Functional Analysis Assignment 3

Name: Rishabh Singhal, rishabh.singhal@research.iiit.ac.in

Roll number: 20171213

Note: For l^2 space, sequences of numbers belonging to \mathbb{C} (complex numbers) is considered WLOG.

Questions

Problem 1: Show that the subset $M = \{y = (\eta_j) | \Sigma \eta_j = 1\}$ of complex space \mathbb{C}^n (cf. 3.1-4) is complete and convex. Find the vector of minimum norm in M.

Solution 1:

1. Completeness

As M is a subset of \mathbb{C}^n then let's assume the induced inner product $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$ where $x = (x_i)$ and $y = (y_i)$ for $i \in \{1, ..., n\}$. Now, metric is defined as,

$$d(x,y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$$

$$= \sqrt{\sum_{i=1}^{n} (x_i - y_i) \overline{(x_i - y_i)}}$$

$$= \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$$

$$= \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where $x = (x_i)$ and $y = (y_i)$, now consider any Cauchy sequence (x_m) in M, where $(x_m) = (\xi_1^{(m)}, ..., \xi_n^{(m)})$ (by definition of Cauchy sequence) for every $\epsilon > 0$ there is a N such that

$$d(x_m, x_r) = \sqrt{\sum_{i=1}^n (\xi_i^{(m)} - \xi_i^{(r)})^2} < \epsilon \qquad (m, r > N)$$
 (1)

Now let's square both side,

$$\sum_{i=1}^{n} (\xi_i^{(m)} - \xi_i^{(r)})^2 < \epsilon^2$$
$$(\xi_i^{(m)} - \xi_i^{(r)})^2 < \epsilon^2 \quad \forall m \in [n]$$
$$|\xi_i^{(m)} - \xi_i^{(r)}|^2 < \epsilon$$

Therefore, from this the sequence $(\xi_j^{(1)}, \xi_k^{(2)}, ...)$ is a Cauchy sequence of numbers in \mathbb{C} and it converges that is $\xi_j^{(m)} \to \xi_j$. Considering all these limits, let $x = (\xi_j)$ where ξ_j are the individual limits, using (1),

$$d(x_m, x_r) = \sqrt{\sum_{i=1}^{n} (\xi_i^{(m)} - \xi_i^{(r)})^2} < \epsilon \qquad (m, r > N) d(x_m, x_r) \le \epsilon$$

Let's see if this limit i.e. (x) exists in M or not, as the Cauchy sequence was constructed from the elements of M, it is true that $x_i = (\xi_j^i)$ and $\sum \xi_j^i = 1$. Now consider the limit as $i \to \infty$, i.e. $\lim_{i \to \infty} \sum \xi_j^i = \lim_{i \to \infty} 1$ which gives,

$$\sum \xi_j = 1 \tag{2}$$

where $x = (\xi_j)$, therefore it is in M. Hence as the limit is in the set itself (for all Cauchy sequences), therefore subspace M is complete.

2. Convexity

For M to be convex, it is needed to prove that if $y_1, y_2 \in M$ then $\alpha y_1 + (1 - \alpha)y_2 \in M \ \forall \alpha \in [0,1]$. Let, $y_1, y_2 \in M$ where $y_1 = (\eta_{j1}), y_2 = (\eta_{j2})$ and $\Sigma \eta_{j1} = 1$ and $\Sigma \eta_{j2} = 1$. Then, $\alpha y_1 + (1 - \alpha)y_2 = (\alpha * \eta_{j1} + (1 - \alpha) * \eta_{j2})$, now consider, $\Sigma(\alpha \eta_{j1} + (1 - \alpha)\eta_{j2})$.

$$\Sigma(\alpha \eta_{j1} + (1 - \alpha)\eta_{j2}) = \Sigma(\alpha \eta_{j1}) + \Sigma((1 - \alpha)\eta_{j2})$$

$$= \alpha \Sigma \eta_{j1} + (1 - \alpha)\Sigma \eta_{j2}$$

$$= \alpha \times 1 + (1 - \alpha) \times 1$$

$$= \alpha + 1 - \alpha = 1 + (\alpha - \alpha)$$

$$= 1 + 0 = 1$$

Therefore, $\Sigma(\alpha\eta_{j1} + (1-\alpha)\eta_{j2}) = 1$, hence $\alpha y_1 + (1-\alpha)y_2 \in M$. Hence, the given subset M is **convex.**

