Network Management with Data Analytics

Lautaro Dolberg Supervisor: Prof. Dr. Thomas Engel

MAM

DNS

NS Application Awareness

Conclusion

SNT

- 1 Introduction
- 2 Multidimensional Aggregation Monitoring

- 3 Case Study: DNS Monitoring
- 4 Application Awareness
- **5** Conclusion

- Introduction
- 2 Multidimensional Aggregation Monitoring

- 3 Case Study: DNS Monitoring
- 4 Application Awareness
- Conclusion

SNT

Definition

In computer networks, network management is the operation, administration, maintenance, and provisioning (OAMP) of networked systems^a

^aSource: Cisco Systems

FCAPS

A common way of characterizing network management functions is FCAPS. Fault, Configuration, Accounting, Performance and Security.

Fault Management

Fault Management is established by monitoring different things for abnormal behaviour.

Research Questions

Introduction

Context

Data Analytics

Data Analytics

"Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate..."

^aJohn Tukey,

The Future of Data Analysis, 1961

Introduction

Data Analytics

Context Research Questions

"Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate..."

^aJohn Tukey,

The Future of Data Analysis, 1961

Big Data

Volume, Variety, and Velocity

Big Data Analytics

Combines data analytics to the challenges of Big Data

Data Centres Traffic

Source: Cisco Global Cloud Index, 2013-2018

Generalized Traffic

The data centre traffic has dramatically grown in the last years.

Data Centres Traffic

Source: Cisco Global Cloud Index, 2013-2018

Cloud-based Traffic

In particular data intensive applications require more bandwidth than only CPU intensive

Support for Data Analytics

- Resource Allocation (Virtualized Environments)
- Network Bandwidth (Data intensive)
- Flexibility

Cloud Environments

In particular support for data intensive applications in the cloud

Context Research Questions

Internet Traffic Volume Growth

Data Analytics for Security

The scale and complexity of the threats require strong techniques for efficient monitoring.

Security Perspective

During year 2014 DDoS Attacks:

- Remain the number one operational threat seen by respondents (Arbor 2014).
- Multiple respondents report very large attacks above the 100Gbps threshold (Kaspersky Labs).

Increase in complexity of attacks

 Advanced persistent threats are increasingly common (Arbor 2014)

Attacks Vector Reported in 2014

Application-Layer Attack Vectors

Network Security

Network Security Monitoring

- Collect network-derived data
- Analyze to find anomalies
- Evaluate anomalies and find out attacks

Network Monitoring is essential for detecting attacks

Challenges

- No Silver Bullet ← Attack diversity
- Volume of information can be overwhelming
- Attacks are becoming more complex

Network Monitoring

Is an essential part in network security for detection of attacks

In the context of network monitoring

- How diverse information from network sources can be:
 - extracted
 - stored
 - aggregated to outline significant events
- Detection of anomalies

Research Questions: Network Security

Network Monitoring

Is an essential part in network security for detection of attacks

In the context of network monitoring

- How diverse information from network sources can be:
 - extracted
 - stored
 - aggregated to outline significant events
- Detection of anomalies

Example

A NetFlow log has at least 12 fields per record

Research Questions: Case Studies

Context: Anomaly Detection

- TCP/IP Networks:
 - Anomalies in IP Traffic Patterns

Research Questions: Case Studies

Context: Anomaly Detection

- TCP/IP Networks:
 - Anomalies in IP Traffic Patterns
- Domain Name System (DNS) :
 - Find out anomalies in the association between names and IP addresses

Research Questions: Case Studies

Context: Anomaly Detection

- TCP/IP Networks:
 - Anomalies in IP Traffic Patterns
- Domain Name System (DNS) :
 - Find out anomalies in the association between names and IP addresses
- Crowd-sourced Position-based Applications (Routing)
 - Study the dynamics of the reported positions of moving vehicles

SIT Research Questions: N

Research Questions: Network Management

- How application awareness can be brought to a network level for:
 - Traffic Analysis
 - Application
 - Instance
 - User/Host

Research Questions: Network Management

- How application awareness can be brought to a network level for:
 - Traffic Analysis
 - Application
 - Instance
 - User/Host
 - Network Management
 - Data Intensive
 - Resource allocation
 - Enrich QoS (Quality of Service) rules
 - Security

Research Questions: Network Management

- How application awareness can be brought to a network level for:
 - Traffic Analysis
 - Application
 - Instance
 - User/Host
 - Network Management
 - Data Intensive
 - Resource allocation
 - Enrich QoS (Quality of Service) rules
 - Security
- Leverage network management with application awareness

Outline

- Multidimensional Aggregation Monitoring

- Case Study: DNS Monitoring

Network Monitoring

What if?

