Матан

Сергей Григорян

25 сентября 2024 г.

Содержание

1	Лег	кция 6
	1.1	Бесконечные пределы
	1.2	Дополнения к ранним теоремам
	1.3	Подпоследовательности
2	Лен	кция 7
	2.1	Критерий Коши
	2.2	Частичные пределы

1 Лекция 6

Paccm. $\bigcap_{i=1}^{\infty} (0, \frac{1}{n})$

По аксиоме Архимеде, заключаем, что $\bigcap_{i=1}^{\infty} (0, \frac{1}{n}) = \emptyset$

1.1 Бесконечные пределы

Выделим классы п-ть, расход. особым образом:

Определение 1.1. Говорят, что $\{a_n\}_1^{\infty}$ стремится к $+\infty$, если $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} (n \geq N \Rightarrow a_n > \frac{1}{\varepsilon})$

Обозначение. Пишут вот так: $\lim_{n\to\infty} a_n = +\infty$ или $a_n \to +\infty$

Определение 1.2. Говорят, что $\{a_n\}_1^{\infty}$ стремится к $-\infty$, если $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} (n \geq N \Rightarrow a_n < -\frac{1}{\epsilon})$

Обозначение. Пишут, что $\lim_{n\to\infty} a_n = -\infty$ или $a_n \to -\infty$

Определение 1.3. П-ть $\{a_n\}_1^\infty$ наз-ся беск. большой, если $\lim_{n\to\infty}|a_n|=+\infty$

<u>Замечание</u>. Из onp-ий следует, что $a_n \to -\infty \iff (-a_n) \to +\infty$

 Π ример. 1)

$$a_n = n^2, n \in \mathbb{N} \Rightarrow a_n \to +\infty$$

Возъмём $N=\left|\frac{1}{\sqrt{\varepsilon}}\right|+1\Rightarrow n\geq N\Rightarrow n^2\geq \frac{1}{\varepsilon}$

 $(-n^2) \to -\infty$

3)
$$(-1)^n n^2 - 6$$
. 6., $no, (-1)^n n^2 \not\to +\infty, (-1)^n n^2 \not\to -\infty$

Задача 1.1. Док-ть, что всякая ББ п-ть является неограниченной.

Замечание. П-ть не может одновременно стремиться к числу и к символу $+\infty$ (T. к. она либо ограничена, либо неогр.), а также к бесконечностям разных знаков. Таким образом, если n-ть имеет предел в \mathbb{R} , то он единственный.

<u>Лемма</u> 1.1. Пусть $a_n \neq 0, \forall n \in \mathbb{N}, mor \partial a \{a_n\}_1^{\infty} - BB \iff \{\frac{1}{a_n}\}_1^{\infty} - BM$

Доказательство. Это следует из $|a_n| > \frac{1}{\varepsilon} \iff \left|\frac{1}{a_n}\right| < \varepsilon$

1.2 Дополнения к ранним теоремам

Теорема 1.2 (4'). Пусть $a_n \leq b_n, \forall n \in \mathbb{N}$. Тогда:

- 1) Ecnu $a_n \to +\infty$, mo $b_n \to +\infty$
- 2) Ecau $b_n \to -\infty$, mo $a_n \to -\infty$

Доказательство. 1) Заф. $\varepsilon>0$. По опр. предела $\exists N\in\mathbb{N}, \forall n\geq N\colon (a_n>\frac{1}{\varepsilon})$. Тогда $b_n\geq a_n>\frac{1}{\varepsilon}, \forall n\geq N$. Тогда $b_n\to+\infty$

2) Вытекает из (1): $(-b_n) \to +\infty, -b_n \le -a_n, \forall n \to (-a_n) \to +\infty \Rightarrow a_n \to -\infty$

Теорема 1.3 (6'). 1) Если n-ть $\{a_n\}_1^{\infty}$ нестрого возр. u неогр. свер-xy, то $\exists \lim_{n\to\infty} a_n = +\infty$

2) Если n-ть $\{a_n\}_1^\infty$ нестрого убыв. u неогр. cнизу, то $\exists \lim_{n\to\infty} a_n = -\infty$

 \mathcal{A} оказательство. 1) Зафикс. $\varepsilon > 0$. Из неогр. сверху следует, что $\exists N \colon a_N > \frac{1}{\varepsilon} \Rightarrow$ Тогда $a_n \geq a_N > \frac{1}{\varepsilon}, \forall n \geq N \Rightarrow \lim_{n \to \infty} a_n = +\infty$

2) Аналогично (1), или с помощью сведения a_n к $(-a_n)$

Следствие. Всякая монотонная n-ть имеет предеел в \mathbb{R} : если $\{a_n\}_1^{\infty}$ нестрого возр., то $\exists \lim_{n\to\infty} a_n = \sup\{a_n\}$

