4. Zufällige Messfehler

Inhaltsübersicht

4. Zufällige Messfehler

- 4.1 Grundlagen der Wahrscheinlichkeitstheorie
- 4.2 Stichproben
- 4.3 Normalverteilte Zufallsvariable
- 4.4 Statistische Testverfahren
- 4.5 Qualitätssicherung
- 4.6 Fehlerfortpflanzung

4 Zufällige Messfehler

- Unterscheidung: systematische und zufällige Messfehler
 - Systematisch: gleiches Ergebnis bei wiederholten Versuchen
 - Zufällig: abweichende Ergebnisse (in Betrag und Vorzeichen)
- Einteilung hängt u. a. von den Versuchsbedingungen und von der Detaillierung der Versuchsdurchführung ab

Beispiel:

- Spannungsmesser wird an Spannungsnormal angeschlossen, mehrere Messungen über den Tag verteilt
- Ergebnis: Fehler der Messungen unterscheiden sich in Betrag und Vorzeichen, d. h. sind zufällig
- Vermutung nach n\u00e4herer Untersuchung: Zusammenhang zur Temperatur
- Wiederholung der Versuche im Temperaturschrank
- Ergebnis: Fehler hängen von der Raumtemperatur ab, d. h. sind doch systematisch

4 Zufällige Messfehler

- Beobachtung: Je feiner die Versuchsbedingungen festgelegt und gemessen werden und je besser das Systemverständnis ist, desto mehr Fehler lassen sich als systematische Fehler beschreiben
- Auch Zufallsexperimente lassen sich im Prinzip systematisch modellieren
- Beispiel: Würfelwurf
 - Bei Kenntnis von Richtung, Drehimpuls, Stoßzahl etc. ließe sich das Ergebnis prinzipiell nach den Gesetzen der Mechanik bestimmen
- Erkenntnis der Chaostheorie: Kleine Abweichungen der Anfangsbedingungen führen zu unterschiedlichen Ergebnissen, dies lässt sich dann als zufällig auffassen
- Thema dieses Kapitels: Untersuchung und Beschreibung zufälliger Fehler mit Methoden der Wahrscheinlichkeitsrechnung und mathematischen Statistik

- Bisherige Beschreibung eines Messsystems: Zeitsignale für Ein- und Ausgänge
- Dabei deterministische
 Beschreibung der Eingangs und Ausgangsgrößen: Funktionen der Signalamplitude über der Zeit
 bzw. Betrags- und Phasenspektrum

 $\mathbf{w}(\mathbf{x},u,\mathbf{z},t)$

- Problem: Zeitverlauf der Störgrößen z(t) ist nicht genau bekannt, diese werden daher meist probabilistisch im "Amplitudenbereich" mit Wahrscheinlichkeiten beschrieben
- Beispiel: Rechtecksignal und Beschreibung im Amplitudenbereich: Amplitudenwerten x(t) werden Wahrscheinlichkeiten P(x) zugeordnet

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

 $F(\mathbf{x})$

Dabei Informationsverlust: zeitliche Abfolge der Werte x(t)

- Modellvorstellung: Amplitudenwerte werden als Ergebnis eines Zufallsexperiments interpretiert
- Kontinuierliche, diskrete oder auch nominale Ergebnisse je nach Art des Signals
- Dazu Abbildung der Ergebnismenge des Zufallsexperiments (d. h. der Menge der Elementarereignisse) auf eine geeignete Wertemenge (meist reelle Zahlen) mittels Zufallsvariablen x
- Definition: **Zufallsvariable**Jede auf der Ergebnismenge eines
 Zufallsexperiments definierte reelle
 Funktion wird als Zufallsvariable bezeichnet.
 Ist x das Symbol einer Zufallsvariablen, so
 bezeichnet man die reelle Zahl, die dem
 Elementarereignis ξ durch x zugeordnet wird, mit $x(\xi)$.

- Begriff Zufallsvariable ist irreführend:
 x(ξ) ist keine Variable, sondern eine wohldefinierte Funktion (Abbildung);
 Zufall spielt nur bei der Auswahl der ξ_i eine Rolle
- Ergebnismenge des Zufallsexperiments kann auch selbst als Zufallsvariable verwendet werden
- Diskrete Zufallsvariablen: abzählbare Elementarereignisse (z. B. Würfeln, Wurf einer Münze)
- Kontinuierliche Zufallsvariablen: nicht abzählbare Elementarereignisse (z. B. Messung einer metrischen Größe): häufigster Fall in der Messtechnik, daher im Folgenden betrachtet

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

- Beispiel: Diskrete Zufallsvariable
 - Würfelexperiment: Würfel wird zweimal geworfen
 - Elementarereignisse ξ_1 und ξ_2
 - Zufallsvariable x: Summe der Augenzahlen: $x(\xi) = \xi_2 + \xi_2$ für $\xi_1, \xi_2 \in \{1, ..., 6\}$
 - Zufallsvariable x ist also diskret mit Wertebereich $x \in \{2, ..., 12\}$
- Beispiel: Kontinuierliche Zufallsvariable
 - Spannungsquelle mit Nennspannung $U_0 = 5 \text{ V}$
 - Gemessene Werte schwanken im Bereich $4,9 \text{ V} \leq \text{u} \leq 5,1 \text{ V}$
 - Zufallsvariable x: Abweichung von der Nennspannung: $x(\xi) = u U_0$
 - Zufallsvariable x ist also kontinuierlich mit Wertebereich $-0.1 \text{ V} \le x \le 0.1 \text{ V}$

- Definition: Wahrscheinlichkeitsverteilung Die Wahrscheinlichkeitsverteilung (kurz: Verteilung) $F_x(x) = P(x \le x)$ einer Zufallsvariablen x gibt die Wahrscheinlichkeit P an, mit welcher der Funktionswert von x kleiner oder gleich x ist.
- $\lim_{x \to -\infty} F_{\mathbf{x}}(x) = 0, \lim_{x \to \infty} F_{\mathbf{x}}(x) = 1$
- $F_{\rm x}(x)$ ist monoton steigend
- Alternative Beschreibung einer Zufallsvariablen:
 Wahrscheinlichkeitsdichte

ACT TO RETIRE THE THE TABLE TO THE PROPERTY OF THE PROPERTY OF

4.1 Grundlagen der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsdichte

■ Definition: Wahrscheinlichkeitsdichte Die Wahrscheinlichkeitsdichte (kurz: Dichte) $f_x(x)$ einer Zufallsvariablen x ist definiert durch

$$f_{\mathbf{x}}(x) = \frac{\mathrm{d}F_{\mathbf{x}}(x)}{\mathrm{d}x} \, \mathrm{mit} \, F_{\mathbf{x}}(x) = \int_{-\infty}^{x} f_{\mathbf{x}}(u) \, \mathrm{d}u$$

- $f_{\rm X}(x) \ge 0$ (da $F_{\rm X}(x)$ monoton steigend ist)

- f_x(x) beschreibt die Wahrscheinlichkeit, dass x in einer schmalen Umgebung der Breite Δx liegt, bezogen auf die Umgebungsbreite Δx

 Bei diskreten Wahrscheinlichkeiten: Dirac-Impulse in der Wahrscheinlichkeitsdichte

ini, ini, ini i mo i wond on on monitori who of and in one gazer contro set and.

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

4.1 Grundlagen der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsdichte

- Beispiel: Fairer Würfel
 - Diskrete Zufallsvariable x: Augenzahl beim einmaligen Würfeln
 - Fairer Würfel: Alle Elementarereignisse (d. h. Augenzahlen 1,...,6)
 treten mit gleicher (diskreter) Wahrscheinlichkeit auf
 - Wahrscheinlichkeitsdichte $f_x(x)$ enthält sechs Dirac-Impulse mit dem Gewicht $\frac{1}{6}$

Wahrscheinlichkeitsdichte

Falls keine Verwechslungsgefahr besteht: Indizes weglassen:

$$f_{\mathbf{X}}(\mathbf{x}) = f(\mathbf{x}), F_{\mathbf{X}}(\mathbf{x}) = F(\mathbf{x})$$

Wahrscheinlichkeitsdichte

- Mehrere Zufallsvariablen über derselben Ergebnismenge:
 Beschreibung mittels Verteilungen und Dichten, die das gemeinsame
 Auftreten von Werten der Zufallsvariablen bewerten
- Im Folgenden: Betrachtung von zwei Zufallsvariablen x, y
- Definition: **Verbundwahrscheinlichkeitsverteilung** Die Verbundwahrscheinlichkeitsverteilung oder gemeinsame Wahrscheinlichkeitsverteilung $F_{xy}(x,y) = P(x \le x \cap y \le y)$ zweier Zufallsvariablen x, y gibt die Wahrscheinlichkeit P an, mit welcher der Funktionswert von x kleiner oder gleich x ist und der Funktionswert von y kleiner oder gleich y ist
- Alternativ: Verbundwahrscheinlichkeitsdichte

Wahrscheinlichkeitsdichte

Definition: Verbundwahrscheinlichkeitsdichte
 Die Verbundwahrscheinlichkeitsdichte oder gemeinsame
 Wahrscheinlichkeitsdichte zweier Zufallsvariablen x, y ist

$$f_{xy}(x,y) = \frac{\partial^2 F_{xy}(x,y)}{\partial x \, \partial y}$$

- $F_{xy}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{xy}(u,v) \, du \, dv$
- Falls keine Verwechslungsgefahr besteht: Indices weglassen: $f_{xy}(x,y) = f(x,y), F_{xy}(x,y) = F(x,y)$

Wahrscheinlichkeitsdichte

- Marginalisierung: Bestimmung einer sog. Randdichte aus einer Verbundwahrscheinlichkeitsdichte durch Integration
- Definition: Randdichte Ist die Verbundwahrscheinlichkeitsdichte $f_{xy}(x,y)$ zweier Zufallsvariablen x,y gegeben, so werden die Randdichten der einzelnen Zufallsvariablen durch Marginalisierung erhalten:

$$f_{\mathbf{x}}(x) = \int_{-\infty}^{\infty} f_{\mathbf{x}\mathbf{y}}(x, y) \, \mathrm{d}y$$
 bzw. $f_{\mathbf{y}}(y) = \int_{-\infty}^{\infty} f_{\mathbf{x}\mathbf{y}}(x, y) \, \mathrm{d}x$

 Umkehrung (d. h. Bestimmung der Verbundwahrscheinlichkeitsdichte aus den Randdichten) ist nur möglich, wenn x und y "stochastisch unabhängig" sind

Wahrscheinlichkeitsdichte

- Definition: Stochastische Unabhängigkeit Zwei Zufallsvariablen x, y heißen stochastisch unabhängig, wenn $F_{xy}(x,y) = F_{x}(x) \cdot F_{y}(y)$ bzw. $f_{xy}(x,y) = f_{x}(x) \cdot f_{y}(y)$
- Stochastische Unabhängigkeit lässt sich empirisch höchstens näherungsweise nachweisen
- Bei Modellierung von Messsystemen meist (annähernde) Annahme der stochastischen Unabhängigkeit der beteiligten Größen, Vorteil: vereinfachte Modellierung und Analyse

Wahrscheinlichkeitsdichte

Definition: Bedingte Wahrscheinlichkeitsdichte
 Die bedingte Wahrscheinlichkeitsdichte

$$f_{x|y}(x|y) = \frac{f_{xy}(x,y)}{f_{y}(y)}$$

ist die Wahrscheinlichkeit der Zufallsvariablen x unter der Bedingung, dass das Ereignis y = y aufgetreten ist.

■ Falls x und y stochastisch unabhängig sind, hängt das Auftreten von x = x nicht von der Bedingung y = y ab. Dann gilt:

$$f_{x|y}(x|y) = \frac{f_{xy}(x,y)}{f_{y}(y)} = \frac{f_{x}(x) \cdot f_{y}(y)}{f_{y}(y)} = f_{x}(x)$$

Wahrscheinlichkeitsdichte

Bayes-Theorem

aus der bedingten Wahrscheinlichkeitsdichte $f_{x|y}(x|y) = \frac{f_{xy}(x,y)}{f_y(y)}$:

$$f_{xy}(x,y) = f_{x|y}(x|y) \cdot f_{y}(y) = f_{y|x}(y|x) \cdot f_{x}(x)$$

d. h. Zusammenhang zwischen den bedingten Wahrscheinlichkeiten $f_{x|y}(x|y)$ und $f_{y|x}(y|x)$, z. B.

$$f_{\mathbf{x}|\mathbf{y}}(\mathbf{x}|\mathbf{y}) = \frac{f_{\mathbf{y}|\mathbf{x}}(\mathbf{y}|\mathbf{x}) \cdot f_{\mathbf{x}}(\mathbf{x})}{f_{\mathbf{y}}(\mathbf{y})}$$

siehe z. B. Vorlesung Informationsfusion

Wahrscheinlichkeitsdichte

• Summe stochastisch unabhängiger Zufallsvariablen Werden zwei stochastisch unabhängige Zufallsvariablen x und y addiert mit z = x + y, so erhält man die Wahrscheinlichkeitsdichtefunktion $f_z(z)$ der resultierenden Zufallsgröße z durch Faltung:

$$f_{\mathbf{z}}(z) = f_{\mathbf{x}}(z) * f_{\mathbf{y}}(z)$$

- Beweis:
 - X und y sind unabhängig: $f_{xy}(x, y) = f_x(x) \cdot f_y(y)$
 - Dichte $f_z(z)$ erhält man durch Verschiebung der Dichte $f_x(x)$ um y, daher ist die bedingte Wahrscheinlichkeitsdichte der Summe bei gegebenem y: $f_{z|y}(z|y) = f_x(z-y)$
 - Daraus folgt:

$$f_{zy}(z,y) = f_{z|y}(z|y) \cdot f_{y}(y) = f_{x}(z-y) \cdot f_{y}(y)$$

Marginalisierung:

$$f_z(z) = \int_{-\infty}^{\infty} f_{zy}(z, y) \, dy = \int_{-\infty}^{\infty} f_{x}(z - y) \cdot f_{y}(y) \, dy = f_{x}(z) * f_{y}(z)$$

Wahrscheinlichkeitsdichten abgebildeter Größen

- Abbildung von Zufallsvariablen: $x \rightarrow g(x)$
- Wahrscheinlichkeitsdichten transformierter Variablen Wird eine Zufallsvariable x mit der Dichte $f_x(x)$ durch eine Funktion y = g(x) in eine neue Zufallsvariable transformiert, und existiert eine Umkehrfunktion mit n Lösungen $x_i = g^{-1}(y)$, $i \in \{1, ..., n\}$, so gilt für

$$f_{\mathbf{y}}(y) = \sum_{i=1}^{n} f_{\mathbf{x}}(x_i) \left| \frac{\mathrm{d}g(\mathbf{x})}{\mathrm{d}x} \right|_{\mathbf{x}=x_i}^{-1}$$

die Wahrscheinlichkeitsdichte von y:

Wahrscheinlichkeitsdichten abgebildeter Größen

- Veranschaulichung:
 - Wahrscheinlichkeit im Intervall $y \le y \le y + dy$: $f_y(y) dy = f_x(x_1)|dx_1|$ $+f_x(x_2)|dx_2|+\cdots$
 - $g'(x_i) = \frac{dy}{dx_i}$ $\Rightarrow dx_i = \frac{dy}{g'(x_i)}$
 - Daraus folgt:

$$f_{y}(y) dy = f_{x}(x_{1}) \left| \frac{dy}{g'(x_{1})} \right|$$

$$+ f_{x}(x_{2}) \left| \frac{dy}{g'(x_{1})} \right| + \cdots$$

$$\Rightarrow f_{y}(y) = f_{x}(x_{1}) \left| \frac{1}{g'(x_{1})} \right| + f_{x}(x_{2}) \left| \frac{1}{g'(x_{1})} \right| + \cdots$$

Momente der Statistik 1. Ordnung

- Bisher: Beschreibung von Zufallsvariablen x mittels Wahrscheinlichkeitsverteilung $F_{x}(x)$ bzw. Dichtefunktion $f_{x}(x)$
- Kompaktere Beschreibung anhand von Kenngrößen (z. B. Mittelwert, Varianz)
- Definition über den Erwartungswert
- Dazu Definition: **Statistik** n-ter Ordnung Werden bei einer statistischen Betrachtung n Zufallsvariablen $x_1, ..., x_n$ berücksichtigt, so spricht man von einer Statistik n-ter Ordnung. Diese wird durch die Verbundwahrscheinlichkeitsdichte $f_{x_1,...,x_n}(x_1,...,x_n)$ vollständig beschrieben.

