

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name: Medical Guardian FRG01000

Trademark: Omate

Model Name: O3VC

Serial Model: S4, Medical Guardian FRG01000

Report No.: SER180108603001E

FCC ID: 2ABF5-O3VC

Prepared for

Omate Limited

Room 1101,11/F San Toi Building, No.139 Connaught Road, HongKong

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China.

Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599

Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name Omate Limited

Room 1101,11/F San Toi Building, No.139 Connaught Road,

Address......HongKong

Manufacturer's Name.....: Omate Limited

Room 1208-09, Tsinghua IT Port R&D Building, North Area,

High-Tech Park, Nanshan District, Shenzhen, China

Report No.: SER180108603001E

Product description

Product name...... Medical Guardian FRG01000

Trademark: Omate Model and/or type reference .: O3VC

Serial Model S4, Medical Guardian FRG01000

FCC 47 CFR Part 2(2.1093)

Standards ANSI/IEEE C95.1-1992 IEEE Std 1528-2013

Published RF exposure KDB procedures

This device described above has been tested by NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests Jan. 23, 2018 ~ Jan. 25, 2018

Date of Issue Feb. 08, 2018

Test Result Pass

Prepared By (Test Engineer) (Cheng Jiawen)

Approved By (Lab Manager)

% % Revision History % %

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Feb. 08, 2018	Cheng Jiawen

TABLE OF CONTENTS

1.	General Information	6
	1.1. RF exposure limits	6
	1.2. Statement of Compliance	7
	1.3. EUT Description	8
	1.4. Test specification(s)	9
	1.5. Ambient Condition	9
2.	SAR Measurement System	10
	2.1. SATIMO SAR Measurement Set-up Diagram	10
	2.2. Robot	11
	2.3. E-Field Probe	12
	2.3.1. E-Field Probe Calibration	12
	2.4. SAM phantoms	13
	2.4.1. Technical Data	13
	2.5. Device Holder	15
	2.6. Test Equipment List	16
3.	SAR Measurement Procedures	18
	3.1. Power Reference	
	3.2. Area scan & Zoom scan	18
	3.3. Description of interpolation/extrapolation scheme	
	3.4. Volumetric Scan	
	3.5. Power Drift	
4.	System Verification Procedure	21
	4.1. Tissue Verification	
	4.1.1. Tissue Dielectric Parameter Check Results	
	4.2. System Verification Procedure	
	4.2.1. System Verification Results	
5.	SAR Measurement variability and uncertainty	
	5.1. SAR measurement variability	
	5.2. SAR measurement uncertainty	
6.	RF Exposure Positions	
	6.1. Wrist watch and wrist-worn transmitters	
7.	•	
	7.1. Maximum Tune-up Limit	
	7.2. GSM Conducted Power	
	7.3. WCDMA Conducted Power	
	7.4. WLAN & Bluetooth Output Power	
	7.4.1. Output Power Results Of WLAN	
	7.4.2. Output Power Results Of Bluetooth	
8.	Antenna Location	32

Standalone	SAR test exclusion and estimated	33
SAR Resul	ts	34
10.1. SAF	R measurement results	34
10.1.1.	SAR measurement Result of GSM850	34
10.1.2.	SAR measurement Result of GSM1900	34
10.1.3.	SAR measurement Result of WCDMA Band V	35
10.1.4.	SAR measurement Result of WCDMA Band II	35
10.1.5.	SAR measurement Result of WLAN 2.4G	35
10.2. Sim	nultaneous Transmission Analysis	36
10.3. SAF	R Summation Scenario	36
Appendix	A. Photo documentation	39
Appendix	B. System Check Plots	43
Appendix	C. Plots of High SAR Measurement	50
	SAR Result 10.1. SAF 10.1.1. 10.1.2. 10.1.3. 10.1.4. 10.1.5. 10.2. Sim 10.3. SAF Appendix Appendix Appendix	Standalone SAR test exclusion and estimated SAR Results

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE

Face Limit 1.6 W/kg and Wristbands 4.0W/kg
APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for O3VC are as follows.

	Max Reported SA		
Band	1-g Front-of-Face (Separation distance of 10mm)	10-g Back-of-Wristbands (Separation distance of 0mm)	Max. SAR Summation
GSM 850	0.114	0.152	
GSM 1900	0.459	0.953	
WCDMA Band V	0.026	0.420	1.391
WCDMA Band II	0.285	0.986	
WLAN 2.4G	0.364	0.405	

NOTE: The Max. SAR Summation is calculated based on the same configuration and test position. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information					
Product Name	Medical Guardian FRG010	000			
Trademark	Omate				
Model Name	O3VC				
Serial Model	S4, Medical Guardian FRG	G01000			
FCC ID	2ABF5-O3VC				
Device Phase	Identical Prototype				
Exposure Category	General population / Unco	ntrolled environmer	nt		
Antenna	LDS Antenna				
Battery Information	DC 3.7V, 580mAh				
Device Operating Configurations					
Supporting Mode(s)	GSM 850/1900, WCDMA E	Band V/II, WLAN 2.	4G, Bluetooth		
Toot Modulation	GSM(GMSK), WCDMA(QF	PSK), WLAN(DSSS	S/OFDM),		
Test Modulation	Bluetooth (GFSK, π/4-DQF	PSK, 8DPSK)			
Device Class	В				
	Band	Tx (MHz)	Rx (MHz)		
	GSM 850	824-849	869-894		
	GSM 1900	1850-1910	1930-1990		
Operating Frequency Range(s)	WCDMA Band V 824-849		869-894		
	WCDMA Band II	1850-1910	1930-1990		
	WLAN 2.4G	2412-	2462		
	Bluetooth	2402-	2480		
	Max Number of Timeslots	in Uplink	4		
GPRS Multislot Class(12)	Max Number of Timeslots	in Downlink	4		
	Max Total Timeslot		5		
HSDPA UE Category	14				
HSUPA UE Category	6				
	4, tested with power level 5(GSM 850)				
Power Class	1, tested with power level 0(GSM 1900)				
Power Class	3, tested with power control "all 1"(WCDMA Band V)				
	3, tested with power control "all 1"(WCDMA Band II)				
	128-189-251(GSM 850)				
	512-661-810(GSM 1900)				
Test Channels (low-mid-high)	4132-4182-4233(WCDMA Band V)				
	9262-9400-9538(WCDMA Band II)				
	802.11 b/g/n:1-6-11(WLAN 2.4G)				

