

Intel Corporation makes no guarantee concerning the use of any of its products in life support applications or medical devices. Intel Corporation reserves the right to make changes without notice in design, specification or price of any product. Intel Corporation is not responsible for typographical or editorial errors contained in this document.

July 1992

The following is a list of Intel products that may be used in the manufacture of high end power supplies.

MAGNETIC	9400	328
Modular	10000	340
Media Mail	10150	342
WDC	101500	343
Western	101524	344
Quantum	101525	345
Quantum	101526	346
Quantum	101527	347
Quantum	101528	348
Quantum	101529	349
Quantum	101530	350
Quantum	101531	351
Quantum	101532	352
Quantum	101533	353
Quantum	101534	354
Quantum	101535	355
Quantum	101536	356
Quantum	101537	357
Quantum	101538	358
Quantum	101539	359
Quantum	101540	360
Quantum	101541	361
Quantum	101542	362
Quantum	101543	363
Quantum	101544	364
Quantum	101545	365
Quantum	101546	366
Quantum	101547	367
Quantum	101548	368
Quantum	101549	369
Quantum	101550	370
Quantum	101551	371
Quantum	101552	372
Quantum	101553	373
Quantum	101554	374
Quantum	101555	375
Quantum	101556	376
Quantum	101557	377
Quantum	101558	378
Quantum	101559	379
Quantum	101560	380
Quantum	101561	381
Quantum	101562	382
Quantum	101563	383
Quantum	101564	384
Quantum	101565	385
Quantum	101566	386
Quantum	101567	387
Quantum	101568	388
Quantum	101569	389
Quantum	101570	390
Quantum	101571	391
Quantum	101572	392
Quantum	101573	393
Quantum	101574	394
Quantum	101575	395
Quantum	101576	396
Quantum	101577	397
Quantum	101578	398
Quantum	101579	399
Quantum	101580	400
Quantum	101581	401
Quantum	101582	402
Quantum	101583	403
Quantum	101584	404
Quantum	101585	405
Quantum	101586	406
Quantum	101587	407
Quantum	101588	408
Quantum	101589	409
Quantum	101590	410
Quantum	101591	411
Quantum	101592	412
Quantum	101593	413
Quantum	101594	414
Quantum	101595	415
Quantum	101596	416
Quantum	101597	417
Quantum	101598	418
Quantum	101599	419
Quantum	101500	420
Quantum	101501	421
Quantum	101502	422
Quantum	101503	423
Quantum	101504	424
Quantum	101505	425
Quantum	101506	426
Quantum	101507	427
Quantum	101508	428
Quantum	101509	429
Quantum	101510	430
Quantum	101511	431
Quantum	101512	432
Quantum	101513	433
Quantum	101514	434
Quantum	101515	435
Quantum	101516	436
Quantum	101517	437
Quantum	101518	438
Quantum	101519	439
Quantum	101520	440
Quantum	101521	441
Quantum	101522	442
Quantum	101523	443
Quantum	101524	444
Quantum	101525	445
Quantum	101526	446
Quantum	101527	447
Quantum	101528	448
Quantum	101529	449
Quantum	101530	450
Quantum	101531	451
Quantum	101532	452
Quantum	101533	453
Quantum	101534	454
Quantum	101535	455
Quantum	101536	456
Quantum	101537	457
Quantum	101538	458
Quantum	101539	459
Quantum	101540	460
Quantum	101541	461
Quantum	101542	462
Quantum	101543	463
Quantum	101544	464
Quantum	101545	465
Quantum	101546	466
Quantum	101547	467
Quantum	101548	468
Quantum	101549	469
Quantum	101550	470
Quantum	101551	471
Quantum	101552	472
Quantum	101553	473
Quantum	101554	474
Quantum	101555	475
Quantum	101556	476
Quantum	101557	477
Quantum	101558	478
Quantum	101559	479
Quantum	101560	480
Quantum	101561	481
Quantum	101562	482
Quantum	101563	483
Quantum	101564	484
Quantum	101565	485
Quantum	101566	486
Quantum	101567	487
Quantum	101568	488
Quantum	101569	489
Quantum	101570	490
Quantum	101571	491
Quantum	101572	492
Quantum	101573	493
Quantum	101574	494
Quantum	101575	495
Quantum	101576	496
Quantum	101577	497
Quantum	101578	498
Quantum	101579	499
Quantum	101580	500
Quantum	101581	501
Quantum	101582	502
Quantum	101583	503
Quantum	101584	504
Quantum	101585	505
Quantum	101586	506
Quantum	101587	507
Quantum	101588	508
Quantum	101589	509
Quantum	101590	510
Quantum	101591	511
Quantum	101592	512
Quantum	101593	513
Quantum	101594	514
Quantum	101595	515
Quantum	101596	516
Quantum	101597	517
Quantum	101598	518
Quantum	101599	519
Quantum	101500	520
Quantum	101501	521
Quantum	101502	522
Quantum	101503	523
Quantum	101504	524
Quantum	101505	525
Quantum	101506	526
Quantum	101507	527
Quantum	101508	528
Quantum	101509	529
Quantum	101510	530
Quantum	101511	531
Quantum	101512	532
Quantum	101513	533
Quantum	101514	534
Quantum	101515	535
Quantum	101516	536
Quantum	101517	537
Quantum	101518	538
Quantum	101519	539
Quantum	101520	540
Quantum	101521	541
Quantum	101522	542
Quantum	101523	543
Quantum	101524	544
Quantum	101525	545
Quantum	101526	546
Quantum	101527	547
Quantum	101528	548
Quantum	101529	549
Quantum	101530	550
Quantum	101531	551
Quantum	101532	552
Quantum	101533	553
Quantum	101534	554
Quantum	101535	555
Quantum	101536	556
Quantum	101537	557
Quantum	101538	558
Quantum	101539	559
Quantum	101540	560
Quantum	101541	561
Quantum	101542	562
Quantum	101543	563
Quantum	101544	564
Quantum	101545	565
Quantum	101546	566
Quantum	101547	567
Quantum	101548	568
Quantum	101549	569
Quantum	101550	570
Quantum	101551	571
Quantum	101552	572
Quantum	101553	573
Quantum	101554	574
Quantum	101555	575
Quantum	101556	576
Quantum	101557	577
Quantum	101558	578
Quantum	101559	579
Quantum	101560	580
Quantum	101561	581
Quantum	101562	582
Quantum	101563	583
Quantum	101564	584
Quantum	101565	585
Quantum	101566	586
Quantum	101567	587
Quantum	101568	588
Quantum	101569	589
Quantum	101570	590
Quantum	101571	591
Quantum	101572	592
Quantum	101573	593
Quantum	101574	594
Quantum	101575	595
Quantum	101576	596
Quantum	101577	597
Quantum	101578	598
Quantum	101579	599
Quantum	101580	600
Quantum	101581	601
Quantum	101582	602
Quantum	101583	603
Quantum	101584	604
Quantum	101585	605
Quantum	101586	606
Quantum	101587	607
Quantum	101588	608
Quantum	101589	609
Quantum	101590	610
Quantum	101591	611
Quantum	101592	612
Quantum	101593	613
Quantum	101594	614
Quantum	101595	615
Quantum	101596	616
Quantum	101597	617
Quantum	101598	618
Quantum	101599	619
Quantum	101500	620
Quantum	101501	621
Quantum	101502	622
Quantum	101503	623
Quantum	101504	624
Quantum	101505	625
Quantum	101506	626
Quantum	101507	627
Quantum	101508	628
Quantum	101509	629
Quantum	101510	630
Quantum	101511	631
Quantum	101512	632
Quantum	101513	633
Quantum	101514	634
Quantum	101515	635
Quantum	101516	636
Quantum	101517	637
Quantum	101518	638
Quantum	101519	639
Quantum	101520	640
Quantum	101521	641
Quantum	101522	642
Quantum	101523	643
Quantum	101524	644
Quantum	101525	645
Quantum	101526	646
Quantum	101527	647
Quantum	101528	648
Quantum	101529	649
Quantum	101530	650
Quantum	101531	651
Quantum	101532	652
Quantum	101533	653
Quantum	101534	654
Quantum	101535	655
Quantum	101536	656
Quantum	101537	657
Quantum	101538	658
Quantum	101539	659
Quantum	101540	660
Quantum	101541	661
Quantum	101542	662
Quantum	101543	663
Quantum	101544	664
Quantum	101545	665
Quantum	101546	666
Quantum	101547	667
Quantum	101548	668
Quantum	101549	669
Quantum	101550	670
Quantum	101551	671
Quantum	101552	672
Quantum	101553	673
Quantum	101554	674
Quantum	101555	675
Quantum	101556	676
Quantum	101557	677
Quantum	101558	678
Quantum	101559	679
Quantum	101560	680
Quantum	101561	681
Quantum	101562	682
Quantum	101563	683
Quantum	101564	684
Quantum	101565	685
Quantum	101566	686
Quantum	101567	687
Quantum	101568	688
Quantum	101569	689
Quantum	101570	690
Quantum	101571	691
Quantum	101572	692
Quantum	101573	693
Quantum	101574	694
Quantum	101575	695
Quantum	101576	696
Quantum	101577	697
Quantum	101578	698
Quantum	101579	699
Quantum	101580	700
Quantum	101581	701
Quantum	101582	702
Quantum	101583	703
Quantum	101584	704
Quantum	101585	705
Quantum	101586	706
Quantum	101587	707
Quantum	101588	708
Quantum	101589	709
Quantum	101590	710
Quantum	101591	711
Quantum	101592	712
Quantum	101593	713
Quantum	101594	714
Quantum	101595	715
Quantum	101596	716
Quantum	101597	717
Quantum	101598	718
Quantum	101599	719
Quantum	101500	720
Quantum	101501	721
Quantum	101502	722
Quantum	101503	723
Quantum	101504	724
Quantum	101505	725
Quantum	101506	726
Quantum	101507	727
Quantum	101508	728
Quantum	101509	729
Quantum	101510	730
Quantum	10151	

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376™	i860™	MAPNET™
Above™	i960™	Matched™
ActionMedia®	Intel287™	Media Mail™
BITBUS™	Intel386™	MCS®
Code Builder™	Intel387™	NetPort™
DeskWare™	Intel486™	NetSentry™
Digital Studio™	Intel487™	OpenNET™
DVI®	Intel®	OverDrive™
EtherExpress™	intel inside.™	Paragon™
ETOX™	Intellec®	ProSolver™
ExCA™	iPSC®	RapidCAD™
Exchange and Go™	iRMX®	READY-LAN™
FaxBACK™	iSBC®	Reference Point®
Grand Challenge™	iSBX™	RMX/80™
i®	iWARP™	RxServer™
ICE™	LANDesk™	SatisFAXtion®
iLBX™	LANPrint®	SnapIn 386™
Inboard™	LANProtect™	Storage Broker™
i287™	LANSelect®	SugarCube™
i386™	LANShell®	The Computer Inside.™
i387™	LANSight™	TokenExpress™
i486™	LANSpace®	Visual Edge™
i487™	LANSpool®	WYPIWYF®
i750®		

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

Power Supply Solutions for Flash Memory

CONTENTS	PAGE	CONTENTS	PAGE
1.0 INTRODUCTION	1	5.0 5V V_{CC} SOLUTIONS: CONVERTING UP FROM 3V	14
2.0 FLASH MEMORY POWER REQUIREMENTS	1	5.1 Maxim MAX658 @ 250 mA	15
V _{CC} Characteristics	1	5.2 Linear Tech LT1110-5 @ 150 mA	16
V _{PP} Characteristics	1		
2.1 Supplies for Battery Powered Applications	2		
The Modular Solution	2	6.0 12V V_{PP} SOLUTIONS: DOWN-CONVERTING FROM A HIGHER VOLTAGE	17
The Discrete Switching Regulator Solution	2	6.1 Maxim MAX667	18
Attributes of a DC-DC Converter	3	6.2 Linear Technology LT1111-5	19
3.0 12V V_{PP} SOLUTIONS: CONVERTING UP FROM 5V	3	6.3 National Semiconductor LM2940CT-12	20
3.1 Maxim MAX732	3		
3.2 Linear Technology LT1110-12	5		
3.3 Linear Technology LT1109-12	6		
3.4 Motorola MC34063A	8		
4.0 12V V_{PP} SOLUTIONS: CONVERTING UP FROM 3V	9		
4.1 Linear Technology LT1110-12	10		
4.2 Maxim MAX732 @ 30 mA	11		
4.3 Maxim MAX732 @ 60 mA	13		
		7.0 12V V_{PP} FROM 12V UNREGULATED	21
		8.0 SUMMARY	21
		APPENDIX A: Modular Solutions	A-1
		APPENDIX B: Survey of Solutions Presented	B-1
		APPENDIX C: Sources for DC-DC Converters	C-1
		APPENDIX D: Sources for Discrete Components	D-1
		APPENDIX E: Other Design Considerations	E-1
		APPENDIX F: PC Layouts	F-1

1.0 INTRODUCTION

Intel flash memory is rapidly being incorporated into a wide range of applications, adding enhanced capability to existing "traditional" memory markets, and creating new markets that exploit its benefits. Sometimes the design platforms may not possess the low powered 12V supply for writing flash memory. The system design engineer then needs to identify a power conversion solution with features and capabilities matching the needs of the application. For example, portable equipment requires a power supply converter that minimizes size and weight, maximizes efficiency to extend battery life, and can be switched into a standby mode to conserve power.

