Cálculo Diferencial

Hugo Del Castillo Mola

29 de agosto de 2022

Índice general

1.	El es	pacio \mathbb{R}^n	2
2.	Тор	logía en \mathbb{R}^n	4
	2.1.	Conjuntos en \mathbb{R}^n	4
	2.2.	Sucesiones en \mathbb{R}^n	8
	2.3.	Subsucesiones en \mathbb{R}^n	10
	2.4.	Compacidad	10
	2.5.	Conexión	11

El espacio \mathbb{R}^n

Notación. (I) Se denota \mathbb{R} el cuerpo de los números reales.

- (II) Fijado $n \in \mathbb{N}$, denotamos \mathbb{R}^n al producto cartesiano de \mathbb{R} por si mismo n veces.
- (III) El espacio \mathbb{R}^n satisface los axiomas de espacio vectorial.

Sean $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ vectores en \mathbb{R}^n

Definición 1.1 (Producto Escalar Euclideo).

$$\langle x,y\rangle = x \cdot y = x_1y_1 + \dots + x_ny_n = \sum_{i=1}^n x_iy_i$$

Proposición 1.1. El producto escalar satisface:

- (I) $\langle x,x\rangle \geq 0$
- (II) $\langle x,x\rangle=0 \Leftrightarrow x=0$
- (III) $\langle x,y \rangle = \langle y,x \rangle$
- (IV) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- (v) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$

Definición 1.2 (Norma Euclidea).

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \ldots + x_n^2}$$

Proposición 1.2. La norma verifica:

(I)
$$||x|| = 0 \Leftrightarrow x = 0$$

(II)
$$||\lambda x|| = |\lambda|||x||$$

(III)
$$||x+y|| \le ||x|| + ||y||$$

Observación. $|||x|| - ||y||| \le ||x|| + ||y||$

Definición 1.3 (Distancia Euclidea).

$$d(x,y) = ||x - y|| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Proposición 1.3. La distancia verifica:

(I)
$$d(x,x) = 0 \Leftrightarrow x = y$$

(II)
$$d(x,y) = d(y,x)$$

(III)
$$d(x,y) \le d(x,z) + d(z,y)$$

Definición 1.4 (Ángulo entre dos vectores).

$$\cos \theta(x, y) = \frac{\langle x, y \rangle}{||x|| \cdot ||y||}$$

Teorema 1.1 (Desigualdad de Cauchy).

$$|\langle x,y\rangle| \le ||x|| \cdot ||y||$$

Proposición 1.4.

$$|\langle x, y \rangle| \le ||x|| \cdot ||y|| \Leftrightarrow \exists t \in \mathbb{R} : y = tx$$

Topología en \mathbb{R}^n

2.1. Conjuntos en \mathbb{R}^n

Definición 2.1 (Bola abierta). Sean $a \in \mathbb{R}^n, \ r > 0$ denotamos bola abierta de centro a y radio r al conjunto

$$B(a,r) = \{ x \in \mathbb{R}^n : ||x - a|| < r \}$$

Definición 2.2 (Bola cerrada). Sean $a \in \mathbb{R}^n, \ r > 0$ denotamos bola cerrada de centro a y radio r al conjunto

$$\overline{B}(a,r) = \{ x \in \mathbb{R}^n : ||x - a|| \le r \}$$

Definición 2.3 (Interior de un conjunto). Sea $A \subset \mathbb{R}^n$, denotamos el interior de A como el conjunto

$$\mathring{A} = \{ a \in A, \ r > 0 : B(a, r) \subset A \}$$

Observación. $\mathring{A} \subset A, \ A \subset B \Rightarrow \mathring{A} \subset \mathring{B} \subset B.$

Ejemplo. (I) $A = [0, \infty) \subset \mathbb{R}$, 0 no es un punto interior de A, $\mathring{A} = (0, \infty)$.

- (II) $A = [0,1) \cup \{2\}, \mathring{A} = (0,1)$
- (III) $A = \mathbb{Z}, \mathring{A} = \emptyset$
- (IV) $A = \mathbb{Q}, \mathring{A} = \emptyset$, cualquier intervalo contiene números irracionales.
- (v) $A = \{(x, y) : x > 0, y \ge 0\}, \ \mathring{A} = \{(x, y) : x > 0, y > 0\}.$
- (VI) $A = \{(x, y) : y > 0\}, \ \mathring{A} = A.$

Definición 2.4 (Conjunto abierto). $A \subset \mathbb{R}^n$ es un conjunto abierto si $\mathring{A} = A \Leftrightarrow \forall a \in A, \exists r > 0: B(a,r) \subset A.$

Proposición 2.1. Toda bola abierta B(a,r) es un conjunto abierto.

Proposición 2.2. Propiedades de conjuntos abiertos

- (I) $A \subset \mathbb{R}^n \Rightarrow \mathring{A}$ es abierto.
- (II) La unión arbitraria de abiertos es abierto.
- (III) La intersección finita de abiertos es abierto.

Observación. La interseccióm infinita de abiertos no es abierto.

Ejemplo. Sean $A_k = (0, 1 + \frac{1}{k})$ con k = 1, 2, 3, ... tenemos que, $A_1 = (0, 2), A_2 = (0, 1 + \frac{1}{2}), ...$ (Aquí va un dibujo), $\cap_{k=1}^{\infty} A_k = (0, 1] \Rightarrow$ no es abierto.

Ejemplo. Sea $A = \mathbb{R} \setminus \{0, 1, \frac{1}{2}, ...\}$, se tiene que $A = (-\infty, 0) \cup (1, \infty) \cup \bigcup_{i=1}^{\infty} (\frac{1}{k+1}, \frac{1}{k})$. Por tanto, la unión de abiertos es abierto.

Demostración. (i) Suponemos que $A \subset \mathbb{R}^n$.

Queremos ver que $\forall x \in \mathring{A}, \exists r > 0: B(x,r) \subset \mathring{A}.$ Sea $x \in \mathring{A}$, por la definición de interior de un conjunto tenemos que $\exists r > 0: B(x,r) \subset A.$ Toda bola abierta es un conjunto abierto $\Rightarrow B(x,r) = B(\mathring{x},r) \subset \mathring{A}.$ Por tanto, \mathring{A} es un conjunto abierto.

Demostración. (ii) Suponemos que A_i es abierto $\forall i \in \{0,1,2,...\}$. Queremos ver que $\bigcup_{i=0}^{\infty} A_i$ es abierto. Sea $x \in \bigcup_{i=0}^{\infty} A_i$ tenemos que $\exists i_0 : x \in A_{i_0}$. Luego, A_{i_0} abierto $\Rightarrow \exists r > 0 : B(x,r) \subset A_{i_0}$. Como $A_{i_0} \subset \bigcup_{i=0}^{\infty} A_i$, tenemos que $\forall x \in \bigcup_{i=0}^{\infty} A_i, \exists r > 0 : B(x,r) \subset \bigcup_{i=0}^{\infty} A_i$. Por tanto, la unión arbitraria de abiertos es abierto.

Demostración. (iii) Suponemos que A_i es abierto $\forall i \in \{0,1,...,n\}$. Queremos ver que $\bigcap_{i=0}^n A_i$ es abierto. Sea $x \in \bigcap_{i=0}^n A_i \Rightarrow x \in A_i$, $\forall i \in \{0,1,...,n\}$. Como todo conjunto A_i es abierto tenemos que, $\forall i \in \{0,1,...,n\}, \exists r > 0: B(x,r) \subset A_i$. Sea $r = \min\{r_0,r_1,...,r_n\}$, entonces $B(x,r) \subset \bigcap_{i=0}^n A_i$. Por tanto, la intersección finita de abiertos es abierto.

Observación. La intersección infinita de abiertos no es necesariamente abierto.

Definición 2.5 (Adherencia). Sea $A \subset \mathbb{R}^n$, denotamos la adherencia de A como el conjunto $\overline{A} := \{x \in \mathbb{R}^n : \forall r > 0, B(x,r) \cap A \neq \emptyset\}.$

Ejemplo. (I) $A=\{\frac{1}{n}, n=1,2,...\}\subset \mathbb{R}$ entonces, $\overline{A}=A\cup\{0\}.$

- (II) $A = \mathbb{Z}$ (insertar dibujo) entonces, $A = \overline{A}$.
- (III) $A = \mathbb{Q} \subset \mathbb{R}$ entonces, $\overline{A} = \mathbb{R}$.
- (IV) $A = \mathbb{I} \subset \mathbb{R}$ entonces, $\overline{A} = \mathbb{R}$

Definición 2.6 (Frontera). Sea $A \subset \mathbb{R}^n$, denotamos la frontera de A como el conjunto $\partial A := \overline{A} \setminus \mathring{A}$.

Proposición 2.3. Sea $A \subset \mathbb{R}^n, \ x \in \partial A \Leftrightarrow \forall r > 0, \ B(x,r) \cap A \neq \emptyset$ y $B(x,r) \cap (\mathbb{R}^n \setminus A) = \emptyset.$

Ejemplo. (1) $A=\{(x,y);y>0\}, \mathring{A}=A, \overline{A}=\{(x,y);y\geq 0\}, \partial A\{(x,y):x\in\mathbb{R}.$

- (II) $A=\{(x,y,z): x^2+y^2+z^2<1, z\geq 0\}, \mathring{A}=\{(x,y,z): x^2+y^2+z^2<1, z>0\}, \overline{A}=\{(x,y,z): x^2+y^2+z^2\leq 1, z\geq 0\}, \partial A=\{(x,y,z): x^2+y^2+z^2=1, z=0\}$
- (III) $A = \bigcup_{k=1}^{\infty} [0,1] \times [\frac{1}{2k-1}, \frac{1}{2k}], \mathring{A} = \bigcup_{k=1}^{\infty} (0,1) \times (\frac{1}{2k-1}, \frac{1}{2k}), \overline{A} = A \cup \{(x,0): 0 \le x \le 1\}, \partial A = \bigcup_{k=1}^{\infty} \partial A_k \cup \{(x,0): 0 \le x \le 1\}$

Proposición 2.4 (Conjunto cerrado). Sea $A \subset \mathbb{R}^n$, A es cerrado $\Leftrightarrow \overline{A} = A$.

Observación. Hay conjuntos que no son ni abiertos ni cerrados.

