The Abstract Domain of Piecewise-Defined Ranking Functions

Caterina Urban

28th November 2013 East China Normal University Shanghai, China

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers

¹Floyd - Assigning Meanings to Programs (1967)

 $^{^2}$ Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

Example int: xwhile $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$

 od^4

Floyd - Assigning Meanings to Programs (1967)

assertions can be computed by abstract interpretation

Floyd - Assigning Meanings to Programs (1967)

the program gives the correct result if and when it terminates

Program Total Correctness

Example int: xwhile $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$

 od^4

Total Correctness = Partial Correctness + **Termination**

Program Total Correctness

ranking functions can be computed by abstract interpretation

Concrete Semantics

idea = define a ranking function
that counts the number of program steps
from the end of the program

Example

Theorem (Soundness and Completeness)

Theorem (Soundness and Completeness)

Theorem (Soundness and Completeness)

Theorem (Soundness and Completeness)

 $\mathsf{program} \mapsto \mathsf{trace} \; \mathsf{semantics} \mapsto \mathbf{termination} \; \mathbf{semantics}$

Theorem (Soundness and Completeness)

Theorem (Soundness and Completeness)

Theorem (Soundness and Completeness)

 $\begin{aligned} & \text{int}: x \\ & x := ? \\ & \text{while } (x \geq 0) \text{ do} \\ & x := x - 1 \\ & \text{od} \end{aligned}$

int : x

$$x := ?$$

while $(x \ge 0)$ do

$$x := x - 1$$

od

int : x

x := ?

while $(x \ge 0)$ do

x := x - 1

od

Piecewise-Defined Ranking Functions

- States Abstract Domain
 - Intervals Abstract Domain⁴
- Functions Abstract Domain
 - Affine Ranking Functions
- Piecewise-Defined Ranking Functions Abstract Domain

V(S,F)

⁴Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

⁴Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

⁴Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

⁴Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

Why Piecewise-Defined Ranking Functions?

Example

int:
$$x$$
 while ${}^{1}(x \ge 0)$ do ${}^{2}x := -2x + 10$ od 3

$$f(x) \triangleq \begin{cases} 1 & x < 0 \\ 5 & 0 \le x \le 2 \\ 9 & x = 3 \\ 7 & 4 \le x \le 5 \\ 3 & 5 < x \end{cases}$$

Natural-Valued Ranking Functions

Natural-Valued Ranking Functions Domain

•
$$\mathcal{F}^{\#} \triangleq \{\bot_{\mathsf{F}}\} \cup \{f^{\#} \mid f^{\#} \in \mathbb{Z}^n \to \mathbb{N}\} \cup \{\top_{\mathsf{F}}\}$$

where $f^{\#} \equiv y = f(x_1, \dots, x_n) = m_1 x_1 + \dots + m_n x_n + q$

$$egin{aligned} \mathbf{v}^\# & riangleq egin{aligned} \mathbf{s}_1^\# &\mapsto f_1^\# \ \mathbf{s}_2^\# &\mapsto f_2^\# \ & \ddots \ \mathbf{s}_k^\# &\mapsto f_k^\# \end{aligned}$$

$$v^{\#}(x) \triangleq \begin{cases} x \in [-\infty, 5] \mapsto \bot_{\mathsf{F}} \\ x \in [6, 8] \mapsto -3x + 38 \\ x \in [9, 10] \mapsto 4 \\ x \in [11, +\infty] \mapsto 1 \end{cases}$$

segmentation unification

• join: □_V

 \bullet widening: ∇_V

ullet backward assignments: ASSIGN_{V}

- segmentation unification
- join⁵: □_V

- widening: ∇_V
- backward assignments: ASSIGN_V

⁵Cousot&Halbwachs - Automatic Discovery of Linear Restraints Among Variables of a Program (POPL 1978)

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Implementation

segmentation unification

join: □V

widening: ∇_V

Example $\nabla_{\mathbf{V}}$ 3 6 6 11

ullet backward assignments: ASSIGN_{V}

segmentation unification

join: □V

widening: ∇_V

ullet backward assignments: ASSIGN_{V}

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Implementation

segmentation unification

join: □V

■ widening: ∇_V

ullet backward assignments: ASSIGN_{V}

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Implementation

segmentation unification

join: □V

■ widening: ∇_V

 \bullet backward assignments: ASSIGN_V

• segmentation unification

join: □V

• widening: ∇_V

 \bullet backward assignments: ASSIGN_{V}

Example

• segmentation unification

join: □V

• widening: ∇_V

ullet backward assignments: ASSIGN_{V}

Example

Theorem (Soundness)

