Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

Chapter 2f Program Verification

Mathematical Modeling (CO2011)

(Materials drawn from:

"Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning about Systems, 2nd Ed., Cambridge University Press, 2006.")

BỞI HCMUT-CNCP

Nguyen An Khuong

Faculty of Computer Science and Engineering University of Technology, VNU-HCM

Contents

Program Verification

Nguyen An Khuong

Core Programming Language

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

1 Core Programming Language

2 Hoare Triples; Partial and Total Correctness

3 Proof Calculus for Partial Correctness

4 Practical Aspects of Correctness Proofs

6 Correctness of the Factorial Function

6 Proof Calculus for Total Correctness

BÓI HCMUT-CNCP

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Proof Calculus for

Homeworks

KHOACNCD

- One way of checking the correctness of programs is to explore the possible states that a computation system can reach during the execution of the program.
- Problems with this model checking approach:
 - Models become infinite
 - Satisfaction/validity becomes undecidable.
- In this lecture, we cover a proof-based framework for program verification.

BỞI HCMUT-CNCP

Characteristics of the Approach

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Proof Calculus for

Homeworks

CHK

Proof-based instead of model checking Semi-automatic instead of automatic

Property-oriented not using full specification

Application domain fixed to sequential programs using integers Interleaved with development rather than a-posteriori verification

Reasons for Program Verification

Program Verification Nguyen An Khuong

Documentation. Program properties formulated as theorems can

Time-to-market. Verification prevents/catches bugs and can reduce development time

serve as concise documentation

Reuse. Clear specification provides basis for reuse

Certification. Verification is required in safety-critical domains such as nuclear power stations and aircraft cockpits

BỞI HCMUT-CNCP

Core Programming Language

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Framework for Software Verification

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for

Homeworks

Convert informal description R of requirements for an application domain into formula ϕ_R .

Write program P that meets ϕ_R .

Prove that P satisfies ϕ_R .

Each step provides risks and opportunities.

TÀI LIỆU SƯU TẬP BỞI HCMUT-CNCP

Nguven An Khuong

Contents

Core Programming

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Factorial Function Proof Calculus for

Total Correctness

Homeworks

1 Core Programming Language

Hoare Triples; Partial and

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Coffectness U'U TÂP

Motivation of Core Language

MHOACNCD

- Real-world languages are quite large; many features and constructs
- Theoretical constructions such as Turing machines or lambda calculus are too far from actual applications; too low-level
- Idea: use subset of Pascal/C/C++/Java
- Benefit: we can study useful "realistic" examples

TÀI LIỆU SƯU TẬP

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Proof Calculus for

Expressions in Core Language

Program Verification

Nguyen An Khuong

Contents

Core Programming

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

MAHOACNC

Expressions come as arithmetic expressions E:

$$E ::= n \mid x \mid (-E) \mid (E + E) \mid (E - E) \mid (E * E)$$

and boolean expressions B:

$$B ::= \mathtt{true} \mid \mathtt{false} \mid (!B) \mid (B \& B) \mid (B \| B) \mid (E < E)$$

Where are the other comparisons, for example ==?

BổI HCMUT-CNCP

Commands in Core Language

CHKHOACNCX

Commands cover some common programming idioms. Expressions are components of commands.

$$C ::= x = E \mid C; C \mid \texttt{if} \ B \ \{C\} \ \texttt{else} \ \{C\} \mid \texttt{while} \ B \ \{C\}$$

TÀI LIỆU SƯU TẬP

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Nguyen An Khuong

Contents

Core Programming

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Factorial Function

Proof Calculus for Total Correctness

Homeworks

KHOACNCX

Consider the factorial function:

$$\begin{array}{ccc}
0! & \stackrel{\text{def}}{=} & 1 \\
(n+1)! & \stackrel{\text{def}}{=} & (n+1) \cdot n!
\end{array}$$

We shall show that after the execution of the following Core program, we have y=x!.

```
y = 1;
z = 0;
while (z != x) { z = z + 1; y = y * z; } U TÂP
```


Contents

Core Programming Language

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

Nguven An Khuong

1 Core Programming Language

2 Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Coffectness U'U TÂP

Example

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Nguyen An Khuong

Contents

Core Programming Language

and Total Correctne

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

We need to be able to say that at the end, y is x!

