QR Decompositions of Matrices

QR decomposition of matrices

QR Decomposition: Given any matrix $A \in \mathbb{R}^{n \times m}$, $n \ge m$, there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times m}$ such that

$$A = QR. (2)$$

The decomposition (2) is called a QR decomposition of A. If n > m, then $R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$ where $R_1 \in \mathbb{R}^{m \times m}$ is upper triangular.

In particular if n = m, then (2) takes the form A = QR where R is a square upper triangular matrix.

If $A \in \mathbb{C}^{n \times m}$, $n \ge m$, then (2) holds with \mathbb{R} replaced by \mathbb{C} , Q being a unitary matrix.

Condensed QR decomposition

Given $A \in \mathbb{R}^{n \times m}$ with n > m, if A = QR be a QR decomposition of A with $R = \left[\begin{array}{c} R_1 \\ 0 \end{array} \right]$, then partitioning $Q = \left[Q_1 \ Q_2 \right]$ where $Q_1 \in \mathbb{R}^{n \times m}$, gives,

$$A = QR = [Q_1 \ Q_2] \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1.$$

This motivates the following theorem.

Theorem Given any $n \times m$ matrix A with n > m, there exists an isometry $Q \in \mathbb{R}^{n \times m}$ and an upper triangular matrix B such that

$$A = QR. \tag{(3)}$$

If rank A = m, then R is nonsingular.

The decomposition in (3) is called a *condensed QR* decomposition of A.

Unitary matrices are square matrices such that $Q^* = Q^{-1}$. A real unitary matrix is called an orthogonal matrix.

Unitary matrices are square matrices such that $Q^* = Q^{-1}$.

A real unitary matrix is called an orthogonal matrix.

Evidently, a square matrix Q is unitary (orthogonal) if and only if its columns form an orthonormal basis of \mathbb{R}^n (\mathbb{C}^n).

Unitary matrices are square matrices such that $Q^* = Q^{-1}$.

A real unitary matrix is called an orthogonal matrix.

Evidently, a square matrix Q is unitary (orthogonal) if and only if its columns form an orthonormal basis of \mathbb{R}^n (\mathbb{C}^n).

They play a very important role in matrix computations due to their nice properties. In the following let Q be an $n \times n$ unitary matrix.

Unitary matrices are square matrices such that $Q^* = Q^{-1}$.

A real unitary matrix is called an orthogonal matrix.

Evidently, a square matrix Q is unitary (orthogonal) if and only if its columns form an orthonormal basis of \mathbb{R}^n (\mathbb{C}^n).

They play a very important role in matrix computations due to their nice properties. In the following let Q be an $n \times n$ unitary matrix.

- ▶ $\langle Qx, Qy \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{C}^n$.
- $||Qx||_2 = ||x||_2.$
- ▶ $||QB||_2 = ||B||_2$ for any $B \in \mathbb{C}^{n \times m}$.
- $||Q||_2 = 1$ and $||Q||_F = \sqrt{n}$.
- ▶ $\kappa_2(Q) = 1$.
- $ightharpoonup Q^*AQ$ is Hermitian if A is Hermitian.
- ▶ If A is real symmetric and Q is orthogonal, then Q^TAQ is also real symmetric.
- ▶ In the presence of rounding errors, fl(QA) = Q(A + E) where $||E||_2/||A||_2$ is O(u).

Unitary matrices are square matrices such that $Q^* = Q^{-1}$.

A real unitary matrix is called an orthogonal matrix.

Evidently, a square matrix Q is unitary (orthogonal) if and only if its columns form an orthonormal basis of \mathbb{R}^n (\mathbb{C}^n).

They play a very important role in matrix computations due to their nice properties. In the following let Q be an $n \times n$ unitary matrix.

- ▶ $\langle Qx, Qy \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{C}^n$.
- $||Qx||_2 = ||x||_2.$
- ▶ $||QB||_2 = ||B||_2$ for any $B \in C^{n \times m}$.
- $||Q||_2 = 1$ and $||Q||_F = \sqrt{n}$.
- $\kappa_2(Q) = 1.$

▶ Q*AQ is Hermitian if A is Hermitian.

- ▶ If A is real symmetric and Q is orthogonal, then Q^TAQ is also real symmetric.
- ▶ In the presence of rounding errors, fl(QA) = Q(A + E) where $||E||_2/||A||_2$ is O(u).

Prove these properties!

Isometry

A matrix $Q \in \mathbb{C}^{n \times m}$, or $\mathbb{R}^{n \times m}$ with n > m, is said to be an isometry if $Q^*Q = I_m$.

Isometry

A matrix $Q \in \mathbb{C}^{n \times m}$, or $\mathbb{R}^{n \times m}$ with n > m, is said to be an isometry if $Q^*Q = I_m$.

Clearly a matrix Q with more rows than columns is an isometry if and only if its columns form an orthonormal set in \mathbb{R}^n or \mathbb{C}^n .

Isometry

A matrix $Q \in \mathbb{C}^{n \times m}$, or $\mathbb{R}^{n \times m}$ with n > m, is said to be an isometry if $Q^*Q = I_m$.

Clearly a matrix Q with more rows than columns is an isometry if and only if its columns form an orthonormal set in \mathbb{R}^n or \mathbb{C}^n .

