BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43) Date of publication of application: 15.10.1991

(51)Int.Cl.

G02F 1/015

(21)Application number: 02-025920

(71)Applicant: NIPPON TELEGR & TELEPH CORP

<NTT>

(22)Date of filing:

07.02.1990

(72)Inventor: ASAI HIROMITSU

KAWAMURA YUICHI WAKITA KOICHI **ODAKA ISAMU**

MITOMI OSAMU KONO KENJI

(54) OPTICAL SEMICONDUCTOR DEVICE

(57)Abstract:

PURPOSE: To improve the performance of a device and to reduce driving voltage by laminating a clad layer having a high impurity concn. and an electric field applied layer having a low impurity concn. and by interposing a semiconductor layer having a high impurity concn. and a band gap equal to or wider than that in the electric field applied layer and narrower than that in the clad layer between the laminated lavers.

CONSTITUTION: A first semiconductor layer 5 as a clad layer of first electric conduction type having a high impurity concn., a second semiconductor layer 4 as an electric field applied layer having a low impurity concn. and a third semiconductor layer 3 as a clad layer of second electric conduction type having a high impurity concn. are laminated on a semiconductor substrate 6 of the first electric conduction type. A fourth semiconductor layer 9 of the first electric conduction type having a high impurity concn. is interposed between the layers 5, 4 and/or a fifth semiconductor layer 8 of

the second electric conduction type having a high impurity concn. is interposed between the layers 4, 3. Since the resulting device has such a structure as to prevent the accumulation of electrons or positive holes in the electric field applied layer, the light absorbing characteristics can be improved and driving voltage can be reduced.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

Searching PAJ

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

⑩日本国特許庁(JP)

00 特許出願公開

四公開特許公報(A) 平3-231220

@Int. CI. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)10月15日

G 02 F 1/015

8106-2H

審査請求 未請求 請求項の数 5 (全8頁)

匈発明の名称 半導体光素子

> ②特 類 平2-25920

> > 再

22出 願 平2(1990)2月7日

裕 東京都千代田区内幸町1丁目1番6号 日本電信電話株式 @発 明 浅 充

個発 明 河 村 裕 東京都千代田区内幸町1丁目1番6号 日本電信電話株式

個発 明 者 脇 H 紘

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

髙

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

小

日本電信電話株式会社

東京都千代田区内幸町1丁目1番6号

個代 理 人 弁理士 杉村 暁秀 外1名

最終頁に続く

明

の出 題 人

個発

- 1.発明の名称 半導体光素子
- 2. 特許請求の範囲
 - 1. 第1の導電型の半導体基板上に、
 - (a)第1の導電型で高不純物濃度のクラッド層 となる第1の半導体層と、
 - (1)低不純物濃度の電界印加層となる第2の半 遺体層と、
 - (c)第2の導電型で高不純物濃度のクラッド層 となる第3の半導体層と
 - からなる光導波路型素子において、

(8)と(6)との間に第1の導電型で高不純物濃 度の第4の半導体層か、(b)と(c)の間に第2の 導電型で高不純物濃度の第5の半導体層かの 少なくともいずれか一方を挿入することを特 徴とする半導体光素子。

2. 特許請求の範囲第1項記載の半導体光素子 において、第4、第5の半導体層のバンドギ ャップが、電界印加層の第2の半導体層と同 じであることを特徴とする半導体光素子。

- 3. 特許請求の範囲第1項記載の半導体光案子 において、第4、第5の半導体層のバンドギ ャップが、電界印加層の第2の半選体層のそ れより大きく、かつクラッド層の第1、第3 の半導体層のバンドギャップより小さいこと を特徴とする半導体光素子。
- 4. 特許請求の範囲第1または3項記載の半基 体光素子は、第4、第5の半導体層のパンド ギャップが、電界印加層からクラッド部に向 かって連続的に増加していることを特徴とす る半導体光素子。
- 5. 特許請求の範囲第1または2または3また は4項記載の半導体光素子において、素子を 構成する各半導体層の一部もしくはすべてが、 超格子構造または多重量子井戸構造であるこ とを特徴とする半導体光素子。
- 3.発明の詳細な説明

(産業上の利用分野)

本発明は、光通信または光情報処理の分野で利 用される、高速応答、低駆動電圧の光変調器、光

検出器、光増幅器等の半導体光素子に関するもの である。

(従来の技術)

