Limited Information Strategies for Topological Games

by

Steven Clontz

A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Auburn, Alabama May 4, 2015

Keywords: topology, uniform spaces, infinite games, limited information strategies

Copyright 2015 by Steven Clontz

Approved by

Gary Gruenhage, Chair, Professor of Mathematics Stewart Baldwin, Professor of Mathematics Chris Rodger, Professor of Mathematics Michel Smith, Professor of Mathematics George Flowers, Dean of the Graduate School

Abstract

I talk a lot about topological games.

TODO: Write this.

Acknowledgments

TODO: Thank people.

Table of Contents

Abstract
Acknowledgments
List of Figures
List of Tables
1 Introduction
2 Toplogical Games and Strategies of Perfect and Limited Information
2.1 Games
2.1.1 Infinite and Topological Games
2.2 Strategies
2.2.1 Applications of Strategies
2.2.2 Limited Information Strategies
3 W Convergence and Clustering Games
3.1 Fort spaces
3.2 Sigma-products
4 The Proximal Game
5 Locally Finite Games
6 The Menger Game
6.1 Marköv strategies
Bibliography

List of Figures

List of Tables

Introduction

Basic overview of combinatorial games, topological games, limited info strategies, and applications in topology.

Toplogical Games and Strategies

of Perfect and Limited Information

The goal of this paper is to explore the applications of limited information strategies in existing topological games. There are a variety of frameworks for modeling such games, so we establish one within this chapter which we will use for this manuscript.

2.1 Games

Intuitively, the games studied in this paper are two-player games for which each player takes turns making a choice from a set of possible moves. At the conclusion of the game, the choices made by both players are examined, and one of the players is declared the winner of that playthrough.

Games may be modeled mathematically in various ways, but we will find it convenient to think of them in terms defined by Gale and Stewart. [3]

Definition 2.1.1. A game is a tuple $\langle M, W \rangle$ such that $W \subseteq M^{\omega}$. M is set of moves for the game, and M^{ω} is the set of all possible playthroughs of the game.

W is the set of winning playthroughs or victories for the first player, and $M^{\omega} \setminus W$ is the set of victories for the second player. (W is often called the payoff set for the first player.)

 \Diamond

Within this model, we may imagine two players \mathscr{A} and \mathscr{B} playing a game which consists of rounds enumerated for each $n < \omega$. During round n, \mathscr{A} chooses $a_n \in M$, followed by \mathscr{B} choosing $b_n \in M$. The playthrough corresponding to those choices would be the sequence $p = \langle a_0, b_0, a_1, b_1, \ldots \rangle$. If $p \in W$, then \mathscr{A} is the winner of that playthrough, and if $p \notin W$, then \mathscr{B} is the winner. Note that no ties are allowed.

Rather than explicitly defining W, we typically define games by declaring the rules that each player must follow and the winning condition for the first player. Then a playthrough is in W if either the first player made only legal moves which observed the game's rules and the playthrough satisified the winning condition, or the second player made an illegal move which contradicted the game's rules. Often, we will consider legal playthoughs where both players only made legal moves, in which case only the winning condition need be considered.

As an illustration, we could model a game of chess (ignoring stalemates) by letting

$$M = \{\langle p, s \rangle : p \text{ is a chess piece and } s \text{ is a space on the board } \}$$

representing moving a piece p to the space s on the board. Then the rules of chess restict White from moving pieces which belong to Black, or moving a piece to an illegal space on the board. The winning condition could then "inspect" the resulting positions of pieces on the board after each move to see if White attained a checkmate. This winning condition along with the rules implicitly define the set W of winning playthroughs for White.

2.1.1 Infinite and Topological Games

Games never technically end within this model, since playthroughs of the game are infinite sequences. However, for all practical purposes many games end after a finite number of turns.

Definition 2.1.2. A game is said to be an *finite game* if for every playthrough $p \in M^{\omega}$ there exists a round $n < \omega$ such that $[p \upharpoonright n] = \{q \in M^{\omega} : q \supseteq p \upharpoonright n\}$ is a subset of either W or $M^{\omega} \setminus W$.

 $^{^{1}}$ In practice, M is often defined as the union of two sets, such as white pieces and black pieces in chess. For example, the first player may choose open sets in a topology, while the second player chooses points within the topological space.

Put another way, a finite game is decided after a finite number of rounds, after which the game's winner could not change even if further rounds were played. Games which are not finite are called *infinite games*.

As an illustration of an infinite game, we may consider a simple example due to Baker [1].

Game 2.1.3. Let $Lim_{A,B}(X)$ denote a game with players \mathscr{A} and \mathscr{B} , defined for each subset $A \subset \mathbb{R}$. In round 0, \mathscr{A} chooses a number a_0 , followed by \mathscr{B} choosing a number b_0 such that $a_0 < b_0$. In round n+1, \mathscr{A} chooses a number a_{n+1} such that $a_n < a_{n+1} < b_n$, followed by \mathscr{B} choosing a number b_{n+1} such that $a_{n+1} < b_{n+1} < b_n$.

 \mathscr{A} wins the game if the sequence $\langle a_n : n < \omega \rangle$ limits to a point in X, and \mathscr{B} wins otherwise.

Certainly, \mathscr{A} and \mathscr{B} will never be in a position without (infinitely many) legal moves available, and provided that A is non-trivial, there is a playthrough such that for all $n < \omega$, the segment (a_n, b_n) intersects both A and $\mathbb{R} \setminus A$. Such a playthrough could never be decided in a finite number of moves, so the winning condition considers the infinite sequence of moves made by the players and declares a victor at the "end" of the game.

Definition 2.1.4. A topological game is a game defined in terms of an arbitrary topological space.

Topological games are usually infinite games, ignoring trivial examples. One of the earliest examples of a topological game is the Banach-Mazur game, proposed by Stanislaw Mazur as Problem 43 in Stefan Banach's Scottish Book (1935). A more comprehensive history of the Banacy-Mazur and other topological games may be found in Telgarsky's survey on the subject [15].

The original game was defined for subsets of the real line; however, we give a more general definition here.

Game 2.1.5. Let $Empty_{E,N}(X)$ denote the Banach-Mazur game with players \mathscr{E} , \mathscr{N} defined for each topological space X. In round 0, \mathscr{E} chooses a nonempty open set $E_0 \subseteq X$, followed by \mathscr{N} choosing a nonempty open subset $N_0 \subseteq E_0$. In round n+1, \mathscr{E} chooses a nonempty open subset $E_{n+1} \subseteq N_n$, followed by \mathscr{N} choosing a nonempty open subset $N_{n+1} \subseteq E_{n+1}$.

$$\mathscr{E}$$
 wins the game if $\bigcap_{n<\omega} E_n = \emptyset$, and \mathscr{N} wins otherwise.

For example, if X is a locally compact Hausdorff space, \mathscr{N} can "force" a win by choosing N_0 such that $\overline{N_0}$ is compact, and choosing N_{n+1} such that $N_{n+1} \subseteq \overline{N_{n+1}} \subseteq O_{n+1} \subseteq N_n$ (possible since N_n is a compact Hausdorff \Rightarrow normal space). Since $\bigcap_{n<\omega} E_n = \bigcap_{n<\omega} N_n$ is the decreasing intersection of compact sets, it cannot be empty.

This concept of when (and how) a player can "force" a win in certain topological games is the focus of this manuscript.

2.2 Strategies

We shall make the notion of forcing a win in a game rigorous by introducing "strategies" and "attacks" for games.

Definition 2.2.1. A strategy for a game $G = \langle M, W \rangle$ is a function from $M^{<\omega}$ to M.

Definition 2.2.2. An attack for a game
$$G = \langle M, W \rangle$$
 is a function from ω to M .

