Object-Oriented Systems Analysis and Design Using UML

18

cuu duong than cong . com

Systems Analysis and Design, 7e Kendall & Kendall

© 2008 Pearson Prentice Hall

Learning Objectives

- Understand what object-oriented systems analysis and design is and appreciate its usefulness
- Comprehend the concepts of unified modeling language (UML), the standard approach for modeling a system in the object-oriented world
- Apply the steps used in UML to break down the system into a use case model and then a class model
- Diagram systems with the UML toolset so they can be described and properly designed
- Document and communicate the newly modeled object-oriented system to users and other analysts

Object-Oriented Analysis and Design

- Works well in situations where complicated systems are undergoing continuous maintenance, adaptation, and design
- Objects, classes and reusable
- The Unified Modeling Language (UML) is an industry standard for modeling object-oriented systems

Kendall & Kendall https://fb.com/tailieudientucntt 18-3

Object-Oriented Analysis and Design (Continued)

- Reusability
 - Recycling of program parts should reduce the costs of development in computerbased systems
- Maintaining systems
 - Making a change in one object has a minimal impact on other objects

Major Topics

- Object-oriented concepts
- CRC Cards and object think
- Unified Modeling Language
- Use case and other UML diagrams
- Packages
 cuu duong than cong . com
- Using UML

Object-Oriented Concepts

- Objects
- Classes
- Inheritance

cuu duong than cong . com

Objects

- Persons, places, or things that are relevant to the system being analyzed
- May be customers, items, orders and so on
- May be GUI displays or text areas on a display duong than cong.

Classes

- Defines the set of shared attributes and behaviors found in each object in the class
- Should have a name that differentiates it from all other classes
- Instantiate is when an object is created from a class
- An attributes describes some property that is possessed by all objects of the class
- A method is an action that can be requested from any object of the class

Figure 18.1 An example of a UML class. A class is depicted as a rectangle consisting of the class name, attributes, and methods

Kendall & Kendall https://fb.com/tailieudientucntt 18-9

Inheritance

- When a derived class inherits all the attributes and behaviors of the base class
- Reduces programming labor by using common objects easily
- A feature only found in object-oriented systems

Figure 18.2 A class diagram showing inheritance. Car and truck are specific examples of vehicles and inherit the characteristics of the more general class vehicle

Kendall & Kendall https://fb.com/tailieudientucntt 18-11

CRC Cards and Object Think

- CRC
 - Class
 - Responsibilities
 - Collaborators
- CRC cards are used to represent the responsibilities of classes and the interaction between the classes

Figure 18.3 Four CRC cards for course offerings show how analysts fill in the details for classes, responsibilities, and collaborators, as well as for object think statements and property names

Interacting during a CRC Session

- Identify all the classes you can
- Creating scenarios
- Identify and refine responsibilities

cuu duong than cong . com

The Unified Modeling Language (UML) Concepts and Diagrams

- Things
- Relationships
- Diagrams

Things

- Structural things are
 - Classes, interfaces, use cases, and other elements that provide a way to create models
 - They allow the user to describe relationships
- Behavioral things
- Describe how things work
 - Interactions and state machines
- Group things
 - Used to define boundaries
- Annotational things
 - Can add notes to the diagrams

Kendall & Kendall kendal Kendall kendal kend

Relationships

- Structural relationships
 - Tie things together in structural diagrams
- Behavioral relationship
 - Used in behavioral diagrams

cuu duong than cong . com

Structural Relationships

- Dependencies
- Aggregations
- Associations
- Generalizations

cuu duong than cong . com

Behavioral Relationships

- Communicates
- Includes
- Extends
- Generalizes

cuu duong than cong . com

Diagrams

- Structural diagrams
 - Used to describe the relation between classes duong than cong . com
- Behavior diagrams
 - Used to describe the interaction between people (actors) and a use case (how the actors use the system)

Structural Diagrams

- Class diagrams
- Object diagrams
- Component diagrams
- Deployment diagrams

cuu duong than cong . com

Behavioral Diagrams

- Use case diagrams
- Sequence diagrams
- Collaboration diagrams
- Statechart diagrams
- Activity diagrams

Figure 18.4 An overall view of UML and its components: Things, Relationships, and Diagrams

UML Category	UML Elements	Specific UML Details	
Things	Structural Things	Classes Interfaces Collaborations Use Cases Active Classes Components Nodes	
	Behavioral Things	Interactions State Machines	
	Grouping Things	Packages	
	Annotational Things	Notes	
Relationships	Structural Relationships	Dependencies Aggregations Associations Generalizations	
	Behavioral Relationships	Communicates Includes Extends Generalizes	
Diagrams	Structural Diagrams	Class Diagrams Component Diagrams Deployment Diagrams	
	Behavioral Diagrams	Use Case Diagrams Sequence Diagrams Communication Diagrams Statechart Diagrams Activity Diagrams	

