STRONG CLEANNESS OF MATRIX RINGS OVER COMMUTATIVE RINGS

FRANÇOIS COUCHOT

ABSTRACT. Let R be a commutative local ring. It is proved that R is Henselian if and only if each R-algebra which is a direct limit of module finite R-algebras is strongly clean. So, the matrix ring $\mathbb{M}_n(R)$ is strongly clean for each integer n>0 if R is Henselian and we show that the converse holds if either the residue class field of R is algebraically closed or R is an integrally closed domain or R is a valuation ring. It is also shown that each R-algebra which is locally a direct limit of module-finite algebras, is strongly clean if R is a π -regular commutative ring.

As in [10] a ring R is called **clean** if each element of R is the sum of an idempotent and a unit. In [8] Han and Nicholson proved that a ring R is clean if and only if $\mathbb{M}_n(R)$ is clean for every integer $n \geq 1$. It is easy to check that each local ring is clean and consequently every matrix ring over a local ring is clean. On the other hand a ring R is called **strongly clean** if each element of R is the sum of an idempotent and a unit that commute. Recently, in [12], Chen and Wang gave an example of a commutative local ring R with $M_2(R)$ not strongly clean. This motivates the following interesting question: what are the commutative local rings R for which $\mathbb{M}_n(R)$ is strongly clean for each integer $n \geq 1$? In [4], Chen, Yang and Zhou gave a complete characterization of commutative local rings R with $\mathbb{M}_2(R)$ strongly clean. So, from their results and their examples, it is reasonable to conjecture that the Henselian rings are the only commutative local rings R with $\mathbb{M}_n(R)$ strongly clean for each integer $n \geq 1$. In this note we give a partial answer to this problem. If R is Henselian then $\mathbb{M}_n(R)$ is strongly clean for each integer $n \geq 1$ and the converse holds if R is an integrally closed domain, a valuation ring or if its residue class field is algebraically closed.

All rings in this paper are associative with unity. By [11, Chapitre I] a commutative local ring R is said to be **Henselian** if each commutative module-finite R-algebra is a finite product of local rings. It was G. Azumaya ([1]) who first studied this property which was then developed by M. Nagata ([9]). The following theorem gives a new characterization of Henselian rings.

Theorem 1. Let R be a commutative local ring. Then the following conditions are equivalent:

- (1) R is Henselian;
- (2) For each R-algebra A which is a direct limit of module-finite algebras and for each integer $n \geq 1$, the matrix ring $\mathbb{M}_n(A)$ is strongly clean;
- (3) Each R-algebra A which is a direct limit of module-finite algebras is clean.

1

²⁰⁰⁰ Mathematics Subject Classification. Primary 13H99, 16U99.

Key words and phrases. clean ring, strongly clean ring, local ring, Henselian ring, matrix ring, valuation ring.

Proof. (1) \Rightarrow (2). Let A be a direct limit of module-finite R-algebras and $a \in \mathbb{M}_n(A)$. Then R[a] is a commutative module-finite R-algebra. Since R is Henselian, R[a] is a finite direct product of local rings. So R[a] is clean. Hence a is a sum of an idempotent and a unit that commute.

It is obvious that $(2) \Rightarrow (3)$.

 $(3) \Rightarrow (1)$. Let A be a commutative module-finite R-algebra and let J(A) be its Jacobson radical. Since $J(R)A \subseteq J(A)$, where J(R) is the Jacobson radical of R, we deduce that A/J(A) is semisimple artinian. By [10, Propositions 1.8 and 1.5] idempotents can be lifted modulo J(A). Hence A is semi-perfect. It follows that A is a finite product of local rings, whence R is Henselian.

Let \mathcal{P} be a ring property. We say that an algebra A over a commutative ring R is **locally** \mathcal{P} if A_P satisfies \mathcal{P} for each maximal ideal P of R.

