PC 7 : Convergence en loi & Théorème de la limite centrale

On corrigera les exercices (1), (7) et (9).

Exercice 1. On suppose $X_n \stackrel{\mathcal{L}}{\longrightarrow} c$ pour des v.a. (X_n) à valeurs réelles et $c \in \mathbb{R}$. Soit $\phi : \mathbb{R}_+ \to \mathbb{R}$ définie par $\phi(x) = \min(x, 1)$.

- 1. Soit $\epsilon > 0$. Quelle est la limite de $\mathbb{E}[\phi(|X_n c|/\epsilon)]$ quand $n \to \infty$?
- 2. En déduire que $X_n \to c$ en probabilité quand $n \to \infty$.

Solution. 1. Pour $\epsilon > 0$ fixé, la fonction $x \mapsto \phi(|x-c|/\epsilon)$ est continue et bornée. Par la convergence en loi de X_n vers c, on a $\lim_{n\to\infty} \mathbb{E}[\phi(|X_n-c|/\epsilon)] = \mathbb{E}[\phi(|c-c|/\epsilon)] = 0$.

2. On a

$$\mathbb{E}\left[\phi\left(\frac{|X_n-c|}{\epsilon}\right)\right] = \mathbb{E}\left[\phi\left(\frac{|X_n-c|}{\epsilon}\right)\mathbb{1}_{\{|X_n-c|\leq\epsilon\}}\right] + \mathbb{E}\left[\mathbb{1}_{\{|X_n-c|>\epsilon\}}\right]$$
$$= \mathbb{E}\left[\phi\left(\frac{|X_n-c|}{\epsilon}\right)\mathbb{1}_{\{|X_n-c|\leq\epsilon\}}\right] + \mathbb{P}\left(|X_n-c|>\epsilon\right).$$

Dans la question 1, on a montré que le terme à gauche tend vers 0 pour tout $\epsilon > 0$ lorsque $n \to \infty$. Comme les deux termes à droite sont positifs, cela implique qu'ils tendent tous les deux vers 0 lorsque $n \to \infty$. La convergence de $\mathbb{P}(|X_n - c| > \epsilon)$ vers 0 quelque soit $\epsilon > 0$ implique la convergence en probabilité de X_n vers c.

Exercice 2. Soit X_n telle que $\mathbb{P}(X_n = 0) = p_n$ et $\mathbb{P}(X_n = n) = 1 - p_n$.

- 1. Donner une CNS sur (p_n) pour que, quelle que soit la fonction f continue à support compact, $\mathbb{E}[f(X_n)]$ converge dans \mathbb{R} quand $n \to \infty$.
- 2. Donner une CNS sur (p_n) pour que X_n converge en loi et donner sa limite.

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. de carré intégrable, de moyenne m et de variance $\sigma^2>0$. En notant $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ et $\hat{\sigma}_n^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X}_n)^2$, étudier la limite de $\hat{\sigma}_n^2$ puis montrer que

 $\sqrt{n} \frac{X_n - m}{\hat{\sigma}_n} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1).$

Exercice 4. 1. Etudier la convergence en loi de la suite $\left(\frac{X_n}{n}\right)_{n\geq 1}$, où X_n suit une loi géométrique de paramètre $p_n = \frac{\lambda}{n}$ et $\lambda > 0$ est fixé.

- 2. Soit X_n une v.a. de loi uniforme sur $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$.
 - (a) Trouver la limite en loi de la suite $(X_n)_{n\geq 1}$. On notera X une v.a. ayant cette loi.
 - (b) Montrer que $\mathbb{P}(X_n \in \mathbb{Q})$ ne converge pas vers $\mathbb{P}(X \in \mathbb{Q})$. Comparer avec la définition de la convergence en loi.

Exercice 5 (Convergence en loi, convergence des densités?). Pour tout $n \ge 1$, on définit une fonction F_n sur [0,1] par

$$F_n: x \mapsto x - \frac{\sin(2\pi nx)}{2\pi n}.$$

- 1. Montrer que pour tout $n \ge 1$, la fonction F_n (prolongée par 0 pour $x \le 0$ et par 1 pour $x \ge 1$) est la fonction de répartition d'une variable X_n à densité.
- 2. Montrer que X_n converge en loi vers une variable à densité X, mais que la densité de X_n ne converge pas au sens de la convergence simple.

