微积分 B(1)第四次习题课参考答案

教学目的:本周的题目只练习与连续函数的性质有关的内容。在学习的过程中应掌握函数在一点连续与间断的定义、间断点的类型,连续函数的几条基本性质及其应用;一致连续性是比较难理解的概念。应注意体会一致连续与连续的区别和联系。

说明: 带★的题目不在课堂讨论, 留作课后练习.

一、连续函数及其性质

1. 设函数
$$f(x) = \begin{cases} 1, & x \leq -1, \\ 0, & x = 0, \\ 2, & x \geq 1, \\ ax^2 + bx + c, & 0 < |x| < 1, \end{cases}$$
 若 $f(x) \in C(-\infty, +\infty)$,求 a, b, c 的值.

解: 由
$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (ax^2 + bx + c) = a - b + c$$
,及 $f(-1) = 1$ 得 $a - b + c = 1$.

曲
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} (ax^2 + bx + c) = c$$
 , 及 $f(0) = 0$ 得 $c = 0$.

曲
$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} (ax^2 + bx + c) = a + b + c$$
 , 及 $f(1) = 2$ 得 $a + b + c = 2$.

解得
$$a = \frac{3}{2}, b = \frac{1}{2}, c = 0$$
.

2. 研究下列函数在定义域内的连续性,指出间断点及其类别.

(1)
$$f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}, \quad x \in (0,2\pi);$$
 (2) $f(x) = \frac{x(x-1)}{|x|(x^2-1)};$

(3)
$$f(x) = [|\cos x|];$$
 (4) $f(x) = \frac{[\sqrt{x}]\ln(1+x)}{1+\sin x};$

(5)
$$f(x) = \begin{cases} \lim_{t \to x} (\frac{x-1}{t-1})^{\frac{t}{x-t}}, & x \neq 1, \\ 0, & x = 1. \end{cases}$$

注 (3)(4)中的[•]是取整函数.

解:(1)对初等函数,找间断点就是找没定义的孤立点.

在
$$(0,2\pi)$$
 内, $\tan(x-\frac{\pi}{4})$ 没定义的点为 $\frac{3\pi}{4},\frac{7\pi}{4}$, $\tan(x-\frac{\pi}{4})$ 等于零的点为 $\frac{\pi}{4},\frac{5\pi}{4}$, 所以函

数
$$f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}$$
 在 $(0,2\pi)$ 内的间断点有 4 个. 其中, $x = \frac{3\pi}{4}$, $x = \frac{7\pi}{4}$ 是第一类间断点(可

去型),
$$x = \frac{\pi}{4}$$
, $x = \frac{5\pi}{4}$ 为第二类间断点. 说明如下:

因为
$$\lim_{x \to \frac{3\pi}{4}} (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}} = (1+\frac{3\pi}{4})^0 = 1$$
,所以 $x = \frac{3\pi}{4}$ 是函数 $f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}$ 的可去间断

点. $x = \frac{7\pi}{4}$ 是第一类间断点的理由类似.

因为
$$\lim_{x \to \frac{\pi^{+}}{4}} (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}} = +\infty$$
 , 所以 $x = \frac{\pi}{4}$ 是函数 $f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}$ 的第二类间断

点. $x = \frac{5\pi}{4}$ 是第二类间断点的理由类似.

(2) 函数 $f(x) = \frac{x(x-1)}{|x|(x^2-1)}$ 的间断点为 x = 0, $x = \pm 1$.

因为 $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to 0^+} f(x) = -1$, 所以 x = 0 是 f(x) 的第一类间断点(跳跃型).

因为 $\lim_{x\to 1^+} f(x) = \frac{1}{2}$, $\lim_{x\to \Gamma} f(x) = \frac{1}{2}$, 所以 x = 1 是 f(x) 的第一类间断点(可去型).

因为 $\lim_{x\to -1^+} f(x) = -\infty$, $\lim_{x\to -1^-} f(x) = +\infty$, 所以 x = -1 是 f(x) 的第二类间断点.

(3) $f(x) = [|\cos x|]$

当 $x = k\pi$ 时, $|\cos x| = 1$, $f(x) = [|\cos x|] = 1$;

当 $x \neq k\pi$ 时, $|\cos x| < 1$, $f(x) = [|\cos x|] = 0$.

因此 $x = k\pi$ 是间断点.

因为 $\lim_{x\to k\pi} [|\cos x|] = \lim_{x\to k\pi} 0 = 0 \neq 1 = f(k\pi)$,所以 $x = k\pi$ 均为第一类间断点(可去型).

(4) $f(x) = \frac{[\sqrt{x}]\ln(1+x)}{1+\sin x}$ 的定义域是 $\{x \mid x \ge 0, x \ne 2k\pi - \frac{\pi}{2}, k \in \mathbf{Z}^+\}$, $x_0 = 2k\pi - \frac{\pi}{2}$ 是 f(x) 的间断点.