CHKHOACNCD

```
y = 1;
z = 0;
while (z != x) { z = z + 1; y = y * z; }
```

- We need to be able to say that at the end, y is x!
- That means we require a post-condition y = x!

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for

Total Correctness

Homeworks

while $(z != x) {$ Do we need pre-conditions, too?

TÀI LIỆU SƯU TẬP

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Proof Calculus for Total Correctness

Homeworks

RACHKHOACNOP COM

y = 1; z = 0; while (z != x) { z = z + 1; y = y * z; }
• Do we need pre-conditions, too?

Yes, they specify what needs to be the case before execution.

Example: x > 0

TÀI LIỆU SƯU TẬP

Contents

Core Programming Language

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

 Do we need pre-conditions, too? Yes, they specify what needs to be the case before execution.

Example: x > 0

• Do we have to prove the postcondition in one go?

Contents

Core Programming Language

Hoare Triples; Partia

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for

Homeworks

y = 1; z = 0; while (z != x) { z = z + 1; y = y * z; }

Do we need pre-conditions, too?
 Yes, they specify what needs to be the case before execution.

Example: x > 0

Do we have to prove the postcondition in one go?
 No, the postcondition of one line can be the pre-condition of the next!

BỞI HCMUT-CNCP

Assertions on Programs

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

and Total Correctne

Proof Calculus for Partial Correctness

Practical Aspects of

Correctness Proofs Correctness of the

Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

Shape of assertions

Informal meaning

If the program P is run in a state that satisfies ϕ , then the state resulting from P's execution will satisfy ψ .

(Slightly Trivial) Example

Informal specification

Given a positive number x, the program P calculates a number y whose square is less than x.

Assertion

$$(x > 0) P (y \cdot y < x)$$

Example for P

$$y = 0$$

Our first Hoare triple

BOT HCMUT-CNCP

LIÊU SƯU TÂ

$$(\!(x>0)\!) \text{ y = 0 } (\!(y\cdot y < x)\!)$$

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

(Slightly Less Trivial) Example

BÓI HCMUT-CNCP

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples: Partia and Total Correctne

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Contents

Core Programming Language

nd Total Correctne

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

Definition

Let \mathcal{F} contain function symbols and \mathcal{P} contain predicate symbols. A model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

- 1 A non-empty set A, the universe;
- 2 for each nullary function symbol $f \in \mathcal{F}$ a concrete element $f^{\mathcal{M}} \in A$:
- 3 for each $f \in F$ with arity n > 0, a concrete function $f^{\mathcal{M}}:A^n\to A$:
- 4 for each $P \in \mathcal{P}$ with arity n > 0, a set $P^{\mathcal{M}} \subseteq A^n$.

Recall: Satisfaction Relation

KHOACNC

The model \mathcal{M} satisfies ϕ with respect to environment l, written $\mathcal{M} \models_l \phi$:

- in case ϕ is of the form $P(t_1,t_2,\ldots,t_n)$, if the result (a_1,a_2,\ldots,a_n) of evaluating t_1,t_2,\ldots,t_n with respect to l is in $P^{\mathcal{M}}$;
- in case ϕ has the form $\forall x \psi$, if the $\mathcal{M} \models_{l[x \mapsto a]} \psi$ holds for all $a \in A$:
- in case ϕ has the form $\exists x \psi$, if the $\mathcal{M} \models_{l[x \mapsto a]} \psi$ holds for some $a \in A$;

BỞI HCMUT-CNCP

DACHVHOACNOD COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

Recall: Satisfaction Relation (continued)

KHOACNCD

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_l \psi$ does not hold;
- in case ϕ has the form $\psi_1 \vee \psi_2$, if $\mathcal{M} \models_l \psi_1$ holds or $\mathcal{M} \models_l \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_l \psi_1$ holds and $\mathcal{M} \models_l \psi_2$ holds; and
- in case ϕ has the form $\psi_1 \to \psi_2$, if $\mathcal{M} \models_l \psi_1$ holds whenever $\mathcal{M} \models_l \psi_2$ holds.