Momente der Statistik 1. Ordnung

• Definition **Erwartungswert** Der Erwartungswert einer Funktion g(x) einer Zufallsvariablen x mit der Dichte $f_x(x)$ ist definiert durch:

$$E\{g(x)\} = \int_{-\infty}^{\infty} g(x) \cdot f_{x}(x) dx$$

Erwartungswert ist linearer Operator:

$$E\{a \cdot g(x)\} = a \cdot E\{g(x)\}\$$

 $E\{g(x) + h(x)\} = E\{g(x)\} + E\{h(x)\}\$

Momente der Statistik 1. Ordnung

- Erwartungswert, wenn für g(x) Potenzen x^m eingesetzt werden: Momente
- Definition: Moment
 Das m-te Moment einer Zufallsvariablen x ist definiert zu:

$$\mu_{\mathbf{x},m} = \mathbf{E}\{\mathbf{x}^m\} = \int_{-\infty}^{\infty} x^m \cdot f_{\mathbf{x}}(x) \, \mathrm{d}x$$

- Erstes Moment $\mu_{x,1} = \mu_x = E\{x\} = \int_{-\infty}^{\infty} x \cdot f_x(x) \, dx$ ist der Mittelwert oder Schwerpunkt von x Lageparameter: beschreibt, wo sich die Zufallsgröße im Mittel befindet
- Nicht verwechseln: Ordnung n einer Statistik und Ordnung m eines Moments

Momente der Statistik 1. Ordnung

Definition: Zentrales Moment
 Das m-te zentrale Moment einer Zufallsvariablen x ist definiert zu:

$$E\{(x - E\{x\})^m\} = \int_{-\infty}^{\infty} (x - E\{x\})^m \cdot f_x(x) dx$$

- Zweites zentrales Moment: Varianz $\sigma_{\rm x}^2$
- Wurzel der Varianz σ_x : Standardabweichung Streuungsparameter: beschreibt die Breite der Dichtefunktion

Momente der Statistik 1. Ordnung

- Höhere Momente:
 - Schiefe:

$$\varrho_{\mathbf{x}} = \frac{\mathbf{E}\{(\mathbf{x} - \mathbf{E}\{\mathbf{x}\})^3\}}{\sigma_{\mathbf{x}}^3}$$

Maß für die Asymmetrie einer Verteilung

 $\varrho_{\rm x}$ < 0: linksschief (rechtssteil)

 $\varrho_{\rm x} > 0$: rechtsschief (linkssteil)

Für symmetrische Verteilungen: $\varrho_{\rm x}=0$, Verteilungen mit $\varrho_{\rm x}=0$ müssen aber nicht symmetrisch sein

Momente der Statistik 1. Ordnung

- Höhere Momente:
 - Exzess:

$$\varepsilon_{\mathbf{x}} = \frac{\mathbf{E}\{(\mathbf{x} - \mathbf{E}\{\mathbf{x}\})^4\}}{\sigma_{\mathbf{x}}^4} - 3$$

Maß für die Abweichung einer unimodalen (d. h. eingipfligen) Verteilung von der Normalverteilung

Für Normalverteilung: $\varepsilon_{\rm x}=0$

 $\varepsilon_{\rm x}$ < 0: flachgipflig (platykurtisch)

 $\varepsilon_{\rm x} > 0$: steilgipflig (leptokurtisch)

Momente der Statistik 2. Ordnung

- Statistik zweiter Ordnung: zwei Zufallsvariablen werden betrachtet
- Definition: Gemeinsames Moment
 Das gemeinsame Moment zweier Zufallsvariablen ist definiert zu

$$\mu_{xy,km} = \mathrm{E}\{x^k y^m\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^k y^m f_{xy}(x, y) \, \mathrm{d}x \, \mathrm{d}y,$$

wobei die Summe k+m die Ordnung des Moments bezeichnet.

Momente der Statistik 2. Ordnung

- Anwendung meist als einfaches Produkt $E\{xy\}$, d. h. k=m=1 und als zentrales Moment, d. h. zentrales Moment zweiter Ordnung:
- Definition: Kovarianz
 Die Kovarianz zweier Zufallsvariablen ist definiert zu

$$C_{xy} = E\{(x - \mu_x)(y - \mu_y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x)(y - \mu_y) f_{xy}(x, y) dx dy$$

 Bedeutung der Kovarianz: Aussage über die lineare stochastische Abhängigkeit (die Korrelation)

Momente der Statistik 2. Ordnung

- Definition: **Unkorrelierte Größen**Zwei Zufallsvariablen x und y sind unkorreliert, wenn für sie gilt: $E\{xy\} = E\{x\} \cdot E\{y\}$ bzw. $C_{xy} = 0$, beide Aussagen sind äquivalent
- Für unkorrelierte Zufallsvariablen x_i und x_j gilt also:

$$C_{\mathbf{x}_{i}\mathbf{x}_{j}} = \sigma_{\mathbf{x}}^{2} \delta_{i}^{j} = \begin{cases} 0 & \text{für } i \neq j \\ \sigma_{\mathbf{x}}^{2} & \text{für } i = j \end{cases}$$

- Aus stochastischer Unabhängigkeit folgt die Unkorreliertheit
- Die Umkehrung gilt nur, falls beide Zufallsvariablen normalverteilt sind, da hier die höheren Momente der Statistik 1. Ordnung nur vom ersten und zweiten Moment abhängen (siehe Kap. 4.3); d. h. im allgemeinen können zwei Zufallsvariablen unkorreliert, aber trotzdem stochastisch abhängig sein

Momente der Statistik 2. Ordnung

- Beispiel: Unkorreliertheit bei stochastischer Abhängigkeit
 - Zwei Zufallsvariablen x und y, deren Verbundwahrscheinlichkeitsdichte $f_{xy}(x,y)$ aus der Addition von vier gleichen unimodalen Verteilungen mit verschiedenen Mittelwerten zusammengesetzt ist
 - x und y sind stochastisch abhängig, da sich $f_{xy}(x, y)$ nicht als Produkt der Randdichten $f_x(x)$ und $f_y(y)$ darstellen lässt: $f_{xy}(x, y) \neq f_x(x) \cdot f_y(y)$
 - Es gilt aber: $C_{xy} = E\{(x \mu_x)(y \mu_y)\} = E\{xy\} = 0$

Links: Verbunddichte

Rechts: Produkt der Randdichten

 $f_{\mathbf{x}}(x)$ $f_{\mathbf{xy}}(x,y)$ x

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Korrelationskoeffizient

- Kovarianz Cxy sagt zwar etwas über die lineare Abhängigkeit stochastischer Größen aus, ist aber nicht invariant gegenüber (multiplikativen) Skalierungen der Größen
- Daher Einführung des Korrelationskoeffizienten als Maß für die stochastische Abhängigkeit von Zufallsgrößen
- Definition: Korrelationskoeffizient Der Korrelationskoeffizient ρ_{xy} zwischen den Größen x und y ist definiert zu

$$\rho_{xy} = \frac{C_{xy}}{\sigma_{x}\sigma_{y}} = \frac{E\{(x - \mu_{x})(y - \mu_{y})\}}{\sqrt{E\{(x - \mu_{x})^{2}\}E\{(y - \mu_{y})^{2}\}}}$$

Der Wertebereich ist $-1 \le \rho_{xy} \le 1$

- Funktion zwischen x und y (z. B. y = 2x, starre Bindung): $\rho_{xy} = \pm 1$
- Unkorrelierte Größen: $\rho_{xy} = 0$

Korrelationskoeffizient

- Beweis für den Wertebereich $-1 \le \rho_{xy} \le 1$:
 - Zufallsgrößen x und y werden jetzt als verallgemeinerte Vektoren in einem unitären Raum interpretiert
 - In unitären Räumen sind definiert:
 - Innenprodukt: $\langle x, y \rangle = E\{(x \mu_x)(y \mu_y)\}$ (Kovarianz)
 - Norm: $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{E\{(x \mu_x)^2\}}$ (Standardabweichung)
 - Schwarz'sche Ungleichung: $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
 - Abschätzung der Kovarianzfunktion:

$$\left| E\{(x - \mu_x)(y - \mu_y)\} \right| \le \sqrt{E\{(x - \mu_x)^2\}} \sqrt{E\{(y - \mu_y)^2\}}$$
$$\left| C_{xy} \right| \le \sigma_x \cdot \sigma_y$$

Daraus folgt für den Korrelationskoeffizienten:

$$\left| \rho_{\rm xy} \right| = \frac{\left| C_{\rm xy} \right|}{\sigma_{\rm x} \cdot \sigma_{\rm y}} \le 1$$

Korrelationskoeffizient

- Beweis für den Wertebereich $-1 \le \rho_{xy} \le 1$:
 - 1. Fall: starre lineare Bindung zwischen den Größen:

$$y = k\mathbf{x} + a, \quad k, a \in \mathbb{R}$$

$$\rho_{\mathbf{x}\mathbf{y}} = \frac{C_{\mathbf{x}\mathbf{y}}}{\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}} = \frac{\mathbf{E}\{(\mathbf{x} - \mu_{\mathbf{x}}) \cdot k \cdot (\mathbf{x} - \mu_{\mathbf{x}})\}}{\sqrt{\mathbf{E}\{(\mathbf{x} - \mu_{\mathbf{x}})^2\} \cdot k^2 \cdot \mathbf{E}\{(\mathbf{x} - \mu_{\mathbf{x}})^2\}}} = \pm 1$$
Kovarianz: $C_{\mathbf{x}\mathbf{y}} = \sigma_{\mathbf{x}}\sigma_{\mathbf{y}}$

• 2. Fall: unkorrelierte oder stochastisch unabhängige Größen:

$$C_{xy} = 0 \Rightarrow \rho_{xy} = 0$$

Korrelationskoeffizient

- Beispiel: Korrelation von Messwerten
 - Messwertreihe von n = 12 Wertepaaren x_i , y_i , die Realisierungen der Zufallsvariablen x und y sind:

x_i	0,8	1,3	2,1	2,8	3,4	4,9	5,5	6,6	7,2	8,1	9,4	9,6
y_i	0,3	0,75	1,15	1,2	1,8	2,35	2,65	3,5	3,5	4,15	4,6	4,9

•
$$\hat{\mu}_{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} = 5,14,$$
 $\hat{\mu}_{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i} = 2,57$

Schätzung der Kovarianz durch Stichprobenkovarianz:

$$C_{xy} \approx \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu}_x) (y_i - \hat{\mu}_y) = 4.8$$

Schätzung der Standardabweichungen (siehe Kap. 4.2):

$$\sigma_{\rm X} \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu}_{\rm X})^2} = 3.08, \quad \sigma_{\rm y} \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \hat{\mu}_{\rm y})^2} = 1.56$$

- Schätzung des Korrelationskoeffizienten: $\rho_{xy} = \frac{c_{xy}}{\sigma_x \sigma_y} \approx 0,997$
- D. h. starke Abhängigkeit der Wertepaare, siehe Diagramm

Korrelationskoeffizient

Beispiel: Korrelation von Messwerten

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

4.1 Grundlagen der Wahrscheinlichkeitstheorie

Korrelationskoeffizient

- Korrelationskoeffizient ρ_{xy} sagt nur etwas über die lineare stochastische Abhängigkeit aus, d. h. über das gemeinsame Auftreten von Werten; daraus kann aber kein kausaler Zusammenhang abgeleitet werden
- Beispiel: Korrelation und kausaler Zusammenhang
 - Zwischen Anzahl x der Geburten pro Monat und der Zahl y der Störche im gleichen Monat bestehe über das ganze Jahr eine stochastische Abhängigkeit, z. B. $0.5 \le \rho_{xy} \le 1$
 - Daraus darf aber nicht der kausale Zusammenhang geschlossen werden, das die Störche die Ursache für die Geburten seien

4.1 Grundlagen der Wahrscheinlichkeitstheorie

Charakteristische Funktion

• Definition: Charakteristische Funktion Die charakteristische Funktion $\Phi_{\mathbf{x}}(f)$ einer Zufallsvariablen \mathbf{x} ist definiert durch den Erwartungswert

$$\Phi_{\mathbf{x}}(f) = \mathbf{E}\{\mathbf{e}^{\mathbf{j}2\pi f\mathbf{x}}\} = \int_{-\infty}^{\infty} f_{\mathbf{x}}(x) \, \mathbf{e}^{\mathbf{j}2\pi fx} \, \mathrm{d}x = \mathcal{F}^{-1}\{f_{\mathbf{x}}(x)\}$$

- Entspricht also der inversen Fourier-Transformierten der Wahrscheinlichkeitsdichte $f_{\rm x}(x)$
- $f_x(x)$ ist reell, daher kann diese Definition auch als komplex konjugierte Fourier-Transformierte von $f_x(x)$ aufgefasst werden, d. h. f kann als die mit x korrespondierende Frequenz interpretiert werden
- Daher gilt auch $|\Phi_{\mathbf{X}}(f)| = |\mathcal{F}\{f_{\mathbf{X}}(x)\}|$
- Wegen Normierung und Nichtnegativität eines Wahrscheinlichkeitsmaßes: $\Phi_{\mathbf{x}}(0) = 1, |\Phi_{\mathbf{x}}(f)| \leq 1$

4.1 Grundlagen der Wahrscheinlichkeitstheorie

Charakteristische Funktion

- Zwei wesentliche Anwendungen von charakteristischen Funktionen:
 - Berechnung von Momenten:
 - *m*-te Ableitung der charakteristischen Funktion:

$$\frac{\mathrm{d}^m \Phi_{\mathbf{x}}(f)}{\mathrm{d} f^m} = \int_{-\infty}^{\infty} (\mathrm{j} 2\pi \mathrm{x})^m \cdot f_{\mathbf{x}}(x) \, \mathrm{e}^{\mathrm{j} 2\pi f x} \, \mathrm{d} x$$

• m-tes Moment der Zufallsvariablen x erhält man für f = 0:

$$\mu_{x,m} = E\{x^m\} = \int_{-\infty}^{\infty} x^m \cdot f_x(x) dx = \frac{1}{(j2\pi)^m} \frac{d^m \Phi_x(f)}{df^m} \bigg|_{f=0}$$

- Addition von Zufallsvariablen:
 - Dichte $f_{\mathbf{x}}(x)$ der Summe $\mathbf{x} = \sum_{i=1}^{n} \mathbf{x}_{i}$ erhält man durch Faltung $f_{\mathbf{x}}(x) = f_{\mathbf{x}_{1}}(x) * \cdots * f_{\mathbf{x}_{n}}(x)$
 - Faltung entspricht Multiplikation im Frequenzbereich, daher charakteristische Funktion der Summe:

$$\Phi_{\mathbf{x}}(f) = \mathbf{E}\{\mathbf{e}^{\mathbf{j}2\pi f \sum_{i=1}^{n} \mathbf{x}_{i}}\} = \mathbf{E}\{\mathbf{e}^{\mathbf{j}2\pi f \mathbf{x}_{1}}\} \cdot \dots \cdot \mathbf{E}\{\mathbf{e}^{\mathbf{j}2\pi f \mathbf{x}_{n}}\} = \prod_{i=1}^{n} \Phi_{\mathbf{x}_{i}}(f)$$

- In der Praxis: Größen der Wahrscheinlichkeitstheorie sind meist nicht bekannt, z. B. Wahrscheinlichkeitsdichte $f_{\rm x}(x)$, Mittelwert $\mu_{\rm x}$, Varianz $\sigma_{\rm x}^2$
- Größen müssen daher aus Stichproben geschätzt werden
- Stichprobe: Zufallsexperiment, bei dem n Messwerte x_i , $i = \{1, ..., n\}$ aus einer Grundgesamtheit zur Analyse verwendet werden
- Aus den x_i wird versucht, Schätzwerte für die zugrundeliegende Wahrscheinlichkeitsdichte, Mittelwert und Varianz zu ermitteln

Häufigkeitsverteilung und Histogramm

- Schätzung der Wahrscheinlichkeitsdichte $f_x(x)$ einer Messgröße x aus einer repräsentativen Stichprobe
- Ergebnis der Schätzung: empirische Häufigkeitsverteilung, angegeben in Tabellen oder grafisch als Histogramm
- Dazu Sortierung der Elemente x_i der Stichprobe in Größen-klassen ν der Breite Δx:
 ν · Δx ≤ x_i ≤ (ν + 1) · Δx,

d. h. von den n Stichprobenelementen werden diejenigen n_{ν} der Klasse ν zugeordnet, deren Werte in diesem Intervall liegen