Demostración. (\Rightarrow) Suponemos que A es cerrado. Queremos ver que $A=\overline{A}$. Sabemos que A cerrado $\Rightarrow \forall \{x_k\} \subset A: \{x_k\} \to a \Rightarrow a \in A$. Por la caract. de adherencia tenemos que $\{x_k\} \subset A: \{x_k\} \to a \Rightarrow a \in \overline{A}$ Por tanto, $\overline{A} \subset A$ y por la def. de adherencia $A \subset \overline{A} \Rightarrow A = \overline{A}$

 (\Leftarrow) Suponemos que $A=\overline{A}$. Queremos ver que A es cerrado. Sea $a\in\overline{A}$, por la caracterización de adherencia, $\exists \{x_k\}\subset A: \{x_k\}\to a$. Como $A=\overline{A}$ tenemos que $a\in A$. Entonces, por la caracterización de cerrado, $\forall \{x_k\} \to a \in \mathbb{R}^n \Rightarrow a \in A \Rightarrow A$ es cerrado.

Proposición 2.5. Propiedades conjuntos cerrados

- (I) A es cerrado $\Leftrightarrow \mathbb{R}^n \setminus A$ es abierto.
- (II) A es cerrado $\Leftrightarrow \partial A \subset A$.
- (III) La unión finita de cerrados es cerrado.
- (IV) La intersección arbitraria de cerrados es cerrado.

Ejemplo. Aquí hay un ejemplo.

Demostración. (i) (\Rightarrow) Suponemos que A es cerrado. Queremos ver que $\forall x \in (\mathbb{R}^n \setminus A), \exists r > 0: B(x,r) \subset A$. Dado que A es cerrado $\Rightarrow A = \overline{A}$ y por la definición de adeherencia si $x \in A$, $(A = \overline{A})$ entonces $\forall r > 0: B(x,r) \cap A \neq \emptyset$. Sea $x \in (\mathbb{R}^n \setminus A)$ por tanto, $\exists r > 0: B(x,r) \cap A = \emptyset$. Como $B(x,r) \cap A \Rightarrow B(x,r) \subset (\mathbb{R}^n \setminus A)$, tenemos que $\forall x \in (\mathbb{R}^n \setminus A), \exists r > 0$ tal que $B(x,r) \subset (\mathbb{R}^n \setminus A)$ y $(\mathbb{R}^n \setminus A) = (\mathbb{R}^n \setminus A)$ por lo que concluimos que $(\mathbb{R}^n \setminus A)$ es abierto.

 $(\Leftarrow) \mbox{ Suponemos que } (\mathbb{R}^n \setminus A) \mbox{ es abierto. Queremos llegar a } \\ \forall x \in A, \forall r > 0: B(x,r) \cap A \neq \emptyset. \mbox{ } (\mathbb{R}^n \setminus A) \mbox{ abierto} \Rightarrow (\mathbb{R}^n \setminus A) = (\mathbb{R}^n \ \ A). \\ Si \ x \in (\mathbb{R}^n \setminus A), \mbox{ entonces } \exists r > 0: B(x,r) \subset (\mathbb{R}^n \setminus A). \mbox{ Sea } x \in A, \mbox{ entonces } \\ \forall r > 0: B(x,r) \subset A, \mbox{ es decir, } \forall r > 0: B(x,r) \cap A \neq \emptyset. \\ Por \mbox{ lo que } A = \overline{A} \mbox{ y concluimos que } A \mbox{ es cerrado.} \\ \end{cases}$

Demostración. (ii) (\Rightarrow) Suponemos que A es cerrado. Queremos ver que $\partial A \subset A$. A cerrado $\Rightarrow A = \overline{A}$ entonces, por la definición de frontera, $\partial A = \overline{A} \setminus \mathring{A} = A \setminus \mathring{A}$. Por tanto, $\partial A \subset A$.

 $(\Leftarrow) \ \, \text{Suponemos que } \partial A \subset A. \ \, \text{Queremos ver que } A \ \, \text{es cerrado. Sabemos} \, \text{que } A \subset \overline{A}. \ \, \text{Por la definición de frontera tenemos que} \\ \partial A = \overline{A} \setminus \mathring{A} \Rightarrow \partial A \cup \mathring{A} = \overline{A}. \ \, \text{Sea} \, \, x \in \overline{A} \, \, \text{entonces,} \, \, x \in \partial A \, \, \text{ó} \, \, x \in \mathring{A}. \, \, \text{Si} \\ x \in \partial A, \, \, \text{como} \, \, \partial A \subset A \, \, \text{entonces,} \, \, x \in A. \, \, \text{Si} \, \, x \in \mathring{A} \, \, \, \text{como} \, \, \mathring{A} \subset A \, \, \text{entonces,} \\ x \in A. \, \, \text{Por tanto,} \, \, A \subset \overline{A} \, \, y \, \, \overline{A} \subset A \Rightarrow A = \overline{A} \, \, \text{por lo que } A \, \, \text{es cerrado.} \\ \end{cases}$

Demostración. (iii) Suponemos que A_i es cerrado $\forall i \in \{1,...,k\}$. Queremos ver que $\cup_{i=0}^k A_i$ es cerrado. Como $(\mathbb{R}^n \setminus A_i)$ es abierto $\forall i \in \{1,...,k\}$, si $x \in (\mathbb{R}^n \setminus \bigcup_{i=1}^k A_i) = \bigcap_{i=1}^k (\mathbb{R}^n \setminus A_i)$, dado que la intersección finita de abiertos es abierto, tenemos que la unión finita de cerrados es cerrado.

Demostración. (iv) Suponemos que A_i es cerrado $\forall i \in \{1,2,...\}$. Queremos ver que $\cap_{i=0}^{\infty} A_i$ es cerrado. Como $(\mathbb{R}^n \setminus A_i)$ es abierto $\forall i \in \{1,2,...\}$, si $x \in (\mathbb{R}^n \setminus \cap_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} (\mathbb{R}^n \setminus A_i)$, dado que la unión arbitraria de abiertos es abierto, tenemos que la intersección arbitraria de cerrados es cerrado.

Definición 2.7 (Puntos de acumulación). Sea $A \subset \mathbb{R}^n$, llamamos conjuto de puntos de acumulación al conjunto

$$A' = \{ x \in \mathbb{R}^n : \forall r > 0, B(x, r) \cap A \setminus \{x\} \neq \emptyset. \}$$

Observación. $A' \subset \overline{A}$.

Proposición 2.6. Sea $A \subset \mathbb{R}^n, \ x \in A' \Leftrightarrow \ \forall r > 0, \ B(x,r) \cap A$ es un conjunto infinito.

Definición 2.8 (Punto aislado). *Sea* $A \subset \mathbb{R}^n$, $a \in A$ *es aislado* \Leftrightarrow , $\exists r > 0$: $B(a,r) \cap A = \{a\}$.

Ejemplo. Aquí hay un ejemplo

Proposición 2.7. Sea $A \subset \mathbb{R}^n$, $\overline{A} = A' \cup \{puntos \ aislados\}$.

Ejemplo. Aquí hay un ejemplo.

2.2. Sucesiones en \mathbb{R}^n

Definición 2.9 (Sucesión convergente). Sea $\{x_k\} \subset \mathbb{R}^n$ una sucesión:

- (I) $\{x_k\}$ es Cauchy si $\forall \epsilon > 0, \exists N \in \mathbb{N} : ||x_k x_m|| < \epsilon, \forall k, m \ge N.$
- (II) $\{x_k\} \to a \text{ si } \forall \epsilon > 0, \exists N \in \mathbb{N} : ||x_k a|| < \epsilon, \forall k \ge N.$

Observación. $x, y \in \mathbb{R}^n, ||x - y||_{\infty} \le ||x - y|| \le \sqrt{n}||x - y||_{\infty}$

Proposición 2.8. Sean $\{x_k\} \subset \mathbb{R}^n, \ a \in \mathbb{R}^n$

- (I) $\{x_k\}$ es Cauchy \Leftrightarrow $\{x_k^i\}$ es Cauchy para $1 \le i \le n$.
- (II) $\{x_k\} \to a \iff \{x_k^i\} \to a^i \text{ para } 1 \le i \le n.$

Demostración. (i) (\Rightarrow) Suponemos que $\{x_k\} \subset \mathbb{R}^n$ es Cauchy. Queremos ver que $\{x_k^i\}$ es Cauchy $\forall i \in \{1,2,...,n\}$. Sabemos que $\{x_k\}$ Cauchy $\Rightarrow \forall \epsilon > 0, \exists N \in \mathbb{N}: ||x_k - x_m|| < \epsilon, \forall k, m \geq N$. Como $||x_k - x_m|| \geq ||x_k - x_m||_{\infty}$ y $||x_k - x_m||_{\infty} = \sup\{\{x_k^i - x_m^i\}_{i=0}^n\}$, tenemos que $\epsilon > ||x_k - x_m|| \geq ||x_k - x_m|| \geq ||x_k - x_m||_{\infty} \geq ||x_k^i - x_m^i||, \forall i \in \{1,2,...,n\}$. Por tanto, $\{x_k^i\}$ es Cauchy $\forall i \in \{1,2,...,n\}$.

Demostración. (ii) (\Rightarrow) Suponemos que $\{x_k\} \rightarrow a$. Queremos ver que $\{x_k^i\} \rightarrow a^i, \forall i \in \{1,2,...,n\}$. Sabemos que $\{x_k\} \rightarrow a \Rightarrow \forall \epsilon > 0, \exists N \in \mathbb{N}: ||x_k-a|| < \epsilon, \forall k \geq N$. Como $||x_k-a|| \geq ||x_k-a||_{\infty} \text{ y } ||x_k-a||_{\infty} = \sup\{\{x_k^i-a^i\}_{i=0}^n\}$, tenemos que $\epsilon > ||x_k-a|| \geq ||x_k-a||_{\infty} \geq |x_k^i-a^i|, \forall i \in \{1,2,...,n\}$. Por tanto, $\{x_k^i\} \rightarrow a^i, \forall i \in \{1,2,...,n\}$.

 $(\Leftarrow) \ \ Suponemos \ \{x_k^i\} \rightarrow a^i, \forall i \in \{1,2,...,n\}. \ \ Queremos \ ver \ que \ \{x_k\} \rightarrow a. \ \ Sabemos \ que \ \{x_k^i\} \rightarrow a^i \Rightarrow \forall \epsilon > 0, \exists N_i \in \mathbb{N}: |x_k^i - a^i| < \epsilon, \forall k \geq N_i. \ \ Sean \ N = \max\{N_1,...,N_n\} \ \ tenemos \ que \ k \geq N \Rightarrow |x_k^i - a^i| < \epsilon, \forall i \in \{1,2,...,n\}. \ \ Como \ ||x_k - a|| \leq \sqrt{n}||x_k - a||_{\infty} \ y \ ||x_k - a||_{\infty} = \sup\{\{x_k^i - a^i\}_{i=0}^n\} \ \ entonces \ \ ||x_k - a|| \leq \sqrt{n}||x_k - a||_{\infty} \leq \sqrt{n}|x_k^i - a^i| < \epsilon\sqrt{n}, \forall i \in \{1,2,...,n\}, \ \ por \ loque \ \ concluimos \ que \ \{x_k\} \rightarrow a.$

Observación. $\{x_k\} \to a \Rightarrow \{x_k\}$ es Cauchy.

