Missing Data Workshop Joint Doctoral Program in Clinical Psyc

Overview of Multiple Imputation

Jonathan Lee Helm Friday May 17th, 2019

@jonathanleehelm

Grand Overview

- · Single Imputation
- · Multiple Imputation
- · The Imputation Process
- When does Multiple Imputation work?
- · A note about Assumptions

@ionathanleehelm

Grand Overview

- · Single Imputation
- Multiple Imputation
- The Imputation Process
- · When does Multiple Imputation work?
- A note about Assumptions

@jonathanleehelm

Missing Data Workshop Joint Doctoral Program in Clinical Psyc

Single Imputation

Single Imputation Replace missing values with a 'guess' Different approaches for choosing the guess

@jonathanleehelm

Single Imputation Replace missing values with a 'guess' Creates a complete data set Different approaches for choosing the guess Analyze complete data

Single Imputation	
How can we create a guess?	
@jonathanleehelm	12

Single Imputation

- How can we create a guess?
- Conceptually, the simplest way is through regression

@jonathanleehelm

Ob	served	Data
i	JSobs	IQobs
1	-	78
2		84
3		84
4		85
5		87
6		91
7		92
8		94
9		94
10		96
11	7	99
:	:	:
19	16	118
20	12	134
@jonath	anleehelr	n

<u>Ot</u>	Observed Data		
i	JSobs	IQobs	Regression:
1		78	
2		84	$JS^{obs} = b_0 + b_1 IQ^{obs}$
3		84	
4		85	
5		87	
6		91	
7		92	
8		94	
9		94	
10		96	
11	7	99	
:	:	:	
19	16	118	
20	12	134	
jonath	anleehelr	n	

Ob	served	Data				
i	JSobs	IQobs	<u>R</u>	<u>egress</u>	ion:	
1		78		0060 1		0-6-
2		84	J	$S^{obs} = b$	$_{0}+b_{1}/($	J obs
3		84				
4		85		Est.	s.e.	р
5		87	b_0	-2.06	9.92	.84
6		91	b_1	.123	.09	.20
7		92				
8		94				
9		94				
10		96				
11	7	99				
:	:	÷				
19	16	118				
20	12	134				
nath	anleehelr	n				

<u>Ob</u>	served	Data						lm	puted D	ata	_
i	JSobs	IQobs	<u>R</u>	Regression:						IQ ^{imp}	-
1		78						1	7.56	78	-
2		84	J	$S^{obs} = b$	$_{0}$ + b_{1} /(Q obs		2	8.31	84	
3		84					-	3	8.31	84	
4		85		Est.	s.e.	р		4	8.43	85	
5		87	b_0	-2.06	9.92	.84		5	8.68	87	
6		91	b_1	.123	.09	.20		6	9.17	91	
7		92					•	7	9.29	92	
8		94						8	9.54	94	
9		94						9	9.54	94	
10		96						10	9.79	96	
11	7	99						11	7	99	
÷	:	:						:	:	÷	
19	16	118						19	16	118	
20	12	134						20	12	134	_
) jonath	anleehelr	n									

<u>Ob</u>	Observed Data		<u>lm</u>	puted D	<u>ata</u>	
i	JSobs	IQobs	i	JS ^{imp}	IQ ^{imp}	Mean for JSobs = 11.7
1		78	1	7.56	78	SD for $JS^{obs} = 2.71$
2		84	2	8.31	84	Mean for JSimp = 10.28
3		84	3	8.31	84	SD for $JS^{imp} = 2.42$
4		85	4	8.43	85	
5		87	5	8.68	87	
6		91	6	9.17	91	
7		92	7	9.29	92	
8		94	8	9.54	94	
9		94	9	9.54	94	
10		96	10	9.79	96	
11	7	99	11	7	99	
÷	:	:	:	:	:	
19	16	118	19	16	118	
20	12	134	20	12	134	
jonath	anleehelr	n				