the abstract termination semantics is **sound** to prove the termination of programs

int :
$$x$$

while $^{1}(x > 0)$ do $^{2}x := x - 1$
od³

we map each point to a function of x giving an upper bound on the steps before termination

$$x := x - 1$$

$$\begin{cases}
1 & x \le 0 \\
\downarrow x > 0
\end{cases}$$

$$2 & 3$$

we take into account $x \le 0$ and we have 1 step to termination

Example

 od^3

int :
$$x$$

while $^{1}(x > 0)$ do $^{2}x := x - 1$

$$x := x - 1 \left(\begin{array}{c} 1 \\ \downarrow x > 0 \\ 2 \end{array} \right)$$

we start at the end with 0 steps before termination

we consider x > 0 and we do the join

Example

 od^3

int :
$$x$$

while $^{1}(x > 0)$ do $^{2}x := x - 1$

we consider the assignment x := x - 1 and we are at 2 steps to termination

int : xwhile $^{1}(x > 0)$ do $^{2}x := x - 1$ od³

int : x

while $^{\mathbf{1}}(x>0)$ do

$$^{2}x := x - 1$$

 od^3

 od^3

int : xwhile $^{1}(x > 0)$ do $^{2}x := x - 1$

int : x while $^{1}(x > 0)$ do

 $^{2}x := x - 1$

 od^3

the analysis gives true as sufficient precondition for termination

int : x while $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ fi od 4

we map each point to a function of x giving an upper bound on the steps before termination

Example

int:
$$x$$

while $^{1}(x \le 10)$ do
if $^{2}(x > 6)$ then
 $^{3}x := x + 2$
fi
od⁴

we start at the end with 0 steps before termination

Example

int : x while $^1(x \le 10)$ do if $^2(x > 6)$ then $^3x := x + 2$ fi od 4

we take into account x > 10 and we have now 1 step to termination

Example

int : x while $^{1}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ od^4

 od^4

int : x while $^{1}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$

we consider the assignment x := x + 2or the test x < 6 and we are now at 2 steps to termination

 od^4

int: x while $^{\mathbf{1}}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$

we consider x > 6and we do the join Piecewise-Defined Ranking Functions

we consider x < 10and we do the join

Example

 od^4

int: x while $^{\mathbf{1}}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$

 od^4

int: x while $^{1}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ fi

we do the widening

Example

int: x while $^{1}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ fi od^4

 od^4

int : x while $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ fi

6 8 10

the analysis provides x > 6as sufficient precondition for termination

Example

int : x while $^{1}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ od^4

int : x

$$x := ?$$

while $(x \ge 0)$ do

$$x := x - 1$$

od

Ordinal-Valued Ranking Functions

$$0, 1, 2, \dots$$
 $\omega, \omega + 1, \omega + 2, \dots$
 $\omega \cdot 2, \omega \cdot 2 + 1, \omega \cdot 2 + 2, \dots$
 \vdots
 ω^{2}, \dots
 \vdots
 ε_{0}, \dots
 \vdots
 ε_{0}, \dots
 \vdots

0,
$$\{0\}$$
, 2, ...
 ω , $\omega + 1$, $\omega + 2$, ...
 $\omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, ...
 \vdots
 ω^2 , ...
 \vdots
 ω^{ω} , ...
 \vdots
 ϵ_0 , ...

0, 1,
$$\{0,1\}$$
, ...
 ω , $\omega + 1$, $\omega + 2$, ...
 $\omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, ...
 \vdots
 ω^2 , ...
 \vdots
 ε_0 , ...
 \vdots

```
0, 1, 2, ...
\{0,1,2,\ldots\}, \ \omega+1, \ \omega+2, \ \ldots
\omega \cdot 2, \omega \cdot 2 + 1, \omega \cdot 2 + 2, ...
\epsilon_0, \ldots
```

```
0, 1, 2, ...
\omega, \{0,1,2,\ldots,\omega\}, \omega+2,\ldots
\omega \cdot 2, \omega \cdot 2 + 1, \omega \cdot 2 + 2, ...
\epsilon_0, \ldots
```

```
0, 1, 2, ...
\omega, \ \omega + 1, \ \{0, 1, 2, \dots, \omega, \omega + 1\}, \ \dots
\omega \cdot 2, \omega \cdot 2 + 1, \omega \cdot 2 + 2, ...
\epsilon_0, \ldots
```

```
0, 1, 2, ...
\omega, \omega + 1, \omega + 2, ...
\{0,1,2,\ldots,\omega,\omega+1,\omega+2,\ldots\},\ \omega\cdot 2+1,\ \omega\cdot 2+2,\ \ldots
\epsilon_0, \ldots
```

```
0, 1, 2, ...
\omega, \omega + 1, \omega + 2, ...
\omega \cdot 2, \omega \cdot 2 + 1, \omega \cdot 2 + 2, ...
                                     successor ordinals
                                     \alpha + 1 \triangleq \alpha \cup \{\alpha\}
\epsilon_0, \ldots
```

