

# Aula 10: Redes Neurais

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br







# **Tópicos**

- Técnicas geométricas
- Discriminante linear
- Redes neurais artificiais
- Arquitetura e aprendizado de redes neurais
- Rede perceptron
- Rede adaline
- Rede multi-layer perceptron (MLP)







### **Discriminante linear**

- Busca modelo que melhor se ajuste aos dados
  - Representação matemática
    - Dois atributos preditivos
      - Fronteira de decisão = reta (hiperplano para > 2)
    - Classificação
    - Função discriminante
      - Combinação linear dos atributos preditivos
        - o Soma ponderada
      - Como definir valores dos pesos?



$$y = ax + b$$
  
 $f(x) = ax + b$   
 $f(x) = -2x + 15$ 

#### Função de classificação:

classe(x) = 
$$\begin{cases} +1 \text{ se } f(x) + 2p - 15 \ge 0 \\ -1 \text{ se } f(x) + 2p - 15 < 0 \end{cases}$$

$$f(x) = w_0 + w_1x_1$$
  
 $f(x) = w_0 + w_1x_1 + w_2x_2 + ...$ 







#### **Redes Neurais**

- Sistemas distribuídos inspirados no cérebro humano
  - o Redes são compostas por várias unidades de processamento ("neurônios")
    - Interligadas por um grande número de conexões ("sinapses")
- Bom desempenho preditivo em várias aplicações







### **Redes Neurais**

• Um neurônio simplificado:









# Neurônio artificial

• Modelo de um neurônio abstrato









#### **Conceitos básicos**

- Principais aspectos das RNA
  - Arquitetura
    - Unidades de processamento (neurônios)
    - Conexões (sinapses)
    - Topologia
  - Aprendizado
    - Algoritmos
    - Paradigmas







# Unidades de processamento

- Funcionamento
  - o Recebem entradas de conjunto de unidades A
  - Aplicam função de ativação sobre entradas
  - o Enviam resultado para saída ou conjunto de unidades B
- Entrada total

$$u = \sum_{i=1}^{m} x_i w_i$$







### Conexões

- Definem como neurônios artificiais estão interligados
- Codificam conhecimento da rede
- Tipos de conexões:
  - o Excitatória:  $(w_{ik}(t) > 0)$
  - o Inibitória:  $(w_{ik}(t) < 0)$
- Número de conexões de um neurônio
  - o Fan-in
  - Fan-out





# **Topologia**

- Número de camadas
- Cobertura das conexões



Arranjo das conexões







# Algoritmos de aprendizado

- Conjunto de regras que define como ajustar os parâmetros da rede
- Principais formas de ajuste
  - o Correção de erro
  - Hebbiano
  - Competitivo
  - o Termodinâmico (Boltzmann)
- Diferem na maneira como os pesossão ajustados







# Paradigmas de aprendizado

- Definidos pelas informações externas que a rede recebe durante seu aprendizado
  - o Principais abordagens
    - Supervisionado
    - Não supervisionado
      - Semi-supervisionado
      - Aprendizado ativo
    - Reforço
    - Híbrido







#### História das Redes Neurais

- 300 A. C.: Aristóteles escreveu: de todos os animais, o homem, proporcionalmente, tem o maior cérebro
- 1700 D.C.: Descartes acreditava que mente e cérebro eram entidades separadas
- 1911: Ramon y Cajal introduz a idéia de neurônios como estruturas básicas do cérebro
  - o Considerado o pai da neurociência moderna
- 1943: McCulloch & Pitts desenvolvem modelo matemático de RNAs
- 1949: Hebb desenvolve algoritmo para treinar RNA (aprendizado Hebbiano)
  - Se dois neurônios estão simultaneamente ativos, a conexão entre eles deve ser reforçada







#### História das Redes Neurais

- 1951: Marvin Minsky and Dean Edmonds constoem a primeira máquina que implementa uma rede neural (Princeton/Harvard)
  - o SNARC (Stochastic neural analog reinforcement calculator)
- 1957: Rosenblatt implementa primeira RNA a ser usada na prática, a rede Perceptron
- 1958: Von Neumann mostra interesse na modelagem do cérebro
  - The Computer and the Brain, Yale University Press
- 1969: Minsky & Papert publicam livro mostrando limitações da rede Perceptron
- 1982: Hopfield mostra que Redes Neurais podem ser tratadas como sistemas dinâmicos







