Sogic and Let Theory

January 20, 2020

1 Propositional Logic

Let P be a set of **primitive propositions**, i.e. P is a set of symbols with $(,), \bot, \Longrightarrow \notin P$. Unless stated otherwise (i.e. that P is uncountable), we may assume that $P = \{p_1, p_2, \ldots\}$.

The set of **propositions**, denoted by L(P) or simply just L, is defined inductively as follows:

- 1. $P \subset L$
- 2. $\perp \in L$, called False
- 3. if $p, q \in L$, then $(p \implies q) \in L$

Each proposition is a string of symbols from $P \cup \{(,), \bot, \Longrightarrow \}$, for instance we have the propositions $p_1, (p_1 \Longrightarrow p_1), ((p_1 \Longrightarrow p_2) \Longrightarrow (p_2 \Longrightarrow (\bot \Longrightarrow p_3)))$. For readability, we often draw symbols (,) in different ways, for instance as [, (, (...))]

Sometimes we omit the outside pair of parentheses when writing down propositions, for instance $p_1 \implies p_2$ is shorthand for $(p_1 \implies p_2)$.

Also we use some abbreviations, e.g.:

Not: $\neg p$ to mean $(p \implies \bot)$

Or: $p \lor q$ to mean $(\neg p \implies q)$

AND: $p \wedge q$ to mean $\neg(\neg p \vee \neg q)$

What do we mean by L "defined inductively"? Define $L_0 = P \cup \{\bot\}$. Then, given L_n , we can define $L_{n+1} = L_{n-1} \cup \{(p \implies q) : p, q \in L_{n-1}\}$. Then we set $L = \bigcup_{n=0}^{\infty} L_n$. Note: if $p \in L \setminus (P \cup \{\bot\})$, then it is easy to show that there are *unique* $q, r \in L$ with $p = (q \implies r)$.

1.1 Semantic Entailment

A *valuation* is a function $v: L \to \{0, 1\}$ satisfying:

- 1. $v(\bot) = 0$
- $\text{2. For all } p,q \in L, v(p \implies q) = \begin{cases} 0 & v(p) = 1, v(q) = 0 \\ 1 & \text{otherwise} \end{cases}.$

If $p \in L$ and v(p) = 1 for every valuation, we say that p is a **tautology**, and write $\vDash p$.

Examples:

$$1. \models (p \implies p)$$

$$\begin{array}{c|cc} v(p) & v(p \implies p) \\ \hline 0 & 1 \\ 1 & 1 \end{array}$$

So this is a tautology.

$$2. \models (p \implies (q \implies p))$$

	q	$q \implies p$	$p \implies (q \implies p)$
0	0	1	1
0 0 1	1	0	1
1	0	1	1
1	1	1	1

So this is a tautology.

3. Is
$$\vDash (p \implies (q \implies r)) \implies ((p \implies q) \implies (p \implies r))$$
?

Suppose not. Then for some p, q, r and valuation v we have:

$$\begin{array}{l} v(p \implies (q \implies r)) = 1 \\ v((p \implies q) \implies (p \implies r)) = 0. \end{array}$$

So $v(p \implies q) = 1, v(p \implies r) = 0$. Hence v(p) = 1, v(r) = 0, v(q) = 1. But then $v(q \implies r) = 0$, and so $v(p \implies (q \implies r)) = 0$.

4. $\vDash ((p \implies \bot) \implies \bot) \implies p$, i.e. $\neg \neg p \implies p$, i.e. $(\neg p \lor p)$. This is the Law of the Excluded Middle, and is also a tautology.