Intuitively, a strategy is a rule for one of the players on how to play the game based upon the previous (finite) moves of her opponent, while an attack is a fixed strike by an opponent indexed by round number.

Definition 2.2.3. The *result* of a game given a strategy σ for the first player and an attack $\langle a_0, a_1, \ldots \rangle$ by the second player is the playthrough

$$\langle \sigma(\emptyset), a_0, \sigma(\langle a_0 \rangle), a_1, \sigma(\langle a_0, a_1 \rangle), \ldots \rangle$$

Likewise, if σ is a strategy for the second player, and $\langle a_0, a_1, \ldots \rangle$ is an attack by the first player, then the result is the playthrough

$$\langle a_0, \sigma(\langle a_0 \rangle), a_1, \sigma(\langle a_0, a_1 \rangle), \ldots \rangle$$

 \Diamond

We now may rigorously define the notion of "forcing" a win in a game.

Definition 2.2.4. A strategy σ is a winning strategy for a player if for every attack by the opponent, the result of the game is a victory for that player.

If a winning strategy exists for a player \mathscr{A} in the game G, then we write $\mathscr{A} \uparrow G$. \Diamond

To show that a winning strategy exists for a player (i.e. $\mathscr{A} \uparrow G$), we typically begin by defining it and showing that it is legal: it only yields moves which are legal according to the rules of the game. Then, we consider an arbitrary legal attack, and prove that the result of the game is a victory for that player.

If we wish to show that a winning strategy does not exist for a player (i.e. $\mathscr{A} \not\uparrow G$), we often consider an arbitrary legal strategy, and use it to define a legal *counter-attack* for the opponent. If we can prove that the result of the game for that strategy and counter-attack is a victory for the opponent, then a winning strategy does not exist.

Unlike finite games, is not the case that a winning strategy must exist for one of the players in an infinite game.

Definition 2.2.5. A game G with players \mathscr{A} , \mathscr{B} is said to be determined if either $\mathscr{A} \uparrow G$ or $\mathscr{B} \uparrow G$. Otherwise, the game is undetermined.

The Borel Determinacy Theorem states that $G = \langle M, W \rangle$ is determined whenever W is a Borel subset of M^{ω} [9]. It's an easy corollary that all finite games are determined; W must be clopen.

However, as stated earlier, most topological games are infinite, and many are undetermined for certain spaces constructed using the Axiom of Choice.²

Often, we will build new strategies based on others.

Definition 2.2.6. A strategy τ is a *strengthening* of another strategy σ for a player if whenever the result of the game for σ and an attack a by the opponent is a victory for the player, then the result of the game for τ and a is also a victory for the player.

Proposition 2.2.7. *If* σ *is a winning strategy, and* τ *strengthens* σ *, then* τ *is also a winning strategy.*

2.2.1 Applications of Strategies

The power of studying these infinite-length games can be illustrated by considering the following proposition.

Proposition 2.2.8. If X is countable, then
$$\mathscr{B} \uparrow Lim_{A,B}(X)$$
.

Proof. Adapted from [1]. Let $X = \{x_0, x_1, \dots\}$. Let i(a, b) be the least integer such that $a < x_{i(x,y)} < b$, if it exists. We define a strategy σ for \mathscr{B} such that:

- $\sigma(\langle a_0 \rangle) = x_{i(a_0,\infty)}$. If $i(a_0,\infty)$ does not exist, then the choice of $\sigma(\langle a_0 \rangle)$ is arbitary, say, $a_0 + 1$.
- $\sigma(\langle a_0, ..., a_{n+1} \rangle) = x_{i(a_{n+1},b_n)}$, where $b_n = \sigma(\langle a_0, ..., a_n \rangle)$. If $i(a_{n+1},b_n)$ does not exist, then the choice of $\sigma(\langle a_0, ..., a_{n+1} \rangle)$ is arbitrary, say, $\sigma(\langle a_0, ..., a_{n+1} \rangle) = \frac{a_{n+1}+b_n}{2}$.

Observe that σ is a legal strategy according to the rules of the game since $a_0 < \sigma(\langle a_0 \rangle)$ and $a_{n+1} < \sigma(\langle a_0, \ldots, a_{n+1} \rangle) < b_n$. We claim this is a winning strategy for \mathscr{B} . Let $a = \langle a_0, a_1, \ldots \rangle$ be a legal attack by \mathscr{A} against σ : we will show that the resulting playthrough is

²These spaces cannot be constructed just only the axioms of ZF. In fact, mathematicians have studied an Axiom of Determinacy which declares that that all Gale-Stewart games are determined (and implies that the Axiom of Choice is false). [11]

a victory for \mathscr{B} , that is, $\lim_{n\to\infty} a_n \notin X$. Let $b_n = \sigma(\langle a_0, \dots, a_n \rangle)$. Note that

$$a_0 < a_1 < \dots < \lim_{n \to \infty} a_n < \dots < b_1 < b_0$$

If $i(a_0, \infty)$ does not exist, then a_0 is greater than every element of X, and thus $\lim_{n\to\infty} a_n \notin X$. A similar argument follows if some $i(a_{n+1}, b_n)$ does not exist.

Otherwise,

$$i(a_0, \infty) < i(a_1, b_0) < i(a_2, b_1) < \dots$$

and for each $i < \omega$, one of the following must hold.

- $i < i(a_0, \infty)$. Then $x_i \le a_0 < \lim_{n \to \infty} a_n$.
- $i = i(a_0, \infty)$. Then $x_i = b_0 > \lim_{n \to \infty} a_n$.
- $i(a_0, \infty) < i < i(a_1, b_0)$. Then $x_i \le a_1 < \lim_{n \to \infty} a_n$ or $x_i \ge b_0 > \lim_{n \to \infty} a_n$.
- $i = i(a_{n+1}, b_n)$ for some $n < \omega$. Then $x_i = b_{n+1} > \lim_{n \to \infty} a_n$.
- $i(a_{n+1}, b_n) < i < i(a_{n+2}, b_{n+1})$ for some $n < \omega$. Then $x_i \le a_{n+2} < \lim_{n \to \infty} a_n$ or $x_i \ge b_{n+1} > \lim_{n \to \infty} a_n$.

In any case, $x_i \neq \lim_{n\to\infty} a_n$, and thus $\lim_{n\to\infty} a_n \notin X$.

More informally, \mathcal{B} can force a win by enumerating the countable set X and playing every legal choice by the end of the game. This yields a classical result.

 \Diamond

Corollary 2.2.9.
$$\mathbb{R}$$
 is uncountable.

Proof. $\mathscr{A} \uparrow Lim_{A,B}(\mathbb{R})$, since a_n must converge to some real number. This implies $\mathscr{B} \not\uparrow Lim_{A,B}(\mathbb{R})$, and thus \mathbb{R} is not countable.

Infinite games thus provide a rich framework for considering questions in set theory and topology. In general, the presence or absence of a winning strategy for a player in a topological game characterizes a property of the topological space in question. **Theorem 2.2.10.** $\mathscr{E} \not\uparrow Empty_{E,N}(X)$ if and only if X is a Baire space. [6]

2.2.2 Limited Information Strategies

So far we have assumed both players enjoy *perfect information*, and may develop strategies which use all of the previous moves of the opponent as input.

Definition 2.2.11. For a game $G = \langle M, W \rangle$, the k-tactical fog-of-war is the function ν_k : $M^{<\omega} \to M^{\leq k}$ defined by

$$\nu_k(\langle m_0,\ldots,m_{n-1}\rangle) = \langle m_{n-k},\ldots,m_{n-1}\rangle$$

and the k-Marköv fog-of-war is the function $\mu_k: M^{<\omega} \to (M^{\leq k} \times \omega)$ defined by

$$\mu_k(\langle m_0, \dots, m_{n-1} \rangle) = \langle \langle m_{n-k}, \dots, m_{n-1} \rangle, n \rangle$$

 \Diamond

 \Diamond

Essentially, these fogs-of-war represent a limited memory: ν_k filters out all but the last k moves of the opponent, and μ_k filters out all but the last k moves of the opponent and the round number.

