

Protokol s koncovým šifrováním pro IEEE 802.15.4

Author: JAROMÍR BAČA

Advisor: Ing. ONDŘEJ KRAJSA, Ph.D.

Brno, 6.1.2020

Cíle práce

- Osvojit si práci s mikrokontrolery AVR
- Nastudovat I WM stack
- Navrhnout metodu výměny klíčů mesi komunikačními body
- Implementovat navrženou metodu na do LWM stacku

Metodika výměny klíčů

- Odesílatel, příjemce
- Inpirováno IKEv2
- Asym. krytptografie
- Eliptické křivky
- Tři fáze

Metodika výměny klíčů – Fáze A

Fáze A

Establishment of ECDH

- random modulo p, parameters a and b
- primality and suitability test of parameters
- compute generator of group (the first point)
- compute order of group
- parity test of presence point on curve

Output: p, a, b, XFirst, Y First, Order

Fáze A – sestavení parametrů výměny

- Pseudonáhodný výběr hodnoty p (modulo), a a b (parametry křivky)
- Kontrola správnosti vstupních hodnot
- Výpočet generátoru grupy (první bod) a řádu grupy
- Kontrola parity a důkaz, že poslední bod leží na křivce

Vstup: žádný, aplikace si samostatně volí parametry

Výstup: modulus, a parameter, b parameter, XFirst, YFirst, GOrder

Fáze A – vývojový diagram

- Nastavení intervalu je součástí algoritmu
- Spuštění dvou testovacích smyček
- Test parity a test přítomnosti bodu na křivce

Fáze A – vývojový diagram (Výběr prvočísla)

Příklad:

 $4 \mod 3 = 1$

4 mod2 = 0 => beze zbytku => 4 není prvočíslo

Fáze A – vývojový diagram (Výběr parametrů)

 $(4 \cdot a^3 + 27 \cdot b^2) \bmod p$

Fáze A – vývojový diagram

- TheFirstPoint
 - Výpočet generátoru grupy
 - Výpočet řádu grupy (počet bodů)
- PointComp
 - Výpočet všech bodů
 - Test parity
- VerifyOfPoint
 - Test přítomnosti bodu na křivce

Fáze A – blok TheFistPoint (vývojový diagram)

- TheFirstPoint
 - Výpočet generátoru grupy
 - Výpočet řádu grupy (počet bodů)

<u>x</u>	$x^3 + ax + b$	y	y^2	[X, Y], [X, Y]
0	6	-	-	-
1	1	1	1	[1, 1], [1, 6]
2	2	3	2	[2, 3], [2, 4]
3	1	1	1	[3, 1], [3, 6]
4	4	2	4	[4, 2], [4, 5]
5	3	-	-	-
6	4	2	4	[6, 2], [6, 5]
∞		_		0

Fáze A – blok TheFistPoint (vývojový diagram)

- Výpočet tabulky s Y hodnotami
- Výpočet tabulky s X hodnotami
- Nastavení počáteční hodnoty řádu grupy

Fáze A – blok TheFistPoint (tabulka Y)

- Příklad s hodnotou p = 7
- Výpočet tabulky s Y hodnotami

Fáze A – blok TheFistPoint (tabulka X)

- Příklad s hodnotami p = 7, a = 1, b = 6
- Výpočet tabulky s X hodnotami

<u>x</u>	$x^3 + ax + b$			
0		6		
1		1		
2		2		
3		1		
4		4		
5		3		
6		4		
∞	•		•	

Fáze A – blok TheFistPoint (hledání bodů)

- Porovnání obou tabulek
- Shoda = nalezený bod
- Na pozadí běží počítání počtu bodů

Fáze A – blok TheFistPoint (hledání bodů)

- Ukázka části algoritmu, která porovnáním tabulek X a Y získá generátor grupy
- V místě, kde je nalezena shoda, jsou zaznamenány hodnoty iterací (souřadnice generátoru)
- S každou shodou je inkrementálně zvýšena hodnota řády grupy

Fáze A – blok PointComp (součet bodů)

Fáze A – blok VerifyOfPoint (test přítomnosti bodu)

