

CD4511 BCD-to-7 Segment Latch/Decoder/Driver

General Description

The CD4511 BCD-to-seven segment latch/decoder/drive r is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar out-put drivers in a single monolithic structure. The circuit pro-vides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and an output drive capability.Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to test the display, to turn-off or pulse modulate the brightness of the display, and to store a BCD code,respectively. It can be used with seven-segment light emit-ting diodes (LED), incandescent, fluorescent, gas discharge,or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

Features

- Low logic circuit power dissipation
- High current sourcing outputs (up to 25 mA)
- Latch storage of code
- Blanking input
- Lamp test provision
- Readout blanking on all illegal input combinations
- Lamp intensity modulation capability
- Time share (multiplexing) facility
- Equivalent to Motorola MC14511

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
CD4511BE	DIP-16L	CD4511B	TUBE	1000pcs/box
CD4511BM/TR	SOP-16L	CD4511B	REEL	2500pcs/reel

Connection Diagram

Segment Identification

Truth Table

	Inputs						Outputs							
LE	BI	ΙŢ	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	Х	0	Х	Χ	Χ	Χ	1	1	1	1	1	1	1	В
X	0	1	Х	Χ	Χ	Χ	0	0	0	0	0	0	0	
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	
0	1	1	1	0	1	1	0	0	0	0	0	0	0	
0	1	1	1	1	0	0	0	0	0	0	0	0	0	
0	1	1	1	1	0	1	0	0	0	0	0	0	0	
0	1	1	1	1	1	0	0	0	0	0	0	0	0	
0	1	1	1	1	1	1	0	0	0	0	0	0	0	
1	1	1	Х	Χ	Χ	Χ				*				*

X = Don't Care

^{*}Depends upon the BCD code applied during the 0 to 1 transition of LE.

Absolute Maximum Ratings

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & -0.5\text{V to } + 18\text{V} \\ \text{Input Voltage (V}_{\text{IN}}) & -0.5\text{V to V}_{\text{DD}} + 0.5\text{V} \\ \text{Storage Temperature Range (T}_{\text{S}}) & -65^{\circ}\text{C to } + 150^{\circ}\text{C} \end{array}$

Power Dissipation (P_D)
Dual-In-Line
Small Outline

Lead Temperature (T_L) (Soldering, 10 seconds)

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD}) 3V to 15V Input Voltage (V_{IN}) 0V to V_{DD} Operating Temperature Range (V_{AD}) $-40^{\circ}\mathrm{C}$ to $+85^{\circ}\mathrm{C}$

700 mW 500 mW 260°C

DC Electrical Characteristics

Symbol	Parameter	Conditions	_	40°C	+ 25°C			+ 85 °C		Units
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Onits
I _{DD}	Quiescent Supply Current	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS}$		5 10 20			5 10 20		150 300 600	μΑ μΑ μΑ
V _{OL}	Output Voltage Logical "0" Level	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.01 0.01 0.01		0 0 0	0.01 0.01 0.01		0.05 0.05 0.05	V V
V _{OH}	Output Voltage Logical "1" Level	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	4.1 9.1 14.1		4.1 9.1 14.1	4.57 9.58 14.59		4.1 9.1 14.1		> > >
V _{IL}	Low Level Input Voltage	$V_{DD} = 5V$, $V_{OUT} = 3.8V$ or 0.5V $V_{DD} = 10V$, $V_{OUT} = 8.8V$ or 1.0V $V_{DD} = 15V$, $V_{OUT} = 13.8V$ or 1.5V		1.5 3.0 4.0		2 4 6	1.5 3.0 4.0		1.5 3.0 4.0	> > > >
V _{IH}	High Level Input Voltage	$V_{DD} = 5V$, $V_{OUT} = 0.5V$ or $3.8V$ $V_{DD} = 10V$, $V_{OUT} = 1.0V$ or $8.8V$ $V_{DD} = 15V$, $V_{OUT} = 1.5V$ or $13.8V$	3.5 7.0 11.0		3.5 7.0 11.0	3 6 9		3.5 7.0 11.0		> > >
V _{OH}	Output (Source) Drive Voltage	$V_{DD} = 5V, I_{OH} = 0 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 5 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 10 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 15 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 20 \text{ mA}$ $V_{DD} = 5V, I_{OH} = 25 \text{ mA}$	4.1 3.9 3.4		4.1 3.9 3.4	4.57 4.24 4.12 3.94 3.75 3.54		4.1 3.5 3.0		> > > > > > > > > > > > > > > > > > > >
		$\begin{array}{c} V_{DD} = 10V, I_{OH} = 0 \text{ mA} \\ V_{DD} = 10V, I_{OH} = 5 \text{ mA} \\ V_{DD} = 10V, I_{OH} = 10 \text{ mA} \\ V_{DD} = 10V, I_{OH} = 15 \text{ mA} \\ V_{DD} = 10V, I_{OH} = 20 \text{ mA} \\ V_{DD} = 10V, I_{OH} = 25 \text{ mA} \\ \end{array}$	9.1 9.0 8.6		9.1 9.0 8.6	9.58 9.26 9.17 9.04 8.9 8.75		9.1 8.6 8.2		>
		V _{DD} = 15V, I _{OH} = 0 mA V _{DD} = 15V, I _{OH} = 5 mA V _{DD} = 15V, I _{OH} = 10 mA V _{DD} = 15V, I _{OH} = 15 mA V _{DD} = 15V, I _{OH} = 20 mA V _{DD} = 15V, I _{OH} = 25 mA	14.1 14.0 13.6		14.1 14.0 13.6	9.58 14.27 14.17 14.07 13.95 13.8		14.1 13.6 13.2		> > > > > > > > > > > > > > > > > > > >
l _{OL}	Low Level Output Current	$V_{DD} = 5V, V_{OL} = 0.4V$ $V_{DD} = 10V, V_{OL} = 0.5V$ $V_{DD} = 15V, V_{OL} = 1.5V$	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.10 0.10		-10 ⁻⁵	-0.10 0.10		-1.0 1.0	μA μA

