Probabilistic Risk Modelling at the Wildland Urban Interface: the 2003 Cedar Fire, II

David R. Brillinger, Statistics UC Berkeley (brill@stat.berkeley.edu, www.stat.berkeley.edu/~brill)

Benjamin Scott Autrey, PopularMedia Inc. (Sequoia Ventures) (benjamin.scott@gmail.com)

Matias D. Cattaneo, Economics UC Berkeley (cattaneo@econ.berkeley.edu)

Data preparation, data preparation, data preparation

Booker's Law

An ounce of application is worth a ton of abstraction.

Overview.

A story of wildfires at the urban-wildland interface

"... where humans and their development meet or intermix with wildland fuel." Federal Register (2004)

Getting/preparing data – yiiiih

Focus on the San Diego County Cedar Fire of 2003

Looking for: associations with explanatories, understanding of movement, ...

Trying to understand costs - losses of life, property, animals, social cost (veg), private cost (home), fire suppression, ...

Insurance premium?

The Cedar Fire.

25 October – 4 November, 2003

15 deaths, 6000 firefighters, 2232 homes, 273246 acres, many evacuations, ... (All ±)

Santa Anna conditions

A disaster

Large amounts of data, but ...

J. Gibbons

Some formalism.

Spatial marked point process

Data
$$(x_i, y_i, M_i)$$

$$(x_i,y_i)$$
: location, M_i : mark

How to describe a point process X?

$$dX(x,y)/dxdy = \sum \delta(x-x_i,y-y_i)$$

Dirac delta

Rate/intensity

$$\mu_X(x,y) = E\{\Sigma \delta(x-x_i,y-y_i)\}$$

Perhaps Y a subset of X (e.g. destroyed)

Ratio of rates

$$p(X,Y) = \mu_Y(x,y) / \mu_X(x,y)$$

Useful for comparison, ...

How to describe a m.p.p.

$$dU(x,y)/dxdy = \sum_{i} M_{i}\delta(x-x_{i},y-y_{i})$$

Average

$$v_U(x,y) = E\{\Sigma M_i \delta(x-x_i,y-y_i)\}$$

Thinning with $M_i = 0$ or 1 randomly yields p.p.

Y subset of X

Ratio of averages

$$V_V(x,y)/V_U(x,y)$$

Logit-gam model

Logit{Prob[destroyed|explanatories]}

- $= \alpha_j$ with j vegetation class
- = $\beta(x,y)$ with (x,y) location
- = $\gamma(s)$ with s slope
- = $\delta(a)$ with a assessed improvement value

$$= \alpha + \beta + \gamma + \delta + (\alpha\beta) + \dots$$

After first case, function is assumed smooth

Developing "the" data set.

Many people, organizations, file formats, coordinate-systems, decisions, definitions, authorities, issues, skills, tricks, uncertainties, Nas, errors, checks,...

Publically available data

Tax records, assesors, satellites

GIS files – didn't need package

Difficulty merging – APN, (X,Y), address,...

Response: 0-1 (destroyed) or continuous (sq ft)

Explanatories: topography, vegetation, roofing, brush,...

TAX RECORD DATA – all houses

AREA PERIMETER PARCEL PARCEL ID PARCELID OVERLAY JU POSTID POSTDATE SUBDIVID GRAPHSRC CONFACTR APNID APN POSTID APN POSTDA PENDING APN APN 8 MULTI OWN NAME1 OWN NAME2 OWN NAME3 FRACTINT OWN ADDR1 OWN ADDR2 OWN ADDR3 OWN ADDR4 OWN ZIP ASR SITENA LEGLDESC ASR LAND ASR IMPR ASR TOTAL ACREAGE TAXSTAT OWNEROCC TRANUM ASR_ZONE ASR_LANDUS SUBMAP SUBNAME UNITQTY ADDRNO ADDRFRAC ADDRUNIT ROADPDIR ROADNAME ROADSFX JURIS ZIP X COORD Y COORD SITUS ADDR SITUS FRAC SITUS SUIT SITUS PRE SITUS NAME SITUS SUFF SITUS POST YEAR EFFEC TOTAL LVG BEDROOMS BATHS ADDITION A GARAGE CON GARAGE STA CARPORT ST POOL PAR VIEW USABLE SQ OBJECTID

	SUM	SUMMARY						RESIDENT	
Report Number	Communit y	Street Number	Street Name	GPS Location	Photos	Assessor Parcel No.	Sq ft	COUNTY Assess Valuation	
			S. Glen	**************************************					
5012	Alpine	502	Oaks		disk 1 #12	40307501	1600	\$ 127,500	
5015	Alpine	2198	Larkspur		disk 2/photo	: ########	1584	\$ 114,444	