We call strategies which do not require full recollection of the opponent's moves *limited* information strategies.

Definition 2.2.12. A k-tactical strategy or k-tactic is a function $\sigma: M^{\leq k} \to M$ yielding a corresponding strategy $\sigma \circ \nu_k: M^{<\omega} \to M$.

A k-Marköv strategy or k-mark is a function $\sigma: M^{\leq k} \times \omega \to M$ yielding a corresponding strategy $\sigma \circ \mu_k: M^{<\omega} \to M$.

k-tactics and k-marks may then only use the last k moves of the opponent, and in the latter case, also the round number.

The k is usually omitted when k=1. A (1-)tactic is called a stationary strategy by some authors. 0-tactics are not usually interesting (such strategies would be constant functions); however, we will discuss 0-Marköv strategies, called predetermined strategies since such a strategy only uses the round number and does not rely on knowing which moves the opponent will make. Of course, a limited information strategy σ is winning for a player if its corresponding strategy $\sigma \circ \nu_k$ or $\sigma \circ \mu_k$ is winning for that player.

Definition 2.2.13. If a winning k-tactical strategy exists for a player \mathscr{A} in the game G, then we write $\mathscr{A} \underset{k\text{-tact}}{\uparrow} G$. If k = 1, then $\mathscr{A} \underset{\text{tact}}{\uparrow} G$.

If a winning k-Marköv strategy exists for a player $\mathscr A$ in the game G, then we write $\mathscr A \underset{k\text{-mark}}{\uparrow} G$. If k=1, then $\mathscr A \underset{\text{mark}}{\uparrow} G$, and if k=0, then $\mathscr A \underset{\text{pre}}{\uparrow} G$. \diamondsuit

The existence of a winning limited information strategy can characterize a stronger property than the property characterized by a perfect information strategy.

Definition 2.2.14. X is an α -favorable space when $\mathscr{N} \uparrow_{\text{tact}} Empty_{E,N}(X)$. X is a weakly α -favorable space when $\mathscr{N} \uparrow Empty_{E,N}(X)$.

Proposition 2.2.15. X is
$$\alpha$$
-favorable \Rightarrow X is weakly α -favorable \Rightarrow X is Baire

Those arrows may not be reversed. A Bernstein subset of the real line is an example of a Baire space which is not weakly α -favorable, and Gabriel Debs constructed an example of a completely regular space for which \mathcal{N} has a winning 2-tactic, but lacks a winning 1-tactic. [2]

W Convergence and Clustering Games

We begin by investigating a game due to Gary Gruenhage.

Game 3.0.16. Let $Con_{O,P}(X,S)$ denote the W-convergence game with players \mathcal{O} , \mathscr{P} , for a topological space X and $S \subseteq X$.

In round n, \mathscr{O} chooses an open neighborhood $O_n \supseteq S$, followed by \mathscr{P} choosing a point $x_n \in \bigcap_{m \le n} O_m$.

 \mathscr{O} wins the game if the points x_n converge to the set S; that is, for every open neighborhood $U \supseteq S$, $x_n \in U$ for all but finite $n < \omega$.

If
$$S = \{x\}$$
 then we write $Con_{O,P}(X,x)$ for short. \Diamond

The "W" in the name merely refers to \mathscr{O} 's goal: to "win" the game. Gruenhage defined this game in his doctoral dissertation to define a class of spaces generalizing first-countability. [5]

Definition 3.0.17. The spaces X for which $\mathcal{O} \uparrow Con_{O,P}(X,x)$ for all $x \in X$ are called W-spaces. \diamondsuit

In fact, using limited information strategies, one may characterize the first-countable spaces using this game.

Proposition 3.0.18. X is first countable if and only if
$$\mathcal{O} \uparrow_{pre} Con_{O,P}(X,x)$$
 for all $x \in X$. \diamondsuit

Proof. The forward implication shows that all first-countable spaces are W spaces, and was proven in [5]: if $\{U_n : n < \omega\}$ is a countable base at x, let $\sigma(n) = \bigcap_{m \le n} U_m$. σ is easily seen to be a winning predetermined strategy.

If X is not first countable at some x, let σ be a predetermined strategy for \mathscr{O} in $Con_{O,P}(X,x)$. There exists an open neighborhood U of x which does not contain any $\bigcap_{m\leq n}\sigma(m)$ (otherwise $\{\bigcap_{m\leq n}\sigma(m):n<\omega\}$ would be a countable base at x). Let x_n be an element of $\bigcap_{m\leq n}\sigma(m)\setminus U$ for all $n<\omega$. Then $\langle x_0,x_1,\ldots\rangle$ is a winning counter-attack to σ for \mathscr{P} , so \mathscr{O} lacks a winning predetermined strategy.

At first glance, the difficulty of $Con_{O,P}(X,S)$ could be increased for \mathscr{O} by only restricting the choices for \mathscr{P} to be within the most recent open set played by \mathscr{O} , rather than all the previously played open sets.

Definition 3.0.19. Let $Con_{O,P}^{\star}(X,S)$ denote the hard W-convergence game which proceeds as $Con_{O,P}(X,S)$, except that \mathscr{P} need only choose $x_n \in O_n$ rather than $x_n \in \bigcap_{m \leq n} O_m$ during each round.

This seemingly more difficult game for \mathscr{O} is Gruenhage's original formulation. But with perfect information, there is no real difference for \mathscr{O} .

Proposition 3.0.20.
$$\mathscr{O} \underset{limit}{\uparrow} Con_{O,P}(X,S)$$
 if and only if $\mathscr{O} \underset{limit}{\uparrow} Con_{O,P}^{\star}(X,S)$, where $\underset{limit}{\uparrow}$ is either \uparrow or \uparrow .

Proof. The backwards implication is immediate.

For the forward implication, let σ be a winning predetermined (perfect information) strategy, and λ be the 0-Marköv fog-of-war μ_0 (the identity).

We define a new predetermined (perfect information) strategy τ by

$$\tau \circ \lambda(\langle x_0, \dots, x_{n-1} \rangle) = \bigcap_{m \le n} \sigma \circ \lambda(\langle x_0, \dots, x_{m-1} \rangle)$$

so that each move by \mathscr{O} according to $\tau \circ \lambda$ is the intersection of \mathscr{O} 's previous moves. Then any attack against $\tau \circ \lambda$ is an attack against $\sigma \circ \lambda$, and since $\sigma \circ \lambda$ is a winning strategy, so is $\tau \circ \lambda$.

Put more simply, $\tau(n) = \bigcap_{m \leq n} \sigma(m)$ in the predetermined case, and $\tau(\langle x_0, \dots, x_{n-1} \rangle) = \bigcap_{m \leq n} \sigma(\langle x_0, \dots, x_{m-1} \rangle)$ in the perfect information case. The original proof would have been invalid if λ was required to be, say, the tactical fog-of-war ν_1 , since the value of \mathscr{O} 's own round 1 move $\sigma \circ \nu_1(\langle x_0 \rangle) = \sigma(\langle x_0 \rangle)$ could not be determined from the information she has during round 2: $\nu_1(\langle x_0, x_1 \rangle) = \langle x_1 \rangle$.

Due to the equivalency of the "hard" and "normal" variations of the convergence game in the perfect information case, many authors use them interchangibly. However, it is possible to find spaces for which the games are not equivalent when considering k + 1-tactics and k + 1-marks, as we will soon see.

In addition to the W-convergence games, we will also investigate "clustering" analogs to both variations.

