Д.В.Карпов

Алгебра. Глава 8. Линейные отображения

Д.В.Карпов

2023

• Далее везде U и V — линейные пространства над одним и тем же полем K.

Определение

- 1) Отображение $\varphi: U \to V$ называется линейным отображением, если оно является гомоморфизмом линейных пространств, то есть, $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$ для всех $\alpha, \beta \in K$ и
- arphi(lpha x+eta y)=lpha arphi(x)+eta arphi(y) для всех $lpha,eta\in K$ и $x,y\in U.$
- 2) Ядро линейного отображения arphi это

$$\ker(\varphi) = \{x \in U : \varphi(x) = 0\}.$$

3) Образ линейного отображения φ — это

$$\operatorname{Im}(\varphi) = \{ y \in V : \exists x \in U \, \varphi(x) = y \}.$$

- 1) $\ker(\varphi)$ линейное подпространство U;
- 2) $\operatorname{Im}(\varphi)$ линейное подпространство V.

Доказательство. 1) • Достаточно доказать, что $\ker(\varphi)$ замкнуто по взятию линейной комбинации.

- Пусть $x, x' \in \ker(\varphi)$ и $\alpha, \beta \in K$.
- Тогда $\varphi(\alpha x + \beta x') = \alpha \varphi(x) + \beta \varphi(x') = 0$, а значит, $\alpha x + \beta x' \in \ker(\varphi)$.
- 2) Достаточно доказать, что $\mathrm{Im}(\varphi)$ замкнут по взятию линейной комбинации.
- Пусть $y, y' \in \operatorname{Im}(\varphi)$ и $\alpha, \beta \in K$.
- ullet Тогда существуют такие $x, x' \in U$, что $y = \varphi(x)$ и $\mathbf{v}' = \varphi(\mathbf{x}').$
- Следовательно,

$$\varphi(\alpha x + \beta x') = \alpha \varphi(x) + \beta \varphi(x') = \alpha y + \beta y',$$

а значит, $\alpha y + \beta y' \in \operatorname{Im}(\varphi)$.

отображения

Соответствие линейных отображений и матриц

- Пусть U и V линейные пространства над полем K, в которых зафиксированы базисы u_1, \ldots, u_m и v_1, \ldots, v_n соответственно.
- Тогда любой $x \in U$ представляется как столбец $x = x_1u_1 + \dots + x_mu_m = (x_1, \dots, x_m)^T$ (столбец координат в разложении по базису, здесь $x_1, \dots, x_m \in K$).
- Аналогично $y \in V$ представляется в виде $y = y_1 v_1 + \dots + y_n v_n = (y_1, \dots, y_n)^T$.
- ullet Пусть arphi:U o V линейное отображение.
- ullet Подставим в arphi базисные вектора пространства U и разложим результаты по базису V:

$$\varphi(u_1) = (a_{1,1}, \dots, a_{n,1})^T = A^{(1)}, \dots, \varphi(u_i) = (a_{1,i}, \dots, a_{n,i})^T = A^{(i)}, \dots, \varphi(u_m) = (a_{1,m}, \dots, a_{n,m})^T = A^{(m)}.$$

• Тогда $A = (A^{(1)}, \dots, A^{(m)}) \in M_{n,m}(k)$ (матрица с указанными столбцами) — матрица отображения φ в фиксированных нами базисах.

- Смысл этой матрицы в том, что если $x = (x_1, \dots, x_m)^T \in U$ (координаты в базисе u_1, \dots, u_m), то $\varphi(x) = A \cdot (x_1, \dots, x_m)^T = (y_1, \dots, y_n)^T$ координаты $\varphi(x)$ в базисе v_1, \dots, v_n .
- Проверим это:

$$\varphi(x) = \varphi(x_1 u_1 + \dots + x_m u_m) = x_1 \varphi(u_1) + \dots + x_m \varphi(u_m) = A^{(1)} x_1 + \dots + A^{(m)} x_m = A \cdot (x_1, \dots, x_m)^T.$$

- Таким образом, при фиксированных базисах линейное отображение это просто умножение на матрицу.
- Как правило, оно записывается в виде Ax = y, где вектора $x \in U$ и $y \in V$ столбцы коэффициентов в разложении по фиксированным нами базисам.

- Наоборот, представим вектора из U и V как столбцы координат, пусть $A \in M_{m,n}(K)$.
- Несложно понять, что отображение $\varphi: U \to V$, заданное формулой $\varphi(x) = Ax$, является линейным и в данных базисах будет иметь как раз матрицу A.
- Линейность проверяется тривиально, а, подставив $x=u_i$ столбец из нулей и одной единицы на i месте, мы получим, что i столбец матрицы отображения должен быть как раз $A^{(i)}$.
- Таким образом, при фиксации базисов U и V существует биекция между линейными отображениями из U в V и матрицами из $M_{m,n}(K)$ (каждому отображению соответствует его матрица).

Композиция линейных отображений. Связь с умножением матриц

Теорема 1

Пусть U,V,W — конечномерные линейные пространства над полем K, а $\varphi:U\to V$ и $\psi:V\to W$ — линейные отображения, имеющие в фиксированных базисах пространств матрицы A_φ и A_ψ соответственно. Тогда композиция $\psi\cdot\varphi$ имеет в этих же базисах матрицу $A_\psi\cdot A_\varphi$.

• Пусть $\dim U = m$, $\dim(V) = n$, $\dim W = \ell$. Тогда $A_{\psi} \in M_{\ell,n}(K)$ и $A_{\varphi} \in M_{n,m}(K)$, то есть, произведение матриц $A_{\psi} \cdot A_{\varphi}$ определено корректно.

Доказательство Теоремы 1. • Все вектора в нашем доказательстве записаны как столбцы координат в соответствующем фиксированном базисе.

ullet Тогда для $x \in U$ имеем

$$(\psi \cdot \varphi)(x) = \psi(\varphi(x)) = \psi(A_{\varphi}x) = (A_{\psi} \cdot A_{\varphi})x,$$

откуда следует утверждение теоремы.

Теорема 2

Пусть $\varphi: U \to V$ — линейное отображение, U — конечномерное линейное пространство. Тогда $\dim(\ker(\varphi)) + \dim(\operatorname{Im}(\varphi)) = \dim(U)$.

Доказательство. \bullet Пусть e_1, \ldots, e_k — базис $\ker(\varphi)$.

- ullet Дополним его до базиса U: $e_1, \ldots, e_k, u_1, \ldots, u_m$.
- ullet Тогда любой вектор $x\in U$ единственным образом представляется в виде

$$\mathbf{x} = \alpha_1 \mathbf{e}_1 + \dots \alpha_k \mathbf{e}_k + \beta_1 \mathbf{u}_1 + \dots + \beta_m \mathbf{u}_m$$
, а значит,

$$\varphi(x) = \sum_{i=1}^k \alpha_i \varphi(e_i) + \sum_{i=1}^m \beta_i \varphi(u_i) = \sum_{i=1}^m \beta_i \varphi(u_i).$$

ullet Таким образом, $\varphi(u_1), \ldots, \varphi(u_m)$ — порождающая система векторов в $\mathrm{Im}(\varphi)$.

- ullet Докажем, что вектора $arphi(u_1),\,\ldots,\,arphi(u_m)$ ЛНЗ.
- Пусть $\sum_{i=1}^{m} \beta_i \varphi(u_i) = 0.$
- ullet Пусть $x=\sum\limits_{i=1}^m eta_i u_i$. Тогда $arphi(x)=\sum\limits_{i=1}^m eta_i arphi(u_i)=0$.
- ullet Следовательно, $x\in \ker(arphi)$, а значит, вектор x можно разложить по базису $\ker(arphi)$: пусть $x=\sum\limits_{i=1}^k lpha_i e_i$.
- Таким образом, мы имеем два разложения вектора x по базису $e_1, \ldots, e_k, u_1, \ldots, u_m$ пространства U:

$$x = \sum_{i=1}^k \alpha_i e_i = \sum_{i=1}^m \beta_i u_i.$$

- Но эти два разложения должны совпадать! Следовательно, $\alpha_1 = \cdots = \alpha_k = \beta_1 = \cdots = \beta_m = 0$.
- ullet Таким образом, вектора $\varphi(u_1), \ldots, \varphi(u_m)$ ЛНЗ, то есть, это базис $\operatorname{Im}(\varphi)$.
- ullet Следовательно, $\dim(\ker(arphi)) + \dim(\operatorname{Im}(arphi)) = k + m = \dim(U).$

Теорема 3

Пусть U,V — конечномерные линейные пространства над полем K, в которых фиксированы базисы, а $\varphi:U\to V$ — линейное отображение с матрицей A. Тогда $\dim(\mathrm{Im}(\varphi))=\mathrm{rk}(A)$.

Доказательство. • Как обычно, пусть $\dim(U) = m$, а u_1, \ldots, u_m — базис U. Тогда $\operatorname{rk}(A) = \dim(\operatorname{Lin}(A^{(1)}, \ldots, A^{(m)})) =$

 $\dim(\operatorname{Lin}(\varphi(u_1),\ldots,(\varphi(u_m))).$

• А теперь заметим, что

$$\operatorname{Lin}(\varphi(u_1),\ldots,(\varphi(u_m)) = \left\{ \sum_{i=1}^m \alpha_i \varphi(u_i) : \alpha_1,\ldots,\alpha_m \in K \right\} = \left\{ \varphi(\sum_{i=1}^m \alpha_i u_i) : \alpha_1,\ldots,\alpha_m \in K \right\} = \left\{ \varphi(x) : x \in U \right\} = \operatorname{Im}(\varphi),$$

так как U — множество всевозможных линейных комбинаций векторов своего базиса.

Следствие 1

Пусть U, V — конечномерные линейные пространства над полем K, в которых фиксированы базисы, $\dim(U)=m$, а $\varphi:U \to V$ — линейное отображение с матрицей А. Тогда $\dim(\ker(\varphi)) = m - \operatorname{rk}(A)$.

