## **Assignment 3 Part 1**

CS4172 Machine Learning Lab

Name: Abhiroop Mukherjee

Enrolment Number: 510519109

## Task 1

Download Titanic Dataset (https://www.kaggle.com/heptapod/titanic/version/1#) and do initial pre-processing and train a Logistic Regression for the classifier.

```
In []: import pandas as pd

FILE_PATH = "./../ML_DRIVE/Assign_3/titanic/train_and_test2.csv"

titanic_df = pd.read_csv(FILE_PATH).dropna()

titanic_df
```

| Out[]: |      | Passengerid | Age  | Fare     | Sex | sibsp | zero | zero.1 | zero.2 | zero.3 | zero.4 | ••• | zero.12 | zero.13 | zero.14 | Pclass | zero.15 | zero.16 | Embarked | zero.17 | zero |
|--------|------|-------------|------|----------|-----|-------|------|--------|--------|--------|--------|-----|---------|---------|---------|--------|---------|---------|----------|---------|------|
|        | 0    | 1           | 22.0 | 7.2500   | 0   | 1     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 3      | 0       | 0       | 2.0      | 0       |      |
|        | 1    | 2           | 38.0 | 71.2833  | 1   | 1     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 1      | 0       | 0       | 0.0      | 0       |      |
|        | 2    | 3           | 26.0 | 7.9250   | 1   | 0     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 3      | 0       | 0       | 2.0      | 0       |      |
|        | 3    | 4           | 35.0 | 53.1000  | 1   | 1     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 1      | 0       | 0       | 2.0      | 0       |      |
|        | 4    | 5           | 35.0 | 8.0500   | 0   | 0     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 3      | 0       | 0       | 2.0      | 0       |      |
|        | •••  |             |      |          |     |       |      |        |        |        |        |     |         |         |         |        |         |         |          |         |      |
|        | 1304 | 1305        | 28.0 | 8.0500   | 0   | 0     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 3      | 0       | 0       | 2.0      | 0       |      |
|        | 1305 | 1306        | 39.0 | 108.9000 | 1   | 0     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 1      | 0       | 0       | 0.0      | 0       |      |
|        | 1306 | 1307        | 38.5 | 7.2500   | 0   | 0     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 3      | 0       | 0       | 2.0      | 0       |      |
|        | 1307 | 1308        | 28.0 | 8.0500   | 0   | 0     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 3      | 0       | 0       | 2.0      | 0       |      |
|        | 1308 | 1309        | 28.0 | 22.3583  | 0   | 1     | 0    | 0      | 0      | 0      | 0      |     | 0       | 0       | 0       | 3      | 0       | 0       | 0.0      | 0       |      |

1307 rows × 28 columns

```
In [ ]: titanic df.columns
        Index(['Passengerid', 'Age', 'Fare', 'Sex', 'sibsp', 'zero', 'zero.1',
Out[ ]:
                'zero.2', 'zero.3', 'zero.4', 'zero.5', 'zero.6', 'Parch', 'zero.7',
                'zero.8', 'zero.9', 'zero.10', 'zero.11', 'zero.12', 'zero.13',
                'zero.14', 'Pclass', 'zero.15', 'zero.16', 'Embarked', 'zero.17',
               'zero.18', '2urvived'],
              dtype='object')
In [ ]: # all the zero column are not useful (kaggle saying all zero)
        # so ignoring them
        # also dropping "Passengerid" cause using pandas internal
        # 0-index id
        titanic_df = titanic_df[
            filter(
                 lambda colName: "zero" not in colName,
                titanic df.columns
        titanic_df = titanic_df.drop("Passengerid", axis=1)
        titanic_df
```

