Laura Diane Hamilton

Technical Product Manager at Groupon

Resumé

- <u>@lauradhamilton</u>
- <u>linkedin</u>
- github
- googleplus
- <u>email</u>
- <u>rss</u>

Machine Learning Algorithm Cheat Sheet

September 09, 2014

Here is a cheat sheet that shows which algorithms perform best at which tasks.

Algorithm	Pros	Cons	Good at
Linear regression	Very fast (runs in constant time)Easy to understand the modelLess prone to overfitting	- Unable to model complex relationships -Unable to capture nonlinear relationships without first transforming the inputs	
Decision trees	FastRobust to noise and missing valuesAccurate	Complex trees are hard to interpretDuplication within the same sub-tree is possible	Star classificationMedical diagnosisCredit risk analysis
Neural networks	 Extremely powerful Can model even very complex relationships No need to understand the underlying data Almost works by "magic" 	Prone to overfittingLong training timeRequires significant computing power for large datasetsModel is essentially unreadable	ImagesVideo"Human-intelligence" type tasks like driving or flyingRobotics
Support Vector Machines	Can model complex,nonlinear relationshipsRobust to noise (because they maximize margins)	 Need to select a good kernel function Model parameters are difficult to interpret Sometimes numerical stability problems Requires significant memory and processing power 	Classifying proteinsText classificationImage classificationHandwriting recognition
K-Nearest Neighbors	SimplePowerfulNo training involved ("lazy")Naturally handles multiclass classification and regression	Expensive and slow to predict new instancesMust define a meaningful distance function	Low-dimensional datasetsComputer security:intrusion detectionFault detection insemiconducter manufacturing