• Покажем, как применять соответствие матриц и линейных отображений для доказательства утверждения "чисто про матрицы".

Определение

Пусть $\varphi:U\to V$ — линейное отображение, а W линейное подпространство U. Тогда $\varphi|_W:W\to V$ сужение φ на подпространство W (то же самое отображение, применяемое только для элементов W).

• Очевидно, $\varphi|_W$ — линейное отображение и $\operatorname{Im}(\varphi|_{\mathcal{W}}) \subset \operatorname{Im}(\varphi).$ 4 D > 4 A > 4 B > 4 B > B 9 Q Q Д. В. Карпов

Теорема 4

Пусть $A \in M_{m,n}(K)$, $B \in M_{n,\ell}(K)$. Тогда $\operatorname{rk}(AB) \leq \min(\operatorname{rk}(A),\operatorname{rk}(B))$.

Доказательство. • Рассмотрим линейное отображения $\varphi: K^n \to K^m$, заданное формулой $\varphi(x) = Ax$ и линейное отображения $\psi: K^\ell \to K^n$, заданное формулой $\psi(y) = By$.

- ullet Как мы знаем, эти отображения имеют в стандартных базисах пространств матрицы A и B соответственно.
- ullet По Теореме 1 композиция $\varphi\cdot \psi: \mathcal{K}^\ell o \mathcal{K}^m$ линейное отображение с матрицей AB.
- По Теореме 3 мы имеем $\operatorname{rk}(B) = \dim(\operatorname{Im}(\psi)), \quad \operatorname{rk}(A) = \dim(\operatorname{Im}(\varphi))$ г $\operatorname{rk}(AB) = \dim(\operatorname{Im}(\varphi \cdot \psi)).$
- ullet Нам достаточно доказать два неравенства: $\mathrm{rk}(AB) \leq \mathrm{rk}(A)$ и $\mathrm{rk}(AB) \leq \mathrm{rk}(B)$.

Утверждение 1

$$\mathrm{rk}(AB) \leq \mathrm{rk}(A).$$

Доказательство.
$$ullet$$
 Отметим, что $\varphi \cdot \psi = \varphi|_{\mathrm{Im}(\psi)}.$

$$ullet$$
 Поэтому, $\operatorname{Im}(\varphi\cdot\psi)\subset\operatorname{Im}(\varphi)$, а значит, и $\dim(\operatorname{Im}(\varphi\cdot\psi))\leq\dim(\operatorname{Im}(\varphi))$.

Утверждение 2

$$\operatorname{rk}(AB) \leq \operatorname{rk}(B)$$
.

Доказательство.
$$ullet$$
 Так как $arphi\cdot\psi=arphi|_{\mathrm{Im}(\psi)}:\mathrm{Im}(\psi) o \mathcal{K}^m$, мы по Теореме 2 имеем

$$\dim(\operatorname{Im}(\varphi \cdot \psi)) + \dim(\ker(\varphi \cdot \psi)) = \dim(\operatorname{Im}(\psi)),$$
 откуда $\operatorname{rk}(AB) = \dim(\operatorname{Im}(\varphi \cdot \psi)) \leq \dim(\operatorname{Im}(\psi)) = \operatorname{rk}(B).$

Определение

Пусть V — линейное пространство над полем K. Тогда $\operatorname{End}(V)$ — множество всех линейных отображений из V в себя, которые мы будем называть линейными операторами на V.

- В $\mathrm{End}(V)$ мы определим сложение (поэлементное: $(\varphi+\psi)(x):=\varphi(x)+\psi(x))$ и умножение композицию.
- Пусть $\dim(V) = n$. Зафиксируем базис V, каждому линейному оператору $\varphi \in \operatorname{End}(V)$, как мы знаем, соответствует матрица $A_{\varphi} \in M_n(K)$ в этом базисе.
- Далее мы не будем говорить про базис, все матрицы в этом разделе именно в нем.

• Опишем несколько свойств биекции оператор — матрица. Первые два свойства очевидны.

Свойство 1

Пусть $\varphi \in \text{End}(V)$ и $k \in K$. Тогда $k\varphi \in \text{End}(V)$ (это отображение, заданное формулой $(k\varphi)(x) := k\varphi(x))$ и $A_{k\varphi} = k \cdot A_{\varphi}$ (все элементы матрицы A_{φ} умножаются на k).

Свойство 2

Пусть $\varphi, \psi \in \operatorname{End}(V)$. Тогда $A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$.

• Третье свойство следует из Теоремы 1 (о матрице композиции линейных отображений).

Свойство 3

Пусть $\varphi, \psi \in \operatorname{End}(V)$. Тогда $A_{\varphi \cdot \psi} = A_{\varphi} \cdot A_{\psi}$.

Теорема 5

Пусть V — линейное пространство над полем K, $\dim(V) = n$. Тогда $\operatorname{End}(V)$ — кольцо с единицей, причем $\operatorname{End}(V) \simeq M_n(K)$.

Доказательство. • Мы знаем, что отображение $f: \mathrm{End}(V) \to M_n(k)$, заданное формулой $f(\varphi) := A_{\varphi}$, является биекцией и согласовано с операциями + и \cdot в кольцах.

- ullet Очевидно, f^{-1} также согласовано с операциями в кольцах.
- Следовательно, все нужные нам свойства сложения (коммутативность, ассоциативность, 0 и обратный элемент) в $\mathrm{End}(V)$ следуют из аналогичных свойств в $M_n(k)$.
- Так, 0 в $\mathrm{End}(V)$ это отображение с нулевой матрицей, которое отображает все элементы V в 0, а $-\varphi$ задается в каждой точке формулой $(-\varphi)(x):=-(\varphi(x))$.
- Аналогично, дистрибутивность и все нужные нам свойства умножения в $\mathrm{End}(V)$ следуют из аналогичных свойств в $M_n(K)$.
- ullet Отметим, что единицей в $\mathrm{End}(V)$ будет, как и положено, тождественное отображение id с матрицей $A_{\mathrm{id}}=E_n$.
- ullet Теперь понятно, что f изоморфизм колец $\operatorname{End}(V)$ и $M_n(k)$.

- ullet В этом разделе пусть V конечномерное линейное пространство над полем K, в котором зафиксирован базис.
- Таким образом, каждому линейному оператору $\varphi\in \mathrm{End}(V)$ соответствует матрица $A_{\varphi}\in M_n(K)$ и это соответствие биекция.

Определение

Линейный оператор $\varphi\in \mathrm{End}(V)$ — обратимый, если существует φ^{-1} (то есть, если φ — биекция).

Лемма 2

Пусть $\varphi, \psi \in \operatorname{End}(V)$ таковы, что $A_{\psi} = (A_{\varphi})^{-1}$. Тогда φ — обратимый и $\psi = (\varphi)^{-1}$.

Доказательство. • По Теореме 1 оператор $\varphi \cdot \psi \in \operatorname{End}(V)$ имеет матрицу $A_{\varphi \cdot \psi} = A_{\varphi} \cdot A_{\psi} = E_n$.

- ullet Следовательно, $arphi \cdot \psi = \mathrm{id}$. Аналогично, $\psi \cdot arphi = \mathrm{id}$.
- Значит, $\psi = (\varphi)^{-1}$.

Теорема 6

Если $\varphi\in \mathrm{End}(V)$ — обратимый, то $\varphi^{-1}\in \mathrm{End}(V)$ и $A_{\varphi^{-1}}=(A_{\varphi})^{-1}.$

Доказательство. • Для доказательства линейности φ^{-1} достаточно проверить, что для любых $a,b\in K$ и $x,y\in V$ $\varphi^{-1}(ax+by)=a\varphi^{-1}(x)+b\varphi^{-1}(y)$ (*)

• Так как φ — биекция, для этого достаточно доказать, что, применив к левой и правой частям (*) оператор φ , мы получим одно и то же:

$$\varphi(\varphi^{-1}(ax+by)) = ax+by \qquad \mathsf{u}$$

$$\varphi(a\varphi^{-1}(x)+b\varphi^{-1}(y)) = a\varphi(\varphi^{-1}(x))+b\varphi(\varphi^{-1}(y)) = ax+by.$$

• Остается заметить, что $A_{\varphi}\cdot A_{\varphi^{-1}}=A_{\varphi\cdot \varphi^{-1}}=A_{\mathrm{id}}=E_n$ и, аналогично, $A_{\varphi^{-1}}\cdot A_{\varphi}=E_n$, откуда следует, что $A_{\varphi^{-1}}=(A_{\varphi})^{-1}$.

Координаты вектора в разных базисах

- ullet Пусть V линейное пространство над полем K, а e_1,\ldots,e_n и e_1',\ldots,e_n' два его базиса.
- Каждый вектор $x \in V$ единственным образом представляется в виде столбцов координат по каждому из базисов скажем, $(x_1, \ldots, x_n)^T$ и $(x_1', \ldots, x_n')^T$.
- Мы покажем, как из столбца координат вектора по одному базису получить столбец координат по другому базису.
- Разложим базисные векторы второго базиса по первому:

$$e'_1 = c_{1,1}e_1 + c_{2,1}e_2 + \cdots + c_{n,1}e_n, \ldots,$$

 $e'_i = c_{1,i}e_1 + c_{2,i}e_2 + \cdots + c_{n,i}e_n, \ldots,$
 $e'_n = c_{1,n}e_1 + c_{2,n}e_2 + \cdots + c_{n,n}e_n.$

• Напишем цепочку преобразований:

$$x_1e_1 + \dots + x_ne_n = x = x'_1e'_1 + \dots + x'_ne'_n = x'_1(c_{1,1}e_1 + c_{2,1}e_2 + \dots + c_{n,1}e_n) + \dots + x'_n(c_{1,n}e_1 + c_{2,n}e_2 + \dots + c_{n,n}e_n) = (x'_1c_{1,1} + \dots + x'_nc_{1,n})e_1 + \dots + (x'_1c_{n,1} + \dots + x'_nc_{n,n})e_n,$$

откуда, ввиду единственности разложения по базису, делаем вывод $x_i = (c_{i,1}x_1' + \dots + c_{i,n}x_n')$.

