

CE6361 Groundwater Hydrology, HW#4, Fall 1993 Due:

1) Piezometric heads are measured simultaneously in thirteen wells penetrating an isotropic confined aquifer of thickness B=50 meters, hydraulic conductivity K=20 meters/day, and effective porosity of n=0.23.

Wel	1 1	2	3	4	5	6	7	8	9	10	11	12	13
x	4.3	16.5	7.0	3.0	11.0	22.0	8.0	3.2	18.1	13.5	4.0	8.7	19.5
У	1.0	3.5	5.1	6.5	7.0	6.5	9.0	11.8	10.0	12.9	15.5	16.1	16.3
h	34.6	35.1	32.8	32.1	31.5	34.5	33.3	34.4	34.3	35.2	35.2	37.3	36.3

Each x,y coordinate unit = 200 meters

- → (a) Draw a contour map of the head distribution (1 meter contour intervals) and the flowlines.
- (b) Use inverse-distance weighting to grid the data onto a 40 x 40 grid (with the lower left corner of the grid at (0,0)). Use the gridded data to draw a second contour map and compare the results to the map in part (a). What are the advantages to gridding data for mapping? What are the disadvantages?
- (c) Using either map, determine the specific discharge (direction and magnitude) at points A(10,4) and B(16,11).
- (d) Estimate the total flow through the aquifer between wells No. 10 and No. 9.
- (e) Estimate the time of travel for a pollutant introduced into the aquifer in the vicinity of well No. 12 to reach a pumping well near well No. 5.

Page 1

B) CONTOUR MAP & FLOWLINES

INUFRSE DISTANCE GRIDDING

- b) Results, Pumping board more pronounced.

 "salated points produce "injection" features that
 way note exist
 - delvontages Ofast @ automostic
 - disoduentages lines secret distance is limited may identify non-existent features.

c) A (10,4)

q= Kah

dh = 1.0m

de = (1-1)(200m)

K = 20 mld

q=0.0909 mld ___ (IUTO PUMPINE BOWL)

LOR SLIGHTLY W OF DUE WORTH)

B(16, 11)

q= Kdh

dh = 1-0

de = (1.9)(200m)

K=20~1d

Q=0.0526 m/d /

(OR SLIGHTLY W OF DUE SOUTH)

$$\frac{dh}{dl} \approx \frac{1.0m}{(2.0)(200m)} = 0.0025$$