Lecture 7: The Curse of Dimensionality

Attendance code: EJZSDPUN

lain Styles

1 November 2018

Learning Outcomes

By the end of this lecture you should:

- Know how well naïve knn classsification performs on MNIST
- ▶ Know what effect reducing the dimensionality of the data has
- Understand and explain some of the properties of high dimensional spaces
- ▶ Be able to explain why they are important for learning

Recap: Classification

Vectorised MNIST

k nearest-neighbours Classification

knn and MNIST

▶ Do we expect *k*nn to do well on MIST?

knn and MNIST

- ▶ Do we expect knn to do well on MIST?
- Vectorising the images loses much of their spatial information
- There is substantial variability between characters

knn and MNIST

- Do we expect knn to do well on MIST?
- Vectorising the images loses much of their spatial information
- ► There is substantial variability between characters
- No harm in trying. . .
- Need a measure of similarity: Euclidean distance For images vectors x and y

$$d(\mathbf{x},\mathbf{y}) = \sqrt{((\mathbf{x} - \mathbf{y})^{\mathrm{T}}(\mathbf{x} - \mathbf{y}))} = \sqrt{\sum_{i} (x_i - y_i)^2}.$$
 (1)

- ► Smaller → more similar
- Use 10,000 training samples and 1000 test samples to save time

k = 1 nearest-neighbours

T	0	1	2	3	4	5	6	7	8	9
0	83	1	1	0	0	0	5	0	10	0
1	0	100	0	0	0	0	0	0	0	0
2	1	11	53	2	1	0	3	4	25	0
3	0	11	2	48	0	1	4	3	28	3
4	2	9	0	0	42	0	2	3	16	26
5	2	7	0	4	0	36	2	0	43	6
6	3	6	0	0	0	1	80	0	10	0
7	0	11	0	1	0	0	1	75	4	8
8	2	13	0	6	1	3	3	4	65	3
9	0	5	1	1	4	0	0	4	2	83

k = 1 nearest-neighbours

T	0	1	2	3	4	5	6	7	8	9
0	83	1	1	0	0	0	5	0	10	0
1	0	100	0	0	0	0	0	0	0	0
2	1	11	53	2	1	0	3	4	25	0
3	0	11	2	48	0	1	4	3	28	3
4	2	9	0	0	42	0	2	3	16	26
5	2	7	0	4	0	36	2	0	43	6
6	3	6	0	0	0	1	80	0	10	0
7	0	11	0	1	0	0	1	75	4	8
8	2	13	0	6	1	3	3	4	65	3
9	0	5	1	1	4	0	0	4	2	83

► Total accuracy: 67%

k = 3 nearest-neighbours

T	0	1	2	3	4	5	6	7	8	9
0	95	1	0	0	0	0	1	0	3	0
1	0	100	0	0	0	0	0	0	0	0
2	4	14	68	0	0	0	1	2	11	0
3	2	13	4	64	0	1	3	2	8	3
4	2	13	1	0	51	0	4	2	3	24
5	5	13	0	10	1	39	2	0	24	6
6	2	7	0	0	1	1	88	0	1	0
7	0	18	2	1	1	1	0	68	3	6
8	3	18	0	3	1	3	3	4	65	0
9	1	7	0	1	1	0	0	2	2	86

► Total accuracy: 72%

k = 5 nearest-neighbours

T	0	1	2	3	4	5	6	7	8	9
0	97	1	0	0	0	0	1	0	1	0
1	0	100	0	0	0	0	0	0	0	0
2	3	17	69	1	0	0	2	3	5	0
3	1	19	1	60	0	0	6	3	7	3
4	2	12	1	0	50	0	5	1	4	25
5	5	9	0	5	2	51	2	0	19	7
6	2	7	0	0	1	1	89	0	0	0
7	0	18	0	0	1	1	0	73	2	5
8	3	18	1	3	0	1	4	5	65	0
9	1	9	0	0	0	0	0	1	4	85

