Úvod do potravinárskej štatistiky.

Základné pojmy,

vstupné definície

Definícia/ základné pojmy

- Metria (-metry) náuka/proces merania
- Metrika (-metrics) aplikácia matematických alebo štatistických postupov v špecifickom odetví vedy

Biometrika

- Aplikácia štatistiky na biologické fenomény
- Využitie biologických znakov k identifikácii
- Biometrické údaje
- Fyziologická (DNA, zrenička, tvár, odtlačok prsta)
- Behaviorálna (podpis, hlas)
- FAR (miera chybného prijatia)
- FRR (miera chybného odmietnutia)

FAR + FRR (pravdepodobnosti)

- Otlačok prstu: FRR = 0.5% , FAR = 0.01%,
- Sken tváre: FRR = 14%, FAR = 0.1%,
- Otlačok ruky : FRR = 10%, FAR = 0.05%,
- Sken sietnice: FRR = 10%, FAR = 0.0001%,
- chôdza: FRR = 3%, FAR = 3%,
- Bioterorizmus, Kontrola výroby

Ekonometrika (ekonometria)

- Vedecká disciplína na hranici medzi matematikou, štatistikou a ekonomikou
- Aplikuje matematické/štatistické modely na ekonomické dáta
- Najčastejšie používané techniky: Regresná analýza, PLS, časové rady, Forecasting
- Existuje veľké množstvo dostupného software
- Ekonomika podniku, predpoveď trendov

Chemometria

- Vedná disciplína, ktorá "extrahuje" význam dát z chemických dát/ meraní
- Využíva hlavne metódy viacrozmernej štatistiky
- PCR, PLS-1, PLS-2 algoritmy,
- Kategorizáciu triedenie (SIMCA, SVM)
- Metódy umelej inteligencie (KOH. MAPY, NN)
- Kontrola kvality, Analýza potravín

Psychometrika

- Pomocný odbor psychológie
- Meria psychické javy (kvantifikácia/kvalifikácia)
- Testy osobnosti (kvantifikácia)
- Behaviorálne interview
- Štandardizácia: proces merania objektivity testov.
- Proces unifikácie... Smeruje k tomu, aby sa mohli získané výsledky porovnávať medzi rozdielnymi respondentmi.
- Reliabilita (spoľahlivosť): definuje relatívnu neprítomnosť chyby u respondentov, vnútorná konzistencia testu
- Personalistika, HR

História (Viktoriánska vetva)

- Francis Galton (otec psychometriky/eugeniky)
- Prvý použil dotazníky na meranie psych. stavov
- Spojil IQ testy s antropomorf. znakmi
- Zostavil klasifikátor odtlačkov prstov

- Neo-Darwinista:
- Ronald Fisher

Roland Fischer

- Zakladateľ modernej matematickej štatistiky
- Autor analýzy rozptylu (ANOVA)
- Autor Odhadu maximálnej vierohodnoti (MLE)
- Autor knihy Design of Experiment (1935)
- Lady Tasting tea (H0)

Začalo to jednou čajovou party 🙂

Čaj+ Mlieko/ Mlieko+čaj?

Prvý čaj

(polož šálky sem)

Prvé mlieko

(polož šálky sem)

Now tally the results

How many did she identify correctly?

Prvé v pohári bolo

Mlieko Čaj

"Mlieko"

"Čaj"

3	1
1	3

Lady rozpoznala

Každá správna párty by už zrejme skončila, ale Fischerovi to nedalo pokoj...

