0.1 TODO List

0.1.1 Classic Dimensionality Reduction

- 1. Learn about the following:
 - (a) PCA
 - (b) MDS
 - (c) isomap
- 2. Maybe need to implement some of them
- 3. Know the difference from a practical aspect

0.1.2 Clustering

- 1. Need to learn about the different approaches
 - (a) Variational
 - (b) Spectral
 - (c) Hierarchical
 - (d) Density thresholding
 - (e) Mode seeking
 - (f) Valley Seeking
- 2. Need to know the specific applications
- 3. Need to delve into one of them to see if possible for improvement
- 4. Mathematical details about Mode Seeking
 - (a) Hypotheses on the function of f and estimator \hat{f}
 - (b) Exact conclusions about the prominence gap.
 - (c) How to specify prominence parameter τ
 - (d) Algorithm details

Persistent Homology

- 1. Need to delve into the details of the PH algorithms
 - (a) Like reading off the intervals.
 - (b) Different implementations.

0.2 Clustering

Point cloud (with coordinates)

Distance / dissimilarity matrix

Note: this seems to be a different idea of the distance function used in TDA, which is called lens in that context.

 $Barcode \rightarrow merge tree \rightarrow dendrogram$

0.2.1 Mode Seeking Paradigm

Problems:

- 1. Noisy estimator
- 2. Neighborhood graph

Solutions:

- 1. Be proactive: smooth
- 2. Be reactive: merge clusters after clustering This leads to "topological persistence"

Persistence for Model Seeking: Probability density function f

- Nested family (filtration) of of inverse images, or superlevel-sets $f^{-1}([t, +\infty))$ for t from $+\infty$ to $-\infty$
- Track evolution of "topology"

Similar stability theorem.

Seems to have relation with Morse theory. "If f is Morse, then..."

0.3 Topological Persistence

Persistence diagram shows the "persistence" of the topological features. Slight perturbation causes slight difference in persistence diagrams.

0.4 Homology

Definition: $h: X \mapsto Y$ is a homeomorphism if there exists a map $h^{-1}: Y \mapsto X$, s.t.

• both are continuous

•

0.5 Computation of Persistence Homology

This part is largely cited from [1].

How to keep track of how one feature "merges" to another?

Boundary matrix: the matrix representation of boundary operator.

We also need a total ordering compatible with the "filtration" in the following sense:

- a face of a simplex precedes the simplex.
- a simplex in K_i precedes simplices in K_j for j > i, and not in K_i .

– this essentially means that we place the simplices by the order of "appearing".

Standard Algorithm:

- Form the boundary matrix from the ordering.
- Reduction, which is essentially Gaussian elimination.
- Reading off intervals.
 - 1. some details to do.
 - 2. degree: $dg(\sigma) = \text{smallest number } l \text{ s.t.} \sigma \in K_l$

•

0.6 Mapper

Bibliography

[1] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, "A roadmap for the computation of persistent homology," *EPJ Data Science*, vol. 6, p. 17, Aug 2017.