Comp	olete Da	<u>ta</u>	<u>lm</u>	puted D	<u>ata</u>	
i	JS ^{com}	IQ ^{com}	i	JS ^{imp}	IQ ^{imp}	Mean for JSobs = 11.7
1	9	78	1	7.56	78	SD for $JS^{obs} = 2.71$
2	13	84	2	8.31	84	Mean for JSimp = 10.28
3	10	84	3	8.31	84	SD for $JS^{imp} = 2.42$
4	8	85	4	8.43	85	Maria for 1000m 40.05
5	7	87	5	8.68	87	Mean for JS ^{com} = 10.35 SD for JS ^{com} = 2.68
6	7	91	6	9.17	91	30 101 33
7	9	92	7	9.29	92	
8	9	94	8	9.54	94	
9	11	94	9	9.54	94	
10	7	96	10	9.79	96	
11	7	99	11	7	99	
:	:	÷	÷	:	:	
19	16	118	19	16	118	
20	12	134	20	12	134	-
@jonatha	ınleehelm					19

Single Imputation: MCAR

- Is single imputation reasonable?
- If data are MCAR, then the imputed values will just be random guesses
 - · This should not impact parameter estimates
 - · We will use a larger sample size, so decreased standard errors

@jonathanleehelm

21

Single Imputation: MAR

- Is single imputation reasonable?
- If the data are MAR, then the other variables in the model that relate to missingness will create good predicted values
 - This should create less biased parameter estimates
 - · Increase sample size

@jonathanleehelm

22

Single Imputation: MNAR

- · Is single imputation reasonable?
- If the data are MNAR, then the other variables in the analysis won't account for missingness
 - This won't fully account for the bias

@jonathanleehelm

23

Single Imputation: Limitation

 The limitation is that we are not accounting for the uncertainty of the regression

@jonathanleehelm

Single Imputation

• The limitation is that we are not accounting for the uncertainty of the regression

Regression:

$$JS^{obs} = b_0 + b_1 IQ^{obs}$$

$$\sigma_{\varepsilon}^2 = 2.95$$

$$\sigma_{\varepsilon} = 1.72$$

$$b_0 \quad -2.06 \quad 9.92 \quad .84$$

$$b_1 \quad .123 \quad .09 \quad .20$$

@jonathanleehelm

25

27

Single Imputation

 We can take certainty into accounted by creating multiple data sets

Regression:

$$JS^{obs} = b_0 + b_1 IQ^{obs}$$

$$\sigma_{\varepsilon}^2 = 2.95$$

$$\sigma_{\varepsilon} = 1.72$$

$$b_0 \quad -2.06 \quad 9.92 \quad .84$$

$$b_1 \quad .123 \quad .09 \quad .20$$

@jonathanleehelm

26

Single Imputation

 We can take certainty into accounted by creating multiple data sets (<u>Multiple imputation</u>)

Regression:

$$JS^{obs} = b_0 + b_1 IQ^{obs}$$

$$\sigma_{\varepsilon}^2 = 2.95$$

$$\sigma_{\varepsilon} = 1.72$$

$$b_0 \quad -2.06 \quad 9.92 \quad .84$$

$$b_1 \quad .123 \quad .09 \quad .20$$

@jonathanleehelm

Grand Overview

- Single Imputation
- · Multiple Imputation
- The Imputation Process
- When does Multiple Imputation work?
- A note about Assumptions

@jonathanleehelm

Missing Data Workshop Joint Doctoral Program in Clinical Psyc Multiple Imputation

Multiple Imputation • Multiple imputation extends single imputation by creating/analyzing more than one imputed data set ©jonathanleehelm 30

Multiple Imputation
 Multiple imputation extends single imputation by creating/analyzing more than one imputed data set
 We create M imputed data sets
 Each data set includes some uncertainty for the imputed value

Ob	Observed Data			
i	JSobs	IQobs		
1		78		
2		84		
3		84		
4		85		
5		87		
6		91		
7		92		
8		94		
9		94		
10		96		
11	7	99		
:	:	:		
19	16	118		
20	12	134		
@jona	athanleeh	elm		