The following pages present some state of the art DC-DC converter solutions. These new solutions are smaller and more efficient than those typically seen in the past. Each of these solutions optimizes a subset of all possible power converter features. The choice of an optimal solution for a given application will be a tradeoff between several attributes. The solutions shown should meet the conversion needs of the majority of applications involving flash memory. Specifically, the solutions that follow encompass the following five categories:

- 5V to 12V conversion
- 3V (2 alkaline/NiCd cells) to 12V conversion
- 3V (2 Alkaline/NiCd cells) to 5V conversion
- Downconverting to 12V from a higher voltage
- Converting 12V unregulated to 12V regulated

More than one solution is presented within each of these categories. These different solutions have distinct optimal features/advantages. The optimal attributes of each solution are outlined. In addition, the appendix contains a survey of all solutions presented here, and provides a basis for comparing their features. The reader should reference it to choose an optimal solution for his/her application.

NOTE:

Solutions were selected from products offered by over thirty DC-DC converter vendors. Since this industry develops many new solutions each year, Intel recommends that designers contact vendors for latest products. Intel will continue to work with the industry to develop optimum solutions for power conversion. Intel Corporation assumes no responsibility for circuitry other than circuitry embodied in Intel products. No other circuit patent licenses are implied.

2.0 INTEL FLASH MEMORY POWER REQUIREMENTS

Intel flash memory is powered by two sources; a 5V V_{CC} line and a 12V V_{PP} line. V_{CC} is the primary power source and the only power source needed to read the memory. V_{PP} is required when writing or erasing the memory.

V_{CC} Characteristics

V_{CC} supplies power to the flash device during all operational modes. Maximum V_{CC} current is demanded by the device during the read operation. The data sheets for all Intel flash memory devices at the time this application note was written specify a maximum read current (I_{CC}) of 30 mA at 5V \pm 10%. This is the guaranteed worst case DC V_{CC} current that may be required by a flash device for reading one byte of data. If multiple components are read simultaneously, the V_{CC} current requirement increases proportionately. V_{CC} tolerance must be maintained to within specification limits at all times for proper functioning of the device.

V_{PP} Characteristics

The supplemental V_{PP} source provides the higher voltages needed to carry out the erase, erase verify, program, and program verify operations. Maximum V_{PP} current is typically demanded during the program and erase modes. Data sheets for all Intel flash memory devices at the time this application note was written specify a maximum I_{PP} current of 30 mA at 12V \pm 5% for both program and erase operations. This is the guaranteed worst case V_{PP} supply current that will be required by a flash device for writing one byte of data or erasing one block/component. If multiple components are programmed/erased simultaneously, the current requirement increases proportionately. V_{PP} must be maintained to within specification limits at all times during device program, and erase. The tolerance specification on V_{PP} must be strictly maintained. Over-voltage can damage the device, and under-voltage can decrease specified device reliability. Although the 12V supply must meet these worst case specifications, power usage will typically be much lower. The lower typical values seen in the data sheets should be used in calculating typical battery life.

2.1 Supplies for Battery Powered Applications

In applications where batteries are the primary source of power, the power supplies providing V_{CC} and V_{PP} need to be selected very carefully. Optimized operating efficiency of these supplies is important to extend battery life. Another attractive feature is the capability of these supplies to be switched into a very low power shutdown mode. It is important to minimize this shutdown current consumption as well since flash memory V_{PP} generators will often be in this state for extended periods of time. Moreover, since these supplies are used in equipment that is physically small and space-constrained, size and height of the supply need to be minimized.

Where two alkaline/NiCd batteries are used as the primary source of power, the primary voltage varies depending on the type and the state of discharge of the batteries. For example, alkaline batteries start life off at 1.5V, but may still retain a significant amount of energy when the voltage falls to 1.0V with use, and will work all the way down to 0.8V. On the other hand, NiCd cells maintain a near constant voltage of 1.25V throughout most of their discharge cycle, and work down to 1.0V. A solution that derives V_{CC} or V_{PP} from 2 AA batteries must hence be capable of doing so from an input voltage that lies in the range of 1.6V to 3.0V.

It is best to directly convert the primary battery voltage into the various voltages needed throughout the system. A step conversion (e.g. a 3V to 5V converter for V_{CC} , followed by a 5V to 12V converter for V_{PP}) is not recommended, since the inefficiency involved in each conversion step combines into one large inefficiency for the sum 3V to 12V conversion. Section 4 presents appropriate 3V battery to 12V converter solutions. Most of the solutions presented in this application note, while specifically designed for battery powered applications, are also viewed as ideal for other applications that incorporate flash memory.

2.2 Choice of a DC-DC Converter

The solution to finding the right power supply for flash memory lies in picking the right DC-DC converter for the job. Two broad categories of DC-DC converters available in the market today can be applied towards this purpose. These are the low power hybrid DC-DC converter module (or modular solution), and the low power discrete switching regulator IC solution.

The Modular Solution

The modular solution generally consists of a push-pull (Royer type) oscillator built around an isolation transformer, and in some cases followed by a linear regulator; all of which is encapsulated within a module. This hybrid module includes all components that are required by the DC-DC converter, and so no additional design effort is needed. The input and output voltages are fixed, and the input and output are almost always isolated via the isolation transformer. The main advantage of these solutions is that no design effort and/or external components are involved. They simply plug into a socket on a PC board. Disadvantages include lower efficiency (generally 60%), larger size/height (in most cases), and higher cost (generally 3x to 10x the cost of discrete solutions).

It would seem that the integration inherent in these solutions contributes towards system reliability, however the type and quality of the discrete components used internal to these hybrid devices is open to question. The isolation offered between the input and output is viewed as overkill for flash applications, since the total power required is typically less than 1W. Note also that the isolation transformer is often the main reason for the lower efficiencies.

The Discrete Switching Regulator Solution

The discrete switching regulator IC solution consists of a DC-DC converter IC (containing a switching regulator controller and an output power switch), along with a few discrete external components (inductor, diode, capacitors, resistors, etc.). The layout of the power supply system in this case is mostly left up to the user. However, application notes and data sheets explain the design process, and provide recommended circuits for commonly used solutions. The design can be tailored to deliver different output voltages and current levels depending on the characteristics of the input voltage and the external components.

Some vendors offer fixed output voltage versions, further simplifying the design process. The newer generation of high frequency low power switching regulator ICs are specifically targeted at battery powered operation, and most can be switched into a low quiescent current shutdown mode to extend battery life. These have typical efficiencies in the 75% to 90% range. Furthermore, the higher switching frequencies of these new parts (typically 100 KHz to 200 KHz) allow the use of smaller external components, which are available in surface mount varieties. As a consequence, these newer solutions are overall much smaller than what was typically seen just a year ago.

Attributes of a DC-DC Converter

Several attributes of a power supply converter must be evaluated and prioritized when choosing the best solution for a given application. These attributes include:

- Input Voltage Range
- Output Voltage and Tolerance
- Output Current Capability
- Efficiency of Conversion
- Printed Circuit Area
- Height
- Total Cost
- Shutdown Capability
- Quiescent Current Consumed in Shutdown Mode
- Rise Time from Shutdown
- Surface Mountability

The reader is referred to Appendix B, which provides a survey of all the solutions that are presented in this application note, in order to compare their attributes.

This application note primarily presents state of the art discrete switching regulator IC solutions which have been carefully designed for operation with flash memory. Included along with schematics are component values and sources/contacts for obtaining all the components. Actual layouts have also been included where possible. These are provided in Appendix F.

NOTE:

External components recommended in the designs should be used. These components (inductors, capacitors, resistors) were chosen based on recommendations by the converter IC vendors and provide the necessary quality for a clean design. Alternate "equivalent" parts should be chosen with care as their resistive and inductive elements can affect the operation of the solution. Please contact the respective converter IC companies for assistance if you select an alternate value/source for passive components.

3.0 V_{PP} SOLUTIONS: CONVERTING UP FROM 5V

Most computer systems have available a 5V V_{CC} line that is used for the majority of system power. Frequently, this 5V supply is used to generate 12V for flash memory. This section presents some of the new state of the art solutions that can achieve this function. These are all discrete switching regulators that optimize different attributes, mentioned along with the main features section of each example. Refer to Appendix B for a more detailed comparison of the attributes of these solutions.

3.1 Maxim Integrated Products—MAX732: V_{PP} @ 30 mA, 60 mA, 120 mA

Figure 3-1. Maxim MAX732 5V to 12V Converter

Optimal Attributes

- Highest Efficiency
- Low Shutdown Current
- Wide Input Voltage Range
- All Surface Mount

Main Features

- Input Voltage Range: 4V to 7.5V
- Output Voltage: 12V $\pm 4\%$
- Output Current Capability: Up to 120 mA
- Typical Efficiency: 90% at $I_{LOAD} = 60$ mA
- 170 KHz Operation
- Shutdown Feature On Chip
- Low Quiescent Current at Shutdown: 70 μ A typical
- Low Operating Quiescent Current: 1.6 mA typical
- Rise Time from Shutdown: 1 ms Typical
- Will Work off Existing 5V Supply or a 6 NiCd Battery Pack

The MAX732 design as shown is capable of providing up to 120 mA of V_{PP} current at an efficiency of 90%. The 5V input should be able to source the peak currents and start-up currents required by the circuit. This converter circuit can also run directly off a 6 cell NiCd pack present on many notebook/laptop computers. It is available in a 16-pin wide SOIC package, and uses small external surface mount components (5 in all). Voltage spikes may be present in the output due to incorrect layout, excessive output filter capacitor ESL (Equivalent Series Inductance) and diode switching transients. The optional filter circuit is recommended to eliminate any sharp transients. The supply can be switched into a shutdown mode where the output voltage falls to approximately V_{CC} - 550 mV. A layout is presented in Appendix F. Applications assistance and a surface mount evaluation kit is also available from Maxim.

Table 3-1. Parts List for the MAX732 5V to 12V Converter

Ref	Part #	Value/Type	Source	Cost*
U1	MAX732CWE	SMPS IC	Maxim (408) 737-7600	\$2.50
C1	267M1002-336-MR-720	33 μ F/10V Tantalum	Matsuo (714) 969-2491	\$0.31
C2	267M1602-336-MR-720	33 μ F/16V Tantalum	Matsuo (714) 969-2491	\$0.31
C3	C4532C0G1H472K	4700 pF	TDK (708) 803-6100	\$0.04
C4	GRM40Z5U104M050AD	0.1 μ F	Murata Erie (404) 436-1300	\$0.06
R1, R2	9C08052A1R00JLR	1.0 Ω , 5%	Philips (817) 325-7871	\$0.04
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
L1	CD54-180	18 μ H	Sumida (708) 956-0666	\$0.38
Total Cost				\$3.93

*Cost estimates based on published 10K unit pricing at the time this application note was written.

3.2 Linear Technology LT1110-12: V_{PP} @ 30 mA, 60 mA, 120 mA

Figure 3-2. Linear Technology LT1110-12 5V to 12V Converter

Optimal Attributes

- Small Size: 0.45 sq. in. Total Board Area (Single Sided)
- Very Low Shutdown Current: 16 μ A
- All Surface Mount

Main Features

- Input Voltage Range: 4.5V to 5.5V
- Output Voltage: 12V \pm 5%
- Output Current Capability: Up to 120 mA
- Typical Efficiency: 76%
- 60 KHz Operation
- Shutdown Possible Using External Components as Shown
- Low Quiescent Current at Shutdown: 16 μ A typical
- Rise Time from shutdown: 800 μ s typical

The Linear Technology LT1110-12 is a fixed 12V output part which is well suited to flash memory applications. The part is available in a small 8-pin surface mount (SO8) package. The part needs 7 external components to implement a small size 5V to 12V converter solution that can be shutdown to a very low quiescent current state—16 μ A typical. The 5V source must be capable of supplying the instantaneous start-up and peak currents required during operation. Voltage spikes may be present in the output due to incorrect layout, excessive output filter capacitor ESL (Equivalent Series Inductance) and diode switching transients. The optional RC filter circuit is recommended in order to eliminate these sharp transients. The output voltage during shutdown falls to approximately $V_{IN} - 550$ mV. A recommended board layout appears in Appendix F. Applications assistance is available from Linear Technology Corporation.

