Reviews:

Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650-1667.

Evans, D. A.; Johnson, J. S. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.;

Yamamoto, H., Eds.; Springer: New York, 1999; Vol III, pp. 1177-1235.

Reilly, M.; Oh, T. Org. Prep. Proceed. Int. 1994, 26, 131-158.

Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007-1019.

Applications in Total Synthesis:

Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. *Angew. Chem. Int. Ed.* **2002**, *41*, 1668–1698.

Chiral Auxiliaries - Dienophiles:

(-)-8-Phenylmenthol:

- Endo-selective cycloaddition is proposed to occur from the unblocked β -face of the *s-trans* acrylate-Lewis acid complex.
- A favorable π-stacking interaction is proposed to enhance the stereoselectivity of this process.
 (Acrylates derived from menthol afford lower diastereoselectivity ca. 40%).
- (–)-8-phenylmenthol, derived from (–)-pulegone, is commercially available. Recovery of the auxiliary was accomplished in 94% yield following reductive removal.

Corey, E. J.; Ensley, H. E. *J. Am. Chem. Soc.* **1975**, *97*, 6908–6909. Ensley, H. E.; Parnell, C. A.; Corey, E. J. *J. Am. Chem. Soc.* **1978**, *43*, 1610–1612. The stereochemical model for chiral induction by the 8-phenylmenthol controller has been applied in the design of a practical auxiliary for asymmetric Diels-Alder reactions:

Corey, E. J.; Sarakinos, G. Org. Lett. 1999, 1, 1741-1744.

Dimenthyl Fumarate:

 The menthyl auxiliaries exhibit cooperative asymmetric induction in the case of the fumarate ester, resulting in excellent selectivity for cycloaddition from the back face.

Diene	Lewis Acid	Temperature (°C)	Yield	de (%)
**	<i>i</i> -Bu ₂ AlCl	-40	56	95
CH ₃	<i>i</i> -Bu ₂ AlCl	-20	94	95
CH ₃	Et ₂ AlCl	-20	70	96
	AICI ₃	25	92	99

From: Furuta, K.; Iwanaga, K. Yamamoto, H. Tetrahedron Lett. 1986, 27, 4507–4510. Kent Barbay

N-Acyloxazolidinone Dienophiles:

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\begin{array}{c|c} R' & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

dienophile	endo : exo	endo dr	isolated yield	isolated dr
1 , R' = H	>100 : 1	93 : 7	81	>99 : 1
2 , R' = H	>100 : 1	95 : 5	78	97 : 3
3 , R' = H	100 : 1	5 : 95	82	<1:99
1 , R' = CH ₃	48 : 1	95 : 5	82	>99 : 1
2 , R' = CH_3	55 : 1	97 : 3	83	99 : 1
3 , R' = CH_3	60 : 1	2:98	88	<1:99
1 , R' = Ph ^a	b	93 : 7	83	>99 : 1

- a. Reaction run at -20 °C, 2.5 h.
- b. Exo product not observed by 500 MHz ¹H-NMR.
- The high reactivity of the unsaturated carboximides is highlighted by tolerance of β-substitution on the dienophile, which is not typically the case for chiral ester dienophiles.
- The stereochemical results are consistent with the following models:

- · cycloaddition occurs from the less sterically encumbered face
- the reactive dienophile is a chelated cationic species
- the s-cis conformation of chelated acyl oxazolidinones is assumed to be favored
- (Z)-unsaturated imides and β,β-disubstituted imides have limited applicability due to competing isomerization or low reactivity.
- Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1984, 106, 4261-4263.
- Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238-1256.

 Diene scope: includes dienes less reactive than cyclopentadiene (e.g. acyclic dienes). In this case, imide 2 afforded uniformly higher diastereoselectivities than 1 or 3.

$$\begin{array}{c|c}
CH_3 & O \\
\hline
O & O \\
\hline
P & N & O \\
\hline
CH_3 & O \\
\hline
Et_2AlCI (1.4 equiv) & CH_3 & O \\
\hline
R & O \\
R$$

R	diene	dr	isolated yield (%)	isolated dr
Н	isoprene	95 : 5	85	> 99 : 1
Н	piperylene	>100 : 1	84	> 99:1
CH ₃	isoprene	94 : 6	83	> 99:1
CH ₃	piperylene	95:1:2:2	77	> 99:1

• The enhanced stereoselectivity of dienophile ${\bf 2}$ is attributed to π -stacking:

Evans, D. A.; Chapman, K. T.; Hung, D. T.; Kawaguchi, A. T. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 1184–1186.

• The oxazolidinone auxiliaries have been applied to asymmetric intramolecular Diels-Alder reactions:

X _C	n	dr (Endo I : Endo II)	Isolated yield (%) ^a
O N کر	1	95 : 5	73
Bn	2	97 : 3	88
O N کر	1	3:97	65
`, C ₆ H ₁₁	2	6 : 94	70

a. Refers to purified products, de >99%.

Evans, D. A.; Chapman, K. T.; Bisaha, J. Tetrahedron Lett. 1984, 25, 4071-4074.

Camphor-derived N-Enoyl Sultams:

$$H_3C$$
 CH_3
 O
 $EtAlCl_2 (1.5 equiv)$
 R
 COX_C

R	Temperature (°C)	Time (h)	endo : exo	endo dr	yield
Н	-130	6	99.5 : 0.5	97.5 : 2.5	83 ^a
СН	3 –78	18	96:4	99 : 1	91 ^b

- a. Recrystallized yield, de ≥ 99%.
- b. Crude yield of material with indicated isomeric purity.
- Acyclic dienes are suitable substrates in the case of (unsubstituted) N-acryloyl sultams:

$$H_3C$$
 CH_3
 R
 $EtAlCl_2 (1.5 equiv)$
 R
 X_C

R	Temperature (°C)	Time (h)	dr	yield ^a
Н	- 78	6	98.5 : 1.5	81
СН	₃ –94	6	97 : 3	64

- a. Recrystallized yield, de ≥ 99%.
- Both antipodes of the chiral auxiliary are available; they are synthesized in two synthetic steps from camphor-10-sulfonyl chloride.
- · Recovery of the auxiliary is possible after reductive or hydrolytic removal.
- The cycloadducts tend to be crystalline solids, facilitating purification.

Oppolzer, W.; Chapuis, C.; Bernardinelli, G. *Helv. Chem. Acta.* **1984**, *67*, 1397–1401.

Oppolzer, W. In *Comprehensive Organic Synthesis*; Trost, B.M. and Fleming, I. Eds.; Pergamon: Oxford, 1991, Vol. 5, pp. 315–399.

• The stereochemical outcome is rationalized by the following model, involving a chelated complex:

$$\begin{array}{c|c} H_3C & CH_3 & s\text{-}cis \text{ conformer} \\ \hline \\ SO_2 & CH_2Cl_2 \\ \hline \\ Ground \text{ state (X-ray):} \\ \hline \\ C=O/C=C \text{ s-}cis, \\ \hline \\ NSO_2/C=O \text{ s-}trans \\ \end{array}$$

Oppolzer, W.; Rodriquez, I.; Blagg, J.; Bernardinelli, G. Helv. Chem. Acta. 1989, 72, 123-131.

• α,β -unsaturated amides display a general preference for the *s-cis* conformer.

Montaudo, G.; Librando, V.; Caccamese, S.; Maravigna, P. J. Am. Chem. Soc. 1973, 95, 6365-6370.

• The camphor-derived sultam auxiliary has also been applied to intramolecular reactions:

$$\begin{array}{c} X_{C} \\ X_{C} \\$$

n	dr (Endo I : Endo II : [Exo I + Exo II])	Isolated yield (%)a
4	>97.4 : 2.5 : <0.1	75
1	297.4 . 2.3 . <0.1	73
2	94.0 : 2.6 : 3.4	53

a. Refers to crystallized Endo I, de >99%.

Oppolzer, W.; Dupuis, D. Tetrahedron Lett. 1985, 26, 5437-5440.

