Discovering signals in fMRI data; a Bayesian nonparametric approach

Ahmed Bou-Rabee, Wanrong Zhu, Zheng Xu, Mo Zhou

STAT 30850 University of Chicago

March 13, 2017

Project Goal

- ► Formulate a method which can adaptively identify clusters of signals in functional magnetic resonance imaging (fMRI) data.
- Evaluate the proposed method by drawing comparison between it and the existing p-filter algorithm.

What is fMRI data?

- fMRI data measures the change in brain blood flow associated with mental activity [HSM04].
- ▶ fMRI data is in the form (voxel, time, intensity of reading).
- Example: To identify regions of the brain associated with hunger, fMRI readings can be taken while hungry subjects are shown pictures of food.
- Multiple comparison problem due to hundreds of thousands of voxels
- Identify significant clusters (not just individual voxels)

What's our method

- ▶ Inspired by Stephens (2000), we describe a bayesian nonparametric method by creating a Markov birth-death process with stationary distribution to detect clusters of signals.
- ▶ View each cluster as a point in parameter space.
- ▶ Posterior distribution of the parameters being stationary distribution.
- ► Theoretically, this method works for multiple-dimensional data which incorporates spatial and temporal information.

Details of the Method: Priors

- ▶ number of signal clusters: $k \sim \text{Truncated Poisson}(\lambda, 1, k_{max})$.
- ▶ signal centers: $c_j \sim U(\mathcal{D})$ for j = 1, ..., k.
- ▶ signal radius: $r_j \sim \mathsf{Truncated} \; \mathsf{Normal}(\mu, \sigma, r_{min}, r_{max}) \; \mathsf{for} \; \mathsf{j} = \mathsf{1}, \ldots \mathsf{k}.$
- ▶ signal strength: $\beta_j \sim U(\beta_{min}, \beta_{max})$ for j = 1, ..., k.
- ▶ p-values in signal clusters: $p_i \sim Beta(\frac{1}{\beta_j}, \beta_j)$, when x_i is in cluster j.
- ▶ p-values not in signal clusters: $p_i \sim U(0,1)$.

Details of the Method (continued): inventing the chain

- ▶ Birth: generating a new cluster.
- ▶ Death: "killing" an existing cluster.
- \blacktriangleright Birth rate: constant λ is pre-defined and independent of clusters.
- lackbox Death rate: μ_i depends on "current" clusters and is updated each step.
- ▶ Flip a weighted coin to decide birth (w/ prob $\frac{\lambda}{\lambda + \mu_i}$) or death (w/ prob $\frac{\mu_i}{\lambda + \mu_i}$).

Details of the Method (continued): death rate calculation using likelihoods

- ▶ K clusters with prior $Beta(\frac{1}{\beta_j},\beta_j)$ for j=1,2,...,K. K itself is random with prior F_K .
- Label specify which cluster each data point belongs.
- ► Current cluster likelihood: $l = logL(data|Beta(\frac{1}{\beta_j}, \beta_i)'s, labels);$ $c = logL(K|F_K)$
- ▶ Cluster likelihood after "killing" cluster j: $l_{-j} = logL(data|Beta(\frac{1}{\beta_i},\beta_i)'s, labels_{-j}); c_{-j} = logL(K-1|F_K)$
- $\mathbf{v}_j = log(\lambda) + (l_{-j} l) + (c_{-j} log(K) c) \text{ for } j = 1, 2, ..., K.$
- $\blacktriangleright u = \sum_{j=1}^{K} e^{u_j}.$

Details of the Method (continued)

- ► At the end of each step, run metropolis-hasting algorithm to sample from the posterior of the beta distribution
- ▶ Purpose: TODO

Details of the Method (continued)

- ▶ Run the chain long enough before starting collect sample labels.
- Sample labels from evenly space grid along the chain to avoid autocorrelation.
- ▶ Average over sample labels to determine if it is signal or null.

Toy Data: Preliminaries

- ▶ 100-by-100 grid with k=5 clusters of signals and the rest is null.
- ▶ The centers $C_k \sim$ uniform from the grid while being distinct for k=1,2,...,5
- ▶ The radius $R_k \sim TN(7, 2, 5, 10)$ for k = 1, 2, ..., 5
- ▶ Signals in clusters $p_{ki} \sim Beta(1,\beta_k)$ where $\beta_k \sim U(2,5)$ for k=1,2,...,5

Toy Data (continued): Performance

Figure: Simulated data

Figure: Simulated data

What if we make signal stronger?

Figure: Simulated data

Again, let's make signal stronger

Performance on real fMRI data

Figure: fMRI data

Performance on real fMRI data (continued)

Performance on real fMRI data (continued): Comparison to p-filter

Figure: fMRI data

Conclusion and Future Work

- ► Formulated and tested a nonparametric bayesian method to adaptively identify clusters of signals.
- ▶ Showed promising results on both simulation and real fMRI data.
- ► Extend from p-values to intensities directly by specifying appropriate priors for null distributions and for signal distributions.
- ▶ Put priors on the hyper-parameters and maximize this priors using EM. That is uniform prior over hyper-parameters.

Thanks!