Exercise (5 minutes)

Scenario:

• You have been asked to predict current house prices in the Pittsburgh area based on a labeled dataset with features like number of bedrooms, location, square footage, etc.

Instructions

- Get into groups of 3-5
- Brainstorm approaches you could use to solve the problem given the different sizes of training data.

<u>N</u>	<u>Method</u>
1 Million	
100,000	
10,000	Random Forest
1,000	
100	
50	
10	
0?	

Reasoning About Data: Applying Bayesian Data Analysis

Factory Day
23 February 2024
CPT Bobby Nelson

Why Bayesian?

Intuitive

■ Flexible

Expressive

When Bayesian?

Machine Learning

- Big data
- Big model
- Few assumptions

Data does the work

Bayesian Analysis

- Small(er) data
- Strongly structured model
- Strong priors

Model does the work

Agenda

Introduction

- ➤ Brief History
- ➤ Bayes Theorem
- Simple Problems
- Bean Bag Toss Experiment
 - ➤ Binomial Process
 - ➤ Grid Approximation and MCMC
- Predicting Ice Thickness
 - ➤ Linear Mixed Models
 - > Hierarchical Models

A Brief History of Bayesian Statistics

Abraham de Moivre

Reverend Thomas Bayes

PROBLEM.

Given the number of times in which an unknown event has happened and failed: Required the chance that the probability of its happening in a fingle trial lies somewhere between any two degrees of probability that can be named.

Pierre Simon Laplace

common sense reduced to calculus..."

(1812) Analytic Theory of Probability

Harold Jeffreys

Edwin Jaynes

"Probability theory as extended logic"

$$P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)}$$

$$P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)}$$
Posterior Probability

Sampling Probability

(proportional to) Likelihood

$$P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)}$$

$$P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)}$$
Model Evidence

Probability of the evidence averaged over the prior

Sampling Probability

Probability of the evidence averaged over the prior

Simple Inferential Probability

- MREs
- Boy or Girl Paradox
- Monte Hall

You have two boxes of MREs with different proportions of veggie omelet and buffalo chicken given by the following table.

What is the probability that you get a veggie omelet at random?

	Veggie Omelet	Buffalo Chicken
Box 1	4	8
Box 2	7	5

You have two boxes of MREs with different proportions of veggie omelet and buffalo chicken given by the following table.

What is the probability that you get a veggie omelet at random?

$$P(V) = P(V \mid Box 1)P(Box 1) + P(V \mid Box 2)P(Box 2)$$

$$= \frac{4}{12} \times \frac{1}{2} + \frac{7}{12} \times \frac{1}{2}$$

$$= \frac{11}{24}$$

Your friend opens one of the boxes and pulls out a veggie omelet.

$$P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)}$$

Hypothesis	Prior	Sampling	Plausibility	Posterior
(H)	P(H)	Probability	P(H)P(E H)	Probability
		P(E H)		P(H E)
Box 1				
Box 2				

Your friend opens one of the boxes and pulls out a veggie omelet.

$$P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)}$$

Hypothesis	Prior	Sampling	Plausibility	Posterior
(H)	P(H)	Probability	P(H)P(E H)	Probability
		P(E H)		P(H E)
Box 1	1/2	4/12	4/24	4/11
Box 2	1/2	7/12	7/24	7/11

Your other friend pulls a buffalo chicken MRE out of the open box.

$$P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)}$$

Hypothesis	Prior	Sampling	Plausibility	Posterior
(H)	P(H)	Probability	P(H)P(E H)	Probability
		P(E H)		P(H E)
Box 1				
Box 2				

Your other friend pulls a buffalo chicken MRE out of the open box.

$$P(H \mid E) = \frac{P(H)P(E \mid H)}{P(E)}$$

Hypothesis	Prior		Plausibility	Posterior
(H)	P(H)	Probability	P(H)P(E H)	Probability
		P(E H)		P(H E)
Box 1	4 / 11	8 / 11	32 / 121	32 / 67
Box 2	7 / 11	5 / 11	35 / 121	35 / 67

After your two observations, what is the probability that you get a veggie omelet at random from the open box?

$$P(V) = P(V \mid Box 1)P(Box 1) + P(V \mid Box 2)P(Box 2)$$

$$= \frac{3}{10} \times \frac{32}{67} + \frac{6}{10} \times \frac{35}{67}$$

$$= \frac{306}{670}$$

$$\approx 0.457$$

Mr. Jones has two children. The older child is a girl. What is the probability that both children are girls?

Given:

Question:

■ 2 children

■ P(G, G)

Older child is a girl

Hypothesis (H)	Prior P(H)	Sampling Probability P(E H)	Plausibility P(H)P(E H)	Posterior Probability P(H E)
В, В				
B, G				
G, B				
G, G				

Given:

■ 2 children

Older child is a girl

Question:

■ P(G, G)

Hypothesis (H)	Prior P(H)	Sampling Probability P(E H)	Plausibility P(H)P(E H)	Posterior Probability P(H E)
В, В	1/4	0	0	0
B, G	1/4	0	0	0
G, B	1/4	1	1/4	1/2
G, G	1/4	1	1/4	1/2

Mr. Smith has two children. At least one of them is a boy. What is the probability that both children are boys?

