

Deep Learning Approaches to Image Segmentation

Antonio Rueda-Toicen

SPONSORED BY THE

Learning goals

- Understand the deep learning solutions for labeled image segmentation: semantic, instance, panoptic
- Describe class-agnostic and zero-shot segmentation with Segment Anything (SAM)

Semantic, Instance, and Panoptic Segmentation

Example of instance segmentation with YOLO11

Image from https://learnopencv.com/yolo11/

Semantic segmentation with U-Net

Instance segmentation with Mask R-CNN

Figure 3. **RoIAlign:** The dashed g resents a feature map, the solid lines (with 2×2 bins in this example), and the 4 sampling points in each bin. Recomputes the value of each sampling by bilinear interpolation from the near points on the feature map. No quantize performed on any coordinates involve RoI, its bins, or the sampling points.

Think of this as an additional pass after running Faster R-CNN on the image

Mask2Former: unified approach for labeled segmentation

Promptable masks with Segment Anything (SAM)

Figure 3: Each column shows 3 valid masks generated by SAM from a single ambiguous point prompt (green circle).

Image from **Segment Anything**

Class-agnostic segmentation with Segment Anything (SAM)

Figure 4: Segment Anything Model (SAM) overview. A heavyweight image encoder outputs an image embedding that carthen be efficiently queried by a variety of input prompts to produce object masks at amortized real-time speed. For ambiguou prompts corresponding to more than one object, SAM can output multiple valid masks and associated confidence scores.

Creating labeled masks with object detectors and SAM

Summary

Semantic segmentation assigns class labels to individual pixels

Loss functions compare predictions with ground truth masks at the pixel level

Instance segmentation separates objects of the same class

Each detected object receives a unique mask identifier

Panoptic segmentation combines instance and semantic segmentation

• Labels pixels as countable (instance) or uncountable (semantic) classes

Segment anything (SAM) produces zero-shot masks

- Generates class-agnostic masks from prompts
- Integrates with object detectors for class labels

Further reading and references

U-Net: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/abs/1505.04597

Mask R-CNN

https://arxiv.org/abs/1703.06870

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation

https://arxiv.org/abs/2112.01527

Segment Anything

https://arxiv.org/abs/2304.02643

SPONSORED BY THE