- Traces from TCP/IP communications
- What do we see if we group per sub network? (activity)
- What ports are the most used? (applications)
- Is there any significant changes in terms of usage?

Challenges

- Human expertise
- Time consuming
- Costly process
- Scalability

- Preserve the hierarchy of Data (DNS, IP, Coordinates, SIP, HTTP, ...).
- Flexible Granularity
- Minimize information loss due to aggregation
- Reduce the scale

- Preserve the hierarchy of Data (DNS, IP, Coordinates, SIP, HTTP, ...).
- Flexible Granularity
- Minimize information loss due to aggregation
- Reduce the scale

Aggregation

■ Scalable way to outline relevant facts

- Preserve the hierarchy of Data (DNS, IP, Coordinates, SIP, HTTP, ...).
- Flexible Granularity
- Minimize information loss due to aggregation
- Reduce the scale

Aggregation

- Scalable way to outline relevant facts
- Custom Units (e.g. traffic packets, traffic units, records)

- Preserve the hierarchy of Data (DNS, IP, Coordinates, SIP, HTTP, ...).
- Flexible Granularity
- Minimize information loss due to aggregation
- Reduce the scale

Aggregation

- Scalable way to outline relevant facts
- Custom Units (e.g. traffic packets, traffic units, records)
- Temporal: time windows split (β)
- lacktriangle Spatial: keep group of events with activity > lpha e.g. traffic volume

State of the Art

Space Partitioning: static vs dynamic

- Static Partitioning: defining partitions that remain unchangeable For example a network prefix (/8,/16,/24)
- Dynamic Partitioning: space is partitioned according to given data Natural relationships are lost sometimes

Partitioning

Static: Quadtrees; Dynamic: Hierarchical Clustering

Data Structure

Approaches such as Relational Data Bases require well structured data and a data model

Motivation

Simple Aggregation

Aguri Tree Example

- Node Volume
- IP Address & Network Address

K. Cho at Al, "Aguri: An aggregation-based traffic profiler," in Quality of Future Internet Services. Springer, 2001.

Introduction

- 2 Multidimensional Aggregation Monitoring Multidimensional Trees
- Case Study: DNS Monitoring

Multidimensional Data

Example: NetFlow Capture

PORT	PROTO	KB	TIME	SOURCE	DEST
80	TCP	1491	2010-02-24 02:20:15	192.168.6.2	92.250.221.82
110	TCP	988	2010-02-24 02:20:19	192.168.8.2	92.250.223.87
443	TCP	902	2010-02-24 02:20:27	192.168.11.2	92.250.220.82
110	TCP	1513	2010-02-24 02:20:29	192.168.112.1	92.250.222.81
80	TCP	1205	2010-02-24 02:20:29	192.168.11.1	92.250.220.82
80	TCP	1491	$2010 - 02 - 24 \ 02:20:31$	192.168.1.2	92.250.220.83
110	TCP	1467	2010-02-24 02:20:39	192.168.12.2	92.250.221.81
80	TCP	927	2010-02-24 02:20:39	192.168.12.2	92.250.220.82
443	TCP	1294	2010-02-24 02:20:39	192.168.11.1	92.250.223.82
110	TCP	940	2010-02-24 02:20:49	192.168.21.2	92.250.221.81
80	TCP	917	2010-02-24 02:20:49	192.168.23.1	92.250.220.82
443	TCP	46 0	2010-02-24 02:20:59	192.168.26.2	92.250.220.85

Dimensions

- Source IP Address & Network Address
- Destination IP Address & Network Address
- Application

Summary Multidimensional Aggregated Tree

Previous NetFlow Capture Tree Representation

Tree Construction

- Aggregation α : 9%
- Directions to navigate the tree

SNT

Tree Construction

Structure

Root node and multiple children, as many as each dimension admit.

