2

Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1 1 (Original). A cleaning device for cleaning an orifice surface of an inkiet 2 head and a different level member having a surface at a different level than the orifice surface, the different level member forming a step between the 3 orifice surface and the surface of the different level member the orifice surface being formed with a row of nozzle orifices, the cleaning device 5 comprises: 6 7 an air flow generating unit formed with a suction hole positioned at 8 the nozzle orifice, the air flow generating unit generating a spiraling 9 current by sucking air into the suction hole, the air flow generating unit 10 sucking ink from the nozzle orifice by drawing the ink in with the spiraling 11 current. 1 2 (Original). The cleaning device as claimed in claim 1, wherein the air 2 flow generating unit sucks air in through the suction hole at asymmetrical 3 flow velocity and flow rate about the row of nozzle orifices. 1 3 (Original). The cleaning device as claimed in claim 1, wherein the air 2 flow generating unit includes: 3 a suction hole member formed with the suction hole; a negative pressure generator that generates a negative pressure at 5 the suction hole; and б a positioning unit that positions the suction hole member at a suction position wherein the suction hole confronts the nozzle orifice and 7 8 the different level member.

2	formed between the suction hole member and at least one of the onfice
3	surface and the different level member, the gap having a size that is
4	asymmetric about the row of nozzle orifices.
1	5 (Original). The cleaning device as claimed in claim 4, further comprising
2	a stage unit that moves the suction hole member following the row of
3	nozzle orifices formed in the orifice surface.
1	6 (Original). The cleaning device as claimed in claim 3, wherein the
2	suction hole member is formed with a plurality of suction holes, the
3	negative pressure generator generates the negative pressure at at least two
4	adjacent ones of the plurality of suction holes at a time while sequentially
5	suctioning the plurality of suction holes.
1	7 (Original). The cleaning device as claimed in claim 3, wherein the
2	suction hole member disposed at the suction position deforms while
3	pressing against the orifice surface and the different level member without
4	contacting the nozzle orifice.
1	8 (Original). The cleaning device as claimed in claim 3, wherein the
2	suction hole member disposed at the suction position is distanced from the
3	orifice surface without contacting the orifice surface.
1	9 (Previously Presented). A cleaning device for cleaning an orifice surface
2	of an inkjet head, the orifice surface being formed with a row of nozzle
3	orifices, the cleaning device comprising:
4	an air flow generating unit formed with a suction hole positioned at
5	the nozzle orifice, the air flow generating unit generating a spiraling
6	current by sucking air into the suction hole, the air flow generating unit
7	sucking ink from the nozzle orifice by drawing the ink in with the spiraling

8	current.
1	10 (Previously Presented). An inkjet recording device comprising:
2	an inkjet head including:
3	an orifice surface formed with a row of nozzle orifices;
4	an ink ejection unit that ejects ink droplets from each of the
5	nozzle orifices; and
6	a cleaning device including an air flow generating unit formed with
7	a suction hole positioned at the nozzle orifice, the air flow generating unit
8	generating a spiraling current by sucking air into the suction hole, the air
9	flow generating unit sucking ink from the nozzle orifice by drawing the ink
10	in with the spiraling current.
1	11 (Previously Presented). The inkjet recording device as claimed in claim
2	22, further comprising a movement mechanism that moves the inkjet head
3	between a recording position and a cleaning position, the different level
4	member including a charge deflection electrode formed with an ink
5	reception portion.
1	12 (Original). The inkjet recording device as claimed in claim 10, wherein
2	the air flow generating unit sucks air in through the suction hole at
3	asymmetrical flow velocity and flow rate about the row of nozzle orifices.
1	13 (Previously Presented). The inkjet recording device as claimed in claim
2	22, wherein the air flow generating unit includes:
3	a suction hole member formed with the suction hole;
4	a negative pressure generator that generates a negative pressure at
5	the suction hole; and
6	a positioning unit that positions the suction hole member at a
7	suction position wherein the suction hale confronts the pozzle orifice and

8	the different level member.
I	14 (Original). The inkjet recording device as claimed in claim 13, wherein
2	a gap is formed between the suction hole member and at least one of the
3	orifice surface and the different level member, the gap having a size that is
4	asymmetric about the row of nozzle orifices.
1	15 (Original). The inkjet recording device as claimed in claim 14, further
2	comprising a stage unit that moves the suction hole member following the
3	row of nozzle orifices formed in the orifice surface.
1	16 (Original). The inkjet recording device as claimed in claim 13, wherein
2	the suction hole member is formed with a plurality of suction holes, the
3	negative pressure generator generates the negative pressure at at least two
4	adjacent ones of the plurality of suction holes at a time while sequentially
5	suctioning the plurality of suction holes.
1	17 (Original). The inkjet recording device as claimed in claim 13, wherein
2	the suction hole member disposed at the suction position deforms while
3	pressing against the orifice surface and the different level member without
4	contacting the nozzle orifice.
l	18 (Original). The inkjet recording device as claimed in claim 13, wherein
2	the suction hole member disposed at the suction position is distanced from
3	the orifice surface without contacting the orifice surface.
l	19 (Previously Presented). The inkjet recording device as claimed in clain
2	22, wherein the different level member is attached to the orifice surface.
1	20 (Previously Presented). The inkiet recording device as claimed in claim

2	9, wherein the air flow generating unit sucks air in through the suction hole
3	at asymmetrical flow velocity and flow rate about the row of nozzle
4	orifices.
1	21 (Previously Presented). The cleaning device as claimed in claim 1,
2	wherein the different level member is attached to the orifice surface.
1	22 (Previously Presented). The inkjet recording device as claimed in claim
2	10, wherein the inkjet head further includes a different level member
3	having a surface at a different level than the orifice surface, the different
4	level member forming a step between the orifice surface and the surface of
5	the different level member.
б	23 (New). The inkjet recording device as claimed in claim 10, wherein said
7	suction hole is positioned on a suction hole member tilted with respect to
8	the nozzle orifice surface.
9	24 (New). The inkjet recording device as claimed in claim 10, wherein said
0	suction hole is positioned on a suction hole member having a tip end cut in
1	a slant in order to provide an asymmetrical gap about the nozzle orifice.