Review of Quantum Cryptography

- Symmetric key system
 - Quantum key distribution system
- Public key system
 - Example: RSA (Rivest–Shamir–Adleman) public-key cryptosystem
 - The security of RSA is guaranteed by the difficulty of factoring a large number → RSA factoring challenge
 - Also very useful for authentication

Example of RSA encryption/decryption

- message to transmit: M
- Encryption: $E(M) = M^e \pmod{n}$
- Decryption: $D(E(M)) = E(M)^d \pmod{n}$

- Public key: P = (e, n) = (3, 15)
- Private key: S = (d, n) = (11, 15)
- Assume that the intended message M is 13.
- Encryption: $E(13) = 13^3 \pmod{15} = 7$
- Decryption: $D(E(13)) = 7^{11} \pmod{15} = 13$

■ In fact, $M^{e \cdot d} \pmod{n} = M^{33} \pmod{15} = M$ for $0 \le M < 15$

Example of RSA key generation

- Generation of public/private keys for RSA
 - Select two large prime numbers, p = 3 and q = 5. p and q.
 - Compute the product $n \equiv pq$.
 - Select at random a small odd integer, e, that is relatively prime to $\phi(n) = (p - 1)(q - 1)$.
 - Compute d, the multiplicative inverse of e, modulo $\phi(n)$.
 - The RSA public key is the pair P = (e, n). The RSA private key is the pair S = (d, n).

•
$$p = 3$$
 and $q = 5$.

$$\quad n \equiv pq = 15.$$

$$\phi(n) = (p-1)(q-1) = 8$$

 $e = 3$

$$d = 11 \Rightarrow e \cdot d = 33$$
$$\Rightarrow e \cdot d \pmod{\phi(15)} = 33 \pmod{8} = 1$$

RSA public key: P = (3,15)RSA private key: S = (11,15)

Summary of RSA

- Appendix 4.1, 4.2, 5
- Generation of public/private keys for RSA
 - Select two large prime numbers, p and q.
 - Compute the product $n \equiv pq$.
 - Select at random a small odd integer, e, that is relatively prime to $\phi(n) = (p-1)(q-1)$. $\phi(n)$ is called Euler('s totient) function.
 - Compute d, the multiplicative inverse of e, modulo $\phi(n)$.
 - The RSA public key is the pair P = (e, n). The RSA private key is the pair S = (d, n).
- Assume that the length of message M is floor($\log_2 n$) bits.
- Encryption: $E(M) = M^e \pmod{n}$
- Decryption: $D(E(M)) = E(M)^d \pmod{n}$
- Sketch of proof that the above procedure will recover M
 - Assume: M is relatively prime (or co-prime) to n.
 - $D(E(M)) = E(M)^d \pmod{n} = M^{ed} \pmod{n} = M^{1+k\phi(n)} \pmod{n}$
 - $= M \cdot M^{k\phi(n)} (mod \ n) = M (mod \ n)$
 - □ $M^{k\phi(n)}(mod n) = 1(mod n)$ Theorem A4.9

QRNG

- Quantum Random Number Generator (QRNG)
 - Basic concept: use the property of the quantum superposition to generate a true random number

- Is this equivalent to QKD?
 - No! It has nothing to do with QKD.
- Pseudo random number generator (PRNG)
 - Random number is generated by complex calculation, starting with random seed number
 - If the same seed number is used, we can always predict the same random number
 - Seed number is generally supplied by non-repeating process such as current time or movement of computer mouse

How to prove who you are?

Authentication: don't want to send password on the network

Example Protocol for QRNG

Authentication: don't want to send password on the network

- Challenge-response
 - 1. Alice encrypts a random number with shared password and sends the encrypted message
 - 2. Bob decrypts the encrypted message using the mutually shared password
 - Bob calculates new value based on the delivered random number
 - Bob send back this new value encrypted again by the same password
 - Alice decrypts the return message & verify Bob has the same password as well

Different Approaches to Implement QRNG Chip

- What type of superposition can we use?
 - Superposition of paths

Superposition of photon numbers

Image from https://www.sktinsight.com/123142

- Superposition of times
 - Radioactive decay

Models for computation

- Elements of Turing machine (section 3.1.1)
 - Program
 - Finite state control
 - Tape (like a computer memory)
 - Read-write tape-head
- Finite state control consists of a finite set of internal states, $q_1, ..., q_m$. q_s is a starting state and q_h is a halting state.
- Each square in the tape contains one symbol drawn from some alphabet Γ, a finite set of distinct symbols.

 indicates the left edge of the tape, and b means blank.
- The read-write tape-head starts from > and after reading the symbol written in current square, update the value and move the head according to the program.

Turing machine

- A program for a Turing machine is a finite ordered list of program lines of the form $\langle q, x, q', x', s \rangle$. q is a current state and x is a value in the current square. q' is the next state and x' is the value to be written in the square. s is the direction to move the head.
- Example program

1:
$$\langle q_s, \triangleright, q_1, \triangleright, +1 \rangle$$

2:
$$\langle q_1, 0, q_1, b, +1 \rangle$$

3:
$$\langle q_1, 1, q_1, b, +1 \rangle$$

4:
$$\langle q_1, b, q_2, b, -1 \rangle$$

5:
$$\langle q_2, b, q_2, b, -1 \rangle$$

6:
$$\langle q_2, \triangleright, q_3, \triangleright, +1 \rangle$$

7:
$$\langle q_3, b, q_h, 1, 0 \rangle$$

Church-Turing thesis

- Church-Turing thesis
 - The class of functions computable by a Turing machine corresponds exactly to the class of functions which we would naturally regard as being computable by an algorithm
- Feasibility thesis
 - Complexity-theoretic (or extended) Church-Turing thesis
 - A probabilistic Turing machine can efficiently simulate any realistic model of computation, where "efficiently" means polynomial-time reduction
 - BPP (bounded-error probabilistic polynomial time) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded away from 1/3 for all instances.
 - BQP (bounded-error quantum polynomial time) is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances.
- Quantum complexity-theoretic Church-Turing thesis
 - A quantum Turing machine can efficiently simulate any realistic model of computation

The suspected relationship of BQP to other problem spaces (image from https://en.wikipedia.org/wiki/BQP)