Título

Antonio Molner Domenech

Trabajo de Fin de Grado Ingeniería Informática

> Supervisado por: Alberto Guillén

Universidad de Granada, España Junio 2020

Índice general

Li	stado de figuras	III
Li	stado de tablas	IV
1.	Objetivos	v
	1.1. Alcance de los objetivos	VI
2.	Introducción	VII
	2.1. Herramientas para el análisis de rayos cósmicos	VII
3.	Planificación del trabajo	VIII
4.	Presupuesto	IX
5 .	Diseño del marco de trabajo	x
6.	Diseño del autoencoder	ΧI
7.	Experimentos	XII
	7.1. Cuantificación del ahorro del tiempo de desarrollo (opcional)	XII
	7.2. Resultados	XII
8.	Anexo: Manual de Usuario	XIII
9.	Referencias	XIV

Listado de figuras

Figure 4.1 This is an example figure	pp
Figure x.x Short title of the figure	pp

Listado de tablas

Table 5.1 This is an example table	pp
Table x.x Short title of the figure	pp

Objetivos

El objetivo de este proyecto es el de desarrollar un marco de trabajo para machine learning enfocado en la reproducibilidad y buenas prácticas que explicaremos más adelante. Por otro lado, como objetivo secundario tenemos la aplicación de dicho framework para resolver un problema real.

A modo de resumen, los principales objetivos son:

- Diseño e implementación de un framework de reproducibilidad: El desarrollo de una herramienta que permita instrumentalizar proyectos de Machine Learning con mínimo esfuerzo, orientada a mantener unas buenas prácticas de desarrollo y seguir una filosofía MLOps. Dentro de este objetivo, de manera secundaria, incluimos una contribución de código a uno de los proyectos de código libre que componen el módulo central de nuestra herramienta, Mlflow.
- Especificación de buenas prácticas: La creación de una lista de pautas y requisitos necesarios para hacer reproducible un proyecto. Desde la recolección de datos hasta la gestión de experimentos.
- Aplicación de la herramienta a la resolución de un problema real: Este objetivo está orientado a la experimentación, trata de la aplicación de diferentes técnicas de Machine Learning tradicional y Deep learning para la resolución de un problema común en física, la detección de

primarios. En dicha aplicación, hacemos un uso extensivo de la herramienta y valoramos los beneficios y el coste en recursos humanos y capitales de su uso para este caso concreto.

1.1. Alcance de los objetivos

Para el primer objetivo, el alcance incluye el desarrollo integral de una herramienta en Python que permita cumplir con la mayoría de requisitos que consideramos necesarios para que un proyecto sea reproducible fácilmente por la comunidad científica. Esta herramienta debe ser flexible y permitir integrarse con frameworks de Machine Learning o Deep learning existentes, así como con proyectos orientados al análisis de datos en lugar de al modelado.

En relación con el primer objetivo, se debe desarrollar una especificación de buenas prácticas basadas en problemas existentes, y con el objetivo de reducir aquella deuda técnica que concierne a este tipo de proyectos, tanto durante el desarrollo o experimentación, como en el momento de compartir el trabajo con otras personas.

Introducción

- Rayos cósmicos
- Remarcar problemas en la reproductibilidad
- 2.1. Herramientas para el análisis de rayos cósmicos
 - ROOT Framework
 - lacktriangle Corkiska
 - CERN

Planificación del trabajo

- Planificación optimista
- Planificación real

Presupuesto

- Comparitiva cluster propio vs AWS, Azure, GDC
- \blacksquare Coste de titulado superior (36€)

Diseño del marco de trabajo

- Herramientas (y el por qué)
- Comparativa herramientas para la reproductibilidad (Polyaxon y similares)

Diseño del autoencoder

- Que es una red neuronal
- Que es un autoencoder
- Autoencoder simple
- Autoencoder profundo
- Autoencoder variacional

Experimentos

- 7.1. Cuantificación del ahorro del tiempo de desarrollo (opcional)
- 7.2. Resultados

Anexo: Manual de Usuario

Referencias