

Maestría de Ciencia de Datos

Optimización Convexa

Tarea 8: SVR

Estudiante: Daniel Nuño

Profesor: Dr. Juan Diego Sanchez Torres

Fecha entrega: 16 de marzo, 2022

Introduction

For the case of SVM for regression, or SVR, let the set $D = (x_1, y_1), \ldots, (x_N, y_N)$, where $x_k \in \mathbb{R}^n$ and $y_k \in \mathbb{R}$. Let $\varphi : X \to \mathcal{F}$ be the function that makes each input point x correspond a point in the feature space \mathcal{F} , where \mathcal{F} is a Hilbert space. This feature space can be of high dimension or even infinite. However, is common to define $X = \mathbb{R}^n$ and $\mathcal{F} = \mathbb{R}^m$. In this form, the approximating function, namely the model, has the form $\hat{y}_k = f(x_k) = w^T \varphi(x_k) + b$ with $w \in \mathbb{R}^m$ and $b \in \mathbb{R}$.

Commonly, the first approach for solving the SVR is the L_1^{ϵ} formulation. The following problem statement considers such a regression problem as a convex optimization problem.

Activities

First, the following case considers the application of L_1^{ϵ} -SVR.

Problem 1: The L_1^{ϵ} SVR

Consider the following optimization problem:

$$\min_{w,b,\xi,\xi^*} \mathcal{P}_{\epsilon} (w,b,\xi,\xi^*) = \frac{1}{2} w^T w + c \sum_{k=1}^{N} (\xi_k + \xi_k^*)$$
s. t. $y_k - w^T \varphi(x_k) - b \le \epsilon + \xi_k$, $k = 1, ..., N$

$$w^T \varphi(x_k) + b - y_k \le \epsilon + \xi_k^*, \ k = 1, ..., N$$

$$\xi_k, \xi_k^* \ge 0, \ k = 1, ..., N$$
(1)

where $\varphi(\cdot): \mathbb{R}^n \to \mathbb{R}^m$ and the regularization parameter c>0 determines the balance between the regularity of f and the quantity up to which we tolerate deviations more significant than ϵ . Consider ξ_k and ξ_k^* as slack variables that control the error between the prediction \hat{y}_k and the k-th sample y_k .

For this case, present a complete development of the problem (1), by using the KKT optimality approach.

9 marzo, ZZ
aplema 1: La SVR
considera la siguiente grafica en 7 dimensiones en la que conquiere plantear una regresión lineal
Solida y la linea punteada. Giror es el valor entre cala punto y la linea solida.
X & es el error en cada punto por
Yk-WP(Xk)-b > Arriba Los vedores de soporte son los que. WTP(Xk)+b-Yk > Albaja esten por afvera del tubo.
El problema se vuel ve relevente. Solo alos valores que estan par a fueral del trupo.
primero definimos - lagronge como L(W,b, 5, 5, d,d, ,N,N) siendo d,d, ,N, los rodores de logrege
=== WTW+ ZZ(\$ + 5 x) - ZX (E+ \$ x- Yk - WTP(Xx)+b)
- 2 L* (6+ 8* - 1x - WT P(XK)-b+ YK)
- 2 1 x 5 x
llamos KKTI, derivamos respecto las variables del primal. e iguala mos a cero
$\forall W = W - \sum_{k} d_{k} p(\chi_{k}) + \sum_{k} d_{k} p(\chi_{k}) = 0$
$W = \sum_{k} d_{k} O(\chi_{k}) - \sum_{k} d_{k} O(\chi_{k})$

.

.

.

٠.

.

.

.

.

at = Sux + Sux =0 Σ(dx+d*)=0 3/ = C - 2/2 - 1/2 = 0 C-dx=1x 06=2 -dx-0x=0 Gd Enk Ahora simpli ficamos y escribinos el dual L= = WTW+CZ(5x+5%)=62dx+d2)- Zdx 5x - 2 dk 5x + 2 (dk-dk) /k - 2 (dk-dk) WP(Xk) - D \((dk+d\) - C\(\(\xi_k + \xi_k \) + \(\z d_k \xi_k + \\ \z d_k \xi_k \) Laggenge Dual se escribe como D= = = = [(\(\alpha \) (\(\alpha \) \(- E> (dr + dr) Sindo d dual que busca maxinizar de y de Max D= = \[\sum_{\infty} \sum_{\infty} \langle \langl S.t. D (dx+d*)=0 nk= C- dk, nk 20 $C-d_{*}\geq 0$

KKTZ son las cestricciones del primal

YK-WT DCXR) (XK)-b < 6 + 5K

WT P(Xx)+b-Yr = 6 + 52

5,20

5×20

KKT3 son las restricciones del dual

> (d= d=)=0

0 Ed & C

05422

KKT4 son los postricciones KKTZ y KKT3 más la condición complementaria

nk 5 x = 0 condiciones complementarias

1 5 = 0

Q+(1/2-W) P(XN-b-G-5+)=0

\$20

1k= C-dk

la signicités casas son pura 5,0 seu pora cuando ester arribul de la Marga el caso I : dk = 0 => lk = C => 5k = 0

YR-WTP(Xx)-bZ6

esta dento del tobo, entre las dos lineas puntandas y no le aporta al modero

Caso 2: $0 \le \forall k \le BC$ $\forall k - W^T p(x_k) - b = E$ Los vadores estor sobre del tubo purteado

Caso 3: $\forall k = C = > n_k = 0 = > 5_k > 0$ $\forall k - W^T p(x_k) - b \le 6 + 5_k$ esta por afrera del tubo purteado

Finally, the following case considers the application of L_2^{ϵ} -SVR.