Definición 2.10 (Espacio Completo). Sea (X,d) un espacio métrico. (X,d) es completo si toda sucesión de Cauchy converge a punto en el espacio.

Teorema 2.1. Sea $\{x_k\} \subset \mathbb{R}^n, \{x_k\}$ es Cauchy $\Leftrightarrow \exists a \in \mathbb{R}^n : \{x_k\} \to a$.

Proposición 2.9. Caracrterización por sucesiones:

- (I) (Adherencia) $a \in \overline{A} \iff \exists \{x_k\} \subset A : \{x_k\} \to a$.
- (II) (Acumulación) $a \in A' \Leftrightarrow \exists \{x_k\} \subset A \setminus \{a\} : \{x_k\} \to a$.

Demostración. (i) (\Rightarrow) Suponemos que $a \in \overline{A}$. Queremos ver que $\exists \{x_k\} \subset A: \{x_k\} \to a \in \mathbb{R}^n$. Sabemos que $a \in \overline{A} \Rightarrow \forall r > 0, B(a,r) \cap A \neq \emptyset$. Sea $r = \frac{1}{k}$, tenemos que $\exists \{x_k\} \subset B(a,\frac{1}{k}) \cap A$. Entonces, $\exists \{x_k\} \subset A: ||x_k-a|| < \frac{1}{k} \Rightarrow \exists \{x_k\} \subset A: \{x_k\} \to a \in \mathbb{R}^n$

 $(\Leftarrow) \mbox{ Suponemos que } \exists \{x_k\} \subset A: \{x_k\} \rightarrow a \in \mathbb{R}^n. \mbox{ Queremos ver que } a \in \overline{A}. \mbox{ Sabemos que } \{x_k\} \rightarrow a \Rightarrow \forall \epsilon, \exists N \in \mathbb{N}: ||x_k-a|| < \epsilon, \forall k \geq N. \mbox{ Sea } \epsilon = r \mbox{ tenemos que, } \forall r > 0, \exists N \in \mathbb{N}: ||x_k-a|| < r, \forall k \geq N. \mbox{ Entonces, } \forall r > 0, \exists N \in \mathbb{N}: x_k \subset B(a,r), \forall k \geq N. \mbox{ Como } x_k \subset B(a,r), \forall k \geq N \mbox{ y} \mbox{ } B(a,r) \subset A, \mbox{ tenemos que } \forall r > 0, B(a,r) \cap A \neq \emptyset. \mbox{ Por tanto, } a \in \overline{A}. \mbox{ } A \in \mathbb{R} \mbox{ } A \in \mathbb{R$

Demostración. (ii) Análogo a 1.

Proposición 2.10. (Conjunto cerrado, caracterización por sucesiones) $A \subset \mathbb{R}^n$ es cerrado $\Leftrightarrow \forall \{x_k\} \subset A, \{x_k\} \rightarrow a \in \mathbb{R}^n \Rightarrow a \in A.$

Demostración. (\Rightarrow) Suponemos que A es cerrado. Queremos ver que $\forall \{x_k\} \subset A, \{x_k\} \to a \in \mathbb{R}^n \Rightarrow a \in A$. Sabemos que A cerrado $\Rightarrow A = \overline{A}$. Sea $\{x_k\} \subset A : \{x_k\} \to a \in \mathbb{R}^n$, por la caracterización de adherencia tenemos que $a \in \overline{A}$ y por la definición de cerrado tenemos que $A = \overline{A} \Rightarrow a \in A$. Por tanto, $\forall \{x_k\} \subset A, \{x_k\} \to a \in \mathbb{R}^n \Rightarrow a \in A$.

 $(\Leftarrow) \ \, \text{Suponemos que} \ \, \forall \{x_k\} \subset A, \{x_k\} \to a \in \mathbb{R}^n \Rightarrow a \in A. \ \, \text{Queremos ver que} \\ A \ \, \text{es cerrado. Sabemos, por la definicón de adherencia, que} \ \, A \subset \overline{A}. \ \, \text{Veamos} \\ \text{que} \ \, \overline{A} \subset A. \ \, \text{Sea} \ \, a \in \overline{A} \ \, \text{entonces,} \ \, \exists \{x_k\} \subset A: \{x_k\} \to a \ \, y \ \, \text{por la hipótesis} \\ \text{inicial tenemos que} \ \, a \in A. \ \, \text{Por tanto,} \ \, A \subset \overline{A} \ \, y \ \, \overline{A} \subset A \Rightarrow A = \overline{A} \Rightarrow A \ \, \text{es cerrado} \\ \text{entonces} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \\ \text{es cerrado} \ \, \text{es cerrado} \ \,$

2.3. Subsucesiones en \mathbb{R}^n

Definición 2.11 (Subsucesión). Sea $\{x_k\} \subset \mathbb{R}^n$ con $k_j < k_{j+1}, \ 1 \leq j \leq n, \ \{x_{k_j}\}$ es una subsucesión.

Observación. $\{x_k\} \rightarrow a \Rightarrow \{x_{k_i}\} \rightarrow a$

Definición 2.12 (Conjunto acotado). $A \subset \mathbb{R}^n$ es acotado si $\exists r > 0: A \subset B(0,r)$.

Definición 2.13 (Teorema de Bolzano). $A \subset \mathbb{R}^n$ infinito y acotado $\Rightarrow A' \neq \emptyset$

2.4. Compacidad

Definición 2.14 (Conjunto compacto). $A \subset \mathbb{R}^n$ es compacto si $\forall \{x_k\} \subset A, \exists a \in A : \{x_{k_i}\} \to a$.

Teorema 2.2 (Teorema de Heine-Borel). $A \subset \mathbb{R}^n$ compacto $\Leftrightarrow A$ cerrado y acotado.

Demostración. (\Rightarrow) Primero, suponemos que A es compacto y A no es acotado. Queremos ver que A no es compacto. A compacto $\Rightarrow \forall \{x_k\} \subset A, \exists a \in A: \{x_{k_j}\} \to a$. Pero A no acotado $\Rightarrow \exists \{x_k\} \subset A: \{x_k\} \to \infty \Rightarrow \{x_{k_j}\} \to \infty$. Lo que contradice que A sea compacto. Por tanto, A es acotado.

Segundo, suponemos que A es compacto. Queremos ver que A es cerrado. A compacto $\Rightarrow \forall \{x_k\} \subset A, \exists a \in A: \{x_{k_j}\} \to a$. Entonces, sea $\{x_k\} \subset A: \{x_k\} \to x$ por ser A compacto, tenemos que $\exists \{x_{k_j}\} \to a \in A$ y por la unicidad del límite a=x. Entonces, por la caracterización de cerrado, $\forall \{x_k\} \subset A, \{x_k\} \to a \Rightarrow a \in A$, tenemos que A es cerrado.

Definición 2.15 (Sucesión acotada en \mathbb{R}^n). La sucesión $\{x_k\} \subset \mathbb{R}^n$ es acotada si $\exists r > 0 : ||x_k|| \le r, \ \forall k \in \{1, ..., n\}.$

Teorema 2.3 (Teorema de Bolzano, caracterización por sucesiones). *Toda sucesión acotada en* \mathbb{R}^n *tiene una subsucesión convergente.*

Demostración. Suponemos que $\{x_k\} \subset \mathbb{R}^n : \{x_k\}$ es acotada. Queremos ver que $\exists \{x_{k_j}\} \to x$. Sabemos que $\{x_k\}$ acotada $\Rightarrow \exists R > 0 : ||x_k|| < R, \forall k$. Entonces $x_k \in \overline{B}(0,R), \forall k$. Como $\overline{B}(0,R)$ es cerrado y acotado, tenemos que $\overline{B}(0,R)$ es compacto. Por tanto, $\exists \{x_{k_j}\} \to x$.

Teorema 2.4 (de los conuntos encajados). Sea $A_k \subset \mathbb{R}^n, \ A_k \neq \emptyset$:

- (I) A_k es compacto $\forall k \in \{1,...,n\}$.
- (II) $A_{k+1} \subset A_k, \forall k \in \{1, ..., n\}$

$$\Rightarrow \bigcap_{k=1}^{n} A_k \neq \emptyset$$

Demostración. Suponemos que A_k compacto, $A_{k+1} \subset A_k \forall k \in \{1,...,n\}$. Queremos ver que $\bigcap_{k=1}^n A_k \neq \emptyset$. Sea $x_k \in A_k$ como $A_{k+1} \subset A_k \forall k \in \{1,...,n\}$ tenemos que $\{x_k\} \subset A_1$. Entonces, A_k compacto $\Rightarrow \exists \{x_{k_j}\} \subset A_1 : \{x_{k_j}\} \to x \in A_1$. Sea j_0 tal que $k_{j_0} \geq m$ tenemos que $\forall j \geq j_0, k_j \geq K_{j_0} \geq m \Rightarrow A_{k_j} \subset A_m$. Entonces, $\{x_{k_{j_{0+i}}}\} \subset A_m : \{x_{k_{j_{0+i}}}\} \to x$ y por ser A cerrado , $x \in A_m \Rightarrow \bigcap_{m=1}^\infty A_m \neq \emptyset$.

2.5. Conexión

Definición 2.16 (Conjuntos no conexos). $A \subset \mathbb{R}^n$ no conexo si $\exists U, V$ abiertos con $U, V \neq \emptyset$ tal que

- (1) $A \cap U \neq \emptyset$
- (II) $A \cap V \neq \emptyset$
- (III) $A \subset U \cup V$
- (IV) $U \cap V = \emptyset$

Proposición 2.11. $A \subset \mathbb{R} \Leftrightarrow A$ es un intervalo.

Definición 2.17. $\gamma:[0,1]\to\mathbb{R}^n,\ \gamma(t)=(\gamma_1(t),...,\gamma_n(t)).\ \gamma$ continua:= $\gamma_1,...,\gamma_n$ continuas.

Definición 2.18 (Camino). Sea $A \subset \mathbb{R}^n, x, y \in A$. Un camino en A que conecta x con y es una aplicación $\gamma:[0,1] \to \mathbb{R}^n$ continua tal que $\gamma[0,1] \subset A$ y $\gamma(0) = x$, $\gamma(1) = y$.

