/L)	70.0	89.0	43.0	53.0	75.0	83.0	76.0	84.0	61.0	110.0	63.0	37.0	70.3	
EFFLUENT (MG/L)	ND	ND	ND	5.5	ND	ND	5.5							
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	0.38	ND	ND	0.33							
TOTAL PHOSPHOROUS									-					
INFLUENT (MG/L)	6.3	9.6	4.9	5.8	7.9	8.8	8.7	7.9	7.9	7.2	6.7	4.8	7.2	1
EFFLUENT (MG/L)	ND	ND	ND	0.1	ND	ND	0.1							
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND		ND	ND	0.01							

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES

25.0 MG/L YES SS TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

1988/02 1990/01

MUNICIPALITY

: ESSEX

PLANT

: ESSEX LAGOON N.E.

WORKS NUMBER

: 110000203

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

2.88 (1000 M3)

REGION : SOUTHWEST

: ESSEX DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: PUCE RIVER DRAIN

3,850

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.34	1.17	1.32	1.51	1.34	1.60	1.53	1.20	1.42	1.34	1.39	1.32	1.37	
LAGOON DISCHARGE	ND	ND	ND	261.14	ND	ND	ND	ND	ND	ND	289.45	ND	275.30	
BODS INFLUENT (MG/L)	31.0	25.0	78.0	20.0	44.0	39.0	43.0	112.0	85.0	63.0	ND	50.0	53.6	
EFFLUENT (MG/L)	ND	ND	ND	10.9	ND	ND	ND	ND	ND	ND	8.5	ND	9.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	16.45	ND	ND	ND	ND	ND	ND	11.81	ND	13.29	
SUSPENDED SOLIDS INFLUENT (MG/L)	69.0	41.0	102.0	74.0	48.0	51.0	114.0	71.0	148.0	63.0	ND	46.0	75.2	
EFFLUENT (MG/L)	ND	ND	ND	23.8	ND	ND	ND	ND	ND	ND	19.2	ND	21.5	
CONCENTRATION LIMIT (MG/L)					43.77								40.0	
LOADING (KG/D)	ND	ND	ND	35.93	ND	ND	ND	ND	ND	ND	26.68	ND	29.46	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.1	1.7	4.1	1.4	2.2	1.6	3.0	4.2	6.5	2.7	ND	3.4	3.0	
EFFLUENT (MG/L)	ND	ND	ND	0.3	ND	ND	ND	ND	ND	ND	0.4	ND	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.45	ND	ND	ND	ND	ND	ND	0.55	ND	0.55	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

30.0 MG/L YES SS 40.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: ESSEX

PLANT : ESSEX LAGOON S.W.

WORKS NUMBER

: 110000837

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

.

DESIGN CAPACITY

1.52 (1000 M3)

REGION : SOUTHWEST DISTRICT : ESSEX

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CANARD RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 2,401

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.94	0.89	0.94	1.11	1.07	1.85	2.02	0.98	1.05	0.85	1.01	0.79	1.13	
LAGOON DISCHARGE	ND	ND	ND	116.76	ND	ND	ND	ND	ND	ND	74.86	ND	95.81	
BOD5														
INFLUENT (MG/L)	115.0	166.0	155.0	141.0	306.0	135.0	269.0	150.0	157.0	180.0		168.0	176.5	
EFFLUENT (MG/L)	ND	ND	ND	18.8	ND	ND	ND	ND	ND	ND	10.0	ND	14.4	
CONCENTRATION LIMIT (MG/L)												7 3 - 727	30.0	
LOADING (KG/D)	ND	ND	ND	20.86	ND	ND	ND	ND	ND	ND	10.10	ND	16.27	
SUSPENDED SOLIDS												***************************************		
INFLUENT (MG/L)	111.0	169.0	154.0	125.0	235.0	269.0	344.0	101.0	200.0	187.0	ND	449.0	213.1	
EFFLUENT (MG/L)	ND	ND	ND	37.2	ND	ND	ND	ND	ND	ND	20.3	ND	28.8	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	41.29	ND	ND	ND	ND	ND	ND	20.50	ND	32.54	
TOTAL PHOSPHOROUS						9 0								
INFLUENT (MG/L)	7.0	8.9	8.6	7.3	8.0	6.9	8.5	6.6	8.0	6.4	ND	6.7	7.5	
EFFLUENT (MG/L)	ND	ND	ND	0.4	ND	ND	ND	ND	ND	ND	0.3	ND	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.44	ND	ND	ND	ND	ND	ND	0.30	ND	0.45	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	30.0 MG/L	YES
SS	40.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: EXETER

PLANT

: EXETER LAGOON

WORKS NUMBER

: 110000221

: AERATED LAGOON

TREATMENT

: PHOSPHORUS REMOVAL-CONTINUOUS

: SUMMER STORAGE

DESIGN CAPACITY

: 3.39 (1000 M3)

: SOUTHWEST REGION DISTRICT : HURON OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : AUSABLE RIVER MINOR BASIN : HURON : GREAT LAKES MAJOR BASIN

POPULATION SERVED : 3,750

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.59	1.87	2.81	2.86	1.99	1.93	2.40	3.23	3.58	1.64	2.69	1.61	2.43	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5										9 /6	8 595 Sh			
INFLUENT (MG/L)	117.0	139.0	84.0	82.0	138.0	67.6	51.0	35.0	96.0	97.0	145.0	288.0	111.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.7	ND	5.7	
CONCENTRATION LIMIT (MG/L)				Vicion in the second									30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15.33	ND	13.85	
SUSPENDED SOLIDS							_1 2	244 2	202 200	222 2				
INFLUENT (MG/L)	201.0	185.0	111.0	76.0	151.0	47.6	51.0	63.0	119.0	121.0	85.0	ND_	110.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND_	ND	CN	ND_	ND	ND_	1.1	ND	1.1	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.95	ND	2.67	
TOTAL PHOSPHOROUS							1000 PM	1024 12	19201 32					
INFLUENT (MG/L)	6.8	5.7	5.4	4.0	6.1	4.0	3.6	3.6	5.1	3.2	4.5	14.2	5.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.9	ND	0.9	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.42	ND	2.19	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

30.0 MG/L YES BOD 40.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: FOREST

PLANT

: FOREST LAGOON

WORKS NUMBER

: 110001346

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

1.36 (1000 M3)

REGION : SOUTHWEST

DISTRICT : LAMBTON

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT WATERCOURSE

: HICKORY CREEK

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

2,530

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.22	1.17	1.27	1.26	1.23	1.18	1.13	1.09	1.10	1.11	1.20	1.10	1.17	
LAGOON DISCHARGE	ND	ND	ND	ND	156.00	ND	ND	ND	ND	88.26	ND	ND	122.13	
BOD5														
INFLUENT (MG/L)	208.0	139.0	114.0	115.0	324.0	110.0	262.0	118.0	25.0	208.0	764.0	366.0	229.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	15.3	ND	ND	ND	ND	13.6	ND	ND	14.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	18.81	ND	ND	ND	ND	15.09	ND	ND	16.97	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	341.0	178.0	168.0	197.0	508.0	125.0	341.0	366.0	982.0	231.0	534.0	454.0	368.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	24.5	ND	ND	ND	ND	124.9	ND	ND	74.7×	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	30.13	ND	ND	ND	ND	138.63	ND	ND	87.40	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	10.9	5.1	5.9	4.3	11.7	6.2	9.3	4.8	8.7	6.6	12.2	8.4	7.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.5	ND	ND	ND	ND	1.0	ND	ND	0.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.61	ND	ND	ND	ND	1.11	ND	ND	0.94	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 30.0 MG/L YES 40.0 MG/L NO SS

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/01

1990/01

1990/04

REMEDIAL MEASURES

MUNICIPALITY

: GLENCOE

PLANT

: GLENCOE LAGOON

WORKS NUMBER

: 110001845

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.94 (1000 M3)

: SOUTHWEST REGION DISTRICT : MIDDLESEC

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : NEWBIGGEN CREEK

MINOR BASIN : ERIE

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 2,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.76	0.56	0.65	0.89	0.67	0.88	0.53	0.61	0.72	0.67	0.81	0.64	0.70	A
LAGOON DISCHARGE	ND	ND	ND	20.25	ND	ND	ND	ND	ND	27.00	ND	ND	23.63	
BOD5													140 6	
INFLUENT (MG/L)	133.0	144.0	147.0	119.0	164.0	117.0	138.0	153.0	137.0	134.0	151.0	150.0	140.6	
EFFLUENT (MG/L)	ND	ND	ND	9.9	27.8	ND	ND	ND	ND	14.1	ND	ND	17.3	
CONCENTRATION LIMIT (MG/L)			Wassing Dr.										25.0	
LOADING (KG/D)	ND	ND	ND	8.81	18.62	ND	ND	ND	ND	9.44	ND	ND	12.11	
SUSPENDED SOLIDS						2222			404.0	107.0	04.0		105.0	
INFLUENT (MG/L)	102.0	125.0	114.0	338.0	111.0	126.0	98.0	133.0	106.0	103.0	84.0	62.0	125.2	
EFFLUENT (MG/L)	ND	ND	ND	36.1	58.8	ND_	ND	ND	ND	15.8	ND	ND	36.9*	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	32.12	39.39	ND	ND	ND	ND	10.58	ND	ND	25.83	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.1	7.9	6.7	6.0	6.4	6.4	6.4	4.8	7.4	7.0	6.4	7.5	6.8	
EFFLUENT (MG/L)	ND	ND	ND	0.6	1.4×	ND	ND	ND	ND	0.9	ND	ND	1.0	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.53	0.93	ND	ND	ND	ND	0.60	ND	ND	0.70	

SUMMARY

COMPLIES

CRITERIA WITH CONC

25.0 MG/L YES BOD SS

TP 1.0 MG/L NO

25.0 MG/L NO

ND - NO DATA

NA - NOT APPLICABLE

BOD - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ANTICIPATED

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

NOTE:

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

1990/01 1990/04 1988/02

MUNICIPALITY

: GODERICH

PLANT

: GODERICH WPCP

WORKS NUMBER

: 120000943

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

9.09 (1000 M3)

REGION : SOUTHWEST DISTRICT : HURON OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : LAKE HURON MINOR BASIN : HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

7,400

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	7.70	6.10	6.80	8.00	7.00	7.20	6.70	7.70	6.60	7.20	8.10	6.70	7.15	
BOD5 INFLUENT (MG/L)	242.0	132.0	177.0	146.0	243.0	143.0	140.0	149.0	102.0	184.0	177.0	145.0	165.0	
EFFLUENT (MG/L)	4.5	5.1	5.2	6.3	4.7	5.8	2.9	2.6	3.5	9.3	5.3	5.2	5.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	34.65	31.11	35.36	50.40	32.90	41.76	19.43	20.02	23.10	66.96	42.93	34.84	35.75	Store with
SUSPENDED SOLIDS														
INFLUENT (MG/L)	532.0	369.0	554.0	387.0	328.0	314.0	144.0	369.0	306.0	241.0	260.0	294.0	341.5	
EFFLUENT (MG/L)	5.5	7.4	18.9	19.1	11.4	7.8	7.6	8.9	7.2	14.8	16.5	15.7	11.7	
CONCENTRATION LIMIT (MG/L)	Value Province												25.0	
LOADING (KG/D)	42.35	45.14	128.52	152.80	79.80	56.16	50.92	68.53	47.52	106.56	133.65	105.19	83.66	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.6	11.9	7.0	6.0	8.1	6.2	4.8	6.3	6.7	6.4	6.1	8.0	7.1	
EFFLUENT (MG/L)	0.5	0.7	1.2*	The State of the Control of the Cont	0.6	0.4	0.3	0.4	0.4	0.9	0.7	0.6	0.6	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.85	4.27	8.16	7.20	4.20	2.88	2.01	3.08	2.64	6.48	5.67	4.02	4.29	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES TP 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED OPERATIONAL/PROCESS - PROCESS CONTROL BEING UPGRADED

MUNICIPALITY PLANT

: GOSFIELD NORTH : COTTAM LAGOON

WORKS NUMBER

: 110002005

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.67 (1000 M3)

: SOUTHWEST REGION

: ESSEX DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : MADDOX DRAIN TO BELLE R. WATERCOURSE

: ERIE MINOR BASIN

: GREAT LAKES MAJOR BASIN

978 POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.33	0.30	0.31	0.36	0.31	0.36	0.42	0.30	0.33	0.30	0.32	0.31	0.33	
LAGOON DISCHARGE	ND	ND	ND	64.86	ND	ND	ND	ND	ND	ND	41.19	ND	53.03	
BOD5										254.0	ND	150.0	118.8	
INFLUENT (MG/L)	93.0	89.0	129.0	78.0	110.0	90.0	62.0	146.0	104.0	256.0	ND_	150.0 ND	16.4	
EFFLUENT (MG/L)	ND	ND	ND	17.7	ND	ND	ND	ND	ND	ND_	15.1	ND	25.0	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	6.37	ND	ND	ND	ND	ND	ND	4.83	ND	5.41	
SUSPENDED SOLIDS	24.0	04.0	132.0	76.0	88.0	141.0	68.0	101.0	93.0	82.0	ND	135.0	99.5	
INFLUENT (MG/L)	84.0	94.0		40.3	ND	ND	ND	ND	ND ND	ND	110.3	ND	75.3×	
EFFLUENT (MG/L)	ND_	ND	ND	40.3	ND_	, ND							25.0	
CONCENTRATION LIMIT (MG/L)			ND.	14 50	ND.	ND	ND	ND	ND	ND	35.29	ND	24.85	
LOADING (KG/D)	ND	ND	ND	14.50	ND	NP.	ND	ND			33.67		21102	
TOTAL PHOSPHOROUS				22 27	20.02						AUD.			
INFLUENT (MG/L)	9.7	7.0	8.7	5.2	5.9	7.5	5.6	4.6	6.9	5.9	ND	8.2	6.8	
EFFLUENT (MG/L)	ND	ND	ND	0.6	ND	ND_	ND	ND	ND	ND	0.8	ND	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.21	ND	ND	ND	ND	ND	ND	0.25	ND	0.23	[

SUMMARY

COMPLIES

CRITERIA WITH CONC

25.0 MG/L YES BOD SS 25.0 MG/L NO

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/04 1988/02 1990/01

REMEDIAL MEASURES

MUNICIPALITY

: HANOVER

PLANT

: HANOVER WPCP

WORKS NUMBER

: 120001461

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 6.36 (1000 M3) REGION

: SOUTHWEST

DISTRICT

: GREY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: SAUGEEN RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

6,389

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.88	3.88	5.08	4.47	4.02	4.13	3.32	3.56	3.36	3.59	4.52	4.00	3.98	
BOD5					222.2		vener re-		6					
INFLUENT (MG/L)	202.0	254.0	168.0	186.0	165.0	197.0	92.0	262.0	222.0	340.0	329.0	179.0	216.3	
EFFLUENT (MG/L)	ND	7.7	7.7	7.5	7.0	2.0	1.1	1.9	2.6	2.7	4.5	2.9	4.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	29.87	39.11	33.52	28.14	8.26	3.65	6.76	8.73	9.69	20.34	11.60	17.11	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	393.0	186.0	173.0	100.0	132.0	217.0	116.0	225.0	157.0	284.0	515.0	92.0	215.8	
EFFLUENT (MG/L)	ND	6.8	10.6	5.6	8.6	4.6	4.1	5.9	5.5	3.3	7.0	10.7	6.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	26.38	53.84	25.03	34.57	18.99	13.61	21.00	18.48	11.84	31.64	42.80	26.27	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	14.6	7.8	6.9	4.8	6.4	9.0	5.2	6.7	7.9	7.8	19.2	5.8	8.5	
EFFLUENT (MG/L)	0.3	0.5	0.4	0.3	0.6	0.6	0.4	0.7	0.7	0.4	0.5	0.5	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.16	1.94	2.03	1.34	2.41	2.47	1.32	2.49	2.35	1.43	2.26	2.00	1.99	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: HARROW

PLANT

: HARROW LAGOON

WORKS NUMBER

: 110002103

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

1.52 (1000 M3)

: SOUTHWEST REGION

: ESSEX DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: CEDAR CREEK WATERCOURSE

: ERIE MINOR BASIN

: GREAT LAKES MAJOR BASIN 2,415 POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.31	1.19	1.23	1.37	1.42	1.72	2.42	1.25	1.32	1.17	1.35	1.40	1.43	
LAGOON DISCHARGE	ND	ND	ND	The same of the sa	174.92		104.40	89.85	ND	ND	154.79	ND	130.99	
BOD5					control way			Charles V. Park		10202 000				
INFLUENT (MG/L)	89.0	132.0	152.0	87.0	212.0	108.0		92.0	121.0	56.0	162.0	144.0	122.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	12.1	ND	2.6	10.6	ND	ND	11.5	ND	9.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	17.18	ND	6.29	13.25	ND	ND	15.52	ND	13.16	
SUSPENDED SOLIDS													52.	1
INFLUENT (MG/L)	87.0	208.0	206.0	87.0	552.0	126.0	120.0	96.0	144.0	63.0	70.0	409.0	180.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	15.4	ND	11.1	23.2	ND	ND	29.4	ND	19.8	
CONCENTRATION LIMIT (MG/L)			-										25.0	
LOADING (KG/D)	ND	ND	ND	ND	21.86	ND	26.86	29.00	ND	ND	39.69	ND	28.31	
TOTAL PHOSPHOROUS													27 224	
INFLUENT (MG/L)	5.4	7.3	7.8	4.5	8.8	4.8	6.4	4.4	6.9	3.7	6.3	6.2	6.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.3	ND	0.5	0.8	ND	ND	0.6	ND	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	0.42	ND	1.21	1.00	ND	ND	0.81	ND	0.86	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES

25.0 MG/L YES SS

TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/01 1988/01

REMEDIAL MEASURES

MUNICIPALITY : HENSALL

PLANT : HENSALL LAGOON

WORKS NUMBER : 110000926

TREATMENT : CONVENTIONAL LAGOON ANNUAL

:

DESIGN CAPACITY : 0.59 (1000 M3)

REGION : SOUTHWEST DISTRICT : HURON

DISTRICT : HURUN

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT WATERCOURSE: BLACK CK TO AUSABLE R.

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,155

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)	0.57	0.53	0.63	0.63	0.58	0.61	0.57	0.65	0.58	0.60	0.61	0.57	0.59	
LAGOON DISCHARGE	ND	ND	ND	119.95	61.17	ND	ND	ND	ND	40.96	ND	ND	74.03	
BOD5							200.000	Service 1st 1973	bernound as	trockedol cont	the reserve to	1589 (AVO - 59-2)		
INFLUENT (MG/L)	120.0	252.0	96.0	125.0	ND	70.0	71.0	116.0	153.0	140.0	142.0	241.0	138.7	
EFFLUENT (MG/L)	ND	ND	ND	8.2	2.0	ND	ND	ND	ND	2.3	ND	ND	4.2	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	5.16	1.16	ND	ND	ND	ND	1.38	ND	ND	2.48	
SUSPENDED SOLIDS	-045 24		of react to			000000000000000000000000000000000000000		20.2003 50	West re		80036-E WA			
INFLUENT (MG/L)	170.0	536.0	197.0	197.0	ND	122.0	98.0	111.0	278.0		183.0	198.0	206.0	
EFFLUENT (MG/L)	ND	ND	ND	18.3	4.3	ND	ND	ND	ND	3.9	ND	ND	8.8	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	11.52	2.49	ND	ND	ND	ND	2.34	ND	ND	5.19	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.6	9.8	5.7	6.7	ND	5.8	6.2	6.1	8.6	6.8	6.8	7.7	7.0	
EFFLUENT (MG/L)	ND	ND	ND	1.4	0.1	ND	ND	ND	ND	0.8	ND	ND	0.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	0.88	0.05	ND	ND	ND	ND	0.48	ND	ND	0.47	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02 1990/01

MUNICIPALITY

: INGERSOLL

PLANT

: INGERSOLL NEW WPCP

WORKS NUMBER

: 110003969

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

6.81 (1000 M3)

REGION

: SOUTHWEST

: OXFORD DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE MINOR BASIN

: THAMES RIVER : ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 5,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	3.99	4.16	4.55	5.54	4.76	4.82	4.50	4.74	4.37	5.30	5.66	4.92	4.78	
BOD5	69.0	128.0	146.0	145.0	150.0	124.0	144.0	194.0	157.0	215.0	139.0	147.0	146.5	
INFLUENT (MG/L)	5.6	12.4	9.0	34.1	9.9	7.5	4.1	4.6	2.7	9.8	19.3	17.8	11.4	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)		12.4		34.1									25.0	
LOADING (KG/D)	22.34	51.58	40.95	188.91	47.12	36.15	18.45	21.80	11.79	51.94	109.23	87.57	54.49	
SUSPENDED SOLIDS	174.0	170.0	200.0	177.0	128.0	93.0	169.0	210.0	168.0	235.0	161.0	135.0	166.3	
INFLUENT (MG/L)	134.0	139.0 24.2	290.0	133.0 30.9	9.9	7.8	6.6	5.4	3.6	9.7	11.7	8.7	11.3	
EFFLUENT (MG/L)	6.0	24.2	7.2	30.7									25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	31.92	100.67	41.86	171.18	47.12	37.59	29.70	25.59	15.73	51.41	66.22	42.80	54.01	
TOTAL PHOSPHOROUS	127.32	12 2					4.7	. 7	4 0	7.9	6.9	6.9	6.8	
INFLUENT (MG/L)	4.7	6.6	11.9	8.4	5.2	6.2	4.7	6.3	6.0	1.9*		1.7*	1.4	8
EFFLUENT (MG/L)	0.3	1.2*	0.5	2.5*	1.1*	0.8	1.4*	2.7*	1.3* 1.0	1.0	1.0	1.0		
CONCENTRATION LIMIT (MG/L)	1.0	1.0	2.27	1.0	1.0 5.23	1.0 3.85	6.30	1.0	5.68	10.07	4.52	8.36	6.69	
LOADING (KG/D)	1.19	4.99	2.21	13.05	5.23	3.65	0.30	16.77	2.00	10.07				

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES BOD SS 25.0 MG/L YES

1.0 MG/L NO TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

1988/04

1990/01

1988

1990/01 1990/12

INFLUENT SEWAGE - ENFORCING SEWER USE BYLAW

SLUDGE DISPOSAL/REMOVAL - UPGRADING SLUDGE THICKENING FACILITIES

C-47

MUNICIPALITY

: INGERSOLL

PLANT

: INGERSOLL OLD WPCP

WORKS NUMBER

: 110003978

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

3.41 (1000 M3)

REGION : SOUTHWEST

: OXFORD DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: THAMES RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

2,800

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.33	1.23	1.35	1.15	1.17	1.79	1.67	1.78	1.65	1.03	1.08	1.82	1.42	
BOD5														
INFLUENT (MG/L)	69.0	128.0	146.0	145.0	150.0	124.0	144.0	194.0	157.0	215.0	139.0	147.0	146.5	
EFFLUENT (MG/L)	8.2	15.9	10.5	7.8	32.9	6.9	3.0	4.4	4.7	3.7	3.2	11.6	9.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	10.90	19.55	14.17	8.97	38.49	12.35	5.01	7.83	7.75	3.81	3.45	21.11	13.35	
SUSPENDED SOLIDS							440.0		1/0 0	075.0	141.0	175.0	144 7	
INFLUENT (MG/L)	134.0	139.0	290.0	133.0	128.0	93.0	169.0	210.0	168.0	235.0	161.0	135.0	166.3	
EFFLUENT (MG/L)	14.9	14.6	17.5	12.6	33.5	9.1	16.0	7.4	10.3	9.7	5.6	10.3	13.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	19.81	17.95	23.62	14.49	39.19	16.28	26.72	13.17	16.99	9.99	6.04	18.74	19.17	
TOTAL PHOSPHOROUS	4.7	6.6	11.9	8.4	5.2	6.2	4.7	6.3	6.0	7.9	6.9	6.9	6.8	
INFLUENT (MG/L)				2.0*	2.4*	1.1*	1.4×	2.3×	1.4*	2.6*	THE RESERVE OF THE PARTY OF	1.1×		10
EFFLUENT (MG/L)	0.5	1.2*									the second secon	The state of the s	1.5	10
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	~~~ × 47	
LOADING (KG/D)	0.66	1.47	1.35	2.30	2.80	1.96	2.33	4.09	2.31	2.67	1.29	2.00	2.13	1

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES BOD SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1988/04

1990/01

INFLUENT SEWAGE - ENFORCING SEWER USE BYLAW

SLUDGE DISPOSAL/REMOVAL - UPGRADING SLUDGE THICKENING FACILITIES

1988

1990/12

1990/01

MUNICIPALITY

: KINCARDINE

PLANT

: KINCARDINE LAGOON

WORKS NUMBER

: 110000864

TREATMENT

: AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

7000 1000

5.91 (1000 M3)

REGION : SOUTHWEST

DISTRICT : BRUCE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: LAKE HURON

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

7,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.48	2.12	2,64	2.73	2.38	2.32	2.04	2.08	1.89	1.89	2.34	2.10	2.25	
LAGOON DISCHARGE	77.00	59.48	81.83	81.88	73.73	69.55	63.32	64.34	42.59	54.77	70.32	65.01	66.99	
B0D5		r - 242 - 26	W	AND THE PROPERTY OF THE PARTY O	mulections.		Marine Cont	None and the same						ŀ
INFLUENT (MG/L)	94.0	79.0	57.0	59.0	83.0	89.0	120.0	122.0	182.0	114.0	85.0		100.2	
EFFLUENT (MG/L)	5.9	6.4	12.1	16.4	10.5	3.0	4.0	8.6	4.9	1.3	1.6	4.2	6.6	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	14.63	13.56	31.94	44.77	24.99	6.96	8.16	17.88	9.26	2.45	3.74	8.82	14.85	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	121.0	103.0	42.0	45.0	70.0	66.0	134.0	123.0	144.0	132.0	96.0	79.0	96.3	
EFFLUENT (MG/L)	3.3	4.1	8.6	15.5	11.0	2.7	4.6	9.1	9.0	2.8	3.7	4.9	6.6	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	8.18	8.69	22.70	42.31	26.18	6.26	9.38	18.92	17.01	5.29	8.65	10.29	14.85	
TOTAL PHOSPHOROUS												VIII 121	2 22	
INFLUENT (MG/L)	6.7	5.6	3.9	4.0	5.1	4.6	6.7	6.4	11.7	7.7	5.6	7.9	6.3	
EFFLUENT (MG/L)	1.1*	1.1*	0.8	0.6	1.2*	3.0×	2.3×	3.1×	3.5*	1.0	0.8	0.7	1.6	7_
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.72	2.33	2.11	1.63	2.85	6.96	4.69	6.44	6.61	1.89	1.87	1.47	3.60	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L YES TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED

1989/01

1990/12

1990/01

1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: KINGSVILLE

PLANT

: KINGSVILLE LAGOON

WORKS NUMBER

: 120001078

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

2.75 (1000 M3)

REGION : SOUTHWEST
DISTRICT : ESSEX
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : WIGLE CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 5,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	4.09	2.91	3.13	3.75	3.72	5.35	4.48	4.07	4.06	3.27	3.56	2.51	3.74	
LAGOON DISCHARGE	ND	ND	ND	ND	THE STATE OF THE S									
BOD5										10 11 15				
INFLUENT (MG/L)	ND	ND	ND	ND										
EFFLUENT (MG/L)	ND	ND	ND	ND										
CONCENTRATION LIMIT (MG/L)	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	Mill Superfuser seek or	
LOADING (KG/D)	ND	ND	ND	ND										
LOADING LIMIT (KG/D)														
SUSPENDED SOLIDS								-	22 22/2 2					
INFLUENT (MG/L)	ND	ND	ND	ND										
EFFLUENT (MG/L)	ND	ND	ND	ND										
CONCENTRATION LIMIT (MG/L)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0		
LOADING (KG/D)	ND	ND	ND	ND										
LOADING LIMIT (KG/D)														
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	ND	ND										
EFFLUENT (MG/L)	ND	ND	ND	ND		T-								
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND										
LOADING LIMIT (KG/D)														

		SUMMARY	
			COMPLIES WITH
PARM	CRITERIA	LOADING	CONC LOADING
BOD	25.0 MG/L	NA	INSUFFICIENT DATA
SS	30.0 MG/L	NA	INSUFFICIENT DATA
TP	1.0 MG/L	NA	INSUFFICIENT DATA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED MONTHLY

SS - ASSESSED MONTHLY
TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: KINGSVILLE

PLANT

: KINGSVILLE LAGOON

WORKS NUMBER

: 120001078

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

2.75 (1000 M3)

REGION : SOUTHWEST
DISTRICT : ESSEX
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : WIGLE CREEK
MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 5,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	4.09	2.91	3.13	3.75	3.72	5.35	4.48	4.07	4.06	3.27	3.56	2.51	3.74	
LAGOON DISCHARGE	ND													
BOD5														
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND													
SUSPENDED SOLIDS						*								
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND													
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND													

SUMMA	RY
	COMPLIES
ERIA	WITH CONC
110 /1	THOUSETOTE

PARM CRITERIA WITH CONC
BOD 25.0 MG/L INSUFFICIENT DATA
SS 25.0 MG/L INSUFFICIENT DATA

TP 1.0 MG/L INSUFFICIENT DATA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: LEAMINGTON

PLANT

: LEAMINGTON WPCP

WORKS NUMBER

: 120001069

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

19.09 (1000 M3)

DISTRICT SOUTHWEST OPERATING AUTHORITY : MUNICIPAL : LAKE ERIE WATERCOURSE

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 12,600

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEE
AVG. DAILY FLOW (1000 M3)	17.72	21.46	15.15	20.63	21.26	25.22	18.99	27.83	37.19	19.36	16.74	13.64	21.27	
BOD5						75.0	470.0	150.0	754.0	F40.0	201.0	047.0	070 1	
INFLUENT (MG/L)	180.0	237.0	205.0	172.0	293.0	75.0	172.0	158.0	354.0	540.0	224.0	247.0	238.1	
EFFLUENT (MG/L)	3.5	0.6	4.1	3.5	5.0	9.0	2.3	4.4	8.2	5.1	3.7	3.5	4.4	
CONCENTRATION LIMIT (MG/L)					202								25.0	
LOADING (KG/D)	62.02	12.87	62.11	72.20	106.30	226.98	43.67	122.45	304.95	98.73	61.93	47.74	93.59	
SUSPENDED SOLIDS	144.0	047.0	155.0	188.0	263.0	80.0	158.0	179.0	991 0	1,003.0	180.0	282.0	313.0	
INFLUENT (MG/L)	144.0	243.0	155.0		-	17.0	9.2	10.2	18.3	17.3	10.0	11.8	12.1	
EFFLUENT (MG/L)	13.4	5.2	10.5	8.8	13.9	17.0	9.2	10.2	10.3	17.3	10.0	11.0	25.0	
CONCENTRATION LIMIT (MG/L)						400 74	474 70	007.07	F7	774 00	147 40	140 05	The second of th	
LOADING (KG/D)	237.44	111.59	159.07	181.54	295.51	428.74	1/4./0	283.86	680.57	334.92	167.40	160.95	257.37	
TOTAL PHOSPHOROUS													0.000 1000	
INFLUENT (MG/L)	1.5	1.7	3.3	6.5	4.0	4.0	3.7	3.8	4.8	6.3	3.7	3.7	3.9	
EFFLUENT (MG/L)	0.2	0.3	0.6	1.1*	1.0	1.0	0.5	0.7	0.8	0.7	0.4	0.5	0.7	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.54	6.43	9.09	22.69	21.26	25.22	9.49	19.48	29.75	13.55	6.69	6.82	14.89	

SUMMARY

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L NO

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: LISTOWEL

PLANT

: LISTOWEL LAGOON CONT DIS (SUMMER SPRAY)

WORKS NUMBER

: 110000409

TREATMENT

: AERATED CELL PLUS LAGOON

: LAGOON AND SPRAY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 4.91 (1000 M3)

REGION DISTRICT

: SOUTHWEST

: PERTH

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: CHAPMAN DRAIN

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 4,554

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.37	3.90	6.49	6.76	5.12	5.16	3.36	3.35	3.57	3.79	5.69	4.05	4.55	
LAGOON DISCHARGE	20.91	ND	286.31	443.24	ND	ND	ND	ND	ND	ND	337.68	340.03	285.63	
BOD5						20174738 1998	assume was	Constitute tree			1202000 0000			
INFLUENT (MG/L)	324.0	345.0	256.0	342.0	205.0	643.0	258.0	275.0	287.0	351.0	**************************************		306.3	
EFFLUENT (MG/L)	33.3	ND	34.1	26.1	ND	ND	ND	ND	ND	ND	14.9	26.6	27.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	112.22	ND	221.30	176.43	ND	ND	ND	ND	ND	ND	84.78	107.73	122.85	
SUSPENDED SOLIDS	50 CHES CHE		500000 10	222 121	7872-20-72									
INFLUENT (MG/L)	243.0	306.0	169.0	293.0	120.0	635.0	147.0	324.0	The second second second second	284.0			280.1	
EFFLUENT (MG/L)	41.9	ND	44.2	32.1	ND	ND	ND	ND	ND	ND	17.1	28.0	32.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	141.20	ND	286.85	216.99	ND	ND	ND	ND	ND	ND	97.29	113.40	148.79	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.7	4.0	2.8	4.3	4.0	4.7	5.4	4.6	4.6	4.9	3.5	4.0	4.2	
EFFLUENT (MG/L)	1.2*	ND	1.4×	1.1×	ND	ND	ND	ND	ND	ND	0.6	0.9	1.0	3_
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	4.04	ND	9.08	7.43	ND	ND	ND	ND	ND	ND	3.41	3.64	4.55	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 30.0 MG/L YES

40.0 MG/L YES SS

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1989

1992/12

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

MUNICIPALITY

: LOBO

PLANT

WORKS NUMBER

: KILWORTH HEIGHTS WPCP

TREATMENT

: 110003362

: EXTENDED AERATION

DESIGN CAPACITY

: PHOSPHORUS REMOVAL-CONTINUOUS 0.26 (1000 M3)

REGION : SOUTHWEST DISTRICT : MIDDLESEC

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : THAMES RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 400

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.10	0.10	0.09	0.13	0.11	0.11	0.12	0.12	0.11	0.12	0.13	0.12	0.11	
BOD5 INFLUENT (MG/L)	59.0	77.0	124.0	36.0	89.0	93.0	55.0	74.0	112.0	125.0	87.0	160.0	90.9	
EFFLUENT (MG/L)	3.1	0.8	6.1	7.2	7.6	13.4	6.7	8.0	9.3	6.6	8.1	10.6	7.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.31	0.08	0.54	0.93	0.83	1.47	0.80	0.96	1.02	0.79	1.05	1.27	0.80	
SUSPENDED SOLIDS INFLUENT (MG/L)	198.0	144.0	301.0	85.0	186.0	210.0	116.0	176.0	258.0	229.0	137.0	149.0	182.4	
EFFLUENT (MG/L)	1.9	1.6	3.9	3.7	17.0	6.7	4.2	3.4	3.4	5.0	2.9	5.8	5.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.19	0.16	0.35	0.48	1.87	0.73	0.50	0.40	0.37	0.60	0.37	0.69	0.55	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.3	11.6	8.8	1.9	5.2	4.5	5.2	4.0	6.5	6.1	4.9	5.8	5.7	
EFFLUENT (MG/L)	0.2	0.1	0.2	0.2	0.7	0.5	0.4	0.5	0.7	0.5	0.5	0.3	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.02	0.01	0.01	0.02	0.07	0.05	0.04	0.06	0.07	0.06	0.06	0.03	0.04	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED 1990/01 1992/12

MUNICIPALITY

: LONDON

PLANT

: ADELAIDE WPCP

WORKS NUMBER

: 120000872

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

: P

: PHOS

DESIGN CAPACITY

18.18 (1000 M3)

REGION : SOUTHWEST
DISTRICT : MIDDLESEC
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : THAMES RIVER
MINOR BASIN : ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 35,678

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	21.91	20.34	21.11	23.82	22.49	25.62	22.01	22.32	22.66	19.16	21.16	22.32	22.08	
B0D5			127.2		170 0		107.0	106.0	150.0	107.0	104.0	180.0	158.7	
INFLUENT (MG/L)	233.0	170.0	144.0	151.0	meaning at the contract	131.0		The second secon	159.0	197.0	104.0		2.6	,
EFFLUENT (MG/L)	2.0	2.0	4.0	2.0	3.0	3.0	2.0	2.0	4.0	2.0	2.0	3.0	the second second second second second	ļ
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	43.82	40.68	84.44	47.64	67.47	76.86	44.02	44.64	90.64	38.32	42.32	66.96	57.41	
SUSPENDED SOLIDS INFLUENT (MG/L)	186.0	149.0	151.0	121.0	129.0	145.0	168.0	130.0	209.0	188.0	120.0	163.0	154.9	
EFFLUENT (MG/L)	7.0	5.0	5.0	5.0	5.0	5.0	6.0	6.0	7.0	7.0	5.0	7.0	5.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	153.37	101.70	105.55	119.10	112.45	128.10	132.06	133.92	158.62	134.12	105.80	156.24	128.06	
TOTAL PHOSPHOROUS												256 8	22 20	
INFLUENT (MG/L)	6.5	5.3	4.8	6.0	5.8	5.0	6.7	5.8	6.0	7.8	5.6	5.8	5.9	
EFFLUENT (MG/L)	0.7	0.4	0.5	0.6	0.3	0.5	0.7	0.5	0.5	0.5	0.5	0.6	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	15.33	8.13	10.55	14.29	6.74	12.81	15.40	11.16	11.33	9.58	10.58	13.39	11.04	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - ASSESSED MONTHLY
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA
NA - NOT APPLICABLE

MUNICIPALITY

: LONDON

PLANT WORKS NUMBER : GREENWAY WPCP : 120000863

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

•

DESIGN CAPACITY

124.33 (1000 M3)

REGION : SOUTHWEST
DISTRICT : MIDDLESEC
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : THAMES RIVER

MINOR BASIN

: IHAMES

MAJOR BASIN

: GREAT LAKES

ADUK BASIN

POPULATION SERVED : 168,274

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	114.65	101.94	114.24	130.51	118.73	129.57	119.68	125.46	124.60	143.66	125.52	103.11	120.97	
B0D5		100,000,000					Vanadorii nai				transaction and	i maroni nas		
INFLUENT (MG/L)	306.0	243.0	213.0					373.0	408.0	387.0	152.0	398.0	299.3	700
EFFLUENT (MG/L)	3.0	4.0	6.0	5.0	5.0	6.0	3.0	3.0	4.0	4.0	5.0	1.0	4.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	343.95	407.76	685.44	652.55	593.65	777.42	359.04	376.38	498.40	574.64	627.60	103.11	495.98	
SUSPENDED SOLIDS	105.0	160.0	166.0	101.0	275 0	241.0	257.0	201.0	204.0	267.0	160.0	167.0	210.1	
INFLUENT (MG/L)	185.0	169.0		191.0			253.0	201.0	294.0			163.0	210.1	
EFFLUENT (MG/L)	11.0	10.0	16.0	12.0	11.0	12.0	7.0	7.0	8.0	10.0	12.0	16.0	11.0	
CONCENTRATION LIMIT (MG/L)	-1											8 - 1 - 2 -	25.0	
LOADING (KG/D)	1261.15	1019.40	1827.84	1566.12	1306.03	1554.84	837.76	878.22	996.80	1436.60	1506.24	1649.76	1330.67	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.0	6.9	5.3	7.0	8.5	7.1	8.7	8.4	8.8	10.1	6.5	6.0	7.5	
EFFLUENT (MG/L)	0.8	0.8	0.6	0.8	0.8	0.5	1.0	0.6	0.4	1.0	0.9	0.8	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	91.72	81.55	68.54	104.40	94.98	64.78	119.68	75.27	49.84	143.66	112.96	82.48	96.78	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY
* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY PLANT : LONDON

WORKS NUMBER

: 0XFORD WPCP : 120000854

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

...

DESIGN CAPACITY

: 5.45 (1000 M3)

REGION : SOUTHWEST
DISTRICT : MIDDLESEC
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : THAMES RIVER
MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 16,224

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	5.15	4.79	4.99	4.71	5.39	5.33	4.82	4.98	4.73	4.48	4.75	6.02	5.01	
B0D5			144.0	117.0	147.0	97.0	177.0	110 0	157.0	208.0	129.0	145.0	139.7	
INFLUENT (MG/L)	166.0	Charles Comments of the Comments	146.0	117.0	147.0	83.0	3.0	118.0 5.0	4.0	3.0	3.0	4.0	4.0	
EFFLUENT (MG/L)	2.0	7.0	6.0	3.0	5.0	3.0	3.0	5.0	4.0			4.0_	25.0	
CONCENTRATION LIMIT (MG/L)								24 00	10 00	17 44	14.25	24.08	20.04	
LOADING (KG/D)	10.30	33.53	29.94	14.13	26.95	15.99	14.46	24.90	18.92	13.44	14.25	24.00	20.04	
SUSPENDED SOLIDS	144.0	147.0	141.0	110.0	167.0	115.0	155.0	144.0	164.0	169.0	105.0	132.0	142.6	
INFLUENT (MG/L)	166.0	147.0	141.0	110.0	163.0	115.0	6.0	14.0	9.0	8.0	8.0	5.0	7.8	
EFFLUENT (MG/L)	7.0	12.0	7.0	5.0	6.0	7.0	6.0	14.0		0.0	0.0		25.0	
CONCENTRATION LIMIT (MG/L)								(0.70	40 57	7E 04	70 00	70 10	39.08	
LOADING (KG/D)	36.05	57.48	34.93	23.55	32.34	37.31	28.92	69.72	42.5/	35.84	38.00	30.10	39.00	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.2	6.5	6.3	5.2	7.6	4.9	6.9	6.6	7.1	8.8	6.6	6.4	6.7	
EFFLUENT (MG/L)	0.7	0.5	0.3	0.9	0.5	0.6	ND	0.9	0.5	0.6	1.0	0.8	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.60	2.39	1.49	4.23	2.69	3.19	ND	4.48	2.36	2.68	4.75	4.81	3.51	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - ASSESSED MONTHLY
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA

MUNICIPALITY

: LONDON

: POTTERSBURG WPCP

WORKS NUMBER

: 120000836

TREATMENT

PLANT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

22.04 (1000 M3) :

: SOUTHWEST REGION DISTRICT : MIDDLESEC

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : THAMES RIVER MINOR BASIN : ERIE

: GREAT LAKES

MAJOR BASIN POPULATION SERVED : 25,653

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	20.40	18.23	19.65	21.92	18.68	18.16	15.27	15.71	16.21	15.96	19.07	16.35	17.97	
BOD5 INFLUENT (MG/L)	197.0	152.0	135.0	164.0	191.0	154.0	210.0	214.0	187.0	239.0	155.0	205.0	183.6	
EFFLUENT (MG/L)	3.0	5.0	4.0	3.0	5.0	4.0	3.0	5.0	4.0	3.0	3.0	5.0	3.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	61.20	91.15	78.60	65.76	93.40	72.64	45.81	78.55	64.84	47.88	57.21	81.75	70.08	
SUSPENDED SOLIDS	0.000 8		1000 V			2000					222		and a second residence	
INFLUENT (MG/L)	117.0	123.0	126.0	143.0		131.0	155.0	The second secon	174.0	164.0	123.0	152.0	145.4	
EFFLUENT (MG/L)	5.0	10.0	8.0	5.0	7.0	5.0	4.0	7.0	5.0	5.0	6.0	8.0	6.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	102.00	182.30	157.20	109.60	130.76	90.80	61.08	109.97	81.05	79.80	114.42	130.80	113.21	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.4	5.3	4.7	7.1	6.6	4.9	6.2	7.2	6.3	8.2	5.9	6.4	6.2	
EFFLUENT (MG/L)	0.6	0.7	0.6	0.7	0.8	0.9	0.9	0.6	0.5	0.8	0.8	0.6	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	12.24	12.76	11.79	15.34	14.94	16.34	13.74	9.42	8.10	12.76	15.25	9.81	12.58	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: LONDON

PLANT

: VAUXHALL WPCP

WORKS NUMBER

: 120000845

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

20.91 (1000 M3)

REGION : SOUTHWEST DISTRICT : MIDDLESEC OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: THAMES RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATIO

ON	SERVED	:	22,981

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	19.03	18.14	18.10	18.61	16.79	17.67	16.25	17.47	17.29	17.00	17.10	14.15	17.30	
BOD5	7/4.0	070.0	740.0	705.0	045.0	076.0	707.0	704.0	295.0	370.0	221.0	328.0	311.9	
INFLUENT (MG/L)	364.0	278.0	348.0	305.0	245.0	276.0	387.0	326.0		-	4.0	3.0	3.5	
EFFLUENT (MG/L)	2.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	2.0	4.0	3.0	25.0	
CONCENTRATION LIMIT (MG/L)										74 00		40 45		
LOADING (KG/D)	38.06	72.56	72.40	74.44	67.16	70.68	65.00	52.41	69.16	34.00	68.40	42.45	60.55	
SUSPENDED SOLIDS	171.0	145.0	104.0	144.0	170.0	222.0	171 0	210.0	270.0	257.0	102.0	200 0	198.5	
INFLUENT (MG/L)	171.0	165.0	194.0	166.0	170.0	229.0	171.0	219.0	239.0	257.0	192.0	209.0 5.0	7.2	
EFFLUENT (MG/L)	8.0	8.0	9.0	9.0	7.0	7.0	7.0	6.0	6.0	5.0	9.0	5.0	25.0	
CONCENTRATION LIMIT (MG/L)										AF AA			and the second s	
LOADING (KG/D)	152.24	145.12	162.90	167.49	117.53	123.69	113./5	104.82	103.74	85.00	153.90	70.75	124.56	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.1	5.2	4.2	5.7	5.4	4.4	4.8	7.5	6.5	7.7	5.1	5.6	5.7	
EFFLUENT (MG/L)	0.3	0.4	0.3	0.6	0.8	0.6	0.7	1.0	0.8	0.7	0.7	0.6	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	5.70	7.25	5.43	11.16	13.43	10.60	11.37	17.47	13.83	11.90	11.97	8.49	10.38	

SUMMARY

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: LUCAN

PLANT

: LUCAN LAGOON

WORKS NUMBER TREATMENT

: 110000855

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.29 (1000 M3)

REGION : SOUTHWEST DISTRICT : MIDDLESEC

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : LITTLE AUSABLE RIVER

MINOR BASIN : HURON

MAJOR BASIN GREAT LAKES POPULATION SERVED : 1,650

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.86	0.69	0.92	1.26	0.73	0.79	0.47	0.55	0.76	ND	0.96	0.63	0.78	
LAGOON DISCHARGE	26.79	19.35	28.57	4.05	29.59	ND	ND	4.79	22.91	ND	ND	ND	19.44	
BOD5														
INFLUENT (MG/L)	129.0	142.0	138.0	71.0	ND	71.0	38.0	37.0	69.0	ND	73.0	108.0	87.6	
EFFLUENT (MG/L)	ND	28.8	26.7	19.6	18.9	ND	ND	ND	18.3	ND	ND	ND	22.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	19.87	24.56	24.69	13.79	ND	ND	ND	13.90	ND	ND	ND	17.55	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	91.0	160.0	152.0	70.0	ND	59.0	36.0	19.0	69.0	ND	79.0	87.0	82.2	
EFFLUENT (MG/L)	ND	33.6	32.5	20.1	20.4	ND	ND	ND	22.5	ND	ND	ND	25.8	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	23.18	29.90	25.32	14.89	ND	ND	ND	17.10	ND	ND	ND	20.12	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.1	6.9	8.3	6.3	ND	3.3	3.2	2.8	4.5	ND	4.0	6.0	5.2	
EFFLUENT (MG/L)	ND	2.3	2.4	1.9	0.4	ND	ND	ND	1.4	ND	ND	ND	1.7	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	1.58	2.20	2.39	0.29	ND	ND	ND	1.06	ND	ND	ND	1.33	

SUMMARY

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE END DATE COMPLIANCE

1988

1991/12

1992/01

MUNICIPALITY

: MAIDSTONE

PLANT

: BELLE RIVER-MAIDSTONE WPCP

WORKS NUMBER

: 110002078

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

6.81 (1000 M3)

REGION : SOUTHWEST

: ESSEX DISTRICT OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: LAKE ST.CLAIR WATERCOURSE

: ERIE MINOR BASIN

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 8,568

A A A A A A A A A A A A A A A A A A A	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	5.09	4.52	4.79	5.82	4.93	6.62	5.86	4.90	4.78	4.57	4.78	4.16	5.07	
BOD5	113.0	101.0	118.0	108.0	121.0	93.0	86.0	93.0	93.0	81.0	84.0	117.0	100.7	
INFLUENT (MG/L) EFFLUENT (MG/L)	2.0	1.1	4.4	3.5	3.2	2.0	1.7	1.5	1.4	2.5	1.3	4.5	2.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	10.18	4.97	21.07	20.37	15.77	13.24	9.96	7.35	6.69	11.42	6.21	18.72	12.17	
SUSPENDED SOLIDS INFLUENT (MG/L)	108.0	133.0	120.0	114.0	133.0	99.0	89.0	111.0	129.0	130.0	105.0	134.0	117.1	
EFFLUENT (MG/L)	10.7	10.8	13.8	13.9	10.0	10.5	9.1	7.0	5.4	6.1	10.9	9.9	9.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	54.46	48.81	66.10	80.89	49.30	69.51	53.32	34.30	25.81	27.87	52.10	41.18	49.69	
TOTAL PHOSPHOROUS	3.0	3.4	3.8	2.9	3.6	3.8	3.6	3.1	4.8	4.0	3.3	4.8	3.7	
INFLUENT (MG/L) EFFLUENT (MG/L)	0.3	0.2	0.3	0.2	0.5	0.5	0.3	0.4	0.4	0.4	0.5	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.52	0.90	1.43	1.16	2.46	3.31	1.75	1.96	1.91	1.82	2.39	1.66	2.03	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1991/12 1988

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

MUNICIPALITY

: MARKDALE

PLANT

: MARKDALE LAGOON

WORKS NUMBER

: 110000418

TREATMENT

: AERATED LAGOON

: PHOSPHORUS REMOVAL-CONTINUOUS

: EXFILTRATION LAGOON

DESIGN CAPACITY

: 1.12 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: GREY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: NO DISC.TO SURFACE WATER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

1,235

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE!
AVG. DAILY FLOW (1000 M3)	0.39	0.39	0.60	0.54	0.44	0.46	0.36	0.36	0.32	0.35	0.43	0.35	0.42	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5		Miles and						ne neterno son			14			
INFLUENT (MG/L)	132.0	131.0	189.0	89.0	158.0	253.0	199.0	267.0	118.0	186.0	165.0	147.0	169.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	105.0	120.0	166.0	64.0	94.0	155.0	144.0	180.0	91.0	127.0	98.0	70.0	117.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	9.3	7.8	7.0	5.4	12.1	5.5	16.4	12.4	10.1	8.7	6.9	10.3	9.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	NA	NO DIRECT DISCHARGE
SS	NA	NO DIRECT DISCHARGE
TP	NA	NO DIRECT DISCHARGE

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED

1988

1990/12

MUNICIPALITY

: MC GILLIVRAY

PLANT

: PARKHILL LAGOON

WORKS NUMBER

: 110002461

TREATMENT

: CONVENTIONAL LAGOON SEASONAL : PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

1.10 (1000 M3)

REGION : SOUTHWEST

DISTRICT : MIDDLESEC

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : PARKHILL CREEK

WATERCOURSE MINOR BASIN

MAJOR BASIN

: HURON

: GREAT LAKES

POPULATION SERVED : 1,544

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.64	0.59	0.64	0.64	0.58	0.83	0.91	0.71	1.53	0.61	0.77	0.62	0.76	
LAGOON DISCHARGE	ND	ND	ND	ND	130.77	ND	ND	ND	ND	90.81	ND	ND	110.79	
BOD5	526. 5. 62	200 April 100				Capacitais and	11 at 1974 1975	2000 mg - 5500	UNITED AND THE	52.4505000 0.000		7475E ES	Service and	
INFLUENT (MG/L)	114.0	126.0	ND	97.0	150.0	133.0	166.0	55.0	117.0	121.0	99.0	121.0	118.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	4.0	ND	ND	ND	ND	1.6	ND	ND	2.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	2.32	ND	ND	ND	ND	0.97	ND	ND	2.13	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	143.0	148.0	ND	78.0	116.0	89.0	180.0	375.0	136.0	81.0	103.0	85.0	139.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	9.8	ND	ND	ND	ND	10.9	' ND	ND	10.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	5.68	ND	ND	ND	ND	6.64	ND	ND	7.90	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.2	7.5	ND	8.3	5.4	5.8	8.6	9.0	8.3	5.4	6.3	6.3	7.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.3	ND	ND	ND	ND	0.1	ND	ND	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		V EDWARD
LOADING (KG/D)	ND	ND	ND	ND	0.17	ND	ND	ND	ND	0.06	ND	ND	0.15	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

1988/02 1990/01

MUNICIPALITY

: MEAFORD

PLANT

: MEAFORD WPCP

WORKS NUMBER TREATMENT

: 110000445 : HIGH RATE

:

DESIGN CAPACITY

3.91 (1000 M3)

REGION : SOUTHWEST

DISTRICT : GREY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GEORGIAN BAY

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 4,318

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.88	2.93	4.11	3.25	2.61	3.02	2.31	2.28	2.21	2.35	2.86	2.85	2.89	
BOD5 INFLUENT (MG/L)	54.0	75.0	45.0	54.0	58.0	55.0	90.0	61.0	92.0	79.0	55.0	94.0	67.7	
EFFLUENT (MG/L)	10.6	4.8	7.7	7.8	11.1	16.3	21.0	4.3	7.2	16.0	7.3	10.5	10.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	41.12	14.06	31.64	25.35	28.97	49.22	48.51	9.80	15.91	37.60	20.87	29.92	30.06	
SUSPENDED SOLIDS INFLUENT (MG/L)	72.0	85.0	105.0	41.0	129.0	96.0	132.0	86.0	136.0	82.0	46.0	63.0	89.4	
EFFLUENT (MG/L)	20.9	7.3	13.0	7.1	6.6	7.0	7.3	4.6	6.3	8.5	7.3	6.9	8.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	81.09	21.38	53.43	23.07	17.22	21.14	16.86	10.48	13.92	19.97	20.87	19.66	24.85	
TOTAL PHOSPHOROUS		X2 - 111 - 12												
INFLUENT (MG/L)	3.9	4.6	2.8	3.1	3.5	4.0	3.0	10.5	6.7	4.9	3.6	5.0	4.6	
EFFLUENT (MG/L)	2.1	2.4	1.6	1.9	2.3	2.5	2.2	3.8	4.3	4.1	2.1	2.5	2.7	27000
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	8.14	7.03	6.57	6.17	6.00	7.55	5.08	8.66	9.50	9.63	6.00	7.12	7.80	

SUMMA	NI.	
	COM	PLIES
RIA	WITH	CONC

CHIMMADY

PARM CRITE BOD 25.0 MG/L YES SS 25.0 MG/L YES TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED 1988 FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

1992/12 1987 1990/12

MUNICIPALITY

: MILDMAY

PLANT

: MILDMAY WPCP

WORKS NUMBER

: 110002194

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

0.96 (1000 M3)

REGION : SOUTHWEST

: BRUCE DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE MINOR BASIN

: OTTER CREEK : HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 973

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.80	0.70	0.83	0.79	0.73	0.75	0.71	0.64	0.58	0.58	0.67	0.60	0.70	
BOD5	***	70.0	07.0	01.0	05.0	44.0	97.0	83.0	89.0	84.0	90.0	77.0	88.7	
INFLUENT (MG/L)	128.0	79.0	97.0	81.0	95.0 3.6	64.0	1.3	0.8	1.6	2.5	4.4	2.9	2.8	
EFFLUENT (MG/L)	4.5	4.7	3.8	2.6	3.6	1.2_		0.8					25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	3.60	3.29	3.15	2.05	2.62	0.90	0.92	0.51	0.92	1.45	2.94	1.74	1.96	
SUSPENDED SOLIDS INFLUENT (MG/L)	299.0	149.0	156.0	103.0	127.0	139.0	137.0	209.0	155.0	98.0	120.0	103.0	149.6	
EFFLUENT (MG/L)	5.6	5.5	6.3	6.0	6.5	4.9	4.1	4.7	8.2	4.5	4.8	5.2	5.5	
CONCENTRATION LIMIT (MG/L)											messacrons own		25.0	
LOADING (KG/D)	4.48	3.85	5.22	4.74	4.74	3.67	2.91	3.00	4.75	2.61	3.21	3.12	3.85	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.7	4.9	5.7	5.3	5.9	4.7	5.2	4.6	6.1	5.7	5.1	3.8	5.3	
EFFLUENT (MG/L)	0.4	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.3	1.1*	0.4	0.2	0.4	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.32	0.21	0.24	0.23	0.29	0.30	0.35	0.32	0.17	0.63	0.26	0.12	0.28	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

25.0 MG/L YES SS TP

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1989/10

1989/11

1989/11

REMEDIAL MEASURES

EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED

MUNICIPALITY

: MILVERTON

PLANT

: MILVERTON LAGOON

WORKS NUMBER

: 110001079

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: AERATED CELL PLUS LAGOON : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 1.01 (1000 M3)

REGION

: SOUTHWEST

DISTRICT : PERTH

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : BOYLE DRAIN

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,484

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	0.73	0.55	0.72	0.78	0.76	0.79	0.49	0.95	0.47	0.58	0.68	0.58	0.67	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	96.00	672.00	ND	384.00	
BOD5														
INFLUENT (MG/L)	126.0	129.0	89.0	96.0	134.0	119.0	65.0	173.0	122.0	154.0	160.0	ND	124.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	ND	8.4	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.71	ND	5.63	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	160.0	142.0	82.0	105.0	101.0	116.0	102.0	186.0	124.0	350.0	181.0	ND	149.9	L
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30.4	ND	30.4	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20.67	ND	20.37	
TOTAL PHOSPHOROUS	,				5,3									
INFLUENT (MG/L)	6.9	8.4	5.6	6.6	7.0	7.5	8.2	11.7	9.3	10.0	16.3	ND	8.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3	ND	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.20	ND	0.20	

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES

BOD SS 40.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MITCHELL

:

PLANT

: MITCHELL LAGOON

WORKS NUMBER

: 110000472

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

3.56 (1000 M3)

: SOUTHWEST REGION

DISTRICT : PERTH

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: THAMES RIVER WATERCOURSE

: ERIE MINOR BASIN

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 3,078

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.94	2.28	2.78	3.15	2.26	2.23	1.77	1.74	1.82	1.89	2.72	2.02	2.30	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5		25-25 EAS		2014 - AND 8018	Pay Strongs - Page									
INFLUENT (MG/L)	338.0	451.0	403.0	276.0	530.0	403.0	414.0	359.0	574.0	593.0	173.0	296.0	400.8	
EFFLUENT (MG/L)	ND	ND	ND	20.2	ND	ND	ND_	ND	ND	ND	16.4	16.0	17.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	63.63	ND	ND	ND	ND	ND	ND	44.60	32.32	40.25	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	199.0	375.0	226.0	237.0	390.0	228.0	232.0	132.0	636.0	531.0	192.0	320.0	308.2	
EFFLUENT (MG/L)	ND	ND	ND	41.4	ND	ND	ND	ND	ND	ND	41.5	23.2	35.4	
CONCENTRATION LIMIT (MG/L)		Ties											40.0	
LOADING (KG/D)	ND	ND	ND	130.41	ND	ND	ND	ND	ND	ND	112.88	46.86	81.42	
TOTAL PHOSPHOROUS												U.S. S.	No. 400 No. 1	
INFLUENT (MG/L)	11.4	11.9	8.7	7.1	12.5	9.6	12.5	10.5	17.2	11.7	13.0	13.7	11.7	
EFFLUENT (MG/L)	ND	ND	ND	0.8	ND	ND	ND	ND	ND	ND	0.5	0.7	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	2.52	ND	ND	ND	ND	ND	ND	1.36	1.41	1.61	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L YES

TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1992/12

REMEDIAL MEASURES

OPERATIONAL/PROCESS - CONVERTING TO ALTERNATIVE PROCESS

MUNICIPALITY

: MOORE

PLANT

: BRIGDEN P.V. LAGOON

WORKS NUMBER

: 110002023

TREATMENT

: CONVENTIONAL LAGOON ANNUAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.33 (1000 M3) :

REGION : SOUTHWEST

DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : BEAR CREEK

MINOR BASIN

: ERIE MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 641

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.22	0.22	0.27	0.27	0.24	0.27	0.22	0.24	0.26	0.26	0.28	0.25	0.25	
LAGOON DISCHARGE	ND	ND	ND	44.52	ND	44.52								
BOD5 INFLUENT (MG/L)	ND	179.0	159.0	113.0	146.0	133.0	176.0	213.0	201.0	182.0	169.0	202.0	170.3	
EFFLUENT (MG/L)	ND	ND	ND	13.6	ND	13.6								
CONCENTRATION LIMIT (MG/L)	Till a												25.0	
LOADING (KG/D)	ND	ND	ND	3.67	ND	3.40								
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	131.0	156.0	134.0	154.0	151.0	163.0	314.0	202.0	283.0	112.0	125.0	175.0	
EFFLUENT (MG/L)	ND	ND	ND	44.3	ND	44.3×								
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	11.96	ND	11.08								
TOTAL PHOSPHOROUS			~	rsn W	20 20	50.8	* * *							
INFLUENT (MG/L)	ND	10.1	9.3	8.2	9.2	9.6	10.7	8.2	9.9	10.4	9.4	11.4	9.7	
EFFLUENT (MG/L)	ND	ND	ND	0.9	ND	0.9								
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.24	ND	0.23								

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L NO

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

START DATE _ END DATE _ COMPLIANCE

1988/02

1990/01

1990/04

ANTICIPATED

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

MUNICIPALITY

: MOORE

PLANT

: CORUNNA P.V. WPCP

WORKS NUMBER

: 110000481

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

4.54 (1000 M3) :

REGION : SOUTHWEST

DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : ST. CLAIR RIVER

: ERIE

MINOR BASIN

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 5,650

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.16	2.10	2.31	2.20	2.06	2.19	1.93	1.92	2.16	2.09	2.33	2.84	2.19	
BOD5		440.0	175.0	100.0	111.0	107.0	110.0	111.0	107.0	010.0	150.0	170.0	131.0	
INFLUENT (MG/L)	89.0	119.0	175.0	108.0	111.0	107.0	119.0	111.0	103.0	210.0	150.0 7.7	170.0 3.7	5.3	
EFFLUENT (MG/L)	3.7	11.9	8.7	4.2	7.5	3.7	3.6	0.6	4.0	4.7	/./_	3.7	25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	7.99	24.99	20.09	9.24	15.45	8.10	6.94	1.15	8.64	9.82	17.94	10.50	11.61	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	91.0	122.0	192.0	97.0	98.0	101.0	82.0	118.0	127.0	208.0	76.0	89.0	116.8	
EFFLUENT (MG/L)	11.2	12.8	10.9	7.6	9.1	7.0	5.3	5.9	8.5	8.3	10.3	7.7	8.7	
CONCENTRATION LIMIT (MG/L)												5 / 500	25.0	
LOADING (KG/D)	24.19	26.88	25.17	16.72	18.74	15.33	10.22	11.32	18.36	17.34	23.99	21.86	19.05	
TOTAL PHOSPHOROUS				×										
INFLUENT (MG/L)	7.1	6.9	7.0	6.4	3.8	6.3	7.0	6.4	6.3	9.2	6.5	7.5	6.7	
EFFLUENT (MG/L)	0.3	0.5	0.2	0.1	0.1	0.2	0.3	0.5	0.4	0.3	0.2	0.2	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.64	1.05	0.46	0.22	0.20	0.43	0.57	0.96	0.86	0.62	0.46	0.56	0.66	

SUMMARY COMPLIES CRITERIA WITH CONC PARM 25.0 MG/L YES BOD SS 25.0 MG/L YES TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MOORE

PLANT

: COURTRIGHT WPCP

WORKS NUMBER

: 110001818

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

0.68 (1000 M3) :

REGION : SOUTHWEST DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ST CLAIR RIVER

: ERIE MINOR BASIN

MAJOR BASIN GREAT LAKES POPULATION SERVED : 1,526

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.55	0.50	0.61	0.61	0.55	0.53	0.47	0.47	0.54	0.50	0.56	0.46	0.53	
BOD5	105.0	561.0	215.0	115.0	215.0	118.0	102.0	111.0	78.0	163.0	155.0	263.0	183.4	
INFLUENT (MG/L) EFFLUENT (MG/L)	12.0	9.5	8.7	3.2	4.1	4.8	4.2	3.3	15.0	3.5	3.6	2.9	6.2	
CONCENTRATION LIMIT (MG/L)	12.0												25.0	
LOADING (KG/D)	6.60	4.75	5.30	1.95	2.25	2.54	1.97	1.55	8.10	1.75	2.01	1.33	3.29	
SUSPENDED SOLIDS	No. edentito con		V-11/2-111 2-1	Carrie and Service	2271100 1010						Hamaina van			
INFLUENT (MG/L)	133.0	715.0	347.0	114.0	269.0	99.0	89.0	73.0	81.0	136.0	116.0	542.0	226.2	
EFFLUENT (MG/L)	19.3	11.1	15.1	4.7	4.1	8.9	7.6	9.4	11.3	0.9	2.0	3.2	8.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	10.61	5.55	9.21	2.86	2.25	4.71	3.57	4.41	6.10	0.45	1.12	1.47	4.29	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.5	20.2	10.0	7.8	8.9	9.2	7.1	6.1	6.3	6.3	9.0	16.6	9.6	
EFFLUENT (MG/L)	0.3	0.3	0.2	0.1	0.2	0.2	0.2	0.2	0.3	0.2	0.1	0.1	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.16	0.15	0.12	0.06	0.11	0.10	0.09	0.09	0.16	0.10	0.05	0.04	0.11	

U	M	М	Α	ĸ	Y
_	-	_	_	_	•

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: NORMANBY

PLANT

: NEUSTADT LAGOON

WORKS NUMBER

: 110002443

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.41 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: GREY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: SOUTH SAUGEEN RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

463

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.17	0.12	0.18	0.18	0.15	0.13	0.09	0.08	0.08	0.09	0.15	0.13	0.13	-
LAGOON DISCHARGE	ND	ND	ND	ND	39.14	ND	ND	ND	ND	ND	ND	ND	39.14	
BOD5	909201 (200	001009423 197000						440.0		107.0	145.0	134.0	131.9	
INFLUENT (MG/L)	97.0	125.0	113.0	85.0	151.0	114.0	121.0	142.0	229.0	127.0	145.0	134.0 ND	2.5	
EFFLUENT (MG/L)	ND	ND	ND	ND_	2.5	ND_	ND	ND	ND	ND	ND	NU	25.0	
CONCENTRATION LIMIT (MG/L)													The second secon	
LOADING (KG/D)	ND	ND	ND	ND	0.37	ND	ND	ND	ND	ND	ND	ND	0.33	L
SUSPENDED SOLIDS				70.0	174.0	150.0	92.0	142.0	202.0	131.0	169.0	131.0	136.2	1
INFLUENT (MG/L)	96.0	121.0	112.0	70.0	136.0	152.0	82.0	142.0	292.0 ND	ND	ND	ND	7.6	
EFFLUENT (MG/L)	ND_	ND	ND	ND	7.6	ND	ND	ND	שט	MD	ND	ND.	25.0	
CONCENTRATION LIMIT (MG/L)											ND.	ND	0.99	
LOADING (KG/D)	ND	ND	ND	ND	1.14	ND	ND	ND	ND	ND	ND	ND	0.99	
TOTAL PHOSPHOROUS					58: 323	722 S28	V±01.026	200						
INFLUENT (MG/L)	5.1	7.4	6.6	5.0	5.7	7.9	7.0	8.7	10.6	9.8	9.1	6.5	7.5	
EFFLUENT (MG/L)	ND	ND	ND_	ND		ND	ND	ND	ND	ND	ND	ND_		-
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 25.0 MG/L YES SS 25.0 MG/L YES

1.0 MG/L YES TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1988/02 1990/01

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

MUNICIPALITY

: NORWICH

PLANT

: NORWICH LAGOON

WORKS NUMBER

: 110001480

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

0.99 (1000 M3)

REGION : SOUTHWEST

DISTRICT : OXFORD

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BIG OTTER CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED :

2,313

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.86	0.77	0.88	1.02	0.79	0.81	0.67	0.65	0.62	0.64	0.99	0.74	0.79	
LAGOON DISCHARGE	ND													
BOD5														
INFLUENT (MG/L)	100.0	149.0	145.0	71.0	136.0	208.0	189.0	140.0	166.0	175.0	227.0	236.0	161.8	
EFFLUENT (MG/L)	ND	ND	ND	12.7	ND	ND	ND	ND	ND	1.9	12.3	ND	9.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	12.95	ND	ND	ND	ND	ND	1.21	12.17	ND	7.11	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	279.0	144.0	337.0	103.0	270.0	216.0	159.0	162.0	122.0	99.0	170.0	147.0	184.0	
EFFLUENT (MG/L)	ND	ND	ND	6.5	ND	ND	ND	ND	ND	2.4	19.2	ND	9.4	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	6.63	ND	ND	ND	ND	ND	1.53	19.00	ND	7.43	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.0	8.2	8.4	5.1	7.0	9.1	9.3	5.2	7.9	7.7	10.3	10.1	7.9	
EFFLUENT (MG/L)	ND	ND	ND	0.3	ND	ND	ND	ND	ND	0.3	0.5	ND	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.30	ND	ND	ND	ND	ND	0.19	0.49	ND	0.32	

		44	•	_	
U	М	м	А	к	۲.

COMPLIES

CRITERIA WITH CONC PARM

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: OIL SPRINGS

PLANT

: OIL SPRINGS LAGOON

WORKS NUMBER

: 110001998

TREATMENT

: CONVENTIONAL LAGOON ANNUAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.27 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: BLACK CREEK

MINOR BASIN

: ERIE

MAJOR BASIN POPULATION SERVED :

: GREAT LAKES

609

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.18	0.17	0.20	0.23	0.16	0.18	0.15	0.15	0.20	0.17	0.20	0.17	0.18	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		N. Principalina
BOD5									2 22 2					
INFLUENT (MG/L)	97.0	45.0	14.0	102.0	119.0	112.0	113.0	115.0	113.0	133.0	162.0	101.0	102.2	
EFFLUENT (MG/L)	ND_	ND	ND	ND	ND_	ND	ND	ND	ND	3.4	ND	ND_	3.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.57	ND	ND	0.61	
SUSPENDED SOLIDS INFLUENT (MG/L)	87.0	53.0	24.0	68.0	109.0	68.0	115.0	93.0	113.0	88.0	101.0	61.0	81.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	29.4	ND	ND	29.4*	
CONCENTRATION LIMIT (MG/L)									-				25.0	V
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.99	ND	ND	5.29	
TOTAL PHOSPHOROUS	- A		200	200			70-11-200	and state	ment con	COV. March	(
INFLUENT (MG/L)	6.9	8.5	4.5	7.8	7.0	8.0	7.9	8.1	7.7	6.5_	7.9	8.5	7.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3	ND	ND	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	ND	ND	0.05	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD SS

25.0 MG/L YES 25.0 MG/L NO

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02

1990/01

1990/04

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

MUNICIPALITY

: OWEN SOUND

PLANT

: OWEN SOUND WPCP

WORKS NUMBER

: 110000551

TREATMENT

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 24.54 (1000 M3) REGION : SOUTHWEST

DISTRICT : GREY

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GEORGIAN BAY

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 20,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	17.33	13.04	20.25	15.56	12.92	15.00	10.67	10.58	10.67	10.54	15.17	11.74	13.62	
BOD5	5 10		5 V	Vest .	0 5	21			G W 85					
INFLUENT (MG/L)	62.0	74.0	82.0	43.0	81.0	50.0	97.0	118.0	101.0	172.0	142.0	97.0	93.3	
EFFLUENT (MG/L)	23.6	27.4	21.1	22.0	29.6	14.6	27.8	25.3	36.4	34.7	31.7	20.0	26.2	
LOADING (KG/D)	408.98	357.29	427.27	342.32	382.43	219.00	296.62	267.67	388.38	365.73	480.88	234.80	356.84	1 3 1
PERCENT REMOVAL	62	63	74	49	63	71	71	79	64	80	78	79	72	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	104.0	119.0	104.0	108.0	110.0	113.0	118.0	123.0	132.0	116.0	136.0	117.0	116.7	
EFFLUENT (MG/L)	28.7	18.7	22.0	18.4	20.8	23.8	18.3	25.4	28.5	20.1	22.0	23.5	22.5	
LOADING (KG/D)	497.37	243.84	445.50	286.30	268.73	357.00	195.26	268.73	304.09	211.85	333.74	275.89	306.45	
PERCENT REMOVAL	72	84	79	83	81	79	84	79	78	83	84	80	81	
PERCENT REMOVAL LIMITS										7			70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.8	4.6	3.5	2.2	3.9	3.4	4.3	5.9	4.9	5.2	4.2	4.4	4.2	
EFFLUENT (MG/L)	0.9	0.7	0.7	0.5	0.5	0.5	0.9	0.5	1.0	1.0	1.0	0.4	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	15.59	9.12	14.17	7.78	6.46	7.50	9.60	5.29	10.67	10.54	15.17	4.69	9.53	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 50% YES

70% SS YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES START DATE END DATE COMPLIANCE

COLLECTION SYSTEM - ENFORCING SEWER-USE BYLAWS 1989 1990/06 1990/01

MANPOWER - ADDITIONAL STAFF BEING HIRED 1989 1989/06

MUNICIPALITY

: PAISLEY

PLANT

: PAISLEY WPCP

WORKS NUMBER

: 110001907

TREATMENT

: OXIDATION DITCH

DESIGN CAPACITY

:

: PHOSPHORUS REMOVAL-CONTINUOUS

0.70 (1000 M3)

: SOUTHWEST REGION DISTRICT : BRUCE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SAUGEEN RIVER : HURON

MINOR BASIN : GREAT LAKES MAJOR BASIN

POPULATION SERVED : 653

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.41	0.32	0.39	0.35	0.30	0.34	0.28	0.28	0.29	0.32	0.37	0.35	0.33	an sa
BOD5 INFLUENT (MG/L)	60.0	108.0	109.0	65.0	86.0	67.0	87.0	114.0	89.0	84.0	68.0	114.0	87.6	
EFFLUENT (MG/L)	3.7	7.8	4.3	2.3	1.6	1.8	0.9	1.3	1.3	2.0	2.5	5.9	3.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.51	2.49	1.67	0.80	0.48	0.61	0.25	0.36	0.37	0.64	0.92	2.06	0.99	
SUSPENDED SOLIDS INFLUENT (MG/L)	96.0	266.0	136.0	60.0	105.0	96.0	150.0	103.0	138.0	101.0	219.0	91.0	130.1	
EFFLUENT (MG/L)	4.9	14.7	4.7	2.5	3.0	3.0	2.6	4.1	1.6	2.6	5.6	16.3	5.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.00	4.70	1.83	0.87	0.90	1.02	0.72	1.14	0.46	0.83	2.07	5.70	1.82	
TOTAL PHOSPHOROUS		0.000	244	070.00	ware com		-2220-	3805 2500	outs over		D-1 1-0			
INFLUENT (MG/L)	5.6	5.4	5.5	4.4	5.8	5.9	6.3	5.5	6.1	5.0	5.1	6.1	5.6	
EFFLUENT (MG/L)	0.4	0.8	0.4	0.3	0.4	0.5	0.6	0.8	0.5	0.5	0.5	0.7	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.16	0.25	0.15	0.10	0.12	0.17	0.16	0.22	0.14	0.16	0.18	0.24	0.17	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

1.0 MG/L YES TP

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1991/12

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

MUNICIPALITY

: PETROLIA

PLANT

: PETROLIA WPCP + LAGOON

WORKS NUMBER

: 110000579

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

3.18 (1000 M3)

: SOUTHWEST REGION

: LAMBTON DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: BEAR CREEK WATERCOURSE

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 4,168

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.44	1.57	1.56	1.73	1.67	1.68	1.37	1.54	1.58	1.49	1.75	1.59	1.58	
BOD5 INFLUENT (MG/L)	152.0	134.0	138.0	175.0	175.0	306.0	169.0	259.0	167.0	140.0	131.0	182.0	177.3	
EFFLUENT (MG/L)	2.7	4.4	1.9	3.4	3.4	1.5	1.2	0.4	0.9	2.2	2.2	5.9	2.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.88	6.90	2.96	5.88	5.67	2.52	1.64	0.61	1.42	3.27	3.85	9.38	3.95	
SUSPENDED SOLIDS INFLUENT (MG/L)	183.0	165.0	166.0	173.0	173.0	344.0	235.0	239.0	200.0	119.0	105.0	112.0	184.5	
EFFLUENT (MG/L)	4.5	6.3	5.5	4.3	4.3	2.5	2.6	2.2	2.0	7.9	2.2	9.1	4.5	
CONCENTRATION LIMIT (MG/L)	N 10// 10 100												25.0	
LOADING (KG/D)	6.48	9.89	8.58	7.43	7.18	4.20	3.56	3.38	3.16	11.77	3.85	14.46	7.11	
TOTAL PHOSPHOROUS							2004 1004							
INFLUENT (MG/L)	7.5	7.3	7.0	8.2	8.2	9.1	8.3	7.7	7.6	6.5	5.4	7.1	7.5	
EFFLUENT (MG/L)	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.4	0.5	0.3	0.5	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.43	0.62	0.46	0.51	0.50	0.50	0.41	0.30	0.63	0.74	0.52	0.79	0.47	

•			nv
SU	MM	А	K T
**			••

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY : PLYMPTON

PLANT : WYOMING WPCP WORKS NUMBER : 110002489

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY : 1.12 (1000 M3)

REGION : SOUTHWEST DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : STONEHOUSE DRAIN

MINOR BASIN : ERIE
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,824

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.48	0.43	0.45	0.47	0.46	0.48	0.45	0.45	0.49	0.48	0.50	0.48	0.47	
BOD5 INFLUENT (MG/L)	169.0	232.0	162.0	146.0	202.0	163.0	172.0	176.0	167.0	194.0	185.0	196.0	180.3	
EFFLUENT (MG/L)	2.1	4.3	3.1	2.2	3.2	1.6	1.2	0.4	0.8	3.1	2.0	5.1	2.4	
CONCENTRATION LIMIT (MG/L)												<u> </u>	25.0	
LOADING (KG/D)	1.00	1.84	1.39	1.03	1.47	0.76	0.54	0.18	0.39	1.48	1.00	2.44	1.13	
SUSPENDED SOLIDS INFLUENT (MG/L)	260.0	609.0	232.0	120.0	217.0	179.0	190.0	103.0	260.0	188.0	155.0	113.0	218.8	
EFFLUENT (MG/L)	3.0	6.7	5.7	2.6	4.3	3.0	1.6	1.8	1.3	7.0	1.7	9.2	4.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.44	2.88	2.56	1.22	1.97	1.44	0.72	0.81	0.63	3.36	0.85	4.41	1.88	
TOTAL PHOSPHOROUS													500 Strong Sports	
INFLUENT (MG/L)	12.5	24.8	11.6	10.8	10.3	10.8	11.8	9.0	11.6	11.0	9.0	10.2	12.0	
EFFLUENT (MG/L)	0.3	0.4	0.3	0.2	0.4	0.2	0.3	0.2	0.3	0.5	0.3	0.5	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.14	0.17	0.13	0.09	0.18	0.09	0.13	0.09	0.14	0.24	0.15	0.24	0.14	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : POINT EDWARD

: POINT EDWARD WPCP PLANT

WORKS NUMBER TREATMENT

DESIGN CAPACITY

: 110000597

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

2.59 (1000 M3) :

REGION : SOUTHWEST DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ST. CLAIR RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 4,120

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.34	1.65	1.51	1.31	1.50	1.54	1.82	1.72	1.68	1.71	1.53	1.43	1.56	
BOD5					Security Inc.			5000000 F-00		Decembra Dell	V			
INFLUENT (MG/L)	92.0	99.0	82.0	90.0	104.0	101.0	97.0	45.0	82.0	151.0	55.0	85.0	90.3	
EFFLUENT (MG/L)	66.4	69.2	62.9	56.7	71.5	86.6	63.1	72.6	63.0	64.8	79.8	94.5	70.9	
LOADING (KG/D)	88.97	114.18	94.97	74.27	107.25	133.36	114.84	124.87	105.84	110.80	122.09	135.13	110.60	
PERCENT REMOVAL	28	30	23	37	31	14	35	ND	23	57	ND	ND	21*	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS							2 10 10				To keep and			
INFLUENT (MG/L)	111.0	119.0	94.0	93.0	119.0	118.0	116.0	67.0	96.0	97.0	51.0	71.0	96.0	
EFFLUENT (MG/L)	41.7	55.5	60.9	42.0	66.9	60.6	55.8	43.1	55.5	52.7	52.3	71.4	54.9	
LOADING (KG/D)	55.87	91.57	91.95	55.02	100.35	93.32	101.55	74.13	93.24	90.11	80.01	102.10	85.64	Network Cont & Control
PERCENT REMOVAL	62	53	35	55	44	49	52	36	42	46	ND	ND	43*	
PERCENT REMOVAL LIMITS				- X									70	
TOTAL PHOSPHOROUS												9945 10	22. 2	
INFLUENT (MG/L)	15.8	6.5	4.8	5.7	5.4	7.1	5.3	2.7	4.2	6.2	3.1	5.0	6.0	
EFFLUENT (MG/L)	3.1*	3.4×	3.2×	2.8*		3.7¥						3.8×	2.6	11
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	4.15	5.61	4.83	3.66	3.45	5.69	4.73	1.89	2.68	4.78	1.22	5.43	4.06	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM NO

BOD 50% SS 70%

REMEDIAL MEASURES

NO TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1991/12 1992/01

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: PORT BURWELL

PLANT

DESIGN CAPACITY

: PORT BURWELL WPCP

WORKS NUMBER

: 110001319

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

0.52 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: ELGIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : BIG OTTER CR.- LAKE ERIE

WATERCOURSE

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

780 POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.20	0.18	0.19	0.23	0.22	0.22	0.22	0.22	0.20	0.20	0.21	0.17	0.21	
BOD5		300	× 2		5755 SS	12/12/12/12	72002X 12					407.0		
INFLUENT (MG/L)	177.0	289.0	226.0	220.0	201.0	207.0	249.0	209.0	179.0	223.0	176.0	197.0	212.8	
EFFLUENT (MG/L)	3.7	4.3	1.8	4.4	12.0	1.6	1.5	1.2	1.5	2.6	2.7	3.1	3.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.74	0.77	0.34	1.01	2.64	0.35	0.33	0.26	0.30	0.52	0.56	0.52	0.71	
LOADING LIMIT (KG/D)													13.20	
SUSPENDED SOLIDS INFLUENT (MG/L)	159.0	219.0	211.0	163.0	161.0	189.0	241.0	188.0	243.0	158.0	144.0	189.0	188.8	
EFFLUENT (MG/L)	9.6	9.0	7.2	8.4	12.8	4.6	6.6	5.4	4.7	6.1	6.3	10.2	7.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.92	1.62	1.36	1.93	2.81	1.01	1.45	1.18	0.94	1.22	1.32	1.73	1.60	
LOADING LIMIT (KG/D)	1.,6					Table To Tab			**************************************				13.20	
TOTAL PHOSPHOROUS		e.					vaenu nom		vertiser: 1942					1
INFLUENT (MG/L)	10.3	10.9	13.0	8.8	9.6	10.6	11.7	9.7	11.3	9.4	9.6	11.5	10.5	
EFFLUENT (MG/L)	0.4	0.5	0.2	0.6	0.5	1.4	0.8	0.5	0.3	0.2	0.3	0.4	0.5	
CONCENTRATION LIMIT (MG/L)													1.0	
LOADING (KG/D)	0.08	0.09	0.03	0.13	0.11	0.30	0.17	0.11	0.06	0.04	0.06	0.06	0.11	
LOADING LIMIT (KG/D)													0.53	

		SUMMARY		
			COMPL	IES WITH
PARM	CRITERIA	LOADING	CONC	LOADING
BOD	25.0 MG/L	13.20 KG/D	YES	YES
SS	25.0 MG/L	13.20 KG/D	YES	YES
TP	1.0 MG/L	0.53 KG/D	YES	YES
	BOD SS	BOD 25.0 MG/L SS 25.0 MG/L	PARM CRITERIA LOADING BOD 25.0 MG/L 13.20 KG/D SS 25.0 MG/L 13.20 KG/D	PARM CRITERIA LOADING CONC

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE _ END DATE _ COMPLIANCE

1989/07

1989/07

1989/07

OPERATIONAL/PROCESS - ELECTRONIC PROCESS CONTROL BEING IMPLEMENTED

MUNICIPALITY

: PORT BURWELL

PLANT

: PORT BURWELL WPCP

WORKS NUMBER

: 110001319

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

0.52 (1000 M3) :

REGION : SOUTHWEST

DISTRICT : ELGIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : BIG OTTER CR.- LAKE ERIE

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 780

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.20	0.18	0.19	0.23	0.22	0.22	0.22	0.22	0.20	0.20	0.21	0.17	0.21	
B0D5			222 21		222 121									
INFLUENT (MG/L)	177.0	289.0	226.0	220.0	201.0	207.0	249.0	209.0	179.0	223.0	176.0	197.0	212.8	
EFFLUENT (MG/L)	3.7	4.3	1.8	4.4	12.0	1.6	1.5	1.2	1.5	2.6	2.7	3.1	3.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.74	0.77	0.34	1.01	2.64	0.35	0.33	0.26	0.30	0.52	0.56	0.52	0.71	
SUSPENDED SOLIDS INFLUENT (MG/L)	159.0	219.0	211.0	163.0	161.0	189.0	241.0	188.0	243.0	158.0	144.0	189.0	188.8	
EFFLUENT (MG/L)	9.6	9.0	7.2	8.4	12.8	4.6	6.6	5.4	4.7	6.1	6.3	10.2	7.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.92	1.62	1.36	1.93	2.81	1.01	1.45	1.18	0.94	1.22	1.32	1.73	1.60	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	10.3	10.9	13.0	8.8	9.6	10.6	11.7	9.7	11.3	9.4	9.6	11.5	10.5	
EFFLUENT (MG/L)	0.4	0.5	0.2	0.6	0.5	1.4×	0.8	0.5	0.3	0.2	0.3	0.4	0.5	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.08	0.09	0.03	0.13	0.11	0.30	0.17	0.11	0.06	0.04	0.06	0.06	0.11	

SUMMARY

COMPLIES

PARM BOD

CRITERIA WITH CONC 25.0 MG/L YES

SS TP 25.0 MG/L YES 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE _ END DATE _ COMPLIANCE

OPERATIONAL/PROCESS - ELECTRONIC PROCESS CONTROL BEING IMPLEMENTED

1989/07

1989/07

1989/07

MUNICIPALITY

: PORT ELGIN

PLANT

: PORT ELGIN WPCP

WORKS NUMBER TREATMENT

: 120001470 : OXIDATION DITCH

DESIGN CAPACITY

6.45 (1000 M3)

REGION

: SOUTHWEST

DISTRICT OPERATING AUTHORITY : MUNICIPAL

: BRUCE

WATERCOURSE

: SAUGEEN RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

6,115

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	5.07	4.69	3.98	4.43	3.77	3.94	3.69	3.48	3.45	3.48	3.72	3.90	3.97	
BOD5		22.2	405.0	104.0	"	47.0	228 0	60.0	68.0	74.0	91.0	55.0	86.0	
INFLUENT (MG/L)	40.4	72.0	105.0	106.0	66.0	67.0 3.5	228.0 4.8	4.5	ND	9.1	3.4	4.2	6.5	
EFFLUENT (MG/L)	4.0	21.5	7.8	6.9	1.8	3.5_	4.0	4.5	NU				25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	20.28	100.83	31.04	30.56	6.78	13.79	17.71	15.66	ND	31.66	12.64	16.38	25.81	
SUSPENDED SOLIDS	84.3	144.0	82.0	98.0	105.0	133.0	402.0	232.0	161.0	96.0	206.0	89.0	152.7	
INFLUENT (MG/L) EFFLUENT (MG/L)	9.9	13.8	4.6	7.1	1.7	4.6	5.8	5.8	2.5	3.9	5.1	2.2	5.6	21.5
CONCENTRATION LIMIT (MG/L)		13.0_	7.0										25.0	
LOADING (KG/D)	50.19	64.72	18.30	31.45	6.40	18.12	21.40	20.18	8.62	13.57	18.97	8.58	22.23	
TOTAL PHOSPHOROUS	2.9	5.3	4.5	4.6	4.6	4.2	7.1	0.4	5.0	5.5	5.6	4.1	4.5	
INFLUENT (MG/L)	0.6	0.9	0.7	0.5	0.1	0.9	0.9	0.8	0.8	0.9	1.1	0.5	0.7	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	0.6	0.9	0.7											
LOADING (KG/D)	3.04	4.22	2.78	2.21	0.37	3.54	3.32	2.78	2.76	3.13	4.09	1.95	2.78	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

25.0 MG/L YES SS

NA NA

TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: PORT STANLEY

PLANT

: PORT STANLEY LAGOON

WORKS NUMBER

: 110001373

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

1.49 (1000 M3)

REGION : SOUTHWEST

DISTRICT : ELGIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : DITCH TO KETTLE CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 2,416

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.10	0.96	1.06	1.22	1.15	1.44	1.35	1.33	1.22	1.04	1.08	0.98	1.16	
LAGOON DISCHARGE	ND	ND	ND	96.16	111.90	23.80	ND	ND	2.60	102.81	81.58	ND	69.81	
BOD5					· · · · · · · · · · · · · · · · · · ·									
INFLUENT (MG/L)	48.0	45.0	54.0	40.0	33.0	103.0	167.0	42.0	72.0	46.0	45.0	59.0	62.8	
EFFLUENT (MG/L)	ND	ND	ND	24.9	16.1	3.8	ND	ND	ND	7.0	7.8	ND	11.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	30.37	18.51	5.47	ND	ND	ND	7.28	8.42	ND	13.80	
SUSPENDED SOLIDS										7, 52, 23, 23				
INFLUENT (MG/L)	43.0	58.0	53.0	22.0	21.0	88.0	108.0	60.0	59.0	The state of the s	42.0	36.0	51.5	
EFFLUENT (MG/L)	ND	ND	ND	30.4	11.9	6.6	ND	ND	ND	12.2	17.5	ND	15.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	37.08	13.68	9.50	ND	ND	ND	12.68	18.90	ND	18.21	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.7	3.1	3.3	2.2	1.9	4.1	6.7	2.7	3.8	3.2	3.7	4.1	3.5	
EFFLUENT (MG/L)	ND	ND	ND	0.9	0.8	1.1*	ND	ND	ND	0.5	0.3	ND	0.7	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	1.09	0.92	1.58	ND	ND	ND	0.52	0.32	ND	0.81	

SUMMARY

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES

BOD SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02 1990/01 1990/04

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

MUNICIPALITY

: RALEIGH-TILBURY EAST

PLANT

: MERLIN PV LAGOON

WORKS NUMBER

: 110000935

TREATMENT

: CONVENTIONAL LAGOON ANNUAL : PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.46 (1000 M3)

: SOUTHWEST

REGION DISTRICT

: KENT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: FOXTON DR. - JEANETTES CK

MINOR BASIN

: ERIE

MAJOR BASIN POPULATION SERVED

: GREAT LAKES :

523

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.16	0.16	0.15	0.17	0.20	0.20	0.16	0.15	0.16	0.16	0.17	0.16	0.17	
LAGOON DISCHARGE	ND	ND	ND	6.08	ND	ND	ND	ND	ND	ND	24.36	ND	15.22	
BOD5	SVIII E	/E1955-19			50.0	47.0	106.0	141.0	224.0	512.0	217.0	328.0	216.3	
INFLUENT (MG/L)	264.0	306.0	315.0	81.0	58.0	43.0 ND	106.0 ND	ND	ND	ND	8.1	ND	15.7	
EFFLUENT (MG/L)	ND ND	ND ND	ND_	23.2	ND	ND	ND_	- ND	, ND				25.0	11.2
CONCENTRATION LIMIT (MG/L)					ND	ND	ND	ND	ND	ND	1.37	ND	2.67	
LOADING (KG/D)	ND	ND	ND	3.94	עא	עא	עא	ND						
SUSPENDED SOLIDS	481.0	447.0	321.0	53.0	39.0	43.0	98.0	86.0	217.0	660.0	158.0	204.0	233.9	
INFLUENT (MG/L)	401.0 ND	ND	ND	126.0	ND	ND	ND	ND	ND	ND	61.1	ND	93.6×	
EFFLUENT (MG/L)	ND.	ND_		120.0									25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	ND	ND	ND	21.42	ND	ND	ND	ND	ND	ND	10.38	ND	15.91	
TOTAL PHOSPHOROUS								E 1	8.3	13.9	7.4	11.1	7.2	
INFLUENT (MG/L)	6.5	6.0	9.2	4.8	4.1	3.7	6.3 ND	5.1 ND	ND	ND	0.5	ND	0.7	
EFFLUENT (MG/L)	ND	ND	ND	0.8	ND	ND 100			1.0	1.0	1.0	1.0	0.,	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	The state of the s		0.08	ND	0.12	
LOADING (KG/D)	ND	ND	ND	0.13	ND	ND	ND	ND	ND	ND	0.00	ND	0.12	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L NO

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02

1990/01

1990/04

REMEDIAL MEASURES

MUNICIPALITY : RIDGETOWN

PLANT : RIDGETOWN LAGOON

WORKS NUMBER : 110001364

TREATMENT : CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY : 1.33 (1000 M3)

REGION : SOUTHWEST

DISTRICT : KENT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GAWNE DR TO MCGREGOR CK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 3,152

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.98	0.98	1.03	1.12	1.15	1.25	1.11	1.03	1.08	1.11	1.18	1.13	1.10	
LAGOON DISCHARGE	ND	ND	ND	ND	184.89	ND	ND	ND	ND	90.35	ND	ND	137.62	
BOD5														
INFLUENT (MG/L)	132.0	108.0	176.0	150.0	117.0	128.0	106.0	288.0	158.0	140.0	120.0	182.0	150.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	26.8	ND	ND	ND	ND	5.7	ND	ND	16.3	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	30.82	ND	ND	ND	ND	6.32	ND	ND	17.93	
SUSPENDED SOLIDS				2										
INFLUENT (MG/L)	243.0	153.0	229.0	180.0	200.0	194.0	296.0	221.0	211.0	202.0	129.0	129.0	198.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	70.4	ND	ND	ND	ND	22.4	ND	ND	46.4×	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	80.96	ND	ND	ND	ND	24.86	ND	ND	51.04	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.8	8.1	9.5	9.4	8.3	5.9	6.6	7.3	8.1	8.5	6.6	7.3	7.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.1*	ND	ND	ND	ND	1.5*	ND	ND	1.3	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	1.26	ND	ND	ND	ND	1.66	ND	ND	1.43	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L NO

TP 1.0 MG/L NO

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989 1990/01 1990/04

OPERATIONAL/PROCESS - PROCESS CONTROL BEING UPGRADED

MUNICIPALITY

: RODNEY

PL ANT

: RODNEY LAGOON

WORKS NUMBER

: 110001667

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.54 (1000 M3)

REGION

: SOUTHWEST

DISTRICT : ELGIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: SIXTEEN MILE CK.

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

1,027

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEE
AVG. DAILY FLOW (1000 M3)	0.35	0.34	0.34	0.38	0.37	0.44	0.39	0.38	0.36	0.36	0.41	0.28	0.37	
LAGOON DISCHARGE	ND	ND	ND	91.12	ND	ND	ND	ND	ND	135.96	ND	ND	113.54	
B0D5	******									475.0	FF(0	476.0	275.2	
INFLUENT (MG/L)	828.0	82.0	125.0	_135.0	170.0	76.0	296.0	59.0	104.0	435.0	556.0	436.0	17.1	
EFFLUENT (MG/L)	ND	ND	ND	22.2	ND	ND	ND	ND	ND	12.0	ND	ND	the second second second second	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	8.43	ND	ND	ND	ND	ND	4.32	ND	ND	6.33	
SUSPENDED SOLIDS	382.0	27.0	69.0	69.0	88.0	35.0	116.0	45.0	38.0	235.0	255.0	263.0	135.2	
INFLUENT (MG/L)	ND	ND	ND	38.5	ND	ND	ND	ND	ND	24.1	ND	ND	31.3*	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	14.63	ND	ND	ND	ND	ND	8.67	ND	ND	11.58	
TOTAL PHOSPHOROUS					900 91	******	va 40	27 51	201.200					
INFLUENT (MG/L)	11.1	2.7	7.1	3.6	8.2	3.1	6.6	4.1	4.6	8.7	8.6	10.1	6.5	
EFFLUENT (MG/L)	ND	ND	ND	0.6	ND	ND	ND	ND	ND	0.4	ND	ND	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.22	ND	ND	ND	ND	ND	0.14	ND	ND	0.19	

SUMMARY

COMPLIES

CRITERIA WITH CONC

25.0 MG/L YES BOD SS 25.0 MG/L NO

1.0 MG/L YES TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1991/12 1988

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY : ROMNEY TWP-WHEATLY VILL

PLANT : WHEATLY WPCP WORKS NUMBER : 110003246

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY : 2.75 (1000 M3)

REGION : SOUTHWEST DISTRICT : KENT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE ERIE

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 2,328

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.78	0.64	0.78	1.30	1.31	1.04	0.91	0.90	1.02	1.05	1.02	0.82	0.96	
B0D5	nears were used													
INFLUENT (MG/L)	172.0	213.0	183.0	355.0	437.0	309.0	324.0	643.0	465.0	805.0	381.0	292.0	381.6	
EFFLUENT (MG/L)	4.2	3.8	2.3	4.2	3.6	2.2	1.6	1.7	2.9	2.7	2.8	1.6	2.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.27	2.43	1.79	5.46	4.71	2.28	1.45	1.53	2.95	2.83	2.85	1.31	2.69	
LOADING LIMIT (KG/D)													68.80	
SUSPENDED SOLIDS	204.0	200.0	301.0	347.0	298.0	211.0	295.0	360.0	375.0	252.0	195.0	154.0	266.0	
INFLUENT (MG/L)			7.4	9.2	6.8	4.1	5.2	3.3	6.8	6.4	8.1	6.5	7.2	
EFFLUENT (MG/L)	12.4	10.3		7.2	- 0.6	70.7		3.3	0.0	0.4		0.5	25.0	
CONCENTRATION LIMIT (MG/L)	9.67	6.59	E 77	11.96	8.90	4.26	4.73	2.97	6.93	6.72	8.26	5.33	6.91	
LOADING (KG/D) LOADING LIMIT (KG/D)	7.07	0.59	3.77	11.70	0.90	4.20	4.73	2.7/	0.73	0.72	0.20		68.80	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	10.1	9.8	8.3	12.3	10.9	11.3	11.9	10.6	12.0	20.2	9.7	10.9	11.5	
EFFLUENT (MG/L)	0.5	0.4	0.3	0.5	0.4	0.3	0.4	0.4	0.5	0.5	0.4	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	and the second												1.0	
LOADING (KG/D)	0.39	0.25	0.23	0.65	0.52	0.31	0.36	0.36	0.51	0.52	0.40	0.32	0.38	
LOADING LIMIT (KG/D)						The second second							2.75	1

		SUMMARY	COMPL	IES WITH
PARM	CRITERIA	LOADING	CONC	LOADING
BOD	25.0 MG/L	68.80 KG/D	YES	YES
SS	25.0 MG/L	68.80 KG/D	YES	YES
TP	1.0 MG/L	2.75 KG/D	YES	YES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1992/12

REMEDIAL MEASURES

MUNICIPALITY

: ROMNEY TWP-WHEATLY VILL

PLANT

: WHEATLY WPCP

WORKS NUMBER

: 110003246 : EXTENDED AFRATION

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

2.75 (1000 M3)

REGION

: SOUTHWEST : KENT

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

· MINISIRI OF THE E

WATERCOURSE MINOR BASIN : LAKE ERIE

MAJOR BASIN

: ERIE

POPULATION SERV

: GREAT LAKES

VED	2,328

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.78	0.64	0.78	1.30	1.31	1.04	0.91	0.90	1.02	1.05	1.02	0.82	0.96	
BOD5 INFLUENT (MG/L)	172.0	213.0	183.0	355.0	437.0	309.0	324.0	643.0	465.0	805.0	381.0	292.0	381.6	
EFFLUENT (MG/L)	4.2	3.8	2.3	4.2	3.6	2.2	1.6	1.7	2.9	2.7	2.8	1.6	2.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.27	2.43	1.79	5.46	4.71	2.28	1.45	1.53	2.95	2.83	2.85	1.31	2.69	
SUSPENDED SOLIDS INFLUENT (MG/L)	204.0	200.0	301.0	347.0	298.0	211.0	295.0	360.0	375.0	252.0	195.0	154.0	266.0	
EFFLUENT (MG/L)	12.4	10.3	7.4	9.2	6.8	4.1	5.2	3.3	6.8	6.4	8.1	6.5	7.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.67	6.59	5.77	11.96	8.90	4.26	4.73	2.97	6.93	6.72	8.26	5.33	6.91	
TOTAL PHOSPHOROUS				P = 27	25555 B	S 20 W/	5505 575		27/224/ 275	5454 SES	990 80			
INFLUENT (MG/L)	10.1	9.8	8.3	12.3	10.9	11.3	11.9	10.6	12.0	20.2	9.7	10.9	11.5	
EFFLUENT (MG/L)	0.5	0.4	0.3	0.5	0.4	0.3	0.4	0.4	0.5	0.5	0.4	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.39	0.25	0.23	0.65	0.52	0.31	0.36	0.36	0.51	0.52	0.40	0.32	0.38	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

1988 1992/12

MUNICIPALITY

: SARNIA

PLANT

: SARNIA WPCP

WORKS NUMBER

: 120000907

TREATMENT

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 65.91 (1000 M3) REGION DISTRICT

: SOUTHWEST

: LAMBTON

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: ST. CLAIR RIVER : ERIE

MINOR BASIN MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 64,475

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	34.19	32.47	37.19	38.68	36.53	39.03	ND	35.99	ND	ND	35.02	31.66	35.64	
BOD5								in several						
INFLUENT (MG/L)	174.0	155.0	the second section is a second section of the second	169.0	and the state of the state of the state of	134.0	107.0	ND	104.0	174.0	178.0	199.0	149.9	
EFFLUENT (MG/L)	64.0	52.0	36.0	75.0	46.0	51.0	48.0	ND ND	43.0	68.0	76.0	98.0	59.7	
LOADING (KG/D)	2188.16	1688.44	1338.84	2901.00	1680.38	1990.53	ND	ND	ND		2661.52	and the state of t	2127.71	
PERCENT REMOVAL	63	66	72	56	63	62	55		59	61	57	51	60	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS													450.7	
INFLUENT (MG/L)	146.0	169.0	management of the contract of the contract	132.0	The second second	CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO	94.0	125.0	127.0	177.0	177.0	252.0	150.3	
EFFLUENT (MG/L)	27.0	24.0	22.0	19.0	24.0	19.0	20.0	16.0	15.0	19.0	22.0	30.0	21.4	
LOADING (KG/D)	923.13	779.28	The second section of the second seco	734.92		741.57	ND	575.84	ND	ND	770.44	949.80	762.70	
PERCENT REMOVAL	82	86	86	86	84	82	79	87	88	89	88	88	86	
PERCENT REMOVAL LIMITS			663										70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.7	ND	ND	4.6	5.7	4.3	4.0	4.8	5.0	7.0	5.6	8.6	5.5	
EFFLUENT (MG/L)	1.1×	ND	ND	0.8	0.9	0.7	0.7	0.7	0.7	0.8	0.9	1.0	0.8	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	37.60	ND	ND	30.94	32.87	27.32	ND	25.19	ND	ND	31.51	31.66	28.51	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM YES

BOD 50% SS 70% YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: SEAFORTH

PLANT

: SEAFORTH LAGOON

WORKS NUMBER

: 110001177

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

1.01 (1000 M3)

REGION : SOUTHWEST

DISTRICT : HURON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE MINOR BASIN : CRESSWELL CREEK

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :	2,153

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.76	1.40	1.80	1.97	1.41	1.32	1.02	0.91	0.88	0.87	1.28	1.13	1.31	
LAGOON DISCHARGE	ND	39.20	55.78	46.54	ND	ND	ND	ND	ND	ND	47.54	ND	47.27	
BOD5							507039 700			rangow no				
INFLUENT (MG/L)	207.0	236.0	107.0	165.0	184.0	252.0	368.0	343.0	325.0	175.0	156.0	425.0	245.3	
EFFLUENT (MG/L)	ND	23.9	41.9	34.5	ND	ND_	ND	ND	ND	2.7	12.4	ND	23.1	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	33.46	75.42	67.96	ND	ND	ND	ND	ND	2.34	15.87	ND	30.26	
SUSPENDED SOLIDS			0.000 94	7.0×300000	BALLOW CO. Service			State of the state			nerranari nari	V-040404		
INFLUENT (MG/L)	181.0	354.0	168.0	121.0	151.0	175.0	246.0	292.0	306.0	196.0	119.0	213.0	210.2	
EFFLUENT (MG/L)	ND	46.5	22.2	16.9	ND	ND	ND	ND	ND	3.3	14.3	ND	20.6	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	65.10	39.96	33.29	ND	ND	ND	ND	ND	2.87	18.30	ND	26.99	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.2	5.0	3.6	3.0	4.6	4.3	6.5	7.3	7.2	6.4	3.3	4.5	4.9	
EFFLUENT (MG/L)	ND	0.6	0.5	0.5	ND	ND	ND	ND	ND	0.4	0.4	ND	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	0.84	0.90	0.98	ND	ND	ND	ND	ND	0.34	0.51	ND	0.66	l

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

REMEDIAL MEASURES

30.0 MG/L YES 40.0 MG/L YES

SS 40.0 MG/L YES TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1991/12

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

MUNICIPALITY

: SOMBRA

PLANT

: PORT LAMBTON LAGOON

WORKS NUMBER

: 110001694

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

: 1.08 (1000 M3) REGION : SOUTHWEST

DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : MARSHY CK.TO ST.CLAIR R.

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 900

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.38	0.36	0.41	0.44	0.37	0.45	0.38	0.39	0.60	0.42	0.45	0.34	0.42	
LAGOON DISCHARGE	ND	ND	ND	84.68	ND	ND	ND	ND	ND	16.49	40.91	ND	47.36	
BOD5 INFLUENT (MG/L)	ND	111.0	103.0	99.0	131.0	114.0	167.0	135.0	84.0	115.0	119.0	187.0	124.1	
EFFLUENT (MG/L)	ND	ND	ND	1.5	ND	ND	ND	ND	ND	0.3	3.0	ND	1.6	
CONCENTRATION LIMIT (MG/L)					NO_					- 0.3	3.0		25.0	
LOADING (KG/D)	ND	ND	ND	0.66	ND	ND	ND	ND	ND	0.12	1.35	ND	0.67	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	137.0	123.0	82.0	141.0	103.0	132.0	145.0	96.0	121.0	90.0	144.0	119.5	
EFFLUENT (MG/L)	ND	ND	ND	13.5	ND	ND	ND	ND	ND.	3.9	13.7	ND	10.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	5.94	ND	ND	ND	ND	ND	1.63	6.16	ND	4.37	
TOTAL PHOSPHOROUS				2000 0	200 BA	54 8	2 20	242 5	= ==			8 5		
INFLUENT (MG/L)	ND	6.7	6.8	12.4	7.7	7.6	8.1	7.6	4.6	8.0	6.7	8.0	7.7	
EFFLUENT (MG/L)	ND	ND	ND	0.2	ND	ND	ND_	ND	ND	0.1	0.2	ND	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.08	ND	ND	ND	ND	ND	0.04	0.09	ND	0.08	i

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES

25.0 MG/L YES SS TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02 1990/01

REMEDIAL MEASURES

MUNICIPALITY

: SOMBRA

PLANT

: SOMBRA LAGOON

WORKS NUMBER TREATMENT : 110001685 : CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.96 (1000 M3)

REGION : SOUTHWEST DISTRICT : LAMBTON

DISTRICT : LAMBTON
OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ST. CLAIR RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 641

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.19	0.17	0.22	0.21	0.18	0.20	0.17	0.16	0.24	0.18	0.20	0.17	0.19	
LAGOON DISCHARGE	ND	ND	ND	59.69	ND	ND	ND	ND	ND	ND	ND	ND	59.69	
BOD5	waren.			00000									140.4	
INFLUENT (MG/L)	ND	127.0	106.0	69.0	200.0	103.0	132.0	258.0	106.0	238.0	96.0	109.0	140.4	
EFFLUENT (MG/L)	ND	ND	ND	2.2	ND	ND	ND	ND	ND	ND	ND	ND	2.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	0.46	ND	ND	ND	ND	ND	ND	ND	ND	0.42	
SUSPENDED SOLIDS			25.0		170.0	74.0	118.0	323.0	82.0	235.0	46.0	56.0	121.3	
INFLUENT (MG/L)	ND_	81.0	85.0	62.0	172.0	ND	ND	ND	ND	ND	ND	ND	12.1	
EFFLUENT (MG/L)	ND_	ND_	ND	12.1	ND	ND	ND_	ND	ND	NU	NU_		25.0	
CONCENTRATION LIMIT (MG/L)						ND	ND	ND	ND	ND	ND	ND	2.30	
LOADING (KG/D)	ND	ND	ND	2.54	ND	טא	ND	עא	עא	שא	ND		2.30	.
TOTAL PHOSPHOROUS									- 0			4.7	7.0	
INFLUENT (MG/L)	ND	7.1	5.8	4.2	9.4	7.6	8.4	7.1	5.9	8.3	6.3	6.7		
EFFLUENT (MG/L)	ND ND	ND	ND	0.1	ND	ND	ND	ND	ND	ND	ND	ND	0.1	100 TO 10
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0_	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.02	ND	ND	ND	ND	ND	ND	ND	ND	0.02	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02 1990/01

REMEDIAL MEASURES

MUNICIPALITY : SOUTHAMPTON

PLANT : SOUTHAMPTON WPCP

WORKS NUMBER : 110001453
TREATMENT : OXIDATION DITCH

:

DESIGN CAPACITY

: 3.04 (1000 M3)

REGION : SOUTHWEST

DISTRICT : BRUCE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SAUGEEN R. MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 2,866

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.29	1.05	1.35	1.42	1.18	1.29	1.28	1.20	0.94	0.90	1.05	0.97	1.16	
BOD5 INFLUENT (MG/L)	55.0	41.0	62.0	63.0	53.0	59.0	75.0	91.0	73.0	82.0	70.0	60.0	65.3	
EFFLUENT (MG/L)	4.4	3.7	4.5	3.5	4.6	4.0	2.0	2.0	1.4	2.7	4.3	3.7	3.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	5.67	3.88	6.07	4.97	5.42	5.16	2.56	2.40	1.31	2.43	4.51	3.58	3.94	
SUSPENDED SOLIDS INFLUENT (MG/L)	133.0	74.0	108.0	98.0	66.0	67.0	120.0	134.0	95.0	146.0	108.0	125.0	106.2	
EFFLUENT (MG/L)	6.4	3.9	4.6	5.7	8.4	3.6	3.9	2.1	2.4	2.8	7.7	5.2	4.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	8.25	4.09	6.21	8.09	9.91	4.64	4.99	2.52	2.25	2.52	8.08	5.04	5.45	
TOTAL PHOSPHOROUS		7.5			7.0		F 7	E 4	- 1	4.0	7.0		4.0	
INFLUENT (MG/L)	3.3	3.5	3.5	2.7	3.2	4.3	5.7	5.4	5.1	4.0	3.8	3.3	4.0	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	2.1	2.6	1.7_	1.9	3.2	3.3	4.1	3.9	3.2	4.2	3.5	2.4	3.0	
LOADING (KG/D)	2.70	2.73	2.29	2.69	3.77	4.25	5.24	4.68	3.00	3.78	3.67	2.32	3.48	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP NA NA

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

SLUDGE DISPOSAL/REMOVAL - UPGRADING SLUDGE STORAGE FACILITIES 1988 1991/12

MUNICIPALITY

: ST EDMUNDS

PLANT

: TOBERMORY LAGOON

WORKS NUMBER

: 120001577

TREATMENT

: AERATED CELL PLUS LAGOON

: EXFILTRATION LAGOON

. ...

