Linear Algebra

Lecture Notes

Rostyslav Hryniv

Ukrainian Catholic University
Business Analytics and Computer Science Programmes

4th term Spring 2019

Lecture 8. Projections

Outline

- Distance to a subspace
 - Shortest distance
- Projections
 - Orthogonal decomposition
- 3 Least squares
 - Least squares solutions to Ax = b
 - Linear, polynomial and multiple regression

Summary of the last lecture:

- In inner product vector spaces
 - the norm $\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2}$ of \mathbf{u} and
 - the distance $\|\mathbf{u} \mathbf{v}\|$ between \mathbf{u} and \mathbf{v}

can be introduced;

- the inner product $\langle \cdot, \cdot \rangle$ and the related norm $\| \cdot \|$ satisfy
 - the Cauchy–Bunyakovski–Schwarz inequality
 - the triangle inequality
- every $m \times n$ matrix A generates two pairs of orthogonal subspaces (column space=range and nullspace of A and its transposed A^T)
 - $\mathbb{R}^m = \mathcal{C}(A) \oplus \mathcal{N}(A^T)$
 - $\mathbb{R}^n = \mathcal{C}(A^T) \oplus \mathcal{N}(A)$
- orthogonal vectors **u** and **v** satisfy the Pythagorean theorem:

$$\|\mathbf{u} \pm \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

• a point Q in a subspace W is closest to $P \iff \overrightarrow{PQ} \perp W$

Pythagorean theorem and shortest distance

Useful identity:

Distance to a subspace

0000

$$\begin{aligned} \|\mathbf{u} \pm \mathbf{v}\|^2 &= \langle \mathbf{u} \pm \mathbf{v}, \mathbf{u} \pm \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \pm 2 \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \|\mathbf{u}\|^2 \pm 2 \langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \end{aligned}$$

Parallelogram rule:

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

Pythagorean theorem

u and v are orthogonal

Shortest distance to a line

ℓ is a line in \mathbb{R}^n through O in direction of \mathbf{a} ; P is a point in \mathbb{R}^n outside ℓ

Problem: Find a point Q on ℓ that is closest to P.

Solution: Set $\mathbf{p} := \overrightarrow{OP}$, $\mathbf{q} := \overrightarrow{OQ} = \mathbf{ka}$. The optimal $\hat{\mathbf{k}}$ minimizes

$$|PQ|^2 = \|\mathbf{k}\mathbf{a} - \mathbf{p}\|^2 = \mathbf{k}^2 \|\mathbf{a}\|^2 - 2\mathbf{k}\langle \mathbf{p}, \mathbf{a}\rangle + \|\mathbf{p}\|^2 \implies \hat{\mathbf{k}} = \langle \mathbf{p}, \mathbf{a}\rangle / \|\mathbf{a}\|^2$$

Observe that $\overrightarrow{PQ} = \mathbf{q} - \mathbf{p}$ and \mathbf{a} are then orthogonal:

$$\langle \hat{\mathbf{k}} \mathbf{a} - \mathbf{p}, \mathbf{a} \rangle = \hat{\mathbf{k}} \langle \mathbf{a}, \mathbf{a} \rangle - \langle \mathbf{p}, \mathbf{a} \rangle = 0$$

Shortest distance and orthogonality

Orthogonal PQ is the shortest one!

 ℓ is a line in \mathbb{R}^n in direction of **a**; P is a point in \mathbb{R}^n outside ℓ

Claim: If Q on ℓ is s.t. $\mathbf{u} := \overrightarrow{PQ} \perp \mathbf{a}$, then |PQ| is the smallest one

Reason: for any other point P' on ℓ , we have

$$|PQ'|^2 = \|\overrightarrow{PQ'}\|^2 = \|\overrightarrow{PQ} + \overrightarrow{QQ'}\|^2 = \|\overrightarrow{PQ}\|^2 + \|\overrightarrow{QQ'}\|^2 \ge \|\overrightarrow{PQ}\|^2$$
 and the inequality is strict unless $Q = Q'$

Conclusion:

$$\mathit{Q} \in \ell \text{ minimizes } |\mathit{PQ}| \iff \overrightarrow{\mathit{PQ}} \perp \ell$$

