CLAIMS

1. An isomer, enantiomer, diastereoisomer, or tautomer of a compound, represented by formula I:

$$R^{2} \xrightarrow{A} M^{1} M^{2} Z$$

$$R^{3} \qquad (I)$$

5

wherein

---- represents either a single or a double bond;

10

B is -N- and **A** is $=CR^{1}$ - or =N-; or

B is =C- and A is O, S or NR¹;

is selected from the group consisting of: H, (C₁₋₆)alkyl optionally substituted with:

halogen, OR¹¹, SR¹¹ or N(R¹²)₂, wherein R¹¹ and each R¹² is independently
H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-aryl or
(C₁₋₆)alkyl-Het, said aryl or Het optionally substituted with R¹⁶⁰; or
both R¹² are covalently bonded together and to the nitrogen to which they are

both R¹² are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle;

the group $-C(=Y^1)-Z$ is covalently linked to either M^2 or M^3 ,

25 M¹ is CR^{4a},

 M^2 or M^3 , when not linked to $-C(=Y^1)-Z$, is CR^5 , M^4 is CR^{4b} .

and in addition one or two of the groups selected from M^1 , M^2 , M^3 and M^4 may also be N, with the proviso that the group M^2 or M^3 to which $-C(=Y^1)-Z$ is linked is a C-

Y¹ is O or S;

5 **Z** is defined as NR^{N2}-SO₂-R^C or NR^{N3}-SO₂-N(R^{N2})R^{N1}, wherein R^C, R^{N1} or any heterocycle formed by R^{N1} and R^{N2} is optionally substituted with R⁶⁰;

R² is selected from: halogen or R²¹, wherein R²¹ is aryl or **Het**, said R²¹ is optionally substituted with R¹⁵⁰;

10

 \textbf{R}^{3} is selected from (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, (C₁₋₃)alkyl-(C₅₋₇)cycloalkenyl, (C₆₋₁₀)bicycloalkyl, (C₁₋₃)alkyl-(C₆₋₁₀)bicycloalkenyl, (C₁₋₃)alkyl-(C₆₋₁₀)bicycloalkenyl, **HCy** or (C₁₋₃)alkyl-**HCy**,

15

wherein **HCy** is a saturated or unsaturated 4 to 7-membered heterocyclic group with 1 to 3 heteroatoms selected from O, S and N; said alkyl, cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl, **HCy** and alkyl-**HCy** being optionally substituted with from 1 to 4 substituents selected from: a) halogen;

20

- b) (C₁₋₆)alkyl optionally substituted with:
 - 1 to 3 substituents selected from halogen;
 - OR^{31} or SR^{31} wherein R^{31} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or

25

- $N(\mathbf{R^{32}})_2$ wherein each $\mathbf{R^{32}}$ is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or both $\mathbf{R^{32}}$ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

30

c) OR^{33} or SR^{33} wherein R^{33} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl;

d) $N(\mathbf{R}^{35})_2$ wherein each \mathbf{R}^{35} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or both \mathbf{R}^{35} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

10

R⁶⁰ is defined as 1 to 4 substituents independently selected from:

- 1 to 3 substituents selected from halogen;
- one of each substituent selected from: OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl, SO $_3$ H; and
- 1 to 3 substituents selected from:
- a) (C₁₋₆) alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇) spirocycloalkyl optionally containing 1 or 2 heteroatoms selected from N, O and S; (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, all of which optionally being substituted with R¹⁵⁰:
- b) ORO;
- c) $OC(O)R^O$;
- 15 **d)** SR^{o} , $SO_{2}R^{c}$, $SO_{2}N(R^{N2})R^{N1}$, $SO_{2}N(R^{N2})C(O)R^{c}$, $CONR^{N3}SO_{2}N(R^{N2})R^{N1}$, or $CONR^{N2}SO_{2}R^{c}$;
 - e) $N(R^{N2})R^{N1}$, $N(R^{N2})COOR^{C}$, $N(R^{N2})SO_2R^{C}$ or $N(R^{N1})OR^{O}$;
 - f) N(RN2)CORC;
 - g) $N(R^{N3})CON(R^{N2})R^{N1}$;
- 20 h) $N(R^{N3})COCOR^{C}$, $N(R^{N3})COCOOR^{O}$, $N(R^{N3})COCON(R^{N2})OR^{O}$, or $N(R^{N3})COCON(R^{N2})R^{N1}$;
 - i) CORo;
 - i) COORO;
 - k) $CON(R^{N2})R^{N1}$;
- 25 I) aryl, **Het,** (C₁₋₄)alkyl-aryl or (C₁₋₄)alkyl-**Het**, all of which optionally being substituted with **R**¹⁵⁰;

