

We have alkeady computed the crystar velocity in Tutorial 05. However, let us revisit it.

$$\frac{\omega \varepsilon_{0}/\varepsilon_{0}}{= \frac{\omega \varepsilon_{0}/\varepsilon_{0}}{= \frac{\beta \varepsilon_{0}^{2} + \frac{2\pi N}{60} \varepsilon_{3}^{2}}}$$

$$= \frac{\beta \varepsilon_{0}^{1} + \frac{2\pi N}{60} \varepsilon_{3}^{2}}{= \frac{\beta \varepsilon_{0}^{1} + \frac{2\pi N}{60} \varepsilon_{3}^{2}}$$
At the instant when ε_{0} and ε_{0} when ε_{0} and ε_{0} when ε_{0} and ε_{0} when ε_{0} and ε_{0} are ε_{0} and ε_{0} are ε_{0} and ε_{0} and ε_{0} and ε_{0} and ε_{0} are ε_{0} and ε_{0} and ε_{0} and ε_{0} are ε_{0} and ε_{0} and ε_{0} and ε_{0} and ε_{0} and ε_{0} are ε_{0} and ε_{0} and ε_{0} are ε_{0} and ε_{0} and ε_{0} and ε_{0} are ε_{0} and ε_{0} are ε_{0} and ε_{0} are ε_{0} and ε_{0} and ε_{0} are ε_{0} an

Angular anderation of the arm:

In the branket frame & the arm:

arm frame has the constant
angular velocity = $\beta \hat{e}_{i}^{b}$ Employing

Time rate Time rate of change of whonge of who observed in E's

In the present case
$$u(t) = \frac{\omega \epsilon_{\ell}}{\epsilon_0}$$
 $u(t) = \frac{d}{dt} \frac{\omega \epsilon_{\ell}}{\epsilon_0} = \frac{\omega \epsilon_{\ell}}{\epsilon_0} \times \frac{\omega \epsilon_{\ell}}{\epsilon_0}$
 $u(t) = \frac{d}{dt} \frac{\omega \epsilon_{\ell}}{\epsilon_0} = \frac{\omega \epsilon_{\ell}}{\epsilon_0} \times \frac{\omega \epsilon_{\ell}}{\epsilon_0}$

when ϵ_0 and ϵ_0 coincide

$$u(t) = \frac{2\pi N}{60} \frac{2}{\epsilon_0} \times \frac{2}{\epsilon_0}$$

when ϵ_0 and ϵ_0 coincide

$$u(t) = \frac{2\pi N}{60} \frac{2}{\epsilon_0} \times \frac{2}{\epsilon_0}$$