Funciones polinómicas de segundo grado

Estas funciones son de la forma:

$$f(x) = ax^2 + bx + c$$

Su gráfica es una curva con dos ramas, una creciente y otra decreciente.

También reciben el nombre de parábolas o cuadráticas.

Características

- Vértice: es el punto que la función pasa de ser creciente a decreciente, y viceversa. Es un punto máximo o mínimo de la función.
- Eje de simetría: es una recta que pasa por el vértice, es paralela al eje X, y divide la curva en dos partes iguales.

Funciones del tipo $f(x) = ax^2$

En el caso de que b=0 y c=0, nos queda la función cuadrática como: $f(x)=ax^2$

Si $\alpha > 0$ las ramas van hacia arriba.

 $f(x) = 4x^2$

 $--f(x) = -2x^{2}$ $--f(x) = -4x^{2}$ $--f(x) = -8x^{2}$

Si a < 0 las ramas van hacia abajo.

Cuanto mayor es el valor de |a| más cerradas están las ramas.

El vértice de estas funciones siempre está en el origen (0, 0).

Si a > 0 el vértice se convierte en el mínimo.

Si a < 0 el vértice se convierte en el máximo.

El eje de simetría coincide siempre con el eje Y.

Funciones del tipo $f(x) = ax^2 + c$

En el caso de que b = 0, nos queda la función cuadrática como: $f(x) = ax^2 + c$

$$f(x) = 3x^{2} - 2$$

$$f(x) = 2x^{2} + 1$$

$$f(x) = -x^{2} - 1$$

El valor de c nos define el punto de corte con el eje Y.

Estas funciones son simétricas respecto al eje Y. (pares)

Funciones del tipo $f(x) = ax^2 + bx$

En el caso de que c=0, nos queda la función cuadrática como: $f(x)=ax^2+bx$ El vértice de este tipo de funciones se calcula con la siguiente fórmula:

$$\left(\frac{-b}{2a}, \frac{-b^2}{4a}\right)$$

$$f(x) = 2x^2 - 4x$$

$$f(x) = -x^2 + 6x$$

Este tipo de funciones <u>siempre</u> pasan por el origen O(0,0) lo que no quiere decir que su vértice esté en el origen.

Funciones del tipo $f(x) = ax^2 + bx + c$

Se trata de las funciones cuadráticas en su forma más general. El vértice de este tipo de funciones se calcula con la siguiente fórmula:

$$\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{4a}\right)$$

Representación de funciones cuadráticas

EJEMPLO 1

Representa gráficamente la siguiente función cuadrática:

$$f(x) = x^{2} - 4x + 2 \to \begin{cases} a = 1 \\ b = -4 \\ c = 2 \end{cases}$$

Lo primero que tenemos que hacer es obtener el vértice:

$$\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{4a}\right) = \left(\frac{-(-4)}{2 \cdot 1}, \frac{-(-4)^2 + 4 \cdot 1 \cdot 2}{4 \cdot 1}\right) = \left(\frac{4}{2}, \frac{-16 + 8}{4}\right) = (2, -2)$$

Ahora construimos una tabla de valores alrededor del vértice:

			Vértice		
x	0	1	2	3	4
f(x)	2	-1	-2	-1	2
	A (0,2)	B (1,-1)	C (2,-2)	D (3,-1)	E (4,2)

Esta tabla se calcula sustituyendo los valores de "x" en la función. Por ejemplo:

$$f(x) = x^2 - 4x + 2$$
; $f(1) = 1^2 - 4 \cdot 1 + 2$; $f(1) = 1 - 4 + 2$; $f(1) = -1$

Ahora representamos estos puntos en un eje de coordenadas:

Sabemos que las ramas van hacia arriba ya que a>0

EJEMPLO 2

Representa gráficamente la siguiente función cuadrática:

$$f(x) = -x^2 - 4x + 2 \to \begin{cases} a = -1 \\ b = -4 \\ c = 2 \end{cases}$$

Lo primero que tenemos que hacer es obtener el vértice:

$$\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{4a}\right) = \left(\frac{-(-4)}{2 \cdot (-1)}, \frac{-(-4)^2 + 4 \cdot (-1) \cdot 2}{4 \cdot (-1)}\right) = \left(\frac{4}{-2}, \frac{-16 - 8}{-4}\right) = \frac{(-2,6)}{4}$$

Ahora construimos una tabla de valores alrededor del vértice:

			Vértice		
х	-4	-3	-2	-1	0
f(x)	2	5	6	5	2
	A (-4,2)	B (-3,5)	C (-2,6)	D (-1,5)	E (0,2)

Ahora representamos estos puntos en un eje de coordenadas:

Sabemos que las ramas van hacia abajo ya que a < 0