Tree navigation

- How to find the right path to insert a node within a tree?
- Direction function indicates the next step
 - Most specific common ancestor between two nodes
 - Longest common prefix match (IP, DNS and other address spaces)
- For IPv4 is a binary function (0,1) as next bit value
- For other features, natural hierarchical classification

- Introduction
- Multidimensional Aggregation Monitoring Multidimensional Trees Evaluation Summary
 - 3 Case Study: DNS Monitoring
- 4 Application Awareness
- Conclusion

Data Sets

NetFlow: ISP from Luxembourg (3-D)

IP Addresses	Ports	Duration	Flows
279815	64470	26 days	60,000/sec

GPS: Luxembourg Urban Scenario Simulation (2-D)

Total Cars	Mean Speed	Mean Car Trip Time	Reporting Interval
138260	11.17	11 min	1 second

DNS: Passive DNS DB (2-D)

	Domains	IP Address
Normal	661968	164559
Malicious	173066	174619
Total	835034	339178

SNT

Scalability

Aggregation Results

	Average	tree	Average tree size
	size	before	after aggregation
	aggregation	on	
Netflow	3288		90
DNS	8600		53
SIP	1077		18
Geographical	14664		45

Table 1: Tree size reduction using aggregation (average on all time windows) with $\alpha=0.05$

Aggregation Results

	Average tree size before	Average tree size after aggregation
	aggregation	
Netflow	3288	90
DNS	8600	53
SIP	1077	18
Geographical	14664	45

Table 1: Tree size reduction using aggregation (average on all time windows) with $\alpha=0.05$

Scalability

- Aggregation reduced the scale of data in at least one order of magnitude
- An ISP generates 60,000 records per second
- With aggregation this is collapsed to approximately 1800 nodes

SNT

Performance

Running Time

Multidimensional Trees Evaluation

Performance

Running Time

Nodes

Aggregation running times $O(n \times \log(n))$ are far from the worst case complexity calculations $O(n^2)$

- 2 Multidimensional Aggregation Monitoring

Summary

- Case Study: DNS Monitoring
- Application Awareness

Conclusions

Summary

- Validated aggregation of heterogeneous data (Mutidimensional)
- Data Driven Granularity
- Scalable Aggregation
- https://github.com/ldolberg/mam
- Extensible to other data sources and dimensions

Minimize Data Loss

In the next section...

- 1 Introduction
- 2 Multidimensional Aggregation Monitoring
- 3 Case Study: DNS Monitoring

DNS Background Similarity Metric

- 4 Application Awareness
- Conclusion

DNS traffic reflects Internet activities and behaviours

- Internet Threats Growing: Phishing, Malware, Spoofed Domains.
- Identify malware <u>behaviour</u> by assessing association time between names and networks.
- As both DNS and IP space follow hierarchical organization.

Questions...

■ What can be learned from DNS records related to Internet activities?

- Internet Threats Growing: Phishing, Malware, Spoofed Domains.
- Identify malware <u>behaviour</u> by assessing association time between names and networks.
- As both DNS and IP space follow hierarchical organization.

Questions...

- What can be learned from DNS records related to Internet activities?
- Can malicious domains be identified by looking at DNS Records?

- Internet Threats Growing: Phishing, Malware, Spoofed Domains.
- Identify malware <u>behaviour</u> by assessing association time between names and networks.
- As both DNS and IP space follow hierarchical organization.

Questions...

- What can be learned from DNS records related to Internet activities?
- Can malicious domains be identified by looking at DNS Records?

- Introduction
- Multidimensional Aggregation Monitoring
- 3 Case Study: DNS Monitoring DNS Background Similarity Metric Evaluation
- 4 Application Awareness
- 6 Conclusion

Motivation DNS Background

DNS is an essential service for Internet

- Emerged in 1987 (RFC 1035, 1123, 2181)
- Domain names are labels separated with dots.

Domain Name Hierarchy Example

Max depth 127. Limited to 253 characters, label limit 63 characters.

