

Teori Asam-Basa

A. PENDAHULUAN

- Nonsep dasar mengenai asam dan basa:
 - 1) **Asam** adalah zat yang memiliki rasa masam dan bersifat korosif (merusak).
 - 2) Basa adalah zat yang memiliki rasa pahit, melarutkan lemak, dan bersifat kaustik (licin).
- Konsep dasar lain mengenai asam dan basa yang dikemukakan oleh para ilmuwan:
 - 1) **Menurut Lavoisier**, zat yang menyebabkan sifat asam adalah oksigen.
 - Menurut Sir H. Davy, zat yang menyebabkan sifat asam adalah hidrogen.
 - 3) **Menurut Gay-Lussac**, asam dan basa adalah zat yang saling menetralkan satu sama lain.
- Selanjutnya, muncul teori asam-basa yang paling dapat diterima dan digunakan sampai sekarang.

B. TEORI ASAM-BASA ARRHENIUS

- Svante August Arrhenius mengemukakan teori asam-basa tahun 1884.
- Teori asam Arrhenius:

Pembawa sifat asam adalah ion H⁺ dan asam melepas ion H⁺ dalam air.

Reaksi ionisasi asam dalam air:

$$H_xA(aq) \Rightarrow xH^+(aq) + A^{x-}(aq)$$

valensi asam ion sisa asam

Contoh:

Asam klorida

HCl → H+ Cl-

Asam sulfida

H₂S <= 2H⁺ + S²⁻

- Nacam-macam asam menurut teori Arrhenius:
 - Asam monovalen (satu valensi asam)
 Contoh: HCl, HF, HBr.
 - 2) **Asam polivalen** (banyak valensi asam) Contoh: H₂SO₄ (divalen), H₃PO₃ (trivalen)
- **New Teori basa** Arrhenius:

Pembawa sifat basa adalah ion OH⁻ dan basa melepas ion OH⁻ dalam air.

Reaksi ionisasi basa dalam air:

$$B(OH)_{x (aq)} \Rightarrow B^{x+}_{(aq)} + xOH^{-}_{(aq)}$$

ion sisa basa valensi basa

Contoh:

Natrium hidroksida $NaOH \rightarrow Na^+ + OH^-$ Magnesium hidroksida $Mq(OH)_2 \rightleftharpoons Mq^{2+} + 2OH^-$

- **Teori** asam-basa Arrhenius merupakan teori asam-basa yang pertama kali dapat diterima.
- Nekurangan teori asam-basa Arrhenius:
 - 1) Hanya dapat menjelaskan sifat asam-basa apabila suatu zat dilarutkan dalam air.
 - 2) Tidak dapat menjelaskan sifat basa amonia dan natrium karbonat yang tidak mengandung ion OH⁻ namun menghasilkan ion OH⁻ ketika dilarutkan dalam air.
- Nekuatan asam dan basa menurut teori Arrhenius didasarkan atas [H⁺] dan [OH⁻].
 - 1) **Asam kuat** memiliki [H⁺] yang besar, **asam lemah** memiliki [H⁺] yang kecil.
 - 2) **Basa kuat** memiliki [OH⁻] yang besar, **basa lemah** memiliki [OH⁻] yang kecil.

C. TEORI ASAM-BASA BRONSTED-LOWRY

- Johanes N. Bronsted dan Thomas M. Lowry mengemukakan teori asam-basa tahun 1923.
- Menurut Bronsted-Lowry, asam dan basa hanya terionisasi dalam air karena:
 - 1) Air menarik ion H^+ sehingga membentuk ion hidronium (H_3O^+),
 - 2) Air melepas ion H⁺ sehingga membentuk ion hidroksida (OH⁻).

Contoh:

asam
$$HCl + H_2O \rightarrow Cl^- + \underline{H_3O}^+$$

basa $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

New Teori asam-basa Bronsted-Lowry:

Asam adalah spesi atau zat yang merupakan donor proton (H⁺).

Basa adalah spesi atau zat yang merupakan akseptor proton (H⁺).

- Menurut teori asam-basa Bronsted-Lowry:
 - Asam yang telah melepaskan satu proton akan membentuk spesi atau zat yang disebut basa konjugasi.

