# Direct Marketing Campaigns of Portuguese Banking Clients

DSC 423 Final Report Crystal Contreras Morgan (Masahiro) Cho Roshen Samuel Todd Lehky

## **Table of Contents**

| Abstract                                                                    | 3  |
|-----------------------------------------------------------------------------|----|
| Introduction                                                                | 4  |
| Methodology                                                                 | 5  |
| Obtaining the Dataset                                                       | 5  |
| Pre-Processing the Dataset                                                  | 6  |
| Addressing Qualitative Variables                                            | 7  |
| Model Approach and Validation                                               | 9  |
| Analysis, Results and Findings                                              | 9  |
| Exploratory Analysis                                                        | 9  |
| Checking for Collinearity                                                   | 12 |
| Selection Methods                                                           | 13 |
| Model Selection & Selection Criteria                                        | 13 |
| Outliers & Influential Points                                               | 16 |
| Improving the Model                                                         | 17 |
| Model Validation                                                            | 20 |
| Analysis of Coefficients                                                    | 22 |
| Future Work                                                                 | 23 |
| Research and References                                                     | 25 |
| Appendices                                                                  | 27 |
| Appendix A - Dependent Variable's Frequency                                 | 27 |
| Appendix B - Analysis of Maximum Likelihood Estimates                       | 28 |
| Appendix C - Pearson Correlation Coefficients                               | 29 |
| Appendix D - Comparison of Noteworthy Parameters                            | 29 |
| Appendix E - Logistic Regression on Backwards selection Method's Predictors | 30 |
| Appendix F - Full Logistic Regression on Smaller Dataset                    | 31 |
| Appendix G - Analysis of Maximum Likelihood Estimates Smaller Dataset       | 32 |
| Appendix H - Comparison of Noteworthy Parameters Small Dataset              | 32 |
| Appendix I - Final Model - Influence Diagnostics                            | 33 |
| Appendix J - Comparison of Noteworthy Parameters Training Set               | 34 |
| Appendix K - Final Model - Analysis of Maximum Likelihood Estimates         | 35 |
| Appendix L - Target Variables Frequency                                     | 35 |
| Appendix M - Classification Table                                           | 36 |

| Appendix N - Table of Target Predicted Y | 37 |
|------------------------------------------|----|
| Appendix O - Odds Ratio Estimates        | 38 |
| Appendix P - Variables Definitions       | 39 |

## **Abstract**

We set out to create a logistic regression model to effectively predict the outcomes of telemarketing campaigns selling long-term bank deposits. We first identified a dataset including research between 2008 to 2013 from a Portuguese retail bank. We began our analysis with a subset of 3,090 observations containing 20 features, 10 numerical and 10 categorical. We began by normalizing the dataset by converting categorical variables to dummy numeric variables. We then built a full logistic regression model to analyze significant variables, apply selection methods to find a subset of optimal predictors, removed outliers, and monitored for multicollinearity among independent variables. After analyzing the full model we employed the backwards and stepwise method of model selection to identify our best fit model. We identified four key performance indicators to compare each model, R-square, Akaike Information Criterion, Schwarz Criterion, and Likelihood Ratio. We concluded that the backwards selection methods out performed the full and stepwise models in three of four observed metrics. The backwards selection method had the highest r-squared and LR values of .2647, and 1,314.45 respectively. In addition, the backwards selection method produced the lowest AIC score of 1,334.45. Only the stepwise selection method outperformed the backwards method with a lower SC. We then tested the possibility of removing significant outliers as our model was only predicting 26% of the variation in

our dependent variable. Following our previous methodology we performed the same steps on a smaller dataset of 1,090 observations, removing approximately 2,000 records that had a dependent variable of 'No' and PDAYS = 999. Again, the backwards selection method out-performed the others with the exception of the Schwarz Criterion. Having identified our best fit model we continued to validate our model by splitting the data into a training and testing set. Our final model is able to correctly classify 85.1% of total relevant results. Predicted Y's are correct 84.3% among all cases and the amount of all true positives against predicted positives is 72.3%.

### Introduction

The dataset being utilized for analysis is the Bank Marketing Dataset which focuses on variables related to a marketing campaign for a financial institution in Portugal. The goal of our analysis is to use regression techniques to identify significant parameters that impact the likelihood and success rate of clients subscribing to long-term bank deposits. Through data exploration and logistic regression analyses, we aimed to produce a model that indicates the significant nominal and categorical variables on the client's response of 'yes' to making a bank term deposit from direct phone marketing campaigns.

The original dataset was obtained using a data mining approach to "...predict the success of telemarketing calls for selling bank long-term deposits. A Portugeuse retail bank was addressed, with data collected from 2008 to 2013, thus including the effects of the recent financial crisis." (Moro et al., 1). The importance of this analysis is to find key areas of focus to help improve future marketing campaigns for financial institutions in order to allocate time and effort appropriately with comparisons among models derived from logistic regression, decision trees, neural networks, and support vector machines. With inspiration from the research conducted by Moro and his team, the success rate of the telemarketing campaign will be determined with a more simplified approach that utilizes a predictive model derived solely from logistic regression and data-driven insight.

## Methodology

#### **Obtaining the Dataset**

To begin our analysis, we first examined and analyzed the "Bank Marketing

Dataset" found via Kaggle. From Kaggle, two main datasets were offered. The first

was a set of 45,211 containing 17 features (bank-additional-full.csv). The second was a

randomly selected subset of the first containing 4,119 observations & 20 features (bank-additional.csv). We chose the latter in order to fit the constraints of the assignment, as well as to avoid latency issues with SAS. From this second set, we created our own subset of the data containing 3,090 observations by removing rows that contained any null values. This final subset of 3,090 will be considered our "original dataset" and will serve as an initial platform from where further analysis is performed to create our model. The telemarketing data included the consumer information (AGE, JOB, MARITAL STATUS, EDUCATION), current campaign information (CONTACT - communication type used to contact the consumer in the past, MONTH, DAY\_OF\_THE\_WEEK, DURATION, CAMPAIGN), campaign history (PDAYS, PREVIOUS, POUTCOME), banking information (DEFAULT status, HOUSING, LOAN), and social economic information (EMP\_VAR\_RATE, CONS\_PRICE\_IDX, ERIBOR3M, NR EMPLOYED). (see Appendix P - Variables Definitions.)

#### **Pre-Processing the Dataset**

With the use of Python's Pandas library, we performed the exploratory analysis and data cleaning processes on the initial dataset. The full source included data of 4,119 records, with 20 independent variables spanning 2 years from 2008 to 2010. We began by eliminating any records with null values, which led to a reduction of 1,029 data points. As seen from the output below, a high concentration of the null values are in the default variable, which contains information of the individual having credit in default with

the bank. No interaction variables were found in the dataset, and the total quantity of independent variables remained static prior to the creation of dummy variables.

```
age
                   39
job
marital
                  11
education
                  167
default
                  803
housing
                  105
                  105
contact
                    0
month
day_of_week
duration
campaign
pdays
previous
poutcome
emp.var.rate
cons.price.idx
cons.conf.idx
euribor3m
nr.employed
dtype: int64
```

## **Addressing Qualitative Variables**

Of the 20 variables contained in the dataset, 10 were qualitative in nature requiring conversion to numeric fields. We employed the dummy variable approach to create numeric variables associated with each qualitative attribute.