Resolving www.uni.lu

Motivation DNS Background

DNS Structure & Procedure

Resolving www.uni.lu

DNS Registers

- The duration of a register is given by its TTL (Time To Live)
- A malicious domains can set a small TTL to avoid blacklisting
- How we can observe changes from a global perspective? (network & domain)

Motivation DNS Background

State of the art

Active

- Black Listing: Users report malicious sites and lists are confectioned
- Brute Forcing: Generation of domains

Passive

Feature Extraction: Looks for anomalies in the DNS Responses such as TTL, Record Type, Network Type, etc. (DNSSM, Exposure)

Sources

- L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, "Exposure: Finding malicious domains using passive dns analysis" in Network and Distributed System Security Symposium -NDSS. 2011.
- S. Marchal, J. Francois, C. Wagner, R. State, A. Dulaunov, T. Engel, and O. Festor, "DNSSM: A large-scale Passive DNS Security Monitoring Framework", in IEEE/IFIP Network Operations and Management Symposium, 2012.

- Introduction
- Multidimensional Aggregation Monitoring
- 3 Case Study: DNS Monitoring DNS Background Similarity Metric Evaluation
- 4 Application Awareness
- 6 Conclusion

With MAM is possible to generate aggregated trees combining multiple data

■ Two dimensions

With MAM is possible to generate aggregated trees combining multiple data

- Two dimensions
- Derived from the hierarchically data model (IPV4 & DNS Data Space)

MAM for DNS

With MAM is possible to generate aggregated trees combining multiple data

- Two dimensions
- Derived from the hierarchically data model (IPV4 & DNS Data Space)
- Example

lacksquare $S = [T_1, \dots, T_K]$ representing DNS record association over time split in K

- ullet $S = [T_1, \dots, T_K]$ representing DNS record association over time split in K
- $n \in T_i$

- lacksquare $S = [T_1, \dots, T_K]$ representing DNS record association over time split in K
- $n \in T_i$
 - ndns represents the DNS name

Formal Definition

- $S = [T_1, \dots, T_K]$ representing DNS record association over time split in K
- $n \in T_i$
 - n^{dns} represents the DNS name
 - $\mathbf{n}^{\mathsf{ip}} = \langle n^{\mathsf{address}}, n^{\mathsf{prefix_length}} \rangle$ represent the IPv4 address as a tuple

- $S = [T_1, \dots, T_K]$ representing DNS record association over time split in K
- $n \in T_i$
 - n^{dns} represents the DNS name
 - \bullet $n^{\text{ip}} = \langle n^{\text{address}}, n^{\text{prefix_length}} \rangle$ represent the IPv4 address as a tuple
 - \blacksquare n^{accum} is the accumulated value representing the number of A Records.

Formal Definition

- $S = [T_1, \dots, T_K]$ representing DNS record association over time split in K
- $n \in T_i$
 - n^{dns} represents the DNS name
 - \bullet $n^{\text{ip}} = \langle n^{\text{address}}, n^{\text{prefix_length}} \rangle$ represent the IPv4 address as a tuple
 - \blacksquare n^{accum} is the accumulated value representing the number of A Records.
- \blacksquare The trees from S are aggregated according to a given α

Formal Definition

Assuming a sequence of K Trees

- $S = [T_1, \dots, T_K]$ representing DNS record association over time split in K
- $n \in T_i$
 - ndns represents the DNS name
 - \bullet $n^{\text{ip}} = \langle n^{\text{address}}, n^{\text{prefix_length}} \rangle$ represent the IPv4 address as a tuple
 - \blacksquare n^{accum} is the accumulated value representing the number of A Records.
- \blacksquare The trees from S are aggregated according to a given α

How the similarity between two nodes can be defined?

Similarity

Similarity is positive if: Perfect Match

 $n_1^{dns} \subset n_2^{dns} \text{ AND } n_1^{ip} \subset n_2^{ip}$

Domain Name	IP	Domain Name	IP IP
www.uni.lu	192.1.2.1/24	uni.lu	192.168.2.0/24
www.uni.lu	192.1.2.2/24	ftp.uni.lu	192.168.2.1/24

Similarity

Similarity is positive if: Partial Match

- $n_1^{dns} \subset n_2^{dns}$ OR $n_1^{ip} \subset n_2^{ip}$ $n_2^{dns} \subset n_1^{dns}$ OR $n_2^{ip} \subset n_1^{ip}$

Evamples

LAditipics			
Domain Name	ΙP	Domain Name IP	
www.uni.lu	10.1.0.0/8	uni.lu 11.1.0.0/	8
ftp.uni.lu	10.1.0.0/8	ftp.uni.lu 10.2.0.0/	8

