Segmentação Textual Automática de Atas de Reunião

Resumo-A tarefa de segmentação topical consiste em dividir um texto em porções com significado relativamente independente, de maneira que cada segmento contenha um assunto ou tópico. Muitas das pesquisas avaliam técnicas usando textos longos como a concatenação de notícias de vários assuntos ou obtidos pela transcrição de discursos ou reuniões com múltiplos participantes. Nota-se também uma maior atenção ao idioma inglês. Por conta disso, muitos segmentadores apresentam melhor performance nessas condições. As atas de reunião frequentemente são escritas em parágrafo único e não apresentam marcações de estrutura como capítulos ou seções. Além disso, possuem estilo de redação mais formal e sucinto, o que desfavorece técnicas baseadas em frequência de palavras. A segmentação desses documentos é facilita a sua organização e acesso, oferecendo vantagens no processo de recuperação de informação em relação à busca por palavras chave pois é possível retornar porções de texto menores que contenham tópicos relevantes à intenção do usuário, ao invés de destacar as palavras chave em um texto longo que pode conter informações menos pertinentes. Além disso, pode aprimorar a navegação pelo documento, sobre tudo por usuários com deficiência visual. Este artigo se concentra nos principais algoritmos da literatura adaptando-os ao contexto das atas de reunião em português, bem como encontrar um modelo que ofereça segmentos coesos e contribua para aprimorar sistemas de recuperação de informação para que respondam melhor à buscas do usuário. Para a avaliação, um conjunto de atas do departamento de pós-graduação da UFSCar-Sorocaba¹ foi manualmente segmentado por participantes das reuniões, então comparouse as divisões manuais com as geradas automaticamente a fim de encontrar um método que melhor retorne segmentos coesos de atas de reunião. Ao final, chegou-se a um modelo capaz de segmentar as atas com eficiência similar à trabalhos anteriores, entregando segmentos com significado relativamente independente do documento.

I. INTRODUÇÃO

Reuniões são tarefas presentes em atividades corporativas, ambientes de gestão e nas organizações de um modo geral. O conteúdo das reuniões são frequentemente registradas em texto na forma de atas de reunião para fins de documentação e posterior consulta. A organização e consulta manual desses arquivos torna-se uma tarefa custosa, especialmente considerando o seu crescimento em uma instituição.

As atas são documentos textuais e portanto constituem dados não estruturados. Assim, um sistema que responde a consultas do usuário ao conteúdo das atas, retornando trechos de textos relevantes à sua intenção, é um desafio que envolve a sua compreensão [4]. Uma vez que a ata registra a sucessão de assuntos discutidos na reunião, é interessante um sistema que aponte trechos de uma ata que tratam de um assunto específico. Tal sistema tem duas principais tarefas: descobrir quando há

trabalho tem foco principal na primeira tarefa, a segmentação textual automática.

A tarefa de segmentação textual consiste dividir um texto

uma mudança de assunto e quais são esses assuntos [1]. Este

A tarefa de segmentação textual consiste dividir um texto em partes que contenham um significado relativamente independente. Em outras palavras, é identificar as posições onde há uma mudança significativa de tópicos. A segmentação de textos é útil em aplicações que trabalham com textos sem indicações de quebras de assunto, ou seja, não apresentam parágrafos, seções ou capítulos, como transcrições automáticas de áudio, vídeos e grandes documentos que contêm vários assuntos como atas de reunião e noticias.

O interesse por segmentação textual tem crescido em em aplicações voltadas a recuperação de informação [13] e sumarização de textos [3] [?]. Essa técnica pode ser usada para aprimorar o acesso a informação quando essa é solicitada por meio de uma consulta, onde é possível oferecer porções menores de texto mais relevantes ao invés de exibir um documento maior que pode conter informações menos pertinentes. Além disso, encontrar pontos onde o texto muda de assunto, pode ser útil como etapa de preprocessamento em aplicações voltadas ao entendimento do texto, principalmente em textos longos A sumarização de texto pode ser aprimorada ao processar segmentos separados por tópicos ao invés de documentos inteiros. A navegação pelo documento pode ser aprimorada, em especial na utilização por usuários com deficiência visual [6].

Frequentemente atas de reunião têm a característica de apresentar um texto com poucas quebras de parágrafo e sem marcações de estrutura, como capítulos, seções ou quaisquer indicações sobre o tema do texto. O estilo de escrita compacto e formal, desfavorece o processamento tradicional.

