Chapitre 20 - Espaces probabilisés finis

1 Univers d'une expérience aléatoire

1.1 Notion d'expérience aléatoire

On considère des expériences dont chacune peut avoir plusieurs résultats (ou issues) possibles qui dépendent du hasard.

1.2 Événements liés à une expérience aléatoire

Un événement lié à une expérience aléatoire est une condition sur le résultat de l'expérience qui est ou qui n'est pas réalisée et que l'on ne peut pas vérifier avant d'avoir réalisé l'expérience.

Exemple 1.1. Exemples d'événement :

« l'un des numéros obtenus est pair », « on a tiré plus de boules rouges que de vertes », « plus de 13 personnes sont entrées en 1 heure », « la pièce est conforme », « l'un des dés donne un 5 » ...

1.3 Univers

On admet que pour chaque expérience aléatoire, il existe un ensemble, noté Ω , appelé univers, dont les éléments représentent les différentes issues (résultats) possibles de l'expérience.

On note souvent $\omega \in \Omega$ une issue de l'expérience. / ω et ω e le ment de Ω

Un événement lié à une expérience aléatoire est représenté par une partie A de l'univers Ω de cette expérience : $A \subset \Omega$. Un événement représente donc un ensemble de résultats possibles.

Parmi toutes les issues possibles, celles pour lesquelles l'événement A est réalisé sont représentées par $\omega \in A$.

En PTSI, Ω est un ensemble fini et l'ensemble des événements est l'ensemble des parties de Ω : $\mathscr{P}(\Omega)$.

un seul résultat

1.4 Langage des événements

Définition 1.1. Un événement *A* est une partie de $\Omega : A \subset \Omega$.

Un événement élémentaire est un événement qui peut être représenté par un singleton $\{\omega\}$. $\omega \in \Omega$

Définition 1.2. À chaque événement A correspond son contraire « non A » que l'on note \overline{A}

A et A saif au plimentaires dans l'ancurle Ω L'événement certain est représenté par Ω et son contraire est l'événement impossible qui est représenté par \emptyset .

Définition 1.3. L'événement « A et B » est réalisé si et seulement si A et B sont réalisés au cours de la même expérience aléatoire. L'événement « A et B » est représenté par $A \cap B$.

Définition 1.4. Deux événements A et B sont dits incompatibles si et seulement si A et B sont disjoints, c'est à dire $A \cap B = \emptyset$. $A = \emptyset$ soule jaure $B = \emptyset$ boule jaure $B = \emptyset$

Définition 1.5. L'événement « \underline{A} ou \underline{B} » est réalisé si et seulement si au moins l'un des 2 événements \underline{A} ou \underline{B} est réalisé au cours de la même expérience aléatoire. L'événement « \underline{A} ou \underline{B} » est représenté par $\underline{A} \cup \underline{B}$.

Définition 1.6. La condition « l'événement A implique l'événement B » est représenté par $A \subset B$.

Définition 1.7. On appelle système complet d'événements une famille $(B_i)_i \in I$ d'événements de Ω vérifiant :

$$\forall i \in I, \quad B_i \neq \emptyset \text{ et } \forall (i,j) \in I^2 \text{ tels que } i \neq j, \qquad \underline{B_i \cap B_j = \emptyset} \quad \text{ et } \quad \bigcup_{i \in I} B_i = \Omega$$

Sol

Exemple: On tine 3 cartes d'un jeu de 52 cartes

E = " on a tine au moins un as "

Once E = " on n'ative au cun as "

ou en care en notant E : = " on a tiné vie as " i=a,1,2,3,4 ici les E1 F2 F1 U F2 U F3

Cu encae en notait

E4 = \$\phi(1)\$ Et, Ec, Ex, Et flerévénements "an a biré l'as de "tiefle, caneau, coeur ou pique -> E= E+ UEC UER UER ici E+, Ec, ...
Lant equipolables

2 Espace probabilisé fini

2.1 Probabilité

Définition 2.1. Une probabilité sur un univers fini $\underline{\Omega}$ est une application $P: \mathcal{P}(\Omega) \longrightarrow [0,1]$ qui vérifie :

 $\int P(\Omega) = 1$

pour tous événements A et B tels que $A \cap B = \emptyset$, $P(A \cup B) = P(A) + P(B)$ σ-additivité Un couple (Ω, P) où Ω est un univers fini et P une probabilité sur Ω s'appelle un espace probabilisé fini.