Similarity

Similarity is 0 if: No Match

Both dns and ip are unrelated

Domain Name	IP
www.uni.lu	10.1.0.0/8
www.uni.de	15.1.0.0/5

DNS Similarity

$$s^{\mathsf{dns}}(n_1, n_2) = \frac{|n_1^{\mathsf{dns}} \cap n_2^{\mathsf{dns}}|}{|n_1^{\mathsf{dns}} \cup n_2^{\mathsf{dns}}|}$$

$$\frac{\{\mathsf{www},\mathsf{uni},\mathsf{lu}\} \cap \{\mathsf{uni},\mathsf{lu}\}}{\{\mathsf{www},\mathsf{uni},\mathsf{lu}\} \cup \{\mathsf{uni},\mathsf{lu}\}}$$

Similarity Function

Conclusion

DNS Similarity

$$s^{\mathsf{dns}}(n_1, n_2) = \frac{|n_1^{\mathsf{dns}} \cap n_2^{\mathsf{dns}}|}{|n_1^{\mathsf{dns}} \cup n_2^{\mathsf{dns}}|}$$

IP Similarity

$$s^{ip}(n_1, n_2) = 1 - \frac{|n_1^{prefix_len} - n_2^{prefix_len}|}{32}$$

$$10.1.10.0/8$$
; $10.1.11.0/16 \rightarrow \frac{|8-16|}{32}$

Similarity Function

DNS Similarity

$$s^{\mathsf{dns}}(n_1, n_2) = \frac{|n_1^{\mathsf{dns}} \cap n_2^{\mathsf{dns}}|}{|n_1^{\mathsf{dns}} \cup n_2^{\mathsf{dns}}|}$$

IP Similarity

$$s^{ip}(n_1, n_2) = 1 - \frac{|n_1^{\text{prefix_len}} - n_2^{\text{prefix_len}}|}{32}$$

Volume Similarity

$$s^{\text{vol}}(n_1, n_2) = 1 - 0.01 \times |n_1^{\text{acc_vol}} - n_2^{\text{acc_vol}}|$$

Example

 $n_1^{\text{acc_vol}}, n_2^{\text{acc_vol}}$ are percentages

Similarity Function

DNS Similarity

$$s^{\mathsf{dns}}(n_1, n_2) = \frac{|n_1^{\mathsf{dns}} \cap n_2^{\mathsf{dns}}|}{|n_2^{\mathsf{dns}} \cup n_2^{\mathsf{dns}}|}$$

IP Similarity

$$s^{ip}(n_1, n_2) = 1 - \frac{|n_1^{\text{prefix_len}} - n_2^{\text{prefix_len}}|}{32}$$

Volume Similarity

$$s^{\text{vol}}(n_1, n_2) = 1 - 0.01 \times |n_1^{\text{acc_vol}} - n_2^{\text{acc_vol}}|$$

Formula

$$s(n_1, n_2) = w_1 \times s^{ip}(n_1, n_2) + w_2 \times s^{dns}(n_1, n_2) + w_3 \times s^{vol}(n_1, n_2)$$

 $w_i \in [0, 1], i \in [1, 2, 3]$

Smoothing helps considering early time windows

- $n \in T_1, m \in T_2$
- We compute m as sim(n,m) is maximum
- stead(n) = sim(n, m) + μ × stead(m). With T_0 as base case and $\mu \in \Re$.

Smoothing

Introduction

Motivation

Smoothing helps considering early time windows

- \blacksquare $n \in T_1, m \in T_2$
- We compute m as sim(n,m) is maximum
- stead $(n) = sim(n, m) + \mu \times stead(m)$. With T_0 as base case and $\mu \in \Re$.

So we compute the global steadiness of a Tree T by:

$$\mathsf{Persistence}(T) = \frac{\sum\limits_{n \in T} \mathsf{stead}(n)}{|T|}$$

- Multidimensional Aggregation Monitoring
- 3 Case Study: DNS Monitoring **DNS** Background Similarity Metric Evaluation

SNT

Data Set

Aggregation Window: 1 Week Time Length

- Macro: Up to 52 weeks from 2011-04-23 to 2012-06-30 (662 K)
- Micro: 10 weeks maximum

Data Set

Aggregation Window: 1 Week Time Length

■ Macro: Up to 52 weeks from 2011-04-23 to 2012-06-30 (662 K)

