

PROJET GLIOMATRACK Avancements

Mouhamad Ibrahim 19 mars 2015

Ancien dispositif Problèmes

Photo d'un ancien dispositif contenant un seul canal, et des accès latéraux (tuyaux 75µm)

Profil de débit en créneaux (escalier)

• Problèmes:

- Accès fluidique augmente considérablement la résistance microfluidique du setup
- On ne peut pas atteindre des shear suffisamment importants pour détacher
- Profil de débit en créneaux mis en question
- Stabilisation du débit sur la durée du palier et effet mémoire des cellules ??

Nouveau dispositif multishear Géométrie et caractéristiques

Largeur w [μ m]

Valeurs de shear stress τ_i nominal pour les 5

zones, induites par un seul débit $Q=1500\mu l/min$

Caractéristiques

- Large gamme de shear stress : 5 zones de valeurs de shear différentes
- Accès par-dessus, via des tuyaux grands (800µm) d'où la résistance microfluidique faible
- Gamme de valeurs élevées de shear stress (car résistance microfluidique faible)

SOMMAIRE

• ETUDE SUR VERRE

- Fabrication des dispositifs en Verre
- Banc expérimental
- Résultats sur substrat Verre
- Résultats sur substrat Verre-LN

• ETUDE SUR FIBRES

- Fabrication des dispositifs en PDMS
- Banc expérimental (idem que sur verre)
- Résultats sur substrat Fibres brutes

• CONCLUSION ET PERSPECTIVES

ETUDE SUR VERRE

Fabrication des dispositifs en Verre

Photo d'un dispo en verre

- Pyrex 700µm
- Silicon 200µm
- Résine
- Masque

Banc expérimental

Banc expérimental de la mesure de taux de détachement

Protocole de détachement: Allure représentative du débit appliqué 2heures après l'injection des cellules; 1500µl/min pendant 30minutes

Protocole d'imagerie: Time-lapse; 3 champs de vision/zone; 1image/minute

Résultats sur substrat Verre Protocole de culture C6

Nettoyage dispo

- NaOH—Eau—H2SO4 +Sonication
- Javel—tween20 +Sonication
- UV ozone (60min)
- Javel—tween20 +Sonication

Stérilisation dispo

- Ethanol 70%
- PBS
- L15 (sans L-Glutamine)

Photo(415µm*311µm) prise des cellules adhérées sur Verre, 2 heures après injection dans le dispositif

• Repiquage cellules

- Trypsinisation (Secouer 30secondes & taper pour décoller)
- Purification (5min, 1000rpm) & remise dans L15 (sans L-Glutamine)
- Homogénéisation (15 aller-retour)
- Injection 5.10⁵ cellules/ml

Résultats sur substrat Verre Détachement—Gamme de Shear stress 14-75dy/cm²

Vidéo(415μm*311μm) de détachement de cellules Zone de shear stress 50dy/cm² Temps total 30minutes 1image/minute

Résultats sur substrat Verre Détachement—Gamme de Shear stress 14-75dy/cm²

- Taux de détachement pseudo linéaire en fonction du shear
- Taux critique $\tau_{50\%} = \sim 55 \text{dy/cm}^2$
- Détachement brusque après quelques minutes de pousse pour le shear le plus élevé.

Résultats sur substrat Verre-LN Protocole de culture C6—L15 sans L-Glu

Nettoyage dispo

- NaOH—Eau—H2SO4 +Sonication
- Javel—tween20 +Sonication
- UV ozone (60min)
- Javel—tween20 +Sonication

Stérilisation dispo

- Ethanol 70%
- PBS

Fonctionnalisation dispo

- PDL 25μg/ml—Laminine 4μg/ml
 - PDL 10μl/min 30minutes
 - PBS 10μl/min 5minutes
 - LN 10μl/min 30minutes
 - PBS 10μl/min 5minutes
- L15 (sans L-Glutamine)

Repiquage cellules

- Trypsinisation (Secouer 30secondes & taper pour décoller)
- Purification (5min, 1000rpm) & remise dans L15 (sans L-Glutamine)
- Homogénéisation (15 aller-retour)
- Injection 5.10⁵ cellules/ml

Photo(415μm*311μm) prise des cellules adhérées sur Verre-LN, 2 heures après injection dans le dispositif

Résultats sur substrat Verre-LN Détachement—Gamme de Shear stress 14-75dy/cm²

Vidéo(415μm*311μm) de détachement de cellules Zone de shear stress 75dy/cm² Temps total 30minutes 1image/minute

Résultats sur substrat Verre-LN Détachement—Gamme de Shear stress 14-75dy/cm²

- Taux de détachement pseudo exponentiel
- Détachement décalé temporellement par rapport au verre et des taux plus faible

Résultats sur substrat Verre-LN Protocole de culture C6—L15 avec L-Glu

Nettoyage dispo

- NaOH—Eau—H2SO4 +Sonication
- Javel—tween20 +Sonication
- UV ozone (60min)
- Javel—tween20 +Sonication

