Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 8 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 9

Виконав студент Григоренко Родіон Ярославович (шифр, прізвище, ім'я, по батькові)

Перевірив Вечерковська А.С.

(прізвище, ім'я, по батькові)

Лабораторна робота 8 Дослідження алгоритмів пошуку та сортування

Мета – дослідити алгоритми пошуку та сортування, набути практичних навичок використання цих алгоритмів під час складання програмних специфікацій.

Індивідуальне завдання

9 6 х 6 Цілий Із додатних значень елементів головної діагоналі двовимірного масиву. Відсорт методом Шела за зростанням.	увати
---	-------

Варіант 9 Постановка задачі

Результатом ϵ виведення елементів впорядкованого методом Шела одновимірного масиву з додатних елементі головної діагоналі початкового двовимірного масиву.

Побудова математичної моделі

Складемо таблицю імен змінних та функцій

Змінна	Тип	Ім'я	Призначення
Двовимірний динамічний масив	Покажчик на масив покажчиків(Цілочисельний)	arr	Початкове дане
Динамічний одновимірний масив	Покажчик(Цілочисельний)	A	Результат
Довжина масиву arr	Цілочисельний	N	Початкове дане
Довжина масиву А	Цілочисельний	n	Проміжні дані
Покажчик на змінну n	Покажчик	pn	Проміжні дані
Параметри арифметичних циклів	Цілочисельний	i,j	Проміжні дані
Крок алгоритму Шела	Цілочисельний	step	Проміжні дані
Функція для ініціювання початкового масиву	int**	fill	Ініціювання початкового масиву
Функція для ініціювання одновимірного	Int*	arr2	Ініціювання другого масиву

динамічного масиву додатних елементів головної діагоналі початкового масиву			
Алгоритм Шела	void	shell	Сортування одновимірного масиву алгоритмом Шела
Функція для заповнення масиву рандомними значеннями	Цілочисельний	rand	Заповнення масиву рандомними значеннями

fill - функція для ініціювання початкового двовимірного динамічного масиву.

init - функція для ініціювання одновимірного масиву з додатних елементі головної діагоналі початкового двовимірного масиву.

shell - функція,що сортує масив А,за допомогою алгоритму Шела.

arr - початковий масив.

А- одновимірний масив з додатних елементі головної діагоналі початкового двовимірного масиву.

N,n - розмірності масивів.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо функцію fill.

Крок 3. Деталізуємо функцію init.

Крок 4. Деталізуємо функцію shell.

Псевдокод

```
int* A = new int
        int n = 0
        для і від 0 до N, збільшувати на 1
               для ј від 0 до N, збільшувати на 1
                     якщо i == j && arr[i][j] > 0
                               A[n] = arr[i][j]
                               n++
         *pn = n
        повернути А
все функція
функція shell(*arr, N)
        int memory
        для step від N/2 до 1, зменшувати в два рази
              для і від step до N, збільшувати на 1
                     для j = i при (j >= step \&\& arr[j - step] > arr[j]), зменшувати на <math>step
                              memory = arr[j]
                             arr[j] = arr[j - step]
                              arr[j - step] = memory
все функція
функція output(*A, N, **arr, n)
        для і від 0 до N, збільшувати на 1
              для ј від 0 до N, збільшувати на 1
                     виведення arr[i][j]
        для і від 0 до N, збільшувати на 1
              виведення А[і]
все функція
початок
       int N
        введення N
        int **arr = fill(N)
       int n
       int*pn = &n
       int *A = init(arr, N,pn)
        shell(A, n)
        output(A, N, arr,n)
кінець
```

Блок-схема Крок 4

Код

```
#include <stdlib.h>
#include <iostream>
#include <time.h>
using namespace std;
void shell(int* arr, int n);
int* init(int** arr,int N,int *pn);
int** fill(int N);
void output(int* A, int N, int** arr, int n);
int main()
    int N;
    cout << "Array size: ";</pre>
    cin >> N;
    int **arr = fill(N);
    int n;
    int* pn = &n;
    int *A = init(arr, N,pn);
    shell(A, n);
    output(A, N, arr,n);
```

```
void shell(int* arr, int N)
{
    int memory;
    for (int step = N / 2; step >= 1; step /= 2) {
        for (int i = step; i < N; i++) {
            for (int j = i; j >= step && arr[j - step] > arr[j]; j -= step) {
                memory = arr[j];
                arr[j] = arr[j - step];
                arr[j] = step] = memory;
            }
        }
    }
}
int** fill(int N) {
    srand(time(NULL));
    int** arr = new int *[N];
    for (int i = 0; i < N; i++) {
            arr[i] = new int[N];
    }
    for (int j = 0; j < N; j++) {
            arr[i][j] = rand()-16000;
        }
    return arr;
}</pre>
```

Результат коду

C:\Users\STRIX\source\repos\Lab8_ASD\Debug\Lab8_ASD.exe

```
Array size:
1210 -8692
             279 -11873
                           7930
                                 -2490
-580
                          -1567
      7414 -15006 1283
                                  9396
                      15038
                                    6870
-9752 -7306
              11453
                             16424
7806 6946 1614 -1616
                          14406
                                -13307
5431
      4993 5491
                  14813
                          11219
                                 -8572
-1501 -7200
              10702 -7223
                             4855
                                    11451
1210
     7414 11219 11451 11453
C:\Users\STRIX\source\repos\Lab8_ASD\Debug\Lab8_ASD.exe
```

```
Array size: 6
1353 5486 -129 -1663 3019 6446
5296 9686 -9392 -7088 -8075 11334
14086 -163 4869 -8518 -16000 -1621
-9946 -6545 12377 -8583 -13070 423
-7398 59 -7205 -13921 -7843 3635
-531 5312 1075 10305 -1453 -14055
```

Висновки

Я дослідив алгоритм пошуку та сортування, набув практичних навичок використання цих алгоритмів під час складання програмних специфікацій. Побудував мат. модель, псевдокод та блок схему. Протестував алгоритм.