O interesse por técnicas de segmentação textual acompanha o crescimento da produção de conteúdos, sendo estudada em aplicações voltadas principalmente a identificar divisões em textos longos como notícias e documentos da web, os quais são frequentemente concatenação de textos.

Há também um maior foco ao idioma inglês, presente na maioria dos artigos publicados. Embora haja abordagens voltadas para outros idiomas, falta ainda uma maior atenção na literatura sobre língua portuguesa e a documentos características próprias como as atas de reunião.

Assim, esse trabalho trata da adaptação e avaliação de algoritmos tradicionais ao contexto de documentos em português do Brasil, com ênfase especial nas atas de reuniões.

O restante deste artigo está dividido da seguinte forma. Na Seção II o processo de segmentação textual é melhor descrito, bem como os principais algoritmos da literatura. Na Seção III são apresentados trabalhos recentes que desenvolveram as técnicas existentes em contextos específicos. Na Seção IV é apresentada a proposta desse trabalho voltada às atas de reunião. Na Seção V é detalhado a avaliação dos experimentos e seus resultados reportados na Seção VI. Por fim, na Seção VII são apresentadas as considerações finais e trabalhos futuros.

II. REFERENCIAL TEÓRICO

Um documento textual, sobre tudo quando longos, são frequentemente um sucessão de tópicos. A segmentação textual ou segmentação topical é a tarefa de dividir um texto mantendo em cada parte um tópico com seu significado completo.

Um segmento pode ser visto como uma sucessão de unidades de informação que compartilham um tópico e podem ser, por exemplo, palavras, sentenças ou parágrafos. Essas unidades são a menor parte de um segmento e portanto consideradas candidatas a limite entre segmentos.

Trabalhos anteriores se apoiam na ideia de que a mudança de tópicos em um texto é acompanhada de uma proporcional mudança de vocabulário, essa ideia, chamada de coesão léxica, sugere que a distribuição das palavras é um forte indicador da estrutura do texto. A partir disso, vários algoritmos foram propostos baseados na ideia de que um segmento pode ser identificado e delimitado pela análise das palavras que o compõe [8] [3].

Uma vez que a coesão léxica é pressuposto básico da maioria dos algoritmos, o cálculo da similaridade entre unidades de informação (comumente sentenças) é fundamental. Uma medida de similidade frequentemente utilizada é o cosseno, a qual pode ser vista na Equação 1, sendo $f_{x,j}$ a frequência da palavra j na sentença x e $f_{y,j}$ sendo a frequência da palavra j na sentença y.

$$Sim(x,y) = \frac{\sum_{j} f_{x,j} \times f_{y,j}}{\sqrt{\sum_{j} f_{x,j}^{2} \times \sum_{j} f_{y,j}^{2}}}$$
(1)

Entre os principais trabalhos da literatura podemos citar o *TextTiling* [9] e o *C99* [6], os quais são mostrados a seguir.

O *TextTiling* é um algoritmo baseado em janelas deslizantes, onde para cada candidato a limite, analisa-se o texto circundante. Um limite ou quebra de segmento é identificado quando a similaridade entres os blocos apresenta uma queda considerável.

O TextTiling recebe uma lista de candidatos a limite, usualmente finais de parágrafo ou finais de sentenças. Para cada posição candidata são construídos 2 blocos, um contendo sentenças que a precedem e outro com as que a sucedem. O tamanho desses blocos é um parâmetro a ser fornecido ao algoritmo e determina o tamanho mínimo de um segmento. Em seguida, os blocos de texto são representados por vetores que contém as frequências de suas palavras. Então, usase cosseno (Equação 1) para calcular a similaridade entre os blocos adjacentes a cada candidato e identifica-se uma transição entre tópicos pelos picos na curva se dissimilaridade como apresentado na Figura ??.

O *TextTiling* apresenta baixa complexidade computacional, devido a simplicidade do algoritmo e baixa eficiência quando comparado a outros métodos mais sofisticados como apresentados em [6], [10].