Note 1: Devices should not be connected with power on.

Symbol Pai	Parameter	0	−40°C		+ 25°C			+ 85 °C		
Syllibol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent	$V_{DD} = 5V$		20			20		150	μΑ
	Supply Current	$V_{DD} = 10V$		40			40		300	μΑ
		$V_{DD} = 15V$		80			80		600	μΑ
V_{OL}	Output Voltage	$V_{DD} = 5V$		0.01		0	0.01		0.05	V
	Logical "0"	$V_{DD} = 10V$		0.01		0	0.01		0.05	V
	Level	$V_{DD} = 15V$		0.01		0	0.01		0.05	V
V_{OH}	Output Voltage	$V_{DD} = 5V$	4.1		4.1	4.57		4.1		V
	Logical "1"	$V_{DD} = 10V$	9.1		9.1	9.58		9.1		V
	Level	$V_{DD} = 15V$	14.1		14.1	14.59		14.1		V
V_{IL}	Low Level	$V_{DD} = 5V, V_{OUT} = 3.8V \text{ or } 0.5V$		1.5		2	1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{OUT} = 8.8V \text{ or } 1.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{OUT} = 13.8V \text{ or } 1.5V$		4.0		6	4.0		4.0	V
V_{IH}	High Level	$V_{DD} = 5V, V_{OUT} = 0.5V \text{ or } 3.8V$	3.5		3.5	3		3.5		V
Input Voltag	Input Voltage	$V_{DD} = 10V, V_{OUT} = 1.0V \text{ or } 8.8V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{OUT} = 1.5V \text{ or } 13.8V$	11.0		11.0	9		11.0		V
V_{OH}	Output	$V_{DD} = 5V$, $I_{OH} = 0$ mA	4.1		4.1	4.57		4.1		V
	(Source) Drive	$V_{DD} = 5V$, $I_{OH} = 5 \text{ mA}$				4.24				V
	Voltage	$V_{DD} = 5V$, $I_{OH} = 10$ mA	3.6		3.6	4.12		3.3		V
		$V_{DD} = 5V$, $I_{OH} = 15 \text{ mA}$				3.94				V
		$V_{DD} = 5V$, $I_{OH} = 20 \text{ mA}$	2.8		2.8	3.75		2.5		V
		$V_{DD} = 5V$, $I_{OH} = 25 \text{ mA}$				3.54				V
		$V_{DD} = 10V$, $I_{OH} = 0$ mA	9.1		9.1	9.58		9.1		V
		$V_{DD} = 10V$, $I_{OH} = 5 \text{ mA}$				9.26				V
		$V_{DD} = 10V, I_{OH} = 10 \text{ mA}$	8.75		8.75	9.17		8.45		V
		$V_{DD} = 10V, I_{OH} = 15 \text{ mA}$	8.1		8.1	9.04 8.9		7.8		V V
		$V_{DD} = 10V, I_{OH} = 20 \text{ mA}$ $V_{DD} = 10V, I_{OH} = 25 \text{ mA}$	0.1		0.1	8.75		7.6		V
			444		444			444		-
		$V_{DD} = 15V, I_{OH} = 0 \text{ mA}$	14.1		14.1	14.59 14.27		14.1		V V
		$V_{DD} = 15V, I_{OH} = 5 \text{ mA}$ $V_{DD} = 15V, I_{OH} = 10 \text{ mA}$	13.75		13.75	14.27		13.45		l v
		$V_{DD} = 15V, I_{OH} = 15 \text{ mA}$	10.75		10.75	14.07		10.40		ľ
		$V_{DD} = 15V, I_{OH} = 20 \text{ mA}$	13.1		13.1	13.95		12.8		v
		$V_{DD} = 15V, I_{OH} = 25 \text{ mA}$				13.8				V
loL	Low Level	$V_{DD} = 5V, V_{OL} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Output Current	$V_{DD} = 10V, V_{OL} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{OL} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.30		-10-5	-0.30		-1.0	μА
		$V_{DD} = 15V, V_{IN} = 15V$		0.30		10-5	0.30		1.0	μA