Table 3-2. Part List for the LT1110-12 5V to 12V Converter

Ref	Part #	Value/Type	Source	Cost*
U1	LT1110-12	SMPS IC	Linear Tech (408) 954-8400	\$2.60
C1	267M1002-226-MR-720	22 μ F/10 V Tantalum	Matsuo (714) 969-2491	\$0.23
C2	267M1602-336-MR-720	33 μ F/16 V Tantalum	Matsuo (714) 969-2491	\$0.31
C3	GRM40Z5U104M050AD	0.1 μ F	Murata Erie (404) 436-1300	\$0.06
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
L1	CDR105-470	47 μ H Shielded	Sumida (708) 956-0666	\$0.40
R1	9C08052A3001JLR	3 K Ω , 5%	Philips (817) 325-7871	\$0.02
R2	9C08052A1002JLR	10 K Ω , 5%	Philips (817) 325-7871	\$0.02
R3, R4	9C08052A1R00JLR	1 Ω , 5%	Philips (817) 325-7871	\$0.04
U2	MMBT4403LT1	2N4403 PNP Transistor	Motorola (800) 521-6274	\$0.09
Total Cost				\$4.07

*Cost estimates based on published 10K unit pricing at the time this application note was written.

3.3 Linear Technology LT1109-12: V_{PP} @ 30 mA, 60 mA

Figure 3-3. Linear Technology LT1109-12 5V to 12V Converter

Optimal Attributes

- Smallest Size
- Low Shutdown Current
- All Surface Mount

Main Features

- Input Voltage Range: 4.5V to 5.5V
- Output Voltage: 12V $\pm 5\%$
- Output Current Capability: Up to 60 mA
- Typical Efficiency: 84%
- 130 KHz Operation
- Shutdown Feature On Chip
- Low Quiescent Current at Shutdown: 375 μ A typical
- Rise Time from shutdown: 800 μ s typical
- Small Size: SO8 plus 4 small external components

The Linear Technology LT1109-12 is a fixed 12V output part which is very well suited to flash memory applications. The part is available in a very small 8-pin surface mount (SO8) package. The part needs just 4 small external components to implement an extremely small size 5V to 12V converter solution that can be shutdown to a low quiescent current state—375 μ A typical. The 5V source must be capable of supplying the instantaneous start-up and peak currents required by the operation. Voltage spikes may be present in the output due to incorrect layout, excessive output filter capacitor ESL (Equivalent Series Inductance) and diode switching transients. The optional RC filter circuit is recommended in order to eliminate these sharp transients. The output during shutdown falls to approximately $V_{IN} - 550$ mV. A typical board layout is presented in Appendix F. Applications assistance is available from Linear Technology Corporation.

Table 3-3. Parts List for the LT1109-12 5V to 12V Converter

Ref	Part #	Value/Type	Source	Cost*
U1	LT1109-12	SMPS IC	Linear Tech (408) 432-1900	\$2.37
C1	267M1002-226-MR-720	22 μ F/10V Tant Chip Capacitor	Matsuo (714) 969-2491	\$0.23
C2	267M2502-106-MR-720	10 μ F/25V Tant Chip Capacitor	Matsuo (714) 969-2491	\$0.29
C3	GRM40Z5U104M050AD	0.1 μ F	Murata Erie (404) 436-1300	\$0.06
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
R1, R2	9C08052A1R00JLR	1 Ω , 5%	Philips (817) 325-7871	\$0.04
L1	CD54-330	33 μ H	Sumida (708) 956-0666	\$0.32
Total Cost				\$3.61

*Cost estimates based on published 10K unit pricing at the time this application note was written.

