Devoir surveillé nº7: espace/fonction/suite

Exercice 1. /10

Dans l'espace, on considère un cube ABCDEFGH de centre Ω et d'arête de longueur 6. Les points P, Q et R sont définis par :

$$\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}, \overrightarrow{AQ} = \frac{1}{3}\overrightarrow{AE} \text{ et } \overrightarrow{HR} = \frac{1}{3}\overrightarrow{HE}.$$

Dans tout ce qui suit on utilise le repère orthonormé $\left(A\;;\;\stackrel{\textstyle \to}{\imath}\;,\;\stackrel{\textstyle \to}{\jmath}\;,\stackrel{\textstyle \to}{k}\right)$ avec :

$$\overrightarrow{i} = \frac{1}{6}\overrightarrow{AB}, \ \overrightarrow{j} = \frac{1}{6}\overrightarrow{AD} \text{ et } \overrightarrow{k} = \frac{1}{6}\overrightarrow{AE}.$$

Dans ce repère, on a par exemple :

$$B(6; 0; 0), F(6; 0; 6) \text{ et } R(0; 4; 6).$$

- 1. (a) Donner, sans justifier, les coordonnées des points P, Q et Ω .
 - (b) Déterminer les nombres réels b et c tels que $\vec{n}(1\;;\;b\;;\;c)$ soit un vecteur normal au plan (PQR) .
 - (c) En déduire qu'une équation du plan (PQR) est : x y + z 2 = 0.
- 2. (a) On note Δ la droite perpendiculaire au plan (PQR) passant par le point Ω , centre du cube.

Donner une représentation paramétrique de la droite Δ .

- (b) En déduire que la droite Δ coupe le plan (PQR) au point I de coordonnées $\left(\frac{8}{3}; \frac{10}{3}; \frac{8}{3}\right)$.
- (c) Calculer la distance Ω I.
- 3. On considère les points J(6; 4; 0) et K(6; 6; 2).
 - (a) Justifier que le point J appartient au plan (PQR).
 - (b) Vérifier que les droites (JK) et (QR) sont parallèles.
 - (c) Sur la figure donnée en annexe, tracer la section du cube par le plan (PQR). On laissera apparents les traits de construction, ou bien on expliquera la démarche.

Partie A

On considère la fonction f définie sur $[0; +\infty[$ par :

$$f(x) = \frac{x-1}{x+1} - e^{-x}$$

et l'on désigne par (C) sa courbe représentative dans un repère orthonormal.

- 1. Calculer la limite de f(x) lorsque x tend vers $+\infty$. Que peut-on en déduire pour la courbe (\mathcal{C}) ?
- 2. Calculer f'(x), en déduire les variations de f sur $[0; +\infty[$.
- 3. Déterminer une équation de la tangente (T) à (C) en son point d'abscisse 0.
- 4. (a) Démontrer que l'équation f(x) = 0 admet une solution unique α puis vérifier que α appartient à]1; 2[.
 - (b) Déterminer un encadrement d'amplitude 10^{-1} de α .
 - (c) Démontrer que $e^{\alpha} = \frac{\alpha+1}{\alpha-1}$.

Partie B

n désigne un entier naturel non nul. On considère la fonction f_n définie sur $[0; +\infty[$ par :

$$f_n(x) = \frac{x-n}{x+n} - e^{-x}.$$

1. Vérifier que $f'_n(x) = \frac{2n}{(x+n)^2} + e^{-x}$ et donner son signe sur $[0; +\infty[$. Préciser $f_n(0)$ et $\lim_{x \to +\infty} f_n(x)$.

Dresser le tableau de variations de f_n .

- 2. (a) Calculer $f_n(n)$; quel est son signe?
 - (b) Démontrer, par récurrence que, pour tout n de \mathbb{N} , $e^{n+1} > 2n+1$. En déduire le signe de $f_n(n+1)$.
 - (c) Montrer que l'équation $f_n(x) = 0$ admet une solution unique sur [n; n+1]; cette solution sera notée u_n .
- 3. Calculer $\lim_{n \to +\infty} u_n$ puis $\lim_{n \to +\infty} \frac{u_n}{n}$.

Nom:

