-														
	P3: Ok)												
	2020年3月13	3日 金曜日	午後	0:58										

Axisymmetric RB; Torque-free

Model

Mass properties:

I transverse moment of inertia J axial moment of inertia

 $\hat{b_i}$ central, principal

$$\overline{\overline{I}}^{B/B^*} = I(\hat{b}_1\hat{b}_1 + \hat{b}_2\hat{b}_2) + J \hat{b}_3\hat{b}_3$$

$$\overline{M}^{B^*} = \frac{{}^{N} d^{N} \overline{H}^{B_B^*}}{dt} = \overline{0} \qquad \qquad \overline{H}^{B_B^*} \text{ constant}$$

$${}^{N} \overline{H}^{B_B^*} = H \hat{h}$$

Motion of B in N can be described as the sum of 2 rotations

Summarize: Rotational motion of B in N <u>can</u> be described as a sum of two simple rotations

$${}^{N}\overline{\omega}^{C} = p \hat{h}$$
 constant mag; constant direction

$${}^{C}\bar{\omega}^{B} = s \hat{c}_{3}$$
 constant mag

if
$$s = \left(\frac{I - J}{I}\right)\omega_3$$
; $p = \frac{H}{I}$

Geometric Solution – Poinsot Construction

Solution rests on the observation that there are 2 integrals of the motion

1. Torque-free motion $\frac{{}^{N}d\overline{H}}{dt} = \overline{0}$ (most obvious)

2. Conservative System?

Check forces: no external forces internal forces for a RB do no work

Total energy constant

Total kinetic energy constant

So ${}^N \overline{\omega}{}^B$ (tip) must move on a plane $\perp \!\!\! \perp$ to \bar{H} (the invariable plane)

Further expand
$$\overline{\omega} \cdot \overline{H} = 2T_{ROT}$$

$$\frac{\omega_{1}^{2}}{(cI_{1}^{-\frac{1}{2}})^{2}} + \frac{\omega_{2}^{2}}{(cI_{2}^{-\frac{1}{2}})^{2}} + \frac{\omega_{3}^{2}}{(cI_{2}^{-\frac{1}{2}})^{2}} = 1$$

Equation of ellipsoid in terms of body fixed axes where tip of $\bar{\omega}$ develops the ellipsoid surface

Energy Ellipsoid