The variable "Job" was split into 11 independent variables:

```
job1=(job='blue-collar');
job2=(job='services');
job3=(job='admin.');
job4=(job='self-employed');
job5=(job='technician');
job6=(job='management');
job7=(job='retired');
job8=(job='entrepreneur');
job9=(job='housemaid');
job10=(job='unemployed');
job11=(job='student');
```

"Martial" was split into 3 independent variables:

```
marital1=(marital='married');
marital2=(marital='single');
marital3=(marital='divorced');
```

"Education" was split into 6 independent variables:

```
ed0=(education='illiterate');
ed1=(education='basic.4y');
ed2=(education='basic.6y');
ed3=(education='basic.9y');
ed4=(education='high.school');
ed5=(education='professional.course');
ed6=(education='university.degree');
```

"Month" was split into 9 independent variables because the study was conducted between March and December:

```
month3=(month='mar');
month4=(month='apr');
month5=(month='may');
month6=(month='jun');
month7=(month='jul');
month8=(month='aug');
month9=(month='sep');
month10=(month='oct');
month11=(month='nov');
month12=(month='dec');
```

"Day" was split into 5 independent variables (the study was conducted Monday through Friday):

```
day1=(day_of_week='mon');
day2=(day_of_week='tue');
day3=(day_of_week='wed');
day4=(day_of_week='thu');
day5=(day_of_week='fri');
```

"Previous" was split into 3 independent variables:

```
prev_outcome1=(poutcome='failure');
prev_outcome2=(poutcome='nonexistent');
prev_outcome3=(poutcome='success');
```

Dummy variables were also created for the binary qualitative attributes as outlined below:

```
credit_default=(default='yes');
housing_loan=(housing='yes');
has_loan=(loan='yes');
cellphone=(contact='cellular');
```

#### **Model Approach and Validation**

With our dependent variable being "Target" (output being either 'Yes' or 'No'), we proceeded to: use logistic regression analysis to first fit and analyze our model with all significant variables, apply selection methods to find a subset of optimal predictors, remove outliers and strong influential points as needed, and analyze for multicollinearity. Based on this analysis, we also explored the effect of our model on a smaller subset of data by removing approximately 2,000 variables that had a "Target" output of "No" and PDAYS value of 999 that signifies that the client had not previously been contacted.

## **Analysis, Results and Findings**

#### **Exploratory Analysis**

For the original dataset, we first evaluated the frequencies of the output of our dependent variable of interest to confirm that we have enough observations to perform our analysis. With our understanding of needing at least 10 - 30 observations per variable, we determined that at a minimum we would require 530 variables (since we have 53 variables now with the dummy variables we incorporated). We also noticed that the breakdown between the frequencies of 'No' vs 'Yes' is significant (88% vs 12% respectively). (see Appendix A - Dependent Variables Estimates)

#### Next, we performed logistic regression analysis on the full model, as follows:

MODEL target (event='1') = age duration campaign pdays previous emp\_var\_rate cons\_price\_idx cons\_conf\_idx euribor3m

nr\_employed job1 job2 job3 job4 job5 job6 job7 job8 job9 job10 job11 marital1 marital2 marital3 ed0 ed1 ed2 ed3 ed4 ed5 ed6

credit\_default housing\_loan has\_loan cellphone month3 month4 month5 month6 month7 month8 month9 month10 month11

month12 day1 day2 day3 day4 day5 prev\_outcome1 prev\_outcome2 prev\_outcome3

```
log(target=1/target=0) = -140.5 + 0.00374*AGE + 0.00495*DURATION - 0.0983*CAMPAIGN - 0.00051*PDAYS +
0.0936*PREVIOUS - 0.8707*EMP_VAR_RATE + 1.3895*CONS_PRICE_IDX + 0.0574*CONS_CONF_IDX - 0.1219*EURIBOR3M
 + 0.00166*NR_EMPLOYED + 0*JOB1 - 0.140*JOB2 + 0.0103*JOB3 + 0*JOB4 + 0*JOB5 + 0*JOB6 -0.1491*JOB7 + 0*JOB8 +
0*JOB9 + 0*JOB10 + 0.1511*JOB11 + 0.2928*MARITAL1 + 0.3349*MARITAL2 + 0*MARITAL3 + 0*ED0 - 0.3319*ED1 + 0.02*ED2
  - 0.0675*ED3 + 0*ED4 + 0*ED5 + 0*ED6 - 7.2688*CREDIT_DEFAULT + 0.0448*HOUSING_LOAN - 0.1193*HAS_LOAN +
   1.1239*CELLPHONE + 2.0781*MONTH3 - 0.3086*MONTH4 - 0.7321*MONTH5 + 0.1957*MONTH6 - 0.4074*MONTH7 +
  0.1525*MONTH8 - 0.2815*MONTH9 + 0.003*MONTH10 - 0.73*MONTH11 + 0*MONTH12 + 0.2922*DAY1 + 0.1155*DAY2 +
  0.3240*DAY3 + 0.2963*DAY4 + 0*DAY5 - 0.5637*PREV_OUTCOME1 + 0*PREV_OUTCOME2 + 0.8015*PREV_OUTCOME3
                                         Where job1=1 when job='blue-collar',
                                             job2=1 when job='services',
                                             job3=1 when job='admin.',
                                          job4=1 when job='self-employed',
                                            job5=1 when job='technician',
                                          job6=1 when job='management',
                                              job7=1 when job='retired',
                                           job8=1 when job='entrepreneur',
                                            job9=1 when job='housemaid',
                                          job10=1 when job='unemployed',
                                             job11=1 when job='student',
                                          marital1=1 when marital='married',
                                           marital2=1 when marital='single',
                          marital3=1 when marital='divorced' (which could also mean widowed),
                                          ed0=1 when education='illiterate',
                                          ed1=1 when education='basic.4y',
```

```
ed2=1 when education='basic.6y',
       ed3=1 when education='basic.9y',
     ed4=1 when education='high.school',
 ed5=1 when education='professional.course',
   ed6=1 when education='university.degree',
      credit_default=1 when default='yes',
     housing_loan=1 when housing='yes',
         has_loan=1 when loan='yes',
      cellphone=1 when contact='cellular',
    cellphone=0 when contact='telephone',
         month3=1 when month='mar',
         month4=1 when month='apr',
        month5=1 when month='may',
         month6=1 when month='jun',
         month7=1 when month='jul',
         month8=1 when month='aug',
         month9=1 when month='sep',
        month10=1 when month='oct',
        month11=1 when month='nov',
        month12=1 when month='dec'.
       day1=1 when day_of_week='mon',
       day2=1 when day_of_week='tue',
       day3=1 when day_of_week='wed',
       day4=1 when day_of_week='thu',
        day5=1 when day_of_week='fri',
  prev_outcome1=1 when poutcome='failure',
prev_outcome2=1 when poutcome='nonexistent',
 prev_outcome3=1 when poutcome='success',
            target=1 when y='yes'.
```

From this analysis, we observed that there are a few variables that have a high p-value and would be considered insignificant (e.g. age, jobs, education, etc). The

parameters with the highest influence on the outcome are DURATION with a standard estimate of 0.7197 and EMP\_VAR\_RATE (employee variable rate) with a standard estimate of -0.7663. The top 2 predictors that have a significant effect on the odds of TARGET=1 (client subscribing to a long-term deposit) was CREDIT\_DEFAULT with a parameter estimate of -7.2688 & MONTH3 (March) with estimate 2.078 (see Appendix B - Analysis of Maximum Likelihood Estimates). According to our results, the top 2 predictors with the highest influence are not considered insignificant.

## **Checking for Collinearity**

We also did a preliminary analysis to check for any multicollinearity amongst the non-categorical variables. "The Pearson correlation coefficient is a linear correlation coefficient, which is used to reflect the linear correlation of two normal continuous variables" (Honghui and Yong, 11635) (see <a href="Appendix C - Pearson Correlation">Appendix C - Pearson Correlation</a>
Coefficients).

From evaluating the Pearson Correlation Coefficients, we found a few noteworthy variables with strong multicollinearity: EURIBOR3M & EMP\_VAR\_RATE (Pearson correlation coefficient of 0.96753), EURIBOR3M & NR\_EMPLOYED (Pearson correlation coefficient of 0.94228) and NR\_EMPLOYED & EMP\_VAR\_RATE (Pearson correlation coefficient of 0.8906).

