Coarse woody debris: Pre- and post-thinning

Morgan Gray

2022-11-01

Read and summarize coarse woody debris data (plot-level total, plot-level mean)

```
# Read data tables for derived total and mean, with metric units
input_wd <-
  read_csv(here(path_derived, "thin_total-by-plot-type-trmt.csv")) %>%
  bind_rows(read_csv(here(path_derived, "thin_mean-by-plot-type-class-trmt.csv"))) %>%
  arrange(survey, plot_id, data_type, fuel_class) %>%
  mutate_if(is.character, as_factor) %>%
  mutate(value = fxn_digit(value_si),
         timing = ifelse(survey %in% "cont", "survey1", "survey2")) %>%
  select(-value_si,
         -units) %>%
  rename(units = units_si,
        metric = statistic) %>%
  relocate(c(metric, subset), .after = value) %>%
  filter(data_type %in% "wd")
# # Create subset for mean by fuel class
# wd class <-
  input wd %>%
  filter(data_type %in% "wd",
          metric %in% "mean")
# # Create subset for total (all fuel classes combined)
# wd_total <-
# input_wd %>%
# filter(data_type %in% "wd",
#
          metric %in% "total") %>%
# remove_empty("cols")
```

Coarse woody debris by fuel class, pre- and post-thinning


```
mean,
sd,
n) %>%
fxn_kable()
```

lab_type	lab_fuel	lab_thin	metric	units	mean	sd	n
Coarse woody debris	All	Pre-thinning	total	tons_per_hectare	50.214	58.286	5
Coarse woody debris	All	Post-thinning	total	tons_per_hectare	191.854	165.076	5
Coarse woody debris	1-hr	Pre-thinning	mean	tons_per_hectare	0.989	1.125	5
Coarse woody debris	1-hr	Post-thinning	mean	tons_per_hectare	2.053	1.174	5
Coarse woody debris	10-hr	Pre-thinning	mean	tons_per_hectare	3.395	2.059	5
Coarse woody debris	10-hr	Post-thinning	mean	tons_per_hectare	5.071	2.505	5
Coarse woody debris	100-hr	Pre-thinning	mean	tons_per_hectare	24.011	48.154	5
Coarse woody debris	100-hr	Post-thinning	mean	tons_per_hectare	8.640	3.985	5
Coarse woody debris	1000-hr rotten	Pre-thinning	mean	tons_per_hectare	6.962	15.568	5
Coarse woody debris	1000-hr rotten	Post-thinning	mean	tons_per_hectare	0.000	0.000	5
Coarse woody debris	1000-hr sound	Pre-thinning	mean	tons_per_hectare	14.856	21.144	5
Coarse woody debris	1000-hr sound	Post-thinning	mean	tons_per_hectare	176.090	160.365	5

```
# 1000-hr rotten (hr1000r) is not normally distributed
# 29 of the 30 transect measurements were 0
# 9 of 10 plot-level means were 0 (pre-thin: 4/5, post-thin: 5/5)
input_wd %>%
  filter(value == 0) %>%
  group_by(lab_type, lab_fuel, lab_thin) %>%
  count() %>%
  fxn_kable()
```

lab_type	lab_fuel	lab_thin	n
Coarse woody debris	1000-hr rotten	Pre-thinning	4
Coarse woody debris	1000-hr rotten	Post-thinning	5
Coarse woody debris	1000-hr sound	Pre-thinning	3

Check assumptions

Subset data subset by fuel class and timing because these are the groupings that will be evaluated with statistical tests.

```
# Determine if there are extreme outliers
#
# No extreme outliers for total CWD
# Outlier for total pre-thinning in FORO8
#
# Three extreme outliers by fuel class :
# Pre-thinning hr0100 and hr1000r in FORO8
# Post-thinning hr0001 in FORO6
#
# Overall it looks like something was different about FORO8 during pre- and post-thinning surveys
# input_wd %>%
group_by(lab_type, lab_fuel, lab_thin, metric, units) %>%
identify_outliers(value) %>%
```

