

Netaji Subhas University of Technology

Lab Report

Data Communications

Name Kushagra Lakhwani

Roll No. 2021UCI8036

Semester 4th

Course CICPC12

Abstract

The practical lab report "Data Communications" is the original and unmodified content submitted by Kushagra Lakhwani (Roll No. 2021UCI8036).

The report is submitted to *Mr. Pattetti*, Department of Computer Science and Engineering, NSUT, Delhi, for the partial fulfillment of the requirements of the course (CICPC12).

Index

1	Fourier Transform	3
	1.1 Matlab Code	3
	1.2 Output	
2	Uniform Distribution	4
	2.1 Matlab Code	4
	2.2 Output	5
3	Normal Distribution	6
	3.1 Matlab Code	6
	3.2 Output	6
4	Quantization: Uniform	7
	4.1 Matlab Code	7
	4.2 Output	8
5	Quantization: Non-Uniform	8
	5.1 Matlab Code	8
	5.2 Output	9
6	Pulse Code Modulation (PCM)	10
	6.1 Theory	10
	6.2 Matlab Code	10
	6.3 Output	12

1 Fourier Transform

We plot a Rectangular Pulse Signal x(t) in *Matlab* and explore its magnitude and phase spectrum of its Fourier Transform.

```
close all;
% parameters of a rectangular pulse signal
                           % width
A = 1;
                           % amplitude
t = -10:0.01:10;
                          % time vector
% plot the rectangular pulse signal in the first subplot
subplot(2, 2, 1)
plot(t, xt)
xlabel('Time')
ylabel('Amplitude')
title('Rectangular pulse')
% define a range of frequencies and compute the Fourier transform at each frequency
w = -8 * pi:0.01:8 * pi; % range of frequencies
for i = 1:length(w)
   xw(i) = trapz(t, xt .* exp(-1i * w(i) .* t)); % Fourier transform
end
% plot the Fourier transform in the second subplot
subplot(2, 2, 2)
plot(w, xw)
title('Fourier transform of rect pulse: Sampling signal')
xlabel('Frequency')
ylabel('Amplitude')
% plot the magnitude spectrum of the Fourier transform in the third subplot
subplot(2, 2, 3)
plot(w, abs(xw))
title('Magnitude spectrum')
xlabel('Frequency')
ylabel('Amplitude')
% plot the phase spectrum of the Fourier transform in the fourth subplot
subplot(2, 2, 4)
plot(w, angle(xw))
title('Phase spectrum')
xlabel('Frequency')
ylabel('Amplitude')
```


Figure 1: Fourier Transform

2 Uniform Distribution

Generate uniform random numbers and plot their density function. Find the mean and variance

```
% Define the parameters of the uniform distribution
a = 1; % Lower bound
b = 6; % Upper bound

% Generate 1000 random numbers from the uniform distribution
rng(1); % Set the random seed for reproducibility
X = a + (b - a) * rand([1, 1000]);

% Compute the mean and variance of the generated numbers
```

```
mu = mean(X);
sigma2 = var(X);
\% Define the range of x values to plot
x = linspace(a - 1, b + 1, 1000);
% Compute the uniform distribution density function
f = ones(size(x)) ./ (b - a);
% Plot the uniform distribution density function
plot(x, f, 'LineWidth', 2);
hold on;
% Plot a vertical line at the mean value
ymin = 0;
ymax = max(f) * 1.5;
line([mu mu], [ymin ymax], 'Color', 'r', 'LineStyle', '--', 'LineWidth', 2);
% Set the plot limits and labels
xlim([a - 2, b + 2]);
ylim([ymin, ymax]);
xlabel('x');
ylabel('Probability density');
title('Uniform distribution');
legend(sprintf('Mean = %.2f\nVariance = %.2f', mu, sigma2));
```


Figure 2: Uniform Distribution

3 Normal Distribution

Using the Gaussian random numbers we find the mean and variance.