#### **Selection Methods**

After analyzing the full model, we ran a few selection methods to find the optimal model for our data set. We utilized backward and stepwise selection methods. The final outputs for these selection methods are as follows:

<u>Backwards:</u> DURATION, <u>EMP\_VAR\_RATE</u>, <u>CONS\_PRICE\_IDX</u>, <u>CONS\_CONF\_IDX</u>, CELLPHONE, <u>MONTH3</u>, <u>MONTH8</u>, <u>PREV\_OUTCOME3</u>

<u>Stepwise:</u> DURATION, CONS\_CONF\_IDX, NR\_EMPLOYED, CELLPHONE, MONTH3, MONTH5, MONTH6, PREV\_OUTCOME3

#### **Model Selection & Selection Criteria**

In order to determine which model would be better to use, we compared specific selection criteria between the top 2 contending models: M1 (variables chosen by the backwards selection method) & M2 (variables chosen by stepwise selection method). The model returned by forward selection performed slightly worse than M1 & M2 in terms of selection criteria, & was hence dismissed from the comparison for best model.

The selection criteria we used to determine the best model consisted of R-Square (R2), Akaike Information Criterion (AIC), Schwarz Criterion (SC), and Likelihood Ratio (LR). We also compared the most influential predictors each model chose to analyze them at a more granular level.

For R2 and LR, we want the model with the highest value. The higher the R2 value, the more the predictors selected are said to explain the variation in the model. LR is similar to an F-test, which tests the global null hypothesis ( $H_0$ ). This tests our Goodness-of-Fit. Parameters with P-values < 0.05 are considered significant in the prediction of the outcome of 1 for the Dependent Variable, and therefore reject the  $H_0$ .

For AIC and SC we look for the lowest value (see <u>Appendix D - Comparison of Noteworthy Parameters</u>). AIC (Akaike Information Criterion) and SC (Schwarz Criterion) are additional measures of goodness of fit. AIC and SC are affected (penalized) by the number of insignificant predictors in the model. The best fit model using these criteria explains the greatest amount of variation using the fewest possible variables.

Most of the predictors overlapped, with the exception of the ones highlighted in red above. MONTH5 (May) was seen as significant in the stepwise selection method. This is biased because it is the month with the most calls (981).

MONTH3 (March) followed as significant. This was the first month of the campaign and had the 2nd lowest frequency (42). Finally, MONTH6 (June) followed as significant. This month was close to the median, with frequency of calls at 365.

In order to check for multicollinearity, we used the CORRB option in our Logistic Regression's MODEL statement, which checks "the correlation of the coefficients of these variables in the model" (Slide 40, lecture 7). The final model chosen (M1) did not present multicollinearity among predictors. All the predictors selected had a correlation value of < 0.7.



#### Backwards:

|                | -  | inalysis of | Maximum           | Likelihood Er      | timates           |                          |
|----------------|----|-------------|-------------------|--------------------|-------------------|--------------------------|
| Parameter      | DF | Estimate    | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq        | Standardized<br>Estimate |
| Intercept      | 1  | -134.2      | 15.3303           | 76.5990            | <.0001            |                          |
| duration       | 1  | 0.00483     | 0.000276          | 305.2364           | <.0001            | 0.7027                   |
| emp_var_rate   | 1  | -0.9219     | 0.0731            | 159.2522           | <.0001            | -0.8113                  |
| cons_price_idx | 1  | 1.4043      | 0.1644            | 72.9584            | <.0001            | 0.4536                   |
| cons_conf_idx  | 1  | 0.0649      | 0.0149            | 19.0724            | <.0001            | 0.1700                   |
| cellphone      | 1  | 1.2008      | 0.2495            | 23.1612            | <.0001<br>✓<.0001 | 0.3083                   |
| month3         | 1  | 2.5969      | <b>U</b> 3971     | 42.7622            | V<.0001           | 0.1658                   |
| month6         | 1  | 0.7439      | <b>~</b> 0.2348   | 10.0429            | 0.0015            | 0.1324                   |
| month8         | 1  | 0.6644      | 0.2438            | 7.4246             | 0.0064            | 0.1344                   |
| prev_outcome3  | 1  | 1.4984      | 0.2440            | 37.7175            | V<.0001           | 0.1646                   |

#### Stepwise:



Based on our selection criteria, the variables selected by Backwards selection returned t

|                                                                                   |         | Full Model | Backwards<br>Selection<br>Method (M1) | Stepwise<br>Selection<br>Method (M2) |
|-----------------------------------------------------------------------------------|---------|------------|---------------------------------------|--------------------------------------|
|                                                                                   | n       | 3090       | 3090                                  | 3090                                 |
|                                                                                   | k       | 54         | 9                                     |                                      |
| highest                                                                           | RSQUARE | 0.2697     | 0.2647                                | 0.2637                               |
| lowest                                                                            | AIC     | 1371.033   | 1334.452                              | 1336.414                             |
| lowest                                                                            | SC      | 1606.434   | 1394.811                              | 1390.738                             |
| highest                                                                           | LR      | 971.3739   | 1314.452                              | 945.9924                             |
| (Most Influential<br>Predictor)<br>Standardized<br>Estimates for:<br>EMP_VAR_RATE |         | -0.7663    | -0.8113                               |                                      |
| CONS_PRICE_IDX                                                                    |         | 0.4488     |                                       | 0.1269                               |
| MONTH5                                                                            |         | -0.1879    | 0.1550                                | -0.1058                              |
| MONTH8                                                                            |         | 0.0308     | 0.1344                                |                                      |
| NR_EMPLOYED                                                                       |         | 0.0701     |                                       | -0.5223                              |

#### **Outliers & Influential Points**

That being said, our R2 value for the backward selection output is still considerably low (0.2647). In an attempt to improve the R2 value, we analyzed the possibility of removing significant outliers and influential points using SAS's IPLOTS and INFLUENCE options. With the amount of observations that we have in our dataset, we removed outliers that had a Pearson and Deviance Residual that was greater than 3.

This led to us removing the following data observations: 94, 190, 219, 406, 416, 860, 940, 969, 1012, 1093, 1012, 1119, 1323, 1448, 1499, 1500, 1580, 1693, 1797, 2143, 3082. Indeed removing these observations improved our R2, AIC, SC and LR values (see Appendix E - Logistic Regression on Backwards selection method's Predictors).

#### Improving the Model

We also explored the possibility of improving our model by testing it on a smaller version of the dataset. To do this, we removed approximately 2,000 records that had a dependent variable of 'No' and pdays = 999. We chose these parameters to remove observations from because we didn't have enough DV = 'yes' (our target class), and had an abundance of pdays for which the client had not been previously contacted (symbolized by the value 999). This decreased our breakdown of 'No' vs 'Yes' from a 88% to 12% (approximately) split to a 66% to 34% split. The final count for the smaller subset is 1,090 records.