由于
$$\lim_{x \to 2k\pi - \frac{\pi}{2}} f(x) = \lim_{x \to 2k\pi - \frac{\pi}{2}} \frac{[\sqrt{x}]\ln(1+x)}{1+\sin x} = \infty$$
,所以 $x_0 = 2k\pi - \frac{\pi}{2}$ 是 $f(x)$ 的第二类间断点.

$$\stackrel{\text{NL}}{=} x = n^2, n \in \mathbf{Z}^+ \text{ fr}, \quad \lim_{x \to n^2 +} f(x) = \lim_{x \to n^2 +} \frac{n \ln(1+x)}{1+\sin x} = \frac{n \ln(1+n^2)}{1+\sin n^2} = f(n^2),$$

$$\lim_{x \to n^2 -} f(x) = \lim_{x \to n^2 -} \frac{(n-1)\ln(1+x)}{1+\sin x} = \frac{(n-1)\ln(1+n^2)}{1+\sin n^2} \neq f(n^2),$$

所以 $x = n^2, n \in \mathbb{Z}^+$ 为f(x)的第一类间断点(跳跃型).

(5)
$$\stackrel{\underline{u}}{=} x \neq 1 \text{ Fr}, \lim_{t \to x} \left(\frac{x-1}{t-1}\right)^{\frac{t}{x-t}} = \lim_{t \to x} \left[\left(1 + \frac{x-t}{t-1}\right)^{\frac{t-1}{x-t}} \right]^{\frac{x-t}{t-1} \cdot \frac{t}{x-t}} = e^{\frac{x}{x-1}},$$

所以
$$f(x) = \begin{cases} 0, & x = 1, \\ \frac{x}{e^{\frac{x}{x-1}}}, & x \neq 1. \end{cases}$$

由于 $\lim_{x\to 1^+} f(x) = +\infty$, $\lim_{x\to 1^-} f(x) = 0$, 所以函数 f(x) 在 x = 1 处间断,且 x = 1 是 f(x) 的第二类间断点.

3. ★试举出定义在 $(-\infty, +\infty)$ 上的函数 f(x). 要求: f(x) 仅在 0,1,2 三点处连续,其余的点都是 f(x) 的第二类间断点.

解: (答案不唯一) 令
$$f(x) = x(x-1)(x-2)D(x)$$
, 其中 $D(x) = \begin{cases} 1, & x \in \mathbf{Q}, \\ 0, & x \notin \mathbf{Q}. \end{cases}$

在点x = 0附近, 易见(x-1)(x-2)D(x)有界, 故有

$$\lim_{x \to 0} f(x) = 0 = f(0) ,$$

即 f(x) 在 x=0 点连续. 类似可证 f(x) 在 x=1 和 x=2 点连续.

另一方面, $\forall x_0 \in \mathbf{R} \setminus \{0,1,2\}$,取有理点列 $\{x_n\}$, $x_n \to x_0^+ (n \to \infty)$,有

$$\lim_{n \to \infty} f(x_n) = x_0(x_0 - 1)(x_0 - 2) \quad (\neq 0) ;$$

取无理点列 $\{x'_n\}$, $x'_n \to x_0^+ (n \to \infty)$, 有

$$\lim_{n\to\infty} f(x_n') = 0.$$

所以 f(x) 在点 x_0 不存在右极限,故 x_0 为 f(x) 的第二类间断点.

注 函数
$$f(x) =$$

$$\begin{cases} x(x-1)(x-2), & x \in \mathbf{Q}, \\ -x(x-1)(x-2), & x \notin \mathbf{Q} \end{cases}$$
 也满足要求.

- 4. 利用零点存在定理,证明:
- (1) 若 f(x) 是以 2π 为周期的连续函数,则在任何一个周期内都存在 $\xi \in \mathbf{R}$,使得

$$f(\xi + \pi) = f(\xi)$$
.

(2) 已知函数 f 在圆周上有定义,并且连续. 证明:存在一条直径,使得它的两个端点 A, B 满足 f(A) = f(B).

证明:(1)(连续函数的零点存在定理,周期函数的概念)

设一个周期区间是 $[a, a + 2\pi]$.

$$\diamondsuit F(x) = f(x+\pi) - f(x)$$
,则 $F(x)$ 连续,且

$$F(a) = f(a+\pi) - f(a),$$

$$F(a+\pi) = f(a+2\pi) - f(a+\pi) = f(a) - f(a+\pi)$$
,

所以 $F(a) \cdot F(a+\pi) \leq 0$.

当等号成立时,取 $\xi = a$;

当等号不成立时,由连续函数的零点存在定理,存在 $\xi \in (a,a+\pi) \subset \mathbf{R}$,使得

$$F(\xi) = 0$$
, $(\xi + \pi) = f(\xi)$.