| Out[ ]: |      | Age  | Fare     | Sex | sibsp | Parch | Pclass | Embarked | 2urvived |
|---------|------|------|----------|-----|-------|-------|--------|----------|----------|
|         | 0    | 22.0 | 7.2500   | 0   | 1     | 0     | 3      | 2.0      | 0        |
|         | 1    | 38.0 | 71.2833  | 1   | 1     | 0     | 1      | 0.0      | 1        |
|         | 2    | 26.0 | 7.9250   | 1   | 0     | 0     | 3      | 2.0      | 1        |
|         | 3    | 35.0 | 53.1000  | 1   | 1     | 0     | 1      | 2.0      | 1        |
|         | 4    | 35.0 | 8.0500   | 0   | 0     | 0     | 3      | 2.0      | 0        |
|         | •••  | •••  | •••      |     | •••   | •••   |        | •••      | •••      |
|         | 1304 | 28.0 | 8.0500   | 0   | 0     | 0     | 3      | 2.0      | 0        |
|         | 1305 | 39.0 | 108.9000 | 1   | 0     | 0     | 1      | 0.0      | 0        |
|         | 1306 | 38.5 | 7.2500   | 0   | 0     | 0     | 3      | 2.0      | 0        |
|         | 1307 | 28.0 | 8.0500   | 0   | 0     | 0     | 3      | 2.0      | 0        |
|         | 1308 | 28.0 | 22.3583  | 0   | 1     | 1     | 3      | 0.0      | 0        |

1307 rows × 8 columns

```
In []: from sklearn.preprocessing import OneHotEncoder

def one_hot_encode(X: "pd.DataFrame", col_name: "str") -> "pd.DataFrame":
    encoder = OneHotEncoder()

    encoded_df = pd.DataFrame(
        encoder.fit_transform(X[[col_name]]).toarray(),
        index=X.index,
        columns=encoder.get_feature_names_out()
)

X = X.join(encoded_df)
X = X.drop(col_name, axis=1)

return X
```

```
In []: # sibsp has value ranging from 0 to 8 (doing OneHotEncoding)
    # Parch has value ranging from 0 to 9 (doing OneHotEncoding)
    # Pclass has value ranging from 0 to 3 (doing OneHotEncoding)
    # Embarked has value ranging from 0 to 3 (doing OneHotEncoding)

columns_to_encode = ["Pclass", "Embarked", "Sex"]
```

```
for column in columns_to_encode:
    titanic_df = one_hot_encode(titanic_df, column)

titanic_df
```

| Out[ ]: |      | Age  | Fare     | sibsp | Parch | 2urvived | Pclass_1 | Pclass_2 | Pclass_3 | Embarked_0.0 | Embarked_1.0 | Embarked_2.0 | Sex_0 | Sex_1 |
|---------|------|------|----------|-------|-------|----------|----------|----------|----------|--------------|--------------|--------------|-------|-------|
|         | 0    | 22.0 | 7.2500   | 1     | 0     | 0        | 0.0      | 0.0      | 1.0      | 0.0          | 0.0          | 1.0          | 1.0   | 0.0   |
|         | 1    | 38.0 | 71.2833  | 1     | 0     | 1        | 1.0      | 0.0      | 0.0      | 1.0          | 0.0          | 0.0          | 0.0   | 1.0   |
|         | 2    | 26.0 | 7.9250   | 0     | 0     | 1        | 0.0      | 0.0      | 1.0      | 0.0          | 0.0          | 1.0          | 0.0   | 1.0   |
|         | 3    | 35.0 | 53.1000  | 1     | 0     | 1        | 1.0      | 0.0      | 0.0      | 0.0          | 0.0          | 1.0          | 0.0   | 1.0   |
|         | 4    | 35.0 | 8.0500   | 0     | 0     | 0        | 0.0      | 0.0      | 1.0      | 0.0          | 0.0          | 1.0          | 1.0   | 0.0   |
|         | •••  |      |          |       |       |          |          |          |          |              |              |              |       |       |
|         | 1304 | 28.0 | 8.0500   | 0     | 0     | 0        | 0.0      | 0.0      | 1.0      | 0.0          | 0.0          | 1.0          | 1.0   | 0.0   |
|         | 1305 | 39.0 | 108.9000 | 0     | 0     | 0        | 1.0      | 0.0      | 0.0      | 1.0          | 0.0          | 0.0          | 0.0   | 1.0   |
|         | 1306 | 38.5 | 7.2500   | 0     | 0     | 0        | 0.0      | 0.0      | 1.0      | 0.0          | 0.0          | 1.0          | 1.0   | 0.0   |
|         | 1307 | 28.0 | 8.0500   | 0     | 0     | 0        | 0.0      | 0.0      | 1.0      | 0.0          | 0.0          | 1.0          | 1.0   | 0.0   |
|         | 1308 | 28.0 | 22.3583  | 1     | 1     | 0        | 0.0      | 0.0      | 1.0      | 1.0          | 0.0          | 0.0          | 1.0   | 0.0   |

