Tier 1 Analysis

Put into LATEX by Steven Schaefer stschaef@iu.edu

Abstract

I was passed on an extensive collection of handwritten notes – totaling nearly 600 pages – for the Tier 1 Analysis Exam at Indiana University. Here I am translating it into \LaTeX , adding my own solutions, and adding any material that I view necessary.

I currently do not know who the original author is.

Contents			

CONTENTS

Tier 1 Analysis

1	Problems	3
2	Exams Through August 2020	5

Tier 1 Analysis 1 PROBLEMS

1 Problems

Theorem 1 (Finite Intersection Property ¹). *If* $\{K_{\alpha}\}$ *is a collection of compact subsets of a metric space* X *such that the intersection of every finite subcollection of* $\{K_{\alpha}\}$ *is nonempty, then* $\bigcap K_{\alpha}$ *is nonempty.*

Note that this may be any collection of compact sets. No countability is assumed.

Proof of Theorem 1. Suppose that $\bigcap K_{\alpha}$ is empty. Fix an arbitary set $K \in \{K_{\alpha}\}$. Because $\bigcap K_{\alpha}$ is empty, for all $x \in K$ we have that $x \in K_{\alpha}^{c}$ for some α . Thus, $\bigcup (K_{\alpha}^{c})$ is an oper cover of K.

Because K is compact there is a finite subcover, $K_{\alpha_1}^c, \ldots, K_{\alpha_n}^c$. That is, $K \subset \bigcup_{i=1}^n (K_{\alpha_i}^c)$, so

$$K \cap \left(\bigcap_{i=1}^{n} K_{\alpha}\right) = \emptyset$$

This contradicts the hypothesis that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty. So we conclude that $\bigcap K_{\alpha}$ is nonempty. \Box

Problem 2. A map $f: \mathbb{R}^m \to \mathbb{R}^n$ is *proper* if it is continuous and $f^{-1}(B)$ is compact for each compact subset $B \subset \mathbb{R}^n$; f is *closed* if it is continuous and f(A) is closed for each closed subset $A \subset \mathbb{R}^m$.

- (a) Prove that any proper map $f: \mathbb{R}^m \to \mathbb{R}^n$ is closed.
- **(b)** Prove that every one-to-one closed map $f: \mathbb{R}^m \to \mathbb{R}^n$ is proper.

Supposedly this question is from August 1997, but I could find no record of this when combing through previous exams. Note that Tier 1 August 2010, #2 touches on the same topic of proper maps.

Proof of Problem 2 (a). Let $A \subset \mathbb{R}^m$ be closed. To show that f(A) is closed, it is sufficient to show that $f(A)^c$ is open.

Let $q \in f(A)^c$ and consider $\overline{B}_{\epsilon}(q)$ the closed ball of radius ϵ about q. $\overline{B}_{\epsilon}(q)$ is closed and bounded in \mathbb{R}^n , so it is compact. Because f is proper, we have that $f^{-1}\left(\overline{B}_{\epsilon}(q)\right)$ is also compact. Define the following sequence of decreasing compact sets,

$$U_j = A \cap f^{-1} \left(\overline{B}_{\epsilon_j}(q) \right),$$

where $\epsilon_0 = \epsilon$ and $\epsilon_{j+1} < \epsilon_j$. Note that each U_j is indeed compact, because $f^{-1}\left(\overline{B}_{\epsilon_j}(q)\right)$ is compact for all j and A is closed.

$$\bigcap U_j = A \cap \bigcap f^{-1} \left(\overline{B}_{\epsilon_j}(q) \right)$$

$$= A \cap f^{-1} \left(q \right)$$

$$= \emptyset$$

The above intersection is empty by construction, as $q \in f(A)^c$.

By Theorem 1 – the finite intersection property for compact sets – because the intersection over all U_j 's is empty, there must be some finite subcollection of $\{U_j\}$ with empty intersection. Write this finite subcollection as U_1, \ldots, U_n . Let N be the smallest such n and note because the U_j 's are nested, $\bigcap_{j=1}^N U_j = U_N$.

$$\bigcap^{N} U_{j} = U_{N}$$

$$= A \cap f^{-1} \left(\overline{B}_{\epsilon_{N}}(q) \right)$$

$$= \emptyset$$

Thus $f(A) \cap B_r(q) = \emptyset$, where $r < \epsilon_N$. So $f(A)^c$ is open and we are done.

 $^{^{1}}$ See [1] p.38

Proof of Problem 2 (b). TODO

Problem 3. Let the function $f: \mathbb{R}^n \to \mathbb{R}^n$ satisfy the following two conditions:

- (i) f(K) is compact whenever $K \subset \mathbb{R}^n$ is compact.
- (ii) If $\{K_n\}$ is a decreasing sequence of compact subset of \mathbb{R}^n , then

$$f\left(\bigcap_{n=1}^{\infty} K_n\right) = \bigcap_{n=1}^{\infty} f(K_n)$$

Prove that f is continuous.

Theorem 4 (Tier 1 August 2015, #10). ²

Suppose K is compact, and

- (i) $\{f_n\}$ is a sequence of continuous functions on K,
- (ii) $\{f_n\}$ converges pointwise to a continuous function f on K,
- (iii) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K, n \in \mathbb{N}$.

Then $f_n \to f$ uniformly on K.

Proof of Theorem 4. TODO

Problem 5. Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable map such that F(0) = 0. Assume that

$$\sum_{j,k=1}^{n} \left| \frac{\partial F_j}{\partial x_k}(0) \right|^2 = c < 1.$$

Prove that there is a ball $B \subset \mathbb{R}^n$ with center 0 such that $F(B) \subset B$.

Proof of Problem 5. TODO

Problem 6. Suppose that $E \subset \mathbb{R}^n$ is open an that $f: E \to \mathbb{R}^n$ is C^2 . Suppose also that $f''(x_0)$ is positive definite for some $x_0 \in E$. Prove that there is r > 0 such that f''(x) is positive definite for $x \in N_r(x_0)$.

Proof of Problem 6. TODO

Problem 7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^2 . A point $x \in \mathbb{R}^n$ is a *critical point* of f if all the partial derivatives of f vanish at x. A critical point is *nondegenerate* if the $n \times n$ matrix $\left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right]$ is non-singular.

Let x be a nondegenerate critical point of f. Prove that there is an open neighborhood of x which contains no other critical points (i.e. the nondegenerate critical points are isolated).

²See [1] p.150 and p.516

2 Exams Through August 2020

TODO: Uncomment when finished

Tier 1 Analysis REFERENCES

References

[1] Rudin, Walter. Principles of Mathematical Analysis. 3d ed, McGraw-Hill, 1976.