Note: Palest l'ensemble des jarties de 2 comme sestfini, 3 (2) est l'ensemble des démensents Exemple: an Cana 1 D6 $\Omega = \{1, 2, 3, 4, 5, 6\}$ er $P(A) = \frac{|A|}{|\Omega|} P("|ain") = \{2, 4, 6\}$ on dit que P est " l'equippolalilité" rue Ω . Exemple on lance 106 mon équilité avec $P(\{6\}) = 1$ $P(\{6\}) = \frac{4}{25}$ $\frac{1}{5} + 5 \times \frac{4}{25} = 1$ $52 = \{1, 2, 3, 4, 5, 6\}$ mais l'm'ya [aséqui problabillé Exemple: On met des loules nonnérations de 1 à m dans une une On tire le loules simultanément le ET1, m I Probabilité de Ai=" ara hiné la boule moi" i E [[1,M]] Omutilire 2 telque /2/= (k) tirages de la loules jaime n sous remire et saus ordre. tous les trages sont équi probables Parme as ting es combien comportent la Coule noi? on compte les tinages de le Coules sais a de saus remise centerant la loule n° i / Ai/ = 1 × (m-1) P(Ai)= [Ai] = Modelingerfavorables = R

121 mb de lingerfavorables = M

Exemple: Même reme, ontire le loules successionent et sans remix. P(Ai) } On cetaire 2 l'euxemble des tinuges de la Coules successionnt et sans remise et 1521 - m! in b de li rayer de m-k)! La locales sansiemise en tenant comptelle l'ordre P(Ai,r) = (m.1) × (m.2)×... × (m.4)×... × Con les (Ajz) sont in compatibles P(DAir) = ZP(Air)

Propriétés d'une probabilité **Proposition 2.1.** Soit (Ω, P) un espace probabilisé fini et soit A et B deux événements. On a - $P(A) = \sum P(\{\omega\})$ car A est la réunion disjointe des évènements élémentaires $\{\omega\}$ où ω est élément de A. $P(\overline{A}) = 1 - P(A)$, parage du complément aire $-P(\emptyset)=0,$ - Si A ⊂ B, alors P(A) ≤ P(B), croissante de la pulabilé $-P(A \cup B) = P(A) + P(B) - P(A \cap B).$ formule de aible A = B : l'événement A implique l'événement B Demonstration de P(A \= 1-P(A): sort ACS un Evenement. One ANA = p ils salinajalides alors jou of-addicivités P(AVA)_P(A)+P(A) mais AUA = 2 jou définition du couplé montaine er P(2)=1 dou P(A)=1-P(A) Exemple: Danseur dans de noerranner, culculer la mobilité de "deux jers onves ont leur amèreraires le même joeu " hy jothèses raesannables : - les envées ont 365 pour (faux) - les dates de nainance sarbéquiprolables (Janx) . les dates de noissance des jeunnes sont indépendantes On jeut utiliser l'univers SZ = [[1, 3 6 5] (- ens der arlites de [13 65]) on étudic E = "deux exames ent la mêne date d'anvaraire 1365 1 2 1 = 365 m nb de listes de néléments pais jamie 1 à 365 (avec réjetillen) P(E)= on métudie plutôt E = " couter les jeuremes autres dates d'anniversière différentes " one (E/= 365! = 365x364x x (365-61-1))

P(E)=1-P(E)=1-3654

duine de l'autrai

entylia (au le

Proposition 2.2. *Soit* (Ω, P) *un espace probabilisé fini.*

– Pour A, B, C trois événements, $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap B)$ A) + $P(A \cap B \cap C)$, formule du cuirde — Pour toute famille $(A_i)_{i \in I}$ d'événements deux à deux incompatibles, on a $P(\bigcup_{i \in I} A_i) = \sum_{i \in I} P(A_i)$.

