MAT0431 - Introdução à Topologia Algébrica Trabalho de Classificação de Superfícies

Eduardo Ventilari Sodré - NUSP 11222183

25 de Novembro de 2021

Sumário

1	Introdução	1
2	Definições Iniciais	2
3	Apresentações Poligonais de Superfícies	5
4	O Teorema de Classificação, Parte I	12
5	O Grupo Fundamental de uma Superfície	17
6	A Abelianização de Grupos	19
7	O Teorema de Classificação, Parte II	22

1 Introdução

Neste trabalho, estudaremos a classificação de superfícies (variedades topológicas de dimensão 2) compactas. O teorema usual de classificação é o seguinte:

Teorema 1.1 (Classificação das superfícies). Toda superfície compacta é homeomorfa a uma, e exatamente uma, das superfícies listadas a seguir:

- S^2 , a 2-esfera;
- $T^2 \# \cdots \# T^2$, a soma conexa de g toros;

•
$$\mathbb{R}P^2 \# \cdots \# \mathbb{R}P^2$$
, a soma conexa de h planos projetivos.

Demonstraremos inicialmente a parte do enunciado que afirma que que toda superfície compacta é homeomorfa a uma das listadas acima (e não necessariamente a exatamente uma). Isto é feito assumindo o seguinte resultado sobre triangulação de superfícies:

Teorema 1.2 (Triangulação de 2-Variedades). Toda superfície é homeomorfa ao poliedro de um complexo simplicial de dimensão 2, no qual todo 1-simplexo é a face de exatamente dois 2-simplexos.

Dada uma triangulação de uma superfície, constrói-se uma representação dela, que codifica algebricamente sua estrutura topológica, e que podemos recuperá-la totalmente a partir desta informação. A ideia principal é que, dadas regiões poligonais no plano, o espaço quociente obtido a partir da identificação de arestas sob certas condições será uma superfície compacta, e toda triangulação produz uma superfície dessa maneira.

Podemos então estudar superfícies a partir das apresentações poligonais abstratas, que nos dizem como identificar arestas destas regiões poligonais, e produzem uma realização geométrica de uma superfície correspondente. Certas operações algébricas nestas regras de identificação corresponderão a equivalências topológicas entre as superfícies realizadas, de modo que, utilizando tais operações, poderemos reduzir toda representação a uma forma "canônica", correspondendo exatamente ao enunciado do teorema de classificação de superfícies.

2 Definições Iniciais

Dados k+1 pontos v_0, \ldots, v_k em \mathbb{R}^n afinamente independentes, ou seja, tais que $\{v_1 - v_0, \ldots, v_k - v_0\}$ é conjunto linearmente independente, o **simplexo** (ou k-**simplexo**) gerado por eles é o conjunto

$$[v_0, \dots, v_k] := \left\{ \sum_{i=0}^k t_i v_i : t_i \ge 0, \sum_{i=1}^k t_i = 1 \right\}.$$

Os pontos v_i são os **vértices** do simplexo. Todo simplexo gerado por um subconjunto não-vazio dos vértices é uma **face** do simplexo. É fácil demonstrar que todo k-simplexo é homeomorfo à bola unitaria fechada $\overline{\mathbb{B}}^k$.

Um complexo simplicial é uma coleção K de simplexos em um \mathbb{R}^n tal que:

- Toda face de um simplexo em K é simplexo contido em K;
- \bullet A interseção de dois simplexos em K ou é vazia, ou é uma face de cada;
- ullet K é coleção localmente finita.

Trabalharemos principalmente com complexos simpliciais finitos, portanto não nos preocuparemos tanto com a última condição, sendo satisfeita automaticamente. Dado um complexo simplicial K, seu **poliedro** |K| é a união de todos os simplexos em K com a topologia induzida de \mathbb{R}^n . Na linguagem de CW-complexos, os interiores dos simplexos de K formam decomposição celular do poliedro que o tornam um CW-complexo regular.

Dados K e L complexos simpliciais, com 0-esqueletos K_0 e L_0 respectivamente, dizemos que $f: |K| \to |L|$ é um **mapa simplicial** se é função contínua tal que, restrita a cada simplexo $\sigma \in K$, concorda com um mapa afim levando σ num simplexo em L. Naturalmente f induz um mapa $f_0: K_0 \to L_0$ entre os vértices dos simplexos, e é possível demonstrar o seguinte resultado: se $f_0: K_0 \to L_0$ é mapa tal que se $\{v_0, \ldots, v_k\}$ são vértices de um simplexo em K então $\{f_0(v_0), \ldots, f_0(v_k)\}$ são vértices de simplexo em L, então existe mapa simplicial f entre K e L tal que o mapa induzido entre os vértices é f_0 .

Um **polígono** é um subconjunto de \mathbb{R}^2 homeomorfo ao S^1 , e união finita de 1-simplexos (ou seja, segmentos de reta) que se intersectam apenas em suas extremidades). Uma **região poligonal** é um compacto de \mathbb{R}^2 cujo interior é homeomorfo ao disco unitário aberto (ou seja, o interior é uma 2-célula) e cuja fronteira é um polígono. Os 0-simplexos do polígono são seus **vértices**, e os 1-simplexos são suas **arestas**.

Proposição 2.1. Sejam P_1, \ldots, P_k regiões poligonais no plano, e considere uma relação de equivalência em $\bigsqcup P_i$ que identifica algumas das arestas com outras por meio de homeomorfismos afins.

- (i) O espaço quociente resultante é um CW-complexo finito de dimensão 2, cujo 0-esqueleto é a imagem dos vértices pela projeção, e cujo 1-esqueleto é a união dos polígonos.
- (ii) Se a relação de equivalência identifica cada aresta de cada P_i com exatamente uma outra aresta de algum P_j , podendo ser igual a P_i , então o espaço quociente resultante é uma superfície compacta.

Exemplos simples do resultado acima são a esfera S^2 , o toro T^2 e o plano projetivo $\mathbb{R}P^2$, obtidos a partir da identificação de arestas num quadrado, como nos esquemas abaixo (respectivamente).

Demonstração. Sendo M o espaço quociente, temos o mapa quociente π : $P \to M$, e M_0 , M_1 e M_2 a imagem dos vértices, das fronteiras, e das regiões poligonais por π , respectivamente. M_0 naturalmente será discreto, como imagem de conjunto finito, e M_k é obtido de M_{k-1} a partir da colagem de quantidade finita de k-células. Pela construção indutiva de CW-complexos, o resultado do item (i) segue.

Para o item (ii), é suficiente mostrar que M é localmente euclidiano. As 2-células, correspondendo às imagens dos pontos interiores das regiões poligonais, são abertas em M, e são vizinhanças euclidianas de seus pontos; então basta encontrar vizinhanças euclidianas dos pontos nas 0-células, os vértices identificados, e nas 1-células, as arestas sem os vértices identificadas. É imediato ver que os pontos nas 1-células admitem vizinhanças euclidianas, pois cada um tem duas pré-imagens nos bordos de regiões poligonais, admitindo então meia-bolas coordenadas. Diminuindo elas conforme necessário, e pela colagem identificando tais arestas, constrói-se a vizinhança euclidiana.

