ESCP 2021

Exercice 1 -

1. (a) Je calcule J^2 .

$$J^2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Alors

$$J^{3} = J^{2} \times J = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix} = 2J.$$

J'ai bien montré que

$$J^3 = 2J.$$

(b) Comme $J^3 = 2J$, en notant O la matrice nulle d'ordre 3, j'ai que $J^3 - 2J = O$. Ainsi le polynôme $X^3 - 2X$ est un polynôme annulateur de la matrice J. Les valeurs propres possibles pour J sont donc parmi les racines de ce polynôme annulateur. Or

$$X^{3} - 2X = 0 \iff X(X^{2} - 2) = 0 \iff X(X - \sqrt{2})(X + \sqrt{2}) = 0.$$

Il s'agit d'une équation produit-nul, donc l'un des facteurs au moins doit être nul, i.e.

$$X = 0$$
 ou $X - \sqrt{2} = 0$ ou $X + \sqrt{2} = 0$
 $\iff X = 0$ ou $X = \sqrt{2}$ ou $X = -\sqrt{2}$.

Les valeurs propres possibles pour *J* sont donc $-\sqrt{2}$, 0 et $\sqrt{2}$.

(c) On a

$$J \times \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} -\sqrt{2} \\ 2 \\ -\sqrt{2} \end{pmatrix} = -\sqrt{2} \times \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}.$$

Comme $\begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$ est un vecteur non-nul solution de $JX = -\sqrt{2}X$, alors c'est un vecteur propre de J, associé à la valeur propre $-\sqrt{2}$.

On a

$$J \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Comme $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ est un vecteur non-nul solution de JX=0X, alors c'est un vecteur propre de J, associé à la valeur propre 0.

On a

$$J \times \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ 2 \\ \sqrt{2} \end{pmatrix} = \sqrt{2} \times \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}.$$

Comme $\begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$ est un vecteur non-nul solution de $JX = \sqrt{2}X$, alors c'est un vecteur

propre de J, associé à la valeur propre $\sqrt{2}$.

Ainsi les trois colonnes de *P* sont bien des vecteurs propres de *J*.

(d) D_1 est la matrice diagonale contenant les valeurs propres de la matrice J et P est la juxtaposition des 3 vecteurs propres associés à ces valeurs propres. Donc, comme les trois valeurs propres de J sont distinctes, je peux en déduire que la matrice J est diagonalisable, i.e. que le matrice P est inversible et que $J = PD_1P^{-1}$.

En particulier, après multiplication à droite par P, on obtient

$$JP = PD_1$$
.

J'ai bien montré que

 $JP = PD_1$ et que J est diagonalisable.

(e) On a vu à la question précédente que $J = PD_1P^{-1}$ et $JP = PD_1$. Alors

$$J^2P = J \times JP = PD_1P^{-1} \times PD_1 = PD_1ID_1 = PD_1D_1 = PD_1^2$$
.

J'ai bien montré que

$$J^2P = PD_1^2.$$

2. (a) Je calcule $J^2 - I$ pour retrouver K. J'ai déjà calculé J^2 précédemment.

$$J^{2} - I = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = K.$$

J'ai bien montré que

$$K = J^2 - I.$$

(b) Je calcule aI + bJ + cK pour a, b et c trois réels et je cherche à retrouver A.

$$aI + bJ + cK = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b & 0 \\ b & 0 & b \\ 0 & b & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & c \\ 0 & c & 0 \\ c & 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b & c \\ b & a + c & b \\ c & b & a \end{pmatrix}.$$

Pour retrouver $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 2 & 1 \end{pmatrix}$, il me suffit de prendre a = c = 1 et b = 2.

J'ai montré que

$$A = I + 2I + K$$
.

(c) J'ai montré aux deux questions précédentes que A = I + 2J + K et $K = J^2 - I$. Alors en combinant ces deux équations, j'obtiens

$$A = I + 2I + I^2 - I = 2I + I^2$$
.