— Si $(B_i)_{i \in I}$ est un système complet d'événements, alors $\sum P(B_i) = 1$.

cette some d'inie

avenuments deux à deux inayatibles : 40 45 , Ai NA = \$ Exemple: 3 jersonnes qui changent leurs Irajeaux.
B= personne me retrouve son chajeaux. P(B)= A: = " l'individu n° i rétrouse sanchafeau" i=1,12,3
B = " au moins une personne retrouve"son ha feau" ona B = A1UA2UA3 d'au P(B)= P(A1)+P(A2)+P(A3)-P(A1)A2)-P(A2)A3) - PCAS MAN + P(A 1 MAZ MAZ) on utilise l'equi polabilité des répetitions de chapeaux. P(Ai) = mb de répartition ouis rehouve son chojean = 2!

Mb de répartition total 3! pui + 9 P (Ai OAi) = 1 si 2 jeus mes rehoued leur chajeaux, P(A1 11 A2 11 A3) = 1 (A1 11 A2 = A1 11 A2 11 A3 $\frac{dai}{dai} P(\overline{3}) = \frac{2}{6} + \frac{2}{6} + \frac{2}{6} + \frac{2}{6} - \frac{1}{6} - \frac{1}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{6}$ $\frac{dai}{dai} P(B) = 1 - P(B) = \frac{1}{3}$

2.3 Germes de probabilité

Théorème 2.3. Soit $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ et p_1, p_2, \dots, p_n des réels. Il existe une probabilité P sur Ω telle que $\forall i \in [[1, n]], \quad P(\{\omega_i\}) = p_i$ si et seulement si $\underline{\forall i, p_i \ge 0}$ et $\sum_{i=1}^n p_i = 1$.

Dans ce cas, la probabilité P est unique et pour tout événement A, on a $P(A) = \sum_{i \text{ tq } \omega_i \in A} p_i$.

Exemple. On note 2 = duo, ..., com} avec nem * et $q \in J_{0,1} \Sigma$ et $p_R = q^{R-1}(1-q)$ four $k \in J_{5,1}N_{5}$ er po = 9" Mg (po, pi,..., pm) définit une probabilité son Se Ora $\forall n \in \{0, n\}, P_{10} = 0$ car $0 \neq q \neq 1$ dare 1 - q > 0et $\sum_{k=0}^{\infty} P_{k} = q^{k} + \sum_{k=1}^{\infty} q^{k-1} (1-q) = q^{m} + (1-q) \cdot \frac{1-q}{1-q} = 1$ donc les (76) 12=01... m definisent me probabilité seu S avec P ({ we}) = Pe locatouth Aquelle expérieure cela comes and I? artire in fois a pre ou face avec une pécétouquec PriFace 10 = q & Jon E our RESIMDAL = " on a tire le premier Presu la metiruse As = "or n'a tire aucum pile sur les m tirages ". P(Ao) = ? On note Fx = " on a tive Face au batinge" alors A0 = A1 U A2 U A3... U Am = F1 1 F2 1... 1 FM P(A0) = P(F2 1 F2 ... NFm) = P(F2) x P(F2 | x ... x P(Fm) car les kinges sont indéfendants P(Ao)= q M

one	AR = Fas	$1 F_2 \cap F_3 \cap \dots$	17 Fb-1 1 Fb	
dou	P (AR)=	P(FL).P(i	2)	1). P(Fix) car Cer
Fi naa	es sont i'm	dijendants b-1		
	t(An)=	9.	(1 - 9)	

2.4 Équiprobabilité

Définition 2.2. Soit (Ω, P) un espace probabilisé <u>fini</u> avec $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$. On dit qu'il y a équiprobabilité si les probabilités de tous les événements élémentaires sont égales : $\forall i \in [[1, n]]$, $P(\{\omega_i\}) = \frac{1}{n}$

On dit que P est la probabilité uniforme.