3.1 Matlab Code

```
data = randn(1000, 1); % Generate random numbers
histogram(data, 20, 'Normalization', 'pdf');
hold on;

mu = mean(data);
sigma = std(data);

x = linspace(min(data), max(data), 100); % Define x values for Gaussian curve
y = normpdf(x, mu, sigma); % Calculate y values for Gaussian curve
% Overlay Gaussian curve
plot(x, y, 'LineWidth', 2);
% Add title and labels
title('Histogram of Random Data with Gaussian Fit');
xlabel('Data Value');
ylabel('Probability Density');
hold off;
```

3.2 Output

Figure 3: Gaussian Distribution

4 Quantization: Uniform

Computing the Signal to quantization Noise ratio of Uniform Quantization. Plot SNQR vs. Quantization levels.

```
close all; clc;
% Define the message signal
t = linspace(0, 1, 1000);
fm = 1; % message signal frequency
Am = 1; % message signal amplitude
m = Am * sin(2 * pi * fm * t);
% Define the maximum number of quantization levels
n_max = 4;
% Initialize vectors to store SQNR and number of quantization levels
sqnr = zeros(1, n_max);
levels = 1:n_max;
% Compute the SQNR for each quantization level
for i = 1:n_max
   L = 2 ^i;
   delta = (max(m) - min(m)) / (L - 1);
   m_quantized = delta * round(m / delta);
   noise = m - m_quantized;
   power_m = sum(m .^ 2) / length(m);
   power_noise = sum(noise .^ 2) / length(noise);
    sqnr(i) = power_m / power_noise;
end
% Plot the message signal and the quantized signal for n=4
subplot(2, 1, 1);
plot(t, m, 'b', 'LineWidth', 2);
hold on;
plot(t, m_quantized, 'r', 'LineWidth', 2);
xlabel('Time (s)');
ylabel('Amplitude');
title('Message signal and Quantized signal');
legend('Message signal', 'Quantized signal');
\mbox{\% Plot the number of quantization levels vs. the SQNR}
subplot(2, 1, 2);
plot(sqnr, levels, 'LineWidth', 2);
ylabel('Quantization levels');
xlabel('Signal to Quantisation Noise Ratio (dB)');
title('Number of quantization levels vs. SQNR');
```


Figure 4: SQNR vs Quantization

5 Quantization: Non-Uniform

Computing SNR of Non-Uniform Quantization and Plot SNR vs. Quantization Levels

```
% Program to Compute SNR of Non-Uniform Quantization and Plot the SNR vs. Quantization Levels
close all; clc;
% Signal Parameters
N = 10000;
                            % Number of samples in the signal
f = 1;
                            % Signal frequency
Fs = 1000;
                            % Sampling frequency
t = (0:N - 1) / Fs;
                            % Time vector
x = \sin(2 * pi * f * t);
                            % Signal
% Quantization Parameters
L = 2:20;
                                % Number of quantization levels to try
b = log2(L);
                                % Number of bits to represent each level
Delta = 2 . / (L - 1);
                                % Step size of the quantization levels
SQNR = zeros(length(L), 1);
                                % To store the Signal to Quantization Noise Ratio (SQNR) for each qu
```

```
% Non-Uniform Quantization
for i = 1:length(L)
    q = zeros(size(x));
    % Compute quantization levels
    V = [-(L(i) - 1) / 2:1:(L(i) - 1) / 2] * Delta(i);
    % Quantize the signal
    for j = 1:N
        [val, index] = min(abs(x(j) - V));
        q(j) = V(index);
    end
    \% Compute the SQNR
   noise = x - q;
    signal_power = sum(x .^ 2) / N;
    noise_power = sum(noise .^ 2) / N;
    SQNR(i) = 10 * log10(signal_power / noise_power);
end
% Plot the SNR vs. Quantization Levels
figure;
plot(b, SQNR, 'b-o', 'LineWidth', 2);
xlabel('Number of Bits');
ylabel('Signal to Quantization Noise Ratio (dB)');
grid on;
```


Figure 5: SQNR vs Quantization (non-uniform)

6 Pulse Code Modulation (PCM)

6.1 Theory

Pulse Code Modulation (PCM) is a technique used to digitize analog signals. The process involves three main steps: sampling, quantization, and encoding.

