1. Amendments to the Claims:

A listing of the entire set of pending claims (including amendments to the claims, if any) is submitted herewith per 37 CFR § 1.121. This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Previously presented) A method for correcting impairments on information, passing through an information transmission system, imposed by a plurality of defective elements of the information transmission system for generating, transporting, and receiving the information, the method comprising:

identifying the defective elements imposing impairments on the information and characterizing each defect by performing a frequency analysis of each defective element;

determining a frequency characteristic complementary to said frequency analysis, such that a combination of said frequency analysis and said complementary frequency characteristic, when applied to information passing through said element, corrects the impairment imposed by said element; and

creating a composite, two channel I and Q finite impulse response filter, having I-I and Q-Q direct components and I-Q and Q-I cross components, by combining said complementary frequency characteristics, said filter being positioned in said information transmission system for correcting said impairments imposed on the information by said defective elements.

- 2. (Previously presented) The method of claim 1, wherein said system is a data receiver and said plurality of elements include an IF filter, a two-channel down-converter, and I and Q data processing channels.
 - 3. (Currently amended) The method of claim 1, wherein said system is to a data

generator and said plurality of elements include I and Q data channels, a two-channel upconverting modulator, and an IF filter.

- 4. (Canceled)
- 5. (Previously presented) The method of claim 1, wherein: creating a composite, two channel I and Q finite impulse response filter includes arranging said direct and said cross components as terms of a set of 2x2 matrices.

- 12. (Previously Presented) In applying a generalized two-channel digital filter to process an input data stream x and to produce an output data stream y, wherein both x and y are two-component signals x_I , x_Q , y_i , and y_Q which are processed in blocks of N/2 data values long, N being a power of 2, and wherein the filter is characterized by four independent impulse response vectors h_{11} , h_{12} , h_{21} , and h_{22} , each vector of length N/2, a method for efficiently computing said output data stream y, comprising the preliminary steps of:
 - a) forming the vectors

$$a = \frac{(h_{11} + h_{22}) + j(h_{21} - h_{12})}{2}$$
 and $b = \frac{(h_{11} - h_{22}) + j(h_{21} + h_{12})}{2}$

- b) appending N/2 zeros to each vector and performing an FFT on each vector to produce A_k and B_k , respectively; and, for each block of N/2 data values in said input data stream x, additionally comprising the iterative steps of:
- c) moving the previous block of input data values to the first half of an input vector \mathbf{x}_N of length N and loading the current block of input data values into the second half of said input vector \mathbf{x}_N ;
 - d) treating x_N as a vector of complex numbers of the form $x_I + jx_Q$, and

performing a N-point FFT to produce X_k;

- e) computing the complex vector $Y_k = A_k X_k + B_k X_{N-k}$, $0 \le k < N/2$, and performing an inverse FFT on the result to produce the complex vector y_n ;
- f) designating the second half of y_n as the N/2 output samples of the current iteration, according to y_{in} = Real (y_Q) , y_n = Imag (y_n) , where N/2 \leq n \leq N; and
 - g) returning to step (c) for the next block of N/2 data values.