

ON Semiconductor®

Input Filter Interactions with Switching Regulators

Christophe Basso – Technical Fellow IEEE Senior Member

ON

Course Agenda

A Switching Regulator as a Load
EMI Filter Impact
An Introduction to FACTs
Buck Converter Input/Output Impedances
Filtering the Input Current
Damping the Filter
Optimum Component Selection
A Practical Case Study
Cascading Converters

N

Rev. 0.1

Course Agenda

A Switching Regulator as a Load ■ EMI Filter Impact ☐ An Introduction to FACTs ■ Buck Converter Input/Output Impedances ☐ Filtering the Input Current Damping the Filter Optimum Component Selection ■ A Practical Case Study Cascading Converters

EMI Filter Interaction

 \square A LC filter is inserted to prevent input line pollution

■ What load does the converter offer?

C. Basso, "Designing Control Loops for Linear and Switching Power Supplies", Artech House, 2012

A Negative Incremental Resistance

☐ Assume a 100%-efficient converter

$$P_{out} = P_{in} \longrightarrow I_{in}V_{in} = I_{out}V_{out}$$

Infinite rejection

lacksquare In closed-loop operation, P_{out} is constant, no link to V_{in}

$$\longrightarrow I_{in}\left(V_{in}\right) = \frac{P_{out}}{V_{in}}$$

 \blacksquare For a constant P_{out} , if V_{in} increases, I_{in} drops

$$\frac{dI_{in}(V_{in})}{dV_{in}} = \frac{d\left(\frac{P_{out}}{V_{in}}\right)}{dV_{in}} = -\frac{P_{out}}{V_{in}^{2}}$$

The incremental input resistance is negative

$$R_{in} = -\frac{V_{in}^2}{P_{out}}$$

A Simple SPICE Simulation

☐ A constant-power current source shows the negative resistance

**** SMALL SIGNAL DC TRANSFER FUNCTION

```
\begin{array}{lll} \text{output\_impedance\_at\_V(bulk)} & 0.000000\text{e}+000 \\ \text{vin\#Input\_impedance} & -2.00000\text{e}+002 & \leftarrow \text{Neg. resistance} \\ \text{Transfer\_function} & 1.000000\text{e}+000 \end{array}
```

A Simple LC Filter

 \Box The low-pass filter is built with L and C elements:

$$L + C(r_L r_C + r_L R + r_C R) = 0$$

$$Q \to \infty$$
If $R = -\frac{L + r_C r_L C}{C(r_C + r_L)}$

$$H(s) = H_0 \frac{1 + s/\omega_{z_1}}{1 + \frac{s}{\omega_0 Q} + \left(\frac{s}{\omega_0}\right)^2}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \sqrt{\frac{r_L + R}{r_C + R}} \qquad \omega_{z_1} = \frac{1}{r_C C}$$

$$Q = \frac{LC\omega_0(r_C + R)}{L + C(r_L r_C + r_L R + r_C R)}$$

A negative resistance cancels losses: poles become imaginary

Sustained oscillations

A Negative Resistance Oscillator

☐ If losses are compensated, the damping ratio is zero

$$H(s) = H_0 \frac{1 + s/\omega_z}{\frac{s^2}{\omega_0^2} + \frac{s}{\omega_0 Q} + 1} \qquad Q = \frac{1}{2\zeta} \longrightarrow \text{If ohmic losses are gone, the damping ratio is zero, } Q \text{ is infinite.}$$

☐ Without precautions, instability can happen!

Filter Output Impedance

 \Box What is the output impedance of an LC filter?

 \square All losses (ohmic, iron etc.) help decreasing Q

Typical Filter Output Impedance

☐ At low frequency, the inductive ohmic loss dominates

ON Semiconductor®

Negative Resistance at Low Frequency

lacktriangle Neg. resistance exists because of feedback (P_{out} = constant)

Impedance measurement setup

SwitchMode Power Supplies: SPICE Simulations and Practical Designs Christophe Basso - McGraw-Hill, 2014

Negative Resistance at Low Frequency

☐ The resistance is truly negative up to 200 Hz

Well before crossover, the -180° argument is gone.

Course Agenda

A Switching Regulator as a Load ☐ EMI Filter Impact ☐ An Introduction to FACTs ■ Buck Converter Input/Output Impedances ☐ Filtering the Input Current ■ Damping the Filter Optimum Component Selection ■ A Practical Case Study Cascading Converters

A Filter Affects the Line Output Impedance

☐ The line impedance driving the converter is no longer 0

The system can be modeled by a minor loop

$$V_{in}(s) = V_{th}(s) \xrightarrow{1} V_{th}(s) \xrightarrow{+} V_{in}(s)$$

$$V_{th}(s) \xrightarrow{+} Z_{th}/Z_{in}$$

$$Z_{th}/Z_{in}$$

$$Z_{th}/Z_{in}$$

"Input Filter Considerations in Design and Application of Switching Regulators", R. D. Middlebrook, IEEE Proceedings, 1976

Impedance Interactions

☐ Stability can be at stake when inserting the filter

☐ The Nyquist criterion applies

$$V_{in}(s) = V_{th}(s) \frac{1}{1 + \frac{Z_{th}(s)}{Z_{in}(s)}}$$

$$\frac{Z_{th}(s)}{Z_{in}(s)} = -1$$

$$\frac{|Z_{th}(s)|}{|Z_{in}(s)|} = 1 \text{ and } \angle \frac{Z_{th}(s)}{Z_{in}(s)} = -180^{\circ}$$
Conditions for oscillations

A Filter Modifies Converter's Dynamics

- \Box The EMI filter output impedance makes $Z_{th}(s) \neq 0$
- ☐ The converter input voltage is no longer zero in ac analysis

ON Semiconductor®

Extra Element Theorem to Help

☐ It can be shown how an EMI filter affects the open-loop gain

What are Z_D and Z_N ?

 \square Z_D and Z_N come from the Extra-Element Theorem, EET

$$Z_{D}(s) = Z_{i}(s)|_{D(s)=0}$$
 Open-loop input impedance

$$Z_{N}(s) = Z_{i}(s)|_{\hat{v}_{out}=0}$$

Input impedance for a nulled output Ideal input rejection

ON Semiconductor®

Ideal control $\longrightarrow \hat{d} \neq 0$

Open-loop input impedance

Input impedance for $\hat{v}_{out} = 0$

Consider Closed-Loop Input Impedance

☐ These values have already been derived

 $Z_{e}(s)$ is the input impedance for a shorted output

Converter	$Z_N(s)$	$Z_D(s)$	$Z_e(s)$
Buck	$-\frac{R}{D^2}$	$\frac{R}{D^2} \left(\frac{1 + s\frac{L}{R} + s^2 LC}{1 + sRC} \right)$	$\frac{sL}{D^2}$
Boost	$-D^{\prime 2} R \left(1 - \frac{sL}{D^{\prime 2} R} \right)$	$D^{1^{2}} R \left(\frac{1 + s \frac{L}{D^{1^{2}} R} + s^{2} \frac{LC}{D^{1^{2}}}}{1 + sRC} \right)$	sL
Buck-Boost	$-\frac{D^{\prime 2}R}{D^2}\left(1-\frac{sDL}{D^{\prime 2}R}\right)$	$\frac{D^{12} R}{D^2} \left(\frac{1 + s \frac{L}{D^{12} R} + s^2 \frac{LC}{D^{12}}}{1 + sRC} \right)$	$\frac{sL}{D^2}$

☐ A converter closed-loop input impedance follows the form

$$\frac{1}{Z_{in}(s)} = \frac{1}{Z_{N}(s)} \frac{T(s)}{1 + T(s)} + \frac{1}{Z_{D}(s)} \frac{1}{1 + T(s)}$$
Loop gain — "Fundamentals of Power Electronic

"Fundamentals of Power Electronics", R. Erickson, D. Maksimovic, Springer, 2001

ON Semiconductor®

The Output Impedance is Affected

☐ The filter degrades the closed-loop output impedance

$$Z_{out,CL}\left(s\right)\Big|_{Z_{th}\left(s\right)\neq0}=Z_{out,CL}\left(s\right)\Big|_{Z_{th}\left(s\right)=0}\frac{1+\frac{Z_{th}\left(s\right)}{Z_{e}\left(s\right)}}{1+\frac{Z_{th}\left(s\right)}{Z_{in,CL}\left(s\right)}} \qquad \qquad \text{No impact if} \\ Z_{th}\left(s\right)<< Z_{e}\left(s\right)$$

 \square $Z_e(s)$ is the converter input impedance with a shorted output

Applying Dr. Middlebrook Criteria

- ☐ Previous equations consider switching cell alone
- Do not include the decoupling capacitor!

☐ If possible, move the capacitor to the filter side

"Input Impedance and Filter Interactions Part I", R. Ridley, ridleyengineering.com

ON Semiconductor®

At 1st-Order Check Crossover Points

- ☐ Plot the converter input resistance value
- \square Plot the filter output impedance: check for overlaps: $|Z_{th}(s)| = |Z_{th}(s)|$

Overlap occurs?

Watch the argument of

$$Z_{\it th}/Z_{\it in}$$

Condition for Oscillations

- lacksquare Plot the ratio of magnitude $\left|Z_{th}/Z_{in}\right|$
- lacktriangle Plot the difference of arguments $\arg Z_{th} \arg Z_{in}$

Check phase margin at 0-dB points if any

Conditions for oscillations

$$\left| \frac{Z_{th}(s)}{Z_{in}(s)} \right| = 1$$
and
$$\angle \frac{Z_{th}(s)}{Z_{in}(s)} = -180^{\circ}$$

Damping the Filter to Build Margin

- ☐ Damping the filter can provide phase margin at 0 dB
- ☐ The phase margin in this example is a bare 12°

Avoid magnitude overlaps by working on Z_{th} and Z_{in} !

