

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

P

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM INVOCATION

E. Kia Bakes a Cake

time limit per test: 6 seconds memory limit per test: 512 megabytes

You are given a binary string s of length n and a tree T with n vertices. Let k be the number of 1s in s. We will construct a complete undirected weighted graph with k vertices as follows:

- For each $1 \leq i \leq n$ with $s_i = \mathbf{1}$, create a vertex labeled i.
- For any two vertices labeled u and v that are created in the above step, define the edge weight between them w(u,v) as the distance* between vertex u and vertex v in the tree T.

A **simple** path[†] that visits vertices labeled v_1,v_2,\ldots,v_m in this order is *nice* if for all $1\leq i\leq m-2$, the condition $2\cdot w(v_i,v_{i+1})\leq w(v_{i+1},v_{i+2})$ holds. In other words, the weight of each edge in the path must be at least twice the weight of the previous edge. Note that $s_{v_i}=1$ has to be satisfied for all $1\leq i\leq m$, as otherwise, there would be no vertex with the corresponding label.

For each vertex labeled i ($1 \le i \le n$ and $s_i = 1$) in the complete undirected weighted graph, determine the maximum number of vertices in any nice simple path starting from the vertex labeled i.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The first line of each test case contains a single integer n ($1 \le n \le 7 \cdot 10^4$) — the length of the binary string s and the number of vertices in the tree T.

The second line of each test case contains a binary string with n characters $s_1s_2\dots s_n$ ($s_i\in\{0,1\}$) — the string representing the vertices to be constructed in the complete undirected weighted graph.

Each of the next n-1 lines contains two integers u and v ($1 \le u, v \le n$) — the endpoints of the edges of the tree T.

It is guaranteed that the given edges form a tree.

It is guaranteed that the sum of n over all test cases does not exceed $7 \cdot 10^4$.

Output

For each test case, output n integers, the i-th integer representing the maximum number of vertices in any nice simple path starting from the vertex labeled i. If there is no vertex labeled i, i.e., $s_i = 0$, output -1 instead.

Example

input	Сору
3	
5	
01111	
1 2	
2 3	
3 4	
4 5	
17	
01101011110101101	
1 2	
2 3	
3 4	
4 5	
5 6	
6 7	

Codeforces Round 1024 (Div. 1)

Finished

Practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest

→ Last submissions		
Submission	Time	Verdict
321900955	May/29/2025 13:11	Accepted

^{*}The distance between two vertices a and b in a tree is equal to the number of edges on the unique simple path between vertex a and vertex b.

 $^{^\}dagger$ A path is a sequence of vertices v_1,v_2,\ldots,v_m such that there is an edge between v_i and v_{i+1} for all $1\leq i\leq m-1$. A simple path is a path with no repeated vertices, i.e., $v_i\neq v_j$ for all $1\leq i< j\leq m$.

```
7 8
8 9
9 10
10 11
11 12
12 13
13 14
14 15
15 16
16 17
2
01
1 2
output
                                                                                               Сору
-1 3 3 3 3 3
-1 5 4 -1 4 -1 5 5 5 5 -1 4 -1 5 5 -1 3
-1 1
```

Note

In the first test case, the tree T and the constructed graph are as follows:

Left side is the tree T with selected nodes colored yellow. The right side is the constructed complete graph. The nice path shown in the diagram is $3 \to 4 \to 2$. The path is nice as w(4,2)=2 is at least twice of w(3,4)=1. Extending the path using $2 \to 5$ is not possible as w(2,5)=3 is less than twice of w(4,2)=2.

In the second test case, the tree T is a simple path of length 17. An example of a nice path starting from the vertex labeled 2 is $2 \to 3 \to 5 \to 9 \to 17$, which has edge weights of 1,2,4,8 doubling each time.

Codeforces (c) Copyright 2010-2025 Mike Mirzayanov
The only programming contests Web 2.0 platform
Server time: May/29/2025 17:13:34^{UTC+7} (k1).
Desktop version, switch to mobile version.
Privacy Policy | Terms and Conditions

Supported by

