XIII. Nemzetközi Magyar Matematika Verseny

Nagydobrony, 2004. márc. 15-20.

12. osztály

- 1. feladat: Mennyi a legkisebb értéke az $f\left(x\right)=\log_{x^2-2x+2005}\frac{\sqrt{2004}}{2004}$ függvénynek? Szabó Magda (Szabadka)
- 2. feladat: Oldja meg a következő egyenletet:

$$4^{\sin x} \cdot 5^{-\sin^{-1} x} + 4^{-\sin x} \cdot 5^{\sin^{-1} x} = \frac{629}{50}$$

Bencze Mihály (Brassó)

3. feladat: Egy háromszög oldalai 13 cm, 14 cm és 15 cm. Mekkora a távolság a háromszög súlypontja és a köré írt kör középpontja között?

Kicska György (Munkács)

4. feladat: Bizonyítsa be, hogy egy hegyesszög radiánmértéke kisebb, mint szinuszának és tangensének számtani közepe.

Bogdán Zoltán (Cegléd)

Gecse Frigyes (Cegléd)

6. feladat: Bizonyítsa be, hogy a háromszögbe írt kör r sugarára, a hozzáírt körök r_a, r_b, r_c sugarára és a háromszög p félkerületére érvényes a $\sqrt{r \cdot r_a} + \sqrt{r \cdot r_b} + \sqrt{r \cdot r_c} \le p$ egyenlőtlenség. (A háromszög hozzáírt körének nevezzük a háromszög egyik oldalát kívülről érintő, és a másik két oldal meghosszabbítását érintő kört.)

Oláh György (Komárom)

7. feladat: Legyen $a_n = \frac{1}{n} \left(\sqrt{1 \cdot 2} + \sqrt{2 \cdot 3} + \ldots + \sqrt{n \cdot (n+1)} \right)$, ahol n nullától különböző természetes szám. Bizonyítsa be, hogy a_n egészrésze egyenlő $\frac{n+1}{2}$ egészrészével!

Kacsó Ferenc (Marosvásárhely)