0, 1, 2, ...

$$\omega$$
, $\omega + 1$, $\omega + 2$, ...

 $\omega \cdot 2$, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, ...

 ω^{2} , ...

 ω^{ω} , ...

 ω^{ω} , ...

 ω^{ω} , ...

Ordinal Numbers

finite ordinals

$$\omega$$
, $\omega + 1$, $\omega + 2$, ...

$$\omega \cdot 2$$
, $\omega \cdot 2 + 1$, $\omega \cdot 2 + 2$, ...

:

$$\omega^2, \ldots$$

:

$$\omega^{\omega}, \ldots$$

:

$$\epsilon_0, \ldots$$

:

Ordinal Numbers

```
0, 1, 2, ...
\omega, \omega + 1, \omega + 2, ...
\omega \cdot 2, \omega \cdot 2 + 1, \omega \cdot 2 + 2, ...
                                transfinite ordinals
```

Ordinal Numbers

```
0, 1, 2, ...
\omega, \omega + 1, \omega + 2, ...
\omega \cdot 2, \omega \cdot 2 + 1, \omega \cdot 2 + 2, ...
\epsilon_0, \ldots
```

addition

$$\alpha + 0 = \alpha \qquad \text{(zero case)}$$

$$\alpha + (\beta + 1) = (\alpha + \beta) + 1 \qquad \text{(successor case)}$$

$$\alpha + \beta = \bigcup_{\gamma < \beta} (\alpha + \gamma) \qquad \text{(limit case)}$$

• associative:
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

• not commutative: $1 + \omega = \omega \neq \omega + 1$

- multiplication
- exponentiation

addition

$$\alpha + 0 = \alpha \qquad \text{(zero case)}$$

$$\alpha + (\beta + 1) = (\alpha + \beta) + 1 \qquad \text{(successor case)}$$

$$\alpha + \beta = \bigcup_{\gamma < \beta} (\alpha + \gamma) \qquad \text{(limit case)}$$

- associative: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- not commutative: $1 + \omega = \omega \neq \omega + 1$
- multiplication
- exponentiation

- addition
- multiplication

$$\alpha \cdot 0 = 0 \qquad \text{(zero case)}$$

$$\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha \qquad \text{(successor case)}$$

$$\alpha \cdot \beta = \bigcup_{\gamma < \beta} (\alpha \cdot \gamma) \qquad \text{(limit case)}$$

- associative: $(\alpha \times \beta) \times \gamma = \alpha \times (\beta \times \gamma)$
- left distributive: $\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma)$
- not commutative: $2 \times \omega = \omega \neq \omega \times 2$
- not right distributive: $(\omega + 1) \times \omega = \omega \times \omega \neq \omega \times \omega + \omega$

exponentiation

- addition
- multiplication

$$\begin{array}{ll} \alpha \cdot 0 = 0 & \text{(zero case)} \\ \alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha & \text{(successor case)} \\ \alpha \cdot \beta = \bigcup_{\gamma < \beta} (\alpha \cdot \gamma) & \text{(limit case)} \end{array}$$

- associative: $(\alpha \times \beta) \times \gamma = \alpha \times (\beta \times \gamma)$
- left distributive: $\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma)$
- not commutative: $2 \times \omega = \omega \neq \omega \times 2$
- not right distributive: $(\omega + 1) \times \omega = \omega \times \omega \neq \omega \times \omega + \omega$
- exponentiation

- addition
- multiplication
- exponentiation

$$\alpha^0 = 1 \qquad \qquad \text{(zero case)}$$

$$\alpha^{\beta+1} = (\alpha^\beta) \cdot \alpha \qquad \qquad \text{(successor case)}$$

$$\alpha^\beta = \bigcup_{\gamma < \beta} (\alpha^\gamma) \qquad \qquad \text{(limit case)}$$

•
$$\mathcal{P}^{\#} \triangleq \{\bot_{\mathsf{P}}\} \cup \{p^{\#} \mid p^{\#} \in \mathbb{Z}^n \to \mathbb{O}\} \cup \{\top_{\mathsf{P}}\}$$

•
$$\mathcal{P}^{\#} \triangleq \{\bot_{P}\} \cup \{p^{\#} \mid p^{\#} \in \mathbb{Z}^{n} \to \mathbb{O}\} \cup \{\top_{P}\}$$

= $\{\bot_{P}\} \cup \{p^{\#} \mid p^{\#} = \sum_{i} \omega^{i} \cdot f_{i}^{\#}, f_{i}^{\#} \in \mathcal{F}^{\#}\} \cup \{\top_{P}\}$

• $\mathcal{P}^{\#} \triangleq \{\bot_{P}\} \cup \{p^{\#} \mid p^{\#} \in \mathbb{Z}^{n} \to \mathbb{O}\} \cup \{\top_{P}\}$ = $\{\bot_{P}\} \cup \{p^{\#} \mid p^{\#} = \sum_{i} \omega^{i} \cdot f_{i}^{\#}, f_{i}^{\#} \in \mathcal{F}^{\#}\} \cup \{\top_{P}\}$ where $f^{\#} \equiv y = f(x_{1}, \dots, x_{n}) = m_{1}x_{1} + \dots + m_{n}x_{n} + q$

$$v^{\#} riangleq egin{cases} s_1^{\#} \mapsto p_1^{\#} \ s_2^{\#} \mapsto p_2^{\#} \ \dots \ s_k^{\#} \mapsto p_k^{\#} \end{cases}$$

$$p^{\#} \triangleq \omega^{k} \cdot f_{k}^{\#} + \ldots + \omega^{2} \cdot f_{2}^{\#} + \omega \cdot f_{1}^{\#} + f_{0}^{\#}$$

Example

$$v^{\#}(x) \triangleq \begin{cases} x \in [-\infty, -1], y \in [-\infty, 0] \mapsto 1 \\ x \in [-\infty, -1], y \in [1, +\infty] \mapsto \omega^{2} + \omega \cdot (y - 1) - 4x + 9y - 2 \\ x \in [0, 0], y \in [-\infty, +\infty] \mapsto 1 \\ x \in [1, +\infty], y \in [-\infty, 0] \mapsto 1 \\ x \in [1, +\infty), y \in [1, +\infty) \mapsto \omega \cdot (x - 1) + 9x + 4y - 7 \end{cases}$$

Lexicographic Ranking Functions

$$\omega^{k} \cdot \underbrace{f_{k}^{\#}}_{\in \mathbb{N}} + \ldots + \omega^{2} \cdot \underbrace{f_{2}^{\#}}_{\in \mathbb{N}} + \omega \cdot \underbrace{f_{1}^{\#}}_{\in \mathbb{N}} + \underbrace{f_{0}^{\#}}_{\in \mathbb{N}} \in \mathbb{O}$$

Lexicographic Ranking Functions

$$\omega^{k} \cdot \underbrace{f_{k}^{\#}}_{\in \mathbb{N}} + \ldots + \omega^{2} \cdot \underbrace{f_{2}^{\#}}_{\in \mathbb{N}} + \omega \cdot \underbrace{f_{1}^{\#}}_{\in \mathbb{N}} + \underbrace{f_{0}^{\#}}_{\in \mathbb{N}} \in \mathbb{O}$$

$$(f_k^{\#}, \ldots, f_2^{\#}, f_1^{\#}, f_0^{\#}) \in \underbrace{\mathbb{N} \times \ldots \times \mathbb{N}}_{t}$$

join: □_V

Example

backward assignments: ASSIGN_V

join: □_V

Example

$$v_1^{\#} \triangleq [-\infty, +\infty] \mapsto \omega \cdot x_1 + x_2$$
 $v_2^{\#} \triangleq [-\infty, +\infty] \mapsto \omega \cdot (x_1 - 1) - x_2$
 $v_1^{\#} \sqcup_V v_2^{\#} \triangleq [-\infty, +\infty] \mapsto ?$

join: □V

Example

join: □_V

Example

join: □V

Example

join: □_V

Example

$$v_1^{\#} \triangleq [-\infty, +\infty] \mapsto \omega \cdot x_1 + x_2$$

$$v_2^{\#} \triangleq [-\infty, +\infty] \mapsto \omega \cdot (x_1 - 1) - x_2$$

$$v_1^{\#} \sqcup_V v_2^{\#} \triangleq [-\infty, +\infty] \mapsto \omega \cdot (x_1 + 1)$$

