```
In [1]:
             import numpy as np
             import matplotlib.pyplot as plt
             import pandas as pd
             from sklearn.preprocessing import MinMaxScaler
             import os
In [2]:
             os.chdir('C:\\Users\\breje\\OneDrive\\Desktop\\ML Dataset\\Deep Learning - Jo
             data = pd.read_csv('google.csv')
In [3]:
             data.head()
In [4]:
    Out[4]:
                                       High
                                                               Adj Close
                                                                          Volume
                    Date
                             Open
                                                 Low
                                                         Close
             0 8/19/2004
                         49.813286 51.835709
                                            47.800831
                                                     49.982655 49.982655
                                                                         44871300
             1 8/20/2004 50.316402 54.336334 50.062355 53.952770 53.952770
                                                                         22942800
             2 8/23/2004 55.168217 56.528118 54.321388 54.495735 54.495735
                                                                         18342800
             3 8/24/2004
                        55.412300 55.591629 51.591621
                                                      52.239193 52.239193
                                                                         15319700
                8/25/2004 52.284027 53.798351 51.746044
                                                     52.802086 52.802086
                                                                          9232100
In [5]:
          H
             data.shape
    Out[5]: (3809, 7)
In [6]:
             data.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 3809 entries, 0 to 3808
             Data columns (total 7 columns):
                          3809 non-null object
             Date
             0pen
                          3809 non-null float64
             High
                          3809 non-null float64
                          3809 non-null float64
             Low
                          3809 non-null float64
             Close
             Adj Close
                          3809 non-null float64
             Volume
                          3809 non-null int64
             dtypes: float64(5), int64(1), object(1)
             memory usage: 208.4+ KB
             data['Date'] = pd.to datetime(data['Date'])
In [7]:
```

```
In [8]: ► data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3809 entries, 0 to 3808
Data columns (total 7 columns):

Date 3809 non-null datetime64[ns]

Open 3809 non-null float64
High 3809 non-null float64
Low 3809 non-null float64
Close 3809 non-null float64
Adj Close 3809 non-null float64
Volume 3809 non-null int64

dtypes: datetime64[ns](1), float64(5), int64(1)

memory usage: 208.4 KB

In [10]: ▶ train_data.shape

Out[10]: (3617, 7)

Out[11]:

	Date	Open	High	Low	Close	Adj Close	Volume
3607	2018-12- 17	1037.510010	1053.150024	1007.900024	1016.530029	1016.530029	2385400
3608	2018-12- 18	1026.089966	1049.479980	1021.440002	1028.709961	1028.709961	2192500
3609	2018-12- 19	1033.989990	1062.000000	1008.049988	1023.010010	1023.010010	2479300
3610	2018-12- 20	1018.130005	1034.219971	996.359985	1009.409973	1009.409973	2673500
3611	2018-12- 21	1015.299988	1024.020020	973.690002	979.539978	979.539978	4596000
3612	2018-12- 24	973.900024	1003.539978	970.109985	976.219971	976.219971	1590300
3613	2018-12- 26	989.010010	1040.000000	983.000000	1039.459961	1039.459961	2373300
3614	2018-12- 27	1017.150024	1043.890015	997.000000	1043.880005	1043.880005	2109800
3615	2018-12- 28	1049.619995	1055.560059	1033.099976	1037.079956	1037.079956	1414800
3616	2018-12- 31	1050.959961	1052.699951	1023.590027	1035.609985	1035.609985	1493300

In [13]: ► test_data.shape

Out[13]: (192, 7)

Out[14]:

	Date	Open	High	Low	Close	Adj Close	Volume
3617	2019-01- 02	1016.570007	1052.319946	1015.710022	1045.849976	1045.849976	1532600
3618	2019-01- 03	1041.000000	1056.979980	1014.070007	1016.059998	1016.059998	1841100
3619	2019-01- 04	1032.589966	1070.839966	1027.417969	1070.709961	1070.709961	2093900
3620	2019-01- 07	1071.500000	1074.000000	1054.760010	1068.390015	1068.390015	1981900
3621	2019-01- 08	1076.109985	1084.560059	1060.530029	1076.280029	1076.280029	1764900
3622	2019-01- 09	1081.650024	1082.630005	1066.400024	1074.660034	1074.660034	1199300
3623	2019-01- 10	1067.660034	1071.150024	1057.709961	1070.329956	1070.329956	1456400
3624	2019-01- 11	1063.180054	1063.775024	1048.479980	1057.189941	1057.189941	1520800
3625	2019-01- 14	1046.920044	1051.530029	1041.255005	1044.689941	1044.689941	1144300
3626	2019-01- 15	1050.170044	1080.050049	1047.339966	1077.150024	1077.150024	1463600

 $\label{lem:condition} C:\Users\breje\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\frame.py:4102: SettingWithCopyWarning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

errors=errors,

In [16]: ▶ train_data

Out[16]:

	Open	High	Low	Close	Volume
0	49.813286	51.835709	47.800831	49.982655	44871300
1	50.316402	54.336334	50.062355	53.952770	22942800
2	55.168217	56.528118	54.321388	54.495735	18342800
3	55.412300	55.591629	51.591621	52.239193	15319700
4	52.284027	53.798351	51.746044	52.802086	9232100
3612	973.900024	1003.539978	970.109985	976.219971	1590300
3613	989.010010	1040.000000	983.000000	1039.459961	2373300
3614	1017.150024	1043.890015	997.000000	1043.880005	2109800
3615	1049.619995	1055.560059	1033.099976	1037.079956	1414800
3616	1050.959961	1052.699951	1023.590027	1035.609985	1493300

3617 rows × 5 columns

In [18]: ▶ test_data

Out[18]:

	Open	High	Low	Close	Volume
3617	1016.570007	1052.319946	1015.710022	1045.849976	1532600
3618	1041.000000	1056.979980	1014.070007	1016.059998	1841100
3619	1032.589966	1070.839966	1027.417969	1070.709961	2093900
3620	1071.500000	1074.000000	1054.760010	1068.390015	1981900
3621	1076.109985	1084.560059	1060.530029	1076.280029	1764900
3804	1220.969971	1226.000000	1212.300049	1219.000000	1404100
3805	1219.000000	1231.229980	1203.579956	1205.099976	1273500
3806	1196.979980	1196.979980	1171.290039	1176.630005	1615100
3807	1180.000000	1189.060059	1162.430054	1187.829956	1621200
3808	1191.890015	1211.439941	1189.170044	1209.000000	1021092

192 rows × 5 columns