3. Vector of Minimum Norm

For the Vector of Minimum Norm (let's say of norm δ), $||y|| \geq \delta \ \forall y \in M$, now for complex space \mathbb{C}^n considering l^p norm where $1 \leq p < +\infty$ (for the case of unitary space (cf. 3.1-4 consider p = 2 given in this question).

$$||y|| = (\sum_{i=1}^{n} |\eta_i|^p)^{\frac{1}{p}}$$

Using Hölder's Inequality, i.e. $\sum_{k=1}^{\infty} |x_k y_k| \leq (\sum_{k=1}^{\infty} |x_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{\infty} |y_k|^q)^{\frac{1}{q}}$. In this let, $x_k = 1 \ \forall k \in \{1,...,n\}$ and $x_k = 0$ for k > n. And, let $y_k = \eta_k \ \forall k \in \{1,...,n\}$, and $y_k = 0$ for k > n,

and set p = q.

$$\sum_{k=1}^{n} |\eta_{k}| \leq \left(\sum_{k=1}^{n} 1^{p}\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |\eta_{k}|^{q}\right)^{\frac{1}{q}}$$

$$\leq \left(n\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |\eta_{k}|^{p}\right)^{\frac{1}{p}}$$

$$\leq n^{\frac{1}{p}} ||y||$$

Now, as $\left|\sum_{k=1}^{n} \eta_{k}\right| \leq \sum_{k=1}^{n} \left|\eta_{k}\right|$ hence,

$$\left| \sum_{k=1}^{n} \eta_k \right| \le \sum_{k=1}^{n} |\eta_k| \le n^{\frac{1}{p}} ||y||$$

$$1 \le n^{\frac{1}{p}} ||y|| \text{ as } \sum_{k=1}^{n} \eta_k = 1$$

Therefore,

$$||y|| \ge \frac{1}{n^{\frac{1}{p}}}$$

and, it is true that for the vector $y = (\eta_k)$ where $\eta_k = \frac{1}{n} \ \forall k \in \{1, ..., n\}, \ ||y|| = \frac{1}{n^{\frac{1}{p}}}$. Hence the vector with the minimum norm is,

$$y = (\eta_k)$$
, where $\eta_k = \frac{1}{n} \ \forall k \in \{1, ..., n\}$

as
$$\sum \eta_k = 1, y \in M$$
.

Problem 2: Show that the vector space X of all real-valued continuous functions on [-1,1] is the direct sum of the set of all even continuous functions and the set of all odd continuous functions on [-1,1].

Solution 2:

For a vector space X to be called as a direct sum of two vector sub-spaces Y and Z, i.e. $X = Y \oplus Z$ if for every $x \in X$ there exists a unique representation x = y + z where $y \in Y, z \in Z$.

So, let's consider an arbitrary function $f(x) \in X$ and let $f_e(x) = \frac{f(x) + f(-x)}{2}$ and $f_o(x) = \frac{f(x) - f(-x)}{2}$,

Claim 1: $f_o(x) = \frac{f(x) - f(-x)}{2}$ belongs to the set of all odd continuous functions on [-1,1] for, $f(x) \in X$.

Proof 1: Let's calculate $f_o(-x)$,

$$f_o(x) = \frac{f(x) - f(-x)}{2}$$

$$f_o(-x) = \frac{f(-x) - f(-(-x))}{2}$$

$$= \frac{f(-x) - f(x)}{2}$$

$$= -\frac{f(-x) + f(x)}{2} = -\frac{f(x) - f(-x)}{2}$$

$$= -f_o(x)$$

Hence, $f_o(-x) = -f_o(x)$, therefore f_o is an odd function defined for [-1,1], as f(x) is itself defined on [-1,1] and continuous (as it is a linear sum of f(x))

Claim 2: $f_e(x) = \frac{f(x) + f(-x)}{2}$ belongs to the set of all even continuous functions on [-1,1] for, $f(x) \in X$.

