CURS 1 18.02.2022 ANALIZA MATEMATICA II - SPERANTA VLASOIU -

Final 80%-examen final do/ - lucrare de seminar (dupa soft a 7-a) 1 punct (2) - activitate seminar

- Integrale miprophil

Serie de putita

- itopologii, convergentat, continuitate re Rh. - Diferentiabilitate se Rh - Titegrala Riemann pet functio de moi multe mariabele

BIBLIOGRAFIE:

@ R. Miculescu - Amaliza matematica - Note de curs (Pro Universitaria (2) N. Boboc - Analiza matematica (1, 1) (Ed. Unio Bre X1999)

(3) M. Nicolson 7 - Avaliza matematica S-Marcus N. Sinculeanu

(4) T. Tao - Analysis II - Springer 2016

(5) P. H. Fitzpatrick - Advanced Calculus - AMS - 2006

6 J Callahau - Advanced Calculus: A Geauctric Pout of view.

0

stow for de = line for de - so uitegralo empro-De f esti integrabila un seus generalizat, spenien ca integralo misproprie la fun de este convergenta. De lui f f(x) dx e {+00, -00}, spunem cà integralo impropriu existo $\int f(x) dx = +\infty/-\infty$, dor mu este convergental scylmi sa forsale - integrale migraphie ou exister Observatii: 1) Se poate defiii analog pentru intervale de top (a, b] (f (a, b] - R, ack, ber, acb) 2) Saca of ute integrabila in seus generalizat Spurum ca plo f(x) dx este convergetata Daca golini la fix) de mu e fuita son un exista este divergenta 3) baca f: (a, le) -> R, a, he R, ach, spunde co of este uitegrabile in seus generalizat de f ce (a, le) a r. of este uitequalula in seus fouralizat pe (a, c] si (c, le). $\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} f(x) dx + \int_{0}^{\infty} f(x) dx$ Obs. of este local integrabilà de f este integrabilà lieuau pe orice [c,d] = [a, b)/(a, b]/(a,b). Exemplu: (f. (0,1) → R f(w) - + L'este local integrabilà pe (0,1] (1,1) of este uitegraleile Riemann pe Ec, 17

fra so fix dx => po suix dx (me exista) divergentà 6 For 1. Fi a, b e R, a > b si f : [a,b] -> R local integrabiler

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalizat

si marquita. Atunci) of este integrabiler in seus deminalization in seu functio d'este integralella Riemann si : la fa) dx = fo fa) dx. Oles: Prop 1 mu rainain adevarata de a si b mu suit finitel. Sem. Tema Rop. L. Fi a, ber ach si figi ta, b) -> R, LER Atunci, de f ji g sunt integrabele ou seus generalizat, hez: suit uitigrabile in rus generalitat si f le (f+g)(x) dx = f le f(x) dx + f le g(x) dx 5"(xx)(x) dx = 2 for f(x) dx. Sem: f, g sunt integralis in sens generalizat => f, g local int. Atunci. f+g est local integrabilà

- lui f (f+g)(x) dx = lui [a f(x) + fa g(x) dot]

- lui f (f+g)(x) dx = lui [a f(x) + fa g(x) dot] = ph faidx + ph gas dx . E Ry -> f+g este integraleila in seus generalizat

y fa f+q fa f+ f q Example: of 1917 > R, fer) = to & integralisa in seus general f.f = f2: (qI) >R f2(x) = 1 · f2 me este int. In seus que.

Regis. Fi acR, bcR, acb, f. [a,b) -> R lacal integrabilà

Atunci f este integrabila in seus generalizat 9 de si nunai de + 870, 7ce e (a,b) a.i. +c,0" e (ce,b) Isturde - po funde | cE. Tù -2 cach : ~ f: [a,b) - R o functi local integrabile

Atunci definini integrala mipropri (guaralizata) · for f(x) dx

Sc. F lui f + f(x) dx = funta spuneru ca f convergenta. Alter spruem ca s'divergenta. 2=1: lui ja 1 dx = lui x / la. d<1 -> lun' $\frac{1}{1-\alpha}$ = ∞ $\alpha = 1 - 2 \lim_{t \to \infty} \ln \frac{t}{a} = \infty$ 2>1 - a 1-x i= Jo 1 dx, aso, LER pt. 271: lui ja 1 dx = lui 1-x | a = lui a - t -x

pt. 271: lui ja 1 dx = lui 1-x | t + 400 1-x

Do suixdx = lui o suixdx = lui - cos x | = lui - cos t +1 xn= 2nti ~ ~ ~ lui (-cos2nti)=0 yn= (2n+1) ti ~ ~ ~ lui (-cos(2n+1)ti+1)=2 Blui St e-ax suib x dx $y = \int_{0}^{t} e^{-\alpha x} \sin bx \, dx = -\frac{e^{-\alpha x}}{L} \int_{0}^{t} -\frac{a}{b} \int_{0}^{t} e^{-\alpha x} \cos bx \, dx$ -ax - ae-ax suibx - cosbx $y = -e^{-\alpha x} \left(\frac{\cos bx}{b} + \frac{\alpha}{h^2} \sin bx \right) \left(\frac{t}{b} - \frac{\alpha^2}{b^2} \right)$ y. b2+22 = -eat (cos bt + a sui bt) + 1/6 -) y= 62 (-e-at/cosbt+a2 shibt)+1/6) lui 52 - e at (cost +. lui be (-bookt + ascubt + 1) $(4) = \int_{0}^{\infty} \frac{1}{x^{2}-2x+h} dx = \lim_{t \to \infty} \int_{0}^{t} \frac{1}{x^{2}-2x+h} dx - \lim_{t \to \infty} \int_{0}^{t} \frac{1}{(x-1)^{2}+3} dx$ lui 1-1 1 du = lui 1 arotg u /1-1= $= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} + ax \frac{dy}{\sqrt{3}} \right) - \frac{2\sqrt{3}}{3\sqrt{3}} = \frac{2\sqrt{3}\sqrt{3}}{9}.$ (+1 ex)