wherein said R^{N1} , R^{C} and/or R^{O} are optionally substituted with R^{150} as defined,

- 30 R¹⁵⁰ is defined as 1 to 4 substituents independently selected from:
 - 1 to 3 substituents selected from halogen;
 - one of each substituent selected from: OPO $_3$ H, NO $_2$, cyano, azido, SO $_3$ H C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; and
 - 1 to 3 substituents selected from:

- a) (C₁₋₆) alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)spirocycloalkyl optionally containing 1 or 2 heteroatoms selected from N, O and S; (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₃) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁶⁰;
- b) OR°:

15

25

30

- c) OC(O)R^o;
- d) SR^{O} , SO_2R^{C} , $SO_2N(R^{N2})R^{N1}$ or $SO_2N(R^{N2})C(O)R^{C}$;
- e) N(R^{N2})R^{N1}, N(R^{N2})COOR^C, N(R^{N2})SO₂R^C or N(R^{N1})OR^O;
- f) $N(R^{N2})COR^{C}$;
- g) $N(R^{N3})CON(R^{N2})R^{N1}$;
- 10 h) $N(R^{N3})COCOR^{C}$, $N(R^{N3})COCOOR^{O}$, $N(R^{N3})COCON(R^{N2})OH$, $N(R^{N3})COCON(R^{N2})O(C_{1-4})$ alkyl or $N(R^{N3})COCON(R^{N2})R^{N1}$;
 - i) COR°;
 - j) COOR^o;
 - k) tetrazole, triazole, CONR^{N2}SO₂R^c , CONR^{N3}-SO₂N(R^{N2})R^{N1} or CON(R^{N2})R^{N1};

wherein said R^{N1}, R^C and/or R^O are optionally substituted with R¹⁶⁰ as defined:

R¹⁶⁰ is defined as 1, 2 or 3 substituents independently selected from:

- 20 1, 2 or 3 fluorine substituents; and
 - one of each substituent selected from tetrazole, triazole, chlorine, bromine, iodine, CN, nitro, (C_{1-4}) alkyl, OCF₃, SCF₃, CF₃, COOR¹⁶¹, SO₃H, SR¹⁶¹, SO₂R¹⁶³, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, SO₂NR¹⁶²COR¹⁶², NR¹⁶²SO₂R¹⁶³, -NR¹⁶¹-CO-COOR¹⁶¹, -NR¹⁶¹-CO-CO(NR¹⁶²)₂, -CONR¹⁶¹SO₂R^c, CONR¹⁶¹-SO₂N(R¹⁶²)₂ or -SO₂-NR¹⁶¹-COR^c, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹, R¹⁶³ and each R¹⁶² is independently (C_{1-4}) alkyl, (C_{3-7}) cycloalkyl; and R¹⁶¹ and each R¹⁶² may each independently also be H; or both R¹⁶² are covalently bonded together and to the nitrogen to which they

 R^{o} , R^{c} are independently defined as (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-4}) alkyl- (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, aryl, Het, (C_{1-4}) alkyl-aryl, or (C_{1-4}) alkyl-Het; or R^{o} is also optionally defined as H.

are attached to form a 5, 6 or 7-membered saturated heterocycle;