Bod
$$[5, 1], p = 17, a = 2, b = 2$$

 $X: x^3 + ax + b \bmod p$

Y: $y^2 \mod p$

 $X: 5^3 + 2 \cdot 5 + 2 \mod 17 = 1$

Y: $1^2 \mod 17 = 1$

Shoda, bod leží na křivce

Fáze A – test aplikace


```
Modulo value is 5
Selected parameters are 1 and 6
Body isou [
             0, 1] [0, 4]
Body jsou [ 2, 1] [2, 4]
Body jsou [ 3, 1] [3, 4]
Body jsou [ 4,
                  21 [ 4, 31
The first point is [0, 1] and order of group is 9
Bod: [4, 2]
Bod: [2, 1]
Bod: [3, 4]
Bod: [3, 1]
Bod: [2, 4]
Bod: [4, 3]
Bod: [0, 4]
 Value X of the last point in group: 0
 Value Y of the last point in group: 4
 Result of parity test: 1
 Result of non-zero test: 1
Selected imput values are: mod = 5, parametry jsou 1 a 6
The first point has these coordinates [0, 1], Order is 9
```

- Testováno s deaktivovaným pseudonáhodným výběrem
- Aplikace (na pozadí) vypočítá celou grupu
- Pokud jsou výsledky obou testů rovny 1, jsou hodnoty podstoupeny k dalším fázím procesu

Metodika výměny klíčů – Fáze B

Fáze B

Fáze B – úvod

- Rozdělena na dvě subverze
- Příjemce si ze znalosti p, a, b si sám vypočítá generátor a řád grupy
- Pseudonáhodný výběr hodnoty tajného klíče
- Výpočet bodu pro sdílení

```
ECDH_PHASE_BA(&Order, &Xf, &Yf, &mod, &a, container);
```

```
ECDH_PHASE_BB(&mod, &a, &b, container);
```

Vstup (subverze BA): řád, generátor grupy [X, Y], modulus, parametetry a, b Vstup (subverze BB): modulus, parametetry a, b

Výstup: pole obsahující souřadnice sdíleného bodu a tajný klíč

Fáze B – vývojový diagram a blok SecretKey

Metodika výměny klíčů – Fáze C

Fáze C

Compute Mutual Point

- recognizition SecretKey from obtain coordinates
- compute mutual key
- compute mutual point

Input: SecretKey, XFirst, YFirst, X, Y,

p, a , Order

Output: MutualKey, MutualPoint

Fáze C – úvod

- Ze znalosti vlastního tajného klíče a obdrženého bodu vypočítá společný klíč
- Aplikace z obdrženého bodu rozpozná tajný klíč protistrany
- Ze získaného společného klíče se spočítá společný bod

```
void ECDH_PHASE_C(&MSKey, &XF, &YF, &XO, &YO, &mod, &a, &order, &MutKEY, container);
```

```
Vstup (subverze BA):
Vlastní tajný klíč, generátor grupy [X, Y], získaný bod [X, Y], modulus, parametr a
```

Výstup: pole obsahující společný klíč, resp. společný bod

Fáze C – vývojový diagram a blok RecognizerSecKey

- Řešení bezdrátového přeposílání dat je řešeno na základě předchystaného LWM stacku
- V rámci implementace řešeno přepínání jednotlivých fází a spouštění vysílacích relací

- Aktivace Fáze A, kde proběhne výběr vstupních parametrů a výpočtu generátoru grupy
- Pokud je splněna podmínka if, tedy že X nebo Y jsou větší než nula, znamená to, že první fáze úspěšně proběhla
- Pomocí SYS_Timer, který ovládá interval odesílání dat, jsou odeslány data protistraně
- V posledním příkazu je řešeno přepnutí programu na další fázi

case APP_STATE_PHASE_C

- Aktivace Fáze BA, kde proběhne volba tajného klíče a následně výpočet bodu pro sdílení
- Pokud je splněna podmínka if, tedy že X nebo Y jsou větší než nula, znamená to, že fáze BA úspěšně proběhla
- Poté jsou souřadnice bodu X a Y odeslány protisttaně
- Pokud je splněna další podmínka if, znamená to, že byly obdrženy data od protistrany a algoritmus se může přepnout na třetí fázy

Aktivace Fáze BA, kde výpočet společného klíče

- Do této fáze je implementován blok, který má za úkol zvýšit bitovou velikost vypočítaného společného klíče
- V této fázi je klíč předán do bloku AES, který jej použije k šifrování další komunikace

Děkuji za pozornost!