52.) Let $M, N \in \mathbb{R}$ where $M \geq x_n$ and $N \geq y_n$ for all $n \in \mathbb{N}$. Consider $z_n = x_n + y_n$. $x_n + y_n \leq M + N$, thus $z_n \leq M + N$ for all $n \in \mathbb{N}$, thus z_n is bounded. Q.E.D.

76.)

i_n					
j_n		X	X	X	
k_n	X				
l_n		X			X

96.) Let $S \subseteq \mathbb{N}$, and consider the cases of S:

Case $S = \mathbb{N}$: Let $x_n = 1$. Since $1 \ge 1$, the friends of x_n are \mathbb{N} , and thus S.

Case $S \subset \mathbb{N}$: Let the sequence x_n be defined as follows:

$$x_n = \begin{cases} 1 & n \in S \\ -\frac{1}{n} & n \notin S \end{cases}$$

Since $1 > -\frac{1}{n}$ for all $n \in \mathbb{N}$, all n for which $x_n = 1$ are friends of x_n . In addition, for all $m, n \in \mathbb{N}$:

$$m > n \implies \frac{1}{n} > \frac{1}{m} \implies -\frac{1}{n} < -\frac{1}{m}$$

Thus all n for which $x_n = -\frac{1}{n}$ cannot be friends of x_n , thus $x_n = 1$ for all friends n of x_n , thusly all $n \in S$ are friends, thus S is the set of all friends of x_n , thus for all $S \subseteq \mathbb{N}$, there exists a sequence such that S is the set of friends of that sequence. Q.E.D.

- 99.) Let $x_n = n (-1)^n n$. x_n is unbounded, but $y_k = x_{2k} = 2k (-1)^{2k} 2k = 2k 2k = 0$, thus $y_k \leq x_n$ and $y_k \to 0$.
- 100.) Every cauchy sequence is convergent according to theorem 23, and no convergent sequence can be unbounded.
- 103.) Let $x_n = \frac{1}{n^2}$. Since $x_n \to 0$, x_n is convergent and thus cauchy. Q.E.D.
- 105.) Since x_n and y_n are cauchy, there exist $A, B \in \mathbb{R}$ where $x_n \to A$ and $y_n \to B$. Since $y_n \neq 0$ for all $n \in \mathbb{N}$, $B \neq 0$. Let $z_n = x_n / y_n$. According to theorem 14, $z_n = x_n / y_n \implies z_n \to A / B$, thus z_n is convergent and thus cauchy. Q.E.D.

127.) For $\lim_{x\to 5} x^2 = 25$, then given $\varepsilon > 0$, there must exist $\delta > 0$ where

$$|x-5| < \delta \implies |x^2 - 25| < \varepsilon$$

Suppose |x-5| < 1, then |x+5| < 11, thus

$$|x^2 - 25| = |x - 5| |x + 5| < 11 |x - 5| < 11\delta$$

$$11\delta = \varepsilon \implies \delta = \frac{\varepsilon}{11}$$

Let $\delta < \min\left(1, \frac{\varepsilon}{11}\right)$:

$$|x-5| < \delta \implies |x-5| < \frac{\varepsilon}{11} \implies 11 |x-5| < \varepsilon \implies |x-5| |x+5| < 11 |x-5| < \varepsilon$$
$$\implies |x-5| |x+5| = |x^2 - 25| < \varepsilon$$

Thus $\lim_{x \to 5} x^2 = 25$. Q.E.D.

128.) For $\lim_{x\to\frac{1}{2}}\frac{1}{x}=2$, then given $\varepsilon>0$, there must exist $\delta>0$ where

$$\left| x - \frac{1}{2} \right| < \delta \implies \left| \frac{1}{x} - 2 \right| < \varepsilon$$

Suppose $\left| x - \frac{1}{2} \right| < \frac{1}{4}$:

$$\left| x - \frac{1}{2} \right| < \frac{1}{4} \implies -\frac{1}{4} < x - \frac{1}{2} < \frac{1}{4} \implies \frac{1}{4} < x < \frac{3}{4} \implies \frac{4}{3} < \frac{1}{x} < 4 \implies \frac{2}{x} < 8$$

Thus

$$\left| \frac{1}{x} - 2 \right| = \left| 2 - \frac{1}{x} \right| = \left| \frac{2}{x} \right| \left| x - \frac{1}{2} \right| < 8\delta$$
$$8\delta = \varepsilon \implies \delta = \frac{\varepsilon}{8}$$

