MATEMATIKA DISKRIT 2: RELASI

AYU LATIFAH, ST., MT.

- Hubungan antara anggota² himpunan direpresentasikan dengan menggunakan struktur yang disebut relasi.
- Untuk mendiskripsikan relasi antara anggota² dua himpunan A dan B, dapat digunakan pasangan terurut dengan anggota pertamanya diambil dari A dan anggota keduanya diambil dari B.
- · Karena ini merupakan relasi antara dua himpunan, maka disebut relasi biner.

DEFINISI

Ambil A dan B himpunan tak kosong.

Sebuah relasi R dari A ke B adalah sebuah himpunan bagian dari $A \times B$.

Jika $R \subseteq A \times B$ dan $(a, b) \in R$, a dikatakan berelasi dengan b oleh R, dan dituliskan a R b.

Jika a tidak berelasi dengan b oleh R, dituliskan a R b.

Biasanya A = B, dalam hal ini dikatakan bahwa $R \subseteq A \times A$ sebuah relasi pada himpunan A.

Contoh I

Misalkan M himpunan mahasiswa STEI, K himpunan matakuliah, dan R relasi yang mendeskripsikan siapa yang mengambil matakuliah tertentu.

 $M = \{Adi, Budi, Dina, Susi\},\$

 $K = \{EL2009, EC3021, EL1001, ET3002\}$

 $R = \{(Adi, EL2009), (Budi, ET3002), (Dina, EL1001), (Dina, EC3021), (Susi, EL2009)\}$

Artinya Adi mengambil EL2009, Budi mengambil ET3002, Dina mengambil EL1001 dan EC3021, dan Susi mengambil EL2009.

Contoh 2

Ambil

$$A = \{1, 2, 3\} \text{ dan } B = \{r, s\}.$$

Maka

$$R = \{(1, r), (2, s), (3, r)\}$$

adalah sebuah relasi dari A ke B.

Contoh 3

Ambil $A = B = \{1, 2, 3, 4\}.$

Himpunan terurut manakah yang terdapat dalam relasi

$$R = \{(a, b) \mid a < b\}$$
?

Jawab

$$R = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$$

- Akan didefinisikan berbagai himpunan penting dan berguna terkait dengan relasi R.
- Ambil $R \subset A \times B$ sebuah relasi dari A ke B.
- **Domain** R, dituliskan Dom(R), adalah sebuah himpunan dari elemen² A yang berelasi dengan suatu elemen dalam B. $Dom(R) \subseteq A$, himpunan seluruh elemen pertama dalam pasangan² yang membentuk R.
- Range R, dituliskan Ran (R), adalah himpunan dari elemen² B yang berelasi dengan suatu elemen A. Ran (R) \subseteq B, himpunan seluruh elemen kedua dalam pasangan² yang membentuk R.

Contoh 4

Untuk relasi pada Contoh I, Dom(R) = M, dan Ran(R) = K.

Sedangkan untuk relasi pada Contoh 2, Dom(R) = A, dan Ran(R) = B.

Untuk relasi pada Contoh 3, $Dom(R) = \{1, 2, 3\}$, dan $Ran(R) = \{2, 3, 4\}$.

 $R \subseteq A \times B$ dan $x \in A$, definisikan R(x), **R-relative set of x** (R-himpunan relatif dari x), sebagai

$$R(x) = \{ y \in B \mid x R y \}$$

Serupa, jika $A_1 \subseteq A$, maka $R(A_1)$, **R-relative set of A_1** (R-himpunan relatif dari A_1), sebagai

$$R(A_1) = \{ y \in B \mid x R y \text{ untuk suatu } x \text{ dalam } A_1 \}.$$

Contoh 5

Ambil $A = B = \{a, b, c, d\}$

dan ambil

$$R = \{(a, a), (a, b), (b, c), (c, a), (c, b), (d, c)\}.$$

Maka

$$R(a) = \{a, b\}, R(b) = \{c\},\$$

dan jika $A_1 = \{c, d\}$, maka

$$R(A_1) = \{a, b, c\}.$$

Teorema I

Ambil R relasi dari A ke B, dan ambil A_1 dan A_2 himpunan bagian A. Maka

(a) jika
$$A_1 \subseteq A_2$$
, maka $R(A_1) \subseteq R(A_2)$

(b)
$$R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$$

(c)
$$R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$$

Contoh 6

Ambil $R \subseteq A \times B$ dengan $A = \{1, 2, 3\}, B = \{x, y, z, w, p, q\}, \text{ dan } R = \{(1, x), (1, z), (2, w), (2, p), (2, q), (3, y)\}.$