Agora, a ideia para as 0-células, é considerar os vértices v_1,\ldots,v_k identificados, e encontrar vizinhanças V_i pequenas deles para as quais $V_i \cap P_{j_i}$ será um "canto". É simples construir homeomorfismo destas vizinhanças para setores circulares de ângulo $2\pi/k$, e como as arestas são pareadas com exatamente uma outra, elas devem necessariamente poder ser mapeadas ao redor de vizinhança da origem colando e rotacionando-as. Para garantir que respeitam as identificações de arestas, é suficiente fazer reescalonamentos adequados delas. Obtemos então aberto saturado de P, que desce para um homeomorfismo de vizinhança da 0-célula para vizinhança da origem em \mathbb{R}^2 .

3 Apresentações Poligonais de Superfícies

Dado um conjunto S de símbolos, consideram-se as **palavras** que podem ser construídas de S, uma k-upla ordenada com elementos da forma a ou a^{-1} com $a \in S$. A palavra é representada pela concatenação de seus elementos. Uma **apresentação poligonal**, escrita da forma

$$\mathcal{P} = \langle S \mid W_1, \dots, W_k \rangle,$$

é um conjunto finito S de símbolos, e palavras W_1,\ldots,W_k de tamanho maior ou igual a 3 consistindo destes símbolos, cada símbolo aparecendo em pelo menos uma palavra. Nos interessamos pela **realização geométrica** de tal apresentação, intuída pela proposição 2.1. A cada palavra W_i de tamanho k_i , associa-se a região poligonal convexa P_i de k_i arestas, cada uma de comprimento 1, centro na origem e vértice no eixo y positivo; e cada símbolo em S é uma classe de equivalência de arestas dos P_i identificadas. Nesse sentido, os símbolos de W_i representam as suas arestas, com a convenção de estarem em ordem anti-horária a partir do vértice no eixo y positivo, e se um símbolo em W_i é a^{-1} com $a \in S$, é porque a identificação da aresta respectiva é feita invertendo sua orientação com respeito a seus vértices, ou seja, no sentido horário. Permitem-se também os caso especiais de apresentações com um único símbolo e uma única palavra de tamanho 2, sendo $\langle a \mid aa^{-1} \rangle$, $\langle a \mid aa \rangle$, $\langle a \mid a^{-1}a \rangle$ e $\langle a \mid a^{-1}a^{-1} \rangle$.

A convenção tomada sobre a disposição da região poligonal no plano, com respeito a seus comprimentos, centro na origem e vértice no eixo y positivo é feita para tornar a definição não ambígua. Veremos no entanto que não importará sua posição exata no plano, num sentido específico. Nesta linha, nos diagramas traçados para interpretar geometricamente a construção de apresentações poligonais, nos daremos o luxo de não representar as regiões poligonais exatamente da maneira como descritas acima, mas ainda compreendendo toda a informação geométrica relevante. Assim, obtém-se $|\mathcal{P}|$ o espaço quociente de $|\cdot|_i P_i$ sob tais identificações.

De acordo com os exemplos vistos, temos que

- a realização geométrica da apresentação $\langle a,b \mid abb^{-1}a^{-1} \rangle$ é homeomorfa à esfera S^2 :
- a realização de $\langle a, b \mid aba^{-1}b^{-1}\rangle$ é homeomorfa ao toro T^2 ;
- e a realização de $\langle a, b \mid abab \rangle$ é homeomorfa ao plano projetivo $\mathbb{R}P^2$.

Observe que as quatro apresentações especiais descritas tem como realizações a esfera e o plano projetivo também. Naturalmente, as faces, arestas

e vértices dos P_i são as faces, arestas e vértices da apresentação, e dizemos que é uma **apresentação de superfície** se cada símbolo $a \in S$ ocorre exatamente duas vezes nas palavras W_1, \ldots, W_k , de acordo com o item (ii) da proposição 2.1. Se X é um espaço topológico homeomorfo à realização geométrica de uma dada apresentação, diz-se que é uma **apresentação de** X.

A ideia agora é entender como apresentações distintas podem ser apresentações de um mesmo espaço, e então, encontrar para cada superfície (triangulável) uma apresentaçõe em "forma canônica". Se duas apresentações \mathcal{P}_1 e \mathcal{P}_2 possuem realizações geométricas homeomorfas, dizemos que elas são **topologicamente equivalentes** e denotamos $\mathcal{P}_1 \approx \mathcal{P}_2$. Serão apresentadas certas operações feitas em apresentações poligonais, em que demonstra-se resultarem em apresentações topologicamente equivalentes. Fortuitamente, tais operações tem forte intuição geométrica em como agem nas realizações geométricas.

Temos desta maneira as seguintes **transformações elementares** nas apresentações poligonais:

- Re-rotulagem: Trocar todas as instâncias de um símbolo $a \in S$ por um novo símbolo $e \notin S$, trocar todas as instâncias de dois símbolos $a, b \in S$, ou trocar as ocorrências de $a \in S$ por a^{-1} (convencionando $(a^{-1})^{-1}$).
- Subdivisão: Trocar as ocorrências de $a \in S$ e $a^{-1} \in S$ por ae e $e^{-1}a^{-1}$ respectivamente, com $e \notin S$.
- Consolidação: Se $a, b \in S$ ocorrem sempre adjacentes, em ab ou $b^{-1}a^{-1}$, trocar toda ocorrência de ab por a e $b^{-1}a^{-1}$ por a^{-1} (dadas as condições vistas sobre o tamanho de palavras nas apresentações).
- Reflexão: Com $W_1 = a_1 \dots a_m$ e convencionando $W_1^{-1} = a_m^{-1} \dots a_1^{-1}$, $\langle S \mid W_1, W_2, \dots, W_k \rangle \mapsto \langle S \mid W_1^{-1}, W_2, \dots, W_k \rangle$.
- Rotação: Com $a_1, \ldots, a_m \in S$,

$$\langle S \mid a_1 a_2 \dots a_m, W_2, \dots, W_k \rangle \mapsto \langle S \mid a_2 \dots a_m a_1, W_2, \dots, W_k \rangle.$$

• Corte: Com W_1, W_2 de tamanho pelo menos 2 e $e \notin S$,

$$\langle S \mid W_1 W_2, W_3 \dots, W_k \rangle \mapsto \langle S, e \mid W_1 e, e^{-1} W_2, \dots, W_k \rangle.$$

• Colagem:

$$\langle S, e \mid W_1 e, e^{-1} W_2, \dots, W_k \rangle \mapsto \langle S \mid W_1 W_2, W_3 \dots, W_k \rangle.$$

• **Dobra:** Se W_1 tem tamanho pelo menos 3 e $e \notin S$,

$$\langle S, e \mid W_1 e e^{-1}, W_2, W_3 \dots, W_k \rangle \mapsto \langle S \mid W_1, W_2, W_3 \dots, W_k \rangle.$$

• **Desdobra:** Com $e \notin S$,

$$\langle S \mid W_1, W_2, W_3 \dots, W_k \rangle \mapsto \langle S, e \mid W_1 e e^{-1}, W_2, W_3 \dots, W_k \rangle.$$

A ideia intuitiva por trás destas operações elementares está em seus nomes, e nas figuras abaixo. Respectivamente, tem-se reflexão, rotação, corte/colagem, e dobra/desdobra:

Proposição 3.1. Cada transformação elementar em uma apresentação poligonal resulta em uma apresentação topologicamente equivalente.

Demonstração. Essencialmente mostra-se que certos mapas quocientes fazem as mesmas identificações, de modo que os espaços quocientes são homeomorfos. Como as operações de colagem e corte, dobra e desdobra, subdivisão e consolidação são inversas, é suficiente mostrar a equivalência topológica de apenas uma em cada par.