Proof 2: Let's calculate $f_e(-x)$,

$$f_e(x) = \frac{f(x) + f(-x)}{2}$$

$$f_e(-x) = \frac{f(-x) + f(-(-x))}{2}$$

$$= \frac{f(-x) + f(x)}{2}$$

$$\frac{f(x) + f(-x)}{2}$$

$$= f_e(x)$$

Hence, $f_e(-x) = f_e(x)$, therefore f_e is an even function defined for [-1,1], as f(x) is itself defined on [-1,1] and continuous (as it is a linear sum of f(x))

Let's calculate $f_o(x) + f_e(x)$,

$$f_o(x) + f_e(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$
$$= \frac{f(x) + f(-x) + f(x) - f(-x)}{2}$$
$$= \frac{2f(x)}{2} = f(x)$$

Hence, $f_o(x) + f_e(x) = f(x)$ therefore it can be a direct sum given it is unique.

Claim 3: $f(x) = f_o(x) + f_e(x)$ is a unique representation.

Proof 3: Note: f' is just another function here (for the notation part) rather than the derivative of f for the purpose of the given proof.

Let's assume there exists another two function $f'_o(x) + f'_e(x)$ such that $f(x) = f'_o(x) + f'_e(x)$, now for this to happen,

$$f(x) = f'_o(x) + f'_e(x) = f_o(x) + f_e(x)$$

replacing x by -x,

$$f'_o(-x) + f'_e(-x) = f_o(-x) + f_e(-x)$$
$$-f'_o(x) + f'_e(x) = -f_o(x) + f_e(x)$$
$$f_o(x) - f'_o(x) = f_e(x) - f'_e(x)$$

Now, $f_o(x) - f'_o(x)$ belongs to subspace of even functions while $f_e(x) - f'_e(x)$ belongs to subspace of even functions, hence let, $z(x) = f_e(x) - f'_e(x) = f_o(x) - f'_o(x)$. Here z(x) should follow both properties of even and odd functions. Therefore,

$$z(-x) = z(x)$$
 and $z(-x) = -z(x)$

Hence, z(x) = -z(x) or $2z(x) = 0 \implies z(x) = 0$, therefore, $f_e(x) - f'_e(x) = f_o(x) - f'_o(x) = 0$ or $f_e(x) = f'_e(x)$ and $f_o(x) = f'_o(x)$. Therefore by contradiction $f(x) = f_o(x) + f_e(x)$ is a unique representation.

And hence, it's a direct sum (by definition).

Problem 3: Let $X = \mathbb{R}^2$. Find M^{\perp} if M is (a) $\{x\}$, where $x = (\xi_1, \xi_2) \neq 0$, (b) a linearly independent set $\{x_1, x_2\} \subset X$.

Solution 3:

(a) $M = \{x\}$ where $x = (\xi_1, \xi_2) \neq 0$ For any $y \in M^{\perp}, \langle y, x \rangle = 0$ let $y = (y_1, y_2)$, then

$$\langle y, x \rangle = 0$$

 $y_1 \xi_1 + y_2 \xi_2 = 0$

Let $y_2 = \alpha$, then

$$y_{1}\xi_{1} + y_{2}\xi_{2} = 0$$

$$y_{1}\xi_{1} + \alpha\xi_{2} = 0$$

$$y_{1}\xi_{1} = -\alpha\xi_{2}$$

$$y_{1} = -\frac{\alpha\xi_{2}}{\xi_{1}}$$

There a general $y = (-\frac{\alpha\xi_2}{\xi_1}, \alpha)$. It is defined as $x = (\xi_1, \xi_2) \neq 0$ therefore, $\xi_1 \neq 0$. So, $M^{\perp} = \{(-\frac{\alpha\xi_2}{\xi_1}, \alpha) | \alpha \in \mathbb{R}\}$.

