Exchange economies with indivisible goods

Sumit Goel

NYU Abu Dhabi

Econschool Winter School

What is exchange economy?

- An exchange economy consists of agents who are endowed with some goods and have some preferences over bundles they can consume.
- Some examples include:
 - Students assigned to dorm rooms
 - Passengers assigned airplane seats
 - Kidney transplant patients with a family/friend donor
 - Students assigned topics and dates for seminar series
- In this talk, we will focus on such exchange economies with indivisible goods.

Example

• Consider a housing economy with three agents in which each agent i is endowed with a house h_i and has the following preferences:

Agent 1	Agent 2	Agent 3
h_2	h ₃	h_1
h_1	h_2	h_3
h_3	h_1	h_2

- In this economy, the agents can trade and be strictly better off. But doing so requires agents to know about the preferences of other agents.
- Or maybe we can use the market mechanism?

The market mechanism

- In economies with infinitely divisible goods, the market mechanism leads to allocations that are Pareto optimal (first welfare theorem).
- Thus, the market, through prices, serves as an efficient mechanism for aggregating agents preferences.
- Can we use markets for economies with indivisible goods as well?
- Let us investigate this in the context of the simplest exchange economy with indivisible goods: the housing economy [Shapley and Scarf [1974]]!

Housing economy

- A housing economy $\{N, H, (u_i)_{i \in N}\}$ consists of
 - $N = \{1, 2, ..., n\}$: set of agents
 - \vdash $H = \{h_1, h_2, \dots h_n\}$: set of n houses, with h_i owned by i
 - $u_i: H \to \mathbb{R}$: agent *i*'s utility function over houses
- An assignment in this economy is a function $x : N \to H$.
- An assignment $x : N \to H$ is an allocation if x is a bijection.

Market equilibrium

- A market equilibrium is a pair (p,x) where $p: H \to \mathbb{R}$ is a price function and $x: N \to H$ is an assignment such that
 - ▶ x(i) maximizes agent i's utility over its budget set $\{h: p(h) \le p(h_i)\}$
 - x is an allocation
- In the introductory example, observe that $p(h_i) = a$ for all i and x assigning each agent its favorite house constitutes a market equilibrium.
- In general with *n* agents and *n* houses, if each agent has a different favorite house, then there is an equilibrium that assigns the same price to every house.
- Observe that in the market, each individual only needs to know the prices p to make its choice.

Another example

• Each agent has same preference

Agent 1	Agent 2	Agent 3
h_1	h_1	h_1
h_2	h_2	h_2
h_3	h_3	h_3

- In this case, any p such that $p(h_1) > p(h_2) > p(h_3)$ and $x(i) = h_i$ constitutes a market equilibrium.
- In general with *n* agents and *n* houses, if each agent has the same preference over houses, then there is an equilibrium in which the price system reflects the common preference.

Efficient allocations

- In the above examples, the market implements what seem to be efficient allocations given the preferences.
- Formally, we would want the allocation to be Pareto efficient. That is, there shouldn't be another allocation that makes everyone better off.
- Does the market always lead to something that is Pareto efficient?

First welfare theorem

Theorem

For any housing economy, every market equilibrium allocation is Pareto optimal.

- Suppose (p, x) is a market equilibrium and y Pareto dominates x. so that $u_i(x(i)) \le u_i(y(i))$ for all i with a strict inequality for at least one.
- But then, it must be that $p(y(i)) \ge p(x(i))$ for all i, with a strict inequality for at least one.
- But this contradicts $\sum_i p(x(i)) = \sum_i p(y(i)) = \sum_i p(h_i)$.

But, how often does the market equilibrium exist?

It always does!

Theorem (Shapley and Scarf [1974])

Every housing economy has a market equilibrium. Moreover, the equilibrium allocation is unique.

• Proof by construction: Top Trading Cycles (TTC) due to David Gale

Top trading cycle (TTC)

While agents remain:

- all agents point to the owner of their favorite house
- ② find a trading cycle $C = \{i_1, i_2, ..., i_k\}$ which has the property that
 - **1** i_j points to i_{j+1} for all $j \in \{1, 2, ..., k-1\}$
 - $i_1 = i_k$
- execute the trade suggested by the trading cycle and remove these agents and houses from the game

Illustration

Agent 1	Agent 2	Agent 3	Agent 4	Agent 5
h_4	h_1	h_1	h ₂	h_2
h_3	h_4	h_3	h_3	h_4
h_1	h_3	h_5	h_4	h_3
h_2	h_2	h_2	h_1	h_1
h_5	h_5	h_3	h_5	h_5

• Step 1:

• Step 2:

Prices

- If the algorithm terminates after m steps, it generates a partition of the agents as $N = C_1 \cup C_2 \cup \cdots \cup C_m$.
- We can assign prices $p_1 > p_2 \cdots > p_m$ to the houses belonging to the respective cycles.
- Then agent $i \in C_j$ can sell its house for p_j . It cannot afford a house owned by agents in $C_1 \cup C_2 \cup \cdots \cup C_{j-1}$. Thus, its utility is maximized from buying the house of its cyclic successor in C_j , which costs exactly p_j .
- Thus, the allocation x^{TTC} with the above prices constitute a market equilibrium of the housing economy.

Other nice properties

- TTC finds a Pareto-efficient allocation.
- TTC finds a core-stable allocation.
 - **1** No coalition $S \subset N$ can redistribute their houses amongst themselves so that all agents in S are better off.
- TTC mechanism is strategyproof.
 - If agent's preferences are private information, it is in their best interest to reveal these preferences honestly to a designer who will implement the TTC allocation.
 - In fact, TTC is the unique mechanism that is Pareto efficient, individually rational, and strategyproof.

Housing and parking spot market

Example

Suppose there are three agents endowed with a house and a parking spot $\omega_i = (h_i, p_i)$ and have the following preferences:

Agent 1	Agent 2	Agent 3
$(h_1, p_2)^1$	$(h_2, p_3)^2$	$(h_1, p_3)^3$
$(h_3, p_1)^3$	$(h_2, p_1)^1$	$(h_3, p_2)^2$
$(h_1, p_1)^2$	$(h_2, p_2)^3$	$(h_3, p_3)^1$

- The economy in this example has an empty core.
- Significant research in studying existence under natural preference domains.

Thank you!