• Вспомнив про правила умножения матриц, получаем формулу $(x_1, \ldots, x_n)^T = C(x_1', \ldots, x_n')^T$, где $C = (c_{i,j})_{1 \le i \le n, \ 1 \le j \le n}$.

Матрица С называется матрицей перехода от базиса

 e'_1, \ldots, e'_n к базису e_1, \ldots, e_n . Докажем ряд свойств матриц перехода.

Свойство 1

Матрица перехода невырождена. Если C — матрица перехода от базиса e'_1, \ldots, e'_n к базису e_1, \ldots, e_n , то матрица перехода от базиса e_1, \ldots, e_n к базису e'_1, \ldots, e'_n — это C^{-1} .

Доказательство. • Обозначим матрицу матрица перехода от базиса e_1, \ldots, e_n к базису e'_1, \ldots, e'_n через D.

• Тогда для любого $x \in V$ мы можем записать его координаты в этих базисах, как выше и заметить, что $(x_1,\ldots,x_n)^T=C(x_1',\ldots,x_n')^T$ и $(x_1',\ldots,x_n')^T=D(x_1,\ldots,x_n)^T$, откуда

 $(x_1, \dots, x_n)^T = C(x_1', \dots, x_n')^T = CD(x_1, \dots, x_n)^T$ и $(x_1', \dots, x_n')^T = D(x_1, \dots, x_n)^T = DC(x_1', \dots, x_n')^T$.

• Так как это верно для любых столбцов координат,

 $DC = CD = E^n$ (умножение на CD или DC = T от T откуда следует, что $D = C^{-1}$.

Д. В. Карпов

Пусть V — линейное пространство над полем K, $\dim(V) = n$. Тогда, для любого фиксированного базиса e_1, \ldots, e_n , любая невырожденная матрица $C \in M_n(K)$ является матрицей перехода от какого-то базиса κ e_1, \ldots, e_n .

Доказательство. • Рассмотрим базис e_1', \ldots, e_n' , координаты векторов которого в исходном базисе e_1, \ldots, e_n — столбцы матрицы C (то есть, $e_1' = C^{(1)}, \ldots, e_n' = C^{(n)}$).

- ullet Эти вектора линейно независимы: так как C невырожденная матрица, то
- $\dim(V) = n = \operatorname{rk}(C) = \dim(\operatorname{Lin}(C^{(1)}, \ldots, C^{(n)}).$
- Любые n ЛНЗ векторов в n-мерном пространстве V образуют его базис, в частности, e_1',\ldots,e_n' базис V.
- По построению матрицы перехода понятно, что матрица перехода от базиса e_1', \ldots, e_n' к базису e_1, \ldots, e_n будет в точности C.

- полем K, $\dim(V) = n$.

 Мы знаем, что при каждом фиксированном базисе оператору φ соответствует его матрица. Как связаны матрицы
- Пусть e_1, \ldots, e_n и e'_1, \ldots, e'_n два базиса V, а векторам соответствуют столбцы координат (без штрихов по первому базису, со штрихами по второму).
- ullet Пусть A и A' матрицы arphi в этих базисах. Тогда равенство y=arphi(x) можно переписать в двух видах:

$$(y_1, \dots, y_n)^T = A \cdot (x_1, \dots, x_n)^T$$
 u
 $(y'_1, \dots, y'_n)^T = A' \cdot (x'_1, \dots, x'_n)^T$.

одного оператора в разных базисах?

- ullet Пусть C матрица перехода от e_1',\ldots,e_n' к e_1,\ldots,e_n .
- ullet Тогда C^{-1} матрица перехода от e_1,\ldots,e_n к e'_1,\ldots,e'_n . Поэтому

$$(y'_1, \dots, y'_n)^T = A' \cdot (x'_1, \dots, x'_n)^T = A' C^{-1}(x_1, \dots, x_n)^T$$
 w
 $(y_1, \dots, y_n)^T = C(y'_1, \dots, y'_n)^T = CA' \cdot (x'_1, \dots, x'_n)^T = CA' C^{-1}(x_1, \dots, x_n)^T$.

• Ввиду единственности матрицы отображения φ в базисе e_1, \ldots, e_n следует, что $A = CA'C^{-1}$ и $A' = C^{-1}AC$.

Определение

Матрицы $A, A' \in M_n(K)$ называются *подобными*, если существует такая невырожденная матрица $C \in M_n(K)$, что $A = CA'C^{-1}$.

• Несложно понять, что подобие матриц — отношение эквивалентности. Таким образом, все матрицы из $M_n(K)$ разбиваются на классы эквивалентности, состоящие из попарно подобных матриц.

Теорема 7

Пусть $\varphi \in \operatorname{End}(V)$, где V — линейное пространство над полем K, $\dim(V) = n$. Тогда матрицы φ во всех возможных базисах образуют класс попарно подобных матриц из $M_n(K)$.

Доказательство. • Зафиксируем базис e_1, \ldots, e_n и матрицу A отображения φ в этом базисе.

- ullet Уже доказано, что матрицы arphi в других базисах подобны A.
- Рассмотрим произвольную матрицу, подобную A скажем, $C^{-1}AC$, где $C \in M_n(K)$ невырожденная матрица.
- Тогда C это матрица перехода от нашего фиксированного базиса к другому, и в этом базисе φ имеет матрицу как раз $C^{-1}AC$.

Многочлен от оператора и от матрицы

- Пусть V линейное пространство над полем K. $\dim(V) = n$, базис считаем фиксированным.
- Пусть $\varphi \in \operatorname{End}(V)$, а $A \in M_n(K)$ матрица φ .
- ullet Рассмотрим многочлен $f(t) \in K[t]$, пусть $f(t) = c_m t^m + \cdots + c_0.$
- ullet Мы научимся подставлять в многочлен f матрицу A и линейный оператор φ :

$$f(A) := c_m A^m + \dots + c_1 A + c_0 E_n,$$

$$f(\varphi) := c_m \varphi^m + \dots + c_1 \varphi + c_0 id.$$

- f(A) матрица из $M_n(K)$. Умножение матрицы на число (выражение типа $c_1 A$) — это умножение всех ее коэффициентов на это число.
- $f(\varphi)$ это линейный оператор из $\operatorname{End}(V)$. Результат умножения оператора на число (выражение типа $c_1 \varphi$) — это оператор, значения которого во всех точках умножены на это число.

Лемма 3

Оператор $f(\varphi)$ в нашем фиксированном базисе имеет матрицу f(A).

Доказательство. • При сложении линейных отображений матрицы складываются, при композиции — перемножаются.

- При умножении линейного отображения на число $c \in K$ все его значения умножаются на это число, а значит, и значения на базисных векторах, но тогда и матрица отображения умножится на c.
- Умножение в $M_n(K)$ и в $\mathrm{End}(V)$ не коммутативно. Но многочлены от одного и того же оператора (матрицы) коммутируют.

Лемма 4

Пусть $f,g \in K[t]$.

- 1) Для любого $\varphi \in \operatorname{End}(V)$ выполнено $f(\varphi) \cdot g(\varphi) = g(\varphi) \cdot f(\varphi)$.
- 2) Для любой $A \in M_n(K)$ выполнено $f(A) \cdot g(A) = g(A) \cdot f(A)$.

Доказательство. • Ввиду Леммы 3 достаточно доказать пункт 2.

$$ullet$$
 Пусть $f(t)=c_mt^m+\cdots+c_0$ и $g(t)=d_kt^k+\cdots+d_0.$

Так как

$$(c_iA^i)\cdot(d_jA^j)=c_id_jA^{i+j}=d_jc_iA^{i+j}=(d_jA^j)\cdot(c_iA^i),$$

можно написать цепочку преобразований (везде считаем, что $A^0=E_n$):

$$f(A)g(A) = \left(\sum_{i=0}^{m} c_i A^i\right) \cdot \left(\sum_{j=0}^{k} d_j A^j\right) =$$

$$\sum_{i=0}^{m} \sum_{j=0}^{k} (c_i A^i)(d_j A^j) = \sum_{j=0}^{k} \sum_{i=0}^{m} (d_j A^j)(c_i A^i) =$$

$$\left(\sum_{i=0}^{k} d_j A^i\right) \cdot \left(\sum_{i=0}^{m} c_i A^i\right) = g(A)f(A). \quad \Box$$

ullet Пусть V — линейное пространство над полем K, а $arphi \in \operatorname{End}(V)$.

Определение

Подпространство W < V называется arphi-инвариантным, если

$$\varphi(W) = \{\varphi(x) : x \in W\} \subset W.$$

• Вскоре мы увидим много примеров инвариантных подпространств и поймем, насколько это важное понятие. Начнем с простого свойства.

Свойство

Если $W-\varphi$ -инвариантное подпространство, то $\varphi|_W\in \operatorname{End}(W)$.

Доказательство. По определению φ -инвариантного подпространства, $\varphi|_W:W\to W.$ Условие линейности наследуется от φ .

Определение

Пусть K – поле A_1,\ldots,A_m — квадратные матрицы, $A_i\in M_{n_i}(K)$. Обозначим через $\mathrm{diag}(A_1,\ldots,A_m)$ квадратную матрицу из $M_{n_1+\cdots+n_m}(K)$, в которой по главной диагонали последовательно стоят квадратные блоки A_1,\ldots,A_m , а все остальные элементы равны 0.

Лемма 5

Пусть V — линейное пространство над полем K, $\varphi \in \operatorname{End}(V)$, а V_1, \ldots, V_m — φ -инвариантные подпространства V, причем $V = \bigoplus\limits_{i=1}^m V_i$.

Зафиксируем в каждом подпространстве V_i базис $e_1^i,\dots,e_{k_i}^i$, пусть A_i — матрица отображения $\varphi_i=\varphi|_{V_i}$ в этом базисе.