Ob	served	Data	lm	p Data l	M = 1					
i	JSobs	IQobs	i	JS ^{imp}	IQ ^{imp}					
1		78	1	15	78					
2		84	2	7	84					
3		84	3	10	84					
4		85	4	10	85					
5		87	5	15	87					
6		91	6	11	91					
7		92	7	10	92					
8		94	8	15	94					
9		94	9	10	94					
10		96	10	10	96					
11	7	99	11	7	99					
:	:	÷	i	÷	÷					
19	16	118	19	16	118					
20	12	134	20	12	134					
@jona	@jonathanleehelm									

Ob	served	Data	<u>lm</u>	p Data l	M = 1	<u>lm</u>	p Data l	VI = 2
i	JSobs	IQobs	i	JS ^{imp}	IQ ^{imp}	i	JSimp	IQ ^{imp}
1		78	1	15	78	1	11	78
2		84	2	7	84	2	7	84
3		84	3	10	84	3	10	84
4		85	4	10	85	4	10	85
5		87	5	15	87	5	10	87
6		91	6	11	91	6	10	91
7		92	7	10	92	7	7	92
8		94	8	15	94	8	15	94
9		94	9	10	94	9	11	94
10		96	10	10	96	10	15	96
11	7	99	11	7	99	11	7	99
:	:	:	÷	:	:	:	:	:
19	16	118	19	16	118	19	16	118
20	12	134	20	12	134	20	12	134
@jon:	athanleeh	elm						

Ob	served	<u>Data</u>	<u>lm</u>	p Data l	M = 1	<u>lm</u>	p Data I	M = 2	Imp Data M = 3		
i	JSobs	IQobs	i	JS ^{imp}	IQ ^{imp}	i	JSimp	IQ ^{imp}	i	JS ^{imp}	IQ ^{imp}
1		78	1	15	78	1	11	78	1	7	78
2		84	2	7	84	2	7	84	2	7	84
3		84	3	10	84	3	10	84	3	15	84
4		85	4	10	85	4	10	85	4	10	85
5		87	5	15	87	5	10	87	5	10	87
6		91	6	11	91	6	10	91	6	10	91
7		92	7	10	92	7	7	92	7	10	92
8		94	8	15	94	8	15	94	8	7	94
9		94	9	10	94	9	11	94	9	10	94
10		96	10	10	96	10	15	96	10	7	96
11	7	99	11	7	99	11	7	99	11	7	99
:	:	:	:	:	:	:	:	:		÷	:
19	16	118	19	16	118	19	16	118	19	16	118
20	12	134	20	12	134	20	12	134	20	12	134
@jona	athanleeh	elm									44

Combining Results

- Perform the analysis on each data set separately
- Collect the statistics of interest

 - q
 e.g., Mean, SD, regression coefficient
- Calculated the average across the statistics

<u>O</u>	bserve	d Data	lm	p Data l	M = 1	<u>lm</u>	p Data I	M = 2	lm	p Data I	VI = 3	
i	JSobs	IQ ^{obs}	i	JS ^{imp}	IQ ^{imp}	i	JSimp	IQ ^{imp}	i	JSimp	IQimp	
1		78	1	15	78	1	11	78	1	7	78	
	Est.	s.e. p	2	7	84	2	7	84	2	7	84	
h	-2.06	9.92 .84	3	10	84	3	10	84	3	15	84	
20			4	10	85	4	10	85	4	10	85	
b_1	.123	.09 .20	5	15	87	5	10	87	5	10	87	
6		91	6	11	91	6	10	91	6	10	91	
7		92	7	10	92	7	7	92	7	10	92	
8		94	8	15	94	8	15	94	8	7	94	
9		94	9	10	94	9	11	94	9	10	94	
10		96	10	10	96	10	15	96	10	7	96	
11	7	99	11	7	99	11	7	99	11	7	99	
:	:	:	:	÷	:	:	:	:		÷	:	
19	16	118	19	16	118	19	16	118	19	16	118	
20	12	134	20	12	134	20	12	134	20	12	134	
@jon	@jonathanleehelm 46											