Isometries have properties very similar to that of unitary matrices. Given an $n \times m$ isometry $Q = [q_1 \cdots q_m]$,

- $||Qx||_2 = ||x||_2.$
- ▶ $||QB||_2 = ||B||_2$ for any $B \in \mathbb{C}^{n \times m}$.
- $||Q||_2 = 1$ and $||Q||_F = \sqrt{m}$.
- ▶ $\kappa_2(Q) = 1$.
- ▶ In the presence of rounding errors, fI(QA) = Q(A + E) where $||E||_2/||A||_2$ is O(u).
- ▶ QQ^* is the orthogonal projection onto span $\{q_1, \ldots, q_m\}$, that is, $QQ^*v = v$ for all $v \in \text{span}\{q_1, \ldots, q_m\}$ and $QQ^*w = 0$ for all $w \in \{q_1, \ldots, q_m\}^{\perp}$. Prove this!

Classical Gram Schmidt Orthonormalisation

Let $\{v_1, \ldots, v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1, \ldots, q_m\}$ in \mathbb{R}^n such that

$$span\{v_1,...,v_k\} = span\{q_1,...,q_k\}, \ k = 1,...,m.$$

Classical Gram Schmidt Orthonormalisation

Let $\{v_1,\ldots,v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1,\ldots,q_m\}$ in \mathbb{R}^n such that

$$span\{v_1,...,v_k\} = span\{q_1,...,q_k\}, \ k = 1,...,m.$$

Classical Gram Schmidt (CGS):

Step 1: $q_1 := v_1/\|v_1\|_2$.

Step 2:
$$q_2 := \underbrace{(v_2 - (v_2^T q_1)q_1)}_{=:\hat{q}_2} / \|v_2 - (v_2^T q_1)q_1\|_2.$$

Step k: Assuming that q_1, \ldots, q_{k-1} are calculated as above,

$$q_k = \underbrace{(v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i)}_{=:\hat{q}_k} / ||v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i||_2.$$

Classical Gram Schmidt Orthonormalisation

Let $\{v_1,\ldots,v_m\}$ be an ordered set of linearly independent vectors in \mathbb{R}^n . The Classical Gram Schmidt (CGS) process finds an ordered orthonormal set of vectors $\{q_1,\ldots,q_m\}$ in \mathbb{R}^n such that

$$span\{v_1,...,v_k\} = span\{q_1,...,q_k\}, \ k = 1,...,m.$$

Classical Gram Schmidt (CGS):

Step 1:
$$q_1 := v_1/\|v_1\|_2$$
.

Step 2:
$$q_2 := \underbrace{(v_2 - (v_2^T q_1)q_1)}_{=:\hat{q}_2} / \|v_2 - (v_2^T q_1)q_1\|_2.$$

Step k: Assuming that q_1, \ldots, q_{k-1} are calculated as above,

$$q_k = \underbrace{(v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i)}_{-\hat{q}_i} / ||v_k - \sum_{i=1}^{k-1} (v_k^T q_i) q_i||_2.$$

Exercise: Show that CGS applied to the basis $\{e_1 + e_2, e_2, e_2 + e_3\}$ in \mathbb{R}^3 produces the ordered orthonormal basis

$$\{(e_1+e_2)/\sqrt{2},(e_2-e_1)/\sqrt{2},e_3\}.$$

Equivalence of CGS and condensed QR decomposition

CGS ≡ condensed QR

Supose $\{v_1, \ldots, v_m\}$ is an ordered linearly independent subset of \mathbb{R}^n and $\{q_1, \ldots, q_m\}$ is the output of CGS on $\{v_1, \ldots, v_m\}$.

CGS ≡ condensed QR

Supose $\{v_1, \ldots, v_m\}$ is an ordered linearly independent subset of \mathbb{R}^n and $\{q_1, \ldots, q_m\}$ is the output of CGS on $\{v_1, \ldots, v_m\}$. Then,

$$\underbrace{\begin{bmatrix} v_1 \cdots v_m \end{bmatrix}}_{=:V} = \underbrace{\begin{bmatrix} q_1 \cdots q_m \end{bmatrix}}_{=:Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ & r_{22} & \cdots & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix}}_{=:R}$$

where $r_{ij} = v_j^T q_i$ for j > i, $r_{jj} = \|\hat{q}_j\|_2$ and $r_{ij} = 0$ otherwise. Clearly, V = QR is a condensed QR decomposition of V.

CGS ≡ condensed QR

Supose $\{v_1, \ldots, v_m\}$ is an ordered linearly independent subset of \mathbb{R}^n and $\{q_1, \ldots, q_m\}$ is the output of CGS on $\{v_1, \ldots, v_m\}$. Then,

$$\underbrace{[v_1\cdots v_m]}_{=:V} = \underbrace{[q_1\cdots q_m]}_{=:Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ & r_{22} & \cdots & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix}}_{=:R}$$

where $r_{ij} = v_j^T q_i$ for j > i, $r_{jj} = \|\hat{q}_j\|_2$ and $r_{ij} = 0$ otherwise. Clearly, V = QR is a condensed QR decomposition of V.

Exercise: Conversely if V = QR be a condensed QR decomposition of $V = [v_1 \cdots v_m] \in \mathbb{R}^{n \times m}$ where $R = [r_{ij}]_{m \times m}$ with $r_{ii} > 0$ for all $i = 1, \dots, m$, then the columns q_1, \dots, q_m of Q are equal to those obtained via CGS on the columns of V with

$$r_{ij} = \left\{ egin{array}{ll} \mathbf{v}_j^T \mathbf{q}_i, & i < j, \ \|\mathbf{\hat{q}}_j\|_2, & i = j \ 0, & ext{otherwise.} \end{array}
ight.$$