Quinta Lista de Exercícios de Análise Real: Topologia da reta.

- 1. Demonstre que, para todo $X \subset \mathbb{R}$ tem-se int(int X) = int X e conclua que int X é um conjunto aberto.
- 2. Demonstre que $\lim x_n = a$ se, e somente se, para todo aberto A contendo o ponto a, existe $n_0 \in \mathbb{N}$ tal que $n > n_0$ implica $x_n \in A$.
- 3. Demonstre que $\operatorname{int}(A \cup B) \supset \operatorname{int} A \cup \operatorname{int} B$ e $\operatorname{int}(A \cap B) \supset \operatorname{int} A \cap \operatorname{int} B$ quaisquer que sejam $A, B \subset \mathbb{R}$.
- 4. Para todo $X \subset \mathbb{R}$, prove que vale a união disjunta $\mathbb{R} = \operatorname{int} X \cup \operatorname{int}(\mathbb{R} \setminus X) \cup F$, em que F é formado pelos pontos $x \in \mathbb{R}$ tais que toda vizinhança de x contém pontos de X e pontos de $\mathbb{R} \setminus X$. O conjunto $F = \operatorname{fr} X$ se chama a fronteira de X. Demonstre que A é aberto se, e somente se, $A \cap \operatorname{fr} A = \emptyset$.
- 5. Sejam $I_1 \supset I_2 \supset \cdots I_n \supset \cdots$ intervalos limitados dois a dois distintos, cuja intersecção $I = \bigcap_{n \geq 1} I_n$ não é vazia. Demonstre que I é um intervalo, o qual nunca é aberto.
- 6. Demonstre que um conjunto é denso em \mathbb{R} se, e somente se, seu complementar tem interior vazio.
- 7. Defina a distância de um ponto $a \in \mathbb{R}$ a um conjunto não-vazio $X \subset \mathbb{R}$ como $d(a, X) = \{|x a|; x \in X\}$. Demonstre que:
 - (a) $d(a, X) = 0 \Leftrightarrow a \in \overline{X}$;
 - (b) Se $F \subset \mathbb{R}$ é fechado, então para todo $a \in \mathbb{R}$ existe $b \in F$ tal que d(a, F) = |b a|.
- 8. Demonstre que, para todo $X \subset \mathbb{R}$, vale $\overline{X} = X \cup \text{fr } X$. Conclua que X é fechado se, e somente se, $X \supset \text{fr } X$.
- 9. Para todo $X \subset \mathbb{R}$, prove que $\mathbb{R} \setminus (\operatorname{int} X) = \overline{\mathbb{R} \setminus X}$ e $\mathbb{R} \setminus \overline{X} = \operatorname{int}(\mathbb{R} \setminus X)$.
- 10. Prove que se X tem fronteira vazia, então $X=\emptyset$ ou $X=\mathbb{R}.$

- 11. Demonstre que toda coleção de intervalos não-degenerados dois a dois disjuntos é enumerável.
- 12. Prove que se todos os pontos do conjunto $X \subset \mathbb{R}$ são isolados, então pode-se escolher, para cada $x \in X$, um intervalo aberto I_x , de centro x, tal que se $x \neq y$, então $I_x \cap I_y = \emptyset$.
- 13. Prove que, para todo $X \subset \mathbb{R}$, X' é um conjunto fechado.
- 14. Demonstre que um número a é ponto de acumulação de X se, e somente se, é ponto de acumulação de \overline{X} .

15. Demonstre que:

- (a) todo ponto de um conjunto aberto A é ponto de acumulação de A;
- (b) se F é fechado e $x \in F$ é um ponto isolado de F, então $F \setminus \{x\}$ é fechado.
- 16. Prove que o conjunto A dos valores de aderência de uma sequência (x_n) é fechado. Se a sequência for limitada, A é compacto, logo existem l, L, respectivamente o menor e o maior valores de aderência da sequência limitada (x_n) .

17. Prove que:

- (a) se $(K_{\lambda})_{{\lambda}\in L}$ é uma família qualquer de compactos, então $\cap K_{\lambda}$ é compacto;
- (b) se K_1, \ldots, K_n são compactos, então $\bigcup_{i=1}^n K_i$ é compacto;
- (c) se K é compacto e F é fechado, então $K \cap F$ é compacto.
- 18. Seja $X \subset \mathbb{R}$. Uma função $f: X \to \mathbb{R}$ se chama localmente limitada quando, para cada $x \in X$, existe um aberto $I_x \ni x$ tal que $f \upharpoonright I_x \cap X$ é limitada. Mostre que se X é compacto, toda função $f: X \to \mathbb{R}$ localmente limitada é limitada.
- 19. Sejam C compacto, A aberto, e $C \subset A$. Mostre que existe $\varepsilon > 0$ tal que se $x \in C$ e $|y x| < \varepsilon$, então $y \in A$.
- 20. Dada uma sequência (x_n) , seja $X_n = \{x_n, x_{n+1}, \ldots\}$ para todo $n \in \mathbb{N}$. Mostre que $\bigcap_{n \geq 1} \overline{X}_n$ é o conjunto dos valores de aderência de (x_n) .

- 21. Determine quais dentre os números $1/m,\ 2\leq m\leq 10$ pertencem ao conjunto de Cantor.
- 22. Prove que a soma da série cujos termos são os comprimentos dos intervalos omitidos para formar o conjunto de Cantor é igual a 1.