NE 255, Class 3, Fa16

Vectors and Matrix norms, Convergence September 01, 2016

Introduction

In today's lecture we will introduce/recap basic concepts about vector and matrix norms.

- Vector norms
 - l_1, l_2 , and l_{∞}
 - Triangle inequality and Cauchy-Schwarz
 - Convergence
 - Equivalence of norms
- Matrix norms
 - Natural norms
 - Convergence
 - Spectral Radius
 - Gelfand's Formula

1 Vector Norms

Definition A *Vector Norm* on \mathbb{R}^n is a function $||\cdot||$ mapping $\mathbb{R}^n \to \mathbb{R}$ with the following properties:

- 1. $||\vec{x}|| \ge 0$ for all $\vec{x} \in \mathbb{R}^n$
- 2. $||\vec{x}|| = 0$ iff $\vec{x} = 0$
- 3. $||\alpha \vec{x}|| = |\alpha|||\vec{x}||$ for all $\alpha \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^n$ (scalar multiplication)
- 4. $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$ for all $\vec{x}, \vec{y} \in \mathbb{R}^n$ (triangle inequality)

Common Norms

• The l_1 norm is given by

$$||\vec{x}||_1 = \sum_{i=1}^n |x_i|$$

• The Max norm, Sup norm, or l_{∞} norm, is given by

$$||\vec{x}||_{\infty} = \max_{1 \le i \le n} |x_i|$$

• The Euclidean Norm, or l_2 norm, is given by

$$||\vec{x}||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Note: this norm represents the usual notion of distance (Pythagorean theorem)

Example Consider $\vec{x} = (1, -3, 5)^T$. Then

- i. $||\vec{x}||_1 = 9$
- ii. $||\vec{x}||_{\infty} = 5$

iii. $||\vec{x}||_2 = \sqrt{1+9+25} = \sqrt{35}$

Cauchy-Schwarz and Triangle Inequality

It is easy to see that all the properties of a vector norm are satisfied for l_1 and l_{∞} , but we need to show that the triangle inequality holds for l_2 . We will need the following theorem:

Theorem 1. (Cauchy-Schwarz in \mathbb{R}^n)

For each $\vec{x}, \vec{y} \in \mathbb{R}^n$,

$$\vec{x}^T \vec{y} = \sum_{i=1}^n x_i y_i \le \left(\sum_{i=1}^n x_i^2\right)^{1/2} \left(\sum_{i=1}^n y_i^2\right)^{1/2} = ||\vec{x}||_2 ||\vec{y}||_2$$

Proof. Consider the following quadratic polynomial in $z \in \mathbb{R}$:

$$0 \le (x_1 z + y_1)^2 + \dots + (x_n z + y_n)^2 = \left(\sum_{i=1}^n x_i^2\right) z^2 + 2\left(\sum_{i=1}^n x_i y_i\right) z + \left(\sum_{i=1}^n y_i^2\right).$$

Since it is nonnegative, it has at most one real root for z. Hence, its discriminant is less than or equal to zero; that is,

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 - \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right) \le 0.$$

Proof of the Triangle Inequality for l_2 :

Proof. Using Cauchy-Schwarz, for each $\vec{x}, \vec{y} \in \mathbb{R}^n$:

$$||\vec{x} + \vec{y}||_2^2 = \sum_{i=1}^n (x_i + y_i)^2 = \sum_{i=1}^n x_i^2 + 2\sum_{i=1}^n x_i y_i + \sum_{i=1}^n y_i^2 \le ||\vec{x}||_2^2 + 2||\vec{x}||_2||\vec{y}||_2 + ||\vec{y}||_2^2.$$

Taking the square root of both sides, we obtain

$$||\vec{x} + \vec{y}||_2 \le ||\vec{x}||_2 + ||\vec{y}||_2.$$

Basic Theorems of Convergence

Definition A sequence of vectors $\{\vec{x}^{(k)}\}_{k=1}^{\infty}$ in \mathbb{R}^n is said to *converge* to \vec{x} with respect to norm $||\cdot||$ if given any $\varepsilon > 0$ there exists an integer $N(\varepsilon)$ such that

$$||\vec{x}^{(k)} - \vec{x}|| < \varepsilon \quad \text{for all} \quad k \ge N(\varepsilon).$$

Theorem 2. The sequence of vectors $\{\vec{x}^{(k)}\}_{k=1}^{\infty} \to \vec{x}$ in \mathbb{R}^n with respect to $||\cdot||_{\infty}$ iff

$$\lim_{k \to \infty} x_i^{(k)} = x_i \quad \text{for each} \quad i = 1, 2, ..., n.$$

Proof. (\hookrightarrow)

Let $\lim_{k\to\infty}||\vec{x}^{(k)}||_\infty=||\vec{x}||_\infty.$ Then for any $\varepsilon>0$, there exists $N(\varepsilon)$ such that

$$||\vec{x}^{(j)} - \vec{x}^{(m)}||_{\infty} < \varepsilon \quad \text{for all} \quad j, m > N(\varepsilon).$$

