代数学I期末試験解答例

担当:大矢浩徳 (OYA Hironori)*

以下では,

•
$$\mathfrak{S}_n = \left\{ \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix} \middle| i_1, i_2, \dots, i_n$$
は $1, 2, \dots, n$ の並べ替え $\right\}$ を n 次対称群,
• $D_n = \{e, \sigma, \sigma^2, \dots, \sigma^{n-1}, \tau, \sigma\tau, \sigma^2\tau, \dots, \sigma^{n-1}\tau\}$ を n 次 2 面体群,ただし $\sigma^n = e, \tau^2 = e, \tau\sigma = \sigma^{-1}\tau$,

とする.

問題 1 [各 5 点] —

以下の問に答えよ. 解答は全て答えのみで良い:

(1) 群準同型写像 $f: D_4 \to \mathfrak{S}_4$ であって,

$$\sigma \mapsto \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \qquad \qquad \tau \mapsto \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

を満たすものが存在する. このとき, \mathfrak{S}_4 の元 $f(\tau\sigma^2\tau\sigma^3\tau)$ を $\begin{pmatrix} 1 & 2 & 3 & 4 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix}$ の形で具体的に 求めよ.

(2) 群準同型写像 $f: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \mathfrak{S}_4$ であって,

$$([1]_2,[0]_2) \mapsto \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \qquad ([0]_2,[1]_2) \mapsto \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

を満たすものが存在する. このとき, \mathfrak{S}_4 の元 $f(([1]_2,[1]_2))$ を $\begin{pmatrix} 1 & 2 & 3 & 4 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix}$ の形で具体的 に求めよ.

(3) 群準同型写像 $f: \mathfrak{S}_3 \to GL_2(\mathbb{C})$ であって,

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \mapsto \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$

を満たすものが存在する. このとき, $GL_2(\mathbb{C})$ の元 $f\left(\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}\right)$ を具体的に求めよ.

(4) 42 で割ると 8 余り、65 で割ると 2 余る整数を 1 つ求め

問題 1 解答例.
$$(1) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$(2) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$(3) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 $^{^*}$ $e ext{-}mail:$ hoya@shibaura-it.ac.jp

問題 2 [各 6 点] —

(1) \mathfrak{S}_3 とその部分群 $H:=\left\{\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}\right\}$ に関する以下の問に答えよ。ただし,解答は全て答えのみで良い:

- (1-1) \mathfrak{S}_3 における H による左剰余類 $(\mathfrak{S}_3/H$ の元) を全て記述せよ.
- (1-2) \mathfrak{S}_3 の H に関する左完全代表系を 1 つ記述せよ.
- (1-3) \mathfrak{S}_3 における H の指数 $[\mathfrak{S}_3:H]$ はいくらか.
- (2) G を位数 27 の群とする. 全射群準同型 $f\colon G\to \mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$ が存在するとき, $\ker f$ の位数を求めよ. ただし,計算過程も説明すること.
- (3) \mathfrak{S}_5 の各元 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ i_1 & i_2 & i_3 & i_4 & i_5 \end{pmatrix}$ は 1 対 1 写像 σ : $\{1,2,3,4,5\} \rightarrow \{1,2,3,4,5\}, k \mapsto i_k =: \sigma(k)$ と考えられため, $X := \{\{i,j\} \mid i,j \in \{1,2,3,4,5\}\}$ としたとき,

$$\mathfrak{S}_5 \times X \to X, (\sigma, \{i, j\}) \mapsto \sigma.\{i, j\} := \{\sigma(i), \sigma(j)\}$$

は X 上の \mathfrak{S}_5 の作用を定める. ここで, $\{i,j\}$ は i,j の 2 元からなる集合の意味であり,特に $\{i,j\}=\{j,i\}$ であることに注意する. また, $\{i,j\}\in X$ は i,j の重複を許す. このとき,以下の問に答えよ. ただし,解答は全て答えのみで良い:

- (3-1) \mathfrak{S}_5 の $\{2,3\} \in X$ における固定部分群 $(\mathfrak{S}_5)_{\{2,3\}}$ の位数を求めよ.
- (3-2) \mathfrak{S}_5 -軌道 \mathfrak{S}_5 . $\{2,3\}$ に含まれる元の個数を求めよ.
- (3-3) X における \mathfrak{S}_5 -軌道の個数を求めよ.