R^{N2}, R^{N3}, R^{N4} are independently H, CH₃, (C₂₋₆)alkyl, (C₃₋₆)cycloalkyl, (C₁₋₄)alkyl-(C₃₋₆)cycloalkyl; all of which being optionally substituted with halogen, carboxy or (C₁₋₆)alkoxycarbonyl; and/or wherein said alkyl, cycloalkyl or alkylcycloalkyl is optionally substituted with hydroxy, (C₁₋₆)alkyl, (C₁₋₆)alkoxy, amino, -NH(C₁₋₄)alkyl and/or -N((C₁₋₄)alkyl)₂; or

in the case

5

15

20

25

35

- a) of a group N(R^{N2})R^{N1} the substituents R^{N2} and R^{N1}; or
- b) of a group NR^{N3}-N(R^{N2})R^{N1} the substituents R^{N3} and R^{N1}, or R^{N2} and R^{N1}; may be covalently bonded together to form a 4-, 5-, 6- or 7-membered saturated or unsaturated N-containing heterocycle or a 8-, 9-, 10- or 11-membered N-containing heterobicycle, each optionally having additionally from 1 to 3 heteroatoms selected from O, N, and S;

wherein **Het** is defined as a 4-, 5-, 6- or 7-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S, or a 8-, 9-, 10- or 11-membered heterobicycle having 1 to 5 heteroatoms selected from O, N and S;

or a salt thereof.

- 2. The compound according to claim 1, wherein
- ---- represents either a single or a double bond;

B is -N- and A is CR¹ or =N-; or

- 30 **B** is = \mathbb{C} and **A** is O, S or NR¹;
 - is selected from the group consisting of: H, (C₁₋₆)alkyl optionally substituted with:

 halogen, OR¹¹, SR¹¹ or N(R¹²)₂, wherein R¹¹ and each R¹² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-aryl or

(C₁₋₆)alkyl-**Het**, said aryl or **Het** optionally substituted with **R**¹⁶⁰; or both **R**¹² are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle;

5 the group -C(=Y1)-Z is covalently linked to either M2 or M3,

 M^1 is CR^{4a} , one of M^2 and M^3 is CR^5 , M^4 is CR^{4b} ,

and in addition one or two of the groups selected from M^1 , M^2 , M^3 and M^4 may also be N, with the proviso that the group M^2 or M^3 to which $-C(=Y^1)-Z$ is linked is an C-atom,

15 Y^1 is O or S;

10

25

30

Z is defined as NR^{N2}-SO₂-R^C, wherein R^C is optionally substituted with R⁶⁰;

 R^2 is selected from: halogen or R^{21} , wherein R^{21} is aryl or Het, said R^{21} is optionally substituted with R^{150} ;

 \textbf{R}^{3} is selected from (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, (C₅₋₇)cycloalkenyl, (C₆₋₁₀)bicycloalkyl, (C₁₋₃)alkyl-(C₅₋₇)cycloalkenyl, (C₆₋₁₀)bicycloalkyl, (C₁₋₃)alkyl-(C₆₋₁₀)bicycloalkenyl, **HCy** or (C₁₋₃)alkyl-**HCy**,

wherein **HCy** is a saturated or unsaturated 4 to 7-membered heterocyclic group with 1 to 3 heteroatoms selected from O, S and N; said alkyl, cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl, **HCy** and alkyl-**HCy** being optionally substituted with from 1 to 4 substituents selected from: a) halogen;

- b) (C₁₋₆)alkyl optionally substituted with:
 - OR^{31} or SR^{31} wherein R^{31} is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl or (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl; or
 - N(R³²)₂ wherein each R³² is independently H, (C₁₋₆)alkyl,

 (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or both \mathbb{R}^{32} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

5

c) OR^{33} or SR^{33} wherein R^{33} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl;

10

d) $N(R^{35})_2$ wherein each R^{35} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or both R^{35} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

R^{4a}, R^{4b}, R⁵ each are independently H or defined as R¹⁵⁰;

R⁶⁰ is defined as 1 to 4 substituents independently selected from:

15

20

- 1 to 3 substituents selected from halogen;
- one of each substituent selected from: OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl, SO $_3$ H; and
- 1 to 3 substituents selected from:

a) (C₁₋₆) alkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom selected from N, O and S; (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, all of which optionally being substituted with R¹⁵⁰:

- b) ORO;
- c) $OC(O)R^{O}$;
- 25 d) SR^o, SO
 - d) SR^{O} , $SO_{2}R^{C}$, $SO_{2}N(R^{N2})R^{N1}$, $SO_{2}N(R^{N2})C(O)R^{C}$ or $CONR^{N2}SO_{2}R^{C}$;
 - e) $N(R^{N2})R^{N1}$, $N(R^{N2})COOR^{C}$ or $N(R^{N2})SO_{2}R^{C}$;
 - f) $N(R^{N2})COR^{C}$;
 - g) $N(R^{N3})CON(R^{N2})R^{N1}$;
 - h) N(RN3)COCORC, N(RN3)COCOORO or N(RN3)COCON(RN2)RN1;

- i) CORO;
- j) COORO;
- k) $CON(R^{N2})R^{N1}$;
- I) aryl, **Het**, (C₁₋₄alkyl)aryl or (C₁₋₄alkyl)**Het**, all of which optionally being substituted with R¹⁵⁰;

wherein said R^{N1}, R^C and/or R^O are optionally substituted with R¹⁵⁰ as defined,

R¹⁵⁰ is defined as 1 to 4 substituents independently selected from:

- 1 to 3 substituents selected from halogen;
- one of each substituent selected from: OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; and
- 1 to 3 substituents selected from:
- a) (C₁₋₆) alkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatoms selected from N, O and S; (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₃) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁶⁰;
- b) OR^o;
- c) $OC(O)R^{O}$;
- d) SR^{O} , $SO_{2}R^{C}$, $SO_{2}N(R^{N2})R^{N1}$ or $SO_{2}N(R^{N2})C(O)R^{C}$;
- e) $N(R^{N2})R^{N1}$, $N(R^{N2})COOR^{C}$ or $N(R^{N2})SO_{2}R^{C}$;
 - f) $N(R^{N2})COR^{C}$;
 - g) $N(R^{N3})CON(R^{N2})R^{N1}$;
 - h) N(R^{N3})COCOR^c, N(R^{N3})COCOOR^o or N(R^{N3})COCON(R^{N2})R^{N1}; wherein R^{N1} is as defined or OH, OAlkyl;
- 20 i) COR^o;
 - i) COOR°;
 - k) tetrazole or $CON(R^{N2})R^{N1}$; wherein said R^{N1} , R^{C} and/or R^{O} are optionally substituted with R^{160} as defined;

25

5

10

15

R¹⁶⁰ is defined as 1, 2 or 3 substituents independently selected from:

- 1, 2 or 3 fluorine substituents; and
- one of each substituent selected from tetrazole, chlorine, bromine, iodine, CN, nitro, C₁₋₄alkyl, CF₃, COOR¹⁶¹, SO₃H, SR¹⁶¹, SO₂R¹⁶³, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, SO₂NR¹⁶²COR¹⁶², NR¹⁶²SO₂R¹⁶³, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹, R¹⁶³ and each R¹⁶² is independently (C₁₋₄)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl; and R¹⁶¹ and each R¹⁶² may each independently also be H; or both R¹⁶² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered

20

saturated heterocycle;

- $\mathbf{R}^{\mathbf{O}}$, $\mathbf{R}^{\mathbf{C}}$ are independently defined as (C_{1-6}) alkyl, (C_{3-6}) cycloalkyl, (C_{1-4}) alkyl- (C_{3-6}) cycloalkyl, (C_{2-6}) alkenyl, aryl, \mathbf{Het} , (C_{1-4}) alkyl-aryl, (C_{1-4}) alkyl- \mathbf{Het} ;
- R^{N1} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-4}) alkyl- (C_{3-6}) cycloalkyl, (C_{2-6}) alkenyl, aryl, Het, (C_{1-4}) alkyl-aryl, (C_{1-4}) alkyl-Het; or
- R^{N2}, R^{N3}, R^{N4} are independently H, CH₃, (C₂₋₆alkyl), (C₃₋₆)cycloalkyl, (C₁₋₄)alkyl(C₃₋₆)cycloalkyl; all of which being optionally substituted with halogen,
 carboxy or C₁₋₆-alkoxycarbonyl; and/or wherein said alkyl, cycloalkyl or
 alkylcycloalkyl is optionally substituted with hydroxy, C₁₋₆-alkyl, C₁₋₆-alkoxy,
 amino, -NH(C₁₋₄-alkyl) and/or -N(C₁₋₄-alkyl)₂; and
- in the case
 - a) of a group $N(R^{N2})R^{N1}$ the substituents R^{N2} and R^{N1} ; or
 - b) of a group NR^{N3}-N(R^{N2})R^{N1} the substituents R^{N3} and R^{N1}, or R^{N2} and R^{N1}; may be covalently bonded together to form a 4-, 5-, 6- or 7-membered saturated or unsaturated N-containing heterocycle or a 8-, 9-, 10- or 11-membered N-containing heterobicycle each may have additionally from 1 to 3 heteroatoms selected from O, N, and S, wherein said heterocycle or heterobicycle is optionally substituted as defined;
- wherein **Het** is defined as a 4-, 5-, 6- or 7-membered heterocycle having 1 to 4
 heteroatoms selected from O, N and S, or a 8-, 9-, 10- or 11-membered
 heterobicycle having 1 to 5 heteroatoms selected from O, N and S;