En outre, je sais déjà que $JP = PD_1$ et que $J^2P = PD_1^2$. Alors

$$AP = (2J + J^2)P = 2JP + J^2P = 2PD_1 + PD_1^2 = P(2D_1 + D_1^2).$$

Les matrices D_1 et D_1^2 sont des matrices diagonales, donc la matrice $D_2 = 2D_1 + D_1^2$ est aussi diagonale, et

$$D_2 = 2D_1 + D_1^2 = \begin{pmatrix} -2\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\sqrt{2} \end{pmatrix} + \begin{pmatrix} \left(-\sqrt{2}\right)^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \left(\sqrt{2}\right)^2 \end{pmatrix} = \begin{pmatrix} 2 - 2\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 + 2\sqrt{2} \end{pmatrix}.$$

J'ai montré que

$$AP = PD_2$$
, pour $D_2 = \begin{pmatrix} 2 - 2\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 + 2\sqrt{2} \end{pmatrix}$.

3. (a) Voici le script complété.

(b) Je remarque que seul le terme central diffère entre les deux propositions. Or, comme $A^5 = A^3 \times A^2$, je sais que le terme central de A^5 vaut $40 \times 8 + 56 \times 12 + 40 \times 8$. Sans calcul, je sais que le chiffre des unités de ce nombre est 2 car 40×8 est un multiple de 10 et que $6 \times 2 = 12$. J'en déduis donc que la bonne valeur pour A^5 est B_1 .

Exercice 2 -

1. (a) Comme la variable aléatoire Z suit une loi exponentielle de paramètre λ , je sais que sa densité est donnée par la fonction

$$f_Z(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0, \\ 0 & \text{si } x < 0. \end{cases}$$

Ainsi, je déduis que $\int_0^{+\infty} \lambda e^{-\lambda x} dx = \int_{-\infty}^{+\infty} f_Z(x) dx = 1.$

(b) Comme la variable aléatoire Z suit une loi exponentielle de paramètre λ , je sais que

$$E(Z) = \frac{1}{\lambda}$$
 et $V(Z) = \frac{1}{\lambda^2}$.

(c) Je remarque tout d'abord que $\int_0^{+\infty} \lambda x e^{-\lambda x} \, \mathrm{d}x = \int_{-\infty}^{+\infty} x f_Z(x) \, \mathrm{d}x = E(Z)$ puis aussi que $\int_0^{+\infty} \lambda x^2 e^{-\lambda x} \, \mathrm{d}x = \int_{-\infty}^{+\infty} x^2 f_Z(x) \, \mathrm{d}x = E\left(Z^2\right)$. D'après la formule de König-Huygens, je sais que $V(Z) = E\left(Z^2\right) - E(Z)^2$. Donc $E\left(Z^2\right) = V(Z) + E(Z)^2 = \frac{1}{\lambda^2} + \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2} + \frac{1}{\lambda^2} = \frac{2}{\lambda^2}$. En regroupant tous mes résultats, j'ai montré que

$$\int_0^{+\infty} \lambda x e^{-\lambda x} dx = \frac{1}{\lambda} \quad \text{et} \quad \int_0^{+\infty} \lambda x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2}.$$

2. (a) Par définition, l'intégrale généralisée $\int_0^{+\infty} f(x) dx$ converge si et seulement si la limite $\lim_{A \to +\infty} \int_0^A f(x) dx$ existe et est finie. Or, pour tout $A \geqslant 0$, par linéarité de l'intégrale,

$$\int_0^A f(x) dx = \int_0^A \lambda (1 - p) e^{-\lambda x} + \lambda^2 p x e^{-\lambda x} dx$$
$$= (1 - p) \times \int_0^A \lambda e^{-\lambda x} dx + \lambda p \times \int_0^A \lambda x e^{-\lambda x} dx$$

Or, d'après les questions précédentes, les deux intégrales $\int_0^A \lambda e^{-\lambda x} \, \mathrm{d}x$ et $\int_0^A \lambda x e^{-\lambda x} \, \mathrm{d}x$ admettent une limite lorsque A tend vers $+\infty$. Donc l'intégrale généralisée $\int_0^{+\infty} f(x) \, \mathrm{d}x$ converge et

$$\int_0^{+\infty} f(x) dx = (1 - p) \times \int_0^{+\infty} \lambda e^{-\lambda x} dx + \lambda p \times \int_0^{+\infty} \lambda x e^{-\lambda x} dx$$
$$= (1 - p) \times 1 + \lambda p \times \frac{1}{\lambda} = 1 - p + p = 1.$$

J'ai montré que

$$\int_0^{+\infty} f(x) \, \mathrm{d}x = 1.$$

(b) La fonction f est définie en deux morceaux. Sur l'intervalle $]-\infty,0[$, f(x)=0 donc la fonction f est continue car constante. Sur $[0,+\infty[$, $f(x)=\lambda(1-p)e^{-\lambda x}+\lambda^2pxe^{-\lambda x}$ donc la fonction f est continue comme somme de fonctions continues. Finalement, la fonction f est continue par morceaux, avec un unique point de discontinuité en x=0.

