PROJECT REPORT

Estimate the Crop Yield using Data Analysis

1. INTRODUCTION

1.1. Project Overview

Crop production is one of the most important sources of income in India and India is one of the top countries in agriculture. It is important to understand the yield of crops in different conditions in an easier way. As per this project we will be collecting some dataset, analyzing them using visualizations, creating a dashboard and this will give us more insights of Crop production in India.

1.2. Purpose

Crop yield estimation using data analytics is an important task for farmers for rapid decisionmaking. An accurate crop yield analysis can help farmers to decide on what to grow and when to grow. Various crops are suited for different weather conditions, geographic locations, soil types, etc., have shown satisfactory yield in certain years and it is not easy to manually collect this data and perform analysis. Visualization of the data can help understand the pattern of production through the years depending on various factors, according to which effective decisions can be made with lesser errors.

2. LITERATURE SURVEY

2.1. Existing problem

- [1] In this paper Akhilesh Kumar Sharma, Oorja Garg, and Krishna Modi (2021) worked at collecting and analyzing temperature, rainfall, soil, seed, crop production, humidity and wind speed data, which will help the farmers improve the produce of their crops. K-means clustering is employed on results. Its's not always very easy to implement each and everything using machine learning algorithms like K-means, as its accuracy reduces with larger datasets.
- [2] In this study NingJin, BoTao WeiRen, DongyanZhang (2022) used a regional irrigation data for winter wheat grown on the Loess. But the results aren't very accurate.
- [3] In this paper Jyoti Mahajan, Kriti Banal and Samridhi Mahajan (2021) used historical production and meteorological data and processed them for analysis and applying ML algorithms. However, this was prone to over fitting.

- [4] In this study Yeshanbele Alebele, Wenhui Wang, Weiguo Yu, Xue Zhang (2021) proposed Gaussian kernel regression for rice yield estimation from optical and SAR imagery using a limited amount of ground truth data. But, efficiency was less in high dimensional spaces.
- [5] In this work Laura Martínez-Ferrer, Maria Piles, Gustau Camps-Valls (2021) introduced the use of Gaussian processes (GPs) for the estimation. The proposed methodology combines synergistic information on canopy greenness, biomass, soil, and plant water content from optical and microwave sensors with the atmospheric variables. But this makes use of the entire feature sample.

2.2. References

- 1. Akhilesh Kumar Sharma, Oorja Garg, and Krishna Modi (2021), "WB-CPI: Weather Based Crop Prediction in India Using Big Data Analytics," in IEEE Access, vol. 9, pp. 137869-137885, 2021.
- 2. Ning Jin, Bo Tao, Wei Ren, Liang He, Dongyan Zhang, Dacheng Wang, Qiang Yu, "Assimilating remote sensing data into a crop model improves winter wheat yield estimation based on regional irrigation data", Agricultural Water Management, Volume 266, 2022.
- 3. Mahajan, J., Banal, K. & Mahajan, S. "Estimation of crop production using machine learning techniques: a case study of J&K". Int. j. inf. tecnol. 13, 1441–1448 (2021).
- 4. Yeshanbele Alebele, Wenhui Wang, Weiguo Yu, Xue Zhang (2021), "Estimation of Crop Yield From Combined Optical and SAR Imagery Using Gaussian Kernel Regression," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14.
- 5. L. Martínez-Ferrer, M. Piles and G. Camps-Valls, "Crop Yield Estimation and Interpretability With Gaussian Processes," in IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 12, pp. 2043-2047, Dec. 2021

2.3. Problem Statement Definition

It is important for farmers to better estimate and make right decisions for growing crops based on factors such as season and place, by observing the patterns of the past data, analyzing, and deciding upon the type of crop to grow and the area it should occupy. A dashboard displaying the visualized data makes it easier to read and understand.

3.3.	Pro	posed	Solution
------	-----	-------	----------

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Using data analysis, to aid farmersin making better decisions in order to have healthycrop production.
2.	Idea/ Solution description	To deliver a perfectly analysed Dashboard of historical agricultural production data from several Indian states so that farmersmay forecasttheir crop yield.
3.	Novelty / Uniqueness	The dataset contains information about the crops in various Districts, States, Seasons, andAreas. Therefore, usingall these facts, a thoroughly researched report will assist farmers in making the best crop choice for their regionduring a specificgrowing season to increase output.
4.	Social Impact / Customer Satisfaction	The issues thatfarmers have withyield potential willall be resolved by this report. Therefore, this Dashboard will have a significant impacton farmers, and by adopting theadvised crops, they can achieve enormous earnings.
5.	Business Model (Revenue Model)	Profit can be generated by marketing thesolution as a freely accessible mobile application thatanyone can use. Venture partnerships with the government may yield financial rewards.
6.	Scalability of the Solution	Regarding dataset storage and data gathering, there are no problems. As a result, the system may be readilyscaled to managerising user numbers, traffic, and requirements that must be met.

4. REQUIREMENT ANALYSIS

4.1. Functional requirement

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration through Form
FR-2	User Profile	Details of User
		Details of Farm
FR-3	Required Data	Historical data of Crop Yield
		User Data(Farmer) to analyse
FR-4	Analysis	Data Pre-processing and analysis using IBM Cognos analytics Platform
FR-5	Estimation	To create an Interactive Dashboard, Report, Story
		visualizing the great
		insights about the estimation of Crop Yield.

4.2. Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	According to the past data, report is created. Crops to be sown in different Seasons will be advised or consulted to the farmers based on the Data Report.
NFR-2	Security	IBM Cognos platform have a secure user information.
NFR-3	Reliability	The interactive dashboard can make easily understandable of the data report.
NFR-4	Performance	Interaction makes better performance between all users and impressing by the visual advise.
NFR-5	Availability	The dashboard could be easily viewed and available in every smartphones, laptops, systems etc.
NFR-6	Scalability	The flexibility of the methodology to implement the proposed solution is very easy that can make increase in the estimation of crop yield in the different farms for different users.