<u> </u>	bserve	d Data	<u>lm</u>	p Data	<u>M = 1</u>	<u>lm</u>	<u>p Data I</u>	<u>VI = 2</u>	Imp Data M = 3			
i	JS ^{obs}	IQobs	i	JS ^{imp}	IQ ^{imp}	i	JS ^{imp}	IQ ^{imp}		JS ^{imp}	IQ ^{imp}	
1		78	1	15	78	1	11	78	1	7	78	
	Est.	s.e. p	2	7	84	2	7	84	2	7	84	
h	-2.06	9.92 .84	3	10	84	3	10	84	3	15	84	
b_0				Est. s.	e. <i>p</i>	4	10	85	4	10	85	
b_1	.123	.09 .20	b_0 5	5.09 4.2	22 .24	5	10	87	5	10	87	
6		91	<i>b</i> ₁ .	064 .0)4 .14	6	10	91	6	10	91	
7		92	7	10	92	7	7	92	7	10	92	
8		94	8	15	94	8	15	94	8	7	94	
9		94	9	10	94	9	11	94	9	10	94	
10		96	10	10	96	10	15	96	10	7	96	
11	7	99	11	7	99	11	7	99	11	7	99	
:	:	:	:		:	:	:	:	:	:	:	
19	16	118	19	16	118	19	16	118	19	16	118	
20	12	134	20	12	134	20	12	134	20	12	134	
@jor	nathanlee	helm									47	

<u>OI</u>	Observed Data M = 1						<u>VI = 1</u>	<u>lm</u>	p Data	a M =	Imp Data M = 3				
i	JSob	s	IC	lops	i	JSi	mp	IQ ^{imp}	i	JSimp	· IQ	imp	i	JSimp	IQ ^{imp}
1			7	78	1	15	5	78	1	11	7	'8	1	7	78
	Est.	s	.e.	p	2	7		84	2	7	8	34	2	7	84
b_0	-2.06	9	92	.84	3	10)	84	3	10		34	3	15	84
-0						Est.	s.	e. <i>p</i>	4	10	8	15	4	10	85
b_1	.123	.(09	.20	b_0	5.09	4.2	22 .24		T-40		-	5	10	87
6				91		.064	.0	4 .14		Est.	s.e.	P	-	10	91
7				92	b_1	.004		92	b_0	4.64	3.03	.14	6		
					,	15		94	h	.064	.03	.05	7	10	92
8			,	94	8				b_1				8	7	94
9				94	9	10)	94	9	11	9	14	9	10	94
10			(96	10	10)	96	10	15	9	16	10	7	96
11	7		ç	99	11	7		99	11	7	9	19	11	7	99
	:			:		:		:	:	:				:	:
19	16		1	18	19	16	3	118	19	16	1	18	19	16	118
20	12		1	34	20	12	2	134	20	12	1:	34	20	12	134
@jonathanleehelm 48											48				

<u>O</u>	bserve	ed	Dat	<u>ta</u>	<u> Ir</u>	np Da	ta M	<u>= 1</u>	<u>lm</u>	p Data	M = 2	ln	np Dat	a M = 3
i	JSob	s	IQ	obs	i	JSi	mp	IQ ^{imp}	i	JSimp	IQ ^{imp}	i	JSim	p IQ ^{imp}
1			7	78	1	15	5	78	1	11	78	1	7	78
	Est.	s	.e.	р	2	7		84	2	7	84	2	7	84
b_0	-2.06	9	.92	.84	3	10)	84	3	10	84	3	15	84
~0						Est.	s.e.	р	4	10	85	4	10	85
b_1	.123).	09	.20	b_0	5.09	4.22	.24		Est.	s.e. p	5	10	87
6 7			_	91	b_1	.064	.04	.14	b_0	4.64	3.03 .14		Est.	s.e. p
8				92 94	8	15		94	b_1	.064	.03 .05	b_0	4.09	2.99 .19
9			_	94	9	10		94	9	11	94	b_1	.069	.03 .03
10			ć	96	10	10)	96	10	15	96	10	- 1	96
11	7		ç	99	11	7		99	11	7	99	11	7	99
:	:			:	:	:		÷	:	:	÷		:	:
19	16		1	18	19	16	3	118	19	16	118	19	16	118
20	12		1	34	20	12	2	134	20	12	134	20	12	134
@jor	nathanle	eh	elm											49

