ZAPOREDJA

Zaporedje a v množici M je funkcija $a: \mathbb{N} \to M$, ki je definirana na množici naravnih števil in je določena s predpisom $f(n) = a_n$ za vsak $n \in \mathbb{N}$.

 a_n je **splošni (oz.** n-**ti) člen** zaporedja in največkrat zaporedje podamo kar z nekaj členi a_1, a_2, a_3, \ldots ali ga krajše ozačujemo z $\{a_n\}, n \in \mathbb{N}$ ali $(a_n)_{n \in \mathbb{N}}$.

Zaporedju v množici \mathbb{R} rečemo realno zaporedje.

Zaporedje $\{b_n\}$ je **podzaporedje** zaporedja $\{a_n\}$ natanko tedaj, ko obstaja tako strogo naraščajoče zaporedje indeksov $\{i_n\}$, da za vsak $n \in \mathbb{N}$ velja $b_n = a_{i_n}$.

Zaporedje je navzgor (oz. navzdol) omejeno, če obstaja število M (oz. število m), da je $a_n \leq M$ (oz. $a_n \geq m$) za vsak $n \in \mathbb{N}$.

Če je zaporedje hkrati navzgor in navzdol omejeno, rečemo, da je zaporedje omejeno.

Zaporedje $\{a_n\}$ je naraščajoče (oz. strogo naraščajoče), če je $a_{n+1} \ge a_n$ (oz. $a_{n+1} > a_n$) za vsak $n \in \mathbb{N}$.

Zaporedje $\{a_n\}$ je **padajoče (oz. strogo padajoče)**, če je $a_{n+1} \leq a_n$ (oz. $a_{n+1} < a_n$) za vsak $n \in \mathbb{N}$.

Če je zaporedje naraščajoče ali padajoče, rečemo, da je zaporedje monotono.

Zaporedje $\{a_n\}$ je alternirajoče, če je $a_{n+1}a_n \leq 0$ za vsak $n \in \mathbb{N}$.

Število $a \in \mathbb{R}$ imenujemo **stekališče** zaporedja $\{a_n\}$, če vsebuje vsaka poljubno majhna okolica števila a neskončno mnogo členov zaporedja:

 $|a_n - a| < \varepsilon, \varepsilon > 0$ za neskončno mnogo $n \in \mathbb{N}$.

Če ima zaporedje $\{a_n\}$ eno samo stekališče a, to število imenujemo limita zaporedja in zapišemo

$$\lim_{n \to \infty} a_n = a$$

Število a je limita zaporedja $\{a_n\}$ natanko tedaj, ko velja trditev:

 $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : |a_n - a| < \varepsilon \text{ za vsak } n \ge N.$

Zaporedje $\{a_n\}$ gre proti neskončnosti natanko tedaj, ko velja trditev:

$$\forall M>0\ \exists N\in\mathbb{N}: a_n\geq M\ \mathrm{za\ vsak}\ n\geq N.$$

Tedaj zapišemo:

$$\lim_{n\to\infty} a_n = \infty.$$

Podobno definiramo:

$$\lim_{n\to\infty}a_n=-\infty.$$

Zaporedje imenujemo konvergentno, če je njegova limita realno število. Zaporedje, ki ni konvergentno, je divergentno.

Potreben in zadosten pogoj za konvergenco zaporedja: zaporedje $\{a_n\}$ je konvergentno in konvergira proti limiti $a \in \mathbb{R}$, če k poljubnemu $\varepsilon > 0$ obstaja $n_0 \in \mathbb{N}$, tako da je $|a_n - a| < \varepsilon$, če je $n > n_0, n \in \mathbb{N}$.

Naraščajoče (oz. padajoče) zaporedje je konvergentno natanko tedaj, ko je navzgor (oz. navzdol) omejeno.

Alternirajoče zaporedje je konvergentno, če je $\lim_{n\to\infty} |a_n| = 0$.