DESIGN CAPACITY

0.16 (1000 M3)

REGION : SOUTHWEST DISTRICT : BRUCE OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NO DISC.TO SURFACE WATER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 300

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND													
LAGOON DISCHARGE	ND													
BOD5	~~~												seeded to the	
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND													
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND													
TOTAL PHOSPHOROUS													d	
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND													

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	NA	NO DIRECT	DISCHARGE
SS	NA	NO DIRECT	DISCHARGE
TP	NA	NO DIRECT	DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - HAS NO CRITERIA
SS - HAS NO CRITERIA
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: ST MARYS

PLANT

: ST MARYS WPCP

WORKS NUMBER

: 110001275

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 3.63 (1000 M3)

REGION : SOUTHWEST

DISTRICT

: PERTH

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: THAMES RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 4,568

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	4.80	4.46	5.16	5.34	4.48	4.59	ND	4.01	3.89	3.86	4.18	4.26	4.46	
B0D5		V45200 520		SERENCE SEC	reservant te		10 242			1201202 120	2 572 727		5252524 520	
INFLUENT (MG/L)	185.0	324.0	268.0	156.0	186.0	240.0	ND	The second second second	222.0	211.0	164.0	143.0	207.0	
EFFLUENT (MG/L)	21.6	5.4	5.1	10.1	4.5	12.4	ND	6.8	3.4	3.0	12.0	4.2	8.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	103.68	24.08	26.31	53.93	20.16	56.91	ND	27.26	13.22	11.58	50.16	17.89	35.68	
SUSPENDED SOLIDS				•										
INFLUENT (MG/L)	308.0	323.0	179.0	111.0	136.0	226.0	ND	161.0	162.0	131.0	96.0	143.0	179.6	
EFFLUENT (MG/L)	8.1	3.8	6.2	14.4	6.9	11.3	ND	8.7	6.7	8.5	6.4	9.1	8.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	38.88	16.94	31.99	76.89	30.91	51.86	ND	34.88	26.06	32.81	26.75	38.76	36.57	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.7	8.7	6.7	4.9	6.7	7.1	ND	5.7	7.7	6.7	5.6	5.7	6.6	l
EFFLUENT (MG/L)	0.7	0.4	0.4	0.3	0.2	0.6	ND	0.3	0.3	0.4	0.4	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.36	1.78	2.06	1.60	0.89	2.75	ND	1.20	1.16	1.54	1.67	1.70	1.78	

SUMMARY

COMPLIES

BOD

CRITERIA WITH CONC 25.0 MG/L YES

SS TP 1.0 MG/L YES

25.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - CONSTRUCTION COMPLETE

1988

1990/02

1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: ST THOMAS

PLANT

: ST THOMAS WPCP

WORKS NUMBER

: 120001112

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: ""

DESIGN CAPACITY

40.91 (1000 M3)

REGION : SOUTHWEST
DISTRICT : ELGIN

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : KETTLE CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 28,218

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	16.89	16.28	20.46	17.16	19.70	15.25	14.96	13.64	12.61	14.70	12.46	15.83	
BOD5				, , , , , , , , , , , , , , , , , , , ,						All Socialis				
INFLUENT (MG/L)	107.0	176.0	113.0	113.0	136.0	51.0	55.0	86.0		1,436.0	105.0	75.0	213.8	
EFFLUENT (MG/L)	9.3	26.1	10.9	7.4	4.8	3.5	4.4	2.1	3.4	2.4	3.8	3.7	6.8	
CONCENTRATION LIMIT (MG/L)													15.0	
LOADING (KG/D)	ND	440.82	177.45	151.40	82.36	68.95	67.10	31.41	46.37	30.26	55.86	46.10	107.64	
LOADING LIMIT (KG/D)														1
SUSPENDED SOLIDS			1081000 1000	Revision in the	navanan var								440.0	
INFLUENT (MG/L)	126.0	water and the second	92.0	165.0	123.0	40.0	59.0	133.0		3,865.0	93.0	38.0	449.8	
EFFLUENT (MG/L)	8.4	19.4	19.9	7.6	3.8	4.8	4.7	4.2	4.9	6.4	3.2	3.7	7.6	
CONCENTRATION LIMIT (MG/L)													20.0	
LOADING (KG/D)	ND	327.66	323.97	155.49	65.20	94.56	71.67	62.83	66.83	80.70	47.04	46.10	120.31	
LOADING LIMIT (KG/D)														
TOTAL PHOSPHOROUS	010/10/10												200000 522	
INFLUENT (MG/L)	5.9	22.0	6.5	4.6	5.2	4.3	5.2	5.2	6.2		6.0	4.6	10.7	
EFFLUENT (MG/L)	0.8	1.0	1.0	0.8	1.1	0.8	1.0	1.2	1.0	1.1	1.0	0.7	1.0	
CONCENTRATION LIMIT (MG/L)													1.0	
LOADING (KG/D)	ND	16.89	16.28	16.36	18.87	15.76	15.25	17.95	13.64	13.87	14.70	8.72	15.83	
LOADING LIMIT (KG/D)														

		SUMMARY			
			COMPL	IES WITH	
PARM	CRITERIA	LOADING	CONC	LOADING	
BOD	15.0 MG/L	NA	YES	NA	
SS	20.0 MG/L	NA	YES	NA	
TP	1.0 MG/L	NA	YES	NA	

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY
TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

START DATE _END_DATE _COMPLIANCE

SLUDGE DISPOSAL/REMOVAL - UPGRADING WASTE DISPOSAL SITE

MUNICIPALITY : ST THOMAS

PL ANT : ST THOMAS WPCP

WORKS NUMBER : 120001112

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY 40.91 (1000 M3)

REGION : SOUTHWEST DISTRICT : ELGIN

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : KETTLE CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 28,218

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	16.89	16.28	20.46	17.16	19.70	15.25	14.96	13.64	12.61	14.70	12.46	15.83	
BOD5													20013	
INFLUENT (MG/L)	107.0	176.0	113.0	113.0	136.0	51.0	55.0	86.0		1,436.0	105.0	75.0	213.8	
EFFLUENT (MG/L)	9.3	26.1	10.9	7.4	4.8	3.5	4.4	2.1	3.4	2.4	3.8	3.7	6.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	440.82	177.45	151.40	82.36	68.95	67.10	31.41	46.37	30.26	55.86	46.10	107.64	
SUSPENDED SOLIDS	10(0	504.0	00.0	145.0	107.0	40.0	F0 0	177.0	150.0	7 0/5 0	07.0	70.0	440.0	
INFLUENT (MG/L)	126.0	504.0	92.0	165.0	123.0	40.0	59.0	133.0		3,865.0	93.0	38.0	449.8	-
EFFLUENT (MG/L)	8.4	19.4	19.9	7.6	3.8	4.8	4.7	4.2	4.9	6.4	3.2	3.7	7.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	327.66	323.97	155.49	65.20	94.56	71.67	62.83	66.83	80.70	47.04	46.10	120.31	
TOTAL PHOSPHOROUS				3										
INFLUENT (MG/L)	5.9	22.0	6.5	4.6	5.2	4.3	5.2	5.2	6.2	52.5	6.0	4.6	10.7	
EFFLUENT (MG/L)	0.8	1.0	1.0	0.8	1.1*	0.8	1.0	1.2*	1.0	1.1*	1.0	0.7	1.0	3
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	16.89	16.28	16.36	18.87	15.76	15.25	17.95	13.64	13.87	14.70	8.72	15.83	

SUMMARY

COMPLIES CRITERIA WITH CONC

PARM BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

SLUDGE DISPOSAL/REMOVAL - UPGRADING WASTE DISPOSAL SITE

MUNICIPALITY

: STEPHEN

PLANT

: GRAND BEND LAGOON

WORKS NUMBER

: 110002452

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

1.89 (1000 M3)

REGION : SOUTHWEST

: HURON DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : AUSABLE RIVER

: HURON MINOR BASIN

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,310

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.70	0.69	0.56	0.90	1.07	1.35	1.79	1.64	1.15	0.96	0.90	0.73	1.04	
LAGOON DISCHARGE	ND	ND	ND	ND	189.95	ND	ND	ND	ND	90.47	ND	ND	140.21	
BOD5	i	100					221			22.0	22 2			
INFLUENT (MG/L)	117.0	101.0	141.0	86.0	ND	76.0	200.0	205.0		404.0	70.0	89.0	148.9	
EFFLUENT (MG/L)	ND _	ND_	ND	ND	6.9	ND	ND	ND	MD	5.5	ND	ND	6.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	7.38	ND	ND	ND	ND	5.28	ND	ND	6.45	
SUSPENDED SOLIDS INFLUENT (MG/L)	208.0	67.0	193.0	63.0	ND	109.0	125.0	146.0	ND	117.0	63.0	43.0	113.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	50.8	ND	ND	ND	ND	22.6	ND	ND	36.7×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	54.35	ND	ND	ND	ND	21.69	ND	ND	38.17	
TOTAL PHOSPHOROUS						001 242	~		A 11 10 10 10 10 10 10 10 10 10 10 10 10	cont on	***			
INFLUENT (MG/L)	6.0	5.3	5.4	5.1	ND	4.5	6.7	11.4	ND	5.6	3.7	4.2	5.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.2	ND	ND	ND	ND	0.2	ND ND	ND	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	0.21	ND	ND	ND	ND	0.19	ND	ND	0.21	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES BOD

25.0 MG/L NO SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02

1990/01

1990/04

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

C-97

MUNICIPALITY

: STEPHEN

PLANT

: HURON PARK WPCP

WORKS NUMBER

: 110003488

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

:

DESIGN CAPACITY

1.81 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: HURON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: AUSABLE RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 1,400

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.28	1.11	1.41	1.45	1.12	1.05	0.92	0.88	0.89	1.13	1.65	1.23	1.18	
BOD5			ar a	07.0		40.0	<i></i>		07.0	74.0			74.0	
INFLUENT (MG/L)	92.0	81.0	85.0	97.0	64.0	40.0	57.0	63.0	83.0	76.0	83.0	69.0	74.2	
EFFLUENT (MG/L)	5.9	6.1	5.7	3.0	9.8	12.8	6.8	2.4	2.7	5.6	2.0	2.0	5.4	
CONCENTRATION LIMIT (MG/L)		7-44			- 45 67								25.0	
LOADING (KG/D)	7.55	6.77	8.03	4.35	10.97	13.44	6.25	2.11	2.40	6.32	3.30	2.46	6.37	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	62.0	67.0	81.0	75.0	53.0	51.0	45.0	104.0	77.0	142.0	94.0	50.0	75.1	
EFFLUENT (MG/L)	5.8	6.1	4.9	3.0	7.4	11.3	11.3	5.8	5.9	5.8	3.6	6.3	6.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.42	6.77	6.90	4.35	8.28	11.86	10.39	5.10	5.25	6.55	5.94	7.74	7.55	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.0	2.8	2.8	2.8	2.6	3.3	3.1	3.0	3.7	3.7	3.1	3.6	3.1	
EFFLUENT (MG/L)	1.7	2.5	1.6	1.6	1.7	2.1	2.5	2.3	3.3	2.4	2.6	2.3	2.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	2.17	2.77	2.25	2.32	1.90	2.20	2.30	2.02	2.93	2.71	4.29	2.82	2.60	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: STRATFORD

PLANT

: STRATFORD WPCP

WORKS NUMBER

: 110000702

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

27.27 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: PERTH

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: AVON RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

26,078

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	23.62	20.08	26.25	27.86	21.15	24.19	17.16	17.08	16.90	17.53	25.42	17.96	21.27	
BOD5		PANE FRA	2572 (24)											
INFLUENT (MG/L)	80.0	97.0	51.0	73.0	91.0	63.0	77.0	78.0	97.0	117.0	80.0	90.0	82.8	
EFFLUENT (MG/L)	8.7	12.2	7.2	10.2	11.4	16.0	16.8	15.0	10.0	11.1	12.1	8.1	11.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	205.49	244.97	189.00	284.17	241.11	387.04	288.28	256.20	169.00	194.58	307.58	145.47	246.73	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	70.0	99.0	75.0	65.0	98.0	71.0	101.0	102.0	102.0	119.0	70.0	56.0	85.7	
EFFLUENT (MG/L)	2.6	2.8	6.3	1.8	3.5	3.7	3.2	2.7	2.3	3.0	2.4	3.7	3.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	61.41	56.22	165.37	50.14	74.02	89.50	54.91	46.11	38.87	52.59	61.00	66.45	68.06	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.0	5.7	2.8	4.7	4.8	4.1	5.0	5.0	5.7	5.5	4.0	5.2	4.7	
EFFLUENT (MG/L)	0.4	0.9	0.8	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.6	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	9.44	18.07	21.00	5.57	4.23	4.83	3.43	3.41	3.38	3.50	10.16	10.77	8.51	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES

25.0 MG/L YES SS

1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NOTE:

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

BOD

TP

START DATE _ END DATE _ COMPLIANCE

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

1990/12 1988

MUNICIPALITY : STRATHROY

PLANT : STRATHROY LAGOON

WORKS NUMBER : 120000827

TREATMENT : AERATED LAGOON

: CONTINUOUS DISCHARGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 5.18 (1000 M3)

REGION : SOUTHWEST
DISTRICT : MIDDLESEC
OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : SYDENHAM RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 9,051

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	2.54	2.30	2.40	2.49	2.24	2.20	3.48	2.43	2.64	4.05	2.34	1.93	2.59	
LAGOON DISCHARGE	211.88	128.85	134.45	74.65	69.30	65.92	ND	ND	29.03	51.23	55.86	ND	91.24	
B0 D 5														
INFLUENT (MG/L)	109.0	124.0	115.0	90.0	150.0	129.0	92.0	113.0	217.0	144.0	104.0	156.0	128.6	
EFFLUENT (MG/L)	11.9	11.4	8.9	4.1	14.6	21.1	ND	ND_	5.6	8.6	6.3	11.1	10.4	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	30.22	26.22	21.36	10.20	32.70	46.42	ND	ND	14.78	34.83	14.74	21.42	26.94	
SUSPENDED SOLIDS										2004	0.000	252,755	PER 77.4 Te 1.44	
INFLUENT (MG/L)	237.0	358.0	154.0	126.0	173.0	194.0	295.0	186.0	207.0	232.0	147.0	147.0	204.7	
EFFLUENT (MG/L)	23.3	14.3	8.1	8.4	26.3	50.6	ND	ND	15.3	10.5	6.7	7.0	17.1	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	59.18	32.89	19.44	20.91	58.91	111.32	ND	ND	40.39	42.52	15.67	13.51	44.29	
TOTAL PHOSPHOROUS					==2:			1000			5550 (0550)		15-	
INFLUENT (MG/L)	5.3	6.1	5.6	4.7	5.8	6.3	5.4	5.5	9.9	6.2	5.7	7.8	6.2	
EFFLUENT (MG/L)	0.4	0.5	0.3	0.2	1.0	1.2*	ND	ND	1.3×	0.5	0.4	0.5	0.6	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.01	1.15	0.72	0.49	2.24	2.64	ND	ND	3.43	2.02	0.93	0.96	1.55	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED

START DATE END DATE COMPLIANCE

INFLUENT SEWAGE - ENFORCING SEWER USE BYLAW

EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED

EQUIPMENT/MAINTENANCE - EXISTING EQUIPMENT BEING REPAIRED

1989/03

1989/03

1989/03

MUNICIPALITY

: THAMESVILLE

PLANT

: THAMESVILLE WPCP

WORKS NUMBER

DESIGN CAPACITY

: 110002470

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

0.81 (1000 M3)

REGION : SOUTHWEST

DISTRICT : KENT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : THAMES RIVER

MINOR BASIN : ERIE

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 985

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.23	0.22	0.21	0.22	0.23	0.25	0.24	0.24	0.23	0.24	0.24	0.25	0.23	
BOD5 INFLUENT (MG/L)	103.0	139.0	127.0	135.0	114.0	184.0	71.0	125.0	155.0	196.0	142.0	232.0	143.6	
EFFLUENT (MG/L)	12.7	5.9	6.3	4.0	4.5	2.3	1.3	4.2	2.8	2.1	2.8	4.3	4.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.92	1.29	1.32	0.88	1.03	0.57	0.31	1.00	0.64	0.50	0.67	1.07	1.01	
SUSPENDED SOLIDS INFLUENT (MG/L)	75.0	120.0	107.0	89.0	92.0	98.0	85.0	110.0	148.0	143.0	79.0	55.0	100.1	
EFFLUENT (MG/L)	13.9	7.6	7.2	11.4	8.7	3.5	6.0	5.5	5.5	5.5	6.2	9.9	7.6	
CONCENTRATION LIMIT (MG/L)												nes sarane	25.0	
LOADING (KG/D)	3.19	1.67	1.51	2.50	2.00	0.87	1.44	1.32	1.26	1.32	1.48	2.47	1.75	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	8.0	9.1	8.4	6.8	8.0	3.8	5.3	5.6	7.1	9.0	6.9	6.9	7.1	
EFFLUENT (MG/L)	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.6	0.6	0.7	0.7	0.5	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.11	0.11	0.08	0.08	0.09	0.10	0.09	0.14	0.13	0.16	0.16	0.12	0.12	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES BOD SS

25.0 MG/L YES TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/11 1989/10 1989/11

REMEDIAL MEASURES

EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED

MUNICIPALITY

: THEDFORD

PLANT

: THEDFORD LAGOON

WORKS NUMBER

: 110002336

TREATMENT

: CONVENTIONAL LAGOON ANNUAL

DESIGN CAPACITY

0.48 (1000 M3)

REGION : SOUTHWEST

DISTRICT : LAMBTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : DECKER CREEK

MINOR BASIN

: HURON : GREAT LAKES

675

MAJOR BASIN POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.23	0.21	0.22	0.21	0.18	0.17	0.26	0.26	0.15	0.18	0.22	0.21	0.21	
LAGOON DISCHARGE	ND	ND	ND	ND	42.84	ND	ND	ND	ND	ND	ND	ND	42.84	
BOD5														
INFLUENT (MG/L)	99.0	88.0	116.0	70.0	ND	104.0	166.0	176.0	254.0	393.0	190.0	200.0	168.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND	1.9	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	0.34	ND	ND	ND	ND	ND	ND	ND	0.40	
SUSPENDED SOLIDS	117.0	EE 0	60.0	115.0	ND	100.0	177 0	1,024.0	225.0	446.0	147.0	64.0	229.6	
INFLUENT (MG/L)	113.0 ND	55.0 ND	ND	ND	6.3	ND	ND	ND	ND	ND	ND	ND	6.3	
EFFLUENT (MG/L)	ND	ND	ND.	NU_	0.3		- ND	<u>ND</u> _				N	40.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	ND	ND	ND	ND	1.13	ND	ND	ND	ND	ND	ND	ND	1.32	· · · · · · · · · · · · · · · · · · ·
TOTAL PHOSPHOROUS	6.4	5.2	6.5	5.0	ND	6.2	7.3	7.9	7.6	13.3	9.3	5.5	7.3	İ
INFLUENT (MG/L)	ND	ND	ND	ND	0.1	ND	ND	ND	ND	ND	ND ND	ND.	0.1	
EFFLUENT (MG/L)		עט		ND		N	ND	ND		N		ND		
CONCENTRATION LIMIT (MG/L)		MP	ND	ND.	0.01	ND	ND	ND	ND	ND	ND	ND	0.02	
LOADING (KG/D)	ND	ND	ND	ND	0.01	ND	ND	עא	NU	ND	ND	ND	0.02	

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES PARM

BOD

40.0 MG/L YES SS TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02 1990/01

REMEDIAL MEASURES

MUNICIPALITY

: THORNBURY

PLANT

: THORNBURY LAGOON

WORKS NUMBER

: 110001890

TREATMENT

: AERATED CELL PLUS LAGOON

: SUMMER STORAGE

DESIGN CAPACITY

1.72 (1000 M3)

REGION : SOUTHWEST

DISTRICT : GREY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : BEAVER RIVER

WATERCOURSE MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION	SERVED	:	1,764

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.59	1.26	1.87	1.78	1.68	1.71	1.28	1.15	1.07	1.08	1.25	1.26	1.42	
LAGOON DISCHARGE	49.27	35.13			147.93	ND	ND	ND	ND	33.51	37.42	39.19	66.04	
BOD5	575 SA LA					Safety Park	05-051 0551						70.0	l
INFLUENT (MG/L)	119.0	99.0	60.0	88.0	252.0	38.0	24.0	54.0	14.0	32.0	37.0	25.0	70.2	
EFFLUENT (MG/L)	3.1	3.9	9.1	12.4	7.8	ND	ND_	ND	ND	1.8	4.5	2.3	5.6	ļ
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	4.92	4.91	17.01	22.07	13.10	ND	ND	ND	ND	1.94	5.62	2.89	7.95	
SUSPENDED SOLIDS						2. 35.11							550 151	
INFLUENT (MG/L)	110.0	80.0	90.0	54.0	194.0	42.0	21.0	29.0	10.0	36.0	42.0	16.0	60.3	
EFFLUENT (MG/L)	2.3	7.1	7.4	29.0	17.8	ND	ND	ND	ND	2.9	6.4	3.4	9.5	
CONCENTRATION LIMIT (MG/L)		and the state of t											40.0	
LOADING (KG/D)	3.65	8.94	13.83	51.62	29.90	ND	ND	ND	ND	3.13	8.00	4.28	13.49	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.1	2.9	3.5	ND	2.8	2.9	1.9	3.0	1.3	2.1	2.5	1.3	2.4	
EFFLUENT (MG/L)	1.7	1.8	1.9	1.6	1.7	ND	ND	ND	ND	2.9	0.8	0.9	1.7	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	2.70	2.26	3.55	2.84	2.85	ND	ND	ND	ND	3.13	1.00	1.13	2.41	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

30.0 MG/L YES BOD 40.0 MG/L YES SS

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1991/12

REMEDIAL MEASURES

MUNICIPALITY

: TILBURY

PLANT

: TILBURY LAGOON

WORKS NUMBER

: 120000916

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

2.53 (1000 M3)

REGION : SOUTHWEST DISTRICT : KENT

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : TILBURY CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 4,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	4.16	4.07	5.00	5.46	6.46	4.00	4.02	4.02	ND	ND	ND	ND	4.65	
LAGOON DISCHARGE	130.00	114.00	193.00	385.00	539.00	ND	ND	ND	ND	ND	ND	ND	272.20	
BOD5					12,744					0000				
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMA	RY	
-	COMPLIES	
ERIA	WITH CONC	
MG/I	INSUFFICIENT	T

PARM CRITERIA WITH CONC
BOD 30.0 MG/L INSUFFICIENT DATA
SS 40.0 MG/L INSUFFICIENT DATA
TP 1.0 MG/L INSUFFICIENT DATA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: TILBURY NORTH

PLANT

: STONEY POINT P.V. LAGOON

WORKS NUMBER

: 110002345

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.95 (1000 M3)

: SOUTHWEST REGION DISTRICT

: ESSEX

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LITTLE CREEK

MINOR BASIN : ERIE MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,305

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.74	0.58	0.62	0.88	0.71	1.17	1.10	0.69	0.58	0.53	0.60	0.49	0.72	
LAGOON DISCHARGE	ND	ND	ND	ND	226.94	ND	ND	ND	ND	ND	126.52	ND	176.73	
BOD5 INFLUENT (MG/L)	39.0	65.0	67.0	38.0	40.0	33.0	19.0	36.0	64.0	70.0	83.0	73.0	52.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	8.2	ND	ND	ND	ND	ND	3.7	ND	6.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	5.82	ND	ND	ND	ND	ND	2.22	ND	4.32	
SUSPENDED SOLIDS INFLUENT (MG/L)	52.0	71.0	46.0	29.0	34.0	51.0	26.0	31.0	61.0	53.0	70.0	31.0	46.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	34.1	ND	ND	ND	ND	ND	16.1	ND	25.1*	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	24.21	ND	ND	ND	ND	ND	9.66	ND	18.07	
TOTAL PHOSPHOROUS	7945		TO See						O. Arti					
INFLUENT (MG/L)	3.0	4.7	3.0	3.1	2.2	2.4	1.8	3.6	4.5	4.1	5.0	4.4	3.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.4	ND	ND	ND	ND	ND	0.4	ND	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	0.28	ND	ND	ND	ND	ND	0.24	ND	0.29	

SUMMARY

COMPLIES

CRITERIA WITH CONC

25.0 MG/L YES BOD

SS 25.0 MG/L NO TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02 1990/01

REMEDIAL MEASURES

MUNICIPALITY

: TILBURY WEST : COMBER LAGOON

PLANT WORKS NUMBER

: 110001676

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

:

0.40 (1000 M3)

REGION : SOUTHWEST

DISTRICT : ESSEX

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : GOVN'T DR NO.1 TO BIG CK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 780

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.35	0.29	0.35	0.46	0.34	0.39	0.37	0.25	0.27	0.29	0.30	0.27	0.33	la constant and a constant
LAGOON DISCHARGE	ND	ND	ND	ND	80.95	ND	ND	ND	ND	ND	41.08	ND	61.02	
BOD5 INFLUENT (MG/L)	73.0	116.0	118.0	71.0	177.0	105.0	117.0	158.0	123.0	107.0	390.0	127.0	140.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	6.5	ND	ND	ND	ND	ND	5.2	ND	5.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	2.21	ND	ND	ND	ND	ND	1.56	ND	1.95	
SUSPENDED SOLIDS INFLUENT (MG/L)	93.0	118.0	103.0	56.0	142.0	163.0	133.0	142.0	114.0	90.0	495.0	44.0	141.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	6.0	ND	ND	ND	ND	ND	8.9	ND	7.5	·
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	2.04	ND	ND	ND	ND	ND	2.67	ND	2.48	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.2	7.5	6.4	4.5	8.8	8.0	7.8	7.8	7.4	6.2	12.1	5.6	7.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.1	ND	ND	ND	ND	ND	0.3	ND	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	0.03	ND	ND	ND	ND	ND	0.09	ND	0.07	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02

1990/01

REMEDIAL MEASURES

MUNICIPALITY

: TILLSONBURG

PLANT WORKS NUMBER : TILLSONBURG WPCP : 110000757

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

5.91 (1000 M3)

REGION : SOUTHWEST

DISTRICT : OXFORD

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: BIG OTTER CREEK

MINOR BASIN

: ERIE : GREAT LAKES

MAJOR BASIN : GREAT POPULATION SERVED :

11,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	4.43	4.20	4.25	4.69	4.45	4.51	4.18	4.22	4.34	4.22	4.62	4.13	4.35	
BOD5											10V 10 10	8) 8/50 S	10000000 122	
INFLUENT (MG/L)	137.0	113.0	115.0	149.0	143.0	144.0	138.0	101.0	121.0	151.0	123.0	167.0	133.5	
EFFLUENT (MG/L)	2.9	2.9	10.4	4.5	2.4	9.7	1.0	0.8	2.2	2.7	2.3	3.4	3.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	12.84	12.18	44.20	21.10	10.68	43.74	4.18	3.37	9.54	11.39	10.62	14.04	16.53	
SUSPENDED SOLIDS	1/0.0	1/0.0	107.0	145.0	014.0	150.0	167.0	174.0	167.0	260.0	155.0	233.0	182.4	
INFLUENT (MG/L)	162.0	160.0	193.0	145.0	214.0	159.0	167.0		167.0 5.7		5.8	8.8	7.7	
EFFLUENT (MG/L)	9.5	10.4	11.7	9.9	9.4	5.6	5.2	3.9	3./_	6.3	5.0	0.0	25.0	
CONCENTRATION LIMIT (MG/L)									04 77	0/ 50	06.70	76 74	33.50	l
LOADING (KG/D)	42.08	43.68	49.72	46.43	41.83	25.25	21.73	16.45	24.73	26.58	26.79	36.34	33.50	ļ
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.3	6.3	5.4	ND	6.4	7.6	7.3	7.9	6.9	8.3	7.3	6.8	7.1	
EFFLUENT (MG/L)	0.7	0.8	0.8	0.9	0.6	0.8	0.6	0.7	0.7	0.6	0.8	0.7	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.10	3.36	3.40	4.22	2.67	3.60	2.50	2.95	3.03	2.53	3.69	2.89	3.05	

	SUMMA	RY
	11	COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES

BOD 25.0 MG/L YES SS 25.0 MG/L YES TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY PLANT

: TUCKERSMITH

WORKS NUMBER

: VAN ASTRA WPCP

TREATMENT

: 110003013

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 1.40 (1000 M3) REGION : SOUTHWEST

DISTRICT : HURON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : MUN DRAIN TO BAYFIELD R.

MINOR BASIN

: HURON MAJOR BASIN : GREAT LAKES POPULATION SERVED : 770

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)	0.88	0.58	0.86	0.84	0.68	0.61	0.43	0.40	0.42	0.51	0.86	0.59	0.64	
BOD5	04451 1201	SOFT SECTION OF		V2000 V00	75.250 SS		200 D DA	SEE 10	1540 H 15	370				
INFLUENT (MG/L)	40.0	110.0	74.0	39.0	74.0	70.0	109.0	151.0	199.0	59.0	44.0	71.0	86.7	
EFFLUENT (MG/L)	7.1	4.4	3.6	4.3	2.5	3.8	2.2	0.1	2.6	1.8	9.3	8.9	4.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	6.24	2.55	3.09	3.61	1.70	2.31	0.94	0.04	1.09	0.91	7.99	5.25	2.69	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	49.0	132.0	90.0	39.0	67.0	110.0	120.0	243.0	380.0	77.0	40.0	61.0	117.3	
EFFLUENT (MG/L)	12.2	5.2	6.4	10.0	4.1	8.6	5.1	3.8	4.9	4.6	18.5	14.1	8.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	10.73	3.01	5.50	8.40	2.78	5.24	2.19	1.52	2.05	2.34	15.91	8.31	5.18	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.1	4.7	4.2	2.9	3.8	4.9	5.3	6.7	8.6	3.4	2.7	4.2	4.5	
EFFLUENT (MG/L)	0.5	0.2	0.3	0.4	0.3	0.3	0.2	0.1	0.2	0.2	0.7	0.5	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.44	0.11	0.25	0.33	0.20	0.18	0.08	0.04	0.08	0.10	0.60	0.29	0.19	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/01 1992/12

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

MUNICIPALITY

: WALKERTON

PLANT

: WALKERTON WPCP

WORKS NUMBER

: 120001489

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 7.54 (1000 M3)

REGION DISTRICT : BRUCE

: SOUTHWEST

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : SAUGEEN RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 4,591

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	4.50	4.87	6.54	5.99	5.22	5.43	4.66	4.21	4.33	5.16	6.12	5.91	5.25	
BOD5 INFLUENT (MG/L)	195.0	189.0	184.0	195.0	358.0	230.0	355.0	298.0	329.0	277.0	252.0	364.0	268.8	
EFFLUENT (MG/L)	5.9	9.0	8.8	12.7	13.4	8.0	4.7	4.6	4.9	7.9	7.0	5.8	7.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	26.55	43.83	57.55	76.07	69.94	43.44	21.90	19.36	21.21	40.76	42.84	34.27	40.43	
SUSPENDED SOLIDS INFLUENT (MG/L)	182.0	166.0	128.0	122.0	156.0	150.0	295.0	208.0	270.0	149.0	241.0	142.0	184.1	
EFFLUENT (MG/L)	8.4	11.0	9.2	6.4	10.1	5.3	7.7	7.7	4.3	6.3	7.0	5.8	7.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	37.80	53.57	60.16	38.33	52.72	28.77	35.88	32.41	18.61	32.50	42.84	34.27	38.85	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.0	6.7	4.3	5.7	6.2	6.2	7.1	7.2	7.9	6.6	6.3	6.1	6.4	
EFFLUENT (MG/L)	0.9	1.0	1.0	1.0	0.8	0.7	0.6	0.7	0.8	0.7	0.7	1.0	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	4.05	4.87	6.54	5.99	4.17	3.80	2.79	2.94	3.46	3.61	4.28	5.91	4.20	

SH	м	м	Δ	RY	
<u>~~</u>	11	ш	9	~	

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

1.0 MG/L YES

COMPLIES

SS - ASSESSED ANNUALLY

NOTE:

TP - ASSESSED MONTHLY

BOD - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY : WALLACEBURG

PLANT : WALLACEBURG WPCP

WORKS NUMBER : 110000784

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 6.81 (1000 M3) REGION : SOUTHWEST

DISTRICT : KENT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SYDENHAM RIVER

MINOR BASIN : ERIE

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 10,056

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	5.72	5.93	6.36	7.18	6.48	7.34	5.94	5.85	6.86	6.54	7.86	6.01	6.51	
B0D5														
INFLUENT (MG/L)	85.0	98.0	105.0	98.0	101.0	97.0	74.0	98.0	91.0	91.0	93.0	83.0	92.8	
EFFLUENT (MG/L)	7.4	6.5	11.7	8.8	12.3	13.9	4.0	13.0	11.2	7.2	9.1	12.6	9.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	42.32	38.54	74.41	63.18	79.70	102.02	23.76	76.05	76.83	47.08	71.52	75.72	63.80	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	241.0	264.0	211.0	218.0	230.0	146.0	120.0	151.0	202.0	109.0	180.0	201.0	189.4	
EFFLUENT (MG/L)	9.7	9.8	6.3	8.8	14.9	13.5	4.9	7.3	4.1	4.7	4.2	17.5	8.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	55.48	58.11	40.06	63.18	96.55	99.09	29.10	42.70	28.12	30.73	33.01	105.17	57.29	
TOTAL PHOSPHOROUS					****								ų	
INFLUENT (MG/L)	5.6	4.2	9.1	8.3	4.5	4.3	3.9	5.5	5.5	5.8	4.4	5.2	5.5	
EFFLUENT (MG/L)	0.4	0.4	1.9×	0.8	0.5	0.8	0.4	0.6	0.5	0.9	0.6	1.6×	0.8	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.28	2.37	12.08	5.74	3.24	5.87	2.37	3.51	3.43	5.88	4.71	9.61	5.21	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE REMEDIAL MEASURES

1989 1990/12 1990/01 COLLECTION SYSTEM - ENFORCING SEWER-USE BYLAWS

1988 1992/12 FACILITY EXPANSION/UPGRADING - APPLICATION FOR FUNDING

MUNICIPALITY

: WATFORD

PLANT

: WATFORD LAGOON

WORKS NUMBER

: 110001809

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

1.05 (1000 M3)

REGION : SOUTHWEST DISTRICT : LAMBTON

DISTRICT : LAMBION
OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BEAR CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,467

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.53	0.48	0.55	0.56	0.49	0.51	0.44	0.46	0.54	0.53	0.65	0.54	0.52	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5		119.0	138.0	167.0	144.0	151.0	158.0	176.0	178.0	170.0	184.0	154.0	152.3	
INFLUENT (MG/L)	88.0 ND	ND	3.4	ND	ND	3.4								
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	ND		ND				110						25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.80	ND	ND	1.77	
SUSPENDED SOLIDS INFLUENT (MG/L)	83.0	83.0	90.0	125.0	124.0	103.0	60.0	110.0	158.0	92.0	86.0	72.0	98.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.8	ND	ND	10.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.72	ND	ND	5.62	
TOTAL PHOSPHOROUS						1002			700470004				VALUE 1110	
INFLUENT (MG/L)	6.1	6.9	7.5	6.5	6.5	6.6	6.5	6.3	ND	6.4	7.3	8.5	6.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6	ND	ND	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.31	ND	ND	0.31	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02

1990/01

REMEDIAL MEASURES

MUNICIPALITY

: WEST LORNE

PLANT

: WEST LORNE LAGOON

WORKS NUMBER

DESIGN CAPACITY

: 110001337

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

: 0.67 (1000 M3) REGION : SOUTHWEST

DISTRICT : ELGIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ZOLLER DRAIN MINOR BASIN

: ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,367

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.58	ND	0.60	0.62	0.53	0.66	0.49	0.44	0.48	0.49	0.56	0.47	0.54	
LAGOON DISCHARGE	ND	ND	ND	78.90	ND	ND	ND	ND	ND	104.35	ND	ND	91.63	
BOD5														
INFLUENT (MG/L)	162.0	122.0	246.0	112.0	208.0	126.0	138.0	126.0	101.0	136.0	152.0	150.0	148.3	
EFFLUENT (MG/L)	ND	ND	ND	9.2	ND	ND	ND	ND	ND	3.8	ND	ND	6.5	and to him a table to want to
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	5.70	ND	ND	ND	ND	ND	1.86	ND	ND	3.51	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	144.0	88.0	266.0	98.0	13.0	107.0	111.0	101.0	186.0	103.0	148.0	93.0	121.5	
EFFLUENT (MG/L)	ND	ND	ND	16.1	ND	ND	ND	ND	ND	12.9	ND	ND	14.5	
CONCENTRATION LIMIT (MG/L)													25.0	bear and the second
LOADING (KG/D)	ND	ND	ND	9.98	ND	ND	ND	ND	ND	6.32	ND	ND	7.83	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.8	5.5	10.5	2.3	3.6	6.2	6.7	6.7	8.0	5.8	5.3	6.7	6.3	
EFFLUENT (MG/L)	ND	ND	ND	0.3	ND	ND	ND	ND	ND	0.2	ND	ND	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.18	ND	ND	ND	ND	ND	0.09	ND	ND	0.16	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES 25.0 MG/L YES

SS TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

1988/02 1990/01

MUNICIPALITY

: WESTMINISTER

PLANT

: SOUTHLAND PARK WPCP

WORKS NUMBER

: 120000818

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.26 (1000 M3)

REGION : SOUTHWEST DISTRICT : MIDDLESEC

DISTRICT : MIDDLESEC
OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : DINGMAN CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 400

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.08	0.09	
BOD5 INFLUENT (MG/L)	112.0	105.0	106.0	143.0	126.0	107.0	123.0	132.0	103.0	109.0	75.0	108.0	112.4	
EFFLUENT (MG/L)	1.1	2.8	1.5	2.5	2.4	1.8	2.3	1.2	1.4	3.5	6.1	3.1	2.5	
CONCENTRATION LIMIT (MG/L)			7					V (2					25.0	
LOADING (KG/D)	0.09	0.25	0.13	0.22	0.21	0.16	0.20	0.10	0.12	0.31	0.54	0.24	0.23	
SUSPENDED SOLIDS INFLUENT (MG/L)	93.0	111.0	112.0	165.0	196.0	117.0	142.0	165.0	218.0	211.0	67.0	64.0	138.4	
EFFLUENT (MG/L)	0.5	2.4	1.6	4.8	3.8	2.5	1.5	1.8	1.6	4.7	7.2	4.4	3.1	
CONCENTRATION LIMIT (MG/L)										137-			25.0	
LOADING (KG/D)	0.04	0.21	0.14	0.43	0.34	0.22	0.13	0.16	0.14	0.42	0.64	0.35	0.28	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	9.1	6.9	10.2	5.3	8.0	4.6	7.9	5.8	6.8	6.6	6.6	4.9	6.9	
EFFLUENT (MG/L)	0.4	0.3	0.4	0.3	0.7	0.7	0.8	0.6	0.6	0.4	0.7	0.3	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.03	0.02	0.03	0.02	0.06	0.06	0.07	0.05	0.05	0.03	0.06	0.02	0.05	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY
TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989

1992/12

FACILITY EXPANSION/UPGRADING - PRELIMINARY DESIGN PHASE

MUNICIPALITY

: WESTMINISTER

PLANT

: WESTMINSTER WPCP

WORKS NUMBER

: 110000800

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

1.13 (1000 M3)

REGION : SOUTHWEST DISTRICT : MIDDLESEC

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : DINGMAN CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 6,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.84	1.67	1.80	2.00	1.84	2.21	2.15	2.02	1.10	1.31	1.35	1.28	1.71	
BOD5 INFLUENT (MG/L)	96.0	146.0	142.0	72.0	101.0	100.0	145.0	208.0	146.0	94.0	173.0	129.0	129.3	i.
EFFLUENT (MG/L)	5.0	7.7	10.5	9.1	7.5	7.9	8.3	6.6	6.0	3.2	9.0	4.8	7.1	00.00
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.20	12.85	18.90	18.20	13.80	17.45	17.84	13.33	6.60	4.19	12.15	6.14	12.14	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	175.0	187.0	112.0	52.0	116.0	88.0	130.0	154.0	181.0	79.0	160.0	75.0	125.8	
EFFLUENT (MG/L)	4.4	4.8	5.3	4.4	2.7	6.3	9.4	6.0	5.2	6.5	7.2	7.4	5.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	8.09	8.01	9.54	8.80	4.96	13.92	20.21	12.12	5.72	8.51	9.72	9.47	9.92	
TOTAL PHOSPHOROUS				- 10 mg	8 5	p 8	n= 120	8 8	8 8					
INFLUENT (MG/L)	5.0	6.4	3.7_	3.3_	4.0	4.4	5.5	8.4	6.7	5.2	5.9	5.6	5.3	
EFFLUENT (MG/L)	0.3	0.3	0.2	0.3	0.6	0.5	0.7	0.6	0.6_	0.2	0.2	0.2	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		0 000
LOADING (KG/D)	0.55	0.50	0.36	0.60	1.10	1.10	1.50	1.21	0.66	0.26	0.27	0.25	0.68	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
		VEO	

25.0 MG/L YES SS TP

1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: WIARTON

PLANT

: WIARTON LAGOON

WORKS NUMBER

: 110000819

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

2.00 (1000 M3)

: SOUTHWEST REGION

DISTRICT : BRUCE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: COLPOY BAY

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

2,119

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.19	1.56	2.49	2.30	1.66	1.63	1.28	1.43	1.56	1.57	2.41	1.86	1.83	
LAGOON DISCHARGE	67.81	43.59	77.32	68.84	51.35	48.88	39.73	44.24	46.82	48.76	72.24	57.79	55.61	
BOD5	(112- W 1			2	=000 %	PARK EN		Water State Control		7292 - 27				
INFLUENT (MG/L)	64.0	78.0	58.0	74.0	78.0	72.0	96.0	103.0	88.0	89.0	44.0	67.0	75.9	
EFFLUENT (MG/L)	7.5	8.9	8.0	26.2	7.7	11.9	9.8	3.9	2.7	7.7	11.4	8.8	9.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	16.42	13.88	19.92	60.26	12.78	19.39	12.54	5.57	4.21	12.08	27.47	16.36	17.39	
SUSPENDED SOLIDS			47.0			00.0	100.0	07.0	82.0	79.0	33.0	46.0	72.5	
INFLUENT (MG/L)	64.0	95.0	47.0	68.0	69.0	90.0	100.0	97.0		white the same and the same	14.2	11.3	10.7	
EFFLUENT (MG/L)	3.0	6.4	6.0	29.9	13.2	9.2	7.0	6.4	9.3	12.7	14.2	11.5	40.0	
CONCENTRATION LIMIT (MG/L)						- 4 4 00		0.15	14 50	10.07	74 00	21 01	19.58	
LOADING (KG/D)	6.57	9.98	14.94	68.77	21.91	14.99	8.96	9.15	14.50	19.93	34.22	21.01	19.50	
TOTAL PHOSPHOROUS						010 877	was mad	W						l
INFLUENT (MG/L)	2.9	5.0	2.4	3.5	4.4	4.6	4.9	4.0	4.8	4.4	2.2	3.3	3.9	
EFFLUENT (MG/L)	0.4	0.2	0.3	0.4	0.6	0.5	0.6	0.5	0.5	0.2	0.4	0.3	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.87	0.31	0.74	0.92	0.99	0.81	0.76	0.71	0.78	0.31	0.96	0.55	0.73	į.

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES PARM

BOD SS 40.0 MG/L YES

TP 1.0 MG/L YES

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1992/12 1990/01

MUNICIPALITY

: WINDSOR

PLANT

: LITTLE RIVER WPCP

WORKS NUMBER

: 120001096

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 36.36 (1000 M3)

REGION : SOUTHWEST

DISTRICT : ESSEX OPERATING AUTHORITY : MUNICIPAL

: LITTLE RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

WATERCOURSE

: GREAT LAKES

POPULATION SERVED : 64,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	40.38	32.10	33.30	39.60	38.40	44.00	46.00	37.60	39.50	32.90	36.40	32.50	37.72	
BOD5 INFLUENT (MG/L)	159.0	194.0	148.0	153.0	186.0	136.0	162.0	149.0	179.0	201.0	166.0	153.0	165.5	
EFFLUENT (MG/L)	8.0	14.0	13.0	6.0	9.0	6.0	6.0	5.0	5.0	4.0	6.0	13.0	7.9	
CONCENTRATION LIMIT (MG/L)										III.			25.0	
LOADING (KG/D)	323.04	449.40	432.90	237.60	345.60	264.00	276.00	188.00	197.50	131.60	218.40	422.50	297.99	
SUSPENDED SOLIDS INFLUENT (MG/L)	181.0	222.0	199.0	240.0	316.0	199.0	286.0	290.0	362.0	277.0	225.0	177.0	247.8	
EFFLUENT (MG/L)	9.0	10.0	6.0	6.0	8.0	7.0	8.0	10.0	6.0	8.0	9.0	8.0	7.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	363.42	321.00	199.80	237.60	307.20	308.00	368.00	376.00	237.00	263.20	327.60	260.00	297.99	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.8	7.0	5.8	6.4	7.3	6.0	6.7	7.0	8.0	8.9	6.6	6.3	6.8	
EFFLUENT (MG/L)	0.4	0.4	0.2	0.2	0.4	0.4	0.6	0.7	0.2	0.4	0.4	0.3	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	16.15	12.84	6.66	7.92	15.36	17.60	27.60	26.32	7.90	13.16	14.56	9.75	15.09	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

START DATE END DATE COMPLIANCE

1985/05 1990/06

MUNICIPALITY

: WINDSOR

PLANT

: WESTERLY WPCP

WORKS NUMBER

: 120001103

TREATMENT

: PRIMARY : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

163.65 (1000 M3)

REGION

: SOUTHWEST

DISTRICT

: ESSEX

OPERATING AUTHORITY : MUNICIPAL

: DETROIT RIVER : ERIE

MINOR BASIN MAJOR BASIN

WATERCOURSE

: GREAT LAKES

POPULATION SERVED : 123,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	109.10	102.70	111.70	131.60	112.60	145.10	129.50	118.30	129.40	112.70	117.00	90.40	117.51	
BOD5									25.0		110.0	170.0	95.3	
INFLUENT (MG/L)	85.0	101.0	104.0	89.0	THE RESERVE AND ADDRESS OF THE PERSON OF THE	73.0	66.0	68.0	85.0	A STREET, S. C.	PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN	39.1	
EFFLUENT (MG/L)	33.0	41.0		35.0	43.0	29.0	29.0	30.0	44.0	57.0	and the second s	50.0	4594.64	
LOADING (KG/D)	The second secon		3797.80		The state of the s						5148.00		59	
PERCENT REMOVAL	61	59	67	61	67	60	56	56	48	42	61	62	Andrew Street,	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	95.0		19. Car 4. Car	104.0	and the second second second	118.0	95.0		A 10 PM	- V			124.0	
EFFLUENT (MG/L)	24.0	20.0		19.0	23.0	20.0	23.0	25.0		27.0			24.3	
LOADING (KG/D)	2618.40	2054.00	2904.20	2500.40	2589.80							3073.60	2855.49	
PERCENT REMOVAL	75	84	83	82	87	83	76	75	72	78	78	81	80	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.9	4.9	4.3	3.2	4.6	3.6	3.0	3.6	3.5	3.8	4.0	5.0	4.0	
EFFLUENT (MG/L)	0.6	0.7	0.7	0.4	0.9	0.5	0.5	0.7	0.7	0.8	0.6	1.1*	0.7	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	65.46	71.89	78.19	52.64	101.34	72.55	64.75	82.81	90.58	90.16	70.20	99.44	82.26	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 50% YES

SS 70% YES

TP 1.0 MG/L NO

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: WINGHAM

PLANT

: WINGHAM LAGOON

WORKS NUMBER

: 110000828

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

:

DESIGN CAPACITY

1.60 (1000 M3)

REGION : SOUTHWEST

DISTRICT : HURON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MAITLAND RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 2,941

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.89	2.08	2.28	2.28	1.85	2.13	1.65	1.60	1.33	1.37	1.54	1.55	1.96	
LAGOON DISCHARGE	120.56	58.21	70.72	123.92	45.73	63.83	51.21	49.47	39.77	42.55	46.13	48.15	63.35	
BOD5														
INFLUENT (MG/L)	87.0	80.0	82.0	111.0	115.0	74.0	153.0	102.0	204.0	124.0	89.0	306.0	127.3	
EFFLUENT (MG/L)	18.9	24.2	22.9	22.4	13.1	22.8	19.3	22.1	19.1	17.5	14.6	15.9	19.4	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	73.52	50.33	52.21	51.07	24.23	48.56	31.84	35.36	25.40	23.97	22.48	24.64	38.02	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	118.0	95.0	54.0	51.0	62.0	59.0	74.0	120.0	167.0	104.0	53.0	123.0	90.0	
EFFLUENT (MG/L)	9.3	10.4	8.6	10.3	16.2	28.6	50.9	30.7	36.7	39.6	23.3	20.1	23.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	36.17	21.63	19.60	23.48	29.97	60.91	83.98	49.12	48.81	54.25	35.88	31.15	46.45	
TOTAL PHOSPHOROUS												<u>-</u>		
INFLUENT (MG/L)	4.9	5.2	4.0	3.9	4.2	4.2	4.4	4.7	10.4	6.6	4.5	7.0	5.3	
EFFLUENT (MG/L)	2.3	2.9	2.6	2.5	2.2	2.7	3.3	3.2	3.7	3.2	2.4	3.6	2.9	
CONCENTRATION LIMIT (MG/L)					D 50									
LOADING (KG/D)	8.94	6.03	5.92	5.70	4.07	5.75	5.44	5.12	4.92	4.38	3.69	5.58	5.68	Necessary St.

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1992/12 1988 1990/12

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

MUNICIPALITY

: WOODSTOCK

PLANT

: WOODSTOCK WPCP

WORKS NUMBER

: 120000685

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

32.27 (1000 M3)

REGION : SOUTHWEST : OXFORD DISTRICT OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: THAMES RIVER

MINOR BASIN

: ERIE

MAJOR BASIN POPULATION SERVED :

: GREAT LAKES 27,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	19.17	17.47	18.52	20.99	19.44	19.96	16.91	16.82	16.23	16.80	19.28	19.13	18.39	
BODS	84.0	91.0	93.0	96.0	100.0	98.0	123.0	156.0	129.0	133.0	104.0	116.0	110.3	
INFLUENT (MG/L) EFFLUENT (MG/L)	6.7	6.0	6.9	9.0	8.5	8.5	6.8	8.0	8.9	6.7	6.5	11.9	7.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	128.43	104.82	127.78	188.91	165.24	169.66	114.98	134.56	144.44	112.56	125.32	227.64	145.28	
SUSPENDED SOLIDS				2000000 500										
INFLUENT (MG/L)	169.0	257.0	210.0	199.0	179.0	172.0	182.0	272.0	234.0	231.0	246.0	174.0	210.4	
EFFLUENT (MG/L)	6.9	7.1	8.6	9.3	8.8	5.7	6.5	8.8	5.3	7.2	7.4	6.6	7.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	132.27	124.03	159.27	195.20	171.07	113.77	109.91	148.01	86.01	120.96	142.67	126.25	136.09	
TOTAL PHOSPHOROUS					1000 000									1
INFLUENT (MG/L)	4.6	5.0	5.9	6.1	5.8	4.6	6.5	4.4	7.3	7.2	6.4	5.8	5.8	
EFFLUENT (MG/L)	0.6	0.9	0.8	0.7	0.6	0.8	0.9	0.6	0.8	0.8	0.6	0.6	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	11.50	15.72	14.81	14.69	11.66	15.96	15.21	10.09	12.98	13.44	11.56	11.47	12.87	1

	SUMMA	RY	
	1.	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - PROCESS CONTROL BEING UPGRADED

1990/03

1990/04

1990/05

MUNICIPALITY : ZURICH

: ZURICH LAGOON PLANT WORKS NUMBER : 110001444

: CONVENTIONAL LAGOON SEASONAL TREATMENT

0.44 (1000 M3) DESIGN CAPACITY :

REGION : SOUTHWEST DISTRICT : HURON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MUN DRAIN TO L. HURON

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 920

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.49	0.51	0.57	0.57	0.51	0.44	0.48	0.44	0.43	0.38	0.40	0.37	0.47	
LAGOON DISCHARGE	ND	ND	ND	ND	84.18	ND	ND	ND	ND	36.30	ND	ND	60.24	
BOD5		527A A 1954		EDANGE VIDEO	1006.044	VENEZUVEN UNE	- All Control of the	OSCHOOLS INDE			CONTRACT SO			
INFLUENT (MG/L)	94.0	144.0	104.0	67.0	ND	111.0	100.0	197.0	162.0	143.0	_117.0	107.0	122.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.9	ND	ND	ND	ND	3.2	ND	ND	2.6	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	0.96	ND	ND	ND	ND	1.21	ND	ND	1.22	
SUSPENDED SOLIDS					501: SES 7:									
INFLUENT (MG/L)	111.0	221.0	163.0	76.0	ND	86.0	140.0	240.0	193.0	159.0	104.0	55.0	140.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	13.8	ND	ND	ND	ND	14.1	ND	ND	14.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	7.03	ND	ND	ND	ND	5.35	ND	ND	6.58	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.0	9.6	5.6	3.6	ND	4.6	7.3	9.3	8.3	9.3	4.8	4.9	6.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.1	ND	ND	ND	ND	0.1	ND	ND	0.1	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.05	ND	ND	ND	ND	0.03	ND	ND	0.05	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/02 1990/01

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

West Central Region

West Central Region

(2)

REGIONAL OFFICE

Hamilton 119 King St. West P.O. Box 2112 L8N 3Z9 (416) 521-7640

DISTRICT OFFICES

Cambridge 400 Clyde Road P.O. Box 219 N1R 5T8 (519) 653-1511

Haldimand-Norfolk/Brant 119 King St. West P.O. Box 2112 L8N 3Z9 (416) 521-7732

Hamilton-Wentworth 119 King St. West P.O. Box 2112 L8N 3Z9 (416) 521-7732

Welland 637 - 641 Niagara St. West L3C 1L9 (416) 384-9896

WEST-CENTRAL SUMMARY - 1989

	ı	Number		Design (Capacity (100	00M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Conventional Activated Sludge	13	10	23	386.21	1,063.15	1,449.36
Extended Aeration	6	2	8	11.72	6.95	18.67
High Rate	1	0	1	9.32	-	9.32
Oxidation Ditch	4	0	4	4.51	-	4.51
Communal Septic Tank	0	1	1	<u></u> 0	0.23	0.23
Aerated Lagoon	1	0	1	0.99	-	0.99
Convent. Lagoon Continuous	0	1	1	-	2.29	2.29
Conventional Lagoon Seasonal	5	2	7	4.02	1.73	5.75
Aerated Cell Plus Lagoon	2	2	4	4.86	4.98	9.84
Conventional Lagoon Annual	1	1	2	0.09	0.56	0.64
Rotat. Biological Contactor	0	1	1		58.19	58.19
TOTALS	34	20	54	421.72	1,138.08	1,559.80

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

WEST-CENTRAL SUMMARY - 1989

	ı	Number		Annu	ual ADF (1000	M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Conventional Activated Sludge	13	10	23	232.45	529.35	761.80
Extended Aeration	6	2	8	5.56	5.66	11.22
High Rate	1	0	1	5.43	0.00	5.43
Oxidation Ditch	4	0	4	3.16	0.00	3.16
Communal Septic Tank	0	1	1	0.00	0.00	0.00
Aerated Lagoon	1	0	1	1.49	0.00	1.49
Convent. Lagoon Continuous	0	1	1	0.00	0.67	0.67
Conventional Lagoon Seasonal	5	2	7	2.47	0.82	3.29
Aerated Cell Plus Lagoon	2	2	4	2.56	4.38	6.94
Conventional Lagoon Annual	1	1	2	0.00	0.25	0.25
Rotat. Biologcial Contactor	0	1	1	0.00	56.38	56.38
TOTALS	34	20	54	267.43	597.51	864.94

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

MUNICIPALITY

: ARTHUR

PLANT

: ARTHUR LAGOON

WORKS NUMBER

: 110000882

TREATMENT

: CONVENTIONAL LAGOON SEASONAL : PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.98 (1000 M3)

REGION : WEST CENTRAL DISTRICT : WELLINGTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: CONESTOGA RIVER

MINOR BASIN MAJOR BASIN

: ERIE : GREAT LAKES

POPULATION SERVED : 1,736

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.14	1.07	1.24	1.49	1.30	1.40	0.92	0.93	0.96	1.07	1.42	0.95	1.16	
LAGOON DISCHARGE	ND	ND	ND	165.64	ND	ND	ND	ND	ND	157.41	ND	ND	161.53	
BOD5 INFLUENT (MG/L)	122.0	76.0	68.0	148.0	142.0	92.0	141.0	158.0	212.0	118.0	ND	48.0	120.5	
EFFLUENT (MG/L)	ND	ND	ND	25.1	ND	ND	ND	ND	ND	5.2	ND	ND	15.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	37.39	ND	ND	ND	ND	ND	5.56	ND	ND	17.63	
SUSPENDED SOLIDS INFLUENT (MG/L)	100.0	294.0	61.0	113.0	109.0	109.0	154.0	228.0	125.0	96.0	ND	204.0	144.8	
EFFLUENT (MG/L)	ND_	ND	ND ND	13.1	ND	ND	ND	ND	ND	10.4	ND	ND	11.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	19.51	ND	ND	ND	ND	ND	11.12	ND	ND	13.69	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.5	6.9	3.0	4.4	5.9	4.6	6.3	7.3	6.4	5.1	ND	7.5	5.7	
EFFLUENT (MG/L)	ND	ND	ND	0.2	ND	ND	ND	ND	ND	0.3	ND	ND	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.29	ND	ND	ND	ND	ND	0.32	ND	ND	0.35	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BRANTFORD

PLANT

: AIRPORT WPCP (DISCHARGE TO A TILE FIELD)

WORKS NUMBER

: 120004798

TREATMENT

: COMMUNAL SEPTIC TANK

: 1

DESIGN CAPACITY

0.22 (1000 M3)

REGION : WEST CENTRAL DISTRICT : BRANT

OPERATING AUTHORITY : MUNICIPAL

: NO DISC.TO SURFACE WATER

WATERCOURSE MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 65

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	ND													
BOD5														
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
LOADING (KG/D)	ND													
PERCENT REMOVAL												5 2	0	
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
LOADING (KG/D)	ND		1											
PERCENT REMOVAL													0	
PERCENT REMOVAL LIMITS													50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND													
EFFLUENT (MG/L)	ND													
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND													

	SUMM	ARY	
	19	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30%	NO DISCHARGE	
SS	50%	NO DISCHARGE	
TP	NA	NO DISCHARGE	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BRANTFORD

PLANT

: BRANTFORD WPCP

WORKS NUMBER TREATMENT

: 110000043 : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

81.81 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : BRANT

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 73,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	49.80	48.62	49.63	52.63	51.18	51.82	49.44	47.34	48.75	49.42	50.77	45.41	49.57	
BOD5 INFLUENT (MG/L)	220.0	220.0	267.0	231.0	210.0	the second secon	arteface of the Publisher St.	230.0	234.0	343.0	232.0	191.0	230.3	
EFFLUENT (MG/L)	11.1	11.3	11.6	9.3	11.1	13.8	7.5	10.8	15.3	16.4	17.5	9.4	12.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	552.78	549.40	575.70	489.45	568.09	715.11	370.80	511.27	745.87	810.48	888.47	426.85	599.80	
SUSPENDED SOLIDS INFLUENT (MG/L)	237.0	260.0	259.0	239.0	214.0	164.0	237.0	249.0	280.0	327.0	256.0	213.0	244.6	
EFFLUENT (MG/L)	9.7	8.5	8.4	7.8	8.9	10.0	4.5	7.9	7.9	13.0	16.1	11.0	9.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	483.06	413.27	416.89	410.51	455.50	518.20	222.48	373.98	385.12	642.46	817.39	499.51	470.92	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.3	5.9	6.1	5.6	6.8	6.3	8.4	8.2	9.8	7.8	7.7	4.8	7.0	
EFFLUENT (MG/L)	0.8	0.7	0.7	0.7	1.0	1.2×	1.0	0.9	1.0	1.0	1.0	0.8	0.9	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
LOADING (KG/D)	39.84	34.03	34.74	36.84	51.18	62.18	49.44	42.60	48.75	49.42	50.77	36.32	44.61	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING IMPLEMENTED IN PHASES

1990/01

MUNICIPALITY

: BRANTFORD

PLANT

: CAINSVILLE LAGOON (SERVES INDUSTRY)

WORKS NUMBER

: 120004716

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

. .

:

DESIGN CAPACITY

0.16 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : BRANT

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : FAIRCHILD CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 65

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE!
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	35.90	ND	ND	ND	ND	ND	ND	ND	ND	35.90	
BOD5					2225			9050	egeren.		200911	bet - 554700		
INFLUENT (MG/L)	ND	ND	ND	ND_	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	13.5	ND	ND	ND	ND	ND	ND	ND	ND	13.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS					STORE .		90470	2000	VARIAN	200	represent.	contro		
INFLUENT (MG/L)	ND_	ND	ND	ND_	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	19.1	ND	ND	ND	ND	ND	ND	ND	ND	19.1	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND _	ND		
EFFLUENT (MG/L)	ND	ND	ND	0.7	ND	ND	ND	ND	ND	ND	ND	ND	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

э н	•	м		D	v
SU	м	м	A	ĸ	Y

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

TO ASSESSED HONTHET

* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: CAMBRIDGE

PLANT

: GALT WPCP

WORKS NUMBER

: 110000276

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 38.64 (1000 M3) REGION

: WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: GRAND RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

50,143

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	32.55	32.21	33.25	33.64	32.06	33.28	30.23	32.30	31.04	31.46	32.16	29.54	31.98	
BOD5 INFLUENT (MG/L)	153.0	172.0	165.0	188.0	162.0	185.0	169.0	166.0	160.0	156.0	156.0	151.0	165.3	
EFFLUENT (MG/L)	17.0	14.2	13.4	12.3	14.2	11.5	9.1	9.1	7.4	8.5	9.6	11.2	11.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	553.35	457.38	445.55	413.77	455.25	382.72	275.09	293.93	229.69	267.41	308.73	330.84	367.77	
SUSPENDED SOLIDS			222212	0202000000		585500 50	20004 50		2 33 73					
INFLUENT (MG/L)	154.0	206.0	182.0	213.0	197.0		181.0	165.0	162.0	158.0	158.0	159.0	177.3	
EFFLUENT (MG/L)	23.7	22.5	23.2	21.8	16.2	16.1	11.1	11.5	11.4	13.0	15.4	16.2	16.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	771.43	724.72	771.40	733.35	519.37	535.80	335.55	371.45	353.85	408.98	495.26	478.54	537.26	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.6	6.1	5.7	6.3	5.5	6.4	5.1	5.4	6.1	6.4	6.1	5.1	5.8	
EFFLUENT (MG/L)	0.8	0.8	0.8	0.8	0.7	0.8	0.4	0.6	0.7	0.6	0.6	0.7	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
LOADING (KG/D)	26.04	25.76	26.60	26.91	22.44	26.62	12.09	19.38	21.72	18.87	19.29	20.67	22.39	

SUMMARY

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES PARM BOD

25.0 MG/L YES SS

TP

1.0 MG/L YES

* - EXCEEDS EFFLUENT CRITERIA

NOTE:

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: CAMBRIDGE

PLANT

: HESPELER WPCP

WORKS NUMBER

: 110001033

TREATMENT

: HIGH RATE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

9.31 (1000 M3)

REGION

: WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: SPEED RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

11,392

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBEI EXCEEI
AVG. DAILY FLOW (1000 M3)	5.41	5.35	5.67	5.39	5.20	5.51	4.78	4.85	5.29	5.84	6.35	5.52	5.43	
BOD5 INFLUENT (MG/L)	160.0	136.0	138.0	130.0	124.0	127.0	128.0	159.0	152.0	126.0	142.0	622.0	178.7	
EFFLUENT (MG/L)	67.0	ND	31.0	24.6	18.8	11.3	15.4	10.2	23.1	13.8	29.9	25.8	24.6	
CONCENTRATION LIMIT (MG/L)											-		25.0	
LOADING (KG/D)	362.47	ND	175.77	132.59	97.76	62.26	73.61	49.47	122.19	80.59	189.86	142.41	133.58	
SUSPENDED SOLIDS INFLUENT (MG/L)	178.0	225.0	230.0	208.0	247.0	241.0	264.0	230.0	261.0	249.0	234.0	274.0	236.8	
EFFLUENT (MG/L)	45.9	44.4	42.8	40.6	36.4	39.5	27.4	25.8	30.6	40.9	44.4	44.9	38.6×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	248.31	237.54	242.67	218.83	189.28	217.64	130.97	125.13	161.87	238.85	281.94	247.84	209.60	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.7	6.4	5.9	5.6	6.5	5.9	5.8	5.7	6.8	7.1	6.2	6.9	6.2	
EFFLUENT (MG/L)	1.3*	1.7×	1.0	0.8	1.0	1.0	1.4*	1.0	1.1*	1.1×	1.5×	1.4*	1.2	7
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	7.03	9.09	5.67	4.31	5.20	5.51	6.69	4.85	5.81	6.42	9.52	7.72	6.52	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM 25.0 MG/L YES BOD

SS 25.0 MG/L NO TP

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/01

1989/12

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - PRELIMINARY DESIGN PHASE

MUNICIPALITY

: CAMBRIDGE

PL ANT

: PRESTON WPCP

WORKS NUMBER

: 110000622

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

:

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

16.86 (1000 M3)

REGION

: WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER

MINOR BASIN

: ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 18,727

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBEI EXCEEI
AVG. DAILY FLOW (1000 M3)	9.34	9.32	9.76	9.89	10.10	10.00	9.00	9.60	9.00	9.12	10.12	8.79	9.50	
B0D5						h-								
INFLUENT (MG/L)	516.0	490.0	481.0	391.0	676.0	415.0	438.0	519.0	457.0	290.0	278.0	492.0	453.6	
EFFLUENT (MG/L)	13.9	11.7	14.4	9.3	13.3	9.6	5.2	8.1	9.3	9.5	7.1	7.9	9.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	129.82	109.04	140.54	91.97	134.33	96.00	46.80	77.76	83.70	86.64	71.85	69.44	94.05	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	360.0	578.0	449.0	507.0	577.0	476.0	560.0	642.0	538.0	386.0	379.0	393.0	487.1	ŀ
EFFLUENT (MG/L)	11.3	9.4	10.2	8.6	10.5	8.2	5.5	6.8	9.6	7.7	8.5	11.0	8.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	105.54	87.60	99.55	85.05	106.05	82.00	49.50	65.28	86.40	70.22	86.02	96.69	84.55	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.9	6.1	4.9	4.3	8.3	7.0	7.5	6.8	7.4	6.2	5.5	3.9	6.2	
EFFLUENT (MG/L)	0.8	0.5	0.6	0.4	1.4×	1.2*	1.3×	0.8	0.7	0.4	0.3	0.3	0.7	3
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
LOADING (KG/D)	7.47	4.66	5.85	3.95	14.14	12.00	11.70	7.68	6.30	3.64	3.03	2.63	6.65	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/06 1989/08

MUNICIPALITY

: DELHI

PLANT

: DELHI WPCP

WORKS NUMBER

: 120001425

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: AEROBIC SINGLE STAGE

DESIGN CAPACITY

: 3.18 (1000 M3)

: WEST CENTRAL

DISTRICT

: HALDIMAN-NORFOLK, REG. MUN.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: BIG CREEK

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

4,257

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.41	2.32	2.24	2.10	2.14	1.97	1.80	1.76	1.76	2.41	2.54	2.36	2.15	
BOD5 INFLUENT (MG/L)	169.0	148.0	142.0	169.0	142.0	120.0	157.0	118.0	145.0	168.0	138.0	147.0	146.9	
EFFLUENT (MG/L)	12.6	5.6	2.6	3.6	10.9	8.4	13.9	22.3	25.4	6.5	8.0	18.9	11.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	30.36	12.99	5.82	7.56	23.32	16.54	25.02	39.24	44.70	15.66	20.32	44.60	24.94	
SUSPENDED SOLIDS INFLUENT (MG/L)	137.0	173.0	172.0	152.0	169.0	150.0	195.0	142.0	181.0	174.0	152.0	168.0	163.8	
EFFLUENT (MG/L)	9.8	6.8	5.5	13.2	11.5	6.6	4.8	6.8	7.5	4.6	6.0	9.7	7.7	
CONCENTRATION LIMIT (MG/L)					77								25.0	
LOADING (KG/D)	23.61	15.77	12.32	27.72	24.61	13.00	8.64	11.96	13.20	11.08	15.24	22.89	16.56	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.0	6.2	7.1	5.7	7.7	5.3	7.1	5.7	6.5	7.4	3.4	5.7	6.2	
EFFLUENT (MG/L)	0.3	0.2	0.2	0.3	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.72	0.46	0.44	0.63	0.42	0.19	0.18	0.35	0.35	0.48	0.50	0.70	0.43	

JM		

COMPLIES

CRITERIA WITH CONC PARM 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: DRAYTON

PLANT

: DRAYTON LAGOON (MUN OP JAN 1 1989)

WORKS NUMBER

: 120001782

TREATMENT

: CONVENTIONAL LAGOON ANNUAL

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 0.55 (1000 M3)

REGION : WEST CENTRAL
DISTRICT : WELLINGTON
OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : C

: CONESTOGO RIVER

MINOR BASIN MAJOR BASIN : ERIE : GREAT LAKES

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	ND	0.24	0.25	0.26	0.23	0.24	0.23	0.22	0.24	0.28	0.31	0.25	0.25	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	68.94	68.94	
BOD5 INFLUENT (MG/L)	ND	ND	188.0	105.0	ND	100.0								
EFFLUENT (MG/L)			The second second second second	105.0	ND	190.0	207.0	ND	ND	222.0	ND	ND	182.4	
	ND_	ND_	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0	3.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.75	0.75	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	198.0	122.0	ND	106.0	148.0	ND	ND	396.0	ND	ND	194.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5	3.5	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.87	0.88	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.9	ND	ND	7.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	0.1	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.03	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : DUNDAS

PLANT : DUNDAS KING ST. WPCP

WORKS NUMBER : 120001372

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY : 18.18 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : HAMILTON-WENTWORTH, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : COOTES PARADISE

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 19,501

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	11.23	10.20	11.08	11.89	10.77	12.37	10.78	ND	8.59	9.31	9.91	ND	10.61	
B0D5	222 2											02000		
INFLUENT (MG/L)	111.0	128.0	119.0	112.0	121.0	105.0	124.0	105.0	121.0	115.0	86.0	ND	113.4	
EFFLUENT (MG/L)	1.1	1.2	2.0	1.2	2.0	0.6	1.0	0.9	1.3	1.4	1.6	ND	1.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	12.35	12.24	22.16	14.26	21.54	7.42	10.78	ND	11.16	13.03	15.85	ND	13.79	
SUSPENDED SOLIDS	- 1 post record - 1 77 h			10000000 No.	DECEMBER 1797		navarene iveco		CONTRACTOR (415)			Vacana		
INFLUENT (MG/L)	153.0	182.0	168.0	161.0	176.0	151.0	204.0	138.0	180.0	210.0	145.0	ND	169.8	
EFFLUENT (MG/L)	1.1	1.4	1.0	1.3	1.6	1.0	7.0	2.0	1.5	4.9	2.1	ND	2.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	12.35	14.28	11.08	15.45	17.23	12.37	75.46	ND	12.88	45.61	20.81	ND	24.40	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.6	5.3	4.6	4.0	4.1	3.8	4.6	4.6	3.6	5.3	4.1	ND	4.4	
EFFLUENT (MG/L)	0.2	0.2	0.3	0.1	0.3	0.1	1.0	0.8	0.2	0.3	0.4	ND	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.24	2.04	3.32	1.18	3.23	1.23	10.78	ND	1.71	2.79	3.96	ND	4.24	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: DUNNVILLE

PLANT

: DUNNVILLE WPCP

WORKS NUMBER

: 120001443

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

7.72 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

: HALDIMAN-NORFOLK, REG. MUN. OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: GRAND RIVER

MINOR BASIN

: ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 5,182

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	4.20	3.80	4.40	5.17	5.43	4.78	3.46	4.08	3.69	3.51	5.10	3.80	4.29	
BOD5 INFLUENT (MG/L)	90.0	67.0	43.0	171.0	87.0	ND	106.0	175.0	144.0	175.0	258.0	127.0	131.2	
EFFLUENT (MG/L)	6.0	14.7	6.0	9.8	4.9	ND	4.2	4.8	6.2	5.0	9.5	5.9	7.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	25.20	55.86	26.40	50.66	26.60	ND	14.53	19.58	22.87	17.55	48.45	22.42	30.03	
SUSPENDED SOLIDS INFLUENT (MG/L)	122.0	126.0	121.0	157.0	111.0	120.0	94.0	99.0	97.0	92.0	111.0	130.0	115.0	
EFFLUENT (MG/L)	13.9	27.4	8.0	12.3	12.6	14.5	6.3	7.9	7.2	6.2	6.8	8.8	11.0	
CONCENTRATION LIMIT (MG/L)										The same of the sa			25.0	
LOADING (KG/D)	58.38	104.12	35.20	63.59	68.41	69.31	21.79	32.23	26.56	21.76	34.68	33.44	47.19	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.0	4.7	5.0	4.6	4.4	3.8	4.5	5.1	4.6	4.6	7.0	4.8	4.8	
EFFLUENT (MG/L)	0.8	ND	0.7	0.5	0.6	2.6×	0.4	0.6	0.6	0.9	0.5	0.5	0.8	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.8	
LOADING (KG/D)	3.36	ND	3.08	2.58	3.25	12.42	1.38	2.44	2.21	3.15	2.55	1.90	3.43	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED

1989/06

1989/06

1989/06

MUNICIPALITY : DUNNVILLE

PLANT : OSWEGO PARK LAGOON

WORKS NUMBER : 110003068

TREATMENT : CONVENTIONAL LAGOON ANNUAL

:

DESIGN CAPACITY : 0.04 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : HALDIMAN-NORFOLK, REG. MUN.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OSWEGO CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 232

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5	2013/21999													
INFLUENT (MG/L)	ND	229.0	ND	466.0	193.0	ND	ND	266.0	272.0	ND	148.0	205.0	254.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	9.2	ND	ND	ND	ND	ND	ND	ND	9.2	V.
CONCENTRATION LIMIT (MG/L)													30.0	(i)
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	270.0	90.0	ND_	362.0	266.0	ND	ND	160.0	ND	ND	174.0	306.0	232.6	-
EFFLUENT (MG/L)	ND_	ND	ND_	ND	9.2	ND	ND	ND	ND _	ND	ND	ND	9.2	
CONCENTRATION LIMIT (MG/L)											50.5-91 W-56.110.110.00-0-1.		40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS										3/17/1				
INFLUENT (MG/L)	ND	ND	ND	11.6	ND	ND	ND	ND	ND	ND	11.6	ND	11.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY : ELORA

PLANT : ELORA WPCP WORKS NUMBER : 110000178

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 3.06 (1000 M3)

REGION : WEST CENTRAL DISTRICT : WELLINGTON OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : GRAND RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 3,129

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.35	1.32	1.39	1.50	1.43	1.50	1.42	1.29	1.35	1.16	1.48	1.46	1.39	9 83
BOD5 INFLUENT_(MG/L)	114.0	136.0	127.0	117.0	124.0	110.0	152.0	157.0	150.0	148.0	179.0	150.0	138.7	
EFFLUENT (MG/L)	3.3	3.2	1.3	2.2	5.0	2.1	0.6	0.7	0.4	0.7	3.2	4.8	2.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.45	4.22	1.80	3.30	7.15	3.15	0.85	0.90	0.54	0.81	4.73	7.00	3.20	
SUSPENDED SOLIDS INFLUENT (MG/L)	158.0	198.0	163.0	143.0	158.0	120.0	178.0	172.0	180.0	142.0	143.0	144.0	158.3	
EFFLUENT (MG/L)	8.9	8.7	7.6	8.8	10.0	6.8	4.4	5.1	5.5	4.4	5.3	7.7	6.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	12.01	11.48	10.56	13.20	14.30	10.20	6.24	6.57	7.42	5.10	7.84	11.24	9.59	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.9	6.6	7.1	5.5	6.6	3.4	6.9	6.7	7.8	7.5	6.8	6.7	6.5	
EFFLUENT (MG/L)	0.3	0.3	0.3	0.3	0.5	0.8	0.1	0.1	0.1	0.2	0.7	1.7×	0.5	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.40	0.39	0.41	0.45	0.71	1.20	0.14	0.12	0.13	0.23	1.03	2.48	0.70	

SUMMARY COMPLIES PARM CRITERIA WITH CONC BOD 25.0 MG/L YES SS 25.0 MG/L YES TP 1.0 MG/L NO

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES EQUIPMENT/MAINTENANCE - MAINTENANCE PROCEDURES BEING UPGRADED

1989/12 1990/01 1990/01

START DATE END DATE COMPLIANCE

MUNICIPALITY

: FERGUS

PLANT

: FERGUS WPCP

WORKS NUMBER

: 110000249

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

5.00 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : WELLINGTON

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE MINOR BASIN

: GRAND RIVER

MA TOD BASTN

: ERIE

. CDEAT LAKES

MAJUK BASII	•	•	GKEAI	LAKES
POPULATION	SERVED	:		6,050

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	4.07	3.75	4.58	5.10	4.34	4.96	3.52	3.53	3.47	3.47	4.89	4.47	4.18	
BOD5 INFLUENT (MG/L)	75.0	130.0	119.0	78.0	117.0	97.0	110.0	146.0	122.0	219.0	112.0	115.0	120.0	
EFFLUENT (MG/L)	7.1	15.1	20.8	5.3	9.6	19.8	9.8	8.9	10.5	13.7	10.4	11.1	11.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	28.89	56.62	95.26	27.03	41.66	98.20	34.49	31.41	36.43	47.53	50.85	49.61	49.32	
SUSPENDED SOLIDS INFLUENT (MG/L)	166.0	179.0	158.0	143.0	204.0	183.0	415.0	323.0	183.0	237.0	297.0	164.0	221.0	
EFFLUENT (MG/L)	27.5	29.4	38.0	29.0	25.7	19.7	20.4	22.1	23.0	23.8	25.6	26.4	25.9*	
CONCENTRATION LIMIT (MG/L)		2,6350											25.0	
LOADING (KG/D)	111.92	110.25	174.04	147.90	111.53	97.71	71.80	78.01	79.81	82.58	125.18	118.00	108.26	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.5	5.8	3.4	3.4	6.0	3.1	4.6	5.8	6.2	7.5	4.3	1.9	4.7	
EFFLUENT (MG/L)	0.4	0.5	0.6	0.3	0.5	0.6	0.5	0.5	0.5	0.4	0.5	0.5	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	
LOADING (KG/D)	1.62	1.87	2.74	1.53	2.17	2.97	1.76	1.76	1.73	1.38	2.44	2.23	2.09	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L NO

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/06

1990/04

REMEDIAL MEASURES

COLLECTION SYSTEM - ENFORCING SEWER-USE BYLAWS

MUNICIPALITY

: FLAMBOROUGH

PLANT

: WATERDOWN WPCP

WORKS NUMBER

: 120005001

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS : EFFLUENT POLISHING

DESIGN CAPACITY

2.72 (1000 M3)

REGION DISTRICT

: WEST CENTRAL

: HAMILTON-WENTWORTH, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: GRINDSTONE CREEK

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 3,900

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	2.44	1.95	1.75	2.02	2.29	2.38	2.01	2.15	2.50	2.32	2.16	2.08	2.17	
B0D5														
INFLUENT (MG/L)	125.0	126.0	125.0	113.0	133.0	111.0	112.0	125.0	118.0	117.0	81.0	ND	116.9	l l
EFFLUENT (MG/L)	1.6	1.1	2.0	2.3	3.0	1.1	2.0	0.8	1.0	0.7	2.3	ND	1.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.90	2.14	3.50	4.64	6.87	2.61	4.02	1.72	2.50	1.62	4.96	ND	3.47	
SUSPENDED SOLIDS											************			
INFLUENT (MG/L)	150.0	161.0	145.0	269.0	165.0	158.0	154.0	147.0	171.0	134.0	116.0	ND	160.9	
EFFLUENT (MG/L)	2.3	1.0	2.3	1.7	3.0	1.6	1.0	2.2	2.0	3.7	5.5	ND	Commence of the contract of th	
CONCENTRATION LIMIT (MG/L)											5.5	ND	2.4	
LOADING (KG/D)	5.61	1.95	4.02	3.43	6.87	3.80	2.01	4.73	5.00	8.58	11.88	ND	25.0 5.21	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.1	5.1	4.7	4.6	3.9	4.1	4.7	5.3	5.0	4.6	4.2	ND	4.7	
EFFLUENT (MG/L)	0.3	0.3	0.9	0.6	0.7	0.2	0.4	0.4	0.2	0.4	0.4	ND ND	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		0.4	
LOADING (KG/D)	0.73	0.58	1.57	1.21	1.60	0.47	0.80	0.86	0.50	0.92	0.86	1.0 ND	0.87	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : FORT ERIE

PLANT : ANGER AVE.WPCP

WORKS NUMBER : 120001292

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS (1990)

:

DESIGN CAPACITY : 16.36 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NIAGARA RIVER

MINOR BASIN : ONTARIO
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 13.765

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	8.94	8.75	13.14	9.88	15.28	13.13	8.66	9.72	9.98	8.88	13.44	8.42	10.69	
BOD5	442.4		752	22.2	20.5		2 202 2	902.0	22.0				3-	(7.50
INFLUENT (MG/L)	120.0	90.0	73.0	22.0	66.0	41.0	189.0	150.0	70.0	133.0	61.0	101.0	93.0	
EFFLUENT (MG/L)	25.1	50.9	21.2	10.0	28.9	34.9	44.1	52.2	49.8	50.8	19.0	16.4	33.6×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	224.39	445.37	278.56	98.80	441.59	458.23	381.90	507.38	497.00	451.10	255.36	138.08	359.18	
SUSPENDED SOLIDS			PROCESS AND ADDRESS AND ADDRES											
INFLUENT (MG/L)	90.0	94.0	74.0	67.0	82.0	69.0	78.0	100.0	105.0	99.0	87.0	106.0	87.6	
EFFLUENT (MG/L)	27.2	34.7	26.1	29.8	25.9	27.3	33.2	37.4	39.7	37.6	10.4	15.5	28.7×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	243.16	303.62	342.95	294.42	395.75	358.44	287.51	363.52	396.20	333.88	139.77	130.51	306.80	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.9	3.4	2.7	2.5	2.5	2.3	3.3	3.0	3.8	3.6	2.2	3.2	3.0	
EFFLUENT (MG/L)	0.7	0.8	0.6	0.7	1.1*	0.4	0.8	1.0	0.8	1.1*	0.4	0.3	0.7	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	6.25	7.00	7.88	6.91	16.80	5.25	6.92	9.72	7.98	9.76	5.37	2.52	7.48	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L NO

SS 25.0 MG/L NO TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989 1990/02 1990

REMEDIAL MEASURES

COLLECTION SYSTEM - INFILTRATION PROBLEMS BEING CORRECTED
SLUDGE DISPOSAL/REMOVAL - UPGRADING SLUDGE THICKENING FACILITIES
SLUDGE DISPOSAL/REMOVAL - UPGRADING DIGESTOR
FACILITY EXPANSION/UPGRADING - UPGRADING TO SECONDARY TREATMENT

MUNICIPALITY

: FORT ERIE

PLANT

: CRYSTAL BEACH WPCP

WORKS NUMBER

: 120001283

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

3.88 (1000 M3)

REGION : WEST CENTRAL DISTRICT : NIAGARA, REG.

: NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : LAKE ERIE

MINOR BASIN

: ERIF

MAJOR BASIN POPULATION SERVED :

: GREAT LAKES 4,095

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.80	3.40	4.60	5.10	6.30	7.20	3.90	3.50	3.28	3.00	3.70	3.23	4.25	
<u>BOD5</u> INFLUENT (MG/L)	52.0	85.0	49.0	73.0	74.0	23.0	65.0	71.0	44.0	43.0	55.0	65.0	58.3	
EFFLUENT (MG/L)	7.7	17.1	14.0	13.3	9.6	8.4	29.2	12.5	22.6	17.9	6.9	15.0	14.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	29.26	58.14	64.40	67.83	60.48	60.48	113.88	43.75	74.12	53.70	25.53	48.45	61.63	
SUSPENDED SOLIDS INFLUENT (MG/L)	79.0	102.0	54.0	96.0	61.0	63.0	108.0	77.0	58.0	63.0	61.0	64.0	73.8	
EFFLUENT (MG/L)	12.6	17.6	12.4	13.6	12.7	14.8	25.5	17.6	24.7	17.7	14.5	15.6	16.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	47.88	59.84	57.04	69.36	80.01	106.56	99.45	61.60	81.01	53.10	53.65	50.38	70.55	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.0					9.2								
EFFLUENT (MG/L)	3.2	3.5	3.0	2.8	4.3	2.5	4.1	3.3	2.6	2.8	2.3	2.8	3.1	
CONCENTRATION LIMIT (MG/L)	0.5	1.1*	0.7	0.4	0.3	0.6	1.2*	0.9	1.3×	1.0_	0.5	0.5	0.8	3
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.90	3.74	3.22	2.04	1.89	4.32	4.68	3.15	4.26	3.00	1.85	1.61	3.40	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

MPLIANCE
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

MUNICIPALITY

: FORT ERIE

PLANT

: STEVENSVILLE-DOUGLASTOWN LAGOON

WORKS NUMBER

: 120003110

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

DESIGN CAPACITY

: 2.29 (1000 M3) REGION

: WEST CENTRAL

DISTRICT

: NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: NIAGARA RIVER

MINOR BASIN MAJOR BASIN : ONTARIO

POPULATION SERVED :

: GREAT LAKES 1,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.65	0.59	0.78	0.76	0.73	0.72	0.53	0.54	0.63	0.63	0.86	0.63	0.67	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	325.0	112.0	35.0	93.0	34.0	48.0	111.0	89.0	112.0	56.0	34.0	104.0	96.1	
EFFLUENT (MG/L)	6.9	10.9	11.5	6.0	12.8	2.4	5.7	10.6	6.6	9.1	6.1	8.6	8.1	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	4.48	6.43	8.97	4.56	9.34	1.72	3.02	5.72	4.15	5.73	5.24	5.41	5.43	
SUSPENDED SOLIDS INFLUENT (MG/L)	490.0	147.0	113.0	162.0	47.0	52.0	108.0	126.0	99.0	68.0	34.0	82.0	127.3	
EFFLUENT (MG/L)	9.4	24.0	50.0	14.8	19.8	8.1	14.5	50.0	46.0	6.0	4.3	12.9	21.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	6.11	14.16	39.00	11.24	14.45	5.83	7.68	27.00	28.98	3.78	3.69	8.12	14.54	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.5	ND	ND	ND	2.5	3.7	5.7	5.0	6.3	3.8	3.3	6.4	4.7	
EFFLUENT (MG/L)	2.5	ND	ND	ND	3.7	2.2	1.4	1.5	1.5	1.9	1.9	2.7	2.1	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	1.62	ND	ND	ND	2.70	1.58	0.74	0.81	0.94	1.19	1.63	1.70	1.41	

	10.4	14			
5ι	JM	м	А	R	T

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: GRAND VALLEY

PLANT

: GRAND VALLEY WPCP

WORKS NUMBER

: 110000301

TREATMENT

: OXIDATION DITCH

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.60 (1000 M3)

REGION : WEST CENTRAL DISTRICT : DUFFERIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,060

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.42	0.37	0.51	0.59	0.41	0.45	0.31	0.33	0.32	0.34	0.51	0.35	0.41	
BOD5 INFLUENT (MG/L)	214.0	177.0	136.0	168.0	132.0	93.0	125.0	147.0	225.0	240.0	220.0	229.0	175.5	
EFFLUENT (MG/L)	5.9	8.5	4.3	5.4	4.4	3.3	1.4	2.2	2.1	2.1	9.4	9.3	4.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.47	3.14	2.19	3.18	1.80	1.48	0.43	0.72	0.67	0.71	4.79	3.25	2.01	
SUSPENDED SOLIDS INFLUENT (MG/L)	98.0	153.0	97.0	100.0	131.0	116.0	219.0	176.0	148.0	178.0	155.0	186.0	146.4	
EFFLUENT (MG/L)	11.7	21.7	18.4	16.6	12.4	9.6	8.6	7.3	7.8	10.7	16.4	18.5	13.3	
CONCENTRATION LIMIT (MG/L)										The second second			25.0	
LOADING (KG/D)	4.91	8.02	9.38	9.79	5.08	4.32	2.66	2.40	2.49	3.63	8.36	6.47	5.45	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.8	6.5	4.4	5.3	6.2	6.0	7.4	6.7	7.6	9.0	6.5	7.9	6.5	
EFFLUENT (MG/L)	0.5	0.8	0.6	0.6	0.6	0.5	0.4	0.5	0.5	0.4	0.4	0.6	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	
LOADING (KG/D)	0.21	0.29	0.30	0.35	0.24	0.22	0.12	0.16	0.16	0.13	0.20	0.21	0.21	

	SUMMA	ARY
	7. 30.10.00.00.00.00.00.00.00.00.00.00.00.00	COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: GRIMSBY

: BAKER ROAD WPCP PLANT

WORKS NUMBER

: 120001684

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

18.18 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : LAKE ONTARIO MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 19,850

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE! EXCEE!
AVG. DAILY FLOW (1000 M3)	12.26	11.24	14.46	15.76	17.97	14.86	11.65	10.56	11.82	11.72	14.41	11.46	13.18	
BOD5 INFLUENT (MG/L)	137.0	157.0	131.0	106.0	131.0	168.0	216.0	178.0	206.0	170.0	166.0	187.0	162.8	
EFFLUENT (MG/L)	25.6	26.1	38.2	31.7	15.8	19.3	23.8	9.5	11.6	12.5	21.2	30.3	22.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	313.85	293.36	552.37	499.59	283.92	286.79	277.27	100.32	137.11	146.50	305.49	347.23	291.28	
SUSPENDED SOLIDS						-								
INFLUENT (MG/L)	184.0	210.0	177.0	162.0	158.0	185.0	201.0	201.0	201.0	183.0	183.0	193.0	186.5	
EFFLUENT (MG/L)	6.5	9.2	7.2	4.7	9.8	8.9	7.7	6.2	5.3	8.5	9.9	5.7	7.5	
CONCENTRATION LIMIT (MG/L)							v						25.0	
LOADING (KG/D)	79.69	103.40	104.11	74.07	176.10	132.25	89.70	65.47	62.64	99.62	142.65	65.32	98.85	
TOTAL PHOSPHOROUS				W				2		112222				
INFLUENT (MG/L)	7.5	6.7	4.8	4.4	4.6	6.3	7.4	7.6	5.9	6.4	7.2	7.3	6.3	
EFFLUENT (MG/L)	0.2	0.5	0.2	0.2	0.5	0.4	0.4	0.3	0.2	0.4	1.0	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.45	5.62	2.89	3.15	8.98	5.94	4.66	3.16	2.36	4.68	14.41	4.58	5.27	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: GRIMSBY

:

PLANT

: BIGGAR LAGOON

WORKS NUMBER

: 120001256

TREATMENT

: AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

DESIGN CAPACITY

1.13 (1000 M3)

REGION

: WEST CENTRAL

DISTRICT

: NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: LAKE ONTARIO

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

1,075

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.87	0.81	1.15	1.11	1.25	1.12	0.75	0.73	1.66	1.28	1.20	0.74	1.06	
LAGOON DISCHARGE	26.94	22.78	35.63	33.09	38.77	33.49	23.06	22.77	49.58	39.56	35.95	22.90	32.04	
BOD5 INFLUENT (MG/L)	191.0	184.0	221.0	116.0	172.0	232.0	338.0	230.0	1,653.0	1,314.0	586.0	476.0	476.1	
EFFLUENT (MG/L)	8.0	11.1	11.7	17.6	5.1	8.9	4.2	3.9		3.4	4.4	7.1	7.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	6.96	8.99	13.45	19.53	6.37	9.96	3.15	2.84	8.30	4.35	5.28	5.25	7.95	
SUSPENDED SOLIDS INFLUENT (MG/L)	101.0	139.0	89.0	89.0	99.0	113.0	128.0	257.0	507.0	293.0	124.0	165.0	175.3	
EFFLUENT (MG/L)	6.5	6.4	82.5	20.5	7.4	3.6	4.4	4.6	5.3	6.2	10.5	9.3	13.9	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	5.65	5.18	94.87	22.75	9.25	4.03	3.30	3.35	8.79	7.93	12.60	6.88	14.73	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.7	8.5	4.1	4.5	4.5	4.3	4.2	6.2	9.3	7.5	3.6	8.1	5.8	
EFFLUENT (MG/L)	4.5	3.3	3.2	2.9	2.5	0.7	1.0	1.8	3.5	2.9	2.2	2.4	2.6	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	3.91	2.67	3.68	3.21	3.12	0.78	0.75	1.31	5.81	3.71	2.64	1.77	2.76	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

COLLECTION SYSTEM - SEWAGE UPGRADE UNDERWAY

MUNICIPALITY

: GUELPH

PLANT

: GUELPH WPCP

WORKS NUMBER

: 120003094

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

54.55 (1000 M3)

REGION DISTRICT

: WEST CENTRAL : WELLINGTON

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: SPEED RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

				O	
POPUL	ATION	SERVED	:		82,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	44.34	44.49	44.04	46.61	43.68	45.08	35.73	32.88	46.96	45.09	44.91	44.91	43.23	
BOD5 INFLUENT (MG/L)	157.0	179.0	207.0	164.0	166.0	166.0	171.0	205.0	240.0	166.0	194.0	194.0	184.1	
EFFLUENT (MG/L)	4.2	4.3	8.3	11.5	7.1	5.9	4.6	4.5	3.9	6.5	6.2	3.0	5.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	186.22	191.30	365.53	536.01	310.12	265.97	164.35	147.96	183.14	293.08	278.44	134.73	250.73	
SUSPENDED SOLIDS INFLUENT (MG/L)	187.0	194.0	196.0	171.0	178.0	211.0	191.0	238.0	306.0	208.0	221.0	192.0	207.8	
EFFLUENT (MG/L)	11.4	9.5	10.8	12.0	6.9	8.3	7.0	5.9	7.9	8.2	6.3	7.9	8.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	505.47	422.65	475.63	559.32	301.39	374.16	250.11	193.99	370.98	369.73	282.93	354.78	367.46	1
TOTAL PHOSPHOROUS											- 1400 100			
INFLUENT (MG/L)	7.6	7.7	7.4	7.1	6.6	6.3	5.3	6.9	6.1	5.8	7.2	7.3	6.8	
EFFLUENT (MG/L)	0.8	0.9	0.6	0.5	0.4	0.4	0.5	0.6	0.6	0.5	0.7	0.7	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	35.47	40.04	26.42	23.30	17.47	18.03	17.86	19.72	28.17	22.54	31.43	31.43	25.94	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

REMEDIAL MEASURES

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/10

OPERATIONAL/PROCESS - MINOR PROCESS/OPERATIONAL MODIFICATION

MUNICIPALITY

: HALDIMAND

PLANT

: CALEDONIA WPCP

WORKS NUMBER

: 120001452

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

:

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

2.27 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : HALDIMAN-NORFOLK, REG. MUN.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 5,655

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.50	2.40	3.18	3.45	2.68	1.87	2.36	2.19	2.39	2.26	2.79	2.44	2.54	
BOD5 INFLUENT (MG/L)	115.0	130.0	91.0	111.0	110.0	136.0	293.0	207.0	172.0	225.0	213.0	124.0	160.6	
EFFLUENT (MG/L)	19.1	17.3	26.6	21.6	26.1	34.0	45.2	19.7	18.7	15.5	9.5	16.4	22.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	47.75	41.52	84.58	74.52	69.94	63.58	106.67	43.14	44.69	35.03	26.50	40.01	57.15	
SUSPENDED SOLIDS INFLUENT (MG/L)	174.0	255.0	211.0	266.0	202.0	253.0	236.0	350.0	305.0	278.0	200.0	200.0	244.2	
EFFLUENT (MG/L)	13.3	17.4	16.0	13.8	22.0	18.3	15.9	11.3	19.8	10.8	6.2	9.0	14.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	33.25	41.76	50.88	47.61	58.96	34.22	37.52	24.74	47.32	24.40	17.29	21.96	36.83	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.6	6.5	6.2	5.5	5.6	6.9	6.3	6.9	6.9	7.3	6.3	7.4	6.5	
EFFLUENT (MG/L)	0.3	0.3	0.3	0.4	0.3	0.3	0.3	0.2	0.4	0.3	0.3	0.3	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	
LOADING (KG/D)	0.75	0.72	0.95	1.38	0.80	0.56	0.70	0.43	0.95	0.67	0.83	0.73	0.76	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : HALDIMAND

: CAYUGA WPCP PLANT WORKS NUMBER : 110000089

TREATMENT : OXIDATION DITCH

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 0.90 (1000 M3) REGION : WEST CENTRAL

DISTRICT : HALDIMAN-NORFOLK, REG. MUN.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,258

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.53	0.45	0.62	0.69	0.67	0.55	0.42	0.35	0.43	0.42	0.62	0.42	0.51	
BOD5 INFLUENT (MG/L)	91.0	106.0	117.0	68.0	105.0	152.0	165.0	283.0	169.0	239.0	133.0	156.0	148.7	
EFFLUENT (MG/L)	5.8	2.3	2.8	7.7	0.9	0.5	1.3	0.5	0.6	0.7	2.3	0.3	2.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.07	1.03	1.73	5.31	0.60	0.27	0.54	0.17	0.25	0.29	1.42	0.12	1.07	
SUSPENDED SOLIDS INFLUENT (MG/L)	100.0	173.0	166.0	120.0	130.0	137.0	190.0	501.0	222.0	170.0	130.0	177.0	184.7	
EFFLUENT (MG/L)	10.5	10.3	10.0	18.0	11.3	0.5	3.5	4.0	10.0	1.7	7.8	4.7	7.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	5.56	4.63	6.20	12.42	7.57	0.27	1.47	1.40	4.30	0.71	4.83	1.97	3.93	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.7	6.2	7.2	5.3	6.7	7.7	11.5	10.2	8.6	0.8	7.1	7.3	7.0	
EFFLUENT (MG/L)	0.3	0.5	0.4	0.5	0.4	0.2	0.3	0.5	0.5	0.3	0.4	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.15	0.22	0.24	0.34	0.26	0.11	0.12	0.17	0.21	0.12	0.24	0.16	0.20	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: HALDIMAND

PLANT

: HAGERSVILLE WPCP

WORKS NUMBER

: 110001024

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: AEROBIC SINGLE STAGE

DESIGN CAPACITY

: 1.00 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

: HALDIMAN-NORFOLK, REG. MUN.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: SANDUSK CREEK

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 2,268

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.27	1.25	1.73	1.64	1.39	1.15	0.72	0.66	0.89	0.81	1.36	0.91	1.15	
BOD5 INFLUENT (MG/L)	251.0	156.0	292.0	250.0	125.0	242.0	147.0	344.0	150.0	317.0	185.0	293.0	229.3	
EFFLUENT (MG/L)	5.6	10.4	14.5	7.9	3.6	19.9	6.6	34.6	31.5	13.7	16.7	7.7	14.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.11	13.00	25.08	12.95	5.00	22.88	4.75	22.83	28.03	11.09	22.71	7.00	16.56	
SUSPENDED SOLIDS INFLUENT (MG/L)	133.0	129.0	133.0	150.0	65.0	126.0	141.0	240.0	131.0	200.0	136.0	191.0	147.9	
EFFLUENT (MG/L)	7.8	7.8	15.3	18.5	7.5	8.5	6.5	13.0	8.0	9.0	9.5	7.7	9.9	
CONCENTRATION LIMIT (MG/L)			-										25.0	
LOADING (KG/D)	9.90	9.75	26.46	30.34	10.42	9.77	4.68	8.58	7.12	7.29	12.92	7.00	11.39	
IOTAL PHOSPHOROUS INFLUENT (MG/L)	9.6	4.9	7.6	8.2	5.1	8.7	6.9	6.9	6.6	9.0	6.5	8.7	7.4	
EFFLUENT (MG/L)	0.3	0.2	0.6	0.3	0.3	0.4	0.5	1.0	0.8	0.4	0.5	0.4	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	
LOADING (KG/D)	0.38	0.25	1.03	0.49	0.41	0.46	0.36	0.66	0.71	0.32	0.68	0.36	0.58	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: HAMILTON

REGION : WEST CENTRAL

PLANT

: WOODWARD AVE.WPCP

DISTRICT

: HAMILTON-WENTWORTH, REG. MUN.

WORKS NUMBER

: 120001504

OPERATING AUTHORITY : MUNICIPAL

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

(OFFSITE CHEM.ADDN)

WATERCOURSE MINOR BASIN : REDHILL CREEK : ONTARIO

DESIGN CAPACITY

: 409.14 (1000 M3) MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

300,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	233.66	276.85	345.50	316.86	345.95	360.95	338.22	309.13	285.03	283.22	339.13	292.31	310.57	
BOD5 INFLUENT (MG/L)	189.0	227.0	182.0	158.0	119.0	125.0	91.0	107.0	105.0	132.0	106.0	151.0	141.0	
EFFLUENT (MG/L)	12.0	8.0	13.0	12.0	9.0	7.0	3.0	4.0	6.0	7.0	4.0	5.0	7.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2803.92	2214.80	4491.50	3802.32	3113.55	2526.65	1014.66	1236.52	1710.18	1982.54	1356.52	1461.55	2329.28	
SUSPENDED SOLIDS INFLUENT (MG/L)	482.0	586.0	477.0	384.0	304.0	335.0	365.0	249.0	241.0	357.0	259.0	401.0	370.0	
EFFLUENT (MG/L)	25.0	13.0	28.0	19.0	17.0	17.0	12.0	THE RESERVE OF THE PARTY OF THE		The second section of the contract of	9.0	8.0	15.5	
CONCENTRATION LIMIT (MG/L)		1 11 0							77.27				25.0	
LOADING (KG/D)	5841.50	3599.05	9674.00	6020.34	5881.15	6136.15	4058.64	3091.30	4275.45	3681.86	3052.17	2338.48	4813.84	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.8	6.8	5.6	4.8	3.9	4.3	4.6	4.0	3.5	5.8	3.9	5.7	4.8	
EFFLUENT (MG/L)	0.7	0.3	0.5	0.4	0.5	0.4	0.5	0.4		0.4	0.3	0.3	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0		
LOADING (KG/D)	163.56	83.05			THE RESIDENCE OF THE PARTY AND		The second secon				management of the same		124.23	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD

25.0 MG/L YES 25.0 MG/L YES

SS TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: HARRISTON

PLANT

: HARRISTON LAGOON

WORKS NUMBER

: 110000329

TREATMENT

: AERATED LAGOON

: SEASONAL DISCHARGE

DESIGN CAPACITY

: 0.99 (1000 M3) REGION : WEST CENTRAL DISTRICT

: WELLINGTON OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MAITLAND RIVER

MINOR BASIN : HURON

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 1,963

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.76	1.44	1.85	1.89	1.48	1.60	1.00	1.15	1.19	1.28	1.81	1.41	1.49	
LAGOON DISCHARGE	51.63	26.20	22.37	69.45	ND	ND	ND	ND	ND	ND	24.36	46.64	40.11	
BOD5 INFLUENT (MG/L)	116.0	236.0	119.0	133.0	128.0	124.0	167.0	140.0	144.0	156.0	87.0	181.0	144.3	
EFFLUENT (MG/L)	3.6	8.3	7.0	9.1	ND	ND	ND	ND	ND	ND	2.5	10.0	6.8	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	6.33	11.95	12.95	17.19	ND	ND	ND	ND	ND	ND	4.52	14.10	10.13	
SUSPENDED SOLIDS INFLUENT (MG/L)	198.0	434.0	197.0	211.0	177.0	195.0	157.0	192.0	259.0	231.0	64.0	196.0	209.3	
EFFLUENT (MG/L)	4.1	8.6	6.0	10.8	ND	ND	ND	ND	ND	ND	6.0	12.4	8.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	7.21	12.38	11.10	20.41	ND	ND	ND	ND	ND	ND	10.86	17.48	11.92	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	8.3	13.9	7.1	7.4	6.6	7.7	7.1	6.9	7.3	7.8	4.7	7.4	7.7	
EFFLUENT (MG/L)	0.2	0.2	0.1	0.2	ND	ND	ND	ND	ND	ND ND	0.6	0.9	0.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.35	0.28	0.18	0.37	ND	ND	ND	ND	ND	ND	1.08	1.26	0.60	

SUMMARY COMPLIES PARM CRITERIA WITH CONC BOD 30.0 MG/L YES SS 40.0 MG/L YES TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: KITCHENER

PLANT

WORKS NUMBER

: KITCHENER WPCP

: 110000374

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

122.74 (1000 M3) :

REGION : WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE

: GRAND RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

POPULATION SERVED :

: GREAT LAKES 138,271

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	73.02	69.63	71.42	73.46	70.28	73.80	63.84	63.74	63.97	63.07	69.22	61.66	68.09	
BOD5														
INFLUENT (MG/L)	218.0	207.0	193.0	226.0	242.0	194.0	185.0	184.0	170.0	204.0	281.0	294.0	216.5	I
EFFLUENT (MG/L)	8.9	8.4	6.6	15.3	16.3	15.7	15.7	9.6	10.5	13.7	16.5	18.0	12.9	
CONCENTRATION LIMIT (MG/L)													25.0	10.0
LOADING (KG/D)	649.87	584.89	471.37	1123.93	1145.56	1158.66	1002.28	611.90	671.68	864.05	1142.13	1109.88	878.36	
SUSPENDED SOLIDS												"		
INFLUENT (MG/L)	250.0	236.0	189.0	221.0	239.0	240.0	231.0	252.0	249.0	240.0	261.0	261.0	239.1	
EFFLUENT (MG/L)	6.3	7.1	5.0	4.4	5.4	4.8	10.8	6.7	4.1	5.8	4.2	3.3	5.7	
CONCENTRATION LIMIT (MG/L)													25.0	7
LOADING (KG/D)	460.02	494.37	357.10	323.22	379.51	354.24	689.47	427.05	262.27	365.80	290.72	203.47	388.11	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.6	7.0	7.0	6.1	6.5	6.5	6.9	ND	7.4	7.0	6.8	7.7	6.9	
EFFLUENT (MG/L)	0.7	0.6	0.6	0.7	0.9	0.8	1.0	1.0	1.0	0.7	0.6	0.4	0.8	

1.0

63.25

1.0

59.04

CI	114			D١
- 1	JM	м	Δ	R١

COMPLIES

1.0

51.11 41.77

1.0

1.0

42.85

1.0

51.42

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP 1.0 MG/L YES NOTE:

1.0

63.84

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

1.0

63.97 44.14

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

1.0

1.0

41.53

1.0

54.47

24.66

ND - NO DATA

1.0

63.74

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

CONCENTRATION LIMIT (MG/L)

LOADING (KG/D)

MUNICIPALITY

: MOUNT FOREST

PLANT

: MOUNT FOREST WPCP

WORKS NUMBER

: 120001381

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

2.45 (1000 M3)

REGION DISTRICT

: WEST CENTRAL : WELLINGTON OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: SAUGEEN RIVER

MINOR BASIN MAJOR BASIN

: HURON : GREAT LAKES

POPULATION SERVED : 3,599

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.32	1.86	3.00	2.81	1.97	1.74	1.37	1.44	1.56	1.78	2.41	1.81	2.01	
BOD5 INFLUENT (MG/L)	75.0	97.0	99.0	48.0	96.0	111.0	204.0	165.0	129.0	122.0	97.0	111.0	112.8	
EFFLUENT (MG/L)	1.5	2.3	1.3	1.1	8.9	7.6	3.0	1.9	1.8	0.8	3.4	1.0	2.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.48	4.27	3.90	3.09	17.53	13.22	4.11	2.73	2.80	1.42	8.19	1.81	5.83	
SUSPENDED SOLIDS INFLUENT (MG/L)	54.0	102.0	132.0	162.0	153.0	143.0	191.0	193.0	146.0	122.0	93.0	256.0	145.6	
EFFLUENT (MG/L)	4.0	7.0	4.5	9.0	14.7	7.3	6.7	5.7	5.0	4.1	5.6	4.1	6.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.28	13.02	13.50	25.29	28.95	12.70	9.17	8.20	7.80	7.29	13.49	7.42	13.07	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.2	ND	4.5	3.2	5.7	5.5	7.3	6.9	6.0	5.1	4.8	6.6	5.4	
EFFLUENT (MG/L)	0.2	ND	0.2	0.2	0.7	0.6	0.3	0.3	0.3	0.2	0.2	0.2	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.3	
LOADING (KG/D)	0.46	ND	0.60	0.56	1.37	1.04	0.41	0.43	0.46	0.35	0.48	0.36	0.60	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : NANTICOKE

PLANT : JARVIS LAGOON

WORKS NUMBER : 120001434

: CONVENTIONAL LAGOON SEASONAL TREATMENT

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY : 0.85 (1000 M3) REGION : WEST CENTRAL

DISTRICT : HALDIMAN-NORFOLK, REG. MUN. OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SANDUSK CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,174

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.92	0.90	1.01	1.18	0.96	0.97	0.72	0.87	0.53	0.54	0.71	0.63	0.83	
LAGOON DISCHARGE	ND	ND	82.96	ND	ND	ND	ND	ND	ND	ND	ND	ND	82.96	
BOD5 INFLUENT (MG/L)	91.0	103.0	210.0	54.0	96.0	176.0	130.0	191.0	233.0	197.0	ND	191.0	152.0	
EFFLUENT (MG/L)	ND	ND	16.9	ND	ND	ND	ND	ND	ND	ND	ND	22.0	19.5	
CONCENTRATION LIMIT (MG/L)			261						***************************************	***************************************			25.0	
LOADING (KG/D)	ND	ND	17.06	ND	ND	ND	ND	ND	ND	ND	ND	13.86	16.19	
SUSPENDED SOLIDS INFLUENT (MG/L)	147.0	199.0	212.0	105.0	99.0	180.0	176.0	278.0	241.0	390.0	ND	208.0	203.2	
EFFLUENT (MG/L)	ND	ND	37.9	ND	ND	ND	ND	ND	ND	ND	ND	30.5	34.2×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	38.27	ND	ND	ND	ND	ND	ND	ND	ND	19.21	28.39	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.0	7.4	7.2	5.0	6.6	6.3	7.1	8.8	10.7	11.0	ND	9.8	7.9	
EFFLUENT (MG/L)	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	0.50	ND	ND	ND	ND	ND	ND	ND	ND	0.12	0.33	

SUMMARY

COMPLIES

CRITERIA WITH CONC

25.0 MG/L YES SS 25.0 MG/L NO

TP 1.0 MG/L YES

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/08 1990

FACILITY EXPANSION/UPGRADING - CONSTRUCTION COMPLETE

MUNICIPALITY

: NANTICOKE

PL ANT

: PORT DOVER WPCP

WORKS NUMBER

: 110000604

TREATMENT

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

4.09 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

: HALDIMAN-NORFOLK, REG. MUN. OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE ERIE

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 4,750

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.01	3.55	3.52	3.98	3.00	2.87	2.64	3.09	3.67	134.45	4.37	3.52	14.31	
BOD5														
INFLUENT (MG/L)	65.0	104.0	203.0	53.0	142.0	80.0	140.0	183.0	230.0	166.0	129.0	83.0	131.5	
EFFLUENT (MG/L)	14.3	32.1	12.7	10.3	16.3	11.2	9.9	20.7	89.5	66.7	26.8	36.0	28.9	
LOADING (KG/D)	43.04	113.95	44.70	40.99	48.90	32.14	26.13	63.96	328.46	8967.81		The same of the same of the same of	413.56	
PERCENT REMOVAL	78	69	94	81	89	86	93	89	61	60	79	57	78	
PERCENT REMOVAL LIMITS						A -,10-(1-4							50	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	104.0	138.0	152.0	97.0	173.0	90.0	132.0	131.0	90.0	113.0	181.0	94.0	124.6	I
EFFLUENT (MG/L)	25.5	18.3	25.6	14.3	23.8	12.9	12.8	21.0	44.8	45.3	23.9	24.8	24.4	
LOADING (KG/D)	76.75	64.96	90.11	56.91	71.40	37.02	33.79	64.89	164.41	6090.58	104.44	87.29	349.16	
PERCENT REMOVAL	75	87	83	85	86	86	90	84	50	60	87	74	80	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.7	4.3	6.7	2.9	5.8	3.8	5.3	5.5	8.7	5.7	5.1	3.9	5.1	
EFFLUENT (MG/L)	0.6	0.5	0.5	0.3	0.5	0.3	0.4	0.8	1.9		4	0.7	0.7	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.80	1.77	1.76	1.19	1.50	0.86	1.05	2.47	6.97	the second contract of the second con-	3.05	2.46	10.02	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 50%

YES YES

SS 70% TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

ANTICIPATED

FACILITY EXPANSION/UPGRADING - UPGRADING TO SECONDARY TREATMENT

1991/03

1992/09

1993

MUNICIPALITY

: NANTICOKE

PLANT

: STELCO IND. PARK LAGOON

WORKS NUMBER

: 110003371

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.50 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

: HALDIMAN-NORFOLK, REG. MUN.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: CENTER CR

MINOR BASIN MAJOR BASIN : ERIE

: GREAT LAKES

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.17	0.19	0.17	0.21	0.23	0.25	0.21	0.23	0.21	0.26	0.23	0.16	0.21	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	44.73	ND	ND	44.73	
BOD5														
INFLUENT (MG/L)	76.0	9.0	13.0	9.0	55.0	13.0	6.0	3.0	14.0	9.0	5.0	56.0	22.3	1
EFFLUENT (MG/L)	1.7	ND	ND	ND	ND	ND	ND	ND	ND	2.9	ND	ND	2.3	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	0.28	ND	ND	ND	ND	ND	ND	ND	ND	0.75	ND	ND	0.48	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	153.0	62.0	28.0	30.0	55.0	44.0	29.0	15.0	36.0	16.0	34.0	263.0	63.8	
EFFLUENT (MG/L)	4.2	ND	ND	ND	ND	ND	ND	ND	ND	3.9	ND	ND	4.1	
CONCENTRATION LIMIT (MG/L)							33-30-17-11-23-77-2-3						40.0	
LOADING (KG/D)	0.71	ND	ND	ND	ND	ND	ND	ND	ND	1.01	ND	ND	0.86	
TOTAL PHOSPHOROUS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
INFLUENT (MG/L)	3.5	5.8	1.3	0.8	4.0	0.8	1.4	4.0	ND	0.6	1.2	1.1	2.2	
EFFLUENT (MG/L)	0.6	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	ND	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.10	ND	ND	ND	ND	ND	ND	ND	ND	0.05	ND	ND	0.08	

### SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY PL ANT

: NANTICOKE

: TOWNSEND LAGOON

WORKS NUMBER

: 110003424

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

2.095 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

: HALDIMAN-NORFOLK, REG. MUN. OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : NANTICOKE CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 537

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.13	0.14	0.16	0.25	0.15	0.16	0.16	0.13	0.16	0.20	0.20	0.17	0.17	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	ND	N/S	ND.											
EFFLUENT (MG/L)	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
STREET, STREET	ND	ND	ND	ND ND	ND	ND	ND	ND	ND _	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)						****							25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	ND	ND	ND		Water Control		1942					
EFFLUENT (MG/L)	ND ND	ND				ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)		NU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS				1.00										
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		,
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND		
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND		

01	114	4	•		v
Sι	ᄪ	М	A	ĸ	T

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L NO DIRECT DISCHARGE SS 25.0 MG/L NO DIRECT DISCHARGE

TP 1.0 MG/L NO DIRECT DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : NANTICOKE

PLANT : WATERFORD LAGOON

WORKS NUMBER : 110001195

TREATMENT : AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY 2.13 (1000 M3) REGION : WEST CENTRAL

DISTRICT : HALDIMAN-NORFOLK, REG. MUN.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : NANTICOKE CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 2,550

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.22	1.21	1.15	1.01	0.92	0.94	1.15	1.55	1.29	1.47	1.39	0.74	1.17	
LAGOON DISCHARGE	37.88	33.86	35.78	30.38	28.65	28.77	35.77	48.12	38.71	45.69	41.87	22.92	35.70	
BOD5														
INFLUENT (MG/L)	114.0	95.0	103.0	94.0	94.0	114.0	128.0	139.0	131.0	125.0	148.0	105.0	115.8	
EFFLUENT (MG/L)	9.2	15.0	17.1	14.8	16.7	9.4	10.6	7.7	16.9	18.5	19.2	14.6	14.1	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	11.22	18.15	19.66	14.94	15.36	8.83	12.19	11.93	21.80	27.19	26.68	10.80	16.50	
SUSPENDED SOLIDS		700 700 700												
INFLUENT (MG/L)	141.0	115.0	152.0	135.0	119.0	141.0	129.0	108.0	124.0	102.0	137.0	97.0	125.0	
EFFLUENT (MG/L)	15.7	27.1	20.5	16.6	32.5	32.7_	17.0	11.5	36.5	28.4	31.1	22.4	24.3	No.
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	19.15	32.79	23.57	16.76	29.90	30.73	19.55	17.82	47.08	41.74	43.22	16.57	28.43	
TOTAL PHOSPHOROUS	pp. 44	=== W	e ==					9,00						
INFLUENT (MG/L)	5.7	5.0	5.5	5.3_	5.7	4.9	6.1	6.7	5.0	5.5	6.0	5.4	5.6	
EFFLUENT (MG/L)	0.2	0.4	0.4	0.3	0.3	0.2	0.3	0.2	0.2	0.3	0.4	0.3	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	41	
LOADING (KG/D)	0.24	0.48	0.46	0.30	0.27	0.18	0.34	0.31	0.25	0.44	0.55	0.22	0.35	

# SUMMARY

COMPLIES PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES TP

1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: NIAGARA FALLS

PLANT

: STAMFORD WPCP

WORKS NUMBER

: 120001363

TREATMENT

: ROTATING BIOLOGICAL CONTACTOR : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 58.18 (1000 M3) REGION

: WEST CENTRAL

DISTRICT

: NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

: CHIPPAWA POWER CANAL

WATERCOURSE MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 67,835

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	52.01	47.80	58.40	60.30	68.20	64.80	56.61	52.74	53.60	54.50	63.04	44.55	56.38	
BOD5 INFLUENT (MG/L)	43.0	87.0		138.0		46.0	96.0	84.0	98.0	88.0	46.0	67.0	78.3	
EFFLUENT (MG/L)	13.0	15.0	11.5	16.0	14.0	10.0	14.0	24.0	13.0	15.0	21.0	17.2	15.3	
CONCENTRATION LIMIT (MG/L)						-							25.0	
LOADING (KG/D)	676.13	717.00	671.60	964.80	954.80	648.00	792.54	1265.76	696.80	817.50	1323.84	766.26	862.61	
<u>SUSPENDED SOLIDS</u> INFLUENT (MG/L)	98.0	124.0	166.0	113.0	122.0	144.0	136.0	110.0	108.0	5.0	80.0	87.0	107.8	
EFFLUENT (MG/L)	20.6	18.0	23.0	17.0	16.0	17.0	18.0	18.0	19.6	18.0		17.6	18.4	
CONCENTRATION LIMIT (MG/L)							The second secon			-			25.0	
LOADING (KG/D)	1071.40	860.40	1343.20	1025.10	1091.20	1101.60	1018.98	949.32	1050.56	981.00	1134.72	784.08	1037.39	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.2	4.1	3.7	5.6	5.1	4.8	5.9	4.6	4.2	4.7				
EFFLUENT (MG/L)	0.2	0.2	The second second second	0.3	0.5	0.4	0.8	0.8	THE RESERVE OF THE PARTY OF	4.7	3.1	3.7	4.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5 1.0	1.0		0.6	0.5	
LOADING (KG/D)	10.40	9.56		18.09	34.10	25.92	45.28	42.19	26.80	54.50	1.0 37.82	1.0 26.73	28.19	

SUMMARY

COMPLIES CRITERIA WITH CONC

PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

## REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW COLLECTION SYSTEM - SEWAGE UPGRADE UNDERWAY

MUNICIPALITY

: NIAGARA-ON-THE-LAKE

PLANT

: NIAGARA-ON-THE-LAKE LAGOON

WORKS NUMBER

: 120001238

TREATMENT

: AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

:

DESIGN CAPACITY

3.84 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : LAKE ONTARIO

MINOR BASIN : ONTARIO MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

5,210

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.60	2.30	3.20	4.20	5.30	4.50	3.13	2.91	3.00	2.89	3.25	2.61	3.32	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5							7							
INFLUENT (MG/L)	104.0	45.0	104.0	46.0	117.0	94.0	97.0	130.0	189.0	207.0	110.0	100.0	111.9	ľ
EFFLUENT (MG/L)	14.0	12.0	17.4	19.8	30.0	20.0	32.0	25.0	38.0	22.0	12.0	14.1	21.4	
CONCENTRATION LIMIT (MG/L)													30.0	<del> </del>
LOADING (KG/D)	36.40	27.60	55.68	83.16	159.00	90.00	100.16	72.75	114.00	63.58	39.00	36.80	71.05	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	82.0	141.0	132.0	70.0	144.0	148.0	116.0	142.0	177.0	221.0	115.0	157.0	137.1	
EFFLUENT (MG/L)	17.0	15.0	22.5	35.0	26.0	30.0	33.0	34.0	35.0	28.0	27.0	14.5	26.4	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	44.20	34.50	72.00	147.00	137.80	135.00	103.29	98.94	105.00	80.92	87.75	37.84	87.65	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.6	6.5	6.1	3.3	6.2	6.8	6.5	5.8	8.5	6.3	5.6	3.9	6.0	1
EFFLUENT (MG/L)	5.3	6.0	6.0	3.8	3.9	4.6	3.1	3.0	3.3	2.9	3.9	3.5	4.1	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	13.78	13.80	19.20	15.96	20.67	20.70	9.70	8.73	9.90	8.38	12.67	9.13	13.61	

е.	ш	•		n	•
Э.	JM	м	A	ĸ	T

COMPLIES

CRITERIA WITH CONC PARM

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: NORFOLK

PLANT

: PORT ROWAN LAGOON

WORKS NUMBER

: 110001113

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.25 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

: HALDIMAN-NORFOLK, REG. MUN. OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : DEDRICH CREEK

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 744

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.27	0.25	0.28	0.29	0.27	0.29	0.26	0.25	0.26	0.25	0.30	0.27	0.27	
LAGOON DISCHARGE	ND	ND	ND	93.35	ND	ND	ND	ND	ND	ND	ND	ND	93.35	
BOD5 INFLUENT (MG/L)	123.0	104.0	83.0	58.0	150.0	170.0	ND	116.0	173.0	215.0	110.0	39.0	121.9	
EFFLUENT (MG/L)	ND	ND	ND	9.5	ND	ND	ND	ND	ND	ND	ND	ND	9.5	
CONCENTRATION LIMIT (MG/L)												.,,,,	25.0	
LOADING (KG/D)	ND	ND	ND	2.75	ND	ND	ND	ND	ND	ND	ND	ND	2.57	
SUSPENDED SOLIDS INFLUENT (MG/L)	190.0	198.0	96.0	50.0	132.0	127.0	ND	139.0	213.0	344.0	232.0	28.0	159.0	
EFFLUENT (MG/L)	ND	ND	ND	20.3	ND	ND	ND	ND	ND	ND	ND	ND	20.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	5.88	ND	ND	ND	ND	ND	ND	ND	ND	5.48	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	9.3	4.8	9.5	2.0	8.3	5.4	ND	5.4	8.9	13.4	5.4	2.1	6.8	
EFFLUENT (MG/L)	ND	ND	ND	0.7	ND	ND	ND	ND	ND	ND	ND	ND	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.20	ND	ND	ND	ND	ND	ND	ND	ND	0.19	

		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: NORTH DUMFRIES

PLANT WORKS NUMBER

DESIGN CAPACITY

: AYR PV WPCP

: 110001943

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

: 1.18 (1000 M3) REGION : WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: NITH RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

1,281

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.47	0.47	0.50	0.50	0.48	0.50	0.50	0.48	0.52	0.39	0.50	0.54	0.49	
BOD5		74.0	or o		71.0		<i>(</i> 7.0					2020 32		
INFLUENT (MG/L)	64.0	74.0	95.0	68.0	31.0	91.0	67.0	67.0	37.0_	58.0	107.0	28.0	65.6	
EFFLUENT (MG/L)	7.9	2.4	5.3	2.5	7.3	4.5	4.5	8.9	21.5	11.9	7.8	21.0	8.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.71	1.12	2.65	1.25	3.50	2.25	2.25	4.27	11.18	4.64	3.90	11.34	4.31	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	32.0	109.0	126.0	75.0	33.0	102.0	86.0	79.0	61.0	54.0	79.0	25.0	71.8	1
EFFLUENT (MG/L)	4.2	4.8	4.5	19.0	14.0	6.1	3.3	3.5	6.0	6.8	4.5	6.8	7.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.97	2.25	2.25	9.50	6.72	3.05	1.65	1.68	3.12	2.65	2.25	3.67	3.43	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.0	. 5.0	6.0	4.0	3.2	4.2	5.4	4.6	3.5	2.8	5.3	2.9	4.2	l
EFFLUENT (MG/L)	0.5	0.5	0.9	0.7	0.7	0.5	0.4	0.4	0.5	0.5	0.6	0.6	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.23	0.23	0.45	0.35	0.33	0.25	0.20	0.19	0.26	0.19	0.30	0.32	0.29	

CII	м	u		D
SU	п	п	А	ĸ

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: ORANGEVILLE

PLANT

: ORANGEVILLE WPCP

WORKS NUMBER

: 110000542

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: EFFLUENT POLISHING

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 14.54 (1000 M3)

DISTRICT : WEST CENTRAL

: DUFFERIN OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CREDIT RIVER

MINOR BASIN : ONTARIO

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 16,515

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	9.28	8.26	9.61	10.75	10.09	11.71	8.22	7.68	7.19	7.25	9.96	7.94	9.00	
BOD5 INFLUENT (MG/L)	160.0	174.0	208.0	168.0	162.0	96.0	117.0	131.0	166.0	188.0	189.0	175.0	161.2	
EFFLUENT (MG/L)	2.3	0.5	0.7	1.2	1.9	0.9	0.3	0.7	0.5	0.4	1.5	0.4	0.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	21.34	4.13	6.72	12.90	19.17	10.53	2.46	5.37	3.59	2.90	14.94	3.17	8.10	
SUSPENDED SOLIDS INFLUENT (MG/L)	165.0	162.0	151.0	119.0	175.0	161.0	185.0	174.0	190.0	159.0	168.0	159.0	164.0	
EFFLUENT (MG/L)	2.7	2.7	3.4	4.5	3.6	2.7	2.1	2.2	2.3	1.7	2.0	2.3	2.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	25.05	22.30	32.67	48.37	36.32	31.61	17.26	16.89	16.53	12.32	19.92	18.26	24.30	
IOTAL PHOSPHOROUS INFLUENT (MG/L)	5.1	7.7	5.7	7.1	9.2	4.5	5.7	5.8	6.4	6.7	5.7	6.5	6.3	
EFFLUENT (MG/L)	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.1	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1	
LOADING (KG/D)	0.92	0.82	0.96	2.15	1.00	1.17	0.82	1.53	1.43	1.45	1.99	0.79	0.90	

SUMMA	RY	
	COMPLIES	
CRITERIA	WITH CONC	
25.0 MG/L	YES	
25.0 MG/L	YES	
1.0 MG/L	YES	
	CRITERIA 25.0 MG/L 25.0 MG/L	CRITERIA WITH CONC 25.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: PALMERSTON

: PALMERSTON WPCP

WORKS NUMBER TREATMENT

: 110001088

: CONVENTIONAL ACTIVATED SLUDGE

DESIGN CAPACITY

0.68 (1000 M3) :