- Relative Häufigkeit der Messwerte der Klasse: $\frac{n_{\nu}}{n}$
- Häufigkeitsverteilung: $h_{\nu} = \frac{n_{\nu}}{n \cdot \Delta x}$, unabhängig von der Klassenbreite

Häufigkeitsverteilung und Histogramm

- Gesamtzahl aller Messwerte: $n = \sum_{\nu=1}^{m} n_{\nu}$
- Wahl des in Klassen eingeteilten Bereichs: Bereich sollte alle Messwerte umfassen
- Wahl der Klassenbreite Δx:
 Polygonzug durch die Klassenmitten sollte "glatt" sein
- Für normalverteilte Zufallsgrößen: optimale Wahl der Klassenbreite im Sinne des mittleren quadratischen Fehlers:

$$\Delta x = \frac{3,49 \text{ s}_{x}}{\sqrt[3]{n}}$$

mit s_x: Standardabweichung der Stichprobe

Fläche A zwischen Kurve und Abszisse:

$$A = \sum_{\nu=1}^{m} h_{\nu} \Delta x = \sum_{\nu=1}^{m} \frac{n_{\nu}}{n \cdot \Delta x} \Delta x = \frac{1}{n} \sum_{\nu=1}^{m} n_{\nu} = \frac{1}{n} \cdot n = 1$$

- Bei konstantem Signal: alle Messwerte der Stichprobe fallen in eine Klasse
- Bei zunehmenden Schwankungen der Messwerte: Histogramm wird breiter und flacher,
 - d. h. Breite des Histogramms ist Maß für die Streubreite

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Parameterschätzung

- Parameter einer Wahrscheinlichkeitsverteilung: Momente
- Ist die Wahrscheinlichkeitsverteilung nicht bekannt, müssen diese Parameter aus einer (begrenzten) Stichprobe geschätzt werden
- Beispiel: Schätzung des wahren Mittelwerts und der wahren Varianz der Verteilung mittels des Stichprobenmittelwerts bzw. der Stichprobenvarianz
- Bewertung von Schätzfunktionen (Schätzern): Wie gut ist die Schätzung?
- Bewertung anhand Kriterien: Erwartungstreue, Konsistenz, Effizienz
- Im Folgenden: zu schätzende Größe sei deterministisch und konstant
- Bezeichnung von Schätzern: meist mit "Dach": x̂

Parameterschätzung

- Definition: **Erwartungstreue** Ein Schätzer \hat{x} heißt erwartungstreu, wenn bei wiederholten Stichproben der wahre Wert x_w im Mittel richtig geschätzt wird: $E\{\hat{x}\} = x_w$
- Die Differenz zwischen dem Erwartungswert $E\{\hat{x}\}$ des Schätzers und dem wahren Wert x_w ist der systematische Fehler (engl. *bias*)
- Erwartungstreue Schätzer haben daher keinen systematischen Fehler

Parameterschätzung

Definition: Konsistenz

Ein Schätzer \hat{x} heißt konsistent, wenn mit wachsendem Stichprobenumfang n die Schätzung genauer wird und im Grenzübergang der wahre Wert x_w mit Sicherheit ermittelt wird:

$$\lim_{n\to\infty} \hat{\mathbf{x}} = x_{\mathbf{w}}$$

Damit geht die Varianz des Schätzers gegen null:

$$\lim_{n\to\infty}\sigma_{\hat{\mathbf{x}}}^2=0$$

Definition: Effizienz

Ein Schätzer \hat{x} heißt effizient (auch: wirksam), wenn er aus allen erwartungstreuen Schätzern die kleinste Varianz besitzt

Stichprobenmittelwert

- Zur Schätzung des wahren Mittelwerts μ_x bei unbekannter Wahrscheinlichkeitsdichte $f_x(x)$
- Definition: **Stichprobenmittelwert**Der Stichprobenmittelwert aus n Werten x_i , $i \in \{1, ..., n\}$ ist $\hat{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Der Stichprobenmittelwert \hat{x} ist ein Schätzwert des wahren Mittelwerts μ_x und somit selbst eine stochastische Größe.

Stichprobenmittelwert

Prüfung des Stichprobenmittelwerts auf Erwartungstreue:

•
$$E\{\hat{\mathbf{x}}\} = E\left\{\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\right\} = \frac{1}{n}\sum_{i=1}^{n}\underbrace{E\{\mathbf{x}_{i}\}}_{=\mu_{\mathbf{x}}} = \frac{1}{n}n\;\mu_{\mathbf{x}} = \mu_{\mathbf{x}},$$

d. h. die Schätzung \hat{x} von μ_x ist erwartungstreu

Prüfung des Stichprobenmittelwerts auf Konsistenz:

$$\sigma_{\hat{\mathbf{x}}}^{2} = \mathbf{E}\{(\hat{\mathbf{x}} - \mu_{\mathbf{x}})^{2}\}\$$

$$= \mathbf{E}\left\{\left[\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\right) - \mu_{\mathbf{x}}\right]^{2}\right\} = \mathbf{E}\left\{\left[\frac{1}{n}\sum_{i=1}^{n}(\mathbf{x}_{i} - \mu_{\mathbf{x}})\right]^{2}\right\}$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{i=1}^{n}\mathbf{E}\{(\mathbf{x}_{i} - \mu_{\mathbf{x}})(\mathbf{x}_{j} - \mu_{\mathbf{x}})\} = \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{i=1}^{n}C_{\mathbf{x}_{i}\mathbf{x}_{j}}$$

Stichprobenmittelwert

- Prüfung des Stichprobenmittelwerts auf Konsistenz:
 - $\sigma_{\hat{\mathbf{x}}}^2 = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n C_{\mathbf{x}_i \mathbf{x}_j}$
 - Unterscheidung:
 - Starre Bindung zwischen x_i und x_j : Für gleiche Varianzen von x_i und x_j gilt (s. o.):

$$C_{\mathbf{x}_i \mathbf{x}_j} = \sigma_{\mathbf{x}_i} \sigma_{\mathbf{x}_j} = \sigma_{\mathbf{x}}^2$$

Damit wird
$$\sigma_{\hat{X}}^2 = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n C_{X_i X_j} = \frac{1}{n^2} n^2 \sigma_X^2 = \sigma_X^2$$

Hier ist die Varianz des Stichprobenmittelwerts gleich der Varianz der Messwerte, mehrere Messwerte erhalten folglich nicht mehr Information als ein einziger Messwert:

Die Schätzung ist in diesem Fall nicht konsistent

Stichprobenmittelwert

- Prüfung des Stichprobenmittelwerts auf Konsistenz:
 - $\sigma_{\hat{\mathbf{x}}}^2 = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n C_{\mathbf{x}_i \mathbf{x}_j}$
 - Unterscheidung:
 - Stochastisch unabhängige Messwerte x_i und x_j für $i \neq j$:

$$C_{\mathbf{x}_i \mathbf{x}_j} = \sigma_{\mathbf{x}}^2 \delta_i^j$$

Damit wird

$$\sigma_{\hat{\mathbf{x}}}^2 = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n C_{\mathbf{x}_i \mathbf{x}_j} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \sigma_{\mathbf{x}}^2 \delta_i^j = \frac{1}{n^2} \sum_{i=1}^n \sigma_{\mathbf{x}}^2 = \frac{\sigma_{\mathbf{x}}^2}{n}$$

Hier nimmt die Varianz des Stichprobenmittelwerts mit wachsendem Stichprobenumfang n ab und geht gegen null, der Stichprobenmittelwert \hat{x} strebt dann gegen den wahren Mittelwert μ_x :

- Die Schätzung ist in diesem Fall konsistent
- Die Abnahme der Standardabweichung eines Schätzers mit $\frac{1}{\sqrt{n}}$ ist typisch für viele praktisch relevante Aufgabenstellungen

Stichprobenvarianz

- Zur Schätzung der Varianz σ_x^2 aus den Messwerten x_i und dem Stichprobenmittelwert \hat{x} bei unbekannter Wahrscheinlichkeitsdichte $f_x(x)$
- Definition: Stichprobenvarianz

Die Stichprobenvarianz $s_x^2 = \sigma_{\hat{x}}^2$ aus n Werten x_i , $i \in \{1, ..., n\}$ ist

$$s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \hat{x})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\hat{x} + \hat{x}^{2})$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2} - 2\hat{x} \frac{1}{n-1} \sum_{i=1}^{n} x_{i} + \frac{1}{n-1} n\hat{x}^{2}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2} - \frac{n}{n-1} \hat{x}^{2}$$

Ihre Wurzel s_x ist die Standardabweichung der Stichprobe Die Stichprobenvarianz s_x^2 ist ein Schätzwert für die wahre Varianz σ_x^2 und somit selbst eine stochastische Größe.

Stichprobenvarianz

Erwartungswert der Stichprobenvarianz:

$$\begin{aligned} \mathbf{E}\{\mathbf{s}_{\mathbf{x}}^{2}\} &= \mathbf{E}\left\{\frac{1}{n-1}\sum_{i=1}^{n}(\mathbf{x}_{i}-\hat{\mathbf{x}})^{2}\right\} \\ &= \frac{1}{n-1}\mathbf{E}\left\{\sum_{i=1}^{n}\left((\mathbf{x}_{i}-\mu_{\mathbf{x}})-(\hat{\mathbf{x}}-\mu_{\mathbf{x}})\right)^{2}\right\} \\ &= \frac{1}{n-1}\mathbf{E}\left\{\sum_{i=1}^{n}(\mathbf{x}_{i}-\mu_{\mathbf{x}})^{2}-2\sum_{i=1}^{n}(\mathbf{x}_{i}-\mu_{\mathbf{x}})(\hat{\mathbf{x}}-\mu_{\mathbf{x}})+n(\hat{\mathbf{x}}-\mu_{\mathbf{x}})^{2}\right\} \end{aligned}$$

• Mit $\sum_{i=1}^{n} (x_i - \mu_x) = n(\hat{x} - \mu_x)$:

$$E\{s_{x}^{2}\} = \frac{1}{n-1} \left[E\{\sum_{i=1}^{n} (x_{i} - \mu_{x})^{2}\} - 2n E\{(\hat{x} - \mu_{x})^{2}\} + n E\{(\hat{x} - \mu_{x})^{2}\} \right] = \sigma_{\hat{x}}^{2} = \sigma_{\hat{x}}^{2} = \sigma_{\hat{x}}^{2}$$

$$=\frac{1}{n-1}\left(\sigma_{\mathbf{x}}^2-\sigma_{\hat{\mathbf{x}}}^2\right)$$

Stichprobenvarianz

Erwartungswert der Stichprobenvarianz:

$$E\{s_x^2\} = \frac{1}{n-1} (\sigma_x^2 - \sigma_{\hat{x}}^2)$$

- Unterscheidung:
 - Starre Bindung zwischen x_i und x_j :

$$\sigma_{\hat{\mathbf{x}}}^2 = \sigma_{\mathbf{x}}^2$$
 (s. o.), damit $\mathrm{E}\{\mathbf{s}_{\mathbf{x}}^2\} = 0$

Ursache: Stichprobenmittelwert \hat{x} besitzt die gleiche Varianz wie die Messwerte selbst

Hier ist die Stichprobenvarianz als Schätzung für die wahre Varianz also unbrauchbar

Stichprobenvarianz

Erwartungswert der Stichprobenvarianz:

$$E\{s_{x}^{2}\} = \frac{1}{n-1} (\sigma_{x}^{2} - \sigma_{\hat{x}}^{2})$$

- Unterscheidung:
 - Stochastisch unabhängige Messwerte x_i und x_j für $i \neq j$:

$$\sigma_{\hat{\mathbf{x}}}^2 = \frac{\sigma_{\mathbf{x}}^2}{n}$$
 (s. o.), damit

$$E\{s_x^2\} = \frac{1}{n-1}\sigma_x^2\left(1 - \frac{1}{n}\right) = \sigma_x^2$$

Hier ist die Stichprobenvarianz s_x^2 also eine erwartungstreue Schätzung für die Varianz σ_x^2 der Verteilung

Stichprobenvarianz

- Erwartungstreue Schätzung erhält man also mit den Vorfaktor $\frac{1}{n-1}$ (anstelle von $\frac{1}{n}$ wie beim Stichprobenmittelwert)
- Bei Einzelmessungen (n = 1): Stichprobenvarianz ist daher nicht ermittelbar (aber auch nicht sinnvoll)
- Bei Messung abhängiger Werte (d. h. zwischen starrer Bindung und stochastischer Unabhängigkeit): Stichprobenvarianz s_x^2 ist kleiner oder gleich der Varianz σ_x^2 der Verteilung

Stichprobenvarianz

- Beispiel: Abweichung der Stichprobenvarianz
 - Im Prüffeld: Messgerät zeige sehr geringe Stichprobenvarianz
 - Im Einsatz: deutlich höhere Stichprobenvarianz
 - Dies ist ein Indiz für einen stochastischen Fehler, der nur im Einsatz und nicht im Prüffeld auftritt
 - Messwerte im Prüffeld sind dann weniger voneinander unabhängig als im Einsatz
 - Daher wird die Varianz der Messwerte σ_x^2 im Einsatz durch die Stichprobenvarianz s_x^2 im Prüffeld zu klein geschätzt

Schätzung höherer Momente

■ Erwartungstreue Schätzung der Schiefe $\varrho_{x} = \frac{E\{(x-E\{x\})^{3}\}}{\sigma_{x}^{3}}$ (Maß für die Asymmetrie der Messwerteverteilung, wird bei symmetrischen Verteilungen null, s. o.):

$$\hat{\varrho}_{x} = \frac{1}{s_{x}^{3}} \cdot \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} (x_{i} - \hat{x})^{3}$$

• Erwartungstreue Schätzung des Exzesses $\varepsilon_{\rm x} = \frac{{\rm E}\{({\rm x-E}\{{\rm x}\})^4\}}{\sigma_{\rm x}^4} - 3$ (Maß für die Wölbung der Messwerteverteilung bzw. Abweichung von der Normalverteilung, wird für Normalverteilungen null, s. o.):

$$\hat{\varepsilon}_{X} = \frac{1}{s_{X}^{4}} \cdot \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{n} (x_{i} - \hat{x})^{4} - \frac{3(n-1)^{2}}{(n-2)(n-3)}$$

Numerische Berechnung von Mittelwert und Varianz

- Bei numerischen Berechnungen oft vorteilhaft: Verwendung von Abweichungen Δx_i anstelle großer Zahlen x_i : $\Delta x_i = x_i x_0$
- Damit Stichprobenmittelwert:

$$\hat{\mathbf{x}} = x_0 + \frac{1}{n} \sum_{i=1}^n \Delta \mathbf{x}_i \quad \Rightarrow \quad \Delta \hat{\mathbf{x}} = \hat{\mathbf{x}} - x_0 = \frac{1}{n} \sum_{i=1}^n \Delta \mathbf{x}_i$$

Numerische Berechnung von Mittelwert und Varianz

Stichprobenvarianz:

$$s_{\mathbf{x}}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\mathbf{x}})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_{i}^{2} - 2\mathbf{x}_{i}\hat{\mathbf{x}} + \hat{\mathbf{x}}^{2})$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} \mathbf{x}_{i}^{2} - n \,\hat{\mathbf{x}}^{2} \right)$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} (x_{0} + \Delta \mathbf{x}_{i})^{2} - n \,(x_{0} + \Delta \hat{\mathbf{x}})^{2} \right)$$

$$= \frac{1}{n-1} \left(nx_{0}^{2} + 2x_{0} \sum_{i=1}^{n} \Delta \mathbf{x}_{i} + \sum_{i=1}^{n} (\Delta \mathbf{x}_{i})^{2} - nx_{0}^{2} - 2nx_{0}\Delta \hat{\mathbf{x}} - n(\Delta \hat{\mathbf{x}})^{2} \right)$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} (\Delta \mathbf{x}_{i})^{2} - n(\Delta \hat{\mathbf{x}})^{2} \right)$$

D. h. Stichprobenvarianz wird auf Quadratsumme der Abweichungen Δx_i und Mittelwert der Abweichungen $\Delta \hat{x}$ zurückgeführt

Gesetz der großen Zahlen

- Wahrscheinlichkeitsdichten können nur selten aus Versuchen hergeleitet werden
- Ergebnisse der Wahrscheinlichkeitsrechnung gelten eigentlich nur für Wahrscheinlichkeitsdichten streng
- Verfügbar ist aber meist das Histogramm, daraus müssen der Typ der Verteilung und die für die Verteilung wichtigen Parameter bestimmt werden
- Verbindung zwischen Wahrscheinlichkeitsrechnung zu Messergebnissen aus Stichproben erfolgt über verschiedene Grenzwertsätze, darunter das Bernoulli'sche Gesetz der großen Zahlen