Aussi, sur l'intervalle $]-\infty$, 0[, $f(x)=0 \ge 0$ donc la fonction f est positive. Et sur $[0,+\infty[$, $f(x)=\lambda(1-p)e^{-\lambda x}+\lambda^2pxe^{-\lambda x}\ge 0$ car toutes les valeurs impliquées sont positives : les exponentielles, λ , p et 1-p. Donc la fonction f est positive sur \mathbf{R} tout entier.

Enfin il me reste à montrer que l'intégrale généralisée $\int_{-\infty}^{+\infty} f(x) dx$ converge et vaut 1. Je décompose, grâce à la relation de Chasles :

$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{+\infty} f(x) \, dx.$$

Je sais que $\int_{-\infty}^{0} 0 \, dx$ converge et vaut 0 car la fonction dans l'intégrale est nulle. Et $\int_{0}^{+\infty} f(x) \, dx$ converge et vaut 1 par la question précédente.

En résumé, la fonction f est continue par morceaux sur \mathbf{R} , positive sur \mathbf{R} et vérifie

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{0} 0 \, \mathrm{d}x + \int_{0}^{+\infty} f(x) \, \mathrm{d}x = 0 + 1 = 1,$$

donc je peux en conclure que f est une densité de probabilité.

(c) La variable aléatoire X admet une espérance si et seulement si l'intégrale généralisée $\int_{-\infty}^{+\infty} x f(x) dx$ converge. Or, sous réserve de convergence,

$$\int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{0} x \times 0 dx + \int_{0}^{+\infty} x \times f(x) dx$$

$$= \int_{0}^{+\infty} \lambda (1 - p) x e^{-\lambda x} + \lambda^{2} p x^{2} e^{-\lambda x} dx$$

$$= (1 - p) \times \int_{0}^{+\infty} \lambda x e^{-\lambda x} dx + \lambda p \times \int_{0}^{+\infty} \lambda x^{2} e^{-\lambda x} dx$$

Et comme les deux intégrales impliquées convergent (on a trouvé leurs valeurs plus tôt dans l'exercice), j'en déduis que l'intégrale généralisée $\int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$ converge, donc que la variable aléatoire X admet une espérance. De plus,

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$= (1 - p) \times \int_{0}^{+\infty} \lambda x e^{-\lambda x} dx + \lambda p \times \int_{0}^{+\infty} \lambda x^{2} e^{-\lambda x} dx$$

$$= (1 - p) \times \frac{1}{\lambda} + \lambda p \times \frac{2}{\lambda^{2}} = \frac{1 - p}{\lambda} + \frac{2p}{\lambda} = \frac{1 + p}{\lambda}.$$

L'espérance de Z vaut $\frac{1+p}{\lambda}$.

3. (a) Soit $x \ge 0$. Je cherche à calculer $\int_0^x t e^{-\lambda t} dt$. Je pose u(t) = t et $v'(x) = e^{-\lambda t}$. Alors u'(x) = 1 et $v(x) = -\frac{1}{\lambda}e^{-\lambda t}$, puis par intégraation par parties,

$$\int_0^x u(t)v'(t) dt = \left[u(t)v(t) \right]_0^x - \int_0^x u'(t)v(t) dt$$

$$\iff \int_0^x t e^{-\lambda t} dt = \left[-\frac{t}{\lambda} e^{-\lambda t} \right]_0^x - \int_0^x 1 \times \left(-\frac{1}{\lambda} e^{-\lambda t} \right) dt$$

$$= -\frac{x}{\lambda} e^{-\lambda x} + \frac{0}{\lambda} e^{-\lambda x 0} + \int_0^x \frac{1}{\lambda} e^{-\lambda t} dt$$