24

Preliminary Conclusion

☐ You design the input filter together with the SMPS

$$\begin{aligned} \left| Z_{th}\left(s\right) \right| &<< \left| Z_{N}\left(s\right) \right| \\ \left| Z_{th}\left(s\right) \right| &<< \left| Z_{D}\left(s\right) \right| \end{aligned}$$

When a filter is installed:

Converter loop gain T is unaffected

$$\left|Z_{th}\left(s\right)\right| << \left|Z_{e}\left(s\right)\right|$$

V_{out} shorted, open loop

Converter output impedance is unaffected

☐ You design the input filter alone

$$\left| \frac{Z_{th}(s)}{Z_{in}(s)} \right|$$
 and $\angle \frac{Z_{th}(s)}{Z_{in}(s)} \leftarrow$

Don't care about phase anymore

If damping the filter guarantees

$$\left|Z_{th}\left(s\right)\right| << \left|Z_{in}\left(s\right)\right|_{closed\ loop}$$

System is stable but overall performance may be altered

Course Agenda

- ☐ A Switching Regulator as a Load
- EMI Filter Impact
- ☐ An Introduction to FACTs
- Buck Converter Input/Output Impedances
- ☐ Filtering the Input Current
- Damping the Filter
- Optimum Component Selection
- A Practical Case Study
- Cascading Converters

Classical Circuits Analysis Techniques

- Apply classical Kirchhoff's voltage and current laws
- The expression is correct but disorganized: high-entropy form

No insight: poles? Zeros? Dc gain?

ON Semiconductor®

Fast Analytical Circuits Techniques

☐ FACTs describe a set of tools to quickly write transfer functions

$$H(s) = \frac{R_{1}}{R_{1} + r_{L}} \frac{1 + sr_{C}C_{2}}{1 + \left[s\left[\frac{L_{1}}{r_{L} + R_{1}} + C_{2}\left(r_{C} + r_{L} \parallel R_{1}\right)\right] + \left[s^{2}L_{1}C_{2}\frac{r_{C} + R_{1}}{r_{L} + R_{1}}\right]}$$
Dc gain

■ Naturally showing gains, poles and zeros...

$$\omega_z = \frac{1}{r_C C_2}$$
 $\omega_0 = \frac{1}{\sqrt{L_1 C_2}} \sqrt{\frac{r_C + R_1}{r_L + R_1}}$

$$Q = \frac{r_{L} + R_{1}}{L_{1} + C_{2} \left[r_{C} r_{L} + R_{1} \left(r_{C} + r_{L} \right) \right]} \frac{1}{\omega_{0}}$$

This is a *low-entropy* expression

R. D. Middlebrook, "Methods of Design-Oriented Analysis: Low Entropy Expressions", New Approaches to Undergraduate Education, July 1992

Two Different Stages

lacksquare Consider dc and high-frequency states for L and C

 \Box Change the circuit depending on s

Principles of FACTs: Time Constants

- ☐ Determine time constants in two different conditions
- 1. The excitation is set to zero (no excitation)
- 2. The output is nulled (no response)

How do you determine a time constant?

Remove L or C and look into its terminals: $R = \frac{V_T}{I_T} = R_2 \parallel R_3 + R_1$

$$\tau = (R_2 \parallel R_3 + R_1)C_1$$

In your head, imagine an ohm-meter placed across C₁'s terminals

Excitation is set to 0

ON Semiconductor®

Turning the Excitation off – The Pole

- ☐ Turning the excitation off means
- ❖ A 0-V source becomes a short circuit
- ❖ A O-A generator is an open circuit and disappears

 \Box The inverse of the time constant in this case is a pole: $\omega_p = \frac{1}{\tau}$

Mathematical Definition of a Zero

 \square A zero is the root of the equation f(x) = 0

$$f(x) = x^{2} - 4$$

$$f(x) = 0$$

$$\downarrow$$

$$x_{1} = -2$$

$$x_{2} = 2$$

☐ Transfer function zeros are the numerator roots

$$N(s) = 0 \longrightarrow S_{z_1}, S_{z_2} \dots$$

Nulling the Response

☐ If the numerator is 0, then the response is theoretically 0

$$\hat{v}_{out} = 0$$

Complex excitation

$$s = s_z$$

Complex response

$$N(s_z) = 0$$

 \Box What is happening in the box when $s=s_z$?

The excitation cannot reach the output: the response is nulled

$$V_{out}(s_z) = 0 \iff \hat{v}_{out}(s_z) = 0$$

How Does the Response Disappear?

☐ The signal is lost in the *transformed* network

A series impedance becomes infinite.

A parallel impedance shorts the path to ground

☐ What is a *transformed* network?

The Transformed Network

☐ Reactances are replaced by their Laplace expression

☐ The circuit is then observed at the zero angular frequency

35

Considering a Negative Angular Frequency

 \Box For $s = s_{z1}$, the *RC* impedance is a short circuit

$$Z_{1}\left(s_{z_{1}}\right) = 0 \Omega$$

$$S_{z_{1}} = -\frac{1}{r_{C}C_{1}}$$

 \square For $s = s_{z2}$, the RL impedance is infinite

$$Z_{2}\left(s_{z_{2}}\right) \rightarrow \infty \Omega$$

$$S_{z_{2}} = -\frac{R_{2}}{L_{2}}$$

Zeros by Inspection: Fastest Option!

☐ Identify *transformed* open circuits/short circuits

$$N(s) = \left(1 + \frac{s}{\omega_{z_1}}\right) \left(1 + \frac{s}{\omega_{z_2}}\right) \left(1 + \frac{s}{\omega_{z_3}}\right)$$

37

FACTs at Work in an Example

 \square How would you calculate V_{out} / V_{in} ?

- 1. Transform the circuit with a Thévenin generator
- 2. Apply impedance divider involving C_1

Apply Impedance Divider

☐ Reduce circuit complexity with Thévenin

lacktriangle Apply impedance divider involving Z_1 and R_{th}

$$R_{th}(s) = R_1 \parallel R_2 + R_3$$

$$Z_1(s) = R_4 \parallel \left(r_C + \frac{1}{sC_1}\right)$$

$$H(s) = \frac{Z_1(s)}{Z_1(s) + R_{th}(s)} \frac{R_2}{R_1 + R_2}$$
"Who you gonna call?"

High-Entropy Expression

☐ How do you make use of this result?

$$H_2(s) := \frac{R_2 \cdot R_4 \cdot \left(C_1 \cdot r_C \cdot s + 1 \right)}{R_1 \cdot R_2 + R_1 \cdot R_3 + R_1 \cdot R_4 + R_2 \cdot R_3 + R_2 \cdot R_4 + C_1 \cdot R_1 \cdot R_2 \cdot R_4 \cdot s + C_1 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot s + C_1 \cdot R_1 \cdot R_2 \cdot r_C \cdot s + C_1 \cdot R_1 \cdot R_3 \cdot r_C \cdot s + C_1 \cdot R_1 \cdot R_2 \cdot R_3 \cdot r_C \cdot s + C_1 \cdot R_2 \cdot R_3 \cdot r_C \cdot s + C_1 \cdot R_2 \cdot R_3 \cdot r_C \cdot s + C_1 \cdot R_2 \cdot R_3 \cdot r_C \cdot s + C_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot s + C_1 \cdot R_1 \cdot R_3 \cdot R_4 \cdot R$$

- what is the pole/zero position?
- \clubsuit what affects the quasi-static gain for s = 0?

You can plot the ac response but it yields no insight on what drives poles and zeros!

Applying FACTs Now

 \square What is the gain when V_{in} is a dc voltage?

■ The capacitor is open circuited, read the schematic!

$$H_0 = \frac{R_2}{R_1 + R_2} \frac{R_4}{R_1 \parallel R_2 + R_3 + R_4}$$

Determine the First Time Constant

- ☐ Look at the resistance driving the storage element
- 1. When the excitation is turned off, $V_{in} = 0 \text{ V}$

$$\tau_{1} = \left[r_{C} + (R_{1} \parallel R_{2} + R_{3}) \parallel R_{4} \right] C_{1}$$

Denominator calculation

Determine the Second Time Constant

☐ Inspect the circuit and find the transformed short circuit

lacksquare If Z_1 is equal to 0, the output is nulled

$$r_C + \frac{1}{s_z C_1} = 0$$
 $s_z = -\frac{1}{r_C C_1}$

Numerator calculation

Assemble the Terms

☐ You immediately have a *low-entropy* form

$$H(s) = H_0 \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}}$$

$$H(s) = H_0 \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}} \qquad H_0 = \frac{R_2}{R_1 + R_2} \frac{R_4}{R_1 \parallel R_2 + R_3 + R_4}$$

$$\omega_p = \frac{1}{[r_C + (R_1 \parallel R_2 + R_3) \parallel R_4]C_1}$$

$$\omega_z = \frac{1}{r_C}$$

■ We did not write a single line of algebra!

Way cool!