そのことを、InGaAs/InAlAs系材料の多重量子 井戸暦(MQM層)を電界印加層とした従来の吸収 型光変調器を例にとって、第10図を用いて以下に 説明する。第10図において、1 は p 側電極(Au-Zn-Ni)、2 は p 型のInGaAsキャップ層、3 は p 型 のInAlAsクラッド層、4 は InGaAs/InAlAs MGM電 界印加層、5はn型のInAlAsクラッド層、6はn型のInP 基根、7はn側電極 (Au-Ge-Ni) である。 第11図は、この素子の動作原理を説明するための図であって、向は電界印加層内の一つの量子井戸のパンド図であり、心は吸収スペクトルを示す図である。

ここでInAIAsクラッド層は、InGaAs電界印加層のパンドギャップより大きく、高濃度不純物層であるので、InAIAs層近傍のInGaAs電界印加層内に電子または正孔が変爛ドープされることになる。しかも、この変調ドープされた電子、正孔は、クラッド層内に形成された厚い三角ボテンシャルに阻まれ、容易にn電極、p電極に抜けることができない。この時のパンド図を第12図に示す。

いずれにしても、従来構造の吸収型変調器の場

合、不均一電界と蓄積された電子、正孔による吸収スペクトルのプロードニング(素子性能劣化)と、外部電界遮蔽による駆動電圧の上昇という問題があった。

(発明が解決しようとする課題)

本発明は、クラッド層と電界印加層の界面に電子、正孔を書積させない構造を提案し、業子性能の大幅な改善と駆動電圧の低減を図った半導体光 象子を提供することにある。

(課題を解決するための手段)

本発明の半導体光素子は、高不純物濃度のクラッド層と低不純物濃度の電界印加層の間に、高不 純物濃度で電界印加層のパンドギャップと同じ、 またはそれ以上、かつクラッド層のそれ以下のパ ンドギャップを有する半導体層を挿入する。

従来の技術とは、電界印加層の界面に電子、正 孔を蓄積させない構造となっていることが異なる。 (実施例)

以下、InGaAs/InAlAs材料系を例にとって、本 条明の実施例を図面を参照して詳細に説明する。 第1図は、本発明の実施例(実施例1)の構造を示す。従来例(第10図)と異なるのは、3と4、4と5の間に電界印加層4と同じ構造のp型InGaAs/InAlAs MQW層9が挿入されている点である。この素子のパンド図を第2図に示す。

る光の損失はない。そればかりか、8 と9 の層を 入れたことにより、光に対するコア部が実質的に 厚くなり、ファイバとの結合効率を増大させる効 果もある。

本発明の実際の業子における、吸収電流の電界 依存性を第3図に示す。

また比較のために、従来型の素子の吸収電流の 電界依存性も第4図に示す。従来型の素子の吸収電流、励 起子スペクトルがプロードで、ー2Vで吸収を流流の 飽和がみられ、ー4Vになってようやく電源ファイ が起こる。一方、本発明の素子の吸収電流スペクトルは、励起子吸収がサーブであり、ベイアスー1Vですでに吸収電流の飽和がみられ、な駆動電 にの低減が図られていることがわかる。

これまで、電界印加層 4 の両側に、 8 と 9 の P型、 n型の高不純物濃度を有する MGW 層を配置した構造で説明してきたが、片側だけでも十分同じ効果を得ることができる。また、 4 、 8 、 9 の層は、 MGW 層ではなくパルク半導体層でも、 同様な

効果が得られることは含うまでもない。逆に、 3、 5のクラッド層が超格子構造をなしていてもよい。

第5図は、本発明の他の実施例(実施例 2)の 構造を示す図で、今回はバルクタイプの吸収型変 網器で説明する。第5図において、10はp型の [nGaAlAs層、11はInGaAs電界印加層、12はn型 [inGaAlAs層である。この構造では、3と5のInAlAs クラッド層のバンドギャップより小さく、InGaAs コア層11のバンドギャップより大きい材料である InGaAlAsで10と12を構成していることが特徴である。

そのときのバンドの概略図を、第6図に示す。10と11、および11と12の界面に若干の電子、正孔の蓄積がみられるが、従来型の構造に比べ、10と11、11と12のバンド不連続が小さいので、蓄積する電子、正孔の量はきわめて少ない。このため、本発明の実施例1で説明した同じ効果が期待できる。

また、10と12の層は、第7図に示すように、多層のInGaAlAsで構成してもよい。さらに、この構

造は、分離光閉じ込め構造(SCH 構造)をなして おり、光閉じ込め係数の増大、導波光スポットの 増加による結合率の増大という効果もある。

これまで、電界印加層11の両側に、10と12を配置した構造で説明してきたが、片側だけでも十分同じ効果を得ることができる。また、10、11、12の層は、MQW 層でも同様な効果が得られることは含うまでもない。