$$= -\frac{x}{\lambda} e^{-\lambda x} + \left[-\frac{1}{\lambda^2} e^{-\lambda t} \right]_0^x$$

$$= -\frac{x}{\lambda} e^{-\lambda x} - \frac{1}{\lambda^2} e^{-\lambda x} + \frac{1}{\lambda^2} e^{-\lambda x 0}$$

$$= -\frac{1 + \lambda x}{\lambda^2} e^{-\lambda x} + \frac{1}{\lambda^2}$$

$$= \frac{1}{\lambda^2} \left(1 - (1 + \lambda x) e^{-\lambda x} \right).$$

J'ai bien montré que $\forall x \ge 0$,

$$\int_0^x t e^{-\lambda t} dt = \frac{1}{\lambda^2} \left(1 - (1 + \lambda x) e^{-\lambda x} \right).$$

(b) La fonction de répartition F de X est donnée par $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$. Je raisonne par disjonction de cas :

$$si x < 0, F(x) = \int_{-\infty}^{x} 0 \, dt = 0,
si x \ge 0, F(x) = \int_{-\infty}^{0} 0 \, dt + \int_{0}^{x} f(t) \, dt. r
\int_{0}^{x} f(t) \, dt = \int_{0}^{x} \lambda (1 - p) e^{-\lambda t} + \lambda^{2} p t e^{-\lambda t} \, dt
= \lambda (1 - p) \times \int_{0}^{x} e^{-\lambda t} \, dt + \lambda^{2} p \times \int_{0}^{x} t e^{-\lambda t} \, dt
= \lambda (1 - p) \times \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{x} + \lambda^{2} p \times \frac{1}{\lambda^{2}} \left(1 - (1 + \lambda x) e^{-\lambda x} \right)
= \lambda (1 - p) \times \left(-\frac{1}{\lambda} e^{-\lambda x} + \frac{1}{\lambda} e^{-\lambda \times 0} \right) + p \times \left(1 - (1 + \lambda x) e^{-\lambda x} \right)
= (1 - p) \times \left(1 - e^{-\lambda x} \right) + p \times \left(1 - (1 + \lambda x) e^{-\lambda x} \right)
= (1 - p) - (1 - p) e^{-\lambda x} + p - (p + \lambda p x) e^{-\lambda x}
= 1 - (1 + \lambda p x) e^{-\lambda x}.$$

J'ai montré que pour tout $x \in \mathbf{R}$,

$$F(x) = \begin{cases} 0 & \text{si } x < 0, \\ 1 - (1 + \lambda px)e^{-\lambda x} & \text{si } x \ge 0. \end{cases}$$

Exercice 3 -

1. (a) On a $\lim_{x\to 0^+} -\frac{1}{x} = -\infty$ et $\lim_{X\to -\infty} e^X = 0^+$, donc par composition, $\lim_{x\to 0^+} e^{-\frac{1}{x}} = 0^+$. Comme $\lim_{x\to 0^+} x = 0^+$, par produit, on a aussi

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x e^{-\frac{1}{x}} = 0^+.$$

Comme la limite à droite de f en 0 est égale à f(0), je peux conclure que la fonction f est contiue à droite en 0.

(b) On a $\frac{f(x)}{x} = e^{-\frac{1}{x}}$ et $\lim_{x \to 0^+} e^{-\frac{1}{x}} = 0^+$ d'après la question précédente. Donc

$$\lim_{x \to 0^+} \frac{f(x)}{x} = 0^+.$$

Or on peut remarquer que comme f(x) = 0, $\frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0}$ est le taux d'accroissement de la fonction f entre 0 et x. Alors, comme sa limite lorsque x tend vers 0^+ vaut 0, en particulier la limite est finie, donc la fonction f est dérivable à droite en 0 et

$$f_d'(0)=0.$$

2. (a) La fonction f est de la forme $f = u \times v$, avec u(x) = x et $v(x) = e^{-\frac{1}{x}}$. Alors u'(x) = 1 et pour v', je remarque que v est de la forme $v = e^w$, avec $w(x) = -\frac{1}{x}$. Alors $w'(x) = \frac{1}{x^2}$ et $v'(x) = w'(x)e^{w(x)} = \frac{1}{x^2}e^{-\frac{1}{x}}$. Ainsi

$$f'(x) = u'(x)v(x) + u(x)v'(x) = 1 \times e^{-\frac{1}{x}} + x \times \frac{1}{x^2}e^{-\frac{1}{x}} = \left(1 + \frac{1}{x}\right)e^{-\frac{1}{x}}.$$

(b) Pour $x \in \mathbb{R}_+^*$, $\frac{1}{x} \ge 0$ et $1 + \frac{1}{x} \ge 1 > 0$. Comme une exponentielle est toujours strictement positive, j'en déduis que

$$\forall x \in \mathbf{R}_+^*, \quad f'(x) > 0.$$

Je conclus alors directement que la fonction f est strictement croissante sur \mathbf{R}_+ .