Если п-ть $\{a_n\}_1^\infty$ нестрого убыв., то $\exists \lim_{n\to\infty} a_n = \inf\{a_n\}$

<u>Задача</u> **1.2.** Д-те, что теорема 5 (арифм. операции с пределами), остаётся верно и для $a,b \in \overline{\mathbb{R}}$ (с допуст. операциями)

Пример. Пусть $\lim_{n\to\infty} a_n = x \in \mathbb{R}, x < 0, \ a \lim_{n\to\infty} b_n = +\infty.$ Тогда $\lim_{n\to\infty} a_n b_n = -\infty$

Доказательство.

$$\exists N_1, \forall n \ge N_1(a_n < \frac{x}{2})$$
$$\exists N_2, \forall n \ge N_2(b_n > \frac{2}{|x| \varepsilon})$$

Возьмём $N = max(N_1, N_2) \Rightarrow \forall n \geq N$:

$$a_n b_n < \frac{x}{2} \frac{2}{|x| \, \varepsilon} = \frac{1}{\varepsilon}$$

1.3 Подпоследовательности

Определение 1.4. Пусть $\{a_n\}_1^{\infty}$ - п-ть и $\{n_k\}_1^{\infty}$ строго возрастающая п-ть нат. чисел. П-ть $\{b_k\}_1^{\infty}$, где $b_k=a_{n_k}, k\in\mathbb{N}$, наз-ся подпоследовательностью и об-ся $\{a_{n_k}\}_1^{\infty}$

Пример.

$$a_n=n, n\in\mathbb{N}$$

$$a_{nk}=k^2, k\in\mathbb{N} - no\partial n\text{-}mb$$

<u>Замечание</u>. 1) Подп-ть $\{a_{n_k}\}$ - это композиция строго возрастающей ϕ -ции $\sigma: \mathbb{N} \to \mathbb{N}, \sigma(k) = n_k, u$ самой n-ти $a: \mathbb{N} \to \mathbb{N}$

2) Верно, что $n_k \ge k, \forall k$ $(n_1 \ge 1, n_k \ge k, n_{k+1} > n_k \ge k \Rightarrow n_{k+1} \ge k+1)$

<u>Лемма</u> 1.4. Если n-ть $\{a_n\}$ имеет предел в $\overline{\mathbb{R}}$, то любая её подn-ть имеет тот же предел

Доказательство. Пусть $\lim_{n\to\infty}a_n=a,$ а $\{\,a_{n_k}\,\}$ - подп-ть $\{\,a_n\,\}$

- а) Пусть $a \in \mathbb{R}$. Зафикс. $\varepsilon > 0$. По опр. предела $\exists N, \forall n \geq N(|a_n a| < \varepsilon)$ Тогда $|a_{n_k} a| < \varepsilon$ при всех $k \geq N$ (т. к. $n_k \geq k \geq N$) Сл-но, $\lim_{k \to \infty} a_{n_k} = a$.
- b) Если $a=+\infty$, получаем результат, если заменить $|a_n-a|<\varepsilon$ на $a_n>\frac{1}{\varepsilon}(a_n<-\frac{1}{\varepsilon})$

Теорема 1.5 (Больцано-Вейерштрасса). Всякая огр. посл-ть имеет сход. nodnocn-ть.

Доказательство. Пусть задана $\{a_n\}_1^{\infty}$ - ограниченная,

$$\Rightarrow \exists [c,d] \ni a_n, \forall n \in \mathbb{N}$$

Определим п-ть отрезков $[c_k,d_k]$ Положим $[c_1,d_1]=[c,d]$. Если определён отрезок $[c_k,d_k]$, то разделим его пополам $(y=\frac{c_k+d_k}{2})$

$$[c_{k+1},d_{k+1}]=egin{cases} [c_k,y],$$
если $\{\,k\mid a_k\in [c_k,y]\,\}\,$ - бесконечно $[y,d_k],$ иначе

П-ть $\{ [c_k, d_k] \}$ стягивающаяся:

$$\forall k : \begin{cases} [c_{k+1}, d_{k+1}] \subset [c_k, d_k] \\ d_k - c_k = \frac{d-c}{2^k} \end{cases}$$

По т. Кантора $\exists a \in \bigcap_{k=1}^{\infty} [c_k, d_k]$, причём $c_k \to a, d_k \to a$ Определим a_{n_k} :

