Proposição:

consiste em um enunciado, uma frase declarativa, dentro de certo contexto, somente um de dois valores lógicos possíveis: <u>verdadeiro ou falso</u>.

Exemplos:

Marte é um planeta do Sistema Solar. (VERDADEIRO) São Paulo é a capital do Paraguai. (FALSO) O 11 é um número primo..(VERDADEIRO)

Premissas: consistem em proposições que são utilizadas como base para um raciocínio. Pode-se dizer que são as proposições do silogismo, ela permite a construção do raciocínio indutivo ou dedutivo, e também a realização de operações lógicas simbólicas e demonstrações matemáticas.

Argumento: conjunto de enunciados que se relacionam uns com os outros. O argumento lógico é deduzido a partir daquilo que é colocado como **verdade**

Silogismo: consiste em um raciocínio dedutivo (premissas) e possibilita a dedução de uma conclusão a partir das premissas.

Falácia: consiste em argumentos que logicamente estão incorretos.

Inferência: é o processo que permite chegar a conclusões a partir de premissas, constituindo a argumentação lógica perfeita e possui dois tipos: **indutiva** e **dedutiva**. Uma inferência inválida é chamada falácia

Classificação da Lógica

Indutiva, partiremos da experiência com as verdades e fatos particulares na busca de uma conclusão geral.

Ex: O Sol nasceu todas as manhãs até hoje. Logo, é provável que nasça amanhã. Combinação, Probabilidades...

Dedutiva, partiremos de premissas gerais para concluirmos verdades específicas e particulares. **Ex:** Todo homem é mortal. Sócrates é um homem. Logo, Sócrates é mortal. Clássica e Não Clássica

O estudo da lógica tem três grandes períodos:

Período Aristotélico Período Booleano Período Atual

Período Aristotélico - Lógica Clássica ou Princípios fundamentais da lógica

A Lógica Clássica, é regida, basicamente, por três princípios:

O da identidade: Uma proposição verdadeira é verdadeira. Uma proposição falsa é falsa.

O da não contradição: Uma proposição não pode ser verdadeira e falsa ao mesmo tempo.

O do terceiro excluído: Toda proposição ou é verdadeira ou é falsa.

Evolução da Lógica - Álgebra Booleana

Se caracteriza por utilizar apenas dois números (dígitos), 0 e 1, que significam, respectivamente, falso e verdadeiro.

Georg Cantor foi o idealizador da Teoria de Conjuntos. A Álgebra dos Conjuntos, advinda da Teoria de Conjuntos, com operações particulares como **União (U)** e **Intersecção (N)** serviu não apenas como uma estrutura de linguagem para a lógica formal, mas também como alicerce de toda a Matemática Moderna.

\sim	O til corresponde à operação lógica NEGAÇÃO. Alguns autores também utilizam o símbolo ← para designar negação.
^	A cunha corresponde à operação lógica CONJUNÇÃO. Em programação, a conjunção é representada pela palavra AND, ou pelo símbolo & , que corresponde ao conectivo e.
V	A letra v corresponde à operação lógica DISJUNÇÃO. Equivale à palavra ou em seu sentido inclusivo. Em programação, a conjunção é também representada pela palavra OR.
\longrightarrow	A seta corresponde à operação CONDICIONAL. Em português, corresponde à relação "se, então".
\leftrightarrow	A dupla seta corresponde à operação BICONDICIONAL. Em português, corresponde à relação "se, e somente se,".

Combinação de Valores lógicos

Um interruptor é um dispositivo ligado a um ponto de um circuito, que pode assumir um dos dois estados, "fechado" ou "aberto".

No estado "fechado" (que indicaremos por 1) o interruptor permite que a corrente passe através do ponto

enquanto no estado "aberto" (que indicaremos por 0) nenhuma corrente pode passar pelo ponto

Princípios matemáticos

Segundo Picado (2008), a matemática discreta (também conhecida como matemática finita ou matemática combinatória) é um ramo da matemática voltado ao estudo de objetos e estruturas discretas ou finitas (estruturas discretas são estruturas formadas por elementos distintos desconexos entre si). é usada quando contamos objetos, quando estudamos relações entre conjuntos finitos e quando processos (algoritmos) envolvendo um número finito de passos são analisados. Nos últimos anos tornou-se uma disciplina importantíssima porque nos computadores a informação é armazenada e manipulada de forma discreta.