► Total accuracy: 74%

k = 7 nearest-neighbours

T	0	1	2	3	4	5	6	7	8	9
0	95	1	0	0	0	0	3	0	1	0
1	0	100	0	0	0	0	0	0	0	0
2	1	17	70	0	0	0	2	4	6	0
3	1	20	0	61	0	1	6	2	5	4
4	3	9	0	0	55	0	4	1	2	26
5	5	9	1	5	1	51	3	0	17	8
6	2	7	0	0	0	1	90	0	0	0
7	1	17	1	0	1	0	0	75	1	4
8	3	16	1	2	0	1	4	5	66	2
9	1	7	0	0	0	0	0	2	2	88

► Total accuracy: 75%

► Consensus voting over *k* neighbours bring significant gains over single nearest neighbours

- ► Consensus voting over *k* neighbours bring significant gains over single nearest neighbours
- k = 7: diminishing returns?

- ► Consensus voting over *k* neighbours bring significant gains over single nearest neighbours
- k = 7: diminishing returns?
- ▶ 0, 1, 6, and 9 can be identified very accurately
- > 3, 4, and 5 much more resistant

- Consensus voting over k neighbours bring significant gains over single nearest neighbours
- k = 7: diminishing returns?
- ▶ 0, 1, 6, and 9 can be identified very accurately
- > 3, 4, and 5 much more resistant
- How can we improve this?
- Change the similarity metric

- Consensus voting over k neighbours bring significant gains over single nearest neighbours
- k = 7: diminishing returns?
- ▶ 0, 1, 6, and 9 can be identified very accurately
- > 3, 4, and 5 much more resistant
- How can we improve this?
- Change the similarity metric learn it from the data

- Consensus voting over k neighbours bring significant gains over single nearest neighbours
- k = 7: diminishing returns?
- ▶ 0, 1, 6, and 9 can be identified very accurately
- > 3, 4, and 5 much more resistant
- How can we improve this?
- Change the similarity metric learn it from the data
- Reduce the dimensionality

- Consensus voting over k neighbours bring significant gains over single nearest neighbours
- k = 7: diminishing returns?
- ▶ 0, 1, 6, and 9 can be identified very accurately
- > 3, 4, and 5 much more resistant
- How can we improve this?
- Change the similarity metric learn it from the data
- ► Reduce the dimensionality high-dimensional vector space do not behave the same way as low-dimensionality spaces

- Consensus voting over k neighbours bring significant gains over single nearest neighbours
- k = 7: diminishing returns?
- ▶ 0, 1, 6, and 9 can be identified very accurately
- > 3, 4, and 5 much more resistant
- How can we improve this?
- Change the similarity metric learn it from the data
- ► Reduce the dimensionality high-dimensional vector space do not behave the same way as low-dimensionality spaces

- Take each image vector (784-element column vector)
- ► Take scalar (dot) product with each of 40 random 784-element vectors.
- Replace each sample with the resulting 40-element vector

- ► Take each image vector (784-element column vector)
- ► Take scalar (dot) product with each of 40 random 784-element vectors.
- Replace each sample with the resulting 40-element vector

$$\begin{pmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_N \end{pmatrix} = \begin{pmatrix} \mathbf{r}_1^{\mathrm{T}} \\ \mathbf{r}_2^{\mathrm{T}} \\ \dots \\ \mathbf{r}_M^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_N \end{pmatrix}. \quad (2)$$

- ► Form new training and test sets: 10000 and 1000 40-element vectors.
- ▶ Use *k*-nn to classify the training set.

k = 7 nearest-neighbours, 40 random projections

T	0	1	2	3	4	5	6	7	8	9
0	98	0	0	0	0	1	0	0	1	0
1	0	100	0	0	0	0	0	0	0	0
2	3	4	79	1	0	1	4	3	5	0
3	0	4	2	84	0	1	1	3	2	3
4	0	1	0	0	85	0	1	2	2	9
5	0	2	0	3	1	86	4	2	1	1
6	1	0	0	0	1	6	91	1	0	0
7	0	3	1	1	1	0	0	91	0	3
8	1	0	5	13	3	4	1	2	70	1
9	0	1	0	0	6	0	0	2	2	89

► Total accuracy: 87%!!!

