Supplementary Material for "LinguaPhylo: a probabilistic model specification language for reproducible phylogenetic analyses"

Alexei J. Drummond^{1,2,3}*, Kylie Chen^{1,2,3}, Fábio K. Mendes^{1,4}, Dong Xie^{1,2,3}

- 1 Centre for Computational Evolution, University of Auckland, Auckland, New Zealand
- 2 School of Biological Sciences, University of Auckland, Auckland, New Zealand
- 3 School of Computer Science, University of Auckland, Auckland, New Zealand
- 4 Department of Biology, Washington University in St. Louis, St. Louis, United States

^{*}Corresponding author: a.drummond@auckland.ac.nz

List of Tables

\mathbf{A}	Functions for substitution models and rate matrices in LPhy	3
В	Coalescent tree generative distributions in LPhy	3
\mathbf{C}	Birth-death tree generative distributions in LPhy	4
D	Phylogenetic likelihood distributions in LPhy	4
\mathbf{E}	Parametric distributions in LPhy	5
\mathbf{F}	Alignment data types in LPhy	6
\mathbf{G}	Bayesian phylogenetic site model averaging in LPhy	6

Function	Description	Examples	
binaryRateMatrix	Binary trait rate matrix	errorModel1.lphy, errorModel2.lphy	
f81	F81 model[4]	f81Coalescent.lphy	
${\it general Time Reversible}$	General time reversible rate matrix	h5n1.lphy	
gtr	GTR model[17]	gtrCoalescent.lphy	
hky	HKY model[5]	hkyCoalescent.lphy	
jukesCantor	Jukes-Cantor model[8]	jcCoalescent.lphy	
k80	K80 model[10]		
lewisMK	LewisMK model[11]	lewisMKCoalescent.lphy	
${\it migration} \\ {\it Matrix}$	Population process rate matrix	simpleStructuredCoalescent.lphy	
wag	WAG model[19]	wagCoalescent.lphy	

Table A: Functions for substitution models and rate matrices in LPhy.

Generative distribution	Description	Examples	
MultispeciesCoalescent	Multispecies coalescent	simpleMultispeciesCoalescent.lphy,	
		simple Multispecies Coalescent Taxa. lphy,	
		twoGeneMultispeciesCoalescent.lphy	
Coalescent	Kingman's coalescent [13]	RSV2.lphy	
SkylineCoalescent	Skyline coalescent [2]	hcv_col.lphy	
${\bf Structured Coalescent}$	Structured coalescent[12]	simpleStructuredCoalescent.lphy	

Table B: Coalescent tree generative distributions in LPhy.

Generative distribution	Description	Examples
BirthDeathSampling	Birth-death-sampling tree[14, 15]	birthDeathRhoSampling.lphy
BirthDeathSerialSampling	Birth-death serial sampling tree[16]	simpleBirthDeathSerial.lphy
BirthDeath	Calibrated birth-death[7]	simpleCalibratedBirthDeath.lphy
		simpleExtantBirthDeath.lphy
Fossil Birth Death Tree	Fossilized birth-death process[6]	simFossilsCompact.lphy
FullBirthDeath	Birth-death tree[9]	simpleFullBirthDeath.lphy
${\bf RhoSampleTree}$	Birth-death tree sampled from a larger	
	tree	
SimBDReverse	Birth-death tree with extant and ex-	simFossils.lphy
	tinct species	
SimFBDAge	Birth-death tree with extant and ex-	simFBDAge.lphy
	tinct species sampled through time	
SimFossilsPoisson	Tree with fossils added to given tree at	simFossils.lphy
	rate psi	
Yule	Yule tree[18]	simpleYule.lphy,
		yuleRelaxed.lphy

Table C: Birth-death tree generative distributions in LPhy.

Generative distribution	Description	Examples	
PhyloBrownian	Brownian motion process[3]	simplePhyloOU.lphy	
PhyloCTMC	Continuous time Markov process[4]	simpleBModelTest.lphy	
${\bf Phylo Multivariate Brownian}$	Multivariate Brownian motion	simplePhyloMultivariateBrownian.lphy	
PhyloOU	Ornstein-Ulhenbeck process[3]	simplePhyloBrownian.lphy	

 ${\bf Table\ D:\ Phylogenetic\ likelihood\ distributions\ in\ LPhy.}$

Generative distribution	Description	Examples
Bernoulli	Bernoulli distribution	simpleRandomLocalClock.lphy,
		simpleBModelTest.lphy
Beta	Beta distribution	birthDeathRhoSampling.lphy,
		simpleBModelTest.lphy
Cauchy	Cauchy distribution	
Dirichlet	Dirichlet distribution	birthDeathRhoSampling.lphy,
		dirichlet.lphy
DiscreteUniform	Discrete-uniform distribution	simpleBModelTest.lphy,
		simpleBModelTest2.lphy
DiscretizeGamma	Discretize-gamma distribution	gtrGammaCoalescent.lphy,
		simpleBModelTest.lphy
Exp	Exponential distribution	birthDeathRhoSampling.lphy,
		yuleRelaxed.lphy
ExpMarkovChain	Smoothing distribution [2]	skylineCoalescent.lphy
Gamma	Gamma distribution	covidDPG.lphy
Geometric	Geometric distribution	
InverseGamma	Inverse-gamma distribution	totalEvidence.lphy
LogNormal	Log-normal distribution	hkyCoalescent.lphy,
		errorModel1.lphy
Normal	Normal distribution	simplePhyloBrownian.lphy,
		simplePhyloOU.lphy
NormalGamma	Normal-gamma distribution	simplePhyloBrownian.lphy,
		simplePhyloOU.lphy
Poisson	Poisson distribution	expression4.lphy,
		simpleRandomLocalClock2.lphy
RandomBooleanArray	Samples a random boolean array	simpleRandomLocalClock2.lphy
RandomComposition	Samples a random k-tuple of positive in-	skylineCoalescent.lphy
	tegers that sum to n	
Uniform	Uniform distribution	simFossilsCompact.lphy
Weibull	Weibull distribution	
WeightedDirichlet	Weighted dirichlet distribution	totalEvidence.lphy,
		weightedDirichlet.lphy