Following the same steps as we did before, we performed full logistic regression on the variables within this smaller dataset (see <u>Appendix F - Full Logistic Regression</u> on <u>Smaller Dataset</u> and <u>Appendix G - Analysis of Maximum Likelihood Estimates</u>

Smaller Dataset). Full model for the new subset:

log(target=1/target=0) = -401.3 + 0.0136\*AGE + 0.006\*DURATION - 0.117\*CAMPAIGN + 0.0015\*PDAYS + 0.276\*PREVIOUS - 1.759 \*EMP\_VAR\_RATE + 3.16 \*CONS\_PRICE\_IDX + 0.08\*CONS\_CONF\_IDX - 0.55\*EURIBOR3M + 0.02\*NR\_EMPLOYED + 0\*JOB1 - 0.21\*JOB2 0.09\*JOB3 + 0\*JOB4 + 0\*JOB5 + 0\*JOB6 -0.47\*JOB7 + 0\*JOB8 + 0\*JOB9 + 0\*JOB10 - 0.0009\*JOB11 + 0.48\*MARITAL1 + 0.63\*MARITAL2 + 0\*MARITAL3 + 0\*ED0 - 1.0567\*ED1 - 0.11\*ED2 - 0.2\*ED3 + 0\*ED4 + 0\*ED5 + 0\*ED6 - 9.3

```
*CREDIT_DEFAULT - 0.04 *HOUSING_LOAN - 0.04*HAS_LOAN + 1.45*CELLPHONE + 2.97*MONTH3 - 0.34*MONTH4 -
    0.56*MONTH5 - 0.41*MONTH6 - 0.61*MONTH7 + 0.89*MONTH8 + 1.29 *MONTH9 + 0.9*MONTH10 - 0.5*MONTH11 +
0*MONTH12 + 0.39*DAY1 + 0.24*DAY2 + 0.43*DAY3 + 0.31*DAY4 + 0*DAY5 - 0.89*PREV_OUTCOME1 + 0*PREV_OUTCOME2
                                               + 0.94*PREV_OUTCOME3
                                           Where job1=1 when job='blue-collar',
                                               job2=1 when job='services',
                                               job3=1 when job='admin.',
                                            job4=1 when job='self-employed',
                                             job5=1 when job='technician',
                                            job6=1 when job='management',
                                               job7=1 when job='retired',
                                            job8=1 when job='entrepreneur',
                                             job9=1 when job='housemaid',
                                            job10=1 when job='unemployed',
                                               job11=1 when job='student',
                                            marital1=1 when marital='married',
                                            marital2=1 when marital='single',
                            marital3=1 when marital='divorced' (which could also mean widowed),
                                            ed0=1 when education='illiterate',
                                            ed1=1 when education='basic.4y',
                                            ed2=1 when education='basic.6y',
                                            ed3=1 when education='basic.9y',
                                           ed4=1 when education='high.school',
                                       ed5=1 when education='professional.course',
                                        ed6=1 when education='university.degree',
                                           credit_default=1 when default='yes',
                                           housing_loan=1 when housing='yes',
                                              has_loan=1 when loan='yes',
                                           cellphone=1 when contact='cellular',
                                          cellphone=0 when contact='telephone',
                                              month3=1 when month='mar',
```

month4=1 when month='apr',

```
month5=1 when month='may',
         month6=1 when month='jun',
         month7=1 when month='jul',
        month8=1 when month='aug',
        month9=1 when month='sep',
        month10=1 when month='oct',
        month11=1 when month='nov',
        month12=1 when month='dec',
      day1=1 when day_of_week='mon',
       day2=1 when day_of_week='tue',
      day3=1 when day_of_week='wed',
       day4=1 when day_of_week='thu',
       day5=1 when day_of_week='fri',
  prev_outcome1=1 when poutcome='failure',
prev_outcome2=1 when poutcome='nonexistent',
 prev_outcome3=1 when poutcome='success',
           target=1 when y='yes'.
```

We then performed the same stepwise (M12) and backwards (M13) selection methods to find the optimal predictors for the model (see <u>Appendix H - Comparison of Noteworthy Parameters Small Dataset</u>). We found in our analysis the parameters improved significantly. The backwards selection method (M13) returned the best statistics of the 2 models, with the exception of SC value. We continued our analysis on each model in order to get a well-rounded idea of which model to choose.

Next, we determined if any multi-collinearity issues existed among the independent variables chosen. CONS\_PRICE\_IDX & EMP\_VAR\_RATE had a correlation value of -0.95. NR\_EMPOLYED & CONS\_PRICE\_IDX had a correlation

value of 0.91. EMP\_VAR\_RATE & CONS\_PRICE\_IDX had a correlation value of 0.96. Since the number-of-employees predictor had one of the highest non-significant p-value (0.019), & is a quarterly indicator, we removed that one and reran our model. After that we no longer had a correlation value >.9 amongst our selected predictors, and the SC value increased slightly.

To further improve the models, we searched for and removed any outliers that had a Pearson and Deviance Residual greater than 3. This led to us to remove the following data observations: 1082, 1045, 418, 320, 318, 261, 248, 230, 26, 66, 11 (see <a href="Appendix I - Final Model - Influence Diagnostics">Appendix I - Final Model - Influence Diagnostics</a>). We repeated this process until we reached satisfactory selection criteria values (R2, AIC, SC and LR respectively). By this time, the statistics measuring which model was best became pretty close. We selected M12 as our final model since it had less predictors with about equal accuracy.

#### **Model Validation**

Satisfied with the improvement of our accuracy metrics on the final model, we proceeded to split the data into a training and testing set. 60% of the data was used for the training set, and the remainder for the test set. After comparing the metrics produced by the backwards & stepwise selection methods done on the training set, we proceeded to move forward with the Stepwise model for the training set since the scores between the 2 models were similar but the Stepwise model it used has less

observations, which is preferred. (see <u>Appendix J - Comparison of Noteworthy</u> Parameters Training Set).

The training dataset, after cleaning, contains 1,070 total observations, 364 of which are Y=1. The probability of getting 'Y' in the entire test set is P(Y=1/N) = 364/1,070 = 0.34 = 34%. That will be our cutoff/threshold value (see Appendix L - Target Variables Frequency). We have 706 samples of 'no' = 65.98% probability, and 364 samples of 'yes' = 34.02% probability. Odds(y=1) = 0.34/0.66, which means that the odds of event Y = 1 occurring is 0.515-to-1. Odds(y=0) = 0.66/0.34, results in the odds that event Y=0 occurs is 1.94-to-1. This means we have a higher chance of failure, in other words, it increases the odds of the client not subscribing to a long-term bank deposit.

Computing the predicted probability on SAS confirmed that the range 0.34-0.35 was optimal for getting the highest combined score of sensitivity & specificity (see <a href="Appendix M - ClassificationTable">Appendix M - ClassificationTable</a>). This model is able to make true predictions for customers that will put in a deposit about 85.1% of the time based on the independent variables associated.

**Sensitivity or Recall** is the percentage of total relevant results correctly classified by the model. The formula is *TP/(TP+FN)*, which translates into 120/(120+21), which is approximately equal to 0.851, or 85.1%.

**Accuracy** tells us how many predicted y's were correct among all cases.

Formula: (TP+TN)/(TP+TN+FN+FP) $(120 + 241)/(241+46+21+120) \approx 0.843 = 84.3\%$ 

**Precision** is our "exactness", or the amount of all the true positives against all the predicted positives.

Formula: TP/(TP+FP) $120/(120+46) \approx 0.7229 = 72.3\%$ 

See Appendix N - Table of target by Predicted Y.

#### General Equation for Final Model:

log(target=1/target=0) = 102.2 + 0.009\*DURATION + 0.08\*CONS\_CONF\_IDX - 0.02\*NR\_EMPLOYED + 1.08\*CELLPHONE + 5\*MONTH3 + 1.8\*MONTH6 + 0.9\*MONTH8

Where cellphone=1 when contact='cellular',

cellphone=0 when contact='telephone',

month3=1 when month='mar',

month6=1 when month='jun',

month8=1 when month='aug',

target=1 when y='yes'.

