Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

ТЕОРИЯ СИСТЕМ И СИСТЕМНЫЙ АНАЛИЗ

Лабораторная работа №2 на тему:

«Исследование метода случайного поиска экстремума функции одного переменного»

Вариант 7

Преподаватель: Строганов И.С.

Студент: Заботин Д.В.,

Группа: ИУ8-31

Москва 2021

Цель работы

Изучение метода поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

Постановка задачи

- 1. На интервале [a,b] задана унимодальная функция одного переменного f(x). Используя метод случайного поиска, осуществить поиск минимума f(x) с заданной вероятностью попадания и окрестность экстремума P при допустимой длине интервала неопределенности ε . Определить необходимое число испытаний N. Численный эксперимент выполнить для значений P = 0.90, 0.91, ..., 0.99 и значений $\varepsilon = (b-a)q$, где q = 0.005, 0.010, ..., 0.100
- 2. При аналогичных исходных данных осуществить поиск минимума f(x), модулированной сигналом $\sin 5x$, т.е. мультимодальной функции $f(x) \sin 5x$

Ход работы

На интервале [1, 4] задана унимодальная функция одного переменного $f(x) = -\sqrt{(x)}*\sin x + 2$. Используя метод случайного поиска, осуществить поиск минимума f(x) с заданной вероятность попадания в окрестность экстремума P при допустимой длине интервала неопределенности ε , также необходимо использовать q — вероятность попадания в интервал неопределенности для отдельно взятой точки. Таким образом вероятность непопадания в интервал неопределенности за одно испытание равна 1 - q Вероятность непопадания в этот интервал за N испытаний равна $(1 - q)^N$. Отсюда $P = 1 - (1 - q)^N$, следовательно $N = \frac{\ln(1-P)}{\ln(1-q)}$. Далее случайно выбираем N точек в заданном отрезке [a, b], определим значение унимодальной функции в этих точках и среди них найдем наименьшее значение. Результаты численного эксперимента для f(x) представим в виде таблицы.

Для унимодальной функции:

Рисунок 1 - График унимодальной функции.

+	+		+	-+-		+		+	-+-		-+-		+-	+-		+	+
l q∖P		0.9	0.91		0.92	0.9	3	0.9400000000000001		0.9500000000000001		0.96		0.97	0.98		0.99
				-+-				+					+-	+-		+	
0.005		460	481		504	53	1	562		598		643		700	781		919
0.01		230	240		252	26	5	280		299		321		349	390		459
0.015		153	160		168	17	6	187		199		213		233	259		305
0.02		114	120		126	13	2	140		149		160		174	194		228
0.025		91	96		100	10	6	112		119		128		139	155		182
0.03		76	80		83	8	8	93		99		106		116	129		152
0.035		65	68		71	7	5	79		85		91		99	110		130
0.04		57	59		62	6	6	69		74		79		86	96		113
0.045		51	53		55	5	8	62		66		70		77	85		101
0.05		45	47		50	5	2	J 55		59		63		69	77		90
0.055		41	43		45	4	8	50		53		57		62	70		82
0.06		38	39		41	4	3	46		49		53		57	64		75
0.065		35	36		38	4	0	42		45		48		53	59		69
0.07		32	34		35	3	7] 39		42		45		49	54		64
0.075		30	31		33	3	5	37		39		42		45	51		60
0.08		28	29		31	3	2] 34		36		39		43	47		56
0.085		26	28		29	3	0	32		34		37		40	45		52
0.09		25	26		27	l 2	9] 30		32		35		38	42		49
0.095		24	25		26	1 2	7	29		31		33		36	40		47
0.1		22	23		24	2	6	27		29		31		34	38		44
				-+-				+			+-		+-	+-		+	

Рисунок 2 - Таблица зависимостей N от P и q.