AL & COMMERCIAL STRUCTURES				OTHER LOSS				
Replaceme nt Cost Per Sq Ft	Structure Damage			Out Building Damage, Other Improvements			Vehicles, Travel Traile Tractors	
\$150	DS	DM	Pct.	DS	DM	Loss \$\$ (\$20/sq ft)	DS	DM

\$ 240,000 1 \$ 237,600 1

ers, Boats,	% of Rep. Cost	
\$\$ Loss	50%	COMMENTS

\$ 120,000 utility shed

\$ 118,800 patio cover 2

Damage Assessment

CN	Fire Name Photo Log	Foundation	n Number	Address Number	Street Name
	Add'l Location Info	Latitude	Longitude	Township Range	Occupant Name
	Owner Name Insurance Ca	arrier	Structure Tv	pe Constr	ruction Type Fire
Rated?	Occupancy Type #Dwellings Destroyed	Type of	Business	Property Use #I	Dwellings Damaged
	#Dwellings Destroyed	#Dwellings	Saved	#outhuildings dam	aged #Outbuildings
Destroyed	#Outbuildings Saved	#Vehicles Da	amaged	#Vehicles Destroyed	#Vehicles Sayed
	Structure Condition	Structure	Status	Defensibe Space	Defensive
Actions Ta	ken? By Whom?	Roof Cove	rina	Ground Floor Lend	ath Ground Floor
Width	SF Number	of Stories	Constru	rtion Quality Ve	or Built Proporty
Managem	nent Civilian Injuries	Civilian De	eaths	FF Injuries FF I	Dooths Area of Fire
Origin	Area: Level of Certainty	Area: INFO	SOURCE	Form of Heat of lar	pition Form: Lovel of
Certainty	Form: INFO SOURCE	Structural Fac	ctors	Vegetation Facors	Logistical Factors
•	Environmental Fac	tors Oper	ational Factor	rs HYDRANT?	Location Slope
	Property Line Setback	Adjacent Stru	icture Sethac	k Provoil	ing Vegetation Type Veg
Spe	cific Veg Distance Veg	Condition	Acc	ace Grado	Acces Width
	Access One Way?	Access Dear	d End?	Access Turnaround	Access viidti
	Driveway Width	Driveway	Vertical	Drivowov Possin	Priveway Grade
Turnaround	d? Wall Const. Deck/Porch	Window Gla	see Type	Window From Tu	g Lane? Driveway
Vents	Skylight Present?	Skylight S	urfoco Aroo	Skylight Type Dee	De Attic/ Suprioor
	Door: French Type	Door:	Other Type	Skylight TypeDoo	r. Sliding Glass Type
	Rain Gutter Construction	Address Br	Other Type	Eave Const.	Overnang vvidth
	Rain Gutter Construction	Stroke Midth	Crearbalt	visible from Road	? Contrasting?
	Letter Height Letter Width	Stroke vylatn	Greenbeit or	Fuelbreak Present?	Fuelbreak Width
Present?	Fuelbreak Length	Carried Land	observed Ette	ct Type of Water Sup	ply Fire Sprinklers
i iesent!	Interior or Exterior	Sprinkler I	/pe	Remarks	Observations
	with Address and Damag	e into	Observation	ns with GPS and Dam	nage info

Map 2: Effects/Income Map

Analyses.

spatial, spatial-temporal, binary, continuous

R functions: str(), read.shapefile(), inout(), match(), read.xls(), read.dbf(), image(), as.numeric(as.character()), library(),...

Example of shapefile contents

```
str(L)
List of 3
$ shp:List of 2
 ..$ shp : num [1, 1:4]
                           1 309373 -549829
 ....- attr(*, "dimnames")=List of 2
 .....$: NULL
 .....$: chr [1:4] "record" "x" "y" "shape.type"
 ..$ header:List of 12
 ....$ file.code : int 9994
 ....$ file.length: int 64
 .. ..$ file.version: int 1000
 ....$ shape.type: int 1
 .. ..$ xmin
                : num 309373
 .. ..$ ymin
              : num -549829
 .. ..$ xmax
                : num 309373
 .. ..$ ymax
                : num -549829
 .. ..$ zmin
                : num 0
 .. ..$ zmax
                : num 0
 .. ..$ mmin
                 : num 0
 .. ..$ mmax
                 : num 0
$ shx:List of 2
 ..$ index: num [1, 1:2] 50 10
 ....- attr(*, "dimnames")=List of 2
 .. .. ..$: NULL
 .....$: chr [1:2] "Offset" "Length"
 ..$ header:List of 12
 ....$ file.code : int 9994
```

Looking at the point process data.

