Sea G un grafo y ST(G) = P su spanning tree polytope.

encontrar estos vértices.

- (a) Sea $\chi_T \in P$. Veamos que es un vértice. Sabemos que $\chi_T \in \mathbb{R}^{|E|}$. Sea c, χ_T visto como un vector. Veamos que χ_T maximiza a P_c . Si $\chi_{T'} \neq \chi_T$, entonces $\chi_{T'} \cdot c \leq \chi_T \cdot c$, pues no puede tener 1 en las mismas posiciones ya que como es distinto, se llegaría a que este elemento no representa a spanning tree, pues se le pueden quitar aristas de modo que siga conectando todo el grafo.
- (b) Veamos que dos vértices $\chi_{T'}, \chi_T$ son adyacentes \Leftrightarrow existen aristas $e \in T T'$ y $f \in T' T$ tales que $T' = T e \cup f$. \Rightarrow) Basta con mostrar que dados dos spanning trees T, T' existen
- $e \in T/T'$ y $f \in T'/T$ tales que $S = T e \cup f$ y $S' = T' f \cup e$ son spanning trees. Esto debido a que si suponemos que χ_T y $\chi_{T'}$ son adyacentes y no cumplen la propiedad, existe un vector c tal que es maximizado por estos vectores. Además, $c \cdot \chi_T c \cdot \chi_S = c_e c_f \geq 0$. donde c_e, c_f son los componentes de c en las coordenadas correspondientes a esas aristas. Mas, $c \cdot \chi_{T'} c \cdot \chi_{S'} = c_f c_e \geq 0$. Con

Sean T y T' dos spanning trees. Si cumplen la condición ya terminamos, luego suponemos que no cumplen esa propiedad. Tomamos un vértice de grado 1, v_1 tal que su arista no esté en T'. No todos los vértices pueden tener grado mayor que 1 pues necesariamente se formarían ciclos. Sea e la única arista que tiene a v_1 . $T' \cup e$ tiene un ciclo. Sea f una arista en este ciclo que tenga a v_1 . Como $T' \cup e - f$

está conectado y tiene n-1 aristas (es fácil ver que los spanning

esto tendríamos una contradicción. Veamos entonces que podemos

trees deben tener n-1 aristas) debe ser un spanning tree. Además $T-e \cup f$ está conectado, pues sólo faltaba conectar a v_1 . Con esto completamos la prueba.

completamos la prueba. \Leftarrow) Suponemos que existen aristas $e \in T - T'$ y $f \in T' - T$ tales que $T' = T - e \cup f$. Sea I_1 el conjunto de índices en donde χ_T es

que $T' = T - e \cup f$. Sea I_1 el conjunto de índices en donde χ_T es 1 y sea I_2 el conjunto de índices donde $\chi_{T'}$ es 1. Sea $I = I_1 \cap I_2$ y $J = I_1/I_2 \cup I_2/I_1$. Definimos $c = (c_1, \dots, c_{|E|}) \in \mathbb{R}^{|E|}$ como $c_i = \begin{cases} 1, & \text{si } i \in I \\ 0, & \text{si } i \in J \\ -1, & \text{de lo contrario} \end{cases}$

Veamos que P_c es maximizado por los dos vértices $\chi_{T'}, \chi_T$. Sea χ_S otro vértice. Para lograr maximizar $\chi_S \cdot c$ se debe tener que χ_S tengo 1 en todos las coordenadas indicadas por I. Sin embargo, debe tener otros 1 en otras coordenadas ya que χ_T representa un spanning tree. Debe haber otro 1 en una coordenada que no esté en J, pues es distinto a los dos iniciales, y en consecuencia $\chi_S \cdot c \leq \chi_t \cdot T$. Con esto tenemos que P_c es maximizado por estos vértices y en consecuencia

hay una arista que los conecta. (c) Por (b) para ir de un vértice a otro se debe cambiar una coordenada de los vértices, por otra. Como sólo hay n-1 aristas en los spanning trees, se tiene que el diámetro debe ser menor a la cantidad de vértices