

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 1 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование методов прямого поиска экстремума унимодальной функции одного переменного»

Вариант 6

Выполнил: Калинин Д. В., студент группы ИУ8-31

Проверил: Коннова Н.С., доцент каф. ИУ8

1. Цель работы

Исследовать функционирование и провести сравнительный анализ различных алгоритмов прямого поиска экстремума (пассивный поиск, метод дихотомии, золотого сечения, Фибоначчи) на примере унимодальной функции одного переменного.

2. Условие задачи

На интервале [-5; 2] задана унимодальная функция одного переменного $f(x) = (1-x)^2 + e^x$. Используя метод Фибоначчи, найти интервал нахождения минимума f(x) с заданным количеством итераций. Провести сравнение с методом оптимального пассивного поиска. Результат, в зависимости от числа точек разбиения N, представить в виде таблицы.

3. Ход работы

Для наглядности построим график заданной функции и определим местонахождение её минимума:

Рисунок 1 – График исследуемой функции

Как видно из графика, функция достигает своего минимума в точке $x \approx 0.3149$. Теперь проведём программный расчет при помощи методов оптимального пассивного поиска и Фибоначчи.

Результаты этого расчёта представлены в таблицах 1 и 2:

Таблица 1 – результат работы метода пассивного поиска

Количество точек (N)	Точка минимума	
 2	 -0.3333333±2.33333333	
3	0.2500000±1.7500000	
4	0.6000000±1.7500000	
5	0.8333333±1.1666667	
6	0.0000000±1.0000000	
7	0.2500000±1.0000000	
8	0.2300000±0.8730000 0.4444444±0.7777778	
9	! **	
	0.6000000±0.7000000	
10	0.0909091±0.6363636	
11	0.2500000±0.58333333	
12	0.3846154±0.5384615	
13	0.5000000±0.5000000	
14	0.1333333±0.4666667	
15	0.2500000±0.4375000	
16	0.3529412±0.4117647	
17	0.4444444±0.3888889	
18	0.1578947±0.3684211	
19	0.2500000±0.3500000	
20	0.3333333±0.33333333	
21	0.4090909±0.3181818	
22	0.1739130±0.3043478	
23	0.2500000±0.2916667	
24	0.3200000±0.2800000	
25	0.3846154±0.2692308	
26	0.1851852±0.2592593	
27	0.2500000±0.2500000	
28	0.3103448±0.2413793	
29	0.3666667±0.23333333	
30	0.4193548±0.2258065	
31	0.2500000±0.2187500	
32	0.3030303±0.2121212	
33	0.3529412±0.2058824	
34	0.4000000±0.2000000	
35	0.2500000±0.1944444	
36	0.2972973±0.1891892	
37	0.3421053±0.1842105	
38	0.3846154±0.1794872	
39	0.2500000±0.1750000	
40	0.2926829±0.1707317	
41	0.3333333±0.1666667	
42	0.3720930±0.1627907	
43	0.2500000±0.1590909	
44	0.2888889±0.1555556	
45	0.3260870±0.1521739	
46	0.3617021±0.1489362	
47	0.2500000±0.1458333	
48	0.2857143±0.1428571	
49	0.3200000±0.1400000	
50	0.3529412±0.1372549	

51	0.2500000±0.1346154
52	0.2830189±0.1320755
	! !
53	0.3148148±0.1296296
54	0.3454545±0.1272727
55	0.3750000±0.1250000
	· ·
56	0.2807018±0.1228070
57	0.3103448±0.1206897
İ58	0.3389831±0.1186441
•	
59	0.3666667±0.1166667
160	0.2786885±0.1147541
61	0.3064516±0.1129032
	!
62	0.333333±0.1111111
63	0.3593750±0.1093750
İ64	0.2769231±0.1076923
:	· ·
65	0.3030303±0.1060606
66	0.3283582±0.1044776
İ67	0.3529412±0.1029412
! ·	!
68	0.2753623±0.1014493
69	0.3000000±0.1000000
70	0.3239437±0.0985915
!	:
71	0.3472222±0.0972222
72	0.2739726±0.0958904
 73	0.2972973±0.0945946
	!
74	0.3200000±0.0933333
75	0.3421053±0.0921053
76	0.2727273±0.0909091
	0.2948718±0.0897436
77	:
78	0.3164557±0.0886076
79	0.3375000±0.0875000
	:
80	0.2716049±0.0864198
81	0.2926829±0.0853659
82	0.3132530±0.0843373
•	:
83	0.3333333±0.0833333
84	0.3529412±0.0823529
85	0.2906977±0.0813953
	0.3103448±0.0804598
86	·
87	0.3295455±0.0795455
88	0.3483146±0.0786517
89	0.2888889±0.0777778
!	:
90	0.3076923±0.0769231
91	0.3260870±0.0760870
92	0.3440860±0.0752688
:	:
93	0.2872340±0.0744681
94	0.3052632±0.0736842
95	0.3229167±0.0729167
:	
96	0.3402062±0.0721649
97	0.2857143±0.0714286
98	0.3030303±0.0707071
·	:
99	0.3200000±0.0700000
100	0.3366337±0.0693069
101	0.2843137±0.0686275
	:
102	0.3009709±0.0679612
103	0.3173077±0.0673077
104	0.3333333±0.0666667
:	:
105	0.2830189±0.0660377
106	0.2990654±0.0654206
107	0.3148148±0.0648148
108	0.3302752±0.0642202
:	:
109	0.3454545±0.0636364
110	0.2972973±0.0630631
1111	0.3125000±0.0625000
:	:
112	0.3274336±0.0619469

```
1113
                      0.3421053±0.0614035
114
                      0.2956522±0.0608696
115
                      0.3103448±0.0603448
1116
                      0.3247863±0.0598291
1117
                      0.3389831±0.0593220
1118
                      0.2941176±0.0588235
119
                      0.3083333±0.0583333
                      0.3223140±0.0578512
120
121
                      0.3360656±0.0573770
122
                      0.2926829±0.0569106
123
                      0.3064516±0.0564516
124
                      0.3200000±0.0560000
125
                      0.3333333±0.0555556
126
                      0.2913386±0.0551181
127
                      0.3046875±0.0546875
128
                      0.3178295±0.0542636
129
                      0.3307692±0.0538462
130
                      0.2900763±0.0534351
|131
                      0.3030303±0.0530303
|132
                      0.3157895±0.0526316
133
                      0.3283582±0.0522388
134
                      0.3407407±0.0518519
135
                      0.3014706±0.0514706
136
                      0.3138686±0.0510949
137
                      0.3260870±0.0507246
138
                      0.3381295±0.0503597
139
                      0.3000000±0.0500000
```