Choi [6] apresenta um esquema de ranking em seu algoritmo, o C99. Embora muitos trabalhos utilizem matrizes de similaridades, o autor traz obervações. Ele aponta que para pequenos segmentos, o cálculo de suas similaridades não é confiável, pois uma ocorrência adicional de uma palavra causa um impacto desproporcional no cálculo. Além disso, o estilo da escrita pode não ser constante em todo o texto. Choi sugere que, por exemplo, textos iniciais dedicados a introdução costumam apresentar menor coesão do que trechos dedicados a um tópico específico.

Portanto, comparar a similaridade entre trechos de diferentes regiões, não é apropriado. Devido a isso, as similaridades não podem ser comparadas em valores absolutos. Com isso, o autor apresenta um esquema de *ranking* para contornar esse problema.

Inicialmente é construída uma matriz que contém as similaridades de todas as unidades de texto. Em seguida, cada valor na matriz de similaridade é substituído por seu ranking local. Onde para cade elemento da matiz, *ranking* é o número de elementos vizinhos com valor de similaridade menor ao seu.

Na Figura 1 vemos um quadro de dimensões 3×3 destacado na matriz de similaridades, que contém os valores $\{0,3;0,4;0,4;0,6;0,5;0,2;0,9;0,5;0,7\}$, tomando como exemplo o elemento com valor 0,5, a mesma posição na matriz de ranks terá o valor 4, pois esse é número de vizinhos com valores inferiores a 0,5 dentro do quadro analisado na matriz de similaridades.

Figura 1: Exemplo de construção de uma matriz de rank.

Finalmente, utiliza um método de divisão por *clustering* baseado no algoritmo de maximização de Reynar [12] para identificar os limites entre os segmentos.

III. TRABALHOS RELACIONADOS

Semelhante a este trabalho, outras abordagens foram propostas no sentido de propor segmentadores para outros idiomas além do inglês bem como alvaliá-los em contextos específicos como discursos e conversas em reuniões.

Diferenças de performance podem ser vistas no mesmo algoritmo quando aplicando em documentos de diferentes idiomas, se aplicado ao inglês, apresenta um taxa de erro significativamente menor se apliacado a outro como o alemão e o espanhol [10].

A fim de adaptar os algoritmos *TextTiling* e *C99* ao idioma árabe de vários países, foram propostos ajustes na etapa de preprocessamento onde verificou-se que diferenças diferenças no dialeto de cada pais devem ser consideradas no processo de segmentação e que a adaptação depende da escolha de um *stemmer* adequado à cada dialeto [5].

Na avaliação os autores utilizaram como *corpus* a concatenação de textos extraídos de notícias de diferentes países como Tunísia, Egito e Algeria, que tratam de assuntos distintos como política, esporte, cultura, história, tecnologia e artes, e que trazem particularidades nos estilos de escrita e até diferenças entre dialetos locais.

Outra aplicação para essas técnicas é a segmentação de conversas em reuniões com múltiplos participantes onde se estuda os discursos extraídos, ou seja, o texto a ser segmentado é uma transcrição das falas dos participantes durante a reunião.

Nesse sentido, foi apresentado um segmentador baseado no *TextTiling*, que foi aplicado em reuniões com múltiplos participantes. Utiliza como *corpus* a transcrição da fala dos participantes durante as reuniões que foram conduzidas por um mediador que propunha os tópicos e anotava o tempo onde os participantes mudavam de assunto [1]. Os autores publicaram trabalhos anteriores que consideram elementos da fala como pausas, trocas de falantes e entonação para encontrar melhores segmentos [8].

Ainda no contexto de reuniões com múltiplos participantes temos a segmentação funcional dos discursos, onde outros aspectos podem ser analisados, como a participação dos presentes na reunião. Nesse sentido, estuda-se a contribuição das pessoas as quais podem ser categorizadas, por exemplo, em diálogos, discussões e monólogos. Sugere-se que alguns comportamentos podem dar pistas de mudança de discurso, como quando um participante toma a palavra por um tempo prolongado [4].

A fim de aprimorar a detecção de limites entre segmentos, a presença de *pistas* pode ser um indicativo de finais ou inícios de segmentos, uma vez que alguns elementos são frequentes na transição de tópicos. Essas *pistas* podem ser palavras como "Ok", "continuando", frases como "Boa noite", "Dando prosseguimento" ou pausas prolongadas. Essas palavras podem ser detectadas por meio de algoritmos de aprendizado de máquina ou anotadas manualmente [15] [8] [2].

