에이콘 가스 수요량 예측

박승규, 이성준, 노현곤

01 사전조사 및 데이터 수집

02 데이터 전처리

03 모델평가, 비교

04 교차검증 및 하이퍼 파라미터 튜닝

사전조사 및 데이터 수집

가정·상업용 도시가스의 경우는 소비의 많은 부분이 기온변화로 설명 될 수 있다. 수요가수가 포화시점에 근접하였으며 대부분 난방용으로 사용되는 가정·상업용 도시가스 소비 증감율은 난방도일1)의 증감출처:산업용 도시가스 수요변화 요인분석(에너지경제연구원)

	2018		
행정구역별	보급률 (%)	공급권역내 총 가 구수 (가구)	도시가스 수요가 구수 (가구)
^ ∨ -	A V -	^ ∨ -	A 💟 —
합계	85.0	21,674,404	18, 429, 378
경기도	88 N	5,306,214	4,669,015
서울특별시	98.2	4, 263, 868	4, 186, 336
부산광역시	92.3	1, 480, 468	1, 367, 105
인천광역시	92.9	1, 115, 997	1,201,455
경상남도	75.3	1, 360, 084	1,023,557
대구광역시	96.4	1,021,266	984, 148
경상북도	65.9	1, 179, 225	776, 786
충청남도	70.8	916,667	649, 389
광주광역시	99.9	603, 107	602, 499
대전광역시	94.8	624, 965	592, 467
전라북도	71.6	806, 235	576, 948
충청북도	66.2	705, 471	466, 926
울산광역시	93.9	461,756	433, 523

- 1. 서울특별시 시간별 기온데이터
- 2. 부산광역시 시간별 기온데이터
- 3. 인천광역시 시간별 기온데이터

도시가스 수요가구수(가구)가 가장 큰 위 3개의 데이터의 평균을 데이터셋으로 활용

데이터 전처리

데이터 확인

전처리

날씨 데이터에서 **결측치** 다수 발견

결측치에서 가장 **가까운 값들의 평균**으로 처리 ex) 2015-01-01 00:00 (NaN) (2014-12-31 23:00 기온 + 2015-01-01 01:00 기온) / 2

날씨 데이터와 공급량 데이터 의 **시간 표기 차이** 발견

공급량 데이터 기준으로 변경 ex) 2014-01-01 0:00 → 2013-12-31 | 24

공급량 데이터의 날짜를 year, month, day, weekday로 나눠줌

공급량 데이터의 날짜를
year, month, day, weekday로 나눠줌
ex) 연월일 2013-12-31
Year month day weekday
2013 12 31 2

데이터 전처리

데이터 확인

전처리

구분값이 **문자열임**

구분값을 **숫자열**로 바꿔줌 ex) M → 2

	연월일	시간	일시	year	month	day	hour	weekday	구분	공급량	기몬(°C)
122638	2014-12-31	23	2014-12-31 22:00:00	2014	12	31	22	2	6	576.316	-3.633333
122639	2014-12-31	24	2014-12-31 23:00:00	2014	12	31	23	2	6	542.836	-2.183330
122640	2015-01-01	1	2015-01-01 00:00:00	2015	1	1	0	3	0	2228.705	-4.800000
122641	2015-01-01	2	2015-01-01 01:00:00	2015	1	1	1	3	0	2098.593	-5.233333
122642	2015-01-01	3	2015-01-01 02:00:00	2015	1	1	2	3	0	1960.353	-5.666667

기온 측정모델

	LinearRegres sion	DecisionTree Regressor	RandomFore stRegressor	GradientBoo stingRegress or	xgboost	lightgbm
test_size	9	1	2	6	9	0
train_score	4.093395	100	99.880564	91.492946	98.586207	97.351338
test_score	3.829319	98.704075	99.233752	91.507102	98.151016	97.219483
MAE	706.119927	47.882783	39.485004	178.220452	78.605846	95.461049
MSE	826229.8338 52	11266.17967 5	6601.293267	72694.28740 7	15885.14971 3	23789.73428
RMSE	908.971855	106.142261	81.248343	269.618782	126.036303	154.239211

19년도 기온예측

	일자 사	간	구분	일자	시간	구분	기온(°C)
0	2019-0	1-01	01 A	2019-01-01	1	Α	0.5
1	2019-0	1-01	02 A	2019-01-01	2	Α	0.5
2	2019-0	1-01	03 A	2019-01-01	3	Α	0.5
3	2019-01	1-01	04 A	2019-01-01	4	Α	0.5
4	2019-01	1-01	05 A	2019-01-01	5	Α	0.5
5	2019-01	1-01	06 A	2019-01-01	6	Α	0.5
6	2019-01	1-01	07 A	2019-01-01	7	Α	0.5
7	2019-01	1-01	08 A	2019-01-01	8	Α	0.5
8	2019-01	1-01	09 A	2019-01-01	9	Α	0.5
9	2019-01	1-01	10 A	2019-01-01	10	Α	0.5
10	2019-0	1-01	11 A	2019-01-01	11	Α	0.5
11	2019-01	1-01	12 A	2019-01-01	12	Α	0.5
12	2019-0	1-01	13 A	2019-01-01	13	Α	0.5
13	2019-01	1-01	14 A	2019-01-01	14	Α	0.5
14	2019-01	1-01	15 A	2019-01-01	15	Α	0.5
15	2019-01	1-01	16 A	2019-01-01	16	Α	0.5

