Universidade Veiga deAlmeida

Curso: Básico das engenharias

Disciplina: Cálculo Vetorial e Geometria Analítica

Professora: Adriana Nogueira

3^a Lista de exercícios

Exercício 1: Dados $\overrightarrow{u} = (2,1,0), \ \overrightarrow{v} = (-1,-2,3), \ \overrightarrow{w} = (3,2,1)$ calcule os seguintes produtos escalares:

- a) $2\overrightarrow{u}\cdot\overrightarrow{v}$
- b) $(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w}$
- c) $\overrightarrow{w} \cdot (\overrightarrow{u} + 3\overrightarrow{v})$
- d) $(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{v} \overrightarrow{w})$

Exercício 2: Considere os vetores \overrightarrow{u} e \overrightarrow{v} tais que $|\overrightarrow{u}|=3, |\overrightarrow{v}|=2$ e o ângulo entre eles é de $\theta=150^\circ$. Calcule:

- a) $\overrightarrow{u} \cdot \overrightarrow{v}$
- b) $|\overrightarrow{u} + \overrightarrow{v}|$
- c) $|\overrightarrow{u} \overrightarrow{v}|$
- d) $(\overrightarrow{u} \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v})$

Exercício 3: Sabendo que $|\overrightarrow{u}| = 3$, $|\overrightarrow{v}| = 7$ e $\overrightarrow{u} \cdot \overrightarrow{v} = -2$, calcule:

- a) $(2\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{v}$
- b) $(\overrightarrow{u} 3\overrightarrow{v}) \cdot (4\overrightarrow{u} + \overrightarrow{v})$
- c) $(3\overrightarrow{u} + 2\overrightarrow{v}) \cdot (\overrightarrow{u} \overrightarrow{v})$

Exercício 4: Calcule o ângulo entre os vetores dados abaixo:

a)
$$\overrightarrow{u} = (1, -1, 2) e \overrightarrow{v} = (4, 1, 7)$$

b)
$$\overrightarrow{u} = (-3, 2, 7) \ e \ \overrightarrow{v} = (0, 0, 2)$$

c)
$$\overrightarrow{i}$$
 e $\overrightarrow{u} = (1,0,3)$

Exercício 5: Verifique se os vetores abaixo são ortogonais:

a)
$$\vec{u} = (1, 0, -3) \ e \ \vec{v} = (0, 1, 1)$$

b)
$$\vec{u} = (0,1,1) \ e \ \vec{v} = (-1,2,-2)$$

c)
$$\overrightarrow{u} = (2, 5, 5) \ e \ \overrightarrow{v} = (5, 0, -2)$$

Exercício 6: Calcule o valor de a para que os vetores $\overrightarrow{u} = (3a+1, 5, -3)$ e $\overrightarrow{v} = (2, a-3, 7)$ sejam ortogonais.

Exercício 7: Considere o triângulo ABC com vértices em A=(1,2,1), B=(-1,3,2) e C=(2,1,1). Determine o ângulo interno ao vértice A.

Exercício 8: Dados os pontos $A=(0,a+1,4),\ B=(a-1,2a,2)$ e C=(1,a-5,-1), determine a de modo que o triângulo ABC seja retângulo em A.

Exercício 9: Determine o vetor \overrightarrow{u} ortogonal ao vetor $\overrightarrow{v}=(-1,0,1)$, tal que $|\overrightarrow{u}|=5$ e o ângulo entre \overrightarrow{u} e $\overrightarrow{w}=(1,0,1)$ é $\theta=45^o$.

Exercício 10: Dado o vetor $\overrightarrow{u} = (1, 2, 1)$, determine:

- a) Um vetor ortogonal a \overrightarrow{u}
- b) Um vetor unitário ortogonal a \overrightarrow{u}
- c) Um vetor de módulo 2 ortogonal a \overrightarrow{u}

Exercício 11: Sabe-se que \overrightarrow{v} é um vetor no espaço que forma com os vetores \overrightarrow{i} e \overrightarrow{k} ângulos de $\alpha=30^o$ e $\beta=60^o$ respectivamente. Determine \overrightarrow{v} sabendo que $|\overrightarrow{v}|=6$.

Exercício 12: Sabe-se que \overrightarrow{v} é um vetor no espaço que forma com os vetores \overrightarrow{i} e \overrightarrow{j} ângulos de $\alpha=60^o$ e $\beta=120^o$ respectivamente. Determine \overrightarrow{v} sabendo que $|\overrightarrow{v}|=2$.

Exercício 13: Determine os ângulos diretores dos vetores:

a)
$$\overrightarrow{v} = (1, 0, -1)$$

b)
$$\vec{v} = (2, 2, 0)$$

c)
$$\vec{v} = (1, 2, -1)$$

Exercício 14: Dados os vetores \overrightarrow{u} e \overrightarrow{v} abaixo, encontre a projeção ortogonal de \overrightarrow{v} sobre \overrightarrow{u} .

a)
$$\vec{u} = (1, 2, -1) \ e \ \vec{v} = (-1, 0, 3)$$

b)
$$\vec{u} = (0, 3, 1) \ e \ \vec{v} = (1, 1, -2)$$

c)
$$\overrightarrow{u} = (1, 1, 4) \ e \ \overrightarrow{v} = (-2, 3, 0)$$

Exercício 15: Calcule o comprimento da projeção ortogonal do vetor $\overrightarrow{v} = (3, -2, 5)$ sobre o vetor \overrightarrow{i} .