3

3

1

$$P = \frac{(4x3x2x1) (4x3x2x1) (4x3x2x1) (4x3x2x1)}{(8x7x6x5x4x3x2x1) (3x2x1) (1) (1) (3x2x1)}$$

$$P = 0.229$$

Pravdepodobnosť výsledku tohto experimentu je P=0,229

Pravdepodobnosť

Pravdepodobnosť (P) – hodnota vyčísľujúca mieru istoty (%)

História (Nemecká vetva)

Weberov zákon

- ★ Relatívny podnetový prach: najmenší rozdiel medzi dvoma podnetmi, ktorý môžeme zmyslami postrehnúť.
- **≭JND** (Najmenší rozpoznateľný rozdiel)

JND=
$$\Delta S / S = k$$

x pomer medzi základným podnetom (S) a intenzitou prírastku (Δ S) je konštantný (k)

WEBER- FECHNEROV zákon

1860 – Fechner rozšíril platnosť Weberovho zákona

R = a.logS

Kde: R = intenzita pocitu, S = intenzita podnetu, a = konštanta.

Intenzita pocitu rastie menej ako intenzita podnetu

Podľa Fechnera je prah - bod prechodu medzi vzruchom a pocitom

II. etapa - vzruch (fyziologický proces)

III. etapa - pocit (psychický proces)

IV. etapa - úsudok (logický proces)

Louis Leon Thurstone

Pravidlo komparatívneho posudku*

$$S_{\text{diff}} = \sqrt{S_a^2 + S_b^2 + 2rS_aS_b}$$

Sa= štandardná odchýlka vzorky A

Sb= štandardná odchýlka vzorky B

r = korelačný koeficient

Moderný vek

Stanley Smith Stevens

- Stevensov zákon sily
- Rozdelenie škál (NIOP)
- Metóda odhadu magnitúdy
- Autor "Handbook of Experimental Psychology"

ČESKÁ TECHNICKÁ NORMA

ICS 67.240 Prosinec 2002

Senzorická analýza - Metodologie - ČSN
Metoda odhadu magnitudy ISO 11056

56 0035

Sensory analysis - Methodology - Magnitude estimation method

Analyse sensorielle - Méthodologie - Méthode d'estimation de la grandeur

Sensorische Analyse - Methodologie - Verfahren zur Beurteilung der Ausprägung

Tato norma je českou verzí mezinárodní normy ISO 11056:1999. Mezinárodní norma ISO 11056 má status české technické normy.

This standard is the Czech version of the International Standard ISO 11056. The International Standard ISO 11056:1999 has the status of a Czech Standard.

© Český normalizační institut,

2002

66232

Podle zákona č. 22/1997 Sb. smějí být české technické normy rozmnožovány a rozšiřovány jen se souhlasem Českého normalizačního institutu.

Standard Practice for Estimating Thurstonian Discriminal Distances

Active Standard ASTM E2262 | Developed by Subcommittee: E18.03

Book of Standards Volume: 15.08

Format	Pages	Price	
₱ PDF	47	\$69.00	📜 ADD TO CART
Hardcopy (shipping and handling)	47	\$69.00	₽ ADD TO CART

ASTM E2262 - 03(2014) 9

Standard Practice for Estimating Thurstonian Discriminal Distances

Active Standard ASTM E2262 | Developed by Subcommittee: E18.03

Book of Standards Volume: 14.03

	Format	Pages	Price	
Z	PDF	47	\$76.00	⊉ ADD TO CART
	Hardcopy (shipping and handling)	47	\$76.00	⊉ ADD TO CART

Senzometrika

- Kvantitatívny prístup
- Kvalitatívny prístup
- Afektívny prístup

- Opisná štatistika (vizuál, centrálne hodnoty)
- Induktívná štatistika (testovanie hypotéz)
- Viacrozmerná štatistika

Kvantitatívny prístup

- Metódy štandardizovaného vedeckého výskumu, ktoré je možné merať v číslach prípadne vyjadriť na škále respondentov
- Je možné ju vyjadriť pomocou štatistických metód (opisných, induktívnych, viacrozmerných)
- Parametrické/Neparametrické testy

Kvalitatívny prístup

- Metódy štandardizovaných postupov, kedy je pomocou získať prehľad o kvalitatívnych vlastnostiach produktu (interview, kvalitatívne techniky výskumu)
- Chí-kvadrát testy

Delenie štatistických znakov

kvantitatívne - sú vyjadriteľné číslami:

- delenie 1:
 - objemové (extenzitné) sú také, ktoré získame meraním
 - úrovňové (intenzitné) sú odvodené z objemových veličín
- delenie 2:
 - spojité nadobúdajú hodnoty z nejakého intervalu, napr. intenzita chuti
 - diskrétne nadobúdajú izolované, väčšinou celočíselné hodnoty, napr. počet produktov v šarži...
- kvalitatívne vyjadrujú vlastnosti, ktoré sa nedajú merať (Tramín, výrobca, druh obalu...)

