מבחן סטטיסטי מס' 12: הסקה על יחס שונויות של שתי אוכלוסיות נורמליות בלתי תלויות

סימונים:

אוכלוסייה 2

אוכלוסייה 1

שונות באוכלוסייה - σ_2^2

שונות באוכלוסייה- σ_1^2

בודל מדגם - n₂

גודל מדגם $-n_1$

(אומד לשונות) שונות מדגמית (אומד לשונות) אומד - S_2^2 שונות מדגמית (אומד לשונות) - S_1^2

$$\frac{(n_1 - 1)S_1^2}{\sigma_1^2} = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x})^2}{\sigma_1^2} \to \chi_{n_1 - 1}^2$$

$$\frac{(n_2-1)S_2^2}{\sigma_2^2} = \frac{\sum_{i=1}^{n_2} (x_i - \bar{x})^2}{\sigma_2^2} \to \chi_{n_2-1}^2$$

$(n_2-1)S_2^2$	$\sum_{i=1}^{n_2} (x_i - \bar{x})$)2	$(n_1-1)S_1^2$	$\sum_{i=1}^{n} (x_i - \bar{x})$)2 ~ 22
σ_2^2	σ_2^2	$-\rightarrow \chi_{n_2-1}$	σ_1^2	σ_1^2	$-\rightarrow \chi_{n_1-1}$
71	_22	7,7	_22		2011 201111

	2 2		1
$H_0 \sigma_1^2 = \sigma_2^2$	H_0 $\sigma_1^2 \ge \sigma_2^2$	$H_0 \sigma_1^2 \leq \sigma_2^2$	השערת אפס
$H_1 \sigma_1^2 \neq \sigma_2^2$	H_1 $\sigma_1^2 < \sigma_2^2$	$H_1 \sigma_1^2 > \sigma_2^2$	אלטרנטיבה
$R = \left\{ F_{cal} > F_{1-\frac{\alpha}{2},n_1-1,n_2-1} \right\}$ $P_{red} = \left\{ F_{cal} < F_{\frac{\alpha}{2},n_1-1,n_2-1} \right\}$ $\frac{\alpha}{2}$ $\frac{\alpha}{2}$	$R = \left\{ F_{cal} < F_{\alpha, n_1 - 1, n_2 - 1} \right\}$		$F_{cal} = \frac{s_1^2}{s_2^2}$ $S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$

רווח סמך ליחס שונויות:

$$p\left(\underbrace{\frac{S_1^2}{S_2^2 \times F_{1-\frac{\alpha}{2},n_1-1,n_2-1}}}_{a} < \frac{\sigma_1^2}{\sigma_2^2} < \underbrace{\frac{S_1^2}{S_2^2 \times F_{\frac{\alpha}{2},n_1-1,n_2-1}}}_{b}\right) = 1 - \alpha$$

נוסחה שימושית:

 $F_{\alpha,m,n} = \frac{1}{F_{1-\alpha,n,m}}$ $F_{\alpha,m,n} = \frac{1}{F_{1-\alpha,n,m}}$ $F_{\alpha,m,n} = \frac{1}{F_{1-\alpha,n,m}}$