VIII. Dynamika mostů a lávek pro pěší

- 1. Dynamické vlastnosti silničních mostů
- 2. Dynamické vlastnosti železničních mostů
- 3. Interakce vozidel a mostů
- 4. Lávky pro pěší
- 5. Zatížení lávek chodci
- 6. Příklady
 - 6.1 Zatížení proměnné v čase a pohybující se po mostě
 - 6.2 Dynamická interakce chodců a lávek pro pěší
 - 6.3 Pohlcovač kmitání lávka Barrandov
 - 6.4 Lávka Čelákovice

Vlastní frekvence

závislost nejnižší (základní) vlastní frekvence kmitání silničních mostů f (Hz) na maximálním rozpětí (délce největšího pole) L (m) – R. Cantieni,1983

Vlastní frekvence

rozšíření na zavěšené mosty – M.Studničková, 1992

Logaritmický dekrement útlumu

$$\theta \doteq 0.05$$

mosty dlouhé (celk. délka >125 m) přímé, úzké

$$\theta \doteq 0.10$$

mosty krátké (celk. délka <75 m) zakřivené nebo šikmé, široké

R. Cantieni, 1983

Vlastní frekvence

závislost první vlastní frekvence kmitání železničních mostů *f* (Hz) na rozpětí (délce největšího pole) *L* (m) – L. Frýba,1992

Závislost první vlastní frekvence f_1 železničních mostů na rozpětí l

Vlastní frekvence

závislost první vlastní frekvence kmitání železničních mostů *f* (Hz) na rozpětí (délce největšího pole) *L* (m) – L. Frýba, 1992

Ocelové příhradové mosty

$$f = 307L^{-1,1} \qquad s = 1,4$$

Ocelové plnostěnné mosty s kolejovým ložem (včetně ortotropní mostovky)

$$f = 59L^{-0.7} \qquad s = 1,7$$

Ocelové plnostěnné mosty bez kolejového lože

$$f = 208L^{-1} s = 1,9$$

Betonové mosty s kolejovým ložem

$$f = 190L^{-1,1} \qquad s = 2,3$$

Betonové mosty bez kolejového lože

$$f = 225L^{-1,2} \qquad s = 1,4$$

Vlastní frekvence

Doporučení Mezinárodní unie železniční

dolní mez:
$$f = 80/L$$
 pro $4 \le L \le 20$ m

$$f = (208/L)^{1/1,69}$$
 pro $20 \le L \le 100 \text{ m}$

horní mez:
$$f = (438, 8/L)^{1/1,34}$$
 pro $4 \le L \le 100 \text{ m}$

Logaritmický dekrement útlumu

Ocelové železniční mosty – L. Frýba, 1992

$$\mathcal{G} = 0.08$$

pro L > 20 m

$$\theta = 0.08(20/L)^{1.5}$$

pro $L \le 20 \text{ m}$

Obr. 5.6. Logaritmický dekrement útlumu 9 ocelových železničních mostů různých rozpětí 1:

- 1 ocelové příhradové mosty,
- 2 ocelové plnostěnné mosty s kolejovým ložem,
- 3 ocelové plnostěnné mosty bez kolejového lože.

Logaritmický dekrement útlumu

Betonové železniční mosty – L. Frýba, 1992

$$\theta = 0.18$$

pro $L > 20$ m

$$\mathcal{G} = 0.18 \left(20/L\right)^{0.9}$$

pro $L \le 20 \text{ m}$

Obr. 5.7. Logaritmický dekrement útlumu 3 betonových železničních mostů různých rozpětí 1:

1 - betonové mosty s kolejovým ložem,

2 - betonové mosty bez kolejového lože.

Průhyb středu rozpětí železničního mostu o rozpětí $l=56,56\,\mathrm{m}$ během přejezdu parní lokomotivy

Průhyb středu 1. pole spojitého nosníku během přejezdu těžkého vozidla - stanovení dynamického přírůstku a logaritmického dekrementu útlumu

Dynamická odezva mostní konstrukce při přejezdu vozidla je závislá na:

- kvalitě povrchu vozovky, nerovnostech jízdní dráhy;
- dynamické charakteristice vozidla (hmotnost, tuhost, odpružení atd.);
- dynamické charakteristice mostu (vlastní frekvence a tvary, útlum);
- rychlosti vozidla;
- rozvoru kol.