or a salt thereof.

30 3. The compound according to claim 1 selected from the group of formulas I.1 to I.5

- $R^{2} \xrightarrow{N} M^{1} M^{2} Z$ $R^{3} \longrightarrow M^{4} M^{3}$ $R^{3} \longrightarrow M^{4} M^{3}$
- $R^{2} \xrightarrow{\qquad \qquad M^{1} \qquad M^{2}} Z$
- $R^{2} \xrightarrow{N \longrightarrow M^{1} \longrightarrow M^{2}} Z$ R^{3} R^{3} $N \longrightarrow M^{4} \longrightarrow M^{3}$ $N \longrightarrow M^{4} \longrightarrow M^{3}$
- $R^{2} \xrightarrow{M^{4} \longrightarrow M^{3}} Z$
- $R^{2} \xrightarrow{M^{1} M^{2}} Z$ R^{3} $M^{4} \xrightarrow{M^{3}} Z$

wherein $\mathbf{R^1}$, $\mathbf{R^2}$, $\mathbf{R^3}$, $\mathbf{Y^1}$, \mathbf{Z} , $\mathbf{M^1}$, $\mathbf{M^2}$, $\mathbf{M^3}$ and $\mathbf{M^4}$ are defined as in claim 1.

- The compound according to claim 1, wherein R¹ is selected from the group consisting of: H and (C₁-6)alkyl.
 - 5. The compound according to claim 4, wherein \mathbf{R}^1 is H, \mathbf{CH}_3 , ethyl, or isobutyl.

- 6. The compound according to claim 5, wherein R¹ is H or CH₃.
- 7. The compound according to claim 6, wherein R^1 is CH_3 .
- 5 8. The compound according to claim 1, wherein Y¹ is O.
 - 9. The compound according to claim 1, wherein Z is NR^{N3}-SO₂-N(R^{N2})R^{N1}, wherein R^{N1} or any heterocycle formed by R^{N1} and R^{N2} is optionally substituted with R⁶⁰, and wherein R^{N3}, R^{N2}, R^{N1} and R⁶⁰ are defined as in claim 1.
 - 10. The compound according to claim 1, wherein Z is NR^{N2} - SO_2 - R^C , wherein R^C is optionally substituted with R^{60} , and wherein R^{N2} , R^C and R^{60} are defined as in claim 1.
- 11. The compound according to claim 10, wherein Z is NH-SO₂-R^c, wherein R^c is selected from the group consisting of (C₁₋₆)alkyl, (C₃₋₆)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₆)cycloalkyl, (C₂₋₆)alkenyl, phenyl, naphthyl, Het, (C₁₋₃)alkyl-phenyl, (C₁₋₃)alkyl-naphthyl, (C₁₋₃)alkyl-Het, wherein said alkyl, cycloalkyl, alkyl-cycloalkyl, alkenyl, phenyl, naphthyl, Het, alkyl-phenyl, alkyl-naphthyl, or alkyl-Het, are all optionally substituted with 1 to 4 substituents selected from R⁶⁰, wherein R⁶⁰ and Het are defined as in claim 10.
- 12. The compound according to claim 11, wherein Z is NH-SO₂-R^c, wherein R^c is selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, cyclopropyl, cycloputyl, cyclopentyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, phenyl, naphthyl, benzyl, thiophene, furan, pyrrole, imidazole, pyrazole, oxazole, isoxazole, thiazole, pyridazine, pyrimidine, pyrazine, diazepine, azepine, quinoline, isoquinoline, benzofuran, benzothiophene, benzothiazole, purine, pteridine,

