Scratch paper

Anonymous Università di Torino April 2020

Abstract Poche idee, ben confuse.

1 Introduction

2 Abstract samples

Let M be a semigroup. The finite (fractional) sample expansion of M is a 3-sorted expansion $\bar{M} = \langle M, \mathbb{R}, M^{\rm s} \rangle$ that has a domain for M, which we call the home-sort, a domain for \mathbb{R} , as an ordered field, and a domain $M^{\rm s}$, which we call sample-sort, which is an \mathbb{R} -vector space that we describe below. Variables and elements of sample-sort (or tuple thereof) are denoted with symbols $x^{\rm s}$, $a^{\rm s}$ and variations. The variable x is reserved for the home-sort, for all other variables we the context will clarify the sort.

An element $a^s \in M^s$ is a map $a^s : M \to \mathbb{R}$ which is almost always zero. These functions, which we call samples, are interpreted as (weighted) samples or as (signed) finite measures (up to normalization) that concentrated on the support of a^s .

The language of the expansion \overline{M} is denoted by L. It expands the natural language of each sort: on M, the language of semigroups, on \mathbb{R} , the language ordered rings, and, on M^s , the language of algebras over \mathbb{R} . This algebra has the natural sum and the multiplication inherited from M

$$(a^{s} + b^{s})(z) = a^{s}(z) + b^{s}(z);$$

$$(a^{s} \cdot b^{s})(z) = \sum_{x \cdot y = z} a^{s}(x) \cdot b^{s}(y).$$

Finally, for every formula $\varphi(x;y) \in L$, where y is a tuple a mixed sort, there is a symbol $\overline{\varphi}(x^s;y)$ for a function $(M^s)^x \times M^y \to \mathbb{R}$. For $\varphi(x) \in L(\overline{M})$, we interpret $\overline{\varphi}(x^s)$ as the function that maps $a^s \in M^s$ to

$$\overline{\varphi}(a^{\mathbf{s}}) = \sum_{x \in \varphi(M)} a^{s}(x) / \sum_{x \in M} a^{s}(x)$$

Below, ε always ranges over the positive standard reals. If a and b are (hyper)reals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε .

2.1 Definition Let U be a monster model of cardinality $\kappa > |L|$. Let $\bar{U} = \langle U, \mathbb{R}, U^s \rangle$ be as above and let \bar{U}^* be a saturated elementary extension of U^s of cardinality κ . As all saturated

models of cardinality κ are isomorphic, we can assume that U is the domain of the home-sort of \bar{U}^* , hence we write $\bar{U}^* = \langle U, \mathbb{R}^*, U^{s*} \rangle$. Elements of U^s are called finite samples, elements of U^{s*} are called internal samples.

Finally, an external sample is a maximally consistent set of formulas $p(x^s) \subseteq L(\mathcal{U}, \mathbb{R}, \mathcal{U}^{s*})$. (Note these are not types over the full of $\bar{\mathcal{U}}$.)

2.2 Notation Let y and z be tuples of mixed sort. For any type p(y) and formula $\varphi(y,z) \in L(\bar{\mathbb{U}}^*)$ we write

$$\varphi(p;\bar{\mathbb{U}}^*) \ = \ \left\{ a \in (\bar{\mathbb{U}}^*)^z \ : \ p(y) \vdash \varphi(y;a) \right\}$$

This notation intentionally confuses p(y) with any of its realizations in some elementary extension of $\bar{\mathbb{U}}$.

- **2.3 Definition** Let M be given. Let y be a tuple of the home-sort. A external sample $p(x^s)$ is
 - 1. *invariant if* $\varphi(p; \mathcal{U}, \mathcal{U}^{s*})$ *is invariant over* \bar{M} , *for every* $\varphi(x; y, z^{s}) \in L$.
 - 2. finitely satisfiable if every formula in $p(x^s)$ is satisfied by some element of M^s .
 - 3. definable if $\varphi(p; \mathcal{U}, \mathcal{U}^{s*})$ is definable over \overline{M} , for every $\varphi(x; y, z^s) \in L$.

An external type is generically stable if it is definable and finitely satisfiable in some \bar{M} .

Clearly every finitely satisfiable external sample is invariant.

We will use the symbol $\bigcup_{\bar{M}}$ with the usual meaning.

3 Semigroup operation among samples

We work over a model M. We write $a_{\bar{M}}$ for the orbit of a over \bar{M} .

4 Szemerédi's regularity lemma

Define

$$\begin{array}{lcl} \left| \varphi(a^{\rm s}\,;b^{\rm s}) \right|) & = & \displaystyle \sum_{\varphi(x\,;y)} a^{\rm s}(x) \cdot b^{\rm s}(y) \\ \\ d_{\varphi}(r\,;s) & = & \displaystyle \frac{\left| \varphi(r\,;s) \right|}{\left| r \times s \right|} \end{array}$$

We say that the pair of samples r, s is ε -regular if for every $r' \subseteq r$ and $s' \subseteq s$ such that $|r'| > \varepsilon |r|$ and $|s'| > \varepsilon |s|$

$$\left|d_{\varphi}(r;s) - d_{\varphi}(r';s')\right| < \varepsilon$$

4.1 Szemerédi's Regularity Lemma For every $\varepsilon > 0$ and for every pair of samples $u, v \in {}^*\bar{\mathcal{U}}$

of hyperfinite cardinality there are some finite partitions of u and v, say r_1, \ldots, r_n and s_1, \ldots, s_m , such that

1. r_i, s_j is ε -regular for every $i, j \in [n] \times [m] \setminus E$,

where $E \subseteq [n] \times [m]$, called the exceptional set, is such that

$$\sum_{\langle i,j\rangle\in E}|r_i|\cdot|s_j|\quad <\quad \varepsilon\cdot|u|\cdot|v|$$

Proof Let st((d(u;v))