É imediato que a operação de re-rotulagem produz as mesmas identificações, e as operações de reflexão e rotação também o fazem ao tomar $f:P\to P'$ definida no plano como rotação pelo ângulo $2\pi/k$ ou reflexão com respeito ao eixo y, onde P e P' são as regiões poligonais correspondentes às palavras.

Para subdivisão, seja P a região poligonal associada à palavra W_1 , e P' a região poligonal associada à palavra W_1 com subdivisão de $a \in S$ em ae, de modo que $\pi: P \to M$ e $\pi': P' \to M'$ são os mapas quocientes. Traçando os pontos médios das arestas em P rotuladas por a, e ligando os vértices e estes pontos médios ao centro do polígono, obtém-se uma triangulação dele, sendo poliedro de um complexo simplicial. Levando as arestas deste complexo nas arestas de P' de mesmos rótulos, estende-se tal associação a um mapa simplicial $f: P \to P'$, e os mapas $\pi' \circ f$ e π realizam as mesmas identificações. O raciocínio estende-se a todas as outras palavras onde ocorrem $a \in S$, com as projeções agora globais e de modo que M e M' são homeomorfos.

Para a operação de colagem, considere regiões poligonais P_1 e P_2 associadas às palavras eW_1 e $e^{-1}W_2$ respectivamente, e P' região poligonal associada a W_1W_2 . Assuma sem perda de generalidade que estas são as únicas palavras nas apresentações, obtendo os mapas quocientes $\pi': P' \to M'$ e $\pi: P_1 \sqcup P_2 \to M$. Considera-se o segmento de reta que liga o vértice terminal da palavra W_1 em P' ao seu vértice inicial, e denote-o por e. Existe então mapa contínuo $f: P_1 \sqcup P_2 \to P'$ que leva arestas de certo rótulo no rótulo correspondente, e cuja restrição a P_i é homeomorfismo sobre a imagem; isto é consequência de serem 2-células fechadas, e homeomorfismos de suas fronteiras se estenderem ao interior homeomorficamente. Como f é sobrejetora e $P_1 \sqcup P_2$ é compacto, o mapa será quociente, identificando apenas as arestas e e e^{-1} . Então $\pi' \circ f$ e π realizam as mesmas identificações, então os espaços quocientes são homeomorfos.

Com respeito à dobra, podemos novamente supor que há apenas uma palavra na apresentação, e se W_1 tem tamanho 2, podemos subdivir, dobrar e depois consolidar. Podemos então assumir também W_1 com tamanho ≥ 3 ; Façamos o caso de tamanho 3, com a palavra abc, conforme na figura anterior. Com P e P' as regiões poligonais associadas às palavras $abcee^{-1}$ e abc, temos os mapas quocientes $\pi: P \to M$ e $\pi': P' \to M'$. As triangulações indicadas na figura tornam P e P' poliedos de complexos simpliciais, e é possível tomar um mapa simplicial entre eles $f: P \to P'$ entre arestas de mesmo rótulo.

Com $\pi' \circ f$ e π realizando as mesmas identificações, os espaços quocientes são homeomorfos.

Agora, é necessário entender como que somas conexas de superfícies interagem com apresentações de superfícies, de uma maneira que podemos compreendê-las como no teorema de classificação. Relembre que, se M_1, M_2 são duas variedades topológicas de mesma dimensão n, a sua **soma conexa** $M = M_1 \# M_2$ é obtida da seguinte maneira. Tomam-se bolas coordenadas regulares $B_1 \subseteq M_1$ e $B_2 \subseteq M_2$, ou seja, subconjuntos homeomorfos a bolas unitárias abertas $\mathbb{B}^n \subset \mathbb{R}^n$ pré-compactas em M_1 e M_2 , de modo que $M_1 = M_1 \setminus B_1$ e $M_2' = M_2 \setminus B_2$ são variedades topológicas com bordo homeomorfo a S^{n-1} . Dado então homeomorfismo $f: \partial M_2' \to \partial M_1'$, cria-se o espaço de adjunção $M_1' \cup_f M_2'$, denotado por $M_1 \# M_2$. Lembre que, num espaço de adjunção, $M_1' \cup_f M_2' = M_1' \cup M_2' / \sim$, onde $x \sim f(x)$ para $x \in \partial M_2'$.

Aparentemente, a definição de soma conexa de variedades depende de várias escolhas feitas em sua construção, como nas bolas coordenadas regulares B_i , e no homeomorfismo f tomado. No caso especial de dimensão 2, ou seja, superfícies, é possível demonstrar, embora não o faremos aqui, que o espaço obtido como soma conexa independerá destas escolhas, a menos de homeomorfismo.

Observe, por exemplo, que a soma conexa de uma superfície M com a esfera S^2 será sempre homeomorfa à própria superfície. Dada bola coordenada regular $B_2 \subseteq S^2$, o subespaço $S^2 \setminus B_2$ é homeomorfo à bola unitária fechada $\overline{\mathbb{B}}^2$; neste sentido, estaria-se tirando de M disco aberto, e colando-se no lugar outro disco aberto ao longo da fronteira. Agora, ao realizar a soma conexa de uma superfície com um toro T^2 , a ideia intuitiva é que se está acoplando "alças" à superfície.

Vejamos agora a relação entre somas conexas com apresentações de superfícies:

Proposição 3.2. Sejam M_1 e M_2 superfícies compactas que admitem representações $\langle S_1 | W_1 \rangle$ e $\langle S_2 | W_2 \rangle$ respectivamente, tal que $S_1 \cap S_2 = \emptyset$ e ambas apresentações têm uma única face. Então $M_1 \# M_2$ é realização geométrica da apresentação $\langle S_1 \cup S_2 | W_1 W_2 \rangle$.

Demonstração. Sabemos que

$$\langle S, a, b, c \mid W_1 c^{-1} b^{-1} a^{-1}, abc \rangle \approx \langle S \mid W_1 \rangle$$

é apresentação de W_1 , e considere B_1 a imagem em M_1 do interior da região poligonal limtada pelo triângulo abc. Afirma-se que B_1 é bola coordenada regular de M_1 , ou seja, ele admite vizinhança aberta que é disco sob uma carta de M_1 , e para esta carta, $\overline{B_1}$ é disco fechado menor. Isto é intuído a partir da seguinte triangulação de regiões poligonais:

Como acima, sejam P_1 , Q e P'_1 as regiões poligonais delimitadas pelas palavras $W_1c^{-1}b^{-1}a^{-1}$, abc e W_1 , respectivamente. A "colagem" de Q com P_1 a partir desta triangulação é representada por meio de um mapa simplicial $f: P_1 \sqcup Q \to P'_1$, levando Q num triângulo $Q' \subseteq P'_1$ compartilhando vértice rotulado por v. Agora, a composição $P_1 \sqcup Q \to P'_1 \to M_1$ respeita as identificações feitas no mapa quociente $P'_1 \to M_1$, de modo que a composição desce para um homeomorfismo levando B_1 na imagem de Q'. Como feito na proposição 2.1, para encontrar vizinhança euclidiana de vértices em apresentações de superfícies, juntamos os vários "cantos" deste vértice numa bola coordenada. A partir desta construção, Q' será homeomorfo a disco fechado no plano, e é possível estender tal homeomorfismo para uma vizinhança maior de Q', sabendo como os cantos se juntam em v.