Unincorporated SD County + Scripps Ranch

Fire boundary

Locations (destroyed and not)

Rates/intensities and ratio

Destroyed - unincorporated SD and Scripps Ranch

Looking at the continous data.

Smoothed sqrt(squared feet)

$$\Sigma Z_{l} K(x-x_{i},y-y_{i})$$

Some descriptive statistics

Average sqrt(square feet) destroyed

Average sqrt(square feet) all houses

Inference results. Point process case.

Intensity of houses at (x,y) initially $\mu_X(x,y)$ Intensity of destroyed $\mu_Y(x,y)$

$$p(x,y) = \mu_Y(x,y) / \mu_X(x,y)$$

"probability" of a house's destruction

All houses

Ratio of intensities

Inference results. Continuous case.

Square feet (from tax records)

Is there a difference wrt squared feet between destroyed and rest?

Estimate $v_V(x,y)/v_U(x,y)$

Average square feet destroyed

Average square feet all houses

Ratio of averages

Does size depend on location?

$$dN(x,y,z)/dxdydz = \sum \delta(x-x_i,y-y_i,z-z_i)$$

$$\sum z_i \delta(x-x_i,y-y_i,z-z_i)$$

If Z independent of p.p. $\{X(x,y)\}$, average satisfies

$$\gamma(x,y,z) = \gamma_1(x,y) \gamma_2(z)$$

Consider $\gamma(x,y,z)/\gamma_1(x,y)$

Ratio m.p.p. intensity to p.p. intensity

Explanatories.

Vegetation type (15 categories)

Slope

Assessed improvement value

Destroyed

Structure location

Square feet

. . .

Proportions destroyed by class

- 14. Forest (2637)
- 13. Woodland (732)
- 12. Riperian (1421)
- 11. Grassland/Meadows/Vernal pools (456)
 - 10. Coastal sage/Chaparral scrub (90)
 - 9. Chaparral (2554)
 - 8. Scrub (2)
 - 7. Coastal sage scrub (959)
 - 6. Agriculture (226)
 - 5. Unvegetated (1)
 - 4. Open water (13)
 - 3. Developed (13353)
 - 2. Disturbed (171)
 - 1. Eucalyptus woodland (6)

Logit-gam model results.

Logit{Prob[destroyed|explanatories]}

= $\gamma(s)$ with s slope

y smooth

Estimated re-expression of slope

Estimated re-expression of assessed improvement value

Spatial-temporal results.

polygons

wavefront

How quantities in polygons depend on time

Time defined as interval from midnight 25 October to last fire boundary

Observed fire boundaries

Advancing front for the Cedar Fire

Distance from source vs. time

Cumulative loss (sq ft)

Economic Valuation: \$\$\$

- Key distinction:
 - Social Cost (public goods)
 (e.g., vegetation lost or air pollution)
 - Private Cost (private goods)
 (e.g., properties or assets destroyed)
- Short-run vs. Long-run Effects

Social cost - loss of Chaparral

Figure 2: Chaparral coverage in the Cedar Fire - pre fire 2002

Figure 3: Chaparral coverage in the Cedar Fire - post fire 2004

Example of non-market valuation:

- Stormwater runoff increased by 12 million cubic feet.
- Cost of retaining is estimated at \$25 million dollars.
- Underestimation: This reflects only one dimension of value.

Assessed improvement value (log10 \$)

• Downward trend in chance of destruction as assessed value increases.

Other thoughts.

Damaged houses

Other explanatories

Other models

Other fires

Spatial correlation

Uncertainties

. . .

Discussion.

Limitations

"they are 'messy' datasets and do require a bit of massaging to make sense" ... "the damage assessment we performed ... was a rapid assessment. There were 18 ... teams. ... we used a variety of GPSs of varying accuracy. The individual team members also had varying degrees of competency." J. Batchelor (SD County)

Just one fire, lurking variables/proxies

GISs – Cedar fire areal time success for the GIS industry

Can grab shapefile data for R analyses

Would robust/resistant methods have helped?

Summary.

A work in progress, a story

Difficulties of getting, cleaning and employing data

Used statistical package, R, with Sangis data layers

Acknowledgements.

SanGIS, SDSU, SDCounty, SDFoundation, SDCity, ...

A. Ager (USFS), J. Benoit (USFS), C. Hunter (Rancho Santa Fe), D. Sapsis (State of Ca), P. Spector (UCB), C. Westling (SD County), K. Wright (USFS), J. Batchelor (SD County), R. Martin (SD County), M-H. Tsou (SDSU), D. Gilmore (SD County),...