Štatistický znak

 Štatistický znak je spoločná vlastnosť entít (jednotiek) v štatistickom súbore. Je predmetom štatistického skúmania. Každý prvok má štatistickému znaku priradenú hodnotu znaku.

môžu byť

- dichotomické (alternatívne) vyskytujú sa len v 2 obmenách (napr. pohlavie – muž/žena)
- polynomické (multinomické, množné) majú viac obmien (napr. vek)

Štatistika v potravinárstve

- Kontrola kvality
- Six Sigma (to je pomaly na celý predmet ②)
- Inštrumentálne metódy
- Senzorické posúdenie kvality
- Metrológia (odhad chyby)

Kontrola Kvality

Expression	Mathematical models	Geometric shape	Applications
Sigmoidal (Gompertz)	$y = y_0 + ae^{-e^{-(\frac{x-x_0}{b})}}$		Growth curve Inactivation of
Sigmoidal (Lojistic)	$y = y_0 + \frac{a}{1 + (\frac{x}{x_0})^b}$		microorganisms (Banani et al., 2007)Ray
Sigmoidal (Sigmoid)	$y = y_0 + \frac{a}{1 + e^{-(\frac{x - x_0}{b})}}$		
Sigma (GAB)	$y = \frac{abcx}{(1-ax)(1-ax+abx)}$		Moisture sorption isotherms (Ayranci & Dalgic, 1992)
Polynomial (linear)	$y = y_0 + ax$		Linear relationships (Wu et al., 2007)
Polynomial (Quadratic)	$y = y_0 + ax + bx^2$		(Gao et al., 2007)

Kontrola kvality II.

Polynomial (inverse first order)

$$y = y_0 + \frac{a}{x}$$

Peak

$$y = y_0 + ae^{\left[-0.5(\frac{x - x_0}{b})^2\right]}$$

Distrubition (Peng & Lu, 2007).

Exponential decay

(Lorentzian)

$$y = y_0 + ae^{-bx} + ce^{-dx}$$

Drying
Destruction curve for
microorganisms
(Bruce et al. 2009)

Exponential growth

$$y = y_0 + ae^{bx} + ce^{dx}$$

Growth curve (Daniela et al., 2009)

Regulačný diagram (Control Chart) Six Sigma

Inštrumentálne metódy

- Porovnanie so štandardom (induktívna štatistika)
- Výpočet plochy nad krivkou
- Regresné metódy posúdenia kvality
- Chemometrické prístupy

Senzorické posúdenie kvality

- Shelf-live testy (Weibull model, Lognormal)
- Profily (viacrozmerná štatistika)
- DT (neparametrika, Thurstonov prístup)
- Regresia/ Korelácie

FOOD TECH & MEDIA INDUSTRY 2016

VOX MEDIA

Sébastien Lê **Thierry Worch**

Copyrighted Material

Multivariate and **Probabilistic Analyses** of Sensory Science **Problems**

Jean-François Meullenet, Rui Xiong, and Christopher J. Findlay

Vladimir Vietoris

Food Statistics (Sensometrics) using R. Supplement of sensometric and sensory exercises

STATISTICS FOR SENSORY AND CONSUMER SCIENCE

TORMOD NÆS, PER B. BROCKHOFF AND OLIVER TOMIC

STATISTICS SCIENTISTS

+0+0+0+0+0+0+0+0+0+ **MAKING SENSE OF THE NUMBERS** +0+0+0+0+0+0+0+0+0+

DZP

FRANK ROSSI VIKTOR MIRTCHEV

