CS711008Z Algorithm Design and Analysis

Lecture 1. Introduction and some representative problems

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

The origin of the word "Algorithm"

Figure 1: Muhammad ibn Musa al-Khwarizmi (C. 780—850), a Persian scholar, formerly Latinized as Algoritmi

 In the twelfth century, Latin translations of his work on the Indian-Arabic numerals introduced the decimal positional number system to the Western world.

Al-Khwarizmi's contributions

- Al-Khwarizmi's The Compendious Book on Calculation by Completion and Balancing presented the first systematic solution of linear and quadratic equations in Arabic.
- Two words:
 - Algebra: from Arabic "al-jabr" meaning "reunion of broken parts" — one of the two operations he used to solve equations
 - Algorithm: a step-by-step set of operations to get solution to a problem

Algorithm design: the art of computer programming

THE CLASSIC WORK NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 1

Fundamental Algorithms
Third Edition

DONALD E. KNUTH

V. Vazirani said:

Our philosophy on the design and exposition of algorithms is nicely illustrated by the following analogy with an aspect of Michelangelos's art: A major part of his effort involved looking for interesting pieces of stone in the quarry and staring at them for long hours to determine the form they naturally wanted to take. The chisel work exposed, in a minimal manner, this form.

V. Vazirani said: cont'd

By analogy, we would like to start with a clean, simply stated problem. Most of the algorithm design effort actually goes into understanding the algorithmically relevant combinatorial structure of the problem. The algorithm exploits this structure in a minimal manner.... with emphasis on stating the structure offered by the problems, and keeping the algorithms minimal.

(See extra slides.)

Basic algorithmic techniques

- DIVIDE-AND-CONQUER: Let's start from the "smallest" problem first, and investigate whether a large problem can reduce to smaller subproblems.
- "Intelligent" Enumeration: Consider an optimization problem. If the solution can be constructed step by step, we might enumerate all possible complete solutions by constructing a partial solution tree. Due to the huge size of the search tree, some techniques should be employed to prune it.
- IMPROVEMENT: Let's start from an initial complete solution, and try to improve it step by step.

The first example: calculating the greatest common divisor (gcd)

The first problem: calculating **gcd**

Definition (gcd)

The greatest common divisor of two integers a and b, when at least one of them is not zero, is the largest positive integer that divides the numbers without a remainder.

- Example:
 - The divisors of 54 are: 1, 2, 3, 6, 9, 18, 27, 54
 - The divisors of 24 are: 1, 2, 3, 4, 6, 8, 12, 24
 - Thus, gcd(54, 24) = 6.

The first problem: calculating gcd

```
INPUT: two n-bits numbers a, and b (a \ge b) OUTPUT: gcd(a, b)
```

- ullet Observation: the problem size can be measured by using n;
- Let's start from the "smallest" instance: gcd(1,0) = 1;
- But how to efficiently solve a "larger" instance, say $\gcd(1949, 101)$?

Euclid's rule

Problem instances

- Observation: a large problem can reduce to a smaller subproblem:
- $gcd(1949, 101) = gcd(101, 1949 \mod 101) = gcd(101, 30)$

Strategy: reduce to "smaller" problems

Problem instances

 $\bullet \ \gcd(101,30) = \gcd(30,101 \mod 30) = \gcd(30,11)$

Strategy: reduce to "smaller" problems

Problem instances

• $gcd(30, 11) = gcd(11, 30 \mod 11) = gcd(11, 8)$

Strategy: reduce to "smaller" problems

Problem instances

• gcd(30, 11) = gcd(11, 8) = gcd(8, 3) = gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1

Sub-instance relationship graph

Problem instances

- Node: subproblems
- Edge: reduction relationship

Euclid algorithm

1: function $\operatorname{Euclid}(a,b)$ 2: if b=0 then 3: return a; 4: end if 5: return $\operatorname{Euclid}(b,a \mod b)$;

Time complexity analysis

Theorem

Suppose a is a n-bit integer. Euclid(a, b) ends in $O(n^3)$ time.

Proof.

- ullet There are at most 2n recursive calling.
 - Note that $a \mod b < \frac{a}{2}$.
 - ullet After two rounds of recursive calling, both a and b shrink at least a half size.
- At each recursive calling, the \mod operation costs $O(n^2)$ time.

The second example: traveling salesman problem (TSP)

TSP: a concrete example

- In 1925, H. M. Cleveland, a salesman of the Page seed company, traveled 350 cities to gather order form.
- Of course, the shorter the total distance, the better.

