<u>Project Deliverables</u>: Improvement of Reliability of 220 KV Power Transmission network

Name of presenter: Preethi Kamble (NIT Raipur)

Satyam Dhar (NIT Silchar)

Project Name: Improvement of reliability of 220kV power transmission network

Name of the Department: Electrical Power Systems (EPS)

Name of HOD: Mr. Pinaki Bhattacharjee

Name of Mentor: Mr. Abhishek Robinson

Name of Guide: Mr. Dashrath Naidu, Mr. Nitin Rathi

Project Commencement date: 16th May 2024

Project Completion date: 15th July 2024

Project Category: Maintenance

15 July 2024 2

JSP Raigarh

JSP has a steel making capacity of 9.6 MTPA, 1634 MW captive power capacity.

JSP Raigarh has a steel making capacity of 3.6 MTPA and 824 MW captive power capacity.

JSP Raigarh has various departments like RMH (Raw material Handling), Coal Washery, Sinter Plant, Blast Furnace, DRI (Direct Reduced Iron), SMS (Steel Making Shop), Plate mill, SPM (Special Profile Mill), Rail Mill, Power Plant, Cement Plant, Brick Plant and EPS (Electrical Power Systems).

EPS - Transmission lines

The **Electrical Power Systems (EPS)** department acts as the backbone of Jindal Steel and Power's Raigarh plant, guaranteeing a steady and efficient flow of electricity to power not only the plant's critical operations but also fulfilling the needs of the township's households, maintaining critical equipment, transmission lines, towers, etc to implementing safety protocols, scheduled patrolling, etc and optimising energy consumption.

Transmission lines deliver power connecting the power generation units to the consumers and users. Within these facilities, dedicated teams act as internal customer service for electrical needs, ensuring a reliable, stable and cost-effective power supply.

15 July 2024 4

EPS - Transmission lines

Total Length of **76 km (Medium Transmission lines) CSEB Line** (CSEB to MRSS 1) 4.5km. **JSPL Line** (MRSS 4 to JSPL - also connects NSPL) 24km.

DCPP Line (DCPP to MRSS 4) 26km **JPL Line** (MRSS 4 to JPL) 21km

Types of Towers and Conductors

CONDUCTOR	VOLTAGE	CURRENT	STRANDS	SIZE
DOG	33-86KV	300A	6A-7S	SMALL
PANTHER	66-132KV	480A	30A-73	MEDIUM
ZEBRA	220KV	735A	54A-73	LARGE
MOOSE	220-440KV	900A	54A-79	LARGEST

SIZE: DOG < PANTHER < ZEBRA < MOOSE

AAAC MOOSE & ACSR ZEBRA - 220 KV CONDUCTORS

Understanding the Project and its Objective

• Improvement of reliability of 220kV power transmission line network

Flow of Presentation

NOTE: Focus put on data analysis to understand the severity of causes of the problem

15 July 2024 8

Root Cause Analysis via 5 WHYs

1 WHY	Lack of reliability due to frequent power outages
2 WHY	Power outages due to tripping in transmission lines
3 WHY	Tripping due to short circuit faults in transmission lines
4 WHY	Faults are caused by various factors like lightning strikes, lack of clearance from trees, metallic duct under the line corridor, animal interference, flying objects, and hardware problems
5 WHY	Inadequate lightning protection, insufficient vegetation management, lack of proper preventive maintenance, and poor quality hardware maybe big contributors to faults

Lack of clearance

Lightning

Hardware

Due to nearby trees, sheds, other structures

Decrease in clearance, leading to induction

Fault leading to line tripping

Inadequate Grounding

Higher tower foot resistance

Current surge in conductor

Damaged insulator, broken jumper wires, worn out conductors, etc.

Due to loose connection, arcing, voltage surge, etc

Worn out with time

Power Outage

Fault leading to line tripping

Decrease in clearance, leading to induction

Tin sheets, tarpaulin sheets, etc

Fault leading to line tripping

Decrease in clearance, leading to induction

Birds, snake, etc

Animal Interference

Flying Objects

Pareto Chart Analysis

Reasons of 220 kV Transmission Line Tripping over the last 6 years

Reasons of Breakdown	No of breakd own	Cumulative Percentage
Lightning Strikes	28	57.14
Fault due to External Reasons	11	79.59
Internal Plant Problem	5	91.84
Grid Failure	3	97.96
Hardware Failure	1	100

Pareto Chart of Reasons of Breakdown over the last 6 years

Reasons of Breakdown

Schedule patrolling

Hotline maintenance

String Replacement

Preventive Maintenance

Punctured Insulation Detection (PID)

Structural Stability Test (NDT) of towers

Earthing maintenance

Case Study

Breakdowns over the last 6 years

<u>Lightning strikes caused 57% of the breakdowns in the last 6 years</u>

Conductive Concrete Earthing (Marconite Earthing)

Concrete conductive earthing is a specific method for improving the grounding system of structures like 220 kV transmission line towers. It utilises conductive concrete to create a low-resistance path for fault current to

dissipate into the ground.

Marconite:Cement:Water ratio is **3:1:1** by weight It is also available as premix of standard 25kg

Marconite has resistivity of **0.001 ohm m**. The final mixture has a resistivity of **0.1 ohm m**.

Benefits:

- 1. Low resistivity
- 2. Versatile: suits most ground conditions
- 3. Long Term Reliability: 25 years
- 4. **Cost effective:** Permanent solution for 25 years, with no periodic maintenance like adding water, in case of charcoal and salt earthing
- 5. Chemically Inert: Non corrosive to steel and copper

Recommendations

1. Laying of Secondary Line:

Act as a back up incase of tripping in the primary line. DCPP line & JPI line.

2. Concrete Conductive Earthing:

Improving grounding system by providing low resistance path.

3. Increased Frequency of Inspection:

More Frequency of regular inspection (specially during monsoon) to locate any missing or damaged earthing parts.

4. Social Awareness:

Spread awareness among locals to prevent them from disconnecting the earthing.

5. Couple Ground Wire: To improve the lightning protection performance of the line and reduce the lightning trip rate of the line, the method of hanging the coupling line under the wire (or near it) can be used. The coupling line can act as a shunt and coupling when lightning strokes the tower, reduce the voltage borne on the tower insulation, and improve the lightning withstand level of the line. Therefore, the probability of the same jump of lightning strike is effectively reduced.

https://drive.google.com/file/d/1XutBTgmyfFTN5VNYSf5_TMIExXs-hdk-/view?usp=sharing

Thank You

