D-Modules, Unit *F*-Crystals, and Hodge Theory

Definitions, Theorems, Remarks, and Notable Examples

Isaac Martin

Last compiled February 16, 2022

Contents

1	Questions	2
	Some Non-Commutative Algebra	2
	2.1 Filtered rings and modules	2
3	Differential Operators and D-Modules	3
	3.1 First examples of Differential Operators	5
	3.2 D-Modules	5
4	Berstein-Sato Polynomial	5

1 Questions

Question 1.1. What is the point of D-modules? Why do people care about them? What sort of questions do they answer? What insights do they provide?

Question 1.2. How can one "naturally" make A_m a subalgebra of A_n when $m \le n$? It seems like there are n many subalgebras of A_n isomorphic to A_{n-1} , for example.

2 Some Non-Commutative Algebra

 \mathcal{D} -modules requires non-commutative algebra. Necessary facts are found here.

2.1 Filtered rings and modules

This subsection follows Ginzburg's notes quite closely, see [BIBTEX SETUP, GINZBURG D-MODULES Page 3].

Definition 2.1 (*Filtered Ring*). Let *A* be an associative ring with unit. We call *A* a *filtered ring* if an increasing filtration ... $\subset A_i \subset A_{i+1} \subset ...$ by additive subgroups is given such that

- (i) $A_i A_j \subset A_{ij}$
- (ii) $1 \in A_0$,
- (iii) $\bigcup A_i = A$, i.e. the filtration is *exhausting*.

Typically, either (a) \mathbb{N} or (b) \mathbb{Z} is chosen for the index set. In the former case A is said to be *positively filtered*. Note that (a) can be viewed as a special case of (b) by setting $A_{-1} = 0$. In the latter case we will consider the topology induced by the filtration by taking $\{A_i\}_{i\in\mathbb{Z}}$ to be the base of open sets, and we then impose two additional conditions:

- (iv) $\bigcap A_i = \{0\}$, i.e. the topology defined by $\{A_i\}$ is *separating*
 - 1. *A* is complete with respect to this topology.

Finally, we denote by grA the associated graded ring $\bigoplus A_i/A_{i-1}$.

3 Differential Operators and D-Modules

Definition 3.1 (Quasi-coherent #1). Fix X a scheme over k, \mathcal{O}_X the structure sheaf, \mathcal{F} a sheaf of \mathcal{O}_X -modules. We call \mathcal{F} a *quasi-coherent* sheaf of \mathcal{O}_X -modules (or simply an \mathcal{O}_X -modules) if it satisfies the condition

If
$$U \subseteq X$$
 an open affine, $f \in \mathcal{O}_X(U)$, and $U_f = \{u \in U \mid f(u) \neq 0\}$,

then
$$\mathcal{F}(U_f) = \mathcal{F}(U)_f = \mathcal{O}_X(U_f) \otimes_{\mathcal{O}_X(U)} \mathcal{F}$$
.

Definition 3.2 (Quasi-coherent #2). Let (X, \mathcal{O}_X) be a scheme. A sheaf of \mathcal{O}_X -modules \mathcal{F} is quasi-coherent if X can be covered by affine opens $U_i = \operatorname{Spec} A_i$ such that for each i there exists an A_i module M_i with $\mathcal{F}|_{U_i} \cong \tilde{M}_i$. We say \mathcal{F}_i is coherent if each M_i can be taken to be finitely generated.

Remark 3.3. If A is a ring and M an A-module, the sheaf associated to M is denoted by \tilde{M} and is formed as follows. For each $\mathfrak{p} \in \operatorname{Spec} A$, $M_{\mathfrak{p}} = A_{\mathfrak{p}} \otimes_A M$ is the localization with respect to \mathfrak{p} . Given an open set $U \subseteq \operatorname{Spec} A$, define

$$\tilde{M}(U) = \left\{ s: U \longrightarrow \bigsqcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} \;\middle|\; s(\mathfrak{p}) \in M_{\mathfrak{p}}, \text{ and locally } s = \frac{m}{f}, m \in M, f \in A \right\}.$$

More verbosely, this last condition means that for each $\mathfrak{p} \in U$ there is a neighborhood $V \subseteq U$ of \mathfrak{p} such that for each $\mathfrak{q} \in V$, $f \not\in \mathfrak{q}$ and $s(\mathfrak{q}) = \frac{m}{f} \in M_{\mathfrak{q}}$.