Proposition 2.4. Soit (Ω, P) un univers fini. La probabilité uniforme P sur Ω est définie par

pour tout événement A, $P(A) = \frac{|A|}{|\Omega|} = \frac{nombre de cas favorables}{nombre de cas total}$

Remarque 2.1. L'équiprobabilité est souvent une hypothèse que l'on pose pour adapter un modèle probabiliste à une expérience.

esemple: le résultat du lancer d'un dé à 6 faces équilime
ereurgle. On lauce 2D6, calculer P("la somme vaut 6")
onutilise Q= [11,6] avec l'equipolalilité
onutilise Q = [11,6] ² avec l'equipolalilité \$2 = \{(1,1),(1,2),\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
A = " (a somme vant 6" = { (1.5), 2.4) (3.3) (4.2) (51) }
PA)= (A) = 5 /Q1 36
Exemple: On lance me pièce équilibrée n fois.
Exemple: On lance me pièce équilibrée n fois. Probabilité d'obbanin le Piles avec le E TO, M I
On utilise $\Omega = \{P, F\}^m = \{PPP - P, PPP - PF, P , FFEFFE$
Un résultat possible est une listé rémuée de n Elements
pris farmi fait
on a 12/= 2 m les 2 mesulats sontégué probables
pris formi part esculats sorbeque pobables Ak! on a of benu & Piles!" Piles!" President coste promise de mantes Ak!" A of benu & Piles!" A of benu & P
P(Ah)= (M) (F, F, F
on reconnairla Coi hinanciale (h) (1) (1)
1 (2) (2)

3 Probabilités conditionnelles

3.1 Définition

Définition 3.1. Soit (Ω, P) un espace probabilisé et B un événement tel que $\underline{P(B)} > 0$. On appelle probabilité de l'événement A sachant B (sachant que l'événement B est réalisé) :

$$\underline{P_B(A)} = \underline{P(A|B)} = \underline{P(A \cap B)}_{\underline{P(B)}}.$$

Théorème 3.1. Soit (Ω, P) un espace probabilisé et B un événement avec P(B) > 0.

L'application $P_B: \stackrel{\mathcal{G}(\Omega)}{A} \xrightarrow{} [0,1]$ est une probabilité sur Ω appelée probabilité conditionnée à l'événement B.

Proposition 3.2. Pour A, B, C des événements avec P(B) > 0, on a $P_B(\overline{A}) = 1 - P_B(A)$ et $P_B(A \cup C) = P_B(A) + P_B(C) - P_B(A \cap C)$.

Exemple, Dans une une la lace 5 boules Rouges et 7 boules Vertes - Ontine 2 Poules successivement et saus remise. On note Ai="lai Coule tinéces I rouge" Calailer PA, (A2) (prola de Az xi chant A1) On a $P_{A2}(A2) = 4$ can sachant As realise, l'unne centicut 4 Ret 7 V

Ave les formules: $P_{A2}(A2) = P(A_1 \cap A_2) = \frac{5 \times 4}{12 \times 11} = \frac{4}{11}$ P(A1) = 5 + P(A1 A A2) = 5 x 4 explication: on supere que les loules sont numéroties tos R el 7 à 12 pour son a $\Omega = M1,12 R^2 = cur des listes le 2 cléments du tet$ $pris jami [1-1,12] on a <math>|\Omega| = 12 + 11$ r'esultots equi probables As 0 A2 = eus du lister de 2 climents entre 1et 5 /A1 1A2 = 5+4

3.2 Formule des probabilités composées

Théorème 3.3.

