

(1) de geles d'orde no (1-V!) H: = { 5 € 5 (5(il = i)) (and 6 par de sy cyclique d'order 6. Chy: cord 12, clest be such An at be sul by de of d'indice d. Si [of: H] = 2, Heart dishipul (Grus) 6 = 6/4 = {-1,1} Qou E Hom (J. (-1.1)) sugah? Q0 T = E. Peut- on aux H = An (H) 26! Piper 1 NON! H normal day of dy/ (and 2, 4 5 € ct, 5 = = 11 -> H continut les cards -> H continut le green d'ordre 3 -> 1+ - de H de cardinal 8: was les élements de H sont d'order 1,2 ou 6. Grangerinin (6) (12) (34) etc-Methons (12)(34) EH, Nel s'aget du sul de a type, on a torter les transporitors (12)(23) EH Si 2, 2 EH , sup 2 / sup 2' = \$ (sim a(xe')=3) 7745 [+= {I, (12), (34), (12)(34), (13)(24)} NON!

p premier can pa (p-1) ! = 1 , deac per premier P-1 = P-1 x 2 danse (P-2) ! Bilan : m = 5 [P-1] donc m > p-1 = 7 p > (p-1)! + 1 3.3 Soik m E \$1, -, p-13 le premir résider son judichque (m==-(L1)) Sur m: (m-1) m < p < mm Il vient: non-m < p < n Choix de m - D mm - p et un uside guadratique done mm est un éside quadratque (mod P) (mm) = 1 [P] mais m = - 1 [P] annoi m > m m = 1[1] doc m = 1[1] F110: (m-1)m < p: m < s+ (p) (sim (m.)) ~ P(P=p)

Scanné avec CamScanner

de vouchin suivent $2000000000000000000000000000000000000$
9m - 1 + 2
Conne 9 (6) do <0,
In To, + a L, a god dot be religioned
on appellar da proportità à 9, d'ani l'existence et l'uniste de A
f(z)=0 ← z ⁿⁿ = − ≥ 2 2 3 − 1 z ⁿⁿ = ≥ 2 2 3 − 1
a'a 131 - (2 9 7 7 (- 0.
91, 0 = 131" - 120 ok 3" > 131" - E land 13" = g(131)
Aleas les vouvalement de g (cf. la récurere) montient que [131 < e.]
(3.1) P= {(400, scho) 0 ∈ [0, 24[]
$t \ge ha 92$, $con = \frac{1-h^2}{1-h^2}$, $sin = \frac{2h}{1+h^2}$
$e = \left\{ \left(\frac{A-12}{A+12}, \frac{21}{A+12} \right) \mid \epsilon \in \overline{\mathbb{R}}_{+} \right\}$
$\left\{ \left(\frac{A-r^2}{A+k^2}, \frac{2k}{A+k^2} \right) \mid F \in Q_+ \right\} \text{ or in } \text{ fin}$
S: $\mathcal{C}(\mathcal{A}, \mathcal{R})$ possède au mins 3 prints rahimels (x:1y:) :=1.42 l'équahm était $n^2 + y^2 - 2an - 2bn + a^2 + b^2 - \mathcal{R}' = 0$
auc 2 = 1;); = 1, 2, 3 on voit que lan, + 2by, + R2-2-62 EQ
$ \begin{array}{ll} \text{par ai Reimu} & \left\{ a(n_1 - n_2) + b(y_1 - y_2) \in \Omega \\ a(n_1 - n_2) + b(y_1 - y_2) \in \Omega \right\} \end{array} $
Scanné avec CamScanner

Scanné avec CamScanner

I n'est pour purupal 1905 Shit (: I=(f) Comme Id & I, il existe 9 by Id = 6 en décirant en 0 1 = f'(0) g (0) don f(0) to f"3 = f"f pos deivable = 0 11se f = gf ~ ~ ~ J., x), x > 0 paht, 3= (113 on f 10 1 1 1 000 1 1 $h(n) = \sqrt{x} f(x) \in A$ can $h'(n) = \frac{f(n)}{2\sqrt{x}} + \sqrt{x} f'(n) \xrightarrow{of} o$ Vandacte ! A = C (EO, V, IR) 1 = (a) S: [EA, or a Yor [Ev.1], f(x): n) f(kn) dr エ=くな (5.11) g(0)=-la,120, 3 +0 3 (= -> Par TVI, 5 1 amb F= g-1(204) OIR+ (= = = F >0 can 56) = 0 g(e) = 0 en lan en + -- + (a) h(n) = g(n) = 1 - 2 | ak) h'(n): Z loul > 0, doe h st structuret constate

$(5.2) P = \sum_{k=0}^{\infty} q_k g^k \qquad q_k > 0 \qquad (3) = 0 \qquad (4) = 0 \qquad (4$
$ \frac{1}{(x-1)} P(x) = \frac{1}{x} \left(\frac{1}{x} - \frac{1}{x} \right) P(x) $
m 1 4 (a - a) vm-1
19m - 9 1X"
(C) = (X-1) D()
$\frac{1}{2} \frac{1}{2} \frac{1}$
(cc) x est rache de $P(pn)$, ance le x^{er} cos $\frac{ x }{p} \le 1$.
Pau le min L on envisage Das and Ols
$\max\left(\frac{ae}{ah}\right) = \max\left(\frac{a_{KD}}{a_{KD}}\right) = 1$ $\min\left(\frac{a_{KD}}{a_{KD}}\right) = \min\left(\frac{a_{KD}}{a_{KD}}\right)$
$\frac{1}{ x } \leq \max\left(\frac{a'!}{a'!n}\right)$
$\underbrace{\text{ex} \bullet \underbrace{\text{TI}}_{\text{sin}} \left(\underbrace{\text{ht}}_{\text{m}} \right) = \underbrace{\underbrace{\text{e}^{i(n-i)\frac{\pi}{2}}}_{\text{qi}} \underbrace{\text{Ty}}_{\text{qi}} \left(1 - \underbrace{\text{e}^{-i\frac{\pi}{2}}}_{\text{m}} \right) = \underbrace{\underbrace{\text{e}^{-i(n-i)}}_{\text{qi}} A}_{\text{qi}}$
$A = 76) \text{ai} P(x) \geq X^{4} + \cdots + X + 1.$
(5.3) Ant $0=0$
Z gm = 0 or 15m 62m+1 36v = 2n+2 si m = 0
done 27 P(f) = (2n+2) a = (2n+2) P(0)
Scanné avec CamScanner

Scanné avec CamScanner

