

Estructura de datos Grupo Nº3

INTEGRANTES:

- Xavier Cordova
- Juan Gallardo
- Nicole Lara
- Camila Naspud
- Adrian Paez

Quicksort

Charles Antony Richard Hoare

Quicksort

EL ORDENAMIENTO RÁPIDO

01 DEFINICIONES

- Quicksort fue diseñado en los años 60s por Charles Antony Richard Hoare queun científico en computación.
- Quicksort se basa en la técnica de divide y vencerás, que permite, en promedio, ordenar n elementos en un tiempo proporcional a n log n
- El método de ordenamiento Quicksort es actualmente el más eficiente y veloz de los métodos de ordenación interna.
- Conocido como método rápido y de ordenamiento por partición.

DESCRIPCIÓN DEL MÉTODO

Lo que hace este algoritmo es dividir recurvisamente el vector en partes iguales, indicando un elemento de inicio, fin y un pivote que nos permitira segmentar nuestra lista. Una vez dividida, lo que hace, es dejar todos los mayores que el pivote a su derecha y todos los menos a su izquierda. Al final el algoritmo, nuestros elementos estan ordenados

01

PASO 1: SELECCIONAR EL ELEMENTO PIVOTE

Seleccionaremos el elemento más a la derecha del array como elemento pivote.

PASO 2. REORGANIZAR EL ARRAY

02

Ahora los elementos de la matriz se reorganizan de manera que los elementos que son más pequeños que el pivote se ponen a la izquierda y los elementos mayores que el pivote se ponen a la derecha.

PASOS DEL MÉTODO

¿CÓMO SE ORDENA EL ARRAY?

• Se fija un puntero en el elemento pivote. El elemento pivote se compara con los elementos a partir del primer índice.

• Si el elemento es mayor que el elemento pivote, se fija un segundo puntero para ese elemento.

• Ahora, el pivote se compara con otros elementos. Si se llega a un elemento menor que el elemento pivote, el elemento menor se intercambia con el elemento mayor encontrado anteriormente.

• De nuevo, se repite el proceso para establecer el siguiente elemento mayor como segundo puntero. Y, se intercambia con otro elemento más pequeño.

• El proceso continúa hasta que se alcanza el penúltimo elemento.

• Finalmente, el elemento pivote se intercambia con el segundo puntero.

PASO 3: DIVIVIR SUBARREGLOS

03

Se vuelven a elegir los elementos de pivote para las subpartes izquierda y derecha por separado. Y se repite el paso 2.

Se dividen los subarreglos hasta que cada subarreglo esté formado por un solo elemento. En este punto, el array ya está ordenado.

Ventajas

- Requiere de pocos recursos en comparación a otros métodos de ordenamiento
- Ciclo interno es extremadamente corto
- En la mayoría de los casos, se requiere aproximadamente N log N operaciones
- No se requiere de espacio adicionala durante ejecución

Desventajas

- Se complica la implementación si la recursión no es posible
- Un simple error en la implementación puede pasar sin detección, lo que provocaría un rendimiento pésimo.
- No es útil para aplicaciones de entrada dinámica, donde se requiere reordenar una lista de elementos con nuevos valores
- Se pierde el orden relativo de los elementos identicos

Aplicaciones para usar Quicksort

- Para ordenar una lista de números o nombres
- Utilización antes de implementar una búsqueda binaria
- Utilizado como el método de ordenamiento en tarjetas gráficas

04 CONCLUSIÓN

El método de ordenamiento Quicksort es un método muy rápido ya que divide al arreglo en pequeños subgrupos y los va comprando hasta reducir los subgrupos a la mínima cantidad evitando hacer comparaciones innecesarias y pasadas de mas.