#### **Analysis of Coefficients**

In order to interpret the effect of each independent variable on the target in the final logistic regression model we must first retransform the beta coefficients. In addition, we can only consider a single parameter's effect on the dependent variable

holding all other variables constant. Consider marketing campaigns where the contact equals CELLPHONE, the beta coefficient in the final model is 1.0795. We would then calculate the constant e raised to the power of the coefficient,  $e^{1.0795}$  = 2.9432. We can then take the result less 1 multiplied by 100 to get, (2.9432 - 1)\*100 = 194.32. We can now say that the percentage increase in likelihood that marketing campaigns target will result in a yes when contact equals CELLPHONE is 194.32%, holding all other variables constant, with a 95% confidence that the average increase is between 28% (1.28-1)\*100 and 576% (6.768-1)\*100.

| Parameter     | Estimate  | (e <sup>B</sup> -1)*100 | 95% Wald<br>Confidence Limits |         | Re-trans<br>Confiden |           |
|---------------|-----------|-------------------------|-------------------------------|---------|----------------------|-----------|
| Duration      | 0.00935   | 0.94                    | 1.008                         | 1.011   | 0.80                 | 1.10      |
| cons_conf_idx | 0.08370   | 8.73                    | 1.033                         | 1.145   | 3.30                 | 14.50     |
| nr_employed   | (0.02030) | (2.01)                  | 0.976                         | 0.984   | (2.40)               | (1.60)    |
| cellphone     | 1.07950   | 194.32                  | 1.280                         | 6.768   | 28.00                | 576.80    |
| month3        | 4.99630   | 14,686.50               | 14.418                        | 999.999 | 1,341.80             | 99,899.90 |
| month6        | 1.80970   | 510.86                  | 2.493                         | 14.967  | 149.30               | 1,396.70  |
| month8        | 0.93170   | 153.88                  | 1.091                         | 5.906   | 9.10                 | 490.60    |

## **Future Work**

Extracting the most beneficial characteristics of a dataset proves to be difficult due to the necessity of an in-depth analysis and investigation into the various independent variables and correlation values. However, in future works, valuable insight can be further derived from a more comprehensive dataset and sampling rate.

Cohesively, avenues worth exploring may be those that expand on the applicability to

the broader financial markets. "...predicting customer behavior is one of the challenges of indirect marketing analysis. They also discussed big data visualization methods for the marketing industry...[that may] solve problems such as purchase behavior, review ratings, customer loyalty, customer, lifetime value, sales, profit, and brand visibility" (Alaa Abu-Srhan 1)". Insights derived from the analysis performed on this dataset can have broad effects that benefit different facets of customer-oriented interactions. By expanding on this established framework, we can pursue ventures that bring enrichment towards decision-making processes to provide tangible business solutions. The authors that collected the original dataset noted their interest in future work of collecting "more client based data, in order to check if high quality predictive models can be achieved without contact-based information." (Cortez et al. 5). Additionally, with the implementation of sophisticated classification algorithms such as random forests and artificial neural networks, a more accurate model may be produced to aid in the prediction of subscription rates for term deposits. In conclusion, the advancement of the modeling efforts can be taken down a plethora of paths, as long as the end-goal remains the focal point: finding the most optimal way of selling long-term bank deposits to customers.

#### **Research and References**

Alaa Abu-Srhan, Sanaa A zghoul, Bara'a Alhammad, Rizik Al-Sayyed. "Visualization and Analysis in Bank Marketing Prediction." Thesai.org, International Journal of Advanced Computer Science and Applications, 7 Nov. 2019,

https://thesai.org/Downloads/Volume10No7/Paper 85-Visualization and Analysis in B ank Direct Marketing.pdf

Cortez, Paulo, et al. "Using Data Mining for Bank Direct Marketing: An Application of the CRISP-DM Methodology". Conference Paper. October 2011. *Departamento de Sistemas de Informação DSI - Engenharia da Programação e dos Sistemas Informáticos*, EUROSIS-ETI, <a href="http://hdl.handle.net/1822/14838">http://hdl.handle.net/1822/14838</a>.

Honghui, Xu, and Deng Yong. Dependent Evidence Combination Based on Shearman

Coefficient and Pearson Coefficient. 18 December 2017. IEEE Xplore,

<a href="https://ieeexplore.ieee.org/abstract/document/8218753/citations">https://ieeexplore.ieee.org/abstract/document/8218753/citations</a>.

Janioe. "Bank Marketing Dataset Predicting Term Deposit Subscriptions." *Kaggle*, Bank Marketing Dataset Bachmann

https://www.kaggle.com/janiobachmann/bank-marketing-dataset.

Moro, Sergio, et al. "A data-driven approach to predict the success of bank telemarketing."

\*Decision Support Systems\*, vol. 62, no. June 2014, 2014, pp. 22-31. Science Direct,

https://www.sciencedirect.com/science/article/abs/pii/S016792361400061X?via%3Dihub

Onwuegbuzie, Anthony J., and Larry G. Daniel. *Uses and Misuses of the Correlation*Coefficient. Paper presented at the Annual Meeting of the Mid-South Educational Research Association. 1999. *Institute of Education Sciences*,

<a href="https://files.eric.ed.gov/fulltext/ED437399.pdf">https://files.eric.ed.gov/fulltext/ED437399.pdf</a>.

# **Appendices**

# Appendix A - Dependent Variable's Frequency

| Dependent Variable's Frequency |           |         |                      |                       |  |  |  |  |
|--------------------------------|-----------|---------|----------------------|-----------------------|--|--|--|--|
| The FREQ Procedure             |           |         |                      |                       |  |  |  |  |
| target                         | Frequency | Percent | Cumulative Frequency | Cumulative<br>Percent |  |  |  |  |
| 0                              | 2720      | 88.03   | 2720                 | 88.03                 |  |  |  |  |
| 1                              | 370       | 11.97   | 3090                 | 100.00                |  |  |  |  |

## Appendix B - Analysis of Maximum Likelihood Estimates

| Analysis of Maximum Likelihood Estimates |    |          |                   |                    |            |                          |  |  |  |  |  |
|------------------------------------------|----|----------|-------------------|--------------------|------------|--------------------------|--|--|--|--|--|
| Parameter                                | DF | Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq | Standardized<br>Estimate |  |  |  |  |  |
| Intercept                                | 1  | -140.5   | 135.6             | 1.0740             | 0.3001     |                          |  |  |  |  |  |
| age                                      | 1  | 0.00374  | 0.00882           | 0.1798             | 0.6715     | 0.0210                   |  |  |  |  |  |
| duration                                 | 1  | 0.00495  | 0.000287          | 297.7014           | <.0001     | 0.7197                   |  |  |  |  |  |
| campaign                                 | 1  | -0.0983  | 0.0515            | 3.6468             | 0.0562     | -0.1408                  |  |  |  |  |  |
| pdays                                    | 1  | -0.00051 | 0.000693          | 0.5317             | 0.4659     | -0.0580                  |  |  |  |  |  |
| previous                                 | 1  | 0.0936   | 0.1846            | 0.2569             | 0.6122     | 0.0289                   |  |  |  |  |  |
| emp_var_rate                             | 1  | -0.8707  | 0.4984            | 3.0516             | 0.0807     | -0.7663                  |  |  |  |  |  |
| cons_price_idx                           | 1  | 1.3895   | 0.8884            | 2.4460             | 0.1178     | 0.4488                   |  |  |  |  |  |
| cons_conf_idx                            | 1  | 0.0574   | 0.0286            | 4.0343             | 0.0446     | 0.1503                   |  |  |  |  |  |
| euribor3m                                | 1  | -0.1219  | 0.4826            | 0.0638             | 0.8006     | -0.1190                  |  |  |  |  |  |
| nr_employed                              | 1  | 0.00166  | 0.0111            | 0.0223             | 0.8814     | 0.0701                   |  |  |  |  |  |
| job1                                     | 0  | 0        |                   |                    |            |                          |  |  |  |  |  |
| job2                                     | 1  | -0.1410  | 0.2991            | 0.2221             | 0.6374     | -0.0222                  |  |  |  |  |  |
| job3                                     | 1  | 0.0103   | 0.1807            | 0.0033             | 0.9544     | 0.00255                  |  |  |  |  |  |
| job4                                     | 0  | 0        |                   |                    |            |                          |  |  |  |  |  |
| job5                                     | 0  | 0        |                   |                    |            |                          |  |  |  |  |  |
| job6                                     | 0  | 0        |                   |                    |            |                          |  |  |  |  |  |
| job7                                     | 1  | -0.1491  | 0.3652            | 0.1668             | 0.6830     | -0.0158                  |  |  |  |  |  |
| job8                                     | 0  | 0        |                   |                    |            |                          |  |  |  |  |  |
| job9                                     | 0  | 0        |                   |                    |            |                          |  |  |  |  |  |
| job10                                    | 0  | 0        |                   |                    |            |                          |  |  |  |  |  |
| job11                                    | 1  | 0.1511   | 0.4317            | 0.1226             | 0.7263     | 0.0110                   |  |  |  |  |  |
| marital1                                 | 1  | 0.2928   | 0.2654            | 1.2167             | 0.2700     | 0.0797                   |  |  |  |  |  |
| marital2                                 | 1  | 0.3349   | 0.2983            | 1.2609             | 0.2615     | 0.0852                   |  |  |  |  |  |
| marital3                                 | 0  | 0        |                   |                    |            |                          |  |  |  |  |  |