OI	bserve	ed Da	<u>ta</u>	<u> </u>	mp Da	ta M =	<u>= 1</u>	lm	p Data	a M = 2	2	Imp Data M = 3			
	Est.	s.e.	p		Est.	s.e.	р		Est.	s.e.	р		Est.	s.e.	р
b_0	-2.06	9.92	.84	b_0	5.09	4.22	.24	b_0	4.64	3.03	.14	b_0	4.09	2.99	.19
b_1	.123	.09	.20	b_1	.064	.04	.14	b_1	.064	.03	.05	b_1	.069	.03	.03
,	$\frac{5.09 + 4.64 + 4.09}{3} = 4.60$ $\frac{.064 + .064 + .069}{3} = .066$ Pooled Estimates across $\frac{\text{Imputations}}{b_0 4.60 3.51 .21}$ $b_1 .066 .034 .07$														
@jon	@jonathanleehelm 50												50		

Combining Results • What about standard errors? @jonathanleehelm 51

0	bserve	ed Dat	<u>ta</u>	<u>l</u>	mp Da	ta M =	<u> 1</u>	<u>lm</u>	p Data	M = 2	2	Imp Data M = 3						
	Est.	s.e.	р	_	Est.	s.e.	p		Est.	s.e.	p		Est.	s.e.	р			
b_0	-2.06	9.92	.84	b_0	5.09	4.22	.24	b_0	4.64	3.03	.14	b_0	4.09	2.99	.19			
b_1	.123	.09	.20	b_1	.064	.04	.14	b_1	.064	.03	.05	b_1	.069	.03	.03			
	<i>W</i> =	4.22	2 + 3	3.03 ²	+ 2.99	9 ²	<u>P</u>		l Estin Imput			<u>ss</u>						
									Est.	s.e.	р	-						
								b_0	4.60	3.51	.21	-						
								b_1	.066	.034	.07	_						

0	bserve	ed Da	<u>ta</u>	<u>l</u> ı	mp Da	ta M =	<u>= 1</u>	<u>lm</u>	p Data	a M = 2	2	Imp Data M = 3			
	Est.	s.e.	р		Est.	s.e.	р		Est.	s.e.	р		Est.	s.e.	р
b_0	-2.06	9.92	.84	b_0	5.09	4.22	.24	b_0	4.64	3.03	.14	b_0	4.09	2.99	.19
b_1	.123	.09	.20	b_1	.064	.04	.14	b_1	.064	.03	.05	b_1	.069	.03	.03
$W = \frac{4.22^2 + 3.03^2 + 2.99^2}{3}$ $B = var(5.09, 4.64, 4.09)$ Pooled Estimates across Imputations															
									Est.	s.e.	р	_			
								b_0	4.60	3.51	.21				
								b_1	.066	.034	.07	_			
@joi	nathanle	ehelm													54