Definición 2.19 (Conexión por caminos). Sea $A \subset \mathbb{R}^n$, A es conexo por caminos (c.p.c) si $\forall x, y \in A$, existe un camino en a que conecta x con y.

Ejemplo. Sean $x, y \in \mathbb{R}^n$, $\varphi(t) = (1 - t)x + ty$ donde $\varphi(0) = x$, $\varphi(1) = y$.

Definición 2.20 (Convexo). Sea $A \subset \mathbb{R}^n$, A es convexo si $\forall x, y \in A$, *segmento $[xy] \subset A$. *segemento: $\forall t \in [0,1], \ ((1-t)x+ty) \in A$.

Proposición 2.12. (Propiedades conexo y c.p.c) A convexo $\Rightarrow A$ conexo por caminos.

Teorema 2.5. $A \subset \mathbb{R}^n$ c.p.c $\Rightarrow A$ conexo.

Teorema 2.6. $A \subset \mathbb{R}^n$ abierto, A conexo $\Leftrightarrow A$ c.p.c

Proposición 2.13. Sean $A \subset \mathbb{R}^n$, $x, y, z \in A$. Si se puede conectar x con y en A por un camino y se puede conectar y con z en A por un camino entonces se puede conectar x con z en A por un camino.

Geometría de funciones de varias variables

Notación.

$$f:A\subset\mathbb{R}^n\to\mathbb{R}$$

$$G_f=\{(x,f(x)):x\in A\}\subset\mathbb{R}^{n+1}$$

Definición 3.1 (Conjuntos de nivel). Sea $f:A\subset\mathbb{R}^n\to\mathbb{R},c\in\mathbb{R}$. Llamamos conjunto de nivel al conjunto

$$N_c = \{x \in A : f(x) = c\}$$

3.1. Límites y continuidad

Definición 3.2 (Límite de una función en \mathbb{R}^n). Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}^m,a\in\overline{A},b\in\mathbb{R}^m$.

$$\lim_{x\to a} f(x) = b \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0: \ x \in A, \ 0 < ||x-a|| < \delta \Rightarrow ||f(x)-b|| < \epsilon$$

Definición 3.3 (Continuidad de una función en \mathbb{R}^n). Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}^m,\ a\in A.$

$$f$$
 continua en $a \in A \equiv \lim_{x \to a} f(x) = f(a)$.

f es continua en A si f es continua en a, $\forall a \in A$.

Observación. En la definición de límite f no necesita estar definida en a.

Observación. El límite si existe es único.

Proposición 3.1. (Límite y continuidad, caracterización por sucesiones) Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}^m,\ b\in\mathbb{R}^m$:

- (I) $\lim_{x\to a} f(x) = b \ (a\in \overline{A}) \Leftrightarrow \forall \{x_k\} \subset A\setminus \{a\}: \{x_k\}\to a \Rightarrow \{f(x_k)\}\to b.$
- (II) f es continua en $a \Leftrightarrow \forall \{x_k\} \subset A : \{x_k\} \to a \Rightarrow \{f(x_k)\} \to f(a)$

Demostración. (i) (\Rightarrow) Suponemos que $\lim_{x\to a} f(x) = b$. Sea $\{x_k\} \subset A\setminus\{a\}$, queremos ver que $\lim_{k\to\infty} f(x_k) = b$. Sabemos que $\lim_{x\to a} f(x) = b$ $\Rightarrow \forall \epsilon > 0, \exists \delta > 0:$ si $x\in A, ||x-a||<\delta\Rightarrow ||f(x)-b||<\epsilon$. Como $\{x_k\}\to a$ entonces, $\exists N\in\mathbb{N}: ||x_k-a||<\delta, \forall k\geq N\Rightarrow ||f(x_k)-b||<\epsilon$. Por tanto, tenemos que $\lim_{k\to\infty} f(x_k) = b$.

 $(\Leftarrow) \text{ Suponemos que } \nexists \lim_{x \to a} f(x) \text{ y } \forall \{x_k\} \subset A \setminus \{a\}: \ \{x_k\} \to a \Rightarrow \{f(x_k)\} \to b. \text{ Sabemos que } \nexists \lim_{x \to a} f(x) \Rightarrow \exists \{x_k\}: 0 < ||x_k - a|| < \frac{1}{k} \Rightarrow ||f(x_k) - b|| \geq \epsilon. \text{ Lo que contradice que } \forall \{x_k\} \subset A \setminus \{a\}: \ \{x_k\} \to a \Rightarrow \{f(x_k)\} \to b.$

Demostración. (ii) (\Rightarrow) Suponemos que f es continua en a. Sabemos que f continua en $a\Rightarrow \lim_{x\to a}f(x)=f(a)$. Por la proposición anterior, tenemos que $\lim_{x\to a}f(x)=f(a)\Rightarrow \forall \{x_k\}\subset A:\{x_k\}\to a$ entonces $\{f(x_k)\}\to f(a)$.

 (\Leftarrow) Suponemos que $\lim_{x\to a} f(x) = f(a) \Rightarrow \forall \{x_k\} \subset A : \{x_k\} \to a \Rightarrow \{f(x_k)\} \to f(a)$. Por la proposición anterior, tenemos que $\lim_{x\to a} f(x) = f(a)$. Por tanto, f es continua en a.

Proposición 3.2. (Propiedades de funciones, límites y continuidad) Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, \ b \in \mathbb{R}^m$. $f = (f_1, ..., f_m), \ b = (b_1, ..., b_m)$:

- (I) $\lim_{x\to a} f(x) = b \Leftrightarrow \lim_{x\to a} f_i(x) = b_i$
- (II) f continua en $a \in A \Leftrightarrow f_i$ continua en $a, \forall i \in \{1, ..., m\}$

Proposición 3.3. (Propiedades algebraicas límites de funciones) Sean $f:A\subset\mathbb{R}^n\to\mathbb{R}^m,\ g:A\subset\mathbb{R}^n\to\mathbb{R}^m\ a\in\overline{A},\ b,b'\in\mathbb{R}^m$ tal que $\lim_{x\to a}f(x)=b,\lim_{x\to a}g(x)=b'$:

- (1) $\lim_{x\to a} f(x) + g(x) = b + b'$
- (II) $\lim_{x\to a} \lambda f(x) = \lambda b$
- (III) m = 1; $\lim_{x \to a} f(x)g(x) = bb'$
- (IV) m = 1; $b \neq 0$, $\lim_{x \to a} f(x)/g(x) = b/b'$

Proposición 3.4. (Propiedades algebraicas continuidad de funciones) Sean $f, g: A \subset \mathbb{R}^n \to \mathbb{R}^m$ f, g continuas en a

- (I) f + g, λf continuas en $a, (\lambda \in \mathbb{R})$
- (II) $m=1;\ fg$ continuas en a
- (III) m=1; $\forall x \in A, \ g(x) \neq 0 \Rightarrow f(x)/g(x)$ continua en a.

Proposición 3.5. (Continuidad composición de funciones) Sean $f:A\subset\mathbb{R}^n\to\mathbb{R}^m,\ g:B\subset\mathbb{R}^m\to\mathbb{R}^k$ continuas en a. Si $a\in A$, f continua en a y g continua en $f(a)\Rightarrow g\circ f$ continua en a.

Corolario 3.0.1. Sean $f:A\subset\mathbb{R}^n\to\mathbb{R}^m,\ g:B\subset\mathbb{R}^m\to\mathbb{R}^k$ continuas. Entonces, $g\circ f:A\subset\mathbb{R}^n\to\mathbb{R}^k$ es continua.

Proposición 3.6 (Criterios de no existencia de límite). *Sea* $f : \mathbb{R}^2 \to \mathbb{R}$.

- (I) $Si \exists \{x_k, y_k\} \rightarrow (0, 0) \text{ tal que } \nexists \lim_{k \rightarrow \infty} \{f(x_k, y_k)\} \Rightarrow \nexists \lim_{(x,y) \rightarrow (0,0)} f(x|y).$
- (II) Si $\exists \{x_k, y_k\} \rightarrow (0,0)$ y $\exists \{x_k', y_k'\} \rightarrow (0,0)$ tal que $\{f(x_k, y_k)\} \rightarrow \alpha$ y $\{f(x_k', y_k')\} \rightarrow \alpha'$. Entonces $\alpha \neq \alpha' \Rightarrow \nexists \lim_{(x,y) \rightarrow (0,0)} f(x,y)$.

Proposición 3.7 (Criterios de no existencia de límite). *Sea* $f : \mathbb{R}^2 \to \mathbb{R}$.

- (I) Si $\exists \gamma \to (0,0)$ tal que f no tiene límite a lo largo de γ , entonces $\nexists \lim_{(x,y)\to (0,0)} f(x,y)$.
- (II) Si $\exists \gamma, \gamma' \to (0,0)$ tal que f tiene límite distinto a lo largo de γ, γ' , entonces $\nexists \lim_{(x,y)\to(0,0)} f(x,y)$.

Teorema 3.1 (Teorema del Sandwich). Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}^m,\ g:A\subset\mathbb{R}^n\to\mathbb{R}$. Supongamos que $||f(x)||\leq g(x), \forall x\in A\ y\ \lim_{x\to a}g(x)=0$. Entonces, $\lim_{x\to a}f(x)=0$.

Definición 3.4 (Condiciones de Lipschits y Hölder). Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$.

- (I) f es Lipschitz si $\exists c > 0: ||f(x) f(y)|| \le c||x y||, \forall x, y \in A$.
- (II) f es Hölder si $\exists c>0: ||f(x)-f(y)|| \leq c||x-y||^{\alpha}, 0<\alpha<1, \forall x,y\in A$

Observación. f Lipschitz/Hölder en $A \Rightarrow f$ continua en A.

3.2. Continuidad, compacidad y conexión

Proposición 3.8 (Imagen de conjuntos compactos y conexos). Sea $f:A\subset \mathbb{R}^n\to\mathbb{R}^m$ continua.

- (I) $A \text{ compacto} \Rightarrow f(A) \text{ compacto}.$
- (II) $A \operatorname{conexo/c.p.c} \Rightarrow f(A) \operatorname{conexo/c.p.c}$.

Demostración. (i)

Suponemos que A es compacto y f es continua en A. Queremos ver que f(A) es compacto. Sea $\{x_k\} \subset A: \{f(x_k)\} \subset f(A)$. Sabemos que A compacto $\Rightarrow \exists \{x_{k_j}\}: \{x_{k_j}\} \rightarrow a \in A$. Entonces, por ser f continua en A, tenemos que $\{f(x_k)\} \rightarrow f(a) \in f(A)$. Por tanto, f(A) es compacto.

