Problem 14. Suppose A, B are disjoint sets with $A \cup B = \mathbb{R}$, and suppose that a < b for all $a \in A$ and $b \in B$. Then there exists $c \in \mathbb{R}$ such that $x \leq c$ for $x \in A$ and $x \geq c$ for $x \in B$.

Proof. Since A and B are non-empty sets and a < b for all $a \in A$ and $b \in B$, any $b \in B$ is an upper bound for A. This means that by the least upper bound property of the Axiom of Completeness, A has a supremum that we will denote as $c = \sup A$. We want to show that for any $x \in A$, that $x \le c$ and for any $x \in B$, that $x \ge c$.

For any $x \in A$, we have $x \le c$ by definition of supremum.

For any $x \in B$, suppose for contradiction that x < c. Since c is the least upper bound of A, there exists some $a \in A$ with $x < a \le c$. But this contradicts the given condition that a < b for all $a \in A$ and $b \in B$. Therefore $x \ge c$ for all $x \in B$.

Problem 15. Here is an example which shows that the claim in Problem 14 is false if \mathbb{R} is replaced, in both instances, by the set of rationals \mathbb{Q} :

Let
$$A = \{x \in \mathbb{Q} : x < \pi\}$$
 and $B = \{x \in \mathbb{Q} : x > \pi\}$.

Note that $A \cup B = \mathbb{Q}$ and that $A \cap B = \emptyset$ meaning A and B are disjoint sets. Consider that for all $a \in A$ and $b \in B$ we have $a < \pi < b$, so that a < b like our previous problem. Unlike our previous problem, there is no c that satisfies $x \le c$ for $x \in A$ and $x \ge c$ for $x \in B$ because although π is a supremum for A and an infimum for B, it does not exist in \mathbb{Q} . Thus the claim in Problem 14 is false for \mathbb{Q} .

Problem 16. Let a < b be real numbers. Define the set $T = \mathbb{Q} \cap [a, b]$. Then $\sup T = b$.

Proof. For any $t \in T = \mathbb{Q} \cap [a, b]$, we have $t \in [a, b]$, so $t \leq b$. Thus b is an upper bound of T.

To show $b = \sup T$, suppose N is an upper bound with N < b. By density of rationals, there exists $r \in \mathbb{Q}$ with N < r < b. Since we can choose r close enough to b, we have $r \in [a,b]$, so $r \in T$. But then r > N, contradicting that N is an upper bound.

Therefore
$$b = \sup T$$
.

Problem 17. By definition, a set $C \subseteq \mathbb{R}$ is dense if for any real numbers a < b there is $c \in C$ so that a < c < b. Let T be the set of all rational numbers p/q, with $p \in \mathbb{Z}$, for which $q = 2^k$ for some $k \in \mathbb{N}$. Then T is dense.

Problem 18.

(a) An example of two real sets A, B with $A \cap B = \emptyset$, $\sup A = \sup B$, $\sup A \notin A$, and $\sup B \notin B$ is

(b) An example of a sequence of nested open intervals $J_1 \supseteq J_2 \subseteq J_3 \supseteq \ldots$, with $S = \bigcap_{n=1}^{\infty} J_n$ nonempty and of finite cardinality, is
(c) By definition, an unbounded closed interval is of the form $[a, \infty) = \{x \in \mathbb{R} : x \ge a\}$. An example of a sequence of nested unbounded closed intervals $L_1 \supseteq L_2 \subseteq L_3 \supseteq \ldots$, with $\bigcap_{n=1}^{\infty} L_n = \emptyset$, is
Problem 19. If $A \subseteq B$ and B is countable then A is either countable or finite.
<i>Proof.</i> Assume B is countable. If $ A < \infty$ then A is finite and we are done. So we will consider an infinite subset $A \subseteq B$ and show it is countable.
Problem 20.

(a) For any a < b it follows that $(a, b) \sim \mathbb{R}$.

Proof. \Box

(b) $[0,1) \sim (0,1)$

Proof. \Box

Problem 21. If $A \sim B$ and $B \sim C$ then $A \sim C$.

Proof. \Box