# BASIC RULES FOR COUNTING

### ABOUT

In this section, we will cover the formula for permutations, as well as how to solve problems that as for "this <u>and</u> that" outcome, or "this <u>or</u> that" outcome, and how to use the Rule of Complements.

### TOPICS

1. Permutations

2. Rule of Sums

3. Rule of Products

4. Rule of Complements

# PERMUTATIONS

## 1. PERMUTATIONS

A permutation is written as **P(n, r)**. For Permutation problems, you need two pieces of information:

- n, the amount of items we have to select from
- r, the amount of items that we're selecting.

The formula for P(n, r) is:

$$P(n,r) = \frac{n!}{(n-r)!}$$

#### **Notes**

$$P(n,r) = \frac{n!}{(n-r)!}$$

## 1. PERMUTATIONS

In cases where we have n items and are selecting all n, then we have:

$$P(n, n) = n!$$

And in cases where we have n items but are only selecting 1 item, we have:

$$P(n, 1) = n$$

#### **Notes**

$$P(n,r) = \frac{n!}{(n-r)!}$$

# 1. Permutations

Also remember a Permutation is when...

- Repetitions are NOT allowed
- Order DOES matter.

#### Notes

$$P(n,r) = \frac{n!}{(n-r)!}$$

# 1. Permutations

Example: How many ways are there to arrange five people in a line?

- What is *n*?
- What is r?
- What is the result?

#### Notes

$$P(n,r) = \frac{n!}{(n-r)!}$$

## 1. PERMUTATIONS

Example: How many ways are there to arrange five people in a line?

- What is *n*? 5
- What is *r*? 5
- What is the result?

$$P(n,r)=P(5,5)$$

$$= \frac{5!}{(5-5)!} = \frac{5!}{0!} = 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

(Note that 0! (0-factorial) equals 1.)

#### **Notes**

$$P(n,r) = \frac{n!}{(n-r)!}$$

# RULE OF SUMS

## 2. The rule of sums

The rule of sums In combinatorics, the rule of sum or addition principle is a basic counting principle. Stated simply, it is the idea that if we have *A* ways of doing something and *B* ways of doing another thing and we can not do both at the same time, then there are *A* + *B* ways to choose one of the actions.

From https://en.wikipedia.org/wiki/Rule\_of\_sum

#### **Notes**

Either one thing or another thing:

a + b

n(A)

Example: On the "deals" menu on PizzaWebsite.com, there are specials on 85 types of pizzas. Of these...

1. How many specials have at least 4 toppings?

| # of<br>toppings | # of available specials |
|------------------|-------------------------|
| 2                | 7                       |
| 3                | 25                      |
| 4                | 33                      |
| 5                | 16                      |
| 6                | 2                       |

#### Notes

Either one thing or another thing: **a + b** 

#### n(A)

Example: On the "deals" menu on PizzaWebsite.com, there are specials on 85 types of pizzas. Of these...

1. How many specials have at least 4 toppings?

$$33 + 16 + 2 = 48$$

| 4  |    |
|----|----|
|    | 24 |
| W. |    |

| # of<br>toppings | # of available specials |
|------------------|-------------------------|
| 2                | 7                       |
| 3                | 25                      |
| 4                | 33                      |
| 5                | 16                      |
| 6                | 2                       |

#### Notes

Either one thing or another thing: **a + b** 

#### n(A)

Example: On the "deals" menu on PizzaWebsite.com, there are specials on 85 types of pizzas. Of these...

2. How many pizzas have only 1 topping?

1 topping isn't listed, so how do we figure it out?

| 4   |    |
|-----|----|
| 100 | 22 |
| 121 |    |
|     |    |

| # of<br>toppings | # of available specials |
|------------------|-------------------------|
| 2                | 7                       |
| 3                | 25                      |
| 4                | 33                      |
| 5                | 16                      |
| 6                | 2                       |

#### Notes

Either one thing or another thing: **a + b** 

#### n(A)

Example: On the "deals" menu on PizzaWebsite.com, there are specials on 85 types of pizzas. Of these...