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)
ANSI/IEEE C95.1-1992
IEEE Std 1528-2013
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting
KDB 447498 D01 General RF Exposure Guidance
KDB 248227 D01 802.11 Wi-Fi SAR

1.5. Ambient Condition

KDB 941225 D01 3G SAR Procedures

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

Page 9 of 106

Report No.: SER180108603001E

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Report No.: SER180108603001E

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 2.5 mm

- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

Probe linearity: ±0.08 dBAxial isotropy: <0.25 dB

- Hemispherical Isotropy: <0.50 dB

- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.

- Lower detection limit: 7mW/kg

Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. SAM phantoms

Photo of SAM phantom SN 16/15 SAM119

The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000 mm Width:500 mm Height:200 mm	Gelcoat with fiberglass	3.4	0.02

230

Page 14 of 106 Report No.: SER180108603001E 500 10,08 Int 162.89 1000 400.00 49,98 SCALE 0,200

Serial Number	Left Head		Right Head		Flat Part	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μm .

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	erial Number Holder Material		Loss Tangent
SN 16/15 MSH100	Delrin	3.7	0.005

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked $\, \boxtimes \,$

	Manufacturer	Name of	Type/Model	Serial Number	Calib	ration
	Mandiacturei	Equipment	i ype/iviodei	Serial Number	Last Cal.	Due Date
\boxtimes	MVG	E FIELD PROBE	SSE2	SN 08/16 EPGO287	Sep. 18,	Sep. 17,
	10100	ETIELDTROBE	OOLZ	014 00/10 E1 00207	2017	2018
	MVG	450 MHz Dipole	SID450	SN 03/15 DIP	Apr. 06,	Apr. 05,
		100 1111 12 2 15010	0.2.00	0G450-345	2015	2018
	MVG	750 MHz Dipole	SID750	SN 03/15 DIP	Apr. 06,	Apr. 05,
			0.2.00	0G750-355	2015	2018
\boxtimes	MVG	835 MHz Dipole	SID835	SN 03/15 DIP	Apr. 06,	Apr. 05,
		000 Wii 12 Bipolo	CIDOCO	0G835-347	2015	2018
	MVG	900 MHz Dipole	SID900	SN 03/15 DIP	Apr. 06,	Apr. 05,
		000 Wii 12 Bipolo	CIDOOO	0G900-348	2015	2018
	MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP	Apr. 06,	Apr. 05,
	10100	1000 Wil 12 Dipole	0101000	1G800-349	2015	2018
\boxtimes	MVG	1900 MHz Dipole	SID1900	SN 03/15 DIP	Apr. 06,	Apr. 05,
	IVIVO	1300 Wil 12 Dipole	0101300	1G900-350	2015	2018
	MVG	2000 MHz Dipole	SID2000	SN 03/15 DIP	Apr. 06,	Apr. 05,
	IVIVO	2000 WITTE DIPORC	OIDZ000	2G000-351	2015	2018
\boxtimes	MVG	2450 MHz Dipole	SID2450	SN 03/15 DIP	Apr. 06,	Apr. 05,
	IVIVO	2400 WII IZ DIPOIC	0102400	2G450-352	2015	2018
	MVG	2600 MHz Dipole	SID2600	SN 03/15 DIP	Apr. 06,	Apr. 05,
	IVIVO	2000 WIT IZ DIPOIC	OIDZOOO	2G600-356	2015	2018
	MVG	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Apr. 06,	Apr. 05,
	IVIVO	3000 Wil 12 Dipole	000000	0N 19/14 WOA 99	2015	2018
	MVG	Liquid measurement Kit	SCLMP	SN 21/15 OCPG 72	NCR	NCR
\boxtimes	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR
\boxtimes	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR
		Universal radio				
\boxtimes	R&S	communication	CMU200	117858	Aug. 07,	Aug. 06,
		tester			2017	2018
		Wideband radio			Oct 26	Oct 25
	R&S	communication	CMW500	103917	Oct. 26,	Oct. 25,
		tester			2017	2018
	шр		0====	041010115	Aug. 07,	Aug. 06,
	HP	Network Analyzer	8753D	3410J01136	2017	2018

Page 17 of 106

Report No.: SER180108603001E

	\boxtimes	Agilent	PSG Analog Signal Generator	E8257D	MY51110112	Aug. 07, 2017	Aug. 06, 2018
	\boxtimes	Agilent	Power meter	E4419B	MY45102538	Aug. 07, 2017	Aug. 06, 2018
	\boxtimes	Agilent	Power sensor	E9301A	MY41495644	Aug. 07, 2017	Aug. 06, 2018
•	\boxtimes	Agilent	Power sensor	E9301A	US39212148	Aug. 07, 2017	Aug. 06, 2018
•	\boxtimes	MCLI/USA	Directional Coupler	CB11-20	0D2L51502	Aug. 07, 2017	Aug. 06, 2018

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For Wi-Fi/BT power measurement, use engineering software to configure EUT Wi-Fi/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- (d) Connect EUT RF port through RF cable to the power meter, and measure Wi-Fi/BT output power.

