Samenvatting chemie 3 ^{de} graad – module 1 – wetenschappen (2u chemie) – made by Abdellah		
(Y) VOORWOORD Wetenschapsrichtingen (2u chemie): Samenvatting bruikbaar. Wiskunderichtingen (1u chemie): Samenvatting bruikbaar maar valt niet aan te raden tenzij je alle leerstof schrapt die je niet moet kennen. Talenrichtingen (2u NW): Samenvatting niet bruikbaar. Samenvatting enkel bruikbaar op het Atheneum Plus Hasselt vanwege zelfgemaakte cursus van leerkracht.		
(X) INHOUDSTAFEL (1) CHEMISCH REKENEN (STOÏCHIOMETRIE) (2) DRIJFVEREN VAN DE CHEMISCHE REACTIE (3) REACTIESNELHEID (4) CHEMISCH EVENWICHT		
(1) CHEMISCH REKENEN (STOÏCHIOMETRIE)		
(1A) EVEN HERHALEN: STOÏCHIOMETRIE NIVEAU 4 ^{DE} JAAR *Stappenplan: (molverhouding bepalen) → kg omzetten naar mol → mol omzetten naar kg → klaar! → Dit geldt nog steeds voor oefeningen in het 5dejaar, alleen worden ze véél moeilijker. *Voorbeeldoefening: oefening 10 (2 sterren) p. 4 in de cursus (probeer eerst zelf!) OPGAVE: Men laat 5ml bariumchloride (5 mV%) reageren met natriumfosfaat. Hoeveel gram neerslag wordt gevormd uit deze reactie? GEGEVEN: V(BaCl₂) = 5 ml, c(BaCl₂) = 5 mV% = 5 g/100ml reactievergelijking: 3 BaCl₂ + 2 Na₃PO₄ → Ba₃(PO₄)₂ ↓ + 6 NaCl (reactievgl krijg je gegeven) GEVRAAGD: m(Na₃PO₄) OPLOSSING: c = 5g/100 ml = 5g/207 g/mol / 100 ml = 0,0242 mol / 100 ml 0,000 ml / 100 ml 100 ml 0,000 ml / 100 ml 100 m		
3 BaCl ₂ + 2 Na ₃ PO ₄ → Ba ₃ (PO ₄) ₂ \downarrow + 6 NaCl 0,00121 mol : 3 = 0,0004033 mol (aangevuld met de molverhouding) → m = n . M = 0,0004033 mol . 601 g/mol = 0,242 g ANTWOORD: er wordt 0,242 gram neerslag gevormd.		
→ Als dit te makkelijk is kan ik je geruststellen: het wordt dadelijk véél moeilijker. ②		
(1AI) EVEN HERHALEN: DE ALGEMENE GASWET *Gaswet: p.V = n.R.T> hierbij is R de gasconstante: 8,31 J/(K. mol) → Oefeningen op de algemene gaswet zijn héél makkelijk dus doe ik ze niet voor. → De algemene gaswet geldt enkel voor ideale gassen.		
(1AII) EVEN HERHALEN: DINGEN DIE WE VORIG JAAR EIGENLIJK AL MOESTEN KENNEN Het getal van Avogadro = N_A = 6,023 . 10^{23} deeltjes/mol Normomstandigheden (n.o.): 273 K,		

1 mol, 22.4 mol/l, 8,31 J/(kg.mol)

c (concentratie) = n/V (mol/l)

