Denotational Semantics and Domain Theory

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definition

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

Denotational Semantics 2 / 51

Denotational semantics

A denotational semantics relates each term to a denotation

an abstract syntax tree 🧈

a value in some semantic domain

Valuation function

 $\llbracket \, \cdot \,
rbracket$: abstract syntax ightarrow semantic domain

Valuation function in Haskell

eval :: Term -> Value

Denotational Semantics 3/51

Semantic domains

Semantic domain: captures the set of possible meanings of a program/term

what is a meaning? — it depends on the language!

Example semantic domains	
Meaning	
Boolean value	
Integer	
State transformation	
Set of relations	
Animation	
Sound waves	

Denotational Semantics 4/51

Defining a language with denotational semantics

Example encoding in Haskell:

- 1. Define the **abstract syntax**, *T* the set of abstract syntax trees
- 2. Identify or define the **semantic domain**, *V the representation of semantic values*
- 3. Define the **valuation function**, $[\![\cdot]\!]: T \to V$ the mapping from ASTs to semantic values a.k.a. the "semantic function"

```
data Term = ...
```

```
type Value = ...
```

sem :: Term -> Value

Denotational Semantics 5 / 51

Example: simple arithmetic expressions

1. Define abstract syntax

2. Define semantic domain Use the set of all integers, *Int*

Comes with some operations: $+, \times, -, toInt : Nat \rightarrow Int, ...$

3. Define the valuation function

$$\llbracket \textit{Exp}
rbracket : \textit{Int}$$
 $\llbracket \mathsf{add} \ e_1 \ e_2
rbracket = \llbracket e_1
rbracket + \llbracket e_2
rbracket$ $\llbracket \mathsf{mul} \ e_1 \ e_2
rbracket = \llbracket e_1
rbracket \times \llbracket e_2
rbracket$ $\llbracket \mathsf{neg} \ e
rbracket = -\llbracket e
rbracket$ $\llbracket n
rbracket = toInt(n)$

Denotational Semantics 6 / 51

Encoding denotational semantics in Haskell

- 1. abstract syntax: define a new data type, as usual
- 2. **semantic domain**: identify and/or define a new **type**, as needed
- 3. **valuation function**: define a **function** from ASTs to semantic domain

Valuation function in Haskell

```
sem :: Exp -> Int
sem (Add l r) = sem l + sem r
sem (Mul l r) = sem l * sem r
sem (Neg e) = negate (sem e)
sem (Lit n) = n
```

Denotational Semantics 7 / 51

Desirable properties of a denotational semantics

Compositionality: a program's denotation is built from the denotations of its parts

- supports modular reasoning, extensibility
- supports proof by structural induction

Completeness: every value in the semantic domain is denoted by some program

- ensures that semantic domain and language align
- if not, language has expressiveness gaps, or semantic domain is too general

Soundness: two programs are "equivalent" iff they have the same denotation

- equivalence: same w.r.t. to some other definition
- ensures that the denotational semantics is correct

Denotational Semantics 8 / 51

More on compositionality

Compositionality: a program's denotation is built from the denotations of its parts

an AST 🥕

sub-ASTs

Example: What is the meaning of **op** e_1 e_2 e_3 ?

- 1. Determine the meaning of e_1 , e_2 , e_3
- 2. Combine these submeanings in some way specific to **op**

Implications:

- The valuation function is probably recursive
- Often need different valuation functions for each syntactic category

Denotational Semantics 9/51

Example: move language

A language describing movements on a 2D plane

- a step is an n-unit horizontal or vertical movement
- a move is described by a sequence of steps

go N 3; go E 4; go S 1;

```
Abstract syntax n \in Nat ::= \mathbf{0} \mid \mathbf{1} \mid \mathbf{2} \mid \dots d \in Dir ::= \mathbf{N} \mid \mathbf{S} \mid \mathbf{E} \mid \mathbf{W} s \in Step ::= \mathbf{go} \ d \ n m \in Move ::= \epsilon \mid s \ ; m
```

Denotational Semantics 10 / 51

Semantics of move language

1. Abstract syntax

```
\begin{array}{lll} n \in Nat & ::= & \mathbf{0} \mid \mathbf{1} \mid \mathbf{2} \mid \dots \\ d \in Dir & ::= & \mathbf{N} \mid \mathbf{S} \mid \mathbf{E} \mid \mathbf{W} \\ s \in Step & ::= & \mathbf{go} \quad d \quad n \\ m \in Move & ::= & \epsilon \mid s \; ; \; m \end{array}
```

