Inference and Simulation

EC 607, Set 04

Edward Rubin

Prologue

Schedule

Last time

The CEF and least-squares regression

Today

Inference

Read MHE 3.1

Upcoming

Lab: TBD

Problem set 002 coming soon.

Class project, step 1 due on May 1.

Why?

Q What's the big deal with inference?

Why?

Q What's the big deal with inference?

A We rarely know the CEF or the population (and its regression vector).

We can draw statistical inferences about the population using samples.

Why?

Q What's the big deal with inference?

A We rarely know the CEF or the population (and its regression vector).

We can draw statistical inferences about the population using samples.

Important The issue/topic of statistical inference is separate from causality.

Separate questions

- 1. How do we interpret the estimated coefficient $\hat{\beta}$?
- 2. What is the sampling distribution of $\hat{\beta}$?

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

We're interested in the (unknown) population-regression vector

$$eta = E \left[\mathrm{X}_i \mathrm{X}_i'
ight]^{-1} E[\mathrm{X}_i \mathrm{Y}_i]$$

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

We're interested in the (unknown) population-regression vector

$$eta = E\left[\mathbf{X}_i\mathbf{X}_i'\right]^{-1}E[\mathbf{X}_i\mathbf{Y}_i]$$

which we estimate via the ordinary least squares (OLS) estimator[†]

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight)^{-1}$$

† MHE presents a method-of-moments motivation for this derivation, where $\frac{1}{n}\sum_i \mathbf{X}_i \mathbf{X}_i'$ is our sample-based estimated for $E[\mathbf{X}_i \mathbf{X}_i']$. You've also seen others, e.g., minimizing MSE of \mathbf{Y}_i given \mathbf{X}_i .

A classic

However you write it, this OLS estimator

$$egin{aligned} \hat{eta} &= \left(\mathbf{X}'\mathbf{X}
ight)^{-1}\mathbf{X}'\mathbf{y} \ &= \left(\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight)^{-1}\left(\sum_{i}\mathbf{X}_{i}\mathbf{Y}_{i}
ight) \ &= eta + \left[\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight]^{-1}\sum_{i}\mathbf{X}_{i}e_{i} \end{aligned}$$

is the same estimator you've been using since undergrad.

A classic

However you write it, this OLS estimator

$$egin{aligned} \hat{eta} &= \left(\mathbf{X}'\mathbf{X}
ight)^{-1}\mathbf{X}'\mathbf{y} \ &= \left(\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight)^{-1}\left(\sum_{i}\mathbf{X}_{i}\mathbf{Y}_{i}
ight) \ &= eta + \left[\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight]^{-1}\sum_{i}\mathbf{X}_{i}e_{i} \end{aligned}$$

is the same estimator you've been using since undergrad.

Note I'm following MHE in defining $e_i = \mathrm{Y}_i - \mathrm{X}_i' \beta$.

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}$$

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}$$

which we estimate by (1) replacing e_i with $\hat{e}_i = Y_i - X_i'\hat{\beta}$ and (2) replacing expectations with sample means, e.g., $E\left[X_iX_i'e_i^2\right]$ becomes $\frac{1}{n}\sum\left[X_iX_i'\hat{e}_i^2\right]$.

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\prime}
ight]^{-1}E\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\prime}
ight]^{-1}$$

which we estimate by (1) replacing e_i with $\hat{e}_i = Y_i - X_i'\hat{\beta}$ and (2) replacing expectations with sample means, e.g., $E\left[X_iX_i'e_i^2\right]$ becomes $\frac{1}{n}\sum\left[X_iX_i'\hat{e}_i^2\right]$.

Standard errors of this flavor are known as heteroskedasticity-consistent (or -robust) standard errors (or Eicker-Huber-White).

Defaults

Statistical packages default to assuming homoskedasticity, *i.e.*, $Eig[e_i^2\mid \mathbf{X}_iig]=\sigma^2$ for all i.

