Chapitre 32 Matrices et applications linéaires

Exercice 1: $\Diamond \Diamond \Diamond$ Soit $u \in \mathcal{L}(\mathbb{R}^3)$, tel que $u^2 = 0$ et $u \neq 0$.

```
1. Comparer Ker(u) et Im(u) puis donner leurs dimensions.
```

- 1. Comparer Ker(u) et Im(u) puis donner leurs dimensions.

 2. Montrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de u est $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- Solution:

D'autres part, on a : $\operatorname{Im}(u) \subset \operatorname{Ker}(u) \ (u^2 = 0)$ Ainsi on obtient : $rg(u) \le \dim Ker(u)$

D'après le théorème du rang, on obtient : $rg(u) \le \dim \mathbb{R}^3 - rg(u)$

 $\boxed{1}$ On sait que $u \neq 0$ donc $\operatorname{rg}(u) \geq 1$

 $2\mathrm{rg}(u)\leq 3$ $\mathrm{rg}(u)\leq \frac{3}{2}$ Ainsi on a $1\leq \mathrm{rg}(u)\leq \frac{3}{2}$ et $\mathrm{rg}(u)\in \mathbb{N}$ On en deduis que $\mathrm{rg}(u)=1$ et avec le théorème du rang que : $\dim \mathrm{Ker}(u)=2$

2 On note (e_1) une base de Im(u)On l'a complete en (e_1, e_2) afin d'obtenir une base de $\operatorname{Ker}(u)$ $(e_1 \in \operatorname{Ker}(u) \operatorname{car} \operatorname{Im}(u) \subset \operatorname{Ker}(u))$

Posons e_3 tq $e_1 = u(e_3)$ $(e_1 \in \text{Im}(u))$ Montrons que (e_1, e_2, e_3) une famille libre de \mathbb{R}^3 :

Soit $(\lambda, \beta, \gamma) \in \mathbb{R}^3$

Supposons $\lambda e_1 + \beta e_2 + \gamma e_3 = 0$ $u(\lambda e_1 + \beta e_2 + \gamma e_3) = 0$

 $\lambda u(e_1) + \beta u(e_2) + \gamma u(e_3) = 0$ $\gamma e_1 = 0 \text{ or } e_1 \neq 0 \text{ donc } \gamma = 0$

Ainsi on a : $\lambda e_1 + \beta e_2 = 0$ or il s'agit d'une base de $\operatorname{Ker}(u)$

En particulier d'une famille libre de $\mathrm{Ker}(u)$ donc aussi d'une famille libre de \mathbb{R}^3 On en deduis que : $\lambda=0,\,\beta=0,\,\gamma=0$ $\begin{cases} (e_1, e_2, e_3) \text{ est une famille libre de } \mathbb{R}^3 \\ \dim \mathbb{R}^3 = 3 \end{cases}$

Par caractérisation des bases en dimensions finis : (e_1, e_2, e_3) est une base de \mathbb{R}^3 Ainsi pour finir : $Mat_{(e_1,e_2,e_3)}(u) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ u(e_1) & u(e_2) & u(e_3) \end{pmatrix}$

 $1~{\rm sur}~1$