Schottky Barrier in QCAD

Suzey Gao

June 1, 2015

Potential BC at Schottky Contact

The empirical expressions^{[1]-[4]} for electric potential at Schottky contacts, when solving the Thomas-Fermi Poisson equation in QCAD, are given by

$$\phi_{BC}^{SB} = V_a - \frac{1}{q} \left(q \phi_{Bn} + \chi_{sc} - q \phi_{ref} \right) \qquad \text{for Schottky contact on n-type semiconductor, in unit of Volts}$$
 applied Schottky barrier Electron affinity Constant shift voltage height on n-type of the n-type between vacuum semiconductor, semiconductor potential and equal to Ec - Ef > 0 electric potential
$$\phi_{BC}^{SB} = V_a - \frac{1}{q} \left(-q \phi_{Bp} + \chi_{sc} + \underline{E_{g,sc}} - q \phi_{ref} \right) \longrightarrow \text{for Schottky contact on p-type semiconductor}$$

- [1] S. M. Sze and Kwok K. Ng, Chapter 3 of *Physics of Semiconductor Devices*, Third Edition (2007).
- [2] Raymond T. Tung, Appl. Phys. Rev. 1, 011304 (2014).

Schottky barrier height on Band gap of the p-type semiconductor, semiconductor

- [3] L. X. Zhang et al., Phys. Rev. B **69**, 245301 (2004).
- [4] M. Stopa, Phys. Rev. B 54, 13767 (1996).

equal to Ef - Ev > 0

GaAs/AlGaAs Stack

Stack comes from L. X. Zhang et al., Phys. Rev. B 69, 245301 (2004).

Contact Specification in QCAD

(1) Both contacts are Ohmic

```
<ParameterList name="Dirichlet BCs">
  <Parameter name="DBC on NS gaaspsub for DOF Phi" type="double" value="0.0" />
  <Parameter name="DBC on NS nschottkygate for DOF Phi" type="double" value="0.0" />
  </ParameterList>
```

(2) nschottkygate is Schottky, while gaaspsub is Ohmic

```
The "Dirichlet BCs" section remains the same 
 <ParameterList name="Schottky Barrier"> 
  <Parameter name="Schottky Barrier Height for NS nschottkygate" type="double" value="0.8" /> 
 </ParameterList>
```

(3) Both contacts are Schottky

```
The "Dirichlet BCs" section remains the same 
<ParameterList name="Schottky Barrier"> 
    <Parameter name="Schottky Barrier Height for NS nschottkygate" type="double" value="0.8" /> 
    <Parameter name="Schottky Barrier Height for NS gaaspsub" type="double" value="0.6" /> 
</ParameterList>
```

Material properties for GaAs and Al0.27Ga0.73As are added to material_gaas.xml.

Energy Band at Equilibrium

- Barrier height for Schottky contact on n-type semiconductor refers to the difference between Ec and Ef and is positive
- Barrier height for Schottky contact on p-type semiconductor refers to the difference between Ef and Ev and is positive
- Flat band at the Ohmic gaaspsub contact implies good Ohmic
- No flat band for the Ohmic nschottkygate implies that Ohmic assumption is not good

Electron Density at Equilibrium

Electron accumulation in the AlGaAs layer when assuming Ohmic condition for the nschottky contact.

Energy Band Under Bias

- nschottkygate is a Schottky contact with barrier height of 0.8 eV.
- Positive voltage at nschottky lowers the conduction band
- Negative voltage at nschottky raises the conduction band

Electron Density Under Bias

- 2DEG density increases when 0.5 V is applied to nschottkygate
- 2DEG disappears when -0.5 V is applied to nschottkygate

Negative Potential Under Bias

- Conduction bands show quite different profiles from those of the negative potentials, hence one needs to be careful about which quantity to use for further analysis.
- They are related by $-q(\phi-\phi_{ref})=E_0=E_C+\chi$ [X. Gao et. al, JAP 114, 164302 (2013)] potential conduction band affinity