Shortest distance to a plane

Remark

The same arguments work if instead of a line ℓ we take a plane π :

$$Q \in \pi$$
 minimizes $|PQ| \iff \overrightarrow{PQ} \perp \pi$

Remark

In fact, instead of line ℓ or plane π we can take any subspace W in \mathbb{R}^n

Orthogonal decomposition

Theorem (Orthogonal decomposition)

Assume W is a subspace of a vector space V with scalar product. Then $\forall \mathbf{v} \in V : \exists \text{ unique } \mathbf{w}_1 \in W \text{ and } \mathbf{w}_2 \in W^{\perp} \text{ s.t. } \mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$

Proof.

Existence: follows from the fact that $V = W \oplus W^{\perp}$

Uniqueness: if $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2 = \mathbf{u}_1 + \mathbf{u}_2$, then $\mathbf{w}_1 - \mathbf{u}_1 = \mathbf{u}_2 - \mathbf{w}_2$

$$\implies w_1 - u_1 = u_2 - w_2 = 0$$

Projectors

Definition (Projections and projectors)

Let $V=W\oplus W^\perp$ and $\mathbf{v}=\mathbf{w}_1+\mathbf{w}_2$ with $\mathbf{w}_1\in W$ and $\mathbf{w}_2\in W^\perp$. Then \mathbf{w}_1 is the orthogonal projection of \mathbf{v} on W \mathbf{w}_2 is the orthogonal projection of \mathbf{v} on W^\perp

 $P_i: \mathbf{v} \mapsto \mathbf{w}_i$ is the orthogonal projector onto W(j=1) or $W^{\perp}(j=2)$

Properties of P_i

- $\bullet P_i(a\mathbf{u} + b\mathbf{v}) = aP_i(\mathbf{u}) + bP_i(\mathbf{v})$
 - $P_j^2 = P_j$ • $P_1P_2 = P_2P_1 = 0$

 - $P_1 + P_2 = I$

(linearity)

(idempotent)

(orthogonality)

(completeness)

Extremal properties of projections:

 $w_1 = P_1 \mathbf{v}$ is the vector in W that is closest to \mathbf{v} ; $w_2 = P_2 \mathbf{v}$ is the vector in W^{\perp} that is closest to \mathbf{v}

Projection onto a line

Problem: Find the projection of $\mathbf{b} \in \mathbb{R}^m$ onto the line in direction $\mathbf{a} \in \mathbb{R}^m$

- The projection of **b** is a vector \hat{x} **a** orthogonal to **error** $\mathbf{e} := \mathbf{b} \hat{x}$ **a**: $\mathbf{a}^T \mathbf{e} = \mathbf{a}^T (\mathbf{b} \hat{x}\mathbf{a}) = 0 \iff \hat{x} = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{c}}$
- the projection $\mathbf{p} := \hat{x}\mathbf{a} = \frac{\mathbf{a}^T\mathbf{b}}{\mathbf{a}^T\mathbf{a}}\mathbf{a}$ is a vector on the line closest to **b**:

$$\|\mathbf{b} - t\mathbf{a}\|^2 = \|\mathbf{b} - \mathbf{p} + \mathbf{p} - t\mathbf{a}\|^2 = \|\mathbf{b} - \mathbf{p}\|^2 + \|\mathbf{p} - t\mathbf{a}\|^2$$

= $\|\mathbf{b} - \mathbf{p}\|^2 + (\hat{x} - t)^2 \|\mathbf{a}\|^2 > \|\mathbf{b} - \mathbf{p}\|^2$

Projection matrix P:

$$\mathbf{p} = \mathbf{a} \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} = P \mathbf{b} \implies P = \frac{\mathbf{a} \mathbf{a}^T}{\mathbf{a}^T \mathbf{a}}$$

Example: $\mathbf{b} = (1, 1, 1)^T$, $\mathbf{a} = (2, 1, 2)^T \Longrightarrow$

$$\hat{x} = \frac{5}{9}, \quad \mathbf{e} = \begin{pmatrix} -1/9 \\ 4/9 \\ -1/9 \end{pmatrix} \perp \mathbf{a}, \quad P = \frac{1}{9} \mathbf{a} \mathbf{a}^T = \frac{1}{9} \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix}$$