(c) Je cherche la limite de f(x) lorsque x tend vers $+\infty$.

On a $\lim_{x \to +\infty} -\frac{1}{x} = 0^-$ et $\lim_{X \to 0} e^X = 1$, donc par composition, $\lim_{x \to +\infty} e^{-\frac{1}{x}} = 1$. Comme $\lim_{x \to +\infty} x = +\infty$, par produit, on a aussi

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x e^{-\frac{1}{x}} = +\infty.$$

Je peux ainsi dresser le tableau de variation de f:

x	0 +∞
f'(x)	0 +
f	0 +∞

(d) Je cherche la dérivée seconde de f, i.e. la dérivée de f'.

La fonction f' est de la forme $f' = u \times v$, avec $u(x) = 1 + \frac{1}{x}$ et $v(x) = e^{-\frac{1}{x}}$. Alors $u'(x) = -\frac{1}{x^2}$ et $v'(x) = \frac{1}{x^2}e^{-\frac{1}{x}}$. Ainsi

$$f''(x) = u'(x)v(x) + u(x)v'(x) = -\frac{1}{x^2} \times e^{-\frac{1}{x}} + \left(1 + \frac{1}{x}\right) \times \frac{1}{x^2}e^{-\frac{1}{x}} = \frac{1}{x^3}e^{-\frac{1}{x}}.$$

J'ai bien montré que pour tout $x \in \mathbf{R}_+^*$,

$$f''(x) = \frac{1}{x^3} e^{-\frac{1}{x}}.$$

Comme pour $x \in \mathbf{R}_+^*$, $\frac{1}{x^3} > 0$ et $e^{-\frac{1}{x}} > 0$, j'en déduis que $\forall x \in \mathbf{R}_+^*$, f''(x) > 0. Donc f est convexe sur \mathbf{R}_+ .

3. (a) Je reconnais la limite du taux d'accroissement $\frac{e^{-u}-e^{-0}}{u-0}$. Lorsque u tend vers 0^+ , ce taux d'accroissement tend vers le nombre dérivé à droite de la fonction $u \to e^{-u}$ en 0. Comme sa dérivée est $u \to -e^{-u}$, on obtient que

$$\lim_{u \to 0^+} \frac{e^{-u} - 1}{u} = -e^{-0} = -1.$$

(b) On a $f(x) - (x - 1) = xe^{-\frac{1}{x}} - (x - 1) = xe^{-\frac{1}{x}} - x + 1$. Comme je veux utiliser le résultat de la question précédente, je pose $u = \frac{1}{x}$ afin d'obtenir e^{-u} . Alors $\lim_{x \to +\infty} u = \lim_{x \to +\infty} \frac{1}{x} = 0^+$. Et

$$\frac{e^{-u}-1}{u} = \frac{e^{-u}-1}{\frac{1}{x}} = xe^{-\frac{1}{x}} - x = f(x) - (x-1) - 1.$$

Ainsi, on peut conclure que

$$\lim_{x \to +\infty} f(x) - (x-1) = \lim_{u \to 0^+} \frac{e^{-u} - 1}{u} + 1 = -1 + 1 = 0.$$

(c) Comme $\lim_{x \to +\infty} f(x) - (x-1) = 0$, graphiquement, la courbe représentative de la fonction f se rapprochera infiniment près de la droite d'équation y = x - 1: cette droite est asymptote oblique à la courbe (\mathcal{C}) au voisinage de $+\infty$. Voici l'allure de la courbe (\mathcal{C}).

4. (a) Notons P_n la propriété $u_n > 0$.

Initialisation : Pour n = 0,

$$u_0 = 1$$
 et $1 > 0$.