John
Am 021 Am 022
Am 023 Am 024
Am 025 Am 026
Am 027 Am 028
Am 029 Am 030
Am 031 Am 032
Am 033 Am 034
Am 035 Am 036
Am 037 Am 038
Am 039 Am 040
Am 041 Am 042
Am 043 Am 044
Am 045 Am 046
Am 047 Am 048
Am 049 Am 050
Am 051 Am 052
Am 053 Am 054
Am 055 Am 056
Am 057 Am 058
Am 059 Am 060
Am 061 Am 062
Am 063 Am 064
Am 065 Am 066
Am 067 Am 068
Am 069 Am 070
Am 071 Am 072
Am 073 Am 074
Am 075 Am 076
Am 077 Am 078
Am 079 Am 080
Am 081 Am 082
Am 083 Am 084
Am 085 Am 086
Am 087 Am 088
Am 089 Am 090
Am 091 Am 092
Am 093 Am 094
Am 095 Am 096
Am 097 Am 098
Am 099 Am 100
Am 101 Am 102
Am 103 Am 104
Am 105 Am 106
Am 107 Am 108
Am 109 Am 110
Am 111 Am 112
Am 113 Am 114
Am 115 Am 116
Am 117 Am 118
Am 119 Am 120
Am 121 Am 122
Am 123 Am 124
Am 125 Am 126
Am 127 Am 128
Am 129 Am 130
Am 131 Am 132
Am 133 Am 134
Am 135 Am 136
Am 137 Am 138
Am 139 Am 140
Am 141 Am 142
Am 143 Am 144
Am 145 Am 146
Am 147 Am 148
Am 149 Am 150
Am 151 Am 152
Am 153 Am 154
Am 155 Am 156
Am 157 Am 158
Am 159 Am 160
Am 161 Am 162
Am 163 Am 164
Am 165 Am 166
Am 167 Am 168
Am 169 Am 170
Am 171 Am 172
Am 173 Am 174
Am 175 Am 176
Am 177 Am 178
Am 179 Am 180
Am 181 Am 182
Am 183 Am 184
Am 185 Am 186
Am 187 Am 188
Am 189 Am 190
Am 191 Am 192
Am 193 Am 194
Am 195 Am 196
Am 197 Am 198
Am 199 Am 200
Am 201 Am 202
Am 203 Am 204
Am 205 Am 206
Am 207 Am 208
Am 209 Am 210
Am 211 Am 212
Am 213 Am 214
Am 215 Am 216
Am 217 Am 218
Am 219 Am 220
Am 221 Am 222
Am 223 Am 224
Am 225 Am 226
Am 227 Am 228
Am 229 Am 230
Am 231 Am 232
Am 233 Am 234
Am 235 Am 236
Am 237 Am 238
Am 239 Am 240
Am 241 Am 242
Am 243 Am 244
Am 245 Am 246
Am 247 Am 248
Am 249 Am 250
Am 251 Am 252
Am 253 Am 254
Am 255 Am 256
Am 257 Am 258
Am 259 Am 260
Am 261 Am 262
Am 263 Am 264
Am 265 Am 266
Am 267 Am 268
Am 269 Am 270
Am 271 Am 272
Am 273 Am 274
Am 275 Am 276
Am 277 Am 278
Am 279 Am 280
Am 281 Am 282
Am 283 Am 284
Am 285 Am 286
Am 287 Am 288
Am 289 Am 290
Am 291 Am 292
Am 293 Am 294
Am 295 Am 296
Am 297 Am 298
Am 299 Am 300
Am 301 Am 302
Am 303 Am 304
Am 305 Am 306
Am 307 Am 308
Am 309 Am 310
Am 311 Am 312
Am 313 Am 314
Am 315 Am 316
Am 317 Am 318
Am 319 Am 320
Am 321 Am 322
Am 323 Am 324
Am 325 Am 326
Am 327 Am 328
Am 329 Am 330
Am 331 Am 332
Am 333 Am 334
Am 335 Am 336
Am 337 Am 338
Am 339 Am 340
Am 341 Am 342
Am 343 Am 344
Am 345 Am 346
Am 347 Am 348
Am 349 Am 350
Am 351 Am 352
Am 353 Am 354
Am 355 Am 356
Am 357 Am 358
Am 359 Am 360
Am 361 Am 362
Am 363 Am 364
Am 365 Am 366
Am 367 Am 368
Am 369 Am 370
Am 371 Am 372
Am 373 Am 374
Am 375 Am 376
Am 377 Am 378
Am 379 Am 380
Am 381 Am 382
Am 383 Am 384
Am 385 Am 386
Am 387 Am 388
Am 389 Am 390
Am 391 Am 392
Am 393 Am 394
Am 395 Am 396
Am 397 Am 398
Am 399 Am 400
Am 401 Am 402
Am 403 Am 404
Am 405 Am 406
Am 407 Am 408
Am 409 Am 410
Am 411 Am 412
Am 413 Am 414
Am 415 Am 416
Am 417 Am 418
Am 419 Am 420
Am 421 Am 422
Am 423 Am 424
Am 425 Am 426
Am 427 Am 428
Am 429 Am 430
Am 431 Am 432
Am 433 Am 434
Am 435 Am 436
Am 437 Am 438
Am 439 Am 440
Am 441 Am 442
Am 443 Am 444
Am 445 Am 446
Am 447 Am 448
Am 449 Am 450
Am 451 Am 452
Am 453 Am 454
Am 455 Am 456
Am 457 Am 458
Am 459 Am 460
Am 461 Am 462
Am 463 Am 464
Am 465 Am 466
Am 467 Am 468
Am 469 Am 470
Am 471 Am 472
Am 473 Am 474
Am 475 Am 476
Am 477 Am 478
Am 479 Am 480
Am 481 Am 482
Am 483 Am 484
Am 485 Am 486
Am 487 Am 488
Am 489 Am 490
Am 491 Am 492
Am 493 Am 494
Am 495 Am 496
Am 497 Am 498
Am 499 Am 500
Am 501 Am 502
Am 503 Am 504
Am 505 Am 506
Am 507 Am 508
Am 509 Am 510
Am 511 Am 512
Am 513 Am 514
Am 515 Am 516
Am 517 Am 518
Am 519 Am 520
Am 521 Am 522
Am 523 Am 524
Am 525 Am 526
Am 527 Am 528
Am 529 Am 530
Am 531 Am 532
Am 533 Am 534
Am 535 Am 536
Am 537 Am 538
Am 539 Am 540
Am 541 Am 542
Am 543 Am 544
Am 545 Am 546
Am 547 Am 548
Am 549 Am 550
Am 551 Am 552
Am 553 Am 554
Am 555 Am 556
Am 557 Am 558
Am 559 Am 560
Am 561 Am 562
Am 563 Am 564
Am 565 Am 566
Am 567 Am 568
Am 569 Am 570
Am 571 Am 572
Am 573 Am 574
Am 575 Am 576
Am 577 Am 578
Am 579 Am 580
Am 581 Am 582
Am 583 Am 584
Am 585 Am 586
Am 587 Am 588
Am 589 Am 590
Am 591 Am 592
Am 593 Am 594
Am 595 Am 596
Am 597 Am 598
Am 599 Am 600
Am 601 Am 602
Am 603 Am 604
Am 605 Am 606
Am 607 Am 608
Am 609 Am 610
Am 611 Am 612
Am 613 Am 614
Am 615 Am 616
Am 617 Am 618
Am 619 Am 620
Am 621 Am 622
Am 623 Am 624
Am 625 Am 626
Am 627 Am 628
Am 629 Am 630
Am 631 Am 632
Am 633 Am 634
Am 635 Am 636
Am 637 Am 638
Am 639 Am 640
Am 641 Am 642
Am 643 Am 644
Am 645 Am 646
Am 647 Am 648
Am 649 Am 650
Am 651 Am 652
Am 653 Am 654
Am 655 Am 656
Am 657 Am 658
Am 659 Am 660
Am 661 Am 662
Am 663 Am 664
Am 665 Am 666
Am 667 Am 668
Am 669 Am 670
Am 671 Am 672
Am 673 Am 674
Am 675 Am 676
Am 677 Am 678
Am 679 Am 680
Am 681 Am 682
Am 683 Am 684
Am 685 Am 686
Am 687 Am 688
Am 689 Am 690
Am 691 Am 692
Am 693 Am 694
Am 695 Am 696
Am 697 Am 698
Am 699 Am 700
Am 701 Am 702
Am 703 Am 704
Am 705 Am 706
Am 707 Am 708
Am 709 Am 710
Am 711 Am 712
Am 713 Am 714
Am 715 Am 716
Am 717 Am 718
Am 719 Am 720
Am 721 Am 722
Am 723 Am 724
Am 725 Am 726
Am 727 Am 728
Am 729 Am 730
Am 731 Am 732
Am 733 Am 734
Am 735 Am 736
Am 737 Am 738
Am 739 Am 740
Am 741 Am 742
Am 743 Am 744
Am 745 Am 746
Am 747 Am 748
Am 749 Am 750
Am 751 Am 752
Am 753 Am 754
Am 755 Am 756
Am 757 Am 758
Am 759 Am 760
Am 761 Am 762
Am 763 Am 764
Am 765 Am 766
Am 767 Am 768
Am 769 Am 770
Am 771 Am 772
Am 773 Am 774
Am 775 Am 776
Am 777 Am 778
Am 779 Am 779
Am 780 Am 781
Am 782 Am 783
Am 784 Am 785
Am 786 Am 787
Am 788 Am 789
Am 789 Am 790
Am 791 Am 792
Am 793 Am 794
Am 795 Am 796
Am 797 Am 798
Am 799 Am 800
Am 801 Am 802
Am 803 Am 804
Am 805 Am 806
Am 807 Am 808
Am 809 Am 810
Am 811 Am 812
Am 813 Am 814
Am 815 Am 816
Am 817 Am 818
Am 819 Am 819
Am 820 Am 821
Am 822 Am 823
Am 824 Am 825
Am 826 Am 827
Am 828 Am 829
Am 829 Am 830
Am 831 Am 832
Am 833 Am 834
Am 835 Am 836
Am 837 Am 838
Am 839 Am 840
Am 841 Am 842
Am 843 Am 844
Am 845 Am 846
Am 847 Am 848
Am 849 Am 850
Am 851 Am 852
Am 853 Am 854
Am 855 Am 856
Am 857 Am 858
Am 859 Am 860
Am 861 Am 862
Am 863 Am 864
Am 865 Am 866
Am 867 Am 868
Am 869 Am 870
Am 871 Am 872
Am 873 Am 874
Am 875 Am 876
Am 877 Am 878
Am 879 Am 879
Am 880 Am 881
Am 882 Am 883
Am 884 Am 885
Am 886 Am 887
Am 888 Am 889
Am 889 Am 890
Am 891 Am 892
Am 893 Am 894
Am 895 Am 896
Am 897 Am 898
Am 899 Am 900
Am 901 Am 902
Am 903 Am 904
Am 905 Am 906
Am 907 Am 908
Am 909 Am 910
Am 911 Am 912
Am 913 Am 914
Am 915 Am 916
Am 917 Am 918
Am 919 Am 919
Am 920 Am 921
Am 922 Am 923
Am 924 Am 925
Am 926 Am 927
Am 928 Am 929
Am 929 Am 930
Am 931 Am 932
Am 933 Am 934
Am 935 Am 936
Am 937 Am 938
Am 939 Am 940
Am 941 Am 942
Am 943 Am 944
Am 945 Am 946
Am 947 Am 948
Am 949 Am 950
Am 951 Am 952
Am 953 Am 954
Am 955 Am 956
Am 957 Am 958
Am 959 Am 960
Am 961 Am 962
Am 963 Am 964
Am 965 Am 966
Am 967 Am 968
Am 969 Am 970
Am 971 Am 972
Am 973 Am 974
Am 975 Am 976
Am 977 Am 978
Am 979 Am 979
Am 980 Am 981
Am 982 Am 983
Am 984 Am 985
Am 986 Am 987
Am 988 Am 989
Am 989 Am 990
Am 991 Am 992
Am 993 Am 994
Am 995 Am 996
Am 997 Am 998
Am 999 Am 1000
Am 1001 Am 1002
Am 1003 Am 1004
Am 1005 Am 1006
Am 1007 Am 1008
Am 1009 Am 1010
Am 1011 Am 1012
Am 1013 Am 1014
Am 1015 Am 1016
Am 1017 Am 1018
Am 1019 Am 1019
Am 1020 Am 1021
Am 1022 Am 1023
Am 1024 Am 1025
Am 1026 Am 1027
Am 1028 Am 1029
Am 1029 Am 1030
Am 1031 Am 1032
Am 1033 Am 1034
Am 1035 Am 1036
Am 1037 Am 1038
Am 1039 Am 1040
Am 1041 Am 1042
Am 1043 Am 1044
Am 1045 Am 1046
Am 1047 Am 1048
Am 1049 Am 1050
Am 1051 Am 1052
Am 1053 Am 1054
Am 1055 Am 1056
Am 1057 Am 1058
Am 1059 Am 1060
Am 1061 Am 1062
Am 1063 Am 1064
Am 1065 Am 1066
Am 1067 Am 1068
Am 1069 Am 1070
Am 1071 Am 1072
Am 1073 Am 1074
Am 1075 Am 1076
Am 1077 Am 1078
Am 1079 Am 1079
Am 1080 Am 1081
Am 1082 Am 1083
Am 1084 Am 1085
Am 1086 Am 1087
Am 1088 Am 1089
Am 1089 Am 1090
Am 1091 Am 1092
Am 1093 Am 1094
Am 1095 Am 1096
Am 1097 Am 1098
Am 1099 Am 1100
Am 1101 Am 1102
Am 1103 Am 1104
Am 1105 Am 1106
Am 1107 Am 1108
Am 1109 Am 1110
Am 1111 Am 1112
Am 1113 Am 1114
Am 1115 Am 1116
Am 1117 Am 1118
Am 1119 Am 1119
Am 1120 Am 1121
Am 1122 Am 1123
Am 1124 Am 1125
Am 1126 Am 1127
Am 1128 Am 1129
Am 1129 Am 1130
Am 1131 Am 1132
Am 1133 Am 1134
Am 1135 Am 1136
Am 1137 Am 1138
Am 1139 Am 1140
Am 1141 Am 1142
Am 1143 Am 1144
Am 1145 Am 1146
Am 1147 Am 1148
Am 1149 Am 1150
Am 1151 Am 1152
Am 1153 Am 1154
Am 1155 Am 1156
Am 1157 Am 1158
Am 1159 Am 1160
Am 1161 Am 1162
Am 1163 Am 1164
Am 1165 Am 1166
Am 1167 Am 1168
Am 1169 Am 1170
Am 1171 Am 1172
Am 1173 Am 1174
Am 1175 Am 1176
Am 1177 Am 1178
Am 1179 Am 1179
Am 1180 Am 1181
Am 1182 Am 1183
Am 1184 Am 1185
Am 1186 Am 1187
Am 1188 Am 1189
Am 1189 Am 1190
Am 1191 Am 1192
Am 1193 Am 1194
Am 1195 Am 1196
Am 1197 Am 1198
Am 1199 Am 1200
Am 1201 Am 1202
Am 1203 Am 1204
Am 1205 Am 1206
Am 1207 Am 1208
Am 1209 Am 1210
Am 1211 Am 1212
Am 1213 Am 1214
Am 1215 Am 1216
Am 1217 Am 1218
Am 1219 Am 1219
Am 1220 Am 1221
Am 1222 Am 1223
Am 1224 Am 1225
Am 1226 Am 1227
Am 1228 Am 1229
Am 1229 Am 1230
Am 1231 Am 1232
Am 1233 Am 1234
Am 1235 Am 1236
Am 1237 Am 1238
Am 1239 Am 1240
Am 1241 Am 1242
Am 1243 Am 1244
Am 1245 Am 1246
Am 1247 Am 1248
Am 1249 Am 1250
Am 1251 Am 1252
Am 1253 Am 1254
Am 1255 Am 1256
Am 1257 Am 1258
Am 1259 Am 1260
Am 1261 Am 1262
Am 1263 Am 1264
Am 1265 Am 1266
Am 1267 Am 1268
Am 1269 Am 1270
Am 1271 Am 1272
Am 1273 Am 1274
Am 1275 Am 1276
Am 1277 Am 1278
Am 1279 Am 1279
Am 1280 Am 1281
Am 1282 Am 1283
Am 1284 Am 1285
Am 1286 Am 1287
Am 1288 Am 1289
Am 1289 Am 1290
Am 1291 Am 1292
Am 1293 Am 1294
Am 1295 Am 1296
Am 1297 Am 1298
Am 1299 Am 1300
Am 1301 Am 1302
Am 1303 Am 1304
Am 1305 Am 1306
Am 1307 Am 1308
Am 1309 Am 1310
Am 1311 Am 1312
Am 1313 Am 1314
Am 1315 Am 1316
Am 1317 Am 1318
Am 1319 Am 1319
Am 1320 Am 1321
Am 1322 Am 1323
Am 1324 Am 1325
Am 1326 Am 1327
Am 1328 Am 1329
Am 1329 Am 1330
Am 1331 Am 1332
Am 1333 Am 1334
Am 1335 Am 1336
Am 1337 Am 1338
Am 1339 Am 1340
Am 1341 Am 1342
Am 1343 Am 1344
Am 1345 Am 1346
Am 1347 Am 1348
Am 1349 Am 1350
Am 1351 Am 1352
Am 1353 Am 1354
Am 1355 Am 1356
Am 1357 Am 1358
Am 1359 Am 1360
Am 1361 Am 1362
Am 1363 Am 1364
Am 1365 Am 1366
Am 1367 Am 1368
Am 1369 Am 1370
Am 1371 Am 1372
Am 1373 Am 1374
Am 1375 Am 1376
Am 1377 Am 1378
Am 1379 Am 1379
Am 1380 Am 1381
Am 1382 Am 1383
Am 1384 Am 1385
Am 1386 Am 1387
Am 1388 Am 1389
Am 1389 Am 1390
Am 1391 Am 1392
Am 1393 Am 1394
Am 1395 Am 1396
Am 1397 Am 1398
Am 1399 Am 1400
Am 1401 Am 1402
Am 1403 Am 1404
Am 1405 Am 1406
Am 1407 Am 1408
Am 1409 Am 1410
Am 1411 Am 1412
Am 1413 Am 1414
Am 1415 Am 1416
Am 1417 Am 1418
Am 1419 Am 1419
Am 1420 Am 1421
Am 1422 Am 1423
Am 1424 Am 1425
Am 1426 Am 1427
Am 1428 Am 1429
Am 1429 Am 1430
Am 1431 Am 1432
Am 1433 Am 1434
Am 1435 Am 1436
Am 1437 Am 1438
Am 1439 Am 1440
Am 1441 Am 1442
Am 1443 Am 1444
Am 1445 Am 1446
Am 1447 Am 1448
Am 1449 Am 1450
Am 1451 Am 1452
Am 1453 Am 1454
Am 1455 Am 1456
Am 1457 Am 1458
Am 1459 Am 1460
Am 1461 Am 1462
Am 1463 Am 1464
Am 1465 Am 1466
Am 1467 Am 1468
Am 1469 Am 1470
Am 1471 Am 1472
Am 1473 Am 1474
Am 1475 Am 1476
Am 1477 Am 1478
Am 1479 Am 1479
Am 1480 Am 1481
Am 1482 Am 1483
Am 1484 Am 1485
Am 1486 Am 1487
Am 1488 Am 1489
Am 1489 Am 1490
Am 1491 Am 1492
Am 1493 Am 1494
Am 1495 Am 1496
Am 1497 Am 1498
Am 1499 Am 1500
Am 1501 Am 1502
Am 1503 Am 1504
Am 1505 Am 1506
Am 1507 Am 1508
Am 1509 Am 1510
Am 1511 Am 1512
Am 1513 Am 1514
Am 1515 Am 1516
Am 1517 Am 1518
Am 1519 Am 1519
Am 1520 Am 1521
Am 1522 Am 1523
Am 1524 Am 1525
Am 1526 Am 1527
Am 1528 Am 1529
Am 1529 Am 1530
Am 1531 Am 1532
Am 1533 Am 1534
Am 1535 Am 1536
Am 1537 Am 1538
Am 1539 Am 1540
Am 1541 Am 1542
Am 1543 Am 1544
Am 1545 Am 1546
Am 1547 Am 1548
Am 1549 Am 1550
Am 1551 Am 1552
Am 1553 Am 1554
Am 1555 Am 1556
Am 1557 Am 1558
Am 1559 Am 1560
Am 1561 Am 1562
Am 1563 Am 1564
Am 1565 Am 1566
Am 1567 Am 1568
Am 1569 Am 1570
Am 1571 Am 1572
Am 1573 Am 1574
Am 1575 Am 1576
Am 1577 Am 1578
Am 1579 Am 1579
Am 1580 Am 1581
Am 1582 Am 1583
Am 1584 Am 1585
Am 1586 Am 1587
Am 1588 Am 1589
Am 1589 Am 1590
Am 1591 Am 1592
Am 1593 Am 1594
Am 1595 Am 1596
Am 1597 Am 1598
Am 1599 Am 1600
Am 1601 Am 1602
Am 1603 Am 1604
Am 1605 Am 1606
Am 1607 Am 1608
Am 1609 Am 1610
Am 1611 Am 1612
Am 1613 Am 1614
Am 1615 Am 1616
Am 1617 Am 1618
Am 1619 Am

3.4 Motorola MC34063A: V_{PP} @ 30 mA, 60 mA, 120 mA

Figure 3-4. Motorola MC34063A 5V to 12V Converter

Optimal Attributes

- Lowest Cost
- Very Low Shutdown Current
- All Surface Mount

Main Features

- Input Voltage Range: 4.5V to 5.5V
- Output Voltage: 12V ± 5%
- Output Current Capability: Up to 120 mA
- Typical Efficiency: 80%
- 100 KHz Operation
- Shutdown Feature Using External Components
- Low Quiescent Current at Shutdown: 25 μA typical
- Rise Time From Shutdown: 2 ms typical
- SO8 Plus 11 Small External Components—All SMD

The Motorola MC34063A solution presented uses 11 small sized external components to implement a low cost surface mount 5V to 12V converter solution. Three external components (U2, R4, R5) are used to shut down supply to the part when V_{PP} is not needed. These could be eliminated to further lower the cost if power consumption is not important. The quiescent current in shutdown state is a low 25 μA. The output voltage in shutdown is V_{CC} – 550 mV. Voltage spikes may be present in the output due to incorrect layout, excessive output filter capacitor ESL (Equivalent Series Inductance) and diode switching transients. The optional RC filter circuit is recommended in order to eliminate these sharp transients. Applications assistance is available from Motorola.