Ambil $A_1 = \{1, 2\}, A_2 = \{2, 3\}.$

Maka $R(A_1) = \{x, z, w, p, q\}, \text{ dan } R(A_2) = \{w, p, q, y\}.$

Jadi, $R(A_1) \cup R(A_2) = \{x, y, z, w, p, q\} = B$.

 $R(A_1) \cap R(A_2) = \{w, p, q\} = R(\{2\}) = R(A_1 \cap R_2).$

Teorema 2

Ambil $R \subseteq A \times B$ dan $S \subseteq A \times B$.

Jika $R(a) = S(a) \forall a \in A$, maka R = S.

MATRIKS DARI SEBUAH RELASI

Jika $A = \{a_1, a_2, ..., a_m\}$ dan $B = \{b_1, b_2, ..., b_n\}$ himpunan² hingga, yang secara berturut-turut mengandung m dan n elemen, dan R adalah sebuah relasi dari A ke B, R dapat direpresentasikan dengan matrik $m \times n$, $M_R = [m_{ij}]$, didefinisikan sbb.

$$m_{ij} = \begin{cases} 1 & jika (a_i, b_j) \in R \\ 0 & jika (a_i, b_j) \notin R \end{cases}$$

Matrik M_R disebut matrik dari R.

MATRIKS DARI SEBUAH RELASI

Contoh 7

Ambil R relasi pada Contoh I, maka matrik dari R adalah

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- Jika A sebuah himpunan hingga dan R sebuah relasi pada A, maka R dapat direpresentasikan secara pictorial dengan digraph.
- Jadi jika R sebuah relasi pada A, sisi² (edges) dari digraph R menyatakan pasangan² dalam R, dan simpul² (vertices) menyatakan elemen² A.

Contoh 8

Ambil $A = \{1, 2, 3, 4\}$

 $R = \{(1,1), (1,2), (2,1), (2,2), (2,3), (2,4), (3,4), (4,1)\}$

Maka digraph dari R adalah

Contoh 9

Relasi yang digambarkan oleh digraph berikut

Jika R sebuah relasi pada himpunan A, dan $a \in A$, maka **in-degree** dari a (relatif terhadap relasi R) adalah banyaknya $b \in A$ sehingga $(b, a) \in R$.

Out-degree dari a adalah jumlah banyaknya $b \in A$ sehingga $(a, b) \in R$.

Out-degree dari a adalah |R(a)|.

Contoh 10

Ambil $A = \{a, b, c, d\}$, dan R relasi pada A dengan matrik relasi berikut

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Gambarkan digraph dari R, dan daftar in-degree dan out-degree seluruh simpulnya.

Jawab Contoh 10

Berikut digraph dari R dan tabel in-degree dan out-degree.

	a	b	С	d
In-degree	2	3	1	1
Out-degree	1	1	3	2

Jika R sebuah relasi pada sebuah himpunan A dan B adalah sebuah himpunan bagian dari A, restriction of R to B (pembatasan R pada B) adalah $R \cap (B \times B)$.

Contoh II

Ambil $A = \{a, b, c, d, e, f\}$ dan $R = \{(a,a), (a,c), (b,c), (a,e), (b,e), (c,e)\}.$

Misalkan $B = \{a, b, c\}$. Maka

 $B \times B = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)\}, dan$

Restriction of R to B adalah $\{(a,a), (a,c), (b,c)\}$.

SEKIAN DANTERIMA KASIH