- join: □_V
- ullet backward assignments: ASSIGN_{V}

Example

$$p^{\#} \triangleq \qquad \qquad \omega \qquad \cdot \quad x_1 \quad + \quad x_2$$
 $\downarrow \quad x_1 := ?$ $p^{\#} \triangleq ?$

- join: □_V
- ullet backward assignments: ASSIGN_{V}

Example $p^{\#} \triangleq \qquad \qquad \omega \qquad \cdot \quad x_1 \quad + \quad x_2 \\ \qquad \qquad \psi \quad x_1 := \; ? \\ \qquad \qquad p^{\#} \triangleq \qquad \qquad \qquad + \quad 1$

- join: □_V
- ullet backward assignments: ASSIGN_{V}

- join: □_V
- \bullet backward assignments: ASSIGN_{V}

Example $p^{\#} \triangleq \qquad \qquad \omega \qquad \cdot \quad \mathbf{x}_1 \quad + \quad \mathbf{x}_2 \\ \qquad \qquad \qquad \Downarrow \quad \mathbf{x}_1 := \; ? \\ \qquad \qquad p^{\#} \triangleq \qquad \qquad ^1 \quad + \quad \omega \qquad \cdot \quad \mathbf{0} \quad + \quad \mathbf{x}_2 \quad + \quad 1$

- join: □_V
- \bullet backward assignments: ASSIGN_{V}

Example $\rho^{\#} \triangleq \qquad \qquad \omega \qquad \cdot \quad x_1 \quad + \quad x_2$ $\downarrow \quad \mathbf{x}_1 := \; ?$ $\rho^{\#} \triangleq \quad \boldsymbol{\omega}^2 \quad \cdot \quad \mathbf{1} \quad + \quad \omega \qquad \cdot \quad \mathbf{0} \quad + \quad x_2 \quad + \quad \mathbf{1}$

- join: □_V
- \bullet backward assignments: ASSIGN_V

Theorem (Soundness)

the abstract termination semantics is **sound** to prove the termination of programs

Example

int:
$$x_1, x_2$$

while ${}^1(x_1 > 0 \land x_2 > 0)$ do
if ${}^2(?)$ then
 ${}^3x_1 := x_1 - 1$
 ${}^4x_2 := ?$
else
 ${}^5x_2 := x_2 - 1$
fi
od⁶

$$f(x_1, x_2) = \begin{cases} x \in [-\infty, 0], y \in [-\infty, 0] \mapsto 1 \\ x \in [-\infty, 0], y \in [1, +\infty] \mapsto 1 \\ x \in [1, +\infty], y \in [-\infty, 0] \mapsto 1 \\ x \in [1, +\infty), y \in [1, +\infty) \mapsto \omega \cdot (x_1 - 1) + 7x_1 + 3x_2 - 5 \end{cases}$$

Non-Linear Computational Complexity

Example int: x_1, x_2 $^{1}x_{1} := N$ while $^{2}(x_{1} \geq 0)$ do $^{3}x_{2} := N$ while ${}^{4}(x_2 \geq 0)$ do $^{5}x_{2} := x_{2} - 1$ od $^{6}x_{1} := x_{1} - 1$ od^7

the loop terminates in a finite number of iterations

$$f(x_1, x_2) = \begin{cases} x \in [-\infty, 0], y \in [-\infty, +\infty] \mapsto 1, \\ x \in [1, +\infty), y \in [-\infty, +\infty) \mapsto \omega + 2 \end{cases}$$

http://www.di.ens.fr/~urban/FuncTion.html

- written in OCaml
- implemented on top of Apron⁵
- forward reachability analysis to improve precision

Example int:
$$x_1, x_2$$
 $^1x_2 := 1$ while $^2(x_1 < 10)$ do $^3x_1 := x_1 + x_2$ od 4

⁵http://apron.cri.ensmp.fr/library/

http://www.di.ens.fr/~urban/FuncTion.html

- written in OCaml
- implemented on top of Apron⁵
- forward reachability analysis to improve precision

Example int: x_1, x_2 $^1x_2 := 1$ while $^2(x_1 < 10)$ do $^3x_1 := x_1 + x_2$ od⁴

⁵http://apron.cri.ensmp.fr/library/