Demostración. (ii) Suponemos que A es c.p.c y f es continua en A. Queremos ver que f(A) es c.p.c. Sea $x,y\in A:f(x),f(y)\in f(A)$. Sabemos que A $c.p.c \Rightarrow \exists \gamma:[0,1]\to A$ continua tal que $\gamma(0)=x,\gamma(1)=y$. Entonces, $(f\circ\gamma):[0,1]\to f(A)$ continua tal que $(f\circ\gamma)(0)=f(x)$ y $(f\circ\gamma)(1)=f(y)$. Por tanto, f(A) es c.p.c.

Teorema 3.2 (de Weierstrass). Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}$ continua, A compacto $\Rightarrow\exists a,b\in A:f(a)\leq f(x)\leq f(b), \forall x\in A.$ Donde a es mínimo global/absoluto de f en A y b es máximo global/absoluto de f en A.

Demostración. Suponemos que f es continua en A y A es compacto. Queremos ver que $\exists a,b \in A$ tal que $f(a) \leq f(x) \leq f(b), \forall x \in A$. Sabemos que f es continua en A y A compacto $\Rightarrow f(A)$ compacto $\Rightarrow f(A)$ cerrado y acotado. Por ser f(A) acotado tenemos que $\exists \sup f(A), \inf f(A)$ Y por ser A cerrado, tenemos que $\sup f(A), \inf f(A) \in f(A)$. Por tanto, $\exists a,b \in A$ tal que $f(a) \leq f(x) \leq f(b), \forall x \in A$.

Teorema 3.3 (de Bolzano). Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}$ continua y A conexo. Si $\exists a,b\in A:f(a)f(b)<0\Rightarrow\exists c\in A:f(c)=0.$

Demostración. Suponemos que f es continua en A y A es conexo. Sea $a,b \in A: f(a)f(b) < 0$, queremos ver que $\exists c \in A: f(c) = 0$. Sabemos que f continua en A y A conexo $\Rightarrow f(A)$ es conexo, f(A) es un intervalo. Entonce, si f(a) < 0 < f(b) tenemos que $I = (f(a), f(b)) \subset f(A)$ y $0 \in f(A) \Rightarrow \exists c \in A: f(c) = 0$.

Teorema 3.4 (de Borsuk). Sea $f:A\subset\mathbb{S}^2\to\mathbb{R}$ continua. Entonces, $\exists a\in\mathbb{S}^2:f(a)=f(-a)$.

3.3. Continuidad uniforme

Definición 3.5 (Continuidad uniforme de una función en \mathbb{R}^n). $f:A\subset\mathbb{R}^n\to\mathbb{R}^m, f$ es u.c. en A si $\forall \epsilon>0, \exists \delta>0: x,y\in A, ||x-y||<\delta\Rightarrow||f(x)-f(y)||<\epsilon$

Observación. Que las componenetes de f sean u.c en A es condición necesaria y suficiente para que f sea u.c.

Observación. $f:A\subset\mathbb{R}^n\to\mathbb{R}^m, f\ u.c.\Rightarrow f\ continua.$

Observación. Si $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ es Lipschitz en A entonces f es u.c. en A.

Proposición 3.9. (Continuidad uniforme, caracterización por sucesiones) Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ u.c. en $A\Leftrightarrow \forall \{x_k\},\{y_k\}\subset A:||x_k-y_k||\to 0\Rightarrow ||f(x_k)-f(y_k)||\to 0.$

Demostración. (\Rightarrow) Suponemos que f es u.c. en A. Sea $\{x_k\}, \{y_k\} \subset A, ||x_k-y_k|| \to 0$, queremos ver que $||f(x_k)-f(y_k)|| \to 0$. Sea $\epsilon > 0, \exists \delta > 0, \exists N \in \mathbb{N}: ||x_k-y_k|| < \delta, \forall k \geq N \Rightarrow ||f(x_k)-f(y_k)|| \to 0$.

 $(\Leftarrow) \ \textit{Suponemos que } f \ \textit{no es u.c. en } A. \ \textit{Entonces}, \ \exists \epsilon > 0, \forall \delta > 0 : x,y \in A, ||x-y|| < \delta \Rightarrow ||f(x)-f(y)|| \geq \epsilon. \ \textit{Sea} \ \delta = \frac{1}{k}, \exists \{x_k\}, \{y_k\} \subset A : ||x_k-y_k|| < \delta \ y \ ||f(x_k)-f(y_k)|| \geq \epsilon. \ \textit{Llegamos a una contradicción, por tanto, } f \ \textit{es u.c. en } A.$

Proposición 3.10. (Criterio de no continuidad uniforme) Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$, son equivalentes:

- (I) f no es u.c. en A.
- (II) $\exists \{x_k\}, \{y_k\} \subset A : ||x_k y_k|| \to 0 \text{ pero } ||f(x_k) f(y_k)|| \to 0.$
- (III) $\exists \epsilon > 0, \exists \{x_k\}, \{y_k\} \subset A: ||x_k y_k|| \to 0 \text{ pero } ||f(x_k) f(y_k)|| \ge \epsilon, \forall k \in \{1,...,n\}.$

Teorema 3.5 (de Heine). *Toda función continua en un conjunto compacto es uniformemente continua.*

Observación. Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}^m,\ \lim_{x\to\infty}f(x)=\infty\equiv\forall M>0,\exists R>0:\ ||x||>R\Rightarrow ||f(x)||>M.$

Observación. Para justificar la existencia de máximo y mínimo en un conjunto que no es compacto basta ver que $f:A\subset\mathbb{R}^n\to\mathbb{R}$ continua y $\lim_{x\to\infty}f(x)=+\infty$ $\Rightarrow \exists a\in A:f(a)\leq f(x), \forall x\in A.$

Diferenciabilidad

4.1. Derivadas Parciales

Definición 4.1 (Derivada parcial). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}; a\in G,\ a=(a_1,...,a_n)$. Llamamos derivadas parciales de f en a

$$\frac{\partial f}{\partial x_i}(a) = \lim_{h \to 0} \frac{f(a_1, ..., a_{i-1}, a_i + h, a_{i+1}, ..., a_n) - f(a)}{h}$$

$$\frac{\partial f}{\partial x_i}(a) = \lim_{x_i \to a_i} \frac{f(a_1, \dots, a_{i-1}, x_i, a_{i+1}, \dots, a_n) - f(a)}{x_i - a_i}$$

Definición 4.2 (Aplicaciones diferenciables, representación matrcial). Se dice que $f:A\subset\mathbb{R}^n\to\mathbb{R}$ es diferenciable en $a\in A$ si $\exists T_a:\mathbb{R}^n\to\mathbb{R}$ tal que

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - T_a(h)}{||h||} = 0$$

$$\lim_{x \to a} \frac{f(x) - f(a) - T_a(x - a)}{||x - a||} = 0$$

Proposición 4.1 (Existencia de derivada parciales). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R};\ a\in G.$ Si f es diferenciable en a, entonces existen las derivadas parciales $\frac{\partial f}{\partial x_i}(a),\ \forall i\in\{1,...,n\}\ y\ T_a(h)=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(a)(h_i),\ h=(h_1,...,h_n).$

Observación. f diferenciable $\Rightarrow Df(a) = T_a$ está determinada de forma única.

Definición 4.3 (Vector gradiente). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R};\ a\in G\ con\ f$ diferenciable en a. Llamamos vector gradiente de f en a al vector

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \cdots, \frac{\partial f}{\partial x_n}(a)\right)$$

Corolario 4.0.1. Sea $f:G\subset\mathbb{R}^2\to\mathbb{R};\ a\in G\ con\ a=(x_0,y_0).$ Si $\exists \frac{\partial f}{\partial x}(a), \frac{\partial f}{\partial y}(a)$, entonces f es diferenciable en $a\Leftrightarrow$

$$\lim_{h \to 0} \frac{f(x_o + h_1, y_0 + h_2) - f(a) - \frac{\partial f}{\partial x}(a)h_1 - \frac{\partial f}{\partial y}(a)h_2}{\sqrt{h_1^2 + h_2^2}} = 0$$

Definición 4.4 (Diferenciabilidad en un conjunto). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, f$ es diferenciable en G si f es diferenciable en $a,\ \forall a\in G.$

Definición 4.5. Sea $f:G\subset\mathbb{R}^2\to\mathbb{R},\ a=(x_0.y_0).$ Si f es diferenciable en a, entonces llamamos plano tangente a la superficie $z=f(x_0,y_0)$ que pasa por (x_0,y_0,z_0)

$$z - z_0 = \frac{\partial f}{\partial x}(a)(x - x_0) + \frac{\partial f}{\partial y}(a)(y - y_0)$$

Definición 4.6. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m;\ a\in G.\ f$ diferenciable en $a\Rightarrow\exists T:\mathbb{R}^n\to\mathbb{R}^m$ lineal, tal que

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - T(h)}{||h||} = 0$$

Proposición 4.2. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m;\ a\in G, f=(f_1,...,f_m)\ t.q.\ f_i:G\subset\mathbb{R}^n\to\mathbb{R},\ i\in\{1,...,m\}.$

f es diferenciable en $a\Leftrightarrow f_1,...,f_m$ son diferenciables en a. En este caso T es unicamente determinada y $T=(T_1,...,T_m);\ T_i=Df_i$. Generalmente, denotamos $t_a=Df(a)$ y la llamamos aplicación lineal diferenciable de f en a, donde $Df(a):\mathbb{R}^n\to\mathbb{R}^m, Df(a)=(Df_1(a),...,Df_m(a))$.

Notación. Diferencial :=

$$Df(a)(h) = \begin{pmatrix} Df_1(a)(h) \\ \vdots \\ Df_m(a)(h) \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n \frac{\partial f_1}{\partial x_i}(a)(h_i) \\ \vdots \\ \sum_{i=1}^n \frac{\partial f_m}{\partial x_i}(a)(h_i) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_i} + \dots + \frac{\partial f_1}{\partial x_n} \\ \vdots \\ \frac{\partial f_m}{\partial x_1} + \dots + \frac{\partial f_m}{\partial x_n} \end{pmatrix}_{(a)} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

Matriz Jacobiana :=

$$J_f(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Donde las filas son el vector gradiente $\nabla f_i(a)$ y las columnas son los vectores Df(a)(ei).

Teorema 4.1. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m;\ a\in G.$ Si f es diferenciable en $a\Rightarrow \exists r>0, c>0: ||f(x)-f(a)||\leq C||x-a||, \forall x\in B(a,r)\Rightarrow f$ es continua en a.

