۱۲.۱ تمرینها

۱. نشان دهید $\hat{x} = \frac{\text{Cov}(\bar{y}, \hat{\beta}_1)}{\text{Cov}(\bar{y}, \hat{\beta}_1)}$ و با به کارگیری آن برهانی دیگر برای رابطه ی زیر بیان کنید.

$$\operatorname{Var}(\hat{\beta}_{\circ}) = \sigma^{\mathsf{Y}} \left(\frac{\mathsf{Y}}{n} + \frac{\bar{x}^{\mathsf{Y}}}{S_{x}^{\mathsf{Y}}} \right)$$

B. مجموعه دادههای table.b ۱ را از بسته ی MPV در نرمافزار R در نظر بگیرید، که از جدول B. ۱ مجموعه دادههای table.b ۱ را از بسته ی MPV در نیروست کتاب مونتگمری (۱۹۹۲) برگرفته شده است. این دادهها دربردارنده ی عملکرد ۲۶ تیم لیگ ملی فوتبال آمریکا در سال ۱۹۷۶ است. انتظار می رود تعداد یاردها، نوعی امتیاز در فوتبال آمریکایی که در حمله ی حریف به دست می آید (x_{Λ}) ، بر روی تعداد بازی های برده شده توسط تیم (y) اثر داشته باشد.

الف. یک مدل رگرسیون خطی ساده بین x_{A} و y برازش دهید.

ب. مقدار ماندههای مدل رگرسیونی بالا را بهدست آورید.

ج. واریانس خطاها را براورد کنید.

۳. وزن و فشار خون ۲۶ مرد که به طور تصادفی از بین مردان ۲۵ تا ۳۰ سال انتخاب شدهاند، اندازهگیری شده و در جدول ۷.۱ آمده است (مایرز، ۱۹۹۰).

الف. براورد ضریب همبستگی ho میان وزن و فشارخون را بهدست آورید.

ب. مدل رگرسیون خطی ساده را به این داده ها برای پیشگویی فشارخون بر اساس وزن برازش دهید.

جدول ۷.۱: داده های وزن و فشار خون

19.	110	717	100	14.	197	180	44.
10.	145	101	111	10.	177	17.	وزن فشارخون
120	14.	159	101	149	۲	۲۱.	وزن
14.	10.	120	122	110	141	14.	ورن فشارخون
105	190	110	115	174	184	109	وزن
	154	10.	101	149	177	114	ورن فشارخون
		IAV	197	۲۲۵	74.	145	
		109	18.	180	14.	174	وزن فشارخون

$$E(\epsilon_i)=\circ$$
 که در آن $y_{\mathsf{T}}=\theta+\mathsf{T}\phi+\epsilon_{\mathsf{T}}$ و $y_{\mathsf{T}}=\theta-\phi+\epsilon_{\mathsf{T}}$ که در آن $y_{\mathsf{T}}=\theta+\epsilon_{\mathsf{T}}$. فرض کنید $i=1,7,7$

فرض کنید میخواهیم براورد کمترین توان دوم مدل

$$y_i = \beta_{\bullet} + \beta_1 x_i + \epsilon_i, i = 1, \dots, n$$

را با در نظر گرفتن قید $\beta_1 = 7\beta$ به دست آوریم. تابع لاگرانژ را تشکیل داده و براوردهای کم ترین توان دوم برای $\beta_1 = 7\beta$ را با در نظر گرفتن این قید به دست آورید. به شیوه ای دیگر، در مدل بالا قرار دهید $\beta_1 = 7\beta$ و براورد کم ترین توان دوم β_1 را به دست آورید و پاسخ را با حالت پیش مقایسه کنید.

و. فرض کنید $eta_i=1,\dots,n$ ، $y_i=eta_i+eta_1x_i+\epsilon_i$ که در آن $eta_i=1,\dots,n$ نامعلوم است. اگر \hat{eta}_i براورد کمترین توان دوم eta_i باشد، آنگاه

$$\hat{y}_i = \beta_{\bullet} + \hat{\beta}_{\downarrow} x_i, \ e_i = y_i - \hat{y}_i,$$

درستی یا نادرستی عبارتهای زیر را بررسی کنید.

$$\sum_{i=1}^{n} e_i \hat{y}_i = \circ$$
 . ج. $\sum_{i=1}^{n} e_i x_i = \circ$. بن $\sum_{i=1}^{n} e_i = \circ$.