AC Electrical Characteristics* $T_A=25^{\circ}C \text{ and } C_L=50 \text{ pF, typical temperature coefficient for all values of } V_{DD}=0.3\%/^{\circ}C$

Symbol	Parameter	Conditions		Units			
Symbol	raiametei	Conditions	Min	Тур	Max		
C _{IN}	Input Capacitance	$V_{IN} = 0$		5.0	7.5	pF	
t _r	Output Rise Time	$V_{DD} = 5V$		40	80	ns	
	(Figure 1a)	$V_{DD} = 10V$		30	60	ns	
		$V_{DD} = 15V$		25	50	ns	
t _f	Output Fall Time	$V_{DD} = 5V$		125	250	ns	
	(Figure 1a)	$V_{DD} = 10V$		75	150	ns	
		$V_{DD} = 15V$		65	130	ns	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		640	1280	ns	
	(Data) <i>(Figure 1a)</i>	$V_{DD} = 10V$		250	500	ns	
		$V_{DD} = 15V$		175	350	ns	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		720	1440	ns	
	(Data) <i>(Figure 1a)</i>	$V_{DD} = 10V$		290	580	ns	
	, ,, ,	$V_{DD} = 15V$		195	400	ns	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		320	640	ns	
	(Blank) <i>(Figure 1a)</i>	$V_{DD} = 10V$		130	260	ns	
		$V_{DD} = 15V$		100	200	ns	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		485	970	ns	
	(Blank) <i>(Figure 1a)</i>	$V_{DD} = 10V$		200	400	ns	
		$V_{DD} = 15V$		160	320	ns	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		313	625	ns	
	(Lamp Test) (Figure 1a)	$V_{DD} = 10V$		125	250	ns	
		$V_{DD} = 15V$		90	180	ns	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		313	625	ns	
	(Lamp Test) (Figure 1a)	$V_{DD} = 10V$		125	250	ns	
		$V_{DD} = 15V$		90	180	ns	
tSETUP	Setup Time	$V_{DD} = 5V$	180	90		ns	
	(Figure 1b)	$V_{DD} = 10V$	76	38		ns	
		$V_{DD} = 15V$	40	20		ns	
tHOLD	Hold Time	$V_{DD} = 5V$	0	-90		ns	
	(Figure 1b)	$V_{DD} = 10V$	0	-38		ns	
		$V_{DD} = 15V$	0	-20		ns	
PW_{LE}	Minimum Latch Enable	$V_{DD} = 5V$	520	260		ns	
	Pulse Width (Figure 1c)	$V_{DD} = 10V$	220	110		ns	
		$V_{DD} = 15V$	130	65		ns	

^{*}AC Parameters are guaranteed by DC correlated testing.

Switching Time Waveforms

Typical Applications

Light Emitting Diode (LED) Readout

Typical Applications (Continued)

Direct DC drive of LC's not recommended for life of LC readouts.

Incandescent Readout VDD VDD VDD VDD VDD VDD

**A filament pre-warm resistor is recommended to reduce filament thermal shock and increase the effective cold resistance of the filament.

PACKAGE

Dimensions In Millimeters								
Symbol:	Min:	Max:	Symbol:	Min:	Max:			
Α	1.225	1.570	D	0.400	0.950			
A1	0.100	0.250	Q	0°	8°			
В	9.800	10.00	а	0.420 TYP				
С	5.800	6.250	b	1.270 TYP				
C1	3.800	4.000						

Dimensions In Millimeters									
Symbol:	Min :	Max:	Symbol:	Min :	Max:				
Α	6.100	6.680	L	0.500	0.800				
В	18.940	19.560	а	1.524 TYP					
D	8.200	9.200	b	0.889 TYP					
D1	7.42	7.820	С	0.457 TYP					
E	3.100	3.550	d	2.540 TYP					
L	0.500	0.800							

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Huaguan Semiconductor Co,Ltd. the performance of the semi conductor products produced by the company can reach the performance indicators that can be applied at the time of sales. the use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan semicondu ctor. Not all parameters of each device need to be tested. The above documents are for reference only, and all are subject to the physical parameters.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.