Dále je dynamická odezva od dopravy navíc závislá na počtu a typu (těžkých) vozidel na mostě skupina vozidel rozkmitá most v kombinaci několika vlastních tvarů s fázovým posunem – dynamický účinek je menší v poměru ke statickému účinku skupiny vozidel

Dynamický přírůstek

zvýšení odezvy mostu (v %) při dynamickém zatížení vozidlem ve srovnání se statickou odezvou

$$\phi = \frac{A_{dyn} - A_{stat}}{A_{stat}} \cdot 100 \ [\%]$$

Rozhodující je vzájemný poměr vlastní frekvence mostu a vozidla

Fig. 73 Sensitivity of the main structural elements of highway bridges to the dynamic effects of a single truck as a function of the fundamental frequency (for passages on the undisturbed pavement).

Dynamický součinitel

závislost na základní ohybové frekvenci mostu *f* a na rozpětí mostu *L* (Ontario Code 1983)

Řešení úlohy pohyblivého zatížení

Jednoduché výpočtové modely vozidel

Obr. 15.6. Nejjednodušší výpočtové modely vozidel

- a) konstantní břemeno, b) soustředěná hmota, c) odpružená hmota, d) odpružená hmota s tlumením,
- e) soustředěná hmota s proměnnou silou, f) soustředěná hmota na odpružené tuhé tyči

Složitější výpočtové modely silničních vozidel

Složitější výpočtový model železničního vozidla

Interakce vozidla a mostu – výpočetní modely vozidla a konstrukce jsou propojeny pomocí kontaktních sil

Figure 1. Train-track-bridge interaction model: vehicle and structure's d.o.f. are coupled by the wheel-rail contact forces.

Rovinný model dvounápravového vozidla

Vozidlo – 4 SV

Pohybové rovnice vozidla

$$\begin{split} M\ddot{v}_{\mathbf{k}}(t) + \left(k_{1} + b_{1} \frac{\mathrm{d}}{\mathrm{d}t}\right) \left[v_{\mathbf{k}}(t) + d_{1}\zeta_{\mathbf{k}}(t) - v_{1}(t)\right] + \\ + \left(k_{2} + b_{2} \frac{\mathrm{d}}{\mathrm{d}t}\right) \left[v_{\mathbf{k}}(t) - d_{2}\zeta_{\mathbf{k}}(t) - v_{2}(t)\right] &= 0 \end{split}$$

$$I\ddot{\zeta}_{\mathbf{k}}(t) - d_{2}\left(k_{2} + b_{2} \frac{\mathrm{d}}{\mathrm{d}t}\right) \left[v_{\mathbf{k}}(t) - d_{2}\zeta_{\mathbf{k}}(t) - v_{2}(t)\right] + \\ + d_{1}\left(k_{1} + b_{1} \frac{\mathrm{d}}{\mathrm{d}t}\right) \left[v_{\mathbf{k}}(t) + d_{1}\zeta_{\mathbf{k}}(t) - v_{1}(t)\right] &= 0 \end{split}$$

$$G_{1} + G_{\mathbf{k}1} - m_{1}\ddot{v}_{1}(t) + \left(k_{1} + b_{1} \frac{\mathrm{d}}{\mathrm{d}t}\right) \left[v_{\mathbf{k}}(t) + d_{1}\zeta_{\mathbf{k}}(t) - v_{1}(t)\right] &= F_{1}(t) \end{split}$$

$$G_{2} + G_{\mathbf{k}2} - m_{2}\ddot{v}_{2}(t) + \left(k_{2} + b_{2} \frac{\mathrm{d}}{\mathrm{d}t}\right) \left[v_{\mathbf{k}}(t) - d_{2}\zeta_{\mathbf{k}}(t) - v_{2}(t)\right] &= F_{2}(t) \end{split}$$