Algoritmos que apresentam melhor performance o fazem ao custo de maior complexidade computacional, que se deve, muitas vezes, à construção de matrizes de similaridade entre todas as sentenças como em [6], onde é apresentado que calcular similaridades entre blocos de sentenças muito distantes no documento, pode representar um custo computacional dispensável.

Nesse sentido, foi apresentada uma abordagem que otimiza o processo ao computar as médias das similaridades entre sentenças de cada bloco, a qual chamou de *inner similarity* e em seguida usa esses valores para calcular as medias das similaridades entre todos os blocos a qual chamou de *outter similarity*. Dessa forma não é criada uma matriz que contem as similaridades de todas as sentenças, mas apenas daquelas mais próximas. Os autores reportaram uma eficiência superior e uma eficácia comparável aos algoritmos mais complexos [10].

Muitos trabalhos utilizam a concatenação de textos na avaliação, os quais foram extraídos de coleções documentos como TDT^2 , WSJ^3 , $Brow^4$ e $Reuters^5$. Nesses casos, tem-se facilmente os segmentos de referência onde cada limite de segmento separa os documentos originais. Outros avaliam seus trabalhos utilizando coleções de transcrições de áudios gravados durante conversas de reuniões entre pessoas como o $ICSI^6$ o $CALO-MA^7$. Nesses casos, os segmentos de referência são dados por anotações feitas durante a reunião, onde registrou-se o tempo onde houve troca de assunto[14].

IV. PROPOSTA: SEGMENTAÇÃO LINEAR AUTOMÁTICA DE ATAS DE REUNIÃO

Os algoritmos *TextTiling* e *C99* foram propostos para o inglês, independente de domínio, ou seja, a proposta inicial é trabalhar em qualquer texto nessa língua.

A proposta desse trabalho é adaptá-los ao contexto das atas de reunião em português do Brasil. As subseções seguintes tratam das adaptações para esse nicho mais específico. A Seção V mostra a análise dos algoritmos adaptados.

O vocabulário das reuniões, ainda que em tópicos diferentes, compartilham certo vocabulário pertencente ao ambiente onde se deram as reuniões. Isso é um fator que diminui a coesão léxica entre os segmentos. As atas de reunião costumam ter um estilo de escrita que deve ser levado em conta na adaptação do algoritmos, como a identificação de finais de sentença na ausência de quebras de parágrafo, inserção de linhas que não separam assuntos, utilização de pontuação para transição de tópicos, e cabeçalhos e numerais ruidosos.

Nas subseções a seguir serão expostas as alterações para aumentar a eficiência dos algoritmos e encontrar o melhor modelo para a tarefa de segmentar o texto das atas em tópicos.

A. Pré-processamento

O texto a ser segmentado frequentemente é extraído de documentos em formatos como *pdf*, *doc*, *docx* ou *odt*. Após a extração do texto, esse pode passar por processos de transformação os quais serão apresentados a seguir.

A etapa de pré-processamento, em um documento contendo texto puro, acontece em dois passos principais. Primeiro elimina-se as palavras consideradas menos informativas, as quais são chamadas de *stop words*, para isso, utiliza-se uma lista contendo 438 palavras. Em seguida, remove-se os sufixos das palavras restantes, mantendo apenas o radical da palavra. A Figura 2 mostra a etapa de pré-processamento em uma sentença em português.

²https://catalog.ldc.upenn.edu/LDC98T25

³https://catalog.ldc.upenn.edu/ldc2000t43

⁴http://clu.uni.no/icame/brown/bcm.html

⁵http://trec.nist.gov/data/reuters/reuters.html

⁶http://www1.icsi.berkeley.edu/Speech/mr

⁷http://www.ai.sri.com/project/CALO

Figura 2: Exemplo de pré-processamento.

Há ainda outros passos presentes nessa etapa como remoção de acentos, transformações de caixa, remoção de pontuação, os quais são relativamente simples e não requerem maiores detalhes.

As atas frequentemente contém trechos que podem ser considerados pouco informativos e descartados durante o préprocessamento, como cabeçalhos e rodapés que se misturam aos tópicos tratados na reunião, podendo ser inseridos no meio de um tópico e criando uma quebra que prejudica tanto o algoritmo de segmentação, quanto a leitura do texto pelo usuário. Também é comum o uso de numerais para marcação de páginas e linhas, da mesma forma, são pouco informativos e podem ser descartados.