<u>Ob</u>	serve	ed Da	<u>ta</u>	<u> </u>	mp Da	ta M =	<u>: 1</u>	<u>lm</u>	p Data	a M = 2	Imp Data M = 3				
	Est.	s.e.	p		Est.	s.e.	р		Est.	s.e.	р		Est.	s.e.	р
b_0 -	2.06	9.92	.84	b_0	5.09	4.22	.24	b_0	4.64	3.03	.14	b_0	4.09	2.99	.19
b_1 .	.123	.09	.20	b_1	.064	.04	.14	b_1	.064	.03	.05	b_1	.069	.03	.03
	<i>W</i> =	$\frac{4.22^{2}}{2}$		3	+ 2.99 4.09)	9 ²	<u>P</u>		l Estin			<u>ss</u>			
			,	1 \					Est.	s.e.	р	_			
l	$V_{b_0} =$	· W +	· (1 -	$+\frac{1}{M}$	В			b_0	4.60	3.51	.21				
	Ü		(IVI /				b_1	.066	.034	.07	_			
@ions	athanle	ehelm													55

0	bserve	ed Da	<u>ta</u>	<u>l</u>	mp Da	ta M =	<u>= 1</u>	lm	p Data	M = 2	2	Imp Data M = 3			
	Est.	s.e.	р		Est.	s.e.	р		Est.	s.e.	р		Est.	s.e.	р
b_0	-2.06	9.92	.84	b_0	5.09	4.22	.24	b_0	4.64	3.03	.14	b_0	4.09	2.99	.19
b_1	.123	.09	.20	b_1	.064	.04	.14	b_1	.064	.03	.05	b_1	.069	.03	.03
	$W = \frac{.04^2 + .03^2 + .03^2}{3}$ $B = var(.064, .064, .069)$ Pooled Estimates across Imputations														
			1	1 \					Est.	s.e.	p	_			
	$V_{b_0} =$	W +	· (1 -	$+\frac{1}{M}$	В			b_0	4.60	3.51	.21				
		_	_`	1.1 /				b_1	.066	.034	.07				
	se_{b_0}	$=\sqrt{\iota}$	$V_{b_0} =$	0.34								-			
@jo	nathanle	ehelm													57

Multiple Imp	utation:	Summary
--------------	----------	---------

- Take aways:
 - Multiple imputation extends single imputation by creating/analyzing more than one imputed data set
 - · Each data set includes some uncertainty for the imputed value

@jonathanleehelm

58

Grand Overview

- Single Imputation
- Multiple Imputation
- The Imputation Process
- When does Multiple Imputation work?
- A note about Assumptions

Technical Aspects of Imputation

- Multiple imputation software rarely uses multiple regression to impute values for missingness
- The actual process is a bit more technical, but it can be conceptually related to regression
 - · Hence the way I teach it

@jonathanleehelm

61

Technical Aspects of Imputation

- Multiple imputation software rarely uses multiple regression to impute values for missingness
- The actual process is a bit more technical, but it can be conceptually related to regression
 - · Hence the way I teach it
- http://www.stat.columbia.edu/~gelman/arm/missing.pdf
- https://www.istatsoft.org/article/view/v045i03/v45i03.pdf

@jonathanleehelm

62

Grand Overview

- Single Imputation
- Multiple Imputation
- The Imputation Process
- When does Multiple Imputation work?
- A note about Assumptions

@jonathanleehelm

Missing Data Workshop Joint Doctoral Program in Clinical Psyc

Multiple Imputation
When does it work?

@jonathanleehelm

When Does MI Perform Well?

- Multiple imputation will perform well if one of the variables in the imputation accounts for the missingness
 - The data are missing at random (MAR)

@jonathanleehelm

65

When Does MI Perform Well?

- Multiple imputation will perform well if one of the variables in the imputation accounts for the missingness
 - The data are missing at random (MAR)
- Multiple imputation will also perform well if the missingness is not related to any variable in the data set
 - The data are missing completely at random (MCAR)

@jonathanleehelm

66

When Does MI Perform Well?