5. PROJECT DESIGN

5.1. Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flow within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2. Solution & Technical Architecture

Solution Architecture

- Farmers need to be able to access this data wherever they are. They should be able to keep track of the crop yields anytime and easily
- A recent dataset can be obtained for analysis
- This data can be uploaded to a Cloud platform and processed
- Various plots can be used to represent that data and a dashboard containing all the plots can be displayed for better user experience

5.3. User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Custom er (Farmer)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmati on email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-1
	Data	-	I can view the crop yield history, past profits and losses	I can access past dataset of crop yieldin India	High	Sprint-2

	Analysis	USN-5	I can get	High	Sprint-3	
			clean, processed			
			and analysed data			

Customer Care Executive	Customer Care Executive (Communica tion)	As a user, i can provide support systems for companies that often communicate with the customers	strong relationships	Medium	Sprint-4
Estimator	Estimation	As a user, I can view the items that are to be estimated	I have a feel for the size of the various items in the product based	Medium	Sprint-4

6. PROJECT PLANNING & SCHEDULING

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for by entering my Agri - id card and request.	2	High	Abith Kumar Anil Kumar Karan Yuvega
		USN-3	As a user, I can register for the application through Gmail	2	Medium	Abith Kumar Anil Kumar
	Login	USN-4	As a user, I can Call and request or Approach for dataset	4	High	Karan Yuvega
	Working with the Dataset	USN-5	To work on the given dataset, Understand the Dataset.	2	High	Abith Kumar Anil Kumar Karan Yuvega
		USN-6	Load the dataset to Cloud platform then Build the required Visualizations.	10	High	Abith Kumar Yuvega
Sprint-2	Data Visualization Chart	USN-7	Using the Crop production in Indian dataset, create various graphs and charts to highlight the insights and visualizations. *Build a Visualization to showcase Average Crop Production by Seasons.	4	Medium	Anil Kumar Karan

*Showcase the Yearly usage of Area in Crop Production.	4	Medium	Anil Kumar
			Yuvega

Sprint	Functional Requirement	User Story Number	User Story / Task	Story Points	Priority	Team Members
	(Epic)	Number	Build a visualization to show case top 10 States in Crop Yield Production by Area.	4	Medium	Karan Abith Kumar
			Build the required Visualization to showcase the Crop Production by State.	4	Medium	Karan Yuvega
			Build Visual analytics to represent the Sates with Seasonal Crop Production using a Text representation.	4	Medium	Abith Kumar Anil Kumar
Sprint-3	Creating The dashboard	USN-8	Create the Dashboard by using the created visualizations.	20	High	Abith Kumar Anil Kumar Karan Yuvega
Sprint-4	Export The Analytics	USN-9	Export the created Dashboard	20	High	Abith Kumar Anil Kumar Karan Yuvega

6.2. Sprint Delivery Schedule

Sprint	Total Story Poin ts	Durati on	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3. Reports from JIRA

Before the Start of Sprints

Creation of Sprints

Sprint 1

Sprint 2

Sprint 3

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

7.1. Data set extraction from Kaggle using Kaggle-API

!pip install -q kaggle

!mkdir ~/.kaggle #creating kaggle directory

!cp kaggle.json ~/.kaggle/ #copying json file to folder

!kaggle datasets download -d abhiseklewan/crop-production-statistics-from-1997-inindia

!unzip /content/crop-production-statistics-from-1997-in-india.zip

7.2. Exploratory data analysis and estimation of crop yield using ML algorithm

Libraries import seaborn as sns import

matplotlib.pyplot as plt import pandas as pd

import numpy as np

%matplotlib inline

Data Exploration df=pd.read_csv('/content/drive/MyDrive/IBM_CROP YIELD/CROP YIELD DATASET/crop_production.csv') df.head()

```
State_Name District_Name Crop_Year
                                                           Season \
  0 Andaman and Nicobar Islands
                                   NICOBARS
                                                 2000 Kharif
  1 Andaman and Nicobar Islands
                                   NICOBARS
                                                 2000 Kharif
  2 Andaman and Nicobar Islands
                                  NICOBARS
                                                 2000 Kharif
  3 Andaman and Nicobar Islands
                                  NICOBARS
                                                 2000 Whole Year
                                                 2000 Whole Year
    Andaman and Nicobar Islands
                                  NICOBARS
                   Crop
                          Area Production
               Arecanut 1254.0
                                   2000.0
  1 Other Kharif pulses
                        2.0
                                     1.0
  2
                  Rice 102.0
                                    321.0
                 Banana 176.0
  3
                                  641.0
              Cashewnut 720.0
  4
                                   165.0
df.shape df.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 246091 entries, 0 to 246090
  Data columns (total 7 columns):
                  Non-Null Count Dtype
   # Column
                   -----
   0 State_Name 246091 non-null object
   1 District_Name 246091 non-null object
   2 Crop_Year 246091 non-null int64
   3 Season
                  246091 non-null object
                  246091 non-null object
   4 Crop
                  246091 non-null float64
   5
      Area
   6 Production 242361 non-null float64
  dtypes: float64(2), int64(1), object(4)
  memory usage: 13.1+ MB
df.isnull().sum()
         State_Name
         District_Name
         Crop_Year
         Season
                               0
         Crop
                               0
         Area
                               0
         Production
                           3730
         dtype: int64
3730/246091
      0.015156994770227274 data =
df.dropna() print(data.shape)
      (242361, 7)
df.isnull().sum()
```

```
State_Name 0
District_Name 0
Crop_Year 0
Season 0
Crop 0
Area 0
Production 3730
dtype: int64
```

sum_maxp = data["Production"].sum() data["percent_of_production"] =
data["Production"].map(lambda x:(x/sum_maxp)*100) data[:5]

```
State_Name District_Name Crop_Year
0 Andaman and Nicobar Islands NICOBARS 2000 Kharif
1 Andaman and Nicobar Islands NICOBARS
                                      2000 Kharif
2 Andaman and Nicobar Islands NICOBARS
                                      2000 Kharif
3 Andaman and Nicobar Islands NICOBARS
                                      2000 Whole Year
4 Andaman and Nicobar Islands NICOBARS
                                      2000 Whole Year
             Crop Area Production percent_of_production
0
          Arecanut 1254.0 2000.0 1.416670e-06
1 Other Kharif pulses 2.0 1.0
                                       7.083351e-10
            Rice 102.0 321.0
                                       2.273756e-07
            Banana 176.0 641.0
                                       4.540428e-07
          Cashewnut 720.0 165.0
                                       1.168753e-07
```

sns.lineplot(data["Crop_Year"],data["Production"])

plt.figure(figsize=(25,10)) sns.barplot(data["State_Name"],data["Production"]) plt.xticks(rotation=90)

sns.barplot(data["Season"],data["Production"])

data.groupby("Season",axis=0).agg({"Production":np.sum})

