



# ESCAPE WP5

## **Technical Work Review**

## Technology Review

- WP5 related tasks:
  - JupyterHub experiments
    - Documentation, Scripts and Configurations
    - Prototype Services being tested
  - Docker Containers for VO tools
    - Can be used to deploy custom JHub environments
    - Used to discover and access data in the Virtual Observatory
  - We've started working on contributions to the ESAP Prototype.
    - First task in progress:
      - Working on allowing keyword-based searches for metadata in Virtual Observatory Services

## JupyterHub

- Ongoing experiments and evaluation of running a Jupyterhub (JupyterLab) service in progress
- Service deployed on top of Openstack & Kubernetes
- Output of experiments may be in the form of:
  - Documentation
  - Running prototype service
  - Scripts & Configuration to deploy service on any cluster
    - (Openstack, AWS, GCLoud etc..)

## JupyterHub + Kubernetes

- Allows us to create a reproducible service
- Fault tolerant (K8s pods restart automatically when unhealthy)
- Easy to run from an Ops perspective
  - Deploying new versions
  - Platform independent
  - Customizable using Configuration files
- Service deployed using Helm Charts



## JupyterHub with Docker

- Our JupyterHub services deploy custom Docker images.
- Configuration allows either of the following:
  - Fetch from Docker Hub
  - Or from local Docker registry.
    - Local Docker Registry works if we wont private Docker images





## JupyterHub: Authentication

### OAuth



- Initial experiments work with Github Oauth
- JHub with EGI-Checkin will also soon be available

- Todo: Work on integration with ESAP
  - Single sign-on
  - Propagation of tokens from ESAP to JHub
  - AuthN/AuthZ between ESAP and a JHub service

## JupyterHub Persistent Storage

- Current Jhub Storage experiments with:
  - Openstack Cinder Volumes (block storage)
  - NFS on top of Cinder
- Other experiments with:
  - HDFS for persistent storage prototype in place
    - Data stored as Parquet files
  - Object-store (Openstack Swift) as an alternative also in the works

## Notebooks & Containers

- Docker containers for Virtual Observatory
  - Provide set of tools and libs that help users discover, access and visualization data from VO services.
- Also Example notebooks for a few different use cases.
  - Examples for finding accessing and visualizing image or catalogue data
- Libraries used include:
  - Astropy (Astroquery), Pyvo, AladinLite (image visualization), plotly, bokeh (plotting)

## Notebooks & Containers

### Workflow for discovering, querying and visualizing astronomy data in the VO

```
In []: from astropy.coordinates import SkyCoord
    from hips import WCSGeometry, make sky_image
    from hips import HipsSurveyProperties
    from ipywidgets import Layout, Box, widgets
```

#### **Data Discovery (VO)**

```
In [ ]: import pyvo
In [ ]: from pyvo.registry import search as regsearch
```

#### Find all TAP Services with 'quasars'

```
In [ ]: services = regsearch(keywords=['quasar'], servicetype='tap')
In [ ]: print (services)
```

#### Find all TAP Services with keyword "ukidss"

```
In [ ]: services = regsearch(keywords=['ukidss'], servicetype='tap')
print (services)
```

#### Data Access (TAP, Astropy)

```
In []: from pyvo.dal import tap
    service = tap.TAPService(tap_url)

query text = """
    SELECT TOP 500
    sourceID, ra,dec FROM
    lasSource
    ORDER by dec
    """

from astroquery.utils.tap.core import TapPlus
    service = TapPlus(url=tap_url)
    job = service.launch_job(query_text)
    table = job.get_results()
```

#### **Image Access**

#### **HIPS Image**

## ESAP Prototype: VO Integration

- Plan to assist in the development of the Prototype
- Initial work in building a keyword based search for VO Services



Science Platforms being built for GAIA & LSST



- Apache Spark & Zeppelin
  - We're running a service with Zeppelin as User interface with a Spark Cluster behind it.
  - Initial prototype built with Hadoop (HDFS/Yarn)
  - We're currently looking into replacing the Hadoop components.
    - Plan is to run Spark on Kubernetes, with Object storage for persistent data



- Apache Kafka
  - We're building a platform to receive alerts from LSST (& ZTF), process and annotate them,
     allowing users to create custom filters on them



- The platform receives the alerts using Kafka, and we also use Kafka internally in our pipeline.
- Allows us to create a scalable service, were we can add worker nodes to consume, process & produce these alerts, (horizontal scaling)

Spark & Zeppelin



### Dask

- Provided as part of one of our experimental JupyterHub services
- Powerful and flexible tool for scaling Python analytics across a cluster.
- Uses existing Python structures and APIs (pandas, numpy, etc..)
- Works out-of-the-box with JupyterHub
  - JupyterLab extension

### Dask



## Technology Review

Questions?