CLASE 02 - VARIABLES ALEATORIAS CUANTITATIVAS

Diplomado en Análisis de Datos con R e Investigación reproducible para Biociencias.

Dr. José Gallardo Matus | https://genomics.pucv.cl/

Pontificia Universidad Católica de Valparaíso

02 September 2022

PLAN DE LA CLASE

1. Introducción

- Diferencia entre variable, variable aleatoria, datos y factores.
- Clasificación de variables aleatorias.
- Observar y predecir variables cuantitativas continuas y discretas.
- Formato correcto para importar datos a R.

2. Práctica con R y Rstudio cloud

- Elaborar un script de R e importar datos desde excel.
- Observar y predecir variable aleatoria con distribución Normal.
- Observar y predecir variables aleatorias discretas con distribución Bernoulli o Binomial.

CONCEPTOS Y DEFINICIONES

- 1. Variable: Características que se pueden medir u observar en un individuo o en un ambiente: peso, temperatura, Sexo, pH, Tipo de bacteria, abundancia, número de alelos, absorvancia.
- 2. Variable aleatoria: es un número que representa un resultado de un experimento aleatorio. Depende entonces de función matemática o distribución de probabilidad.
- **3. Datos u observaciones**: Son los valores que puede tomar una variable aletoria. 25 gramos, 55 mm, 13°C, 7 unidades de pH, 25 bacterias, 2 alelos, 32 ct, 1,5.
- 4. Factor: Usado para identificar tratamientos de un experimento o variables de clasificación. Se usan como variables independientes o predictoras, es decir tienen un efecto sobre una variable respuesta o dependiente. Ej. Sexo (niveles: macho o hembra) tiene un efecto sobre nivel de hormonas.

CLASIFICACIÓN DE VARIABLES

VARIABLE ALEATORIA CUANTITATIVA CONTINUA

Definición: Puede tomar cualquier valor dentro de un intervalo (a,b), (a,lnf), (-lnf,b),(-lnf,lnf) y la probabilidad que toma cualquier punto es 0, debido a que existe un número infinito de posibilidades.

- Expresión relativa de un gen, cantidad de anticuerpos.
- Diámetro y longitud de un individuo.
- Biomasa cosechada.

OBSERVAR VARIABLE CONTINUA

Al observar con un histograma notamos que:

- 1. La frecuencia o probabilidad en un intervalo es distinta de cero.
- 2. Cuando aumenta el **n** muestral se perfila una distribución llamada **normal**.

PREDECIR VARIABLE CONTINUA (V.C.)

Podemos predecir la probabilidad de que la variable aleatoria tome un determinado valor usando la función de densidad empírica density().

PREDECIR V.C.: DISTRIBUCIÓN ACUMULADA

Podemos predecir la probabilidad de que la variable aleatoria tome un valor menor o igual a un determinado valor, usando la función de distribución empírica acumulada **ecdf()**.

OBSERVAR CON BOXPLOT

Las gráficas de cajas y bigotes son muy adecuadas para observar variables aleatorias continuas.

VARIABLES ALEATORIAS DISCRETAS

Las variables aleatorias discretas son aquellas que presentan un número contable de valores; por ejemplo:

- Número de mutaciones (1, 3, 5, 6, etc.).
- Número de bacterias.
- Número de nucleótidos similares entre dos secuencias.
- Número de semillas de una fruta.

IDENTIFICA CORRECTAMENTE TU VARIABLE

- ► Es importante identificar la naturaleza que tiene nuestra variable en estudio, y así evitar errores en los análisis estadísticos que llevemos a cabo.
- Usualmente cuando las variables en estudio son conteos, proporciones o binarias (éxito o fracaso, macho o hembra, sano o enfermo) deben ser consideradas como variables aleatorias discretas.
- Según sea la variable aleatoria discreta, ella tendrá una función de distribución de probabilidad asociada que NO es normal. Por ejemplo: Bernoulli, Binomial, Binomial Negativa, Poisson, entre otras.
- ► En gran parte, la distribución de variables aleatorias discretas suelen ser asimétricas a derecha o a izquierda.

HISTOGRAMA Y BOXPLOT DE VARIABLE DISCRETA

VARIABLE DISCRETA: DISTRIBUCIÓN BERNOULLI

Se realiza una prueba aleatoria de COVID-19 en los pasajeros de un avión (160 pasajeros en total) determinando que 8 de ellos son positivos. Sea X=1 si la persona tiene PCR+ y X=0 en el caso de que el PRC-. ¿Cuál es la distribución de X?. 8/160 = éxito, 152/160 = fracaso.

