

Elektrotechnische Grundlagen der Informatik (LU 182.692)

Protokoll der 3. Laborübung: "Operationsverstärker" a) LTSPICE-Simulationen

Gruppennr.: 22 Datum der Laborübung: 01.06.2017

Matr. Nr.	Kennzahl	Name	
1614835	033 535	Jan Nausner	
1633068	033 535	David Pernerstorfer	

Kontrolle	
Nichtinvertierender OPV	
OPV und Grenzfrequenz	
Invertierender OPV	
Integrierer	
Schmitt-Trigger	

Contents

1	Nichtinvertierender Verstrker	3
2	Invertierender Verstrker	4
3	Integrierer	4
4	Invertierender Schmitt-Trigger	7

1 Nichtinvertierender Verstrker

1.1 Aufgabenstellung

Das Verhalten eines OPV als nichtinvertierender Verstärker soll mittels LTSpice simuliert werden.

1.2 Schaltplan

Figure 1: Nichtinvertierender Verstärker

1.3 Durchführung

Die Schaltung eines OPV als nichtinvertierender Verstärker wurde mit LTSpice aufgebaut. Die Spannungsverstärkung wird mit $V_u=1+\frac{R_2}{R_1}$ berechnet und soll zwischen 40 und 60 liegen. Das bedeutet R_2 muss etwa 40 bis 60 mal größer dimensioniert werden als R_1 . Gewählt wurden die Widerstände $R_1=1k\Omega$ und $R_2=47k\Omega$. Nun wurde das Verhalten des Systems mit einer DC Eingangsspannung bzw. mit 2 verschieden Rechteckspannungen (siehe Angabe) simuliert und diverse Messungen durchgeführt (siehe Ergebnis & Diskussion).

1.4 Ergebnis & Diskussion

In Abbildung 2 sind die Spannungen des positiven (U_p) und negativen (U_n) Einganges des OPV zu sehen. U_p entspricht klarerweise der Eingangsspannung U_e . Da zwischen den beiden Eingängen

Figure 2: Nichtinvertierender Verstärker; Blau: U_p ; Rot: U_n

2 Invertierender Verstrker

- 2.1 Aufgabenstellung
- 2.2 Schaltplan
- 2.3 Durchführung
- 2.4 Ergebnis & Diskussion
- 3 Integrierer

3.1 Aufgabenstellung

Das Verhalten eines Integrierers soll im Zeit- und Frequenzbereich simuliert werden.

3.2 Schaltplan

Figure 3: Integrierer

3.3 Durchführung

Die Schaltung wurde gemäß Angabe zusammengefügt. Die Versorgungsspannung des OPV (LT1014) beträgt $\pm 15V$. Um das Verhalten im Zeitbereich zu simulieren, wurde eine Rechteckspannung mit $f=5Hz, A=\pm 0, 1V, V_{initial}=-0, 1V$ angelegt. Das Zeitverhalten wurde im Bereich von 0 bis 2s aufgezeichnet. Zur Simulation des Frequenzverhaltens wurde eine Sinusspannung mit $1V_{pp}$ angelegt und das Bode-Diagramm von 1Hz-100kHz aufgezeichnet.

3.4 Ergebnis & Diskussion

Figure 4: Zeitverhalten (rot ... Ausgangsspannung, blau ... Eingangsspannung)

Im Bereich von 0 bis 1s ist ein Einschwingvorgang zu erkennen, welcher auf das RC-Glied zurückzuführen ist. Da die Differenz der beiden OPV-Eingänge zu Beginn -0,1V Beträgt, übersteuert der OPV, die Differenz schlägt auf 0,1V um und der OPV versucht zu untersteuern, dann pendelt sich das Signal ein. Im eingeschwungenenen Zustand wird das anliegende Rechtecksignal gemäß der Übertragungsfunktion

$$U_a = -\frac{1}{RC} \int U_e dt$$

zu einem Dreieckssignal mit

$$U_e < 0: U_a = \frac{t}{10*RC} \approx 45, 5*t, U_e > 0: U_a = -\frac{t}{10*RC} \approx -45, 5*t$$

integriert. TODO: Anfangsbedingung, Vpp!!!

Figure 5: Bode-Diagramm

Am Frequenzverhalten kann man erkennen, dass das System bis zur Grenzfrequenz des RC-Glieds $(f_g=\frac{1}{2\pi RC}\approx 72Hz)$ verstärkend wirkt und danach zu Dämpfen beginnt. Die Filtersteilheit beträgt -20dB/Dekade. Die Phase dreht zuerst sehr stark, dann immer schwächer von 126° auf 90° . Im Bereich über 40kHz beginnt die Phasenverschiebung wieder zu steigen und die Dämpfung wird schwächer.

