Olympiades Françaises de Mathématiques 2016-2017

Corrigé de l'envoi Numéro 1 – Arithmétique

Exercices du groupe B

 $E_{xercice 1}$. On définit une suite ainsi :

$$\left\{ \begin{array}{l} u_0 = 15, \ u_1 = 57 \\ u_n = u_{n-1} + u_{n-2} \ \ \mbox{pour tout } n \geq 2 \end{array} \right.$$

Trouver le plus grand entier k tel que $3^k \mid u_{2017}$.

Solution de l'exercice 1 Soit k l'entier cherché. Les premiers termes de la suite sont 15, 57, 72, 129, 201, 330, 541,... apparemment tous divisibles par 3. En effet, u_0 et u_1 sont multiples de 3, donc $u_2 = u_0 + u_1$ aussi. De même, u_3 est divisible par 3. Plus généralement, si u_{n-1} et u_{n-2} sont multiples de 3, alors u_n aussi. On prouve ainsi de proche en proche (par récurrence, en fait) que pour tout entier n, u_n est divisible par 3, donc $3 \mid u_{2017}$ et $k \ge 1$.

Raisonnons maintenant modulo 9 pour voir si $k \ge 2$. On trouve :

```
u_0 \equiv 6 \pmod{9}
```

 $u_1 \equiv 3 \pmod{9}$

 $u_2 \equiv 0 \pmod{9}$

 $u_3 \equiv 3 \pmod{9}$

 $u_4 \equiv 3 \pmod{9}$

 $u_5 \equiv 6 \pmod{9}$

 $u_6 \equiv 0 \pmod{9}$

 $u_7 \equiv 6 \pmod{9}$

 $u_8 \equiv 6 \pmod{9}$

 $u_9 \equiv 3 \pmod{9}$

On constate que $u_8 \equiv u_0 \pmod 9$ et $u_9 \equiv u_1 \pmod 9$, donc $u_{10} \equiv u_2 \pmod 9$, car les modulos s'additionnent. Plus généralement, on établit comme précédemment que $u_{n+8} \equiv u_n \pmod 9$ pour tout $n \in \mathbb{N}$. Ainsi, la suite $(u_n \pmod 9)$ est périodique de période 8. Or $2017 = 252 \times 8 + 1$, donc $u_{2017} \equiv u_1 \equiv 3 \pmod 9$. Donc k < 2. Conclusion : k = 1.

Remarque. Si l est un entier naturel quelconque, alors la suite (v_n) définie par $v_n = u_n \pmod l$ est périodique artir d'un certain rang. En effet, il y a $l \times l = l^2$ possibilités pour le couple (v_n, v_{n+1}) . Donc, si on regarde $(v_0, v_1), (v_1, v_2), \cdots, (v_{l^2}, v_{l^2+1})$, cela fait $l^2 + 1$ couples. D'après le principe des tiroirs (ie si on range c+1 chaussettes dans c tiroirs, un tiroir contiendra au moins 2 chaussettes), deux couples sont égaux, il existe donc $0 \le i < j \le l^2$ tels que $(v_i, v_{i+1}) = (v_j, v_{j+1})$. Autrement dit, $u_i \equiv u_j \pmod l$ et $u_{i+1} \equiv u_{j+1} \pmod l$. Donc $u_{i+2} \equiv u_{j+2} \pmod l$, soit $(v_{i+1}, v_{i+2}) = (v_{j+1}, v_{j+2})$. On en déduit de même que $v_{i+3} = v_{j+3}$, $v_{i+4} = v_{j+4}$, etc. Ainsi, (v_n) est périodique artir du rang i (au plus tard), de période i-j.

Elle peut toutefois avoir une période plus petite (exercice : montrer que la période minimale divise i - j).

Exercice 2. Trouver tous les entiers naturels n pour lesquels $2^n + 12^n + 2011^n$ est un carré parfait.