- Multiple imputation will not perform well if the missingness cannot be accounted for by the data
 - The data are missing not at random (MNAR)

@jonathanleehelm

67

Grand Overview

- Single Imputation
- Multiple Imputation
- The Imputation Process
- When does Multiple Imputation work?
- · A note about Assumptions

@jonathanleehelm

Missing Data Workshop Joint Doctoral Program in Clinical Psyc

Assumptions in Scientific Inference

@jonathanleehelm

69

Statistics in Science

- · Statistics are foundation underlying scientific evidence
- Statistics are the language scientists use to make arguments

@jonathanleehelm

70

Statistics and Assumptions

· Virtually all inferential statistics rely on assumptions

@jonathanleehelm

71

Statistics and Assumptions

- · Virtually all inferential statistics rely on assumptions
 - 1. Random sample from the population
 - 2. Certain variables follow a normal distribution
 - 3. No measurement error
 - 4. Independent observations
 - 5. Equal variance across groups (or across the regression line)
 - 6. The model is correct in the population

@jonathanleehelm

Statistics and Assumptions

- Regression: $Y_i = b_0 + b_1 X_i + \varepsilon_i$
- $b_1 = 5$, p = .001
- Common interpretation:
 - X_i significantly affects Y_i in the population

@ionathanleehelm

Statistics and Assumptions

- Regression: $Y_i = b_0 + b_1 X_i + \varepsilon_i$; $b_1 = 5$, p = .001
- Correct interpretation:
 - If I have a random sample from the population
 - and X_i is measured without error
 - and $Y_i = b_0 + b_1 X_i$ is the true model (i.e., nothing else affects Y_i)
 - and ε_i actually follows a normal distribution
 - and the variance of ε_i is constant around Y_i
 - and all of the observations are independent
- Then if the null hypothesis is true (if b_1 actually equals 0 in the pop.), the probability of getting 5 (or a value more extreme) is equals .001

Statistics and Assumptions

- Regression: $Y_i = b_0 + b_1 X_i + \varepsilon_i$; $b_1 = 5$, p = .001
- · Correct interpretation:
- If we have missing data, then we need If I have a random sample from the and the data are missing completely at
 - and X_i is measured without error
 - and $Y_i = b_0 + b_1 X_i$ is the true model (i.e., nothing else affects Y_i)
 - and ε_i actually follows a normal distribution
 - and the variance of ε_i is constant around Y_i
 - · and all of the observations are independent
- Then if the null hypothesis is true (if b_1 actually equals 0 in the pop.), the probability of getting 5 (or a value more extreme) is equals .001

Statistics and Assumptions

- Regression: $Y_i = b_0 + b_1 X_i + \varepsilon_i$; $b_1 = 5$, p = .001
- Correct interpretation:

If we have missing data, and we performed multiple imputation:

- If I have a random sample from the and the data are missing at random
- and X_i is measured without error
- and $Y_i = b_0 + b_1 X_i$ is the true model (i.e., nothing else affects Y_i)
- and ε_i actually follows a normal distribution
- and the variance of ε_i is constant around Y_i
- and all of the observations are independent
- Then if the null hypothesis is true (if b_1 actually equals 0 in the pop.), the probability of getting 5 (or a value more extreme) is equals .001

Statistics and Assumptions

- · Interpretation:
 - If I buy the broom, I will be happy with it
- Correct interpretation:
 - If I have a random sample from the population
 - · and ratings are measured without error
 - and ratings of the broom a direct reflection of broom satisfaction
 - is the true model (i.e., nothing else affects Y_i)
- and all of the observations are independent
- Then I will be happy with the broom

Statistics and Assumptions

- Interpretation:
 - If I buy the broom, I will be happy with it These assumptions are likely not true

Correct interpretation:

And I would still buy the broom

- If I have a random sample from the population
- · and ratings are measured without error
- and ratings of the broom a direct reflection of broom satisfaction
 is the true model (i.e., nothing else affects Y_i)
- · and all of the observations are independent
- Then I will be happy with the broom

Statistics and Assumptions

- · Don't panic
- · The most important part is to recognize that assumptions that you're making when you're drawing conclusions
- · Missing data mechanisms are a part of those assumptions
- · So include it, and draw conclusions accordingly

@jonathanleehelm

Grand Overview

- · Single Imputation
- Multiple Imputation
- The Imputation Process
- · When does Multiple Imputation work?
- · A note about Assumptions