 ${\bf Table} \,\, {\bf E} \hbox{: Parametric distributions in LPhy}.$

Function	Description	Examples
aminoAcids	Amino acid data type	wagCoalescent.lphy
${\it binary} {\it DataType}$	Binary data type	
nucleotides	Nucleotide data type	primates2.lphy
standard	Standard data type	totalEvidence.lphy

Table F: Alignment data types in LPhy.

Function	Description	Examples
nucleotideModel	bModelTest[1] rate matrix	simpleBModelTest.lphy,
		simpleBModelTest2.lphy
${\bf bModelSet}$	bModelTest model set	simpleBModelTest.lphy
bSiteRates	Site rates for the given bModelTest parameters	simpleBModelTest2.lphy
${\bf bSiteModel}$	bModelTest site model	simpleBModelTest.lphy

 ${\bf Table}\ {\bf G}\hbox{: Bayesian phylogenetic site model averaging in LPhy}.$

References

- [1] BOUCKAERT, R., AND DRUMMOND, A. bmodeltest: Bayesian phylogenetic site model averaging and model comparison. *BMC Evolutionary Biology* 17, 42 (2017).
- [2] Drummond, A., Rambaut, A., Shapiro, B., and Pybus, O. Bayesian coalescent inference of past population dynamics from molecular sequences. *Molecular biology and evolution* 22 (2005), 1185–1192.
- [3] Felsenstein, J. Maximum-likelihood estimation of evolutionary trees from continuous characters. *American journal of human genetics* 25, 5 (1973), 471.
- [4] FELSENSTEIN, J. Evolutionary trees from dna sequences: a maximum likelihood approach. J Mol Evol 17, 6 (1981), 368–76.
- [5] HASEGAWA, M., KISHINO, H., AND YANO, T.-A. Dating of the human-ape splitting by a molecular clock of mitochondrial dna. *Journal of molecular evolution* 22, 2 (1985), 160–174.
- [6] HEATH, T. A., HUELSENBECK, J. P., AND STADLER, T. The fossilized birth-death process for coherent calibration of divergence-time estimates. *Proceedings of the National Academy of Sciences* 111, 29 (2014), E2957–E2966.
- [7] HELED, J., AND DRUMMOND, A. J. Calibrated birth-death phylogenetic time-tree priors for bayesian inference. *Systematic Biology* 64, 3 (2015), 369–383.
- [8] Jukes, T. H., Cantor, C. R., et al. Evolution of protein molecules. *Mammalian protein metabolism 3* (1969), 21–132.
- [9] KENDALL, D. G. On the generalized" birth-and-death" process. The annals of mathematical statistics 19, 1 (1948), 1–15.
- [10] Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal of molecular evolution* 16, 2 (1980), 111–120.
- [11] Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic biology 50, 6 (2001), 913–925.
- [12] MÜLLER, N. F., RASMUSSEN, D. A., AND STADLER, T. The structured coalescent and its approximations. *Molecular biology and evolution* 34, 11 (2017), 2970–2981.

- [13] Rodrigo, A. G., and Felsenstein, J. Coalescent approaches to hiv population genetics. In *The Evolution of HIV*, C. K., Ed. Johns Hopkins Univ. Press, Baltimore, 1999, ch. Chapter 8.
- [14] STADLER, T. Mammalian phylogeny reveals recent diversification rate shifts. *Proceedings of the National Academy of Sciences* 108, 15 (2011), 6187–6192.
- [15] STADLER, T., KOUYOS, R., VON WYL, V., YERLY, S., BÖNI, J., BÜRGISSER, P., KLIMKAIT, T., JOOS, B., RIEDER, P., XIE, D., GÜNTHARD, H., DRUMMOND, A., BONHOEFFER, S., AND SWISS HIV COHORT STUDY. Estimating the basic reproductive number from viral sequence data. *Molecular biology and evolution* 29 (2012), 347–357.
- [16] STADLER, T., AND YANG, Z. Dating phylogenies with sequentially sampled tips. Syst Biol 62, 5 (Sep 2013), 674–88.
- [17] TARVARÉ, S. Some probabilistic and statistical problems in the analysis of dna sequences. Some mathematical question in biology-DNA sequence analysis (1986).
- [18] UDNY YULE, G. A mathematical theory of evolution, based on the conclusions of dr. jc willis, frs. *Philosophical Transactions of the Royal Society of London Series B 213* (1925), 21–87.
- [19] WHELAN, S., AND GOLDMAN, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. *Molecular biology and evolution* 18, 5 (2001), 691–699.