2. How many pizzas have only 1 topping? 85 deals - (7 + 25 + 33 + 16 + 2) = 2 specials for 1 topping pizzas

85 is the total # of specials, minus all the specials with 2 or more toppings.

| # of<br>toppings | # of available specials |
|------------------|-------------------------|
| 1                | 2                       |
| 2                | 7                       |
| 3                | 25                      |
| 4                | 33                      |
| 5                | 16                      |
| 6                | 2                       |



Either one thing or another thing: **a + b** 

n(A)



Example: On the "deals" menu on PizzaWebsite.com, there are specials on 85 types of pizzas. Of these...

3. How many specials have at most 3 toppings? Need to count options with 1, 2, and 3 toppings.

| # of<br>toppings | # of available specials |
|------------------|-------------------------|
| 1                | 2                       |
| 2                | 7                       |
| 3                | 25                      |
| 4                | 33                      |
| 5                | 16                      |
| 6                | 2                       |



Either one thing or another thing: **a + b** 

#### n(A)



Example: On the "deals" menu on PizzaWebsite.com, there are specials on 85 types of pizzas. Of these...

3. How many specials have at most 3 toppings? Need to count options with 1, 2, and 3 toppings.

$$2 + 7 + 25 = 34$$
,  
or  $85 - 2 - 16 - 33$   
= 34



| # of<br>toppings | # of available specials |
|------------------|-------------------------|
| 1                | 2                       |
| 2                | 7                       |
| 3                | 25                      |
| 4                | 33                      |
| 5                | 16                      |
| 6                | 2                       |

#### **Notes**

Either one thing or another thing: **a + b** 

#### n(A)

When calculating the total amount of outcomes, there could be cases of **overlap**. In this case, we need to remove the redundant cases from our final answer.

We can do this with the Rule of Sums with Overlap...

|   | 0 |
|---|---|
| Ø | J |

| # of<br>toppings | # of available specials |
|------------------|-------------------------|
| 1                | 2                       |
| 2                | 7                       |
| 3                | 25                      |
| 4                | 33                      |
| 5                | 16                      |
| 6                | 2                       |

#### Notes

Either one thing or another thing: **a + b** 

### n(A)

The rule of sums with overlap: If the list to count can be split into two pieces of size z and y, and the pieces have z objects in common, then the original list has x + y - z entries. In terms of sets, we can write this as  $n(A \cup B) = n(A) + n(B) - n(A \cap B)$  for all sets A and B.

From Discrete Math Mathematical Reasoning and Proofs with Puzzles, Patterns and Games, by Ensley and Crawley, 5.2 page 391

#### **Notes**

Either one thing or another thing:

a + b

This or that, without duplicates:

Example: Say that we're drawing cards from a deck. How many outcomes are there if we get a card value of "10" OR get a red suit?

In this case, we need to investigate both outcomes separately first:

How many cards are there with a value of 10?

How many cards are there that are red?

#### **Notes**

Either one thing or another thing:

a + b

This or that, without duplicates:



Notes

Either one thing or another thing: **a + b** 

This or that, without duplicates: **a + b - c** 

- How many cards are there with a value of 10?
- How many cards are there that are red?



- How many cards are there with a value of 10? There are four
- How many cards are there that are red?

#### **Notes**

Either one thing or another thing:

a + b

This or that, without duplicates:



- How many cards are there with a value of 10?
   There are four
- How many cards are there that are red?
   There are 26

#### Notes

Either one thing or another thing: **a + b** 

This or that, without duplicates:

Example: Say that we're drawing cards from a deck. How many outcomes are there if we get a card value of "10" OR get a red suit?

How many cards are there with a value of 10?

10♣ 10♣ 10♥ 10♦

How many cards are there that are red?

#### **Notes**

Either one thing or another thing:

a + b

This or that, without duplicates:

Example: Say that we're drawing cards from a deck. How many outcomes are there if we get a card value of "10" OR get a red suit?

How many cards are there with a value of 10?

10♣ 10♣ 10♥ 10♦

• How many cards are there that are red? 26

• How many cards both have a value of 10 AND are red?

#### **Notes**

Either one thing or another thing:

a + b

This or that, without duplicates:

Example: Say that we're drawing cards from a deck. How many outcomes are there if we get a card value of "10" OR get a red suit?

