

MÉTODOS BASADOS EN MEZCLAS

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(Aula 20) 18.MARZO.2021

Consideremos una observación $\mathbf{x} \in \mathbb{R}^d$ de una variable aleatoria X.

Supongamos que X sigue una distribución f, donde f pertenece a una familia de distribuciones $\{f_{\theta}\}_{\theta \in \Theta}$, parametrizadas por $\theta \in \Theta \subseteq \mathbb{R}^k$. De todas estas distribuciones, queremos hallar aquella que maximiza la probabilidad de observar un cierto dato \mathbf{x} .

Definición

La función de **verosimilitud** $\mathcal L$ mide la bondad de ajuste de un modelo o distribución f_θ con respecto de un conjunto de observaciones. Se define por

- Para distribuciones discretas, $\mathcal{L}(\theta \mid \mathbf{x}) = \mathbb{P}_{\theta}(X = \mathbf{x})$.
- Para distribuciones continuas, $\mathcal{L}(\theta \mid \mathbf{x}) = f_{\theta}(\mathbf{x})$.

Consideremos una muestra $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$ de datos provenientes de una distribución f_θ . Esto es, las \mathbf{x}_i son v.a. i.i.d. con $\mathbf{x}_i \sim \mathbf{x}_1$ y $\mathbf{x}_1 \sim f_\theta$.

Com las \mathbf{x}_i son i.i.d., en este caso, la función de verosimilitud se calcula como

• Para distribuciones discretas

$$\mathcal{L}(\theta \mid \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^n \mathbb{P}_{\theta}(X = \mathbf{x}_i).$$

• Para distribuciones continuas

$$\mathcal{L}(\theta \mid \mathbf{x}) = f_{(\theta,\ldots,\theta)}(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \prod_{i=1}^n f_{\theta}(\mathbf{x}_i).$$

Recordemos que uno de los métodos más útiles para estimar parámetros de una distribución se debe a Fisher, el **método de máxima verosimilitud**. Este consiste en determinar el **estimador de máxima verosimilitud** como aque que maximiza la función \mathcal{L} , esto es

$$\widehat{\theta} = \operatorname{argmax}_{\theta \in \Theta} h(\mathbf{x}_1, \dots, \mathbf{x}_n) \ \mathcal{L}(\theta \mid \mathbf{x}_1, \dots, \mathbf{x}_n), \tag{1}$$

En general, conviene trabajar con algún múltiplo de la función de verosimilitud

$$\mathcal{L}(\theta \mid \mathbf{x}_1,\ldots,\mathbf{x}_n) = h(\mathbf{x}_1,\ldots,\mathbf{x}_n) \prod_{i=1}^n \mathbb{P}_{\theta}(X=\mathbf{x}_i),$$

donde *h* es una función conveniente que sólo depende de la muestra observada.

En la práctica, usualmente se trabaja con la función de log-verosimilitud

$$\ell(\theta) = \log \mathcal{L}(\theta \mid \mathbf{x}_1, \dots, \mathbf{x}_n).$$

En este caso, el problema (1) se escribe como

$$\widehat{\theta} = \operatorname{argmax}_{\theta \in \Theta} \ell(\theta).$$
 (2)

Otras funciones útiles que sirven para encontrar el estimador máximo verosímil son la **función de Score**:

$$S(\theta) = \frac{\partial \ell}{\partial \theta}(\theta) = \frac{\partial}{\partial \theta} \log \mathcal{L}(\theta \mid \mathbf{x}_1, \dots, \mathbf{x}_n).$$

y la función de Información:

$$I(\theta) = -\frac{\partial^2 \ell}{\partial \theta^2}(\theta).$$

(que son los análogos del criterio de la primera y segunda derivadas para hallar óptimos locales):

- el estimador máximo verosímil $\widehat{\theta}$ debe satisfacer $S(\widehat{\theta}) = \frac{\partial \ell}{\partial \theta}(\widehat{\theta}) = 0$.
- Si se cumple lo anterior, entonces $\widehat{\theta}$ es un
 - máximo local, si $I(\widehat{\theta}) \succ o$.
 - mínimo local, si $I(\widehat{\theta}) \prec o$.
 - punto silla, en caso contrario.

