Лабораторная работа №4

ВЫБОР ОПТИМАЛЬНЫХ ПАРАМЕТРОВ РАБОЧЕГО ПРОЦЕССА ГТД

Задание

- 1. Выбрать двигатель-прототип для проектируемого ГТД по заданным значениям абсолютной тяги (мощности).
- 2. Рассчитать поля удельных параметров двигателя, свободной энергии, температуры за компрессором, коэффициента избытка воздуха в КС.
- 3. Рассчитать оптимальные исходные данные для проектируемого двигателя.

Введение

Оптимальные параметры для проектируемого двигателя в общем случае необходимо отыскивать через решение задачи оптимизации массы двигательной установки. В этом случае должна быть учтена масса топлива, скорость его расхода, дальность полета ЛА, режим работы двигателя и т.д.

В рамках лабораторной работы исследуется двигатель, работающий на земле (стендовые условия M=0; V=0), либо стационарный ТВаД. По этой причине оптимизация сводится к исследованию экстремумов удельных параметров ГТД, либо свободной энергии в зависимости от цикловых параметров.

Для ТРДД(см) целевой функцией будет удельная тяга, либо удельный расход топлива. Варьируемыми параметрами станут суммарная степень повышения давления π_K^* , температура в КС T_Γ^* и степень двухконтурности m. Выбор функции (тяга или расход топлива) зависит от назначения двигателя. Оптимизация удельной тяги приводит к поиску оптимальной степени повышения давления и более приемистому двиателю с большим расходом топлива. Оптимизация удельного расхода топлива приводит к поиску

экономической степени повышения давления и экономичному двигателю с низкой приемистостью.

Для наземного ТВаД исследуют функцию свободной энергии в зависимости от суммарной степени повышения давления π_K^* и температуры в КС T_Γ^* . Т.к. реактивную тягу такой двигатель не создает, степень повышения давления будет только оптимальной.

Порядок выполнения расчетов

1. Из таблицы выбрать двигатель-прототип, абсолютная тяга (мощность) которого находится ближе всего к тяге (мощности) проектируемого ГТД, заданной преподавателем.

ТРДД	<i>P</i> , кН	$oldsymbol{\pi}_K^*$	<i>G_B</i> , кг/с	m	<i>T</i> _Γ *, K	С _{уд} , кг/(Н ч)
CF 34-1A (Bombardier Challenger 601-1A)	38,485	18,0	145,01	6,20	1473	0,0367
CFM LEAP-1A (Airbus A320Neo)	143,050	40,0	480,00	11,0	1850	0,0286
CFM56-5A1 (Airbus A320)	111,203	26,5	386,46	6,0	1600	0,0337
GE CF6-80C2 (Airbus A300/310)	233,354	30,4	802,40	5,15	1553	0,0341
JT9D-7R4E4 (Boeing 767)	222,411	24,2	732,55	4,80	1468	0,0353
JT9D-7R4G2 (Boeing 747)	243,540	26,3	768,84	4,80	1680	0,0367
PW4152 (Airbus A300/310)	231,307	27,3	773,37	4,90	1628	0,0318
RB211-524H-T (Boeing 747/767, Ан-124)	264,447	34,5	727,56	4,10	1631	0,0357
Д-18Т (Ан-124/225)	230,000	25,0	760,00	5,60	1600	0,0357
Д-436Т2 (Ан-148/178, Бе-200)	80,300	26,2	233,50	4,90	1520	0,0383
ТРДДем	<i>P</i> , кН	$oldsymbol{\pi}_K^*$	<i>G_B</i> , кг/с	m	<i>T</i> _Γ *, K	С _{уд} , кг/(Н ч)
F100-PW-100 (F-15)	65,255	24,8	102,06	0,71	1678	0,0734
GE F404-102 (Boeing F/A-18C/D Hornet, T-7A Red Hawk)	48,900	26,0	66,00	0,34	1663	0,0828
JT8D-9A (Boeing 737-200)	64,499	15,9	143,34	1,03	1236	0,0576
Rolls Royce Tay 611-8C (Gulfstream G350/G450)	61,608	15,8	185,97	3,04	1305	0,0439
SNECMA M53-P2 (Mirage 2000)	64,300	8,2	93,44	0,32	1600	0,0870

SNECMA M88-2 (Dassault Rafale A/B/C/D/M)	50,042	24,0	68,04	0,30	1853	0,0790
АИ-228-222 (Як-130)	27,500	16,9	50,60	1,13	1590	0,0682
АИ-25ТЛ (Як-140, Aero L-39 Albatros)	14,700	9,5	46,80	1,98	1230	0,0586
Д-30КП (Ил-76/78, А-50)	118,000	20,4	280,00	2,36	1427	0,0509
НК-86 (Ил-86)	127,500	12,9	288,00	1,18	1172	0,0531
ПС-90А (Ту-204, Ил-96)	157,000	35,5	470,00	4,36	1565	0,0381

ГТУ, ГПА, ТВаД	N, MBT	$\eta_e, \ \%$	$oldsymbol{\pi}_K^*$	<i>G</i> _Γ , кг/с	<i>п_{СТ}</i> , об/мин	Τ _Γ *,	<i>C_e</i> *, кг/(кВт ч)
GE LM1600	13,7	35,4	21,5	46	7000	1505	0,233
GE LMS100	99	45	42	234.5	3000	1653	0,264
Stal-Laval GT200/FT50	86	33,1	16	350	3000	1413	0,380
GE M2500	20,1	35,9	18	70.5	3600	1458	0,338
Mapna MGT-30	25	36,1	21,5	89	5250	1505	0,332
PW FT8 Swift Pac 25	25,05	37,7	19,3	91	3600	1433	0,328
PW ST40	4,04	31,2	16,9	15	14875	1477	0,363
Rolls-Royce WR-21	25,2	41,2	19,5	73,5	3600	1255	0,335
RR RB211-6556	25,15	34,1	20,8	92,2	4950	1444	0,335
RR TRENT 60 DLE	52,16	41,9	35	156	3600	1561	0,278
Siemens SGT-500	17,02	31,8	13	97,9	3600	1136	0,355
АЛ-31СТ	16	36	18,5	66	5300	1550	0,203
ГТН-25	30	29	12,5	177	3700	1173	0,707
M90M	20	34,7	18,85	69	3450	1461	0,243
HK-12CT	6,3	26,1	8,8	56	8200	941	0,061
HK-16CT	16	29	9,5	97	5300	1152	0,207
HK-40CT	10	34	20,2	44,5	5300	1358	0,072
HK-91	20	31	11,5	120	3000	1106	0,168
ПС-90ГП-25	25	37,9	30,5	78,3	5000	1503	0,189
УГТ 16000	16,3	31	12,7	98,5	5200	1138	0,339

2. Задаться значениями всех коэффициентов, характеризующих совершенство узлов ГТД. Необходимые коэффициенты и их диапазоны значений даны в таблице:

Доля углерода в топливе	g_{C}	0,750,88
Коэффициент восстановления полного давления ВУ (при идеальной работе или наличии лемнискатного ВУ равен 1. Для дозвуковых ЛА при нормальной работе 0,99)	σ_{BX}	0,971,00
Коэффициент восстановления полного давления КС	σ_{KC}	0,950,96
Только для ТРДД: коэффициент восстановления полного давления после каскада турбин <i>первого контура</i>	σ_1	0,981,00
Только для ТРДД (с раздельным выхлопом) Коэффициент скорости сопла первого контура	$arphi_{c1}$	0,970,99
Только для ТРДД (с раздельным выхлопом) Коэффициент скорости сопла второго контура	$arphi_{c2}$	0,970,99
Только для ТРДДсм и ТВаД Коэффициент скорости сопла (выхлопного диффузора)	$arphi_c$	0,970,99
Эффективность сгорания топлива	η_Γ	0,9900,999
Только для ТВаД: КПД редуктора вала потребителя	$\eta_{ m peg}$	0,980,99
Общий эффективный КПД каскадов компрессора	η_K^*	0,740,86
Только для ТРДД: эффективный КПД вентилятора (в случае одной ступени, иначе см. для $\pi_K^* < 4$)	$\eta_{\scriptscriptstyle m B}^*$	0,830,92
Коэффициент возврата энергии турбины	а	0,020,04
Эффективный КПД ТВД	$\eta^*_{ ext{ iny TB} ext{ iny L}}$	0,860,91
Эффективный КПД ТНД	$\eta^*_{\scriptscriptstyle \mathrm{TH} \mathcal{A}}$	0,890,92
Только для ТВаД: эффективный КПД свободной силовой турбины	η_{CT}^*	0,900.94
Охлаждение ТРДД(см)		
Суммарный коэффициент отбора воздуха (охлаждение ГТД и нужды ЛА)		
На охлаждение турбины:	ξ.	0,020,30
$T_{\Gamma}^* \le 1200 \text{ K: } 2.5\%$	$\xi_{ m orf}$	0,020,30
$T_{\Gamma}^* > 1200 \text{ K}$: рост на 1.5–2% каждые 100 K		
(1300 К – 4%; 1400 К – 5.5% и т.д.)		

Малоразмерный ГТД: 10–15%		
На нужды ЛА: от 2 до 5%		
Коэффициент возврата воздуха (при малом отборе до 30% воздуха может безвозвратно отбираться в салон)	g_{B} возв	$(0,7 \dots 0,99)\xi_{\text{отб}}$
Охлаждение ТВаД		
Суммарный коэффициент отбора воздуха на охлаждение газовых турбин ГТУ (ГПА):		
$T_{\Gamma}^* \le 1200 \text{ K: } 3.5\% - 4,0\%$	$\xi_{ m orf}$	0,030,30
$T_{\Gamma}^* < 1400 \text{ K: } 4,0\% - 6,0\%$		
$T_{\Gamma}^* \ge 1400 \text{ K}$: рост на 4–5% каждые 100 K		
Коэффициент возврата воздуха в ТВД (утечки: 1-2%)	$g_{B \; ext{возв} \; 1}$	$(0,60,99)\xi_{\text{отб}}$
Коэффициент возврата воздуха в ТНД	$g_{B \; {\scriptscriptstyle \mathrm{BO3B}} \; 2}$	$(0,0 \dots 0,4) \xi_{ ext{otf}}$

Эффективный КПД многоступенчатого осевого компрессора выбрать, исходя из следующих статистических данных:

- низконапорные компрессоры ($\pi_K^* < 4$): 0,78...0,90;
- средненапорные компрессоры ($\pi_K^* \in [4; 8]$): 0,76...0,88;
- высоконапорные компрессоры ($\pi_K^* > 8$): 0,74...0,86;
- 3. Задать диапазоны варьируемых параметров для получения множества данных для оптимизации следующим образом:
 - температура T_{Γ}^* : ± 150 K относительно температуры прототипа, например, так:

$$T_{\Gamma}^* \in [T_{\Gamma \text{ прот}}^* - 150; T_{\Gamma \text{ прот}}^*; T_{\Gamma \text{ прот}}^* + 150]$$

• степень повышения давления π_K^* : ± 3 относительно прототипа, либо $\pm 20\%$ для высоконапорных компрессоров. Например, так:

$$\pi_K^* \in \left[0.8\pi_{K \text{ прот}}^*; \ 0.9\pi_{K \text{ прот}}^*; \ \pi_{K \text{ прот}}^*; \ 1.1\pi_{K \text{ прот}}^*; \ 1.2\pi_{K \text{ прот}}^*\right]$$

• *только ТРДД(см):* степень двухконтурности m: $\pm 20\%$ от прототипа, например:

$$m \in [0.8m_{\text{прот}}; m_{\text{прот}}; 1.2m_{\text{прот}}]$$

- *только ТВаД*: скорость истечения из выхлопного диффузора c_c : 80...270 м/с. Меньшие значения обычно применяют для маломощных ТВаД.
- 4. Подготовить сводную таблицу вариантов расчетов, в которую будут помещены данные по каждому численному испытанию:

Для ТРДД(см) общий вид таблицы расчетных данных:

T_{Γ}^* , K	m	π_K^*	T_K^* , K	α	x_{opt}	k	k'	<i>Р</i> _{уд} , м/с	С _{уд} , кг/(Н ч)	$L_{CB},$ Дж/к
		π_{K1}^*								
	m_1	•••								
		π_{KN}^*								
$T^*_{\Gamma 1}$	•••									
		π_{K1}^*								
	m_N	•••								
		π_{KN}^*								
•••	•••									
		π_{K1}^*								
	m_1	•••								
		π_{KN}^*								
$T_{\Gamma N}^*$	•••	•••								
		π_{K1}^*								
	m_N									
		π_{KN}^*								

Для ТВаД:

T_{Γ}^* , K	с _с , м/с	π_K^*	T_K^* , K	α	k	k'	<i>N_{е уд},</i> Дж/к Г	$\mathcal{C}_e,$ кг/(кВт ч)	$L_{CB},$ Дж/к
		π_{K1}^*							
$T_{\Gamma 1}^*$	c_{c1}	•••							
111		π_{KN}^*							
	•••	•••							

		π_{K1}^*				
	c_{cN}	• • •				
		π_{KN}^*				
• • •	• • •	• • •				
		π_{K1}^*				
	c_{c1}	• • •				
		π_{KN}^*				
$T_{\Gamma N}^*$	• • •	• • •				
		π_{K1}^*				
	c_{cN}	• • •				
		π_{KN}^*				

Для каждого параметра (T_{Γ}^* , π_K^* , m, c_c) в конечном итоге должно быть выбрано *не менее трех* значений, включающих параметры двигателяпрототипа.

- 5. Рассчитать *для двигателя-прототипа* все необходимые величины, указанные в шапках таблиц предыдущего пункта по *его температуре* $T_{\Gamma \text{ прот}}^*$, *степени двухконтурности* $m_{\text{прот}}$ или скорости истечения $c_{c \text{ прот}}$ и заданному диапазону степеней повышения давления, включающему $\pi_{K \text{ прот}}^*$. Для этого сделать следующее:
 - а. итерационно вычислить действительную температуру за компрессором (за всеми каскадами) для всех π_K^* :

$$T_K^* = T_B^* \left(1 + \frac{\pi_K^* \frac{k-1}{k} - 1}{\eta_K^*} \right)$$

Итерационный процесс возникает из-за зависимости показателя адиабаты воздуха от температуры. Показатель адиабаты должен быть определен в диапазоне температур $[T_B^*; T_K^*]$ (см. приложение).

