1. AVL Trees (20 pts)

- a. Insert the following values in the given order [34, 74, 98, 2, 64, 41, 86, 59, 40, 58, 50, 56, 45, 16, 44] into an empty AVL tree. Show the tree after all insertions.
- b. Add an element to the AVL tree such that it will cause a **right rotation** of the tree. State the element and show the tree after. Use the tree from part A.
- Add an element to the AVL tree such that it will cause a left rotation of the tree.
 State the element and show the tree after. Use the tree from part B.
- Delete an element from the AVL tree such that it will cause a **double rotation** to the tree. State the element and show the **final tree** after deletion. Use the tree from part C.

a) Empty AVL tree

Insert 34

34

Insert 74

34 5 74

Insert 98

Insert 2

Insu+ 64

Insert 4

Insut 86

Insert 59

Insert 40

Insert 58

Insert 50

Insert 56

Insert 45

Insert 16

Insert 44

Final Tree

6) Right Rotation of tree

Insert 43

c) Left Rotation of tree

Insert 25

2. Heap (10 pts)

- a. Create a binary max on top heap with the keys [11, 16, 33, 36, 26, 41, 17, 84, 8, 57, 30, 71, 53, 23, 87, 95, 62]. Show the heap after all insertions.
- b. Show the heap when removing the max value 3 times. Show the steps.

a) Empty tleap

Insert 11

11

Insert 16

Insert 33

Insert 36

Insert 26

Insert 41

Insert 17

Ingert 84

Insert 8

Insert 57

Insert 30

Insert 71

Insert 53

Insert 23

84

71

33 41 53 23

26 30

b) Remove max 3 times

Tree after extracting:

Tree after extracting:

Tree after extracting:

3. Binary Trees (20 pts)

Given the following tree:

- a. Give post-order, pre-order of the tree.
- b. Give level-order and in-order of the tree
- when looking for the value 67, give the path traced by breadth first search and depth first search algorithm
- d. Given a tree with the preorder: [E, A, B, F, H, I, D, J, C, G, K] and the inorder: [B, A, F, H, I, E, D, J, C, G, K], draw the binary tree.

a) Post order:

14,5,16,20,17,21,32,45,42,67,46,63,61,23,76,70,87,92,98,94,90,85,64

Preorder:

64,23,17,5,14,20,16,61,46,42,32,21,45,67,63,85,70,76,90,87,94,92,98

b) Level-order:

64,23,85,17,61,70,90,5,20,46,63,767,87,94,14,16,42,67,92,98,32,45,21

In-order:

14,5,17,16,20,23,21,32,42,45,46,67,61,63,64,76,70,85,87,90,92,94,98

c) BFS:

6472378571776177079075720746763776787794714716742767

DFS:

64+23+17+5+14+20+16+61+46+42+32+21+45+67