Ejemplo: (Estimadores para una distribución normal). Sea $x_1, \ldots, x_n \in \mathbb{R}$ una muestra aleatoria proveniente de una distribución normal $\mathcal{N}(\mu, \sigma^2)$. Denotamos $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$

Queremos estimar μ (asumimos σ conocida). En este caso, la función de verosimilitud para μ es

$$\mathcal{L}(\mu \mid \mathbf{x}) = \prod_{i=1}^n f_{\theta}(\mathbf{x}_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\mathbf{x}_i - \mu)^2}{2\sigma^2}\right) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \prod_{i=1}^n \exp\left(-\frac{(\mathbf{x}_i - \mu)^2}{2\sigma^2}\right).$$

Tomamos $h(\mathbf{x}) = (\sqrt{2\pi}\sigma)^n$ y nos queda

$$\mathcal{L}(\mu \mid \mathbf{x}) = \prod_{i=1}^n \exp\big(-\frac{(x_i - \mu)^2}{2\sigma^2}\big) = \exp\Big(-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}\Big).$$

La función de log-verosimilitud es

$$\ell(\mu) = \log \mathcal{L}(\mu \mid \mathbf{x}) = -\sum_{i=1}^{n} \frac{(\mathbf{x}_i - \mu)^2}{2\sigma^2}.$$

Luego,

$$S(\mu) = \frac{\partial \ell}{\partial \mu} = \sum_{i=1}^{n} \frac{2(x_i - \mu)}{2\sigma^2} = \frac{1}{2\sigma^2} \Big(\sum_{i=1}^{n} x_i - n\mu \Big).$$

De ahí que $S(\mu) = O \implies \sum_{i=1}^{n} x_i - n\mu = O$, y

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Podemos verificar que, en efecto, $\widehat{\mu}$ es un máximo local. Tomamos la función de información

 $I(\mu) = -rac{\partial^2 \ell}{\partial \mu^2}(\widehat{\mu}) = rac{\mathsf{n}}{\mathsf{2}\sigma^2} > \mathsf{0}.$

Esto muestra que $\widehat{\mu}$ es un máximo local, y portanto es el estimador máximo verosímil para μ .

(la media muestra es el estimador máximo verosímil de la media μ , para una normal).

Ejercicio. Asumiendo $\widehat{\mu}$ como parámetro de la media para la normal, mostrar que el estimador máximo verosímil para la varianza σ^2 es la varianza muestral

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \widehat{\mu})^2$$

Punto de partida: K-medias.

Haremos un cambio de notación, k en lugar de g y μ_k en lugar de c_g . Algoritmo: (K-medias)

- Elegir al azar *k* representantes
- Repetir hasta convergencia:
 - Asignar cada dato \mathbf{x}_i al representante μ_k más cercano según la métrica $d(\cdot,\cdot)$.
 - Tomar como nuevos representantes, los centroides μ_k de los datos asociados a un mismo representante.

Observación: minimizar_k $||\mathbf{x}_i - \mu_k||^2 \iff \text{maximizar}_k \exp(-\frac{1}{2}||\mathbf{x}_i - \mu_k||^2)$. $(X \sim \mathcal{N}_d(\mu_k, I))$.

Pensemos ahora que los elementos de un grupo provienen de $\mathbb{P}_k \sim \mathcal{N}(\mu_k, I)$, para $k=1,2,\ldots,K$.

Asignamos cada dato \mathbf{x}_i al índice k que maximiza $\mathbb{P}_k(X = \mathbf{x}_i)$ (de alguna manera, estamos maximizando una especie de verosimilitud).

Ideas nuevas:

- Queremos generalizar a $\mathbb{P}_k(X = \mathbf{x}_i)$.
- Primer paso: $\mathbb{P}_k \sim \mathcal{N}(\mu_k, I)$.
- Definimos v.a. X y Y, donde Y denota el grupo. Trabajamos con $\mathbb{P}_k(Y \mid X = \mathbf{x}_i)$.

Primer intento: definir la distribución de X directamente.

Modelo de mezclas:

Por ejemplo, la mezcla de dos gaussianas

$$\mathbb{P}(X = \mathbf{x}) = (1 - \alpha_1)\mathbb{P}_0(X = \mathbf{x}) + \alpha_1\mathbb{P}_1(X = \mathbf{x}),$$

con \mathbb{P}_0 , \mathbb{P}_1 distribucions gaussianas.

El agrupamiento consiste en estimar los parámetros θ de la distribución de X. La log-verosimilitud es de la forma

$$\ell(\theta) = \sum_{i} \log \left((1 - \alpha_1) \mathbb{P}_{o}(X == \mathbf{x}_i) + \alpha_1 \mathbb{P}_{1}(X = \mathbf{x}_i) \right).$$

Caso general: se supone X proviene de una mezcla de K gaussianas

$$\mathbb{P}(X=\mathbf{x})=\sum_{k=1}^K\alpha_k\mathbb{P}_k(X=\mathbf{x}).$$

Problema:

El modelo es difícil de estimar (la función de log-verosimilitud es difícil de optimizar).