Gesetz der großen Zahlen

- Zufallsvariable x mit Wahrscheinlichkeitsdichte $f_x(x)$
- Wahrscheinlichkeit für das Ereignis $|x \mu_x| \ge \varepsilon$:

$$P(|x - \mu_{x}| \ge \varepsilon) = \int_{-\infty}^{\mu_{x} - \varepsilon} f_{x}(x) dx + \int_{\mu_{x} + \varepsilon}^{\infty} f_{x}(x) dx$$

$$|x - \mu_{x}| \ge \varepsilon \implies \frac{(x - \mu_{x})^{2}}{\varepsilon^{2}} \ge 1, \text{ damit Abschätzung:}$$

$$P(|x - \mu_{x}| \ge \varepsilon) \le \int_{-\infty}^{\mu_{x} - \varepsilon} \frac{(x - \mu_{x})^{2}}{\varepsilon^{2}} f_{x}(x) dx + \int_{\mu_{x} + \varepsilon}^{\infty} \frac{(x - \mu_{x})^{2}}{\varepsilon^{2}} f_{x}(x) dx$$

$$\le \frac{1}{\varepsilon^{2}} \int_{-\infty}^{\infty} (x - \mu_{x})^{2} f_{x}(x) dx = \frac{\sigma_{x}^{2}}{\varepsilon^{2}}$$

Dies ist die Tschebyscheff'sche Ungleichung:

Für eine Zufallsvariable x mit endlicher Varianz $\sigma_{\rm x}^2$ liegen die Realisierungen x mit einer gewissen Wahrscheinlichkeit um den Erwartungswert μ_{x}

Gesetz der großen Zahlen

 Tschebyscheff'sche Ungleichung kann auch auf den Stichprobenmittelwert x als Zufallsvariable angewendet werden:

$$P(|\hat{\mathbf{x}} - \mu_{\mathbf{x}}| \ge \varepsilon) \le \frac{\sigma_{\hat{\mathbf{x}}}^2}{\varepsilon^2} = \frac{\sigma_{\mathbf{x}}^2}{n \cdot \varepsilon^2}$$

- d. h. mit größer werdendem Stichprobenumfang n strebt die Wahrscheinlichkeit $P(|\hat{\mathbf{x}} \mu_{\mathbf{x}}| \geq \varepsilon)$ gegen null, dass die Schätzung $\hat{\mathbf{x}}$ nicht mehr als ε von $\mu_{\mathbf{x}}$ abweicht,
- d. h. Versuchsergebnisse aus großen Stichproben nähern sich den Ergebnissen der Wahrscheinlichkeitsrechnung an

Gesetz der großen Zahlen

- Entsprechender Zusammenhang zwischen der Häufigkeitsverteilung einer Stichprobe h(x) und der Wahrscheinlichkeitsdichte $f_{\rm x}(x)$
- Dazu Definition von Indikatorvariablen $J_{\nu i}$ zur Beschreibung, ob ein Ereignis x_i zu einer bestimmten Klasse ν gehört:

$$J_{\nu i} = \begin{cases} 1 & \text{für } \nu \Delta x \le x_i \le (\nu + 1) \Delta x \\ 0 & \text{sonst} \end{cases}$$

- Ereignisse seien stochastisch unabhängig
- Wahrscheinlichkeit, dass ein Ereignis der Klasse ν angehört, wird durch die relative Häufigkeit $\frac{n_{\nu}}{n}$ geschätzt und lässt sich als Stichprobenmittelwert der Indikatorvariablen $J_{\nu i}$ darstellen:

$$\Delta x \ h_{\nu} = \frac{n_{\nu}}{n} = \frac{1}{n} \sum_{i=1}^{n} J_{\nu i}$$

Erwartungswertbildung:

$$E\{\Delta x \ h_{\nu}\} = E\left\{\frac{1}{n}\sum_{i=1}^{n}J_{\nu i}\right\} = \frac{1}{n}\sum_{i=1}^{n}\underbrace{E\{J_{\nu i}\}}_{i=1} = f_{x}(x_{\nu})\Delta x$$

Gesetz der großen Zahlen

- Erwartungswertbildung: $E\{\Delta x h_{\nu}\} = f_{x}(x_{\nu})\Delta x$
- Mittelwertsatz der Integralrechnung: Es gibt im Intervall $[\nu\Delta x, (\nu+1)\Delta x]$ ein x_{ν} , das diese Gleichung erfüllt
- Varianz der Häufigkeitsverteilung:
 - Schätzer für Häufigkeitsverteilung h(x) hat die gleiche Struktur wie Schätzer für Stichprobenmittelwert $(h_{\nu} = \frac{n_{\nu}}{n\Delta x} = \frac{1}{n\Delta x} \sum_{i=1}^{n} J_{\nu i})$
 - Varianz von h(x) erhält man daher analog zur Varianz des Stichprobenmittelwerts (bei unabhängigen Ereignissen):

$$E\left\{\left(h(x) - f_{x}(x)\right)^{2}\right\} = \frac{\sigma_{J}^{2}}{n}$$
mit σ_{J}^{2} : Varianz der Indikatorvariablen

 Eingesetzt in die Tschebyscheff'sche Ungleichung (s. o.) ergibt Bernoulli'sches Gesetz der großen Zahlen:

$$P(|h(x) - f_{\mathbf{x}}(x)| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \mathbf{E} \left\{ \left(h(x) - f_{\mathbf{x}}(x) \right)^2 \right\} = \frac{\sigma_{\mathbf{J}}^2}{n\varepsilon^2}$$

Gesetz der großen Zahlen

Bernoulli'sches Gesetz der großen Zahlen:

$$P(|h(x) - f_{x}(x)| \ge \varepsilon) \le \frac{\sigma_{J}^{2}}{n\varepsilon^{2}}$$

d. h. mit wachsendem Stichprobenumfang n geht die Häufigkeitsverteilung h(x) in die Wahrscheinlichkeitsdichte $f_x(x)$ über

Mittelung zur Störungsunterdrückung

- ullet Oft ist einer deterministischen Messgröße u eine zufällige Störung e additiv überlagert
- Unterdrückung solcher Störungen durch Mittelung von n Messwerten y_i (Stichprobenmittel: $\hat{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$)

Mittelung zur Störungsunterdrückung

- 1. Bei linearer Kennlinie:
 - Mit Empfindlichkeit S_i : $y = S_i(u + e)$
 - Erwartungswert von y: $\mu_y = E\{y\} = E\{S_i(u + e)\} = S_i(u + \mu_e)$
 - a. Mittelwertfreie Störung: $E\{e\} = \mu_e = 0$: $\mu_y = S_i(u + \mu_e) = S_i u$, d. h. Mittelwert des Ausgangssignals μ_y entspricht dem idealen Anzeigewert $S_i u$, Störsignal e wird also auf einfache Weise unterdrückt
 - b. Störung mit endlichem (bekanntem) Mittelwert: $E\{e\} = \mu_e \neq 0$: Mittelwert der Störung $S_i\mu_e$ kann am Ausgang des Messsystems als deterministische additive Störung (systematischer Fehler) subtrahiert werden:

$$\tilde{y} = y - S_i \mu_e = S_i (u + e - \mu_e)$$

In \tilde{y} verbleibende Störung $S_i(e - \mu_e)$ ist wieder mittelwertfrei, es kann wieder zur Störungsunterdrückung gemittelt werden

Mittelung zur Störungsunterdrückung

- 2. Bei nichtlinearer Kennlinie:
 - Annahme: mittelwertfreie Störung e
 - Nichtlineare Kennlinie f(u) mit Empfindlichkeit f' = S
 - Taylor-Entwicklung der Kennlinie um den Arbeitspunkt u_0 :

$$\Delta y = S(u_0)(\Delta u + e) \cdot \left[1 + \frac{1}{2} \frac{S'(u_0)}{S(u_0)} (\Delta u + e) + \cdots \right]$$

■ Bei Unkorreliertheit von Δu und e: Näherung für Erwartungswert von Δy :

 $u = u_0 + \Delta u$

$$\mu_{\Delta y} = E\{\Delta y\} \approx S(u_0)(\Delta u + E\{e\}) + \frac{1}{2}S'(u_0)(\Delta u^2 + E\{e^2\})$$
$$= S(u_0) \cdot \Delta u + \frac{1}{2}S'(u_0)(\Delta u^2 + \sigma_e^2)$$

■ D. h. obwohl die Störung e mittelwertfrei ist, weicht der Mittelwert der Ausgangsgröße $\mu_{\Delta y}$ bei nichtlinearer Kennlinie vom idealen Anzeigewert ab, auch im Arbeitspunkt u_0 ($\Delta u = 0$) ist $\mu_{\Delta v} \neq 0$

f(u)

Mittelung zur Störungsunterdrückung

- 2. Bei nichtlinearer Kennlinie:
 - Abhilfe: vor Mittelwertbildung Messkennlinie linearisieren

- Große Rolle normalverteilter Zufallsvariablen in praktischen Anwendungen Bei unbekannter Wahrscheinlichkeitsdichte: oft Annahme einer
- Bei unbekannter Wahrscheinlichkeitsdichte: oft Annahme einer Normalverteilung (Begründung: zentraler Grenzwertsatz, siehe unten)
- Definition: Normalverteilung Eine Zufallsvariable $x \sim \mathcal{N}(\mu_{x}, \sigma_{x}^{2})$ mit der Wahrscheinlichkeitsdichte

 $f_{\mathbf{x}}(x) = \mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}^2) = \frac{1}{\sigma_{\mathbf{x}}\sqrt{2\pi}} \exp\left(-\frac{(x - \mu_{\mathbf{x}})^2}{2\sigma_{\mathbf{x}}^2}\right)$

heißt normalverteilt. Eine normalverteilte Zufallsgröße wird durch die zwei Momente Mittelwert μ_x und Varianz σ_x^2 vollständig charakterisiert.

$$\Phi_{\mathbf{x}}(f) = \exp\left(j2\pi f \mu_{\mathbf{x}} - \frac{1}{2}(2\pi f \sigma_{\mathbf{x}})^{2}\right)$$

Daraus Berechnung der Momente (s. o.):

$$\mu_{x,m} = E\{x^m\} = \int_{-\infty}^{\infty} x^m \cdot f_x(x) \, dx = \frac{1}{(j2\pi)^m} \frac{d^m \Phi_x(f)}{df^m} \bigg|_{f=0}$$

Mittelwert:

$$\begin{aligned} \mathbf{E}\{\mathbf{x}\} &= \frac{1}{\mathrm{j}2\pi} \frac{\mathrm{d}\Phi_{\mathbf{x}}(f)}{\mathrm{d}f} \bigg|_{f=0} \\ &= \frac{1}{\mathrm{j}2\pi} \exp\left(\mathrm{j}2\pi f \mu_{\mathbf{x}} - \frac{1}{2} (2\pi f \sigma_{\mathbf{x}})^2\right) \cdot (\mathrm{j}2\pi \mu_{\mathbf{x}} - (2\pi f \sigma_{\mathbf{x}}) 2\pi \sigma_{\mathbf{x}}) \bigg|_{f=0} \\ &= \mu_{\mathbf{x}} \end{aligned}$$

$$E\{x^{2}\} = \frac{1}{(j2\pi)^{2}} \frac{d^{2}\Phi_{x}(f)}{df^{2}} \bigg|_{f=0}$$
$$= \sigma_{x}^{2} + \mu_{x}$$

• Alle höheren Momente lassen sich auf die beiden Parameter Mittelwert μ_x und Varianz σ_x^2 (oder Standardabweichung σ_x) zurückführen; die Normalverteilung ist daher vollständig durch diese beiden Parameter bestimmt

Lineare Transformation

- Jede lineare Transformation einer normalverteilten Zufallsvariablen x: $z = a \ x + b \ mit \ a, b \in \mathbb{R}$ ergibt wieder eine normalverteilte Zufallsvariable z
- Die linear transformierte Zufallsvariable z unterscheidet sich von x durch die Parameter Mittelwert μ_z und Varianz σ_z^2

Standardnormalverteilung

• Normalverteilung, die auf Mittelwert $\mu_{\rm x}=0$ und Varianz $\sigma_{\rm x}^2=1$ normiert ist:

$$f_{\rm x}(x) = \mathcal{N}(0,1) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

• Wird aus einer Normalverteilung $\mathcal{N}(\mu_{x}, \sigma_{x}^{2})$ mit Mittelwert μ_{x} und Varianz σ_{x}^{2} erhalten durch

$$z = \frac{x - \mu_x}{\sigma_x}$$

• Anwendung: Berechnung des Integrals von $\mathcal{N}(\mu_x, \sigma_x^2)$ ist nicht geschlossen möglich, daher Verwendung von Tabellen oder Software, welche die Werte des Integrals der Standardnormalverteilung enthalten (z. B. Excel: STANDNORMVERT(z))

$$f_{\mathbf{x}}(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}})$$

$$= \frac{1}{(2\pi)^{\frac{d}{2}} |\boldsymbol{\Sigma}_{\mathbf{x}}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})\right)$$

heißt multivariat normalverteilt. Eine multivariat normalverteilte Zufallsgröße wird durch den Mittelwertvektor μ_x und Kovarianzmatrix Σ_x vollständig charakterisiert.

• Orte x gleicher Wahrscheinlichkeit werden durch Ellipsoide in \mathbb{R}^d beschrieben

• Kovarianzmatrix Σ_x :

$$\boldsymbol{\Sigma}_{\mathbf{X}} = \begin{pmatrix} \boldsymbol{C}_{\mathbf{X}_{1}\mathbf{X}_{1}} & \cdots & \boldsymbol{C}_{\mathbf{X}_{1}\mathbf{X}_{d}} \\ \vdots & \ddots & \vdots \\ \boldsymbol{C}_{\mathbf{X}_{d}\mathbf{X}_{1}} & \cdots & \boldsymbol{C}_{\mathbf{X}_{d}\mathbf{X}_{d}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\sigma}_{\mathbf{X}_{1}}^{2} & \cdots & \boldsymbol{\rho}_{\mathbf{X}_{1}\mathbf{X}_{d}} \boldsymbol{\sigma}_{\mathbf{X}_{1}} \\ \vdots & \ddots & \vdots \\ \boldsymbol{\rho}_{\mathbf{X}_{d}\mathbf{X}_{1}} \boldsymbol{\sigma}_{\mathbf{X}_{d}} \boldsymbol{\sigma}_{\mathbf{X}_{1}} & \cdots & \boldsymbol{\sigma}_{\mathbf{X}_{d}}^{2} \end{pmatrix}$$

mit $\rho_{x_i x_i}$: Korrelationskoeffizient zwischen x_i und x_j

- Die Kovarianzmatrix ist daher stets symmetrisch und positiv semidefinit
- Hauptdiagonale: Varianzen $\sigma_{\mathbf{x}_i}^2$ der einzelnen Komponenten \mathbf{x}_i
- Determinante $|\Sigma_x|$: proportional zur Größe der Ellipsoide, Maß für die Streuung von x
- Eigenvektoren von Σ_x : Richtungen der Hauptachsen der Ellipsoide, zugehörige Eigenwerte: Varianzen in Hauptachsenrichtungen

Zentraler Grenzwertsatz

 Bei vielen Anwendungen: Zufälliger Fehler e resultiert aus einer additiven Überlagerung zahlreicher unabhängiger, zufälliger Ereignisse e_n mit unbekannten Wahrscheinlichkeitsdichten:

$$e = \sum_{n=1}^{N} e_n$$

 Wahrscheinlichkeitsdichte der Summe wird über die Faltung der einzelnen Wahrscheinlichkeitsdichten berechnet:

$$f_{e}(e) = f_{e_1}(e) * f_{e_2}(e) * \cdots * f_{e_N}(e)$$

• Charakteristische Funktion von $f_e(e)$: Faltung geht in Multiplikation über:

$$\Phi_{\mathbf{e}}(f) = \prod_{n=1}^{N} \Phi_{\mathbf{e}_n}(f)$$

Berechnung der Wahrscheinlichkeitsdichte $f_e(e)$ mittels des zentralen Grenzwertsatzes

Zentraler Grenzwertsatz

■ Haben die Zufallsvariablen x_n Verteilungen mit beschränktem zweitem und drittem Moment und sind die Zufallsvariablen x_n voneinander unabhängig, dann nähert sich die Dichte $f_x(x)$ der Summe

$$\mathbf{x} = \sum_{n=1}^{N} \mathbf{x}_n$$

mit wachsendem Umfang N asymptotisch einer Normalverteilung an:

$$f_{\rm x}(x) = \frac{1}{\sigma_{\rm x}\sqrt{2\pi}} \exp\left(-\frac{(x-\mu_{\rm x})^2}{2\sigma_{\rm x}^2}\right)$$

