Ego motion estimation from vehicle wheel speed

Contents

DESIGN

- ✓ Inputs Considered
- ✓ Required Output
- ✓ High Level Architecture
- ✓ Wheel Speed Conversion & Wheel Coordinate Computation
- ✓ Wheel Steer angle Computation
- ✓ Valid Wheel Speed selection by Gating
- ✓ measurement model 3DOF
- ✓ measurement model 2DOF
- ✓ <u>covariance computation</u>
- ✓ Ordinary Least Squares

QUALITATIVE EVALUATION

- ✓ NuScenes Mini scene 0916
 - Input Signals Plot
 - Ego motion estimation output plot
 - velocity comparison consolidated plot
 - velocity comparison plot
- ✓ NuScenes Mini scene 1094
 - Input Signals Plot
 - Ego motion estimation output plot
 - velocity comparison consolidated plot
 - velocity comparison plot

CLOSING REMARKS

- ✓ Alternative Measurement model
- ✓ Applicability of the alternative measurement model
- ✓ Use-cases

Inputs Considered

Inputs	notations	unit			
Inputs from ego-vehicle speed and steering sensor					
Steering angle	$\delta_{steering}$	radian			
Front Left wheel speed	ω_{FL}	rpm			
Front Right wheel speed	ω_{FR}	rpm			
Rear Right wheel speed	ω_{RR}	rpm			
Rear Left wheel speed	ω_{RL}	rpm			
Ego-vehicle constant parameters					
Wheel Base	W	m			
Track Length	L	m			
Steering ratio	δ_{ratio}	-			
Tire radius	r_{tire}	m			

Required Output

Estimated Outputs	notations	unit			
Ego-vehicle Motion parameters					
Body frame longitudinal velocity w.r.t rear wheel base centre	vx	m/s			
Body frame longitudinal velocity w.r.t rear wheel base centre	vy	m/s			
Yaw rate	ω	rad/s			

High Level Architecture

Wheel Speed Conversion & Wheel Coordinate Computation

The coordinates of the wheel locations are as follows assuming the vehicle wheel base centre to be the point of origin

The wheel speed are in **rpm** (rotations per minute) which needs to be **converted to m/s**

$$v_i = \frac{2\pi r_{tire}\omega_i}{60}$$
, where $i \in \{FL, FR, RR, RL\}$

Wheel Steer angle Computation

By imposing <u>Ackerman's constraints</u> and assuming that the vehicle is <u>2WD</u> (2 wheel drive) we can derive the following expressions for the right and left wheel steering angle

Valid Wheel Speed selection by Gating

Ego-Motion Estimation: measurement model 3DOF

Assuming that the ego vehicle has <u>4 wheels</u>. Let the corresponding <u>wheel locations</u>, <u>wheel speeds</u> and the <u>wheel steer angles</u> are as follows:

Wheel	Location x coordinate	Location y coordinate	Wheel Speed	Wheel Steer Angle
Front Left (FL)	r_{χ}^{FL}	r_y^{FL}	v^{FL}	$oldsymbol{\delta^{FL}}$
Front Right (FR)	r_{χ}^{FR}	r_y^{FR}	v^{FR}	$oldsymbol{\delta^{FR}}$
Rear Left (RL)	r_{x}^{RL}	r_y^{RL}	v^{RL}	$oldsymbol{\delta^{RL}}$
Rear Right (RR)	r_{χ}^{RR}	r_y^{RR}	v^{RR}	δ^{RR}

