Cálculo Numérico - Elementos de Cálculo Numérico - Métodos Multipaso

Mercedes Pérez Millán

Dto. de Matemática–FCEyN–Universidad de Buenos Aires IMAS-CONICET

01 de julio de 2021

"Machete": métodos de un paso vs. métodos multipaso.

Iteración:

Métodos de un paso	Métodos multipaso	
$y_{i+1} = y_i + h\phi(t_i, y_i, h)$	$\sum_{j=0}^k a_j y_{n+j} = h \sum_{j=0}^k b_j f_{n+j}$ k pasos, $f_{n+j} = f(t_{n+j}, y_{n+j})$,	
	$ a_k \neq 0, a_0 + b_0 > 0.$	
	Si $b_k = 0$ método explícito; si no, implícito.	

3 / 15

Ejemplos:

Métodos de un paso	Métodos multipaso
	$ f(t,y(t)) \sim \frac{y(t+h)-y(t-h)}{2h} $
■ Euler	
■ Taylor de orden <i>k</i>	$\rightsquigarrow y_{j+1} = y_{j-1} + 2hf(t_j, y_j)$
■ Runge-Kutta Ej.: RK2:	2 pasos; y_0 dato; y_1 c/ Euler o RK.
$ K_1 = f(t_i, y_i), $ $ K_2 = f(t_i + h, y_i + hK_1), $ $ y_{i+1} = y_i + \frac{h}{2}(K_1 + K_2). $	$ \bullet \int_{t}^{t+h} y'(s) ds = \int_{t}^{t+h} f(s, y(s)) ds $ uso fórmulas de cuadratura

(DM) Métodos Multipaso

Julio 2021

4 / 15

τ (error de truncado local):

Métodos de un paso

$$y(t + h) = y(t) + h\phi(t, y(t), h) + \underbrace{h\tau}_{\text{error local}}$$

Ej: Euler $\tau = \frac{h}{2}y''(\xi)$, $\xi \in (t, t + h)$.

Métodos multipaso

$$\sum_{j=0}^{k} a_j y(t+jh) = h \sum_{j=0}^{k} b_j y'(t+jh) + h\tau$$

5 / 15

Consistencia:

Métodos de un paso	Métodos multipaso
$\tau \xrightarrow[h \to 0]{} 0$	$\tau \xrightarrow[h \to 0]{} 0$

Métodos multipaso: $\sum_{j=0}^{k} a_j y(t+jh) = h \sum_{j=0}^{k} b_j y'(t+jh) + h\tau$

•
$$y(t+jh) = y(t) + y'(t)jh + \frac{y''(t)}{2}(jh)^2 + \dots$$

$$y'(t+jh) = y'(t) + y''(t)jh + \frac{y'''(t)}{2}(jh)^2 + \dots$$

•
$$h\tau = c_0 y(t) + c_1 h y'(t) + c_2 h^2 y''(t) + \dots$$

$$\Rightarrow c_0 = \sum_{j=0}^k a_j, c_1 = \sum_{j=0}^k j a_j - \sum_{j=0}^k b_j, c_m = \sum_{j=0}^k \frac{j^m}{m!} a_j - \sum_{j=0}^k \frac{j^{m-1}}{(m-1)!} b_j.$$

Métodos de un paso	Métodos multipaso
consist. $\Leftrightarrow \phi(t, y, 0) = f(t, y)$	consist. $\Leftrightarrow c_0 = c_1 = 0$

6 / 15

Orden p:

Métodos de un paso	Métodos multipaso
$ au=O(h^p)$	$ au=O(h^p)$
Euler \longrightarrow orden 1 $T_k \longrightarrow$ orden k $RK2 \longrightarrow$ orden 2	Orden p sii $c_0=c_1=\cdots=c_p=0$ y $c_{p+1}\neq 0$.

7 / 15

Diferencias:

Métodos de un paso	Métodos multipaso
Condición CL: Existe K indep. de t y h tal que $ \phi(t,y,h) - \phi(t,z,h) \le K y-z $	Polinomio característico: $p(x) = a_0 + a_1x + \cdots + a_kx^k$
$\frac{Error global:}{\phi \; CL} \\ y(t_j) - y_j \le \frac{\tau_{max}}{K} \left(e^{K(t_j - t_0)} - 1 \right)$	Condición de la raíz: r_i cero de p , i) $ r_i \le 1$ si r_i cero simple, ii) $ r_i < 1$ si r_i cero múltiple.

8 / 15

Convergencia en [0, T]:

Métodos de un paso	Métodos multipaso
$T = nh$, converge si $\lim_{h \to 0} y_n = y(T)$.	$T = (n + k)h$, converge si $\lim_{h \to 0} y_{n+k} = y(T)$.
$\frac{\underline{Teo}}{CL}:$ $CL + consistencia \Rightarrow conv.$	$\frac{\underline{Teo}:}{cond.} \ de \ la \ ra\'{(z+consist.} \Leftrightarrow conv.$

(DM)

Ejercicio:

Se considera el PVI
$$\begin{cases} y'(t) = f(t, y(t)), \\ y(t_0) = y_0 \end{cases}$$

a) A partir de la siguiente igualdad, que vale para todo $\alpha \in \mathbb{R}$,

$$\alpha \int_{t_n}^{t_{n+1}} y'(t) dt + \int_{t_{n+1}}^{t_{n+2}} y'(t) dt = \alpha \int_{t_n}^{t_{n+1}} f(t, y(t)) dt + \int_{t_{n+1}}^{t_{n+2}} f(t, y(t)) dt,$$

hallar el método multipaso

$$y_{n+2} + (\alpha - 1)y_{n+1} - \alpha y_n = h[Af_{n+2} + Bf_{n+1} + Cf_n],$$

que resulta de aproximar mediante la regla de trapecios cada una de las integrales

$$\alpha \int_{t_n}^{t_{n+1}} f(t, y(t)) dt$$
 y $\int_{t_{n+1}}^{t_{n+2}} f(t, y(t)) dt$.

