Лабораторная работа

Номер 4

Прокопьева М. Е.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Прокопьева Марина Евг.
- студент
- Бизнес-инфороматика
- Российский университет дружбы народов

Вводная часть

Цель работы

Освоить на практике применение режима однократного гаммирования

Порядок выполнения работы

Порядок выполнения работы

Нужно подобрать ключ, чтобы получить сообщение «С Новым Годом, друзья!». Требуется разработать приложение, позволяющее шифровать и дешифровать данные в режиме однократного гаммирования. Приложение должно: 1. Определить вид шифротекста при известном ключе и известном откры- том тексте. 2. Определить ключ, с помощью которого шифротекст может быть преоб- разован в некоторый фрагмент текста, представляющий собой один из возможных вариантов прочтения открытого текста

Теоретическое введение

Теоретическое введение

Предложенная Г. С. Вернамом так называемая «схема однократного использования (гаммирования)» (рис. 7.1) является простой, но надёжной схемой шифрования данных. Гаммирование представляет собой наложение (снятие) на открытые (за- шифрованные) данные последовательности элементов других данных, по-лученной с помощью некоторого криптографического алгоритма, для по-лучения зашифрованных (открытых) данных. Иными словами, наложение гаммы — это сложение её элементов с элементами открытого (закрытого) текста по некоторому фиксированному модулю, значение которого пред- ставляет собой известную часть алгоритма шифрования.

В соответствии с теорией криптоанализа, если в методе шифрования используется однократная вероятностная гамма (однократное гаммирование) той же длины, что и подлежащий сокрытию текст, то текст нельзя раскрыть. Даже при раскрытии части последовательности гаммы нельзя получить информацию о всём скрываемом тексте. Наложение гаммы по сути представляет собой выполнение операции сложения по модулю 2 (XOR) (обозначаемая знаком 🗋) между элементами гаммы и элементами подлежащего сокрытию текста. Напомним, как рабо- тает операция XOR над битами: $0 \square 0 = 0, 0 \square 1 = 1, 1$ $\Box 0 = 1, 1 \Box 1 = 0$. Такой метод шифрования является симметричным, так как двойное при- бавление одной и той же величины по модулю 2 восстанавливает исходное значение, а шифрование и расшифрование выполняется одной и той же про-граммой.

Если известны ключ и открытый текст, то задача нахождения шифротек- ста заключается в применении к каждому символу открытого текста следу- ющего правила: Ci = Pi \square Ki, (7.1) где Ci — i-й символ получившегося зашифрованного послания, Pi - i-й символ открытого текста, Ki - i-й символ ключа, i = 1, m. Размерности открытого текста и ключа должны совпадать, и полученный шифротекст будет такой же длины. Если известны шифротекст и открытый текст, то задача нахождения ключа решается также в соответствии с (7.1), а именно, обе части равен- ства необходимо сложить по модулю 2 с Рі: Сі □ Рі = Рі \square Ki \square Pi = Ki, Ki = Ci \square Pi.

Открытый текст имеет символьный вид, а ключ — шестнадцатеричное представление. Ключ также можно представить в символьном виде, воспользовавшись таблицей ASCII-кодов. К. Шеннон доказал абсолютную стойкость шифра в случае, когда одно- кратно используемый ключ, длиной, равной длине исходного сообщения, является фрагментом истинно случайной двоичной последовательности с равномерным законом распределения. Криптоалгоритм не даёт никакой ин- формации об открытом тексте: при известном зашифрованном сообщении С все различные ключевые последовательности К возможны и равноверо- ятны, а значит, возможны и любые сообщения Р. Необходимые и достаточные условия абсолютной стойкости шифра: – полная случайность ключа; – равенство длин ключа и открытого текста; - однократное использование ключа.

Рассмотрим пример. Ключ Центра: 05 0C 17 7F 0E 4E 37 D2 94 10 09 2E 22 57 FF C8 0B B2 70 54 Сообщение Центра: Штирлиц — Вы Герой!! D8 F2 E8 F0 EB E8 F6 20 2D 20 C2 FB 20 C3 E5 F0 EE E9 21 21 Зашифрованный текст, находящийся у Мюллера: DD FE FF 8F E5 A6 C1 F2 B9 30 CB D5 02 94 1A 38 E5 5B 51 75 Дешифровальщики попробовали ключ: 05 0C 17 7F 0E 4E 37 D2 94 10 09 2E 22 55 F4 D3 07 BB BC 54 и получили текст: D8 F2 E8 F0 EB E8 F6 20 2D 20 C2 FB 20 C1 EE EB E2 E0 ED 21 Штирлиц - Вы Болван!

Другие ключи дадут лишь новые фразы, пословицы, стихотворные строфы, словом, всевозможные тексты заданной длины.

Выполнение лабораторной

работы

Выполнение лабораторной работы

Я выполнала лабораторную работа на языке программирования Python, листинг программы и результаты выполнения приведены в отчете.


```
import random
import string
def generate key hex(text):
    key = ''
    for i in range(len(text)):
        key += random.choice(string.ascii letters + string.digits)
    return kev
def en_de_crypt(text, key):
    new text = ''
    for i in range(len(text)):
        new text += chr(ord(text[i]) ^ ord(kev[i % len(kev)]))
    return new text
```

Ответы на контрольные

вопросы

Ответы на контрольные вопросы

- 1. Поясните смысл однократного гаммирования. Однократное гаммирование это метод шифрования, при котором каждый символ открытого текста гаммируется с соответствующим символом ключа только один раз.
- 2. Перечислите недостатки однократного гаммирования. Недостатки однократного гаммирования:
 - Уязвимость к частотному анализу из-за сохранения частоты символов открытого текста в шифротексте.
 - Необходимость использования одноразового ключа, который должен быть длиннее самого открытого текста.
 - Нет возможности использовать один ключ для шифрования разных сообщений.

- 3. Перечислите преимущества однократного гаммирования. Преимущества однократного гаммирования:
 - Высокая стойкость при правильном использовании случайного ключа.
 - Простота реализации алгоритма.
 - Возможность использования случайного ключа.
- 4. Почему длина открытого текста должна совпадать с длиной ключа? Длина открытого текста должна совпадать с длиной ключа, чтобы каждый символ открытого текста гаммировался с соответствующим символом ключа.

- 5. Какая операция используется в режиме однократного гаммирования, назовите её особенности? В режиме однократного гаммирования используется операция ХОК (исключающее ИЛИ), которая объединяет двоичные значения символов открытого текста и ключа для получения шифротекста. Особенность ХОК если один из битов равен 1, то результат будет 1, иначе 0.
- 6. Как по открытому тексту и ключу получить шифротекст? Для получения шифротекста по открытому тексту и ключу каждый символ открытого текста гаммируется с соответствующим символом ключа с помощью операции XOR.
- 7. Как по открытому тексту и шифротексту получить ключ? По открытому тексту и шифротексту невозможно восстановить действительный ключ, так как для этого нужна информация о каждом символе ключа.

14/15

8. В чем заключаются необходимые и достаточные условия абсолютной стойкости шифра - Необходимые и достаточные условия абсолютной

Выводы

Освоила на практике применение режима однократного гаммирования.