lab_type	lab_fuel	lab_thin	plot_id	value	metric	units	is_outlier	is
Coarse woody debris	1-hr	Post-thinning	FOR06	4.037	mean	tons_per_hectare	TRUE	T
Coarse woody debris	100-hr	Pre-thinning	FOR08	110.112	mean	tons_per_hectare	TRUE	T
Coarse woody debris	1000-hr rotten	Pre-thinning	FOR08	34.811	mean	tons_per_hectare	TRUE	T
Coarse woody debris	All	Pre-thinning	FOR08	146.628	total	tons_per_hectare	TRUE	F
Coarse woody debris	1-hr	Pre-thinning	FOR07	2.842	mean	tons_per_hectare	TRUE	F
Coarse woody debris	1-hr	Post-thinning	FOR08	0.917	mean	tons_per_hectare	TRUE	F

```
# Evaluate normality
# Shapiro test results indicated total CWD was normally distributed at each time point
# Shapiro test results by fuel class indicated 100-hr, 1000-hr sound (pre-thin) were not normally distr
input_wd %>%
  # Exclude hr1000r because we already know it's not normal
 filter(fuel_class %nin% "hr1000r") %>%
  # Rename columns for shapiro test
  select(id = plot_id,
        time = lab_thin,
        score = value,
        lab_type,
         lab_fuel,
         metric) %>%
  group_by(lab_type, lab_fuel, time, metric) %>%
  shapiro_test(score) %>%
  clean_names() %>%
  mutate(statistic = fxn_digit(statistic),
         \# p = fxn_digit(p),
         is_normal = p>0.05) %>%
  select(lab_type,
         lab_fuel,
         lab_thin = time,
         metric,
         is_normal,
        р,
         statistic) %>%
  arrange(is_normal, metric, lab_fuel) %>%
  filter(is_normal == FALSE) %>%
  fxn_kable()
```

lab_type	lab_fuel	lab_thin	metric	is_normal	p	statistic
Coarse woody debris	100-hr	Pre-thinning	mean	FALSE	0.0003236	0.579
Coarse woody debris	1000-hr sound	Pre-thinning	mean	FALSE	0.0448490	0.770

Identify appropriate transformation

Apply a series of transformations to each subset, then evaluate impact on outliers and normality.

```
# Use four normalization functions from the bestNormalize package to create transformed subsets:
# arcsinh_x
# log_x
# orderNorm
# sqrt_x
```

```
# Check outliers for each transformation
check_transform_outlier <-</pre>
  wd_transform_eval %>%
  group_by(timing,
           fuel_class,
           transform) %>%
  identify_outliers(value) %>%
  clean_names() %>%
  select(transform,
         fuel_class,
         timing,
         plot_id,
         value,
         starts with("is")) %>%
  arrange(desc(is_extreme), transform, fuel_class)
# Pre-thin total in FORO8: No extreme outliers for orderNorm, log_x, arcsinh_x, sqrt_x
check_transform_outlier %>%
  filter(fuel_class %in% "all" & timing %in% "survey1" & plot_id %in% "FORO8") %>%
 fxn_kable()
```

transform	fuel_class	timing	plot_id	value	$is_outlier$	is_extreme
value_raw	all	survey1	FOR08	146.6280000	TRUE	FALSE
$value_std$	all	survey1	FOR08	0.1847408	TRUE	FALSE

```
# Pre-thin hr0100 in FOR08: No extreme outliers for orderNorm, log_x, arcsinh_x
check_transform_outlier %>%
  filter(fuel_class %in% "hr0100" & timing %in% "survey1" & plot_id %in% "FOR08") %>%
  fxn_kable()
```