Stoffen verdunnen: $c_1 \cdot V_1 = c_2 \cdot V_2$

```
(1B) MOEILIJKE STOÏCHIOMETRIE: STOÏCHIOMETRIE NIVEAU 5<sup>DE</sup> JAAR
(1BI) HET MOLAIR GASVOLUME
*Elke stof in een gasvormige toestand heeft eenzelfde molair gasvolume, namelijk: 22,4 l/mol
 \rightarrow Gewone formule massadichtheid: p = m/V \Leftrightarrow bij gassen: p = M/V<sub>M</sub> (molair gasvolume)
(1BII) CONCENTRATIEGROOTHEDEN (VANBUITEN LEREN!)
*In het 5dejaar komen er allerlei nieuwe concentratiegrootheden die je moet kennen.
*Concentratiegrootheden: mol/l = M
                            g/100g = m\%
                            ml/100ml = V%
                            g/100ml = mV\%
                            ml/l of g/kg = promille = \( \text{(denk aan alcohol: max. 0,2 promille)} \)
                            mg/kg of ml/1000l of ml/m^3 = ppm = parts per million
                            mg/1000kg of ml/1000m<sup>3</sup> = ppb = parts per billion
*Je moet kunnen rekenen hiermee en dit kunnen omzetten.
(1BIII) MOEILIJKE STOICHÏOMETRISCHE VRAAGSTUKKEN: NIVEAU 5<sup>DE</sup> JAAR
*Voorbeeldoefening: oefening 11 p. 10 in de cursus (3 sterren)
                                                                             Molair gasvolume? Als je
 GEGEVEN: CuO + 2 HNO<sub>3</sub>-→ H<sub>2</sub>O + HNO<sub>3</sub>
                                                                             onder normonstandigheden
             c(HNO_3) = 65 \text{ m}\% = 65 \text{ g}/100\text{g} \Leftrightarrow p = 1,40 \text{ g/ml}
                                                                             werkt mag (moet) je werken
             CuO = 96% zuiver
                                                                             met het molair gasvolume of
 GEVRAAGD: V(HNO<sub>3</sub>) nodig om 100 g CuO weg te laten reageren?
                                                                             met de algemene gaswet (p.
 OPLOSSING: CuO + 2 HNO<sub>3</sub>-→ H<sub>2</sub>O + HNO<sub>3</sub>
                                                                             V = n . R . T) werken! Het
              96 g
                                                                             molair gasvolume V_m is altijd
              n = m/M
                                                                             22,4 I/mol.
              ⇔ n = 96g/(79,55 g/mol) = 1,20 mol
              1,20 mol – 2,40 mol (molverhouding!)
                          \rightarrow m = n . M = 2,40 mol . 63 g/mol = 151,2g
                              \rightarrow 65g/100g = 151,83g/233,58g : 1,40 g/ml (gegeven) = 166,84 ml
(1BIV) TERUGBLIK: SCHEMA --> HOE (MOEILIJKE) STOÏCHIOMETRISCHE VRAAGSTUKKEN OPLOSSEN
                                                                               V_{m} = 22,4 \text{ I/mol}
                                                                               N_A = 6.02 \cdot 10^{23}
                                                                               deeltjes/mol
                                                                               C = molconcentratie
  MASSA
                                                        DEELTJES
                                                                               uitgedrukt in mol/l
                                                                               M = molaire massa
                : M
                                                                               (som van alle
                                                                               atoommassa's van de
                                                                               molecule)
(1C) PROCENTUELE SAMENSTELLINGEN VAN VERBINDINGEN BEPALEN
```

(1CI) BEREKENING VAN HYDRAATWATER (uitbreiding, niet kennen voor examen) *We destilleren 8,33g kopersulfaat, we krijgen 3g water en 5,33g kopersulfaat.

 \rightarrow n = m/M = 3g/(18g/mol) = 1,67 . 10⁻¹ mol \leftarrow \rightarrow n = m/M = 5,33g/(160g/mol) = 3,33 . 10⁻² mol \rightarrow 1,67 . 10⁻¹ mol / 3,33 . 10⁻² mol = 5 watermoleculen → Elk kopersulfaatmolecule heeft 5 watermoleculen rond zich. (1CII) MOLECULEFORMULE/PROCENTUELE SAMENSTELLING VAN EEN ALKAAN BEPALEN *Moleculeformule van een alkaan bepalen: → Voorbeeldoefening = oef. 3, p. 14, 2 sterren \rightarrow GEGEVEN: $C_nH_{2n+2} + O_2 --> CO_2 + H_2O$ $m(CO_2) = 70.4g, m(H_2O) = 32.4g$ → GEVRAAGD: Moleculeformule alkaan + procentuele samenstelling $C_nH_{2n+2} + O_2 --> 70,4g CO_2 + 32,4g H_2O$ n = m/Mn = m/M = 32,4g/(18g/mol) = 1,80 mol**Bepaling** = 70.4g/(40g/mol) = 1.76 molmoleculeformule: → We hebben nu de mol berekent: let nu goed op! $\frac{n}{2n+2} = \frac{1,76}{3,60} \iff 3,60n =$ \rightarrow n(C) = 1,76 mol (we hebben één C-atoom) $1,76(2n+2) \Leftrightarrow 3,60n$ \rightarrow n(H₂) = 3,60 mol (we hebben twéé H-atomen) $3,52n + 3,52 \Leftrightarrow 0,08n =$ $3,52 \Leftrightarrow n = 44$ Molecule formule: $C_nH_{2n+2} \rightarrow C_{44}H_{88+2} \rightarrow C_{44}H_{90}$ Procentuele samenstelling bepalen: $\frac{M(element)}{M(molecule)}$. 100 (herinnering: M = molaire massa) \rightarrow In dit geval: C-44: $\frac{528 \, g/mol}{642}$.100 = 0.85 = 85%.100 = 0.15 = 15%(2) DRIJFVEREN VAN DE CHEMISCHE REACTIE (2A) VOORKENNIS *Wet van behoud van energie: energie kan niet verdwijnen noch ontstaan, het kan enkel een andere vorm aannemen. *Energetische begrippen: exo-energetische reactie = energie wordt afgegeven Energie opgeslagen in bindingen endo-energetische reactie = energie wordt opgenomen (2B) VORMINGSENTHALPIE (enthalpie = inwendige energie van een molecule) *De vormingsenthalpie is de reactie-enthalpie (zie verder) bij de vorming van één mol van een stof. \rightarrow Bv.: vorming van natriumchloride: Na(s) --> Na(g) / Δ H = 109 Kj ... (4 tussenstappen: chloor wordt gas, Na staat elektron af ...) $Na^+ + Cl^- \rightarrow NaCl / \Delta H = 109 Kj$ → De som van alle reactie-enthalpieën is de vormingsenthalpie van NaCl. *Wet van Hess: → Letterlijk: De reactie-enthalpie is onafhankelijk van de gevolgde reactieweg. Alleen de beginen eindtoestand zijn bepalend. → Niet-letterlijk: de tussenstappen maken niks uit, enkel de som aan het einde maakt uit! (2C) REACTIE-ENTHALPIE (ΔH) *AH = som vormingsenthalpieën eindproducten – som vormingsenthalpieën beginproducten → De vormingsenthalpie lees je af van de tabel, de vormingsenthalpie van een enk. stof = 0. (2CI) STOÏCHIOMETRISCHE BEREKENINGEN MET DE REACTIE-ENTHALPIE: VOORBEELDOEFENING

