Javier Virto Problem Set 1; 22.02.2022

1. Generators of SU(5) and Weinberg's angle in SU(5) GUT's

The simplest model for a unified theory containing the standard model is based on SU(5).

- (a) How many generators does SU(5) have?
- (b) An easy choice is to start writing the following 11 independent generators:

$$T^a = \left(\begin{array}{cc} T^a_{SU(3)} & 0 \\ 0 & 0 \end{array} \right) \,, \qquad T^{b+8} = \left(\begin{array}{cc} 0 & 0 \\ 0 & T^b_{SU(2)} \end{array} \right) \,,$$

with a = 1, ..., 8, b = 1, ..., 3. Convince yourself that this is correct, and a good idea. Build 12 of the remaining generators of SU(N)

explicitly out of Pauli matrices, normalized such that $\text{Tr}[T^aT^b] = \frac{1}{2}\delta^{ab}$. Do they commute with the other generators T^a and T^{b+8} ? Should they commute?

- (c) The last generator of SU(5) is diagonal. Construct a diagonal generator T^{24} which commutes with T^a and T^{b+8} (but not with T^{c+11}), is traceless, hermitian and is normalized according to $\text{Tr}\big[T^iT^{24}\big] = \frac{1}{2}\delta^{i\,24}$, for i=1,...,24.
- (d) The SU(5) gauge field is given by the 5×5 matrix $A_{\mu}=A_{\mu}^{a}T^{a}$. Write down explicitly A_{μ} in matrix form using the following very very convenient notation: $A_{\mu}^{a}\equiv G_{\mu}^{a}$ for $a=1,...,8, A_{\mu}^{b+8}\equiv W_{\mu}^{b}$ for b=1,...,3 and $A_{\mu}^{24}\equiv B_{\mu}$. (Why is this convenient?)
- (e) Couple the gauge field A_{μ} calculated in part (d) to a fermion Ψ in the fundamental representation of SU(5):

$$\mathcal{L}_{\Psi} = g_5 \bar{\Psi} A \Psi$$

where

$$\Psi_k = \left(egin{array}{c} \Psi_1 \ \Psi_2 \ \Psi_3 \ \Psi_4 \ \Psi_5 \end{array}
ight) \,.$$

Find the couplings of Ψ_4 and Ψ_5 to B_{μ} and W_{μ}^3 in terms of the SU(5) coupling g_5 .

(f) The couplings of B_{μ} and W_{μ}^{3} to Ψ should be identified with g' and g of the SM. Calculate the Weinberg angle

$$\sin^2 \theta_{\rm w} = \frac{{g'}^2}{{g'}^2 + g^2} \; ,$$

and compare the value with the experimental result $\sin^2 \theta_w \simeq 0.23 \pm 0.01$. What could be the reason for the discrepancy?

2. Spontaneous breaking of SU(5) by fields in the Adjoint

Consider a gauge theory with the gauge group SU(5), coupled to a scalar field Φ in the adjoint representation.

(a) The adjoint representation of SU(N) is the real representation of dimension $N^2 - 1$. The generators are given by the structure constants of the group. A field in the adjoint representation is a $(N^2 - 1)$ -vector Φ^a . However it is very convenient to arrange the $N^2 - 1$ components of this vector into a $N \times N$ matrix Φ defined as:

$$\Phi \equiv \Phi^a T^a .$$

where T^a are the (N^2-1) generators in the **fundamental** representation. We know that under a gauge transformation $\Phi^a \to (U_{\text{adj.}})^{ab} \Phi^b$, and that the covariant derivative is $D_{\mu}\Phi^a = [\delta^{ab}\partial_{\mu} - ig(A_{\mu}^{\text{adj.}})^{ab}]\Phi^b$, where $(A_{\mu}^{\text{adj.}})^{ab} = A_{\mu}^c (t_{\text{adj.}}^c)^{ab} = -if^{abc}A_{\mu}^c$. Show that:

- (i) The matrix Φ transforms as $\Phi \to U\Phi U^{\dagger}$, with U in the fundamental.
- (ii) The covariant derivative of Φ is given by $D_{\mu}\Phi = \partial_{\mu}\Phi ig[A_{\mu}, \Phi]$.
- (iii) The covariant derivative is covariant, that is, transforms exactly like Φ .
- (iv) The only allowed kinetic term for the adjoint scalar Φ^a is $\mathcal{L}_{\Phi}^{kin} = \frac{1}{2} \text{Tr}[(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)]$.
- (b) Assume that the potential for this scalar field forces it to acquire a nonzero vacuum expectation value. Two possible choices for this expectation values are

$$\langle \Phi \rangle = A \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & -4 \end{pmatrix} \qquad \langle \Phi \rangle = B \begin{pmatrix} 2 & & & & \\ & 2 & & & \\ & & 2 & & \\ & & & -3 & \\ & & & & -3 \end{pmatrix}$$

where A and B are arbitrary constants. For each case, work out the spectrum of gauge bosons and the unbroken symmetry group. For this you should identify the relevant terms in $\mathcal{L}_{\Phi}^{\text{kin}}$, and notice that in the matrix notation an unbroken generator is defined by $[T^a, \langle \Phi \rangle] = 0$. Start by proving this statement.

3. Baryon-Number violating operators in the SM and in SU(5) GUT's

- (a) Write a couple (or more) Lorentz-invariant dimension 6 local operators built out of SM fields, invariant under the SM gauge group and which break Baryon Number.
- (b) Now consider an SU(5) gauge theory coupled to a fermion Ψ in the $\bar{\bf 5}$ representation of SU(5) and a fermion Φ in the ${\bf 10}$. The $\bar{\bf 5}$ -field Ψ can be represented by a column 5-vector Ψ_i and the ${\bf 10}$ -field can be represented by an antisymmetric 10×10 matrix Φ_{ij} , transforming as: $\Psi_i \to U_{ij}^{\dagger} \Psi_j$ and $\Phi_{ij} \to U_{ik} \Phi_{kj}$, where U is the gauge transformation matrix in the fundamental.

Write all possible 4-fermion SU(5)- (and Lorentz-) invariant dimension-6 operators.

(c) We arrange all known fermions in SU(5) representations in the following way:

$$\Psi = \begin{pmatrix} d_1^c \\ d_2^c \\ d_3^c \\ e \\ -\nu \end{pmatrix}_L , \quad \Phi = \begin{pmatrix} 0 & u_3^c & -u_2^c & -u_1 & -d_1 \\ -u_3^c & 0 & u_1^c & -u_2 & -d_2 \\ u_2^c & -u_1^c & 0 & -u_3 & -d_3 \\ u_1^c & u_2^c & u_3^c & 0 & -e^c \\ d_1 & d_2 & d_3 & e^c & 0 \end{pmatrix}_L .$$

Expand the operators in part (b) in terms of u, d, e, ν fields. Do you recover the SM operators of part (a)?

(d) Draw a tree-level Feynman diagram for a Baryon-number-violating process mediated by an SU(5) gauge boson. Compute the corresponding amplitude in the limit where the CM energy is much smaller than the mass of the gauge boson M_X . In this limit the propagator can be written as $\mathcal{P} = -i/M_X^2$. This amplitude is equal to the matrix element of a dimension-six operator times some coefficient. Find the operator and the coefficient. What is needed to suppress the rate of such Baryon-number-violating processes?