 $a_{n_1} = a_1,$ если определён $a_{n_k},$ то положим

$$a_{n_{k+1}} \in [c_{k+1}, d_{k+1}], n_{k+1} \ge n_k$$

Т. к. $c_k \leq a_{n_k} \leq d_k$, то по т. о зажатой п-ти (о двух полицейских), то $a_{n_k} \to a$

Теорема 1.6. Если n-ть неограничена сверху (снизу), то она имеет nodnocx-ть, стремящуюся $\kappa + \infty$ $(-\infty)$

Доказательство. Пусть дана п-ть $\{a_n\}$ - неогр. сверху.

$$a_{n_1} > 1$$

Пусть определён эл-т a_{n_k} , определим:

$$a_{n_{k+1}} > max\{k+1, a_1, \dots, a_{n_k}\} \Rightarrow n_{k+1} > n_k$$

Опр-на
$$\{a_{n_k}\}$$
. Т. к. $a_{n_k} > k, \forall k \Rightarrow a_{n_k} \to +\infty$ (По теореме 4')

Следствие. Всякая n-ть имеет подпосл-ть, стремящуюся κ некот. gamma n-ту $\in \overline{\mathbb{R}}$

2 Лекция 7

2.1 Критерий Коши

Определение 2.1. Посл-ть $\{a_n\}_1^\infty$ наз-ся фундаментальной, если:

$$\forall \varepsilon > 0, \exists N : \forall n, m \ge N(|a_n - a_m| < \varepsilon)$$

Лемма 2.1. Всякая фундаментальная п-ть огр-на

 \mathcal{A} оказательство. Пусть $\{a_n\}_1^\infty$ - фундаментальна. По опр-ю:

$$\exists N : \forall n, m \geq N(|a_n - a_m| < 1)$$

В част-ти:

$$a_N - 1 < a_n < a_N + 1$$

для всех $n \geq N \ (m = N)$

Положим

$$\alpha = min(a_1, \dots, a_{N-1}, a_N - 1)$$

$$\beta = \max(a_1, \dots, a_{N-1}, a_N + 1)$$

. Тогда:

$$\alpha < a_n < \beta$$

при всех $n \in \mathbb{N}$

Теорема 2.2 (Коши). П-ть $\{a_n\}_1^\infty$ - $cxodumcs \iff \{a_n\}_1^\infty$ - ϕy нdамен-

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

$$\exists N, \forall n \in \mathbb{N}(|a_n - a| < \frac{\varepsilon}{2})$$

Тогда при всех $n, m \ge N$:

$$|a_n - a_m| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} * 2 = \varepsilon$$

 \Leftarrow) По предыдущей лемме, п-ть $\{a_n\}_1^\infty$ - ограничена \Rightarrow по т. Больцано-Вейерштрасса (Б-В) $\{a_n\}_1^\infty$ имеет сход. подпосл-ть $\{a_{n_k}\}_1^\infty \to a$

Покажем, что $a=\lim_{n\to\infty}$. Зафикс. $\varepsilon>0$. По опр-ю фундаментальности:

$$\exists N, \forall n, m \ge N(|a_n - a_m| < \frac{\varepsilon}{2})$$

 $T. K. \{a_{n_k}\} \rightarrow a \Rightarrow$

$$\exists K \colon \forall k \ge K(|a_{n_k} - a| < \frac{\varepsilon}{2})$$

Положим $M=\max(N,K)$. Тогда $n_M\geq M\geq N; n_M\geq M\geq K$ Поэтому при всех $n\geq N$:

$$|a_n - a| \le |a_n - a_{n_M}| + |a_{n_M} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Замечание. Критерий Коши позволяет доказывать существование предела, без явного нахождения его значения

Кроме того, критерий позволяет **оценить скорость сходимости к пределу** (перейдём к пределу по т в определении фунд-ти):

$$|a_n - a| \le \varepsilon$$
, npu $\sec n \ge N$

Задача 2.1. Покажите, что если всякая фундаментальная посл-ть сх-ся (сходится), то выполняется аксиома непрерывности. А именно:

Пусть \mathbb{F} - упоряд. поле, на котором выполняется аксиома Архимеда

2.2 Частичные пределы

Определение 2.2. Точка $a \in \overline{\mathbb{R}}$ наз-ся частичным пределом числовой посл-ти $\{a_n\}_1^\infty$, если $\exists \{a_{n_k}\}$ - подпосл-ть $\{a_n\}$: $\lim_{k\to\infty} a_{n_k} = a$

$$L\{a_n\}$$
 — мн-во частичных пределов $\{a_n\}$

<u>Пример</u>. ± 1 - частичные пределы $a_n = (-1)^n$

$$a_{2k} \to 1, a_{2k-1} \to -1$$

Пусть задана числовая посл-ть $\{a_n\}$ Положим

$$M_n = \sup_{k \ge n} \{ a_k \}$$

$$m_n = \inf_{k > n} \left\{ a_k \right\}$$

Пусть $\{a_n\}$ огр. сверху. Тогда все $M_n \in \mathbb{R}$

Поскольку при переходе к подмн-ву sup не увеличивается, то $\{M_n\}$ нестрого убывает

 $\Rightarrow \exists \lim_{n\to\infty} M_n$

Пусть $\{a_n\}$ не огр. сверху. Тогда все $M_n=+\inf$ Положим $\lim_{n\to\infty}M_n=+\infty$

Аналогично для $\{m_n\}$ (Огр./Неогр. снизу).

