T-4 三角函數及其圖形

當heta是一個實數,在坐標平面上恰有一個heta孤度的有向角,此時終邊與單位圓的交點為 $(\cos heta \, , \sin heta \,)$,而其餘的四個三角函數仍可以用 $\sin heta \, , \cos heta$ 表示如下:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} (\cos \theta \neq 0), \cot \theta = \frac{\cos \theta}{\sin \theta} (\sin \theta \neq 0),$$

$$\sec \theta = \frac{1}{\cos \theta} (\cos \theta \neq 0) \cdot \csc \theta = \frac{1}{\sin \theta} (\sin \theta \neq 0) \circ$$

因此,三角函數可以看成在實數上取值,也就是說,當x為實數時, $\sin x$ 、 $\cos x$ 都有意義,而 $\cos x \neq 0$ 時, $\tan x$ 、 $\sec x$ 都有意義, $\sin x \neq 0$ 時, $\cot x$ 、 $\csc x$ 也都有意義。因此,不但倒數關係,商數關係,平方關係,餘角關係均成立,往後我們確實把三角函數考慮成函數的形態時,我們的自變數均以弧度度量來表示。

主題一 正弦函數、餘弦函數、正切函數

1.正弦函數:

 $(1) \stackrel{\text{in}}{=} y = f(x) = \sin x , x \in R ,$

當x從0增加到 $\frac{\pi}{2}$ 時,y(即 $\sin x$)由0遞增到1;

當x從 $\frac{\pi}{2}$ 增加到 π 時,y(即 $\sin x$)由1遞減到0;

當x從 π 增加到 $\frac{3\pi}{2}$ 時,y(即 $\sin x$)由0遞減到-1;

當x從 $\frac{3\pi}{2}$ 增加到 2π 時,y(即 $\sin x$)由-1遞增到0。

因此,函數 $y = \sin x$, $0 \le x \le 2\pi$ 的圖形為:

- (2) 正弦函數的週期:當x從 2π 增加到 4π 時,y(即 $\sin x$)的值重複x從0增加到 2π 時的變化,同理x從 4π 到 6π , 6π 到 8π ,…,甚至是 -2π 到0, -4π 到 -2π , -6π 到 -4π ,…,y的值一再重覆變化。
- (3) 週期函數:由 $\sin(x+2\pi) = \sin x$ 可說明變數 x 每隔 2π 單位,此函數就重複一段相同的圖形,我們稱函數 $y = \sin x$ 的週期是 2π 。一般而言,一個函數 f,若自變數 x 每隔 p 單位,函數 f 就重複一段相同的圖形,即,存在正數 p 使得 f(x+p) = f(x) 恒成立。則稱此函數為週期函數,且該正數 p 的最小值稱 為函數 f 的週期。
 - 【例】由 $\sin(x+2\pi) = \sin x$ 或 $\sin(x+4\pi) = \sin x$ 都可推知 $y = \sin x$ 為週期函數, 我們說 $y = \sin x$ 的週期是 2π 。

(4) 圖形特徵:

- (i) 以原點(0,0)為對稱中心。
- (ii) 與x軸的交點為 $(n\pi, 0)$,其中n為整數。
- (iii) 與 y 軸的交點為(0,0)。
- (iv) 最大值 1,最小值 -1,即 $-1 \le y \le 1$ 。
- (v) 圖形是連續的。

2.餘弦函數:

(1) 設 $y = f(x) = \cos x$, $x \in R$,

當x從0增加到 $\frac{\pi}{2}$ 時,y(即 $\cos x$)由1遞減到0;

當x從 $\frac{3\pi}{2}$ 增加到 2π 時,y(即 $\cos x$)由0遞增到1。

因此,函數 $y = \cos x$, $0 \le x \le 2\pi$ 的圖形為:

- (2) 餘弦函數的週期:因為 $\cos(x+2\pi)=\cos x$,因此函數 $y=\cos x$ 的週期為 2π 。
- (3) 餘弦函數可由正弦函數平移而得:

$$\cos x = \cos(-x) = \sin\left(\frac{\pi}{2} - (-x)\right) = \sin\left(x + \frac{\pi}{2}\right)$$

由此可知, $y = \cos x$ 的圖形可由 $y = \sin x$ 的圖形向左平移 $\frac{\pi}{2}$ 單位得到。

- (4) 圖形特徵:
 - (i) 以直線x=0(即y軸)為對稱軸。
 - (ii) 與x軸的交點為 $(n\pi + \frac{\pi}{2}, 0)$,其中n為整數。
 - (iii) 與 y 軸的交點為(0,1)。
 - (iv) 最大值 1,最小值 -1,即 $-1 \le y \le 1$ 。
 - (v) 圖形是連續的。

3.正切函數:

(1) 設 $y = f(x) = \tan x$, $x \in R$, $x \neq n\pi + \frac{\pi}{2}$, 其中 n 為任意整數。

【說明】 $y = \tan x = \frac{\sin x}{\cos x}$, $\cos x$ 不能為 0,即,有向角 x 弧度的終邊與單位圓交點的 x

坐標不能為 0,因此, $x \neq n\pi + \frac{\pi}{2}$,其中 n 為任意整數。

當x從0開始遞增時,動點 $(1, \tan x)$ 由點(1, 0)往上爬升,即 $\tan x$ 遞增,

當x 趨近 $\frac{\pi}{2}$ 時, $\tan x$ 的值可無限制增大。

當x從0開始遞減時,動點 $(1, \tan x)$ 由點(1, 0)往下移動,即 $\tan x$ 遞減,

當 x 趨近 $-\frac{\pi}{2}$ 時, $\tan x$ 的值可無限制減小。

由上所述,x 在 $-\frac{\pi}{2}$ 到 $\frac{\pi}{2}$ 之間變化時, $y=\tan x$ 的值隨著 x 值的增大而遞增,且 y 可為任意實數。