Use Mathcad® to Check Results

$$\begin{split} R_1 &:= lk\Omega \quad R_2 := 22k\Omega \quad r_C := 0.l\Omega \quad R_3 := l50\Omega \quad R_4 := l00\Omega \\ &|(x,y) := \frac{xy}{x+y} \quad C_1 := l\mu F \\ &= \frac{R_4 \cdot \left(r_C + \frac{1}{s \cdot C_1}\right)}{R_4 + r_C + \frac{1}{s \cdot C_1}} + \frac{20 \cdot log \left(\left|H_1 (i \cdot 2\pi \cdot f_k)\right|, 10\right) - 40}{20 \cdot log \left(\left|H_2 (i \cdot 2\pi \cdot f_k)\right|, 10\right) - 60} \\ &= \frac{R_4 \cdot \left(r_C + \frac{1}{s \cdot C_1}\right)}{R_4 + r_C + \frac{1}{s \cdot C_1}} + \frac{R_1 \cdot R_2}{R_1 + R_2} + R_3 \\ &= \frac{R_2 \cdot \left(r_C + \frac{1}{s \cdot C_1}\right)}{R_1 \cdot R_2 + R_1 \cdot R_3 + R_1 \cdot R_4 + R_2 \cdot R_3 + R_2 \cdot R_4 + C_1 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot S + C_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot S + C_1 \cdot R_1 \cdot R_3 \cdot R_4 \cdot S + C_1 \cdot$$

$$H_2(s) := \frac{H_2(s)}{R_1 \cdot R_2 + R_1 \cdot R_3 + R_1 \cdot R_4 + R_2 \cdot R_3 + R_2 \cdot R_4 + C_1 \cdot R_1 \cdot R_2 \cdot R_4 \cdot s + C_1 \cdot R_1 \cdot R_3 \cdot R_4 \cdot s + C_1 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot s + C_1 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot s + C_1 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot s + C_1 \cdot R_1 \cdot R_$$

$$\tau_2 \coloneqq c_1 \cdot \left[r_C + \left(R_1 \parallel R_2 + \ R_3 \right) \parallel R_4 \right] = 91.812 \, \mu s$$

$$\tau_1 := C_1 \cdot r_C = 100 \cdot ns$$

$$H_0 := \frac{R_4}{R_4 + R_1 \parallel R_2 + R_3} \cdot \frac{R_2}{R_1 + R_2} = 0.079$$

$$\mathrm{H}_1(\mathrm{s}) \coloneqq \mathrm{H}_0 \cdot \frac{1 + \mathrm{s} \cdot \tau_1}{1 + \mathrm{s} \cdot \tau_2}$$

Superimposing both transfer functions, matching should be perfect. If not, there is mistake.

Fractions and Dimensions

☐ A 1st-order system follows the form

$$H(s) = \frac{N(s)}{D(s)} = \frac{a_0 + a_1 s}{b_0 + b_1 s} \quad \text{factoring} \quad H(s) = \frac{a_0}{b_0} \frac{1 + \frac{a_1}{a_0} s}{1 + \frac{b_1}{b_0} s}$$

☐ A leading term (if any) carries the unit

$$Z(s) = R_0 \underbrace{ \begin{bmatrix} 1 + \frac{a_1}{a_0} s \\ 1 + \frac{b_1}{a_0} s \\ 1 + \frac{b_1}{b_0} s \end{bmatrix}}_{\text{Unitless}} \underbrace{ \begin{bmatrix} 1 + \frac{a_1}{a_0} s \\ 1 + \frac{b_1}{a_0} s \\ 1 + \frac{b_1}{b_0} s \\ \end{bmatrix}}_{\text{Unitless}} \underbrace{ \begin{bmatrix} \frac{a_1}{a_0} \rightarrow [s] \rightarrow \tau_N \\ \frac{b_1}{b_0} \rightarrow [s] \rightarrow \tau_N \\ \frac{b_1}{b_0} \rightarrow [s] \rightarrow \tau_D \\ \end{bmatrix}}_{\text{Unitless}}$$

2nd-Order System

☐ A 2nd-order system follows the form

$$H(s) = \frac{\alpha_0 + \alpha_1 s + \alpha_2 s^2}{\beta_0 + \beta_1 s + \beta_2 s^2} \xrightarrow{\text{Factoring } \alpha_0} H(s) = H_0 \underbrace{\frac{1 + a_1 s + a_2 s^2}{1 + b_1 s + b_2 s^2}}_{\text{Factoring } \beta_0} \text{ Unitless}$$

☐ The second fraction is unitless

Carries the unit

$$a_1 = \frac{\alpha_1}{\alpha_0} \rightarrow \left[\mathbf{s}\right] \rightarrow \tau_{1N} + \tau_{2N} \qquad a_2 = \frac{\alpha_2}{\alpha_0} \rightarrow \left[\mathbf{s}^2\right] \rightarrow \tau_{1N}\tau_{2N}^1 \text{ or } \tau_{2N}\tau_{1N}^2$$

$$b_1 = \frac{\beta_1}{\beta_0} \rightarrow \left[\mathbf{s}\right] \rightarrow \tau_{1D} + \tau_{2D} \qquad b_2 = \frac{\beta_2}{\beta_0} \rightarrow \left[\mathbf{s}^2\right] \rightarrow \tau_{1D}\tau_{2D}^1 \text{ or } \tau_{2D}\tau_{1D}^2$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
reactance 1 reactance 2

Alternating the Reactance States

- ☐ In a 1st-order circuit, there is one reactance
- * it is either in a high-frequency state or in a dc state

- ☐ In a 2nd-order circuit, there are two reactances
- we can consider individual states

$$s = 0 \quad \stackrel{C_2}{\longrightarrow} \quad \stackrel{L_1}{\longleftarrow} \quad H_0 \qquad \begin{cases} L_1 & s \to \infty \quad \stackrel{C_2}{\longrightarrow} \quad \stackrel{L_1}{\longleftarrow} \quad \smile \quad H_{\infty} \\ \downarrow C_2 & \uparrow & \downarrow C_2 & \downarrow \\ R? \quad & \uparrow \quad & \downarrow C_2 & \uparrow \\ R? \quad & \uparrow \quad & \downarrow C_2 & \uparrow \\ R? \quad & \uparrow \quad & \downarrow C_2 & \uparrow \quad & \downarrow C_2 & \downarrow C_2 \\ \end{pmatrix}$$

Introducing the Notation

☐ Set one reactance into its high-frequency state

☐ There is redundancy: pick the simplest result

$$b_2 = \tau_1 \tau_2^1 \iff b_2 = \tau_2 \tau_1^2$$

Example with Capacitors

☐ Assume the following 2-capacitor circuit

lacktriangle Determine the two time constants while V_{in} is 0 V

Determining the Higher-Order Term

 \square Place C_1 in its high-frequency state and look into C_2

 \square Place C_2 in its high-frequency state and look into C_1

$$\tau_1^2 = r_C C_1$$

Denominator is Completed

■ The denominator can be assembled

$$D(s) = 1 + b_1 s + b_2 s^2 = 1 + \left[C_1 (r_C + R_1) + C_2 R_1 \right] s + C_2 R_1 C_1 r_C s^2$$

☐ Is there a zero in this network?

 \clubsuit If Z_1 becomes a transformed short, the response disappears

Final Expression and Conclusion

☐ Gather the pieces to form the transfer function

$$H(s) = \frac{1 + sr_{C}C_{1}}{1 + \left[C_{1}(r_{C} + R_{1}) + C_{2}R_{1}\right]s + C_{2}R_{1}C_{1}r_{C}s^{2}}$$

$$H(s) = H_0 \frac{1 + \frac{S}{\omega_z}}{1 + \frac{S}{\omega_0 Q} + \left(\frac{S}{\omega_0}\right)^2}$$

- ☐ This expression was determined in a flashing time No algebra!
- ☐ We did not use KVL or KCL: inspection is easy

Fast Analytical Circuits Techniques for Electrical and Electronic Circuits Vatché Vorpérian - Cambridge Press 2002

Linear Circuit Transfer Function - A **Tutorial Introduction to Fast** Analytical Techniques - Christophe Basso - Wiley & Sons 2016

53

Course Agenda

Cascading Converters

A Switching Regulator as a Load ■ EMI Filter Impact ☐ An Introduction to FACTs Buck Converter Input/Output Impedances ☐ Filtering the Input Current ■ Damping the Filter Optimum Component Selection ■ A Practical Case Study

A Buck Converter in Voltage Mode

☐ Replace the diode and the switch by the PWM switch

Buck Input Impedance

lacktriangle Inductance LoL lets you sweep the input to have Z_{in}

 \Box In this mode, \hat{d} is equal to zero

$$\frac{V_{in}\left(S\right)}{I_{in}\left(S\right)}\bigg|_{\hat{d}=0}$$

Source B2 and B1 are zero Node p is ground $V(a, p) = V_{in}$

Simplify schematic Check ac response

Input impedance

Simplifying and Rearranging is Key

lacksquare Install the dc transformer to obtain Z_{in}

☐ Reflect elements to the primary side

Dc input resistance

Start with s = 0 – Draw Circuit in dc

☐ Short the inductor, open the capacitor

lacksquare For the time constants, suppress the excitation, $I_T = 0$

58

Higher Order Coefficients

- \square Avoid indeterminacy with τ_1 : use τ_2 instead
- \Box Determine τ_1^2

$$\mathcal{T}_1^2 \stackrel{\longrightarrow}{\longleftarrow} \text{High-frequency state}$$

$$\tau_1^2 = \frac{L_1}{D_0^{\ 2} \cdot \infty}$$

$$\downarrow$$

$$b_2 = \tau_2 \tau_1^2 = C_2 D_0^{\ 2} \left(\frac{r_C + R_{Load}}{D_0^{\ 2}} \right) \frac{L_1}{D_0^{\ 2} \cdot \infty} = 0$$

$$D(s) = 1 + \left[C_2 D_0^2 \left(\frac{r_C + R_{Load}}{D_0^2} \right) + \frac{L_1}{D_0^2 \cdot \infty} \right] s = 1 + s C_2 \left(r_C + R_{Load} \right)$$

Input impedance

5/15/2024

The Numerator is of 2nd-Order Type

- Null the response across the current source
 - → Degenerate case, short the generator's terminals!

