MATH 7251: High-Dimensional Probability

Spring 2022

Lecture 2

Name: Tyler LaBonte Professor: Konstantin Tikhomorov

1 Linear Algebra Review Continued

1.1 Trace

Suppose **A** is an $n \times n$ matrix. Then the trace of **A** is $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$, the sum of the diagonal elements. A crucial property is that $\operatorname{tr}(\mathbf{A}\mathbf{B}) = \operatorname{tr}(\mathbf{B}\mathbf{A})$. This implies that if **A** is diagonalizable, that is, $\mathbf{A} = \mathbf{M}^{-1}\mathbf{D}\mathbf{M}$ with **D** diagonal, then

$$\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{M}^{-1}\mathbf{D}\mathbf{M}) = \operatorname{tr}(\mathbf{D}\mathbf{M}\mathbf{M}^{-1}) = \operatorname{tr}(\mathbf{D}) = \sum_{i=1}^{n} \lambda_i(\mathbf{A}). \tag{1}$$

By continuity, this argument extends to all square matrices.

1.2 Hilbert-Schmidt Norm

The Hilbert-Schmidt norm of an $n \times m$ matrix \mathbf{A} is $\|\mathbf{A}\|_{\mathrm{HS}} = \sqrt{\sum_{i,j} a_{ij}^2}$. Note that

$$\|\mathbf{A}\|_{\mathrm{HS}}^2 = \mathrm{tr}\left(\mathbf{A}^{\top}\mathbf{A}\right) = \mathrm{tr}\left(\mathbf{A}\mathbf{A}^{\top}\right) = \sum_{i=1}^{m} s_i(\mathbf{A})^2,$$
 (2)

that is, the Hilbert-Schmidt norm is the ℓ_2 norm of the vector of singular values.

1.3 Projection

Suppose **P** is an $n \times n$ matrix. Then, **P** is a projection operator if $\mathbf{P}^2 = \mathbf{P}$ – that is, **P** acts trivially on its column space. If its null space is additionally orthogonal to its column space, **P** is called orthogonal.

Lemma 1.1

If **P** is a projection operator, then **P** is an orthogonal projection iff it is a symmetric matrix.

Note that an orthogonal projection and an orthogonal matrix are completely different notions. Suppose **P** is an orthogonal projection and E be its column space with dim $(E) = \operatorname{rk}(\mathbf{P}) = k$. Let $\{x_1, x_2, \ldots, x_k\}$ be an orthonormal basis in E. Then we can write $\mathbf{P} = \sum_{i=1}^k x_i x_i^{\top}$. This means that the eigenvalues of **P** can only be zero or one, and the multiplicity of one is k.

Lecture 2 2-2

Note also that if \mathbf{P} is an orthogonal projection, then $\mathbf{I} - \mathbf{P}$ is an orthogonal projection on the complement.

2 Packing and Covering

If $V, W \subset \mathbb{R}^n$ are two sets, then the Minkowski sum of V, W is defined as $V + W = \{x + y, x \in V, y \in W. \text{ A set } K \subset \mathbb{R}^n \text{ is convex if for all } x, y \in K \text{ and } \lambda \in (0,1), \lambda x + (1-\lambda)y \in K. \text{ A convex body is a compact convex set with a non-empty interior. Suppose that } K \text{ is a convex body such that the origin is in the interior of } K. \text{ Then, the Minkowski functional associated with } K \text{ is}$

$$\|\boldsymbol{x}\|_{K} = \inf\{\lambda > 0 : \boldsymbol{x} \in \lambda K\}, \boldsymbol{x} \in \mathbb{R}^{n}.$$
 (3)

if K is origin-symmetric (K = -K), then $\|\cdot\|_K$ is a norm in \mathbb{R}^n . So, we have a bijection between norms in \mathbb{R}^n and origin-symmetric convex bodies. One special example is B_p^n , the closed unit ball of ℓ_p norm in \mathbb{R}^n . Here, $\|\cdot\|_{B_p^n} = \|\cdot\|_p$. Finally, suppose that (T, ρ) is a metric space.

Let $S \subset T$ and $\epsilon < 0$. Then a subset $N \subset S$ is an ϵ -net in S if for every $\boldsymbol{x} \in S$ there exists $\boldsymbol{y} \in N$ with $p(\boldsymbol{x}, \boldsymbol{y}) \leq \epsilon$. That is, N is sufficiently dense so that there is a point in N "close enough" to every point in S. A subset $N \subset S$ is a maximal ϵ -separated subset of S if for all $\boldsymbol{x}, \boldsymbol{y} \in N$ with $\boldsymbol{x} \neq \boldsymbol{y}$, we have $\rho(\boldsymbol{x}, \boldsymbol{y}) \geq \epsilon$ and for all $\boldsymbol{x} \in S$ there exists $\boldsymbol{y} \in N$ with $\rho(\boldsymbol{x}, \boldsymbol{y}) \leq \epsilon$. Thus, maximal ϵ -separated subsets can be viewed as "efficient" ϵ -nets.

Let T be a subset of \mathbb{R}^n and K a convex body in \mathbb{R}^n . Then, the collection of parallel translations of K: $(\boldsymbol{x}_{\alpha}+K)_{\alpha\in\mathcal{A}}$ is a packing in T if (1) $\boldsymbol{x}_{\alpha}+K\subset T$ for all $\alpha\in\mathcal{A}$ and (2) $(\boldsymbol{x}_{\alpha_1}+\operatorname{Int}(K))\cap(\boldsymbol{x}_{\alpha_2}+\operatorname{Int}(K))=\emptyset$ whenever $\alpha_1\neq\alpha_2$. A packing is maximal if there is no vector $\boldsymbol{y}\in\mathbb{R}^n$ such that $\{(\boldsymbol{x}_{\alpha}+K)_{\alpha\in\mathcal{A}},\boldsymbol{y}+K\}$ is a packing in T.

Lemma 2.1

Suppose $T \subset \mathbb{R}^n$ and K is a convex body and $\{x_i + K\}_{i=1}^M$ is a packing in T. Then

$$M \cdot \text{Vol}(K) \le \text{Vol}(T).$$
 (4)

This implies that any packing of parallel translations of K in T can have cardinality at most Vol(T)/Vol(K). This is often attained when T admits a tiling by K.

Assume K is an origin-symmetric convex set and let $\{x_i\}_{i=1}^M$ be a maximal ϵ -separated set in T wrt the Minkowski functional $\|\cdot\|_K$. Then, the collection $\{x_i+\frac{\epsilon}{2}K\}_{i=1}^M$ is a packing in $T+\frac{\epsilon}{2}K$. (We are transforming a set of points into a packing of convex bodies). This implies that the cardinality of any maximal ϵ -separated set in T is at most $\operatorname{Vol}(T+\frac{\epsilon}{2}K)/\operatorname{Vol}(\frac{\epsilon}{2}K)$.

As a corollary, if K is an origin symmetric convex body in \mathbb{R}^n and $\epsilon > 0$, then K admits an ϵ -net wrt $\|\cdot\|_K$ of cardinality at most $(1+\frac{2}{\epsilon})^n$. This means that K can be covered by at most $(1+\frac{2}{\epsilon})^n$ parallel translations of K.