Тогда в базисе $e_1^1,\dots,e_{k_1}^1,\dots,e_1^m,\dots,e_{k_m}^m$ отображение φ имеет матрицу $\mathrm{diag}(A_1,\dots,A_m)$.

Доказательство. • Как строится матрица A отображения φ в некотором базисе e_1, \ldots, e_n ? Ее j столбцом будет $A^{(j)} = \varphi(e_j)$.

• Пусть j^i — номер базисного вектора e^i_j , входящего в базис φ -инвариантного подпространства V_i . Подставим его и получим:

$$A^{(j^i)}=\varphi(e^i_j)\in V_i.$$

- Элемент из V_i раскладывается по его базису $e_1^i,\dots,e_{k_i}^i$, а значит, в разложении по объединенному базису пространства V, мы получим коэффициенты 0 при всех векторах, кроме этих (так как разложение по базису единственно!).
- ullet Следовательно, $A^{(j^i)} = arphi(e^i_j) = \sum\limits_{s=1}^{k_i} a_{s^i,j^i} e_{s^i} = (0,\dots,0,a_{1^i,j^i},\dots a_{k^i,j^i},0,\dots,0)^T.$
- Так как $\varphi(e_j^i) = \varphi_i(e_j^i)$, на места столбцов, соответствующих векторам из базиса $e_1^i, \dots, e_{k_i}^i$, будут вписаны соответствующие столбцы матрицы A_i (эти столбцы как раз и образованы коэффициентами в разложении векторов $\varphi(e_j^i)$ по указанному базису пространства V_i), а все остальные коэффициенты матрицы A в указанных столбцах нули.

• V — линейное пространство над полем K, $\dim(V) = n$, а $\varphi \in \operatorname{End}(V)$.

Определение

Пусть A — любая матрица оператора φ .

Xарактеристический многочлен оператора φ — это $\chi_{\varphi}(t):=\det(A-tE_n)$ (переменная из поля K, $\chi_{\varphi}\in K[t]$).

Свойство 1

Определение характеристического многочлена оператора корректно, то есть, не зависит от выбора матрицы оператора.

Доказательство. ullet Пусть A' — другая матрица оператора arphi.

• Тогда $A' = C^{-1}AC$ для некоторой невырожденной матрицы $C \in M_n(k)$, следовательно,

$$\det(A' - tE_n) = \det(C^{-1}AC - tE_n) = \det(C^{-1}AC - C^{-1}(tE_n)C) = \det(C^{-1}(A - tE_n)C) =$$

Свойство 2

 $\deg(\chi_{\varphi})=$ n, старший коэффициент равен $(-1)^n$, а свободный член равен $\det(A)$.

Доказательство. • По диагонали матрицы $A - tE_n$ стоят коэффициенты $a_{i,i} - t$, остальные коэффициенты t не содержат.

- Следовательно, t может быть максимум в степени n, и в такой степени получается ровно в одном случае в произведении диагональных элементов, с коэффициентом $(-1)^n$.
- Для вычисления свободного члена подставим t=0 и получим $\det(A)$.
- Итак, $\chi_{\varphi}(t) = (-1)^n t^n + c_{n-1} t^{n-1} + \dots + c_1 t + \det(A)$.
- Коэффициент c_{n-1} также имеет смысл.

Определение

След матрицы $A \in M_n(K)$ — это $\mathrm{Tr}(A) = a_{1,1} + a_{2,2} + \cdots + a_{n,n}$ (сумма элементов на главной диагонали).

Доказательство. • Пусть $B = A - tE_n$, а элементы этой матрицы обозначим через $b_{i,j}$.

- Рассмотрим любое произведение $b_{1,\sigma(1)} \cdot \cdot \cdot \cdot \cdot b_{n,\sigma(n)}$, входящее в $\det(B) = \chi_{\varphi}(t)$ (здесь $\sigma \in S_n$).
- В этом произведении не может быть ровно один элемент, не лежащий на главной диагонали, так как σ не может оставлять на месте все числа от 1 до n, кроме одного.
- Следовательно, если $\sigma \neq \mathrm{id}$, то произведение содержит переменную t в степени не более n-2.
- Значит, вклад в $c_{n-1}t^{n-1}$ дает только произведение диагональных элементов, равное $(a_{1,1}-t)(a_{2,2}-t)\dots(a_{n,n}-t)$, откуда ясно, что $c_{n-1} = (-1)^{n-1} \operatorname{Tr}(A)$.

Свойство 4

Если матрицы A и A' подобны, то Tr(A) = Tr(A').

Доказательство. • Выше доказано (см. Свойство 1), что тогда $\det(A-tE_n)=\det(A'-tE_n)$, откуда ввиду Свойства 3 следует, что Tr(A) = Tr(A'). 4 D > 4 P > 4 E > 4 E > E + Q C

Теорема 8

Пусть V — конечномерное линейное пространство над полем K, $\dim(V)=n$, $\varphi\in \mathrm{End}(V)$. Тогда $\chi_{\varphi}(\varphi)=0$.

Неверное доказательство. \bullet Пусть $\dim(V) = n$, а $A \in M_n(K)$ — матрица отображения φ .

- \bullet Тогда $\chi_{\varphi}(t) = \det(A tE_n)$.
- Имеем $\chi_{\varphi}(A) = \det(A AE_n) = \det(0_n) = 0.$
- ullet Таким образом, оператор $\chi_{arphi}(arphi)$ имеет нулевую матрицу, а значит, $\chi_{arphi}(arphi)=0$.
- Найдите ошибку и не повторяйте ее на экзамене!

матрицы $A - tE_n$, который, очевидно, является многочленом от t степени не более чем n-1 (в подматрице $A - tE_n$, полученной вычеркиванием i строки и j столбца остается не более чем n-1 элемент вида $a_{l,l}-t$, остальные не содержат переменную t).

- Поэтому существуют такие матрицы $B_0, \ldots, B_{n-1} \in M_n(K)$, что $B(t) = B_{n-1}t^{n-1} + \cdots + B_1t + B_0.$
- ullet Пусть $\chi_{\wp}(t) = c_n t^n + \cdots + c_1 t + c_0$ (нам известно, что $\deg(\chi_{\scriptscriptstyle (2)}) = \dim(V) = n$). Тогда

$$(c_nt^n + \dots + c_1t + c_0)E_n = \chi_{\varphi}(t) \cdot E_n = \det(A - tE_n) \cdot E_n =$$

$$B(t) \cdot (A - tE_n) = (B_{n-1}t^{n-1} + \dots + B_1 + B_0) \cdot (A - tE_n)$$

(третий переход следует из Леммы 7.2 и Теоремы 7.6).

$$ullet$$
 В левой и правой частях равенства $(c_n t^n + \cdots + c_1 t + c_0) E_n =$

 $(B_{n-1}t^{n-1}+\cdots+B_1(t)+B_0)\cdot (A-tE_n)$ коэффициенты при каждой степени t должны совпадать:

$$c_n E_n = -B_{n-1} \Rightarrow c_n A^n = -B_{n-1} A^n,$$

 $c_{n-1} E_n = B_{n-1} A - B_{n-2} \Rightarrow c_{n-1} A^{n-1} = B_{n-1} A^n - B_{n-2} A^{n-1},$
...

$$c_1 E_n = B_1 A - B_0 \Rightarrow c_1 A^1 = B_1 A^2 - B_0 A,$$

 $c_0 E_n = B_0 A.$

• Сложив синие равенства, получим:

$$\chi_{\varphi}(A) = c_n A^n + c_{n-1} A^{n-1} + \dots + c_1 A + c_0 E_n = -B_{n-1} A^n + (B_{n-1} A^n - B_{n-2} A^{n-1}) + \dots + (B_1 A^2 - B_0 A) + B_0 A = 0.$$

ullet Таким образом, оператор $\chi_{arphi}(arphi)$ имеет нулевую матрицу, а значит, $\chi_{arphi}(arphi)=0$.

- Пусть V линейное пространство над полем K, $\dim(V) = n, \ \psi \in \mathrm{End}(V).$
- Пусть $I(\psi)$ множество всех таких многочленов $f \in K[t]$, что $f(\psi) = 0$.

Свойство 1

 $I(\psi)$ — идеал в K[t].

Доказательство. • Достаточно проверить замкнутость $I(\psi)$ по сложению и умножению на многочлены из K[t].

- \bullet Пусть $f,g\in I(\psi)$. Тогда
- $(f+g)(\psi) = f(\psi) + g(\psi) = 0 + 0 = 0$, a значит, $f+g \in I(\psi)$.
- \bullet Пусть $f \in I(\psi), h \in K[t]$. Тогда $(fh)(\psi) = f(\psi) \cdot h(\psi) = 0 \cdot h(\psi) = 0$, а значит, $fh \in I(\psi)$.

• Как мы знаем, любой идеал в
$$K[t]$$
 — главный. Рассмотрим любой многочлен f такой, что $I(\psi) = f \cdot K[t]$ (то есть,

- порождающий $I(\psi)$).
- ullet Тогда для любого другого многочлена $g \in K[t]$, порождающего $I(\psi)$, очевидно, выполнено f : g и g : f, то есть, эти два многочлена ассоциированы (отличаются умножением на константу).

Д.В.Карпов

ullet Следовательно, многочлены, порождающие $I(\psi)$ — это в точности многочлены вида cf. Ровно один из них имеет единичный старший коэффициент, мы обозначим его через ${\rm Irr}_{\psi}$ и будем называть минимальным многочленом оператора ψ .

Свойство 2

$$\chi_{\psi}$$
: Irr $_{\psi}$.

Доказательство. \bullet По теореме Гамильтона-Кэли мы знаем, что $\chi_{\psi}(\psi)=0$, то есть, $\chi_{\psi}\in I(\psi)$.

ullet Все многочлены из идеала $I(\psi)$ делятся на ${
m Irr}_{\psi}$.

ullet Пусть V — линейное пространство над полем K, $\dim(V)=n,\ \psi\in \mathrm{End}(V).$

Определение

- 1) Число $\lambda \in K$ называется собственным числом оператора ψ , если существует такой ненулевой вектор $x \in V$, что $\psi(x) = \lambda \cdot x$. В этом случае говорят, что x собственный вектор числа λ .
- 2) Пусть λ собственное число оператора ψ . Множество V_{λ} , состоящее из всех собственных векторов числа λ и вектора 0, называется собственным подпространством числа λ .
- 3) Множество всех собственных чисел оператора ψ называется его *спектром* и обозначается через $\mathrm{Spec}(\psi)$.