Thus

$$\max_{1 \leq i \leq n} |x_i^{(j)} - x_i^{(m)}| < \varepsilon \quad \text{for all} \quad j, m > N(\varepsilon),$$

implying that

$$|x_i^{(j)} - x_i^{(m)}| < \varepsilon \quad \text{for all} \quad i \quad \text{and for all} \quad j, m > N(\varepsilon).$$

Therefore,

$$\lim_{k \to \infty} x_i^{(k)} = x_i \quad \text{for each} \quad i = 1, 2, ..., n.$$

Proof. (\hookleftarrow)

Let

$$\lim_{k \to \infty} x_i^{(k)} = x_i \quad \text{for each} \quad i = 1, 2, ..., n.$$

Then for any $\varepsilon > 0$, there exists $N(\varepsilon)$ such that

$$|x_i^{(j)} - x_i^{(m)}| < \frac{\varepsilon}{2} \quad \text{ for all } \quad i \quad \text{ and for all } \quad j, m > N(\varepsilon).$$

Taking the limit as $m \to \infty$, we have

$$|x_i^{(j)} - x_i| \leq \frac{\varepsilon}{2} \quad \text{for all} \quad i \quad \text{and for all} \quad j > N(\varepsilon).$$

Thus,

$$\max_{1 \leq i \leq n} |x_i^{(j)} - x_i| \leq \frac{\varepsilon}{2} \quad \text{for all} \quad j > N(\varepsilon),$$

which means that

$$\lim_{j\to\infty}||\vec{x}^{(j)}-\vec{x}||_{\infty}\leq\frac{\varepsilon}{2}<\varepsilon.$$

Theorem 3. For each $\vec{x} \in \mathbb{R}^n$:

a.
$$||\vec{x}||_{\infty} \le ||\vec{x}||_2 \le \sqrt{n}||\vec{x}||_{\infty}$$

b.
$$||\vec{x}||_2 \le ||\vec{x}||_1 \le \sqrt{n}||\vec{x}||_2$$

4

c.
$$||\vec{x}||_{\infty} \le ||\vec{x}||_1 \le n||\vec{x}||_{\infty}$$

Proof. We give the proof for (a.):

$$||\vec{x}||_2 = ||\vec{x}||_{\infty} \left(\sum_{i=1}^n \frac{x_i^2}{||\vec{x}||_{\infty}^2} \right)^{1/2} \le ||\vec{x}||_{\infty} \sqrt{n},$$

because $x_i/||\vec{x}||_{\infty} \leq 1$ for all i.

Moreover, there is a i such that $||\vec{x}||_{\infty} = |x_i|$, therefore

$$\left(\sum_{i=1}^{n} \frac{x_i^2}{||\vec{x}||_{\infty}^2}\right)^{1/2} \ge 1$$

and

$$||\vec{x}||_2 = ||\vec{x}||_{\infty} \left(\sum_{i=1}^n \frac{x_i^2}{||\vec{x}||_{\infty}^2} \right)^{1/2} \ge ||\vec{x}||_{\infty}.$$

Note: As a corollary of this theorem, convergence in the l_1, l_2 , and l_∞ norms is equivalent.

2 Matrix Norms

We need to extend our definitions to include matrices.

Definition A *Matrix Norm* on the set of all $n \times n$ matrices is a real-valued function $||\cdot||$ defined on this set that satisfies the following properties for all $n \times n$ matrices A and B and all real numbers α :

- 1. $||A|| \ge 0$
- 2. ||A|| = 0 iff A = 0 (all zero entries)
- 3. $||\alpha A|| = |\alpha|||A||$ (scalar multiplication)
- 4. $||A + B|| \le ||A|| + ||B||$ (triangle inequality)

In this course, in the case of square matrices, we will deal with submultiplicative norms, which also satisfy

5.
$$||AB|| \le ||A|| ||B||$$

The following theorem is offered without proof:

Theorem 4. (Natural or Induced Matrix Norm)

If $||\cdot||$ is a vector norm on \mathbb{R}^n , then

$$||A|| = \max_{||\vec{x}||=1} ||A\vec{x}||$$

is a matrix norm.

The natural norm describes how a matrix stretches unit vectors relative to that norm. For any $\vec{y} \neq 0$, $\vec{x} = \vec{y}/||\vec{y}||$ is a unit vector, and

$$\max_{||\vec{x}||=1} ||Ax|| = \max_{||\vec{y}|| \neq 0} \left\| A \frac{\vec{y}}{||\vec{y}||} \right\| = \max_{||\vec{y}|| \neq 0} \frac{||A\vec{y}||}{||\vec{y}||}.$$

Common Norms

- $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}| = \text{largest absolute column sum}.$
- $||A||_{\infty} = \max_{1 \le i \le m} \sum_{i=1}^{n} |a_{ij}| = \text{largest absolute row sum.}$
- In the special case of the Euclidean norm, the induced matrix norm is the *Spectral Norm*. The spectral norm of a matrix A is the largest singular value of A; i.e. the square root of the largest eigenvalue of the positive-semidefinite matrix A^*A :

$$||A||_2 = \sqrt{\lambda_{max}(A^*A)} = \sigma_{max}(A).$$

It can be shown that

$$||A||_2 \le \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2} = ||A||_F,$$

where the right-hand side is the Frobenius norm, or $L_{2,2}$ norm. The equality holds if and only if the matrix A is a rank-one matrix or a zero matrix.