問題 2 解答例.

(1)

$$\begin{pmatrix}
1-1 \end{pmatrix} \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\} \qquad \square$$

$$\begin{pmatrix}
1-2 \end{pmatrix} \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\} \qquad \square$$

$$(1-3) \left[\mathfrak{S}_{2}: H\right] = 3$$

(2) 準同型定理より、 $G/\ker f \simeq \operatorname{Im} f$ であるが、f は全射なので、 $\operatorname{Im} f = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. よって、

$$|G/\ker f| = |\operatorname{Im} f| = |\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}| = 9.$$

これと Lagrange の定理より,

$$|\operatorname{Ker} f| = \frac{|G|}{|G/\ker f|} = \frac{27}{9} = 3.$$

(3)

(3-1)
$$|(\mathfrak{S}_5)_{\{2,3\}}| = 12$$

 (3-2) $|\mathfrak{S}_5.\{2,3\}| = 10$
 (3-3) 2 個

問題 3 [計 22 点] -

n次2面体群 D_n に関する以下の問に答えよ. ただし、解答は全て答えのみで良い:

(1) $k, \ell \in \{0, 1, \dots, n-1\}$ とする. このとき,以下の D_n の元 (a),(b),(c),(d) を再び σ^m ,あるいは $\sigma^m \tau$ $(m \in \mathbb{Z})$ の形*1で表せ.

(a)
$$\sigma^k(\sigma^\ell)(\sigma^k)^{-1}$$
 (b) $\sigma^k(\sigma^\ell\tau)(\sigma^k)^{-1}$ (c) $(\sigma^k\tau)(\sigma^\ell)(\sigma^k\tau)^{-1}$ (d) $(\sigma^k\tau)(\sigma^\ell\tau)(\sigma^k\tau)^{-1}$.

- (2) D_4 の共役類を具体的な元を用いてすべて記述せよ.
- (3) D_5 の部分群を全て求めよ、また、その中で正規部分群であるものを挙げよ、
- (4) D_6 の中心 $Z(D_6)$ を具体的な元を用いて記述せよ.

問題 3 解答例.

(1)

(a)
$$\sigma^{\ell}$$
 (b) $\sigma^{\ell+2k}\tau$ (c) $\sigma^{-\ell}$ (d) $\sigma^{2k-\ell}\tau$

(2) $\{e\}$, $\{\sigma, \sigma^3\}$, $\{\sigma^2\}$, $\{\tau, \sigma^2\tau\}$, $\{\sigma\tau, \sigma^3\tau\}$

(3) $\{e\}$, $\{e,\tau\}$, $\{e,\sigma\tau\}$, $\{e,\sigma^2\tau\}$, $\{e,\sigma^3\tau\}$, $\{e,\sigma^4\tau\}$, $\{e,\sigma,\sigma^2,\sigma^3,\sigma^4\}$, D_5 正規部分群であるもの: $\{e\}$, $\{e,\sigma,\sigma^2,\sigma^3,\sigma^4\}$, D_5

(4)
$$\{e, \sigma^3\}$$

- 問題 4 [計 30 点] —

G を位数 18 の群とする.

$$X := \{ \{g_1, g_2, g_3\} \subset G \mid g_1, g_2, g_3$$
は相異なる G の 3 元 $\}$

としたとき,

$$G \times X \to X, (g, \{g_1, g_2, g_3\}) \mapsto \{gg_1, gg_2, gg_3\}$$

は X 上の G の作用を定める (このことは証明しなくて良い). このとき,以下の問に答えよ:

- (1) X の元の個数を求めよ. 解答は答えのみで良い.
- (2) 任意の $\{g_1,g_2,g_3\}\in X$ に対し、その固定部分群 $G_{\{g_1,g_2,g_3\}}$ の位数は 3 以下であることを証明 せよ.
- (3) X 上の G の作用は元の個数が 6 である G-軌道を少なくとも 1 つ持つことを証明せよ.
- (4) G は位数 3 の部分群を少なくとも 1 つ持つことを証明せよ.
- (5) 9次2面体群 D_9 の位数3の部分群を具体的に挙げよ. 解答は答えのみで良い.

