AbdelRahman Adel 17012296

Sheet #5

$$M = M_4(M_3(M_2M_1)) = \begin{bmatrix} 1.299 & -0.76 & -52 \\ 0.75 & 1.299 & -42 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} 0.577 & 0.338 & 44.022 \\ -0.338 & 0.577 & 6.9153 \end{bmatrix}$$

$$O O I$$

$$M = \begin{bmatrix} 250 \\ 240 \end{bmatrix} = \begin{bmatrix} -51.45 \\ -39.95 \end{bmatrix} \Rightarrow Not in out put$$

$$M = \begin{bmatrix} 120 \\ 190 \end{bmatrix} = \begin{bmatrix} -38.62 \\ 457.26 \end{bmatrix} \Rightarrow Not in out put$$

$$M = \begin{bmatrix} 120 \\ 190 \end{bmatrix} = \begin{bmatrix} -38.62 \\ 457.26 \end{bmatrix} \Rightarrow Not in out put$$

$$M = \begin{bmatrix} 120 \\ 190 \end{bmatrix} = \begin{bmatrix} -38.62 \\ 29.45 \end{bmatrix} \Rightarrow Not in out put$$

$$M = \begin{bmatrix} 120 \\ 190 \end{bmatrix} = \begin{bmatrix} 102.89 & 42.209 \end{bmatrix}$$

$$M = \begin{bmatrix} 11 \\ 1 \end{bmatrix} = \begin{bmatrix} 144.933 & 7.158 \end{bmatrix}$$

$$P_{1} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{2} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{3} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{1} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{2} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{3} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{1} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{2} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{3} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{1} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{2} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{3} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{3} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{4} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{3} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{4} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{3} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{4} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

$$P_{5} \approx \begin{bmatrix} 103 & 42 \end{bmatrix}$$

(3) $(0,0) \rightarrow (0,0)$ $(0,1) \rightarrow (0.5,1)$ $(1,0) \rightarrow (2,0)$ $(1,1) \rightarrow (1.5,1)$ Ah=0 Ah= [000-100000] hz 0-1-100000.505 p30 0000-1-1011 b40 [-10-10002027 h5 000-10-1000 160 1-1-1-10001515157 hx 0 000-1-1-11 48 -h3=0, -h6=0 => h3=h6=0 -hz-hz+0.5hz+0.5hg=0 => -hz+0.5hz+0.5hg=0 -hz-hz+hz+hz+hz=0 => -hz+hz+hz+hz=0 => 0 -h1-h3+2h++2hg=0=>-h1+2k++2hg=0=>-h1+2kg=0 -h4-h6=0 -h1-h2-h3+1.5hx+1.5h8+1.5h9=0=>-h1-h2+1.5hx+1.5h8+1.5h9=0 -ha-hs-h6+hx+h8+hg=0=) (-h6+hx+h8+hg=0=0 (180 h7 = 0 h 2:0 - h2 + 0.5 hg + 0.5=0 -h2+0.3h8=-6.5 N8=-1 -1 = hs + hs + 1 = 0 -hg + hg = -1 hg = 0 -h2+1.5hg=-1.5 -Ki-hz+1.5 h8 + 1.5: =0 =hathat = 0

$$h = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix} #$$

4) 100 malching Pairs 25% out 1005 P=0.95

> Ny log (1-P)_ log (1-(1-e)5)

N> log(1-0.95) > 5.467

office => 3 Correspondance

Nat level 6 A

$$[XYZ]^T \rightarrow [\frac{\ell}{2}X, \frac{\ell}{2}Y]$$

Point
$$[X_1, Y_1, d]^T \rightarrow [\frac{1}{4}X_1, \frac{1}{4}Y_1]^T$$

Paint $[X_2, Y_2, d]^T \rightarrow [\frac{1}{4}X_2, \frac{1}{4}Y_2]$

A

$ \begin{bmatrix} $	1) Perspective Model	12) Weak perspective	[3] orthographic
h- \ 0 0 la	[XYZ] T>[\frac{1}{2}x,\frac{1}{2}y]	$Z_0 - \frac{100 + 120}{2} = 110$	P.=[50, 50] T
00 30.75	1 50 → 0.25	[XYZ]] >[=x, =y]	P2 = [75, 100]T
P' = [0.25 0.25] P' = [\frac{5}{22} \frac{7}{22}] length = \[\]	$P_{1}^{1} = [0.25 \ 0.25]^{T}$	$P_1 = \begin{bmatrix} \frac{5}{22} & \frac{5}{22} \end{bmatrix}$	lagth = 111 11
$75 \rightarrow \frac{5}{16}$ $100 \rightarrow \frac{5}{12}$ $P_2 = \begin{bmatrix} \frac{16}{44} & \frac{5}{11} \end{bmatrix}$ $= \frac{55.902 \text{ cm}}{100}$		P2 = [15]	= 55.902 cm
$P_{2} = [5/6 \ 5/2]$ length = $\sqrt{ P_{1} - P_{2} ^{2}}$ length = $\sqrt{ P_{1} - P_{2} ^{2}}$ [= 0.254 cm]	length = NP, -P2 112	length = VIP, - P2 112	

