# Coursera Capstone Project : Applied Data Science

# Jiajun Zhou zhouthomas177@gmail.com

#### 1 Introduction

Nowadays, times are exceptionally difficult for our city's restaurants right now, with the spread of the coronavirus, and the unfortunate but necessary social distancing requirements, currently providing many obstacles for Hong Kong's stellar eateries. In light of the current situation, I think that recognition and support of our restaurant scene is particularly important right now. With nearly 7 million inhabitants and the highest metropolitan GDP in the world, an estimated 60 million overseas or mainland visitors are expected to flock to the Hong Kong.

Hong Kong is well-known as one of restaurant capitals of the world. Hong Kong has hit the record high of having 15,000 licensed restaurants, cafes and bars by year end of 2017, with 20.4 restaurants per 10,000 people. It is one of the highest density city of restaurants in the world. Hong Kong is the first batch of Asia's cities to be included in the Michelin's Guide Hong Kong.

I believe it's difficult for a travelers, especially restaurant-goers, to make a choice from among many options since there is also too much information on the web because everybody's got their own take of where to go and it's all so fragmented that you have to assemble it yourself especially if you're wanting non-touristy recommendations.



### 2 Business Problem

I have done that by updating the list districts around the city that have been doing great things, even if current events have led to a temporary halt in operations. Read on, then as we present our pick of Hong Kong's 10 most common restaurants and get some inspiration for where your next meal could be. Thus, the main objective of the project will be to find ideal spots in different districts of the city. The Foursquare API will used to get location data and clustering methods to group their restaurant venues

information.

## 3 Data

The data for this project has been retrieved and processed through multiple sources, giving careful considerations to the accuracy of the methods used. For this project we need following data:

• Hongkong data that contains list districts (Wards) along with their latitude and longitude. Datasource: https://en.wikipedia.org/wiki/Districts\_of\_Hong\_Kong

Description: We will Scrap HK districts (Wards) Table from Wikipedia and get the coordinates of these major districts using geocoder class of Geopy client.

#### Restaurants in each neighborhood of Hong Kong:

Data source: Foursquare APIs

Description: By using this API we will get all the venues in each neighborhood. We can

filter these venues to get only restaurants.

# 3.1 Neighborhood

The data of the neighborhoods in HK can be extracted out by web scraping using Pandas for Python. The neighborhood data is scraped from a Wikipedia webpage.

1. Use pandas to tranform the wiki's data into a dataframe.



After pre-processing, the data frame is obtained like this:

|    | District            | Chinese | Population | Area   | Density  | Region           |
|----|---------------------|---------|------------|--------|----------|------------------|
| 0  | Central and Western | 中西區     | 244600     | 12.44  | 19983.92 | Hong Kong Island |
| 1  | Eastern             | 東區      | 574500     | 18.56  | 31217.67 | Hong Kong Island |
| 2  | Southern            | 南區      | 269200     | 38.85  | 6962.68  | Hong Kong Island |
| 3  | Wan Chai            | 灣仔區     | 150900     | 9.83   | 15300.10 | Hong Kong Island |
| 4  | Sham Shui Po        | 深水埗區    | 390600     | 9.35   | 41529.41 | Kowloon          |
| 5  | Kowloon City        | 九龍城區    | 405400     | 10.02  | 40194.70 | Kowloon          |
| 6  | Kwun Tong           | 觀塘區     | 641100     | 11.27  | 56779.05 | Kowloon          |
| 7  | Wong Tai Sin        | 黃大仙區    | 426200     | 9.30   | 45645.16 | Kowloon          |
| 8  | Yau Tsim Mong       | 油尖旺區    | 318100     | 6.99   | 44864.09 | Kowloon          |
| 9  | Islands             | 離島區     | 146900     | 175.12 | 825.14   | New Territories  |
| 10 | Kwai Tsing          | 葵青區     | 507100     | 23.34  | 21503.86 | New Territories  |
| 11 | North               | 北區      | 310800     | 136.61 | 2220.19  | New Territories  |
| 12 | Sai Kung            | 西貢區     | 448600     | 129.65 | 3460.08  | New Territories  |
| 13 | Sha Tin             | 沙田區     | 648200     | 68.71  | 9433.85  | New Territories  |
| 14 | Tai Po              | 大埔區     | 307100     | 136.15 | 2220.35  | New Territories  |
| 15 | Tsuen Wan           | 荃灣區     | 303600     | 61.71  | 4887.38  | New Territories  |
| 16 | Tuen Mun            | 屯門區     | 495900     | 82.89  | 5889.38  | New Territories  |
| 17 | Yuen Long           | 元朗區     | 607200     | 138.46 | 4297.99  | New Territories  |