TODO: grober Unfug?

4 Invertierender Schmitt-Trigger

4.1 Aufgabenstellung

Das Verhalten eines invertierenden Schmitt-Triggers soll im Zeitbereich simuliert werden.

4.2 Schaltplan

Figure 6: Invertierender Schmitt-Trigger

4.3 Durchführung

Die Schaltung wurde gemäß Angabe zusammengefügt. Die Versorgungsspannung des OPV (LT1014) beträgt V+=5V, V-=0V. Zuerst wurde die Aus- und Eingangsspannung, sowie die Spannung am positiven Eingang des OPV im Bereich von 0 bis 100ms mit einem Sinus-Eingangssignal ($DC_{offset}=2,5V,V_{pp}=5V,f=50Hz$) simuliert. Dann wurde das Zeitverhalten mit einem Dreieckssignal ($V_{on}=5V,V_{off}=0V,f=5MHz$) von 0 bis $1\mu s$ simuliert.

Ergebnis & Diskussion 4.4

Figure 7: Zeitverhalten bei Sinussignal (rot ... Ausgangsspannung, blau ... Eingangsspannung, grün ... Spannung am positiven OPV Eingang)

Berechnung der Spannung am positiven OPV Eingang mittels Superpositionsprinzip:

• $U_{low} = 0,029V$ (abgelesen):

 U_a kurzgeschlossen:

$$U_{p1} = U_{VCC} \frac{R_{12}}{R_{12} + r_3} = U_{VCC} \frac{\frac{R_1 R_2}{R_1 + R_2}}{\frac{R_1 R_2}{R_1 + R_2} + R_3} = 5V \frac{2,35k\Omega}{2,35k\Omega + 10k\Omega} \approx 0,95V$$

 U_{VCC} kurzgeschlossen:

$$\begin{array}{l} U_{VCC} \text{ kurzgeschlossen:} \\ U_{p2} = U_{low} \frac{R_{13}}{R_{13} + R_2} = U_{low} \frac{\frac{R_1 R_3}{R_1 + R_3}}{\frac{R_1 R_3}{R_1 + R_3} + R_2} = 0,029 V \frac{3,19k\Omega}{3,19k\Omega + 4,7k\Omega} \approx 0,01 V \\ U_p = U_{p1} + U_{p2} \approx 0,96 V \end{array}$$

• $U_{high} = 4,39V$ (abgelesen):

 U_a kurzgeschlossen:

$$U_{p1} = U_{VCC} \frac{R_{12}}{R_{12} + R_3} = U_{VCC} \frac{\frac{R_1 R_2}{R_1 + R_2}}{\frac{R_1 R_2}{R_1 + R_2} + R_3} = 5V \frac{2,35k\Omega}{2,35k\Omega + 10k\Omega} \approx 0,95V$$

 U_{VCC} kurzgeschlossen:

$$\begin{split} &U_{VCC} \text{ kurzgeschlossen:} \\ &U_{p2} = U_{high} \frac{R_{13}}{R_{13} + R_2} = U_{high} \frac{\frac{R_1 R_3}{R_1 + R_3}}{\frac{R_1 R_3}{R_1 + R_3} + R_2} = 4,39 V \frac{3,19 k\Omega}{3,19 k\Omega + 4,7 k\Omega} \approx 1,78 V \\ &U_p = U_{p1} + U_{p2} \approx 2,73 V \end{split}$$

Die Spannung am positiven Eingang des OPV bestimmt (wie auch im Diagramm ersichtlich), wann getriggert wird. Das heißt, wenn das Sinussignal am Eingang unter 0.95V fällt, liefert der OPV am Ausgang U_{high} , wenn das Eingangssignal 2,73V übersteigt, liegt am Ausgang U_{low} an. Somit wandelt der Schmitt-Trigger das Sinussignal in ein invertiertes Rechtecksignal um.

Figure 8: Zeitverhalten bei 5MHz Dreieckssignal (rot ... Ausgangsspannung, blau ... Eingangsspannung, grün ... Spannung am positiven OPV Eingang)

Durch die hohe Frequenz des Eingangssignals wird der verwendete OPV an seine Grenzen getrieben und kann nicht mehr schnell genug schalten. Das gewünschte Schmitt-Trigger-Verhalten ist nicht mehr zu erkennen.