Math 493 Lecture 2

Thomas Cohn

9/9/2019

Defn: S_n is the symmetric group on n letters. As a group, it can be considered to be the set of bijections on $\{1, \ldots, n\}$ under composition.

 $\operatorname{ord}(S_n) = n!$, because an element of S_n is a permutation. There are n choices for the first number, n-1 choices for the second number, etc.

Ex:

- $|S_2| = 2! = 2$.
- $|S_3| = 3! = 6$.
- $|S_4| = 4! = 24$.
- $|S_5| = 5! = 120.$

Cycle Notation

Defn: Say $a_1, \ldots, a_r \in \{1, \ldots, n\}$ distinct. Define the r-cycle $(a_1 \ a_2 \ \cdots \ a_r)$ as the element of S_n defined by $a_1 \mapsto a_2 \mapsto \cdots \mapsto a_r \mapsto a_1$, and $a_i \mapsto a_i$ for all $a_i \notin \{a_1, \ldots, a_r\}$.

Fact: Every element of S_n can be written as a product of disjoint cycles. Proof (sketch): Suppose $\sigma \in S_n$. $1 \mapsto \sigma(1), \sigma(1) \mapsto \sigma^2(1), \ldots, \sigma^{r-1}(1) \mapsto 1$. Then successively repeat for the smallest element not already in a cycle.

Ex: $(1 \ 2 \ 3)(2 \ 3 \ 5) = (1 \ 2)(3 \ 5)$, because

 $1 \mapsto 2$

 $2 \mapsto 1$

 $3 \mapsto 5$

 $4 \mapsto 4$

 $5 \mapsto 3$

Ex: The elements of S_2 are

- 1 = id
- (1 2)

Ex: The elements of S_3 are

- 1 = id
- (1 2)
- (1 3)
- (2 3)

Note that $\sigma^{r-1}(1)$ cannot map to some $\sigma^k(1)$, because elements of S_n are bijections, and $\sigma^{k-1}(1) \mapsto \sigma^k(1)$.

- (1 2 3)
- (1 3 2)

Note that a 2-cycle is just a transposition of two elements.

Fact: The order of an r-cycle is r, because for any σ , $\sigma^r = id$, and r is minimal.

Defn: For G and H groups, an **isomorphism** between G and H is a bijection $f: G \to H$ s.t. f(xy) = $f(x)f(y), \forall x,y \in G$. We say G and H are **isomorphic**, written $G \cong H$, if such an isomorphism

Ex: In S_5 , we consider $G = \langle (1 \ 2) \rangle = \{ id, (1 \ 2) \}$ and $H = \langle (3 \ 5) \rangle = \{ id, (3 \ 5) \}$. $f: G \to H$ where $\begin{pmatrix} 1 & 2 \end{pmatrix} \mapsto \begin{pmatrix} 3 & 5 \end{pmatrix}$, id \mapsto id is an isomorphism, so $G \cong H$.

Remark:

- If $f: G \to H$ is an isomorphism, $f^{-1}: H \to G$ is an isomorphism. So if $G \cong H$, then $H \cong G$.
- If $f: G \to H$, $g: H \to K$ are isomorphisms, then $g \circ f: G \to K$ is an isomorphism. So if $G \cong H$ and $H \cong K$, then $G \cong K$.

Note: id: $G \to G$ is an isomorphism, so $G \cong G$. However, there are usually other isomorphisms on G.

Defn: An automorphism of G is an isomorphism from G to G. The set of all automorphisms of G is denoted Aut(G), and is a group under composition.

Ex: G is a group. Consider $f:G\to G$. This is a bijection. $x\mapsto x^{-1}$

 $f(xy) = (xy)^{-1} = y^{-1}x^{-1}$, and $f(x)f(y) = x^{-1}y^{-1}$, so they're not equal in general (in fact, they're equal if and only if G is abelian).

So f is an automorphism if and only if G is abelian.

Ex:
$$G = \langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \rangle \subseteq S_3$$
. That is, $G = \{1, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \}$. $f: G \to G$. So $1 \mapsto 1$, $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$, and $\begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$. $x \mapsto x^{-1}$

Ex: $\sigma \in S_3$. Define $f: S_3 \to S_3$, where

- $\begin{pmatrix} 1 & 2 \end{pmatrix} \mapsto \begin{pmatrix} \sigma(1), \sigma(2) \end{pmatrix}$
- $(1 \quad 3) \mapsto (\sigma(1), \sigma(3))$
- $(2 \quad 3) \mapsto (\sigma(2), \sigma(3))$
- $(1 \quad 2 \quad 3) \mapsto (\sigma(1), \sigma(2), \sigma(3))$
- $(1 \quad 3 \quad 2) \mapsto (\sigma(1), \sigma(3), \sigma(2))$

This is an automorphism.

Defn: Let G be a group, and $g \in G$. Define $\gamma_g : G \to G$ $x \mapsto gxg^{-1}$.

This is called the **conjugate** of x by g.

Claim: $\gamma_g \in \text{Aut}(G)$. Proof: $\gamma_g(\gamma_{g^{-1}}(x)) = g\gamma_{g^{-1}}(x)g^{-1} = gg^{-1}x(g^{-1})^{-1}g = x$. So $\gamma_g \circ \gamma_g^{-1} = \text{id}$ and $\gamma_{g^{-1}} \circ \gamma_g = \text{id}$, so γ_g is a bijection, and $\gamma_g^{-1} = \gamma_{g^{-1}}$. $\gamma_g(xy) = gxyg^{-1} = gx(g^{-1}g)yg^{-1} = (gxg^{-1})(gyg^{-1}) = \gamma_g(x)\gamma_g(y)$. Thus, γ_g is an isomorphism, so $\gamma_g \in \operatorname{Aut}(G)$. \square

Lemma: If $\sigma \in S_n$, $a_1, \ldots, a_r \in \{1, \ldots, n\}$ distinct, then $\sigma(a_1 \cdots a_r) \sigma^{-1} = (\sigma(a_1) \cdots \sigma(a_r))$.

