

Reasoning (II)

Mingsheng Long

Tsinghua University

Outline

- Probability Basics
- Discriminative Models
- Generative Models
 - -Naïve Bayes Classifier
 - -Gaussian Discriminant Analysis
- Mixture Models and EM
 - -Gaussian Mixture Model
 - -Expectation Maximization

Bayesian Approach

- Bayesian approaches try to reflect our belief about parameter θ .
 - In this case, we will consider θ to be a random variable.
- Use the prior information and decide a prior distribution of θ .
- ullet Given the data, estimate a posterior distribution over possible values of ullet with Bayes rule.

Uninformative priors: uniform distribution

Bayes Rule

• Bayes rule:

Observed Data

Parameter

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Equivalently:

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$
Posterior Likelihood Prior

Thomas Bayes

Bernoulli Distribution

• Bernoulli probability mass function (PMF):

$$P(x = 1|q) = q$$
$$P(x = 0|q) = 1 - q$$

Mean:

$$\mathbb{E}[x] = q$$

• Multinoulli probability mass function (PMF):

$$P(y = l | \boldsymbol{\phi}) = \phi_l$$
$$\sum_{l=1}^{C} \phi_l = 1$$

• Parameters:

 $\{oldsymbol{\phi}\}$

Flipping coin

Head

 \mathcal{G}

Tail

1-q

Flipping dice

$$\sum_{l=1}^6 \phi_l = 1$$

Gaussian Distribution

• Probability density function (PDF):

$$p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}))$$

• Mean:

$$\mathbb{E}[x] = \mu$$

Variance:

$$Var[x] = \Sigma$$

• Parameters:

Likelihood of Parametric Model

- Suppose we have a parametric model $\{p(z;\theta)|\theta\in\Theta\}$ and a sample dataset $\mathcal{D}=(z_1,\ldots,z_N)$.
- The likelihood of estimated parameter $\hat{\theta} \in \Theta$ for sample \mathcal{D} is

$$p(\mathcal{D}; \hat{\theta}) = \prod_{n=1}^{N} p(z_n; \hat{\theta})$$

Due to numerical instability, we prefer to work with the log-likelihood

$$\log p(\mathcal{D}; \hat{\theta}) = \sum_{n=1}^{N} \log p(z_n; \hat{\theta})$$

Maximum Likelihood Estimation

- Suppose $\mathcal{D}=(z_1,...,z_N)$ is an <u>i.i.d.</u> sample from some distribution.
- Finding the maximum likelihood estimator (MLE) for parameter θ in the parametric model $\{p(y;\theta)|\theta\in\Theta\}$ is an optimization problem:

$$\hat{\theta} \in \underset{\theta \in \Theta}{\operatorname{argmax}} \log p(\mathcal{D}; \theta)$$

$$= \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{n=1}^{N} \log p(z_n; \theta)$$

• Note: MLE of a parametric model leads to a particular loss function.

MLE for Gaussian Distribution

• Recall that the density of Gaussian distribution is $x \sim \mathcal{N}(\mu, \Sigma)$

$$p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}))$$

The log-density is

$$\log p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = -\frac{1}{2}\log|2\pi\boldsymbol{\Sigma}| - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})$$

• To estimate μ and Σ from an <u>i.i.d.</u> sample $x_1, \ldots, x_n \sim \mathcal{N}(\mu, \Sigma)$, we will maximize the log joint density

$$\sum_{i=1}^{n} \log p(\mathbf{x}_i|\boldsymbol{\mu},\boldsymbol{\Sigma}) = -\frac{n}{2} \log|2\pi\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})$$

MLE for Gaussian Distribution

• To estimate μ and Σ from an <u>i.i.d.</u> sample $x_1, \dots, x_n \sim \mathcal{N}(\mu, \Sigma)$, we will maximize the log joint density

$$\sum_{i=1}^{n} \log p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = -\frac{n}{2} \log |2\pi\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})$$

ullet A solid exercise in vector and matrix differentiation. Find $\widehat{m{\mu}}$ and $\widehat{m{\Sigma}}$ by

$$\nabla_{\boldsymbol{\mu}}J(\boldsymbol{\mu},\boldsymbol{\Sigma})=0$$
 $\nabla_{\boldsymbol{\Sigma}}J(\boldsymbol{\mu},\boldsymbol{\Sigma})=0$