Die Parameter der resultierenden Normalverteilung sind:

$$\mu_{x} = \sum_{n=1}^{N} E\{x_{n}\}, \qquad \sigma_{x}^{2} = \sum_{n=1}^{N} \sigma_{x_{n}}^{2}$$

Zentraler Grenzwertsatz

- Schlussfolgerungen für die Messtechnik und Qualitätskontrolle:
 - Wert eines Elements einer Stichprobe (d. h. ein Messwert): Zufallsvariable x_n mit überlagerter Störung. Falls Störungen der Zufallsvariablen x_n näherungsweise als voneinander unabhängig angenommen werden können, ist der Stichprobenmittelwert \hat{x} näherungsweise normalverteilt
 - Ein zufälliger Messfehler, der durch Überlagerung mehrerer unabhängiger Zufallsereignisse entsteht, kann als normalverteilt angenommen werden

Zentraler Grenzwertsatz

- Beispiel: Addition von Zufallsvariablen
 - N = 4 Zufallsvariablen x_n mit unterschiedlichen Wahrscheinlichkeitsdichten

- Vergleich:
 Wahrscheinlichkeitsdichte der Summe, berechnet durch Faltung der einzelnen Wahrscheinlichkeitsdichten, und Normalverteilung nach dem zentralen Grenzwertsatz
- Nur kleineAbweichungen

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

χ^2 -Verteilung

- Beim zentralen Grenzwertsatz: rein additive Überlagerung (wie z. B. für die Bildung des Stichprobenmittelwerts erforderlich)
- Jetzt: Quadrierung der Zufallsvariablen vor der Addition
- Relevanz solcher Quadratsummen: Beschreibung der Verteilung der Stichprobenvarianz $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \hat{x})^2$
- Einführung der Zufallsvariablen $z_i = x_i \hat{x}$ und $y_n = z_1^2 + z_2^2 + \dots + z_n^2$
- y_n ist damit bis auf den Vorfaktor $\frac{1}{n-1}$ gleich der Stichprobenvarianz s_x^2

χ^2 -Verteilung

• Sind n unabhängige Zufallsvariabel z_i mit einer Standardnormalverteilung $\mathcal{N}(0,1)$ gegeben, so ist die Quadratsumme $y_n = z_1^2 + z_2^2 + \dots + z_n^2 \ \chi^2$ -verteilt mit der Wahrscheinlichkeitsdichte

$$f_{y_n}(y = \chi^2) = \begin{cases} \frac{1}{\Gamma(\frac{n}{2})} \frac{n}{2^{\frac{n}{2}}} y^{\frac{n}{2} - 1} e^{-\frac{y}{2}} & \text{für } y \ge 0\\ \frac{1}{\Gamma(\frac{n}{2})} 2^{\frac{n}{2}} & \text{für } y < 0 \end{cases}$$

- Einziger Parameter: n, beschreibt die Anzahl der Freiheitsgrade
- Praktische Bestimmung der χ²-Verteilung: Tabellen oder Software
 (z. B. Excel: CHIVERT(y,n))

χ^2 -Verteilung

■ Gammafunktion $\Gamma(x)$, $x \in \mathbb{R}$: Verallgemeinerung der Fakultätsfunktion, Berechnung ebenfalls rekursiv:

$$\Gamma(x+1) = x \cdot \Gamma(x), \ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \ \Gamma(1) = 1$$

 Praktische Bestimmung der Gammafunktion: Tabellen oder Software (z. B. Excel: GAMMA(x))

χ^2 -Verteilung

- Beweis der χ^2 -Verteilung: vollständige Induktion
 - Zunächst Betrachtung einer einzigen Zufallsvariable: $y_1 = z_1^2$
 - Dichte von y₁ (transformierte Variable, siehe Kap. 4.1):
 - Dazu Lösung der Umkehrfunktion: $z_1 = -z_2 = \sqrt{y}$,

$$f_{y_1}(y) = f_{z_1}(z_1) \left| \frac{dy(z)}{dz} \right|_{z=z_1}^{-1} + f_{z_1}(z_2) \left| \frac{dy(z)}{dz} \right|_{z=z_2}^{-1}$$

- Mit $f_{z_1}(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$: $f_{y_1}(y) = 2\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y}{2}\right) |2\sqrt{y}|^{-1} = \frac{1}{\sqrt{2\pi y}} \exp\left(-\frac{y}{2}\right)$
- Mit $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$:

$$f_{y_1}(y) = \begin{cases} \frac{1}{\Gamma(\frac{1}{2})2^{\frac{1}{2}}} y^{-\frac{1}{2}} e^{-\frac{y}{2}} & \text{für } y \ge 0\\ 0 & \text{für } y < 0 \end{cases}$$

χ^2 -Verteilung

- Beweis der χ^2 -Verteilung: vollständige Induktion
 - Charakteristische Funktion von

$$f_{y_1}(y) = \begin{cases} \frac{1}{\Gamma(\frac{1}{2})2^{\frac{1}{2}}} y^{-\frac{1}{2}} e^{-\frac{y}{2}} & \text{für } y \ge 0\\ 0 & \text{für } y < 0 \end{cases}$$

durch inverse Fourier-Transformation (ohne Beweis):

$$\Phi_{y_1}(f) = \frac{1}{\Gamma(\frac{1}{2}) 2^{\frac{1}{2}}} \int_{-\infty}^{\infty} y^{-\frac{1}{2}} e^{-(1-j4\pi f)\frac{y}{2}} dy = (1-j4\pi f)^{-\frac{1}{2}}$$

• Charakteristische Funktion für die als korrekt angenommene χ^2 -Verteilung:

$$\Phi_{y_n}(f) = \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} \int_{-\infty}^{\infty} y^{\frac{n}{2} - 1} e^{-\frac{y}{2} + j2\pi f y} dy = (1 - j4\pi f)^{-\frac{n}{2}}$$

χ^2 -Verteilung

- Beweis der χ^2 -Verteilung: vollständige Induktion
 - Charakteristische Funktionen:

$$\Phi_{y_1}(f) = (1 - j4\pi f)^{-\frac{1}{2}}, \ \Phi_{y_n}(f) = (1 - j4\pi f)^{-\frac{n}{2}}$$

• Schluss von n auf n+1: Charakteristische Funktion einer Summe von unabhängigen Zufallsvariablen entspricht dem Produkt der jeweiligen charakteristischen Funktionen:

Mit
$$y_{n+1} = y_n + y_1$$
:

$$\Phi_{y_{n+1}}(f) = \Phi_{y_n}(f) \cdot \Phi_{y_1}(f) = (1 - j4\pi f)^{-\frac{n+1}{2}}$$

• Dies ist genau die charakteristische Funktion einer χ^2 -Verteilung von n+1 Zufallsvariablen

χ^2 -Verteilung

• Mittelwert: aus charakteristischer Funktion $\Phi_{y_n}(f) = (1 - j4\pi f)^{-\frac{n}{2}}$:

$$E\{y_n\} = \frac{1}{j2\pi} \frac{d\Phi_{y_n}(f)}{df} = n$$

Zweites Moment: aus charakteristischer Funktion:

$$E\{y_n^2\} = \frac{1}{(j2\pi)^2} \frac{d^2 \Phi_{y_n}(f)}{df^2} = n^2 + 2n$$

- Daraus Varianz: $\sigma_{\mathbf{y}_n}^2 = \mathbf{E}\{\mathbf{y}_n^2\} (\mathbf{E}\{\mathbf{y}_n\})^2 = 2n$
- Für allgemein normalverteilte Zufallsvariablen $x_i \sim \mathcal{N}(\mu_x, \sigma_x^2)$: χ^2 -verteilte Größe erhält man durch Normierung (Variablentransformation):

$$\chi_n^2 = \frac{(x_1 - \mu_x)^2 + (x_2 - \mu_x)^2 + \dots + (x_n - \mu_x)^2}{\sigma_x^2}$$

χ^2 -Verteilung

- Wie viele Freiheitsgrade hat die χ^2 -verteilte Stichprobenvarianz $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \hat{x})^2$?
 - Mittelwert wird ebenfalls aus der Stichprobe geschätzt:

$$\hat{\mathbf{x}} = \frac{1}{n} (\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n)$$

• x_n lässt sich in Abhängigkeit der übrigen x_i und \hat{x} darstellen:

$$-(\mathbf{x}_n - \hat{\mathbf{x}}) = \sum_{i=1}^{n-1} (\mathbf{x}_i - \hat{\mathbf{x}})$$

Normierung der Stichprobenvarianz:

$$\chi_n^2 = \frac{n-1}{\sigma_X^2} s_X^2 = \frac{1}{\sigma_X^2} \sum_{i=1}^n (x_i - \hat{x})^2 = \frac{1}{\sigma_X^2} \left[\sum_{i=1}^{n-1} (x_i - \hat{x})^2 + (x_n - \hat{x})^2 \right]$$

$$= \frac{1}{\sigma_X^2} \left[\sum_{i=1}^{n-1} (x_i - \hat{x})^2 + \left(\sum_{i=1}^{n-1} (x_i - \hat{x}) \right)^2 \right]$$

$$= \frac{1}{\sigma_X^2} \left[\sum_{i=1}^{n-1} (x_i - \hat{x})^2 + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} (x_i - \hat{x})(x_j - \hat{x}) \right]$$

χ^2 -Verteilung

• Wie viele Freiheitsgrade hat die χ^2 -verteilte Stichprobenvarianz $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{x})^2$?

$$\chi_n^2 = \frac{1}{\sigma_x^2} \left[\sum_{i=1}^{n-1} (x_i - \hat{x})^2 + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} (x_i - \hat{x}) (x_j - \hat{x}) \right]$$

$$= \frac{1}{\sigma_x^2} \left[2 \sum_{i=1}^{n-1} (x_i - \hat{x})^2 + \sum_{i=1}^{n-1} \sum_{j=1, j \neq i}^{n-1} (x_i - \hat{x}) (x_j - \hat{x}) \right]$$

$$= \frac{2}{\sigma_x^2} \sum_{i=1}^{n-1} (x_i - \hat{x})^2$$

■ Bei n unabhängigen Messwerten erhält man also eine Summe von n-1 Summanden, d. h. die Stichprobenvarianz $\mathbf{s}_{\mathbf{x}}^2$ ist χ^2 -verteilt mit n-1 Freiheitsgraden

Student'sche t-Verteilung

- Grundlage wichtiger statistischer Tests (siehe Kap. 4.4)
- Veröffentlicht 1908 von W. S. Gosset unter dem Pseudonym "Student"
- Gegeben sind zwei unabhängige Zufallsvariablen x und y. x besitze eine Standardnormalverteilung $\mathcal{N}(0,1)$, y besitze eine χ^2 -Verteilung mit n Freiheitsgraden. Dann hat die Zufallsvariable $t = \frac{x}{\sqrt{y/n}}$ die Wahrscheinlichkeitsdichte:

$$f_{t}(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \,\Gamma\left(\frac{n}{2}\right)} \cdot \frac{1}{\left(1 + \frac{t^{2}}{n}\right)^{\frac{n+1}{2}}}$$

Die Zufallsvariable t wird t-verteilt mit n Freiheitsgraden genannt.

 Praktische Bestimmung der t-Verteilung: Tabellen oder Software (z. B. Excel: TVERT(t,n,1))

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Student'sche t-Verteilung

- Mit wachsendem n: t-Verteilung strebt gegen die Standardnormalverteilung $\mathcal{N}(0,1)$
- Gute Approximation der t-Verteilung durch die Standardnormalverteilung für $n \ge 30$

Student'sche t-Verteilung

- Bedeutung der t-Verteilung:
 bei der Stichprobenuntersuchung:
 Stichprobenmittelwert x ist normalverteilt,
 Stichprobenvarianz s_x² ist x²-verteilt
- Dann ist das Verhältnis $t = \frac{\hat{x}}{\sqrt{s_x^2/n}}$ t-verteilt

4.4 Statistische Testverfahren

- Aussagen, die sich aus Stichproben über die zugrunde liegende Verteilung ableiten lassen:
 - Schätzung von Parametern der Verteilung (siehe Kap. 4.2)
 - Statistische Testverfahren, ob eine Hypothese zutrifft oder nicht (ja/nein-Entscheidung)
- Relevante Fragestellungen für statistische Testverfahren:
 - Ist der erhaltene Schätzwert für den Stichprobenmittelwert repräsentativ für eine angenommene Verteilung?
 - → Signifikanztest für den Stichprobenmittelwert
 - Entspricht eine erhaltene Stichprobe einem bestimmten Verteilungsmodell?
 - $\rightarrow \chi^2$ -Anpassungstest
- Keine absolut sicheren Aussagen möglich;
 Testentscheidungen können nur mit einer bestimmten statistischen Sicherheit getroffen werden

ווו, וווון, מוון, מוופ מפטונפ פווואטווויפואוטו מטטיפו- טווט איפונפו למטפו פטונפ טפו טווא.

Bildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Konfidenzintervall und statistische Sicherheit

- Erwünscht: Aussage über die Zuverlässigkeit einer Schätzung, z. B. Schätzung des Mittelwerts μ_x durch den Stichprobenmittelwert \hat{x} : Aussage ist bei kleiner Stichprobe offensichtlich weniger vertrauenswürdig als bei einer großen Stichprobe
- Messwert ist also nur aussagekräftig, wenn die mit der Schätzung verbundene Messunsicherheit bekannt ist
- Dazu Angabe eines (zweiseitigen) Konfidenzintervalls (Vertrauensintervalls) $[\mu_x x_\alpha, \mu_x + x_\alpha]$, das den zu schätzenden Parameter mit der Irrtumswahrscheinlichkeit α enthält:

$$\alpha = P(|\mathbf{x} - \mu_{\mathbf{x}}| > x_{\alpha})$$

■ Gleichbedeutend: Das (zweiseitige) Konfidenzintervall schließt den wahren Parameter mit einer statistischen Sicherheit von $1 - \alpha = P(|x - \mu_x| \le x_\alpha)$ ein

■ Bei sog. einseitigen Problemen: Parameter soll mit einer Irrtumswahrscheinlichkeit α nicht größer/kleiner als eine Grenze sein

Konfidenzintervall bei bekannter Standardabweichung

- Annahme: Normalverteilung
- Konfidenzintervall als Vielfaches der Standardabweichung $\sigma_{\rm x}$: $\mu_{\rm x}-c\sigma_{\rm x}\leq {\rm x}\leq \mu_{\rm x}+c\sigma_{\rm x}$
- Aussage zur statistischen Sicherheit durch Integration der Dichte $f_{x}(x)$ der Normalverteilung:

$$P(c) = 1 - \alpha = P\left(\frac{x - \mu_{X}}{\sigma_{X}} \le c\right)$$
$$= \int_{\mu_{X} - c\sigma_{X}}^{\mu_{X} + c\sigma_{X}} f_{X}(x) dx$$

Dieses Integral lässt sich nicht analytisch lösen, daher meist Verwendung der Gauß'schen Fehlerfunktion erf(c), die sich numerisch berechnen lässt oder in Tabellen/Software vorliegt

(z. B. Excel: GAUSSFEHLER(Untere_Grenze;[Obere_Grenze]))

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Konfidenzintervall bei bekannter Standardabweichung

Definition: Gauß'sche Fehlerfunktion
 Die Gauß'sche Fehlerfunktion (engl. error function) ist definiert durch das Integral

$$\operatorname{erf}(c) = \frac{2}{\sqrt{\pi}} \int_0^c e^{-x^2} \, \mathrm{d}x$$

Sie ist eine ungerade Funktion.