Game 3.0.21. Let
$$Clus_{O,P}(X,S)$$
 $(Clus_{O,P}^{\star}(X,S))$ be a variation of $Con_{O,P}(X,S)$ $(Con_{O,P}^{\star}(X,S))$ such that x_n need only cluster at S , that is, for every open neighborhood U of S , $x_n \in U$ for infinitely many $n < \omega$.

This variation seems to make \mathscr{O} 's job easier, but Gruenhage noted that the clustering game is perfect-information equivalent to the convergence game for \mathscr{O} . This can easily be extended for some limited information cases as well.

Proposition 3.0.22.
$$\mathscr{O} \underset{limit}{\uparrow} Con_{O,P}(X,S)$$
 if and only if $\mathscr{O} \underset{limit}{\uparrow} Clus_{O,P}(X,S)$ where $\underset{limit}{\uparrow}$ is any of \uparrow , \uparrow , \uparrow , or \uparrow .

Proof. For the perfect information case we refer to [5].

In the predetermined (resp. tactical) case, suppose that σ is a winning predetermined (resp. tactical) strategy for \mathscr{O} in $Clus_{O,P}(X,S)$. Let p be a legal attack against σ , and q be a subsequence of p. It's easily seen that q is also a legal attack against σ , so q clusters at S. Since every subsequence of p clusters at S, p converges to S, and σ is a winning predetermined (resp. tactical) strategy for \mathscr{O} in $Con_{O,P}(X,S)$ as well.

In the final case, note that any Marköv strategy σ' for $\mathscr O$ may be strengthened to σ defined by $\sigma(x,n) = \bigcap_{m \leq n} \sigma'(x,m)$. So, suppose that σ is a winning Marköv strategy for $\mathscr O$ in $Clus_{O,P}(X,S)$ such that $\sigma(x,m) \supseteq \sigma(x,n)$ for all $m \leq n$.

Let p be a legal attack against σ , and q be a subsequence of p. For $m < \omega$, there exists $f(m) \ge m$ such that q(m) = p(f(m)). It follows that $q(0) = p(f(0)) \in \sigma(\emptyset, 0) \cap \bigcap_{m \le f(0)} \sigma(\langle p(m) \rangle, m) \subseteq \sigma(\emptyset, 0)$ and

$$\begin{split} q(n+1) &= p(f(n+1)) &\in & \sigma(\emptyset,0) \cap \bigcap_{m < f(n+1)} \sigma(\langle p(m) \rangle, m+1) \\ &\subseteq & \sigma(\emptyset,0) \cap \bigcap_{m < n+1} \sigma(\langle p(f(m)) \rangle, f(m)+1) \\ &= & \sigma(\emptyset,0) \cap \bigcap_{m < n+1} \sigma(\langle q(m) \rangle, f(m)+1) \\ &\subseteq & \sigma(\emptyset,0) \cap \bigcap_{m < n+1} \sigma(\langle q(m) \rangle, m+1) \end{split}$$

so q is also a legal attack against σ . Since σ is a winning strategy, q clusters at S, and since every subsequence of p clusters at S, p must converge to S. Thus σ is also a winning Marköv strategy for \mathscr{O} in $Con_{O,P}(X,S)$ as well.

Two types of questions emerge from these results.

Question 3.0.23. Does
$$\mathscr{O} \underset{2\text{-tact}}{\uparrow} Clus_{O,P}(X,S)$$
 imply $\mathscr{O} \underset{2\text{-tact}}{\uparrow} Con_{O,P}(X,S)$? What about for $\underset{2\text{-mark}}{\uparrow}$?

Question 3.0.24. Could
$$\mathscr{O} \underset{k+1\text{-tact}}{\uparrow} Con_{O,P}(X,S)$$
 actually imply $\mathscr{O} \underset{\text{tact}}{\uparrow} Con_{O,P}(X,S)$? What about for $Clus_{O,P}(X,S)$?

3.1 Fort spaces

In his original paper, Gruenhage suggested the one-point-compactification of a discrete space as an example of a W-space which is not first-countable.

Definition 3.1.1. A Fort space $\kappa^* = \kappa \cup \{\infty\}$ is defined for each cardinal κ . Its subspace κ is discrete, and the neighborhoods of ∞ are of the form $\kappa^* \setminus F$ for each $F \in [\kappa]^{<\omega}$.

Proposition 3.1.2.
$$\mathscr{O} \underset{tact}{\uparrow} Con_{O,P}(\kappa^*, \infty)$$
 for all cardinals κ

Proof. Let $\sigma(\emptyset) = \sigma(\langle \infty \rangle) = \kappa^*$ and $\sigma(\langle \alpha \rangle) = \kappa^* \setminus \{\alpha\}$. Any legal attack against the tactic σ could not repeat non- ∞ points, so it must converge to ∞ .

Corollary 3.1.3.
$$\mathscr{O} \uparrow Con_{O,P}^{\star}(\kappa^*, \infty)$$
 for all cardinals κ

Since it's trivial to show that $\mathcal{O} \uparrow Con_{O,P}(\kappa^*,)$ if and only if $\kappa \leq \omega$, this closes the question on limited information strategies for $Con_{O,P}(\kappa^*,\infty)$. However, limited information analysis of the harder $Con_{O,P}^*(\kappa^*,\infty)$ is more interesting.

Peter Nyikos noted Proposition 3.1.2 and the following in [12].

Theorem 3.1.4.
$$\mathscr{O} \bigwedge_{mark}^{\uparrow} Con_{O,P}^{\star}(\omega_1^*, \infty).$$

This actually can be generalized to any k-Marköv strategy with just a little more book-keeping.

Theorem 3.1.5.
$$\mathscr{O} / \uparrow_{k-mark} Con_{O,P}^{\star}(\omega_1^*, \infty).$$

Proof. Let σ be a k-mark for \mathcal{O} . Since the set

$$D_{\sigma} = \bigcap_{n < \omega, s \in \omega^{\leq k}} \sigma(s, n)$$

is co-countable, we may choose $\alpha_{\sigma} \in D_{\sigma} \cap \omega_1$. Thus, we may choose $n_0 < n_1 < \cdots < \omega$ such that

$$\langle n_0, \ldots, n_{k-1}, \alpha_{\sigma}, n_k, \ldots, n_{2k-1}, \alpha_{\sigma}, \ldots \rangle$$

is a legal counterattack, which fails to converge to ∞ since α_{σ} is repeated infinitely often. \square

However, while the clustering and convergence variants are equivalent for Marköv strategies in the "normal" version of the W game, they are not equivalent in the "hard" version.

Theorem 3.1.6.
$$\mathscr{O} \underset{mark}{\uparrow} Clus_{O,P}^{\star}(\omega_{1}^{*},\infty).$$

Proof. For each $\alpha < \omega_1$ let $A_{\alpha} = \langle A_{\alpha}(0), A_{\alpha}(1), \ldots \rangle$ be a countable sequence of finite sets such that $A_{\alpha}(n) \subset A_{\alpha}(n+1)$ and $\bigcup_{n<\omega} A_{\alpha}(n) = \alpha+1$.

We define the Marköv strategy σ by setting

$$\sigma(\emptyset,0) = \sigma(\langle \infty \rangle, n) = \omega_1^*$$

and for all $\alpha < \omega_1$ setting

$$\sigma(\langle \alpha \rangle, n) = \omega_1^* \setminus A_{\alpha}(n)$$

Note that for any $\alpha_0 < \cdots < \alpha_{k-1}$, there is some $n < \omega$ such that $\{\alpha_0, \ldots, \alpha_{k-1}\} \subseteq A_{\alpha_i}(n)$ for all i < k. Thus for any legal attack p against σ , the range of p cannot be finite. Since the range of p is infinite, every open neighborhood of ∞ contains infinitely many points of p, so p clusters at ∞ .