(2)(连续函数的零点存在定理,周期函数的概念)

以圆心为极点、某条半径作极轴建立极坐标系,于是圆周上的点可以由极角 θ 决定. f 便是 θ 的连续函数,且以 2π 为周期.

至此,问题变成证明存在 θ_0 ,使得 $f(\theta_0) = f(\theta_0 + \pi)$.以下做法同第(1)题.

5. 证明: 设 $f(x) \in C(-\infty, +\infty)$,且存在唯一的 $x_0 \in \mathbf{R}$ 使得 $f(f(x_0)) = x_0$,则存在唯一的 $\xi \in (-\infty, +\infty)$,使得 $f(\xi) = \xi$.

证明 (连续函数的零点存在定理)

(1) 先证存在性.

证法 1: 令 F(x) = f(x) - x,则 F(x) 连续,且

$$F(x_0) = f(x_0) - x_0$$
,

$$F(f(x_0)) = f(f(x_0)) - f(x_0) = x_0 - f(x_0)$$
,

所以 $F(x_0) \cdot F(f(x_0)) \leq 0$.

当等号成立时,取 $\xi = x_0$;

当等号不成立时,由连续函数的零点存在定理,存在介于 x_0 与 $f(x_0)$ 之间的点 ξ ,使得

$$F(\xi) = 0$$
, $\mathbb{P} f(\xi) = \xi$.

证法 2: 反证法. 假设对任意的 $x \in (-\infty, +\infty)$,都有 $f(x) \neq x$,由连续函数的零点存在定理,要么恒为 f(x) > x ,要么恒为 f(x) < x . 不妨设 f(x) > x ,则

$$f(f(x_0)) > f(x_0) > x_0$$
.

这与条件 $f(f(x_0)) = x_0$ 矛盾, 故存在 $\xi \in (-\infty, +\infty)$, 使得 $f(\xi) = \xi$.

(2) 再证唯一性.

若存在不同的 $\xi, \eta \in (-\infty, +\infty)$,使得 $f(\xi) = \xi$, $f(\eta) = \eta$,则

$$f(f(\xi)) = f(\xi) = \xi$$
, $f(f(\eta)) = f(\eta) = \eta$,

这与函数 f(f(x)) 的不动点唯一矛盾. 唯一性得证.

注: 事实上,没有连续条件,本题也可以证明 x_0 就是f(x)的唯一不动点.证明如下: 由 $f(f(x_0)) = x_0$ 得 $f(f(f(x_0))) = f(x_0)$,又因为满足 $f(f(x_0)) = x_0$ 的点 x_0 唯一,所以 $f(x_0) = x_0$. 即 x_0 就是f(x)的不动点。唯一性证明同上.

6. 证明: 若函数 f(x) 在闭区间 [a,b] 上连续,并且存在反函数,则 f(x) 在 [a,b] 上单调. **证明:** (连续函数的介值定理,函数概念) 反证法. 假设函数 f(x) 在 [a,b] 上没有单调性,则总存在

$$x_1 < x_2 < x_3$$
,

使得

 $f(x_2) > f(x_1), f(x_2) > f(x_3)$ 或者 $f(x_2) < f(x_1), f(x_2) < f(x_3)$, 且 $f(x_1) \neq f(x_3)$.

当 $f(x_2) > f(x_1)$, $f(x_2) > f(x_3)$ 时,若 $f(x_2) > f(x_1) > f(x_3)$,则存在 $x_4 \in (x_2, x_3)$,使得 $f(x_4) = f(x_1)$ (如图);若 $f(x_2) > f(x_3) > f(x_1)$,则存在 $x_5 \in (x_1, x_2)$,使得 $f(x_5) = f(x_3)$.

当 $f(x_2) < f(x_1)$, $f(x_2) < f(x_3)$ 时,若 $f(x_2) < f(x_1) < f(x_3)$,则存在 $x_6 \in (x_2, x_3)$,使得 $f(x_6) = f(x_1)$ (如图);若 $f(x_2) < f(x_3) < f(x_1)$,则存在 $x_7 \in (x_1, x_2)$,使得 $f(x_7) = f(x_3)$.以上情形均与 f(x) 在 [a, b] 上存在反函数矛盾.

综上可知,函数 f(x) 在 [a,b] 上单调.

7. 设函数 f(x) 在闭区间 [a,b] 上连续,且对 $\forall x \in [a,b]$,总存在 $y \in [a,b]$ 使得 $|f(y)| \le \frac{1}{2} |f(x)|$. 求证: 至少存在一点 $\eta \in [a,b]$,使得 $f(\eta) = 0$.

证法 1: (闭区间上连续函数的最值存在性,反证法)反证法. 如果函数 f(x) 在 [a,b] 上没有零点,则函数 [f(x)] 在 [a,b] 上也没有零点, 所以 [f(x)] > 0.