Use Fast Analytical Circuits Techniques!

$$N(s) = 1 + s \left(\frac{L_1}{r_L + R_{load}} + C_2 \left[\left(r_L \parallel R_{load} \right) + r_C \right] \right) + s^2 \left(L_1 C_2 \frac{r_C + R_{load}}{r_L + R_{load}} \right)$$

C. Basso, "Introduction to Fast Analytical Techniques, Application to Small-Signal Modeling", APEC 2016 Professional Seminar

Assemble the Pieces

☐ The transfer function dimension is ohm

$$Z_{in,OL}(s) = R_0 \frac{1 + \frac{s}{\omega_0 Q} + \left(\frac{s}{\omega_0}\right)^2}{1 + \frac{s}{\omega_p}} \qquad \omega_p = \frac{1}{\left(r_C + R_{Load}\right)C_2} \qquad R_0 = \frac{r_L + R_{load}}{D_0^2}$$

$$\omega_{p} = \frac{1}{(r_{C} + R_{Load})C_{2}} \quad R_{0} = \frac{r_{L} + R_{load}}{D_{0}^{2}}$$

$$Q = \frac{L_{1}C_{2}\omega_{0}(r_{C} + R_{load})}{L_{1} + C_{2}(r_{L}r_{C} + r_{L}R_{load} + r_{C}R_{load})}$$

$$\omega_0 = \frac{1}{\sqrt{L_1 C_2}} \sqrt{\frac{r_L + R_{load}}{r_C + R_{load}}} \qquad \text{dB}\Omega \qquad \qquad 29.2 \text{ dB}\Omega$$

Closed-Loop Input Impedance

☐ We want the input impedance once the loop is closed

Stabilize the Buck with a Type 3

A 10-kHz crossover is selected for the compensation

63

Use Large-Signal Model for Reference

☐ Use the PWM switch to check the response

Loop Gain Decreases as f Increases

☐ Input impedance is negative at low frequencies only

ON Semiconductor®

65

Why Does Z_{in} Become Positive?

lacktriangle The below expression only holds if P_{out} is truly constant

$$R_{in} = \frac{V_{in}^{2}}{P_{out}}$$
 Infinite input voltage rejection

☐ It is true at dc, where loop gain is very high

$$A_{SC,OL}(s) = D \frac{R_{load}}{R_{load} + r_L} \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_0 Q} + \left(\frac{s}{\omega_0}\right)^2}$$
Audio
susceptibility
$$dB$$

$$-80$$

$$A_{SC,CL}(s) = \frac{A_{SC,OL}(s)}{1 + T(s)}$$

f Loop gain quickly drops as f increases

A_{SC}, audio susceptibility

Determining the Closed-Loop Impedance

Update the large-signal model with linear sources

 \square B₂ needs to be linearized as d and V_{in} now include ac

Analytical analysis

Simplified Circuit Helps Analysis

Final closed-loop schematic to perform analysis

ON Semiconductor®

5/15/2024

Derive Equations for Individual Variables

☐ The duty ratio is linked to V_{out} by the error amplifier G $D(s) = G(s)G_{PWM}V_{out}(s)$

☐ From the previous slide, we have

$$V_{out}\left(s\right) = \begin{bmatrix} D_{0}V_{in}\left(s\right) + D(s)V_{in} \end{bmatrix} \xrightarrow{H\left(s\right)} \leftarrow \begin{array}{c} \text{Control-to-output function of the buck} \\ V_{in} \leftarrow & \text{Divide by V}_{in} \text{ to get the transmittance H}_{p} \\ D(s) = \frac{D_{0} \cdot G_{PWM}G(s)H(s)V_{in}\left(s\right)}{V_{in} - G_{PWM}V_{in}G(s)H(s)} \end{array}$$

 \square Current in terminal c is B_4 applied to the RLC network

$$I_{C}(s) = \frac{V_{in}(s)D_{0} + V_{in} \frac{D_{0} \cdot G_{PWM}G(s)H(s)V_{in}(s)}{V_{in} - G_{PWM}V_{in}G(s)H(s)}}{Z_{RLC}(s)}$$

Substitute Expressions and Rearrange

☐ The input current depends on the two input sources:

lacksquare Substitute D(s) and $I_C(s)$ previously obtained

$$I_{in}(s) = I_{out} \frac{D_{0} \cdot G_{PWM}G(s)H(s)V_{in}(s)}{V_{in} - G_{PWM}V_{in}G(s)H(s)} + D_{0} \frac{D_{0} + V_{in} \frac{D_{0} \cdot G_{PWM}G(s)H(s)V_{in}(s)}{V_{in} - G_{PWM}V_{in}G(s)H(s)}}{Z_{RLC}(s)}$$

Factor
$$\frac{1}{Z_{in}(s)} = \frac{I_{in}(s)}{V_{in}(s)} = \frac{D_0 I_{out}}{V_{in}} \frac{G_{PWM} G(s) H(s)}{1 - G_{PWM} G(s) H(s)} + \frac{D_0^2}{Z_{RLC}(s)} \left(1 + \frac{G_{PWM} G(s) H(s)}{1 - G_{PWM} G(s) H(s)}\right)$$
Rearrange
$$V_{in} = \frac{V_{out}}{D_s}$$

Final Expression for Z_{in} in Closed Loop

☐ Final expression involves two contributors

$$\frac{1}{Z_{in}(s)} = \frac{D_0^2}{R_{load}} \frac{T(s)}{1 - T(s)} + \frac{D_0^2}{Z_{RLC}(s)} \left(\frac{1}{1 - T(s)}\right)$$

 \square In dc or low frequency, T(s) is >> 1

$$\frac{1}{Z_{in}(s)} \approx \frac{D_0^2}{R_{load}} \frac{T(s)}{1 - T(s)} \approx -\frac{D_0^2}{R_{load}} \longrightarrow \begin{cases} Z_{in}(s) \approx -\frac{R_{load}}{D_0^2} \\ s \to 0 \end{cases}$$

 \square As s exceeds f_c and increases, T(s) is <<1

$$\frac{1}{Z_{in}(s)} \approx \frac{D_0^2}{Z_{RLC}(s)} \left(\frac{1}{1 - T(s)}\right) \approx \frac{D_0^2}{Z_{RLC}(s)} \longrightarrow \left(Z_{in}(s) \approx \frac{Z_{RLC}(s)}{D_0^2}\right)$$

No gain means open-loop operation Same as D(s) = 0

$$Z_{RLC}(s) = (r_L + R_{load}) \frac{1 + \frac{s}{\omega_0 Q} + \left(\frac{s}{\omega_0}\right)^2}{1 + s(r_C + R_{load})C_1}$$

Plot the Closed-Loop Input Impedance

☐ Magnitude becomes open-loop plot in high-frequency

- ☐ Argument meets open-loop plot in high-frequency
- > Negative argument occurs only at low-frequency

Open-Loop Output Impedance

☐ What is the buck converter output impedance?

 $lue{}$ Consider parasitic elements for L and C

Buck Output Impedance

 $lue{}$ Let's find the term R_0 in dc: open caps, short inductors

$$R_0 = \frac{V_T}{I_T} = r_L \parallel R_{load}$$

☐ The zeros cancel the response

$$SL_{1} = 0$$

$$SL_{1} + r_{L} = 0$$

$$SL_{1} + r_{L}$$

Low-Frequency Time Constants

- ☐ All elements are in their dc state
- \triangleright Look at R driving L then R driving C

High-Frequency Time Constants

 \square Set L_1 in high frequency state and look at R driving C_2

Final Expression for Z_{OUT}

■ We have our denominator!

$$D(s) = 1 + s \left(\frac{L_1}{r_L + R_{load}} + C_2 \left[(r_L || R_{load}) + r_C \right] \right) + s^2 \left(L_1 C_2 \frac{r_C + R_{load}}{r_L + R_{load}} \right)$$

☐ The complete transfer function is now:

$$Z_{out,OL}\left(s\right) = \left(r_L \parallel R_{load}\right) \\ 1 + s \left(\frac{L_1}{r_L}\right) \left(1 + s r_C C_2\right) \\ \uparrow \\ \text{Open loop} \\ 1 + s \left(\frac{L_1}{r_L + R_{load}} + C_2 \left[\left(r_L \parallel R_{load}\right) + r_C\right]\right) + s^2 \left(L_1 C_2 \frac{r_C + R_{load}}{r_L + R_{load}}\right) \\ \uparrow \\ \text{Open loop}$$

☐ This is the open-loop output impedance

A Closed-Loop System

☐ The converter fights output perturbations

☐ Because the system is linear, superposition applies

$$\begin{split} V_{out1}(s) &= V_{ref}(s) \frac{T_{OL}(s)}{1 + T_{OL}(s)} \qquad V_{out2}(s) = I_{out}(s) Z_{out,OL}(s) - V_{out}(s) T_{OL}(s) \\ V_{out}(s) &= V_{out1}(s) + V_{out2}(s) = V_{ref}(s) \frac{T_{OL}(s)}{1 + T_{OL}(s)} - I_{out}(s) \frac{Z_{out,OL}(s)}{1 + T_{OL}(s)} \end{split}$$

☐ The loop gain affects the final expression

Loop Gain Impact on the Impedance

Plots superimpose as loop gain approaches 0

 \square Having gain at f_0 is important to damp the filter

Course Agenda

Cascading Converters

A Switching Regulator as a Load ■ EMI Filter Impact ☐ An Introduction to FACTs ■ Buck Converter Input/Output Impedances ☐ Filtering the Input Current Damping the Filter Optimum Component Selection ■ A Practical Case Study

A Design Example with a Buck

 \square Assume the following 5-V/50-W buck converter

☐ Specifications are less than 15 mA peak of input ripple

What is the Necessary Attenuation?