	Production
Season	
Autumn	6.441377e+07
Kharif	4.029970e+09
Rabi	2.051688e+09
Summer	1.706579e+08
Whole Year	1.344248e+11
Winter	4.345498e+08

data["Crop"].value_counts()[:5]

```
Rice 15082
Maize 13787
Moong(Green Gram) 10106
Urad 9710
Sesamum 8821
Name: Crop, dtype: int64
```

top_crop_pro = data.groupby("Crop")["Production"].sum().reset_index().sort_values(by='Production',asc ending=False) top_crop_pro[:5]

```
Crop Production
28 Coconut 1.299816e+11
106 Sugarcane 5.535682e+09
95 Rice 1.605470e+09
119 Wheat 1.332826e+09
87 Potato 4.248263e+08
```

coc_df = data[data["Crop"]=="Coconut "]

print(coc_df.shape) coc_df[:3]

Coconut

```
State_Name District_Name Crop_Year Season \
Andaman and Nicobar Islands NICOBARS 2000 Whole Year
Andaman and Nicobar Islands NICOBARS 2001 Whole Year
Andaman and Nicobar Islands NICOBARS 2002 Whole Year
```

```
        Crop
        Area
        Production
        percent_of_production

        5
        Coconut
        18168.0
        65100000.0
        0.046113

        14
        Coconut
        18190.0
        64430000.0
        0.045638

        23
        Coconut
        18240.0
        67490000.0
        0.047806
```

sns.barplot("Season","Production",data=coc_df)


```
plt.figure(figsize=(13,10))
sns.barplot("State_Name","Production",data=coc_df)
plt.xticks(rotation=90) plt.show()
```


top_coc_pro_dis =

coc_df.groupby("District_Name")["Production"].sum().reset_index().sort_val ues(

by='Production',ascending=False) top_coc_pro_dis[:5] sum_max =

top_coc_pro_dis["Production"].sum() top_coc_pro_dis["precent_of_pro"] =

top_coc_pro_dis["Production"].map(lambda x:(x/sum_max)*100) top_coc_pro_dis[:5]

	District_Name	Production	precent_of_pro
77	KOZHIKODE	1.527871e+10	11.754512
86	MALAPPURAM	1.451252e+10	11.165052
129	THIRUVANANTHAPURAM	1.001337e+10	7.703678
131	THRISSUR	9.920739e+09	7.632416
64	KANNUR	9.780310e+09	7.524379

plt.figure(figsize=(18,12)) sns.barplot("District_Name","Production",data=top_coc_pro_dis) plt.xticks(rotation=90) plt.show()

plt.figure(figsize=(15,10)) sns.barplot("Crop_Year","Production",data=coc_df)
plt.xticks(rotation=45)

#plt.legend(rice_df['State_Name'].unique()) plt.show()

sns.jointplot("Area","Production",data=coc_df,kind="reg")

Sugarcane

sug_df = data[data["Crop"]=="Sugarcane"]
print(sug_df.shape) sug_df[:3]

			Sta	ate_Name	District_Name	Crop_Year	Season	/
7	Andaman	and	Nicobar	Islands	NICOBARS	2000	Whole Year	
16	Andaman	and	Nicobar	Islands	NICOBARS	2001	Whole Year	
26	Andaman	and	Nicobar	Islands	NICOBARS	2002	Whole Year	

		Crop	Area	Production	percent_of_production
-	7	Sugarcane	1.0	2.0	1.416670e-09
:	16	Sugarcane	1.0	1.0	7.083351e-10
	26	Sugarcane	5.0	40.0	2.833340e-08

sns.barplot("Season","Production",data=sug_df)


```
plt.figure(figsize=(13,8))
sns.barplot("State_Name","Production",data=sug_df)
plt.xticks(rotation=90) plt.show()
```


plt.figure(figsize=(15,10)) sns.barplot("Crop_Year","Production",data=sug_df)
plt.xticks(rotation=45)

#plt.legend(rice_df['State_Name'].unique()) plt.show()

sns.jointplot("Area","Production",data=sug_df,kind="reg")

Rice

rice_df = data[data["Crop"]=="Rice"]
print(rice_df.shape) rice_df[:3]

```
(15082, 8)
                    State_Name District_Name Crop_Year
                                                            Season Crop
   Andaman and Nicobar Islands
                                NICOBARS
                                                 2000 Kharif
                                                                    Rice
12 Andaman and Nicobar Islands
                                   NICOBARS
                                                 2001 Kharif
                                                                    Rice
18 Andaman and Nicobar Islands
                                   NICOBARS
                                                 2002 Kharif
                                                                    Rice
     Area Production percent_of_production
   102.0
              321.00
                              2.273756e-07
2
    83.0
              300.00
                              2.125005e-07
12
18 189.2
              510.84
                              3.618459e-07
```

sns.barplot("Season", "Production", data=rice_df)

plt.figure(figsize=(13,10))
sns.barplot("State_Name","Production",data=rice_df)

plt.xticks(rotation=90) plt.show()