How many cards are there with a value of 10?

10♣ 10♣ 10♥ 10♦

How many cards are there that are red?

• How many cards both have a value of 10 <u>AND</u> are red? 2

10♥ 10♦

#### Notes

Either one thing or another thing:

a + b

This or that, without duplicates:

Example: Say that we're drawing cards from a deck. How many outcomes are there if we get a card value of "10" OR get a red suit?

How many cards are there with a value of 10?

10♣ 10♣ 10♥ 10♦

• How many cards are there that are red? 26

How many cards both have a value of 10 AND are red?

10♥ 10♦

Using the rule of sums with overlap, what's the answer?

#### **Notes**

Either one thing or another thing:

a + b

This or that, without duplicates:

Example: Say that we're drawing cards from a deck. How many outcomes are there if we get a card value of "10" OR get a red suit?

How many cards are there with a value of 10?

10♣ 10♣ 10♥ 10♦

How many cards are there that are red?

• How many cards both have a value of 10 <u>AND</u> are red? 2

10♥ 10♦

Using the rule of sums with overlap, what's the answer?

4 + 26 - 2 = 28

#### **Notes**

Either one thing or another thing:

a + b

This or that, without duplicates:

# RULE OF PRODUCTS

The rule of products In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the idea that if there are  $\boldsymbol{a}$  ways of doing something and  $\boldsymbol{b}$  ways of doing another thing, then there are  $\boldsymbol{a} \cdot \boldsymbol{b}$  ways of performing both actions.

From https://en.wikipedia.org/wiki/Rule\_of\_product

#### **Notes**

Doing one thing *and* another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: You have to order food for a group event. There are 5 types of pizza to choose from, and 3 types of ice cream to choose from. Your guests only want 1 of each type of pizza.

How many ways can you select 3 pizzas AND 1 ice cream?

#### **Notes**

Doing one thing *and* another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: You have to order food for a group event. There are 5 types of pizza to choose from, and 3 types of ice cream to choose from. Your guests only want 1 of each type of pizza.

How many ways can you select 3 pizzas AND 1 ice cream?

Pizza choices:

$$P(5, 3) = 5 \times 4 \times 3 = 60$$

#### Notes

Doing one thing *and* another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

Ice Cream Bowl

Example: You have to order food for a group event. There are 5 types of pizza to choose from, and 3 types of ice cream to choose from. Your guests only want 1 of each type of pizza.

How many ways can you select 3 pizzas AND 1 ice cream?

Pizza Plate A Pizza Plate B Pizza Plate C

5 x 4 x 3
options options options

Pizza choices:  $P(5, 3) = 5 \times 4 \times 3 = 60$ Ice cream choices: P(3, 1) = 3

#### **Notes**

Doing one thing *and* another thing:

axb

Doing *either* one thing *or* another thing:

a + b

n(A)

Ice Cream Bowl

options

### 3. THE RULE OF PRODUCTS

Example: You have to order food for a group event. There are 5 types of pizza to choose from, and 3 types of ice cream to choose from. Your guests only want 1 of each type of pizza.

How many ways can you select 3 pizzas AND 1 ice cream?

| Pizza Plate A |   | Pizza Plate B |   | Pizza Plate C | Ice Cream Bowl |
|---------------|---|---------------|---|---------------|----------------|
| 5<br>options  | X | 4<br>options  | X | 3<br>options  | 3<br>options   |

Pizza choices:  $P(5, 3) = 5 \times 4 \times 3 = 60$ 

Ice cream choices: P(3, 1) = 3

Combinations of pizza AND ice cream:  $P(5, 3) + P(3, 1) = 60 \times 3 = 180$ 

#### Notes

Doing one thing *and* another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

# RULE OF COMPLEMENTS

### 4. The rule of complements

If there are x objects and y of those objects have a particular property, then the number of those objects that do <u>not</u> have that particular property is x - y. In terms of sets, using U for the universal set, we can write this as n(A') = n(U) - n(A) for all sets A with elements from U.

