Vecteurs gaussiens

Exercice 1 : Indépendance de la moyenne et de la variance empiriques pour un vecteur gaussien. Soit V un vecteur aléatoire à valeurs dans \mathbb{R}^3 dont les composantes sont notées X_1, X_2 et X_3 . On suppose que X_1, X_2 et X_3 sont des variables aléatoires indépendantes de loi normale $\mathcal{N}(0, 1)$.

- 1) Quelle est la loi du vecteur $V = (X_1, X_2, X_3)^T$? Quelle est la densité de V?
- 2) Soit P la matrice de changement de base orthonormée telle que :

$$P^{T} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \end{pmatrix}$$

On note X le vecteur colonne de composantes $(X_i)_{i=1,2,3}$ et Y le vecteur colonne $Y = P^T X$ de composantes $(Y_i)_{i=1,2,3}$.

- 2.1) Quelle est la loi du triplet (Y_1, Y_2, Y_3) ?
- 2.2) Déterminer les lois de Y_1, Y_2 et Y_3 .
- 3) On note $\overline{X} = \frac{1}{3} \sum_{i=1}^{3} X_i$ et $S^2 = \frac{1}{2} \sum_{i=1}^{3} (X_i \overline{X})^2$.
 - Vérifier que $\sum_{i=1}^{3} X_i^2 = \sum_{i=1}^{3} Y_i^2$ et $Y_2^2 + Y_3^2 = \sum_{i=1}^{3} X_i^2 3\overline{X}^2$.
 - Exprimer \overline{X} et en fonction des variables aléatoires Y_i .
 - En déduire que \overline{X} et S^2 sont des variables aléatoires indépendantes.
- 4) Donner la loi de \overline{X} et de $2S^2$.

Exercice 2 : changement de variables et indépendance pour vecteurs gaussiens

Soient X, Y et Z trois variables aléatoires réelles indépendantes de loi $\mathcal{N}(0, 1)$.

- 1) Déterminer la loi de U = X + Y + Z.
- 2) Montrer que X-Y est une variable aléatoire indépendante de U.

Exercice 3 : comment générer un vecteur gaussien de vecteur moyenne m et de matrice de covariance Σ donnés ?

Soient X et Y deux variables aléatoires indépendantes de loi normale de moyenne $\mu=0$ et de variance $\sigma^2=1$. Soit m un vecteur de \mathbb{R}^2 et Σ une matrice symétrique définie positive de $\mathcal{M}_2(\mathbb{R})$. Déterminer une matrice M et un vecteur n tels que n0 et n1 soit un vecteur Gaussien de n2 de moyenne n2 et de matrice de covariance n3. Ce résultat permet de générer des vecteurs gaussiens à partir de variables aléatoires normales centrées réduites.

Convergence

Exercice 4 : convergence vers 0.

Soit la suite de va X_n définie pour $n \in \mathbb{N}$ par :

$$P[X_n = 0] = 1 - \frac{1}{n}$$

$$P[X_n = n] = \frac{1}{n}$$

Montrer que la suite X_n converge en loi et en probabilité vers X=0 mais que X_n ne converge pas en moyenne quadratique vers X=0.

Exercice 5: convergence vers une loi uniforme

- 1) Soit Y une variable aléatoire de loi uniforme sur [-1,+1]. Quelle est la fonction caractéristique de Y?
- 2) On considère une suite $(X_j)_{j\in\mathbb{N}^*}$ de variables aléatoires indépendantes de loi :

$$P\left[X_{j} = \frac{1}{2^{j}}\right] = \frac{1}{2} \text{ et } P\left[X_{j} = -\frac{1}{2^{j}}\right] = \frac{1}{2}$$

On pose $S_n = \sum_{j=1}^n X_j$. Déterminer la fonction caractéristique de X_j , puis celle de S_n notée $\varphi_n(t)$.