Com isso, sabemos que o teorema da classificação é equivalente a encontrar, para uma dada superfície, uma apresentação poligonal de uma das seguintes formas:

- A esfera S^2 , $\langle a \mid aa^{-1} \rangle$;
- A soma conexa de g toros $T^2 \# \cdots \# T^2$,

$$\langle a_1, b_1, \dots, a_n, b_n \mid a_1b_1a_1^{-1}b_1^{-1}\dots a_nb_na_n^{-1}b_n^{-1} \rangle;$$

• A soma conexa de h planos projetivos $\mathbb{R}P^2 \# \cdots \# \mathbb{R}P^2$,

$$\langle a_1, a_2, \dots, a_n \mid a_1 a_1 a_2 a_2 \dots a_n a_n \rangle.$$

Lema 3.3. a) A garrafa de Klein K, dada pela apresentação de superfície $\langle a, b \mid abab^{-1} \rangle$, é homeomorfa a $\mathbb{R}P^2 \# \mathbb{R}P^2$.

b) A soma conexa $T^2 \# \mathbb{R}P^2$ é homeomorfa a $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$.

Demonstração. Veja que, por meio das transformações elementares,

$$\langle a, b \mid abab^{-1} \rangle \approx \langle a, b, c \mid abc, c^{-1}ab^{-1} \rangle \approx \langle a, b, c \mid abc, ba^{-1}c \rangle$$

 $\approx \langle a, b, c \mid abc, a^{-1}cb \rangle \approx \langle a, b, c \mid bca, a^{-1}cb \rangle \approx \langle b, c \mid bccb \rangle$
 $\approx \langle b, c \mid bbcc \rangle \approx \mathbb{R}P^2 \# \mathbb{R}P^2.$

A intuição geométrica por trás desta sequência de operações algébricas é representada abaixo:

Agora, para o item b), tem-se que $\mathbb{R}P^2\#\mathbb{R}P^2\#\mathbb{R}P^2\cong K\#\mathbb{R}P^2$, então podemos calcular

$$\langle a,b,c \mid aabbcc \rangle \approx \langle a,b,c \mid abab^{-1}cc \rangle \approx \langle a,b,c \mid cabab^{-1}c \rangle$$

$$\approx \langle a,b,c,d \mid cabd, \ d^{-1}ab^{-1}c \rangle \approx \langle a,b,c,d \mid cabd, \ c^{-1}ba^{-1}d \rangle$$

$$\approx \langle a,b,c,d \mid abdc, \ c^{-1}ba^{-1}d \rangle \approx \langle a,b,d \mid abdba^{-1}d \rangle$$

$$\approx \langle a,b,d \mid a^{-1}dabdb \rangle \approx \langle a,b,d,e \mid a^{-1}dabde, \ e^{-1}db \rangle$$

$$\approx \langle a,b,d,e \mid ea^{-1}dab, \ b^{-1}d^{-1}e \rangle \approx \langle a,d,e \mid ea^{-1}dad^{-1}e \rangle$$

$$\approx \langle a,d,e \mid (a^{-1})d(a^{-1})^{-1}d^{-1}ee \rangle \approx \langle d,e,f \mid fdf^{-1}d^{-1}ee \rangle$$

$$\approx T^2 \# \mathbb{R} P^2,$$

novamente utilizando as transformações elementares de cortar, colar, rotacionar e refletir. \Box

4 O Teorema de Classificação, Parte I

Com as ferramentas desenvolvidas até então, podemos demonstrar o teorema de classificação, reiterando a suposição do teorema de triangulação de superfícies. De fato, sua importância é fundamental pois ele permite concluir que

Lema 4.1. Toda superfície triangulada admite apresentação de superfície.

Demonstração. Dada uma triangulação de superfície M, temos que ela é homeomorfa ao poliedro |K| de um complexo simplicial de dimensão 2, tal que todo 1-simplexo é face de exatamente dois 2-simplexos. Considera-se então a apresentação de superfície \mathcal{P} com uma palavra de tamanho 3 para cada 2-simplexo da triangulação, e com rótulos das arestas correspondendo aos 1-simplexos, os quais pertencem a dois 2-simplexos distintos. Desta maneira, é imediato concluir que será uma apresentação de superfície, e precisamos mostrar que a superfície que é a realização geométrica é homeomorfa a M.

Com $P = P_1 \sqcup \ldots \sqcup P_k$ a união disjunta dos 2-simplexos de K, devemos mostrar que as projeções $\pi_{\mathcal{P}}: P \to |\mathcal{P}|$ e $\pi_K: P \to |K|$ realizam as mesmas identificações, onde $|\mathcal{P}|$ é a superfície realizada por \mathcal{P} , pois então os espaços quocientes serão homeomorfos. De fato, para pontos nos interiores dos simplexos, os mapas são injetores, e eles fazem as mesmas identificações nas arestas: basta então ver a identificação nos vértices, sabendo que vértices são identificados apenas com outros vértices.

Precisa-se mostrar então que π_K identifica vértices apenas quando isto é forçado a partir da identificação de arestas, pois esta é a identificação feita

na apresentação \mathcal{P} . Dado então $v \in K$ vértice do complexo, sabemos que v pertence a algum 1-simplexo, caso contrário ele seria vértice isolado, e que tal 1-simplexo é face de exatamente dois 2-simplexos. Considerando todos os 2-simplexos que contém v, dizemos que dois deles σ , σ' são **conectados por arestas em** v se existe sequência de 2-simplexos $\sigma = \sigma_0, \ldots, \sigma_k = \sigma'$ de 2-simplexos contendo v tais que σ_i comaprtilha aresta com σ_{i+1} , para $i = 0, \ldots, k-1$. Note que se $\sigma \neq \sigma'$, a aresta compartilhada deve necessariamente conter v.

Ser conectado por arestas em v é relação de equivalência nos 2-simplexos que contém v, e mostremos que há uma única classe de equivalência; isto implica que todo vértice que é identificado com v na projeção tem tal identificação porque ela é forçada pelas arestas que contém v. Se há mais de uma classe de equivalência, agrupam-se os 2-simplexos que contém v em conjuntos disjuntos $\{\sigma_1,\ldots,\sigma_k\}$ e $\{\tau_1,\ldots,\tau_m\}$, onde nenhum τ_j é conectado por arestas em v com algum σ_i , e os σ_i são conectados por arestas entre si. Tomando vizinhança suficientemente pequena W de v, Teremos W aberto de |K| homeomorfo a \mathbb{R}^2 que intersecta apenas aqueles simplexos que contém v. $W\setminus\{v\}$ é conexo, mas

$$(W \cap (\sigma_1 \cup \cdots \cup \sigma_k) \setminus \{v\}) \cup (W \cap (\tau_1 \cup \cdots \cup \tau_m) \setminus \{v\})$$

formaria desconexão de $W \setminus \{v\}$, por serem dois abertos disjuntos, contradizendo ser conexo. O fato de serem abertos vem de que a topologia do poliedro do complexo simplicial é coerente com a de seus simplexos.

A figura abaixo indica um caso em que há classes distintas de 2-simplexos com respeito à conexão por arestas em v. Neste caso, a projeção $\pi_{\mathcal{P}}: P \to |K|$ identifica o vértice v nos simplexos, mas nenhuma aresta de τ é identificada com outra aresta de σ_1 ou σ_2 . Neste caso, o mais evidente é que o complexo não é localmente euclidiano em v.

