

Homework Spectral Clustering

Vittorio Gallo, matricola 300829 Sergio A. Angelini, matricola 300873 Filippo Grobbo, matricola 305723

Course of *Computational Linear Algebra for Large Scale Problems*Academic year 2022 - 2023

Problem Overview

Algorithm 1

function Spectral clustering

Input

 x_i : set of points $(x_i \in \mathbb{R}^n, i=1,...,N)$

Output

 c_j : set of clusters (j=1,..,K)

Define a similarity function

Compute the similarity graph

Construct the Laplacian matrix of the graph

Compute the smallest eigenvalues according to some criterion

Construct the matrix U that contains as columns eigenvectors corresponding to the smallest eigenvalues

Consider the rows of U as a new set of points y_i (i=1,..,N) and compute Kmeans on them

Associate the clusters obtained for y_i to the corresponding x_i (1 to 1 correspondence) end function

For this project we used the following elements:

- Circle and Spiral datasets,
- Similarity function $s_{ij} = exp\left(-\frac{\left\|X_i X_j\right\|^2}{2\sigma^2}\right)$ with $\sigma = 1$,
- K-nearest-neighborhood similarity graph,
- Elbow method for computation of the smallest eigenvalues,
- Function KNN_similarity_graph implemented by us.

Spiral dataset example

- Plot of Spiral dataset
- Spy of matrix W
- Elbow method

Results for Spiral 2-D dataset

Gallo Vittorio, Angelini Sergio A., Grobbo Filippo, Homework Spectral Clustering, 6/11

Results for Circle 2-D dataset

Results for 3-D datasets

Generally we can say that our algorithm about Spectral Clustering is accurate, while the suggestion function for the eigenvalue elbow method can be improved.

	Atom	EngyTime	GolfBall	Hepta	Target	Tetra	TwoDiamonds
SC functions with L	yes	yes	yes	yes	no	yes	yes
SC functions with L_s	yes	yes	yes	yes	no	yes	yes
KNN	10	2	10	10	10	10	10
comp_conn	4	3	3	9	6	6	4
rescaling	yes	no	no	no	yes	no	no
real number of clusters	2	2	1	7	6	4	2
suggested number of clusters	incorrect	correct	correct	correct	correct	correct	incorrect

Results for Hepta 3-D dataset

Normalized symmetric Laplacian matrix L_s : important results

- Zero is eigenvalue for both the matrices L_s and L and has the same multiplicity in both cases.
- The eigenvectors corresponding to the zero eigenvalues have the form $v_0 = D^{\frac{1}{2}} 1_{comp_conn}$, where 1_{comp_conn} is the vector with the value 1 on the indices corresponding to one connected component and zero elsewhere.
- The relation between eigenvalues of the two matrices is:

$$\lambda_{s} = \lambda_{L} \left[\frac{1 - \mathcal{R}_{D^{-\frac{1}{2}}AD^{-\frac{1}{2}}}(v)}{\mathcal{R}_{D}(x) - \mathcal{R}_{A}(x)} \right]$$
(1)

where x is the corresponding eigenvector of L, v is the corresponding eigenvector of L_s and $\mathcal{R}_Q(y)$ is the Rayleigh coefficient of matrix Q w.r.t. the normalized vector y.

Grazie per l'attenzione