Nesse trabalho, esses elementos são removidos por meio de heurísticas simples, uma vez que, o descarte não causa perca de informação e pode facilitar a identificação dos segmentos, pois melhora a coesão do texto. Outro benefício é manter o texto livre de trechos que fogem do assunto circundante.

B. Identificação de candidatos

É preciso fornecer aos algoritmos os candidatos iniciais a limites de segmento. Antes disso, é necessário escolher qual será a unidade de informação mínima que constitui um segmento. Baseando-se no estilo de escrita e considerando as pontuações dos textos, é possível indicar quebras de parágrafo, finais de sentenças ou mesmo palavras como elementos que encerram um segmento. Ocorre que em atas de reunião é uma prática comum redigi-las de forma que o conteúdo discutido fica em parágrafo único, além disso, quebras de parágrafo são usados para formatação de outros elementos como espaço para assinaturas. Indicar todo ponto entre *token* como candidato obriga a ajustar posteriormente os segmentos de maneira a não quebrar uma ideia ou frase. Assim, neste trabalho, os finais de sentença são considerados unidades de informação e portanto, passíveis a limite entre segmentos.

Devido ao estilo de pontuação desses documentos, como encerrar sentenças usando um ";" e inserção de linhas extras, foram usadas as regras apresentadas no Algoritmo 1 para identificar os finais de sentenças.

V. AVALIAÇÃO EXPERIMENTAL

Para que se possa avaliar um segmentador automático de textos, é preciso uma referência, isto é, um texto com os limites entre os segmento conhecidos. Essa referência, deve ser confiável, sendo uma segmentação legítima que é capaz

```
Algorithm 1: Identificação de finais de sentença
```

```
Entrada: Texto
  Saída : Texto com identificações de finais de sentença
 para todo token, marcá-lo como final de sentença se:
     Terminar com um!
2
     Terminar com um . e não for uma abreviação
3
4
     Terminar em .?; e:
5
         For seguido de uma quebra de parágrafo ou
          tabulação
         O próximo token iniciar com ({ [ "'
6
         O próximo token iniciar com letra maiúscula
         O penúltimo caracter for ) } ] "'
8
9 fim
```

de dividir o texto em porções relativamente independentes, mantendo um conteúdo legível, ou seja, uma segmentação ideal.

Entre as abordagens mais comuns para se conseguir essas referências, encontramos: A concatenação aleatória de documentos distintos, onde o ponto entre o final de um texto e o inicio do seguinte é um limite entre eles. A segmentação manual dos documentos, nesse caso, pessoas capacitadas, também chamadas de juízes, ou mesmo o autor do texto, são consultadas e indicam manualmente onde há uma quebra de segmento. Em transcrição de conversas faladas em reuniões com múltiplos participantes, um mediador é responsável por encerrar um assunto e iniciar um novo, nesse caso o mediador anota manualmente o tempo onde há uma transição de tópico. Em aplicações onde a segmentação é tarefa secundária, é possível, ao invés de avaliar o segmentador, analisar seu impacto na aplicação final.

De acordo com [11] há duas principais dificuldades na avaliação de segmentadores automáticos. A primeira é conseguir um referência, já que juízes humanos costumam não concordar entre si, sobre onde os limites estão e outras abordagens podem não se aplicar ao contexto. A segunda é que tipos diferentes de erros devem ter pesos diferentes de acordo com a aplicação. Há casos onde certa imprecisão é tolerável e outras, como a segmentação de notícias, onde a precisão é mais importante.

Para fins de avaliação desse trabalho, um bom método de segmentação é aquele cujo resultado melhor se aproxima do ideal, sem a obrigatoriedade de estar perfeitamente alinhado com tal. Ou seja, visto o contexto das atas de reunião, e a subjetividade da tarefa, não é necessário que os limites entre os segmentos (real e hipótese) sejam idênticos, mas que se assemelhem em localização e quantidade.

As próximas subseções mostram o conjunto de atas e a segmentação usada como referência em seguida são apresentadas as métricas de avaliação utilizadas neste trabalho e os testes realizados para avaliar os métodos.