Таблица 2 – результат работы метода Фибоначчи

Количество точек (N)	Точка минимума
1	-0.1631190±2.1631190
2	0.6631190±1.3368810
3	0.1524758±0.8262379
4	0.4680706±0.5106431
5	0.2730223±0.3155948
6	0.3935688±0.1950483
7	0.3190670±0.1205465
8	0.2730223±0.0745018
9	0.3014795±0.0460447

Построим график зависимостей погрешности от числа точек N (для оптимального пассивного поиска).

Рисунок 2 — График зависимости погрешности от числа точек для оптимального пассивного поиска

Ссылка на репозиторий с выполненной работой: https://github.com/shreddered/lab-01

4. Выводы

Данный эксперимент показал, что метод Фибоначчи эффективнее метода оптимально пассивного поиска при нахождении экстремума унимодальной функции одного переменного.

Приложение 1. Исходный код программы

Файл source/app.d

```
import algorithms;
import std.math : exp;
import std.stdio : writeln, writefln;
alias fun = (x) => (1 - x) * (1 - x) + exp(x);
int main() {
    writeln("Таблица 1 -- поиск минимума методом оптимального пассивного поиска");
    ISearcher searcher = new OptimalPassiveSearcher!fun;
    searcher.setInterval(-5, 2);
    searcher.search(0.1);

writeln;
writeln("Таблица 2 -- поиск минимума методом Фибоначчи");
searcher = new FibonacciSearcher!fun;
searcher.setInterval(-5, 2);
searcher.search(0.1);
return 0;
}
```

Файл source/algorithms/searcher.d

```
module algorithms.searcher;
interface ISearcher {
   public void setInterval(in double a, in double b);
   public void search(const double eps);
}
```

Файл source/algorithms/optimal_search.d

```
module algorithms.optimal search;
import algorithms.searcher;
import std.algorithm : map, min, minIndex;
import std.array : array;
import std.math : exp;
import std.range : iota;
import std.stdio : writeln, writefln;
class OptimalPassiveSearcher(alias func) : ISearcher {
   private double a, b;
   private double delta(in ulong n) @safe pure nothrow {
       return (_b - _a) / (n + 1);
   public override void setInterval(in double a, in double b) {
       a = a;
       _b = b;
   public override void search(const double eps = 0.1) {
       ulong n;
       writefln("|%-20s|%-20s|", "Количество точек (N)", "Точка минимума");
       writeln("|-----|");
       double ans;
       for (n = 2; delta(n) * 2 >= eps; ++n) {
           double[] x = iota(1, n + 1)
               .map! (k \Rightarrow delta(n) * k + _a)
               .array;
           ulong index = x.map!func
               .minIndex;
           ans = x[index];
           writefln("|%-20d|%- 3.7f±%-3.7f|", n, ans, delta(n));
       writeln("|-----|");
       writefln!"x = %3.7f\pm %3.7f"(ans, delta(n - 1));
```

Файл source/algorithms/fibonacci.d

```
module algorithms.fibonacci;
import algorithms.searcher;
import std.array : array;
import std.range : recurrence, take;
import std.stdio : writeln, writefln;
class FibonacciSearcher(alias func) : ISearcher {
   private double a, b;
   private pragma(inline) double interval() const @safe pure nothrow {
       return b - a;
   public override void setInterval(in double a, in double b) {
        a = a;
       b = b;
   public override void search(const double eps = 0.1) {
       // first N fibonacci numbers will be evaluated at compile time
       enum ulong N = 30;
       enum fib = recurrence!"a[n - 1] + a[n - 2]"(1, 1)
           .take(N + 3)
           .array;
       // table header
       writefln!"N = %d"(N);
       writefln("|%-20s|%-20s|", "Количество точек (N)", "Точка минимума");
       writeln("|-----|");
       // preparations
       double x1 = a + interval() * fib[N] / fib[N + 2],
             x2 = _a + _b - x1;
       double y1 = \overline{func(x1)}, y2 = func(x2);
       for (ulong k = 0; k != N && interval() >= eps; ++k) {
           if (y1 > y2) {
               _a = x1;
               x1 = x2;
               x2 = _a + _b - x1;
               y1 = y2;
              y2 = func(x2);
           else {
               b = x2;
               x2 = x1;
               x1 = _a + _b - x2;
              y2 = y1;
               y1 = func(x1);
           writefln!"|\$-20d|\$-3.7f\pm\$-3.7f|"(k + 1, (a + b) / 2,
interval() / 2);
       writeln("|-----|");
       writefln!"x = 3.7f\pm3.7f"((a + b) / 2, interval() / 2);
```

Файл source/algorithms/package.d

```
module algorithms;

public import algorithms.fibonacci;
public import algorithms.optimal_search;
public import algorithms.searcher;
```