NORTHWESTERN UNIVERSITY

The Search for the Higgs Boson Decaying into a Z Boson and a Photon

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Physics and Astronomy

Ву

James Bueghly

EVANSTON, ILLINOIS

December 2021

© Copyright by James Bueghly 2021 All Rights Reserved

ABSTRACT

The Search for the Higgs Boson Decaying into a Z Boson and a Photon

James Bueghly

Since its discovery in 2012 at the Large Hadron Collider (LHC), efforts have been made to measure and characterize the properies of the Higgs boson. Among these efforts have been searches for rare decays of the Higgs predicted by the Standard Model (SM) of particle physics. One such decay is the process $H \to Z\gamma$, which is predicted by the SM to have a branching fraction of XX. An observation of this decay mode at a rate deviating from the SM prediction would provide indirect evidence of new physics beyond the SM. Previous searches for $H \to Z\gamma$ were carried out using proton-proton collision data from Run 1 of the LHC. Run 1 exclusion limits on the process were placed at roughly ten times the SM expectation by the Compact Muon Solenoid (CMS) experiment.

This thesis describes the search for $H \to Z\gamma$ in the $\ell\ell\gamma$ final state with the CMS detector using LHC Run 2 proton-proton collision data. The process is not observed, and exclusion limits are placed on the production cross section times branching fraction at XX times the SM expectation.

Acknowledgements

 ${\it Text for acknowledgments}.$

Table of Contents

ABSTRACT	3
Acknowledgements	4
Table of Contents	5
List of Tables	7
List of Figures	8
Chapter 1. Introduction	9
Chapter 2. Theory	10
2.1. The Standard Model	10
2.2. Electroweak Theory	10
2.3. Spontaneous Symmetry Breaking (Higgs Mechanism)	10
2.4. Higgs Production	16
2.5. Higgs Decay	16
2.6. Physics Beyond the Standard Model	16
Chapter 3. Experimental Apparatus	17
Chapter 4. Overview of Analysis Strategy	18
Chapter 5. Data and Simulation	21

Chapter 6.	Object and Event Selection	22
6.1. Trig	gers	22
Chapter 7.	Event Categorization	24
Chapter 8.	Signal and Background Modeling	25
Chapter 9.	Systematic Uncertainties	26
Chapter 10.	Statistical Analysis	27
Chapter 11.	Results and Interpretation	28
Chapter 12.	Conclusion	29
References		30

List of Tables

List of Figures

Introduction

introductory text

Theory

2.1. The Standard Model

The Standard Model (SM) is currently our best theoretical framework for understanding the nature of fundamental particles. It is rooted in the idea that particles exist as excitations of quantum fields. These fields are constructed so as to obey fundamental symmetries of nature, and they yield the particles of our universe, as well as their interactions. The SM is not only elegant and extensive, but provides a wide variety of measurable observables for the experimentalist to probe. So far, many measurements have been made of the currently known elementary particles, and the predictions of the SM have held up in each case. In this respect, it is a wildly successful theory. In other respects, it is obviously incomplete.

2.2. Electroweak Theory

2.3. Spontaneous Symmetry Breaking (Higgs Mechanism)

The electroweak Lagrangian lacking the Higgs term CITE EQUATION is insufficient. In particular, it does not provide an explanation for massive gauge bosons. Experimental evidence for massive gauge bosons dates back to the early? twentieth century. Beta decay experiments indicated charged current interactions mediated by a massive W boson, and later experiments indicated additional neutral current interactions mediated by

a massive Z boson (CHECK THIS). Later in the twentieth century (GIVE SPECIFIC DATES/REFS) the W and Z bosons were discovered. Indeed, the W and Z masses have been found to be roughly 80 GeV and 91 GeV respectively. An explanation came in the form of the Higgs mechanism (CITE), which spontaneously breaks the SU(2)xU(1) gauge symmetry of the electroweak Lagrangian. In addition, there arises a real Higgs field accompanied by a massive Higgs boson, and fermion masses are explained via their Yukawa couplings to the Higgs boson. The discovery of the Higgs boson and the subsequent measurements of its properties have provided proof that the Higgs mechanism is indeed a central piece of the Standard Model.

To understand how the Higgs mechanism works, consider the introduction of a complex scalar field Φ , which transforms as a doublet under SU(2).

