Machine Learning in Practice: a Crash Course

Lecture 6: Linear Classification

胡津铭 DolphinDB

Recap

- Our goal (supervised learning):
 - To learn a set of discriminant functions
- Bayesian framework
 - We could design an optimal classifier if we knew:
 - $P(y_i)$: priors and $P(x|y_i)$: likelihodd
 - Using training data to estimate $P(y_i)$ and $P(x | y_i)$
 - $P(y_i|x)$ is computed and be used as the discriminant functions
- Other possible ways?
 - Directly learning discriminant functions from the training data
 - Linear Methods for Regression

Today

• Logistic Regression

Support Vector Machine

Loss Function

Discriminant Functions and Classifiers

- Set of discriminant functions: $g_i(\mathbf{x})$, $i = 1, \dots, c$ $g(\mathbf{x}) = (XX^T + \lambda \mathbf{I})^{-1}X\mathbf{y}$
- Classifier assigns a feature vector \mathbf{x} to class y_i if: $g_i(\mathbf{x}) > g_j(\mathbf{x}), \quad \forall j \neq i$

Linear Regression of an Indicator Matrix

$$g(\mathbf{x}) = (XX^T + \lambda \mathbf{I})^{-1}X\mathbf{y}$$

$$\mathbf{y} = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ 2 \\ \vdots \\ 2 \end{bmatrix}$$
 What is the problem with this approach?
$$Y = \begin{bmatrix} 1 & 0 & & & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & & & 0 \\ 0 & 1 & & & & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & 1 & \cdots & & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & & & 1 \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & & & 1 \end{bmatrix}$$

• One VS. Rest

Sigmoid function (logistic function)

- Linear Regression for classification can give us a result
 - However, it cannot give us a probability. When do we want a probability?
 - What is the assumption by linear regression in terms of loss function/metric?

•
$$\sigma(t) = \frac{e^t}{1+e^t} = \frac{1}{1+e^{-t}}$$

- It is the cumulative distribution function (CDF) of the standard logistic distribution.
- While the input can have any value from -∞ to +∞, the output takes only values between 0 and 1, hence is interpretable as probability

$$\sigma: R \to (0,1)$$

S-shaped

Logistic Regression

 Logistic Regression (LR) is a classification model used to describe the relationship between a categorical dependent variable and one or several independent variables by estimating probabilities using **sigmoid function**.

•
$$P(y_i = 1 | x_i, a) = \sigma(a^T x_i) = \frac{1}{1 + e^{-a^T x_i}}$$

•
$$P(y_i = -1 | \mathbf{x}_i, \mathbf{a}) = 1 - \sigma(\mathbf{a}^T \mathbf{x}_i) = 1 - \frac{1}{1 + e^{-a^T \mathbf{x}_i}} = \frac{1}{1 + e^{a^T \mathbf{x}_i}}$$

• $P(y_i = \pm 1 | \mathbf{x}_i, \mathbf{a}) = \sigma(y_i \mathbf{a}^T \mathbf{x}_i) = \frac{1}{1 + e^{-y_i \mathbf{a}^T \mathbf{x}_i}}$

$$P(y_i = \pm 1 | \boldsymbol{x}_i, \boldsymbol{a}) = \sigma(y_i \boldsymbol{a}^T \boldsymbol{x}_i) = \frac{1}{1 + e^{-y_i \boldsymbol{a}^T \boldsymbol{x}_i}}$$

Logistic Regression: Representation

•
$$P(y_i = \pm 1 | \mathbf{x}_i, \mathbf{a}) = \sigma(y_i \mathbf{a}^T \mathbf{x}_i) = \frac{1}{1 + e^{-y_i \mathbf{a}^T \mathbf{x}_i}}$$

• Is this a linear model or non-linear model? Hint(Consider the decision boundary)

Logistic Regression: Evaluation

- What metrics to use?
 - Accuracy, precision, recall,
- What is the **loss function**?
- Maximum likelihood estimation

•
$$P(y_i = \pm 1 | \mathbf{x}_i, \mathbf{a}) = \sigma(y_i \mathbf{a}^T \mathbf{x}_i) = \frac{1}{1 + e^{-y_i \mathbf{a}^T \mathbf{x}_i}}$$

•
$$P(D) = \prod_{i \in I} \sigma(y_i \boldsymbol{a}^T \boldsymbol{x}_i)$$

•
$$l(P(D)) = \sum_{i \in I} \log(\sigma(y_i \boldsymbol{a}^T \boldsymbol{x}_i)) = -\sum_{i \in I} \log(1 + e^{-y_i \boldsymbol{a}^T \boldsymbol{x}_i})$$

- Why log here?
- Is this a convex function?

