Nom:	DM1					
Prénom:	APP	ANA	REA	VAL	СОМ	RCO
Exercice 1 – Détermination expérimentale de la masse de la Terre						
1. Schéma et représentation des forces.					••	
2. TMC: $\ddot{\theta} + \frac{9\eta}{2\rho r^2}\dot{\theta} + \frac{g}{l}\sin\theta = 0.$			••			
3. $\ddot{\theta} + \frac{\omega_0}{Q}\dot{\theta} + \omega_0^2\theta = 0$, avec $\omega_0 = \sqrt{\frac{g}{l}}$ et $Q = \frac{2\rho r^2}{9\eta}\sqrt{\frac{g}{l}}$.			••			
4. $Q = 5.5 \times 10^3 \gg 1$, d'où $T \approx 2\pi \sqrt{\frac{l}{g}}$.			•	•		
5. Représentation graphique de l'ajustement, $g=(9.81\pm0.07)\mathrm{m\cdot s^{-2}}.$		•		•	•	
6. $g = \frac{GM_T}{R_T^2}$.			•			
7. TMC: $\ddot{\theta} + \frac{C}{J}\theta = 0$.			••			
8. $C = 2m \left(\frac{2\pi d}{T_c}\right)^2$, $[C] = M \cdot L^2 \cdot T^{-2} = E$ (en joule).			••			
9. Description de la méthode, $T_c = (501 \pm 7) \mathrm{s}$.	•			•	•	
10. $G \frac{mM}{a^2} \gg G \frac{mM}{d^2}$.		••				
11. Définition d'un couple, $\vec{F}_{1/1} + \vec{F}_{2/2} = \vec{0}$, $\vec{\Gamma}_g = 2dG \frac{mM}{a^2} \vec{e_z}$.			••			•
12. TMC en statique, $G = \frac{a^2 C \theta_0}{2dMm}$.			••			
13. $G = \frac{4\pi^2 da^2}{MT^2} \theta_0 = (6.6 \pm 0.6) \times 10^{-11} \mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2}$; $E_n = 0.1 < 2$.			•	••		
14. Schéma de la mesure optique de la déviation.					••	
15. $\overrightarrow{L}_O = \overrightarrow{\text{cste}} + \text{mouvement circulaire} : \text{mouvement uniforme} : v = \sqrt{\frac{GM_T}{R}}.$						•••
16. PFD: $\frac{T_s^2}{R^3} = \frac{4\pi^2}{GM_T}$.			••			
17. $4\pi^2 (R_T + h)^3 = gR_T^2 T_s^2$.		••				
18. DL à l'ordre un : $R_T \approx g \frac{T_s^2}{4\pi^2} - 3h = 6.47 \times 10^3 \mathrm{km}$.			••			
19. Résolution numérique : $R_T = 6.39 \times 10^3$ km, conclusion.		•		•		
20. $M_T = \frac{gR_T^2}{G}$ et $u(M_T) = M_T \frac{u(G)}{G}$: $M_T = (6.1 \pm 0.6) \times 10^{24}$ kg, précision limitée par G .			••	••		
21. $\rho_T = \frac{M_T}{\frac{4}{3}\pi R_T^3} = 5.6 \times 10^3 \mathrm{kg} \cdot \mathrm{m}^{-3}$, cohérent avec la composition de la Terre :	•		•	•		
eau, roches et fer.						
EXERCICE 2 – Composante horizontale du champ magnétique terrestre						
1. Schéma à $I = 0$ et $I \neq 0$ avec l'angle α .					••	
2. Helmholtz : champ magnétique uniforme.						•
3. $B_H = (2.5 \pm 0.5) \times 10^{-5} \mathrm{T}.$		••	••	•		
Présentation de la copie					••	
Total	APP	ANA	REA	VAL	СОМ	RCO
Nombre total de points	2	8	24	10	10	5
Nombre de points obtenus		04		W		/50

COMMENTAIRES:

 $\eta = \%; \quad \tau = \%; \qquad /59$