Micro: 10 weeks maximum

Malicious data

■ Time: Periodically, Steady

- Macro: Up to 52 weeks from 2011-04-23 to 2012-06-30 (662 K)
- Micro: 10 weeks maximum

Malicious data

- Time: Periodically, Steady
- Proportion: 0.1%, 1% and 10%

■ Macro: Up to 52 weeks from 2011-04-23 to 2012-06-30 (662 K)

Micro: 10 weeks maximum

Malicious data

■ Time: Periodically, Steady

■ Proportion: 0.1%, 1% and 10%

■ Source: Blacklists (Exposure, WOT) 175K

Aggregation α : 2%

DNS

Distribution of Local Steadiness (Leafs)

MAM

■ More than 50% of malicious nodes have less than 0.7 of steadiness

Distribution of Local Steadiness (Leafs)

- More than 50% of malicious nodes have less than 0.7 of steadiness
- Less than 20% of malicious nodes have more than 0.85 of steadiness

Distribution of Local Steadiness (Leafs)

- More than 50% of malicious nodes have less than 0.7 of steadiness
- Less than 20% of malicious nodes have more than 0.85 of steadiness
- Less than 40% of normal data have a steadiness of 0.8 or less.

Distribution of Local Steadiness (Leafs)

- More than 50% of malicious nodes have less than 0.7 of steadiness
- Less than 20% of malicious nodes have more than 0.85 of steadiness
- Less than 40% of normal data have a steadiness of 0.8 or less.
- Only 10% of normal data have a steadiness of less than 0.5

Microscopic observation

Malicious domains causes a drop on average steadiness

<u>SNT</u>

Macroscopic observation

Malicious domains causes a drop on average steadiness: Macro

A methodology for assessing DNS - IP association time frame was proposed.

- A methodology for assessing DNS IP association time frame was proposed.
- Reduced the scale of data, helpful in the context of network security. (From 80K nodes to 2K with $\alpha=2\%$)

- A methodology for assessing DNS IP association time frame was proposed.
- Reduced the scale of data, helpful in the context of network security. (From 80K nodes to 2K with $\alpha = 2\%$)
- Definition of steadiness metrics for a local and global scope was introduced.

- A methodology for assessing DNS IP association time frame was proposed.
- Reduced the scale of data, helpful in the context of network security. (From 80K nodes to 2K with $\alpha = 2\%$)
- Definition of steadiness metrics for a local and global scope was introduced.
- Evaluation using real data and during several time frames.
 Validation of the metrics

- 1 Introduction
- 2 Multidimensional Aggregation Monitoring
- 3 Case Study: DNS Monitoring

4 Application Awareness

Background Contributions Evaluation

5 Conclusion

Motivation

Why application-awareness is important at network level?

- Better Network Management in terms of applications
 - Routing
 - Policy implementation: QoS, Security, etc
 - Resource Allocation
 - Developers
- Network Monitoring
 - Per Application
 - Per Instance / User
 - SDN Potential

- Introduction
- Multidimensional Aggregation Monitoring
- 3 Case Study: DNS Monitoring
- 4 Application Awareness
 Background
 Contributions
 Evaluation
 - 5 Conclusion

Motivation **Background Contributions Evaluation Summary**

State of the Art

SDN Background

Software-defined networking (SDN) decouples the data and control planes

- Flexibility
- Traffic Efficiency
- Open Flow as de-facto standard

Still a lack of global application perspective

Motivation Background Contributions Evaluation Summary

SNT

State of the Art

SDN Background

Software-defined networking (SDN) decouples the data and control planes $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$

- Flexibility
- Traffic Efficiency
- Open Flow as de-facto standard

Still a lack of global application perspective

Application Awareness

Network Responsive

The applications convey to the network bandwidth requirements

Application Responsive

The applications include the network status for making decisions

Conventional Networking

Given the traffic demand matrix is possible to optimize the resources

- Introduction
- Multidimensional Aggregation Monitoring
- 3 Case Study: DNS Monitoring
- 4 Application Awareness Background
 - Contributions
- Conclusion

Architecture

Components & Connector

- Augmented Controller (AC)
 - Connects to SDN Controller and SDN Services
 - Has a global view of flow/application
- SDN Service:
 - Runs at host level attached to applications
 - Flow information per application to be sent to the AC

Motivation **Background Contributions Evaluation Summary**

Example of Application-Aware Policy

- Introduction
- Multidimensional Aggregation Monitoring
- 3 Case Study: DNS Monitoring
- 4 Application Awareness
 Background