Corollary 2. Let R be a commutative ring. Then the following conditions are equivalent:

- (1) R is clean and locally Henselian;
- (2) For each R-algebra A which is locally a direct limit of module-finite algebras and for each integer $n \ge 1$, $\mathbb{M}_n(A)$ is strongly clean;
- (3) Each R-algebra A which is locally a direct limit of module-finite algebras is clean.
- **Proof.** (1) \Rightarrow (2). Let A be an R-algebra which is locally a direct limit of module-finite algebras and $a \in \mathbb{M}_n(A)$. Consider the following polynomial equations: E + U = a, $E^2 = E$, UV = 1, VU = 1, EU = UE. By Theorem 1 these equations have a solution in $\mathbb{M}_n(A_P)$, for each maximal ideal P of R. So, by [5, Theorem I.1] they have a solution in $\mathbb{M}_n(A)$ too.

It is obvious that $(2) \Rightarrow (3)$.

 $(3) \Rightarrow (1)$. Let P be a maximal ideal of R and let A be a module-finite R_P -algebra. Since R is clean, the natural map $R \to R_P$ is surjective by [5, Theorem I.1 and Proposition III.1]. So A is a module-finite R-algebra. It follows that A is clean. By Theorem 1 R_P is Henselian.

A ring R is said to be **strongly** π -regular if, for each $r \in R$, there exist $s \in R$ and an integer $q \ge 1$ such that $r^q = r^{q+1}s$.

Corollary 3. Let R be a strongly π -regular commutative ring. Then, for each R-algebra A which is locally a direct limit of module-finite algebras and for each integer $n \geq 1$, the matrix ring $\mathbb{M}_n(A)$ is strongly clean.

Proof. It is known that R is clean and that each prime ideal is maximal. So, for every maximal P, PR_P is a nilideal of R_P . Hence R_P is Henselian. We conclude by Corollary 2.

By [6, Théorème 1] each strongly π -regular R satisfies the following condition: for each $r \in R$, there exist $s \in R$ and an integer $q \geq 1$ such that $r^q = sr^{q+1}$. Moreover, by [3, Proposition 2.6.iii)] each strongly π -regular ring is strongly clean. So, Corollary 3 is also a consequence of the following proposition. (Probably, this proposition is already known).

Proposition 4. Let R be a strongly π -regular commutative ring. Then, for each R-algebra A which is locally a direct limit of module-finite algebras and for each integer $n \geq 1$, the matrix ring $\mathbb{M}_n(A)$ is strongly π -regular.

Proof. Let $S = \mathbb{M}_n(A)$ and $s \in S$. Then R[s] is locally a module-finite algebra. It is easy to prove that each prime ideal of R[s] is maximal. Consequently R[s] is strongly π -regular. So, S is strongly π -regular too.

The following lemma will be useful in the sequel.

Lemma 5. Let R be a commutative local ring with maximal ideal P. Let n be an integer > 1 such that $\mathbb{M}_n(R)$ is strongly clean. Let f be a monic polynomial of degree n with coefficients in R such that $f(0) \in P$ and $f(a) \in P$ for some $a \in R \setminus P$. Then f is reducible.

Proof. Let $A \in \mathbb{M}_n(R)$ such that its characteristic polynomial is f, i.e. $f = \det(XI_n - A)$, where I_n is the unit element of $\mathbb{M}_n(R)$. Then A = E + U where E is idempotent, U is invertible and EU = UE. First we assume that a = 1. So, 0 and 1 are eigenvalues of \overline{A} the reduction of A modulo P. Consequently A and $A - I_n$ are not invertible. It follows that $E \neq I_n$ and $E \neq 0_{n,n}$ where $0_{p,q}$ is the $p \times q$ matrix whose coefficients are 0. Let F be a free R-module of rank n and let ϵ be the endomorphism of F for which E is the matrix associated with respect to some basis. Then $F = \operatorname{Im} \epsilon \oplus \operatorname{Ker} \epsilon$. Moreover $\operatorname{Im} \epsilon$ and $\operatorname{Ker} \epsilon$ are free because R is local. Consequently there exists a $n \times n$ invertible matrix Q such that:

$$QEQ^{-1} = B = \begin{pmatrix} I_p & 0_{p,q} \\ 0_{q,p} & 0_{q,q} \end{pmatrix}$$

where p is an integer such that 0 and <math>q = n - p. Since E and A commute, then B and QAQ^{-1} commute too. So, QAQ^{-1} is of the form:

$$QAQ^{-1} = \begin{pmatrix} C & 0_{p,q} \\ 0_{q,p} & D \end{pmatrix}$$

where C is a $p \times p$ matrix and D is a $q \times q$ matrix. We deduce that f is the product of the characteristic polynomial g of C with the characteristic polynomial g of G. Let us observe that $(C - I_p)$ and G are invertible. So, $G(1) \notin P$, $G(1) \notin P$, $G(1) \notin P$ and $G(1) \notin P$. Now suppose that $G(1) \notin P$ and $G(1) \notin P$ are invertible. So, $G(1) \notin P$ where $G(1) \notin P$ and $G(1) \notin P$ are invertible, whence $G(1) \notin P$ is reducible too.

A commutative ring R is a **valuation ring** (respectively **arithmetic**) if its lattice of ideals is totally ordered by inclusion (respectively distributive).

Theorem 6. Let R be a local commutative ring with maximal ideal P and with residue class field k. Consider the following two conditions:

- (1) R is Henselian;
- (2) the matrix ring $\mathbb{M}_n(R)$ is strongly clean $\forall n \in \mathbb{N}^*$.

Then $(1) \Rightarrow (2)$ and the converse holds if R satisfies one of the following properties:

- (a) k is algebraically closed;
- (b) R is an integrally closed domain;
- (c) R is a valuation ring.

Proof. By Theorem 1 it remains to prove that (2) implies (1) when one of (a), (b) or (c) is valid. We will use [2, Theorem 1.4] and [7, Theorem II.7.3.(iv)]. Consider the polynomial $f = X^n + c_{n-1}X^{n-1} + \cdots + c_1X + c_0$ and assume that $\exists m, 1 \leq m < n$ such that $c_m \notin P$ and $c_i \in P$, $\forall i < m$. Since $c_0 \in P$, we see that $f(0) \in P$.

Hence, if k is algebraically closed, $\exists a \in R \setminus P$ such that $f(a) \in P$. By Lemma 5 f is reducible. So, by [2, Theorem 1.4] R is Henselian.

If R is an integrally closed domain, we take m = n - 1 for proving the condition (iv) of [7, Theorem II.7.3]. In this case $f(-c_{n-1}) \in P$. By Lemma 5 (possibly applied several times) f satisfies the condition (iv) of [7, Theorem II.7.3]. Hence R is Henselian.

Assume that R is a valuation ring. Let N be the nilradical of R and let R' = R/N. We know that R is Henselian if and only if R' is Henselian too. For each $n \in \mathbb{N}^*$, $\mathbb{M}_n(R')$ is strongly clean. Since R' is a valuation domain, R' is integrally closed. It follows that R' and R are Henselian.

Corollary 7. Let R be an arithmetic commutative ring. Then the following conditions are equivalent:

- (1) R is clean and locally Henselian;
- (2) the matrix ring $\mathbb{M}_n(R)$ is strongly clean $\forall n \in \mathbb{N}^*$.

Proof. By Corollary 2 it remains to show $(2) \Rightarrow (1)$. Let P be a maximal ideal of R. Since R is clean the natural map $R \to R_P$ is surjective by [5, Theorem I.1 and Proposition III.1]. So, $\mathbb{M}_n(R_P)$ is strongly clean $\forall n \in \mathbb{N}^*$. Theorem 6 can be applied because R_P is a valuation ring. We conclude that R_P is Henselian. \square

The following generalization of [4, Theorem 8] holds even if the properties (a), (b), (c) of Theorem 6 are not satisfied.

Theorem 8. Let R be a local commutative ring with maximal ideal P and with residue class field k. Let p be an integer such that $2 \le p \le 5$. Then the following conditions are equivalent:

- (1) $\mathbb{M}_n(R)$ is strongly clean $\forall n, \ 2 \leq n \leq p$;
- (2) each monic polynomial f of degree n, $2 \le n \le p$, for which $f(0) \in P$ and $f(1) \in P$, is reducible.