 $^{\epsilon_i} \sim N(\circ, \sigma^{\mathsf{Y}})$ در مدل رگرسیون خطی ساده $i=1,\ldots,n$ ، $y_i=\beta_\circ+\beta_1x_i+\epsilon_i$ با فرض $P(y_i>\beta_\circ+\beta_1x_i)$ مقدار مقدار ورید.

 $i=1,\ldots,n$ ، $y_i=eta_1x_i+\epsilon_i$ میدا از مبدأ گذرا از مبدأ .۸ در مدل رگرسیون خطی گذرا از مبدأ

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{\Upsilon}}$$

 eta_1 یک براوردگر نااریب برای eta_1 است و واریانس \hat{eta}_1 را با واریانس براوردگر کمترین توان دوم مقایسه کنید.

۹. برای مدل رگرسیون خطی ساده و مقدارهای برازش یافته به روش براورد کمترین توان دوم نشان
دهید

$$\sum_{i=1}^{n} \operatorname{Var}(\hat{y}_i) = \mathsf{Y}\sigma^{\mathsf{Y}}$$

.۱۰ در مدل رگرسیون خطی ساده تمرین ۹، مقدار $\operatorname{Cov}(\hat{y}_i, ar{y})$ را بهدست آورید.

۱۱. فرض کنید در برازش دو خط رگرسیونی

$$y_i = \alpha_{\circ} + \alpha_{1}x_i + \epsilon_{i}, x_i = \beta_{\circ} + \beta_{1}z_i + e_{i}, i = 1, \ldots, n$$

براوردهای ، α ، به روش کمترین توان دوم به ترتیب به صورت ، α ، ، α ، ، α ، ، و ا θ و ا θ ، ، $i=1,\ldots,n$ ، $y_i=\theta$ ، + θ 1 را بر حسب ، α 1 و ا α 2 و ا α 3 به دست آورید. براورد کنیم، براوردهای ، α 3 و ا α 4 را بر حسب ، α 6 و ا α 6 به دست آورید.

- ۱۲. فرض کنید میان دو متغیر تصادفی x و y رابطه ی v=1 برقرار است. ضریب همبستگی v=0 و v=0 و v=0 را بهدست آورید.
- ۱۳. فرض کنید y_1 و y_2 دو متغیر تصادفی مستقل با میانگینهای به ترتیب y_1 و y_2 باشند. براورد β را به روش کمترین توان دوم بهدست آورید.
- ۱۴. فرض کنید متغیرهای تصادفی y_1,\dots,y_n به ترتیب دارای میانگینهای $\beta, \gamma \beta,\dots, \eta \beta$ باشند. براورد β را به روش کمترین توان دوم به دست آورید.
 - انجام تبدیل های زیر $i=1,\ldots,n$ ، $y_i=eta_{f o}+eta_{f l}x_i+\epsilon_i$ با انجام تبدیل های زیر ۱۵.

$$x_i^* = \frac{x_i - \bar{x}}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^{\mathsf{T}}}}, \quad y_i^* = \frac{y_i - \bar{y}}{\sqrt{\sum_{i=1}^n (y_i - \bar{y})^{\mathsf{T}}}}, \quad i = 1, \dots, n$$

براورد $\hat{\beta}_1$ (به روش کمترین توان دوم) را بر حسب x_i^* ها و y_i^* ها به دست آورید و در مورد پاسخ به دست آمده اظهار نظر کنید.