Exercice 6. Soient $(X_n)_n$ des v.a. i.i.d. de loi de Poisson de paramètre $\lambda > 0$.

- 1. Calculer la fonction caractéristique ϕ_{X_1} et en déduire la loi de $S_n = \sum_{i=1}^n X_i$.
- 2. En utilisant le théorème limite central déterminer la limite de la suite

$$u_n = e^{-n} \sum_{k=0}^n \frac{n^k}{k!}.$$

Exercice 7 (LE TCL N'EST PAS UNE CONVERGENCE EN PROBABILITÉ). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes de même loi. On suppose que $\mathbb{E}[X_1^2] < \infty$, et on note $m = \mathbb{E}[X_1], \ \sigma^2 = \mathrm{Var}(X_1)$ et $Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n (X_k - m)$.

- (1) Rappeler la convergence en loi de la suite $(Z_n)_{n>1}$.
- (2) Montrer que la suite $(Z_{2n} Z_n)_{n \geq 1}$ converge en loi vers une limite qu'on identifiera. Indication. On pourra écrire $Z_{2n} - Z_n = aZ_n + bZ'_n$ pour $a, b \in \mathbb{R}$ choisis de sorte Z_n et Z'_n soient indépendantes et de même loi.
- (3) En déduire que si $\sigma^2 > 0$ alors la suite $(Z_n)_{n > 1}$ ne converge pas en probabilité.

Solution. (1) D'après le TCL (les v.a. sont de carré intégrable), Z_n converge en loi vers $\mathcal{N}(0, \sigma^2)$ si $\sigma^2 > 0$ et 0 sinon.

(2) On a

$$Z_{2n} - Z_n = \left(\frac{1}{\sqrt{2}} - 1\right) Z_n + \frac{1}{\sqrt{2}} Z'_n$$
 avec $Z'_n = \frac{1}{\sqrt{n}} \sum_{k=n+1}^{2n} (X_k - m).$

Comme Z_n' est indépendant de Z_n et a la même loi que Z_n , on en déduit que

$$\phi_{Z_{2n}-Z_{n}}(t) = \phi_{Z_{n}}\left(\left(\frac{1}{\sqrt{2}} - 1\right)u\right) \cdot \phi_{Z_{n}}\left(\frac{1}{\sqrt{2}}u\right) \longrightarrow \phi_{\sigma\mathcal{N}(0,1)}\left(\left(\frac{1}{\sqrt{2}} - 1\right)u\right) \cdot \phi_{\sigma\mathcal{N}(0,1)}\left(\frac{1}{\sqrt{2}}u\right)$$

$$= \exp\left(-\frac{u^{2}}{2}\sigma^{2}\left(\left(\frac{1}{\sqrt{2}} - 1\right)^{2} + \frac{1}{2}\right)\right).$$

Donc $Z_{2n}-Z_n$ converge en loi vers $\mathcal{N}(0,\sigma^22(1-\frac{1}{\sqrt{2}}))$ si $\sigma^2>0$ et 0 sinon.

(3) Soit $\sigma^2 > 0$ et supposons par l'absurde que Z_n converge en probabilité vers une v.a. Z. Alors la suite $(Z_{2n} - Z_n)$ converge en probabilité vers 0 (et donc en loi). En effet pour tout $\epsilon > 0$, $\mathbb{P}(|Z_{2n} - Z_n| \ge \epsilon) \le \mathbb{P}(|Z_{2n} - Z| \ge \epsilon/2) + \mathbb{P}(|Z - Z_n| \ge \epsilon/2)$. On déduit de la question précédente que $\sigma = 0$, absurde.

Exercice 8 (MESURE UNIFORME SUR LA SPHÈRE). Soient (X_1, \ldots, X_n) des variables aléatoires i.i.d gaussiennes centrées réduites. On pose $X = (X_1, \ldots, X_n)$. Soit $P \in M_n(\mathbb{R})$ une matrice orthogonale. Montrer que X et PX ont la même loi. En déduire que la loi de $\frac{X}{\|X\|}$ est une mesure de probabilité sur la sphère unité S^{n-1} de \mathbb{R}^n invariante par toute transformation orthogonale (cette propriété caractérise la mesure uniforme sur S^{n-1}).