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT Wi-Fi/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to

the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz
Maximum distance from (geometric center of pr			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$
			When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one
Maximum zoom scan s	spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz}: \le 4 \text{ mm}$ $4 - 5 \text{ GHz}: \le 3 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz: } \ge 28 \text{ mm}$ $4 - 5 \text{ GHz: } \ge 25 \text{ mm}$ $5 - 6 \text{ GHz: } \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

	•							
Ingredients (% of weight)	Head Tissue							
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00
Ingredients (% of weight)				Body	Tissue			
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99

4.1.1. Tissue Dielectric Parameter Check Results

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values.

	Measured	Target T	issue	Measure	ed Tissue		
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	εr	σ (S/m)	Liquid Temp.	Test Date
Head	835	41.50	0.90	<i>1</i> 1 77	0.90	21.4 °C	Jan. 24, 2018
850	000	(39.43~43.57)	(0.86~0.94)	41.77 0.90		21.4 0	Jan. 24, 2010
Body	835	55.20	0.97	55.06	0.99	21.3 °C	Jan. 24, 2018
850	633	(52.44~57.96)	(0.92~1.01)	55.00	0.99	21.0	Jan. 24, 2016
Head	1900	40.00	1.40	39.40	1.43	21.2 °C	Jan. 25, 2018
1900	1900	(38.00~42.00)	(1.33~1.47)	39.40	1.43	21.2 C	Jan. 25, 2016
Body	1900	53.30	1.52	53.19	1.55	21.4 °C	Jan. 25, 2018
1900	1900	(50.64~55.96)	(1.44~1.59)	33.19	1.55	21.4 C	Jan. 25, 2016
Head	2450	39.20	1.80	39.49	1.78	21.4 °C	Jan. 23, 2018
2450	2430	(37.24~41.16)	(1.71~1.89)	39.49	1.70	21.4 C	Jan. 23, 2010
Body	2450	52.70	1.95	52.66	1.95	21.4 °C	Jan. 23, 2018
2450	2430	(50.07~55.33)	(1.85~2.04)	52.00	1.90	21.4 0	Jan. 25, 2010

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

System	Target SA (±10	Measured SAR (Normalized to 1W)		Liquid	Test Date		
Verification	1-g (W/Kg)	10-g (W/Kg)	1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date	
835MHz Head	9.56 (8.60~10.51)	6.22 (5.60~6.84)	9.84	6.24	21.4 °C	Jan. 24, 2018	
835MHz Body	9.48 (8.53~10.42)	6.29 (5.66~6.91)	9.31	6.21	21.3 °C	Jan. 24, 2018	
1900MHz Head	39.70 (35.73~43.67)	20.50 (18.45~22.55)	38.50	19.15	21.2 °C	Jan. 25, 2018	
1900MHz Body	38.43 (34.59~42.27)	20.34 (18.31~22.37)	39.63	18.87	21.4 °C	Jan. 25, 2018	
2450MHz Head	52.40 (47.16~57.64)	24.00 (21.60~26.40)	51.53	24.05	21.4 °C	Jan. 23, 2018	
2450MHz Body	49.32 (44.39~54.25)	22.89 (20.60~25.17)	50.15	22.21	21.4 °C	Jan. 23, 2018	

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. RF Exposure Positions

6.1. Wrist watch and wrist-worn transmitters

Refer to KDB 447498 D01. Transmitters that are built-in within a wrist watch or similar wrist-worn devices typically operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. Next to the mouth exposure requires 1-g SAR and the wrist-worn condition requires 10-g extremity SAR. The 10-g extremity and 1-g SAR test exclusions may be applied to the wrist and face exposure conditions. When SAR evaluation is required, next to the mouth use is evaluated with the front of the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The wrist bands should be strapped together to represent normal use conditions. SAR for wrist exposure is evaluated with the back of the device positioned in direct contact against a flat phantom filled with body tissue-equivalent medium. The wrist bands should be unstrapped and touching the phantom.

7. RF Output Power

7.1. Maximum Tune-up Limit

Band	Mode	The Tune-up Maximum Power (Customer Declared)(dBm)	Range	Measured Maximum Output Power(dBm)
	GSM (GMSK)	32±1	31~33	32.09
	GPRS(GMSK, 1 Tx slot)	32±1	31~33	32.09
GSM 850	GPRS(GMSK, 2 Tx slot)	31±1	30~32	31.20
	GPRS(GMSK, 3 Tx slot)	29±1	28~30	29.52
	GPRS(GMSK, 4 Tx slot)	28±1	27~29	28.53
	GSM (GMSK)	29±1	28~30	29.05
	GPRS(GMSK, 1 Tx slot)	29±1	28~30	29.04
GSM	GPRS(GMSK, 2 Tx slot)	28±1	27~29	28.51
1900	GPRS(GMSK, 3 Tx slot)	27±1	26~28	27.31
	GPRS(GMSK, 4 Tx slot)	26±1	25~27	26.51
	RMC 12.2Kbps	22±1	21~23	22.91
	HSDPA Subtest-1	21±1	20~22	21.92
	HSDPA Subtest-2	21±1	20~22	21.44
	HSDPA Subtest-3	21±1	20~22	21.46
WCDMA	HSDPA Subtest-4	21±1	20~22	21.51
Band V	HSUPA Subtest-1	21±1	20~22	21.44
	HSUPA Subtest-2	21±1	20~22	21.42
	HSUPA Subtest-3	21±1	20~22	21.38
	HSUPA Subtest-4	21±1	20~22	21.45
	HSUPA Subtest-5	21±1	20~22	21.89
	RMC 12.2Kbps	22±1	21~23	22.96
	HSDPA Subtest-1	21±1	20~22	21.93
	HSDPA Subtest-2	21±1	20~22	21.49
	HSDPA Subtest-3	21±1	20~22	21.53
WCDMA	HSDPA Subtest-4	21±1	20~22	21.48
Band V	HSUPA Subtest-1	21±1	20~22	21.50
	HSUPA Subtest-2	21±1	20~22	21.48
	HSUPA Subtest-3	21±1	20~22	21.45
	HSUPA Subtest-4	21±1	20~22	21.51
	HSUPA Subtest-5	21±1	20~22	21.92
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	802.11b	14.5±1	13.5~15.5	15.1
WLAN 2.4G	802.11g	12.5±1	11.5~13.5	12.8
2.40	802.11n-HT20	12.5±1	11.5~13.5	12.6