#### **SNARC**

- Stochastic Neural Analog Reinforcement Calculator
  - o Implementada por Marvin Minsky e Dean Edmonds em 1951
  - o Primeira implementação de uma rede neural
  - o Testada para sair de um labirinto









#### **SNARC**

- Rede Neural baseada em componentes analógicos e eletromecânicos
- Possuia 40 neurônios conectados em rede
  - Cada neurônio usava:
    - Um capacitor: para memória de curto prazo
      - Componente que armazena energia elétrica
    - Um potenciômetro, para memória de longo prazo
      - Funcionavam como pesos associados às conexões de entrada dos neurônios artificiais
  - o Treinada por algoritmo de aprendizado por reforço







- Proposta por Rosemblat, 1957
  - Modelo de neurônio de McCulloch-Pitts
- Treinamento
  - Supervisionado
  - o Correção de erro

• 
$$W_i(t) = W_i(t-1) + \Delta W_i$$

• 
$$\Delta W_i = \eta X_i \delta$$

• 
$$\Delta w_i = \eta x_i (y - f(\mu))$$

• Teorema de convergência









- Resposta / saída da rede
  - Aplica função de ativação limiar sobre soma total de entrada recebida por um neurônio

$$u = \sum_{i=1}^{m} x_i w_i$$

$$f(u) = \begin{cases} +1 & \text{if } u \ge \theta \\ -1 & \text{if } u < \theta \end{cases}$$

$$net = \sum_{i=1}^{m} x_i w_i$$

$$f(u) = \begin{cases} f(u) & \text{if } (u - \theta) \\ f(u - \theta) & \text{if } (u - \theta) \\ f(u - \theta) & \text{if } (u - \theta) \end{cases}$$













- Primeira implementação:
  - Mark I Perceptron
  - Cornell Aeronautical Laboratory











# Começando a implementação









# Preparando a rede Perceptron











# Finalizando a rede Perceptron









# Perceptron funcionando









## **Treinamento**









# Algoritmo de treinamento

```
1 Iniciar peso de cada conexão com o valor 0
2 Repita

Para cada par de treinamento (X, y)

Calcular a saída f(X)

Se (y \neq f(X))

Então

Atualizar pesos do neurônio

Até condição de parada
```













































- Dada uma rede Perceptron com:
  - Três entradas, pesos  $w_1 = 0.4$ ,  $w_2 = -0.6$  e  $w_3 = 0.6$ , e limiar  $\theta = 0.5$ :
    - Ensinar a rede com os exemplos (001, -1) e (110, +1)
    - Utilizar taxa de aprendizado  $\eta$  = 0.4
      - Predizer a classe dos exemplos: 111, 000, 100 e 011













- Treinar a rede  $x_0$ ,  $w_0(\theta)$ ,  $w_1$ ,  $w_2$ ,  $w_3$ ,  $\eta = -1$ , 0.5, 0.4, -0.6, 0.6, 0.4
  - 1) Para o exemplo 001

$$(y = -1)$$

Passo 1: definir a saída da rede ( $\Sigma xw$ )

$$u-\theta = -1(0.5) + O(0.4) + O(-0.6) + 1(0.6) = 0.1$$

 $f(net) = +1 (uma vez que 0.1 \ge 0)$ 

Passo 2: atualizar pesos ( $y \neq f(net)$ )



$$W_0 = 0.5 + 0.4(-1)(-1 - (+1)) = 1.3$$
  
 $W_1 = 0.4 + 0.4(0)(-1 - (+1)) = 0.4$   
 $W_2 = -0.6 + 0.4(0)(-1 - (+1)) = -0.6$   
 $W_3 = 0.6 + 0.4(1)(-1 - (+1)) = -0.2$ 





- Treinar a rede  $x_0$ ,  $w_0(\theta)$ ,  $w_1$ ,  $w_2$ ,  $w_3$ ,  $\eta$  = -1, 1.3, 0.4, -0.6, -0.2, 0.4
  - 2) Para o exemplo 110

$$(y = +1)$$

Passo 1: definir a saída da rede

$$u-\theta = -1(1.3) + 1(0.4) + 1(-0.6) + 0(-0.2) = -1.5$$

f(net) = -1 (uma vez que -1.5 < 0)