Chiral Auxiliaries - Dienes:

Review: Barluenga, J.; Suárez-Sobrino, A.; López, L. A. Aldrichimica Acta. 1999, 32, 4-15.

Chiral 1-heterosubstituted dienes:

• 1-O-methylmandeloxy substituted dienes (Trost's dienes):

Trost, B. M.; O'Krongly, D.; Belletire, J. L. J. Am. Chem. Soc. 1980, 102, 7595-7596.

• A stereochemical model rationalizing these results has been presented by Thornton:

 a transition state conformation in which the phenyl substituent is perpendicular to the plane of the diene is proposed, favoring approach from the top face.

Siegel, C.; Thornton, E. R. *Tetrahedron Lett.* **1988**, *29*, 5225–5228. Tripathy, R.; Carroll, P. J.; Thornton, E. R. *J. Am. Chem. Soc.* **1991**, *113*, 7630–7640.

• 1-Alkoxy-3-silyloxy-1,3-butadienes (auxiliary-modified analogs of Danishefsky's diene):

TBSO TBSO TBSO TFA O Ph

CH₃ Ph

CH₃ Ph

CH₃
$$CH_3$$
 CH_3 CH_3

Bednarski, M.; Danishefsky, S. J. Am. Chem. Soc. 1986, 108, 7060-7067.

· 1-amino-3-silyloxy dienes:

· Stereochemical Model:

 Both endo and exo cycloadducts are transformed to the same enantiomer of the cyclohexenone product, allowing the use of dienophiles that do not undergo cycloaddition with high endo/exo selectivity.

Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1999, 121, 9562-9573.

Chiral 2-heterosubstituted dienes:

· 2-amino dienes:

Review: Enders, D.; Meyer, O. Liebigs Ann. 1996, 1023-1035.

$$\begin{array}{c|c} & & & & \\ & &$$

R ₁	R_2	R_3	yield (%)	ee (%)
Н	Н	Ph	48	98
CH ₂ OTBS	Н	Ph	63	94
CH ₂ OTBS	Н	Me	48	95
CH ₂ OTBS	Н	<i>i</i> -Pr	56	92
CH ₂ OTBS	-(Cl	H ₂) ₄ -	70	94

• These cycloadditions are proposed to proceed by a stepwise mechanism:

Alkyl substitution at C₃ of the diene appears to be required, probably to restrict the conformation
of the prolinol group as shown.

Barluenga, J.; Aznar, F.; Ribas, C.; Valdés, C. *J. Org. Chem.* **1997**, *62*, 6746–6753. Enders, D.; Meyer, O.; Raabe, G. *Synthesis* **1992**, 1242–1244.

OTMS
OTMS
$$CH_3 + Ar$$

$$+ Ar$$

$$-80 \rightarrow 23 \, ^{\circ}C$$

$$2. \text{ NaHCO}_3, \text{ H}_2O$$

$$Ar$$

$$yield (%)$$

$$-98$$

$$4-\text{MeOPh}$$

$$43$$

$$90$$

$$Ph$$

$$65$$

$$95$$

Barluenga, J.; Anzar, F.; Ribas, C.; Valdés, C.; Fernández, M.; Cabal, M.-P.; Trujillo, J. *Chem. Eur. J.* **1996**, *2*, 805–811.

· Sulfinyl-substituted dienes:

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Aversa, M. C.; Barattuci, A.; Bonaccorsi, P.; Giannetto, P.; Jones, D. N. *J. Org. Chem.* **1997**, *62*, 4376–4384.

Chiral Auxiliaries for Asymmetric Diels-Alder Reations – Applications in Synthesis: (+)-Lepicidin A:

H₃C — H₃C — H₃C — OTIPS

$$H_3$$
C — H_3 C

• A control experiment showed the auxiliary overcame inherent stereochemical bias in the substrate:

Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497-4513.