REGION : WEST CENTRAL DISTRICT : WELLINGTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : WALLACE DRAIN

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 2,050

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.16	0.91	1.32	1.47	0.88	0.78	0.63	0.68	0.74	0.85	1.36	0.92	0.98	
BOD5 INFLUENT (MG/L)	130.0	111.0	295.0	78.0	104.0	147.0	137.0	131.0	132.0	182.0	103.0	171.0	143.4	
EFFLUENT (MG/L)	6.1	11.1	5.3	3.3	3.4	1.4	2.1	1.4	1.3	1.6	2.5	6.5	3.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.07	10.10	6.99	4.85	2.99	1.09	1.32	0.95	0.96	1.36	3.40	5.98	3.72	
SUSPENDED SOLIDS INFLUENT (MG/L)	113.0	117.0	242.0	84.0	230.0	215.0	152.0	93.0	226.0	256.0	144.0	101.0	164.4	
EFFLUENT (MG/L)	12.2	15.7	11.8	15.6	9.1	9.0	4.8	3.4	5.4	7.5	5.2	5.6	8.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	14.15	14.28	15.57	22.93	8.00	7.02	3.02	2.31	3.99	6.37	7.07	5.15	8.62	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.5	5.6	5.4	4.3	ND	6.6	7.0	5.5	8.2	8.7	4.6	4.3	6.1	
EFFLUENT (MG/L)	0.3	0.3	0.4	0.2	0.3	0.7	0.9	0.5	0.5	0.3	0.4	0.4	0.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.34	0.27	0.52	0.29	0.26	0.54	0.56	0.34	0.37	0.25	0.54	0.36	0.39	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: PARIS

PLANT

: PARIS WPCP

WORKS NUMBER

: 110001097

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

7.04 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : BRANT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER

MINOR BASIN MAJOR BASIN

: FRIF : GREAT LAKES

POPULATION SERVED : 4,359

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBEI EXCEEI
AVG. DAILY FLOW (1000 M3)	2.05	1.79	2.00	2.11	1.97	2.06	1.90	1.82	1.91	8.39	1.94	1.87	2.48	
BOD5 INFLUENT (MG/L)	282.0	123.0	152.0	194.0	274.0	144.0	138.0	126.0	ND	174.0	339.0	149.0	190.5	
EFFLUENT (MG/L)	2.9	2.0	0.8	1.3	1.3	1.6	2.2	2.3	7.6	4.6	4.4	4.4	3.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	5.94	3.58	1.60	2.74	2.56	3.29	4.18	4.18	14.51	38.59	8.53	8.22	7.44	
SUSPENDED SOLIDS INFLUENT (MG/L)	171.0	212.0	201.0	146.0	212.0	131.0	171.0	152.0	ND	157.0	498.0	136.0	198.8	
EFFLUENT (MG/L)	4.9	5.0	4.9	5.0	5.9	8.9	6.8	9.3	ND	6.2	9.3	7.6	6.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	10.04	8.95	9.80	10.55	11.62	18.33	12.92	16.92	ND	52.01	18.04	14.21	16.62	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	9.2	7.6	7.2	8.1	8.3	6.7	7.7	6.2	ND	5.4	12.4	7.4	7.8	
EFFLUENT (MG/L)	0.7	0.7	0.7	0.5	0.6	0.7	0.5	0.7	0.5	0.6	0.6	0.6	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	- 0.0	
LOADING (KG/D)	1.43	1.25	1.40	1.05	1.18	1.44	0.95	1.27	0.95	5.03	1.16	1.12	1.49	

Sι	114	u	A	n	•
<u>٥</u> ر	<u> </u>	n	<u> </u>	N	1

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT : PORT COLBORNE : SEAWAY WPCP

WORKS NUMBER

: 120001906

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

15.00 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : WELLAND CA

WATERCOURSE : WELLAND CANAL MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 15,825

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	9.79	8.61	9.30	12.65	14.46	14.35	10.17	10.65	12.62	12.10	14.49	8.88	11.51	
BOD5														
INFLUENT (MG/L)	94.0	And the Park of th	107.0	61.0	82.0	67.0	133.0	109.0	111.0	117.0	106.0	114.0	97.8	
EFFLUENT (MG/L)	71.6	20.0	6.7	14.2	20.1	23.3	8.7	25.3	38.5	39.7	33.6	18.8	26.7×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	700.96	172.20	62.31	179.63	290.64	334.35	88.47	269.44	485.87	480.37	486.86	166.94	307.32	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	176.0	105.0	142.0	169.0	195.0	118.0	192.0	177.0	132.0	135.0	139.0	128.0	150.7	
EFFLUENT (MG/L)	5.4	5.3	6.2	7.9	7.1	4.9	3.4	2.8	4.3	4.5	7.1	6.3	5.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	52.86	45.63	57.66	99.93	102.66	70.31	34.57	29.82	54.26	54.45	102.87	55.94	62.15	
TOTAL PHOSPHOROUS		100-3	1.546					124 7000		Ex Sect	22 000	5443 24		
INFLUENT (MG/L)	8.5	8.2	9.2	7.9	6.8	5.8	6.3	6.6	5.5	8.1	6.9	6.4	7.2	
EFFLUENT (MG/L)	0.8	0.4	0.5	0.5	0.5	0.4	0.4	0.6	0.4	0.6	0.4	0.3	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	7.83	3.44	4.65	6.32	7.23	5.74	4.06	6.39	5.04	7.26	5.79	2.66	5.76	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L NO SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

			WILL TOT! WIFE
REMEDIAL MEASURES	START DATE	END DATE	COMPLIANCE
COLLECTION SYSTEM - INFILTRATION PROBLEMS BEING CORRECTED	1989	1990/04	1990
SLUDGE DISPOSAL/REMOVAL - UPGRADING SLUDGE THICKENING FACILITIES	1989	1990	1991
FACILITY EXPANSION/UPGRADING - FILTRATION ADDED	1989	1990	1991

MUNICIPALITY

: SHELBURNE

PLANT

: SHELBURNE WPCP

WORKS NUMBER

: 110000659

TREATMENT

: OXIDATION DITCH

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING : 2.04 (1000 M3)

DESIGN CAPACITY

REGION : WEST CENTRAL DISTRICT : DUFFERIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : BOYNE RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 3.000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.38	1.27	1.58	1.42	1.70	1.70	1.30	1.27	1.31	1.40	1.68	1.35	1.45	
BOD5 INFLUENT (MG/L)	237.0	185.0	259.0	219.0	163.0	109.0	144.0	175.0	208.0	240.0	188.0	271.0	199.8	
EFFLUENT (MG/L)	3.9	5.0	8.0	11.4	0.5	0.5	0.5	0.5	0.5	0.5	1.4	3.1	THE RESERVE AND ADDRESS OF THE PARTY OF THE	
CONCENTRATION LIMIT (MG/L)												3.1	3.0	
LOADING (KG/D)	5.38	6.35	12.64	16.18	0.85	0.85	0.65	0.63	0.65	0.70	2.35	4.18	25.0 4.35	
SUSPENDED SOLIDS INFLUENT (MG/L) EFFLUENT (MG/L)	162.0 10.6	198.0	173.0	116.0	148.0	140.0	194.0	192.0	186.0	149.0	141.0	158.0	163.1	
CONCENTRATION LIMIT (MG/L)	10.6	19.9	25.4	34.9	5.2	3.0	3.4	2.8	3.4	2.6	4.1	9.7	10.4	
LOADING (KG/D)	14.62	25.27	40.13	49.55	8.84	5.10	4.42	3.55	4.45	3.64	6.88	13.09	25.0 15.08	
TOTAL PHOSPHOROUS INFLUENT (MG/L) EFFLUENT (MG/L)	6.6	7.2	7.3	6.0	7.3	6.0	8.2	8.6	7.4	7.8	5.5	6.8	7.1	
CONCENTRATION LIMIT (MG/L)	0.4	0.7	0.8	1.8*	0.5	0.6	0.6	0.7	0.5	0.3	0.2	0.4	0.6	1
LOADING (KG/D)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.55	0.88	1.26	2.55	0.85	1.02	0.78	0.88	0.65	0.42	0.33	0.54	0.87	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - PROCESS CONTROL BEING UPGRADED

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/01 1990/03 1991/01

MUNICIPALITY

: SIMCOE

PLANT

: SIMCOE WPCP

WORKS NUMBER

: 110000677

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

: 15.45 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

: HALDIMAN-NORFOLK, REG. MUN. OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LYNN RIVER

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 13,355

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	8.28	7.93	7.71	8.44	8.20	8.64	8.05	7.67	8.30	8.18	8.32	7.20	8.08	
BOD5	20222 22	restricte des		>:A:A:A: 50	2024 AND SELV	2020 S		1500-000 500		2006 12 200		200		
INFLUENT (MG/L)	188.0	186.0	166.0	168.0	256.0	173.0	195.0	275.0	155.0	198.0	308.0	487.0	229.6	
EFFLUENT (MG/L)	2.0	1.4	1.0	1.1	0.8	4.6	8.3	6.1	0.7	2.3	0.7	0.7	2.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	16.56	11.10	7.71	9.28	6.56	39.74	66.81	46.78	5.81	18.81	5.82	5.04	20.20	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	178.0	888.0	189.0	141.0	178.0	165.0	220.0	227.0	165.0	183.0	240.0	421.0	266.3	ı
EFFLUENT (MG/L)	3.6	3.5	2.3	4.9	4.3	6.5	4.0	4.3	6.8	3.0	1.3	1.2	3.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	29.80	27.75	17.73	41.35	35.26	56.16	32.20	32.98	56.44	24.54	10.81	8.64	30.70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.5	7.5	6.9	6.3	6.8	6.0	7.2	6.7	6.7	7.0	9.0	13.6	7.5	Į.
EFFLUENT (MG/L)	0.2	0.6	0.2	0.1	0.1	0.2	0.6	0.4	0.3	0.4	0.4	0.2	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.65	4.75	1.54	0.84	0.82	1.72	4.83	3.06	2.49	3.27	3.32	1.44	2.42	

JM		

COMPLIES

CRITERIA WITH CONC PARM 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : SOUTH DUMFRIES

PLANT : ST GEORGE PV WPCP

WORKS NUMBER : 110003415

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY : 1.06 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : BRANT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : FAIRCHILD CREEK (W. BR)

MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.48	0.43	0.46	0.43	0.42	0.43	0.38	0.49	0.39	0.42	0.47	0.40	0.43	
BOD5 INFLUENT (MG/L)	112.0	279.0	114.0	125.0	132.0	134.0	97.0	130.0	93.0	161.0	218.0	170.0	147.1	
EFFLUENT (MG/L)	4.1	0.7	2.1	0.7	0.5	0.8	0.6	0.6	1.2	0.8	0.2	0.3	1.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.96	0.30	0.96	0.30	0.21	0.34	0.22	0.29	0.46	0.33	0.09	0.12	0.47	
SUSPENDED SOLIDS INFLUENT (MG/L)	129.0	193.0	188.0	169.0	188.0	196.0	141.0	227.0	235.0	186.0	278.0	249.0	198.3	
EFFLUENT (MG/L)	0.8	3.0	2.0	5.5	2.2	2.8	2.5	2.5	3.0	2.8	1.0	1.1	2.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.38	1.29	0.92	2.36	0.92	1.20	0.95	1.22	1.17	1.17	0.47	0.44	1.03	
TOTAL PHOSPHOROUS							72 72	201 100	Nation 1977	200	2001 X61		***	
INFLUENT (MG/L)	8.7	8.9_	7.6_	7.5	8.4	7.8	6.6	6.8	9.8	9.4	11.9	10.5	8.7	
EFFLUENT (MG/L)	0.8	0.9	0.9	0.6	0.5	0.5	0.5	0.4	0.4	0.5	0.6	0.6	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.38	0.38	0.41	0.25	0.21	0.21	0.19	0.19	0.15	0.21	0.28	0.24	0.26	

SUMMA	RY	
	COMPLIES	
CRITERIA	WITH CONC	
25.0 MG/L	YES	
25.0 MG/L	YES	
1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

PARM

BOD

SS

TP

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : ST CATHARINES

PLANT : PORT DALHOUSIE WPCP

WORKS NUMBER : 120001327

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY 61.37 (1000 M3) :

REGION : WEST CENTRAL

DISTRICT : NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : LAKE ONTARIO MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 60,430

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	41.20	40.30	48.80	50.30	57.20	51.20	40.40	38.30	38.50	41.30	51.50	41.50	45.04	
BOD5 INFLUENT (MG/L)	133.0	76.0	104.0	56.0	54.0	51.0	50.0	139.0	73.0	282.0	53.0	79.0	95.8	
EFFLUENT (MG/L)	25.0	12.1	11.4	8.5	5.6	13.0	13.1	2.4	49.6	2.8	9.5	18.3	14.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1030.00	487.63	556.32	427.55	320.32	665.60	529.24	91.92	1909.60	115.64	489.25	759.45	644.07	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	122.0	145.0	115.0	142.0	114.0	110.0	107.0	130.0		148.0	126.0	121.0	127.1	
EFFLUENT (MG/L)	11.3	10.0	11.3	10.0	9.2	9.5	107.0	8.8	8.0	94.1	12.2	9.5	25.1*	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	465.56	403.00	551.44	503.00	526.24	486.40	4322.80	337.04	308.00	3886.33	628.30	394.25	1130.50	
TOTAL PHOSPHOROUS		520 286	122 13				an s	2000 980	542 C264	28.00	55 5	D 3		
INFLUENT (MG/L)	3.5	4.0	5.1	3.0	3.4	3.5	3.5	3.9		3.9	3.0	4.0	3.7	-
EFFLUENT (MG/L)	0.7	0.7	0.7	0.5	0.4	0.6	0.8	0.7	AND THE PERSON NAMED IN	0.7	0.5	0.7	0.7	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	28.84	28.21	34.16	25.15	22.88	30.72	32.32	26.81	73.15	28.91	25.75	29.05	31.53	27/4/23/

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L NO

TP 1.0 MG/L NO NOTE:

1989

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE REMEDIAL MEASURES 1990 1991

EQUIPMENT/MAINTENANCE - EXISTING EQUIPMENT BEING MODIFIED/UPGRADED FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING IMPLEMENTED IN PHASES

FACILITY EXPANSION/UPGRADING - UPGRADING SECONDARY CLARIFIERS

FACILITY EXPANSION/UPGRADING - UPGRADING DISINFECTION PROCESS

FACILITY EXPANSION/UPGRADING - UPGRADING HEADWORKS

### 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: ST CATHARINES

PLANT

: PORT WELLER WPCP

WORKS NUMBER

: 120001318

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

37.50 (1000 M3)

REGION DISTRICT : WEST CENTRAL

: NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: PORT WELLER HARBOUR

MINOR BASIN MAJOR BASIN : ONTARIO

PO

: GREAT LAKES

PULATION SERVED :	75,690	

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	40.00	40.50	49.86	40.86	57.10	49.73	48.50	43.10	40.10	41.90	47.40	41.00	45.00	
BOD5										,				
INFLUENT (MG/L)	99.0	97.0	96.0	41.0	ND	66.0	87.0	134.0	109.0	128.0	156.0	518.0	139.2	
EFFLUENT (MG/L)	11.3	14.3	43.5	38.0	ND	7.0	The second secon	15.6	24.3	18.4	49.0	14.2	26.3×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	452.00	579.15	2168.91	1552.68	ND	348.11	2604.45	672.36	974.43	770.96	2322.60	582.20	1183.50	
LOADING LIMIT (KG/D)														
SUSPENDED SOLIDS														
INFLUENT (MG/L)	232.0	260.0	243.0	180.0	213.0	199.0	236.0	242.0	284.0	320.0	223.0	257.0	240.8	
EFFLUENT (MG/L)	16.3	15.8	15.9	19.0	22.5	10.6	The state of the s	11.6	12.5	14.8	21.2	14.8	15.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	652.00	639.90	792.77	776.34	1284.75	527.13	548.05	499.96	501.25	620.12	1004.88	606.80	697.50	
LOADING LIMIT (KG/D)													077.50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.3	5.3	7.4	3.9	7.9	4.8	5.7	7.0	4.6	5.4	4.1	7.8	5.9	
EFFLUENT (MG/L)	0.9	0.6		1.0		0.6	1.0	0.8	0.8	0.7	0.7	0.7	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	36.00	24.30	39.88	40.86	A RESIDENCE OF THE RESIDENCE	29.83	48.50	34.48	32.08	29.33	33.18	28.70	36.00	
LOADING LIMIT (KG/D)				The state of the s								20.70	33.00	

		SUMMARY		
PARM	CRITERIA	LOADING		IES WITH
			CONC	LOADING
BOD	25.0 MG/L	NA	NO	NA
SS	25.0 MG/L	NA	YES	NA
TP	1.0 MG/L	NA	YES	NA

NOTE:

1989

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

1991

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED

START DATE END DATE COMPLIANCE 1990/10

COLLECTION SYSTEM - SEWAGE UPGRADE UNDERWAY

EQUIPMENT/MAINTENANCE - EXISTING EQUIPMENT BEING MODIFIED/UPGRADED

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING IMPLEMENTED IN PHASES

FACILITY EXPANSION/UPGRADING - UPGRADING SECONDARY CLARIFIERS

FACILITY EXPANSION/UPGRADING - UPGRADING HEADWORKS

MUNICIPALITY

: ST CATHARINES

PLANT

: PORT WELLER WPCP

WORKS NUMBER

: 120001318

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

37.50 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : PORT WELLER HARBOUR

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 75,690

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	40.00	40.50	49.86	40.86	57.10	49.73	48.50	43.10	40.10	41.90	47.40	41.00	45.00	
BODS INFLUENT (MG/L)	99.0	97.0	96.0	41.0	ND	66.0	87.0	134.0	109.0	128.0	156.0	518.0	139.2	
EFFLUENT (MG/L)	11.3	14.3	43.5	38.0	ND	7.0	53.7	15.6	24.3	18.4	49.0	14.2	26.3×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	452.00	579.15	2168.91	1552.68	ND	348.11	2604.45	672.36	974.43	770.96	2322.60	582.20	1183.50	
SUSPENDED SOLIDS		***		400.0		100.0	•77.			700.0		057.0	242.0	
INFLUENT (MG/L)	232.0	260.0	the second second second	180.0	A THE RESERVE AND ADDRESS OF THE PARTY OF TH	199.0		242.0	284.0	320.0	223.0	257.0	240.8	
EFFLUENT (MG/L)	16.3	15.8	15.9	19.0	22.5	10.6	11.3	11.6	12.5	14.8	21.2	14.8	15.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	652.00	639.90	792.77	776.34	1284.75	527.13	548.05	499.96	501.25	620.12	1004.88	606.80	697.50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.3	5.3	7.4	3.9	7.9	4.8	5.7	7.0	4.6	5.4	4.1	7.8	5.9	
EFFLUENT (MG/L)	0.9	0.6	0.8	1.0	0.6	0.6	1.0	0.8	0.8	0.7	0.7	0.7	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	36.00	24.30	39.88	40.86	34.26	29.83	48.50	34.48	32.08	29.33	33.18	28.70	36.00	

SUMMARY

COMPLIES

CRITERIA WITH CONC

REMEDIAL MEASURES

BOD 25.0 MG/L NO

25.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

START DATE _ END DATE _ COMPLIANCE

ANTICIPATED

COLLECTION SYSTEM - SEWAGE UPGRADE UNDERWAY

EQUIPMENT/MAINTENANCE - EXISTING EQUIPMENT BEING MODIFIED/UPGRADED

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING IMPLEMENTED IN PHASES

FACILITY EXPANSION/UPGRADING - UPGRADING SECONDARY CLARIFIERS

FACILITY EXPANSION/UPGRADING - UPGRADING HEADWORKS

1991 1989 1990/10

MUNICIPALITY

: WATERLOO

PLANT

: WATERLOO WPCP

WORKS NUMBER

: 110000793

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

72.73 (1000 M3)

REGION

: WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: GRAND RIVER

MINOR BASIN MAJOR BASIN

: ERIE

: GREAT LAKES

POPULATION SERVED : 66,627

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	42.22	38.37	42.16	39.21	37.14	40.10	31.69	33.25	34.08	35.95	37.54	33.38	37.09	
B0D5		26.002000												<u> </u>
INFLUENT (MG/L)	177.0	198.0	154.0	180.0	302.0	ND	ND	ND	ND	202.0	229.0	240.0	210.3	1
EFFLUENT (MG/L)	11.1	13.6	17.0	18.0	8.0	6.0	6.0	10.0	9.2	7.9	11.9	11.7	10.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	468.64	521.83	716.72	705.78	297.12	240.60	190.14	332.50	313.53	284.00	446.72	390.54	404.28	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	461.0	351.0	377.0	307.0	495.0	ND	ND	ND	ND	268.0	421.0	262.0	367.8	
EFFLUENT (MG/L)	25.9	26.6		39.0	14.0	9.0	10.0	16.0	19.5	15.3	22.5	18.1	20.9	
CONCENTRATION LIMIT (MG/L)										15.5		10.1		
LOADING (KG/D)	1093.49	1020.64	1475.60	1529.19	519.96	360.90	316.90	532.00	664.56	550.03	844.65	604.17	25.0 775.18	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.4	6.2	6.6	5.5	9.0	ND	ND	ND	ND	6.7				
EFFLUENT (MG/L)	1.3×					0.8	1.0	0.7	1.0		6.9	8.4	7.0	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.8	1.1*	0.8	1.0	5
LOADING (KG/D)	54.88	42.20		54.89	25.99	32.08	31.69	23.27	34.08	1.0 28.76	1.0	1.0 26.70	37.09	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/08 1990

FACILITY EXPANSION/UPGRADING - CONSTRUCTION COMPLETE

MUNICIPALITY

: WELLAND

PLANT

DESIGN CAPACITY

: WELLAND WPCP

WORKS NUMBER

: 120001309

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

45.46 (1000 M3)

REGION

: WEST CENTRAL

DISTRICT

: NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: WELLAND RIVER

MINOR BASIN MAJOR BASIN : ONTARIO : GREAT LAKES

POPULATION SERVED :

47,205

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	32.56	28.46	42.49	40.22	41.91	40.31	32.33	25.25	38.54	30.61	42.37	29.08	35.34	
BOD5				N.W. S	V2000 1881		5000.00	50-25 W G				15 155		200
INFLUENT (MG/L)	109.0	53.0	31.0	64.0	61.0	42.0	77.0	134.0	142.0	101.0	97.0	223.0	94.5	
EFFLUENT (MG/L)	14.9	12.5	8.9	9.7	11.8	12.3	13.3	29.5	33.7	59.5	14.5	13.0	19.5	
CONCENTRATION LIMIT (MG/L)	A CONTRACTOR OF THE PARTY OF TH												25.0	
LOADING (KG/D)	485.14	355.75	378.16	390.13	494.53	495.81	429.98	744.87	1298.79	1821.29	614.36	378.04	689.13	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	168.0	159.0	132.0	189.0	190.0	119.0	131.0	193.0	298.0	205.0	138.0	326.0	187.3	i
EFFLUENT (MG/L)	13.9	11.3	11.0	12.4	21.5	19.4	12.4	17.6	28.4	56.6	29.0	25.1	21.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	452.58	321.59	467.39	498.72	901.06	782.01	400.89	444.40	1094.53	1732.52	1228.73	729.90	763.34	1
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.0	4.8	2.6	6.2	5.2	3.3	6.7	5.1	11.7	9.7	5.9	5.2	5.9	
EFFLUENT (MG/L)	0.6	1.0	3.4*	0.2	0.5	0.7	0.6	0.6	0.7	1.5	1.0	1.0	1.0	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	19.53	28.46	144.46	8.04	20.95	28.21	19.39	15.15	26.97	45.91	42.37	29.08	35.34	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIDATED

REMEDIAL MEASURES	START DATE	END DATE	COMPLIANCE
FACILITY EXPANSION/UPGRADING - UPGRADING BIOLOGICAL PROCESS	1988	1990	1991
FACILITY EXPANSION/UPGRADING - UPGRADING SECONDARY CLARIFIERS	1988	1990	1991
FACILITY EXPANSION/UPGRADING - UPGRADING PRIMARY CLARIFIERS	1988	1990	1991
FACILITY EXPANSION/UPGRADING - UPGRADING DISINFECTION PROCESS			
FACILITY EXPANSION/UPGRADING - NITRIFICATION ADDED	1988	1990	1991
FACILITY EXPANSION/UPGRADING - CHLORINATION ADDED	1988	1990	1991

MUNICIPALITY

: WELLESLEY

PLANT

: WELLESLEY WPCP

WORKS NUMBER

: 110001578

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.50 (1000 M3)

REGION

: WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: NITH RIVER

MINOR BASIN MAJOR BASIN : ERIE

: GREAT LAKES

POPULATION SERVED : 950

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.49	0.31	0.43	0.48	0.34	0.35	0.21	0.21	0.24	0.29	0.45	0.35	0.35	
BOD5 INFLUENT (MG/L)	147.0	135.0	202.0	202.0	200.0	49.0	174.0	110.0	185.0	357.0	110.0	110.0	165.1	
EFFLUENT (MG/L)	2.2	2.6	1.4	1.3	1.8	0.5	3.3	0.5	0.5	2.7	0.8	0.4	1.5	-
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.07	0.80	0.60	0.62	0.61	0.17	0.69	0.10	0.12	0.78	0.36	0.14	0.53	
SUSPENDED SOLIDS INFLUENT (MG/L)	136.0	129.0	330.0	128.0	182.0	133.0	183.0	179.0	222.0	394.0	140.0	176.0	194.3	
EFFLUENT (MG/L)	5.5	3.9	6.0	4.9	5.5	3.5	3.2	4.7	5.5	5.0	4.7	4.7	4.8	
CONCENTRATION LIMIT (MG/L)											<del></del>		25.0	
LOADING (KG/D)	2.69	1.20	2.58	2.35	1.87	1.22	0.67	0.98	1.32	1.45	2.11	1.64	1.68	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.0	5.4	9.4	4.5	7.1	4.2	7.2	6.1	6.1	9.2	4.7	6.2	6.3	
EFFLUENT (MG/L)	0.3	0.4	0.3	0.7	0.5	0.6	0.6	0.8	0.9	0.1	0.7	0.4	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	
LOADING (KG/D)	0.14	0.12	0.12	0.33	0.17	0.21	0.12	0.16	0.21	0.02	0.31	0.14	0.18	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : WEST LINCOLN

PLANT : SMITHVILLE LAGOON

WORKS NUMBER : 120001229

TREATMENT : CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY : 1.56 (1000 M3)

REGION : WEST CENTRAL

DISTRICT : NIAGARA, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : TWENTY MILE CREEK

MINOR BASIN : ONTARIO
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,980

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.90	0.70	1.15	1.12	0.22	ND	ND	ND	ND	ND	ND	ND	0.82	
LAGOON DISCHARGE	ND	ND	18.18	105.02	50.01	ND	ND	ND	ND	ND	ND	ND	57.74	
BOD5	***************************************			88.8	50 Ki						A 190 A	33-3- <del>10-7-3-7</del>	Gra o a	A
INFLUENT (MG/L)	98.0	201.0	150.0	91.0	81.0	ND	ND	ND	MD _	ND	ND	ND	124.2	
EFFLUENT (MG/L)	ND	ND	ND	16.5	19.6	ND	ND	ND	ND	ND	ND	ND	18.1	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	18.48	4.31	ND	ND	ND	ND	ND	ND	ND	14.84	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	91.0	269.0	143.0	89.0	117.0	ND	ND	ND	ND	ND	ND	ND	141.8	
EFFLUENT (MG/L)	ND	ND	ND	17.0	56.2	ND	ND	ND	ND	ND	ND	ND	36.6	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	19.04	12.36	ND	ND	ND	ND	ND	ND	ND	30.01	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.1	8.7	7.0	5.0	4.1	ND	ND	ND	ND	ND	ND	ND	6.0	
EFFLUENT (MG/L)	ND	ND	ND	5.3	4.8	ND	ND	ND	ND	ND	ND	ND	5.1	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	5.93	1.05	ND	ND	ND	ND	ND	ND	ND	4.18	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - PHASING OUT EXISTING FACILITY

MUNICIPALITY

: WILMOT

PLANT

: BADEN WPCP : 110001710

WORKS NUMBER TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.92 (1000 M3)

REGION

: WEST CENTRAL

DISTRICT

:

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

. DADEN COEEK

WATERCOURSE

: BADEN CREEK

MINOR BASIN MAJOR BASIN : ERIE

POPULATION SERVED :

: GREAT LAKES

1,152

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.75	0.60	0.77	0.82	0.75	0.80	0.53	0.49	0.52	0.56	0.75	0.55	0.66	
BODS INFLUENT (MG/L)	206.0	400.0	229.0	230.0	363.0	581.0	359.0	332.0	463.0	237.0	350.0	482.0	352.7	
EFFLUENT (MG/L)	3.9	2.0	8.5	2.7	5.4	10.9	9.5	1.4	1.3	1.1	1.8	2.2	4.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.92	1.20	6.54	2.21	4.05	8.72	5.03	0.68	0.67	0.61	1.35	1.21	2.77	
SUSPENDED SOLIDS INFLUENT (MG/L)	206.0	.,227.0	284.0	1,080.0	500.0	341.0	383.0	494.0	508.0	272.0	419.0	617.0	507.4	
EFFLUENT (MG/L)	5.7	7.5	9.8	18.0	11.0	16.3	28.9	4.3	4.8	3.4	5.8	5.4	527.6	
CONCENTRATION LIMIT (MG/L)									7.0	3.4	5.6	2.4	10.1	
LOADING (KG/D)	4.27	4.50	7.54	14.76	8.25	13.04	15.31	2.10	2.49	1.90	4.35	2.97	25.0 6.67	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	8.5	9.6	6.8	6.9	10.5	11.3	10.5	12.5	9.9	9.9	8.8	14.2	10.0	
EFFLUENT (MG/L)	0.6	0.4	0.4	0.5	0.4	0.7	0.7	0.6	0.5	0.7	0.7	0.6	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.45	0.24	0.30	0.41	0.30	0.56	0.37	0.29	0.26	0.39	0.52	0.33	0.40	

	SUMMA	ARY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: WILMOT

PLANT

WORKS NUMBER

: NEW HAMBURG LAGOON

: 110000506

TREATMENT : AERATED CELL PLUS LAGOON

: EFFLUENT POLISHING

: CONTINUOUS DISCHARGE

DESIGN CAPACITY

2.72 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: NITH RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

3,978

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.55	1.29	1.57	1.82	1.52	1.65	1.16	1.13	1.11	1.17	1.52	1.20	1.39	
LAGOON DISCHARGE	ND	ND	ND	57.23	65.40	43.90	30.13	32.48	36.53	27.59	42.33	20.23	39.54	
BOD5														
INFLUENT (MG/L)	112.0	164.0	103.0	176.0	104.0	141.0	112.0	176.0	143.0	164.0	128.0	172.0	141.3	Ġ
EFFLUENT (MG/L)	ND	ND	ND	3.2	1.6	0.7	1.1	1.0	0.3	2.6	1.9	0.9	1.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	5.82	2.43	1.15	1.27	1.13	0.33	3.04	2.88	1.08	2.09	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	135.0	233.0	213.0	240.0	245.0	180.0	178.0	211.0	233.0	183.0	154.0	259.0	205.3	
EFFLUENT (MG/L)	ND	ND	ND	3.8	3.0	4.8	3.0	3.8	4.5	1.7	1.5	3.3	3.3	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	6.91	4.56	7.92	3.48	4.29	4.99	1.98	2.28	3.96	4.59	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	14.4	10.0	7.2	8.7	6.3	8.5	10.0	9.9	16.0	14.3	9.1	19.5	11.2	
EFFLUENT (MG/L)	ND	ND	ND	0.5	0.3	0.4	0.5	0.4	0.3	0.5	0.6	0.6	0.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	0.91	0.45	0.66	0.58	0.45	0.33	0.58	0.91	0.72	0.70	

~ 1	18.4		•	2	
รบ	м	m	А	RY	

COMPLIES

CRITERIA WITH CONC

30.0 MG/L YES BOD SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

# 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: WOOLWICH

PLANT

: ELMIRA WPCP (COMBINED FLOW)

WORKS NUMBER

: 110000150

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

4.54 (1000 M3)

REGION : WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: CANAGAGIGUE CREEK

MINOR BASIN

: ERIF

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

7,090

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE! EXCEE!
AVG. DAILY FLOW (1000 M3)	5.37	3.83	5.38	5.57	5.67	6.59	5.66	5.08	4.96	4.01	4.75	3.07	5.00	
BOD5														<b></b>
INFLUENT (MG/L)	241.0	210.0	350.0	264.0	249.0	368.0	215.0	298.0	322.0	311.0	209.0	192.0	269.1	1
EFFLUENT (MG/L)	2.6	3.3	4.0	3.1	2.6	2.9	0.8	2.8	1.8	5.5	6.4	3.6	3.3	
CONCENTRATION LIMIT (MG/L)													7.5	
LOADING (KG/D)	13.96	12.63	21.52	17.26	14.74	19.11	4.52	14.22	8.92	22.05	30.40	11.05	16.50	
LOADING LIMIT (KG/D)											50.40	11.05	34.02	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	232.0	222.0	359.0	260.0	346.0	497.0	279.0	352.0	419.0	218.0	99.0	110.0	282.8	
EFFLUENT (MG/L)	10.2	10.2	11.1	9.0	16.1	10.6	9.8	7.2	11.2	6.8	8.2	5.6	9.7	
CONCENTRATION LIMIT (MG/L)													15.0	
LOADING (KG/D)	54.77	39.06	59.71	50.13	91.28	69.85	55.46	36.57	55.55	27.26	38.95	17.19	48.50	
LOADING LIMIT (KG/D)									=====				68.04	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.0	5.4	8.5	5.6	5.7	26.1	ND	10.2	9.4	7.4	ND	6.5	9.1	
EFFLUENT (MG/L)	0.3	0.5	0.5	0.3	0.6	0.7	1.3	0.5	0.4	0.8	1.2	1.2	0.7	
CONCENTRATION LIMIT (MG/L)													1.0	
LOADING (KG/D)	1.61	1.91	2.69	1.67	3.40	4.61	7.35	2.54	1.98	3.20	5.70	3.68	3.50	
LOADING LIMIT (KG/D)													4.53	

		SUMMARY		
			COMPL	IES WITH
PARM	CRITERIA	LOADING	CONC	LOADING
BOD	7.5 MG/L	34.02 KG	/D YES	YES
SS	15.0 MG/L	68.04 KG	/D YES	YES
TP	1.0 MG/L	4.53 KG	/D YES	YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING IMPLEMENTED IN PHASES

1990/09

1990

MUNICIPALITY

: WOOLWICH

PLANT

: ELMIRA WPCP (COMBINED FLOW)

WORKS NUMBER

: 110000150

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

4.54 (1000 M3)

: WEST CENTRAL REGION

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CANAGAGIGUE CREEK

MINOR BASIN

MAJOR BASIN

: ERIE

: GREAT LAKES POPULATION SERVED :

7,090

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	5.37	3.83	5.38	5.57	5.67	6.59	5.66	5.08	4.96	4.01	4.75	3.07	5.00	
BODS INFLUENT (MG/L)	241.0	210.0	350.0	264.0	249.0	368.0	215.0	298.0	322.0	311.0	209.0	192.0	269.1	
EFFLUENT (MG/L)	2.6	3.3	4.0	3.1	2.6	2.9	0.8	2.8	1.8	5.5	6.4	3.6	3.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	13.96	12.63	21.52	17.26	14.74	19.11	4.52	14.22	8.92	22.05	30.40	11.05	16.50	
SUSPENDED SOLIDS INFLUENT (MG/L)	232.0	222.0	359.0	260.0	346.0	497.0	279.0	352.0	419.0	218.0	99.0	110.0	282.8	
EFFLUENT (MG/L)	10.2	10.2	11.1	9.0	16.1	10.6	9.8	7.2	11.2	6.8	8.2	5.6	9.7	
CONCENTRATION LIMIT (MG/L)												-	25.0	
LOADING (KG/D)	54.77	39.06	59.71	50.13	91.28	69.85	55.46	36.57	55.55	27.26	38.95	17.19	48.50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.0	5.4	8.5	5.6	5.7	26.1	ND	10.2	9.4	7.4	ND	6.5	9.1	
EFFLUENT (MG/L)	0.3	0.5	0.5	0.3	0.6	0.7	1.3×	0.5	0.4	0.8	1.2*	1.2*	0.7	3
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.61	1.91	2.69	1.67	3.40	4.61	7.35	2.54	1.98	3.20	5.70	3.68	3.50	

SUMMARY

BOD

SS 25.0 MG/L YES TP

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING IMPLEMENTED IN PHASES

1990/09

1990

MUNICIPALITY

: WOOLWICH

PLANT

: ST.JACOBS PV WPCP

WORKS NUMBER

: 110001211

TREATMENT

: OXIDATION DITCH

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.95 (1000 M3)

REGION

: WEST CENTRAL

DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: CONESTOGO RIVER

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 1,266

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.83	0.67	0.90	0.90	0.71	0.78	0.55	0.70	0.66	0.82	1.05	0.89	0.79	
BOD5 INFLUENT (MG/L)	70.0	162.0	134.0	66.0	203.0	197.0	86.0	195.0	307.0	197.0	433.0	509.0	213.3	
EFFLUENT (MG/L)	4.0	4.5	3.3	4.7	5.4	6.6	1.9	10.5	1.5	5.0	6.4	29.1	6.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.32	3.01	2.97	4.23	3.83	5.14	1.04	7.35	0.99	4.10	6.72	25.89	5.45	
SUSPENDED SOLIDS INFLUENT (MG/L)	229.0	161.0	171.0	182.0	209.0	179.0	193.0	225.0	232.0	307.0	367.0	210.0	222.1	
EFFLUENT (MG/L)	12.1	10.1	9.1	14.8	24.9	29.7	9.8	13.7	13.3	17.6	47.9	47.1	20.8	1
CONCENTRATION LIMIT (MG/L)									10.0			47.1	25.0	
LOADING (KG/D)	10.04	6.76	8.19	13.32	17.67	23.16	5.39	9.59	8.77	14.43	50.29	41.91	16.43	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.7	4.7	5.8	4.0	4.8	5.9	6.8	8.9	7.5	6.9	7.8	7.4	6.4	
EFFLUENT (MG/L)	0.5	0.4	0.5	0.5	0.6	2.3×	0.8	1.0	0.7	0.9	0.9	1.5*	0.9	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	
LOADING (KG/D)	0.41	0.26	0.45	0.45	0.42	1.79	0.44	0.70	0.46	0.73	0.94	1.33	0.71	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD

25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

1993/05

1994

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

# Central Region Ontario Ministry of the Environment



REGIONAL OFFICE

Toronto 7 Overlea Blvd. M4E 1A8 (416) 424-3000 DISTRICT OFFICES

Barrie 12 Fairview Road L4N 4P3 (7050 726-1730

Halton-Peel 1235 Trafalgar Rd., Suite 401 Oakville L6H 3P1 (416) 844-5747

Metro Toronto East 7 Overlea Blvd. M4E 1A8 (416) 467-3013

Metro Toronto West 7 Overlea Blvd. M4E 1A8 (416) 467-3007

Muskoka-Haliburton 483 Bethune Dr. Gravenhurst POC 1G0 (705) 687-6647

Peterborough 139 George St. North K9J 3G6 (705) 743-2792

York-Durham 7 Overlea Blvd. M4H 1E8 (416) 467-3009

# CENTRAL SUMMARY - 1989

	Î	Number		Design	Capacity (10	000M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Conventional Activated Sludge	3	26	29	399.14	2,139.71	2,538.85
Contact Stabilization	1	2	3	1.05	4.50	5.55
Extended Aeration	11	13	24	35.05	35.11	70.16
High Rate	0	1	1	-	9.09	9.09
Oxidation Ditch	3	0	3	2.79	_	2.79
Communal Septic Tank	0	1	1	=:	0.09	0.09
Convent. Lagoon Continuous	0	4	4	-	19.15	19.15
Conventional Lagoon Seasonal	1	7	8	0.58	11.25	11.83
Lagoon and Spray	1	0	1	0.61	-	0.61
Aerated Cell Plus Lagoon	0	2	2	-:	4.91	4.91
Exfiltration Lagoon	1	0	1	1.36	_	1.36
TOTALS	21	56	77	440.58	2,223.81	2,664.39

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

CENTRAL SUMMARY - 1989

	١	Number		Average Da	aily Flow (10	000M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Conventional Activated Sludge	3	26	29	350.28	1,905.15	2,255.43
Contact Stabilization	1	2	3	0.78	4.52	5.30
Extended Aeration	11	13	24	15.46	18.79	34.25
High Rate	0	1	1	0.00	5.30	5.30
Oxidation Ditch	3	0	3	2.44	0.00	2.44
Communal Septic Tank	0	1	1	0.00	0.12	0.12
Convent. Lagoon Continuous	0	4	4	0.00	13.78	13.78
Conventional Lagoon Seasonal	1	7	8	0.82	8.25	9.07
Lagoon and Spray	1	0	1	0.32	0.00	0.32
Aerated Cell Plus Lagoon	0	2	2	0.00	4.48	4.48
Exfiltration Lagoon	1	0	1	0.80	0.00	0.80
TOTALS	21	56	77	370.90	1,960.39	1,331.27

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

MUNICIPALITY PLANT : ALLISTON

: ALLISTON WPCP

WORKS NUMBER

: 110001220

TREATMENT

: 110001220 : EXTENDED AERATION

:

DESIGN CAPACITY

3.50 (1000 M3)

REGION : CENTRAL DISTRICT : SIMCOE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BOYNE RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 4,674

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.33	3.12	3.36	3.28	3.46	3.65	3.45	3.76	3.75	3.56	3.70	3.20	3.47	
B0D5													454.0	
INFLUENT (MG/L)	130.5	181.0	159.5	123.0	138.0	138.5	114.0	110.5	125.5	156.0	160.0	275.0	151.0	
EFFLUENT (MG/L)	27.1	19.5	36.5	26.4	16.3	13.7	9.1	18.0	6.1	5.7	31.7	19.1	19.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	90.24	60.84	122.64	86.59	56.39	50.00	31.39	67.68	22.87	20.29	117.29	61.12	66.28	
SUSPENDED SOLIDS	407.0	407.5	101 5	114 5	110 5	150.0	165.5	126 0	150.0	169.0	143.0	249.0	151.5	
INFLUENT (MG/L)	107.0	123.5	191.5	114.5	118.5	152.0		126.0	159.0				- AMERICAN SCHOOL STATE OF THE PARTY OF THE	
EFFLUENT (MG/L)	26.5	21.8	22.5	22.5	12.5	10.2	10.8	24.0	10.3	15.6	37.2	19.2	19.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	88.24	68.01	75.60	73.80	43.25	37.23	37.26	90.24	38.62	55.53	137.64	61.44	67.32	
TOTAL PHOSPHOROUS						224 100	9 59	527 727		221 322	20000 520			
INFLUENT (MG/L)	8.0	10.1	9.8	6.7	8.2	7.1	6.0	9.8	7.5	8.3	10.1	11.3	8.6	
EFFLUENT (MG/L)	6.2	5.7	6.4	5.4	5.6	5.5	5.2	4.6	5.8	6.6	6.3	6.6	5.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	20.64	17.78	21.50	17.71	19.37	20.07	17.94	17.29	21.75	23.49	23.31	21.12	20.13	1

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

SS 25.0 MG/L YES

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988/08 1990/07 1990/08

FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

MUNICIPALITY

: ANSON HINDON MINDEN

PLANT WORKS NUMBER : MINDEN WPCP

: 110002390

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

: 0.94 (1000 M3)

REGION : CENTRAL DISTRICT : HALIBURTON

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : GULL RIVER

MINOR BASIN : ONTARIO
MAJOR BASIN : GREAT LAKES MINOR BASIN

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.58	0.57	0.61	0.69	0.92	0.62	0.58	0.60	0.59	0.64	0.71	0.76	0.66	
BOD5 INFLUENT (MG/L)	223.0	125.0	134.0	64.0	83.0	124.0	113.0	39.0	82.0	156.0	102.0	94.0	111.6	
EFFLUENT (MG/L)	1.8	0.5	1.8	0.5	0.8	0.5	0.8	0.2	0.2	0.2	0.2	0.2	0.6	
CONCENTRATION LIMIT (MG/L)									U.E	U.E			Committee of the commit	
LOADING (KG/D)	1.04	0.28	1.09	0.34	0.73	0.31	0.46	0.12	0.11	0.12	0.14	0.15	25.0 0.40	
SUSPENDED SOLIDS INFLUENT (MG/L)	148.0	209.0	228.0	75.0	87.0	213.0	166.0	78.0	112.0	203.0	127.0	116.0	146.8	
EFFLUENT (MG/L)	1.5	7.5	9.5	2.0	19.8	1.8	2.8	2.8	2.5	1.6	0.5	0.8	4.4	
CONCENTRATION LIMIT (MG/L)								-			- 0.5	- 0.0	25.0	
LOADING (KG/D)	0.87	4.27	5.79	1.38	18.21	1.11	1.62	1.68	1.47	1.02	0.35	0.60	2.90	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	9.7	5.6	6.2	3.2	4.4	5.5	5.7	3.2	5.3	6.0	4.8	4.9	E 2	
EFFLUENT (MG/L)	0.2	0.2	0.3	0.1	0.1	0.2	0.9	0.2	0.4	0.2		THE RESERVE AND THE PERSON NAMED IN	5.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			0.2	0.1	0.3	
LOADING (KG/D)	0.11	0.11	0.18	0.06	0.09	0.12	0.52	0.12	0.23	0.12	0.14	0.07	0.20	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

### 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: BARRIE

PLANT

: BARRIE WPCP

WORKS NUMBER

: 120000578

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

27.27 (1000 M3)

REGION : CENTRAL DISTRICT : SIMCOE

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : KEMPENFELT BAY L. SIMCOE

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 50,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	27.98	28.59	30.94	32.95	34.21	35.51	31.93	32.53	34.58	32.60	32.68	32.97	32.29	
BOD5														
INFLUENT (MG/L)	277.0	200.0	211.0	207.0	184.0	206.0	131.0	176.0	158.0	200.0	187.0	135.0	189.3	
EFFLUENT (MG/L)	3.4	4.7	6.5	3.3	5.5	20.4	9.1	7.6	10.8	5.5	4.6	7.3	7.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	95.13	134.37	201.11	108.73	188.15	724.40	290.56	247.22	373.46	179.30	150.32	240.68	238.95	
LOADING LIMIT (KG/D)														8
SUSPENDED SOLIDS						**								
INFLUENT (MG/L)	278.0	269.0	266.0	219.0	233.0	265.0	192.0	196.0	196.0	203.0	232.0	201.0	229.2	
EFFLUENT (MG/L)	4.6	4.8	6.7	5.2	3.6	20.4	13.0	8.5	9.8	8.2	8.4	12.7	8.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	128.70	137.23	207.29	171.34	123.15	724.40	415.09	276.50	338.88	267.32	274.51	418.71	284.15	
LOADING LIMIT (KG/D)	00 2000													
TOTAL PHOSPHOROUS						-10E-451X145								
INFLUENT (MG/L)	6.8	6.3	6.7	5.4	5.3	5.2	5.5	5.1	4.5	6.0	5.6	2.9	5.4	
EFFLUENT (MG/L)	0.2	0.2	0.2	0.2	0.1	0.9	0.5	0.4	0.3	0.3	0.2	0.3	0.3	
CONCENTRATION LIMIT (MG/L)													0.3	
LOADING (KG/D)	5.59	5.71	6.18	6.59	3.42	31.95	15.96	13.01	10.37	9.78	6.53	9.89	9.69	
LOADING LIMIT (KG/D)											•		13.91	

		SUMMARY		
			COMPL	IES WITH
PARM	CRITERIA	LOADING	CONC	LOADING
BOD	NA	NA	NA	NA
SS	NA	NA	NA	NA
TP	0.3 MG/L	13.91 KG/D	YES	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BARRIE

PLANT

: BARRIE WPCP

WORKS NUMBER

: 120000578

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

27.27 (1000 M3)

REGION : CENTRAL DISTRICT : SIMCOE

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : KEMPENFELT BAY L. SIMCOE

MINOR BASIN : HURON

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 50,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	27.98	28.59	30.94	32.95	34.21	35.51	31.93	32.53	34.58	32.60	32.68	32.97	32.29	
BOD5 INFLUENT (MG/L)	277.0	200.0	211.0	207.0	184.0	206.0	131.0	176.0	158.0	200.0	187.0	135.0	189.3	
EFFLUENT (MG/L)	3.4	4.7	6.5	3.3	5.5	20.4	9.1	7.6	10.8	5.5	4.6	7.3	7.4	
CONCENTRATION LIMIT (MG/L)													25.0	72
LOADING (KG/D)	95.13	134.37	201.11	108.73	188.15	724.40	290.56	247.22	373.46	179.30	150.32	240.68	238.95	
SUSPENDED SOLIDS INFLUENT (MG/L)	278.0	269.0	266.0	219.0	233.0	265.0	192.0	196.0	196.0	203.0	232.0	201.0	229.2	
EFFLUENT (MG/L)	4.6	4.8	6.7	5.2	3.6	20.4	13.0	8.5	9.8	8.2	8.4	12.7	8.8	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	128.70	137.23	207.29	171.34	123.15	724.40	415.09	276.50	338.88	267.32	274.51		25.0 284.15	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.8	6.3	6.7	5.4	5.3	5.2	5.5	5.1	4.5	6.0	5.6	2.9	5.4	
EFFLUENT (MG/L)	0.2	0.2	0.2	0.2	0.1	0.9	0.5	0.4	0.3	0.3	0.2	0.3	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	5.59	5.71	6.18	6.59	3.42	31.95	15.96	13.01	10.37	9.78	6.53	9.89	9.69	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE: **BOD - ASSESSED ANNUALLY** SS - ASSESSED ANNUALLY TP - ASSESSED ANNUALLY * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BEETON

PLANT

: BEETON LAGOON

WORKS NUMBER

: 110000917

TREATMENT

: EXFILTRATION LAGOON

DESIGN CAPACITY

1.36 (1000 M3)

REGION : CENTRAL : SIMCOE DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : NO DISC.TO SURFACE WATER

WATERCOURSE MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 2,105

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE!
AVG. DAILY FLOW (1000 M3)	0.69	0.61	0.61	0.78	0.89	0.82	0.73	0.78	0.86	0.84	1.08	0.87	0.80	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5										10 A 22 A 2				
INFLUENT (MG/L)	120.0	171.5	221.5	46.5	133.5	103.5	130.0	201.0	202.5	127.5	138.0	120.5	143.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS				<del></del>										
INFLUENT (MG/L)	228.5	125.0	468.0	131.5	293.0	107.5	140.0	171.0	152.0	129.0	200.0	144.5	190.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)												-		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.3	8.6	9.8	7.6	4.2	4.6	7.9	6.7	6.5	5.8	4.1	5.5	6.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	NA	NO DIRECT	DISCHARGE
SS	NA	NO DIRECT	DISCHARGE
TP	NA	NO DIRECT	DISCHARGE
	BOD SS	PARM CRITERIA BOD NA SS NA	PARM CRITERIA WITH CONC BOD NA NO DIRECT SS NA NO DIRECT

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BICROFT

PLANT

: CARDIFF LAGOON

WORKS NUMBER

: 120001032

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

DESIGN CAPACITY

: 0.45 (1000 M3)

REGION : CENTRAL DISTRICT : HALIBURTON OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : MINK CR.TO PAUDASH LAKE

MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES POPULATION SERVED : 595

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	0.50	0.87	0.96	0.45	0.31	0.37	0.76	0.50	0.75	0.61	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5	72.22		727227 72	1212 E			0.00							
INFLUENT (MG/L)	ND	ND	135.0	10.0	148.0	ND	14.0		17.0	106.0	96.0	66.0	80.6	
EFFLUENT (MG/L)	ND_	ND	2.4	12.3	17.7	ND_	2.8	5.7	6.8	4.8	4.6	1.5	6.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	6.15	15.39	ND	1.26	1.76	2.51	3.64	2.30	1.12	3.97	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	ND	53.0	84.0	ND	18.0	158.0	27.0	122.0	726.0	90.0	159.8	
EFFLUENT (MG/L)	ND	ND	42.0	17.0	26.0	ND	- 14 m ) deals	11.0	13.0	5.5	11.4	13.2	15.7	
CONCENTRATION LIMIT (MG/L)												13.2	40.0	
LOADING (KG/D)	ND	ND	ND	8.50	22.62	ND	1.12	3.41	4.81	4.18	5.70	9.90	9.58	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	2.4	1.6	0.9	ND	1.4	7.4	1.1	5.2	2.4	1.8	2.7	
EFFLUENT (MG/L)	ND	ND	0.7	1.9	0.8	ND	1.2	0.2	0.1	0.1	0.2	0.2	0.6	
CONCENTRATION LIMIT (MG/L)							7/	T . T						
LOADING (KG/D)	ND	ND	ND	0.95	0.69	ND	0.54	0.06	0.03	0.07	0.10	0.15	0.37	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP

NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

ANTICIPATED START DATE _ END DATE _ COMPLIANCE

1992

1992

MUNICIPALITY

: BOBCAYGEON

PLANT : BOBCAGEON WPCP(SUMM.POP.SERVED(2480)

WORKS NUMBER : 110002498

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 3.05 (1000 M3)

REGION : CENTRAL DISTRICT : VICTORIA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BOBCAYGEON RIVER

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,610

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.65	0.63	0.77	1.16	0.93	0.84	1.08	0.96	0.87	0.88	1.06	1.01	0.90	
BOD5		e-200 (100)	NA 2000AT TOO	10/10/1	200000		Cont. Screen July					20000244		
INFLUENT (MG/L)	123.0	59.0	165.0	81.0	73.0	91.0	149.0	164.0	84.0	95.0	160.0	ND	113.1	
EFFLUENT (MG/L)	3.8	6.3	10.5	13.3	19.7	4.2	3.6	2.4	2.0	0.2	4.0	ND	6.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.47	3.96	8.08	15.42	18.32	3.52	3.88	2.30	1.74	0.17	4.24	ND	5.76	
SUSPENDED SOLIDS	2023 180	580 2V 589		rano las	7027120 1020		70000000 000	202 120	F015/801 - 7/05	6202 100	Yaral Marc	Wiles		
INFLUENT (MG/L)	67.0	93.0	164.0	68.0	63.0	112.0	117.0	90.0	71.0	74.0	91.0	ND	91.8	
EFFLUENT (MG/L)	6.6	8.0	14.0	13.0	11.5	9.4	5.5	6.5	5.5	5.0	5.2	ND	8.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.29	5.04	10.78	15.08	10.69	7.89	5.94	6.24	4.78	4.40	5.51	ND	7.38	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.1	ND	4.9	3.0	3.3	3.2	5.5	5.2	4.5	4.1	4.3	ND	4.4	
EFFLUENT (MG/L)	0.2	0.2	0.5	0.3	0.4	0.2	0.2	0.1	0.1	0.2	0.2	0.3	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.13	0.12	0.38	0.34	0.37	0.16	0.21	0.09	0.08	0.17	0.21	0.30	0.18	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BRACEBRIDGE

PLANT

: BRACEBRIDGE LAGOON

WORKS NUMBER

: 120001979

TREATMENT

: CONVENTIONAL LAGOON SEASONAL : PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

2.06 (1000 M3)

REGION : CENTRAL

DISTRICT

: MUSKOKA, DIST. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: MUSKOKA RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.18	0.14	0.17	0.17	0.19	0.25	ND	ND	ND	0.05	0.70	0.03	0.21	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.18	60.93	40.80	38.30	
BOD5 INFLUENT (MG/L)	210.0	144.0	104.0	109.0	129.0	135.0	ND	ND	ND	213.0	126.0	189.0	151.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6	3.4	12.2	6.1	
CONCENTRATION LIMIT (MG/L)											3.4	12.2	25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	2.38	0.36	1.28	
SUSPENDED SOLIDS INFLUENT (MG/L)	156.0	156.0	101.0	114.0	121.0	119.0	ND	ND	ND	172.0	93.0	115.0	127.4	
EFFLUENT (MG/L)	ND	ND_	ND_	ND	ND	ND	ND	ND	ND	6.9	4.9	12.9	8.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.34	3.43	0.38	1.72	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.9	6.7	5.4	4.4	4.9	5.9	ND	ND	ND	4.6	4.4	6.3	5.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	0.1	0.4	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.2	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.07	0.01	0.04	-

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BRACEBRIDGE

PLANT

: BRACEBRIDGE WPCP

WORKS NUMBER

: 110000034

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

3.19 (1000 M3)

REGION : CENTRAL

DISTRICT

: MUSKOKA, DIST. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: MUSKOKA RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

6,408

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.77	1.74	1.60	2.03	2.13	2.29	1.78	1.84	1.75	1.76	2.07	1.81	1.88	
BOD5 INFLUENT (MG/L)	210.0	144.0	104.0	109.0	129.0	135.0	168.0	188.0	272.0	213.0	126.0	189.0	165.6	
EFFLUENT (MG/L)	4.2	2.7	1.5	0.5	1.2	3.0	5.3	1.1	0.9	1.2	0.5	4.0	2.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.43	4.69	2.40	1.01	2.55	6.87	9.43	2.02	1.57	2.11	1.03	7.24	4.14	
SUSPENDED SOLIDS INFLUENT (MG/L)	156.0	156.0	101.0	114.0	121.0	119.0	158.0	154.0	273.0	172.0	93.0	115.0	144.3	
EFFLUENT (MG/L)	6.4		13.3	6.0	5.0	3.7	5.8	2.5	5.3	1.0	0.9	3.7	6.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	11.32	33.06	21.28	12.18	10.65	8.47	10.32	4.60	9.27	1.76	1.86	6.69	11.47	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.9	6.7	5.4	4.4	4.9	5.9	6.5	6.9	14.9	4.6	4.4	6.3	6.5	
EFFLUENT (MG/L)	0.3	0.5	0.2	0.2	0.2	0.3	0.5	0.4	0.3	0.1	0.1	0.2	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		5000
LOADING (KG/D)	0.53	0.87	0.32	0.40	0.42	0.68	0.89	0.73	0.52	0.17	0.20	0.36	0.56	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/03

REMEDIAL MEASURES

INFLUENT SEWAGE - ENFORCING SEWER USE BYLAW

MUNICIPALITY

: BRADFORD

PLANT

: BRADFORD WPCP

WORKS NUMBER

: 110000944

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

: 6.81 (1000 M3)

REGION : CENTRAL DISTRICT

: SIMCOE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: SCHOMBERG RIVER

MINOR BASIN MAJOR BASIN : HURON

: GREAT LAKES

POPULATION SERVED : 12,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	4.10	3.94	4.12	4.23	4.26	4.63	4.04	4.27	4.31	4.66	5.11	4.44	4.34	
BOD5 Influent (Mg/L)	194.5	202.0	237.0	166.0	147.0	149.5	169.0	169.0	176.5	210.0	191.5	245.0	188.1	
EFFLUENT (MG/L)	5.4	4.5	5.5	4.0	3.1	1.9	2.4	1.7	1.4	1.6	3.6	7.8	3.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	22.14	17.73	22.66	16.92	13.20	8.79	9.69	7.25	6.03	7.45	18.39	34.63	15.62	
SUSPENDED SOLIDS INFLUENT (MG/L)	262.5	303.0	502.5	152.0	178.0	153.5	216.0	348.4	358.3	523.4	574.9	418.9	332.6	
EFFLUENT (MG/L)	2.9	4.3	5.0	4.0	2.8	1.6	2.8	3.3	3.3	2.4	2.2	2.1	3.1	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	11.89	16.94	20.60	16.92	11.92	7.40	11.31		14.22	11.18	11.24	9.32	25.0 13.45	
				30.00							11.64	7.32	13.45	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.8	7.4	7.8	5.3	7.0	6.5	7.8	6.5	7.3	7.6	5.7	7.3	6.9	
EFFLUENT (MG/L)	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.82	0.78	0.82	0.84	0.42	0.46	0.80	0.85	0.86	0.93	1.02	0.44	0.87	***************************************

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BRIGHTON

PLANT

: BRIGHTON LAGOON

WORKS NUMBER

: 110000953

TREATMENT

: AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 3.86 (1000 M3)

REGION : CENTRAL

DISTRICT : NORTHUMBERLAND

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: L.ONT.PRESQUILE BAY

MINOR BASIN

: ONTARIO

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 3,750

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.99	2.47	3.10	3.49	3.80	3.46	1.78	1.85	2.57	3.45	3.98	ND	2.99	
LAGOON DISCHARGE	92.84	69.24	96.27	100.16	117.72	103.99	55.30	57.50	78.85	106.83	19.49	ND	81.65	
B0D5		Market Service	Political Property			MARKET CORP.		741000 AND	Name and Associated	estenti avo	2000	DERIVED THE		
INFLUENT (MG/L)	72.0	52.0	81.0	72.0	27.0	53.0	29.0	83.0	77.0	64.0	79.0	77.0	63.8	
EFFLUENT (MG/L)	11.0	20.8	21.9	23.0	8.0	22.6	0.5	3.7	1.6	2.5	5.6	4.9	10.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	32.89	51.37	67.89	80.27	30.40	78.19	0.89	6.84	4.11	8.62	22.28	ND	31.40	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	66.0	60.0	62.0	50.0	38.0	74.0	47.0	86.0	68.0	74.0	72.0	76.0	64.4	
EFFLUENT (MG/L)	12.0	29.0	31.0	31.5	6.0	7.5	6.5	3.0	4.0	1.6	2.2	2.0	11.4	
CONCENTRATION LIMIT (MG/L)									- C- 10 - C-		0.00 =000.00		40.0	
LOADING (KG/D)	35.88	71.63	96.10	109.93	22.80	25.95	11.57	5.55	10.28	5.52	8.75	ND	34.09	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.1	2.8	5.0	2.9	1.8	3.6	2.7	4.7	4.6	1.4	4.0	4.2	3.5	
EFFLUENT (MG/L)	0.7	0.9	1.3×	1.0	0.7	0.4	0.5	0.1	0.3	0.5	0.3	0.2	0.6	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.09	2.22	4.03	3.49	2.66	1.38	0.89	0.18	0.77	1.72	1.19	ND	1.79	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	30.0 MG/L	YES
SS	40.0 MG/L	YES
TP	1.0 MG/L	NO

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BROCK

PLANT

: BEAVERTON RIVER 1 LAGOON (SUNDERLAND)

WORKS NUMBER

: 120003496

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

: EXFILTRATION LAGOON

DESIGN CAPACITY

: 0.75 (1000 M3) REGION

: CENTRAL

DISTRICT

: DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

MINOR BASIN

: NO DISC.TO SURFACE WATER : HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

875

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)	0.28	0.28	0.27	0.30	0.34	0.31	0.26	0.24	0.27	0.25	0.28	0.27	0.28	
LAGOON DISCHARGE	ND     ND	ND	ND	ND	ND									
BOD5														
INFLUENT (MG/L)	ND	680.0	210.0	320.0	377.0	175.0	9.0	310.0	230.0	828.0	258.0	423.0	347.3	
EFFLUENT (MG/L)	ND     ND	ND	ND	ND	ND									
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND     ND	ND	ND	ND	ND									
SUSPENDED SOLIDS														
INFLUENT (MG/L)	352.0	356.0	200.0	188.0	328.0	424.0	7.0	156.0	342.0	273.0	238.0	482.0	278.8	
EFFLUENT (MG/L)	ND     ND	ND	ND	ND	ND									
CONCENTRATION LIMIT (MG/L)											,			
LOADING (KG/D)	ND     ND	ND	ND	ND	ND									
TOTAL PHOSPHOROUS	1												N. 2	
INFLUENT (MG/L)	41.0	88.0	8.5	10.5	ND	ND	ND	ND	26.4	18.5	3.9	19.1	27.0	
EFFLUENT (MG/L)	ND     ND	ND	ND	ND	ND									
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND     ND	ND	ND	ND	ND									

	SUMMA	_	OMPLIES	
PARM	CRITERIA	300/200	TH CONC	
BOD	NA	NO	DIRECT	DISCHARGE
SS	NA	NO	DIRECT	DISCHARGE
TP	NA	NO	DIRECT	DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BROCK

PLANT : BEA

: BEAVERTON RIVER 2 LAGOON (CANNINGTON)

WORKS NUMBER TREATMENT : 110001248

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.92 (1000 M3)

REGION : CENTRAL

DISTRICT : DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : BEAVERTON RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,835

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.67	0.67	0.75	0.98	1.11	0.81	0.61	0.53	0.54	0.59	0.81	0.63	0.73	
LAGOON DISCHARGE	ND	ND	ND	ND	172.75	ND	ND	ND	ND	41.82	67.28	ND	93.95	
BOD5														
INFLUENT (MG/L)	27.0	98.0	190.0	146.0	66.0	119.0	172.0	290.0	112.0	81.0	159.0	167.0	135.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	5.6	ND	ND	ND	ND	11.9	9.9	ND	9.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	6.21	ND	ND	ND	ND	7.02	8.01	ND	6.64	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	217.0	442.0	206.0	254.0	162.0	168.0	200.0	262.0	212.0	234.0	152.0	295.0	233.7	1
EFFLUENT (MG/L)	ND	ND	ND	ND	4.8	ND	ND	ND	ND ND	6.5	4.4	ND.	5.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	5.32	ND	ND	ND	ND	3.83	3.56	ND	3.80	
TOTAL PHOSPHOROUS							nto mess							
INFLUENT (MG/L)	11.5	13.0	10.1	4.6	ND	ND	ND	9.6	7.2	4.9	3.8	6.5	7.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.1	ND	ND	ND	ND	0.2	0.2	ND	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	0.11	ND	ND	ND	ND	0.11	0.16	ND	0.15	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: BROCK

PLANT

: LAKE SIMCOE LAGOON (BEAVERTON)

WORKS NUMBER

: 110000908

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

:

1.73 (1000 M3)

REGION : CENTRAL

DISTRICT

: DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: LAKE SIMCOE

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

2,570

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.54	1.35	1.99	2.45	2.69	2.59	1.60	1.58	1.50	1.61	2.41	1.66	1.91	
LAGOON DISCHARGE	ND	ND	ND	118.20	236.39	ND	ND	ND	ND	154.56	77.28	ND	146.61	
BOD5 INFLUENT (MG/L)	237.0	123.0	387.0	103.0	111.0	156.0	176.0	344.0	169.0	520.0	89.0	158.0	214.4	
EFFLUENT (MG/L)	ND	ND	ND	8.5	3.6	ND	ND	ND	ND	8.8	13.5	ND	8.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	20.82	9.68	ND	ND	ND	ND	14.16	32.53	ND	16.43	
SUSPENDED SOLIDS INFLUENT (MG/L)	216.0	180.0	80.0	108.0	184.0	196.0	373.0	545.0	842.0	678.0	80.0	136.0	301.5	
EFFLUENT (MG/L)	ND	ND	ND	8.8	3.5	ND	ND	ND	ND	4.5	5.2	ND	5.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	21.56	9.41	ND	ND	ND	ND	7.24	12.53	ND	10.51	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	11.2	9.7	9.5	4.8	ND	ND	ND	10.3	12.1	12.1	3.9	4.2	8.6	
EFFLUENT (MG/L)	ND	ND	ND	0.1	0.1	ND	ND	ND ND	ND	0.1	0.1	ND	0.1	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1	
LOADING (KG/D)	ND	ND	ND	0.24	0.26	ND	ND	ND	ND	0.16	0.24	ND	0.19	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : BURLINGTON

PLANT : SKYWAY WPCP WORKS NUMBER : 110000070

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

.

DESIGN CAPACITY : 93.19 (1000 M3)

REGION : CENTRAL

DISTRICT : HALTON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : HAMILTON HARBOUR

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 120,100

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	63.03	60.40	65.90	76.26	71.54	66.54	66.65	67.42	66.89	64.59	72.69	62.14	67.00	
BODS INFLUENT (MG/L)	223.0	255.0	215.0	173.0	203.0	203.0	170.0	250.0	287.0	217.0	147.0	205.0	212.3	
EFFLUENT (MG/L)	9.6	10.0	16.0	16.0	13.0	15.0	9.9	7.0	8.7	11.1	7.7	5.4	10.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	605.08	604.00	1054.40	1220.16	930.02	998.10	659.83	471.94	581.94	716.94	559.71	335.55	723.60	
SUSPENDED SOLIDS		071 0	171.0	678.0	074.0	100.0	<b>67</b> F 0	440.0	747.0					
INFLUENT (MG/L)	249.0	271.0	THE RESERVE OF THE PARTY OF THE	The second second second second	Appropriate Control of the Control	190.0	235.0	460.0	347.0	231.0	127.0	272.0	254.9	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	5.7	8.3	22.6	9.0	12.0	14.7	11.0	6.5	6.3	6.8	8.2	5.4	9.7	
LOADING (KG/D)	359.27	501.32	1489.34	686.34	858.48	978.13	733.15	438.23	421.40	439.21	596.05	335.55	25.0 649.90	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.4	8.0	7.3	7.2	7.8	6.1	6.7	9.0	10.2	7.1	6.3	7.1	7.4	
EFFLUENT (MG/L)	0.7	0.8	1.0	0.5	0.7	0.7	0.8	0.8	0.7	0.7	1.0	0.6	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	44.12	48.32	65.90	38.13	50.07	46.57	53.32	53.93	46.82	45.21	72.69	37.28	53.60	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: CAMPBELLFORD

: CAMPBELLFORD WPCP

WORKS NUMBER

: 110000962

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

5.91 (1000 M3)

REGION : CENTRAL

DISTRICT : NORTHUMBERLAND

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : TRENT RIVER MINOR BASIN : ONTARIO

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 3,255

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	5.29	4.78	5.68	7.35	7.13	7.24	6.16	5.78	5.77	4.90	6.11	5.74	5.99	
BOD5 INFLUENT (MG/L)	30.0	75.0	122.5	55.5	27.0	21.0	17.0	32.0	33.5	100.5	30.5	59.0	50.3	
EFFLUENT (MG/L)	5.4	3.0	3.5	1.6	3.2	2.0	4.0	2.1	1.4	5.5	4.6	15.1	4.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	28.56	14.34	19.88	11.76	22.81	14.48	24.64	12.13	8.07	26.95	28.10	86.67	25.76	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	48.0	102.0	217.0	75.0	88.0	26.5	30.0	51.0	35.5	120.5	35.5	54.0	73.6	
EFFLUENT (MG/L)	9.7	8.8	9.5	4.8	6.0	9.0	6.3	5.8	7.8	7.9	8.4	7.8	7.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	51.31	42.06	53.96	35.28	42.78	65.16	38.80	33.52	45.00	38.71	51.32	44.77	46.12	
TOTAL PHOSPHOROUS						-10.000								
INFLUENT (MG/L)	5.4	3.4	5.1	2.0	1.8	1.6	1.2	2.0	2.1	3.2	1.5	2.6	2.7	
EFFLUENT (MG/L)	0.6	0.6	0.5	0.8	0.4	0.4	0.6	0.5	0.5	0.6	0.5	0.6	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	7-	
LOADING (KG/D)	3.17	2.86	2.84	5.88	2.85	2.89	3.69	2.89	2.88	2.94	3.05	3.44	3.59	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA

MUNICIPALITY

: COBOURG

PLANT

: COBOURG WPCP NO 1

WORKS NUMBER

: 120000097

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

16.04 (1000 M3)

REGION : CENTRAL

DISTRICT : NORTHUMBERLAND

OPERATING AUTHORITY : MUNICIPAL

: COBOURG BROOK

WATERCOURSE MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

5,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	7.00	6.77	6.91	7.91	7.86	8.14	6.09	5.46	6.27	6.59	9.46	5.77	7.02	
BOD5					407.0									
INFLUENT (MG/L)	547.0	591.0	547.0	558.0	493.0	473.0	447.0	548.0	604.0	510.0	William Printer and the standard from	534.0	528.1	
EFFLUENT (MG/L)	11.3	33.3	41.7	29.1	12.8	10.5	8.4	8.7	13.1	4.4	13.6	45.4	19.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	79.10	225.44	288.14	230.18	100.60	85.47	51.15	47.50	82.13	28.99	128.65	261.95	136.19	
SUSPENDED SOLIDS													***************************************	
INFLUENT (MG/L)	256.0	354.0	241.0	230.0	229.0	209.0	245.0	244.0	337.0	322.0	249.0	239.0	262.9	
EFFLUENT (MG/L)	13.1	26.1	38.0	20.5	12.6	11.7	10.3	9.3	11.8	6.6	13.0	13.9	15.6	
CONCENTRATION LIMIT (MG/L)			A 15										25.0	100
LOADING (KG/D)	91.70	176.69	262.58	162.15	99.03	95.23	62.72	50.77	73.98	43.49	122.98	80.20	109.51	
TOTAL PHOSPHOROUS							90 HS	0 000		17.5	72.5			
INFLUENT (MG/L)	4.2	2.9	4.5	3.3	3.0	3.1	4.4	4.4	6.5	3.4	4.8	5.3	4.2	
EFFLUENT (MG/L)	0.6	1.1*	1.7×	0.5	0.9	1.1*	1.4*	1.1*	1.4*	0.6	0.7	1.6*	1.1	7
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	4.20	7.44	11.74	3.95	7.07	8.95	8.52	6.00	8.77	3.95	6.62	9.23	7.72	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD

25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1989/12 1989/12

REMEDIAL MEASURES

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED

MUNICIPALITY

: COBOURG

PLANT

: COBOURG WPCP NO 2

WORKS NUMBER

: 120003192

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

11.70 (1000 M3)

REGION : CENTRAL

DISTRICT

: NORTHUMBERLAND

WATERCOURSE

OPERATING AUTHORITY : MUNICIPAL

: LAKE ONTARIO

MINOR BASIN MAJOR BASIN : ONTARIO

: GREAT LAKES

POPULATION SERVED :

5,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.89	2.86	2.91	3.70	3.91	4.55	3.46	3.17	3.46	4.30	6.49	5.03	3.89	
BOD5 INFLUENT (MG/L)	157.0	184.0	173.0	124.0	156.0	176.0	135.0	149.0	131.0	121.0	107.0	100.0	140.0	
EFFLUENT (MG/L)	19.0	24.4	13.0	9.0	7.8	8.4	6.1	6.1	6.0		107.0	100.0	142.8	
CONCENTRATION LIMIT (MG/L)			10.0			0	0.1	0.1	6.0	8.7	18.2	13.3	11.7	
LOADING (KG/D)	54.91	69.78	37.83	33.30	30.49	38.22	21.10	19.33	20.76	37.41	118.11	66.89	25.0 45.51	
SUSPENDED SOLIDS INFLUENT (MG/L)	195.0	260.0	242.0	212.0	254.0	433.0	232.0	259.0	221.0	214.0	290.0	225.0	253.1	
EFFLUENT (MG/L)	16.5	11.1	9.4	9.1	9.2	10.2	10.2	11.1	6.9	13.5	13.1	7.0	10.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	47.68	31.74	27.35	33.67	35.97	46.41	35.29	35.18	23.87	58.05	85.01	35.21	41.23	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.7	3.0	4.3	3.8	3.1	5.9	4.9	3.3	5.6	3.5	3.3	3.2	4.0	
EFFLUENT (MG/L)	0.6	0.7	0.4	0.7	0.5	0.7	0.6	0.9	0.7	0.6	0.5	0.5	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.6	
LOADING (KG/D)	1.73	2.00	1.16	2.59	1.95	3.18	2.07	2.85	2.42	2.58	3.24	2.51	2.33	

	SUMMA	RY
	9	COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: COLBORNE

PLANT

: COLBORNE WPCP

WORKS NUMBER

: 120000088

: SUTTON PROCESS

TREATMENT

:

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

1.37 (1000 M3)

REGION : CENTRAL

DISTRICT

: NORTHUMBERLAND

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : COLBORNE CREEK

MINOR BASIN

: ONTARIO

MAJOR BASIN POPULATION SERVED :

: GREAT LAKES 1,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.94	1.63	1.38	0.67	1.27	1.30	1.54	1.21	ND	1.11	1.61	0.34	1.18	
BOD5					22 2						-2.2			
INFLUENT (MG/L)	75.0	138.0	116.0	43.0	46.0	54.0	78.0	122.0	106.0	144.0	39.0	ND	87.4	
EFFLUENT (MG/L)	4.3	4.0	8.8	3.4	0.8	3.6	ND	0.7	0.8	2.3	ND	ND	3.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	4.04	6.52	12.14	2.27	1.01	4.68	ND	0.84	ND	2.55	ND	ND	3.78	
SUSPENDED SOLIDS	444.0	140.0	170.0	45.0	F4 0	77.0	120.0	145.0	174.0	532.0	78.0	ND	154.9	
INFLUENT (MG/L)	111.0	168.0	178.0	45.0	56.0	77.0	120.0	165.0	The second secon	0.8	ND	ND	4.3	
EFFLUENT (MG/L)	5.4	5.6	6.5	6.5	0.5	6.0	ND	2.5	4.5	0.6	שא	, ND	4,3	
CONCENTRATION LIMIT (MG/L)						7 00		7 00		0 00	ND	ND	E 07	·
LOADING (KG/D)	5.07	9.12	8.97	4.35	0.63	7.80	ND	3.02	ND	0.88	ND	ND	5.07	
TOTAL PHOSPHOROUS													Cort Stager	
INFLUENT (MG/L)	5.9	ND	4.7	3.3	2.3	2.9	5.4	5.8	5.8	6.4	2.5	ND	4.5	
EFFLUENT (MG/L)	0.3	ND	0.2	0.3	0.2	0.6	ND	1.1	0.6	0.5	ND	ND	0.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.28	ND	0.27	0.20	0.25	0.78	ND	1.33	ND	0.55	ND	ND	0.59	1

# SUMMARY

COMPLIES

BOD

CRITERIA WITH CONC

25.0 MG/L YES

25.0 MG/L YES

SS 1.0 MG/L INSUFFICIENT DATA TP

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY PLANT : COLDWATER

WORKS NUMBER

: COLDWATER WPCP : 110001596

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

0.54 (1000 M3)

REGION : CENTRAL DISTRICT : SIMCOE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: COLDWATER RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

1,015

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.44	0.35	0.57	0.62	0.64	0.56	0.39	0.36	0.32	0.33	0.43	0.50	0.46	
BODS INFLUENT (MG/L)	101.0	70.5	68.0	85.0	73.1	84.6	54.1	122.0	107.0	89.9	51.4	207.0	92.8	
EFFLUENT (MG/L)	3.5	4.5	7.0	5.9	4.0	5.4	7.5	3.9	4.8	2.9	5.9	1.3	4.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.54	1.57	3.99	3.65	2.56	3.02	2.92	1.40	1.53	0.95	2.53	0.65	2.16	
SUSPENDED SOLIDS INFLUENT (MG/L)	69.0	78.0	78.0	79.0	117.5	85.9	70.5	104.0	131.0	90.5	52.5	249.5	100.5	
EFFLUENT (MG/L)	3.5	5.3	6.0	5.6	5.8	7.5	8.5	4.3	6.3	2.4	8.3	7.9	6.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.54	1.85	3.42	3.47	3.71	4.20	3.31	1.54	2.01	0.79	3.56	3.95	2.76	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.5	3.3	5.1	3.8	4.8	5.4	5.4	5.6	5.3	3.6	2.8	8.7	4.0	
EFFLUENT (MG/L)	2.6	2.6	3.0	2.6	3.5	4.0	5.2	4.6	4.5	4.3	2.3	3.1	4.9	
CONCENTRATION LIMIT (MG/L)									7.2		2.5	3.1	3.5	
LOADING (KG/D)	1.14	0.91	1.71	1.61	2.24	2.24	2.02	1.65	1.44	1.41	0.98	1.55	1.61	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA NA - NOT APPLICABLE

MUNICIPALITY

: COLLINGWOOD

PLANT : COLLINGWOOD WPCP

WORKS NUMBER

: 120000550

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

24.54 (1000 M3)

REGION DISTRICT

: CENTRAL : SIMCOE

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: GEORGIAN BAY

MINOR BASIN : HURON MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 12,135

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	19.11	17.45	20.15	21.56	20.81	14.34	10.58	11.53	11.71	12.51	13.95	12.91	15.55	
B0D5		2.02												
INFLUENT (MG/L)	181.0	200.0	175.0	205.0	197.0	187.0	278.0	344.0	271.0	182.0	208.0	209.0	219.8	_10
EFFLUENT (MG/L)	6.2	8.8	6.3	6.4	6.6	7.9	9.0	10.9	9.1	9.3	8.1	11.0	8.3	
CONCENTRATION LIMIT (MG/L)											Miles in the second		25.0	
LOADING (KG/D)	118.48	153.56	126.94	137.98	137.34	113.28	95.22	125.67	106.56	116.34	112.99	142.01	129.07	
SUSPENDED SOLIDS			•••		174.0	105.0	244.0	170.0	161.0	145.0	1/7.0	147.0	177.0	
INFLUENT (MG/L)	130.0	162.0	216.0	145.0	176.0	195.0	266.0	179.0	161.0	145.0	163.0	147.0	173.8	
EFFLUENT (MG/L)	9.2	10.1	10.6	9.6	10.9	13.4	14.2	13.2	9.4	9.6	12.3	15.0	11.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	175.81	176.24	213.59	206.97	226.82	192.15	150.23	152.19	110.07	120.09	171.58	193.65	178.83	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.3	7.1	7.6	7.0	6.0	8.0	6.8	7.3	4.7	5.7	4.8	4.4	6.2	
EFFLUENT (MG/L)	0.5	0.8	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	9.55	13.96	12.09	10.78	10.40	7.17	5.29	5.76	5.85	6.25	6.97	5.16	7.78	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: COOKSTOWN

PLANT

: COOKSTOWN WPCP

WORKS NUMBER

: 110002265

TREATMENT

: SUTTON PROCESS

: PHOSPHORUS REMOVAL-CONTINUOUS

: SEASONAL DISCHARGE

DESIGN CAPACITY

0.82 (1000 M3)

REGION : CENTRAL DISTRICT

: SIMCOE OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : INNISFIL CREEK

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,027

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE! EXCEE!
AVG. DAILY FLOW (1000 M3)	0.20	0.18	0.23	0.22	0.21	0.22	0.20	0.22	0.27	0.30	0.36	0.37	0.25	
BOD5 INFLUENT (MG/L)	121.5	137.0	114.5	196.0	83.5	182.5	106.0	114.5	182.0	223.0	155.5	163.0	148.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	4.1	ND	ND	ND	ND	ND	0.4	ND	2.3	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.86	ND	ND	ND	ND	ND	0.14	ND	0.58	
SUSPENDED SOLIDS											7			
INFLUENT (MG/L)	155.5	168.0	199.0	580.0	158.5	352.0	170.0	131.0	201.5	191.0	178.5	240.0	227.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	9.0	ND	ND	ND	ND	ND	1.1	ND	5.1	
CONCENTRATION LIMIT (MG/L)												N	3.1-	
LOADING (KG/D)	ND	ND	ND	ND	1.89	ND	ND	ND	ND	ND	0.39	ND	1.28	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.4	9.1	5.9	8.6	5.4	8.4	6.5	6.0	10.2	8.5	8.3	8.0	7.8	l
EFFLUENT (MG/L)	ND	ND	ND	ND	0.1	ND	ND	ND	ND	ND ND	0.4	ND	0.3	
CONCENTRATION LIMIT (MG/L)				*********					110		0.4	ND	0.5	
LOADING (KG/D)	ND	ND	ND	ND	0.02	ND	ND	ND	ND	ND	0.14	ND	0.08	

			•		
SU	М	m	А	ĸ	r

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

NA NA

BOD - HAS NO CRITERIA SS - HAS NO CRITERIA TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NOTE:

NA - NOT APPLICABLE

MUNICIPALITY

: DYSART-ET-AL : HALIBURTON WPCP

PLANT WORKS NUMBER

: 110001603

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

0.45 (1000 M3)

REGION : CENTRAL DISTRICT : HALIBURTON

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : DRAG R. TO GRASS LAKE : ONTARIO

MINOR BASIN MAJOR RASTN

POF

JOK BASIN		•	GREAT	LAKES
PULATION S	SERVED	:		920

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.28	0.26	0.33	0.37	0.37	0.32	0.27	0.21	0.23	0.24	0.34	0.29	0.29	
BOD5 INFLUENT (MG/L)	147.0	190.0	42.0	135.0	29.0	132.0	163.0	134.0	50.0	50.0	70.0	26.0	97.3	
EFFLUENT (MG/L)	3.9	0.5	0.5	0.5	14.8	10.0	3.4	3.8	0.5	1.8	5.0	0.6	3.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.09	0.13	0.16	0.18	5.47	3.20	0.91	0.79	0.11	0.43	1.70	0.17	1.10	
SUSPENDED SOLIDS INFLUENT (MG/L)	230.0	250.0	51.0	124.0	40.0	49.0	195.0	143.0	64.0	39.0	83.0	28.0	108.0	
EFFLUENT (MG/L)	4.0	8.0	5.0	10.5	13.0	8.8	6.5	2.5	5.0	4.9	5.1	6.6	6.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.12	2.08	1.65	3.88	4.81	2.81	1.75	0.52	1.15	1.17	1.73	1.91	1.94	
TOTAL PHOSPHOROUS	14.4	7.0	1.0	4 0	ND	4.0	9.7	6.3	3.0	3.9	2.6	1.4	5.3	
INFLUENT (MG/L)	14.6	7.8	1.2	4.8	ND ND	4.8	8.3	0.7	0.4	0.5	0.6	0.5	0.5	
EFFLUENT (MG/L)	0.5	0.6	0.3	0.5	ND	0.5 1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	0.16	0.16	0.14	0.09	0.12	0.20	0.14	0.15	
LOADING (KG/D)	0.14	0.15	0.09	0.18	ND	0.10	0.10	0.14	0.09	0.12	0.20	0.14	0.15	

SUMMARY COMPLIES PARM CRITERIA WITH CONC 25.0 MG/L YES

BOD SS 25.0 MG/L YES TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED

MUNICIPALITY

: EAST GWILLIMBURY

PLANT

: HOLLAND LANDING LAGOON

WORKS NUMBER

: 120001620

:

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

1.36 (1000 M3)

REGION : CENTRAL

DISTRICT : YORK, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: HOLLAND RIVER MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 2,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.27	1.06	1.03	1.21	1.26	0.89	0.89	0.89	1.04	1.30	1.42	1.14	1.12	
LAGOON DISCHARGE	ND	ND	ND	ND	191.00	ND	ND	ND	ND	ND	91.68	ND	141.34	
<u>BOD5</u> INFLUENT (MG/L)	139.0	ND	202.0	132.0	104.0	84.0	ND	144.0	76.0	182.0	115.0	102.0	128.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	12.9	ND	ND	ND	ND	ND	12.8	ND	12.9	
CONCENTRATION LIMIT (MG/L)											12.0		30.0	
LOADING (KG/D)	ND	ND	ND	ND	16.25	ND	ND	ND	ND	ND	18.17	ND	14.45	
SUSPENDED SOLIDS INFLUENT (MG/L)	252.0	ND	276.0	91.0	117.0	83.0	ND	120.0	83.0	188.0	124.0	116.0	145.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	19.1	ND	ND	ND	ND	ND	26.8	ND	23.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	24.06	ND	ND	ND	ND	ND	38.05	ND	25.76	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	9.0	ND	5.2	ND	7.0	5.3	ND	7.1	7.9	11.1	7.9	5.8	7.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.7	ND	ND	ND	ND	ND	0.4	ND	0.6	0.0000000000000000000000000000000000000
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	
LOADING (KG/D)	ND	ND	ND	ND	0.88	ND	ND	ND	ND	ND	0.56	ND ND	0.67	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES

40.0 MG/L YES SS

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: EAST GWILLIMBURY

PLANT

: MOUNT ALBERT WPCP

WORKS NUMBER

: 120001853

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: SEASONAL DISCHARGE

DESIGN CAPACITY

0.68 (1000 M3)

REGION

: CENTRAL

DISTRICT

OPERATING AUTHORITY : MUNICIPAL

: YORK, REG. MUN.

WATERCOURSE

: MOUNT ALBERT CREEK

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

1,100

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.31	0.31	0.30	0.35	0.37	0.39	0.34	0.34	0.36	0.34	0.39	0.36	0.35	
BOD5	2017/107										0.22			
INFLUENT (MG/L)	125.0	15.0	120.0	135.0	160.0	118.0	ND	98.0	19.0	164.0	78.0	61.0	99.4	
EFFLUENT (MG/L)	33.0	ND	ND	ND	ND	ND	ND	ND	ND	10.6	15.1	ND	19.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	10.23	ND	ND	ND	ND	ND	ND	ND	ND	3.60	5.88	ND	6.86	2000
SUSPENDED SOLIDS	121 121 121		~				232							
INFLUENT (MG/L)	93.0	73.0	173.0	166.0	105.0	75.0	ND	150.0	46.0	71.0	153.0	94.0	109.0	
EFFLUENT (MG/L)	19.8	ND	ND	ND	ND	ND	ND	ND	ND	28.8	29.3	ND	26.0×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	6.13	ND	ND	ND	ND	ND	ND	ND	ND	9.79	11.42	ND	9.10	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.5	15.0	9.3	ND	6.6	6.6	ND	5.9	3.3	8.7	5.0	4.1	7.2	
EFFLUENT (MG/L)	0.4	ND	ND	ND	ND	ND	ND	ND	ND	0.3	0.3	ND	0.3	Fill
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.12	ND	ND	ND	ND	ND	ND	ND	ND	0.10	0.11	ND	0.11	

# SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L NO TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: ELMVALE

PLANT

: ELMVALE LAGOON

WORKS NUMBER

: 110000169

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

:

DESIGN CAPACITY

0.75 (1000 M3)

REGION : CENTRAL DISTRICT : SIMCOE OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : WYE RIVER MINOR BASIN : HURON MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,565

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	1.21	1.42	1.63	1.59	1.25	0.95	0.98	1.11	1.39	1.59	1.26	1.31	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-7
BOD5 INFLUENT (MG/L)	ND	126.0	152.0	86.0	154.0	142.0	208.0	212.0	258.0	183.0	149.0	364.0	184.9	
EFFLUENT (MG/L)	ND	13.6	35.6	24.4	11.7	16.0	17.1	21.2	16.0	20.5	21.1	ND	19.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	16.45	50.55	39.77	18.60	20.00	16.24	20.77	17.76	28.49	33.54	ND	25.81	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	184.0	262.0	109.0	464.0	111.0	318.0	140.0	291.0	288.0	191.0 1	,120.0	316.2	
EFFLUENT (MG/L)	ND	25.0	21.5	24.0	73.0	12.0	9.0	28.0	30.5	35.0	3.3	ND	26.1	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	30.25	30.53	39.12	116.07	15.00	8.55	27.44	33.85	48.65	5.24	ND	34.19	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	ND	7.4	5.9	10.4	8.9	6.6	8.9	8.7	8.2	7.6	7.5	8.0	
EFFLUENT (MG/L)	ND	ND	4.5	3.0	2.8	3.5	3.8	3.9	4.0	2.6	3.4	ND .	3.5	
CONCENTRATION LIMIT (MG/L)	·//								7.0		5.7		3.5	
LOADING (KG/D)	ND	ND	6.39	4.89	4.45	4.37	3.61	3.82	4.44	3.61	5.40	ND	4.59	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 30.0 MG/L YES 40.0 MG/L YES

SS TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: ESSA

PLANT

: ANGUS WPCP

WORKS NUMBER

: 110003282

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY :

3.39 (1000 M3)

REGION DISTRICT : CENTRAL

: SIMCOE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE MINOR BASIN

: NOTTAWASAGA RIVER

: HURON

: GREAT LAKES

MAJOR BASIN POPULATION SERVED :

2,560

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.13	0.94	1.02	1.14	1.16	1.18	0.90	0.83	0.87	0.92	1.12	1.09	1.03	
BODS INFLUENT (MG/L)	130.5	179.0	170.5	51.0	157.5	123.0	151.5	148.0	129.5	223.5	199.0	196.0	154.9	
EFFLUENT (MG/L)	4.1	3.1	6.5	1.6	2.6	2.5	3.0	3.2	3.6	6.3	3.0	1.8	3.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.63	2.91	6.63	1.82	3.01	2.95	2.70	2.65	3.13	5.79	3.36	1.96	3.50	
SUSPENDED SOLIDS INFLUENT (MG/L)	127.0	192.0	222.0	102.5	245.0	124.5	149.0	145.5	289.5	256.0	168.0	261.0	190.2	
EFFLUENT (MG/L)	5.4	6.5	9.5	8.0	13.3	10.3	6.6	5.8	8.8	6.7	3.9	4.6	7.5	
CONCENTRATION LIMIT (MG/L)	547												25.0	-
LOADING (KG/D)	6.10	6.11	9.69	9.12	15.42	12.15	5.94	4.81	7.65	6.16	4.36	5.01	7.73	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.1	7.8	7.5	3.7	6.7	4.3	6.7	7.7	8.3	8.5	7.3	8.2	7.0	
EFFLUENT (MG/L)	0.1	0.2	0.2	0.2	0.3	0.2	0.3	0.3	0.4	0.2	0.3	0.2	0.2	20.00
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.11	0.18	0.20	0.22	0.34	0.23	0.27	0.24	0.34	0.18	0.33	0.21	0.21	

SUMMARY

COMPLIES

BOD

CRITERIA WITH CONC 25.0 MG/L YES

25.0 MG/L YES SS

TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: FENELON FALLS

PLANT

: FENELON FALLS WPCP(SUMMER POPSERVE 3136)

WORKS NUMBER

: 110001612

TREATMENT

DESIGN CAPACITY

: OXIDATION DITCH

: PHOSPHORUS REMOVAL-CONTINUOUS

:

1.00 (1000 M3)

REGION : CENTRAL DISTRICT : VICTORIA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : FENELON RIVER

MINOR BASIN : ONTARIO MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 1,817

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.88	0.83	1.06	1.27	1.23	0.96	0.91	0.89	0.88	1.19	1.36	1.05	1.04	
BOD5 INFLUENT (MG/L)	114.0	106.0	126.0	65.5	82.0	127.0	170.0	174.0	124.0	105.0	68.0	92.0	112.8	
EFFLUENT (MG/L)	3.8	17.5	6.0	9.6	37.3	6.0	5.1	0.9	3.2	0.7	11.8	16.4	9.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.34	14.52	6.36	12.19	45.87	5.76	4.64	0.80	2.81	0.83	16.04	17.22	10.30	
SUSPENDED SOLIDS INFLUENT (MG/L)	100.0	150.0	172.0	07 F	70.0	101.0	170.0	1/0.0	100.0					
EFFLUENT (MG/L)	9.4	23.5	132.0 15.0	83.5	78.0	121.0	172.0	162.0	129.0	83.0	72.0	88.0	114.2	
CONCENTRATION LIMIT (MG/L)	7,4	23.5	15.0	19.3	32.0	13.6	12.0	5.0	8.0	5.0	9.0	10.4	13.5	
LOADING (KG/D)	8.27	19.50	15.90	24.51	39.36	13.05	10.92	4.45	7.04	5.95	12.24	10.92	25.0 14.04	
TOTAL PHOSPHOROUS										Part No.	200 200	271 272	UNITED 2010	
INFLUENT (MG/L)	4.9	5.6	6.3	4.5	6.0_	3.8	7.7	8.1	6.3	5.4	4.2	4.9	5.6	
EFFLUENT (MG/L)	0.2	0.7	0.4	1.0	0.8	0.3	0.3	0.3	0.5	0.3	0.4	0.3	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0_	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.17	0.58	0.42	1.27	0.98	0.28	0.27	0.26	0.44	0.35	0.54	0.31	0.52	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

NO ACTION - MARGINAL FAILURE-MONITORING LEVEL OF FAILED PARAMETER CLOSELY NO REMEDIAL MEASURES DESCRIPTION

C-213

#### 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: GEORGINA

: KESWICK WPCP

WORKS NUMBER

: 120001755

TREATMENT

PLANT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY :

12.07 (1000 M3)

: CENTRAL REGION

: YORK, REG. MUN. DISTRICT

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: COOK BAY(L.SIMCOE)

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

8,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	3.37	3.58	3.65	4.44	4.85	4.56	3.78	3.96	3.83	4.20	4.92	4.41	4.13	
BOD5		because pro-	45000011 5000											
INFLUENT (MG/L)	104.0	116.0	99.0	89.0	92.0	72.0	105.0	114.0	132.0	174.0	113.0	109.0	109.9	
EFFLUENT (MG/L)	2.3	0.5	0.9	0.7	0.5	0.5	0.4	0.3	0.6	0.3	0.3	0.3	0.6	
CONCENTRATION LIMIT (MG/L)													10.0	
LOADING (KG/D)	7.75	1.79	3.28	3.10	2.42	2.28	1.51	1.18	2.29	1.26	1.47	1.32	2.48	
LOADING LIMIT (KG/D)									4911					
SUSPENDED SOLIDS	race-capite away		namanav tar											
INFLUENT (MG/L)	133.0	ND	180.0	116.0	190.0	149.0	146.0	137.0	146.0	143.0	191.0	108.0	149.0	
EFFLUENT (MG/L)	2.2	3.0	3.3	4.0	5.3	1.6	2.5	4.2	2.0	0.5	0.5	0.6	2.5	
CONCENTRATION LIMIT (MG/L)		FAMILIES PRINCESSON AS DEL SON												
LOADING (KG/D)	7.41	10.74	12.04	17.76	25.70	7.29	9.45	16.63	7.66	2.10	2.46	2.64	10.33	
LOADING LIMIT (KG/D)														
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.2	7.1	5.8	4.8	4.6	4.5	5.7	6.4	6.2	6.4	5.2	5.9	5.7	
EFFLUENT (MG/L)	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.2	0.2	0.2	
CONCENTRATION LIMIT (MG/L)													0.3	
LOADING (KG/D)	0.33	0.35	0.73	0.88	0.97	0.91	0.75	0.79	1.14	1.26	0.98	0.88	0.83	
LOADING LIMIT (KG/D)													3.62	

		SUMMARY	
			COMPLIES WITH
PARM	CRITERIA	LOADING	CONC LOADING
BOD	10.0 MG/L	NA	YES NA
SS	NA	NA	NA NA
TP	0.3 MG/L	3.62 KG/D	YES YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - HAS NO CRITERIA

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: GEORGINA

PLANT : KESWICK WPCP

WORKS NUMBER

: 120001755

TREATMENT : EXTENDED AERATION : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

12.07 (1000 M3)

REGION : CENTRAL

DISTRICT : YORK, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : COOK BAY(L.SIMCOE)

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 8,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	3.37	3.58	3.65	4.44	4.85	4.56	3.78	3.96	3.83	4.20	4.92	4.41	4.13	
BOD5 INFLUENT (MG/L)	104.0	116.0	99.0	89.0	92.0	72.0	105.0	114.0	132.0	174.0	113.0	109.0	109.9	
EFFLUENT (MG/L)	2.3	0.5	0.9	0.7	0.5	0.5	0.4	0.3	0.6	0.3	0.3	0.3	0.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.75	1.79	3.28	3.10	2.42	2.28	1.51	1.18	2.29	1.26	1.47	1.32	2.48	
SUSPENDED SOLIDS INFLUENT (MG/L)	133.0	ND	180.0	116.0	190.0	149.0	146.0	137.0	146.0	143.0	191.0	108.0	149.0	
EFFLUENT (MG/L)	2.2	3.0	3.3	4.0	5.3	1.6	2.5	4.2	2.0	0.5	0.5	0.6	2.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.41	10.74	12.04	17.76	25.70	7.29	9.45	16.63	7.66	2.10	2.46	2.64	10.33	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.2	7.1	5.8	4.8	4.6	4.5	5.7	6.4	6.2	6.4	5.2	5.9	5.7	
EFFLUENT (MG/L)	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.2	0.2	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.33	0.35	0.73	0.88	0.97	0.91	0.75	0.79	1.14	1.26	0.98	0.88	0.83	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - ASSESSED ANNUALLY
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA
NA - NOT APPLICABLE

MUNICIPALITY

: GEORGINA

PLANT

: SUTTON WPCP

WORKS NUMBER

: 110001168

TREATMENT

: SUTTON PROCESS

: PHOSPHORUS REMOVAL-CONTINUOUS

: SEASONAL DISCHARGE

DESIGN CAPACITY

: 2.04 (1000 M3)

REGION

: CENTRAL

DISTRICT

: YORK, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: BLACK RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

2,650

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	1.13	1.13	1.31	1.50	1.82	2.04	1.83	1.79	1.48	1.36	0.94	0.94	1.44	
B0D5	Secretaria de la	SACHARON.							2000	tanon en			30. 30.00	
INFLUENT (MG/L)	183.0	ND	185.0	112.0	ND	80.0	ND	153.0	66.0	68.0	387.0	115.0	149.9	
EFFLUENT (MG/L)	4.5	2.9	2.5	1.7	ND	8.7	ND	19.1	6.4	ND	0.8	1.7	5.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	5.08	3.27	3.27	2.55	ND	17.74	ND	34.18	9.47	ND	0.75	1.59	7.78	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	120.0	ND	186.0	120.0	ND	101.0	ND	179.0	98.0	166.0	139.0	125.0	137.1	
EFFLUENT (MG/L)	1.4	5.0	2.5	4.0	ND	12.4	ND	29.0	2.5	ND	9.3	2.4	7.6	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	1.58	5.65	3.27	6.00	ND	25.29	ND	51.91	3.70	ND	8.74	2.25	10.94	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.5	ND	7.2	ND	ND	5.5	ND	9.5	6.7	7.1	6.5	6.8	7.0	1
EFFLUENT (MG/L)		0.1	0.1	ND	ND	0.5	ND	1.3	2.2	ND	0.3	0.1	0.6	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)		0.11	0.13	ND	ND	1.02	ND	2.32	3.25	ND	0.28	0.09	0.86	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

25.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY PLANT : GRAVENHURST

: GRAVENHURST WPCP (DUAL OPERATION)

WORKS NUMBER

: 120000809

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 3.04 (1000 M3)

REGION : CENTRAL

DISTRICT : MUSKOKA, DIST. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : MUSKOKA LAKE

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 4,782

8	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.25	2.10	2.48	2.89	2.63	2.46	2.13	2.02	1.90	1.96	2.29	2.23	2.28	
BOD5 INFLUENT (MG/L)	58.0	118.0	40.0	106.0	86.0	160.0	129.0			154.0			122.7	
EFFLUENT (MG/L)	4.0	6.6	3.1	2.4	2.7	0.5	8.4	ND	7.3	3.6	5.6	3.3	4.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.00	13.86	7.68	6.93	7.10	1.23	17.89	ND	13.87	7.05	12.82	7.35	9.80	
SUSPENDED SOLIDS INFLUENT (MG/L)	89.0	122.0	60.0	112.0	107.0	191.0	136.0	79.0	124.0	167.0	151.0	159.0	124.8	
EFFLUENT (MG/L)	16.0	44.0	13.0	6.5	1.5	4.5	3.0	4.0	2.5	2.4	9.5	4.4	9.3	
CONCENTRATION LIMIT (MG/L)								- 1					25.0	
LOADING (KG/D)	36.00	92.40	32.24	18.78	3.94	11.07	6.39	8.08	4.75	4.70	21.75	9.81	21.20	
TOTAL PHOSPHOROUS							320			200 200	ANG 1000		#310 DES	
INFLUENT (MG/L)	5.2	4.6	3.4	5.1	4.6	7.1	6.6	4.4	7.3	6.2	5.6	6.9	5.6	
EFFLUENT (MG/L)	0.4	0.3	0.6	0.2	ND	0.1	0.2	0.2	0.2	0.1	0.2	0.2	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.90	0.63	1.48	0.57	ND	0.24	0.42	0.40	0.38	0.19	0.45	0.44	0.46	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW
FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE FACILITY EXPANSION/UPGRADING - APPLICATION FOR FUNDING

1987 1992 1992

MUNICIPALITY

: HALTON HILLS

PLANT

: ACTON WPCP + LAGOON

WORKS NUMBER

: 120001023

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 4.54 (1000 M3)

: EFFLUENT POLISHING

REGION DISTRICT : CENTRAL

: HALTON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

: BLACK CREEK

WATERCOURSE MINOR BASIN

: ONTARIO

: GREAT LAKES

MAJOR BASIN

POPULATION SERVED : 7,478

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	2.70	2.50	2.60	2.90	2.80	3.20	2.50	2.30	2.40	2.50	2.20	2.20	2.57	
BOD5	107.0	100.0	207.0	153.0	115.0	107.0	98.0	127.0	ND	160.0	140.0	135.0	142.8	
INFLUENT (MG/L)	193.0	120.0	223.0	1.1	2.1	0.3	0.5	0.3	0.3	0.9	1.2	1.0	0.9	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	1.5	1.0				0.3	0.5_	0.3	0.3	0.9			25.0	
LOADING (KG/D)	3.51	2.50	2.86	3.19	5.88	0.96	1.25	0.69	0.72	2.25	2.64	2.20	2.31	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	245.0	159.0	130.0	188.0	180.0	115.0	139.0	141.0	ND	189.0	166.0	148.0	163.6	
EFFLUENT (MG/L)	4.5	4.8	3.9	3.6	4.6	1.9	2.5	1.0	1.7	2.1	4.7	5.8	3.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	12.15	12.00	10.14	10.44	12.88	6.08	6.25	2.30	4.08	5.25	10.34	12.76	8.74	
TOTAL PHOSPHOROUS				Engly Indust	Junto Santo	10-22-22		10000		1700 0001				
INFLUENT (MG/L)	6.0	6.2	7.3	6.9	5.9	5.6	5.6	7.3	ND	7.2	8.0	8.5	6.8	
EFFLUENT (MG/L)	0.3	0.3	0.3	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.7	0.5	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.81	0.75	0.78	0.58	0.84	0.64	0.50	0.46	0.48	0.50	1.54	1.10	0.77	

SUMMAR	Y
	COMPI

COMPLIES PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: HALTON HILLS : GEORGETOWN WPCP

WORKS NUMBER

: 110000294

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

13.63 (1000 M3)

REGION

: CENTRAL

DISTRICT

: HALTON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

: SILVER CREEK

WATERCOURSE MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

20,100

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	9.25	8.49	9.63	9.75	8.97	9.70	8.60	8.70	8.80	8.90	10.28	9.29	9.20	
BOD5 INFLUENT (MG/L)	190.0	232.0	240.0	147.0	130.0	160.0	143.0	ND	121.0	147.0	145.0	175.0	166.4	
EFFLUENT (MG/L)	0.4	3.2	3.4	0.8	0.4	1.6	0.8	3.2	1.4	1.2	1.8	1.4	1.6	
CONCENTRATION LIMIT (MG/L)					7.00								25.0	
LOADING (KG/D)	3.70	27.16	32.74	7.80	3.58	15.52	6.88	27.84	12.32	10.68	18.50	13.00	14.72	
SUSPENDED SOLIDS	279.0	297.0	180.0	256.0	201.0	285.0	282.0	ND	122.0	227.0	317.0	203.0	240.8	
INFLUENT (MG/L) EFFLUENT (MG/L)	2.3	2.8	3.2	5.5	5.4	3.7	5.2	5.5	4.9	7.7	6.8	10.2	5.3	-
CONCENTRATION LIMIT (MG/L)	2.5												25.0	
LOADING (KG/D)	21.27	23.77	30.81	53.62	48.43	35.89	44.72	47.85	43.12	68.53	69.90	94.75	48.76	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	9.4	11.6	9.4	10.9	8.4	7.7	11.2	ND	12.3	9.3	11.6	13.6	10.5	
EFFLUENT (MG/L)	0.4	0.2	0.4	0.3	0.2	0.1	0.4	1.7×	0.4	0.4	0.2	ND	0.4	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.70	1.69	3.85	2.92	1.79	0.97	3.44	14.79	3.52	3.56	2.05	ND	3.68	

SU	M	M	Α	R	Y
_	-	-	_	-	_

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES PARM BOD

SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: HASTINGS

PLANT

: HASTINGS WPCP

WORKS NUMBER

: 110001827

TREATMENT

: OXIDATION DITCH

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

1.05 (1000 M3)

REGION

: CENTRAL

DISTRICT

: NORTHUMBERLAND

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: TRENT RIVER

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

959

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.30	0.62	0.65	1.11	1.12	0.99	0.80	0.59	0.77	0.94	0.84	0.65	0.87	
BOD5 INFLUENT (MG/L)	236.5	62.0	46.0	67.0	30.0	62.0	90.5	80.0	56.0	66.5	45.0	94.5	78.0	
EFFLUENT (MG/L)	9.6	7.5	11.0	6.5	2.5	0.5	0.8	0.8	0.2	3.7	3.1	8.3	4.5	
CONCENTRATION LIMIT (MG/L)			- 100 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -										25.0	
LOADING (KG/D)	12.48	4.65	7.15	7.21	2.80	0.49	0.64	0.47	0.15	3.47	2.60	5.39	3.92	
SUSPENDED SOLIDS INFLUENT (MG/L)	349.5	97.0	75.0	90.0	75.5	79.0	172.5	116.5	61.0	82.5	442.0	74.0	142.9	
EFFLUENT (MG/L)	11.8	13.6	16.5	20.0	10.0	8.7	5.8	6.8	9.0	12.5	6.3	8.0	10.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	15.34	8.43	10.72	22.20	11.20	8.61	4.64	4.01	6.93	11.75	5.29	5.20	9.40	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.4	3.8	2.4	4.1	2.0	2.2	3.7	3.7	2.1	2.5	2.0	3.5	3.2	
EFFLUENT (MG/L)	0.4	0.3	0.4	0.6	0.3	0.2	0.2	0.3	0.3	0.5	0.3	0.6	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.4	
LOADING (KG/D)	0.52	0.18	0.26	0.66	0.33	0.19	0.16	0.17	0.23	0.47	0.25	0.39	0.35	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

SS

25.0 MG/L YES 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY PLANT

: HAVELOCK

: HAVELOCK LAGOON

WORKS NUMBER

: 110001765

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

: :

DESIGN CAPACITY

0.58 (1000 M3)

REGION : CENTRAL

DISTRICT : PETERBOROUGH

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: PLATO CREEK WATERCOURSE MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,362

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.74	0.79	0.76	0.92	0.89	0.93	0.75	0.69	0.74	0.78	0.96	0.86	0.82	
LAGOON DISCHARGE	ND	ND	ND	ND	139.20	ND	ND	ND	ND	ND	ND	ND	139.20	
BOD5					===(0)					5700 G 700	95762 24V	12/2/10		
INFLUENT (MG/L)	86.3	152.0	83.5	122.0	76.0	26.0	99.5	130.5	141.5	110.0	66.5	90.0	98.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	12.8	ND	ND_	ND	5.0	4.7	3.5	ND	6.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	11.39	ND	ND	ND	3.70	3.66	3.36	ND	5.33	
SUSPENDED SOLIDS			~ > ~ >	100000000000000	432-3 3	(a=2300 ) (a=2		Servician Valenti	Tools are the control			1910292 VA		
INFLUENT (MG/L)	102.7	147.0	141.0	177.0	69.0	55.5	108.5	142.5	107.5	167.0	60.5	112.5	115.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	15.4	ND	ND	ND	6.0	2.2	2.4	ND	6.5	
CONCENTRATION LIMIT (MG/L)				Control of the United States									25.0	
LOADING (KG/D)	ND	ND	ND	ND	13.70	ND	ND	ND	4.44	1.71	2.30	ND	5.33	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.7	7.0	5.6	5.7	3.5	2.2	6.1	6.5	5.6	6.2	3.1	5.7	5.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.5	ND	ND	ND	0.5	0.7	0.5	ND	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	0.44	ND	ND	ND	0.37	0.54	0.48	ND	0.49	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: HUNTSVILLE

PLANT

: HUNTSVILLE WPCP

WORKS NUMBER

: 110000347

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

4.54 (1000 M3)

REGION : CENTRAL

DISTRICT

: MUSKOKA, DIST. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: MUSKOKA RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POF

OUIL	DUOT	•	3.7	)\\L\\\\	LAKES
PULA	MOITA	SERVED	:		3,016

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	3.54	3.31	4.48	5.57	4.80	4.40	3.96	3.55	4.21	3.84	4.49	4.03	4.18	
BOD5	-27002-1820		~~~											
INFLUENT (MG/L)	165.0	129.0	97.0	85.0	82.0	82.0	88.0	158.0	137.0	169.0	110.0	140.0	120.2	
EFFLUENT (MG/L)	4.9	2.2	2.1	3.0	1.0	8.5	2.8	4.5	2.1	2.0	2.7	4.1	3.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	17.34	7.28	9.40	16.71	4.80	37.40	11.08	15.97	8.84	7.68	12.12	16.52	13.79	
SUSPENDED SOLIDS										78				
INFLUENT (MG/L)	89.0	144.0	78.0	96.0	196.0	153.0	159.0	195.0	124.0	141.0	84.0	120.0	131.6	A
EFFLUENT (MG/L)	6.6	7.0	9.0	13.6	14.0	6.2	4.4	7.7	4.7	7.1	10.9	9.2	8.4	
CONCENTRATION LIMIT (MG/L)	X X					/A6000000000							25.0	
LOADING (KG/D)	23.36	23.17	40.32	75.75	67.20	27.28	17.42	27.33	19.78	27.26	48.94	37.07	35.11	
TOTAL PHOSPHOROUS							~~						7) 27-21-21-21	
INFLUENT (MG/L)	6.1	5.9	5.1	4.6	5.4	4.2	13.4	7.1	33.1	6.0	4.6	5.1	8.4	
EFFLUENT (MG/L)	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.3	0.2	0.3	0.4	0.3	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.70	0.66	0.89	1.67	0.96	0.88	0.79	1.06	0.84	1.15	1.79	1.20	1.25	

SUMMARY

COMPLIES

PARM BOD

CRITERIA WITH CONC 25.0 MG/L YES

SS

25.0 MG/L YES

TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

#### 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY PLANT : INNISFIL

: INNISFIL (ALCONA) WPCP

WORKS NUMBER

: 110002586

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

7.27 (1000 M3)

REGION : CENTRAL DISTRICT : SIMCOE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE SIMCOE

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 8,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	1.69	1.41	1.78	2.13	2.18	2.35	2.18	2.14	2.01	2.16	2.46	2.17	2.06	
BOD5											10 Maria 100		Parcoards Proc	
INFLUENT (MG/L)	74.0	83.0	71.9	95.2	188.5	136.0	151.0	312.0	103.0	105.5	110.5	146.5	131.4	
EFFLUENT (MG/L)	1.9	0.5	1.2	0.5	0.7	0.5	1.1	0.7	1.4	0.3	0.3	0.9	0.8	
CONCENTRATION LIMIT (MG/L)													10.0	
LOADING (KG/D)	3.21	0.70	2.13	1.06	1.52	1.17	2.39	1.49	2.81	0.64	0.73	1.95	1.65	
LOADING LIMIT (KG/D)													71.85	
SUSPENDED SOLIDS									- 2 2	1000 Est	2 aug 1937			
INFLUENT (MG/L)	82.0	173.5	117.8	and the same of the same	293.5	308.0	207.0	604.0		132.5		171.5	203.7	
EFFLUENT (MG/L)	1.7	2.5	4.0	3.3	5.0	3.5	3.0	4.0	2.8	1.1	0.6	0.5	2.7	
CONCENTRATION LIMIT (MG/L)													15.0	
LOADING (KG/D)	2.87	3.52	7.12	7.02	10.90	8.22	6.54	8.56	5.62	2.37	1.47	1.08	5.56	
LOADING LIMIT (KG/D)							167						107.78	
TOTAL PHOSPHOROUS					2	F-2 III	. =							
INFLUENT (MG/L)	3.9	4.9	2.9	3.4	8.6	5.8	6.3	8.8	5.5	5.3	4.3	7.2	5.6	
EFFLUENT (MG/L)	0.1		0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.2	0.1	0.1	0.1	
CONCENTRATION LIMIT (MG/L)													0.3	
LOADING (KG/D)	0.16		0.17	0.21	0.21	0.23	0.21	0.42	0.60	0.43	0.24	0.21	0.21	
LOADING LIMIT (KG/D)						2000							2.16	

		SUMMARY		
		V <del></del>	COMPL	IES WITH
PARM	CRITERIA	LOADING	CONC	LOADING
BOD	10.0 MG/L	71.85 KG/D	YES	YES
SS	15.0 MG/L	107.78 KG/D	YES	YES
TP	0.3 MG/L	2.16 KG/D	YES	YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: INNISFIL

PLANT

: INNISFIL (ALCONA) WPCP

WORKS NUMBER

: 110002586

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

:

DESIGN CAPACITY

7.27 (1000 M3)

: CENTRAL REGION

DISTRICT

: SIMCOE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : LAKE SIMCOE

WATERCOURSE

: HURON

MINOR BASIN

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

8,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.69	1.41	1.78	2.13	2.18	2.35	2.18	2.14	2.01	2.16	2.46	2.17	2.06	
BOD5				25.0	100 5	17/ 0	151.0	710.0	107.0	105.5	110 5	146 5	131.4	
INFLUENT (MG/L)	74.0	83.0	71.9	95.2	188.5	136.0	151.0	312.0	103.0	105.5	110.5	146.5	0.8	
EFFLUENT (MG/L)	1.9	0.5	1.2_	0.5	0.7	0.5	1.1_	0.7	1.4	0.3	0.3	0.9	25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	3.21	0.70	2.13	1.06	1.52	1.17	2.39	1.49	2.81	0.64	0.73	1.95	1.65	
SUSPENDED SOLIDS INFLUENT (MG/L)	82.0	173.5	117.8	113.0	293.5	308.0	207.0	604.0	134.0	132.5	107.7	171.5	203.7	
EFFLUENT (MG/L)	1.7	2.5	4.0	3.3	5.0	3.5	3.0	4.0	2.8	1.1	0.6	0.5	2.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.87	3.52	7.12	7.02	10.90	8.22	6.54	8.56	5.62	2.37	1.47	1.08	5.56	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.9	4.9	2.9	3.4	8.6	5.8	6.3	8.8	5.5	5.3	4.3	7.2	5.6	
EFFLUENT (MG/L)	0.1		0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.2	0.1	0.1	0.1	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1	
LOADING (KG/D)	0.16		0.17	0.21	0.21	0.23	0.21	0.42	0.60	0.43	0.24	0.21	0.21	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD

25.0 MG/L YES 25.0 MG/L YES

SS TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: LAKEFIELD

PLANT

: LAKEFIELD LAGOON

WORKS NUMBER

: 110001462

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

1.59 (1000 M3)

REGION

: CENTRAL

DISTRICT

: PETERBOROUGH

WATERCOURSE

OPERATING AUTHORITY : MUNICIPAL

MINOR BASIN

: OTONABEE RIVER : ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 2,318

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.65	1.55	1.62	1.89	1.97	1.93	1.36	1.24	1.24	1.64	2.26	1.80	1.68	
LAGOON DISCHARGE	ND	4.38	7.48	11.97	ND	ND	ND	ND	ND	6.03	11.80	ND	8.33	
B0D5	}	V2.172	evere sec	100000 1000		A06016 - 1000			Valence con cons			27041		
INFLUENT (MG/L)	ND	ND	62.0	38.0	83.0	70.0	159.0	20.0	148.0	89.0	80.0	ND	83.2	l
EFFLUENT (MG/L)	ND	ND	ND	18.8	ND	ND	ND	ND	ND	27.0	17.2	ND	21.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	35.53	ND	ND	ND	ND	ND	44.28	38.87	ND	35.28	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	121.0	98.0	100.0	130.0	130.0	174.0	193.0	137.0	242.0	91.0	181.0	ND	145.2	
EFFLUENT (MG/L)	ND	17.0	ND	18.0	ND	ND	ND	ND	ND	45.7	42.8	ND	30.9	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	26.35	ND	34.02	ND	ND	ND	ND	ND	74.94	96.72	ND	51.91	
TOTAL PHOSPHOROUS										13.23		No.	2 22	
INFLUENT (MG/L)	ND	ND	3.6	3.5	3.9	4.8	6.5	1.8	6.8	2.1	5.3	ND	4.3	
EFFLUENT (MG/L)	ND	ND	ND	1.1*	ND	ND	ND	ND	ND	0.9	0.8	ND	0.9	11_
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	2.07	ND	ND	ND	ND	ND	1.47	1.80	ND	1.51	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

30.0 MG/L YES BOD SS

40.0 MG/L YES TP 1.0 MG/L NO

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: LINDSAY

PLANT

: LINDSAY LAGOON

WORKS NUMBER

: 110000383

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

: AFRATED CELL

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

17.18 (1000 M3)

REGION : CENTRAL DISTRICT : VICTORIA OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : SCUGOG RIVER MINOR BASIN : ONTARIO : GREAT LAKES

MAJOR BASIN

POPULATION SERVED : 15,176

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	13.73	12.83	ND	ND	ND	ND	9.48	9.27	9.57	9.97	16.00	11.77	11.58	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5			E 8 8						Charles State State	5-51 -77				
INFLUENT (MG/L)	105.0	80.0	109.0	59.0	70.0	45.0	76.0	93.0	115.0	79.0	93.0	101.0	85.4	
EFFLUENT (MG/L)	10.1	11.7	20.6	20.5	8.6	5.7	15.6	13.6	8.3	2.5	6.6	4.5	10.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	138.67	150.11	ND	ND	ND	ND	147.88	126.07	79.43	24.92	105.60	52.96	123.91	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	137.0	91.0	138.0	53.0	108.0	48.0	81.0	114.0	129.0	108.0	95.0	97.0	99.9	l
EFFLUENT (MG/L)	8.0	17.8	22.3	33.3	6.5	4.6	41.1	17.0	11.0	13.3	13.4	6.2	16.2	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	109.84	228.37	ND	ND	ND	ND	389.62	157.59	105.27	132.60	214.40	72.97	187.60	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.3	5.4	4.4	5.2	5.1	3.8	7.5	5.5	6.5	5.9	3.1	4.8	5.3	
EFFLUENT (MG/L)	1.2*	1.7×	1.8*	0.9	0.5	0.7	0.4	0.8	0.7	0.5	0.5	0.4	0.8	3
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	16.47	21.81	ND	ND	ND	ND	3.79	7.41	6.69	4.98	8.00	4.70	9.26	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

30.0 MG/L YES

SS 40.0 MG/L YES TP 1.0 MG/L NO

NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/01 1990/01

REMEDIAL MEASURES

EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED FACILITY EXPANSION/UPGRADING - CONSTRUCTION COMPLETE

MUNICIPALITY

: METRO TORONTO

PLANT

: HIGHLAND CREEK WPCP (SCARBOROUGH)

WORKS NUMBER

: 120000373

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 218.20 (1000 M3) DISTRICT : CENTRAL

: METRO TORONTO, MUN. OF

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: LAKE ONTARIO

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

310,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	131.00	137.10	167.40	179.90	190.50	200.20	205.80	204.90	199.90	187.30	183.30	166.70	179.50	
BOD5	150.0	146.0	141.0	146.0	165.0	167.0	148.0	165.0	149.0	158.0	165.0	158.0	154.8	
INFLUENT (MG/L)	150.0	146.0 8.3		8.9	8.5	11.7	8.0		8.3		5.4	4.6	7.5	
EFFLUENT (MG/L)	8.4	0.3	3.0	0.9	0.5	11./	0.0		0.3				25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	1100.40	1137.93	636.12	1601.11	1619.25	2342.34	1646.40	1475.28	1659.17	1179.99	989.82	766.82	1346.25	
EGADZING (NG/ D)														
SUSPENDED SOLIDS														l
INFLUENT (MG/L)	197.0	190.0	205.0	190.0	205.0	211.0	196.0	225.0		the second section of the second section of the second	probability of the first	The second secon	202.9	
EFFLUENT (MG/L)	19.3	17.4	18.1	20.8	26.8	26.7	25.7	27.0	27.8	21.8	19.1	21.3	22.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2528.30	2385.54	3029.94	3741.92	5105.40	5345.34	5289.06	5532.30	5557.22	4083.14	3501.03	3550.71	4074.65	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.1	5.1	4.8	5.0	4.8	4.8	4.3	4.2	4.6	4.5	4.3	4.6	4.7	
EFFLUENT (MG/L)	0.7	0.6	0.6	0.7	0.7	0.6	0.8	0.6	0.9	0.8	0.5	0.6	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	91.70	82.26	100.44	125.93	133.35	120.12	164.64	122.94	179.91	149.84	91.65	100.02	125.65	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	

1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

SS

TP

NOTE: BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: METRO TORONTO

PLANT

: HUMBER WPCP (ETOBICOKE)

WORKS NUMBER

: 120000382

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

409.14 (1000 M3)

: CENTRAL REGION

DISTRICT

: METRO TORONTO, MUN. OF

OPERATING AUTHORITY : MUNICIPAL : LAKE ONTARIO

WATERCOURSE : ONTARIO MINOR BASIN

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 540,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	385.91	376.86	383.28	407.67	428.22	465.64	421.00	408.00	426.54	389.99	394.56	346.50	402.85	
BOD5	218.0	228.0	213.0	158.0	203.0	179.0	153.0	170.0	192.0	174.0	181.0	213.0	190.2	
INFLUENT (MG/L)	11.0	8.2		4.7			the second second second second second	7.6	The state of the s		7.5	4.3	7.4	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)						10.0							25.0	l
LOADING (KG/D)	4245.01	3090.25	1571.44	1916.04	2269.56	5028.91	3115.40	3100.80	2303.31	4679.88	2959.20	1489.95	2981.09	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	403.0	372.0	409.0	360.0	292.0	235.0	181.0	206.0	250.0	249.0	203.0	302.0	288.5	
EFFLUENT (MG/L)	21.3	20.2	20.2	16.9	20.0	18.9	10.9	17.1	14.2	17.9	17.4	22.0	18.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	8219.88	7612.57	7742.25	6889.62	8564.40	8800.59	4588.90	6976.80	6056.86	6980.82	6865.34	7623.00	7291.59	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.8	9.3	10.0	8.5	7.4	6.3	5.4	5.2	6.7	6.2	6.2	7.7	7.3	
EFFLUENT (MG/L)	0.9	1.0	0.7	0.6	0.8	0.8	0.6	0.7	0.7	0.7	0.6	0.7	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	347.31	376.86	268.29	244.60	342.57	372.51	252.60	285.60	298.57	272.99	236.73	242.55	282.00	1

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: METRO TORONTO

PLANT

: MAIN WPCP (TORONTO)

WORKS NUMBER

: 120000391

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 818.28 (1000 M3)

: CENTRAL REGION

DISTRICT : METRO TORONTO, MUN. OF

OPERATING AUTHORITY : MUNICIPAL

: LAKE ONTARIO

WATERCOURSE MINOR BASIN

MAJOR BASIN

: ONTARIO

: GREAT LAKES

POPULATION SERVED : 1,250,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	749.00	804.00	863.00	810.50	920.00	1033.00	737.00	724.00	633.00	704.00	683.00	687.70	779.02	
BOD5 INFLUENT (MG/L)	182.0	189.0	181.0	187.0	201 0	187.0	168.0	163.0	207.0	281.0	210.0	184.0	195.0	
EFFLUENT (MG/L)	15.8					10.0			11.4	14.5			14.8	
CONCENTRATION LIMIT (MG/L)	1												25.0	
LOADING (KG/D)	1834.20	3909.20	107.90	6615.25	6284.00	330.00	8475.50	6443.60	7216.20	208.00	8742.40	9283.95	11529.50	
SUSPENDED SOLIDS	10( 0	106.0	210.0	246.0	202.0	240.0	221.0	181.0	192.0	326.0	312.0	250.0	237.7	
INFLUENT (MG/L) EFFLUENT (MG/L)	196.0	196.0 14.5	All the second s	the second section of the second section is		10.9	ASSESSMENT OF THE RESIDENCE			21.9		The second secon	15.7	
CONCENTRATION LIMIT (MG/L)	3.0	14.5	20.5	21.0	10.7	10.7		13.0	10.2				25.0	
LOADING (KG/D)	6741.00	1658.00	2869.50	7668.90	5548.00	1259.70	2455.30	9846.40	6456.60	5417.60	586.50	7152.08	12230.61	
TOTAL PHOSPHOROUS												THE COLUMN TWO IS NOT		
INFLUENT (MG/L)	5.8	5.3	5.3	5.6	6.5	5.6	5.1	4.8	5.5	Contract of the Contract of th	The second secon	the second secon	5.6	
EFFLUENT (MG/L)	0.5	0.6	0.8	0.8	0.7	0.5	0.6	0.5	0.6	0.7			0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	and because the 1 1 to 10			1.0	1.0		the second secon		
LOADING (KG/D)	374.50	482.40	690.40	648.40	644.00	516.50	442.20	362.00	379.80	492.80	341.50	343.85	467.41	l

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: MFTRO TORONTO

PLANT

: NORTH TORONTO WPCP (EAST YORK)

WORKS NUMBER

: 120000364

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

45.46 (1000 M3)

REGION : CENTRAL

DISTRICT

: METRO TORONTO, MUN. OF

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: DON RIVER

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

85,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	36.80	34.10	30.00	33.70	35.60	36.40	36.50	34.60	36.40	37.50	37.10	36.80	35.46	
B0D5														
INFLUENT (MG/L)	279.0	260.0		175.0	130.0	157.0	4. 20	138.0	117.0	113.0	121.0	108.0	163.4	
EFFLUENT (MG/L)	23.7	23.6	21.3	20.8	4.2	3.6	5.9	6.5	9.2	2.1	3.6	6.5	10.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	872.16	804.76	639.00	700.96	149.52	131.04	215.35	224.90	334.88	78.75	133.56	239.20	386.51	
SUSPENDED SOLIDS					K 50 (8)		82 B B		2 65 2					
INFLUENT (MG/L)	155.1	188.0	161.0	161.0	144.0	158.0	134.0	130.0	142.0	151.0	147.0	166.0	153.1	
EFFLUENT (MG/L)	14.4	15.0	33.7	36.7	23.8	6.9	6.9	6.2	5.7	4.5	8.3	10.0	14.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	529.92	511.50	1011.00	1236.79	847.28	251.16	251.85	214.52	207.48	168.75	307.93	368.00	507.08	
TOTAL PHOSPHOROUS													Was you	
INFLUENT (MG/L)	5.5	5.3	5.0	5.0	4.5	4.4	3.9	3.6	4.6	4.1	4.2	5.1	4.6	
EFFLUENT (MG/L)	0.8	0.8	1.3	1.4×	0.9	0.5	0.5	0.4	0.7	0.6	0.7	0.9	0.8	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	29.44	27.28	39.00	47.18	32.04	18.20	18.25	13.84	25.48	22.50	25.97	33.12	28.37	1

SUMMARY

COMPLIES

PARM BOD

CRITERIA WITH CONC 25.0 MG/L YES

SS

TP

25.0 MG/L YES 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

1989/05

1989/05

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

1989/05 1989/03 1989/03 1989/05 1990/12

1990/01 1989/06

1990/06

MUNICIPALITY

: MIDLAND

PLANT

: MIDLAND WPCP

WORKS NUMBER

: 110000463

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

13.68 (1000 M3)

REGION : CENTRAL
DISTRICT : SIMCOE
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : MIDLAND BAY

MINOR BASIN MAJOR BASIN : HURON : GREAT LAKES

POPULATION SERVED :

12,538

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	11.51	11.03	12.68	12.62	12.43	11.91	10.28	10.70	10.74	10.76	11.37	10.15	11.35	
BOD5	2212	244245 734			70.0		20.0	47.0	96.0	91.0	77.0	111.0	80.6	
INFLUENT (MG/L)	62.0	74.0		65.0	70.0	60.0	80.0	63.0	6.3	1.7	4.9	3.2	5.2	
EFFLUENT (MG/L)	4.2	2.9	7.2	13.4	10.4	1.5	3.7_	2.5	0.3	1./	4.7	3.E_	25.0	
CONCENTRATION LIMIT (MG/L)										10.00	FF 71	70 40		
LOADING (KG/D)	48.34	31.98	91.29	169.10	129.27	17.86	38.03	26.75	67.66	18.29	55.71	32.48	59.02	
SUSPENDED SOLIDS INFLUENT (MG/L)	142.0	189.0	254.0	242.0	104.0	107.0	149.0	111.0	174.0	129.0	115.0	183.0	158.3	
EFFLUENT (MG/L)	7.4	7.7	9.7	9.0	6.5	3.1	5.5	5.5	6.7	5.4	5.4	8.7	6.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	85.17	84.93	122.99	113.58	80.79	36.92	56.54	58.85	71.95	58.10	61.39	88.30	76.05	
TOTAL PHOSPHOROUS					Sauk 504	120 2		201.028						
INFLUENT (MG/L)	4.9	5.4	5.5	5.0		3.4	5.8	4.2	5.2_	5.0	3.8	7.4	5.0	
EFFLUENT (MG/L)	0.6	0.4	0.5	0.4	0.4	0.4	0.8	0.7	0.4	0.5	1.3 <del>*</del>	0.6	0.6	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	6.90	4.41	6.34	5.04	4.97	4.76	8.22	7.49	4.29	5.38	14.78	6.09	6.81	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	1.0 MG/L	NO

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MILLBROOK

PLANT

: MILLBROOK WPCP

WORKS NUMBER

: 110002238

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

1.13 (1000 M3) :

REGION : CENTRAL

DISTRICT : PETERBOROUGH

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE

: BAXTER CREEK MINOR BASIN : ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 1,026

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)	0.93	0.81	0.79	0.99	1.12	0.97	0.80	0.80	0.81	0.91	1.18	0.86	0.91	
BOD5								400.0						
INFLUENT (MG/L)	60.5	136.0	125.0	62.0	86.0	117.0	124.0	109.0	115.0	209.0	104.0	96.0	112.0	
EFFLUENT (MG/L)	5.8	3.1	6.4	4.8	6.0	5.2	7.4	5.2	3.8	3.6	4.5	5.9	5.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	5.39	2.51	5.05	4.75	6.72	5.04	5.92	4.16	3.07	3.27	5.31	5.07	4.64	
SUSPENDED SOLIDS		2212												
INFLUENT (MG/L)	85.7	114.0	224.0	86.0	80.0	170.0	128.0	122.0	130.0	178.0	93.0	66.0	123.1	
EFFLUENT (MG/L)	7.8	6.0	11.5	10.5	7.6	6.0	5.0	5.8	6.5	3.0	2.2	3.7	6.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.25	4.86	9.08	10.39	8.51	5.82	4.00	4.64	5.26	2.73	2.59	3.18	5.73	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.5	5.1	6.1	3.9	2.2	5.0	ND	5.3	7.0	8.2	5.7	5.1	5.2	
EFFLUENT (MG/L)	0.2	0.2	0.3	0.4	0.2	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.18	0.16	0.23	0.39	0.22	0.09	0.08	0.16	0.16	0.09	0.11	0.08	0.18	

SUMMARY
---------

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: MILTON

PLANT

: MILTON WPCP

WORKS NUMBER

: 120001014

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

: 12.91 (1000 M3)

REGION : CENTRAL DISTRICT

: HALTON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

: OAKVILLE CREEK WATERCOURSE

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 23,203

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	9.90	9.30	10.40	10.50	10.00	10.80	8.90	9.20	9.30	10.00	11.00	9.70	9.92	
BOD5					COMMEN SEC	Germania on				12140-1110				
INFLUENT (MG/L)	300.0	194.0	296.0	245.0	127.0	177.0	270.0	323.0	290.0	177.0	157.0	195.0	229.3	
EFFLUENT (MG/L)	1.8	2.0	3.2	1.5	0.6	1.0	0.5	0.3	0.6	0.3	2.5	0.7	1.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	17.82	18.60	33.28	15.75	6.00	10.80	4.45	2.76	5.58	3.00	27.50	6.79	12.90	
SUSPENDED SOLIDS	400.0	454.0		100.0	171.0	1/5 0	057.0	101.0	176.0	200.0	157.0	175 0	100 7	
INFLUENT (MG/L)	182.0	156.0	211.0	199.0	171.0	165.0	253.0	191.0	176.0	200.0	153.0	135.0	182.7	
EFFLUENT (MG/L)	3.3	6.0	5.6	2.6	2.4	2.3	2.3	1.6	3.1	4.3	, 2.9	4.0	3.4	
CONCENTRATION LIMIT (MG/L)												70 00	25.0	
LOADING (KG/D)	32.67	55.80	58.24	27.30	24.00	24.84	20.47	14./2	28.83	43.00	31.90	38.80	33.73	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.4	8.5	8.0	6.0	6.0	6.9	9.2	7.3	7.8	8.1	7.3	7.0	7.3	
EFFLUENT (MG/L)	0.2	0.5	0.3	0.3	0.2	0.2	0.1	0.2	0.2	0.3	0.2	0.2	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.98	4.65	3.12	3.15	2.00	2.16	0.89	1.84	1.86	3.00	2.20	1.94	1.98	

<b>611</b>	м	м		n	w
SU	М	П	А	М	۹.