Commonly Used UML Diagrams

- Use case diagram
 - Describing how the system is used
 - The starting point for UML modeling
- Use case scenario
 - A verbal articulation of exceptions to the main behavior described by the primary use case
- Activity diagram than cong.
 - Illustrates the overall flow of activities

Commonly Used UML Diagrams (Continued)

- Sequence diagrams
 - Show the sequence of activities and class relationships
- Class diagrams
 - Show classes and relationships
- Statechart diagrams
 - Show the state transitions

Figure 18.5 An overview of UML diagrams showing how each diagram leads to the development of other UML diagrams

Kendall & Kendal

Use Case Modeling

- Describes what the system does, without describing how the system does it
- Based on the interactions and relationships of individual use cases
- Use case describes
 - Actor
 - Event^{cuu} duong than cong . com
 - Use case

Figure 18.6 A use case example of student enrollment

Kendall & Kendall https://fb.com/tailieudientucntt 18-28

Figure 18.7 A use case scenario is divided into three sections: identification and initiation, steps performed, and conditions, assumptions, and questions

Kendall & Kendall Kendall https://fb.com/tailieudientucntt 18-29

Activity Diagrams

- Show the sequence of activities in a process, including sequential and parallel activities, and decisions that are made
- Symbols^{uu} duong than cong . com
 - Rectangle with rounded ends
 - Arrow
 - Diamond
 - Long, flat rectangle
 - Filled-in circle
 - Black circle surrounded by a white circle
 - Swimlanes

Figure 18.8 Specialized symbols are used to draw an activity diagram

Kendall & Kendall https://fb.com/tailieudientucntt 18-31

Creating Activity Diagrams

- Created by asking what happens first, what happens second, and so on
- Must determine what activities are done in sequence or in parallel
- The sequence of activities can be determined from physical data flow diagrams
- Can be created by examining all the scenarios for a use case

Swimlanes

- Useful to show how the data must be transmitted or converted
- Help to divide up the tasks in a team
- Makes the activity diagram one that people want to use to communicate with othersong than cong.

Kendall & Kendall Kendall https://fb.com/tailieudientucntt 18-33

Figure 18.9 This activity diagram shows three swimlanes: Client Web Page, Web Server, and Mainframe

Kendall & Kendall Kend

Sequence Diagrams

- Illustrate a succession of interactions between classes or object instances over timeduong than cong . com
- Often used to show the processing described in use case scenarios
- Used to show the overall pattern of the activities or interactions in a use case

Figure 18.10 Specialized symbols used to draw a Sequence Diagram

Kendall & Kendall Kend

Figure 18.11 A sequence diagram for student admission. Sequence diagrams emphasize the time ordering of messages

Kendall & Kendall Kendall https://fb.com/tailieudientucntt 18-37

Communication Diagrams

- Describes the interactions of two or more things in the system that perform a behavior that is more than any one of the things can do alone u duong than cong . com
- Shows the same information as a sequence diagram, but may be more difficult to read
- Emphasizes the organization of objects
- Made up of objects, communication links, and the messages that can be passed along those links

Figure 18.12 A Communication Diagram for student admission. Communication diagrams show the same information that is depicted in a sequence diagram but emphasize the organization of objects rather than the time ordering

Kendall & Kendall https://fb.com/tailieudientucntt 18-39

Class Diagrams

- Show the static features of the system and do not represent any particular processing than cong com
- Shows the nature of the relationships between classes
- Shows data storage requirements as well as processing requirements

Kendall & Kendall kend

Class Diagrams (Continued)

- Classes
- Attributes
 - Private^u duong than cong . com
 - Public
 - Protected
- Methods
 - Standard
 - Custom

Figure 18.13 A class diagram for course offerings. The filled-in diamonds show aggregation and the empty diamond shows a whole-part relationship

Kendall & Kendall https://fb.com/tailieudientucntt 18-42

Method Overloading

- Including the same method (or operation) several times in a class
- The same method may be defined more than once in a given class, as long as the parameters sent as part of the message are different

Types of Classes

- Entity classes
- Interface classes
- Abstract classes
- Control classes

cuu duong than cong . com

Kendall & Kendall kendal Kendall kendal kend

Entity Classes

- Represent real-world items
- The entities represented on an entityrelationship diagram

cuu duong than cong . com

Interface or Boundary Classes

- Provide a means for users to work with the system
- Human interfaces may be a display, window, Web form, dialogue box, touch-tone telephone, or other way for users to interact with the system
- System interfaces involve sending data to or receiving data from other

