

ENGR 110 / 112 – Design I Design Process

Final Design Stages and Project Management

Instructor:

Dr. Flavio Firmani

Please refrain from uploading course materials onto online sharing platforms, such as Course Hero, OneClass or equivalent sharing platforms.

Here we identify the principal attributes of the design concepts to make a selection.

Input: Alternative conceptual designs

Design and Functional Requirements (specs)

Tasks: viii) Metrics for final criteria

ix) Select a design alternative

x) Analyze chosen design

xi) Test and evaluate chosen design

Outputs: Selected design

Test and evaluation results

Analysis of Chosen Design

Geometric Modeling (CAD)
Mathematical Modeling
Computer Simulations

ENGR 110 / 112 - Design I

Modeling and Simulation is the process of creating and analyzing the response of a digital prototype.

It is inexpensive and easy to modify. For example, in a mathematical model, we can either add or remove components, or we can change the characteristics of a particular element, *e.g.*, change the material.

With the results obtained from the simulation, designers and engineers understand under what conditions and in which ways a part could fail and what loads it can withstand.

However, these models are not perfect as they do not contain all the factors of a real system.

Testing

- Prototype. A prototype is a full-scale working model of the designed artifact. It is tested in the same operating conditions where the product should function.
- Physical Model. A model is generally smaller and made of a different material than the original artifact. They are tested in controlled environments to validate their expected behavior.
- Proof of Concept. It refers to a model that is used specifically to test whether a particular concept will actually work as proposed.
- Alpha Testing. In computer science, alpha testing is employed for off-the-shelf software as a form of internal acceptance testing, before the software goes to beta testing.

Evaluation

- -Are the objectives met?
- The results of these tests are fed back into the previous stages to *verify* that the design performs as intended.

Cycle of the Design Process. Courtesy of Interaction Design Foundation

Even though, the design process has been presented as a sequential process, it is important to revisit early stages.

Determining the need to iterate is important to improve the design process on feasibility, cost, time, and quality.

Iterating continues even after the product has already been launched into the market, as you may be looking into making improvements to the product.

Detailed Design

Here we refine and fix the design details.

Input: Selected design

Test and evaluation results

Tasks: xii) Refine and optimize the chosen design

Outputs: Proposed fabrication specifications

Final design review for client

Detailed Design

Regulations

- -Design Codes
- -Handbooks
- -Local laws and regulations

Detailed Design

- -Design optimization
- -Refine design

General Review

- -Formal review
- -Public hearings (if applicable)
- -Beta testing

Design Communication

Here we document the fabrication specifications and their justification.

Input: Proposed fabrication specifications

Tasks: xiii) Document the final design

Outputs: Description of design process

Drawings and design details

Fabrication specifications

Design Communication

Documentation

- Design Drawings (blueprints)
- -Geometric Dimensioning and Tolerancing (GD&T)
- -Fabrication Costs
- -Justification of design requirements

Oral Presentation

Final Report

Engineering Design

In engineering design, there are two aspects that critically affect the realization of our projects: Project Management and Teamwork.

Project Management

Overview of Project Management

- Design Management Definition
- Functions of Management
 - Organizing
 - Scheduling
 - Leading
 - Controlling

Design Management

Design Management Definition

As designers, we have to make decisions that will affect the outcome of our design.

There are three elements that are required to manage for a successful design project (S^3):

Scope Spending Schedule

The project must accomplish the goals (a successful design), it must be completed within the financial resources available, and it must be done "on time".

Limitations in any of the S^3 would require a trade off, *e.g.*, tight budget would result in smaller scope or longer schedule.

Functions of Management

Organizing:

It consists in identifying the tasks to be completed and defining who is responsible to complete each task.

Work Breakdown Structures (WBS) – WBS is a listing of all the tasks needed to complete the project, organized in a way that helps the design team understand how all the tasks fit into the overall design project.

- Determine the top-level tasks and breakdown into smaller (mutually exclusive) tasks.
- No task should be long (80hr rule, 80min ENGR 110)
- WBS should include every task or activity
- Tasks should add up to 100% of the work (time).

Work Breakdown Structures

Incomplete WBS

Organizing

Linear Responsibility Charts (LRC) – LRC lists
all the tasks to be managed and matches
them with the people who will be assigned to participate
in the completion of this task.

- Assign responsibilities for each task
- List all the members of the team as well as the supervisor, client, or anyone involved in the design.
- List all tasks and lower level tasks and assign the role that each participant takes in each one of them (primary role, secondary role, etc.)
- Use the WBS to form the list of tasks and the different levels of subtasks.

Linear Responsibility Charts

Key:	
1 = Primary responsibilit	y
2 = Support/work	
3 = Must be consulted	
4 = May be consulted	
5 = Review	
6 = Final Approval	

Functions of Management

Scheduling:

Scheduling and similar time management tools help us identify in advance those things that can affect our project if we are unable to complete them.