因此,函數 $y = \tan x$, $x \in R$, $x \neq n\pi + \frac{\pi}{2}$ (其中 n 為任意整數)的圖形為:

其中,函數圖形的兩端可無限延伸。

- (2) 正切函數的週期:因為 $\tan(x+\pi) = \tan x$,因此函數 $y = \tan x$ 的週期為 π 。
- (3) 圖形特徵:
 - (i) 以原點(0,0)為對稱中心。
 - (ii) 與 x 軸的交點為 $(n\pi, 0)$, 其中 n 為整數。
 - (iii) 與y軸的交點為(0,0)。
 - (iv) $x \neq n\pi + \frac{\pi}{2}$, 其中 n 為整數。
 - (v) $y \in R \circ$
 - (vi) $x=n\pi+\frac{\pi}{2}$ 為 $y=\tan x$ 圖形之漸近線,其中 n 為整數。

主題二 餘切函數、正割函數、餘割函數

1.餘切函數:

(1) 設 $y = f(x) = \cot x$, $x \in R$, $x \neq n\pi$,其中n 為任意整數。

【說明】 $y = \cot x = \frac{\cos x}{\sin x}$, $\sin x$ 不能為 0,即,有向角 x 孤度的終邊與單位圓交點的 y 坐

標不能為0,因此, $x \neq n\pi$,其中n為任意整數。

當x從0開始遞增時,動點($\cot x$,1)由無限大往下移動,即 $\cot x$ 遞減,

當x從 $\frac{\pi}{2}$ 開始遞增時,動點($\cot x$,1)由(0,1)往下移動,即 $\cot x$ 遞減,

當x 趨近 π 時, $\cot x$ 的值可無限制減小。

由上所述,x 在 0 到 π 之間變化時, $y = \cot x$ 的值隨著 x 值的增大而遞減,且 y 可為任意實數,因此,函數 $y = \cot x$ 的圖形為:

其中,函數圖形的兩端可無限延伸。

- (2) 餘切函數的週期: $\cot(x+\pi) = \cot x$,因此函數 $y = \cot x$ 的週期為 π 。
- (3) 圖形特徵:

- (i) 以原點(0,0)為對稱中心。
- (ii) 與x軸的交點為 $(n\pi + \frac{\pi}{2}, 0)$,其中n為整數。
- (iii) 以直線 $x=n\pi$ 為漸近線,其中 n 為整數。
- (iv) $x \neq n\pi$, 其中 n 為整數。
- (v) $y \in R$ °

2.正割函數:

(1) 設 $y = f(x) = \sec x$, $x \in \mathbb{R}$, $x \neq n\pi + \frac{\pi}{2}$, 其中 n 為任意整數。

【說明】 $y = \sec x = \frac{1}{\cos x}$, $\cos x$ 不能為 0,即,有向角 x 孤度的終邊與單位圓交點的 x 坐

標不能為
$$0$$
,因此, $x \neq n\pi + \frac{\pi}{2}$,其中為任意整數。

由於 $\sec x$ 是 $\cos x$ 的倒數,又 $0 < \cos x \le 1$ 時, $\sec x \ge 1$,而 $-1 \le \cos x < 0$ 時, $\sec x \le -1$,

因此,由倒數關係可得函數 $y = \sec x$ 的圖形為:

其中,函數圖形的兩端可無限延伸。

- (2) 正割函數的週期: $\sec(x+2\pi) = \sec x$,因此函數 $y = \sec x$ 的週期為 2π 。
- (3) 圖形特徵:
 - (i) 以直線x=0 (即y軸) 為對稱軸。

- (ii) 與 y 軸的交點為(0,1)。
- (iii) 以直線 $x=n\pi+\frac{\pi}{2}$ 為漸近線,其中 n 為整數。
- (iv) $x \neq n\pi + \frac{\pi}{2}$,其中 n 為整數。
- (v) 在直線 y=1 與 y=-1 之間無圖形,即 sec $x \ge 1$ 或 sec $x \le -1$ 。

3.餘割函數:

(1)設 $y = f(x) = \csc x$, $x \in R$, $x \neq n\pi$, 其中 n 為任意整數。

【說明】 $y = \csc x = \frac{1}{\sin x}$, $\sin x$ 不能為 0,即,有向角 x 孤度的終邊與單位圓交點的縱坐

標不能為0,因此, $x \neq n\pi$,其中n為任意整數。

由於 $\csc x$ 是 $\sin x$ 的倒數,又 $0 < \sin x \le 1$ 時, $\csc x \ge 1$,而 $-1 \le \sin x < 0$ 時, $\csc x \le -1$ 。

因此,由倒數關係可得函數 $y = \csc x$ 的圖形為:

其中,函數圖形的兩端可無限延伸。

- (2) 餘割函數的週期: $\csc(x+2\pi) = \csc x$,因此函數 $y = \csc x$ 的週期為 2π 。
- (3) 圖形特徵:
 - (i) 以原點(0,0)為對稱中心。

- (ii) 與x軸,y軸均無交點。
- (iii) 以直線 $x=n\pi$ 為漸近線,其中 n 為整數。
- (iv) $x \neq n\pi$, 其中 n 為整數。
- (v) 在直線 y=1 與 y=-1 之間無圖形,即 $\csc x \ge 1$ 或 $\csc x \le -1$ 。

補充說明

- 1.以上討論的6個三角函數圖形,其中正弦,餘弦類似,正切,餘切類似,正割,餘割類似。
- 2.正弦,正切,正割在0到 $\frac{\pi}{2}$ 之間遞增;而餘弦,餘切,餘割在0到 $\frac{\pi}{2}$ 之間遞減。