Kendall & Kendall kend

Abstract Classes

- Linked to concrete classes in a generalization/specialization relationship
- Cannot be directly instantiated

cuu duong than cong . com

Control Classes

- Used to control the flow of activities
- Many small control classes can be used to achieve classes that are reusable

cuu duong than cong . com

Defining Messages and Methods

- Each message may be defined using a notation similar to that described for the data dictionary
- The methods may have logic defined using structured English, a decision table, or a decision tree

Figure 18.15 A Sequence Diagram for using two Web pages: one for student information, one for course information

Relationships

- The connections between classes
 - Associations
 - Whole/part than cong . com

cuu duong than cong . com

Figure 18.18 An example of an associative class in which a particular section defines the relationship between a student and a course

Kendall & Kendall https://fb.com/tailieudientucntt 18-52

Associations

- The simplest type of relationship
- Association classes are those that are used to break up a many-to-many association between classes
- An object in a class may have a relationship to other objects in the same class, called a reflexive association

Whole/Part Relationships

- When one class represents the whole object, and other classes represent parts
- Categories
 - Aggregation
 - Collection ong than cong . com
 - Composition

Kendall & Kendall kendal Kendall kendal kend

Aggregation

- A "has a" relationship
- Provides a means of showing that the whole object is composed of the sum of its parts

cuu duong than cong . com

Collection

- Consists of a whole and its members
- Members may change, but the whole retains its identity
- A weak association

cuu duong than cong . com

Composition

- The whole has a responsibility for the parts, and is a stronger relationship
- If the whole is deleted, all parts are deleted

cuu duong than cong . com

Kendall & Kendall kendal Kendall kendal kend

Figure 18.19 An example of wholepart and aggregation relationships

Kendall & Kendal

Generalization/Specialization Diagrams

- Generalization
- Inheritance
- Polymorphism
- Abstract classes
- Messages

cuu duong than cong . com

Generalization

- Describes a relationship between a general kind of thing and a more specific kind of thing
- Described as an "is a" relationship
- Used for modeling class inheritance and specialization
- General class is a parent, base, or superclass
- Specialized class is a child, derived, or subclass

cuu duong than cong . com

Kendall & Kendall https://fb.com/tailieudientucntt 18-60

Inheritance

- Helps to foster reuse
- Helps to maintain existing program code

cuu duong than cong . com

Polymorphism

- The capability of an object-oriented program to have several versions of the same method with the same name within a superclass/subclass relationship
- The subclass method overrides the superclass method
- When attributes or methods are defined more than once, the most specific one is used

Abstract Classes

- Abstract classes are general classes
- No direct objects or class instances, and is only used in conjunction with specialized classes
- Usually have attributes and may have a few methodsg than cong.

Kendall & Kendall kend

Figure 18.20 A gen/spec diagram is a refined form of a class diagram

Kendall & Kendall Kend

Finding Classes

- During interviewing or JAD sessions
- During facilitated team sessions
- During brainstorming sessions
- Analyzing documents and memos
- Examining use cases, looking for nouns

Kendall & Kendall kend

Determining Class Methods

- Standard methods
- Examine a CRUD matrix

cuu duong than cong . com

cuu duong than cong . com

Messages

- Used to send information by an object in one class to an object in another class
- Acts as a command, telling the receiving class to do something
- Consists of the name of the method in the receiving class, as well as the attributes that are passed with the method name
- May be thought of as an output or an input

Statechart Diagrams

- Used to examine the different states that an object may have
- Created for a single class
 - Objects are created, go through changes, and are deleted or removed
- Objects
- States
- Events
 - Signals or asynchronous messages
 - Synchronous
 - Temporal events

Statechart Diagrams (Continued)

- Created when
 - A class has a complex life cycle
 - An instance of a class may update its attributes in a number of ways through the life cycle
 - A class has an operational life cycle
 - Two classes depend on each other
 - The object's current behavior depends on what happened previously

Figure 18.22 A Statechart diagram showing how a student progresses from a potential student to a graduated student

Kendall & Kendall Kend

Packages

- Containers for other UML things
- Show system partitioning
- Can be component packages
- Can be physical subsystems
- Use a folder symbol
- May have relationships

Figure 18.23 Use cases can be grouped into packages

Kendall & Kendall https://fb.com/tailieudientucntt 18-72

Putting UML to Work

The steps used in UML are:

- Define the use case model
- Continue UML diagramming to model the system during the systems analysis phase
- Develop the class diagrams
- Draw statechart diagrams
- Begin systems design by refining the UML diagrams
- Document your system design in detail

Summary

- Object-Oriented systems
 - Objects
 - Classes
 - Inheritance ong than cong.com
- CRC cards
- UML and use case modeling
- Components of UML
 - Thingsuu duong than cong . com
 - Relationships
 - Diagrams

Summary (Continued)

- UML diagrams
 - Use case diagrams
 - Activity diagrams: cong . com
 - Sequence diagrams
 - Communication diagrams
 - Class diagrams
 - Statechart diagrams
- Using UML