(b) M is a linearly independent set $\{x_1, x_2\} \subset X = \mathbb{R}^2$ Let an arbitrary $y \in M^{\perp}$ where $y = (y_1, y_2)$ then $\langle y, x_1 \rangle = \langle y, x_2 \rangle = 0$ where $\langle x_1, x_2 \rangle = \langle y, x_2 \rangle = 0$ 0 as they are linearly independent, then we need to solve these equations,

$$\langle y, x_1 \rangle = y_1 x_{11} + y_2 x_{12} = 0 - (1)$$

 $\langle y, x_2 \rangle = y_1 x_{21} + y_2 x_{22} = 0 - (2)$
 $\langle x_1, x_2 \rangle = x_{11} x_{21} + x_{12} x_{22} = 0$

where, $x_1 = (x_{11}, x_{12})$ and $x_2 = (x_{21}, x_{22})$, from (1),

$$y_1 x_{11} + y_2 x_{12} = 0$$
$$y_1 = -\frac{y_2 x_{12}}{x_{11}}$$

Similarly from (2),

$$y_1 x_{21} + y_2 x_{22} = 0$$
$$y_1 = -\frac{y_2 x_{22}}{x_{21}}$$

now equating both,

$$y_1 = -\frac{y_2 x_{12}}{x_{11}} = -\frac{y_2 x_{22}}{x_{21}}$$

or,

$$x_{12}x_{21} - x_{22}x_{11} = 0 (3)$$

but from this equation and $x_{11}x_{21} + x_{12}x_{22} = 0$ it seems that $x_{11}^2 + x_{12}^2 = 0$ or y = (0,0). Let's consider $x_1 = 0$ then x_1, x_2 are not independent (as stated in the question), therefore first possibility is completely ruled out. Hence, $M^{\perp} = \{(0,0)\}$, where the inner product of (0,0) and both x_1, x_2 is 0.

Problem 4: Show that $Y = \{x | x = (\xi_j) \in l^2, \xi_{2n} = 0, n \in \mathbb{N}\}$ is a closed subspace of l^2 and find Y^{\perp} . What is Y^{\perp} if $Y = span \{e_1, ..., e_n\} \subset l^2$, where $e_j = (\delta_{jk})$?

Solution 4:

- 1. $Y = \{x | x = (\xi_j) \in l^2, \xi_{2n} = 0, n \in \mathbb{N}\}\$ is a closed subspace of l^2 .
 - (a) Y is a vector subspace Let $y_1, y_2 \in Y$ and $\lambda \in \mathbb{C}$, then $y_1 + y_2 = \alpha_j = (\xi_{1j} + \xi_{2j})$, now $\xi_{1j}, \xi_{2j} \in \mathbb{C}$ therefore $\xi_{1j} + \xi_{2j} \in \mathbb{C}$. And as $\alpha_{2n} = \xi_{1(2n)} + \xi_{2(2n)} = 0 + 0 = 0 \ \forall n \in \mathbb{N}$, therefore $y_1 + y_2 \in Y$ whenever $y_1, y_2 \in Y$. — (*)

Now, consider $y \in Y$, then $y = (\lambda \xi_j)$ where $\lambda \xi_j \in \mathbb{C}$ for which $\xi_{2n} = \lambda \times 0 = 0 \ \forall n \in \mathbb{N}$. Hence, $y \in Y \implies \lambda y \in Y$. — (**)

Combining both (*) and (**), Y is a vector subspace.

(b) Y is closed subspace

As it is true that l^2 is a complete metric space, then using 1.4 - 7 Theorem (Complete subspace) given subspace (Y) is a closed subspace if and only if it is complete. So, let's prove that Y is a complete subspace,

As M is a subset of l^2 then let's assume the induced inner product $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \overline{y_i}$ where $x = (x_i)$ and $y = (y_i)$ for $i \in \mathbb{N}$. Now, metric is defined as,

$$d(x,y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$$

$$= \sqrt{\sum_{i=1}^{\infty} (x_i - y_i) \overline{(x_i - y_i)}}$$

$$= \sqrt{\sum_{i=1}^{\infty} |x_i - y_i|^2}$$

$$= \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$$

where $x = (x_i)$ and $y = (y_i)$, now consider any Cauchy sequence (x_m) in M, where $(x_m) = (\xi_1^{(m)}, ..., \xi_n^{(m)})$ (by definition of Cauchy sequence) for every $\epsilon > 0$ there is a N such that

$$d(x_m, x_r) = \sqrt{\sum_{i=1}^{\infty} (\xi_i^{(m)} - \xi_i^{(r)})^2} < \epsilon \qquad (m, r > N)$$
 (4)