From the well known kinematic expression $\vec{v} = \vec{\omega} \times \vec{r}$, and under the assumption of no wheel sleep, the expression below can be derived

$$\begin{bmatrix} 1 & 0 & -r_y^{FL} \\ 0 & 1 & r_x^{FL} \\ 1 & 0 & -r_y^{FR} \\ 0 & 1 & r_x^{FR} \\ 1 & 0 & -r_y^{RL} \\ 1 & 0 & -r_y^{RL} \\ 0 & 1 & r_x^{RL} \\ 1 & 0 & -r_y^{RR} \\ 0 & 1 & r_x^{RR} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ \omega \end{bmatrix} = \begin{bmatrix} v^{FL} \cos(\delta^{FL}) \\ v^{FL} \sin(\delta^{FL}) \\ v^{FR} \cos(\delta^{FR}) \\ v^{FR} \sin(\delta^{FR}) \\ v^{RL} \cos(\delta^{RL}) \\ v^{RL} \sin(\delta^{RL}) \\ v^{RR} \cos(\delta^{RR}) \\ v^{RR} \sin(\delta^{RR}) \end{bmatrix}$$

Ego-Motion Estimation: measurement model 2DOF

Under the assumption of no side slip and 2 wheel drive, if we compute the vehicle ego-motion w.r.t the rear wheel base centre the lateral component of the ego motion can be considered to be zero $(v_{\gamma} = 0)$. Under such conditions the measurement model reduces as follows:

$$\begin{bmatrix} 1 & -\frac{W}{2} \\ 0 & L \\ 1 & \frac{W}{2} \\ 0 & L \\ 1 & -\frac{W}{2} \\ 1 & -\frac{W}{2} \\ 1 & \frac{W}{2} \end{bmatrix} \begin{bmatrix} v_x \\ \omega \end{bmatrix} = \begin{bmatrix} v^{FL} \cos(\delta^{FL}) \\ v^{FL} \sin(\delta^{FL}) \\ v^{FR} \cos(\delta^{FR}) \\ v^{FR} \sin(\delta^{FR}) \\ v^{FR} \sin(\delta^{FR}) \\ v_{RL} \\ v_{RR} \end{bmatrix}$$

$$\Rightarrow AX = b$$

Ego-Motion Estimation: covariance computation

The covariance is computed as follows

Given the measurement noise covariance of the wheel speed sensor

$$R_{vel} = egin{bmatrix} \sigma_{vFL}^2 & 0 & 0 & 0 \ 0 & \sigma_{vFR}^2 & 0 & 0 \ 0 & 0 & \sigma_{vRL}^2 & 0 \ 0 & 0 & 0 & \sigma_{vRR}^2 \end{bmatrix}$$

We can compute the covariance of the pseudo-measurement (the right hand-side of the equation in the previous slide)

$$\Sigma_{FL} = \begin{bmatrix} \left(\sigma_{v^{FL}}^2\right) cos^2(\delta^{FL}) & \left(\sigma_{v^{FL}}^2\right) sin(\delta^{FL}) cos(\delta^{FL}) \\ \left(\sigma_{v^{FL}}^2\right) sin(\delta^{FL}) cos(\delta^{FL}) & \left(\sigma_{v^{FL}}^2\right) sin^2(\delta^{FL}) \end{bmatrix}$$

$$\Sigma_{FR} = \begin{bmatrix} (\sigma_{v^{FR}}^2)cos^2(\delta^{FR}) & (\sigma_{v^{FR}}^2)sin(\delta^{FR})cos(\delta^{FR}) \\ (\sigma_{v^{FR}}^2)sin(\delta^{FR})cos(\delta^{FR}) & (\sigma_{v^{FR}}^2)sin^2(\delta^{FR}) \end{bmatrix}$$

$$\Sigma_R = egin{bmatrix} \sigma_{v^{RL}}^2 & 0 \ 0 & \sigma_{v^{RR}}^2 \end{bmatrix}$$

$$\Sigma_b = \begin{bmatrix} \Sigma_{FL} & 0 & 0 \\ 0 & \Sigma_{FR} & 0 \\ 0 & 0 & \Sigma_R \end{bmatrix}$$

