

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

Mattia Brambilla mattia.brambilla@polimi.it

Lab 1 STATIC LOCALIZATION

7

Measurement categories and typical accuracies

ı	\sim	
L	u	
г	v	

Measurement	Model $h_i(\mathbf{u})$	Typical measurement accuracy $\sigma_{\!_{ m n,i}}$	
TOA	$d_i = \mathbf{u} - \mathbf{s}_i $	5-100m outdoor <1m indoor 3G cellular: B=4MHz, σ_t =T _c /2=125ns \rightarrow 38m 4G cellular, WiFi: B=20MHz, σ_t =T _c /2=50ns \rightarrow Ultra wideband: B=500MHz, σ_t =T _c /2=1ns \rightarrow GPS: 5-20m	
TDOA	$d_i - d_j = \mathbf{u} - \mathbf{s}_i - \mathbf{u} - \mathbf{s}_j $	10-60m outdoor <1m indoor	
AOA	$\angle (\mathbf{u} - \mathbf{s}_i)$	5°–10° (depends on antenna array aperture)	
RSS	$P_0 - 10n_P \log_{10} \frac{ \mathbf{u} - \mathbf{s}_i }{d_0}$	4-12dB	
RSS digital map	$P_{_{\mathrm{map},i}}(\mathbf{u})$	3dB	
Prof. M. Nicoli, Localization, Navigat on and Smart Mobility POLITECNICO DI			
$\mathbf{u} = \begin{bmatrix} u_x & u_y \end{bmatrix}$ USER			

Measurement error model

И

Each measurement (TOA, TDOA, AOA, RSS, digital map),

$$\rho_i = h_i(\mathbf{u}) + n_i$$

is affected by an error n_i for which a Gaussian distribution is often assumed, motivated by asymptotic arguments:

$$p(n_i) = \mathcal{N}(n_i, 0, \sigma_{los}^2)$$
 LOS conditions

$$p(n_i) = \mathcal{N}(n_i, \mu, \sigma_{nlos}^2)$$

$$\mu>0$$

$$\sigma_{nlos}>\sigma_{los}$$

$$p(n_i) = P_{los} \mathcal{N}(n_i, 0, \sigma_{los}^2) + (1 - P_{los}) \mathcal{N}(n_i, \mu, \sigma_{nlos}^2)$$
 Mixed LOS/NLOS conditions Gaussian mixture

- Bias is due to multipath, fading and syncronization errors (TOA).
- The Gaussian model is useful to derive performance bounds. The Gaussian pdf, however, is the least informative for a given variance. If measurements are non-Gaussian, algorithms should take into account any a-priori information on the statistics to improve performance.

Prof. M. Nicoli, Localization, Navigation and Smart Mobility

POLITECNICO DI MILANO

GOAL: localize an unknown user (UE) u from a set of measurements ρ available at N_{AP} Access Points (APs).

$$\boldsymbol{\rho} = [\rho_1 \, \rho_2 \, \rho_3 \, \rho_4]$$

The single measurement $\rho_i = h_i(\boldsymbol{u}, \boldsymbol{s}_i) + n_i$ is a non-linear function of the AP/UE states, corrupted by noise

non-linear function states noise

We want to estimate the position $\widehat{m{u}}$ from a set of measurements $m{
ho} = m{h}(m{u}) + m{n}$ of N_{AP}

Maximum Likelihood

$$\hat{\boldsymbol{u}}_{\mathrm{ML}} = argmax \quad p_n(\boldsymbol{\rho} \mid \boldsymbol{u})$$

since h(u) is deterministic

with Gaussian measurement errors

=
$$argmax p_n(\rho - h(u)|u)$$

$$= argmax \prod_{i=1}^{N_{AP}} p_{n_i}(\rho_i - h_i(\boldsymbol{u})|\boldsymbol{u})$$

since measurements are independent across APs

 $= argmax \quad \prod_{i=1}^{N_{AP}} \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{\left(-0.5\left(\frac{\rho_i - h_i(\mathbf{u})}{\sigma_i}\right)^2\right)}$

Mattia Brambilla - DEIB

Likelihood TOA, $N_{AP}=4$, $\sigma=10\mathrm{m}$

	Measurement	Jacobian		
Method	$h_i(oldsymbol{u})$	$[\mathbf{H}(\boldsymbol{u})]_i = \frac{\partial h_i(\boldsymbol{u})}{\partial \boldsymbol{u}}$		
TOA	$d_i = oldsymbol{u} - oldsymbol{s}_i $	$\frac{u_x-s_{i,x}}{d_i}$, $\frac{u_y-s_{i,y}}{d_i}$		
AOA	$\tan^{-1}\left(\frac{u_y - s_{i,y}}{u_x - s_{i,x}}\right)$	$-rac{u_y-s_{i,y}}{{d_i}^2}$, $rac{u_x-s_{i,x}}{{d_i}^2}$		
RSS	$P_0 - 10n_p \log_{10} \frac{ \boldsymbol{u} - \boldsymbol{s}_i }{d_0}$	$-\frac{10n_{p}}{\ln 10}\frac{u_{x}-s_{i,x}}{{d_{i}}^{2}},-\frac{10n_{p}}{\ln 10}\frac{u_{y}-s_{i,y}}{{d_{i}}^{2}}$		
TDOA	$d_i - d_j = \mathbf{u} - \mathbf{s}_i - \mathbf{u} - \mathbf{s}_j $	$\frac{u_x - s_{i,x}}{d_i} - \frac{u_x - s_{j,x}}{d_j}, \frac{u_y - s_{i,y}}{d_i} - \frac{u_y - s_{j,y}}{d_j}$		

To do

1. Define the localization scenario

2. Create a grid of evaluation points to sample the scenario

 $p = [p_x p_y]$

3. Compute the likelihood of the "ideal" measurement $\rho_i = h_i(\boldsymbol{u})$ (no noise now) with respect to each evaluation point \boldsymbol{p} : $p_{n_i}(\rho_i - h_i(\boldsymbol{p}))$

4. Plot the likelihood for each AP to show the "heatmap"

5. Compute the maximum likelihood and plot it

7. Add Gaussian noise to measurements and see what happens (home)

1. Define the localization scenario

2. Create a grid of evaluation points to sample the scenario

3. Compute the likelihood of each evaluation point $oldsymbol{p}_k$

4. Plot the likelihood for each AP to show the "heathmap"

AP

UE

$$\prod_{i=1}^{N_{AP}} p_{n_i}(\rho_i - h_i(\boldsymbol{u})|\boldsymbol{u})$$

5. Compute the maximum likelihood and plot it

AP

UE

$$\widehat{\boldsymbol{u}}_{ML} = argmax \quad \prod_{i=1}^{N_{AP}} p_{n_i}(\rho_i - h_i(\boldsymbol{u})|\boldsymbol{u})$$

To do at home...