Stérilisation dispo

- Ethanol 70%
- PBS

Fonctionnalisation dispo

- PDL 25μg/ml—Laminine 4μg/ml
 - PDL 10μl/min 30minutes
 - PBS 10μl/min 5minutes
 - LN 10μl/min 30minutes
 - PBS 10µl/min 5minutes

L15 (avec L-Glutamine)

• Repiquage cellules

- Trypsinisation (Secouer 30secondes & taper pour décoller)
- Purification (5min, 1000rpm) & remise dans L15 (avec L-Glutamine)
- Homogénéisation (15 aller-retour)
- Injection 5.10⁵ cellules/ml

Photo(415µm*311µm) prise des cellules adhérées sur Verre-LN, 2 heures après injection dans le dispositif

Résultats sur substrat Verre-LN Détachement—Gamme de Shear stress 30-155dy/cm²

Vidéo(415μm*311μm) de détachement de cellules Zone de shear stress 155dy/cm² Temps total 30minutes 1image/minute

Résultats sur substrat Verre-LN Détachement—Gamme de Shear stress 30-155dy/cm²

- L-Glutamine semble renforcer l'adhésion cellulaire ??
- Tendance d'évolution linéaire du taux de détachement en fonction du temps

ETUDE SUR FIBRES

Fabrication des dispositifs en PDMS

Banc expérimental (idem que sur verre)

Banc expérimental de la mesure de taux de détachement

Protocole de détachement: Allure représentative du débit appliqué 2heures après l'injection des cellules; 1500µl/min pendant 30minutes

Protocole d'imagerie: Time-lapse; 3 champs de vision/zone; 1image/minute

Résultats sur substrat Fibres Protocole de culture C6

Stérilisation dispo

- Ethanol 70%
- PBS
- L15 (sans L-Glutamine)

Marquage cellules

- Incubation –Hoechst 33342- 30minutes
- avant repiquage
- 0.5µl/ml

Photo(415μm*311μm) prise des cellules (noyau en bleu) accrochées sur Fibres brutes non alignés (auto-fluorescentes en vert), 2 heures après injection dans le dispositif

Repiquage cellules

- Trypsinisation (Secouer 30secondes & taper pour décoller)
- Purification (5min, 1000rpm) & remise dans L15 (sans L-Glutamine)
- Homogénéisation (15 aller-retour)
- Injection 5.10⁵ cellules/ml

Résultats sur substrat Fibres Détachement—Gamme de Shear stress 20-75dy/cm²

Vidéo(415μm*311μm) de détachement de cellules Zone de shear stress 75dy/cm² Temps total 30minutes 1image/2minute

Résultats sur substrat Fibres Détachement—Gamme de Shear stress 20-75dy/cm²

- Evolution pseudo linéaire du taux de détachement en fonction du shear
- Les cellules semblent avoir une meilleure adhérence sur fibres (3D) que sur du verre (2D)

Résultats sur différents substrats

- Évolutions de cinétique différentes pour les détachements sur les différents substrats
- Les cellules adhèrent mieux sur les fibres que sur verre
- Les cellules adhèrent mieux sur verre LN que sur verre

CONCLUSION

- Réalisation dispositifs microfluidiques multishear
 - Large gamme de shear stress
 - Verre et PDMS
 - Intégration des nanofibres
- Culture cellulaire dans différents environnements
 - 2D (verre et verre-LN)
 - 3D (fibres)
- Mesure de taux de détachement
 - Verre
 - o Détachement « linéaire » en fonction du shear
 - Verre-LN
 - Fibres brutes 3D
 - o Détachement « linéaire » en fonction du shear
 - o Détachement « linéaire » en fonction du temps

PERSPECTIVES

- Mesure de taux de détachement critique τ_{50%}
 - Verre-LN
 - Fibres brutes
 - Fibres-LN

- o Détachement sur matériau de fibres en système 2D (plan)
 - 3D vs 2D
- Publication des résultats

ANNEXES

Photo confocale des fibres non fonctionnalisées

 $Photo\ confocale\ des\ fibres\ fonctionnalis\'ees\ LN$

 $Photo\ confocale\ des\ fibres\ fonctionnalis\'ees\ LN$

Photo dispo 6mm*3mm

Pression & accès

Tests (Nemesys)

✓ Expérim. :

Q= 1.7ml/min $\rightarrow \Delta p$ = 15bar

✓ Théo.:

 $\Delta p = R_h Q = 16bar$

 R_h = [8μl/ π (d/2)⁴ + 8μL/ π (D/2)⁴ + 12μl_d/wh³(1-0.63h/w)]Q L= 50cm; l= 4.5cm; D= 800μm; d=75μm; l_d= 2cm; w= 500μm; h= 200μm Δp_{limite} = 20bar= 20e+6dyn/cm² ✓ Théo.:

 $\Delta p = R_h Q = 2bar$

Q= 1.7ml/min

 R_h = [8μl/π(d/2)⁴ + 8μL/π(D/2)⁴ + 12μl_d/wh³(1-0.63h/w)]Q L= 80cm; l=10cm; D= 800μm; d= 150μm; l_d= 2.5cm; w= 500μm; h= 100μm Δp_{limite} = 20bar= 20e+6dyn/cm²

Démarches faites

—Bulles d'air—

Élimination — Bulles d'air