	802.11n-HT40	10.5±1	9.5~11.5	11.3
	BDR+EDR	3±1	2~4	3.19
Bluetooth	BLE	-5±1	-6~-4	-4.53

7.2. GSM Conducted Power

Per KDB 447498 D01, the maximum output power (including tune-up tolerance) channel is used for SAR testing and for further SAR test reduction. Therefore, the EUT was set in GSM850 GPRS (4TS) and GSM1900 GPRS (4TS).

Band GSM850	Burst-Av	eraged ou	tput Powe	r (dBm)	Frame-A	/eraged οι	tput Powe	er (dBm)
Tx Channel	Tune-up	128	189	251	Tune-up	128	189	251
Frequency (MHz)	(dBm)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8
GSM (GMSK)	33.00	32.06	32.09	32.05	23.97	23.03	23.06	23.02
GPRS(GMSK, 1 TS)	33.00	32.06	32.09	32.05	23.97	23.03	23.06	23.02
GPRS(GMSK, 2 TS)	32.00	31.20	31.20	31.18	25.98	25.18	25.18	25.16
GPRS(GMSK, 3 TS)	30.00	29.52	29.46	29.38	25.74	25.26	25.20	25.12
GPRS(GMSK, 4 TS)	29.00	28.53	28.51	28.43	25.99	25.52	25.50	25.42
Band GSM1900	Burst-Averaged output Power (dBm)				Frame-A	eraged οι	ıtput Powe	er (dBm)
Tx Channel	Tune-up	512	661	810	Tune-up	512	661	810
Frequency (MHz)	(dBm)	1850.2	1880.0	1909.8	(dBm)	1850.2	1880.0	1909.8
GSM (GMSK)	30.00	28.69	29.05	29.02	20.97	19.66	20.02	19.99
GPRS(GMSK, 1 TS)	30.00	28.69	29.04	29.01	20.97	19.66	20.01	19.98
GPRS(GMSK, 2 TS)	29.00	28.12	28.48	28.51	22.98	22.10	22.46	22.49
GPRS(GMSK, 3 TS)	28.00	27.31	27.24	27.28	23.74	23.05	22.98	23.02
GPRS(GMSK, 4 TS)	27.00	26.44	26.39	26.51	23.99	23.43	23.38	23.50

Note: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 TS) - 9.03 dB

Frame-averaged power = Maximum burst averaged power (2 TS) - 6.02 dB

Frame-averaged power = Maximum burst averaged power (3 TS) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 TS) - 3.01 dB

7.3. WCDMA Conducted Power

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

1. Release99 Setup Configuration

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 1
MCDMA Conoral Sattings	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

2.	HSDPA	Setup	Config	uration
----	-------	-------	--------	---------

	Mode	HSDPA	HSDPA	HSDPA	HSDPA
	Subtest	1	2	3	4
	Loopback Mode	Test Mod	le 1		
	Rel99 RMC	12.2kbps	RMC		
	HSDPA FRC	H-Set1			
WCDMA General	Power Control Algorithm	Algorithn	ո 2		
Settings	βc	2/15	12/15	15/15	15/15
Settings	βd	15/15	15/15	8/15	4/15
	Bd (SF)	64			
	βc/βd	2/15	12/15	15/8	15/4
	βhs	4/15	24/15	30/15	30/15
	D _{ACK}	8			
	D _{NAK}	8			
	DCQI	8			
HSDPA Specific	Ack-Nack repetition factor	3			
Settings	CQI Feedback (Table 5.2B.4)	4ms			
Coungs	CQI Repetition Factor (Table 5.2B.4)	2			
	Ahs =βhs/βc	30/15			

3. HSUPA Setup Configuration

		Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA		
		Subtest	1	2	3	4	5		
		Loopback Mode	Test Mode 1						
		Rel99 RMC	12.2kbps F	RMC					
		HSDPA FRC	H-Set1						
		HSUPA Test	HSUPA Lo	opback					
		Power Control Algorithm	Algorithm2	2					
WCDMA	General	βc	11/15	6/15	15/15	2/15	15/15		
Settings	General	βd	15/15	15/15	9/15	15/15	15/15		
Octungs		βес	209/225	12/15	30/15	2/15	24/15		
		βc/βd	11/15	6/15	15/9	2/15	15/15		
		βhs	22/15	12/15	30/15	4/15	30/15		
		βed	1309/225	94/75	47/15 47/15	56/75	134/15		
		CM (dB)	1.0	3.0	2.0	3.0	1.0		
	D _{ACK}	8							
		D_{NAK}	8						
		DCQI	8						
HSDPA	Specific	Ack-Nack repetition factor	3						
Settings	Opeomo	CQI Feedback (Table 5.2B.4)	4ms						
		CQI Repetition Factor (Table 5.2B.4)	2						
		Ahs = βhs/βc	30/15						
		D E-DPCCH	6	8	8	5	7		
		DHARQ	0	0	0	0	0		
ПСППР	Specific	AG Index	20	12	15	17	21		
HSUPA S Settings	Specific	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81		
		Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9		