因为 f(x) 在 [a,b] 上连续,所以函数 |f(x)| 在 [a,b] 上连续.根据闭区间上连续函数的性质,存在点 $\xi \in [a,b]$ 使得 $|f(\xi)|=\min_{x\in x \in \mathbb{R}}\{|f(x)|\}>0$.

由题设条件知,在[a,b]内存在 $y \in [a,b]$,使得

$$|f(y)| \le \frac{1}{2} |f(\xi)| < |f(\xi)|.$$

这与 $|f(\xi)|$ 是最小值矛盾,所以函数 f(x) 在 [a,b] 上至少存在一个零点.

证法 2: (Bolzano 定理,极限保号性,连续概念)直接法. 取 $x_0 \in [a,b]$, $f(x_0) \neq 0$. 根据题设条件,存在 $x_1 \in [a,b]$,使得

$$|f(x_1)| \leq \frac{1}{2} |f(x_0)| \quad (\text{假设 } f(x_1) \neq 0);$$

类似地,存在 $x_2 \in [a,b]$,使得

$$|f(x_2)| \leq \frac{1}{2} |f(x_1)|$$
 (假设 $f(x_2) \neq 0$).

依次下去,存在 $\{x_n\}\subset [a,b]$,满足

易知 $\lim_{n\to\infty} |f(x_n)| = 0$.

因为数列 $\{x_n\}$ 有界,所以存在收敛子列 $\{x_{n_k}\}$,记 $\eta = \lim_{k \to \infty} x_{n_k}$,则 $\eta \in [a,b]$.

因为函数 f(x) 在 η 处连续,所以 $f(\eta) = f(\lim_{k \to \infty} x_{n_k}) = \lim_{k \to \infty} f(x_{n_k}) = 0$.

8. 设 $f(x) \in C[a,+\infty)$ 且有界,若 $f(a) < \sup_{x \in [a,+\infty)} \{f(x)\}$,则当 α 满足

$$f(a) < \alpha < \sup_{x \in [a, +\infty)} \{f(x)\}$$

时,都存在 $\xi \in [a,+\infty)$,使得 $\alpha = f(\xi)$.

证明: (确界概念,连续函数的介值定理) 当 α 满足 $f(a) < \alpha < \sup_{x \in [a, +\infty)} \{f(x)\}$ 时,取

$$\varepsilon = \frac{1}{2} \left(\sup_{x \in [a, +\infty)} \{ f(x) \} - \alpha \right)$$
,则 $\exists b \in (a, +\infty)$, 使得

$$f(b) > \sup_{x \in [a, +\infty)} \{f(x)\} - \varepsilon = \frac{1}{2} (\sup_{x \in [a, +\infty)} \{f(x)\} + \alpha) > \alpha > f(a)$$
.

由于 $f(x) \in C[a,b]$,根据介值定理, $\exists \xi \in (a,b) \subset (a,+\infty)$,使得 $f(\xi) = \alpha$.

- 9. 设 f(x), g(x) 均在区间 [a,b] 上连续. 证明:
- (1) |f(x)|, $\max\{f(x),g(x)\}$, $\min\{f(x),g(x)\}$ 均在区间[a,b]上连续;
- (2) $\bigstar M(x) = \max_{a \leqslant \xi \leqslant x} \{f(\xi)\}$, $m(x) = \min_{a \leqslant \xi \leqslant x} \{f(\xi)\}$ 均在区间[a,b]上连续.

证明: (1)(连续概念,连续函数的运算) $\forall x_0 \in [a,b]$,由于 $\lim_{x \to x_0} f(x) = f(x_0)$ 以及

$$0 \le ||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)|$$
,

可以得到 $\lim_{x\to x_0} |f(x)| = |f(x_0)|$.

因此函数|f(x)|在 x_0 处连续(当 $x_0 = a$ 或者 $x_0 = b$ 时上述的极限和连续均表示单侧极限与单侧连续).

注意到

$$\max\{f(x), g(x)\} = \frac{f(x) + g(x)}{2} + \frac{|f(x) - g(x)|}{2},$$

$$\min\{f(x), g(x)\} = \frac{f(x) + g(x)}{2} - \frac{|f(x) - g(x)|}{2},$$

及连续函数的和、差、绝对值函数的连续性,知 $\max\{f(x),g(x)\},\min\{f(x),g(x)\}\in C[a,b]$.

(2) ★任给 $x_0 \in [a,b]$, 不妨设 $a < x_0 < b$, 对任意的 Δx .

当 $\Delta x > 0$ 时,设 ξ 是 f(x) 在区间 $[x_0, x_0 + \Delta x]$ 上的最大值点.