Example Consider

$$A = \left(\begin{array}{cc} 2 & 0 \\ -1 & 1 \end{array}\right).$$

Then

i.
$$||A||_1 = 3$$

ii.
$$||A||_{\infty} = 2$$

iii.
$$||A||_2 = \sqrt{3 + \sqrt{5}} \approx 2.2882$$

Convergence and Spectral Radius

Definition An $n \times n$ matrix A is convergent if

$$\lim_{k \to \infty} (A^k)_{ij} = 0,$$

for each i, j = 1, 2, ..., n.

Example Consider

$$A = \begin{pmatrix} \frac{1}{2} & 0\\ \frac{1}{4} & \frac{1}{2} \end{pmatrix}.$$

We can see that

$$A^k = \begin{pmatrix} \frac{1}{2^k} & 0\\ \frac{k}{2^{k+1}} & \frac{1}{2^k} \end{pmatrix} \to 0$$

as $k \to \infty$.

Definition The spectral radius, $\rho(A)$, of a matrix A is defined by

$$\rho(A) = \max|\lambda|,$$

where λ is an eigenvalue of A.

The spectral radius provides a valuable measure of the eigenvalues, which helps determine if a

numerical scheme will converge.

Theorem 5. If $A \in \mathbb{R}^{n \times n}$, then $\rho(A) \leq ||A||$ for any natural norm $||\cdot||$.

Proof. Let $||\vec{x}||$ be a unit eigenvector of A with respect to the eigenvalue λ . Then

$$|\lambda| = |\lambda| ||\vec{x}|| = ||\lambda \vec{x}|| = ||Ax|| \le ||A|| ||x|| = ||A||.$$

Thus,

$$\rho(A) = \max |\lambda| \le ||A||.$$

If A is symmetric, then $\rho(A) = ||A||_2$.

The following theorem is given here without proof. It will be used to prove Gelfand's Formula.

Theorem 6. Let $A \in \mathbb{C}^{n \times n}$ with spectral radius $\rho(A)$; then $\rho(A) < 1$ iff

$$\lim_{k \to \infty} A^k = 0.$$

Moreover, if $\rho(A) > 1$, $||A^k||$ is not bounded for increasing values of k.

Theorem 7. (Gelfand's Formula)

For any matrix norm $||\cdot||$, we have

$$\rho(A) = \lim_{k \to \infty} ||A^k||^{1/k}.$$

Proof. For any $\varepsilon > 0$ we construct the following two matrices:

$$A_{\pm} = \frac{1}{\rho(A) \pm \varepsilon} A.$$

Then

$$\rho(A_{\pm}) = \frac{\rho(A)}{\rho(A) \pm \varepsilon},$$

which implies that $\rho(A_+) < 1 < \rho(A_-)$.

Using Theorem 6, there exists $N_+ \in \mathbb{N}$ such that $\forall k \geq N_+$, we have $||A_+^k|| < 1$ and therefore

$$\forall k \ge N_+ \quad ||A^k|| < (\rho(A) + \varepsilon)^k,$$

and

$$\forall k \ge N_+ \quad ||A^k||^{1/k} < \rho(A) + \varepsilon.$$

Applying Theorem 6 to A_- implies that $||A_-^k||$ is not bounded and there exists $N_- \in \mathbb{N}$ such that $\forall k \geq N_-$ we have $||A_-^k|| > 1$ and therefore

$$\forall k \ge N_- \quad ||A^k|| > (\rho(A) - \varepsilon)^k,$$

and

$$\forall k \ge N_- \quad ||A^k||^{1/k} > \rho(A) - \varepsilon.$$

Let $N = max\{N_+, N_-\}$, then we have that $\forall \varepsilon > 0$, there is $N \in \mathbb{N}$ such that $\forall k \geq N$

$$\rho(A) - \varepsilon < ||A^k||^{1/k} < \rho(A) + \varepsilon$$

which implies that

$$\lim_{k \to \infty} ||A^k||^{1/k} = \rho(A).$$

Finally, we have the following result, offered without proof:

Theorem 8. *The following statements are equivalent:*

- a. A is a convergent matrix
- b. $\lim_{n\to\infty} ||A^n|| = 0$ for some natural norm
- c. $\lim_{n\to\infty} ||A^n|| = 0$ for all natural norms
- d. $\rho(A) < 1$
- e. $\lim_{n\to\infty} A^n \vec{x} = 0$ for every \vec{x}