• We get a closed-form solution:

Check:
$$\widehat{oldsymbol{arSigma}}_{ ext{MLE}} = rac{n-1}{n} oldsymbol{arSigma}$$

Ve get a closed-form solution: Check:
$$\widehat{\Sigma}_{\text{MLE}} = \frac{n-1}{n} \Sigma$$

$$\widehat{\mu}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \widehat{\Sigma}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu}_{\text{MLE}})(x_i - \widehat{\mu}_{\text{MLE}})^T$$

Bayes Decision Rule

- Assumption:
 - The learning task p(X,Y) = p(Y|X)p(X) can be sampled from.
- Question:
 - Given instance x, how should it be classified to minimize error?
- Bayes Decision Rule:

$$h(\mathbf{x}) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}}[p(Y = y | X = \mathbf{x})]$$

- How to directly measure p(Y|X) with a parametric model $q(Y|X,\theta)$?
 - Discriminative models!

Outline

- Probability Basics
- Discriminative Models
- Generative Models
 - -Naïve Bayes Classifier
 - -Gaussian Discriminant Analysis
- Mixture Models and EM
 - -Gaussian Mixture Model
 - -Expectation Maximization

Linear Regression

• In regression problem, we assume that:

$$y \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2)$$

when y is independent with each other.

• The linear regression model should give expectation of y:

$$\mathbb{E}(y|\mathbf{x},\mathbf{w},\sigma^2) = \mathbf{w}^T\mathbf{x}$$

- Find the best parameter \boldsymbol{w} using <u>i.i.d.</u> sample $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$
- ullet σ is useless in the final regression model.

Gaussian Linear Regression

- If we assume that $y_n | \mathbf{w}, \mathbf{x}_n \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$
- Then for point (x_n, y_n)

$$p(y_n|\mathbf{w}, \mathbf{x}_n) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (y_n - \mathbf{w}^T \mathbf{x}_n)^2\right\}$$

• The log-likelihood for linear regression on the whole dataset \mathcal{D}_n :

$$\log p(\mathcal{D}_n; \mathbf{w}) = \sum_{n=1}^N \log p(y_n | \mathbf{w}, \mathbf{x}_n)$$

$$= \frac{N}{2} \log \frac{1}{2\pi\sigma^2} - \frac{1}{2\sigma^2} \sum_{n=1}^N (y_n - \mathbf{w}^T \mathbf{x}_n)^2$$

Maximum A Posteriori Estimation

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \log p(\theta|D) = \underset{\theta}{\operatorname{arg\,max}} \{ \log p(D|\theta) + \log p(\theta) \}$$
Posterior Likelihood Prior

- MAP: Maximum a posteriori estimation of parameters θ
- We can view MLE as MAP
 - with a uniform prior distribution.

 As amount of data becomes large, posterior variance becomes small, and MAP behaves like other estimators such as MLE.

Bayesian Linear Regression

• Recall the Gaussian noise assumption for linear regression:

$$y_n = \mathbf{w}^T \mathbf{x}_n + \boldsymbol{\epsilon}_n, \qquad \boldsymbol{\epsilon}_n \sim \mathcal{N}(0, \sigma^2)$$

• Then we can get:

$$y_n | \mathbf{w}, \mathbf{x}_n \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$$

• A common choice for the prior:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}\mathbf{I})$$

MAP and Regularization

• MAP estimation of **w**:

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg \, min}} - \log p(\mathbf{w}|D_n) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \{ -\log p(\mathbf{y}|\mathbf{w}, \mathbf{X}) - \log p(\mathbf{w}) \}$$

$$-\log p(y|w) = -\sum_{i=1}^{n} \log p(y_i|w,x_i) = -\frac{n}{2} \log \frac{1}{2\pi\sigma^2} + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - w^T x_i)^2$$

$$-\log p(\mathbf{w}) = -\frac{d}{2}\log \frac{1}{2\pi\sigma^2} + \frac{\alpha}{2}\sum_{j=1}^{d} w_j^2$$

$$\Rightarrow \widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \frac{\alpha}{2} \sum_{i=1}^{n} w_i^2$$

$$\Rightarrow \widehat{w} = \underset{w}{\operatorname{arg min}} \|Xw - y\|_{2}^{2} + \frac{\alpha}{\beta} \|w\|_{2}^{2} \qquad \text{denote } \beta = \frac{1}{\sigma^{2}}$$

