Statistical Inference in R and JAGS

Noble Hendrix & Jim Thorson noblehendrix@gmail.com / james.thorson@noaa.gov

Ejemplo de Modelo Espacio Estado de Pesca

22 January 2016

UDEC, Concepción Chile

Ejemplo – Atun Albacora del Atlántico Sur (*Thunnus alalunga*)

- Pesca con anzuelo
- 4 stocks de albacora (N & S Pacífico, N & S Atlántico)
- Albacora de N y S Atlántico manejados por ICCAT

Crédito foto – Minnesota Post

Datos:

Captura – en miles de toneladas (1967 – 1989)

Datos II:

Captura por unidad de esfuerzo (CPUE) – índice de abundancia

Modelo Espacio-Estado

- Implementa modelo Schaefer de producción
- Estima los coeficientes del modelo en una plataforma Bayesiana usando BUGS
- Aplica el modelo a la evaluación de stock de atún albacora del Atlántico Sur (Meyer y Millar 1999 CJFAS 56:1078)

Modelo de producción de Schaefer

Modelo:

$$B_{t-1} = B_{t-1} + r B_{t-1} (1 - B_{t-1}/K) - C_{t-1}$$

B – biomasa al tiempo t

r – tasa intrínseca de crecimiento

K – capacidad de carga poblacional

C - captura

Indice de abundancia relativa

En algunos casos también puede haber un índice de abundancia de campañas de investigación:

$$I_{t}=qB_{t}$$

 I_t = índice de abundancia en año t

q = parámetro de capturabilidad del arte de pesca o muestreo

 B_t =biomasa en año t

Parámetros de manejo

Rendimiento máximo sostenible (RMS)

$$RMS = rK/4$$

Biomasa en RMS

$$B_{RMS} = K/2$$

Esfuerzo óptimo

$$E_{RMS} = r/2q$$

¿Cuales son las posibles fuentes de variabilidad?

Ruido de proceso

$$B_{t} = [B_{t-1} + r B_{t-1}(1 - B_{t-1}/K) - C_{t-1}] \exp\{v_{t}\}$$

$$v_{t} \sim N(0, \sigma^{2})$$

Error de observación

$$I_t = qB_t \exp\{u_t\}$$

$$u_t \sim N(0, \tau^2)$$

Modelos Estado-Espacio

- Incorpora tanto aleatoriedad en los procesos de base (ruido de proceso) y error en las observaciones (error de medición)
- El modelado Bayesiano de modelos Estado-Espacio provee mejoras sobre alternativas previas (Ej., Filtro Kalman asume error de proceso Gaussiano y error en la medición)
- Es común tener que estructurar las dos fuentes de error (usando distribuciones previas informativas en uno de ellos), o estimar la razón entre ellos
- Publicaciones relevantes:
 - Buckland et al. 2007 (Statistical Science 22:44)
 - Newman et al. 2009 (Biometrics 65:572)

Reparametrización de modelo Espacio-Estado:

Meyer y Millar 1999 CJFAS 65:1078

- La biomasa annual es una proporción de la capacidad de carga - P_t =B_t /K
- Ecuación de proceso

$$P_{t} = (P_{t-1} + r P_{t-1} (1 - P_{t-1}) - C_{t-1} / K) \exp\{v_{t}\}\$$

$$v_{t} \sim N(0, \sigma^{2})$$

Ecuación de observación

$$I_{t}=qKP_{t}\exp\{u_{t}\}$$

$$u_{t}\sim N(0, \tau^{2})$$

Gráfico Acíclico Direccionado

name: mean I[t] Imed[t] type: precision

stochastic itau2 density: dnorm lower bound

upper bound

Ajuste de modelo a datos de CPUE

Distribuciones Posteriores

Distribuciones a priori y a posteriori de Meyer y Millar (1999)

Fig. 2. Kernel density estimates (solid lines) of the posterior distribution of various model and management parameters. Proper prior densities are given by the broken lines.

Corriendo el modelo...en el laboratorio

- tuna.bug el código de JAGS
- Day5-TunaEE.R un código en R para graficar los datos y correr el modelo usando JAGS