Table 3-4. Parts List for the MC34063A 5V to 12V Converter

Ref	Part #	Value/Type	Source	Cost*
U1	MC34063AD	SMPS IC (SO8)	Motorola (800) 521-6274	\$0.63
R1	9C08052A9100JLR	91Ω, 5%	(Philips (817) 325-7871	\$0.02
R2	9B08053A1723FCB	172 KΩ, 1%	(Philips (817) 325-7871	\$0.04
R3	9B08053A2002FCB	20 KΩ, 1%	Philips (817) 325-7871	\$0.04
R4	9C08052A3001JLR	3 KΩ, 5%	Philips (817) 325-7871	\$0.02
R5	9C08052A1002JLR	10 KΩ, 5%	Philips (817) 325-7871	\$0.02
R6, R7	9C08052A1R00JLR	1Ω, 5%	Philips (817) 325-7871	\$0.04
C1	267M1002-336-MR-720	33 µF/16V Tantalum	Matsuo (714) 969-2491	\$0.28
C2	267M1602-336-MR-720	33 µF/16V Tantalum	Matsuo (714) 969-2491	\$0.31
C3	GRM40X7R301M050AD	300 pF	Murata Erie (404) 436-1300	\$0.03
C4	GRM40Z5U104M050AD	0.1 µF	Murata Erie (404) 436-1300	\$0.06
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
L1	CD54-470	47 µH	Sumida (708) 956-0666	\$0.37
U2	MMBT4403LT1	PNP Transistor	Motorola (800) 521-6274	\$0.09
Total Cost				\$2.25

* Cost estimates based on published 10K unit pricing at the time this application note was written.

4.0 **V_{PP} SOLUTIONS: CONVERTING UP FROM 2 NiCd/ALKALINE CELLS**

Palmtop computers that use 2 alkaline/NiCd batteries require that the system work even when the battery

voltage is down near 1.8V. Currently there exist two good solutions that achieve a 12V output with inputs as low as 1.8V, and yet supply at least 30 mA of current. These are the LT1110-12 from Linear Technology Corporation, and the MAX732 from Maxim Integrated Products.

4.1 Linear Technology LT1110-12: V_{PP} @ 30 mA from 2 AA Cells

Figure 4-1. Linear Technology LT1110-12 3V to 12V Converter

Optimal Attributes

- Smallest Size
 - Low Shutdown Current
 - All Surface Mount

Main Features

- Input Voltage Range: 2.0V to 3.1V
 - Output Voltage: 12V \pm 5%
 - Output Current Capability: Up to 30 mA
 - Typical Efficiency: 70%
 - 60 KHz Operation
 - Shutdown Mode Using External Components
 - Low Quiescent Current at Shutdown: 16 μ A typical
 - Rise Time from Shutdown: 4 ms typical

The LT1110-12 from Linear Technology Corporation, as shown, can be used to generate V_{PP} from an input voltage between 2.0V and 3.1V (most of the usable life of 2 alkaline/NiCd cells in series). This design is similar to the 5V to 12V converter design presented in Section 3.2. Replacing L1 and C2 with a lower inductance and a higher capacitance, respectively, allows the part to work down to 2.0V, while reducing the output current capability to 30 mA. The external PNP transistor is used to shut off the input supply to the converter IC, and puts the part in shutdown state. Note that a disadvantage of this scheme of shutdown is that the control signal source sinks approximately 5 mA ($V_{CC}/1K$) when the part is not in shutdown. However, the quiescent current in shutdown state is a low 16 μA . See Appendix E for an alternate shutdown solution. The output voltage in shutdown falls to approximately $V_{IN} - 550$ mV. Voltage spikes may be present in the output due to incorrect layout, excessive output filter capacitor ESL (Equivalent Series Inductance) and diode switching transients. The optional RC filter circuit is recommended in order to eliminate any sharp transients. A surface mount layout appears in Appendix F.

Table 4-1. Parts List for the LT1110-12 3V to 12V Converter

Ref	Part #	Value/Type	Source	Cost*
U1	LT1110-12	SMPS IC	Linear Tech (408) 954-8400	\$2.60
C1	267M1002-220-MR-720	22 µF/10V Tantalum	Matsuo (714) 969-2491	\$0.23
C2	267M1602-470-MR-720	47 µF/16V Tantalum	Matsuo (714) 969-2491	\$0.47
C3	GRM40Z5U104M050AD	0.1 µF	Murata Erie (404) 436-1300	\$0.06
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
L1	CD54-220	22 µH	Sumida (708) 956-0666	\$0.37
R1	9C08052A3001JLR	3 KΩ, 5%	Philips (817) 325-7871	\$0.02
R2	9C08052A1002JLR	10 KΩ, 5%	Philips (817) 325-7871	\$0.02
R3, R4	9C08052A1R00JLR	1Ω, 5%	Philips (817) 325-7871	\$0.04
U2	MMBT4403LT1	2N4403 PNP Transistor	Motorola (800) 521-6274	\$0.09
Total Cost				\$4.20

*Cost estimates based on published 10K unit pricing at the time this application note was written.

4.2 Maxim Integrated Products—MAX732: V_{PP} @ 30 mA

Figure 4-2. Maxim MAX732 3V to 12V Converter (30 mA)

Optimal Attributes

- Highest Efficiency
- All Surface Mount

Main Features

- Input Voltage Range: 1.8V to 5.0V
- Output Voltage: 12V $\pm 4\%$
- Output Current Capability: Up to 30 mA
- Typical Efficiency: 87%
- 170 KHz Operation
- Shutdown Mode On Chip
- Low Quiescent Current at Shutdown: 45 μ A typical
- Rise Time from shutdown: 25 ms typical

The MAX732 circuit as shown here can provide up to 30 mA at 12V from an input voltage as low as 1.8V. Note that the chip itself is powered from the 5V V_{CC} line required to use present day flash memory devices, whereas the inductor is connected to the primary battery supply. Voltage spikes may be present in the output due to incorrect layout, excessive output filter capacitor ESL and diode switching transients. The optional RC filter circuit is recommended in order to eliminate these sharp transients. Applications assistance and an evaluation kit is available from Maxim.

Table 4-2. Parts List for the MAX732 3V to 12V Converter (30 mA)

Ref	Part #	Value/Type	Source	Cost*
U1	MAX732CWE	SMPS IC	Maxim (408) 737-7600	\$2.50
C1, C2	267M1002-336-MR-720	33 μ F/10V Tantalum	Matsuo (714) 969-2491	\$0.56
C3	267M1002-475-MR-720	4.7 μ F/10V Tantalum	Matsuo (714) 969-2491	\$0.20
C4	GRM40X7R473M050AD	47 nF	Murata Erie (404) 436-1300	\$0.08
C5, C8	GRM40Z5U104M050AD	0.1 μ F	Murata Erie (404) 436-1300	\$0.12
C6, C7	267M1602-336-MR-720	33 μ F/16V Tantalum	Matsuo (714) 969-2491	\$0.62
R1, R2	9C08052A1R00JLR	1 Ω , 5%	Philips (817) 325-7871	\$0.04
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
L1	CD54-330	33 μ H	Sumida (708) 956-0666	\$0.38
Total Cost				\$4.80

*Cost estimates based on published 10K unit pricing at the time this application note was written.

4.3 Maxim Integrated Products—MAX732: V_{PP} @ 60 mA

Figure 4-3. Maxim MAX732 3V to 12V Converter (60 mA)

Optimal Attributes

- Highest Efficiency
- 60 mA Output Current Capability

Main Features

- Input Voltage Range: 1.8V to 5.0V
- Output Voltage: 12V ±4%
- Output Current Capability: Up to 60 mA
- Typical Efficiency: 87%
- 170 KHz Operation
- Shutdown Mode On Chip
- Low Quiescent Current at Shutdown: 45 μA typical
- Rise Time from shutdown: 75 ms typical

The MAX732 circuit as shown here can provide up to 60 mA at 12V from an input voltage as low as 1.8V. This solution is similar to the previous one presented but is not entirely surface mountable, because of the larger output and input filter capacitors. Currently, it is the only solution employing a single IC that can provide 60 mA at 12V from a 1.8V input. The 470 μF/16V filter capacitor must be a low-ESR (Equivalent Series Resistance) type. Voltage spikes may be present in the output due to incorrect layout, excessive output filter capacitor ESL (Equivalent Series Inductance) and diode switching transients. The optional RC filter circuit is recommended in order to eliminate these sharp transients. Applications assistance and an evaluation kit is available from Maxim.

Table 4-3. Parts List for the MAX732 3V to 12V Converter (60 mA)

Ref	Part #	Value/Type	Source	Cost*
U1	MAX732CWE	SMPS IC	Maxim (408) 737-7600	\$2.50
C1	267M1002-336-MR-720	33 μ F/10V Tantalum	Matsuo (714) 969-2491	\$0.31
C2	UPR1A151MPH	150 μ F/10V	Nichicon (708) 843-7500	\$0.10
C3, C7	GRM40Z5U104M050AD	0.1 μ F	Murata Erie (404) 436-1300	\$0.12
C4	267M1002-106-MR-720	10 μ F/10V Tantalum	Matsuo (714) 969-2491	\$0.21
C5	GRM40X7R473M050AD	47 nF	Murata Erie (404) 436-1300	\$0.08
C6	UPR1C471MPH	470 μ F/16V	Nichicon (708) 843-7500	\$0.14
R1, R2	9C08052A1R00JLR	1 Ω , 5%	Philips (817) 325-7871	\$0.04
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
L1	CD75-470	47 μ H	Sumida (708) 956-0666	\$0.38
Total Cost				\$4.15

*Cost estimates based on published 10K unit pricing at the time this application note was written.

5.0 V_{CC} SOLUTIONS: CONVERTING UP FROM TWO NiCd/ALKALINE CELLS

Palmtop and hand-held computers that use two AA size NiCd or alkaline batteries need a converter solution.

tion to provide the V_{CC} supply for the system as well as flash memory. Two good solutions are offered currently for this purpose, the MAX658 from Maxim Integrated Products and the LT1110-5 from Linear Technology Corporation.

5.1 Maxim Integrated Products—MAX658: V_{CC} @ 250 mA

Figure 5-1. Maxim MAX658 3V to 5V Converter (250 mA)

Optimal Attributes

- Highest Efficiency
- 250 mA Output Current Capability
- Low Shutdown Current

Main Features

- Input Voltage Range: 2.0V to 3.1V
- Output Voltage: 5V ± 10%
- Output Current Capability: Up to 250 mA
- Typical Efficiency: 85%
- 18 KHz Operation
- Shutdown Mode On Chip
- Low Quiescent Current at Shutdown: 80 μA typical
- Rise Time from shutdown: 25 ms typical

The MAX658, available from Maxim Integrated Products in a 14-pin surface mount package, is a good high current solution for obtaining V_{CC} from a pair of NiCd/alkaline cells. The entire solution, however, is not 100% surface mountable. It uses a high current through-hole inductor and a large through-hole filter capacitor at the output. Voltage spikes may be present in the output due to incorrect layout, excessive output filter capacitor ESR (Equivalent Series Resistance) and diode switching transients. The optional RC filter circuit is recommended in order to eliminate any sharp transients. Applications assistance and an evaluation kit are available from Maxim.

(An OSAT member of the QCAV2 of VQ-6011 TJ technology family)

Table 5-1. Parts List for the MAX658 3V to 5V Converter

Ref	Part #	Value/Type	Source	Cost*
U1	MAX658	SMPS IC	Maxim (408) 737-7600	\$2.45
C1	UPR1A471MPH	470 μ F/10V Low Z	Nichicon (708) 843-7500	\$0.12
C2	267M1602-105-MR-720	1 μ F/16V Tantalum	Matsuo (714) 969-2491	\$0.15
C3	GRM40X7R102M050AD	1 nF	Murata Erie (404) 436-1300	\$0.03
C4	GRM40Z5U104M050AD	0.1 μ F	Murata Erie (404) 436-1300	\$0.06
R1, R2	9C08052A1R00JLR	1 Ω , 5%	Philips (817) 325-7871	\$0.04
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
L1	LCM1812R-102K	1.0 mH Chip Inductor	Inductor Supply Inc. (800) 854-1881	\$0.22
L2	RCH110-330	33 μ H	Sumida (708) 956-0666	\$0.40
U2	MTD3055E	NFET	Motorola (800) 521-6274	\$0.70
Total Cost				\$4.47

*Cost estimates based on published 10K unit pricing at the time this application note was written.

5.2 Linear Technology LT1110-5: V_{CC} @ 150 mA

Figure 5-2. Linear Technology LT1110-5 3V to 5V Converter (150 mA)

Optimal Attributes

- Smallest Size
- Low Shutdown Current
- All Surface Mount

- Typical Efficiency: 76%
- 60 KHz Operation
- Shutdown Mode Using External Components
- Low Quiescent Current at Shutdown: 16 μ A typical
- Rise Time from Shutdown: 4 ms typical

Main Features

- Input Voltage Range: 2.0V to 3.1V
- Output Voltage: 5V \pm 5%
- Output Current Capability: Up to 150 mA

The LT1110-5 from Linear Technology is a fixed 5V version of the converter shown for the 12V design in Section 4.1.

Table 5-2. Parts List for the LT1110-5 3V to 5V Converter

Ref	Part #	Value/Type	Source	Cost*
U1	LT1110-5CS8	SMPS IC	Linear Tech (408) 954-8400	\$2.60
C1	267M1002- 226-MR-720	22 μ F/10V Tantalum Chip	Matsuo (714) 969-2491	\$0.23
C2	267M1602- 476-MR-720	47 μ F/16V Tantalum Chip	Matsuo (714) 969-2491	\$0.47
C3	GRM40Z5U104M050AD	0.1 μ F	Murata Erie (404) 436-1300	\$0.06
D1	MBRS120T3	Schottky Diode	Motorola (800) 521-6274	\$0.30
L1	CD75-330	33 μ H	Sumida (708) 956-0666	\$0.38
R1	9C08052A3001JLR	3 K Ω , 5%	Philips (817) 325-7871	\$0.02
R2	9C08052A1002JLR	10 K Ω , 5%	Philips (817) 325-7871	\$0.02
R3, R4	9C08052A1R00JLR	1 Ω , 5%	Philips (817) 325-7871	\$0.04
U2	MMBT4403LT1	PNP Transistor	Motorola (800) 521-6274	\$0.09
Total Cost				\$4.21

*Cost estimates based on published 10K unit pricing at the time this application note was written.

6.0 DOWN-CONVERTING TO 12V

The ability to down-convert to 12V from a higher voltage is often needed (as in the telecommunications environment). This section presents some good solutions for obtaining V_{PP} from a higher voltage.

6.1 Maxim Integrated Products MAX667

Figure 6-1. Maxim MAX667 12V Linear Voltage Regulator

Optimal Attributes

- Small Size
- Ultra Low Shutdown Current
- All Surface Mount
- Very Low Dropout
- Output Current Capability: Up to 120 mA
- Typical Efficiency: 70%
- Shutdown Mode On Chip
- Low Quiescent Current at Shutdown: 0.2 μ A Typical
- Rise Time from Shutdown: Less than 0.1 ms Typical

Main Features

- Input Voltage Range: 12.1V to 16.5V
- Output Voltage: 12V \pm 5%

Table 6-1. Parts List for the MAX667 12V Step Down Converter

Ref	Part #	Value/Type	Source	Cost*
U1	MAX667CSA	SMPS IC-SO8 Package	Maxim (408) 737-7600	\$2.10
C1	267M1602-476-MR-720	7 μ F/16V Tantalum	Matsuo (714) 969-2491	\$0.47
R1	9C08053A4023JLR	402 K Ω , 1%	Philips (817) 325-7871	\$0.03
R2	9C08053A4752JLR	47.5 K Ω , 1%	Philips	\$0.03
Total Cost				\$2.63

*Cost estimates based on published 10K unit pricing at the time this application note was written.

6.2 Linear Technology Corporation LT1111-12 Step Down Switcher

Figure 6-2. Linear Technology LT1111-12 Step Down Switcher

Optimal Attributes

- High Efficiency
- All Surface Mount

Main Features

- Input Voltage Range: 16V to 30V
- Output Voltage: 12V \pm 5%
- Output Current Capability: Up to 120 mA
- Typical Efficiency: 80%

Table 6-2. Parts List for the LT1111-12 12V Step Down Converter

Ref	Part #	Value/Type	Source	Cost*
U1	LT1111-12	SMPS IC-SO8 Package	Linear Tech (408) 432-1900	\$2.20
C1	267M3502-225-MR-720	2.2 μF/35V Tantalum	Matsuo (714) 969-2491	\$0.28
C2	267M1602-476-MR-720	47 μF/16V Tantalum	Matsuo (714) 969-2491	\$0.47
R1	9C08052A1500JLR	150Ω, 5%	Philips (817) 325-7871	\$0.02
L1	CDR105-470	47 μH	Sumida (708) 956-0666	\$0.38
D1, D2	MBRS140T3	Schottky Diode	Motorola (800) 521-6274	\$0.60
Total Cost				\$3.95

*Cost estimates based on published 10K unit pricing at the time this application note was written.

6.3 National Semiconductor LM2940CT-12

Figure 6-3. National LM2940CT-12 12V Linear Regulator

Optimal Attributes

- Lowest Cost

Main Features

- Input Voltage Range: 13V to 26V
- Output Voltage: 12V \pm 3%
- Output Current Capability: 1A

The LM2940CT-12 is a low drop-out linear regulator from National Semiconductor. This is a good low cost fixed 12V output solution. The part is offered in a standard TO-220 plastic package. The input capacitor is required only if the regulator is located far away from the input power supply filter, and the output capacitor must be at least 22 μ F in order to maintain stability.

Table 6-3. Parts List for the LM2940CT-12 Step Down Converter

Ref	Part #	Value/Type	Source	Cost*
U1	LM2940CT-12	Voltage Reg TO-220	National (408) 721-5000	\$0.95
C1	GRM43-2Z5U474M050AD	0.47 μ F/50V	Murata Erie (404) 436-1300	\$0.07
C2	267M1602-226-MR-720	22 μ F/16V Tantalum	Matsuo (714) 969-2491	\$0.28
Total Cost				\$1.30

*Cost estimates based on published 10K unit pricing at the time this application note was written.

00.00	00.00	00.00	00.00	00.00
00.00	00.00	00.00	00.00	00.00
00.00	00.00	00.00	00.00	00.00
00.00	00.00	00.00	00.00	00.00
00.00	00.00	00.00	00.00	00.00
00.00	00.00	00.00	00.00	00.00
00.00	00.00	00.00	00.00	00.00

7.0 OBTAINING V_{PP} FROM 12V UNREGULATED

In systems like the desktop computer, a 12V supply exists but may not be regulated to $\pm 5\%$. If this voltage is used as the V_{PP} source for flash memory, it may well degrade the write/erase performance of the memory, or adversely affect its reliability. Fortunately, in most of the situations where a 12V unregulated (or not regulated to within 5%) supply exists, a 5V supply also exists in the system (the desktop computer is a good example). It is recommended in such cases that the existing 5V supply be used to obtain the 12V $\pm 5\%$ rail. This approach is more economical, more efficient, and provides space savings over a buck-boost topology that takes unregulated 12V and regulates it to $\pm 5\%$.

In the rare case where a 5V supply is not present, modular solutions exist that will regulate the unregulated 12V supply to $\pm 5\%$. However, these are bulky and expensive. Moreover, many of them require that a minimum load be maintained in order to stay in regulation. One such solution is presented in Appendix A.

8.0 SUMMARY

For battery powered applications, the author views the discrete switching regulator IC solution as a better choice than the modular solution. The lower cost, higher efficiency, and smaller size/height associated with discrete solutions justify the small additional design effort required to incorporate them in flash memory applications. In applications where the primary source of power is a wall power outlet, or in applications where the flash memory will be written to infrequently, efficiency and quiescent current take on secondary importance. In such cases, it may be acceptable to use a 12V regulated (to within $\pm 5\%$) tap from the system supply. Alternatively, the ability to easily design-in modular solutions may outweigh the disadvantages of lower efficiency and increased cost. For those users wishing to incorporate modular solutions, Appendix A provides some of the lower cost solutions from this industry segment.

APPENDIX A MODULAR SOLUTIONS

Modular solutions may work well in non-battery powered situations where the efficiency of the power supply converter is not critical. These are also advantageous in that they usually do not need any external components and there is no converter design involved. However, the type and quality of the discrete components used in these hybrid solutions is open to question. This is not true in the case of the discrete converter designs presented in the earlier sections, where the quality of the components used are under the control of the system design engineer. Hence, even though modular solutions offer the convenience of a single package and ease of testability, the quality/reliability of comparably priced modular solutions may be questionable.

Some modular solutions suited to flash memory applications are presented below, with a brief description of each. Sources for obtaining these are listed in Appendix B.

A.1 International Power/Newport Components NMF0512S

The NMF0512S is a 5V to 12V hybrid power module that has an output current capability of 80 mA. Output tolerance is $\pm 5\%$. It is equipped with a shutdown pin which can be used to switch V_{pp} off. However, power dissipated in the shutdown mode is relatively high (about 100 mW). The part is small in size and measures 0.76 in. (19.5 mm) x 0.4 in. (9.8 mm) x 0.4 in. (9.8 mm), and costs about \$7.90 in 10K quantities (at the time this application note was written). Typical efficiency of conversion is 62%.

A.2 Xentek NPSC-0512S

The Xentek NPSC-0512S is a 1W power module that converts 5V to V_{pp} and will source up to 80 mA of continuous current. However, it uses two external filter capacitors—one at the input and one at the output. The input filter capacitor is 47 μ F/10V, and the output filter capacitor is 100 μ F/16V. Size of the solution (converter alone) is 0.87 in. (22 mm) x 0.39 in. (10 mm) x 0.79 in. (20 mm). The NPSC-0512S does not have a shutdown mode. The part costs around \$5.00 in 10K quantities (at the time this application note was written). Typical efficiency of conversion is 60%.

A.3 Shindengen America Inc. HDF-0512D

The HDF-0512D module from Shindengen will convert unregulated 12V to 12V $\pm 5\%$. This part is a dual output part ($\pm 12V$), but only the +12V line is used. The conversion efficiency is high (75% typical), and the part will provide a regulated V_{pp} voltage from input voltages as low as 8V, and as high as 16.5V. A minimum load of 5 mA needs to be maintained to guarantee regulation. Size of the solution is 1.75 in. (44 mm) x 0.43 in. (11 mm) x 0.8 in. (20 mm). Cost is approximately \$10.00 in quantities of 10K (at the time this application note was written).

APPENDIX B SURVEY OF SOLUTIONS PRESENTED

B-1

Ref #	Vendor Name	Part #	Input C (Volts)	Output V (Volts)	Output C (mA)	Effic (%)	# Ext Comp (Note 1)	100% SMD ?	Cost (Note 2)	PC Area (Note 3)	Height (In)	SHDN ?	ISHDN (Note 4)	R Time (Note 5)	Temp
3.1	Maxim	MAX732	4V–7V	12V, 4%	120	90	5; D, L, 3C	Yes	\$3.93	0.56	0.18	Yes	70 μA	1 ms	0°C, +70°C
3.2	Linear Tech	LT1110-12	5V, 10%	12V, 5%	120	76	7; D, L, T, 2R, 2C	Yes	\$4.58	0.45	0.20	Yes	16 μA	1 ms	0°C, +70°C
3.3	Linear Tech	LT1109-12	5V, 10%	12V, 5%	60	84	4; D, L, 2C	Yes	\$3.61	0.38	0.18	Yes	375 μA	1 ms	0°C, +70°C
3.4	Motorola	MC34063A	5V, 10%	12V, 5%	120	75	11; D, L, T, 3C, 5R	Yes	\$2.25	0.49	0.18	Yes	25 μA	2 ms	0°C, +70°C
4.1	Linear Tech	LT1110-12	2V–3.1V	12V, 5%	30	70	7; D, L, T, 2R, 2C	Yes	\$4.71	0.45	0.18	Yes	16 μA	4 ms	0°C, +70°C
4.2	Maxim	MAX732	1.8V–4V	12V, 4%	30	87	9; D, L, 7C,	Yes	\$4.80	0.7	0.18	Yes	45 μA	25 ms	0°C, +70°C
4.3	Maxim	MAX732	1.8V–4V	12V, 4%	60	85	8; D, L, 6C,	No	\$4.15	1.11	0.49	Yes	45 μA	75 ms	0°C, +70°C
5.1	Maxim	MAX658	2V–3.1V	5V, 5%	250	85	7; D, 2L, T, 3C	No	\$4.47	0.92	0.39	Yes	80 μA	25 ms	0°C, +70°C
5.2	Linear Tech	LT1110-5	2V–3.1V	5V, 5%	150	76	7; D, L, T, 2R, 2C	Yes	\$4.72	0.45	0.20	Yes	16 μA	1 ms	0°C, +70°C
6.1	Maxim	MAX667	12.1V–16V	12V, 5%	250	75	3; 2R, C	Yes	\$2.73	0.25	0.15	Yes	0.2 μA	0.1 ms	0°C, +70°C
6.2	Linear Tech	LT1111-12	16V–30V	12V, 5%	120	80	6; 2D, L, 2C, R	Yes	\$3.95	0.78	0.2	No	N/A	N/A	0°C, +70°C
6.3	National	LM294OCT-12	13V–26V	12V, 3%	1A	12/V _{IN}	2; 2C	No	\$1.30	0.5	0.18	No	N/A	N/A	0°C, +70°C
A.1	International Power	NMF0512S	5V, 10%	12V, 5%	80	62	0	No	\$7.90	0.3	0.40	Yes	20 mA	10 μs	-40°C, +70°C
A.2	Shindengen	HDF1212D	8V–16.5V	12V, 5%	120	77	0	No	\$10.00	0.76	0.80	No	N/A	N/A	-10°C, +70°C
A.3	Xentek	NPSC-0512S	5V, 10%	12V, 5%	80	60	2; 2C	No	\$5.50	0.34	0.79	No	N/A	N/A	-10°C, +70°C

NOTES:

1. # External components. D: Diode, L: Inductor, C: Capacitor, R: Resistor, T: Transistor.
2. Cost. Cost estimates assume 10K quantities, based on published pricing at the time this application note was written.
3. PC Area. PC Aarea is conservatively estimated as 2.0x (area of all components). Where actual layouts are presented, the lower value is given. Note that this estimate is for a single sided board, and area can be reduced considerably if both sides of the board are utilized.
4. I Shdn. Current consumed by supply at shutdown. Output settles to V_{CC} at shutdown, so some additional flash V_{PP} leakage/standby will exist.
5. R Time. Rise time from shutdown state. Erase/Writes should not be attempted till V_{PP} level has risen to valid level after shutdown is disabled.

