互评作业2: 频繁模式与关联规则挖掘-Wine Reviews

1. 问题描述

选择1个数据集进行频繁模式和关联规则挖掘。

• 数据分析要求

- 对数据集进行处理,转换成适合进行关联规则挖掘的形式;
- 找出频繁模式;
- 导出关联规则, 计算其支持度和置信度;
- 对规则进行评价,可使用Lift、卡方和其它教材中提及的指标,至少2种;
- 对挖掘结果进行分析;
- 可视化展示

数据集: Wine Reviews 此数据集包含两个csv文件:

winemag-data_first150k.csv: 10列, 15万条数据winemag-data-130k-v2.csv: 13列, 13万条数据

选择分析winemag-data_first150k.csv数据文件,数据属性包括:

- country 国家
- desprition 描述
- designation 酿酒厂内的葡萄园
- points 评分分数
- price 价格
- province 省份或洲
- region_1 一个省或州 (即纳帕) 的葡萄酒产区1
- region_2 葡萄酒产区指定的更具体的区域,但此值有时可能为空
- variety 葡萄品种
- winery 酿酒厂

2. 对数据集进行处理,转换成适合进行关联规则挖掘的形式

2.1 导入数据

In [1]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
%matplotlib inline
f_150k = "data/Wine-Reviews/winemag-data_first150k.csv"
data = pd.read_csv(f_150k, index_col=0)
data.head(5)

Out[1]:

	country	description	designation	points	price	province	region_1	region_2	variety	winery
0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley	Napa	Cabernet Sauvignon	Heitz
1	Spain	Ripe aromas of fig, blackberry and cassis are	Carodorum Selección Especial Reserva	96	110.0	Northern Spain	Toro	NaN	Tinta de Toro	Bodega Carmen Rodríguez
2	US	Mac Watson honors the memory of a wine once ma	Special Selected Late Harvest	96	90.0	California	Knights Valley	Sonoma	Sauvignon Blanc	Macauley
3	US	This spent 20 months in 30% new French oak, an	Reserve	96	65.0	Oregon	Willamette Valley	Willamette Valley	Pinot Noir	Ponzi
4	France	This is the top wine from La Bégude, named aft	La Brûlade	95	66.0	Provence	Bandol	NaN	Provence red blend	Domaine de la Bégude

In [2]: data. shape

Out[2]: (150930, 10)

```
Out[3]: country
                      object
                      object
        description
        designation
                      object
                      int64
        points
        price
                     float64
        province
                     object
                      object
        region_1
        region_2
                      object
                      object
        variety
        winery
                      object
        dtype: object
   [4]: # 统计所有属性的缺失值
        print(data.isnull().sum(axis=0))
        country
                        5
                        0
        description
        designation
                     45735
        points
                        0
                     13695
        price
        province
                        5
        region_1
                     25060
        region_2
                     89977
        variety
                        0
                        0
        winery
        dtype: int64
        2.2 处理数据集中的不同属性
         (1) description属性是对于葡萄酒的自然语言描述,在分析过程中不做考虑。
         (2) country、province、region_1和region_2标称属性属于葡萄酒产地的位置信息,仅选择country属性进行挖掘。通过数据探索性分析,country
        属性缺失值仅有5项,可以通过属性的相关关系来填补缺失值,使用葡萄酒的designation属性来判断其所属国家。
   [5]: # 获取country属性缺失的5条数据
        attri = "country"
        country_null = data.loc[data[attri].isnull()]
        country_null["designation"].value_counts()
Out[5]: Piedra Feliz
        Askitikos
                      1
        Shah
        Name: designation, dtype: int64
   [6]: # 根据缺失值的分布,定义一个从designation到country的转换字典
        designation2country = {
           "Askitikos":"Greece",
           "Shah":"US",
           "Piedra Feliz": "Chile",
   [7]: # 处理缺失值
        # 获取country缺失值对应的index
        ind = country_null.index.tolist()
Out[7]: [1133, 1440, 68226, 113016, 135696]
In [8]: # 补全数据
        for i in ind:
           designation = data.iloc[i, 2]
           data.iloc[i,0] = designation2country[designation]
In [9]: # 探索country属性的不同取值个数
        countrySeries = data["country"].value_counts()
```

