Problem 1: Know the Curves

Describe the Shape of the Following Curve $\vec{x}(t)$:

1.
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

2.
$$\begin{pmatrix} t \\ t^2 \end{pmatrix}$$

$$3. \quad \begin{pmatrix} 3t \\ 4 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} t+1 \\ t-1 \\ 2t \end{pmatrix}$$

4.
$$\left(\frac{3\cos\pi t}{3\sin\pi t}\right)$$

5.
$$\begin{pmatrix} \cos \pi t \\ \sin \pi t \\ t \end{pmatrix}$$

Problem 2: Tangent Vector and Tangent Line

Compute the <u>tangent vector</u> of following curves and write the parametrization of the <u>tangent</u> line at the given point.

$$\frac{1}{2} \begin{pmatrix} t^{2} \\ t^{3} \\ t^{4} \end{pmatrix}, t = 1 \qquad \overrightarrow{r}(t) = \begin{pmatrix} 2t \\ 3t^{2} \\ 4t^{3} \end{pmatrix} \qquad \overrightarrow{r}(1) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\frac{2}{2} - 2\cos\theta, \theta = \pi \qquad \overrightarrow{r}(1) = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \qquad \overrightarrow{r}(1) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$

$$\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{4}$$

Problem 3: Computing Arc Length

Compute the arc length between given points.

1.
$$\begin{pmatrix} \cos \pi t \\ \sin \pi t \\ t \end{pmatrix}$$
 from $t = 0$ to $t = \pi$

2. $\begin{pmatrix} e^t \cos t \\ e^t \sin t \end{pmatrix}$ from $t = 0$ to $t = \pi$

3. $\begin{pmatrix} t - \sin t \\ 1 - \cos t \end{pmatrix}$ from $t = 0$ to $t = \pi$

4. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$ from $t = 0$ to $t = \pi$

5. $\begin{pmatrix} t - \sin t \\ 1 - \cos t \end{pmatrix}$ from $t = 0$ to $t = \pi$

6. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

7. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

8. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

9. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

10. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

11. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

12. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

13. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

14. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

15. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

16. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

17. $\begin{pmatrix} \cos t - \sin t \\ \sin t + \cos t \end{pmatrix}$

18. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

10. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

11. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

12. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

13. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

14. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

15. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

16. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

17. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

18. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

10. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

11. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

12. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

13. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

14. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

15. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

16. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

17. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

18. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \sin t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \cos t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \cos t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t - \cos t \\ \cos t + \cos t \end{pmatrix}$

19. $\begin{pmatrix} \cos t$

Problem 4: Curvature

Compute the <u>curvature</u> vector for the following curves, and compute the tangential and normal components of the acceleration vector.

Targential/Normal Components of a:

$$\vec{a} = \vec{r}''(t) = \frac{d(v(t) \cdot \vec{T}(t))}{dt}$$
 (because $\vec{r}'(t) = v(t) \cdot \vec{T}(t)$)

$$= \frac{d(v(t))}{dt} \cdot \overrightarrow{T}(t) + v(t) \cdot \frac{d\overrightarrow{T}(t)}{dt}$$

$$= \frac{v'(t) \cdot \overrightarrow{T}(t) + v(t) \cdot \times \overrightarrow{N}}{7 - con}$$

$$= \frac{1 - con}{N - con}$$

$$\frac{dv(t)}{dt} = e^{t} \sqrt{2}$$

$$v^{2} \times = (e^{t} \sqrt{2})^{2} \cdot \frac{1}{e^{t} \sqrt{2}} = e^{t} \sqrt{2}$$

Problem 5: Know the Surfaces

Describe the Shape of the Following Surface in 3-dimensional space.

- 1. $x^2 + y^2 + z^2 = 1$
- 2. $x^2 + y^2 z^2 = 1$
- 3. $z = x^2 + y^2$
- 4. $z^2 = x^2 + y^2$
- 5. $(x-1)^2 + y^2 + z^2 = 1$
- $6. \ \frac{x^2}{4} + y^2 = 1$
- 7. $x^2 y^2 = 1$

(1,0,0)

6

Problem 6: Intersection Problem

Describe the projection of the intersection of the given two surfaces.

Typo: 2
1.
$$y = 2x^3 + 3z^2$$
, $y = 5 - 3x^2 - z^2$, xz -plane

J.
$$y^2 = x^2 + z^2$$
, $x + y + z = 0$, xy -plane

3. $x^2 + 4y^2 + 4(1 - x - y)^2 - 4$, $x + y + z = 1$, xy -plane

7ypo: $x + 4y + 4z^2 = 4$

2. (x, y, z) satisfies both equations.

3.
$$x^2 + 4y^2 + 4(1 - x - y)^2 - 4$$
, $x + y + z = 1$, xy-plane

$$\begin{cases} y^{2}x^{2}+2^{2} & 1 \\ x+y+2=0 & 2=-(x+y) \end{cases}$$

$$\frac{\chi(\chi+\chi)=0}{\Rightarrow \chi=0 \text{ or } \chi_{+\chi>0}}$$

1.
$$\begin{cases} y = 2x^{2} + 3z^{2} \\ y = 5 - 3x^{2} - z^{2} \end{cases}$$

$$2x^{2} + 3z^{2} = 5 - 3x^{2} - z^{2}$$

$$5x^{2} + 4z^{2} = 5$$

$$x^{2} + \frac{z^{2}}{5/4} = 1$$

3.
$$\begin{cases} x^{2} + 4y^{2} + 4z^{2} = 4 \\ x + y + z = 1 \end{cases}$$
 ②

=>
$$z=1-x-y$$
 plug in O .

$$\chi^{2} + 4y^{2} + 4 \cdot (1 - x - y)^{2} = 4$$

$$\chi^{2} + 4y^{2} + 4 + 4x^{2} + 4y^{2} - 8x - 8y + 8xy = 4$$

$$5x^{2} - 8x + 8y^{2} - 8y + 8xy = 0$$