COMPLIES

CRITERIA WITH CONC PARM 25.0 MG/L YES BOD

25.0 MG/L YES SS

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

## NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

## 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: MISSISSAUGA

PLANT

: CLARKSON WPCP SOUTH-PEEL SYSTEM

WORKS NUMBER

: 110001328

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

109.10 (1000 M3)

REGION : CENTRAL

DISTRICT : PEEL, REG. MUN. OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE ONTARIO

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 150,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	76.85	75.51	82.92	85.70	83.15	92.23	84.61	88.69	86.02	86.29	91.40	81.78	84.60	
BOD5						EEE E			to best o					
INFLUENT (MG/L)	228.6	213.5	144.5	174.6	171.9	169.7	157.3	148.3	169.8	177.6	157.3	168.3	173.5	
EFFLUENT (MG/L)	15.1	16.2	19.5	9.1	16.0	13.1	13.0	5.6	9.4	9.9	10.3	10.7	12.3	
CONCENTRATION LIMIT (MG/L)										44-			25.0	
LOADING (KG/D)	1160.43	1223.26	1616.94	779.87	1330.40	1208.21	1099.93	496.66	808.58	854.27	941.42	875.04	1040.58	
LOADING LIMIT (KG/D)													2725.00	
SUSPENDED SOLIDS										150				
INFLUENT (MG/L)	226.8	197.3	213.3	201.4	159.6	162.2	177.8	291.0	149.1	124.3	157.2	217.4	189.8	
EFFLUENT (MG/L)	9.3	10.4	14.3	11.3	14.9	9.6	8.7	6.7	11.1	9.6	11.0	10.4	10.6	
CONCENTRATION LIMIT (MG/L)	Name of the same of												25.0	
LOADING (KG/D)	714.70	785.30	1185.75	968.41	1238.93	885.40	736.10	594.22	954.82	828.38	1005.40	850.51	896.76	
LOADING LIMIT (KG/D)													2725.00	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.8	8.5	7.5	6.3	7.3	7.7	6.7	6.5	6.5	6.6	6.4	6.2	7.1	
EFFLUENT (MG/L)	0.9	1.0	0.8	0.8	1.0	0.9	0.8	1.0	1.0	0.7	0.8	0.7	0.9	
CONCENTRATION LIMIT (MG/L)													1.0	
LOADING (KG/D)	69.16	75.51	66.33	68.56	83.15	83.00	67.68	88.69	86.02	60.40	73.12	57.24	76.14	
LOADING LIMIT (KG/D)										(Hookess Steelbe)			109.00	

		SUMMARY			
		3337	COMPL	IES WITH	
PARM	CRITERIA	LOADING	CONC	LOADING	
BOD	25.0 MG/L	2725.00 KG/D	YES	YES	
SS	25.0 MG/L	2725.00 KG/D	YES	YES	
TP	1.0 MG/L	109.00 KG/D	YES	YES	
	BOD SS	BOD 25.0 MG/L SS 25.0 MG/L	PARM CRITERIA LOADING BOD 25.0 MG/L 2725.00 KG/D SS 25.0 MG/L 2725.00 KG/D	PARM CRITERIA LOADING CONC BOD 25.0 MG/L 2725.00 KG/D YES SS 25.0 MG/L 2725.00 KG/D YES	COMPLIES WITH   COMPLIES WIT

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MISSISSAUGA

PLANT

: CLARKSON WPCP SOUTH-PEEL SYSTEM

WORKS NUMBER

: 110001328

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

109.10 (1000 M3)

REGION

: CENTRAL

DISTRICT

: PEEL, REG. MUN.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: LAKE ONTARIO

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

150,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	76.85	75.51	82.92	85.70	83.15	92.23	84.61	88.69	86.02	86.29	91.40	81.78	84.60	
B0D5				Participants Legis	WAR 2011 178 W									
INFLUENT (MG/L)	228.6	213.5	the second secon	174.6		THE RESERVE AND ADDRESS OF THE PARTY.	The second secon	148.3	169.8	177.6	THE PERSON NAMED IN COLUMN	168.3	173.5	
EFFLUENT (MG/L)	15.1	16.2	19.5	9.1	16.0	13.1	13.0	5.6	9.4	9.9	10.3	10.7	12.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1160.43	1223.26	1616.94	779.87	1330.40	1208.21	1099.93	496.66	808.58	854.27	941.42	875.04	1040.58	
SUSPENDED SOLIDS													5 8425 8	
INFLUENT (MG/L)	226.8	197.3	213.3	201.4	159.6	162.2	177.8	291.0	149.1	124.3	157.2	217.4	189.8	
EFFLUENT (MG/L)	9.3	10.4	14.3	11.3	14.9	9.6	8.7	6.7	11.1	9.6	11.0	10.4	10.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	714.70	785.30	1185.75	968.41	1238.93	885.40	736.10	594.22	954.82	828.38	1005.40	850.51	896.76	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.8	8.5	7.5	6.3	7.3	7.7	6.7	6.5	6.5	6.6	6.4	6.2	7.1	I
EFFLUENT (MG/L)	0.9	1.0	0.8	0.8	1.0	0.9	0.8	1.0	1.0	0.7	0.8	0.7	0.9	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	es-certific	
LOADING (KG/D)	69.16		The state of the s	68.56	83.15	83.00	67.68	88.69	86.02	60.40	73.12	57.24	76.14	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MISSISSAUGA

PLANT

: LAKEVIEW WPCP SOUTH-PEEL SYSTEM

WORKS NUMBER

: 110001284

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

284.12 (1000 M3)

REGION : CENTRAL

: PEEL, REG. MUN. DISTRICT OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: LAKE ONTARIO WATERCOURSE

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 470,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	246.12	242.33	254.69	269.78	274.47	285.95	253.31	258.41	257.69	247.45	273.71	252.36	259.69	
B0D5	2 000	7423.000.001.000	A VALUE A		20.000		0474275777			20023311301	2000000			
INFLUENT (MG/L)	293.1	285.7	245.6	ND				Contract of the Contract of th	management of the death of the party	- Marie - Company		279.9	263.0	
EFFLUENT (MG/L)	31.0	23.1	18.9	ND	ND	ND	ND	31.3	21.3	20.3	31.9	27.9	25.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7629.72	5597.82	4813.64	ND	ND	ND	ND	8088.23	5488.79	5023.23	8731.34	7040.84	6674.03	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	278.9	281.5	272.0	330.1	257.5	269.8	246.4	261.1	218.0	246.0	265.8	280.4	267.3	
EFFLUENT (MG/L)	7.9	14.2	18.0	17.5	15.1	21.5	11.4	9.3	7.7	12.2	22.0	10.6	14.0	
CONCENTRATION LIMIT (MG/L)					***								25.0	
LOADING (KG/D)	1944.34	3441.08	4584.42	4721.15	4144.49	6147.92	2887.73	2403.21	1984.21	3018.89	6021.62	2675.01	3635.66	
TOTAL PHOSPHOROUS							· · · · · · · · · · · · · · · · · · ·							
INFLUENT (MG/L)	7.3	8.3	6.8	7.4	7.0	6.0	6.0	6.8	6.1	5.8	7.1	7.3	6.8	
EFFLUENT (MG/L)	0.4	0.8	0.8	0.5	0.8	1.0	0.9	1.0	0.7	0.9	1.0	0.7	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	98.44	193.86	203.75	AMERICAN DESCRIPTION OF THE PARTY		285.95	227.97	258.41	180.38	222.70	273.71	176.65	207.75	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L INSUFFICIENT DATA

25.0 MG/L YES SS TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MUSKOKA LAKES

PLANT WORKS NUMBER : BALA WPCP

: 120000792

TREATMENT

: COMMUNAL SEPTIC TANK

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: EFFLUENT FILTRATION 0.09 (1000 M3) REGION : CENTRAL

DISTRICT

: MUSKOKA, DIST. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: LONG LAKE

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

113

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	0.07	0.04	0.09	0.10	0.11	0.10	0.07	0.08	0.63	0.03	0.06	0.05	0.12	
BOD5	120.464 144		Servação III							~~~				
INFLUENT (MG/L)	25.0	36.0	35.0	31.0	19.0	131.0	72.0	140.0	76.0	30.0	76.0	124.0	66.3	
EFFLUENT (MG/L)	5.0	0.5	0.5	1.2	4.1	2.9	9.9	4.5	5.2	2.1	4.4	4.7	3.8	
LOADING (KG/D)	0.35	0.02	0.04	0.12	0.45	0.29	0.69	0.36	3.27	0.06	0.26	0.23	0.46	
PERCENT REMOVAL	80	99	99	96	78	98	86	97	93	93	94	96	94	
PERCENT REMOVAL LIMITS									- MA	With the limited			50	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	36.0	34.0	33.0	39.0	24.0	59.0	56.0	106.0	54.0	32.0	34.0	55.0	46.8	
EFFLUENT (MG/L)	15.9	12.0	38.9	40.5	14.8	66.7	39.5	11.8	14.4	10.6	13.0	36.2	26.2	
LOADING (KG/D)	1.11	0.48	3.50	4.05	1.62	6.67	2.76	0.94	9.07	0.31	0.78	1.81	3.14	
PERCENT REMOVAL	56	65	ND	ND	38	ND	29	89	73	67	62	34	44×	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	1.6	2.0	2.0	2.8	1.5	6.5	5.5	4.6	3.6	1.0	4.3	2.4	3.2	
EFFLUENT (MG/L)	0.1		0.2	0.1	0.3	0.4	0.6	0.2	0.1	0.1		0.2	0.2	-
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)			0.01	0.01	0.03	0.04	0.04	0.01	0.06			0.01	0.02	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 50%

YES

70% SS NO TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

START DATE END DATE COMPLIANCE

1988

1991

1991

MUNICIPALITY

: MUSKOKA LAKES

PLANT

: PORT CARLING WPCP

WORKS NUMBER

: 110002229

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

0.54 (1000 M3)

REGION : CENTRAL

DISTRICT

: MUSKOKA, DIST. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: INDIAN RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

700

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.20	0.19	0.25	0.12	0.23	0.24	0.29	0.12	0.10	0.74	0.08	0.07	0.22	
BOD5	113.0	135.0	51.0	66.0	78.0	125.0	219.0	218.0	73.0	107.0	42.0	62.0	107.4	
INFLUENT (MG/L) EFFLUENT (MG/L)	1.4	0.5	0.9	0.5	0.5	0.5	0.9	0.5	0.3	0.8	0.6	0.2	0.6	
CONCENTRATION LIMIT (MG/L)		0.5			0.5_				v.•	- 0.0			25.0	
LOADING (KG/D)	0.28	0.09	0.22	0.06	0.11	0.12	0.26	0.06	0.03	0.59	0.04	0.01	0.13	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	114.0	165.0	83.0	91.0	85.0	126.0	168.0	122.0	190.0	105.0	51.0	79.0	114.9	
EFFLUENT (MG/L)	2.5	3.5	3.3	0.5	0.5	2.0	5.8	10.0	2.5	0.5	4.3	1.3	3.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.50	0.66	0.82	0.06	0.11	0.48	1.68	1.20	0.25	0.37	0.34	0.09	0.68	
TOTAL PHOSPHOROUS	7.0		4.0	F 0		- 4	7.7	7.1			7.0	F 0		
INFLUENT (MG/L)	7.0	6.6	4.0	5.9	5.6	5.4	7.3	7.1	8.8	6.4	3.8	5.0	6.1	
EFFLUENT (MG/L)	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.2	0.1_	0.3	0.1	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.02	0.01	0.02	0.01	0.02	0.04	0.05	0.03	0.02	0.07	0.02		0.04	

•	
<u>5U</u>	MMARY
	-

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES

25.0 MG/L YES SS

1.0 MG/L YES TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

PLANT

: NEWCASTLE

: GRAHAM CREEK WPCP (NEWCASTLE)

WORKS NUMBER

: 110001569

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

1.81 (1000 M3)

REGION : CENTRAL

DISTRICT : DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

: LAKE ONTARIO WATERCOURSE

MINOR BASIN : ONTARIO

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 1,866

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.18	1.06	1.04	1.58	1.88	1.65	1.13	1.13	1.23	1.16	2.39	1.53	1.41	
BOD5	NO	210.0	128.0	39.0	94.0	94.0	179.0	88.0	98.0	151.0	55.0	96.0	112.0	
INFLUENT (MG/L) EFFLUENT (MG/L)	ND 8.8	22.7	23.0	14.5	7.0	7.0	11.0	7.8	7.4	22.4	38.9	33.9	17.0	
CONCENTRATION LIMIT (MG/L)	0.0_												25.0	
LOADING (KG/D)	10.38	24.06	23.92	22.91	13.16	11.55	12.43	8.81	9.10	25.98	92.97	51.86	23.97	
SUSPENDED SOLIDS INFLUENT (MG/L)	122.0	290.0	138.0	61.0	123.0	123.0	175.0	138.0	153.0	133.0	49.0	180.0	140.4	
EFFLUENT (MG/L)	11.3	11.9	13.0	12.3	14.3	14.2	16.3	19.3	18.5	12.1	13.9	17.9	14.6	
CONCENTRATION LIMIT (MG/L)						2020120							25.0	
LOADING (KG/D)	13.33	12.61	13.52	19.43	26.88	23.43	18.41	21.80	22.75	14.03	33.22	27.38	20.59	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	10.5	8.6	2.5	5.7	5.7	6.8	4.5	6.9	6.4	2.8	5.6	6.0	
EFFLUENT (MG/L)	1.4	1.5	2.7	1.4	0.7	0.8	1.3	1.2	1.5	0.4	1.4	1.0	1.3	
CONCENTRATION LIMIT (MG/L)			A position (											
LOADING (KG/D)	1.65	1.59	2.80	2.21	1.31	1.32	1.46	1.35	1.84	0.46	3.34	1.53	1.83	

SUMMARY COMPLIES CRITERIA WITH CONC BOD 25.0 MG/L YES 25.0 MG/L YES SS TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : NEWCASTLE

PLANT : PORT DARLINGTON WPCP

WORKS NUMBER : 120003076

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY : 4.54 (1000 M3)

REGION : CENTRAL

DISTRICT : DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : LAKE ONTARIO

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 12,831

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	7.60	7.16	7.39	9.07	9.43	8.86	7.65	7.99	8.81	9.92	10.21	7.86	8.50	
BOD5		140.0	144.0	117.0	47.0	E0 0	770.0	40.0	167.0	45.0	21.0	140.0	115 4	
INFLUENT (MG/L)	ND	The second of the second of the second			43.0	52.0	339.0	60.0	163.0	45.0	21.0	149.0	115.4	
EFFLUENT (MG/L)	10.6	25.3	13.1	5.5	4.1	23.7	17.1	12.9	4.9	11.8	39.5	36.4	Commence of the Commence of th	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	80.56	181.14	96.80	49.88	38.66	209.98	130.81	103.07	43.16	117.05	403.29	286.10	145.35	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	158.0	160.0	160.0	134.0	35.0	83.0	580.0	47.0	179.0	44.0	26.0	152.0	146.5	
EFFLUENT (MG/L)	11.0	14.8	15.3	12.2	14.8	23.0	10.8	7.6	9.6	12.0	12.6	15.0	13.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	83.60	105.96	113.06	110.65	139.56	203.78	82.62	60.72	84.57	119.04	128.64	117.90	112.20	
TOTAL PHOSPHOROUS												181		
INFLUENT (MG/L)	5.3	5.2	5.3	4.0	4.8	6.1	7.9	6.5	6.3	4.5	3.9	4.9	5.4	
EFFLUENT (MG/L)	0.7	0.7	0.9	0.5	0.6	0.9	0.9	0.7	0.8	0.4	0.6	0.9	0.7	52.00
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	5.32	5.01	6.65	4.53	5.65	7.97	6.88	5.59	7.04	3.96	6.12	7.07	5.95	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/01 1990/04

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

MUNICIPALITY

: NORWOOD

PLANT

: NORWOOD WPCP

WORKS NUMBER

: 110001499

TREATMENT

: OXIDATION DITCH

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

0.72 (1000 M3)

REGION

: CENTRAL

DISTRICT

: PETERBOROUGH

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: OUSE RIVER

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

1,135

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.55	0.55	0.55	0.55	0.55	0.51	0.46	0.44	0.46	0.50	0.66	0.59	0.53	
BOD5						2 22 2	59.2.5						470 7	
INFLUENT (MG/L)	101.0		_114.0	152.0	119.0	122.0	The second second		155.5	122.0	130.0	141.0	132.7	
EFFLUENT (MG/L)	6.9	12.4	7.6	5.0	2.1	3.4	1.0	1.2	1.1	4.8	5.0	21.0	6.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.79	6.82	4.18	2.75	1.15	1.73	0.46	0.52	0.50	2.40	3.30	12.39	3.18	
SUSPENDED SOLIDS	126.5	363.0	226.0	187.0	178.0	163.0	165.5	127.0	221.5	149.0	196.5	156.5	188.3	
INFLUENT (MG/L) EFFLUENT (MG/L)	6.4	7.0	8.5	6.5	3.5	10.0	2.5	3.5	3.5	4.1	4.6	7.4	5.6	
CONCENTRATION LIMIT (MG/L)	0.4		0.5	0.5							T.Y-		25.0	
LOADING (KG/D)	3.52	3.85	4.67	3.57	1.92	5.10	1.15	1.54	1.61	2.05	3.03	4.36	2.97	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.3	7.5	8.3	7.9	6.6	6.2	6.6	5.7	8.9	7.0	6.5	6.4	7.1	
EFFLUENT (MG/L)	0.7	0.7	0.9	0.4	0.7	0.9	0.6	0.6	0.6	0.7	0.5	0.7	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.38	0.38	0.49	0.22	0.38	0.45	0.27	0.26	0.27	0.35	0.33	0.41	0.37	

SI			

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES

SS 25.0 MG/L YES TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: OAKVILLE

PLANT

: SOUTH EAST WPCP

WORKS NUMBER

: 120000998

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

22.73 (1000 M3)

REGION

: CENTRAL

DISTRICT

: HALTON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: LAKE ONTARIO

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

21,900

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	17.30	16.80	16.60	18.10	17.10	18.80	18.80	20.50	20.40	20.70	23.50	20.50	19.09	
B0D5					445.0		07.0	71.0	100.0	107.0	105.0		105.0	
INFLUENT (MG/L)	170.0	313.0	155.0	71.0	115.0	83.0	83.0	71.0	120.0	123.0	125.0	82.0	125.9	
EFFLUENT (MG/L)	6.4	5.0	8.7	11.0	9.3	5.0	5.0	9.2	2.0	1.2	5.8	4.1	6.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	110.72	84.00	144.42	199.10	159.03	94.00	94.00	188.60	40.80	24.84	136.30	84.05	116.45	
SUSPENDED SOLIDS					1000 - 0000 - 000									
INFLUENT (MG/L)	195.0	147.0	101.0	132.0	184.0	117.0	117.0	53.0	97.0	88.0	145.0	133.0	125.8	
EFFLUENT (MG/L)	7.2	5.6	12.0	13.0	13.4	9.9	9.9	9.4	4.0	4.4	8.0	8.0	8.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	124.56	94.08	199.20	235.30	229.14	186.12	186.12	192.70	81.60	91.08	188.00	164.00	166.08	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.0	5.9	5.6	5.0	5.8	4.7	4.7	4.6	4.4	5.8	6.3	6.0	5.4	
EFFLUENT (MG/L)	0.7	0.6	0.9	0.7	0.6	1.0	1.0	0.9	0.3	0.3	0.4	0.8	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	12.11	10.08	14.94	12.67	10.26	18.80	18.80	18.45	6.12	6.21	9.40	16.40	13.36	

CI	IMMAR	•
S	JMMAK	L
-		
		r
		_

COMPLIES CRITERIA WITH CONC PARM BOD 25.0 MG/L YES SS 25.0 MG/L YES TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: OAKVILLE

: SOUTH WEST WPCP

WORKS NUMBER

: 120001005

TREATMENT

PLANT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

47.73 (1000 M3)

REGION : CENTRAL

DISTRICT : HALTON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : LAKE ONTARIO

: ONTARIO MINOR BASIN

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 58,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	31.10	29.30	33.70	38.30	40.32	41.99	33.34	36.16	36.62	36.59	41.78	32.98	36.02	
BOD5 INFLUENT (MG/L)	290.0	222.0	330.0	128.0	219.0	219.0	303.0	216.0	187.0	200.0	236.0	380.0	244.2	
EFFLUENT (MG/L)	4.5	4.3	6.1	4.7	7.0	7.0	7.0	3.6	5.2	6.5	2.5	6.2	5.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	139.95	125.99	205.57	180.01	282.24	293.93	233.38	130.17	190.42	237.83	104.45	204.47	194.51	
SUSPENDED SOLIDS		475.0	715.0	171.0	200.0	200.0	077.0	145.0	165.0	97.0	710.0	167.0	203.5	
INFLUENT (MG/L)	236.0	135.0	315.0	171.0	209.0	209.0	277.0 10.0	165.0 8.9	165.0 8.8	83.0 7.4	310.0	13.0	9.3	
EFFLUENT (MG/L)	8.2	10.7	11.3	9.8	10.1	10.1	10.0	0.7	0.0		3.2	13.0	25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	255.02	313.51	380.81	375.34	407.23	424.09	333.40	321.82	322.25	270.76	133.69	428.74	334.99	
TOTAL PHOSPHOROUS								_						
INFLUENT (MG/L)	7.4	8.6	8.2	5.7	6.5	4.1	6.1	7.0	7.4	6.6	7.9	6.4	6.8	ļ
EFFLUENT (MG/L)	0.7	0.7	0.8	0.9	0.7	0.8	0.9	0.7	0.9	1.0	0.6	0.8	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	21.77	20.51	26.96	34.47	28.22	33.59	30.00	25.31	32.95	36.59	25.06	26.38	28.82	l

SUMMARY COMPLIES CRITERIA WITH CONC BOD 25.0 MG/L YES 25.0 MG/L YES SS TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA

MUNICIPALITY

: OMEMEE

PLANT

: OMEMEE LAGOON

WORKS NUMBER

: 110001630

TREATMENT

: LAGOON AND SPRAY

: NO DISCHARGE

:

DESIGN CAPACITY

0.61 (1000 M3)

REGION : CENTRAL DISTRICT : VICTORIA

DISTRICT : VICTORIA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : NO DISC.TO SURFACE WATER

MINOR BASIN : ONTARIO
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 653

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.26	0.24	0.29	0.37	0.41	0.29	0.20	0.22	0.22	0.36	0.61	0.34	0.32	
LAGOON DISCHARGE	ND     ND													
BOD5														
INFLUENT (MG/L)	126.0	161.0	182.0	97.0	88.0	280.0	242.0	255.0	171.0	174.0	97.0	110.0	165.3	
EFFLUENT (MG/L)	ND     ND													
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND     ND													
SUSPENDED SOLIDS														
INFLUENT (MG/L)	66.0	297.0	318.0	145.0	120.0	154.0	191.0	218.0	107.0	156.0	89.0	92.0	162.8	
EFFLUENT (MG/L)	ND     ND													
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND     ND													
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.8	15.0	9.7	4.5	4.5	15.0	15.0	11.3	8.1	8.1	5.2	5.9	9.1	
EFFLUENT (MG/L)	ND     ND													
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND     ND	77												

	SUMM	ARY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	NA	NO DIRECT	DISCHARGE
SS	NA	NO DIRECT	DISCHARGE
TP	NA	NO DIRECT	DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA SS - HAS NO CRITERIA TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

## 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: ORILLIA

PLANT

: ORILLIA WPCP

WORKS NUMBER

: 120000569

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

21.04 (1000 M3)

REGION : CENTRAL
DISTRICT : SIMCOE
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : LAKE SIMCOE

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 24,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	18.73	16.96	21.60	27.80	22.84	20.51	16.75	16.87	18.35	18.99	25.92	18.18	20.29	
BOD5		v. 3500 500	505 10	NAME AND	000000 000	S2000 145	PERSONAL SAN		Production ven		04844200			
INFLUENT (MG/L)	120.0	166.0	61.0	71.0	86.0	94.0	137.0	91.0		106.0	ND	90.0	105.3	
EFFLUENT (MG/L)	9.7	10.8	6.1	7.8	3.9	9.3	18.7	13.0	29.8	21.0	7.6	25.2	13.6	
CONCENTRATION LIMIT (MG/L)													15.0	1.5
LOADING (KG/D)	181.68	183.16	131.76	216.84	89.07	190.74	313.22	219.31	546.83	398.79	196.99	458.13	275.94	
LOADING LIMIT (KG/D)												E4-		
SUSPENDED SOLIDS			5-7-370A-1 PA		e cere us		556-56-76-1-10c			127502820 BASTO	Singuistan hart			
INFLUENT (MG/L)	166.0	169.0	130.0	112.0						175.0	103.0	92.0	158.2	
EFFLUENT (MG/L)	17.9	11.5	14.0	16.0	8.2	6.0	4.4	6.5	10.3	10.0	9.7	19.5	11.2	
CONCENTRATION LIMIT (MG/L)													15.0	
LOADING (KG/D)	335.26	195.04	302.40	444.80	187.28	123.06	73.70	109.65	189.00	189.90	251.42	354.51	227.25	
LOADING LIMIT (KG/D)														
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.1	5.0	2.4	2.7	3.2	4.1	4.1	2.7	4.4	4.9	1.3	5.1	3.7	
EFFLUENT (MG/L)	0.6	0.4	0.3	0.3	0.3	0.3	0.2	0.3	0.4	0.3	0.3	0.5	0.4×	
CONCENTRATION LIMIT (MG/L)													0.3	
LOADING (KG/D)	11.23	6.78	6.48	8.34	6.85	6.15	3.35	5.06	7.34	5.69	7.77	9.09	8.12	
LOADING LIMIT (KG/D)														

		SUMMARY			
		(Alberta Alberta Alber	COMPL	IES WITH	
PARM	CRITERIA	LOADING	CONC	LOADING	
BOD	15.0 MG/L	NA	YES	NA	
SS	15.0 MG/L	NA	YES	NA	
TP	0.3 MG/L	NA	NO	NA	

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

# REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

MUNICIPALITY PLANT : ORILLIA : ORILLIA WPCP

WORKS NUMBER

: 081LL1A WPC

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

21.04 (1000 M3)

REGION : CENTRAL
DISTRICT : SIMCOE
OPERATING AUTHORITY : MUNICIPAL

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : LAKE SIMCOE

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 24,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	18.73	16.96	21.60	27.80	22.84	20.51	16.75	16.87	18.35	18.99	25.92	18.18	20.29	
BOD5	100.0	166.0	41.0	71.0	96.0	94.0	137.0	91.0	136.0	106.0	ND	90.0	105.3	
INFLUENT (MG/L)	120.0		61.0	71.0	86.0	9.3	18.7	13.0	29.8	21.0	7.6	25.2	13.6	
EFFLUENT (MG/L)	9.7	10.8	6.1	7.0	3.9	9.5	10.7	13.0	29.0	21.0			25.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	181.68	183.16	131.76	216.84	89.07	190.74	313.22	219.31	546.83	398.79	196.99	458.13	275.94	
SUSPENDED SOLIDS INFLUENT (MG/L)	166.0	169.0	130.0	112.0	162.0	179.0	209.0	179.0	222.0	175.0	103.0	92.0	158.2	
EFFLUENT (MG/L)	17.9	11.5	14.0	16.0	8.2	6.0	4.4	6.5	10.3	10.0	9.7	19.5	11.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	335.26	195.04	302.40	444.80	187.28	123.06	73.70	109.65	189.00	189.90	251.42	354.51	227.25	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.1	5.0	2.4	2.7	3.2	4.1	4.1	2.7	4.4	4.9	1.3	5.1	3.7	
EFFLUENT (MG/L)	0.6	0.4	0.3	0.3	0.3	0.3	0.2	0.3	0.4	0.3	0.3	0.5	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	11.23	6.78	6.48	8.34	6.85	6.15	3.35	5.06	7.34	5.69	7.77	9.09	8.12	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

MUNICIPALITY

: OSHAWA

PLANT

: HARMONY CR WPCP NO 1

WORKS NUMBER

: 120000774

TREATMENT

: TRICKLING FILTER

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

34.09 (1000 M3)

REGION : CENTRAL

DISTRICT : DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE MINOR BASIN : : ONTARIO

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 102,938

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	18.38	17.46	16.90	21.72	17.63	22.65	19.00	18.61	18.58	19.34	ND	24.58	19.53	NUICE
BOD5 INFLUENT (MG/L)	168.0	104.0	99.0	92.0	124.0	171.0	146.0	131.0	137.0	130.0	89.0	167.0	129.8	
EFFLUENT (MG/L)	ND     ND													
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND     ND													
SUSPENDED SOLIDS INFLUENT (MG/L)	292.0	173.0	210.0	132.0	212.0	317.0	219.0	144.0	138.0	175.0	89.0	251.0	196.0	
EFFLUENT (MG/L)	ND     ND													
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND     ND													
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.9	6.2	2.7	4.8	4.7	5.7	5.1	5.7	5.8	6.3	3.1	10.1	5.4	
EFFLUENT (MG/L)	ND     ND													
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND     ND													

SUMMA	RY	
	COMPLIES	
CRITERIA	WITH CONC	
25.0 MG/L	NO DIRECT	DISCHAP

BOD 25.0 SS 25.0 MG/L NO DIRECT DISCHARGE

1.0 MG/L NO DIRECT DISCHARGE TP

NO REMEDIAL MEASURES REPORTED

PARM

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: OSHAWA

: HARMONY CR WPCP NO 2 PLANT

WORKS NUMBER

: 120001657

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

34.09 (1000 M3)

REGION : CENTRAL

DISTRICT : DURHAM, REG. MUN.

:

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 51,469

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	25.72	28.60	28.69	28.91	34.84	27.49	23.88	22.93	25.07	29.89	35.28	27.55	28.24	
BOD5									. 92			2.25	220.2	105
INFLUENT (MG/L)	190.0	177.0	Market and Park and Proceedings of the Control of	140.0	133.0	184.0	426.0	153.0	161.0		65.0	192.0	174.1	
EFFLUENT (MG/L)	ND	ND	ND	ND_	ND	ND	ND	ND_	ND	ND	ND_	ND		
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS				70 E	N SE S	12/20 12	25 7 5	2454700 345	51642 DI	12521 12		882 6		
INFLUENT (MG/L)	178.0	264.0	52.0	118.0	168.0	162.0	564.0	116.0	147.0	93.0	78.0	225.0	180.4	
EFFLUENT (MG/L)	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS					1501 80-		200 201							
INFLUENT (MG/L)	7.1	9.4	8.3	8.0	5.0	7.5	8.2	8.5	8.4	6.9	3.7	8.7	7.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND_	ND		
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	NO DIRECT	DISCHARGE
SS	25.0 MG/L	NO DIRECT	DISCHARGE

25.0 BOD SS 25.0 1.0 MG/L NO DIRECT DISCHARGE TP

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: OSHAWA

PLANT

: HARMONY CREEK 182 COMBINED EFFLUENT

WORKS NUMBER

: 120003254

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: TRICKLING FILTER

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

0.00 (1000 M3)

REGION

: CENTRAL

DISTRICT

: DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

: L ONT. (COMBINED EFF.1&2)

WATERCOURSE MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULAT	TON	SERVED	•

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	44.09	46.06	45.60	50.63	52.48	50.14	42.88	41.55	43.66	49.23	63.49	52.12	48.49	
BOD5 INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	17.7	24.5	25.6	14.7	13.8	18.0	41.7	39.6	26.0	35.1	27.4	33.7	26.5×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	780.39	1128.47	1167.36	744.26	724.22	902.52	1788.09	1645.38	1135.16	1727.97	1739.62	1756.44	1284.99	
SUSPENDED SOLIDS				A112								Market .		
INFLUENT (MG/L)	ND			ND		Department of the Control of the Con								
EFFLUENT (MG/L)	17.0	17.3	22.4	14.6	17.7	21.9	16.5	21.1	13.5	16.8	15.8	21.2	18.0	
CONCENTRATION LIMIT (MG/L)					****								25.0	
LOADING (KG/D)	749.53	796.83	1021.44	739.19	928.89	1098.06	707.52	876.70	589.41	827.06	1003.14	1104.94	872.82	
TOTAL PHOSPHOROUS												Gallerian .	D.	8
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND			The second section of the second section is a second section of the section of			
EFFLUENT (MG/L)	0.8	0.9	0.9	0.7	0.9	0.9	1.0	1.0	0.9	0.9		CONTRACTOR OF THE PERSON OF TH	0.9	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	35.27	41.45	41.04	35.44	47.23	45.12	42.88	41.55	39.29	44.30	50.79	67.75	43.64	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

25.0 MG/L NO BOD SS 25.0 MG/L YES

TP 1.0 MG/L NO

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

1990/12

1990/01

NOTE:

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE REMEDIAL MEASURES

COLLECTION SYSTEM - ENFORCING SEWER-USE BYLAWS OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED EQUIPMENT/MAINTENANCE - EXISTING EQUIPMENT BEING REPAIRED

1990/07

1990/01 1990/01

1990/08

1990/01

MUNICIPALITY PL ANT

: PENETANGUISHENE : FOX ST. WPCP

WORKS NUMBER

: 120001960

TREATMENT

: CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

.

DESIGN CAPACITY

1.50 (1000 M3)

REGION

: CENTRAL

DISTRICT : SINCOE

OPERATING AUTHORITY : MUNICIPAL

: PENETANGUISHENE HARBOUR

WATERCOURSE MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

2,100

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.13	1.06	1.30	1.31	1.22	1.16	1.05	0.91	0.97	1.03	1.18	1.04	1.11	
BOD5 INFLUENT (MG/L)	91.0	113.0	82.0	73.0	96.0	93.0	106.0	166.0	94.0	80.0	94.0	72.0	96.7	
EFFLUENT (MG/L)	8.2	4.4	2.5	10.7	10.3	2.1	4.1	1.0	3.7	3.5	2.2	2.8	4.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.26	4.66	3.25	14.01	12.56	2.43	4.30	0.91	3.58	3.60	2.59	2.91	5.11	
SUSPENDED SOLIDS INFLUENT (MG/L)	58.0	133.0	104.0	84.0	156.0	15.0	151.0	180.0	113.0	101.0	134.0	100.0	110.8	
EFFLUENT (MG/L)	13.7	12.0	6.0	25.0	9.5	2.0	8.5	2.5	12.0	10.5	2.7	5.6	9.2	
CONCENTRATION LIMIT (MG/L)													25.0	The second
LOADING (KG/D)	15.48	12.72	7.80	32.75	11.59	2.32	8.92	2.27	11.64	10.81	3.18	5.82	10.21	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.3	5.2	4.0	3.2	4.7	5.0	5.4	6.1	4.4	3.8	3.3	14.2	5.3	
EFFLUENT (MG/L)	1.1*	0.5	0.4	0.4	0.5	0.5	0.6	0.6	0.9	0.8	0.5	0.5	0.6	11
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0_	1.0	1.0_	1.0	1.0		
LOADING (KG/D)	1.24	0.53	0.52	0.52	0.61	0.58	0.63	0.54	0.87	0.82	0.59	0.52	0.67	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

25.0 MG/L YES SS TP 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

## REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW OPERATIONAL/PROCESS - OPERATIONAL PROCEDURES BEING UPGRADED FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED FACILITY EXPANSION/UPGRADING - APPLICATION FOR FUNDING

MUNICIPALITY

: PENETANGUISHENE

PLANT

: PENETANGUISHENE WPCP MAIN ST PLANT I1

WORKS NUMBER

: 120000541

TREATMENT

: CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

3.00 (1000 M3)

REGION : CENTRAL DISTRICT : SIMCOE OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : PENETANG BAY

: HURON MINOR BASIN : GREAT LAKES

MAJOR BASIN

POPULATION SERVED : 4,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	2.16	9.93	3.11	3.01	2.84	2.59	2.13	3.48	2.59	2.99	2.67	3.41	
BOD5					75.0	117.0	105.0	145.0	170.0	F 0	00.0	107.0	101.0	
INFLUENT (MG/L)	ND	92.0	ND	80.0_	75.0	117.0	125.0	145.0	178.0	5.0	99.0	103.0	101.9 7.1	
EFFLUENT (MG/L)	ND_	1.2	ND	7.6	4.9	7.8	10.8	8.2	6.8	2.0	15.7	5.6	25.0	
CONCENTRATION LIMIT (MG/L)												44.55	Laboratory of the Control	
LOADING (KG/D)	ND	2.59	ND	23.63	14.74	22.15	27.97	17.46	23.66	5.18	46.94	14.95	24.21	
SUSPENDED SOLIDS	1915-70		en ver	200000000 1.1m						20,000,000	Service and applications			
INFLUENT (MG/L)	ND	124.0	ND	120.0	104.0	148.0	142.0	129.0	146.0	272.0	125.0	123.0	143.3	
EFFLUENT (MG/L)	ND	3.0	ND	12.3	5.5	6.8	7.8	5.5	16.1	3.0	8.1	4.0	7.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	6.48	ND	38.25	16.55	19.31	20.20	11.71	56.02	7.77	24.21	10.68	24.55	
TOTAL PHOSPHOROUS														1
INFLUENT (MG/L)	ND	4.0	ND	3.0	3.5	4.8	4.4	5.3	4.1	5.3	4.1	4.7	4.3	
EFFLUENT (MG/L)	ND	0.6	ND	0.4	0.6	0.7	0.5	1.0	1.7×	0.6	1.8×	0.5	0.8	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	1.29	ND	1.24	1.80	1.98	1.29	2.13	5.91	1.55	5.38	1.33	2.73	1

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	NO	

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: PERCY

: WARKWORTH LAGOON PLANT

WORKS NUMBER

: 120001933

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

: :

0.39 (1000 M3)

REGION

: CENTRAL

DISTRICT : NORTHUMBERLAND

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: MILL CREEK

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

OPULATION	SERVED	:	457

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.26	0.24	0.26	0.27	0.32	0.32	0.25	0.24	0.25	0.27	0.32	0.32	0.28	
LAGOON DISCHARGE	ND	ND	ND	ND	14.60	ND	ND	ND	ND	ND	ND	ND	14.60	
BOD5		Chris on	appetitudes, viscous	Signature vieto	STREET, ASS.	Tribunation NAS	2000 700 8001	ORDER DE PLE	CONOR CONO		180-200 1920	nanaman hab		
INFLUENT (MG/L)	250.0	91.0	118.0	50.0	70.0	70.0	90.0	116.0	84.0	52.0	108.0	104.0	100.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	4.4	ND	ND	ND	ND	ND	ND	ND	4.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	1.40	ND	ND	ND	ND	ND	ND	ND	1.23	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	96.0	120.0	170.0	80.0	99.0	99.0	87.0	79.0	81.0	55.0	99.0	101.0	97.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	29.0	ND	ND	ND	ND	ND	ND	ND	29.0	
CONCENTRATION LIMIT (MG/L)				***************************************						***************************************			25.0	
LOADING (KG/D)	ND	ND	ND	ND	9.28	ND	ND	ND	ND	ND	ND	ND	8.12	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.9	ND	ND	3.0	5.8	5.8	4.2	6.5	5.6	5.6	5.9	7.5	5.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.6	ND	ND	ND	ND	ND	ND	ND	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	0.19	ND	ND	ND	ND	ND	ND	ND	0.17	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES 25.0 MG/L NO SS

1.0 MG/L YES TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: PETERBOROUGH

PLANT

: PETERBOROUGH WPCP

WORKS NUMBER

: 120000676

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

68.19 (1000 M3)

REGION

: CENTRAL

DISTRICT

: PETERBOROUGH

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE MINOR BASIN

: OTONABEE RIVER : ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

62,945

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	45.62	44.20	46.44	53.20	56.76	59.13	50.52	50.07	53.88	50.98	64.70	48.99	52.04	
BOD5				100.0	00.0	70.0	97.0	00.0	101.0	98.0	92.0	116.0	105.2	li e
INFLUENT (MG/L)	118.0	118.0	142.0	122.0	98.0	78.0	87.0	92.0	6.0	6.5	20.1	17.7	10.2	
EFFLUENT (MG/L)	11.7	13.7	13.1	11.2	6.1	6.8	3.8	5.6	0.0	0.5	20.1		25.0	
CONCENTRATION LIMIT (MG/L)					744 67	400 00	101 07	200 70	707 00	771 77	1700 47	967 19	530.81	
LOADING (KG/D)	533.75	605.54	608.36	595.84	346.23	402.08	191.97	200.39	323.20	331.37	1300.47	007.12	530.61	
SUSPENDED SOLIDS	200 4200 - 2000					202020								
INFLUENT (MG/L)	146.0	143.0	177.0	128.0	113.0	100.0	126.0	142.0	ND	114.0		109.0	126.9	
EFFLUENT (MG/L)	9.0	10.0	11.0	11.0	7.0	5.0	4.0	4.0	12.0	9.0	9.0	16.0	8.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	410.58	442.00	510.84	585.20	397.32	295.65	202.08	200.28	646.56	458.82	582.30	783.84	463.16	
TOTAL PHOSPHOROUS			=>:=					161						
INFLUENT (MG/L)	5.3	4.8	4.9	4.4	3.4	3.7	4.0	4.1	4.3	4.3	3.6	4.3	4.3	
EFFLUENT (MG/L)	0.9	1.0	1.0	1.0	0.8	1.0	1.0	1.0	0.9	1.0	41-	1.0	1.0	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		
LOADING (KG/D)	41.05	44.20	46.44	53.20	45.40	59.13	50.52	50.07	48.49	50.98	51.76	48.99	52.04	1

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

25.0 MG/L YES SS

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: PICKERING

: DUFFIN CREEK WPCP (YORK-DURHAM) PLANT

WORKS NUMBER

: 120001915

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

181.84 (1000 M3)

REGION : CENTRAL

DISTRICT : DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : LAKE ONTARIO

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

64,386

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	187.41	184.69	187.90	102.32	213.52	218.62	188.21	197.69	208.04	206.72	233.04	196.01	193.68	
BOD5 INFLUENT (MG/L)	158.0	183.0	193.0	171.0	179.0	144.0	162.0	177.0	194.0	172.0	117.0	142.0	166.0	
EFFLUENT (MG/L)	20.6	21.2	21.9	20.4	26.5	27.6	13.9	27.1	27.7	31.6	30.5	32.6	25.1*	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3860.64	3915.42	4115.01	2087.32	5658.28	6033.91	2616.11	5357.39	5762.70	6532.35	7107.72	6389.92	4861.37	
SUSPENDED SOLIDS INFLUENT (MG/L)	282.0	284.0	289.0	295.0	273.0	238.0	269.0	305.0	243.0	254.0	190.0	184.0	258.8	
EFFLUENT (MG/L)	16.5	15.7		12.0	21.6	19.7	24.7	19.0	The second second second	17.9	47.0	17.2	20.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3092.26	2899.63	3100.35	1227.84	4612.03	4306.81	4648.78	3756.11	3807.13	3700.28	952.88	3371.37	3970.44	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.8	6.4	6.6	6.1	5.2	6.4	7.1	6.1	6.2	6.5	5.6	6.0	6.3	
EFFLUENT (MG/L)	0.8	0.6	1.0	0.5	1.0	1.0	0.9	1.0	0.9	1.0	1.3	0.6	0.9	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	149.92	110.81	187.90	51.16	213.52	218.62	169.38	197.69	187.23	206.72	302.95	117.60	174.31	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L NO SS 25.0 MG/L YES

1.0 MG/L NO TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/01 1989/08

1992 1990/01 1989

REMEDIAL MEASURES

OPERATIONAL/PROCESS - CONDUCTING TREATABILITY STUDIES FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

MUNICIPALITY

: PORT HOPE

PLANT

: PORT HOPE WPCP

WORKS NUMBER TREATMENT

: 120000079 : HIGH RATE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

9.09 (1000 M3)

REGION DISTRICT : CENTRAL

: NORTHUMBERLAND

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : LAKE ONTARIO

: ONTARIO MINOR BASIN

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 9,700

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	4.42	3.98	4.93	6.75	6.63	6.32	4.54	4.43	4.84	5.08	7.56	4.14	5.30	
BOD5		manazar vari	998-1-27 - 29											
INFLUENT (MG/L)	186.0	162.0	the street of the County of the party of	164.0	178.0	162.0	129.0	110.0	96.0	113.0	94.0	82.0	139.1	
EFFLUENT (MG/L)	17.5	19.1	19.8	13.3	8.5	6.3	5.1	2.7	2.6	3.0	2.3	4.6	8.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	77.35	76.01	97.61	89.77	56.35	39.81	23.15	11.96	12.58	15.24	17.38	19.04	46.11	
SUSPENDED SOLIDS	100.0	07.0	114.0	00.0	100.0	111.0	00.0	100.0	100.0	116.0	00.0	96.0	100.1	
INFLUENT (MG/L)	100.0	93.0	114.0	88.0	100.0 7.4	111.0	92.0 5.6	109.0 6.1	100.0 5.9	116.0	92.0	86.0 4.1	7.3	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	10.9	10.3	10.3	10.3		4.0	5.6	6.1	5.9	5.9	6.3	4.1	25.0	
LOADING (KG/D)	48.17	40.99	50.77	69.52	49.06	25.28	25.42	27.02	28.55	29.97	47.62	16.97	38.69	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.7	3.1	3.6	2.7	2.7	2.9	2.7	2.9	2.9	2.9	2.6	2.8	2.9	1
EFFLUENT (MG/L)	0.6	0.8	1.0	0.8	0.6	0.6	0.8	0.5	1.0	1.0	0.6	0.8	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.65	3.18	4.93	5.40	3.97	3.79	3.63	2.21	4.84	5.08	4.53	3.31	4.24	

	SUMMA	RY
	10000	COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
	05 0 40 4	VEO

BOD 25.0 SS 25.0 MG/L YES TP

1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : PORT MCNICOLL

PLANT : PORT MCNICOLL WPCP

WORKS NUMBER : 110001417

TREATMENT : CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY : 1.04 (1000 M3)

REGION : CENTRAL DISTRICT : SIMCOE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GEORGIAN BAY

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,926

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.82	0.63	0.98	1.04	0.94	0.75	0.58	0.54	0.69	0.67	1.02	0.66	0.78	
BOD5 INFLUENT (MG/L)	60.5	105.5	93.0	58.8	84.1	81.0	56.8	118.5	94.9	69.6	97.5	87.8	84.0	
EFFLUENT (MG/L)	12.2	10.1	8.8	3.4	9.2	9.6	8.7	9.3	6.9	3.6	5.9	5.4	7.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	10.00	6.36	8.62	3.53	8.64	7.20	5.04	5.02	4.76	2.41	6.01	3.56	6.08	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	60.5	129.0	108.0	88.0	82.5	101.0	104.0_	123.0	121.5	78.0	76.0	124.0	99.6	
EFFLUENT (MG/L)	7.9	7.5	7.0	10.0	4.8	4.3	7.3	5.0	3.8	1.1	3.8	5.3	5.7	
CONCENTRATION LIMIT (MG/L)													25.0	1
LOADING (KG/D)	6.47	4.72	6.86	10.40	4.51	3.22	4.23	2.70	2.62	0.73	3.87	3.49	4.45	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.8	5.9	5.8	4.0	3.0	5.6	4.9	6.1	5.0	4.7	3.8	5.1	4.8	
EFFLUENT (MG/L)	0.3	0.4	0.3	0.2	0.3	0.3	0.4	0.4	0.4	0.3	0.2	0.3	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.24	0.25	0.29	0.20	0.28	0.22	0.23	0.21	0.27	0.20	0.20	0.19	0.23	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY
TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: SCUGOG

PLANT

: NONGUON RIVER LAGOON (PORT PERRY)

WORKS NUMBER

: 110001257

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS : EFFLUENT CHLORINATION

DESIGN CAPACITY

3.64 (1000 M3)

REGION

: CENTRAL

DISTRICT

: DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: LAKE SCUGOG

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

5,215

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.11	1.96	2.04	2.54	2.91	2.65	1.98	1.98	2.06	2.20	3.19	2.20	2.32	
LAGOON DISCHARGE	ND	ND	ND	313.67	209.12	ND	ND	ND	ND	ND	77.14	118.61	179.64	
BOD5														
INFLUENT (MG/L)	ND	143.0	154.0	151.0	173.0	ND_	158.0	413.0	178.0	150.0	62.0	155.0	173.7	
EFFLUENT (MG/L)	ND	ND	ND	14.2	7.9	ND	ND	ND	ND	ND	13.0	6.1	10.3	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	36.06	22.98	ND	ND	ND	ND	ND	41.47	13.42	23.90	
SUSPENDED SOLIDS						11.0							8 2 4	
INFLUENT (MG/L)	196.0	209.0	244.0	164.0	244.0	120.0	143.0	414.0	221.0	193.0	83.0	157.0	199.0	
EFFLUENT (MG/L)	ND	ND	ND	26.3	15.3	ND	ND	ND	ND	ND	6.0	3.3	12.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	66.80	44.52	ND	ND	ND	ND	ND	19.14	7.26	29.46	
TOTAL PHOSPHOROUS				2										
INFLUENT (MG/L)	ND	11.4	10.7	8.7	16.1	8.4	7.1	41.2	7.7	6.9	3.0	8.3	11.8	
EFFLUENT (MG/L)	ND	ND	ND	0.5	0.3	ND	ND	ND	ND	ND	0.2	0.1	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	1.27	0.87	ND	ND	ND	ND	ND	0.63	0.22	0.70	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 30.0 MG/L YES

40.0 MG/L YES SS TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

1989/03

1989/08

FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED

MUNICIPALITY

: SMITH

PLANT

: WOODLAND ACRES WPCP

WORKS NUMBER

: 110002381

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

0.36 (1000 M3)

REGION : CENTRAL

: PETERBOROUGH DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OTONABEE R. MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 435

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.17	0.17	0.23	0.28	0.30	0.34	0.16	0.13	0.18	0.19	0.19	0.20	0.21	
BOD5 INFLUENT (MG/L)	38.0	35.0	71.0	18.0	21.0	48.0	64.0	104.0	67.0	84.0	74.0	38.0	55.2	
EFFLUENT (MG/L)	10.4	3.2	2.5	1.5	1.0	1.9	0.8	0.3	0.3	0.2	3.2	4.1	2.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.76	0.54	0.57	0.42	0.30	0.64	0.12	0.03	0.05	0.03	0.60	0.82	0.53	
SUSPENDED SOLIDS INFLUENT (MG/L)	41.0	62.0	140.0	36.0	57.0	60.0	87.0	118.0	133.0	132.0	93.0	31.0	82.5	
EFFLUENT (MG/L)	11.3	7.3	7.5	3.0	4.5	3.2	2.5	4.5	3.3	0.5	5.9	6.9	5.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.92	1.24	1.72	0.84	1.35	1.08	0.40	0.58	0.59	0.09	1.12	1.38	1.05	
TOTAL PHOSPHOROUS									E0 10	,e25 24	26. 2			
INFLUENT (MG/L)	3.1	2.8	3.0	1.1_	0.9	2.6	2.8	11.3	5.4	5.0	3.1	1.5	3.6	
EFFLUENT (MG/L)	3.0	1.3	0.6	0.3	0.4	0.7	0.7	0.7	0.5	0.5	0.6	0.7	0.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.51	0.22	0.13	0.08	0.12	0.23	0.11	0.09	0.09	0.09	0.11	0.14	0.17	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

REMEDIAL MEASURES

25.0 MG/L YES

SS 25.0 MG/L YES TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED

1989/03

MUNICIPALITY

: STAYNER

PLANT

: STAYNER LAGOON

WORKS NUMBER

: 110000695

TREATMENT

: AERATED CELL PLUS LAGOON

: SEASONAL DISCHARGE

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

1.04 (1000 M3)

REGION DISTRICT : CENTRAL : SIMCOE

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: LAMONT CREEK

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

2,975

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	1.86	1.50	1.65	1.82	1.65	1.50	1.30	1.23	1.15	1.32	1.45	1.41	1.49	
LAGOON DISCHARGE	46.93	41.99	51.15	112.72	76.65	ND	83.60	ND	83.60	76.65	ND	ND	71.66	
BOD5														
INFLUENT (MG/L)	293.0	883.0	166.0	662.0	370.0	858.0	The second second	218.0	351.0		1,040.0		589.5	
EFFLUENT (MG/L)	ND	ND	ND	18.3	31.8	ND	11.1	ND	11.5	17.8	ND	ND	18.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	33.30	52.47	ND	14.43	ND	13.22	23.49	ND	ND	26.97	
SUSPENDED SOLIDS														0
INFLUENT (MG/L)	172.0	190.0	179.0	217.0	193.0	213.0	279.0	175.0	290.0	270.0	253.0	220.0	220.9	
EFFLUENT (MG/L)	ND	ND	ND	21.7	35.0	ND	29.0	ND	23.0	22.8	ND	ND	26.3×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	39.49	57.75	ND	37.70	ND	26.45	30.09	ND	ND	39.19	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.2	8.1	6.2	9.5	8.6	19.2	9.8	7.4	15.3	9.8	18.7	12.6	10.9	
EFFLUENT (MG/L)	ND	ND	ND	0.3	0.8	ND	0.3	ND	0.5	ND	ND	ND	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.54	1.32	ND	0.39	ND	0.57	ND	ND	ND	0.75	

U	м	м	Δ	ĸ	T.

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L NO

TP 1.0 MG/L YES NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

## REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW COLLECTION SYSTEM - INFILTRATION PROBLEMS BEING CORRECTED OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED OPERATIONAL/PROCESS - CONVERTING TO ALTERNATIVE PROCESS FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

# ANTICIPATED

START DATE END DATE COMPLIANCE

1991/07 1991/08 1991/11 1991/08

MUNICIPALITY

: TOTTENHAM

PLANT

: TOTTENHAM WPCP (MUN OCT 1 1989)

WORKS NUMBER

: 110002531

TREATMENT

: SUTTON PROCESS

: PHOSPHORUS REMOVAL-CONTINUOUS

.

DESIGN CAPACITY

: 2.25 (1000 M3)

REGION : CENTRAL DISTRICT : GREY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.31	1.32	1.42	1.77	1.82	1.56	1.29	1.28	1.42	1.34	1.76	1.33	1.47	
BOD5								4-4-0						
INFLUENT (MG/L)	106.5	157.5		139.0	The second second second second second	_112.5	the state of the s	156.0	133.5		_135.0_	172.0	133.8	
EFFLUENT (MG/L)	4.1	2.2	4.8	10.4	4.2	7.2	2.3	4.8	1.8	0.8	3.5	0.2	3.9	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	5.37	2.90	6.81	18.40	7.64	11.23	2.96	6.14	2.55	1.07	6.16	0.26	5.73	
SUSPENDED SOLIDS	127.5	192.0	236.0	243.5	145.0	194.0	171.5	158.5	268.5	174.0	176.0	204.0	190.9	
INFLUENT (MG/L)	7.7		17.5	27.8	5.8	10.2	6.3	4.0	7.5	2.5	4.0	0.2	8.1	
EFFLUENT (MG/L)		4.0	1/.5_	27.0	5.0	10.2	0.3	4.0		2.5	7.0	0.2		
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	10.08	5.28	24.85	49.20	10.55	15.91	8.12	5.12	10.65	3.35	7.04	0.26	11.91	
TOTAL PHOSPHOROUS					W es	2 50	Sec. 8	685 5K	a a a		565 33	500 400	500 00	
INFLUENT (MG/L)	10.2	9.3	13.6	6.9	6.8	9.9	9.4	11.1	16.1	7.1	5.8	6.9	9.4	
EFFLUENT (MG/L)	0.2	0.2	0.3	0.3	0.3	0.2	0.2	0.4	0.3	0.2	0.3	0.4	0.3	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.26	0.26	0.42	0.53	0.54	0.31	0.25	0.51	0.42	0.26	0.52	0.53	0.44	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: UXBRIDGE

PLANT

: UXBRIDGE BROOK WPCP

WORKS NUMBER

: 120000756

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

: 3.63 (1000 M3)

REGION

: CENTRAL

DISTRICT

: DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: UXBRIDGE BROOK

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

4,550

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.13	0.97	1.05	1.24	1.65	1.51	1.23	1.66	1.69	1.67	3.73	2.53	1.67	
B0D5				Salation 14		40x0 At x08	visitar ana itali	amenanes se	2022 20				450.0	
INFLUENT (MG/L)	186.0	271.0	140.0	131.0	75.0	184.0	122.0	164.0	198.0	166.0	87.0	172.0	158.0	
EFFLUENT (MG/L)	6.7	0.8	8.6	4.2	6.8	0.5	2.6	0.2	0.3	1.2	0.8	5.8	3.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.57	0.77	9.03	5.20	11.22	0.75	3.19	0.33	0.50	2.00	2.98	14.67	5.34	
SUSPENDED SOLIDS	23(1)													
INFLUENT (MG/L)	180.0	199.0	272.0	134.0	100.0	195.0	236.0	140.0	256.0	139.0	97.0	149.0	174.8	
EFFLUENT (MG/L)	10.0	5.5	26.5	21.5	23.5	2.3	7.5	2.5	3.0	1.4	0.5	2.4	8.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	11.30	5.33	27.82	26.66	38.77	3.47	9.22	4.15	5.07	2.33	1.86	6.07	14.86	
TOTAL PHOSPHOROUS													1	
INFLUENT (MG/L)	11.5	2.6	6.2	3.6	4.0	2.6	6.4	5.6	7.3	6.2	4.0	5.7	5.5	
EFFLUENT (MG/L)	0.3	0.1	0.3	0.2	0.2	0.1	0.2	ND	0.2	0.2		0.1	0.2	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.33	0.09	0.31	0.24	0.33	0.15	0.24	ND	0.33	0.33		0.25	0.33	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM 25.0 MG/L YES BOD

SS 25.0 MG/L YES TP 1.0 MG/L YES

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED

1989/01

1990/03

MUNICIPALITY

: VAUGHAN

PLANT

: KLEINBURG WPCP

WORKS NUMBER

: 120000417

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

0.22 (1000 M3)

REGION : CENTRAL

: YORK, REG. MUN. DISTRICT

OPERATING AUTHORITY : MUNICIPAL

: HUMBER RIVER WATERCOURSE MINOR BASIN : ONTARIO

MAJOR BASIN

: GREAT LAKES POPULATION SERVED : 900

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.19	0.19	0.20	0.23	0.23	0.24	0.16	0.21	0.19	0.19	0.29	0.21	0.21	
BOD5						***	***	07.0	F0 0	117.0	77.0	101.0	114 7	
INFLUENT (MG/L)	151.0	142.0	126.0	82.0	85.0	189.0	119.0	93.0	50.0	117.0	37.0	181.0	114.3	
EFFLUENT (MG/L)	5.9	5.6	3.2	10.6	0.7	1.8	3.2	3.7	2.8	2.4	2.6	10.4	4.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.12	1.06	0.64	2.43	0.16	0.43	0.51	0.77	0.53	0.45	0.75	2.18	0.92	
SUSPENDED SOLIDS			445.0	<b>50.0</b>	04.0	101.0	141.0	07.0	E7 0	115.0	E7.0	145.0	110.0	
INFLUENT (MG/L)	116.0	THE RESERVE AND ADDRESS OF THE PARTY OF THE		58.0	86.0	191.0	141.0	97.0	57.0	115.0	57.0	165.0	119.9	
EFFLUENT (MG/L)	8.2	9.3	9.2	17.5	6.8	6.1	4.0	9.3	7.5	4.3	5.0	8.7	8.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.55	1.76	1.84	4.02	1.56	1.46	0.64	1.95	1.42	0.81	1.45	1.82	1.68	
TOTAL PHOSPHOROUS							200 00				2.2	2.70		
INFLUENT (MG/L)	5.8	8.4	6.8	4.5	3.8	8.4	5.0_	5.4	5.0	16.8	2.8	6.4	6.6	
EFFLUENT (MG/L)	4.7	4.7	4.2	3.3	3.7	4.6	3.9	4.0	3.9	3.9	2.9	3.9	4.0	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.89	0.89	0.84	0.75	0.85	1.10	0.62	0.84	0.74	0.74	0.84	0.81	0.84	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	NA	NA .

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: VICTORIA HARBOUR

PLANT

: VICTORIA HARBOUR WPCP

WORKS NUMBER

: 120003227

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

: 2.36 (1000 M3)

REGION

: CENTRAL

DISTRICT

: SIMCOE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE

: GEORGIAN BAY

MINOR BASIN

: HURON

MAJOR BASIN

POP

: GREAT LAKES

PULATION SERVED :	2,016
-------------------	-------

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.52	0.47	0.60	0.65	0.76	0.61	0.64	0.62	0.59	0.53	0.61	0.46	0.59	
BOD5 INFLUENT (MG/L)	94.0	61.0	82.0	43.0	65.5	73.5	96.5	120.3	131.0	92.0	59.0	82.2	83.3	
EFFLUENT (MG/L)	5.4	0.5	0.5	0.6	2.0	0.5	4.9	0.4	0.4	0.4	2.0	2.8	1.7	
CONCENTRATION LIMIT (MG/L)							107						25.0	
LOADING (KG/D)	2.80	0.23	0.30	0.39	1.52	0.30	3.13	0.24	0.23	0.21	1.22	1.28	1.00	
SUSPENDED SOLIDS INFLUENT (MG/L)	99.5	99.5	135.0	50.0	77.5	110.5	205.5	171.7	311.5	259.0	82.6	69.6	139.3	
EFFLUENT (MG/L)	2.0	2.5	2.5	3.5	4.8	2.4	2.8	2.5	4.0	1.9	0.5	0.7	2.5	
CONCENTRATION LIMIT (MG/L)				- Marine		THE STATE OF THE S	-						25.0	
LOADING (KG/D)	1.04	1.17	1.50	2.27	3.64	1.46	1.79	1.55	2.36	1.00	0.30	0.32	1.48	
TOTAL PHOSPHOROUS					F3. 5		1000 000	ove veed	V=37 - CO:		300.00 200			
INFLUENT (MG/L)	3.5	3.6	4.1	2.8	2.9	4.5	5.5	5.5	5.0	4.5	3.4	3.8	4.1	
EFFLUENT (MG/L)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2		0.1	0.1	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.05	0.04	0.06	0.06	0.07	0.06	0.06	0.06	0.11	0.10		0.04	0.06	

SUMMARY

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: WASAGA BEACH

PLANT

: WASAGA BEACH WPCP (SUM.POP.SERV.73000)

WORKS NUMBER

: 120001862

TREATMENT

: EXTENDED AERATION

: EFFLUENT POLISHING : EXFILTRATION

DESIGN CAPACITY

: 5.77 (1000 M3)

REGION : CENTRAL

: SIMCOE DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: NO DISC.TO SURFACE WATER

WATERCOURSE

MINOR BASIN MAJOR BASIN : HURON

: GREAT LAKES

POPULATION SERVED : 3,090

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.81	0.74	1.27	1.00	1.21	1.39	2.34	1.96	1.25	1.01	0.93	0.92	1.24	
BOD5	<b>0</b> F 0	115 5	074 E	170 0	124.0	65.5	253.5	119.0	92.5	77.0	85.5	67.5	124.5	
INFLUENT (MG/L)	85.0	115.5	236.5	172.0 ND	ND	ND	ND	ND	ND	ND	ND ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND_		ND	ND							
CONCENTRATION LIMIT (MG/L)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LOADING (KG/D)	ND	ND	ND	ND	עא	עא	עא	עא	עא	עה	עא	NU		
SUSPENDED SOLIDS		DANIMONDO 180	Transportation Committee										450.7	
INFLUENT (MG/L)	144.5	122.0	397.5	220.0	84.5	82.0	337.5	126.5	95.0	66.0	64.0	68.5	150.7	
EFFLUENT (MG/L)	ND	ND	ND	ND_	ND_	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS						7							50.9 (BD)	}
INFLUENT (MG/L)	5.4	5.5	8.1	5.6	4.6	3.4	7.1	6.5	4.6	4.2	4.2	4.2	5.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	1

	SUMMA	RY	
	(E) (= 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	NA	NO DIRECT	DISCHARGE
SS	25.0 MG/L	NO DIRECT	DISCHARGE
TP	NA	NO DIRECT	DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: WHITBY

PLANT

: CORBETT CREEK WPCP

WORKS NUMBER TREATMENT

: 120000738 : CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

36.36 (1000 M3)

REGION

: CENTRAL

DISTRICT

: DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: LAKE ONTARIO

MINOR BASIN

MAJOR BASIN

: ONTARIO

: GREAT LAKES

POPULATION SERVED :

26,100

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	23.19	23.62	22.71	25.12	27.16	29.36	27.67	24.86	26.94	27.89	28.12	16.92	25.30	
BOD5 INFLUENT (MG/L)	117.0	186.0	204.0	93.0	83.0	89.0	121.0	120.0	98.0	116.0	102.0	157.0	123.8	
EFFLUENT (MG/L)	10.9	18.3	22.0	9.5				4.1	16.1	18.7	17.7	32.0	16.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	252.77	432.24	499.62	238.64	328.63	355.25	511.89	101.92	433.73	521.54	497.72	541.44	404.80	
SUSPENDED SOLIDS INFLUENT (MG/L)	172.0	294.0	296.0	220.0	155.0	118.0	118.0	131.0	218.0	214.0	159.0	177.0	189.3	
EFFLUENT (MG/L)	15.0	17.1	26.3	22.5	23.7	14.8	15.9	12.5	17.3	21.9	23.4	13.5	18.7	
CONCENTRATION LIMIT (MG/L)	15.0											- STATE	25.0	
LOADING (KG/D)	347.85	403.90	597.27	565.20	643.69	434.52	439.95	310.75	466.06	610.79	658.00	228.42	473.11	
TOTAL PHOSPHOROUS						20 200	-000 Pay			2000	0507 743			
INFLUENT (MG/L)	11.2	11.9	11.5	10.8	9.5	9.6	9.6	94.5				8.6	17.3	
EFFLUENT (MG/L)	0.8	0.8	0.9	0.8	1.0	1.0	0.7	0.8	0.8	0.9	1.0	1.0	0.9	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	18.55	18.89	20.43	20.09	27.16	29.36	19.36	19.88	21.55	25.10	28.12	16.92	22.77	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - CONDUCTING TREATABILITY STUDIES

1989/07 1989/10 1989/11 1990/03

FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED

MUNICIPALITY

: WHITBY

: PRINGLE CREEK WPCP NO 1

WORKS NUMBER

: 120000747

TREATMENT

PLANT

: CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

5.68 (1000 M3)

REGION : CENTRAL

DISTRICT : DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : PRINGLE CREEK

MINOR BASIN MAJOR BASTN : ONTARIO . CDEAT LAKES

MAJOK DASIN	•	GKEAI	LAKES
POPULATION SERVED	:		10,925

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.96	2.65	2.67	3.81	3.62	3.31	2.05	2.70	2.54	2.24	3.25	2.51	2.86	
BOD5 INFLUENT (MG/L)	ND	181.0	81.0	254.0	171.0	129.0	411.0	226.0	81.0	181.0	79.0	343.0	194.3	
EFFLUENT (MG/L)	11.2	8.6	16.3	14.3	18.2	7.5	33.0	4.0	16.4	9.3	34.8	5.1	14.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	33.15	22.79	43.52	54.48	65.88	24.82	67.65	10.80	41.65	20.83	113.10	12.80	42.61	
SUSPENDED SOLIDS	W2120 BG				1000						WWW.12			
INFLUENT (MG/L)	485.0	609.0	522.0	344.0	401.0	439.0	438.0	581.0	545.0	668.0	448.0	614.0	507.8	
EFFLUENT (MG/L)	12.0	15.7	12.7	6.2	13.2	20.8	27.5	19.7	44.9	24.5	16.8	11.2	18.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	35.52	41.60	33.90	23.62	47.78	68.84	56.37	53.19	114.04	54.88	54.60	28.11	53.77	
TOTAL PHOSPHOROUS				III	Ungoy was	220		NO. 100		5070				
INFLUENT (MG/L)	5.9	5.9	6.0	5.3	5.3	5.6	7.0	7.6	6.2	6.3	5.2	6.8	6.1	
EFFLUENT (MG/L)	0.6	0.7	0.4	0.6	0.5	0.6	0.5	0.6	0.7	0.5	0.4	0.5	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.77	1.85	1.06	2.28	1.81	1.98	1.02	1.62	1.77	1.12	1.30	1.25	1.72	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

25.0 MG/L YES BOD SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: WHITBY

PLANT

: PRINGLE CREEK WPCP NO 2

WORKS NUMBER

: 120003101

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

9.09 (1000 M3)

REGION

: CENTRAL

DISTRICT

: DURHAM, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: PRINGLE CREEK

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 10,925

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	4.08	3.45	3.61	5.41	5.95	4.41	2.88	4.06	3.46	3.07	5.84	3.67	4.16	
BOD5 INFLUENT (MG/L)	ND	181.0	81.0	254.0	171.0	129.0	411.0	226.0	81.0	181.0	79.0	543.0	212.5	
EFFLUENT (MG/L)	9.1	25.6	31.4	8.5	9.3	2.5	8.3	8.0	3.1	4.9	16.1	5.6	11.0	
CONCENTRATION LIMIT (MG/L)						-							25.0	
LOADING (KG/D)	37.12	88.32	113.35	45.98	55.33	11.02	23.90	32.48	10.72	15.04	94.02	20.55	45.76	
SUSPENDED SOLIDS INFLUENT (MG/L)	485.0	609.0	522.0	344.0	401.0	439.0	438.0	581.0	545.0	668.0	448.0	614.0	507.8	
EFFLUENT (MG/L)	13.7	15.9	14.2	20.0	16.3	10.6	13.2	17.2	19.4	10.8	9.7	13.7	14.6	
CONCENTRATION LIMIT (MG/L)							TR-45						25.0	
LOADING (KG/D)	55.89	54.85	51.26	108.20	96.98	46.74	38.01	69.83	67.12	33.15	56.64	50.27	60.74	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.9	5.9	6.0	5.3	5.3	5.6	7.0	7.6	6.2	6.3	5.2	6.8	6.1	
EFFLUENT (MG/L)	0.7	0.6	0.5	0.6	0.4	0.5	0.4	0.6	0.8	0.5	0.5	0.8	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.85	2.07	1.80	3.24	2.38	2.20	1.15	2.43	2.76	1.53	2.92	2.93	2.50	

SUMMARY COMPLIES CRITERIA WITH CONC 25.0 MG/L YES BOD SS 25.0 MG/L YES TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: WHITCHURCH-STOUFFVILLE

PLANT WORKS NUMBER : STOUFFVILLE WPCP

: 120000408

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

3.86 (1000 M3)

REGION

: CENTRAL

DISTRICT

OPERATING AUTHORITY : MUNICIPAL

: YORK, REG. MUN.

WATERCOURSE

: DUFFIN CREEK

MINOR BASIN

MAJOR BASIN

: ONTARIO

: GREAT LAKES

POPULATION SERVED :

5,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.31	3.16	3.25	3.50	3.83	3.78	3.38	3.56	3.68	3.49	4.03	3.35	3.53	
BOD5 INFLUENT (MG/L)	107.0	128.0	85.0	73.0	94.0	84.0	96.0	116.0	85.0	114.0	78.0	125.0	98.8	
EFFLUENT (MG/L)	3.5	3.8	4.5	3.6	1.5	3.6	1.8	3.5	0.5	0.3	1.8	1.8	2.5	
CONCENTRATION LIMIT (MG/L)												The second second	25.0	
LOADING (KG/D)	11.58	12.00	14.62	12.60	5.74	13.60	6.08	12.46	1.84	1.04	7.25	6.03	8.83	
SUSPENDED SOLIDS INFLUENT (MG/L)	111.0	224.0	140.0	168.0	128.0	107.0	117.0	137.0	122.0	133.0	94.0	158.0	136.6	
EFFLUENT (MG/L)	2.9	3.7	5.3	5.0	4.5	1.5	0.3	2.0	4.2	0.9	1.9	2.0	2.9	
CONCENTRATION LIMIT (MG/L)					F 500 3055								25.0	
LOADING (KG/D)	9.59	11.69	17.22	17.50	17.23	5.67	1.01	7.12	15.45	3.14	7.65	6.70	10.24	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.8	6.3	4.3	4.4	4.4	5.4	4.2	5.4	5.2	5.3	4.0	5.8	5.0	
EFFLUENT (MG/L)	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.4	0.5	0.3	0.4	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.99	0.94	0.97	1.05	1.53	1.13	1.01	1.42	1.84	1.04	1.61	1.34	1.41	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 25.0 MG/L YES

SS TP

25.0 MG/L YES 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

# Southeastern Region Ontario Ministry of the Environment



# Southeastern Region



# REGIONAL OFFICE

Kingston 133 Dalton St. Box 820 K7L 4X6 (613) 549-4000

# DISTRICT OFFICES

Cornwall 205 Amelia Street K6H 3P3 (613) 933-7402

Kingston 133 Dalton St. K7L 4X6 (613) 549-4000

Ottawa 2378 Holly Lane K1V 7P1 (613) 521-3450

# SUB-OFFICES

Belleville 15 Victoria Ave. K8N 1Z5 (613) 962-9208

Pembroke 1000 MacKay St. K8B 1A3 (613) 732-3643

SOUTHEAST SUMMARY - 1989

	١	Number		Design	Capacity (10	00M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Primary	2	13	15	10.23	559.73	569.96
Conventional Activated Sludge	4	3	7	96.03	40.00	136.03
Modified Activated Sludge	1	0	1	12.27	-	12.27
Contact Stabilization	1	2	3	1.36	8.68	10.04
Extended Aeration	11	4	15	7.87	3.87	11.74
High Rate	1	0	1	5.46	=	5.46
Communal Septic Tank	1	0	1	1.74	<del>-</del>	1.74
Convent. Lagoon Continuous	1	1	2	2.39	5.91	8.30
Conventional Lagoon Seasonal	10	3	13	9.76	6.01	15.77
Lagoon and Spray	1	1	2	0.34	0.36	0.70
Aerated Cell Plus Lagoon	3	0	3	15.62	-	15.62
Conventional Lagoon Annual	3	1	4	3.30	1.23	4.52
TOTALS	39	28	67	166.37	625.79	792.16

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

# SOUTHEAST SUMMARY - 1989

	N	lumber		Annu	al ADF (1000	M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Primary	2	13	15	9.01	632.31	641.32
Conventional Activated Sludge	4	3	7	60.55	35.01	95.56
Modified Activated Sludge	1	0	1	7.92	0.00	7.92
Contact Stabilization	1	2	3	1.59	4.27	5.86
Extended Aeration	11	4	15	6.25	2.15	8.40
High Rate	1	0	1	4.32	0.00	4.32
Communal Septic Tank	1	0	1	0.00	0.00	0.00
Convent. Lagoon Continuous	1	1	2	2.36	5.04	7.40
Conventional Lagoon Seasonal	10	3	13	7.68	7.25	14.93
Lagoon and Spray	1	1	2	0.22	0.00	0.22
Aerated Cell Plus Lagoon	3	0	3	10.36	0.00	10.36
Conventional Lagoon Annual	3	1	4	0.85	0.44	1.29
TOTALS	39	28	67	111.11	686.47	797.58

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

MUNICIPALITY

: ALEXANDRIA

PLANT

: ALEXANDRIA LAGOON

WORKS NUMBER

: 110000846

TREATMENT

: AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 6.81 (1000 M3)

REGION : SOUTHEAST

DISTRICT : STORMONT, DUNDAS AND GLENGARRY OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : DELISLE R

MINOR BASIN : ST. LAWRENCE MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 3,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	5.46	5.49	7.04	8.00	6.48	6.31	4.65	5.25	4.91	5.38	7.50	5.29	5.98	
LAGOON DISCHARGE	169.38	153.77	218.16	240.07	200.87	189.33	144.23	162.87	147.37	166.74	225.00	164.00	181.82	
BOD5	71/04/07	Wike Company					INI DOOR SOLE						×> ===	
INFLUENT (MG/L)	ND.	72.0	80.0	36.0	27.0	85.0	57.0	61.0	94.0	108.0	97.0	314.0	93.7	
EFFLUENT (MG/L)	ND	42.0	43.0	16.0	5.4	12.1	15.0	4.3	8.7	10.3	12.3	13.6	16.6	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	230.58	302.72	128.00	34.99	76.35	69.75	22.57	42.71	55.41	92.25	71.94	99.27	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	71.0	90.0	54.0	45.0	72.0	51.0	56.0	64.0	82.0	57.0	3.0	5.0	54.2	į.
EFFLUENT (MG/L)	25.7	34.9	29.9	21.0	17.5	12.0	7.3	9.9	14.6	13.5	12.9	20.0	18.3	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	140.32	191.60	210.49	168.00	113.40	75.72	33.94	51.97	71.68	72.63	96.75	105.80	109.43	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.1	2.9	2.9	1.9	3.0	3.7	1.4	1.8	2.4	1.8	2.8	4.8	2.6	
EFFLUENT (MG/L)	0.5	1.0	0.9	0.7	0.7	0.6	0.4	0.5	0.2	0.5	0.6	0.7	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.73	5.49	6.33	5.60	4.53	3.78	1.86	2.62	0.98	2.69	4.50	3.70	3.59	

SUMMARY COMPLIES CRITERIA WITH CONC PARM BOD 30.0 MG/L YES SS 40.0 MG/L YES TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

: ALFRED MUNICIPALITY

PLANT : ALFRED LAGOON

WORKS NUMBER : 110001836

TREATMENT : CONVENTIONAL LAGOON ANNUAL

DESIGN CAPACITY : 0.71 (1000 M3) REGION : SOUTHEAST

DISTRICT : PRESCOTT AND RUSSELL

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : RUISSEAU DES ATOCAS

MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,055

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.47	0.43	0.49	0.55	0.63	0.66	0.48	0.52	0.48	0.53	0.59	0.45	0.52	
LAGOON DISCHARGE	ND	ND	ND	76.00	170.40	ND	123.20							
BOD5		MD		MD		04.0		445.0	105.0				404.4	
INFLUENT (MG/L)	ND_	ND	ND ND	ND	149.0	84.0	188.0	115.0	195.0	121.0	176.0	445.0	184.1	
EFFLUENT (MG/L)	ND_	ND	ND	59.0	4.0	ND	31.5×							
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	275.0	350.0	160.0	157.0	1,220.0	185.0	983.0	178.0	221.0	242.0	441.0	900.0	442.7	
EFFLUENT (MG/L)	ND	ND	ND	29.8	15.0	ND	22.4							
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.7	5.3	7.8	4.9	7.6	5.4	10.8	8.5	15.9	5.7	4.0	16.3	8.2	
EFFLUENT (MG/L)	ND	ND	ND	5.5	2.0	ND	3.8							
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L NO

40.0 MG/L YES SS

TP NA NA NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: ALMONTE

PLANT

: ALMONTE LAGOON

WORKS NUMBER

: 110000873

TREATMENT

: AERATED CELL PLUS LAGOON

: SEASONAL DISCHARGE

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

5.45 (1000 M3)

: SOUTHEAST

DISTRICT

: LANARK

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: MISSISSIPPI RIVER

MINOR BASIN

: OTTAWA RIVER

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :	4,040

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.44	1.35	2.79	3.06	2.93	1.95	1.91	1.46	1.41	1.75	3.14	2.01	2.10	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5					ere en come de									12-11-11
INFLUENT (MG/L)	207.0	160.0	112.0	160.0	46.0	66.0	11.0	ND	76.0	122.0	48.0	365.0	124.8	Test village and the second
EFFLUENT (MG/L)	ND	ND	ND	ND	10.1	ND	ND	ND	ND	ND	ND	19.5	14.8	
CONCENTRATION LIMIT (MG/L)					The state of the s						Areas (		25.0	
LOADING (KG/D)	ND	ND	ND	ND	29.59	ND	ND	ND	ND	ND	ND	39.19	31.08	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	173.0	142.0	137.0	226.0	196.0	62.0	153.0	ND	75.0	228.0	51.0	671.0	192.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	18.1	ND	ND	ND	ND	ND	ND	29.5	23.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	53.03	ND	ND	ND	ND	ND	ND	59.29	49.98	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.2	6.7	5.4	3.2	3.8	4.5	0.7	ND	6.0	7.8	5.3	21.9	6.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.4	ND	ND	ND	ND	ND	ND	0.7	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	1.17	ND	ND	ND	ND	ND	ND	1.40	1.26	

# SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: ARNPRIOR

WORKS NUMBER

: ARNPRIOR WPCP

TREATMENT

PLANT

: 120000621 : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

6.81 (1000 M3)

REGION : SOUTHEAST DISTRICT : RENFREW

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: MADAWASKA RIVER MINOR BASIN : OTTAWA RIVER

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 5,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBE! EXCEE!
AVG. DAILY FLOW (1000 M3)	4.65	4.29	6.67	6.30	6.82	5.46	5.15	4.75	5.31	5.42	6.36	4.60	5.48	
B0D5							a	-	1272 724	255	25. 7	70.5		
INFLUENT (MG/L)	86.0	84.0	104.0	67.0	29.0	55.0	70.0	78.0	82.0	60.0	60.0	87.0	71.8	
EFFLUENT (MG/L)	63.0	55.5	60.0	52.0	27.0	41.5	37.5	56.0	57.0	34.5	35.0	62.5	48.5	
LOADING (KG/D)	292.95	238.09	400.20	327.60	184.14	226.59	193.12	266.00	302.67	186.99	222.60	287.50	265.78	
PERCENT REMOVAL	27	34	42	22	07	25	46	28	30	43	42	28	32*	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS					50 (1655a)	0.50								
INFLUENT (MG/L)	90.0	64.0	95.0	73.0	61.0	57.0	73.0	68.0	55.0	69.0	49.0	63.0	68.1	
EFFLUENT (MG/L)	32.0	29.1	39.1	27.0	34.2	27.9	26.8	30.0	25.8	25.0	19.0	24.5	28.4	
LOADING (KG/D)	148.80	124.83	260.79	170.10	233.24	152.33	138.02	142.50	136.99	135.50	120.84	112.70	155.63	
PERCENT REMOVAL	64	55	59	63	44	51	63	56	53	64	61	61	58×	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS						-						1 N W 1 NO. 100 NO. 10		
INFLUENT (MG/L)	3.2	3.1	3.0	2.7	2.6	2.7	2.7	2.8	2.5	2.6	2.6	2.8	2.8	
EFFLUENT (MG/L)	0.9	1.1	1.0	0.7	0.6	0.6	0.7	0.8	0.7	0.6	0.6	1.0	0.8	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	4.18	4.71	6.67	4.41	4.09	3.27	3.60	3.80	3.71	3.25	3.81	4.60	4.38	

SUMMARY

NO

COMPLIES

CRITERIA WITH CONC PARM

50% BOD

SS 70% NO TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE REMEDIAL MEASURES

1992 1992 FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED 1988

MUNICIPALITY PLANT : BANCROFT WPCP

WORKS NUMBER

: 110001239

TREATMENT

: CONTACT STABILIZATION

:

DESIGN CAPACITY

4.13 (1000 M3)

REGION : SOUTHEAST
DISTRICT : HASTINGS
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : YORK RIVER
MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 2,095

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.09	1.07	1.24	1.37	1.43	1.37	1.21	1.12	1.07	1.13	1.25	1.17	1.21	
BOD5 INFLUENT (MG/L)	116.0	ND	ND	58.0	59.0	57.0	49.0	67.0	65.0	99.0	96.0	90.0	75.6	
EFFLUENT (MG/L)	4.5	ND	3.0	13.0	17.5	14.5	2.0	9.0	20.0	8.8	12.5	18.0	11.2	
CONCENTRATION LIMIT (MG/L)			0 0										25.0	
LOADING (KG/D)	4.90	ND	3.72	17.81	25.02	19.86	2.42	10.08	21.40	9.94	15.62	21.06	13.55	
SUSPENDED SOLIDS INFLUENT (MG/L)	155.0	128.0	113.0	84.0	60.0	80.0	93.0	102.0	94.0	124.0	125.0	115.0	106.1	
EFFLUENT (MG/L)	7.7	8.5	5.4	6.8	9.3	11.6	9.0	9.0	12.4	5.8	11.2	9.0	8.8	131
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	8.39	9.09	6.69	9.31	13.29	15.89	10.89	10.08	13.26	6.55	14.00	10.53	10.65	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.3	ND	ND	2.0	3.2	4.3	4.2	5.1	6.4	5.5	4.8	4.7	4.6	
EFFLUENT (MG/L)	2.9	ND	1.8	0.7	1.1	2.2	2.1	2.5	3.7	2.5	5.9	2.4	2.5	
CONCENTRATION LIMIT (MG/L)	2.9	ND	1.0_	0.,										
LOADING (KG/D)	3.16	ND	2.23	0.95	1.57	3.01	2.54	2.80	3.95	2.82	7.37	2.80	3.03	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	NA	NA

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA
NA - NOT APPLICABLE

MUNICIPALITY

: BARRY'S BAY

PLANT

: BARRY'S BAY WPCP

WORKS NUMBER

: 110001854

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

1.24 (1000 M3)

REGION : SOUTHEAST

: RENFREW DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : KAMANISKEG LAKE MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,413

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.37	0.36	0.40	0.44	0.44	0.49	0.51	0.50	0.50	0.43	0.35	0.28	0.42	
BOD5	2562#5# eatl	3-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	04034470 8080	AMARINE AND	MANAGE CHANGE	Description (12)	NOVINEE VICE II							
INFLUENT (MG/L)	213.0	200.0	148.0	163.0	163.0	112.0	160.0	160.0	133.0	ND	182.0	240.0	170.4	
EFFLUENT (MG/L)	2.5	3.0	3.5	4.0	4.0	2.0	2.5	2.5	4.0	2.5	3.0	3.0	3.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.92	1.08	1.40	1.76	1.76	0.98	1.27	1.25	2.00	1.07	1.05	0.84	1.26	6
SUSPENDED SOLIDS						228/10-22				Parameter				
INFLUENT (MG/L)	211.0	247.0	204.0	189.0	189.0	151.0	182.0	182.0	259.0	ND	271.0	240.0	211.4	İ
EFFLUENT (MG/L)	10.1	9.8	9.7	11.4	11.4	8.0	7.7	7.7	8.5	8.6	7.3	6.3	8.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.73	3.52	3.88	5.01	5.01	3.92	3.92	3.85	4.25	3.69	2.55	1.76	3.74	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.5	7.4	7.2	7.0	7.0	6.8	7.1	7.1	7.4	ND	6.2	5.0	6.8	
EFFLUENT (MG/L)	0.7	0.6	0.7	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.5	0.4	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.25	0.21	0.28	0.22	0.22	0.29	0.30	0.30	0.35	0.30	0.17	0.11	0.25	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BATH

PLANT

: BATH WPCP

WORKS NUMBER

: 120000177

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

1.16 (1000 M3)

REGION : SOUTHEAST DISTRICT : LENNOX & A

: LENNOX & ADDINGTON

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : LAKE ONTARIO

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	1.02	0.98	1.07	0.80	0.85	0.88	0.56	1.16	0.91	0.95	1.15	0.86	0.93	
BOD5 INFLUENT (MG/L)	187.0	82.0	357.0	142.0	95.0	169.0	168.0	340.0	185.0	175.0	340.0	213.0	204.4	
EFFLUENT (MG/L)	4.0	4.0	5.0	6.0	4.0	1.5	3.0	2.0	2.2	3.0	2.0	59.6	8.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.08	3.92	5.35	4.80	3.40	1.32	1.68	2.32	2.00	2.85	2.30	51.25	7.44	633
SUSPENDED SOLIDS INFLUENT (MG/L)	99.0	62.0	218.0	116.0	170.0	118.0	126.0	182.0	101.0	164.0	258.0	166.0	148.3	
EFFLUENT (MG/L)	9.5	7.0	18.5	13.5	7.0	4.0	7.0	2.5	7.3	10.0	14.0	44.6	12.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.69	6.86	19.79	10.80	5.95	3.52	3.92	2.90	6.64	9.50	16.10	38.35	11.25	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.0	3.7	10.3	6.2	4.7	6.3	4.7	7.8	5.3	5.8	9.7	6.8	6.4	
EFFLUENT (MG/L)	2.1	2.8	3.8	2.4	2.4	4.5	3.5	2.9	3.9	2.5	3.6	4.4	3.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	2.14	2.74	4.06	1.92	2.04	3.96	1.96	3.36	3.54	2.37	4.14	3.78	2.98	

	SUMMA	RY	
	-	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA * - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA NA - NOT APPLICABLE

MUNICIPALITY : BELLEVILLE

PLANT : BELLEVILLE WPCP (163500 M3/D.PRIMARY)

WORKS NUMBER : 110000016

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

•

DESIGN CAPACITY : 54.55 (1000 M3)

REGION : SOUTHEAST DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BAY OF QUINTE
MINOR BASIN : ONTARIO
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 35,351

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	27.39	23.60	26.96	36.11	30.74	29.24	25.33	22.84	23.58	26.51	44.70	33.94	29.25	
BOD5					1 5	5					1)			
INFLUENT (MG/L)	204.0	284.0	145.0	252.0	161.0	93.0	100.0	91.0	145.0	127.0	CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	ND	155.8	
EFFLUENT (MG/L)	20.5	16.5	9.0	22.2	13.9	8.8	8.3	12.9	11.0	10.0	25.2	10.5	14.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	561.49	389.40	242.64	801.64	427.28	257.31	210.23	294.63	259.38	265.10	1126.44	356.37	412.43	
SUSPENDED SOLIDS		202.5.5			22212	5000 5		200 0	2222 72		9 1997 2	2	20 50 50	
INFLUENT (MG/L)	126.0	119.0	128.0	123.0		113.0	116.0	112.0	156.0	118.0	127.0	ND	123.1	
EFFLUENT (MG/L)	9.1	8.4	6.9	13.2	7.1	7.7	10.6	5.5	4.1	8.0	32.5	7.9	10.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	249.24	198.24	186.02	476.65	218.25	225.14	268.49	125.62	96.67	212.08	1452.75	268.12	295.43	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.9	5.3	5.0	3.7	3.7	3.9	4.3	4.8	5.1	4.1	3.9	ND	4.4	
EFFLUENT (MG/L)	0.2	0.4	0.6	0.6	0.4	0.4	0.3	0.5	0.4	0.4	0.7	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	5.47	9.44	16.17	21.66	12.29	11.69	7.59	11.42	9.43	10.60	31.29	13.57	11.70	

	SUMMA	RY	
	11/2	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT : BROCKVILLE

: BROCKVILLE WPCP

WORKS NUMBER

: 120000122

TREATMENT : PR

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

.