<u>Solution de l'exercice 2</u> Posons $u_n = 2^n + 12^n + 2011^n$. On regarde modulo 3: $2 \equiv -1 \pmod{3}$, $12 \equiv 0 \pmod{3}$ et $2011 \equiv 1 \pmod{3}$, donc

$$u_n \equiv (-1)^n + 0^n + 1^n \equiv (-1)^n + 1 \pmod{3}.$$

Si n est pair, $u_n \equiv 2 \pmod{3}$. Or aucun carré ne peut être congru 2 modulo 3: eneffet, $six \equiv 0 \pmod{3}$, $x^2 \equiv 0 \pmod{3}$, si $x \equiv 1 \pmod{3}$, $x^2 \equiv 1 \pmod{3}$, et si $x \equiv 2 \pmod{3}$, $x^2 \equiv 1 \pmod{3}$. Si n est impair, on remarque que $u_1 = 2 + 12 + 2011 = 2025 = 45^2 \pmod{n} = 1$ convient. Si $n \geq 3$, $2^n \equiv 12^n \equiv 0 \pmod{4}$. Et $2011 \equiv 3 \pmod{4}$. En écrivant n = 2k + 1, $k \in \mathbb{N}$, on a

$$u_n \equiv 3^{2k+1} \equiv (3^2)^k \times 3 \equiv 9^k \times 3 \equiv 1^k \times 3 \equiv 3 \pmod{4}.$$

Or un carré n'est jamais congru 3modulo4, sion faitunt ableau de congruence :

$x \pmod{4}$	$x^2 \pmod{4}$
0	0
1	1
2	0
3	1

 $\overline{Doncu_n}$ ne peut pas être un carré si $n \geq 3$ est impair. Conclusion : n = 1 est la seule solution.

Exercice 3. Montrer que pour tout entier $n \geq 1$, il existe m un multiple de n tel que la somme des chiffres de m fasse n.

<u>Solution de l'exercice 3</u> La suite des puissances de 10, donc $1, 10, 100, \cdots$ contient une infinité de termes, qui peuvent prendre un nombre fini de résidus modulo n. Il existe donc un résidu k tel qu'une infinité de puissances de 10 soient congrues $k modulon. Soient donc 0 \le a_1 < a_2 < a_n$ des entiers tels que

$$10^{a_i} \equiv k \pmod{n}$$

pour tout $i \in \{1, 2, \dots, n\}$. On pose $m = 10^{a_n} + 10^{a_{n-1}} + \dots + 10^{a_2} + 10^{a_1}$. m s'écrit avec n chiffres "1" et un certain nombre de zéros, donc sa somme des chiffres vaut n.

Et $m \equiv k + \cdots + k \equiv kn \equiv 0 \pmod{n}$, donc m est divisible par n, donc cet entier satisfait aux conditions de l'énoncé.

Exercices Communs

Exercice 4. On dit qu'un entier naturel d est sympathique si, pour tout couple d'entiers (x, y),

$$d \mid (x+y)^5 - x^5 - y^5 \iff d \mid (x+y)^7 - x^7 - y^7.$$

Montrer qu'il existe une infinité de nombres sympathiques. Est-ce-que 2017, 2018 sont sympathiques ? *Solution de l'exercice* 4 On remarque que :

$$(x+y)^5 - x^5 - y^5 = 5xy(x+y)(x^2 + xy + y^2)$$
$$(x+y)^7 - x^7 - y^7 = 7xy(x+y)(x^2 + xy + y^2)^2$$

Ainsi, si on prend p un nombre premier différent de 5 et de 7 :

- si p divise $(x+y)^5 x^5 y^5$, comme p et 5 sont premiers entre eux, d'après le lemme de Gauß, p divise aussi $xy(x+y)(x^2+xy+y^2)$, a fortiori p divise $(x+y)^7 x^7 y^7$.
- si p divise $(x+y)^7 x^7 y^7$, comme p et 7 sont premiers entre eux, p divise également $xy(x+y)(x^2+xy+y^2)^2$. Si p divise x^2+xy+y^2 , alors p divise $(x+y)^5-x^5-y^5$ (car c'est bien un multiple de x^2+xy+y^2). Sinon, comme p premier, cela signifie que p et x^2+xy+y^2 sont premiers entre eux, donc d'après le lemme de Gauß, p divise xy(x+y), d'où l'on déduit que p divise $(x+y)^5-x^5-y^5$.

Donc un tel nombre p est sympathique

Comme il y a une infinité de nombres premiers différents de 5 et de 7, il y a bien une infinité de nombres sympathiques.

En particulier, le nombre 2017 est premier, différent de 5 et de 7, donc sympathique.

De plus, si a et b sont deux entiers sympathiques premiers entre eux, comme on a en général, pour tout entier n,

ab divise $n \Leftrightarrow a$ divise n et b divise n,

ab est aussi sympathique. Donc $2018 = 2 \cdot 1009$ est sympathique.