Лемма б

 V_{λ} — линейное подпространство V .

Доказательство. \bullet Пусть $x, y \in V_{\lambda}$, $\alpha, \beta \in K$.

ullet Нам достаточно проверить, что $lpha x + eta y \in V_\lambda$. Сделаем это:

$$\psi(\alpha x + \beta y) = \alpha \psi(x) + \beta \psi(y) = \alpha \lambda x + \beta \lambda y = \lambda (\alpha x + \beta y). \quad \Box$$

Доказательство. • Зафиксируем базис V, пусть A — матрица ψ в этом базисе.

- ullet Пусть $\lambda\in\operatorname{Spec}(\psi)$, $x\in V_{\lambda}$, x
 eq 0. Тогда $\psi(x)=\lambda x=\lambda\cdot\operatorname{id}(x)$.
- Следовательно, $(\psi \lambda \mathrm{id})(x) = 0$, то есть $x \in \ker(\psi \lambda \mathrm{id})$.
- ullet Значит, $\ker(\psi \lambda \mathrm{id}) \neq \{0\}$ и $\dim \ker(\psi \lambda \mathrm{id}) \neq 0$.
- ullet Оператор $\psi-\lambda {
 m id}$ имеет матрицу $A-\lambda E_n$ и по Следствию 1 ${
 m rk}(A-\lambda E_n)=n-\dim(\ker(\psi-\lambda {
 m id}))< n.$
- ullet Тогда по Следствию 7.2 имеем $\chi_{\psi}(\lambda) = \det(A \lambda E_n) = 0$.
- Наоборот, пусть $0 = \chi_{\psi}(\lambda) = \det(A \lambda E_n)$.
- Тогда по Следствию 7.2
- $n > \text{rk}(A \lambda E_n) = n \text{dim}(\text{ker}(\psi \lambda \text{id})) \Rightarrow \text{dim}(\text{ker}(\psi \lambda \text{id})) > 0.$
- Следовательно, существует ненулевой вектор $x \in \ker(\psi \lambda \mathrm{id})$.
- $x\in \ker(\psi-\lambda\mathrm{id}).$ Это означает, что $\psi(x)=\lambda x$, то есть $\lambda\in\mathrm{Spec}(\psi).$

Теорема 10

Пусть V — линейное пространство над полем K, $\psi \in \text{End}(V)$, $\lambda_1, \ldots, \lambda_k \in \text{Spec}(\psi)$ — различные собственные числа, а x_i — собственный вектор λ_i . Тогда x_1, \ldots, x_k линейно независимы.

Доказательство. • Предположим противное и найдем из этих векторов нетривиальную нулевую линейную комбинацию с минимальным количеством ненулевых коэффициентов:

$$\alpha_1 x_1 + \dots + \alpha_s x_s = 0. \tag{*}$$

ullet Подействуем на левую и правую часть (*) оператором ψ :

$$0 = \psi(0) = \psi(\alpha_1 x_1 + \dots + \alpha_s x_s) = \alpha_1 \psi(x_1) + \dots + \alpha_s \psi(x_s) = \lambda_1 \alpha_1 x_1 + \dots + \lambda_s \alpha_s x_s.$$
 (**)

ullet Вычтем из (**) умноженное на λ_s равенство (*) и получим:

$$\alpha_1(\lambda_1-\lambda_s)x_1+\cdots+\alpha_{s-1}(\lambda_{s-1}-\lambda_s)x_{s-1}=0.$$

• Так как собственные числа различны, все коэффициенты в этой линейной комбинации отличны от 0, но тогда ее существование противоречит выбору (*).

Следствие 2

Пусть V — линейное пространство над полем K, $\psi \in \mathrm{End}(V)$, $\mathrm{Spec}(\psi) = \{\lambda_1, \dots, \lambda_k\}$. Тогда $\sum\limits_{i=1}^k V_{\lambda_i}$ — прямая сумма.

Доказательство. • На этот раз нам понадобится определение прямой сумма: нужно доказать, что равенство $0=\sum_{i=1}^k x_i$, где $x_i\in V_{\lambda_i}$ возможно только при $x_1=\cdots=x_k=0$.

• Это очевидно следует из Теоремы 10: в противном случае, несколько ненулевых векторов из разных собственных пространств были бы линейно зависимы.

Определение

Пусть V — линейное пространство над полем K, $\psi \in \mathrm{End}(V)$.

- Оператор ψ диагонализируемый, если в некотором базисе имеет диагональную матрицу (то есть матрицу, в которой все элементы не на главной диагонали равны 0).
- Матрица $A \in M_n(K)$ называется диагонализируемой, если она имеет подобную диагональную матрицу.
- Матрица $A \in M_n(K)$ является диагонализируемой, если и только если оператор умножения на A в каком-либо базисе является диагонализируемым.

Теорема 11

Пусть V — линейное пространство над полем K, $\psi \in \operatorname{End}(V)$, $\operatorname{Spec}(\psi) = \{\lambda_1, \dots, \lambda_k\}$. Тогда следующие три утверждения равносильны.

 1° Оператор ψ — диагонализируемый.

$$2^{\circ} \quad V = \bigoplus_{i=1}^{k} V_{\lambda_i}.$$

 $3^\circ~V$ имеет базис, состоящий из собственных векторов ψ_*

Доказательство. $3^{\circ} \Rightarrow 1^{\circ}$. • Пусть e_1, \ldots, e_n — базис V, причем e_i — собственный вектор числа λ_i (возможно, не все эти собственные числа различны).

- ullet Тогда $\psi(e_i) = \lambda_i \cdot e_i$, поэтому, матрица ψ в этом базисе имеет вид $\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$.
- 1° ⇒ 3° . Пусть матрица ψ в базисе e_1,\ldots,e_n это $\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$.
- Тогда $\psi(e_i) = \lambda_i e_i$, причем, очевидно, $e_i \neq 0$. Следовательно, λ_i собственное число, а e_i его собственный вектор.

$$2^{\circ} \Rightarrow 3^{\circ}$$
. • Пусть $V = \bigoplus_{i=1}^{k} V_{\lambda_i}$.

- Выделим базис в каждом из пространств $V_{\lambda_1},\dots,V_{\lambda_k}$, тогда каждый из этих базисов состоит из собственных векторов ψ , а объединение всех этих k базисов по свойствам прямой суммы дает базис V.
- $3^{\circ} \Rightarrow 2^{\circ}$. Мы знаем, что $W = \bigoplus_{i=1}^{k} V_{\lambda_i}$ линейное подпространство V (эта сумма прямая по Следствию 2).
- ullet Пусть $m_i=\dim(V_{\lambda_i})$. Тогда

$$\dim(V) \geq \dim(W) = \sum_{i=1}^k \dim(V_{\lambda_i}) = \sum_{i=1}^k m_i.$$

- ullet С другой стороны, пусть e_1,\dots,e_n базис V, состоящий из собственных векторов.
- Тогда для каждого $i \in \{1, \dots, k\}$ в V_{λ_i} лежит не более чем m_i векторов из базиса (так как они линейно независимы).
- ullet Значит, $\dim(V) \leq \sum\limits_{i=1}^k m_i$, откуда следует, что $\dim(V) = \dim(W)$, а значит, V = W.

Д. В. Карпов

- ullet Если прямая сумма собственных пространств оператора arphi равна V, в некотором базисе этот оператор имеет диагональную матрицу, с которой очень удобно иметь дело.
- \bullet А что же делать, когда эта сумма меньше V? Нам придется определить понятие, расширяющее собственное пространство.

Определение

Пусть $\lambda \in \operatorname{Spec}(\varphi)$. Тогда

$$V(\lambda) = \{ x \in V \mid \exists k \in \mathbb{N} : (\varphi - \lambda \mathrm{id})^k(x) = 0 \} -$$

корневое пространство собственного числа λ оператора φ .

• В этом определении много сложного и неудобного — например, есть квантор существования, от которого мы вскоре избавимся.

Свойство 1

Собственное пространство V_{λ} — подпространство корневого пространства $V(\lambda)$.

Доказательство. ullet Достаточно доказать, что $V_\lambda\subset V(\lambda)$.

ullet Пусть $x\in V_\lambda$. Тогда $arphi(x)=\lambda x$, откуда следует, что $(arphi-\lambda \mathrm{id})(x)=0$, то есть, подходит k=1.

Лемма 7

Пусть $\psi \in \operatorname{End}(V)$, $x \in V$. Пусть $k \in \mathbb{N}$ — минимальное такое число, что $\psi^k(x) = 0$. Тогда $x, \psi(x), \dots, \psi^{k-1}(x)$ — ЛНЗ векторы. В частности, $k \leq n$.

$$\sum\limits_{i=1}^{k-1} lpha_i \psi^i(\mathbf{x}) = 0,$$
 не все $lpha_i = 0$ (*).

- ullet Пусть ℓ минимальный такой индекс, что $lpha_\ell
 eq 0$. Тогда сумму в (*) можно начинать с индекса ℓ .
- Применим к обеим частям равенства (*) оператор $\psi^{k-1-\ell}$ и получим:

$$0 = \psi^{k-1-\ell}(0) = \psi^{k-1-\ell} \left(\sum_{i=\ell}^{k-1} \alpha_i \psi^i(x) \right) =$$

$$= \alpha_\ell \psi^{k-1}(x) + \sum_{i=\ell+1}^{k-1} \alpha_i \psi^{k-1-\ell+i}(x) = \alpha_\ell \psi^{k-1}(x).$$

- ullet Последний переход верен, так как $k-1-\ell+i\geq k$ при $i\geq \ell+1$, а значит, $\psi^{k-1-\ell+i}(x)=0$
- ullet Полученное равенство не может быть верным, так как $lpha_\ell
 eq 0$ и $\psi^{k-1}(x)
 eq 0$.
- Поскольку в n-мерном линейном пространстве V нельзя выбрать более n ЛНЗ векторов, $k \leq n$.

