Machine Learning and Data Mining

Christos Dimitrakakis

September 13, 2024

Outline

The problems of Machine Learning (1 week)
Introduction
Course Contents
Objective functions
Pitfalls

The problems of Machine Learning (1 week)

Introduction Course Contents Objective functions Pitfalls

Machine Learning And Data Mining

The nuts and bolts

- ► Models
- Algorithms
- ► Theory
- ► Practice

Problems

- ► Data collection
- Classification
- Regression
- Clustering
- Compression
- Reinforcement learning

Machine learning

Data Collection

- Downloading a clean dataset from a repository
- Performing a survey
- Scraping data from the web
- Deploying sensors, performing experiments, and obtaining measurements.

Modelling (what we focus on this course)

- ► Simple: the bias of a coin
- Complex: a language model.
- The model depends on the data and the problem

Algorithms and Decision Making

- ▶ We want to use models to make decisions.
- ▶ Decisions are made every step of the way.
- Decisions are automated algorithmically.

The main problems in machine learning and statistics

Prediction

- Will it rain tomorrow?
- How much will bitcoin be worth next year?

Inference

- Does my poker opponent have two aces?
- ▶ What is the mass of the moon?
- What is the law of gravitation?

Decision Making

- Should I go hiking tomorrow?
- Should I buy some bitcoins?
- ► Should I fold, call, or raise in my poker game?
- ▶ How can I get a spaceship to orbit the moon?

The need to learn from data

Problem definition

- What problem do we need to solve?
- ► How can we formalise it?
- What properties of the problem can we learn from data?

Data collection

- ► Why do we need data?
- ► What data do we need?
- How much data do we want?
- How will we collect the data?

Modelling and decision making

► How will we compute something useful?

Learning from data

Unsupervised learning

- ightharpoonup Given data x_1, \ldots, x_T .
- Learn about the data-generating process.

Supervised learning

- ightharpoonup Given data $(x_1, y_1), \ldots, (x_T, y_T)$
- ▶ Learn about the relationship between x_t and y_t .
- Example: Classification, Regression

Online learning

- ▶ Sequence prediction: At each step t, predict x_{t+1} from x_1, \ldots, x_t .
- Conditional prediction: At each step t, predict y_{t+1} from $x_1, y_1, \dots, x_t, y_t, x_{t+1}$

Reinforcement learning

Learn to act in an unknown world through interaction and rewards

Course Contents

Models

- k-Nearest Neighbours.
- Linear models and perceptrons.
- Multi-layer perceptrons (aka deep neural networks).
- ► Trees.
- Mixture models (bagging, boosting).
- Support vector machines.

Algorithms

- (Stochastic) Gradient Descent.
- Linear programming.
- Quadratic programming
- Bayesian inference.
- Expectation maximisation.
- ► Monte Carlo Methods.

Supervised learning

The general goal is learning a function $f: X \to Y$.

Classification

- ▶ Input data $x_t \in \mathbb{R}$, $y_t \in [m] = \{1, 2, ..., m\}$
- Learn a mapping f so that $f(x_t) = y_t$ for unseen data

Regression

- ightharpoonup Input data x_t, y_t
- lackbox Learn a mapping f so that $f(x_t) = \mathbb{E}[y_t]$ for unseen data

Unsupervised learning

The general goal is learning the data distribution.

Compression

- Learn two mappings c, d
- ightharpoonup c(x) compresses an image x to a small representation z.
- ightharpoonup d(z) decompresses to an approximate image \hat{x} .

Density estimation

- lnput data x_1, \ldots, x_T from distribution with density p
- Problem: Estimate p.

Clustering

- ightharpoonup Input data x_1, \ldots, x_T
- ▶ Assign each data x_t . to cluster label c_t .

Supervised learning objectives

- ▶ Data (x_t, y_t) , $x_t \in X$, $y_t \in Y$, $t \in [T]$.
- ▶ i.i.d assumption: $(x_t, y_t) \sim P$ for all t.
- ▶ Supervised decision rule $\pi(a_t|x_t)$

Classification

- Predict the labels correctly, i.e. $a_t = y_t$.
- Have an appropriate confidence level

Regression

- Predict the mean correctly
- Have an appropriate variance around the mean

Unsupervised learning objectives

- ► Reconstruct the data well
- ► Be able to generate data

Reinforcement learning objectives

► Maximise total reward

Pitfalls

Reproducibility

- Modelling assumptions
- Distribution shift
- Interactions and feedback

Fairness

- Implicit biases in training data
- ► Fair decision rules and meritocracy

Privacy

- Accidental data disclosure
- Re-identification risk