Kontaktní síly

kde G_1 , G_2 je tíha náprav, $G_{k1} = G_k d_1/d$, $G_{k2} = G_k d_2/d$ je část tíhy karosérie G_k připadající na první a druhou nápravu, celková tíha vozidla je $G = G_{k1} + G_{k2} + G_1 + G_2$. Dynamické síly působící na mostní konstrukci v místě náprav jsou

$$F_1(t) = k_{p1} [v_1(t) - v(a_1, t) - h(a_1)]$$

$$F_2(t) = k_{p2} [v_2(t) - v(a_2, t) - h(a_2)]$$

Pohybové rovnice mostu

$$\mathbf{M}_b \ddot{\mathbf{r}} + \mathbf{C}_b \dot{\mathbf{r}} + \mathbf{K}_b \mathbf{r} = \mathbf{F}(t)$$

$$h(a_1)$$
, $h(a_2)$ – nerovnosti $v(a_1,t)$, $v(a_2,t)$ – průhyby mostu

Moderní lávky pro pěší

lehké a poddajné konstrukce

neobvyklé konstrukční systémy (zavěšené a visuté konstrukce)

První frekvence vlastního kmitání

blízké dominantním frekvencím dynamického zatížení chůzí nebo během

rezonanční odezva je charakterizovaná vysokou hladinou vibrací

Tyto vibrace

obvykle nezpůsobují problémy z hlediska konstrukce

mohou být spojeny s nepříjemnými pocity osob (maximální přípustné hodnoty zrychlení)

rytmické pohyby osob (běh, skákání) mohou způsobit velké vibrace konstrukce

Typické průběhy kontaktních sil při chůzi

a) vertikální složka

b) horizontální složka –příčný směr

c) horizontální složka – podélný směr

Časový průběh vertikálních kontaktních sil – chůze až běh

Časový průběh vertikálních kontaktních sil

Typické budicí frekvence různých lidských aktivit

	pomalá	rychlost střední	velká	střed
Chůze	1,6-1,7 Hz	1,7-2,2 Hz	2,2-2,4 Hz	2,0 Hz
Běh	1,9-2,2 Hz	2,2-2,7 Hz	2,7-3,3 Hz	2,5 Hz
Skákání	1,3-1,9 Hz	1,9-3,0 Hz	3,0-3,4 Hz	2,5 Hz
Příčné pohyby	,	0,8-1.2 Hz		1,0 Hz

Chůze

$$F_p(t) = G + \sum_{i=1}^n G\alpha_i \sin(2\pi i f_p t - \varphi_i)$$

svislý směr

G je tíha osoby (obvykle G = 700 N),

$$\alpha_1 = 0.4$$
, $\alpha_2 = \alpha_3 = 0.1$

$$\varphi_1 = 0, \ \varphi_2 = \varphi_3 = \pi/2$$

 f_p je frekvence pohybu (obvykle 2 Hz) síla se pohybuje rychlostí 0,9 f_p

Harmonické složky

- a) Vertikální síla
- b) Příčná síla

$$F_{p}(t) = 0.05G\sin(2\pi \frac{f_{p}}{2}t)$$

c) Podélná síla

$$F_p(t) = 0.20G\sin(2\pi f_p t)$$

(předpisy SETRA)

Rytmické skákání

(trojúhelníkové zatížení)

Běh

(semi-sinusové zatížení)

$$F_{p}(t) = \begin{cases} K_{p}G(2t/t_{c}) & t \leq t_{c}/2 \\ K_{p}G\left(1 - \frac{2(t - t_{c}/2)}{t_{c}}\right) & t_{c}/2 < t \leq t_{c} \\ 0 & t_{c} < t \leq T_{p} \end{cases}$$

$$K_p = 2 / f_p t_c$$

doba kontaktu t_c

$$F_{p}(t) = \begin{cases} K_{p}G\sin(\pi t/t_{c}) & t \leq t_{c} \\ 0 & t_{c} < t \leq T_{p} \end{cases}$$

$$K_p = \pi / 2 f_p t_c$$

$$T_p = 1 / f_p$$

Navrhované modely zatížení

uvažuje se pouze rezonanční část dynamického zatížení

Guidelines for the design of footbridges (FIB 2005)

DLM1 – jeden chodec

Vertikální kmitání

$$F_{pv}(t) = 180 \sin 2\pi f_v t [N]$$

Horizontální kmitání

$$F_{ph}(t) = 70 \sin 2\pi f_h t \quad [N]$$

 f_v – ohybová vlastní frekvence mostu při svislém kmitání nejblíže 2.0 Hz

 f_h – ohybová vlastní frekvence mostu při vodorovném kmitání nejblíže 1.0 Hz

Síly se umístí do místa maximálního účinku pro daný vlastní tvar

Jeden chodec (alt.)