How did they do? Pin and wire!

• Two pictures excerpted from Secretarial Studies, 1922.

TRAVELLING SALESMAN PROBLEM

INPUT: n cities $V = \{1, 2, ..., n\}$, and a distance matrix D, where d_{ij} $(1 \le i, j \le n)$ denotes the distance between city i and j; **OUTPUT:** the shortest tour that visits each city exactly once and returns to the origin city.

- Tour 1: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ (distance: 12)
- Tour 2: $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1$ (distance: 21)
- Tour 3: $1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1$ (distance: 23)
- Tour 4: $1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 1$ (distance: 19)
- Tour 5: $1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 1$ (distance: 23)
- Tour 6: $1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ (distance: 12)

Trial 1: divide and conquer

Consider a tightly related problem

Definition

M(S,e)= the minimum distance, starting from city 1, visiting each city in S once and exactly once, and finishing at city e.

- There are 3 cases of the city from which we return to 1.
- Thus, the shortest tour can be calculated as:

$$\min \{ \quad \begin{aligned} d_{2,1} + M(\{3,4\},2), \\ d_{3,1} + M(\{2,4\},3), \\ d_{4,1} + M(\{2,3\},4) \end{aligned}$$

Consider the smallest problem

• It is trivial to calculate M(S,e) when S consists of only 1 city.

• But how to solve a larger problem, say $M(\{2,3\},4)$?

Divide a large problem into smaller problems

• $M(\{2,3\},4) = \min\{d_{34} + M(\{2\},3), d_{24} + M(\{3\},2)\}$

Sub-instance relationship graph

Problem instances

• A large problem can be reduced into smaller subproblems.

Held-Karp algorithm [1962]

1: function TSP(V, D)2: **return** $\min_{e \in V, e \neq 1} M(V - \{e\}, e) + d_{e1}$; 1: function M(S,e)2: **if** $S = \{v\}$ **then** 3: $M(S, e) = d_{1v} + d_{ve}$; return M(S,e); 5: end if 6: **return** $\min_{i \in S, i \neq e} M(S - \{i\}, i) + d_{ei}$; • Time complexity: $O(2^n n^2)$.

Trial 2: Improvement strategy

Solution space

- Landscape of solution space:
 - Node: a complete solution. Each node is associated with an objective function value.
 - Edge: if two nodes are neighboors, an edge is added to connect them. Here "neighbours" refers to two nodes with small difference.
- Improvement strategy: start from a rough complete solution, and try to improve it step by step.

Improvement strategy

- Note that a **complete solution** can be expressed as a permutations of the n cities, e.g., 1, 2, 3, 4.
- Let's start from an initial complete solution, and try to improve it;

IMPROVEMENT strategy

```
1: Let s be an initial tour;
2: while TRUE do
     select a new tour s' from the neighbourhood of s;
3:
     if s' is shorter than s then
     s=s':
5:
   end if
6:
     if stopping(s) then
7:
        return s:
8:
     end if
9.
10: end while
```

Here, **neighbourhood** is introduced to describe how to change an existing tour into a new one;

But how to define neighbourhood of a tour?

ullet 2-opt strategy: if s' and s differ at only two edges (Note: 1-opt is impossible)

An example

Step 1

• Initial complete solution $s \colon a \to b \to c \to d \to e \to a$ (distance: 25)

Step 2: a 2-opt operation improves $s \Rightarrow s'$

- Initial solution $s: a \to b \to c \to d \to e \to a$ (distance: 25)
- Improve from s to s': $a \to b \to c \to e \to d \to a$ (distance: 23)

Step 3: One more 2-opt operation improves $s' \Rightarrow s''$

- A complete solution s': $a \to b \to c \to e \to d \to a$ (distance: 23)
- Improve s' to s'': $a \to c \to b \to e \to d \to a$ (distance: 19)
- Done! No 2-OPT can be found to improve further.

Trial 3: "Intelligent" enumeration strategy

Solution form

- Note that a complete solution can be expressed as a sequence of n edges. Given a certain order of the m edges, a complete solution can be represented as $X=[x_1,x_2,...,x_m]$, where $x_i=1$ if the edge i was used in the tour, and $x_i=0$ otherwise.
- For example, the tour $a \to b \to c \to d \to e \to a$ can be represented as X = [1,0,0,1,1,0,0,1,0,1].
- If the solution has this form, we can enumerate all possible complete solutions.