Алгебра. Глава 8. Линейные отображения

Д.В.Карпов

• Теперь мы готовы избавиться от квантора существования в определении корневого пространства.

Свойство 2

$$V(\lambda) = \{x \in V : (\varphi - \lambda \mathrm{id})^n(x) = 0\}.$$

Доказательство. • Из определения следует, что

$$V(\lambda) \supset \{x \in V : (\varphi - \lambda \mathrm{id})^n(x) = 0\}.$$

- Наоборот, пусть $x \in V(\lambda)$.
- ullet Рассмотрим минимальное такое $k\in\mathbb{N}$, что $(arphi-\lambda\mathrm{id})^k(x)=0$ (такое k существует по определению).
- По Лемме 8 мы имеем k < n.
- \bullet Значит, и $(\varphi \lambda \mathrm{id})^n(x) = 0$.

Лемма 8

Пусть $f,g\in K[t]$ — взаимно простые многочлены. Пусть V — линейное пространство над полем K, а $x\in V$ и $\psi\in \mathrm{End}(V)$ таковы, что $(f(\psi))(x)=(g(\psi))(x)=0$. Тогда x=0.

Доказательство. • Вспомним, что НОД двух многочленов представляется в виде их линейной комбинации.

- ullet Поэтому, существуют такие многочлены $p,q\in K[t]$, что $\mathit{fp}+\mathit{qg}=1.$
- ullet Подставив в это равенство оператор ψ и получим $(\it{pf})(\psi) + (\it{qg})(\psi) = {\rm id}.$
- Применим обе части последнего, операторного равенства к вектору x:

$$x = id(x) = ((pf)(\psi))(x) + ((qg)(\psi))(x) = (p(\psi))((f(\psi))(x)) + (q(\psi))((g(\psi))(x)) = (p(\psi))(0) + (q(\psi))(0) = 0.$$

Теорема 12

Пусть V — линейное пространство над полем K, $\varphi \in \mathrm{End}(V)$, $\mathrm{Spec}(\varphi) = \{\lambda_1, \ldots, \lambda_k\}$. Тогда $\sum\limits_{i=1}^k V(\lambda_i)$ — прямая сумма.

Доказательство. ullet Пусть $W_i = \sum\limits_{j \neq i} V(\lambda_j)$.

- По критерию прямой суммы нам достаточно доказать, что $W_i \cap V(\lambda_i) = \{0\}.$
- ullet Пусть $x\in W_i\cap V(\lambda_i)$. Тогда $(arphi-\lambda_i\mathrm{id})^n(x)=0$, так как $x\in V(\lambda_i)$.
- ullet С другой стороны, $x=\sum\limits_{j
 eq i}x_j$, где $x_j\in V(\lambda_j)$. Следовательно, $(\varphi-\lambda_i\mathrm{id})^n(x_i)=0$.

ullet Рассмотрим многочлен $f(t) = \prod\limits_{j
eq i} (t - \lambda_j)^n$. Тогда

$$(f(\varphi))(x) = \sum_{j \neq i} (f(\varphi))(x_j) =$$

$$\sum_{j \neq i} \left(\prod_{s \notin \{i,j\}} (\varphi - \lambda_s \mathrm{id})^n \right) \left((\varphi - \lambda_j \mathrm{id})^n (x_j) \right)$$

$$= \sum_{j \neq i} \left(\prod_{s \notin \{i,j\}} (\varphi - \lambda_s \mathrm{id})^n \right) (0) = 0.$$

- Мы использовали Лемму 4: операторные многочлены от одного и того же оператора коммутируют.
- Очевидно, $(t \lambda_i)^n$ и f(t) взаимно просты (мы знаем разложение f на линейные множители и среди них нет $t \lambda_i$).
- Следовательно, по Лемме 8 мы имеем x = 0.

Д. В. Карпов

Пусть V — линейное пространство над полем K, $\dim(V) = n$, $\varphi \in \operatorname{End}(V)$, $\operatorname{Spec}(\varphi) = \{\lambda_1, \dots, \lambda_k\}$ и

$$\chi_{\varphi}(t)=(-1)^n\prod_{i=1}^k(t-\lambda_i)^{m_i}.$$

Тогда выполнены следующие утверждения.

- 1) $V = \bigoplus_{i=1}^k V(\lambda_i)$.
- 2) Корневые пространства φ -инвариантны.

Доказательство.
$$ullet$$
 Пусть $f_i(t) = \prod\limits_{i \neq i} (t - \lambda_i)^{m_i}.$

- Понятно, что $(f_1,\ldots,f_k)=1$ (мы знаем разложение каждого из этих многочленов на линейные множители, и ни один из них не является общим для всех k многочленов, значит, эти многочлены взаимно просты в совокупности).
- Тогда по теореме о линейном представлении НОД существуют такие многочлены $h_1, \ldots, h_k \in K[t]$, что $h_1 f_1 + \cdots + h_k f_k = 1$.
- ullet Подставив в это равенство оператор arphi, мы получим

$$(h_1f_1)(\varphi)+\cdots+(h_kf_k)(\varphi)=\mathrm{id}.$$

- Для линейного отображения $\psi \in \mathrm{End}(V)$ и $X \subset V$ мы будем использовать обозначение $\psi(X) = \{\psi(x) : x \in X\}$.
- Пусть $W_i = ((h_i f_i)(\varphi))(V)$.
- ullet Подставив в качестве аргумента в (1) пространство V, мы получим

$$V = id(V) = \left(\sum_{i=1}^{k} (h_i f_i)(\varphi)\right)(V) = \sum_{i=1}^{k} \left((h_i f_i)(\varphi)\right)(V) = \sum_{i=1}^{k} W_i.$$
 (2)

Утверждение

$$W_i \subset V(\lambda_i)$$
.

Доказательство. • Пусть $y \in W_i$. Тогда $y = ((h_i f_i)(\varphi))(x)$, где $x \in V$. Следовательно,

$$\begin{split} (\varphi - \lambda_i \mathrm{id})^{m_i}(y) &= \big((\varphi - \lambda_i \mathrm{id})^{m_i} \cdot h_i(\varphi) \cdot f_i(\varphi) \big)(x) = \\ (h_i(\varphi)) \bigg(\big((\varphi - \lambda_i \mathrm{id})^{m_i} \cdot f_i(\varphi) \big)(x) \bigg) &= (h_i(\varphi)) \bigg(\prod_{i=1}^k (\varphi - \lambda_i \mathrm{id})^{m_i}(x) \bigg) = \\ (h_i(\varphi)) \big((-1)^n \cdot (\chi_{\varphi}(\varphi))(x) \big) &= (h_i(\varphi))(0) = 0, \end{split}$$

так как $\chi_{\varphi}(\varphi)$ — нулевой оператор по теореме Гамильтона-Кэли.

• Мы использовали тот факт, что операторные многочлены от одного и того же оператора коммутируют.

- Докажем утверждение 1 теоремы.
- ullet По Теореме 12 сумма корневых подпространств оператора arphi
- прямая. Значит $\bigoplus\limits_{i=1}^k V(\lambda_i) < V$.
- ullet С другой стороны, мы знаем, $V = \sum\limits_{i=1}^k W_i$.
- ullet Но $\sum_{i=1}^k W_i$ подмножество $igoplus_{i=1}^k V(\lambda_i)$, так как $W_i < V(\lambda_i)$.
- ullet Это возможно лишь при $V=igoplus_{i=1}^k V(\lambda_i).$
- ullet Следовательно, $\dim(V) = \dim(igoplus_{i=1}^k V(\lambda_i)) = \sum\limits_{i=1}^k \dim(V(\lambda_i)).$
- ullet Вместе с этим, так как $\dim(W_i) \leq \dim(V(\lambda_i)),$

$$\dim(V) = \dim\left(\sum_{i=1}^k W_i\right) \leq \sum_{i=1}^k \dim(W_i) \leq \sum_{i=1}^k \dim(V(\lambda_i)).$$

ullet Следовательно, для всех $i\in\{1,\ldots,k\}$ мы имеем $\dim(V(\lambda_i))=\dim(W_i)$, откуда ввиду $W_i\leq V(\lambda_i)$ следует, что $W_i=V(\lambda_i)$.

- Докажем утверждение 2 теоремы.
- ullet Так как мы доказали, что $W_i=V(\lambda_i)$, нам достаточно доказать, что $W_i-arphi$ -инвариантно.
- Проверим это. Действительно, пусть $y \in W_i$, тогда $y = ((h_i f_i)(\varphi))(x)$, где $x \in V$.
- Следовательно,

$$\varphi(y) = \varphi\Big(\big((h_if_i)(\varphi)\big)(x)\Big) = \big((h_if_i)(\varphi)\big)(\varphi(x)) \in W_i,$$

так как
$$\varphi(x) \in V$$
, а $W_i = ((h_i f_i)(\varphi))(V)$.

Д. В. Карпов

$$\chi_{\varphi}(t)=(-1)^n\prod_{i=1}^k(t-\lambda_i)^{m_i}.$$

Тогда выполнены следующие утверждения.

- 1) Пусть $\varphi_i = \varphi|_{V(\lambda_i)}$. Тогда оператор $\varphi_i \in \operatorname{End}(V(\lambda_i))$ имеет единственное собственное число — λ_i .
- 2) $\dim(V(\lambda_i)) = m_i$.

Доказательство. 1) • Подчеркнем, что формулировка пункта 1 корректна, так как $V(\lambda_i)$ — это φ -инвариантное пространство по Теореме 13.