| ed0            | 0 | 0       |        |         |        |          |
|----------------|---|---------|--------|---------|--------|----------|
| ed1            | 1 | -0.3319 | 0.3197 | 1.0773  | 0.2993 | -0.0493  |
| ed2            | 1 | 0.0200  | 0.4126 | 0.0023  | 0.9614 | 0.00237  |
| ed3            | 1 | -0.0675 | 0.2467 | 0.0749  | 0.7843 | -0.0126  |
| ed4            | 0 | 0       |        |         |        |          |
| ed5            | 0 | 0       |        |         |        |          |
| ed6            | 0 | 0       |        |         |        |          |
| credit_default | 1 | -7.2688 | 445.6  | 0.0003  | 0.9870 | -0.0721  |
| housing_loan   | 1 | 0.0448  | 0.1508 | 0.0883  | 0.7663 | 0.0123   |
| has_loan       | 1 | -0.1193 | 0.2071 | 0.3320  | 0.5645 | -0.0244  |
| cellphone      | 1 | 1.1239  | 0.3071 | 13.3918 | 0.0003 | 0.2886   |
| month3         | 1 | 2.0781  | 0.7223 | 8.2764  | 0.0040 | 0.1327   |
| month4         | 1 | -0.3086 | 0.7192 | 0.1841  | 0.6678 | -0.0387  |
| month5         | 1 | -0.7321 | 0.6559 | 1.2457  | 0.2644 | -0.1879  |
| month6         | 1 | 0.1957  | 0.8207 | 0.0569  | 0.8115 | 0.0348   |
| month7         | 1 | -0.4074 | 0.7040 | 0.3349  | 0.5628 | -0.0837  |
| month8         | 1 | 0.1525  | 0.6435 | 0.0562  | 0.8126 | 0.0308   |
| month9         | 1 | -0.2815 | 0.7018 | 0.1609  | 0.6883 | -0.0209  |
| month10        | 1 | 0.00331 | 0.6612 | 0.0000  | 0.9960 | 0.000254 |
| month11        | 1 | -0.7337 | 0.6502 | 1.2735  | 0.2591 | -0.1339  |
| month12        | 0 | 0       |        |         |        |          |
| day1           | 1 | 0.2922  | 0.2349 | 1.5468  | 0.2136 | 0.0654   |
| day2           | 1 | 0.1155  | 0.2442 | 0.2238  | 0.6362 | 0.0254   |
| day3           | 1 | 0.3240  | 0.2471 | 1.7194  | 0.1898 | 0.0718   |
| day4           | 1 | 0.2963  | 0.2375 | 1.5562  | 0.2122 | 0.0658   |
| day5           | 0 | 0       |        |         |        |          |
| prev_outcome1  | 1 | -0.5637 | 0.3162 | 3.1781  | 0.0746 | -0.0997  |
| prev_outcome2  | 0 | 0       |        |         |        |          |
| prev_outcome3  | 1 | 0.8015  | 0.6997 | 1.3125  | 0.2519 | 0.0881   |

## Appendix C - Pearson Correlation Coefficients

| Pearson Correlation Coefficients, N = 3090<br>Prob >  r  under H0: Rho=0 |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |  |  |
|--------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--|
|                                                                          | age                | duration           | campaign           | pdays              | previous           | emp_var_rate       | cons_price_idx     | cons_conf_idx      | euribor3m          | nr_employed        |  |  |
| age                                                                      | 1.00000            | 0.04736<br>0.0085  | -0.02728<br>0.1295 | -0.05882<br>0.0011 | 0.06825<br>0.0001  | -0.05613<br>0.0018 | -0.03228<br>0.0728 | 0.08502<br><.0001  | -0.04769<br>0.0080 | -0.07032<br><.0001 |  |  |
| duration                                                                 | 0.04736<br>0.0085  | 1.00000            | -0.07997<br><.0001 | -0.05019<br>0.0053 | 0.02673<br>0.1374  | -0.02916<br>0.1051 | 0.01943<br>0.2802  | -0.03565<br>0.0475 | -0.03044<br>0.0907 | -0.04283<br>0.0173 |  |  |
| campaign                                                                 | -0.02728<br>0.1295 | -0.07997<br><.0001 | 1.00000            | 0.05558<br>0.0020  | -0.08754<br><.0001 | 0.18544<br><.0001  | 0.14771<br><.0001  | 0.02235<br>0.2142  | 0.16768<br><.0001  | 0.16434<br><.0001  |  |  |
| pdays                                                                    | -0.05882<br>0.0011 | -0.05019<br>0.0053 | 0.05558<br>0.0020  | 1.00000            | -0.58903<br><.0001 | 0.27235<br><.0001  | 0.05701<br>0.0015  | -0.10262<br><.0001 | 0.30306<br><.0001  | 0.38053<br><.0001  |  |  |
| previous                                                                 | 0.06825<br>0.0001  | 0.02673<br>0.1374  | -0.08754<br><.0001 | -0.58903<br><.0001 | 1.00000            | -0.40232<br><.0001 | -0.14689<br><.0001 | -0.02919<br>0.1047 | -0.44674<br><.0001 | -0.50199<br><.0001 |  |  |
| emp_var_rate                                                             | -0.05613<br>0.0018 | -0.02916<br>0.1051 | 0.18544<br><.0001  | 0.27235<br><.0001  | -0.40232<br><.0001 | 1.00000            | 0.74106<br><.0001  | 0.16428<br><.0001  | 0.96753<br><.0001  | 0.89064<br><.0001  |  |  |
| cons_price_idx                                                           | -0.03228<br>0.0728 | 0.01943<br>0.2802  | 0.14771<br><.0001  | 0.05701<br>0.0015  | -0.14689<br><.0001 | 0.74106<br><.0001  | 1.00000            | 0.01022<br>0.5703  | 0.63030<br><.0001  | 0.43335<br><.0001  |  |  |
| cons_conf_idx                                                            | 0.08502<br><.0001  | -0.03565<br>0.0475 | 0.02235<br>0.2142  | -0.10262<br><.0001 | -0.02919<br>0.1047 | 0.16428<br><.0001  | 0.01022<br>0.5703  | 1.00000            | 0.25184<br><.0001  | 0.09455<br><.0001  |  |  |
| euribor3m                                                                | -0.04769<br>0.0080 | -0.03044<br>0.0907 | 0.16768<br><.0001  | 0.30306<br><.0001  | -0.44674<br><.0001 | 0.96753<br><.0001  | 0.63030<br><.0001  | 0.25184<br><.0001  | 1.00000            | 0.94228<br><.0001  |  |  |
| nr_employed                                                              | -0.07032<br><.0001 | -0.04283<br>0.0173 | 0.16434<br><.0001  | 0.38053<br><.0001  | -0.50199<br><.0001 | 0.89064<br><.0001  | 0.43335<br><.0001  | 0.09455<br><.0001  | 0.94228<br><.0001  | 1.00000            |  |  |

## Appendix D - Comparison of Noteworthy Parameters

| Parameter | Parameter Objective (Highest or Lowest) | Full Model | Backwards Selection Method | Stepwise Selection  Method |
|-----------|-----------------------------------------|------------|----------------------------|----------------------------|
| RSQUARE   | highest                                 | 0.2697     | 0.2647                     | 0.2637                     |
| AIC       | lowest                                  | 1371.033   | 1334.452                   | 1336.414                   |
| SC        | lowest                                  | 1606.434   | 1394.811                   | 1390.738                   |
| LR        | highest                                 | 971.3739   | 1314.452                   | 945.9924                   |

