# LECTURE 2

# BOOK CHAPTER 4

Projectile Motion

### **Projectile Motion:**

A particle moves in a vertical plane with some initial velocity  $\vec{v}_0$  but its acceleration is always the freefall acceleration  $\vec{g}$ , which is downward. Such a particle is called a projectile (meaning that it is projected or launched), and its motion is called projectile motion.



Examples: A batted baseball, a thrown football, a package dropped from an airplane, and a bullet shot from a rifle are all projectiles.

# Sketch of the path taken in projectile motion:



## Sketch of the path taken in projectile motion (Step-by-Step):





**Figure:** The *projectile motion* of an object launched into the air at the origin of a coordinate system and with launch velocity  $\vec{v}_0$  at angle  $\theta_0$ . The motion is a combination of vertical motion (constant acceleration) and horizontal motion (constant velocity), as shown by the velocity components.

The adjacent Figure shows two balls with different x-motion but identical y-motion; one is dropped from rest and the other projected horizontally, but both balls fall the same distance in the same time.



Richard Megna/Fundamental Photographs

#### **The Horizontal Motion:**

Type equation here.

Projectile motion

Launch velocity

a Launch angle

Launch

At any time t, the projectile's horizontal displacement  $x-x_0$  from an initial position  $x_0$  is given by

$$x - x_0 = v_{0x} t + \frac{1}{2} a_x t^2$$

Where  $acceleration\ along\ x-axis$ ,  $a_x=0$ 

Using  $v_{0x} = v_0 \cos \theta_0$  we can write

$$x - x_0 = (v_0 \cos \theta_0) t$$

At any time t, the projectile's horizontal velocity  $v_{0x} = v_x$ 

#### **The Vertical Motion:**

At any time t, the projectile's vertical displacement  $y-y_0$  from an initial position  $y_0$  is given by

$$y - y_0 = v_{0y} t - \frac{1}{2}gt^2$$
 [where,  $a_y = -g$ ]  
 $y - y_0 = (v_0 \sin \theta_0) t - \frac{1}{2}gt^2$  [where,  $v_{0y} = v_0 \sin \theta_0$ ]  
.....(2)

At any time t, the projectile's vertical velocity

$$v_{y} = v_{0} \sin \theta_{0} - gt \qquad [v = u + at]$$

And also we can express  $v_v$  as

$$v_y^2 = (v_0 \sin \theta_0)^2 - 2 g(y - y_0)$$
 [v<sup>2</sup> = u<sup>2</sup> + 2as]

☐ Show that the path of a projectile is a parabola.

From equation (1) we can write

$$t = \frac{x - x_0}{v_0 \cos \theta_0}$$

Using the value of t in equation (2), we get

$$y - y_0 = v_0 \sin \theta_0 \frac{x - x_0}{v_0 \cos \theta_0} - \frac{1}{2} g \left( \frac{x - x_0}{v_0 \cos \theta_0} \right)^2$$

For simplicity, we let  $x_0 = 0$  and  $y_0 = 0$ .

Therefore, the equation becomes

$$y = (\tan \theta_0)x - \frac{1}{2}g\left(\frac{1}{v_0\cos\theta_0}\right)^2 x^2$$
 .....(3)

$$a = \tan \theta_0 \qquad b = \frac{1}{2} g \left( \frac{1}{2v_0 \cos \theta_0} \right)^2$$

Where  $\theta_0$ , g and  $v_0$  are constants.

Equation (3) is of the form  $y = ax \mp bx^2$ , where a and b are constants.

This is the equation of a parabola, so the path is *parabolic*.

# ☐ Equations for the horizontal range and the maximum horizontal range of a projectile:

The *horizontal range R* of the projectile is the *horizontal* distance the projectile has traveled when it returns to its initial height (the height at which it is launched). That is  $x - x_0 = R$  when  $y - y_0 = 0$ .

Using  $x - x_0 = R$  in equation (1) and  $y - y_0 = 0$  in equation (2), we get

$$R = (v_0 \cos \theta_0) t \qquad [From equation (1)]$$

And 
$$0 = (v_0 \sin \theta_0) t - \frac{1}{2}gt^2$$
 [From equation (2)]

or 
$$(v_0 \sin \theta_0) \ t = \frac{1}{2}gt^2$$
 or  $t = \frac{2v_0 \sin \theta_0}{g}$ 

$$or \quad (v_0 \sin \theta_0) \ t = \frac{1}{2}gt^2 \qquad or \quad t = \frac{2v_0 \sin \theta_0}{g}$$
 Therefore, 
$$R = (v_0 \cos \theta_0) \ \frac{2v_0 \sin \theta_0}{g} = \frac{v_0^2 \ (2 \sin \theta_0 \cos \theta_0)}{g}$$

$$R = \frac{v_0^2 \sin 2\theta_0}{g}$$
 .....(3) Caution: This equation does not give the horizontal distance traveled by a projectile when the final height is not the launch height.

#### The value of R is maximum in equation (3) when $\sin 2\theta_0 = 1$

or 
$$2\theta_0 = \sin^{-1} 1$$
  
or  $2\theta_0 = 90^0$  [since  $\sin^{-1} 1 = 90^0$ ]

$$\theta_0 = 45^{\circ}$$
Maximum horizontal range,  $R = \frac{v_0^2}{g}$ 

The Effects of the Air (in the projectile motion):

|                   | Path I<br>(Air) | Path II<br>(Vacuum) |
|-------------------|-----------------|---------------------|
| Range             | 98.5 m          | 177 m               |
| Maximum<br>height | 53.0 m          | 76.8 m              |
| Time<br>of flight | 6.6 s           | 7.9 s               |



The launch angle is 60° and the launch speed is 44.7 m/s.

## Problem 22 (Book chapter 4):

A small ball rolls horizontally off the edge of a tabletop that is 1.20 m high. It strikes the floor at a point 1.52 m horizontally from the table edge. (a) How long is the ball in the air? (b) What is its speed at the instant it leaves the table?

Answer: (a) We know

$$y - y_0 = (v_0 \sin \theta_0) \ t - \frac{1}{2}gt^2$$
$$0 - 1.20 = (v_0 \sin \theta_0) \ t - 4.9t^2$$
$$-1.20 = 0 - 4.9t^2$$

$$t = \sqrt{\frac{1.2}{4.9}} = 0.495 \, s$$

 $y_0$ =1.20 m  $\theta_0 = 0^0 \text{ and } v_0 = ?$  t = ? $x_0$ =0  $x - x_0 = 1.52 m$ 

(b) We know

$$x - x_0 = (v_0 \cos \theta_0) \ t$$

$$1.52 - 0 = (v_0 \cos 0^0)(0.495)$$

$$1.52 = (v_0 \cos 0^0)(0.495)$$

$$1.52 = (v_0)(1)(0.495)$$

$$v_0 = \frac{1.52}{0.495} = 3.07 \, m/s$$

# Thank You