4. WCDMA Conducted Power Results

- 1) Per KDB 941225 D01, SAR for Head / Hotspot / Body-worn exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- 2) Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is $\leq \frac{1}{4}$ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

Band		WCDMA	A Band V	
Tx Channel	-	4132	4182	4233
Frequency (MHz)	Tune-up	826.4	836.4	846.6
RMC 12.2Kbps	23.00	22.91	22.75	22.51
HSDPA Subtest-1	22.00	21.92	21.79	21.44
HSDPA Subtest-2	22.00	21.44	21.33	20.95
HSDPA Subtest-3	22.00	21.46	21.35	20.96
HSDPA Subtest-4	22.00	21.51	21.32	20.98
HSUPA Subtest-1	22.00	21.44	21.33	21.01
HSUPA Subtest-2	22.00	21.42	21.32	21.05
HSUPA Subtest-3	22.00	21.38	21.35	21.07
HSUPA Subtest-4	22.00	21.45	21.28	20.95
HSUPA Subtest-5	22.00	21.89	21.82	21.53
Band		WCDMA	A Band II	
Tx Channel	T	9262	9400	9538
Frequency (MHz)	Tune-up	1852.4	1880	1907.6
RMC 12.2Kbps	23.00	22.58	22.92	22.96
HSDPA Subtest-1	22.00	21.66	21.91	21.93
HSDPA Subtest-2	22.00	21.11	21.38	21.49
HSDPA Subtest-3	22.00	21.15	21.40	21.53
HSDPA Subtest-4	22.00	21.12	21.35	21.48
HSUPA Subtest-1	22.00	21.21	21.39	21.50
HSUPA Subtest-2	22.00	21.25	21.27	21.48
HSUPA Subtest-3	22.00	21.18	21.35	21.45
HSUPA Subtest-4	22.00	21.21	21.31	21.51
HSUPA Subtest-5	22.00	21.65	21.92	21.92

7.4. WLAN & Bluetooth Output Power

7.4.1. Output Power Results Of WLAN

The output power of WLAN is as following:

Mode	Channel	Frequency (MHz)	Tune-up	Output Power (dBm)
	1	2412	15.5	14.5
802.11b	6	2437	15.5	14.7
	11	2462	15.5	15.1
	1	2412	13.5	12.6
802.11g	6	2437	13.5	12.4
	11	2462	13.5	12.8
000.44	1	2412	13.5	11.7
802.11n	6	2437	13.5	12.6
(HT20)	11	2462	13.5	12.6
000 44.5	3	2422	11.5	10.6
802.11n	6	2437	11.5	11.0
(HT40)	9	2452	11.5	11.3

7.4.2. Output Power Results Of Bluetooth

The output power of Bluetooth is as following:

		Output Power (dBm)									
	Oharaal	T	Data Rates								
555 555	Channel	Tune-up	0CH	39CH	78CH						
BDR+EDR	1M	4.00	2.73	3.19	2.89						
	2M 4.00		2.31	2.66	2.23						
	3M	4.00	2.55	2.99	2.65						

	Channel Tune-up		Output Power (dBm)		
DIE	0CH	-4.00	-4.53		
BLE	19CH	-4.00	-4.57		
	39CH	-4.00	-5.14		

8. Antenna Location

9. Standalone SAR test exclusion and estimated

Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- f_(GHZ) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	P_{max}	P _{max}	Distance	f	Calculation	SAR Exclusion	SAR test
ivioue	(dBm)	(mW)	(mm)	(GHz)	Result	threshold	exclusion
Bluetooth	4	2.51	5	2.480	0.79	3.0	Yes
Bluetooth	4	2.51	5	2.480	0.79	7.5	Yes

NOTE: Standalone SAR test exclusion for Bluetooth

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f_{(GHZ)}}/x]$ W/kg for test separation distances \leq 50mm, where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Position	P_{max}	P _{max}	Distance	f	v	Estimated SAR
IVIOUE	POSITION	(dBm)	(mW)	(mm)	(GHz)	Χ	(W/Kg)
Bluetooth	Front-of-Face	4	2.51	10	2.480	7.5	0.053
Bluetooth	Back-of-Wristbands	4	2.51	5	2.480	18.75	0.042

NOTE: Estimated SAR calculation for Bluetooth

10. SAR Results

10.1. SAR measurement results

10.1.1. SAR measurement Result of GSM850

Test Position of Front-of-Face with 10mm									
Test channel	Test Mode		SAR Value (W/kg)		Conducted	Tune-up power	Scaled SAR 1-g		
/Freq.		1-g	10-g	(±5%)	power (dBm)	(dBm)	(W/Kg)		
128/824.2	GPRS(GMSK 4TS)	0.102	0.077	-0.08	28.53	29.00	0.114		
	Tes	st Positio	n of Bac	k-of-Wristl	bands with 0mm				
Test channel	Test Mode			Power Drift	Conducted	Tune-up power	Scaled SAR 10-g		
/Freq.		1-g	10-g	(±5%)	power (dBm)	(dBm)	(W/Kg)		
128/824.2	GPRS(GMSK 4TS)	0.219	0.136	3.40	28.53	29.00	0.152		