Logistic Regression: Optimization

•
$$l(P(D)) = \sum_{i \in I} \log(\sigma(y_i \boldsymbol{a}^T \boldsymbol{x}_i)) = -\sum_{i \in I} \log(1 + e^{-y_i \boldsymbol{a}^T \boldsymbol{x}_i})$$

•
$$l(a) = -\sum_{i \in I} \log \left(1 + e^{-y_i a^T x_i}\right)$$

- How to optimize it?
- Gradient Descent!

Assumptions behind logistic regression

•
$$l(a) = -\sum_{i \in I} \log \left(1 + e^{-y_i a^T x_i}\right)$$

- It assumes the event($y_i = \pm 1$) happens with a probability p, and conforms to a Binomial Distribution (二项分布)
 - Is this a reasonable assumption? Compared with Linear Regression?
- It assumes the data can be linearly separated.
 - If it cannot be linearly separated, then approximate it with a linear separation.
- Another viewpoint: from Naïve Bayes to Logistic We want to get $\log \left(\frac{P(y_i|x)}{P(y_i|x)} \right)$ for classification
 - In Naïve Bayes, we assume features are conditionally independent, so $P(x_1, \dots x_p | y) = P(x_1 | y) \dots P(x_p | y)$ In logistics, we assume $\log \left(\frac{P(y_i | x)}{P(y_i | x)} \right) = a^T x$

Regularized Logistic Regression

•
$$E(\boldsymbol{a}) = \sum_{i \in I} \log \left(1 + e^{-y_i \boldsymbol{a}^T \boldsymbol{x}_i} \right) + \lambda \sum_{j=1}^{p} |a_j|$$

- L2-regularizer
- L1-regularizer (Sparse Logistic Regression)

Pros and Cons

• Pros:

- Binomial distribution is a good assumption for classification
 - Consequently, logistic function and its extension to multi-class classification **softmax** is one of the first-choice for classification.
- Provide a probability
 - Probability is necessary for some applications, such as ads
- Low computation, easy to optimize
 - Works pretty well in large-scale dataset, tens of millions of features and hundreads of millions of data
- Support online learning

• Cons:

- Linear model is still too simple
 - High bias, low variance

Support Vector Machine

Non-uniqueness of hyperplane classifier

Which one is better?

Binary Classification

Geometrical Margin

- Define γ as the distance from \boldsymbol{x} to the hyperplane
 - Computation: let the projection of x into the hyperplane be x_0 , then we have

$$x = x_0 + y\gamma \frac{w}{\|w\|}$$

$$w^T \left(x - y\gamma \frac{w}{\|w\|}\right) + b = 0$$

$$\gamma = y \frac{w^T x + b}{\|w\|}$$

γ: geometrical margin

Geometrical Margin

$$\gamma = y \frac{\boldsymbol{w}^T \boldsymbol{x} + b}{\|\boldsymbol{w}\|}$$

If the hyperplane moves a little, points with small γ will be affected, but points with large γ won't

Maximum Margin Classifier

- Define the margin of a dataset be the minimum margin of each data point
- Maximum margin classifier tries to achieve the maximum possible margin for a given dataset
 - Thus maximize the *confidence* of classifying the dataset
- Goal: Find the hyperplane with the largest margin

Why Maximum Margin?

- Intuitively this feels safest
- If we've made a small error in the location of the boundary, this gives us least chance of causing misclassification
- There're some theories (using VC dimension) that is related to the proposition that this is a good thing.
- If there are some noises in the data, the result may move a little bit, but still falls in the right range
- Empirically it works very well.