Exercice 9 (Théorème de Cochran). Soit Z un vecteur gaussien de \mathbb{R}^n d'espérance nulle et de matrice de covariance I_n où I_n est la matrice identité de dimension n. Supposons que \mathbb{R}^n s'écrit comme la somme directe de J sous-espaces vectoriels orthogonaux V_1, \dots, V_J de dimensions respectives p_1, \dots, p_J . On désigne par Π_{V_j} la matrice de projection orthogonale sur V_j .

- 1. Montrer que $\Pi_{V_1}Z, \dots, \Pi_{V_k}Z$ sont des vecteurs aléatoires indépendants. Déterminer leurs lois.
- 2. Montrer que $\|\Pi_{V_i}Z\|^2$ suit la loi $\chi^2(p_j)$ pour tout $1 \leq j \leq J$.
- 3. Application. Soient $X_i, i = 1, ..., n$ des variables aléatoires indépendantes de loi normale $\mathcal{N}(\mu, \sigma^2)$ avec $\mu \in \mathbb{R}$ et $\sigma > 0$. On pose $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ et $S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X}_n)^2$. Déterminer la loi jointe du vecteur aléatoire (\bar{X}_n, S_n^2) .

Solution. 1. Formons d'abord une grande matrice A avec toutes les matrices de projections :

$$A = \begin{pmatrix} \Pi_{V_1} \\ \Pi_{V_2} \\ \vdots \\ \Pi_{V_I} \end{pmatrix}.$$

Puisque Z est un vecteur gaussien, $\begin{pmatrix} \Pi_{V_1}Z\\ \cdots\\ \Pi_{V_J}Z \end{pmatrix}=AZ$ l'est aussi comme transformation affine d'un

vecteur gaussien. Sa moyenne est $\mathbb{E}[AZ] = A\mathbb{E}[Z] = 0$ et sa matrice de variance-covariance est $Cov(AZ) = ACov(Z)A^T = AA^T$.

Rappel sur les projecteurs orthogonaux : on a pour tout j, $\Pi_{V_j} = \Pi_{V_j}^T$ (symétrie) et $\Pi_{V_j}^2 = \Pi_{V_j}$, et par orthogonalité des sous-espaces vectoriels V_j on a $\Pi_{V_j}\Pi_{V_l} = 0$ pour tout $j \neq l$.

Donc, la matrice de variance-covariance de AZ est diagonale par block :

$$\operatorname{Cov}(AZ) = \begin{pmatrix} \Pi_{V_1} & 0 & \cdots & 0 \\ 0 & \Pi_{V_2} & \ddots & \vdots \\ \vdots & & \ddots & \\ 0 & \cdots & \cdots & \Pi_{V_J} \end{pmatrix}.$$

La structure de la matrice $\operatorname{Cov}(AZ)$ implique que les sous-vecteurs $\Pi_{V_j}Z$ sont des vecteurs gaussiens indépendants. Et $\Pi_{V_j}Z$ est de moyenne nulle et $\operatorname{Cov}(\Pi_{V_j}Z) = \Pi_{V_j}$ pour tout j. Donc, $\Pi_{V_i}Z \sim \mathcal{N}_{p_j}(0,\Pi_{V_j})$.

2. Comme Π_{V_j} est symétrique, il existe une matrice Γ orthogonale telle que $\Pi_{V_j} = \Gamma \Lambda \Gamma^T$, où $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_p)$ est la matrice diagonale des valeurs propres de Π_{V_j} . Alors,

$$\|\Pi_{V_j} Z\|^2 = Z^T \Pi_{V_j}^T \Pi_{V_j} Z = Z^T \Pi_{V_j} Z = (Z^T \Gamma) \Lambda(\Gamma^T Z) = U^T \Lambda U = \sum_{i=1}^k \lambda_i U_i^2 ,$$

où $U = \Gamma^T Z = (U_1, \dots, U_n)^T$. En utilisant l'orthogonalité de Γ , on vérifie que U est un vecteur normal de loi $\mathcal{N}_k(0, I_k)$. En effet,

$$\mathbb{E}\left[U\right] = \Gamma^T \mathbb{E}\left[Z\right] = 0 \quad \text{ et } \quad \mathrm{Cov}(U) = \Gamma^T \mathrm{Cov}(Z) \Gamma = \Gamma^T \Gamma = I_k \; .$$

