Matching Professor Song Yao Olin Business School **Customer Analytics Non-random Assigned Treatmed** and Confounding Bias

Matching Example Revisit

EXAMPLE: For-profit education industry (E.g., Coursera, Udacity)

Student attrition is a major problem

What keeps students on track?

One key relationship:

- Students who sign up weekly emails take more classes and are more likely to graduate.
- But is this causal?

3

We cannot convincingly attribute the high graduation rate to Email (at least not completely)

We cannot convincingly attribute the high graduation rate to Email (at least not completely)

Confounding Bias

5

Consider a toy example

Effect of Email on Class Hours: Male 10hrs, Female 5hrs

```
email_example = pd.DataFrame(dict(
    gender= ["M","M","M","M","M", "F","F","F","F"],
    email=[1,1,0,0,0,0, 1,1,1,0],
    hours=[80,80,70,70,70,70, 90,90,90,85]
))

print(email_example.query('gender == "F"'))
print(email_example.query('gender == "M"'))
gender email hours
```

	gender	email	hours
6	F	1	90
7	F	1	90
8	F	1	90
9	F	0	85
	gender	email	hours
0	M	1	80
1	M	1	80
2	M	0	70
3	M	0	70
4	M	0	70
5	М	0	70

Female.

- 1. More hours in the first place
- 2. More likely to sign up
- 3. Effect is smaller b/c their higher baseline

The Intuition behind Matching

Effect of Email on Class Hours: Male 10hrs, Female 5hrs

```
Biased_Estimate = email_example.query("email==1")["hours"].mean() - \
    email_example.query("email==0")["hours"].mean()
print("Biased Estimate is", Biased_Estimate)
```

Biased Estimate is 13.0

```
# Calculate Average Treatment Effect (ATE)
## Effect on men is 10 hours and there are 6 men,
## Effect on women is 5 hours and there are 4 women.
ATE = (10*6 + 5*4)/10
print("ATE is", ATE)
```

ATE is 8.0

This ATE calculation is a "matching":

Male: Match each treated with a control, vice versa

Female: Match a treated with a control, vice versa

Female

Email

Class Hours

Diagnoses

How about OLS regressions? A good diagnositic tool

With and Without Controlling the Variables

```
# Run OLS regression of outcome on treatment without controlling gender
import statsmodels.formula.api as smf
ols_no_gender = smf.ols(formula='hours ~ email', data=email_example).fit()
print(ols_no_gender.summary().tables[1])

# Run OLS regression of outcome on treatment with controlling gender
import statsmodels.formula.api as smf
ols_with_gender = smf.ols(formula='hours ~ email + gender', data=email_example).fit()
print(ols_with_gender.summary().tables[1])
```

	coef	std err	t	P> t	[0.025	0.975]
Intercept	73.0000	2.739	26.656	0.000	66.685	79.315
email	13.0000	3.873	3.357	0.010	4.069	21.931
	coef	std err	t	P> t	[0.025	0.975]
Intercept	82.6000	0.944	87.486	0.000	80.367	84.833
gender[T.M]	-12.0000	0.926	-12.961	0.000	-14.189	-9.811
email	8.2000	0.907	9.040	0.000	6.055	10.345

9

Consider a more realistic (more complex) dataset

Email's effect on class hours

Load the student email dataset
df = pd.read_csv('https://songyao21.github.io/course_data/students_email_hours.csv')
df.head()

	Student_ID	Email	Class_Hours	Female	Age	Income	GPA
0	1	1	77	1	27	81	3.55
1	2	0	106	0	27	100	3.30
2	3	1	63	0	24	110	4.00
3	4	1	59	1	32	75	3.34
4	5	1	50	1	30	116	4.00

Do We Have Random Assignment of Treatment (Email)?