Bayesian Model Averaging

• The posterior predictive distribution (\tilde{y} is the prediction):

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta$$

- Assume there is a true model $p(y|\theta)$
- Account for the uncertainty in θ .
- To account for model uncertainty among some models M_1, \ldots, M_h , we use Bayesian model averaged (BMA) posterior predictive distribution

$$p(\tilde{y}|y) = \sum_{h=1}^{H} p(\tilde{y}|M_h, y)p(M_h|y)$$

predictive distribution under model M_h posterior model probability

Outline

- Probability Basics
- Discriminative Models
- Generative Models
 - -Naïve Bayes Classifier
 - -Gaussian Discriminant Analysis
- Mixture Models and EM
 - -Gaussian Mixture Model
 - -Expectation Maximization

Bayes Rule

- Alternative idea:
 - It is possible to switch conditioning according to Bayes rule.
 - Given any two random variables X and Y, it holds that:

$$p(Y = y|X = \mathbf{x}) = \frac{p(X = \mathbf{x}|Y = y)p(Y = y)}{p(X = \mathbf{x})}$$

- We try to model p(X = x | Y = y) and p(Y = y) in this problem.
 - Generative models!
- We also write $p(Y = y | X = x) \propto p(X = x | Y = y) p(Y = y)$
 - ∝ is commonly used to avoid non-necessary normalization term.

- Model distribution of high-dimensional data p(X = x | Y = y) is hard:
 - Because we need to find a proper description of data distribution.
 - Especially the dependency between dimensions.
- Naïve Bayes Classifier (NBC) assumes conditional-independence:
 - Each dimension is independent given label y:

$$p(X = x | Y = y) = \prod_{j=1}^{d} p(x_{.j} | y)$$
Naïve!

jth dimension of x

- Thus p(y) and $p(x_i|y)$ can be computed directly from dataset.

Naïve Bayes Classifier is used when the features are all discrete.

• For binary feature, model $p(x_{i}|y)$ and p(y) as Bernoulli distribution:

$$p(x_{.j} = 1 | y = +1) \sim \text{Bernoulli}(\phi_j^+),$$

$$p(x_{.j} = 1 | y = +1) \sim \text{Bernoulli}(\phi_j^-),$$

$$p(x_{.j} = 1 | y = -1) \sim \text{Bernoulli}(\phi_j^-),$$

$$p(y = +1) \sim \text{Bernoulli}(\phi)$$

• So we can estimate pareameters ϕ_j^+ and ϕ as $(\phi_j^-$ is similar):

$$\phi_j^+ = \frac{\sum_{i=1}^n \mathbf{1}\{x_{ij} = 1 \land y_i = +1\}}{\sum_{i=1}^n \mathbf{1}\{y_i = +1\}}$$
$$\phi = \frac{\sum_{i=1}^n \mathbf{1}\{y_i = +1\}}{n}$$

• For feature with many values, use multinoulli distribution instead.

D1	Sunny	Hot	High	Weak	No
D2	Sunny	\mathbf{Hot}	${f High}$	\mathbf{Strong}	No
$\mathbf{D3}$	Overcast	\mathbf{Hot}	${f High}$	\mathbf{Weak}	Yes
D4	Rain	\mathbf{Mild}	${f High}$	\mathbf{Weak}	Yes
D5	Rain	\mathbf{Cool}	Normal	Weak	Yes
D6	Rain	\mathbf{Cool}	Normal	Strong	No
D7	Overcast	\mathbf{Cool}	Normal	Strong	Yes

• What will Naïve Bayes Classifier predict for (Rain, Cool, High, Weak)?

$$p(\text{Rain}|\text{Yes}) = 2/4, p(\text{Cool}|\text{Yes}) = 2/4, p(\text{High}|\text{Yes})$$

= 2/4, $p(\text{Weak}|\text{Yes}) = 3/4, p(\text{Yes}) = 4/7$

- -p(Yes|(Rain, Cool, High, Weak)) $\propto 3/56$
- -p(No|(Rain, Cool, High, Weak)) $\propto 2/189$

• What if
$$p(x_{.j} = r_j | Y = +1) = \frac{\sum_{i=1}^n 1\{x_{.j} = r_j \land y_i = +1\}}{\sum_{i=1}^n 1\{y_i = +1\}} = 0$$
?