2. Semantic domain

$$Pos = Int \times Int$$

Domain: $Pos \rightarrow Pos$

3. Valuation function (*Step*)

$$S[\![Step\,]\!] : Pos \rightarrow Pos$$

$$S[\![go\,N\,k]\!] = \lambda(x,y). \ (x,y+k)$$

$$S[\![go\,S\,k]\!] = \lambda(x,y). \ (x,y-k)$$

$$S[\![go\,E\,k]\!] = \lambda(x,y). \ (x+k,y)$$

$$S[\![go\,W\,k]\!] = \lambda(x,y). \ (x-k,y)$$

3. Valuation function (*Move*)

$$M\llbracket Move
bracket : Pos
ightarrow Pos$$
 $M\llbracket \epsilon
bracket = \lambda p. \ p$ $M\llbracket s ; m
bracket = M\llbracket m
bracket \circ S\llbracket s
bracket$

Alternative semantics

Often multiple interpretations (semantics) of the same language

Example: Database schema

One declarative spec, used to:

- initialize the database
- generate APIs
- validate queries
- normalize layout
- ...

Distance traveled

 $S_D[\![Step]\!]:Int$ $S_D[\![go\ d\ k]\!]=k$

 $M_D[Move]$: Int $M_D[\epsilon] = 0$

 $M_D[\![s \; ; \; m]\!] = S_D[\![s]\!] + M_D[\![m]\!]$

Combined trip information

 $M_{C}\llbracket Move \rrbracket : Int \times (Pos \rightarrow Pos)$ $M_{C}\llbracket m \rrbracket = (M_{D}\llbracket m \rrbracket, M \llbracket m \rrbracket)$

Denotational Semantics 12 / 51

Picking the right semantic domain

Simple semantic domains can be combined in two ways:

- product: contains a value from both domains
 - e.g. combined trip information for move language
 - use Haskell (a,b) or define a new data type
- sum: contains a value from one domain or the other
 - e.g. IntBool language can evaluate to Int or Bool
 - use Haskell Either a b or define a new data type

Can errors occur?

• use Haskell Maybe a or define a new data type

Does the language manipulate state or use naming?

use a function type

Denotational Semantics 13 / 51

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

Basic Domain Theory 14/51

What is domain theory?

Domain theory: a mathematical framework for constructing **semantic domains**

Recall ...

A denotational semantics relates each **term** to a **denotation**

an abstract syntax tree

a value in some semantic domain

Semantic domain: captures the set of possible meanings of a program/term

15 / 51 Basic Domain Theory

Historical notes

Origins of domain theory:

- Christopher Strachey, 1964
 - early work on denotational semantics
 - used lambda calculus for denotations
- Dana Scott, 1975
 - goal: denotational semantics for lambda calculus itself
 - created domain theory for meaning of recursive functions

Dana Scott

More on Dana Scott:

- Turing award in 1976 for nondeterminism in automata theory
- PhD advisor: Alonzo Church, 20 years after Alan Turing

Basic Domain Theory 16 / 51

Two views of denotational semantics

View #1: **Translation** from one formal system to another

• e.g. translate object language into lambda calculus

View #2: "True meaning" of a program as a mathematical object

- e.g. map programs to elements of a semantic domain
- need domain theory to describe set of meanings

Basic Domain Theory 17/51

Domains as semantic algebras

A semantic domain can be viewed as an algebraic structure

• a set of **values** the meanings of the programs

• a set of **operations** on the values used to compose meanings of parts

Domains also have internal structure: **complete partial ordering** (later)

Basic Domain Theory 18/51

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history

Primitive and lifted domains

Sum and product domains
Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

Basic Domain Theory 19 / 51

Primitive domains

Values are **atomic**

- often correspond to built-in types in Haskell
- nullary operations for naming values explicitly

Domain: Bool

true : Bool false : Bool

 $not: Bool \rightarrow Bool$

 $and:Bool \times Bool \to Bool$

 $or: Bool \times Bool \rightarrow Bool$

Domain: Int

 $0,1,2,\ldots: \mathit{Int}$

 $negate:Int \rightarrow Int$

 $plus: Int \times Int \rightarrow Int$

 $\textit{times}: \textit{Int} \times \textit{Int} \rightarrow \textit{Int}$

Domain: *Unit*

() : *Unit*

Also: Nat, Name, Addr, ...