However, knowledge of the round number is critical.

Theorem 3.1.7.
$$O / \uparrow Clus_{O,P}^{\star}(\omega_1^*, \infty)$$
.

Proof. Let σ be a k-tactic for \mathscr{O} in $Clus_{O,P}^{\star}(\omega_1^{\star},\infty)$. By the closing-up lemma, the set

$$C_{\sigma} = \{ \alpha < \omega_1 : s \in \alpha^{\leq k} \Rightarrow \omega_1^* \setminus \sigma(s) \subset \alpha \}$$

is closed and unbounded. Let $a_{\sigma}:\omega_1\to C_{\sigma}$ be an order isomorphism.

Choose $n_0 < \cdots < n_{k-1} < \omega$ such that for each i < k:

$$a_{\sigma}(n_i) \in \sigma(\langle a_{\sigma}(n_0), \dots, a_{\sigma}(n_{i-1}), a_{\sigma}(\omega+i), \dots, a_{\sigma}(\omega+k-1) \rangle)$$

Finally, observe that the legal counterattack

$$\langle a_{\sigma}(n_0), \dots, a_{\sigma}(n_{k-1}), a_{\sigma}(\omega), \dots, a_{\sigma}(\omega+k-1), a_{\sigma}(n_0), \dots, a_{\sigma}(n_{k-1}), a_{\sigma}(\omega), \dots, a_{\sigma}(\omega+k-1), \dots \rangle$$

has a range outside the open neighborhood

$$\omega_1^* \setminus \{a_{\sigma}(n_0), \ldots, a_{\sigma}(n_{k-1}), a_{\sigma}(\omega), \ldots, a_{\sigma}(\omega+k-1)\}\$$

of ∞ . Thus σ is not a winning k-tactic.

Once the discrete space is larger than ω_1 , knowing the round number is not sufficient to construct a limited information strategy, due to a similar argument.

Theorem 3.1.8.
$$O / \uparrow_{k-mark} Clus_{O,P}^{\star}(\omega_2^*, \infty).$$

Proof. Let σ be a k-mark for \mathscr{O} in $Clus_{O,P}(\omega_2^*,\infty)$. By the closing-up lemma, the set

$$C_{\sigma} = \{ \alpha < \omega_2 : s \in \alpha^{<\omega} \Rightarrow \omega_2^* \setminus \sigma \circ \mu_k(s) \subset \alpha \}$$

is closed and unbounded. (Recall that μ_k is the k-Marköv fog-of-war which turns perfect information into the last k moves and the round number.) Let $a_{\sigma}: \omega_2 \to C_{\sigma}$ be an order isomorphism.

Choose $\beta_0 < \cdots < \beta_{k-1} < \omega_1$ such that for each i < k:

$$a_{\sigma}(\beta_i) \in \bigcap_{n < \omega} \sigma(\langle a_{\sigma}(\beta_0), \dots, a_{\sigma}(\beta_{i-1}), a_{\sigma}(\omega_1 + i), \dots, a_{\sigma}(\omega_1 + k - 1) \rangle, n)$$

Finally, observe that the legal counterattack

$$\langle a_{\sigma}(\beta_0), \dots, a_{\sigma}(\beta_{k-1}), a_{\sigma}(\omega_1), \dots, a_{\sigma}(\omega_1+k-1), a_{\sigma}(\beta_0), \dots, a_{\sigma}(\beta_{k-1}), a_{\sigma}(\omega_1), \dots, a_{\sigma}(\omega_1+k-1), \dots \rangle$$

has a range outside the open neighborhood

$$\omega_2^* \setminus \{a_{\sigma}(\beta_0), \ldots, a_{\sigma}(\beta_{k-1}), a_{\sigma}(\omega_1), \ldots, a_{\sigma}(\omega_1 + k - 1)\}$$

 \Diamond

of ∞ . Thus σ is not a winning k-mark.

3.2 Sigma-products

Knowing the status of W-games in simpler spaces yields insight to larger spaces.

Proposition 3.2.1. Suppose $S \subseteq Y \subseteq X$, \uparrow_{limit} is any of \uparrow , \uparrow_{k-tact} , or \uparrow_{k-mark} , and G(X,S) is any of $Con_{O,P}(X,S)$, $Con_{O,P}^{\star}(X,S)$, $Clus_{O,P}(X,S)$, or $Clus_{O,P}^{\star}(X,S)$.

Then
$$\mathscr{O} \uparrow_{limit} G(X,S)$$
 implies $\mathscr{O} \uparrow_{limit} G(Y,S)$.

Proof. Simply intersect the output of the winning strategy in G(X,S) with Y.

A natural superspace of a Fort space is the sigma-product of a discrete cardinal.

Definition 3.2.2. Let $\Sigma_y X^{\kappa}$ be a *sigma product* of X with dimension κ for each $y \in X^{\kappa}$, the subset of the usual Tychonoff product space X^{κ} such that $x \in \Sigma_y X^{\kappa}$ if and only if $\{\alpha < \kappa : x(\alpha) \neq y(\alpha)\}$ is countable.

For homogeneous spaces X containing 0, y is usually assumed to be the zero vector $\vec{0}$ and the sigma product is written ΣX^{κ} .

Proposition 3.2.3. κ^* is homeomorphic to the space

$$\{x \in \Sigma 2^{\kappa} : x(\alpha) = 0 \text{ for all but one } \alpha < \kappa\}$$

Proof. Map $\alpha < \kappa$ to x_{α} such that

$$x_{\alpha}(\beta) = \begin{cases} 0 & \beta \neq \alpha \\ 1 & \beta = \alpha \end{cases}$$

and map ∞ to the zero vector 0.

Corollary 3.2.4.
$$\mathscr{O} / \uparrow_{k-tact} Clus_{O,P}^{\star}(\Sigma \mathbb{R}^{\omega_1}, \vec{0}), \mathscr{O} / \uparrow_{k-mark} Con_{O,P}^{\star}(\Sigma \mathbb{R}^{\omega_1}, \vec{0}), and \mathscr{O} / \uparrow_{k-mark} Clus_{O,P}^{\star}(\Sigma \mathbb{R}^{\omega_2}, \vec{0}).$$

While this closes the question on tactics and marks for high dimensional sigma- (and Tychonoff-) products of the real line, there is another type of limited information strategy to investigate.

Definition 3.2.5. For a game $G = \langle M, W \rangle$ and coding strategy or code $\sigma : M^2 \to M$, the σ -coding fog-of-war $\gamma_{\sigma} : M^{<\omega} \to M^{\leq 2}$ is the function defined such that

$$\gamma_{\sigma}(\emptyset) = \emptyset$$

and

$$\gamma_{\sigma}(s^{\widehat{}}\langle x\rangle) = \langle \sigma \circ \gamma_{\sigma}(s), x\rangle$$

For a coding strategy σ , its coresponding strategy is $\sigma \circ \gamma_{\sigma}$. For a game G, if $\sigma \circ \gamma_{\sigma}$ is a winning strategy for \mathscr{A} , then σ is a winning coding strategy and we write $\mathscr{A} \uparrow G$. \Diamond

Intuitively, a σ -coding fog-of-war converts perfect information of the game into the last moves of both the player and her opponent, so a player has a winning coding strategy when she only needs to know the move of her opponent and her own last move. The term "coding" comes from the fact that a player may encode information about the history of the game into her own moves, and use this encoded information in later rounds.

As an example, the existence of a winning coding strategy is necessary for the second player to force a win the Banach-Mazur game.

Theorem 3.2.6.
$$\mathcal{N} \uparrow Empty_{E,N}(X)$$
 if and only if $\mathcal{N} \uparrow_{code} Empty_{E,N}(X)$ [2] [4].