COUNTY OF THE PROPERTY OF THE

```
top_rice_pro_dis =
rice_df.groupby("District_Name")["Production"].sum().reset_index().sort_va lues(
   by='Production',ascending=False) top_rice_pro_dis[:5] sum_max =
top_rice_pro_dis["Production"].sum() top_rice_pro_dis["precent_of_pro"] =
top_rice_pro_dis["Production"].map(lambda x:(x/sum_max)*100) top_rice_pro_dis[:5]
```

```
District_Name
                    Production
                                precent_of_pro
58
         BARDHAMAN 34239976.0
                                      2.132707
374
    MEDINIPUR WEST 29192719.0
                                      1.818328
612
     WEST GODAVARI 27845309.0
                                      1.734402
169
     EAST GODAVARI 24690929.0
                                      1.537925
494
           SANGRUR 24448000.0
                                      1.522794
```

plt.figure(figsize=(18,12)) sns.barplot("District_Name","Production",data=top_rice_pro_dis) plt.xticks(rotation=90) plt.show()

plt.figure(figsize=(15,10)) sns.barplot("Crop_Year","Production",data=rice_df) plt.xticks(rotation=45)

#plt.legend(rice_df['State_Name'].unique()) plt.show()

sns.jointplot("Area", "Production", data=rice_df, kind="reg")

'Sunflower', 'Bajra', 'Castor seed', 'Cotton(lint)', 'Horsegram',

'Jowar', 'Korra', 'Ragi', 'Tobacco', 'Gram', 'Wheat',

'Masoor',

```
millets', 'Coriander', 'Potato',
            'Other Rabi pulses', 'Soyabean', 'Beans &
        Mutter(Vegetable)',
            'Bhindi', 'Brinjal', 'Citrus Fruit', 'Cucumber', 'Grapes',
        'Mango',
            'Orange', 'other fibres', 'Other Fresh Fruits', 'Other
        Vegetables',
            'Papaya', 'Pome Fruit', 'Tomato', 'Mesta', 'Cowpea(Lobia)',
            'Lemon', 'Pome Granet', 'Sapota', 'Cabbage', 'Rapeseed
        &Mustard',
            'Peas (vegetable)', 'Niger seed', 'Bottle Gourd', 'Varagu',
            'Garlic', 'Ginger', 'Oilseeds total', 'Pulses total', 'Jute',
            'Peas & beans (Pulses)', 'Blackgram', 'Paddy', 'Pineapple',
            'Barley', 'Sannhamp', 'Khesari', 'Guar seed', 'Moth',
            'Other Cereals & Millets', 'Cond-spcs other', 'Turnip', 'Carrot',
            'Redish', 'Arcanut (Processed)', 'Atcanut (Raw)',
            'Cashewnut Processed', 'Cashewnut Raw', 'Cardamom', 'Rubber',
            'Bitter Gourd', 'Drum Stick', 'Jack Fruit', 'Snak Guard',
        'Tea',
            'Coffee', 'Cauliflower', 'Other Citrus Fruit', 'Water Melon',
            'Total foodgrain', 'Kapas', 'Colocosia', 'Lentil', 'Bean',
        'Jobster', 'Perilla', 'Rajmash Kholar', 'Ricebean (nagadal)',
            'Ash Gourd', 'Beet Root', 'Lab-Lab', 'Ribed Guard', 'Yam',
            'Pump Kin', 'Apple', 'Peach', 'Pear', 'Plums', 'Litchi',
        'Ber'.
            'Other Dry Fruit', 'Jute & mesta'], dtype=object) from sklearn.preprocessing import
LabelEncoder crop_encoder=LabelEncoder()
data1['State Name']=crop encoder.fit transform(data1['State Name'])
data1['Season']=crop_encoder.fit_transform(data1['Season'])
data1['Crop']=crop_encoder.fit_transform(data1['Crop']) data1.head()
        State Name Season Crop Area Production percent of production
0
                      1 2 1254.0 2000.0
                                                    1.416670e-06
                      1 74 2.0 1.0
                                                7.083351e-10
1
2
                      1 95 102.0 321.0
                                                   2.273756e-07
```

'Sesamum', 'Linseed', 'Safflower', 'Onion', 'other misc. pulses',

'Samai', 'Small

```
4 7 176.0
                                   641.0
                                              4.540428e-07 4
                                                                  0
                                                                      4 22 720.0
                1.168753e-07 print(data1['Season'].unique()) print(data1['State Name'].unique())
                data1['Crop'].unique()
[140235]
[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32] array([ 2, 74, 95, 7, 22, 28, 38, 106, 108, 109, 15, 37, 123, 114, 59,
63, 116, 3, 43, 107, 6, 25, 33, 45, 48, 53,
    90, 111, 41, 119, 61, 102, 57, 98, 67, 122, 99, 103, 32,
    87, 69, 105, 10, 13, 18, 27, 35, 42, 60, 68, 121, 73,
   75, 77, 85, 112, 62, 34, 55, 86, 101, 19, 92, 80, 65,
   17, 117, 39, 40, 66, 88, 49, 81, 16, 76, 83, 8, 100,
    52, 44, 64, 70, 31, 115, 21, 93, 1, 5, 23, 24, 20, 97, 14, 36, 46, 104, 110, 29, 26, 71, 118, 113,
51, 30,
    56, 9, 47, 82, 91, 96, 4, 11, 54, 94, 120, 89, 0,
   78, 79, 84, 58, 12, 72, 50])
Test Train Split x = data1.drop("Production",axis=1) y = data1[["Production"]] from
sklearn.model selection
                           import
                                       train_test_split x_train,x_test,y_train,y_test
train_test_split(x,y,test_size=0.33, random_state=42) print("x_train :",x_train.shape) print("x_test
:",x_test.shape) print("y_train :",y_train.shape) print("y_test :",y_test.shape) x_train : (162381, 5)
x_test: (79980, 5) y_train: (162381, 1)
       y_test: (79980, 1)
x train[:5]
        State_Name Season Crop Area percent_of_production 4843 1 1 59 785.0
1.486087e-06
20626
           3 0 95 1250.0 5.829598e-07
240277
         32 4 106 2.0
                              1.452087e-07
           3 1 49 60.0 4.646678e-07
20664
157859
           22 3 63 605.0
                                 6.729184e-08
1)Random Forest
from sklearn.ensemble import RandomForestRegressor model =
RandomForestRegressor() model.fit(x train,y train) preds = model.predict(x test)
from sklearn.metrics import r2 score r = r2 score(y test,preds) print("R2score when
we predict using Randomn forest is ",r)
```

2)Linear Regression

```
from sklearn.linear_model import LinearRegression model =
LinearRegression() model.fit(x_train,y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
preds_lg = model.predict(x_test)
from sklearn.metrics import mean_squared_error, r2_score
mean_squared_error(y_test,preds_lg)
       1.7004942250319832e-11 preds_lg[:5]
       array([[4529.00000093], [
       425.00000081],
          [253.99999425],
          [ 7.00000048],
          [ 130.00000039]]) y test[:5]
                Production 51163
       4529.0 55141 425.0
       104122 254.0
       161230 7.0
       229232 130.0
```

```
3) Decision Tree
from sklearn.tree import DecisionTreeRegressor regressor =
DecisionTreeRegressor(random_state=42) regressor.fit(x_train,y_train)
preds_dt = regressor.predict(x_test)
mean_squared_error(y_test,preds_dt) r2_score(y_test,preds_dt)
       0.9986419000899257 preds_dt[0]
       4355.0 y_test[0:]
       Production
       51163 4529.0
       55141 425.0
       104122 254.0
       161230
                7.0
       229232 130.0 ...
       23491 6710000.0
       164745
                 30.0
       31176 26496.0
       22509 411.0
       42211 97846.0
```

[79980 rows x 1 columns]

8. TESTING									
Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	BUG ID	Executed By	
Click on the Register here button Werify Singup options for new user	ud-object- storage.appdomain.cloud/IBM %20WEBSITE%20(2)/IBM%20W EBSITE/IBM%20WEBSITE/login		Working as expected	Pass	Login or Signup are displayed.	NO	NO BUG	Yuvega S	
1.Enter URL and click go 2. New coustomer/Click on the Register here 3. Verify Singup with below UI elements: a. Username text box b.password and Reconfirm Passwordtext box c.Submit and Reset button d.Already a user?Verify Login with below UI elements: 1.Username text box 2. Password text box	https://cropvield.s3.ams03.clo ud-object: storage.appdomain.cloud/IBM %20WEBSITE%20(2)/IBM%20W EBSITE/IBM%20WEBSITE/login %20Page.html	Application should show below UI elements: a. Username text box b.password text box c. Submit button with Blue colour d.New customer? Create account by clicking on Register here e. password and Confirm password text box.	Working as expected	Pass	All the UI elements added for user login are available.	NO	NO BUG	G Anil Kumar	
Enter URL and click go Enter Valid username text box Enter valid password in password text box Click on Submit button		User should navigate to user account homepage	Working as expected	Pass	User is able to navigate to home page	NO	NO BUG	Karan G	
	password: sa123	Application should Popup 'Incorrect Username or password ' validation message.	Working as expected	Pass	Invalid username or password popup is obtained	NO	NO BUG	Abith Kumar R	
Enter URL and click go Enter Invalid username text box S.Enter valid password in password text box 4.Click on Submit button	password: anil123	Application should Popup 'Incorrect Username or password ' validation message.	Working as expected	Pass	Invalid username or password popup is obtained	No	NO BUG	G Anil Kumar	

1.Enter URL and click go 2.Enter Invalid username text box 3.Enter Invalid password in password text box 4.Click on Submit button	Username: anil password: saha1	Appplication should Popup 'Incorrect Username or password 'validation message.	Working as expected	Pass	Invalid username or password popup is obtained	NO	NO BUG	Karan G
Check whether the Home page has Technical Archtecture and Navigation Bar.		User should navigate to user account homepage	Working as expected	Pass	User is navigated to home page.	NO	NO BUG	Yuvega S
Check whether the user is able to Navigate using navigation bar.		User should navigate to different pages using navigation bar	Working as expected	Pass	User was able to navigate to different pages	NO	NO BUG	Abith Kumar R
Click on the Dashboard button in navigation bar. 2.After clicking the Dashboard option you will get page with different dashboards. 3.Choose any one of the dashboard and explore them.		User able to see different dashboards and use them.	Working as expected	Pass	User was able to view different dashboards and analyse them.	NO	NO BUG	Karan G
Click on the Report button in navigation bar. After clicking the Report option you will get page with different Report cards.		User is able to navigate to Report page and view the report page	Working as expected	Pass	User was able to view different report pages and analyse them.	No	NO BUG	G Anil Kumar
1.Click on the story button in navigation bar. 2.After clicking the story button you will get page with different story.		User is able to navigate to Story page and view the Story page	Working as expected	Pass	User was able to view different slides in a story and analyse them.	NO	NO BUG	Karan G

1.Click on the story button in navigation bar. 2.After clicking the story button you will get page with different story.	User is able to navigate to Story page and view the Story page	Working as expected	Pass	User was able to view different slides in a story and analyse them.	NO	NO BUG	Karan G
Click on the Contact us button in navigation bar. Zafter clicking the contact button you will get the contact deatails of contibutors and you can directly contact with them.	User is able to navigate to Contact us page and view the details of contributers.	Working as expected	Pass	User was able to navigate to ContactUs page to contact the team.	NO	NO BUG	Yuvega S
1.Click on the logout button in navigation bar. 2.After clicking the logout button you will directed to the login page.	User is able to navigate to login page after clicking the logout option.	Working as expected	Pass	User was able to logout from the page	NO	NO BUG	Abith Kumar R
Defect Analysis	'			'	'		

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	5	2	4	21
Duplicate	1	0	2	0	3
External	3	2	0	1	6
Fixed	12	3	3	20	38
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	4	2	1	7
Totals	26	14	11	27	78

9. RESULTS

9.1. Performance Metrics

Machine Learning

Random forest R2score=0.9981341380489299

Linear Regression mean squared error=1.7004942250319832e-11

Decision Tree R2score=0.9986419000899257

Dashboard:

Story:

Report:

10. ADVANTAGES & DISADVANTAGES

Advantages

- Applying different algorithms according to the dataset and based on visualization.
- Knowledge of building ML models
- You will be able to know how to pre-process/clean the data using different data preprocessing techniques.

Disadvantages

- As the given dataset is very small, the model is not able to make predictions on large values.
- For more accurate and real time results, we would need a dataset which contains millions
 of datapoints.

11. CONCLUSION

This project, "ESTIMATE THE CROP YIELD USING DATA ANALYTICS", has helped to predict the crop yield using the attributes such as

State_Name,District_Name,Crop_Year,Season,Crop,Area and Production.The model is build using IBM Cognos Watson. Technology has helped largely in the agricultural field. New concepts like digital agriculture, smart farming, precision agriculture etc have come up today. Successful analysis has been performed on the crop data based on weather condition, geographic location and area coverage. Also, the major trends have been identified.

12. FUTURE SCOPE

Lot of steps were involved in the data visualization and creation of dashboard. It would be much more convenient and efficient to identify the target attribute only, hence reducing the computational work. There should also be a proper algorithm selection process

13. APPENDIX

13.1. Source Code

Login Page

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 k rel="preconnect" href="https://fonts.googleapis.com" />
  k rel="preconnect" href="https://fonts.gstatic.com" crossorigin />
  k
href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;600&disp lay=swap"
  rel="stylesheet"
 />
  <title>LOGIN SYSYEM</title>
  <style>
            body{
    background-size: cover;
  }
    font-family: "Open Sans", sans-serif;
   }
   .container login {
```

```
background-color: #f5f5f5;
 display: flex;
 justify-content: center;
 align-items: center;
 height: 100vh;
 width: 100vw;
}
div {
 margin-bottom: 10px;
}
input {
 padding: 10px 15px;
 border: 1px solid dodgerblue;
 border-radius: 5px;
 width: 200px;
                   outline: 0px;
}
input:focus {
 border: 2px solid darkblue;
}
button {
 background-color: blue;
 font-size: larger;
                      width: fit-content;
 border-radius: 5px;
 padding: 5px 8px;
 color: white;
 margin: 0px 10px 10px 0px;
 border: 0;
}
button:hover {
 background-color: dodgerblue;
}
#CB {
 width: auto;
}
p {
```

```
margin: 0px;
 }
  a {
   text-decoration: none;
 }
 #fp {
  margin-left: 30px;
 }
  a:hover {
   color: dodgerblue;
  text-decoration: none;
 }
  #b {
   color: white;
 }
 </style>
</head>
<body>
 <article class="container_login" >
  <form>
   <h2>Please sign in</h2>
   <div>
    <input
     type="text"
     placeholder="Username"
     id="username"
     required
    />
   </div>
   <div>
    <input
     type="password"
     placeholder="Password"
     id="password"
     required
```

```
/>
    </div>
    <div><input id="CB" type="checkbox" /> Remember Me</div>
    <button type="button" onclick="login()" class="btn btn-primary">
Submit</button>
    >
     New Users,
     <a href="registration.html" target="_blank">Register here!!</a>
    <script src="javascript.js">
    </script>
   </form>
  </article>
 </body>
</html> Registration
<!DOCTYPE html>
<html lang="en">
<head>
 <title>Registration</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 k href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min. css" rel="stylesheet">
 <script
src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle
.min.js"></script>
 <style> body{
    background-size: cover;
  }
  body{
  background-size: cover;
 }
  h2{
    font-size:40px;
```

```
color: rgb(8, 94, 215);
  }
  div.mt-3{
    color: rgb(8, 94, 215);
    font-size:20px;
  }
  p{
    font-size:25px;
    color: rgb(8, 94, 215);
 }
 </style>
</head>
<body background="ICONS/home1.jpg">
<br><br><
  <h2><center>REGISTRATION</h2>
    <form>
      <div class="d-flex align-items-center justify-content-center">
        <div class="mb-3 mt-3 p-5 text-dark" >
          <div class="p-5">
             <div class='mt-3'>
               <label for="username" class="formlabel">Username</label>
              <input type="text" class="form-control" id="username" placeholder="Enter your
username" maxlength="20" minlength="3" required>
                                                                </div>
            <div class="mt-3" >
               <label for="password" class="form-label" required>Password</label>
              <input type="password" class="form-control" id="password" placeholder="Enter your
password" maxlength="15">
            </div>
             <div class="mt-3" >
              <label for="password1" class="form-label" required>Reconfirm Password</label>
              <input type="password" class="form-control" id="password1" placeholder="Enter your
password">
             </div>
             <div>
```

```
<br>
              <button type="button" onclick="register()" class="btn btn-primary">Submit</button>
              <input type="reset" class="btn btn-primary">
            </div>
            <br>
            Already an user?<a href="login"
Page.html">Login</a>
          </div>
        </div>
      </div>
    </form>
  </div>
  </div>
  <script src="javascript.js"></script>
</body>
</html>
    Index
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8" />
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <title>Home</title>
  <style>
            body{
    background-size: cover;
  }
   .container {
    height: 50px;
    font-family: Arial, Helvetica, sans-serif;
    background-color: rgb(8, 94, 215);
    display: flex;
    flex-direction: row;
    justify-content: flex-end;
    align-items: center;
```

```
a {
 color: whitesmoke;
 text-decoration: none;
}
a:hover {
 color: navy;
 text-decoration: none;
}
.nav_items {
 color: whitesmoke;
 padding: 0px;
 font-size: larger;
 margin: 0px 40px 0px 40px;
}
input,
textarea {
 padding: 10px 15px;
 margin-top: 5px;
 margin-bottom: 10px;
 border: 1px solid navy;
 border-radius: 5px;
 width: 500px;
                   outline: 0px;
}
input:focus,
textarea:focus {
 border: 2px solid navy;
}
ul {
 padding-left: 0px;
.contactGrid {
 display: grid;
```

