

COMP20008 Elements of Data Processing

Classification Methodologies continued

Announcements

- Project marking
 - We expect to release marks + feedback for Phase 1 by Thursday 13th April
- Phase 2A (Concept formulation and preliminary investigation):
 Due 25th April
 - In workshops this week (10-13th April) Half of the time will be devoted to discussion regarding Phase 2A of the project

- Phase 2B (peer feedback): Due 28th April
 - In lecture on Monday 24th April, we will discuss strategies for giving peer feedback

Plan today

- Classification
 - Decision tree classification wrap up from last week
 - k nearest neighbor classification
- Recap where are we in the subject?
- Advice for Phase 2A of project


```
Split utility= Information Gain
=Entropy(root) - Entropy(root|split)
=Entropy(root) - [(50/200)*Entropy(left child)
+(150/200)*Entropy(right child)]
```


How to determine the Best Split?

Before Splitting: 10 records of class 0, 10 records of class 1

Own Car: Information gain=0.029

Car type: Information gain=0.62

Student ID: Information gain=1

We should choose Student ID as the best split???!!!

Creating a decision tree

- Calc information gain [Left Child], [Right Child] for each of the following
 - Refund [Yes], [No]
 - Marital status [Single],[Married],[Divorced]
 - Taxable income
 - [60,60], (60,220]
 - [60,70], (70,220]
 - [60,75],(75,220]
 - [60,85],(85,220]
 - [60,90],(90,220]
 - [60,95],(95,220]
 - [60,100],(100,220]
 - [60,120],(120,220]
 - [60,125],(125,220]
- Choose feature+split with the highest information gain and use this as the root node and its split
- Do recursively, terminating when a node consists of only Cheat=No or Cheat=Yes.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Decision tree: advantages and disadvantages

- Advantages
 - Easy to interpret
 - Relatively efficient to construct
 - Fast for making a decision about a test instance
- Disadvantages
 - A simple greedy construction strategy, producing a set of "If ..then" rules
 - sometimes this is too simple for data with complex structure
 - May behave strangely for some types of features (E.g. student ID feature from earlier slide)

Decision tree classifier: training and testing

- Divide training data into:
 - Training set (e.g. 2/3)
 - Test set (e.g. 1/3)
- Learn decision tree using the training set
- Evaluate performance of decision tree on the test set

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Metrics for Performance Evaluation

- Can be summarized in a Confusion Matrix (contingency table)
 - Actual class: {yes, no, yes, yes, ...}
 - Predicted class: {no, yes, yes, no...}

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Actual class: {yes, no, yes, yes, no, yes, no, no}

- Predicted: {no, yes, yes, no, yes, no, no, yes}

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a= 1 (TP)	b=3 (FN)
	Class=No	c=3 (FP)	d=1 (TN)

Limitations of accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading here because model does not detect any class 1 example
 - Other metrics can be used instead of accuracy, that address this problem (but we won't cover these)

Why do we split the dataset into training and testing for evaluating accuracy?

K nearest neighbor classifier

Another widely used and intuitive algorithm for prediction

Nearest Neighbor Classifiers

- Basic idea:
 - "If it walks like a duck, quacks like a duck, then it's probably a duck"

Test Record

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - 2. Identify *k* nearest neighbors
 - 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Distance measure

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Pearson coefficient (similarity measure)
- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

1 nearest-neighbor

Voronoi Diagram defines the classification boundary

The area takes the class of the green point

K- Nearest Neighbor classifier

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

K-NN classifier: advantages and disadvantages

- Advantages
 - Intuitive way of making decisions
 - Can handle datasets with complex structure

- Disadvantages
 - Need to store training data in order to make the prediction
 - Classification may be slow for large datasets (Storage and neighbor computations)
 - Choices need to be made about parameters
 - What distance function to use?
 - What value of k to use?

Points to remember from this lecture

- Understand the use of accuracy as a metric for measuring the performance of a classification method.
- Understand how TP,TN,FP and FN are used in the accuracy calculation. The formula for accuracy will be provided on the exam
- understand the operation and rationale of the k nearest neighbor algorithm for classification
- understand the advantages and disadvantages of using k nearest neighbor or decision tree for classification

Where are we now?

Where have we got to?

- Preprocessing (4 lectures): Weeks 1-3
 - Data types and processing, data cleaning including outliers, missing data
- Visualisation (3 lectures): Weeks 3-4
 - Plotting and visualisation methods, clustering, dimensionality reduction
- Analysis (4 lectures): Weeks 5-7
 - Correlations, basic prediction techniques
- Infrastructure and Distributed (5 lectures): Weeks 8-10
 - noSQL and cloud, data linkage and integration, blockchain
- Social, ethical and privacy issues (3 lectures):
 Weeks 11-12
 - K-anonymity, I-diversity, location privacy, ethics

Phase 2A – Due 25th April

- Need to formulate a question, identify 2 open datasets to help answer the question and conduct some initial wrangling
- Approximately 13 hours work. A possible breakdown
 - (5 hours) Browse open datasets, select two and formulate question
 - (6 hours) Initial wrangling
 - (2 hours) Write report

References and Acknowledgement

This lecture was prepared using some material adapted from:

- https://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf
- CS059 Data Mining -- Slides
- http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/ chap4_basic_classification.ppt