- *Oefening 8 p. 19 (2 sterren)
- \rightarrow Opgave: Waterstofperoxide ontbindt volgens de reactie: 2 H₂O₂(I) \rightarrow 2 H₂O(I) + O₂
 - --> Hoeveel warmte komt er vrij als er 1,00g waterstofperoxide ontbindt wordt?
- \rightarrow GEGEVEN: 2 H₂O₂(I) \rightarrow 2 H₂O(I) + O₂, tabel gebruiken!
- → GEVRAAGD: Q (Q is het symbool voor warmte --> vorig jaar geleerd tijdens fysica)
- \rightarrow OPLOSSING: 2 H₂O₂(I) \rightarrow 2 H₂O(I) + O₂
 - → ∆H = som vormingsenthalpie eindproducten som vormingsenthalpie beginprod.
 - \Leftrightarrow $\Delta H = 2 \cdot (-286 \text{ Kj}) + 0 \text{ (enkelvoudige stof!)} 2 \cdot (-191 \text{ kJ})$
 - ⇔ (ΔH = -95 Kj) --> één mol ⇔ -190 kJ voor **twéé mol**

Tip van Cartuyvels: als je niet weet hoe je aan zo'n oefening moet beginnen reken dan altijd als eerst de reactie-enthalpie uit voor 50% van de punten (... hoop ik)!

 $H_2O_2(I) \rightarrow H_2O(I) + O_2$

n = m/M = 1,00g/(34g/mol) = 0,0294 mol

--> Hieruit volgt: $1g H_2O_2 = 0,0294 \text{ mol}$

--> 2 mol : 2 . 0,0294 = 0,0294 mol

--> -190 kJ : 2 . 0,0294 = **-2,793 Kj**

Nadat je de mol hebt berekend pas je de regel van 3 toe en krijg je het antwoord!

 \rightarrow $\Delta H < 0 \rightarrow$ Dit is een exo-energetische reactie (energie komt vrij) (als $\Delta H > 0$ spreken we van een endo-energetische reactie)

(2D) ENTROPIE (S)

- *De natuur streeft altijd naar maximale wanorde omdat hier het minste energie geïnvesteerd in moet worden.
- → Kamer opruimen dilemma: je laat je kamer liever slordig omdat je lui bent, dat is de natuur.
- *Fotosynthese: $6CO_2 + 6H_2O --> C_6H_{12}O_6 + 6O_2$
- → S (entropie) neemt af: we beginnen met 12 moleculen en eindigen met 7!
- *Ontleden van waterstofperoxide: $2 H_2O_2(I) \rightarrow 2 H_2O(I) + O_2$
- → S neemt toe: we gaan van 2 moleculen naar 3!

(2E) WAT ZIJN NU DE DRIJFVEREN VAN DE CHEMISCHE REACTIE?