In [3]: data.dtypes

- (3) points、price数值属性需进行离散化处理,为了区分二者需加上前缀"points-"和"price-"。通过数据探索性分析,可知:
- points属性的最小值Min为80,最大值Max为100,points中大于等于97的项被识别为离群点

countrySeries.size

Out[9]: 48

• price属性的最小值Min为4.0,最大值Max为2300.0,price中大于等于77的项被识别为离群点

```
In [10]: def points_discretization(value):
    return "points-"+str(int(value/5))

def price_discretization(value):
    if value < 100: # 设置price最高离散值为10
        return "price-"+str(int(value/10))
    else:
        return "price-10"
```

(4) designation、variety、winery标称属性不同取值个数过多,通过探索新分析,不同取值个数分别为30622、632、14810,同时designation属性 缺失项有45735个,在分析过程中不做考虑

最终,选取属性country、points、price进行频繁模式和关联规则挖掘。

```
In [11]: # 过滤属性
          data = data.drop(['description', 'province', 'region_1',
                             'region_2', 'variety', 'winery', 'designation'], axis=1)
          data. head (5)
Out[11]:
              country points price
                  US
                             235.0
                          96
                Spain
                             110.0
                          96
           2
                  US
                              90.0
                          96
                  US
                          96
                              65.0
                              66.0
               France
                          95
In [12]: |# points、price数值属性离散化处理
          data.loc[:, 'points'] = data['points'].map(lambda x: points_discretization(x))
          data.loc[:, 'price'] = data['price'].map(lambda x: price_discretization(x))
          data. head (5)
Out[12]:
                                  price
              country
                        points
           0
                  US points-19 price-10
                Spain points-19 price-10
                  US points-19
                                price-9
           3
                  US points-19
                                price-6
               France points-19
                                price-6
```

2.3 将DataFrame转换为TDB

```
In [13]: # 将dataframe转换为列表
                 def trans_list(x):
                       return x.dropna().tolist()
                 data_list = data.apply(trans_list, axis=1).tolist()
                 data_list
                   ['US', 'points-18', 'price-6'],
                   ['Bulgaria', 'points-18', 'price-1'],
                   ['US', 'points-18', 'price-3'],
                   ['Italy', 'points-18', 'price-10'],
                   ['France', 'points-18', 'price-2'],
                   ['US', 'points-18', 'price-4'],
                   ['Italy', 'points-18', 'price-10'],
['France', 'points-18', 'price-6'],
['Italy', 'points-18', 'price-2'],
['Italy', 'points-18', 'price-2'],
['Italy', 'points-18', 'price-2'],
['Social', 'points-18', 'price-2'],
                   ['Spain', 'points-18', 'price-1'],
['Spain', 'points-18', 'price-2'],
                   ['US', 'points-18', 'price-5'],
                   ['Italy', 'points-18', 'price-3'],
['France', 'points-18', 'price-6'],
['Italy', 'points-18', 'price-3'],
['Italy', 'points-18', 'price-9'],
['US', 'points-18', 'price-6'],
                   ['Italv'. 'points-18'. 'price-5'].
```

```
In [14]: # 利用TransactionEncoder转换为模型可接受数据
from mlxtend.preprocessing import TransactionEncoder
te = TransactionEncoder() # 定义模型
tf = te.fit_transform(data_list) # type(tf): numpy.ndarray
data_df = pd.DataFrame(tf, columns=te.columns_)
data_df
```

Out[14]:

	Albania	Argentina	Australia	Austria	Bosnia and Herzegovina	Brazil	Bulgaria	Canada	Chile	China	 price- 1	price- 10	price- 2	price- 3	price- 4	price- 5
0	False	False	False	False	False	False	False	False	False	False	 False	True	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	 False	True	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	False
150925	False	False	False	False	False	False	False	False	False	False	 False	False	True	False	False	False
150926	False	False	False	False	False	False	False	False	False	False	 False	False	True	False	False	False
150927	False	False	False	False	False	False	False	False	False	False	 False	False	True	False	False	False
150928	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False	True
150929	False	False	False	False	False	False	False	False	False	False	 True	False	False	False	False	False

150930 rows × 64 columns

3. 找出频繁模式

调用mlxtend中的apriori函数,最小支持度阈值取0.03

(52, 2)