- Zur Anwendung auf $P(c) = \int_{\mu_{\rm X} c\sigma_{\rm X}}^{\mu_{\rm X} + c\sigma_{\rm X}} f_{\rm X}(x) \, \mathrm{d}x$: Transformation der Normalverteilung für x in eine Standardnormalverteilung mittels $z = \frac{x - \mu_{\rm X}}{\sigma_{\rm X}}$
- Dann ist (Substitution: $z = \sqrt{2} \cdot x$) $\int_{0}^{\mu_{x} + c\sigma_{x}} \int_{0}^{\alpha} dx = \int_{0}^{c} dx$

$$P(c) = \int_{\mu_{x} - c\sigma_{x}}^{\mu_{x} + c\sigma_{x}} f_{x}(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-c}^{c} \exp\left(-\frac{z^{2}}{2}\right) dz$$
$$= \sqrt{\frac{2}{\pi}} \int_{0}^{c} \exp\left(-\frac{z^{2}}{2}\right) dz = \operatorname{erf}\left(\frac{c}{\sqrt{2}}\right)$$

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Konfidenzintervall bei bekannter Standardabweichung

Statistische Sicherheiten in Abhängigkeit vom Parameter c:

c=1: Konfidenzintervall: $\mu_{\rm X} \pm \sigma_{\rm X}$, P(c)=68,27%

c=2: Konfidenzintervall: $\mu_{\rm x}\pm 2\sigma_{\rm x}$, P(c)=95,45%

c=3: Konfidenzintervall: $\mu_{\rm x}\pm 3\sigma_{\rm x}$, P(c)=99,73%

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

Konfidenzintervall bei bekannter Standardabweichung

- Anwendung auf Fertigungsprozesse: Standardabweichung $\sigma_{\rm x}$ beschreibt, wie stark die Istmaße fertigungsbedingt streuen
- Beispiel: unterschiedlich breite Intervalle für verschiedene Standardabweichungen $\sigma_{\rm x}$ bei einer statistischen Sicherheit von P(c) = 95,45% (c = 2)

Schmale Verteilung passt natürlich besser in vorgegebenes
 Toleranzfeld, siehe Kap. 4.5 und Vorlesung Fertigungsmesstechnik

- Bisher: Konfidenzintervall f
 ür die Zufallsgr
 öße x als Vielfaches c der bekannten Standardabweichung $\sigma_{\rm x}$
- Jetzt: Konfidenzintervall für den Stichprobenmittelwert $\hat{\mathbf{x}}$ einer Messreihe von n unabhängigen Messungen
- Konfidenzintervall hängt offenbar von der Anzahl der Messungen ab
- Dazu Standardabweichung des Stichprobenmittelwerts $\sigma_{\hat{X}} = \frac{\sigma_{X}}{\sqrt{n}}$:

$$\mu_{\mathbf{x}} - c \frac{\sigma_{\mathbf{x}}}{\sqrt{n}} \le \hat{\mathbf{x}} \le \mu_{\mathbf{x}} + c \frac{\sigma_{\mathbf{x}}}{\sqrt{n}}$$

■ Damit Definition der Messunsicherheit $u_{\hat{x}}$:

$$u_{\hat{\mathbf{x}}} = c \cdot \sigma_{\hat{\mathbf{x}}} = c \frac{\sigma_{\mathbf{x}}}{\sqrt{n}}$$

d. h. bezogen auf den Stichprobenmittelwert, abhängig von c

• In der Praxis: σ_x ist unbekannt, daher empirische Standardabweichung s_x der Stichprobe als Schätzwert für die wahre Standardabweichung σ_x :

$$\mu_{\mathbf{X}} - c \frac{\mathbf{S}_{\mathbf{X}}}{\sqrt{n}} \le \hat{\mathbf{X}} \le \mu_{\mathbf{X}} + c \frac{\mathbf{S}_{\mathbf{X}}}{\sqrt{n}} \quad \Leftrightarrow \quad -c \le \frac{\hat{\mathbf{X}} - \mu_{\mathbf{X}}}{\frac{\mathbf{S}_{\mathbf{X}}}{\sqrt{n}}} \le c$$

- $t = \frac{\hat{\mathbf{x}} \mu_{\mathbf{x}}}{\frac{\mathbf{S}_{\mathbf{x}}}{\sqrt{n}}}$ ist t-verteilt mit n 1 Freiheitsgraden (siehe Kap. 4.3)
- Berechnung der statistischen Sicherheit daher mit der t-Verteilung anstelle der Normalverteilung

Statistische Sicherheit:

$$P_n(c) = P\left(\frac{|\hat{\mathbf{x}} - \mu_{\mathbf{x}}|}{\frac{S_{\mathbf{x}}}{\sqrt{n}}} = |t| \le c\right) = \int_{-c}^{c} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \cdot \frac{1}{\left(1 + \frac{t^2}{n}\right)^{\frac{n+1}{2}}} dt$$

Wahrscheinlichkeitsdichte der t-Verteilung

D. h. statistische Sicherheit ist abhängig von n

3ildquelle: F. Puente León: Messtechnik, 10. Auflage, Springer, 2015

- Praktisches Vorgehen zur Bestimmung des Konfidenzintervalls:
 - 1. Wahl einer statistischen Sicherheit P(|t| < c) für gewähltes c, daraus Bestimmung des erforderlichen Stichprobenumfangs n (grafisch oder aus Tabelle)

4.4 Statistische Testverfahren

Konfidenzintervall bei zu schätzender Standardabweichung

- Praktisches Vorgehen zur Bestimmung des Konfidenzintervalls:
 - 2. Berechnung der Standardabweichung der Stichprobe:

$$s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \hat{x})^{2}$$

3. Daraus Messunsicherheit $u_{\hat{x}}$ des Stichprobenmittelwerts:

$$u_{\hat{\mathbf{x}}} = c \frac{s_{\mathbf{x}}}{\sqrt{n}}$$

Vertrauensintervall für den Stichprobenmittelwert:

$$\mu_{\mathbf{X}} - c \frac{\mathbf{S}_{\mathbf{X}}}{\sqrt{n}} \le \hat{\mathbf{x}} \le \mu_{\mathbf{X}} + c \frac{\mathbf{S}_{\mathbf{X}}}{\sqrt{n}}$$

Ͽ Michael Heizmann, IIIT, KIT, alle Rechte einschließlich Kopier- und Weitergabe

- Messunsicherheit u_x einer Einzelmessung unabhängig von der Zahl der Messwerte:
 - 1. Berechnung der Standardabweichung der Stichprobe s_x aus

$$s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \hat{x})^{2}$$

- 2. Bestimmung des Wertes c zu der geforderten statistischen Sicherheit $P_c(n)$ (aus Grafik, s. o.)
- 3. Daraus Messunsicherheit der Einzelmessung:

$$\begin{aligned} u_{\mathbf{x}} &= c \cdot \mathbf{s}_{\mathbf{x}}, \\ \mathrm{d. h. } u_{\mathbf{x}} &= \sqrt{n} \cdot u_{\hat{\mathbf{x}}} \quad \Rightarrow \quad u_{\mathbf{x}} > u_{\hat{\mathbf{x}}} \end{aligned}$$

4.4 Statistische Testverfahren

- Für $n \to \infty$: Varianz $\sigma_{\hat{\chi}}^2$ des Stichprobenmittelwerts geht bei stochastisch unabhängigen Messwerten gegen null: $\sigma_{\hat{\chi}}^2 = \frac{\sigma_{\rm x}^2}{n}$
- Statistische Sicherheit P_n(c)
 erreicht dann die statistische
 Sicherheit der Normalverteilung
 P(c)

- Nicht verwechseln:
 - Messunsicherheit: Unsicherheit bei der Bestimmung des wahren Werts des Mittelwerts μ_x durch den Stichprobenmittelwert \hat{x} , hängt von der Statistik des Messverfahrens ab
 - Fehlergrenzen: vereinbarte oder garantierte, zugelassene größte Abweichungen von einem vorgeschriebenen Wert der Messgröße (entspricht dem Toleranzfeld), wird von der Qualitätssicherung vorgegeben
- Zur Einhaltung der Fehlergrenzen muss also die Messunsicherheit erheblich kleiner sein als das Toleranzfeld

Hypothesen und statistische Test

- Ziel: Überprüfung einer präzise formulierten Behauptung: Nullhypothese H_0
- Beispiel:

 H_0 : Eine gegebene Stichprobe entstammt einer bestimmten Grundgesamtheit.

- Solche Hypothesen lassen sich aber nicht beweisen, sondern nur widerlegen
- Daher Gegenüberstellung einer komplementären
 Alternativhypothese H_1
- Falls die Alternativhypothese H_1 bestätigt wird, wird die Nullhypothese H_0 verworfen; ansonsten wird von der Gültigkeit der Nullhypothese H_0 ausgegangen

4.4 Statistische Testverfahren

Hypothesen und statistische Test

- Festlegung eines Signifikanzniveaus α :
 - Irrtumswahrscheinlichkeit, die akzeptiert wird, falls das Testverfahren eine tatsächlich zutreffende Nullhypothese H₀ ablehnt (sog. Fehler 1. Art)
 - Entspricht einem Falschalarm: Nullhypothese H₀ wird fälschlicherweise ablehnt
- Signifikanzniveau wird daher konservativ gewählt, damit dieser Fehler klein bleibt, normalerweise $0.1\% \le \alpha \le 5\%$

Hypothesen und statistische Test

• Signifikanzniveau sollte aber nicht zu klein gewählt werden (z. B. $\alpha = 10^{-9}$), da es noch eine zweite Art von Fehlentscheidungen gibt:

Fehler 2. Art (mit Wahrscheinlichkeit β): H_0 trifft tatsächlich nicht zu, wird aber durch den Test bestätigt ("Schlupf", unterbliebener Alarm)

		Tatsächlicher Zustand		
		H_0 trifft zu	H_0 trifft nicht zu	
Test- entscheidung	H_0 wird bestätigt	$1-\alpha$	β (Fehler 2. Art)	
	H ₀ wird abgelehnt	α (Fehler 1. Art)	$1-\beta$	

- Verkleinerung von α führt zu Vergrößerung von β
- Der Wert von β kann bei gegebenem α i. a. nicht angegeben werden

Signifikanztest für den Stichprobenmittelwert

- Beantwortung der Frage: Gehört eine Stichprobe zu einer vorgegebenen Grundgesamtheit mit vorgegebener, bekannter Verteilung?
- Dazu Annahme einer Normalverteilung $\mathcal{N}(\mu_0, \sigma_x^2)$
- Prüfung, ob der Stichprobenmittelwert \hat{x} "nahe genug" am wahren Mittelwert μ_0 der Verteilung liegt
- Falls dies nicht so ist, ist die Abweichung nicht zufällig, sondern signifikant: Die Stichprobe ist nicht repräsentativ und wird abgelehnt
- Parametrisches Prüfverfahren oder Parametertest: Test erfolgt nicht für eine Wahrscheinlichkeitsdichte $f_x(x)$ selbst, sondern für den Parameter \hat{x} einer vorgegebenen Normalverteilung

Signifikanztest für den Stichprobenmittelwert

- Vorgehensweise:
 - 1. Prüfung der Voraussetzungen: Unabhängigkeit der Messwerte, Normalverteilung der Grundgesamtheit mit Erwartungswert μ_0
 - 2. Ermittlung des Stichprobenmittelwerts \hat{x} und (falls die Varianz σ_x^2 der Grundgesamtheit unbekannt ist) der Stichprobenvarianz s_x^2
 - 3. Aufstellen der Hypothesen: H_0 : $\hat{\mathbf{x}} = \mu_0$, H_1 : $\hat{\mathbf{x}} \neq \mu_0$
 - 4. Festlegen der Prüfgröße c:
 - Bei bekannter Varianz σ_{x}^{2} : Rechnung mit Normalverteilung:

$$z = \frac{|\hat{\mathbf{x}} - \mu_0|}{\sigma_{\hat{\mathbf{x}}}} = \frac{|\hat{\mathbf{x}} - \mu_0|}{\sigma_{\mathbf{x}}} \sqrt{n} = c$$

• Bei unbekannter Varianz $\sigma_{\rm x}^2$: Rechnung mit t-Verteilung:

$$t = \frac{|\hat{\mathbf{x}} - \mu_0|}{\mathsf{S}_{\mathbf{x}}} \sqrt{n} = c$$

mit n - 1 Freiheitsgraden

Signifikanztest für den Stichprobenmittelwert

- Vorgehensweise:
 - 5. Festlegen des Signifikanzniveaus α , damit auch der statistischen Sicherheit 1α , mit der eine tatsächlich zutreffende Nullhypothese bestätigt wird
 - 6. Bestimmen der Wahrscheinlichkeit der Prüfgröße P(c) bzw. $P(c_n)$ (aus Diagramm oder Tabelle)
 - 7. Testentscheidung:
 - Annahme der Nullhypothese, falls $P(c) \le 1 \alpha$
 - Ablehnung der Nullhypothese, falls $P(c) > 1 \alpha$

Signifikanztest für den Stichprobenmittelwert

- Beispiel:
 - Werkstück mit Sollmaß $\mu_0 = 12,0 \text{ mm}$
 - Messung einer Stichprobe aus n = 90 Werkstücken: Stichprobenmittelwert $\hat{x} = 12,075$ mm, Standardabweichung $s_x = 0,229$ mm
 - Große Stichprobe (n > 30), daher Annahme einer Normalverteilung
 - Standardabweichung des Stichprobenmittelwerts: $\sigma_{\hat{\mathbf{x}}} \approx \frac{s_{\mathbf{x}}}{\sqrt{n}} = 0,0241 \ \mathrm{mm}$
 - Festlegung des Signifikanzniveaus: $\pm 3\sigma_x$ -Spanne der Normalverteilung: $1 \alpha = 99,73\%$, $\alpha = 0,27\%$
 - Wahrscheinlichkeit der Prüfgröße:

$$P(c) = P\left(\frac{|\hat{\mathbf{x}} - \mu_0|}{\sigma_{\hat{\mathbf{x}}}}\right) = P(3,112) = 0,9981 > 1 - \alpha$$

 Abweichung der Prüfgröße ist also zu hoch, Stichprobe wird daher als nicht repräsentativ abgelehnt

χ^2 -Anpassungstest

- Auch hier: Beantwortung der Frage: Gehört eine Stichprobe zu einer vorgegebenen Grundgesamtheit mit vorgegebener, bekannter Verteilung?
- Hier: nicht nur Prüfung eines Parameters (z. B. Stichprobenmittelwert \hat{x}), sondern Prüfung der Verteilung der Stichprobe mit Umfang n
- Dazu Aufteilung des Wertebereichs der Zufallsgröße x in k disjunkte Klassen: Intervalle $\Delta_1, ..., \Delta_k$, ähnlich wie beim Histogramm
- Theoretische Wahrscheinlichkeit dafür, dass x in Δ_i fällt:

$$p_i = \int_{\Delta_i} f_{\mathbf{x}}(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$
, $\sum_{i=1}^k p_i = 1$

• Wahrscheinlichkeit, dass bei einer Stichprobe mit Umfang n gerade n_i Elemente in die Klasse Δ_i fallen: Binomialverteilung

$$f_{\mathbf{n}_i} = \binom{n}{\mathbf{n}_i} p_i^{\mathbf{n}_i} (1 - p_i)^{n - \mathbf{n}_i}$$

mit Erwartungswert $E\{n_i\} = n \cdot p_i$

χ^2 -Anpassungstest

 Für n → ∞: Binomialverteilung geht in Normalverteilung über (Moivre-Laplace-Theorem, Spezialfall des zentralen Grenzwertsatzes):

$$f_{n_i} = \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n - n_i} \approx \frac{1}{\sqrt{2\pi n p_i (1 - p_i)}} \exp\left(-\frac{(n_i - n p_i)^2}{2n p_i (1 - p_i)}\right)$$

- Für große Anzahl an Klassen: $p_i \ll 1 \Rightarrow \sigma_{\mathbf{n}_i}^2 \approx n \, p_i$, d. h. $\mathrm{E}\{\mathbf{n}_i\} = n \, p_i = \sigma_{\mathbf{n}_i}^2$
- Bewertung der Summe der Abweichungen der tatsächlichen Elementezahl n_i zum Erwartungswert np_i , bezogen auf die Varianz $\sigma_{n_i}^2$:

$$\chi^2 \approx \sum_{i=1}^k \frac{(\mathbf{n}_i - np_i)^2}{np_i}$$

Summe von quadrierten Zufallsgrößen: χ^2 -verteilt mit k-1 Freiheitsgraden

χ^2 -Anpassungstest

- Klasseneinteilung ist weitgehend willkürlich:
 - Viele Klassen erwünscht, um Wahrscheinlichkeitsdichte $f_x(x)$ möglichst gut zu approximieren
 - Elementezahl n_i in den Klassen soll aber genügend groß sein
- Faustregel: $n_{i,Rand} \ge 1$ bei Randklassen, ansonsten $n_i \ge 5$

