UPRA-OBC Fedélzeti Számítógép

Áttekintés/Tervezet

Góczán Bence Dávid 2017.09.19.

Tartalom

Bevezetés	3
1 Általános felépítés	4
1.1 Követelmények	4
1.2 Felépítés	5
2 Funkciók	6
2.1 Repülésfelügyelet	6
2.2 Busz kommunikáció	6
2.3 GPS modul kezelése	6
2.4 Modulhőmérséklet mérése	6
2.5 Telemetria adatok előállítása	7
2.6 House-keeping adatok előállítása	7
2.7 Adattárolás	7
2.8 Rendszeridő előállítása	7
2.9 Repülés megszakítás	8
2.10 Integrált kamerarendszer	8
2.11 Pay-load-ok kezelése	8

Bevezetés

A dokumentum célja rövid áttekintést adni a tervezett végleges UPRA-OBC Fedélzeti Számítógép felépítéséről és működéséről.

Először áttekintjük az általános felépítést és követelményeket, majd részletesen tárgyaljuk az egyes funkciók működését és megvalósítási lehetőségeit.

1 Általános felépítés

1.1 Követelmények

A fedélzeti számítógép feladata a részegységek összehangolása és a repülési terv végrehajtásának felügyelete. Üzemszerű működés során feldolgozza és naplózza a telemetria és house-keeping adatokat, kezeli a GPS modult, a belső buszrendszeren kommunikál az egyes alrendszerekkel, felügyeli és kezeli a payload-okat és kezeli a képrögzítő eszközöket valamint közvetlenül vezérli a repülésmegszakító rendszert.

Az OBC lehetőség szerint integráltan tartalmaz egy GPS modult valamint nagyobb teljesítményű verziók tartalmaznak egy integrált kamera portot is, mely közvetlenül képes kamera egységek kezelésére.

A fedélzeti számítógép végzi az elsődleges adatrögzítést, melyre SD-kártyát használ. Ezen tárolja a rendszernaplót, telemetria és house-keeping adatokat valamint a mérési adatokat és képeket.

Az OBC állítja elő a rendszeridőt, melyhez Real-Time Clock (RTC) egységet használ. A rendszeridő a mindenkori GPS időhöz szinkronizálódik.

A fedélzeti számítógép a house-keeping adatok alapján automatikusan parancsot adhat egyes modulok leállítására, amennyiben a küldetés biztonságát veszélyeztetik.

Az általános funkciók mellett az OBC-nek alkalmasnak kell lennie a pay-load-ok kezelésére is. Ezek vezérlése, monitorozása és az adatmentés az adott pay-load specifikációja alapján történik, melyet az eszköz fejlesztői biztosítanak.

A fedélzeti számítógép Master szerepkörben csatlakozik a rendszerbuszra, melynek felügyeletét teljes körűen el tudja látni.

1.2 Felépítés

Az OBC fő részegységei:

- Mikrokontroller: Busz kommunikáció, SD-kártya kezelés, GPS kezelés, vezérlőjelek
- GPS: integrált GPS modul a pozíció adatok vételéhez
- ICS: integrált kamerarendszer
- FTU: repülésmegszakító egység
- SD-kártya: fő adattároló egység
- RTC: rendszeridő biztosítása

2 Funkciók

2.1 Repülésfelügyelet

Az OBC a repülési tervnek megfelelően kezeli az egyes alrendszereket. Lehetőség van különböző előre programozott feladatok végrehajtására, melyek lehetnek időponthoz vagy környezeti változáshoz kötöttek.

A beérkező rádiós parancsok alapján lehetőség van egyes feladatok irányított végrehajtására is, ezáltal a földi irányítás a repülés közben is be tud avatkozni bizonyos szituációkban.

2.2 Busz kommunikáció

Az OBC Master szerepkörben csatlakozik a rendszerbuszra. Az egyes alrendszerekkel történő kommunikációt normál működés során a fedélzeti számítógép kezdeményezi. Az elsődleges kommunikációs vonalon bizonyos alrendszerek küldhetnek megszakítási kérelmet az OBC felé. A másodlagos kommunikációs vonalon ez nem lehetséges, ebben az esetben az OBC polling módszerrel kérdezi le az alrendszerek állapotát.

2.3 GPS modul kezelése

Az OBC integrálva tartalmaz egy GPS modult, mely alkalmas nagy magasságú működésre. A GPS kommunikációs vonalai kivezetésre kerültek a rendszerbuszra így más alrendszerek is közvetlenül olvashatják a nyers NMEA üzeneteket.

