

All Russian mathematical portal

V. S. Guba, Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems, *Mat. Zametki*, 1986, Volume 40, Issue 3, 321–324

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details:

IP: 193.0.96.15

March 21, 2022, 17:27:00

МАТЕМАТИЧЕСКИЕ ЗАМЕТКИ

т. 40, № 3 [1986]

ЭКВИВАЛЕНТНОСТЬ БЕСКОНЕЧНЫХ СИСТЕМ УРАВНЕНИЙ В СВОБОДНЫХ ГРУППАХ И ПОЛУГРУППАХ КОНЕЧНЫМ ПОЛСИСТЕМАМ

В. С. Губа

В настоящей работе доказана гипотеза А. Эренфойхта, состоящая в следующем: (*) всякое множество слов L над некоторым конечным алфавитом A содержит конечное подмножество F («тестовое множество») такое, что для любой пары (g,h) гомоморфизмов свободной полугруппы $\Pi(A)$ с базисом A, в произвольную свободную полугруппу g(x) = h(x) для всех x из L, если и только если g(x) = h(x) для всех x из F (см. по этому поводу [1,2]).

Сначала мы докажем основную теорему, представляющую самостоятельный интерес.

TEOPEMA. Всякая система уравнений в свободной группе (в свободной полугруппе) от конечного числа неизвестных над произвольным алфавитом эквивалентна конечной подсистеме.

Напомним, что уравнением в свободной группе

$$w(x_1, ..., x_n) = 1$$
 (1)

321

от неизвестных x_1, \ldots, x_n над групповым алфавитом A называется выражение вида (1), где w (x_1, \ldots, x_n) — групповое слово над $X \cup A$, где $X = \{x_1^{\pm 1}, \ldots, x_n^{\pm 1}\}; X \cap A = \emptyset$.

2 Матем. заметки, т. 40, в. 3 © Издательство «Наука». Главная редакция физико-математической литературы. «Математические заметки», 1986 Решение уравнения (1) — это набор слов (X_1, \ldots, X_n) над A таких, что w (X_1, \ldots, X_n) равно 1 в свободной группе, порожденной A.

Аналогично уравнением в свободной полугруппе

$$v(x_1, \ldots, x_n) = w(x_1, \ldots, x_n)$$
 (2)

от неизвестных x_1,\ldots,x_n над полугрупповым алфавитом A называется выражение вида (2), где v (x_1,\ldots,x_n) и w (x_1,\ldots,x_n) — слова над $X \cup A$, где $X = \{x_1,\ldots,x_n\}$; $X \cap A = \emptyset$. Решение уравнения (2) — это набор (X_1,\ldots,X_n) слов над A таких, что слова v (X_1,\ldots,X_n) и w (X_1,\ldots,X_n) графически равны.

Прежде чем доказать теорему, покажем, что из нее следует (*). Пусть B — фиксированный конечный алфавит; Π (B) — свободная полугруппа слов над B; $L \subseteq \Pi$ (B). Пусть также B' — биективная копия алфавита B. Каждому слову $b_i, b_{i_2} \ldots b_{i_r} \in L$ сопоставим уравнение

$$b_{i_1}b_{i_2}\dots b_{i_r} = b'_{i_1}b'_{i_2}\dots b'_{i_r}$$
 (3)

от неизвестных b_1 , b_1' , b_2 , b_2' , . . . , b_m , b_m' , где $m=\lfloor B \rfloor$, над счетным алфавитом C. Пара гомоморфизмов (g,h) из Π (B) в Π (C) удовлетворяет условию g $(b_{i_1} \dots b_{i_r}) = h$ $(b_{i_1} \dots b_{i_r})$, если и только если $R = (g \ (b_1), h \ (b_1), \dots$. . . , $g \ (b_m)$, $h \ (b_m)$) — решение уравнения (3). Таким образом, условие $(g \ (x) = h \ (x))$ для всех $x \in L$ » означает, что R — решение системы, состоящей из уравнений вида (3), соответствующих словам из L. Пользуясьтеоремой, выбираем конечную подсистему, что дает нам искомое конечное подмножество в L.

Приступим к доказательству теоремы. Докажем сначала ее частный случай, когда рассматриваются уравнения в свободной группе, а алфавит А есть $\{a_1^{\pm 1},\ a_2^{\pm 1}\}$. По теореме Санова [3, с. 129] подгруппа в SL_2 (\mathbf{Z}), по-

По теореме Санова $[3, \, c. \, 129]$ подгруппа в SL_2 (**Z**), порожденная матрицами $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ и $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, есть свободная группа F_2 . Таким образом, гомоморфизм $\theta\colon F_2 \to SL_2$ (**Z**), определяемый условиями θ $(a_1) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, θ $(a_2) = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, есть изоморфное вложение. Пусть (X_1, \ldots, X_n) — набор слов из F_2 ; обозначим θ $(X_j) = \begin{pmatrix} P_j & Q_j \\ R_j & S_j \end{pmatrix}$. Очевидно, θ $(X_j^{-1}) = \begin{pmatrix} S_j & -Q_j \\ -R_j & P_j \end{pmatrix}$. Ясно, что w $(X_1, \ldots, X_n) = 1$

в $F_2 \Leftrightarrow w \ (\theta X_1, \ldots, \theta X_n) = E$ в $SL_2 \ (\mathbf{Z})$. Последнее означает, что набор $(P_1, Q_1, R_1, S_1, \ldots, P_n, Q_n, R_n, S_n)$ является решением системы из четырех диофантовых уравнений, получаемых перемножением матриц, из которых состоит произведение $w \ (\theta \ X_1, \ldots, \theta X_n)$, и приравниванием полученной в результате матрицы к единичной. По этой причине, если $M_j = \binom{P_j}{R_j} \binom{Q_j}{S_j}$, $j = \overline{1, n}$,— набор из n матриц, лежащих в $\theta \ (F_2)$, компоненты которых удовлетворяют указанной четверке диофантовых уравнений, то их прообразы $X_j = \theta^{-1} \ (M_j)$ образуют решение уравнения $w \ (x_1, \ldots, x_n) = 1$.