問題 4 解答例.

(1)
$$|X| = {}_{18}C_3 = \frac{18 \cdot 17 \cdot 16}{3 \cdot 2 \cdot 1} = 816.$$

(2) $G_{\{g_1,g_2,g_3\}}=\{g\in G\mid \{gg_1,gg_2,gg_3\}=\{g_1,g_2,g_3\}\}$ であるので、各 $g\in G_{\{g_1,g_2,g_3\}}$ に対してある $i\in\{1,2,3\}$ が定まり、 $gg_1=g_i$ 、つまり $g=g_ig_1^{-1}$. よって、

$$G_{\{g_1,g_2,g_3\}} \subset \{g_ig_1^{-1} \mid i=1,2,3\}.$$

これより,
$$|G_{\{g_1,g_2,g_3\}}| \leq 3.$$

(3) 各 $\{g_1, g_2, g_3\} \in X$ に対し,

$$|G.\{g_1, g_2, g_3\}| = \frac{|G|}{|G_{\{g_1, g_2, g_3\}}|}$$

 $^{^{*1}}$ m を $0 \le m \le n-1$ に取る必要は無い.

が成立する. (2) より, $|G_{\{g_1,g_2,g_3\}}| \leq 3$ であり,Lagrange の定理よりこの値は|G|=18 の約数であることから, $|G_{\{g_1,g_2,g_3\}}|$ は 1,2,3 のいずれか.よって, $|G.\{g_1,g_2,g_3\}|$ は,18,9,6 のいずれか.

ここで元の個数が 6 の軌道が存在しないとすると,X を軌道分解したときに元の個数が 18 または 9 の軌道で軌道分解されるので,特に X の元の個数は 9 の倍数となる.しかし,(1) より X の元の個数は 816 で 9 の倍数ではない.これらより,元の個数が 6 である G-軌道が少なくとも 1 つ存在することがわかる.

(4) (3) より元の個数が6であるG-軌道がとれるので、この軌道に含まれる元を $\{g_1,g_2,g_3\}$ とすると、

$$|G_{\{g_1,g_2,g_3\}}| = \frac{|G|}{|G.\{g_1,g_2,g_3\}|} = \frac{18}{6} = 3.$$

よって、この $G_{\{q_1,q_2,q_3\}}$ が位数 3 の G の部分群の例としてとれる.

$$(5) \{e, \sigma^3, \sigma^6\}$$

問題 5 [各 8 点] —

- (1) 5 で割ると 4 余り、13 で割ると 10 余り、24 で割ると 2 余る整数を 1 つ求めよ.
- (2) $\mathbb{Z}/12\mathbb{Z}$ と $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ は同型でないことを証明せよ.
- (3) 加法群 \mathbb{Q} と乗法群 $\mathbb{Q}_{>0}$ は同型でないことを証明せよ.
- (4) p を素数とする. このとき,位数 $p^k(k$ は 1 以上の整数) の群 G の中心 Z(G) は $Z(G) \neq \{e\}$ となることを証明せよ.

問題 5 解答例.

(1) 5 と 13 は互いに素なので、中国剰余定理より、5 で割ると 4 余り、13 で割ると 10 余る整数が $\mod 65$ で ただ 1 つ存在する. まずこれを求める.

$$13 = 2 \times 5 + 3$$
 $5 = 1 \times 3 + 2$ $3 = 1 \times 2 + 1$

より,

$$1 = 3 - 1 \times 2 = 3 - 1 \times (5 - 1 \times 3)$$

= 2 \times 3 + (-1) \times 5 = 2 \times (13 - 2 \times 5) + (-1) \times 5 = (-5) \times 5 + 2 \times 13.

いま.

$$10 \times ((-5) \times 5) + 4 \times (2 \times 13) = -146 \equiv 49 \mod 65$$

であるので、5 で割ると 4 余り、13 で割ると 10 余る整数は $\mod 65$ で 49 である数、つまり、65 で割って 49 余る整数である.