χ^2 -Anpassungstest

- Vorgehensweise:
 - Prüfung der Voraussetzungen: Unabhängigkeit der Messwerte, möglichst großer Stichprobenumfang
 - 2. Erstellen eines Histogramms: Festlegen der k Klassen Δ_i , Ermitteln der absoluten Häufigkeiten n_i für die Klassen Falls Bedingungen $n_i \geq 5$, $n_{i,Rand} \geq 1$ nicht erfüllt sind: Nachbarklassen zu einer gemeinsamen Klasse zusammenfassen
 - 3. Aufstellen der Hypothesen: H_0 : $f_x(x) = f_0(x)$, H_1 : $f_x(x) \neq f_0(x)$
 - 4. Festlegen des Signifikanzniveaus α bzw. der statistischen Sicherheit $1-\alpha$ Oft Wahl von $\alpha=5\%$, d. h. relativ große Irrtumswahrscheinlichkeit, da keine Voraussetzungen über die Wahrscheinlichkeitsdichte gemacht werden

χ^2 -Anpassungstest

- Vorgehensweise:
 - 5. Festlegen der Prüfgröße: $\chi^2 \approx \sum_{i=1}^k \frac{(\mathbf{n}_i np_i)^2}{np_i}$
 - 6. Bestimmung der Freiheitsgrade:

m = k - 1 – Anzahl der geschätzten Parameter

Z. B. wenn bei einer Normalverteilungsannahme die beiden

Parameter $\mu_{\rm X}$, $\sigma_{\rm X}^2$ durch $\hat{\rm x}$, $s_{\rm X}^2$ geschätzt werden: m=k-1-2

χ^2 -Anpassungstest

- Vorgehensweise:
 - 7. Bestimmen der Wahrscheinlichkeit der Prüfgröße $P(\chi^2 \le \chi^2_{\alpha}) = 1 \alpha$: Ablesen von χ^2_{α} aus Diagramm bzw. Tabelle
 - 8. Testentscheidung:
 - Annahme der Nullhypothese, falls $\chi^2 \leq \chi^2_{\alpha}$
 - Ablehnung der Nullhypothese, falls $\chi^2 > \chi^2_{\alpha}$

χ^2 -Anpassungstest

- Beispiel: χ²-Test auf Gleichverteilung
 - Würfel mit k = 6 Augen
 - Prüfung auf Gleichverteilung: H_0 : $f_x(x) = Gleichverteilung$
 - n = 120 Testwürfe:

Augenzahl	1	2	3	4	5	6	Summe
Anzahl n _i	14	27	15	24	13	27	120
$n_i - np_i$	-6	7	- 5	4	- 7	7	0
$\frac{(\mathbf{n}_i - np_i)^2}{np_i}$	1,8	2,45	1,25	0,8	2,45	2,45	11,2

- Erwartungswert der Elementezahl: $np_i = 20$, für alle Klassen gleich
- Prüfgröße: $\chi^2 = 11,2$

χ^2 -Anpassungstest

- Beispiel: χ²-Test auf Gleichverteilung
 - Festlegung des Signifikanzniveaus: $\alpha = 5\%$ $\Rightarrow P(\chi^2 \le \chi^2_\alpha) \le 1 - \alpha = 0.95$
 - Zahl der Freiheitsgrade: m = k 1 = 5
 - Aus Diagramm abgelesen: $\chi_{\alpha}^2 = 11,0$
 - Testentscheidung: $\chi^2 = 11.2 > \chi_\alpha^2 = 11.0$, daher sind die Abweichungen signifikant und die Nullhypothese wird abgelehnt

 Möglicher erneuter Test mit höherer Zahl an Testwürfen, um die Nullhypothese doch noch zu bestätigen

Beurteilung von Fertigungsprozessen

- Zur Bewertung der Qualität von Fertigungsprozessen: Prüfung, ob das Istmaß x eines bestimmten (hohen) Anteils gefertigter Werkstücke innerhalb eines spezifizierten Toleranzfelds [x_{\min} , x_{\max}] liegt
- Annahme einer Normalverteilung für das Istmaß x
- Meist Betrachtung der $3\sigma_x$ -Umgebung ($\mu_x \pm 3\sigma_x$) mit $P(|x \mu_x| \le 3\sigma_x) = 99,73\%$, die im Toleranzbereich liegen soll
- Breite des Toleranzfelds: $2\Delta x_s = x_{\text{max}} x_{\text{min}}$
- Abweichung des Stichprobenmittelwerts x̂ von der Toleranzfeldmitte:

$$\Delta \hat{\mathbf{x}} = \left| \frac{1}{2} \left(x_{\text{max}} + x_{\text{min}} \right) - \hat{\mathbf{x}} \right|$$

Beurteilung von Fertigungsprozessen

Prozesspotenzialindex:

$$c_{\rm p} = \frac{x_{\rm max} - x_{\rm min}}{6\sigma_{\rm x}} = \frac{2\Delta x_{\rm s}}{6\sigma_{\rm x}}$$

Gibt an, ob ein Prozess im Prinzip (d. h. nur unter Beurteilung seiner Streuung) das Toleranzfeld einhalten könnte

Prozessfähigkeitsindex:

$$c_{\rm pk} = \frac{\Delta x_{\rm s} - \Delta \hat{x}}{3\sigma_{\rm x}} = c_{\rm p} \left(1 - \frac{\Delta \hat{x}}{\Delta x_{\rm s}} \right)$$

Gibt an, ob die Grenzen des $3\sigma_{\rm x}$ -Bereichs innerhalb des Toleranzfelds liegen

■ Für beide Indizes muss gelten: $c_{\rm p} \ge 1$, $c_{\rm pk} \ge 1$, dann weist der Fertigungsprozess einen Ausschuss < 0,27% auf

Beurteilung von Fertigungsprozessen

- Güte der Fertigung hängt offensichtlich direkt von der Breite der Normalverteilung der Istmaße x ab: schmale Normalverteilung ist robuster gegenüber Schwankungen des Mittelwerts x̂ (d. h. der Fertigungsprozess hat ein höheres Potenzial)
- Ausschussrate p: für Normalverteilung Berechnung über die Gauß'sche Fehlerfunktion:

$$p \approx \frac{1}{2} \left(1 - \operatorname{erf} \left(\frac{3c_{\text{pk}}}{\sqrt{2}} \right) \right)$$

- Angabe von p oft in dpm (defects per million)
- Bei qualitativ besonders hochwertiger Fertigung: Forderung nach Prozessfähigkeitsindex von $c_{\rm pk} > 1,67 \dots 2$ mit resultierender Ausschussrate von $p < 0,3 \dots 0,001$ dpm
- Aber Vorsicht: bei sehr kleinem p darf "praktisch nie" ein Defekt auftreten

Beurteilung von Fertigungsprozessen

- Beispiel: Länge eines Werkstücks
 - Längenmaß sei auf x = 0,609 mm spezifiziert
 - Zulässige Fertigungstoleranzen:

$$x_{\min} = 0.591 \text{ mm} \le x \le x_{\max} = 0.627 \text{ mm}$$

- Stichprobenmessung: Mittelwert $\hat{x} = 0,600 \text{ mm}$, Standardabweichung $s_x = 0,003 \text{ mm} \approx \sigma_x$
- Damit sind

$$\Delta x_{\rm s} = \frac{1}{2}(x_{\rm max} - x_{\rm min}) = 0.018 \text{ mm},$$

$$\Delta \hat{\mathbf{x}} = \left| \frac{1}{2}(x_{\rm max} + x_{\rm min}) - \hat{\mathbf{x}} \right| = 0.009 \text{ mm}$$

• Prozesspotenzialindex $c_{\rm p} = \frac{2\Delta x_{\rm S}}{6\sigma_{\rm x}} = 2$,

Prozessfähigkeitsindex
$$c_{\rm pk} = c_{\rm p} \left(1 - \frac{\Delta \hat{\mathbf{x}}}{\Delta x_{\rm s}} \right) = 1$$
,

- d. h. die Verteilung von x liegt unsymmetrisch im Toleranzfeld
- Ausschussrate: $p \approx \frac{1}{2} \left(1 \operatorname{erf} \left(\frac{3c_{\text{pk}}}{\sqrt{2}} \right) \right) = 1350 \text{ dpm}$

Bestimmung der Ausfallrate

- Aufgabe: Prüfung der vertraglich spezifizierten Ausfallrate für massenhaft gefertigte Produkte, z. B. elektronische Bauteile
- Prüfung kann wegen der großen Anzahl von Exemplaren nur stichprobenweise erfolgen
- n: Zahl der Exemplare,
 - p: Ausfallwahrscheinlichkeit,
 - k: Zahl der in der Stichprobe registrierten Ausfälle
- Wahrscheinlichkeit, dass in der Stichprobe zwischen k_1 und k_2 Exemplare ausgefallen sind (Binomialverteilung):

$$P_n(k_1 \le j \le k_2) = \sum_{i=k_1}^{k_2} {n \choose i} p^i (1-p)^{n-i}$$

■ Für $n \to \infty$ und $p \to 0$ und np = const. gilt das Poisson'sche Theorem, nach dem die Binomialverteilung in die Poissonverteilung übergeht:

$$P_n(k_1 \le j \le k_2) = \sum_{i=k_1}^{k_2} \frac{n^i}{i!} p^i e^{-np}$$

Bestimmung der Ausfallrate

• Wahrscheinlichkeit, dass in der Stichprobe höchstens k defekte Exemplare enthalten sind $(k_1 = 0, k_2 = k)$:

$$P_n(j \le k) = e^{-np} \sum_{i=0}^k \frac{(np)^i}{i!}$$

- Beispiel:
 - Stichprobengröße n = 3000, Ausfallwahrscheinlichkeit $p = 10^{-3}$
 - Wahrscheinlichkeit, dass höchstens z. B. k=5 Exemplare defekt sind:

$$P_n(j \le 5) = e^{-np} \sum_{i=0}^{5} \frac{(np)^i}{i!} = e^{-3 \cdot 10^3 \cdot 10^{-3}} \sum_{i=0}^{5} \frac{(3 \cdot 10^3 \cdot 10^{-3})^i}{5!} = 0,916$$

Bestimmung der Ausfallrate

- In der Praxis (Prüffeld und Einsatz): Verwendung der Ausfallrate λ:
 Kehrwert der mittleren Lebensdauer (mean time to failure, MTTF)
- Zur Prüfung:
 - nt: "Bauelementestunden": Produkt aus Anzahl n der Exemplare in der Stichprobe und der Prüfzeit t
 - λ : Ausfallwahrscheinlichkeit p bezogen auf die Prüfzeit t
- Mit $\lambda \cdot nt = np$:

$$P_n(j \le k) = e^{-np} \sum_{i=0}^k \frac{(np)^i}{i!} = e^{-\lambda nt} \sum_{i=0}^k \frac{(\lambda nt)^i}{i!}$$

Bestimmung der Ausfallrate

- Bestimmung der Ausfallrate λ:
 - Messung der Zahl der Ausfälle k nach durchlaufenen Bauelementestunden
 - Konservativer Ansatz für die Wahrscheinlichkeit, das höchstens k Ausfälle auftreten: $P_n(j \le k) = 0.1$, entspricht dem Signifikanzniveau α Wahrscheinlichkeit, dass mehr als die beobachteten k Ausfälle auftreten: $P_n(j > k) = 1 P_n(j \le k) = 0.9$, entspricht dem Konfidenzniveau 1α
 - Gleichung $P_n(j \le k) = 0.1 = \mathrm{e}^{-\lambda \, nt} \sum_{i=0}^k \frac{(\lambda \, nt)^i}{i!}$ lässt sich als Zuordnung der im Test registrierten Zahl der Ausfälle k zu einem Wert $\lambda \cdot nt$ interpretieren: $\lambda \cdot nt = f(k)$

Bestimmung der Ausfallrate

• Numerische Berechnung der Werte von f(k):

Konfidenzniveau $1 - \alpha$	Zahl der Ausfälle k					
	0	1	2	3	4	5
0,70	1,39	2,69	3,92	5,06	6,27	7,42
0,80	1,61	2,99	4,28	5,52	6,72	7,91
0,90	2,30	3,89	5,32	6,68	7,99	9,27
0,95	3,00	4,74	6,30	7,75	9,15	10,60
0,99	4,60	6,64	8,41	10,04	11,60	13,11

Bestimmung der Ausfallrate

- Grafische Visualisierung der Gleichung $\lambda \cdot nt = f(k)$ mittels doppeltlogarithmischer Darstellung: $\log(\lambda) = \log f(k) \log(nt)$
- Zu Beginn des Tests: k = 0,
 d. h. Bewegung auf der Linie für log f (k = 0)
- Bei Beobachtung des ersten Ausfalls: k = 1, Sprung auf die Linie für $\log f(k = 1)$
- Nach ausreichend langer Zeit: Stabilisierung auf einem Wert für λ
- Bei Frühausfällen: Ausfallrate ist für kürzere Testzeiten höher als der asymptotische Wert

Bestimmung der Ausfallrate

- Zur Reduktion der Testzeiten: Prüfung unter verschärften Bedingungen, z. B. erhöhte Temperatur, erhöhter Druck, Temperaturzyklen
- Berücksichtigung der verschärften Bedingungen mittels eines Raffungsfaktors r, um den die Testzeit gekürzt wird
- Raffungsfaktor r wird experimentell bestimmt

Bestimmung der Ausfallrate

- Beispiel:
 - Produktion von 3 · 10⁶ Bauelementen pro Jahr
 - Davon werden n = 3000 über eine Testzeit von t = 30 Tagen = 720 h getestet
 - Test bei erhöhter Umgebungstemperatur mit einem Raffungsfaktor r = 10
 - Aufgetretene Ausfälle:

k	1	2	3	4	5
t/h	33	167	433	567	720
$r \cdot nt/h$	10^{6}	$5\cdot 10^6$	$1,3\cdot 10^7$	$1,7\cdot 10^7$	$2,16\cdot 10^7$

• Nach Testende (k = 5): Bestimmung der Ausfallrate λ (mit $1 - \alpha = 0.9$):

$$\lambda = \frac{f(k)}{r \cdot nt} = \frac{9,27}{2,16 \cdot 10^7 \text{ h}} = 4,3 \cdot 10^{-7} \text{ h}^{-1}$$

Bestimmung der Ausfallrate

- Beispiel: Einfluss der Größe der Stichprobe
 - Messung der Ausfälle für drei Lieferanten:

```
Lieferant A: k = 0 von n = 500, d. h. 0 dpm
```

Lieferant B: k = 1 von n = 2000, d. h. 500 dpm

Lieferant C: k = 6 von n = 10000, d. h. 600 dpm

- Naheliegende Einschätzung: Lieferant A ist der beste, da keine Ausfälle aufgetreten sind; Lieferant C ist der schlechteste
- Größe der Stichprobe n muss aber richtig berücksichtigt werden, die Rechnung muss daher sein:

```
Lieferant A: k < 1 von n = 500, d. h. < 2000 dpm
```

Lieferant B: k < 2 von n = 2000, d. h. < 1000 dpm

Lieferant C: k < 7 von n = 10000, d. h. < 700 dpm

- Dadurch Umkehrung der Einschätzung: Lieferant C ist der beste
- Bei Lieferant A müssten 1429 Bauteile i. O. geprüft werden, um die gleiche Bewertung wie Lieferant C zu erhalten

Bestimmung der Ausfallrate

- Beispiel: Einfluss der Größe der Stichprobe
 - Fazit: Je niedriger die nachzuweisende Ausfallrate, desto größer muss die Teststichprobe sein
 - Hohe Produktqualität (d. h. niedrige Ausfallrate) lässt sich nur bei hohen Fertigungsstückzahlen nachweisen, bei denen man große Stichproben prüfen kann

Statistische Prozessüberwachung

- Produktmerkmale in einem Fertigungsprozess variieren: systematische und zufällige Variationen
- Zufällige, mittelwertfreie Störungen lassen sich kaum verhindern (außer durch Änderungen im Fertigungsprozess)
- Durch Qualitätssicherung müssen aber systematische Fehler erkannt und korrigiert werden
- Systematischer Fehler muss daher aus den Messwerten extrahiert werden, zufällige Fehler sollen unterdrückt werden
- Einfachstes Verfahren zur Prozessüberwachung: Beobachtung des Stichprobenmittelwerts

$$\hat{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

Statistische Prozessüberwachung

- Beispiel: Systematischer Fehler
 - Sollwert der Länge eines Bauteils: x = 100 mm
 - Messung von n = 6 Bauteilen:

1	2	3	4	5	6
100,1 mm	100,5 mm	99,8 mm	100,0 mm	99,9 mm	100,3 mm

- Stichprobenmittelwert: $\hat{x} = 100,1 \text{ mm}$
- Unter der Annahme, dass die statistische Sicherheit dieser
 Stichprobe hoch genug ist (bei dieser Stichprobe evtl. zu gering)
 besitzt die Fertigung einen systematischen Fehler von 0,1 mm