Out[15]:

	support	itemsets
9	0.526887	(points-17)
7	0.413423	(US)
12	0.303419	(price-1)
10	0.299669	(points-18)
14	0.212986	(price-2)
37	0.201034	(price-1, points-17)
29	0.199788	(US, points-17)
4	0.155556	(Italy)
8	0.153694	(points-16)
3	0.139787	(France)
39	0.131604	(price-2, points-17)
30	0.128748	(US, points-18)
15	0.124554	(price-3)
13	0.118121	(price-10)
32	0.106460	(US, price-2)
31	0.101617	(US, price-1)
23	0.093964	(Italy, points-17)
16	0.082840	(price-4)
35	0.079454	(points-16, price-1)
33	0.076784	(US, price-3)

4. 导出关联规则,计算其支持度和置信度

使用mlxtend中的association_rules方法,最小支持度阈值取0.03,最小置信度阈值取0.4

mlxtend 使用了 DataFrame 方式来描述关联规则,而不是蕴涵 (->)符号,其中:

antecedents: 规则先导项consequents: 规则后继项

antecedent support: 规则先导项支持度consequent support: 规则后继项支持度support: 规则支持度 (前项后项并集的支持度)

• confidence: 规则置信度 (规则置信度: 规则支持度support / 规则先导项support)

• lift: 规则提升度,表示含有先导项条件下同时含有后继项的概率,与后继项总体发生的概率之比。

In [16]: from mlxtend.frequent_patterns import association_rules # metric可以有很多的度量选项,返回的表列名都可以作为参数 rules = association_rules(frequent_itemsets_metric='confide

rules = association_rules(frequent_itemsets, metric='confidence', min_threshold=0.4)

rules = rules.drop(['leverage', 'conviction'], axis=1)

print(rules.shape)

rules

(28, 7)

Out[16]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
0	(price-1)	(points-17)	0.303419	0.526887	0.201034	0.662561	1.257503
1	(US)	(points-17)	0.413423	0.526887	0.199788	0.483253	0.917185
2	(price-2)	(points-17)	0.212986	0.526887	0.131604	0.617900	1.172737
3	(points-18)	(US)	0.299669	0.413423	0.128748	0.429636	1.039215
4	(price-2)	(US)	0.212986	0.413423	0.106460	0.499844	1.209038
5	(Italy)	(points-17)	0.155556	0.526887	0.093964	0.604055	1.146461
6	(points-16)	(price-1)	0.153694	0.303419	0.079454	0.516963	1.703795
7	(price-3)	(US)	0.124554	0.413423	0.076784	0.616469	1.491132
8	(points-16)	(US)	0.153694	0.413423	0.076048	0.494805	1.196849
9	(France)	(points-17)	0.139787	0.526887	0.066998	0.479287	0.909659
10	(price-3)	(points-17)	0.124554	0.526887	0.062327	0.500399	0.949728
11	(US, price-2)	(points-17)	0.106460	0.526887	0.060757	0.570700	1.083154
12	(price-2, points-17)	(US)	0.131604	0.413423	0.060757	0.461662	1.116682
13	(US, price-1)	(points-17)	0.101617	0.526887	0.058424	0.574949	1.091220
14	(price-10)	(points-18)	0.118121	0.299669	0.051898	0.439365	1.466169
15	(price-3)	(points-18)	0.124554	0.299669	0.049990	0.401351	1.339316
16	(price-10)	(France)	0.118121	0.139787	0.049930	0.422706	3.023936
17	(price-4)	(US)	0.082840	0.413423	0.049692	0.599856	1.450948
18	(price-10)	(points-17)	0.118121	0.526887	0.049102	0.415694	0.788964
19	(price-4)	(points-18)	0.082840	0.299669	0.043855	0.529393	1.766594
20	(US, price-3)	(points-17)	0.076784	0.526887	0.038064	0.495729	0.940864
21	(price-3, points-17)	(US)	0.062327	0.413423	0.038064	0.610715	1.477215
22	(US, points-16)	(price-1)	0.076048	0.303419	0.033936	0.446245	1.470723
23	(points-16, price-1)	(US)	0.079454	0.413423	0.033936	0.427118	1.033125
24	(Italy, price-1)	(points-17)	0.039422	0.526887	0.033426	0.847899	1.609263
25	(price-4)	(points-17)	0.082840	0.526887	0.033380	0.402943	0.764763
26	(Spain)	(points-17)	0.054780	0.526887	0.030504	0.556846	1.056860
27	(price-5)	(points-18)	0.049990	0.299669	0.030405	0.608217	2.029632