APPENDIX C SOURCES/CONTACTS FOR RECOMMENDED DC-DC CONVERTERS

Linear Technology Corporation

Recommended Products:

- LT1110-12 (DC-DC Converter IC)
- LT1110-5 (DC-DC Converter IC)
- LT1109-12 (DC-DC Converter IC)
- LT1111-12 (DC-DC Converter IC)

In U.S.A.:

1630 McCarthy Blvd.
Milpitas, CA 95035-7487
Tel: (408) 432-1900
Fax: (408) 432-0507

In Europe (U.K.):

111 Windmill Road
Sunbury
Middlesex TW16 7EF
U.K.
Tel (44)(932) 765688
Fax (44)(932) 781936

In Asia (Japan):

4F Ichihashi Bldg
1-8-4 Kudankita Chiyoda-ku
Tokyo 102 Japan
Tel (81) (03) 3237-7891
Fax (81) (03) 3237-8010

Maxim Integrated Products

Recommended Products:

- MAX732 (DC-DC Converter IC)
- MAX658 (DC-DC Converter IC)
- MAX667 (DC-DC Converter IC)

In U.S.A.:

120 San Gabriel Drive
Sunnyvale, CA 94086
Tel (408) 737-7600
Fax (408) 737-7194

In Europe (U.K.):

Maxim Integrated Products (UK), Ltd.
Tel: (44) (734) 845255

In Asia (Japan):

Maxim Japan Co., Ltd.
Tel: 81 (03) 3232-6141

Motorola Semiconductor Inc.

Recommended Product:

- MC34063AD (DC-DC Converter IC)

In U.S.A.:

616 West 24th Street
Tempe, AZ 85282
Tel: (800) 521-6274

In Europe (U.K.):

Tel: (44) (296) 395-252

In Asia (Japan):

Tel: (81) (3) 440-3311

National Semiconductor

Recommended Product:

- LM2940CT-12 (Voltage Regulator IC)

In the U.S.:

2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052
Tel: (408) 721-5000

In Europe:

National Semiconductor (UK) Ltd.
The Maple, Kembrey Park
Swindon, Wiltshire SN26UT
U.K.
Tel: (07-93) 614141
Fax: (07-93) 697522

In Asia:

National Semiconductor Japan Ltd.
Sanseido Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: (81) (3) 299-7001
Fax: (81) (3) 299-7000

**Newport Components/
International Power****Recommended Product:**

- NMF0512S (5V-12V Converter Module)

In U.S.A.:

International Power Sources
200 Butterfield Drive
Ashland, MA 01721
Tel: (508) 881-7434
Fax: (508) 879-8669

In Europe:

Newport Components
4 Tanners Drive
Blakelands North
Milton Keynes MK14 5NA
Tel: (0908) 615232
Fax: (0908) 617545

Shindengen Electric Co. Ltd.**Recommended Product:**

- HDF0512D (12V unreg. to 12V reg. converter module)

In the U.S.:

2649 Townsgate Road #200
Westlake Village, CA 91361
Tel: (800) 634-3654
Fax: (805) 373-3710

In Europe:

Shindengen Magnaquest U.K. Ltd.
Unit 13, River Road,
Barking Business Park,
33 River Road, Barking,
Essex 1G11 ODA
Tel: (44) (81) 591-8703
Fax: (44) (81) 591-8792

In Asia:

2-1,2-Chome Otemachi
Chiyoda-ku
Tokyo 100
Japan
Tel: (81) (3) 279-4431
Fax: (81) (3) 279-6478

Xentek Inc.**Recommended Product:**

- NPSC0512S (5V-12V Converter Module)

In U.S.A.:

760 Shadowridge Drive
Vista, CA 92083
Tel: (619) 727-0940
Fax: (619) 727-8926

In Europe (Germany):

Xentek, Inc.
c/o Taiyo Yuden GMBH.
Obermaierstrasse 10,
D-8500 Nurnberg 10
Federal Republic of Germany
Tel: (49) (911) 350-8400
Fax: (49) (911) 350-8460

In Asia (Japan):

Xentek, Inc.,
c/o Taiyo Yuden., Ltd.
6-16-20, Ueno, Taito-ku
Tokyo 110
Japan
Tel: (81) (3) 3837-6547
Fax: (81) (3) 3835-4752

APPENDIX D CONTACTS FOR DISCRETE COMPONENTS

Matsuo Electric Co., Ltd.

Matsuo's 267 series surface mount tantalum chip capacitors are recommended by Maxim and Linear Technology for input and output filter capacitors on their DC-DC converters. Part #'s are included on the parts list that accompanies most solutions. If alternate "equivalents" are required, choose high reliability, low ESR (Equivalent Series Resistance) and low ESL (Equivalent Series Inductance) type tantalums, which help in keeping output ripple and switching noise to a minimum.

In U.S.A.:

2134 Main St., Ste. 200
Huntington Beach, CA 92648
Tel: (714) 969-2491
Fax: (714) 960-6492

In Europe:

Steucon - Center II Mergenthaleralle 77
D-6236 Eschben/Ts.
Federal Republic of Germany
Tel: 6196-470-361
Fax: 6196-470-360

In Asia:

Oak Esaka Bldg.
10-28 Hiroshima-Cho
Saita-shi
Osaka 564
Tel: (06) 337-6450
Fax: (06) 337-6456

Sumida Electric Co. Ltd.

Sumida CD series surface mount inductors are recommended by Maxim, Linear Technology for their miniature size and relatively low cost. These are well suited to low power DC-DC converter applications. Contact Sumida Electric directly for procuring these. The part #'s are included in the parts list that accompanies most solutions. In applications where noise (EMI) is a concern, shielded varieties are also offered by Sumida.

In U.S.A.:

637 East Golf Road
Suite 209
Arlington Heights, IL 60005
Tel: (708) 956-0666
Fax: (708) 956-0702

In Asia:

4-8 Kanamachi 2-chome,
Katsushika-ku,
Tokyo 125
Japan
Tel: (81) (03) 3607-5111
Fax: (81) (03) 3607-5428

Coiltronix Inc.

Coiltronix is recommended as a good alternate source for surface mount inductors. The CTX series offered by Coiltronix is well suited to DC-DC converter applications. These are shielded, and have a toroidal core. However, they are bigger in size and currently much more expensive (7X to 8X) than the Sumida varieties recommended in the solutions herein. The equivalent part numbers are:

Sumida CD54-470 → Coiltronix CTX50-1
Sumida CD54-180 → Coiltronix CTX20-1
Sumida CD54-220 → Coiltronix CTX20-1
Sumida CD75-470 → Coiltronix CTX50-2
Sumida CDR105-470 → Coiltronix CTX50-2

In U.S.A.:

Coiltronix Inc.
984 S.W. 13th Court
Pompano Beach, FL 33069
Tel: (305) 781-8900
Fax: (305) 782-4163

In U.K.:

Microelectronics Technology Ltd.
Great Haseley Trading Estate
Great Haseley
Oxfordshire OX9 7PF
U.K.
Tel: (08) 44 278781
Fax: (08) 44 278746

In Asia:

Serial System Mktg.
Poh Leng Bldg., #02-01
21 Moonstone Lane
Singapore 1232
Tel: 2938830
Fax: 2912673

Coilcraft

Coilcraft is also recommended as a good alternate source for surface mount inductors. The N2724-A shielded series is well suited to DC-DC converter applications. These are bigger and currently more expensive (2x to 3x) than the Sumida inductors recommended in the solutions. Contact Coilcraft directly for any applications assistance or for procurement of these parts. The equivalent part numbers are:

Sumida CD54-470 → Coilcraft N2724-A 47 μ H
Sumida CD54-180 → Coilcraft N2724-A 18 μ H
Sumida CDR105-470 → Coilcraft N2724-A 47 μ H

In the US:

1102 Silver Lake Road
Cary, IL 60013
Tel: (708) 639-6400
Fax: (708) 639-1469

In Europe:

21 Napier Place
Wardpark North
Cumbernauld
Scotland G68 0LL
Tel: 0236 730595
Fax: 0236 730627

In Asia:

Block 101, Boon Keng Road
#06-13/20
Kallang Basin Industrial Estate
Singapore 1233
Tel: 2966933
Fax: 2964463

Philips Components

Philips Components is recommended as a good source for surface mount (SMD) resistors (standard 9C series, and 9B (MELF) series). Part #'s are included in the parts list that accompanies most of the solutions in the application note. Many alternate sources exist.

In the US:

2001 W. Blue Heron Blvd.
P.O. Box 10330
Riviera Beach, FL 33404
Tel: (407) 881-3200
Fax: (407) 881-3304

In Europe:

Philips Components Ltd.
Mullard House
Torrington Place
London WC1E 7HD
Tel: (44) 71 580 6633
Fax: (44) 71 636 0394

In Asia:

Philips K.K.
Philips Bldg. 13-37
Kohman 2-chome
Minato-Ku Tokyo 108
Tel: (81) 3 740-5028
Fax: (81) 3 740-5035

Siliconix-Logic Level PFETs

Siliconix offers low-“on” resistance logic level PFETs (Si9400, and Si9405) that can be used for switching a DC-DC converter into a shutdown state by using these switches on the high side of the input to the converter (see Appendix E).

In the US:

2201 Laurelwood Road
P.O. Box 54951
Santa Clara, CA 95056-9951
Tel: (408) 988-8000
Fax: (408) 727-5414

In Europe:

Weir House
Overbridge Square, Hambridge Lane
Newbury, Berks RG14 5UX
Tel: (0635) 30905
Fax: (0635) 34805

In Asia:

Room 709, Chinachem Golden Plaza
77 Mody Road
TST East Kowloon
Tel: (852) 724-3377
Fax: (852) 311-7909

APPENDIX E

OTHER DESIGN CONSIDERATIONS

E.1 VPP Valid Handshake Logic

It is often desirable to have, along with the V_{PP} solution, a handshake signal (using extra hardware) that is asserted as long as the voltage level on V_{PP} is valid. The following schematic illustrates a good way of achieving this. This handshake signal could be used to determine when it is suitable to perform writes/erases on the flash device. The circuit shown uses a precision zener voltage reference and a comparator, along with bias resistors, to monitor the voltage level on V_{PP}. The point at which the comparator trips must be set after careful consideration of the variation in the reference voltage and the tolerances on the bias resistors. The worst case conditions on these variations must guarantee that the handshake signal is asserted when V_{PP} is at its worst case lower-end level (11.4V). Care must be taken to use the exact same components as specified in order to maintain the tight tolerance on the trip level of the output signal.

E.2 Obtaining Shutdown Using Logic Level PFETs

Low "on" resistance logic level PFETs can be used on the high side of the input to the DC-DC converters to obtain shutdown. One such part is the Si9405 from Siliconix Inc. The device is part of the "little foot" series, and is available in an SO8 (8-pin surface mount) package. The Si9405 is a logic level PFET with an "on re-

sistance" of 0.2Ω (at a gate drive of 4.5V). It is important to have as low an "on" resistance as possible, since the peak currents and start-up currents into the supply are high. Care must be taken to ensure that the DC-DC conversion process is not affected after accounting for the drop in input voltage across the PFET.

E.3 Working of the Discrete Step Up Switching Regulator

This section presents a brief overview of the operation of discrete step up switching regulators, and presents issues that the user needs to be concerned with while designing these solutions into the system.