Donc la propriété P_0 est vraie.

Hérédité: Soit $n \in \mathbb{N}^*$. Supposons que P_n soit vraie au rang n et montrons que P_{n+1} est vraie aussi.

$$u_{n+1} = f(u_n) > f(0) = 0$$
, car f est strictement croissante.

Donc P_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est héréditaire et que P_0 est vraie, alors par principe de récurrence, la propriété est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad u_n > 0.$$

(b) Pour trouver le sens de varition de la suite (u_n) , je cherche le signe de $u_{n+1} - u_n = f(u_n) - u_n$, pour $n \in \mathbb{N}$.

$$f(u_n) - u_n = u_n e^{-\frac{1}{u_n}} - u_n = u_n \left(e^{-\frac{1}{u_n}} - 1 \right).$$

Je sais que le premier facteur u_n est positif. Et comme $u_n > 0$, $-\frac{1}{u_n} < 0$, puis $e^{-\frac{1}{u_n}} < e^0 =$

1. Donc le second facteur $\left(e^{-\frac{1}{u_n}}-1\right)$ est lui négatif. Ainsi, on a

$$f(u_n) - u_n \leqslant 0 \iff u_{n+1} - u_n \leqslant 0 \iff u_{n+1} \leqslant u_n.$$

J'ai bien montré que la suite (u_n) est décroissante.

(c) La suite (u_n) est décroissante donc monotone et minorée par 0 puisque $u_n > 0$ pour tout $n \in \mathbb{N}$. Par le théorème de convergence monotone, j'en déduis que la suite (u_n) est convergente vers une limite $\ell \geqslant 0$.

En passant à la limite dans la formule $u_{n+1} = f(u_n)$, on obtient que $f(\ell) = \ell$, *i.e.*

$$0 = f(\ell) - \ell = \ell \left(e^{-\frac{1}{\ell}} - 1 \right).$$

Il s'agit d'une équation produit-nul, donc l'un des deux facteurs doit être nul. Or $e^{-\frac{1}{\ell}}-1=0 \iff e^{-\frac{1}{\ell}}=1=e^0 \iff -\frac{1}{\ell}=0$, ce qui est impossible. Donc nécessairement, $\ell=0$. J'ai montré que la limite de la suite (u_n) est 0.

(d) Voici le script complété.

```
n=0
u=1
while u>0.001
   u=u*exp(-1/u)
   n=n+1
end
disp(n)
```

5. (a) Notons P_n la propriété $\sum_{k=0}^{n} \frac{1}{u_k} = -\ln(u_{n+1})$.

Initialisation : Pour n = 0,

$$\sum_{k=0}^{0} \frac{1}{u_k} = \frac{1}{u_0} = \frac{1}{1} = 1 \quad \text{et} \quad -\ln(u_1) = -\ln\left(1 \times e^{-\frac{1}{1}}\right) = -\ln\left(e^{-1}\right) = -(-1) = 1.$$

Donc la propriété P_0 est vraie.

Hérédité: Soit $n \in \mathbb{N}^*$. Supposons que P_n soit vraie au rang n et montrons que P_{n+1} est vraie aussi.

$$\sum_{k=0}^{n+1} \frac{1}{u_k} = \sum_{k=0}^{n} \frac{1}{u_k} + \frac{1}{u_{n+1}} = -\ln(u_{n+1}) + \frac{1}{u_{n+1}}$$

et

$$-\ln(u_{n+2}) = -\ln\left(u_{n+1} \times e^{-\frac{1}{u_{n+1}}}\right) = -\ln(u_{n+1}) - \ln\left(e^{-\frac{1}{u_{n+1}}}\right)$$
$$= -\ln(u_{n+1}) - \left(-\frac{1}{u_{n+1}}\right) = -\ln(u_{n+1}) + \frac{1}{u_{n+1}}.$$

Donc

$$\sum_{k=0}^{n+1} \frac{1}{u_k} = -\ln(u_{n+2}).$$

Donc P_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est héréditaire et que P_0 est vraie, alors par principe de récurrence, la propriété est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbf{N}, \quad \sum_{k=0}^{n} \frac{1}{u_k} = -\ln(u_{n+1}).$$

(b) La série de terme général $\frac{1}{u_n}$ est $\sum_{n\geqslant 0}\frac{1}{u_n}$. Pour connaître sa nature, il faut regarder la limite de la suite des sommes partielles. Or, d'après la question précédente, pour tout $n\in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{1}{u_k} = -\ln(u_{n+1}).$$

Alors

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{u_k} = \lim_{n \to +\infty} -\ln(u_{n+1}) = +\infty,$$

puisque $\lim_{n\to+\infty} u_{n+1} = 0^+$ et que $\lim_{X\to 0^+} -\ln(X) = +\infty$. J'ai donc montré que la série de terme général $\frac{1}{u_n}$ diverge vers $+\infty$.

