RANSAC Algorithm

AIG Talk 2/22/21

Ryan Levy

Context – Computer Vision

- Often two images will come from the same projection plane but with different transformation
 - Panorama Stitching

Context – Determine Transform

- Use (other) algorithms to perform pattern matching
 - Match 'unique' features
- Today's goal: Match corresponding features without outliers

Context – Transformations

Transformation	Matrix	# DoF	Preserves	lcon
translation	$\begin{bmatrix} \mathbf{I} \mid \mathbf{t} \end{bmatrix}_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$\left[\begin{array}{c c}\mathbf{R}&\mathbf{t}\end{array}\right]_{2\times3}$	3	lengths	\bigcirc
similarity	$\left[\begin{array}{c c} \mathbf{sR} & \mathbf{t} \end{array}\right]_{2 \times 3}$	4	angles	\Diamond
affine	$\left[\begin{array}{c}\mathbf{A}\end{array} ight]_{2 imes3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{\mathbf{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

$$v = \begin{pmatrix} v_x \\ v_y \\ w \end{pmatrix}$$

Math Background

$$v' = Hv$$

(overdetermined)
Least Squares Problem!

$$S = \sum_{i} (v_i' - Hv_i)^2$$

$$\frac{dS}{dH_{ij}} = -2v_i^T v_i' + 2v_i^T v_i H_{ij}$$
$$\Rightarrow H_{ij} = (v_i^T v_i)^{-1} v_i^T v_i'$$

$$H = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{pmatrix} \quad v = \begin{pmatrix} v_x \\ v_y \\ w \end{pmatrix}$$

8 free parameters

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{pmatrix}$$

6 free parameters

Problem - Outliers

- Naïve matching has lots of outliers
- Study RANSAC with linear fits

RANSAC

- Big idea: Try a bunch of fits, the one that is the best is the best!
 - Inliers vs outliers
 - RANdom SAmple Consensus

```
1 for n in range(numTrials):
2   pick random set of points
3   solve the model using those parameters
4   count number of inliers
5 pick the model with the most inliers
```

Graphics and Image Processing J. D. Foley Editor

Random Sample
Consensus: A
Paradigm for Model
Fitting with
Applications to Image
Analysis and
Automated
Cartography

Martin A. Fischler and Robert C. Bolles SRI International

A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/ smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper describes the application of RANSAC to the Location Determination Problem (LDP): Given an image depicting a set of landmarks with known locations, determine that point in space from which the image was obtained. In response to a RANSAC requirement, new results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form. These results provide the basis for an automatic system that can solve the LDP under difficult viewing

1981 ACM 0001-0782/81/0600-0381 \$00.75

RANSAC

```
1 for n in range(numTrials):
2    pick random set of points
3    solve the model using those parameters
4    count number of inliers
5 pick the model with the most inliers
```


Here total possible trials:

$$\binom{13}{2} = 78$$

RANSAC Example


```
nTrials = 100
Delta = 0.5
N = 13
N_out = 3
```


nTrials = 100 Delta = 0.5 N = 100 N_out = 30

nTrials = 100 Delta = 0.5 N = 300 N out = 200

That was too easy?

- Pros
 - Simple/straightforward
 - Very fast
 - Handles large number of outliers
 - # of datapoint insensitive
- Cons
 - KNOBS
 - Inlier/outlier selection
 - (secretly: model choice)
 - Number of trials
 - Computational time(!)

Trial Selection:

•
$$N_{trials} \ge \frac{\log[1-p_s]}{\log[1-(p_g)^s]}$$

- p_s —probability of success (~0.99)
- p_g probability of good points (% inliers)
- *s* # parameters
- We had s=2, and at worst $p_g=\frac{1}{3}$ $N_{trials} \ge 39$
- Now imagine s=6 with $p_g=\frac{1}{3}$ $N_{trials} \geq 3355(!)$

<i>s</i> = 6					
p_g	95%	75%	50%		
V_{trials}	4	24	293		

Enhancements

Figure 1: RANSAC Family

Guided Sampling

PROSAC

- Big idea: Group similar points together to get inliers
- Sort all points by "quality", always start with high quality points and expand afterword
 - Increases speed

GASAC

Big idea: use a Genetic algorithm to select groups

Figure 3: Exchange of chromosome parts using cross-over

Figure 4: Modification of genes by mutation

Figure 1: RANSAC Family

Partial Evaluation

- $T_{d,d}$ test
 - Big idea: randomly check $d \ll N$ points to confirm model
 - Randomly select $d \ll N$ points, see if considered inlier to currently model
 - If yes, stop
 - d = 1 seems optimal
- Boil-out Test ?
- Bail-out Test
 - Big idea: Discard models that have too few inliers
 - Fit your model and randomly select points to do an inlier/outlier check
 - Ignore your model if there's too few inlier according to probability distributions

Figure 1: RANSAC Family

Likelihood Extensions

MLESAC

Big idea: instead of inliers choose maximum likelihood

Figure 1: RANSAC Family

MAPSAC

• Big idea: MLESAC + Bayesian update, i.e., posterior probability maximization

uMLESAC

- Big idea: use ideas from MAPSAC with adapative termination
- Uses $T_{d,d}$ test

Summary

- RANSAC is an algorithm for solving least squares problems with outliers
 - Robust, fast, and simple algorithm
- Many improvements, focused on speed as well as accuracy

Figure 1: RANSAC Family

References

- Ancient Secrets of Computer Vision
- Richard Szeliski (2007), "Image Alignment and Stitching: A Tutorial", Foundations and Trends® in Computer Graphics and Vision: Vol. 2: No. 1, pp 1-104. http://dx.doi.org/10.1561/0600000009
- A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus

References

- Ancient Secrets of Computer Vision
- Richard Szeliski (2007), "Image Alignment and Stitching: A Tutorial", Foundations and Trends® in Computer Graphics and Vision: Vol. 2: No. 1, pp 1-104. http://dx.doi.org/10.1561/0600000009
- A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus