# Day61\_Clustering\_Hierarchical\_DBSCAN

August 12, 2025

# Hierarchical Clustering & DBSCAN

# 1. Introduction to Hierarchical Clustering

Hierarchical Clustering is an **unsupervised learning** method that builds clusters step-by-step by either:

- **Agglomerative**: Bottom-Up approach start with each data point as its own cluster and merge them.
- Divisive: Top-Down approach start with one cluster and split into smaller clusters.

In this notebook, we'll focus on Agglomerative Hierarchical Clustering.

# 2. Agglomerative Clustering – Steps

Example of merging in bottom-up approach:

- 1. Start with each customer as its own cluster.
- 2. Merge the closest clusters step-by-step based on distance.
- 3. Continue until the desired number of clusters is reached.

#### We will use:

plt.title('Dendrogram')

- **Dendrogram** to decide the optimal number of clusters.
- AgglomerativeClustering from sklearn to fit and predict.

```
[1]: # Importing Libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import scipy.cluster.hierarchy as sch
   from sklearn.cluster import AgglomerativeClustering

[2]: # Load Dataset
   df = pd.read_csv(r"C:\Users\Lenovo\Downloads\Mall_Customers.csv")

[3]: # Select Features (Annual Income & Spending Score)
   X = df.iloc[:, [3, 4]].values

[4]: # Plot Dendrogram
   plt.figure(figsize=(8, 5))
   dendrogram = sch.dendrogram(sch.linkage(X, method='ward'))
```

```
plt.xlabel('Customers')
plt.ylabel('Euclidean Distance')
plt.show()
```



# Dendrogram (Hierarchical Clustering – Agglomerative)

- Purpose: The dendrogram shows how data points (customers) are merged step-by-step in the Agglomerative Hierarchical Clustering process.
- How to Read:
  - The **x-axis** represents individual customers.
  - The **y-axis** shows the **Euclidean distance** at which clusters are merged.
  - Start from the bottom: each point is its own cluster.
  - As we go up, clusters merge based on similarity until all points are in one cluster.
- Key Insight:

By drawing a horizontal line at a chosen height and counting the vertical cuts, we can determine the **optimal number of clusters**.

In this case, the cut suggests 5 clusters.

```
[5]: # Fitting Agglomerative Clustering
hc = AgglomerativeClustering(n_clusters=5, linkage='ward')
y_hc = hc.fit_predict(X)

[7]: # Plotting Clusters
plt.figure(figsize=(8, 5))
```

[7]: <matplotlib.legend.Legend at 0x14c8d93e7b0>



### **Hierarchical Clusters of Customers**

- Purpose: Shows the customer segments formed using **Agglomerative Clustering** with n\_clusters=5.
- Axes:
  - X-axis: Annual Income (k\$)
  - **Y-axis**: Spending Score (1–100)
- Cluster Colors:

- Red, Blue, Green, Cyan, Magenta each represent a different customer group.
- Key Insight:
  - Customers in the same color cluster have similar income and spending patterns.
  - Example:
    - \* Magenta  $\rightarrow$  Low income, medium spending.
    - \* Green  $\rightarrow$  High income, medium-high spending.
    - \* Red  $\rightarrow$  Medium-high income, low spending.

```
[8]: # Adding Cluster Labels to Dataset
df['Cluster_HC'] = y_hc
df.head()
```

| [8]: | CustomerID | Genre  | Age | Annual Inc | ome (k\$) | Spending Score | (1-100) | \ |
|------|------------|--------|-----|------------|-----------|----------------|---------|---|
| 0    | 1          | Male   | 19  |            | 15        |                | 39      |   |
| 1    | 2          | Male   | 21  |            | 15        |                | 81      |   |
| 2    | 3          | Female | 20  |            | 16        |                | 6       |   |
| 3    | 4          | Female | 23  |            | 16        |                | 77      |   |
| 4    | 5          | Female | 31  |            | 17        |                | 40      |   |
|      | Cluster_HC |        |     |            |           |                |         |   |
| 0    | 4          |        |     |            |           |                |         |   |
| 1    | 3          |        |     |            |           |                |         |   |
| 2    | 4          |        |     |            |           |                |         |   |
| 3    | 3          |        |     |            |           |                |         |   |
| 4    | 4          |        |     |            |           |                |         |   |

### 3. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

DBSCAN is another clustering method that:

- Groups together points close to each other (high density regions).
- Marks points in low-density regions as **outliers**.
- Works well for irregularly shaped clusters and noisy datasets.