Now let's square both side,

$$\sum_{i=1}^{\infty} (\xi_i^{(m)} - \xi_i^{(r)})^2 < \epsilon^2$$
$$(\xi_i^{(m)} - \xi_i^{(r)})^2 < \epsilon^2 \quad \forall m \in \mathbb{N}$$
$$|\xi_i^{(m)} - \xi_i^{(r)}|^2 < \epsilon$$

Therefore, from this the sequence $(\xi_j^{(1)}, \xi_k^{(2)}, ...)$ is a Cauchy sequence of numbers in $\mathbb{F} = \mathbb{C}$ and it converges that is $\xi_j^{(m)} \to \xi_j$. Considering all these limits, let $x = (\xi_j)$ where ξ_j are the individual limits, using (1),

$$d(x_m, x_r) = \sqrt{\sum_{i=1}^{\infty} (\xi_i^{(m)} - \xi_i^{(r)})^2} < \epsilon \qquad (m, r > N) d(x_m, x_r) \le \epsilon$$

Let's see if this limit i.e. (x) exists in M or not, as the Cauchy sequence was constructed from the elements of M, it is true that $x_i = (\xi_j^i)$ and $\xi_{2n}^i = 0, n \in \mathbb{N}$. Now consider the limit as $i \to \infty$, i.e. $\lim_{i \to \infty} \xi_{2n}^i = \lim_{i \to \infty} 0$ which gives,

$$\xi_{2n} = 0 \tag{5}$$

where $x = (\xi_j)$, therefore it is in Y as for all the even indices, the limit vector x have 0 values, and for all the odd they belong to the the field \mathbb{F} which is assumed (WLOG) to be \mathbb{C} (complex numbers) as said in note. Hence, as the limit of all possible Cauchy sequence in Y, exists in subspace Y itself, Y is a complete subspace.

(c) Y^{\perp} $Y^{\perp} = \{y | y \perp x \ \forall x \in Y\}$, now consider any arbitrary $y \in Y^{\perp}$, then $\langle y, x \rangle = 0 \ \forall x \in Y$ so, let $x = (\alpha_j)$ then,

$$\langle y, x \rangle = \sum_{j=1}^{\infty} \alpha_j \xi_j = 0$$

Now, it's given that $\xi_{2n} \ \forall n \in \mathbb{N}$, then only the odd (indexed term i.e. 1, 3, ...) will be left (as other are 0).

$$\langle y, x \rangle = \sum_{j=1}^{\infty} \alpha_{2j-1} \xi_{2j-1} = 0$$

where 2j-1 where $j \in \mathbb{N}$ are odd indexed terms, now consider the fact that all $\xi_{2j-1} \in \mathbb{R}$ and are independent from each other (as they can be any element in \mathbb{R} irrespective of others). Hence, they act like linearly independent terms making all $\alpha_{2j-1} = 0$ individually. Hence,

$$Y^{\perp} = \{x | x = (\xi_j) \in l^2, \xi_{2n-1} = 0, n \in \mathbb{N}\}\$$

2. Y^{\perp} if $Y = span \{e_1, ..., e_n\} \subset l^2$, where $e_j = (\delta_{jk})$ Consider the $Y = span \{e_1, ..., e_n\} \subset l^2$, for any $y \in Y$, $y = \sum_{i=1}^n x_i e_i$ where $x_i \in \mathbb{C}$. Now, consider $Y^{\perp} = \{y | y \perp x \ \forall x \in Y\}$, and arbitrary $y = (i) \in Y^{\perp}$ then for that $\langle y, x \rangle = 0 \ \forall x \in Y$ i.e.