Given:

Question:

■ 2 children

■ P(B, B)

At least 1 is a boy

Hypothesis (H)	Prior P(H)	Sampling Probability P(E H)	Plausibility P(H)P(E H)	Posterior Probability P(H E)
В, В				
B, G				
G, B				
G, G				

Given:

■ 2 children

At least 1 is a boy

Question:

■ P(B, B)

Hypothesis (H)	Prior P(H)	Sampling Probability P(E H)	Plausibility P(H)P(E H)	Posterior Probability P(H E)
В, В	1/4	1	1/4	1/3
B, G	1/4	1	1/4	1/3
G, B	1/4	1	1/4	1/3
G, G	1/4	0	0	0

Mr. Smith has two children. You see him walk to a parentteacher conference with a boy. What is the probability that both children are boys?

Given:

- 2 children
- You observe one child is a boy

Question:

■ P(B, B)

Hypothesis (H)	Prior P(H)	Sampling Probability P(E H)	Plausibility P(H)P(E H)	Posterior Probability P(H E)
B, B				
B, G				
G, B				
G, G				

Given:

■ 2 children

You observe one child is a boy

Question:

■ P(B, B)

Hypothesis (H)	Prior P(H)	Sampling Probability P(E H)	Plausibility P(H)P(E H)	Posterior Probability P(H E)
B, B	1/4	1	1/4	1/2
B, G	1/4	1/2	1/8	1/4
G, B	1/4	1/2	1/8	1/4
G, G	1/4	0	0	0

Monte Hall

Given:

- You pick door 1
- Monte Hall opens door 3 showing a goat

Assumptions:

- Monte Hall always offers a switch
- Monte Hall always opens a door with a goat behind it

What are the probabilities that the car is behind each door?C

Monte Hall

Hypothesis (H)	Prior P(H)	Sampling Probability P(E H)	Plausibility P(H)P(E H)	Posterior Probability P(H E)
Car in Door 1				
Car in Door 2				
Car in Door 3				

Monte Hall

Hypothesis (H)	Prior P(H)	Sampling Probability P(E H)	Plausibility P(H)P(E H)	Posterior Probability P(H E)
Car in Door 1	1/3	1/2	1/6	1/3
Car in Door 2	1/3	1	1/3	2/3
Car in Door 3	1/3	0	0	0

Bayes' Table

First known application of Bayes' Theorem!

PROBLEM.

Given the number of times in which an unknown event has happened and failed: Required the chance that the probability of its happening in a fingle trial lies somewhere between any two degrees of probability that can be named.

Bayes' Table

Process:

- Throw a ball on a table and mark its position
- Throw a second ball repeatedly and measure if it landed to the left or right of the mark
- Calculate the probability of the position of the first ball

Bayes' Table – Experiment

Instructions:

- On my command, throw a single bag
- Throw backwards with your non-dominant hand
- After throwing all four bags, collect them and throw from the other set of chairs

While waiting:

- Clone the factory day repo from AI2C GitHub
- Set up a python virtual environment based on the requirements file

Predicting Ice Thickness

Predicting Ice Thickness

Predicting Ice Thickness

Stefan's Equation:

$$h_j^2 - h_k^2 = \alpha^2 \Delta U$$

CECW-EE	DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers Washington, DC 20314-1000	EM 1110-2-1612 Change 4
Manual		21.4 4.10
No. 1110-2-1612		31 August 18
	Engineering and Design ICE ENGINEERING	

Typical values for α are presented in Table 2-2. In this case the ice thickness is proportional to the square root of the accumulated freezing degree-days.

Table 2-2 Typical Values of α (after Michel 1971)

Ice Cover Condition	α*	α†
Windy lake w/no snow	2.7	0.80
Average lake with snow	1.7–2.4	0.50-0.70
Average river with snow	1.4–1.7	0.40-0.50
Sheltered small river	0.7–1.4	0.20-0.40

^{*} AFDD calculated using degrees Celsius. The ice thickness is in centimeters.

[†] AFDD calculated using degrees Fahrenheit. The ice thickness is in inches.

Books to Read

- Clayton, Aubrey. *Bernoulli's Fallacy: Statistical Illogic and the Crisis of Modern Science*, New York Chichester, West Sussex: Columbia University Press, 2021. https://doi.org/10.7312/clay19994
- McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and STAN (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429029608
- Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., & Rubin, D.B. (2013).
 Bayesian Data Analysis (3rd ed.). Chapman and Hall/CRC.
 https://doi.org/10.1201/b16018