(-)-Bilobalide:

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \text{CH}_{2}\text{Cl}_{2}/\text{hexane} \\ \text{CH}_{2}\text{Cl}_{2}/\text{hexane} \\ \text{CH}_{3}\text{CO} \\ \text{CH}_{3}\text{CO} \\ \text{CH}_{3}\text{CO} \\ \text{CH}_{3}\text{CO}_{2}\text{Men} \\ \text{CO}_{2}\text{Men} \\ \text{CO}_{2}\text{Men} \\ \text{3. KHMDS, THF, $-48 °C$} \\ \text{3. KHMDS, THF, $-48 °C$} \\ \text{CH}_{3}\text{CO}_{2}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3}\text{CH}_{3} \\ \text{CH}_{3} \\ \text{$$

Corey, E. J.; Su, W.-G. Tetrahedron Lett. 1988, 29, 3423-3426.

Pulo'upone:

Oppolzer, W.; Dupuis, D.; Poli, G.; Raynham, T. R.; Bernardinelli, G. *Tetrahedron Lett.* **1988**, 29, 5885–5888.

Catalytic, Asymmetric Diels-Alder Reactions:

• The first reported catalytic, asymmetric Diels-Alder reaction:

• The exo selectivity of α -substituted acroleins is general.

Hasimoto, S.; Komeshima, N.; Koga, K. J. Chem. Soc., Chem. Commun. 1979, 437-438.

exo: endo = 98:2

C2-symmetric Diazaaluminolidine Catalysts:

Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. J. Am. Chem. Soc. 1989, 111, 5493-5495.

• A modified catalyst expanded the scope of this system to include maleimide dienophiles:

$$Ar$$
 F_3CO_2SN
 Al
 NSO_2CF_3
 CH_3
 $Ar = 3,5$ -dimethylphenyl
 $(20 \text{ mol}\%)$
 $toluene, -78 °C$
 H_3CO
 H_3CO

Corey, E. J.; Sarshar, S.; Lee, D.-H. J. Am. Chem. Soc. 1994, 116, 12089-12090.

- Both antipodes of the 1,2-diaryl-1,2-diaminoethane ligands are available, via resolution employing tartaric acid: Corey, E. J.; Lee, D.-H.; Sarshar, S. Tetrahedron: Asymmetry 1995, 6, 3–6.
- · Proposed transition-state assembly:

• This model is supported by ¹H, ¹³C, and ¹H NOE data for the 1 : 1 dienophile : catalyst complex, as well as X-ray diffraction analysis of the catalyst dimer.

Corey, E. J.; Sarshar, S. J. Am. Chem. Soc. 1992, 114, 7938-7939.

Chiral (Acyloxy)borane (CAB):

catalyst	R ₁	R_2	R_3	R_4	endo : exo	ee (%)	yield (%)
1	Н	Н	-	_	88 : 12	84	90
1	Н	Н	CH ₃	CH ₃	-	84	53
1	Н	CH ₃	_	-	11 : 89	96	85
1	Н	CH ₃	CH ₃	CH ₃	_	97	61
1	Н	CH ₃	CH ₃	Н	-	91	65
1	CH ₃	CH ₃	_	-	3:97	90	91
2	Н	Br	_	-	6:94	95	100
2	Н	Br	CH ₃	CH ₃	-	95	80
2	CH ₃	Br	_	-	>99 : 1	98	100

- α -substituted α,β -unsaturated aldehyde dienophiles give optimal selectivities.
- Both enantiomers of the CAB catalyst are available, from (+) and (-)-tartaric acid.

Furuta, K.; Shimizu, S.; Miwa, Y.; Yamamoto, H. *J. Org. Chem.* **1989**, *54*, 1483–1484. Ishihara, K.; Gao, Q.; Yamamoto, H. *J. Org. Chem.* **1993**, *58*, 6917–6919.

• Yamamoto's CAB catalyst has been applied to intramolecular reactions:

Furuta, K.; Kanematsu, A.; Yamamoto, H.; Takaoka, S. Tetrahedron Lett. 1989, 30, 7231-7232.

Oxazaborolidine Catalysts:

- α-substitution on the aldehyde component is required for high enantioselectivity.
- The tryptophan-derived ligand was efficiently recovered.

Corey, E. J.; Loh, T.-P. J. Am. Chem. Soc. 1991, 113, 8966-8967.

