Biologinių neuronų modeliavimas Sinapsės

http://scientopia.org/blogs/scicurious/2011/05/04/science-101-the-neuron/

Neuronai ir veikimo potencialai

Neuronai generuoja veikimo potencialus.

Veikimo potencialais vyksta informacijos keitimasis tarp neuronų, sensorinių sistemų, raumenų.

http://www.apstherapy.co.nz/wpimages/wpbea44cc2.gif

Biologinio neurono modelis

- Neuronai generuoja veikimo potencialus (angl. spikes)
- Įėjimo vektorius ir išėjimas dvejetainiai

http://lis2.epfl.ch/CompletedResearchProjects/EvolutionOfAdaptiveSpikingCircuits/

Spiking Neural Networks

- Struktūra
 - Jėjimo ir išėjimo vektoriai dvejetainiai
 - Sudaryti iš biologiškai realistiškų neuronų modelių

Spiking Neural Networks

- Panaudojimas
 - Smegenų veikimo dėsniams suprasti
 - Garsų analizės, vaizdų atpažinimo, atminties formavimo uždaviniams spręsti
 - Neuromorfinėse sistemose
- Biologinio neurono modeliai
 - Svarbūs sudarant Spiking Neural Networks

Smegenų sudėtingumas

Žmogaus smegenys:

- Sveria 1.25-1.4 kg
- 1000 000 000 neurony (10¹¹)
- 1 000 000 000 000 000 sinapsių (10¹⁵)
- Kiekvienas neuronas sudaro apie 10 000 sinapsių su kitais neuronais.
- 1mm³ yra 5x109 sinapsių.
- Daug skirtingu neuronų tipų pagal dydį, formą, molekulines savybes (12 pagrindiniu tipų smegenų žievėje)
- Neuronai sudaro funkcines grandines
- Neuronai bendrauja tarpusavyje elektriniais impulsais, vadinamais veikimo potencialais

Smegenys sudarytos is neuronų, kurie jungiasi vieni su kitais sinapsėmis

Jonų kanalai

"natrio kanalai"

išore

➤ Kanalai pralaidūs tam tikriems jonams

➤ Didelės proteinų molekulės, įsiterpusios į membraną ir jungiančios ląstelės vidų su

- ➤ Kanalai vadinami jonų vardais, pvz.
- ightharpoonup Egzistuoja jonų kanalai, pralaidūs K+, Na+, Ca²⁺, Cl-

Kur yra ląstelės vidus ir išorė?

➤ Kiti membranos proteinai aktyviai perneša jonus per membraną (jonų siurbliai)

Jonų kanalai

Jei $V_m = V_{ram}$ (ramybės potencialas), bendra srovė per membraną neteka

Kanalai veikia kaip varžos R – pasipriešinimas laisvam jonų judėjimui:

Laidumas:

$$G = \frac{1}{R}$$

Omo dėsnis:

$$V = IR$$

C – membranos talpa

R – membranos varža (atviri kanalai)

 $V_{\it ram}$ – ramybės potencialas

Presinaptinis neuronas generuoja veikimo potencialą

Neurotransmiteris išmetamas į sinapsinį plyšį

Neurotransmiteriai aktyvuoja receptorius postsinaptiniame neurone

http://www.sciencemag.org/sciext/vis2005/show/images/slide1_large_ii

Cheminių sinapsių rūšys

- Žadinančioji AMPA depoliarizuoja membraną
- · Slopinančioji GABAA, GABAB
 - GABAA tylioji slopinančioji
 - GABAB hiperpoliarizuoja membraną

Sinapsę charakterizuoja:

- Sinapsės laidumas $g_{sin}(t)$
- Sinapsės reversinis potencialas $E_{sin}(t)$

Sinapsės srovė:

$$I_{\sin} = g_{\sin}(t)(V(t) - E_{\sin})$$

Membranos potencialo lygtis

$$C\frac{d}{dt}V(t) + g_{\sin}(t)(V(t) - E_{\sin}) + \frac{V(t) - V_{ram}}{R} = 0$$

$$C\frac{d}{dt}V(t) + \sum_{i} g_{\sin,i}(t)(V(t) - E_{\sin,i}) + \frac{V(t) - V_{ram}}{R} = 0$$

Saudargiene A. 2017

13

Neurotransmiteris Kanalas		Jony srovė	Veikimas
Glutamatas	AMPA	Na+, K+	žadinantis
Glutamatas	NMDA	Na+, K+, Ca ²⁺	žadinantis
GABA	GABA _A -recept	CI-	slopinantis
GABA	GABA _B -recept	K+	slopinantis
Glicinas		CI-	slopinantis
Acetilcholinas	Nikotino recept.	Na+ , K+, Ca ²⁺	žadinantis
Acetilcholinas	Muskarino recept.	-	metabotropinis, Ca ²⁺
Serotoninas	5HT recept.	Na+, K+	miegas, nuotaika
Dopaminas	Dopamino recept.	-	metabotropinis, žad, slop, nuotaika, motyvacija, motorika

Narkotinių medžiagų veikimas

Kokainas blokuoja dopamino, serotonino grąžinimą

į presinaptinį aksoną

LSD stimuliuoja serotonino receptorius

Alkoholis slopina Na+ judėjimą per membraną,

sumažina serotonino, glutamato

aktyvumą, sustiprina GABA aktyvumą

http://learn.genetics.utah.edu/content/addiction/mouse/

Computational Neuroscience

- A.L. Hodgkin ir A. Huxley 1952m. sukūrė matematinį biologinio neurono modelį.
- W. Rall 1957m. kabelių teoriją pritaikė neuronams modeliuoti.
- FitzHugh 1968m. sumodeliavo impulsų sklidimą neurono aksonais.
- M.Hines 1970m. Pradėjo kurti CABLE programinę įrangą (NEURON).
- Pirmoji Computational Neuroscience konferencija 1989m. San Franciske organizuota J.Bowers ir J.Millers.
- Platus spektras matematiniųkompiuterinių nervų sistemos struktūrų ir funkcijų modelių.