transform	fuel_class	timing	plot_id	value	is_outlier	is_extreme
value_raw	hr0100	survey1	FOR08	110.112000	TRUE	TRUE
value_sqrt	hr0100	survey1	FOR08	2.697155	TRUE	TRUE
value_std	hr0100	survey1	FOR08	2.823576	TRUE	TRUE
value_arcsine	hr0100	survey1	FOR08	2.231336	TRUE	FALSE
value_log	hr0100	survey1	FOR08	2.180986	TRUE	FALSE
value_ordnorm	hr0100	survey1	FOR08	1.644854	TRUE	FALSE

```
# Post-thin hr0001 in FOR06: No extreme outliers for orderNorm
check_transform_outlier %>%
  filter(fuel_class %in% "hr0001" & timing %in% "survey2" & plot_id %in% "FOR06") %>%
  fxn_kable()
```

transform	fuel_class	timing	plot_id	value	is_outlier	is_extreme
value_arcsine	hr0001	survey2	FOR06	1.617466	TRUE	TRUE
value_log	hr0001	survey2	FOR06	1.320270	TRUE	TRUE
value_raw	hr0001	survey2	FOR06	4.037000	TRUE	TRUE
value_sqrt	hr0001	survey2	FOR06	1.706900	TRUE	TRUE
value_std	hr0001	survey2	FOR06	2.061163	TRUE	TRUE
value_ordnorm	hr0001	survey2	FOR06	1.644854	TRUE	FALSE

```
# Pre-thin hr1000r in FOR08: No improvement with any transformation
check_transform_outlier %>%
  filter(fuel_class %in% "hr1000r" & timing %in% "survey1" & plot_id %in% "FOR08") %>%
  fxn_kable()
```

transform	fuel_class	timing	plot_id	value	is_outlier	is_extreme
value_arcsine	hr1000r	survey1	FOR08	2.846050	TRUE	TRUE
value_log	hr1000r	survey1	FOR08	2.846050	TRUE	TRUE
value_ordnorm	hr1000r	survey1	FOR08	1.644854	TRUE	TRUE
value_raw	hr1000r	survey1	FOR08	34.811000	TRUE	TRUE
value_sqrt	hr1000r	survey1	FOR08	2.846050	TRUE	TRUE
value_std	hr1000r	survey1	FOR08	2.846050	TRUE	TRUE

```
# Check normality for each transformation
check_transform_normal <-</pre>
 wd_transform_eval %>%
  # Exclude hr1000r because we already know it's not normal
 filter(fuel_class %nin% "hr1000r") %>%
  # Rename columns for shapiro test
  select(id = plot_id,
        time = timing,
         score = value,
         fuel_class,
         transform) %>%
  group_by(fuel_class,
           time,
           transform) %>%
  shapiro_test(score) %>%
  clean_names() %>%
  mutate(statistic = fxn_digit(statistic),
         is_normal = p>0.05) %>%
  select(fuel_class,
```

fuel_class	timing	transform	is_normal	p	statistic
hr0100	survey1	value_arcsine	TRUE	0.0762655	0.797
hr0100	survey1	value_log	TRUE	0.1061219	0.815
hr0100	survey1	value_ordnorm	TRUE	0.5416692	0.922

```
fuel_class timing transform is_normal p statistic
```

```
# The orderNorm transformation looks pretty good for the total and mean subsets
wd transform eval %>%
 filter(transform %nin% "value_sqrt") %>%
 ggdensity(x = "value",
            color = "fuel_class") +
 geom_vline(xintercept = 0,
            linetype = "dashed") +
 facet_grid(fuel_class~transform,
            scales = "free") +
  theme(panel.spacing = unit(1, "lines"),
        legend.position = "right") +
  labs(title = "Distribution of values, by fuel class and transformation",
      caption = "Note: axis scales differ between plots",
      x = "Mean tons per acre",
      y = "Density") +
  xlim(-5, 10)
```

Distribution of values, by fuel class and transformation

Note: axis scales differ between plots

```
# The orderNorm transformed subsets look ok compared to the raw or standardized data
wd_transform_eval %>%
  filter(transform %in% c("value_raw", "value_std", "value_ordnorm")) %>%
  mutate(transform = str_remove_all(transform, "value_")) %>%
  ggqqplot("value",
           palette = colors_thin_bright,
           color = "timing") +
  # To let scales on y-axis vary between faceted columns
  ggh4x::facet_grid2(transform ~ fuel_class,
                     scales="free",
                     independent = "all") +
  theme(legend.position = "top",
        axis.text = element_text(size = 9)) +
  geom_hline(yintercept = 0,
             linetype = "longdash",
             color = "gray5") +
  scale_x_continuous(breaks = c(-1, 0, 1))
```