Random assignment alleviates the confounding bias concern

If the email is randomly assigned, students' attributes/features should be similar between treatment and control groups

Variable	Treated Mean	Control Mean	Standardized Diff	p-value
Female	0.683	0.412	0.567	0.000
Age	29.228	32.457	-0.586	0.000
Income	92.234	91.533	0.053	0.019
GPA	3.764	3.659	0.304	0.000

What can we conclude from this table?

- NOTE: Creating the mean comparison table above is sometimes called balance check or randomization check

11

A naive (and most likely biased) estimate of ATE

Simple difference calculation of outcome between treated and control groups

The balance check shows there are potential confounding factors

• Treated and control groups differ significantly in their attributes/features

Use OLS to confirm the existence of bias

	coef	std err	t	P> t	[0.025	0.975]
Intercept Email	73.2226 10.0510	0.531 0.621	137.879 16.196	0.000 0.000	72.182 8.835	74.264 11.267
========	coef	std err	t	P> t	[0.025	0.975]
Intercept Email Female Age Income GPA	44.7598 8.9474 2.3053 -0.0052 0.1746 3.1986	3.601 0.664 0.580 0.049 0.021 0.826	12.431 13.474 3.975 -0.106 8.370 3.875	0.000 0.000 0.000 0.916 0.000	37.702 7.646 1.168 -0.101 0.134 1.580	51.818 10.249 3.442 0.090 0.215 4.817

13

K-Nearest Neighbors

Most Basic Matching Method: K-Nearest Neighbors

The intuition: Find the nearest units in the other group (Euclidean distance)

In this example

- · Each customer has two features
- Each treated is matched with two nearest neighbors in the control
 - Not showing control units matching with treated units (too cluttered)
 - With replacement. i.e.. a control can match with multiple treated

15

K Nearest Neighbor Matching (KNN)

We use Python's "causalinference" package (manual implementation posted)

```
from causalinference import CausalModel

CM_matching = CausalModel(
    Y=df["Class_Hours"].values,
    D=df["Email"].values,
    X=df[["Female", "Age", "Income", "GPA"]].values,
)

CM_matching.est_via_matching(matches=5, bias_adj=True)
print(CM_matching.estimates)
```

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% Coi	nf. int.]
ATE	10.248	0.963	10.638	0.000	8.360	10.163
ATC	8.621	0.786	10.962	0.000	7.080	
ATT	10.843	1.153	9.407	0.000	8.583	

Practical issues of KNN

- The matching may become low quality when number of features is large
- Even after matching, treated and control units may still differ substantially in some features (sometimes referred to as *poor balance* after matching)
- Propensity Score Matching (PSM) is an alternative to address these issues
 - Summarize many features into a single metric, the propensity score
 - We can check the balance of propensity score
 - Take actions if they are not balanced between treatment and control groups

17

Propensity Score Matching

Propensity Score Matching

The intuition is similar to KNN

- 1. Use features to calibrate a propensity score for each customer (e.g., a logistic regression)
- 2. Use the propensity score to match
- 3. We can check the propensity score balance
 - (1) Standardized Mean Difference (SMD) of Propensity Scores
 - (2) Percentage outside common support region

19

Propensity Score Matching

The intuition is similar to KNN

- 1. Use features to calibrate a propensity score for each customer (e.g., a logistic regression)
- 2. Use the propensity score to match with nearest neighbors (i.e., only one feature, the propensity score, is used in matching)
- 3. But how is matching in one feature sufficient?