Or, Π_{V_j} est un projecteur orthogonal, donc $\lambda_j \in \{0,1\}$ et $\operatorname{Card}\{j : \lambda_j = 1\} = \operatorname{Rang}(\Pi_{V_j}) = p_j$. Donc,

$$\|\Pi_{V_j} Z\|^2 = \sum_{i: \lambda_i = 1} U_i^2 \sim \chi_{p_j}^2.$$

3. Le vecteur aléatoire $X=(X_1,\ldots,X_n)^T$ est de loi normale de moyenne $(\mu,\ldots,\mu)^T$ et de matrice de variance $\sigma^2 I_n$. Posons $Z=\frac{X-\mu}{\sigma}$. Alors Z est un vecteur gaussien centré de variance I_n . Notons

 $V_1 = \text{Vect}(\mathbbm{1}_n)$ le sous-espace vectoriel engendré par le vecteur $\mathbbm{1}_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$. La projection

orthogonale $\Pi_{V_1}Z$ de Z sur V_1 est donnée par

$$\langle \frac{1}{\sqrt{n}} \mathbb{1}_n, Z \rangle \frac{1}{\sqrt{n}} \mathbb{1}_n = \frac{1}{n} \mathbb{1}_n^T Z \mathbb{1}_n = \bar{Z}_n \mathbb{1}_n,$$

où $\bar{Z}_n = (\bar{X}_n - \mu)/\sigma$. On en déduit que la projection orthogonale de Z sur $V_2 = V_1^{\perp}$ est donnée par $Z - \Pi_{V_1}Z = Z - \bar{Z}_n\mathbbm{1}_n$. Par le théorème de Cochran, $\bar{Z}_n\mathbbm{1}_n$ et $Z - \bar{Z}_n\mathbbm{1}_n$ sont des vecteurs gaussiens indépendants. De plus, $\|Z - \bar{Z}_n\mathbbm{1}_n\|^2 = \frac{nS_n^2}{\sigma^2}$ suit la loi de khi-deux dont le nombre de degrés de liberté est $\dim(V_2) = n - \dim(V_1) = n - 1$. On en déduit l'indépendance de \bar{X}_n et S_n^2 avec $\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2)$ et $\frac{nS_n^2}{\sigma^2} \sim \chi_{n-1}^2$.

Exercice 10 (STABILITÉ GAUSSIENNE). Pour une constante $m \in \mathbb{R}$, on notera $\mathcal{N}(m,0)$ la masse de Dirac en m, que l'on verra comme une loi gaussienne dégénérée.

- 1. Soit X une v.a. gaussienne centrée réduite; rappeler sa fonction caractéristique $t \mapsto \phi_X(t) = \mathbb{E}[e^{itX}]$ et en donner le développement en série entière en 0; en déduire l'expression des moments de $X : \mathbb{E}[X^k]$ pour tout $k \ge 0$.
- 2. Soit $(X_n)_{n\geq 1}$ une suite de v.a. gaussiennes $\mathcal{N}(m_n, \sigma_n)$ qui converge en loi vers une v.a. X qui est finie presque sûrement. Montrer successivement que :
 - (a) la suite $(m_n)_{n\geq 1}$ est bornée; on pourra raisonner par l'absurde et considérer une suite extraite de $(m_n)_{n\geq 1}$ qui converge vers $+\infty$ ou vers $-\infty$;
 - (b) la suite $(\sigma_n)_{n\geq 1}$ converge vers une limite $\sigma\in[0,\infty[\,;\,$
 - (c) la suite $(m_n)_{n\geq 1}$ converge vers une limite $m\in\mathbb{R}$;
 - (d) la variable X suit la loi $\mathcal{N}(m, \sigma)$.

Exercice 11. Soit un vecteur gaussien $X = [X_1, X_2, X_3]^T \sim \mathcal{N}_3(0, \mathrm{Id})$. On pose

$$U = X_1 - X_2 + X_3$$
, $Y_1 = X_1 + X_2$, $Y_2 = X_2 + X_3$, $Y_3 = X_1 - X_3$.

- 1. Quelle est la loi de U?
- 2. Montrer que U est indépendant du vecteur $Y = [Y_1, Y_2, Y_3]^T$ et indépendant de Y_i pour tout $i \in \{1, 2, 3\}$.
- 3. On pose $V=Y_1^2+Y_2^2+Y_3^2=\|Y\|^2$. Quelle est la loi de V/3? Indications: on pourra commencer par écrire le vecteur Y sous la forme AX, puis calculer les valeurs propres de A^TA .
- 4. Quelle est la loi du couple (U, V)?