email: nm468@cornell.edu GitHub LinkedIn Phone: 9173628709

EDUCATION

Cornell University, New York, NY

May 2023

M.S in Information Systems and Applied Information Science

GPA- 3.92

Relevant Coursework: Machine Learning Engineering, Deep Learning, Computer Vision, Designing Data Products, Applications of Algorithms, Startup Systems, HCI

National Institute of Technology Karnataka, India

May 2013

Bachelor of Technology in Electrical and Electronics Engineering

GPA- 3.71

SKILLS

- Programming: Python, R, MATLAB, SQL, C/C++, C#, Java, JavaScript
- Machine Learning: Regression, Classification, Neural Networks, Time series analysis, H2O, sklearn, Tensorflow, PyTorch, DataBricks, MLFlow, xgboost, Keras, Caffe
- Engineering Tools: PySpark, Scala, AWS, GCP, GIT, Hadoop, Flask, RestAPI, numba-njit, Cuda, Kafka, MongoDB

PROFESSIONAL EXPERIENCE

Senior Machine Learning Engineer, Skinlens, India

Jul '19 to Apr '21

Technical Head for a early stage Computer Vision prognosis tool for Skin Lesion Detection

- Collaborated with Dermatologists across multiple hospitals to **create a novel dermatology dataset which** include high quality images and demographic data for 5000 patients by implementing source connectors for RedShift and Kafka JDBC for automating the data collection pipeline
- Designed Computer Vision ETL pipeline by converting RGB images to binary & used the intensity difference and created a n-point estimation to create a boundary layer and extract features from images
- Automated data annotation pipeline for pixel level labeling using bounding box. Reduced the time by 90%
- Utilized PyTorch's detectron-2 for panoptic segmentation to extract pertinent features and Designed a multilayered CNN to Classify diseases on par with dermatologists for 7 skin conditions with an accuracy of 93%
- Deployed model using AWS Sagemaker, EC2 instance for real time predictions through Rest API's

Co-Founder, Eunoiaa, India

Jul '20 to June '21

Technical head for mental wellness app for adolescent children in India

- Led interdisciplinary team of 2 Software engineers, 1 UX engineer, 1 Product Manager to develop a mental wellness monitoring platform.
- \bullet Designed a quantifiable Mental Health risk assessment classification algorithm using DSM-5 framework to classify the students risks levels 5 mental health conditions on par with psychologists with an **accuracy of 87%**
- Conducted a comparison study on the performance of 8 classification algorithms to gain actionable insights on the statistical significance of the different features and models through p-test and t- test.
- Implemented a Gradient Boost Regression Tree model to predict the BPRS between clinician visits using the passive data to reduce overfitting and sensitivity to outlier data
- Co-ordinated with the engineering team to architect CI/CD pipelines to operationalize the ML models on AWS using EC2, Sagemaker. Reduced the Model Deployment time by 40%

Software Engineer, Mobi2fun , Bangalore, India

May '15 to Mar '17

 $Software\ Engineer\ at\ mobile\ entertainment\ startup\ in\ India\ {\it \& Spearheaded}\ their\ AR/VR\ gaming\ division$

- Led the development team for a complete game development cycle of around 4 games for almost 15 sprints
- \bullet Wrote C# scripts in Unity to develop a user interface for designing game environments and character interactions. Increased DAU usage time by 43%
- \bullet Developed scripts to automate testing process & mentored Juniors by launching Inclusive Code Review culture. Reduced Knowledge Transfer time by 60%
- Introduced Agile Practices like Unit Tests, TDD. Reduced average product development time by 48%
- \bullet Liased with cross functional teams during the idea generation phase and helped in crafting CUJs. Improved user engagement by 30%

${\bf Computer\ Vision\ Research\ Associate},\ {\bf IISc}\ ,\ {\bf Bangalore},\ {\bf India}$

May '14 to Mar '15

- Designed the hardware setup for image collection leveraging on epipolar geometry and created depth maps and 3D meshes for the reconstructed images
- Automated the Computer Vision ETL pipeline to improve the data aggregation efficiency by 43%
- Implemented the 3D sparse reconstruction algorithm on Xilinx Generator with an accuracy of 98.2% and time efficiency of 4.8ms

ACADEMIC PROJECTS

Personalized diabetes management using biological markers

Sept'21 to Nov'21

- Conducted exploratory data analysis and developed dashboards for data visualization for a dataset containing demographic data and medical history of around 1000 patients to provide actionable insights to the business team
- \bullet Designed a hybrid ML model to improve the accuracy of prediction to 84% by maximizing the specificity of the model to reduce the number of false negatives

Implementation of Minitorch

Sept' 21 to Dec'21

- Implemented PyTorch's tensors framework and operations using functional programming and improved the efficiency
 of the model training using GPU programming. Improved the computational processing efficiency by 60%
- Conducted the above framework on MNIST dataset and for sentiment analysis and reduced average prediction time of the CNN by approximately **10 times**