ELEC-204 HW-3

Honor Code:

"I hereby certify that I have completed this assignment on my own without any help from anyone else. I understand that the only sources of authorized information in this open-book assignment are

- 1-) the course textbook, and
- 2-) the lecture notes self-taken or distributed by the instructor at Blackboard for this class.

I have not used, accessed, received or distributed any information from/to any other unauthorized source in taking this assignment. The effort in the assignment thus belongs completely to me."

Name-Surname: Barış KAPLAN

ID Number: 69054

E-Mail Address: bkaplan18@ku.edu.tr

SOLUTIONS OF THE PROBLEMS

1-)

a-) X= A+B+C

Α	В	C	X	
1	1	1	1	
1	1	0	1	
1	0	1	1	
0	1	1	1	
0	0	0	0	
0	1	0	1	
0	0	1	1	
1	0	0	1	

b-) X = (A+B)*C

Α	В	C	A+B	(A+B)*C
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	1	0	1	0
1	0	1	1	1
1	1	1	1	1

3-) (A+B)*(B+C)'

Α	В	С	A+B	B+C	(B+C)'	(A+B)*(B+C)'
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	0	1	1
1	0	1	1	1	0	0
1	1	0	1	1	0	0
1	1	1	1	1	0	0

2-) (A*B'*(C+B*D)+A'*B')*C

= ((A*B'*C+A*B*D*B')+A'*B')*C (After the distribution, we get this expression.)

(B*B')=0 (One of the rules in the boolean algebra.)

=((A*B'*C+0)+A'*B')*C (After simplification and after we put 0 instead of B*B')

C*C = C (One of the rules in the boolean algebra.)

=A*B'*C*C+A'*B'*C= (A*B'*C)+(A'*B'*C), (After the distribution and after we put C instead of C*C, we get this expression.)

(A+A')=1(One of the rules in boolean algebra.)

(B')*(C)*(1)=(B')*(C) (Since A+A'=1, the above expression becomes (B')*(C))

When we simplify the initially given expression in the question, we get $(B')^*(C)$.

So, the answer is (B')*(C).

3-)

a-)

w	X	у	Z	w'	y'	w'*x*y	w'*y*z	w*y'*z	w'*y'*z	x*y	w'*x*y+w'*y*z+w*y'*z+w'*y'*z+x*y
0	0	0	0	1	1	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	1	0	1
0	0	1	0	1	0	0	0	0	0	0	0
0	1	0	0	1	1	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	1	1
1	1	1	1	0	0	0	0	0	0	1	1
1	1	0	1	0	1	0	0	1	0	0	1
1	0	1	1	0	0	0	0	0	0	0	0
0	1	1	1	1	0	1	1	0	0	1	1
0	0	1	1	1	0	0	1	0	0	0	1
0	1	1	0	1	0	1	0	0	0	1	1
0	1	0	1	1	1	0	0	0	1	0	1
1	0	0	1	0	1	0	0	1	0	0	1
1	0	1	0	0	0	0	0	0	0	0	0

$$F = y'*z*(w+w')+x*y+w'*y*(x+z)$$

(w)+(w')=1 (One of the rules in boolean algebra)

$$F = y'*z*1+x*y+w'*y*(x+z)$$

d-) The truth table for the function F, where F is x*y+y'*z+w'*y*z.

w	x	у	Z	w'	y'	y'*z	w'*y*z	x*y+y'*z+w'*y*z
0	0	0	0	1	1	0	0	0
0	0	0	1	1	1	1	0	1
0	0	1	1	1	0	0	1	1
0	0	1	0	1	0	0	0	0
0	1	0	0	1	1	0	0	0
0	1	0	1	1	1	1	0	1
0	1	1	0	1	0	0	0	1
0	1	1	1	1	0	0	1	1
1	0	0	0	0	1	0	0	0
1	0	0	1	0	1	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	1	0	1	1	0	1
1	1	0	0	0	1	0	0	0
1	1	1	1	0	0	0	0	1
1	1	1	0	0	0	0	0	1

When we compare the output values of the simplified version of F and the long version of F for identical input values, we can observe that the output values are same for the simplified version of F and the long version of F. What I mean by input values here is the w,x,y,and z values. Since the output values are same for same input values, the truth tables for the simplified version of F and for the long version of F are same.

e-)

TOTAL NUMBER OF GATES FOR THE ORIGINAL BOOLEAN EXPRESSION

In the long and original version of the F, there are 5 main inputs which are connected with OR symbol. This means that we need 1 OR gate which includes 5 inputs. When we examine the inputs individually, we can observe that there are 4 inputs each of which includes 3 sub-inputs.

These 3 sub-inputs are connected with AND symbol. So, we need 4 AND gates each of which includes 3 sub-inputs. In the expression, there is also one input which includes 2 sub-inputs. These 2 sub-inputs are connected with AND symbol. So, we need 1 AND gate which includes 2 sub-inputs. In total, we need 6 gates for the original version of F. (4+1+1=6)

TOTAL NUMBER OF GATES FOR THE SIMPLIFIED BOOLEAN EXPRESSION

In the simplified version of F, there are 3 main inputs which are connected with OR symbol. So, we need 1 OR gate which includes 3 inputs. When we examine the inputs individually, we can see that there are 2 inputs each of which contains 2 sub-inputs, and there is 1 input which contains 3 sub-inputs. These sub-inputs are connected with AND symbol. So, we need 2 AND gates each of which includes 2 sub-inputs. Moreover, we need 1 AND gate which contains 3 sub-inputs. In total, we need 4 gates for the simplified version of F. (2+1+1=4)

So, we need more gates for the original version of F. (6>4)								

For part-b and part-e in the third question, I attached a seperate image in the submission.