Corolario 4.1.1 (Condición necesaria). f diferenciable en $a \Rightarrow f$ continua en a, existen $D_v f(a), \forall v \in \mathbb{R}^n$ y se cumple Df(a)v = Dv f(a).

Proposición 4.3. (Propiedades aritméticas de diferenciabilidad) Sea $f,g:G\subset\mathbb{R}^n\to\mathbb{R}^m;\ f,g$ diferenciable en $a\in G$

(I) f + g, λf son differenciables en a,

$$D(f+g)(a) = Df(a) + Dg(a)$$

$$D(\lambda f)(a) = \lambda Df(a)$$

En particular,

$$J_{f+g}(a) = J_f(a) + J_g(a)$$
$$J_{\lambda f}(a) = \lambda J_f(a)$$

(II) Si $m=1,\ fg$ es diferenciable en a y

$$D(fg)(a) = g(a)Df(a) + f(a)Dg(a)$$

En particular,

$$\nabla (fg)(a) = g(a)\nabla f(a) + f(a)\nabla g(a)$$

(III) $m=1, \ g(x) \neq 0, \ \forall x \in G; \ f/g$ es diferenciable en a y

$$D(f/g)(a) = (g(a)Df(a) + f(a)Dg(a))(g^{2}(a))$$

En particular,

$$\nabla (f/g)(a) = (g(a)\nabla f(a) + f(a)\nabla g(a))/(g^2(a))$$

Teorema 4.2 (Condiciones suficientes de diferenciabilidad). Sea $f:G\subset \mathbb{R}^n\to\mathbb{R}^m,\ a\in G,\ f=(f_1,...,f_m).$ Si $\exists \frac{\partial f_i}{\partial x_j}, \forall i\in\{1,...,m\},\ \forall j\in\{1,...,m\}$ en B(a,r) y tal que son continuas en a. Entonces, f es diferenciable en a.

Corolario 4.2.1. Sea $f: G \subset \mathbb{R}^n \to \mathbb{R}^m$, $f = (f_1, ..., f_m)$. si todas las derivadas parciales de f son continuas en G, entonces f es diferenciable en G.

Definición 4.7. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m$. S e dice que f es de clase 1 en G escrito $f\in\mathbb{C}^1(G)$ si $\exists \frac{\partial f_i}{\partial x_j}, \forall i\in\{1,...,m\},\ \forall j\in\{1,...,m\}$ en G y son continuas.

Teorema 4.3 (Regla de la cadena). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m$ y $g:H\subset\mathbb{R}^m\to\mathbb{R}^k$ y $a\in G$. Si f es diferenciable en a y g es diferenciable en f(a) entonces, $g\circ f$ es difereniable en f(a) y $D(g\circ f)(a)=D(g(f(a))Df(a)$ ó $J_{(g\circ f)}(a)=J_g(f(a))J_f(a)$.

Ejemplo. (I) Sean $f:G\subset\mathbb{R}^n\to\mathbb{R}^m$, $g:\mathbb{R}^m\to\mathbb{R}$,

$$D(g \circ f)(a) = \left(\frac{\partial (g \circ f)}{\partial x_1}(a) \cdots \frac{\partial (g \circ f)}{\partial x_n}(a)\right) =$$

$$= \left(\frac{\partial g}{\partial y_1}(f(a)) \cdots \frac{\partial g}{\partial y_m}(f(a))\right) \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_m}(a) \end{pmatrix}$$

donde

$$\frac{\partial (g \circ f)}{\partial x_j}(a) = \sum_{i=1}^m \frac{\partial g}{\partial y_i}(f(a)) \frac{\partial f_i}{\partial x_j}(a)$$

(II) Sean $f:G\subset\mathbb{R}\to\mathbb{R}^n$, $g:\mathbb{R}^n\to\mathbb{R}$, $g\circ f:\mathbb{R}\to\mathbb{R}$ se tiene que

$$(g \circ f)'(a) = \left(\frac{\partial g}{\partial x_1}(f(a)) \quad \cdots \quad \frac{\partial g}{\partial x_n}(f(a))\right) \begin{pmatrix} f_1'(a) \\ \vdots \\ f_n'(a) \end{pmatrix}$$

es decir,

$$(g \circ f)'(a) = \langle \nabla g(f(a)), f'(a) \rangle$$

4.2. Derivadas direccionales

Definición 4.8 (Vector unitario). *Se llama dirección a un vector* $\frac{w}{||w||}$ *unitario tal que* $w \in \mathbb{R}^{\times}$.

Definición 4.9 (Derivada direccional). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, a\in G$ y $v\in\mathbb{R}^{\ltimes}$ dirección. Si existe

 $\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}$

se llama derivada direccional de f respecto de v.

Observación. Si $v=(0,..,0,1,0,...,0)=e_j$, la derivada direccional de f respecto a e_j en a es

$$D_v f(a) = \frac{f(a + te_j) - f(a)}{t} = \frac{f(a_1, \dots, a_{j-1}, a_j + t, a_{j+1}, \dots, a_n) - f(a)}{t} = \frac{\partial f}{\partial x_j}(a)$$

Proposición 4.4. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, a\in G$ con f diferenciable en a entonces, $\forall v\in\mathbb{R}^n,\ \exists D_v f(a):D_v f(a)=\langle \nabla f(a),v\rangle$

Demostración. Sea $a \in G$ abierto entonces, $\exists r > 0 : B(a,r) \subset G$ y $a+tv \in G, \forall t \in (-r,r).$ Sean $g(t)=f(a+tv), \varphi(t)=a+tv$ donde $a+tv=(a_1+tv_1,\cdots,a_n+tv_n).$ Entoces, $\varphi'(t)=(v_1,...,v_n)=v.$ Dado que φ es diferenciable en 0 y f es diferenciable en $\varphi(0)$ se tiene que g_v es diferenciable en 0 tal que $g'_v(0)=\langle \nabla f(a), \varphi'(0)\rangle=\langle \nabla f(a), v\rangle=D_vf(a).$

Observación. $-D_v f(a) = D_{-v} f(a)$.

Proposición 4.5 (Máximo y mínimo derivada direccional). Sea $f: G \subset \mathbb{R}^n \to \mathbb{R}, a \in G$ con f diferenciable en a entonces,

$$\max_{||v||=1} D_v f(a) = ||\nabla f(a)||$$

$$\min_{||v||=1} D_v f(a) = -||\nabla f(a)||$$

si $\nabla f(a) \neq 0$, $\max_{||v||=1} D_v f(a)$ se alcanza cuando $v = \frac{\nabla f(a)}{||\nabla f(a)||}$ y $\min_{||v||=1} D_v f(a)$ se alcanza cuando $v = -\frac{\nabla f(a)}{||\nabla f(a)||}$.

Proposición 4.6. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}$ diferenciable en G, si $\exists \gamma:I\subset\mathbb{R}\to\mathbb{R}^n$ diferenciable tal que $f(\gamma(t))=c\in\mathbb{R}$ entonces, $\langle \nabla f(\gamma(t)),\gamma'(t)\rangle$.

Corolario 4.3.1. Si $f:G\subset\mathbb{R}^2\to\mathbb{R}$ entonces, ∇f es ortogonal a las curvas de nivel. Si $f:G\subset\mathbb{R}^3\to\mathbb{R}$ entonces, ∇f es ortogonal a las superficies de nivel

Observación. En \mathbb{R}^2 la ecuación de la recta r perpendicular a n=(a,b) en el punto (x_0,y_0) es

$$a(x - x_0) + b(y - y_0) = 0.$$

En \mathbb{R}^3 la ecuación de la recta π perpendicular al plano en el punto (x_0,y_0,z_0) es

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

Definición 4.10 (Recta y plano tangente). La ecuación de la recta tangente a la curva f(x,y)=c en (x_0,y_0) es

$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

La ecuación del plano tangente a la curva f(x,y,z)=c en (x_0,y_0,z_0) es

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial f}{\partial z}(x_0, y_0, z_0)(z - z_0)$$

Observación. $z = g(x, y) \Leftrightarrow g(x, y) - z = 0; f(x, y, z) = g(x, y) - z$

Teorema 4.4 (del valor medio). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}$ diferenciable, G abierto g convexo entonces,

$$\forall a, b \in G, \ \exists \xi \in (a, b) : f(b) - f(a) = \langle \nabla f(\xi), b - a \rangle$$

Demostración. Sea $\varphi:[0,1]\to\mathbb{R}^n$ tal que $\varphi(t)=(1-t)a+tb$ y sea $\gamma(t)=f(\varphi(t)).$ Entonces,

$$\gamma'(t) = D_1 f(\varphi(t)) D_1 \varphi(t) + D_2 f(\varphi(t)) D_2 \varphi(t)$$
$$= \langle \nabla f(\varphi(t)), b - a \rangle$$

Donde por el teorema del valor medio se tiene que,

$$\gamma'(t)|1 - 0| = \gamma(1) - \gamma(0) = f(b) - f(a)$$

Por tanto,

$$f(b) - f(a) = \langle \nabla f(\xi), b - a \rangle$$

Observación. Sea $v=\frac{b-a}{||b-a||}$ con $a\neq b$, tenemos que $f(b)-f(a)=\langle \nabla f(\xi),\frac{b-a}{||b-a||}\rangle ||b-a||$, entonces

$$f(b) - f(a) = D_v f(\xi) ||b - a||$$

Observación. Para n=1, si f(b)=f(a) con a < b por el Teorema de Rolle tenemos que, $\exists \xi \in (a,b): f'(\xi)=0$, entonces $\langle \nabla f(\xi), b-a \rangle = 0$ para $\xi \in (a,b)$ pero no se tiene $\nabla f(\xi)=0$ necesariamente.

Corolario 4.4.1. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}$ diferenciable , G abierto y convexo. Si $\nabla f(x)=0, \forall x\in G$, entonces f es constante en G.

Demostración. Sean $a,b \in G$, por el teorema del valor medio $f(b)-f(a)=\langle \nabla f(\xi),b-a\rangle$, como $\nabla f(x)=0, \forall x\in G$ entonces, $\langle \nabla f(\xi),b-a\rangle=0$ y por tanto, f es constante.

Observación. El corolario también es cierto si G es conexo en lugar de convexo.

Teorema 4.5. Sea $f:I\subset\mathbb{R}\to\mathbb{R}$, con f derivable y $|f'(x)|\leq M, \forall x\in I$ entonces

$$|f(b) - f(a)| = |f'(\xi)||b - a| \le M|b - a|$$

Proposición 4.7. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m, f=f_1,...,f_m$ diferenciable y G abierto y convexo. Si

$$|\frac{\partial f_i}{\partial x_j}(x)| \leq M, \ 1 \leq i \leq m, \ 1 \leq j \leq n, \ \forall x \in G \Rightarrow$$

$$\Rightarrow ||f(b) - f(a)|| \le M\sqrt{nm}||b - a||$$

En particular, f es Lipschitz en G.

