2023. június 10. Munkaidő: 90 perc

BME, Természettudományi Kar, Matematika Intézet, Analízis Tanszék

		Név:					
Neptun kód:							
	1.	2.	3.	4.	\sum		

- 1. feladat Mikor mondjuk, hogy egy metrikus tér teljes? Mondjuk ki a Banach fixpont tételt!
- **2. feladat** Legalább mekkora kell, hogy legyen $\int_0^3 |f(x)|^3 dx$ értéke, ha $\int_0^3 x^2 f(x)^2 dx = 1$?
- 3. feladat Az $f \in \mathcal{L}^2(\mathbb{R}) \cap L^1(\mathbb{R})$ függvény kielégíti a

$$\int_{-\infty}^{\infty} f(t-s)e^{-|2s|} \, ds = \frac{1}{1+t^2}$$

függvény-egyenletet. Határozzuk meg $I:=\int_{-\infty}^{\infty}\frac{\sin(x)f(x)}{x}dx$ értékét! (Segítség: 1) a megadott függvény-egyenlet segítségével határozzuk meg f Fourier-transzformáltját, 2) gondoljunk az I integrálra mint egy $\mathcal{L}^2(\mathbb{R})$ -ben fölírt skaláris szorzatra!)

- **4. feladat** Keressük azt az $f:[-1,1] \to \mathbb{R}$ (legalább kétszer folytonosan deriválható) függvényt, melynek grafikonja és a vízszintes koordináta-tengely között bezárt előjeles terület éppen egy előre megadott $T \in (0, \pi/2)$ paraméter, de ezen megkötés mellett a lehető legrövidebb úton köti össze a (-1,0) és (1,0) pontokat.
 - Fogalmazzuk meg a fentieket mint egy variációszámítási feladatot!
 - Mutassuk meg, hogy az optimális út egy körív!