EAS 5830: BLOCKCHAINS

AMMs

Professor Brett Hemenway Falk

Exchange rate is x/y and is determined algorithmically by the contract

Trader

Trader

Exchange rate determined by "constant product formula"

$$X_A X_B = (X_A + x)(X_B - y)$$

y

Trader

Exchange rate determined by "constant product formula"

$$X_A X_B = (X_A + x)(X_B - y)$$

Product of balance **before** the trade

Exchange rate determined by "constant product formula"

$$X_A X_B = (X_A + x)(X_B - y)$$

Product of balance **after** the trade

Trader

Constant-Function Market Makers

- Contract balance lies on hyperbola
- Contract Maintains invariant $X_A \cdot X_R = K$
- Client wants to trade x units of A for B
 - \circ Receives y units of B

$$\circ (X_A + x) \cdot (X_B - y) = K$$

$$\circ \quad y = X_B - K/(X_A + x)$$

Quantity of token B

Exchange rate depends on quantity

Alternative AMMs

- There is a more general class of Constant-Function AMMs
- XY remains constant
- Arbitrary function: f(X,Y) remains constant
 - \circ f(X,Y) = XY
 - o $f(X,Y) = X^aY^b$ (Balancer)
 - Some weighted average (<u>Curve</u>)

Analysis

- <u>Liquidity Provider Returns in Geometric Mean Market Makers</u>
- SoK: Decentralized Exchanges (DEX) with Automated Market Maker (AMM)
 protocols
- The Adoption of Blockchain-based Decentralized Exchanges
- Optimal Fees for Geometric Mean Market Makers
- A Note on Privacy in Constant Function Market Makers
- Improved Price Oracles: Constant Function Market Makers
- An analysis of Uniswap markets
- When does the tail wag the dog? Curvature and market making
- Learning from DeFi: Would Automated Market Makers Improve Equity Trading?
- Automated market making and Loss-versus-rebalancing

Why AMMs?

Problems with limit order books

- Most centralized platforms use Central Limit Order Books
 - Requires placing / canceling orders
 - You can write smart contract limit orders
 - You must pay to place / cancel an order
 - Hard to prioritize order cancellation over fulfilment
 - Requires matching orders
 - Ethereum is too slow / expensive to run matching logic
 - Solana is fast enough -- (Serum)
 - Centralized exchanges are not composable -- you cannot trade on a centralized exchange and use the outputs of that trade in a single transaction

Benefits of AMMs

- Users can provide liquidity (and earn trading fees) with minimal market knowledge
- Trades are composable
 - multi-hop trades can be part of the same transaction
 - Flash loans
 - Riskless arbitrage
- Efficient price discovery
- Easier to reset after liveness failures

Limitations of AMMs

- Impermanent loss
 - Loss-versus rebalancing
- Hacks
- Slippage
- Front-running, back-running and <u>Sandwich attacks</u>

External price of ETH is \$400
Initial deposit \$800

Pool invariant is maintained: $400 \cdot 1 = 800 \cdot .5$

LP obtains \$800 + .5*\$1600 = \$1600 (plus fees)

LP obtains \$800 + .5*\$1600 = \$1600 (plus fees)

LP would have had 400 + 1*1600 = \$2000

- Initial price ratio is p_o
- User deposits
 - $\circ x_o$ ETH
 - $\circ x_o p_o USDC$
 - \circ Pool value is $2x_o p_o$
- Price changes to p_1
 - \circ Traders trade until exchange rate is p_1

$$\begin{cases} \frac{y}{x} = p_1 \\ xy = x_0^2 p_0 \end{cases} \Rightarrow y^2 = x_0^2 p_0 p_1 \Rightarrow \begin{cases} y = x_0 \sqrt{p_0 p_1} \\ x = x_0 \sqrt{\frac{p_0}{p_1}} \end{cases}$$

$$\circ$$
 Pool value is $\,2x_0\sqrt{p_0p_1}\,$

Price of ETH is p_{θ} USDC

- Initial value
 - $\circ x_o$ ETH at $x_o p_o$
 - $\circ x_o p_o USDC$
 - \circ Total initial value $2x_{o}p_{o}$
- Final value (ETH valued at p_1)

$$\circ \ x_0 \sqrt{rac{p_0}{p_1}}$$
 ETH $\circ \ x_0 \sqrt{rac{p_0}{p_0}}$ USDC

 \circ Total final value $2x_0\sqrt{p_0p_1}$

- Final value (of buy and hold strategy)
 - $\circ x_o$ ETH at $x_o p_1$
 - $\circ x_o p_o USDC$
 - \circ Total initial value $x_o(p_o + p_1)$

Impermanent loss

Impermanent Loss and LVR

- IL considers pool balance against "buy and hold" portfolio
- A better metric would be to compare pool balance against "rebalancing" portfolio
 - Investor constantly rebalances assets so the balance is 50/50 at current market prices
- Called <u>Loss-Versus Rebalancing (LVR)</u>
- Key Questions:
 - Can trading fees offset these losses?

Slippage on Constant-Function AMMs

Constant-Function Market Makers

- Contract holds
 - o X units of token A
 - Yunits of token B
- Users can swap A for B and vice versa
- Maintain invariant XY = K
- Contract can always execute trade
 - (Exchange-rate may be bad)

Quantity of token B

- Low slippage when
 - Liquidity is large
 - Trades are small
- Lots of slippage for large trades