Demostración. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m, f=f_1,...,f_m$ diferenciable y G abierto y convexo. Por el teorema del valor medio se tiene que $f_i:G\subset\mathbb{R}^n\to\mathbb{R}, f_i(b)-f_i(a)=\langle\nabla f_i(\xi_i),b-a\rangle$ para $\xi_i\in(a,b)$. Si $|\frac{\partial f_i}{\partial x_j}(x)|\leq M$ entonces, $|f_i(b)-f_i(a)|=|\langle\nabla f_i(\xi_i),b-a\rangle|\leq ||\nabla f_i(\xi_i)||||b-a||$ y como $\nabla f_i(\xi_i)=(\frac{\partial f_i}{\partial x_1},\cdots,\frac{\partial f_i}{\partial x_n})$ se tiene que $||\nabla f_i(\xi_i)||^2=\sum_{j=1}^n\frac{\partial f_i}{\partial x_i}\leq nM^2$ entonces, $|f_i(b)-f_i(a)|=||\nabla f_i(\xi_i)|||b-a||\leq \sqrt{n}M||b-a||$. Luego, $||f(b)-f(a)||^2=\sum_{i=1}^m(f_i(b)-f_i(a))^2\leq mnM^2||b-a||^2$, por tanto $||f(b)-f(a)||\leq M\sqrt{nm}||b-a||$.

4.3. Derivadas de orden superior

Definición 4.11 (Derivada parcial de orden k). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}$. Llamamos derivada parcial de orden k a

$$\frac{\partial^k f}{\partial x_{i_k} \cdots \partial x_{i_1}} = \frac{\partial}{\partial x_{i_k}} \cdots \frac{\partial f}{\partial x_{i_1}}$$

Definición 4.12 (Clase C^k). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m$, G abierto, $f=(f_1,...,f_m)$. Se dice que f es de clase k en G, denotado $f\in C^k(G):=$ todas las derivadas de orden k de f_i existen g son continuas en G.

Observación. (I) $f \in C^k(G) \Leftrightarrow f_i \in C^k(G), \forall i \in \{1, 2, ...\}$.

- (II) $f \in C^k(G), m \le k \Rightarrow f \in C^m(G), \forall m \le k$.
- (III) $f \in C^k(G), m \le k \Rightarrow \text{todas las derivadas parciales son } C^{k-m}(G).$

Teorema 4.6 (de Clairaut-Schwarz). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}^m$. Si $f\in C^2(G)$

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}, \ \forall i, j \in \{1, 2, \ldots\}$$

Fórmula de Taylor. Extremos relativos

5.1. Fórmula de Taylor

Definición 5.1 (Polinómio de Taylor). Llamamos polinomio de Taylor de f de orden k en a

$$P_{a,k,f}(x) = f(a) + \sum_{i=1}^{k} \frac{\partial f}{\partial x_i}(a)(x_i - a_i) + \frac{1}{2!} \sum_{i,j=1}^{2} \frac{\partial^2 f}{\partial x_j \partial x_i}(a)(x_i - a_i)(x_j - a_j) + \cdots$$

$$\cdots + \frac{1}{k!} \sum_{i=1}^{k} \frac{\partial^k f}{\partial x_{i_k}, \dots \partial x_{i_1}}(a)(x_{i_1} - a_{i_1}) \cdots (x_{i_k} - a_{i_k})$$

Teorema 5.1 (de Taylor). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}; f\in C^{k+1}(G); a,x\in G$ con G abierto g conexo. Entonces $\exists \xi\in(a,x):f(x)=P_{a,k,f}(x)+E(x)$ donde

$$E_k(x) = \frac{1}{(k+1)!} \sum_{i_1,\dots,i_{k+1}=1}^{k+1} \frac{\partial^{k+1} f}{\partial x_{i_k},\dots \partial x_{i_1}} (\xi) (x_{i_1} - a_{i_1}) \cdots (x_{i_k} - a_{i_k})$$

Demostración.

Consecuencia.

$$\frac{\partial^{k+1} f}{\partial x_{i_k}, \dots \partial x_{i_1}} \le M_k \in G \Rightarrow |E_k(x)| \le \frac{M_{k+1}}{(k+1)!} \sum_{i_1, \dots, i_{k+1}=1}^{k+1} |x_{i_1} - a_{i_1}| \dots |x_{i_k} - a_{i_k}|$$

$$E_k(x)| \le \frac{M_{k+1}}{(k+1)!} ||x - a||_1^{k+1} \to 0, k \to \infty \Rightarrow f(x) = \lim_{k \to \infty} P_k(x)$$

5.2. Extremos relativos

Definición 5.2 (Extremos locales o relativos). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}$

- (I) a es máximo local de f si $\exists r>0: B(a,r)\subset G$ y $f(x)\leq f(a), \forall x\in B(a,r).$
- (II) a es mínimo local de f si $\exists r>0: B(a,r)\subset G$ y $f(x)\geq f(a), \forall x\in B(a,r).$
- (III) a es extremo local si es máximo o mínimo.
- (IV) a a es punto crítico de f si $\nabla f(a) = 0$.
- (V) a es un punto desilla de f si es un punto crítico y no es un extremo local.

Proposición 5.1. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, a\in G, f$ diferenciable en a y a es extremo local de $f\Rightarrow$ a es un punto crítico de f.

Demostración.

Observación. Los candidatos a extremos locales se encuentran entre los puntos críticos.

Definición 5.3 (Matriz hessiana). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, a\in \mathring{G}$ se denomina matriz hessiana de f en a, a la matriz de las derivadas parciales de segundo orden

$$H_f(a) = \begin{pmatrix} f_{x_1,x_1}(a) + \dots + f_{x_1,x_n}(a) \\ \vdots \\ f_{x_n,x_1}(a) + \dots + f_{x_n,x_n}(a) \end{pmatrix}$$

y se denomina hessiano de f en a al determinante de esta matriz.

Observación. *Nota: Si la función f es de clase C^2 la matriz hessiana es simétrica.

Definición 5.4. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, a\in G, h\in\mathbb{R}^n$ Se considera la forma cuadrática asociada a la matriz hessiana,

$$Q_a f(h) = h^t H_f(a) h = (h_1, ..., h_n) H_f(a) \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

Su expresión desarrollada se suele escribir

$$Q_a f(a) = \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(a)(h_i)(h_j)$$

Lema 5.1.1. *Sea* Q *una forma cuadrática en* \mathbb{R}^n .

- (I) Q es definida positiva $\Leftrightarrow \exists m > 0 : Q(h) \geq m||h||^2, \forall h \in \mathbb{R}^n$
- (II) Q es definida negativa $\Leftrightarrow \exists m > 0 : Q(h) \leq -m||h||^2, \forall h \in \mathbb{R}^n$

Observación. Se dice Q indefinida si $\exists h, h' \in \mathbb{R}^n$ tal que Q(h) > 0, Q(h') < 0. **Observación.** Toda forma cuadrática en \mathbb{R}^n es continua en \mathbb{R}^n (es un polinomio de grado 2).

Proposición 5.2 (Criterios formas cuadráticas). Dada una matriz $A=(a_{ij})$ real, simétrica, se sabe que $\exists \{v_1,...,v_n\} \subset \mathbb{R}^n$ respecto de la cual la forma cuadrática $Q_A(h)$ se puede diagonalizar. Sean $\{\lambda_1,...,\lambda_n\}$ se diferencian los siguientes casos:

- (I) Todo autovalor cumple $\lambda_i > 0$ (resp. < 0). Entonces Q_A es definida positiva (resp. negativa), es decir, $Q_A(x) > 0$ (resp. < 0) $\forall x \in \mathbb{R}^n$.
- (II) Si algunos λ_i son positivos y otros negativos. Entonces Q_A es indefinida, es decir, $\exists x,y \in \mathbb{R}^n : Q_A(x) < 0 < Q_A(y)$.
- (III) Todo autovalor cumple $\lambda_i \geq 0$ (resp. ≤ 0). Entonces Q_A es semidefinida positiva (resp. negativa), es decir, $Q_A(x) \geq 0$ (resp. ≤ 0) $\forall x \in \mathbb{R}^n$.

En álgebra lineal se demuestra el siguiente criterio sobre el signo de los determinantes:

$$A_k = det(a_{ij})_{1 \le i,j \le k}, (k = 1, 2, ..., n)$$

- (I) Si $A_k > 0$ para k = 1, ..., n , entonces Q_A es definida positiva.
- (II) Si $(-1)^k A_k > 0$ para k = 1, ..., n, entonces Q_A es definida negativa.

Ejemplo (Caso práctico de uso criterios). La matriz de la forma cuadrática $Q_a(h)$ es la matriz simétrica (matriz hessiana)

$$H_f(a) = \begin{pmatrix} f_{x_1, x_1}(a) + \dots + f_{x_1, x_n}(a) \\ \dots & \dots \\ f_{x_n, x_1}(a) + \dots + f_{x_n, x_n}(a) \end{pmatrix}$$

a la que se le pueden aplicar los criterios anteriores. En el caso n=2, si $\alpha=f_{x_1,x_1}(a), \beta=f_{x_1,x_2}(a)=f_{x_2,x_1}(a), \gamma=f_{x_2,x_2}(a)$ con λ_1,λ_2 autovalores.

$$\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}, \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

Dado que la traza y el determinante son invariantes,

$$\alpha \gamma - \beta^2 = \lambda_1 \lambda_2$$
$$\alpha + \gamma = \lambda_1 + \lambda_2$$

(I) Si $\alpha\gamma - \beta^2 > 0$ entonces por el criterio de Sylvester:

- a) Si $\alpha > 0$, tenemos que $Q_a(h)$ es definida positiva.
- b) Si $\alpha < 0$ tenemos que $Q_a(h)$ es definida neagativa.
- (II) Si $\alpha \gamma \beta^2 < 0$ entonces $Q_a(h)$ es indefinida.
- (III) Si $\alpha \gamma \beta^2 = 0 \ (\Leftrightarrow \alpha \gamma = \beta^2)$ tenemos que $\lambda_1 = 0$ ó $\lambda_2 = 0$. Supongamos que $\lambda_2 = 0$ entonces $\alpha + \gamma = \lambda_1$.
 - a) Si $\alpha, \gamma \geq 0$, tenemos que $\lambda_1 \geq 0, \lambda_2 = 0$. Por tanto $Q_a(h)$ es semi definida positiva.
 - b) Si $\alpha, \gamma \geq 0$, tenemos que $\lambda_1 \leq 0, \lambda_2 = 0$. Por tanto $Q_a(h)$ es semi definida negativa.