The Curse of Dimensionality

► Why did projecting the data onto 40 random vectors improve classification?

The Curse of Dimensionality

- ► Why did projecting the data onto 40 random vectors improve classification?
- ► High-dimensional spaces have weird properties.

The Curse of Dimensionality

- ► Why did projecting the data onto 40 random vectors improve classification?
- ► High-dimensional spaces have weird properties.
- ► Some examples...

Hyperspheres inside hypercubes

- ► Hypercube: *n*-dimensional analogue of cube
- In each dimension, the cube has a side of length 2r such that the centre of each face is a distance r from the centre

Hyperspheres inside hypercubes

- ► Hypercube: *n*-dimensional analogue of cube
- ▶ In each dimension, the cube has a side of length 2r such that the centre of each face is a distance r from the centre
- ► Hypercube encloses a *hypersphere* of radius *r*, defined as the set of points a distance *r* from its centre.
- Hypersphere intersects hypercube in the centre of its faces.

Hyperspheres inside hypercubes

- ► Hypercube: *n*-dimensional analogue of cube
- ▶ In each dimension, the cube has a side of length 2r such that the centre of each face is a distance r from the centre
- ► Hypercube encloses a *hypersphere* of radius *r*, defined as the set of points a distance *r* from its centre.
- Hypersphere intersects hypercube in the centre of its faces.

► How are the volume of the cube and the sphere related?

▶ In 2d, the corners of a square are $\sqrt{2}r \approx 1.41r$ from the centre.

- ▶ In 2d, the corners of a square are $\sqrt{2}r \approx 1.41r$ from the centre.
- ▶ In 3d, the corners are $\sqrt{3}r \approx 1.73r$ from the centre.

- ▶ In 2d, the corners of a square are $\sqrt{2}r \approx 1.41r$ from the centre.
- ▶ In 3d, the corners are $\sqrt{3}r \approx 1.73r$ from the centre.
- ▶ 4d: 2r, 5d: 2.23r etc.
- ▶ In general, corners of a hypercube are $r\sqrt{n}$ from its centre

- ▶ In 2d, the corners of a square are $\sqrt{2}r \approx 1.41r$ from the centre.
- ▶ In 3d, the corners are $\sqrt{3}r \approx 1.73r$ from the centre.
- ▶ 4d: 2r, 5d: 2.23r etc.
- ▶ In general, corners of a hypercube are $r\sqrt{n}$ from its centre

▶ In d = 1000, the corners of the hypercube are more than 30 times further out than the hypersphere it encloses.

How much volume does the sphere occupy?

▶ 2d: square: $4r^2$, circle: πr^2 ; ratio $\pi/4 \approx 0.785$

How much volume does the sphere occupy?

- ▶ 2d: square: $4r^2$, circle: πr^2 ; ratio $\pi/4 \approx 0.785$
- ► 3d: cube: $8r^3$, sphere: $4\pi r^3/3$; ratio $4\pi/24 \approx 0.52$
- Only half the cube is in the sphere!

How much volume does the sphere occupy?

- ▶ 2d: square: $4r^2$, circle: πr^2 ; ratio $\pi/4 \approx 0.785$
- ► 3d: cube: $8r^3$, sphere: $4\pi r^3/3$; ratio $4\pi/24 \approx 0.52$
- Only half the cube is in the sphere!
- ► *n*-d cube: $V = (2r)^n$; *n*-d sphere: $V = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}R^n$, where $\Gamma(x)$ is the Gamma function.

How much volume does the sphere occupy?

- ▶ 2d: square: $4r^2$, circle: πr^2 ; ratio $\pi/4 \approx 0.785$
- ► 3d: cube: $8r^3$, sphere: $4\pi r^3/3$; ratio $4\pi/24 \approx 0.52$
- Only half the cube is in the sphere!
- ► *n*-d cube: $V = (2r)^n$; *n*-d sphere: $V = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}R^n$, where $\Gamma(x)$ is the Gamma function.

