

RTS\_WS-2 FreePTOS-7 ux Quene Messages Whiting (Quene Handle t xQuene) · UBaseType\_t Mutex (Binary Semaphone) · used for protecting a resource from access · See: PRIDRITY INVERSION

(when a task of lower privrity is executing in spite of the Space that higher privrity tasks are in the READY state) - DEXERCISE: · have students read Mutex-related malerial and cryyila their own lists of relevants reeded elements to use a mutex: \*include "semphr.h" type: X Semaphore Handle API Functions (Students Should find themselves) · XSemaphore Take () · X Semaphore Give () · X Semaphore Create Mutex ()

RTS\_W5\_3 Real-time Resources RTR-1 a number of system resources must be used and managed in any real-time PROCESSING: the number and type of cores all volatile and non-volatile MEMORY: Parallell used former citiens (senal)
Parallell used formation information
decoding and tencoding of actuator
and rencoding of actuator
includes interconnections between cores. I/0: analysis and she focus of real-time resource analysis and she of has centred around processing and executing modliple services on single core of execution; the mechanics of preempling a a new thread is called a thread context switch of Scheduling => implement a policy 3 how the RTOS makes a decision preemption 2 => context-switching mechanisms (RTDS) dispatch } its policy Some important factors affecting real-time · SPEED on clock rate (IGH 2 1) · EFFICIENCY or clocks yer instruction or instructions per clock (CPI) (IPC) -> relevant in pipelined execution

|                                                                                                                                                                                   | RTS=W5-4                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| · Algorithm complexity:                                                                                                                                                           | RTR-2                      |
| Ci = instruction count on longer execution path for service and ideally, deferministic a priori); if not know exactly, a WCET show used y (worso-case executions)                 | (known ind be ution time). |
| . Frequency of Service Requests, $F_i$ $T_i = \frac{1}{F_i} = \text{"service release per}$                                                                                        | riod)                      |
| Ŧ <sub>i</sub> -                                                                                                                                                                  |                            |
| · Latency Issues                                                                                                                                                                  |                            |
|                                                                                                                                                                                   |                            |
| - often associated with I10, unter                                                                                                                                                | connect.                   |
| · abitration (contention) latency for share nead latency from device to CPU transit time from device to CPU registers, tightly coupled maniony CTCN cache for zero wait state 111 | cache is pro               |
| · read / write latencies main                                                                                                                                                     | cry on the                 |
|                                                                                                                                                                                   | s transferre               |
| Bondwidth - average bytes or word for the unity of                                                                                                                                | busty"                     |
| · Queul Depth                                                                                                                                                                     |                            |
| - quewing can keep the system running well, as long as they are not filled - which lands to stalls.                                                                               | 1                          |
| - CPU Caupling - DMA channels can decouple the from I/O - memory-mapped I/O estrongly of the TIO (devices need home                                                               | CPU couples attention)     |

RTS\_W5-5 RTR-3 Memory Hierarchy (from least to most latency) · Level-1 Cache · Single cycle access · Harvard Architecture (segarates data and Level -2 Cache n TCM . MMR (menury mapped registers) · Main Memory - SRAM, SDRAM, DDR · MMIO · non volatile mening: Flash, EEROM, NOVSRAM - The way you menny is organized and how your devices are "menury mapped" can affect latence and have a substantial import for your real-time system performance