因为
$$M(x_0) \geqslant f(x_0)$$
,且 $M(x_0 + \Delta x) = f(\xi)$,所以

$$0 \leq M(x_0 + \Delta x) - M(x_0) \leq f(\xi) - f(x_0).$$

又因为函数 f(x) 在 x_0 处连续,所以易知 M(x) 在 x_0 处右连续.

当 $\Delta x < 0$, 设 η 是 f(x)在区间[$x_0 + \Delta x, x_0$]上的最大值点.

因为
$$M(x_0 + \Delta x) \ge f(x_0 + \Delta x)$$
,且 $M(x_0) = f(\eta)$,所以

$$0 \leq M(x_0) - M(x_0 + \Delta x) \leq f(\eta) - f(x_0 + \Delta x).$$

又因为函数 f(x) 在 x_0 处连续,所以易知 M(x) 在 x_0 处左连续.

综上可知,函数M(x)在 x_0 处连续.

Remark: 以下为m(x)的证明,过程类似,可以不再重复。

任给 $x_0 \in [a,b]$, 只需证明 $m(x) = \min_{x \in \mathcal{X}} f(\xi)$ 在 $x = x_0$ 处连续.

先考察 $\Delta x > 0$ 的情形. 由于 $m(x_0) = \min_{\alpha \leqslant \xi \leqslant x_0} f(\xi)$,

① (连续概念, 连续函数的保号性) 如果 $f(x_0) > m(x_0)$, 即 f(x) 在 $[a,x_0]$ 的最小值在 $[a,x_0]$

内取到.

由于 $\lim_{x\to t_0} f(x) = f(x_0)$, 当 Δx 很小时, 在 $[x_0, x_0 + \Delta x]$ 上,均有 $f(x) > m(x_0)$. 因此在

 $[a,x_0+\Delta x]$ 上,最小值仍为 $m(x_0)$,即 $m(x_0+\Delta x)=m(x_0)$. 所以有

$$\lim_{\Delta x \to 0^+} m(x_0 + \Delta x) = \lim_{\Delta x \to 0^+} m(x_0) = m(x_0).$$

② 如果 $f(x_0) = m(x_0)$, 即 f(x) 在 $[a,x_0]$ 的最小值在 x_0 处取到. 那么

$$m(x_0 + \Delta x) = \min_{\alpha \le \xi \le x_0 + \Delta x} f(\xi) = f(\eta(\Delta x)),$$

其中 $\eta(\Delta x) \in [x_0, x_0 + \Delta x]$, 当 $\Delta x \to 0^+$ 时, $\eta(\Delta x) \to x_0$, 因此有

$$\lim_{\Delta x \to 0^+} m(x_0 + \Delta x) = \lim_{\Delta x \to 0^+} f(\eta(\Delta x)) = f(x_0) = m(x_0).$$

下面考察 $\Delta x < 0$ 的情形.

① 如果 $f(x_0) > m(x_0)$, 即 f(x) 在 $[a,x_0]$ 的最小值在 $[a,x_0)$ 内取到. 由于 $\lim_{x \to x_0} f(x) = f(x_0)$,

当 $|\Delta x|$ 充分小时,区间 $[x_0 + \Delta x, x_0]$ 不包含取得最小值的点,因此 $m(x_0 + \Delta x) = m(x_0)$. 所以有

$$\lim_{\Delta x \to 0^{-}} m(x_0 + \Delta x) = \lim_{\Delta x \to 0^{-}} m(x_0) = m(x_0).$$

② 如果 $f(x_0) = m(x_0)$, 即 f(x) 在 $[a,x_0]$ 的最小值在 x_0 处取到. 那么

$$f(x_0) = m(x_0) \leqslant m(x_0 + \Delta x) \leqslant f(x_0 + \Delta x) ,$$

由夹逼定理

$$\lim_{\Delta x \to 0^{-}} m(x_0 + \Delta x) = f(x_0) = m(x_0).$$

综上可知, $\forall x_0 \in [a,b]$, 都有 $\lim_{\Delta x \to 0} m(x_0 + \Delta x) = m(x_0)$. 这就证明了

$$m(x) = \min_{a \leqslant \xi \leqslant x} f(\xi) \in C[a,b].$$

注意到 $M(x) = \max_{a \leqslant \xi \leqslant x} f(\xi) = -\min_{a \leqslant \xi \leqslant x} \{-f(\xi)\}$,于是 $M(x) = \max_{a \leqslant \xi \leqslant x} f(\xi) \in C[a,b]$.

