FINAL EXAM

Math 51, Spring 2004.

You have 3 hours.

No notes, no books, no calculators.

YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT

Good luck!

	Name Solution	ns
	ID number	
1	(/20 points)	"On my honor I have noither siver
1.	(/30 points)	"On my honor, I have neither given nor received any aid on this examination. I have furthermore abided by all other aspects of the honor code with respect to this examination."
2	(/30 points)	
3	(/30 points)	Signature:
4	(/30 points)	Circle your TA's name:
5	(/40 points)	Brett Parker (2 and 6)
		Chad Groft (3 and 7)
6	(/40 points)	Joe Blitzstein (4 and 8)
Bonus	(/20 points)	Ryan Vinroot (ACE)
		Circle your section meeting time:
TD 1	4/000	11:00am 1:15pm 7pm
Total	(200 points)	

1. Compute the following partial derivatives:

(a)
$$\frac{\partial}{\partial y} \left(x^3 y^3 e^{3x^2 - z} \right) = \times^3 \left(3 Y^2 \right) e^{3x^2 - z}$$

$$= 3 \times^3 Y^2 e^{3x^2 - z}$$

(b)
$$\frac{\partial}{\partial x} \left(x^2 e^{\sin(yz-1)\ln(\sin(yz-1))} \right) = 2 \times e^{\sin(yz-1)} \ln(\sin(yz-1))$$

(c)
$$\frac{\partial^2}{\partial x \partial y} x^3 e^{xy} = \frac{\partial}{\partial x} \left(\times^3 e^{xy} \cdot \times \right)$$

$$= \frac{\partial}{\partial x} \left(\times^4 e^{xy} \right)$$

$$= \left(\times^4 \right) \left(e^{xy} \cdot y \right) + \left(4 \times^3 \right) e^{xy}$$

$$= \left(\times^4 y + 4 \times^3 \right) e^{xy}$$

2. The function $f: \mathbb{R}^2 \to \mathbb{R}^1$ is defined to be zero at the origin; and for all other points, f is defined with the formula

 $f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = r\sin(3\theta)$

where r and θ are defined in the usual manner (r is the length of the vector $\begin{bmatrix} x \\ y \end{bmatrix}$, and θ is the angle, going counterclockwise from the positive part of the x-axis, to the vector $\begin{bmatrix} x \\ y \end{bmatrix}$.)

(a) Compute (directly from the definition) an expression for

$$D_{\overrightarrow{v}}f(\overrightarrow{0})$$

$$Q_{r}f(\overline{o}) = \lim_{h \to 0} \frac{f(\overline{o} + h\overline{v}) - f(\overline{o})}{h}$$

=
$$\|\nabla\| \sin(3\theta)$$

(b) Compute the specific vector derivatives

$$D_{\overrightarrow{e}_1} f(\overrightarrow{0})$$
 and $D_{\frac{1}{2}\overrightarrow{e}_1 + \frac{\sqrt{3}}{2}\overrightarrow{e}_2} f(\overrightarrow{0})$

(c) Using these results, explain how you know that the function f cannot be differentiable at the origin.

Suppose of were differentiable; then the two computations above would tell us that

$$\int_{t,0}^{t,0} \left(\underline{e}_{i} \right) = 0$$

$$\mathcal{D}_{f, \vec{o}} \left(\frac{1}{2} \vec{e}_1 + \frac{\sqrt{3}}{2} \vec{e}_2 \right) = 0$$

Since $\{\vec{e}_i, \frac{1}{2}\vec{e}_i + \frac{5}{2}\vec{e}_i\}$ is a basis for \mathbb{R}^2 , this implies that $D_{f,\vec{o}}(\vec{v}) = 0$ for all $\vec{v} \in \mathbb{R}^2$, and therefore that $D_{\vec{v}}f(\vec{o}) = 0$ for all $\vec{v} \in \mathbb{R}^2$. But this contradicts the result from part (a).

So f cannot be differentiable.