- -This will cause p(x|Y=+1) to zero, no matter how large other $p(x_{\cdot l}=r_l|Y=+1)$.
- We can add prior to solve this problem (Laplacian smoothing):

$$p(x_{\cdot j} = r_j | Y = +1) = \frac{\sum_{i=1}^{n} 1\{x_{\cdot j} = r_j \land y_i = +1\} + 1}{\sum_{i=1}^{n} 1\{y_i = +1\} + k_j}$$

- Continuous variables:
 - We can discretize the variable.
 - Or we can use another model based on a different assumption.

How many values does

this feature have?

Outline

- Probability Basics
- Discriminative Models
- Generative Models
 - -Naïve Bayes Classifier
 - -Gaussian Discriminant Analysis
- Mixture Models and EM
 - -Gaussian Mixture Model
 - -Expectation Maximization

Gaussian Discriminant Analysis

- Alternative methods for dataset with all continuous features:
 - -Using parametric distribution to represent p(X = x | Y = y).
- A common assumption in classification:
 - We always assume that data points in a class is a cluster.

• So we can model p(X = x | Y = y) by Gaussian distribution:

$$p(X = \boldsymbol{x}|Y = +1) \propto \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{+})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{+})\right) \qquad \text{Usually}$$

$$p(X = \boldsymbol{x}|Y = -1) \propto \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{-})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{-})\right) \qquad \text{share } \boldsymbol{\Sigma}$$

Gaussian Discriminant Analysis

- We still model p(Y = y) as Bernoulli distribution: Bernoulli (ϕ) .
- Now we use MLE to find the best parameter estimation:

$$\ell(\phi, \mu_{+}, \mu_{-}, \Sigma) = \log \prod_{i=1}^{n} p(x_{i}, y_{i}; \phi, \mu_{+}, \mu_{-}, \Sigma)$$
$$= \log \prod_{i=1}^{n} p(x_{i}|y_{i}; \mu_{+}, \mu_{-}, \Sigma) + \log \prod_{i=1}^{n} p(y_{i}|\phi)$$

- The computing process is very similar to the process of Gaussian.
 - The main difference is that μ_+, μ_- are different.

$$\phi = \frac{\sum_{i=1}^{n} \mathbf{1}\{y_i = +1\}}{n}, \mu_+ = \frac{\sum_{i=1}^{n} \mathbf{1}\{y_i = +1\}x_i}{\sum_{i=1}^{n} \mathbf{1}\{y_i = +1\}}, \mu_- = \frac{\sum_{i=1}^{n} \mathbf{1}\{y_i = -1\}x_i}{\sum_{i=1}^{n} \mathbf{1}\{y_i = -1\}}$$

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{y_i}) (x_i - \mu_{y_i})^T$$

Gaussian Discriminant Analysis

• On a test data x, Gaussian Discriminant Analysis (GDA) outputs label:

$$\underset{y \in \{+1,-1\}}{\operatorname{argmax}} [p(\boldsymbol{x}|y)p(y)]$$

Shared Σ leads to "large margin model"

Discriminative vs. Generative

- Discriminative models:
 - Concentrate on the prediction of label or certain variables.
 - Usually simpler and more efficient on general data.
- Generative models:
 - Usually stronger assumption, better results on smaller data.
 - Can capture structure of data distribution and generate new data.

Outline

- Probability Basics
- Discriminative Models
- Generative Models
 - -Naïve Bayes Classifier
 - -Gaussian Discriminant Analysis
- Mixture Models and EM
 - -Gaussian Mixture Model
 - -Expectation Maximization

Gaussian Mixture Model

• The generating process of the GDA Model:

-Choose
$$y \in \{+1, -1\}$$
 with $p(+1) = p(-1) = \frac{1}{2}$.

