Assignment-2	EE204 - Analog Circuits	4 th Feb 2019
Submission Deadline-17.00 11th Feb, 2019	Submission Protocol: Notebook submission	Comment: Partial

- 1.A Consider the differential amplifier we have discussed in the class with the following parameters: $g_{m1} = g_{m2} = 2$ mS, $R_{D1} = R_{D2} = 20$ k Ω , $R_{SS} = 200$ k Ω , $r_{01} = r_{02} = \infty$.
 - I. Find out the differential gain (A_{DM}) of the amplifier.
 - II. Find out the common mode to differential model conversion (A_{CM-DM}) when:
 - (a) $g_{m1} = g_{m0} + \Delta g_m/2$ and $g_{m2} = g_{m0} + \Delta g_m/2$ where $g_{m0} = 2$ mS and $\Delta g_m = 0.2$ mS and all other parameters remain same. Find out CMRR.
 - (b) $R_{d1} = R_{D0} + \Delta R_D/2$ and $R_{D2} = R_{D0} + \Delta R_D/2$ where $R_{D0} = 20 \text{ k}\Omega$ and $\Delta R_D = 2 \text{ k}\Omega$ and all other parameters remain same. Find out CMRR.
 - (c) Both g_m and R_d are varying as in (a) and (b).
 - (d) Repeat (a), (b) and (c) when $r_{01} = r_{02} = 50 \text{ k}\Omega$. Also find out A_{DM} and CMRR for this case. Comment on the effect of the finite output resistance of the transistors.
 - (e) Find out the sensitivity of the A_{CM-DM} for a mismatch of R_D and r_0 . Also qualitatively explain your observations obtained from the calculations.
- 1.B | Consider nMOS with the following characteristics: k' = 1 mA/V², V_T = 1 V, R_D = 10 k Ω , λ = 0.
 - I. Design a perfectly matched differential amplifier with multiple instances of the above nMOS for a bias current of $I_{SS} = 8$ mA and $R_{SS} = \infty$.
 - II. Plot V_{O1} - V_{O2} versus V_{IN1} - V_{IN2} . Plot in any software and attach the plot.
 - III. Plot I_{DS1} - I_{DS2} versus V_{IN1} - V_{IN2} . Plot in any software and attach the plot.
 - IV. Find out A_{DM} for the first and second harmonic differential output as a function of the small signal differential input amplitude.