10.1.2. SAR measurement Result of GSM1900

Test Position of Front-of-Face with 10mm										
Test		SAR Value		Power	Conducted	Tune-up	Scaled			
channel	Test Mode	(W)	/kg)	Drift		power	SAR 1-g			
/Freq.		1-g	10-g	(±5%)	power (dBm)	(dBm)	(W/Kg)			
810/1909.8 GPRS(GMSK	GPRS(GMSK	0.410	0.221	-3.86	26.51	27.00	0.459			
810/1909.8	4TS)	0.410	0.221	-3.00	20.31	21.00	0.433			
	Tes	st Positio	n of Bac	k-of-Wristl	oands with 0mm					
Test		SAR	Value	Power	Conducted	Tune-up	Scaled			
channel	Test Mode	(W)	/kg)	Drift	power (dBm)	power	SAR 10-g			
/Freq.		1-g	10-g	(±5%)	power (ubili)	(dBm)	(W/Kg)			
810/1909.8	GPRS(GMSK 4TS)	1.455	0.851	3.08	26.51	27.00	0.953			

10.1.3. SAR measurement Result of WCDMA Band V

Test Position of Front-of-Face with 10mm										
Test		SAR	Value	Power	Conducted	Tune-up	Scaled			
channel	Test Mode	(W)	(W/kg)		0011010100	power	SAR 1-g			
/Freq.		1-g	10-g	(±5%)	power (dBm)	(dBm)	(W/Kg)			
4132/826.4	RMC12.2K	0.025	0.014	-4.75	22.91	23.00	0.026			
	Te	st Positio	n of Bac	k-of-Wristl	bands with 0mm					
Test		SAR	Value	Power	Conducted	Tune-up	Scaled			
channel	Test Mode	(W)	(W/kg)		0011010100	power	SAR 10-g			
/Freq.		1-g	10-g	(±5%)	power (dBm)	(dBm)	(W/Kg)			
4132/826.4	RMC12.2K	0.712	0.411	0.38	22.91	23.00	0.420			

10.1.4. SAR measurement Result of WCDMA Band II

Test Position of Front-of-Face with 10mm										
Test		SAR	Value	Power	Conducted	Tune-up	Scaled			
channel	Test Mode	(W	(W/kg)		00110000	power	SAR 1-g			
/Freq.		1-g	10-g	(±5%)	power (dBm)	(dBm)	(W/Kg)			
9538/1907.6	RMC12.2K	0.282	0.150	-2.32	22.96	23.00	0.285			
	Tes	st Positio	n of Bac	k-of-Wristl	bands with 0mm					
Test		SAR	Value	Power	Conducted	Tune-up	Scaled			
channel	Test Mode	(W)	/kg)	Drift	0011010100	power	SAR 10-g			
/Freq.		1-g	10-g	(±5%)	power (dBm)	(dBm)	(W/Kg)			
9538/1907.6	RMC12.2K	1.785	0.977	-0.06	22.96	23.00	0.986			

10.1.5. SAR measurement Result of WLAN 2.4G

Test Position of Front-of-Face with 10mm									
Test		SAR	SAR Value		Conducted	Tune-up	Scaled		
channel	Test Mode	(W)	/kg)	Drift		power	SAR 1-g		
/Freq.		1-g	10-g	(±5%)	power (dBm)	(dBm)	(W/Kg)		
11/2462	802.11 b	0.332	0.138	-4.24	15.10	15.50	0.364		
	Tes	st Positio	n of Bac	k-of-Wristl	bands with 0mm				
Test		SAR	Value	Power	Conducted	Tune-up	Scaled		
channel	Test Mode	(W)	(W/kg)		power (dBm)	power	SAR 10-g		
/Freq.		1-g	10-g	(±5%)	power (dbiri)	(dBm)	(W/Kg)		
11/2462	802.11 b	1.099	0.369	-2.41	15.10	15.50	0.405		

10.2. Simultaneous Transmission Analysis

- 1) This device supported VoIP in GPRS and WCDMA (e.g. 2rd party VoIP).
- 2) WLAN 2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3) EUT will choose each GSM and WCDMA according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 4) The Scaled SAR summation is calculated based on the same configuration and test position.

10.3. SAR Summation Scenario

Refer to FCC KDB 447498D01, simultaneous transmission SAR is compliant if,

- 1) Scalar SAR summation < 1.6W/kg for 1-g SAR, and < 4.0W/kg for 10-g SAR.
- 2) SPLSR = $(SAR_1 + SAR_2)^{1.5}$ / (min. separation distance, mm), and the peak separation distance is determined from the square root of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. If SPLSR≤0.04 for 1-g SAR and SPLSR≤ 0.10 for 10-g SAR, simultaneously transmission SAR measurement is not necessary.

To at Do althou	Scaled SAR _{MAX}		Σ1-g SAR	ODL OD	5 .
Test Position	GSM 850	WLAN 2.4G	(W/Kg)	SPLSR	Remark
Front-of-Face	0.114	0.364	0.478	n/a	n/a

NOTE: 1-g SAR Simultaneous Tx Combination of GSM850 and WLAN 2.4G.

Test Position	Scaled	Scaled SAR _{MAX}		CDI CD	Damani
	GSM 1900	WLAN 2.4G	(W/Kg)	SPLSR	Remark
Front-of-Face	0.459	0.364	0.823	n/a	n/a

NOTE: 1-g SAR Simultaneous Tx Combination of GSM1900 and WLAN 2.4G.

	Scaled SAR _{MAX}		74 · 04D		
Test Position	WCDMA Band V	WLAN 2.4G	Σ1-g SAR (W/Kg)	SPLSR	Remark
Front-of-Face	0.026	0.364	0.390	n/a	n/a

NOTE: 1-g SAR Simultaneous Tx Combination of WCDMA Band V and WLAN 2.4G.

Test Position	Scaled	Scaled SAR _{MAX}			
	WCDMA Band II	WLAN 2.4G	Σ 1-g SAR (W/Kg)	SPLSR	Remark
Front-of-Face	0.285	0.364	0.649	n/a	n/a

NOTE: 1-g SAR Simultaneous Tx Combination of WCDMA Band II and WLAN 2.4G.

