

## 从圆桌问题谈数据结构的综合运用

### 圆桌问题

**题目**:圆桌上围坐着 2n 个人。其中 n 个人是好人,另外 n 个人是坏人。如果从第一个人开始数数,数到第 m 个人,则立即处死该人;然后从被处死的人之后开始数数,再将数到的第 m 个人处死...依此方法不断处死围坐在圆桌上的人。试问预先应如何安排这些好人与坏人的座位,能使得在处死 n 个人之后,圆桌上围坐的剩余的 n 个人全是好人。

**输入**:文件中的每一行都有两个数,依次为n和m,表示一个问题的描述信息, $n \le 32767$ , $m \le 32767$ 。

输出:依次输出每一个问题的解。每一个问题的解可以用连续的若干行字符来表示,每行的字符数量不超过50。但是在一个问题的解中不允许出现空白字符和空行,相邻的两个问题的解之间用空行隔开。用大写字母G表示好人,大写字母B表示坏人。



# 圆桌问题实现思想图示 (n=5,m=3)





## 分段式数据结构示意

### (思想模型)



## (实际模型)



共进行 1+2+2+3+5=13 次操作



## 改进前后程序效率比较

(测试机器: P166)

| (1/13 150 11 11 1 ) |          |            |         |
|---------------------|----------|------------|---------|
| 测试数据                | 线性表      | "优化直接定位"法  |         |
|                     | "查找"法    | amount=400 | 改进前用时是  |
|                     |          |            | 改进后的多少倍 |
| n=200 m=100         | 0.000s   | 0.000s     | /       |
| n=1000 m=50         | 0.440s   | 0.000s     | /       |
| n=32767 m=200       | 5.870s   | 0.930s     | 6.312   |
| n=32767 m=1000      | 29.440s  | 0.980s     | 30.041  |
| n=32767 m=10000     | 294.120s | 1.260s     | 233.43  |
| n=32767 m=20000     | 588.530s | 1.590s     | 370.14  |
| n=32767 m=32767     | 963.560s | 1.970s     | 489.12  |



### 引申

#### ▶ 横向延伸——约瑟夫环类的问题

如:《翻牌游戏》、《猴子选大王》

#### ▶ 纵向延伸——数据结构的综合运用

在解决一些数据规模较大的问题时有很好的效用。如《隐藏的码字》(*IOI'99*)。在解决这道题目时,如果建立起链式和顺序相结合的数据结构(如下图),程序效率就比较高。



链式和顺序相结合的数据结构实现简单,效果显著,应用比较广泛。当然还有其它的结合,比如二叉堆和顺序结构的一一映射(单射),在解决某些问题时会有很好的效果。



## 顺序存储结构操作示意



共进行 **7+4+1+5+2=19** 次操作,时间复杂度  $O(n^2)$ 。



## 链式存储结构操作示意

Step 1 Step 2 Step 3 Step 4  $\stackrel{\wedge}{\boxtimes}$ Step 6 Step 5 10

共进行 **5×3=15** 次操作,时间复杂度 *O(nm)*。