b. Вычислить параметры газа после горения топлива. Для этого сначала рассчитать параметры топлива — низшую теплоту сгорания и теоретическое количество воздуха для окисления 1 кг топлива:

$$H_u = 33800 g_C + 102500 g_H, \left[\frac{\kappa Дж}{\kappa \Gamma} \right];$$

$$L_0 = \left(\frac{8}{3} g_C + 8 g_H \right) \cdot \frac{1}{0.23}.$$

Массовая доля водорода g_H равна $1-g_C$, т.к. в качестве упрощения допускается отсутствие серы, кислорода топлива и других примесей. Желаемую величину низшей теплоты подобрать варьированием доли *углерода*.

Для ТРДД применяют керосины с низшей теплотой сгорания от 42 до 44 МДж/кг. Для ТВаД (ГТУ и ГПА) обычно применяют топлива с диапазоном низшей теплоты сгорания 42...50 МДж/кг (реже 32...35 МДж/кг).

- с. Итерационно рассчитать горение для всех π_K^* и температуры прототипа $T_{\Gamma \, \text{прот}}^*$, задав в первом приближении коэффициент избытка воздуха, равный 1 ($\alpha=1$):
 - определить массовый состав продуктов сгорания:

$$g_{CO_2} = \frac{11g_C}{3(1 + \alpha L_0)};$$

$$g_{H_2O} = \frac{9g_H}{1 + \alpha L_0};$$

$$g_{N_2} = \frac{0.77\alpha L_0}{1 + \alpha L_0};$$

$$g_{O_2} = \frac{0.23(\alpha - 1)L_0}{1 + \alpha L_0}.$$

• рассчитать среднюю удельную изобарную теплоемкость газа в интервале температур $[T_K^*; T_\Gamma^*]$:

$$\overline{c_P'} = \overline{c_{P CO_2}} g_{CO_2} + \overline{c_{P H_2O}} g_{H_2O} + \overline{c_{P N_2}} g_{N_2} + \overline{c_{P O_2}} g_{O_2}.$$

Средние теплоемкости компонентов следует рассчитать по температурным полиномам для интервала $[T_K^*; T_\Gamma^*]$ (см. приложение).

 Рассчитать удельную газовую постоянную смеси и показатель адиабаты:

$$\begin{split} R' &= R_{CO_2} g_{CO_2} + R_{H_2O} g_{H_2O} + R_{N_2} g_{N_2} + R_{O_2} g_{O_2}; \\ \begin{cases} \overline{c_P'} - \overline{c_V'} &= R' \\ \frac{\overline{c_P'}}{\overline{c_V'}} &= k' \end{cases} \end{split}$$

• Рассчитать новое значение коэффициента избытка воздуха и относительный расход топлива:

$$\alpha = \frac{1}{L_0} \cdot \left(\frac{H_u \eta_{\Gamma}}{\overline{c_P'}(T_{\Gamma}^* - T_K^*)} - 1 \right)$$
$$q_T = \frac{1}{\alpha L_0}.$$

- Сравнить полученное значение α с предыдущим (если первая итерация с начальным). Если отличие *менее* 1%, закончить процедуру.
- d. Для располагаемой работы рассчитать общие эффективные КПД сжатия и расширения для всех π_K^* :

$$\eta_{c} = \frac{(\sigma_{BX}\pi_{K}^{*})^{\frac{k-1}{k}} - 1}{\sigma_{BX}^{\frac{k-1}{k}} \left(\pi_{K}^{*\frac{k-1}{k}} - 1\right) \cdot \frac{1}{\eta_{K}^{*}} + \left(\sigma_{BX}^{\frac{k-1}{k}} - 1\right)}$$

$$\eta_{p} = \frac{\left(1 - \pi_{T}^{*\frac{1-k'}{k'}}\right) \eta_{T}^{*} + \left(1 - \left(1 - \pi_{T}^{*\frac{1-k'}{k'}}\right) \eta_{T}^{*}\right) \left(1 - \pi_{c}^{*\frac{1-k'}{k'}}\right) \varphi_{c1}^{2}}{1 - (\pi_{T}^{*}\pi_{c}^{*})^{\frac{1-k'}{k'}}}$$

$$\pi_{T}^{*} = \frac{\sigma_{BX}\pi_{K}^{*}\sigma_{KC}\sigma_{1}}{\pi_{c}^{*}}$$

Для ТРДДсм: $\varphi_{c1} = \varphi_c$.

Для ТВаД:
$$\eta_{\rm p} = \eta_T^* = (1+a)(\eta_{\rm TBJ}^* + \eta_{\rm THJ}^* + \eta_{CT}^*)/3$$
.

Свойства газа должны быть вычислены в интервале температур $[T_{\Gamma}^*; T_H]$, а свойства воздуха в интервале $[T_K^*; T_H]$ (см. приложение).

