Tree Leaves Depth

(1 sec. 512mb)

จงเพิ่มบริการ long long CP::map_bst::sum_leaves_depth() ซึ่งนับผลรวมของความลึกของใบทั้งหมดใน ต้นไม้ Binary Search Tree ของเรา โดยกำหนดให้ความลึกของปมใด ๆ ในต้นไม้คือความยาวของ Path จากปมรากไป ยังปมดังกล่าว

ตัวอย่างเช่น ต้นไม้ในรูปด้านขวานี้มีความลึกของปมต่าง ๆ เป็นตัวเลขที่กำกับอยู่ด้านข้าง ๆ ปม โดยฟังก์ชันนี้จะต้องคืนผลรวม ของความลึกของปมที่เป็นปมใบทั้งหมดซึ่งมีค่าเป็น 5 (ได้มาจากการ นำความลึกของปมหมายเลข 1, 3 และ 5 มารวมกัน)

ข้อบังคับ

- โจทย์ข้อนี้จะมีไฟล์ตั้งต้นมาให้ ประกอบด้วยไฟล์ map_bst.h, main.cpp และ student.h อยู่ ให้นิสิตเขียน code เพิ่มเติมลงในไฟล์ student.h เท่านั้น และการส่งไฟล์เข้าสู่ระบบ grader ให้ส่งเฉพาะไฟล์ student.h เท่านั้น
 - o ไฟล์ student.h จะต้องไม่ทำการอ่านเขียนข้อมูลใด ๆ ไปยังหน้าจอหรือคีย์บอร์ดหรือไฟล์ใด ๆ
- หากใช้ VS Code ให้ทำการ compile ที่ไฟล์ main.cpp
 - ** main ที่ใช้จริงใน grader นั้นจะแตกต่างจาก main ที่ได้รับในไฟล์ตั้งต้นแต่จะทำการทดสอบในลักษณะ

เดียวกัน **

คำแนะนำ

ข้อนี้สามารถทำได้โดยง่ายโดยเขียนโปรแกรมแบบ recursive และเพื่อให้การเขียนโปรแกรมแบบ recursive ทำได้สะดวก นิสิตสามารถเขียนฟังก์ชัน long long my_recur(node* n, size_t aux); เพื่อกระทำการตามที่นิสิต ต้องการได้ ฟังก์ชันดังกล่าวนั้นมีโครงอยู่ใน student.h แล้ว ถ้าหากนิสิตต้องการจะใช้ สามารถเขียนรายละเอียดของ ฟังก์ชันดังกล่าวได้เลย

คำอธิบายฟังก์ชัน main

main() จะอ่านข้อมูลมา 2 บรรทัด คือ

- บรรทัดแรกประกอบด้วยจำนวนเต็ม N ซึ่งระบุจำนวนข้อมูลใน Binary Search Tree
- บรรทัดที่สองประกอบด้วยจำนวนเต็ม N ตัวคือข้อมูลที่จะใส่เข้าไปใน CP::map bst ตามลำดับ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	5
42513	

ชุดข้อมูลทดสอบ

ให้ n คือจำนวนปมในต้นไม้ที่จะเรียกใช้ sum leaves depth

- 15% n <= 3
- 15% n <= 7
- 20% n <= 50.000
- 50% n <= 500,000