Propensity Score Matching: Step 1

Calibrate Propensity Score

```
# Estimate propensity scores using logistic regression
import statsmodels.formula.api as smf

# Fit logistic regression to estimate propensity scores
ps_model = smf.logit(formula='Email ~ Female + Age + Income + GPA', data=df).fit()
print(ps_model.summary().tables[1])

# Add propensity scores to dataframe
df['propensity_score'] = ps_model.predict(df)
```

- We use logistic
- In practice, we may use more flexible methods (ML models)

21

Propensity Score Matching: Step 2

Matching with the Propensity Score (manual implementation code posted)

```
cm = CausalModel(
    Y=df["Class_Hours"].values,
    D=df["Email"].values,
    X=df["propensity_score"].values
)

cm.est_via_matching(matches=5, bias_adj=True)
print(cm.estimates)
```

Treatment Effect Estimates: Matching

	Est.	S.e.	z	P> z	[95% Cor	nf. int.]
ATE	9.600	1.300	7.385	0.000	7.052	12.147
ATC	8.402	0.806	10.429	0.000	6.823	9.981
ATT	10.037	1.654	6.068	0.000	6.795	13.280

- The ATE has become smaller (closer to the OLS result, 8.95).

Also need to check the propensity score's match quality

Do treatment and control groups have comparable propensity scores

Metric 1: Percentage of obs outside common support

Do we have many observations that do not have neighbors nearby? Rule of thumb: <5%

- Common support: The range of treatment/control's propensity score overlap
- Overall how many observations fall outside?
- How many observation fall outside by treatment status

Propensity Score Summary Statistics: Treated Group: 7323.000000 count mean 0.769346 std 0.149036 0.204110 min 0.692859 50% 0.805577 75% 0.889994 0.953898 max Name: propensity_score, dtype: float64 Control Group: count 2677.000000 mean 0.630961 0.172188 min 0.191512 0.502615 25% 0.658847 75% 0.770778 0.934831 Name: propensity_score, dtype: float64

Metric 2: Standardized Mean Difference (SMD)

Does the propensity score's distribution differ btw treatment and control groups? Rule of thumb: <0.1 (some people use 0.25)

$$SMD = \frac{\bar{X}_T - \bar{X}_C}{\sqrt{\frac{\sigma_T^2 + \sigma_C^2}{2}}}$$

- Numerator: Difference in mean propensity score
- Denominator: Standard Deviation of that difference
- In our case, this metric is 0.859
- Note: We can do this check for each feature, not just PS. But when the number of features is large, this becomes cumbersome.

25

Inverse Propensity Weighting (IPW)

Solution 1: Inverse Propensity Weighting (IPW)

Intuition behind IPW

- Instead of matching treated and control units, IPW reweights the sample so that groups are comparable.
 - Individuals who are underrepresented in their group (e.g., low propensity to be treated but was treated) get higher weights.
 - Individuals who are overrepresented in their group (e.g., high propensity to be treated and was treated) get lower weights.
- For ATE, weights are the inverse of the propensity score:
 - Treated units

Untreated (control) units

$$w_i = \frac{1}{e(X_i)} \qquad w_i = \frac{1}{1 - e(X_i)}$$

- ATE: Treated's average outcome - Control's average outcome (weighted by the weights defined above)

27

Solution 1: Inverse Propensity Weighting (IPW)

Intuition behind IPW

- For ATT, weights are different from the ATE case:
 - Treated units

Untreated (control) units

$$w_i = 1 w_i = \frac{e(X_i)}{1 - e(X_i)}$$

- For ATC, weights are different from the ATE and ATT cases:

$$w_i = \frac{1 - e(X_i)}{e(X_i)} \qquad w_i = 1$$

- ATT/ATC: Treated's average outcome - Control's average outcome (weighted by the weights defined above)