Defaults

Statistical packages default to assuming homoskedasticity, i.e.,

$$Eig[e_i^2\mid \mathbf{X}_iig]=\sigma^2$$
 for all i . With homoskedasticity,

$$Eig[\mathrm{X}_i \mathrm{X}_i' e_i^2 ig] = Eig[Eig[\mathrm{X}_i \mathrm{X}_i' e_i^2 \mid \mathrm{X}_i ig] ig] = Eig[\mathrm{X}_i \mathrm{X}_i' \, Eig[e_i^2 \mid \mathrm{X}_i ig] ig] = \sigma^2 \, Eig[\mathrm{X}_i \mathrm{X}_i' ig]$$

Defaults

Statistical packages default to assuming homoskedasticity, i.e.,

$$Eig[e_i^2\mid \mathbf{X}_iig] = \sigma^2$$
 for all i . With homoskedasticity,

$$Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2ig] = Eig[Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2\mid \mathrm{X}_iig]ig] = Eig[\mathrm{X}_i\mathrm{X}_i'Eig[e_i^2\mid \mathrm{X}_iig]ig] = \sigma^2\,Eig[\mathrm{X}_i\mathrm{X}_i'ig]$$

Now, returning to to the asym. covariance matrix of $\hat{\beta}$,

$$egin{aligned} E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} &= E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}\sigma^{2}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} \ &= \sigma^{2}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$E\Big[ig(\mathrm{Y}_i - \mathrm{X}_i'etaig)^2 \mid \mathrm{X}_i\Big]$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ &= Eigg[ig(ig\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]ig\} + ig\{E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig\}ig)^2igg|\mathbf{X}_iigg] \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ &= E\Big[ig(ig\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]ig\} + ig\{E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig\}ig)^2\Big|\mathbf{X}_i\Big] \ &= \mathrm{Var}(\mathbf{Y}_i \mid \mathbf{X}_i) + ig(E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig)^2 \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

If the CEF is nonlinear, then our linear approximation (linear regression) generates heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ &= E\Big[ig(ig\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]ig\} + ig\{E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig\}\Big)^2\Big|\mathbf{X}_i\Big] \ &= \mathrm{Var}(\mathbf{Y}_i \mid \mathbf{X}_i) + ig(E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig)^2 \end{aligned}$$

Thus, even if $Y_i \mid X_i$ has contant variance, $e_i \mid X_i$ is heteroskedastic.

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

If the CEF is nonlinear, then our linear approximation (linear regression) generates heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ &= E\Big[ig(ig\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]\} + ig\{E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'eta\}\Big)^2\Big|\mathbf{X}_i\Big] \ &= \mathrm{Var}(\mathbf{Y}_i \mid \mathbf{X}_i) + ig(E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'eta\Big)^2 \end{aligned}$$

Thus, even if $\mathbf{Y}_i \mid \mathbf{X}_i$ has contant variance, $e_i \mid \mathbf{X}_i$ is heteroskedastic. Unless you want to assume the CEF is *linear*.

Two notes

1. Heteroskedasticity is **not our biggest concern** in inference.

...as an empirical matter, heteroskedasticity may matter very little... If heteroskedasticity matters a lot, say, more than a 30 percent increase or any marked decrease in standard errors, you should worry about possible programming errors or other problems. (MHE, p.47)

2. Notice that we've **avoided "standard" stronger assumptions**, *e.g.*, normality, fixed regressors, linear CEF, homoskedasticity.

Two notes

1. Heteroskedasticity is **not our biggest concern** in inference.

...as an empirical matter, heteroskedasticity may matter very little... If heteroskedasticity matters a lot, say, more than a 30 percent increase or any marked decrease in standard errors, you should worry about possible programming errors or other problems. (MHE, p.47)

2. Notice that we've **avoided "standard" stronger assumptions**, e.g., normality, fixed regressors, linear CEF, homoskedasticity.

Following (2): We only have large-sample, asymptotic results (consistency) rather than finite-sample results (unbiasedness).

Warning

Because many of properties we care about for the inference are **large-sample** properties, they may not always apply to **small samples**.

Warning

Because many of properties we care about for the inference are **large-sample** properties, they may not always apply to **small samples**.

One practical way we can study the behavior of an estimator: simulation.

Warning

Because many of properties we care about for the inference are **large-sample** properties, they may not always apply to **small samples**.