+	+-	+-		·	+-	+	+
q\P 0.9 0.91	0.92 0.93	0.94000000000000001	0.95000000000000001	0.96	0.97	0.98	0.99
0.005 0.692396 0.692381 6	0.692405 0.692381	0.692448	0.692391	0.692385 0.	692381	0.692381	0.692384
0.01 0.692382 0.692389 6	0.692387 0.692634	0.692609	0.692766	0.692381 0.	692399	0.692391	0.692464
0.015 0.693437 0.692462 6	0.692383 0.692478	0.692489	0.692386	0.692778 0.	692381	0.692426	0.692411
0.02 0.692545 0.692407 6	0.692386 0.692382	0.692888	0.692455	0.692639 0.	692447	0.692425	0.692411
0.025 0.692402 0.692771 6	0.692727 0.692521	0.694491	0.692384	0.692396 0.	692474	0.692599	0.692504
0.03 0.696031 0.692478 6	0.692383 0.692451	0.692408	0.692425	0.692401 0.	692804	0.692405	0.692384
0.035 0.692381 0.694641 6	0.692543 0.692399	0.695358	0.693559	0.692586 0.	692434	0.692679	0.692391
0.04 0.698887 0.695581 6	0.692432 0.692392	0.692464	0.692383	0.692404 0.	692408	0.693211	0.692422
0.045 0.695804 0.693305 6	0.692458 0.692389	0.692603	0.692558	0.692644 0.	692594	0.692398	0.693406
0.05 0.69266 0.692555 6	0.693349 0.710174	0.692381	0.692884	0.695477 0.	692488	0.692485	0.692381
0.055 0.701202 0.69239 6	0.693377 0.704097	0.698761	0.692421	0.693458 0.	692515	0.692898	0.693123
0.06 0.692381 0.692557 6	0.693423 0.694424	0.697575	0.694019	0.692702 0.	693218	0.692605	0.692903
0.065 0.6935 0.694679 6	0.692481 0.692521	0.692385	0.692382	0.692573 0.	692381	0.692448	0.692929
0.07 0.69346 0.692442 6	0.693532 0.704062	0.692648	0.692381	0.692809 0.	694047	0.701045	0.692457
0.075 0.692446 0.725464 6	0.699619 0.692766	0.692406	0.692492	0.692389 0.	692382	0.695146	0.694272
0.08 0.699953 0.692459 6	0.693116 0.694397	0.692394	0.69896	0.695059 0.	692408	0.692984	0.69491
0.085 0.693736 0.692664 6	0.69272 0.694516	0.693321	0.694953	0.692381 0.	692697	0.692707	0.694922
0.09 0.692446 0.69483 6	0.693129 0.693482	0.693339	0.695962	0.694766 0.	69245	0.694356	0.692465
0.095 0.698267 0.693538 6	0.693731 0.69269	0.709804	0.692541	0.692424 0.	693935	0.692388	0.693814
0.1 0.744181 0.692387 6	0.700163 0.696365	0.692672	0.704464	0.693354 0.	693452	0.696347	0.693566
+		+-			+-	+	+

Рисунок 3 - Результаты поиска минимума f(x) в зависимости от P и q.

Для мультимодальной функции:

Рисунок 4 - График мультимодальной функции.

+		+	-+-	+-		+		-+-		+-		+-	+		++
q\P	0.9	0.91		0.92	0.93		0.94000000000000001		0.95000000000000001		0.96		0.97	0.98	0.99
		+	-+-					-+-							+
0.005	460	481		504	531		562		598		643		700	781	919
0.01	230	240		252	265		280		299		321		349	390	459
0.015	153	160		168	176		187		199		213		233	259	305
0.02	114	120		126	132		140		149		160		174	194	228
0.025	91	96		100	106		112		119		128		139	155	182
0.03	76	l 80		83	88		93		99		106		116	129	152
0.035	65	68		71	75		79		85		91		99	110	130
0.04	57	59		62	66		69		74		79		86	96	113
0.045	51	53		55	58		62		66		70		77	85	101
0.05	45	47		50	52		55		59		63		69	77	90
0.055	41	43		45	48		50		53		57		62	70	82
0.06	38	39		41	43		46		49		53		57	64	75
0.065	35	36		38	40		42		45		48		53	59	69
0.07	32	34		35	37		39		42		45		49	54	64
0.075	30	31		33	35		37		39		42		45	51	60
0.08	28	29		31	32		34		36		39		43	47	56
0.085	26	28		29	30		32		34		37		40	45	52
0.09	25	26		27	29		30		32		35		38	42	49
0.095	24	25		26	27		29		31		33		36	40	47
0.1	22	23		24	26		27		29		31		34	38	44
+		+	-+-	+-				-+-							++

Рисунок 5 - Зависимость N от P и q.