Proof. By Lemma 5 it remains to prove that $(2) \Rightarrow (1)$. Let $A \in \mathbb{M}_n(R)$. We denote by f the characteristic polynomial of A. If A is invertible then A = $0_{n,n} + A$. If $A - I_n$ is invertible then $A = I_n + (A - I_n)$. So, we may assume that A and $(A-I_n)$ are not invertible. It follows that $f(0) \in P$ and $f(1) \in P$. Then, f = gh where g and h are monic polynomials of degree ≥ 1 . We may assume that $g(0) \in P, g(1) \notin P, h(0) \notin P \text{ and } h(1) \in P \text{ (possibly by applying condition (2)}$ several times). We denote by \bar{f} , \bar{g} , \bar{h} the images of f, g, h by the natural map $R[X] \to k[X]$. If \bar{q} and \bar{h} have a common factor of degree ≥ 1 then this factor is of degree 1 because $n \leq 5$. In this case $\exists a \in R \setminus P$ such that $g(a) \in P$ and $h(a) \in P$. As in the proof of Lemma 5 we show that q is reducible. Hence, after changing g and h, we get that \bar{g} and \bar{h} have no common divisor of degree ≥ 1 . It follows that there exist two polynomials u and v with coefficients in R such that $\bar{u}\bar{g} + \bar{v}\bar{h} = 1$. Since PR[A] is contained in the Jacobson radical of R[A], we may assume that $u(A)q(A)+v(A)h(A)=I_n$. We put e=vh. Then we easily check that e(A) is idempotent. It remains to show that (A - e(A)) is invertible. It is enough to prove that $(A - \bar{e}(A))$ is invertible because $PM_n(R)$ is the Jacobson radical of $\mathbb{M}_n(R)$. Let V be a vector space of dimension n over k and let \mathcal{B} be a basis of V. Let α be the endomorphism of V for which \bar{A} is the matrix associated with respect to \mathcal{B} . We put $\epsilon = \bar{e}(\alpha)$. Since V has finite dimension, it is sufficient to show that $(\alpha - \epsilon)$ is injective. Let $w \in V$ such that $\alpha(w) = \epsilon(w)$. It follows that

 $\alpha(\epsilon(w)) = \epsilon(\alpha(w)) = \epsilon^2(w) = \epsilon(w)$. Since \bar{e} is divisible by $(X - \bar{1})$ we get that $\epsilon(w) = 0$. So, $\alpha(w) = 0$. We deduce that $\epsilon(w) = w$ because $\bar{e} - \bar{1}$ is divisible by X. Hence w = 0.

References

- [1] G. Azumaya. On maximally central algebras. Nagoya J. Math., 2:119–150, (1951).
- [2] M. V. Bondarko. The Krull-Schmidt theorem for Henselian rings. J. Math. Sci., 112, (2002).
- [3] W.D Burgess and P. Menal. On strongly π -regular rings and homomorphism into them. Comm. Algebra, 18(8):1701–1725, (1988).
- [4] J. Chen, X. Yang, and Y. Zhou. When is the 2×2 matrix ring over a commutative local ring strongly clean? J. Algebra, 301:280–293, (2006).
- [5] F. Couchot. Indecomposable modules and Gelfand rings. Comm. Algebra, 35(1):231–241, (2007).
- [6] F. Dischinger. Sur les anneaux fortement π-réguliers. C. R. Acad. Sc. Paris, 283:571–573, (1976).
- [7] L. Fuchs and L. Salce. *Modules over Non-Noetherian Domains*. Number 84 in Mathematical Surveys and Monographs. American Mathematical Society, Providence, (2001).
- [8] J. Han and W.K. Nicholson. Extensions of clean rings. Comm. Algebra, 29:2589–2595, (2001).
- [9] M. Nagata. Local rings. Intersciences Publishers, New York and London, (1962).
- [10] W. K. Nicholson. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 229:269–278, (1977).
- [11] M. Raynaud. Anneaux locaux henséliens, volume 169 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, (1970).
- [12] Z. Wang and J. Chen. On two problems about strongly clean rings. Bull. Austral. Math. Soc., 70:279–282, (2004).

Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139, Département de mathématiques et mécanique, 14032 Caen cedex, France

E-mail address: couchot@math.unicaen.fr