Segundo intento: definir una v.a. Y que indica la categoria (grupo) de X, $\Rightarrow Y \sim Ber(\alpha_1)$.

- antes $\mathbb{P}(X = \mathbf{x}) = P_0(X = \mathbf{x})(1 \alpha_1) + \mathbb{P}_1(X = \mathbf{x})\alpha_1$.
- ahora $\mathbb{P}(X = \mathbf{x}) = \mathbb{P}(X = \mathbf{x} \mid Y = 0)\mathbb{P}(Y = 0) + \mathbb{P}(X = \mathbf{x} \mid Y = 1)\mathbb{P}(Y = 1).$

Conociendo $\{(X_i, Y_i)\}$, la log-verosimilitud es

$$\ell(\theta) = \sum_{i} \log \mathbb{P}(X_{i} = \mathbf{x}_{i}, Y_{i} = y_{i}) = \sum_{i} \log (\mathbb{P}(X_{i} = \mathbf{x}_{i}, Y_{i} = y_{i}) \mathbb{P}(Y_{i} = y_{i}))$$

$$= \sum_{i} \log \mathbb{P}(X_{i} = \mathbf{x}_{i}, Y_{i} = y_{i}) + \sum_{i} \log \mathbb{P}(Y_{i} = y_{i})$$

Como Y_i es binaria, entonces

$$\sum_{i} \log \mathbb{P}(Y_i = y_i) = n_0 \log \mathbb{P}(Y = 0) + n_1 \log \mathbb{P}(Y = 1),$$

con $n_k = \#\{i : y_i = k\}$. Luego

$$\ell(\theta) = \sum_{i:y_i=0} \log \mathbb{P}(Y=0) + \sum_{i:y_i=1} \log \mathbb{P}(Y=1) + n_0 \log(1-\alpha_1) + n_1 \log \alpha_1.$$

Con esto, podemos obtener problemas de optimización desacoplados: más simple de obtener estimadores de máxima verosimillitud. Por ejemplo, si $\mathbb{P}_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$, entonces

- $\widehat{\mu}_k$ es el promedio muestral de $M_k = \{\mathbf{x}_i : y_i = k\}$,
- $\widehat{\sigma}_k$ es la desviación estándar muestral de M_k , $\widehat{\sigma}_k = \frac{n_1}{n_0 + n_1}$.

Problema: no conocemos $\{Y_i\}$.

EM = Expectation Maximization. Idea:

• Si conocemos $\{Y_i\}$, hay una solución cerrada, dada por

$$\widehat{\mu}_{o} = \frac{\sum_{i} (1 - y_{i}) \mathbf{x}_{i}}{n_{o}}, \quad \widehat{\mu}_{1} = \frac{\sum_{i} y_{i} \mathbf{x}_{i}}{n_{1}}.$$
(3)

similarmente para $\widehat{\sigma}_0$ y $\widehat{\sigma}_1$; y $\widehat{\alpha}_1 = \frac{n_0}{n_0 + n_1} = \frac{\sum_i y_i}{n}$.

• Si conocemos los parámetros θ , podemos calcular

$$\mathbb{E}(\mathsf{Y}_i \mid \{\mathbf{x}_i\}, \theta) = \mathbb{E}_{\theta}(\mathsf{Y}_i \mid \{\mathbf{x}_i\}) = \mathbb{P}_{\theta}(\mathsf{Y}_i = 1 \mid \mathbf{x}_i) = \frac{\mathbb{P}_{\theta}(\mathbf{x}_i \mid \mathsf{Y}_i = 1) \, \mathbb{P}_{\theta}(\mathsf{Y}_i = 1)}{\mathbb{P}_{\theta}(\mathbf{x}_i)}.$$

La idea es iterar lo anterior, usando en (3) en lugar de y_i , $\mathbb{E}_{\theta}(Y_i \mid \{\mathbf{x}_i\})$,

$$\widehat{\mu}_{o} = \frac{\sum_{i} \mathbb{E}_{\theta}[(1 - y_{i}) \mid \{\mathbf{x}_{i}\}]}{n_{o}}, \quad \widehat{\mu}_{1} = \frac{\sum_{i} \mathbb{E}_{\theta}[y_{i} \mid \{\mathbf{x}_{i}\}]}{n_{1}}.$$

En general, para una mezcla de K distribuciones, para cada \mathbf{x}_i , tenemos un vector $\gamma_i \in \mathbb{R}^K$, con $\gamma_i(k) = \mathbb{P}(Y_i = k \mid \mathbf{x}_i, \theta)$.