19년도 기온 90일 예측

2019-01-01 01:00 ~ 2019-03-31 24:00

데이터 상관관계

	month	day	weekday	구분	공급량	기몬(°C)
month	1.000000	0.011691	-0.000302	-0.112220	-0.335137	0.342848
day	0.011691	1.000000	0.004394	-0.002303	-0.019385	0.017556
weekday	-0.000302	0.004394	1.000000	-0.000443	-0.033323	-0.010292
구분.	-0.112220	-0.002303	-0.000443	1.000000	0.237706	0.008419
공급량	-0.335137	-0.019385	-0.033323	0.237706	1.000000	-0.611679
기온(°C)	0.342848	0.017556	-0.010292	0.008419	-0.611679	1.000000

피쳐엔지니어링 전 모델 평가

	LinearReg ression	DecisionTr eeRegress or	RandomFo restRegress or	GradientBo ostingRegr essor	xgboost	lightgbm	Catboost
test_size	6	1	1	1	9	2	2
train_score	31.49072	100	99.73431	95.55194	95.354505	98.67351	99.21437
test_score	31.42217	98.238919	98.77315	95.481119	95.305833	98.6827	99.21418
MAE	583.2795	61.08911	51.63444	137.87098	140.21451	267.10956	49.96599
MSE	586986.5	15310.03	10665.71	39285.090	40328.924	11348.63	6769.877
RMSE	766.1505	123.7337	103.2749	198.20466	200.82062	106.5299	82.27926
NMAE	4.262607	0.06954	0.070613	0.9256156	1.0036665	0.535277	0.4634

```
X = train[["year", "month", "day", "hour", "weekday", "기온(°C)", "구분"]]
y = train["공급량"]
```

print("정규화, 확장 전 데이터 셋 : ", X.shape, y.shape)

정규화, 확장 전 데이터 셋: (368088, 7)(368088,)

```
ex_X = PolynomialFeatures(degree=2, include_bias=False).fit_transform(nor_X)
print( ex_X.shape )
```

(368088, 35)

```
select = SelectPercentile(score_func=f_regression, percentile=50)
select.fit(X_train, y_train)
```


피쳐엔지니어링 후 모델 평가

test_size 7 1 train_score 36.59598 100 99.7034	2 3 12 95.90891	9	2	2
train_score 36.59598 100 99.703 ²	95 90891	05.0005:		
	33.3003	1 95.90874	98.70071	99.3295
test_score 36.58995 98.17498 98.7809	95.82315	95.83771	98.70042	99.3096
MAE 549.3485 62.98522 52.9886	128.0361	1 132.7087	66.15616	46.94483
MSE 543689.7 15865.89 10501.9	35935.81	37620.58	11195.99	5947.822
RMSE 737.3531 125.9599 102.479	189.5674	193.9603	105.8111	77.12212
NMAE 4.108543 0.078663 0.09112	0.78111	0.851044	0.542082	0.418261

최종 모델 선택

피쳐엔지니어링 전 catboost

피쳐엔지니어링 후 catboost

학습용 : 8, 테스트용 : 2

학습용 데이터 결정계수: 0.992 테스트 데이터 결정계수: 0.992

MAE : 49.69598503900728

MSE : 6769.87718097041

RMSE : 82.27926337158355

NMAE : 0.46339975093411834

학습용 : 8, 테스트용 : 2

학습용 데이터 결정계수: 0.993 테스트 데이터 결정계수: 0.993

MAE : 46.94482718054682 MSE : 5947.821538745806

RMSE: 77.12212094299407

NMAE : 0.41826113989121205

학습용 결정계수	테스트 결정계수	MAE	MSE	RMSE	NMAE
+0.001	+0.001	-2.751158	-6,692.75506	-5.157143	-0.04513857

19년도 공급량측정

	일자[시간]구분	일자	시간	구분	구분_int	기온(°C)
0	2019-01-01 01 A	2019-01-01	1	Α	0	0.5
1	2019-01-01 02 A	2019-01-01	2	Α	0	0.5
2	2019-01-01 03 A	2019-01-01	3	Α	0	0.5
3	2019-01-01 04 A	2019-01-01	4	Α	0	0.5
4	2019-01-01 05 A	2019-01-01	5	Α	0	0.5
5	2019-01-01 06 A	2019-01-01	6	Α	0	0.5
6	2019-01-01 07 A	2019-01-01	7	Α	0	0.5
7	2019-01-01 08 A	2019-01-01	8	Α	0	0.5
8	2019-01-01 09 A	2019-01-01	9	Α	0	0.5
9	2019-01-01 10 A	2019-01-01	10	Α	0	0.5
10	2019-01-01 11 A	2019-01-01	11	Α	0	0.5
11	2019-01-01 12 A	2019-01-01	12	Α	0	0.5
12	2019-01-01 13 A	2019-01-01	13	Α	0	0.5
13	2019-01-01 14 A	2019-01-01	14	Α	0	0.5
14	2019-01-01 15 A	2019-01-01	15	Α	0	0.5
15	2019-01-01 16 A	2019-01-01	16	Α	0	0.5

19년도 공급량 90일 예측

2019-01-01 01:00 ~ 2019-03-31 24:00

최종결과 제출

162	벵릎2	벵류	0.22919	2	17일 전
163	BluBerry	2 2 2	0.2466	5	1분 전
164	TonyStank		0.33589	4	12일 전