

dimensionless $x = \frac{G^2}{2Mv}$ and $y = \frac{v}{E}$, both [0, 1]

Only Lorentz scalars are v, Q², W², but W² depends on v, Q² hadronic parts will only depend on v, Q²

i) Elastic scattering: $X = p \rightarrow W^2 = M^2$ $\longrightarrow 2Mv = 6^2$ $\longrightarrow z = 4$

2) Single pion inelastic rathering: $X = p + TT^0$, $M + TT^+$ $W^2 = (pp + p TT) = (Mp + MTT)^2 + ... > (Mp + MTT)^2$

3) Complicated final states: We continuous

Elastic scattering ep -> ep -> k,k,0. pick 2

do = $(2\pi)^4 \delta^4(\Sigma_p)$ $\frac{d^3k'}{(2\pi)^3 2E'_k}$ $\frac{d^3p'_k}{(2\pi)^2 2E'_p}$ $\frac{e^4}{q^4}$ $\frac{1}{e^4}$ $\frac{$

and hadronic Kenson Lpnr-! In (p+M) y (p+M)

Also
$$F_1^n, F_2^n, G_E^n, G_M^n$$
 for neutron scattering

For proton: $F_1^n(0) = 1$, $F_2^n(0) = K_p = \text{anomalous}$

mognetic moments 1.79

 $F_1^n(0) = Y_1^n + \frac{16F^n}{2M}$ $q_V K_p \approx Y_1^n$ for $G_1^n \in G_2^n$

with K_p developments of $G_1^n \in G_2^n$

For neutron: $F_1^n(0) = 0$, $F_2^n(0) = K_n \approx -1.91$ when $G_1^n \in G_2^n$
 $F_1^n(0) = 0$, $F_2^n(0) = K_n \approx -1.91$ when $G_1^n \in G_1^n$ is overlocked.

Dipole form factor

 $G_1^n(G_1^n) \approx G_1^n(G_1^n)$ is overlocked.

 $G_1^n(G_1^n) \approx G_1^n(G_1^n)$ is $G_2^n \in G_1^n(G_1^n)$. With $G_2^n = 0.91$ $G_1^n \in G_1^n$

Proton change radius:

 $G_1^n(G_1^n) \approx G_1^n(G_1^n) = G_1^n(G_1^n)$

with $G_2^n = G_1^n(G_1^n) = G_1^n(G_1^n)$

with $G_2^n = G_1^n(G_1^n) = G_1^n(G_1^n)$
 $G_1^n(G_1^n) \approx G_1^n(G_1^n$

A Inelastic scattering: e-p -> e-X Same form for de de de con le wed, with Wy War can only depend on p and q (p'=p+q) - symmetric tensors: ppp, gpq, ppq+pqp, gpv -auti-symmetric leuros: ppg-pgp, eprpe gps But the is symmetric -> War must be too Most general form (ignoring spri-dependence) $W_{\mu\nu} = \left[-\frac{9^{\mu}9^{\nu}}{9^{\mu}} \right] W_{\mu} \left(\frac{0}{0}, \frac{1}{2} \right)$ + 1/92 pr for gr gr [Pr for gr gr] We(Q2, 8)

W, W2 are structure functions $\begin{cases} F_1(x,Q^2) = MW_1(Q^2,v) \\ F_2(x,Q^2) = VW_2(Q^2,v) \end{cases}$ notations

Bjørher scalling: as Ql→ ∞ $F_{1}(x,Q^{2}) \rightarrow F_{1}(x)$ (constant charge) instead of $F,(x,Q^2) \rightarrow 0$ (negligible charge) => scattering independent of small scale note.

-> hard partons inside proton of which the electron, virtual photons satter Quark parkon model (as the precursor to a full understanding of QCD) - clastic scattering: $M_{1}(Q_{5}, V) = \frac{1}{4M_{5}} S(V - \frac{1}{2M_{5}}) = \frac{1}{2M_{5}} S(1 - \frac{1}{2M_{5}})$ $M_{1}(Q_{5}, V) = \frac{1}{4M_{5}} S(V - \frac{1}{2M_{5}}) = \frac{1}{2M_{5}} S(1 - \frac{1}{2M_{5}})$ $F_{1} = MW_{1} = \frac{1}{2} S(1 - \frac{Q^{2}}{2MV}) & F_{2} = S(1 - \frac{Q^{2}}{2MV})$

e.g. 3 quarles

Fifz e? S

e? S

e; S

- distribution of valence quarks inside proton, $q_{i}(x_{i})$ probability density = parkon distribution function $F_{2}(x_{i}Q^{2}) = \sum_{i} dx_{i} q_{i}(x_{i}) e_{i}x_{i} d(x_{i} - G^{2})$ $= 2 \times F_{i}(x_{i}Q^{2}) = \sum_{i} e_{i}^{2} \times q_{i}(x_{i}) e_{i}x_{i} d(x_{i} - G^{2})$

Why is DGLAP relevant to Standard Model?

LHC:
$$p\bar{p} \rightarrow \bar{F} + \chi$$

obtained

finial state

p and \bar{p} are really $q_1\bar{q}$ as $q_1\bar{q}$