	Fracaso	Éxito	
x	0	1	
f(x)	1-p	р	
P(X=x)	0.95	0.05	

VARIABLE DISCRETA: DISTRIBUCIÓN BERNOULLI

Representación en un histograma de la frecuencia de recuperados y fallecidos.

VARIABLE DISCRETA: DISTRIBUCIÓN BINOMIAL

- Cuando se realizan n pruebas de Bernoulli sucesivas e independientes, la variable aleatoria discreta X se denomina variable binomial.
- X = "número de veces que ocurre el suceso éxito en n pruebas".
- La mayoría de las variables discretas muestran distribución binomial.
- La mejor manera de representarlas una variable discreta es con gráficas de barra barplot().

EJEMPLO VARIABLE DISTRIBUCIÓN BINOMIAL

FORMATO CORRECTO PARA IMPORTAR A R

	A	В	C	D	E	F
1	sample_id	Weight	sex	Nombres de		. do
2	1	17,2	temale	Nombres de		
3	2	18,8	female	variables		00
4	3	27,8	male	variables		
5	4	20,4	male			
6	5	20,6	male			
7	6	28,6	male			
8	7	22,3	male			
9	8	13,7	female			
10	9	16,6	female			
11	10	17,8	female			
12	11	26,1	female	Obs	ervaci	ones
13	12	21,8	male			
14	13	22	male	(o dato	S
15	14	20,6	male			
16	15	17,2	female			
17	16	28,9	male			
18	17	22,5	male			
19	18	10,2	female			
20	19	23,5	male			
21	20	17,6	female			
22	21	14,7	female			
23	22	18,9	female			
24	23	14,9	female			
25	24	16,4	female			
26	25	16,9	female			
27	26	11.6	female			

Figure 1: Formato correcto de archivo excel para que sea importado a R

ERRORES EN FORMATO EXCEL

Figure 2: Errores comunes antes de importar a excel

Importante: No colocar símbolos matemáticos por ejemplo (%,\$,+) como nombres de las **(variables)**.

ERRORES EN FORMATO EXCEL 2

sample_id	Weight	sex	sample_id	Weight	sex	Observaciones
1	17,2	female	1	17,2	female	
2	18,8	female	2	18,8	female	
3	27,8	male	3	27,8	male	
4	20,4	male	4	20,4	male	
5	20,6	male	5	20,6	male	
6	28,6	male	6	28,6	male	
7	sin registro	male	7		male	
8	13,7	female	8	13,7	female	
9	16,6	female	9	16,6	female	
10	17,8	female	10	17,8	female	
11	26,1	male	11	26,1	male	
12	21,8	male	12	21,8	male	
13	22	Indeterminado	13	22	NA	Sexo Indeterminado
14	20,6	male	14	20,6	male	
15	17,2	female	15	17,2	female	
16	28,9	male	16	28,9	male	
17	22,5, cola deforme	male	17	22,5	male	cola deforme
18	10,2	female	18	10,2	female	
19	23,5	male	19	23,5	male	

Figure 3: Errores comunes antes de importar a excel

Importante: No colocar comentarios en las celdas de datos. Dejar celdas vacias o usar el simbolo *NA* es preferido cuando hay datos faltantes.

COMO IMPORTAR DATOS A R

Asuntos importantes:

- 1. Prefiera archivos sin formato commo **txt**, **csv o tsv**. Si tiene un excel se recomienda transformarlo, particularmente cuando trabaje con miles de filas o columnas.
- 2. Ojo con separador de columnas, decimales y valores perdidos.

PRÁCTICA VARIABLES ALETORIAS

Guía de trabajo programación con R en Rstudio.cloud.

RESUMEN DE LA CLASE

- ldentificamos y clasificamos variables.
- Observamos la distribución de una variable cuantitativa continua usando histograma y boxplot.
- Predecimos el comportamiento de una variable cuantitativa continua con distribución normal usando funciones de densidad y de distribución acumulada.
- Reconocemos variables aleatorias discretas y algunas distribuciones de probabilidad asociadas (Bernoulli y Binomial).
- Importamos datos a R desde excel.