导出关联规则:形如X→Y的蕴涵表达式

```
In [17]: for index, row in rules. iterrows():
               t1 = tuple(row['antecedents'])
               t2 = tuple(row['consequents'])
               print("%s → %s (suupport = %f, confidence = %f)" %
                      (t1, t2, row['support'], row['confidence']))
           ('price-1',) \rightarrow ('points-17',) (suupport = 0.201034, confidence = 0.662561)
           ('US',) \rightarrow ('points-17',) (support = 0.199788, confidence = 0.483253)
           ('price-2',) \rightarrow ('points-17',) (suupport = 0.131604, confidence = 0.617900 )
           ('points-18',) \rightarrow ('US',) (support = 0.128748, confidence = 0.429636)
           ('price-2',) → ('US',) (suupport = 0.106460, confidence = 0.499844)
           ('Italy',) → ('points-17',) (suupport = 0.093964, confidence = 0.604055)
           ('points-16',) → ('price-1',) (suupport = 0.079454, confidence = 0.516963)
           ('price-3',) → ('US',) (suupport = 0.076784, confidence = 0.616469)
           ('points-16',) \rightarrow ('US',) (support = 0.076048, confidence = 0.494805)
           ('France',) → ('points-17',) (suupport = 0.066998, confidence = 0.479287)
           ('price-3',) → ('points-17',) (suupport = 0.062327, confidence = 0.500399)
           ('US', 'price-2') \rightarrow ('points-17',) (suupport = 0.060757, confidence = 0.570700)
           ('price-2', 'points-17') \rightarrow ('US',) (support = 0.060757, confidence = 0.461662)
           ('US', 'price-1') \rightarrow ('points-17',) (support = 0.058424, confidence = 0.574949)
           ('price-10',) \rightarrow ('points-18',) (support = 0.051898, confidence = 0.439365)
           ('price-3',) \rightarrow ('points-18',) (suupport = 0.049990, confidence = 0.401351)
           ('price-10',) \rightarrow ('France',) (suupport = 0.049930, confidence = 0.422706)
           ('price-4',) → ('US',) (suupport = 0.049692, confidence = 0.599856)
           ('price-10',) \rightarrow ('points-17',) (suupport = 0.049102, confidence = 0.415694)
           ('price-4',) \rightarrow ('points-18',) (support = 0.043855, confidence = 0.529393)
           ('US', 'price-3') \rightarrow ('points-17',) (suupport = 0.038064, confidence = 0.495729)
           ('price-3', 'points-17') → ('US',) (suupport = 0.038064, confidence = 0.610715)
           ('US', 'points-16') → ('price-1',) (suupport = 0.033936, confidence = 0.446245)
           ('points-16', 'price-1') \rightarrow ('US',) (suupport = 0.033936, confidence = 0.427118)
           ('Italy', 'price-1') \rightarrow ('points-17',) (support = 0.033426, confidence = 0.847899)
           ('price-4',) \rightarrow ('points-17',) (suupport = 0.033380, confidence = 0.402943)
           ('Spain',) \rightarrow ('points-17',) (support = 0.030504, confidence = 0.556846)
           ('price-5',) \rightarrow ('points-18',) (suupport = 0.030405, confidence = 0.608217)
```

5. 对规则进行评价

评价指标: Lift(提升度)、Allconf(全置信度)和Jaccard系数

Out[18]:

	antacadanta	oonoonuonto	ou man out	o o mfi do mo o	1:44	allaanf	innered
_	antecedents	consequents	support	confidence	lift	allconf	jaccard
0	(price-1)	(points-17)	0.201034	0.662561	1.257503	0.381550	0.319470
1	(US)	(points-17)	0.199788	0.483253	0.917185	0.379186	0.269793
2	(price-2)	(points-17)	0.131604	0.617900	1.172737	0.249777	0.216358
3	(points-18)	(US)	0.128748	0.429636	1.039215	0.311420	0.220330
4	(price-2)	(US)	0.106460	0.499844	1.209038	0.257508	0.204750
5	(Italy)	(points-17)	0.093964	0.604055	1.146461	0.178338	0.159673
6	(points-16)	(price-1)	0.079454	0.516963	1.703795	0.261863	0.210386
7	(price-3)	(US)	0.076784	0.616469	1.491132	0.185727	0.166489
8	(points-16)	(US)	0.076048	0.494805	1.196849	0.183948	0.154863
9	(France)	(points-17)	0.066998	0.479287	0.909659	0.127158	0.111724
10	(price-3)	(points-17)	0.062327	0.500399	0.949728	0.118293	0.105798
11	(US, price-2)	(points-17)	0.060757	0.570700	1.083154	0.115313	0.106108
12	(price-2, points-17)	(US)	0.060757	0.461662	1.116682	0.146960	0.125460
13	(US, price-1)	(points-17)	0.058424	0.574949	1.091220	0.110886	0.102485
14	(price-10)	(points-18)	0.051898	0.439365	1.466169	0.173185	0.141841
15	(price-3)	(points-18)	0.049990	0.401351	1.339316	0.166818	0.133580
16	(price-10)	(France)	0.049930	0.422706	3.023936	0.357190	0.240076
17	(price-4)	(US)	0.049692	0.599856	1.450948	0.120196	0.111274
18	(price-10)	(points-17)	0.049102	0.415694	0.788964	0.093193	0.082399
19	(price-4)	(points-18)	0.043855	0.529393	1.766594	0.146344	0.129497
20	(US, price-3)	(points-17)	0.038064	0.495729	0.940864	0.072243	0.067298
21	(price-3, points-17)	(US)	0.038064	0.610715	1.477215	0.092070	0.086966
22	(US, points-16)	(price-1)	0.033936	0.446245	1.470723	0.111846	0.098215
23	(points-16, price-1)	(US)	0.033936	0.427118	1.033125	0.082086	0.073945
24	(Italy, price-1)	(points-17)	0.033426	0.847899	1.609263	0.063441	0.062727
25	(price-4)	(points-17)	0.033380	0.402943	0.764763	0.063353	0.057916
26	(Spain)	(points-17)	0.030504	0.556846	1.056860	0.057895	0.055345
27	(price-5)	(points-18)	0.030405	0.608217	2.029632	0.101461	0.095237
	(p1100-0)	(pointo-10)	5.000+00	0.000217	020002	3.101701	3.000201

过滤Allconf小于0.1和Jaccard小于0.1的规则,按照Lift降序排列,得到用于分析的关联规则。

```
In [19]: final_rules = rules.loc[rules['allconf'] > 0.1].loc[rules['jaccard'] > 0.1]
final_rules = final_rules.sort_values(by=['lift'], ascending=False)
final_rules
Out[19]:
```

antecedents consequents support confidence lift jaccard allconf 0.049930 16 0.422706 3.023936 0.357190 0.240076 (price-10) (France) 0.529393 1.766594 0.146344 0.129497 19 (price-4) (points-18) 0.043855 6 (points-16) (price-1) 0.079454 0.516963 1.703795 0.261863 0.210386 7 (price-3) (US) 0.076784 0.616469 1.491132 0.185727 0.166489 0.439365 1.466169 0.173185 0.141841 14 (price-10) (points-18) 0.051898 17 (price-4) (US) 0.049692 0.599856 1.450948 0.120196 0.111274 0.401351 1.339316 0.166818 0.133580 15 (price-3) (points-18) 0.049990 (points-17) 0.201034 0.662561 1.257503 0.381550 0.319470 0 (price-1) 4 (price-2) (US) 0.106460 0.499844 1.209038 0.257508 0.204750 8 (points-16) (US) 0.076048 0.494805 1.196849 0.183948 0.154863 2 (price-2) (points-17) 0.131604 0.617900 1.172737 0.249777 0.216358 5 (points-17) 0.093964 0.604055 1.146461 0.178338 0.159673 (Italy) 12 (price-2, points-17) (US) 0.060757 0.461662 1.116682 0.146960 0.125460 13 (US, price-1) (points-17) 0.058424 0.574949 1.091220 0.110886 0.102485 (points-17) 0.060757 0.570700 1.083154 0.115313 0.106108 11 (US, price-2) (points-18) (US) 0.128748 0.429636 1.039215 0.311420 0.220330 3 10 (price-3) (points-17) 0.062327 0.500399 0.949728 0.118293 0.105798 1 (US) (points-17) 0.199788 9 (points-17) 0.066998 0.479287 0.909659 0.127158 0.111724 (France)