One practical way we can study the behavior of an estimator: **simulation**.

Note You need to make sure your simulation can actually test/respond to the question you are asking (e.g., bias vs. consistency).

Simulation

Let's compare false- and true-positive rates[†] for

- 1. Homoskedasticity-assuming standard errors $\left(\operatorname{Var}[e_i | \mathrm{X}_i] = \sigma^2 \right)$
- 2. Heteroskedasticity-robust standard errors

[†] The false-positive rate goes by many names; another common name: type-I error rate.

Simulation

Let's compare false- and true-positive rates[†] for

- 1. Homoskedasticity-assuming standard errors $\left(\operatorname{Var}[e_i | \mathrm{X}_i] = \sigma^2 \right)$
- 2. Heteroskedasticity-robust standard errors

Simulation outline

- 1. Define data-generating process (DGP).
- 2. Choose sample size n.
- 3. Set seed.
- 4. Run 10,000 iterations of
 - a. Draw sample of size n from DGP.
 - b. Conduct inference.
 - c. Record inferences' outcomes.

[†] The false-positive rate goes by many names; another common name: type-I error rate.

Data-generating process

First, we'll define our DGP.

Data-generating process

First, we'll define our DGP.

We've been talking a lot about nonlinear CEFs, so let's use one.

Let's keep the disturbances well behaved.

Data-generating process

First, we'll define our DGP.

We've been talking a lot about nonlinear CEFs, so let's use one.

Let's keep the disturbances well behaved.

$$\mathrm{Y}_i = 1 + e^{0.5 \mathrm{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,1)$.

Data-generating process

$$\mathrm{Y}_i = 1 + e^{0.5\mathrm{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,15^2)$.

Data-generating process

$$\mathbf{Y}_i = 1 + e^{0.5\mathbf{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,15^2)$.

Data-generating process

$$\mathbf{Y}_i = 1 + e^{0.5\mathbf{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,15^2)$.

Our CEF

Our population

The population least-squares regression line

Iterating

To make iterating easier, let's wrap our DGP in a function.

We still need to run a regression and draw some inferences.

Note We're defaulting to size-30 samples.

We will use Im_robust() from the estimatr package for OLS and inference.

- se_type = "classical" provides homoskedasticity-assuming SEs
- se_type = "HC2" provides heteroskedasticity-robust SEs

† lm() works for "spherical" standard errors but cannot calculate het.-robust standard errors.

Inference

Now add these estimators to our iteration function...

```
fun iter = function(iter, n = 30) {
  # Generate data
  iter df = tibble(
    \epsilon = rnorm(n, sd = 15),
    x = runif(n, min = 0, max = 10),
    v = 1 + \exp(0.5 * x) + \epsilon
  # Estimate models
  lm1 = lm robust(y ~ x, data = iter df, se type = "classical")
  lm2 = lm_robust(y ~ x, data = iter df, se type = "HC2")
  # Stack and return results
  bind rows(tidy(lm1), tidy(lm2)) %>%
    select(1:5) \%>\% filter(term = "x") \%>\%
    mutate(se_type = c("classical", "HC2"), i = iter)
```

Run it

Now we need to actually run our fun_iter() function 10,000 times.

Run it

Now we need to actually run our fun_iter() function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

- lapply(), e.g., lapply(X = 1:3, FUN = sqrt)
- for(), *e.g.*, for (x in 1:3) sqrt(x)
- map() from purrr, e.g., map(1:3, sqrt)

Run it

Now we need to actually run our fun_iter() function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

- lapply(), e.g., lapply(X = 1:3, FUN = sqrt)
- for(), e.g., for (x in 1:3) sqrt(x)
- map() from purrr, *e.g.*, map(1:3, sqrt)

We're going to go with map() from the purrr package because it easily parallelizes across platforms using the furrr package.

