Logistic Regression

Feb 2023

Sumit Kumar Yadav

Department of Management Studies Indian Institute of Technology, Roorkee

Recap and Today

- Multicollinearity Issues in Regression
- Logistic Regression
- VIF
- Logistic Regression More discussion
- Softmax

Logistic Regression

Example - A customer purchase decision for onion during her visits to a vegetable store are shown below in the table.

Visit Index	1	2	3	4	5	6	7	8	9	10
Price	2	2	2	2	2	3	3	3	3	4
Decision	Υ	Υ	Y	N	Υ	Υ	Υ	N	N	Υ

Visit Index	11	12	13	14	15	16	17	18	19	20
Price	4	4	4	4	4	5	5	5	5	5
Decision	N	N	Υ	N	N	N	N	N	N	Υ

When the price is 2.5 or when the price is 6, what is the probability that the person will make a purchase?

Example Contd-

When the price is 2.5 (or 6), what is the probability that the person will make a purchase?

Price	No. of Visits	No. of Purchases	Probability of Purchase
2	5	4	0.8
3	4	2	0.5
4	6	2	0.33
5	5	1	0.2

Example Contd -

Example - A customer purchase decision for onion during her visits to a vegetable store are shown below in the table.

VI	1	2	3	4	5	6	7	8	9	10
Р	2.1	2.05	1.98	2	2.2	3.1	3.06	3.02	3.2	4.1
D	Υ	Y	Y	N	Υ	Υ	Υ	N	N	Υ

VI	11	12	13	14	15	16	17	18	19	20
Р	4.07	4.12	4.14	3.98	4.08	5.1	4.99	5.2	5.15	4.98
D	N	N	Υ	N	N	N	N	N	N	Y

When the price is 2.5 or when the price is 6, what is the probability that the person will make a purchase?

Maximum Likelihood Principle - Ideas

Rain Prediction Model								
	Monday Tuesday Wednesday Thursda							
Model A	0.3	0.6	0.7	0.2				
Model B	0.2	0.4	0.9	0.6				
Rained?	N	Υ	Y	N				

Which Model is better??

$$w = [\alpha, \beta_1, \beta_2,, \beta_k]$$

$$x = [1, x_1, x_2, x_3,, x_k]$$

Let

Let
$$w = [\alpha, \beta_1, \beta_2,, \beta_k]$$

$$x = [1, x_1, x_2, x_3,, x_k]$$

$$\Pr[Yes \text{ given } x] = \frac{1}{1 + \exp(-w \cdot x)}$$

$$\Pr[No \text{ given } x] = \frac{1}{1 + \exp(+w \cdot x)}$$

Let
$$w = [\alpha, \beta_1, \beta_2,, \beta_k]$$

$$x = [1, x_1, x_2, x_3,, x_k]$$

$$\Pr[Yes \text{ given } x] = \frac{1}{1 + \exp(-w \cdot x)}$$

$$\Pr[No \text{ given } x] = \frac{1}{1 + \exp(+w \cdot x)}$$

Replace Yes with +1 and No with -1

Let
$$w = [\alpha, \beta_1, \beta_2,, \beta_k]$$
 $x = [1, x_1, x_2, x_3,, x_k]$ $y = 1$, if Yes, $y = -1$ if No

Let
$$w = [\alpha, \beta_1, \beta_2,, \beta_k]$$
 $x = [1, x_1, x_2, x_3,, x_k]$ $y = 1$, if Yes, $y = -1$ if No
$$\Pr[+1 \text{ given } x] = \frac{1}{1 + \exp(-w \cdot x)}$$

$$\Pr[-1 \text{ given } x] = \frac{1}{1 + \exp(+w \cdot x)}$$

Or more compactly

$$\Pr[y \text{ given } x] = \frac{1}{1 + \exp(-v \times w \cdot x)}$$

Maximum Likelihood Principle

Probability of observing the dataset as per the model is

$$\prod_{i=1}^{n} \Pr[y_i \text{ given } x_i] = \prod_{i=1}^{n} \frac{1}{1 + \exp(-y_i w \cdot x_i)}$$

We are looking for w which will maximize this, or alternatively w which will minimize the expression below -

$$\min_{w} \sum_{i=1}^{n} \log \left(1 + \exp\left(-y_{i}w \cdot x_{i}\right)\right)$$
or
$$\left(\sum_{i=1}^{n} \log \left(1 + e^{-y_{i}}\vec{w} \cdot \vec{x}_{i}\right)\right) \underline{1}$$

Logistic Regression - Implementation in Python

Equivalent Cutoff condition with threshold

Let us say we keep the threshold as 0.5. What is the decision

surface?

Multi-class classification - Model

 ω_1 : $\{ \alpha_1, \beta_2, \beta_2, \dots, \beta_{1k} \}$ multiple classes in the data $\{ y \in \{1, 2, 3, \dots, r\} \}$ Instead of a single weight vector w, we consider r weight vectors $w_1, w_2, w_3, \dots, w_r$.

Multi-class classification - Model

multiple classes in the data
$$y \in \{1, 2, 3, \dots, r\}$$

 $y \in \{1, 2, 3, \dots, r\}$

Instead of a single weight vector w, we consider r weight vectors $W_1, W_2, W_3, \cdots, W_r$.

$$Pr[\text{ output } i \text{ given } x] = \frac{\exp(w_j \cdot x)}{\sum_{j=1}^r \exp(w_j \cdot x)}$$

This is called the Soft-Max function, it converts a given set of numbers to probabilities.

Multi-class classification

Softmax for 2 classes

Thank you for your attention