We are interested in whether the same holds for W games.

The hard and normal versions of the W games are all equivalent with regards to coding strategies since \mathscr{O} may always ensure her new move is a subset of her previous move. For Fort spaces, the question is immediately closed.

Proposition 3.2.7.
$$\mathcal{O} \uparrow Con_{O,P}(\kappa^*, \infty)$$
.

Proof. Let $\sigma(\emptyset) = \kappa^*$, $\sigma(\langle U, \alpha \rangle) = U \setminus \{\alpha\}$ for $\alpha < \kappa$, and $\sigma(\langle U, \infty \rangle) = U$. \mathscr{P} cannot legally repeat non- ∞ points of the set, so her points converge to ∞ .

This trick does not simply extend to the $\Sigma \mathbb{R}^{\kappa}$ case, however. An open set may only restrict finitely many coordinates of the product, and a point in $\Sigma \mathbb{R}^{\kappa}$ may have countably infinite non-zero coordinates. Thus, information about the previous non-zero coordinates cannot be directly encoded into the open set.

Circumventing this takes a bit of extra machinery. We proceed by defining a simpler infinite game for each cardinal κ .

Game 3.2.8. Let $PF_{F,C}(\kappa)$ denote the *point-finite game* with players \mathscr{F}, \mathscr{C} for each cardinal κ .

In round n, \mathscr{F} chooses $F_n \in [\kappa]^{<\omega}$, followed by \mathscr{C} choosing $C_n \in [\kappa \setminus \bigcup_{m \le n} F_m]^{\le \omega}$.

 \mathscr{F} wins the game if the collection $\{C_n : n < \omega\}$ is a point-finite cover of its union $\bigcup_{n < \omega} C_n$, that is, each point in $\bigcup_{n < \omega} C_n$ is in C_n only for finitely many $n < \omega$.

This game has a strong resemblance to a game defined by Scheepers in [13] in relationship to the Banach-Mazur game and studied specifically with finite and countable sets in [14]. Scheeper's game and the results pertaining to it aren't of use here; however, they will be referenced in a later chapter in studying a different topological game.

This game of finite and countable sets is directly applicable to the W games played upon the sigma-product of real lines.

Lemma 3.2.9.
$$\mathscr{F} \underset{code}{\uparrow} PF_{F,C}(\kappa) \text{ implies } \mathscr{O} \underset{code}{\uparrow} Con_{O,P}(\Sigma\mathbb{R}^{\kappa}, \vec{0}).$$

Proof. Let σ be a winning coding strategy for \mathscr{F} in $PF_{F,C}(\kappa)$ such that $\sigma(\emptyset) \supset \emptyset$ and $\sigma(F,C) \supset F$.

For $F \in [\kappa]^{<\omega}$ and $\epsilon > 0$ let $U(F, \epsilon)$ be the basic open set in \mathbb{R}^{κ} such that each projection is of the form

$$\pi_{\alpha}(U(F,\epsilon)) = \begin{cases} (-\epsilon, \epsilon) & \alpha \in F \\ \mathbb{R} & \alpha \notin F \end{cases}$$

Note that $F \supset \emptyset$ and ϵ are uniquely identifible given $U(F, \epsilon) \cap \Sigma \mathbb{R}^{\kappa}$.

For each point $x \in \Sigma \mathbb{R}^{\kappa}$ and $\epsilon > 0$, let $C_{\epsilon}(x) \in [\kappa]^{\leq \omega}$ such that $\alpha \in C_{\epsilon}(\alpha)$ if and only if $|x(\alpha)| \geq \epsilon$.

We define the coding strategy τ for \mathscr{O} in $Con_{O,P}(\Sigma\mathbb{R}^{\kappa},\vec{0})$ as follows:

$$\tau(\emptyset) = U(\sigma(\emptyset), 1) \cap \Sigma \mathbb{R}^{\kappa}$$

$$\tau(\langle U(F,\epsilon) \cap \Sigma \mathbb{R}^{\kappa}, x \rangle) = U\left(\sigma(\langle F, C_{\epsilon}(x) \rangle), \frac{\epsilon}{2}\right) \cap \Sigma \mathbb{R}^{\kappa}$$

Let $\langle a_0, a_1, a_2, \ldots \rangle$ be a legal attack by \mathscr{P} against τ . It then follows that

$$b = \langle C_1(a_0), C_{1/2}(a_1), C_{1/4}(a_2), \ldots \rangle$$

is a legal attack by \mathscr{C} against σ . Since σ is a winning strategy, each ordinal in $\bigcup_{n<\omega} C_{2^{-n}}(a_n)$ is in $C_{2^{-n}}(a_n)$ only for finitely many $n<\omega$. Thus for every coordinate $\alpha<\kappa$ it follows that there exists some $n_{\alpha}<\omega$ such that $a_n(\alpha)\leq 2^{-n}$ for $n\geq n_{\alpha}$. We conclude $a_n\to \vec{0}$, showing that τ is a winning strategy.

This lemma simplifies our notation in proving the main result. Intuitively, we aim to show that when κ has cofinality ω , \mathscr{F} can split up the game among ω -many smaller cardinals converging to κ , and when κ has a larger cofinality, \mathscr{F} may exploit the fact that \mathscr{C} may only play within some ordinal smaller than κ .

Theorem 3.2.10.
$$\mathscr{F} \underset{code}{\uparrow} PF_{F,C}(\kappa)$$
 for all cardinals κ .

Proof. For each cardinal κ and $\lambda < \kappa$, assume σ_{λ} is a winning strategy for \mathscr{F} in $PF_{F,C}(\lambda)$ such that $\sigma_{\lambda}(\emptyset) \supset \emptyset$ and $\sigma_{\lambda}(\langle F, C \rangle) \supset F$.

In the case that $cf(\kappa) = \omega$, let $\langle \kappa_0, \kappa_1, \ldots \rangle$ be an increasing sequence of cardinals limiting to κ . Then we define the coding strategy σ for \mathscr{F} as follows:

$$\sigma(\emptyset) = \sigma_{\kappa_0}(\emptyset)$$

$$\sigma(\langle F, C \rangle) = \bigcup_{n \le |F|} \sigma_{\kappa_n}(\langle F \cap \kappa_n, C \cap \kappa_n \rangle)$$

Then for each legal attack $a = \langle a(0), a(1), \ldots \rangle$ by \mathscr{C} against σ and each $n < \omega$, the sequence $b_n = \langle a(n) \cap \kappa_n, a(n+1) \cap \kappa_n, \ldots \rangle$ is a legal attack by \mathscr{C} against the winning coding strategy σ_{κ_n} . It follows then that $\{a(i+n) \cap \kappa_n : i < \omega\}$ is a point-finite cover of $\bigcup_{i < \omega} a(i+n) \cap \kappa_n$. We conclude that $\{a(i) : i < \omega\}$ is a point-finite cover of $\bigcup_{i < \omega} a(i)$ and σ is a winning strategy.