		++		+	+-		·	++		++
q\P	0.9	0.91	0.92	0.93	0.9400000000000001	0.95000000000000001	0.96	0.97	0.98	0.99
0.005	-2.60055	-2.59945	-2.60042	-2.60046	-2.60055	-2.60032	-2.60054	-2.60044	-2.60055	-2.60055
0.01	-2.59908	-2.60055	-2.59994	-2.60052	-2.59825	-2.60055	-2.6003	-2.59555	-2.60022	-2.60054
0.015	-2.57446	-2.59073	-2.56227	-2.58238	-2.59602	-2.59928	-2.59415	-2.60039	-2.59708	-2.59979
0.02	-2.59732	-2.59551	-2.57221	-2.60054	-2.60054	-2.59224	-2.59382	-2.59943	-2.58814	-2.60046
0.025	-2.52096	-2.55983	-2.60018	-2.60047	-2.59478	-2.59834	-2.59867	-2.60011	-2.58884	-2.60034
0.03	-2.60035	-2.57545	-2.59992	-2.5963	-2.6	-2.59774	-2.6003	-2.59919	-2.60046	-2.5967
0.035	-2.59125	-2.56828	-2.60054	-2.53374	-2.57092	-2.60055	-2.58987	-2.52994	-2.59602	-2.57187
0.04	-2.45107	-2.59116	-2.594	-2.599	-2.56587	-2.60035	-2.5929	-2.59662	-2.59966	-2.60027
0.045	-2.51991	-2.34418	-2.60045	-2.5299	-2.58415	-2.59042	-2.59583	-2.56488	-2.58908	-2.59334
0.05	-2.59172	-2.59961	-2.59939	-2.59529	-2.60055	-2.29917	-2.58796	-2.58935	-2.5988	-2.59951
0.055	-2.27324	-2.59752	-2.58584	-2.08307	-2.58448	-2.59416	-2.5992	-2.60052	-2.5983	-2.56589
0.06	-2.49021	-2.3681	-2.5981	-2.58817	-2.60042	-2.59915	-2.59334	-2.5668	-2.53862	-2.59894
0.065	-2.59841	-2.48294	-2.49748	-2.53509	-2.60022	-2.53356	-2.56048	-2.58469	-2.55723	-2.59836
0.07	-2.58388	-2.59529	-2.60055	-2.42472	-2.50816	-2.5942	-2.5983	-2.33587	-2.52983	-2.5952
0.075	-2.60012	-2.60041	-2.5102	-2.5851	-2.54827	-2.60043	-2.56964	-2.59011	-2.53277	-2.54125
0.08	-2.38394	-2.55037	-2.60053	-2.57312	-2.57054	-2.16857	-2.59525	-2.58083	-2.52388	-2.58206
0.085	-2.20197	-2.57589	-2.51018	-1.99064	-2.43399	-2.59995	-2.59256	-2.45847	-2.60055	-2.57542
0.09	-2.57399	-2.60022	-2.49194	-2.49315	-2.19364	-2.52666	-2.5596	-2.59197	-2.60053	-2.58361
0.095	-2.5187	-2.55064	-2.60044	-2.59541	-2.58718	-2.11464	-1.44979	-2.413	-2.58205	-2.58317
0.1	-2.49403	-2.08712	-2.60031	-2.57692	-2.58311	-2.22851	-2.10658	-2.59021	-2.60054	-2.59896
		+						++		++

Рисунок 6 - Результат поиска минимума функции $f(x)\sin(x)$ в зависимости от P и q.

