ISE 426 Optimization models and applications

Lecture 2 — September 2, 2014

Convexity; Relaxations; Lower and upper bounds.

- ▶ Winston, chapter 1, or
- Winston & Venkataramanan, chapter 1, or
- ► Hillier & Lieberman, chapter 2.

Convexity

Convex sets

Def.: A set $S \subseteq \mathbb{R}^n$ is convex if any two points x' and x'' of S are joined by a segment **entirely** contained in S:

Convex sets

Def.: A set $S \subseteq \mathbb{R}^n$ is convex if any two points x' and x'' of S are joined by a segment **entirely** contained in S:

$$\forall x', x'' \in S, \alpha \in [0, 1], \quad \alpha x' + (1 - \alpha)x'' \in S$$

Convex sets

Def.: A set $S \subseteq \mathbb{R}^n$ is convex if any two points x' and x'' of S are joined by a segment **entirely** contained in S:

$$\forall x', x'' \in S, \alpha \in [0, 1], \quad \alpha x' + (1 - \alpha)x'' \in S$$

The intersection of two convex sets is convex.

Def.: A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if, for any two points x' and $x'' \in \mathbb{R}^n$ and for any $\alpha \in [0,1]$

$$f(\alpha x' + (1 - \alpha)x'') \leq \alpha f(x') + (1 - \alpha)f(x'')$$

Def.: A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if, for any two points x' and $x'' \in \mathbb{R}^n$ and for any $\alpha \in [0,1]$

$$f(\alpha x' + (1 - \alpha)x'') \le \alpha f(x') + (1 - \alpha)f(x'')$$

► The sum of convex functions is a convex function

Def.: A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if, for any two points x' and $x'' \in \mathbb{R}^n$ and for any $\alpha \in [0,1]$

$$f(\alpha x' + (1 - \alpha)x'') \leq \alpha f(x') + (1 - \alpha)f(x'')$$

- ► The sum of convex functions is a convex function
- Multiplying a convex function by a positive scalar gives a convex function

Def.: A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if, for any two points x' and $x'' \in \mathbb{R}^n$ and for any $\alpha \in [0,1]$

$$f(\alpha x' + (1 - \alpha)x'') \leq \alpha f(x') + (1 - \alpha)f(x'')$$

- ► The sum of convex functions is a convex function
- Multiplying a convex function by a positive scalar gives a convex function
- ▶ **linear** functions $\sum_{i=1}^{k} a_i x_i$ are convex, irrespective of the sign of a_i 's.

Local and global optima

A vector $x^l \in \mathbb{R}^n$ is a local optimum if

▶ there is a *neighbourhood*¹ N of x^{l} with no better point than x^{l} :

$$\forall x \in N, f_0(x) \ge f_0(x^l)$$

A vector $x^g \in \mathbb{R}^n$ is a global optimum if

- χ8
- there is no x better than x^g , i.e.,

$$f_0(x) > f_0(x^g) \qquad \forall x$$

¹A *neighbourhood* of x^l can be defined as $N = \{x : ||x - x^l||_2 \le \epsilon\}$ for some ϵ .

Local optima, global optima

Positive (Semi)Definite Matrices

A square $n \times n$ matrix A is **Positive Definite** (PD) (denoted with $A \succ 0$) if, for any n-vector $x \neq 0$, the following holds:

$$x^{\top}Ax \ge 0$$

$$\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j =$$

Positive (Semi)Definite Matrices

A square $n \times n$ matrix A is **Positive Definite** (PD) (denoted with $A \succ 0$) if, for any n-vector $x \neq 0$, the following holds:

$$x^{\top}Ax \ge 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j} =$$

$$a_{11}x_{1}^{2} + a_{12}x_{1}x_{2} + \dots + a_{1n}x_{1}x_{n} +$$

$$a_{21}x_{2}x_{1} + a_{22}x_{2}^{2} + \dots + a_{2n}x_{2}x_{n} +$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_{n}x_{1} + a_{n2}x_{n}x_{1} + \dots + a_{nn}x_{n}^{2}$$

$$> 0$$

Some linear algebra

- ▶ A minor of a m × n matrix A is the determinant of a (square) submatrix of A obtained by removing some rows and columns of A.
- ► For a square matrix *B*, a **principal minor** of *B* is obtained by removing the same row and column indices from *B*
- ▶ For a square matrix *B*, a **leading principal minor** of *B* is a principal minor obtained by removing the last *k* rows and (the same) columns from *B*

For example,
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 7 \\ 3 & 6 & 8 & 9 \\ 4 & 7 & 9 & 0 \end{pmatrix}$$
.

Leading principal minors: (1),
$$\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 6 & 8 \end{pmatrix}$

Positive (Semi)Definite Hessian Matrices

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **Positive Semidefinite** (PSD) (denote it with $A \succeq 0$) if all principal minors of A are nonnegative.