- 10. ★研究函数 $f(x) = \begin{cases} \frac{p}{q+1}, & x = \frac{p}{q}, \text{ 其中}p, q \text{ 互质}, q \ge 1, \\ |x|, & x \neq \text{是无理数} \end{cases}$ 在有理点与无理点的连续性.
- 解: (连续的概念,函数极限与数列极限的关系)

设 x_0 为有理数且 $x_0 \neq 0$,即 $x_0 = \frac{p}{q}$, $q \geqslant 1$.根据条件 $f(x_0) = \frac{p}{q+1}$.取一列趋于 x_0 的有理数列 $x_k = \frac{p_k}{q_k}$,由于任何收敛到 x_0 的有理数列 $\frac{p_k}{q_k}$ 都有 $\lim_{k \to \infty} \frac{1}{q} = 0$,(见课堂例题)

所以

$$\lim_{k\to\infty} f(x_k) = \lim_{k\to\infty} \frac{p_k}{q_k+1} = \lim_{k\to\infty} \frac{\frac{p_k}{q_k}}{1+\frac{1}{q_k}} = x_0 = \frac{p}{q}.$$

又因为 $f(x_0) = \frac{p}{q+1}$,所以 $\lim_{k \to \infty} f(x_k) \neq f(x_0)$.

因此函数 f(x) 在 x_0 处不连续,即 f(x) 在不为零的有理点处都是间断的.

再设 x_0 为无理数, $x_k = \frac{p_k}{q_k}$ 是任一趋于 x_0 的有理数列, $\{y_k\}$ 是任一趋于 x_0 的无理数列。因为

$$\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} \frac{p_k}{q_k + 1} = \lim_{k \to \infty} \frac{\frac{p_k}{q_k}}{1 + \frac{1}{q_k}} = x_0 = \begin{cases} f(x_0), & x_0 > 0, \\ -f(x_0), & x_0 < 0, \end{cases}$$

 $\lim_{k \to \infty} f(y_k) = \lim_{k \to \infty} |y_k| = |x_0| = f(x_0),$

所以,当 $x_0 > 0$ 时, $\lim_{k \to \infty} f(x_k) = f(x_0)$, $\lim_{k \to \infty} f(y_k) = f(x_0)$.从而 $\lim_{x \to x_0} f(x) = f(x_0)$,即函数 f(x) 在 x_0 处连续.

当 $x_0 < 0$ 时, $\lim_{k \to \infty} f(x_k) = -f(x_0) \neq f(x_0)$. 从而函数 f(x) 在 x_0 处不连续.

类似地,可以得到函数 f(x) 在 x=0 处连续.

二、一致连续性

1. 有人断言: "如果函数 f(x) 在 $a \in \mathbb{R}$ 的一个邻域中有定义并在 a 处连续,则 f(x) 在 a 的一个邻域内是一致连续的". 他给出如下证明:

"因为 f(x) 在 $a \in \mathbb{R}$ 处连续,所以对任意 $\varepsilon > 0$,存在 $\delta > 0$ 使得只要 $x \in (a - \delta, a + \delta)$,就有

$$|f(x)-f(a)|<\varepsilon$$
.

因此对任意 $x,y \in (a-\delta,a+\delta)$ (此时 $|x-y| < 2\delta$),都有

$$|f(x)-f(y)| \le |f(x)-f(a)| + |f(a)-f(y)| < 2\varepsilon$$
.

所以 f(x) 在 $(a-\delta,a+\delta)$ 中是一致连续的."

请问:这个断言和证明正确吗?

解:(连续与一致连续的关系,一致连续的概念)此人的断言不正确. 他的证明中偷换了概念,证明过程中a的邻域 $(a-\delta,a+\delta)$ 与 ε 的取值有关,这与一直连续概念中的范围含义不同.

2. 证明: 函数 $f(x) = \sin \sqrt{x}$ 在 $[0,+\infty)$ 上一致连续.

证明: (一致连续的概念,闭区间上连续与一致连续的等价性)对 $\forall x',x'' \in [1,+\infty)$,有

$$|f(x') - f(x'')| = \left| \sin \sqrt{x'} - \sin \sqrt{x''} \right| = 2 \left| \sin \frac{\sqrt{x'} - \sqrt{x''}}{2} \right| \left| \cos \frac{\sqrt{x'} + \sqrt{x''}}{2} \right|$$

$$\leq \left| \sqrt{x'} - \sqrt{x''} \right| = \frac{|x' - x''|}{\sqrt{x'} + \sqrt{x''}} \leq \frac{1}{2} |x' - x''|,$$

从而 $f(x) = \sin \sqrt{x}$ 在 $[1,+\infty)$ 上一致连续.

又 $f(x) = \sin \sqrt{x}$ 在 [0,1] 连续,从而在 [0,1] 上一致连续.

综上可知,函数 $f(x) = \sin \sqrt{x}$ 在 $[0,+\infty)$ 上一致连续.

注:请说明 $\sin \sqrt{x}$ 在[0,1]和[1,+ ∞)上一致连续,就能保证在[0,+ ∞)上一致连续的理由.

3. 证明: 函数 $f(x) = \sin x^2 \pm (0, +\infty)$ 上不一致连续.