3. Consider the function g given by

Numerical Mistake in #3

$$g\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} xy + yz \\ 2x^2 - yz^2 \end{bmatrix}$$

(a) Find a general expression for the Jacobian matrix of g in terms of x, y, and z.

$$\int_{g} = \begin{pmatrix} \frac{\partial g_{1}}{\partial x} & \frac{\partial g_{1}}{\partial y} & \frac{\partial g_{1}}{\partial z} \\ \frac{\partial g_{2}}{\partial x} & \frac{\partial g_{2}}{\partial y} & \frac{\partial g_{2}}{\partial z} \end{pmatrix} = \begin{pmatrix} y & x+z & y \\ 4x & -z^{2} & 2yz \end{pmatrix}$$

(b) Suppose we are at the point $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ in the domain, and that we are moving with velocity vector $\begin{bmatrix} -2\\1\\5 \end{bmatrix}$. What is the velocity vector of our image by the function g above?

$$\mathcal{J}_{3,\binom{1}{2}} = \begin{pmatrix} 2 & 2 & 2 \\ 4 & -1 & 4 \end{pmatrix}$$

$$\frac{dg}{dt} = \int_{g, \left(\frac{1}{2}\right)} \frac{dx}{dt}$$

$$= \begin{pmatrix} 2 & 2 & 2 \\ 4 & -1 & 4 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix} = \begin{pmatrix} 8 \\ 11 \end{pmatrix}$$

4. (a) Find all of the critical points of the function

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x + y - x^{2} - y^{2} + xy + 100$$

$$\nabla f = \begin{pmatrix} 1 - 2x + 4y \\ 1 - 2y + x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \quad x = 2y - 1 \quad \Rightarrow \quad 1 - 2(2y - 1) + y = 0$$

$$\Rightarrow \quad -3y + 3 = 0$$

$$\Rightarrow \quad y = 1 \quad \Rightarrow \quad x = 1 \Rightarrow \text{ only crit.pt.}$$

(b) Bob is hiking up a mountain whose shape is given by the graph of the function from part (a). At the moment when Bob is at the point on the mountain corresponding to the point \$\bigg[2]\$ in the domain, how steep is the slope of the mountain side there?

$$\left\| \nabla f \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\| = \left\| \begin{pmatrix} 1 - 2(2) + 3 \\ 1 - 2(3) + 2 \end{pmatrix} \right\|$$

$$= \left\| \begin{pmatrix} 0 \\ -3 \end{pmatrix} \right\| = 3$$

5. Use Lagrange multipliers to find the point(s) in the domain that achieve the absolute maximum value of the function

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = x^2 - 6y$$

subject to the restriction that $x^2 + y^2 \le 25$.

$$\nabla f = \begin{pmatrix} 2x \\ -6 \end{pmatrix}$$
 can not be \vec{o} anywhere since $6 \neq 0$.

So there are no interior critical points.

$$g\left(\frac{x}{y}\right) = x^2 + y^2 - 25 \le 0$$

$$\nabla_g = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$

So we need
$$\begin{pmatrix} -6 \\ 2x \end{pmatrix} = \lambda \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$
 and $x^2 + y^2 = 25$

Case 1: If
$$\lambda = 1$$
, then $-6 = 1(2Y)$, so $Y = -3$

$$\implies X = \pm 4$$

Case 2: If
$$\lambda \neq 1$$
, then $2x = \lambda(2x) \Rightarrow x = 0$
 $\Rightarrow y = +5$

So we have four candidates:
$$\begin{pmatrix} \pm 4 \\ -3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ \pm 5 \end{pmatrix}$

$$f(\frac{-4}{-3}) = 34$$

$$f(\frac{4}{-3}) = 34$$

$$f(\circ) = -30$$

$$f(-\frac{4}{-3}) = 34$$
 $f(-\frac{6}{-5}) = 30$ } The absolute max of f on $f(\frac{4}{-3}) = 34$ $f(\frac{6}{5}) = -30$ } the given domain is achieved at the points $(-\frac{4}{-3})$ and $(\frac{4}{-3})$

at the points
$$\begin{pmatrix} -4 \\ -3 \end{pmatrix}$$
 and $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$

6. Suppose that

$$Q\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix}$$

is the composition of the differentiable functions f, g, h, and k, composed as below:

$$\mathbb{R}^3 \quad \stackrel{f}{\longrightarrow} \quad \mathbb{R}^3 \quad \stackrel{g}{\longrightarrow} \quad \mathbb{R}^3 \quad \stackrel{h}{\longrightarrow} \quad \mathbb{R}^3 \quad \stackrel{k}{\longrightarrow} \quad \mathbb{R}^3$$

with

$$f\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} \quad g\left(\begin{bmatrix} u \\ v \\ w \end{bmatrix}\right) = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} \quad h\left(\begin{bmatrix} r \\ s \\ t \end{bmatrix}\right) = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} \quad k\left(\begin{bmatrix} m \\ n \\ p \end{bmatrix}\right) = \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix}$$

(a) Write an expression for $\partial Q_3/\partial s$ in terms of other partial derivatives.

