Конаныхина Антонина, Р3215

ИД3-19.2. Вариант 8:

X\Y	15	30	45	60	75	90	105	120	m _x
750	2	4	2	0	0	0	0	0	8
1250	0	0	6	7	3	0	0	0	16
1750	0	0	0	6	13	9	0	0	28
2250	0	0	0	6	8	9	0	0	23
2750	0	0	0	0	7	8	1	0	16
3250	0	0	0	0	0	1	5	3	9
m _y	2	4	8	19	31	27	6	3	100

Решение:

	j	1	2	3	4	5	6	7	8					
i	X\Y	15	30	45	60	75	90	105	120	m _x	m _x x _i	$\sum_{j=1}^k m_{yj} y_i$	$m_{xi}x_i^2$	$x_i \sum_{j=1}^k m_{ij} y_j$
1	750	2	4	2	0	0	0	0	0	8	6000	240	4500000	180000
2	1250	0	0	6	7	3	0	0	0	16	20000	915	25000000	1143750
3	1750	0	0	0	6	13	9	0	0	28	49000	2145	85750000	3753750
4	2250	0	0	0	6	8	9	0	0	23	51750	1770	116437500	3982500
5	2750	0	0	0	0	7	8	1	0	16	44000	1350	121000000	3712500
6	3250	0	0	0	0	0	1	5	3	9	29250	975	95062500	3168750
	m _y	2	4	8	19	31	27	6	3	100	200000	7395	447750000	15941250
	m _y y _j	30	120	360	1140	2325	2430	630	360	7395	-	-	-	-
	$\sum_{i=1}^k m_{xi} x_i$	1500	3000	9000	32750	63750	61250	19000	9750	200000	-	-	-	-
	$m_{ji}y_j^2$	450	3600	16200	68400	174375	218700	66150	43200	591075	-	=	-	-
	$y_j \sum_{i=1}^k m_{ij} x_j$	22500	90000	405000	1965000	4781250	5512500	1995000	1170000	15941250	1	=	-	-

При построении таблицы надо выполнить проверку:

$$\sum_{i=1}^{6} m_{xi} = \sum_{j=1}^{8} m_{yj} = n = 100$$

$$\sum_{i=1}^{6} \sum_{j=1}^{8} m_{ij} x_i = \sum_{i=1}^{6} m_{xi} x_i = 200000$$

$$\sum_{i=1}^{6} \sum_{j=1}^{8} m_{ij} y_j = \sum_{j=1}^{8} m_{yi} y_j = 7395$$

$$\sum_{i=1}^{6} \left(x_i \sum_{j=1}^{8} m_{ij} * y_j \right) = \sum_{j=1}^{8} \left(y_j \sum_{i=1}^{6} m_{ij} * x_i \right) = 15941250$$

Вычисляем выборочные средние:

$$\bar{x} = \frac{\sum_{i=1}^{6} \sum_{j=1}^{8} m_{ij} x_i}{n} = 2000$$

Конаныхина Антонина, Р3215

$$\bar{y} = \frac{\sum_{i=1}^{6} \sum_{j=1}^{8} m_{ij} y_j}{n} = 73,95$$

Выборочные дисперсии найдем по формулам:

$$S_x^2 = \frac{1}{n-1} \left(\sum m_{xi} x_i^2 - \frac{1}{n} \left(\sum m_{xi} x_i \right)^2 \right) = \frac{1}{99} \left(447750000 - \frac{1}{100} (200000)^2 \right) = 482323,2323$$

$$S_y^2 = \frac{1}{n-1} \left(\sum m_{xj} y_j^2 - \frac{1}{n} \left(\sum m_{yj} y_j \right)^2 \right) = \frac{1}{99} \left(591075 - \frac{1}{100} (7395)^2 \right) = 446,6136364$$

Корреляционный момент найдем по формуле:

$$S_{xy} = \frac{1}{n-1} \left(\sum \sum_{i=1}^{n} m_{ij} x_i y_j - \frac{1}{n} \left(\sum_{i=1}^{n} m_{xi} x_i \right) \left(\sum_{i=1}^{n} m_{yj} y_j \right) \right)$$

$$= \frac{1}{99} \left(15941250 - \frac{1}{100} * 200000 * 7395 \right) = 11628,78788$$

Оценкой теоретической линии регрессии является эмпирическая линия регрессии, уравнение которой имеет вид:

$$y = \bar{y} + r_{xy} \frac{S_y}{S_x} (x - \bar{x})$$

$$S_y = \sqrt{S_y^2} = 21,13323535$$

$$S_x = \sqrt{S_x^2} = 694,4949477$$

$$r_{xy} = \frac{S_{xy}}{S_x S_y} = 0,792317719$$

Составим уравнение:

$$y = 73,95 + 0,7923177 * \frac{21,13323535}{694.4949477}(x - 2000) = 0,02411x + 25,7301$$