Demonstração do Teorema da Classificação. A demonstração será feita em uma sequência de etapas, onde dada uma apresentação de superfície \mathcal{P} da

superfície M, procuraremos simplificar a apresentação aplicando sucessivamente transformações elementares. Diremos que um par de arestas a serem identificadas é um par **complementar** se ocorrem como a, a^{-1} , e par **torcido** se ocorrem como a, a ou a^{-1}, a^{-1} .

Primeiro, afirma-se que M admite apresentação com uma única face. De fato, com M conexo, se há mais de uma face, uma aresta de uma face deve estar identificada com aresta de outra, caso contrário estas duas faces desconectariam a superfície. Então podemos colar as faces ao longo desta aresta, com reflexões e rotações se necessário. Algebricamente, temos a simplificação

$$\langle S, a \mid XaY, ZaW, W_3, \dots, W_k \rangle \approx \langle S, a \mid YXa, a^{-1}Z^{-1}W^{-1}, W_3, \dots, W_k \rangle$$

 $\langle S \mid YXZ^{-1}W^{-1}, W_3, \dots, W_k \rangle,$

ou

$$\langle S, a \mid XaY, Za^{-1}W, W_3, \dots, W_k \rangle \approx \langle S, a \mid YXa, a^{-1}WZ, W_3, \dots, W_k \rangle$$

 $\approx \langle S \mid YXWZ, W_3, \dots, W_k \rangle$

dependendo se o par com a aresta a é complementar ou torcido, e X, Y, Z, W palavras possivelmente vazias. Assim, indutivamente reduz-se o número de faces da apresentação até sobrar uma.

Em seguida, sabemos que ou M admite apresentação topologicamente equivalente à da esfera, ou admite apresentação sem pares complementares adjacentes (aa^{-1}) , pois se ocorressem, poderiamos eliminá-los pela transformação elementar de dobra. Assumimos então o caso em que M não admite apresentação da esfera $\langle a \mid aa^{-1} \rangle$.

Mostra-se agora que se a apresentação contém pares torcidos de arestas, podemos reduzir a apresentação onde todos os pares torcidos são adjacentes. Algebricamente, temos

$$\langle S, a \mid XaYaZ \rangle \approx \langle S, a \mid ZXaYa \rangle \approx \langle S, a, b \mid ZXab, \ b^{-1}Ya \rangle$$

 $\approx \langle S, a, b \mid bZXa, a^{-1}Y^{-1}b \rangle \approx \langle S, b \mid bZXY^{-1}b \rangle \approx \langle S, b \mid ZXY^{-1}bb \rangle.$

Geometricamente, as operações de cortar, refletir e colar são vistas como abaixo:

Esta simplificação troca o par torcido a,a pelo par torcido adjacente b,b, e não separa pares torcidos já adjacentes. É possível que tenham sido criados mais pares torcidos no processo, mas o total de pares não-adjacentes, sejam torcidos ou complementares, diminui em pelo menos 1. Após número finito de operações, reduzimos então a nenhum par torcido não-adjacente. Caso sejam criados pares adjacentes complementares, eles podem ser removidos como antes, de modo que M tem apresentação da esfera ou realiza-se a transformação elementar de dobra em cada tal par.

A próxima etapa é concluir que M admite apresentação onde todos os vértices são identificados a um único ponto. Para isto, tome uma classe de equivalência de vértices v, e supondo que há outros vértices não identificados com v, deve haver aresta conectando v a vértice de outra classe w, e rotule tal aresta a. É possível tomar rotulagem tal que a está disposta no sentido anti-horário, pois caso contrário basta refletir a face. Considere agora a outra aresta ligada ao vértice v; ela não pode ser identificada à aresta a, pois já eliminamos pares complementares, e se fosse par torcido, isto implicaria que o vértice w seria identificado com v. Rotule então tal aresta por b, e o outro vértice dela por x.

Há dois casos a se considerar: se o par da aresta b é complementar ou torcido. Suponha inicialmente que seja complementar. Então temos nossa apresentação

$$\langle S, a, b \mid baXb^{-1}Y \rangle \approx \langle S, a, b, c \mid bac, c^{-1}Xb^{-1}Y \rangle$$

 $\approx \langle S, a, b, c \mid acb, b^{-1}YbaX \rangle \approx \langle S, a, c \mid acYbaX \rangle.$

Geometricamente, temos o seguinte:

Note que, neste caso, a quantidade de vértices identificados com v diminui em 1, e a quantidade de vértices identificados com w aumentou em 1. Se tivermos introduzido par complementar adjacente, podemos removê-lo como antes, o que não aumenta a quantidade de vértices identificados com v. Agora, se o par de b é torcido, temos a apresentação

$$\langle S, a, b \mid baXbY \rangle \approx \langle S, a, b, c \mid bac, c^{-1}XbY \rangle$$

 $\approx \langle S, a, b, c \mid acb, b^{-1}XcY^{-1} \rangle \approx \langle S, a, c \mid acXcY^{-1} \rangle,$

onde analogamente ao caso acima, reduz-se estritamente a quantidade de vértices identificados com v. Repetindo o processo finitamente, podemos eliminar a classe de equivalência v nos vértices, e concluímos a existência de apresentação com único vértice e satisfazendo as outras condições vistas anteriormente.

Agora, se na apresentação há pares complementares a, a^{-1} , então mostremos que há outro par complementar b, b^{-1} entrelaçado com o primeiro, ou seja, tal que tem-se a disposição de arestas $aXbYa^{-1}Zb^{-1}W$. De fato, se isto fosse falso, a apresentação seria da forma $aXa^{-1}Y$, onde X e Y ambos contém apenas pares complementares ou pares torcidos adjacentes. Então arestas de X são identificadas apenas com arestas de X, e analogamente para Y; mas isto contradiz as identificações dos vértices iniciais de a e a^{-1} , ambos contidos nas arestas de Y, e os vértices terminais de a e a^{-1} , contidos nas arestas de X, pois deve haver única classe de equivalência de vértices.

Por fim, demonstra-se que M admite apresentação onde cada dois pares complementares entrelaçados ocorrem sem outras arestas entre eles, ou seja,

da forma $aba^{-1}b^{-1}$. Com a apresentação da forma $XaYbZa^{-1}Wb^{-1}$, temos

$$\begin{split} \langle S, a, b \mid XaYbZa^{-1}Wb^{-1} \rangle &\approx \langle S, a, b, c \mid XaYc, \ c^{-1}bZa^{-1}Wb^{-1} \rangle \\ &\approx \langle S, a, b, c \mid YcXa, \ a^{-1}Wb^{-1}c^{-1}bZ \rangle \approx \langle S, b, c \mid YcXWb^{-1}c^{-1}bZ \rangle \\ &\approx \langle S, b, c \mid XWb^{-1}c^{-1}bZYc \rangle \approx \langle S, b, c, d \mid XWb^{-1}d^{-1}, \ dc^{-1}bZYc \rangle \\ &\approx \langle S, b, c, d \mid d^{-1}XWb^{-1}, \ bZYcdc^{-1} \rangle \approx \langle S, c, d \mid d^{-1}XWZYcdc^{-1} \rangle \\ &\approx \langle S, c, d \mid cdc^{-1}d^{-1}XWZY \rangle. \end{split}$$

Este processo trocar um par não-entrelaçado por um entrelaçado, e nao separa pares de arestas adjacentes. Repete-se o processo para cada par de pares complementares entrelaçados, e obtemos então apresentação de M tal que todos os pares complementares vêm entrelaçados da forma $aba^{-1}b^{-1}$, e todos os pares torcidos vêm adjacentes da forma cc.

