Quiz 5

Problem 1 (15 points; 3 points each). Decide if each of the following are true or false and provide a justification or counterexample in each case. A justification could consist of a theorem from the text. All vector spaces are assumed to be finite-dimensional here.

(a) _____ There is a unique least squares solution to Ax = b.

(b) _____ There is a unique y so that ||y - b|| is minimal and Ax = y.

(c) _____ If $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ is an orthonormal basis for V with respect to an inner product $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{C}$ and $\boldsymbol{v}=\sum_{i=1}^n\alpha_i\boldsymbol{u}_i$, then $\|\boldsymbol{v}\|_2^2=\sum_{i=1}^n|\alpha_i|^2$.

(d) _____ All norms $\|\cdot\|:\mathbb{R}^n\to[0,\infty)$ on \mathbb{R}^n come from an inner product.

(e) ______ If $C = \{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_n \}$ is an orthonormal basis for V with respect to an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ and $\boldsymbol{v} \in V$, then for any $(c_1, \dots, c_n) = [\boldsymbol{v}]_C$, $c_i = \langle v, u_i \rangle$.

Problem 2 (10 points). Using the inner product

$$\langle p, q \rangle = \int_0^1 pq \, dx$$

use Gram-Schmidt to find an orthonormal basis for $\mathbb{P}_2[x]$, the space of all polynomials of degree 2 or less.

Use this to find the projection, q, of $p = x^{2/3}$ onto $\mathbb{P}_2[x]$.