$$\langle y, x \rangle = \sum_{i=1}^{n} y_i \alpha_i + 0 = 0$$

where $\alpha_i \in \mathbb{C} \ \forall i \in [n]$, given that $x = \sum_{i=1}^n \alpha_i e_i$ and as $e_j = (\delta_{jk})$ they are all linearly independent vectors (unit). Now, going by similar argument given in previous part making all $y_i = 0 \forall i \in [n]$. Hence,

$$Y^{\perp} = \{x | x = (\xi_i) \in l^2, \xi_i = 0 \ \forall i \in [n]\}$$

where $[n] = \{1, ..., n\}$ (n being a natural number).

Problem 5: Let A and $B \supset A$ be nonempty subsets of an inner product space X. Show that

(a)
$$A \subset A^{\perp \perp}$$

- (b) $B^{\perp} \subset A^{\perp}$
- (c) $A^{\perp \perp \perp} = A^{\perp}$

Solution 5:

(a) $A \subset A^{\perp \perp}$

Let take some arbitrary $x \in A$, now, to define $A^{\perp \perp}$, A^{\perp} needs to defined first, so

$$A^{\perp} = \{ y \in X | y \perp z \ \forall z \in A \}$$

or we can say that for all $y \in A^{\perp}$, the inner product between x and y is 0 i.e. $\langle x, y \rangle = 0$. Now consider the definition of $A^{\perp \perp}$,

$$A^{\perp \perp} = \{ y \in X | y \perp z \ \forall z \in A^{\perp} \}$$

Let's take an arbitrary $y \in A^{\perp}$, then it is sure that $\langle x, y \rangle = 0$ as $x \in A$. So, we can say that for all $y \in A^{\perp}$, $\langle x, y \rangle = 0$ for all $x \in A$. But according to the definition of $A^{\perp \perp}$, $x \in A^{\perp \perp}$, as it is the set of all α where $\langle \alpha, y \rangle = 0$ for all $y \in A^{\perp}$. Hence, $x \in A^{\perp \perp}$ so (according to set theory), $A \subset A^{\perp \perp}$ as for any arbitrary $x \in A \implies x \in A^{\perp \perp}$.

(b) $B^{\perp} \subset A^{\perp}$

Given that $B \supset A$ that is $x \in A \implies x \in B$. Now, consider the definitions of B^{\perp} and A^{\perp} ,

$$A^{\perp} = \{ y \in X | y \perp z \ \forall z \in A \}$$

$$B^{\perp} = \{ y \in X | y \perp z \ \forall z \in B \}$$

Let's consider an arbitrary element α of B^{\perp} , then it must follow that $\alpha \perp z \ \forall z \in B$, but as $B \supset A$, then α must be perpendicular to all the elements in A or we can say that $\alpha \in A^{\perp}$ according to the definition of A^{\perp} .

Hence, $\alpha \in B^{\perp} \implies \alpha \in A^{\perp}$ i.e. $B^{\perp} \subset A^{\perp}$ (according to the definitions from set theory).

(c) $A^{\perp \perp \perp} = A^{\perp}$

Let's define $A^{\perp}, A^{\perp \perp}, A^{\perp \perp \perp}$

$$A^{\perp} = \{ y \in X | y \perp z \ \forall z \in A \}$$

$$A^{\perp \perp} = \{ y \in X | y \perp z \ \forall z \in A^{\perp} \}$$

$$A^{\bot \bot \bot} = \{ y \in X | y \perp z \ \forall z \in A^{\bot \bot} \}$$

(1) To show $A^{\perp \perp \perp} \subset A^{\perp}$

Let's take an arbitrary $\alpha \in A^{\perp \perp \perp}$, therefore according to how $A^{\perp \perp \perp}$ is defined, $\alpha \perp z \ \forall z \in A^{\perp \perp}$ or $<\alpha, z>=0$. Now, for this z as it is in $A^{\perp \perp}$, it is perpendicular to all $k \in A^{\perp}$ for all possible $k \in X$.