$$F_{pv}(t) = 280 \sin 2\pi f_v t [N]$$

Síla se pohybuje po konstrukci rychlostí $0.9 f_v$

DLM2 – skupina chodců (8 – 15)

Vertikální kmitání

$$F_{pv}(t) = 180 k_v \sin 2\pi f_v t$$
 [N]

Horizontální kmitání

$$F_{ph}(t) = 70 k_h \sin 2\pi f_h t \qquad [N]$$

 f_v – ohybová vlastní frekvence mostu při svislém kmitání nejblíže 2.0 Hz f_h – ohybová vlastní frekvence mostu při vodorovném kmitání nejblíže 1.0 Hz k_v resp. k_h – součinitele závisející na f_v , resp. f_h (max.3.0 pro f_v = 2.0 Hz, resp. pro f_h = 1.0 Hz)

Síly se umístí do místa maximálního účinku pro daný vlastní tvar Připojí se soustředěná hmota 800 kg

DLM2 – skupina chodců (8 – 15)

DLM3 – proud chodců (dlouhé a široké mosty)

Vertikální kmitání

$$q_{pv}(t) = 12.6 k_v \sin 2\pi f_v t$$
 [Nm⁻²]

Horizontální kmitání

$$q_{ph}(t) = 3.2 k_h \sin 2\pi f_h t$$
 [Nm⁻²]

Zatížení se umístí na most tak, aby vyvolávalo z hlediska uvažovaného vlastního tvaru maximální účinek Připojí se spojitá hmota 40 kg/m²

Maximální přípustné hodnoty zrychlení

EN 1990 Eurokód: Zásady navrhování konstrukcí

Vertikální kmitání

$$a_{max,v} \le 0.7 \text{ ms}^{-2}$$

Horizontální kmitání

$$a_{max,h} \le 0.2 \text{ ms}^{-2}$$

Horizontální kmitání (mimořádné zatížení např. davem lidí)

$$a_{max,h} \le 0.4 \text{ ms}^{-2}$$

Limitní hodnoty frekvencí

Vertikální kmitání

$$f_{lim,v} = 5 \text{ Hz}$$

Horizontální kmitání

$$f_{lim,h} = 2,5 \text{ Hz}$$

Eurokódy nestanovují zatížení lávek pro pěší účinkem chodců

Hodnoty relativního útlumu

ζ/%		
min.	mean	max.
0,8	1,3	2,0
0,5	1,0	1,7
0,3	0,6	-
0,2	0,4	-
-	1,0* 1,5**	-
	0,8 0,5 0,3	min. mean 0,8 1,3 0,5 1,0 0,3 0,6 0,2 0,4 1,0*

^{*} structures without mechanical joints

^{**} structures with mechanical joints

6. Příklady

6.1 Zatížení proměnné v čase a pohybující se po mostě

Na frekvenci závisí:

- doba kontaktu
- rychlost pohybu
- délka kroku
- začátek následujícího kroku

6.1 Zatížení proměnné v čase a pohybující se po mostě

$$f = 1,7 Hz$$

6.1 Zatížení proměnné v čase a pohybující se po mostě

Simulace několika osob pohybujících se po mostě – průhyb ve středu mostu

6.1 Zatížení proměnné v čase a pohybující se po mostě

Porovnání pohybujícího se zatížení a zatížení ve středu mostu – průhyb ve středu mostu

biodynamický model osoby

$$\mathbf{M} = \begin{bmatrix} m_{p1} & \\ & \\ & m_{p2} \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} c_{p1} + c_{p2} & -c_{p2} \\ -c_{p2} & c_{p2} \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} k_{p1} + k_{p2} & -k_{p2} \\ -k_{p2} & k_{p2} \end{bmatrix}$$