е. Рассчитать свободную энергию (для всех π_K^*):

ТРДД(см):

$$L_{CB} = \frac{1}{\varphi_{c0}^{2}} \left(\overline{c_{P}'} T_{\Gamma}^{*} \left(1 - (\pi_{K}^{*} \sigma_{KC} \sigma_{BX} \sigma_{1})^{\frac{1-k'}{k'}} \right) \eta_{p} - \frac{\overline{c_{P}} T_{H} \left((\pi_{K}^{*} \sigma_{BX})^{\frac{k-1}{k}} - 1 \right)}{(1 + q_{T} - \nu_{\text{or6}}) \eta_{c}} \right)$$

$$\varphi_{c0} = \frac{1}{(1 - \eta_{T}^{*}) \pi_{T}^{*} \frac{k'-1}{k'} + \eta_{T}^{*}}$$

$$\nu_{\text{or6}} = \xi_{\text{or6}} - g_{B \text{ bo3b}}$$

ТВаД:

$$\begin{split} L_{CB} &= \beta \overline{c_P'} T_\Gamma^* \bigg(1 - (\sigma_{BX} \pi_K^* \sigma_{KC})^{\frac{1-k'}{k'}} \bigg) \eta_p - \frac{\overline{c_P} T_H \bigg((\sigma_{BX} \pi_K^*)^{\frac{k-1}{k}} - 1 \bigg)}{\eta_c} \\ \beta &= \frac{1 + \alpha L_0}{\alpha L_0} - \nu_{\text{oT6}} = 1 + q_T - \nu_{\text{oT6}} \\ \nu_{\text{oT6}} &= \xi_{\text{OT6}} - g_{B \text{ BO3B 1}} - g_{B \text{ BO3B 2}}. \end{split}$$

f. Рассчитать удельные параметры двигателя-прототипа для всего диапазона π_K^* . Для ТРДД сначала рассчитывается коэффициент разделения энергии между контурами x_{opt} , а затем удельная тяга и удельный расход топлива:

$$x_{opt} = \frac{1}{1 + \frac{\varphi_{c1}^{2}(1 + q_{T} - \nu_{\text{or6}})}{\varphi_{c2}^{2}m\eta_{\text{THJ}}^{*}\eta_{B}^{*}}}$$

$$P_{ ext{yd}} = rac{1 + q_T -
u_{ ext{orf}}}{m + 1} arphi_{c1} \sqrt{2 \left(1 - oldsymbol{x_{opt}} \right) L_{CB}} \ + rac{m}{m + 1} arphi_{c2} \sqrt{rac{2 (1 + q_T -
u_{ ext{orf}}) oldsymbol{x_{opt}} L_{CB} \eta_{ ext{THd}}^* \eta_B^*}{m}} \ C_{ ext{yd}} = rac{3600 q_T (1 - \xi_{ ext{orf}})}{(1 + m) P_{ ext{yd}}} \ \eta_e = rac{L_{CB}}{q_T \eta_\Gamma H_{tt}}$$

Для ТРДДсм сначала рассчитывается свободная энергия потока после смешения с новым коэффициентом разделения энергии, а затем удельная тяга и удельный расход топлива:

$$\begin{split} L_{CB\;CM} &= \frac{(1+q_T-\nu_{\text{ot6}}) \left(1-x_{opt}\right) L_{CB} + (1+q_T-\nu_{\text{ot6}}) x_{opt} L_{CB} \eta_{\text{thd}}^* \eta_B^*}{1+m+q_T-\nu_{\text{ot6}}} \\ x_{opt} &= \frac{1}{1+\frac{1+q_T-\nu_{\text{ot6}}}{m\eta_{\text{thd}}^* \eta_B^*}} \\ P_{\text{yd}} &= \left(\frac{1+q_T-\nu_{\text{ot6}}+m}{1+m}\right) \varphi_c \sqrt{2L_{CB\;CM}} \\ C_{\text{yd}} &= \frac{3600q_T(1-\xi_{\text{ot6}})}{(1+m)P_{\text{yd}}} \\ \eta_e &= \frac{L_{CB}}{q_T \eta_\Gamma H_u} \end{split}$$

Для ТВаД сразу рассчитывается удельная мощность, эффективный расход топлива и скорость истечения из выхлопного диффузора с учетом расхода газа:

$$N_{e \; ext{yd}} = (1 + q_T -
u_{ ext{or6}}) igg(L_{CB} - rac{c_c^2}{2 arphi_c^2} \cdot rac{T_T^*}{T_T^*} igg) \eta_{ ext{ped}} \eta_{CT}^*$$

$$\begin{split} \frac{T_{T \text{ ad}}^*}{T_T^*} &= \frac{1}{(1 - \eta_T^*)(\pi_K^* \sigma_{KC} \sigma_{BX})^{\frac{k'-1}{k'}} + \eta_T^*} \\ C_e &= \frac{3600 q_T (1 - \xi_{\text{отб}})}{N_{e \, yo}} \\ \eta_e &= \frac{N_{e \, yd}}{q_T \eta_\Gamma H_u} \\ c_{c \, \text{прот}} &= \sqrt{2 \varphi_c^2 \frac{T_T^*}{T_{T \, ad}^*} \bigg(L_{CB \, \text{прот}} - \frac{N_{e \, \text{прот}}}{G_{\Gamma \, \text{прот}} \eta_{\text{ped}} \eta_{CT}^*} \bigg)}. \end{split}$$