Solution 1: Inverse Propensity Weighting (IPW)

```
CM_ipw = CausalModel(
     Y=df["Class_Hours"].values,
     D=df["Email"].values,
X=df[["Female", "Age", "Income", "GPA"]].values
 # Estimate propensity scores using logistic regression
 CM_ipw.est_propensity_s()
 # Retrieve estimated propensity scores correctly
 p_scores = CM_ipw.propensity['fitted']
 # Clip extreme propensity scores
 eps = 1e-2 # set the threshold to 0.01
                                                                          Clipping to avoid
 # clip the propensity scores to be between 0.01 and 0.99
                                                                          extreme values
 lower, upper = eps, 1-eps
 clipped_ps = np.clip(p_scores, lower, upper)
 # Manually replace the propensity scores in the internal dictionary
 # CM_ipw.propensity['fitted'] = clipped_ps
 CM_ipw.propensity._dict["pscore"] = clipped_ps
 # Estimate treatment effects using IPW
 CM_ipw.est_via_weighting()
# Report ATE
print("\nIPW Results from causalinference:")
 print(CM_ipw.estimates)
IPW Results from causalinference:
Treatment Effect Estimates: Weighting
                     Est.
                                                      P>|z|
                                                                 [95% Conf. int.]
                               0.767
                                         12,359
                                                      0.000
                                                                 7.972
                                                                                                           29
```

The "causalinference" package does not report ATT/ATC

```
# Get data from the IPW model
Y = df["Class_Hours"].values
D = df["Email"].values
 propensity = CM_ipw.propensity['fitted'] # Access fitted propensity scores
 # Clip extreme propensity scores to avoid numerical issues
 eps = 1e-2 # set the threshold to 0.01
 # clip the propensity scores to be between 0.01 and 0.99
 lower, upper = eps, 1-eps
 propensity = np.clip(propensity, lower, upper)
 # Get indices of treated and control units
 D1_indices = D == 1
D0_indices = D == 0
 Y1_treated = Y[D1_indices] # Outcomes for treated group
 ps_control = propensity[D0_indices] # Propensity scores for control group
Y0_control = Y[D0_indices] # Outcomes for control group
# Weight the control outcomes by ps/(1-ps)
weights_control_att = ps_control / (1 - ps_control)
weighted_control_outcomes = Y0_control * weights_control_att
att = np.mean(Y1_treated) - np.sum(weighted_control_outcomes) / np.sum(weights_control_att)
                                                                                                                                                            Adjusting the
 Y0_control = Y[D0_indices] # Outcomes for control group
ps_treated = propensity[D1_indices] # Propensity scores for treated group
Y1_treated = Y[D1_indices] # Outcomes for treated group
                                                                                                                                                            weights
 # Weight the treated outcomes by (1-ps)/ps
 weights_treated_atc = (1 - ps_treated) / ps_treated
weighted_treated_outcomes = Y1_treated * weights_treated_atc
atc = np.sum(weighted_treated_outcomes) / np.sum(weights_treated_atc) - np.mean(Y0_control)
 print(f"ATT: {att:.4f}")
 print(f"ATC: {atc:.4f}")
ATT: 9.8855
ATC: 8.5353
```

Solution 2: Stratified Propensity Score Matching (SPSM)

- Divide customers into groups (10 or 5) based on their propensity scores
 - E.g., Group 1: *ps*<10%; Group 2: 10%<=*ps*<20%; ...
- Within each group, implement PSM
- Obtain the average treatment effect using average (weighted by group size)
- One key reason why this approach helps
 - Within each stratum, treated and control units are more balanced:
 - Each stratum contains a more homogeneous subset of the data.
 - Covariates within each stratum are expected to be more similar.

31

Solution 2: Stratified Propensity Score Matching (SPSM)

Weighted Average Treatment Effect: 9.522 Weighted Standard Error: 1.263 95% CI: [7.047, 11.997]

Stratum-Specific Results:

Stratum ATE Std Err N Treated Control 6.98 2000 1.41 948 1052 2 8.54 1.41 2000 1317 683 12.48 1.63 2000 1513 487 10.18 1.85 2002 351 1651 9.44 5.46 1998 1894 104

Solution 2: Stratified Propensity Score Matching (SPSM)

33

Which one to use?

My rule of thumb is

- Start with an OLS or PSM to establish some benchmark
 - For PSM, remember to check % outside common support and SDM
- IPW is more robust and used widely
- SPSM
 - · When we need to explicitly check balance
 - When there are many propensity scores near 0 or 1
 - IPW will have extreme weights in this case.