Algoritmo: (EM, forma general).

Sea $T = (Z, Z^m)$, donde Z^m se refiere a la parte faltante.

- 1. Definir $\ell_{o}(\theta, T)$ como la log-verosimilitud basada en los datos completos.
- 2. Adivinar inicialmente $\widehat{\theta}_{o}$.
- 3. Repetir, hasta convergencia:
 - Calcular $Q(\theta \mid \widehat{\theta}^{t}) = \mathbb{E}_{\widehat{\theta}t}(\ell_{o}(\theta, T) \mid Z)$.
 - Definir $\widehat{\theta}^{t+1}$ como el máximo de $Q(\theta \mid \widehat{\theta}^t)$.

En el caso de la mezcla de gaussianas, $\theta = (\mu_0, \mu_1, \sigma_0, \sigma_1, \gamma)$, $T = (Z, Z^m)$ es (X, Y). De ahí

$$\ell_{o}(\theta, T) = \sum_{i: \mathbf{v}_{i} = \mathbf{0}} \log \mathbb{P}_{o, \theta}(\mathbf{X} = \mathbf{x}_{i}) + \sum_{i: \mathbf{v}_{i} = \mathbf{1}} \log \mathbb{P}_{1, \theta}(\mathbf{X} = \mathbf{x}_{i}) + \left(1 - \sum_{i} \frac{\mathbf{y}_{i}}{n}\right) \log(1 - \alpha_{1}) + \sum_{i} \frac{\mathbf{y}_{i}}{n} \log \alpha_{1}.$$

En el caso de una mezcla de gausianas, si se compara EM con k-medias se observa que EM usa asignación fuzzy.

En el trasfondo, EM es un algoritmo de maxmin (o minimax).

Algoritmo MM: Maximizar un minorizador. Para resolver $\operatorname{argmax} f(\cdot)$, construye secuencia de aproximaciones donde

$$\theta^{n+1} = \operatorname{argmax}_{\theta} g(\theta \mid \theta^n),$$

donde g es tal que: $f(\theta^n) = g(\theta^n \mid \theta^n)$, $f(\theta) \geq g(\theta \mid \theta^n)$.

En el trasfondo, EM es un algoritmo de maxmin (o minimax).

Algoritmo MM: También se refiere a minimizar un mayorizador. Para resolver $\operatorname{argmin} f(\cdot)$, construye secuencia de aproximaciones donde $\theta^{n+1} = \operatorname{argmin}_{\theta} g(\theta \mid \theta^n)$,

donde g es tal que: $f(\theta^n) = g(\theta^n \mid \theta^n)$, $f(\theta) \leq g(\theta \mid \theta^n)$.

En este contexto de minimizar un mayorizador (minimax), tenemos la siguiente

Propiedad

$$f(\theta^{n+1}) \leq f(\theta^n)$$
, $\forall n \in \mathbb{N}$.

Prueba:

Como
$$\theta^{n+1} = \operatorname{argmin}_{\theta} g(\theta \mid \theta^n) \text{ y } f(\theta) \leq g(\theta \mid \theta^n)$$
, entonces
$$f(\theta^{n+1}) = g(\theta^{n+1} \mid \theta^n) + f(\theta^{n+1}) - g(\theta^{n+1} \mid \theta^n) \\ \leq g(\theta^n \mid \theta^n) \\ \leq f(\theta^n).$$

Ejemplo: Dada muestra $\{y_i\}$ calcular la mediana, minimizando

$$f(\theta) = \sum_{i} |y_i - \theta|.$$

Se puede mostrar que la función $h_i(\theta \mid \theta^n) = \frac{1}{2} \frac{(y_i - \theta)^2}{|y_i - \theta^n|} + \frac{1}{2} |y_i - \theta^n|$ mayoriza a $|y_i - \theta|$ en θ^n . Definimos $g(\theta \mid \theta^n) = \sum h_i(\theta \mid \theta^n)$,

que mayoriza a $f(\theta)$.

Hay una solución explícita para el mínimo en (4):

$$\theta^{n+1} = \frac{\sum_{i} w_{i}^{n} y_{i}}{\sum_{i} w_{i}^{n}}, \text{ com } w_{i}^{n} = |y_{i} - \theta^{n}|^{-1}.$$

(4)