1307 rows × 13 columns

```
In []: # Age and Fare needs to be standardized
    from sklearn.preprocessing import StandardScaler

def standardize(df: "pd.DataFrame", col_name: "str") -> "pd.DataFrame":
        scaler = StandardScaler()

    df[[col_name]] = pd.DataFrame(
        data=scaler.fit_transform(df[[col_name]]),
        index=df.index,
        columns=[col_name]
    )
    return df
```

```
In [ ]: columns_to_standardize = ['Age', "Fare", 'sibsp', "Parch"]
for column in columns_to_standardize:
```

```
titanic df
Out[ ]:
                                                Parch 2urvived Pclass_1 Pclass_2 Pclass_3 Embarked_0.0 Embarked_1.0 Embarked_2.0 Sex_0 Sex_1
                    Age
                              Fare
                                       sibsp
            0 -0.580261 -0.501839
                                    0.480272 -0.445407
                                                              0
                                                                     0.0
                                                                              0.0
                                                                                       1.0
                                                                                                    0.0
                                                                                                                  0.0
                                                                                                                                1.0
                                                                                                                                       1.0
                                                                                                                                             0.0
            1 0.662297 0.736023
                                                                                                                                0.0
                                                                                                                                       0.0
                                    0.480272 -0.445407
                                                                              0.0
                                                                                       0.0
                                                                                                    1.0
                                                                                                                  0.0
                                                              1
                                                                     1.0
                                                                                                                                             1.0
            2 -0.269621 -0.488790 -0.479537 -0.445407
                                                                     0.0
                                                                              0.0
                                                                                       1.0
                                                                                                    0.0
                                                                                                                  0.0
                                                                                                                                       0.0
                                                                                                                                             1.0
                                                              1
                                                                                                                                1.0
            3 0.429318 0.384512
                                    0.480272 -0.445407
                                                                                                    0.0
                                                             1
                                                                     1.0
                                                                              0.0
                                                                                       0.0
                                                                                                                  0.0
                                                                                                                                1.0
                                                                                                                                       0.0
                                                                                                                                             1.0
                                                                                                    0.0
                                                                                                                  0.0
             4 0.429318 -0.486373 -0.479537 -0.445407
                                                                              0.0
                                                              0
                                                                     0.0
                                                                                       1.0
                                                                                                                                1.0
                                                                                                                                       1.0
                                                                                                                                             0.0
         1304 -0.114301 -0.486373 -0.479537 -0.445407
                                                                                                    0.0
                                                                                                                                       1.0
                                                              0
                                                                     0.0
                                                                              0.0
                                                                                       1.0
                                                                                                                  0.0
                                                                                                                                1.0
                                                                                                                                             0.0
                                                                                                                                       0.0
                0
                                                                     1.0
                                                                              0.0
                                                                                       0.0
                                                                                                    1.0
                                                                                                                  0.0
                                                                                                                                0.0
                                                                                                                                              1.0
               0.701127 -0.501839 -0.479537 -0.445407
                                                              0
                                                                                                    0.0
         1306
                                                                     0.0
                                                                              0.0
                                                                                       1.0
                                                                                                                  0.0
                                                                                                                                1.0
                                                                                                                                       1.0
                                                                                                                                             0.0
         1307 -0.114301 -0.486373 -0.479537 -0.445407
                                                                                                                                       1.0
                                                                              0.0
                                                                                       1.0
                                                                                                    0.0
                                                                                                                  0.0
                                                                                                                                             0.0
                                                              0
                                                                     0.0
                                                                                                                                1.0
         1308 -0.114301 -0.209772 0.480272 0.709647
                                                              0
                                                                     0.0
                                                                              0.0
                                                                                       1.0
                                                                                                    1.0
                                                                                                                  0.0
                                                                                                                                0.0
                                                                                                                                       1.0
                                                                                                                                             0.0
        1307 rows × 13 columns
         # Preprocessing Done, Lets move to model
         X = titanic df.drop('2urvived', axis=1)
```

```
X = titanic_df.drop('2urvived', axis=1)
y = titanic_df[['2urvived']]

In []: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)

In []: # make, train, and score the model
from sklearn.linear_model import LogisticRegression

model = LogisticRegression().fit(X_train, y_train.iloc[:,0])
accuracy = model.score(X_test, y_test)
print(f"accuracy = {accuracy}")
```