A. Conjunto de documentos

A fim de obter um conjunto de documentos segmentados que possam servir como referência na avaliação, seis atas

de reunião foram coletadas junto ao departamento de pósgraduação da UFSCar-Sorocaba⁸. Os documentos foram oferecidos à profissionais que participam de reuniões desse departamento e por meio de um *software* segmentaram o texto das atas conforme o julgamento de cada um. Os segmentos gerados manualmente foram comparados à segmentação automática conforme os critérios descritos a seguir.

As atas de reunião diferem dos textos comumente estudados em outros trabalhos em alguns pontos. O estilo de escrita favorece textos sucintos com poucos detalhes de maneira que o ambiente dá preferência a textos curtos. Segundo Choi [7], o segmentador tem a acurácia reduzida em segmentos curtos (em torno de 3 a 5 sentenças).

Para evitar um texto monótono à leitura, a redação do documento tem o cuidado de não repetir ideias e palavras em favor da elegância do texto. Tal característica enfraquece a coesão léxica e portanto o cálculo da similaridade é prejudicado. Por exemplo, duas sentenças diferem se uma contiver a palavra computadores e na seguinte equipamentos, mesmo que se refiram à mesma ideia. Além disso, o documento compartilha um certo vocabulário próprio do ambiente onde os assuntos são discutidos e com isso nota-se que os segmentos, embora tratem de assuntos diferentes, são semelhantes em vocabulário.

A presença de ruídos como cabeçalhos, rodapés e numeração de páginas e linhas prejudicam tanto similaridade entre sentenças como a apresentação final ao usuário. Porém, esses ruídos podem ser reduzidos ou eliminados como mostrado na Subseção IV-A, sobre preprocessamento.

B. Medidas de Avaliação

As medidas de avaliação tradicionalmente utilizadas na área de recuperação de informação como precisão e revocação trazem alguns problemas na avalização de segmentadores automáticos. Conforme o algoritmo aponta mais segmentos no texto, este tende a melhorar a revocação e ao mesmo tempo, reduzir a precisão, um problema que pode ser contornado usando *F-measure* que faz uma combinação das duas levando em conta seus pesos, o que por outro lado é mais difícil de interpretar. Entretanto, as medidas apresentadas acima falham ao não serem sensíveis a *near misses*, ou seja, quando um limite não coincide exatamente com o esperado, mas está próximo a ele [10].

Na Figura 3 é apresentado um exemplo com duas segmentações hipotéticas e uma referência. Na Figura 4, em ambos os casos não há nenhum verdadeiro positivo, o que implica em zero para os valores de precisão, acurácia, e revocação, embora a segunda hipótese possa ser considerada superior à primeira se levado em conta a proximidade dos limites.

Entre as medidas mais utilizadas para avaliar segmentadores estão:

1) P_k . A fim de resolver o problema de *near misses*, Beeferman *et. al.* [2] apresentam uma medida chamada P_k que atribui valores parciais a *near misses*. Esse

Figura 3: Exemplos de *near missing* e falso positivo puro. Os blocos indicam uma unidade de informação e as linha verticais representam os limites entre segmentos de texto representando um tópico do texto.

Figura 4: Exemplo de duas segmentações hipotéticas em comparação a uma ideal.

método move uma janela de tamanho k e a cada posição e verifica se o início e o final da janela estão ou não dentro do mesmo segmento e penaliza o algoritmo em caso de discrepância. Ou seja, dado duas palavras de distancia k, uma discrepância é computada quando o algoritmo e a referência não concordam se as palavras estão ou não no mesmo segmento.

O valor de k é calculado como a metade da média dos comprimentos dos segmentos reais. Como resultado, é retornado a contagem de discrepâncias divido pelo quantidade de segmentações analisadas. Esse valor serve como medida de dissimilaridade entre as segmentações e pode ser interpretada como a probabilidade de duas sentenças extraídas aleatoriamente pertencerem ao mesmo segmento.

2) WindowDiff. Pevzner [11] aponta problemas na avaliação mais tradicional P_k [2]. Eles apontam que esse método penaliza demasiadamente os falsos negativos em relação aos falsos positivos e a near misses, além disso, desconsidera o tamanho e a quantidade de segmentos. Como solução, propõem um novo método, o qual chamam de WindowDiff que traz duas diferenças principais: a dobra a penalidade para os falsos positivos a fim de diminuir o problema da subestimação dessa medida e, diferente de P_k, ao mover a janela pelo texto, penalizase o algoritmo sempre que o número de limites proposto pelo algoritmo não coincidir com o número de limites esperados para aquela janela de texto.