From Discrete Math Mathematical Reasoning and Proofs with Puzzles, Patterns and Games, by Ensley and Crawley, 5.2 page 390

#### Notes

Doing one thing *and* another thing:

axb

Doing *either* one thing *or* another thing:

a + b

n(A)

Essentially, if there are n total options, and x options have property-X, then n-x options do NOT have property-X...

### Notes

Doing one thing and another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

# 4. The rule of complements

Example: A pet store sells red and green squeaky toys. If there are 10 total toys and 7 are red, how many are green?

### **Notes**

Doing one thing *and* another thing: **a x b** 

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: A pet store sells red and green squeaky toys. If there are 10 total toys and 7 are red, how many are green?

$$10 - 7 = x$$

$$x = 3$$

3 total green toys

### **Notes**

Doing one thing and another thing: a x b

Doing either one thing *or* another thing: a + b

of elements in set A".

Example: How many ways are there to re-arrange the letters in the word "RAT"?

- How many ways and in "T"?
- How many ways DON'T end in "T"?

R A T

### **Notes**

Doing one thing *and* another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"?

- How many ways and in "T"?
- How many ways DON'T end in "T"?

For the first letter, we will have 3 options...

Letter 2 Letter 3

R A

### **Notes**

Doing one thing *and* another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"?

- How many ways and in "T"?
- How many ways DON'T end in "T"?

For the second letter, there will be two options...



### **Notes**

Doing one thing and another thing:

axb

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"?

- How many ways and in "T"?
- How many ways DON'T end in "T"?

For the third letter, there will be one option...



R

### **Notes**

Doing one thing and another thing:

axb

Doing *either* one thing *or* another thing:

a + b

n(A)

# 4. The rule of complements

Example: How many ways are there to re-arrange the letters in the word "RAT"?

- How many ways and in "T"?
- How many ways DON'T end in "T"?

For the third letter, there will be one option...







## Notes

Doing one thing *and* another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"? 6

- How many ways and in "T"?
- How many ways DON'T end in "T"?

For the third letter, there will be one option...



 $3 \times 2 \times 1 = 6$  ways to re-arrange the letters.

### **Notes**

Doing one thing *and* another thing:

axb

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"? 6

- How many ways and in "T"?
- How many ways DON'T end in "T"?

How many ways end in "T"?

1. RAT 4. ATR

2. RTA 5. TAR

3. ART 6. TRA

### **Notes**

Doing one thing *and* another thing:

a x b

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"? 6

- How many ways and in "T"?
- How many ways DON'T end in "T"?

How many ways end in "T"?

There are 2.

asdf

1. RAT

RTA 5. TAR

ART 6. TRA

**4. ATR** 

### **Notes**

Doing one thing *and* another thing: **a x b** 

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"? 6

- How many ways and in "T"?
- How many ways DON'T end in "T"?

How many ways DON'T end in "T"? We can use the Rule of complements...

RAT **4. ATR** RTA

5. TAR ART

6. TRA

## **Notes**

Doing one thing and another thing: a x b

Doing either one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"?

- How many ways and in "T"?
- How many ways DON'T end in "T"?

How many ways DON'T end in "T"? We can use the Rule of complements...

1. RAT

2. RTA

. ART

6. TRA

**4. ATR** 

5. TAR

TotalArrangements = EndsWithT + DoesntEndWithT

### **Notes**

Doing one thing *and* another thing: **a x b** 

Doing *either* one thing *or* another thing:

a + b

n(A)

Example: How many ways are there to re-arrange the letters in the word "RAT"? 6

- How many ways and in "T"?
- How many ways DON'T end in "T"?

How many ways DON'T end in "T"? We can use the Rule of complements...

1. **RAT** 4. ATR 2. **RTA** 5. TAR

ART 6. TRA

TotalArrangements = EndsWithT + DoesntEndWithT 6 = 2 + x

6-2=x

### **Notes**

Doing one thing *and* another thing: **a x b** 

Doing *either* one thing *or* another thing:

# Conclusion

These principles will be used all through Chapter 5, as well as in some form in Chapter 6 once we're figuring probability.

Make sure to pay attention to when a problem asks for "this **and** that", or "this **or** that", as that will tip you off on which rule to use.