Name: Calvin Madsen Github Username: MadSons Purdue Username: 31132999

Instructor: Qiu

## Problem1\_writeup.

### (1) Estimated Functions:

$$\widehat{y_1(x)} = 29.0587x + 92.7676$$
  
 $\widehat{y_2(x)} = -2.1111x^2 + 28.5066x + 112.3148$   
 $\widehat{y_3(x)} = 1.7574x^3 + -1.4324x^2 + -0.3307x + 101.8661$   
 $\widehat{y_4(x)} = -0.0151x^4 + 1.7541x^3 + -1.0821x^2 + -0.2558x + 100.9145$   
 $\widehat{y_5(x)} = -0.00045x^5 + -0.0154x^4 + 1.7668x^3 + -1.0743x^2 + -0.3227x + 100.8875$ 

### (2) <u>Data Visualization:</u>



# (3) What degree polynomial does the relationship seem to follow? Please explain your answer.

The data seems to best follow a third order polynomial (i.e., a cubic) which can be seen from the low error between the estimated regression function,  $\widehat{y_3(x)}$ , and the data in the plot above. Degree 4 and degree 5 polynomials show a very similar plot but become no more accurate than the degree 3 polynomial, making the degree 3 polynomial the best option to reduce complexity.

# (4) If we measured a new data point, x = 3, what would be the predicted value of y, based on the polynomial identified as the best fit in Question (3)?

If we measured a new data point, x=3, the corresponding predicted value would be,  $\widehat{y_3(3)}$  = 135.43283

## Problem2\_writeup.

#### (1) Plot the mean squared error as a function of lambda in Ridge Regression:



#### (2) Find best lambda:

Based on the range of Lambda values tested, the best lambda value is 0.039810717055349734, which yields an MSE of 1.8240068113322172 as shown on the plot above.

#### (3) Find equation of the best fitted model:

$$\hat{y}(x) = -0.3861x_1 + 0.6665x_2 + 0.3732x_3 + 4.2754x_4 + 0.0176x_5 + 0.0002x_6 + 2.5618$$

## (4) Draw a prediction plot using Google data

