Tema: Distancias, Repaso Álgebra, Vectores y Matrices Aleatorios

1. Las siguientes son 5 medidas sobre las variables $x_1, x_2, y x_3$:

Encuentre las matrices $\overline{\mathbf{x}}, \mathbf{S}_n, \mathbf{y} \mathbf{R}$.

2. Sea $\mathbf{x}' = [5, 1, 3] \text{ y } \mathbf{y}' = [-1, 3, 1]$

- (a) Grafique los dos vectores.
- (b) Encuentre (i) la longitud de \mathbf{x} , (ii) el ángulo entre \mathbf{x} y \mathbf{y} , y (iii) la proyección de \mathbf{y} en \mathbf{x} .
- (c) Dado que $\bar{x}=3$ y $\bar{y}=1$, grafique [5-3,1-3,3-3]=[2,-2,0] y [-1-1,3-1,1-1]=[-2,2,0]
- 3. Sea

$$\mathbf{A} = \left[\begin{array}{cc} 9 & -2 \\ -2 & 6 \end{array} \right]$$

- (a) ¿Es A una matriz simétrica?
- (b) Muestre que A es definida positiva.
- (c) Determine los valores y vectores propios de A.
- (d) Encuentre la descomposición espectral de A.
- (e) Determine la inversa de A.
- (f) Encuentre los valores y vectores propios de A^{-1} .
- 4. Verifique las relaciones $\mathbf{V}^{1/2}\boldsymbol{\rho}\mathbf{V}^{1/2} = \boldsymbol{\Sigma}$ y $\boldsymbol{\rho} = \left(\mathbf{V}^{1/2}\right)^{-1}\boldsymbol{\Sigma}\left(\mathbf{V}^{1/2}\right)^{-1}$, donde $\boldsymbol{\Sigma}$ es el $p \times p$ matriz de covarianza poblacional, $\boldsymbol{\rho}$ es la matriz de correlación poblacional $p \times p$ y $\mathbf{V}^{1/2}$ es la matriz de desviación estándar de la población.
- 5. Derive las expresiones para la media y las varianzas de las siguientes combinaciones lineales en términos de las medias y covarianzas de las variables aleatorias $X_1, X_2, y X_3$.
 - (a) $X_1 2X_2$
 - (b) $-X_1 + 3X_2$
 - (c) $X_1 + X_2 + X_3$
 - (d) $X_1 + 2X_2 X_3$
 - (e) $3X_1 4X_2$ si X_1 y X_2 son variables aleatorias independientes.

Tema: Geometria de la muestra y muestreo aleatorio

6. Dada la matriz de datos

$$\mathbf{X} = \left[\begin{array}{cc} 9 & 1 \\ 5 & 3 \\ 1 & 2 \end{array} \right]$$

- (a) Grafique el diagrama de dispersión en p=2 dimensiones. Localice la media de la muestra en su diagrama.
- (b) Dibuje la representación n=3 -dimensional de los datos y trace los vectores de desviación $\mathbf{y}_1 \bar{x}_1 \mathbf{1}$ y $\mathbf{y}_2 \bar{x}_2 \mathbf{1}$
- (c) Dibuje los vectores de desviación en (b) que emanan del origen. Calcula las longitudes de estos vectores y el coseno del ángulo entre ellos. Relacione estas cantidades con \mathbf{S}_n y \mathbf{R}
- (d) Calcular la varianza muestral generalizada |S|
- 7. Demuestre que $|\mathbf{S}| = (s_{11}s_{22}\cdots s_{pp})|\mathbf{R}|$

Tema: Densidad normal multivariante y sus propiedades

- 8. Sea V una variable aleatoria vectorial con un vector medio $E(\mathbf{V}) = \boldsymbol{\mu}_{\mathbf{v}}$ y una matriz de covarianza $E(\mathbf{V} \boldsymbol{\mu}_{\mathbf{V}})(\mathbf{V} \boldsymbol{\mu}_{\mathbf{V}})' = \boldsymbol{\Sigma}_{\mathbf{v}}$. Demuestre que $E(\mathbf{V}\mathbf{V}') = \boldsymbol{\Sigma}_{\mathbf{V}} + \boldsymbol{\mu}_{\mathbf{V}}\boldsymbol{\mu}'_{\mathbf{V}}$
- 9. Considere una distribución normal bivariada con $\mu_1=1, \mu_2=3, \sigma_{11}=2, \sigma_{22}=1$ y $\rho_{12}=-.8$
 - (a) Escriba la densidad normal bivariada.
 - (b) Escriba la expresión de distancia estadística al cuadrado $(\mathbf{x} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})$ como una función cuadrática de x_1 y x_2 .
- 10. Sea **X** $N_3(\mu, \Sigma)$ con $\mu' = [-3, 1, 4]$ y

$$\mathbf{\Sigma} = \left[\begin{array}{rrr} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

¿Cuáles de las siguientes variables aleatorias son independientes? Explique.

- (a) $X_1 y X_2$
- (b) $X_2 y X_3$