GALOIS FIELD ARITHMETIC UNIT

Sabbir Ahmed, Jeffrey Osazuwa, Howard To, Brian Weber

CMPE 450: Systems Requirement Review

BACKGROUND

Galois Field (pronounced "Gal-o-AH")

- Field that contains a finite number of elements
 - Fields are bounded over +, -, *, /
 - Every operation has an inverse
- Represented as GF(p), where p is a prime number
- GF(2) is the best known and most frequently used
- Each term of the field is generated from a "generating polynomial" which is irreducible

Galois Field Arithmetic Unit

- The arithmetic logic unit (ALU) deals with irreducible polynomials in $GF(2^n)$, for 2 ≤ n ≤ 16
- The unit:
 - Determines irreducibility
 - Generates the terms
 - Allows operations to be applied between the terms:
 - Addition
 - Subtraction
 - Multiplication
 - Division
 - Logarithm

Purpose and Scope

- Serve as a computation engine for a relatively low-powered microcontroller, and would enable complex code and encryption algorithms
- Advanced Encryption Standard (AES) has one step which uses Galois Fields

MISSION AND REQUIREMENTS

Mission Requirements

The ALU shall be able to:

- Generate Galois fields given a valid generating polynomial
- Perform operations within the generated field
- Store generated fields in memory
- Convert input symbols to their polynomial values before completing operations
- Lookup polynomial values in the table
- Conduct all external communication on busses

Functional Flow

- 1. Set mode bits
- 2. Give generating polynomial
- 3. After terms are generated, arithmetic operations can be done
- 4. A new generating polynomial can be given to generate a new field, but the old one will be overwritten

PRELIMINARY REQUIREMENTS

Architectural Synthesis

- Scalable many trade-off options
- Decisions on trade-offs can be made down the road
- Term generation and logarithm operation are scalable
- Simpler operations are done in constant time

Trade-off Details

- Terms generated per clock vs. number of gates used
- Speed vs. memory
- Clock speed vs. terms generated per clock

System Interface

- Inputs, controls and errors given/received on a data bus
- Data bus can be set to use either 8, 16, or 32 bits to interface with a variety of external devices
- Depending on the size of the Galois field and bus size, inputs and controls may need to be sent on separate cycles
- Mode register to store settings

Specification Development

- Currently, all physical and cost specifications are concrete
- Specifications to be determined: design size and speed
 - Depends on the details of the design of purchased FPGA
- Flexible design
 - Trade-off decisions can be made later
- Unsure about power requirements

Constraints

- Prototype budget under \$400.00
- Cost of large scale production to be less than \$1 per chip
- Included in prototype

 - Area less than 24 square inches
- Shooting for [50]MHz

PROGRAM RISK ANALYSIS

Challenges

- Communication between microcontroller and FPGA
- Memory/register bandwidth could be a large limiting factor
- FPGA size
- Variable sized data bus

Testing/ Measurement

- Digital logic analyzer
- Oscilloscope
- VHDL simulations
 - All simulations should work by the end of the semester

QUESTIONS?