Statistische Prozessüberwachung

- Systematische Fehler können auch zeitabhängig (instationär) sein, daher reicht die einfache Mittelwertbildung meist nicht aus
- Abhilfe: gleitender Mittelwert (*moving average*, MA) für eine Zeitreihe x(t) von Messungen zu den Zeitpunkten t = iT, $i \in \mathbb{Z}_0^+$:

$$\bar{x}(t) = \frac{1}{m} \sum_{j=0}^{m-1} x(t - jT)$$

d. h. gleitendes "Fenster" der Breite mT, innerhalb dessen der Mittelwert gebildet wird

Statistische Prozessüberwachung

- Gleitender Mittelwert mit symmetrischen Summationsgrenzen (mit m = 2M + 1, d. h. ungerade Anzahl von Werten x(t) im Fenster): $\bar{x}(t) = \frac{1}{2M+1} \sum_{i=-M}^{M} x(t-jT)$
- Gleitender Mittelwert ist allerdings so nicht kausal (in das Ergebnis gehen zukünftige Werte ein), daher zusätzliche Verzögerung der Länge MT erforderlich

Statistische Prozessüberwachung

- Beispiel: MA-Filterung
 - Zeitreihe: Differenz x(t) zwischen Messwerten und Sollwert
 - x(t) besteht aus einem systematischen Anteil s(t) und einem zufälligen, mittelwertfreien Anteil e(t): x(t) = s(t) + e(t)
 - Bei genügend großem *M*:

$$\bar{x}(t) = \frac{1}{2M+1} \sum_{j=-M}^{M} x(t-jT)$$

$$= \frac{1}{2M+1} \sum_{j=-M}^{M} s(t-jT) + e(t-jT)$$

$$= \frac{1}{2M+1} \left[\sum_{j=-M}^{M} s(t-jT) + \sum_{j=-M}^{M} e(t-jT) \right]$$

$$= \frac{1}{2M+1} \sum_{j=-M}^{M} s(t-jT)$$

$$\approx 0$$

d. h. nur der geglättete systematische Anteil bleibt übrig

Statistische Prozessüberwachung

- Im folgenden: Betrachtung der Eigenschaften des systematischen Anteils s(t)
- s(t) muss nicht zeitlich konstant sein, z. B. aufgrund Wegdriften vom Sollwert
- Näherung für s(t): Signalmodell $s(t) = a_0 + a_1 t + \cdots + a_k t^k$ mit a_1 : Parameter für die (lineare) Drift
- Dadurch Analyse des systematischen Fehlers durch Bestimmung der Modellkoeffizienten a_i
- Prädiktion des weiteren zeitlichen Verlaufs von s(t): frühzeitige Erkennung von unzulässigen Abweichungen
- Statistische Prozessüberwachung: Kontrolle, ob die Parameter a_i und s(t) innerhalb eines vorgegebenen Toleranzintervalls liegen

Statistische Prozessüberwachung

- Dazu Einsatz des Least-Squares-Schätzers (siehe Kap. 2.1): inhärente Unterdrückung zufälliger Fehler und Berechnung der gesuchten Modellparameter a_i
- Signalmodell in zeitkontinuierlicher Form: $y(t) = a_0 \varphi_0(t) + a_1 \varphi_1(t) + \dots + a_k \varphi_k(t) + e(t),$ nicht beschränkt auf Polynomansätze
- Mit t = nT für m + 1 vergangene Messwerte:

$$\widehat{\boldsymbol{y}}_{n} = \begin{bmatrix} \widehat{\boldsymbol{y}}(n) \\ \widehat{\boldsymbol{y}}(n-1) \\ \vdots \\ \widehat{\boldsymbol{y}}(n-m) \end{bmatrix} = \begin{bmatrix} \varphi_{0}(nT) & \cdots & \varphi_{k}(nT) \\ \varphi_{0}((n-1)T) & \cdots & \varphi_{k}((n-1)T) \\ \vdots & \ddots & \vdots \\ \varphi_{0}((n-m)T) & \cdots & \varphi_{k}((n-m)T) \end{bmatrix} \begin{bmatrix} a_{0}(n) \\ a_{1}(n) \\ \vdots \\ a_{k}(n) \end{bmatrix}$$
$$= \boldsymbol{\Phi}_{n} \boldsymbol{a}_{n}$$

■ Bestimmung des Parametervektors a_n zu jedem Zeitpunkt nT als Pseudoinverse:

$$\boldsymbol{a}_n = \left(\mathbf{\Phi}_n^{\mathrm{T}}\mathbf{\Phi}_n\right)^{-1}\mathbf{\Phi}_n^{\mathrm{T}}\mathbf{y}_n$$

Statistische Prozessüberwachung

 Dadurch frühzeitige Erkennung von Veränderungen am Prozess durch Prädiktion künftiger Messwerte:

Statistische Prozessüberwachung

- Beispiel: Sinusgenerator
 - Gewünschte Ausgangsspannung: $u(t) = a_3 \cdot \sin(2\pi f_g t)$
 - Vorüberlegungen: Ausgangsverstärker besitzt lineare Drift a_1t und Offset a_0 , zusätzlich überlagerte harmonische Netzstörung mit $f_{\rm n} = 50 \; {\rm Hz}$ und bekannter Phasenlage
 - Messbares Signal ist damit $y(t) = a_0 + a_1 t + a_2 \sin(2\pi f_n t) + a_3 \sin(2\pi f_g t) + e(t)$
 - Systematische Störeinflüsse sind damit a₀, a₁, a₂

$$\begin{array}{l} \bullet \quad \text{Systematische Störeinflüsse sind damit a_0, a_1, a_2 \\ \bullet \quad \text{LS-Schätzer:} \\ \\ \widehat{\mathbf{y}}_n = \begin{bmatrix} 1 & nT & \sin(2\pi f_{\mathrm{n}} nT) & \sin(2\pi f_{\mathrm{g}} nT) \\ 1 & (n-1)T & \sin(2\pi f_{\mathrm{n}} (n-1)T) & \sin(2\pi f_{\mathrm{g}} (n-1)T) \\ \vdots & \vdots & \vdots & \vdots \\ 1\varphi_0 \big((n-m)T \big) & \sin(2\pi f_{\mathrm{n}} (n-m)T) & \sin(2\pi f_{\mathrm{g}} (n-m)T) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} \end{array}$$

Statistische Prozessüberwachung

- Beispiel: Sinusgenerator
 - Pseudoinverse im Zeitpunkt nT zur Schätzung von a_n :

10

0.02

0.01

0.03

$$\boldsymbol{a}_n = \left(\boldsymbol{\Phi}_n^{\mathrm{T}} \boldsymbol{\Phi}_n\right)^{-1} \boldsymbol{\Phi}_n^{\mathrm{T}} \boldsymbol{y}_n$$

• Drift ab t = 0.045 s

0.06

0.07

0.08

0.05

0.04

Gesuchtes Messergebnis y ist oft nicht gleich dem Messwert x, sondern wird aus mehreren Messwerten x_i bestimmt:

$$y = f(x_1, x_2, ..., x_n) = f(x)$$

- Beispiele:
 - Stichprobenmittelwert $y = \hat{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - Messung des Wirkungsgrades einer Maschine: dazu Messung der zugeführten Energie/Leistung (z. B. aus Messung von Volumenstrom und Heizwert) und der erhaltenen Energie/Leistung (z. B. aus Messung von Drehmoment und Winkelgeschwindigkeit)
- Einzelne Messwerte sind aber i. a. fehlerbehaftet und weichen um $\Delta x_i = x_i x_{i0}$ vom richtigen Wert x_{i0} ab
- Fehlerfortpflanzungsgesetz: Ermittlung des Fehlers des Messergebnisses Δy aus den Einzelmessfehlern Δx_i

$$\Delta y = y - y_0 = \sum_{i} \frac{\partial f(\mathbf{x})}{\partial x_i} \bigg|_{\mathbf{x}_0} \Delta x_i$$

mit den Empfindlichkeiten $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_i}$

 Falls nur Fehlergrenzen Δx_{g,i} (d. h. vereinbarte oder garantierte Höchstwerte für betragsmäßige Abweichungen) bekannt sind: Fehlergrenze des Messergebnisses:

$$\Delta y_{g} = \sum_{i} \left| \frac{\partial f(\mathbf{x})}{\partial x_{i}} \right|_{\mathbf{x}_{0}} \Delta x_{g,i}$$

- Sonderfälle:
 - Linearkombination der Messwerte x_i:

$$y = f(\mathbf{x}) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

Fehler des Messergebnisses:

$$\Delta \mathbf{y} = \left. \sum_{i} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_{i}} \right|_{\mathbf{x}_{0}} \Delta \mathbf{x}_{i} = a_{1} \Delta \mathbf{x}_{1} + a_{2} \Delta \mathbf{x}_{2} + \dots + a_{n} \Delta \mathbf{x}_{n}$$

d. h. Gesamtfehler Δy ist Summe aller mit den Koeffizienten a_i gewichteten Einzelfehler Δx_i

- Sonderfälle:
 - Multiplikative Verknüpfung der Messwerte x_i:

$$y = f(\mathbf{x}) = a_1 \mathbf{x}_1^{\alpha_1} \cdot a_2 \mathbf{x}_2^{\alpha_2} \cdot \dots \cdot a_n \mathbf{x}_n^{\alpha_n}$$
$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_i} = a_1 \mathbf{x}_1^{\alpha_1} \cdot \dots \cdot \alpha_i a_i \mathbf{x}_i^{\alpha_{i-1}} \cdot \dots \cdot a_n \mathbf{x}_n^{\alpha_n} = \mathbf{y} \cdot \frac{\alpha_i}{\mathbf{x}_i}$$

Fehler des Messergebnisses:

$$\Delta y = \sum_{i=1}^{n} y \cdot \frac{\alpha_i}{x_i} \cdot \Delta x_i = y \sum_{i=1}^{n} \alpha_i \frac{\Delta x_i}{x_i}$$

Bevorzugte Rechnung mit dem relativen Fehler des Messergebnisses:

$$\frac{\Delta y}{y} = \sum_{i=1}^{n} \alpha_i \frac{\Delta x_i}{x_i}$$

d. h. relativer Gesamtfehler $\frac{\Delta y}{y}$ ist Summe aller mit den Koeffizienten a_i gewichteten relativen Einzelfehler $\frac{\Delta x_i}{x_i}$

- Beschreibung zufälliger Fehler mittels Standardabweichung $\sigma_{\rm x}$ bzw. Varianz $\sigma_{\rm x}^2$
- Annahme: betragsmäßig kleine, zufällige Messfehler Δx_i : Erwartungswert des Messergebnisses wird nicht verändert: $\mu_y \approx y_0$
- Dann lässt sich die Varianz σ_y^2 approximieren:

$$\sigma_{\mathbf{y}}^{2} = \mathbb{E}\left\{ \left(\mathbf{y} - \mu_{\mathbf{y}} \right)^{2} \right\}$$

$$\approx \mathbb{E}\left\{ \left(\sum_{i} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_{i}} \Big|_{\mathbf{x}_{0}} (\mathbf{x}_{i} - \mathbf{x}_{i0}) \right) \left(\sum_{j} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_{j}} \Big|_{\mathbf{x}_{0}} (\mathbf{x}_{j} - \mathbf{x}_{j0}) \right) \right\}$$

$$= \sum_{i} \sum_{j} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_{i}} \Big|_{\mathbf{x}_{0}} \cdot \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_{j}} \Big|_{\mathbf{x}_{0}} \mathbb{E}\left\{ (\mathbf{x}_{i} - \mathbf{x}_{i0}) (\mathbf{x}_{j} - \mathbf{x}_{j0}) \right\}$$

$$\approx \sum_{i} \sum_{j} \frac{\partial f}{\partial \mathbf{x}_{i}} (\mathbf{x}_{0}) \cdot \frac{\partial f}{\partial \mathbf{x}_{j}} (\mathbf{x}_{0}) \cdot C_{\mathbf{x}_{i}\mathbf{x}_{j}}$$

- Varianz σ_y^2 : $\sigma_y^2 \approx \sum_i \sum_j \frac{\partial f}{\partial x_i}(\mathbf{x}_0) \cdot \frac{\partial f}{\partial x_j}(\mathbf{x}_0) \cdot C_{\mathbf{x}_i \mathbf{x}_j}$
- Für stochastisch unabhängige Messwerte x_i : $C_{x_ix_j} = \sigma_{x_i}^2 \delta_i^j$:

Gauß'sches Fehlerfortpflanzungsgesetz:

$$\sigma_{\rm y}^2 \approx \sum_i \left[\frac{\partial f}{\partial {\rm x}_i} ({\bf x}_0) \right]^2 \sigma_{{\rm x}_i}^2$$

d. h. die Varianz σ_y^2 des Messergebnisses ist eine gewichtete Addition der Varianzen der Einzelmesswerte $\sigma_{x_i}^2$

Für stochastisch abhängige Messwerte:

$$\sigma_{\mathbf{y}}^2 \approx \sum_{i} \left[\frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{x}_0) \right]^2 \sigma_{\mathbf{x}_i}^2 + \sum_{i} \sum_{j \neq i} \frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{x}_0) \cdot \frac{\partial f}{\partial \mathbf{x}_j}(\mathbf{x}_0) \cdot \sigma_{\mathbf{x}_i} \sigma_{\mathbf{x}_j} \cdot \rho_{\mathbf{x}_i \mathbf{x}_j}$$
 mit Korrelationskoeffizient $\rho_{\mathbf{x}_i \mathbf{x}_j}$

 Siehe auch "Guide to the Expression of Uncertainty in Measurement" (GUM), Vorlesung Fertigungsmesstechnik

- Falls Messergebnis y als Produkt oder Quotient gebildet wird:
 - Relativer Fehler (s. o.): $\frac{\Delta y}{y} = \sum_{i=1}^{n} \alpha_i \frac{\Delta x_i}{x_i}$
 - Relative Varianz:

$$\left(\frac{\sigma_{y}}{y_{0}}\right)^{2} = E\left\{\frac{\Delta y^{2}}{y_{0}^{2}}\right\} = E\left\{\sum_{i=1}^{n} \alpha_{i} \frac{\Delta x_{i}}{x_{i0}}\right\}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} E\left\{\frac{\Delta x_{i}}{x_{i0}} \frac{\Delta x_{j}}{x_{j0}}\right\}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \frac{C_{x_{i}x_{j}}}{x_{i0}x_{i0}}$$

• Für statistisch unabhängige Messwerte x_i : $C_{x_ix_j} = \sigma_{x_i}^2 \delta_i^j$: Gauß'sches Fehlerfortpflanzungsgesetz für die relative Varianz:

$$\left(\frac{\sigma_{\rm y}}{y_0}\right)^2 \approx \sum_i \alpha_i^2 \left(\frac{\sigma_{\rm x_i}}{x_{i0}}\right)^2$$

- Beispiel: Bestimmung der Masse aus Volumen
 - Masse einer in einem zylindrischen Tank (Durchmesser d, Füllhöhe h) gelagerten Flüssigkeit (Dichte ρ):

$$\mathbf{m} = \pi \left(\frac{\mathbf{d}}{2}\right)^2 \mathbf{h} \, \rho$$

Messergebnis wird als Produkt erhalten mit Exponenten:

$$\alpha_{\rm d} = 2, \, \alpha_{\rm h} = 1, \, \alpha_{\rm o} = 1$$

■ Relative Varianz: $\left(\frac{\sigma_y}{y_0}\right)^2 \approx \sum_i \alpha_i^2 \left(\frac{\sigma_{x_i}}{x_{i0}}\right)^2$:

$$\left(\frac{\sigma_{\rm m}}{\rm m}\right)^2 \approx 4\left(\frac{\sigma_{\rm d}}{\rm d}\right)^2 + \left(\frac{\sigma_{\rm h}}{\rm h}\right)^2 + \left(\frac{\sigma_{\rm p}}{\rm \rho}\right)^2$$

■ Lässt sich z. B. der Durchmesser auf $\frac{\sigma_d}{d} = 1\%$, die Höhe auf $\frac{\sigma_h}{h} = 0.5\%$, die Dichte auf $\frac{\sigma_\rho}{\rho} = 0.9\%$ genau bestimmen, folgt für die relative Standardabweichung der Masse:

$$\frac{\sigma_{\rm m}}{\rm m} = \sqrt{4 + 0.25 + 0.81}\% = 2.2\%$$