But, we can say that α also belongs to A^{\perp} , as for any $\beta \in A^{\perp} z \perp \beta$. Therefore, $\alpha \in A^{\perp \perp \perp} \implies \alpha \in A^{\perp}$ or $A^{\perp \perp \perp} \subset A^{\perp}$.

(2) To show $A^{\perp} \subset A^{\perp \perp \perp}$

Let's consider $\alpha \in A^{\perp}$, then for any arbitrary $x \in A^{\perp \perp}$, $\alpha \perp x$. Now, consider the set $A^{\perp \perp \perp}$, it consists of all elements whose inner product with all elements in $A^{\perp \perp}$ is 0 (or they are perpendicular). But, in the first line it is seen that $\alpha \perp x \ \forall x \in A^{\perp \perp}$, and $A^{\perp \perp \perp}$ consists of such elements (like α). Hence, $\alpha \in A^{\perp \perp \perp}$, or $\alpha \in A^{\perp \perp} \subset \alpha \in A^{\perp \perp \perp}$ or $A^{\perp \perp} \subset A^{\perp \perp \perp}$.

From (1) and (2), as $A^{\perp \perp \perp} \subset A^{\perp}$ and $A^{\perp} \subset A^{\perp \perp \perp}$. Hence, $A^{\perp} = A^{\perp \perp \perp}$.

Problem 6: Show that the annihilator M^{\perp} of a set $M \neq \emptyset$ in an inner product space X is a closed subspace of X.

Solution 6:

The definition of M^{\perp} ,

$$A^{\perp} = \{ y \in X | y \perp z \ \forall z \in M \}$$
 (6)

1. M^{\perp} is a vector subspace

Let $x, y \in M^{\perp}$, then $\langle x, z \rangle = \langle y, z \rangle = 0 \ \forall z \in M$, now consider $\alpha x + \beta y$

$$<\alpha x + \beta y, z> = <\alpha x, z> + <\beta y, z>$$

$$=\alpha < x, z> +\beta < y, z>$$

$$=\alpha \cdot 0 + \beta \cdot 0$$

$$=0+0=0$$

Hence, $\langle \alpha x + \beta y, z \rangle = 0 \ \forall z \in M$, hence $\alpha x + \beta y \in M^{\perp}$ therefore M^{\perp} is a vector subspace.

2. M^{\perp} is closed

For this, consider a functional (associated with each $z \in M$), let's say it as $f_z : X \mapsto \mathbb{F}, f_z(x) = \langle z, x \rangle$, where \mathbb{F} is the field using which X is defined (or made up of). Now this is a continuous linear (because of the axiomatic properties) functional.

From closed set point of view too, $|f_z(x)| = |\langle z, x \rangle| \le ||z|| ||x||$ (using Cauchy-Schwarz inequality). Now consider the set $g_z = \{x|f_z(x) = 0, x \in X\}$ it is a closed subspace of X as $f_z \forall z \in M$ are continuous linear functionals.

Another fact to notice is that the intersections of closed subspace is closed itself.

Claim: $M^{\perp} = \bigcap_{z \in M} g_z$

Proof: As M^{\perp} is the set of all x such that $\langle x, z \rangle = 0 \ \forall z \in M$, therefore x must belong to all g_z (as they are set of all $x \in X$ such that $\langle x, z \rangle = 0$). Or hence, $x \in \cap_{z \in M} g_z$. Therefore, $M^{\perp} \subset \bigcap_{z \in M} g_z - (1)$

Let's assume $x \in X$ and also $x \in \bigcap_{z \in M} g_z$, then by definition of g_z , $\langle x, z \rangle = 0 \ \forall z \in M$, which is exactly the criteria to be in M^{\perp} . Hence, $x \in M^{\perp}$ or $M^{\perp} \supset \bigcap_{z \in M} g_z$ — (2)

Combining (1), (2) gives $M^{\perp} = \bigcap_{z \in M} g_z$.

Hence, M^{\perp} is an intersection of all g_z where g_z are closed subspaces for all $z \in M$. Therefore, M^{\perp} is also a closed subspace.

Combining Part 1 and 2, the annihilator M^{\perp} is a closed subspace of X when $M \neq \emptyset$.