第8図は、本発明の他の実施例(実施例3)の 構造を示す図である。第8図において、13はp型のInGaA1Asで、その組成が、InAIAsクラッド層3 の近傍ではInAIAsと同じで、そこから連続に変化しInGaAs は界印加層11の近傍ではInGaAsと同じになるよう調整されている。またn型のInGaA1As層14も同様にその組成が調整されている。このときのバンドの概略図を第9図に示す。

第9図では、13と14のバンドギャップが直線的に変化する場合を示しているが、連続的にバンドギャップが変化していればよい。13と11、11と14はバンドが連続しているので、当然それらの昇面

特開平 3-231220(4)

に電子、正孔が蓄積されることはない。このため、本発明の実施例1 で説明した同じ効果が期待できる。さらに、この構造は、屈折率分布分離光閉じ込め構造(GRIN-SCH構造)をなしており、実施例2よりさらに光閉じ込め係数の増大を図ることができ、導波光スポットの増加による結合効率の増大という効果もある。

これまで、電界印加層11の両側に、13と14を配置した構造で説明してきたが、片側だけでも十分同じ効果を得ることができる。また、13、11、14の層は、MGM 層でも同様な効果が得られることは含うまでもない。

以上説明した本発明のすべての実施例では、MQW、バルクの吸収型変調器を例にしたが、本発明の構造は、位相変調器、受光器などの導波路型の光素子でも、同様な効果によって、一様な電界印加と、駆動電圧の低減とを図ることができることは、含うまでもない。

さらに、本発明の実施例では、InGaAs/InAIAs 系材料で説明したが、GaAs/AlGaAs、GaAs/InGaP 、

第8図は本発明の実施例3の構造を示す図、 第9図は本発明の実施例3のバンドの低略図、 第10図は従来の吸収型光変調器の構造を示す図、 第11図は第10図に示す吸収型光変調器の動作原 理を説明するための図であって、(a)は量子井戸の バンド図、(b)は吸収スペクトルを示す図、

第12図は第10図に示す吸収型光変調器の構造の パンド図である。

- 1 ··· p 個電極 (Au-Zn-Ni)
- 2 … p 型のInGaAsキャップ層
- 3 … p 型のInAlAsクラッド庫
- 4 …ノンドープのInGaAs/InAIAs HQH電界印加層
- 5 … n型のInAlAsクラッド層
- 6 ··· n 型のInP 基板
- 7 ··· n 側電箍(Au-Ge-Ni)
- 8 … p型のInGaAs/InAlAs MQN層
- 9 … n 型のInGaAs/InAlAs HQH層
- 10… p 型のInGaAlAs層
- 11…ノンドープのInGaAs電界印加層
- 12… n 型のInGaAlAs層

InP/InGaAs等のII — V 属半導体およびその混晶 系、2nSe/GaAs等の II — VI 属半導体とその混晶系でも実現できる。

(発明の効果)

以上説明したように、本発明の導波形の半導体 光素子は、電界印加層に電子、正孔を蓄積させな い構造を有しており、このため、光吸収特性の大 幅な向上と駆動電圧の大幅な低減を図ることがで きるという利点がある。

4. 図面の簡単な説明

第1図は本発明の実施例1の構造を示す図、

第2図は本発明の実施例1のパンド図、

第3図は本発明の実施例1の吸収電流の電界依存性を示す図、

第4図は従来業子の吸収電流の電界依存性を示すM

第5回は本発明の実施例2の構造を示す図、

第6図は本発明の実施例2のパンドの概略図、

第7図は多層[n_{1-x-y}Ga_xAl_yAs挿入型の実施例 2のパンドの概略図、

13… p型のInGaAlAs層

特 許 出 顧 人 日本電信電話株式会社

代理人弁理士 杉 村 暁 秀

同 弁理士 杉 村 舆 作

第1図

I…p側電極(Au-Zn-Ni) 2…p型のInGa Asキャップ層 3…p型のInAl Asクラッド層 4…Jンド-プのInGa As/InAl As MQM電界印加層 5…n 型のIn Al As クラッド層 6…n型のInP基板 7…n側電極 (Au-Ge-Ni) の…p型のInGa As/InAl As MQW層 9…n型のInGa As/InAl As MQW層

第5図

10 -- P型のInGaAlAs 層 11 --- リンドーTa InGaAs 電界印加層

12 -- n型nInGaAlAs層

第2図

摇

ಬ

溪

第10図

特開平3-231220 (8)

第1頁の続き

東京都千代田区内幸町1丁目1番6号 日本電信電話株式 偧 Ξ 個発明 者 富

会社内

東京都千代田区内幸町1丁目1番6号 日本電信電話株式 冶 河 健 @発 明 200

会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.