- 6. Произвести поиск оптимальных значений параметров цикла для проектируемого двигателя.
 - а. Сравнить абсолютные параметры проектируемого двигателя и прототипа, получив коэффициент пропорциональности χ .

ТРДД(см):

$$\chi = \frac{P}{P_{\text{прот}}}$$

ТВаД:

$$\chi = \frac{N_e}{N_{e \text{ прот}}}$$

b. Предварительно отыскать новое значение свободной энергии, считая, что изменения производятся на 1 кг воздуха, поступающего в двигатель.

ТРДД(см):

$$P_{
m yg} = \chi P_{
m yg \; прот} = (1+q_T) arphi_c \sqrt{2 L_{CB \; прот} \chi^2}$$
 $L_{CB \; проект} = L_{CB \; прот} \chi^2$

ТВаД:

$$N_{e ext{ уд}} = \chi N_{e ext{ уд прот}} = rac{G_{\Gamma}}{G_{B}} igg(\chi L_{CB ext{ прот}} - rac{\chi c_{c}^{2}}{2 arphi_{c}^{2}} \cdot rac{T_{T ext{ ад}}^{*}}{T_{T}^{*}} igg) \eta_{ ext{peq}} \eta_{CT}^{*}$$
 $L_{CB ext{ проект}} = \chi L_{CB ext{ прот}}$

- 7. Считая, что степень повышения давления прототипа $\pi_{K \text{ прот}}^*$ выбрана рационально, повторить весь расчет для заданного ранее диапазона температур и степени двухконтурности (скорости истечения) прототипа. Т.е. должны быть получены параметры газа (расчет горения) и удельные параметры двигателя для одного значения π_K^* , равного $\pi_{K \text{ прот}}^*$, одного значения $\pi(c_c)$, равного $m_{\text{прот}}$ ($c_{C \text{ прот}}$) и набора значений T_{Γ}^* .
- 8. Среди полученных значений свободной энергии отыскать минимальный диапазон, в который попадает свободная энергия проектируемого двигателя $L_{CB\ \rm проект}$.
- 9. Найти новую, оптимальную температуру T_{Γ}^* для проектируемого двигателя с помощью линейной интерполяции:

$$T_{\Gamma \, {
m opt}}^* = T_{\Gamma 1}^* + \frac{T_{\Gamma 2}^* - T_{\Gamma 1}^*}{L_{CB2} - L_{CB1}} (L_{CB \, {
m npoekt}} - L_{CB1})$$

Здесь L_{CB1} — начало диапазона по свободной энергии, в который попадает $L_{CB\ проект},\ L_{CB2}$ — конец диапазона. Температуры $T_{\Gamma 1}^*$ и $T_{\Gamma 2}^*$ соответствуют указанным значениям свободных энергий.

10. Для свободной энергии $L_{CB\ проект}$ найти оптимальное или экономическое значение степени повышения давления в соответствии с заданной эффективностью узлов ГТД. Оптимальное π_K^* требуется для получения высоких значений тяги или мощности, экономическое — для низкого расхода топлива.

Для этого при постоянной температуре $T_{\Gamma \, {
m opt}}^*$ и постоянной степени двухконтурности (скорости истечения) прототипа $m_{
m npot}$ ($c_{c \, {
m npot}}$)

произвести те же расчеты, что в пункте 7, для такого же интервала степени повышения давления, как у прототипа.

Максимум свободной энергии в этом интервале будет соответствовать оптимальной π_K^* . Максимум эффективного КПД будет соответствовать экономической π_K^* .

11. Найти оптимальную степень двухконтурности. Для этого снова произвести расчеты, аналогичные пункту 7, но при $T_{\Gamma \, {
m opt}}^*$ и $\pi_{K \, {
m opt}}^*$ для интервала по m.

Если требуется высокая удельная тяга (всережимный ЛА), то выбрать меньшие значения степени двухконтурности. Если требуется низкий удельный расход топлива — выбрать увеличенную по сравнению с прототипом двухконтурность.

ВАЖНО: Предварительное значение удельной тяги с m_{opt} не должно быть ниже удельной тяги прототипа.

Для ТРДДсм оптимальным будет такое значение степени двухконтурности, при котором свободная энергия смешения $L_{CB\ CM}$ станет максимальной.