imidazo[2,1-B][1,3]thiazole
$$N$$
 ;

all of which are optionally substituted with 1 to 3 substituents selected from R^{60} , wherein R^{60} is defined as in claim 11.

5 13. The compound according to claim 1, wherein R² is R²¹, wherein R²¹ is phenyl or **Het** selected from the group of formulas

and wherein said $\mathbf{R^{21}}$ is unsubstituted or substituted with $\mathbf{R^{150}}$, being defined as in claim 1.

14. The compound according to claim 1, wherein \mathbb{R}^2 is \mathbb{R}^{21} , wherein \mathbb{R}^{21} is

10

15

20

25

defined as in claim 1, and wherein R²¹ is optionally substituted with 1, 2 or 3 substituents selected from:

- 1 to 3 substituents selected from halogen;
- one of each substituent selected from: NO2, cyano, azido; and
- 1 to 2 substituents selected from:
- a) (C₁₋₄)alkyl or (C₁₋₄)alkoxy, both optionally substituted with OH,
 O(C₁₋₄)alkyl, SO₂(C₁₋₄)alkyl), 1 to 3 halogen atoms, amino,
 NH(C₁₋₄)alkyl) or N((C₁₋₄)alkyl)₂;
- b) NR¹¹¹R¹¹² wherein both R¹¹¹ and R¹¹² are independently H, (C₁₋₄)alkyl, or R¹¹² is (C₃₋₇)cycloalkyl, (C₁₋₃)alkyl(C₃₋₇)cycloalkyl, phenyl, benzyl; or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a nitrogen-containing heterocycle, each of said alkyl, cycloalkyl, alkylcycloalkyl, phenyl and benzyl, being optionally substituted with halogen or:
 - OR^{2h} or $N(R^{2h})_2$, wherein each R^{2h} is independently H, (C_{1-4}) alkyl, or both R^{2h} are covalently bonded together and to the nitrogen to which they are attached to form a nitrogencontaining heterocycle;
- c) NHCOR¹¹⁷ wherein R¹¹⁷ is (C_{1-4}) alkyl, $O(C_{1-4})$ alkyl or $O(C_{3-7})$ cycloalkyl; and
- e) $CONH_2$, $CONH(C_{1-4})$ alkyl), $CON((C_{1-4})$ alkyl)₂.
- 15. The compound according to claim 1, wherein R³ is selected from (C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, (C₆₋₁₀)bicycloalkyl, (C₆₋₁₀)bicycloalkenyl, or Het, wherein said groups are unsubstituted or mono- or disubstituted by halogen, cyano, nitro, hydroxy, (C₁₋₄)alkyl and/or O-(C₁₋₄)alkyl, wherein the alkyl groups may be fluorinated.
- The compound according to claim 15, wherein R³ is cyclopropyl, cyclobutyl,
 cyclopentyl, cyclohexyl or cycloheptyl, or a group selected from