- -Choose $x|y\sim \mathcal{N}(x|\mu_y, \Sigma)$.
- We can compute p(x):

$$p(\mathbf{x}) = \frac{1}{2}p(\mathbf{x}|\boldsymbol{\mu}_{+1}, \boldsymbol{\Sigma}) + \frac{1}{2}p(\mathbf{x}|\boldsymbol{\mu}_{-1}, \boldsymbol{\Sigma})$$

 This is not a GDA Model, but a Gaussian Mixture Model (GMM).

Gaussian Mixture Model

- Parameters of Gaussian Mixture Model (GMM):
 - Cluster probabilities: $\pi = (\pi_1, ..., \pi_k)$.
 - -Cluster means: $\mu = (\mu_1, ..., \mu_k)$.
 - -Cluster covariance matrices: $\Sigma = (\Sigma_1, ..., \Sigma_k)$.
- Generating process of GMM:
 - First generate cluster index:

•
$$z \sim (\pi_1, \dots, \pi_k)$$

- Then generate data:
 - $x \sim \mathcal{N}(x|\mu_z, \Sigma_z)$.
- Density: $p(\pmb{x}) = \sum_{Z=1}^k \pi_Z \mathcal{N}(\pmb{x}|\pmb{\mu}_Z,\pmb{\Sigma}_Z)$

Mixture Distribution

- A probability density p(x) represents a mixture distribution
 - if we can write it as a convex combination of probability densities:

$$p(x) = \sum_{i=1}^{k} w_i p_i(x)$$

- -where $w_i \geq 0$, $\sum_{i=1}^k w_i = 1$, and each p_i is a probability density.
- Gaussian mixture model (GMM): $p(x) = \sum_{z=1}^k \pi_z \mathcal{N}(x|\mu_z, \Sigma_z)$.
- \bullet More constructively, let S be a set of probability distributions:
 - Choose a distribution randomly from S.
 - Sample \boldsymbol{x} from the chosen distribution.
 - Then \boldsymbol{x} has a mixture distribution.

Generative Models for Clustering

- What do we model in unsupervised learning setting?
 - There is no longer p(x, y). We can sample from p(x) only.
- Consider a clustering problem.
 - Suppose there are k clusters.
 - We have a distribution assumption (Gaussian) for each cluster.
- And the whole dataset can be generated as follows:
 - Choose a random cluster $z \in \{1, 2, ..., k\}$.
 - Choose a point \boldsymbol{x} from the distribution for cluster \boldsymbol{z} .
- We can see that GMM is very suitable for modeling p(x).
 - Difficulty: We do not know which $oldsymbol{x}$ is sampled from which $oldsymbol{z}$!

Gaussian Mixture Model: Learning

- Can we compute MLE of GMM directly?
- The log-likelihood for $\mathcal{D}=(x_1,...,x_n)$ sampled i.i.d. from a GMM is

$$\ell(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \prod_{i=1}^{n} \sum_{z=1}^{k} \pi_{z} \mathcal{N}(\boldsymbol{x}_{i} | \boldsymbol{\mu}_{z}, \boldsymbol{\Sigma}_{z}) = \sum_{i=1}^{n} \log \left[\sum_{z=1}^{k} \pi_{z} \mathcal{N}(\boldsymbol{x}_{i} | \boldsymbol{\mu}_{z}, \boldsymbol{\Sigma}_{z}) \right]$$

• Plug the Gaussian density in it:

$$\ell(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{i=1}^{n} \log \left[\sum_{z=1}^{k} \frac{\pi_z}{\sqrt{|2\pi\boldsymbol{\Sigma}_z|}} \exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_z)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_z)) \right]$$

- The sum inside the log is intractable:
 - A general challenge in mixture models, need approximate methods.