Problem 2: The L_2^{ϵ} SVR

Consider the following optimization problem:

$$\min_{w,b,\xi,\xi^*} \mathcal{P}_{\epsilon} (w,b,\xi,\xi^*) = \frac{1}{2} w^T w + \frac{c}{2} \sum_{k=1}^{N} \left(\xi_k^2 + \xi_k^{*2} \right)$$
s. t. $y_k - w^T \varphi(x_k) - b \le \epsilon + \xi_k$, $k = 1, ..., N$

$$w^T \varphi(x_k) + b - y_k \le \epsilon + \xi_k^*, \ k = 1, ..., N$$
(2)

where $\varphi(\cdot): \mathbb{R}^n \to \mathbb{R}^m$ and the regularization parameter c>0 determines the balance between the regularity of f and the quantity up to which we tolerate deviations more significant than ϵ . Consider ξ_k and ξ_k^* as slack variables that control the error between the prediction \hat{y}_k and the k-th sample y_k . For this case, present a complete development of the problem (2), by using the KKT optimality approach.

problema Z: Li SUR LZ soft-margin svr. 16 marzo, 22
Enal problema I utilizarios la función de perdida LI.
Abora vomos a susar LZ que indica errores manores al cuadrado que sa relacionan ala norma I y norma Z
A esta formulaçãos de SVR se le como esquared epsilon insensitivo, la zona insensitiva es epsilon dentro de las lineas purtendas
primero definiros de lagrange de l'dual como
L(W, b, Sr, 5x, x, x, A, A*) siendo d, d*, A. A* los vidores.
=== w w + = 2(5/2+5/2) - Edk(6+5/-1/k+w/p(xk)+b)
- ΣL*(E+5* -WP(Xx)-6+YN)
como 5 x y 5 x ester al evadrado den el primal, not ester res.
tringidos a que la condición 5 x20, 5° 20. Por lo tanto
diminares les multiplicates de lagrange asociados.
Ahoen derivarios reignalarios a coro.
3ω = DM = M - Σ (x - x =) Q (x =) = 0 D
$W = \sum (x_k - x_k^2) \rho(x_k)$
3p = \(\(\alpha \frac{1}{4} - \alpha \frac{1}{4} \) = 0
$\frac{\partial L}{\partial x} = C \xi_{k} - d_{k} = 0$
$\frac{\partial L}{\partial \xi_k} = C \xi_k - d_k = 0$
0€ = C5, -4 = 0
h.[^^^, +

.

. .

.

```
South to yend y simplificando . II, II, II, II el
 obtenences of dial
  - E E (d++ d$) + [ Yn (d++ d$)
   S. E. E ( de - dt) =0
        X+≥0 Para #=1,...,N
 mas ain podenos definir KOXx,X) = B(Xx) POXx)
 e introducir FOD = ZGh- X*) KOCx, X) +b
 conde [Colk-d*) P(Xx) = W- (D)
 Abe define of dial como
 = { (dx-4)(d1-4) (K(xx,X) + Se)
 - E Z Cok+d*) + Si(dx-d*) yx
 donde Ski es la función delta de Kronecker
La salución optima de de satisfacer las siguientes condicion plementarias
KKT4
  Xx(E+5x-Yx+WTPCXx)+b)=0 para K=1,...,N
  d* (E+5*+1/2-WTPCXE)-b)=0 pora k=1,...,N
                C5=dk, C5k=dk pora K=1.
```

Caso.	1: Xx = 0,	X*=0		16 mores, 22.
			la función no impo	rta por que
	Satisfaze 1			no confribuyen
x + + + * * * * * * * * * * * * * * * *	a la constru	ccion del mode	lo : : : : : : : :	
02.00	5: xx >0,	<">0		
	10= 1/2 - WT	O(x)-E-9	Xx pac dr>0	
	b= yx -wT &	D(X) +6+0	is pro de>C)
· · · · · · · · · · · · · · · · · · ·	es tos son los	vectores de	soporte	
LZ n	o tiene vectore	s de soporte	restringidas y	la matriz
· · · · · · · · · · ·	reciation as go		va	
•				
			* * * * * * * * .	

.

.

٠

.

.

.

.

.

.

.

.

.