1. Union of R and S

RS

r,s must have the same number of attributes

nple	e: giv	en th	e relation	is r a	nd
r	Α	В	s	Α	В
	α	1		α	2
	α	2		β	3
	β	1			
s			,		
	LA_	В	J		
	α	1]		
	0	2	1		

 $\begin{vmatrix} \beta & 1 \\ \beta & 3 \end{vmatrix}$

2. it's a natural join between R and S, connecting the two relation.

 $RS := R \bowtie S$

It merges the two tubles together in a new tuble, should R have an additional attribute that S doesn't not, it will be in the new tuple.

EXAMPLE:

	A	В	C	D	П	В	D	Ε
	α	1	α	a		1	a	α
	β	2	γ	a	П	3	a	β
	γ	4	β	b	П	1	a	Y
	α	1	γ	a	П	2	b	δ
	δ	2	β	b	П	3	b	3
r						S		

3. selecting a tuple c in (R) and combining/merging

It's selecting **C** from (R) and everything in C into a new tuple.

This is an example: I couldn't make much sense out of the question, Whats the attributes names, is it m and n? maximum and minimum.. I need more informatio in order to "visualize" the tuples.. I can't make out what R and C holds for values.. here's how it would look like for r x s.

r x s:

But in this case we're performing selection on set R of C, together with everything in set S

4. The result of set difference operation is tuples,

which are present in one relation but are not in the second relation.

it's performing project, selecting L on R and from that it's finding the values which are not present in S. Suppose $R = \{1, 2, 3, 4, 5\}$

$$RS = \{1, 3\}$$