Isto imediatamente permite concluir que a apresentação será soma direta de toros e planos projetivos; e como sabemos que $T^2 \# \mathbb{R} P^2 \cong \mathbb{R} P^2 \# \mathbb{R} P^2 \# \mathbb{R} P^2$ se há pelo menos um toro e um plano projetivo na soma direta, podemos trocar todos os toros por dois planos projetivos. Então M ou tem a apresentação da esfera S^2 , ou de soma direta de apenas toros, ou de soma direta de apenas planos projetivos.

5 O Grupo Fundamental de uma Superfície

Como deduzido, toda superfície compacta é homeomorfa à esfera, à soma conexa de g toros, ou à soma conexa de h planos projetivos. No entanto, ainda não afirmamos que estas superfícies são não-homeomorfas entre si. Para tal, é necessário encontrar um invariante topológico que nos permita distinguilas; um exemplo central de invariante é o grupo fundamental do espaço. Ao encontrar os grupos fundamentais de S^2 , $T^2\# \dots \#T^2$ e $\mathbb{RP}^2\# \dots \#\mathbb{RP}^2$, e mostrarmos que são distintos, temos a segunda parte do enunciado.

Sabemos inicialmente que S^2 é simplesmente conexo, possuindo grupo fundamental trivial. Lembra-se também que $T^2\#\dots\#T^2$ e $\mathbb{R}\mathrm{P}^2\#\dots\#\mathbb{R}\mathrm{P}^2$ são homeomorfos às realizações geométricas das apresentações de superfícies abaixo:

Elas são respectivamente as apresentações

$$\langle a_1, b_1, \dots, a_g, b_g \mid a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} \rangle,$$

 $\langle a_1, \dots, a_h \mid a_1 a_1 \dots a_h a_h \rangle.$

É possível então estudar como tais apresentações podem nos dar informações do grupo fundamental dessas superfícies. De fato, uma consequência natural disso é que, vendo como complexo CW, $T^2\#\dots\#T^2$ é obtido do buquê de 2g círculos $S^1\vee\dots\vee S^1$ colando uma única 2-célula, considerando a colagem na fronteira da 2-célula dada por $\chi:S^1\to S^1\vee\dots\vee S^1$, $\chi=a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$. Para $\mathbb{R}P^2\#\dots\#\mathbb{R}P^2$, temos, analogamente, a colagem de uma 2-célula num buquê de h circunferências $S^1\vee\dots\vee S^1$, com a colagem dada por $\psi=a_1a_1\dots a_ha_h$.

Como consequência do teorema de Seifert-van Kampen, se X é obtido de A colando uma 2-célula, e χ é o mapa de colagem da fronteira, teremos que

$$\pi_1(X) = \pi_1(A) / \overline{\chi_* \pi_1(S^1)},$$

considerando $p \in X$ ponto na 2-célula, vizinhança V de p e $U = X \setminus p$ a decomposição de $X = U \cup V$. No caso da soma conexa de toros e planos projetivos, temos os esquemas abaixo, mostrando a equivalência homotópica entre $U = X \setminus \{p\}$ e o buquê de circunferências:

Nesse sentido, podemos concluir que

$$\pi_1(T^2 \# \dots \# T^2) = \frac{\pi_1(S^1 \vee \dots \vee S^1)}{\overline{\chi}_* \pi_1(S^1)} = \frac{F(a_1, b_1, \dots, a_g, b_g)}{\langle a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} \rangle},$$

$$\pi_1(\mathbb{R}P^2 \# \dots \# \mathbb{R}P^2) = \frac{\pi_1(S^1 \vee \dots \vee S^1)}{\overline{\psi}_* \pi_1(S^1)} = \frac{F(a_1, \dots, a_h)}{\langle a_1^2 \dots a_h^2 \rangle}$$

onde $\langle - \rangle$ representa o fecho normal dentro do grupo livre.

Apesar desta possibilidade de descrever o grupo fundamental em termos de quocientes de um grupo livre, apenas esta descrição não nos permite distinguir tais grupos. De fato, um mesmo grupo pode ter diversas apresentações diferentes, e não há um algoritmo específico que permita decidir se duas apresentações são equivalentes ou não. Para isto, precisaremos de uma outra informação algébrica do grupo.

6 A Abelianização de Grupos

Dado um grupo G com elemento neutro e e elementos $g,h \in G$, o comutador de g,h é o elemento $[g,h] := ghg^{-1}h^{-1}$. Note que g e h comutam se e somente se [g,h] = e. Considera-se o subgrupo comutador de G, denotado por [G,G], o subgrupo gerado pelos comutadores de todos os elementos de G.

Observe que, para $g, h, x \in G$, vale

$$x[g,h]x^{-1} = xghg^{-1}h^{-1}x^{-1} = (xgx^{-1})(xhx^{-1})(xg^{-1}x^{-1})(xh^{-1}x^{-1})$$
$$= (xgx^{-1})(xhx^{-1})(xgx^{-1})^{-1}(xhx^{-1})^{-1} = [xgx^{-1}, xhx^{-1}],$$

de modo que a conjugação de um comutador ainda é um comutador. E como a conjugação é automorfismo do grupo G, isto mostra que $x[G,G]x^{-1}$ para todo $x \in G$, e portanto [G,G] é subgrupo normal. Tomando o quociente G/[G,G], podemos concluir que ele será um grupo abeliano; de fato, como $[g,h] \in [G,G]$ para todos $g,h \in G$, considerando a projeção $x \mapsto \overline{x} = x[G,G]$,

$$\overline{ghg^{-1}h^{-1}} = \overline{e} \implies \overline{gh} = \overline{hg} \implies \overline{g}\overline{h} = \overline{h}\overline{g}.$$

Mais fortemente, dado $N \leq G$ subgrupo normal, teremos que G/N é abeliano se e somente se $[G,G] \leq N$. O quociente G/[G,G] é dito a abelianização de G, denotado por G_{ab} . Ela satisfaz a seguinte propriedade universal: dado H grupo abeliano e $\varphi:G \to H$ homomorfismo, existe um único homomorfismo $\widetilde{\varphi}:G_ab \to H$ tal que o diagrama abaixo comuta:

$$G$$

$$\downarrow \qquad \qquad \varphi$$

$$G_{ab} \xrightarrow{\widetilde{\varphi}} H$$

O que procuraremos fazer, então, é calcular as abelianizações dos grupos fundamentais das superfícies, e sendo grupos abelianos não isomorfos, poderemos distinguir topologicamente as superfícies descritas.

Inicialmente, demonstra-se o seguinte:

Proposição 6.1. Se $F(a_1, \ldots, a_n)$ é o grupo livre em n geradores, então

$$F(a_1,\ldots,a_n)_{ab} \cong \overbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}^n$$
.

Ou seja, a abelianização do grupo livre em n geradores é o grupo livre abeliano em n geradores.