(2.1)
$$\Phi = \begin{bmatrix} \phi^+ \\ \phi^0 \end{bmatrix}$$

Its contribution to the Lagrangian is given by:

(2.2)
$$\mathcal{L}_{\mathcal{H}} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - V(\Phi)$$

where the Higgs potential takes the form

(2.3)
$$V(\Phi) = \mu^2 |\Phi^{\dagger} \Phi| + \lambda (|\Phi^{\dagger} \Phi|)^2.$$

 D_{μ} is the covariant derivative

(2.4)
$$D_{\mu} = \partial_{\mu} - \frac{ig}{2} \tau \cdot A_{\mu} - \frac{ig'}{2} B_{\mu} Y.$$

Consider the case that the parameters of the Higgs potential λ and μ satisfy the conditions $\lambda > 0$ and $\mu^2 < 0$. Then the shape of the potential is shown in ??. Clearly, there is no minimum of the potential at $\Phi = 0$. Rather, an infinite set of minima lie around a circle in the complex plane. Hence, it is said that Φ has a nonzero vacuum expectation value (VEV). The value of the VEV in terms of μ and λ can be determined by explicitly minimizing the potential:

$$\frac{\partial}{\partial(\Phi^{\dagger}\Phi)}V(\Phi) = 0$$

$$\mu^{2} + 2\lambda \Big(|\Phi^{\dagger}\Phi|\Big) = 0$$

$$(2.5)$$

$$\mu^{2} + 2\lambda \Big[(\phi^{+})^{2} + (\phi^{0})^{2}\Big] = 0$$

Clearly, this can be minimized in many ways depending on individual values of ϕ^+ and ϕ^0 in the vacuum. By convention, and without loss of generality, we choose the case in which $\phi^+=0$. In this case we obtain the equation

$$\phi^0 = \sqrt{\frac{-\mu^2}{2\lambda}} = \frac{1}{\sqrt{2}}v$$

where we have defined $v \equiv \sqrt{-\mu^2/\lambda}$.

The existence of the Higgs VEV has profound implications. To see this, it is helpful to reparameterize the scalar doublet field Φ as follows:

(2.7)
$$\Phi = \frac{1}{\sqrt{2}} e^{i\frac{\tau^a}{2}\theta_a(x)} \begin{bmatrix} 0 \\ v + h(x) \end{bmatrix}$$

As Φ is invariant under local SU(2) gauge transformations, the prefactor may be rotated away. This is equivalent to setting $\theta(x) = 0$ in equation 2.7. This choice of gauge is known as the unitary gauge, and leads to

(2.8)
$$\Phi = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v + h(x) \end{bmatrix}$$

Given the above form of Φ , we can now evaluate the Higgs Lagrangian (equation 2.2), starting with the kinetic term $(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)$.

$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) = \left| (\partial_{\mu} - \frac{ig}{2}\tau \cdot A_{\mu} - \frac{ig'}{2}B_{\mu}Y)\Phi \right|^{2}$$

$$= \frac{1}{2} \left| \begin{bmatrix} \partial_{\mu} - \frac{i}{2}(gA_{\mu}^{3} + g'B_{\mu}) & -\frac{ig}{2}(A_{\mu}^{1} - iA_{\mu}^{2}) \\ -\frac{ig}{2}(A_{\mu}^{1} + iA_{\mu}^{2}) & \partial_{\mu} + \frac{i}{2}(gA_{\mu}^{3} - g'B_{\mu}) \end{bmatrix} \begin{bmatrix} 0 \\ v + h(x) \end{bmatrix} \right|^{2}$$

$$= \frac{1}{2} \left| \begin{bmatrix} -\frac{ig}{2}(A_{\mu}^{1} - iA_{\mu}^{2})(v + h(x)) \\ \partial_{\mu}h(x) + \frac{i}{2}(gA_{\mu}^{3} - g'B_{\mu})(v + h(x)) \end{bmatrix} \right|^{2}$$

$$= \frac{1}{2}\partial_{\mu}h(x)\partial^{\mu}h(x) + \frac{1}{8}(gA_{\mu}^{3} - g'B_{\mu})(gA_{\mu}^{3} - g'B^{\mu})(v + h(x))^{2}$$

$$+ \frac{g^{2}}{8}(A_{\mu}^{1} - iA_{\mu}^{2})(A_{\mu}^{1} + iA_{\mu}^{2})(v + h(x))^{2}$$

$$(2.9)$$

With some foreknowledge of the result, let us define the physical gauge fields and their masses as follows:

(2.10)
$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (A_{\mu}^{1} \mp i A_{\mu}^{2}) \qquad m_{W} = \frac{gv}{2}$$

(2.11)
$$Z_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} (gA_{\mu}^3 - g'B_{\mu}) \qquad m_Z = \sqrt{g^2 + g'^2} \frac{v}{2}$$

(2.12)
$$A_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} (g' A_{\mu}^3 + g B_{\mu}) \qquad m_A = 0$$