A symmetric matrix $A \in R^{n \times n}$ is **Positive Semidefinite** (PSD) if and only if $A = BB^{\top}$ for some $B \in R^{n \times n}$.

A symmetric matrix $A \in R^{n \times n}$ is **Positive Semidefinite** (PSD) if for all i = 1, ..., n $a_{ii} \ge \sum_{j=1, j \ne i}^{n} |a_{ij}|$.

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **Positive Semidefinite** (PSD) if all its eigenvalues are nonnegative.

Positive (Semi)Definite Hessian Matrices

Given a function $f : \mathbb{R}^n \to \mathbb{R}$, consider its **Hessian**:

$$H_f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** on set $\Omega \in \mathbb{R}^n$ if and only if the Hessian $H_f(x) \succeq 0$ for all $x \in \Omega$.

Examples

- ▶ The function f(x) = x is convex
- ► The function $f(x_1, x_2) = x_1 + x_2$ is convex
- ► The function $f(x_1, x_2) = x_1^2 + x_2$ is convex
- ► The function $f(x_1, x_2) = 5x_1^2 + 3x_2^2$ is convex
- ► The function $f(x_1, x_2) = x_1^2 + x_2^2 x_1x_2$ is convex

Examples

- ▶ The function f(x) = x is convex
- ► The function $f(x_1, x_2) = x_1 + x_2$ is convex
- ► The function $f(x_1, x_2) = x_1^2 + x_2$ is convex
- ► The function $f(x_1, x_2) = 5x_1^2 + 3x_2^2$ is convex
- ► The function $f(x_1, x_2) = x_1^2 + x_2^2 x_1x_2$ is convex
- ► The function $f(x_1, x_2) = x_1^2 + x_2^2 + 5x_1x_2$ is nonconvex
- ► The function $f(x_1, x_2) = x_1^2 x_2^2$ is nonconvex
- ► The function $f(x_1, x_2) = x_1x_2$ is nonconvex
- ▶ The function $f(x) = \sin x$, for $x \in [0, 2\pi]$ is nonconvex
- ► The function $f(x) = -x^2$ is nonconvex

Convex constraints

▶ A constraint $g(x) \le b$, with $g : \mathbb{R}^n \to \mathbb{R}$, defines a subset S of \mathbb{R}^n , that is,

$$S = \{x \in \mathbb{R}^n : g(x) \le b\}$$

- ▶ The constraint $g(x) \le b$ is convex if the set S is convex.
- ▶ If the function g(x) is convex, the constraint $g(x) \le b$ is convex.

Convex constraints

Convex constraints

Note: if the *function* g(x) is convex, the *constraint* $g(x) \ge b$ may be nonconvex!

Convex and concave functions

Def.: A function $f : \mathbb{R}^n \to \mathbb{R}$ is concave if -f(x) is convex.

concave functions are useful with maximization problems:

$$\max f(x)$$

$$g_i(x) \le 0 \quad \forall i = 1, 2 \dots, m$$

$$h_i(x) = 0 \quad \forall i = m + 1, m + 2 \dots, m + q$$

$$x \in \mathbb{R}^n$$

is a convex problem if f(x) is concave, all $g_i(x)$ are convex, and all $h_i(x)$ are affine.

 \triangleright concave functions are also useful for \ge constraints:

$$g_i(x) \geq 0$$

is a convex constraint if $g_i(x)$ is concave.

For what convex g(x) the *constraint* $g(x) \ge b$ is always convex?

For what convex g(x) the *constraint* $g(x) \ge b$ is always convex?

▶ linear constraints $\sum_{i=1}^{k} a_i x_i \begin{cases} \leq \\ = \\ > \end{cases} b$ are convex

The general optimization problem

Consider a vector $x \in \mathbb{R}^n$ of variables. An optimization problem can be expressed as:

```
\begin{array}{ccc} \mathbf{P}: & & \text{minimize} & f_0(x) \\ & & \text{s.t.} & f_1(x) \leq b_1 \\ & & f_2(x) \leq b_2 \\ & & \vdots \\ & & f_m(x) \leq b_m \end{array}
```

Feasible solutions, local and global optima

Define $F = \{x \in \mathbb{R}^n : f_1(x) \le b_1, f_2(x) \le b_2, \dots, f_m(x) \le b_m\}$, that is, F is the feasible set of an optimization problem.

All points $x \in F$ are called feasible solutions.

A vector $x^l \in \mathbb{R}^n$ is a local optimum if

- $\rightarrow x^l \in F$
- ▶ there is a *neighbourhood*² N of x^l with no better point than x^l :

$$\forall x \in N \cap F, f_0(x) \ge f_0(x^l)$$

A vector $x^g \in \mathbb{R}^n$ is a global optimum if

- $x^g \in F$
- ▶ there is no $x \in F$ better than x^g , i.e.,

$$f_0(x) \ge f_0(x^g) \qquad \forall x \in F$$

²A *neighbourhood* of x^l can be defined as $N = \{x : ||x - x^l||_2 \le \epsilon\}$ for some ϵ .

