

Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Departamento de Computação - DACOM Prof. Dr. Diego Bertolini Disciplina: Inteligência Artificial

Atividade: 02 - Data: 30/03/2023 Conteúdo: Algoritmos Genéticos

Data de Entrega: 06/03/2023 até às 23:59hs. Aluno: Felipe Archanjo da Cunha Mendes

Com o objetivo de encontrar o valor de x que maximiza a função $f(x) = sen(\frac{\pi \cdot x}{256})$, demonstre a segunda, terceira e quarta geração do Algoritmo Genético.

População Inicial (selecionada aleatoriamente)

Indivíduos	x	f(x)	f_{norm}	f_{acm}
10111101	189	0.733	0.144	0.144
11011000	216	0.471	0.093	0.237
01100011	99	0.937	0.184	0.421
11101100	236	0.243	0.048	0.469
10101110	174	0.845	0.166	0.635
01001010	75	0.788	0.155	0.790
00100011	35	0.416	0.082	0.872
00110101	53	0.650	0.128	1.000

Reprodução

Número gerados aleatoriamente:

0.293, 0.971, 0.160, 0.469, 0.664, 0.568, 0.371, 0.109

Indivíduos selecionados:

3, 8, 2, 5, 6, 5, 3, 1

Cruzamento (dos 6 primeiros indivíduos)

1 2	Indivíduos	X
0 1 1 0 0 0 1 1	0 1 1 1 0 1 1 1 0 0 0 1 1	119
0 1 1 0 0 0 1 1 1 0 1	0 0 1 0 0 0 1 1	33
1 2		
1 1 0 1 1 0 0 0	1 0 1 0 1 0 0 0	168
1	1 1 0 1 1 1 1 0	222
0 1 0 0 1 0 1 0 1 1 0	0 1 1 0 1 1 1 0	138
1 0 1 0 1 1 1 0	1 0 1 0 1 0 1 0	110
0 1 1 0 0 0 1 1	0 1 1 0 0 0 1 1	99
1 0 1 1 1 1 0 1	1 0 1 1 1 1 0 1	189

Mutação

	Indivíduos após o cruzamento		Fitness
	01110111 00100011		119 33
	10101000 11011110		168 222
nado nente 64	01101110 10101010		138 110
Bit Selecionado Aleatóriamente Pm = 1/64	10111101	11100011	227 189

Nova População (A nova população (que dá início a segunda geração do algoritmo) deve ser do tamanho da população inicial, ou seja, 8 indivíduos.)

População Inicial I	Fitness	População Intermediária	Fitness
01100011	189	01110111	119
00110111	216	00100011	33
11011000	99	10101000	168
10101110	236	11011110	222
01001010	174	01101110	138
10101110	75	10101010	110
01100011	35	11100011	227
10111101	53	10111101	189

Exercício: A partir da população intermediária, faça a segunda geração.

x	f(x)	fnorm	facum
119	0.994	0.177	0.177
35	0.416	0.074	0.251
168	0.882	0.157	0.408
222	0.405	0.072	0.480
110	0.976	0.174	0.654
170	0.870	0.155	0.809
227	0.348	0.061	0.870
189	0.732	0.130	1.000
	119 35 168 222 110 170 227	119 0.994 35 0.416 168 0.882 222 0.405 110 0.976 170 0.870 227 0.348	119 0.994 0.177 35 0.416 0.074 168 0.882 0.157 222 0.405 0.072 110 0.976 0.174 170 0.870 0.155 227 0.348 0.061

Valores Aleatórios para segunda geração:

0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.4456, 0.6463 Indivíduos Selecionados:

1, 8, 5, 1, 3, 5, 4, 5

Cruzamento (pontos de cruzamento igual ao da primeira geração)

Filhos	х
01111111	127
10110101	181
01111110	126
01100111	103
10101110	174
01101000	104
11011110	222
01101110	110
	01111111 10110101 01111110 01100111 10101110 01101000 11011110

