#	Beschreibung	Seite		
1	ARC in Swift in Aktion: Code und Konsolenausgabe			
2	ARC in Swift in Aktion: Code und Konsolenausgabe			
3	Erklärung des gezeigten Bitmusters als Referenzzähler			
4	Die Klasse Node <t></t>	23		
5	SIL-Repräsentation der Klasse Node <t> (deinit)</t>	24		
6	Die Klasse Node <t> als Knoten des Binärbaums</t>	30		
7	Deep-Copy Methode der Klasse Node <t></t>	31		
8	Die Struktur Tree <t></t>	31		
9	Copy-On-Write-Funktionalität im Getter der Wurzel	32		
10	Copy-On-Write in Aktion	32		
11	Ausgabe des Programms: Copy-On-Write sichert Wertsemantik	34		
12	Unterschiedliches Verhalten von Variablenarten bei Wert- und Referenztypen	37		
13	Beispiele von Kombinationen von Variablenarten und Typen	38		
14	Hilfsmittel zum Untersuchen von Closures	41		
15	Capture-Semantik von Referenztypen: Test1 und STDOUT	42		
16	Capture-Semantik von Werttypen: Test2 und STDOUT	42		
17	Closures mit Pass-By-Value-Semantik: Manuelles Anlegen einer Kopie	43		
18	Definieren von Kopien in einer Capture List	43		
19	Capture-Semantik mit Capture List bei Referenztypen: Test3 und STDOUT	43		
20	Capture-Semantik mit Capture List bei Werttypen: Test4 und STDOUT	44		
21	Capture-Semantik mit Capture List: Kopien und Mutationen wie gewohnt in Test 5 und 6	44		
22	Anlegen der Variable "wrapper" vom Typ HeapWrapper in SIL	45		
23	Eine Klasse mit Speicherleck durch eine Closure	46		
24	Auflösung des Speicherlecks durch weak Capture in der Closure	47		
25	Eine Struktur mit Speicherleck	48		
26	Auflösung des Speicherlecks durch Capture einer Kopie in der Closure	48		

#	Beschreibung	Seite
1	ARC: Objekte werden freigegeben, sobald der Referenzzähler auf 0 fällt	9
2	Obwohl die Variable gelöscht wurde, können die Objekte nicht freigegeben werden	9
3	Parent-Child-Beziehung mit einem Weak Pointer: <i>Child</i> kennt zwar <i>Parent</i> , erhöht aber dessen Referenzzähler nicht. Wenn die Variable <i>ptr</i> gelöscht wird, kann <i>Parent</i> deallokiert werden, da der Zähler auf 0 sinkt.	10
4	Struktur von Heapobjekten in Swift	13
5	Der PointerController verwaltet unterschiedliche Zeiger auf ein Objekt	16
6	Ein Tree wird durch mehrere PointerController untersucht	21
7	Aktivitätsdiagramm Dekrementierung und Dealloktation	25
8	Struktur von Strings in Swift	27
9	Ein String und eine Kopie davon teilen sich den selben Buffer	28
10	Strukturdiagramm Binärbaum mit Copy-On-Write-Semantik	30
11	Copy-On-Write: Sharing vor Modifikation	33
12	Copy-On-Write: Kopie bei Modifikation	33
13	Closure Capture: Variablen werden auf den Heap verschoben	45
14	Eine Closure Erzeugt einen Referenzzyklus	46
15	Durch die schwache Referenz wird ein Zyklus vermieden	47
16	Speicherabbild der Struktur mit Speicherleck	48

#	Beschreibung	Seite
1	Deklaration der Referenzzähler	
2	Bedeutung der Bits in den Referenzzählern	
3	Atomare Operatoren zur Modifikation von Referenzzählern	
4	Operator zum Dekrementieren des starken Referenzzählers Reaktion auf Dekrementieren des Referenzzählers wenn dieser auf 0 fällt Erklärung der SIL-Funktion destroy_addr Optimierung von Copy-On-Write bei Strings in der Swift-Standardbibliothek	
5		
6		
7		
8	Beispiel einer Funktion mit @noescape: Die Funktion map des Optional- Enums	50

#	Beschreibung	Seite
1	Initialzustand: ein einzelner starker Pointer ist gesetzt	
2	Einige Pointer sind gesetzt	
3	Die Anzahl der strong Pointers fällt auf 0	
4	Die Anzahl der weak Pointers fällt auf 0. Der Speicher wurde freigegeben	
5	Initialzustand: Alle Knoten haben einen einzelnen strong Pointer	
6	Keine starken Zeiger auf die Wurzel: Alle Kindknoten sind freigegeben	22

#	Beschreibung	Quelle	Seite
1	Python: Reference Counts & Reference Counting in Python	https://docs.python.org/2/extending/ extending.html#reference-counts	10
2	Structs and Classes: Unowned References (Seite 136)	Chris Eidhof, Airspeed Velocity: Advanced Swift (2016)	11
3	UnsafePointer Structure Reference	https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_UnsafePointer_Structure/index.html	12
4	Friday Q&A 2015-12-11: Swift Weak References	https://www.mikeash.com/pyblog/friday- qa-2015-12-11-swift-weak- references.html	18
5	Structs and Classes (Seite 117)	Chris Eidhof, Airspeed Velocity: Advanced Swift (2016)	27
6	Swift Enhancement: Proposal 125: Remove NonObjectiveCBase and isUniquelyReferenced	https://github.com/apple/swift-evolution/blob/master/proposals/0125-remove-nonobjectivecbase.md	29
7	ArraySlice Structure Reference	https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_ArraySlice_Structure/index.html	35
8	Guaranteed Optimization and Diagnostic Passes: Memory promotion	http://apple-swift.readthedocs.io/en/ latest/SIL.html#guaranteed- optimization-and-diagnostic-passes	37
9	SIL in the Swift Compiler: SILGen und canonical SIL	http://apple-swift.readthedocs.io/en/latest/SIL.html#sil-in-the-swift-compiler	38
10	Closure Capture Semantics, Part 1: "Captured variables are evaluated on execution"	http://alisoftware.github.io/swift/closures/2016/07/25/closure-capture-1/	42
11	Swift Intermediate Language: "Promotion eliminates byref capture"	http://llvm.org/devmtg/2015-10/slides/ GroffLattner-SILHighLevelIR.pdf	45
12	Swift Enhancement: Proposal 35: Limiting inout capture to @noescape context	https://github.com/apple/swift-evolution/blob/master/proposals/0035-limit-inout-capture.md	49
13	NSHint: @noescape Attribute	http://nshint.io/blog/2015/10/23/ noescape-attribute/	50
14	Swift Enhancement: Proposal 103: Make non-escaping closures the default	https://github.com/apple/swift-evolution/blob/master/proposals/0103-make-noescape-default.md	50