Convex problems

Def.: An optimization problem is convex if

- the objective function is convex
- all constraints are convex

Convex problems

Def.: An optimization problem is convex if

- the objective function is convex
- all constraints are convex

Convex optimization problems are *easy*:

If a problem P is convex, a local optimum x^* of P is also a global optimum of P.

(Hint) When modeling an optimization problem, it would be good if we found a convex problem.

Examples of convex problems

P: min
$$x_1^2 + 2x_2^2$$

s.t. $x_1^2 + x_2^2 \le 1$
 $0 \le x_1 \le 2$
 $1 \le x_2 \le 5$
 $x_2 \in \mathbb{Z}$

Examples of "hidden" convex problems

P: min
$$x_1 - 2x_2^2$$

s.t. $x_1^2 + x_2^2 \le 1$
 $x_2 = 0$
 $0 \le x_1 \le 5$

Your first Optimization model

Variables	r: radius of the can's base
variables	" radias of the car s sase
	h: height of the can
Objective	$2\pi rh + 2\pi r^2$ (minimize)
Constraints	$\pi r^2 h = V$
	h > 0
	<i>r</i> > 0

Relaxations

Consider an optimization problem

$$\mathbf{P}: \quad \min_{\mathbf{f}_0(x)} f_0(x)$$
s.t. $f_1(x) \leq b_1$
 $f_2(x) \leq b_2$

$$\vdots$$

$$f_m(x) \leq b_m,$$

Let us denote *F* the set of points *x* that satisfy all constraints:

$$F = \{x \in \mathbb{R}^n : f_1(x) \le b_1, f_2(x) \le b_2, \vdots f_m(x) \le b_m\}$$

So we can denote **P** : $\min\{f_0(x) : x \in F\}$ for short.

Consider a problem $P : \min\{f_0(x) : x \in F\}.$

A problem $P' : \min\{f'_0(x) : x \in F'\}$ is a **relaxation** of **P** if:

- $ightharpoonup F' \supseteq F$
- ► $f_0'(x) \le f_0(x)$ for all $x \in F^{3}$.

If P' is a relaxation of a problem P, then the global optimum of P' is \leq the global optimum of P.

³We don't care what $f'_0(x)$ is outside of F.

Examples

- ▶ $\min\{f(x) : -1 \le x \le 1\}$ is a relaxation of $\min\{f(x) : x = 0\}$
- ▶ $\min\{f(x): -1 \le x \le 1\}$ is a r. of $\min\{f(x): 0 \le x \le 1\}$
- ▶ $\min\{f(x): -1 \le x \le 1\}$ is **not** a r. of $\min\{f(x): -2 \le x \le 1\}$
- ► $\min\{f(x) : g(x) \le b\}$ is a r. of $\min\{f(x) : g(x) \le b 1\}$
- ► $\min\{f(x) 1 : g(x) \le b\}$ is a r. of $\min\{f(x) : g(x) \le b\}$

Consider again a problem

```
P: \min\{f_0(x): f_1(x) \le b_1, f_2(x) \le b_1, \dots, f_m(x) \le b_m\}, or P: \min\{f_0(x): x \in F\} for short.
```

- deleting a constraint from P provides a relaxation of P.
- ▶ adding a constraint $f_{m+1}(x) \le b_{m+1}$ to a problem **P** does the opposite:

$$F'' = \{x \in \mathbb{R}^n : f_1(x) \leq b_1, f_2(x) \leq b_2, \dots, f_m(x) \leq b_m, f_{m+1}(x) \leq b_{m+1}\} \subseteq F$$

and therefore

$$\min\{f_0(x) : x \in F''\} \ge \min\{f_0(x) : x \in F\}$$

Lower and upper bounds

Consider an optimization problem $\mathbf{P} : \min\{f_0(x) : x \in F\}$:

- ▶ for any feasible solution $x \in F$, the corresponding objective function value $f_0(x)$ is an upper bound.
- ▶ the most interesting upper bounds are the local optima.
- ▶ a lower bound of **P** is instead a value *z* such that

$$z \le \min\{f_0(x) : x \in F\}.$$

Situation #1:

You: "We found a solution that will only cost 372,000 \$."

Boss: "Ok, that sounds good."

Situation #1:

You: "We found a solution that will only cost 372,000 \$."

Boss: "Ok, that sounds good."

Situation #2:

You: "We found a solution that will only cost 372,000 \$."

Boss: "That's too much, find something better."

Situation #1:

You: "We found a solution that will only cost 372,000 \$."