Basic Domain Theory 20 / 51

Lifted domains

Construction: add \perp (*bottom*) to an existing domain

$$A_{\perp} = A \cup \{\perp\}$$

New operations

 $\perp:A_{\perp}$

 $map:(A\to B)\times A_\perp\to B_\perp$

 $maybe: B \times (A \to B) \times A_{\perp} \to B$

Basic Domain Theory 21/51

Encoding lifted domains in Haskell

Can also use pattern matching!

```
Option #2: new data type with nullary constructor data Value = Success Int | Error
```

Best when combined with other constructions

Basic Domain Theory 22 / 51

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains

Sum and product domains

Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

Basic Domain Theory 23 / 51

Sum domains

Construction: the disjoint union of two existing domains

• contains a value from either one domain or the other

$$A \oplus B = A \uplus B$$

New operations

 $inL: A \rightarrow A \oplus B$

 $inR: B \rightarrow A \oplus B$

 $case: (A \rightarrow C) \times (B \rightarrow C) \times (A \oplus B) \rightarrow C$

Basic Domain Theory 24/51

Encoding sum domains in Haskell

Can also use pattern matching!

```
Option #2: new data type with multiple constructors

data Value = I Int | B Bool
```

Best when combined with other constructions, or more than two options

Basic Domain Theory 25 / 51

Example: a language with multiple types

Design a denotational semantics for Exp

- 1. How should we define our semantic domain?
- 2. Define a valuation semantics function

- neg negates either a numeric or boolean value
- equal compares two values of the same type for equality
- cond equivalent to if-then-else

Basic Domain Theory 26/51

Solution

Basic Domain Theory 27 / 51

Product domains

Construction: the **cartesian product** of two existing domains

contains a value from both domains

$$A \otimes B = \{(a,b) \mid a \in A, b \in B\}$$

New operations

 $pair: A \times B \rightarrow A \otimes B$

 $fst: A \otimes B \rightarrow A$

 $snd: A \otimes B \rightarrow B$

Basic Domain Theory 28 / 51

Encoding product domains in Haskell

```
Option #1: Tuples
type Value a b = (a,b)
fst :: (a,b) -> a
snd :: (a,b) -> b
```

Can also use pattern matching!

```
Option #2: new data type with multiple arguments

data Value = V Int Bool
```

Best when combined with other constructions, or more than two

Basic Domain Theory 29 / 51

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history
Primitive and lifted domains
Sum and product domains

Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

Basic Domain Theory 30 / 51

Function space domains

Construction: the set of **functions** from one domain to another

$$A \rightarrow B$$

Create a function: $A \rightarrow B$

Lambda notation: $\lambda x. y$

where $\Gamma, x : A \vdash y : B$

Eliminate a function

$$apply: (A \rightarrow B) \times A \rightarrow B$$

Basic Domain Theory 31/51

Denotational semantics of naming

Environment: a function associating names with things

 $Env = Name \rightarrow Thing$

Naming concepts

declarationadd a new name to the environmentbindingset the thing associated with a namereferenceget the thing associated with a name

Example semantic domains for expressions with ...

immutable variables (Haskell) Env o Val

mutable variables (C/Java/Python) $Env o Env \otimes Val$

Basic Domain Theory 32 / 51

Example: Denotational semantics of let language

1. Abstract syntax

```
i \in Int ::= (any integer)

v \in Var ::= (any variable name)

e \in Exp ::= i

\mid \quad \text{add} \quad e \quad e

\mid \quad \text{let} \quad v \quad e \quad e
```

2. Identify semantic domain

- i. Result of evaluation: *Int*
- ii. Environment: $Env = Var \rightarrow Int_{\perp}$
- iii. Semantic domain: Env o Int

3. Define a valuation function

Basic Domain Theory 33/51

What is mutable state?

Mutable state: stored information that a program can read and write

Typical semantic domains with state domain S:

 $S \rightarrow S$ state mutation as **main effect**

 $S \rightarrow S \otimes Val$ state mutation as **side effect**

Often: lifted codomain if mutation can fail

Examples

- the memory cell in a calculator S = Int
- the stack in a stack language S = Stack
- ullet the store in many programming languages S=Name
 ightarrow Val

Basic Domain Theory 34/51

Example: Single register calculator language

1. Abstract syntax $i \in Int ::= (any integer)$ $e \in Exp ::= i$ | e + e | save e | load

2. Identify semantic domain

i. State (side effect): Int
ii. Result: Int

iii. Semantic domain: $\mathit{Int} \to \mathit{Int} \otimes \mathit{Int}$

Examples:

```
• save (3+2) + load 

→ 10
```

```
• save 1 + (save 10 + load) + load 
→ 31
```