Exercice 5. Soit m, n des entiers positifs tels que pgcd(m, n) = 1, où $a \wedge b$ désigne le plus grand diviseur commun de a et b. Quelle(s) valeur(s) peut prendre

$$(2^m - 2^n \wedge 2^{m^2 + mn + n^2} - 1)$$
?

Solution de l'exercice 5 On utilise la propriété suivante : si $m \ge 1$ et $a,b \in \mathbb{N}$, alors $(m^a-1) \wedge (m^b-1) = m^{a \wedge b} - 1$. On se ramène ainsi tudier $(m^2 + mn + n^2) \wedge (m-n)$. Si $d|m^2 + mn + n^2$ et d|m-n, alors $d|m^2 + mn + n^2 - (m-n)^2 = 3mn$. Donc $d|3mn - 3n(m-n) = 3n^2$ et $d|3mn + 3m(m-n) = 3m^2$, donc $d|(3m^2, 3n^2)$, donc d|3. Ainsi, $(m^2 + mn + n^2) \wedge (m-n)|3$, et ne peut prendre qu'au plus deux valeurs, 1 et 3. Vérifions qu'elles sont réalisées.

Si
$$m = 2$$
 et $n = 1$, $(m^2 + mn + n^2) \wedge (m - n) = 1$ et

$$(2^m - 2^n) \wedge (2^{m^2 + mn + n^2} - 1) = 2^{(m^2 + mn + n^2) \wedge (m-n)} - 1 = 1.$$

Si
$$m = n = 1$$
, $(m^2 + mn + n^2) \wedge (m - n) = 3$ et

$$(2^m - 2^n) \wedge (2^{m^2 + mn + n^2} - 1) = 2^{(m^2 + mn + n^2) \wedge (m - n)} - 1 = 7.$$

Donc les valeurs possibles sont 1 et 7.

Preuve de la propriété : on peut supposer $a \geq b$. On écrit a = bq + r la division euclidienne de a par b. Soit $d := (m^a - 1) \wedge (m^b - 1)$. $d|(m^b - 1) + (m^{2b} - m^b) + (m^{3b} - m^{2b}) + \cdots + (m^{qb} - m^{(q-1)b})$, soit $d|m^{qb} - 1$. Donc $d|m^a - m^{qb}$. Or $m^a - m^{qb} = m^{qb}(m^r - 1)$. Comme d est un diviseur de $m^b - 1$ qui est premier avec m, alors d est premier avec m^q . D'après le lemme de Gauss, $d|m^r - 1$. Ainsi, $d|(m^b - 1) \wedge (m^r - 1)$. On procède de même en faisant la division euclidienne de d par d et ainsi de

suite. On reproduit ainsi l'algorithme d'Euclide. Ce dernier termine sur $a \wedge b$, donc on obtient a fin que d divise $m^{a \wedge b} - 1$. Pour conclure, il reste rouver que $m^{a \wedge b} - 1$ est un diviseur de $m^b - 1$ et de $m^a - 1$. Or, si i = kj pour des entiers $i, j, k, m^j - 1$ divise $m^i - 1$, car:

$$m^{i} - 1 = (m^{j})^{k} - 1 = (m^{j} - 1)((m^{j})^{k-1} + (m^{j})^{k-2} + \dots + m^{j} + 1).$$

Ceci permet de conclure.

Exercice 6. Trouver tous les triplets d'entiers naturels (x, y, z) tels que :

$$x^2 + y^2 = 3 \cdot 2016^z + 77.$$

Solution de l'exercice 6 Soit un triplet solution (x, y, z). Que peut-on en dire de façon nécessaire ? Si z=0, on a $x^2+y^2=80$. On fait une table de congruence modulo 4 : on montre ainsi que, si une somme de deux carrés est congrue modulo 4, c'est que les deux carrés en question sot tous les deux pairs. On peut donc poser $x=2x_0, y=2y_0$ avec x_0, y_0 entiers et $x_0^2+y_0^2=20$. Par le même argument modulo 4, on arrive $x=4x_1, y=4y_1$ avec x_1, y_1 entiers et $x_1^2+y_1^2=5$. Les seuls couples vérifiant cela sont $(x_1,y_1)=(1,2)$ ou (2,1).