Standard error, covariance, and correlation via LA

• In statistics, the sample mean of a data vector $\mathbf{x} = (x_1, \dots, x_n)$ is

$$\overline{\mathbf{x}} := \frac{1}{n} \sum x_k = \frac{\langle \mathbf{x}, \mathbf{1} \rangle}{\langle \mathbf{1}, \mathbf{1} \rangle}$$

- $\overline{\mathbf{x}}\mathbf{1}$ is the orth. projection of \mathbf{x} onto the constant space $V = ls\{\mathbf{1}\}$
- the length $\|\mathbf{x} \overline{\mathbf{x}}\mathbf{1}\|$ of $P_{V^{\perp}}\mathbf{x} = \mathbf{x} \overline{\mathbf{x}}\mathbf{1}$ is the standard error $\mathrm{sd}(\mathbf{x})$
- clearly, $\mathbf{x} = \overline{\mathbf{x}}\mathbf{1} + P_{V^{\perp}}\mathbf{x}$ is the decomposition of \mathbf{x} w.r.t. $V \oplus V^{\perp}$
- on V^{\perp} , $\langle \mathbf{x}, \mathbf{y} \rangle = \sum (x_k \overline{\mathbf{x}})(y_k \overline{\mathbf{y}})$ is the covariance
- the correlation,

$$cor(\mathbf{x}, \mathbf{y}) := \frac{\sum (x_k - \overline{\mathbf{x}})(y_k - \overline{\mathbf{y}})}{sd(\mathbf{x}) sd(\mathbf{y})}$$

is the cosine between the vectors $P_{V^{\perp}}\mathbf{x}$ and $P_{V^{\perp}}\mathbf{y}$

• $|\operatorname{cor}(\mathbf{x},\mathbf{y})| = 1 \iff$ the vectors $P_{V^{\perp}}\mathbf{x}$ and $P_{V^{\perp}}\mathbf{y}$ are collinear

Projection onto a subspace

Take $\mathbf{b} \in \mathbb{R}^m$ and assume $\mathbf{a}_1, \dots, \mathbf{a}_n$ in \mathbb{R}^m are linearly independent

Problem

Find a projection $\mathbf{p} = \hat{x}_1 \mathbf{a}_1 + \cdots \hat{x}_n \mathbf{a}_n$ of \mathbf{b} onto $\mathbf{W} = \operatorname{ls}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$

- $\mathbf{p} = A\hat{\mathbf{x}}$, where A has columns $\mathbf{a}_1, \dots, \mathbf{a}_n$
- the error $\mathbf{e} = \mathbf{b} A\hat{\mathbf{x}}$ must be orthogonal to the $\mathcal{C}(A) = W$
- orthogonality condition: $\mathbf{a}_i^T \mathbf{e} = 0 \iff A^T (\mathbf{b} A \hat{\mathbf{x}}) = \mathbf{0}$
- thus: $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ gives $\hat{\mathbf{x}} \in \mathbb{R}^n$ s.t. $A \hat{\mathbf{x}}$ is closest to \mathbf{b}
- $A^T A$ is nonsingular: if $A^T A y = 0$, then

$$\langle \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{y}, \mathbf{y} \rangle = \| \mathbf{A} \mathbf{y} \|^2 = 0 \implies \mathbf{A} \mathbf{y} = \mathbf{0} \implies \mathbf{y} = \mathbf{0}$$

- \mathbf{a}_{i} -coordinates: $\hat{\mathbf{x}} = (A^{T}A)^{-1}A^{T}\mathbf{b}$
- projection: $\mathbf{p} = A(A^TA)^{-1}A^T\mathbf{b}$
- projection matrix: $P = A(A^TA)^{-1}A^T$