Com isso, demonstram em seu trabalho que, em relação a P_k , consegue resolver seus principais problemas e mantém sua proposta inicial de sensibilidade a *near misses*, penalizando-os menos que os falsos positivos puros.

VI. RESULTADOS

A fim de encontrar o melhor método que divida uma ata em segmentos coerentes, realizou-se experimentos com o

⁸http://www.ppgccs.net/?page_id=1150

TextTiling e *C99* a fim de encontrar os melhores parâmetros para esses documentos.

As implementações dos algoritmos permitem ao usuário a configuração de seus parâmetros. O *TextTiling* permite ajustarmos dois parâmetros, sendo, o tamanho da janela (distância entre a primeira e a última sentença) para o qual atribuiu-se os valores 20, 40 e 60. Para o segundo parâmetro, o passo (distância que a janela desliza), atribuiu-se os valores 3, 6, 9 e 12. Gerando ao final 20 modelos.

O C99 permite ajustarmos três parâmetros, sendo, a quantidade segmentos desejados, o qual é calculado como uma proporção dos candidatos a limite. Para isso atribuiu-se as proporções 0,2; 0,4; 0,6; 0,8; 1,0. O segundo parâmetro, o tamanho da máscara utilizada para gerar a matriz de ranking, atribuiu-se os valores 9 e 11. Permite ainda, definirmos se as sentenças serão representados por vetores contendo a frequência ou o peso de cada termo, onde ambas as representações foram utilizadas. Considerando todos os parâmetros, foram gerados 20 modelos para o algoritmo C99.

Em seguida aplicou-se o teste de Friedman a fim de saber se há diferenças significativas entre a eficácia dos modelos. O pós-teste de Nemenyi foi aplicado para descobrir quais diferenças são significativas. Exite diferença quando seus *rankings* médios diferirem em um valor mínimo, chamado de diferença critica (CD).

Com isso foi possível, pela análise do diagrama de diferença crítica, verificar qual é o melhor modelo para cada medida em relação aos demais.

A Tabela I mostra os dados obtidos com o *C99*, onde S é a proporção de segmentos em relação a quantidade de candidatos, M é o tamanho da máscara utilizada para criar a matriz de *ranking* e W indica se os segmentos são representados por vetores contendo a frequência ou um peso das palavras.

Medida	S	М	W	Média
Acuracy	40	11	Sim	0.6199
F1	60	9	Sim	0.6167
Precision	40	11	Sim	0.7106
Recall	100	9	Não	0.8516
Pk	40	11	Sim	0.1163
Windiff	40	11	Sim	0.3800

Tabela I: Médias das medidas obtidas com C99

A tabelas II mostra os dados obtidos com o *TextTiling*, onde J é o tamanho da janela e P é o passo.

Medida	J	Р	Média
Acuracy	50	9	0.5510
F1	50	3	0.5898
Precision	60	12	0.5746
Recall	50	3	0.7717
Pk	30	9	0.1572
Windiff	50	9	0.4489

Tabela II: Médias das medidas obtidas com o TextTiling.

Uma vez sabendo quais valores de parâmetros melhor configuram um algoritmo para uma medida, resta então saber qual dos dois algoritmos é mais eficiente segundo essa medida. Para isso aplicou-se novamente o teste de Friedman com pós-teste

de Nemenyi, dessa vez, com os melhores modelos dos dois algoritmos para cada medida. O resultado segue na Tabela III

Medida	Algoritmo	S	М	W
Acuracy	C99	40	11	Sim
Precision	C99	40	11	Sim
Pk	C99	40	11	Sim
Windiff	C99	40	11	Sim
F1	C99	60	9	Sim
Recall	C99	100	9	Não

Tabela III: Melhores modelos para cada medida segundo diagramas de diferença crítica.

Na análise do diagrama de diferença crítica verificou-se que o algoritmo *C99* apresenta melhor eficiência em todas as medidas e os valores das quatro primeiras os valores de S, M e W se repetiram, sugerindo uma configuração otimizada para o problema da segmentação de atas de reunião.

