Experiment 5

Aim:

To study the behaviour of a series R-L-C circuit.

Theory:

$$Z = R + j\left(\omega L - \frac{1}{\omega c}\right) = \sqrt{(R)^2 + \left(\omega L - \frac{1}{\omega c}\right)^2} / tan^{-1} \frac{\left(\omega L - \frac{1}{\omega c}\right)}{R}$$

This is the complex impedance (Z) which indicates that the circuit will become inductive if $\omega L > 1/\omega C$ and then the sign of the angle of Z is positive.

On the other hand, for $\omega L < 1/\omega C$, the circuit will become capacitive and the sign of the angle of Z is negative.

Circuit diagram for given impedence,

Phasor Diagram

The phasor diagram for Inductive and capacitive series R-L-C circuit

Phasor diagram for inductive circuit Phasor diagram for capacitive circuit

Resonance

When $V_L = V_C$, the circuit is said to be in resonance.

At resonance $X_L = X_C$, Z = R, $\phi = 0$, I and P peak.

Procedure:

- **1.** Connect the circuit as shown in the diagram.
- **2.** Adjust the rheostat for maximum resistance and the auto transformer to the position of zero-output voltage and switch on the supply.
- **3.** Adjust the voltage across the circuit and note I, V_S , V_L , V_C , V_R and W.
- 4. Adjust the rheostat for several settings.
- **5.** Adjust the rheostat to the maximum setting and change the capacitance.
- **6.** Compare the values of phase angle as obtained from the meter readings and from the phasor diagrams. (From the phasor diagrams compute θ).

Observations:

Serial no. of Observation	Power Supply Vs (in Volt)	Current I (in Amp)	Power (in Watt)	VR (in Volt)	VL (in Volt)	VC (in Volt)	Theta (in degree)	Power factor (in degree)
1	110	0.89809948	40.3291343	44.9049743	3.38511658;	102.117101 ⁻	-63.8139407	63.8139407
2	110	1.69407090	143.4938110	84.7035451	15.9632301	77.0487516	-33.7193877	33.7193877
3	110	2.03703690	207.475967	101.851845	42.1906072	42.1507427	0.02075586	0.02075586
4	110	2.03236248	206.524864	101.618124	45.9622841	38.5144723	3.88075525	3.88075525
5	110	1.97954669	195.930255	98.9773346	55.9598054	30.0108654	13.6391587	13.6391587

Below resonating frequency (Capacitive circuit):

Current, Power and Voltage across resistance tends to increase Voltage across Capacitor > Voltage across Inductor Theta (phase angle) is negative Power factor (in degrees) tends to decrease

At resonating frequency (Resistive circuit):

Current, Power and Voltage across resistance are at peak Voltage across Capacitor = Voltage across Inductor Theta (phase angle) is zero Power factor (in degrees) is zero

Above resonating frequency (Inductive circuit):

Current, Power and Voltage across resistance tends to decrease Voltage across Capacitor < Voltage across Inductor Theta (phase angle) is positive Power factor tends to increase

Results:

We have successfully studied the behaviour of RLC circuit below resonating frequency, at resonating frequency and above resonating frequency.