Control Systems Lecture 10: Hand Waving Introduction to PID Control

Daro VAN

Laboratory of Dynamics and Control
Department of Industrial and Mechanical Engineering
Institute of Technology of Cambodia

Phnom Penh, June 25th, 2020

- Introduction
- On/Off Control
- P-Control
- PI Control
- 5 PID control

The study materials of this lecture can be found at: https://github.com/Daro12/Control-Systems

- Introduction
- On/Off Control
- P-Control
- 4 PI Contro
- 6 PID control

The study materials of this lecture can be found at: https://github.com/Daro12/Control-Systems

Introduction

Closed-Loop Control Systems

fig source: x-engineer.org

Introduction

Applications of PID Control

http://www.comtecswiss.com

https://www.goeke-group.com

https://www.mprnews.org

and much more...

- On/off- Controller
- PID controller

$$u(t) = K_p e(t) + K_l \int_0^t e(\tau) d\tau + K_D \frac{d}{dt} e(t)$$

or

$$u(t) = K\left(e(t) + \frac{1}{T_i}\int_0^t e(\tau)d\tau + T_d\frac{d}{dt}e(t)\right)$$

where $K_p = K$, $K_l = K/T_i$ and $K_D = K/Td$

- Introduction
- 2 On/Off Control
- P-Control
- 4 PI Contro
- 6 PID control

The study materials of this lecture can be found at: https://github.com/Daro12/Control-Systems

Example: Oven

- *y* is the output or measurement temperature
- $r = 120c^o$ is the reference or desired temperature
- u, heating effect (0 $\leq u \leq$ 1), is the control input

In the theory of control systems, the industrial oven is defined as a first order process with dead time. The transfer function of a first order process with dead time is

$$\frac{K}{Ts+1}e^{-\tau s} \tag{1}$$

where

- K is gain
- \bullet τ is the dead time
- T is the time constant

$$u = \begin{cases} u_{max} & \text{if } e(t) > 0 \\ u_{min} & \text{if } e(t) < 0 \end{cases}$$
 (2)

where e(t) = r(t) - y(t)

Example

• $r = 120C^o$, $\tau = 30s$ and T = 240

On/off-Control

Drawbacks with on/off-control

- Wear on actuators
- Oscillations
- Works only for processes with
 - Simple dynamics
 - low performance requirements

- Introduction
- On/Off Control
- P-Control
- 4 PI Control
- 6 PID control

The study materials of this lecture can be found at: https://github.com/Daro12/Control-Systems

P-control

Use proportional control

$$u(t) = u_0 + Ke(t)$$

where

- u_0 is the control signal corresponding to the zero control error
- K is proportional gain
- e(t) = r(t) y(t)

P-Control

Choose $u_0 = 0$, $K_p = 0.03$, then

There is a steady-state error $(y(t) \neq r(t))$

P-Control

The steady-state error when using a P controller is

$$e = \frac{u - u_0}{K}$$

Two ways to eliminate stationary error:

- Let $K \to \infty$
- Select u_0 such that e = 0 in stationarity (difficult to find such u_0)

P-Control

Increasing K_P

Chose $K_P = 0.06$, then

Can improve the steady-error, but result in the control input with oscillation.

Chose K = 0.5, then

- Introduction
- On/Off Control
- P-Control
- 4 PI Control
- 6 PID contro

The study materials of this lecture can be found at: https://github.com/Daro12/Control-Systems

- Are there other ways to remove the steady-state error?
- Update u_0 automatically: Replace the constant term u_0 with the integral part:

$$u(t) = K\left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau\right)$$

or

$$u(t) = K_{\rho}e(t) + K_{I} \int_{0}^{t} e(\tau)d\tau$$

where $K_I = K/T_i$, T_i is the integral time.

Choose $K_p = 0.03, K_l = 0.00004$

- Can eliminate the steady state error
- If more integral action is added, then there is oscillation

Decreasing T_i

Choose
$$K_p = 0.03, K_l = 0.00009$$

Generally, if you increase K_l more, the signal will reach the target value faster, but it creates more oscillation. If you keep increase K_l to a certain value, it can result in an unstable closed loop system.

- Introduction
- 2 On/Off Control
- P-Control
- 4 PI Contro
- 5 PID control

The study materials of this lecture can be found at: https://github.com/Daro12/Control-Systems

Want something that can react on predicted future errors

This can be achieved by adding a derivative term to PI controller

$$u(t) = K\left(e(t) + \frac{1}{T_i} \int_0^t e(\tau)d\tau + T_d \frac{de(t)}{dt}\right)$$
 (3)

or

$$u(t) = K_{\rho}e(t) + K_{I} \int_{0}^{t} e(\tau)d\tau + K_{D}\frac{d}{dt}e(t)$$

where $K_p = K$, $K_l = K/T_i$, $K_D = K/T_d$, T_d is the derivative time

The derivative part tires to estimate the error change in T_d time units:

$$e(t+T_d)-e(t)\approx T_d\frac{de(t)}{dt}$$
 (4)

Choose $K_P = 0.03$, $K_I = 0.00004$ and $K_D = 1$

Choose $K_P = 0.03$, $K_I = 0.00004$ and $K_D = 0.05$

Summary