Итак, посл-ти $\{m_n\}$ и $\{M_n\}$ имеют предел в $\overline{\mathbb{R}}$

Определение 2.3. Величина $\lim_{n\to\infty}\sup_{k\geq n}\{a_k\}$ - верхний предел $\{a_n\}$ и об-ся $\overline{\lim_{n\to\infty}}a_n$

Величина $\lim_{n \to \infty} \inf_{k \ge n} \{ a_k \}$ - нижний предел $\{ a_n \}$ и об-ся $\varliminf_{n \to \infty} a_n$

Замечание. $T. \kappa. m_n \leq M_n, \forall n \in \mathbb{N}, morda:$

$$\lim_{n \to \infty} a_n \le \overline{\lim}_{n \to \infty} a_n$$

Задача 2.2.

$$\overline{\lim}_{n\to\infty}(-a_n) = -\lim_{n\to\infty}a_n$$

Теорема 2.3. Верхний (нижний) предел - наибольший (наименьший) из част. пределов посл-ти.

Доказательство.

$$M = \overline{\lim}_{n \to \infty} a_n, m = \lim_{n \to \infty} a_n$$

Нужно показать, что M, m - это ч. п. $\{a_n\}$ и любой ч. п. лежит между ними.

1) Покажем, что есть подп-ть $\{a_n\}$, сх-ся к M:

I. $M \in \mathbb{R}$. Имеем

$$M = \inf \{ M_n \}$$

По опр-ю sup, $\exists n_1 \colon (M - 1 < a_{n_1})$

$$M_{n_1+1} = \sup_{k \ge n_1+1} \{ a_k \} \Rightarrow \exists n_2 > n_1 : (M - \frac{1}{2} < a_{n_2})$$

ит. д.

Таким образом, по индукции, будет построена подп-ть $\{a_{n_k}\}$, т. ч.

$$M - \frac{1}{k} < a_{n_k}$$

Имеем:

$$M - \frac{1}{k} < a_{n_k} \le M_{n_k}$$

Края нер-ва сх-ся к $M\Rightarrow$ по т. о зажатой посл-ти, $a_{n_k}\to M$

II. $M = +\infty$, тогда $\{a_n\}$ неогр. сверху \Rightarrow (по Теореме 8') она имеет под-пть, сх-ся к $+\infty$

III.
$$M=-\infty$$
. T. K. $a_n \leq M_n, \forall n \Rightarrow \lim_{n \to \infty} a_n = -\infty$

2) Для m - док-во аналогично, или сводиться к M по задаче ref:prot $_pred\{a_{n_k}\}$, $a_{n_k} \to a$. Тогда:

$$m_{n_k} \le a_{n_k} \le M_{n_k}, \forall k \Rightarrow m \le a \le M$$
(част. пределы)

<u>Следствие</u>. $\exists \lim_{n\to\infty} a_n \ (e \ \overline{\mathbb{R}}) \iff \overline{\lim_{n\to\infty}} a_n = \underline{\lim_{n\to\infty}} a_n$ $\exists \lim_{n\to\infty} a_n = \underline{\lim_{n\to\infty}} a_n$ $\exists \lim_{n\to\infty} a_n = \underline{\lim_{n\to\infty}} a_n$

3) Доказательство. \Rightarrow) По лемме 4, любая подпосл-ть имеет предел $a\Rightarrow \overline{\lim_{n\to\infty}}a_n=\lim_{n\to\infty}a_n=\underline{\lim_{n\to\infty}}a_n$

 \Leftarrow

$$m_n < a_n < M_n$$

для всех $n \Rightarrow a_n \to a \text{ (Края } \to a)$

<u>Лемма</u> 2.4. Для $c \in \mathbb{R}$ верно:

$$c = \overline{\lim}_{n \to \infty} a_n \iff \begin{cases} \forall \varepsilon > 0, \exists N, \forall n \ge N (a_n < c + \varepsilon) \\ \forall \varepsilon > 0, \forall N, \exists n \ge N (a_n > c - \varepsilon) \end{cases}$$