۱۶. در مدل رگرسیون خطی با مقدارهای برازش داده شده به شیوهی کمترین توان دوم به صورت زیر

$$\hat{y}_i = \hat{\beta}_{\bullet} + \hat{\beta}_{\bullet} x_i, \ i = 1, \dots, n,$$

مقدار واریانس نمونهای مقدارهای برازش داده شده یعنی

$$\frac{1}{n-1}\sum_{i=1}^{n}(\hat{y}_{i}-\bar{\hat{y}})^{\mathsf{T}}$$

را بر حسب r و مجموعهای توان دوم x یا y بیابید که در آن $ar{y}_i$ میانگین \hat{y}_i ها است.

 $y_i=eta_0+eta_1x_i+\epsilon_i$ اگر براوردهای کمترین توان دوم eta_0 و eta_0 در معادلهی مدل رگرسیون خطی $y_i^*=by_i$ و a باشند و قرار دهیم a و a باشند و قرار دهیم a و a باشند و قرار دهیم a و a و a و a برابر a و a باشند و قرار دهیم a و a و a و a و a و a و a و a و a و a و a و a و مقدارهای حقیقی معلوم هستند، براوردهای کمترین توان دوم a و a و a و a

$$y_i^* = \alpha_0 + \alpha_1 x_i^* + e_i, \quad i = 1, \dots, n,$$

بر حسب $\hat{\beta}_{1}$ و $\hat{\beta}_{2}$ بهدست آورید.

۱۸. فرض کنید $eta_i=i=1,\ldots,n$ ، $y_i=eta_*+eta_1x_i+\epsilon_i$ و به اشتباه مدل بدون عرض از مبدأ .

$$y_i = \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n,$$

را به داده ها برازش دهیم. میانگین توان دوم خطا $(E(\hat{\beta}_1 - \beta_1)^{\Upsilon})$ در مدل گذرا از مبدأ را با $Var(\hat{\beta}_1)$ در مدل درست با عرض از مبدأ مقایسه کنید.

۱۹. در مدل رگرسیون خطی ساده برازش داده شده به روش کمترین توان دوم با مانده های ۱۹. $\operatorname{Var}(e_i)$ ها را به دست آورید.

۲۰. هسویی و همکاران (۱۹۹۵) اثر نسبت مولار نوعی اسید (x) را بر روی چسبندگی (y) دا بررسی کردهاند. داده های زیر از این مطالعه در جدول ۸.۱ آمده است (مونتگومری)

۲۰۱۳). این مجموعه داده در بستهی نومافزاری MPV با نام .p۲۱۴ قابل دسترسی است.

جدول ۸.۱: داده های نسبت مولار و چسبندگی پلی استر

./٣	./4	./۵	.19	·/V	•/٨	./9	1/.	نسبت مولار
./44	./00	·/0V	·/v ·	./01	./44	·/Y ·	./40	چسبندگی

الف. نمودار براكنش دادهها را رسم كنيد.

ب. مدل رگرسیون خطی ساده را به داده ها برازش داده و ضریب های مدل را براورد کنید. ج. مقدارهای برازش یافتهی چسبندگی یلی استر را محاسبه کنید.

۲۱. دادههای جدول ۹.۱ شدت یک بیماری خاص و درجه ی حرارت بدن بیمار را برای ۱۰ بیمار نشان می دهد (انجمن آسیب شناسی گیاهی آمریکا ۱). هدف تعیین رابطه ی بین شدت بیماری و درجه ی حرارت بدن بیمار است.

جدول ۹.۱: دادههای شدت بیماری

										شدت بیماری
40	٣٠	١٠	۲۳	۲٠	۲.	۵	۵	١	۲	درجهي حرارت

الف. مدل رگرسیون خطی ساده را به داده ها برازش داده و ضریب های مدل را براورد کنید. ب. مقدارهای برازش یافته ی شدت بیماری را محاسبه کنید.

نشان دهید، $i=1,\ldots,n$ ، $y_i=eta_{f o}+eta_{f i}x_i+\epsilon_i$ در مدل رگرسیون خطی ساده. ۲۲

$$\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})(\hat{y}_{i}-\bar{y})=\circ$$

x است). درستی رابطه ی زیر را نشان دهید x ضریب همبستگی نمونه ای بین x و y است).

$$SSE = (1 - r^{\dagger})S_{vv}$$

¹American Phytopathological Society: [http://www.apsnet.org]