Basic Domain Theory 35 / 51

Example: Single register calculator language

1. Abstract syntax

```
i \in Int ::= (any integer) e \in Exp ::= i | e + e | save e | load
```

Examples:

- save (3+2) + load → 10
- save 1 + (save 10 + load) + load
 → 31

3. Define valuation function

```
\llbracket Exp \rrbracket : Int \rightarrow Int \otimes Int
          [i] = \lambda s. (s, i)
 [e_1 + e_2] = \lambda s. \text{ let } (s_1, i_1) = [e_1](s)
                               (s_2, i_2) = [e_2](s_1)
                         in (s_2, i_1 + i_2)
[save e] = \lambda s. let (s', i) = [e](s) in (i, i)
[load e] = \lambda s. (s. s)
```

Basic Domain Theory 36/51

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions Compositionality and well-definedness

Least fixed-point construction Internal structure of domains

Compositionality and well-definedness

Recall: a denotational semantics must be compositional

• a term's denotation is built from the denotations of its parts

```
Example: integer expressions
  i \in Int ::= (any integer)
 e \in Exp ::= i \mid \mathsf{add} \ e \ e \mid \mathsf{mul} \ e \ e
               [Exp]: Int
                     [i] = i
         [add e_1 e_2] = [e_1] + [e_2]
         [\![\mathsf{mul}\ e_1\ e_2]\!] = [\![e_1]\!] \times [\![e_2]\!]
```

Compositionality ensures the semantics is **well-defined** by **structural induction**

Each AST has exactly one meaning

A non-compositional (and ill-defined) semantics

```
Anti-example: while statement
     t \in Test ::= \dots
    c \in Cmd ::= ... | while t c
       T \llbracket Test \rrbracket : S \rightarrow Bool
       C \llbracket Cmd \rrbracket : S \to S
 C[[while \ t \ c]] = \lambda s. \ if \ T[[t]](s) \ then
                         C[while t c](C[c](s))
                         else s
```

Meaning of **while** *t c* in state *s*:

- 1. evaluate *t* in state *s*
- 2. if true:
 - a. run c to get updated state s'
 - b. re-evaluate **while** in state s' (not compositional)
- 3. otherwise return *s* unchanged

Translational view:

meaning is an infinite expression!

Mathematical view:

may have **infinitely many** meanings!

Extensional vs. operational definitions of a function

Mathematical function

Defined extensionally:

• a relation between inputs and outputs

Computational function (e.g. Haskell)

Usually defined operationally:

compute output by sequence of reductions

Example (intensional definition)

$$\mathit{fac}(n) = \left\{ egin{array}{ll} 1 & n = 0 \\ n \cdot \mathit{fac}(n-1) & \mathsf{otherwise} \end{array}
ight.$$

Extensional meaning

$$\{\dots,(2,2),(3,6),(4,24),\dots\}$$

Operational meaning

$$fac(3) \rightsquigarrow 3 \cdot fac(2)$$

$$\rightsquigarrow 3 \cdot 2 \cdot fac(1)$$

$$\rightsquigarrow 3 \cdot 2 \cdot 1 \cdot fac(0)$$

$$\rightsquigarrow 3 \cdot 2 \cdot 1 \cdot 1$$

$$\rightsquigarrow 6$$

Extensional meaning of recursive functions

$$grow(n) = \left\{ egin{array}{ll} 1 & n=0 \\ grow(n+1)-2 & ext{otherwise} \end{array}
ight.$$

Best extension (use \perp if undefined):

• $\{(0,1),(1,\perp),(2,\perp),(3,\perp),(4,\perp),\ldots\}$

Other valid extensions:

- $\{(0,1),(1,2),(2,4),(3,6),(4,8)\ldots\}$
- $\{(0,1),(1,5),(2,7),(3,9),(4,11)\ldots\}$
- ...