TÀI LIỆU SƯU TẬP

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Definition

An assertion of the form $(\phi) P (\psi)$ is called a Hoare triple.

- ullet ϕ is called the precondition, ψ is called the postcondition.
- A state of a Core program P is a function l that assigns each variable x in P to an integer l(x).
- A state l satisfies ϕ if $\mathcal{M} \models_l \phi$, where \mathcal{M} contains integers and gives the usual meaning to the arithmetic operations.
- Quantifiers in ϕ and ψ bind only variables that do *not* occur in the program P.

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Example

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

and Total Correctne

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Proof Calculus for

Total Correctness

Homeworks

Factorial Function

- Let l(x) = -2, l(y) = 5 and l(z) =
 - $l \models \neg(x+y < z)$
 - $l \not\models y = x \cdot z < z$
 - $l \not\models \forall u(y < u \rightarrow y \cdot z < u \cdot z)$
 - TÀI LIÊU SƯU TẬP

Contents

Core Programming Language

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

Definition

We say that the triple $(\phi) P (\psi)$ is satisfied under partial correctness if, for all states which satisfy ϕ , the state resulting from P's execution satisfies ψ , provided that P terminates.

Notation

We write $\models_{par} (\![\phi]\!]) P (\![\psi]\!])$.

Extreme Example

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Contents

Core Programming Language

Hoare Triples; Partial

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Proof Calculus for

Total Correctness

Homeworks

MKHOACNCD

Definition

We say that the triple (ϕ) P (ψ) is satisfied under total correctness if, for all states which satisfy ϕ , P is guaranteed to terminate and the resulting state satisfies ψ .

Notation

We write $\models_{\text{tot}} (\!(\phi)\!) P(\!(\psi)\!)$.

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Contents

Core Programming Language

and Total Correctne

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

TÀI LIÊU SƯU TẬP BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Program Verification Nguyen An Khuong

BK TP.HCM

Contents

Core Programming Language

Hoare Triples; Partial

Proof Calculus for Partial Correctness

Practical Aspects of

Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

Consider Fac1: • $\models_{\text{tot}} (x \ge 0)$ Fac1 (y = x!)• $\not\models_{\text{tot}} (\!(\top)\!) \text{ Fac1 } (y=x!)$ • $\models_{\text{par}} (x \ge 0)$ Fac1 (y = x!)• $\models_{\text{par}} (\top) \text{ Fac1 } (y = x!)$

BACHKHOACNCP.COM

Nguven An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

Core Programming Language

Hoare Triples; Partial and

3 Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Coffectness U'U TÂP

Strategy

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

HOACNCA

We are looking for a proof calculus that allows us to establish

$$\vdash_{\mathrm{par}} (\!(\phi)\!) P (\!(\psi)\!)$$

where

- $\models_{par} (\!\!|\phi|\!\!) P (\!\!|\psi|\!\!)$ holds whenever $\vdash_{par} (\!\!|\phi|\!\!) P (\!\!|\psi|\!\!)$ (correctness), and
- $\vdash_{par} (\!\! | \phi \!\!) P (\!\! | \psi \!\!)$ holds whenever $\models_{par} (\!\! | \phi \!\!) P (\!\! | \psi \!\!)$ (completeness).

BỞI HCMUT-CNCP

BACHKHOACNCP COM

Rules for Partial Correctness

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Rules for Partial Correctness (continued)

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Examples

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

Let P be the program x = 2.

Using

 $([x \rightarrow E]\psi) \ x = E \ (\psi)$

we can prove:

•
$$(2=2) P (x=2)$$

•
$$(2=4)$$
 $P(x=4)$

•
$$(2 = y) P (x = y)$$

•
$$(2 = y) P (x = y)$$

• $(2 > 0) P (x > 0)$

[Assignment]

BỞI HCMUT-CNCP

More Examples

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

Let P be the program x = x + xUsing

 $([x \to E]\psi) \ x = E(\psi)$

we can prove:

• (x+1=2) P(x=2)

• (x+1=y)P(x=y) | **EU** SU'U TÂP

BỞI HCMUT-CNCP

[Assignment]

Rules for Partial Correctness (continued)

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Rules for Partial Correctness (continued)

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Proof Tableaux

Proofs have tree shape

All rules have the structure

something

something else

As a result, all proofs can be written as a tree.