A GPS modullal szabványos NMEA üzenetekkel történik a kommunikáció, az OBC alkalmas ezek olvasására illetve a modul konfigurálására is.

Jelenleg a GPGGA üzenetek feldolgozására van felkészítve a rendszer, mely tartalmazza a GPS időt, szélességi és hosszúsági adatokat valamint a magasságot. Ballonos repülés során ezek elegendőek a helymeghatározáshoz. A GPGGA üzenetből kinyerhető a GPS-FIX információ is, mellyel vizsgálhatjuk, hogy érvényes GPS üzeneteket kapunk-e. Amennyiben nincs érvényes GPS adat, az utolsó érvényes értékeket használjuk.

2.4 Modulhőmérséklet mérése

A fedélzeti számítógép méri a saját hőmérsékletét, melyet legegyszerűbben a mikrokontrollerbe épített hőmérő egységgel valósíthatunk meg.

2.5 Telemetria adatok előállítása

A GPS adatokból állítjuk elő az időbélyeggel ellátott telemetria adatokat, melyeket eltárolunk és továbbítunk a kommunikációs modul felé.

A telemetria adatok a következők:

- Időbélyeg UTC formátumban
- Földrajzi szélesség NMEA formátumban
- Földrajzi hosszúság NMEA formátumban
- Magasság méterben
- Vízszintes sebesség m/s formátumban
- Függőleges sebesség m/s formátumban

A kommunikációs modul ezekből állítja elő az élő követéshez szükséges telemetria rádiós csomagokat.

2.6 House-keeping adatok előállítása

A house-keeping adatok az egyes alrendszerektől lekért modulhőmérsékletből, külső hőmérsékletből és az EPS modultól lekért fogyasztás adatokból tevődik össze. Ezeket az adatokat naplózzuk, és továbbküldjük a COM modul felé, ami összeállítja a house-keeping státusz rádiós csomagokat.

2.7 Adattárolás

Az adatok tárolása a könnyebb hordozhatóság érdekében SD-kártyával valósul meg. A hordozhatóság érdekében az SD-kártyán FAT fájlrendszert használunk, és dedikált állományokat hozunk létre a különböző adatoknak:

- Rendszernapló
- Telemetria napló
- House-keeping napló
- Mérési adatok
- Képek

2.8 Rendszeridő előállítása

A pontos időt Real-Time Clock (RTC) modullal állítjuk elő, mely alkalmas idő és dátum biztosítására is. A rendszeridőt a hőmérsékleti pontatlanság miatt időről-időre szinkronizáljuk a mindenkori GPS időhöz, amit a GPS modulból nyerünk ki. A rendszeridő és az időbélyegek UTC formátumban kerülnek előállításra és a különböző folyamatok ehhez szinkronizálódnak.

2.9 Repülés megszakítás

Az OBC közvetlenül kezeli a repülésmegszakító egységet, mely parancsra levágja a ballont a rendszerről.

A repülés megszakítása történhet a repülési terv alapján automatizálva magasság vagy idő alapján, illetve a földi irányítás által küldött rádiós parancs hatására is.

2.10 Integrált kamerarendszer

Az integrált kamerarendszer kezeléséhez nagyobb teljesítményű OBC-ben dedikált kamera portot tartunk fent. A dedikált kameraport egy DCMI, egy I2C és egy SPI portból áll össze. Ezzel lehetőségünk van ArduCAM modulok és natív kamera chipek kezelésére is.

A fényképezés mellett lehetőség van a kameramodulok felkonfigurálására is, így repülés során készíthetünk különböző felbontású és kalibrációjú képek készítésére.

Az integrált kamerarendszer képeit az OBC az SD-kártyán tárolja és lehetőség van ezeket a COM modul segítségével visszaküldeni repülés közben.

2.11 Pay-load-ok kezelése

Az OBC lehetőséget biztosít harmadik fél által készített pay-load-ok kezelésére. Ezek a funkciók nincsenek definiálva az alapműködésben, a pay-load fejlesztői által biztosított specifikáció határozza meg.

A pay-load-ok kezelése a rendszerbuszon keresztül történik. Az eszközök kapcsolódhatnak közvetlenül a rendszerbuszra vagy UPRA Interface kártyán keresztül. A pay-load-ok integrálása az eszköz fejlesztőivel közösen történik.