OLLSCOIL NA hEIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLAISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

2015/2016

Semester 2 - Summer 2016

CS2505 – Network Computing

Dr. H. Purchase Professor C. J. Sreenan

Answer all Questions.
Total Marks 80

1.5 hours

The use of electronic calculators is permitted. Please clearly label your answer to each question and sub-question.

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER

Question 1: General Networking Concepts [20 marks]

- a) For each sub-question below answer either True or False. [10 marks]
 - i. Layer 2 is the Transport Layer.
 - ii. 10000 Kb/s is a higher data rate than 1 Mb/s.
 - iii. Skype is an example of a *hybrid* peer-to-peer application protocol.
 - iv. UDP uses a port number for demultipexing a datagram to the correct socket.
 - v. On the Internet today, video streaming mostly uses UDP rather than TCP.
- b) Briefly define the following terms: round trip time, flow control, congestion control, persistent connection (in the context of HTTP), TLD server (in the context of DNS). [10 marks]

Question 2: Networking Fundamentals [20 marks]

- a) Calculate the total time required to transmit a file of 1000 KB in the following cases, assuming a round-trip-time (RTT) of 100ms, link bandwidth of 1.5 Mb/s, a packet size of 1 KB of data (no headers), and an initial 2 x RTT of "handshaking" before any data is sent:
 - i. Data packets can be sent continuously in a back-to-back manner. [2 marks]
 - ii. After sending each packet we must wait one RTT before sending the next packet. [4 marks]
- b) Give an equation to express how long it takes for a packet of size *L* bytes to be delivered over a link of distance *D* kilometres, with data rate *R* bits/sec, and propagation speed *S* metres/sec. [6 marks]
- c) Imagine a 2 Mb/s network link that uses time division multiplexing (TDM), with 20 sending computers, each allocated one slot per second.
 - i. If just one computer is actively sending, what is the maximum data rate it can achieve? [4 marks]
 - ii. If instead of using TDM we used statistical multiplexing, what would be the maximum data rate the sending computer could achieve over the link? [4 marks]

Question 3: Application Layer [20 marks]

- a) In regard to the use of HTTP caching proxies:
 - *i.* Draw a diagram of a local network that includes a HTTP proxy, two end-hosts and router. [3 marks]

- *ii.* Using a time-sequence diagram, show how a HTTP proxy ensures that a cached object is not stale before it returns it to the browser in response to a cache hit. [5 marks]
- iii. Many companies specify that their web pages are not to be cached. Why? [2 marks]
- b) In regard to video streaming:
 - i. Explain the need for a playout buffer in a video streaming player. [4 marks]
 - *ii.* A DASH player operates by requesting video in chunks from a server. In making each such request, briefly explain the *three* key decisions that the player must make. [6 marks]

Question 4: Transport Layer [20 marks]

- a) In regard to reliable delivery:
 - i. You are asked to specify a simple unidirectional stop-and-wait reliable transport layer protocol to operate over a link that can corrupt packets but never loses a packet. Give the sender and receiver finite state machines for such a protocol. Assume that bit errors can only affect data packets (i.e. from the sender). [8 marks]
 - ii. Briefly explain how you would change your protocol if bit errors can affect packets from both sender and receiver. [2 marks]
- b) The figure below shows the TCP header (without options).
 - i. What is the maximum size of the receive window? [2 marks]
 - *ii.* To what initial value does the client set the Sequence Number field? [3 marks]
 - *iii.* Does the server need to use the same initial Sequence Number as the client? [2 marks]
 - iv. How does a recipient interpret the *value* of the Acknowledgement Number? [3 marks]

0 4	10)	16 31
Source Port			Destination Port
Sequence Number			
Acknowledgment Number			
HdrLen.	0	Flags	Advertised Window
Checksum			Urgent Pointer