☐ Use SPICE to analyze the input current signature

.FOUR 100kHz I(V4)

 $I_1 = 4.94 \text{ A peak}$

 I_{in} < 15 mA peak

Attenuate by 3m or 50 dB

Where do you Place the Double Pole?

 \square Insert a LC filter to attenuate the pulsating current

 \square Position f_0 to provide a 50-dB attenuation at 100 kHz

$$f_0 = \sqrt{A_{filter}} \cdot f_{SW} = \sqrt{3m} \times 100k \approx 17 \text{ kHz}$$

Select the Filter Elements

lacksquare The resonant frequency lets us chose L and C

$$LC = \frac{1}{4\pi^2 f_0^2} = 8.34 \times 10^{-10} \,\mathrm{s}^2$$

- ☐ Component selection depends on volume, cost etc.
- ✓ the capacitor sees the buck ac input current
- ✓ the inductor ripple current is small, consider dc only

Always Consider Component ESR

☐ We can show that the complete attenuation is

$$I_{in} \begin{cases} r_{C} \\ r_{C} \end{cases} = \sqrt{\frac{I_{out}}{I_{out}}} = \sqrt{\frac{r_{C}^{2} + \frac{1}{(C_{1}\omega)^{2}}}{(r_{C} + r_{L})^{2} + \frac{1}{(\omega C_{1})^{2}} - \frac{2L_{1}}{C_{1}} + (L_{1}\omega)^{2}}}$$

☐ Check if attenuation is ok with selected components

$$x 4 \quad r_C = \frac{5 \text{ m}\Omega}{4} \approx 1.3 \text{ m}\Omega$$

$$|I_{in}| = -50.8 \text{ dB at } 100 \text{ kHz}$$

$$|r_L = 50 \text{ m}\Omega$$

Control-to-Output Transfer Function

☐ The addition of the filter affects the converters

☐ The small-signal model needs an update

A More Complex Architecture

The converter becomes a 4th-order system

☐ Simplify the circuit before solving the function

A Simplified Circuit

☐ You can reuse previously-determined transfer functions

■ Apply KVL and KCL to obtain the new expression

Determine and Substitute Variables

 \square Determine the input voltage expression $V_{in}(s)$

$$V_{in}(s) = -Z_{th}(s) \left[I_{out}D(s) + I_{C}(s)D_{0} \right]$$

lacktriangle Terminal c current is the voltage $V_{(c)}$ divided by $Z_{RLC}(s)$

$$I_{C}(s) = \frac{V_{in}(s)D_{0} + D(s)V_{in}}{Z_{RLC}(s)} \quad V_{in}(s) = -Z_{th}(s) \left[I_{out}D(s) + \frac{V_{in}(s)D_{0} + D(s)V_{in}}{Z_{RLC}(s)}D_{0}\right]$$

$$V_{in}(s) = \frac{D(s)Z_{RLC}(s)Z_{th}(s)I_{out} + D_{0}V_{in}D(s)Z_{th}(s)}{Z_{th}(s)D_{0}^{2} + Z_{RLC}(s)}$$

lacksquare The output voltage involves the RLC transmittance H_p

$$V_{out}(s) = \left[V_{in}(s)D_0 + D(s)V_{in}\right]H_p(s)$$

Final Expression is Complicated

□ Rearrange the final transfer function

$$\frac{V_{out}\left(s\right)}{D\left(s\right)} = \frac{R_{load}V_{in}}{R_{load} + r_{L}} \frac{1 + \frac{s}{\omega_{z}}}{1 + \frac{s}{\omega_{0}Q} + \left(\frac{s}{\omega_{0}}\right)^{2}} \frac{1 - \frac{D_{0}^{2}}{R_{load}}Z_{th}\left(s\right)}{1 + \frac{D_{0}^{2}}{R_{load}} + r_{L}} \frac{1 + sC_{1}\left(r_{L} + R_{load}\right)}{1 + \frac{s}{\omega_{0}Q} + \left(\frac{s}{\omega_{0}}\right)^{2}}$$
Classical buck, no filter

Filter effect

$$Z_{th}(s) = r_{Lf} \frac{\left(1 + sr_{Cf}C_{f}\right)\left(1 + s\frac{L_{f}}{r_{Lf}}\right)}{1 + sC_{f}\left(r_{Cf} + r_{Lf}\right) + s^{2}L_{f}C_{f}} \qquad Q_{f} = \sqrt{\frac{L_{f}}{C_{f}}} \frac{1}{r_{Cf} + r_{Lf}} \qquad \omega_{0f} = \frac{1}{\sqrt{L_{f}C_{f}}}$$

$$\omega_{z_{1}} = \frac{1}{r_{C_{f}}C_{f}} \qquad \omega_{z_{2}} = \frac{r_{Lf}}{L_{f}}$$

☐ Filter output impedance impacts the transfer function

Plots Show a Distorted Transfer Function

■ Mathcad and SPICE match each other quite well

lacktriangle The notch occurs because V_{in} drops at resonance

The Extra Element Theorem at Work

- ☐ What is the EET principle?
- > Identify an element whose presence complicates the analysis
- Calculate the transfer function with that element removed
- \triangleright Apply a correction factor k to the transfer function: voilà!

Determining the Correction Factor

- ☐ The correction factor requires two terms:
- 1. The converter input impedance obtained in open-loop
- 2. The converter input impedance obtained for $V_{out}(s)=0$

■ The open-loop impedance has already been derived

$$Z_{D}(s) = \frac{R_{load} + r_{L}}{D_{0}^{2}} \frac{1 + \frac{s}{\omega_{0}Q} + \left(\frac{s}{\omega_{0}}\right)^{2}}{1 + \frac{s}{\omega_{p}}}$$

The Null Propagates in the Circuit

- lacktriangle Despite excitation with I_T , there is no ac response
- This is the principle behind nulling the response

lacksquare 0 A in the load and 0 V at r_L - r_C implies 0 V across L_1

Expression for Z_N Comes Easily

Substitute/rearrange test and voltage expressions

$$I_{T}(s) = I_{out}D(s) + I_{C}(s)D_{0}$$

$$D(s) = -D_{0}\frac{V_{in}(s)}{V_{in}}$$

$$I_{T}(s) = -\frac{I_{out}D_{0}}{V_{in}}$$

$$V_{T}(s) = -\frac{I_{out}D_{0}}{V_{in}}$$

 \square The input impedance Z_N for a nulled response is:

$$Z_N(s) = -\frac{R_{load}}{D_0^2} \longrightarrow$$

■ We already had this with the SPICE simulation

Final Expression with EET

☐ The final expression includes the filter impact

$$\frac{V_{out}(s)}{D(s)} = V_{in} \frac{R_{load}}{R_{load} + r_L} \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_0 Q} + \left(\frac{s}{\omega_0}\right)^2} \frac{1 - \frac{Z_{th}(s)}{R_{load}}}{1 + \frac{Z_{th}(s)}{D_0^2}} \frac{1 - \frac{Z_{th}(s)}{R_{load}}}{1 + \frac{Z_{th}(s)}{D_0^2}} \frac{1 + \frac{s}{\omega_0 Q} + \left(\frac{s}{\omega_0}\right)^2}{1 + \frac{s}{\omega_0 Q}}$$

$$k$$

Comparison between EET and full formula

96

What is the Impact on Stability?

☐ When adding the filter, the loop gain is awfully ugly!

Filter damping is necessary:

$$\left| Z_{th}(s) \right| << \left| Z_{N}(s) \right|$$

$$\left|Z_{th}\left(s\right)\right| << \left|Z_{D}\left(s\right)\right|$$

The Output Impedance is Affected

Closed-loop output impedance peaks as filter resonates

Filter damping is necessary: $|Z_{th}(s)| \ll |Z_{e}(s)|$

$$\left|Z_{th}\left(s\right)\right| << \left|Z_{e}\left(s\right)\right|$$

Course Agenda

A Switching Regulator as a Load ■ EMI Filter Impact ☐ An Introduction to FACTs ■ Buck Converter Input/Output Impedances ☐ Filtering the Input Current ■ Damping the Filter Optimum Component Selection ■ A Practical Case Study Cascading Converters

Check Filter Output Impedance

Plot shows that design inequalities are not respected

Gain and phase distortion of k must be minimized

Filter Peaking Also Affects Zout

lacksquare Inequality for the closed-loop Z_{out} is not respected

 \Box Filter damping must ensure $\left|Z_{th}(s)\right| << \left|Z_{e}(s)\right|$

Look at the Correction Factor k

 $lue{}$ Sweep Q_f for the least phase and gain deviation

$$k(s) = \frac{1 - \frac{Z_{th}(s)}{\frac{R_{load}}{D_0^2}}}{1 + \frac{S_{load} + r_L}{D_0^2} + \frac{1 + \frac{s}{\omega_0 Q} + \left(\frac{s}{\omega_0}\right)^2}{1 + \frac{s}{\omega_p}}}$$

$$Z_{th}(s) = R_0 \frac{\left(1 + \frac{s}{\omega_{z_1}}\right)\left(1 + \frac{s}{\omega_{z_2}}\right)}{1 + \frac{s}{\omega_0 Q_f} + \left(\frac{s}{\omega_0}\right)^2}$$

$$Q_f = \sqrt{\frac{L_f}{C_f}} \frac{1}{r_{C_f} + r_{L_f}}$$

Determine Maximum Filter Peaking

lacksquare Determine maximum peaking with selected Q_f

$$|Z_{th}|_{MAX} = \frac{R_0 Q_f}{\omega_{z_1} \omega_{z_2}} \sqrt{(\omega_0^2 + \omega_{z_1}^2)(\omega_0^2 + \omega_{z_2}^2)}$$

 \square What damping elements will reduce $|Z_{th}|_{MAX}$ to 0.7 Ω ?