```
In [20]:
          In [21]:
          test data = scale.transform(test data)
In [22]:
            X train = []
            y_train = []
            for i in range(120, train data.shape[0]):
                X train.append(train data[i-120:i])
                y_train.append(train_data[i,0])
In [23]:
          X_train = np.array(X_train)
            y_train = np.array(y_train)
         X_train.shape, y_train.shape
In [24]:
   Out[24]: ((3497, 120, 5), (3497,))
In [25]:
            from keras.models import Sequential
            from keras.layers import LSTM, Dense, Dropout
            Using TensorFlow backend.
         ▶ model = Sequential()
In [26]:
In [27]:
            model.add(LSTM(120, return_sequences=True, input_shape=(120, X_train.shape[2]
            model.add(Dropout(0.2))
            model.add(LSTM(120, return_sequences=True))
            model.add(Dropout(0.2))
            model.add(LSTM(120, return sequences=True))
            model.add(Dropout(0.2))
            model.add(LSTM(120, return_sequences=False))
            model.add(Dropout(0.2))
            model.add(Dense(units=1))
In [28]:
            model.compile(optimizer='adam', loss='mean squared error')
```

In [29]: M model.fit(X_train, y_train, epochs=20, batch_size=200)

```
Epoch 1/20
Epoch 2/20
Epoch 3/20
Epoch 4/20
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
04
Epoch 10/20
04
Epoch 11/20
04
Epoch 12/20
Epoch 13/20
04
Epoch 14/20
-04
Epoch 15/20
Epoch 16/20
-04
Epoch 17/20
-04
Epoch 18/20
04
Epoch 19/20
04
Epoch 20/20
04
```

Out[29]: <keras.callbacks.callbacks.History at 0x1e4f82bbd88>

```
In [30]:
           M X_test = []
              y_{test} = []
              for i in range(120, test_data.shape[0]):
                  X test.append(test data[i-120:i])
                  y_test.append(test_data[i,0])
In [32]:
              X test = np.array(X test)
              y_test = np.array(y_test)
In [34]:
              y_pred = model.predict(X_test)
In [37]:
              from sklearn.metrics import mean squared error, accuracy score
In [36]:
              mean_squared_error(y_test, y_pred)
    Out[36]: 0.0005148891379950529
In [43]:
              plt.figure(figsize=(14, 7))
              plt.plot(y_test)
              plt.plot(y_pred)
    Out[43]: [<matplotlib.lines.Line2D at 0x1e5c7acf308>]
              0.98
              0.96
              0.94
              0.92
               0.90
              0.88
              0.86
              0.84
In [ ]:
```