Exercice 4 -

1. (a) Je commence par calculer $P(X_1 = 2)$. L'évènement $[X_1 = 2]$ correspond à une situation où il y a deux boules noires dans l'urne U_1 . Cela implique forcément que j'ai tiré deux boules noires dans l'urne U_0 . Alors, comme j'ai deux boules noires parmi quatre boules au premier tirage, puis une boule noire parmi trois boules au second, la probabilité de cet évènement est

$$P(X_1 = 2) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}.$$

Pour l'évènement $[X_1 = 0]$, il s'agit de la situation où il n'y a pas de boule noire dans l'urne U_1 . Cela implique forcément que j'ai tiré deux boules blanches dans l'urne U_0 . Alors, comme j'ai deux boules blanches parmi quatre boules au premier tirage, puis une boule blanche parmi trois boules au second, la probabilité de cet évènement est

$$P(X_1 = 0) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}.$$

Comme 0, 1 et 2 sont les trois seuls valeurs possibles pour la variable aléatoire X_1 , j'en déduis que

$$P(X_1 = 1) = 1 - P(X_1 = 0) - P(X_1 = 2) = 1 - \frac{1}{6} - \frac{1}{6} = 1 - \frac{1}{3} = \frac{2}{3}.$$

J'ai bien montré que

$$P(X_1 = 1) = \frac{2}{3}$$
 et $P(X_1 = 2) = P(X_1 = 0) = \frac{1}{6}$.

(b) Je calcule l'espérance de X_1 .

$$E(X_1) = 0 \times P(X_1 = 0) + 1 \times P(X_1 = 1) + 2 \times P(X_1 = 2) = 0 \times \frac{1}{6} + 1 \times \frac{2}{3} + 2 \times \frac{1}{6} = \frac{4}{3}$$

L'espérance de X_1 vaut $\frac{4}{3}$.

2. L'évènement $[X_n = 2]$ correspond à une situation où il y a deux boules noires dans l'urne U_n . Cela implique forcément que j'ai tiré deux boules noires dans chacune des précédentes urnes $U_0, U_1, \ldots, U_{n-1}$. Alors

$$[X_n = 2] = A_0 \cap A_1 \cap \cdots \cap A_{n-1}$$
.

Mais à chaque étape du protocole, il s'agit de tirer deux boules noires parmi une urne composée de deux boules blanches et deux boules noires, similaires à l'urne U_0 . Il s'agit alors de n répétitions indépendantes de ce tirage, dont la probabilité de succès est $P(X_1 = 2) = \frac{1}{6}$ d'après la question précédente. On en déduit alors que

$$P(X_n = 2) = \left(\frac{1}{6}\right)^n.$$

3. (a) D'après la formule des probabilités totales, comme $\{[X_n = 0], [X_n = 1], [X_n = 2]\}$ forme un système complet d'évènements, je sais que

$$P(X_{n+1} = 1) = P(X_n = 0) \times P_{[X_n = 0]}(X_{n+1} = 1) + P(X_n = 1) \times P_{[X_n = 1]}(X_{n+1} = 1) + P(X_n = 2) \times P_{[X_n = 2]}(X_{n+1} = 1).$$

Or $P_{[X_n=0]}(X_{n+1}=1)=0$ car il s'agit de piocher une boule noire dans une urne n'en contenant pas.

Et $P_{[X_n=1]}(X_{n+1}=1)=\frac{1}{4}+\frac{3}{4}\times\frac{1}{3}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$ car il s'agit de piocher l'unique boule noire ou bien au premier tirage (une chance sur quatre) ou bien au second, après un premier échec, (une chance sur trois).