Pour A, B des événements avec
$$P(B) > 0$$
, on a $P(A \cap B) = P_B(A).P(B)$.
Pour A_1, A_2, \dots, A_n des événements tels que $P(A_1 \cap A_2 \cap \dots \cap A_{n-1}) \neq 0$, on a
$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1).P_{A_1}(A_2).P_{A_1 \cap A_2}(A_3) \dots P_{A_1 \cap A_2 \cap \dots \cap A_{n-1}}(A_n)$$

3.3 Formule des probabilités totales

Théorème 3.4. Soit (Ω, P) un espace probabilisé et $(A_i)_{i \in [\![1,n]\!]}$ un système complet d'événements. Pour tout événement B, on a

$$P(B) = \sum_{i=1}^{n} P_{A_i}(B) P(A_i)$$

Corollaire 3.5. Soit A un événement tel que 0 < P(A) < 1. Pour tout événement B, on a $P(B) = P(A).P_A(B) + P(\overline{A})P_{\overline{A}}(B)$.

3.4 Formules de Bayes

Théorème 3.6. Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé et A et B sont deux événements tels que P(A) > 0 et P(B) > 0, alors

$$P_B(A) = \frac{P_A(B)P(A)}{P(B)}$$

Théorème 3.7. Si $(A_i)_{i \in [\![1,n]\!]}$ est un système complet d'événements de probabilités non nulles et B est un événement de probabilité non nulle, alors

$$\forall j \in [[1, n]], \quad P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

4 Indépendance

4.1 Indépendance de deux événements

Définition 4.1. Soit (Ω, P) un espace probabilisé. On dit que 2 événements A et B sont indépendants pour la probabilité P lorsque $P(A \cap B) = P(A).P(B)$.

Proposition 4.1. Soit A et B deux événements avec P(B) > 0. On a

A et B sont indépendants pour la probabilité P si et seulement si $P_B(A) = P(A)$.

Proposition 4.2. Si A et B sont deux événements indépendants, alors \overline{A} et B sont deux événements indépendants ainsi que A et \overline{B} , ainsi que \overline{A} et \overline{B} .

Remarque 4.1. Soit $\Omega = \{1, 2, 3, 4, 5, 6\}$ un univers fini et deux probabilités P_1 et P_2 :

$$\omega$$
 | 1 | 2 | 3 | 4 | 5 | 6 | $P_1(\{\omega\})$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{9}$ | $\frac{1}{9}$ | $\frac{1}{9}$

ω					5	
$P_2(\{\omega\})$	$\frac{1}{6}$	$\frac{1}{6}$	<u>1</u>	<u>1</u>	$\frac{1}{6}$	<u>1</u>

On considère les 2 événements $A = \{1, 2\}$ et $B = \{2, 3\}$.

On montre que A et B sont indépendants pour la probabilité P_1 mais A et B ne sont pas indépendants pour la probabilité P_2 .

4.2 Indépendance de n événements

Définition 4.2. Soit (Ω, P) un espace probabilisé. Soit (A_1, A_2, \dots, A_n) des événements.

On dit que les événements A_1, A_2, \dots, A_n sont mutuellement indépendants si pour toute partie $J \subset [[1, n]]$, on a

$$P\left(\bigcap_{i\in J}A_i\right)=\prod_{i\in J}P(A_i)$$

On dit que les événements $A_1, A_2, ..., A_n$ sont indépendants deux à deux si pour tous les indices $(i, j) \in ([[1, n]])^2$, on a

$$P(A_i \cap A_j) = P(A_i).P(A_j)$$

Remarque 4.2. On lance 2 fois un dé cubique parfait. Soient les événements A_1 : "le premier nombre obtenu est pair", A_2 : "le deuxième nombre obtenu est impair", A_3 : "la somme des 2 nombres obtenus est paire".

On montre que A_1, A_2, A_3 sont deux à deux indépendants, mais ne sont pas mutuellement indépendants.