Contoh:

asam	~	proton	+	basa konjugasi
HCl	\rightleftharpoons	H⁺	+	Cl-
H_2SO_4	\rightleftharpoons	H⁺	+	HSO ₄ -
H_3PO_4	\rightleftharpoons	H⁺	+	$H_2PO_4^-$
NH_4^+	\rightleftharpoons	H ⁺	+	NH_3

2) **Basa** yang telah menerima satu proton akan membentuk spesi atau zat yang disebut **asam konjugasi.**

Contoh:

basa + proton
$$\rightleftharpoons$$
 asam konjugasi
O²⁻ + H⁺ \rightleftharpoons OH⁻
HCO₃⁻ + H⁺ \rightleftharpoons H₂CO₃
Cl⁻ + H⁺ \rightleftharpoons HCl
OH⁻ + H⁺ \rightleftharpoons H₂O

- Nelebihan teori asam-basa Bronsted-Lowry:
 - Dapat menjelaskan sifat asam-basa zat pada pelarut dan larutan selain air, bahkan tanpa pelarut.

Contoh:

$$H_3^+$$
 NH_3 + $HCl \rightarrow NH_4^+$ + Cl^-
basa asam asam k. basa k.

 H_2^+
 HNO_3 + $H_2SO_4 \rightarrow H_2NO_3^+$ + HSO_4^-
basa asam asam k. basa k.

Dapat menjelaskan sifat asam-basa kation dan anion.

Contoh:

$$H^+$$
 $HClO_4 + HCO_3^- \rightarrow ClO_4^- + H_2CO_3$
asam basa basa k. asam k.

3) Dapat menjelaskan zat yang bersifat amfoter/ amfiprotik (dapat berupa asam atau basa). Contoh:

Air dapat bersifat asam atau basa.

$$H^+$$
 $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$
asam basa basa k. asam k.
 H^+
 $HCO_3^- + H_2O \rightarrow H_2CO_3 + OH^-$
basa asam

- Kelemahan teori asam-basa Bronsted-Lowry adalah tidak dapat menjelaskan sifat asam-basa yang tidak melibatkan transfer proton.
- Kekuatan asam dan basa menurut teori Bronsted-Lowry didasarkan atas kemampuan zat melepas dan menarik proton.
 - Asam kuat mudah melepas proton, asam lemah sukar melepas proton.
 - 2) **Basa kuat** mudah menarik proton, **basa lemah** sukar menarik proton.

- Kekuatan asam berbanding terbalik dengan kekuatan basa konjugasinya.
- 4) **Kekuatan basa** berbanding terbalik dengan kekuatan asam konjugasinya.
- Kekuatan asam dan basa menurut teori Bronsted-Lowry bersifat relatif.
 - Jika dua larutan asam berbeda dicampurkan dengan suatu larutan basa secara terpisah:
 - a. Pada asam 1, basa bersifat lemah,
 - b. Pada asam 2, basa bersifat kuat,

Maka asam 2 **lebih kuat** daripada asam 1.

- 2) **Jika dua larutan basa berbeda** dicampurkan dengan suatu larutan asam secara terpisah:
 - a. Pada basa 1, asam bersifat lemah,
 - b. Pada basa 2, asam bersifat kuat,

Maka basa 2 **lebih kuat** daripada basa 1.

D. TEORI ASAM-BASA LEWIS

- Gilbert N. Lewis mengemukakan teori asambasa tahun 1923.
- Menurut Lewis, transfer proton terjadi karena adanya pasangan elektron bebas pada basa, yang kemudian akan membentuk ikatan kovalen koordinasi dengan proton tersebut.
- **New Teori asam-basa** Lewis:

Asam adalah spesi atau zat akseptor pasangan elektron.

Basa adalah spesi atau zat donor pasangan elektron.

Contoh:

HNO₃

Asam : atom O
$$\vdots$$
 O:
Basa : atom N $O = N - O - H$

H₂SO₄

HClO₄

$NH_3 + H^+ \rightarrow NH_4$

Asam: ion H+

Basa: atom N pada NH₃

NH₃ + BF₃ → NH₃BF₃

Asam: atom B pada BF₃ **Basa**: atom N pada NH₃

CaO + CO₂ → CaCO₃

Asam: atom C pada CO₂ **Basa**: atom O pada CaO

$H_2O + CO_2 \rightarrow H_2CO_3$

Asam: atom C pada CO₂ **Basa**: atom O pada H₂O

Kelebihan teori asam-basa Lewis:

- Dapat menjelaskan sifat asam-basa yang tidak melibatkan transfer proton.
- 2) Dapat menjelaskan sifat asam-basa oksida asam dan oksida basa.
- 3) Dapat menjelaskan sifat asam-basa senyawa yang memiliki pasangan elektron bebas.
- 4) Dapat menjelaskan sifat asam-basa senyawa organik seperti protein dan DNA.

Nekurangan teori asam-basa Lewis:

- Hanya dapat menjelaskan sifat asam-basa zat atau ion yang mencapai kaidah oktet.
- 2) Hanya dapat menjelaskan sifat asam-basa senyawa kovalen.