Goal: best extension = **only** extension

Connection back to denotational semantics

A function space domain is a set of mathematical functions

```
Anti-example: while statement
     t \in Test ::= \dots
    c \in Cmd ::= ... | while t c
       T \llbracket \mathit{Test} \rrbracket : S \to \mathit{Bool}
      C \llbracket Cmd \rrbracket : S \to S
 C[while t c] = \lambda s. if T[t](s) then
                        C[while t c[(C[c](s))
                        else s
```

Ideal semantics of Cmd:

- ullet semantic domain: $\mathcal{S}
 ightarrow \mathcal{S}_{\perp}$
- contains (s, s') if c terminates
- contains (s, \perp) if c diverges

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness

Least fixed-point construction

Internal structure of domains

Least fixed points

Basic idea:

- 1. a **recursive** function defines a **set** of **non-recursive**, **finite** subfunctions
- 2. its meaning is the "union" of the meanings of its subfunctions

Iteratively grow the extension until we reach a fixed point

essentially encodes computational functions as mathematical functions

Example: unfolding a recursive definition

Recursive definition

$$\mathit{fac}(n) = \left\{ egin{array}{ll} 1 & n = 0 \\ n \cdot \mathit{fac}(n-1) & \mathsf{otherwise} \end{array}
ight.$$

Non-recursive, finite subfunctions

$$fac_0(n) = \bot$$

$$fac_1(n) = \begin{cases} 1 & n = 0 \\ n \cdot fac_0(n-1) & \text{otherwise} \end{cases}$$

$$fac_2(n) = \begin{cases} 1 & n = 0 \\ n \cdot fac_1(n-1) & \text{otherwise} \end{cases}$$

$$fac_0 = \{\}$$

 $fac_1 = \{(0,1)\}$
 $fac_2 = \{(0,1), (1,1)\}$
 $fac_3 = \{(0,1), (1,1), (2,2)\}$
...
 $fac = \bigcup_{i=0}^{\infty} fac_i$

Fine print:

- ullet each fac_i maps all other values to ot
- ullet \cup operation prefers non- \perp mappings

Meaning of Recursive Definitions 45 / 51

Computing the fixed point

In general

$$fac_0(n) = oxedsymbol{eta}$$
 $fac_i(n) = \left\{egin{array}{ll} 1 & n=0 \ n \cdot fac_{i-1}(n-1) & ext{otherwise} \end{array}
ight.$

A template to represent all fac_i functions:

$$F = \lambda f. \lambda n. \ \left\{ \begin{array}{ll} 1 & n = 0 \\ n \cdot f(n-1) & \text{otherwise} \end{array} \right.$$
 takes fac_{i-1} as input

Fixpoint operator

$$\begin{aligned} & \text{fix} : (A \to A) \to A \\ & \text{fix}(g) = \text{let } x = g(x) \text{ in } x \end{aligned}$$

$$\mathbf{fix}(h) = h(h(h(h(h(\dots)))))$$

Factorial as a fixed point fac = fix(F)

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction

Internal structure of domains

Why domains are not flat sets

Internal structure of domains supports the least fixed-point construction

Recall fine print from factorial example:

- each fac_i maps all other values to \perp
- ∪ operation prefers non-⊥ mappings

How can we **generalize** and **formalize** this idea?

Partial orderings and joins

```
      Partial ordering:
      \sqsubseteq : D \times D \rightarrow \mathbb{B}

      • reflexive:
      \forall x \in D. x \sqsubseteq x

      • antisymmetric:
      \forall x, y \in D. x \sqsubseteq y \land y \sqsubseteq x \implies x = y

      • transitive:
      \forall x, y, z \in D. x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z
```

```
Join: \Box: D \times D \to D
 \forall a, b \in D, the element c = a \sqcup b \in D, if it exists, is the smallest element that is larger than both a and b
```

i.e. $a \sqsubseteq c$ and $b \sqsubseteq c$, and there is no $d = a \sqcup b \in D$ where $d \sqsubseteq c$

(Scott) domains are directed-complete partial orderings

A domain is a directed-complete partial ordered (dcpo) set:

ullet every directed subset (related by \Box) of a domain has \bot

The meaning of a (Scott-continuous) recursive function f is: where f_i are the finite approximations of f

Well-defined semantics for the while statement

```
Syntax t \in Test ::= \dots c \in Cmd ::= \dots \mid while t c
```

Semantics

```
T \llbracket \ Test \, \rrbracket \ : \ S \to Bool C \llbracket \ Cmd \, \rrbracket \ : \ S \to S C \llbracket \text{while} \ t \ c \rrbracket = \text{fix}(\lambda f.\lambda s. \ \text{if} \ T \llbracket t \rrbracket(s) \ \text{then} \ f(C \llbracket c \rrbracket(s)) \ \text{else} \ s)
```