Gaussian Mixture Model: Learning

- ullet In GDA, we know which $oldsymbol{x}$ is sampled from which cluster $oldsymbol{z}$.
 - So the solution of MLE is easy to find.
 - Without z, there will be computational difficulties.
 - z is called latent variable.
- An iterative idea that solves one set of variables by fixing the others:
- Iterate between
 - -Step I: Known each (x, z), find best (π, μ, Σ) .
 - -Step II: Known (π, μ, Σ) , find z for each x.
- We have a general method with strict theoretical foundation here!
 - Expectation-Maximization (EM)!

Outline

- Probability Basics
- Discriminative Models
- Generative Models
 - -Naïve Bayes Classifier
 - -Gaussian Discriminant Analysis
- Mixture Models and EM
 - -Gaussian Mixture Model
 - -Expectation Maximization

Latent Variable Model

- Two (abstract) sets of random variables: z and x
 - z consists of latent variables.
 - -x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$p(x,z|\theta)$$

- A latent variable model is a probabilistic model for which certain variables are never observed.

 Observed
 - The Gaussian mixture model is a latent variable model.
- \bullet An observation of x is called an incomplete dataset.
 - An observation of (x, z) is called a complete dataset.

Objectives

Learning problem:

- Given incomplete dataset $\mathcal{D}=(x_1,...x_n)$, find MLE $\hat{\theta}=\argmax_{\theta}p(\mathcal{D}|\theta).$

- Inference problem:
 - Given x, find conditional distribution over latent variable z:

$$p(z|x,\theta)$$

- Expectation-Maximization (EM) for both problems!
- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models (next lectures), inference can be hard.

Expectation-Maximization (EM): Key Idea

期望最大化算法必考

• Marginal log-likelihood is **hard** to optimize: Objective! $\max_{\theta} \log p(x|\theta)$

• Typically, the complete data log-likelihood is easy to optimize:

$$\max_{\theta} \log p(x, z | \theta)$$

- What if we had a distribution q(z) for the latent variables z?
- Then maximize the expected complete data log-likelihood:

$$\max_{\theta} \sum_{z} q(z) \log p(x, z | \theta)$$

- Assumption: EM assumes this maximization is relatively easy.

Evidence Lower Bound (ELBO)

• Let q(z) be any probability function on \mathcal{Z} , the support of z:

$$\log p(x|\theta) = \log \left[\sum_{z} p(x, z|\theta) \right]$$
 Objective!
$$= \log \left[\sum_{z} q(z) \left(\frac{p(x, z|\theta)}{q(z)} \right) \right]$$
 log of an expectation
$$\text{Jenson's inequality}$$
 log($\mathbb{E}[X]$) $\geq \mathbb{E}[\log(X)]$

$$\geq \sum_{z} q(z) \log \left(\frac{p(x, z|\theta)}{q(z)} \right)$$
 expectation of log
$$\mathcal{L}(q, \theta)$$
 Evidence lower bound (ELBO)

MLE, EM and ELBO

ullet For any probability function q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x|\theta) \ge \mathcal{L}(q,\theta).$$

• The MLE is defined as a maximum over θ :

$$\widehat{\theta}_{\text{MLE}} = \operatorname*{argmax} \log p(x|\theta)$$

• The EM algorithm maximizes the ELBO over θ and q:

$$\hat{\theta}_{EM} = \underset{\theta}{\operatorname{argmax}} [\underset{q}{\operatorname{max}} \mathcal{L}(q, \theta)]$$

Lead to an Iterative Algorithm!

EM: Iterative Optimization

- Choose sequence of q's and θ 's by coordinate ascent.
- EM Algorithm (high level):
 - Choose initial $heta^{
 m old}$

-Let
$$q^* = \underset{q}{\operatorname{argmax}} \mathcal{L}(q, \theta^{\operatorname{old}})$$

-Let
$$\theta^{\text{new}} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(q^*, \theta)$$

- Go to Step 2, until converged.
- Will show: $p(x|\theta^{\text{new}}) \ge p(x|\theta^{\text{old}})$

- Get sequence of θ 's with monotonically increasing likelihood.
- What left: What are $\underset{q}{\operatorname{argmax}} \mathcal{L}(q, \theta^{\operatorname{old}})$ and $\underset{\theta}{\operatorname{argmax}} \mathcal{L}(q^*, \theta^{\operatorname{old}})$?

