Phenotyping of Clinical Notes with Contextualized Neural Language Models

Andriy Mulyar¹, Elliot Schumacher², Masoud Rouhizadeh², and Mark Dredze² Virginia Commonwealth University¹, Johns Hopkins University²

What is Clinical Note Phenotyping?

- Clinical phenotyping: extract patient conditions or traits from unstructured clinical text.
- Automated phenotyping of clinical notes:
- Adds structured information to electronic health records.
- Enhances the productivity and accuracy of medical coders.
- Provides information for downstream clinical decision support tasks.

Why is Phenotyping Difficult?

- given phenotype may not be present in a specific clinical note.
- s phenotype may be present, but not explicitly stated.

"...The patient currently resides on a friend's couch ..."

Homeless

Signal of a phenomic trait may be present anywhere within a clinical note.

Phenotyping Benchmarks

I2B2 2006: Smoking

Smoking status identification.

Smoker Non-Smoker Note **Past Smoker Current Smoker** I2B2 2008: Obesity

Disease presence identification in discharge notes.

End-to-End Phenotyping with Language Models

- Frame phenotyping as a document classification task.
- Unroll a pre-trained, fixed context window language model (BERT) to generate a sequence of locally contextualized classifier token representations.
- Encode a global document context vector from local classifier token sequences and train with cross-entropy classification head.

Experiments

Global Context Heads

\rightarrow
f((h'p))
J((Hp))

- Dimension-wise max
- Concatenation (identity)
- Transformer Encoder
- LSTM Encoder

	I2B2 2006: Smoking	I2B2 2008: Obesity
$f_{ m max}$	50.3	74.7
f_{I}	82.9	76.8
$f_{ m Transformer}$	75.9	97.7
$f_{ m LSTM}$	98.1 $(97.1 \pm .48)$	99.7 $(93.9 \pm .59)$
Shared Task 1 st Place	90.0	95.0
Majority Label Baseline	81.0	74.4
DocBert	80.2	67.6
CNN	77.0	
CNN + Rules		96.2

- State-of-the-art performance with LSTM encoder.
- Outperforms rule based techniques with no task specific dictionary searches or rules.
- Sequence of classifier tokens has average length ~ 7 across both tasks.
- -Transformer Encoder and LSTM Encoder treat global context encoding as sequence compression problem.