T (D %	Scaled SAR _{MAX}		Σ 1-g SAR	001.00	
Test Position	GSM 850	Bluetooth	(W/Kg)	SPLSR	Remark
Front-of-Face	0.114	0.053	0.166	n/a	n/a

NOTE: 1-g SAR Simultaneous Tx Combination of GSM850 and Bluetooth.

Test Desition	Scaled SAR _{MAX}		Σ1-g SAR	CDI CD	Domark
Test Position	GSM 1900	Bluetooth	(W/Kg)	SPLSR	Remark
Front-of-Face	0.459	0.053	0.512	n/a	n/a

NOTE: 1-g SAR Simultaneous Tx Combination of GSM1900 and Bluetooth.

	Scaled SAR _{MAX}		74 - 04D		
Test Position	WCDMA Band V	Bluetooth	Σ1-g SAR (W/Kg)	SPLSR	Remark
Front-of-Face	0.026	0.053	0.078	n/a	n/a

NOTE: 1-g SAR Simultaneous Tx Combination of WCDMA Band V and Bluetooth.

	Scaled SAR _{MAX}		7.4 - 0.4 D		
Test Position	WCDMA Band II	Bluetooth	Σ1-g SAR (W/Kg)	SPLSR	Remark
Front-of-Face	0.285	0.053	0.337	n/a	n/a

NOTE: 1-g SAR Simultaneous Tx Combination of WCDMA Band II and Bluetooth.

Test Desilies	Scaled SAR _{MAX}		Σ 10-g SAR	0DI 0D	Damanda
Test Position	GSM 850	WLAN 2.4G	(W/Kg)	SPLSR	Remark
Back-of-Wristbands	0.152	0.405	0.556	n/a	n/a

NOTE: 10-g SAR Simultaneous Tx Combination of GSM850 and WLAN 2.4G.

T (D %	Scaled SAR _{MAX}		Σ 10-g SAR	001.00	
Test Position	GSM 1900	WLAN 2.4G	(W/Kg)	SPLSR	Remark
Back-of-Wristbands	0.953	0.405	1.357	n/a	n/a

NOTE: 10-g SAR Simultaneous Tx Combination of GSM1900 and WLAN 2.4G.

	Scaled SAR _{MAX}		710 ~ CAD		
Test Position	WCDMA	WLAN 2.4G	Σ 10-g SAR (W/Kg)	SPLSR	Remark
	Band V	WLAIN 2.4G	(vv/Kg)		
Back-of-Wristbands	0.420	0.405	0.824	n/a	n/a

NOTE: 10-g SAR Simultaneous Tx Combination of WCDMA Band V and WLAN 2.4G.

	Scaled SAR _{MAX}		740 - 04D		
Test Position	WCDMA Band II	WLAN 2.4G	Σ 10-g SAR (W/Kg)	SPLSR	Remark
Back-of-Wristbands	0.986	0.405	1.391	n/a	n/a

NOTE: 10-g SAR Simultaneous Tx Combination of WCDMA Band II and WLAN 2.4G.

Page 38 of 106

Report No.: SER180108603001E

Test Desition	Scaled	SAR _{MAX}	Σ10-g SAR	CDI CD	Domonto
Test Position	GSM 850	Bluetooth	(W/Kg)	SPLSR	Remark
Back-of-Wristbands	0.152	0.042	0.194	n/a	n/a

NOTE: 10-g SAR Simultaneous Tx Combination of GSM850 and Bluetooth.

T (D %	Scaled SAR _{MAX}		Σ 10-g SAR	001.00	
Test Position	GSM 1900	Bluetooth	(W/Kg)	SPLSR	Remark
Back-of-Wristbands	0.953	0.042	0.995	n/a	n/a

NOTE: 10-g SAR Simultaneous Tx Combination of GSM1900 and Bluetooth.

	Scaled SAR _{MAX}		7.40 - 0AD		
Test Position	WCDMA Band V	Bluetooth	∑10-g SAR (W/Kg)	SPLSR	Remark
Back-of-Wristbands	0.420	0.042	0.462	n/a	n/a

NOTE: 10-g SAR Simultaneous Tx Combination of WCDMA Band V and Bluetooth.

	Scaled SAR _{MAX}		740 - 04D		
Test Position	WCDMA Band II	Bluetooth	Σ 10-g SAR (W/Kg)	SPLSR	Remark
Back-of-Wristbands	0.986	0.042	1.028	n/a	n/a

NOTE: 10-g SAR Simultaneous Tx Combination of WCDMA Band II and Bluetooth.

11. Appendix A. Photo documentation

	Table of contents
Test Facility	
Product Photo	
Test Positions	
Liquid depth	

Test Facility

Measurement System SATIMO

Product Photo

Test Positions

Liquid depth

Body Position with 1900MHz head liquid depth (15.3cm)

Body Position with 1900MHz Body liquid depth (15.2cm)

Body Position with 2450MHz head liquid depth (15.2cm)

Body Position with 2450MHz Body liquid depth (15.3cm)

12. Appendix B. System Check Plots

Table of contents	
System Performance Check - SID835 - Head	
System Performance Check - SID835 - Body	
System Performance Check - SID1900 - Head	
System Performance Check - SID1900 - Body	
System Performance Check - SID2450 - Head	
System Performance Check - SID2450 - Body	

System Performance Check - SID835-Head

Date of measurement:	Jan. 24, 2018
Signal:	Communication System: CW; Frequency: 835.00MHz; Duty Cycle: 1:1.00
ConvF:	1.48
Liquid Parameters:	Relative permittivity (real part): 41.77; Conductivity (S/m): 0.90;
Device Position:	Dipole
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