# Appendix E - Logistic Regression on Backwards selection Method's Predictors



## Appendix F - Full Logistic Regression on Smaller Dataset

|   |                                     | Nu     | Number of Observations Read 1090 |        |            |       |             |         |              |       |    |  |
|---|-------------------------------------|--------|----------------------------------|--------|------------|-------|-------------|---------|--------------|-------|----|--|
|   |                                     | Nu     | Number of Observations Used 10   |        |            |       |             |         |              |       |    |  |
|   |                                     |        | Response Profile                 |        |            |       |             |         |              |       |    |  |
|   |                                     |        | Ord                              | ered   |            |       | To          | tal     |              |       |    |  |
|   |                                     |        | V                                | alue   | target     | Fre   | quen        | су      |              |       |    |  |
|   |                                     |        |                                  | 1      | 0          |       | 7           | 20      |              |       |    |  |
|   |                                     |        |                                  | 2      | 1          |       | 3           | 70      |              |       |    |  |
|   |                                     | F      | Proba                            | bility | / modele   | ed is | targe       | et='    | 1.           |       |    |  |
|   |                                     |        | Мо                               | del C  | onverge    | ence  | Stati       | IS      |              |       |    |  |
|   | (                                   | Conver | gence                            | crite  | rion (GC   | ONV:  | =1E-8       | 3) s    | atisf        | ied.  |    |  |
|   |                                     |        |                                  | Mod    | lel Fit St | atist | ics         |         |              |       |    |  |
|   |                                     | Crite  | rion                             | Inte   | rcept Or   |       | ntero<br>Co |         | t an<br>iate |       |    |  |
|   |                                     | AIC    |                                  |        | 1398.6     | 60    |             | 781.140 |              | 0     |    |  |
|   |                                     | SC     |                                  |        | 1403.6     | 54    |             | 84      | 6.06         | 1     |    |  |
|   |                                     | -2 Lo  | g L                              |        | 1396.6     | 60    |             | 75      | 5.14         | 0     |    |  |
| R | -S                                  | quare  | 0.44                             | 49 I   | Max-reso   | aled  | R-S         | qua     | re           | 0.61  | 59 |  |
|   |                                     | Testi  | ng G                             | loba   | l Null Hy  | poth  | esis:       | BE      | TA=          | 0     |    |  |
|   | Test Chi-Square DF Pr > ChiSq       |        |                                  |        |            |       |             |         |              |       |    |  |
|   | Likelihood Ratio 641.5199 12 <.0001 |        |                                  |        |            |       |             |         | 1            |       |    |  |
|   | S                                   | core   |                                  |        | 509.8      | 3412  | 12          |         | <            | .0001 | 1  |  |
|   | W                                   | ald    |                                  |        | 283.5      | 306   | 12          |         | <            | .0001 | 1  |  |

# Appendix G - Analysis of Maximum Likelihood Estimates Smaller Dataset

|                | Analysis of Maximum Likelihood Estimates |          |                   |                    |            |                          |  |  |  |  |  |  |
|----------------|------------------------------------------|----------|-------------------|--------------------|------------|--------------------------|--|--|--|--|--|--|
| Parameter      | DF                                       | Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq | Standardized<br>Estimate |  |  |  |  |  |  |
| Intercept      | 1                                        | -329.1   | 74.5783           | 19.4769            | <.0001     |                          |  |  |  |  |  |  |
| duration       | 1                                        | 0.00586  | 0.000432          | 184.0559           | <.0001     | 1.0908                   |  |  |  |  |  |  |
| emp_var_rate   | 1                                        | -1.9231  | 0.3476            | 30.6161            | <.0001     | -1.8057                  |  |  |  |  |  |  |
| cons_price_idx | 1                                        | 2.8345   | 0.5346            | 28.1160            | <.0001     | 0.9893                   |  |  |  |  |  |  |
| cons_conf_idx  | 1                                        | 0.0476   | 0.0209            | 5.2109             | 0.0224     | 0.1377                   |  |  |  |  |  |  |
| nr_employed    | 1                                        | 0.0119   | 0.00506           | 5.4985             | 0.0190     | 0.5694                   |  |  |  |  |  |  |
| ed1            | 1                                        | -0.8356  | 0.3559            | 5.5115             | 0.0189     | -0.1312                  |  |  |  |  |  |  |
| cellphone      | 1                                        | 1.3158   | 0.3069            | 18.3806            | <.0001     | 0.3231                   |  |  |  |  |  |  |
| month3         | 1                                        | 3.2083   | 0.5762            | 31.0053            | <.0001     | 0.2848                   |  |  |  |  |  |  |
| month8         | 1                                        | 1.5384   | 0.3654            | 17.7240            | <.0001     | 0.3094                   |  |  |  |  |  |  |
| month9         | 1                                        | 1.4696   | 0.5583            | 6.9295             | 0.0085     | 0.1368                   |  |  |  |  |  |  |
| month10        | 1                                        | 1.1709   | 0.4816            | 5.9113             | 0.0150     | 0.1154                   |  |  |  |  |  |  |
| prev_outcome1  | 1                                        | -0.6191  | 0.2610            | 5.6280             | 0.0177     | -0.1139                  |  |  |  |  |  |  |

# Appendix H - Comparison of Noteworthy Parameters Small Dataset

| Parameters  | bank_small2 Full<br>Model | bank_small2 Backwards (M7) | bank_small2 Stepwise (M8) |
|-------------|---------------------------|----------------------------|---------------------------|
| n           | 1090                      | 1090                       | 1090                      |
| k           | 54                        | 12                         | 10                        |
| RSQUARE     | 0.4538                    | 0.4449                     | 0.4402                    |
| AIC 815.37  |                           | 781.14                     | 786.36                    |
| SC 1010.135 |                           | 846                        | 841.294                   |

| LR | 659.29 | 641.5 | 632.299 |
|----|--------|-------|---------|
|    |        |       |         |

## Appendix I - Final Model - Influence Diagnostics



## Appendix J - Comparison of Noteworthy Parameters Training Set

M12 (stepwise on training M13 (backwards on M11 (all data) set) training set) 1070 642? n k 11 10 0.51 **RSQUARE** 0.53 0.5377 AIC 623 360 355.86 SC 682.95 395.78 405 LR 495.3 772.8 485

# Appendix K - Final Model - Analysis of Maximum Likelihood Estimates

| Analysis of Maximum Likelihood Estimates |    |          |                   |                    |            |
|------------------------------------------|----|----------|-------------------|--------------------|------------|
| Parameter                                | DF | Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq |
| Intercept                                | 1  | 102.2    | 11.0797           | 85.0452            | <.0001     |
| duration                                 | 1  | 0.00935  | 0.000857          | 119.1233           | <.0001     |
| cons_conf_idx                            | 1  | 0.0837   | 0.0263            | 10.1668            | 0.0014     |
| nr_employed                              | 1  | -0.0203  | 0.00222           | 83.8033            | <.0001     |
| cellphone                                | 1  | 1.0795   | 0.4249            | 6.4554             | 0.0111     |
| month3                                   | 1  | 4.9963   | 1.1877            | 17.6962            | <.0001     |
| month6                                   | 1  | 1.8097   | 0.4572            | 15.6655            | <.0001     |
| month8                                   | 1  | 0.9317   | 0.4308            | 4.6782             | 0.0305     |

## Appendix L - Target Variables Frequency

| target | Frequency | Percent | Cumulative Frequency | Cumulative<br>Percent |
|--------|-----------|---------|----------------------|-----------------------|
| 0      | 706       | 65.98   | 706                  | 65.98                 |
| 1      | 364       | 34.02   | 1070                 | 100.00                |