- Предположим противное, пусть $\mu \in \operatorname{Spec}(\varphi_i)$, $\mu \neq \lambda_i$, а x собственный вектор μ .
- \bullet Тогда $(\varphi \mu \mathrm{id})(x) = 0$.
- ullet С другой стороны, так как $x \in V(\lambda_i)$, мы имеем $(\varphi - \lambda_i \mathrm{id})^n(x) = 0.$
- ullet Очевидно, многочлены $t-\mu$ и $(t-\lambda_i)^n$ взаимно просты, откуда по Лемме 8 имеем x = 0, противоречие с определением собственного вектора. 4 D > 4 P > 4 E > 4 E > 9 Q P

Алгебра, Глава 8. Линейные отображения

Д. В. Карпов

- В каждом пространстве $V(\lambda_i)$ зафиксируем свой базис, пусть A_i — матрица отображения φ_i в этом базисе.
- По Лемме 5 тогда в базисе V, полученном объединением зафиксированных выше базисов, отображение φ имеет матрицу $A = \operatorname{diag}(A_1, \ldots, A_k)$.
 - \bullet Пусть $n_i = \dim(V(\lambda_i))$. Тогда

$$(-1)^{n} \prod_{i=1}^{k} (t - \lambda_{i})^{m_{i}} = \chi_{\varphi}(t) = \det(A - tE_{n}) =$$

$$\det(\operatorname{diag}(A_{1}, \dots, A_{k}) - t \cdot \operatorname{diag}(E_{n_{1}}, \dots, E_{n_{k}})) =$$

$$\det(\operatorname{diag}(A_{1} - tE_{n_{1}}, \dots, A_{k} - tE_{n_{k}})) = \prod_{i=1}^{k} \det(A_{i} - tE_{n_{i}}) =$$

$$\prod_{i=1}^{k} \chi_{\varphi_{i}}(t). \qquad (*)$$

- По пункту 1, $\operatorname{Spec}(\varphi_i) = \{\lambda_i\}.$
- ullet Тогда по Теореме 9 многочлен $\chi_{\wp_i}(t)$ имеет единственный корень λ_i .

По формуле (*)

$$(-1)^n\prod_{i=1}^k(t-\lambda_i)^{m_i}=\prod_{i=1}^k\chi_{\varphi_i}(t).$$

ullet Так как для каждого $i \in \{1,\dots,k\}$ $\chi_{\varphi_i}(t)$ имеет единственный корень λ_i , остается единственная возможность:

$$\chi_{\varphi_i}(t) = (-1)^{m_i}(t-\lambda_i)^{m_i}.$$

Подставим это в формулу (*):

$$(-1)^n \prod_{i=1}^k (t-\lambda_i)^{m_i} = \prod_{i=1}^k \chi_{\varphi_i}(t) = \prod_{i=1}^k (-1)^{n_i} (t-\lambda_i)^{n_i}.$$

ullet Следовательно, $\dim(V(\lambda_i)) = m_i$.

Определение

Пусть U < V.

- Вектора e_1, \ldots, e_s из V линейно независимы над U, если никакая их нетривиальная линейная комбинация не лежит в U.
- ullet Относительный базис V над U это $\dim(V) \dim(U)$ линейно независимых над U векторов.

Свойство 1

 $e_1,\ldots,e_r\in V$ ЛНЗ над U, если и только если $\overline{e_1},\ldots,\overline{e_r}$ ЛНЗ в факторпространстве V/U.

Доказательство. Очевидно ввиду того, что равенство нулю линейной комбинации $\overline{e_1}, \ldots, \overline{e_r}$ в V/U равносильно принадлежности U аналогичной линейно комбинации векторов e_1, \ldots, e_r в V.

Свойство 2

 e_1,\ldots,e_r — относительный базис V над U, если и только если $\overline{e_1},\ldots,\overline{e_r}$ — базис V/U.

Доказательство. К Свойству 1 нужно лишь добавить, что по доказанному в главе Линейные пространства $\dim(V/U) = \dim(V) - \dim(U)$.

Свойство 3

Относительный базис V над U — максимальное множество векторов из V, ЛНЗ над U.

Если $e_1, \ldots, e_s \in V$ линейно независимы над U, то эти вектора можно дополнить до относительного базиса V над U.

Доказательство. Воспользуемся Свойствами 1 и 2 а также тем, что любое ЛНЗ множество в V/U можно дополнить до базиса.

Разбиение корневого пространства на ядра

- Пусть V линейное пространство над полем K, $\dim(V)=n,\ \varphi\in\mathrm{End}(V),\ \lambda\in\mathrm{Spec}(\varphi)$, а m кратность корня λ в характеристическом многочлене $\chi_{\varphi}(t)$.
- ullet Тогда $\dim(V(\lambda))=m$ по Теореме 14.
- Пусть $\psi = \varphi \lambda id$.
- Введем обозначения

$$W_0:=\{0\}, \quad W_i:=\ker(\psi^i)$$
 для $i\in\mathbb{N}.$

- Понятно, что $W_0 \le W_1 \le \cdots \le W_n = V(\lambda)$ (последнее равенство следует из свойства корневых пространств).
- ullet Пусть ℓ минимальное такое натуральное число, что $W_\ell = V(\lambda).$
- ullet Так как $W_i \leq V(\lambda)$, мы имеем $V(\lambda) = W_\ell = W_{\ell+1} = \dots$, поэтому, все последующие ядра после W_ℓ не будут меняться.
- Введем обозначения

$$p_i := \dim(W_i)$$
 (здесь $i \in \{0, \dots \ell\}$), $r_i := p_i - p_{i-1}$ (здесь $i \in \{1, \dots \ell\}$).

ullet Отметим, что количество векторов в относительном базисе W_ℓ по W_{t-1} равно

$$\dim(W_\ell) - \dim(W_{t-1}) = \sum_{i=t}^\ell \bigl(\dim(W_i) - \dim(W_{i-1})\bigr) = \sum_{i=t}^\ell r_i.$$

Лемма 9

Пусть $2 \leq t \leq \ell$ и у нас есть таблица, строки которой занумерованы числами от t до ℓ . В строке c номером s стоят вектора $e_1^s,\ldots,e_{r_s}^s\in W_s$. Предположим, что для каждого $s\in\{t,\ldots,\ell\}$ вектора b c строке ЛНЗ над b0. Тогда все записанные c1 таблице вектора, а также c2 таблице c3 настности, эти вектора можно дополнить до относительного базиса c4 над c5.

Доказательство. • Предположим противное. Пусть

$$\sum\limits_{s=t}^\ell\sum\limits_{i=1}^{r_s}lpha_i^s\mathsf{e}_i^s+\sum\limits_{j=1}^{r_t}eta_j\psi(\mathsf{e}_j^t)=\mathsf{w}$$
, где $\mathsf{w}\in W_{t-2}$, (*)

причем не все коэффициенты α_i^s и β_j равны 0.

• Разберем два случая: не все коэффициенты α_i^s равны 0 или все они равны 0.

Д.В. Карпов

- Пусть q наибольшее такое число, что существует отличный от 0 индекс α_i^q .
- ullet Тогда $lpha_i^s=0$ при s>q и в первой сумме из (*) можно вести суммирование до q вместо $\ell.$
- Подействуем на обе части (*) оператором ψ^{q-1} и получим:

$$0 = \psi^{q-1}(w) = \sum_{j=1}^{r_t} \beta_j \psi^q(e_j^t) + \sum_{s=t}^q \sum_{i=1}^{r_s} \alpha_i^s \psi^{q-1}(e_i^s) = \sum_{i=1}^{r_q} \alpha_i^q \psi^{q-1}(e_i^q) = \psi^{q-1} \left(\sum_{i=1}^{r_q} \alpha_i^q e_i^q\right),$$

откуда следует, что $\sum\limits_{i=1}^{r_q} \alpha_i^q e_i^q \in W_{q-1}$, противоречие с условием.

ullet Тогда существует $eta_i
eq 0$, а вся первая сумма из (*) нулевая и (*) превращается в

$$w = \sum_{j=1}^{r_t} \beta_j \psi(e_j^t) = \psi(\sum_{j=1}^{r_t} \beta_j e_j^t).$$

- ullet Тогда $0=\psi^{t-2}(w)=\psi^{t-1}ig(\sum\limits_{i=1}^{r_t}eta_je_j^tig).$
- ullet Следовательно, $\sum\limits_{i=1}^{t} eta_{j} e_{j}^{t} \in W_{t-1}$, противоречие с условием.

Следствие 3

Для всех $t \in \{2, ..., \ell\}$ выполнено $r_{t-1} \geq r_t$.

Доказательство. • Из Леммы 9 следует, что

$$r_t + \sum\limits_{j=t}^\ell r_j \leq \dim(W_\ell) - \dim(W_{t-2}) = \sum\limits_{j=t-1}^\ell r_j,$$
откуда следует, что $r_{t-1} \geq r_t.$

Пусть $2 \leq t \leq \ell$ и у нас есть таблица, строки которой занумерованы числами от t до ℓ . В строке c номером i стоят вектора $e_1^i,\ldots,e_r^i\in W_i$. Предположим, что для каждого $i\in\{t,\ldots,\ell\}$ вектора в строках c i по ℓ образуют относительный базис W_ℓ над W_{i-1} . Пусть T — множество, состоящее из всех векторов в таблице, а также $\psi(e_1^t),\ldots,\psi(e_{t}^r)$. Тогда вектора из T можно дополнить до относительного базиса W_ℓ над W_{t-2} , дописав $r_{t-1}-r_t$ векторов из W_{t-1} .

Доказательство. • Пусть $s = r_{t-1} - r_t$. По Следствию 3, $s \ge 0$.