A matemática discreta aborda fundamentalmente três tipos de problemas que surgem no estudo de conjuntos e estruturas discretas:

problemas de existência (existe algum arranjo de objetos de um dado conjunto satisfazendo determinada propriedade?)

problemas de contagem (quantos arranjos ou configurações desse tipo existem?);

problemas de otimização (de todas as configurações possíveis, qual é a melhor, de acordo com determinado critério?) (PICADO, 2008).

Arranjos

De acordo com lezzi et al. (2004), dado um conjunto com n elementos distintos, chama-se arranjo dos n elementos, tomados p a p, a qualquer sequência ordenada de p elementos distintos escolhidos entre os n existentes.

fórmula
$$An, p = \frac{n!}{(n-p)!}$$

A={1,2,3,4}. Vamos determinar o número de arranjos desses quatro elementos (n=4) tomados dois a dois p=(2).

$$A_{4,2} = \frac{n!}{(n-p)!} = \frac{4!}{(4-2)!} = \frac{4!}{2!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1} = \frac{24}{2} = 12$$

Permutação:

A grosso modo é a forma se determinar de quantas maneiras seis pessoas A, B, C, D, E e F podem ser dispostas em uma fila indiana. Cada maneira de compor a fila é uma permutação, pois qualquer fila obtida é uma sequência ordenada na qual comparecem sempre as seis pessoas. Ao utilizarmos a fórmula do número de arranjos, percebemos que neste caso n = p:

$$A_{6,6} = \frac{n!}{(n-p)!} = \frac{6!}{(6-6)!} = \frac{6!}{0!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1} = 720$$

Combinação

A combinação, considera cada sequência obtida como um conjunto não ordenado. Dado um conjunto com n elementos distintos, chama-se combinação dos n elementos, tomados p a p, a qualquer subconjunto formado por p elementos distintos escolhidos entre os n existentes. Para determinar o número de combinações, podemos utilizar a fórmula:

$$C_{n,p} = \frac{n!}{p!(n-p)!}$$

Considere, por exemplo, que dos cinco funcionários A, B, C, D e E de uma empresa do setor de Tecnologia da Informação, três serão promovidos. Queremos determinar todas as combinações desses cinco funcionários, tomados dois a dois.

✓
$$n=5 \text{ e } p=2 \text{ } C_{n,p} = \frac{n!}{p!(n-p)!}$$

$$C_{5,2} = \frac{n!}{p!(n-p)!} = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(3 \cdot 2 \cdot 1)} = \frac{120}{2 \cdot 6} = \frac{120}{12} = 10$$

Temos, portanto, 10 possibilidades de escolha de três funcionários para serem promovidos.

Árvore de Decisão

Utilizada **para tomada de decisões** e pode ser muito utilizada em diversos algoritmos, o qual se trata de uma sequência ordenada de **instruções a serem seguidas** para se chegar a um objetivo, resultado e ou uma ação.

Outra forma de **representarmos os possíveis resultados de uma ordenação** (listas) é a utilização de um diagrama chamado Árvore de Decisão.

Uma árvore de decisão é uma estrutura hierárquica que representa um **mapeamento de possíveis resultados** de uma série de escolhas relacionadas.

Elas podem ser usadas tanto para **conduzir diálogos informais** quanto para **mapear um algoritmo que prevê a melhor decisão** (escolha), matematicamente, além de auxiliar na **criação de planos de ação**. Em geral, **uma árvore de decisão inicia a partir de um único nó de origem (chamado de nó raiz)**, que se divide em possíveis resultados. O nó raiz é representado por um elemento no topo da

Teoria de Conjuntos

<u>Conjunto:</u> um agrupamento de elementos que possui alguma característica em comum, podem ser definidos como coleções não ordenadas de objetos que podem ser, de alguma forma, relacionados (FERREIRA, 2001). Pode-se ter:

Conjunto finito: conjunto dos estados do Brasil;

Conjunto infinito: conjunto dos números ímpares. Geralmente usa-se letras maiúsculas para denotar conjuntos e letras minúsculas para denotar elementos de conjuntos.

Teoria de Conjuntos Conjunto: coleção qualquer de objetos, números, formas ou outros elementos com características semelhantes e que pode receber o nome que se desejar.