Task 2

accuracy = 0.764525993883792

titanic df = standardize(titanic df, column)

Analyze and control the overfitting by varying the inverse of regularization strength parameter (0.1, 0.25, 0.5, 0.75, 0.9) and plot the accuracy graph for the test set.

```
import matplotlib.pyplot as plt
def get_acc_log_reg(
   X_train: "pd.DataFrame",
   X_test: "pd.DataFrame",
   y_train: "pd.DataFrame",
   y_test: "pd.DataFrame",
    c=1.0
) -> "float":
    return LogisticRegression(C=c)\
        .fit(X_train, y_train.iloc[:, 0])\
        .score(X_test, y_test)
inv_reg_strs = (0.1, 0.25, 0.5, 0.75, 0.9)
accuracies = [get_acc_log_reg(X_train, X_test, y_train, y_test, c) for c in inv_reg_strs]
plt.plot(inv_reg_strs, accuracies, '.-')
plt.title("Accuracy for Inverse Regularization Strength")
plt.xlabel(r"$\dfrac{1}{\lambda}$")
plt.ylabel("Accuracy")
plt.show()
```



|   | inv_reg_str | accuracy |
|---|-------------|----------|
| 0 | 0.10        | 0.773700 |
| 1 | 0.25        | 0.785933 |
| 2 | 0.50        | 0.788991 |
| 3 | 0.75        | 0.788991 |
| 4 | 0.90        | 0.788991 |

## Task 3

Using the same dataset train a Decision Tree classifier and vary the maximum depth of the tree to train at least 5 classifiers to analyze the effectiveness.

```
In [ ]: from sklearn.tree import DecisionTreeClassifier
         def get acc dec tree(
            X_train: "pd.DataFrame",
            X_test: "pd.DataFrame",
            y_train: "pd.DataFrame",
            y test: "pd.DataFrame",
            max depth=1
         ) -> "float":
            return DecisionTreeClassifier(max depth=max depth)\
                 .fit(X train, y train)\
                 .score(X test, y test)
        max depths = range(1, 35)
        train_accuracies = [get_acc_dec_tree(X_train, X_train, y_train, y_train, max_d) for max_d in max_depths]
        test_accuracies = [get_acc_dec_tree(X_train, X_test, y_train, y_test, max_d) for max_d in max_depths]
        plt.plot(max_depths, train_accuracies, ".-", label='Train')
        plt.plot(max_depths, test_accuracies, ".-", label='Test')
        plt.title("DecisionTreeClassifier Max Depth vs Accuracy")
        plt.xlabel("Max Depth")
        plt.ylabel("Accuracy")
```

plt.legend()
plt.show()