Для ТВаД оптимальная скорость истечения не может быть получена таким образом, т.к. чем меньше скорость, тем выше мощность двигателя. Это прямое следствие расчетных соотношений для эффективной работы цикла и свободной энергии двигателей непрямой реакции. Поэтому для ТВаД:

$$c_{c \ opt} = c_{c \ \text{прот}} \cdot \sqrt{\frac{L_{CB \ \text{проект}}}{L_{CB \ \text{прот}}}}$$

Где L_{CB} проект — свободная энергия при оптимальном π_K^* . Скорость c_{c} прот должна быть изначально выбрана так, чтобы получить заданную мощность при указанных цикловых параметрах прототипа.

Графический анализ

12. По полученным данным построить графики распределения удельной тяги (мощности) и удельного (эффективного) расхода топлива от степени повышения давления для прототипа и для проектируемого двигателя. На графиках указать оптимальные значения параметров, например, так, как на рис. 1.

Рис. 1. Удельные параметры ТРДДсм

Приложение

1. Изобарные теплоемкости веществ при постоянном давлении

Могут быть использованы аппроксимационные полиномы вида:

$$c_P = c[1] \cdot T^{n-1} + c[2] \cdot T^{n-2} + \dots + c[n-1] \cdot T + c[n]$$

Коэффициенты для водяного пара H_2O (полином 4-й степени):

$$[8.2542 \cdot 10^{-11}; -5.3927 \cdot 10^{-7}; 1.0936 \cdot 10^{-3}; -1.9361 \cdot 10^{-1}; 1842.53]$$

Коэффициенты для углекислого газа CO_2 (полином 4-й степени):

$$[-5.2735 \cdot 10^{-11}; 3.9194 \cdot 10^{-7}; -1.1213 \cdot 10^{-3}; 1.5466; 471.75]$$

Коэффициенты для азота N_2 (полином 5-й степени):

$$[-3.5780 \cdot 10^{-14}; 2.9022 \cdot 10^{-10}; -8.8233 \cdot 10^{-7}; 1.1757 \cdot 10^{-3}; -4.7731 \cdot 10^{-1}; \ 1095.68]$$

Коэффициенты для кислорода O_2 (полином 5-й степени):

$$[-4.7303 \cdot 10^{-14}; 3.3563 \cdot 10^{-10}; -8.4931 \cdot 10^{-7}; 8.5606 \cdot 10^{-4}; -1.0201 \cdot 10^{-1}; \ 897]$$

Коэффициенты для воздуха (полином 4-й степени):

$$[-3.2689 \cdot 10^{-7}; 7.4230 \cdot 10^{-4}; -3.1280 \cdot 10^{-1}; 1042.39]$$

Также могут быть использованы линейно интерполированные значения по табличным данным (Дж/кг/К):

T, K	H ₂ O	<i>CO</i> ₂	N_2	02	T, K	воздух
200	1851	735	1039	910	200	1007
300	1864	846	1040	918	250	1006
400	1901	939	1044	941	300	1007
500	1954	1014	1056	972	350	1009
600	2015	1075	1075	1003	400	1014
700	2080	1126	1098	1031	450	1021
800	2147	1168	1122	1054	500	1030
900	2217	1204	1146	1074	550	1040
1000	2288	1234	1167	1090	600	1051

1100	2358	1259	1187	1103	650	1063
1200	2425	1280	1204	1115	700	1075
1300	2490	1298	1219	1125	750	1087
1400	2552	1313	1232	1134	800	1099
1500	2609	1326	1244	1143	850	1110
1600	2662	1338	1254	1151	900	1121
1700	2711	1348	1263	1158	950	1131
1800	2756	1356	1271	1166	1000	1141
1900	2798	1364	1278	1173	1050	1150
2000	2836	1371	1284	1181	1100	1159
2100	2872	1377	1290	1188	1150	1166
2200	2904	1383	1295	1195	1200	1172
2300	2934	1388	1300	1202	1250	1177
2400	2962	1393	1304	1209	1300	1182
2500	2987	1397	1307	1216	1350	1185

2. Пример функции MATLAB для определения истинной теплоемкости с использованием полинома:

```
% функция [возвращаемые параметры] = ИмяФункции(получаемые параметры)
function [cp]=GetCpAir(T)
% коэффициенты интерполяционного полинома свойств воздуха:
           cp = -3.27 \cdot 10^{-7} \cdot T^3 + 7.42 \cdot 10^{-4} \cdot T^2 - 3.13 \cdot 10^{-1} \cdot T^1 + 1042.39 \cdot T^0
poly=[-3.2689E-7;7.4230E-4;-3.1280E-1;1042.39];
n=length(poly); % длина полинома, в данном случае: 4
ср=0; % переменная для теплоемкости
for i=1:n
% т.к. вычисляется истинная теплоемкость, то просто подставляем температуру в
нужной степени в аппроксимационный полином. Используем цикл, поэтому
производится суммирование всех слагаемых полинома:
    cp=cp+poly(i)*T^(n-i);
% степень температуры меняется от n-1 до 0, где n – количество слагаемых
полинома.
cvAir=cpAir-R; % изохорная теплоемкость через уравнение Майера
kAir=cpAir/cvAir; % показатель адиабаты ср/сv
```