It remains to consider the case where $\operatorname{cf}(\kappa) > \omega$. Note that now, for each $C \in [\kappa]^{\leq \omega}$, C is bounded above in κ . So we define the coding strategy σ for \mathscr{F} as follows:

$$\sigma(\emptyset) = \emptyset$$

$$\sigma(\langle F, C \rangle) = \{ \sup(C) \} \cup \bigcup_{\alpha \in F} \sigma_{\alpha+1}(\langle F \cap (\alpha+1), C \cap (\alpha+1) \rangle)$$

Then for each legal attack $a = \langle a(0), a(1), \ldots \rangle$ by $\mathscr C$ against σ and each $n < \omega$, the sequence $b_n = \langle a(n) \cap (\sup(a(n)) + 1), a(n+1) \cap (\sup(a(n)) + 1), \ldots \rangle$ is a legal attack by $\mathscr C$ against the winning coding strategy $\sigma_{\sup(a(n))+1}$. It follows then that $\{a(i+n) \cap (\sup(a(n)) + 1) : i < \omega\}$ is a point-finite cover of $\bigcup_{i < \omega} a(i+n) \cap (\sup(a(n)) + 1)$. We conclude that $\{a(i) : i < \omega\}$ is a point-finite cover of $\bigcup_{i < \omega} a(i)$ and σ is a winning strategy. \square

Corollary 3.2.11.
$$\mathcal{O} \uparrow_{code} Con_{O,P}(\Sigma \mathbb{R}^{\kappa}, \vec{0})$$
 for all cardinals κ .

This leaves open the question analogous to Theorem 3.2.6.

Question 3.2.12. Does $\mathscr{O} \uparrow Con_{O,P}(X,x)$ imply $\mathscr{O} \uparrow_{\text{code}} Con_{O,P}(X,x)$?

The Proximal Game

placeholder

Locally Finite Games

placeholder

The Menger Game

In 1924 Karl Menger introduced a covering property generalizing σ -compactness [10].

Definition 6.0.13. A space X is Menger if for every sequence of open covers of $X \langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ there exists a sequence $\langle \mathcal{F}_0, \mathcal{F}_1, \ldots \rangle$ such that $\mathcal{F}_n \subseteq \mathcal{U}_n$, $|\mathcal{F}_n| < \omega$, and $\bigcup_{n < \omega} \mathcal{F}_n$ is a cover of X.

Proposition 6.0.14.
$$X$$
 is σ -compact $\Rightarrow X$ is M enger $\Rightarrow X$ is L indelöf. \Diamond

None of these implications may be reversed; the irrationals are a simple example of a Lindelöf space which is not Menger, and we'll see several examples of Menger spaces which are not σ -compact.

It can be shown via a non-trivial proof that the following game can be used to characterize the Menger property.

Game 6.0.15. Let $Cov_{C,F}(X)$ denote the *Menger game* with players \mathscr{C} , \mathscr{F} . In round n, \mathscr{C} chooses an open cover \mathcal{C}_n , followed by \mathscr{F} choosing a finite subcollection $\mathcal{F}_n \subseteq \mathcal{C}_n$.

 \mathscr{F} wins the game if $\bigcup_{n<\omega} \mathcal{F}_n$ is a cover for the space X, and \mathscr{C} wins otherwise. \Diamond

Theorem 6.0.16. A space X is Menger if and only if $\mathscr{C} \uparrow Cov_{C,F}(X)$ [7].

6.1 Marköv strategies

To the author's knowledge, no other direct work has been done on limited information strategies pertaining to the Menger game, although as we'll see there are results which can be sharpened when considering them. However, we immediately see that tactics are not of any real interest.

Proposition 6.1.1.
$$X$$
 is compact if and only if $\mathscr{F} \uparrow_{tact} Cov_{C,F}(X)$ if and only if $\mathscr{F} \uparrow_{(k+1)\text{-tact}} Cov_{C,F}(X)$.

Proof. For any open cover \mathcal{U} , attack the winning k-tactic with $\langle \mathcal{U}, \mathcal{U}, \ldots \rangle$ to produce a finite open subcover.

Essentially, because \mathscr{C} may repeat the same finite sequence of open covers, \mathscr{F} needs to be seeded with knowledge of the round number to prevent being trapped in a loop.

If \mathscr{F} 's memory of \mathscr{C} 's past moves is bounded, then there is no need to consider more than the two most recent moves. The intuitive reason is that \mathscr{C} could simply play the same cover repeatedly until \mathscr{F} 's memory is exhausted, in which case \mathscr{F} would only ever see the change from one cover to another.

Theorem 6.1.2.
$$F
\uparrow_{2-mark} Cov_{C,F}(X)$$
 if and only if $F
\uparrow_{(k+2)-mark} Cov_{C,F}(X)$.

Proof. Let σ be a winning (k+2)-mark. We define the 2-mark τ as follows:

$$\tau(\langle \mathcal{U} \rangle, 0) = \bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}, \dots, \mathcal{U}}_{m+1} \rangle, m)$$

$$\tau(\langle \mathcal{U}, \mathcal{V} \rangle, n+1) = \bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}, \dots, \mathcal{U}}_{k+1-m}, \underbrace{\mathcal{V}, \dots, \mathcal{V}}_{m+1} \rangle, (n+1)(k+2) + m)$$

Let $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ be an attack by \mathscr{C} against τ . Then consider the attack

$$\langle \underbrace{\mathcal{U}_0,\ldots,\mathcal{U}_0}_{k+2},\underbrace{\mathcal{U}_1,\ldots,\mathcal{U}_1}_{k+2},\ldots \rangle$$

by \mathscr{C} against σ . Since σ is a winning (k+2)-mark, the collection

$$\bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}_0, \dots, \mathcal{U}_0}_{m+1} \rangle, m) \cup \bigcup_{n < \omega} \bigcup_{m < k+2} \sigma(\langle \underbrace{\mathcal{U}_n, \dots, \mathcal{U}_n}_{k+1-m}, \underbrace{\mathcal{U}_{n+1}, \dots, \mathcal{U}_{n+1}}_{m+1} \rangle, (n+1)(k+2) + m)$$

$$= \tau(\langle \mathcal{U}_0 \rangle, 0) \cup \bigcup_{n < \omega} \tau(\langle \mathcal{U}_n, \mathcal{U}_{n+1} \rangle, n+1)$$

covers the space, and τ is a winning 2-mark.

A natural question arises: is there an example of a space X for which $\mathscr{F} \uparrow Cov_{C,F}(X)$ but $\mathscr{F} /\!\!\!\uparrow Cov_{C,F}(X)$? Fortunately, perhaps the simplest example of a Lindelöf non- σ -compact space has this property.

Definition 6.1.3. For any cardinal κ , let $\kappa^{\dagger} = \kappa \cup \{\infty\}$ denote the *one-point Lindelöf-ication* of discrete κ , where points in κ are isolated, and the neighborhoods of ∞ are the co-countable sets containing it.

We require a techincal lemma.

Lemma 6.1.4. For each function $\tau : \omega_1 \times \omega \to [\omega_1]^{<\omega}$, there exists a sequence $\alpha \in \omega_1^{\omega}$ such that $\{\tau(\alpha(n), n) : n < \omega\}$ is not a cover for $\bigcap_{n < \omega} \alpha(n)$.

Proof. Suggested by the author's major professor: let

$$P_n = \{ \beta : \forall \beta < \alpha < \omega_1(\beta \in \tau(\alpha, n)) \}$$

Observe that since $P_n \subseteq \tau(\sup(P_n) + 1, n)$, each P_n is finite.

Choose $\beta \in \omega_1 \setminus \bigcup_{n < \omega} P_n$. Then for each $n < \omega$, pick $\alpha(n) > \beta$ such that $\beta \notin \tau(\alpha(n), n)$.

Theorem 6.1.5.
$$F
ightharpoonup Cov_{C,F}(\omega_1^{\dagger})$$
.

Proof. Let σ be a Marköv strategy for \mathscr{F} . For each $\alpha < \omega_1$, let \mathcal{U}_{α} be the open cover $\{\{\beta\} : \beta < \alpha\} \cup \{\omega_1^{\dagger} \setminus \alpha\}$ of ω_1^{\dagger} . Then define $\tau : \omega_1 \times \omega \to [\omega_1]^{<\omega}$ so that $\tau(\alpha, n)$ is the collection of singletons included in $\sigma(\langle \mathcal{U}_{\alpha} \rangle, n)$.

