Tutotial 6

Example 1

It is NOT possible to prove

```
Pre: l=\langle a_1,a_2,\ldots,a_n\rangle s.t. VALUE_TYPE=int x:=sum(l) y:=sum(l)
Post: x+y=2\cdot\sum_{i=1\ldots n}a_i.value
```

Pre: $l = \langle a_1, a_2, \dots, a_n \rangle$ s.t. VALUE_TYPE=int

because it is not in general guaranteed that the list l is not modified after the execution of x := sum(l). However, by changing the specification for the sum function as follows

Example 2

Post: $x + y = 2 \cdot \sum_{i=1...n} a_i.value$

```
• find(i,l) = j := 1 x := l.first while (NOT l.nil\_entry(x)) and j < i do x := l.next(x) j := j + 1 end while return x
```

• O(|l|)

Example 3

Pre: $l = \langle a_1, a_2, ..., a_n \rangle$

res := l.first

Post: $res = a_1$ if $l \neq \langle \rangle$ and res = NIL otherwise $(l = \langle \rangle)$, and l' = l

Pre: $l = \langle a_1, a_2, \dots, x, \dots, a_n \rangle$

res := l.next(x)

Post: $res = a_i$ if $l = \langle a_1, a_2, \dots, x, a_i, \dots, a_n \rangle$ (i.e. x is not the last entry) and res = NIL if $x = a_n$ (i.e. x is the last entry), and l' = l