Approximate solution to a linear system $A\mathbf{x} = \mathbf{b}$

- If $\mathbf{b} \notin \mathcal{C}(A)$, then the system $A\mathbf{x} = \mathbf{b}$ is not soluble
- this is a typical situation for overdetermined systems ("tall" matrices A, i.e., more equations than variables)
- can ask for $\mathbf{x} = \mathbf{x}_0$ minimizing the error $\mathbf{e} := \mathbf{b} A\mathbf{x}$
- as we know, the shortest $\mathbf{e}_0 := \mathbf{b} A\mathbf{x}_0$ is orthogonal to $\mathcal{C}(A)$
- $\mathbf{b} = \mathbf{e}_0 + A\mathbf{x}_0$ is an orthogonal decomposition of \mathbf{b} wrt

$$\mathbb{R}^m = \mathcal{N}(A^\top) \oplus \mathcal{C}(A)$$
:

- $A\mathbf{x}_0$ is the component of **b** in C(A)
- \mathbf{e}_0 is orthogonal to $\mathcal{C}(A) \implies$ belongs to the left null-space $\mathcal{N}(A^\top)$
- therefore, $A^{\top}\mathbf{e}_0 = \mathbf{0}$ so that $A^{\top}A\mathbf{x}_0 = A^{\top}\mathbf{b}$
- assume columns of A are linearly independent; then A^TA is invertible (already know this!)
- we thus get the same results but in different interpretation:
 - best solution: $\mathbf{x}_0 = (A^{\top}A)^{-1}A^{\top}\mathbf{b}$;
 - projection of **b**: $P\mathbf{b} = A\mathbf{x}_0 = A(A^{\top}A)^{-1}A^{\top}\mathbf{b}$
 - projection matrix: $P = A(A^{T}A)^{-1}A^{T}$

Least squares solution to $A\mathbf{x} = \mathbf{b}$

- As was shown, solving $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ gives the projection $\mathbf{p} = A \hat{\mathbf{x}}$ of \mathbf{b} onto the column space of A
- if $\mathbf{b} \notin \mathcal{C}(A)$, this is the least squares solution of $A\mathbf{x} \approx \mathbf{b}$ with the smallest error $\|\mathbf{b} A\hat{\mathbf{x}}\|^2$
- this solution can be obtained by minimizing $f(\mathbf{x}) := \|A\mathbf{x} \mathbf{b}\|^2$
- indeed,

$$||A\mathbf{x} - \mathbf{b}||^2 = \langle A\mathbf{x}, A\mathbf{x} \rangle - 2\langle A\mathbf{x}, \mathbf{b} \rangle + ||\mathbf{b}||^2$$
$$= \langle A^T A\mathbf{x}, \mathbf{x} \rangle - 2\langle A^T \mathbf{b}, \mathbf{x} \rangle + ||\mathbf{b}||^2$$

$$|\mathbf{A}\mathbf{x} - \mathbf{b}||^2 = 2A^T A \mathbf{x} - 2A^T \mathbf{b}$$

and

$$\operatorname{grad} \|A\mathbf{x} - \mathbf{b}\|^2 = \mathbf{0} \iff A^T A \mathbf{x} = A^T \mathbf{b}$$

Linear regression

Example: fitting a straight line b = C + Dt to m points

- (0,6), (1,0), (2,0) do not lie on one line
- best fit: minimize the sum of squared errors $\sum (b_k C Dt_k)^2$
- minimize $||A\mathbf{x} \mathbf{b}||^2$ for $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} C \\ D \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$
- that is the setting we get in linear regression models

Polynomial regression

Fitting a quadratic polynomial $b = C + Dt + Et^2$ to *m* points

- (0,6), (1,0), (2,0), (3,1) do not belong to one parabola
- best fit: minimize the squared error $\sum (b_k C Dt_k Et_k^2)^2$

• minimize
$$||A\mathbf{x} - \mathbf{b}||^2$$
 for $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} C \\ D \\ E \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 6 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

that is the setting of the polynomial regression

Multiple regression

Example: fitting a plane b = C + Ds + Et to m points

- Data points (s, t, b): (0, 0, 6), (1, 1, 0), (2, 4, 0), (3, 9, 1);
- these points do not belong to one plane
- best fit: minimize the squared error

$$\sum (b_k - C - Ds - Et)^2$$

• minimize
$$||A\mathbf{x} - \mathbf{b}||^2$$
 for $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} C \\ D \\ E \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 6 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

• that is the setting of the multiple regression