Exemples du cours Suites Partie 2 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

29 mars 2020

Table des matières

- Logique 1
- Algorithmique 1
- Capacité 1
- Capacité 2

Déterminer si l'affirmation suivante est *Vraie* ou *Fausse* en justifiant la réponse.

• Affirmation 1: Pour qu'une suite $(v_n)_{n\geq 0}$ soit croissante, il suffit que $v_0 \leq v_1$.

Déterminer si l'affirmation suivante est *Vraie* ou *Fausse* en justifiant la réponse.

- Affirmation 1: Pour qu'une suite $(v_n)_{n\geqslant 0}$ soit croissante, il suffit que $v_0 \le v_1$.
- Réponse : FAUSSE comme le prouve le contre-exemple de la suite définie par la suite des décimales de $\sqrt{2} \approx 1,4142...$ On a $v_0 = 1$ et $v_1 = 4$ donc $v_0 \le v_1$ est vérifiée, mais la décimale suivante $v_2 = 1$ est strictement inférieure à v_1 . Cette suite (v_n) n'est pas donc croissante.

Déterminer si l'affirmation suivante est *Vraie* ou *Fausse* en justifiant la réponse.

• Affirmation 2 : Si une suite $(u_n)_{n\geq 0}$ est telle que pour tout entier $n\geq 0$, on a $u_n\leq u_0$, alors $(u_n)_{n\geq 0}$ est décroissante

Déterminer si l'affirmation suivante est *Vraie* ou *Fausse* en justifiant la réponse.

- Affirmation 2 : Si une suite $(u_n)_{n\geq 0}$ est telle que pour tout entier $n\geq 0$, on a $u_n\leq u_0$, alors $(u_n)_{n\geq 0}$ est décroissante
- **Réponse : FAUSSE** comme le prouve le contre-exemple de la suite définie pour tout entier $n \ge 0$ par $u_n (-1)^n$. On a $u_0 = 1$ et pour tout entier $n \ge 0$, on a $u_n = (-1)^n$ donc $u_n = -1$ ou $u_n = 1$ donc la condition $u_n \le u_0$ est vérifiée. Cependant, la suite n'est pas décroissante puisque par exemple on a $u_{19} = -1 \le 1 = u_{20}$ et $u_{20} = 1 \ge -1 = u_{21}$.

Déterminer si l'affirmation suivante est *Vraie* ou *Fausse* en justifiant la réponse.

• <u>Affirmation 3</u>: La réciproque de l'implication de l'affirmation 2 est vraie.

Déterminer si l'affirmation suivante est *Vraie* ou *Fausse* en justifiant la réponse.

- <u>Affirmation 3</u>: La réciproque de l'implication de l'affirmation 2 est vraie.
- Réponse : La réciproque de l'affirmation 2 se formule ainsi : $\overline{\text{(Si la suite }}(u_n)_{n\geq 0}$ est décroissante alors pour tout entier $n\geq 0$, on a $u_n\leq u_0$ ».

Cette affirmation est **Vraie** pour tout entier $n \ge 0$, on a $u_n \le u_0$ comme le prouve le contre-exemple de la suite définie pour tout entier $n \ge 0$ par $u_n - (-1)^n$. On a $u_0 = 1$ et pour tout entier $n \ge 0$, on a $u_n = (-1)^n$ donc $u_n = -1$ ou $u_n = 1$ donc la condition $u_n \le u_0$ est vérifiée. Cependant, la suite n'est pas décroissante puisque par exemple on a $u_{19} = -1 \le 1 = u_{20}$ et $u_{20} = 1 \ge -1 = u_{21}$.

Déterminer si l'affirmation suivante est *Vraie* ou *Fausse* en justifiant la réponse.

• Affirmation 4 : Une suite arithmétique de raison r < 0 est décroissante.

Déterminer si l'affirmation suivante est *Vraie* ou *Fausse* en justifiant la réponse.

- Affirmation 4: Une suite arithmétique de raison r < 0 est décroissante.
- **Réponse**: Cette affirmation est **VRAI**. Démontrons-le : si une suite (u_n) est arithmétique alors pour tout entier $n \ge 0$, on a $u_{n+1} u_n = r$ avec r raison de la suite. Si r < 0 alors pour tout entier $n \ge 0$, on $u_{n+1} u_n < 0$ donc la suite (u_n) est strictement décroissante.

Algorithmique 1 énoncé

La fonction Python ci-dessous prend comme argument la liste L des premiers termes d'une suite. Recopier et compléter cette fonction, pour qu'elle retourne True si la liste L est dans l'ordre croissant et False sinon.

```
def estCroissante(L):
    for k in range(len(L) - 1):
        if L[k] > L[k+1]:
            return ......
return ......
```

Algorithmique 1 solution

```
def estCroissante(L):
    for k in range(len(L) - 1):
        if L[k] > L[k+1]:
            return False
    return True
```

Déterminer le sens de variation de $u_n = f(n)$ avec f monotone.

• Question Soit la suite (u_n) définie pour tout entier $n \ge 1$ par $u_n = \sqrt{n} + 3n^2 + 2n - 1$. Démontrer que (u_n) est monotone à partir du rang 1.

Déterminer le sens de variation de $u_n = f(n)$ avec f monotone.