	$\Delta S > 0$ (entropie neemt toe)	ΔS < 0 (entropie neemt af)
ΔH > 0 (endo-energetisch)	Spontaan bij hogere T	Nooit spontaan
	→ T = temperatuur in Kelvin	
ΔH < 0 (exo-energetisch)	Altijd spontaan	Spontaan bij lagere T

- → De drijfveren van de chemische reactie zijn dus: afname van enthalpie + toename van entropie
 - -> Slimme meneer Gibbs heeft beide drijfveren in één formule gestoken: ΔG = ΔH T . ΔS
 - \rightarrow Als de verandering in Gibbs vrije energie (Δ G) negatief is, dan is de reactie spontaan!

(3) REACTIESNELHEID

*Dit deeltje gaat over hoe atomen botsen om moleculen te vormen, doen wij mensen ook, wij batsen tegen elkaar en laten ongelukken gebeuren om een nieuwe mens te vormen.

*Effectieve botsing: een botsing met voldoende energie om een chemische binding te verbreken.

. .

(3A) FACTOREN DIE DE REACTIESNELHEID BEÏNVLOEDEN

FACTOR 1) Verdelingsgraad: des te beter de stof 'verdeeld' is, des te sneller het zal reageren

- → Suiker in poedervorm lost beter op dan een klontje suiker omdat die beter verdeeld is!
- → → Waarom? Als de deeltjes goed verdeeld zijn kunnen ze meer effectieve botsingen maken

FACTOR 2) CONCENTRATIE: logisch --> hoe hoger de concentratie hoe meer kans er is op een effectieve botsing FACTOR 3) TEMPERATUUR: des te hoger de temperatuur, des te hoger de kans op effectieve botsing. → Herinner uzelf van vorig jaar: temperatuur is een maatgetal voor de gemiddelde kinetische energie (of bewegingsenergie) van deeltjes) --> hoe sneller ze bewegen hoe meer ze botsen! FACTOR 4) KATALYSATOR: een katalysator verlaagt de activeringsenergie van de reactie (3AI) REKENEN MET DE GEMIDDELDE REACTIESNELHEID $v_m = \frac{\Delta c}{\Delta t}$ In woorden: de gemiddelde reactiesnelheid is de verhouding van de verandering in concentratie op een tijdsinterval. *Ogenblikkelijke snelheid = dc/dt (limiet waarbij we t zo klein mogelijk maken) → niet-kennen ______ (3B) DE CHEMISCHE SNELHEIDSWET (3BI) DE REACTIESNELHEIDCONSTANTE *De reactiesnelheid hangt af van de reactiesnelheidsconstante k die énkel experimenteel bepaald kan worden. (3BII) DE CHEMISCHE SNELHEIDSWET *Voor een unimoleculaire reactie: n A --> X + Y → v = k . [A]ⁿ \rightarrow Bijvoorbeeld: N₂O₄ --> 2 NO₂ \rightarrow v = k . [N₂O₄]¹ *LET OP: voor een algemene reactie a A + b B --> X + Y → v = k . [A]* x [B]*-is FOUT → Waarom? Er moeten een te groot aantal (a + b) effectieve botsingen gebeuren!!! → In theorie wordt de reactiesnelheid bepaald door de traagste tussenstap in een reactie → Herinnering: een reactie gebeurt in tussenstappen (zie vormingsenthalpie) *Dus: juiste formule → v = k . [A]^m x [B]ⁿ is juist!!! \rightarrow m < a of m = a en n < a of n = a, (m+n) kan gelijk zijn aan (a+b)! → m + n = orde van de reactie --> kan énkel experimenteel bepaald worden (krijg je dus gegeven) (3BII_a) ORDE VAN EEN REACTIE (NIET KENNEN --> UITBREIDING --> MENSEN DIE GENEESKUNDE **ZOUDEN WILLEN DOEN WEL KENNEN VOOR TOELATINGSEXAMEN)** *Nulde orde-reactie \rightarrow m = 0 --> v = k [A]⁰ = k . 1 = k → Dit betekent dat de reactiesnelheid onafhankelijk is v/d concentratie v/d reagentia → Dus énkel de reactiesnelheidconstante maakt uit → Er is een lineair (recht evenredig) verband tussen concentratie en tijd (grafiek = rechte) *Eerste orde-reactie \rightarrow m = 1 --> v = k [A]¹ → De reactiesnelheid neemt recht evenredig af met de concentratie van reagentia → Dit is een lineair (recht evenredig) verband tussen ln [A] en de tijd (grafiek = rechte) *Tweede orde-reactie \rightarrow m + n = 2 → De reactiesnelheid neemt exponentieel af met de concentratie van de reagentia → Dit is een omgekeerd evenredig verband tussen [A] en de tijd (grafiek = hyperbool)