4□ + 4□ + 4□ + 4□ + 3

Ejercicio:

- b) Hallar todos los valores de $\alpha \in \mathbb{R}$ para los cuales el método del ítem anterior resulte convergente.
- c) Para tales valores de α , ¿cuál es el orden de convergencia?

(DM)

a) Recuerdo:
$$T(f) = \frac{(b-a)}{2}(f(a) + f(b))$$
.

$$\alpha \int_{t_n}^{t_{n+1}} f(t, y(t)) dt \sim \alpha \left[\frac{h}{2} (f_n + f_{n+1}) \right], \qquad (1)$$

$$\int_{t_{n+1}}^{t_{n+2}} f(t, y(t)) dt \sim \frac{h}{2} (f_{n+1} + f_{n+2}).$$
 (2)

$$(1) + (2) = h \left[\frac{1}{2} f_{n+2} + \frac{\alpha + 1}{2} f_{n+1} + \frac{\alpha}{2} f_n \right]$$

Luego,
$$A = \frac{1}{2}$$
, $B = \frac{\alpha+1}{2}$, $C = \frac{\alpha}{2}$.

Notar que
$$\int_{t_n}^{t_{n+1}} y'(t) \ dt = y(t_{n+1}) - y(t_n) \sim y_{n+1} - y_n$$
, etc.

4□ > 4□ > 4□ > 4□ > 4□ > 9

12 / 15

b) Convergencia = consistencia + condición de la raíz.

$$y_{n+2} + (\alpha - 1)y_{n+1} - \alpha y_n = h\left[\frac{1}{2}f_{n+2} + \frac{\alpha + 1}{2}f_{n+1} + \frac{\alpha}{2}f_n\right]$$

• Consistencia: $c_0 = c_1 = 0$

$$c_0 = \sum_{j=0}^k a_j = a_0 + a_1 + a_2 = -\alpha + (\alpha - 1) + 1 = 0,$$

$$c_1 = \sum_{j=0}^k j a_j - \sum_{j=0}^k b_j = a_1 + 2a_2 - (b_0 + b_1 + b_2)$$

$$= (\alpha - 1) + 2 - (\frac{\alpha}{2} + \frac{\alpha + 1}{2} + \frac{1}{2}) = 0.$$

Así, el método es consistente para todo α .

4 D > 4 B > 4 E > 4 E > E 990

13 / 15

b) ■ Condición de la raíz: $|r_i| \le 1$ si r_i cero simple de p_i $|r_i| < 1$ si r_i cero múltiple de p. $p(x) = x^2 + (\alpha - 1)x - \alpha$ y sus raíces:

$$\frac{1-\alpha \pm \sqrt{\alpha^2 - \alpha + 1 + 4\alpha}}{2} = \frac{1-\alpha \pm \sqrt{(\alpha+1)^2}}{2}$$
$$= \frac{1-\alpha \pm (\alpha+1)}{2},$$

es decir, $r_1 = 1$, $r_2 = -\alpha$. Luego, la condición de la raíz se satisface si $\alpha \in (-1, 1]$.

De esta forma, el método converge si y solo si $\alpha \in (-1, 1]$.

4□ > 4□ > 4□ > 4□ > 4□ > 9

c)
$$c_m = \sum_{j=0}^k \frac{j^m}{m!} a_j - \sum_{j=0}^k \frac{j^{m-1}}{(m-1)!} b_j$$

$$c_{2} = \left(\frac{1}{2}a_{1} + \frac{4}{2}a_{2}\right) - \left(b_{1} + \frac{2}{1}b_{2}\right)$$

$$= \left(\frac{\alpha - 1}{2} + 2\right) - \left(\frac{\alpha + 1}{2} + 1\right) = 0$$

$$c_{3} = \left(\frac{1}{6}a_{1} + \frac{8}{6}a_{2}\right) - \left(\frac{1}{2}b_{1} + \frac{4}{2}b_{2}\right)$$

$$= \left(\frac{\alpha - 1}{6} + \frac{8}{6}\right) - \left(\frac{\alpha + 1}{4} + \frac{4}{4}\right)$$

$$= \frac{2\alpha + 14 - 3\alpha - 15}{12} = \frac{-\alpha - 1}{12}$$

 $c_3=0 \Leftrightarrow \alpha=-1$, pero $\alpha\in (-1,1]$, por lo tanto $c_3\neq 0$ y el orden de convergencia es 2.

(DM) Métodos Multipaso Julio 2021 15 / 15