## Appendix M - Classification Table

|               | Classification Table |               |       |               |             |                  |                  |             |             |
|---------------|----------------------|---------------|-------|---------------|-------------|------------------|------------------|-------------|-------------|
|               | Cor                  | rect          | Inco  | rrect         | Percentages |                  |                  |             |             |
| Prob<br>Level | Event                | Non-<br>Event | Event | Non-<br>Event | Correct     | Sensi-<br>tivity | Speci-<br>ficity | Pos<br>Pred | Neg<br>Pred |
| 0.100         | 219                  | 310           | 109   | 4             | 82.4        | 98.2             | 74.0             | 66.8        | 98.7        |
| 0.150         | 216                  | 323           | 96    | 7             | 84.0        | 96.9             | 77.1             | 69.2        | 97.9        |
| 0.200         | 208                  | 331           | 88    | 15            | 84.0        | 93.3             | 79.0             | 70.3        | 95.7        |
| 0.250         | 207                  | 334           | 85    | 16            | 84.3        | 92.8             | 79.7             | 70.9        | 95.4        |
| 0.300         | 204                  | 344           | 75    | 19            | 85.4        | 91.5             | 82.1             | 73.1        | 94.8        |
| 0.350         | 200                  | 355           | 64    | 23            | 86.4        | 89.7             | 84.7             | 75.8        | 93.9        |
| 0.400         | 192                  | 363           | 56    | 31            | 86.4        | 86.1             | 86.6             | 77.4        | 92.1        |
| 0.450         | 191                  | 370           | 49    | 32            | 87.4        | 85.7             | 88.3             | 79.6        | 92.0        |
| 0.500         | 182                  | 375           | 44    | 41            | 86.8        | 81.6             | 89.5             | 80.5        | 90.1        |
| 0.550         | 174                  | 383           | 36    | 49            | 86.8        | 78.0             | 91.4             | 82.9        | 88.7        |
| 0.600         | 168                  | 390           | 29    | 55            | 86.9        | 75.3             | 93.1             | 85.3        | 87.6        |
| 0.650         | 157                  | 396           | 23    | 66            | 86.1        | 70.4             | 94.5             | 87.2        | 85.7        |
| 0.700         | 146                  | 402           | 17    | 77            | 85.4        | 65.5             | 95.9             | 89.6        | 83.9        |
| 0.750         | 137                  | 405           | 14    | 86            | 84.4        | 61.4             | 96.7             | 90.7        | 82.5        |
| 0.800         | 125                  | 407           | 12    | 98            | 82.9        | 56.1             | 97.1             | 91.2        | 80.6        |

## Classification table with calculated total for specificity & sensitivity

| prob<br>level | sensitivity<br>(Y=1) | specificity | sensitivity +<br>specificity |
|---------------|----------------------|-------------|------------------------------|
| 0.1           | 98.2                 | 74          | 172.2                        |
| 0.15          | 96.9                 | 77.1        | 174                          |
| 0.2           | 93.3                 | 79          | 172.3                        |
| 0.25          | 92.8                 | 79.7        | 172.5                        |
| 0.3           | 91.5                 | 82.1        | 173.6                        |
| 0.35          | 89.7                 | 84.7        | 174.4                        |
| 0.4           | 86.1                 | 86.6        | 172.7                        |
| 0.45          | 85.7                 | 88.3        | 174                          |
| 0.5           | 81.6                 | 89.5        | 171.1                        |

| 0.55 | 78   | 91.4 | 169.4 |
|------|------|------|-------|
| 0.6  | 75.3 | 93.1 | 168.4 |
| 0.65 | 70.4 | 94.5 | 164.9 |
| 0.7  | 65.5 | 95.9 | 161.4 |
| 0.75 | 61.4 | 96.7 | 158.1 |
| 0.8  | 56.1 | 97.1 | 153.2 |

## Appendix N - Table of Target Predicted Y

| Table o | Table of target by pred_y |     |       |  |
|---------|---------------------------|-----|-------|--|
|         | pred_y                    |     |       |  |
| target  | 0                         | 1   | Total |  |
| 0       | 241                       | 46  | 287   |  |
| 1       | 21<br>FN                  | 120 | 141   |  |
| Total   | 262                       | 166 | 428   |  |

## Appendix O - Odds Ratio Estimates

| Odds Ratio Estimates |                                          |        |          |  |  |
|----------------------|------------------------------------------|--------|----------|--|--|
| Effect               | 95% Wald<br>Point Estimate Confidence Li |        |          |  |  |
| duration             | 1.009                                    | 1.008  | 1.011    |  |  |
| cons_conf_idx        | 1.087                                    | 1.033  | 1.145    |  |  |
| nr_employed          | 0.980                                    | 0.976  | 0.984    |  |  |
| cellphone            | 2.943                                    | 1.280  | 6.768    |  |  |
| month3               | 147.870                                  | 14.418 | >999.999 |  |  |
| month6               | 6.109                                    | 2.493  | 14.967   |  |  |
| month8               | 2.539                                    | 1.091  | 5.906    |  |  |

| Association of Predicted Probabilities and<br>Observed Responses |       |       |       |  |
|------------------------------------------------------------------|-------|-------|-------|--|
| Percent Concordant 95.0 Somers' D 0.901                          |       |       |       |  |
| Percent Discordant                                               | 5.0   | Gamma | 0.901 |  |
| Percent Tied                                                     | 0.0   | Tau-a | 0.409 |  |
| Pairs                                                            | 93437 | С     | 0.950 |  |

## Appendix P - Variables Definitions

| Variable Name  | Variable Type | Variable Definition                                                                                                                                                                                                                             |  |
|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Age            | Numerical     | The age of the client                                                                                                                                                                                                                           |  |
| Duration       | Numerical     | The duration of the last contact with the client in seconds                                                                                                                                                                                     |  |
| Campaign       | Numerical     | Number of contacts performed during this campaign and for the client                                                                                                                                                                            |  |
| pdays          | Numerical     | Number of days since the client was last contacted from another campaign                                                                                                                                                                        |  |
| Previous       | Numerical     | Number of contacts performed before this campaign and for the client                                                                                                                                                                            |  |
| Emp.var.rate   | Numerical     | The variation rate of employment (quarterly)                                                                                                                                                                                                    |  |
| Cons.price.idx | Numerical     | The consumer price index (monthly)                                                                                                                                                                                                              |  |
| Euribor3m      | Numerical     | Euribor three month rate (daily)                                                                                                                                                                                                                |  |
| Nr.employed    | Numerical     | Number of employees (quarterly)                                                                                                                                                                                                                 |  |
| Job            | Categorical   | Type of job the client has                                                                                                                                                                                                                      |  |
|                |               | <ul> <li>admin</li> <li>blue-collar</li> <li>Entrepreneur</li> <li>Housemaid</li> <li>Management</li> <li>retired</li> <li>self-employed</li> <li>Services</li> <li>Student</li> <li>Technician</li> <li>Unemployed</li> <li>Unknown</li> </ul> |  |

| Marital Status | Categorical | Marital status of the client                                                         |
|----------------|-------------|--------------------------------------------------------------------------------------|
|                |             | <ul><li>divorced    widowed</li><li>married</li><li>single</li><li>unknown</li></ul> |
| Education      | Categorical | Education status of the client                                                       |
| Default        | Categorical | Whether the client has credit in default  no yes unknown                             |
| Housing        | Categorical | Whether the client has a housing loan?  no yes unknown                               |
| Loan           | Categorical | Whether the client has a personal loan?  no yes unknown                              |

| Contact     | Categorical | Communication type for the client  cellular telephone          |
|-------------|-------------|----------------------------------------------------------------|
| Month       | Categorical | Month of the last contact  ■ [jan, feb, mar,, nov, dec]        |
| Day_of_week | Categorical | Last contact day of the week  ● [mon, tue, wed, thu, fri]      |
| Poutcome    | Categorical | Outcome of the previous campaign  failure  nonexistent success |