Use the preceding lemma to generate $\alpha \in \omega_1^{\omega}$, and attack σ with $\langle \mathcal{U}_{\alpha(0)}, \mathcal{U}_{\alpha(1)}, \ldots \rangle$. Since $\{\tau(\alpha(n), n) : n < \omega\}$ is not a cover for $\bigcap_{n < \omega} \alpha(n)$, it follows that $\bigcup_{n < \omega} \sigma(\langle \mathcal{U}_{\alpha(n)} \rangle, n)$ is not a cover for ω_1^{\dagger} .

The greatest advantage of a strategy which has knowledge of two or more previous moves of the opponent, versus only knowledge of the most recent move, is the ability to react to changes from one round to the next. It's this ability to react that will give \mathscr{F} her winning 2-Marköv strategy in the Menger game on ω_1^{\dagger} .

Definition 6.1.6. For two functions f, g we say f is μ -almost compatible with g $(f||_{\mu}^*g)$ if $|\{x \in \text{dom}(f) \cap \text{dom}(g) : f(x) \neq g(x)\}| < \mu$. If $\mu = \omega$ then we say f, g are almost compatible $(f||^*g)$.

For inspiration, we turn to a game whose *n*-tactics were studied by Marion Scheepers in [13] which has similar goals to the Menger game when played upon κ^{\dagger} .

Game 6.1.7. Let $Fill_{C,F}^{\subseteq}(\kappa)$ denote the *strict countable/finite filling game* with two players \mathscr{C} , \mathscr{F} . In round 0, \mathscr{C} chooses $C_0 \in [\kappa]^{\leq \omega}$, followed by \mathscr{F} choosing $F_0 \in [\kappa]^{<\omega}$. In round n+1, \mathscr{C} chooses $C_{n+1} \in [\kappa]^{\leq \omega}$ such that $C_{n+1} \supset C_n$, followed by \mathscr{F} choosing $F_{n+1} \in [\kappa]^{<\omega}$. \mathscr{F} wins the game if $\bigcup_{n<\omega} F_n \supseteq \bigcup_{n<\omega} C_n$; otherwise, \mathscr{C} wins.

Essentially, in $Cov_{C,F}(\kappa^{\dagger})$ \mathscr{C} chooses a countable set to not include in her neighborhood of ∞ , followed by \mathscr{F} choosing finitely many of them to cover each round. The games are not quite equivalent, however. In the Menger game, \mathscr{F} only has to cover the *intersection* of the countable sets chosen by \mathscr{C} rather than the union, since she may always choose to cover the neighborhood of ∞ chosen by \mathscr{C} each round.

In addition, Scheepers required that $\mathscr C$ always choose strictly growing countable sets. The reasoning is clear: if the goal is to study tactics, then $\mathscr C$ cannot be allowed to trap $\mathscr F$ in a loop by repeating the same moves. But by eliminating this requirement, the study can then turn to Marköv srategies, bringing the game further in line with the Menger game played upon κ^{\dagger} .

Game 6.1.8. Let $Fill_{C,F}^{\subseteq}(\kappa)$ denote the *(nonstrict) countable/finite filling game* which proceeds analogously to $Fill_{C,F}^{\subseteq}(\kappa)$, except that \mathscr{C} need only ensure that $C_{n+1} \supseteq C_n$.

In studying these filling games, Scheepers introduced the statement $S(\kappa, \omega, \omega)$ relating to the almost-compatability of functions from countable subsets of κ into ω .

Definition 6.1.9. $S(\kappa, \omega, \omega)$ states that there exist injective functions $f_A : A \to \lambda$ for each $A \in [\kappa]^{\omega}$ such that $f_A|_{*}^{*}f_B$ for all $A, B \in [\kappa]^{\omega}$. 1

Scheepers went on to show that $S(\kappa, \omega, \omega)$ implies $\mathscr{F} \underset{2\text{-tact}}{\uparrow} Fill_{C,F}^{\subset}(\kappa)$. It can shown similarly that $S(\kappa, \omega, \omega)$ implies $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Fill_{C,F}^{\subseteq}(\kappa)$, either directly or by using the winning 2-tactic in $Fill_{C,F}^{\subseteq}(\kappa)$ to construct a winning 2-mark in $Fill_{C,F}^{\subseteq}(\kappa)$. These proofs, along with the following fact, give us inspiration for finding a winning 2-Marköv strategy in the Menger game.

Theorem 6.1.10. $S(\omega_1, \omega, \omega)$ and $\neg S((2^{\omega})^+, \omega, \omega)$ are theorems of ZFC. $S(2^{\omega}, \omega, \omega)$ is a theorem of ZFC + CH and consistent with ZFC + \neg CH.

Proof. For $S(\omega_1, \omega, \omega)$, look at pg. 70 of [8]; this of course shows $S(2^{\omega}, \omega, \omega)$ under CH. $\neg S((2^{\omega})^+, \omega, \omega)$ can be shown with a simple cardinality argument. The consistency result under $ZFC + \neg CH$ is a lemma for the main theorem in [13].

Theorem 6.1.11.
$$\mathscr{F} \underset{2\text{-}mark}{\uparrow} Cov_{C,F}(\omega_1^{\dagger}).$$

Proof. The result follows from $S(\omega_1, \omega, \omega)$; however, we delay the details of the proof pending the introduction of a related covering property.

¹In [13], $S(\kappa, \omega, \omega)$ is restricted to the case that $A \subset B$, but from $f_A \|^* f_{A \cap B}$ and $f_B \|^* f_{A \cap B}$ it follows then that $f_A \|^* f_B$ for any A, B.

Bibliography

- [1] Matthew H. Baker. Uncountable sets and an infinite real number game. *Mathematics Magazine*, 80(5):377–380, December 2007.
- [2] Gabriel Debs. Stratégies gagnantes dans certains jeux topologiques. Fund. Math., 126(1):93–105, 1985.
- [3] David Gale and F. M. Stewart. Infinite games with perfect information. In *Contributions to the theory of games, vol. 2*, Annals of Mathematics Studies, no. 28, pages 245–266. Princeton University Press, Princeton, N. J., 1953.
- [4] Fred Galvin and Ratislav Telgársky. Stationary strategies in topological games. *Topology* Appl., 22(1):51–69, 1986.
- [5] Gary Gruenhage. Infinite games and generalizations of first-countable spaces. General Topology and Appl., 6(3):339–352, 1976.
- [6] R. C. Haworth and R. A. McCoy. Baire spaces. *Dissertationes Math. (Rozprawy Mat.)*, 141:73, 1977.
- [7] Witold Hurewicz. Uber eine Verallgemeinerung des Borelschen Theorems. Math. Z., 24(1):401-421, 1926.
- [8] Kenneth Kunen. Set theory, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs.
- [9] Donald A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363-371, 1975.
- [10] Karl Menger. Einige überdeckungssätze der punktmengenlehre. Sitzungsberichte der Wiener Akademie, 133:421–444, 1924.
- [11] Jan Mycielski and H. Steinhaus. A mathematical axiom contradicting the axiom of choice. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 10:1–3, 1962.
- [12] Peter J. Nyikos. Classes of compact sequential spaces. In Set theory and its applications (Toronto, ON, 1987), volume 1401 of Lecture Notes in Math., pages 135–159. Springer, Berlin, 1989.
- [13] Marion Scheepers. Concerning n-tactics in the countable-finite game. J. Symbolic Logic, 56(3):786-794, 1991.

- [14] Marion Scheepers. Meager-nowhere dense games. I. n-tactics. Rocky Mountain J. Math., $22(3):1011-1055,\ 1992.$
- [15] Rastislav Telgársky. Topological games: on the 50th anniversary of the Banach-Mazur game. Rocky Mountain J. Math., 17(2):227–276, 1987.