```
grid-template-rows: repeat(2, 170px);
 grid-template-columns: repeat(2, 300px);
}
.contactBox {
 background-color: dodgerblue;
 color: white;
 border: 2px solid white;
 padding: 20px;
 display: flex;
 flex-direction: column;
 justify-content: center;
 align-items: center;
}
h4 {
 margin: 0px;
}
.contactInfo,
.lastPart {
 display: flex;
justify-content: space-around;
 align-items: center;
 margin-bottom: 40px;
}
.icons {
 width: 30px;
 height: 30px;
 margin-right: 10px;
}
.contactBox:hover {
 background-color: dodgerblue;
}
button {
 background-color: tomato;
 font-size: larger;
 border-radius: 5px;
```

```
width: 150px;
                   height: auto;
   padding: 10px;
   color: white;
   margin: 0px 10px 10px 0px;
   border: 0;
 }
  button:hover {
   background-color: dodgerblue;
  }
  .matter {
   color: #1b0760;
   font-weight: bold;
   text-align: center;
   font-size: large;
 }
  img {
   margin: 50px;
   height: 250px;
   width: 1000px;
   border-radius: 5px;
 }
</style>
</head>
<body background="ICONS/home1.jpg">
<nav>
  <article class="container">
   <a class="nav_items" href="index.html">Home</a>
   <a class="nav_items" href="dashboard.html">Dashboard</a>
   <a class="nav_items" href="report.html">Report</a>
```

```
<a class="nav_items" href="story.html">Story</a>
    <a class="nav_items" href="contactUs.html">Contact Us</a>
    <a class="nav_items" href="login Page.html">Log out</a>
    </article>
  </nav>
  <!-- BODY -->
  <article style="text-align: center">
   <h1>Estimate the Crop Yield using Data Analytics</h1>
   Crop production in India is one of the most important sources of income
    and India is one of the top countries to produce crops.
                                                          As per this project we will be
analyzing some important visualization,
    creating a Dashboard, Story, Report and by going through these we will
    get most of the insights of Crop production in India.
   <h2>Technical Architecture :</h2>
   <img src="ICONS/ibm_image.png" alt="Architecture" />
  </article>
</body> </html>
Dashboard
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
```

```
<title>Dashboard</title>
<style>
           body{
  background-size: cover;
 .container {
  height: 50px;
  font-family: Arial, Helvetica, sans-serif;
  background-color: rgb(8, 94, 215);
  display: flex;
  flex-direction: row;
  justify-content: flex-end;
  align-items: center;
}
 a {
  color: whitesmoke;
  text-decoration: none;
 }
 a:hover {
  color: black;
  text-decoration: none;
 }
 .nav_items {
  color: whitesmoke;
                          padding: 0px;
  font-size: larger;
  margin: 0px 40px 0px 40px;
 }
 ul {
  padding-left: 0px;
}
 h4 {
  margin: 0px;
}
</style>
```

```
</head>
<body background="ICONS/home1.jpg">
  <article class="container">
   <l
    <a class="nav_items" href="index.html">Home</a>
   <a class="nav items" href="dashboard.html">Dashboard</a>
   ul>
    <a class="nav_items" href="report.html">Report</a>
   <a class="nav_items" href="story.html">Story</a>
   <a class="nav_items" href="contactUs.html">Contact Us</a>
   <a class="nav_items" href="login Page.html">Log out</a>
   </article>
 </nav>
 <h1 style="text-align: center;">Dashboard</h1>
         <iframe src="https://us1.ca.analytics.ibm.com/bi/?perspective=dashboard&amp;pathRe</pre>
f=.my_folders%2FCROP%2BPRODUCTION%2BIBM%2BPROJECT%2FDashboards%2FDashboard
%2B1&closeWindowOnLastView=true&ui_appbar=false&ui_navbar=fals
e&shareMode=embedded&action=view&mode=dashboard&subView=mo
del00000184813c1c8f_00000000"
  width="1250"
  height="1000"
  frameborder="0"
                    gesture="media"
  allow="encrypted-media"
  allowfullscreen=""></iframe>
 </div>
```

```
</br>
 <div>
         <iframe src="https://us1.ca.analytics.ibm.com/bi/?perspective=dashboard&amp;pathRe</pre>
f=.my_folders%2FCROP%2BPRODUCTION%2BIBM%2BPROJECT%2FDashboards%2FDashboard
%2B2&closeWindowOnLastView=true&ui_appbar=false&ui_navbar=fals
e&shareMode=embedded&action=view&mode=dashboard&subView=mo
del00000184894b86be 00000003"
  width="1250"
  height="800"
  frameborder="0"
                    gesture="media"
  allow="encrypted-media"
  allowfullscreen=""></iframe>
 </div>
</br>
 <div>
         <iframe src="https://us1.ca.analytics.ibm.com/bi/?perspective=dashboard&amp;pathRe</pre>
f=.my_folders%2FCROP%2BPRODUCTION%2BIBM%2BPROJECT%2FDashboards%2FDashboard
%2B3&closeWindowOnLastView=true&ui appbar=false&ui navbar=fals
e&shareMode=embedded&action=view&mode=dashboard&subView=mo
del000001848965777c_00000002"
  width="1250"
  height="800"
  frameborder="0"
                    gesture="media"
  allow="encrypted-media"
  allowfullscreen=""></iframe>
 </div>
</br>
         <iframe src="https://us1.ca.analytics.ibm.com/bi/?perspective=dashboard&amp;pathRe</pre>
 <div>
f=.my_folders%2FCROP%2BPRODUCTION%2BIBM%2BPROJECT%2FDashboards%2FDashboard
%2B4&closeWindowOnLastView=true&ui_appbar=false&ui_navbar=fals
e&shareMode=embedded&action=view&mode=dashboard&subView=mo
del000001848985cb66_00000004"
  width="1250"
  height="800"
  frameborder="0"
                    gesture="media"
  allow="encrypted-media"
  allowfullscreen=""></iframe>
 </div>
```