Contributions

Evaluation

Conclusion

Application Level Flow Management: Evaluation

Impact on performance

- We evaluated using several applications such as: Iperf, Apache2, Links, Pidgin
- We registered CPU & Memory at Host Level
- Networking Metrics such as:
 - Throughput
 - % Packet Loss
 - Bytes Transferred

We studied the impact on computing resources consumption and collateral network traffic

Impact on CPU consumption

Application Level Flow Management: Results

Application Awareness

Conclusion

DNS

Background Contributions Evaluation Summary

Introduction

Motivation

MAM

Figure: Example of the impact on performance upon SDN Service usage

Notivation Background Contributions Evaluation Summary

Application Level Flow Management: Results III

Network Performance

Figure: Bandwidth Aimed vs Bandwidth Achieved

Application Awareness

- Validated an Application-awareness approach is feasible
- Small impact regarding computing & network overhead
- Evaluation with multiple types of applications
- Implemented a Proof of concept
- Extensible API

- 1 Introduction
- Multidimensional Aggregation Monitoring

- 3 Case Study: DNS Monitoring
- 4 Application Awareness
- **5** Conclusion

Aggregation

- Reduced the scale of data
- Preserved natural hierarchy of data (semantics)
- Minimized the information loss
- Efficient Algorithms

Application Awareness

- Network Awareness
- Software Defined Networks
- Proof of Concept & Test Bed
- Examples: Map Reduce, QoS, Security

Security: Network Monitoring

- Extension of other domains
- Aggregation based on events
- Aggregation per dimension

Network Management

- Multi tenant Data Centres
- Monitoring per application / instance
- Scheduling of distributed applications
- Logging

Research Experience

- MaM Efficient multidimensional aggregation for large scale monitoring, LISA 12. USENIX
- DNS DNS Stability Evaluation using Multi-Dimensional Aggregation, LCN 2013
- Vehicular Networks Tracking Spoofed Locations in Crowd-Sourced Vehicular Applications, NOMS 2013, IFIP/IEEE
- Assessing artificially caused congestion on urban scenarios: A case study on Luxembourg sumo traffic, in 3rd GI/ITG KuVS Fachgesprach Inter-Vehicle Communication. 2015.
- Mobile Security String-Based Android Malware Detection SecureComm '14, EAI
- Network Security through Software Defined Networking: a Survey IPTCOMM 14
- Application-Level Flow Management For SDN-Based Cloud Infrastructure IM 2015, Work in Progress
- Book Chapter for Networking on Big Data Application In Collaboration with University of Waterloo

SNT

- Introduction
- Monitoring

 Multidimensional Trees
 - Evaluation
 Summary

Multidimensional Aggregation

3 Case Study: DNS Monitoring DNS Background

Similarity Metric Evaluation

- 4 Application Awareness Background Contributions Evaluation
- Conclusion

A Passive DNS DB contains:

■ Where did this domain name point to in the past?

A Passive DNS DB contains:

- Where did this domain name point to in the past?
- What domain names are hosted by a given nameserver?

Passive DNS

A Passive DNS DB contains:

Perspectives Publications

- Where did this domain name point to in the past?
- What domain names are hosted by a given nameserver?
- What domain names point into a given IP network?

Introduction

Perspectives Publications

Passive DNS

A Passive DNS DB contains:

- Where did this domain name point to in the past?
- What domain names are hosted by a given nameserver?
- What domain names point into a given IP network?
- What subdomains exist below a certain domain name?

NT

Threshold based detection

Accuracy: Stability as metric for filtering malicious domains

Data Structure (II)

Node Insertion (Partial Match)

SRC:\$.mail.gforge.uni.lu.ROOT

Direction SRC: mail DST: SAME

Node Insertion (Partial Match)

SRC:\$.mail.gforge.uni.lu.ROOT DST: \$.foo.bar.fr.ROOT

Appended Node

Node Insertion (Perfect Match)

Data Structure (II)

Node Insertion (Branching Point)

Node Insertion (Branching Point)

Perspectives Publications

IT

Data Structure (II)

Node Insertion (Branching Point)

New Node

src: \$.pop.mail.uni.lu.ROOT dst: \$.158.64.76.122.bar.fr.ROOT

