# PCA Analysis Report: With vs Without Scaling

### **★** Dataset Context

This synthetic dataset mimics real-world health and lifestyle metrics, designed for a Placement Coordinator exploring data-driven insights. Features include:

- Physical metrics: age, height\_cm, weight\_kg
- Activity/lifestyle habits: daily\_steps, water\_intake\_liters, sleep\_hours, alcohol\_units\_weekly, smoking\_frequency
- Health indicators: resting\_heart\_rate, cholesterol\_mg\_dl

### Objective

To perform Principal Component Analysis (PCA) on the dataset:

- First without feature scaling, then
- With standardization (mean = 0, std = 1),
- And compare how the results change in terms of variance explained and insightful patterns.

# 🔁 PCA Without Scaling

### Results

- PC1 explains over 99% of the total variance.
- This is because daily\_steps has a much higher numeric range than other features.

## M Interpretation

- PCA fixates on the variance in daily\_steps due to its scale.
- Other features are largely ignored by the algorithm.

### 🔔 Insight

PCA without scaling is dominated by high-magnitude features — leading to biased, misleading results.

## 📊 PCA With Scaling (Standardized Data)

## Results

- PC1 explains ~13% of the variance.
- PC2 explains ~11%, and subsequent components contribute similarly.
- No single PC dominates variance is evenly spread, indicating complex, multidimensional structure.

## Interpretation

### PC1: "Age & Sedentary Lifestyle"

- High positive weight for age, sleep\_hours
- High negative weight for daily\_steps, height\_cm
- Captures a pattern of aging with decreasing activity and stature

#### PC2: "Wellness vs Risk Habits"

- High positive weight for water\_intake, height\_cm
- High negative weight for sleep\_hours, smoking\_frequency, daily\_steps
- Contrasts healthier habits vs fatigue and smoking-related patterns

## Insight

After scaling, PCA captures richer, fairer structure across all features.

Though no component dominates, combinations of PCs now reflect interpretable lifestyle and health factors.



| Aspect           | Without Scaling                             | With Scaling                                         |
|------------------|---------------------------------------------|------------------------------------------------------|
| Dominant Feature | daily_steps (due to scale)                  | None (balanced contributions)                        |
| PC1 Theme        | Pure step-count variance                    | Age, activity, and sleep pattern                     |
| PC2 Theme        | Not meaningful                              | Health-conscious<br>vs. risky<br>behaviors           |
| Interpretability | X Biased and misleading                     | Subtle but realistic                                 |
| Usefulness       | Low for real-<br>world pattern<br>discovery | High for<br>understanding<br>hidden<br>relationships |

# **\*** Conclusion

- Standardization before PCA is essential for fair dimensionality reduction.
- A lower explained variance per component isn't a limitation it reflects natural complexity.
- PCA with scaling offered valuable insights into lifestyle patterns that would've otherwise been hidden.