ALGORITMICA GRAFURILOR **Săptămâna 3**

C. Croitoru

croitoru@info.uaic.ro

FΙΙ

October 15, 2014

OUTLINE

• Vocabular al teoriei grafurilor (ag 14-15 allinone.pdf pag. 49 → 51)

```
Probleme de drum în (di)grafuri
(ag 14-15 allinone.pdf pag. 52 → )
```

Problemele pentru seminarul 3

Vocabular

- Variații în definiția unui graf
- @ Grade
- Subgrafuri
- Operații cu grafuri
- 6 Clase de grafuri
- Orumuri și circuite
- Conexiune
- Matrici asociate
- Structuri de date

Probleme de drum

- Parcurgeri sistematice
 - BFS

DFS

Componente conexe, tari conexe !!! (pentru examen; algoritmică ușoară !!!)

Probleme de drum minim

Probleme de drum

Drumuri de cost minim

P1 Date
$$G$$
 digraf; $a: E(G) \to \mathbb{R}$; $s, t \in V(G)$, $s \neq t$. Să se determine $D_{st}^* \in \mathcal{D}_{st}$, astfel încît $a(D_{st}^*) = \min\{a(D_{st}) \mid D_{st} \in \mathcal{D}_{st}\}.$

P2 Date *G* digraf;
$$a: E(G) \to \mathbb{R}$$
; $s \in V(G)$.
Să se determine $D_{si}^* \in \mathcal{D}_{si} \ \forall i \in V(G)$, a.î. $a(D_{si}^*) = \min\{a(D_{si}) \mid D_{si} \in \mathcal{D}_{si}\}.$

P3 Date G digraf;
$$a: E(G) \rightarrow \mathbb{R}$$
.
Să se determine $D_{ij}^* \in \mathcal{D}_{ij} \ \forall i,j \in V(G)$, a.î. $a(D_{ii}^*) = \min\{a(D_{ij}) \mid D_{ij} \in \mathcal{D}_{ij}\}.$

Rezolvarea problemei P2

Teorema 1. Fie G = (V, E) digraf, $V = \{1, ..., n\}$, $s \in V$ și $a : E \to \mathbb{R}$, astfel încît

(1)
$$\forall C \text{ circuit în } G, a(C) > 0.$$

Atunci (u_1,\ldots,u_n) este o soluție a sistemului

(*)
$$\begin{cases} u_s = 0 \\ u_i = \min_{j \neq i} (u_j + a_{ji}) \quad \forall i \neq s. \end{cases}$$

dacă și numai dacă

 $\forall i \in V$, $\exists D_{si}^* \in \mathcal{D}_{si}$ astfel încît $a(D_{si}^*) = u_i$ și $a(D_{si}^*) = \min\{a(D) \mid D \in \mathcal{D}_{si}\}.$

Rezolvarea problemei P2 dacă G este digraf fără circuite

O numerotare aciclică a (vârfurilor) digrafului G = (V, E) este un vector ord[v] $v \in V$, (cu interpretarea ord[v] = numărul de ordine al vârfului v) a. î.

$$\forall vw \in E \Rightarrow ord[v] < ord[w].$$

G este un digraf fără circuite dacă și numai dacă admite o numerotare aciclică .

Sortare topologică $\mathcal{O}(n+m)$.

Rezolvarea sistemului (*) prin substituție.

Rezolvarea problemei P2 dacă $\forall ij \in E(G)$ avem $a_{ij} \geq 0$!!!

Algoritmul lui Dijkstra

```
1. S \leftarrow \{s\}; u_s \leftarrow 0; \hat{i} inainte[s] \leftarrow 0;
    for i \in V \setminus \{s\} do
     \{ u_i \leftarrow a_{si}; \ \text{inainte}[i] \leftarrow s \}
         // după aceste inițializări (D) are loc
2. while S \neq V do
          determină j^* \in V \setminus S: u_{j^*} = \min\{u_j \mid j \in V \setminus S\};
          S : \leftarrow S \cup \{i^*\}:
          for i \in V \setminus S do
               if u_i > u_{i^*} + a_{i^*i} then
```

Complexitatea timp a algoritmului, în descrierea dată este $O(n^2)$.

Algoritmul lui Dijkstra

Este posibilă organizarea unor cozi cu prioritate (de exemplu heap-urile) pentru obținerea unui algoritm cu complexitatea $O(m \log n)$ (unde m = |E|) Johnson ,1977).