Alternatively, one may define

$$\tilde{M}(U_f) = M_f$$

and then

$$\tilde{M}(U) = \varinjlim_{U_f \subseteq U} \tilde{M}(U_f).$$

Note that U_f is implied to be a distinguished open in one of the U_i , so really we need to take the limit above over all U_f in all U_i which intersect U nontrivially. This is a non-issue if U is affine.

Lemma 3.4. The following are equivalent conditions for \mathcal{F} a sheaf of \mathcal{O}_X modules:

- (a) \mathcal{F} is the direct limit of its coherent subschemes
- (b) For any Zariski open affine subset $U \subseteq X$ and any $f \in \mathcal{O}(U)$ one has $\Gamma(U_f, \mathcal{F}) = \Gamma(U, \mathcal{F})_f$.

A *quasi-coherent* sheaf is then one which satisfies these conditions.

Lemma 3.5 (Noether Normalization Lemma). Let k be a field, A a finitely generated k-algebra. Then there exists algebraically independent elements $y_1, ..., y_d$ in A for some positive d such that A is finitely generated as a module over $k[y_1, ..., y_n]$.

Remark 3.6. The Noether normalization lemma provides a way to define differential operators using a manifold-esque coordinate approach. I prefer the following coordinate-free approach provided by Gröthendieck, however.

Definition 3.7 (Differential Operators). Let *A* be a commutative ring. For any pair of *A*-modules *M*, *N* we define the module $\mathcal{D}iff_A^k(M,N)$ inductively as follows:

(i)
$$\mathcal{D}iff_A^0(M,N) = \operatorname{Hom}_A(M,N)$$

$$\text{(ii)} \ \ \mathcal{D}\textit{iff}^{k+1}_A(M,N) = \left\{ \ \text{additive maps } u: M \to N \ \middle| \ \forall a \in A, (au-ua) \in \mathcal{D}\textit{iff}^k_A(M,N) \right\}$$

It follows from the definition that $\operatorname{Diff}_A^k(M,N)\subset\operatorname{Diff}_A^{k+1}(M,N).$ We define

$$\operatorname{Diff}_A(M,N) := \bigcup_k \operatorname{Diff}_A^k(M,N).$$

In the case that M+N, we write $\mathcal{D}iff_A(M)$ and note that it is a filtered almost commutative ring.

The case in which we will be most interested is when M = N = A, i.e. when we consider A to be a ring over itself. Let's repeat the above construction for this case.

Definition 3.8. Let *A* be a commutative *K*-algebra for *K* a characteristic 0 field. Let $D \in \text{End}(R)$. We define the **order** of *D* inductively.

- ord(D) = 0 if [a,D] = -[D,a] = 0 for all $a \in A$.
- ord $(D) = n \in \mathbb{Z}_{>0}$ if ord $(D) \neq k$ for all k < n and if ord $([a,D]) = k_a$ for some $k_a < n$ for each $a \in A$.

The set $D^n(R)$ is defined to be the *K*-vector space of all operators of order $\leq n$.

Definition 3.9. A derivation $D \in \text{End}(R)$ is an operator which satisfies the Leibniz rule

$$D(ab) = aD(b) + D(a)b$$

for every $a, b \in A$. The set of all derivations $\operatorname{Der}_K(A) \subseteq \operatorname{End}_K(A)$ is a K-vector space and a left A-module under the action $(a \cdot D)(b) = a(D(B))$.