Where is the volume in a hypersphere?

- Consider two hyperspheres with the same centre, one of radius r, the other of radius $r-\delta$
- ▶ Their volumes are $\alpha_n r^n$ and $\alpha_n (r \delta)^n$ respectively
- ▶ The difference between them is a thing "shell" of thickness δ .

Where is the volume in a hypersphere?

- Consider two hyperspheres with the same centre, one of radius r, the other of radius $r-\delta$
- ▶ Their volumes are $\alpha_n r^n$ and $\alpha_n (r \delta)^n$ respectively
- ▶ The difference between them is a thing "shell" of thickness δ .
- As a proportion of the larger shell the shell has volume

$$\frac{V_{\text{shell}}}{V_{\text{sphere}}} = \frac{\alpha \left(r^n - (r - \delta)^n\right)}{\alpha r^n} \tag{3}$$

$$=1-r^{-n}(r-\delta)^n\tag{4}$$

$$=1-\left(r^{-1}(r-\delta)\right)^{n}\tag{5}$$

$$=1-\left(1-\frac{\delta}{r}\right)^n\tag{6}$$

Where is the volume in a hypersphere?

- Consider two hyperspheres with the same centre, one of radius r, the other of radius $r-\delta$
- ▶ Their volumes are $\alpha_n r^n$ and $\alpha_n (r \delta)^n$ respectively
- ▶ The difference between them is a thing "shell" of thickness δ .
- ► As a proportion of the larger shell the shell has volume

$$\frac{V_{\text{shell}}}{V_{\text{sphere}}} = \frac{\alpha \left(r^n - (r - \delta)^n\right)}{\alpha r^n} \tag{3}$$

$$=1-r^{-n}(r-\delta)^n\tag{4}$$

$$=1-\left(r^{-1}(r-\delta)\right)^{n}\tag{5}$$

$$=1-\left(1-\frac{\delta}{r}\right)^n\tag{6}$$

- ▶ In the limit $n \to \infty$, this tends to 1
- ▶ The volume is concentrated in the shell.

- ► The same phenomena affect pairwise distances
- Let's do an experiment

- The same phenomena affect pairwise distances
- Let's do an experiment
- ► Generate 10⁶ uniformly randomly distributed data points and compute the distances between all pairs of points.
- ▶ What are the min/max pairwise distances?

- The same phenomena affect pairwise distances
- Let's do an experiment
- ► Generate 10⁶ uniformly randomly distributed data points and compute the distances between all pairs of points.
- ▶ What are the min/max pairwise distances?

- The same phenomena affect pairwise distances
- Let's do an experiment
- ► Generate 10⁶ uniformly randomly distributed data points and compute the distances between all pairs of points.
- ► What are the min/max pairwise distances?

A General Result.

► Empirical verification of a well-known result

$$\lim_{n \to \infty} \mathbb{E}\left(\frac{d_{\max} - d_{\min}}{d_{\min}}\right) \to 0 \tag{7}$$

A General Result

Empirical verification of a well-known result

$$\lim_{n\to\infty} \mathbb{E}\left(\frac{d_{\max} - d_{\min}}{d_{\min}}\right) \to 0 \tag{7}$$

► To what extent is it relevant to MNIST

Distances in MNIST

▶ 1000 points from the test set and 1000 points from the training set

Distances in MNIST

▶ 1000 points from the test set and 1000 points from the training set

- ▶ Mean/median of \approx 2300 and a standard deviation of \approx 300.
- ▶ 68% of pairwise distances lie between 2000 and 2600, and 95% between 1700 and 2900.

Distances in MNIST

▶ 1000 points from the test set and 1000 points from the training set

- ▶ Mean/median of \approx 2300 and a standard deviation of \approx 300.
- ▶ 68% of pairwise distances lie between 2000 and 2600, and 95% between 1700 and 2900.
- Not as "bad" as we might expect? Why?