3) En utilisant la formule $\sin t = 2\sin{(t/2)}\cos{(t/2)}$, vérifier que :

$$\varphi_n(t) = \frac{\sin t}{t} \frac{\frac{t}{2^n}}{\sin \frac{t}{2^n}} \qquad t \neq 0, \forall n \in \mathbb{N}^*$$

4) En déduire que S_n converge en loi vers une variable aléatoire que l'on précisera.

Exercice 6 : théorème de la limite centrale

On considère une suite de variables aléatoires indépendantes X_j de même loi de Poisson de paramètre $\theta=1$.

- 1) Quelle est la loi de $S_n = \sum_{j=1}^n X_j$?
- 2) Soit $T_n = \frac{S_n n}{\sqrt{n}}$. En utilisant le théorème de la limite centrale et en considérant les événements $\{T_n < 0\}$, montrer que

$$\lim_{n \to +\infty} e^{-n} \sum_{k=0}^{n-1} \frac{n^k}{k!} = \frac{1}{2}$$

Applications

Exercice 7 : estimation d'une probabilité d'erreur

Afin de tester les performances d'un système de communications numériques, il est usuel de simuler le fonctionnement de ce système sur un ordinateur. Un des problèmes consiste alors à estimer la probabilité d'erreur p associé à ce système. On estime généralement cette probabilité comme suit :

$$\widehat{p} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

où X_i est une variable aléatoire binaire telle que

 $X_i = 1$ s'il y a une erreur pour le i^{ime} symbole (évènement de probabilité p)

 $X_i = 0$ s'il n'y a pas d'erreur pour le $i^{\grave{e}me}$ symbole (évènement de probabilité 1-p)

2

Déterminer la moyenne et la variance de \widehat{p} puis sa loi limite en utilisant le théorème de la limite centrale. On cherche le nombre de points N nécessaire pour que \widehat{p} soit une approximation de p avec une précision relative inférieure à 10%. Pour cela, on se fixe un degré de confiance $\alpha=95\%$, qui indique la probabilité d'avoir cette précision soit

$$P\left[\left|\frac{\widehat{p}-p}{p}\right|<\varepsilon\right]=\alpha$$

Déterminer N pour que l'égalité précédente soit vérifiée.

Remarque : pour $\varepsilon=20\%$, on trouve $N\simeq 100/p$ d'où $Np\simeq N\widehat{p}\simeq 100$, d'où la règle pratique suivante : il suffit d'observer une centaine d'erreurs pour pouvoir estimer la probabilité d'erreur p à l'aide de l'estimateur \widehat{p} avec une précision relative $\varepsilon=20\%$ et un degré de confiance $\alpha=95\%$.

Réponses

Exercice 1

- 1) (X_1, X_2, X_3) est un vecteur Gaussien de moyenne (0, 0, 0) et de matrice de covariance I_3 (matrice identité d'ordre 3).
- 2) La matrice P est orthogonale car ses colonnes sont orthogonales et de norme 1. Elle est donc inversible et par suite de rang maximal 3. On sait que $Y = P^T X$ est un vecteur Gaussien avec

$$m_Y = E[Y] = E[P^T X] = P^T E[X] = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Sigma_Y = E[(Y - m_Y)(Y - m_Y)^T]$$

$$= E[YY^T] = E[P^T X X^T P] = P^T I_3 P = I_3.$$

Donc $Y \sim \mathcal{N}_3\left(0, I_3\right)$.