これより、65 で割って 49 余り、24 で割ると 2 余る整数を 1 つ求めればよいことがわかる. いま、

$$65 = 2 \times 24 + 17$$
 $24 = 1 \times 17 + 7$ $17 = 2 \times 7 + 3$ $7 = 2 \times 3 + 1$

より,

$$1 = 7 - 2 \times 3 = 7 - 2 \times (17 - 2 \times 7) = 5 \times 7 + (-2) \times 17$$

= 5 \times (24 - 1 \times 17) + (-2) \times 17 = 5 \times 24 + (-7) \times 17
= 5 \times 24 + (-7) \times (65 - 2 \times 24) = 19 \times 24 + (-7) \times 65.

これより求める値の1つは,

$$49 \times (19 \times 24) + 2 \times ((-7) \times 65) = 21434$$
. (答えは mod 1560 で一致していれば良い)

(2) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ の任意の元 $([m_1]_2, [m_2]_6)$ は

$$\underbrace{\left([m_1]_2,[m_2]_6\right)+\dots+\left([m_1]_2,[m_2]_6\right)}_{6\;\text{fill}}=\left([6m_1]_2,[6m_2]_6\right)=\left([0]_2,[0]_6\right)$$

を満たす. 特に, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ の元の位数は全て 6 以下である. 一方, $\mathbb{Z}/12\mathbb{Z}$ は位数 12 の元 $[1]_{12}$ を持つ. これより, $\mathbb{Z}/12\mathbb{Z}$ と $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ は同型でない.

注意. 本間において,『写像 $f: \mathbb{Z}/12\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}, [m]_{12} \mapsto ([m]_2, [m]_6)$ が同型写像とならないことを示す』という方針は<u>不適である</u>. なぜなら,2 つの群が同型でないことを示すためには,「同型写像の候補の 1 つに過ぎない f が実際には同型とならない」ということだけでなく,「どう頑張っても同型写像が作れない」ということを示す必要があるためである.

(3) 背理法で証明する. $f: \mathbb{Q} \to \mathbb{Q}_{>0}$ が群同型写像であるとする. f は特に全射であることから, f(a) = 2 となる $a \in \mathbb{Q}$ が存在する. このとき, $a/2 \in \mathbb{Q}$ であり, さらに f は群準同型写像であることから,

$$2 = f(a) = f(a/2 + a/2) = f(a/2)^2$$

となる. いま、 $f(a/2) \in \mathbb{Q}_{>0}$ であるが、正の有理数であって 2 乗すると 2 となるものは存在しないため、これは矛盾である. よって、 \mathbb{Q} と $\mathbb{Q}_{>0}$ は同型でない.

注意. (2) の注意と同様に、『 \exp : $\mathbb{R} \to \mathbb{R}_{>0}, x \mapsto e^x$ は群同型写像だが、 $\exp(1) = e \notin \mathbb{Q}_{>0}$ より、 $\exp(\mathbb{Q}) \notin \mathbb{Q}_{>0}$ であるため』というような解答は<u>不適である</u>. 1 つ候補を勝手に持ってきて、それではダメだというのではなく、「どう頑張っても同型写像が作れない」ということを示すことが大事である.

(4) G の共役類への分割を,

$$K(e) \cup K(g_1) \cup K(g_2) \cup \cdots \cup K(g_m)$$

とする. (ただし,K(g) は $g \in G$ の共役類を意味し, $i \neq j$ のとき, $K(g_i) \neq K(g_j)$ ($\neq K(e)$) となるとする.) 背理法で証明する. もし, $Z(G) = \{e\}$ となるとすると,全ての $\ell = 1, \ldots, m$ に対し, $K(g_\ell) \neq \{g_\ell\}$ より, $|K(g_\ell)| > 1$ である.一方,共役類は共役作用に関する G-軌道なので, $|K(g_\ell)|$ は $|G| = p^k$ の約数である.これらより,各 $\ell = 1, \ldots, m$ に対し, $|K(g_\ell)|$ は p の倍数となる.よって,

$$p^k = |G| = |K(e)| + |K(g_1)| + \dots + |K(g_m)| \equiv |K(e)| = 1 \mod p$$

となり、これは矛盾である. 以上より、 $Z(G) \neq \{e\}$.