There are three primary scheduling tools that are frequently used in project management:

- Calendar
- Project Network
- Gantt Chart

Calendar

A Calendar is simply a mapping of the deadlines onto a conventional calendar.

March							B I Y	May							
S	M	T	W	T	F	S	Design Team	S	M	Т	W	Т	F	S	
	1	2	3	4	5	6								1	
7	8	9	10	11	12	13		2	3	4	5	6	7	8	
14	15	16	17	18	19	20	April	9	10	11	12	3	14	15	
21	22	23	24	25	26	27		16	17	18	19	20	21	22	
28	29	30	31					23	24	25	26	27	28	29	
								30	31						

Sun	Mon	Tue	Wed		Thu	Fri		Sat
					1	1	2	3
						5:00PM		
						Prototype Bu	IIT	
					•			
4	5	6		7	8		9	10
		7:00-8:15PM				11:00AM		
		Team Meeting				Proof of Concept		
						Due		
							ı	
11	12	13		14	15		16	17
_	11:00AM	7:00-8:15PM	1			5:00PM		_
	Rough Outline	Team Meeting	_			Topic Stce		
	Due					Outline Due		
						Due .		
18	19	20		21	22		23	24
			11:00AM	21	22	5:00PM	23	24
	Prsntion Outline		Slides Due			Draft Final		
	Due					Report Due	-	
						Due		
los los	loc	loz		loo	loo		20	
25	26	-		28	29		30	
	10:00-11:00AM Present Results					5:00PM Final Report		
	Join nosaits	. cam mouning				Due Keport		
			-					
				- 1				

Project Network

A Project Network (Activity Network) is a flow chart of the activities and events associated with the project and shows the logical ordering in which they must be performed.

It is always drawn from left to right to reflect the chronology of the events during the project. The chart shows the sequence in which the project's terminal elements (tasks and subtasks) are to be completed and their **dependencies**.

Gantt Charts

Gantt Charts are a horizontal bar graph that maps various design activities against time (you can use MS Excel).

Gantt charts illustrate the start and finish dates of the terminal elements and summary elements of a project. Specialized software has the capability to show dependencies.

Description	Rem	JAN	FEB	MAR	APR 30 06 13 20 21	MAY	JUN
Dooription	Dur	05 12 19 26	6 02 09 16 23	02 09 16 23 3	30 06 13 20 2	7 04 11 18 25	01 08 15 222
Start Project	0	\Diamond	<u>!</u>	1			
Understand Customer Requirements	18*			i			
Clarify Problem Statement	3		1	!			
Conduct Research	10			į			
Develop Objectives Tree	5		-	î L	1		
Analyze Function Requirements	10			į.			
Generate Alternatives	10			7	i 1	1 1	i i
Evaluate Alternatives	45*			:			
Develop Weighted Objectives	10			ì		,	i 1
Develop Test Protocol	8			i .	<u>:</u>	1	
Conduct Tests	20		1				
Report Test Results	5		į	1		1	1
Select Among Alternatives	3		-	}	; 🛚))	
Document Design Process	10	,	1	1		1	:
End Project	0		1	1	; ♦	1	<u> </u>

Functions of Management

Leading:

It is the process of influencing others to engage in behaviors necessary to reach the desired goals.

Team Roles: It is important to define the roles of each member in the beginning. (Team Leader, Team Member, Treasurer, etc.)

Fair Work: To avoid destructive conflict it is important to distribute the workload equitably.

Team Leader: Tracks team's goals and achievements, communicates progress to team members, removes barriers in team progression, coordinates and runs meetings, helps to resolve conflict.

Functions of Management

Controlling:

It is the process of *monitoring* and regulating the process toward achieving the desired goals. Percent Complete Matrix is a tool that determines the overall status of the project.

Percent Complete Matrix

Task	Planned Duration (days)	Percent of Total	Status (see key)	Credit (days)	
Start Project	0	0%	2	0.0	
Clarify Problem Statement	3	3%	2	3.0	
Conduct Research	10	11%	2	10.0	
Draft Objectives Tree	2	2%	2	2.0	
Review OT	1	1%	2	1.0	
Revise OT	2	2%	2	2.0	
Analyze Functions	10	11%	1	3.3	
Generate Alternatives	10	11%	1	3.3	
Develop Weighted Objectives	10	11%	2	10.0	
Develop Test Protocol	8	9%	1	2.6	
ConductTests	20	21%	0	0.0	
Report Test Results	5	5%	0	0.0	
Select Among Alternatives	3	3%	0	0.0	
Document Design Process	10	11%	0	0.0	
End Project	0	0%	0	0.0	
Total Days Budgeted	94	100%		39.6%	