Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

This manuscript was compiled on June 10, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges–Lehmann estimator

Inequalities related to weighted averages

So far, it is quite natural to hypothesize that the value of ϵ, γ -trimmed mean should be monotonically related to the breakdown point in a semiparametric distribution, since it is a linear combination of quantile averages as shown in Section ??. Analogous to the γ -orderliness, the γ -trimming inequality for a right-skewed distribution is defined as $\forall 0 \leq \epsilon_1 \leq \epsilon_2 \leq \frac{1}{1+\gamma}$, $TM_{\epsilon_1,\gamma} \geq TM_{\epsilon_2,\gamma}$. γ -orderliness is a sufficient condition for the γ -trimming inequality, as proven in the SI Text. The next theorem shows a relation between the ϵ, γ -quantile average and the ϵ, γ -trimmed mean under the γ -trimming inequality, suggesting the γ -orderliness is not a necessary condition for the γ -trimming inequality.

Theorem .1. For a distribution that is right-skewed and follows the γ -trimming inequality, it is asymptotically true that the quantile average is always greater or equal to the corresponding trimmed mean with the same ϵ and γ , $0 \le \epsilon \le \frac{1}{1+\gamma}$.

Proof. According to the definition of the γ -trimming inequality: $\forall 0 \leq \epsilon \leq \frac{1}{1+\gamma}, \ \frac{1}{1-\epsilon-\gamma\epsilon+2\delta} \int_{\gamma\epsilon-\delta}^{1-\epsilon+\delta} Q\left(u\right) du \geq \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du$, where δ is an infinitesimal positive quantity. Subsequently, rewriting the inequality gives $\int_{\gamma\epsilon-\delta}^{1-\epsilon+\delta} Q\left(u\right) du - \frac{1-\epsilon-\gamma\epsilon+2\delta}{1-\epsilon-\gamma\epsilon} \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du \geq 0 \Leftrightarrow \int_{1-\epsilon}^{1-\epsilon+\delta} Q\left(u\right) du + \int_{\gamma\epsilon-\delta}^{\gamma\epsilon} Q\left(u\right) du - \frac{2\delta}{1-\epsilon-\gamma\epsilon} \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du \geq 0$ 25 0. Since $\delta \to 0^+$, $\frac{1}{2\delta} \left(\int_{1-\epsilon}^{1-\epsilon+\delta} Q\left(u\right) du + \int_{\gamma\epsilon-\delta}^{\gamma\epsilon} Q\left(u\right) du \right) = \frac{Q(\gamma\epsilon)+Q(1-\epsilon)}{2} \geq \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du$, the proof is complete.

An analogous result about the relation between the ϵ, γ -trimmed mean and the ϵ, γ -Winsorized mean can be obtained in the following theorem.

Theorem .2. For a right-skewed distribution following the γ -trimming inequality, asymptotically, the Winsorized mean is always greater or equal to the corresponding trimmed mean with the same ϵ and γ , provided that $0 \le \gamma \le 1$. If assuming γ -orderliness, the inequality is valid for any non-negative γ .

```
\begin{array}{lll} \text{36} & Proof. \ \text{According} & \text{to} & \text{Theorem} & .1, & \frac{Q(\gamma\epsilon)+Q(1-\epsilon)}{2} & \geq \\ \text{37} & \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du & \Leftrightarrow & \gamma\epsilon\left(Q\left(\gamma\epsilon\right)+Q\left(1-\epsilon\right)\right) & \geq \\ \text{38} & \left(\frac{2\gamma\epsilon}{1-\epsilon-\gamma\epsilon}\right) \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du. & \text{Then, if} & 0 & \leq & \gamma & \leq \\ \text{39} & 1, \left(1-\frac{1}{1-\epsilon-\gamma\epsilon}\right) \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du & + & \gamma\epsilon\left(Q\left(\gamma\epsilon\right)+Q\left(1-\epsilon\right)\right) & \geq \\ \text{40} & 0 \Rightarrow \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du + \gamma\epsilon Q\left(\gamma\epsilon\right) + \epsilon Q\left(1-\epsilon\right) \geq \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du + \\ \text{41} & \gamma\epsilon\left(Q\left(\gamma\epsilon\right)+Q\left(1-\epsilon\right)\right) & \geq & \frac{1}{1-\epsilon-\gamma\epsilon} \int_{\gamma\epsilon}^{1-\epsilon} Q\left(u\right) du, \ \text{the proof} \end{array}
```

of the first assertion is complete. The second assertion is established in Theorem 0.3. in the SI Text. \Box

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Replacing the TM in the γ -trimming inequality with WA forms the definition of the γ -weighted inequality. The γ -orderliness also implies the γ -Winsorization inequality when $0 \leq \gamma \leq 1$, as proven in the SI Text. The same rationale as presented in Theorem ??, for a location-scale distribution characterized by a location parameter μ and a scale parameter λ , asymptotically, any WA (ϵ, γ) can be expressed as λ WA $_0(\epsilon, \gamma) + \mu$, where WA $_0(\epsilon, \gamma)$ is an function of $Q_0(p)$ according to the definition of the weighted average.

Data Availability. Data for Figure ?? are given in SI Dataset S1. All codes have been deposited in GitHub.

ACKNOWLEDGMENTS. I sincerely acknowledge the insightful comments from the editor which considerably elevated the lucidity and merit of this paper.

T.L. designed research, performed research, analyzed data, and wrote the paper. The author declares no competing interest.

 $^{^1\}mbox{To}$ whom correspondence should be addressed. E-mail: tl@biomathematics.org