Conjunto dos números reais: R

Tipos especiais de conjuntos

Conjunto unitário: contém um único elemento Exemplo: $A = \{4\}$

Conjunto vazio: \emptyset – não possui elementos Exemplo: $A = \{x \in \mathbb{R} | x^2 < 0\}$

Conjunto universo: \mathcal{U} – conjunto ao qual pertence todos os elementos que pretendemos utilizar Exemplo: $\mathcal{U} = \mathbb{Z}$ e $A = \{x \in \mathcal{U} | -2 \le x \le 2\}$

 $\mathbb{N}=$ conjunto de todos os números inteiros não negativos. Perceba que $0\in N.$

 \mathbb{Z} = conjunto de todos os números inteiros.

 $\mathbb{Q}=$ conjunto de todos os números racionais.

 \mathbb{R} = conjunto de todos os números reais.

C = conjunto de todos os números complexos.

Diagrama de Venn

Os diagramas de Venn consistem em círculos (que podem estar intersectados), os quais representam os conjuntos. No interior dos círculos são listados os elementos do conjunto.

SUBCONJUNTOS

A é subconjunto de B se, e somente se, todos os elementos de A pertencerem a B.

$$A = B \Leftrightarrow A \subset B \in B \subset A$$

Um problema recorrente envolvendo subconjuntos diz respeito à determinação do número de subconjuntos de umdeterminado conjunto. Por exemplo, quantos subconjuntos tem o conjunto A={a,b,c}?

Uma maneira para resolver esse problema é listar todas as possibilidades.

Como a cardinalidade de **A** é igual a **3**; **|A | =3**, qualquer subconjunto de **A** pode ter de zero a três elementos. **2 elevado a |A|** é igual a **2**³=**8** Consideremos o Quadro 2.1 com a descrição de todas as possibilidades:

Quadro 2.1 | Subconjuntos de A (cardinalidade 3)

Número de elementos	Subconjuntos	Número de subconjuntos
0	Ø	1
1	{a}, {b}, {c}	3
2	{a, b}, {a, c}, {b, c}	3
3	{a, b, c}	1
То	8	

Quadro 2.2 | Subconjuntos de A (cardinalidade 4)

Número de elementos	Subconjuntos	Número de subconjuntos
0	Ø	1
1	{1}, {2}, {3}, {4}	4
2	{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}	6
3	{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}	4
4	{1, 2, 3, 4}	1
То	16	

Álgebra de conjuntos:

Operações com conjuntos – União U: dados os conjuntos e , a união de e é o conjunto formado por todos os elementos que pertencem a ou a .

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Operações com conjuntos - União U

Um novo conjunto de alunos pode ser definido como consistindo em todos os alunos que sejam estudantes do curso de **Análise e Desenvolvimento de Sistemas** ou **Matemática** (ou ambos). Esse conjunto é chamado de união de **A** e **B**.

Gersting(1995), a operação de união de A e B pode ser denotada como A U B= {x A ou x B}.

Exemplo 1: a união A U B **compreende todos os alunos** que cursam Análise e Desenvolvimento de Sistemas (A) ou Matemática (B) ou ambos os cursos.

Exemplo 2: Sejam os conjuntos $A=\{10,11,12,13,14,15\}$ e $B=\{13,14,15,16,17,18,19\}$, o conjunto AUB consiste no conjunto formado por todos os elementos de A e de B.

A U B= $\{10,11,12,13,14,15,16,17,18,19\}$ sendo (A = 10,11,12), (A U B = 13,14,15) e (B = 16,17,18,19)

Operações com conjuntos – Intersecção

Intersecção de conjuntos : dados os conjuntos e , a interseção de e é o conjunto formado pelos elementos que pertencem a **A** e a **B**

ou seja: a <u>Intersecção</u> é o ponto onde faz a junção dos itens iguais em ambos os conjuntos Dados os conjuntos A= {0, 1, 2, 3, 4}, o conjunto B= { 2, 5} e C= {2, 6}

A operação de união e intersecção entre os três conjuntos, são: U ={0, 1, 2, 3, 4, 5, 6}; ∩ = {2}

Operações com conjuntos - Diferença(-)

Diferença de conjuntos: dados os conjuntos A e B, a diferença de A e B é o conjunto formado pelos elementos que pertencem a A, mas não a B.

$$A - B = \{x \in A \in x \notin B\}$$

A={1,2,3,4,5} e **B={4,5,6,7}**. Para determinarmos a diferença:

A-B temos de verificar quais elementos pertencem ao conjunto A, mas não pertencem ao conjunto B. ou seja, A-B={1,2,3}.