ELBO via KL Divergence

• Investigate the evidence lower bound:

$$\mathcal{L}(q,\theta) = \sum_{z} q(z) \log \left(\frac{p(x,z|\theta)}{q(z)}\right)$$
KL-Divergence
$$\sum_{z} q(z) \log \left(\frac{q(z)}{p(z)}\right)$$

$$= \text{KL}[q(z)||p(z)]$$
Properties:
$$\text{KL}(p||q) \ge 0,$$

$$\text{KL}(p||p) = 0.$$

$$= -\text{KL}[q(z)||p(z|x,\theta)] + \log p(x|\theta)$$

$$= -\text{KL}[q(z)||p(z|x,\theta)] + \log p(x|\theta)$$

Amazing! We get back an equality for the marginal likelihood:

$$\log p(x|\theta) = \mathcal{L}(q,\theta) + \text{KL}[q(z)||p(z|x,\theta)]$$

E-Step: Maximizing Over q for Fixed $\theta = \theta^{\text{old}}$

ullet Find q maximizing

$$\mathcal{L}(q, \theta^{\text{old}}) = -\text{KL}[q(z), p(z|x, \theta^{\text{old}})] + \underbrace{\log p(x|\theta^{\text{old}})}_{\text{no } q \text{ here}}$$

- Recall $\mathrm{KL}(p||q) \geq 0$, and $\mathrm{KL}(p||p) = 0$
- The best q is $q^*(z) = p(z|x, \theta^{\mathrm{old}})$

$$\mathcal{L}(q^*, \theta^{\text{old}}) = -\text{KL}[p(z|x, \theta^{\text{old}}), p(z|x, \theta^{\text{old}})] + \log p(x|\theta^{\text{old}})$$

• Summary:

$$\log p(x|\theta^{\text{old}}) = \mathcal{L}(q^*, \theta^{\text{old}}) \quad \text{(Tangent at } \theta^{\text{old}})$$
$$\log p(x|\theta) \ge \mathcal{L}(q^*, \theta) \quad \forall \theta$$

Tight Lower Bound for Any Chosen θ

- For $\theta^{
 m old}$, take $q(z)=pig(z|x,\theta^{
 m old}ig)$. Then
 - $-\log p(x|\theta) \ge \mathcal{L}(q,\theta) \ \forall \theta.$ [Global lower bound]
 - $-\log p(x|\theta^{\text{old}}) = \mathcal{L}(q,\theta^{\text{old}})$. [Lower bound is tight at θ^{old}]

M-Step: Maximizing Over θ for Fixed q

• Consider maximizing the evidence lower bound (EBLO) $\mathcal{L}(q,\theta)$:

$$\mathcal{L}(q,\theta) = \sum_{z} q(z) \log \left(\frac{p(x,z|\theta)}{q(z)} \right)$$

$$= \sum_{z} q(z) \log \left(p(x,z|\theta) \right) - \sum_{z} q(z) \log \left(q(z) \right)$$

E[complete data log-likelihood]

no θ here

ullet For fixed q, maximizing $\mathcal{L}(q, heta)$ by heta is equivalent to maximizing

E[complete data log-likelihood]

Expectation-Maximization (EM): Algorithm

• Choose initial θ^{old} .

Donald Rubin

- Expectation Step
 - Let $q^*(z) = p(z|x, \theta^{\text{old}})$. [q^* gives best lower bound at θ^{old}]

-Let
$$J(\theta) \coloneqq \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z | \theta)}{q^*(z)} \right)$$

Maximization Step

Expectation w.r.t. $z \sim q^*(z)$

$$\theta^{\text{new}} = \underset{\theta}{\operatorname{argmax}} J(\theta)$$

You can use SGD

[Equivalent to maximizing the expected complete log-likelihood.]

Go to the Expectation Step, until converged.