DOF	Model	m _{p1} [kg]	m _{p2} [kg]		$\frac{k_{p2}}{\left[\frac{kN}{m}\right]}$	$c_{\mathbf{p1}} = \left[\frac{\mathrm{kNs}}{\mathrm{m}}\right]$	$c_{\mathbf{p2}}$ $\left[\frac{\mathrm{kNs}}{\mathrm{m}}\right]$
2-DOF	ISO 1981	13	62	80	62	0.93	14.6
	Farah (1977)	7.3	74.4	15.4	149.2	0.086	2.85

7 tuhých těles

5 kinematických styků

9 SV

$$x_2, y_2, \phi_2, \psi_1 \div \psi_6$$

Simulace pohybu člověka

Fiktivní pohonné jednotky v místech kinematických styků

– nahrazují lidské svaly

biomechanický model pohybující se osoby

Model pohybující se osoby – působící síly

- vlastní tíha
- řídící momenty v místech kloubů
- síly interakce s konstrukcí
- kontaktní síly

Síly interakce

$$R_{y} = -k y_{rel} - b \dot{y}_{rel}$$

relativní posun v místě kontaktu

Pohybové rovnice mostu

$$\mathbf{M}_b \ddot{\mathbf{r}}(t) + \mathbf{B}_b \dot{\mathbf{r}}(t) + \mathbf{K}_b \mathbf{r}(t) = \mathbf{F}_{dyn}(t)$$

 \mathbf{M}_b , \mathbf{B}_b , \mathbf{K}_b matice hmotnosti, útlumu, tuhosti mostu

 $\mathbf{r}(t)$ vektor uzlových posunutí

 $\mathbf{F}_{dyn}(t)$ vektor sil interakce (kontaktních síl) mezi chodcem a mostem

Odezva mostu na lidskou chůzi – vliv tuhosti konstrukce

6.3 Pohlcovač kmitání – lávka Barrandov

6.3 Pohlcovač kmitání – lávka Barrandov

1. tvar kmitání – $f_1 = 2,15 \text{ Hz}$

2. tvar kmitání – $f_2 = 2,41 \text{ Hz}$

6.3 Pohlcovač kmitání – lávka Barrandov

6.3 Pohlcovač kmitání – Millenium Bridge

Vertikální kmitání -52 TMD

6.3 Pohlcovač kmitání – Millenium Bridge

Horizontální kmitání - 37 viskózních tlumičů

6.3 Pohlcovač kmitání – Passerelle Solférino, Paris

6.3 Pohlcovač kmitání – Passerelle Solférino, Paris

Vertical TMD

double mass spring system2x2 masses 2500 kg mode 1.94 Hz2x2 masses 1900 kg mode 2.22 Hz

Horizontal Viscous Damper

- pendulum in oil

6 masses 2500 kg mode 0.8 Hz

6.4 Lávka Čelákovice

cable-stayed UHPC structure - 3 spans 43.0 + 156.0 + 43.0m, steel pylons 36.0m high

6.4 Lávka Čelákovice

horizontal bending mode of vibration f = 0.59 Hz

vertical bending mode of vibration f = 0.63 Hz

vertical bending mode of vibration f = 2.04 Hz

6.4 Lávka Čelákovice

response due to pedestrian loading

Mode of vibration	Pacing frequency $f_p(Hz)$	Maximum displacement $d_{max} (10^{-3} m)$	Maximum acceleration $a_{max}(ms^{-2})$	Limit acceleration $a_{lim} (ms^{-2})$
1 – horizontal bending	0.59	7.0	0.10	0.2
2 – vertical bending	0.63	15.3	0.24	0.7
13 – vertical bending	2.04	4.5	0.74	0.7

footbridge with 2 TMDs	Mass	$m_d = 2\ 200 \ {\rm kg}$
	Mass ratio	$\mu = 2m_d / m_s = 0.01$
	Natural frequency	$f_d = f_s / (1 + \mu) = 2.02 \text{ Hz}$
	Stiffness	$k_d = (2\pi f_d)^2 m_d = 354 \text{ kN/m}$

Mode of vibration	Pacing	Maximum	Maximum	Limit
	frequency	displacement	acceleration	acceleration
	$f_p(Hz)$	$d_{max} (10^{-3} m)$	$a_{max}(ms^{-2})$	$a_{lim} (ms^{-2})$
vertical bending	2.04	4.5	0.74	0.7
vertical bending with TMDs	1.83	2.2	0.29	0.7