

Rodrygo Santos rodrygo@dcc.ufmg.br

Quick recap

U F M G
COMPUTER
SCIENCE

- How will I like item x?
 - User-based
 - What have similar users found of item x?
 - Item-based
 - What have I found of items similar to x?
- Key difference: neighborhoods
 - User-based: unstable, hard to precompute
 - Item-based: stable, easy to precompute

How robust is this? • What if we have sparse data? - E.g., new user a, new item p? • No available rating r_{ap} The property of t

Memory-based Online "learning" Online prediction Lazy, instance-based learning (k-NN like) Problems? Costly recommendation O(mn) worst case Poor robustness Sparsity Perturbations Overfit representation Ilike Star Wars,

you like Star Trek

- Are we neighbors?

Memorize or model?

UFmG

COMPUTER

Dimensionality reduction

U F M G

COMPUTER
SCIENCE

- Given an m x n utility matrix
 - User-based CF is n-dimensional
 - Item-based CF is *m*-dimensional
 - m and n could be in the hundreds of millions
- Can we reduce the dimensions of the utility matrix while effectively retaining information about each user's preferences?

Where did this come from?

UF MG
COMPUTER
SCIENCE

- · Vocabulary mismatch problem
- Queries are vectors over keywords
- Documents are vectors over keywords
- We want to match concepts!
- Latent semantic indexing (LSI) (Deerwester et al., ASIS 1988)
 - Represent queries and documents in a compact and robust space of latent concepts
- Actually a bit older... (like a century!)

Singular value decomposition

U F M G

COMPUTER
SCIENCE

- · Reduce dimensionality of the problem
 - Results in small, fast model
 - Richer, denser neighbor network
- One of various matrix factorization techniques
 - Techniques based on linear systems (e.g., LU)
 - Techniques based on eigenvalues (e.g., SVD)

- UF MG
 COMPUTER
 SCIENCE
- Prediction quality generally increases...
 - Noisy ratings filtered out
 - Nontrivial correlations detected
- ... although it may also decrease
 - Original ratings are not taken into account
- Depends on the amount of reduction
 - Normally 20 to 100 factors (Koren, KDD 2009)
 - But it really depends on the target domain

SVD cons

U F M G

- Lack of transparency
 - Optimal dimensions do not correspond to usercomprehensible concepts
- · Missing values
 - SVD is undefined for incomplete matrices
 - Utility matrix has lots of missing values
- · Computation complexity

m x n

- SVD computation is $O(m^2n + n^3)$

Missing values

- SVD assumes a complete matrix
 - If it's complete, we don't need a recommender!
- · What to do with missing values?
 - Impute (assume they are a mean)
 - Normalize (assume they are 0)
 - Ignore!

• Standard SVD is (very) slow — All we need is a good approximation • Model it as an optimization problem! | March | March

Quantifying the error

U F M G

COMPUTER
SCIENCE

Approximated SVD

$$-\hat{r}_{ap} = U_a V_p^T$$
 (Σ embedded in U and V)

Approximation error

$$-e_{ap} = r_{ap} - \hat{r}_{ap}$$

Defining the problem

UFMG

 We want to minimize the error over all known ratings, hence ignoring missing values

$$-\min_{U,V} \sum_{(a,p)} (r_{ap} - U_a V_p^T)^2 \quad (r_{ap} \text{ is known})$$

- Problem: overfitting
 - We are learning from few examples after all
- · Solution: regularization

$$-\min_{U,V} \sum_{(\sigma,\rho)} (r_{\sigma\rho} - U_{\sigma}V_{\rho}^{T})^{2} + \lambda(|U_{\sigma}|^{2} + |V_{\rho}|^{2})$$

The effect of regularization

UFMG

- Occam's razor (aka KISS)
 - Allow rich model where there are sufficient data
 - Shrink aggressively where data are scarce

A funky solution

Simon Funk's SVD

- One of the most interesting findings during the Netflix Prize came out of a blog post
 - "Ok, so here's where I tell all about how I got to be tied for third place on the Netflix prize."
 Simon Funk, 2006
- Incremental, iterative, and approximate way to compute the SVD using gradient descent

Gradient descent

- Problem
 - -minF(x)
- Solution
 - Gradient points in the direction of the greatest decrease (or increase) of a function
 - Why not step iteratively in that direction?
 - $\mathbf{x}_{i+1} = \mathbf{x}_i \gamma_i \nabla F(\mathbf{x}_i)$
 - $-\gamma_i$ is the learning rate
 - Higher = faster training, lower accuracy

UFmGA simplified example COMPUTER SCIENCE • An initial (random) guess $\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

A simplified example

• Not that impressive...

$$\begin{bmatrix}
5 & 2 & 4 & 4 & 3 \\
3 & 1 & 2 & 4 & 1 \\
2 & 3 & 1 & 4 \\
2 & 5 & 4 & 3 & 5 \\
4 & 4 & 5 & 4
\end{bmatrix}
= \begin{bmatrix}
2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2
\end{bmatrix}$$
• RMSE = 1.806

A simplified example

• An improved guess
$$\begin{bmatrix}
5 & 2 & 4 & 4 & 3 \\
3 & 1 & 2 & 4 & 1 \\
2 & 3 & 1 & 4 \\
2 & 5 & 4 & 3 & 5 \\
4 & 4 & 5 & 4
\end{bmatrix} = \begin{bmatrix} x & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

A simplified example

UFmG

A simplified example

U F M G
COMPUTER
SCIENCE

• An improved guess

- How to choose *x* to minimize the error?
- Take the gradient!

A simplified example

UFMG

• The error contribution

$$(5-(x+1))^2+(2-(x+1))^2+(4-(x+1))^2+(4-(x+1))^2+(3-(x+1))^2$$

· Simplifies to

$$(4-x)^2+(1-x)^2+(3-x)^2+(3-x)^2+(2-x)^2$$

Taking the derivative and equating to 0

$$-2 \times ((4-x)+(1-x)+(3-x)+(3-x)+(2-x)) = 0$$

 \(\therefore\) x = 2.6

A simplified example

UFMG

• Replacing x = 2.6

A simplified example

U F M G
COMPUTER
SCIENCE

• Replacing x = 2.6

RMSE reduced from 1.806 to 1.642

Funk's SVD

UFMG COMPUTER SCIENCE

initialize matrices U, V for each factor f:
 until f has converged:
 for each rating r_{ap} :
 predict \hat{r}_{ap} update U_{af} update V_{pf}

Do we need to use every rating in every iteration?

• We can sample training ratings randomly • Improves convergence! - Aka faster learning

Summary

- Matrix factorization is dominant
 - Superior to classical nearest neighbor techniques
 - Uses a more compact memory-efficient model
- Matrix factorization is flexible
 - Can integrate multiple forms of feedback, user and item biases, temporal dynamics, and confidence levels (Koren et al., Computer 2009)
- SVD is not the only factorization approach

Writing Assignment #3

- Write a one-page summary about:
 - Matrix factorization techniques for recommender systems (Computer 2009)
 by Yehuda Koren, Robert Bell, Chris Volinsky
 - Due Mon, Apr 17 @ 23:55 via Moodle