DESIGN CAPACITY

21.82 (1000 M3)

REGION : SOUTHEAST

DISTRICT : LEEDS AND GRENVILLE

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : ST.LAWRENCE RIVER

MINOR BASIN : ST. LAWRENCE
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 20,607

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	17.91	16.75	19.47	22.04	22.37	18.53	16.56	15.16	15.43	15.07	20.53	15.71	17.96	
B0D5											E-Marie III			
INFLUENT (MG/L)	96.0	75.0	74.0	40.0	85.0	63.0	62.0	38.0	99.0	60.0	75.0	150.0	76.4	
EFFLUENT (MG/L)	61.5	52.0	62.5	22.0	24.0	52.0	30.0	18.0	35.5	26.0	25.5	46.0	37.9	
LOADING (KG/D)	1101.46	871.00	1216.87	484.88	536.88	963.56	496.80	272.88	547.76	391.82	523.51	722.66	680.68	
PERCENT REMOVAL	36	31	16	45	72	17	52	53	64	57	66	69	50	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS							3:			1, 2001				
INFLUENT (MG/L)	91.0	111.0	94.0	60.0	127.0	86.0	81.0	64.0	123.0	80.0	88.0	148.0	96.1	
EFFLUENT (MG/L)	42.6	38.6	56.0	24.0	33.6	35.8	23.6		34.8	24.6	32.6	41.8	34.3	
LOADING (KG/D)	762.96	646.55	1090.32	528.96	751.63	663.37	390.81	356.26	536.96	370.72	669.27	656.67	616.03	
PERCENT REMOVAL	53	65	40	60	74	58	71	63	72	69	63	72	64*	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS	1				·		,_,,,,,,							
INFLUENT (MG/L)	4.7	4.8	4.1	2.9	4.8	5.4	3.8	3.6	4.7	4.3	4.1	6.9	4.5	
EFFLUENT (MG/L)	2.3×	2.0	× 1.5×	1.0	1.1*	1.6	0.9	1.0	1.5*	1.5×	1.2×	2.6×	1.5	9
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	41.19	33.50	29.20	22.04	24.60	29.64	14.90		23.14	22.60	24.63	40.84	26.94	

CI	JMM	AD	v
30	mn	MK	1

COMPLIES

PARM CRITERIA WITH CONC BOD 50% YES SS 70% NO

TP 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES START DATE END DATE COMPLIANCE

INFLUENT SEWAGE - ENFORCING SEWER USE BYLAW
OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED
FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

1989/10 1989/10 1989/10

MUNICIPALITY : CARLETON PLACE

PLANT : CARLETON PLACE WPCP

WORKS NUMBER : 110000971
TREATMENT : HIGH RATE

: PHOSPHORUS REMOVAL-CONTINUOUS

•

DESIGN CAPACITY : 5.45 (1000 M3)

REGION : SOUTHEAST DISTRICT : LANARK

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MISSISSIPPI RIVER

MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 6,600

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.66	3.66	4.43	4.76	5.11	4.70	4.22	3.75	3.76	3.99	5.73	4.11	4.32	
BOD5		Sanso est.	September 1900	0-72-		arress areas				anse sec				
INFLUENT (MG/L)	49.0	88.0	107.0	56.0	ND	57.0	50.0	ND	79.0	90.0	54.0	75.0	70.5	
EFFLUENT (MG/L)	36.0	45.0	52.0	26.0	ND	12.0	27.4	32.3	32.7	30.5	16.4	35.1	31.4×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	131.76	164.70	230.36	123.76	ND	56.40	115.62	121.12	122.95	121.69	93.97	144.26	135.65	
SUSPENDED SOLIDS							,							
INFLUENT (MG/L)	59.0	86.0	191.0	63.0	ND	94.0	88.0	ND	130.0	120.0	70.0	60.0	96.1	
EFFLUENT (MG/L)	56.5	72.5	86.5	51.0	ND	25.0	41.1	45.7	46.2	76.1	47.0	84.8	57.5×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	206.79	265.35	383.19	242.76	ND	117.50	173.44	171.37	173.71	303.63	269.31	348.52	248.40	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.7	4.6	5.5	2.7	ND	4.5	3.7	ND	5.7	5.6	3.8	4.2	4.4	
EFFLUENT (MG/L)	2.5*	2.8×	3.1×	1.6×	ND	0.9	1.4*	1.5*	1.7×	2.6×	1.7×	3.1×	2.1	10
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	9.15	10.24	13.73	7.61	ND	4.23	5.90	5.62	6.39	10.37	9.74	12.74	9.07	

SUMMARY

PARM CRITERIA WITH CONC

BOD 25.0 MG/L NO SS 25.0 MG/L NO

TP 1.0 MG/L NO

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

1992 1992

MUNICIPALITY

: CASSELMAN

PLANT

: CASSELMAN LAGOON

WORKS NUMBER

: 110002201

TREATMENT : CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

1.36 (1000 M3)

REGION : SOUTHEAST

DISTRICT : PRESCOTT AND RUSSELL

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : S. NATION RIVER
MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 2,021

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.69	0.69	0.84	0.87	0.83	0.83	0.70	0.74	0.69	0.73	1.04	0.76	0.78	
LAGOON DISCHARGE	ND	ND	ND	ND	120.00	ND	ND	ND	ND	ND	115.20	ND	117.60	
BOD5														
INFLUENT (MG/L)	105.0	218.0	180.0	86.0	62.0	50.0	125.0	175.0	56.0	220.0	146.0	238.0	138.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	3.0	ND	ND	ND	ND	ND	5.7	ND	4.4	
CONCENTRATION LIMIT (MG/L)				70.3									30.0	
LOADING (KG/D)	ND	ND	ND	ND	2.49	ND	ND	ND	ND	ND	5.92	ND	3.43	
SUSPENDED SOLIDS												o same in		
INFLUENT (MG/L)	67.0	356.0	120.0	63.0	72.0	46.0	93.0	200.0	32.0	118.0	189.0	189.0	128.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	6.8	ND	ND	ND	ND	ND	11.3	ND	9.1	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	5.64	ND	ND	ND	ND	ND	11.75	ND	7.10	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.3	14.2	6.7	4.7	4.4	4.3	6.3	8.1	5.1	13.6	7.1	8.9	7.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	0.3	ND	0.8	N
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	1.07	ND	ND	ND	ND	ND	0.31	ND	0.62	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES

SS 40.0 MG/L YES TP NA NA

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

NO ACTION - MARGINAL FAILURE-MONITORING LEVEL OF FAILED PARAMETER CLOSELY

1990

MUNICIPALITY

: CHALK RIVER

PLANT

: CHALK RIVER WPCP

WORKS NUMBER

: 110001587

TREATMENT

: EXTENDED AERATION

: CONVERTIBLE OPERATING MODE

DESIGN CAPACITY

0.54 (1000 M3)

REGION : SOUTHEAST DISTRICT : RENFREW

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : DUCK CR TO DUCK LAKE

MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 986

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.38	0.36	0.39	0.40	0.47	0.44	0.43	0.43	0.40	0.37	0.36	0.38	0.40	
BOD5	1	CONTRACTOR OF STATE	ONE OTHER DESIGNATION	-0.20 1111 117 1127	200000000000000000000000000000000000000									
INFLUENT (MG/L)	76.0	139.0	107.0	131.0	124.0	61.0	165.0	96.0	139.0	105.0	_114.0	61.0	109.8	
EFFLUENT (MG/L)	11.5	22.6	21.7	11.4	11.8	11.5	16.0	9.3	7.9	5.8	5.5	4.0	11.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.37	8.13	8.46	4.56	5.54	5.06	6.88	3.99	3.16	2.14	1.98	1.52	4.64	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	139.0	149.0	130.0	137.0	115.0	173.0	172.0	123.0	136.0	122.0	136.0	146.0	139.8	
EFFLUENT (MG/L)	23.7	27.0	23.3	14.4	16.2	16.9	21.3	19.2	14.9	17.0	13.4	12.7	18.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.00	9.72	9.08	5.76	7.61	7.43	9.15	8.25	5.96	6.29	4.82	4.82	7.32	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.1	6.4	4.3	4.3	4.7	2.9	5.8	6.6	6.4	4.7	6.8	2.5	4.9	
EFFLUENT (MG/L)	2.7	4.3	2.9	1.6	1.6	1.7	1.6	1.8	2.4	2.5	2.1	2.0	2.3	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	1.02	1.54	1.13	0.64	0.75	0.74	0.68	0.77	0.96	0.92	0.75	0.76	0.92	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: CHARLOTTENBURGH

: PURCELL WPCP OP. NOV 89 PLANT

WORKS NUMBER TREATMENT

: 110002684

: EXTENDED AERATION

: CONTACT STABILIZATION

DESIGN CAPACITY

0.52 (1000 M3)

: SOUTHEAST

DISTRICT : STORMONT, DUNDAS AND GLENGARRY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: ST LAWRENCE

MINOR BASIN MAJOR BASIN : ST. LAWRENCE : GREAT LAKES

POPULATION SERVED :

582

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	0.14	0.14	
BOD5 INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25.0	203.0	114.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	2.8	2.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.31	0.39	0.36	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	153.0	323.0	238.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15.4	22.0	18.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00	3.08	2.62	
TOTAL PHOSPHOROUS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	4.7	3.6	
INFLUENT (MG/L)			ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	0.8	1.6	1.2	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	ND	ND			ND	ND	NU							
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.10	0.22	0.17	

SUMMARY COMPLIES CRITERIA WITH CONC BOD 25.0 MG/L INSUFFICIENT DATA 25.0 MG/L INSUFFICIENT DATA SS INSUFFICIENT DATA TP NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: CHESTERVILLE

PLANT

: CHESTERVILLE LAGOON

WORKS NUMBER

: 110000114

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

1.04 (1000 M3)

: SOUTHEAST REGION

DISTRICT : STORMONT, DUNDAS AND GLENGARRY OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: SOUTH NATION RIVER

WATERCOURSE MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,460

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.54	0.51	0.71	0.91	0.96	0.81	0.61	0.57	0.51	0.61	1.13	0.60	0.71	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	97.56	ND	97.56	
B0D5													0000 11	
INFLUENT (MG/L)	62.0	50.0	55.0	17.0	38.0	23.0	51.0	42.0	68.0	56.0	42.0	110.0	51.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	7.5	ND	ND	ND	ND	ND	8.0	ND	7.8	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	7.20	ND	ND	ND	ND	ND	9.04	ND	5.54	L
SUSPENDED SOLIDS													A Park	
INFLUENT (MG/L)	56.0	47.0	71.0	40.0	70.0	32.0	94.0	81.0	54.0	45.0	43.0	84.0	59.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	13.0	ND	ND	ND	ND	ND	39.5	ND	26.3	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	12.48	ND	ND	ND	ND	ND	44.63	ND	18.67	
TOTAL PHOSPHOROUS				E 2						a				
INFLUENT (MG/L)	5.1	4.4	5.6	1.9	3.1	2.6	4.4	4.3	4.9	4.5	2.7	5.1	4.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	2.8	ND	ND	ND	ND	ND	0.9	ND	1.9	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	2.68	ND	ND	ND	ND	ND	1.01	ND	1.35	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED

MUNICIPALITY

: COBDEN

PLANT

: COBDEN WPCP

WORKS NUMBER

: 120000596

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

0.68 (1000 M3)

REGION : SOUTHEAST DISTRICT : RENFREW OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : MUSKRAT RIVER MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,035

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.54	0.47	0.76	0.86	0.95	0.72	0.54	0.51	0.65	0.71	0.88	0.58	0.68	
BOD5								F4 0	<b>50.0</b>	14.0	20.0	50.0	F0 0	
INFLUENT (MG/L)	46.0	88.0_	86.0	38.0	24.0	48.0	82.0	54.0_	52.0	14.0	20.0	50.0	50.2	*****
EFFLUENT (MG/L)	7.0	2.0	6.0	2.0	6.0	6.0	2.0	2.0	2.0_	2.0_	2.0_	2.0	3.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.78	0.94	4.56	1.72	5.70	4.32	1.08	1.02	1.30	1.42	1.76	1.16	2.31	
SUSPENDED SOLIDS INFLUENT (MG/L)	91.0	73.0	126.0	34.0	73.0	77.0	111.0	79.0	79.0	64.0	68.0	85.0	80.0	
EFFLUENT (MG/L)	7.3	4.8	16.0	6.2	4.4	5.3	4.9	5.5	7.2	7.0	5.4	7.8	6.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.94	2.25	12.16	5.33	4.18	3.81	2.64	2.80	4.68	4.97	4.75	4.52	4.62	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.7	4.6	4.5	3.7	3.4	3.4	4.1	4.9	4.0	3.4	3.0	3.7	4.0	
EFFLUENT (MG/L)	0.5	0.9	0.8	0.7	0.7	0.7	0.8	0.6	0.7	0.6	0.7	0.8	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.27	0.42	0.60	0.60	0.66	0.50	0.43	0.30	0.45	0.42	0.61	0.46	0.48	

~	144			-	u
51	JM	м	A	к	Ŧ

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES

SS 25.0 MG/L YES TP

1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

#### NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

# 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: CORNWALL

PLANT WORKS NUMBER : CORNWALL WPCP

: 110000132

TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

54.55 (1000 M3)

: SOUTHEAST REGION

: STORMONT, DUNDAS AND GLENGARRY DISTRICT

OPERATING AUTHORITY : MUNICIPAL

: ST. LAWRENCE RIVER WATERCOURSE

MINOR BASIN : ST. LAWRENCE : GREAT LAKES MAJOR BASIN POPULATION SERVED : 46,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1900 M3)	39.98	37.27	52.48	59.36	54.29	58.54	53.76	55.00	47.00	47.00	55.77	32.73	49.43	
BOD5												<b></b>	64.4	
INFLUENT (MG/L)	70.0	68.0		58.0	The second contract of the second	54.0	39.0	32.0		78.0		68.0	the second second	
EFFLUENT (MG/L)	40.0	32.0	52.4	24.0	38.0	24.0	18.0	9.0	27.0	36.0	20.5	24.0	28.7	
CONCENTRATION LIMIT (MG/L)										1400 00	4447 00	705 50	90.0	
LOADING (KG/D)	1599.20	1192.64	2749.95	1424.64	2063.02	1404.96	967.68	495.00	1269.00	1692.00	1143.28	785.52	1418.64	
LOADING LIMIT (KG/D)														ļ
SUSPENDED SOLIDS								2222						
INFLUENT (MG/L)	113.0	130.0	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon				99.0		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			92.0	112.4	
EFFLUENT (MG/L)	21.0	19.0	23.0	18.0	19.0	16.0	16.0	13.0	16.0	15.0	15.4	18.0	17.5	
CONCENTRATION LIMIT (MG/L)													60.0	
LOADING (KG/D)	839.58	708.13	1207.04	1068.48	1031.51	936.64	860.16	715.00	752.00	705.00	858.85	589.14	865.03	
LOADING LIMIT (KG/D)	10													
TOTAL PHOSPHOROUS												NOW HAT	ALL ST	
INFLUENT (MG/L)	2.7	2.8	2.8	2.5	3.5	3.0	2.9	3.1				3.3	3.1	
EFFLUENT (MG/L)	0.9	0.9	0.9	0.9	ND	0.7	0.8	0.8	0.9	0.8	0.7	1.0	0.8	
CONCENTRATION LIMIT (MG/L)													1.0	
LOADING (KG/D)	35.98	33.54	47.23	53.42	ND	40.97	43.00	44.00	42.30	37.60	39.03	32.73	39.54	
LOADING LIMIT (KG/D)														

		SUMMARY			
			COMPL	IES WITH	
PARM	CRITERIA	LOADING	CONC	LOADING	
BOD	90.0 MG/L	NA	YES	NA	
SS	60.0 MG/L	NA	YES	NA	
TP	1.0 MG/L	NA	YES	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: CORNWALL

PLANT

: CORNWALL WPCP

WORKS NUMBER

DESIGN CAPACITY

: 110000132

TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

54.55 (1000 M3)

REGION

: SOUTHEAST : STORMONT, DUNDAS AND GLENGARRY DISTRICT

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : ST. LAWRENCE RIVER

MINOR BASIN : ST. LAWRENCE MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 46,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	39.98	37.27	52.48	59.36	54.29	58.54	53.76	55.00	47.00	47.00	55.77	32.73	49.43	
B0D5					Theorem Harre	2012								
INFLUENT (MG/L)	70.0	68.0	98.0		the second second second	and the second second second second	39.0	32.0		the second		68.0	64.4	
EFFLUENT (MG/L)	40.0	32.0		24.0	38.0		18.0	9.0			20.5	24.0	28.7	
LOADING (KG/D)	1599.20	1192.64	2749.95	1424.64		1404.96					1143.28	785.52	1418.64	
PERCENT REMOVAL	43	53	47	59	58	56	54	72	52	54	66	65	55	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS														į
INFLUENT (MG/L)	113.0	130.0	105.0	110.0	130.0	97.0	99.0	106.0	116.0	143.0	108.0	92.0	112.4	
EFFLUENT (MG/L)	21.0	19.0	23.0	18.0	19.0	16.0	16.0	13.0	16.0	15.0	15.4	18.0	17.5	
LOADING (KG/D)	839.58	708.13	1207.04	1068.48	1031.51	936.64	860.16	715.00	752.00	705.00	858.85	589.14	865.03	
PERCENT REMOVAL	81	85	78	84	85	84	84	88	86	90	86	80	84	1
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.7	2.8	2.8	2.5	3.5	3.0	2.9	3.1	3.7	3.5	2.9	3.3	3.1	
EFFLUENT (MG/L)	0.9	0.9	0.9	0.9	ND	0.7	0.8	0.8	0.9	0.8	0.7	1.0	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	35.98	33.54	47.23	53.42	ND	40.97	43.00	44.00	42.30	37.60	39.03	32.73	39.54	

	SUMMA	RY	
	3)	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	50%	YES	
SS	70%	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: CORNWALL

PLANT

: LONG SAULT WPCP

WORKS NUMBER

: 120000131

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

DESIGN CAPACITY

: 1.36 (1000 M3)

REGION

: SOUTHEAST

DISTRICT

: STORMONT, DUNDAS AND GLENGARRY

OPERATING AUTHORITY : MUNICIPAL

: ST.LAWRENCE RIVER

WATERCOURSE MINOR BASIN

: ST. LAWRENCE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 1,300

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.75	0.75	0.90	1.25	1.51	1.43	1.12	1.45	1.04	1.69	2.26	1.37	1.29	
BOD5		44.0	100.0	MD	14.0	ND	10.0	14.0	20.0	40.0	40.0	150.0	47.2	
INFLUENT (MG/L)	ND_	16.0	102.0	ND_	16.0	ND	18.0	14.0	20.0	40.0	49.0 15.0	150.0	6.7	
EFFLUENT (MG/L)	ND	14.0	2.0	ND_	16.0	2.0	2.0	4.0	4.0	4.0	15.0	4.0	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	10.50	1.80	ND	24.16	2.86	2.24	5.80	4.16	6.76	33.90	5.48	8.64	
SUSPENDED SOLIDS										12.1	22.2			
INFLUENT (MG/L)	ND	13.0	149.0	ND_	26.0	ND	19.0	12.0	27.0	27.0	27.0	136.0	48.4	
EFFLUENT (MG/L)	ND_	14.0	11.0	ND	21.0	6.0	4.0	3.0	6.0	11.6	38.0	6.0	12.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	10.50	9.90	ND	31.71	8.58	4.48	4.35	6.24	19.60	85.88	8.22	15.61	
TOTAL PHOSPHOROUS						100000	Sarres es		202 5-2					
INFLUENT (MG/L)	ND	1.3	6.4	ND	2.1	ND	3.4	2.7	3.3	2.0	1.6	6.2	3.2	
EFFLUENT (MG/L)	ND	3.5	4.1	ND	2.9	2.5	3.7	3.7	4.7	2.7	1.5	2.8	3.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	2.62	3.69	ND	4.37	3.57	4.14	5.36	4.88	4.56	3.39	3.83	4.13	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD

25.0 MG/L YES 25.0 MG/L YES

NA

SS TP NA

**BOD - ASSESSED ANNUALLY** SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NOTE:

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

INFLUENT SEWAGE - INSTALLING INDUSTRIAL PRETREATMENT

MUNICIPALITY PLANT

: DEEP RIVER

WORKS NUMBER

: DEEP RIVER WPCP

TREATMENT

: 120000612 : PRIMARY

DESIGN CAPACITY

2.18 (1000 M3)

: SOUTHEAST REGION : RENFREW DISTRICT OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : OTTAWA RIVER MINOR BASIN : OTTAWA RIVER : GREAT LAKES MAJOR BASIN

POPULATION SERVED : 4,230

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.31	1.68	1.92	2.09	1.64	1.71	1.71	1.62	1.46	1.53	1.65	1.42	1.73	
BOD5							22 E							
INFLUENT (MG/L)	155.0	110.0	84.0	230.0	110.0	80.0	64.0	130.0	86.0	80.0	98.0	135.0	113.5	
EFFLUENT (MG/L)	60.0	96.0	66.0	96.0	44.0	36.0	49.0	52.0	60.0	56.0	50.0	48.0	59.4	
LOADING (KG/D)	138.60	161.28	126.72	200.64	72.16	61.56	83.79	84.24	87.60	85.68	82.50	68.16	102.76	
PERCENT REMOVAL	61	13	21	58	60	55	23	60	30	30	49	64	48	
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS					404.0		114.0	150.0	74.0	67.0	107.0	100.0	109.6	
INFLUENT (MG/L)	115.0	128.0	98.0		124.0	80.0	114.0	150.0	76.0	67.0	103.0	_100.0	The second second of the second of the second of	
EFFLUENT (MG/L)	48.0	94.0	65.0	154.0	50.0	37.0	73.0	66.0	34.0	69.6	42.0	28.0	63.4	
LOADING (KG/D)	110.88	157.92	124.80	321.86	82.00	63.27	124.83	106.92	49.64	106.48	69.30	39.76	109.68 42*	
PERCENT REMOVAL	58	27	34	04	60	54	36	56	55	ND	59	72	50	
PERCENT REMOVAL LIMITS													50	
TOTAL PHOSPHOROUS							2.0	~ 2						l
INFLUENT (MG/L)	60.9	10.0		6.9	9.3	7.0	8.7	8.6	5.5	5.0	5.6	10.8	12.0	
EFFLUENT (MG/L)	5.0	0.9	5.8	5.1	4.5	3.8	4.1	5.4	4.9	5.0	5.0	3.9	4.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	11.55	1.51	11.13	10.65	7.38	6.49	7.01	8.74	7.15	7.65	8.25	5.53	7.79	

	SUMMA	ARY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30%	YES	
SS	50%	NO	
TP	NA	NA	

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA * - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA NA - NOT APPLICABLE

ANTICIPATED START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

NO ACTION - MARGINAL FAILURE-MONITORING LEVEL OF FAILED PARAMETER CLOSELY

MUNICIPALITY

: DELORO

PLANT

: DELORO WPCP : 120000970

WORKS NUMBER TREATMENT

: COMMUNAL SEPTIC TANK

:

DESIGN CAPACITY

1.74 (1000 M3)

REGION : SOUTHEAST DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MOIRA RIVER
MINOR BASIN : ONTARIO
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 157

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
B0D5									100.0	070.0	41.0	74.0	89.8	
INFLUENT (MG/L)	101.0	91.0	94.0	45.0	29.0	34.0	110.0	144.0	120.0	232.0	41.0	36.0	Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Commit	
EFFLUENT (MG/L)	1.8	3.0	2.0	2.0	1.4	2.7	1.8	2.0	1.7	1.5	1.4	1.7	1.9	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	98	
PERCENT REMOVAL	98	97	98	96	95	92	98	99	99	99	97	95		
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS								222.2				<b></b>		1
INFLUENT (MG/L)	169.0	115.0	215.0	78.0	53.0	36.0	176.0	118.0	120.0	171.0	50.0	67.0	114.0	
EFFLUENT (MG/L)	2.8	3.5	3.8_	2.8	3.0	3.0	3.8	4.4	5.1	3.0	3.2	4.0	3.5	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	MD	ND	ND_	ND	ND	ND		
PERCENT REMOVAL	98	97	98	96	94	92	98	96	96	98	94	94	97	
PERCENT REMOVAL LIMITS													50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.1	3.5	4.4	2.1	1.2	2.1	4.0	5.2	4.9	5.4	2.2	1.5	3.4	
EFFLUENT (MG/L)	1.9	1.8	1.8	1.2	1.2	1.2	1.4	1.6	1.7	1.7	1.3	1.3	1.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30% YES SS 50% YES TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: DESERONTO

PLANT

: DESERONTO WPCP

WORKS NUMBER

: 110000980

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS :

DESIGN CAPACITY

1.36 (1000 M3)

REGION : SOUTHEAST DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BAY OF QUINTE : ONTARIO MINOR BASIN MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,732

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.15	1.04	1.37	1.56	1.46	1.30	1.41	1.05	1.20	1.30	1.78	1.33	1.33	
BOD5														
INFLUENT (MG/L)	79.0	100.0	65.0	77.0	74.0	62.0	95.0	ND	71.0	ND	51.0	118.0	79.2	
EFFLUENT (MG/L)	5.8	3.5	7.5	2.5	6.8	1.8	3.3	2.2	2.6	3.3	4.0	9.0	4.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	6.67	3.64	10.27	3.90	9.92	2.34	4.65	2.31	3.12	4.29	7.12	11.97	5.85	
SUSPENDED SOLIDS INFLUENT (MG/L)	79.0	105.0	106.0	102.0	101.0	124.0	142.0	ND	122.0	ND	77.0	115.0	107.3	
EFFLUENT (MG/L)	15.0	11.0	13.5	5.3	14.6	7.1	8.2	3.6	7.6	11.5	19.6	17.3	11.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	17.25	11.44	18.49	8.26	21.31	9.23	11.56	3.78	9.12	14.95	34.88	23.00	14.90	
TOTAL PHOSPHOROUS						34 - 31	7,223							
INFLUENT (MG/L)	4.4	4.8	3.6	4.1	3.7	4.0	5.9	ND	4.4	ND	4.0	5.7	4.5	
EFFLUENT (MG/L)	0.7	0.5	0.7	0.4	0.6	0.3	0.4	0.5	0.5	0.4	0.8	0.6	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.80	0.52	0.95	0.62	0.87	0.39	0.56	0.52	0.60	0.52	1.42	0.79	0.67	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES 25.0 MG/L YES SS

1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

TP

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: EAST HAWKESBURY

PLANT

: CHUTE A BLONDEAU WPCP IN OP. 1987

WORKS NUMBER

: 110003399

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

0.10 (1000 M3)

REGION : SOUTHEAST

DISTRICT

: PRESCOTT AND RUSSELL OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: OTTAWA RIVER

MINOR BASIN

: OTTAWA RIVER

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 165

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.03	0.03	0.06	0.07	0.08	0.11	0.06	0.04	0.03	0.04	0.07	0.05	0.06	
BOD5		***	0/5 0	150.0		00.0	101.0	00.0	100.0	174.0	171 0	104.0	180.2	
INFLUENT (MG/L)	ND ND	660.0	265.0	150.0	88.0	92.0	_101.0_	88.0	129.0	174.0	131.0	104.0	- management of a set of a set of	
EFFLUENT (MG/L)	ND_	2.0	5.0	2.0	4.2	11.8	5.0	4.0	3.3	3.8	2.3	4.9	4.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	0.06	0.30	0.14	0.33	1.29	0.30	0.16	0.09	0.15	0.16	0.24	0.26	
SUSPENDED SOLIDS INFLUENT (MG/L)	214.0	244.0	186.0	112.0	211.0	143.0	109.0	97.0	155.0	162.0	83.0	67.0	148.6	
EFFLUENT (MG/L)	21.0	25.8	21.0	13.9	12.6	18.5	12.3	10.0	11.6	13.0	13.1	5.2	14.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.63	0.77	1.26	0.97	1.00	2.03	0.73	0.40	0.34	0.52	0.91	0.26	0.89	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	8.2	18.9	11.1	9.6	9.3	6.5	15.7	7.4	5.1	8.0	3.1	7.3	9.2	
EFFLUENT (MG/L)	6.8	8.6	9.2	2.2	2.0	5.0	4.7	4.4	5.1	5.7	3.4	3.3	5.0	
CONCENTRATION LIMIT (MG/L)								N AND DE				C- L		
LOADING (KG/D)	0.20	0.25	0.55	0.15	0.16	0.55	0.28	0.17	0.15	0.22	0.23	0.16	0.30	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

25.0 MG/L YES BOD SS 25.0 MG/L YES

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: EGANVILLE

PLANT

: EGANVILLE WPCP

WORKS NUMBER TREATMENT

: 110000141

: EXTENDED AERATION

:

DESIGN CAPACITY

0.76 (1000 M3)

REGION : SOUTHEAST DISTRICT : RENFREW

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BONNECHERE RIVER MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,219

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.48	0.47	0.54	0.55	0.67	0.61	0.54	0.46	0.48	0.50	0.52	0.48	0.53	
BOD5 INFLUENT (MG/L)	183.0	144.0	145.0	141.0	100.0	107.0	117.0	80.0	116.0	156.0	171.0	220.0	140.0	
EFFLUENT (MG/L)	5.0	5.5	4.3	5.0	3.0	2.5	2.0	3.0	3.5	2.8	3.5	3.3	3.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.40	2.58	2.32	2.75	2.01	1.52	1.08	1.38	1.68	1.40	1.82	1.58	1.91	
SUSPENDED SOLIDS INFLUENT (MG/L)	163.0	114.0	137.0	147.0	115.0	137.0	107.0	80.0	96.0	137.0	176.0	98.0	125.6	
EFFLUENT (MG/L)	8.0	9.7	16.0	11.0	12.6	16.7	8.0	11.2	10.9	7.3	16.0	14.0	11.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.84	4.55	8.64	6.05	8.44	10.18	4.32	5.15	5.23	3.65	8.32	6.72	6.25	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.2	6.1	5.6	5.4	4.8	5.8	4.8	4.7	5.1	4.4	3.6	4.0	5.0	O.
EFFLUENT (MG/L)	0.7	0.5	0.9	0.5	0.6	0.6	0.6	0.6	0.6	0.5	0.4	0.4	0.6	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.33	0.23	0.48	0.27	0.40	0.36	0.32	0.27	0.28	0.25	0.20	0.19	0.32	i e

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES 25.0 MG/L YES SS TP NA NA

NOTE:

**BOD - ASSESSED ANNUALLY** SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: ERNESTOWN

PLANT

: AMHERSTVIEW LAGOON

WORKS NUMBER

: 110000196

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

:

DESIGN CAPACITY

2.39 (1000 M3)

REGION : SOUTHEAST

DISTRICT :

: LENNOX & ADDINGTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

MINISIRI OF THE ENVIRONME

WATERCOURSE

: COLLINS CR. N.CHANNEL

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 6,900

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.16	2.06	2.65	2.86	2.50	2.38	1.76	1.90	1.97	2.30	3.37	2.45	2.36	
LAGOON DISCHARGE	66.95	57.71	82.13	85.81	77.45	71.42	54.57	58.97	59.18	71.33	101.13	76.08	71.89	
BOD5					7									
INFLUENT (MG/L)	134.0	89.0	145.0	84.0	85.0	73.0	93.0	98.0	88.0	99.0	61.0	113.0	96.8	
EFFLUENT (MG/L)	25.5	31.8	23.7	29.8	33.3	41.0	33.5	35.2	30.2	26.0	29.5	26.0	30.5×	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	55.08	65.50	62.80	85.22	83.25	97.58	58.96	66.88	59.49	59.80	99.41	63.70	71.98	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	168.0	81.0	287.0	65.0	87.0	71.0	90.0	82.0	63.0	101.0	62.0	74.0	102.6	
EFFLUENT (MG/L)	52.3	49.8	37.3	59.5	55.4	70.8	83.2	118.2	81.0	65.8	53.8	48.3	64.6×	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	112.96	102.58	98.84	170.17	138.50	168.50	146.43	224.58	159.57	151.34	181.30	118.33	152.46	
TOTAL PHOSPHOROUS												_		
INFLUENT (MG/L)	5.8	4.9	4.7	4.1	4.9	4.7	6.2	8.2	5.5	5.2	4.0	6.3	5.4	
EFFLUENT (MG/L)	6.3	6.6	6.1	4.9	0.1	4.6	3.0	3.0	2.9	3.8	3.6	4.2	4.1	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	13.60	13.59	16.16	14.01	0.25	10.94	5.28	5.70	5.71	8.74	12.13	10.29	9.68	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L NO

SS 40.0 MG/L NO TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/03

REMEDIAL MEASURES

COLLECTION SYSTEM - PUMPING STATION MODIFICATION

MUNICIPALITY

: ERNESTOWN

PLANT

: ODESSA WPCP

WORKS NUMBER

DESIGN CAPACITY

: 110002041

TREATMENT

: EXTENDED AERATION

:

: PHOSPHORUS REMOVAL-CONTINUOUS

: 0.90 (1000 M3) REGION

: SOUTHEAST

DISTRICT : LENNOX & ADDINGTON

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: MILLHAVEN CREEK

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 973

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.05	0.94	1.68	1.88	1.42	1.26	0.92	0.85	0.88	0.95	2.33	0.86	1.25	
BOD5 INFLUENT (MG/L)	45.0	50.0	64.0	24.0	33.0	23.0	35.0	40.0	41.0	46.0	18.0	51.0	39.2	
EFFLUENT (MG/L)	4.2	11.5	11.3	6.8	4.0	2.3	2.0	2.0	1.8	2.0	2.2	4.7	4.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.41	10.81	18.98	12.78	5.68	2.89	1.84	1.70	1.58	1.90	5.12	4.04	5.75	
SUSPENDED SOLIDS INFLUENT (MG/L)	46.0	48.0	86.0	41.0	44.0	35.0	54.0	50.0	38.0	72.0	41.0	52.0	50.6	
EFFLUENT (MG/L)	31.4	43.8	40.8	47.0	26.4	11.0	7.3	7.4	11.0	12.6	17.4	22.0	23.2	1
CONCENTRATION LIMIT (MG/L)		Market Andrews											25.0	
LOADING (KG/D)	32.97	41.17	68.54	88.36	37.48	13.86	6.71	6.29	9.68	11.97	40.54	18.92	29.00	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.5	2.9	4.2	1.7	2.0	2.3	2.8	3.0	3.2	2.8	1.5	3.0	2.7	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	1.3×	1.5×	1.6×	1.6*	0.9	0.4	0.4	0.4	0.6	0.4	0.7	0.6	0.9	4
EFFLUENT (MG/L)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
CONCENTRATION LIMIT (MG/L)	1.0		COLUMN TERROR		-		and the second					-	1.13	
LOADING (KG/D)	1.36	1.41	2.68	3.00	1.27	0.50	0.36	0.34	0.52	0.38	1.63	0.51	1.15	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1990

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

MUNICIPALITY

: FRANKFORD

PLANT

: FRANKFORD WPCP

WORKS NUMBER

DESIGN CAPACITY

: 110000267

TREATMENT

: CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

1.36 (1000 M3)

REGION : SOUTHEAST DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: TRENT RIVER WATERCOURSE

MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES POPULATION SERVED : 2,190

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.07	0.93	0.97	1.35	1.28	0.89	0.62	0.64	7.94	0.85	1.45	1.05	1.59	
B0D5	5725434 75		1929-2014A0 1720	ALIENS 1980s		2022 020					172012024 1421			
INFLUENT (MG/L)	255.0	153.0	137.0	70.0	145.0	168.0	200.0	255.0	86.0	191.0	207.0	146.0	167.8	
EFFLUENT (MG/L)	15.8	14.3	8.5	12.3	16.4	13.0	11.0	19.9	8.3	8.2	10.0	11.0	12.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	16.90	13.29	8.24	16.60	20.99	11.57	6.82	12.73	65.90	6.97	14.50	11.55	19.72	
SUSPENDED SOLIDS	200000000000000000000000000000000000000	2000		W- 95 0000	Statistics to	407000 Address	70,000,000		vonecatori tavi	Surgina No.	ALVERT LET		organia do	
INFLUENT (MG/L)	81.0	112.0	135.0	63.0	113.0	120.0	121.0	153.0	126.0	185.0	98.0	104.0	117.6	
EFFLUENT (MG/L)	16.9	16.7	22.8	19.5	25.1	17.9	15.0	16.9	6.2	7.1	10.6	17.3	16.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	18.08	15.53	22.11	26.32	32.12	15.93	9.30	10.81	49.22	6.03	15.37	18.16	25.44	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	7.0	5.9	6.3	4.5	5.5	5.4	5.0	4.8	5.4	4.7	4.6	4.9	5.3	
EFFLUENT (MG/L)	0.6	0.4	0.3	0.5	0.4	0.6	0.7	0.6	0.3	0.4	0.5	0.6	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.64	0.37	0.29	0.67	0.51	0.53	0.43	0.38	2.38	0.34	0.72	0.63	0.80	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES SS 25.0 MG/L YES

1.0 MG/L YES TP

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: GANANOQUE

PLANT

: GANANOQUE LAGOON

WORKS NUMBER

: 110000285

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

3.27 (1000 M3)

REGION : SOUTHEAST

: LEEDS AND GRENVILLE DISTRICT

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : STOCKING CR GANANOQUE R

MINOR BASIN : ST. LAWRENCE : GREAT LAKES MAJOR BASIN

POPULATION SERVED : 4,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	5.21	4.80	5.39	5.44	5.22	4.71	3.82	4.25	3.80	3.95	5.27	3.51	4.61	
LAGOON DISCHARGE	161.40	135.10	167.10	319.31	290.78	ND	ND	46.71	114.03	122.36	158.22	108.78	162.38	
BOD5													THE STITUTE OF	
INFLUENT (MG/L)	64.0	49.0	100.0	40.0	52.0	52.0	73.0	98.0	87.0	114.0	53.0	57.0	69.9	
EFFLUENT (MG/L)	8.5	9.5	17.0	19.3	17.8	ND	ND	7.0	3.5	4.5	3.5	2.5	9.3	Name of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last o
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	44.28	45.60	91.63	104.99	92.91	ND	ND	29.75	13.30	17.77	18.44	8.77	42.87	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	92.0	126.0	233.0	69.0	97.0	88.0	82.0	111.0	133.0	259.0	83.0	113.0	123.8	
EFFLUENT (MG/L)	31.5	24.5	36.0	22.7	40.1	ND	ND	11.0	3.1	6.3	8.8	4.5	18.9	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	164.11	117.60	194.04	123.48	209.32	ND	ND	46.75	11.78	24.88	46.37	15.79	87.13	
TOTAL PHOSPHOROUS		. Los de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la c												
INFLUENT (MG/L)	3.5	4.2	4.7	2.5	2.4	3.7	4.3	5.5	3.8	6.2	3.5	3.8	4.0	
EFFLUENT (MG/L)	2.3	2.6	2.7	2.0	2.5	ND	ND	2.0	2.7	3.5	3.1	2.5	2.6	
CONCENTRATION LIMIT (MG/L)		-			500 mm				/					
LOADING (KG/D)	11.98	12.48	14.55	10.88	13.05	ND	ND	8.50	10.26	13.82	16.33	8.77	11.99	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

30.0 MG/L YES BOD

40.0 MG/L YES SS

TP NA NA

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

			ANTICIPATED
REMEDIAL MEASURES	START DATE	END DATE	COMPLIANCE
COLLECTION SYSTEM - INFILTRATION PROBLEMS BEING CORRECTED	1988	1991	1991
COLLECTION SYSTEM - ILLEGAL CONNECTIONS BEING ELIMINATED	1988	1991	1991
FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED	1989	1995	1995
FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE	1989	1995	1995

## 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: GLOUCESTER

PLANT

: GREEN CREEK WPCP

WORKS NUMBER

: 120000729

TREATMENT

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

ं

DESIGN CAPACITY

: 363.68 (1000 M3)

REGION : SOUTHEAST

DISTRICT : OTTAWA-CARLETON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : OTTAWA RIVER

MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 450,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	422.90	410.90	489.60	514.10	520.80	485.10	450.90	448.20	434.50	427.30	471.50	450.00	460.48	
BOD5			1212.72	2022 020										
INFLUENT (MG/L)	116.0	121.0	the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		116.4	96.0	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	the second second second second second second second	122.0	98.0		105.2	
EFFLUENT (MG/L)	59.1	54.6	53.2	43.3	34.2	30.3	24.8	29.5	33.9	38.1	29.9	53.3	40.4*	
CONCENTRATION LIMIT (MG/L)													39.0	
LOADING (KG/D)	4993.39	2435.14	6046.72	2260.53	7811.36	4698.53	1182.32	3221.90	4729.55	6280.13	4097.85	3985.00	18603.39×	
LOADING LIMIT (KG/D)											2000		217.20	
SUSPENDED SOLIDS		NTT - 2												
INFLUENT (MG/L)	144.0	148.0		151.0		142.2	the second second second second second			140.0		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	141.9	
EFFLUENT (MG/L)	49.5	55.4	61.0	51.4	50.8	41.6	42.9	37.5	52.6	39.4	47.7	60.7	49.2×	
CONCENTRATION LIMIT (MG/L)					V								31.0	
LOADING (KG/D)	933.55	2763.86	9865.60	6424.74	6456.64	180.16	9343.61	6807.50	2854.70	6835.62	2490.55	7315.00	22655.62*	
LOADING LIMIT (KG/D)													169.00	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.1	3.9	3.6	3.3	3.3	3.7	4.0	3.5	4.9	4.5	3.8	4.1	3.9	
EFFLUENT (MG/L)	2.7	2.2	¥ 2.2	€ 2.0	* 1.7*	1.4	1.49	<b>*</b> 1.4	× 2.19	1.8	1.5	4 2.4×	1.9	12
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1141.83	903.98	1077.12	1028.20	885.36	679.14	631.26	627.48	912.45	769.14	707.25	1080.00	874.91×	
LOADING LIMIT (KG/D)													5.45	

		SUMMARY			
		N-1122000	COMPL	IES WITH	
PARM	CRITERIA	LOADING	CONC	LOADING	
BOD	39.0 MG/L	212.70 KG/D	NO	NO	
SS	31.0 MG/L	169.00 KG/D	NO	NO	
TP	1.0 MG/L	5.45 KG/D	NO	NO	

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1990/03 1991

FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

REMEDIAL MEASURES

MUNICIPALITY PLANT

: GLOUCESTER

: GREEN CREEK WPCP

WORKS NUMBER TREATMENT

: 120000729

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 363.68 (1000 M3) REGION : SOUTHEAST

REGION : SOUTHEAST
DISTRICT : OTTAWA-CARLETON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : OTTAWA RIVER MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 450,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	422.90	410.90	489.60	514.10	520.80	485.10	450.90	448.20	434.50	427.30	471.50	450.00	460.48	
BOD5	WOODER VOO	estroiest acc	7	Actional total		ramanea ra			canaran ar					
INFLUENT (MG/L)	116.0	121.0	98.0	100.0	90.0	116.4	96.0	76.0	109.0	122.0	98.0		105.2	
EFFLUENT (MG/L)	59.1	54.6	53.2	43.3	34.2	30.3	24.8	29.5	33.9	38.1	29.9	53.3	40.4 <del>*</del>	
LOADING (KG/D)					7811.36							and the second second	18603.39×	
PERCENT REMOVAL	49	55	46	57	62	74	74	61	69	69	69	56	62	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	144.0	148.0	141.0	151.0	127.0	142.2	148.0	108.0	137.0	140.0	150.0	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	141.9	
EFFLUENT (MG/L)	49.5	55.4	61.0	51.4	50.8	41.6	42.9	37.5	52.6	39.4	47.7	60.7	49.2×	
LOADING (KG/D)	933.55	2763.86	9865.60	6424.74	6456.64	180.16	9343.61	6807.50	2854.70				22655.62*	
PERCENT REMOVAL	66	63	57	66	60	71	71	65	62	72	68	64	65×	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												DEMOS III II
INFLUENT (MG/L)	4.1	3.9	3.6	3.3	3.3	3.7	4.0	3.5	4.9	4.5	3.8	4.1	3.9	
EFFLUENT (MG/L)	2.7*	2.2	2.2	2.0	4 1.7×	1.49	1.49	1.4	£ 2.19	1.8	1.5	* 2.4*	1.9	12
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1141.83		1077.12	1028.20	885.36	679.14	631.26	627.48	912.45	769.14	707.25	1080.00	874.91×	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	50%	YES
SS	70%	NO
TP	1.0 MG/L	NO

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1988 1990/03 1991 FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

MUNICIPALITY

: GOULBOURN

PLANT

: MUNSTER LAGOON

WORKS NUMBER

: 120001522

TREATMENT

: LAGOON AND SPRAY

: SEASONAL DISCHARGE

DESIGN CAPACITY

:

REGION

: SOUTHEAST DISTRICT : OTTAWA-CARLETON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

: NO DISC.TO SURFACE WATER

WATERCOURSE MINOR BASIN

: OTTAWA RIVER

: GREAT LAKES

MAJOR BASIN POPULATION SERVED :

1,300

0.36 (1000 M3)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5							100000			Person	2000.00	54.William	New 201	
INFLUENT (MG/L)	ND	ND	ND	32.0	ND ND	ND	ND	ND	ND	ND	ND	ND	32.0	
EFFLUENT (MG/L)	ND	ND	ND	36.5	ND	ND	ND	ND	ND	ND	ND	ND	36.5	
CONCENTRATION LIMIT (MG/L)						497 - 22 September 1971 - 412							30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS			1900			202			1272		75742			
INFLUENT (MG/L)	ND	ND ND	ND	43.0	ND	ND	ND_	ND	ND_	ND	ND	ND	43.0	
EFFLUENT (MG/L)	ND	ND_	ND_	50.0	ND_	ND_	ND	ND_	ND	ND	ND	ND	50.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS				Tennitro Index	7117000									
INFLUENT (MG/L)	ND	ND	ND	3.2	ND	ND	ND	ND	ND ND	ND	ND	ND.	3.2	
EFFLUENT (MG/L)	ND	ND	ND	2.3	ND	ND	ND	ND	ND	ND	ND	ND	2.3	
CONCENTRATION LIMIT (MG/L)				111201102										
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

30.0 MG/L NO DIRECT DISCHARGE

BOD SS TP NA

40.0 MG/L NO DIRECT DISCHARGE NO DIRECT DISCHARGE

NOTE:

* - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: HAGARTY & RICHARDS

PLANT

: KILLALOE STN.WPCP

WORKS NUMBER

: 110001532

TREATMENT

: EXTENDED AERATION

• PHOSPHODI

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.51 (1000 M3)

REGION : SOUTHEAST DISTRICT : RENFREW

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BRUDENELL CREEK
MINOR BASIN : OTTAWA RIVER

MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 670

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.17	0.14	0.19	0.40	0.28	0.32	0.19	0.19	0.17	0.21	0.27	0.22	0.23	
BOD5	218.0	218.0	203.0	153.0	130.0	49.0	73.0	73.0	200.0	ND	119.0	300.0	157.8	
INFLUENT (MG/L) EFFLUENT (MG/L)	3.0	13.5	2.0	2.0	2.0	1.0	3.0	3.0	2.1	3.0	1.5	2.0	3.2	
CONCENTRATION LIMIT (MG/L)		13.5_											25.0	
LOADING (KG/D)	0.51	1.89	0.38	0.80	0.56	0.32	0.57	0.57	0.35	0.63	0.40	0.44	0.74	
SUSPENDED SOLIDS INFLUENT (MG/L)	223.0	291.0	267.0	212.0	193.0	143.0	164.0	164.0	249.0	ND	138.0	242.0	207.8	
EFFLUENT (MG/L)	8.2	7.8	7.0	8.2	7.2	8.0	7.5	7.5	7.9	9.4	7.8	6.3	7.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.39	1.09	1.33	3.28	2.01	2.56	1.42	1.42	1.34	1.97	2.10	1.38	1.77	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.6	7.5	8.1	7.1	6.1	4.7	6.1	6.1	7.4	ND	6.7	6,1	6.7	
EFFLUENT (MG/L)	1.0	1.0	0.9	0.6	0.6	0.5	0.7	0.7	0.8	0.6	0.8	0.6	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.17	0.14	0.17	0.24	0.16	0.16	0.13	0.13	0.13	0.12	0.21	0.13	0.16	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: HAWKESBURY

PLANT

: HAWKESBURY WPCP

WORKS NUMBER

: 110002283

TREATMENT

: MODIFIED ACTIVATED SLUDGE

:

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

12.27 (1000 M3)

REGION : SOUTHEAST

DISTRICT

: PRESCOTT AND RUSSELL OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OTTAWA RIVER MAJOR BASIN MINOR BASIN : OTTAWA RIVER : GREAT LAKES

POPULATION SERVED : 9,680

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	6.38	6.07	8.14	9.95	8.46	9.24	7.51	8.00	7.01	7.63	11.26	5.35	7.92	
BOD5		ERGAL OD	0.00	Village (1982)	Addition to be		Accessed to the second	SAFETY SET			Face of			
INFLUENT (MG/L)	ND.	34.0	44.0	42.0	55.0	98.0	62.0	56.0	56.0	94.0	80.0	58.0	61.7	
EFFLUENT (MG/L)	ND	12.0	12.0	2.0	11.0	11.4	6.5	5.2	11.0	5.8	2.9	7.1	7.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	72.84	97.68	19.90	93.06	105.33	48.81	41.60	77.11	44.25	32.65	37.98	62.57	
SUSPENDED SOLIDS		74.0	100.0	01.0	106.0	160.0	100.0	02.0	174.0	07.0	07.0	05.0	117.7	
INFLUENT (MG/L)	99.0	76.0	128.0	81.0	126.0	160.0	198.0	92.0	134.0	97.0	83.0	85.0	113.3	
EFFLUENT (MG/L)	15.0	25.8	50.8	19.3	15.0	11.1	19.0	20.8	14.1	14.2	17.3	9.7	19.3	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	95.70	156.60	413.51	192.03	126.90	102.56	142.69	166.40	98.84	108.34	194.79	51.89	25.0 152.86	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.8	3.2	3.1	2.7	3.0	4.2	3.4	3.3	3.9	3.8	2.7	3.4	3.5	
EFFLUENT (MG/L)	0.9	0.7	1.0	0.3	0.4	0.7	0.7	0.8	0.9	0.6	0.8	0.7	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	5.74	4.24	8.14	2.98	3.38	6.46	5.25	6.40	6.30	4.57	9.00	3.74	5.54	

SUMMA	RY
	COMPLIES
CRITERIA	WITH CONC

BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: IROQUOIS

PLANT

: IROQUOIS WPCP

WORKS NUMBER

: 120000159

TREATMENT

: PRIMARY : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 5.00 (1000 M3) REGION : SOUTHEAST

DISTRICT

: STORMONT, DUNDAS AND GLENGARRY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: ST. LAWRENCE RIVER

MINOR BASIN MAJOR BASIN

: ST. LAWRENCE : GREAT LAKES

POPULATION SERVED : 1,212

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.65	2.02	3.47	4.91	2.55	2.82	3.04	2.97	3.01	2.99	3.09	3.40	3.08	
BOD5 INFLUENT (MG/L)	28.0	ND	40.0	24.0	36.0	32.0	ND	18.0	30.0	46.0	ND	68.0	35.8	
EFFLUENT (MG/L)	ND	ND	9.0	3.0	15.0	8.0	ND	5.0	19.0	19.0	ND	4.0	10.3	
LOADING (KG/D)	ND	ND	31.23	14.73	38.25	22.56	ND	14.85	57.19	56.81	ND	13.60	31.72	
PERCENT REMOVAL			78	88	58	75		72	37	59		94	71	
PERCENT REMOVAL LIMITS	1												50	
SUSPENDED SOLIDS INFLUENT (MG/L)	136.0	ND	99.0	53.0	57.0	54.0	ND	33.0	70.0	70.0	ND	113.0	76.1	
EFFLUENT (MG/L)	ND	ND	36.0	12.0	47.6	4.8	ND	42.0	30.0	30.0	ND	8.0	26.3	
LOADING (KG/D)	ND	ND	124.92	58.92	121.38	13.53	ND	124.74	90.30	89.70	ND	27.20	81.00	
PERCENT REMOVAL			64	77	16	91		ND	57	57		93	65	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.7	ND	3.6	1.7	1.9	2.1	ND	1.8	2.5	2.5	ND	3.3	2.6	
EFFLUENT (MG/L)	ND	ND	0.6	0.1	0.2	0.3	ND	0.3	0.3	0.3	ND	0.1	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	2.08	0.49	0.51	0.84	ND	0.89	0.90	0.89	ND	0.34	0.92	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 50%

INSUFFICIENT DATA INSUFFICIENT DATA

SS 70% TP 1.0 MG/L INSUFFICIENT DATA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: KEMPTVILLE

PLANT

: KEMPTVILLE WPCP

(TERTIARY PROPSED)

WORKS NUMBER

: 120000113 : PRIMARY

TREATMENT

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

2.27 (1000 M3)

REGION : SOUTHEAST

DISTRICT : LEEDS AND GRENVILLE

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : KEMPTVILLE CREEK MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 2,400

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	1.86	1.61	1.78	2.65	3.17	2.35	1.83	1.84	1.68	2.03	2.86	2.62	2.19	
BOD5								1 1000						
INFLUENT (MG/L)	60.0	78.0	_110.0_	40.0	42.0	36.0	36.0	104.0	70.0	46.0	64.0	40.0	60.5	
EFFLUENT (MG/L)	13.0	33.0	35.0	13.0	6.0	14.0	12.0	12.0	28.0	11.0	14.0	15.0	17.2	
LOADING (KG/D)	24.18	53.13	62.30	34.45	19.02	32.90	21.96	22.08	47.04	22.33	40.04	39.30	37.67	
PERCENT REMOVAL	78	58	68	68	86	61	67	88	60	76	78	63	72	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS												1000 0000 1		
INFLUENT (MG/L)	45.0	67.0	140.0	39.0	66.0	44.0	32.0	142.0	68.0	119.0	58.0	80.0	75.0	
EFFLUENT (MG/L)	18.0	18.0	22.0	16.0	15.0	14.0	15.0	8.0	19.0	18.0	15.0	35.0	17.8	
LOADING (KG/D)	33.48	28.98	39.16	42.40	47.55	32.90	27.45	14.72	31.92	36.54	42.90	91.70	38.98	
PERCENT REMOVAL	60	73	84	59	77	68	53	94	72	85	74	56	76	
PERCENT REMOVAL LIMITS				3									70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.4	5.0	5.2	3.2	2.5	4.9	3.5	5.6	5.2	5.6	6.4	3.8	4.5	
EFFLUENT (MG/L)	1.7*	1.9×	2.7×	1.3×	1.1*	1.4*	1.4*	1.3×	2.7×	2.4×	1.9×	1.8×	1.8	12
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.16	3.05	4.80	3.44	3.48	3.29	2.56	2.39	4.53	4.87	5.43	4.71	3.94	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD 50% YES 70% SS YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES	START DATE	END DATE	COMPLIANCE
OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED	1989	1990/04	1995
OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED	1989	1990/01	1995
FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE	1989	1994	1995

MUNICIPALITY

: KINGSTON

: KINGSTON WPCP

WORKS NUMBER

: 120001050

TREATMENT

PLANT

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

61.37 (1000 M3)

REGION : SOUTHEAST
DISTRICT : FRONTENAC
OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : ST.LAWRENCE RIVER

MINOR BASIN : ST. LAWRENCE
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 67,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	54.33	52.51	63.45	67.99	60.76	66.90	52.76	53.61	52.34	57.57	75.09	50.64	59.00	
BOD5		arsa er	788 FG00-26 FG7				220.00		2000 PM	2002 320	251200 2000	500-05000 - 6-01	200 201	
INFLUENT (MG/L)	101.0	94.0				and the second second second	67.0	66.0		94.0		the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	81.9	
EFFLUENT (MG/L)	22.0	40.0				23.0	21.0	22.0		23.0	21.0	33.0	25.2	
LOADING (KG/D)	1195.26	2100.40	2093.85	1359.80	1093.68	1538.70	1107.96	1179.42	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon				1486.80	
PERCENT REMOVAL	78	57	71	71	74	72	69	67	70	76	67	58	69	
PERCENT REMOVAL LIMITS													50	Ż
SUSPENDED SOLIDS														
INFLUENT (MG/L)	91.0	74.0	125.0	88.0	75.0	72.0	68.0	75.0	93.0	85.0	67.0	78.0	82.6	
EFFLUENT (MG/L)	17.0	28.0	24.0	20.0	21.0	19.0	13.0	15.0	20.0	20.0	19.0	18.0	19.5	
LOADING (KG/D)	923.61	1470.28	1522.80	1359.80	1275.96	1271.10	685.88	804.15	1046.80	1151.40	1426.71	911.52	1150.50	
PERCENT REMOVAL	81	62	81	77	72	74	81	80	78	76	72	77	76	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.2	4.3	4.7	3.5	2.9	3.0	3.8	3.8	4.2	4.3	3.0	3.2	3.8	
EFFLUENT (MG/L)	0.7	1.0	0.7	0.4	0.5	0.6	0.6	0.6	0.7	0.6	0.8	0.6	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	38.03	52.51	44.41	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			31.65	32.16		34.54	60.07	30.38	41.30	

	SUMMA	RY	
	<u>-</u>	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	50%	YES	
SS	70%	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: KINGSTON TWP

: KINGSTON WPCP PLANT

WORKS NUMBER

: 110000365

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 25.00 (1000 M3)

REGION : SOUTHEAST DISTRICT : FRONTENAC

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE ONTARIO

MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 28,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	16.22	15.64	18.67	21.60	20.99	22.16	17.53	17.83	19.96	20.61	26.31	16.62	19.51	
BODS	112.0	102.0	95.0	89.0	98.0	122.0	147.0	194.0	223.0	201.0	160.0	187.0	144.2	
INFLUENT (MG/L) EFFLUENT (MG/L)	9.0	7.5	6.7	3.9	6.3	5.6	4.9	9.2	8.2	11.6	8.7	20.0	8.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	145.98	117.30	125.08	84.24	132.23	124.09	85.89	164.03	163.67	239.07	228.89	332.40	165.84	
SUSPENDED SOLIDS		70.0	83.0	64.0	73.0	93.0	102.0	162.0	224.0	246.0	134.0	81.0	118.0	
INFLUENT (MG/L)	82.0	72.0	5.6	5.2	5.1	8.2	4.7	6.1	3.8	4.9	5.0	4.8	5.5	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)		0.7_											25.0	
LOADING (KG/D)	97.32	100.09	104.55	112.32	107.04	181.71	82.39	108.76	75.84	100.98	131.55	79.77	107.31	
TOTAL PHOSPHOROUS					: E	167. 27		127 12		2.12				
INFLUENT (MG/L)	4.6	4.5	4.2	3.7	6.2	4.4	5.3	6.1	5.2	6.6	3.4	6.2	5.0	
EFFLUENT (MG/L)	0.6	0.5	0.5	0.5	0.7	0.7	0.4	0.5	0.6	0.6	0.8	0.6	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	9.73	7.82	9.33	10.80	14.69	15.51	7.01	8.91	11.97	12.36	21.04	9.97	11.71	

	SUMMA	RY									
COMPLIES											
PARM	CRITERIA	WITH CONC									
BOD	25.0 MG/L	YES									
SS	25.0 MG/L	YES									
TP	1.0 MG/L	YES									

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: L'ORIGNAL

PLANT

: L'ORIGNAL WPCP

WORKS NUMBER
TREATMENT

: 110001701 : EXTENDED AERATION

:

DESIGN CAPACITY

0.95 (1000 M3)

REGION : SOUTHEAST

DISTRICT : PRESCOTT AND RUSSELL

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OTTAWA RIVER
MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,523

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.59	0.54	0.80	0.93	0.80	0.80	0.65	0.73	0.68	0.81	1.16	0.65	0.76	
BOD5 INFLUENT (MG/L)	ND	30.0	135.0	18.0	55.0	68.0	85.0	82.0	38.0	70.0	51.0	67.0	63.5	
EFFLUENT (MG/L)	ND	4.0	25.0	11.0	4.4	11.5	10.0	8.4	5.0	5.6	4.0	7.0	8.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	2.16	20.00	10.23	3.52	9.20	6.50	6.13	3.40	4.53	4.64	4.55	6.61	
SUSPENDED SOLIDS INFLUENT (MG/L)	73.0	123.0	97.0	49.0	60.0	76.0	127.0	88.0	175.0	72.0	48.0	30.0	84.8	
EFFLUENT (MG/L)	12.0	13.4	23.0	11.4	15.2	20.0	30.2	25.2	21.6	13.2	13.4	10.5	17.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.08	7.23	18.40	10.60	12.16	16.00	19.63	18.39	14.68	10.69	15.54	6.82	13.22	
TOTAL PHOSPHOROUS		3.5	= =	2 2		77 . 28								
INFLUENT (MG/L)	3.9	4.2	5.0	2.8	3.2_	1.8	4.1	3.9	3.7	2.9	1.8	2.3	3.3	
EFFLUENT (MG/L)	2.8	3.4	3.6	0.6	4.3	2.3	4.0	2.2	3.8	2.9	2.4	3.4	3.0	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	1.65	1.83	2.88	0.55	3.44	1.84	2.60	1.60	2.58	2.34	2.78	2.21	2.28	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	NA	NA

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA

MUNICIPALITY

: LANCASTER

PLANT

: LANCASTER LAGOON

WORKS NUMBER

: 110001925

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

DESIGN CAPACITY

: 0.59 (1000 M3)

: SOUTHEAST REGION

: STORMONT, DUNDAS AND GLENGARRY DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: FINNEY CREEK : ST. LAWRENCE

MINOR BASIN MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

700

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.35	0.34	0.44	0.61	0.52	0.45	0.29	0.28	0.27	0.31	0.48	0.42	0.40	
LAGOON DISCHARGE	ND	ND	ND	42.41	35.32	ND	ND	ND	ND	ND	ND	ND	38.87	
BODS										2021 2	20.2			
INFLUENT (MG/L)	ND_	110.0	140.0	72.0	71.0	101.0	30.0	129.0	96.0	165.0	61.0	236.0	110.1	
EFFLUENT (MG/L)	ND	ND	ND_	ND	3.8	ND	ND	ND	ND_	ND	3.5	ND	3.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	1.97	ND	ND	ND	ND	ND	1.68	ND	1.48	
SUSPENDED SOLIDS INFLUENT (MG/L)	185.0	184.0	147.0	119.0	145.0	163.0	69.0	154.0	164.0	189.0	53.0	231.0	150.3	
EFFLUENT (MG/L)	ND	ND	ND	19.0	23.7	ND	ND	ND	ND	ND	11.9	ND	18.2	
CONCENTRATION LIMIT (MG/L)											Z F		40.0	
LOADING (KG/D)	ND	ND	ND	11.59	12.32	ND	ND	ND	ND	ND	5.71	ND	7.28	
TOTAL PHOSPHOROUS					0		2 22	200 200						
INFLUENT (MG/L)	4.5	7.3	7.5	4.2	5.2	5.2	4.5	4.2	7.5	6.2	3.4	8.1	5.7	1
EFFLUENT (MG/L)	ND	ND	ND	0.2	0.7	ND	ND	ND	ND	ND_	2.3	ND	1.1	
CONCENTRATION LIMIT (MG/L)	Post serve													
LOADING (KG/D)	ND	ND	ND	0.12	0.36	ND	ND	ND	ND	ND	1.10	ND	0.44	

SU	m	м	•	ĸ	

COMPLIES

PARM CRITERIA WITH CONC

30.0 MG/L YES BOD 40.0 MG/L YES SS TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: LEEDS & LANSDOWNE FRONT

PLANT

: LANSDOWNE LAGOON

WORKS NUMBER

: 110001934

TREATMENT

: LAGOON AND SPRAY

:

DESIGN CAPACITY

0.33 (1000 M3)

REGION : SOUTHEAST

DISTRICT : LEEDS AND GRENVILLE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : NO DISC.TO SURFACE WATER
MINOR BASIN : ST. LAWRENCE

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 546

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.20	0.18	0.21	0.29	0.29	0.25	0.20	0.20	0.20	0.21	0.25	0.19	0.22	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	18.86	20.73	12.86	ND	ND	ND	17.48	9
BOD5 INFLUENT (MG/L)	85.0	102.0	60.0	81.0	57.0	36.0	42.0	80.0	62.0	59.0	46.0	80.0	65.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND ND	ND	ND	7.0	ND	ND	ND	ND	7.0	
CONCENTRATION LIMIT (MG/L)										'''			30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	1.40	ND	ND	ND	ND	1.54	
SUSPENDED SOLIDS INFLUENT (MG/L)	119.0	66.0	47.0	91.0	50.0	35.0	37.0	42.0	31.0	53.0	39.0	35.0	53.8	
EFFLUENT (MG/L)	ND	ND	ND ND	ND	ND	ND	ND	11.0	ND	ND	ND	ND	11.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	2.20	ND	ND	ND	ND	2.42	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.6	6.6	4.8	5.2	5.4	4.3	4.5	5.3	5.1	4.7	3.8	4.7	5.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	1.8	ND	ND	ND	ND	1.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	0.36	ND	ND	ND	ND	0.40	

-	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30.0 MG/L	NO DIRECT	DISCHARGE
SS	40.0 MG/L	NO DIRECT	DISCHARGE
TP	NA	NO DIRECT	DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

: MADOC MUNICIPALITY

: MADOC LAGOON PLANT WORKS NUMBER : 110001051

: CONVENTIONAL LAGOON SEASONAL TREATMENT

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

1.36 (1000 M3) :

: SOUTHEAST REGION DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : DEER CREEK TO MOIRA LAKE

MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES POPULATION SERVED : 850

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.68	0.74	0.72	1.02	0.95	1.06	0.67	0.69	0.83	0.65	0.96	0.70	0.81	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5													305Ve 10 USO	
INFLUENT (MG/L)	153.0	111.0	107.0	94.0	93.0	89.0	137.0	125.0	142.0	106.0	76.0	137.0	114.2	
EFFLUENT (MG/L)	ND	ND	ND	7.0	8.7	ND	ND_	ND	ND	ND	4.0	ND	6.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	7.14	8.26	ND	ND	ND	ND	ND	3.84	ND	5.35	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	153.0	141.0	157.0	119.0	197.0	82.0	169.0	123.0	142.0	123.0	97.0	173.0	139.7	
EFFLUENT (MG/L)	ND	ND	ND	36.0	19.8	ND	ND	ND	ND	ND	11.3	ND	22.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	36.72	18.81	ND	ND	ND	ND	ND	10.84	ND	18.14	
TOTAL PHOSPHOROUS	20 0000 2													
INFLUENT (MG/L)	5.6	4.4	3.4	4.3	4.2	4.2	7.2	6.5	6.7	6.8	4.3	6.4	5.3	
EFFLUENT (MG/L)	ND	ND	ND	0.5	0.4	ND	ND	ND	ND.	ND	0.1	ND	0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.51	0.38	ND	ND	ND	ND	ND	0.09	ND	0.24	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY PLANT

: MARMORA

WORKS NUMBER

: MARMORA WPCP : 110001863

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY 0.86 (1000 M3) REGION : SOUTHEAST DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CROWE RIVER

MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,067

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.78	0.74	0.76	0.82	0.76	0.99	0.59	0.52	0.68	0.72	1.14	0.71	0.77	
BOD5 INFLUENT (MG/L)	157.0	125.0	92.0	87.0	79.0	130.0	99.0	125.0	134.0	115.0	67.0	84.0	107.8	
EFFLUENT (MG/L)	12.8	4.3	7.3	4.3	6.4	6.0	2.3	4.2	2.8	5.1	2.0	4.3	5.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.98	3.18	5.54	3.52	4.86	5.94	1.35	2.18	1.90	3.67	2.28	3.05	4.00	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	145.0	125.0	176.0	126.0	116.0	109.0	178.0	205.0	245.0	167.0	102.0	194.0	157.3	
EFFLUENT (MG/L)	16.6	7.5	18.3	18.0	10.0	12.7	14.0	9.8	12.9	10.6	15.4	13.6	13.3	
CONCENTRATION LIMIT (MG/L)		Allermanes and a											25.0	
LOADING (KG/D)	12.94	5.55	13.90	14.76	7.60	12.57	8.26	5.09	8.77	7.63	17.55	9.65	10.24	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.9	3.0	3.2	3.2	3.3	3.2	4.6	5.4	4.5	4.2	3.0	3.4	3.7	
EFFLUENT (MG/L)	0.5	0.2	0.2	0.3	0.4	0.5	0.5	0.6	0.6	0.6	0.5	0.4	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.39	0.14	0.15	0.24	0.30	0.49	0.29	0.31	0.40	0.43	0.57	0.28	0.31	

SUMMARY

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

## NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

(OP SEP 89)

MUNICIPALITY WORKS NUMBER

: MAXVILLE

: MAXVILLE WASTE STAB POND

REGION : SOUTHEAST

PLANT

TREATMENT

: 110002719

: STORMONT, DUNDAS AND GLENGARRY DISTRICT OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: CONVENTIONAL LAGOON ANNUAL

: PHOSPHORUS REMOVAL - BATCH

WATERCOURSE : SCOTCH RIVER

MINOR BASIN : ST. LAWRENCE

DESIGN CAPACITY

0.45 (1000 M3)

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEE
AVG. DAILY FLOW (1000 M3)	ND	0.32	0.05	0.10	0.13	0.15								
LAGOON DISCHARGE	ND	ND	ND	ND										
BOD5														
INFLUENT (MG/L)	ND	ND	ND	ND										
EFFLUENT (MG/L)	ND	ND	ND	ND	Extent III									
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND										
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	ND	ND	ND										
EFFLUENT (MG/L)	ND	ND	ND	ND	20 2 12/									
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND										
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	ND	ND										
EFFLUENT (MG/L)	ND	ND	ND	ND										
CONCENTRATION LIMIT (MG/L)													Table 100 100 100 100 100 100 100 100 100 10	9
LOADING (KG/D)	ND	ND	ND	ND										

	SUMMA	ARY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	NA	NO DISCHARGE
SS	NA	NO DISCHARGE
TP	NA	NO DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MERRICKVILLE

PLANT

: MERRICKVILLE WPCP

WORKS NUMBER

: 110001729

TREATMENT : EXTENDED AFRATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

0.50 (1000 M3)

REGION : SOUTHEAST

DISTRICT : LEEDS AND GRENVILLE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : RIDEAU RIVER MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 797

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.38	0.35	0.47	0.67	0.73	0.55	0.39	0.37	0.36	0.35	0.55	0.39	0.46	
BOD5 INFLUENT (MG/L)	55.0	76.0	114.0	48.0	43.0	50.0	78.0	71.0	92.0	64.0	70.0	129.0	74.2	
EFFLUENT (MG/L)	4.0	6.4	27.3	34.0	16.0	4.0	3.5	2.3	1.7	4.0	2.2	2.8	9.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.52	2.24	12.83	22.78	11.68	2.20	1.36	0.85	0.61	1.40	1.21	1.09	4.14	
SUSPENDED SOLIDS INFLUENT (MG/L)	84.0	88.0	225.0	59.0	53.0	58.0	140.0	86.0	92.0	58.0	83.0	149.0	97.9	
EFFLUENT (MG/L)	15.0	11.6	56.8	58.0	19.0	9.0	7.8	6.0	8.1	6.4	12.2	15.5	18.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	5.70	4.06	26.69	38.86	13.87	4.95	3.04	2.22	2.91	2.24	6.71	6.04	8.65	
TOTAL PHOSPHOROUS				)(										
INFLUENT (MG/L)	5.2	4.9	6.7	3.3	4.3	4.8	6.7	5.6	4.9	4.1	4.8	4.4	5.0	
EFFLUENT (MG/L)	0.6	0.4	1.9×	1.9×	0.8	0.4	26.9×	0.6	0.7	0.5	0.6	0.6	3.0	3
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.22	0.14	0.89	1.27	0.58	0.22	10.49	0.22	0.25	0.17	0.33	0.23	1.38	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

MUNICIPALITY

: MORRISBURG

PLANT

: MORRISBURG WPCP

WORKS NUMBER

: 120000168

TREATMENT

: PRIMARY

: CONVENTIONAL LAGOON CONTINUOUS

DESIGN CAPACITY

2.27 (1000 M3)

REGION

: SOUTHEAST DISTRICT : STORMONT, DUNDAS AND GLENGARRY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : ST. LAWRENCE RIVER

MINOR BASIN

: ST. LAWRENCE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

2,350

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.74	2.64	2.67	3.29	3.27	3.31	2.81	2.93	2.48	2.71	3.32	2.67	2.90	
BOD5		//												
INFLUENT (MG/L)	16.0	22.0	98.0	10.0	300.0	190.0	14.0	24.0	44.0	60.0	ND	130.0	82.5	
EFFLUENT (MG/L)	21.0	26.0	29.0	17.0	11.0	20.0	10.0	11.0	23.0	18.0	25.0	18.0	19.1	
LOADING (KG/D)	57.54	68.64	77.43	55.93	35.97	66.20	28.10	32.23	57.04	48.78	83.00	48.06	55.39	
PERCENT REMOVAL	ND_	ND	70	ND	96	89_	29	54	48	70		86	77	
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	5.0	19.0	78.0	25.0	261.0	117.0	12.0	27.0	25.0	33.0	ND ND	82.0	62.2	
EFFLUENT (MG/L)	21.0	13.0	24.0	12.0	40.0	20.0	14.0	40.0	90.0	65.2	78.0	30.0	37.3	
LOADING (KG/D)	57.54	34.32	64.08	39.48	130.80	66.20	39.34	117.20	223.20	176.69	258.96	80.10	108.17	
PERCENT REMOVAL	ND	32	69	52	85	83	ND	ND	ND	ND		63	40*	
PERCENT REMOVAL LIMITS					V Cross						22 22 7		50	
TOTAL PHOSPHOROUS							Min ete							
INFLUENT (MG/L)	1.3	1.7	5.1	0.9	4.3	3.8	1.8	3.2	3.4	1.9	ND ND	3.7	2.8	
EFFLUENT (MG/L)	2.5	2.8	3.0	1.4	1.8	2.0	0.8	1.9	2.6	2.0	2.0	2.0	2.1	
CONCENTRATION LIMIT (MG/L)												WE SHOW THE RESERVE OF THE	7	
LOADING (KG/D)	6.85	7.39	8.01	4.60	5.88	6.62	2.24	5.56	6.44	5.42	6.64	5.34	6.09	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC YES

BOD 30% 50% SS TP

REMEDIAL MEASURES

NO NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

★ - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

EQUIPMENT/MAINTENANCE - EXISTING EQUIPMENT BEING REPAIRED NO ACTION - MARGINAL FAILURE-MONITORING LEVEL OF FAILED PARAMETER CLOSELY

MUNICIPALITY PLANT

: NAPANEE

: NAPANEE WPCP

WORKS NUMBER

: 120000186

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

9.09 (1000 M3)

REGION

: SOUTHEAST

DISTRICT

: LENNOX & ADDINGTON

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: NAPANEE RIVER

MINOR BASIN

: ONTARIO

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 7,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	4.68	4.29	5.61	6.93	6.19	6.47	5.27	6.15	5.78	5.90	10.05	5.56	6.07	
BOD5														
INFLUENT (MG/L)	221.0	142.0	147.0	89.0	77.0	77.0	66.0	123.0	119.0	83.0	68.0	90.0	108.5	
EFFLUENT (MG/L)	13.3	17.8	17.9	9.3	8.7	6.7	6.0	10.0	2.4	3.1	4.5	3.8	8.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	62.24	76.36	100.41	64.44	53.85	43.34	31.62	61.50	13.87	18.29	45.22	21.12	52.20	
SUSPENDED SOLIDS	180 20													
INFLUENT (MG/L)	202.0	178.0	218.0	147.0	174.0	131.0	76.0	107.0	117.0	122.0	87.0	133.0	141.0	
EFFLUENT (MG/L)	13.0	23.8	20.4	16.4	10.7	14.0	12.5	15.0	11.1	13.5	10.6	10.0	14.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	60.84	102.10	114.44	113.65	66.23	90.58	65.87	92.25	64.15	79.65	106.53	55.60	86.80	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	9.4	8.0	9.2	7.6	7.2	7.6	5.4	10.4	7.2	8.7	4.9	6.9	7.7	
EFFLUENT (MG/L)	0.6	1.0	1.2*		0.7	0.8	1.0	1.6*	1.1*	0.8	0.7	0.8	0.9	3
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.80	4.29	6.73	6.23	4.33	5.17	5.27	9.84	6.35	4.72	7.03	4.44	5.46	

SUMMARY

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES TP

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

1989/12

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

1990

OPERATIONAL/PROCESS - MONITORING PROCEDURES BEING UPGRADED

MUNICIPALITY

: NEPEAN

PLANT

: WATTS CREEK WPCP

WORKS NUMBER

: 120000701

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

29.54 (1000 M3)

REGION : SOUTHEAST

DISTRICT : OTTAWA-CARLETON, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: WATTS CREEK MINOR BASIN : OTTAWA RIVER

MAJOR BASIN POPULATION SERVED :

: GREAT LAKES 52,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	25.10	24.00	31.60	34.70	33.50	28.70	24.60	24.00	23.60	25.20	31.30	25.50	27.65	
B0D5									*					
INFLUENT (MG/L)	129.0	121.0	107.0	103.0	104.0	110.0	82.0	90.0	114.0	129.0	78.0	106.0	106.1	i
EFFLUENT (MG/L)	9.0	15.0	17.0	13.0	17.0	11.0	9.0	11.0	6.0	7.0	6.0	3.0	10.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	225.90	360.00	537.20	451.10	569.50	315.70	221.40	264.00	141.60	176.40	187.80	76.50	284.80	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	148.0	137.0	118.0	159.0	136.0	142.0	100.0	120.0	133.0	138.0	111.0	164.0	133.8	l
EFFLUENT (MG/L)	11.0	12.0	12.0	13.0	12.0	8.0	10.0	8.0	8.0	11.0	9.0	12.0	10.5	
CONCENTRATION LIMIT (MG/L)											•		25.0	
LOADING (KG/D)	276.10	288.00	379.20	451.10	402.00	229.60	246.00	192.00	188.80	277.20	281.70	306.00	290.33	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.4	5.3	4.3	4.3	4.2	4.2	4.0	4.9	4.8	5.0	3.6	5.1	4.6	
EFFLUENT (MG/L)	1.0	0.9	0.9	1.0	1.0	0.9	1.0	0.9	1.1*	0.9	1.0	0.9	1.0	1

1.0

33.50

1.0

25.83

SUMMARY

COMPLIES

1.0

25.10 21.60

1.0

1.0

28.44

1.0

34.70

CRITERIA WITH CONC 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO

NO REMEDIAL MEASURES REPORTED

CONCENTRATION LIMIT (MG/L)

LOADING (KG/D)

1.0

24.60

BOD - ASSESSED ANNUALLY

1.0

25.96

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

1.0

22.68

1.0

31.30

1.0

27.65

22.95

ND - NO DATA

1.0

21.60

MUNICIPALITY

: OSNABRUCK

PLANT

: INGLESIDE WPCP

WORKS NUMBER

: 120000140

TREATMENT

: PRIMARY

: : :

DESIGN CAPACITY

1.57 (1000 M3)

REGION : SOUTHEAST

DISTRICT

: STORMONT, DUNDAS AND GLENGARRY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : ST. LAWRENCE RIVER

MINOR BASIN

: ST. LAWRENCE

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

1,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.76	0.66	1.06	1.49	1.46	1.62	0.86	0.96	0.80	1.10	1.90	0.70	1.11	
BODS INFLUENT (MG/L)	96.0	104.0	295.0	26.0	165.0	64.0	90.0	ND	110.0	34.0	15.0	105.0	100.4	
EFFLUENT (MG/L)	57.0	52.0	86.0	9.0	58.0	19.0	45.0	ND	7.0	31.0	17.0	54.0	39.5	
LOADING (KG/D)	43.32	34.32	91.16	13.41	84.68	30.78	38.70	ND	5.60	34.10	32.30	37.80	43.85	
PERCENT REMOVAL	41	50	71	65	65	70	50		94	09	ND	49	61	
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS INFLUENT (MG/L)	84.0	98.0	6,220.0	55.0	280.0	223.0	154.0	ND	180.0	48.0	16.0	111.0	679.0	
EFFLUENT (MG/L)	50.0	47.0	management of the second of the second	25.0	180.0	50.0	42.0	ND	50.0	29.0	15.0	38.0	63.1	
LOADING (KG/D)	38.00	31.02	178.08	37.25	262.80	81.00	36.12	ND	40.00	31.90	28.50	26.60	70.04	
PERCENT REMOVAL	40	52	97	55	36	78	73		72	40	06	66	91	
PERCENT REMOVAL LIMITS													50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.1	5.6	9.5	2.3	5.3	4.5	5.2	ND	5.1	6.4	1.5	5.5	5.1	
EFFLUENT (MG/L)	4.1	3.8	6.4	1.7	4.2	2.1	4.0	ND	4.6	2.7	1.1	ND	3.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	3.11	2.50	6.78	2.53	6.13	3.40	3.44	ND	3.68	2.97	2.09	ND	3.89	

SUMMARY COMPLIES CRITERIA WITH CONC 30% YES

SS 50% YES TP NA NA

NO REMEDIAL MEASURES REPORTED

PARM

BOD

NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : PEMBROKE
PLANT : PEMBROKE WPCP
WORKS NUMBER : 120000630

TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY : 18.18 (1000 M3)

REGION : SOUTHEAST
DISTRICT : RENFREW
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : OTTAWA RIVER
MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 17,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	12.58	12.45	13.10	13.04	12.93	12.70	12.57	12.59	12.54	12.44	12.52	12.61	12.67	
BOD5 INFLUENT (MG/L)	100.0	96.0	114.0	114.0	68.0	73.0	76.0	56.0	63.0	120.0	118.0	122.0	93.3	
EFFLUENT (MG/L)	24.5	15.0	18.8	25.0	12.5	15.0	13.8	11.8	13.0	12.0	15.5	33.0	17.5	
LOADING (KG/D)	308.21	186.75	246.28	326.00	161.62	190.50	173.46	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			194.06	416.13	221.73	
PERCENT REMOVAL	76	84	84	78	82	79	82	79	79	90	87	73	81	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	89.0	92.0	125.0	107.0	112.0	125.0	106.0	72.0	84.0	93.0	121.0	98.0	102.0	
EFFLUENT (MG/L)	11.7	11.9	16.8	13.3	14.3	16.7	13.8	9.5	11.0	12.0	15.9	13.1	13.3	
LOADING (KG/D)	147.18	148.15	220.08	173.43	184.89	212.09	173.46	119.60	137.94	149.28	199.06	165.19	168.51	
PERCENT REMOVAL	87	87	87	88	87	87	87	87	87	87	87	87	87	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.5	4.3	4.4	2.9	ND	3.6	3.3	3.2	3.3	3.7	3.3	4.4	3.7	I
EFFLUENT (MG/L)	0.7	0.6	0.6	0.6	0.1	0.7	0.8	0.6	0.7	0.7	0.7	0.9	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	8.80	7.47	7.86	7.82	1.29	8.89	10.05	7.55	8.77	8.70	8.76	11.34	7.60	

SUMMA	RY	
	COMPLIES	
CRITERIA	WITH CONC	
50%	YES	
70%	YES	
1.0 MG/L	YES	
	CRITERIA 50% 70%	CRITERIA WITH CONC 50% YES 70% YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: PERTH

PLANT WORKS NUMBER : PERTH LAGOON

: 120000881

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

5.91 (1000 M3)

REGION : SOUTHEAST DISTRICT : LANARK OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : TAY RIVER MINOR BASIN : OTTAWA RIVER : GREAT LAKES MAJOR BASIN

POPULATION SERVED : 5,648

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	5.76	5.32	5.20	6.61	6.31	5.43	5.05	3.62	4.14	4.15	4.77	4.16	5.04	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	335.0	108.0	88.0	205.0	255.0	46.0	155.0	130.0	175.0	96.0	48.0	600.0	186.8	
EFFLUENT (MG/L)	9.0	55.0	53.0	23.0	11.0	9.0	6.0	4.0	4.0	4.0	6.0	18.0	16.8	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	51.84	292.60	275.60	152.03	69.41	48.87	30.30	14.48	16.56	16.60	28.62	74.88	84.67	
SUSPENDED SOLIDS INFLUENT (MG/L)	91.0	122.0	135.0	61.0	52.0	67.0	146.0	286.0	78.0	72.0	82.0	250.0	120.2	
EFFLUENT (MG/L)	14.0	24.0	30.0	11.0	17.0	12.0	9.0	3.0	2.8	14.0	10.0	14.0	13.4	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	80.64	127.68	156.00	72.71	107.27	65.16	45.45	10.86	11.59	58.10	47.70	58.24	67.54	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	1.8	2.6	4.5	2.6	3.2	2.0	4.0	4.5	2.8	3.7	3.0	15.8	4.2	
EFFLUENT (MG/L)	0.6	0.5	0.6	0.4	0.2	0.3	0.5	0.5	0.5	0.4	0.8	0.8	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.45	2.66	3.12	2.64	1.26	1.62	2.52	1.81	2.07	1.66	3.81	3.32	2.52	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 30.0 MG/L YES

BOD

SS 40.0 MG/L YES TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : PETAWAWA

PLANT : PETAWAWA WPCP WORKS NUMBER : 120000587

: PRIMARY TREATMENT

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 4.54 (1000 M3) REGION : SOUTHEAST DISTRICT : RENFREW

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OTTAWA RIVER MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES POPULATION SERVED : 9,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.97	4.54	5.10	5.04	4.50	4.71	4.69	4.82	5.15	5.42	4.45	3.73	4.68	
BOD5	weeklest on				Constitution and the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the const						7			
INFLUENT (MG/L)	123.0	168.0	140.0	140.0	119.0	102.0	118.0	114.0	162.0	132.0	115.0	192.0	135.4	
EFFLUENT (MG/L)	29.0	56.2	43.6	42.8	29.6	18.0	12.7	9.9	28.8	34.6	15.6	32.7	29.5	
LOADING (KG/D)	115.13	255.14	222.36	215.71	133.20	84.78	59.56	47.71	148.32	187.53	69.42	121.97	138.06	
PERCENT REMOVAL	76	67	69	69	75	82	89	91	82	74	86	83	78	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS												"		
INFLUENT (MG/L)	94.0	148.0	123.0	113.0	120.0	100.0	123.0	113.0	178.0	132.0	151.0	142.0	128.1	
EFFLUENT (MG/L)	13.7	14.3	34.0	16.5	16.7	11.9	15.2	9.0	12.7	31.0	20.7	12.7	17.4	
LOADING (KG/D)	54.38	64.92	173.40	83.16	75.15	56.04	71.28	43.38	65.40	168.02	92.11	47.37	81.43	
PERCENT REMOVAL	85	90	72	85	86	88	88	92	93	77	86	91	86	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS									50 000					
INFLUENT (MG/L)	4.9	5.7	4.9	5.3	4.7	5.4	5.6	5.6	6.9	6.2	7.4	6.3	5.7	
EFFLUENT (MG/L)	0.7	0.4	0.4	0.7	0.5	0.5	0.6	0.4	0.6	1.2*	0.6	0.3	0.6	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.77	1.81	2.04	3.52	2.25	2.35	2.81	1.92	3.09	6.50	2.67	1.11	2.81	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 50% YES

SS 70% YES

TP 1.0 MG/L NO

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

NO ACTION - MARGINAL FAILURE-MONITORING LEVEL OF FAILED PARAMETER CLOSELY

1990

MUNICIPALITY PL ANT

: PICTON

WORKS NUMBER

: PICTON WPCP : 120000667

TREATMENT

: CONTACT STABILIZATION : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

4.54 (1000 M3)

REGION

: SOUTHEAST : PRINCE EDWARD

DISTRICT OPERATING AUTHORITY : MUNICIPAL

: PICTON BAY

WATERCOURSE MINOR BASIN

: ONTARIO

MAJOR BASIN POPULATION SERVED :

: GREAT LAKES

4,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.84	2.62	3.29	3.81	6.64	3.00	2.52	2.40	2.13	2.10	2.97	2.36	3.06	
BOD5 INFLUENT (MG/L)	72.0	82.0	100.0	45.0	49.0	47.0	70.0	37.0	69.0	57.0	76.0	31.0	61.3	
EFFLUENT (MG/L)	11.5	14.5	17.5	11.5	8.5	9.0	7.5	7.0	8.0	9.7	7.0	18.0	10.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	32.66	37.99	57.57	43.81	56.44	27.00	18.90	16.80	17.04	20.37	20.79	42.48	33.05	
SUSPENDED SOLIDS INFLUENT (MG/L)	65.0	99.0	156.0	52.0	49.0	110.0	45.0	38.0	73.0	48.0	73.0	25.0	69.4	
EFFLUENT (MG/L)	11.5	15.0	24.0	14.0	7.0	5.0	4.0	3.5	8.9	14.3	16.5	17.0	11.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	32.66	39.30	78.96	53.34	46.48	15.00	10.08	8.40	18.95	30.03	49.00	40.12	35.80	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.4													
	3.6	5.2	4.4	2.8	2.8	4.1	3.5	3.5	4.7	4.3	4.9	2.1	3.8	
EFFLUENT (MG/L)	0.5	0.6	0.9	0.4	0.2	0.3	0.4	0.5_	0.4	0.4	0.7	0.7	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0_	1.0		
LOADING (KG/D)	1.42	1.57	2.96	1.52	1.32	0.90	1.00	1.20	0.85	0.84	2.07	1.65	1.53	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES SS

25.0 MG/L YES TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: PITTSBURG

PLANT

: CANA WPCP

WORKS NUMBER

: 110001505

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

0.09 (1000 M3)

REGION : SOUTHEAST DISTRICT : FRONTENAC

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CATARAQUI RIVER
MINOR BASIN : ST. LAWRENCE
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 108

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.04	0.04	0.05	0.07	0.07	0.06	0.02	0.02	0.01	0.02	0.07	0.04	0.04	
BOD5 INFLUENT (MG/L)	106.0	88.0	92.0	54.0	67.0	96.0	118.0	173.0	199.0	154.0	76.0	105.0	110.7	
EFFLUENT (MG/L)	4.9	3.6	10.4	5.0	3.6	4.5	3.6	3.4	4.3	5.9	6.0	4.2	5.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.19	0.14	0.52	0.35	0.25	0.27	0.07	0.06	0.04	0.11	0.42	0.16	0.20	
SUSPENDED SOLIDS INFLUENT (MG/L)	89.0	79.0	94.0	39.0	99.0	81.0	123.0	120.0	138.0	99.0	72.0	72.0	92.1	
EFFLUENT (MG/L)	22.8	17.0	32.2	12.6	17.5	15.7	10.4	13.5	15.8	16.0	25.8	24.6	18.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.91	0.68	1.61	0.88	1.22	0.94	0.20	0.27	0.15	0.32	1.80	0.98	0.75	
TOTAL PHOSPHOROUS			2112	7451 HTL	17 <u>00</u> <u>11</u> 01			Man tra	08 09	520 5220		8 20		
INFLUENT (MG/L)	5.7	5.7	6.2	2.3	3.7	5.6	5.9	6.9	8.4	6.3	2.8	4.9	5.4	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	2.8	2.7	3.4	1.4	2.3	2.9	2.6	4.4	4.4	4.0	3.9	2.9	3.1	
LOADING (KG/D)	0.11	0.10	0.17	0.09	0.16	0.17	0.05	0.08	0.04	0.08	0.27	0.11	0.12	· · · · ·

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: PLANTAGENET

PLANT

: PLANTAGENET LAGOON

WORKS NUMBER

: 110001621

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.59 (1000 M3)

REGION : SOUTHEAST

DISTRICT : PRESCOTT AND RUSSELL

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SOUTH NATION RIVER

MINOR BASIN : 0
MAJOR BASIN : 0

: OTTAWA RIVER : GREAT LAKES

POPULATION SERVED : 876

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.44	0.44	0.59	0.67	0.64	0.65	0.71	0.69	0.64	0.75	0.93	0.52	0.64	
LAGOON DISCHARGE	ND	ND	ND	ND	8.00	103.00	ND	ND	ND	ND	107.50	22.70	60.30	
BOD5 INFLUENT (MG/L)	ND	ND	170.0	ND	106.0	84.0	118.0	202.0	125.0	139.0	165.0	45.0	128.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	5.5	ND	ND	ND	ND	ND	2.8	4.0	4.1	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	3.52	ND	ND	ND	ND	ND	2.60	2.08	2.62	
SUSPENDED SOLIDS INFLUENT (MG/L)	172.0	190.0	241.0	164.0	322.0	269.0	277.0	558.0	432.0	234.0	150.0	104.0	259.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	8.3	ND	ND	ND	ND	ND	9.8	4.0	7.4	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	5.31	ND	ND	ND	ND	ND	9.11	2.08	4.74	
TOTAL PHOSPHOROUS	All Viso	9044 - 2510	DAM NOTES		2001 35	Somet Mar								
INFLUENT (MG/L)	5.3	7.1	7.5	3.0	7.1	5.3	5.4	7.1	8.4	3.3	6.6	3.8	5.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.6	ND	ND	ND	ND	ND	0.3	0.4	0.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.38	ND	ND	ND	ND	ND	0.27	0.20	0.26	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	30.0 MG/L	YES
SS	40.0 MG/L	YES
TP	1.0 MG/L	YES

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: PRESCOTT

PLANT

: EDWARDSBURGH WPCP

WORKS NUMBER

: 110001122

TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

5.68 (1000 M3)

REGION : SOUTHEAST

DISTRICT : LEEDS AND GRENVILLE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: ST. LAWRENCE RIVER

MINOR BASIN MAJOR BASIN : ST. LAWRENCE : GREAT LAKES

POPULATION SERVED : 4,595

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	3.98	3.76	4.71	5.50	5.35	5.08	3.95	3.36	3.47	3.75	5.28	3.82	4.33	
BOD5														
INFLUENT (MG/L)	75.0	90.0	86.0	65.0	51.0	29.0	39.0	56.0	49.0	56.0	28.0	47.0	55.9	
EFFLUENT (MG/L)	30.0	23.5	17.0	12.0	19.0	8.0	14.0	14.0	13.0	15.5	14.3	20.3	16.7	
LOADING (KG/D)	119.40	88.36	80.07	66.00	119.0	40.64	55.30	47.04	45.11	58.12	75.50	77.54	72.67	
PERCENT REMOVAL	60	74	80	82	63	72	64	75	73	72	49	57	70	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	102.0	168.0	133.0	122.0	121.0	82.0	99.0	149.0	117.0	123.0	88.0	118.0	118.5	İ
EFFLUENT (MG/L)	21.0	22.0	18.5	13.0	17.5	16.0	17.0	17.0	22.7	19.6	13.8	14.5	17.7	
LOADING (KG/D)	83.58	82.72	87.13	71.50	93.62	81.28	67.15	57.12	78.76	73.50	72.86	55.39	76.64	
PERCENT REMOVAL	79	87	86	89	86	80	83	89	81	84	84	88	85	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS				2										
INFLUENT (MG/L)	3.1	5.2	3.8	3.2	2.9	ND	2.7	4.6	3.3	3.2	1.5	3.0	3.3	
EFFLUENT (MG/L)	0.6	0.7	0.5	0.3	0.4	0.2	0.4	0.6	0.8	0.5	0.2	ND	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.38	2.63	2.35	1.65	2.14	1.01	1.58	2.01	2.77	1.87	1.05	ND	2.17	

SUMMARY
COMPLIES
CRITERIA WITH CONC
50% YES
70% YES

SS 70% YES TP 1.0 MG/L YES

PARM

BOD

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - PROCESS CONTROL BEING UPGRADED OPERATIONAL/PROCESS - PHASING OUT EXISTING FACILITY

1989

MUNICIPALITY PLANT

: RENFREW

: RENFREW WPCP

WORKS NUMBER

: 120000603

TREATMENT

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

8.63 (1000 M3)

REGION : SOUTHEAST DISTRICT : RENFREW OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : BONNECHERE RIVER

MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 8,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	4.34	4.09	6.00	5.78	6.07	5.80	5.74	4.86	7.05	7.05	9.82	5.07	5.97	
BOD5 INFLUENT (MG/L)	72.0	86.0	24.0	53.0	16.0	20.0	29.0	26.0	13.0	60.0	28.0	135.0	46.8	
EFFLUENT (MG/L)	20.0	16.0	10.0	11.5	6.0	5.0	6.5	8.0	4.4	7.6	7.0	22.0	10.3	
LOADING (KG/D)	86.80	65.44	60.00	66.47	36.42	29.00	37.31	38.88	31.02	53.58	68.74	111.54	61.49	
PERCENT REMOVAL	72	81	58	78	63	75	78	69	66	87	75	84	78	
PERCENT REMOVAL LIMITS		7.7											50	
SUSPENDED SOLIDS INFLUENT (MG/L)	104.0	123.0	81.0	214.0	42.0	61.0	60.0	52.0	37.0	62.0	57.0	119.0	84.3	
EFFLUENT (MG/L)	15.0	20.0	29.0	14.0	9.0	8.0	12.0	10.0	6.0	11.0	9.0	21.0	13.7	
LOADING (KG/D)	65.10	81.80	174.00	80.92	54.63	46.40	68.88	48.60	42.30	77.55	88.38	106.47	81.79	
PERCENT REMOVAL	86	84	64	93	79	87	80	81	84	82	84	82	84	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.7	4.0	1.6	3.7	0.8	2.3	2.3	2.1	0.8	3.7	1.5	5.5	2.7	
EFFLUENT (MG/L)	0.2	0.4	0.8	0.4	0.2	0.2	0.7	0.4	0.2	0.4	0.2	0.5	0.4	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.86	1.63	4.80	2.31	1.21	1.16	4.01	1.94	1.41	2.82	1.96	2.53	2.39	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	50%	YES	
SS	70%	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: ROCKLAND

PLANT

: ROCKLAND LAGOON

WORKS NUMBER

: 110001159

TREATMENT

: AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

DESIGN CAPACITY

: 3.34 (1000 M3)

DISTRICT : SOUTHEAST

: PRESCOTT AND RUSSELL

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE

: OTTAWA RIVER

MINOR BASIN

MAJOR BASIN

: OTTAWA RIVER

: GREAT LAKES

POPULATION SERVED : 6,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.80	1.75	2.29	2.82	2.44	2.49	2.07	2.14	2.08	2.28	3.05	2.18	2.28	
LAGOON DISCHARGE	55.80	49.00	70.90	84.60	75.61	74.82	64.02	66.24	62.40	70.79	91.50	67.56	69.44	
BOD5														
INFLUENT (MG/L)	ND	ND	ND	210.0	68.0	64.0	106.0	156.0	148.0	108.0	132.0	115.0	123.0	
EFFLUENT (MG/L)	ND	ND	ND	7.0	6.8	6.3	11.8	15.0	32.3	6.0	5.7	31.0	13.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	19.74	16.59	15.68	24.42	32.10	67.18	13.68	17.38	67.58	30.78	
SUSPENDED SOLIDS								334-113.1103						
INFLUENT (MG/L)	282.0	233.0	101.0	121.0	149.0	88.0	197.0	239.0	144.0	191.0	303.0	295.0	195.3	
EFFLUENT (MG/L)	21.0	29.0	33.0	23.5	21.6	18.3	28.0	38.4	18.1	19.8	7.1	17.3	22.9	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	37.80	50.75	75.57	66.27	52.70	45.56	57.96	82.17	37.64	45.14	21.65	37.71	52.21	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.1	5.0	5.1	4.0	4.3	5.3	5.1	5.5	5.5	5.8	5.1	6.7	5.3	
EFFLUENT (MG/L)	2.5	3.6	3.6	2.9	2.0	3.3	1.7	2.3	2.5	3.0	2.6	3.3	2.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	4.50	6.30	8.24	8.17	4.88	8.21	3.51	4.92	5.20	6.84	7.93	7.19	6.38	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

30.0 MG/L YES 40.0 MG/L YES

SS TP

NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: RUSSELL

PLANT

: EMBRUN P.V.LAGOON

WORKS NUMBER

: 120002004

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

DESIGN CAPACITY

1.60 (1000 M3)

REGION : SOUTHEAST

DISTRICT : PRESCOTT AND RUSSELL

:

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

MINOR BASIN

: OTTAWA RIVER : GREAT LAKES

MAJOR BASIN POPULATION SERVED :

3,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.76	0.78	0.93	0.97	1.15	0.88	0.85	0.99	0.94	1.10	0.94	1.10	0.95	
LAGOON DISCHARGE	ND													
BOD5 INFLUENT (MG/L)	300.0	190.0	135.0	180.0	130.0	105.0	190.0	90.0	165.0	210.0	165.0	165.0	168.8	
EFFLUENT (MG/L)	ND	100.0												
CONCENTRATION LIMIT (MG/L)					!''-					ND	NU	NU_	30.0	
LOADING (KG/D)	ND	30.0												
SUSPENDED SOLIDS INFLUENT (MG/L)	600.0	405.0	213.0	113.0	305.0	136.0	196.0	136.0	135.0	123.0	135.0	220.0	226.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	220.4									
CONCENTRATION LIMIT (MG/L)					3.37								40.0	
LOADING (KG/D)	ND													
TOTAL PHOSPHOROUS INFLUENT (MG/L)	22.7	14.1	8.5	8.6	7.2	9.9	9.6	8.7	7.8	9.6	7.8	9.2	10.3	
EFFLUENT (MG/L)	ND	ND	ND	ND.	ND	10.5								
CONCENTRATION LIMIT (MG/L)									NU	ND_	ND_	ND		
LOADING (KG/D)	ND													

SU	M	M	AI	R	•
----	---	---	----	---	---

COMPLIES

CRITERIA WITH CONC BOD 30.0 MG/L NO DISCHARGE SS 40.0 MG/L NO DISCHARGE

TP NA NO DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

**BOD - ASSESSED ANNUALLY** SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: RUSSELL

: RUSSELL LAGOON

WORKS NUMBER

TREATMENT

PLANT

: 110001514 : CONVENTIONAL LAGOON ANNUAL

DESIGN CAPACITY

: 1.00 (1000 M3) REGION : SOUTHEAST DISTRICT : PRESCOTT AND RUSSELL

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CASTOR RIVER MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,400

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.28	0.30	0.38	0.32	0.38	0.29	0.27	0.34	0.31	0.37	0.53	0.39	0.35	
LAGOON DISCHARGE	ND	ND	ND	ND	109.00	ND	ND	ND	ND	ND	ND	ND	109.00	
BOD5														
INFLUENT (MG/L)	77.0	242.0	188.0	126.0	50.0	70.0	91.0	98.0	105.0	146.0	74.0	149.0	118.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	16.3	ND	ND	ND	ND	ND	ND	ND	16.3	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	6.19	ND	ND	ND	ND	ND	ND	ND	5.71	
SUSPENDED SOLIDS		Comment and a feet												
INFLUENT (MG/L)	67.0	550.0	350.0	246.0	56.0	108.0	76.0	140.0	68.0	266.0	92.0	61.0	173.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	72.3	ND	ND	ND	ND	ND	ND	ND	72.3*	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	27.47	ND	ND	ND	ND	ND	ND	ND	25.31	
TOTAL PHOSPHOROUS								,,						
INFLUENT (MG/L)	8.6	14.1	7.7	10.4	5.8	7.0	8.3	8.0	7.2	8.0	5.6	7.5	8.2	8
EFFLUENT (MG/L)	ND	ND	ND	ND	0.8	ND	ND	ND	ND	ND	ND	ND	0.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.30	ND	ND	ND	ND	ND	ND	ND	0.28	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L NO TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

## NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : SIDNEY

PLANT : BATAWA WPCP WORKS NUMBER : 110000668

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY : 0.56 (1000 M3)

REGION : SOUTHEAST DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : TRENT RIVER
MINOR BASIN : ONTARIO
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 300

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.53	0.51	0.42	0.58	0.57	0.29	0.21	0.21	0.19	0.28	0.77	0.30	0.41	
BOD5														
INFLUENT (MG/L)	124.0	177.0	62.0	53.0	90.0	69.0	148.0	178.0	72.0	126.0	99.0	76.0	106.2	
EFFLUENT (MG/L)	6.6	8.3	7.0	5.0	3.0	4.5	3.0	3.1	2.2	4.3	8.0	1.0	4.7	
CONCENTRATION LIMIT (MG/L)				200 100 100 100 100									25.0	
LOADING (KG/D)	3.49	4.23	2.94	2.90	1.71	1.30	0.63	0.65	0.41	1.20	6.16	0.30	1.93	
SUSPENDED SOLIDS	20 20													
INFLUENT (MG/L)	55.0	73.0	55.0	78.0	60.0	74.0	122.0	71.0	120.0	81.0	65.0	88.0	78.5	
EFFLUENT (MG/L)	18.0	13.0	21.6	21.0	11.0	13.0	8.0	7.6	6.2	8.5	14.0	9.8	12.6	
CONCENTRATION LIMIT (MG/L)			2										25.0	
LOADING (KG/D)	9.54	6.63	9.07	12.18	6.27	3.77	1.68	1.59	1.17	2.38	10.78	2.94	5.17	
TOTAL PHOSPHOROUS													30.	
INFLUENT (MG/L)	4.1	4.1	5.7	2.9	6.8	4.9	4.0	3.8	2.5	4.0	4.0	1.6	4.0	
EFFLUENT (MG/L)	1.0	0.6	9.4×	1.7×	0.7	0.7	0.5	0.4	0.2	0.4	0.5	0.4	1.4	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.53	0.30	3.94	0.98	0.39	0.20	0.10	0.08	0.03	0.11	0.38	0.12	0.57	

SUMMARY
COMPLIES
CRITERIA WITH CONC
25.0 MG/L YES
25.0 MG/L YES

SS 25.0 MG/L YES TP 1.0 MG/L NO

NO REMEDIAL MEASURES REPORTED

BOD

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : SMITHS FALLS
PLANT : SMITHS FALLS WPCP

WORKS NUMBER : 120000890
TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY : 11.36 (1000 M3)

REGION : SOUTHEAST
DISTRICT : LANARK
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : RIDEAU RIVER
MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 11,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	9.09	8.56	10.73	12.54	14.61	13.76	10.87	7.82	7.80	8.54	11.13	8.25	10.31	
BOD5				202		7000	THE HEADTHY SER	7202 F	Specific Feb.	2220 000	2222450 222	59960 000 000	595077594 5355	
INFLUENT (MG/L)	139.0	98.0	115.0	86.0	198.0	95.0	124.0	81.0	90.0	85.0	135.0	440.0	140.5	
EFFLUENT (MG/L)	141.0	29.0	16.0	13.0	29.5	16.0	8.0	11.5	17.0	38.0	11.5	26.0	29.7	
LOADING (KG/D)	1281.69	248.24	171.68	163.02	430.99	220.16	86.96	89.93	132.60	324.52	127.99	214.50	306.21	
PERCENT REMOVAL	ND	70	86	85	85	83	94	86	81	55	91	94	79	
PERCENT REMOVAL LIMITS													50	
SUSPENDED SOLIDS	M)			the second	77770771 -20	nomic mile mos			THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S		NAME OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER			
INFLUENT (MG/L)	205.0	107.0	111.0	76.0	105.0	243.0	89.0	105.0	105.0	129.0	294.0	169.0	144.8	
EFFLUENT (MG/L)	57.0	28.0	19.0	22.0	29.5	22.5	23.5	40.0	30.0	36.0	24.5	23.0	29.6	
LOADING (KG/D)	518.13	239.68	203.87	275.88	430.99	309.60	255.44	312.80	234.00	307.44	272.68	189.75	305.18	
PERCENT REMOVAL	72	74	83	71	72	91	74	62	71	72	92	86	80	
PERCENT REMOVAL LIMITS	576												70	
TOTAL PHOSPHOROUS												JI	Mark Section	
INFLUENT (MG/L)	4.5	5.0	5.5	3.6	3.2	4.4	3.6	5.8	4.0	4.8	6.6	5.7	4.7	
EFFLUENT (MG/L)	1.7×	0.4	0.6	0.4	0.5	0.6	1.0	2.0×	1.2*	0.7	0.9	0.5	0.9	3
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	11111	
LOADING (KG/D)	15.45	3.42	6.43	5.01	7.30	8.25	10.87	15.64	9.36	5.97	10.01	4.12	9.28	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 50% YES

SS 70% YES TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED 1988 1990 1993

MUNICIPALITY

: ST ISIDORE DE PRESCOTT

PLANT

DESIGN CAPACITY

: ST.ISIDORE LAGOON

WORKS NUMBER TREATMENT

: 110002210 : CONVENTIONAL LAGOON ANNUAL

:

:

0.65 (1000 M3)

REGION : SOUTHEAST

DISTRICT

: PRESCOTT AND RUSSELL OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SCOTCH RIVER MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 772

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.24	0.23	0.27	0.29	0.31	0.34	0.40	0.40	0.39	0.39	0.48	0.40	0.35	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	190.0	248.0	101.0	174.0	00.0	05.0	107.0							
EFFLUENT (MG/L)	190.0	The second second second second	101.0	134.0	99.0	95.0	127.0	225.0	162.0	155.0	165.0	238.0	161.6	
CONCENTRATION LIMIT (MG/L)		ND	ND	ND_	7.0	ND	ND	ND	ND	ND	ND	ND	7.0	
													30.0	
LOADING (KG/D)	ND	ND	ND	ND	2.17	ND	ND	ND	ND	ND	ND	ND	2.45	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	141.0	206.0	99.0	125.0	125.0	92.0	78.0	307.0	135.0	159.0	120.0	189.0	148.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	296.7	ND	ND	ND	ND	ND	ND	ND	296.7×	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	91.97	ND	ND	ND	ND	ND	ND	ND	103.85	
TOTAL PHOSPHOROUS				700										
INFLUENT (MG/L)	11.1	14.0	8.9	9.8	7.6	7.6	6.7	11.2	9.0	9.1	8.0	11.9	9.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.6	ND	ND	ND	ND ND	ND	ND	ND	1.6	
CONCENTRATION LIMIT (MG/L)									, ND	ND	- ND	NU	1.6	
LOADING (KG/D)	ND	ND	ND	ND	0.49	ND	ND	ND	ND	ND	ND	ND	0.56	

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES

BOD SS 40.0 MG/L NO

TP NA NA

NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED

1990

MUNICIPALITY : STIRLING

PLANT : STIRLING LAGOON

WORKS NUMBER : 110000686

TREATMENT : CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY : 1.13 (1000 M3)

REGION : SOUTHEAST
DISTRICT : HASTINGS
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : RAWDON CREEK
MINOR BASIN : ONTARIO
MAJOR BASIN : GREAT LAKES

1,700

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	9.84	0.75	1.04	0.93	0.94	0.96	0.86	0.94	1.03	0.87	1.08	1.08	1.69	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	7460.00	ND	ND	ND	7460.00	
BOD5											3417	X		
INFLUENT (MG/L)	660.0	720.0	300.0	100.0	45.0	230.0	46.0	24.0	40.0	ND ND	10.0 1	,200.0	306.8	
EFFLUENT (MG/L)	ND	ND	ND	18.0	2.0	ND	ND	ND	9.0	ND	ND	ND	9.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	16.74	1.88	ND	ND	ND	9.27	ND	ND	ND	16.39	
SUSPENDED SOLIDS				407.0	70.0	770.0	05.0					500.0		
INFLUENT (MG/L)	344.0	757.0	370.0	107.0	39.0	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa			88.0		Color Sold South	man control terror to age to the	Committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the commit	
EFFLUENT (MG/L)	ND ND	ND	ND_	76.0	27.0	ND	ND	ND	27.0	ND	ND	ND	43.3×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	70.68	25.38	ND	ND	ND	27.81	ND	ND	ND	73.18	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	16.4	15.6	15.3	7.0	5.6	15.3	4.9	3.4	7.1	ND	1.8	76.5	15.4	
EFFLUENT (MG/L)	ND	ND	ND	1.7×	0.3	ND	ND	ND	1.0	ND	ND	ND ND	1.0	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	1.58	0.28	ND	ND	ND	1.03	ND	ND	ND	1.69	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

BOD 25.0 MG/L YES SS 25.0 MG/L NO TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY
TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

COLLECTION SYSTEM - INFILTRATION PROBLEMS BEING CORRECTED 1990/06 1990/12 1990 FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE 1990/06 1990/12 1990

MUNICIPALITY

: TRENTON

PLANT

: TRENTON WPCP

TREATMENT

WORKS NUMBER : 110000775 : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

15.91 (1000 M3)

REGION : SOUTHEAST DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: BAY OF QUINTE WATERCOURSE

MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 15,346

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	13.50	10.31	11.01	12.87	12.94	12.03	8.62	9.25	9.92	11.03	15.09	9.94	11.38	
<u>BOD5</u> INFLUENT (MG/L)	317.0	289.0	202.0	170.0	341.0	237.0	258.0	276.0	166.0	204.0	196.0	185.0	236.8	
EFFLUENT (MG/L)	20.5	24.0	14.0	11.8	15.2	10.4	6.0	7.0	5.9	7.3	10.5	15.3	12.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	276.75	247.44	154.14	151.86	196.68	125.11	51.72	64.75	58.52	80.51	158.44	152.08	139.97	
SUSPENDED SOLIDS INFLUENT (MG/L)	140.0	155.0	1/0 0	04.0	100.0	175.0				2222				
EFFLUENT (MG/L)	142.0	155.0	160.0	86.0	106.0	135.0	112.0	104.0	116.0	114.0	115.0	119.0	122.0	
CONCENTRATION LIMIT (MG/L)	24.7	35.6	24.9	22.3	20.9	18.3	14.0	14.6	14.0	14.1	15.0	14.2	19.4	
LOADING (KG/D)	333.45	367.03	274.14	287.00	270.44	220.14	120.68	135.05	138.88	155.52	226.35	141.14	25.0 220.77	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	8.8	6.9	8.1	6.0	7.2	6.0	5.3	5.6	7.0	6.8	5.8	5.7	6.6	
EFFLUENT (MG/L)	0.7	0.4	0.4	0.6	0.5	0.5	0.6	0.6	0.5	0.4	0.7	0.5	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	9.45	4.12	4.40	7.72	6.47	6.01	5.17	5.55	4.96	4.41	10.56	4.97	5.69	

	SUMMA	<u>\RY</u>
		COMPLIES
PARM	CRITERIA	WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

: TWEED MUNICIPALITY

: TWEED LAGOON PLANT WORKS NUMBER : 120000952

: CONVENTIONAL LAGOON SEASONAL TREATMENT

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 1.20 (1000 M3) REGION : SOUTHEAST

DISTRICT : HASTINGS

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MOIRA RIVER MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,607

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.06	1.26	1.13	2.16	1.47	1.29	0.92	0.69	0.76	1.01	1.75	1.33	1.24	
LAGOON DISCHARGE	ND	ND	ND	85.12	150.86	ND	ND	ND	ND	ND	ND	ND	117.99	
BOD5														
INFLUENT (MG/L)	98.0	92.0	86.0	70.0	71.0	54.0	ND	107.0	173.0	79.0	88.0	83.0	91.0	
EFFLUENT (MG/L)	ND	ND	ND	15.8	5.6	ND	ND	ND	ND	ND	10.0	ND	10.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	34.12	8.23	ND	ND	ND	ND	ND	17.50	ND	13.02	
SUSPENDED SOLIDS								- X 90 00 - 100 100						
INFLUENT (MG/L)	114.0	93.0	99.0	86.0	74.0	66.0	107.0	121.0	265.0	83.0	134.0	ND	112.9	
EFFLUENT (MG/L)	ND	ND	ND	30.8	12.4	ND	ND	ND	ND ND	ND	17.0	ND	20.1	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	66.52	18.22	ND	ND	ND	ND	ND	29.75	ND	24.92	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.8	3.8	15.6	3.2	3.6	3.6	7.1	7.4	7.2	3.9	3.1	4.3	5.6	
EFFLUENT (MG/L)	ND	ND	ND	1.2×	0.3	ND	ND	ND	ND	ND	0.2	ND	0.6	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	2.59	0.44	ND	ND	ND	ND	ND	0.35	ND	0.74	

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES

BOD SS 40.0 MG/L YES

TP 1.0 MG/L NO

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW NO ACTION - MARGINAL FAILURE-MONITORING LEVEL OF FAILED PARAMETER CLOSELY 1990

1990

MUNICIPALITY

: VANKLEEK HILL

PLANT

: VANKLEEK HILL LAGOON

WORKS NUMBER

: 110001658

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.90 (1000 M3)

: SOUTHEAST

DISTRICT : PRESCOTT AND RUSSELL OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LITTLE RIDEAU CREEK

MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,711

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.82	0.78	1.24	1.17	0.90	0.91	0.71	0.83	0.76	0.82	1.29	0.92	0.93	
LAGOON DISCHARGE	ND	ND	ND	37.63	21.08	ND	ND	ND	ND	ND	19.68	9.96	22.09	
BOD5														
INFLUENT (MG/L)	ND	48.0	68.0	18.0	36.0	26.0	80.0	53.0	58.0	75.0	59.0	79.0	54.5	
EFFLUENT (MG/L)	ND	ND	ND	27.0	10.7	ND	ND	ND	ND	ND	2.0	18.7	14.6	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	31.59	9.63	ND	ND	ND	ND	ND	2.58	17.20	13.58	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	72.0	78.0	53.0	45.0	85.0	52.0	146.0	49.0	71.0	67.0	106.0	92.0	76.3	
EFFLUENT (MG/L)	ND	ND	ND	6.1	23.2	ND	ND	ND	ND	ND	27.0	19.7	19.0	D.V. V. S
CONCENTRATION LIMIT (MG/L)												Volume To Section 1991	40.0	
LOADING (KG/D)	ND	ND	ND	7.13	20.88	ND	ND	ND	ND	ND	34.83	18.12	17.67	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.4	5.0	5.9	2.1	3.4	2.9	5.6	3.5	3.8	4.8	3.8	3.9	4.0	
EFFLUENT (MG/L)	ND	ND	ND	1.7	1.3	ND	ND	ND	ND	ND	0.3	3.5	1.7	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	1.98	1.17	ND	ND	ND	ND	ND	0.38	3.22	1.58	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30.0 MG/L	YES	
SS	40.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: WELLINGTON

WORKS NUMBER

: WELLINGTON WPCP

TREATMENT

: 120003165

: EXTENDED AERATION : PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

1.50 (1000 M3)

REGION

: SOUTHEAST

DISTRICT

: PRINCE EDWARD OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: LAKE ONTARIO

MINOR BASIN MAJOR BASIN : ONTARIO

POPULATION SERVED : 1,077

: GREAT LAKES

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	0.42	0.42	0.59	0.94	0.74	0.60	0.42	0.37	0.34	0.40	0.64	0.54	0.54	
BOD5														
INFLUENT (MG/L)	135.0	145.0	108.0	42.0	72.0	70.0	255.0	112.0	255.0	215.0	130.0	88.0	135.6	
EFFLUENT (MG/L)	1.0	3.0	8.0	4.0	2.0	4.0	2.0	3.0	2.0	1.6	2.0	2.0	2.9	
CONCENTRATION LIMIT (MG/L)										and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th			25.0	
LOADING (KG/D)	0.42	1.26	4.72	3.76	1.48	2.40	0.84	1.11	0.68	0.64	1.28	1.08	1.57	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	100.0	106.0	125.0	128.0	59.0	68.0	266.0	136.0	185.0	122.0	78.0	68.0	120.1	
EFFLUENT (MG/L)	3.0	9.0	21.0	18.0	9.0	2.0	4.0	11.0	4.0	7.8	5.0	11.0	8.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.26	3.78	12.39	16.92	6.66	1.20	1.68	4.07	1.36	3.12	3.20	5.94	4.70	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	15.1	6.1	7.1	2.6	5.4	8.9	11.4	9.6	16.7	9.1	7.4	5.4	8.7	
EFFLUENT (MG/L)	1.2*	0.8	1.8×	0.5	0.9	0.5	0.5	0.7	0.7	0.6	0.7	0.7	0.8	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.50	0.33	1.06	0.47	0.66	0.30	0.21	0.25	0.23	0.24	0.44	0.37	0.43	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES TP 1.0 MG/L NO

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - OPERATIONAL PROCEDURES BEING UPGRADED OPERATIONAL/PROCESS - MONITORING PROCEDURES BEING UPGRADED

1989 1989/06 1989 1989/06 1990 1990

MUNICIPALITY

PLANT

: WESTPORT

: WESTPORT LAGOON

WORKS NUMBER

: 110001550

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.24 (1000 M3)

REGION : SOUTHEAST

DISTRICT : LEEDS AND GRENVILLE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : UPPER RIDEAU LAKE

MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 566

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.24	0.23	0.25	0.30	0.34	0.32	0.28	0.26	0.24	0.26	0.31	0.26	0.27	
LAGOON DISCHARGE	ND	ND	ND	ND	52.46	ND	ND	ND	ND	ND	47.68	ND	50.07	
B0D5														
INFLUENT (MG/L)	79.0	141.0	116.0	85.0	99.0	73.0	94.0	137.0	120.0	133.0	73.0	58.0	100.7	
EFFLUENT (MG/L)	ND	ND	ND	14.7	10.0	ND	ND	ND	ND	ND	9.4	ND	11.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	4.41	3.40	ND	ND	ND	ND	ND	2.91	ND	3.08	
SUSPENDED SOLIDS									- 3					
INFLUENT (MG/L)	108.0	190.0	241.0	85.0	127.0	87.0	89.0	115.0	82.0	115.0	80.0	46.0	113.8	
EFFLUENT (MG/L)	ND	ND	ND	28.0	15.7	ND	ND	ND	ND	ND	15.4	ND	19.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	8.40	5.33	ND	ND	ND	ND	ND	4.77	ND	5.32	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.1	7.3	6.3	4.8	8.7	6.0	4.9	7.3	6.1	6.7	5.6	4.4	6.1	l
EFFLUENT (MG/L)	ND	ND	ND	1.7×	0.3	ND	ND	ND	ND	ND	0.6	ND	0.9	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	0.51	0.10	ND	ND	ND	ND	ND	0.18	ND	0.24	1

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

MUNICIPALITY

: WILLIAMSBURG TWP

PLANT

: WILLIAMSBURG PV LAGOON

**WORKS NUMBER** 

: 120002013

TREATMENT

: CONVENTIONAL LAGOON ANNUAL

:

DESIGN CAPACITY

1.22 (1000 M3)

REGION : SOUTHEAST

DISTRICT : STORMONT, DUNDAS AND GLENGARRY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : MCMARTIN DRAIN MINOR BASIN : OTTAWA RIVER

300

MAJOR BASIN : GREAT LAKES POPULATION SERVED :

ANNUAL NUMBER JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC AVERAGE **EXCEED** AVG. DAILY FLOW (1000 M3) 0.30 0.36 0.38 0.49 0.56 0.65 0.45 0.35 0.31 0.41 0.63 0.44 0.44 LAGOON DISCHARGE ND ND ND ND ND ND ND ND ND ND ND ND BOD5 INFLUENT (MG/L) 180.0 88.0 230.0 60.0 102.0 68.0 65.0 84.0 135.0 145.0 90.0 66.0 109.4 EFFLUENT (MG/L) ND ND ND ND ND ND ND ND ND ND ND CONCENTRATION LIMIT (MG/L) 30.0 LOADING (KG/D) ND ND ND ND ND ND ND ND ND ND ND ND SUSPENDED SOLIDS INFLUENT (MG/L) 124.0 85.0 113.0 77.0 115.0 76.0 66.0 82.0 77.0 84.0 51.0 48.0 83.2 EFFLUENT (MG/L) ND ND ND ND ND ND ND ND ND ND ND ND CONCENTRATION LIMIT (MG/L) 40.0 LOADING (KG/D) ND ND ND ND ND ND ND ND ND TOTAL PHOSPHOROUS INFLUENT (MG/L) 7.9 7.1 8.0 5.6 5.7 3.9 5.7 6.6 6.2 8.9 5.2 3.3 6.2 EFFLUENT (MG/L) ND ND ND ND ND ND ND ND ND ND ND ND CONCENTRATION LIMIT (MG/L) LOADING (KG/D) ND ND ND ND ND ND ND ND ND ND ND ND

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 30.0 MG/L NO DISCHARGE

SS 40.0 MG/L NO DISCHARGE

TP NA NO DISCHARGE

NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: WINCHESTER

PLANT

: WINCHESTER LAGOON

WORKS NUMBER

: 110001202

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

1.72 (1000 M3)

REGION : SOUTHEAST

DISTRICT : STORMONT, DUNDAS AND GLENGARRY OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CASTOR RIVER MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 2,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.03	1.01	1.18	1.48	1.75	1.66	1.43	1.63	1.07	1.22	1.69	1.11	1.36	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	210.0	160.0	157.0	123.0	114.5	44.0	61.0	97.0	75.0	56.0	66.0	83.0	103.9	
EFFLUENT (MG/L)	ND	ND	ND	34.3	ND	ND	ND	ND	ND	ND	0.8	ND	17.6	
CONCENTRATION LIMIT (MG/L)								3.7					30.0	
LOADING (KG/D)	ND	ND	ND	50.76	ND	ND	ND	ND	ND	ND	1.35	ND	23.94	
SUSPENDED SOLIDS INFLUENT (MG/L)	226.0	155.0	168.0	920.0	867.5	81.0	106.0	118.0	71.0	40.0	78.0	56.0	240.5	
EFFLUENT (MG/L)	ND	ND	ND	24.0	ND	ND	ND	ND	ND	ND	14.0	ND	19.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	35.52	ND	ND	ND	ND	ND	ND	23.66	ND	25.84	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	8.8	7.7	9.1	8.0	7.4	ND	5.9	7.2	6.0	6.8	4.9	6.1	7.1	
EFFLUENT (MG/L)	ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND	0.8	ND	3.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	8.28	ND	ND	ND	ND	ND	ND	1.35	ND	4.35	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE



# REGIONAL OFFICE

Sudbury 199 Larch St. P3E 5P9 (705) 675-4501

# DISTRICT OFFICES

North Bay 1500 Fisher St. P1B 2H3 (705) 476-1001

Sault Ste. Marie 445 Albert St. East P6A 2J9 (705) 949-4640

Sudbury 199 Larch St. P3E 5P9 (705) 675-4501

Timmins
83 Algonquin Blvd. West
P4N 2R4
(705) 268-3222

# SUB-OFFICE

Parry Sound 74 Church St. P2A 1Z1 (705) 746-2139

# NORTHEAST SUMMARY - 1989

	1	Number		Design	Capacity (10	000M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Primary	2	1	3	57.55	34.09	91.64
Conventional Activated Sludge	4	4	8	65.69	25.44	91.13
Contact Stabilization	3	1	4	18.24	6.82	25.06
Extended Aeration	10	7	17	20.43	18.95	39.38
Trickling Filter	0	1	1	=	0.91	0.91
High Rate	0	1	1	-	68.19	68.19
Oxidation Ditch	0	1	1		3.00	3.00
Communal Septic Tank	0	1	1			
Aerated Lagoon	1	0	1	4.55	<u> </u>	4.55
Convent. Lagoon Continuous	4	2	6	1.23	:	1.23
Conventional Lagoon Seasonal	23	9	32	14.42	57.31	71.73
Aerated Cell Plus Lagoon	2	1	3	12.32	0.39	12.71
Exfiltration Lagoon	2	2	4	1.68	1.54	3.23
TOTALS	51	31	82	196.11	216.64	412.75

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

# NORTHEAST SUMMARY - 1989

	ı	Number		Annua	1 ADF (1000M	13/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Primary	2	1	3	35.60	20.36	55.96
Conventional Activated Sludge	4	4	8	49.27	15.22	64.49
Contact Stabilization	3	1	4	15.61	4.07	19.68
Extended Aeration	10	7	17	28.64	15.79	44.43
Trickling Filter	0	1	1	0.00	0.77	0.77
High Rate	0	1	1	0.00	60.42	60.42
Oxidation Ditch	0	1	1	0.00	1.59	1.59
Communal Septic Tank	0	1	1	0.00	0.00	0.00
Aerated Lagoon	1	0	1	2.90	0.00	2.90
Convent. Lagoon Continuous	4	2	6	1.93	0.00	1.93
Conventional Lagoon Seasonal	23	9	32	13.43	3.01	16.44
Aerated Cell Plus Lagoon	2	1	3	6.87	0.26	7.13
Exfiltration Lagoon	2	2	4	1.79	3.06	4.85
TOTALS	51	31	32	156.04	124.55	280.59

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

MUNICIPALITY

: ARMSTRONG

PLANT

: EARLTON LAGOON

WORKS NUMBER

: 120000042

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

DESIGN CAPACITY

0.36 (1000 M3)

REGION : NORTHEAST DISTRICT : TIMISKAMING

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: EVANTUREL CREEK

MINOR BASIN MAJOR BASIN : OTTAWA RIVER : GREAT LAKES

POPULATION SERVED :

1,452

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	16.00	ND	ND	ND	16.00	
BOD5	7						445.0							
INFLUENT (MG/L)	ND_	121.0	ND ND	ND	58.0	120.0	145.0	160.0	145.0	ND		95.0	131.1	
EFFLUENT (MG/L)	ND	30.0	ND	ND	32.0	16.0	16.0	28.0	12.0	ND	12.0	24.0	21.3	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS							ALEXAND LEADING							
INFLUENT (MG/L)	ND	140.0	ND	ND	80.0	110.0	50.0	140.0	50.0	ND	25.0	130.0	90.6	
EFFLUENT (MG/L)	ND	20.0	ND	ND	40.0	10.0	30.0	30.0	7.2	ND	20.1	40.0	24.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	7.6	ND	ND	7.4	7.2	7.2	7.4	7.2	ND	7.1	760.0	101.4	1
EFFLUENT (MG/L)	ND	7.0	ND	ND	7.2	7.1	7.2	8.5	7.3	ND	8.0	7.3	7.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

BOD SS

30.0 MG/L INSUFFICIENT DATA 40.0 MG/L INSUFFICIENT DATA

TP NA INSUFFICIENT DATA

NO REMEDIAL MEASURES REPORTED

# NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: ASSIGINACK

PLANT

: MANITOWANING LAGOON

WORKS NUMBER TREATMENT

: 110001408

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.25 (1000 M3)

REGION : NORTHEAST

DISTRICT : MANITOULIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : LAKE HURON

WATERCOURSE MINOR BASIN

: HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED :

440

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.28	0.25	0.42	0.42	0.23	0.21	0.24	0.23	0.18	0.18	0.25	0.19	0.26	
LAGOON DISCHARGE	ND	ND	ND	28.33	ND	ND	ND	ND	ND	ND	27.28	ND	27.81	
BOD5 INFLUENT (MG/L)	165.0	78.0	210.0	45.0	18.0	42.0	64.0	7.0	46.0	32.0	34.0	160.0	75.1	
EFFLUENT (MG/L)	ND	ND	ND	15.2	ND	ND	ND	ND	ND	ND	18.9	ND	17.1	
CONCENTRATION LIMIT (MG/L)						.,,,,,,							30.0	
LOADING (KG/D)	ND	ND	ND	6.38	ND	ND	ND	ND	ND	ND	4.72	ND	4.45	
SUSPENDED SOLIDS INFLUENT (MG/L)	120.0	75.0	200.0	65.0	25.0	80.0	35.0	20.0	30.0	25.0	30.0	200.0	75.4	
EFFLUENT (MG/L)	ND	ND	ND	40.4	ND	ND	ND	ND	ND	ND	26.0	ND	33.2	
CONCENTRATION LIMIT (MG/L)						All Comments							40.0	
LOADING (KG/D)	ND	ND	ND	16.96	ND	ND	ND	ND	ND	ND	6.50	ND	8.63	
TOTAL PHOSPHOROUS		See See	99 9		~ ~	2 20								
INFLUENT (MG/L)	4.0	4.2	7.6	2.5	1.5	1.7	4.0	1.4	2.9	2.7	2.8	10.4	3.8	
EFFLUENT (MG/L)	ND	ND	ND	2.8	ND	ND	ND	ND	ND	ND	2.2	ND	2.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	1.17	ND	ND	ND	ND	ND	ND	0.55	ND	0.65	

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L YES TP NA

NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY : BLACK RIVER MATHESON

PLANT : MATHESON WPCP WORKS NUMBER : 110000025

TREATMENT : EXTENDED AERATION

DESIGN CAPACITY : 1.04 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BLACK RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED
POPULATION SERVED : 920

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.35	0.36	0.51	1.03	0.91	0.63	0.45	0.52	0.41	0.51	0.60	0.35	0.55	
80D5				enters out	202 01		ASSEMBLE OVA	200000	PARTY CONT	1-11-12			2002201	
INFLUENT (MG/L)	95.0	145.0	66.0	60.0	44.0	47.0	77.0	61.3	66.5	65.0	74.0	124.0	77.1	
EFFLUENT (MG/L)	5.7	8.0	7.7	3.9	6.7	12.7	3.4	5.1	9.8	10.6	4.1	6.0	7.0	
CONCENTRATION LIMIT (MG/L)													25.0	1
LOADING (KG/D)	1.99	2.88	3.92	4.01	6.09	8.00	1.53	2.65	4.01	5.40	2.46	2.10	3.85	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	110.0	155.0	75.0	90.0	78.0	69.0	48.5	53.3	50.0	93.0	93.0	120.0	86.2	1
EFFLUENT (MG/L)	9.5	7.0	5.5	5.5	4.0	4.2	5.3	4.7	6.0	8.5	8.5	9.5	6.5	
CONCENTRATION LIMIT (MG/L)									and the second				25.0	
LOADING (KG/D)	3.32	2.52	2.80	5.66	3.64	2.64	2.38	2.44	2.46	4.33	5.10	3,32	3.58	
TOTAL PHOSPHOROUS						en income								
INFLUENT (MG/L)	5.6	5.5	4.6	4.1	2.7	4.4	5.4	4.6	3.3	4.1	3.3	5.0	4.4	
EFFLUENT (MG/L)	2.7	3.2	1.9	1.2	1.5	1.8	2.1	2.1	2.3	2.1	1.5	2.2	2.1	
CONCENTRATION LIMIT (MG/L)						1720 1010						*** - T - T	Tali-	
LOADING (KG/D)	0.94	1.15	0.96	1.23	1.36	1.13	0.94	1.09	0.94	1.07	0.90	0.77	1.16	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: BLACK RIVER MATHESON

PLANT

: RAMORE LAGOON

WORKS NUMBER

: 110001104

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

: :

DESIGN CAPACITY

0.12 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BLACK RIVER MINOR BASIN : JAMES BAY

: ARCTIC WATERSHED MAJOR BASIN

POPULATION SERVED : 320

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.10	0.09	0.11	0.25	0.22	0.16	0.14	0.18	0.10	0.14	0.15	0.10	0.15	
LAGOON DISCHARGE	3.06	2.59	3.31	27.25	0.69	ND	ND		0.21	0.34	ND	1.51	4.33	
BOD5														
INFLUENT (MG/L)	127.5	270.0	53.0	69.0	46.0	123.0	89.0	109.3	95.0	65.0	51.0	149.0	103.9	1
EFFLUENT (MG/L)	18.0	22.0	23.0	14.5	ND	ND	12.8	9.7	20.0	ND	ND	40.0	20.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	1.80	1.98	2.53	3.62	ND	ND	1.79	1.74	2.00	ND	ND	4.00	3.00	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	162.5	390.0	80.0	65.0	70.0	101.0	54.0	75.0	90.0	88.0	78.0	115.0	114.0	
EFFLUENT (MG/L)	7.0	8.5	15.0	16.8	ND	ND		18.3	37.5	ND	ND	30.0	20.3	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	0.70	0.76	1.65	4.20	ND	ND	4.06	3.29	3.75	ND	ND	3.00	3.05	
TOTAL PHOSPHOROUS	12 12 12													
INFLUENT (MG/L)	6.5	12.8	8.9	3.3	3.0	5.1	5.5	5.7	9.3	3.8	5.1	6.6	6.3	
EFFLUENT (MG/L)	3.9	4.5	4.0	2.7	ND	ND	1.6	1.6	1.7	ND	ND	3.0	2.9	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.39	0.40	0.44	0.67	ND	ND	0.22	0.28	0.17	ND	ND	0.30	0.44	

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L INSUFFICIENT DATA BOD

SS 40.0 MG/L INSUFFICIENT DATA TP NA

INSUFFICIENT DATA

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - CONSTRUCTION INITIATED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/07

MUNICIPALITY

: BLACK RIVER MATHESON

PLANT WORKS NUMBER : VAL GAGNE LAGOON

: 120001559

:

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

: SUMMER STORAGE

DESIGN CAPACITY

: 0.12 (1000 M3) REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CREEK TO BLACK RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 300

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	· ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		
LAGOON DISCHARGE	ND	ND ND	ND ND	ND 19.72	ND	ND ND	ND	ND	ND	ND	ND	ND	19.72	
BOD5													i i i i i i i i i i i i i i i i i i i	
INFLUENT (MG/L)	129.5	178.0	68.0	54.0	62.0	116.0	58.0	68.7	72.0	60.0	57.0	207.0	94.2	6
EFFLUENT (MG/L)	26.0	42.5	25.5	11.3	ND	, ND	ND	ND	ND	ND	ND	ND	26.3	
CONCENTRATION LIMIT (MC/L)													30.0	1
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	145.0	190.0	120.0	75.0	100.0	96.0	72.0	65.0	60.0	88.0	110.0	228.0	112.4	i.
EFFLUENT (MG/L)	10.0	9.5	9.5	23.8	ND	ND	ND	ND	ND	ND	ND	ND	112.4	
CONCENTRATION LIMIT (MG/L)													400	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.9	5.4	5.5	3.2	3.6	4.3	4.6	5.6	5.4	3.4	3.6	5.3	4.7	1
INFLUENT (MG/L) EFFLUENT (MG/L)	3.9	4.6	4.0	1.4	ND	ND	ND	ND	ND	ND	ND	ND	3.5	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)											-			
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	The Committee of Contract	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 30.0 MG/L YES BOD

SS 40.0 MG/L YES

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: BLIND RIVER

PLANT

: BLIND RIVER WPCP

WORKS NUMBER TREATMENT : 110002416 : EXTENDED AERATION

:

DESIGN CAPACITY

3.50 (1000 M3)

REGION : NORTHEAST DISTRICT : ALGOMA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE HURON
MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 3,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.63	1.58	2.01	1.94	1.67	2.03	1.61	1.64	1.61	1.47	1.57	1.33	1.67	
BOD5 INFLUENT (MG/L)	106.0	116.0	94.0	41.0	ND	32.0	57.0	62.0	51.0	76.0	80.0	106.0	74.6	
EFFLUENT (MG/L)	1.2	2.7	1.9	4.0	ND	4.5	3.2	2.7	2.0	1.4	1.5	5.0	2.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	1.95	4.26	3.81	7.76	ND	9.13	5.15	4.42	3.22	2.05	2.35	6.65	4.51	
SUSPENDED SOLIDS		400.0			1202020 720		220.12	200 02						
INFLUENT (MG/L)	109.0	100.0	114.0	56.0	116.0	181.0	62.0	44.0	105.0	109.0	127.0	295.0	118.2	
EFFLUENT (MG/L)	8.5	8.9	3.5	6.9	5.0	6.7	5.3	6.3	5.3	5.0	6.9	9.0	6.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	13.85	14.06	7.03	13.38	8.35	13.60	8.53	10.33	8.53	7.35	10.83	11.97	10.69	10.311.3.3
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.9	6.2	7.1	2.5	ND	ND	5.3	6.3	4.5	4.6	3.5	5.8	5.2	l
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	2.3	2.8	3.2	7.0	ND	2.3	3.5	7.2	3.5	3.5	2.6	3.0	3.7	
LOADING (KG/D)	3.74	4.42	6.43	13.58	ND	4.66	5.63	11.80	5.63	5.14	4.08	3.99	6.18	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA
NA - NOT APPLICABLE

MUNICIPALITY

: BRUCE MINES

PLANT

: BRUCE MINES LAGOON

WORKS NUMBER

: 110001756

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.28 (1000 M3)

REGION : NORTHEAST DISTRICT : ALGOMA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT
WATERCOURSE : ST.JOSEPH CHL.TO L.HURON

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 525

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.32	0.29	0.32	0.68	0.38	0.36	0.27	0.26	0.25	0.25	0.30	0.26	0.33	
LAGOON DISCHARGE	ND	ND	ND	ND	55.61	ND	ND	ND	ND	ND	41.40	ND	48.51	
BOD5 INFLUENT (MG/L)	48.0	96.0	72.0	8.0	135.0	70.0	245.0	76.0	70.0	22.0	118.0	ND	87.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	14.0	ND	ND	ND	ND	ND	16.0	ND	15.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	5.32	ND	ND	ND	ND	ND	4.80	ND	4.95	
SUSPENDED SOLIDS INFLUENT (MG/L)	55.0	60.0	35.0	10.0	120.0	30.0	170.0	40.0	38.0	15.0	180.0	ND	68.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	42.0	ND	ND	ND	ND	ND	5.5	ND	23.8	
CONCENTRATION LIMIT (MG/L)													40.0	1000
LOADING (KG/D)	ND	ND	ND	ND	15.96	ND	ND	ND	ND	ND	1.65	ND	7.85	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	2.1	5.6	2.4	1.1	6.8	6.0	8.5	7.9	4.3	1.9	6.2	ND	4.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	1.5	ND	2.0	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.95	ND	ND	ND	ND	ND	0.45	ND	0.66	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

MUNICIPALITY

: BURK'S FALLS

PLANT

: BURKS FALLS LAGOON

WORKS NUMBER

: 110001426

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: :

DESIGN CAPACITY

0.68 (1000 M3)

REGION : NORTHEAST DISTRICT : PARRY SOUND

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : MAGNETAWAN RIVER

MINOR BASIN : HURON

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.35	0.33	0.57	0.46	0.43	0.39	0.34	0.32	0.35	0.35	0.36	0.32	0.38	
LAGOON DISCHARGE	ND	ND	ND	64.80	32.40	ND	ND	ND	ND	ND	64.80	ND	54.00	
BOD5 INFLUENT (MG/L)	91.0	150.0	245.0	45.0	43.0	60.0	75.0	98.0	80.0	89.0	176.0	171.0	110.3	
EFFLUENT (MG/L)	ND	ND	ND	12.0	15.0	ND	ND	ND	ND	ND	2.4	ND	9.8	
CONCENTRATION LIMIT (MG/L)												174	30.0	
LOADING (KG/D)	ND	ND	ND	5.52	6.45	ND	ND	ND	ND	ND	0.86	ND	3.72	
SUSPENDED SOLIDS INFLUENT (MG/L)	120.0	150.0	470.0	88.0	75.0	90.0	75.0	78.0	73.0	103.0	18.0	102.0	120.2	
EFFLUENT (MG/L)	ND	ND	ND	17.5	15.0	ND	ND	ND	ND	ND	2.6	ND	11.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	8.05	6.45	ND	ND	ND	ND	ND	0.93	ND	4.45	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.0	7.1	10.0	4.5	4.0	5.8	6.8	6.0	6.0	6.0	75.0	5.0	11.9	
EFFLUENT (MG/L)	ND	ND	ND	4.0	3.8	ND	ND	ND	ND	ND	0.8	ND	2.9	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	1.84	1.63	ND	ND	ND	ND	ND	0.28	ND	1.10	

211	•	•		R١	,
v	М	М	A	ĸ	1

COMPLIES

CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L YES NA

TP NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY : CALDWELL PLANT : VERNER LAGOON

WORKS NUMBER : 110001872

TREATMENT : CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY : 0.47 (1000 M3)

REGION : NORTHEAST DISTRICT : NIPPISSING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : VEUVE RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,116

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.43	0.38	0.56	0.57	0.62	0.56	0.47	0.43	0.38	0.40	0.52	0.44	0.48	
LAGOON DISCHARGE	ND	36.76	ND	6.66	19.28	51.29	14.50	13.28	5.59	36.07	ND	ND	22.93	
BOD5														
INFLUENT (MG/L)	61.0	53.0	101.0	53.0	47.0	73.0	112.0	80.0	146.0	143.0	119.0	93.0	90.1	5-5-
EFFLUENT (MG/L)	ND	18.2	ND	19.0	8.5	4.0	3.3	3.9	9.8	5.0	ND	ND	9.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	6.91	ND	10.83	5.27	2.24	1.55	1.67	3.72	2.00	ND	ND	4.32	
SUSPENDED SOLIDS	105.0	99.0	120.0	175.0	74.0	146.0	75.0	77 5	E7 E	105.0	110.0	177.0	104 5	
INFLUENT (MG/L)	105.0 ND	88.0 15.2	128.0 ND	135.0 80.0	74.0 13.3	9.3	75.0 15.0	77.5 7.5	57.5 10.5	125.0	110.0 ND	133.0 ND	104.5	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	NU	15.6	ND		13.3		15.0		10.5	6.8	NU_	ND	19.7 25.0	
LOADING (KG/D)	ND	5.77	ND	45.60	8.24	5.20	7.05	3.22	3.99	2.72	ND	ND	9.46	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.4	3.0	7.4	1.8	5.3	3.7	3.4	6.3	3.3	6.2	4.5	3.9	4.4	
EFFLUENT (MG/L)	ND	1.0	ND	1.0	0.8	0.6	0.5	0.6	0.7	0.5	ND	ND	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	0.38	ND	0.57	0.49	0.33	0.23	0.25	0.26	0.20	ND	ND	0.34	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: CAPREOL

PLANT

: CAPREOL LAGOON

WORKS NUMBER

: 120001210

TREATMENT

: EXFILTRATION LAGOON

:

DESIGN CAPACITY

1.54 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NO DISC TO SURFACE WATER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 3,352

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.72	3.23	0.66	3.63	3.75	5.41	ND	2.70	2.85	2.55	2.46	2.67	3.06	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	ND	ND	ND	ND	100.0	40.0						202		
EFFLUENT (MG/L)	ND ND			ND_	120.0	48.0	ND	ND	82.0	122.0	ND_	ND ND	93.0	
CONCENTRATION LIMIT (MG/L)	עע	ND	ND	ND	6.8	22.0	ND	ND	13.0	12.0	14.0	ND	13.6	
LOADING (KG/D)	ND	ND	ND	ND	25.50	119.02	ND	ND	37.05	30.60	34.44	ND	41.62	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	ND	ND	95.0	15.0	ND	ND	35.0	170.0	ND	ND	78.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	25.0	70.0	ND	ND	8.0	15.0	20.0	ND	27.6	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	93.75	378.70	ND	ND	22.80	38.25	49.20	ND	84.46	
IOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	ND	ND	ND	5.0	2.2	ND	ND	3.5	6.1	ND	ND	4.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.5	2.6	ND	ND	1.6	2.1	2.5	ND ND	2.1	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	5.62	14.06	ND	ND	4.56	5.35	6.15	ND	6.43	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	NA	NO DIRECT	DISCHARGE
SS	NA	NO DIRECT	DISCHARGE
TP	NA	NO DIRECT	DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: CASEY

PLANT

: BELLE VALLEE LAGOON

WORKS NUMBER

: 120001808

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.12 (1000 M3)

REGION : NORTHEAST DISTRICT : TIMISKAMING OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : BLANCHE RIVER MAJOR BASIN MINOR BASIN : OTTAWA RIVER

: GREAT LAKES

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND								
BOD5	98 8						- ~~ ~							
INFLUENT (MG/L)	470.0	550.0	470.0	480.0	170.0	170.0	200.0	ND	88.0	210.0	170.0	310.0	298.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND								
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND								
SUSPENDED SOLIDS														i i
INFLUENT (MG/L)	65.0	90.0	130.0	95.0	100.0	50.0	40.0	ND	65.0	270.0	85.0	220.0	110.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND								
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND								
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	28.0	16.0	31.5	11.8	12.0	11.3	15.4	ND	5.5	11.8	12.8	30.0	16.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND								
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND								

SUMMARY

COMPLIES

CRITERIA WITH CONC

30.0 MG/L NO DISCHARGE BOD SS 40.0 MG/L NO DISCHARGE

NO DISCHARGE TP NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: CASIMIR J.A.

