Rates Série A 2015-2020

From Dixon & Robinson, 1998

In a match picked a random, let T_{xy} be the time to the next goal while the current score is (x, y) for x, y = 0, 1, 2, ..., and let δ_{xy} be a censoring indicator that is 0 if the match ends before the next goal is scored and 1 if a goal is observed. Then, assuming $T_{xy} \sim \exp(\nu_{xy})$, standart survival analysis give the maximum likelihood estimate of ν_{xy} as

$$\hat{\nu}_{xy} = \frac{\sum_{i=1}^{N} \delta_{xy,i}}{\sum_{i=1}^{N} t_{xy,i}}$$

where N is the number of matches, $t_{xy,i}$ and $\delta_{xy,i}$ are the observed times to the next goal and censoring indicators respectively, at score (x,y) in match i.

```
options(knitr.kable.NA = "-",
        scipen = 999)
library(dplyr)
library(knitr)
library(reshape2)
library(ggplot2)
load("2015-2020/data/input.RData")
x = list(); y = list(); xy = list()
for(i in 1:N) {
  x[[i]] = c(x1[[i]], x2[[i]])
 y[[i]] = c(y1[[i]], y2[[i]])
  xy[[i]] = paste(x[[i]], y[[i]], sep = "-")
}
tables = lapply(xy, table)
scores = NULL
c = 0
for(i in 0:3) {
 for(j in 0:3) {
    c = c + 1
    scores[c] = paste(i, j, sep = "-")
 }
}
delta_home = list(); delta_away = list(); t = list()
for(i in 1:length(scores)) {
  tmp_delta_home = NULL; tmp_delta_away = NULL; tmp_t = NULL
 for(k in 1:N) {
```

```
if(scores[i] %in% names(tables[[k]])) {
      next_score = names(tables[[k]])[which(names(tables[[k]]) ==
                                                 names(tables[[k]][scores[i]])) + 1]
      if(is.na(next_score)) {
        tmp_delta_home[k] = 0
        tmp_delta_away[k] = 0
      } else {
        if(as.integer(substr(next score, 1, 1)) > as.integer(substr(scores[i], 1, 1))) {
          tmp delta home[k] = 1
          tmp delta away[k] = 0
        } else {
          tmp_delta_home[k] = 0
           tmp_delta_away[k] = 1
      }
      tmp_t[k] = tables[[k]][scores[i]]
    } else {
      tmp_delta_home[k] = 0
      tmp_delta_away[k] = 0
      tmp_t[k] = 0
    }
  delta_home[[i]] = tmp_delta_home
  delta_away[[i]] = tmp_delta_away
  t[[i]] = tmp_t
}
rates = NULL; rates_home = NULL; rates_away = NULL
for(i in 1:length(scores)) {
  rates[i] = (sum(delta_home[[i]]) + sum(delta_away[[i]])) / sum(t[[i]])
  rates_home[i] = sum(delta_home[[i]]) / sum(t[[i]])
  rates_away[i] = sum(delta_away[[i]]) / sum(t[[i]])
}
# Crowder pag 66
sd_home = NULL; sd_away = NULL; sd = NULL
for(i in 1:length(scores)) {
  sd[i] = rates[i] / sqrt(sum(delta_home[[i]]) + sum(delta_away[[i]]))
  sd_home[i] = rates_home[i] / sqrt(sum(delta_home[[i]]))
  sd_away[i] = rates_away[i] / sqrt(sum(delta_away[[i]]))
}
 \label{limits}  \mbox{tib = tibble(Rate = paste0("$\\ \nu_{"}, stringr::str_replace(scores, "-", ""), "}$"), 
              `<mark>Est.(both)</mark>` = rates, `<mark>Est.(home</mark>)` = rates_home, `<mark>Est.(away)</mark>` = rates_away,
              `S.e.(both)` = sd, `S.e.(home)` = sd_home, `S.e.(away)` = sd_away)
```

Table 1: Estimates and standard errors of the rate of the time to the next goal

Rate	Est.(both)	Est.(home)	Est.(away)	S.e.(both)	S.e.(home)	S.e.(away)
$\overline{\nu_{00}}$	0.0227	0.0139	0.0088	0.0005	0.0004	0.0003
ν_{01}	0.0240	0.0148	0.0092	0.0010	0.0008	0.0006
ν_{02}	0.0240	0.0149	0.0091	0.0020	0.0016	0.0012
ν_{03}	0.0243	0.0137	0.0106	0.0051	0.0038	0.0033
ν_{10}	0.0229	0.0128	0.0100	0.0007	0.0006	0.0005
ν_{11}	0.0261	0.0165	0.0097	0.0012	0.0009	0.0007
ν_{12}	0.0266	0.0168	0.0098	0.0023	0.0018	0.0014
ν_{13}	0.0325	0.0162	0.0162	0.0061	0.0043	0.0043
ν_{20}	0.0258	0.0153	0.0105	0.0015	0.0011	0.0009
ν_{21}	0.0245	0.0140	0.0105	0.0016	0.0012	0.0011
ν_{22}	0.0292	0.0184	0.0108	0.0032	0.0026	0.0020
ν_{23}	0.0449	0.0195	0.0254	0.0094	0.0062	0.0070
ν_{30}	0.0206	0.0122	0.0084	0.0023	0.0017	0.0014
ν_{31}	0.0275	0.0167	0.0107	0.0033	0.0026	0.0021
ν_{32}	0.0250	0.0107	0.0143	0.0047	0.0031	0.0036
ν_{33}	0.0305	0.0169	0.0136	0.0102	0.0076	0.0068

```
names(rates) = scores
names(rates_home) = scores
names(rates_away) = scores
mat = matrix(NA, nrow = 4, ncol = 4)
rownames(mat) = paste0(0:3)
colnames(mat) = paste0(0:3)
mat_home = mat
mat_away = mat
for(i in 1:4) {
 for(j in 1:4) {
    mat[i,j] = rates[paste(i-1, j-1, sep = "-")]
    mat_home[i,j] = rates_home[paste(i-1, j-1, sep = "-")]
    mat_away[i,j] = rates_away[paste(i-1, j-1, sep = "-")]
}
melted_mat = melt(mat) %>%
  rename(x = Var1, y = Var2)
melted_mat_home = melt(mat_home) %>%
  rename(x = Var1, y = Var2)
melted_mat_away = melt(mat_away) %>%
 rename(x = Var1, y = Var2)
```

```
theme(panel.grid.major = element_blank(),
    panel.border = element_blank(),
    panel.background = element_blank(),
    axis.ticks = element_blank()) +
ggtitle("Rate of the time to the next goal while the score is (x, y)")
```

Rate of the time to the next goal while the score is (x, y)

Rate of the time to the next home goal while the score is (x, y)

Rate of the time to the away goal while the score is (x, y)