Ejemplo (Aplicación a extremos locales). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, f\in C^2(G), a$ punto crítico de f $(\nabla f(a)=0).$ Por el teorema de Taylor tenemos que

$$f(x) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(X_i - a_i) + \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(\xi)(x_i - a_i)(x_j - a_j)$$

Sea x = a + h,

$$f(a+h) - f(a) = \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(\xi) h_i h_j$$

Por tanto, para ||h|| suficientemente pequeño,

$$f(a+h) - f(a) = \frac{1}{2!}Q_{\xi}(h)$$

Proposición 5.3. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, f\in C^2(G), a\in G.$ Si $\forall \epsilon>0, \exists \delta>0: ||x-a||<\delta$ entonces,

$$|Q_x(h) - Q_a(h)| \le \epsilon ||h||^2$$

Teorema 5.2. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, f\in C^2(G)$. Si $a\in G$ es un punto crítico, es decir, $\frac{\partial f}{\partial x_i}(a)=0, \forall i\in\{1,...,n\}$ se tiene:

- (I) Q_a definida positiva $\Rightarrow a$ es mínimo local de f (Condición suficiente de mínimo local).
- (II) Q_a definida negativa $\Rightarrow a$ es máximo local de f (Condición suficiente de máximo local).
- (III) a mínimo local $\Rightarrow Q_a$ semidefinida postiva. (Condición necesaria de mínimo local).
- (IV) a máximo local $\Rightarrow Q_a$ semidefinida negativa. (Condición necesaria de máximo local).
- (V) Q_a indefinida $\Rightarrow a$ punto de silla de f.

Extremos condicionados. Multiplicadores de Lagrange.

6.1. Extremos condicionados

Definición 6.1 (Extremo condicionado). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R},G$ abierto, $M\subset G, x=(x_1,...,x_n)\in M$. Entonces, $a\in M$ es un máximo (resp. mínimo) local condicionado si $\exists r>0: B(a,r)\subset G$ tal que $f(x)\leq f(a)$ (resp. $f(x)\geq f(a)$), $\forall x\in B(a,r)$.

Observación. Un extemo condicionado es un extremo de una función sobre un subconjunto de su dominio, este subconjunto se denomina variedad diferenciable. En la práctica se busca un máximo o mínimo que pertenezca a cierto conjunto.

Definición 6.2 (Extremos absolutos). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R},a\in A$.

- (I) a es un mínimo absoluto de f si $f(a) \leq f(x), \forall x \in A$.
- (II) a es un máximo absoluto de f si $f(a) \ge f(x), \forall x \in A$.
- (III) a es un extremo absoluto si a es un mínimo o un máximo absoluto.

Observación. Sea $M \subset \mathbb{R}^n$, los extremos absolutos de $f|_M$ (que existen si f rs continua y M es compacto) pueden calcularse considerando por separado la reesticción de f al interior de M y a ∂M .

Observación. Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}$ donde con $M\subset G$. Supongamos que f es continua, si M es compacto $\Rightarrow \exists$ máximo y mínimo absoluto en M. Entonces tenemos que $a\in \mathring{M}$ o $a\in\partial M$. Si $a\in \mathring{M}$ y a es extremo absoluto (máximo o mínimo) entonces, a es extremo local y por tanto, a es un punto crítico de f. Si $a\in\partial M$ usamos el método de los multiplicadores de Lagrange.

6.2. Multiplicadores de Lagrange

Proposición 6.1 (Idea Multiplicador de Lagrange). Sea $f:G\subset\mathbb{R}^n\to\mathbb{R}, f\in C^1, A=\{g=0\}$ (conjunto de nivel en 0). Si $a\in A$ es un extremo local condicionado de $f|_A$ y $\nabla g(a)\neq 0$. Entonces,

$$\exists \lambda \in \mathbb{R} : \ \nabla f(a) = \lambda \nabla g(a)$$

Teorema 6.1 (Multiplicador de Lagrange). Sean $g_1,...,g_m:\mathbb{R}^n\to\mathbb{R}$ con $g_1,...,g_n\in C^1$ y $A=\{g_1=0,...,g_m=0\}$. Sea $f:\mathbb{R}^n\to\mathbb{R}$ la función a maximizar/minimizar, si $a\in A$ es un extremo local de $f|_A$ y $\{\nabla g_1(a),...,\nabla g_m(a)\}$ linealmente independientes. Entonces,

$$\exists \lambda_1, ..., \lambda_m \in \mathbb{R} : \nabla f(a) = \lambda_1 \nabla g_1 + ... + \lambda_m \nabla g_m$$

Demostración.

Función inversa y Función implícita

7.1. Función inversa

Teorema 7.1 (Función inversa). Sea $F:G\subset\mathbb{R}^n\to\mathbb{R}^n, G$ abierto, $a\in G$. Si

(I) F es diferenciable y continua en A.

(II)
$$\det(F'(a)) \neq 0 \ (\det(J_F(a)) \neq 0)$$

Entonces $\exists U,V: a\in V\subset G, F(a)\in U\subset \mathbb{R}^n$ tal que $F|_U:U\to V$ es biyectiva con inversa $F^{-1}:V\to U$ que verifica

$$DF^{-1}(F(x)) = (DF(x))^{-1}$$

Si F es de clase $C^k(G)$, entonces F^{-1} es de clase $C^k(V)$.

Demostración.

Observación. Solo podemos garantizar la existencia de la función inversa en un entorno de a.

Observación. El teorema es falso si se asume diferenciabilidad de F en lugar de $F \in C^k$ (es necesaria la continuidad.

Observación. Puede ocurrir que F tenga inversa local en a y no ser diferenciable.

7.2. Función implícita

Teorema 7.2 (Función implícita). Sea $F:G\subset\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^m,G$ abierto $y\ (a,b)\in G$ donde se verifica

(1)
$$F(a,b) = 0$$

(II) $F \in C^k(G)$, diferencible y continua, en un entorno de (a,b)

(III)
$$\det(D_{n+i}F_j(a,b))_{i,j=1}^m$$
, es decir, $\det(\frac{\partial F}{\partial y}(a,b)) \neq 0$

Entonces, $\exists U \subset \mathbb{R}^n, V \subset \mathbb{R}^m, a \in U, b \in V$ tal que $U \times V \subset G$ y $\forall x \in U, \exists ! y = \gamma(x) \in V$ que verifica $F(x, \gamma(x)) = 0$ donde $\gamma : U \to V$ es de clase $C^k(U)$ (función implícita) y $\gamma(a) = b$.

Demostración.

Observación. La importancia de este teorema radica en la posibilidad de calcular la diferencial en un punto a de una función sin conocerla explícitamente.

Observación. (Cálculo de derivadas y diferenciables en funciones implícitas)

(I) (Cálculo de derivadas parciales) Supuestas las condiciones del teorema 7.2, para $F:G\subset\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^m$ de la forma

$$F_i(x,y) = F_i(x_1, x_2, ..., x_n, y_1, y_2, ..., y_m), i = 1, 2, ..., m$$

se tiene que,

$$F_i(x,y(x)) =$$

$$= F_i(x_1,x_2,...,x_n,y_1(x_1,x_2,...,x_n),y_2(x_1,x_2,...,x_n),...,y_m(x_1,x_2,...,x_n))$$

 $i=1,2,...,m \label{eq:interpolation}$ Derivando dichas relaciones respecto de x_i para j=1,2,...,n se obtiene

$$\frac{\partial F_i}{\partial x_i} + \frac{\partial F_i}{\partial y_1} \frac{\partial y_1}{\partial x_i} + \ldots + \frac{\partial F_i}{\partial y_m} \frac{\partial y_m}{\partial x_i} = 0, i = 1, 2, \ldots m$$

Sustituyendo en el punto (a,b) se convierte en un sitema de m ecuaciones lineales en las incógnitas $\frac{\partial y_1}{\partial x_j},...,\frac{\partial y_m}{\partial x_j}$. La matriz de coeficientes es $(\frac{\partial (F_1,...,F_m)}{\partial (y_1,...,y_m)}(a,b))$ que tiene determinante distinto de 0. Resolviendo el sitema se obtienen las derivadas parciales respecto de la variable x_j .

(II) (Cálculo de diferenciales) La matriz de la aplicación lineal diferencial también se puede obtener calculando formalmente la diferencial de F y despejando

$$\frac{\partial F_i}{\partial x_1}dx_1+\ldots+\frac{\partial F_i}{\partial x_n}dx_n+\frac{\partial F_i}{\partial y_1}dy_1\ldots+\frac{\partial F_i}{\partial y_m}dy_m=0, i=1,2,\ldots m$$

donde particularizando en el punto (a,b) obtenemos un sistema de ecuaciones lineales en las variables $dy_1,...,dy_m$. Resolviendo obtendríamos

$$dy_i = A_{i1}dx_1 + ... + A_{in}dx_n, i = 1, ..., m$$

donde $A_{ij} = \frac{\partial y_i}{\partial x_j}$.

Observación. (Casos particulares)

(1) (n=m=1) Sea $F:G\subset\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ una función diferenciable con continuidad en el punto $(a,b)\in\mathbb{R}^2$ verificando que F(a,b)=0, $y\frac{\partial F}{\partial y}(a,b)\neq 0$. Entonces $\exists I\subset\mathbb{R}, a\in I: \forall x\in I, \exists y=y(x): F(x,y(x))=0$ siendo y(x) derivable. Además,

$$y'(a) = -\frac{\frac{\partial F}{\partial x}(a, b)}{\frac{\partial F}{\partial y}(a, b)}.$$

(II) (n,m=1) Sea $F:G\subset \mathbb{R}\times \mathbb{R}\to \mathbb{R}$ donde $F(x_1,...,x_n,y)=F(x,y)$ es una función que verifica F(a,b)=0, es diferenciable con continuidad en un entorno del punto (a,b) y $\frac{\partial F}{\partial y}(a,b)\neq 0$. Entonces $\exists y=y(x_1,...,x_n)=y(x)$ definida en un entorno de a, diferenciable en a con F(x,y(x))=0. Además,

$$\frac{\partial y}{\partial x_i}(a) = -\frac{\frac{\partial F}{\partial x_i}(a,b)}{\frac{\partial F}{\partial y}(a,b)}.$$

- *El caso más importante corresponde a expresiones del tipo F(x,y,z) que representan superficies definidas de forma implícita.
- (III) (n = 2, m = 1)
- (IV) (n = 1, m = 2)