PLANT

: ST.CHARLES LAGOON

WORKS NUMBER

: 110002256

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

0.54 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY DIST.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT : MCPHERSON CREEK W.BRANCH WATERCOURSE

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 280

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.19	0.12	0.58	0.94	0.45	0.38	0.22	0.20	0.16	0.14	0.15	0.14	0.31	
LAGOON DISCHARGE	ND	ND	ND	51.50	ND	ND	ND	ND	ND	ND	ND	ND	51.50	
BOD5 INFLUENT (MG/L)	ND	150.0	140.0	35.0	69.0	113.0	177.0	ND	110.0	104.0	94.0	263.0	125.5	
EFFLUENT (MG/L)	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	1.2	
CONCENTRATION LIMIT (MG/L)									.,,_				25.0	
LOADING (KG/D)	ND	ND	ND	1.12	ND	ND	ND	ND	ND	ND	ND	ND	0.37	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	120.0	130.0	40.0	62.0	73.0	95.0	ND	62.0	83.0	115.0	160.0	94.0	
EFFLUENT (MG/L)	ND	ND	ND	5.4	ND	ND	ND	ND	ND	ND	ND	ND	5.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	5.07	ND	ND	ND	ND	ND	ND	ND	ND	1.67	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	7.6	7.7	2.1	4.1	6.1	7.1	ND	5.8	5.7	4.8	8.7	6.0	
EFFLUENT (MG/L)	ND	ND	ND	1.1*	ND	ND	ND	ND	ND	ND	ND	ND	1.1	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	1.03	ND	ND	ND	ND	ND	ND	ND	ND	0.34	

SUMMARY

COMPLIES

CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES

TP 1.0 MG/L NO

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE _ END DATE _ COMPLIANCE

EQUIPMENT/MAINTENANCE - EXISTING EQUIPMENT BEING REPAIRED

1989/04 1989/04

MUNICIPALITY

: CHAPLEAU

PLANT

: CHAPLEAU LAGOON

WORKS NUMBER

: 110002149

TREATMENT

: AERATED LAGOON

: CONTINUOUS DISCHARGE

: SERIES OPERATION

DESIGN CAPACITY

: 4.54 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY DIST.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE MINOR BASIN MAJOR BASIN : NEBSKWASH

: JAMES BAY

: ARCTIC WATERSHED

POPULATION SERVED : 2,450

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.53	3.22	3.52	3.88	4.26	3.01	2.43	2.28	2.11	2.14	2.45	2.91	2.90	
LAGOON DISCHARGE	78.34	90.02	109.27	116.31	80.84	90.31	75.46	70.77	63.17	66.40	73.59	90.08	83.71	
BOD5														
INFLUENT (MG/L)	32.5	70.0	149.0	39.0	45.0	69.0	52.0	68.0	50.0	135.0	124.0	32.0	72.1	
EFFLUENT (MG/L)	31.5	25.0	9.0	11.2	27.5	18.0	21.0	7.9	18.0	21.0	13.8	22.5	18.9	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	79.69	80.50	31.68	43.45	117.15	54.18	51.03	18.01	37.98	44.94	33.81	65.47	54.81	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	47.5	160.0	167.0	57.0	90.0	125.0	290.0	142.5	58.0	139.0	145.0	30.0	120.9	
EFFLUENT (MG/L)	72.5	15.0	17.5	12.5	37.5	20.0	30.0	22.5	37.5	42.5	22.5	17.5	29.0	
CONCENTRATION LIMIT (MG/L)			10										40.0	
LOADING (KG/D)	183.42	48.30	61.60	48.50	159.75	60.20	72.90	51.30	79.12	90.95	55.12	50.92	84.10	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.1	2.0	2.8	2.4	1.9	1.6	1.7	1.6	2.5	3.5	2.9	1.7	2.2	
EFFLUENT (MG/L)	1.8	1.3	1.3	0.8	1.1	0.6	0.7	0.7	1.0	1.1	1.3	1.4	1.1	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	4.55	4.18	4.57	3.10	4.68	1.80	1.70	1.59	2.11	2.35	3.18	4.07	3.19	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD SS

30.0 MG/L YES 40.0 MG/L YES

TP

NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: COCHRANE

PLANT

: COCHRANE WPCP

WORKS NUMBER TREATMENT

: 120000355

: EXTENDED AERATION : EFFLUENT POLISHING

:

:

DESIGN CAPACITY

3.41 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : LILLABELLE LAKE

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 4,600

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.66	2.64	2.88	4.07	3.82	2.60	2.74	2.70	2.88	ND	5.27	3.69	3.27	
BOD5 INFLUENT (MG/L)	ND	92.0	73.0	88.0	48.0	69.0	95.0	ND	ND	89.0	ND	150.0	88.0	
EFFLUENT (MG/L)	ND	80.0	95.5	58.0	47.0	27.8	15.0	ND	ND	33.5	ND	113.0	58.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	211.20	275.04	236.06	179.54	72.28	41.10	ND	ND	ND	ND	416.97	191.95	
SUSPENDED SOLIDS								CONTRACT.	Supplier			and managers are a		
INFLUENT (MG/L)	ND	130.0	100.0	115.0	85.0	98.0	75.0	ND	ND	205.0	ND	water the second of the second of the second of	124.8	
EFFLUENT (MG/L)	ND_	360.0	272.5	135.0	95.0	42.5	65.0_	ND	ND	102.5	ND	220.0	161.6	
CONCENTRATION LIMIT (MG/L)												ter the same of the same of the	25.0	
LOADING (KG/D)	ND	950.40	784.80	549.45	362.90	110.50	178.10	ND	ND	ND	ND	811.80	528.43	
TOTAL PHOSPHOROUS							_							
INFLUENT (MG/L)	ND	4.7	4.1	3.8	3.0	4.6	5.4	ND	ND ND	5.8	ND	5.8	4.7	
EFFLUENT (MG/L)	ND	7.8	5.3	3.3	1.9	3.1	2.9	ND	ND	6.5	ND	3.9	4.3	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	20.59	15.26	13.43	7.25	8.06	7.94	ND	ND	ND	ND	14.39	14.06	

SI			

COMPLIES

CRITERIA WITH CONC PARM

25.0 MG/L INSUFFICIENT DATA SS 25.0 MG/L INSUFFICIENT DATA TP

NA

INSUFFICIENT DATA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW COLLECTION SYSTEM - SEWAGE UPGRADE UNDERWAY

ANTICIPATED

START DATE END DATE COMPLIANCE

1991 1992 1991 1992

MUNICIPALITY

: COSBY M.M.

PLANT

: NOELVILLE LAGOON

WORKS NUMBER

: 110002425

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

DESIGN CAPACITY

: 0.79 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY DIST.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : WOLF RIVER MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 551

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE! EXCEE!
AVG. DAILY FLOW (1000 M3)	0.23	0.24	0.37	0.28	0.37	0.30	0.20	0.18	0.17	0.16	0.18	0.19	0.24	
LAGOON DISCHARGE	ND	ND	ND	70.50	ND	ND	ND	ND	ND	ND	ND	ND	70.50	
BOD5	Water William							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
INFLUENT (MG/L)	196.0	208.0	46.0	129.0	108.0	90.0	137.0	170.0	175.0	141.0	142.0	233.0	147.9	
EFFLUENT (MG/L)	ND	ND	ND	7.3	ND	ND	ND	ND	ND	ND	ND	ND	7.3	
CONCENTRATION LIMIT (MG/L)						Haw was seen							30.0	
LOADING (KG/D)	ND	ND	ND	2.04	ND	ND	ND	ND	ND	ND	ND	ND	1.75	
SUSPENDED SOLIDS		21	11.5											
INFLUENT (MG/L)	130.0	320.0	111.0	185.0	193.0	275.0	108.0	115.0	332.0	155.0	210.0	185.0	193.3	
EFFLUENT (MG/L)	ND	ND	ND	20.0	ND	ND	ND	ND	ND	ND	ND	ND	20.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	5.60	ND	ND	ND	ND	ND	ND	ND	ND	4.80	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.7	9.5	3.5	7.1	5.0	4.5	5.6	6.8	7.3	7.2	6.2	10.0	6.5	
EFFLUENT (MG/L)	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	1.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	0.39	ND	ND	ND	ND	ND	ND	ND	ND	0.34	- Auto-Control

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

30.0 MG/L YES BOD

40.0 MG/L YES SS TP

NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: DUBREUILVILLE

PLANT

: DUBREUILVILLE LAGOON IN OP.1987

WORKS NUMBER

: 110001970

TREATMENT

: EXFILTRATION LAGOON

:

DESIGN CAPACITY

0.59 (1000 M3)

REGION : NORTHEAST DISTRICT : ALGOMA OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NO DISC.TO SURFACE WATER

MINOR BASIN : SUPERIOR
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.37	0.36	0.39	0.40	0.35	0.35	0.29	0.33	0.31	0.36	0.38	0.36	0.35	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5														
INFLUENT (MG/L)	220.0	425.0	94.0	35.0	40.0	55.0	160.0	18.0	321.0	ND	ND	ND	152.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)					~~~									
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	120.0	480.0	97.0	35.0	20.0	75.0	70.0	25.0	942.0	ND	ND	ND	207.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.5	6.3	7.3	4.6	4.7	5.2	10.4	8.6	7.2	ND	ND	ND	6.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	NA	NO DIRECT	DISCHARGE
SS	NA	NO DIRECT	DISCHARGE
TP	NA		DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - HAS NO CRITERIA SS - HAS NO CRITERIA TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT : ELLIOT LAKE : ESTEN LAKE WPCP

WORKS NUMBER

: 120001121

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

DESIGN CAPACITY

: 13.00 (1000 M3)

REGION : NORTHEAST
DISTRICT : ALGOMA
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : ESTEN LAKE

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 19,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL AVERAGE	NUMBEI EXCEEI
AVG. DAILY FLOW (1000 M3)	ND	ND	6.19	11.34	7.21	ND	6.70	6.80	6.04	5.84	6.41	5.14	6.85	
BOD5	ND	ND	38.0	20.0	54.0	ND	42.0	44.0	80.0	96.0	56.0	82.0	57.9	
INFLUENT (MG/L)		ND		29.0	8.0		39.0	29.0		740.0	23.0	THE RESERVE OF THE PERSON	97.6×	
EFFLUENT (MG/L)	ND	ND	6.6	4.4	0.0	ND	37.0	29.0	22.1	740.0	23.0	6.5	Committee of the second con-	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	40.85	49.89	57.68	שא	261.30	197.20	155.48	4321.60	147.45	33.41	668.56	
SUSPENDED SOLIDS		-2004143												
INFLUENT (MG/L)	ND_	ND	86.0	37.0	49.0	ND	43.0	62.0	112.0	the second section is a second section of	106.0	95.0	78.2	
EFFLUENT (MG/L)	ND_	ND	18.0	10.0	9.0	ND	5.0	13.3	17.4	12.2	10.4	18.0	12.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	111.42	113.40	64.89	ND	33.50	90.44	105.09	71.24	66.66	92.52	86.31	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	4.0	2.6	3.4	ND	2.9	3.5	4.3	3.5	2.9	3.4	3.4	
EFFLUENT (MG/L)	ND	ND	0.9	0.6	0.9	ND	0.5	0.8	1.0	0.8	0.6	0.9	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	5.57	6.80	6.48	ND	3.35	5.44	6.04	4.67	3.84	4.62	5.48	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L NO SS 25.0 MG/L YES

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

# NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: ENGLEHART

PLANT

: ENGLEHART LAGOON

WORKS NUMBER

: 110000187

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 0.90 (1000 M3) REGION : NORTHEAST

DISTRICT : TIMISKAMING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : ENGLEHART RIVER

MINOR BASIN : OTTAWA RIVER

: GREAT LAKES MAJOR BASIN

POPULATION SERVED : 1,730

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.16	1.16	1.44	3.40	2.91	2.86	1.70	1.15	1.21	1.26	1.64	1.17	1.76	
LAGOON DISCHARGE	35.80	32.54	44.70	101.78	90.20	85.80	52.00	43.86	36.36	39.10	49.24	49.20	55.05	
BOD5								20: =0						
INFLUENT (MG/L)	149.0	138.0	84.0	45.0	31.0	50.0	58.0	67.0	84.0	83.0	73.0	148.0	84.2	
EFFLUENT (MG/L)	6.6	9.1	13.5	11.2	8.3	3.4	2.1	2.1	2.9	2.1	1.4	5.5	5.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	7.65	10.55	19.44	38.08	24.15	9.72	3.57	2.41	3.50	2.64	2.29	6.43	10.03	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	210.0	240.0	140.0	157.0	106.0	85.0	87.0	92.0	95.0	165.0	150.0	150.0	139.8	
EFFLUENT (MG/L)	35.0	32.5	32.5	27.5	26.3	14.5	12.5	3.6	2.5	3.5	4.3	2.0	16.4	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	40.60	37.70	46.80	93.50	76.53	41.47	21.25	4.14	3.02	4.41	7.05	2.34	28.86	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	30.4	6.1	4.1	1.8	1.9	2.5	3.5	ND	4.2	4.7	5.3	4.1	6.2	
EFFLUENT (MG/L)	0.6	1.1*	1.4×	0.9	0.2	0.2	0.5	0.5	0.9	0.5	0.2	0.3	0.6	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.69	1.27	2.01	3.06	0.58	0.57	0.85	0.57	1.08	0.63	0.32	0.35	1.06	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 30.0 MG/L YES 40.0 MG/L YES

SS TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - MONITORING PROCEDURES BEING UPGRADED

MUNICIPALITY

: ESPANOLA

PLANT

: ESPANOLA WPCP

WORKS NUMBER TREATMENT : 110000212 : PRIMARY

:

____

REMEDIAL MEASURES

DESIGN CAPACITY : 3.00 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY DIST.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SPANISH RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 5,200

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.66	2.64	2.96	2.72	2.63	2.80	2.66	2.62	2.77	2.64	2.79	2.65	2.71	
BOD5 INFLUENT (MG/L)	82.0	90.0	93.0	60.0	61.0	54.0	89.0	59.0	51.0	60.0	68.0	125.0	74.3	
EFFLUENT (MG/L)	54.0	58.5	50.0	40.0	34.0	31.5	59.0	26.7	38.5	25.5	43.5	90.0	45.9	
LOADING (KG/D)	143.64	154.44	148.00	108.80	89.42	88.20	156.94	69.95	106.64	67.32	121.36	238.50	124.39	
PERCENT REMOVAL	34	35	46	33	44	42	34	55	25	58	36	28	38	
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS INFLUENT (MG/L)	110.0	120.0	100.0	105.0	130.0	68.0	73.0	60.0	37.0	73.0	95.0	130.0	91.8	
EFFLUENT (MG/L)	65.0	52.5	65.0	52.5	52.5	42.5	32.5	35.0	27.5	37.5	42.5	70.0	47.9	
LOADING (KG/D)	172.90	138.60	192.40	142.80		119.00	86.45	91.70	76.17	99.00	118.57	185.50	129.81	
PERCENT REMOVAL	41	56	35	50	60	38	55	42	26	49	55	46	48×	
PERCENT REMOVAL LIMITS				-	*****								50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.5	5.1	4.3	4.8	5.5	3.6	6.1	7.9	5.4	5.2	5.5	5.8	5.4	
EFFLUENT (MG/L)	5.5	5.0	5.3	4.5	6.6	5.7	5.2	5.2	4.4	4.4	ND	7.2	5.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	14.63	13.20	15.68	12.24	17.35	15.96	13.83	13.62	12.18	11.61	ND	19.08	14.63	

	SUMM	ARY	
	7	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30%	YES	
SS	50%	NO	
TP	NA	NA	

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

SLUDGE DISPOSAL/REMOVAL - SLUDGE QUALITY BEING IMPROVED

MUNICIPALITY

: FAUQUIER-STRICKLAND

WORKS NUMBER

: FAUQUIER LAGOON

TREATMENT

PLANT

: 110001792 : CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.27 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GROUNDHOG RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 650

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	0.43	0.30	ND	ND	ND	0.37	
LAGOON DISCHARGE	ND	ND	ND	ND	48.60	ND	ND	ND	ND	ND	ND	ND	48.60	
BOD5														
INFLUENT (MG/L)	ND	440.0	190.0	48.0	ND	78.0	60.0	75.0	130.0	ND	ND	ND	145.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	5.9	ND	ND	ND	7.5	ND	ND	ND	6.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	2.25	ND	ND	ND	2.48	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	270.0	590.0	160.0	ND	80.0	75.0	110.0	70.0	ND	ND	ND	193.6	L.
EFFLUENT (MG/L)	ND	ND	ND	ND	8.3	ND	ND	ND	25.0	ND	ND	ND	16.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	7.50	ND	ND	ND	6.18	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	5.0	4.1	3.4	ND	3.0	3.8	5.7	4.2	ND	ND	3.4	4.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.7	ND	ND	ND	0.4	ND	ND	ND	0.6	
CONCENTRATION LIMIT (MG/L)											NA C			
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	0.12	ND	ND	ND	0.22	

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

BOD 30.0 MG/L YES SS 40.0 MG/L YES TP NA NA

NO REMEDIAL MEASURES REPORTED

# NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: GORE BAY

PLANT

: GORE BAY LAGOON

WORKS NUMBER

: 110002513

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

*

DESIGN CAPACITY

0.63 (1000 M3)

REGION : NORTHEAST

DISTRICT : MANITOULIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: LAKE HURON

MINOR BASIN

: HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 780

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.48	0.37	0.60	0.79	0.38	0.41	0.37	0.37	0.38	0.32	0.43	0.37	0.44	
LAGOON DISCHARGE	ND	ND	ND	ND	133.92	ND	ND	ND	ND	ND	33.48	ND	83.70	
BOD5														
INFLUENT (MG/L)	21.0	62.0	106.0	10.0	85.0	65.0	175.0	110.0	210.0	120.0	65.0	127.0	96.3	125000000000000000000000000000000000000
EFFLUENT (MG/L)	ND	ND	ND	ND	7.8	ND	ND	ND	ND	ND	4.1	ND	6.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	2.96	ND	ND	ND	ND	ND	1.76	ND	2.64	
SUSPENDED SOLIDS					727									
INFLUENT (MG/L)	20.0	65.0	65.0	20.0	60.0	50.0	100.0	70.0	70.0	60.0	58.0	140.0	64.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	23.4	ND	ND	ND	ND	ND	0.1	ND	11.8	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	8.89	ND	ND	ND	ND	ND	0.04	ND	5.19	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.4	6.2	2.7	0.9	14.7	3.6	6.8	6.0	9.8	8.0	4.6	7.1	6.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND	1.9	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.72	ND	ND	ND	ND	ND	ND	ND	0.84	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY : HAILEYBURY

PLANT : LAKE TEMISKAMING NEW WPCP

WORKS NUMBER : 110002158

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 1.60 (1000 M3) REGION DISTRICT : NORTHEAST : TIMISKAMING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE TEMISKAMING MINOR BASIN : OTTAWA RIVER

: GREAT LAKES MAJOR BASIN

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE EXCEE
AVG. DAILY FLOW (1000 M3)	1.38	1.32	1.55	1.87	1.68	1.75	1.24	1.33	1.33	1.28	1.50	1.41	1.47	
B0D5	THEOREM SAME						50 W 16 I	Parentin Peter			100,000			
INFLUENT (MG/L)	59.0	9.0	98.0	51.0	24.0	74.0	64.0	26.0	89.0	153.0	70.0	26.0	61.9	
EFFLUENT (MG/L)	3.2	3.0	6.9	2.0	2.5	1.0	1.3	1.5	1.5	2.6	2.0	6.0	2.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.41	3.96	10.69	3.74	4.20	1.75	1.61	1.99	1.99	3.32	3.00	8.46	4.12	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	65.0	47.0	71.0	77.0	83.0	131.0	71.7	45.0	84.0	67.0	72.0	93.0	75.6	
EFFLUENT (MG/L)	12.4	14.4	28.0	11.4	14.2	6.8	12.3	7.0	4.6	15.0	10.2	6.5	11.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	17.11	19.00	43.40	21.31	23.85	11.90	15.25	9.31	6.11	19.20	15.30	9.16	17.49	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.8	1.6	2.0	2.4	3.2	3.4	ND	2.1	2.3	ND	6.1	2.2	2.9	
EFFLUENT (MG/L)	0.2	0.3	1.2*	0.2	0.1	0.1	0.2	0.3	0.2	0.2	0.3	0.1	0.3	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.27	0.39	1.86	0.37	0.16	0.17	0.24	0.39	0.26	0.25	0.45	0.14	0.44	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/01

REMEDIAL MEASURES

OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED

# 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: HAILEYBURY

PLANT

: LAKE TEMISKAMING OLD WPCP

WORKS NUMBER

: 110000310

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

:

DESIGN CAPACITY

1.59 (1000 M3)

REGION : NORTHEAST

DISTRICT : TIMISKAMING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE TIMISKAMING MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 3,240

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	1.31	1.26	1.54	2.19	2.07	2.02	1.50	1.54	1.46	1.39	1.62	1.37	1.61	
BOD5														
INFLUENT (MG/L)	ND	70.0	98.0	51.0	24.0	74.0	64.0	26.0	89.0	153.0	70.0	26.0	67.7	
EFFLUENT (MG/L)	ND	3.4	6.9	1.6	1.7	9.0	2.4	1.3	1.7	0.8	3.0	4.2	3.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	4.28	10.62	3.50	3.51	18.18	3.60	2.00	2.48	1.11	4.86	5.75	5.31	
LOADING LIMIT (KG/D)													68.20	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	81.0	60.0	71.0	77.0	83.0	131.0	61.0	60.0	83.0	67.0	72.0	93.0	78.3	
EFFLUENT (MG/L)	11.3	5.5	28.7	11.7	13.0	6.0	6.6	7.7	5.5	8.5	7.8	11.8	10.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	14.80	6.93	44.19	25.62	26.91	12.12	9.90	11.85	8.03	11.81	12.63	16.16	16.58	
LOADING LIMIT (KG/D)													68.20	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	4.7	2.0	2.4	3.2	4.8	3.8	2.1	2.3	ND	6.1	1.4	3.3	
EFFLUENT (MG/L)	0.1	0.3	1.1	0.2	0.1	0.2	0.6	0.2	0.1	0.2	0.8	0.3	0.4	
CONCENTRATION LIMIT (MG/L)													1.0	
LOADING (KG/D)	0.13	0.37	1.69	0.43	0.20	0.40	0.90	0.30	0.14	0.27	1.29	0.41	0.64	
LOADING LIMIT (KG/D)													2.70	

SUMMARY

COMPLIES WITH

 PARM
 CRITERIA
 LOADING
 CONC
 LOADING

 BOD
 25.0 MG/L
 68.20 KG/D YES
 YES

 SS
 25.0 MG/L
 68.20 KG/D YES
 YES

TP 1.0 MG/L 2.70 KG/D YES YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY
TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/01

REMEDIAL MEASURES

OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED

MUNICIPALITY

: HAILEYBURY

PLANT

: LAKE TEMISKAMING OLD WPCP

WORKS NUMBER

: 110000310

TREATMENT

: EXTENDED AFRATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

1.59 (1000 M3)

REGION : NORTHEAST

DISTRICT : TIMISKAMING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: LAKE TIMISKAMING

MINOR BASIN MAJOR BASIN : OTTAWA RIVER

: GREAT LAKES

POPULATION SERVED :

3,240

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.31	1.26	1.54	2.19	2.07	2.02	1.50	1.54	1.46	1.39	1.62	1.37	1.61	
BOD5			22. 2											
INFLUENT (MG/L)	ND	70.0	98.0	51.0	24.0	74.0	64.0	26.0	89.0	153.0	70.0	26.0	67.7	
EFFLUENT (MG/L)	ND	3.4	6.9	1.6	1.7	9.0	2.4	1.3	1.7	0.8	3.0	4.2	3.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	4.28	10.62	3.50	3.51	18.18	3.60	2.00	2.48	1.11	4.86	5.75	5.31	
SUSPENDED SOLIDS INFLUENT (MG/L)	81.0	60.0	71.0	77.0	83.0	131.0	61.0	60.0	83.0	67.0	72.0	93.0	78.3	
EFFLUENT (MG/L)	11.3	5.5	28.7	11.7	13.0	6.0	6.6	7.7	5.5	8.5	7.8		THE RESERVE OF THE PARTY OF	
CONCENTRATION LIMIT (MG/L)					13.0_	0.0	0.0			0.5	7.0	11.8	10.3	
LOADING (KG/D)	14.80	6.93	44.19	25.62	26.91	12.12	9.90	11.85	8.03	11.81	12.63	16.16	25.0 16.58	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	4.7	2.0	2.4	3.2	4.8	3.8	2.1	2.3	ND	6.1	1.4	3.3	
EFFLUENT (MG/L)	0.1	0.3	1.1*	0.2	0.1	0.2	0.6	0.2	0.1	0.2	0.8	0.3	0.4	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.13	0.37	1.69	0.43	0.20	0.40	0.90	0.30	0.14	0.27	1.29	0.41	0.64	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/01

MUNICIPALITY

: HAILEYBURY

PLANT

: NORTH COBALT LAGOON

WORKS NUMBER

: 110001382

TREATMENT

: AERATED CELL PLUS LAGOON

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

:

0.34 (1000 M3)

REGION : NORTHEAST

DISTRICT : TIMISKAMING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : FARR CREEK

MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.31	0.32	0.49	0.85	0.90	0.73	0.36	0.40	0.45	ND	0.51	0.30	0.51	
LAGOON DISCHARGE	9.59	8.94	15.23	25.34	59.28	ND	2.82	12.29	13.55	ND	ND	ND	18.38	
BOD5														
INFLUENT (MG/L)	119.0	120.5	126.5	69.0	41.0	107.0	107.0	90.0	143.0	ND	82.0	135.0	103.6	200
EFFLUENT (MG/L)	ND	ND	57.0	15.8	17.4	ND	13.0	11.0	15.0	ND	ND	ND	21.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	27.93	13.43	15.66	ND	4.68	4.40	6.75	ND	ND	ND	10.97	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	105.0	97.5	155.0	130.0	93.0	29.0	47.0	95.0	87.0	ND	65.0	135.0	94.4	
EFFLUENT (MG/L)	ND_	ND	15.0	67.5	18.8	ND	20.0	15.0	42.5	ND	ND	ND	29.8	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	7.35	57.37	16.92	ND	7.20	6.00	19.12	ND	ND	ND	15.20	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.0	6.7	8.8	4.1	3.1	3.7	6.2	5.2	6.7	ND	3.1	4.3	5.2	]
EFFLUENT (MG/L)	ND	ND	5.7*	1.5×	2.1*	ND	0.8	2.1*	2.0*	ND	ND	ND	2.4	5
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	2.79	1.27	1.89	ND	0.28	0.84	0.90	ND	ND	ND	1.22	

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES PARM

BOD 40.0 MG/L YES SS

TP NA NA

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NOTE:

NA - NOT APPLICABLE

MUNICIPALITY

: HALLEBOURG

PLANT

: HALLEBOURG LAGOON

WORKS NUMBER

: 120002031

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

:

24.00 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : LAKE MCILWROTH

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 260

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	. ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	8.28	ND	ND	ND	ND	8.28	ND	ND	8.28	
BOD5														
INFLUENT (MG/L)	315.0	275.0	255.0	260.0	255.0	140.0	265.0	170.0	220.0	ND	ND	155.0	231.0	1
EFFLUENT (MG/L)	ND	ND	ND	ND	6.8	ND	ND	ND	ND	1.3	ND	ND	4.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND     ND	ND												
SUSPENDED SOLIDS														
INFLUENT (MG/L)	260.0	340.0	250.0	230.0	180.0	150.0	100.0	220.0	230.0	ND	ND	130.0	209.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	3.0	ND	ND	ND	ND	4.0	ND	ND	3.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND     ND	ND		1										
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	12.0	13.0	13.0	8.4	11.4	5.7	8.3	11.8	7.3	ND	ND	9.2	10.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.5	ND	ND	ND	ND	0.8	ND	ND	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND     ND	ND												

	SUMMA	RY	
	P=========	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: HEARST

PLANT : CECILE TRAILER PARK LAGOON

WORKS NUMBER

: 120001997

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

DESIGN CAPACITY

: 0.07 (1000 M3) CONTINUOUS

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MATTAWISKIA

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED POPULATION SERVED : 140

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	0.02	0.01	0.01	0.01	0.02	0.02	0.02	0.02	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5														
INFLUENT (MG/L)	ND	200.0	ND	64.0	70.0	96.0	130.0	ND	160.0	140.0	160.0	120.0	126.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	14.0	ND	ND	4.2	2.0	ND	ND	6.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	0.28	ND	ND	0.04	0.04	ND	ND	0.13	
SUSPENDED SOLIDS				2123.00										
INFLUENT (MG/L)	ND	100.0	ND	55.0	60.0	85.0	65.0	ND	85.0	120.0	150.0	60.0	86.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	15.0	ND	ND	10.0	20.0	ND	ND	15.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	0.30	ND	ND	0.10	0.40	ND	ND	0.30	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	10.0	ND	3.9	4.2	5.9	7.2	ND	7.5	17.0	7.7	4.1	7.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	1.7	ND	ND	1.9	1.9	ND	ND	1.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	0.03	ND	ND	0.01	0.03	ND	ND	0.04	l

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L INSUFFICIENT DATA

SS

40.0 MG/L INSUFFICIENT DATA

TP INSUFFICIENT DATA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: HEARST

PLANT

: HEARST LAGOON

WORKS NUMBER

: 110000338

TREATMENT

: AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

: REGULATED DISCHARGE VOLUME

DESIGN CAPACITY

6.81 (1000 M3)

DISTRICT : NORTHEAST : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : MATTAWISHKWIA RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 5,270

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.80	2.13	2.50	4.39	3.48	2.81	2.38	2.70	2.43	2.55	3.10	2.01	2.69	
LAGOON DISCHARGE	ND	ND	ND	ND	873.66	ND	ND	ND	ND	110.76	105.39	ND	363.27	
BOD5 INFLUENT (MG/L)	122.0	78.0	72.0	95.0	48.0	94.0	68.0	43.0	101.0	55.0	101.0	145.0	85.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	17.3	ND	ND	ND	ND	1.4	ND	ND	9.4	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	60.20	ND	ND	ND	ND	3.57	ND	ND	25.29	
SUSPENDED SOLIDS INFLUENT (MG/L)	98.0	68.0	65.0	293.0	47.0	108.0	40.0	210.0	95.0	120.0	235.0	670.0	170.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	42.5	ND	ND	ND	ND	3.2	ND	ND	22.9	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	147.90	ND	ND	ND	ND	8.16	ND	ND	61.60	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.4	4.6	4.6	4.8	2.8	4.4	5.1	3.0	4.3	3.1	2.6	5.0	4.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	2.4	ND	ND	ND	ND	1.1	1.6	ND	1.7	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	8.35	ND	ND	ND	ND	2.80	4.96	ND	4.57	

SI	IM	M	A	D	v
J.	JM	М	м	ĸ	

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: HORNEPAYNE

PLANT

: HORNEPAYNE WPCP

WORKS NUMBER

: 110001952

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

1.36 (1000 M3)

REGION DISTRICT : NORTHEAST

: ALGOMA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: JACKFISH RIVER

MINOR BASIN

: JAMES BAY

MAJOR BASIN

: ARCTIC WATERSHED

POPULATION SERVED : 1,675

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.77	0.68	0.98	1.45	1.28	0.90	0.80	1.23	0.78	0.90	1.17	0.77	0.98	
BOD5 INFLUENT (MG/L)	77.0	113.0	80.0	52.0	59.0	54.0	62.0	50.0	63.0	71.0	32.0	121.0	69.5	
EFFLUENT (MG/L)	8.7	3.5	5.4	8.5	2.0	23.4	0.9	1.7	4.6	3.0	3.1	5.0	5.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	6.69	2.38	5.29	12.32	2.56	21.06	0.72	2.09	3.58	2.70	3.62	3.85	5.68	
SUSPENDED SOLIDS INFLUENT (MG/L)	95.0	130.0	83.0	48.0	48.0	48.0	35.0	35.0	47.5	73.0	55.0	73.0	64.2	
EFFLUENT (MG/L)	8.5	8.5	15.0	15.0	4.0	18.0	4.5	4.0	7.0	5.4	10.0	17.5	9.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	6.54	5.78	14.70	21.75	5.12	16.20	3.60	4.92	5.46	4.86	11.70	13.47	9.60	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.2	5.0	4.9	2.6	2.8	3.7	2.4	3.0	3.9	5.2	2.3	4.1	3.7	
EFFLUENT (MG/L)	2.8	2.8	1.7	1.5	1.4	3.4	1.4	2.2	0.7	1.1	1.3	2.5	1.9	
CONCENTRATION LIMIT (MG/L)											1.5_			
LOADING (KG/D)	2.15	1.90	1.66	2.17	1.79	3.06	1.12	2.70	0.54	0.99	1.52	1.92	1.86	la reconsiderate

SUMMARY

COMPLIES

BOD

PARM CRITERIA WITH CONC 25.0 MG/L YES

SS TP

25.0 MG/L YES NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: IROQUOIS FALLS

PLANT

: IROQUOIS FALLS WPCP

WORKS NUMBER TREATMENT

: 110002121

: CONTACT STABILIZATION

:

DESIGN CAPACITY

4.09 (1000 M3)

: NORTHEAST REGION DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ABITIBI RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 5,575

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)	2.64	2.54	2.94	5.29	4.13	3.74	3.04	3.25	2.92	3.02	3.70	2.88	3.34	
B0D5														
INFLUENT (MG/L)	130.0	101.0	97.0	50.0	40.0	49.0	25.0	41.0	77.0	104.0	45.0	69.0	69.0	
EFFLUENT (MG/L)	14.0	18.0	18.5	12.1	30.5	27.5	19.0	30.5	22.0	32.5	16.5	19.0	21.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	36.96	45.72	54.39	64.00	125.96	102.85	57.76	99.12	64.24	98.15	61.05	54.72	72.48	
SUSPENDED SOLIDS				314111111111111111111111111111111111111										
INFLUENT (MG/L)	135.0	83.0	78.0	44.0	62.0	63.0	39.0	70.7	104.3	88.0	63.0	56.0	73.8	
EFFLUENT (MG/L)	6.5	7.7	6.6	5.0	7.3	7.3	6.3	8.7	5.0	5.8	8.4	13.4	7.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	17.16	19.55	19.40	26.45	30.14	27.30	19.15	28.27	14.60	17.51	31.08	38.59	24.38	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.8	5.5	8.2	2.8	3.4	3.9	3.2	5.0	4.3	3.1	3.0	3.8	4.3	
EFFLUENT (MG/L)	ND	2.7	3.1	1.6	1.6	1.2	ND	7.3	2.8	2.5	ND	2.2	2.8	
CONCENTRATION LIMIT (MG/L)												<del></del>		
LOADING (KG/D)	ND	6.85	9.11	8.46	6.60	4.48	ND	23.72	8.17	7.55	ND	6.33	9.35	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM 25.0 MG/L YES

SS 25.0 MG/L YES TP

NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: IROQUOIS FALLS

PLANT

: PORQUIS JUNCTION LAGOON

WORKS NUMBER TREATMENT

: 120003290

: CONVENTIONAL LAGOON SEASONAL : SINGE CELL

:

DESIGN CAPACITY

0.04 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : STATION CR.TO MEADOW CR.

MINOR BASIN

: JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 176

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.05	0.05	0.07	0.14	0.13	0.11	0.08	0.09	0.07	0.08	0.10	0.06	0.09	
LAGOON DISCHARGE		ND		ND	20.00	ND	ND	ND	ND	ND	ND	ND	6.67	
BOD5					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
INFLUENT (MG/L)	142.0	160.0	69.0	16.0	31.0	47.0	78.0	108.0	77.0	88.0	118.0	159.0	91.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	11.7	ND	ND	ND	ND	ND	ND	ND	11.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	1.52	ND	ND	ND	ND	ND	ND	ND	1.05	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	225.0	85.0	77.0	100.0	45.0	38.0	20.0	120.0	95.0	88.0	110.0	120.0	93.6	
EFFLUENT (MG/L)	ND	ND	4.5	4.5	10.0	3.0	ND	ND	ND	ND	ND	ND	5.5	
CONCENTRATION LIMIT (MG/L)											1		40.0	
LOADING (KG/D)	ND	ND	0.31	0.63	1.30	0.33	ND	ND	ND	ND	ND	ND	0.50	
TOTAL PHOSPHOROUS						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
INFLUENT (MG/L)	7.0	5.0	5.0	1.2	2.6	3.1	3.4	5.9	5.8	5.2	3.9	6.5	4.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND	ND	1.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.19	ND	ND	ND	ND	ND	ND	ND	0.14	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: JOGUES

PLANT

: JOGUES LAGOON

WORKS NUMBER

: 120002022

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

27.00 (1000 M3)

REGION : NORTHEAST
DISTRICT : COCHRANE
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : PRUNE CREEK
MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 215

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5			***************************************											
INFLUENT (MG/L)	225.0	180.0	220.0	138.0	185.0	88.0	165.0	226.0	ND	175.0	302.0	185.0	189.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	85.0	60.0	140.0	210.0	160.0	75.0	150.0	110.0	ND	95.0	190.0	170.0	131.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)												W 200 11 11 11 11 11 11 11 11 11 11 11 11 1	25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	11.0	13.0	13.0	7.2	6.5	5.2	6.7	8.7	ND	8.5	8.5	8.8	8.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

U	м	м	А	D'	v
v	m	М	м	ĸ	T.

COMPLIES

 PARM
 CRITERIA
 WITH CONC

 BOD
 25.0 MG/L
 NO DISCHARGE

 SS
 25.0 MG/L
 NO DISCHARGE

 TP
 1.0 MG/L
 NO DISCHARGE

NO REMEDIAL MEASURES REPORTED

# NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: KAPUSKASING

PLANT

: KAPUSKASING WEST END WPCP

WORKS NUMBER

: 120002059

TREATMENT

: EXTENDED AERATION

: : :

DESIGN CAPACITY

0.68 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : KAPUSKASING RIVER : JAMES BAY

MINOR BASIN MAJOR BASIN

: ARCTIC WATERSHED

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD NA NO DISCHARGE 25.0 MG/L NO DISCHARGE SS

TP NA NO DISCHARGE NOTE:

BOD - HAS NO CRITERIA

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: KAPUSKASING

PLANT

: KAPUSKASING WPCP

WORKS NUMBER TREATMENT : 110003004 : EXTENDED AERATION

:

DESIGN CAPACITY

9.09 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : KAPUSKASING RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 12,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	5.28	5.24	6.24	10.57	10.55	7.47	6.11	6.29	5.55	6.12	7.27	5.08	6.81	
BOD5 INFLUENT (MG/L)	150.0	133.0	170.0	50.0	51.0	54.0	104.5	117.8	113.6	84.0	87.0	66.0	98.4	
EFFLUENT (MG/L)	15.5	9.3	6.1	8.3	3.5	6.3	4.1	6.3	7.9	29.0	4.9	3.0	8.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	81.84	48.73	38.06	87.73	36.92	47.06	25.05	39.62	43.84	177.48	35.62	15.24	59.25	
SUSPENDED SOLIDS INFLUENT (MG/L)	111.0	121.0	258.0	220.0	79.0	83.0	73.0	110.7	99.5	190.0	96.0	83.0	127.0	
EFFLUENT (MG/L)	10.8	15.2	9.3	5.3	4.5	4.0	4.3	4.6	6.3	5.6	7.9	13.3	7.6	
CONCENTRATION LIMIT (MG/L)	10.0	13.6	7.3			7.0	7.3		0.3			13.3	25.0	
LOADING (KG/D)	57.02	79.64	58.03	56.02	47.47	29.88	26.27	28.93	34.96	34.27	57.43	67.56	51.76	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	4.8	ND	2.6	3.6	3.0	3.1	7.2	3.5	4.8	4.5	3.8	4.1	
EFFLUENT (MG/L)	ND	2.2	0.7	0.4	1.0	1.7	2.0	1.6	1.5	2.4	2.0	6.6	2.0	
CONCENTRATION LIMIT (MG/L)			T. 12 1											
LOADING (KG/D)	ND	11.52	4.36	4.22	10.55	12.69	12.22	10.06	8.32	14.68	14.54	33.52	13.62	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA
NA - NOT APPLICABLE

MUNICIPALITY : KIRKLAND LAKE

PLANT : KIRKLAND LAKE WPCP

WORKS NUMBER : 120000015

TREATMENT : CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

.

DESIGN CAPACITY : 13.63 (1000 M3)

REGION : NORTHEAST

DISTRICT : TIMISKAMING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : MURDOCK CREEK

MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 12,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	11.39	10.98	12.88	19.57	15.36	11.12	9.32	9.34	7.26	8.84	10.96	11.77	11.57	
B0D5										rases vers		SESSI FORM		
INFLUENT (MG/L)	41.0	50.0	49.0	26.0	33.0	38.0	14.0	60.3	50.0	50.0	38.0	31.0	40.0	
EFFLUENT (MG/L)	5.4	12.0	7.0	4.5	6.7	8.8	5.5	2.3	5.0	6.9	14.6	4.0	6.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	61.50	131.76	90.16	88.06	102.91	97.85	51.26	21.48	36.30	60.99	160.01	47.08	79.83	
SUSPENDED SOLIDS					NAME AND	<del></del>								
INFLUENT (MG/L)	66.0	65.0	56.0	37.0	39.0	61.0	43.6	77.0	67.0	91.0	63.0	46.0	59.3	
EFFLUENT (MG/L)	25.2	20.4	22.0	18.6	14.6	9.8	7.6	9.6	12.5	13.0	12.1	17.0	15.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	287.02	223.99	283.36	364.00	224.25	108.97	70.83	89.66	90.75	114.92	132.61	200.09	175.86	
TOTAL PHOSPHOROUS					0.000									
INFLUENT (MG/L)	3.0	3.2	2.8	2.2	2.4	3.2	3.0	3.5	4.7	3.8	3.1	2.6	3.1	
EFFLUENT (MG/L)	0.9	1.3*	1.1*	0.5	0.5	0.4	0.6	0.9	1.2*	a special and the second	0.5	0.6	0.8	3
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	10.25	14.27	14.16	9.78	7.68	4.44	5.59	8.40	8.71	7.07	5.48	7.06	9.26	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP 1.0 MG/L NO

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

NO ACTION - MARGINAL FAILURE-MONITORING LEVEL OF FAILED PARAMETER CLOSELY

MUNICIPALITY PLANT : KIRKLAND LAKE

WORKS NUMBER

: SWASTIKA WPCP : 120001942

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

DESIGN CAPACITY

0.39 (1000 M3)

REGION : NORTHEAST
DISTRICT : TIMISKAMING
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : OTTO LAKE
MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 700

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BODS INFLUENT (MG/L)	82.0	ND	40.0	26.0	38.0	56.0	74.0	92.0	108.0	100.0	70.0	70.0	68.7	
EFFLUENT (MG/L)	7.8	ND	3.5	3.6	2.1	2.4	2.8	2.3	3.4	2.8	3.6	15.0	4.5	-
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS INFLUENT (MG/L)	95.0	ND	85.0	40.0	60.0	40.0	45.0	60.0	110.0	100.0	90.0	55.0	70.9	
EFFLUENT (MG/L)	35.0	ND	15.0	15.0	15.0	20.0	15.5	10.0	10.0	10.0	15.0	20.0	16.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS					2 1115/5									
INFLUENT (MG/L)	4.3	ND	3.1	1.3	2.7	4.7	4.6	3.8	5.6	3.5	3.6	2.6	3.6	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	1.1	ND	0.7	0.5	ND	1.0	0.6	0.6	1.0	ND	0.7	0.8	0.8	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: LARDER LAKE

PLANT

: LARDER LAKE TOWNSITE WPCP

WORKS NUMBER

: 120000033

TREATMENT

: EXFILTRATION LAGOON

:

DESIGN CAPACITY

0.59 (1000 M3)

REGION : NORTHEAST
DISTRICT : TIMISKAMING
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : LARDER LAKE
MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,100

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5														
INFLUENT (MG/L)	88.0	100.0	65.0	ND	20.0	54.0	ND	36.0	275.0	74.0	72.0	ND	87.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS			3,000											
INFLUENT (MG/L)	100.0	60.0	75.0	ND	50.0	55.0	ND	90.0	140.0	95.0	100.0	ND	85.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS					A-11/A-11/A					1,000				
INFLUENT (MG/L)	4.3	5.3	5.3	ND	1.3	2.9	ND	1.8	5.5	3.8	3.3	ND	3.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

	SUMMA	RY
	-	COMPLIES
PARM	CRITERIA	WITH CONC
BOD	NA	NO DIRECT DISCHARGE
SS	NA	NO DIRECT DISCHARGE
TP	NA	NO DIRECT DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: LATCHFORD

WORKS NUMBER

: LATCHFORD WPCP : 110001774

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

0.34 (1000 M3)

REGION : NORTHEAST DISTRICT : TIMISKAMIN : TIMISKAMING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MONTREAL RIVER MINOR BASIN : OTTAWA RIVER : GREAT LAKES MAJOR BASIN POPULATION SERVED : 427

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.41	0.32	0.51	0.61	0.48	0.39	0.31	0.26	0.25	0.27	0.25	0.27	0.36	
BOD5 INFLUENT (MG/L)	77.0	40.0	29.0	27.0	18.0	45.0	37.0	145.0	69.0	65.0	94.0	62.0	59.0	
EFFLUENT (MG/L)	6.0	11.2	4.8	5.0	7.9	3.8	1.7	2.9	1.5	7.2	22.0	2.0	6.3	III SV V V
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.46	3.58	2.44	3.05	3.79	1.48	0.52	0.75	0.37	1.94	5.50	0.54	2.27	
SUSPENDED SOLIDS INFLUENT (MG/L)	140.0	45.0	45.0	37.0	30.0	82.0	87.5	495.0	47.5	265.0	75.0	30.0	114.9	
EFFLUENT (MG/L)	18.7	12.4	10.8	11.5	14.1	12.3	10.2	9.6	10.6	9.0	12.5	19.5	12.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	7.66	3.96	5.50	7.01	6.76	4.79	3.16	2.49	2.65	2.43	3.12	5.26	4.54	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.7	2.1	1.6	1.7	1.0	2.5	3.9	5.6	3.2	4.8	2.5	1.7	2.9	
EFFLUENT (MG/L)	0.9	3.0	0.4	0.4	0.5	0.5	0.4	0.3	0.6	1.1	1.1	1.2	0.9	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.36	0.96	0.20	0.24	0.24	0.19	0.12	0.07	0.15	0.29	0.27	0.32	0.32	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA * - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA NA - NOT APPLICABLE

MUNICIPALITY

: LITTLE CURRENT

PLANT

: LITTLE CURRENT LAGOON

WORKS NUMBER

: 110000392

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.92 (1000 M3)

REGION : NORTHEAST

DISTRICT : MANITOULIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: DITCH TO GEORGIAN BAY

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 1,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.82	0.88	1.48	1.72	0.86	0.72	0.66	0.66	0.58	0.64	0.80	ND	0.89	
LAGOON DISCHARGE	ND	ND	ND	ND	141.20	ND	ND	ND	ND	ND	154.00	ND	147.60	
BOD5														
INFLUENT (MG/L)	80.0	52.0	ND	ND	122.0	ND	ND ND	ND	116.0	95.0	ND	ND	93.0	1
EFFLUENT (MG/L)	ND_	ND	ND	ND	21.9	ND	ND	ND	ND	ND	5.9	ND	13.9	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	18.83	ND	ND	ND	ND	ND	4.72	ND	12.37	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	95.0	100.0	ND	ND	70.0	ND	ND	ND	80.0	100.0	ND	ND	89.0	<u>l</u>
EFFLUENT (MG/L)	ND	ND	ND	ND	38.3	ND	ND	ND	ND	ND	5.8	ND	22.1	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	32.93	ND	ND	ND	ND	ND	4.64	ND	19.67	
TOTAL PHOSPHOROUS							32 32							
INFLUENT (MG/L)	5.0	3.5	ND	ND	5.0	ND	ND	ND	6.8	5.8	ND	ND	5.2	L
EFFLUENT (MG/L)	ND	ND	ND	ND	3.6	ND	ND	ND	ND	ND	3.5	ND	3.6	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	3.09	ND	ND	ND	ND	ND	2.80	ND	3.20	

SUMMARY

COMPLIES

PARM

CRITERIA WITH CONC 30.0 MG/L YES

BOD 40.0 MG/L YES SS

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: MATTAWA

PLANT

: MATTAWA LAGOON

WORKS NUMBER

: 110000436

TREATMENT

: EXFILTRATION LAGOON

:

DESIGN CAPACITY

1.09 (1000 M3)

ND

ND

ND

ND

REGION : NORTHEAST DISTRICT : NIPPISSING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MATTAWA RIVER MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES POPULATION SERVED : 2,686

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.73	1.54	1.45	1.54	1.59	1.57	1.20	ND	1.27	1.18	1.46	1.35	1.44	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5														
INFLUENT (MG/L)	ND	ND	ND	ND	85.0	ND	ND	ND	ND	ND	ND	ND	85.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	ND	ND	ND	45.0	ND	ND	ND	ND	ND	ND	ND	45.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)											,			7. A
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS										121				
INFLUENT (MG/L)	ND	ND	ND	ND	3.6	ND	ND	ND	ND	ND	ND	ND	3.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
			the second section in the second									110		No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other pa

ND

ND

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	NA	NO DIRECT DISCHARGE
SS	NA	NO DIRECT DISCHARGE
TP	NA	NO DIRECT DISCHARGE
	BOD SS	BOD NA SS NA

NO REMEDIAL MEASURES REPORTED

CONCENTRATION LIMIT (MG/L)

LOADING (KG/D)

NOTE:

ND

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND

ND

ND

ND - NO DATA

ND

MUNICIPALITY

: MATTICE-VAL COTE

PLANT WORKS NUMBER : MATTICE LAGOON

: 120001791

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

DESIGN CAPACITY

: 0.58 (1000 M3) REGION : NORTHEAST DISTRICT

: COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: MISSINABI RIVER

MINOR BASIN

: JAMES BAY

MAJOR BASIN

: ARCTIC WATERSHED

POPULATION SERVED : 400

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.28	0.24	0.29	0.46	0.42	0.34	0.64	0.39	0.32	0.36	0.47	0.21	0.37	
LAGOON DISCHARGE	ND	ND	ND	ND	60.40	ND	ND	ND	ND	60.60	ND	ND	60.50	
B0D5		7												
INFLUENT (MG/L)	68.0	ND	ND	ND	172.0	ND	ND	34.0	34.0	66.0	ND	88.0	77.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	14.0	ND	ND	ND	ND	5.1	ND	ND	9.6	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	5.88	ND	ND	ND	ND	1.83	ND	ND	3.55	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	120.0	ND	ND	ND	90.0	ND	ND	40.0	40.0	110.0	ND	75.0	79.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	22.5	ND	ND	ND	ND	13.3	ND	ND	17.9	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	9.45	ND	ND	ND	ND	4.78	ND	ND	6.62	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.4	ND	ND	ND	3.9	ND	ND	4.2	4.2	4.6	ND	4.2	4.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	2.0	ND	ND	ND	ND	1.6	ND	ND	1.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.84	ND	ND	ND	ND	0.57	ND	ND	0.67	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 30.0 MG/L YES

SS 40.0 MG/L YES TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MCGARRY

PLANT

: VIRGINIATOWN AND KEARNS WPCP

WORKS NUMBER

: 120000024

TREATMENT

: COMMUNAL SEPTIC TANK

:

DESIGN CAPACITY

0.72 (1000 M3)

REGION DISTRICT

: NORTHEAST : TIMISKAMING

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: TAILING PD TO LARDER L.

MINOR BASIN MAJOR BASIN : OTTAWA RIVER : GREAT LAKES

POPULATION SERVED : 1,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	37.0	31.0	27.0	17.0	18.0	7.0	17.0	10.0	• •	10.0	•••	•••		
EFFLUENT (MG/L)	19.0	17.0	21.0	8.0	14.0			18.0	8.0	10.0_	20.0	28.0	19.8	
LOADING (KG/D)	ND	ND	ND	ND	ND	6.5 ND	14.0 ND	18.0	21.0	8.5	15.0	25.0	15.6	
PERCENT REMOVAL	49	45	22	53	22			ND	ND	ND	ND _	ND_		
PERCENT REMOVAL LIMITS		45_				07	18		ND	15	25_	11	21*	
PERCENT REMOVAE CIMITS													30	
SUSPENDED SOLIDS INFLUENT (MG/L)	50.0	40.0	55.0	35.0	15.0	25.0	9.0	25.0	7.0	15.0	20.0	35.0	27.6	
EFFLUENT (MG/L)	25.0	15.0	25.0	20.0	24.0	65.0	10.0	25.0	20.0	9.0	20.0	40.0	27.6 24.8	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	24.0	
PERCENT REMOVAL	50	63	55	43	ND	ND	ND ND		ND ND	40		ND.	10×	
PERCENT REMOVAL LIMITS									ND	40		ND	50	
													50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	1.6	1.6	1.8	1.4	0.9	1.0	0.5	2.0	0.8	0.8	1.2	1.8	1.3	
EFFLUENT (MG/L)	1.4	1.4	1.7	0.9	0.9	0.9	0.5	2.2	1.5	1.0	1.0	1.7	1.3	
CONCENTRATION LIMIT (MG/L)										1.0		1./	1.5	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		******

	SUMMA	ARY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30%	NO	
SS	50%	NO	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

#### 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY : MICHIPICOTEN
PLANT : WAWA LAGOON

WORKS NUMBER : 110000454

TREATMENT : CONVENTIONAL LAGOON SEASONAL : PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 4.54 (1000 M3)

REGION : NORTHEAST DISTRICT : ALGOMA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MAGPIE RIVER
MINOR BASIN : SUPERIOR
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 3,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.70	2.56	2.51	3.74	3.74	2.50	1.97	2.12	2.11	1.97	2.17	2.35	2.54	
LAGOON DISCHARGE	83.60	71.75	77.49	117.32	116.06	74.86	61.07	65.73	63.21	61.21	65.15	72.78	77.52	
BOD5														
INFLUENT (MG/L)	ND	60.0	ND	59.0	103.0	780.0	130.0	69.0	65.0	80.0	140.0	150.0	163.6	
EFFLUENT (MG/L)	ND	5.3	ND	8.4	12.0	2.2	2.6	2.8	3.8	12.0	14.0	3.9	6.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	13.56	ND	31.41	44.88	5.50	5.12	5.93	8.01	23.64	30.38	9.16	17.02	
LOADING LIMIT (KG/D)													107.5	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	45.0	ND	85.0	180.0	65.0	40.0	40.0	290.0	55.0	175.0	260.0	123.5	
EFFLUENT (MG/L)	ND	8.0	ND	6.1	22.5	3.0	10.0	3.0	3.0	5.0	11.0	4.0	7.6	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	20.48	ND	22.81	84.15	7.50	19.70	6.36	6.33	9.85	23.87	9.40	19.30	
LOADING LIMIT (KG/D)													129.0	1
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	2.9	ND	3.2	4.6	3.1	4.2	4.4	3.5	4.2	4.9	5.5	4.1	
EFFLUENT (MG/L)	ND	1.3	ND	0.9	0.9	0.2	0.5	0.6	0.7	0.3	0.7	0.9	0.7	
CONCENTRATION LIMIT (MG/L)													1.0	
LOADING (KG/D)	ND	3.32	ND	3.36	3.36	0.50	0.98	1.27	1.47	0.59	1.51	2.11	1.78	
LOADING LIMIT (KG/D)													4.35	

		SUMMARY	COMPL	IES WITH
ARM	CRITERIA	LOADING		LOADING
OD	25.0 MG/L	107.5 KG/D	YES	YES
S	30.0 MG/L	129.8 KG/D	YES	YES
P	1.0 MG/L	4.3 KG/D	YES	YES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED

MUNICIPALITY

: MICHIPICOTEN

PLANT

: WAWA LAGOON

WORKS NUMBER

: 110000454

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

4.54 (1000 M3)

REGION : NORTHEAST DISTRICT : ALGOMA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: MAGPIE RIVER WATERCOURSE

MINOR BASIN : SUPERIOR MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 3,800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.70	2.56	2.51	3.74	3.74	2.50	1.97	2.12	2.11	1.97	2.17	2.35	2.54	
LAGOON DISCHARGE	83.60	71.75	77.49	117.32	116.06	74.86	61.07	65.73	63.21	61.21	65.15	72.78	77.52	
BOD5 INFLUENT (MG/L)	ND	60.0	ND	59.0	103.0	780.0	130.0	69.0	65.0	80.0	140.0	150.0	163.6	i i
EFFLUENT (MG/L)	ND	5.3	ND	8.4	12.0	2.2	2.6	2.8	3.8	12.0	14.0	3.9	6.7	
CONCENTRATION LIMIT (MG/L)			NU		12.0					12.0	14.0	3.7	30.0	
LOADING (KG/D)	ND	13.56	ND	31.41	44.88	5.50	5.12	5.93	8.01	23.64	30.38	9.16	17.02*	
SUSPENDED SOLIDS		ATEL (1900)	2000	55.50	5. 3500 13		Accessed		15.50.00			20 00221 0		
INFLUENT (MG/L)	ND	45.0	ND	85.0	180.0	65.0	40.0	40.0	290.0	55.0	175.0	260.0	123.5	
EFFLUENT (MG/L)	ND	8.0	ND	6.1	22.5	3.0	10.0	3.0	3.0	5.0	11.0	4.0	7.6	01
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	20.48	ND	22.81	84.15	7.50	19.70	6.36	6.33	9.85	23.87	9.40	19.30*	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	2.9	ND	3.2	4.6	3.1	4.2	4.4	3.5	4.2	4.9	5.5	4.1	
EFFLUENT (MG/L)	ND	1.3*	ND	0.9	0.9	0.2	0.5	0.6	0.7	0.3	0.7	0.9	0.7	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	3.32	ND	3.36	3.36	0.50	0.98	1.27	1.47	0.59	1.51	2.11	1.78×	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

30.0 MG/L YES BOD SS 40.0 MG/L YES

TP 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED

MUNICIPALITY

: MOONBEAM

PLANT : MOONBEAM LAGOON

WORKS NUMBER

: 110000230

TREATMENT :

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.65 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CREEK SYS TO GROUNDHOG R
MINOR BASIN : JAMES BAY

MINOR BASIN : JAMES BAY
MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 1,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	0.21	0.22	ND	ND	1.12	1.00	ND	2.14	ND	0.94	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5	20.048* 20.0		Sentracar ne	22 2020 1040	2774 277	ALERO CHESTANI ACAD	A-MANUE DEL				Difference:			
INFLUENT (MG/L)	413.0	185.0	235.0	140.0	64.0	235.0	191.3	125.0	80.0	ND	ND	ND	185.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.5	ND	4.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.63	ND	4.23	
SUSPENDED SOLIDS INFLUENT (MG/L)	940.0	130.0	550.0	220.0	85.0	140.0	175.0	145.0	120.0	ND	ND	ND	278.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	38.3	ND	38.3	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	81.96	ND	36.00	
TOTAL PHOSPHOROUS								-						
INFLUENT (MG/L)	11.5	6.8	7.8	3.1	2.5	4.8	6.0	6.1	3.2	ND	ND	ND	5.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND	1.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.21	ND	1.41	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MOOSONEE D.A.B.

PLANT

: MOOSONEE WPCP (NORTH)

WORKS NUMBER TREATMENT : 120000319

**

: EXTENDED AERATION

:

DESIGN CAPACITY

0.25 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MOOSE RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 300

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.26	0.23	0.24	0.20	0.21	0.20	0.20	0.20	0.19	0.18	0.18	0.19	0.21	
BOD5				2001		2000 200			Control stor		5055 N 1056		NEDW WHO	
INFLUENT (MG/L)	ND	22.0	29.0	24.0	67.0	48.0	39.0	25.0	82.5	ND	91.0	137.0	56.5	
EFFLUENT (MG/L)	3.7	11.1_	3.6	2.4	11.2	4.5	6.5	7.6	7.0	ND	4.7	8.5	6.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.96	2.55	0.86	0.48	2.35	0.90	1.30	1.52	1.33	ND	0.84	1.61	1.34	
SUSPENDED SOLIDS	101.0	(0.0	71.0	40.0	107.0	115.0	50.0	75.0	200 5		77.0			
INFLUENT (MG/L) EFFLUENT (MG/L)	121.0	62.0	71.0	49.0	123.0	115.0	59.0	75.0	209.5	ND	73.0	273.0	111.9	
	ND	20.3	17.3	11.0	75.5	7.2	9.0	11.0	17.5	ND	8.0	13.4	19.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	4.66	4.15	2.20	15.85	1.44	1.80	2.20	3.32	ND	1.44	2.54	3.99	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	2.3	2.2	1.9	3.5	4.1	2.4	2.3	ND	ND	3.8	5.6	3.1	
EFFLUENT (MG/L)	0.4	0.5	0.4	0.3	0.5	0.3	0.6	1.0	ND	ND	0.6	0.9	0.6	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.10	0.11	0.09	0.06	0.10	0.06	0.12	0.20	ND	ND	0.10	0.17	0.13	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: MOOSONEE D.A.B.

PLANT

: MOOSONEE WPCP (OLD TOWNSITE)

WORKS NUMBER

: 110001060

TREATMENT

: CONTACT STABILIZATION

:

DESIGN CAPACITY

: 0.50 (1000 M3) REGION : NORTHEAST

DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : STORE CK TO MOOSE RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 1,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.55	0.61	0.70	0.78	0.74	0.70	0.74	0.71	0.81	0.88	0.65	0.55	0.70	
BOD5 INFLUENT (MG/L)	ND	88.0	79.0	117.0	122.0	217.0	118.0	125.0	110.0	ND	91.0	154.0	122.1	
EFFLUENT (MG/L)	12.0	53.2	66.0	21.6	30.0	74.4	27.2	57.3	42.7	ND	6.8	74.0	42.3×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	6.60	32.45	46.20	16.84	22.20	52.08	20.12	40.68	34.58	ND	4.42	40.70	29.61	
SUSPENDED SOLIDS INFLUENT (MG/L)	153.0	205.0	133.0	454.0	100.0	149.0	205.0	217.0	173.0	ND	80.0	130.0	181.7	
EFFLUENT (MG/L)	ND	70.5	89.5	22.0	27.0	150.0	42.5	14.5	13.0	ND	8.0	20.2	45.7¥	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	43.00	62.65	17.16	19.98	105.00	31.45	10.29	10.53	ND	5.20	11.11	31.99	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	5.0	5.6	4.9	4.9	8.6	5.6	5.7	ND	ND	3.4	5.2	5.4	
EFFLUENT (MG/L)	2.4	3.2	4.0	1.3	2.2	6.2	1.8	0.6	ND	ND	0.5	2.1	2.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	1.32	1.95	2.80	1.01	1.62	4.34	1.33	0.42	ND	ND	0.32	1.15	1.68	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

REMEDIAL MEASURES

25.0 MG/L NO

SS 25.0 MG/L NO TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENGINEERING STUDY PHASE

1989/09

MUNICIPALITY

: NEW LISKEARD

WORKS NUMBER

: NEW LISKEARD LAGOON

: 110000515

TREATMENT

PLANT

: AERATED CELL PLUS LAGOON

: CONTINUOUS DISCHARGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 5.50 (1000 M3)

REGION : NORTHEAST DISTRICT : TIMISKAMING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : WABI RIVER : OTTAWA RIVER MINOR BASIN MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 5,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.22	3.15	3.92	6.54	5.58	5.29	4.26	4.07	3.41	3.35	4.05	3.32	4.18	
LAGOON DISCHARGE	99.96	88.05	121.54	199.24	172.89	117.98	131.95	126.01	102.43	103.81	122.22	103.02	124.09	
BOD5														
INFLUENT (MG/L)	127.0	132.0	114.0	50.0	55.0	ND	60.0	80.0	105.0	151.0	71.0	140.0	98.6	
EFFLUENT (MG/L)	14.5	23.0	20.5	12.0	9.4	ND	14.0	4.2	3.7	2.3	5.7	3.0	10.2	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	46.69	72.45	80.36	78.48	52.45	ND	59.64	17.09	12.61	7.70	23.08	9.96	42.64	
SUSPENDED SOLIDS	4500000													
INFLUENT (MG/L)	Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of th	and the second section	183.0	the same of the same of the same	46.0		4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		191.0	90.0	242.0	128.4	
EFFLUENT (MG/L)	10.0	10.0	12.5	10.0	16.3	ND	20.0	2.0	8.0	5.0	6.0	7.0	9.7	
CONCENTRATION LIMIT (MG/L)										and the second			40.0	
LOADING (KG/D)	32.20	31.50	49.00	65.40	90.95	ND	85.20	8.14	27.28	16.75	24.30	23.24	40.55	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.0	6.3	6.6	2.1	3.5	ND	4.7	3.9	5.2	5.9	3.4	6.0	4.9	
EFFLUENT (MG/L)	0.7	1.2	1.5×	1.5×	0.6	ND	1.7×	2.2*	0.7	0.4	0.4	0.5	1.0	5
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	2.25	3.78	5.88	9.81	3.34	ND	7.24	8.95	2.38	1.34	1.62	1.66	4.18	

SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES PARM

BOD SS

40.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

REMEDIAL MEASURES

OPERATIONAL/PROCESS - OPERATIONAL PROCEDURES BEING UPGRADED

MUNICIPALITY

: NICKEL CENTRE

PLANT WORKS NUMBER : CONISTON WPCP

: 110000123

TREATMENT

: OXIDATION DITCH

: CONVENTIONAL ACTIVATED SLUDGE

DESIGN CAPACITY

3.00 (1000 M3)

REGION

: NORTHEAST

DISTRICT

: SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: CONISTON CREEK

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED :

2,790

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.34	1.31	1.63	3.24	2.13	2.17	0.82	1.45	1.07	1.17	1.51	1.27	1.59	
BOD5	2-28-27/A-2-2	accurate sector	entenent ses	Harrison Process	V22886 - 550		SAME.							
INFLUENT (MG/L)	105.0	106.0	114.0	39.0	59.0	72.0	ND_	109.0	147.0	127.0	113.0	183.0	106.7	
EFFLUENT (MG/L)	11.5	14.0	10.0	20.2	6.4	8.3	ND	10.1	3.8	13.0	10.6	21.0	11.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	15.41	18.34	16.30	65.44	13.63	18.01	ND	14.64	4.06	15.21	16.00	26.67	18.60	
SUSPENDED SOLIDS INFLUENT (MG/L)	88.0	88.0	87.0	60.0	73.0	72.0	75.0	73.0	117.0	117.0	113.0	125.0	90.7	
EFFLUENT (MG/L)	8.5	8.0	19.0	19.8	5.0	6.1	3.8	10.6	5.5	15.8	5.4	4.0	9.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	11.39	10.48	30.97	64.15	10.65	13.23	3.11	15.37	5.88	18.48	8.15	5.08	14.79	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	5.5	4.9	5.3	2.2	3.6	4.3	ND	6.1	6.2	5.3	4.9	5.8	4.9	
EFFLUENT (MG/L)	2.9	3.0	2.6	1.5	1.6	2.3	ND	4.1	4.2	3.2	2.5	3.0	2.8	
CONCENTRATION LIMIT (MG/L)			936978.76.											
LOADING (KG/D)	3.88	3.93	4.23	4.86	3.40	4.99	ND	5.94	4.49	3.74	3.77	3.81	4.45	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES SS

EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED

BOD 25.0 MG/L YES

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

ANTICIPATED

1990/08

1991/01

1991/01

MUNICIPALITY

: NICKEL CENTRE

PLANT

: FALCONBRIDGE TOWNSITE WPCP

WORKS NUMBER

: 120001158

TREATMENT

: TRICKLING FILTER

:

DESIGN CAPACITY

0.91 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : FALCON CR.TO CONISTON

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 836

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.59	0.70	0.94	0.65	0.75	0.66	0.63	0.86	0.92	0.92	ND	0.83	0.77	
BOD5 INFLUENT (MG/L)	87.0	129.0	105.0	86.0	ND	59.0	ND	66.0	230.0	64.0	ND	66.0	99.1	
EFFLUENT (MG/L)	34.5	32.5	37.0	42.0	ND	43.5	ND	36.5	42.0	45.0	ND	34.0	38.6×	
CONCENTRATION LIMIT (MG/L)		56.15		72.0			- ND	30.5	72.0	45.0	ND	34.0	25.0	
LOADING (KG/D)	20.35	22.75	34.78	27.30	ND	28.71	ND	31.39	38.64	41.40	ND	28.22	29.72	4
SUSPENDED SOLIDS INFLUENT (MG/L)	207.0	117.0	138.0	89.0	78.0	56.0	58.0	69.0	240.0	106.0	ND	42.0	109.1	
EFFLUENT (MG/L)	30.0	37.0	41.0	63.3	51.6	42.5	49.0	33.8	35.0	73.7	ND	30.1	44.3×	
CONCENTRATION LIMIT (MG/L)						va- ca-sua							25.0	
LOADING (KG/D)	17.70	25.90	38.54	41.14	38.70	28.05	30.87	29.06	32.20	67.80	ND	24.98	34.11	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.9	4.9	6.3	7.6	ND	4.0	ND	11.5	5.7	7.2	ND	4.5	6.3	
EFFLUENT (MG/L)	3.3	3.2	3.4	6.0	ND	3.8	ND	5.1	3.0	3.3	ND	3.2	3.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	1.94	2.24	3.19	3.90	ND	2.50	ND	4.38	2.76	3.03	ND	2.65	2.93	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L NO SS 25.0 MG/L NO

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/04 1990/12 1990/12

REMEDIAL MEASURES

OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED

: NICKEL CENTRE MUNICIPALITY

: GARSON LAGOON (STANDBY) PLANT

WORKS NUMBER : 120004887

TREATMENT : CONVENTIONAL LAGOON SEASONAL

DESIGN CAPACITY : 3.45 (1000 M3) REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : FLOW TO SUDBURY WPCP

MINOR BASIN : HURON

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 4,107

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)			ND	ND	ND	0.59	ND	0.77	0.87	ND	1.13	ND	0.56	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5			NSI	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
INFLUENT (MG/L)	ND	ND	ND	163.0	100.0	128.0	ND	48.0	280.0	ND	ND	ND	143.8	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.0	5.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.80	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	ND	ND	180.0	120.0	60.0	ND	40.0	100.0	ND	ND	ND	100.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	24.0	24.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.44	
TOTAL PHOSPHOROUS						7.0								
INFLUENT (MG/L)	ND	ND	ND	6.2	7.8	6.5	ND	4.7	9.2	ND	ND	ND	6.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.3	2.3	i <del>- Cotos de more</del>
CONCENTRATION LIMIT (MG/L)							1100							
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.29	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 30.0 MG/L YES BOD

SS 40.0 MG/L YES

TP NA NA

**BOD - ASSESSED ANNUALLY** SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NOTE:

NA - NOT APPLICABLE

MUNICIPALITY

: NICKEL CENTRE

PLANT : WAHNAPITAE LAGOON

WORKS NUMBER

: 120003156

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

DESIGN CAPACITY

1.33 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : WANAPITEI RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 958

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.60	0.51	1.55	1.08	0.88	0.72	ND	0.73	ND	0.65	ND	0.83	0.84	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND								
BOD5 INFLUENT (MG/L)	ND	ND	ND	ND	16.0	24.0	ND	30.0	80.0	ND	ND	ND	37.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND								
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND								
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	ND	ND	35.0	36.0	ND	83.0	170.0	ND	ND	ND	81.0	
EFFLUENT (MG/L)	ND	ND	ND	ND ND	ND ND	ND	01.0							
CONCENTRATION LIMIT (MG/L)							!						40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND								
TOTAL PHOSPHOROUS							10 000 10 10							
INFLUENT (MG/L)	ND	ND	ND	ND	1.7	1.7	ND	1.7	2.3	ND	ND	ND	1.9	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	4.7							
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND								

SUMMARY

COMPLIES

CRITERIA WITH CONC

30.0 MG/L NO DIRECT DISCHARGE SS 40.0 MG/L NO DIRECT DISCHARGE

TP NA NO DIRECT DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: NORTH BAY

PLANT

: NORTH BAY WPCP

WORKS NUMBER

: 110000533

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

36.36 (1000 M3)

REGION : NORTHEAST

DISTRICT : NIPPISSING OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE NIPISSING

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 48,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	17.71	20.69	27.66	35.66	32.92	35.31	29.28	31.29	25.40	26.43	33.69	24.58	28.39	
BOD5 INFLUENT (MG/L)	154.0	130.0	111.0	93.0	113.0	124.0	130.0	172.4	91.0	134.0	237.0	228.0	143.1	
EFFLUENT (MG/L)	7.3	13.6	10.9	3.8	4.0	4.5	5.8	10.3	7.0	8.0	20.5	16.7	9.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	129.28	281.38	301.49	135.50	131.68	158.89	169.82	322.28	177.80	211.44	690.64	410.48	266.87	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	248.0	240.0	349.0	252.0	287.0	284.0		572.3	315.0	312.0	344.0	632.0	365.2	
EFFLUENT (MG/L)	6.9	6.2	13.4	7.7	5.8	5.3	8.3	6.5	6.7	6.6	5.8	5.2	7.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	122.19	128.27	370.64	274.58	190.93	187.14	243.02	203.38	170.18	174.43	195.40	127.81	198.73	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	10.7	3.8	8.4	6.5	6.1	5.8	12.6	11.5	4.8	7.7	7.8	9.4	7.9	
EFFLUENT (MG/L)	0.8	1.0	1.0	0.6	0.7	0.7	0.6	0.8	0.9	0.9	0.7	0.6	0.8	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	14.16	20.69	27.66	21.39	23.04	24.71	17.56	25.03	22.86	23.78	23.58	14.74	22.71	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

25.0 MG/L YES SS

TP 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: NORTH HIMSWORTH

WORKS NUMBER

: CALLANDER LAGOON : 110001747

: CONVENTIONAL LAGOON SEASONAL

TREATMENT : PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

: 0.47 (1000 M3) REGION : NORTHEAST DISTRICT : PARRY SOUN : PARRY SOUND

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: DITCH TO CALLANDER BAY WATERCOURSE

: HURON MINOR BASIN

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,220

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.59	0.49	1.13	0.89	0.92	0.83	0.65	0.62	0.53	0.59	0.79	0.63	0.72	
LAGOON DISCHARGE	ND	13.77	ND	26.16	28.36	ND	ND	ND	ND	ND	ND	ND	22.76	
BOD5	100.0	110.0	105.0	٠٠.٠	10/ 0		70.0	<b>45.0</b>	00.0	110.0	100.0	105.0	25.0	
INFLUENT (MG/L) EFFLUENT (MG/L)	100.0 ND	119.0 15.5	105.0 ND	60.0 7.0	7.3	82.0 ND	70.0 ND	65.0 ND	92.0 ND	110.0	108.0 ND	125.0 ND	95.2	
CONCENTRATION LIMIT (MG/L)		15.5		7.0	/,3	ND	ND ND	ND	עא	ND		ND	9.9 25.0	
LOADING (KG/D)	ND	7.59	ND	6.23	6.71	ND	ND	ND	ND	ND	ND	ND	7.13	-
SUSPENDED SOLIDS INFLUENT (MG/L)	125.0	135.0	150.0	93.0	190.0	95.0	60.0	80.0	78.0	150.0	138.0	110.0	117.0	
EFFLUENT (MG/L)	ND	15.0	ND	72.5	11.0	ND	ND	ND	ND	ND	ND	ND	32.8*	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	7.35	ND	64.52	10.12	ND	ND	ND	ND	ND	ND	ND	23.62	
TOTAL PHOSPHOROUS			7.0		4.0							4.0		
INFLUENT (MG/L) EFFLUENT (MG/L)	5.5 ND	6.5	7.0 ND	3.3	4.9	5.9	4.9 ND	5.0 ND	5.4	6.1	4.1 ND	4.9 ND	5.3	
CONCENTRATION LIMIT (MG/L)	1.0	2.4× 1.0	1.0	0.8	1.0	ND 1.0	1.0	1.0	1.0	ND 1.0		1.0	1.4	<u>+</u>
LOADING (KG/D)	ND ND	1.17	ND	0.71	0.92	ND	ND	ND	ND	ND	1.0 ND	DND	1.01	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L NO

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ANTICIPATED

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - CONSTRUCTION COMPLETE

1989/08 1989/09

MUNICIPALITY : ONAPING FALLS

PLANT : DOWLING WPCP
WORKS NUMBER : 110003077

TREATMENT : EXTENDED AERATION

:

DESIGN CAPACITY : 2.08 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : ONAPING RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 2,090

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.19	2.01	2.12	2.37	2.43	2.32	2.37	2.07	2.12	2.06	1.94	2.00	2.17	
BOD5	77.0	41.0	<i>(</i> 0.0	41.0	20.0	•••	25.0	70.0						
INFLUENT (MG/L)	37.0	41.0	69.0	41.0	28.0	29.0	25.0	32.0	32.0	61.0	48.0	53.0	41.3	
EFFLUENT (MG/L)	6.7	7.7	7.9	8.6	9.4	3.7	4.4	2.5	3.5	4.4	4.5	2.9	5.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	14.67	15.47	16.74	20.38	22.84	8.58	10.42	5.17	7.42	9.06	8.73	5.80	11.94	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	31.0	30.0	51.0	37.0	74.0	46.0	35.0	32.0	40.0	53.0	35.0	33.0	41.4	1
EFFLUENT (MG/L)	6.0	4.9	6.2	4.8	6.5	5.9	7.0	5.4	5.0	6.0	3.5	2.9	5.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	13.14	9.84	13.14	11.37	15.79	13.68	16.59	11.17	10.60	12.36	6.79	5.80	11.50	
TOTAL PHOSPHOROUS					-									
INFLUENT (MG/L)	2.1	2.4	3.5	2.3	1.7	2.2	1.6	1.7	2.5	3.5	2.0	2.4	2.3	1
EFFLUENT (MG/L)	1.1	1.2	2.3	1.2	1.0	1.2	1.2	1.4	1.2	1.2	1.2	1.1	1.3	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	2.40	2.41	4.87	2.84	2.43	2.78	2.84	2.89	2.54	2.47	2.32	2.20	2.82	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP NA NA

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

1991/01

MUNICIPALITY PLANT

: ONAPING FALLS

WORKS NUMBER

: LEVACK WPCP : 120001194

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

1.58 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : ONAPING RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 2,008

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.46	1.30	1.42	2.07	1.34	1.19	0.88	0.90	0.89	0.85	0.82	0.88	1.17	
BOD5 INFLUENT (MG/L)	58.0	79.0	77.0	50.0	69.0	101.0	140.0	135.0	225.0	118.0	205.0	132.0	115.8	
EFFLUENT (MG/L)	9.7	5.3	4.1	3.2	5.2	4.2	3.9	3.5	3.4	3.8	5.7	9.3	5.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	14.16	6.89	5.82	6.62	6.96	4.99	3.43	3.15	3.02	3.23	4.67	8.18	5.97	
SUSPENDED SOLIDS INFLUENT (MG/L)	68.0	51.0	96.0	62.0	91.0	93.0	122.0	113.0	113.0	124.0	99.0	107.0	94.9	
EFFLUENT (MG/L)	5.5	2.9	4.9	3.3	6.0	6.5	6.0	6.7	6.2	6.6	3.4	5.9	5.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	8.03	3.77	6.95	6.83	8.04	7.73	5.28	6.03	5.51	5.61	2.78	5.19	6.20	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.0	7.7	4.1	2.1	4.1	5.0	5.7	6.4	7.2	5.9	6.7	4.5	5.2	
EFFLUENT (MG/L)	2.3	2.6	2.5	1.3	1.8	2.1	3.4	3.6	3.3	3.7	3.3	3.1	2.8	
CONCENTRATION LIMIT (MG/L)				<del></del>										
LOADING (KG/D)	3.35	3.38	3.55	2.69	2.41	2.49	2.99	3.24	2.93	3.14	2.70	2.72	3.28	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

1988 1990/12 1990/12

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

MUNICIPALITY

: ONAPING FALLS

PLANT

: ONAPING WPCP

WORKS NUMBER

: 120001149

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

:

DESIGN CAPACITY

0.68 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : SWAMP TO ONAPING RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 964

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.54	0.54	0.55	0.55	0.54	0.55	0.54	0.54	0.54	0.54	0.57	0.55	0.55	
BOD5				E-01 101	2 2 2 2 Ye	reconstant made			2 Mar 2	5-20			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
INFLUENT (MG/L)	67.0	111.0	50.0	70.0	142.0	165.0	105.0	63.0	110.0	70.0	124.0	253.0	110.8	
EFFLUENT (MG/L)	19.0	11.5	7.6	14.0	8.1	4.5	5.5	30.5	ND	ND	9.2	8.5	11.8	
CONCENTRATION LIMIT (MG/L)													25.0	W -05
LOADING (KG/D)	10.26	6.21	4.18	7.70	4.37	2.47	2.97	16.47	ND	ND	5.24	4.67	6.49	
SUSPENDED SOLIDS	2002 010	March and		vore-11 - 600-	annecent com				243 11 20					
INFLUENT (MG/L)	81.0	66.0	95.0	93.0	136.0	117.0	110.0	100.0	104.0	91.0	54.0	100.0	95.6	
EFFLUENT (MG/L)	7.0	3.6	6.7	8.6	11.7	11.1	22.1	30.0	13.6	10.5	3.9	4.0	11.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	3.78	1.94	3.68	4.73	6.31	6.10	11.93	16.20	7.34	5.67	2.22	2.20	6.11	
TOTAL PHOSPHOROUS					7/F1010									
INFLUENT (MG/L)	3.7	5.9	3.2	3.9	5.0	11.0	6.1	5.7	7.8	6.5	4.9	5.2	5.7	
EFFLUENT (MG/L)	3.8	3.9	2.7	3.1	3.0	3.3	3.0	3.1	4.2	4.1	2.8	3.2	3.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	2.05	2.10	1.48	1.70	1.62	1.81	1.62	1.67	2.26	2.21	1.59	1.76	1.87	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM BOD

25.0 MG/L YES SS

25.0 MG/L YES

TP NA NA

REMEDIAL MEASURES

NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - PHASING OUT EXISTING FACILITY

MUNICIPALITY

: OPASATIKA

PLANT

: OPASATIKA LAGOON

WORKS NUMBER

: 120000658

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

1.81 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OPASATIKA RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 600

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)	0.11	0.11	0.16	0.19	0.17	0.20	0.10	0.13	0.13	0.07	0.15	0.10	0.14	
LAGOON DISCHARGE	ND	ND	ND											
BOD5		2.00												
INFLUENT (MG/L)	ND	160.0	280.0	ND	220.0									
EFFLUENT (MG/L)	ND	ND	ND											
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND											
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	160.0	475.0	ND	317.5									
EFFLUENT (MG/L)	ND	ND	ND											
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND		( <del>1011-1002-10</del>									
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	4.0	10.4	ND	7.2									
EFFLUENT (MG/L)	ND	ND	ND											
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND											

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L NO DISCHARGE SS 25.0 MG/L NO DISCHARGE

TP 1.0 MG/L NO DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: PARRY SOUND

PLANT

DESIGN CAPACITY

: PARRY SOUND WPCP

WORKS NUMBER

: 110000560

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

6.59 (1000 M3)

REGION

: NORTHEAST

DISTRICT

WATERCOURSE

: PARRY SOUND

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: MC CURRY LAKE

MINOR BASIN MAJOR BASIN : HURON : GREAT LAKES

POPULATION SERVED : 5,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	6.62	5.16	10.12	12.50	9.02	7.37	5.91	5.24	4.94	5.20	8.34	5.23	7.14	
B0D5					@								524	
INFLUENT (MG/L)	97.0	113.0	76.0	85.0	83.0	108.0	145.2	123.3	133.0	151.0	119.0	100.0	111.1	
EFFLUENT (MG/L)	6.8	3.8	2.4	5.3	3.7	6.9	8.6	4.3	3.6	3.4	8.5	6.1	5.3	
CONCENTRATION LIMIT (MG/L)													25.0	J
LOADING (KG/D)	45.01	19.60	24.28	66.25	33.37	50.85	50.82	22.53	17.78	17.68	70.89	31.90	37.84	
SUSPENDED SOLIDS INFLUENT (MG/L)	98.0	194.0	96.0	114.0	141.0	148.0	210.8	119.9	144.0	114.0	100.0	111.0	132.6	
EFFLUENT (MG/L)	4.9	4.2	6.2	7.6	3.6	4.7	8.4	3.9	3.9	2.8	5.7	10.6	5.5	
CONCENTRATION LIMIT (MG/L)												10.0	25.0	
LOADING (KG/D)	32.43	21.67	62.74	95.00	32.47	34.63	49.64	20.43	19.26	14.56	47.53	55.43	39.27	
TOTAL PHOSPHOROUS	200	30m04 J0%	465		200 500		500 St	1709 1216	200 504		202	Secretar stores	A5 1000	
INFLUENT (MG/L)	2.2	3.4	2.4	2.0	2.3	2.7	3.4	3.2	3.2	3.7	2.6	3.6	2.9	
EFFLUENT (MG/L)	0.3	0.5	0.5	0.4	0.7	0.9	0.8	0.5	0.7	0.4	0.4	0.7	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	1.98	2.58	5.06	5.00	6.31	6.63	4.72	2.62	3.45	2.08	3.33	3.66	4.28	1

# SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

25.0 MG/L YES 25.0 MG/L YES

SS TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: POWASSAN

PLANT

: POWASSAN LAGOON

WORKS NUMBER

: 110000613

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

: REGULATED DISCHARGE VOLUME

DESIGN CAPACITY

0.84 (1000 M3)

REGION : NORTHEAST DISTRICT : PARRY SOUND

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GENESEE CREEK

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 1,100

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.00	0.96	2.14	2.03	1.98	1.87	7.16	1.05	1.02	0.84	1.21	1.05	1.94	
LAGOON DISCHARGE	ND	ND	ND	ND	52.25	33.96	ND	ND	ND	ND	ND	ND	43.11	
BOD5														
INFLUENT (MG/L)	60.0	100.0	58.0	90.0	44.0	72.0	ND	ND	22.0	35.0	44.0	ND	58.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	4.9	5.7	ND	ND	ND	ND	ND	ND	5.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	9.70	10.65	ND	ND	ND	ND	ND	ND	10.28	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	85.0	95.0	75.0	75.0	75.0	50.0	ND	ND	15.0	35.0	110.0	ND	68.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	16.0	9.0	ND	ND	ND	ND	ND	ND	12.5	
CONCENTRATION LIMIT (MG/L)			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s										25.0	
LOADING (KG/D)	ND	ND	ND	ND	31.68	16.83	ND	ND	ND	ND	ND	ND	24.25	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.1	4.1	3.3	8.0	2.7	0.9	ND	ND	2.3	2.1	2.5	ND	3.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	0.4	1.0	ND	ND	ND	ND	ND	ND	0.7	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
LOADING (KG/D)	ND	ND	ND	ND	0.79	1.87	ND	ND	ND	ND	ND	ND	1.36	l

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD

25.0 MG/L YES 25.0 MG/L YES SS

TP 1.0 MG/L YES NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

MUNICIPALITY

: RATTER & DUNNET : WARREN LAGOON

WORKS NUMBER

: 110001916

PL ANT

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

: PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY

EFFLUENT (MG/L)

LOADING (KG/D)

CONCENTRATION LIMIT (MG/L)

0.68 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY DIST.

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

3.4

1.0

ND

ND

2.1

ND

1.0

ND

4.1

WATERCOURSE : VEUVE RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 612

ANNUAL NUMBER JAN **FEB** APR MAR MAY JUN JUL AUG SEP OCT NOV DEC **AVERAGE EXCEED** AVG. DAILY FLOW (1000 M3) 0.30 0.25 0.31 0.30 0.29 0.33 0.28 0.28 0.34 0.34 0.28 0.36 0.31 LAGOON DISCHARGE ND ND ND ND ND ND ND ND ND ND ND ND BOD5 INFLUENT (MG/L) 137.0 65.0 62.0 52.0 81.0 112.0 122.5 108.5 61.0 93.0 182.0 72.0 95.7 EFFLUENT (MG/L) ND ND ND ND ND ND ND ND ND ND ND ND CONCENTRATION LIMIT (MG/L) 25.0 LOADING (KG/D) ND ND ND ND ND ND ND ND ND ND ND ND SUSPENDED SOLIDS 93.0 75.0 108.0 INFLUENT (MG/L) 80.0 68.0 93.0 132.5 60.0 38.0 95.0 135.0 40.0 84.8 EFFLUENT (MG/L) ND ND ND ND ND ND ND ND ND ND ND ND CONCENTRATION LIMIT (MG/L) 25.0 LOADING (KG/D) ND ND ND ND ND ND ND ND ND ND ND ND TOTAL PHOSPHOROUS INFLUENT (MG/L)

4.8

1.0

ND

ND

5.1

1.0

ND

ND

SUMMARY

COMPLIES

4.2

1.0

ND

ND

2.6

1.0

ND

ND

6.7

1.0

ND

ND

2.9

1.0

ND

ND

PARM CRITERIA WITH CONC 25.0 MG/L NO DISCHARGE BOD 25.0 MG/L NO DISCHARGE SS

TP 1.0 MG/L NO DISCHARGE NOTE:

4.6

1.0

ND

ND

BOD - ASSESSED ANNUALLY

3.0

1.0

ND

ND

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

4.5

1.0

ND

ND

ND - NO DATA

4.8

1.0

ND

ND

NA - NOT APPLICABLE

MUNICIPALITY PLANT

: RAYSIDE-BALFOUR

WORKS NUMBER

: AZILDA WPCP : 110001783

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

2.84 (1000 M3)

: NORTHEAST

REGION DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : WHITSON CREEK

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 4,373

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.61	1.64	2.06	3.89	3.27	2.84	1.59	1.28	1.19	1.33	1.61	1.58	1.99	
BOD5														
INFLUENT (MG/L)	110.0	135.0	113.0	ND	9.0	15.0	36.0	68.0	130.0	139.0	159.0	148.0	96.5	
EFFLUENT (MG/L)	3.3	4.0	2.7	5.8	5.9	2.1	1.7	1.7	6.6	ND	4.9	5.2	4.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	5.31	6.56	5.56	22.56	19.29	5.96	2.70	2.17	7.85	ND	7.88	8.21	7.96	
SUSPENDED SOLIDS		220 20	2002	10121 12										
INFLUENT (MG/L)	82.0	76.0	110.0	41.0	31.0	55.0	97.0	75.0	106.0	120.0	127.0	85.0	83.8	
EFFLUENT (MG/L)	6.8	3.6	6.9	19.7	11.5	10.0	5.6	6.1	5.2	7.8	8.7	8.5	8.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	10.94	5.90	14.21	76.63	37.60	28.40	8.90	7.80	6.18	10.37	14.00	13.43	16.72	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.0	3.2	3.2	1.7	1.0	1.5	2.9	4.3	4.4	3.9	3.9	3.4	3.1	
EFFLUENT (MG/L)	0.2	0.6	0.5	0.5	0.4	0.5	0.6	0.7	ND	0.5	0.7	0.4	0.5	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.32	0.98	1.03	1.94	1.30	1.42	0.95	0.89	ND	0.66	1.12	0.63	1.00	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES TP

1.0 MG/L YES

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/10 1991/01 1991/01

MUNICIPALITY : RAYSIDE-BALFOUR

PLANT : CHELMSFORD LAGOON

WORKS NUMBER : 120001176

TREATMENT : CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY : 0.82 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : MCKENZIE CREEK

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 8,162

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.10	1.06	1.22	2.99	1.87	2.05	ND	0.97	1.09	1.33	2.00	1.04	1.52	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	248.55	248.55	120
BOD5														
INFLUENT (MG/L)	ND	ND	90.0	44.0	100.0	ND	ND	ND	78.0	110.0	144.0	105.0	95.9	1
EFFLUENT (MG/L)	ND	ND	9.0	27.4	17.5	ND	ND	ND	7.0	ND	9.6	9.0	13.3	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	10.98	81.92	32.72	ND	ND	ND	7.63	ND	19.20	9.36	20.22	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	ND	ND	110.0	80.0	120.0	ND	ND	ND	30.0	120.0	188.0	110.0	108.3	
EFFLUENT (MG/L)	ND	ND	7.0	23.0	59.0	ND	ND	ND	8.0	ND	11.0	10.0	19.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	8.54	68.77	110.33	ND	ND	ND	8.72	ND	22.00	10.40	29.94	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	4.6	3.3	5.8	ND	ND	ND	4.8	7.0	7.0	6.9	5.6	İ
EFFLUENT (MG/L)	ND	ND	1.4	3.8	1.8	ND	ND	ND	2.0	ND	3.8	6.4	3.2	
CONCENTRATION LIMIT (MG/L)										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
LOADING (KG/D)	ND	ND	1.70	11.36	3.36	ND	ND	ND	2.18	ND	7.60	6.65	4.86	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 30.0 MG/L YES

SS 40.0 MG/L YES TP NA NA

NA ND - NO DATA
NA - NOT APPLICABLE

ANTICIPATED

SPACE (EG. " ") INDICATES A VALUE OF ZERO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

TP - HAS NO CRITERIA

REMEDIAL MEASURES START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED 1988 1990/05 1990/05

MUNICIPALITY PLANT

: RAYSIDE-BALFOUR : CHELMSFORD WPCP

WORKS NUMBER

: 120001568

TREATMENT

: EXTENDED AERATION

: CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

3.06 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : WHITSON RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 4,934

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	3.52	3.57	5.45	7.95	4.63	5.01	2.63	2.50	2.26	2.70	2.92	3.25	3.87	
BOD5 Influent (Mg/L)	83.0	100.0	106.0	34.0	52.0	35.0	157.0	57.0	68.0	120.0	174.0	181.0	97.3	
EFFLUENT (MG/L)	10.5	7.7	7.2	12.0	13.0	5.6	7.4	10.0	4.2	5.4	14.1	8.0	8.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	36.96	27.48	39.24	95.40	60.19	28.05	19.46	25.00	9.49	14.58	41.17	26.00	34.06	
SUSPENDED SOLIDS INFLUENT (MG/L)	106.0	109.0	133.0	92.0	63.0	77.0	143.0	115.0	140.0	121.0	131.0	206.0	119.7	
EFFLUENT (MG/L)	6.5	7.4	11.9	12.3	13.1	5.7	4.4	7.0	6.4	5.7	5.5	4.2	7.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	22.88	26.41	64.85	97.78	60.65	28.55	11.57	17.50	14.46	15.39	16.06	13.65	29.03	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.8	7.5	4.4	3.1	3.0	3.3	4.0	4.0	5.6	4.3	4.1	5.1	4.4	
EFFLUENT (MG/L)	0.2	0.5	0.8	0.9	0.6	0.5	0.6	1.2*	1.3×	0.4	0.4	0.3	0.6	2
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.70	1.78	4.36	7.15	2.77	2.50	1.57	3.00	2.93	1.08	1.16	0.97	2.32	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L NO

NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ANTICIPATED

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW
FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED
FACILITY EXPANSION/UPGRADING - ASSIMILATION STUDY UNDERWAY

1990/05 1991/01 1991/01 1990/05 1991/01 1991/01 1990/05 1991/01 1991/01

START DATE END DATE COMPLIANCE

MUNICIPALITY

: RUTHERFORD & GEORGE JSL.

PLANT

: KILLARNEY LAGOON

WORKS NUMBER TREATMENT

: 110002559 : CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.00 (1000 M3)

REGION : NORTHEAST DISTRICT : MANITOULIN

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: KILLARNEY CHANNEL

MINOR BASIN

: ERIE

MAJOR BASIN

: GREAT LAKES 505

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	0.11	0.18	0.22	0.16	0.15	0.15	0.15	0.13	0.12	0.11	0.10	0.14	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5														ž.
INFLUENT (MG/L)	ND	114.0	135.0	37.0	25.0	ND	ND	150.0	120.0	92.0	52.0	ND	90.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND_	ND	ND_		
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	85.0	78.0	ND	30.0	ND	ND	45.0	40.0	80.0	60.0	ND	59.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		1
CONCENTRATION LIMIT (MG/L)									17				25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS					3 25	. ****	· · · · · · · · · · · · · · · · · · ·	17-60° - 120°		**************************************	NO HODE			
INFLUENT (MG/L)	ND	3.5	4.9	2.6	1.3	ND	ND	7.5	2.6	5.8	4.1	ND	4.0	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L NO DISCHARGE BOD SS 25.0 MG/L NO DISCHARGE

TP 1.0 MG/L NO DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: SAULT STE MARIE

WORKS NUMBER

: SAULT STE.MARIE WPCP : 110000640

TREATMENT

: PRIMARY

:

DESIGN CAPACITY

54.55 (1000 M3)

REGION : NORTHEAST DISTRICT : ALGOMA

OPERATING AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: ST MARY'S RIVER

MINOR BASIN

: HURON

MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 80,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	22.57	24.31	37.64	72.82	43.06	31.43	32.30	24.09	39.45	25.32	23.83	17.89	32.89	
BOD5 INFLUENT (MG/L)	318.0	201.0	ND	56.0	56.0	196.0	72.0	116.0	143.5	146.5	97.0	130.0	139.3	
EFFLUENT (MG/L)	69.5	86.5	ND	43.5	27.5	29.2	20.3	37.4		72.0	60.5	83.3	52.4	
LOADING (KG/D)	1568.61	2102.81	ND	3167.67	1184.15	917.75	655.69		A 140 march 1		1441.71		1723.44	
PERCENT REMOVAL	78	57		22	51	85	72	68		51	38	36	62	
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS INFLUENT (MG/L)	332.0	146.0	ND	76.0	156.0	137.0	165.0	197.5	202.0	203.0	155.0	150.0	174.5	
EFFLUENT (MG/L)	40.5	56.0	ND	52.0	42.2	24.8	29.8	25.2		50.5	40.2	53.0	41.3	
LOADING (KG/D)	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	1361.36			1817.13	779.46	962.54		1566.16		957.96	948.17	1358.36	
PERCENT REMOVAL	88	62		32		82	82	87	80	75	74	65	76	
PERCENT REMOVAL LIMITS		*******								······································			50	
TOTAL PHOSPHOROUS	5													
INFLUENT (MG/L)	6.2	3.5	ND	1.7	2.4	3.5	4.5	3.1	5.4	2.3	2.6	2.4	3.4	
EFFLUENT (MG/L)	4.0	2.5	ND	1.0		3.9	1.3	0.7	1.2	1.0	1.5	1.3	1.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	90.28	60.77	ND	72.82	60.28	122.57	41.99	16.86	47.34	25.32	35.74	23.25	59.20	

SUMMARY COMPLIES CRITERIA WITH CONC PARM BOD 30% YES SS 50% YES TP NA NA

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - START-UP DIFFICULTIES BEING CORRECTED

REMEDIAL MEASURES

: SAULT STE MARIE MUNICIPALITY PLANT : WEST END WPCP

: 110002540 WORKS NUMBER

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY : 18.18 (1000 M3)

REGION : NORTHEAST DISTRICT : ALGOMA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: ST MARY'S RIVER WATERCOURSE

: HURON MINOR BASIN

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 80,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	6.69	5.85	8.89	15.33	7.70	8.29	6.63	6.70	7.19	6.69	8.67	6.19	7.90	
BOD5	-destoco-sec. 2-617	order or or												
INFLUENT (MG/L)	128.0	216.0	ND	43.0	ND	132.0	ND_	293.0	284.5	137.5	215.0	159.0	178.7	
EFFLUENT (MG/L)	12.6	10.5	ND	18.0	ND_	7.9	ND	3.9	51.5	21.7	8.3	7.9	15.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	84.29	61.42	ND	275.94	ND	65.49	ND	26.13	370.28	145.17	71.96	48.90	124.82	
SUSPENDED SOLIDS INFLUENT (MG/L)	212.0	199.0	176.0	80.0	1,630.0	178.0	ND	571.0	281.3	225.0	174.0	143.0	351.8	
EFFLUENT (MG/L)	2.7	4.0	29.3	9.0	AND THE RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	4.8	15.0	11.6	51.0	15.5	9.3	5.0	14.4	
CONCENTRATION LIMIT (MG/L)		- 7.0				7.0							25.0	
LOADING (KG/D)	18.06	23.40	260.47	137.97	117.81	39.79	99.45	77.72	366.69	103.69	80.63	30.95	113.76	
TOTAL PHOSPHOROUS													93.0	
INFLUENT (MG/L)	4.9	5.3	7.1	2.2	5.6	5.5	ND	7.7	7.7	4.1	2.7	3.5	5.1	
EFFLUENT (MG/L)	1.0	0.8	0.7	0.4	0.8	0.7	1.0	0.6	1.3×	0.9	0.6	0.4	0.8	1
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	6.69	4.68	6.22	6.13	6.16	5.80	6.63	4.02	9.34	6.02	5.20	2.47	6.32	9

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP 1.0 MG/L NO

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NOTE:

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1989/09

REMEDIAL MEASURES

EQUIPMENT/MAINTENANCE - EXISTING EQUIPMENT BEING REPAIRED

MUNICIPALITY

: SMOOTH ROCK FALLS

PLANT

: SMOOTH ROCK FALLS WPCP

WORKS NUMBER TREATMENT : 110002130

: EXTENDED AERATION

:

DESIGN CAPACITY

1.63 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MATTAGAMI RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 2,251

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.37	1.38	1.57	162.00	2.84	1.69	1.36	1.45	1.34	1.76	1.85	1.19	14.98	
BOD5 INFLUENT (MG/L)	94.0	61.0	69.0	40.0	7.0	29.0	69.0	48.0	122.0	55.0	62.0	110.0	63.8	
EFFLUENT (MG/L)	3.3	3.9	2.9	2.4	3.4	2.0	1.5	2.2	1.5	2.0	1.8	2.7	2.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.52	5.38	4.55	388.80	9.65	3.38	2.04	3.19	2.01	3.52	3.33	3.21	37.45	
SUSPENDED SOLIDS INFLUENT (MG/L)	63.0	60.0	70.0	65.0	9.0	20.0	40.0	30.0	73.0	65.0	88.0	140.0	60.3	
EFFLUENT (MG/L)	6.0	6.0	ND	ND	ND	ND	ND	6.0	1.2	6.5	6.0	5.0	5.2	
CONCENTRATION LIMIT (MG/L)					ran x								25.0	
LOADING (KG/D)	8.22	8.28	ND	ND	ND	ND	ND	8.70	1.60	11.44	11.10	5.95	77.90	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.6	3.9	193.1	2.2	6.7	3.2	9.4	3.9	5.7	3.5	4.0	6.5	20.6	
EFFLUENT (MG/L)	3.3	3.7	3.2	1.3	0.9	1.8	2.6	2.0	2.7	2.2	1.7	3.4	2.4	
CONCENTRATION LIMIT (MG/L)					· · · · · · · · · · · · · · · · · · ·									
LOADING (KG/D)	4.52	5.10	5.02	210.60	2.55	3.04	3.53	2.90	3.61	3.87	3.14	4.04	35.95	

	SUMMA	RY	
	<del></del>	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	INSUFFICIENT DATA	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA
NA - NOT APPLICABLE

MUNICIPALITY

: STURGEON FALLS

PLANT

: STURGEON FALLS WPCP

WORKS NUMBER

: 110001435

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

4.54 (1000 M3)

: NORTHEAST REGION

DISTRICT : NIPPISSING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : STURGEON RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES POPULATION SERVED : 6,040

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEET
AVG. DAILY FLOW (1000 M3)	5.23	5.20	6.71	9.06	7.40	6.13	5.11	5.03	4.46	4.85	5.67	5.20	5.84	
BOD5														
INFLUENT (MG/L)	74.0	75.0	92.0	53.0	60.0	66.0	105.0	65.0	81.0	101.0	88.0	98.0	79.8	
EFFLUENT (MG/L)	4.3	6.0	11.5	4.4	5.2	10.7	3.4	3.1	4.5	3.7	4.3	5.0	5.5	
CONCENTRATION LIMIT (MG/L)										02 200			25.0	
LOADING (KG/D)	22.48	31.20	77.16	39.86	38.48	65.59	17.37	15.59	20.07	17.94	24.38	26.00	32.12	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	87.0	77.0	115.0	238.0	70.0	95.0	76.7	80.4	78.0	123.0	79.0	96.0	101.3	
EFFLUENT (MG/L)	6.8	6.5	14.7	8.5	7.1	6.2	6.5	5.4	4.7	7.7	4.3	10.8	7.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	35.56	33.80	98.63	77.01	52.54	38.00	33.21	27.16	20.96	37.34	24.38	56.16	43.22	
TOTAL PHOSPHOROUS						-31								
INFLUENT (MG/L)	3.9	3.8	4.2	2.7	2.5	ND	4.4	4.4	4.0	5.1	3.3	4.2	3.9	100000000000000000000000000000000000000
EFFLUENT (MG/L)	0.6	0.8	1.1*	0.4	0.4	0.6	1.3×	1.4×	1.3×	0.9	0.6	0.8	0.9	4
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.13	4.16	7.38	3.62	2.96	3.67	6.64	7.04	5.79	4.36	3.40	4.16	5.26	No.