Available Damping Techniques

□ Damping means increasing the loss per cycle

Increase power dissipation

- \square r_C - C_f parallel damping: R_{damp} dissipates power
- \square r_L - L_f parallel damping: R_{damp} adds a zero and alters filter

Adding a Blocking Capacitor

- ☐ The series capacitor blocks the dc component
- \Box Literature recommends $C_{damp} = 10 \times C_f$

$$C_f = 40 \,\mu\text{F}$$

$$C_{damp} = 400 \, \mu \text{F}$$

- \clubsuit In ac R_{damp} dissipation can be an issue

Optimum combination?

105

Analyzing the Filter Output Impedance

Three storage elements with independent state variables: 3rd order system.

$$D(s) = 1 + b_1 s + a_2 s^2 + a_3 s^3$$

Start with Dc Analysis s = 0

 $R_{\it inf}$ is the current source output resistance and ensures a dc path when $I_T = 0$

Determine Time Constants

☐ Turn excitation off, current source is set to 0 A

Assemble Time Constants for b_1

Second-Order Time Constants

$$D(s) = 1 + (\tau_1 + \tau_2 + \tau_3)s + (\tau_1\tau_2^1 + \tau_1\tau_3^1 + \tau_2\tau_3^2)s^2 + (\tau_1\tau_2^1\tau_3^{12})s^3$$

$$\tau_3^2 = C_3 \left(r_C + R_{damp} \parallel r_L \parallel R_{inf} \right)$$

R_{inf} is not added for clarity purposes

Assemble Time Constants for b_2

$$b_2 = \frac{L_1}{R_{\rm inf} + r_L} C_{damp} \left(R_{damp} + R_{\rm inf} \right) \qquad b_2 = \tau_1 \tau_2^1 + \tau_1 \tau_3^1 + \tau_2 \tau_3^2 \\ + \frac{L_1}{R_{\rm inf} + r_L} C_3 \left(r_C + R_{\rm inf} \right) \\ + C_{damp} \left(R_{damp} + r_L \parallel R_{\rm inf} \right) C_3 \left(r_C + R_{damp} \parallel R_{\rm inf} \parallel r_L \right) \\ R_{\rm inf} \rightarrow \infty \qquad \longrightarrow \qquad b_2 = L_1 \left(C_{damp} + C_3 \right) + C_{damp} \left(R_{damp} + r_L \right) C_3 \left(r_C + r_L \parallel R_{damp} \right) \\ - \cdots \qquad b_3 = \tau_1 \tau_2^1 \tau_3^{12} \\ \hline T_3 = C_3 \left(r_C + R_{damp} \parallel R_{\rm inf} \right) \\ \hline What resistance drives reactance 3? \\ \hline tau1 \qquad R? \longrightarrow \\ tau3 \geqslant r_C \qquad R_{damp} \geqslant tau2$$

Build the 3rd-Order Denominator

 \Box Gather time constants and rearrange to form D(s)

$$D(s) = 1 + b_1 s + b_2 s^2 + b_3 s^3$$

$$b_1 = C_{damp} \left(R_{damp} + r_L \right) + C_3 \left(r_C + r_L \right)$$

$$b_2 = L_1 (C_{damp} + C_3) + C_{damp} (R_{damp} + r_L) C_3 (r_C + r_L || R_{damp})$$

$$b_{3} = \frac{L_{1}}{R_{\text{inf}}} C_{damp} \left(R_{damp} + R_{\text{inf}} \right) C_{3} \left(r_{C} + R_{damp} \right) = L_{1} C_{damp} C_{3} \left(r_{C} + R_{damp} \right)$$

$$D(s) = 1 + s \left[C_{damp} \left(R_{damp} + r_L \right) + C_3 \left(r_C + r_L \right) \right]$$

$$+ s^2 \left[L_1 \left(C_{damp} + C_3 \right) + C_{damp} \left(R_{damp} + r_L \right) C_3 \left(r_C + r_L \parallel R_{damp} \right) \right]$$

$$+ s^3 \left[L_1 C_{damp} C_3 \left(r_C + R_{damp} \right) \right]$$

Determine N(s) Swiftly with Inspection

Three zeros when $Z_1(s_{z_1}) = 0$ $Z_2(s_{z_2}) = 0$ $Z_3(s_{z_3}) = 0$

$$N(s) = \left(1 + s\frac{L_1}{r_L}\right) \left(1 + sr_C C_3\right) \left(1 + sR_{damp} C_{damp}\right)$$

Run a Sanity Check to Verify Results

$$Z_{out}(s) = R_0 \frac{N(s)}{D(s)}$$
 The

 $Z_{out}(s) = R_0 \frac{N(s)}{D(s)}$ The complete *low-entropy* transfer function is thus

$$\left(1 + sr_{C}C_{3}\right)\left(1 + sR_{damp}C_{damp}\right)\left(1 + s\frac{L_{1}}{r_{L}}\right)$$

$$Z_{out}\left(s\right) = R_{0}\frac{L_{1}}{1 + s\left[C_{damp}\left(R_{damp} + r_{L}\right) + C_{3}\left(r_{C} + r_{L}\right)\right] + s^{2}\left[L_{1}\left(C_{damp} + C_{3}\right) + C_{damp}\left(R_{damp} + r_{L}\right)C_{3}\left(r_{C} + r_{L} \parallel R_{damp}\right)\right] + s^{3}\left[L_{1}C_{damp}C_{3}\left(r_{C} + R_{damp}\right)\right]$$

The raw transfer function is $Z_{out}(s) = Z_1(s) || Z_2(s) || Z_3(s)$

ON Semiconductor®

Raw and full TF plots are superimposed: good to go!

Trying to Rewrite the Transfer Function

In this 3rd-order system, it is difficult to find a canonical form such as

$$Z_{out}(s) = R_0 \frac{N(s)}{\left(1 + \frac{s}{\omega_p}\right) \left(1 + \frac{s}{\omega_0 Q} + \left(\frac{s}{\omega_0}\right)^2\right)}$$

If r_L is larger than r_C and $C_{damp}R_{damp}$ larger than C_3r_L

$$D(s) \approx 1 + sC_{damp}R_{damp} + s^2L_1(C_{damp} + C_3) + s^3L_1C_{damp}C_3R_{damp}$$

Unfortunately, $1 + sC_{damp}R_{damp}$ does not dominate at low freq.

Cannot factor the 3rd-order denominator

Neglect Parasitic Terms r_L and r_C

lacksquare Simplify the transfer function considering 0 r_L and r_C

$$(1 + s \boldsymbol{r_{C}} \boldsymbol{C_{3}}) \Big(1 + s \boldsymbol{R_{damp}} \boldsymbol{C_{damp}} \Big) \Big(1 + s \frac{L_{1}}{\boldsymbol{r_{L}}} \Big)$$

$$Z_{out} \left(s \right) = \boldsymbol{r_{L}} \frac{1}{1 + s \left[C_{damp} \left(R_{damp} + \boldsymbol{r_{L}} \right) + C_{3} \left(\boldsymbol{r_{C}} + \boldsymbol{r_{L}} \right) \right] + s^{2} \left[L_{1} \left(C_{damp} + C_{3} \right) + C_{damp} \left(R_{damp} + \boldsymbol{r_{L}} \right) C_{3} \left(\boldsymbol{r_{C}} + \boldsymbol{r_{L}} \parallel R_{damp} \right) \right] + s^{3} \left[L_{1} C_{damp} C_{3} \left(\boldsymbol{r_{C}} + \boldsymbol{R_{damp}} \right) \right]$$

lacktriangle Factor the L_1/r_L term

$$Z_{out}\left(s\right) = r_{L}s \frac{L_{1}}{r_{L}} \frac{\left(1 + sR_{damp}C_{damp}\right)\left(\frac{r_{L}}{sL_{1}} + 1\right)}{1 + s\left[C_{damp}\left(R_{damp} + r_{L}\right) + C_{3}r_{L}\right] + s^{2}\left[L_{1}\left(C_{damp} + C_{3}\right) + C_{damp}\left(R_{damp} + r_{L}\right)C_{3}\left(r_{L} \parallel R_{damp}\right)\right] + s^{3}\left[L_{1}C_{damp}C_{3}R_{damp}\right]}{\left[L_{1}C_{damp}\left(R_{damp} + r_{L}\right) + C_{3}r_{L}\right] + s^{2}\left[L_{1}\left(C_{damp} + C_{3}\right) + C_{damp}\left(R_{damp} + r_{L}\right)C_{3}\left(r_{L} \parallel R_{damp}\right)\right] + s^{3}\left[L_{1}C_{damp}C_{3}R_{damp}\right]}$$

