Napkin

John Wang

July 14, 2022

Contents

1	Chapter 1															1							
	1.1 A													1									
		1.1.1	Proof																				1
	1.2	В																					1
		1.2.1	Proof																				2
2	Cha	pter 2	2																				3
3	Chapter 3															3							
	3.1	3 a .																					3
		3.1.1	Proof																				3

1 Chapter 1

1.1 A

Prove Lagrange's theorem for orders in the special case that G is a finite abelian group.

1.1.1 Proof

Let $G = \{g_1, g_2, g_3, \dots, g_n\}$ and Let $g \in G$. Let $h = g_1 g_2 g_3 \dots g_n$ The map $x \mapsto gx$ is a bijection, so $h = gg_1 gg_2 gg_3 \dots gg_n$ for some permutation of g_i . However, because G is abelian h is the same no matter the permutation. Then, we can simplify this to $h = g^n h$ therefore g^n is the identity.

1.2 B

Let p be a prime. Show that the only group of order p is $\mathbb{Z}/p\mathbb{Z}$.

1.2.1Proof

Let G be a group with order p. Let 0 be the identity element. p is prime, so p > 2, which means there must be at least one other element q which is not the identity element. Let H be the subgroup generated by q. If |H| = |G|, then we are done through the map $n \mapsto g^n$.

Assume then that $|H| \neq |G|$. |H| has to be smaller than |G|, because otherwise G is not closed. By lagrange's theorem, $g^{|H|} = 0$, and $g^{|G|} = 0$, so $q^{k|H| \mod |G|} = 0$, for $k \in \mathbb{N}$

 $(Z/pZ)^{\times}$ is a group with size p-1, so therefore by Lagrange's theorem, for any $x \in (Z/pZ)^{\times}$,

$$x^{p-1} = 1 \pmod{p} \tag{1}$$

Equation 2 is fermat's little theorem. Since we know |G| is prime, by Fermat's Little theorem, $|H|^{|G|-1} \mod |G| = 1$,

so g=0, but we said that g was not the identity, so |H|=|G|, and they are isomorphic.

{Let p be a prime and $F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n$ be the Fibonacci sequence. Show that $F_{2p(p^2-1)}$ is divisible by p.

$$\setminus [g = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \setminus]$$
 because $\setminus [\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}]^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \setminus]$

We can turn the fibonacci sequence into a matrix using
$$\langle [g = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \rangle] \text{ because } \langle [\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \rangle]$$
 This is proved using induction. The base case is $n = 1$ and is true, then
$$\langle [g^{n+1} = g g^n = \begin{pmatrix} 1 \& 1 \\ 1 \& 0 \end{pmatrix} \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix} \rangle]$$
 If the field of the matrix is $\mathbb{Z}/\sqrt{\mathbb{Z}}$ and we want that $T_n = T_n$ to where $T_n = T_n$

If the field of the matrix is $\mathbb{Z}/p\mathbb{Z}$, and we prove that $g^n = I$, where I is the identity matrix, then we will have shown that $F_n = 0 \mod p$.

Observe that the determinant of g is -1. Note that the set of all 2 by 2 matrices mod p with determinant ± 1 forms a group. It has an identity element, matrix multiplication is associative, and the inverse of each matrix also has the determinant ± 1 .

Let this group be G. Then all elements of this group are forms of ad-bc = ± 1 , a,b,c,d greater than equal 0 and less than p. If we can show that $|G| = 2p(p^2 - 1)$, then by Lagrange's theorem, $q^{|G|} = I$, completing the proof.

For now consider forms of ad - bc = 1 For any value ad, there exists a unique value that bc must be to satisfy the equation.

Split this into cases where ad = 1 and $ad \neq 1$

case 1 If $ad = 1 \mod p$, then both a and d canot be 0, and if a is non zero then there is a unique vaule that d must be, so there are p-1 pairs

of a, d that satisfy $ad = 1 \mod p$. Then $bc = 0 \mod p$, so b or c must be 0, so there are 2p - 1 pairs of b, c, that satisfy this. Therefore, there are (p-1)(2p-1) total.

case 2: If $ad \neq 1$, then of the p^2 total pairs of a, d, we subtract those that have ad = 1, leaving us with $p^2 - p + 1$ pairs. By the same reason that there are p - 1 pairs that satisfy ad = 1, there are p - 1 pairs of b, c that will satisfy bc = 1 - ad, leaving $(p^2 - p + 1)(p - 1)$ total.

Combining the cases, we get $(p-1)(p^2+p)$ matrices that have determinant 1. By a similar proof, we can show there are $(p-1)(p^2+p)$ matrices that have determinant -1. In total there are $2(p-1)(p^2+p) = 2p(p^2-1)$, so $|G| = 2p(p^2-1)$, which completes the proof.

2 Chapter 2

3 Chapter 3

3.1 3 a

Determine all groups G for which the map $\phi: G \to G$ defined by

$$\phi(g) = g^2 \tag{2}$$

is a homomorphism.

3.1.1 Proof

By definiton of homomorphism, for any $g_1, g_2, \phi(g_1g_2) = \phi(g_1)\phi(g_2)$, so $(g_1g_2)^2 = g_1^2g_2^2$, so $g_1g_2g_1g_2 = g_1g_1g_2g_2$ so $g_2g_1 = g_1g_2$