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)
```

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)
```

Parallelized 10,000 iterations

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multisession)
# Run 10,000 iterations
sim_list = future_map(
    1:1e4, fun_iter,
    .options = furrr_options(seed = T)
)
```

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)
```

Parallelized 10,000 iterations

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multisession)
# Run 10,000 iterations
sim_list = future_map(
    1:1e4, fun_iter,
    .options = furrr_options(seed = T)
)
```

The furrr package (future + purrr) makes parallelization easy and fun!

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)
```

Parallelized 10,000 iterations

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multisession)
# Run 10,000 iterations
sim_list = future_map(
    1:1e4, fun_iter,
    .options = furrr_options(seed = T)
)
```

The furr package (future + purrr) makes parallelization easy and fun!

Note Use multisession or multicore instead of multiprocess.

Run it!!

Our fun_iter() function returns a data.frame, and future_map() returns a list (of the returned objects).

So sim_list is going to be a list of data.frame objects. We can bind them into one data.frame with bind_rows().

```
# Bind list together
sim_df = bind_rows(sim_list)
```

Run it!!

Our fun_iter() function returns a data.frame, and future_map() returns a list (of the returned objects).

So sim_list is going to be a list of data.frame objects. We can bind them into one data.frame with bind_rows().

```
# Bind list together
sim_df = bind_rows(sim_list)
```

So what are the results?

Comparing the distributions of standard errors for the coefficient on \boldsymbol{x}

Comparing distributions of t stats for the coefficient on x $(H_o: \beta_1 = 0)$

Comparing distributions of t stats for the coefficient on x $(H_o: \beta_1 = \beta)$

Comparing the confidence intervals for the coefficient on \boldsymbol{x}

How did it go?

For a 5% test the classical SEs

- reject the **true value** in 11.38% of samples
- reject zero in 99.98% of samples

For a 5% test the **het.-robust** SEs

- reject the **true value** in 6.97% of samples
- reject **zero** in 99.93% of samples

All of these test are for a false H_0 .

Q How would the simulation change to enforce a *true* null hypothesis?

Updating to enforce the null

Let's update our simulation function to take arguments γ and δ such that

$$\mathrm{Y}_i = 1 + e^{\gamma \mathrm{X}_i} + arepsilon_i$$

where $arepsilon_i \sim \mathrm{N}(0, \sigma^2 \mathrm{X}_i^\delta)$.

Updating to enforce the null

Let's update our simulation function to take arguments γ and δ such that

$$\mathbf{Y}_i = 1 + e^{\gamma \mathbf{X}_i} + arepsilon_i$$

where $arepsilon_i \sim \mathrm{N}(0, \sigma^2 \mathrm{X}_i^\delta)$.

In other words,

- $\gamma = 0$ implies no relationship between Y_i and X_i .
- $\delta = 0$ implies homoskedasticity.

Updating to enforce the null

Updating the function...

```
flex iter = function(iter, y = 0, \delta = 1, n = 30) {
  # Generate data
  iter df = tibble(
    x = runif(n, min = 0, max = 10),
    \varepsilon = \text{rnorm}(n, \text{sd} = 15 * x^{\delta}),
    v = 1 + exp(v * x) + \varepsilon
  # Estimate models
  lm1 = lm robust(y ~ x, data = iter df, se type = "classical")
  lm2 = lm_robust(y ~ x, data = iter df, se type = "HC2")
  # Stack and return results
  bind rows(tidy(lm1), tidy(lm2)) %>%
    select(1:5) \%>\% filter(term = "x") \%>\%
    mutate(se_type = c("classical", "HC2"), i = iter)
```

Run again!

Now we run our new function flex_iter() 10,000 times

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multisession)
# Run 10,000 iterations
null_df = future_map(
  1:1e4, flex iter,
  # Enforce the null hypothesis
  y = 0,
  # Specify heteroskedasticity
  \delta = 1.
  .options = furrr_options(seed = T)
) %>% bind_rows()
```

Comparing the distributions of standard errors for the coefficient on \boldsymbol{x}

Comparing the distributions of t statistics for the coefficient on x

Distributions of p-values: both methods slightly over-reject the (true) null

Table of contents

Admin

1. Schedule

Inference

- 1. Why?
- 2. OLS
- 3. Heteroskedasticity
- 4. Small-sample warning
- 5. Simulation
 - Outline
 - DGP
 - Iterating
 - Parallelization
 - Results
 - Under the null