 \square Have r_L go to zero

$$Z_{out}(s) = sL_1 \frac{1 + sR_{damp}C_{damp}}{1 + sC_{damp}R_{damp} + s^2L_1(C_{damp} + C_3) + s^3 \lceil L_1C_{damp}C_3R_{damp} \rceil}$$

 \Box Consider $C_{damp} = nC_3$

$$Z_{out}(s) = sL_{1} \frac{1 + sR_{damp}nC_{3}}{1 + sR_{damp}nC_{3} + s^{2}L_{1}C_{3}(1+n) + s^{3}\left[L_{1}nC_{3}^{2}R_{damp}\right]}$$

Rearrange Expressions

■ Determine the magnitude of this transfer function

$$Z_{out}(j\omega) = \frac{L_1\omega^2 nR_{damp}C_3 - jL_1\omega}{\left(C_3L_1\omega^2 + C_3L_1\omega^2 n - 1\right) - j\left(C_3R_{damp}\omega n\right)\left(1 - C_3L_1\omega^2\right)}$$

$$|Z_{out}(\omega)| = \frac{\sqrt{(L_1\omega^2 n R_{damp} C_3)^2 + (L_1\omega)^2}}{\sqrt{(C_3 L_1\omega^2 + C_3 L_1\omega^2 n - 1)^2 + (C_3 R_{damp}\omega n)^2 (1 - C_3 L_1\omega^2)^2}} \longrightarrow \text{mag}_1$$

Check with Middlebrook's definitions

$$R_0 = \sqrt{\frac{L_1}{C_3}} \qquad Q = \frac{R_{damp}}{R_0} \qquad p(s) = \frac{s}{\omega_0} \qquad \omega_0 = \frac{1}{\sqrt{L_1 C_3}}$$

$$Z_{out}(s) = \frac{p(s)[1 + nQp(s)]}{1 + nQp(s) + (1 + n)p(s)^{2} + nQp(s)^{3}}$$

$$\left|Z_{out}\left(\omega\right)\right| = R_0 \frac{x\sqrt{1 + n^2Q^2x^2}}{\sqrt{\left[1 - \left(1 + n\right)x^2\right]^2 + \left[xnQ\left(1 - x^2\right)\right]^2}} \qquad x = \frac{\omega}{\omega_0} \longrightarrow \mathsf{mag}_2$$

Design Techniques for Preventing Input-Filter Oscillations in Switched-Mode Regulators, R.D Middlebrook, Powercon, May 1978

Always Run a Sanity Check

☐ Check if expressions are ok versus Mathcad® calculations

Compare analytical results versus raw magnitude expression

Course Agenda

A Switching Regulator as a Load ■ EMI Filter Impact ☐ An Introduction to FACTs ■ Buck Converter Input/Output Impedances ☐ Filtering the Input Current ■ Damping the Filter Optimum Component Selection ■ A Practical Case Study Cascading Converters

The Damping Resistor Affects Q and ω_0

The damping resistor value changes the resonant frequency

$$\begin{array}{c} R_{damp} \rightarrow \infty \\ \text{No loss} \\ Q \rightarrow \infty \end{array} \right\} \quad \omega_0 = \frac{1}{\sqrt{L_1 C_3}}$$

$$R_{damp}=0$$
 No loss $\omega_0=rac{1}{\sqrt{L_1\left(C_3+C_{damp}
ight)}}$

- lacksquare There must be a $R_{damp}C_{damp}$ couple optimizing Q
- \clubsuit What is the minimum in the maximum (minmax) peaking of $|Z_{out}|$?
- For what optimum Q value does it occur and at what frequency?

Changes Induced by Damping Resistor

 \Box Plot magnitudes versus various Q factors, C_{damp} = 10 C_3

Optimum Peak Depends on C_{damp}

lacksquare Optimum Z_{out} magnitudes versus different values of n

lacksquare There is an optimum R_{damp} and n to match a given Z_{out}

Determine the Optimum Frequency

- \Box The frequency at which the minmax occurs is immune to Q
- \blacktriangleright Calculate the sensitivity of Z_{out} to Q and cancel it
- \triangleright Work on Z_{out}^2 to get rid of square roots

$$\frac{d}{dQ} \left(Z_{out} \left(Q \right)^{2} \right) = \frac{d}{dQ} \left(R_{0}^{2} \frac{x^{2} \left(1 + n^{2} Q^{2} x^{2} \right)^{2}}{\left[1 - \left(1 + n \right) x^{2} \right]^{2} + \left[xnQ \left(1 - x^{2} \right) \right]^{2}} \right)$$

$$\frac{d}{dQ} \left(Z_{out} \left(Q \right)^{2} \right) = \frac{2Qn^{3}x^{6} \left(nx^{2} + 2x^{2} - 2 \right)}{D(Q)} = 0$$

$$nx^{2} + 2x^{2} - 2 = 0$$

$$x^{2} (n+2) = 2$$

$$x = \sqrt{\frac{2}{2+n}}$$

$$x = \frac{\omega}{n}$$

The point at which
$$Q_{opt}$$
 occurs is: $\omega_{opt} = \sqrt{\frac{2}{2+n}}\omega_0 = \sqrt{\frac{2}{(2+n)L_1C_3}}$

Calculate the Magnitude at ω_{ont}

lacktriangle Update the magnitude definition to have $|Z_{out}|$ at ω_{ont}

$$\left| Z_{out} \left(\omega \right) \right| = R_0 \frac{x \sqrt{1 + n^2 Q^2 x^2}}{\sqrt{\left[1 - \left(1 + n \right) x^2 \right]^2 + \left[xnQ \left(1 - x^2 \right) \right]^2}} \quad x = \frac{\omega_{opt}}{\omega_0} = \sqrt{\frac{2}{2 + n}}$$

$$\left|Z_{out}\left(\omega_{opt}\right)\right| = \frac{\sqrt{2(2+n)}}{n}R_0 = \frac{\sqrt{2(2+n)}}{n}\sqrt{\frac{L_1}{C_3}}$$
 This is the value of $\left|Z_{out}\right|$ at ω_{opt}

- lacksquare We want to minimize $|Z_{out}|$ at ω_{ont}
- \triangleright Differentiate Z_{out}^2 with respect to x^2 , find the optimum Q
- Replace $A = x^2$ and $\sqrt{A} = x$

$$\frac{d}{dA} \left| \frac{Z_{out}(A)}{R_0} \right|^2 = \frac{d}{dA} \frac{A(1 + n^2 Q^2 A)}{\left[1 - (1 + n)A\right]^2 + \left[n\sqrt{A}Q(1 - A)\right]^2} = 0$$

Determine the Optimum Value of Q

☐ Apply brute-force differentiation with Mathcad ®

$$\frac{d}{dA} \left| \frac{Z_{out} \left(A \right)}{R_0} \right|^2 = -\frac{\left(AQn \right)^4 + 2A^3Q^2n^2 - A^2Q^4n^4 + 2A^2Q^2n^3 + A^2n^2 + 2A^2n + A^2 - 2AQ^2n^2 - 1}{D} = 0$$
Extract Q

$$(AQn)^4 + 2A^3Q^2n^2 - A^2Q^4n^4 + 2A^2Q^2n^3 + A^2n^2 + 2A^2n + A^2 - 2AQ^2n^2 - 1 = 0$$

$$Q_{opt} = \sqrt{\frac{\sqrt{-A^3 n^5 (A^3 n - 2A - 2A^2 + 2A^3 - 2An + 2) - An^2 + A^2 n^3 + A^3 n^2}}{A^2 n^4 - A^4 n^4}}$$

$$Q_{opt} = \sqrt{\frac{3n^2 + 10n + 8}{2n^2(n+4)}} = \sqrt{\frac{(4+3n)(2+n)}{2n^2(4+n)}}$$
 Report

Result from Dr Middlebrook

Apply the Technique to the Buck

 \Box The target is to reduce the filter impedance peak to 0.7 Ω

$$R_0 = \sqrt{\frac{L_f}{C_f}}$$

$$\frac{\left|Z_{out}\right|_{mm}}{R_0} = \sqrt{\frac{2(2+n)}{n^2}}$$

$$= \frac{R_0 \left(R_0 + \sqrt{R_0^2 + 4(|Z_{out}|_{mm})^2} \right)}{\left(|Z_{out}|_{mm} \right)^2} = 3.5$$

$$= \frac{\left(|Z_{out}|_{mm} \right)^2}{\left(|Z_{out}|_{mm} \right)^2} = 3.5$$

$$Q_{opt} = \sqrt{\frac{(4+3n)(2+n)}{2n^2(4+n)}} = 0.65$$

$$R_{damp} = R_0 Q_{opt} = 0.487 \Omega$$

 $C_{damp} = nC_f = 141 \,\mu\text{F}$

- ☐ This is a rather large capacitance value
- > An electrolytic capacitor and its ESR can do the job
- Watch for temperature effects as ESR increases at low temp!