## **Key Terms:**

- Core Point: Has at least min\_samples points within eps radius.
- Border Point: Lies within eps of a core point but has fewer than min\_samples neighbors.
- Outlier: Neither core nor border point.

```
[9]: from sklearn.cluster import DBSCAN

# Fitting DBSCAN
dbscan = DBSCAN(eps=5, min_samples=5)
y_dbscan = dbscan.fit_predict(X)
```

```
[10]: # Plot DBSCAN Clusters
plt.figure(figsize=(8, 5))
```

### **DBSCAN Clusters of Customers**



#### **DBSCAN** Clusters of Customers

- Purpose: Shows clusters formed using Density-Based Spatial Clustering (DBSCAN).
- Key Terms:
  - Cluster 1 (Red) and Cluster 2 (Blue) are dense regions where customers are closely packed.
  - Black points are outliers customers who don't belong to any dense group.
- Axes:
  - X-axis: Annual Income (k\$)
  - Y-axis: Spending Score (1–100)
- Key Insight:

- DBSCAN detects **irregularly shaped clusters** and identifies noise points.
- Useful for datasets where clusters are not clearly separated or contain noise.

```
[11]: # Adding DBSCAN cluster results to DataFrame
df['Cluster_DBSCAN'] = y_dbscan
df.head()
```

| [11]: | CustomerID          | Genre   | Age    | Annual | Income | (k\$) | Spending Score (1-100) | \ |
|-------|---------------------|---------|--------|--------|--------|-------|------------------------|---|
| 0     | 1                   | Male    | 19     |        |        | 15    | 39                     | ) |
| 1     | 2                   | Male    | 21     |        |        | 15    | 81                     |   |
| 2     | 3                   | Female  | 20     |        |        | 16    | 6                      | 3 |
| 3     | 4                   | Female  | 23     |        |        | 16    | 77                     | 7 |
| 4     | 5                   | Female  | 31     |        |        | 17    | 40                     | ) |
|       |                     |         |        |        |        |       |                        |   |
|       | ${\tt Cluster\_HC}$ | Cluster | _DBSC/ | AN     |        |       |                        |   |
| 0     | 4                   |         | -      | -1     |        |       |                        |   |
|       | _                   |         |        | _      |        |       |                        |   |

|   | 014B001_110 | OTUBOUT_DDBOIM |
|---|-------------|----------------|
| 0 | 4           | -1             |
| 1 | 3           | 0              |
| 2 | 4           | -1             |
| 3 | 3           | 0              |
| 4 | 4           | -1             |

# 4. Summary

# • Hierarchical Clustering:

Visualized clusters using a dendrogram.

Applied Agglomerative Clustering to group customers into 5 clusters.

#### • DBSCAN:

Detected clusters based on density.

Identified outliers in customer data.

**Next Step:** Compare clustering results from K-Means, Hierarchical, and DBSCAN for customer segmentation insights.

### 5. Comparison of Clustering Results

We applied three clustering techniques on the same dataset (Annual Income & Spending Score):

| Method                            | Number of Clusters                         | Handles Noise?  | Shape of Clusters | Needs K upfront?                    |
|-----------------------------------|--------------------------------------------|-----------------|-------------------|-------------------------------------|
| K-Means<br>Hierarchical<br>DBSCAN | Fixed (K=5) Fixed (K=5) Determined by data | No<br>No<br>Yes |                   | Yes<br>Yes (after dendrogram)<br>No |

# Visual Insights:

#### 1. K-Means:

- Creates equal-sized, spherical clusters.
- $\bullet$  Works well for well-separated groups.
- Struggles with noise and non-spherical shapes.

# 2. Hierarchical (Agglomerative):

- Produces similar results to K-Means for this dataset.
- Dendrogram helps in deciding the optimal number of clusters.
- Can be computationally expensive for large datasets.

#### 3. DBSCAN:

- Automatically detects the number of clusters.
- Identifies **outliers** (black points in the plot).
- Works well for arbitrary-shaped clusters.
- Sensitive to eps and min\_samples parameters.

# 6. Dataset Findings – Mall\_Customers.csv

From the clustering results:

# K-Means & Hierarchical Clustering:

- Cluster 1 (Low Income, Low Spending) Budget-conscious customers, possibly not target for luxury offers.
- Cluster 2 (High Income, High Spending) Premium customers, ideal for VIP loyalty programs.
- Cluster 3 (Medium Income, Medium Spending) Average customers, can be influenced with promotions.
- Cluster 4 (Low Income, High Spending) Value shoppers, respond well to discounts & sales.
- Cluster 5 (High Income, Low Spending) Potential big spenders if targeted correctly.

### **DBSCAN:**

- Detected **two main customer groups** and a large number of **outliers**.
- Outliers represent customers with unusual income—spending patterns (e.g., very high income but low spending, or very low income but high spending).
- Useful for detecting anomalies or special customer segments for analysis.

#### Conclusion

- If clusters are well-separated & number of clusters is known  $\rightarrow$  Use K-Means for speed and simplicity.
- If number of clusters is unknown but data is small-to-medium size  $\rightarrow$  Use Hierarchical Clustering with a dendrogram for visual inspection.
- If data contains noise or irregular shapes  $\rightarrow$  Use DBSCAN for better flexibility and outlier detection.

# Final Takeaway:

#### For Mall Customers Segmentation:

- K-Means and Hierarchical both suggest 5 customer groups with clear marketing opportunities.
- **DBSCAN** is more strict, grouping dense areas while labeling unusual customers as outliers helpful for fraud detection, anomaly spotting, or niche marketing.
- Combining these methods can give a **full 360° view** of customer behavior.