Si z>0, comme $7\mid 2016$, on a modulo 7 $x^2+y^2=0$, ce qui donne, en écrivant la table des carrés modulo 7, x ety congrus modulo 7. On peut donc poser $x=7x_1$ et $y=7y_1$ avec x_1,y_1 entiers. Donc $49\mid x^2+y^2$, c'est-dire $49\mid 3\cdot 2016^z+77$ donc z=1. Il vient alors $x_1^2+y_1^2=125$. On teste les cas restants un par un pour voir ceux qui marchent a main : $(x_1,y_1)=(5,10),(2,11),(10,5),(11,2)$. Ainsi, tous les triplets solutions sont dans l'ensemble :

$$\{(4,8,0),(8,4,0),(35,70,1),(70,35,1),(14,77,1),(77,14,1)\}$$

et on vérifie que, réciproquement, tous ces triplets sont bien des solutions.

Exercices du groupe A

Exercice 7. Soit p un nombre premier, m un entier naturel. Trouver le plus petit entier d tel qu'il existe un polynôme unitaire Q de degré d à coefficients entiers tel que, pour tout entier n, $p^m \mid Q(n)$.

<u>Solution de l'exercice 7</u> Montrons que d est le plus petit entier tel que $p^m \mid d!$. Soit k le plus petit entier tel que $p^m \mid k!$.

Tout d'abord, montrons que $k \geq d$. On considère le polynôme $Q(x) = X(X+1) \cdots (X+k-1)$: il est unitaire, de degré k, oefficients entiers. Qui plus est, pour tout $n \in \mathbb{N}, \ Q(n) = k! \binom{n}{k}$ (c'est une propriété des coefficients binomiaux), d'où $p^m \mid k! \mid Q(n)$. Donc k est un entier pour lequel on dispose d'un polynôme Q unitaire oefficients entiers de degré k tel que pour tout $n \in \mathbb{N}, \ p^m \mid Q(n)$. Donc $k \geq d$. Reste ontrer le sens réciproque. Autrement dit, soit Q un polynôme unitaire oefficients entiers de degré k tel que pour tout entier k0. Montrons que $k \leq k$ 1. Il suffit de montrer que k1 le (car, par définition, k2 est le plus petit entier érifier cela).

On introduit la famille des polynômes $P_i := X(X+1)\cdots(X+i-1)$ pour $i \in \{0, \dots l\}$ $(P_0 := 1)$. En effectuant les divisions euclidiennes successives de Q par P_l, P_{l-1}, \dots, P_0 , on montre que Q s'écrit :

$$Q = \sum_{i=0}^{l} c_i P_i,$$

où $c_i \in \mathbb{Z}$ pour tout i.

On montre alors par récurrence sur $i \in \{0 \dots l\}$ la propriété suivante :

$$p^m \mid c_i P_i(-i) \mid c_i P_i(n)$$
 pour tout $n \in \mathbb{Z}$.

- pour i=0, le seul des P_i qui ne s'annule pas en zéro est P_0 , donc $Q(0)=c_0$, d'où $p^m\mid c_0=c_0P_0(n)$ pour tout $n\in\mathbb{Z}$.
- soit i < l. Supposons que la propriété est vraie pour tous les éléments de $\{0, \ldots, i\}$ et montrons-la pour i + 1. On constate que si j > i + 1, $(X + i + 1) \mid P_j$ donc $P_j(-i 1) = 0$. Ainsi,

$$\underbrace{Q(-i-1)}_{p^m|} = \underbrace{\sum_{j=0}^{i} c_j P_j(-i-1)}_{p^m|} + c_{i+1} P_{i+1}(-i-1),$$

par hypothèse de récurrence et par définition de Q. Donc $p^m \mid c_{i+1}P_{i+1}(-i-1)$, et comme $P_{i+1}(-i-1) = (i+1)!$ divise tout produit de i+1 entiers consécutifs (on peut encore le voir grâce aux coefficients binomiaux), il divise $P_{i+1}(n)$ pour tout $n \in \mathbb{Z}$.

Ainsi, on obtient en particulier $p^m \mid P_l(n)$ pour tout $n \in \mathbb{N}$, donc $p^m \mid l!$. Donc $k \leq l$, d'où $k \leq d$. Par double encadrement, on a donc bien montré que k = d.

Exercice 8. Si $n \in \mathbb{N}^*$, on note d(n) son nombre de diviseurs. Quels sont les entiers strictement positifs tels que $d(n)^3 = 4n$?

