SALORD Florian

Mark: 12/20 (total score: 11.5/19)

	+31/1/60+	
	TEST	
	SSII 16 Mars 2018 Nom et prénom : ALORD FLORIAN	
	Toutes les questions à choix multiples ont une unique réponse.	
	Question 1 Quel est la durée d'un son de 8000 échantillons dont la fréquence d'échantilonnage est de 4000 Hz ?	
1/1	2s	
	Question 2	
	d'échantillonnage en prenant 1 échantillon sur 4. Quel filtrage sera nécessaire pour conserver au mieux la qualité sonore?	
	passe-bas de fréquence de coupure 580Hz passe-haut de fréquence de coupure 2750Hz passe-bas de fréquence de coupure 1375Hz	1/1
	aucun filtre n'est nécessaire	1/1
	le spectre d'un signal échantillonné à passe-bas de fréquence de coupure 5500Hz 11,02kHz. On souhaite réduire la fréquence passe-bas de fréquence de coupure 2750Hz	
	Question 3 Si le son devient plus grave:	
1/1	□ la période d'échantillonnage augmente □ la période d'échantillonnage diminue □ la période du signal diminue □ la période du signal augmente	
	Question 4 La quantification concerne la discrétisation:	
1/1	des amplitudes des fréquences du temps	
	Question 5	
	Voici le spectre d'un signal échantillonné à 44.1kHz. Quelle est la fréquence maximale du signal?	
	7200Hz 1200Hz 36900Hz 44030Hz 44100Hz	1/1
	0 10 000 20 000 30 000 40 000	
	fréquence (Hz)	

	Question 6 Parmi les fréquences d'échantillonnage suivantes, donnez la plus petite respectant le théorème de Nyquist-Shannon:	
./1	☐ 22050Hz ☐ 700Hz ☐ 88200Hz ☐ 14500Hz ☐ 3601Hz	
	Question 7 Soit un son sinusoïdal s_1 d'amplitude 1 et de fréquence 250 Hz. Donnez l'expression mathématique de $s_1(t)$:	1/1
	si(t) s sin (2πt × 250)	
	Question 8 Tracez sur la figure ci-dessous la transformée de Fourier du signal s_1 sachant qu'il	
	a été échantillonné à 8000 Hz. Soignez les légendes (axes, valeurs,).	0.5/1
	1 Amplitude	
	250 Hz fréquence	a
	Question 9 On rappelle que le codage de Rice de paramètre k d'un entier N est obtenu en codant le quotient de la division euclidienne de N par 2^k en unaire, suivie d'un 0 puis enfin du codage binaire du reste de cette division euclidienne. Quel est le codage de Rice de paramètre 2 de 25 ?	
1/1		
	Question 10 Donnez le principe du codage d'Huffman en une phrase:	0/1
	Le cadage d'Huffman consiste en l'attribution de valeurs linaires ouse probabilités de chaque membre.	
	Question 11 MFCC correspond à:	
1/1	☐ Music Format Compressed Cloud ☐ Music Frequency Current Coefficients ☐ Mel For Coupled Compression ☐ Mel Frequency Cepstral Coefficients	
	Question 12 L'échelle des mels a été conçue pour :	
	mieux s'adapter à la perception auditive humaine	
1/1	optimiser les performances du deep learning utiliser les capacités GPU des ordinateurs modernes	
	accélerer les calculs sur les entiers	

Question 15 On souhaite différencier automatiquement les sons d'un violon et d'une contrebasse. A titre d'exemple, les spectres de 4 notes pour chaque intrument sont données. On souhaite évaluer la faisabilité d'un tel projet. Que proposez-vous?

- purait - on feire + simple?

Question 16 On souhaite différencier automatiquement les sons d'un violon et d'une clarinette (en sib). A titre d'exemple, les spectres de 4 notes pour chaque intrument sont données. On souhaite évaluer la faisabilité d'un tel projet. Que proposez-vous?

Controvered à l'exercise pécéded ici les rotes du mido et de la claimetté ont des graphiques thet prades himi il serait très déflicile de réaliser une réporation à plushems groupes avec le violon d'un côte et la claimette de l'autre en utilisant la méthode du b-means.

Une solution d'utiliser un large pard de pourquoi? notes de chacum des instruments et de fixer la réparation des groupes une fais eelle-ci effectuée. On parmaits alors comparer un nouveau son aux groupes assistants et le trer automatiquement dans le frair groupe.

1/4

18