Universidade Federal do Ceará

Redes Computadores

Meios de Transmissão

Meios de Transmissão Cabeados

- Par Trançado
- Cabo Coaxial
- Fibra

Par Trançado

Par Trançado

- •Um dos meios de transmissão mais usados em redes locais.
- Dois fios de cobre de 1mm enrolados em espiral.

- Tipos:
 - Não blindado(UTP-<u>U</u>nshielded <u>T</u>wisted <u>P</u>air)
 - Blindado (STP <u>Shielded Twisted Pair</u>)

Par Trançado: Normas

Nome	Padrão	Banda	Aplicações	Observações
Cat.1	-	0.4 MHz	Telefonia e linhas de modem	Não é EIA/TIA
Cat.2	-	4 MHz	Sistemas legados, IBM 3270	Não é EIA/TIA
Cat.3	UTP	16 MHz	Ethernet 10BASE-T e 100BASE-T4	EIA/TIA-568. Telefonia.
Cat.4	UTP	20 MHz	Token Ring 16 Mbit/s	Obsoleto
Cat.5	UTP	100 MHz	Ethernet 100BASE-TX & 1000BASE-T	Substituído pelo 5e
Cat.5e	UTP	125 MHz	Ethernet 100BASE-TX & 1000BASE-T	Melhoria da Cat5
Cat.6	UTP	250 MHz	Ethernet 1000BASE-TX & 10GBASE-T	
Cat.6a	U/FTP, F/UTP	500 MHz	Ethernet 10GBASE-TX	Blindado. ISO/IEC 11801:2002.
Cat.7	F/FTP, S/FTP	600 MHz	Telefonia/CCTV/1000BASE-TX, Ethernet 10GBASE-T	Blindado. ISO/IEC 11801 2nd Ed.
Cat.7a	F/FTP, S/FTP	1000 MHz	Telefonia/CATV/1000BASE-TX Ethernet 10GBASE-T	4pares ISO/IEC 11801 2nd Ed. Am. 2
Cat.8.1	U/FTP, F/UTP	1600-2000 MHz	Telefonia/CATV/1000BASE-TX, Ethernet 40GBASE-T	Em desenvolvimento
Cat.8.2	F/FTP, S/FTP	1600-2000 MHz	Telefonia/CATV/1000BASE-TX, Ethernet 40GBASE-T	Em desenvolvimento

Par Trançado: Confecção

SWITCH ⇔ MICRO

(EIA/TIA 568A) - (EIA/TIA 568A)

- 1 branco verde
- 2 verde
- 3 branco laranja
- 4 azul
- 5 branco azul
- 6 laranja
- 7 branco marrom
- 8 marrom

T568A

Par Trançado: Confecção

Par Trançado Crossover: Confecção

14

T568B

```
MICRO ⇔ MICRO
(EIA/TIA 568A) - (EIA/TIA
568B)
```

- 1 branco laranja
- 2 laranja
- 3 branco verde
- 4 azul
- 5 branco azul
- 6 verde
- 7 branco marrom
- 8 marrom

Par Trançado: Caixas Conectoras

Cabo Coaxial

- Dois condutores concêntricos não paralelos!
- TV a cabo e Internet a cabo
- Em relação ao par trançado: Cabo e conectores mais caros, Melhor blindagem e Pouca flexibilidade.

Fibra Óptica

Américas Africa e Puert Viejo **Portugal** Panamá Europa e África VENEZUELA Guatemala Buenaventura EUA. COLOMBIA ortaleza PERU BRASIL Lurin Arica São Paulo Rio de Janeiro Transmissões CHILLE Fibra Óptica - Aplicação variam de 80Gbps Fletiahópolis Cabos Submarinos - Brasil a 1,92Tbps. Fonte: www.teleco.com.br URUGUAY ARGENTINA Las Toninas Valparatiso Américas 2 Atlantis 2 Emergia Global Crossing Globenet 360 Unisur

Cabos Submarinos: Componentes

Cabos Submarinos (Novos)

Fibra vs. Cabos de cobre

•Fibra

- Largura de banda mais alta;
- Taxas de erros menores;
- Serviço elástico, requisitos de atraso não críticos;
- Menos repetidores (apenas a cada 50km);
- Sem interferência eletromagnética;
- Imune a ação corrosiva do ar (não tem metal em si);
- Mais leve: Mil pares trançados a 1km de comprimento pesam 8 toneladas! Enquanto duas fibras pesam apenas 100kg e tem mais capacidade.
- Cabos de cobre
- Mais barato.
- Tecnologia mais familiar.

Meios de Transmissão Sem Fio

- Rádio
- Microondas
- Infravermelho
- Laser

Política do Espectro Eletromagnético

- Para evitar o caos, são feitos acordos sobre o uso das freqüências: rádio AM e FM, televisão, celulares, empresas de telefonia, polícia, usuários marítimos, de navegação, militares, do governo, etc...
- Acordos nacionais e internacionais:
 - ITU-R coordena a alocação mundial
 - •FCC (Federal Communications Comission) que realiza a alocação USA.
 - ANATEL é responsável por administrar a radiofrequência no Brasil.
- Livre transmissão 2.4 GHz e 5,7GHz: Bandas ISM (*Industrial*, *Scientific*, *Medical*). Exemplo: Wireless, Telefones sem fio, Brinquedos com controle de rádio, Forno de Microondas, Bluetooth, etc.

Rádio Transmissão

Rádio Transmissão

- Podem percorrer longas distâncias
- Podem atravessar prédios, portanto são largamente usados em comunicações.
- São omnidirecionais;
- •Usado em redes sem fio, redes de sensores e telefonia celular;
- •Sofre interferência com motores e equipamentos elétricos;
- •Direcional vs. Omnidirecional (segurança e alinhamento);
- Problemas de Segurança;

"People move. Networks don't." 802.11 Wireless Networks - O'Reilly

Microondas (Satélites)

Microondas

- Ondas trafegam em linha reta;
- Em baixas frequências não atravessam paredes;
- A partir de 4GHz: absorção pela água. Uso pelos satélites. E quando chove? Rota alternativa!
- Pode ser usada em telefonia, sinais de TV

Infravermelho

Usado em redes locais, controles remotos de TV, DVD, etc....

Infravermelho

- Usado em comunicações de curto alcance;
- Relativamente direcional, econômico e fácil de montar;
- Boa Segurança;
- Não é necessário licença do governo para operá-lo.
- Uso em pequenos dispositivos como dispositivos de controle remoto (TV, DVDs, etc) entre outros.
- Não atravessa objetos sólidos e reflete em todos os objetos do ambiente.

Laser

Laser

- Unidirectional
- Usada para conectar LANs em prédios.
- Altamente direcional (dispositivos precisam estar perfeitamente alinhados).
- Compatíveis com padrão Ethernet.
- Qualquer obstáculo impede a transmissão (não atravessa chuva ou neblina);
- Ideal para ambientes ruidosos (centrais elétricas e fábricas automatizadas ou implementações de conexões em campus) e centros urbanos onde exista saturação no espectro de frequência;

Outras Possibilidades

- A luz ultravioleta, raios X e raios gama seriam opções melhores, mas:
 - Difíceis de produzir e modular;
 - Não se propagam bem através de prédios;
 - São perigosos para o ser humano.
- Canhões de nêutrons:
 - Atravessam a matéria;
 - Caminho entre pontos diferentes da terra menor que fibra óptica;
 - São perigosos para o ser humano.

Dúvidas?