证明: (一致连续的概念) 取 $x_k = \sqrt{2k\pi}$, $\overline{x}_k = \sqrt{2k\pi + \frac{\pi}{2}}$. 因为

$$\lim_{k\to\infty} (\overline{x}_k - x_k) = \lim_{k\to\infty} (\sqrt{2k\pi + \frac{\pi}{2}} - \sqrt{2k\pi}) = \lim_{k\to\infty} \frac{\frac{\pi}{2}}{\sqrt{2k\pi + \frac{\pi}{2}} + \sqrt{2k\pi}} = 0,$$

所以对任意的 $\delta>0$,总存在正整数 k_0 ,使得 $\left|\overline{x}_{k_0}-x_{k_0}\right|<\delta$,但

$$\left| f(\overline{x}_{k_0}) - f(x_{k_0}) \right| = 1.$$

故函数 $f(x) = \sin x^2 \oplus (0, +\infty)$ 上不一致连续.

注: 或取 $x_k = \sqrt{k\pi}$, $\overline{x}_k = \sqrt{k\pi + \frac{\pi}{2}}$.

4. 设 $f(x) \in C[0,+\infty)$, $g(x) \in C[0,+\infty)$, 且 $\lim_{x \to +\infty} [f(x) - g(x)] = 0$. 证明: 函数 f(x) 在 $[0,+\infty)$ 10 / 13

上一致连续当且仅当函数 g(x) 在 $[0,+\infty)$ 上一致连续.

证法 1: (极限概念,一致连续的概念)先设 g(x) 在 $[0,+\infty)$ 一致连续.

对任意的 $\varepsilon > 0$, 因为 $\lim_{x \to +\infty} [f(x) - g(x)] = 0$,所以存在N > 0,对任意的x > N,都有

$$|f(x)-g(x)|<\frac{\varepsilon}{3}$$
.

因为g(x)在 $[0,+\infty)$ 上一致连续,所以 $\exists \delta_i > 0$,对 $\forall x, t \in [0,+\infty)$,当 $|x-t| < \delta_i$ 时,有

$$|g(x)-g(t)|<\frac{\varepsilon}{3}$$
.

因为 f(x) 在 [0,N+1] 上连续,所以一致连续,故 $\exists \delta_2 > 0$,对 $\forall x,t \in [0,N+1]$,当 $|x-t| < \delta_2$ 时,有

$$|f(x)-f(t)|<\frac{\varepsilon}{3}$$
.

令 $\delta = \min(\delta_1, \delta_2 1)$, $\forall x < t$, 若 $0 < t - x < \delta$,则只有两种可能:

(1) $t \leq N+1$, 从而x < N+1, 因为 $0 < t-x < \delta_2$, 所以

$$|f(x)-f(t)|<\frac{\varepsilon}{3}<\varepsilon$$
;

(2) t > N+1, 从而 x > N, 所以

$$|f(x)-g(x)|<\frac{\varepsilon}{3}, |f(t)-g(t)|<\frac{\varepsilon}{3}.$$

又因为 $0 < t - x < \delta_1$,所以 $|g(x) - g(t)| < \frac{\varepsilon}{3}$,从而

$$|f(x)-f(t)| \le |f(x)-g(x)| + |f(t)-g(t)| + |g(x)-g(t)|$$

$$<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}<\varepsilon$$
.

综上所述,可知函数 f(x) 在[0,+ ∞) 上一致连续.

再设 f(x) 在 $[0,+\infty)$ 上一致连续. 因为 $\lim_{x\to+\infty} [f(x)-g(x)]=0$,所以 $\lim_{x\to+\infty} [g(x)-f(x)]=0$. 由上面的论述可知,函数 g(x) 在 $[0,+\infty)$ 上一致连续.

证法 2: (一致连续的运算性质) 因为 $f(x) - g(x) \in C[0, +\infty)$,且 $\lim_{x \to +\infty} [f(x) - g(x)]$ 存在,所以函数 f(x) - g(x) 在 $[0, +\infty)$ 上一致连续.

当g(x)在 $[0,+\infty)$ 一致连续时,因为

$$f(x) = [f(x) - g(x)] + g(x)$$
,

且 f(x) - g(x) 在 $[0,+\infty)$ 上一致连续,所以 f(x) 在 $[0,+\infty)$ 一致连续.

当 f(x) 在 $[0,+\infty)$ 一致连续时,因为

$$g(x) = f(x) - [f(x) - g(x)],$$

且 f(x) - g(x) 在 $[0,+\infty)$ 上一致连续,所以 g(x) 在 $[0,+\infty)$ 一致连续.

5. 证明:函数 f(x) 在区间 I 上一致连续的充要条件是:对区间 I 上的任何两个数列 $\{x_n\}$ 与 $\{y_n\}$,当 $\lim_{n\to\infty}(x_n-y_n)=0$ 时,有 $\lim_{n\to\infty}[f(x_n)-f(y_n)]=0$.并证明:函数 $f(x)=e^x$ 在 $(-\infty,+\infty)$ 上不一致连续.