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD

25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

#### REMEDIAL MEASURES

OPERATIONAL/PROCESS - MONITORING PROCEDURES BEING UPGRADED OPERATIONAL/PROCESS - PROCESS CONTROL BEING UPGRADED

# 1989 CERTIFICATE OF APPROVAL ASSESSMENT

MUNICIPALITY

: SUDBURY

PLANT

: SUDBURY WPCP

WORKS NUMBER TREATMENT

: 110000711 : HIGH RATE

:

DESIGN CAPACITY

68.19 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : JUNCTION CREEK

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 95,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	58.98	56.67	58.99	84.47	66.71	69.36	55.06	55.54	53.13	53.50	58.13	54.45	60.42	
BOD5														
INFLUENT (MG/L)	91.0	76.0	71.0	34.0	46.0	61.0	73.0	64.0	84.0	77.0	79.0	96.0	71.0	l
EFFLUENT (MG/L)	24.0	26.5	13.3	9.8	3.6	9.8	8.6	4.8	3.9	9.0			15.7	l
CONCENTRATION LIMIT (MG/L)											50.0	- 33.3	20.0	
LOADING (KG/D)	1415.52	1501.75	784.56	827.80	240.15	679.72	473.51	266.59	207.20	481.50	2092.68	2150.77	948.59	
LOADING LIMIT (KG/D)		10								_102150	2072100	L130.77	,,,,,,	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	61.0	64.0	83.0	61.0	57.0	71.0	61.0	51.0	72.0	69.0	85.0	75.0	67.5	
EFFLUENT (MG/L)	10.9	10.3	10.4	14.1	10.9	11.2	10.1	12.0	9.5	17.9	The second second second second second		12.4	
CONCENTRATION LIMIT (MG/L)											10.0		20.0	
LOADING (KG/D)	642.88	583.70	613.49	1191.02	727.13	776.83	556.10	666.48	504.73	957.65	581.30	1170.67	749.21	
LOADING LIMIT (KG/D)											301.30	11/0.0/	747.61	
TOTAL PHOSPHOROUS				2 52 55										
INFLUENT (MG/L)	2.7	3.6	2.7	1.8	2.1	1.9	2.0	2.5	2.0	3.0	2.7	3.1	2.5	
EFFLUENT (MG/L)	1.0	0.9	0.9	0.5	0.6	0.5	0.6	0.7	0.9	0.8	0.8	1.0	0.8	
CONCENTRATION LIMIT (MG/L)										0.0	0.0	1.0	0.8	
LOADING (KG/D)	58.98	51.00	53.09	42.23	40.02	34.68	33.03	38.87	47.81	42.80	46.50	54.45	48.34	
LOADING LIMIT (KG/D)	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s							50.07		72.00	40.30	24.42	40.34	

		SUMMARY			
			COMPL	IES WITH	
PARM	CRITERIA	LOADING	CONC	LOADING	
BOD	20.0 MG/L	NA	YES	NA	
SS	20.0 MG/L	NA	YES	NA	
TP	NA	NA	NA	NA	

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED

1990/08 1991/01 1991/01

MUNICIPALITY

: SUDBURY

PLANT

: SUDBURY WPCP

WORKS NUMBER
TREATMENT

: 110000711 : HIGH RATE

:

DESIGN CAPACITY

68.19 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : JUNCTION CREEK

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 95,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	58.98	56.67	58.99	84.47	66.71	69.36	55.06	55.54	53.13	53.50	58.13	54.45	60.42	
B0D5											~~ ~	~ ~	71.0	
INFLUENT (MG/L)	91.0	THE RESERVE AND ADDRESS OF THE PARTY.	71.0	34.0	46.0	61.0	73.0	64.0	84.0	77.0	the state of the state of	96.0	71.0	
EFFLUENT (MG/L)	24.0	26.5	13.3	9.8	3.6	9.8	8.6	4.8	3.9	9.0	36.0	39.5	15.7	
CONCENTRATION LIMIT (MG/L)											*******		25.0	
LOADING (KG/D)	1415.52	1501.75	784.56	827.80	240.15	679.72	473.51	266.59	207.20	481.50	2092.68	2150.77	948.59	
SUSPENDED SOLIDS	(1.0	<i></i>	83.0	61.0	57.0	71.0	61.0	51.0	72.0	69.0	85.0	75.0	67.5	
INFLUENT (MG/L)	61.0	64.0	10.4		10.9	11.2	10.1	12.0	9.5	17.9		21.5	12.4	
EFFLUENT (MG/L) CONCENTRATION LIMIT (MG/L)	10.9	10.3	10.4	14.1	10.9	11.6	10.1	12.0	7.3	17.7	10.0	21.5	25.0	
LOADING (KG/D)	642.88	583.70	613.49	1191.02	727.13	776.83	556.10	666.48	504.73	957.65	581.30	1170.67	749.21	
TOTAL PHOSPHOROUS				2 24	25. 201		3-1-1, 3-2-2	96 60	Port 2020		NA VOA	20, 000		
INFLUENT (MG/L)	2.7	3.6	2.7	1.8	2.1	1.9	2.0	2.5	2.0	3.0	2.7	3.1	2.5	
EFFLUENT (MG/L)	1.0	0.9	0.9	0.5	0.6	0.5	0.6	0.7	0.9	0.8	0.8	1.0	0.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	58.98	51.00	53.09	42.23	40.02	34.68	33.03	38.87	47.81	42.80	46.50	54.45	48.34	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

FACILITY EXPANSION/UPGRADING - REMEDIAL MEASURES BEING EVALUATED 1

1990/08 1991/01 1991/01

MUNICIPALITY

: SUNDRIDGE

PLANT

: SUNDRIDGE LAGOON

WORKS NUMBER

: 110001961

TREATMENT

: CONVENTIONAL LAGOON SEASONAL : PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.65 (1000 M3)

REGION : NORTHEAST DISTRICT : PARRY SOUND

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BERNARD CREEK

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 740

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.46	0.45	0.55	0.70	0.63	0.61	0.53	0.49	0.44	0.44	0.50	0.46	0.52	
LAGOON DISCHARGE	ND	ND	ND	ND	77.89	98.14	ND	ND	ND	ND	ND	ND	88.02	17-11-11-11-11-11-11-11-11-11-11-11-11-1
BOD5 INFLUENT (MG/L)	55.0	131.0	ND	52.0	22.0	70.0	140.0	205.0	120.0	89.0	ND	ND	98.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	6.1	8.6	ND	ND	ND	ND	ND	ND	7.4	
CONCENTRATION LIMIT (MG/L)			71								ND	ND	25.0	
LOADING (KG/D)	ND	ND	ND	ND	3.84	5.24	ND	ND	ND	ND	ND	ND	3.85	
SUSPENDED SOLIDS INFLUENT (MG/L)	50.0	55.0	ND	60.0	20.0	45.0	55.0	110.0	65.0	68.0	ND	ND	58.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	25.0	18.8	ND	ND	ND	ND	ND	ND	21.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	15.75	11.46	ND	ND	ND	ND	ND	ND	11.39	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.6	6.5	ND	6.2	1.9	1.2	7.5	10.4	5.8	5.4	ND	ND	5.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.0	0.8	ND	ND	ND	ND	ND	ND	0.9	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
LOADING (KG/D)	ND	ND	ND	ND	0.63	0.48	ND	ND	ND	ND	ND	ND	0.47	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: TEMAGAMI

PLANT

: NORTH GOWARD LAGOON

WORKS NUMBER

: 120000783

TREATMENT

: AERATED CELL PLUS LAGOON

: REGULATED DISCHARGE VOLUME

: EFFLUENT POLISHING

DESIGN CAPACITY

: 0.39 (1000 M3)

REGION : NORTHEAST
DISTRICT : NIPPISSING
OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NET LAKE

MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 350

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG .	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.03	0.31	0.51	0.06	0.33	0.41	0.39	0.35	0.20	0.17	0.20	0.19	0.26	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5			1.0	50 K 5								series de	38650 530	
INFLUENT (MG/L)	52.0	35.0	82.0	22.0	30.0	22.0	22.0	114.0	36.0	41.0	140.0	155.0	62.6	
EFFLUENT (MG/L)	6.5	6.5	6.8	8.0	16.0	8.5	ND	41.0	4.2	33.0	19.0	4.5	14.0	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	0.19	2.01	3.46	0.48	5.28	3.48	ND	14.35	0.84	5.61	3.80	0.85	3.64	
SUSPENDED SOLIDS			252 2	2000 201						27.0454				
INFLUENT (MG/L)	30.0	30.0	60.0	75.0	70.0	8.0	30.0	75.0	50.0	ND	150.0	420.0	90.7	
EFFLUENT (MG/L)	3.0	5.0	5.0	10.0	20.0	10.0	10.0	50.0	8.0	25.0	35.0	20.0	16.8	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	0.09	1.55	2.55	0.60	6.60	4.10	3.90	17.50	1.60	4.25	7.00	3.80	4.37	
TOTAL PHOSPHOROUS					W. (1990)								224 250	
INFLUENT (MG/L)	2.5	4.6	2.2	1.4	1.9	1.8	1.8	7.1	4.0	2.3	5.6	3.5	3.2	
EFFLUENT (MG/L)	2.4	3.1	3.2	0.9	1.3	1.0	1.0	2.4	1.9	2.2	2.8	0.7	1.9	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.07	0.96	1.63	0.05	0.42	0.41	0.39	0.84	0.38	0.37	0.56	0.13	0.49	

~.				-	
SU	M	м	А	ĸ	ľ

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: TEMAGAMI

PLANT

: TEMAGAMI LAGOON

WORKS NUMBER

: 110002327

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.11 (1000 M3)

REGION : NORTHEAST DISTRICT : NIPPISSING

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SNAKE ISLAND LAKE

MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 440

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND		
CONCENTRATION LIMIT (MG/L)					117						Н	ND_	25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25.0	
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25.0	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND		
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC
BOD 25.0 MG/L NO DISCHARGE
SS 25.0 MG/L NO DISCHARGE

TP 1.0 MG/L NO DISCHARGE

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

FACILITY EXPANSION/UPGRADING - FINAL DESIGN PHASE

START DATE _END DATE _COMPLIANCE

1989/04

MUNICIPALITY

: THESSALON

PLANT

: THESSALON LAGOON

WORKS NUMBER

: 110002434

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

1.23 (1000 M3)

REGION : NORTHEAST DISTRICT

: ALGOMA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: THESSALON RIVER

MINOR BASIN

: HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 1,600

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.08	1.09	1.23	1.92	1.33	1.12	1.17	1.14	1.02	1.01	1.03	0.95	1.17	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	345.00	ND	345.00	
BOD5									63	2			55000 800	
INFLUENT (MG/L)	53.0	42.0	40.0	32.0	49.0	30.0	11.0	17.0	50.0	24.0	40.0	ND ND	35.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.1	ND	8.1	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.34	ND	9.48	
SUSPENDED SOLIDS								40.0	100.0		<b>50.0</b>		40.5	
INFLUENT (MG/L)	29.0	45.0	33.0	50.0	45.0	25.0	20.0	40.0	100.0	30.0	50.0_	ND	42.5	
EFFLUENT (MG/L)	ND_	ND	ND_	ND ND	ND	ND	ND_	ND	ND	ND	9.2	ND	9.2	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.47	ND	10.76	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	2.5	4.5	2.6	2.9	2.7	6.4	2.4	2.5	3.1	3.2	3.5	ND	3.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8	ND	1.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.85	ND	2.11	/

## SUMMARY

COMPLIES

CRITERIA WITH CONC 30.0 MG/L YES

40.0 MG/L YES SS NA TP NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: TIMMINS

PLANT

: BOB'S LAKE LAGOON

WORKS NUMBER

: 120000275

TREATMENT

: CONVENTIONAL LAGOON CONTINUOUS

DESIGN CAPACITY

: 0.58 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : BOB'S CK TO PORCUPINE L. MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 170

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5														
INFLUENT (MG/L)	255.0	860.0	150.0	62.0	54.0	96.0	95.0	84.0	40.0	34.0	100.0	ND	166.4	
EFFLUENT (MG/L)	49.0	70.0	84.0	54.0	15.0	12.0	11.0	23.0	13.0	8.4	16.0	ND	32.3×	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS									<u></u>					
INFLUENT (MG/L)	300.0	2,160.0	37.0	110.0	100.0	260.0	95.0	130.0	60.0	60.0	140.0	ND	313.8	
EFFLUENT (MG/L)	35.0	25.0	30.0	25.0	20.0	50.0	4.0	20.0	10.0	7.0	25.0	ND	22.8	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS		0.32 110 0												
INFLUENT (MG/L)	13.7	26.0	15.0	3.7	5.7	5.3	4.1	5.2	3.4	4.9	3.2	ND	8.2	
EFFLUENT (MG/L)	6.3	7.0	8.3	4.7	2.0	2.5	2.1	2.2	3.6	3.5	3.5	ND	4.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

PARM

BOD 30.0 MG/L NO

SS 40.0 MG/L YES

TP NA NA

COMPLIES

CRITERIA WITH CONC

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE END DATE COMPLIANCE

NO ACTION - FUNDING APPLICATION REJECTED

1992

MUNICIPALITY

: TIMMINS

PLANT

: MATTAGAMI WPCP

WORKS NUMBER TREATMENT

: 110000766 : PRIMARY

:

DESIGN CAPACITY

34.09 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : MATTAGAMI RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 33,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	15.60	15.00	17.00	26.20	29.20	24.00	21.30	24.10	18.60	18.40	19.30	15.60	20.36	
BOD5					Winner				20.70					
INFLUENT (MG/L)	80.0	98.0	98.0	72.0	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	56.0	27.0		66.0	72.0	- N - Delicate 1 10 -		74.1	
EFFLUENT (MG/L)	78.0	68.0	67.0	24.0	30.0	43.0	30.0	13.0	15.0	41.0	32.0	67.0	42.3	
LOADING (KG/D)	1216.80	1020.00	1139.00	628.80	the second second second	1032.00				754.40	and the second second second second	1045.20	861.23	
PERCENT REMOVAL	03	31	32	67	52	23	ND	72	77	43	62	48	43	
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	127.0	191.0	157.0	113.0	167.0	132.0	180.0	104.0	172.0	163.0		159.0	154.7	
EFFLUENT (MG/L)	54.5	40.6	43.0	27.0	45.2	39.3	33.5	28.2	38.3	40.3	55.0	41.1	40.5	
LOADING (KG/D)	850.20	609.00	731.00	707.40	1319.84	943.20	713.55	679.62	712.38	741.52	1061.50	641.16	824.58	
PERCENT REMOVAL	57	79	73	76	73	70	81	73	78	75	71	74	74	
PERCENT REMOVAL LIMITS							5 0-22-2						50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.2	5.1	7.2	3.6	4.9	3.8	3.7	2.9	4.2	4.2		4.7	7.5	
EFFLUENT (MG/L)	3.7	3.1	3.8	1.1	ND	ND	1.1	7.3	0.7	1.1	7.3	2.4	3.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	57.72	46.50	64.60	28.82	ND	ND	23.43	175.93	13.02	20.24	140.89	37.44	65.15	

	SUMMA	<u>IRY</u>
	0	COMPLIES
PARM	CRITERIA	WITH CONC
BOD	30%	YES
SS	50%	YES
TP	NA	NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: TIMMINS

PLANT

: WHITNEY & TISDALE WPCP

WORKS NUMBER TREATMENT

: 110001391 : CONTACT STABILIZATION

DESIGN CAPACITY

6.81 (1000 M3)

REGION DISTRICT

: NORTHEAST : COCHRANE

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: PORCUPINE RIVER

MINOR BASIN

: JAMES BAY

MAJOR BASIN

: ARCTIC WATERSHED

POPULATION SERVED :

7,300

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.66	2.55	3.29	7.03	6.44	4.93	3.66	4.63	3.39	3.52	4.08	2.67	4.07	
BOD5 INFLUENT (MG/L)	56.0	92.0	82.0	114.0	56.0	80.0	24.0	32.0	115.0	84.0	82.0	94.0	75.9	
EFFLUENT (MG/L)	16.0	13.0	13.0	8.6	9.8	3.2	1.6	9.2	7.0	2.5	3.0	14.0	8.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	42.56	33.15	42.77	60.45	63.11	15.77	5.85	42.59	23.73	8.80	12.24	37.38	34.19	
SUSPENDED SOLIDS INFLUENT (MG/L)	50.0	50.0	90.0	150.0	90.0	95.0	15.0	40.0	65.0	100.0	150.0	70.0	80.4	
EFFLUENT (MG/L)	15.0	10.0	10.0	10.0	15.0	10.0	7.0	7.0	8.0	5.2	8.0	7.0	9.4	
CONCENTRATION LIMIT (MG/L)											0.0	7.0	25.0	
LOADING (KG/D)	39.90	25.50	32.90	70.30	96.60	49.30	25.62	32.41	27.12	18.30	32.64	18.69	38.26	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.4	4.5	6.4	4.9	3.4	4.6	2.2	2.0	4.4	6.6	4.6	6.2	4.4	
EFFLUENT (MG/L)	8.0	4.1	7.3	2.0	1.5	2.3	1.8	2.6	2.4	3.6	3.0	3.9	3.5	
CONCENTRATION LIMIT (MG/L)										3.0	3.0	3.9	3.5	
LOADING (KG/D)	21.28	10.45	24.01	14.06	9.66	11.33	6.58	12.03	8.13	12.67	12.24	10.41	14.25	

SUMMARY COMPLIES CRITERIA WITH CONC PARM BOD 25.0 MG/L YES SS 25.0 MG/L YES TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: VAL RITA-HARTY

PLANT

: HARTY LAGOON

WORKS NUMBER

: 120003316

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

: PHOSPHORUS REMOVAL - BATCH

:

DESIGN CAPACITY

0.09 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE OPERATING AUTHORITY : MUNICIPAL

OPERATING AUTHORITY : MUN WATERCOURSE : NO

: NO NAME CREEK : JAMES BAY

MINOR BASIN : JA MAJOR BASIN : AF

: ARCTIC WATERSHED

POPULATION SERVED : 140

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	10.20	ND	ND	ND	ND	ND	ND	ND	10.20	
BOD5		5 Sec. 195	2202 20											
INFLUENT (MG/L)	110.0	165.0	220.0	130.0	135.0	80.0	ND	285.0	180.0	143.0	125.0	225.0	163.5	
EFFLUENT (MG/L)	ND	ND	ND	ND_	5.4	ND	ND	ND	ND	3.2	ND.	ND	4.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS	140.0	170.0	130.0	130.0	130.0	95.0	ND	200.0	160.0	340.0	270.0	130.0	168.6	
INFLUENT (MG/L)	140.0	130.0 ND	ND	ND	15.0	ND	ND	ND	ND	14.7	ND	ND	14.9	l
EFFLUENT (MG/L)	ND_	NU	ND_	NU	15.0	ND_		ND		14./_	ND		25.0	
CONCENTRATION LIMIT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LOADING (KG/D)	עא	עא	עא	עא	ND	ND	ND							<b></b>
TOTAL PHOSPHOROUS					Page 1981	-	-			12-112				ŀ
INFLUENT (MG/L)	7.7	7.5	12.0	4.8	5.2	3.9	ND	25.5	7.3	6.6	4.7	6.2	8.3	
EFFLUENT (MG/L)	ND	ND	ND	ND	2.0×	ND	ND	ND	ND	0.6	ND	ND	1.3	11_
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP 1.0 MG/L NO

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: VAL-RITA-HARTY

PLANT WORKS NUMBER : VAL-RITA LAGOON

: 110002318

TREATMENT

: CONVENTIONAL LAGOON SEASONAL : PHOSPHORUS REMOVAL - BATCH

DESIGN CAPACITY :

0.53 (1000 M3)

REGION : NORTHEAST DISTRICT : COCHRANE OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE

: UNNAMED CK.TO KAPUSK.RIV MINOR BASIN : JAMES BAY

MAJOR BASIN

: ARCTIC WATERSHED

POPULATION SERVED : 580

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	10.20	ND	ND	ND	ND	ND	ND	ND	10.20	
BOD5 INFLUENT (MG/L)	165.0	100.0	275.0	22.0	ND	44.0	ND	90.0	150.0	116.0	240.0	245.0	144.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	6.7	ND	ND	ND	ND	1.3	ND	ND	4.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS INFLUENT (MG/L)	180.0	420.0	340.0	55.0	ND	90.0	ND	110.0	120.0	260.0	340.0	330.0	224.5	
EFFLUENT (MG/L)	ND	ND	ND	ND	16.7	ND	ND	ND	ND	5.5	ND	ND	11.1	
CONCENTRATION LIMIT (MG/L)									7/-				25.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.1	5.1	9.8	2.0	ND	3.2	ND	5.6	6.5	6.7	8.0	7.7		
EFFLUENT (MG/L)	ND	ND	ND	ND	0.5	ND	ND	ND	ND	0.1	ND	7.7 ND	6.2 0.3	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.3	
LOADING (KG/D)	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

SUMMA	RY	
	COMPLIES	
CRITERIA	WITH CONC	
25.0 MG/L	YES	
25.0 MG/L	YES	
1.0 MG/L	YES	
	CRITERIA 25.0 MG/L 25.0 MG/L	SUMMARY COMPLIES CRITERIA WITH CONC 25.0 MG/L YES 25.0 MG/L YES 1.0 MG/L YES

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: VALLEY EAST

PLANT

: HAMNER, VAL-CARON, VAL-THERESE WPCP

WORKS NUMBER

: 110001541

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

11.36 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : VERMILION RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 17,337

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	7.87	7.35	8.11	16.83	9.89	10.00	5.12	5.17	5.19	6.00	6.77	5.54	7.82	
BOD5 INFLUENT (MG/L)	100.0	132.0	127.0	36.0	64.0	49.0	ND	79.0	172.0	95.0	135.0	137.0	102.4	
EFFLUENT (MG/L)	5.8	5.5	4.7	10.9	13.0	18.2	ND	7.8	13.3	7.0	15.8	10.6	10.2	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	45.64	40.42	38.11	183.44	128.57	182.00	ND	40.32	69.02	42.00	106.96	58.72	79.76	
SUSPENDED SOLIDS INFLUENT (MG/L)	155.0	154.0	135.0	98.0	106.0	110.0	101.0	129.0	176.0	155.0	147.0	102.0	130.7	
EFFLUENT (MG/L)	3.2	2.7	4.0	15.6	9.5	6.8	4.7	4.4	5.2	6.4	4.8	2.4	5.8	
CONCENTRATION LIMIT (MG/L)												-	25.0	
LOADING (KG/D)	25.18	19.84	32.44	262.54	93.95	68.00	24.06	22.74	26.98	38.40	32.49	13.29	45.36	
TOTAL PHOSPHOROUS	2041 1965	2.02	26027	mes tecan	207 NZ C444	920 9309	2000		Security Con-	CHE TENNO	361.60			
INFLUENT (MG/L)	4.3	5.0	6.2	3.5	3.8	3.8	5.6	5.7	5.7	5.7	4.0	4.0	4.8	L
EFFLUENT (MG/L)	0.5	0.5	0.5	0.8	0.5	0.5	0.8	0.9	0.8	0.5	0.6	0.6	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	3.93	3.67	4.05	13.46	4.94	5.00	4.09	4.65	4.15	3.00	4.06	3.32	4.69	

SUMMAR	١
--------	---

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP 1.0 MG/L YES NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: WALDEN

PLANT

: LIVELY WPCP

WORKS NUMBER

: 120001185

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

1.59 (1000 M3)

REGION : NORTHEAST

DISTRICT

: SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL WATERCOURSE

: MEATBIRD CREEK

MINOR BASIN

MAJOR BASIN

: HURON : GREAT LAKES

POPULATION SERVED : 3,669

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.32	1.18	1.42	1.81	1.65	1.70	1.37	1.53	1.33	1.36	1.57	1.50	1.48	
BOD5 INFLUENT (MG/L)	168.0	119.0	120.0	56.0	65.0	63.0	65.0	86.0	87.0	468.0	91.0	60.0	120.7	
EFFLUENT (MG/L)	7.3	6.1	9.6	8.1	7.9	3.5	2.3	15.9	3.0	5.5	15.7	11.0	8.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.63	7.19	13.63	14.66	13.03	5.95	3.15	24.32	3.99	7.48	24.64	16.50	11.84	
SUSPENDED SOLIDS INFLUENT (MG/L)	126.0	111.0	121.0	83.0	112.0	124.0	82.0	100.0	122.0	384.0	136.0	134.0	136.3	
EFFLUENT (MG/L)	3.6	2.1	8.9	7.7	5.5	2.6	2.6	2.7	5.7	10.2	9.5	7.3	5.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	4.75	2.47	12.63	13.93	9.07	4.42	3.56	4.13	7.58	13.87	14.91	10.95	8.44	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	F 4	7.1	F 7		<b>.</b> .									
EFFLUENT (MG/L)	5.6	7.1	5.7	3.3	5.0	3.5	4.5	5.7	6.6	9.4	5.7	2.7	5.4	
CONCENTRATION LIMIT (MG/L)	3.3	3.9	2.7	1.4	2.6	2.6	3.1	3.0	3.3	3.2	2.7	3.1	2.9	
LOADING (KG/D)	4.35	4.60	3.83	2.53	4.29	4.42	4.24	4.59	4.38	4.35	4.23	4.65	4.29	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC 25.0 MG/L YES BOD

SS 25.0 MG/L YES TP

NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

1990/10

1991/01

1991/04

REMEDIAL MEASURES

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED

MUNICIPALITY

: WALDEN

PLANT

: MIKKOLA WPCP

WORKS NUMBER TREATMENT

: 120001531 : EXTENDED AERATION

:

DESIGN CAPACITY

4.36 (1000 M3)

REGION : NORTHEAST

DISTRICT : SUDBURY, REG. MUN.

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : JUNCTION CREEK

MINOR BASIN : HURON

: GREAT LAKES MAJOR BASIN POPULATION SERVED : 2,693

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.77	1.72	2.52	3.09	1.94	1.84	1.33	1.33	1.34	1.33	1.60	2.25	1.84	
BOD5	40.0	<i>(4.0</i>	44.0	<b>A1</b> A	74.0	F0 0	70.0	04.0	05.0		100.0	01.0	74.7	
INFLUENT (MG/L)	49.0	64.0	44.0_	21.0	34.0	52.0	70.0	84.0	95.0	86.0	180.0	81.0	71.7	
EFFLUENT (MG/L)	9.0	12.0	12.5	6.2	5.6	4.8	2.6	7.0	2.1	3.4	8.3	5.3	6.6	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	15.93	20.64	31.50	19.15	10.86	8.83	3.45	9.31	2.81	4.52	13.28	11.92	12.14	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	74.0	94.0	68.0	59.0	74.0	95.0	120.0	121.0	126.0	158.0	103.0	65.0	96.4	
EFFLUENT (MG/L)	7.3	10.0	13.5	8.6	5.2	3.8	4.3	6.6	7.3	11.5	18.4	11.6	9.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	12.92	17.20	34.02	26.57	10.08	6.99	5.71	8.77	9.78	15.29	29.44	26.10	16.56	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.6	4.6	2.9	1.4	3.1	4.1	6.3	5.8	6.7	7.8	3.6	4.3	4.5	
EFFLUENT (MG/L)	3.1	3.5	2.1	1.3	2.6	2.8	4.0	4.6	1.4	1.1	1.0	0.7	2.4	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	5.48	6.02	5.29	4.01	5.04	5.15	5.32	6.11	1.87	1.46	1.60	1.57	4.42	

SUMMARY

COMPLIES

OPERATIONAL/PROCESS - PHOSPHORUS REMOVAL BEING UPGRADED

CRITERIA WITH CONC 25.0 MG/L YES

BOD SS 25.0 MG/L YES

TP NA NOTE:

**BOD - ASSESSED ANNUALLY** 

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

REMEDIAL MEASURES

START DATE END DATE COMPLIANCE

1989/09

1990/04

1990/04

MUNICIPALITY

: WEBBWOOD

PLANT

: WEBBWOOD LAGOON

WORKS NUMBER

: 110001881

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.34 (1000 M3)

REGION : NORTHEAST DISTRICT : SUDBURY DIST. OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : GOUGH CREEK MINOR BASIN : HURON MAJOR BASIN : GREAT LAKES POPULATION SERVED :

460

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.10	0.10	0.16	0.17	0.11	0.12	0.10	0.09	0.10	0.09	0.09	0.09	0.11	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	77	
BOD5 INFLUENT (MG/L)	165.0	183.0	73.0	51.0	91.0	147.0	100.0	100.0	455.0					
EFFLUENT (MG/L)	ND	ND	ND	ND ND	81.0	143.0	108.0	190.0	155.0	124.0	190.0	365.0	152.3	
CONCENTRATION LIMIT (MG/L)	- ND	MD_	ND	ND	ND	ND	9.2	7.0	1.2	12.3	27.0	ND	11.3	
													30.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	0.92	0.63	0.12	1.10	2.43	ND	1.24	
SUSPENDED SOLIDS INFLUENT (MG/L)	103.0	145.0	85.0	53.0	63.0	07.0	F7.0	100.0	45.0					
EFFLUENT (MG/L)	ND	ND	ND	the second of the second		93.0	53.0_	100.0	65.0	113.0	_130.0	160.0	96.9	
CONCENTRATION LIMIT (MG/L)	- ND	ND_	NU	ND_	ND_	ND	10.5	15.0	10.0	37.5	30.0	ND	20.6	
													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	1.05	1.35	1.00	3.37	2.70	ND	2.27	
TOTAL PHOSPHOROUS							-			(8-0)				
INFLUENT (MG/L)	8.4	15.5	5.5	4.4	7.7	11.5	7.2	15.1	10.2	10.2	11.8	14.4	10.2	l
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	5.4	5.0	5.8	3.9	2.5	ND	4.5	l ———
CONCENTRATION LIMIT (MG/L)					The second									
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	0.54	0.45	0.58	0.35	0.22	ND	0.50	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30.0 MG/L	YES	
SS	40.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: WHITE RIVER

PLANT

: WHITE RIVER LAGOON

WORKS NUMBER

: 110002522

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.00 (1000 M3)

REGION : NORTHEAST DISTRICT : ALGOMA

DISTRICT : ALGOMA
OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : SMALL CR.TO WHITE RIVER

MINOR BASIN : SUPERIOR

MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.64	0.62	0.59	0.55	0.84	0.60	0.50	0.56	0.63	0.59	0.69	0.67	0.62	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5														
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND_	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)													30.0	L
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS								ND	ND	ND	ND	ND		
INFLUENT (MG/L)	ND_	ND	ND	ND	ND ND	ND	ND	ND	ND	ND_	ND	ND		
EFFLUENT (MG/L)	ND_	ND	ND	ND	ND	ND	ND_	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														i
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

#### SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L NO DISCHARGE

SS 40.0 MG/L NO DISCHARGE TP NA NO DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA



# Northwestern Region



# REGIONAL OFFICE

Thunder Bay 435 James St. South P.O. Box 5000 P7C 5G8 (807) 475-1205

# DISTRICT OFFICES

Kenora 808 Robertson St. P9N 1X9 (807) 468-5578

Thunder Bay 435 James St. South P.O. Box 5000 P7C 5G8 (807) 475-1315

# NORTHWEST SUMMARY - 1989

		Number		Design	Capacity (1	000M3/D)
Treatment Type	Min	Mun	Tot	Ministry	Municipal	Total
Primary	1	3	4	9.09	112.01	121.11
Conventional Activated Sludge	0	1	1	-	2.27	2.27
Contact Stabilization	1	2	3	2.45	25.00	27.45
Extended Aeration	10	1	11	23.13	0.55	23.68
Communal Septic Tank	1	0	1	0.27	=	0.27
Aerated Lagoon	0	1	1	-	4.10	4.10
Conventional Lagoon Seasonal	3	0	3	2.03	-	2.03
Exfiltration Lagoon	1	2	3	1.36	1.36	2.72
TOTALS	17	10	27	38.33	145.29	183.62

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

# NORTHWEST SUMMARY - 1989

	ı	Number		Annua	al ADF (1000M	13/D)
Treatment Type	Min Mun Tot		Ministry	Municipal	Total	
Primary	1	3	3	7.35	80.71	88.06
Conventional Activated Sludge	0	1	1	0.00	1.78	1.78
Contact Stabilization	1	2	3	2.10	14.99	17.09
Extended Aeration	10	1	11	14.16	0.26	14.42
Communal Septic Tank	1	0	1	0.10	0.00	0.10
Aerated Lagoon	0	1	1	0.00	3.08	3.08
Conventional Lagoon Seasonal	3	0	3	1.63	0.00	1.63
Exfiltration Lagoon	1	2	3	0.24	0.00	0.24
TOTALS	17	10	27	25.58	100.82	126.40

1000M3/D: Thousands of cubic meters per day ADF: Average Daily Flow

MUNICIPALITY

: ATIKOKAN

PLANT

: ATIKOKAN WPCP

WORKS NUMBER

: 110001523

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

:

DESIGN CAPACITY

4.08 (1000 M3)

REGION : NORTHWEST DISTRICT : RAINY RIVER

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ATIKOKAN RIVER MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER

POPULATION SERVED	:	4,500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.42	2.68	2.95	4.89	3.25	3.39	2.79	2.56	3.07	2.56	2.12	1.94	2.89	
BOD5 INFLUENT (MG/L)	70.0	65.0	62.0	52.0	44.0	70.0	<b>45.0</b>	45.0						
EFFLUENT (MG/L)	3.5					38.0	65.0	45.0	69.0	45.0	80.0	112.0	62.3	
CONCENTRATION LIMIT (MG/L)		8.7	7.7_	2.6	3.2	2.0	1.5	5.2	1.9	2.0	2.2	8.7	4.1	
LOADING (KG/D)													25.0	
LOADING (KG/D)	8.47	23.31	22.71	12.71	10.40	6.78	4.18	13.31	5.83	5.12	4.66	16.87	11.85	
SUSPENDED SOLIDS INFLUENT (MG/L)	87.0	80.0	132.0	100.0	"	F0 0								
EFFLUENT (MG/L)	17.5		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	100.0	66.0	50.0	48.0	43.0	63.0	60.0	93.0	130.0	79.3	
CONCENTRATION LIMIT (MG/L)	17.5	35.0	43.2	25.0	23.3	8.5	6.0	7.5	12.5	10.0	12.0	10.9	17.6	
LOADING (KG/D)	42.35	93.80	127.44	122.25	75.72	28.81	16.74	19.20	38.37	25.60	25.44	21.14	25.0 50.86	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.3	2.8	2.8	2.9	2.5	2.3	3.6	2.8	3.3	3.1	3.5	3.9		
EFFLUENT (MG/L)	0.6	1.1×		***************************************	0.7	0.3	0.3	0.3	0.5	0.5	0.5	0.7	3.1	l
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			0.6	2_
LOADING (KG/D)	1.45	2.94	3.24	3.42	2.27	1.01	0.83	0.76	1.53	1.28	1.06	1.0	1.73	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/I	NO	

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - ASSESSED MONTHLY * - EXCEEDS EFFLUENT CRITERIA SPACE (EG. " ") INDICATES A VALUE OF ZERO ND - NO DATA NA - NOT APPLICABLE

REMEDIAL MEASURES	START DATE	END DATE	COMPLIANCE
COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW COLLECTION SYSTEM - INFILTRATION PROBLEMS BEING CORRECTED OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED	1991	1990	
SLUDGE DISPOSAL/REMOVAL - UPGRADING SLUDGE STORAGE FACILITIES FACILITY EXPANSION/UPGRADING - UPGRADING SECONDARY CLARIFIERS	1989 1989	1989 1989	1990 1990

MUNICIPALITY

: ATWOOD

PLANT

: RAINY RIVER LAGOON

WORKS NUMBER

: 110002292

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

DESIGN CAPACITY

0.99 (1000 M3)

REGION : NORTHWEST

: RAINY RIVER DISTRICT

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: RAINY RIVER : LAKE WINNIPEG EAST

MINOR BASIN MAJOR BASIN

: NELSON RIVER

POPULATION SERVED :

975

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.51	0.52	0.63	1.14	0.69	1.07	1.00	1.00	0.53	0.49	0.57	0.57	0.73	
LAGOON DISCHARGE	ND	ND	ND	ND	54.64	80.44	ND	ND	18.75	23.88	42.65	ND	44.07	
BOD5	275 8	2222											100.4	l
INFLUENT (MG/L)	99.0	165.0	67.0	83.0	111.0	67.0	56.0	56.0	96.0	106.0	183.0	140.0	102.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	9.8	9.0	ND	ND_	3.9	2.0	4.8	ND	5.9	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	6.76	9.63	ND	ND	2.06	0.98	2.73	ND	4.31	
SUSPENDED SOLIDS		Personal Sign	Parketter 1925									100.0		
INFLUENT (MG/L)	120.0	140.0	100.0	100.0	245.0	85.0_	50.0	50.0	95.0	110.0	125.0	180.0	116.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	14.6	15.4	ND_	ND ND	3.3	1.7	3.8	ND_	7.8	ļ
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	10.07	16.47	ND	ND	1.74	0.83	2.16	ND	5.69	
TOTAL PHOSPHOROUS								06	20		521 St	700 U		1
INFLUENT (MG/L)	4.9	5.8	3.3	3.6	5.4	3.6	3.3	3.3	3.5_	6.0	5.1	4.6	4.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	1.4	1.7	ND	ND	0.3	0.3	1.3	ND	1.0	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	0.96	1.81	ND	ND	0.15	0.14	0.74	ND	0.73	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM

30.0 MG/L YES BOD SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW

MUNICIPALITY : BEARDMORE

PLANT : BEARDMORE LAGOON

WORKS NUMBER : 110002309

TREATMENT : EXFILTRATION LAGOON

:

DESIGN CAPACITY : 1.36 (1000 M3)

REGION : NORTHWEST
DISTRICT : THUNDER BAY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : NO DISC.TO SURFACE WATER

MINOR BASIN : SUPERIOR
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 570

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.20	0.20	0.19	0.25	0.44	0.29	ND	0.22	0.20	0.20	0.21	0.22	0.24	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	145.0	126.0	138.0	140.0	42.0	34.0	ND	155.0	130.0	125.0	210.0	170.0	128.6	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	120.0	
CONCENTRATION LIMIT (MG/L)										ND		ND		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS														
INFLUENT (MG/L)	110.0	95.0	80.0	100.0	70.0	90.0	ND	90.0	100.0	100.0	100.0	90.0	93.2	
EFFLUENT (MG/L)	ND_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)									1					
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	6.0	7.5	6.1	6.3	1.9	2.0	ND	6.5	7.5	10.9	6.7	7.0	6.2	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)									1.5					
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11 11 12 12 1	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	NA	NO DIRECT	DISCHARGE
SS	NA	NO DIRECT	DISCHARGE
TP	NA		DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - HAS NO CRITERIA SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: CARAMAT

PLANT WORKS NUMBER

: 120003085

TREATMENT

: EXFILTRATION LAGOON

: EXFILTRATION

:

DESIGN CAPACITY

0.05 (1000 M3)

REGION : NORTHWEST
DISTRICT : THUNDER BAY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NO DISC.TO SURFACE WATER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 125

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5						20,07575	5000.000	2200						
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND		l
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS		Veces		F2-12-	4020	707045		100000		12221				
INFLUENT (MG/L)	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		l
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

	SUMM	ARY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	NA	NO DISCHARGE
SS	NA	NO DISCHARGE
TP	NA	NO DISCHARGE

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: DRYDEN

PLANT

: DRYDEN WPCP

WORKS NUMBER

: 120000248

TREATMENT

: CONTACT STABILIZATION

DESIGN CAPACITY

6.81 (1000 M3) :

REGION : NORTHWEST DISTRICT : KENORA OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : WABIGOON RIVER

MINOR BASIN : LAKE WINNIPEG EAST MAJOR BASIN : NELSON RIVER

POPULATION SERVED : 6,900

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	3.19	3.38	3.50	5.62	4.50	5.49	4.83	4.56	3.64	3.55	3.23	3.15	4.05	
BOD5 INFLUENT (MG/L)	130.0	123.0	120.0	95.0	88.0	112.0	84.0	86.0	120.0	78.0	190.0	72.0	108.2	
EFFLUENT (MG/L)	9.3	15.0	12.0	17.0	14.0	6.4	8.4	6.7	4.3	2.9	4.4	9.0	9.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	29.66	50.70	42.00	95.54	63.00	35.13	40.57	30.55	15.65	10.29	14.21	28.35	36.86	
SUSPENDED SOLIDS				12.22	2022 20	72.90 x 10.00 x 10.00			Valencies no	222    0				
INFLUENT (MG/L)	160.0	130.0	130.0	210.0	110.0	130.0	70.0	75.0	500.0	160.0	120.0	160.0	162.9	
EFFLUENT (MG/L)	6.0	4.0	7.0	10.0	5.0	ND	20.0	20.0	ND_	15.0	2.0	8.0	9.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	19.14	13.52	24.50	56.20	22.50	ND	96.60	91.20	ND	53.25	6.46	25.20	39.29	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.7	5.8	6.3	4.3	4.0	5.6	4.7	5.4	5.9	4.4	5.6	4.2	5.2	
EFFLUENT (MG/L)	ND	0.3	0.6	0.4	0.5	0.5	1.2	0.6	0.7	0.8	0.6	0.6	0.6	
CONCENTRATION LIMIT (MG/L)										- 0.0				
LOADING (KG/D)	ND	1.01	2.10	2.24	2.25	2.74	5.79	2.73	2.54	2.84	1.93	1.89	2.43	

SU	MM	A	RY	

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES

25.0 MG/L YES SS TP

NA NA

NO REMEDIAL MEASURES REPORTED

# NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: EAR FALLS

PLANT

: EAR FALLS WPCP

WORKS NUMBER

: 110001006

TREATMENT

: EXTENDED AERATION

: CONVERTIBLE OPERATING MODE

DESIGN CAPACITY

2.86 (1000 M3)

: NORTHWEST REGION

DISTRICT : KENORA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ENGLISH RIVER MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN

: NELSON RIVER

POPULATION SERVED : 1,750

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.51	1.52	1.36	1.46	1.40	1.34	1.36	1.36	1.26	1.25	1.27	1.28	1.36	
BOD5	39.0	75.0	73.0	31.0	52.0	53.0	58.0	31.0	60.0	194.0	86.0	68.0	68.3	
INFLUENT (MG/L) EFFLUENT (MG/L)	2.4	2.4	2.5	3.4	2.5	2.2	1.2	0.8	1.8	1.8	1.5	1.8	2.0	
CONCENTRATION LIMIT (MG/L)				3.4						1.0			25.0	
LOADING (KG/D)	3.62	3.64	3.40	4.96	3.50	2.94	1.63	1.08	2.26	2.25	1.90	2.30	2.72	
SUSPENDED SOLIDS INFLUENT (MG/L)	355.0	73.0	118.0	110.0	65.0	130.0	30.0	510.0	263.0	293.0	205.0	65.0	184.8	
EFFLUENT (MG/L)	15.0	12.0	9.0	22.5	8.0	7.5	4.0	7.0	6.3	15.5	8.0	5.0	10.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	22.65	18.24	12.24	32.85	11.20	10.05	5.44	9.52	7.93	19.37	10.16	6.40	13.60	
TOTAL PHOSPHOROUS			7.0	12.4			7.0	ND			4 =	• •		
INFLUENT (MG/L)	2.7	3.2	3.0	1.1	2.6	3.3	3.0 0.3	0.8	3.7 0.5	6.2 0.7	4.5 0.3	0.4	3.3 0.5	
EFFLUENT (MG/L)	0.5	0.5	0.5	0.7		0.5	0.3	0.0	0.5	0./_	0.3	0.4	0.5	
CONCENTRATION LIMIT (MG/L) LOADING (KG/D)	0.75	0.76	0.68	1.02		0.67	0.40	1.08	0.63	0.87	0.38	0.51	0.68	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	

BOD 25.0 25.0 MG/L YES SS TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: EMO

PLANT

: EMO LAGOON

WORKS NUMBER

: 110001015

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.27 (1000 M3)

REGION : NORTHWEST

DISTRICT : RAINY RIVER OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : RAINY RIVER

MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER

POPULATION SERVED : 750

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.41	0.38	0.44	0.72	0.53	0.65	0.53	0.60	0.41	0.41	0.44	0.35	0.49	
LAGOON DISCHARGE	ND	ND	ND	0.52	21.58	71.92	ND	ND	ND	ND	73.70	ND	41.93	
BOD5 INFLUENT (MG/L)	156.0	46.0	63.0	118.0	29.0	86.0	55.0	89.0	131.0	134.0	163.0	172.0	103.5	
EFFLUENT (MG/L)	ND	ND	ND	20.0	14.1	22.5	ND	ND	ND	4.2	7.1	ND	13.6	
CONCENTRATION LIMIT (MG/L)							7 - 0 - =						30.0	
LOADING (KG/D)	ND	ND	ND	14.40	7.47	14.62	ND	ND	ND	1.72	3.12	ND	6.66	
SUSPENDED SOLIDS INFLUENT (MG/L)	177.0	130.0	80.0	138.0	163.0	90.0	73.0	190.0	140.0	130.0	260.0	155.0	143.8	
EFFLUENT (MG/L)	ND	ND	ND	25.0	18.7	58.3	ND	ND	ND	1.0	5.5	ND	21.7	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	18.00	9.91	37.89	ND	ND	ND	0.41	2.42	ND	10.63	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.7	5.1	3.9	6.3	1.6	4.7	4.1	5.7	5.9	7.4	6.3	6.2	5.4	
EFFLUENT (MG/L)	ND	ND	ND	1.9	1.8	1.2	ND	ND	ND	1.9	1.4	ND	1.6	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	1.36	0.95	0.78	ND	ND	ND	0.77	0.61	ND	0.78	

SUMMARY

COMPLIES

CRITERIA WITH CONC

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

REMEDIAL MEASURES

ANTICIPATED START DATE _ END DATE _ COMPLIANCE

FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED

FACILITY EXPANSION/UPGRADING - PRELIMINARY DESIGN PHASE

MUNICIPALITY

: FORT FRANCES

PLANT WORKS NUMBER : FORT FRANCES WPCP

TREATMENT

: 110000258 : PRIMARY

:

:

DESIGN CAPACITY

9.09 (1000 M3)

REGION

: NORTHWEST

DISTRICT

: RAINY RIVER

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

: RAINY RIVER

WATERCOURSE MINOR BASIN

: LAKE WINNIPEG EAST

MAJOR BASIN

: NELSON RIVER

POPULATION SERVED :

8,750

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	5.51	5.86	6.34	9.58	7.99	9.95	9.00	8.10	7.05	6.63	6.28	5.87	7.35	
B0D5			Marketon (1980)	W.S. V		00001864 (USO	6407.343 3550	Kind der Trede	96440 VA	CORRECT FRANCE	Carthan Net	LEWIS MAN		
INFLUENT (MG/L)	66.0	60.0	79.0	42.0	40.0	63.0	50.0	54.0	72.0	65.0	86.0	98.0	64.6	
EFFLUENT (MG/L)	39.0	53.5	42.0	30.0	44.5	35.5	36.0	24.0	35.0	40.5	73.0	75.0	44.0	
LOADING (KG/D)	214.89	313.51	266.28	287.40		353.22	324.00	194.40	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	268.51	458.44	440.25	323.40	
PERCENT REMOVAL	41	11	47	29	ND	44	28	56	51	38	15	23	32	
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS		22 020												
INFLUENT (MG/L)	153.0	98.0	175.0	90.0	70.0	115.0	95.0	140.0	118.0	118.0	163.0	275.0	134.2	
EFFLUENT (MG/L)	53.7	75.0	65.0	42.5	52.5	57.5	37.5	28.3	40.0	70.0	30.0	75.0	52.3	
LOADING (KG/D)	295.88	439.50	412.10	407.15	419.47				282.00	464.10	188.40	440.25	384.41	
PERCENT REMOVAL	65	23	63	53	25	50	61	80	66	41	82	73	61	
PERCENT REMOVAL LIMITS													50	<u> </u>
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	3.4	3.1	3.3	1.9	2.6	3.0	2.4	2.7	3.1	4.8	3.9	4.0	3.2	
EFFLUENT (MG/L)	1.8	2.6	1.7	1.0	2.0	2.1	1.6	1.7	2.0	2.6	0.8	2.4	1.9	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	9.91	15.23	10.77	9.58	15.98	20.89	14.40	13.77	14.10	17.23	5.02	14.08	13.97	

	SUMMA	ARY	
	\ <u></u>	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30%	YES	
SS	50%	YES	
TP	NA	NA	

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE _ END DATE _ COMPLIANCE

# REMEDIAL MEASURES

COLLECTION SYSTEM - SEWAGE UPGRADE UNDERWAY

COLLECTION SYSTEM - INFILTRATION PROBLEMS BEING CORRECTED

COLLECTION SYSTEM - ILLEGAL CONNECTIONS BEING ELIMINATED

COLLECTION SYSTEM - ENFORCING SEWER-USE BYLAWS

FACILITY EXPANSION/UPGRADING - PRELIMINARY DESIGN PHASE

MUNICIPALITY

: GERALDTON

PLANT

: GERALDTON WPCP

WORKS NUMBER TREATMENT : 110001649

:

: EXTENDED AERATION

į

DESIGN CAPACITY

1.81 (1000 M3)

REGION : NORTHWEST
DISTRICT : THUNDER BAY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE KENOGAMISIS

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 2,901

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.63	1.66	1.53	2.71	3.10	1.98	1.66	1.33	1.18	1.31	1.55	1.28	1.74	
BOD5 INFLUENT (MG/L)	96.0	76.0	84.0	57.0	42.0	61.0	88.0	75.0	108.0	84.0	106.0	120.0	83.1	
EFFLUENT (MG/L)	3.2	5.4	4.6	3.6	10.2	3.1	2.0	1.9	2.1	2.2	1.8	2.0	3.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	5.21	8.96	7.03	9.75	31.62	6.13	3.32	2.52	2.47	2.88	2.79	2.56	6.09	
SUSPENDED SOLIDS INFLUENT (MG/L)	120.0	93.0	200.0	190.0	65.0	90.0	67.0	65.0	100.0	93.0	150.0	130.0	113.6	
EFFLUENT (MG/L)	7.0	8.0	5.0	5.5	11.0	6.0	2.7	3.0	4.5	2.0	3.0	3.0	5.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	11.41	13.28	7.65	14.90	34.10	11.88	4.48	3.99	5.31	2.62	4.65	3.84	8.87	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.4	4.3	4.1	3.3	2.4	3.9	7.2	4.7	5.3	5.2	4.4	4.5	4.5	
EFFLUENT (MG/L)	2.7	2.7	2.5	1.4	1.0	1.8	2.4	2.9	2.9	2.9	2.1	2.3	2.3	-
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	4.40	4.48	3.82	3.79	3.10	3.56	3.98	3.85	3.42	3.79	3.25	2.94	4.00	1

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:
BOD - ASSESSED ANNUALLY
SS - ASSESSED ANNUALLY
TP - HAS NO CRITERIA
* - EXCEEDS EFFLUENT CRITERIA
SPACE (EG. " ") INDICATES A VALUE OF ZERO
ND - NO DATA
NA - NOT APPLICABLE

MUNICIPALITY

: GOLDEN

PLANT

: BALMERTOWN WPCP

WORKS NUMBER

: 110003291

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

1.22 (1000 M3)

REGION : NORTHWEST

DISTRICT : KENORA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT WATERCOURSE : BALMER CREEK

MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER
POPULATION SERVED : 1,300

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.09	1.16	1.17	1.42	1.21	1.24	1.09	1.03	0.78	0.70	0.81	1.07	1.06	
BOD5 INFLUENT (MG/L)	107.0	96.0	52.0	110.0	63.0	91.0	89.0	88.0	70.0	89.0	121.0	117.0	91.1	
EFFLUENT (MG/L)	7.5	14.0	6.8	4.2	2.5	4.0	3.1	3.0	4.0	11.2	3.9	4.7	5.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	8.17	16.24	7.95	5.96	3.02	4.96	3.37	3.09	3.12	7.84	3.15	5.02	6.04	
SUSPENDED SOLIDS INFLUENT (MG/L)	76.0	103.0	48.0	103.0	83.0	103.0	92.0	75.0	53.0	83.0	85.0	83.0	82.3	
EFFLUENT (MG/L)	8.0	17.5	11.0	6.5	4.5	8.0	2.0	6.0	15.0	22.5	9.0	8.0	9.8	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	8.72	20.30	12.87	9.23	5.44	9.92	2.18	6.18	11.70	15.75	7.29	8.56	10.39	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.2	4.4	5.0	3.3	3.9	4.7	3.8	4.9	4.4	5.1	4.8	4.6	4.4	
EFFLUENT (MG/L)	2.4	1.3	1.8	0.9	1.3	1.8	1.9	2.8	3.3	3.5	2.6	2.4	2.2	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	2.61	1.50	2.10	1.27	1.57	2.23	2.07	2.88	2.57	2.45	2.10	2.56	2.33	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: GOLDEN

PLANT

: COCHENOUR LAGOON

WORKS NUMBER

: 110002504

TREATMENT

: CONVENTIONAL LAGOON SEASONAL

:

DESIGN CAPACITY

0.76 (1000 M3)

REGION : NORTHWEST DISTRICT : KENORA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : RED LAKE

MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER
POPULATION SERVED : 800

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.51	0.45	0.48	0.42	0.36	0.33	0.30	0.31	0.34	0.38	0.53	0.45	0.41	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	53.90	ND	ND	ND	ND	53.90	ND	53.90	
BOD5 INFLUENT (MG/L)	12.0	ND	ND	ND	37.0	154.0	154.0	94.0	88.0	107.0	61.0	50.0	84.1	
EFFLUENT (MG/L)	ND	ND	ND	ND	5.4	ND	ND	ND	ND	ND	1.5	ND	3.5	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	ND	ND	ND	ND	1.94	ND	ND	ND	ND	ND	0.79	ND	1.44	
SUSPENDED SOLIDS INFLUENT (MG/L)	15.0	ND	ND	ND	55.0	308.0	143.0	75.0	78.0	110.0	68.0	70.0	102.4	
EFFLUENT (MG/L)	ND	ND	ND	ND	5.0	ND	ND	ND	ND	ND	5.0	ND	5.0	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	ND	ND	ND	ND	1.80	ND	ND	ND	ND	ND	2.65	ND	2.05	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	2.6	ND	ND	ND	1.6	7.2	7.4	7.0	4.3	6.3	3.4	2.2	4.7	
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	0.1	ND	0.1	
CONCENTRATION LIMIT (MG/L)											V.4			
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	ND	0.04	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

SS 40.0 MG/L YES

TP NA NA

NO REMEDIAL MEASURES REPORTED

#### NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: IGNACE

PLANT

: IGNACE WPCP

WORKS NUMBER

: 110001355

TREATMENT

: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 2.53 (1000 M3)

REGION : NORTHWEST DISTRICT : KENORA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : AGIMAC CREEK

MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER
POPULATION SERVED : 2,285

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.39	1.47	1.65	1.78	2.30	1.84	1.89	1.47	1.33	1.38	1.26	1.34	1.59	
BODS INFLUENT (MG/L)	75.0	82.0	108.0	46.0	57.0	65.0	126.0	79.0	80.0	162.0	81.0	59.0	85.0	
EFFLUENT (MG/L)	4.0	3.7	5.1	3.4	3.2	5.4	3.5	4.8	5.0	3.1	2.5	3.6	3.9	
CONCENTRATION LIMIT (MG/L)					76.2								25.0	
LOADING (KG/D)	5.56	5.43	8.41	6.05	7.36	9.93	6.61	7.05	6.65	4.27	3.15	4.82	6.20	
SUSPENDED SOLIDS INFLUENT (MG/L)	105.0	90.0	225.0	75.0	80.0	45.0	40.0	53.0	80.0	272.0	125.0	50.0	103.3	8.2 1
EFFLUENT (MG/L)	12.7	15.0	12.5	12.5	13.3	9.5	10.0	10.0	9.5	20.0	10.0	12.5	12.3	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	17.65	22.05	20.62	22.25	30.59	17.48	18.90	14.70	12.63	27.60	12.60	16.75	19.56	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.0	4.1	6.7	3.1	3.2	2.9	3.1	5.0	4.1	6.8	5.0	4.2	4.4	
EFFLUENT (MG/L)	0.6	0.7	0.7	0.6	0.6	0.4	0.6	0.6	0.5	0.8	0.7	0.9	0.6	
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	0.83	1.02	1.15	1.06	1.38	0.73	1.13	0.88	0.66	1.10	0.88	1.20	0.95	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25.0 MG/L	YES	
TP	1.0 MG/L	YES	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED MONTHLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: KENORA

PLANT

: KENORA WPCP

WORKS NUMBER

: 120000239

TREATMENT

: EXT AERATION/CONT STABLIZATION

:

DESIGN CAPACITY

18.18 (1000 M3)

REGION : NORTHWEST DISTRICT : KENORA OPERATING AUTHORITY : MUNICIPAL WATERCOURSE : WINNIPEG RIVER MINOR BASIN

MAJOR BASIN

: LAKE WINNIPEG EAST : NELSON RIVER

POPULATION SERVED :

12,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	8.15	8.46	8.81	12.68	12.33	16.87	13.34	12.72	10.28	9.33	9.19	9.08	10.94	
BOD5 INFLUENT (MG/L)	88.0	110.0	72.0	88.0	105.0	90.0	100.0	115.0	102.0	105.0	86.0	76.0	94.8	7,000
EFFLUENT (MG/L)	17.0	23.0	14.0	28.0	6.3	8.0	12.0	8.0	24.0	7.4	32.0	12.0	16.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	138.55	194.58	123.34	355.04	77.67	134.96	160.08	101.76	246.72	69.04	294.08	108.96	175.04	
SUSPENDED SOLIDS INFLUENT (MG/L)	110.0	120.0	100.0	85.0	540.0	95.0	300.0	220.0	80.0	130.0	95.0	120.0	166.3	
EFFLUENT (MG/L)	10.0	9.0	8.0	15.0	15.0	35.0	9.0	5.0	10.0	4.0	35.0	6.0	13.4	
CONCENTRATION LIMIT (MG/L)											33.0		25.0	
LOADING (KG/D)	81.50	76.14	70.48	190.20	184.95	590.45	120.06	63.60	102.80	37.32	321.65	54.48	146.60	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.2	5.4	3.2	4.7	5.0	4.3	4.4	4.4	4.0	5.7	3.8	3.9	4.5	
EFFLUENT (MG/L)	2.6	2.1	2.0	2.7	0.6	0.6	0.8	0.6	0.4	0.4	1.1	0.3	1.2	
CONCENTRATION LIMIT (MG/L)											***	0.5	1:6-	
LOADING (KG/D)	21.19	17.76	17.62	34.23	7.39	10.12	10.67	7.63	4.11	3.73	10.10	2.72	13.13	

	SUMMA	RY	
	***************************************	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	25.0 MG/L	YES	
SS	25 0 MG/I	VES	

SS 25.0 MG/L TP

NA NA

ND - NO DATA NA - NOT APPLICABLE

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

TP - HAS NO CRITERIA

NOTE:

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: LONGLAC

PLANT

: LONGLAC WPCP

WORKS NUMBER

: 110001042

TREATMENT

: CONTACT STABILIZATION

DESIGN CAPACITY

2.45 (1000 M3)

: NORTHWEST REGION DISTRICT : THUNDER BAY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MAKING GROUND RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 2,900

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.79	1.98	1.89	3.48	3.01	2.21	2.06	1.91	1.73	1.83	1.97	1.32	2.10	
BOD5 INFLUENT (MG/L)	82.0	91.0	81.0	86.0	63.0	58.0	96.0	68.0	89.0	64.0	99.0	106.0	81.9	
EFFLUENT (MG/L)	5.3	13.5	6.8	9.7	7.8	5.6	5.3	4.8	5.7	4.7	4.2	10.5	7.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.48	26.73	12.85	33.75	23.47	12.37	10.91	9.16	9.86	8.60	8.27	13.86	14.70	11/1 20000
SUSPENDED SOLIDS INFLUENT (MG/L)	95.0	103.0	107.0	238.0	75.0	105.0	65.0	93.0	63.0	90.0	140.0	455.0	135.8	
EFFLUENT (MG/L)	7.0	7.5	20.0	15.0	12.5	8.0	4.0	11.5	5.0	3.0	4.5	6.0	8.7	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	12.53	14.85	37.80	52.20	37.62	17.68	8.24	21.96	8.65	5.49	8.86	7.92	18.27	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	5.1	5.6	5.2	3.9	3.6	4.2	6.2	4.3	5.1	4.1	4.3	5.1	4.7	
EFFLUENT (MG/L)	1.2	1.1	1.8	0.6	0.5	0.5	0.3	0.6	0.4	0.4	0.4	0.4	0.7	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	2.14	2.17	3.40	2.08	1.50	1.10	0.61	1.14	0.69	0.73	0.78	0.52	1.47	

SUMMARY

COMPLIES

CRITERIA WITH CONC PARM 25.0 MG/L YES BOD

25.0 MG/L YES SS TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: MADSEN

PLANT

: MADSEN WPCP

WORKS NUMBER

: 110002363

TREATMENT

: COMMUNAL SEPTIC TANK

:

DESIGN CAPACITY

0.27 (1000 M3)

REGION : NORTHWEST DISTRICT : KENORA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : NO DISCHARGE TO S.WATER

MINOR BASIN : LAKE WINNIPEG EAST MAJOR BASIN : NELSON RIVER

POPULATION SERVED : NELSON RIVER

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.08	0.11	0.08	0.09	0.10	0.10	0.11	0.09	0.09	0.09	0.10	0.12	0.10	
BOD5 INFLUENT (MG/L)	72.0	134.0	86.0	61.0	47.0	284.0	108.0	155.0	117.0	104.0	143.0	106.0	118.1	
EFFLUENT (MG/L)	86.0	64.8	58.0	45.0	39.0	64.8	85.0	84.0	73.3	60.5	70.5	57.0	65.7	
LOADING (KG/D)	6.88	7.12	4.64	4.05	3.90	6.48	9.35	7.56	6.59	5.44	7.05	6.84	6.57	
PERCENT REMOVAL	ND	52	33	26	17	77	21	46	37	42	51	46	44	1
PERCENT REMOVAL LIMITS													30	
SUSPENDED SOLIDS INFLUENT (MG/L)	45.0	135.0	91.0	73.0	40.0	75.0	80.0	40.0	80.0	103.0	113.0	122.0	83.1	
EFFLUENT (MG/L)	50.0	36.0	40.0	40.0	41.3	41.3	28.0	35.0	30.0	40.0	37.5	38.3	38.1	
LOADING (KG/D)	4.00	3.96	3.20	3.60	4.13	4.13	3.08	3.15	2.70	3.60	3.75	4.59	3.81	
PERCENT REMOVAL	ND	73	56	45	ND	45	65	13	63	61	67	69	54	
PERCENT REMOVAL LIMITS												×	50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.4	5.7	7.0	4.3	8.6	6.2	9.7	4.8	5.1	4.6	7.0	5.7	6.1	
EFFLUENT (MG/L)	4.7	4.2	4.4	3.6	3.7	4.7	4.5	4.9	4.4	4.2	3.7	4.2	4.3	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.37	0.46	0.35	0.32	0.37	0.47	0.49	0.44	0.39	0.37	0.37	0.50	0.43	

	SUMM	ARY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30%	NO DIRECT	DISCHARGE
SS	50%	NO DIRECT	DISCHARGE
TP	NA	NO DIRECT	DISCHARGE

NO REMEDIAL MEASURES REPORTED

## NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY : MANITOUWADGE

PLANT : MANITOUWADGE LAGOON

WORKS NUMBER :

: 120001988

TREATMENT : AERATED LAGOON : CONTINUOUS DISCHARGE

CON

DESIGN CAPACITY : 4.10 (1000 M3)

REGION : NORTHWEST
DISTRICT : THUNDER BAY
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : RUDDER LAKE
MINOR BASIN : SUPERIOR
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 5,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.92	2.79	2.58	3.53	5.16	3.28	3.00	2.85	2.67	2.57	2.83	2.79	3.08	
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	102.0	113.0	106.0	46.0	52.0	52.0	44.0	98.0	94.0	78.0	205.0	76.0	88.8	
EFFLUENT (MG/L)	18.0	22.0	17.0	13.0	16.0	16.0	6.5	7.0	3.7	7.4	16.0	10.0	12.7	
CONCENTRATION LIMIT (MG/L)													30.0	
LOADING (KG/D)	52.56	61.38	43.86	45.89	82.56	52.48	19.50	19.95	9.87	19.01	45.28	27.90	39.12	
SUSPENDED SOLIDS INFLUENT (MG/L)	85.0	110.0	100.0	90.0	60.0	95.0	8.0	60.0	60.0	110.0	140.0	85.0	83.6	
EFFLUENT (MG/L)	15.0	20.0	10.0	25.0	10.0	55.0	15.0	10.0	7.0	15.0	15.0	10.0	17.3	
CONCENTRATION LIMIT (MG/L)													40.0	
LOADING (KG/D)	43.80	55.80	25.80	88.25	51.60	180.40	45.00	28.50	18.69	38.55	42.45	27.90	53.28	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.1	6.3	5.0	4.2	1.9	3.5	3.0	4.2	4.4	4.0	2.9	3.3	3.9	
EFFLUENT (MG/L)	3.1	3.1	4.1	3.6	2.7	2.2	3.5	3.2	2.8	3.4	3.5	3.3	3.2	
CONCENTRATION LIMIT (MG/L)				-										
LOADING (KG/D)	9.05	8.64	10.57	12.70	13.93	7.21	10.50	9.12	7.47	8.73	9.90	9.20	9.86	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC BOD 30.0 MG/L YES

BOD 30.0 MG/L YES SS 40.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: MARATHON

PLANT

: MARATHON WPCP

WORKS NUMBER

: 120000471

TREATMENT : EXTENDED AERATION

:

DESIGN CAPACITY

4.40 (1000 M3)

REGION : NORTHWEST DISTRICT : THUNDER BAY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE SUPERIOR : SUPERIOR

MINOR BASIN MAJOR BASIN

: GREAT LAKES

POPULATION SERVED : 5,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	2.14	2.39	2.95	2.68	2.09	1.50	1.47	1.41	1.57	1.69	1.64	1.60	1.93	
BOD5 INFLUENT (MG/L)	141.0	96.0	88.0	71.0	112.0	123.0	128.0	140.0	121.0	121.0	154.0	175.0	122.5	
EFFLUENT (MG/L)	3.0	3.6	3.2	2.2	3.4	1.7	2.6	2.9	3.6	3.6	3.7	2.3	3.0	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	6.42	8.60	9.44	5.89	7.10	2.55	3.82	4.08	5.65	6.08	6.06	3.68	5.79	
SUSPENDED SOLIDS INFLUENT (MG/L)	245.0	100.0	98.0	170.0	123.0	100.0	90.0	108.0	95.0	125.0	150.0	120.0	127.0	
EFFLUENT (MG/L)	5.0	5.0	4.0	4.0	5.0	3.5	2.7	1.6	2.0	6.0	3.0	2.0	3.7	
CONCENTRATION LIMIT (MG/L)										7.3			25.0	2000
LOADING (KG/D)	10.70	11.95	11.80	10.72	10.45	5.25	3.96	2.25	3.14	10.14	4.92	3.20	7.14	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	6.5	5.9	4.7	4.6	5.1	6.1	8.2	8.4	6.6	7.8	7.1	7.2	6.5	
EFFLUENT (MG/L)	4.4	4.4	3.8	2.9	4.0	5.2	6.2	5.3	5.0	4.5	4.3	5.0	4.6	
CONCENTRATION LIMIT (MG/L)													7.0	
LOADING (KG/D)	9.41	10.51	11.21	7.77	8.36	7.80	9.11	7.47	7.85	7.60	7.05	8.00	8.88	

	SUMMA	RY
		COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	NA	NA

NO REMEDIAL MEASURES REPORTED

NOTE: BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA * - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: NAKINA

PLANT

: NAKINA WPCP (NO PH REMOVAL AUG.18 1987)

WORKS NUMBER

: 110003308

TREATMENT

: EXTENDED AERATION

: CONVERTIBLE OPERATING MODE

DESIGN CAPACITY

1.70 (1000 M3)

REGION : NORTHWEST

DISTRICT : THUNDER BAY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BALKAM CREEK MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 750

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.43	0.42	0.38	0.48	0.83	0.58	0.37	0.31	0.34	0.38	0.45	0.41	0.45	
BOD5 INFLUENT (MG/L)	88.0	117.0	395.0	105.0	61.0	70.0	77.0	151.0	138.0	72.0	112.0	104.0	124.2	
EFFLUENT (MG/L)	1.5	1.9	2.1	1.9	2.1	1.6	1.1	1.3	1.4	1.0	2.4	3.2	1.8	
CONCENTRATION LIMIT (MG/L)		-											25.0	
LOADING (KG/D)	0.64	0.79	0.79	0.91	1.74	0.92	0.40	0.40	0.47	0.38	1.08	1.31	0.81	
SUSPENDED SOLIDS INFLUENT (MG/L)	105.0	125.0	500.0	240.0	98.0	53.0	60.0	163.0	128.0	75.0	105.0	105.0	146.4	
EFFLUENT (MG/L)	5.5	5.4	8.0	5.0	5.0	3.5	2.7	3.7	3.0	4.5	9.0	12.0	5.6	
CONCENTRATION LIMIT (MG/L)			- 0.0										25.0	
LOADING (KG/D)	2.36	2.26	3.04	2.40	4.15	2.03	0.99	1.14	1.02	1.71	4.05	4.92	2.52	
TOTAL PHOSPHOROUS		AZON NO	00.2000 3420			term re-	UZA BISMI	200					-20.7754	
INFLUENT (MG/L)	4.2	5.4	34.0	4.6_	2.6	3.2	4.3	6.7	5.1_	4.0	3.5	5.1	6.9	
EFFLUENT (MG/L)	2.1	2.4	2.7	2.0	1.4	1.9	1.7	0.3	0.7	1.1	1.7	2.0	1.7	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.90	1.00	1.02	0.96	1.16	1.10	0.62	0.09	0.23	0.41	0.76	0.82	0.77	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

25.0 MG/L YES BOD SS 25.0 MG/L YES

TP NA NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY PLANT

: NIPIGON

WORKS NUMBER

: NIPIGON WPCP : 120000514

TREATMENT

: PRIMARY

:

DESIGN CAPACITY

1.63 (1000 M3)

REGION : NORTHWEST
DISTRICT : THUNDER BAY
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : NIPIGON RIVER
MINOR BASIN : SUPERIOR
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 2,180

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	1.78	1.77	1.73	1.78	1.92	1.80	1.65	1.65	1.67	1.59	1.67	1.75	1.73	
BOD5							0200							
INFLUENT (MG/L)	96.0	96.0	112.0	64.0	122.0	115.0	ND	94.0	94.0	98.0	98.0	152.0	103.7	Į.
EFFLUENT (MG/L)	50.0	50.0	41.0	35.0	74.0	76.0	82.0	72.0	34.0	55.0	52.0	145.0	63.8	
LOADING (KG/D)	89.00	88.50	70.93	62.30	142.08	136.80			56.78	87.45	86.84	253.75	110.37	
PERCENT REMOVAL	48	48	63	45	39	34		23	64	44	47	05	38	
PERCENT REMOVAL LIMITS							***						30	
SUSPENDED SOLIDS														1
INFLUENT (MG/L)	90.0	90.0	140.0	120.0	160.0	100.0	ND	ND	110.0	160.0	140.0	130.0	124.0	l
EFFLUENT (MG/L)	45.0	45.0	45.0	45.0	35.0	160.0	30.0	25.0	10.0	40.0	40.0	60.0	48.3	-
LOADING (KG/D)	80.10	79.65	77.85	80.10	67.20	288.00	49.50	41.25	16.70	63.60	66.80	105.00	83.56	ł
PERCENT REMOVAL	50	50	68	63	78	ND			91	75	71	54	61	
PERCENT REMOVAL LIMITS				**									50	
TOTAL PHOSPHOROUS							-							<b></b>
INFLUENT (MG/L)	5.8	5.8	4.8	5.0	6.8	4.7	ND	6.2	6.8	5.4	6.8	4.8	5.7	
EFFLUENT (MG/L)	3.9	3.9	3.0	3.0	4.2	3.8	3.6	3.9	3.1	4.8	4.0	4.6	3.8	
CONCENTRATION LIMIT (MG/L)									****		7.0	7.0	3.0	
LOADING (KG/D)	6.94	6.90	5.19	5.34	8.06	6.84	5.94	6.43	5.17	7.63	6.68	8.05	6.57	

	SUMMA	RY	
		COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30%	YES	
SS	50%	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: PICKLE LAKE

PLANT

: PICKLE LAKE WPCP

WORKS NUMBER

: 110002185

TREATMENT : EXTENDED AERATION

:

DESIGN CAPACITY

0.90 (1000 M3)

REGION : NORTHWEST DISTRICT : KENORA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : KAWINOGANS RIVER

MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

POPULATION SERVED : 425

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	0.29	0.34	0.36	0.40	0.48	0.52	0.60	0.54	0.47	0.39	0.37	0.40	0.43	
BOD5 INFLUENT (MG/L)	68.0	130.0	119.0	92.0	30.0	15.0	17.0	52.0	42.0	52.0	135.0	38.0	65.8	
EFFLUENT (MG/L)	3.3	2.7	4.8	4.1	2.5	2.2	1.6	1.8	1.5	1.6	1.8	2.1	2.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	0.95	0.91	1.72	1.64	1.20	1.14	0.96	0.97	0.70	0.62	0.66	0.84	1.08	
SUSPENDED SOLIDS INFLUENT (MG/L)	68.0	260.0	120.0	180.0	42.0	20.0	25.0	55.0	30.0	53.0	253.0	50.0	96.3	
EFFLUENT (MG/L)	8.0	7.0	11.5	4.5	15.0	4.5	1.5	3.0	3.5	3.7	4.5	23.5	7.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	2.32	2.38	4.14	1.80	7.20	2.34	0.90	1.62	1.64	1.44	1.66	9.40	3.23	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	3.1	3.4	1.7	2.6	1.3	1.4	1.0	2.4	1.8	2.6	7.1	1.7	2.5	
EFFLUENT (MG/L)	1.5	1.5	1.9	0.7	0.5	0.6	0.4	1.2	1.0	2.0	1.2	0.6	1.1	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.43	0.51	0.68	0.28	0.24	0.31	0.24	0.64	0.47	0.78	0.44	0.24	0.47	

	SUMMA	RY
	2000	COMPLIES
PARM	CRITERIA	WITH CONC
BOD	25.0 MG/L	YES
SS	25.0 MG/L	YES
TP	NA	NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: RED LAKE

PLANT

: RED LAKE WPCP

WORKS NUMBER

: 110001131

TREATMENT

: EXTENDED AERATION

:

DESIGN CAPACITY

2.46 (1000 M3)

REGION : NORTHWEST
DISTRICT : KENORA

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : HOWEY BAY

MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER POPULATION SERVED : 1,945

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	1.93	1.93	1.89	2.25	2.25	2.18	1.96	1.85	1.67	1.71	1.88	1.98	1.96	
BOD5														
INFLUENT (MG/L)	100.0	40.0	73.0	34.0	56.0	60.0	82.0	38.0	60.0	75.0	93.0	100.0	67.6	1
EFFLUENT (MG/L)	2.9	3.2	4.6	3.8	3.1	3.9	2.6	1.6	3.1	1.8	3.5	3.6	3.1	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	5.59	6.17	8.69	8.55	6.97	8.50	5.09	2.96	5.17	3.07	6.58	7.12	6.08	
SUSPENDED SOLIDS INFLUENT (MG/L)	88.0	63.0	78.0	48.0	73.0	48.0	83.0	40.0	67.0	88.0	93.0	73.0	70.2	
EFFLUENT (MG/L)	5.0	4.5	8.0	9.0	7.5	15.0	3.0	4.5	5.3	5.0	7.0	8.5	6.9	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	9.65	8.68	15.12	20.25	16.87	32.70	5.88	8.32	8.85	8.55	13.16	16.83	13.52	
TOTAL PHOSPHOROUS						70								<b></b>
INFLUENT (MG/L)	3.3	2.8	3.1	2.1	2.6	3.1	3.6	3.0	3.0	4.1	3.8	2.9	3.1	N
EFFLUENT (MG/L)	1.5	1.3	1.4	1.0	1.1	1.8	1.7	1.5	1.8	2.1	1.5	1.4	1.5	
CONCENTRATION LIMIT (MG/L)													1.5	
LOADING (KG/D)	2.89	2.50	2.64	2.25	2.47	3.92	3.33	2.77	3.00	3.59	2.82	2.77	2.94	

SUMMARY

COMPLIES

PARM CRITERIA WITH CONC

BOD 25.0 MG/L YES SS 25.0 MG/L YES

TP NA NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: RED ROCK

PLANT

: RED ROCK WPCP

WORKS NUMBER TREATMENT : 120001817 : PRIMARY

- 53

:

DESIGN CAPACITY

1.27 (1000 M3)

REGION : NORTHWEST
DISTRICT : THUNDER BAY
OPERATING AUTHORITY : MUNICIPAL
WATERCOURSE : NIPIGON BAY
MINOR BASIN : SUPERIOR
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 1,150

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.72	0.71	0.73	1.19	1.11	1.07	0.94	0.96	0.75	0.72	0.67	0.64	0.85	
BOD5														
INFLUENT (MG/L)	84.0	120.0	106.0	44.0	78.0	70.0	64.0	74.0	60.0	72.0	135.0	118.0	85.4	
EFFLUENT (MG/L)	38.0	28.0	39.0	29.0	34.0	21.0	41.0	9.0	22.0	37.0	85.0	50.0	36.1	
LOADING (KG/D)	27.36	19.88	28.47	34.51	37.74	22.47	38.54	8.64	16.50	26.64	56.95	32.00	30.69	
PERCENT REMOVAL	55	77	63	34	56	70	36	88	63	49	37	58	58	
PERCENT REMOVAL LIMITS										31			30	
SUSPENDED SOLIDS														
INFLUENT (MG/L)	75.0	130.0	160.0	70.0	110.0	120.0	25.0	55.0	60.0	95.0	85.0	130.0	92.9	
EFFLUENT (MG/L)	15.0	20.0	30.0	25.0	30.0	35.0	6.0	8.0	20.0	15.0	35.0	30.0	22.4	
LOADING (KG/D)	10.80	14.20	21.90	29.75	33.30	37.45	5.64	7.68	15.00	10.80	23.45	19.20	19.04	
PERCENT REMOVAL	80	85	81	64	73	71	76	85	67	84	59	77	76	
PERCENT REMOVAL LIMITS													50	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.4	5.9	6.3	1.5	3.8	3.5	2.2	2.9	4.6	3.5	3.6	5.2	4.0	1
EFFLUENT (MG/L)	2.3	2.3	2.6	0.9	1.6	1.4	1.7	0.9	1.5	2.0	21.0	3.3	3.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	1.65	1.63	1.89	1.07	1.77	1.49	1.59	0.86	1.12	1.44	14.07	2.11	2.98	

	SUMMA	RY	- 70
	4	COMPLIES	
PARM	CRITERIA	WITH CONC	
BOD	30%	YES	
SS	50%	YES	
TP	NA	NA	

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT

: SCHREIBER

WORKS NUMBER

: SCHREIBER WPCP

: 110002112

TREATMENT

: EXTENDED AERATION

: CONTACT STABILIZATION

: CONVERTIBLE OPERATING MODE

DESIGN CAPACITY

1.13 (1000 M3)

REGION DISTRICT : NORTHWEST : THUNDER BAY

OPERATING AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE

: CREEK TO L.SUPERIOR

MINOR BASIN MAJOR BASIN : SUPERIOR

: GREAT LAKES 1,937

POPULATION SERVED :

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER
AVG. DAILY FLOW (1000 M3)	0.63	0.64	0.64	0.72	0.83	0.73	0.77	0.79	0.78	0.78	0.82	0.84	0.75	
BOD5 INFLUENT (MG/L)	108.0	115.0	117.0	115.0	110.0	97.0	113.0	83.0	170.0	106.0	130.0	120.0	115.3	
EFFLUENT (MG/L)	41.0	33.0	38.7	13.0	24.1	23.0	ND	6.1	7.5	4.8	11.9	11.5	19.5	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	25.83	21.12	24.76	9.36	20.00	16.79	ND	4.81	5.85	3.74	9.75	9.66	14.63	
SUSPENDED SOLIDS INFLUENT (MG/L)	170.0	110.0	133.0	113.0	101.0	88.0	55.0	68.0	215.0	125.0	195.0	83.0	121.3	
EFFLUENT (MG/L)	37.5	30.0	17.1	5.8	16.4	26.7	22.5	13.4	15.7	8.0	27.5	15.0	19.6	
CONCENTRATION LIMIT (MG/L)												25.0	25.0	
LOADING (KG/D)	23.62	19.20	10.94	4.17	13.61	19.49	17.32	10.58	12.24	6.24	22.55	12.60	14.70	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	7.6	5.4	7.1	5.6	4.2	5.5	5.1	ND	4.0		4.0	4.0		
EFFLUENT (MG/L)	3.7	3.3	4.1	3.0	3.0	3.2	2.8	3.5	6.0	5.6	4.0	4.2	5.5	
CONCENTRATION LIMIT (MG/L)	3.7_		7.1		3.0		2.0	3.5	2.9	3.5	2.6	2.5	3.2	
LOADING (KG/D)	2.33	2.11	2.62	2.16	2.49	2.33	2.15	2.76	2.26	2.73	2.13	2.10	2.40	-

SUMMARY

COMPLIES

CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L YES TP

NA

NA

NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

NO REMEDIAL MEASURES REPORTED

MUNICIPALITY

: SIOUX LOOKOUT

PLANT

: SIOUX LOOKOUT WPCP

WORKS NUMBER

: 120000220

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

:

DESIGN CAPACITY

2.27 (1000 M3)

REGION : NORTHWEST DISTRICT : KENORA OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : PELICAN LAKE

MINOR BASIN : LAKE WINNIPEG EAST MAJOR BASIN : NELSON RIVER

POPULATION SERVED : 3,006

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	2.32	1.71	1.84	1.92	1.86	1.79	1.58	1.58	1.72	1.68	1.75	1.64	1.78	
B0D5			125 25 E 155						72 23					
INFLUENT (MG/L)	124.0	100.0	290.0	106.0	130.0	235.0	153.0	ND	9.0	285.0	155.0	154.0	158.3	
EFFLUENT (MG/L)	21.0	20.0	17.0	9.2	0.8	5.0	33.0	ND	14.0	130.0	9.0	9.0	24.4	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	48.72	34.20	31.28	17.66	1.48	8.95	52.14	ND	24.08	218.40	15.75	14.76	43.43	
SUSPENDED SOLIDS											440.0		070.0	
INFLUENT (MG/L)	60.0	50.0	590.0	100.0	480.0	350.0	55.0	ND	4.0	290.0	440.0	120.0	230.8	
EFFLUENT (MG/L)	15.0	20.0	9.0	9.0	4.0	9.0	6.0	5.0	6.0	270.0	10.0	8.0	30.9×	
CONCENTRATION LIMIT (MG/L)													25.0	
LOADING (KG/D)	34.80	34.20	16.56	17.28	7.44	16.11	9.48	7.90	10.32	453.60	17.50	13.12	55.00	
TOTAL PHOSPHOROUS														
INFLUENT (MG/L)	4.6	5.6	4.1	5.3	3.8	5.4	5.5	ND	2.9	5.4	4.7	4.2	4.7	
EFFLUENT (MG/L)	3.5	3.3	2.8	2.5		1.3	3.7	2.8	3.1	3.8	3.3	3.6	2.8	
CONCENTRATION LIMIT (MG/L)		Annual to a service beautiful												
LOADING (KG/D)	8.12	5.64	5.15	4.80		2.32	5.84	4.42	5.33	6.38	5.77	5.90	4.98	

2011111111	SU	mr	18	ĸ	•
	2.0			••	-

COMPLIES

PARM CRITERIA WITH CONC BOD 25.0 MG/L YES

SS 25.0 MG/L NO TP NA NA NOTE:

BOD - ASSESSED ANNUALLY

SS - ASSESSED ANNUALLY TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED

START DATE END DATE COMPLIANCE

## REMEDIAL MEASURES

COLLECTION SYSTEM - COLLECTION SYSTEM UNDER REVIEW
SLUDGE DISPOSAL/REMOVAL - UPGRADING LANDFILL SITE
FACILITY EXPANSION/UPGRADING - ENVIRONMENTAL ASSESSMENT BEING CONDUCTED
FACILITY EXPANSION/UPGRADING - PRELIMINARY DESIGN PHASE

MUNICIPALITY

: TERRACE BAY

PLANT

: TERRACE BAY LAGOON

WORKS NUMBER TREATMENT

: 120000499 : EXFILTRATION LAGOON

: NO DISCHARGE

:

DESIGN CAPACITY

1.36 (1000 M3)

REGION : NORTHWEST
DISTRICT : THUNDER BAY
OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NO DISC.TO SURFACE WATER

MINOR BASIN : SUPERIOR
MAJOR BASIN : GREAT LAKES
POPULATION SERVED : 2,000

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
LAGOON DISCHARGE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
BOD5 INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	A 10 75 and		
CONCENTRATION LIMIT (MG/L)							ND	ND		ND_	ND	ND		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
SUSPENDED SOLIDS INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
TOTAL PHOSPHOROUS INFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
EFFLUENT (MG/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND		
CONCENTRATION LIMIT (MG/L)										ND_		- מט		
LOADING (KG/D)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

	SUMMA	RY
	1	COMPLIES
PARM	CRITERIA	WITH CONC
BOD	NA	NO DIRECT DISCHARGE
SS	NA	NO DIRECT DISCHARGE
TP	NA	NO DIRECT DISCHARGE
	BOD SS	PARM CRITERIA BOD NA SS NA

NO REMEDIAL MEASURES REPORTED

NOTE:

BOD - HAS NO CRITERIA

SS - HAS NO CRITERIA TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY PLANT : TERRACE BAY

: TERRACE BAY WPCP

WORKS NUMBER

: 120003030

TREATMENT

: EXTENDED AERATION

: EXFILTRATION LAGOON

:

DESIGN CAPACITY

0.54 (1000 M3)

REGION : NORTHWEST
DISTRICT : THUNDER BAY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : NO DISC.TO SURFACE WATER

MINOR BASIN : SUPERIOR
MAJOR BASIN : GREAT LAKES

POPULATION SERVED : 500

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBE
AVG. DAILY FLOW (1000 M3)	0.24	0.27	0.23	0.29	0.20	0.30	0.29	0.30	0.26	0.27	0.23	0.20	0.26	
B0D5														
INFLUENT (MG/L)	190.0	115.0	195.0	140.0	82.0	86.0	130.0	62.0	150.0	145.0	ND	108.0	127.5	
EFFLUENT (MG/L)	4.7_	7.6	7.6	14.0	4.8	3.0	1.8	3.1	6.8	38.0	ND	5.0	8.8	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	1.12	2.05	1.74	4.06	0.96	0.90	0.52	0.93	1.76	10.26	ND	1.00	2.29	
SUSPENDED SOLIDS									222.2					
INFLUENT (MG/L)	310.0	140.0	280.0	230.0	140.0	90.0	100.0	100.0	180.0	140.0	ND	140.0	168.2	
EFFLUENT (MG/L)	4.0	15.0	10.0	20.0	5.0	9.0	4.0	4.0	40.0	19.0	ND	7.0	12.5	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.96	4.05	2.30	5.80	1.00	2.70	1.16	1.20	10.40	5.13	ND	1.40	3.25	
TOTAL PHOSPHOROUS													pur as	
INFLUENT (MG/L)	11.0	7.0	14.0	7.5	4.8	5.5	5.6	5.0	4.7	5.7	ND	6.9	7.1	
EFFLUENT (MG/L)	3.5	3.9	3.3	3.5	ND	3.0	4.2	3.6	4.4	6.9	ND	3.7	4.0	
CONCENTRATION LIMIT (MG/L)														
LOADING (KG/D)	0.84	1.05	0.75	1.01	ND	0.90	1.21	1.08	1.14	1.86	ND	0.74	1.04	

SUMMA	RY	
	COMPLIES	
CRITERIA	WITH CONC	
NA	NO DIRECT	DISCHARGE
NA	NO DIRECT	DISCHARGE
NA	NO DIRECT	DISCHARGE
	CRITERIA NA NA	CRITERIA WITH CONC NA NO DIRECT NA NO DIRECT

NO REMEDIAL MEASURES REPORTED

MOIF:

BOD - HAS NO CRITERIA SS - HAS NO CRITERIA

TP - HAS NO CRITERIA

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

MUNICIPALITY

: THUNDER BAY

PLANT

: THUNDER BAY WPCP

WORKS NUMBER

: 120004805

TREATMENT

: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

DESIGN CAPACITY

: 109.10 (1000 M3) REGION : NORTHWEST DISTRICT : THUNDER BAY

OPERATING AUTHORITY : MUNICIPAL

WATERCOURSE : KAMINISTIKWIA RIVER

MINOR BASIN MAJOR BASIN

: SUPERIOR : GREAT LAKES

POPULATION SERVED : 101,527

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL AVERAGE	NUMBER EXCEED
AVG. DAILY FLOW (1000 M3)	78.88	64.00	63.30	90.58	93.54	92.62	79.64	83.58	85.17	72.82	69.59	63.89	78.13	
BOD5 INFLUENT (MG/L)	166.0	169.0	172.0	144.0	107.0	136.0	177.0	168.0	161.0	173.0	146.0	176.0	157.9	
EFFLUENT (MG/L)	65.5	76.2	103.5	41.0	50.0	60.8	53.0		with the state of the state of	69.8	64.8	86.8	66.8	
LOADING (KG/D)	5166.64	4876.80	6551.55	3713.78									5219.08	
PERCENT REMOVAL	61	55	40	72		55	70		57	60	56	51	58	
PERCENT REMOVAL LIMITS										-			50	
SUSPENDED SOLIDS INFLUENT (MG/L)	190.0	154.0	186.0	200.0	192.0	194.0	289.0	258.0	174.0	295.0	210.0	253.0	216.3	
EFFLUENT (MG/L)	83.7	77.3	97.5	79.0	70.0	63.6	62.5		51.3	65.3	68.7	76.3	70.8	
LOADING (KG/D)	6602.25	4947.20	6171.75							4755.14			5531.60	
PERCENT REMOVAL	56	50	48	61		67	78	79	71	78	67	70	67×	
PERCENT REMOVAL LIMITS													70	
TOTAL PHOSPHOROUS INFLUENT (MG/L)	4.3	4.4	4.6	4.2	3.9	3.8	5.0	4.1	4.4	5.9	5.0	5.1	4.6	
EFFLUENT (MG/L)	1.4*	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			0.7	1.29	The second second second	0.8	1.29		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	1.4	8
CONCENTRATION LIMIT (MG/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
LOADING (KG/D)	110.43		177.24	72.46	and the second second	111.14	71.67	the second second	102.20		111.34	108.61	109.38	

SUMMARY COMPLIES CRITERIA WITH CONC 50% YES

70% NO 1.0 MG/L NO

PARM

BOD

SS

TP

REMEDIAL MEASURES

NOTE:

BOD - ASSESSED ANNUALLY SS - ASSESSED ANNUALLY

TP - ASSESSED ANNUALLY

* - EXCEEDS EFFLUENT CRITERIA

SPACE (EG. " ") INDICATES A VALUE OF ZERO

ND - NO DATA

NA - NOT APPLICABLE

ANTICIPATED START DATE END DATE COMPLIANCE

OPERATIONAL/PROCESS - SAMPLING PROGRAM BEING MODIFIED 1990/03 1990/04 EQUIPMENT/MAINTENANCE - NEW EQUIPMENT BEING INSTALLED 1990/03 1990/04 FACILITY EXPANSION/UPGRADING - UPGRADING TO SECONDARY TREATMENT 1990/03 1995/03 FACILITY EXPANSION/UPGRADING - APPLICATION FOR FUNDING

# INDEX OF APPENDIX BY MUNICIPALITY PLANTS ASSESSED BY CERTIFICATE OF APPROVAL

MUNICIPALITY	PLANT NAME	PAGE #
AMHERSTBURG	AMHERSTBURG WPCP	C-9
AYLMER	AYLMER LAGOON	C-14
BARRIE	BARRIE WPCP	C-188
COLLINGWOOD TWP	CRAIGLEIGH WPCP	C-26
CORNWALL	CORNWALL WPCP	C-288
EAST ZORRA-TAVISTOCK	TAVISTOCK LAGOON	C-34
GEORGINA	KESWICK WPCP	C-214
GLOUCESTER	GREEN CREEK WPCP	C-300
HAILEYBURY	LAKE TEMISKAMING OLD WPCP	C-368
INNISFIL	INNISFIL (ALCONA) WPCP	C-223
KINGSVILLE	KINGSVILLE LAGOON	C-50
MICHIPICOTEN	WAWA LAGOON	C-388
MISSISSAUGA	CLARKSON WPCP SOUTH-PEEL SYSTEM	C-234
ORILLIA	ORILLIA WPCP	C-245
PORT BURWELL	PORT BURWELL WPCP	C-79
ROMNEY TWP-WHEATLY VILL	WHEATLY WPCP	C-86
ST CATHARINES	PORT WELLER WPCP	C-171
ST THOMAS	ST THOMAS WPCP	C-95
SUDBURY	SUDBURY WPCP	C-415
WOOLWICH	ELMIRA WPCP (COMBINED FLOW)	C-179

MUNICIPALITY	PLANT NAME	PAGE #
ALEXANDRIA	ALEXANDRIA LAGOON	C-273
ALFRED	ALFRED LAGOON	C-274
ALLISTON	ALLISTON WPCP	C-186
ALMONTE	ALMONTE LAGOON	C-275
ALVINSTON	ALVINSTON WPCP	C-8
AMHERSTBURG	AMHERSTBURG WPCP	C-10
ANDERDON	EDGEWATER BEACH LAGOON	C-11
ANDERDON	MCGREGOR LAGOON	C-12
ANSON HINDON MINDEN	MINDEN WPCP	C-187
ARMSTRONG	EARLTON LAGOON	C-346
ARNPRIOR	ARNPRIOR WPCP	C-276
ARRAN	TARA LAGOON	C-13
ARTHUR	ARTHUR LAGOON	C-125
ASSIGINACK	MANITOWANING LAGOON	C-347
ATIKOKAN	ATIKOKAN WPCP	C-435
ATWOOD	RAINY RIVER LAGOON	C-436
AYLMER	AYLMER LAGOON	C-15
BANCROFT	BANCROFT WPCP	C-277
BARRIE Barry's Bay Bath	BARRIE WPCP	C-189
BARRY'S BAY	BARRY'S BAY WPCP	C-278
BATH	BATH WPCP	C-279
BEARDMORE	BEARDMORE LAGOON	C-437
BEETON	BEETON LAGOON	C-190
BELLEVILLE	BELLEVILLE WPCP (163500 M3/D.PRIMARY)	C-280
BARRY'S BAY BATH BEARDMORE BEETON BELLEVILLE BELMONT BICROFT BLACK RIVER MATHESON	BELMONT LAGOON	C-16
BICKOL I	CARDIFF LAGOON	C-191
		C-348
BLACK RIVER MATHESON BLACK RIVER MATHESON BLANDFORD-BLENHEIM BLENHEIM	RAMORE LAGOON	C-349
DI ANDEODD DI ENUETH	VAL GAGNE LAGOON	C-350
BLENHEIM	PLATTSVILLE LAGOON BLENHEIM LAGOON	C-17
BLIND RIVER	BLIND RIVER WPCP	C-18
BLYTH	BLYTH WPCP	C-351
BOBCAYGEON	BOBCAGEON WPCP(SUMM.POP.SERVED(2480)	C-19 C-192
BRACEBRIDGE	BRACEBRIDGE LAGOON	C-192
BRACEBRIDGE	BRACEBRIDGE WPCP	C-193 C-194
BRADFORD	BRADFORD WPCP	C-194
BRANTFORD	AIRPORT WPCP (DISCHARGE TO A TILE FIELD)	C-126
BRANTFORD	BRANTFORD WPCP	C-127
BRANTFORD	CAINSVILLE LAGOON (SERVES INDUSTRY)	C-128
BRIGHTON	BRIGHTON LAGOON	C-196
BROCK		C-197
BROCK	BEAVERTON RIVER 1 LAGOON (SUNDERLAND) BEAVERTON RIVER 2 LAGOON (CANNINGTON)	C-198
BROCK	LAKE SIMCOE LAGOON (BEAVERTON)	C-199
BROCKVILLE	BROCKVILLE WPCP	C-281
BRUCE MINES	BRUCE MINES LAGOON	C-352
BRUSSELS	BRUSSELS WPCP	C-20
BURK'S FALLS	BURKS FALLS LAGOON	C-353
BURLINGTON	SKYWAY WPCP	C-200
CALDWELL	VERNER LAGOON	C-354
CAMBRIDGE	GALT WPCP	C-129
CAMBRIDGE	HESPELER WPCP	C-130
	0.479	

MUNICIPALITY	PLANT NAME	PAGE #
CAMBRIDGE CAMPBELLFORD CAPREOL CARAMAT CARLETON PLACE CASEY CASIMIR J.A. CASSELMAN CHALK RIVER CHAPLEAU CHARLOTTENBURGH CHATHAM CHESLEY CHESTERVILLE CLEARWATER TOWN CLINTON	PRESTON WPCP	C-131
CAMPBELLFORD	CAMPBELLFORD WPCP	C-201
CAPREOL	CAPREOL LAGOON	C-355
CARAMAT	CARAMAT	C-438
CARLETON PLACE	CARLETON PLACE WPCP	C-282
CASEY	BELLE VALLEE LAGOON	C-356
CASIMIR J.A.	ST.CHARLES LAGOON	C-357
CASSELMAN	CASSELMAN LAGOON	C-283 C-284
CHALK RIVER	PRESTON WPCP CAMPBELLFORD WPCP CAMPBELLFORD WPCP CAPREOL LAGOON CARAMAT CARLETON PLACE WPCP BELLE VALLEE LAGOON ST.CHARLES LAGOON CASSELMAN LAGOON CHALK RIVER WPCP CHAPLEAU LAGOON PURCELL WPCP OP. NOV 89 CHATHAM WPCP CHESLEY LAGOON CHESTERVILLE LAGOON BRIGHT'S GROVE LAGOON CLINTON WPCP COBDEN WPCP COBOURG WPCP NO 1 COBOURG WPCP NO 2	C-264 C-358
CHAPLEAU	PURCELL WPCP OP. NOV 89	C-356 C-285
CHARLUTTENBURGH	CHATHAM WPCP	C-205
CHAIRAM	CHESLEY LAGOON	C-55
CHESLET	CHESTERVILLE LAGOON	C-286
CLEADWATED TOWN	BRIGHT'S GROVE LAGOON	C-23
CLEARWAIER TOWN	CLINTON WPCP	C-24
CLEARWATER TOWN CLINTON COBDEN COBOURG COCHRANE COLBORNE COLCHESTER SOUTH COLDWATER	COBDEN WPCP	C-287
COBDEM	COBOURG WPCP NO 1	C-202
COBOURG	COBOURG WPCP NO 2	C-203
COCHRANE	COCHRANE WPCP	C-359
COLIRORNE	COLBORNE WPCP	C-204
COLCHESTER SOUTH	COLCHESTER SOUTH TWP (OP APRIL 89)	C-25
COLDWATER	COLDWATER WPCP	C-205
	COLLINGWOOD WPCP	C-206
COLLINGWOOD TWP		C-27
COOKSTOWN	COOKSTOWN WPCP	C-207
CORNWALL	CORNWALL WPCP	C-289
CORNWALL	LONG SAULT WPCP	C-290
COSBY M.M.	NOELVILLE LAGOON	C-360
DEEP RIVER	DEEP RIVER WPCP	C-291
DELHI	DELHI WPCP	C-132
DELORO	DELORO WPCP	C-595
DESERONTO	DESERONTO WPCP	C-293
DOVER	MITCHELL'S BAY LAGOON	C-28
DRAYTON	DRAYTON LAGOON (MUN OP JAN 1 1989)	C-133
DRESDEN	DRESDEN WPCP	C-29
DRYDEN	DRYDEN WPCP	C-439 C-361
DUBREUILVILLE	DUBREUILVILLE LAGOON IN OP.1987	C-361
DUNDALK	DUNDALK LAGOON DUNDAS KING ST.WPCP	C-134
DUNDAS	DUNNVILLE WPCP	C-135
DUNNYILLE	OSWEGO PARK LAGOON	C-136
DONNATER	DURHAM MUN WPCP	C-31
DUKHAM	DUTTON LAGOON	C-32
COLLINGWOOD TWP COOKSTOWN CORNWALL CORNWALL COSBY M.M. DEEP RIVER DELHI DELORO DESERONTO DOVER DRAYTON DRESDEN DRYDEN DUBREUILVILLE DUNDALK DUNDAS DUNNVILLE DUNNVILLE DUNNVILLE DURHAM DUTTON DYSART-ET-AL EAR FALLS EAST GWILLIMBURY	HALIBURTON WPCP	C-208
EAR FALLS	EAR FALLS WPCP	C-440
FAST GWILLIMRURY	HOLLAND LANDING LAGOON	C-209
EAST GWILLIMBURY EAST GWILLIMBURY	MOUNT ALBERT WPCP	C-210
EAST HAWKESBURY	CHUTE A BLONDEAU WPCP IN OP. 1987	C-294
EAST WILLTAMS	ATISA CRATG WPCP	C-33
EAST ZORRA-TAVISTOCK	TAVISTOCK LAGOON	C-35
EGANVILLE	EGANVILLE WPCP	C-295
	5 444	

MUNICIPALITY	PLANT NAME	PAGE #
ELLIOT LAKE	ESTEN LAKE WPCP	C-362
ELMVALE	ELMVALE LAGOON	C-211
ELORA	ELORA WPCP	C-137
EMO	EMO LAGOON	C-441
ENGLEHART	ENGLEHART LAGOON	C-363
ENNISKILLEN	OIL CITY LAGOON	C-36
ERNESTOWN	AMHERSTVIEW LAGOON	C-296
ERNESTOWN	ODESSA WPCP	C-297
ESPANOLA	ESPANOLA WPCP	C-364
ESSA	ANGUS WPCP	C-212
ESSEX	ESSEX LAGOON N.E.	C-37
ESSEX	ESSEX LAGOON S.W.	C-38
EXETER	EXETER LAGOON	C-39
FAUQUIER-STRICKLAND	FAUQUIER LAGOON	C-365
FENELON FALLS	FENELON FALLS WPCP(SUMMER POPSERVE 3136)	C-213
FERGUS	FERGUS WPCP	C-138
FLAMBOROUGH	WATERDOWN WPCP	C-139
FOREST	FOREST LAGOON	C-40
FORT ERIE	ANGER AVE.WPCP	C-140
FORT ERIE	CRYSTAL BEACH WPCP	C-141
FORT ERIE	STEVENSVILLE-DOUGLASTOWN LAGOON	C-142
FORT FRANCES	FORT FRANCES WPCP	C-442
FRANKFORD	FRANKFORD WPCP	C-298
GANANOQUE	GANANOQUE LAGOON	C-299
GEORGINA GEORGINA	KESWICK WPCP	C-215
GERALDTON	SUTTON WPCP	C-216
GLENCOE	GERALDTON WPCP	C-443
GLOUCESTER	GLENCOE LAGOON GREEN CREEK WPCP	C-41
GODERICH	GODERICH WPCP	C-301
GOLDEN	BALMERTOWN WPCP	C-42
GOLDEN	COCHENOUR LAGOON	C-444
GORE BAY	GORE BAY LAGOON	C-445 C-366
GOSFIELD NORTH	COTTAM LAGOON	C-43
GOULBOURN	MUNSTER LAGOON	C-302
GRAND VALLEY	GRAND VALLEY WPCP	C-143
GRAVENHURST	GRAVENHURST WPCP (DUAL OPERATION)	C-217
GRIMSBY	BAKER ROAD WPCP	C-144
GRIMSBY	BIGGAR LAGOON	C-145
GUELPH	GUELPH WPCP	C-146
HAGARTY & RICHARDS	KILLALOE STN.WPCP	C-303
HAILEYBURY	LAKE TEMISKAMING NEW WPCP	C-367
HAILEYBURY	LAKE TEMISKAMING OLD WPCP	C-369
HAILEYBURY	NORTH COBALT LAGOON	C-370
HALDIMAND	CALEDONIA WPCP	C-147
HALDIMAND	CAYUGA WPCP	C-148
HALDIMAND	HAGERSVILLE WPCP	C-149
HALLEBOURG	HALLEBOURG LAGOON	C-371
HALTON HILLS	ACTON WPCP + LAGOON	C-218
HALTON HILLS	GEORGETOWN WPCP	C-219
HAMILTON	WOODWARD AVE.WPCP (OFFSITE CHEM.ADDN)	C-150
HANOVER	HANOVER WPCP	C-44
	r_ale	

MUNICIPALITY	PLANT NAME	PAGE #
HARRISTON	HARRISTON LAGOON	C-151
HARROW	HARROW LAGOON	C-45
HASTINGS	HASTINGS WPCP	C-220
HAVELOCK	HAVELOCK LAGOON	C-221
HAWKESBURY	HAWKESBURY WPCP	C-304
HEARST	CECILE TRAILER PARK LAGOON	C-372
HEARST	HEARST LAGOON	C-373
HENSALL	HENSALL LAGOON	C-46
HORNEPAYNE	HORNEPAYNE WPCP	C-374
HUNTSVILLE	HUNTSVILLE WPCP	C-222
IGNACE	IGNACE WPCP	C-446
INGERSOLL	INGERSOLL NEW WPCP	C-47
INGERSOLL	INGERSOLL OLD WPCP	C-48
INNISFIL	INNISFIL (ALCONA) WPCP	C-224
IROQUOIS	IROQUOIS WPCP	C-305
IROQUOIS FALLS IROQUOIS FALLS	IROQUOIS FALLS WPCP	C-375
	PORQUIS JUNCTION LAGOON	C-376
JOGUES	JOGUES LAGOON	C-377
KAPUSKASING	KAPUSKASING WEST END WPCP	C-378
KAPUSKASING	KAPUSKASING WPCP	C-379
KEMPTVILLE	KEMPTVILLE WPCP (TERTIARY PROPSED)	C-306
KENORA	KENORA WPCP	C-447
KINCARDINE	KINCARDINE LAGOON	C-49
KINGSTON	KINGSTON WPCP	C-307
KINGSTON TWP	KINGSTON WPCP	C-308
KINGSVILLE	KINGSVILLE LAGOON	C-51
KIRKLAND LAKE	KIRKLAND LAKE WPCP	C-380
KIRKLAND LAKE	SWASTIKA WPCP	C-381
KITCHENER	KITCHENER WPCP	C-152
L'ORIGNAL	L'ORIGNAL WPCP	C-309
LAKEFIELD	LAKEFIELD LAGOON	C-225
LANCASTER	LANCASTER LAGOON	C-310
LARDER LAKE	LARDER LAKE TOWNSITE WPCP	C-382
LATCHFORD	LATCHFORD WPCP	C-383
LEAMINGTON	LEAMINGTON WPCP	C-52
LEEDS & LANSDOWNE FRONT	LANSDOWNE LAGOON	C-311
LINDSAY	LINDSAY LAGOON	C-226
LISTOWEL	LISTOWEL LAGOON CONT DIS (SUMMER SPRAY)	C-53
LITTLE CURRENT	LITTLE CURRENT LAGOON	C-384
L0B0	KILWORTH HEIGHTS WPCP	C-54
LONDON	ADELAIDE WPCP	C-55
LONDON	GREENWAY WPCP	C-56
LONDON	OXFORD WPCP	C-57
LONDON	POTTERSBURG WPCP	C-58
LONDON	VAUXHALL WPCP	C-59
LONGLAC	LONGLAC WPCP	C-448
LUCAN	LUCAN LAGOON	C-60
MADOC	MADOC LAGOON	C-312
MADSEN	MADSEN WPCP	C-449
MAIDSTONE	BELLE RIVER-MAIDSTONE WPCP	C-61
MANITOUWADGE	MANITOUWADGE LAGOON	C-450
MARATHON	MARATHON WPCP	C-451
	C-466	

MUNICIPALITY	MARKDALE LAGOON MARMORA WPCP MATTAWA LAGOON MATTICE LAGOON MATVICE LAGOON MAXVILLE WASTE STAB POND (OP SEP 89) PARKHILL LAGOON VIRGINIATOWN AND KEARNS WPCP MEAFORD WPCP MEAFORD WPCP MERRICKYILLE WPCP HIGHLAND CREEK WPCP (SCARBOROUGH) HUMBER WPCP (ETOBICOKE) MAIN WPCP (TORONTO) NORTH TORONTO WPCP (EAST YORK) WAWA LAGOON MIDLAND WPCP MILDHAY WPCP MILLDRAY WPCP MILLDRAY WPCP MILLOR YPCP MILYERTON LAGOON CLARKSON WPCP SOUTH-PEEL SYSTEM LAKEYIEW WPCP SOUTH-PEEL SYSTEM HITCHELL LAGOON MOONBEAM LAGOON BRIGDEN P.V. LAGOON CORUNNA P.V. WPCP COURTRIGHT WPCP MOOSONEE WPCP (OLD TOWNSITE) MORRISBURG WPCP MOUNT FOREST WPCP BALA WPCP PORT CARLING WPCP NAKINA WPCP (NO PH REMOVAL AUG.18 1987) JARVIS LAGOON VATERFORD LAGOON WATERFORD LAGOON CONISTON WPCP STAMFORD WPCP NIAGARA-ON-THE-LAKE LAGOON CONISTON WPCP FALCONBRIDGE TOWNSITE WPCP GARSON LAGOON (STANDBY) WAHNAPITAE LAGOON NIPIGON WPCP PORT ROWAN LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON NEUSTADT LAGOON	PAGE #
MARKDALE	MARKDALF LAGOON	C-62
MARMORA	MARMORA WPCP	C-313
MATTAWA	MATTAWA LAGOON	C-385
MATTICE-VAL COTE	MATTICE LAGOON	C-386
MAXVILLE	MAXVILLE WASTE STAR POND (OP SEP 89)	C-314
MC GILLIVRAY	MAXVILLE WASTE STAB POND (OP SEP 89) PARKHILL LAGOON	C-63
MCGARRY	VIRGINIATOWN AND KEARNS WPCP	C-387
MEAFORD	MEAFORD WPCP	C-64
MERRICKVILLE	MERRICKVILLE WPCP	C-315
METRO TORONTO	HIGHLAND CREEK WPCP (SCARBOROUGH)	C-227
METRO TORONTO	HUMBER WPCP (ETOBICOKE)	C-228
METRO TORONTO	MAIN WPCP (TORONTO)	C-229
METRO TORONTO	NORTH TORONTO WPCP (EAST YORK)	C-230
MICHIPICOTEN	WAWA LAGOON	C-389
MIDLAND	MIDLAND WPCP	C-231
MILDMAY	MILDMAY WPCP	C-65
MILLBROOK	MILLBROOK WPCP	C-232
MILTON	MILTON WPCP	C-233
MILVERTON	MILVERTON LAGOON	C-66
MISSISSAUGA	CLARKSON WPCP SOUTH-PEEL SYSTEM	C-235
MISSISSAUGA	LAKEVIEW WPCP SOUTH-PEEL SYSTEM	C-236
MITCHELL	MITCHELL LAGOON	C-67
MOONBEAM	MOONBEAM LAGOON	C-390
MOORE	BRIGDEN P.V. LAGOON	C-68
MOORE	CORUNNA P.V. WPCP	C-69
MOORE	MITCHELL LAGOON MOONBEAM LAGOON BRIGDEN P.V. LAGOON CORUNNA P.V. WPCP COURTRIGHT WPCP MOOSONEE WPCP (NORTH) MOOSONEE WPCP (OLD TOWNSITE) MORRISBURG WPCP MOUNT FOREST WPCP BALA WPCP PORT CARLING WPCP	C-70
MOOSONEE D.A.B.	MOOSONEE WPCP (NORTH)	C-391
MOUSONEE D.A.B.	MOOSONEE WPCP (OLD TOWNSITE)	C-392
MURRISBURG	MORRISBURG WPCP	C-316
MUCKOKA LAKEO	MOUNT FOREST WPCP	C-153
MUSKUKA LAKES	BALA WPCP	C-237
NAVINA LAKES	NAKINA WPCP (NO PH REMOVAL AUG.18 1987)	C-238
NANTICORE	NAKINA WPCP (NU PH REMUVAL AUG.18 1987)	C-452
NANTICOKE	DODI DOVED WOOD	C-154
NANTICOKE	STELCO IND DADY LACOON	C-155
NANTICOKE	TOWNSEND LACOON	C-156
NANTICOKE	WATERED LACOON	C-157 C-158
NAPANEE	NAPANEE WOOD	C-317
NEPEAN	WATTS CREEK WRCD	C-317
NEW LISKEARD	NEW LISKEARD LAGOON	C-393
NEWCASTLE	GRAHAM CREEK WPCP (NEWCASTLE)	C-239
NEWCASTLE	PORT DARI INGTON WPCP	C-240
NIAGARA FALLS	STAMFORD WPCP	C-159
NIAGARA-ON-THE-LAKE	NIAGARA-ON-THE-LAKE LAGOON	C-160
NICKEL CENTRE	CONISTON WPCP	C-394
NICKEL CENTRE	FALCONBRIDGE TOWNSITE WPCP	C-395
NICKEL CENTRE	GARSON LAGOON (STANDBY)	C-396
NICKEL CENTRE	WAHNAPITAE LAGOON	C-397
NIPIGON	NIPIGON WPCP	C-453
NORFOLK	PORT ROWAN LAGOON	C-161
NORMANBY	NEUSTADT LAGOON	C-71

MUNICIPALITY	PLANT NAME	PAGE #
NORTH BAY	NORTH BAY WPCP	C-398
NORTH DUMFRIES	AYR PV WPCP	C-162
NORTH HIMSWORTH	CALLANDER LAGOON	C-399
NORWICH	NORWICH LAGOON	C-72
NORWOOD	NORWOOD WPCP	C-241
OAKVILLE	SOUTH EAST WPCP	C-242
OAKVILLE OIL SPRINGS	SOUTH WEST WPCP	C-243
	OIL SPRINGS LAGOON	C-73
OMEMEE	OMEMEE LAGOON	C-244
ONAPING FALLS	DOWLING WPCP	C-400
ONAPING FALLS	LEVACK WPCP	C-401
ONAPING FALLS	ONAPING WPCP	C-402 C-403
OPASATIKA	OPASATIKA LAGOON	C-163
ORANGEVILLE	ORANGEVILLE WPCP	C-246
ORILLIA	ORILLIA WPCP	C-246
OSHAWA	HARMONY CR WPCP NO 1	C-248
OSHAWA	HARMONY CR WPCP NO 2	C-246 C-249
OSHAWA	HARMONY CREEK 182 COMBINED EFFLUENT INGLESIDE WPCP	C-319
OSNABRUCK	OWEN SOUND WPCP	C-74
OWEN SOUND	PAISLEY WPCP	C-75
PAISLEY	PALMERSTON WPCP	C-164
PALMERSTON Paris	PARIS WPCP	C-165
PARRY SOUND	PARRY SOUND WPCP	C-404
PEMBROKE	PEMBROKE WPCP	C-320
PENETANGUISHENE	FOX ST. WPCP	C-250
PENETANGUISHENE	PENETANGUISHENE WPCP MAIN ST PLANT II	C-251
	WARKWORTH LAGOON	C-252
DEDTU	PERTH LAGOON	C-321
DETAWAWA	PETAWAWA WPCP	C-322
PETERBOROLIGH		C-253
PETROLIA	PETROLIA WPCP + LAGOON	C-76
PICKERING	PETERBOROUGH WPCP PETROLIA WPCP + LAGOON DUFFIN CREEK WPCP (YORK-DURHAM)	C-254
PICKLE LAKE	PICKLE LAKE WPCP	C-454
PICTON	PICTON WPCP	C-323
PITTSBURG	CANA WPCP	C-324
PLANTAGENET	PLANTAGENET LAGOON	C-325
PERCY PERTH PETAWAWA PETERBOROUGH PETROLIA PICKERING PICKLE LAKE PICTON PITTSBURG PLANTAGENET PLYMPTON	WYOMING WPCP	C-77
POINT EDWARD	POINT EDWARD WPCP	C-78
PORT BURWELL	PORT BURWELL WPCP	C-80
PORT COLBORNE	SEAWAY WPCP	C-166
PORT ELGIN	PORT ELGIN WPCP	C-81
PORT HOPE	PORT HOPE WPCP	C-255
PORT MCNICOLL	PORT MCNICOLL WPCP	C-256
PORT STANLEY	PORT STANLEY LAGOON	C-82
POWASSAN	POWASSAN LAGOON	C-405
PRESCOTT	EDWARDSBURGH WPCP	C-326
RALEIGH-TILBURY EAST	MERLIN PV LAGOON	C-83
RATTER & DUNNET	WARREN LAGOON	C-406
RAYSIDE-BALFOUR	AZILDA WPCP	C-407
RAYSIDE-BALFOUR	CHELMSFORD LAGOON	C-408
RAYSIDE-BALFOUR	CHELMSFORD WPCP	C-409

MUNICIPALITY	PLANT NAME	PAGE #
RED LAKE	RED LAKE WPCP	C-455
RED ROCK	RED ROCK WPCP	C-456
RENFREW	RENFREW WPCP	C-327
RIDGETOWN	RIDGETOWN LAGOON	C-84
ROCKLAND	ROCKLAND LAGOON	C-328
RODNEY	RODNEY LAGOON	C-85
ROMNEY TWP-WHEATLY VILL	WHEATLY WPCP	C-87
RUSSELL	EMBRUN P.V.LAGOON	C-329
RUSSELL	RUSSELL LAGOON	C-330
RUTHERFORD & GEORGE JSL.	KILLARNEY LAGOON	C-410
SARNIA	SARNIA WPCP	C-88
SAULT STE MARIE	SAULT STE.MARIE WPCP	C-411
SAULT STE MARIE	WEST END WPCP	C-412
SCHREIBER	SCHREIBER WPCP	C-457
SCUG0G	NONQUON RIVER LAGOON (PORT PERRY)	C-257
SEAFORTH	SEAFORTH LAGOON	C-89
SHELBURNE	SHELBURNE WPCP	C-167
SIDNEY	BATAWA WPCP	C-331
SIMCOE	SIMCOE WPCP	C-168
SIOUX LOOKOUT	SIOUX LOOKOUT WPCP	C-458
SMITH	WOODLAND ACRES WPCP	C-258
SMITHS FALLS	SMITHS FALLS WPCP	C-332
SMOOTH ROCK FALLS	SMOOTH ROCK FALLS WPCP	C-413
SOMBRA	PORT LAMBTON LAGOON	C-90
SOMBRA	SOMBRA LAGOON	C-91
SOUTH DUMFRIES	ST GEORGE PV WPCP	C-169
SOUTHAMPTON	SOUTHAMPTON WPCP	C-92
ST CATHARINES ST CATHARINES	PORT DALHOUSIE WPCP	C-170
ST EDMUNDS	PORT WELLER WPCP	C-172
ST ISIDORE DE PRESCOTT	TOBERMORY LAGOON ST.ISIDORE LAGOON	C-93
ST MARYS	ST MARYS WPCP	C-333
ST THOMAS	ST THOMAS WPCP	C-94
STAYNER	STAYNER LAGOON	C-96 C-259
STEPHEN	GRAND BEND LAGOON	C-259
STEPHEN	HURON PARK WPCP	C-98
STIRLING	STIRLING LAGOON	C-334
STRATFORD	STRATFORD WPCP	C-99
STRATHROY	STRATHROY LAGOON	C-100
STURGEON FALLS	STURGEON FALLS WPCP	C-414
SUDBURY	SUDBURY WPCP	C-416
SUNDRIDGE	SUNDRIDGE LAGOON	C-417
TEMAGAMI	NORTH GOWARD LAGOON	C-418
TEMAGAMI	TEMAGAMI LAGOON	C-419
TERRACE BAY	TERRACE BAY LAGOON	C-459
TERRACE BAY	TERRACE BAY WPCP	C-460
THAMESVILLE	THAMESVILLE WPCP	C-101
THEDFORD	THEDFORD LAGOON	C-102
THESSALON	THESSALON LAGOON	C-420
THORNBURY	THORNBURY LAGOON	C-103
THUNDER BAY	THUNDER BAY WPCP	C-461
TILBURY	TILBURY LAGOON	C-104
	0.440	

MUNICIPALITY	PLANT NAME	PAGE #
TILBURY NORTH TILBURY WEST TILLSONBURG TIMMINS TIMMINS TIMMINS TIMMINS TOTTENHAM TRENTON TUCKERSMITH TWEED UXBRIDGE VAL RITA-HARTY VAL-RITA-HARTY VAL-RITA-HARTY VALLEY EAST VANKLEEK HILL VAUGHAN VICTORIA HARBOUR WALDEN WALDEN WALDEN WALDEN WALACEBURG WASAGA BEACH WATFORD WEBBWOOD WELLAND WELLAND WELLESLEY WELLINGTON WEST LINCOLN WEST LORNE WESTMINISTER WESTMINISTER WESTMINISTER WESTPORT WHITBY WHITBY WHITBY	STONEY POINT P.V. LAGOON COMBER LAGOON TILLSONBURG WPCP BOB'S LAKE LAGOON MATTAGAMI WPCP WHITNEY & TISDALE WPCP TOTTENHAM WPCP (MUN OCT 1 1989) TRENTON WPCP VAN ASTRA WPCP TWEED LAGOON UXBRIDGE BROOK WPCP HARTY LAGOON VAL-RITA LAGOON HAMNER, VAL-CARON, VAL-THERESE WPCP VANKLEEK HILL LAGOON KLEINBURG WPCP VICTORIA HARBOUR WPCP LIVELY WPCP MIKKOLA WPCP WALKERTON WPCP WALLACEBURG WPCP WASAGA BEACH WPCP (SUM.POP.SERV.73000) WATERLOO WPCP	
TILBURY NORTH	STONEY POINT P.V. LAGOON	C-105
TILBURY WEST	COMBER LAGOON	C-106
TILLSONBURG	TILLSONBURG WPCP	C-107
TIMMINS	BOB'S LAKE LAGOON	C-421
TIMMINS	MATTAGAMI WPCP	C-422
TIMMINS	WHITNEY & TISDALE WPCP	C-423
TOTTENHAM	TOTTENHAM WPCP (MUN OCT 1 1989)	C-260
TRENTON	TRENTON WPCP	C-335
TUCKERSMITH	VAN ASTRA WPCP	C-108
TWEED	TWEED LAGOON	C-336
UXBRIDGE	UXBRIDGE BROOK WPCP	C-261
VAL RITA-HARTY	HARTY LAGOON	C-424
VAL-RITA-HARTY	VAL-RITA LAGOON	C-425
VALLEY EAST	HAMNER, VAL-CARON, VAL-THERESE WPCP	C-426
VANKLEEK HILL	VANKLEEK HILL LAGOON	C-337
VAUGHAN	KLEINBURG WPCP	C-262
VICTORIA HARBOUR	VICTORIA HARBOUR WPCP	C-263
WALDEN	LIVELY WPCP	C-427
WALDEN	MIKKOLA WPCP	C-428
WALKERTON	WALKERTON WPCP	C-109
WALLACEBURG	WALLACEBURG WPCP	C-110
WASAGA BEACH	WASAGA BEACH WPCP (SUM.POP.SERV.73000)	C-264
WATERLOO	WATERLOO WPCP	C-173
WATFORD	WATFORD LAGOON	C-111
WEBBWOOD	WEBBWOOD LAGOON	C-429
WELLAND	WELLAND WPCP	C-174
WELLESLEY	WELLESLEY WPCP	C-175
WELLINGTON	WELLINGTON WPCP	C-338
WEST LINCOLN	SMITHVILLE LAGOON	C-176
WEST LORNE	WEST LORNE LAGOON	C-112
WESTMINISTER	SOUTHLAND PARK WPCP	C-113
WESTMINISTER	WESTMINSTER WPCP	C-114
WESTPORT	WESTPORT LAGOON	C-339
WHITBY	CORBETT CREEK WPCP	C-265
WHITBY	PRINGLE CREEK WPCP NO 1	C-266
WHITBY	PRINGLE CREEK WPCP NO 2	C-267
WHITCHURCH-STOUFFVILLE	STOUFFVILLE WPCP	C-268
WHITE RIVER	WHITE RIVER LAGOON	C-430
WIARTON	WIARTON LAGOON	C-115
WILLIAMSBURG TWP	WILLIAMSBURG PV LAGOON	C-340
WILMOT	BADEN WPCP	C-177
WILMOT	NEW HAMBURG LAGOON	C-178
WINCHESTER	WINCHESTER LAGOON	C-341
WINDSOR	LITTLE RIVER WPCP	C-116
WINDSOR	WESTERLY WPCP	C-117
WINGHAM	WINGHAM LAGOON	C-118
WOODSTOCK	WOODSTOCK WPCP	C-119
WOOLWICH	ELMIRA WPCP (COMBINED FLOW)	C-180
WOOLWICH	ST.JACOBS PV WPCP	C-181
WHITE RIVER WIARTON WILLIAMSBURG TWP WILMOT WILMOT WINCHESTER WINDSOR WINDSOR WINGHAM WOODSTOCK WOOLWICH ZURICH	WASAGA BEACH WPCP (SUM.POP.SERV.73000) WATERLOO WPCP WATFORD LAGOON WEBBWOOD LAGOON WELLAND WPCP WELLESLEY WPCP WELLINGTON WPCP SMITHVILLE LAGOON SOUTHLAND PARK WPCP WEST LORNE LAGOON SOUTHLAND PARK WPCP WESTPORT LAGOON CORBETT CREEK WPCP PRINGLE CREEK WPCP PRINGLE CREEK WPCP NO 1 PRINGLE CREEK WPCP NO 2 STOUFFVILLE WPCP WHITE RIVER LAGOON WIARTON LAGOON WILLIAMSBURG PV LAGOON BADEN WPCP NEW HAMBURG LAGOON WINCHESTER LAGOON LITTLE RIVER WPCP WESTERLY WPCP WESTERLY WPCP WINGHAM LAGOON WOODSTOCK WPCP ELMIRA WPCP (COMBINED FLOW) ST.JACOBS PV WPCP ZURICH LAGOON	C-120
	C470	