EM for MAP

- Suppose we have a prior $p(\theta)$.
- Want to find MAP estimate: $\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta|x)$

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$
$$\log p(\theta|x) = \log p(x|\theta) + \log p(\theta) - \log p(x)$$

• Still can use our evidence lower bound on $\log p(x, \theta)$.

$$J(\theta) \coloneqq \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left(\frac{p(x, z | \theta)}{q^*(z)} \right)$$

• Maximization step becomes $\theta^{\text{new}} = \underset{\theta}{\operatorname{argmax}} \left[J(\theta) + \underset{\theta}{\operatorname{log}} p(\theta) \right]$

GMM: E-Step

ullet Denote probability (responsibility) that $oldsymbol{x}_i$ comes from cluster j by

$$\gamma_i^j = p(z = j | \mathbf{x} = \mathbf{x}_i, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 $q^*(z) = p(z | \mathbf{x}, \theta^{\text{old}})$

- -The vector $(\gamma_i^1, ..., \gamma_i^k)$ is exactly the soft assignment for x_i .
- From probabilistic computation:

$$\gamma_i^j = p(z = j | \mathbf{x}_i) = \frac{p(z = j, \mathbf{x}_i)}{p(\mathbf{x}_i)} = \frac{\pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}$$

• If we know μ_j, Σ_j, π_j for all clusters j=1,...k, then easy to compute:

$$\gamma_i^j = \frac{\pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}$$

GMM: M-Step

$$\underset{\theta}{\operatorname{argmax}} \mathcal{L}(q^*, \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{z} q^*(z) \log \left(\frac{p(x, z | \theta)}{q^*(z)} \right)$$

$$\theta = \{ \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \}$$
 = argmax $\sum_{z} p(z|x, \theta^{\text{old}}) \log (p(x, z|\theta))$

• So we have the loss function for Gaussian Mixture Model parameters:

By MLE
$$\underset{\pi,\mu,\Sigma}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{j=1}^{\kappa} \gamma_i^j \log [\pi_j \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)]$$

• Let $n_c = \sum_{i=1}^n \gamma_i^c$ be the number of points soft-assigned to cluster c.

$$\pi_c^{\text{new}} = \frac{n_c}{n}, \boldsymbol{\mu}_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c \boldsymbol{x}_i, \boldsymbol{\Sigma}_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (\boldsymbol{x}_i - \boldsymbol{\mu}_c^{\text{new}}) (\boldsymbol{x}_i - \boldsymbol{\mu}_c^{\text{new}})^T$$

EM for GMM: Overview

- Initialize parameters π, Σ, μ .
- E-step. Evaluate all responsibilities using current parameters:

$$\gamma_i^j = \frac{\pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}$$

• M-step. Re-estimate the parameters using the responsibilities:

$$\pi_c^{\text{new}} = \frac{n_c}{n}$$

$$\boldsymbol{\mu}_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c \boldsymbol{x}_i, \boldsymbol{\Sigma}_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (\boldsymbol{x}_i - \boldsymbol{\mu}_c^{\text{new}}) (\boldsymbol{x}_i - \boldsymbol{\mu}_c^{\text{new}})^T$$

Repeat E-step and M-step until log-likelihood converges.

Initialization

• First soft assignment:

responsibilities

$$\gamma_i^j = \frac{\pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}$$

• First soft assignment:

parameters

$$\pi_c^{\text{new}} = \frac{n_c}{n}$$

$$\mu_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c x_i$$

$$\Sigma_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (x_i - \mu_c^{\text{new}}) (x_i - \mu_c^{\text{new}})^T$$
Artificial Intelligence

• After 5 rounds of EM:

• After 20 rounds of EM:

EM and Variational Methods

- When E-step is difficult:
 - Hard to take expectation w.r.t. $q^*(z) = p(z|x, \theta^{\text{old}})$
 - For example, hierarchical latent variable models (next lectures).
- Solution: Restrict to distributions Q that are easy to work with.
- The evidence lower bound (ELBO) now looser:

$$q^* = \underset{q \in Q}{\operatorname{argmin}} \operatorname{KL} \left[q(z), p(z|x, \theta^{\operatorname{old}}) \right]$$

- Find an easy-to-work variational distribution q^* to approximate the inference distribution $p(z|x,\theta^{\text{old}})$.
 - This group of methods are called variational methods.

Thank You

Questions?

Mingsheng Long

mingsheng@tsinghua.edu.cn

http://ise.thss.tsinghua.edu.cn/~mlong

答疑: 东主楼11区413室