<u>Solution de l'exercice 8</u> Soit $f(n) := \frac{d(n)^3}{n}$, l'énoncé revient rouver les antécédents de 4 par f. On remarque que f(ab) = f(a)f(b) si a et b sont premiers entre eux. Ceci nous incite écomposer n en produit de facteurs premiers :

$$n = p_1^{a_1} \times p_2^{a_2} \times \dots \times p_l^{a_l},$$

où les p_i , $1 \le i \le l$, sont premiers et $a_i \ge 1$. On a donc $f(n) = \prod_{i=1}^l f(p_i^{a_i})$.

Soit $n \in \mathbb{N}^*$ vérifiant l'énoncé, $n^3 = 2 \times (d(n)/2)^3$ est le double d'un cube parfait (d(n)) est nécessairement pair). On en déduit que $v_p(n) \equiv 0 \pmod 3$ pour p nombre premier impair, et $v_2(n) \equiv 1 \pmod 3$. Ici, $v_p(n)$ désigne la valuation p-adique de n, soit le plus grand entier k tel que $p^k|n$, donc $v_{p_i}(n) = a_i$ avec nos notations. On peut écrire

$$f(n) = \frac{((a_1+1)(a_2+1)\cdots(a_l+1))^3}{p_1^{a_1}p_2^{a_2}\cdots p_l^{a_l}}.$$

D'après la remarque précédente, le numérateur n'est pas divisible par 3, donc aucun des p_i ne peut valoir 3. Et n est le produit de puissances de cubes de nombres premiers impairs que multplie le double d'une puissance de 2^3 .

On montre aisément que si m est puissance du cube d'un nombre premier strictement plus grand que 3, alors $f(m) \geqslant \frac{64}{125}$ avec égalité si et seulement si $m=5^3$. On prouve ette fin que pour tout premier $p\geqslant 5$, $k\to f(p^{3k})$ est strictement décroissante, et que pour tout $k\geqslant 1$, $p\to f(p^{3k})$ l'est aussi. Pour avoir f(n)=4, il faut donc utiliser des puissances de 2. On a

$$f(2) = f(2^7) = 4$$
, $f(2^4) = \frac{125}{16}$ et $f(2^{3k+1}) < 1$ pour $k > 2$.

Ainsi, 2 et 128 sont solution. Et pour en avoir une autre, il faut trouver m un produit de puissances de cubes de nombres premiers impairs tel que $f(m) = \frac{64}{125}$. D'après l'étude précédente, seul $m = 5^3$ convient. Donc il y a 3 entiers n solution au problème : n = 2, $n = 2^7$ et $n = 2^4 \times 5^3$.

Exercice 9. Prouver qu'il existe une infinité d'entiers n tels que $2^{2^n+1}+1$ est divisible par n, mais 2^n+1 ne l'est pas.

Solution de l'exercice 9 Pour
$$m \ge 1$$
, posons $a_m = 2^{3^m} + 1$. On a $a_m = (2^{3^{m-1}} + 1)((2^{3^{m-1}})^2 - 2^{3^{m-1}} + 1) = a_{m-1}((2^{3^{m-1}})^2 - 2^{3^{m-1}} + 1)$.

Notons que pour $a \in \mathbb{N}^*$, si p|a+1 et $p|a^2-a+1$, alors p|2a-1 car $2a-1=a(a+1)-(a^2-a+1)$. Et p|2a+2, donc p|3. Donc $(a_{m-1} \wedge a_m)|3$ pour tout $m \in \mathbb{N}*$. Donc a_m possède un facteur premier impair (car a_m impair) autre que 3 qui ne divise pas a_{m-1} , sauf éventuellement si a_m est une puissance de 3, auquel cas a_{m+1} possède un facteur premier que n'a pas a_m .

Donc pour une infinité d'entiers $m \in \mathbb{N}^*$, a_m possède un facteur premier $p_m > 3$ qui ne divise pas a_{m-1} . Posons $b_m = 3^{m-1}p_m$. D'après le petit théorème de Fermat,

$$2^{b_m} + 1 \equiv 2^{3^{m-1}} + 1 \equiv a_{m-1} \pmod{p}_m.$$

Donc $p_m \nmid 2^{b_m} + 1$, donc $b_m \nmid 2^{b_m} + 1$.

Comme p_m et 3 sont premiers entre eux, il suffit de montrer que $p_m|2^{2^{bm}+1}+1$ et que $3^{m_1}|2^{2^{bm}+1}+1$. Cela se fait assez directement avec LTE mais on peut peut-être trouver une solution alternative. Recherche en cours.

Ainsi, une infinité d'entiers b_m satisfont la condition de l'énoncé.