Create transformed data as input for statistical tests

```
wd_transform <-
    read_csv(here(path_derived, "thin_wd_transformed_metric-units.csv")) %>%
    arrange(timing, plot_id, data_type, fuel_class) %>%
    # Non-numeric variables must be factors for rstatix
    mutate_if(is.character, as_factor)

wd_transform_total <-
    wd_transform %>%
    filter(data_type %in% "wd",
        metric %in% "total")

wd_transform_class <-
    wd_transform %>%
    filter(data_type %in% "wd",
        metric %in% "wd",
        metric %in% "mean")
```

Conduct statistical tests

```
# Test for an effect of treatment on total CWD load (all CWD fuel classes combined)
# We found no significant difference in total fuel load between measurements collected pre- and post-th
```

Did thinning treatment have a significant effect on total coarse woody debris fuel load?

data_type	fuel_class	p_adj	p_adj_sig	statistic	d_fn	d_fd	ges
Coarse woody debris	All	0.079	n.s.	5.474	1	4	0.358

```
# Two-way interaction between thinning treatment and fuel class
# We wanted to know if the thinning treatment induced a significant change in fuel load among the five
# In other words, was there a significant interaction between thinning and fuel class on fuel load fo
# We conducted a two-way repeated measures ANOVA to evaluate the effect of thinning over different fuel
# There was no statistically significant interaction between thinning treatment and fuel class on CWD f
wd_transform_class %>%
 fxn_aov2_me(index_value = "value_tran",
              index_id = "plot_id",
              index_time = "timing",
              index_variable = "fuel_class") %>%
  fxn_signif_adj() %>%
  mutate(data_type = index_wd) %>%
  select(data_type,
           effect,
             starts_with("p_adj"),
             statistic,
             starts_with("d_"),
             ges) %>%
  fxn_kable()
```

Did thinning treatment have a significant effect on the individual fuel classes?

-		
	data_type	effect
	Coarse woody debris	time
	Coarse woody debris	time:varia
	Coarse woody debris	variable

```
# time:variable 0.249 n.s. 2.512 4.00 16.00 0.141000
```

```
# Main effect of thinning treatment on fuel load, for each fuel class
# We analyzed the effect of thinning treatment for each fuel class. The Bonferroni adjustment was appli
wd_transform_class %>%
 group_by(fuel_class) %>%
 fxn_aov_me(index_value = "value_tran",
             index_id = "plot_id",
             index_time = "timing") %>%
 fxn_signif_adj() %>%
 mutate(data_type = index_wd) %>%
  select(data_type,
        fuel_class,
        starts_with("p_adj"),
        statistic,
        starts_with("d")) %>%
  arrange(p_adj) %>%
  fxn_kable()
```

data_type	fuel_class	p_adj	p_adj_sig	statistic	d_fn	d_fd
Coarse woody debris	hr1000s	0.00229	**	111.145	1	4
Coarse woody debris	hr0010	0.04000	*	23.752	1	4
Coarse woody debris	hr0001	0.65500	n.s.	3.585	1	4
Coarse woody debris	hr0100	1.00000	n.s.	0.879	1	4
Coarse woody debris	hr1000r	1.00000	n.s.	1.000	1	4

```
# Create individual plots
all <- fxn_boxplot_class("all")
hr0001 <- fxn_boxplot_class("hr0001")
hr0010 <- fxn_boxplot_class("hr010")
hr0100 <- fxn_boxplot_class("hr0100")
hr1000r <- fxn_boxplot_class("hr1000r")
hr1000s <- fxn_boxplot_class("hr1000s")

# Join plots using patchwork
all + hr0001 + hr0010 + hr0100 + hr1000r + hr1000s</pre>
```