Вывод

В данной лабораторной работе был изучен метод случайного поиска экстремума унимодальной и мультимодальной функции одного переменного. Для выполнения лабораторной работы был использован язык программирования Python. На нем была написана программа, в которой были реализованы соответсвующие функции поиска экстремума для функций $f(x) = -\sqrt{(x)} * \sin x + 2$ и $f(x) * \sin(x)$. Были построены таблицы зависимости количества испытаний N от вероятности нахождения минимума P и вероятности попадания точки в интервал точки экстремума q и таблицы результатов случайного поиска от P и q для этих двух функций.

Из результатов следует, что при использовании метода случайного поиска не имеет разницы унимодальная или мультимодальная данная функция. Для увеличения вероятности попадания в заданный интервал или уменьшения интервала неопределенности необходимо увеличивать число случайных точек.

Исходный код программы

Copyright 2021 DimaZzZz101 zabotin.d@list.ru

Лабораторная работа №2

Исследование метода случайного поиска экстремума функции одного переменного

Цель: Изучение метода случайного поиска экстремума на примере унимодальной и мультимодальной функций одного переменного.

Вариант 7

from tabulate import tabulate import matplotlib.pyplot as plt import pandas as pd import numpy as np

Начальные параметры:

```
_a = 1
b = 4
```

```
p = [0.9 + i / 100 \text{ for i in range}(0, 10)]

q = [0.005 * i \text{ for i in range}(1, 21)]
```

Унимодальная функция (по варианту). def unimodal_func(x): return - np.sqrt(x) * np.sin(x) + 2

```
# Мультимодальная функция (по варианту).
def multimodal func(x):
  return unimodal func(x) * np.sin(5 * x)
# Функция подсчета количества итераций.
def number of iterations(p, q):
  return np.ceil(np.log(1 - p) / np.log(1 - q)).astype('int')
# Функция формирования таблицы.
def create table(data):
  pd.set option('display.max rows', None)
  table = pd.DataFrame(data=data)
  table.set index('q\P', inplace=True)
  print(tabulate(table, headers='keys', tablefmt='psql'), end='\n\n')
# Функция случайного поиска.
def random search(function, a, b, P, Q):
  n list = \lceil \rceil
  y min list = []
  for p in P:
     for q in Q:
       n = number of iterations(p, q)
       y min = None
```

```
for i in range(0, n):
          x = np.random.uniform(a, b)
          if y min is None or function(x) \leq y min:
             y min = function(x)
        n list.append(n)
        y min list.append(y min)
  data = \{'q \mid P': Q\}
  # Таблица с количеством интераций.
  data.update(\{P[i]: n | list[i * 20:i * 20 + 20] \text{ for } i \text{ in range}(10)\})
  create table(data)
  # Таблица с результатами поиска минимума.
  data.update(\{P[i]: y \text{ min list}[i * 20:i * 20 + 20] \text{ for } i \text{ in range}(10)\})
  create table(data)
# Функция вывода графика.
def show graphic(name="", x=None, y=None):
  if y is None:
     y = []
  if x is None:
     X = []
  fig = plt.figure(figsize=(7, 7))
  plt.plot(x, y)
  plt.title(name, fontsize=15) # Заголовок.
```

```
plt.xlabel("x", fontsize=14)
                               # Ось абсцисс.
  plt.ylabel("y", fontsize=14)
                                # Ось ординат.
  plt.grid(True)
                           # Включение отображение сетки.
  plt.show()
  save = "Graphics/" + name + ".png"
  fig.savefig(save)
print("Унимодальная функция")
random_search(unimodal_func, _a, _b, _p, _q)
print("Мультимодальная функция")
random_search(multimodal_func, _a, _b, _p, _q)
X = \text{np.arange}(a, b, 0.01)
Y1 = unimodal func(X)
Y2 = multimodal func(X)
show graphic("Унимодальная функция", X, Y1)
show graphic("Мультимодальная функция", X, Y2)
```