System Performance Check - SID835-Body

Date of measurement:	Jan. 24, 2018
Signal:	Communication System: CW; Frequency: 835.00MHz; Duty Cycle: 1:1.00
ConvF:	1.53
Liquid Parameters:	Relative permittivity (real part): 55.06; Conductivity (S/m): 0.99;
Device Position:	Dipole
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

System Performance Check - SID1900-Head

Date of measurement:	Jan. 25, 2018
Signal:	Communication System: CW; Frequency: 1900.00MHz; Duty Cycle: 1:1.00
ConvF:	2.00
Liquid Parameters:	Relative permittivity (real part):39.40; Conductivity (S/m): 1.43;
Device Position:	Dipole
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

System Performance Check - SID1900-Body

Date of measurement:	Jan. 25, 2018
Signal:	Communication System: CW; Frequency: 1900.00MHz; Duty Cycle: 1:1.00
ConvF:	2.07
Liquid Parameters:	Relative permittivity (real part): 53.19; Conductivity (S/m): 1.55;
Device Position:	Dipole
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

System Performance Check - SID2450-Head

Date of measurement:	Jan. 23, 2018
Signal:	Communication System: CW; Frequency: 2450.00MHz; Duty Cycle: 1:1.00
ConvF:	2.18
Liquid Parameters:	Relative permittivity (real part): 39.49; Conductivity (S/m): 1.78;
Device Position:	Dipole
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

System Performance Check - SID2450-Body

Date of measurement:	Jan. 23, 2018
Signal:	Communication System: CW; Frequency: 2450.00MHz; Duty Cycle: 1:1.00
ConvF:	2.27
Liquid Parameters:	Relative permittivity (real part): 52.66; Conductivity (S/m): 1.95;
Device Position:	Dipole
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

13. Appendix C. Plots of High SAR Measurement

	Table of contents
GSM 850	
GSM 1900	
WCDMA Band V	
WCDMA Band II	
WLAN 2.4G	

GSM850_GPRS(GMSK 4TS)_Ch128_Back-of-Wristbands_0mm

Date of measurement:	Jan. 24, 2018
Signal:	Communication System: GPRS(GMSK 4TS); Frequency: 824.20MHz; Duty Cycle: 1:2.08
ConvF:	1.53
Liquid Parameters:	Relative permittivity (real part): 55.10; Conductivity (S/m):0.97;
Device Position:	Body
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

GSM1900_GPRS(GMSK 4TS)_Ch810_Back-of-Wristbands_0mm

Date of measurement:	Jan. 25, 2018
Signal:	Communication System: GPRS(GMSK 4TS); Frequency: 1909.80MHz; Duty Cycle: 1:2.08
ConvF:	2.07
Liquid Parameters:	Relative permittivity (real part): 53.19; Conductivity (S/m):1.56;
Device Position:	Body
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

WCDMA Band V_RMC 12.2Kbps_Ch4132_Back-of-Wristbands_0mm

Date of measurement:	Jan. 24, 2018
Signal:	Communication System: WCDMA-FDD(WCDMA); Frequency: 826.40MHz; Duty Cycle: 1:1.00
ConvF:	1.53
Liquid Parameters:	Relative permittivity (real part): 55.15; Conductivity (S/m): 0.97;
Device Position:	Body
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

WCDMA Band II_RMC 12.2Kbps_Ch9538_Back-of-Wristbands_0mm

Date of measurement:	Jan. 25, 2018
Signal:	Communication System: WCDMA-FDD(WCDMA); Frequency: 1907.60MHz; Duty Cycle: 1:1.00
ConvF:	2.07
Liquid Parameters:	Relative permittivity (real part): 53.18; Conductivity (S/m): 1.55;
Device Position:	Body
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

WLAN 2.4G_802.11b_Ch11_Back-of-Wristbands_0mm

Date of measurement:	Jan. 23, 2018
Signal:	Communication System: WLAN 802.11a/b/g/n/ac; Frequency: 2462.00MHz; Duty Cycle: 1:1.00
ConvF:	2.27
Liquid Parameters:	Relative permittivity (real part): 52.58; Conductivity (S/m): 1.97;
Device Position:	Body
Area Scan:	dx=8mm dy=8mm, h=5.00mm
Zoom Scan:	7x7x12, dx=4mm dy=4mm dz=2mm, h=5.00mm

14. Appendix D. Calibration Certificate

Table of contents	
E Field Probe - SN 08/16 EPGO287	
835 MHz Dipole - SN 03/15 DIP 0G835-347	
1900 MHz Dipole - SN 03/15 DIP 1G900-350	
2450 MHz Dipole - SN 03/15 DIP 2G450-352	
Extended Calibration Certificate	

COMOSAR E-Field Probe Calibration Report

Ref: ACR.261.2.17.SATU.A

Shenzhen NTEK Testing Technology Co., Ltd.
BUILDING E, FENDA SCIENCE PARK,
SANWEI COMMUNITY, XIXIANG STREET,
BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA
MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 08/16 EPGO287

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 09/18/2017

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/18/2017	Jes
Checked by:	Jérôme LUC	Product Manager	9/18/2017	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	9/18/2017	thim thethousti

	Customer Name
	NTEK TESTING
Distribution :	TECHNOLOGY
	CO., LTD.

Issue	Date	Modifications
A	9/18/2017	Initial release

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.2.17.SATU.A

TABLE OF CONTENTS

1	D	EVICE UNDER TEST	4
2	Р	RODUCT DESCRIPTION GENERAL INFORMATION	4
3	Ν	MEASUREMENT METHOD	4
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	N	MEASUREMENT UNCERTAINTY	5
5	C	ALIBRATION MEASUREMENT RESULTS	6
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6		IST OF FOLIDMENT	10