

Vanadium redox flow battery for smart grid application: Nano-structured carbon-based electrode materials

Cristina Flox, F.J. Vázquez-Galván, Marcel Skoumal, Edgar Ventosa, Cristian Fábrega, Teresa Andreu and Juan Ramón Morante

Catalonia Institute for Energy Research

MOTIVATION

EU 2050 ENERGY ROAD MAP:

- 99% renewal integration
- Low- carbon energy system

Distributed renewal energy source integration

INTRODUCTION

- EES is not dependent site and high capital cost (CAE and PHS)
- Power and energy are decoupled: Flexible and modularity design (unlike Li-ion or NAS batteries) making it suitable for many diverse application

Installed Revenue Opportunity by ESG Technology, World Markets: 2010-2020

MOTIVATION

Why vanadium redox flow battery such as energy store device?

- EES is not dependent site
- Power and energy are decoupled
 - Low maintenances cost
- High voltage efficiency >85% total efficiency
- Recharged by simply replacing the electrolyte
- •Limited environmental impact when compared with lead-acid
 - •Fast response time
 - Low self-discharge

COST (EASE-EERA roadmap)

Energy cost 120 €/kWh

Power cost 300 €/kW

2 MW / 4 h 245 m²

Source: Electric Power Research Institute

Figure 1-1 Overview of Energy Storage Use Cases

INTRODUCTION

ELECTROCHEMICAL ENERGY STORAGE: VANADIUM REDOX FLOW BATTERIES

Microturbine

Institut de Recerca en Energia de Catalunya Catalonia Institute for Energy Research

INTRODUCTION: VANADIUM REDOX FLOW BATTERIES

red**Ox** 2015

Cells number: 20

Voltage: 30V

Current: 50 A

Power: 1.5 kW

Innovative membranes

INTRODUCTION: VANADIUM REDOX FLOW BATTERIES

$$V^{2+} \rightarrow V^{3+} + 1e^{-}$$

 $VO_{2}^{+} + 2H^{+} + 1e^{-} \rightarrow VO^{2+} + H_{2}O$
global: $V^{2+} + VO_{2}^{+} + 2H^{+} \rightarrow V^{3+} + VO^{2+} + H_{2}O$

EXPERIMENTAL PART: SINGLE -CELL VRB SYSTEM

Viton gasket

Electrodes: 4 cm² of geometric area

Electrolyte solution: 20 mL of 1 M Vanadium ion + 3 M H₂SO₄

NF electrodes

Viton gasket

End-plates

Viton gasket

EXPERIMENTAL PART: ELECTRODE PREPARATION

ELECTROSPINNING TECHNIQUES and THERMAL TREATMENTS:

- ✓ Synthesis simple, cost-effective and facile
- ✓ Large-surface area and binder-free electrodes
- ✓ Flexible electrodes for new design of batteries
- √ Very suitable for large-scale application

Electrospinning nanofiber web

Oxygen –Stabilized web

As-Carbonized NF electrode

Agmae

RESULTS: MORPHOLOGICAL CHARACTERIZATION OF NF ELECTRODES

Xagmae XARXA DE REFERENCIA EN MATERIALS AVANÇATS PER A L'ENERGIA

NANOFIBER FE-SEM images

PAN-felt FE-SEM images

RESULTS: XPS ANALYSIS and ELECTRICAL CONDUCTIVITY

NANOFIBER XPS analysis

Electrode	Electrical conductivity (S cm ⁻¹)	Species concentration (atomic %)		
		С	O	N
NF	25.03(16.21)*	88.46	6.61	4.93
PAN-felt	3.65	77.00	22.30	0.70

* Electrical conductivity parallel to the winding direction, in parenthesis perpendicular to the winding direction

RESULTS: ELECTROCATALYSIS OF HALF-CELL REACTION

$$VO_2^+ + 2H^+ + 1e^- \rightarrow VO^{2+} + H_2O$$

$$V^{2+} \rightarrow V^{3+} + 1e^{-}$$

30 cm³ of a 0.5 mol dm³ Vanadium ion in 3 mol dm³ H₂SO₄ solution. Scan rate: 5 mV s⁻¹

Negative reaction suffer kinetic limitation

RESULTS: CHARGE – DISCHARGE EXPERIMENTES

> COMPARATION WITH COMMERCIAL ELECTRODES

Current density: 25 mA cm⁻²

Flow rate: 12 mL min⁻¹

		Discharge	Discharge
Electrode	EE	energy	capacity
		(WhL ⁻¹)	(mA h)
NF	76.94	14.13	226.78
PAN-felt	77.74	16.28	243.56

RESULTS: POWER MAX. DETERMINATION AT 50 % SOC

> COMPARATION WITH COMMERCIAL ELECTRODES

RESULT: NF electrode assembled in VRFB PROTOTYPE

>CURRENT DENSITY AND FLOW RATE DEPENDENCE

Current density (mA cm ⁻²)	Flow rate (mL min ⁻¹)	CE	VE	EE
25 mA cm ⁻²	12mLmin ⁻¹	96.94	75.69	73.38
50 mA cm ⁻²	12mLmin ⁻¹	97.74	63.51	62.08
75 mA cm ⁻²	12mLmin ⁻¹	99.10	50.74	50.28
25 mA cm ⁻²	25 mLmin ⁻¹	97.29	78.79	76.66

BEST CONDITIONS

> ELECTROCATALYTIC EFFECT OF NANOFIBER

Theoretial capacity: 539 mAh

Electrode	Capacity /mAh
1 LAYER NF	220
2 layer NF	412.5

Experimental condition:

75 mA cm⁻²

25 mLmin⁻¹

EE up to 84%

CONCLUSIONS

- Highly electrocatalytic nanofiber such as electrode material for VRB has been test for the first time showing similar efficiencies that commercial PAN-felt electrode.
- Slightly increment of the power maximum of the VRB have been demonstrated.
- Increment of the capacity of the system with layer of the nanofiber demonstrating the catalytic affect of NF electrode.

Cristina Flox, Cristian Fàbrega, Teresa Andreu, Alex Morata, Marcel Skoumal, Javier Rubio-Garcia and Juan Ramón Morante. Highly electrocatalytic flexible nanofiber for improved vanadium-based redox flow battery cathode electrodes.

RSC Adv., 2013,3, 12056-12059

ACKNOWLEDGEMENTS

red**Ox** 2015

Funding:

The research leading to these results was supported by XaRMAE Network of excellence of Materials for Energy of the "Generalitat de Catalunya". The research was supported by European Regional Development Founds (ERDF, FEDER Programa Competitivitat de Catalunya 2007-2013) and by project REDOX 2015 (IPT-2011-1690-920000). The research was supported by EIT and KIC-InnoEnergy under the project KIC-EES (33_2011_IP29_Electric Energy Storage).