22 October 2020

One categorical variable

Model I (Regression model)

Categorical variable m levels $\Rightarrow (m-1)$ dummy variables (or indicator variables)

$$y_i = \beta_0 + \alpha_1 * g_{i,1} + \ldots + \alpha_{m-1} * g_{i,m-1} + e_i$$

for i = 1, ..., n, where $g_{i,j} = 1$ if i^{th} observation is in j^{th} level and $g_{i,j} = 0$ otherwise.

Model II (ANOVA model)

$$y_{ij} = \mu_i + e_{ij}$$

for $i = 1, ..., m, j = 1, ..., n_i$.

Remarks

- 1. Model I is the model we normally use if there are both categorical and continuous independent variables.
- 2. Model I and Model II are equivalent such that $\mu_i = \beta_0 + \alpha_i$ for i = 1, ..., m-1 and $\mu_m = \beta_0$, i.e., $\beta_0 = \mu_m$ and $\alpha_i = \mu_i \mu_m$ for i = 1, ..., m-1. Thus, the last group is called reference group.
- 3. Model II is good in both interpretation & calculation.

Based on Model II,

$$\hat{\mu}_{i} = \bar{y}_{i}.$$

$$Var(\hat{\mu}_{i}) = \frac{\sigma^{2}}{n_{i}}$$

$$Cov(\hat{\mu}_{i}, \hat{\mu}_{j}) = 0 \text{ for } i \neq j$$

$$Res.S.S. = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i.})^{2}$$

$$\Rightarrow \hat{\sigma}^{2} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i.})^{2}}{\sum_{i=1}^{m} n_{i} - m}$$

 $\Rightarrow (1 - \alpha)\%$ C.I. for μ_i :

$$\bar{y}_{i.} \pm t_{\alpha/2,(\sum_{i=1}^{m} n_i - m)} \hat{\sigma} \sqrt{\frac{1}{n_i}}$$

For testing $H_0: \mu_i = \mu_{i0}$,

$$t = \frac{\bar{y}_{i.} - \mu_{i0}}{\hat{\sigma}\sqrt{\frac{1}{n}}}$$

18

Reject H_0 if $|t_{obs}| > t_{\alpha/2,(\sum_{i=1}^{m} n_i - m)}$.

 $H_o: \mu_1 = \mu_2 = \cdots = \mu_m = \mu$ (in Model IIA) is equivalent to $H_0: \alpha_1 = \ldots = \alpha_{m-1} = 0$ (in Model I)

Res. S. S. =
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

Total S. S. =
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$

The One-way ANOVA table is given below:

Source of Variation	Sum of Squares	Degrees of freedom	Mean Square	$\begin{array}{c} \text{Computed} \\ f \end{array}$
Model	$\sum_{i=1}^{m} n_i (\bar{y}_{i.} - \bar{y}_{})^2$	m-1	$\frac{\sum\limits_{i=1}^{m}n_{i}(\bar{y}_{i}\bar{y}_{})^{2}}{m-1}$	$\frac{(\sum\limits_{i=1}^{m}n_{i}-m)\sum\limits_{i=1}^{m}n_{i}(\bar{y}_{i.}-\bar{y}_{})^{2}}{(m-1)\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n_{i}}(y_{ij}-\bar{y}_{i.})^{2}}$
Error	$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$	$\sum_{i=1}^{m} n_i - m$	$\frac{\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2}{\sum_{i=1}^{m} n_i - m}$	
Total	$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{})^2$	$\sum_{i=1}^{m} n_i - 1$		

Calculation

- 1. Total S.S. can be calculated as $\left(\sum_{i=1}^{m} n_i 1\right) S_T^2$, where S_T^2 is the sample variance for all observations.
- 2. Res.S.S. can be calculated as $\sum_{i=1}^{m} (n_i 1)S_i^2$, where S_i^2 is the sample variance for observations in the i^{th} level.
- 3. Reg.S.S. is equal to Total S.S. Res.S.S.
- 4. Or,

$$SSA = \sum_{i=1}^{m} \frac{T_{i.}^{2}}{n_{i}} - \frac{T_{..}^{2}}{N}$$
$$= \frac{1}{n} \sum_{i=1}^{m} \left(T_{i.} - \frac{T_{..}}{m} \right)^{2}$$

if $n_i = n$ for all i.