# INDEX OF APPENDIX BY PLANT NAME PLANTS ASSESSED BY CERTIFICATE OF APPROVAL

PLANT NAME	MUNICIPALITY	PAGE #
AMHERSTBURG WPCP	AMHERSTBURG	C-9
AYLMER LAGOON	AYLMER	C-14
BARRIE WPCP	BARRIE	C-188
CLARKSON WPCP SOUTH-PEEL SYSTEM	MISSISSAUGA	C-234
CORNWALL WPCP	CORNWALL	C-288
CRAIGLEIGH WPCP	COLLINGWOOD TWP	C-26
ELMIRA WPCP (COMBINED FLOW)	WOOLWICH	C-179
GREEN CREEK WPCP	GLOUCESTER	C-300
INNISFIL (ALCONA) WPCP	INNISFIL	C-223
KESWICK WPCP	GEORGINA	C-214
KINGSVILLE LAGOON	KINGSVILLE	C-50
LAKE TEMISKAMING OLD WPCP	HAILEYBURY	C-368
ORILLIA WPCP	ORILLIA	C-245
PORT BURWELL WPCP	PORT BURWELL	C-79
PORT WELLER WPCP	ST CATHARINES	C-171
ST THOMAS WPCP	ST THOMAS	C-95
SUDBURY WPCP	SUDBURY	C-415
TAVISTOCK LAGOON	EAST ZORRA-TAVISTOCK	C-34
WAWA LAGOON	MICHIPICOTEN	C-388
WHEATLY WPCP	ROMNEY TWP-WHEATLY VILL C-471	C-86

PLANT NAME	MUNICIPALITY	PAGE #
ACTON WPCP + LAGOON	HALTON HILLS	C-218
ADELAIDE WPCP	LONDON	C-55
AILSA CRAIG WPCP	EAST WILLIAMS	C-33
AIRPORT WPCP (DISCHARGE TO A TILE FIELD)	BRANTFORD	C-126
ALEXANDRIA LAGOON	ALEXANDRIA	C-273
ALFRED LAGOON	ALFRED	C-274
ALLISTON WPCP	ALLISTON	C-186
ALMONTE LAGOON	ALMONTE	C-275
ALVINSTON WPCP	ALVINSTON	C-8
AMHERSTBURG WPCP	AMHERSTBURG	C-10
AMHERSTVIEW LAGOON	ERNESTOWN	C-296
ANGER AVE.WPCP	FORT ERIE	C-140
ANGUS WPCP	ESSA	C-212
ARNPRIOR WPCP	ARNPRIOR	C-276
ARTHUR LAGOON	ARTHUR	C-125
ATIKOKAN WPCP	ATIKOKAN	C-435
AYLMER LAGOON	AYLMER	C-15
AYR PV WPCP	NORTH DUMFRIES	C-162
AZILDA WPCP	RAYSIDE-BALFOUR	C-407
BADEN WPCP	WILMOT	C-177
BAKER ROAD WPCP	GRIMSBY	C-144
BALA WPCP	MUSKOKA LAKES	C-237
BALMERTOWN WPCP	GOLDEN	C-444
BANCROFT WPCP	BANCROFT	C-277
BARRIE WPCP	BARRIE	C-189
BARRY'S BAY WPCP	BARRY'S BAY	C-278 C-331
BATAWA WPCP	SIDNEY	C-279
BATH WPCP	BATH	C-437
BEARDMORE LAGOON	BEARDMORE	C-197
BEAVERTON RIVER 1 LAGOON (SUNDERLAND)	BROCK	C-197
BEAVERTON RIVER 2 LAGOON (CANNINGTON)	BROCK BEETON	C-190
BEETON LAGOON	MAIDSTONE	C-61
BELLE RIVER-MAIDSTONE WPCP	CASEY	C-356
BELLE VALLEE LAGOON	BELLEVILLE	C-280
BELLEVILLE WPCP (163500 M3/D.PRIMARY)	BELMONT	C-16
BELMONT LAGOON	GRIMSBY	C-145
BIGGAR LAGOON BLENHEIM LAGOON	BLENHEIM	C-18
BLIND RIVER WPCP	BLIND RIVER	C-351
BLYTH WPCP	BLYTH	C-19
BOB'S LAKE LAGOON	TIMMINS	C-421
BOBCAGEON WPCP(SUMM.POP.SERVED(2480)	BOBCAYGEON	C-192
BRACEBRIDGE LAGOON	BRACEBRIDGE	C-193
BRACEBRIDGE WPCP	BRACEBRIDGE	C-194
BRADFORD WPCP	BRADFORD	C-195
BRANTFORD WPCP	BRANTFORD	C-127
BRIGDEN P.V. LAGOON	MOORE	C-68
BRIGHT'S GROVE LAGOON	CLEARWATER TOWN	C-23
BRIGHTON LAGOON	BRIGHTON	C-196
BROCKVILLE WPCP	BROCKVILLE	C-281
BRUCE MINES LAGOON	BRUCE MINES	C-352
BRUSSELS WPCP	BRUSSELS	C-20
	C_479	

PLANT NAME	MUNICIPALITY	PAGE #
BURKS FALLS LAGOON	BURK'S FALLS	C-353
CAINSVILLE LAGOON (SERVES INDUSTRY)	BRANTFORD	C-128
CALEDONIA WPCP	HALDIMAND	C-147
CALLANDER LAGOON	NORTH HIMSWORTH	C-399
CAMPBELLFORD WPCP	CAMPBELLFORD	C-201
CANA WPCP	PITTSBURG	C-324
CAPREOL LAGOON	CAPREOL	C-355
CARAMAT	CARAMAT	C-438
CARDIFF LAGOON	BICROFT	C-191
CARLETON PLACE WPCP	CARLETON PLACE	C-282
CASSELMAN LAGOON	CASSELMAN	C-283
CAYUGA WPCP	HALDIMAND	C-148
CECILE TRAILER PARK LAGOON	HEARST	C-372
CHALK RIVER WPCP	CHALK RIVER	C-284
CHAPLEAU LAGOON CHATHAM WPCP	CHAPLEAU	C-358
	CHATHAM	C-21
CHELMSFORD LAGOON CHELMSFORD WPCP	RAYSIDE-BALFOUR	C-408
CHESLEY LAGOON	RAYSIDE-BALFOUR	C-409
CHESTERVILLE LAGOON	CHESLEY	C-55
CHUTE A BLONDEAU WPCP IN OP. 1987	CHESTERVILLE	C-286
CLARKSON WPCP SOUTH-PEEL SYSTEM	EAST HAWKESBURY	C-294
CLINTON WPCP	MISSISSAUGA CLINTON	C-235
COBDEN WPCP	COBDEN	C-24
COBOURG WPCP NO 1	COBDURG	C-287 C-202
COBOURG WPCP NO 2	COBOURG	C-202
COCHENOUR LAGOON	GOLDEN	C-203 C-445
COCHRANE WPCP	COCHRANE	C-359
COLBORNE WPCP	COLBORNE	C-204
COLCHESTER SOUTH TWP (OP APRIL 89)	COLCHESTER SOUTH	C-25
COLDWATER WPCP	COLDWATER	C-205
COLLINGWOOD WPCP	COLLINGWOOD	C-205
COMBER LAGOON	TILBURY WEST	C-106
CONISTON WPCP	NICKEL CENTRE	C-394
COOKSTOWN WPCP	COOKSTOWN	C-207
CORBETT CREEK WPCP	WHITBY	C-265
CORNWALL WPCP	CORNWALL	C-289
CORUNNA P.V. WPCP	MOORE	C-69
COTTAM LAGOON	GOSFIELD NORTH	C-43
COURTRIGHT WPCP	MOORE	C-70
CRAIGLEIGH WPCP	COLLINGWOOD TWP	C-27
CRYSTAL BEACH WPCP	FORT ERIE	C-141
DEEP RIVER WPCP	DEEP RIVER	C-291
DELHI WPCP	DELHI	C-132
DELORO WPCP	DELORO	C-292
DESERONTO WPCP	DESERONTO	C-293
DOWLING WPCP	ONAPING FALLS	C-400
DRAYTON LAGOON (MUN OP JAN 1 1989)	DRAYTON	C-133
DRESDEN WPCP	DRESDEN	C-29
DRYDEN WPCP	DRYDEN	C-439
DUBREUILVILLE LAGOON IN OP.1987	DUBREUILVILLE	C-361
DUFFIN CREEK WPCP (YORK-DURHAM)	PICKERING	C-254
	C-473	

PLANT NAME	MUNICIPALITY	PAGE #
DUNDALK LAGOON	DUNDALK	C-30
DUNDAS KING ST.WPCP	DUNDAS	C-134
DUNNVILLE WPCP	DUNNVILLE	C-135
DURHAM MUN WPCP	DURHAM	C-31
DUTTON LAGOON	DUTTON	C-32
EAR FALLS WPCP	EAR FALLS	C-440
EARLTON LAGOON	ARMSTRONG	C-346
EDGEWATER BEACH LAGOON	ANDERDON	C-11
EDWADDSRIDGH WPCP	PRESCOTT	C-326
EGANVILLE WPCP ELMIRA WPCP (COMBINED FLOW) ELMVALE LAGOON	EGANVILLE	C-295
FINIRA WPCP (COMBINED FLOW)	WOOLWICH	C-180
ELMVALE LAGOON	ELMVALE	C-211
	ELORA	C-137
EMBRUN P.V.LAGOON	RUSSELL	C-329
FMO LAGOON	EMO	C-441
ENGLEHART LAGOON	ENGLEHART	C-363
ESPANOLA WPCP	ESPANOLA	C-364
ESSEX LAGOON N.F.		C-37
ESSEX LAGOON S.W.	ESSEX	C-38
ESTEN LAKE WPCP	ELLIOT LAKE	C-362
EXETER LAGOON	EXETER	C-39
ELORA WPCP EMBRUN P.V.LAGOON EMO LAGOON ENGLEHART LAGOON ESPANOLA WPCP ESSEX LAGOON N.E. ESSEX LAGOON S.W. ESTEN LAKE WPCP EXETER LAGOON FALCONBRIDGE TOWNSITE WPCP FAUGUIER LAGOON	ESSEX ESSEX ELLIOT LAKE EXETER NICKEL CENTRE FAUQUIER-STRICKLAND FENELON FALLS	C-395
FAUGUIER LAGOON	FAUGULER-STRICKLAND	C-365
FENELON FALLS WPCP(SUMMER POPSERVE 3136)	FENELON FALLS	C-213
FERGUS WPCP	FERGUS	
FOREST LAGOON FORT FRANCES WPCP FOX ST. WPCP FRANKFORD WPCP GALT WPCP GANANOQUE LAGOON GARSON LAGOON (STANDBY) GEORGETOWN WPCP GERALDTON WPCP GLENCOE LAGOON GODERICH WPCP GORF BAY LAGOON	FERGUS FOREST FORT FRANCES PENETANGUISHENE FRANKFORD	C-40
FORT FRANCES WPCP	FORT FRANCES	C-442
FOX ST. WPCP	PENETANGUISHENE	C-250
FRANKFORD WPCP	FRANKFORD	C-298
GALT WPCP	CAMBRIDGE GANANOQUE NICKEL CENTRE HALTON HILLS	C-129
GANANOGUE LAGOON	GANANOGUE	C-299
GARSON LAGOON (STANDBY)	NICKEL CENTRE	C-396
GEORGETOWN WPCP	HALTON HILLS	C-219
GERALDTON WPCP	GERALDTON	C-443
GLENCOF LAGOON	GLENCOE	C-41
GODERICH WPCP	GODERICH	C-42
GORE BAY LAGOON	GORE BAY	C-366
GRAHAM CREEK WPCP (NEWCASTLE)	NEWCASTLE	C-239
GRAND BEND LAGOON	STEPHEN	C-97
GRAND VALLEY WPCP	GRAND VALLEY	C-143
GRAVENHURST WPCP (DUAL OPERATION)	GRAVENHURST	C-217
GREEN CREEK WPCP	GLOUCESTER	C-301
GREENWAY WPCP	LONDON	C-56
GUELPH WPCP	GUELPH	C-146
HAGERSVILLE WPCP	HALDIMAND	C-149
HALIBURTON WPCP	DYSART-ET-AL	C-208
HALLEBOURG LAGOON	HALLEBOURG	C-371
HAMNER, VAL-CARON, VAL-THERESE WPCP	VALLEY EAST	C-426
HANOVER WPCP	HANOVER	C-44
HARMONY CR WPCP NO 1	OSHAWA	C-247
HARMONY CR WPCP NO 2	OSHAWA	C-248
HARMONY CREEK 182 COMBINED EFFLUENT		C-249
	C-474	1.조건 ( <b>국</b> 11학교

PLANT NAME	MUNICIPALITY	PAGE #
HARRISTON LAGOON	HARRISTON	C-151
HARROW LAGOON		C-45
HARTY LAGOON	HARROW VAL RITA-HARTY	C-424
HASTINGS WPCP	HASTINGS	C-220
HAVELOCK LAGOON	HAVELOCK	C-221
HAWKESBURY WPCP	HAWKESBURY	C-304
HEARST LAGOON	HEARST	C-373
HENSALL LAGOON	HENSALL	C-46
HESPELER WPCP	CAMBRIDGE	C-130
HIGHLAND CREEK WPCP (SCARBOROUGH)	METRO TORONTO	C-227
HOLLAND LANDING LAGOON	EAST GWILLIMBURY	C-209
HORNEPAYNE WPCP	HORNEPAYNE	C-374
HUMBER WPCP (ETOBICOKE)	METRO TORONTO	C-228
HUNTSVILLE WPCP	HUNTSVILLE	C-555
HURON PARK WPCP	STEPHEN	C-98
IGNACE WPCP	IGNACE	C-446
INGERSOLL NEW WPCP	INGERSOLL	C-47
INGERSOLL OLD WPCP	INGERSOLL	C-48
INGLESIDE WPCP	OSNABRUCK	C-319
INNISFIL (ALCONA) WPCP	INNISFIL	C-224
IROQUOIS FALLS WPCP	INNISFIL IROQUOIS FALLS	C-375
IROQUOIS WPCP	IROQUOIS	C-305
JARVIS LAGOON	NANTICOKE	C-154
JOGUES LAGOON KAPUSKASING WEST END WPCP	JOGUES	C-377
KAPUSKASING WEST END WPCP	KAPUSKASING	C-378
KAPUSKASING WPCP	KAPUSKASING	C-379
KEMPTVILLE WPCP (TERTIARY PROPSED)	KEMPTVILLE	C-306
KENORA WPCP	KENORA	C-447
KESWICK WPCP	GEORGINA	C-215
KILLALOE STN.WPCP	HAGARTY & RICHARDS RUTHERFORD & GEORGE JSL.	C-303
KILLARNEY LAGOON		C-410
KILWORTH HEIGHTS WPCP	L0B0	C-54
KINCARDINE LAGOON	KINCARDINE	C-49
KINGSTON WPCP	KINGSTON TWP	C-308
KINGSTON WPCP	KINGSTON	C-307
KINGSVILLE LAGOON	KINGSVILLE	C-51
KIRKLAND LAKE WPCP KITCHENER WPCP	KIRKLAND LAKE	C-380
KLEINBURG WPCP	KITCHENER	C-152
L'ORIGNAL WPCP	VAUGHAN	C-262
LAKE SIMCOE LAGOON (BEAVERTON)	L'ORIGNAL	C-309
LAKE TEMISKAMING NEW WPCP	BROCK	C-199
LAKE TEMISKAMING OLD WPCP	HAILEYBURY HAILEYBURY	C-367
LAKEFIELD LAGOON	LAKEFIELD	C-369
LAKEVIEW WPCP SOUTH-PEEL SYSTEM	MISSISSAUGA	C-225 C-236
LANCASTER LAGOON	LANCASTER	
LANSDOWNE LAGOON	LEEDS & LANSDOWNE FRONT	C-310
LARDER LAKE TOWNSITE WPCP	LARDER LAKE	C-311 C-382
LATCHFORD WPCP	LATCHFORD	C-382 C-383
LEAMINGTON WPCP	LEAMINGTON	C-383 C-52
LEVACK WPCP	ONAPING FALLS	C-52 C-401
LINDSAY LAGOON	LINDSAY	C-226
	CINDOAT	0-220

PLANT NAME	MUNICIPALITY	PAGE #
LISTOWEL LAGOON CONT DIS (SUMMER SPRAY)		C-53
LITTLE CURRENT LAGOON	LITTLE CURRENT	C-384
LITTLE RIVER WPCP	WINDSOR	C-116
LIVELY WPCP	WALDEN	C-427 C-290
LONG SAULT WPCP	CORNWALL	C-290
LONGLAC WPCP	LONGLAC Lucan	C-60
LUCAN LAGOON	MADOC	C-312
MADOC LAGOON	MADSEN	C-449
MADSEN WPCP MAIN WPCP (TORONTO)	METRO TORONTO	C-229
MAIN WPCP (TORONTO) MANITOUWADGE LAGOON	MANTTOLIWADGE	C-450
MANITOWADGE LAGOON MANITOWANING LAGOON	AGSTGTNACK	C-347
MARATHON WPCP	MADATHON	C-451
MARKDALE LAGOON	MARKDALE	C-62
MARMORA WPCP	ASSIGINACK MARATHON MARKDALE MARMORA BLACK RIVER MATHESON	C-313
MATHESON WPCP	BLACK RIVER MATHESON	C-348
MATTAGAMI WPCP	TIMMINS	C-422
MATTAWA LAGOON	MATTAWA	C-385
MATTICE LAGOON	MATTAWA MATTICE-VAL COTE	C-386
MAXVILLE WASTE STAB POND (OP SEP 89)	MAXVILLE	C-314
	ANDERDON	C-12
MEAFORD WPCP	MEAFORD	C-64
MERLIN PV LAGOON	MEAFORD RALEIGH-TILBURY EAST MERRICKVILLE MIDLAND	C-83
MERRICKVILLE WPCP	MERRICKVILLE	C-315
MIDLAND WPCP	MIDLAND	C-231
MIKKOLA WPCP	WALDEN	C-428
MILDMAY WPCP	MILDMAY	C-65
MCGREGOR LAGOON MEAFORD WPCP MERLIN PV LAGOON MERRICKVILLE WPCP MIDLAND WPCP MIKKOLA WPCP MILDMAY WPCP MILBROOK WPCP MILTON WPCP MILTON WPCP MILVERTON LAGOON MINDEN WPCP MITCHELL LAGOON MITCHELL LAGOON MOONBEAM LAGOON MOOSONEE WPCP (NORTH) MOOSONEE WPCP (OLD TOWNSITE) MORRISBURG WPCP	MILLBROOK	C-232 C-233
MILTON WPCP	MILTON	C-255 C-66
MILVERTON LAGOON	MILVERTON ANSON HINDON MINDEN	C-187
MINDEN WPCP	MITCHELL	C-67
MITCHELL LAGUUN	MITCHELL DOVER MOONBEAM MOOSONEE D.A.B. MOOSONEE D.A.B. MORRISBURG EAST GWILLIMBURY MOUNT FOREST GOULBOURN	C-28
MITCHELL'S BAY LAGOON	MOONREAM	C-390
MONSONEE WOCD (MODTH)	MOOSONEE D.A.B.	C-391
MOOSONEE WPCP (OLD TOWNSITE)	MOOSONEE D.A.B.	C-392
MORRISBURG WPCP	MORRISBURG	C-316
MOUNT ALBERT WPCP	EAST GWILLIMBURY	C-210
MOUNT FOREST WPCP	MOUNT FOREST	C-153
MUNSTER LAGOON	GOULBOURN	C-302
NAKINA WPCP (NO PH REMOVAL AUG.18 1987)	NAKINA	C-452
NAPANEE WPCP	NAPANEE	C-317
NEUSTADT LAGOON	NORMANBY	C-71
NEUSTADT LAGOON NEW HAMBURG LAGOON NEW LISKEARD LAGOON NIAGARA-ON-THE-LAKE LAGOON	GOULBOURN NAKINA NAPANEE NORMANBY WILMOT NEW LISKEARD NIAGARA-ON-THE-LAKE NIPIGON	C-178
NEW LISKEARD LAGOON	NEW LISKEARD	C-393
NIAGARA-ON-THE-LAKE LAGOON	NIAGARA-ON-THE-LAKE	C-160
NIPIGON WPCP		C-453 C-360
NOELVILLE LAGOON	COSBY M.M. SCUGOG	C-257
NONQUON RIVER LAGOON (PORT PERRY)	NORTH BAY	C-398
NORTH BAY WPCP	HAILEYBURY	C-370
NORTH COBALT LAGOON NORTH GOWARD LAGOON	TEMAGAMI	C-418
NUKIN GUWARD LAGOUN	C-476	

PLANT NAME	MUNICIPALITY	PAGE #
NORTH TORONTO WPCP (EAST YORK)	METRO TORONTO	C-230
NORWICH LAGOON	NORWICH	C-72
NORWOOD WPCP ODESSA WPCP	NORWOOD	C-241
OIL CITY LAGOON	ERNESTOWN	C-297
OIL SPRINGS LAGOON	ENNISKILLEN	C-36
OMEMEE LAGOON	OIL SPRINGS OMEMEE	C-73
ONAPING WPCP	ONAPING FALLS	C-244
OPASATIKA LAGOON	OPASATIKA	C-402 C-403
ORANGEVILLE WPCP	ORANGEVILLE	C-403
ORILLIA WPCP	ORILLIA	C-165 C-246
OSWEGO PARK LAGOON	DUNNVILLE	C-136
OWEN SOUND WPCP	OWEN SOUND	C-74
OXFORD WPCP	LONDON	C-57
PAISLEY WPCP	PAISLEY	C-75
PALMERSTON WPCP	DUNNVILLE OWEN SOUND LONDON PAISLEY PALMERSTON PARIS MC GILLIVRAY	C-164
PARIS WPCP	PARIS	C-165
PARKHILL LAGOON	MC GILLIVRAY	C-63
PARRY SOUND WPCP	PARRY SOUND	C-404
PEMBROKE WPCP	PEMBROKE	C-320
PENETANGUISHENE WPCP MAIN ST PLANT I1	PARRY SOUND PEMBROKE PENETANGUISHENE PERTH	C-251
PERTH LAGOON	PERTH	C-321
PETAWAWA WPCP	PETAWAWA	C-322
PETERBOROUGH WPCP	PETERBOROUGH	C-253
PETROLIA WPCP + LAGOON	PETROLIA	C-76
PICKLE LAKE WPCP	PICKLE LAKE	C-454
PICTON WPCP	PICTON	C-323
PLANTAGENET LAGOON	PLANTAGENET	C-325
PLATTSVILLE LAGOON	BLANDFORD-BLENHEIM	C-17
POINT EDWARD WPCP PORQUIS JUNCTION LAGOON	POINT EDWARD	C-78
PORT BURWELL WPCP	IROQUOIS FALLS PORT BURWELL	C-376
PORT CARLING WPCP	MUSKOKA LAKES	C-80
PORT DALHOUSIE WPCP	ST CATHARINES	C-238 C-170
PORT DARLINGTON WPCP	NEWCASTLE	C-240
PORT DOVER WPCP	NANTICOKE	C-155
PORT ELGIN WPCP	PORT ELGIN	C-81
PORT HOPE WPCP	PORT HOPE	C-255
PORT LAMBTON LAGOON	SOMBRA	C-90
PORT MCNICOLL WPCP	PORT MCNICOLL	C-256
PORT ROWAN LAGOON	NORFOLK	C-161
PORT STANLEY LAGOON	PORT STANLEY	C-82
PORT WELLER WPCP	ST CATHARINES	C-172
POTTERSBURG WPCP	LONDON	C-58
POWASSAN LAGOON	POWASSAN	C-405
PRESTON WPCP	CAMBRIDGE	C-131
PRINGLE CREEK WPCP NO 1	WHITBY	C-266
PRINGLE CREEK WPCP NO 2	WHITBY	C-267
PURCELL WPCP OP. NOV 89	CHARLOTTENBURGH	C-285
RAINY RIVER LAGOON	ATWOOD	C-436
RAMORE LAGOON	BLACK RIVER MATHESON	C-349
RED LAKE WPCP	RED LAKE	C-455
	U-0//	

PLANT NAME	MUNICIPALITY	PAGE #
RED ROCK WPCP	RED ROCK	C-456
RENFREW WPCP	RENFREW	C-327
RIDGETOWN LAGOON	RIDGETOWN	C-84
ROCKLAND LAGOON	ROCKLAND	C-328
RODNEY LAGOON	RODNEY	C-85
RUSSELL LAGOON	RUSSELL	C-330
SARNIA WPCP	SARNIA	C-88
SAULT STE.MARIE WPCP	SAULT STE MARIE	C-411
SCHREIBER WPCP	SCHREIBER	C-457
SEAFORTH LAGOON	SEAFORTH	C-89
SEAWAY WPCP	PORT COLBORNE	C-166
SHELBURNE WPCP	SHELBURNE	C-167
SIMCOE WPCP	SIMCOE	C-168
SIOUX LOOKOUT WPCP	SIOUX LOOKOUT	C-458
SKYWAY WPCP	BURLINGTON	C-200
SMITHS FALLS WPCP	SMITHS FALLS	C-332
SMITHVILLE LAGOON	WEST LINCOLN	C-176
SMOOTH ROCK FALLS WPCP	SMOOTH ROCK FALLS	C-413
SOMBRA LAGOON	BURLINGTON SMITHS FALLS WEST LINCOLN SMOOTH ROCK FALLS SOMBRA	C-91
SOUTH EAST WPCP	UAKAILLE	C-242
SOUTH WEST WPCP	OAKVILLE	C-243
SOUTHAMPTON WPCP	SOUTHAMPTON WESTMINISTER	C-92 C-113
ST GEORGE PV WPCP	SOUTH DUMFRIES	C-113
ST MARYS WPCP	ST MARYS	C-169 C-94
ST THOMAS WPCP	ST THOMAS	C-96
ST.CHARLES LAGOON	CASIMIR J.A.	C-357
ST.ISIDORE LAGOON	ST ISIDORE DE PRESCOTT	C-333
ST.JACOBS PV WPCP	WOOL WICH	C-181
STAMFORD WPCP	NIAGARA FALLS	C-159
STAYNER LAGOON	NIAGARA FALLS STAYNER NANTICOKE FORT ERIE STIRLING TILBURY NORTH	C-259
STELCO IND. PARK LAGOON	NANTICOKE	C-156
STEVENSVILLE-DOUGLASTOWN LAGOON	FORT ERIE	C-142
STIRLING LAGOON	STIRLING	C-334
STONEY POINT P.V. LAGOON	TILBURY NORTH	C-105
STOUFFVILLE WPCP	WHITCHURCH-STOUFFVILLE	C-268
STRATFORD WPCP	STRATFORD	C-99
STRATHROY LAGOON	STRATHROY	C-100
STURGEON FALLS WPCP	STURGEON FALLS	C-414
SUDBURY WPCP	SUDBURY	C-416
SUNDRIDGE LAGOON	SUNDRIDGE	C-417
SUTTON WPCP	GEORGINA KIRKLAND LAKE	C-216
SWASTIKA WPCP	KIRKLAND LAKE	C-381
TARA LAGOON	ARRAN	C-13
TAVISTOCK LAGOON	EAST ZORRA-TAVISTOCK	C-35
TEMAGAMI LAGOON	TEMAGAMI	C-419
TERRACE BAY LAGOON	TERRACE BAY	C-459
TERRACE BAY WPCP	TERRACE BAY	C-460
THAMESVILLE WPCP	THAMESVILLE	C-101
THEDFORD LAGOON	THEDFORD THESSALON	C-102
THESSALON LAGOON	THORNBURY	C-420
THORNBURY LAGOON	THURNBURY	C-103

### INDEX OF APPENDIX BY PLANT NAME PLANTS ASSESSED BY EFFLUENT GUIDELINES

PLANT NAME	MUNICIPALITY	PAGE #
THURST DAY WOOD		
THUNDER BAY WPCP	THUNDER BAY	C-461
TILBURY LAGOON	TILBURY	C-104
TILLSONBURG WPCP	TILLSONBURG	C-107
TOBERMORY LAGOON	ST EDMUNDS	C-93
TOTTENHAM WPCP (MUN OCT 1 1989)	TOTTENHAM	C-260
TOWNSEND LAGOON	NANTICOKE	C-157
TRENTON WPCP TWEED LAGOON UXBRIDGE BROOK WPCP VAL GAGNE LAGOON VAL-RITA LAGOON VAN ASTRA WPCP VANKLEEK HILL LAGOON VAUXHALL WPCP VERNER LAGOON VICTORIA HARBOUR WPCP VIRGINIATOWN AND KEARNS WPCP WAHNAPITAE LAGOON	TRENTON	C-335
IWEED LAGUON	TWEED	C-336
UXBRIDGE BROOK WPCP	UXBRIDGE	C-261
VAL GAGNE LAGOUN	BLACK RIVER MATHESON	C-350
VAL-KITA LAGUUN	VAL-RITA-HARTY TUCKERSMITH VANKLEEK HILL	C-425
VAN ASTRA WPCP	TUCKERSMITH	C-108
VANKLEEK HILL LAGOON	VANKLEEK HILL	C-337
VAUXHALL WPCP	LONDON CALDWELL VICTORIA HARBOUR	C-59
VERNER LAGOUN	CALDWELL	C-354
VICTORIA HARBOUR WPCP	VICTORIA HARBOUR	C-263
VIRGINIATOWN AND KEARNS WPCP	PICOARKI	C-387
WAHNAPITAE LAGOON	NICKEL CENTRE	C-397
WALKERTON WPCP	WALKERTON	C-109
WALLACEBURG WPCP	WALLACEBURG	C-110
WARKWORTH LAGOON	PERCY	C-252
WARREN LAGOON	RATTER & DUNNET	C-406
WASAGA BEACH WPCP (SUM.POP.SERV.73000) WATERDOWN WPCP	WASAGA BEACH	C-264
	RATTER & DUNNET WASAGA BEACH FLAMBOROUGH NANTICOKE WATERLOO WATFORD NEPEAN MICHIPICOTEN WEBBWOOD WELLAND WELLESLEY WELLINGTON SAULT STE MARIE WEST LORNE WINDSOR WESTMINISTER	C-139
WATERFORD LAGOON	NAN I LCUKE	C-158
WATERLOO WPCP WATFORD LAGOON	WATERLOO	C-173
WATTS CREEK WPCP	WATFURD	C-111
WAWA LAGOON	NEPEAN	C-318
WEBBWOOD LAGOON	MICHIPICOTEN	C-389
WELLAND WPCP	MERRAOOD	C-429
WELLESLEY WPCP	WELLAND	C-174
WELLINGTON WPCP	WELLESLEY	C-175
WEST END WPCP	WELLINGTON	C-338
WEST LORNE LAGOON	SAULI SIE MARIE	C-412
WESTERLY WPCP	WEST LUKNE	C-112
WESTMINSTER WPCP	WINDSUK	C-117
WESTPORT LAGOON	WESTPORT	C-114
WHEATLY WPCP	ROMNEY TWP-WHEATLY VILL	C-339
WHITE RIVER LAGOON	WHITE RIVER	C-87
WHITNEY & TISDALE WPCP	TIMMINS	C-430
WIARTON LAGOON	MINDION	C-423
WILLIAMSBURG PV LAGOON	WIARTON WILLIAMSBURG TWP WINCHESTER WINGHAM	C-115 C-340
WINCHESTER LAGOON	WINCHESTED	C-340 C-341
WINGHAM LAGOON	WINCHESTER	C-341 C-118
WOODLAND ACRES WPCP	SMITH	
WOODSTOCK WPCP	WOODSTOCK	C-258 C-119
WOODWARD AVE.WPCP (OFFSITE CHEM.ADDN)	HAMILTON	
WYOMING WPCP	PLYMPTON	C-150 C-77
ZURICH LAGOON	ZURICH	C-120
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	ZURICH	0-120

### APPENDIX D

SEWAGE TREATMENT PLANT
PRIMARY AND SECONDARY BYPASS DATA
FOR 1989

#### ABBREVIATIONS FOR APPENDIX D

Hrs	Hours
No of Times	Number of Bypass Occurrences
1000 m^3	Thousands of Cubic Meters
WPCP	Water Pollution Control Plant (same as STP)

## SOUTHWEST REGION

MUNICIPALITY: GODERICH REGION: SOUTHWEST PLANT: GODERICH WPCP DISTRICT: HURON
WORKS NUMBER: 120000943 OP AUTHORITY: MUNICIPAL
WATERCOURSE: LAKE HURON MINOR BASIN: HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 9.092 POPULATION SERVED: 7,400

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

•

	PLANT BYPASS				NDARY BYPAS	S
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB		1.0			1.0	
MAR APR		1.0			1.0	63
MAY JUN		2.8 1.0			2.8 1.0	
JUL AUG SEP		9.0 1.9			9.0 1.9	
OCT NOV		2.0 1.0			2.0 1.0	
DEC						9
TOTAL OBSERVATIONS	0.00	19.7 8.0	0	0.00	19.7 8.0	0
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: LEAMINGTON REGION: SOUTHWEST PLANT: LEAMINGTON WPCP DISTRICT: ESSEX WORKS NUMBER: 120001069 OP AUTHORITY: MUNICIPAL

WATERCOURSE : LAKE ERIE MINOR BASIN : ERIE

MINOR BASIN : ERIE MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 19.093
POPULATION SERVED: 12,600

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

•

	PLANT BYPASS				NDARY BYPASS	3
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1.00	6.0	6	0.00	0.0	0
TOTAL OBSERVATIONS	1.00	6.0 1.0	6 1	0.00	0.0 1.0	0 1
PERCENTAGE OF PLANT EFFLUENT	0.01%			0.00%		

MUNICIPALITY: LONDON REGION: SOUTHWEST PLANT: GREENWAY WPCP DISTRICT: MIDDLESEC WORKS NUMBER: 120000863 OP AUTHORITY: MUNICIPAL

WATERCOURSE: THAMES RIVER MINOR BASIN: ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 124.333
POPULATION SERVED: 168,274

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPA	ASS		SECO	NDARY BYPASS	5
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB				9.27	23.0	9
MAR				53.50	14.6	4
APR				39.77	46.1	12
MAY				15.54	17.1	8
JUN				25.20	15.4	9
JUL	eserci Marsus	2000	5000	2.38	8.0	3
AUG	10.57	58.5	5	5-0.0		
SEP				10.33	4.6	9
OCT				5.68	16.8	2
NOV				57.05	56.9	10
DEC				21.35	10.8	1
TOTAL	10.57	58.5	5	240.10	213.3	67
OBSERVATIONS	1	1.0	1	10	10.0	10
PERCENTAGE OF PLANT EFFLUENT	0.02%			0.54%		

REGION : SOUTHWEST DISTRICT : MIDDLESEC MUNICIPALITY: LONDON PLANT : POTTERSBURG WPCP WORKS NUMBER: 120000836 OP AUTHORITY : MUNICIPAL OP AUTHORITY : MUNIC MINOR BASIN : ERIE

WATERCOURSE : THAMES RIVER

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 22.048
POPULATION SERVED: 25,653 22.048

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPASS				NDARY BYPASS	S
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB	1.66	11.0	2			
MAR	4.85	9.0	2			
APR	1.02	19.0	6		iii ii	
MAY	1.35	1.5	1			
JUN	0.65	1.0	1			
JUL						
AUG		* *	ll as l			
SEP	0.04	0.3	2			
OCT	200 1000	1000 00000	6			
NOV	1.29	4.0	4			
DEC	0.45	5.0	1			
TOTAL	11.32	50.8	19	0.00	0.0	0
OBSERVATIONS	8	8.0	8	0	0.0	0
PERCENTAGE OF PLANT EFFLUENT	0.19%			0.00%		

MUNICIPALITY: LONDON REGION: SOUTHWEST PLANT: VAUXHALL WPCP DISTRICT: MIDDLESEC WORKS NUMBER: 120000845 OP AUTHORITY: MUNICIPAL

WATERCOURSE : THAMES RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 20.912 POPULATION SERVED: 22,981

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPA	ASS		SECO	NDARY BYPAS	S
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00		4	0.00		0
TOTAL OBSERVATIONS	0.00	0.0	4 1	0.00	0.0 0.0	0 1
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

REGION : SOUTHWEST DISTRICT : ESSEX MUNICIPALITY: MAIDSTONE

PLANT : BELLE RIVER-MAIDSTONE WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110002078

MINOR BASIN : ERIE WATERCOURSE : LAKE ST.CLAIR

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 6.819 POPULATION SERVED: 8,568 : EXTENDED AERATION TREATMENT

PLANT BYPASS				SECO	NDARY BYPASS	3
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN		15				
FEB	0.00	0.0	0	0.00	0.0	0
MAR	0.00	0.0	0	0.00	0.0	0
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00	0.0	0	0.00	0.0	0
JUN	6.81	10.0	1	0.00	0.0	0
JUL	75.65	80.5	5	0.00	0.0	0
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00	0.0	0	0.00	0.0	0
OCT	0.00	0.0	0	0.00	0.0	0
NOV	0.00	0.0	0	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	82.47	90.5	6	0.00	0.0	0
OBSERVATIONS	11	11.0	11	11	11.0	11
PERCENTAGE OF PLANT EFFLUENT	4.46%			0.00%		

MUNICIPALITY: OWEN SOUND REGION : SOUTHWEST DISTRICT : GREY

PLANT : OWEN SOUND WPCP

WORKS NUMBER: 110000551 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GEORGIAN BAY MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY 24.548 POPULATION SERVED: 20,000

TREATMENT : PRIMARY

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00 0.00	0.0 0.0	0	0.00 0.00	0.0 0.0	0	
MAR APR MAY	3.68 0.00 0.00	9.0 0.0	1 0 0	0.00	0.0	0	
JUN JUL	0.00	0.0 0.0 0.0	0	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0	
AUG SEP	0.00	0.0	0	0.00 0.00	0.0 0.0	0 0	
OCT NOV DEC	0.00 0.69 0.00	0.0 2.0 0.0	0 1 0	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0	
TOTAL OBSERVATIONS	4.37 12	11.0 12.0	2 12	0.00 12	0.0 12.0	0 12	
PERCENTAGE OF PLANT EFFLUENT	0.09%			0.00%			

MUNICIPALITY: PORT BURWELL REGION: SOUTHWEST PLANT: PORT BURWELL WPCP DISTRICT: ELGIN

PLANT : PORT BURWELL WPCP DISTRICT : ELGIN
WORKS NUMBER : 110001319 OP AUTHORITY : MINISTRY OF THE ENVIRONMENT

WORKS NUMBER: 110001319 OP AUTHORITY: MINIS
WATERCOURSE: BIG OTTER CR.- LAKE ERIE MINOR BASIN: ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 0.527
POPULATION SERVED : 780
TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				NDARY BYPASS	S
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.00	0.0	0	0.00	0.0	0
FEB	0.00	0.0	0	0.00	0.0	0
MAR	0.00	0.0	0	0.00	0.0	0
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00	0.0	0	0.00	0.0	0
JUN	0.00	0.0	1	0.00	0.0	0
JUL	0.00	0.0	0	0.00	0.0	0
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00	0.0	0	0.00	0.0	0
OCT	0.00	0.0	0	0.00	0.0	0
NOV	0.00	0.0	0	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	0.00	0.0	1	0.00	0.0	0
OBSERVATIONS	12	12.0	12	12	12.0	12
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: PORT ELGIN

REGION : SOUTHWEST DISTRICT : BRUCE PLANT : PORT ELGIN WPCP OP AUTHORITY : MUNICIPAL WORKS NUMBER: 120001470 WATERCOURSE : SAUGEEN RIVER MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 6.455
POPULATION SERVED: 6,115 6.455

: OXIDATION DITCH TREATMENT

	PLANT BYPASS				NDARY BYPAS	S
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.00	0.0	0	0.00	0.0	0
FEB	0.00	0.0	0	0.00	0.0	0
MAR	113.14	3.3	1	0.00	0.0	0
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00	0.0	0	0.00	0.0	0
JUN	0.00	0.0	0	0.00	0.0	0
JUL	0.00	0.0	0	0.00	0.0	0
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00	0.0	0			
OCT	0.00		0			
NOV	0.00	0.3	1	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	113.14	3.6	2	0.00	0.0	0
OBSERVATIONS	12	11.0	12	10	10.0	10
PERCENTAGE OF PLANT EFFLUENT	0.01%			0.00%		

REGION : SOUTHWEST DISTRICT : HURON MUNICIPALITY: STEPHEN PLANT : HURON PARK WPCP

OP AUTHORITY : MINISTRY OF THE ENVIRONMENT WORKS NUMBER : 110003488

MINOR BASIN : HURON WATERCOURSE : AUSABLE RIVER

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.818
POPULATION SERVED: 1,400 1.818

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPASS				NDARY BYPASS	S
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.54	20.0	3	0.00	0.0	0
FEB	0.00	0.0	0	0.00	0.0	0
MAR	0.39	15.0	5	0.00	0.0	0
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00	0.0	0	0.00	0.0	0
JUN	0.00	0.0	0	0.00	0.0	0
JUL	0.00	0.0	0	0.00	0.0	0
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00	0.0	0	0.00	0.0	0
OCT	0.00	0.0	0	0.00	0.0	0
NOV	0.00	0.0	0	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	0.93	35.0	8	0.00	0.0	0
OBSERVATIONS	12	12.0	12	12	12.0	12
PERCENTAGE OF PLANT EFFLUENT	0.23%			0.00%		

MUNICIPALITY: STRATFORD REGION: SOUTHWEST PLANT: STRATFORD WPCP DISTRICT: PERTH

WORKS NUMBER: 110000702 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : AVON RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 27.276
POPULATION SERVED: 26,078

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: EFFLUENT POLISHING

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.82	4.2	2	7.01	16.1	3
FEB	0.00	0.0	0	0.00	0.0	0
MAR	2.84	5.0	1	31.21	51.9	4
APR	0.00	0.0	0	3.93	28.8	4
MAY	0.00	0.0	0	1.55	1.4	1
JUN	3.40	3.9	1	24.38	28.5	4
JUL	0.18	0.6	1	0.01	0.8	1
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00	0.0	0	0.09	1.0	1
OCT	2.25	2.2	1	5.25	5.6	2
NOV	4.75	4.6	1	46.65	54.4	4
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	14.26	20.5	7	120.12	188.5	24
OBSERVATIONS	12	12.0	12	12	12.0	12
PERCENTAGE OF PLANT EFFLUENT	0.18%			1.55%		

MUNICIPALITY: TUCKERSMITH REGION : SOUTHWEST DISTRICT : HURON

PLANT : VAN ASTRA WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110003013

WATERCOURSE : MUN DRAIN TO BAYFIELD R. MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.405
POPULATION SERVED: 770

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB	0.00	0.0	0	0.00	0.0	0
MAR	0.00	0.0	ŏ	0.00	0.0	ő
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00	0.0	0	0.00	0.0	0
JUN	0.00	0.0	0	0.00	0.0	0
JUL	0.00	0.0	0	0.00	0.0	0
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00	0.0	0	0.00	0.0	0
OCT	0.00	0.0	0	0.00	0.0	0
NOV	0.00	5.0	0	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL OBSERVATIONS	0.00 12	5.0 12.0	0 12	0.00 12	0.0 12.0	0 12
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: WALKERTON REGION: SOUTHWEST PLANT: WALKERTON WPCP DISTRICT: BRUCE WORKS NUMBER: 120001489 OP AUTHORITY: MUNICIPAL WATERCOURSE: SAUGEEN RIVER MINOR BASIN: HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 7.546
POPULATION SERVED: 4,591

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00		0	0.00		0	
MAR	0.75	7.9	3	0.00	0.0	0	
APR	0.00	54 (94405	0	0.00		0	
MAY	0.00	0.0	0	0.00	0.0	0	
JUN JUL	0.00	0.0	0	0.00	0.0	0	
AUG	0.00		0	0.00		0	
SEP OCT	0.00	0.0	0	0.00	0.0	0	
NOV DEC	0.00	0.0	0	0.00	0.0	0	
TOTAL	0.75	7.9	3	0.00	0.0	0	
OBSERVATIONS	8	5.0	8	8	5.0	8	
PERCENTAGE OF PLANT EFFLUENT	0.04%			0.00%			

MUNICIPALITY: WALLACEBURG : SOUTHWEST REGION

REGION : SOUTH DISTRICT : KENT : WALLACEBURG WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110000784

MINOR BASIN : ERIE WATERCOURSE : SYDENHAM RIVER

MAJOR BASIN : GREAT LAKES

6.819 DESIGN CAPACITY : POPULATION SERVED: 10,056

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.00	0.0	0	0.00	0.0	0
FEB	0.00	0.0	0	0.00	0.0	0
MAR	0.00	0.0	0	0.00	0.0	0
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00	1.8	0	0.00	0.0	0
JUN	0.00	14.9	0	0.00	0.0	0
JUL	0.00	0.3	0	0.00	0.0	0
AUG	0.00	4.0	0	0.00	0.0	0
SEP	0.00	3.3	0	0.00	0.0	0
OCT	0.00	0.0	0	0.00	0.0	0
NOV	0.00	0.6	0	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL OBSERVATIONS	0.00 12	24.9 12.0	0 12	0.00 12	0.0 12.0	0 12
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: WINDSOR REGION: SOUTHWEST PLANT: LITTLE RIVER WPCP DISTRICT: ESSEX WORKS NUMBER: 120001096 OP AUTHORITY: MUNICIPAL

WATERCOURSE : LITTLE RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 36.368
POPULATION SERVED: 64,000

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	47.90 0.00 43.40 101.50 8.10 0.00 108.70 0.00 5.20 0.00 0.00	101.0 0.0 129.0 193.0 17.0 0.0 82.0 0.0 1.0 0.0	15 0 11 13 1 0 4 0 1 0			
DEC	9.40	20.0	1			
TOTAL OBSERVATIONS	324.20 12	543.0 12.0	46 12	0.00	0.0 0.0	0
PERCENTAGE OF PLANT EFFLUENT	2.40%			0.00%		

MUNICIPALITY: WINDSOR REGION: SOUTHWEST PLANT: WESTERLY WPCP DISTRICT: ESSEX

WORKS NUMBER: 120001103 OP AUTHORITY: MUNICIPAL

WATERCOURSE : DETROIT RIVER MINOR BASIN : ERIE

MINOR BASIN : ERIE MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 163.656
POPULATION SERVED: 123,000

TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

•

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	2.10 0.00 15.33 37.30 25.40 34.90 117.70 5.80 36.10 42.20 14.20 3.50	2.0 0.0 5.0 8.0 7.0 11.0 26.0 2.0 13.0 13.0 5.0	1 0 1 2 2 3 3 2 5 3			
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	334.53 12 0.78%	94.0 12.0	24 12	0.00	0.0	0

# WEST CENTRAL REGION

DISTRICT : WEST CENTRAL : RDANT MUNICIPALITY: BRANTFORD

PLANT : BRANTFORD WPCP

WORKS NUMBER: 110000043 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 81.818
POPULATION SERVED: 73,000 81.818

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB	0.00	0.0	0			
MAR	0.00	0.0	0			
APR	0.00	0.0	ő			
MAY	0.00	0.0	Ö			
JUN	1700.00	2.8	1			
JUL	0.00	0.0	0			
AUG	0.00	0.0	0			
SEP	0.00	0.0	0			
OCT	0.00	0.0	0			
NOV	0.00	0.0	0			
DEC	0.00	0.0	0			
TOTAL	1,700.00	2.8	1	0.00	0.0	0
OBSERVATIONS	11	11.0	11	0	0.0	0
PERCENTAGE OF PLANT EFFLUENT	9.92%			0.00%		

REGION : WEST CENTRAL DISTRICT : MUNICIPALITY: CAMBRIDGE

PLANT : GALT WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110000276

WATERCOURSE : GRAND RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 38.641
POPULATION SERVED: 50,143 38.641

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR	0.14	0.5	0			
APR MAY	0.00	0.0	0	0.00	0.0	0
JUN JUL	0.00	0.0	0 0 1			
AUG SEP OCT	0.00	0.0	0			
NOV DEC	0.00 0.00	0.0 0.0	1 0	1		
TOTAL OBSERVATIONS	0.14	0.5 8.0	2 8	0.00	0.0 1.0	0 1
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

REGION : WEST CENTRAL DISTRICT : MUNICIPALITY: CAMBRIDGE

PLANT : HESPELER WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110001033

MINOR BASIN : ERIE WATERCOURSE : SPEED RIVER

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 9.319
POPULATION SERVED: 11,392 9.319

TREATMENT : HIGH RATE

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 1 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 1 0 0 0	
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.00	0.0 10.0	1 10	0.00 10 0.00%	0.0 10.0	1 10	

MUNICIPALITY: DELHI

REGION : WEST CENTRAL
DISTRICT : HALDIMAN-NORFOLK, REG. MUN. PLANT : DELHI WPCP OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 120001425

WATERCOURSE : BIG CREEK MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 3.182
POPULATION SERVED: 4,257 3.182

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

: AEROBIC SINGLE STAGE

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00	0.0 0.0	30 31	0.00 0.00	0.0 0.0	30 31
TOTAL OBSERVATIONS	0.00 2	0.0 2.0	61 2	0.00	0.0 2.0	61 2
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: DUNNVILLE

REGION : WEST CENTRAL
DISTRICT : HALDIMAN-NORFOLK, REG. MUN. PLANT : DUNNVILLE WPCP OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 120001443

WATERCOURSE : GRAND RIVER

MINOR BASIN : ERIE MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 7.728
POPULATION SERVED: 5,182 7.728

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00	0.7	1				
TOTAL OBSERVATIONS	0.00	0.7 1.0	1 1	0.00	0.0	0 0	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: FERGUS REGION: WEST CENTRAL PLANT: FERGUS WPCP DISTRICT: WELLINGTON

WORKS NUMBER: 110000249 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 5.001 POPULATION SERVED: 6,050

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN	0.08	0.5 2.8	1				
JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.04	0.0 0.0 0.0 1.5	0 1 0 1	0.00 0.00 0.00	0.0 0.0 0.0	0 1 0	
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.23 6 0.02%	4.8 6.0	<b>4</b> 6	0.00 3 0.00%	0.0 3.0	1 3	

MUNICIPALITY: FORT ERIE

REGION : WEST CENTRAL
DISTRICT : NIAGARA, REG. MUN. PLANT : ANGER AVE.WPCP

WORKS NUMBER: 120001292 OP AUTHORITY : MUNICIPAL MINOR BASIN : ONTARIO WATERCOURSE : NIAGARA RIVER MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 16.366
POPULATION SERVED: 13,765 16.366

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC		0.7 0.7				
TOTAL OBSERVATIONS	0.00	1.4 2.0	0	0.00	0.0	0
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: FORT ERIE

REGION : WEST CENTRAL
DISTRICT : NIAGARA, REG. MUN. PLANT : CRYSTAL BEACH WPCP

OP AUTHORITY : MUNICIPAL WORKS NUMBER: 120001283

MINOR BASIN : ERIE WATERCOURSE : LAKE ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 3.887
POPULATION SERVED: 4,095 3.887

TREATMENT : EXTENDED AERATION

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC				18.10 28.30 0.09 44.00 1.16 0.24 5.20		1 1 1 1 1 1
TOTAL OBSERVATIONS	0.00	0.0	0	97.09 7	0.0	7 7
PERCENTAGE OF PLANT EFFLUENT	0.00%			7.51%		

REGION : WEST CENTRAL DISTRICT : DUFFERIN MUNICIPALITY: GRAND VALLEY

PLANT : GRAND VALLEY WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110000301

WATERCOURSE : GRAND RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 0.600 POPULATION SERVED: 1,060 0.600

: OXIDATION DITCH TREATMENT

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00	0.0 0.0 0.0	0 30 0	0.00 0.00 0.00	0.0 0.0 0.0	0 30 0
TOTAL OBSERVATIONS	0.00	0.0 3.0	30 3	0.00	0.0 3.0	30 3
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: HALDIMAND REGION: WEST CENTRAL

PLANT : CALEDONIA WPCP DISTRICT : HALDIMAN-NORFOLK, REG. MUN.
WORKS NUMBER : 120001452 OP AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : GRAND RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 2.273
POPULATION SERVED: 5,655

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0	0.00 0.00 0.00 0.79 1.15 0.00 2.87 0.00 2.75 0.00	0.0 0.0 0.0 3.5 4.3 0.0 12.8 0.0	0 0 0 1 1 0 1 0
NOV DEC			i			
TOTAL OBSERVATIONS	0.00 10	0.0 10.0	0 10	7.57 10	31.6 10.0	4 10
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.82%		

MUNICIPALITY: HALDIMAND

REGION : WEST CENTRAL
DISTRICT : HALDIMAN-NORFOLK, REG. MUN. PLANT : CAYUGA WPCP OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110000089

WATERCOURSE : GRAND RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 0.909
POPULATION SERVED: 1,258 0.909 TREATMENT : OXIDATION DITCH

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB	0.00	0.0	0	0.28 0.00	7.0 0.0	1 0
MAR	0.00	0.0	ő	0.00	0.0	ő
APR	0.00	0.0	0	2.58	24.0	2
MAY	0.00	0.0	0	2.19	30.0	2
JUN	0.00	0.0	0	1.16	13.5	1
JUL	0.00	0.0	0	0.00	0.0	0
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00	0.0	0	0.00	0.0	0
OCT	0.00	0.0	0	0.00	0.0	0
NOV DEC				0.43	6.0	1
TOTAL	0.00	0.0	0	6.66	80.5	7
OBSERVATIONS	10	10.0	10	11	11.0	11
PERCENTAGE OF PLANT EFFLUENT	0.00%			3.59%		

MUNICIPALITY: HALDIMAND

REGION : WEST CENTRAL
DISTRICT : HALDIMAN-NORFOLK, REG. MUN. PLANT : HAGERSVILLE WPCP OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110001024

WATERCOURSE : SANDUSK CREEK MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.000 POPULATION SERVED: 2,268 1.000

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

: AEROBIC SINGLE STAGE

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 1 1 1 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 1 1 1 0
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.00 10 0.00%	0.0	2 10	0.00 10 0.00%	0.0	2 10

MUNICIPALITY: HAMILTON

REGION : WEST CENTRAL (OFFSITE DISTRICT : HAMILTON-WENTWORTH, REG. MUN. PLANT : WOODWARD AVE.WPCP

OP AUTHORITY : MUNICIPAL WORKS NUMBER: 120001504 WATERCOURSE : REDHILL CREEK MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 409.140 300,000 POPULATION SERVED:

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	15.20	0.0 0.0 22.0 9.0 25.5 3.0 0.0 0.0 13.5 6.0	4		4.0 0.0 154.1 62.5 141.9 70.9 19.4 5.0 37.1 11.9 67.5 8.6	
TOTAL OBSERVATIONS	15.20 1	79.0 11.0	4	0.00	582.9 12.0	0
PERCENTAGE OF PLANT EFFLUENT	0.01%			0.00%		

REGION : WEST CENTRAL DISTRICT : MUNICIPALITY: KITCHENER

PLANT : KITCHENER WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110000374

WATERCOURSE : GRAND RIVER MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 122.742
POPULATION SERVED: 138,271 122.742

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00 0.00 204.00 0.00	240.0	0 0 1 0 1 8 0			
TOTAL OBSERVATIONS	204.00	240.0 1.0	11 8	0.00	0.0	0
PERCENTAGE OF PLANT EFFLUENT	0.82%			0.00%		

MUNICIPALITY: NANTICOKE

REGION : WEST CENTRAL
DISTRICT : HALDIMAN-NORFOLK, REG. MUN. PLANT : PORT DOVER WPCP OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110000604

WATERCOURSE : LAKE ERIE MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 4.091 POPULATION SERVED: 4,750

TREATMENT : PRIMARY

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN						
FEB	0.00	0.0	0	0.00	0.0	28
MAR	0.00	0.0	0	0.00	0.0	0
APR	0.00	0.0	0			
MAY	0.00	0.0	0		0.0	
JUN	0.00	0.0	0			
JUL	0.00	0.0	0			i
AUG	0.00	0.0	0			
SEP	0.00	0.0	0			
OCT	0.00	0.0	0	0.00		1
NOV	0.00	0.0	0	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	0.00	0.0	0	0.00	0.0	29
OBSERVATIONS	11	11.0	11	5	5.0	5
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: NIAGARA FALLS REGION: WEST CENTRAL

PLANT: STAMFORD WPCP DISTRICT: NIAGARA, REG. MUN.

WORKS NUMBER: 120001363

WATERCOURSE: CHIPPAWA POWER CANAL

MINOR BASIN: ONTARIO
MAJOR BASIN: GREAT LAKES

DESIGN CAPACITY: 58.189
POPULATION SERVED: 67,835

TREATMENT : ROTATING BIOLOGICAL CONTACTOR

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	10.90 238.20 291.30 592.00	2.7 14.5 24.5 70.3 2.5 15.5 15.0 11.5	1 1 1 1				
TOTAL OBSERVATIONS	1,246.05 5	167.5 9.0	5 5	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	6.05%			0.00%			

REGION : WEST CENTRAL DISTRICT : DUFFERIN MUNICIPALITY: ORANGEVILLE

PLANT : ORANGEVILLE WPCP

WORKS NUMBER: 110000542 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CREDIT RIVER MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 14.547 POPULATION SERVED: 16,515

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	31 0 0 0	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	31 0 0 0	
TOTAL OBSERVATIONS	0.00	0.0 4.0	31 4	0.00	0.0 4.0	31 4	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		E H	

MUNICIPALITY : SIMCOE

REGION : WEST CENTRAL
DISTRICT : HALDIMAN-NORFOLK, REG. MUN. PLANT : SIMCOE WPCP OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110000677

WATERCOURSE : LYNN RIVER

MINOR BASIN : ERIE MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 15.456
POPULATION SERVED: 13,355 15.456

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

3	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN	0.00	0.0	31	0.00	0.0	31	
FEB	0.00	0.0	27	0.00	0.0	27	
MAR	0.00		31	0.00		31	
APR	0.00		30				
MAY	0.00		31	0.00		31	
JUN							
JUL	0.00		31	0.00		31	
AUG	0.00		31	0.00		31	
SEP	0.00		0	0.00		0	
OCT	0.00	1	31	0.00		31	
NOV	0.00		30				
DEC	0.00		31				
TOTAL OBSERVATIONS	0.00 11	0.0 2.0	304 11	0.00	0.0 2.0	213 8	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

REGION : WEST CENTRAL DISTRICT : BRANT MUNICIPALITY: SOUTH DUMFRIES

: ST GEORGE PV WPCP

WORKS NUMBER: 110003415 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : FAIRCHILD CREEK (W. BR) MINOR BASIN : ERIE

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY :

1.064

POPULATION SERVED:

500

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00 0.00	0.0	0 0 0 0	0.00	0.0	0	
TOTAL OBSERVATIONS	0.00 5	0.0 1.0	0 5	0.00	0.0 1.0	0 1	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: ST CATHARINES

REGION : WEST CENTRAL DISTRICT : NIAGARA, REG. MUN. PLANT : PORT DALHOUSIE WPCP

OP AUTHORITY : MUNICIPAL WORKS NUMBER: 120001327 WATERCOURSE : LAKE ONTARIO MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 61.371 POPULATION SERVED: 61.371

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	9.50 10.00	14.0 16.0 44.2 16.5 10.0 2.0 9.0	4			
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	19.50 2	121.4	5 2	0.00	0.0	0

MUNICIPALITY: ST CATHARINES

REGION : WEST CENTRAL DISTRICT : NIAGARA, REG. MUN. PLANT : PORT WELLER WPCP

WORKS NUMBER: 120001318 OP AUTHORITY : MUNICIPAL WATERCOURSE : PORT WELLER HARBOUR MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 37.505 POPULATION SERVED: 75,690

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	141.11 11.53 .55 20.62 2.79 42.01 .84		1 1 1 1 1 1				
TOTAL OBSERVATIONS	219.98 7	0.0	7 7	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	15.%			0.00%			

# CENTRAL REGION

MUNICIPALITY: BOBCAYGEON REGION : CENTRAL PLANT: BOBCAGEON WPCP(SUMM.POP.SERVEDDISTRICT: VICTORIA

WORKS NUMBER: 110002498 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BOBCAYGEON RIVER MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 3.055 POPULATION SERVED: 1,610

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

•

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00 0.00		31 28	0.00 0.00		31 28	
MAR APR MAY JUN					0.0		
JUL AUG	0.00	0.0	1 2	0.00	0.0	1 2	
SEP OCT NOV	0.00 0.00 0.00	0.0 0.0 0.0	1 1 1	0.00 0.00 0.00	0.0 0.0 0.0	1 1 1	
DEC	0.00		31	0.00		31	
TOTAL OBSERVATIONS	0.00 8	0.0 5.0	96 8	0.00	0.0 6.0	96 8	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: BURLINGTON

REGION : CENTRAL DISTRICT : HALTON, REG. MUN. PLANT : SKYWAY WPCP

WORKS NUMBER: 110000070 OP AUTHORITY : MUNICIPAL MINOR BASIN : ONTARIO WATERCOURSE : HAMILTON HARBOUR MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 93.193 POPULATION SERVED: 120,100 93.193

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR	0.00		0	0.00 0.92		0	
APR MAY JUN				0.17 0.08 0.13		0 0 0	
JUL AUG		4		0.20 2.33	18.0	0 1	
SEP OCT NOV				13.12 1.33 10.87	7.0 32.0	1 1 1	
DEC				10.87	32.0	•	
TOTAL OBSERVATIONS	0.00	0.0 0.0	0 1	29.18 10	57.0 3.0	4 10	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.12%			

MUNICIPALITY: COLDWATER PLANT: COLDWATER WPCP REGION: CENTRAL DISTRICT: SIMCOE

WORKS NUMBER: 110001596 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : COLDWATER RIVER MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 0.546
POPULATION SERVED: 1,015

TREATMENT : EXTENDED AERATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.25	4.0	1				
TOTAL OBSERVATIONS	0.25 1	4.0 1.0	1	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	0.15%	_==		0.00%			

MUNICIPALITY: HALTON HILLS

REGION : CENTRAL DISTRICT : HALTON, REG. MUN. PLANT : ACTON WPCP + LAGOON

OP AUTHORITY : MUNICIPAL WORKS NUMBER: 120001023 MINOR BASIN : ONTARIO WATERCOURSE : BLACK CREEK MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : POPULATION SERVED : 4.546 7,478

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN	0.00		0	0.00		0	
FEB	0.00		0	0.00		0	
MAR	0.00		0	0.00		0	
APR	0.00		0	0.00		0	
MAY	0.00		0	0.00		0	
JUN	0.00		0	0.00		0	
JUL	0.00	0.0	0				
AUG	0.00	0.0	0	0.00	0.0	0	
SEP	127.00	148.0	3	35.40	6.3	3	
OCT	0.00	0.0	0	0.00	0.0	0	
NOV	0.00	0.0	0	0.00	0.0	0	
DEC	0.00	0.0	0	0.00	0.0	0	
TOTAL	127.00	148.0	3	35.40	6.3	3	
OBSERVATIONS	12	6.0	12	11	5.0	11	
PERCENTAGE OF PLANT EFFLUENT	13.52%			3.77%			

MUNICIPALITY: METRO TORONTO

REGION : CENTRAL
DISTRICT : METRO TORONTO, MUN. OF PLANT : HUMBER WPCP (ETOBICOKE)

WORKS NUMBER: 120000382 OP AUTHORITY: MUNICIPAL MINOR BASIN : ONTARIO WATERCOURSE : LAKE ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 409.140 POPULATION SERVED: 540,000

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00		0	0.00		0	
MAR APR	0.00	0.0	0	0.00 0.00		0	
MAY JUN	0.00	0.0	0	0.00 48.55	10.5	0 3	
JUL AUG	0.00	# 8 8	0	0.00 0.00	550,500 500,500	0 0	
SEP OCT	0.00	0.0	0	0.00 0.44	0.1	0 1	
NOV DEC	0.00 0.00		0 0	0.00 0.00		0 0	
TOTAL OBSERVATIONS	0.00	0.0 3.0	0 12	48.99 12	10.6 2.0	4 12	
PERCENTAGE OF PLANT EFFLUENT	0.00%		9	0.03%			

MUNICIPALITY: METRO TORONTO

REGION : CENTRAL
DISTRICT : METRO TORONTO, MUN. OF PLANT: MAIN WPCP (TORONTO)

OP AUTHORITY : MUNICIPAL WORKS NUMBER: 120000391 MINOR BASIN : ONTARIO WATERCOURSE : LAKE ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 818.280 POPULATION SERVED: 1,250,000

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40	0.0 0.0 4.5	0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 2.60 0.40 0.30 4.50	9.5 2.0 1.0	0 0 0 0 0 2 1 1 1
NOV DEC	0.00 0.00	0.0	0	1.66 0.00	6.5	2 0
TOTAL OBSERVATIONS	0.40 12	4.5 4.0	1 12	9.56 12	23.6 5.0	8 12
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: MIDLAND REGION: CENTRAL PLANT: MIDLAND WPCP DISTRICT: SIMCOE WORKS NUMBER: 110000463 OP AUTHORITY: MUNICIPAL

WATERCOURSE : MIDLAND BAY MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 13.680 POPULATION SERVED: 12,538

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

.

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB	0.00 0.00		1 0	0.00 0.00		1 0
MAR APR MAY	0.00 0.00 0.00	0.0	0 0 0	0.00	0.0	0
JUN JUL	0.00	0.0	0	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0
AUG SEP	0.00 0.00	0.0 0.0	0	0.00 0.00	0.0 0.0	0 0
OCT NOV DEC	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0
TOTAL OBSERVATIONS	0.00	0.0	1 12	0.00	0.0 8.0	1 12
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: MILTON REGION: CENTRAL

PLANT : MILTON WPCP DISTRICT : HALTON, REG. MUN.

WORKS NUMBER: 120001014

WATERCOURSE: OAKVILLE CREEK

MINOR BASIN: ONTARIO
MAJOR BASIN: GREAT LAKES

DESIGN CAPACITY: 12.911
POPULATION SERVED: 23,203

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.00		0	0.00		0
FEB	0.00		0	0.00		0
MAR	0.00		0	0.00		0
APR	0.00		0	0.00		0
MAY	0.00		0	0.00		0
JUN	0.06		0	0.00		0
JUL	0.00	0.0	0	0.00	0.0	0
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00		0	0.00		0
OCT	0.00	0.0	0	0.00	0.0	0
NOV	0.00	0.0	0	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	0.06	0.0	0	0.00	0.0	0
OBSERVATIONS	12	5.0	12	12	5.0	12
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: MISSISSAUGA

REGION : CENTRAL DISTRICT : PEEL, REG. MUN. PLANT : CLARKSON WPCP SOUTH-PEEL

WORKS NUMBER: 110001328 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE ONTARIO MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 109.104 POPULATION SERVED: 150,000

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT	36.40		1	4.54	1.0	1	
NOV DEC	0.00		2		0.0		
TOTAL OBSERVATIONS	36.40 2	0.0	3 2	<b>4.54</b> 1	1.0 2.0	1 1	
PERCENTAGE OF PLANT EFFLUENT	0.12%			7.5%			

MUNICIPALITY: NEWCASTLE

REGION : CENTRAL DISTRICT : DURHAM, REG. MUN. PLANT : PORT DARLINGTON WPCP

WORKS NUMBER: 120003076 OP AUTHORITY : MUNICIPAL MINOR BASIN : ONTARIO WATERCOURSE : LAKE ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 4.546 POPULATION SERVED: 12.831

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	3.36 4.32 7.44	14.0 24.0 23.0	1 1 1	3.16	46.0	3
TOTAL OBSERVATIONS	15.12 3	61.0 3.0	3 3	3.16 1	46.0 1.0	3 1
PERCENTAGE OF PLANT EFFLUENT	0.49%			0.10%		

MUNICIPALITY: OAKVILLE

REGION : CENTRAL DISTRICT : HALTON, REG. MUN. PLANT : SOUTH WEST WPCP

WORKS NUMBER: 120001005 OP AUTHORITY : MUNICIPAL WATERCOURSE : LAKE ONTARIO MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY :

47.733

POPULATION SERVED: 58,200

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC				0.20	0.5	1	
TOTAL OBSERVATIONS PERCENTAGE	0.00	0.0	0	0.20	0.5 1.0	1	
OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: ORILLIA REGION: CENTRAL
PLANT: ORILLIA WPCP
WORKS NUMBER: 120000569
WATERCOURSE: LAKE SIMCOE
MINOR BASIN: HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 21.045 POPULATION SERVED: 24,000

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB						
MAR APR MAY	31.82	30.0	0	21.78 48.00	101.0 222.5	0
JUN JUL	2.95	5.2	2	2.95	5.2	2
AUG SEP	3.38	4.0	1	0.04	1.0	1
OCT NOV DEC			1	0.16 22.75	0.5 133.0	3
TOTAL OBSERVATIONS	38.15	39.2 3.0	3	95.70 6	463.2 6.0	7 6
PERCENTAGE OF PLANT EFFLUENT	0.52%			1.29%		

MUNICIPALITY: PENETANGUISHENE REGION: CENTRAL
PLANT: FOX ST. WPCP
WORKS NUMBER: 120001960
OP AUTHORITY: MUNICIPAL
WATERCOURSE: PENETANGUISHENE HAPPOUR
WATERCOURSE: PENETANGUISHENE HAPPOUR
WATERCOURSE: PENETANGUISHENE HAPPOUR

WATERCOURSE : PENETANGUISHENE HARBOUR MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.500 POPULATION SERVED: 2,100

TREATMENT : CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

•

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC		0.7					
TOTAL OBSERVATIONS	0.00	0.7 1.0	0	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: PENETANGUISHENE WPCP MAIN ST DISTRICT: SIMCOE
WORKS NUMBER: 120000541 OP AUTHORITY: MUNICIPAL
WATERCOURSE: PENETANG BAY MINOR BASIN: HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 3.000 POPULATION SERVED: 4,800

TREATMENT : CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1.50 0.00	16.0 5.5 0.7 19.0	1 2				
TOTAL OBSERVATIONS	1.50 2	41.2 4.0	3 2	0.00	0.0 0.0	0 0	
PERCENTAGE OF PLANT EFFLUENT	0.16%			0.00%			

MUNICIPALITY: PETERBOROUGH

REGION : CENTRAL DISTRICT : PETERBOROUGH PLANT : PETERBOROUGH WPCP WORKS NUMBER: 120000676 OP AUTHORITY : MUNICIPAL MINOR BASIN : ONTARIO WATERCOURSE : OTONABEE RIVER

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 68.190 POPULATION SERVED: 62,945 68.190

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.00		0	0.00		0
FEB	0.00		0	0.00		0
MAR	0.00		0	0.00		0
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00		0	2.08	6.0	1
JUN	0.00		0	4.86	15.0	3
JUL	0.00		0	0.00		0
AUG	0.00		1	12.50	7.0	1
SEP	0.00		0	26.52	15.0	2
OCT	0.00		0	1.70	4.5	1
NOV	0.00	0.0	1	30.50	60.0	5
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	0.00	0.0	2	78.18	107.5	13
OBSERVATIONS	12	3.0	12	12	8.0	12
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.41%		

MUNICIPALITY: WHITBY

REGION : CENTRAL DISTRICT : DURHAM, REG. MUN. PLANT : CORBETT CREEK WPCP

WORKS NUMBER: 120000738 OP AUTHORITY : MUNICIPAL MINOR BASIN : ONTARIO WATERCOURSE : LAKE ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 36.368
POPULATION SERVED: 26,100 36.368

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN	0.00	0.0	0	0.00	0.0	0	
FEB	0.00	0.0	0	0.00	0.0	0	
MAR	0.00	0.0	0	0.00	0.0	0	
APR	0.00	0.0	0	0.00	0.0	0	
MAY							
JUN	0.00	0.0	0	0.00	0.0	0	
JUL							
AUG	0.00	0.0	0	0.00	0.0	0	
SEP	1.23	5.0	1	0.00	0.0	1	
OCT		0.0		0.00	0.0	0	
NOV	0.00	0.0	0	122.27	7.0	2	
DEC	0.00	0.0	0	0.00	0.0	0	
TOTAL	1.23	5.0	1	122.27	7.0	3	
OBSERVATIONS	9	10.0	9	10	10.0	10	
PERCENTAGE OF PLANT EFFLUENT	0.01%			1.32%			

MUNICIPALITY: WHITBY

REGION : CENTRAL DISTRICT : DURHAM, REG. MUN. PLANT : PRINGLE CREEK WPCP NO 1

WORKS NUMBER: 120000747 OP AUTHORITY : MUNICIPAL WATERCOURSE : PRINGLE CREEK MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 5.683
POPULATION SERVED: 10,925 5.683

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC				0.70	23.0	1
TOTAL OBSERVATIONS	0.00	0.0 0.0	0	0.70	23.0 1.0	1 1
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.07%		

## SOUTHEAST REGION

MUNICIPALITY: ARNPRIOR REGION: SOUTHEAST
PLANT: ARNPRIOR WPCP
WORKS NUMBER: 120000621
WATERCOURSE: MADAWASKA RIVER
MINOR BASIN: GREAT LAKES

DESIGN CAPACITY: 6.819
POPULATION SERVED: 5,800

TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG	0.60 0.23 0.50 0.64 0.10	11.0 2.0 3.5 4.3 0.8	2 2 3 4 2	0.00	0.0	0	
SEP OCT NOV DEC	0.68 0.46 0.16	4.0 3.5 1.5	2 2 1				
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	3.38 8 0.17%	30.6 8.0	18 8	0.00	0.0	0	

MUNICIPALITY: BARRY'S BAY REGION: SOUTHEAST PLANT: BARRY'S BAY WPCP DISTRICT: RENFREW

WORKS NUMBER: 110001854 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : KAMANISKEG LAKE MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.241
POPULATION SERVED: 1,413

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	31 31 30 30	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	31 31 30 31	
TOTAL OBSERVATIONS PERCENTAGE	0.00	0.0 4.0	122 4	0.00 4	0.0 4.0	123 4	
OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: BELLEVILLE REGION : SOUTHEAST PLANT: BELLEVILLE WPCP (163500 M3/D.PDISTRICT: HASTINGS

WORKS NUMBER: 110000016 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BAY OF QUINTE MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 54.552 POPULATION SERVED: 35,351

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

.

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 0 0 30 31 31 30 31	118.90 14.45 30.02 135.40 27.30 34.09 0.00 0.00 69.23 373.56	632.0 112.0 356.0 147.0 107.0 0.0 0.0 74.0 385.0	31 28 31 17 31 30 31 30 31 30
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	72.00 10 0.86%	0.0 9.0	184	802.95 11 9.55%	1,813.0	321 11

MUNICIPALITY: BROCKVILLE

REGION : SOUTHEAST
DISTRICT : LEEDS AND GRENVILLE PLANT : BROCKVILLE WPCP

OP AUTHORITY : MUNICIPAL WORKS NUMBER: 120000122 MINOR BASIN : ST. LAWRENCE WATERCOURSE : ST. LAWRENCE RIVER MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 21.820 POPULATION SERVED: 20,607 21.820

TREATMENT : PRIMARY

	PLANT BYPA	SECONDARY BYPASS				
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00 0.00 0.00 6.81 0.00 0.00 0.00	2.0	0 0 0 0 0 1 1 0 0			
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	6.81 12 0.10%	2.0 1.0	3 12	0.00	0.0	0

MUNICIPALITY: CARLETON PLACE
PLANT: CARLETON PLACE WPCP
WORKS NUMBER: 110000971
WATERCOURSE: MISSISSIPPI RIVER

REGION: SOUTHEAST
DISTRICT: LANARK
OP AUTHORITY: MINISTRY OF THE ENVIRONMENT
MINOR BASIN: OTTAWA RIVER
MAJOR BASIN: GREAT LAKES

DESIGN CAPACITY: 5.455
POPULATION SERVED: 6,600

TREATMENT : HIGH RATE

	PLANT BYPA	SECONDARY BYPASS				
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB	1.38	1.0	1			
MAR	5.54	372.0	10			
APR	40.07	352.0	20	0.00	0.0	0
MAY	29.30	292.0	19	0.00	0.0	0
JUN	0.00	7.5 (E. Salvest, 1986) 1.000 7.000 (	0	0.00		0
JUL	0.00	0.0	0	0.00	0.0	0
AUG						
SEP	0.00		0	0.00		0
OCT	4					-
NOV	0.00	26.0	12			
DEC						
TOTAL	76.29	1,043.0	62	0.00	0.0	0
OBSERVATIONS	8	6.0	8	5	3.0	5
PERCENTAGE OF PLANT EFFLUENT	5.22%			0.00%		

MUNICIPALITY: COBDEN REGION: SOUTHEAST PLANT: COBDEN WPCP
WORKS NUMBER: 120000596
WATERCOURSE: MUSKRAT RIVER
MINOR BASIN: GREAT LAKES

DESIGN CAPACITY: 0.682
POPULATION SERVED: 1,035

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURAT (ON (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 1.03 0.00 0.00 0.00 0.60 0.00 0.33 0.05 0.00	0.0 32.0 0.0 0.0 0.0 6.0 0.0 4.0 1.0	0 0 4 0 0 0 1 0 1 1 0			
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	2.01 12 0.81%	43.0 9.0	7 12	0.00	0.0	0

MUNICIPALITY: DEEP RIVER REGION: SOUTHEAST PLANT: DEEP RIVER WPCP DISTRICT: RENFREW WORKS NUMBER: 120000612 OP AUTHORITY: MUNICIPAL

WORKS NUMBER: 120000612 OP AUTHORITY: MUNICIPAL WATERCOURSE: OTTAWA RIVER MINOR BASIN: OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 2.182
POPULATION SERVED: 4,230

TREATMENT : PRIMARY

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR	0.00 1.81	0.0	0 1	0.00	0.0	0	
APR MAY JUN JUL	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0 0 0	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0	
AUG SEP OCT	0.00 0.68 0.00	0.0 6.0	0 1 0	0.00 0.00 0.00 0.00	0.0 0.0 0.0	0 0 0 0	
NOV DEC	0.00 0.00	0.0	0	0.00 0.00	0.0	0	
TOTAL OBSERVATIONS	2.49 11	6.0 8.0	2 11	0.00 10	0.0 8.0	0 10	
PERCENTAGE OF PLANT EFFLUENT	0.40%			0.00%			

MUNICIPALITY: DELORO REGION: SOUTHEAST PLANT: DELORO WPCP DISTRICT: HASTINGS

WORKS NUMBER: 120000970 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MOIRA RIVER MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.746
POPULATION SERVED: 157

TREATMENT : COMMUNAL SEPTIC TANK

:

SECONDARY BYPASS PLANT BYPASS VOLUME DURATION NO OF VOLUME DURATION NO OF (1000M3) (HOURS) TIMES MONTHS (1000M3) (HOURS) TIMES JAN 2 **FEB** 2.27 9.5 3 4.05 16.9 MAR APR 58.88 245.3 13 59.19 9 MAY 246.6 7 JUN 29.85 124.4 JUL 0.00 0.0 0 AUG 0 SEP 0.00 0.0 OCT 40.84 170.1 11 NOV DEC 195.08 812.8 45 TOTAL 0.00 0.0 0 **OBSERVATIONS** 0 0.0 8 8.0 8 PERCENTAGE OF PLANT 0.40% 0.00% **EFFLUENT** 

MUNICIPALITY: DESERONTO REGION: SOUTHEAST PLANT: DESERONTO WPCP DISTRICT: HASTINGS

WORKS NUMBER: 110000980 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BAY OF QUINTE MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.364
POPULATION SERVED: 1,732

TREATMENT : EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

•

	PLANT BYPA	SECONDARY BYPASS				
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	0.00 0.00	0.0 0.0	0 0 30	0.00	0.0	0
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	4.32 3	48.0 3.0	30 3	0.00 2	0.0 2.0	0 2

REGION : SOUTHEAST DISTRICT : RENFREW MUNICIPALITY : EGANVILLE PLANT : EGANVILLE WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT MINOR BASIN: OTTAWA RIVER WORKS NUMBER : 110000141

WATERCOURSE : BONNECHERE RIVER

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 0.764
POPULATION SERVED: 1,219 0.764 TREATMENT : EXTENDED AERATION

PLANT BYPASS				SECONDARY BYPASS			
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0	0 1 0 0 0	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0	0 1 0 0 0	
TOTAL OBSERVATIONS PERCENTAGE OF PLANT	0.00 6	0.0 5.0	1 6	0.00 6	0.0 5.0	1 6	

MUNICIPALITY: ERNESTOWN

REGION : SOUTHEAST
DISTRICT : LENNOX & ADDINGTON PLANT : ODESSA WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 110002041

WATERCOURSE : MILLHAVEN CREEK MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY:
POPULATION SERVED: 0.909 973

: EXTENDED AERATION TREATMENT

	PLANT BYPA	SECONDARY BYPASS				
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00	3.0 0.0 0.0	0 0 0	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0
TOTAL OBSERVATIONS	0.00	3.0 3.0	0	0.00	0.0 3.0	0 3
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: GLOUCESTER

REGION : SOUTHEAST
DISTRICT : OTTAWA-CARLETON, REG. MUN. PLANT : GREEN CREEK WPCP

WORKS NUMBER: 120000729 OP AUTHORITY: MUNICIPAL MINOR BASIN : OTTAWA RIVER WATERCOURSE : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 363.680 POPULATION SERVED: 450,000 363.680

TREATMENT : PRIMARY

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN	0.00	0.0	0	0.00	0.0	0	
FEB	0.00	0.0	0	0.00	0.0	0	
MAR	0.00	0.0	0	0.00	0.0	0	
APR	0.00	0.0	0	0.00	0.0	0	
MAY		2.3					
JUN							
JUL							
AUG							
SEP							
OCT				12. 2.2	2 2		
NOV	0.00	161.0	13	0.00	0.0	0	
DEC	0.00	0.0	0	0.00	0.0	0	
TOTAL	0.00	163.3	13	0.00	0.0	0	
OBSERVATIONS	6	7.0	6	6	6.0	6	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

REGION : SOUTHEAST DISTRICT : RENFREW MUNICIPALITY: HAGARTY & RICHARDS PLANT : KILLALOE STN. WPCP

WORKS NUMBER: 110001532 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BRUDENELL CREEK MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 0.518 POPULATION SERVED: 670

: EXTENDED AERATION TREATMENT

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	31 31 30 31	0.00 0.00 0.00 0.00	0.0 0.0 0.0	31 31 30 31	
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.00 5	0.0	154	0.00 4	0.0 3.0	123 4	

MUNICIPALITY: HAWKESBURY

REGION : SOUTHEAST
DISTRICT : PRESCOTT AND RUSSELL PLANT : HAWKESBURY WPCP

WORKS NUMBER: 110002283 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OTTAWA RIVER MINOR BASIN : OTTAWA RIVER

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 12.274 POPULATION SERVED: 9,680

: MODIFIED ACTIVATED SLUDGE TREATMENT

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	6.21	1.2	2			
FEB	0.51	0.1	1			
MAR	125.92	24.3	5			
APR	14.51	2.8	2			
MAY	2.07	0.4	2		· ·	
JUN	24.35	4.7	8			
JUL	14.51	2.8	4			
AUG	31.61	6.1	4			
SEP	12.95	2.5	2			
OCT	35.75	6.9	5			
NOV	67.36	13.0	8			
DEC	6.21	1.2	1			
TOTAL	342.01	66.0	44	0.00	0.0	0
OBSERVATIONS	12	12.0	12	0	0.0	0
PERCENTAGE OF PLANT EFFLUENT	11.84%			0.00%		

MUNICIPALITY: KINGSTON REGION: SOUTHEAST
PLANT: KINGSTON WPCP

WORKS NUMBER: 120001050
WATERCOURSE: ST.LAWRENCE RIVER

MINOR BASIN: GREAT LAKES

DESIGN CAPACITY: 61.371 POPULATION SERVED: 67,000

TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

•

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN	18.50	7.0	1				
FEB	0.00	0.0	0				
MAR	0.00	0.0	0				
APR	0.00	0.0	0				
MAY	0.00	0.0	0				
JUN	0.00	0.0	0				
JUL	0.00	0.0	0				
AUG	0.00	0.0	0				
SEP	0.00	0.0	0				
OCT	0.00	0.0	0				
NOV	0.00	0.0	0		1		
DEC	0.00	0.0	0				
TOTAL	18.50	7.0	1	0.00	0.0	0	
OBSERVATIONS	12	12.0	12	0	0.0	0	
PERCENTAGE OF PLANT EFFLUENT	0.09%			0.00%			

MUNICIPALITY: L'ORIGNAL REGION: SOUTHEAST

PLANT : L'ORIGNAL WPCP DISTRICT : PRESCOTT AND RUSSELL

WORKS NUMBER: 110001701 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OTTAWA RIVER
MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 0.955
POPULATION SERVED : 1,523
TREATMENT : EXTENDED AERATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	7.77	<b>30.</b> 0	7				
TOTAL OBSERVATIONS	9.07 2	174.5 2.0	8 2	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	3.27%			0.00%	1		

MUNICIPALITY: NAPANEE

REGION : SOUTHEAST
DISTRICT : LENNOX & ADDINGTON PLANT : NAPANEE WPCP

OP AUTHORITY : MUNICIPAL WORKS NUMBER: 120000186 WATERCOURSE : NAPANEE RIVER MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 9.092 POPULATION SERVED: 7,500 9.092

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN							
FEB	0.00	0.0	0	0.00	0.0	0	
MAR	)			1.09	12.0	1	
APR	0.00	0.0	0	5.00	41.5	3	
MAY	0.00	0.0	0	0.00	0.0	0	
JUN						i	
JUL							
AUG	0.00	0.0	0	0.00	0.0	0	
SEP	0.00	0.0	0	0.00	0.0	0	
OCT	0.00	0.0	0	0.00	0.0	0	
NOV	47.30		9	0.00	0.0	0	
DEC	0.00	0.0	0	0.00	0.0	0	
TOTAL	47.30	0.0	9	6.09	53.5	4	
OBSERVATIONS	8	7.0	8	9	9.0	9	
PERCENTAGE OF PLANT EFFLUENT	2.13%			0.27%			

MUNICIPALITY: NEPEAN

REGION : SOUTHEAST DISTRICT : OTTAWA-CARLETON, REG. MUN. PLANT : WATTS CREEK WPCP

WORKS NUMBER: 120000701 OP AUTHORITY : MUNICIPAL MINOR BASIN : OTTAWA RIVER WATERCOURSE : WATTS CREEK MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 29.549 POPULATION SERVED : 52,500

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.00	0.0	0	0.00	0.0	0
FEB	0.00	0.0	0	0.00	0.0	0
MAR	0.00	0.0	0	121.80	140.6	13
APR	0.00	0.0	0	53.60	177.5	26
MAY	0.00	0.0	0	50.40	332.1	31
JUN				21.20		1
JUL				10.70		1
AUG		v		1.90		1
SEP				1.00		1
OCT	0.00	0.0	0	2.60	7.7	21
NOV	0.00	0.0	0	41.80	182.5	26
DEC	0.00	0.0	0	5.30	6.7	23
TOTAL	0.00	0.0	0	310.30	847.1	144
OBSERVATIONS	8	8.0	8	12	8.0	12
PERCENTAGE OF PLANT EFFLUENT	0.00%			3.06%		

MUNICIPALITY: OSNABRUCK

REGION : SOUTHEAST
DISTRICT : STORMONT, DUNDAS AND GLENGARR PLANT : INGLESIDE WPCP

WORKS NUMBER: 120000140 OP AUTHORITY : MUNICIPAL WATERCOURSE : ST. LAWRENCE RIVER MINOR BASIN : ST. LAWRENCE MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.573
POPULATION SERVED: 1,500 1.573

: PRIMARY TREATMENT

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.36	1.0	1				
TOTAL OBSERVATIONS	0.36	1.0 1.0	1 1	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	0.09%			0.00%			

MUNICIPALITY: PETAWAWA PCP REGION: SOUTHEAST PLANT: PETAWAWA WPCP DISTRICT: RENFREW

WORKS NUMBER: 120000587 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : OTTAWA RIVER
MINOR BASIN : OTTAWA RIVER
MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 4.546
POPULATION SERVED: 9,800
TREATMENT: PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR							
APR MAY	0.00	0.0	30	0.00	0.0	0	
JUN	0.00	0.0	31	0.00	0.0	0	
JUL AUG SEP	0.00	0.0	31	0.00	0.0	0	
OCT NOV DEC	0.00		0	0.00		0	
TOTAL OBSERVATIONS	0.00	0.0 3.0	92 4	0.00	0.0 3.0	0 4	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: PICTON

REGION : SOUTHEAST DISTRICT : PRINCE EDWARD PLANT : PICTON WPCP WORKS NUMBER: 120000667 OP AUTHORITY : MUNICIPAL

WATERCOURSE : PICTON BAY MINOR BASIN : ONTARIO MAJOR BASIN : GREAT LAKES

4.546 DESIGN CAPACITY : POPULATION SERVED: 4,500

: CONTACT STABILIZATION TREATMENT

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN	6.00	0.0	0	0.00	0.0	0	
FEB	0.00	0.0	0	0.00	0.0	0	
MAR	0.00	0.0	0	6.31	26.7	4	
APR	0.00	0.0	0	1.72	7.3	1	
MAY	0.00	0.0	0	0.00	0.0	0	
JUN	0.00	0.0	0	0.00	0.0	0	
JUL	0.00	0.0	0	0.00	0.0	0	
AUG	0.00	0.0	0	0.00	0.0	0	
SEP	0.00	0.0	0	0.00	0.0	0	
OCT	0.00	0.0	0	0.00	0.0	0	
NOV	0.00	0.0	0	0.00	0.0	0	
DEC	0.00	0.0	0	0.00	0.0	0	
TOTAL	0.00	0.0	0	8.03	34.0	5	
OBSERVATIONS	12	12.0	12	12	12.0	12	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.79%			

MUNICIPALITY: PRESCOTT

REGION : SOUTHEAST
DISTRICT : LEEDS AND GRENVILLE PLANT : EDWARDSBURGH WPCP

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER : 110001122

WATERCOURSE : ST. LAWRENCE RIVER MINOR BASIN : ST. LAWRENCE MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 5.683
POPULATION SERVED: 4,595 5.683

TREATMENT : PRIMARY

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB	0.00	24.5	0	0.00	0.0	0
MAR	0.00	0.6	0	0.00	0.0	0
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00	5.5	0	0.00	0.0	0
JUN						
JUL	0.00		0	0.00		0
AUG		No. oraș				
SEP	0.00	0.0	0	0.00	0.0	0
OCT						
NOV						
DEC						
TOTAL	0.00	30.6	0	0.00	0.0	0
OBSERVATIONS	6	5.0	6	6	5.0	6
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: SIDNEY REGION: SOUTHEAST PLANT: BATAWA WPCP DISTRICT: HASTINGS

PLANT : BATAWA WPCP DISTRICT : HASTINGS
WORKS NUMBER : 110000668 OP AUTHORITY : MINISTRY OF THE ENVIRONMENT

WATERCOURSE : TRENT RIVER MINOR BASIN : ONTARIO

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 0.568
POPULATION SERVED: 300

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00	0.0	0	0.00	0.0	0	
MAR APR MAY JUN	0.00	0.0	0	1.47 0.37	0.0	2 1	
JUL AUG SEP OCT				0.80 0.23		1 1	
NOV DEC	0.00		0	10.33	0.0	9	
TOTAL OBSERVATIONS	0.00	0.0 2.0	0 3	13.20 6	0.0 3.0	14 6	
PERCENTAGE OF PLANT EFFLUENT	0.00%			8.98%			

MUNICIPALITY: SMITHS FALLS REGION: SOUTHEAST PLANT: SMITHS FALLS WPCP DISTRICT: LANARK WORKS NUMBER: 120000890 OP AUTHORITY: MUNICIPAL WATERCOURSE: RIDEAU RIVER MINOR BASIN: OTTAWA RIVER MAJOR BASIN: GREAT LAKES

DESIGN CAPACITY : 11.365
POPULATION SERVED : 11,000
TREATMENT : PRIMARY

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR	0.00 0.00 0.00	0.0 0.0 0.0	2 0 0	0.00	0.0	2	
APR MAY JUN JUL	0.00 0.00 0.00	0.0 0.0 5.5 0.0	0	0.00 0.00 0.00	0.0 0.0 0.0	0 0 0	
AUG SEP OCT NOV	0.00	0.0	0	0.00	0.0	0	
DEC	0.00	0.0	ő	0.00	0.0	ő	
TOTAL OBSERVATIONS	0.00	5.5 10.0	2 9	0.00 7	0.0 7.0	2 7	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

REGION : SOUTHEAST DISTRICT : HASTINGS MUNICIPALITY: TRENTON

PLANT : TRENTON WPCP

WORKS NUMBER: 110000775 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WATERCOURSE : BAY OF QUINTE

OP AUTHORITY: MINISTRY MINOR BASIN: ONTARIO MAJOR BASIN: GREAT LA MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 15.911 POPULATION SERVED: 15,346 15.911

: CONVENTIONAL ACTIVATED SLUDGE TREATMENT

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP	0.00	0.0	0	0.00	0.0	0	
OCT NOV	0.00 21.98		0	0.00		0	
DEC	0.00		0	0.00		0	
TOTAL OBSERVATIONS	21.98	0.0 1.0	3 4	0.00	0.0 1.0	0 3	
PERCENTAGE OF PLANT EFFLUENT	0.59%			0.00%			

MUNICIPALITY: WELLINGTON REGION: SOUTHEAST
PLANT: WELLINGTON WPCP
DISTRICT: PRINCE EDWARD
WORKS NUMBER: 120003165
OP AUTHORITY: MUNICIPAL
WATERCOURSE: LAKE ONTARIO
MAJOR BASIN: GREAT LAKES

DESIGN CAPACITY: 1.500
POPULATION SERVED: 1,077
TREATMENT: EXTENDED AERATION

. EXTENDED ALKATION

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00		0	0.00		0	
MAR	0.00		o	0.00		o	
APR	0.00		ő	0.00		ŏ	
MAY	0.00		0	0.00		0	
JUN							
JUL				an compa			
AUG	0.16	10.2	2	0.15	8.0	1	
SEP	0.03	2.7	1	i i			
OCT							
NOV	0.23	8.0	1				
DEC							
TOTAL	0.43	20.9	4	0.15	8.0	1	
OBSERVATIONS	8	3.0	8	6	1.0	6	
					1		
PERCENTAGE							
OF PLANT	0.22%			0.08%	1		
EFFLUENT					To To		

# NORTHEAST REGION

MUNICIPALITY: BLACK RIVER MATHESON REGION: NORTHEAST PLANT: MATHESON WPCP DISTRICT: COCHRANE

WORKS NUMBER: 110000025 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : BLACK RIVER MINOR BASIN : JAMES BAY

MINOR BASIN : JAMES BAY
MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 1.046
POPULATION SERVED: 920

TREATMENT : EXTENDED AERATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00		0	0.00		0	
MAR	0.00		31				
APR	0.44	11.0	30				
MAY	0.00		31				
JUN	0.00		30				
JUL	0.00		31				
AUG	0.00		31				
SEP	0.00		30				
OCT	0.00		31				
NOV	0.00		30				
DEC	0.00	a	31				
TOTAL	0.44	11.0	306	0.00	0.0	0	
OBSERVATIONS	11	1.0	11	1	0.0	1	
PERCENTAGE OF PLANT EFFLUENT	0.22%			0.00%			

MUNICIPALITY: BLIND RIVER REGION: NORTHEAST PLANT: BLIND RIVER WPCP DISTRICT: ALGOMA

WORKS NUMBER: 110002416 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE HURON MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 3.500
POPULATION SERVED : 3,200
TREATMENT : EXTENDED AERATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	5.02 0.00 0.00 0.00 0.00	23.0	2 0 0 0 0	0.00 0.00		0 0	
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	5.02 5 0.82%	23.0 1.0	2 5	0.00 2	0.0	0 2	

REGION : NORTHEAST DISTRICT : ALGOMA MUNICIPALITY: HORNEPAYNE

PLANT : HORNEPAYNE WPCP

WORKS NUMBER: 110001952 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : JACKFISH RIVER

MINOR BASIN : JAMES BAY
MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 1.364
POPULATION SERVED: 1,675 1.364

TREATMENT : EXTENDED AERATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.27	3.3	1				
TOTAL OBSERVATIONS	0.27 1	3.3 1.0	1 1	0.00	0.0	0	
PERCENTAGE OF PLANT EFFLUENT	0.08%			0.00%			

MUNICIPALITY: IROQUOIS FALLS REGION: NORTHEAST PLANT: IROQUOIS FALLS WPCP DISTRICT: COCHRANE

WORKS NUMBER: 110002121 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ABITIBI RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 4.091
POPULATION SERVED: 5,575

TREATMENT : CONTACT STABILIZATION

:

SECONDARY BYPASS PLANT BYPASS DURATION NO OF DURATION VOLUME VOLUME NO OF TIMES (1000M3) (HOURS) TIMES MONTHS (1000M3) (HOURS) JAN FEB MAR APR MAY 1 6.82 JUN JUL **AUG** 6.36 1 SEP OCT NOV DEC 13.18 0.0 2 0.00 0.0 0 TOTAL 0 0.0 **OBSERVATIONS** 2 0.0 0 **PERCENTAGE** 1.09% 0.00% OF PLANT **EFFLUENT** 

REGION : NORTHEAST DISTRICT : COCHRANE MUNICIPALITY: KAPUSKASING PLANT : KAPUSKASING WPCP

WORKS NUMBER: 110003004 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

MINOR BASIN : JAMES BAY WATERCOURSE : KAPUSKASING RIVER

MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 9.092 POPULATION SERVED: 12,500 9.092

TREATMENT : EXTENDED AERATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00		31 28				
MAR	0.00		31				
APR	0.00		25				
MAY	0.00						
JUN	0.00		28				
JUL	0.00		31				
AUG	0.00		18				
SEP	0.00		30		ë D		
OCT	0.00		20	li di	Ú I		
NOV	0.00	0.0	26				
DEC	0.00		31				
TOTAL	0.00	0.0	299	0.00	0.0	0	
OBSERVATIONS	11	1.0	11	0	0.0	Ö	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: KIRKLAND LAKE REGION: NORTHEAST PLANT: KIRKLAND LAKE WPCP DISTRICT: TIMISKAMING

WORKS NUMBER: 120000015 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MURDOCK CREEK MINOR BASIN : OTTAWA RIVER MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 13.638
POPULATION SERVED: 12,500

TREATMENT : CONTACT STABILIZATION

: PHOSPHORUS REMOVAL-CONTINUOUS

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	33.41 2.64 2.69 2.61 2.33	117.7 9.3 9.5 9.2 8.2	16 8 5 1 1				
TOTAL OBSERVATIONS	43.69 5	153.9 5.0	31 5	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	1.04%			0.00%			

REGION : NORTHEAST DISTRICT : COCHRANE MUNICIPALITY: MOOSONEE D.A.B. PLANT : MOOSONEE WPCP (NORTH)

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER: 120000319

WATERCOURSE : MOOSE RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 0.250 POPULATION SERVED: 300

TREATMENT : EXTENDED AERATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0	29 25 8 12 31 26 31 28 29 22 30 31				
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.00 12 0.00%	0.0	302 12	0.00	0.0	0	

MUNICIPALITY: MOOSONEE D.A.B. REGION: NORTHEAST PLANT: MOOSONEE WPCP (OLD TOWNSITE) DISTRICT: COCHRANE

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT WORKS NUMBER : 110001060

WATERCOURSE : STORE CK TO MOOSE RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 0.509
POPULATION SERVED: 1,500 0.509

TREATMENT : CONTACT STABILIZATION

:

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.47 0.06 0.00 0.12 0.00 0.00 0.00 0.00	35.0 4.0 3.5	30 1 1 13 1 30 31 26 30 22 30 31				
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.65 12 0.26%	42.5 3.0	246 12	0.00	0.0	0	

MUNICIPALITY: NICKEL CENTRE REGION: NORTHEAST

PLANT : CONISTON WPCP DISTRICT : SUDBURY, REG. MUN.

WORKS NUMBER: 110000123 OP AUTHORITY: MUNICIPAL WATERCOURSE: CONISTON CREEK MINOR BASIN: HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 3.000
POPULATION SERVED: 2,790
TREATMENT: OXIDATION DITCH

: CONVENTIONAL ACTIVATED SLUDGE

.

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR	4.80	28.5	0				
APR MAY JUN	1.73 4.90	11.3	0 2				
JUL AUG SEP							
OCT NOV DEC							
TOTAL OBSERVATIONS	11.44	39.8 2.0	2 3	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	2.41%			0.00%		8	

MUNICIPALITY: NORTH BAY
PLANT: NORTH BAY WPCP
REGION: NORTHEAST
DISTRICT: NIPPISSING

WORKS NUMBER: 110000533 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE NIPISSING MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY :

36.368

POPULATION SERVED:

48,000

TREATMENT

: CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

•

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0	31 27 31 30 31 30 31 30 31 30	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0	31 27 31 30 31 30 31 30 31 30	
DEC	0.00		31	0.00		31	
TOTAL OBSERVATIONS	0.00 12	0.0 2.0	364 12	0.00 12	0.0 1.0	363 12	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: PARRY SOUND REGION: NORTHEAST PLANT: PARRY SOUND WPCP DISTRICT: PARRY SOUND

WORKS NUMBER: 110000560 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MC CURRY LAKE MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 6.592 POPULATION SERVED: 5,500

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0	30 28 31 29 31 0 31 30 28 31 29 31			
TOTAL OBSERVATIONS	0.00 12	0.0 1.0	329 12	0.00	0.0 0.0	0
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: RAYSIDE-BALFOUR

REGION : NORTHEAST DISTRICT : SUDBURY, REG. MUN.

PLANT : CHELMSFORD WPCP

WORKS NUMBER: 120001568

OP AUTHORITY : MUNICIPAL

WATERCOURSE : WHITSON RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY :

3.068

POPULATION SERVED:

4.934

TREATMENT

: EXTENDED AERATION

: CONTACT STABILIZATION

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	12.73	48.0	2			
TOTAL OBSERVATIONS	12.73 1	48.0 1.0	2 1	0.00	0.0 0.0	0
PERCENTAGE OF PLANT EFFLUENT	0.91%			0.00%		

MUNICIPALITY: SAULT STE MARIE REGION: NORTHEAST PLANT: WEST END WPCP DISTRICT: ALGOMA

WORKS NUMBER: 110002540 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ST MARY'S RIVER MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 18.184
POPULATION SERVED: 80,000

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

: PHOSPHORUS REMOVAL-CONTINUOUS

•

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.20 0.50 0.20 0.10 0.00 2.50 1.70 1.00 3.90	0.1	31 1 1 1 27 1 1 1 1		0.0	
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	10.10 11 0.38%	0.1	97 11	0.00	0.0	0

MUNICIPALITY: SMOOTH ROCK FALLS REGION: NORTHEAST PLANT: SMOOTH ROCK FALLS WPCP DISTRICT: COCHRANE

WORKS NUMBER: 110002130 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : MATTAGAMI RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 1.637
POPULATION SERVED: 2,251

TREATMENT : EXTENDED AERATION

:

PLANT BYPASS SECONDARY BYPASS VOLUME DURATION NO OF VOLUME DURATION NO OF MONTHS (1000M3) (HOURS) TIMES (1000M3) (HOURS) TIMES JAN **FEB** MAR APR MAY 0.00 30 JUN 0.00 JUL AUG SEP OCT NOV DEC TOTAL 0.00 0.0 31 0.00 0.0 0 OBSERVATIONS 2 0.0 2 0 0.0 0 PERCENTAGE 0.00% OF PLANT 0.00% **EFFLUENT** 

MUNICIPALITY: STURGEON FALLS

PLANT : STURGEON FALLS WPCP

REGION : NORTHEAST DISTRICT : NIPPISSING

OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WORKS NUMBER: 110001435

WATERCOURSE : STURGEON RIVER

MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

4.546

DESIGN CAPACITY: 4.546
POPULATION SERVED: 6,040

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

PLANT BYPASS				SECONDARY BYPASS			
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB	0.00 0.00		31 28				
MAR APR MAY	0.00		30				
JUN JUL	0.00		30				
AUG SEP OCT	0.00		31 31				
NOV DEC	0.00		31				
TOTAL OBSERVATIONS	0.00	0.0	212 7	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: SUDBURY

REGION : NORTHEAST DISTRICT : SUDBURY, REG. MUN. PLANT : SUDBURY WPCP

WORKS NUMBER: 110000711 OP AUTHORITY: MUNICIPAL MINOR BASIN : HURON WATERCOURSE : JUNCTION CREEK

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 68.190 POPULATION SERVED: 95,000 68.190 TREATMENT : HIGH RATE

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	162.99 120.05 100.00	52.5	6 8 4	45.50	34.0	2
TOTAL OBSERVATIONS	383.04 3	52.5 1.0	18 3	45.50 1	34.0 1.0	2 1
PERCENTAGE OF PLANT EFFLUENT	2.52%			0.30%		z.

MUNICIPALITY: TIMMINS REGION: NORTHEAST PLANT: MATTAGAMI WPCP DISTRICT: COCHRANE WORKS NUMBER: 110000766 OP AUTHORITY: MUNICIPAL

WATERCOURSE : MATTAGAMI RIVER MINOR BASIN : JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 34.095 POPULATION SERVED: 33,000

TREATMENT : PRIMARY

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	2.80		1				
TOTAL OBSERVATIONS	2.80 1	0.0 0.0	1 1	0.00	0.0 0.0	0	
PERCENTAGE OF PLANT EFFLUENT	0.04%			0.00%			

MUNICIPALITY: TIMMINS REGION: NORTHEAST PLANT: WHITNEY & TISDALE WPCP DISTRICT: COCHRANE

WORKS NUMBER: 110001391 OP AUTHORITY: MUNICIPAL WATERCOURSE: PORCUPINE RIVER MINOR BASIN: JAMES BAY

MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 6.819
POPULATION SERVED: 7,300

TREATMENT : CONTACT STABILIZATION

	PLANT BYPA	SECONDARY BYPASS				
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1.98 19.44 4.24 2.33 4.37	8.1 3.3 17.3 9.5	1 1 1 0			
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	32.37 5 2.18%	56.0 5.0	4 5	0.00	0.0	0

MUNICIPALITY: VALLEY EAST REGION: NORTHEAST
PLANT: HAMNER, VAL-CARON, VAL-THERESE WDISTRICT: SUDBURY, REG. MUN.

WORKS NUMBER: 110001541 OP AUTHORITY : MUNICIPAL WATERCOURSE : VERMILION RIVER MINOR BASIN : HURON

MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY : 11.365 POPULATION SERVED: 17,337

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	34.00	156.0	0			
TOTAL OBSERVATIONS	34.00 1	156.0 1.0	0 1	0.00	0.0 0.0	0
PERCENTAGE OF PLANT EFFLUENT	1.20%			0.00%		

MUNICIPALITY: WALDEN

REGION : NORTHEAST DISTRICT : SUDBURY, REG. MUN. PLANT : LIVELY WPCP

WORKS NUMBER: 120001185 OP AUTHORITY : MUNICIPAL WATERCOURSE : MEATBIRD CREEK

MINOR BASIN : HURON MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.591 POPULATION SERVED: 3,669

TREATMENT : EXTENDED AERATION

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	7.78 1.10 0.65	10.5	3 1 2		-	
TOTAL OBSERVATIONS	9.53 3	10.5 1.0	6 3	0.00	0.0 0.0	0
PERCENTAGE OF PLANT EFFLUENT	1.80%			0.00%		

# NORTHWEST REGION

MUNICIPALITY: ATIKOKAN REGION: NORTHWEST PLANT: ATIKOKAN WPCP DISTRICT: RAINY RIVER

WORKS NUMBER: 110001523 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE: ATIKOKAN RIVER MINOR BASIN: LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER

DESIGN CAPACITY: 4.082
POPULATION SERVED: 4,500
TREATMENT: EXTENDED AERATION

: PHOSPHORUS REMOVAL-CONTINUOUS

•

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.14 0.02 0.00 0.18 0.00 0.00	3.0 1.5 0.0 2.8 0.0 0.0	1 1 1 0 1 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.35	7.3 7.0	5 9	0.00 7 0.00%	0.0 7.0	0 7

MUNICIPALITY: DRYDEN

WORKS NUMBER: 120000248

PLANT : DRYDEN WPCP

WATERCOURSE : WABIGOON RIVER

REGION : NORTHWEST DISTRICT : KENORA

OP AUTHORITY : MUNICIPAL

OP AUTHORITY: MUNICIPAL
MINOR BASIN: LAKE WINNIPEG EAST
MAJOR BASIN: NELSON RIVER

MAJOR BASIN : NELSON RIVER

DESIGN CAPACITY: 6.819
POPULATION SERVED: 6,900

TREATMENT : CONTACT STABILIZATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR							
APR MAY JUN	1.81	4.0	1				
JUL AUG SEP	0.99	4.0	1	0.37	1.5	1	
OCT NOV DEC							
TOTAL OBSERVATIONS	2.81	8.0 2.0	2 2	0.37	1.5 1.0	1	
PERCENTAGE OF PLANT EFFLUENT	0.19%			0.03%			

MUNICIPALITY: EAR FALLS REGION: NORTHWEST PLANT: EAR FALLS WPCP DISTRICT: KENORA

WORKS NUMBER: 110001006 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : ENGLISH RIVER MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER

DESIGN CAPACITY: 2.864
POPULATION SERVED: 1,750

TREATMENT : EXTENDED AERATION

: CONVERTIBLE OPERATING MODE

.

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.01	2.5	1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.01	2.5 1.0	1	0.00	0.0 10.0	0 10

PLANT : FORT FRANCES PCP DISTRICT : RAINY RIVER

WORKS NUMBER : 110000258 OP AUTHORITY : MINISTRY OF THE ENVIRONMENT
WATERCOURSE : RAINY RIVER MINOR BASIN : LAKE WINNIPEG FAST

DESIGN CAPACITY: 9.092 POPULATION SERVED: 8,750

TREATMENT : PRIMARY

: :

PLANT BYPASS				SECONDARY BYPASS			
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN							
FEB	0.00	0.0	0	0.00	0.0	0	
MAR	0.00	0.0	0	0.00	0.0	0	
APR	0.00	0.0	0	0.00	0.0	0	
MAY	0.00	0.0	1	0.00	0.0	0	
JUN	0.00	0.0	0	0.00	0.0	0	
JUL	0.00	0.0	0	0.00	0.0	0	
AUG	0.00	0.0	0	0.00	0.0	0	
SEP	0.00	0.0	0	0.00	0.0	0	
OCT	0.00	0.0	0	0.00	0.0	0	
NOV	0.00	0.0	0	0.00	0.0	0	
DEC	0.00	0.0	0	0.00	0.0	0	
TOTAL	0.00	0.0	1	0.00	0.0	0	
OBSERVATIONS	11	11.0	11	11	11.0	11	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: GERALDTON REGION: NORTHWEST PLANT: GERALDTON WPCP DISTRICT: THUNDER BAY

WORKS NUMBER: 110001649 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE KENOGAMISIS MINOR BASIN : JAMES BAY

MINOR BASIN : JAMES BAY
MAJOR BASIN : ARCTIC WATERSHED

DESIGN CAPACITY: 1.814
POPULATION SERVED: 2,901
TREATMENT EXTENDED AFRAT

TREATMENT : EXTENDED AERATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	4.94 5.19 0.54	0.0 0.0 0.0	7 7 1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0	
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	10.67	0.0 3.0	15 3	0.00 12 0.00%	0.0 12.0	0 12	

REGION : NORTHWEST DISTRICT : KENORA MUNICIPALITY : GOLDEN PLANT : BALMERTOWN WPCP

WORKS NUMBER: 110003291 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

MINOR BASIN : LAKE WINNIPEG EAST MAJOR BASIN : NELSON RIVER WATERCOURSE : BALMER CREEK

DESIGN CAPACITY: 1.227
POPULATION SERVED: 1,300 TREATMENT : EXTENDED AERATION

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.50	0.0 0.0 0.0 16.0	0 0 1 1	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0 0 0
TOTAL OBSERVATIONS	0.50 4	16.0 4.0	2 4	0.00	0.0 4.0	0 4
PERCENTAGE OF PLANT EFFLUENT	0.13%			0.00%		

MUNICIPALITY: KENORA REGION: NORTHWEST PLANT: KENORA WPCP DISTRICT: KENORA WORKS NUMBER: 120000239 OP AUTHORITY: MUNICIPAL

WATERCOURSE : WINNIPEG RIVER MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER

DESIGN CAPACITY: 18.184
POPULATION SERVED: 12,000

TREATMENT : EXT AERATION/CONT STABLIZATION

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC					10.0		
TOTAL OBSERVATIONS	0.00	0.0 0.0	0 0	0.00	10.0	0	
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%			

MUNICIPALITY: MARATHON REGION: NORTHWEST PLANT: MARATHON WPCP DISTRICT: THUNDER BAY

WORKS NUMBER: 120000471 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : LAKE SUPERIOR MINOR BASIN : SUPERIOR MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 4.400
POPULATION SERVED: 5,000
TREATMENT: EXTENDED AERATION

:

SECONDARY BYPASS PLANT BYPASS VOLUME DURATION NO OF VOLUME DURATION NO OF (HOURS) TIMES (1000M3) (HOURS) TIMES MONTHS (1000M3) 0 0.00 0.0 JAN 0.00 0.0 0 0 0.16 2.0 1 0.00 0.0 **FEB** 0 0.00 0.0 0 0.00 0.0 MAR 0 0 0.00 0.0 APR 0.00 0.0 0 0 0.00 0.0 0.0 MAY 0.00 0 0 0.00 0.0 JUN 0.00 0.0 0 0 0.00 0.0 JUL 0.00 0.0 0 0.00 0.0 0 0.00 0.0 AUG 0 0.00 0.0 0 SEP 0.00 0.0 0 0 0.00 0.0 OCT 0.00 0.0 0 0.00 0.0 0 0.00 0.0 NOV 0 0.00 0.0 0 0.00 0.0 DEC 0 2.0 0.00 0.0 TOTAL 0.16 1 12 12 12 12.0 **OBSERVATIONS** 12 12.0 PERCENTAGE 0.02% 0.00% OF PLANT **EFFLUENT** 

MUNICIPALITY: RED ROCK

PLANT : RED ROCK WPCP WORKS NUMBER : 120001817

WATERCOURSE : NIPIGON BAY

REGION : NORTHWEST DISTRICT : THUNDER BAY

OP AUTHORITY : MUNICIPAL MINOR BASIN : SUPERIOR

MAJOR BASIN : GREAT LAKES

1.273

DESIGN CAPACITY: 1.273
POPULATION SERVED: 1,150

TREATMENT

: PRIMARY

	PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00		0 0 0 0 0 0 0 0 0	0.00 0.00 0.00		0 0	
TOTAL OBSERVATIONS PERCENTAGE OF PLANT EFFLUENT	0.18 10 0.06%	0.0	0 10	0.00	0.0	0 3	

MUNICIPALITY: SCHREIBER REGION : NORTHWEST PLANT: SCHREIBER WPCP DISTRICT: THUNDER BAY

WORKS NUMBER: 110002112 OP AUTHORITY: MINISTRY OF THE ENVIRONMENT

WATERCOURSE : CREEK TO L.SUPERIOR MINOR BASIN : SUPERIOR MAJOR BASIN : GREAT LAKES

DESIGN CAPACITY: 1.137
POPULATION SERVED: 1,937
TREATMENT: EXTENDED AERATION

: EXTENDED AERATION : CONTACT STABILIZATION

: CONVERTIBLE OPERATING MODE

PLANT BYPASS				SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.00	0.0	0	0.00	0.0	0
FEB	0.00	0.0	0	0.00	0.0	0
MAR	0.00	0.0	0	0.00	0.0	0
APR	0.00	0.0	0	0.00	0.0	0
MAY	0.00	24.0	10	0.00	0.0	0
JUN	0.00	0.0	0	0.00	0.0	0
JUL	0.00	0.0	0	0.00	0.0	0
AUG	0.00	0.0	0	0.00	0.0	0
SEP	0.00	0.0	0	0.00	0.0	0
ост	0.00	0.0	0	0.00	0.0	0
NOV	0.00	0.0	0	0.00	0.0	0
DEC	0.00	0.0	0	0.00	0.0	0
TOTAL	0.00	24.0	10	0.00	0.0	0
OBSERVATIONS	12	12.0	12	12	12.0	12
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.00%		

MUNICIPALITY: SIOUX LOOKOUT REGION: NORTHWEST PLANT: SIOUX LOOKOUT WPCP DISTRICT: KENORA

WORKS NUMBER: 120000220 OP AUTHORITY: MUNICIPAL

WATERCOURSE : PELICAN LAKE MINOR BASIN : LAKE WINNIPEG EAST

MAJOR BASIN : NELSON RIVER

DESIGN CAPACITY: 2.273
POPULATION SERVED: 3,006

TREATMENT : CONVENTIONAL ACTIVATED SLUDGE

	PLANT BYPA	ASS		SECONDARY BYPASS		
MONTHS	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES	VOLUME (1000M3)	DURATION (HOURS)	NO OF TIMES
JAN	0.00		0	1.32		1
FEB	0.00		0	0.00		0
MAR	0.00		0	0.00		0
APR	0.00		0	0.00		0
MAY	0.00	0.0	0	0.00	0.0	0
JUN	0.00	0.0	0	0.00	0.0	0
JUL	0.00	0.0	0	0.00	0.0	0
AUG						
SEP						
OCT	0.00	0.0	0	0.00	0.0	0
NOV	0.00		0	0.00		0
DEC	0.00	0.0	0	0.00		0
TOTAL	0.00	0.0	0	1.32	0.0	1
OBSERVATIONS	10	5.0	10	10	4.0	10
PERCENTAGE OF PLANT EFFLUENT	0.00%			0.20%		



TD/527/O5/R46/MOE
Ontario Ministry of the En
Report on the 1989
discharges from adry
c.2 a aa