Check Margins with Z_D and Z_N

☐ The overlap is gone for both impedances

Gain and phase distortion of k are minimized

Check Margin with Z_e

☐ The output impedance should not be affected by the EMI filter

Verify Results after Damping - Magnitude

☐ Check the resulting control-to-output transfer function

■ Magnitude distorsion has disappeared after damping

Verify Results after Damping - Phase

Original phase margin is unaffected after damping

130

Closed-Loop Output Impedance

☐ Peaking effects of the EMI filter are now gone

Opting for a Different Strategy

- lacktriangle What if you only try to get rid of the overlap, ignoring Z_D and Z_N ?
- > Plot the closed-loop input impedance and build margin (10 dB)

Calculate the New Damping Elements

Different damping elements are now required

$$n = \frac{R_0 \left(R_0 + \sqrt{R_0^2 + 4(|Z_{out}|_{mm})^2} \right)}{\left(|Z_{out}|_{mm} \right)^2} = 0.5 \qquad Q_{opt} = \sqrt{\frac{(4+3n)(2+n)}{2n^2(4+n)}} = 2.4$$

$$R_{damp} = R_0 Q_{opt} = 1.8 \Omega \qquad C_{damp} = nC_f = 20 \,\mu\text{F}$$

Filter output impedance

Verify Results after Damping - Magnitude

☐ The new filter effect can be observed when it resonates

☐ Gain distortion is noticeable before crossover

Verify Results after Damping - Phase

☐ Phase distorsion appears but do not jeopardize phase margin

☐ Original phase margin is unaffected in this case

Verify Results after Damping - Z_{out}

☐ Peaking can be observed but it remains limited

Average Model Simulation Template

☐ Both damping strategies can be tested with SPICE

$$R_{damp}=0.487~\Omega$$
 or $R_{damp}=1.8~\Omega$ $C_{damp}=141~\mu{
m F}$

☐ The load is stepped from 50 to 100% in 1 µs

Average Response Shows Oscillations

☐ Oscillatory but stable response to a load step

Switching Model Simulation Template

☐ This is a simple model compensated by the type III structure

☐ You can verify the step response but also the filtered signature

Oscillations in the Switched Model

Oscillations are present but not too disturbing

ON Semiconductor®

5/15/2024

Input Current Signature is Good

☐ No difference in the signature – amplitude is within specs

Course Agenda

A Switching Regulator as a Load ■ EMI Filter Impact ☐ An Introduction to FACTs ■ Buck Converter Input/Output Impedances ☐ Filtering the Input Current Damping the Filter Optimum Component Selection □ A Practical Case Study Cascading Converters

A Practical Case with NCL30186

☐ This LED driver featuring PFC requires the insertion of a filter

Average model by S. Cannenterre

ON Semiconductor®

5/15/2024

Plot the Impedance Ratio Zout/Zin

☐ Analysis reveals a negative phase margin: stability issue

A Simulation Shows Oscillations

☐ The negative phase margins brings a diverging filter voltage

Act on the PFC Input Voltage

☐ Reduce the phase stress by inserting a zero in the PFC chain

$$H_{0} = \frac{R_{2}}{R_{1} + R_{2}}$$

$$\tau_{1} = C_{1}R_{1} \quad \tau_{2} = (R_{1} \parallel R_{2})(C_{1} + C_{2})$$

$$H(s) = H_{0} \frac{1 + s\tau_{1}}{1 + s\tau_{2}} = H_{0} \frac{1 + \frac{s}{\omega_{z}}}{1 + \frac{s}{\omega_{p}}}$$

$$\omega_{z} = \frac{1}{\tau_{1}} \quad \omega_{p} = \frac{1}{\tau_{2}}$$

Insert the Zero to Reduce Phase Stress

☐ Adding a zero in the PFC control input brings phase margin

"Interaction between EMI filter and PFC with average current control", G. Piazzi, J. Pomilio, IEEE Transactions on Power Electronics, 1999

The Zero Insertion Cancels Oscillations

☐ Adding a zero builds phase margin and tames oscillations

Practical Experiments

☐ Placing a zero at 2.5 kHz (22-pF cap.) stops oscillations

☐ However, PFC operations are affected: need to damp the filter!

Explore Another Option and Damp Filter

$$R_{0} = \sqrt{\frac{L_{1}}{C_{3}}} \qquad \frac{|Z_{out}|_{mm}}{R_{0}} = \sqrt{\frac{2(2+n)}{n^{2}}} \implies n = \frac{R_{0} \left(R_{0} + \sqrt{R_{0}^{2} + 4(|Z_{out}|_{mm})^{2}}\right)}{\left(|Z_{out}|_{mm}\right)^{2}}$$

$$Q_{opt} = \sqrt{\frac{(4+3n)(2+n)}{2n^2(4+n)}}$$
 $R_{damp} = R_0 Q_{opt}$

 $|Z_{out}|_{\scriptscriptstyle mm}$ This is the minimum of Z_{out} peaking to avoid overlap

$$\longrightarrow |Z_{out}|_{mm} = k \cdot \frac{V_{in}^2}{P_{out}}$$
 For a 40-W output and a 108-V input:

$$\longrightarrow |Z_{out}|_{mm} = 291 \Omega$$

 $\longrightarrow |Z_{out}|_{mm} = 291 \Omega$ Assume 10% margin, k = 0.9 $|Z_{out}|_{mm} = 262 \Omega$

$$\left|Z_{out}\right|_{mm}=262~\Omega$$

$$n = 0.584$$

$$Q_{opt} = 2.18$$

$$n = 0.584$$
 $C_{damp} = n \cdot 220 \text{ nF} = 0.128 \,\mu\text{F}$ $C_{damp} = R_0 Q_{opt} = 147 \,\Omega$

$$R_{damp} = R_0 Q_{opt} = 147 \ \Omega$$

Plots with $L_1 = 1$ mH and $C_3 = 220$ nF

☐ Check absence of overlap with Mathcad ®

Check Results on the Simulation Template

 \Box Simulation results $V_{in} = 108 \text{ V rms } P_{out} = 40 \text{ W}$: no overlap

Practical Implementation in the Driver

- ☐ Final *Q* is affected by several other factors:
- > PCB traces, dielectric losses in the caps but also iron losses in the inductor.
- > True peaking is often lower and gives design margin.

No damping 7.5 mH and 220 nF (no C_2) after bridge. $P_{out} > 40 \text{ W}$ $V_{in} = 120 \text{ V rms}$

Damping 100 nF + 180 Ω 7.5 mH and 220 nF (no C₂) after bridge. P_{out} > 40 W V_{in} = 120 V rms Curves and experiments by J. Turchi

Course Agenda

Cascading Converters

A Switching Regulator as a Load ■ EMI Filter Impact ☐ An Introduction to FACTs ■ Buck Converter Input/Output Impedances ☐ Filtering the Input Current ■ Damping the Filter Optimum Component Selection ■ A Practical Case Study

Cascading Converters

☐ When cascading converters, impedances matter

lacksquare The system can be also be modeled by a gain T_M

$$V_{in}(s) = V_{th}(s) \xrightarrow{1} V_{th}(s) \xrightarrow{+} V_{th}(s) \xrightarrow{+} V_{in}(s)$$

$$T_{M}(s)$$

$$T_{M}(s)$$

Use SPICE Models First

☐ Simulate the boost converter output impedance

11-15 V/24 V - 3 A

A current source – and not a resistance – ensures the correct bias point for loading the converter during the ac sweep.

Use SPICE Models First

☐ Simulate the buck converter input impedance

24 V/5 V - 12 A

Compare Magnitude Curves

Compare Phase Curves

Check Minor Loop Gain

 $oldsymbol{\square}$ There is no gain, $\left|Z_{out}\right|<<\left|Z_{in}\right|$. The system is stable

Cascade Converters for Simulation

Check Transient Response

☐ Transient response is good for the buck and boost is stable

ON Semiconductor®

5/15/2024

Practical Measurements – Z_{in}

☐ Input impedance measurement requires a dedicated circuit

"Practical Issues of Input/Output Impedance Measurements", Y. Panov, M. Jovanović, IEEE Transactions on Power Electronics, 2005

5/15/2024

Practical Measurements – Z_{out}

☐ You need to inject enough current to observe a modulated V_{out}

"Practical Issues of Input/Output Impedance Measurements", Y. Panov, M. Jovanović, IEEE Transactions on Power Electronics, 2005

Literature

- "Fundamentals of Power Electronics", R. Erickson, D. Maksimovic, Springer, 2001.
- "Designing Control Loops for Linear and Switching Power Supplies", C. Basso, Artech House, 2012
- "Practical Issues of Input/Output Impedance Measurements", Y. Panov,
- M. Jovanović, IEEE Transactions on Power Electronics, 2005
- "Physical Origins of Input Filter Oscillations in Current Programmed Converters",
- Y. Jang, R. Erickson, IEEE Transactions on Power Electronics, 1992
- "Design Consideration for a Distributed Power System", S. Schultz, B. Cho,
- F. Lee, Power Electronics Specialists Conference, June 1990, pp. 611-617
- "Input Filter Considerations in Design and Applications of Switching Regulators",
- R. D. Middlebrook, IAS 1976
- "Design Techniques for Preventing Input-Filter Oscillations in Switched-Mode Regulators"
- R.D. Middlebrook, Proceedings of Powercon, May 4-6 1978, San-Francisco
- "Linear Circuit Transfer Functions", C. Basso, Wiley & Sons, IEEE Press, 2016

Conclusion

- ☐ Incremental input resistance of switching converter is negative
- \Box Inserting a LC filter impacts the switching converter performance
- ☐ You have two design strategies
- you design the filter together with the converter
- you add a filter to an unknown-content converter
- ☐ You must determine open- and closed-loop input impedance
- lacktriangle Cascading converters requires knowledge of Z_{out} and Z_{in}
- ☐ Test in the lab. dynamic responses when the filter is added
- Explore how damping is maintained at temperature extremes

