Let $\phi:\mathbb{H}^2 \to \mathbb{H}^2$ be an isometry i.e. $\phi \in \mathrm{Isom}(\mathbb{H}^2)$. Let also that $A \in PSL(2,\mathbb{R})$ such that $A \circ \phi(I) = I$ where I is the imaginary axis minus $\{0\}$. Also let $B(z) = \frac{1}{\lambda}z \ \forall z \in \mathbb{C}$ where λ such that $A \circ \phi(i) = \lambda i$ for $i = \sqrt{-1}$. Then $B \circ A \circ \phi(i) = i$ and $B \circ A \circ \phi(I) = I$ as B(I) = I. Then we have $B \circ A \circ \phi$ preserves the $\{0,\infty\}$ and i why?

Reason:

 $B\in \mathrm{Isom}(\mathbb{H}^2)$, hence

$$B\circ A\circ \phi\in \mathrm{Isom}(\mathbb{H}^2)$$

Hence $B\circ A\circ \phi$ is a continuous map from \mathbb{H}^2 to \mathbb{H}^2 hence we can extend it to the boundary of \mathbb{H}^2 i.e. $\mathbb{C}\cup\{\infty\}$. Hence $B\circ A\circ \phi$ preserves the $\{0,\infty\}$ and i.

Now, consider a map $C(z)=-rac{1}{z}$, this map is an isometry of \mathbb{H}^2 .

Reason:

Corresponding matrix of C is

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

which is in $PSL(2,\mathbb{R})$ and hence $C\in \mathrm{Isom}(\mathbb{H}^2)$.

Now, $C\circ B\circ A\circ \phi(0)=0$ and $C\circ B\circ A\circ \phi(\infty)=\infty$ and $C\circ B\circ A\circ \phi(i)=i$ and hence $C\circ B\circ A\circ \phi(I)=I$.

Reason:

Let
$$CoBoAo\phi = \psi$$

ai $\psi(ai)$ $\forall (ai)$ $\forall (ai)$ $\forall (ai)$ = $\exists f$

pointwise.