All derivations are order 1 operators. As one might hope, they're actually *all* order 1 operators.

Lemma 3.10. $D^1(A) = \text{Der}_K(R) + R$. (See proof in *A Primer on D-modules* page 21.)

We can now define the ring of differential operators on A.

Definition 3.11. Let A be a K-algebra with K a characteristic zero field. The set of all finite order operators on A forms a noncommutative ring with pointwise addition and composition as multiplication. We denote this ring by D(A) and we call it the **ring of differential operators:**

$$D(A) = \bigcup_{n \in \mathbb{Z}_{\geq 0}} D^n(A) \subseteq \operatorname{End}_K(A).$$

It's obvious that the addition of two finite order operators yields a differential operator with order equal to the maximum order of the two summands, it's *not* obvious that the composition of two finite order operators yields a finite order operator. We therefore require the following proposition for this definition to work:

Proposition 3.12. If $D \in D^n(A)$ and $D' \in D^m(A)$ then $D \circ D', D' \circ D \in D^{n+m}(A)$.

3.1 First examples of Differential Operators

Example 3.13. Let K be a field of characteristic zero and recall that $K[x_1,...,x_n]$ is an infinite dimensional K vector space. We define $\hat{x}_i, \partial_i \in \operatorname{End}_K(K[x_1,...,x_n])$ by $\hat{x}_i f \mapsto x_i \cdot f$ and $\partial_i f \mapsto \frac{\partial f}{\partial x_i}$. One can then check that $[\partial_j,\hat{x}_j] = \partial_i\hat{x}_j - \hat{x}_j\partial_i = \delta_{ij}$ id where id is the identity operator on $K[x_1,...,x_n]$ and δ_{ij} is the Kronecker delta. In other words,

$$[\partial_i, \hat{x}_i](f) = f$$
 and $[\partial_i, \hat{x}_i](f) = 0$

when $i \neq j$. This is quite easy to check for an arbitrary polynomial but is nonetheless quite magical:

$$\partial_x \left(x \cdot (3x^2 + 2y) \right) = 9x^2 + 2y,$$

$$x \cdot \left(\partial_x (3x^2 + 2y) \right) = 6x^2,$$

$$(\partial_x \cdot \hat{x} - \hat{x} \cdot \partial_x)(3x^2 + 2y) = 3x^2 + 2y,$$

but

$$\partial_x \left(y \cdot (3x^2 + 2y) \right) - y \cdot \left(\partial_x (3x^2 + 2y) \right) = 6xy - 6xy = 0.$$

Definition 3.14. The *n*th Weyl algebra of K is the 2n-dimensional K-subalgebra of $\operatorname{End}_K(K[x_1,...,x_n])$ generated by $\hat{x_1},...,\hat{x_n},\partial_1,...,\partial_n$, and is denoted by $A_n(K)$ or A_n when the field is known. We let $A_0(K)=K$. Note also that for $m \le n$, we can make A_m a subalgebra of A_n in a "natural way".

3.2 D-Modules

Definition 3.15. A \mathcal{D} -module is a sheaf over the sheaf \mathcal{D}_X of regular differential operators over a variety (scheme, manifold, analytic complex manifold) which is quasi-coherent as an \mathcal{O}_X -module.

4 Berstein-Sato Polynomial

Theorem 4.1 (Björk, Kashiwara). Let X be a smooth variety over the complex numbers and let f be a non-invertible regular function on X (i.e. a locally rational function whose numerator is non-invertible). There exists a polynomial $b(s) \in \mathbb{C}[s]$ and a polynomial $P(s) \in \mathcal{D}_X[s]$ whose coefficients are differential operators on X, such that the relation

$$P(s) f^{s+1} = b(s) \cdot f^s$$

holds formally in the \mathcal{D}_X -module $\mathcal{O}_X[\frac{1}{f},s] \cdot f^s$. Here, f^{s+1} stands for $f \cdot f^s$.