Clustering

Why cluster?

Information extraction

Creating hierarchy of objects

Data simplification set for further analysis

Data compression

Anomaly detection

Feature generation

Clustering is unsupervised

No specific task

No specific number of cluster

No specific quality criterion

K-Means

The number of clusters is predefined.

 μ_i is the center of C_i cluster.

The aim is to minimize the variance:

$$\sum_{\mathbf{x}_j \in X} \min_{\mu_i} \left| \left| \mathbf{x}_j - \mu_i \right| \right|_2^2$$

K-Means

K-Means Algorithm

1. Initialize clusters at random.

2. Assign datapoint to cluster with the closest center.

3. Shift cluster's center to the center of mass:

$$\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x}_j \in C_i} \mathbf{x}_j$$

4. Repeat 2-3. until convergence.

Selecting the correct number of clusters

Initializing the centers

Initializing the centers

Initializing the centers

k-means++

- 1) Select the first center randomly among the data points.
- 2) For every x calculate the distance to the nearest center M(x).
- 3) Select the next center with probability that is proportional to $M^2(x)$.
- 4) Repeat 2-3 (k 1) times.

5) Launch k-means.

Mean Shift

The number of clusters is not predefined.

$$\mu_i^0 = x_i$$

$$\mu_i^{t+1} = \frac{\sum_{\mathbf{x}_j \in N(\mu_i^t)} RBF(\mathbf{x}_j - \mu_i^t) \mathbf{x}_j}{\sum_{\mathbf{x}_j \in N(\mu_i^t)} RBF(\mathbf{x}_j - \mu_i^t)},$$

 $N(\mu_i^t)$ – is some neighborhood of μ_i .

$$RBF^*(\mathbf{x}_j - \mathbf{\mu}_i^t) = e^{-c\left|\left|\mathbf{x}_j - \mathbf{\mu}_i^t\right|\right|_2^2}$$

Repeat until convergence, then merge close centers.

^{*}Radial Basis Function

Non-spherical clusters

Clusters of different sizes

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

The number of clusters is not predefined.

Define core samples – data points that contain at least m data points in their ϵ -neighborhood.

Merge core samples (if they are within ϵ of each other) and their neighborhoods.

Hierarchical clustering

Agglomerative Clustering

Hierarchical bottom-to-top clustering.

Initialize every point as its own cluster.

Three linkage strategies. Each strategy aims to minimize on of the following metrics:

- ward variance of joined clusters
- average average distance between points in clusters
- maximum (complete) maximum distance between points in clusters

Join until just one cluster remains.

As an additional condition you can add connectivity constraint – meaning we only join clusters if the minimum distance between them is less then some predetermined constant.

Without connectivity constraints (time 0.11s)

With connectivity constraints (time 0.16s)

AgglomerativeClustering

Clustering metrics

External:

- End metric
- Rand score
- Mutual information
- Homogeneity score:

$$\frac{1}{|D|} \sum_{i} \max_{y} |\mathbf{x}_{j} \in C_{i}, y_{j} = y|$$

Clustering metrics

Internal:

Silhouette coefficient:

$$s = \frac{b - a}{\max(a, b)}$$

Dunn index:

$$D = \frac{\min_{i \neq j} \rho(\mu_i, \mu_j)}{\max_{\mathbf{x}_i, \mathbf{x}_j \in \mu} \rho(\mathbf{x}_i, \mathbf{x}_j)}$$

- a The mean distance between a sample and all other points in the same cluster.
- *b* The mean distance between a sample and all other points in the *next nearest cluster*.

Davies-Bouldin index:

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{\overline{\rho(\mu_i, \mathbf{x}^i)} + \overline{\rho(\mu_j, \mathbf{x}^j)}}{\rho(\mu_i, \mu_j)} \right)$$