Homework 6

Due May 27, 2024

Problem 6.1 Exercise 8.2: The Lotka–Volterra equations

The Lotka–Volterra equations are a mathematical model of predator–prey interactions between biological species. Let two variables x and y be proportional to the size of the populations of two species, traditionally called "rabbits" (the prey) and "foxes" (the predators). You could think of x and y as being the population in thousands, say, so that x = 2 means there are 2000 rabbits. Strictly the only allowed values of x and y would then be multiples of 0.001, since you can only have whole numbers of rabbits or foxes. But 0.001 is a pretty close spacing of values, so it's a decent approximation to treat x and y as continuous real numbers so long as neither gets very close to zero.

In the Lotka-Volterra model the rabbits reproduce at a rate proportional to their population, but are eaten by the foxes at a rate proportional to both their own population and the population of foxes:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha x - \beta x y,$$

where α and β are constants. At the same time the foxes reproduce at a rate proportional to the rate at which they eat rabbits—because they need food to grow and reproduce—but also die of old age at a rate proportional to their own population:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \gamma xy - \delta y,$$

where γ and δ are also constants.

Problem 6.1 continued

a) Write a program to solve these equations using the fourth-order Runge–Kutta method for the case $\alpha=1$, $\beta=\gamma=0.5$, and $\delta=2$, starting from the initial condition x=y=2. Have the program make a graph showing both x and y as a function of time on the same axes from t=0 to t=30. (Hint: Notice that the differential equations in this case do not depend explicitly on time t—in

vector notation, the right-hand side of each equation is a function $f(\mathbf{r})$ with no t dependence. You may nonetheless find it convenient to define a Python function $f(\mathbf{r}, \mathbf{t})$ including the time variable, so that your program takes the same form as programs given earlier in this chapter. You don't have to do it that way, but it can avoid some confusion. Several of the following exercises have a similar lack of explicit time-dependence.)

b) Describe in words what is going on in the system, in terms of rabbits and foxes.

Problem 6.2

Exercise 8.4: Building on the results from Example 8.6 above, calculate the motion of a nonlinear pendulum as follows.

- a) Write a program to solve the two first-order equations, Eqs. (8.45) and (8.46), using the fourth-order Runge–Kutta method for a pendulum with a 10 cm arm. Use your program to calculate the angle θ of displacement for several periods of the pendulum when it is released from a standstill at $\theta = 179^{\circ}$ from the vertical. Make a graph of θ as a function of time.
- b) Extend your program to create an animation of the motion of the pendulum. Your animation should, at a minimum, include a representation of the moving pendulum bob and the pendulum arm. (Hint: You will probably find the function rate discussed in Section 3.5 useful for making your animation run at a sensible speed. Also, you may want to make the step size for your Runge–Kutta calculation smaller than the frame-rate of your animation, i.e., do several Runge–Kutta steps per frame on screen. This is certainly allowed and may help to make your calculation more accurate.)