Passo 2: atualizar pesos (y ≠ f(net))



$$W_0 = 1.3 + 0.4(-1)(1 - (-1)) = 0.5$$

$$W_1 = 0.4 + 0.4(1)(1 - (-1)) = 1.2$$

$$W_2 = -0.6 + 0.4(1)(1 - (-1)) = 0.2$$

$$W_3 = -0.2 + 0.4(0)(1 - (-1)) = -0.2$$





- Treinar a rede  $x_0$ ,  $w_0(\theta)$ ,  $w_1$ ,  $w_2$ ,  $w_3$ ,  $\eta = -1$ , 0.5, 1.2, 0.2, -0.2, 0.4
  - 3) Para o exemplo 001

$$(y = -1)$$

Passo 1: definir a saída da rede

$$u-\theta = -1(0.5) + O(1.2) + O(0.2) + 1(-0.2) = -0.7$$

f(net) = -1 (uma vez que -0.7 < 0)

Passo 2: atualizar pesos (y = f(net))

Como y = f(net), os pesos não precisam ser modificados







## **Exemplo**

- Treinar a rede  $x_0$ ,  $w_0(\theta)$ ,  $w_1$ ,  $w_2$ ,  $w_3$ ,  $\eta = -1$ , 0.5, 1.2, 0.2, -0.2, 0.4
  - 4) Para o exemplo 110

$$(y = +1)$$

Passo 1: definir a saída da rede

$$u-\theta = -1(0.5) + 1(1.2) + 1(0.2) + 0(-0.2) = +0.7$$

$$f(net) = +1 (uma vez 0.7 \ge 0)$$

Passo 2: atualizar pesos (y = f(net))

Como y = f(net), os pesos não precisam ser modificados







## **Exemplo**

- Utilizar a rede treinada para classificar os exemplos 111, 000, 100 e 011
  - o Pesos aprendidos: 0.5, 1.2, 0.2, -0.2
    - b.1) Para o exemplo 111

$$u-\theta = -1(0.5) + 1(1.2) + 1(0.2) + 1(-0.2) = 0.7$$

$$f(net) = +1 (porque 0.7 \ge 0)) \Rightarrow classe +1$$

b.2) Para o exemplo 000

$$u-\theta = -1(0.5) + O(1.2) + O(0.2) + O(-0.2) = -0.5$$

$$f(net) = -1 (porque -0.5 < 0) \Rightarrow classe -1$$









## **Exemplo**

- Utilizar a rede treinada para classificar os exemplos 111, 000, 100 e 011
  - o Pesos aprendidos: 0.5, 1.2, 0.2, -0.2
    - b.1) Para o exemplo 100

$$u-\theta = -1(0.5) + 1(1.2) + O(0.2) + O(-0.2) = 0.7$$

$$f(net) = +1 (porque 0.7 \ge 0)) \Rightarrow classe +1$$

b.2) Para o exemplo 011

$$u-\theta = -1(0.5) + O(1.2) + 1(0.2) + 1(-0.2) = -0.5$$

$$f(net) = -1 (porque -0.5 < 0) \Rightarrow classe -1$$









## Problema da rede Perceptron

$$0, 0 \to 0$$
  
 $0, 1 \to 1$   
 $1, 0 \to 1$   
 $1, 1 \to 0$ 







### **Rede Adaline**

- Problema do Perceptron: ajuste de pesos n\u00e3o leva em conta dist\u00e1ncia entre sa\u00edda e resposta desejada
- Rede Adaline
  - o Proposta pôr Widrow e Hoff em 1960
  - Utiliza modelo de McCulloch-Pitts como neurônio





### **Rede Adaline**

- Estado de ativação
  - 1 = ativo
  - o 0 = inativo
- Função de ativação
  - $\circ \quad a_i(t+1) = u_i(t)$
- Função de saída = função identidade