Then the kinetic term of the Higgs Lagrangian can be recast as

$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) = \frac{1}{2}\partial_{\mu}h(x)\partial^{\mu}h(x)$$

$$+ \frac{1}{2}m_{Z}^{2}Z_{\mu}Z^{\mu} + m_{W}^{2}W_{\mu}^{+}W^{-\mu}$$

$$+ \frac{v}{4}(g^{2} + g'^{2})Z_{\mu}Z^{\mu}h + \frac{1}{8}(g^{2} + g'^{2})Z_{\mu}Z^{\mu}h^{2}$$

$$+ \frac{v}{4}g^{2}W_{\mu}^{+}W^{-\mu}h + \frac{1}{8}g^{2}W_{\mu}^{+}W^{-\mu}h^{2}$$

$$(2.13)$$

Equation 2.13 provides a great deal of information on the physical ramifications of the Higgs mechanism. The first term is the kinetic term of the physical Higgs boson field. The second and third terms are the mass terms of the Z and W bosons respectively. The fourth and fifth terms show the linear and quadratic couplings of the Z boson to the Higgs boson respectively. Finally, the sixth and seventh terms show the linear and quadratic couplings of the W boson to the Higgs boson respectively. Given the form of equation 2.8, a similar expansion can be carried out on the Higgs potential (equation 2.3). Here, the terms involving the physical Higgs boson are most interesting, so constant terms are

dropped.

$$V(\Phi) = \frac{\mu^2}{2} (v+h)^2 + \frac{\lambda}{4} ((v+h)^2)^2$$

$$(2.14) \qquad \qquad \to \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$$

The first term is a Higgs mass term, with $m_H = \sqrt{2\lambda v^2}$. The second and third terms describe the Higgs trilinear and quartic self-coupling respectively.

The Lagrangian including the Higgs doublet Φ can be further extended to incorporate interactions between the Higgs and fermion fields. These interactions, along with the nonzero Higgs VEV, provide a mechanism to generate the fermion masses. The interactions take the form of Yukawa couplings:

(2.15)
$$\mathcal{L}_{Yukawa} = Y_{ij}^{d} \bar{Q}_{L}^{i} \Phi d_{R}^{j} + Y_{ij}^{u} \bar{Q}_{L}^{i} \tilde{\Phi} u_{R}^{j} + Y_{ij}^{e} \bar{L}_{L}^{i} \Phi e_{R}^{j} + h.c.$$

where

$$\tilde{\Phi} \equiv i\tau_2 \Phi^*$$

Plugging in the unitary gauge Φ parameterization of equation 2.8, this evaluates to

(2.17)
$$\mathcal{L}_{Yukawa} = \frac{Y_{ij}^d}{\sqrt{2}} \bar{d}_L^i(v+h) d_R^j + \frac{Y_{ij}^u}{\sqrt{2}} \bar{u}_L^i(v+h) u_R^j + \frac{Y_{ij}^e}{\sqrt{2}} \bar{e}_L^i(v+h) e_R^j$$

It is worth looking closely at the terms in equation 2.17. For a given fermion type, the first term in the parentheses is a fermion mass term. The second term in the parentheses gives the coupling of the fermion to the Higgs boson. With this in mind, we observe that

the fermion mass is given in terms of the couplings and the Higgs vev by

$$(2.18) m_f = \frac{y_f v}{\sqrt{2}}$$

where y_f is the relevant value taken from the Yukawa coupling matrix. In addition, we see that the strength of the fermion coupling to the Higgs boson is given by $\frac{m_f}{v}$. Thus, fermions couple to the Higgs boson with strength directly proportional to their masses. This result has important consequences in the context of collider experiments, as it regulates the rates of Higgs production and decay related to each fermion-Higgs vertex.

2.4. Higgs Production

2.5. Higgs Decay

2.6. Physics Beyond the Standard Model

Experimental Apparatus

apparatus text

Overview of Analysis Strategy

Before discussing the full details of the analysis procedure and results, it is worth summarizing the broader strategy taken in our search for $H \to Z\gamma$. As two prior CMS results have been published with Run 1 data and 2016 data, we will emphasize the ways in which our analysis overlaps and differs from these previous approaches. Very broadly, the current search is similar to the previous analyses in trigger, object, and basic event selection. However, it is significantly more advanced in three body mass reconstruction, event categorization, and background modeling. We will show that the innovations in these areas have significantly improved the expected sensitivity and statistical robustness of the search with respect to the past CMS analyses.

Chapter 5 provides a detailed description of the data and Monte Carlo simulation used in our analysis. Standard dimuon and dielectron trigger streams are used for 2016, 2017, and 2018 LHC data. The full dataset corresponds to an integrated luminosity of $137 \ fb^{-1}$. In other words, we use the full CMS Run 2 dataset at 13 TeV center of mass energy. Simulated signal samples are used to determine the expected signal yields and three body mass shape. Simulated background samples are used for MVA training and category optimization. However, the background shape and normalization in the final result is determined by fitting the data and does not rely on any simulation.