- По Лемме 9 вектора из T ЛНЗ над W_{t-2} и их можно дополнить до относительного базиса W_ℓ над W_{t-2} векторами $x_1,\ldots,x_s\in W_\ell$. (Нужно в точности s векторов, как видно из вычислений Следствия 3.)
- ullet Так как $e_1^t,\ldots,e_{r_t}^t,\ldots,e_1^\ell,\ldots,e_{r_\ell}^\ell$ относительный базис W_ℓ по $W_{t-1}.$
- ullet Поэтому, в факторпространстве W_ℓ/W_{t-1} для любого $q\in\{1,\dots,s\}$ мы имеем

$$\overline{x}_q = \sum\limits_{j=t}^\ell \sum\limits_{i=1}^{r_j} eta_{i,q}^j \overline{e}_i^j$$
, где все $eta_{i,q}^j \in K$.

Д.В.Карпов

Алгебра. Глава 8. Линейные отображения

Д. В. Карпов

(*)

- ullet Тогда $\overline{y}_q=0$ в W_ℓ/W_{t-1} , значит, $y_q\in W_{t-1}$.
- ullet Докажем, что $y_1,\ldots,y_s\in W_{t-1}$ также дополняют вектора из T до относительного базиса W_ℓ над W_{t-2} .
- ullet Для этого достаточно показать, что все эти вектора ЛНЗ над $W_{t-2}.$ Пусть это не так и

$$\sum_{i=1}^s \gamma_i y_i + \sum_{j=t}^\ell \sum_{i=1}^{r_j} \delta_i^j e_i^j + \sum_{i=1}^{r_t} \alpha_i \psi(e_i^t) = w \in W_{t-2},$$

где все $\gamma_i, \alpha_i, \delta_i^j \in K$ и не все они равны 0.

- ullet Из Леммы 9 следует, что не все $\gamma_1, \dots, \gamma_s$ равны 0.
- Подставив для каждого y_i выражение (*), после приведения подобных членов, получим

$$\sum_{i=1}^{s} \gamma_i x_i + \sum_{j=t}^{\ell} \sum_{i=1}^{r_j} \varepsilon_i^j e_i^j + \sum_{i=1}^{r_t} \alpha_i \psi(e_i^t) = w \in W_{t-2},$$

где
$$arepsilon_i^j = \delta_i^j + \sum\limits_{q=1}^s \gamma_q \beta_{i,q}^j.$$

ullet Но по выбору x_1,\dots,x_s тогда $\gamma_1=\dots=\gamma_s=0$, противоречие.

Разбиение корневого пространства собственного числа оператора на Жордановы клетки

- Пусть V линейное пространство над полем K, $\dim(V)=n,\ \varphi\in\mathrm{End}(V),\ \lambda\in\mathrm{Spec}(\varphi),\$ а m кратность корня λ в характеристическом многочлене $\chi_{\varphi}(t)$.
- ullet Тогда $\dim(V(\lambda)) = m$.
- Мы научимся выбирать такой базис корневого пространства $V(\lambda)$, в котором матрица $\varphi|_{V(\lambda)}$ имеет достаточно простой вид диагональ из Жордановых клеток.
- Пусть $\psi = \varphi \lambda id$.
- Введем обозначения $W_0 = \{0\}, \; W_i = \ker(\psi^i)$ для $i \in \mathbb{N}.$
- ullet Мы доказали, что существует такое минимальное натуральное число ℓ , что $W_\ell = V(\lambda)$, тогда $W_0 \leq W_1 \leq \cdots \leq W_\ell = V(\lambda) = W_{\ell+1} = W_{\ell+2} = \ldots$
- Введем обозначения $p_i = \dim(W_i)$ (здесь $i \in \{0, \dots \ell\}$), а $r_i = p_i p_{i-1}$ (здесь $i \in \{1, \dots \ell\}$).
- По Следствию 3, $1 \le r_\ell \le r_{\ell-1} \dots \le r_1$, следовательно,

$$\ell \leq \sum_{i=1}^{\ell} r_i = \sum_{i=1}^{\ell} (p_i - p_{i-i}) = p_{\ell} - p_0 = \dim(W_{\ell}) = \dim(V(\lambda)) = m.$$

Шаг 1: ищем базисы ядер W_i .

• Сначала находим базис W_1 (назовем его B_1), потом дополняем его до базиса W_2 (назовем это дополнение B_2), и так далее, пока не дополним до базиса W_ℓ (последнее дополнение — это B_ℓ).

Шаг 2: построение и заполнение лестницы.

- ullet Высота лестницы ℓ , на i ступени будут вектора из W_i , ширина i ступени равна r_i .
- Суммарное количество клеток в лестнице равно m. В строках с s по ℓ будет $r_s+\dots+r_\ell$ векторов как раз столько, сколько должно быть в относительном базисе W_ℓ над W_{s-1} .
- Опишем процедуру заполнения лестницы. Будем делать это сверху вниз так, чтобы под каждым вектором e был выписан вектор $\psi(e)$ и для всех $s\in\{1,\dots,\ell\}$ вектора в строках с s по ℓ образовывали относительный базис W_ℓ по W_{s-1} .

W_{ℓ}	e_1^ℓ	e_2^ℓ	$e^\ell_{r_\ell}$				
$W_{\ell-1}$	$\psi(e_1^\ell)$	$\psi(e_2^\ell)$	$\psi(e^{\ell}_{r_{\ell}})$	$e_{r_\ell+1}^{\ell-1}$	$e^{\ell-1}_{r_{\ell-1}}$		
$W_{\ell-2}$	$\psi^2(e_1^\ell)$	$\psi^2(e_2^\ell)$	$\psi^2(e^\ell_{r_\ell})$	$\psi(e^{\ell-1}_{r_\ell+1})$	$\psi(e^{\ell-1}_{r_{\ell-1}})$	$e^{\ell-2}_{r_{\ell-2}}$	

Д.В.Карпов

Переход $s \to s-1$. Пусть строки $s, ..., \ell$ уже заполнены, обозначим вектора в s строке через $e_1^s, ..., e_r^s$.

- В s-1 строке под каждым вектором e_i^s запишем вектор $\psi(e_i^s)$ (очевидно, $e_i^s \in W_s \Rightarrow \psi(e_i^s) \in W_{s-1}$).
- По Лемме 10 все выписанные вектора можно дополнить до относительного базиса W_ℓ по W_{s-2} , добавив недостающие $r_{s-1}-r_s$ векторов из W_{s-1} (на самом деле эти вектора можно выбрать даже из B_{s-1}).

$$W_1 = \psi^{\ell-1}(e_1^{\ell}) = \psi^{\ell-1}(e_2^{\ell}) = \psi^{\ell-1}(e_{r_\ell}^{\ell}) = \psi^{\ell-2}(e_{r_\ell+1}^{\ell-1}) = \psi^{\ell-2}(e_{r_{\ell-1}}^{\ell-1}) = \psi^{\ell-3}(e_{r_{\ell-2}}^{\ell-1}) = \cdots$$

$$e_{r_1}^1 = e_{r_1}^1$$

- Итак, пусть все клетки лестницы заполнены.
- Спустившись до первого этажа, мы получим относительный базис W_ℓ над $W_0=\{0\}$, а это просто базис W_ℓ , который нам и будет нужен так называемый жорданов базис.

Шаг 3: Жордановы клетки собственного числа λ .

- ullet Рассмотрим любой столбец лестницы. Пусть e_1,\dots,e_q его вектора снизу вверх $(e_1\in W_1).$
- ullet По построению, тогда $\psi(e_1)=0$ и $\psi(e_i)=e_{i-1}$ для $i\in\{2,\ldots,q\}.$
- Пусть $U_q=\mathrm{Lin}(e_1,\dots,e_q)$. Тогда из доказанного понятно, что $U_q-\psi$ -инвариантное подпространство и линейное отображение $\psi|_{U_q}$ имеет в базисе e_1,\dots,e_q матрицу

$$J_q = \left(egin{array}{ccccc} 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & 0 & \dots & 1 \ 0 & 0 & 0 & \dots & 0 \end{array}
ight)$$

(над главной диагональю — диагональ из 1, все остальные 0 — вспомните, как строится матрица отображения!).

$$J_q(\lambda) = J_q + \lambda E_q = \left(egin{array}{ccccc} \lambda & 1 & 0 & \dots & 0 \ 0 & \lambda & 1 & \dots & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & 0 & \dots & 1 \ 0 & 0 & 0 & \dots & \lambda \end{array}
ight)$$

(на главной диагонали λ , над главной диагональю — диагональ из 1, все остальные 0).

- Матрица $J_q(\lambda)$ называется жордановой клеткой размера q числа λ , а U_q клеточным пространством оператора φ .
- Таким образом, каждому столбцу лестницы для числа λ соответствует жорданова клетка, а их общее количество равно длине нижней строки лестницы это, кстати, $\dim(V_{\lambda})$ (размерность собственного пространства).
- Суммарный размер клеток с собственным числом λ это количество клеток в лестнице, то есть, m кратность λ .
- ullet Размер максимальной клетки с числом λ это высота лестницы ℓ .

Д.В.Карпов

Теорема 15

Пусть V — линейное пространство над полем K, $\dim(V) = n$, $\varphi \in \operatorname{End}(V)$, $\operatorname{Spec}(\varphi) = \{\lambda_1, \dots, \lambda_k\}$ и характеристический многочлен раскладывается на линейные множители:

$$\chi_{\varphi}(t)=(-1)^n\prod_{i=1}^{\kappa}(t-\lambda_i)^{m_i}.$$

Тогда оператор φ в некотором базисе имеет Жорданову нормальную форму — матрицу, на диагонали которой стоят жордановы клетки, а все остальные элементы равны 0.

Доказательство. • Нужно выполнить описанный алгоритм для каждого собственного числа.

- В итоге матрица оператора, суженного на каждое из корневых пространств, будет объединением нескольких жордановых клеток.
- \bullet По Теореме 13, в нашем случае V есть прямая сумма корневых пространств всех собственных чисел.
- Тогда, объединив построенные базисы для всех корневых пространств, мы получим жорданов базис, в котором матрица оператора и будет Жордановой нормальной формой • •

Д.В.Карпов

 \bullet У ЖНФ оператора на главной диагонали стоят собственные числа, на диагонали над главной в некоторых клетках стоят 1, а во всех остальных клетках стоят 0.