- Question Soit la suite (u_n) définie pour tout entier $n \ge 1$ par $u_n = \sqrt{n} + 3n^2 + 2n 1$. Démontrer que (u_n) est monotone à partir du rang 1.
- Réponse Soit f la fonction définie et dérivable sur $[1; +\infty[$ telle que pour tout réel $x \ge 1$, on a $f(x) = \sqrt{x} + 3x^2 + 2x 1$. Pour tout $x \ge 1$, on a $f(x) = \frac{1}{2\sqrt{x}} + 6x + 2$ donc f'(x) > 0 donc f strictement croissante sur $[1; +\infty[$.

D'après une propriété du cours, la suite (u_n) définie pour tout entier $n \ge 1$ par $u_n = f(n)$ est donc croissante.

Déterminer le sens de variation de $u_n = f(n)$ avec f monotone.

• Question La fonction Python ci-dessous définit-elle une suite croissante ?

```
def suite(n):
    val = 0
    for k in range(1, n + 1):
        if val < 734:
            val = val + 1
        else:
            val = 0
    return val</pre>
```

Déterminer le sens de variation de $u_n = f(n)$ avec f monotone.

 Question La fonction Python ci-dessous définit-elle une suite croissante?

```
def suite(n):
    val = 0
    for k in range(1, n + 1):
        if val < 734:
            val = val + 1
        else:
            val = 0
    return val</pre>
```

• Réponse NON, la suite (u_n) ainsi définie vérifie pour tout entier $n \ge 0$ par $u_n = n$ si $0 \le n \le 733$ et $u_n = 0$ sinon donc cette suite n'est pas croissante puisque $u_{733} > u_{734}$.

Déterminer le sens de variation d'une suite (u_n) en étudiant le signe de $u_{n+1} - u_n$.

- **Question** Soit la suite (u_n) définie par $u_0 = 5$ et pour tout entier $n \in \mathbb{N}$, par $u_{n+1} = u_n + n^2 2n + 1$.
 - Soit n un entier quelconque, factoriser $u_{n+1} u_n$ puis étudier son signe.
 - Conclure sur le sens de variation de la suite (u_n) .

Déterminer le sens de variation d'une suite (u_n) en étudiant le signe de $u_{n+1}-u_n$.

- **Question** Soit la suite (u_n) définie par $u_0 = 5$ et pour tout entier $n \in \mathbb{N}$, par $u_{n+1} = u_n + n^2 2n + 1$.
 - Soit n un entier quelconque, factoriser $u_{n+1} u_n$ puis étudier son signe.
 - Conclure sur le sens de variation de la suite (u_n) .
- Réponse Pour tout entier $n \ge 0$, on a : $u_{n+1} u_n = n^2 2n + 1 = (n-1)^2$, donc $u_{n+1} u_n \ge 0$, donc (u_n) est croissante.

Déterminer le sens de variation d'une suite (u_n) en étudiant le signe de $u_{n+1} - u_n$.

• Question Soit (v_n) définie pour tout entier $n \in \mathbb{N}$ par $v_n = 1 + 0, 2^n$.

Déterminer le sens de variation d'une suite (u_n) en étudiant le signe de $u_{n+1} - u_n$.

- Question Soit (v_n) définie pour tout entier $n \in \mathbb{N}$ par $v_n = 1 + 0, 2^n$.
- Réponse Pour tout entier $n \ge 0$, on a: $\overline{v_{n+1} v_n} = 1 + 0, 2^{n+1} (1 + 0, 2^n) = 0, 2^n (0, 2 1) = -0, 8 \times 0, 2^n.$ On en déduit que $v_{n+1} v_n \le 0$ et donc que la suite (v_n) est décroissante.

Déterminer le sens de variation d'une suite (u_n) en étudiant le signe de $u_{n+1} - u_n$.

• Question Soit (w_n) définie pour tout entier $n \in \mathbb{N}$ par $\overline{w_n = \frac{n+2}{n+3}}$.

Déterminer le sens de variation d'une suite (u_n) en étudiant le signe de $u_{n+1}-u_n$.

- Question Soit (w_n) définie pour tout entier $n \in \mathbb{N}$ par $w_n = \frac{n+2}{n+3}$.
- **Réponse** Pour tout entier $n \ge 0$, on a :

$$W_{n+1} - W_n = \frac{n+3}{n+4} - \frac{n+2}{n+3} = \frac{(n+3)^2 - (n+2)(n+4)}{(n+4)(n+3)} = \frac{1}{(n+4)(n+3)}.$$

On en déduit que $w_{n+1} - w_n \ge 0$ et donc que la suite (w_n) est croissante.

Déterminer le sens de variation d'une suite (u_n) en étudiant le signe de $u_{n+1} - u_n$.

• Question On considère la suite (v_n) définie par $\begin{cases} v_0 = -4 \\ v_{n+1} = v_n + \frac{2}{n^2 + 1} \text{ pour tout entier } n \ge 0 \end{cases}$

Déterminer le sens de variation d'une suite (u_n) en étudiant le signe de $u_{n+1} - u_n$.

• Question On considère la suite (v_n) définie par

$$\begin{cases} v_0 = -4 \\ v_{n+1} = v_n + \frac{2}{n^2 + 1} \text{ pour tout entier } n \ge 0 \end{cases}$$

• **Réponse** On a $v_1 = v_0 + 2 = -2$ et $v_2 = v_1 + 1 = -1$.

Pour tout entier $n \ge 0$, on a :

$$v_{n+1} - v_n = \frac{2}{n^2 + 1}$$
.

On en déduit que $v_{n+1} - v_n \ge 0$ et donc que la suite (v_n) est croissante.