Пусть теперь w_i $(x_1,\ldots,x_n)=1,\ i \in I,$ — система уравнений в свободной группе над A. Каждому $i \in I$ сопоставим указанным выше образом четверку диофантовых уравнений (уравнения из одной такой четверки будем называть связанными). Полученная система диофантовых уравнений эквивалентна конечной. Действительно, пусть $\Phi_{ik}\left(p_{1},\,q_{1},\,r_{1},\,s_{1},\,\ldots,\,p_{n},\,q_{n},\,r_{n},\,s_{n}\right)=0$, где k= $i=1,\,2,\,3,\,4,\,\,\,i\in I,$ — данная система. Идеал в q_1,\ldots,r_n,s_n], порожденный всеми Φ_{ik} , конечно порожден по теореме Гильберта о базисе [4, с. 169]. Поэтому можно выделить конечное число многочленов среди Φ_{ik} , которые порождают этот идеал. Далее добавим, если это необходимо, к каждому выделенному уравнению $\Phi_{ik} =$ = 0 все связанные с ним. Полученная конечная система эквивалентна исходной; она состоит из уравнений $\Phi_{ik} =$ i=0, где i=1,2,3,4. $i\in I_0$, i=1,0, «Переводим» ее опять в систему уравнений в свободной $w_i (x_1, \ldots, x_n) = 1, i \in I_0$. Она эквивалентна первоначальной. Действительно, если (X_1, \ldots, X_n) — ее решение, то компоненты матриц $\theta(X_1), \ldots, \theta(X_n)$ образуют решение конечной системы диофантовых уравнений, а потому и всей системы диофантовых уравнений. По сказанному выше, их прообразы образуют решение исходной системы w_i $(x_1, \ldots, x_n) = 1, i \subseteq I$, что и требовалось доказать.

Теперь распространим этот результат на случай, когда алфавит A конечен или счетен. Поскольку существует вложение свободной группы F с базисом A в F_2 [3, с. 128], мы можем рассматривать систему Σ уравнений над A как систему Σ' уравнений над $\{a_1^{\pm 1}, a_2^{\pm 1}\}$. Множество решений Σ над $\{a_1^{\pm 1}, a_2^{\pm 1}\}$ с n-й прямой степенью F. Сводя Σ' к конечной

подсистеме Σ_0 и переходя к подсистеме Σ_0 в Σ , получим систему, эквивалентную Σ , так как множество решений Σ_0 также есть пересечение множества решений Σ_0 с F^n .

Теперь пусть А — алфавит любой мощности. w_i $(x_1,\ldots,x_n)=1, i\in I,$ система Σ уравнений над А. Предположим, что она не эквивалентна никакой конечной подсистеме. Пусть $i_1 \in I$ — произвольный элемент; так как Σ не эквивалентна системе Σ_1 , состоящей из уравнения $w_{i_1}=1$, то существует решение $R_1=$ $=(X_1^{(1)},\ldots,X_n^{(1)})$ системы Σ_1 , которое не есть решение Σ . Пусть $i_2 \in I$ таково, что R_1 не есть решение $w_{i_2} = 1$. Образуем систему Σ_2 , добавляя к Σ_1 уравнение $w_{i_2}=1$. Опять-таки, существует решение $R_2=(X_1^{(2)},\ldots,X_n^{(2)})$ системы Σ_2 , которое не есть решение Σ ; выбираем i_3 $\subseteq I$ такое, что R_2 не есть решение $w_{i_3} = 1$ и т. д. Получаем счетную систему уравнений $\Sigma_{\omega} = \bigcup_{k=1}^{\infty} \Sigma_k$. Множество букв из A, входящих в запись хотя бы одного из уравнений из Σ_{ω} или же хотя бы одного из слов $X_j^{(k)}$, $j=\overline{1,n}$, образует не более чем счетный подалфавит A_0 . Система Σ_{ω} , как система над A_0 , не эквивалентна никакой конечной подсистеме: если она эквивалентна, скажем, Σ_s , то получается противоречие, т. к. R_s есть решение Σ_s , но не решение Σ_{s+1} . Итак, групповой вариант теоремы доказан.

Полугрупповой вариант легко следует из группового. Именно, пусть Σ — система уравнений v_i $(x_1, \ldots, x_n) = w_i$ (x_1, \ldots, x_n) , $i \in I$, над А. Рассмотрим систему групповых уравнений:

$$v_i(x_1, \ldots, x_n) \cdot w_i^{-1}(x_1, \ldots, x_n) = 1, i \in I$$

(над $A^{\pm 1}$). Сведем ее к конечной ($i \in I_0$, $|I_0| < \infty$). Тогда подсистема в Σ , определяемая I_0 , очевидным образом эквивалентна исходной. Теорема полностью доказана.

Московский государственный университет им. М. В. Ломоносова

Поступило 09.04.85

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] Albert J. On the Ehrenfeucht conjecture on test sets and its dial version // Lect. Notes Computer Sci. 1984. V. 176. P. 176-184.
- [2] Culic II, Homomorphisms: decidability, equality and test sets // Formal language theory. Perspectives and open problems/ Ed. R. Book. New York: Academic Press, 1980.
- [3] Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. М.: Наука, 1982.

[4] Ленг С. Алгебра. М.: Мир. 1968.