

集成运放的 组成和主要参数

余姚市职成教中心学校 陈雅萍

集成运放的组成框图

输入级:采用差分放大电路,解决零点漂移问题

中间级:提供高的放大倍数,通常由多级放大电路构成

输出级:互补对称电路构成,以提高输出功率和带负载能力

偏置电路:为各级提供稳定的静态工作点

集成运放的组成框图

什么是零点漂移?

零点漂移: 当放大器的输入端为零时,输出端不为零的现象。

带来干扰,需要抑制

解决办法:采用 差分放大电路

差分放大电路由两个完全对称的单管放大电路构成

(1) 共模信号 ——能够完全抑制

温度变化等因素引起的参数变化

相当于两管的输入电压: $u_{11} = u_{12}$ 共模信号

$$u_{01} = u_{02}$$
 $u_{0} = u_{01} - u_{02} = 0$ 零漂为0

(2) 差模信号 ——能够实现放大

若在电路的两个输入端之间加了 $u_{\mathbf{I}}$

$$u_{II} = \frac{1}{2}u_{I}$$
 $u_{I2} = -\frac{1}{2}u_{I}$ $u_{O1} = -u_{O2}$

$$u_{\rm O} = u_{\rm O1} - u_{\rm O2} = 2u_{\rm O1}$$

集成运放的主要参数

1. 开环差模增益 A_{od}

指集成运放本身(无外加反馈回路)的差模增益,即 $A_{od} = \frac{u_0}{u_+ - u_-}$ 。它体现了集成运放的<u>电压放大能力</u>,一般在 $10^4 \sim 10^7$ 之间。 A_{od} 越大,电路越稳定,运算精度也越高。

2. 开环共模增益 A_{oc}

指集成运放本身的共模增益,它反映集成运放抗温漂、抗共模干扰的能力,优质集成运放的 A_{oc} 应接近于零。

3. 共模抑制比 K_{CMR}

用来综合衡量集成运放的放大能力和抗温漂、抗共模干扰的能力,一般应大于80 dB。

4. 差模输入电阻 R_{id}

指差模信号作用下集成运放的输入电阻。

集成运放的组成和主要参数

1.组成

2.主要参数

- 1. 开环差模增益 A_{od}
- 2. 开环共模增益 A_{oc}
- 3. 共模抑制比 K_{CMR}
- 4. 差模输入电阻 R_{id}