Boss: "Ok, that sounds good."

Situation #2:

You: "We found a solution that will only cost 372,000 \$."

Boss: "That's too much, find something better."

. . .

You: "We found another solution that costs 354,000 \$."

Boss: "Can't you do better than that?"

Situation #1:

You: "We found a solution that will only cost 372,000 \$."

Boss: "Ok, that sounds good."

Situation #2:

You: "We found a solution that will only cost 372,000 \$."

Boss: "That's too much, find something better."

. . .

You: "We found another solution that costs 354,000 \$."

Boss: "Can't you do better than that?"

You: "I can try again, but here's the proof that we can't go

below 351,500."

Boss: "Ok then, that's a good solution."

What relaxations are for

- ▶ If P' is a relaxation of a problem P, then the global optimum of P' is \leq the global optimum of P.
- \blacktriangleright Hence, any relaxation **P**' of **P** provides a lower bound on **P**.
- \Rightarrow If a problem **P** is difficult but a relaxation **P**' of **P** is easier to solve than **P** itself, we can still try and solve **P**': (i) we get a lower bound and (ii) the solution of **P**' may help solve **P**.

To recap: the Knapsack problem

At a flea market in Rome, you spot n objects (old pictures, a vessel, rusty medals...) that you could re-sell in your antique shop for about double the price.

- You want these objects to pay for your flight ticket to Rome, which cost C.
- ▶ Also, you don't want a heavy backpack, so you want to buy the objects that will load it as little as possible.

How do you solve this problem?

Each object i = 1, 2, ..., n has a price p_i and a weight w_i .

▶ Variables: one variable x_i for each i = 1, 2, ..., n. This is a "yes/no" variable: either you take the i-th object or not.

Each object i = 1, 2, ..., n has a price p_i and a weight w_i .

- ▶ Variables: one variable x_i for each i = 1, 2, ..., n. This is a "yes/no" variable: either you take the i-th object or not.
- ▶ Constraint: total revenue must be at least *C*

Each object i = 1, 2, ..., n has a price p_i and a weight w_i .

- ▶ Variables: one variable x_i for each i = 1, 2, ..., n. This is a "yes/no" variable: either you take the i-th object or not.
- Constraint: total revenue must be at least C
 (As you'll double the price when selling them at your store, the revenue for each object is exactly p_i)

Each object i = 1, 2, ..., n has a price p_i and a weight w_i .

- ▶ Variables: one variable x_i for each i = 1, 2, ..., n. This is a "yes/no" variable: either you take the i-th object or not.
- ► Constraint: total revenue must be at least *C*(As you'll double the price when selling them at your store, the revenue for each object is exactly *p*_i)
- Objective function: the total weight

Your first (non-trivial) optimization model

min
$$\sum_{i=1}^{n} w_i x_i$$
$$\sum_{i=1}^{n} p_i x_i \ge C$$
$$x_i \in \{0, 1\} \quad \forall i = 1, 2, \dots, n$$

Is it convex?

min
$$\sum_{i=1}^{n} w_i x_i$$

 $x_i \in \{0, 1\} \quad \forall i = 1, 2, \dots, n$

min
$$\sum_{i=1}^{n} w_i x_i$$

 $x_i \in \{0, 1\} \quad \forall i = 1, 2, \dots, n$

This relaxation would give us $x_i = 0$ for all i = 1, 2, ..., n, and a lower bound of $\sum_{i=1}^{n} w_i x_i = 0$. Not so great...

min
$$\sum_{i=1}^{n} w_i x_i$$

 $x_i \in \{0, 1\} \quad \forall i = 1, 2, \dots, n$

This relaxation would give us $x_i = 0$ for all i = 1, 2, ..., n, and a lower bound of $\sum_{i=1}^{n} w_i x_i = 0$. Not so great...

min
$$\sum_{i=1}^{n} w_i x_i$$
$$\sum_{i=1}^{n} p_i x_i \ge C$$
$$0 \le x_i \le 1 \quad \forall i = 1, 2, \dots, n$$

min
$$\sum_{i=1}^{n} w_i x_i$$

 $x_i \in \{0, 1\} \quad \forall i = 1, 2, \dots, n$

This relaxation would give us $x_i = 0$ for all i = 1, 2, ..., n, and a lower bound of $\sum_{i=1}^{n} w_i x_i = 0$. Not so great...

$$\min \quad \sum_{i=1}^{n} w_i x_i \\ \sum_{i=1}^{n} p_i x_i \ge C \\ 0 \le x_i \le 1 \quad \forall i = 1, 2, \dots, n$$

- ► Relaxing integrality of the variables gives a relaxation where we admit fractions of objects.
- \approx we pulverized all objects and took some spoonfuls of each
- ▶ It doesn't make sense, but it's a relaxation, and it **does** give us a better lower bound.