TD1

Mécanismes cryptographique de la sécurité

Exercice 1:

Soit un système de communication à N nœuds où les messages échangés entre les nœuds peuvent être facilement écoutés. Quel est le nombre de clés à maintenir par chaque nœud pour assurer une communication secrète entre chaque paire de nœuds :

- a. Pour un système à clés symétrique ?
- b. Pour un système à clé asymétrique?

Exercice 2:

Soit **M** un message et **K** une clé aussi longue que **K**. On note $C=M \oplus K$ le message **M** chiffré avec **K**. Si m[i] est le i^{ème} bit du message m et k[i] est le i^{ème} bit de la clé K, alors le i^{ème} bit de $M \oplus K$ est égal à $(M[i] \oplus K[i])$

- 1) Montrez que le "ou exclusif 🕀 " est une technique de chiffrement symétrique.
- 2) Est-il pratique de stocker des clés symétriques aussi longues que les messages à chiffrer?
- 3) Soit le protocole suivant qui exploite le "ou exclusif ⊕ " pour le chiffrement d'un message M. Quand A veut envoyer un message M à B, il génère une clé K_A aussi longue que M. B génère aussi une clé K_B aussi longue que M.
 - c. Comment B peut-il déterminer la taille de la clé K_B?
 - d. Comment A peut-il déterminer M⊕K_B à partir de M⊕K_A⊕K_B ?
 - e. Comment B retrouve t-il M?
 - f. Si tous les messages échangés peuvent être écoutés, ce protocole permet-il la confidentialité.

Exercice 3:

Soit l'échange de messages suivant entre 3 entités A, B et C (un intrus) utilisant un système de chiffrement asymétrique. Nous utilisons le format suivant (source, destination, message)

Université Tunis Elmanar ISI

- 1) Quel est le traitement **Trt** effectué par C.
- 2) A et B se rendent-ils compte de l'existence de l'intrus C
- 3) Proposer une solution permettant de remédier à cette attaque

Exercice 4 : cryptographie symétrique

Soit **M** un message divisé en blocs $\{x_1,x_2,x_3,...x_p\}$ chacun de taille **n** bits et soit **K** une clé de même taille que les blocs (n bits). Soit $\{c_1,c_2,c_3,...c_p\}$ les cryptogrammes des blocs obtenus en appliquant la clé K aux blocs. Le chiffrement des blocs se fait selon le schéma suivant:

 C_0 = IV (valeur initiale); pour i de 1 à p, c_i = $E_K(C_{i-1} \oplus x_i)$

- 1) La fonction E_K est inversible et son inverse est D_K . Montrer que l'opération de déchiffrement est $x_j = C_{j-1} \oplus D_K$ (C_j) (rappel : $A \oplus A = 0$; $A \oplus 0 = A$, $A \oplus B = B \oplus A$)
- 2) Peut-on chiffrer un bloc quelconque du message M sans chiffrer les blocs qui le précèdent ? Expliquer ?
- 3) Peut-on déchiffrer un bloc quelconque c_i sans déchiffrer les blocs qui le précèdent ? Expliquer ?
- 4) Peut-on déchiffrer un bloc c; en l'absence des autres blocs chiffrés ? Expliquer ?
- 5) Prenons le cas où $E_K(x) = D_K(x) = K \oplus x$. Supposons qu'un attaquant a pu récupérer deux blocs consécutifs (x_{j-1}, x_j) ainsi que leurs cryptogrammes correspondants (c_{j-1}, c_j) . Montrer que cet attaquant peut en déduire la clé de chiffrement K.
- 6) Soient A et B deux entités utilisant le procédé de chiffrement décrit dans cet exercice. La clé K doit être échangée d'une façon **sécurisé et authentifié**. Pour cela A et B font appel au chiffrement asymétrique. A calcule la clé K, la chiffre pour obtenir KC et l'envoi à B.
 - a. Avec quelle clé A doit chiffrer K?
 - b. Avec quelle clé B déchiffre KC?
 - c. Expliquer pourquoi cette méthode n'est pas authentifiée et proposer une solution ?

Exercice 5: chiffrement RSA

Question 1 : Effectuer le chiffrement et le déchiffrement en utilisant l'algorithme RSA pour les valeurs suivantes:

Les deux nombres premiers p=3 et q=11 e=7 Le message M=5

Question 2: Soit un système à clé publique utilisant le RSA, vous interceptez le texte chiffré C=10 envoyé par un utilisateur dont la clé publique est e=5 et n=35.

Que vaut M?

Quelle est la clé privée de cet utilisateur ?