Zadanie: ZAP Zapobiegliwy student

XXXI OI, etap I. Plik źródłowy zap.* Dostępna pamięć: 256 MB.

16.10-20.11.2023

Podczas festiwalu nauki na Uniwersytecie Bajtockim oferowane jest n różnych wykładów, ponumerowanych od 1 do n. Każdy wykład trwa przez pewien spójny przedział czasu. Student Bajtazar chciałby wybrać wykłady, w których będzie uczestniczyć. Wykłady wybrane przez Bajtazara muszą odbywać się w różnym czasie.

Dla Bajtazara wszystkie z oferowanych wykładów są równie ciekawe. Woli się jednak zabezpieczyć przed wszelkiego rodzaju wypadkami losowymi. Chciałby więc wybrać wykłady w taki sposób, żeby w przypadku odwołania jednego (dowolnie wybranego) z nich mógł dobrać jeszcze jeden z pozostałych wykładów, który nie będzie kolidował z jego pozostałymi wykładami z pierwszego wyboru. Pomóż mu wybrać największą możliwą liczbę wykładów, które spełniają powyższe warunki.

Formalnie, jeśli Bajtazar zdecyduje się wybrać k parami różnych i niekolidujących ze sobą wykładów u_1, \ldots, u_k ($1 \le u_i \le n$), to dla każdego $i = 1, \ldots, k$, musi istnieć wykład $v_i \in \{1, \ldots, n\}$ taki że $v_i \notin \{u_1, \ldots, u_k\}$ oraz wykłady $u_1, \ldots, u_{i-1}, v_i, u_{i+1}, \ldots, u_k$ nie kolidują ze sobą. Dwa wykłady nie kolidują ze sobą, gdy jeden z nich zaczyna się dokładnie wtedy, gdy kończy się drugi z nich, lub później. Bajtazar chce zmaksymalizować liczbę k tak wybranych wykładów.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita $n \ (n \geq 2)$ oznaczająca liczbę wszystkich wykładów. Każdy z kolejnych n wierszy zawiera opis jednego wykładu. W i-tym z tych wierszy znajdują się dwie liczby całkowite $a_i, b_i \ (1 \leq a_i < b_i \leq 10^9)$ oznaczające moment rozpoczęcia i moment zakończenia i-tego wykładu. Wykład i-ty oraz j-ty nie kolidują ze sobą, jeśli $b_i \leq a_j$ lub $b_j \leq a_i$.

Wyjście

W pierwszym wierszu wyjścia powinna znaleźć się największa możliwa liczba wykładów k spełniająca założenia Bajtazara. W k kolejnych wierszach powinny znaleźć się po dwie liczby u_i i v_i z zakresu od 1 do n, przy czym u_i oznacza numer wykładu wybranego przez Bajtazara, a v_i oznacza numer wykładu zapasowego do wykładu o numerze u_i . Pary te można wypisać w dowolnej kolejności. Liczby v_1, \ldots, v_k nie muszą być parami różne.

Przykład

Dla danych wejściowych:	jednym z poprawnych wyników jest:	
8	3	
1 5	1 3	
3 10	4 6	
4 8	8 7	
9 12		
11 16		

Wyjaśnienie przykładu: Bajtazar zdecydował się wybrać wykłady o numerach $u_1 = 1$, $u_2 = 4$ i $u_3 = 8$, odbywające się odpowiednio w przedziałach czasu [1,5], [9,12] i [15,21]. Wykłady te nie kolidują ze sobą. Ponadto:

- Pierwszy zapasowy wykład, $v_1 = 3$, odbywa się w przedziałe czasu [4,8]. Wykład ten nie koliduje z wykładami odbywającymi się w przedziałach czasu [9,12] i [15,21].
- Drugi zapasowy wykład, $v_2 = 6$, odbywa się w przedziałe czasu [14,15]. Wykład ten nie koliduje z wykładami odbywającymi się w przedziałach czasu [1,5] i [15,21].
- Trzeci zapasowy wykład, $v_3 = 7$, odbywa się w przedziale czasu [20, 22]. Wykład ten nie koliduje z wykładami odbywającymi się w przedziałach czasu [1, 5] i [9, 12].

Testy przykładowe. Test 0 to test z przykładu powyżej. Poza tym:

1ocen: n = 100, *i*-ty wykład to [i, i + 1]; **2ocen:** $n = 500\,000$, *i*-ty wykład to [i, i + 100].

Ocenianie

Jeśli tylko pierwszy wiersz będzie poprawny, Twój program uzyska 50% punktów za dany test. Jeśli pierwszy wiersz będzie różnił się o 1 od wzorcowego (ale dobór wykładów zapasowych będzie poprawny), Twój program uzyska 15% punktów za dany test.

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Ograniczenia	Punkty
1	$n \le 3000$	40
2	$n \le 500000$	60