```
</br>
   </body> </html>
    Report
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8" />
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <title>REPORT</title>
  <style> body{
    background-size: cover;
  }
   .container {
    height: 50px;
    font-family: Arial, Helvetica, sans-serif;
    background-color: rgb(8, 94, 215);
    display: flex;
    flex-direction: row;
    justify-content: flex-end;
    align-items: center;
   }
   a {
    color: whitesmoke;
    text-decoration: none;
   }
   a:hover {
    color: black;
    text-decoration: none;
   }
   .nav_items {
    color: whitesmoke;
                           padding: Opx;
    font-size: larger;
    margin: 0px 40px 0px 40px;
```

```
}
 ul {
  padding-left: 0px;
 h4 {
  margin: 0px;
 }
</style>
</head>
<body background="ICONS/home1.jpg">
 <article class="container">
   <a class="nav_items" href="index.html">Home</a>
  <a class="nav_items" href="dashboard.html">Dashboard</a>
  <a class="nav_items" href="report.html">Report</a>
  <a class="nav_items" href="story.html">Story</a>
  <a class="nav_items" href="contactUs.html">Contact Us</a>
  <a class="nav_items" href="login Page.html">Log out</a> 
 </article>
 </nav>
<h1 style="text-align: center;">Report</h1>
```

```
<div>
                          <iframe
src="https://us1.ca.analytics.ibm.com/bi/?pathRef=.my_folders%2FCROP%2BPRO
DUCTION%2BIBM%2BPROJECT%2FREPORT%2FREPORT_P1&closeWindowOnLastView=tru
e&ui appbar=false&ui navbar=false&shareMode=embedded&actio
n=run&format=HTML&prompt=false"
       width="1250"
       height="500"
       frameborder="0"
                                                        gesture="media"
       allow="encrypted-media"
       allowfullscreen=""></iframe>
     </div>
     </br>
     <div>
                          <iframe
src="https://us1.ca.analytics.ibm.com/bi/?pathRef=.my_folders%2FCROP%2BPRO
DUCTION%2BIBM%2BPROJECT%2FREPORT%2FREPORT_P2&closeWindowOnLastView=tru
e&ui_appbar=false&ui_navbar=false&shareMode=embedded&actio
n=run&format=HTML&prompt=false"
       width="1250"
       height="500"
       frameborder="0"
                                                        gesture="media"
       allow="encrypted-media"
       allowfullscreen=""></iframe>
     </div>
     </br>
     <div>
       <iframe src="https://us1.ca.analytics.ibm.com/bi/?pathRef=.my_folders%2FCROP%2BPRO</pre>
DUCTION%2BIBM%2BPROJECT%2FREPORT%2FREPORT P3&closeWindowOnLastView=tru
e\& amp; ui\_app bar = false\& amp; ui\_navbar = false\& amp; share Mode = embedded\& amp; action for the contraction of the contra
n=run&format=HTML&prompt=false"
       width="1250"
       height="500"
       frameborder="0"
                                                        gesture="media"
       allow="encrypted-media"
       allowfullscreen=""></iframe>
     </div>
```

```
</br> </body>
</html>
    Story
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8" />
  <meta http-equiv="X-UA-Compatible" content="IE=edge" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  <title>STORY</title>
  <style>
            body{
    background-size: cover;
  }
   .container {
    height: 50px;
    font-family: Arial, Helvetica, sans-serif;
    background-color: rgb(8, 94, 215);
    display: flex;
    flex-direction: row;
    justify-content: flex-end;
    align-items: center;
   }
   a {
    color: whitesmoke;
    text-decoration: none;
   }
   a:hover {
    color: black;
    text-decoration: none;
   }
   .nav_items {
    color: whitesmoke;
                           padding: 0px;
    font-size: larger;
    margin: 0px 40px 0px 40px;
   }
```

```
ul {
  padding-left: 0px;
 h4 {
  margin: 0px;
 }
</style>
</head>
<body background="ICONS/home1.jpg">
 <nav>
 <article class="container">
   <a class="nav_items" href="index.html">Home</a>
  <a class="nav_items" href="dashboard.html">Dashboard</a>
  <a class="nav_items" href="report.html">Report</a>
  <a class="nav_items" href="story.html">Story</a>
  <a class="nav_items" href="contactUs.html">Contact Us</a>
  <a class="nav_items" href="login Page.html">Log out</a>
  </article>
</nav>
<h1 style="text-align: center;">Story</h1>
```

```
<iframe src="https://us1.ca.analytics.ibm.com/bi/?perspective=story&amp;pathRef=.m</pre>
y_folders%2FCROP%2BPRODUCTION%2BIBM%2BPROJECT%2FStory%2FSTORY_CROP%2BYIELD
&closeWindowOnLastView=true&ui_appbar=false&ui_navbar=false&am
p; share Mode = embedded \& amp; action = view \& amp; scene Id = model 00000184813fd fa 4\_000 \\
00000&sceneTime=10000"
  width="1250"
  height="500"
  frameborder="0" gesture="media"
  allow="encrypted-media"
  allowfullscreen=""></iframe>
 </body>
</html>
JavaScript var
data = [
  {
    username: "anil",
    password:"123"
  },
    username:"karan",
    password:"123"
  },
    username:"yuvega",
    password:"@123"
  },
    username: "abith",
    password: "abith123"
  },
    username:"rani ",
    password:"rani123"
```

```
function login(){
  var uname = document.getElementById("username").value
  var pass = document.getElementById("password").value
  for (i = 0; i<data.length; i++){</pre>
    if (uname == data[i].username && pass == data[i].password){
      window.location.replace("index.html")
      return false
    }
  alert("Incorrect password")
function register(){
  var runame = document.getElementById("username").value
  var rpass = document.getElementById("password").value
  var rpass1 = document.getElementById("password1").value
  if (rpass == rpass1){
    var rdata = {
      username: runame,
      password: rpass
    }
  }else{
    alert("password doesn't match")
    return
  }
  for (i = 0; i<data.length; i++){</pre>
    if (runame == data[i].username){
      alert("Username not available")
      return false
    }
  }
  data.push(rdata)
```