### **Rede Adaline**

- Treinamento
  - Supervisionado
  - o Correção de erro (regra LMS (delta, Widrow-Hoff)

$$\Delta w_{ij} = \eta x_i (d_j - y_j)$$

$$(d \neq y)$$

$$\Delta W_{ij} = O$$

$$(d = y)$$

- Implícito na primeira equação
- Reajuste gradual do peso
  - Leva em conta distância entre saída e resposta desejada





### Algoritmo de treinamento

```
1 Iniciar peso de cada conexão com o valor 0
2 Repita

Para cada par de treinamento (X, y)

Calcular a saída f(X)

Se (y \neq f(X))

Então

Atualizar pesos do neurônio

Até condição de parada
```





### Fase de teste

```
1 Para cada objeto de teste X faça apresentar X a entrada da rede calcular a saída y se (y < lim_inf) então X \in classe 0 senão se (y > lim_sup) então X \in classe 1 senão indefinido
```





### **Rede madaline**

- Trata algumas funções não linearmente separáveis
- Cada Adaline pode estar associado a uma reta
- Multicamadas
  - o Primeira camada
    - Adaptativa
    - Várias redes Adaline
  - Segunda camada
    - Fixa
    - Funções AND ou maioria







# Rede Multi-Layer Perceptron (MLP)

- Arquitetura de RNA mais utilizada
  - o Uma ou mais camadas intermediárias de neurônios
- Funcionalidade (teórica)
  - o Uma camada intermediária: qualquer função contínua ou Booleana
  - o Duas camadas intermediárias: qualquer função
- Originalmente treinada com o algoritmo backpropagation







# **MLP** e backpropagation









## **Backpropagation**

- Treina a rede com pares entrada-saída
  - o Cada vetor de entrada é associado a uma saída desejada
- Treinamento em duas fases, cada uma percorrendo a rede em um sentido
  - Fase forward
  - Fase backward
- Rumelhart, Hinton e Williams (1986)
  - o Werbos (1974)









## **Backpropagation**

- Treinamento
  - Supervisionado
  - o Ajuste dos pesos: Δ $w_{ij} = \eta x_i \delta_j$



$$\delta_{j} = \begin{cases} f'(net)erro_{j} & \text{se j for camada de saída} \\ f'(net)\sum w_{jk}\delta_{k} & \text{se j for camada intemediária} \end{cases}$$

$$erro_{j} = \frac{1}{2}\sum_{q=1}^{c}(y_{q}-f(net_{q})) \qquad net = \sum_{i=0}^{m}x_{i}w_{i}$$





## Funções de ativação

### Step function



$$Y^{step} = \begin{cases} 1, & \text{if } X \ge 0 \\ 0, & \text{if } X < 0 \end{cases}$$

### Sign function



$$Y^{sign} = \begin{cases} +1, & \text{if } X \ge 0 \\ -1, & \text{if } X < 0 \end{cases}$$

### Sigmoid function



$$Y^{sigmoid} = \frac{1}{1 + e^{-X}}$$

### Linear function



$$Y^{linear} = X$$





## Funções de ativação linear

- Redes com função de ativação linear são mais fáceis de treinar
  - Derivada é uma constante
- Generaizam bem, mas não permitem aprender funções complexas
  - Ainda são usadas na camada de saída
  - Usando manipulação de matrizes, é possivel mostrar que rede com várias camadas pode ser reduzida a uma camada
- Funções diferenciávies mais usadas são sigmoide e tangente hiperbólica
  - o Até o início dos anos 1990 era a função default, substituída depois pela tanh
    - Mais fácil de treinar e em geral produzia melhores resultados







# Funções de ativação e fronteiras de decisão









## Algoritmo de treinamento

```
Iniciar todas as conexões com valores aleatórios \in [a,b]

Repita

erro = 0;

Para cada par de treinamento (X, y)

Para cada camada k := 1 a N

Para cada neurônio j := 1 a M_k

Calcular a saída f_{kj} (net)

Se k = N

Então Calcular soma dos erros dos neurônios da camada;

Se erro > \varepsilon

Então Para cada camada k := N a 1

Para cada neurônio j := 1 a M_k

Atualizar pesos;

Até erro < \varepsilon (ou número máximo de ciclos)
```



























































































### **Exercício**

Dada a rede abaixo, que recebe como entrada um vetor binário de *n* bits e gera como saída um valor binário:

- a) Indicar a função implementada pela rede abaixo:
- b) Explicar papel de cada neurônio no processamento da função

Considerar função de ativação limiar (threshold) entrada/saída binária









### **Exercício**

- Paridade
  - Uma das limitações do Perceptron levantadas por Minsky e Papert
- Problema difícil
  - Padrões mais semelhantes requerem respostas diferentes
  - Usa *n* unidades intermediárias para detectar paridade em vetores com *n* bits







### **MLPs** como classificadores









# Regiões convexas









# Combinações de regiões convexas















## Combinações de regiões convexas

Encontrar fronteiras de decisão que separem os dados abaixo:









## Combinações de regiões convexas

• Encontrar fronteiras de decisão que separem os dados abaixo:









# Funções de ativação

| Name                                                              | Plot | Equation                                                                                          | Derivative                                                                                       |
|-------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Identity                                                          | /    | f(x) = x                                                                                          | f'(x) = 1                                                                                        |
| Binary step                                                       |      | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$            |
| Logistic (a.k.a<br>Soft step)                                     |      | $f(x) = \frac{1}{1 + e^{-x}}$                                                                     | f'(x) = f(x)(1 - f(x))                                                                           |
| TanH                                                              |      | $f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$                                                     | $f'(x) = 1 - f(x)^2$                                                                             |
| ArcTan                                                            |      | $f(x) = \tan^{-1}(x)$                                                                             | $f'(x) = \frac{1}{x^2 + 1}$                                                                      |
| Rectified<br>Linear Unit<br>(ReLU)                                |      | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$             |
| Parameteric<br>Rectified<br>Linear Unit<br>(PReLU) <sup>[2]</sup> |      | $f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$        | $f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$        |
| Exponential<br>Linear Unit<br>(ELU) <sup>[3]</sup>                |      | $f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ | $f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ |
| SoftPlus                                                          |      | $f(x) = \log_e(1 + e^x)$                                                                          | $f'(x) = \frac{1}{1 + e^{-x}}$                                                                   |







# Função Sigmoide e Tangente Hiperbólica

- Problema das funções sigmoide e tangente hiperbólica é a saturação nos extremos
  - o Sensíveis a mudanças apenas para valores próximos ao meio
  - Dificuldade para treinar redes com muitas camadas
  - Problema do gradiente desaparecendo (vanishing gradient problem)
    - Camadas mais próximas da entrada não recebem informação gradiente útil
    - Erros retro-propagados para as camadas de trás decresce reduz drasticamente a cada nova camada adicionada
    - Causado pela derivada da função de ativação
    - Faz com que redes com muitas camadas não aprendam de forma eficiente







### Função Rectified Linear Unit (ReLU)

- Nos ultimos anos, funções sigmoide e tangente hiperbólica têm sido substituídas por funções de unidade linear retificada ReLU
  - o ReLU pode evitar o problema de gradiente decrescente
- Atualmente utilizada em vários tipos de redes neurais
  - Mais fáceis de treinar
    - Por serem quase lineares, preservam propriedades que fazem modelos lineares mais fáceis de otimizar por métodos baseados no gradiente
  - Muitas vezes obtem melhores resultados
    - Por preservarem muitas das propriedades que fazem com que modelos lineares tenham boa capacidade de generalização







# Funções de ativação

| Nome                                                              | Figura | Função                                                                                            | Derivada                                                                                         |
|-------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Rectified<br>Linear Unit<br>(ReLU)                                |        | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$             |
| Parameteric<br>Rectified<br>Linear Unit<br>(PReLU) <sup>[2]</sup> |        | $f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$        | $f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$        |
| Exponential<br>Linear Unit<br>(ELU) <sup>[3]</sup>                |        | $f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ | $f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ |
| SoftPlus                                                          |        | $f(x) = \log_e(1 + e^x)$                                                                          | $f'(x) = \frac{1}{1 + e^{-x}}$                                                                   |





### Conclusão

- Redes Neurais
  - Sistema nervoso
  - o Muito utilizadas em problemas reais
    - Várias arquiteturas e algoritmos de treinamento
  - Magia negra
  - Caixa preta







Fim do apresentação



