Algebra II (ISIM), lista 8 (21.12.2021, deklaracje 20.12.2021 do godz. 9:00).

Teoria: Grupy rozwiązalne.

- 1. Wyznaczyć rzędy grup obrotów własnych sześcianu i izometrii własnych sześcianu (wsk: rozważyć działanie tych grup na zbiorze wierzchołków sześcianu, wyznaczyć rząd stabilizatora wierzchołka i moc orbity tego wierzchołka).
- 2. (a) Udowodnić, że grupa izometrii własnych czworościanu foremnego jest izomorficzna z grupą S_4 .
 - (b) W grupie izometrii własnych sześcianu wskazać podgrupy izomorficzne z D_4 i z D_3 .
- 3. (a)— W grupie automorfizmów liniowych przestrzeni liniowej \mathbb{R}^2 wskazać element rzędu 2 niebędący izometrią.
 - (b)* Wskazać taki element rzędu 2021 (zamiast 2).
- 4. Udowodnić, że:
 - (a) Każda z grup $G^{(k)}$ jest charakterystyczną podgrupą G.
 - (b)⁻ $G^{(k+1)} \triangleleft G^k$ oraz $G^{(k)}/G^{(k+1)}$ jest abelowa.
- 5. Udowodnić, że grupa G jest rozwiązalna stopnia $\leq k \iff$ istnieje ciąg normalny grupy G długości k, o faktorach abelowych.
- 6. Dla $H_1, H_2 < G$ określamy komutant grup $[H_1, H_2]$ jako podgrupę generowaną przez komutatory $[h_1, h_2], h_1 \in H_1, h_2 \in H_2$. Załóżmy, że $H_1, H_2 \triangleleft G$. Udowodnić, że $[H_1, H_2] \subseteq H_1 \cap H_2$ i $[H_1, H_2] \triangleleft G$.
- 7. Wyznaczyć komutant grupy D_4 .
- 8. Dowieść, że (a) jeśli $f: G \to H$ jest epimorfizmem grup, to $f[G^{(k)}] = H^{(k)}$; (b)– jeśli G < H, to $G^{(k)} \subseteq H^{(k)}$.
- 9. Udowodnić, że dla n > 2, $[S_n, S_n] = A_n$. (wsk. dla inkluzji \supseteq : każda permutacja jest iloczynem transpozycji, dlatego permutacje postaci (a, b)(c, d) generują A_n . Uzasadnić, że każda taka permutacja jest komutatorem.)
- 10. Sprawdzić, że grupa S_4 jest rozwiązalna.
- 11. Udowodnić, ze każdy element postaci $g_1g_2 \dots g_ng_1^{-1}g_2^{-1}\dots g_n^{-1}$, gdzie $g_1,\dots,g_n\in G$, należy do komutanta grupy G.
- 12. Niech $T(2, \mathbb{R}) = \left\{ \begin{bmatrix} a & c \\ 0 & b \end{bmatrix} : a, b, c \in \mathbb{R}, \ a, b \neq 0 \right\} i \ U(2, \mathbb{R}) = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} : a \in \mathbb{R} \right\}.$
 - (a) Sprawdzić, że $U(2,\mathbb{R}) < T(2,\mathbb{R}) < GL(n,\mathbb{R})$.
 - (b) Pokazać, że $U(2,\mathbb{R}) \cong (\mathbb{R},+)$ i $U(2,\mathbb{R}) = [T(2,\mathbb{R}),T(2,\mathbb{R})]$.
 - Wywnioskować stąd, że $T(2,\mathbb{R})$ jest rozwiązalna stopnia 2.

- 13. Sprawdzić, że $Z(GL(n,\mathbb{R}))$ składa się z macierzy postaci $aI, a \in \mathbb{R} \setminus \{0\}$.(wsk: rozważyć macierze $I_{i,j}$, które mają jedynki na głównej przekątnej oraz na miejscu w *i*-tym rzędzie i *j*-tej kolumnie, a poza tym zera. Które macierze komutują z nimi?)
- 14. (Graf Cayleya grupy G). Załóżmy, że X jest zbiorem generatorów grupy G. Grafem Cayleya grupy G (nad zbiorem generatorów X) oznaczamy graf skierowany $\Gamma_{G,X}$, którego wierzchołkami są elementy grupy G, a krawędzie są etykietowane elementami zbioru X. W grafie $\Gamma_{G,X}$ istnieje strzałka od wierzchołka g do wierzchołka h, etykietowana przez $x \in X$, wtedy i tylko wtedy, gdy xg = h.
 - (a)– Narysować grafy Cayleya dla grupy $(\mathbb{Z}, +)$ i zbioru $X = \{1\}$ oraz grupy D_4 i 2-elementowego zbioru generatorów grupy D_4 .
 - (b)– Udowodnić, że X jest wolnym zbiorem generatorów grupy G wtedy i tylko wtedy, gdy w grafie $\Gamma_{G,X}$ nie ma cykli.
- 15. * (a) Udowodnić, że z dokładnością do izomorfizmu wszystkie skończone grupy izometrii liniowych płaszczyzny \mathbb{R}^2 to grupy \mathbb{Z}_n , $n \ge 1$, i D_n , $n \ge 2$.
 - (b) Udowodnić, że jeśli G jest skończoną grupą izometrii płaszczyzny \mathbb{R}^2 , to G jest izomorficzna z pewną skończoną grupą izometrii liniowych płaszczyzny \mathbb{R}^2 (wsk: załóżmy, że $G\{g_1,\ldots,g_k\}$ jest rzedu k oraz $P\in\mathbb{R}^2$. Rozważyć środek ciężkości układu punktów $(g_1(P),g_2(P),\ldots,g_k(P))$.)