Ego-Motion Estimation : Ordinary Least Squares

The ego-motion is computed using ordinary least squares as follows

let,
$$B = (A^T A)^{-1} A^T$$
 $\widehat{X} - Bh$

$$\widehat{X} = Bb$$

$$\widehat{\Sigma} = B\Sigma_b B^T$$

NuScenes Mini – scene 0916 : Input Signals Plot

NuScenes Mini – scene 0916: Ego motion estimation output plot

NuScenes Mini – scene 0916: velocity comparison consolidated plot

NuScenes Mini – scene 0916: velocity comparison plot

NuScenes Mini – scene 1094 : Input Signals Plot

NuScenes Mini – scene 1094 : Ego motion estimation output plot

NuScenes Mini – scene 1094: velocity comparison consolidated plot

NuScenes Mini – scene 1094 : velocity comparison plot

Alternative Measurement model

$$\left[\cos(\delta^{i}) \quad \sin(\delta^{i})\right] \begin{bmatrix} 1 & 0 & -r_{y}^{i} \\ 0 & 1 & r_{x}^{i} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ \omega \end{bmatrix} = v^{i}$$

$$\Rightarrow \left[\cos(\delta^{i}) \quad \sin(\delta^{i}) \quad r_{x}^{i} \sin(\delta^{i}) - r_{y}^{i} \cos(\delta^{i})\right] \begin{bmatrix} v_{x} \\ v_{y} \\ \omega \end{bmatrix} = v^{i}$$

3-DOF Measurement model

$$\begin{bmatrix} \cos(\delta^{FL}) & \sin(\delta^{FL}) & r_x^{FL}\sin(\delta^{FL}) - r_y^{FL}\cos(\delta^{FL}) \\ \cos(\delta^{FR}) & \sin(\delta^{FR}) & r_x^{FR}\sin(\delta^{FR}) - r_y^{FR}\cos(\delta^{FR}) \\ \cos(\delta^{RL}) & \sin(\delta^{RL}) & r_x^{RL}\sin(\delta^{RL}) - r_y^{RL}\cos(\delta^{RL}) \\ \cos(\delta^{RR}) & \sin(\delta^{RR}) & r_x^{RR}\sin(\delta^{RR}) - r_y^{RR}\cos(\delta^{RR}) \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ \omega \end{bmatrix} = \begin{bmatrix} v^{FL} \\ v^{FR} \\ v^{RL} \\ v^{RR} \end{bmatrix}$$

2-DOF Measurement model

$$\begin{bmatrix} \cos(\delta^{FL}) & r_x^{FL}\sin(\delta^{FL}) - r_y^{FL}\cos(\delta^{FL}) \\ \cos(\delta^{FR}) & r_x^{FR}\sin(\delta^{FR}) - r_y^{FR}\cos(\delta^{FR}) \\ \cos(\delta^{RL}) & r_x^{RL}\sin(\delta^{RL}) - r_y^{RL}\cos(\delta^{RL}) \\ \cos(\delta^{RR}) & r_x^{RR}\sin(\delta^{RR}) - r_y^{RR}\cos(\delta^{RR}) \end{bmatrix} \begin{bmatrix} v_x \\ w \end{bmatrix} = \begin{bmatrix} v^{FL} \\ v^{FR} \\ v^{RL} \\ v^{RR} \end{bmatrix}$$

Applicability of the alternative measurement model

$$\left[\cos(\delta^{i} + \beta^{i}) \quad \sin(\delta^{i} + \beta^{i})\right] \begin{bmatrix} 1 & 0 & -r_{y}^{i} \\ 0 & 1 & r_{x}^{i} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ \omega \end{bmatrix} = v^{i}$$

Although the **alternative measurement model** is a more accurate representation of the vehicle kinematics, but without a **direct measurement of the wheel-slip angle** (β^i) , the ego-motion estimation becomes noisy especially the yaw rate.

Hence in this project this alternative formulation is not used

Use-cases

- Short-term wheel odometry
- Can be used as a prior for localization
- Integrate multiple sensor scans by temporal alignment. etc..

The End