Enfin $P_{[X_n=2]}(X_{n+1}=1)=\frac{2}{4}\times\frac{2}{3}+\frac{2}{4}\times\frac{2}{3}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ car il s'agit de piocher une des deux boules noires au premier tirage (deux chances sur quatre) puis une boule blanche (deux chances sur trois), ou inversement.

Donc

$$P(X_{n+1} = 1) = P(X_n = 0) \times 0 + P(X_n = 1) \times \frac{1}{2} + P(X_n = 2) \times \frac{2}{3}$$

J'ai bien montré que

$$P(X_{n+1} = 1) = \frac{1}{2}P(X_n = 1) + \frac{2}{3}P(X_n = 2).$$

(b) Notons P_n la propriété $P(X_n = 1) = 2\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{6}\right)^n$ pour tout $n \ge 1$.

Initialisation: Pour n = 1,

$$P(X_1 = 1) = \frac{2}{3}$$
 et $2\left(\frac{1}{2}\right)^1 - 2\left(\frac{1}{6}\right)^1 = 2 \times \frac{1}{2} - 2 \times \frac{1}{6} = 1 - \frac{1}{3} = \frac{2}{3}$.

Donc la propriété P_1 est vraie.

Hérédité: Soit $n \in \mathbb{N}^*$. Supposons que P_n soit vraie au rang n et montrons que P_{n+1} est vraie aussi.

$$\begin{split} P(X_{n+1} = 1) &= \frac{1}{2} P(X_n = 1) + \frac{2}{3} P(X_n = 2) = \frac{1}{2} \times \left(2 \left(\frac{1}{2} \right)^n - 2 \left(\frac{1}{6} \right)^n \right) + \frac{2}{3} \times \left(\frac{1}{6} \right)^n \\ &= 2 \left(\frac{1}{2} \right)^n \times \frac{1}{2} - 2 \left(\frac{1}{6} \right)^n \times \left(\frac{1}{2} - \frac{1}{3} \right) = 2 \left(\frac{1}{2} \right)^{n+1} - 2 \left(\frac{1}{6} \right)^n \times \frac{1}{6} \\ &= 2 \left(\frac{1}{2} \right)^{n+1} - 2 \left(\frac{1}{6} \right)^{n+1} \,. \end{split}$$

Donc P_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est héréditaire et que P_1 est vraie, alors par principe de récurrence, la propriété est vraie pour tout $n \ge 1$, *i.e.*

$$\forall n \in \mathbb{N}^*, \quad P(X_n = 1) = 2\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{6}\right)^n.$$

(c) Comme $\{[X_n=0], [X_n=1], [X_n=2]\}$ forme un système complet d'évènements, je sais que

$$P(X_n = 0) = 1 - P(X_n = 1) - P(X_n = 2) = 1 - \left(2\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{6}\right)^n\right) - \left(\frac{1}{6}\right)^n$$
$$= 1 - 2\left(\frac{1}{2}\right)^n + 2\left(\frac{1}{6}\right)^n - \left(\frac{1}{6}\right)^n = 1 - 2\left(\frac{1}{2}\right)^n + \left(\frac{1}{6}\right)^n.$$

J'ai montré que

$$P(X_n = 0) = 1 - 2\left(\frac{1}{2}\right)^n + \left(\frac{1}{6}\right)^n.$$

4. Je calcule l'espérance de X_n .

$$E(X_n) = 0 \times P(X_n = 0) + 1 \times P(X_n = 1) + 2 \times P(X_n = 2)$$

$$= 0 \times \left(1 - 2\left(\frac{1}{2}\right)^n\right) + \left(\frac{1}{6}\right)^n + 1 \times \left(2\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{6}\right)^n\right) + 2 \times \left(\frac{1}{6}\right)^n$$

$$= 2\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{6}\right)^n + 2\left(\frac{1}{6}\right)^n = 2\left(\frac{1}{2}\right)^n.$$

L'espérance de X_n vaut $\left(\frac{1}{2}\right)^{n-1}$.

Il s'agit d'une suite géométrique, de raison $\frac{1}{2} \in]0,1[$, donc qui converge vers 0. On en déduit que

$$\lim_{n\to+\infty} E(X_n) = 0,$$

ce qui signifie qu'en répétant infiniment ce protocole, le nombre de boules noires présentes dans l'urne deviendra nul.