Mutação: 1/64 (Demonstre só o novo indivíduo mutado -- Indivíduo = 17)

Indivíduo	Novo Indivíduo após mutação	fitness
01111110	11111110	254

População Intermediária (final da segunda geração)

População Inicial da 2 Geração	Fitness	População Intermediária	Fitness
01110111	119	01111111	127
00100011	35	10110101	181

168	11111110	254
222	01100111	103
110	10101110	174
170	01101000	104
227	11011110	222
189	01101110	110
	222 110 170 227	222 01100111 110 10101110 170 01101000 227 11011110

Exercício: A partir da população intermediária (segunda geração), faça a terceira geração

1 1 1 3 1 0				
Indivíduos	x	f(x)	fnorm	facum
01111111	127	0.999	0.168	0.168
10110101	181	0.796	0.133	0.301
1111110	254	0.024	0.004	0.305
01100111	103	0.953	0.160	0.465
10101110	174	0.845	0.142	0.607
01101000	104	0.957	0.161	0.768
11011110	222	0.405	0.068	0.836
01101110	110	0.976	0.164	1.000

Valores Aleatórios para segunda geração:

0.8147, 0.9058, 0.1270, 0.9134, 0.6324, 0.0975, 0.7952, 0.1869 Indivíduos Selecionados:

7, 8, 1, 8, 6, 1, 7, 2

Cruzamento (pontos de cruzamento igual ao da primeira geração)

Pais	Filhos	x
11011110	11001110	206
01101110	01111110	126
01111111	01101111	111
01101110	01111110	126
01101000	01111110	126
01111111	01101001	105
11011110	11011110	222
10110101	10110101	181

Mutação: 1/64 (Demonstre só o novo indivíduo mutado = Indivíduo = **41**)

Indivíduo	Novo Indivíduo após mutação	fitness
01101001	11101001	233

População Intermediária (final da segunda geração)

População Inicial da 3 Geração	Fitness	População Intermediária	Fitness
01111111	127	11001110	206
10110101	181	01111110	126
11111110	254	01101111	111
01100111	103	01111110	126
10101110	174	01111110	126
01101000	104	11101001	233
11011110	222	11011110	222
01101110	110	10110101	181

Exercício: A partir da população intermediária (terceira geração), faça a quarta geração

Indivíduos	х	f(x)	fnorm	facum
11001110	206	0.576	0.095	0.095
01111110	126	1.000	0.166	0.261
01101111	111	0.978	0.162	0.423
01111110	126	1.000	0.166	0.589
01111110	126	1.000	0.166	0.755
11101001	233	0.278	0.046	0.801
11011110	222	0.405	0.067	0.868
10110101	181	0.796	0.132	1.000

Valores Aleatórios para segunda geração:

0.2785, 0.5469, 0.9575, 0.1576, 0.4854, 0.8003, 0.1419, 0.4218 Indivíduos Selecionados:

3, 4, 8, 2, 4, 6, 2, 3

Cruzamento (pontos de cruzamento igual ao da primeira geração)

Pais	Filhos	x
01101111	01111111	127
01111110	01101110	110
10110101	11110101	245
01111110	00111110	62
01111110	01101000	104
11101001	1111111	255
01111110	01111110	126

01101111	01101111	111	١
----------	----------	-----	---

Mutação: 1/64 (Demonstre só o novo indivíduo mutado = Indivíduo = 57)

Indivíduo	Novo Indivíduo após mutação	fitness	
01101111	11101111	239	

População Intermediária (final da segunda geração)

População Inicial da 4 Geração	Fitness	População Intermediária	Fitness
11001110	206	0111111	127
01111110	126	01101110	110
01101111	111	11110101	245
01111110	126	00111110	62
01111110	126	01101000	104
11101001	233	1111111	255
11011110	222	01111110	126
10110101	181	11101111	239