Let $\delta = \min\left(\frac{1}{4}, \frac{\varepsilon}{8}\right)$:

$$\left| x - \frac{1}{2} \right| < \delta \implies \left| x - \frac{1}{2} \right| < \frac{\varepsilon}{8} \implies 8 \left| x - \frac{1}{2} \right| < \varepsilon \implies \left| \frac{2}{x} \right| \left| x - \frac{1}{2} \right| < 8 \left| x - \frac{1}{2} \right| < \varepsilon$$

$$\implies \left| \frac{2}{x} \right| \left| x - \frac{1}{2} \right| = \left| \frac{1}{x} - 2 \right| < \varepsilon$$

Thus $\lim_{x \to \frac{1}{a}} \frac{1}{x} = 2$. Q.E.D.

133.) For x^2 to be continuous over all $c \in \mathbb{R}$, then for all $\varepsilon > 0$, there must exist $\delta > 0$ where

$$|x - c| < \delta \implies |x^2 - c^2| < \varepsilon$$

Suppose |x - c| < 1:

$$|x-c|<1 \implies -1 < x-c < 1 \implies 2c-1 < x-c+2c < 2c+1 \implies |x+c| < 2c+1$$

Thus

$$|x^{2} - c^{2}| = |x - c| |x + c| < (2c + 1)\delta$$
$$(2c + 1)\delta = \varepsilon \implies \delta = \frac{\varepsilon}{2c + 1}$$

Let
$$\delta < \min\left(1, \frac{\varepsilon}{2c+1}\right)$$
, then

$$|x-c| < \delta \implies |x-c| < \frac{\varepsilon}{2c+1} \implies |x-c| |x+c| < |x-c| (2c+1) < \varepsilon$$

$$\implies |x^2 - c^2| < \varepsilon$$

Thus x^2 is continuous over all $c \in \mathbb{R}$. Q.E.D.

134.) For $\frac{1}{x}$ to be continuous at x=4, then for all $\varepsilon>0$, there must exist $\delta>0$ where

$$|x-4| < \delta \implies \left| \frac{1}{x} - \frac{1}{4} \right| < \varepsilon$$

Suppose |x-4| < 1

$$|x-4| < 1 \implies 3 < x < 5 \implies \frac{1}{5} < \frac{1}{x} < \frac{1}{3} \implies \frac{1}{4x} < \frac{1}{12}$$

Thus

$$\left| \frac{1}{x} - \frac{1}{4} \right| = \left| \frac{1}{4} - \frac{1}{x} \right| = \left| \frac{1}{4x} \right| |x - 4| < \frac{\delta}{12}$$
$$\frac{\delta}{12} = \varepsilon \implies \delta = 12\varepsilon$$

Let $\delta < \min(1, 12\varepsilon)$, then

$$|x-4| < \delta \implies |x-4| < 12\varepsilon \implies \frac{1}{12}|x-4| < \varepsilon \implies \left|\frac{1}{4x}\right||x-4| < \varepsilon$$

$$\implies \left|\frac{1}{x} - \frac{1}{4}\right| < \varepsilon$$

Thus $\frac{1}{x}$ is continuous at x = 4. Q.E.D.

144.) Let $f:[a,b] \to [a,b]$ be continuous. If f(a)=a or f(b)=b, then f has a fixed point. Otherwise, since the codomain of f is [a,b], then f(a)>a and f(b)<b. Let g(x)=x-f(x):

$$f(a) > a \implies a - f(a) < 0 \implies g(a) < 0$$

$$f(b) < b \implies b - f(b) > 0 \implies g(b) > 0$$

Since x and f(x) are continuous, x - f(x) is continuous, thus g(x) is continuous. Since g(a) < 0, g(b) > 0, and a < b, then from the intermediate value theorem, there exists $x \in [a,b]$ where g(x) = 0, thus $g(x) = x - f(x) = 0 \implies f(x) = x$, thus f has a fixed point. Q.E.D.

146.) Since $f(x) = x^3 + x - 10$ is a polynomial, it is continuous. Consider f(-1) and f(3):

$$f(-1) = (-1)^3 + (-1) - 10 = -12$$

$$f(3) = 3^3 + 3 - 10 = 20$$

Thus there exist a, b where f(a) < 0 < f(b), thus from the intermediate value theorem, there exists x where f(x) = 0, thus f(x) = 0 has at least one real solution. Q.E.D.

149.) $f: D \to \mathbb{R}$ is uniformly continuous if for all $\varepsilon > 0$, there exists $\delta > 0$ where

$$x, y \in D \land |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$