Cea mai bună implementare se obține utilizând **heap-uri Fibonacci**, ceea ce conduce la o complexitate timp de $O(m + n \log n)$ (*Fredman și Tarjan, 1984*).

Acesta este un seminar mai deosebit, cu probleme foarte ușoare, având ca singur scop fixarea unor noțiuni.

1

Fie G_1 , G_2 , G_3 trei grafuri. Se știe că $G_1 \not\cong G_2$ și că $G_2 \not\cong G_3$. Rezultă că $G_1 \not\cong G_3$? (justificare)

2

Sunt cele două grafuri desenate mai jos izomorfe ? (justificare)

3

Demonstrați că dacă un graf conex G are exact un circuit atunci |G| = |E(G)|.

4

Determinați numărul de stabilitate al grafului desenat mai jos.

(justificare)

์ 5

Fie G un graf conex cu |G| > 1 si fără vîrfuri de grad 1. Demonstrați că $|E(G)| \ge n$.

6

Fie G = (V, E) un graf conex cu $|G| \ge 2$. Demonstrați că există un vârf $v_0 \in V$ astfel încât $G - v_0$ este conex.

7

Este posibil ca numărul arborilor parțiali ai unui graf să fie 1? Dar 2 ? (justificare)

8

Să se determine $L(L(\overline{G}))$, unde graful G este:

9

Dacă G este graful desenat mai jos, este L(G) –graful reprezentativ al muchiilor sale– hamiltonian? (justificare)

10

Precizați numărul cromatic (argumentare) al complementarului grafului de mai sus.

11

Precizați numărul de conexiune (argumentare) al grafului de la problema 9.

12

Este graful următor autocomplementar ? (argumentare)

13

Are graful de mai sus doi arbori parțiali fără muchii comune? (argumentare)

14

Stabiliți numărul arborilor parțiali ai complementarului grafului de la problema 12. (argumentare)

15

Stabiliți cardinalul maxim al unei multimi stabile din graful $K_2 \times G$, unde G este tot graful de la problema 12.

16

Dacă G este graful desenat mai jos, este L(G) –graful reprezentativ al muchiilor sale– hamiltonian? (justificare)

17

Pentru graful G desenat mai sus să se determine numărul cromatic $\chi(G)$ (argumentare).

18

Este graful de la problema 16 izomorf cu complementarul său ? (justificare)

19

Determinați numărul de conexiune al grafului de la problema 16. (justificare)

20

Determinați diametrul grafului de la problema 16. (justificare)

21

Determinați $\chi'(G)$, indicele cromatic al grafului de la problema 16. (justificare)

22

Să se arate că dacă G este graful reprezentativ al muchiilor unui graf H (G = L(H)), atunci G este un graf $K_{1,3}$ -free.

23

Desenați graful $P_4 \times K_2$ și determinați-i numărul cromatic (argumentare).

24

Este adevărată inegalitatea $\alpha(G) \leq k(G)$ pentru graful G desenat mai jos? (justificare; $\alpha(G)$ este numărul de stabilitate al lui G, iar k(G) este numărul său de conexiune)

25

Fie G un graf conex cu proprietatea că are un vârf din care dacă se execută cele două tipuri de parcurgere (dfs și bfs) arborii dfs și bfs construiți sunt aceeși. Poate avea G circuite? (justificare)

26

Demonstrați că dacă $\forall u, v \in V(G), u \neq v$ avem $N_G(u) \cup N_G(v) = V(G)$, atunci graful G este complet.

27

Să se arate că dacă un graf G are exact două vârfuri de grad impar atunci în G există un drum între aceste două vârfuri.

28

Fie G = (V, E) un graf cu proprietatea că $\forall v, w \in V, v \neq w$ are loc $d_G(v) + d_G(w) \ge |V| - 1$. Demonstrați că diametrul lui G este cel mult 2.

29

Fie G un graf conex cu toate vârfurile de grad par. Demonstrați că $\forall e \in E$ graful G-e este conex.

30

Fie G=(V,E) un graf cu cel puţin 3 vîfuri. Demonstraţi că G este conex dacă și numai dacă există două vârfuri $u,v\in V$ $(u\neq v)$ astfel încât grafurile G-u și G-v sunt conexe.

31

Dacă H=(V(H),E(H)) este un graf, notăm numărul muchiilor lui H cu e(H) (e(H)=|E(H)|). Demonstrați că pentru orice graf G=(V,E) cu cel puțin 3 vârfuri are loc egalitatea $e(G)=\frac{\sum_{v\in V}e(G-v)}{|V|-2}$.