3) On a

$$\sum_{i=1}^{3} Y_i^2 = Y^T Y = X^T P P^T X = X^T X = \sum_{i=1}^{3} X_i^2$$

où on a utilisé le fait que la matrice P est orthogonale et vérifie donc $PP^T=I_3$. En multipliant P^T par X, on obtient

$$Y_1 = \frac{1}{\sqrt{3}} (X_1 + X_2 + X_3) = \sqrt{3} (\overline{X}).$$

Donc

$$Y_2^2 + Y_3^2 = \sum_{i=1}^3 Y_i^2 - Y_1^2 = \sum_{i=1}^3 X_i^2 - 3(\overline{X}^2).$$

On a alors

$$\overline{X} = \frac{1}{\sqrt{3}}Y_1$$

et

$$2S^{2} = \sum_{i=1}^{3} (X_{i} - \overline{X})^{2} = \sum_{i=1}^{3} X_{i}^{2} - 2\overline{X} \sum_{i=1}^{3} X_{i} + 3(\overline{X})^{3}$$

d'où

$$2S^{2} = \sum_{i=1}^{3} Y_{i}^{2} - 2\left(\sqrt{3}Y_{1}\right)\left(\frac{Y_{1}}{\sqrt{3}}\right) + 3\left(Y_{1}^{2}\right) = Y_{2}^{2} + Y_{3}^{2}.$$

Puique Y_1,Y_2 et Y_3 sont indépendantes, on en déduit que \overline{X} et S^2 sont des variables aléatoires indépendantes.

4)

$$\overline{X} = \frac{1}{\sqrt{3}}Y_1 \sim \mathcal{N}\left(0, \frac{1}{3}\right)$$
 $2S^2 \sim \chi_2^2$ (loi du chi2 à 2 degrés de liberté)

Exercice 2

1) On peut écrire $U = [1 \ 1 \ 1]V$ où $V = (X,Y,Z)^T$ est un vecteur gaussien de moyenne nulle et de matrice de covariance égale à la matrice identité I_3 . Comme $[1 \ 1 \ 1]$ est une matrice de rang 1, d'après le cours U suit une loi normale de moyenne m_U et de variance σ_U^2 définies par

$$m_U = [1 \ 1 \ 1]E[V] = 0$$

et

$$\sigma_U^2 = [1 \ 1 \ 1]I_3[1 \ 1 \ 1]^T = 3.$$

2) Si on pose W = X - Y, le vecteur $(W, U)^T$ s'écrit

$$\left(\begin{array}{c} W \\ U \end{array}\right) = \left(\begin{array}{c} X - Y \\ X + Y + Z \end{array}\right) = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 1 & 1 \end{array}\right) \left(\begin{array}{c} X \\ Y \\ Z \end{array}\right).$$

Puisque la matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ est de rang 2 (les deux lignes ne sont pas colinéaires), le vecteur $(W,U)^T$ est gaussien de moyenne $AE[\mathbf{V}] = (0,0)^T$ et de matrice de covariance

$$\Sigma = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} I_3 \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^T = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

D'après le cours, puisque $(W,U)^T$ est un vecteur gaussien et que sa matrice de covariance Σ est diagonale, les variables W et U sont indépendantes.

Exercice 3

On sait que si $\begin{pmatrix} X \\ Y \end{pmatrix}$ est un vecteur de moyenne $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ et de matrice de covariance I_2 (matrice identité d'ordre 2 et que \boldsymbol{M} est de rang maximal (ici de rang 2), alors $V = \boldsymbol{M} \begin{pmatrix} X \\ Y \end{pmatrix} + \boldsymbol{n}$ est aussi un vecteur gaussien de \mathbb{R}^2 de moyenne $\boldsymbol{M} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \boldsymbol{n}$ et de matrice de covariance $\boldsymbol{M}I_3\boldsymbol{M}^T$. On en déduit

$$egin{array}{lll} oldsymbol{n} & = & oldsymbol{m} \ oldsymbol{M}oldsymbol{M}^T & = & oldsymbol{\Sigma} \end{array}$$

Le vecteur n est donc égal à m.