证明: (一致连续的概念,数列极限的概念,反证法)"⇒". 设函数 f(x) 在区间 I 上一致连续,即 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x, y \in I$, 只要 $|x - y| < \delta$, 就有 $|f(x) - f(y)| < \varepsilon$.

由于 $\lim_{n\to\infty}(x_n-y_n)=0$,对上述 $\delta>0$,存在正整数 N ,对 $\forall n>N$,都有 $|x_n-y_n|<\delta$,从 而有

$$|f(x_n)-f(y_n)|<\varepsilon$$
.

所以 $\lim_{n\to\infty} [f(x_n)-f(y_n)]=0$.

"⇐". 反证法.

假设 f(x) 在 I 上不一致连续,即存在 $\varepsilon_0 > 0$,对 $\forall \delta > 0$,总存在 $x, y \in I$,满足

$$|x-y|<\delta$$
, $\mathbb{E}|f(x)-f(y)| \geqslant \varepsilon_0$.

取 $\delta = 1$,存在 $x_1, y_1 \in I$,满足 $|x_1 - y_1| < 1$,但有 $|f(x_1) - f(y_1)| \ge \varepsilon_0$.

取
$$\delta = \frac{1}{2}$$
,存在 $x_2, y_2 \in I$,满足 $|x_2 - y_2| < \frac{1}{2}$,但有 $|f(x_2) - f(y_2)| \ge \varepsilon_0$.

.

取
$$\delta = \frac{1}{n}$$
, 存在 $x_n, y_n \in I$, 满足 $|x_n - y_n| < \frac{1}{n}$, 但有 $|f(x_n) - f(y_n)| \ge \varepsilon_0$.

.

从而在区间 I 上得到两个数列 $\{x_n\}$ 与 $\{y_n\}$,满足 $\lim_{n\to\infty}(x_n-y_n)=0$,但

$$\lim[f(x_n) - f(y_n)] \neq 0.$$

这与已知条件矛盾. 故函数 f(x) 在区间 I 上一致连续.

根据上述一致连续的充分必要条件,函数 f(x) 在区间 I 非一致连续的充要条件是:在区间 I 上存在两个数列 $\{x_n\}$ 与 $\{y_n\}$,当 $\lim_{n\to\infty}(x_n-y_n)=0$ 时,有 $\lim_{n\to\infty}[f(x_n)-f(y_n)]\neq 0$.

下面证明函数 $f(x) = e^x \, \text{在}(-\infty, +\infty)$ 上不一致连续.

对正整数 n , 取 $x_n = \ln(n+1)$, $y_n = \ln n$. 则

$$\lim_{n \to \infty} (x_n - y_n) = \lim_{n \to \infty} [\ln(n+1) - \ln n] = \lim_{n \to \infty} \ln(1 + \frac{1}{n}) = 0,$$

且 $\lim_{n\to\infty} [f(x_n) - f(y_n)] = \lim_{n\to\infty} [e^{\ln(n+1)} - e^{\ln n}] = 1 \neq 0$,所以函数 $f(x) = e^x$ 在 $(-\infty, +\infty)$ 上不一致连续.

6. 设函数 f(x) 在区间 $[a, +\infty)$ (a > 0) 上有定义,且存在 L > 0 使得对任意的 $x, y \in [a, +\infty)$ 都有 $|f(x) - f(y)| \le L|x - y|$. 证明:

- (1) $\frac{f(x)}{x}$ 在区间[$a,+\infty$)上有界;
- (2) $\frac{f(x)}{x}$ 在区间[$a,+\infty$)上一直连续.

解: (1) 因为

$$|f(x)| \le |f(x) - f(a)| + |f(a)| \le L|x - a| + |f(a)|,$$

所以当 $x \in [a, +\infty)$ (a > 0)时,有

$$\frac{|f(x)|}{r} \leqslant L \frac{|x-a|}{r} + \frac{|f(a)|}{r} < L + \frac{|f(a)|}{a} = M.$$

故 $\frac{f(x)}{x}$ 在区间[a,+∞)上有界.

(2) 对任意的 $x, y \in [a, +\infty)$,

$$\left| \frac{f(x)}{x} - \frac{f(y)}{y} \right| = \left| \frac{yf(x) - xf(y)}{xy} \right|$$

$$= \left| \frac{yf(x) - xf(x) + xf(x) - xf(y)}{xy} \right|$$

$$\leq \left| \frac{f(x)}{x} \right| \left| \frac{y - x}{y} \right| + \left| \frac{f(x) - f(y)}{y} \right|$$

$$\leq \frac{M + L}{x} |x - y|.$$

所以 $\frac{f(x)}{x}$ 在区间 $[a,+\infty)$ 上一直连续.