VII. CONCLUSÃO

As atas de reunião, objeto de estudo desse artigo, apresentam características peculiares em relação à discursos em reuniões e textos em geral. Características como segmentos curtos e coesão mais fraca devida ao estilo que evita repetição de palavras e ideias em benefício da leitura por humanos, dificulta o processamento por computadores.

Os algoritmos *TextTiling* e *C99* foram testados em um conjunto de atas reais coletadas do departamento de computação da UFSCar-Sorocaba. Por meio da análise dos dados chegouse a um modelo cujos segmentos melhor se aproximaram as amostras de participantes das reuniões. Obteve-se resultados comparáveis aos vistos em discursos longos, porém um pouco inferiores, o que pode ser justificado pelo estilo peculiar de escrita das atas.

Em trabalhos futuros, serão investigadas técnicas para descrever os segmentos e com isso aprimorar o acesso ao conteúdo das atas de reunião.

REFERÊNCIAS

- S. Banerjee and A. Rudnicky. A texttiling based approach to topic boundary detection in meetings. volume 1, pages 57–60, 2006. cited By 3.
- [2] D. Beeferman, A. Berger, and J. Lafferty. Statistical models for text segmentation. *Machine Learning*, 34(1):177–210, 1999.
- [3] B. K. Boguraev and M. S. Neff. Discourse segmentation in aid of document summarization. In In Proceedings of Hawaii Int. Conf. on System Sciences (HICSS-33), Minitrack on Digital Documents Understanding, IEEE, 2000.
- [4] M. H. Bokaei, H. Sameti, and Y. Liu. Linear discourse segmentation of multi-party meetings based on local and global information. *IEEE/ACM Trans. Audio, Speech and Lang. Proc.*, 23(11):1879–1891, Nov. 2015.
- [5] A. H. Chaibi, M. Naili, and S. Sammoud. Topic segmentation for textual document written in arabic language. *Procedia Computer Science*, 35:437 – 446, 2014.
- [6] F. Y. Y. Choi. Advances in domain independent linear text segmentation. In Proceedings of the 1st North American Chapter of the Association for Computational Linguistics Conference, NAACL 2000, pages 26–33, Stroudsburg, PA, USA, 2000. Association for Computational Linguistics.
- [7] F. Y. Y. Choi, P. Wiemer-Hastings, and J. Moore. Latent semantic analysis for text segmentation. In *In Proceedings of EMNLP*, pages 109–117, 2001.

- [8] M. Galley, K. McKeown, E. Fosler-Lussier, and H. Jing. Discourse segmentation of multi-party conversation. In *Proceedings of the 41st Annual Meeting on Association for Computational Linguistics - Volume 1*, ACL '03, pages 562–569, Stroudsburg, PA, USA, 2003. Association for Computational Linguistics.
- [9] M. A. Hearst. Multi-paragraph segmentation of expository text. In Proceedings of the 32Nd Annual Meeting on Association for Computational Linguistics, ACL '94, pages 9–16, Stroudsburg, PA, USA, 1994. Association for Computational Linguistics.
- [10] R. Kern and M. Granitzer. Efficient linear text segmentation based on information retrieval techniques. pages 167–171, 2009. cited By 10.
- [11] L. Pevzner and M. Hearst. A critique and improvement of an evaluation metric for text segmentation. *Computational Linguistics*, 28(1):19–36, 2002. cited By 154.
- [12] J. C. Reynar. Topic Segmentation: Algorithms and Applications. PhD thesis, Philadelphia, PA, USA, 1998. AAI9829978.
- [13] J. C. Reynar. Statistical models for topic segmentation. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, ACL '99, pages 357–364, Stroudsburg, PA, USA, 1999. Association for Computational Linguistics.
- [14] G. Tur, A. Stolcke, L. Voss, S. Peters, D. Hakkani-Tür, J. Dowding, B. Favre, R. Fernández, M. Frampton, M. Frandsen, C. Frederickson, M. Graciarena, D. Kintzing, K. Leveque, S. Mason, J. Niekrasz, M. Purver, K. Riedhammer, E. Shriberg, J. Tien, D. Vergyri, and F. Yang. The calo meeting assistant system. *Trans. Audio, Speech and Lang. Proc.*, 18(6):1601–1611, Aug. 2010.
- [15] P. yun Hsueh, J. D. Moore, and S. Renals. Automatic segmentation of multiparty dialogue. In EACL, 2006.