Organizing solutions into a partial solution tree

Partial solution tree:

- Leaf node: representing a complete solution associated with an objective function value, e.g., X=1011000011 has an objective function value of 23.
- Internal node: representing a partial solution, where only a subset of items (in the path from root to the node) are known, e.g., X = 10???????? refers to tours including $e_1 : (a,b)$ but excluding $e_2 : (a,c)$.

Two alternative views of a partial solution

- A subproblem: to determine the unknown items, e.g., X=10???????? means to find the shortest tour including $e_1:(a,b)$ but excluding $e_2:(a,c)$.
- \bullet A collection of complete solutions: the leaf nodes of the subtree rooted at this partial solution, e.g., X=101?0????? represents two nodes in red 1011000011 and 1010001110.

Deduction rules for simplification

- Note that the following deduction rules were applied for simplification.
 - An edge (i,j) should be included in the tour if the removal of this edge leads to less than two edges incident to i or j, e.g., $x_8=1$ in X=1010001110.
 - An edge (i,j) should be excluded from the tour if the addition of this edge leads to more than two edges incident to i or j, or leads to a small circuit, e.g., $x_5 = 0$ in X = 101?0??????

41/70

Enumerate all complete solutions: Backtrack algorithm

```
1: Let A = \{P_0\}. //Start with the original problem P_0. Here, A
    denotes the active subproblems that are unexplored.
2: best\_so\_far = \infty;
 3: while A \neq NULL do
4:
      choose and remove a subproblem P from A;
      expand P into smaller subproblems P_1, P_2, ..., P_k;
 5:
      for i = 1 to k do
6:
         if P_i corresponds to a complete solution then
7:
           update best\_so\_far if the corresponding objective function
8:
           value is better:
         else
9:
10:
           insert P_i into A:
         end if
11:
12:
      end for
13: end while
14: return best\_so\_far;
```

An example: Step 1

Partial Solution Tree

$$O \quad X = ?????????? P_0$$

• Initially, the partial solution tree has only one root node, i.e., the original problem P_0 . The value $best_so_far$ is set as $+\infty$.

• P_0 is decomposed into two subproblems P_1 and P_2 . We then expand P_1 at the next step.

• At this stage P_3 was selected for expansion.

- In this way all possible complete solutions can be enumerated step by step, and it is unnecessary to store the whole tree in memory, thus reducing space requirement.
- Note that some internal nodes, say P_5 , can be removed as the corresponding edges cannot form a valid tour.
- Theoretically speaking it will take exponential time to enumerate all possible complete solutions.
- Question: can we make the enumeration efficient?

Speeding up enumeration process by pruning branches

- Basic idea: to speed-up enumerating process, a feasible way is to prune branches at some internal nodes with "low quality".
 That is, partial solutions can be exploited to exclude some complete solutions. The representatives of this strategy include greedy method and branch-and-bound.
- Note that only complete solutions are associated with objective function value. Thus, how to estimate quality of a partial solution?
 - In greedy approaches, heuristic functions are used to estimate objective function value for a partial solution.
 - In branch-and-bound approaches, lower bound functions are used to calculate the lower bound of objective function value of a partial solution, i.e., the objective function value of all complete solutions represented by this partial solution.

Calculate lower bound for partial solution: an example

- For the partial solution X = ??????????, we estimate the shortest tour as below:
 - for each city, we select the shortest two adjacent edges;
 - ullet the sum of these 2n edges is less than 2 times the optimal tour;
 - thus, we can give a lower bound as $\frac{1}{2}(5+6+8+7+9)=17.5$.
- Similarly, the lower bound for the partial solution X=10???????? was estimated as $\frac{1}{2}(5+6+9+7+9)=18$.

"Intelligent" enumeration

```
1: Let A = \{P_0\}. // Start with the original problem P_0. Here A
    denotes the active subproblems that are unexplored.
2: best\_so\_far = \infty;
 3: while A \neq NULL do
      choose a subproblem P \in A with lower bound less than
4:
      best\_so\_far;
      Remove P from A;
5:
      expand P into smaller subproblems P_1, P_2, ..., P_k;
6:
7:
      for i = 1 to k do
         if P_i corresponds to a complete solution then
8:
9:
           update best\_so\_far:
10:
         else
           if lowerbound(P_i) \leq best\_so\_far then
11:
12:
              insert P_i into A:
           end if
13:
         end if
14:
15:
      end for
16: end while
17: return best\_so\_far;
```

An example: Step 1

Partial Solution Tree

• Initially, the partial solution tree has only one root node, i.e., the original problem P_0 (lower bound: 17.5). The value $best_so_far$ is set as $+\infty$.