If G is abelian, then $\gamma_q = \mathrm{id}, \forall g \in G$.

Ex: $G = \mathbb{R}^2$ under addition. A is an invertible 2×2 real matrix. So $f: G \to G$ is an automorphism, $x \mapsto Ax$

because f(x+y) = A(x+y) = Ax + Ay = f(x) + f(y), and because A is invertible, so f is indeed a bijection.

Defn: automorphisms defined by conjugation are called **inner automorphisms**.

Ex: $\mathrm{SL}_n(\mathbb{R})$ is the subgroup of $\mathrm{GL}_n(\mathbb{R})$ consisting of matrices with determinant 1.

$$f: \mathrm{SL}_n(\mathbb{R}) \to \mathrm{SL}_n(\mathbb{R})$$
 is an automorphism.
 $x \mapsto^T x^{-1} = (x^T)^{-1}$

If f were inner, then $\exists g \in \mathrm{SL}_n(\mathbb{R})$ s.t. $f = \gamma_g$, i.e., $Tx^{-1} = gxg^{-1}$, $\forall x$. So f is inner if and only if $n \leq 2$.

Defn: Let G and H be groups. A (group) homomorphism from G to H is a function $f: G \to H$ s.t. $f(xy) = f(x)f(y), \forall x, y \in G.$

Ex: $\gamma: G \to \operatorname{Aut}(G)$ is a group homomorphism.

$$g \mapsto \gamma_g$$
 Proof:

$$\gamma_g(\gamma_h(x)) = g\gamma_h(x)g^{-1}$$

$$= g(hxh^{-1})g^{-1}$$

$$= (gh)x(h^{-1}g^{-1})$$

$$= (gh)x(gh)^{-1}$$

$$= \gamma_{gh}(x)$$

So
$$\gamma_{qh} = \gamma_q \circ \gamma_h$$
. \square

Remark: Is $\gamma: S_n \to \operatorname{Aut}(S_n)$ an isomorphism? Sometimes, but the conditions are weird.

Ex:
$$G$$
 is a group, $g \in G$. $f: \mathbb{Z} \to G$ is a homomorphism.
$$n \mapsto g^n$$

$$f(n+m) = g^{n+m} = \underbrace{g \cdots g}_{n+m} \underbrace{g \cdots g}_{n} \underbrace{g \cdots g}_{m} = g^n g^m = f(n) f(m).$$

Note:

- f is injective \Leftrightarrow ord $(g) = \infty$. More generally, $f(i) = f(j) \Leftrightarrow$ ord $(g) \mid i j$.
- f is surjective $\Leftrightarrow g$ generates G.

Defn: Let $f: G \to H$ be a group homomorphism. The **image** of f is $im(f) = \{y \in H | \exists x \in G \text{ s.t. } y = f(x)\}.$

Fact: im(f) is a subgroup.

Proof:

- $1 \in \text{im}(f)$, because 1 = f(1).
- If $y \in \text{im}(f)$, then y = f(x), so $y^{-1} = f(x^{-1}) \in \text{im}(f)$.
- $y, y' \in \operatorname{im}(f) \Rightarrow y = f(x), y' = f(x') \Rightarrow yy' = f(xx') \in \operatorname{im}(f)$.

Lemma: If f is a homomorphism, then

- f(1) = 1. Proof: $1 \cdot 1 = 1$, so $f(1) = f(1 \cdot 1) = f(1) \cdot f(1)$. Thus, f(1) = 1. \square
- $f(x^{-1}) = f(x)^{-1}$. Proof: $x \cdot x^{-1} = 1$, so $f(x)f(x^{-1}) = f(xx^{-1}) = f(1) = 1$. \Box

Defn: The **kernel** of f is $ker(f) = \{x \in G | f(x) = 1\}$.

Fact: ker(f) is a subgroup of G. Proof:

- f(1) = 1, so $1 \in \ker(f)$.
- If $x \in \ker(f)$, Then f(x) = 1, so $f(x^{-1}) = f(x)^{-1} = 1^{-1} = 1$. Thus, $x^{-1} \in \ker(f)$.
- If $x, x' \in \ker(f)$, Then $f(xx') = f(x)f(x') = 1 \cdot 1 = 1$, so $xx' \in \ker(f)$.

Defn: A subgroup K of G is called **normal** if $\forall g \in G, x \in K, gxg^{-1} \in K$.

Fact: ker(f) is normal.

Proof: Let
$$x \in \ker(f)$$
, $g \in G$. Then $f(gxg^{-1}) = f(g)f(x)f(g^{-1}) = f(g) \cdot 1 \cdot f(g)^{-1} = 1$. So $gxg^{-1} \in \ker(f)$. \square

Ex: G is a group, $g \in G$. Consider $f: \mathbb{Z} \to G$. $\ker(f) = \{n \in \mathbb{Z} | g^n = 1\}$. $n \mapsto g^n$

This is equal to $d\mathbb{Z}$, where $d = \operatorname{ord}(g)$.

Prop: Let $f: G \to H$ be a group homomorphism. Then f is injective $\Leftrightarrow \ker(f) = \{1\}$.

Proof: If f is injective, then $ker(f) = \{1\}$.

If
$$\ker(f) = \{1\}$$
, let $f(x) = f(y)$. Then $f(xy^{-1}) = f(x)f(y^{-1}) = f(x)f(y)^{-1} = 1$. So $xy^{-1} \in \ker(f)$, so $xy^{-1} = 1$, so $x = y$. \square