La matrice M doit être de rang maximal et vérifier $MM^T = \Sigma$. Il n'y a pas unicité de la matrice M vérifiant cette égalité. Par exemple, puisque Σ est symétrique définie positive, elle est diagonalisable avec une matrice de passage unitaire P, d'où

$$MM^T = \Sigma = PDP^T$$

avec $D = \operatorname{diag}(\sigma_1^2, ..., \sigma_n^2)$. Il suffit donc de choisir

$$\mathbf{M} = \mathbf{P} \left[\operatorname{diag}(\sigma_1, ..., \sigma_n) \right].$$

Convergence

Exercice 4

1)

$$E\left[e^{itX_n}\right] = \left(1 - \frac{1}{n}\right) + \frac{1}{n}e^{itn} \underset{n \to \infty}{\longrightarrow} 1 = E\left[e^{it0}\right]$$

qui est une fonction continue en t = 0 donc X_n converge en loi vers 0.

2)

$$P[|X_n| > \varepsilon] = \frac{1}{n}, \forall \varepsilon > 0$$

donc

$$\lim_{n \to \infty} P\left[|X_n| > \varepsilon\right] = 0, \forall \varepsilon > 0$$

ce qui signifie que X_n converge en probabilité vers X=0.

3) $E[X_n^2] = n$ donc X_n ne converge pas en moyenne quadratique vers 0.

Exercice 5

1)

$$E\left[e^{itY}\right] = \frac{\sin t}{t}.$$

2)

$$E\left[e^{itX_k}\right] = \cos\left(\frac{t}{2^j}\right)$$

et

$$E\left[e^{itS_n}\right] = \cos\left(\frac{t}{2}\right)\cos\left(\frac{t}{2^2}\right)...\cos\left(\frac{t}{2^n}\right).$$

3)

$$E\left[e^{itS_n}\right] = \frac{\sin t}{t} \frac{\frac{t}{2^n}}{\sin\left(\frac{t}{2^n}\right)}.$$

4) On a

$$E\left[e^{itS_n}\right] \underset{n\to\infty}{\to} \frac{\sin t}{t}$$

qui est une fonction continue en t = 0 donc S_n converge en loi vers Y.

Exercice 6

1) On sait que si X et Y sont des variables aléatoires indépendantes suivant des lois de Poisson de paramètres λ et μ , alors X+Y suit une loi de Poisson de paramètre $\lambda+\mu$. On en déduit

$$S_n = \sum_{j=1}^n X_j \sim P(n\theta).$$

2) Le théorème de la limite centrale s'écrit

$$\frac{S_n - n}{\sqrt{n}} \underset{n \to \infty}{\overset{L}{\longrightarrow}} \mathcal{N}\left(0, 1\right)$$

donc

$$P[T_n < 0] \underset{n \to \infty}{\to} \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{2}.$$

Mais

$$P[T_n < 0] = P[S_n < n]$$

$$= \sum_{k=1}^{n-1} P[S_n = k]$$

$$= \sum_{k=1}^{n-1} \frac{n^k}{k!} e^{-n}$$

ce qui donne le résultat attendu.

Exercice 7

On a

$$E\left[\hat{p}\right] = p \text{ et var } \left[\hat{p}\right] = \frac{p(1-p)}{N}.$$

D'après le théorème de la limite centrale, on a

$$\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{N}}} \xrightarrow[N \to \infty]{L} \mathcal{N}(0,1).$$

Donc pour N grand, on peut approcher la loi de \hat{p} par une loi normale $\mathcal{N}\left(p,\frac{p(1-p)}{N}\right)$. On en déduit

$$P\left[\left|\frac{\widehat{p}-p}{p}\right|<\varepsilon\right]=P\left[\left|\frac{\widehat{p}-p}{\sqrt{\frac{p(1-p)}{N}}}\right|<\varepsilon\sqrt{\frac{pN}{1-p}}\right].$$

Pour $P\left[\left|\frac{\widehat{p}-p}{p}\right|<\varepsilon\right]=0.95$, les tables de la loi normale donnent

$$\varepsilon \sqrt{\frac{pN}{1-p}} = 1.96 \text{ soit } N = \left(\frac{1.96}{\varepsilon}\right)^2 \left(\frac{1-p}{p}\right).$$