Chapter 6 describes the basic object and event selection used in the analysis, and Chapter 7 describes further selection and categorization using MVAs. As mentioned, the basic selection requirements are fairly similar to previous CMS analyses. Muons are selected with a loose cut-based ID, while electrons and photons are selected with loose MVA IDs. Loose ID requirements are chosen in order to maximize signal efficiency. Background is then suppressed through a combination of basic cuts and MVA methods. Basic kinematic cuts on isolation, mass, and photon energy variables are able to significantly reduce backgrounds from initial and final state radiation, while the MVA methods are able to strongly disciminate against backgrounds from jets misreconstructed as photons. Finally, a kinematic fit procedure in the dilepton mass is able to significantly improve the signal mass resolution. The kinematic fit is an innovation of the current analysis and contributes to its improved sensitivity.

Chapter 8 details the approach to signal and background modeling of the three body mass spectrum. As in previous CMS $H \to Z\gamma$ searches, the signal shape is determined via an analytic fit to simulation. A resonant background contribution from $H \to \mu^+\mu^-$ is modeled similarly. The nonresonant background contribution is taken from a fit to data in the range of 105 to 170 GeV. This background model includes both the turn-on arising from the real Z boson peak as well as the falling spectrum at higher mass. We note that the turn-on was fit in the Run 1 analysis as well, but was dropped in the 2016 analysis. A more thorough discussion of the merits of fitting the turn-on will be described in chapter 8.

Chapter 9 describes the systematic uncertainties relevant for the analysis, and Chapter 10 gives a basic overview of the statistics used to arrive at the final results. It is worth noting that given the current integrated luminosity, the analysis is dominated by statistical

uncertainty. Chapter 11 gives the full set of results, including best fit signal strength, limits, and comparisons with $H\to\gamma\gamma$.

Data and Simulation

Object and Event Selection

6.1. Triggers

The topology and basic kinematics of the $H \to Z\gamma$ process guide the choice of triggers used in this analysis. As this is a three body decay, the p_T of the photon tends to be less than in other channels like $H \to \gamma\gamma$. Consequently, the CMS photon trigger p_T thresholds are too great to make them viable options. Instead, we trigger on the leptons arising from the decay of the Z boson, which tend to have larger p_T . The best approach to maximize signal efficiency is to use the double lepton triggers. The double muon trigger has p_T thresholds of 17 and 8 GeV, and the double electron trigger has thresholds of 23 and 12 GeV. These are the lowest unprescaled double lepton triggers generally available for CMS Run 2 analysis. Events passing both the double muon and double electron triggers are treated as double muon events.

The triggers are applied to both data and simulation. Trigger efficiencies and scale factors are measured using the simulation samples corresponding to each data-taking year. These measurements use a tag and probe method [CITE]. The tag and probe method takes advantage of the high purity of $Z \to \ell^+\ell^-$ events near the Z mass peak. One lepton functions as the tag, and satisfies a set of tight trigger, identification, isolation, p_T requirements. The second lepton, the probe, must pass a looser selection and is used to measure the efficiency in question. Using this approach, trigger efficiencies for each

leg of a given double lepton trigger are measured in both data and simulation. Then a corrective scale factor, defined as the ratio of data efficiency to simulation efficiency, is applied to the simulation. Scale factors are measured and applied in bins of p_T and $|\eta|$.

For the double electron trigger efficiency measurements, the tag electron must satisfy the following requirements. It must pass the single electron trigger, pass a tight cut-based identification, have $p_T > 30 (35)$ in 2016 (2017/2018), and have $|\eta| < 2.5$. The probe electron must pass the loose electron MVA identification (with isolation) requirement. The efficiencies for each leg of the trigger are measured separately, so in each case, the probe electron must match the trigger leg being measured. The efficiencies and scale factors of each double electron trigger leg for 2016, 2017, and 2018 are shown in Figures [FIGS].

For the double muon trigger efficiency measurements, the tag muon must satisfy the following requirements. It must pass the single muon trigger, pass a tight cut-based identification, have $p_T > 26 \, (29)$ GeV for 2016 (2017/2018) and satisfy $|\eta| < 2.4$. The probe muon must pass the $H \to ZZ$ identification and isolation cuts. The details of the $H \to ZZ$ muon identification will be described later. The efficiencies for each leg of the trigger are measured separately, so in each case, the probe muon must match the trigger leg being measured. The efficiencies and scale factors of each double muon trigger leg for 2016, 2017, and 2018 are shown in Figures [FIGS].

6.2. Muon Selection

Event Categorization

Signal and Background Modeling

Systematic Uncertainties

Statistical Analysis

Results and Interpretation

Conclusion

References

- $[1]\ A$ bibliographic item. A bibliographic item. A bibliographic item. A bibliographic item.
- [2] Another bibliographic item.
- [3] Yet another bibliographic item.