• Physical and chemical studies of this system led to the following transition-state model:

Corey, E. J.; Loh, T.-P.; Roper, T. D.; Azimioara, M. D.; Noe, M. C. *J. Am. Chem. Soc.* **1992**, *114*, 8290–8292.

- Lewis acids complex aldehydes syn with respect to the formyl proton for a review on the conformations of carbonyl-Lewis acid complexes, see: Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Angew. Chem., Int. Ed. Engl. 1990, 29, 256–272.
- Formyl CH--O hydrogen bonding is proposed as an additional organizational element leading to the excellent enantioselectivities observed. For the application of the formyl CH--O hydrogen bond postulate to the understanding of enantioselective reactions involving chiral boron Lewis acids and aldehydes, see: Corey, E. J.; Rohde, J. J. *Tetrahedron Lett.* **1997**, *38*, 37–40.
- A modified oxazaborolidine catalyzes cycloadditions to furan:

Corey, E. J.; Loh, T.-P. Tetrahedron Lett. 1993, 34, 3979-3982.

 Corey has demonstrated the synthetic versatility of the 2-bromoacrolein/cyclopentadiene cycloaddition adducts:

Corey, E. J.; Loh, T.-P. J. Am. Chem. Soc. 1991, 113, 8966-8967.

Cationic Oxazaborolidine Catalysts:

catalyst	Χ	temp (°C)	time (h)	yield (%)	endo:exo	ee (%, endo)
1	OTf	4	72	46	91:9	>98
2	NTf_2	20	16	94	89:11	97

- The neutral oxazaborolidine catalyst does not exhibit catalytic activity in the Diels-Alder reaction of cyclopentadiene with methacrolein.
- · Early experiments were conducted with catalyst 1; it was subsequently shown that the triflimideactivated catalyst 2 exhibits greater thermal stability and higher catalytic activity.
- When using less reative dienes, the related 3,5-dimethylphenyl catalyst 3 is often superior to 2.

catalyst	solvent	time (h)	yield (%)	ee (%)
2	toluene	40	78	88
3	neat	24	96	95

Corey, E. J.; Shibata, T.; Lee, T. W. J. Am. Chem. Soc. 2002, 124, 3808. Ryu, D. H.; Lee, T. W.; Corey, E. J. J. Am. Chem. Soc. 2002, 124, 9992. Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388.

· A useful set of predictive selection rules has been developed for the oxazaborolidinium-mediated Diels-Alder reaction of substituted guinones: Ryu, D. H.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 4800.

 Catalysts 1, 2, and 3 exhibit broad substrate scope and predictable selectivities. Enantioselectivities are typically >90%; endo:exo ratios are uniformally high (4:1→>99:1).

: : 	catalyst ^a	diene	dienophile	product	time (h), temp (°C)	yield, ee (%)
	2 C	CH₃✓	Å	CH ₃	16, 20	99, 64
! ! !	3	CH ₃		CH ₃	24, 4	99, 77
	2		CH ₃ CH ₃	H H H H H H H H H H H H H H H H H H H	CH ₃ 48, –78	97, 91
! ! ! ! ! ! !	2 TIPS		CH ₃ TI		CH ₃ 2, –95 CH ₃	98, >99
 	1		CH₃	CHO "'CH ₃	24, –78	85, 94
	1				16, –20	97, 93 ^b

- a 20 mol% catalyst. bendo:exo = 91:9.
- · Corey has proposed the following pre-transition-state complexes:

quinones, enones, and α,β -unsaturated esters

- The phenyl [or 3,5-dimethylphenyl in the case of 3 (not shown)] substituent is proposed to engage in π -stacking with the dienophile.
- The diene approaches the catalyst-dienophile complex from the face opposite the phenyl group.
- The existence of an O—HC interaction is supported by studies of enal-, and enone-BF₃ complexes.
- Note the sense of stereoinduction for enals is opposite that of quinones, enones, and α,β unsaturated esters.