6. 对挖掘结果进行分析

根据不同指标分析关联规则

Lift指标值较大或较小的规则(关联性较强)有6条:

```
In [20]: i = 1
    for index, row in final_rules.iterrows():
        t1 = tuple(row['antecedents'])
        t2 = tuple(row['consequents'])
        if row['lift'] > 1.45 or row['lift'] < 0.5:
            print("%d: %s → %s (lift = %f)" % (i, t1, t2, row['lift']))
            i = i + 1</pre>
1 : ('price-10',) → ('France',) (lift = 3.023936)
2 : ('price-4',) → ('points-18',) (lift = 1.766594)
3 : ('points-16',) → ('price-1',) (lift = 1.703795)
4 : ('price-3',) → ('US',) (lift = 1.491132)
5 : ('price-10',) → ('points-18',) (lift = 1.466169)
6 : ('price-4',) → ('US',) (lift = 1.450948)
```

allconf和jaccard指标值较大的规则 (关联性较强) 有6条:

因此可以得出:

- 价格对葡萄酒的评分存在一定的影响。
 - 价格比较低(price-1和price-2,对应价格区间为10-29)的葡萄酒的评分更多地集中在16和17的评分档位(对应百分制评分的80-89);
 - 价格相对较高的葡萄酒 (price-3到price-10, 价格为30以上的) 评分集中在18的评分档位 (对应百分制评分的90-95)

- 来自美国的葡萄酒的价格相对较低 (price-1到price-3)。
- 来自法国的葡萄酒的价格较高 (price-10)

7. 可视化展示

(1) support-confidence散点图绘制

```
In [22]: import matplotlib.pyplot as plt
plt.xlabel('support')
plt.ylabel('confidence')
for i in range(rules.shape[0]):
    plt.scatter(rules.support[i], rules.confidence[i], c='r')
```

```
0.8 - 0.7 - 0.7 - 0.6 - 0.5 - 0.6 - 0.5 - 0.100 0.125 0.150 0.175 0.200 support
```

(2) support-lift散点图绘制

```
In [23]: plt.xlabel('support')
   plt.ylabel('lift')
   for i in range(rules.shape[0]):
      plt.scatter(rules.support[i], rules.lift[i], c='r')
```


(3) Allconf热力图绘制

将rules按规则先导项和规则后继项两个维度进行数据透视,进行绘制

Out[24]:

consequents	(points-17)	(US)	(price-1)	(points-18)	(France)
antecedents					
(price-1)	0.381550	0.000000	0.000000	0.000000	0.00000
(Italy, price-1)	0.063441	0.000000	0.000000	0.000000	0.00000
(price-2)	0.249777	0.257508	0.000000	0.000000	0.00000
(points-16, price-1)	0.000000	0.082086	0.000000	0.000000	0.00000
(US, points-16)	0.000000	0.000000	0.111846	0.000000	0.00000
(price-3, points-17)	0.000000	0.092070	0.000000	0.000000	0.00000
(US, price-3)	0.072243	0.000000	0.000000	0.000000	0.00000
(price-4)	0.063353	0.120196	0.000000	0.146344	0.00000
(price-10)	0.093193	0.000000	0.000000	0.173185	0.35719
(US, price-1)	0.110886	0.000000	0.000000	0.000000	0.00000
(price-2, points-17)	0.000000	0.146960	0.000000	0.000000	0.00000
(US, price-2)	0.115313	0.000000	0.000000	0.000000	0.00000
(France)	0.127158	0.000000	0.000000	0.000000	0.00000
(price-3)	0.118293	0.185727	0.000000	0.166818	0.00000
(points-16)	0.000000	0.183948	0.261863	0.000000	0.00000
(Italy)	0.178338	0.000000	0.000000	0.000000	0.00000
(points-18)	0.000000	0.311420	0.000000	0.000000	0.00000
(US)	0.379186	0.000000	0.000000	0.000000	0.00000
(Spain)	0.057895	0.000000	0.000000	0.000000	0.00000
(price-5)	0.000000	0.000000	0.000000	0.101461	0.00000