B-A consiste em todos os elementos pertencentes a B, mas que não pertencem ao conjunto A. ou seja, **B** -A={6,7}.

Marca	Nº de consumidores
Α	105
В	200
С	160
AeB	25
AeC	25
ВеС	40
A, B e C	5
Nenhuma	120

Observando que 105 consomem a marca A logo subtraindo os demais chegamos a 60 ex:

Apenas A: 105 - 5 - 20 - 20 = 60 que consomem exclusivamente a marca A.

O mesmo cálculo deve ser feito aos outros campos

então para saber o total de entrevistados somamos todos os valores encontrados na tabela + os 120 que não consomem nenhuma das marcas, ou seja:

Total: 120 + 60 + 140 + 100 + 20 + 20 + 35 + 5 = 500

Aplicações de teoria dos conjuntos

Operações com conjuntos - Complementar

Uma nova relação que aprenderemos é a operação denominada complemento ou complementar de um conjunto.

O complemento de um conjunto é um conceito estreitamente relacionado com a operação de diferença de conjuntos.

O Dicionário Houaiss da Língua Portuguesa (HOUAISS, 2009) define complemento como um elemento que se integra a um todo para completá-lo ou aperfeiçoá-lo.

Relacionando essa definição com a Teoria de Conjuntos, podemos, de forma simplista, assumir que o complemento de um conjunto significa preencher o que falta.

Complementar : dados dois conjuntos A e B, tais que $B \subset A$ chama-se complementar de B em relação a A (C_A^B ou \overline{B} ou $(A^C)_B$) o conjunto formado pelos elementos que pertencem a A e não pertencem a B.

$$A^C = C_U^A = U - A$$

Seja A={1,2,3,4,5,6,7,8,9,10} e B={1,2,3,5,8,9}.

O complemento de B em relação a A consiste no conjunto constituído por todos os elementos pertencentes a A que não pertencem a B.

Temos, portanto:

$$C_AB=\{4,6,7,10\}.$$

O complemento de B em relação a A consiste no conjunto formado por elementos que pertencem exclusivamente a A, quando comparados com os elementos de B.

Plano Cartesiano:

É formado por uma região geométrica plana, cortada por duas retas perpendiculares entre si.

Diagramas e Plano Cartesiano

Representação em diagramas e no plano cartesiano:

$$A \times B = \{ (1,2), (1,3), (2,2), (2,3), (3,2), (3,3) \}$$

Considere os conjuntos $A=\{4,5,6\}$ e $B=\{6,7,8\}$. Vamos definir os produtos cartesianos $A \times B \in B \times A$. $A\times B=\{(4,6)(4,7)(4,8)(5,6)(5,7)(5,8)(6,6)(6,7)(6,8)\}$ $B\times A=\{(6,4)(6,5)(6,6)(7,4)(7,5)(7,6)(8,4)(8,5)(8,6)\}$ Note que $A\times B \neq B\times A$.

Isso acontece porque a operação produto cartesiano não é uma operação comutativa.

Representação de um conjunto

Vamos utilizar um Diagrama de Venn para demonstrar uma relação arbitrária entre três conjuntos A, B e C.

Utilizaremos uma numeração binária, composta apenas pelos algarismos 0 e 1, em que o primeiro algarismo é 0 ou 1, conforme um objeto desse compartimento pertença ou não ao conjunto A, o segundo algarismo é 0 ou 1, conforme um objeto desse compartimento pertença ou não ao conjunto B e o terceiro algarismo é 0 ou 1, conforme um objeto desse compartimento pertença ou não ao conjunto C

O número 100 (lê-se: um, zero, zero) representa objetos do conjunto A,

O número 010 (zero, um, zero) representa objetos do conjunto B

O número 001 (zero, zero, um) representa objetos do conjunto C.

Já o número 000 (zero, zero, zero) representa que não pertencem a nenhum dos conjuntos

Temos ainda as intersecções:

$$110 = A \cap B \cap C^C$$

$$101 = A \cap B^C \cap C$$

$$001 = A^C \cap B \cap C$$

$$111 = A \cap B \cap C$$