Demonstração. Considere $S = \{a_1, \dots, a_n\}$ e a função $f: S \to \mathbb{Z}^n$ levando $a_i \longmapsto (0, \dots, 0, 1, 0, \dots, 0)$

com 1 na *i*-ésima posição. Então pela propriedade universal do grupo livre gerado por S, existe único homomorfismo $\overline{f}: F(a_1,\ldots,a_n) \to \mathbb{Z}^n$ que estende f. Como as imagens dos a_i geram \mathbb{Z}^n , teremos que \overline{f} é sobrejetora. Afirma-se agora que o núcleo de \overline{f} é exatamente o subgrupo comutador de $F(a_1,\ldots,a_n)$. Com efeito, vemos que o subgrupo comutador de $F(a_1,\ldots,a_n)$ está contido no núcleo de \overline{f} , pois

$$\overline{f}([g,h]) = \overline{f}(ghg^{-1}h^{-1}) = \overline{f}(g) + \overline{f}(h) - \overline{f}(g) - \overline{f}(h) = \mathbf{0}$$

com \mathbb{Z}^n abeliano. Mostrar que $[F(a_1,\ldots,a_n),F(a_1,\ldots,a_n)]\supseteq \ker f$ é um processo mais trabalhoso. Veja que uma palavra reduzida $g\in F(a_1,\ldots,a_n)$ é tal que $\overline{f}(g)=0$ se e somente se, para todo $i\in\{1,\ldots,n\}$, os exponentes dos a_i que ocorrem em g devem ter soma zero. Mostremos que todo elemento de $F(a_1,\ldots,a_n)$ satisfazendo isso é gerado por comutadores.

Isto será feito por indução na quantidade dos geradores $\{a_1, \ldots, a_n\}$ que ocorrem em g. Se apenas um destes geradores ocorrem em g, g é da forma a_i^n , com n=0, e claramente $g=[a_1,a_1]$, a palavra vazia. Suponha agora que, quando em g ocorrem k ou menos dos geradores $\{a_1,\ldots,a_n\}$, ele é gerado por comutadores, e seja $g \in F(a_1,\ldots,a_n)$ onde ocorrem k+1 dos geradores. Escolhendo então a_i gerador ocorrendo em g, temos que g é da forma

$$g = g_1 a_j^{m_1} g_2 a_j^{m_2} \dots a_j^{m_{r-1}} g_r a_j^{m_r} g_{r+1},$$

onde g_i são elementos do grupo livre onde ocorrem apenas k ou menos dos geradores, e $m_1 + \ldots + m_r = 0$. Como $a_j^{m_r} g_{r+1} = [a_j^{m_r}, g_{r+1}] g_{r+1} a_j^{m_r}$, temos

$$g = g_1 a_j^{m_1} g_2 a_j^{m_2} \dots a_j^{m_{r-1}} g_r a_j^{m_r} g_{r+1}$$

$$= g_1 a_j^{m_1} g_2 a_j^{m_2} \dots a_j^{m_{r-1}} g_r [a_j^{m_r}, g_{r+1}] g_{r+1} a_j^{m_r}$$

$$= g_1 a_j^{m_1} g_2 a_j^{m_2} \dots a_j^{m_{r-1}} h_r a_j^{m_r},$$

onde

$$h_r = g_r[a_j^{m_r}, g_{r+1}]g_{r+1}.$$

Veja que, pela hipótese de indução em g_r e g_{r+1} , h_r é gerador por comutadores (mesmo que nele ocorram possivelmente mais de k dos geradores). Repetindo o processo para r-1, obtemos

$$g = g_1 a_j^{m_1} g_2 a_j^{m_2} \dots a_j^{m_{r-1}} h_r a_j^{m_r}$$

$$= g_1 a_j^{m_1} g_2 a_j^{m_2} \dots [a_j^{m_{r-1}}, h_r] h_r a_j^{m_{r-1}} a_j^{m_r}$$

$$= g_1 a_j^{m_1} g_2 a_j^{m_2} \dots [a_j^{m_{r-1}}, h_r] h_r a_j^{m_{r-1} + m_r}$$

$$= g_1 a_j^{m_1} g_2 a_j^{m_2} \dots h_{r-1} a_j^{m_{r-1} + m_r},$$

com $h_{r-1} = g_{r-1}[a_j^{m_{r-1}}, h_r]h_r$, novamente gerado por comutadores pela hipótese de indução sobre g_{r-1} e como h_r também é. Indutivamente, obteremos sequência decrescente $h_r, h_{r-1}, \ldots, h_1$ de elementos tais que

$$h_{i-1} = g_{i-1}[a_j^{m_{i-1}}, h_i]h_i,$$

com cada h_i gerado por comutadores. Então obtemos g da forma

$$g = g_1 a_j^{m_1} h_2 a_j^{m_2 + \dots + m_r}$$

= $h_1 a_j^{m_1 + \dots + m_r} = h_1$,

pois $m_1 + \ldots + m_r = 0$. E como h_1 será gerado por comutadores, teremos g gerado por comutadores. Isto permite concluir o passo indutivo, e mostrando que $[F(a_1, \ldots, a_n), F(a_1, \ldots, a_n)] = \ker \overline{f}$, conclui-se

$$F(a_1,\ldots,a_n)_{ab} = \overbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}^n = \mathbb{Z}^n.$$

Dado homomorfismo de grupos $\varphi: G \to H$, teremos que

$$\varphi[G,G] = [\varphi(G),\varphi(G)],$$

onde $[\varphi(G), \varphi(G)]$ é o subgrupo em H gerado pelos comutadores de elementos na imagem de φ . Isto pois, para $x, y \in G$,

$$\varphi([x,y]) = \varphi(xyx^{-1}y^{-1}) = \varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = [\varphi(x),\varphi(y)].$$

Considera-se o caso específico em que $N \leq G$ é subgrupo normal de G e $\pi:G\to G/N$ é a projeção sobrejetora no quociente. Então

$$\pi([G,G])=[\pi(G),\pi(G)]=[G/N,G/N],$$

de modo que a projeção do subgrupo comutador é o subgrupo comutador do quociente. Como consequência disso,

$$(G/N)_{ab} = \frac{G/N}{[G/N, G/N]} = \frac{G/N}{\pi([G, G])} = \frac{\pi(G)}{\pi([G, G])},$$

onde sabemos $\pi([G,G])$ ser subgrupo normal de $\pi(G)=G/N$. Com o homomorfismo sobrejetor $G\to (G/N)/[G/N,G/N]$ dado por

$$g \mapsto \overline{g}[G/N, G/N],$$

21

temos que q pertence ao núcleo se e somente se

$$\overline{g}[G/N, G/N] = [G/N, G/N] \iff \overline{g} \in [G/N, G/N]$$
$$\iff g \in \pi^{-1}[G/N, G/N] = \pi^{-1}\pi[G, G],$$

e também

$$g \in \pi^{-1}\pi[G,G] \iff \overline{g} = \overline{k}, \ k \in [G,G] \iff \overline{gk^{-1}} = \overline{e}, \ k \in [G,G]$$
$$\iff gk^{-1} = n \in N \iff g = kn, \ k \in [G,G], n \in N \iff g \in N \cdot [G,G].$$