- 17. The compound according to claim 16, wherein R³ is cyclopentyl or cyclohexyl.
- 18. The compound according to claim 1 wherein R^{4a}, R^{4b}, R⁵ each are independently H, hydroxy, halogen, cyano, nitro, carboxyl, (C₁₋₄)alkyl, CF₃, (C₁₋₄)alkoxy, -O-(C₃₋₇)cycloalkyl, -O-(C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, -O-aryl, -O-(C₁₋₃)alkyl-aryl, -O-Het, -O-(C₁₋₃)alkyl-Het, NR^{N1}R^{N2}, COR^O, NR^{N2}COR^C, CONR^{N2}R^{N1}, or NR^{N3}CONR^{N1}R^{N2}; wherein Het, R^C, R^O, R^{N1}, R^{N2}, R^{N3} and R¹⁶⁰ are as defined in claim 1; and wherein all said alkyl groups, including alkoxy, may be mono-, di- or trisubstituted by fluorine or mono-substituted by chlorine or bromine.
- 19. The compound according to claim 18 wherein R^c, R^o and R^{N1} are independently of each other H, (C₁₋₄)alkyl, aryl, (C₁₋₃)alkyl-aryl; wherein aryl is defined as phenyl optionally substituted with R¹⁶⁰, wherein R¹⁶⁰ is defined as in claim 18; and
 20 wherein all said alkyl groups may be mono-, di- or trisubstituted by fluorine or mono-substituted by chlorine or bromine; and wherein R^{N2} and R^{N3} are independently H or methyl.
- The compound according to claim 18 wherein R^{4a}, R^{4b}, R⁵ each are
 independently H, hydroxy, halogen, cyano, nitro, methyl, CF₃, methoxy, carboxy, amino, -NMe₂, -CONH₂, -NHCONH₂, -CO-NHMe, -NHCONHMe, -CO-NMe₂ or -NHCONMe₂.
- The compound according to claim 20 wherein R^{4a}, R^{4b}, R⁵ each are
 H, methyl or methoxy.
 - 22. The compound according to claim 1 wherein R^{4a} is H or methyl.

10

15

20

- 23. The compound according to claim 1 wherein at least two of the substituents selected from R^{4a}, R^{4b}, R⁵ are H.
- 24. The compound according to claim 1, wherein R⁶⁰ is each defined as 1 to 4 substituents independently selected from:
 - 1 to 3 substituents selected from halogen;
 - one of each substituent selected from: NO2, cyano, azido; and
 - 1 to 3 substituents selected from:
 - a) (C₁₋₄) alkyl, (C₃₋₇)cycloalkyl, (C₂₋₄)alkenyl, (C₂₋₄)alkynyl, (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, all of which optionally being substituted with R¹⁵⁰;
 - b) OR°;
 - e) $N(R^{N2})R^{N1}$;
 - f) $N(R^{N2})COR^{C}$;
 - j) COORO;
- k) CON(R^{N2})R^{N1};
 - I) phenyl, Het, (C₁₋₃alkyl)phenyl or (C₁₋₃alkyl)Het; wherein Het is selected from furan, tetrahydrofuran, thiophene, tetrahydrothiophene, tetrahydropyran, pyridinyl, azetidine, pyrrolidine, piperidine, piperazine, morpholine, thiomorpholine, homopiperidine and homopiperazine, all of which optionally being substituted with R¹⁵⁰; wherein said R^{N1}, R^c and/or R^o are optionally substituted with R¹⁵⁰ as

wherein said R¹¹, R² and/or R² are optionally substituted with R¹³ as defined, and R¹⁵⁰, R¹¹, R¹², R² and R⁰ are defined as in claim 1.

- 25. The compound according to claim 1, wherein
- 25 R¹⁵⁰ is defined as 1 to 4 substituents independently selected from:
 - 1 to 3 fluorine-substituents;
 - one of each substituent selected from: chlorine, bromine, iodine, NO₂, cyano, azido; and
 - 1 to 3 substituents selected from:
- a) (C₁₋₃) alkyl, CF₃, (C₃₋₆)cycloalkyl, (C₁₋₃) alkyl-(C₃₋₆)cycloalkyl, all of which optionally substituted with R¹⁶⁰;
 - b) ORO;
 - e) $N(R^{N2})R^{N1}$;
 - f) N(RN2)CORC;

25

30

j) COOR°;

defined: and

- k) $CON(R^{N2})R^{N1}$; wherein said R^{N1} , R^c and/or R^o are optionally substituted with R^{160} as
- R¹⁶⁰, R^{N1}, R^{N2}, R^C and R^O are defined as in claim 1.
 - 26. The compound according to claim 1, wherein

R¹⁶⁰ is defined as 1, 2 or 3 substituents independently selected from:

- 1, 2 or 3 fluorine substituents; and
- one of each substituent selected from chlorine, bromine, iodine, CN, nitro, methyl, trifluoromethyl, ethyl, n-propyl, i-propyl, COOH, COOCH₃, OH, OCH₃, OCF₃, NH₂, NHCH₃, N(CH₃)₂, SO₂NH₂, SO₂NHCOCH₃, NHCOCH₃ or CONH₂, CONHCH₃ and CON(CH₃)₂.
- 15 27. The compound according to claim 1, wherein
 - R^o, R^c are independently defined as (C₁₋₄)alkyl, (C₃₋₆)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₆)cycloalkyl, phenyl, benzyl, **Het**, (C₁₋₃)alkyl-**Het**; all of which are optionally substituted as defined; and R^o may also be H;

20

R^{N1} is H, (C₁₋₄)alkyl, (C₃₋₆)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₆)cycloalkyl, phenyl, benzyl, phenylethyl, **Het**, (C₁₋₃)alkyl-Het; wherein said alkyl, cycloalkyl, alkyl-cycloalkyl, phenyl, benzyl, phenylethyl, **Het** and alkyl-

Het are optionally substituted as defined; or

R^{N2}, R^{N3}, R^{N4} are independently H, methyl, ethyl, n-propyl, i-propyl, cyclopropyl, cyclopropylmethyl; all of which being optionally substituted with fluorine, carboxy or methoxycarbonyl; and/or wherein said ethyl, n-propyl or i-propyl is optionally substituted with hydroxy, methyl, methoxy, amino, -NH(CH₃) and/or -N(CH₃)₂; and

in the case

- a) of a group $N(R^{N2})R^{N1}$ the substituents R^{N2} and R^{N1} or
- b) of a group NR^{N3} - $N(R^{N2})R^{N1}$ the substituents R^{N3} and R^{N1} or R^{N2} and R^{N1}

25

30

may be covalently bonded together to form a 5-, 6- or 7-membered saturated heterocycle which may have additionally one heteroatom selected from O, N, and S, wherein said heterocycle is optionally substituted as defined;

- 5 wherein **Het** is defined as in claim 1.
 - 28. Use of a compound of the formula I according to claim 1, or a pharmaceutically acceptable salt thereof, as an inhibitor of HCV polymerase.
- 10 29. Use of a compound of the formula I according to claim 1, or a pharmaceutically acceptable salt thereof, as an inhibitor of RNA dependent RNA polymerase activity of the enzyme NS5B, encoded by HCV.
- 30. Use of a compound of the formula I according to claim 1, or apharmaceutically acceptable salt thereof, as an inhibitor of HCV replication.
 - 31. A method of treating or preventing HCV infection in a mammal, comprising administering to the mammal an effective amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof.
- 32. A method of treating or preventing HCV infection in a mammal, comprising administering to the mammal an effective amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof in combination with another antiviral agent.
 - 33. A pharmaceutical composition for the treatment or prevention of HCV infection, comprising an effective amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - **34.** The composition according to claim 33 further comprising a therapeutically effective amount of one or more antiviral agents.

- **35.** The composition according to claim 34, wherein said antiviral agent is selected from: ribavirin and amantadine.
- 36. The composition according to claim 34 wherein the antiviral agent is an otheranti-HCV agent.
 - 37. The pharmaceutical composition according to claim 36, wherein the other anti-HCV agent is an immunomodulatory agent, in particular selected from β -, δ γ -, and ω -interferon.
- **38.** A composition according to claim 36, wherein said anti-HCV agent is another inhibitor of HCV polymerase.
- 39. The composition according to claim 36, wherein the other anti-HCV agent isan inhibitor of HCV NS3 protease.
 - **40.** The composition according to claim 36, wherein the other anti-HCV agent is an inhibitor of another target in the HCV life cycle.
- 20 **41.** A composition according to claim 40, wherein said inhibitor of another target in the HCV life cycle is an agent that inhibits a target selected from HCV helicase, HCV NS2/3 protease and HCV IRES.
- Use of a compound of formula I according to claim 1, or of a
 pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment and/or the prevention of a viral infection, preferably an HCV infection.