Practical concern

These trees tend to be very wide when written out on paper. Thus we are using a linear format, called *proof tableaux*.

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of

Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Interleave Formulas with Code

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Working Backwards

Nguven An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

Overall goal

Find a proof that at the end of executing a program P, some condition ψ holds.

Common situation

If P has the shape $C_1; \ldots; C_n$, we need to find the weakest formula ψ' such that

 (ψ') C_n (ψ)

Terminology

The weakest formula ψ' is called weakest precondition.

Example

(y < 3)

y = y + 1;

(y < 4)

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Another Example

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

An Alternative Rule for If

Program Verification

Nguyen An Khuong

We have:

$$(\phi \wedge B) C_1 (\psi)$$
 $(\phi \wedge \neg B) C_2 (\psi)$
[If-statement]

$$(\!(\phi)\!)$$
 if B $\{$ C_1 $\}$ else $\{$ C_2 $\}$ $(\!(\psi)\!)$

Sometimes, the following *derived rule* is more suitable:

$$(\phi_1)$$
 C_1 (ψ) (ϕ_2) C_2 (ψ)

 $(\!(B\to\phi_1)\wedge(\neg B\to\phi_2)\!) \text{ if } B \in C_1 \text{ } \text{lelse} \in C_2 \text{ } \text{ } (\!(\psi)\!)$

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

 $[If\text{-}stmt^{\frac{\text{Proof Calculus for}}{2}}_{\text{Homeworks}}]^{\text{Proof Calculus for}}$

BACHKHOACNCP.COM

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for **Total Correctness**

Homeworks

Consider this implementation of Succ:

a = x + 1;if (a - 1 == 0)else {

Can we prove (\top) Succ (y = x + 1)? TAI LIEU SUU TÂP

BỞI HCMUT-CNCP

Another Example

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Another Example

 $(x+1-1=0 \to 1=x+$ $(\neg(x+1-1=0) \to x+1=x+1)$ **Implied** a = x + 1; $((a-1=0 \to 1=x+1) \land$ $(\neg (a-1=0) \to a=x+1)$ Assignment if (a - 1 == 0) { If-Statement 2 (1 = x + 1)v = 1: (y = x + 1)Assignment } else { (a = x + 1)v = a: B O I H C M U Assignment (y = x + 1)

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

BACHKHOACNCP.COM

Recall: Partial-while Rule

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Factorial Example

KHOACNC

We shall show that the following Core program Fac1 meets this specification:

Thus, to show:

$$(\top)$$
 Fac1 $(y = x!)$

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Partial Correctness of Fac1

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

BACHKHOACNCP.COM

Partial Correctness of Fac1

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Nguven An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the

Factorial Function

Homeworks

Core Programming Language

Hoare Triples; Partial and

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

6 Proof Calculus for Total Correctness

BỞI HCMUT-CNCP

Ideas for Total Correctness

Program Verification Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Homeworks

- The only source of non-termination is the while command.
- If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination. Why? Well-foundedness of natural numbers
- We shall include this argument in a new version of the while rule.

TÀI LIÊU SƯU TẬP BỞI HCMUT-CNCP

Rules for Partial Correctness (continued)

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for

Factorial Example (Again!)

BACHKHOACNCP.COM

BổI HCMUT-CNCP

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Factorial Example (Again!)

```
y = 1;
z = 0;
while (z != x) { z = z + 1; y = y * z; }
What could be a good variant E?
```

E must strictly decrease in the loop, but not become negative.

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for

Factorial Example (Again!)

Program Verification

Nguven An Khuong

Contents

Core Programming Language

Hoare Triples: Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Homeworks

$$z = z + 1; y = y * z;$$

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.

Answer:

Total Correctness of Fac1

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

Homeworks

B A C H K H O A C N C P . C O N

Total Correctness of Fac1

BACHKHOACNCP.COM

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness

BACHKHOACNCP.COM

BỞI HCMUT-CNCP

Program Verification

Nguyen An Khuong

Contents

Core Programming Language

Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Practical Aspects of Correctness Proofs

Correctness of the Factorial Function

Proof Calculus for Total Correctness