The four most basic elements of a discrete switching regulator power supply are:

1. The SMPS IC (which includes the switch control element and logic, along with the power switch itself),
 2. An inductor for storage and transfer of energy between the input and output,
 3. A switching diode to direct the inductor energy to "catch", or channel, the inductor energy to the output, and
 4. An output filter capacitor.

Figure E-1 Vpp Valid Handshake Circuit

In the boost configuration where the output voltage is greater than the input voltage, the basic switching power supply configuration is as shown in Figure E.2:

Figure E-2. Working of the Step-Up Switching Regulator

The power switch SW can be turned on and off; the control for it is derived from a feedback mechanism that senses the output voltage. While the switch is turned on, the inductor stores energy as the current flows through it from the input supply. The peak current through the inductor I_L can be approximated as $(V_{IN}/L * t_{ON})$; where t_{ON} is the on time of the switch. During this time, the energy is supplied by the input voltage, $V_L = V_{IN}$. The output is isolated from the inductor via the reverse-biased diode, and the load current is supplied by the output filter capacitor. When the switch turns off, the energy stored in the inductor appears as a rapidly increasing voltage across the inductor. As soon as this voltage reaches a value equal to the output voltage plus the voltage drop across the diode, the diode switches on and current starts to flow through the diode. This diode current supplies the load current while also at the same time charging up the output filter capacitor to the output voltage.

The switch is controlled by sensing the output voltage via a feedback mechanism—usually a pair of resistors. This sense voltage is gated via a comparator whose output acts as a control signal to an oscillator. The oscillator output controls the switch.

The power into the inductor P_L can be approximated as:

$$P_L = 0.5 * L * I_{PK}^2 * f_{OSC}$$

and the power into the load P_{LOAD} (out of the inductor) can be approximated as

$$P_{LOAD} = (V_{OUT} + V_D - V_{IN}) * I_{OUT}$$

The peak currents through the inductor is usually several times higher than the load current, is mostly of the value of the load current and builds up during time t_{ON} . On most of the solutions presented here, peak operating currents lie in the range of 500 mA to 1.2A. Though this may seem high, most of this in-rush of energy is transferred to the output, and little is lost to heat due to the efficient energy storage characteristic of inductors. Note that since the peak currents are high, the input voltage source must be capable of providing this current, and the current capability of the input source must not be calculated simply as $(V_{OUT} * I_{OUT})/(V_{IN} * \text{Eff})$. A large bypass capacitor at the input pin of the converter is hence also necessary on all designs.

Some of the solutions presented in this application note are of the fixed duty cycle or fixed on time type (e.g. LT110-12, LT1109-12, MC34063A), whereas some of them vary the duty cycle depending on the load current (e.g. MAX732, MAX658). These latter ones provide higher efficiencies.

Inductor Selection

The choice of an inductor is crucial to the design of the power supply system. To begin with, the inductor value must be low enough to supply the peak currents needed when the input voltage V_{IN} , as well as the on time t_{on} , are at their worst case low value. On the other hand, the inductor value must be high enough so that the peak currents at the worst case high values do not exceed the maximum peak currents that can be handled by the switch. Furthermore, once the value has been picked, the physical inductor that is chosen for the job must be able to handle these peak currents, and must not saturate. This is done by picking an inductor whose DC current rating is more than the worst case peak current that will be required by the operation of the device. The other characteristic to consider is the resistance of the inductor. In order to keep losses to a minimum, it is essential that the resistance of the coil is a minimum. Thus, it is important to use the inductors specified in the parts list that accompanies the solutions. These have been carefully chosen after reviewing the requirements. Alternate inductors may be used, as long as they are “equivalent”.

EMI Concerns

Since the switching regulators presented in this application note switch at frequencies between 60 KHz and 200 KHz, there exists a potential for EMI. In cases where EMI may be a problem, shielded inductors can be used. This will reduce EMI significantly. Shielded versions of the inductors specified are readily available. Contact the vendor directly for these.

Output Switching Noise

Output switching noise has several sources. The most significant one is the IR drop through the ESR (Equivalent Series Resistance) of the output filter capacitor. This is caused by switching current pulses from the inductor. There is also noise in the form of switching spikes riding on the DC output. This is due to the output filter capacitor's ESL (Equivalent Series Inductance), current spikes in the ground trace and rectifier turn-on transients.

It is important to use low ESR and low ESL output and input filter capacitors. Proper layout is also essential in

order to avoid spikes in the output. The safest solution is to use a filter circuit at the output. LC filters are not recommended, because of the transient nature of the load currents on flash devices. An RC filter is recommended on most solutions as an option. Two 1Ω resistors are used in parallel to avoid causing a significant drop across the resistance. This method is inexpensive and assures that the spikes riding on the output waveform are contained to within the 5% tolerance requirement on V_{pp}.

In addition, care must be taken to keep the leads from the output of the solution to all flash devices as short as possible. Use of a $0.1 \mu F$ capacitor at the V_{pp} pin of each flash device is highly recommended.

APPENDIX F PC LAYOUTS FOR SOME RECOMMENDED SOLUTIONS

F.1 Maxim Integrated Products MAX732

The double-sided layout presented below (Figure F-1) has been designed for the MAX732 5V–12V converter solution (Section 3.1). It is a double sided layout and has been designed for the parts specified in the parts list that accompanies the solution. Contact Maxim for any additional layout assistance.

F.2 Linear Technology Corporation LT1110-12

The single-sided layout presented below (Figure F-2) can be used to implement the LT1110-12 5V to 12V

converter (Section 3.2), the LT1110-12 3V–12V converter (Section 4.1), or the LT1110-5 3V to 5V converter (Section 5.2). The layout has been designed for the parts that are specified in the parts list that accompanies these solutions. Contact Linear Technology for any additional layout assistance.

F.3 Linear Technology Corporation LT1109-12

The single-sided layout presented below (Figure F-3) can be used to implement the LT1109-12 5V–12V converter solution (Section 3.3). The layout has been designed for the parts that are specified in the parts list that accompanies the solution. Contact Linear Technology for any additional layout assistance.

Figure F-1

Figure F-2

292092-25

(1X Scale Trace View)

292092-27

292092-26

(1X Scale Component Placement Diagram)

292092-28

Figure F-3

NORTH AMERICAN SALES OFFICES

ALABAMA

Intel Corp.
5015 Bradford Dr., #2
Huntsville 35805
Tel: (205) 830-4010
FAX: (205) 837-2640

ARIZONA

Intel Corp.
410 North 44th Street
Suite 500
Phoenix 85008
Tel: (602) 231-0386
FAX: (602) 244-0446

CALIFORNIA

Intel Corp.
21515 Vanowen Street
Suite 116
Canoga Park 91303
Tel: (818) 704-8500
FAX: (818) 340-1144

Intel Corp.
1 Sierra Gate Plaza
Suite 280C
Roseville 95678
Tel: (916) 782-8086
FAX: (916) 782-8153

Intel Corp.
9665 Chesapeake Dr.
Suite 325
San Diego 92123
Tel: (619) 292-8086
FAX: (619) 292-0628

*Intel Corp.
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-1114
FAX: (714) 541-9157

*Intel Corp.
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara 95051
Tel: (408) 986-8086
TWX: 910-338-0255
FAX: (408) 727-2620

COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100
Colorado Springs 80907
Tel: (719) 594-6622
FAX: (303) 594-0720

*Intel Corp.
600 S. Cherry St.
Suite 700
Denver 80222
Tel: (303) 321-8086
TWX: 910-931-2289
FAX: (303) 322-8670

CONNECTICUT

Intel Corp.
301 Lee Farm Corporate Park
83 Wooster Heights Rd.
Danbury 06810
Tel: (203) 748-3130
FAX: (203) 794-0339

FLORIDA

Intel Corp.
800 Fairway Drive
Suite 160
Deerfield Beach 33441
Tel: (305) 421-0506
FAX: (305) 421-2444

*Intel Corp.
5850 T.G. Lee Blvd.
Suite 340
Orlando 32822
Tel: (407) 240-8000
FAX: (407) 240-8097

ILLINOIS

*Intel Corp.
Woodfield Corp. Center III
300 N. Martingale Road
Suite 400
Schaumburg 60173
Tel: (708) 605-8031
FAX: (708) 706-9762

INDIANA

Intel Corp.
8910 Purdue Road
Suite 350
Indianapolis 46268
Tel: (317) 875-0623
FAX: (317) 875-8938

MARYLAND

*Intel Corp.
10010 Junction Dr.
Suite 200
Annapolis Junction 20701
Tel: (301) 206-2860
FAX: (301) 206-3677
(301) 206-3678

MASSACHUSETTS

*Intel Corp.
Westford Corp. Center
3 Carlisle Road
2nd Floor
Westford 01886
Tel: (508) 692-0960
TWX: 710-343-6333
FAX: (508) 692-7867

MICHIGAN

Intel Corp.
7071 Orchard Lake Road
Suite 100
West Bloomfield 48322
Tel: (313) 851-8096
FAX: (313) 851-8770

MINNESOTA

Intel Corp.
3500 W. 80th St.
Suite 360
Bloomington 55431
Tel: (612) 835-6722
TWX: 910-576-2867
FAX: (612) 831-6497

NEW JERSEY

*Intel Corp.
Lincroft Office Center
125 Half Mile Road
Red Bank 07701
Tel: (908) 747-2233
FAX: (908) 747-0983

NEW YORK

*Intel Corp.
850 Crosskeys Office Park
Fairport 14450
Tel: (716) 425-2750
TWX: 510-253-7391
FAX: (716) 223-2561

*Intel Corp.
2950 Express Dr., South
Suite 130
Islandia 11722
Tel: (516) 231-3300
TWX: 510-227-6236
FAX: (516) 348-7939

*Intel Corp.
300 Westgate Business Center
Suite 230
Fishkill 12524
Tel: (914) 897-3860
FAX: (914) 897-3125

OHIO

*Intel Corp.
3401 Park Center Drive
Suite 220
Dayton 45414
Tel: (513) 890-5350
TWX: 810-450-2528
FAX: (513) 890-8658

*Intel Corp.
25700 Science Park Dr.
Suite 100
Beachwood 44122
Tel: (216) 464-2736
TWX: 810-427-9298
FAX: (804) 282-0673

OKLAHOMA

Intel Corp.
6801 N. Broadway
Suite 115
Oklahoma City 73162
Tel: (405) 848-8086
FAX: (405) 840-9819

OREGON

*Intel Corp.
15254 N.W. Greenbrier Pkwy.
Building B
Beaverton 97006
Tel: (503) 645-8051
TWX: 910-467-8741
FAX: (503) 645-8181

PENNSYLVANIA

*Intel Corp.
925 Harvest Drive
Suite 200
Blue Bell 19422
Tel: (215) 641-1000
FAX: (215) 641-0785

*Intel Corp.
400 Penn Center Blvd.
Suite 610
Pittsburgh 15235
Tel: (412) 823-4970
FAX: (412) 829-7578

PUERTO RICO

Intel Corp.
South Industrial Park
P.O. Box 910
Las Piedras 00671
Tel: (809) 733-8616

TEXAS

Intel Corp.
8911 N. Capital of Texas Hwy.
Suite 4230
Austin 78759
Tel: (512) 794-8086
FAX: (512) 338-9335

*Intel Corp.
12000 Ford Road
Suite 400
Dallas 75234
Tel: (214) 241-8087
FAX: (214) 484-1180

*Intel Corp.
7322 S.W. Freeway
Suite 1490
Houston 77074
Tel: (713) 988-8086
TWX: 910-881-2490
FAX: (713) 988-3660

UTAH

Intel Corp.
428 East 6400 South
Suite 104
Murray 84107
Tel: (801) 268-1457

WASHINGTON

Intel Corp.
155 108th Avenue N.E.
Suite 100
Bellevue 98004
Tel: (206) 453-3002
TWX: 910-443-3002
FAX: (206) 451-9556

Intel Corp.
408 N. Mullan Road
Suite 102
Spokane 99206
Tel: (509) 928-8086
FAX: (509) 928-9467

WISCONSIN

Intel Corp.
330 S. Executive Dr.
Suite 102
Brookfield 53005
Tel: (414) 784-2015
FAX: (414) 796-2115

CANADA

BRITISH COLUMBIA
Intel Semiconductor of
Canada, Ltd.
4585 Canada Way
Suite 202
Burnaby V5G 4L6
Tel: (604) 298-0387
FAX: (604) 298-8234

ONTARIO

Intel Semiconductor of
Canada, Ltd.
2650 Queenview Drive
Suite 500
Ottawa K2B 8H6
Tel: (613) 829-9714
FAX: (613) 820-5936

Intel Semiconductor of
Canada, Ltd.
190 Attwell Drive
Suite 500
Richmond M6V 6H8
Tel: (416) 675-2105
FAX: (416) 675-2438

QUEBEC

Intel Semiconductor of
Canada, Ltd.
1 Rue Holiday
Suite 115
Tour East
Pt. Claire H9R 5N3
Tel: (514) 694-9130
FAX: 514-694-0064

[†]Sales and Service Office

^{*}Field Application Location