$$\int_{koh} = \int_{k} \int_{h}$$

$$\begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \frac{\partial \alpha_{3}}{\partial s} & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \frac{\partial k_{3}}{\partial m} & \frac{\partial k_{3}}{\partial n} & \frac{\partial k_{3}}{\partial p} \end{pmatrix} \begin{pmatrix} \cdot & \frac{\partial h_{1}}{\partial s} & \cdot \\ \cdot & \frac{\partial h_{2}}{\partial s} & \cdot \\ \cdot & \frac{\partial h_{3}}{\partial s} & \cdot \end{pmatrix}$$

(b) Suppose that at the point $f(\vec{a})$ we know the following relationship between the partial derivative vectors of g:

$$\frac{\partial g}{\partial u} = 3\frac{\partial g}{\partial v} + 2\frac{\partial g}{\partial w}$$

Show that the vectors

$$\nabla Q_1(\overrightarrow{a}), \nabla Q_2(\overrightarrow{a}), \nabla Q_3(\overrightarrow{a})$$

are linearly dependent.

Hints:

What do the partial derivative vectors of g have to do with the matrix $J_{g,f(\vec{a})}$?

What does the given relationship between these partial derivative vectors of g say about the determinant of $J_{g,f(\vec{a})}$?

What does the matrix $J_{q,f(\vec{a})}$ have to do with the matrix $J_{Q,\vec{a}}$?

What does this then say about the determinant of $J_{Q,\overrightarrow{a}}$?

What do the gradients of the components of Q have to do with the matrix $J_{Q,\overrightarrow{a}}$?

$$\mathcal{J}_{Q} = \mathcal{J}_{k} \mathcal{J}_{k} \mathcal{J}_{g} \mathcal{J}_{f}$$

$$\mathcal{J}_{Q,\vec{a}} = \mathcal{J}_{k, hogof(\vec{a})} \mathcal{J}_{h, gof(\vec{a})} \mathcal{J}_{g, f(\vec{a})} \mathcal{J}_{f, \vec{a}}$$

The vectors $\frac{\partial g}{\partial x}$, $\frac{\partial g}{\partial x}$, $\frac{\partial g}{\partial w}$ at $f(\vec{a})$ are the column vectors of $T_{g,f}(\vec{a})$; so the fact that they are linearly dependent tells us that $\det \left(T_{g,f}(\vec{a})\right) = 0$.

We know also that det(AB) = det(A) det(B); so, given the above relationship between the Tacobian matrices, we can conclude that $det(T_{Q,\overline{a}}) = 0$.

Knowing det $(J_{Q,\vec{a}}) = 0$, we conclude that the row vectors of $J_{Q,\vec{a}}$ must be linearly dependent. And of course the row vectors of $J_{Q,\vec{a}}$ are the gradients of the components of Q at \vec{a} : $PQ_{3}(\vec{a})$, $PQ_{3}(\vec{a})$.

So, these vectors are linearly dependent.

Bonus Question:

Use the definition of differentiability to prove that for any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, and any point $\overrightarrow{a} \in \mathbb{R}^n$, the derivative transformation $D_{T, \overrightarrow{a}}$ is the same as the transformation T itself. In other words, for any vector v,

The derivative transformation
$$D_{T,\overline{a}}(\overrightarrow{v}) = T(\overrightarrow{v})$$

The derivative transformation $D_{T,\overline{a}}$ must satisfy

the condition

$$\begin{vmatrix}
|T(\overrightarrow{z}) - (T(\overrightarrow{a}) + D_{T,\overline{a}}(\overrightarrow{x}-\overrightarrow{a}))| \\
|\overrightarrow{x}-\overrightarrow{a}| \end{vmatrix} = 0$$
We let $D_{T,\overline{a}} = T$, and verify that this holds:

$$\begin{vmatrix}
|T(\overrightarrow{x}) - (T(\overrightarrow{a}) + T(\overrightarrow{x}-\overrightarrow{a}))| \\
|\overrightarrow{x}-\overrightarrow{a}| \end{vmatrix}$$

$$= \lim_{\overrightarrow{x} \to \overrightarrow{a}} \frac{||T(\overrightarrow{x}) - (T(\overrightarrow{a})||}{||\overrightarrow{x}-\overrightarrow{a}||} = \lim_{\overrightarrow{x} \to \overrightarrow{a}} 0 = 0$$

$$= \lim_{\overrightarrow{x} \to \overrightarrow{a}} \frac{||T(\overrightarrow{x}) - (T(\overrightarrow{x}))||}{||\overrightarrow{x}-\overrightarrow{a}||} = \lim_{\overrightarrow{x} \to \overrightarrow{a}} 0 = 0$$