- 1. In the first step, the analog signal is sampled at regular intervals¹. The resulting sequence of samples represents the signal in a discrete-time domain.
- 2. In the second step, the samples are quantized into a finite number of levels. This reduces the number of possible amplitude values that each sample can take on, resulting in a loss of information compared to the original analog signal. However, quantization allows for the signal to be represented using a fixed number of bits, which is necessary for digital storage and transmission.
- 3. In the third step, the quantized samples are encoded into binary code words. Each code word represents a quantization level and is assigned a unique binary code based on the number of bits used to represent it. This is typically done using a lookup table that maps each quantization level to a binary code.

To demodulate the signal, the process is reversed.

```
% Define parameters
fs = 100; % Sampling frequency
f = 10; % Signal frequency
A = 1; % Signal amplitude
bits = 8; % Number of bits per sample
% Generate sinusoidal signal
t = 0:1 / fs:1 - 1 / fs; % Time vector
x = A * sin(2 * pi * f * t); % Original signal
% Sample the signal
Ts = 1 / fs; % Sampling interval
n = 0:Ts:1 - Ts; % Sample times
xs = A * sin(2 * pi * f * n); % Sampled signal
% Encode signal
L = 2 ^ bits; % Number of quantization levels
partition = linspace(-A, A, L + 1); % Quantization levels
codebook = linspace(-A + A / L, A - A / L, L); % Codebook
index = zeros(1, length(xs)); % Preallocate index vector
```

¹The Nyquist-Shannon sampling theorem states that a signal can be perfectly reconstructed from its samples if the sampling rate is at least twice the maximum frequency of the signal.

```
for i = 1:length(xs)
    [~, ind] = min(abs(xs(i) - partition)); % Find closest quantization level
    index(i) = ind - 1; % Subtract 1 to get 0-based index
end
code = dec2bin(index, bits); % Convert to binary
% Decode signal
index_hat = bin2dec(code); % Convert binary to decimal
xq_hat = codebook(index_hat + 1); % Reconstructed quantized signal
t_hat = 0:1 / fs:1 - 1 / fs; % Time vector for reconstructed signal
x_hat = interp1(n, xq_hat, t_hat, 'linear'); % Reconstructed signal
% Demodulate signal
demod = zeros(1, length(code) * bits); % Preallocate demodulated signal
for i = 1:length(code)
    demod((i - 1) * bits + 1:i * bits) = str2double(code(i, :)); % Convert to serial binary stream
end
demod = reshape(demod, bits, length(demod) / bits)'; % Reshape into matrix
demod = bin2dec(num2str(demod)); % Convert binary to decimal
demod = demod - A; % Convert to original range
% Plot signals
subplot(5, 1, 1)
plot(t, x)
title('Original Signal')
xlabel('Time (s)')
ylabel('Amplitude')
subplot(5, 1, 2)
stem(n, xs)
title('Sampled Signal')
xlabel('Time (s)')
ylabel('Amplitude')
subplot(5, 1, 3)
stairs(1:length(code), index)
title('Encoded Signal')
xlabel('Sample')
ylabel('Quantization Index')
subplot(5, 1, 4)
plot(t_hat, x_hat)
title('Demodulated Signal')
xlabel('Time (s)')
ylabel('Amplitude')
subplot(5, 1, 5)
plot(n, xs, 'b-', n, xq_hat, 'r--')
```

```
title('Encoded and Reconstructed Signal')
xlabel('Time (s)')
ylabel('Amplitude')
legend('Original Signal', 'Reconstructed Signal', 'Location', 'south')

% Adjust spacing between subplots
set(gcf, 'Units', 'normalized', 'Position', [0.2 0.2 0.5 0.6])
set(gcf, 'DefaultAxesLooseInset', [0.1, 0.1, 0.1, 0.1])

% Save figure
saveas(gcf, 'pcm_no_quantization.pdf')
```

6.3 Output

Figure 6: PCM