Desta maneira, concluímos que

$$(G/N)_{ab} \cong G/\pi^{-1}\pi[G,G] \cong G/(N \cdot [G,G]),$$

lembrando que $N \cdot [G, G]$ é subgrupo normal de G. Em particular, se $N \leq [G, G]$, pelo teorema da correspondência, vale $\pi^{-1}\pi[G, G] = [G, G]$, ou equivalentemente $N \cdot [G, G] = [G, G]$. Isto implicaria neste caso que

$$(G/N)_{ab} \cong G/[G,G] = G_{ab}.$$

Ainda no caso mais geral, considere $\varphi: G \to G_{ab} = G/[G,G]$ a projeção no quociente da abelianização, e $\varphi(N) \leq G_{ab}$. Como G_{ab} é abeliano, $\varphi(N)$ é subgrupo normal de G_{ab} , e podemos definir o homomorfismo sobrejetor $f: G \to G_{ab}/\varphi(N)$. Agora, veja que para $g \in G$,

$$g \in \ker f \iff f(g) = 0 \iff \varphi(g)\varphi(N) = \varphi(N)$$

 $\iff \varphi(g) \in \varphi(N) \iff g \in \varphi^{-1}\varphi(N),$

e analogamente ao que foi deduzido anteriormente, temos

$$\ker f = \varphi^{-1}\varphi(N) = N \cdot [G, G].$$

Isto implica nos isomorfismos

$$(G/N)_{ab} \cong \frac{G}{N \cdot [G, G]} \cong \frac{G_{ab}}{\varphi(N)}.$$

7 O Teorema de Classificação, Parte II

A partir das informações algébricas da abelianização de um grupo, calcularemos as abelianizações dos grupos fundamentais das superfícies encontradas, buscando distinguí-las desta maneira.

Em primeiro lugar, considera-se $\#^gT^2 = \overbrace{T^2\# \dots \# T^2}^g$. Sabemos que seu grupo fundamental é

$$\pi_1(\#^g T^2) = \frac{F(a_1, b_1, \dots, a_g, b_g)}{\langle a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_q^{-1} b_q^{-1} \rangle} = \frac{F(a_1, b_1, \dots, a_g, b_g)}{\langle [a_1, b_1] \dots [a_g, b_g] \rangle}.$$

Sendo $G = F(a_1, \ldots, a_g)$, temos que $\langle [a_1, b_1] \ldots [a_g, b_g] \rangle \subseteq [G, G]$, pois [G, G] é subgrupo normal contendo o produto de comutadores $[a_1, b_1] \ldots [a_g, b_g]$. Isto implica, baseado no que foi demonstrado acima, que

$$\pi_1(\#^g T^2)_{ab} \cong F(a_1, b_1, \dots, a_g, b_g)_{ab} \cong \mathbb{Z}^{2g}.$$

Analisa-se com mais cuidado o caso de $\#^h \mathbb{R} P^2 = \overbrace{\mathbb{R} P^2 \# \dots \# \mathbb{R} P^2}^h$, em que

$$\pi_1(\#^h \mathbb{R} \mathbf{P}^2) = \frac{F(a_1, \dots, a_h)}{\langle a_1^2 \dots a_h^2 \rangle}.$$

Denotando $G=F(a_1,\ldots,a_h),\ N=\langle a_1^2\ldots a_h^2\rangle,\ {\rm e}\ \varphi:GtoG_{ab}$ a abelianização, temos

$$\pi_1(\#^h \P^2)_{ab} \cong \frac{G}{N \cdot [G, G]} \cong \frac{G_{ab}}{\varphi(N)}.$$

Afirma-se que N é o subgrupo H de G gerado pelos elementos da forma

$$g(a_1^2 \dots a_h^2)g^{-1},$$

onde $g \in G$. De fato, cada um destes elementos deve estar em N, e portanto $H \subseteq N$. Temos que H é normal, pois se $g \in H$ e $x \in G$,

$$xgx^{-1} = xg_1(a_1^2 \dots a_h^2)g_1^{-1} \dots g_r(a_1^2 \dots a_h^2)g_r^{-1}x^{-1}$$

$$= (xg_1(a_1^2 \dots a_h^2)g_1^{-1}x^{-1})xg_2 \dots (xg_r(a_1^2 \dots a_h^2)g_r^{-1}x^{-1})$$

$$= (xg_r)(a_1^2 \dots a_h^2)(xg_r)^{-1} \dots (xg_r)(a_1^2 \dots a_h^2)(xg_r)^{-1} \in H.$$

Com H normal e $a_1^2\dots a_h^2\in H$, deve-se ter $N\subseteq H$, e então H=N. Mas veja que, identificando G_{ab} com \mathbb{Z}^h ,

$$\varphi(g(a_1^2\ldots a_h^2)g^{-1})=\varphi(g)+\varphi(a_1^2\ldots a_h^2)-\varphi(g)=\varphi(a_1^2\ldots a_h^2),$$

e portanto $\varphi(N) \subseteq \mathbb{Z}^h$ será o subgrupo cíclico gerado pelo elemento

$$(2,\ldots,2)\in\mathbb{Z}^h.$$

Por conseguinte, encontrar $\pi_1(\#^h \mathbb{R} P^2)_{ab}$ é descrever o quociente de \mathbb{Z}^h pelo subgrupo cíclico C gerado por $(2, \ldots, 2)$. Demonstra-se que

$$\mathbb{Z}^h/C \cong \mathbb{Z}^{h-1} \oplus \mathbb{Z}/2\mathbb{Z}$$

por meio da seguinte função $\psi: \mathbb{Z}^h \to \mathbb{Z}^{h-1} \oplus \mathbb{Z}/2\mathbb{Z}$ dada por

$$\psi(x_1, \dots, x_{h-1}, x_h) = (x_1 - x_h, \dots, x_{h-1} - x_h, \overline{x_h})$$

onde $\overline{x_h} = x_h \pmod 2$. É simples ver que ψ será homomorfismo sobrejetor, e vê-se que

$$\psi(x_1, ..., x_h) = 0 \iff x_1 = x_2 = ... = x_{h-1} = x_h, \ x_h \in 2\mathbb{Z}$$

 $\iff (x_1, ..., x_h) = s(2, 2, ..., 2, 2), \ s \in \mathbb{Z}$

e portanto $\ker \psi = C = \varphi(N)$, o grupo cíclico gerado por $\varphi(a_1, \ldots, a_h)$. Pelo teorema do isomorfismo, então $\mathbb{Z}^h/C \cong \mathbb{Z}^{h-1} \oplus \mathbb{Z}/2\mathbb{Z}$, e isto finaliza o raciocínio que

$$\pi_1(\#^h \mathbb{R}\mathrm{P}^2)_{ab} \cong \mathbb{Z}^{h-1} \oplus \mathbb{Z}/2\mathbb{Z}.$$

Enfim, devido à unicidade da classificação dos grupos abelianos finitamente gerados, e pela descrição completa

$$\pi_1(S^2)_{ab} = \{0\},$$

$$\pi_1(\#^g T^2)_{ab} = \mathbb{Z}^{2g},$$

$$\pi_1(\#^h \mathbb{R}P^2)_{ab} = \mathbb{Z}^{h-1} \oplus \mathbb{Z}/2\mathbb{Z}$$

podemos efetivamente concluir que as superfícies compactas listadas são duas a duas não homeomorfas entre si, senão possuiriam abelianizações de seus grupos fundamentais isomorfas. Conclui-se então a segunda parte do teorema da classificação de superfícies.

Referências

- [Lan02] Serge Lang. Algebra. 3^a ed. Graduate Texts in Mathematics. Springer, New York, NY, 2002. DOI: 10.1007/978-1-4613-0041-0.
- [Lee11] John Lee. Introduction to Topological Manifolds. 2^a ed. Graduate Texts in Mathematics. Springer-Verlag New York, 2011. DOI: 10. 1007/978-1-4419-7940-7.