## 3.2 Geocoding

The latitude and longitude of the neighborhoods are retrieved using Google Maps Geocoding API. The geometric location values are then stored into the initial data frame.

```
from geopy.geocoders import Nominatim # module to convert an address into latitude and longitude values
geolocator = Nominatim(user_agent="HK_explorer")

df['Major_Dist_Coord']= df['Chinese'].apply(geolocator.geocode).apply(lambda x: (x.latitude, x.longitude))
df[['Latitude', 'Longitude']] = df['Major_Dist_Coord'].apply(pd.Series)

df.drop(['Major_Dist_Coord'], axis=1, inplace=True)
df
```

|    | District            | Chinese | Population | Area   | Density  | Region           | Latitude  | Longitude  |
|----|---------------------|---------|------------|--------|----------|------------------|-----------|------------|
| 0  | Central and Western | 中西區     | 244600     | 12.44  | 19983.92 | Hong Kong Island | 22.274848 | 114.148725 |
| 1  | Eastern             | 東區      | 574500     | 18.56  | 31217.67 | Hong Kong Island | 22.273078 | 114.233594 |
| 2  | Southern            | 南區      | 269200     | 38.85  | 6962.68  | Hong Kong Island | 22.219263 | 114.225230 |
| 3  | Wan Chai            | 灣仔區     | 150900     | 9.83   | 15300.10 | Hong Kong Island | 22.273947 | 114.181749 |
| 4  | Sham Shui Po        | 深水埗區    | 390600     | 9.35   | 41529.41 | Kowloon          | 22.331254 | 114.159321 |
| 5  | Kowloon City        | 九龍城區    | 405400     | 10.02  | 40194.70 | Kowloon          | 22.321800 | 114.188594 |
| 6  | Kwun Tong           | 觀塘區     | 641100     | 11.27  | 56779.05 | Kowloon          | 22.308649 | 114.227661 |
| 7  | Wong Tai Sin        | 黃大仙區    | 426200     | 9.30   | 45645.16 | Kowloon          | 22.344322 | 114.202150 |
| 8  | Yau Tsim Mong       | 油尖旺區    | 318100     | 6.99   | 44864.09 | Kowloon          | 22.307404 | 114.165526 |
| 9  | Islands             | 配息籍     | 146900     | 175.12 | 825.14   | New Territories  | 35.736156 | 139.714222 |
| 10 | Kwai Tsing          | 葵青區     | 507100     | 23.34  | 21503.86 | New Territories  | 22.341007 | 114.104285 |
| 11 | North               | 北區      | 310800     | 136.61 | 2220.19  | New Territories  | 35.755838 | 139.736687 |
| 12 | Sai Kung            | 西貢區     | 448600     | 129.65 | 3460.08  | New Territories  | 22.307010 | 114.371345 |
| 13 | Sha Tin             | 沙田區     | 648200     | 68.71  | 9433.85  | New Territories  | 22.391573 | 114.208098 |
| 14 | Tai Po              | 大埔區     | 307100     | 136.15 | 2220.35  | New Territories  | 22.480971 | 114.304103 |
| 15 | Tsuen Wan           | 荃灣區     | 303600     | 61.71  | 4887.38  | New Territories  | 22.364987 | 114.077688 |
| 16 | Tuen Mun            | 屯門區     | 495900     | 82.89  | 5889.38  | New Territories  | 22.378840 | 113.952830 |
| 17 | Yuen Long           | 元朗區     | 607200     | 138.46 | 4297.99  | New Territories  | 22.457296 | 114.021319 |

# 3.3 Venue Data

From the location data obtained after Web Scraping and Geocoding, the venue data is found out by passing in the required parameters to the FourSquare API, and creating another Data Frame to contain all the venue details along with the respective neighborhoods.

```
results = requests.get(url).json()

def get_category_type(row):
    try:
        categories_list = row['categories']
    except:
        categories_list = row['venue.categories']

if len(categories_list) == 0:
    return None
else:
    return categories_list[0]['name']
```

```
venues = results['response']['groups'][0]['items']
nearby_venues = json_normalize(venues) # flatten JSON

# filter columns
filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venu
nearby_venues = nearby_venues.loc[:, filtered_columns]

# filter the category for each row
nearby_venues['venue.categories'] = nearby_venues.apply(get_category_type, axis=1

# clean columns
nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns]
nearby_venues.head()
```

/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/ipykernel\_launche r.py:3: FutureWarning: pandas.io.json.json\_normalize is deprecated, use pandas.js on\_normalize instead

This is separate from the ipykernel package so we can avoid doing imports until

|   | name                                   | categories           | lat       | Ing        |
|---|----------------------------------------|----------------------|-----------|------------|
| 0 | Victoria Peak (太平山)                    | Scenic Lookout       | 22.271280 | 114.149976 |
| 1 | Morning Trail, The Peak (山頂晨運徑)        | Trail                | 22.278008 | 114.144432 |
| 2 | Victoria Peak Garden (山頂公園)            | Garden               | 22.273937 | 114.143373 |
| 3 | Hong Kong Trail (Section 1) (港島徑(第一段)) | Trail                | 22.272874 | 114.145895 |
| 4 | New Punjab Club                        | Pakistani Restaurant | 22.280250 | 114.155475 |