Maximum Margin Classifier: Representation

•
$$\max_{w,b} \gamma = \max_{w,b} \frac{y(w^T x + b)}{\|w\|}$$

- s.t., $\gamma_i \geq \gamma$
- $y(\mathbf{w}^T \mathbf{x} + b)$ can be made arbitrarily large without changing the hyperplane, so we simply fix it at $y(\mathbf{w}^T \mathbf{x} + b) = 1$

Maximum Margin Classifier: Representation

$$\bullet \max_{w,b} \frac{y(w^T x + b)}{\|w\|} \qquad \qquad \max_{w,b} \frac{1}{\|w\|} \qquad \qquad \min_{w,b} \|w\|$$

$$s.t., \gamma_i = \frac{y_i(\boldsymbol{w}^T\boldsymbol{x}_i + b)}{\|\boldsymbol{w}\|} \ge \gamma$$

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge \gamma \|\mathbf{w}\| = 1$$

Maximum Margin Classifier

- $\min_{w,b} \frac{1}{2} ||w||^2$
- $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$
- Square and a coefficient $\frac{1}{2}$ are added for the convenience of the derivation of optimization, and the minimizer of $\|\mathbf{w}\|$ and $\frac{1}{2}\|\mathbf{w}\|^2$ is obviously the same.
- How to optimize?
 - Convex optimization with constraint

Support Vector Machine

Hyper plane of maximum margin is *support*ed by those points (vectors) on the margin. Those are called Support Vectors.

Non-support vectors can move freely without affecting the position of the hyperplane as long as they don't exceed the margin.

Weakness of the Original Model

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2$$
$$y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1$$

When an outlier appear, the optimal hyperplane may be pushed far away from its original/correct place. The resultant margin will also be smaller than before.

- Red Solid: the original hyperplane
- Dark dashed: the new hyperplane

Slack Variables

Assign a slack variable ξ to each data point. That means we allow the point to deviate from the correct margin by a distance of ξ (Actually $\|\mathbf{w}\|\xi$ when considering geometrical margin).

New Objective Function

Slack variables can't be arbitrarily large, we want to minimize the sum of all slack variables

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
$$y(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

New Objective Function

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{n} \xi_i$$

$$y(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0$$

• We would pay a cost of the objective function being increased by $C \xi_i$. The parameter C controls the relative weighting between the twin goals of making the $\|\mathbf{w}\|^2$ small (makes the margin large) and of ensuring that most examples have functional margin at least 1.

Assumptions behind SVM

- The max margin classifier is a good classifier
 - If we find the max margin classifier in the training data, the generalization of this model should be good
 - Maybe it is also a max margin classifier in the test data, or at least it can avoid some noises in the training/testing data
- Is this a linear model? (Consider the decision boundary)

Pros and Cons of SVM

• Pros

- Max margin works well for classification
- A so-called kernel trick fits well with SVM (we may mention it in the following lectures)

• Cons

- Linear boundary
- When the feature space is very large, say millions of features, then the *measure* (测度) is degraded. As a result, most points may be approximately the same near to the boundary, which makes the max margin sort of meaningless
- No probability (though can add a sigmoid-like function to get a probability)

Unconstrained Optimization of SVM

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

$$y(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0$$

$$\xi_i \ge 1 - y(\mathbf{w}^T \mathbf{x}_i + b) \qquad \xi_i = \max[1 - y(\mathbf{w}^T \mathbf{x}_i + b), 0]$$

$$\min_{\mathbf{w},b} \left\{ \sum_{i=1}^n \max[1 - y(\mathbf{w}^T \mathbf{x}_i + b), 0] + \frac{1}{2C} \|\mathbf{w}\|^2 \right\}$$
Loss function
Regularizer

$$\ell(f) = \max[1 - yf, 0]$$

Hinge loss

Linear regression:
$$E(\pmb{a}) = \sum_{i \in I} (y_i - \pmb{a}^T \pmb{x}_i)^2$$

Loss function $\ell(f) = (y - f)^2 = (1 - yf)^2$ Square loss

Logistic regression:
$$E(\boldsymbol{a}) = \sum_{i \in I} \log \left(1 + e^{-y_i \boldsymbol{a}^T x_i}\right)$$
Loss function
$$\ell(f) = \log (1 + e^{-yf})$$
Logistic loss

A General formulation of classifiers

Square loss: $\ell(f) = (1 - yf)^2$

Ordinary regression

Logistic loss: $\ell(f) = \log(1 + e^{-yf})$

Logistic regression

Hinge loss: $\ell(f) = \max[1 - yf, 0]$

SVM

L2-regularizer

L1-regularizer

Loss Function