- P_0 is decomposed into two subproblems P_1 and P_2 , and lower bounds of these two subproblems are estimated accordingly.
- As P_1 has a smaller lower bound than P_2 , P_1 will be chosen to expand at the next step.
- Here, we adopt a rule to choose the subproblem with the smallest lower bound with the hope to find the optimal solution as soon as possible.

51/70

• P_4 has the smallest lower bound; thus, it will be chosen for expansion.

Partial Solution Tree

ullet P_5 has the smallest lower bound; thus, it will be chosen for expansion.

Two complete solutions, P_7 and P_8 , are obtained, and $best_so_far$ is updated as 21. P_3 and P_6 should be removed, and P_2 will be chosen for expansion.

54 / 70

 P_{10} should not be added into A, and P_{9} is chosen for expansion.

 P_{12} should not be added into A, and P_{11} will be expanded.

Final step

Note: the tree was pruned to contain only 14 nodes, making the Research Strong Strong

BACKTRACKING strategy: another trial

- Another solution form: Note that a tour can also be expressed as a sequence of n nodes, i.e., $X = [x_1, x_2, ..., x_{n-2}]$, where $x_i \in V$. Without loss of generality, we assume $x_1 = a$, and b should appear before c in the tour. For example, the tour in blue can be represented as X = abcd.
- As solutions have this form, we can enumerate them through building a partial solution tree together with pruning technique.

An example: Step 1

Initially, we have only one active sub-problem P_0 with lower bound of tour distance 17.5. P_0 will be expanded at the next step.

Note that the partial solution X = ac?? was abandoned as we assume b appears before c in the tour. P_1 will be expanded at the next step.

 P_7 will be expanded at the next step.

We obtained two complete solutions, and updated $best_so_far$ accordingly. P_3 will be expaned.

62 / 70

 P_{12} will be expanded at the next step.

Final step

Note: the tree was pruned to contain only 15 nodes, making the algorithm efficient.

Time complexity and space complexity

Time complexity and space complexity

- Time (space) complexity of an algorithm quantifies the time (space) taken by the algorithm.
- Since the time costed by an algorithm grows with the size of the input, it is traditional to describe running time as a function of the input size.
 - **Input size**: The best notation of input size depends on the problem being studied.
 - For the TSP problem, the number of cities in the input.
 - For the MULTIPLICATION problem, the total number of bits needed to represent the input number is the best measure.

Running time: we are interested in its growth rate

- A straightforward way is to use the exact seconds that a program used. However, this measure highly depends on CPU, OS, compiler, etc.
- Several simplifications to ease analysis of algorithm:
 - ① We simply use the number of primitive operations (rather than the exact seconds used) under the assumption that a primitive operation costs constant time. Thus the running time is $T(n) = an^2 + bn + c$ for some constants a, b, c.
 - ② We consider only the leading term, i.e. an^2 , since the lower order terms are relatively insignificant for large n.
 - 3 We also ignore the leading term's coefficient a since the it is less significant than the growth rate.
- Thus, we have $T(n) = an^2 + bn + c = O(n^2)$. Here, the letter O denotes order.

Big O notation

 Recall that big O notation is used to describe the error term in Taylor series, say:

$$e^x = 1 + x + \frac{x^2}{2} + O(x^3)$$
 as $x \to 0$

Figure 2: Example: f(x) = O(g(x)) as there exists c > 0 (e.g. c = 1) and c = 0 such that c = 0 whenever c = 0 whenever c = 0

Big Ω and Big Θ notations

- In 1976 D.E. Knuth published a paper to justify his use of the Ω -symbol to describe a stronger property. Knuth wrote: "For all the applications I have seen so far in computer science, a stronger requirement [...] is much more appropriate".
- He defined

$$f(x) = \Omega(g(x)) \Leftrightarrow g(x) = O(f(x))$$

with the comment: "Although I have changed Hardy and Littlewood's definition of Ω , I feel justified in doing so because their definition is by no means in wide use, and because there are other ways to say what they want to say in the comparatively rare cases when their definition applies".

• Big Θ notation is used to describe "f(n) grows asymptotically as fast as g(n)".

$$f(x) = \Theta(g(x)) \Leftrightarrow g(x) = O(f(x)) \text{ and } f(x) = O(g(x)).$$

Worst case and average case

- Worst-case: the case that takes the longest time;
- Average-case: we need know the distribution of the instances;