TRABAJO PRÁCTICO ESPECIAL: "ESTACIONAMIENTO"

Los valores de probabilidad obtenidos al "correr" el programa para distintos valores de m y n son los siguientes:

VALOR DE PROBABILIDAD(%)	m (N° de Iteraciones)			
n (Nº de Autos)	10	100	1000	10000
2	0.00	6.00	5.60	4.75
5	30.00	44.00	41.70	42.02
10	90.00	94.00	93.70	93.00
12	100.00	98.00	98.60	98.64
15	100.00	100.00	100.00	99.93
18	100.00	100.00	100.00	100.00

Relación entre el valor de probabilidad obtenida y el número de iteraciones:

Como se puede apreciar en la tabla, si fijamos el número de autos y se va variando el número de iteraciones, se puede ver que la probabilidad de colisión aumenta a medida que aumenta el número de Iteraciones , y se converge a un hacia un determinado valor (por ejemplo, aproximadamente 94% para 10 autos), por más que el número de iteraciones aumente considerablemente.

Para los casos en que la cantidad de autos es igual o mayor a 12 se puede apreciar que la probabilidad de colisión es prácticamente 100% independientemente del número de iteraciones que se realicen.

Relación entre el valor de probabilidad obtenida y el número de vehículos:

Como se puede apreciar en la tabla, si se fija el número de iteraciones y se va variando el número de autos, se puede ver que el valor de probabilidad de colisión aumenta a medida que se incrementa el número de vehículos que se desea estacionar. Al igual que en el caso anterior, se observa que cuando la cantidad de autos es igual o mayor a 12 la probabilidad de colisión converge hacia un 100%, independientemente del número de iteraciones que se realicen.

Taller de Matemática Computacional - TUDAI 2018 Emanuel Volpe

Necesidad de un mínimo de iteraciones:

La necesidad de un mínimo de iteraciones radica en el hecho de que puede suceder, por ejemplo, que la diferencia entre la probabilidad de colisión de la primera y la segunda iteración sea menor al valor de **epsilon** establecido, lo cual no representaría fidedignamente lo que puede suceder en la realidad. Dicho ésto, y para que lo mencionado no ocurra(o mejor dicho, no se tenga en cuenta) y los resultados sean representativos de lo que ocurriría realmente, se ha dispuesto que el número de iteraciones sea mayor a 10.