3. Пример функции MATLAB для определения средней теплоемкости с использованием полинома:

```
% функция для определения средней теплоемкости в интервале температур [Т1; Т2]
function [cp]=GetCpAir(T1,T2)
% коэффициенты интерполяционного полинома теплоемкости воздуха:
            cp = -3.27 \cdot 10^{-7} \cdot T^3 + 7.42 \cdot 10^{-4} \cdot T^2 - 3.13 \cdot 10^{-1} \cdot T^1 + 1042.39 \cdot T^0
poly=[-3.2689E-7;7.4230E-4;-3.1280E-1;1042.39];
n=length(poly); % длина полинома, в данном случае: 4
:0=q
for i=1:n
% вычисляем определенный интеграл, т.к.:
                                     \overline{c_P} = \frac{\int_{T1}^{T2} c_P(T) dT}{T2 - T1}
Значит, степень температуры в полиноме после интегрирования увеличивается на 1
(поэтому n-i+1), а константа делится на новую степень. Подставляются пределы
Т1 и Т2, и все суммируется.
    cp = cp + poly(i) *T2^{(n-i+1)}/(n-i+1) - poly(i) *T1^{(n-i+1)}/(n-i+1);
ср=ср/(Т2-Т1); % вычисленный интеграл делим на знаменатель - разность
температур.
End
```

4. Пример функции MATLAB для расчета горения углеводородного топлива:

```
% вычисляем удельные газовые постоянные продуктов сгорания:
RCO2=8314.2/(12+16*2); % для углекислого газа
RH20=8314.2/(2+16); % для водяного пара
RN2=8314.2/28; % для азота
RO2=8314.2/32; % для кислорода
% вычисляем средние удельные изобарные теплоемкости продуктов сгорания в
интервале температур [ТК; Тг] (по аналогии с воздухом, см. выше):
      для водяного пара;
   • для углекислого газа;
   • для азота;
   • для кислорода;
      для воздуха.
% задаем начальные значения для показателя адиабаты продуктов сгорания:
k=0;
alpha=1;
k0ld=1.4;
iter=0; % счетчик итераций для остановки цикла, если задача не сойдется, и
свойства газовой смеси не будут получены.
% начинаем итерационный процесс
```

```
while abs(k-kOld)>1E-16 && iter<100
      % вычисляем массовые доли компонентов
      % (alpha - коэффициент избытка воздуха, L0 - теоретическое количество
      воздуха, С - доля углерода, Н - доля водорода)
       gCO2 = 11/3*C/(1+alpha*L0);
       gH20 = 9*H/(1+alpha*L0);
       gN2 = 0.77*L0*alpha/(1+L0*alpha);
       g02 = 0.23*(alpha-1)*L0/(1+L0*alpha);
      % вычисляем теплоемкости и газовую постоянную смеси.
       cp = cpC02*gC02 + cpH20*gH20 + cpN2*gN2 + cpO2*gO2;
       R = RCO2*gCO2 + RH2O*gH2O + RN2*gN2 + RO2*gO2;
       cv = cp - R;
       kOld = k;
       k = cp/cv;
      % вычисляем коэффициент избытка воздуха, Hu - низшая теплота сгорания,
      effG - эффективность сгорания топлива
       alpha=1/L0*(Hu*effG/cp/(TG-TK)-1);
       iter=iter+1;
```

end

Литература

- 1. Теория, расчет и проектирование авиационных двигателей и энергетических установок: учебник / В. И. Бакулев, В. А. Голубев, В. А. Крылов и др.; под ред. В. А. Сосунова, В. М. Чепкина. М.: Изд-во МАИ, 2003. 688 с.
- 2. Нечаев Ю. Н., Федоров Р. М. Теория авиационных газотурбинных двигателей. Ч. 1. М.: Машиностроение, 1977. 312 с.
- 3. Нечаев Ю. Н., Федоров Р. М. Теория авиационных газотурбинных двигателей. Ч. 2. М.: Машиностроение, 1978. 336 с.
- 4. Клячкин А. Л. Эксплуатационные характеристики авиационных газотурбинных двигателей. М.: Транспорт, 1967. 196 с.
- 5. Выбор параметров и термогазодинамические расчеты авиационных газотурбинных двигателей: учебное пособие / В. А. Григорьев и др. Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2009. 202 с.
- 6. Генкин Э. Л., Корж Н. Д., Ронзин В. Д. Выбор параметров и газодинамические расчеты авиационных газотурбинных двигателей : учебное пособие. Пермь: Ротапринт Пермского политехнического института, 1967. 142 с.