1 AdS/CFT and Quantum Secret Sharing

Recently we have been discussing how the same bulk field can be reconstructed from different AdS-Rindler Wedges. I think the answer is what in quantum information theory is called "Quantum Secret Sharing" (QSS). In this note I show how this works in a simple example.

Say that I want to send you a quantum message, but for security reasons I am worried that the people that work at the quantum post office will read the message. I can ameliorate this problem by sending three quantum messages instead of one, in such a way that you need to have access to any two of them to recover the quantum state, while if you have access to only one then you get nothing but random bits. QSS is a protocol that accomplishes this.

In the simplest example let's say that my message is some state in a three-dimensional Hilbert space, with a basis $|0\rangle$, $|1\rangle$, $|2\rangle$. This system is often called a "qutrit". The plan is then to encode the message into a system of three qutrits, by picking out a three dimensional subspace spanned by

$$|\bar{0}\rangle = \frac{1}{\sqrt{3}} (|000\rangle + |111\rangle + |222\rangle)$$

$$|\bar{1}\rangle = \frac{1}{\sqrt{3}} (|012\rangle + |120\rangle + |201\rangle)$$

$$|\bar{2}\rangle = \frac{1}{\sqrt{3}} (|021\rangle + |102\rangle + |210\rangle).$$
(1)

For example say I want to send you the quantum state

$$|\Psi\rangle = \sum_{i=0,2} a_i |i\rangle. \tag{2}$$

I will first encode it as

$$|\Psi_{enc}\rangle = \sum_{i=0.2} a_i |\bar{i}\rangle,$$
 (3)

and then send you each of the qutrits separately through the mail. Now say that some nefarious employee steals one of the qutrits. It is straightforward to see that for any choice of the a_i 's the density matrix for any one of the qutrits in the state $|\Psi_{enc}\rangle$ is maximally mixed, so this employee will come up empty-handed. Let's say that such an employee stole the third qutrit, and you receive only the first two. You then can make use of the fact that there exists a unitary transformation U_{12} just on the first two qutrits that acts as

$$(U_{12} \otimes I_3) |\bar{i}\rangle = |i\rangle \otimes \frac{1}{\sqrt{3}} (|00\rangle + |11\rangle + |22\rangle), \qquad (4)$$

which you can thus use to recover the message:

$$(U_{12} \otimes I_3) |\Psi_{enc}\rangle = |\Psi\rangle \otimes \frac{1}{\sqrt{3}} (|00\rangle + |11\rangle + |22\rangle).$$
 (5)

Explicitly U_{12} is a permutation that acts as

$$\begin{array}{lll} |00\rangle \rightarrow |00\rangle & |11\rangle \rightarrow |01\rangle & |22\rangle \rightarrow |02\rangle \\ |01\rangle \rightarrow |12\rangle & |12\rangle \rightarrow |10\rangle & |20\rangle \rightarrow |11\rangle \\ |02\rangle \rightarrow |21\rangle & |10\rangle \rightarrow |22\rangle & |21\rangle \rightarrow |20\rangle \end{array} \tag{6}$$

Clearly by the symmetry of (1) a similar construction is also possible if we have access only to the second and third, or first and third qutrits.

Now let's compare to AdS/CFT. Consider figure 1. We'd like to reconstruct a bulk field living at point p in the middle of the space. This point lies outside of the AdS-Rindler wedges connected to the boundary regions A, B, and C, but it lies within the wedge of the union of any two. My conjecture earlier was that acting on

Figure 1: A Bulk AdS Secret at point p.

the subspace of finite energy states (or some more refined subspace), the three possible reconstructions have the same matrix elements. This is not quite the same criteria as the quantum state recovery I just described in the qutrit model, but I'll now argue that we can rephrase the lesson of the model directly in terms of matrix elements of operators.

Indeed say that O is an operator that acts on the single qutrit Hilbert space. We can easily construct an operator that has the same action on the encoded subspace: say that

$$O|i\rangle = \sum_{j} O_{ji}|j\rangle. \tag{7}$$

It is then easy to see that

$$O_{12} \equiv U_{12}^{\dagger} O_1 U_{12} \tag{8}$$

acts as

$$O_{12}|\bar{i}\rangle = \sum_{j} O_{ji}|\bar{j}\rangle. \tag{9}$$

The point is then that we can also define

$$O_{23} \equiv U_{23}^{\dagger} O_3 U_{23},\tag{10}$$

where U_{23} is a unitary that acts as

$$(I_1 \otimes U_{23}) |\bar{i}\rangle = \frac{1}{\sqrt{3}} (|00\rangle + |11\rangle + |22\rangle) \otimes |i\rangle, \tag{11}$$

and similary for O_{13} . Thus we see that we have indeed realized three distinct operators on the Hilbert space, with support on distinct pairs of qubits, but which all have the same action on states within the encoded subspace.

It seems clear to me that this must also be what AdS/CFT is doing, we just need to describe more precisely what the encoded subspace is. One comment is that the MERA network seems to be a way of connecting together the qutrit model and the full CFT state, which is able to encode not just a three dimensional Hilbert space but a whole bulk's worth of degrees of freedom.