Naj bosta zaporedji $\{a_n\}$ in $\{b_n\}$ konvergentni in naj bo $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$; $a,b\in\mathbb{R}$. Potem velja:

$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = a \pm b$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n = ab$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}=\frac{a}{b},\quad b\neq 0, b_n\neq 0, n\in\mathbb{N}$$

Te formule o računanju s konvergentnimi zaporedji lahko posplošimo tudi na divergentna zaporedja z limito ∞ ali $-\infty$; ne velja pa to za naslednje **nedoločene izraze**:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, ∞^0 , 1^{∞} , $\frac{1}{0}$

Število $\frac{e}{}$ - osnova za naravne logaritme - je definirano z:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Naloge

1. Dano je zaporedje s splošnim členom $a_n = \frac{n+2}{n}$.

- (a) Zapiši nekaj členov in jih nariši na številski premici.
- (b) Dokaži, da je zaporedje strogo padajoče.
- (c) Koliko členov zaporedja leži na intervalu $\left[\frac{5}{4}, 3\right]$?
- (d) Poišči natančno zgornjo in natančno spodnjo mejo zaporedja.

2. Dano je zaporedje s splošnim členom $a_n = \frac{2}{3n+7}$.

- (a) Zapiši prvih nekaj členov zaporedja.
- (b) Ugotovi, ali je zaporedje omejeno, naraščajoče, padajoče in ali je konvergentno.
- (c) Če je zaporedje konvergentno, mu izračunaj limito.

3. Z uporabo definicije limite zaporedja dokaži enakosti

(a)
$$\lim_{n \to \infty} \frac{3n+1}{2n-1} = \frac{3}{2}$$

(b)
$$\lim_{n \to \infty} \frac{\ln n}{\arctan n} = \infty$$

(c)
$$\lim_{n \to \infty} \frac{1+3ni}{n(1+i)} = \frac{3+3i}{2}$$

4. Naj bo $a_1=1$ in naj za vsako naravno število n velja

$$a_{n+1} = \frac{1}{6} \left(a_n^2 + a_n + 6 \right).$$

Dokaži, da je zaporedje a_n naraščajoče in navzgor omejeno. Utemelji, ali je zaporedje konvergentno, in če je, mu izračunaj limito.

5. Določi vsa stekališča danega zaporedja in za vsako zaporedje poišči podzaporedje, ki konvergira k posameznemu stekališču.

4

(a)
$$a_n = (-1)^n$$

(b)
$$b_n = \frac{n}{\sqrt{n^2 + 1}} + \arctan((-1)^n \sqrt{n})$$

6. Za dano zaporedje ugotovi, ali je konvergentno, in če je, izračunaj njegovo limito.

$$a_n = \frac{1000^n}{n!}$$

7. Dokaži, da je naslednje zaporedje naraščajoče in neomejeno.

$$a_n = \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} + \dots + \frac{1}{\sqrt{2n}}$$

8. Dokaži, da je naslednje zaporedje Cauchyjevo.

$$a_n = \frac{\arctan 1}{3} + \frac{\arctan 3}{3^2} + \dots + \frac{\arctan(2n-1)}{3^n}$$

9. Dokaži, da je naslednje zaporedje divergentno.

$$a_n = \frac{1}{n+1} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt[n]{n+n}}$$

10. Izračunaj limite zaporedij.

(a)
$$\lim_{n \to \infty} \frac{n-3}{n+2}$$

(b)
$$\lim_{n \to \infty} \frac{n^2 - 1}{n + 5}$$

(c)
$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n})$$

(d)
$$\lim_{n \to \infty} (n\sqrt{n^2 + 4} - n^2)$$

(e)
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$$

(f)
$$\lim_{n \to \infty} \frac{1}{\sqrt{2n+1} - \sqrt{n+2}}$$

(g)
$$\lim_{n \to \infty} \frac{n + (-1)^n}{n - (-1)^n}$$

11. Določi $\limsup_{n\to\infty}$ in $\liminf_{n\to\infty}$ za naslednje zaporedje.

$$a_n = \frac{n+1}{n} \sin \frac{n\pi}{2}$$

12. Izračunaj limite zaporedij.

(a)
$$\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^n$$

(b)
$$\lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n$$

(c)
$$\lim_{n \to \infty} \left(\frac{2n-1}{n+2} \right)^n$$

(d)
$$\lim_{n \to \infty} \left(\frac{1+n}{2+n} \right)^{-\frac{n}{2}-1}$$