Seth B. Herzon

Alkyldichloroboranes:

$$R \longrightarrow CO_2Me + On \longrightarrow CH_2Cl_2 \longrightarrow CO_2Me$$

$$CO_2Me + On \longrightarrow CH_2Cl_2 \longrightarrow CO_2Me$$

R	n	ee (%)	yield (%)
Н	1	97	97
CH ₃	1	93	91
CO ₂ Me	1	90	92
Н	2	86	83

• The catalyst was prepared by resolution with (-)-menthone.

- The adjacent figure illustrates the approximate conformation of the catalyst-methyl crotonate complex (X-ray).
- NMR studies suggest this conformation is retained in solution.
 - The s-trans crotonate conformer is observed.
 - The carbonyl is positioned over and parallel to the naphthylene, within van der Waals contact (3.2 Å) (π -stacking interaction).
 - Complexation of Lewis acids *anti* to ester C–O bonds appears to be a general phenomenon.
- The absolute stereochemical configuration of the products is consistent with a transition-state model closely related to the observed ground state complex:

• The naphthalene substituent forces the dienophile to approach from the front face.

Hawkins, J. M.; Loren, S. J. Am. Chem. Soc. 1991, 113, 7794-7795.

Titanium-TADDOL:

• Narasaka's Ti complex catalyzes a wide variety of Diels-Alder reactions with high selectivities:

Diene	R ₁	R_2	endo : exo	ee (%)	yield (%)	reference
6	-	Н	n.d.	88	81	2
6	-	CH ₃	87 : 13	94	91	1
6	-	Ph	92 : 8	80	76	1
7	Н	Н	_	93	81	2
7	Н	CO ₂ Me	-	91	84	1
7	CH ₃	Н	_	>96	93	2
7	CH ₃	CO ₂ Me	_	94	94	1
8	-	Н	85 :15	87	97	3
8	-	CO ₂ Me	78 : 22	86	99	3

- Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima, M.; Sugimori, J. J. Am. Chem. Soc. 1989, 111, 5340-5345.
- 2. Narasaka, K.; Tanaka, H.; Kanai, F. Bull. Chem. Soc. Jpn. 1991, 64, 387-391.
- 3. Narasaka, K.; Yamamoto, I. Chem. Lett. 1995, 1129-1130.
- A number of transition-state models have been proposed; the analysis is complicated by the number of coordination possibilities available in octahedral complexes.

Bis(oxazoline) Copper Complexes:

• Evans' copper (II) catalysts have been successfully applied to a wide array of cycloaddition substrates:

Catalyst	Diene	Х	R	endo : exo	ee (%)	yield (%)
9	6	-	Н	98 : 2	>98	86
9	6	-	CO ₂ Et	94 : 6	95	92
9	6	_	CH ₃	96 : 4	97	85
10	6	_	Ph	91:9	96	96
10	6	_	CI	86 : 14	95	96
10	11	OAc	_	85 : 15	96	75
10	11	SPh	_	98:2	98	84
10	11	NHCbz	_	72 : 28	90	54
10	12	-	-	80 : 20	97	97

 Catalyst 10 (X = SbF₆) uniformly provides higher reactivity and higher levels of asymmetric induction than 9 (X = OTf), which was reported earlier.

Evans. D. A.; Murry, J. A.; von Matt, P.; Norcross, R. D.; Miller, S. J. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 798–800.

• The stereochemical results are in all cases consistent with the following model:

- · Square planar geometry about Cu
- · Imide binds in a bidentate fashion
- s-cis dienophile configuration
- diene approaches from the back face; the front face is blocked by the *t*-Bu group
- · Acyclic dienes unsubstituted at the 1-position afforded lower enantioselectivities:

Catalyst	Diene	endo : exo	ee (%)	yield (%)
10	CH ₃	-	59	81
10	CH ₃	_	65	78
10	CH ₃	27 : 73	98	57 ^a

- a. Isolated yield of enantiomerically and diastereomerically pure material.
- These dienes (substituted at C3) are proposed to approach via an exo transition state. The exo transition state is apparently only selective in the case of 1-substituted dienes.
- Calalyst 10 is also effective for intramolecular Diels-Alder reactions:

Evans, D. A.; Miller, S. J.; Lectka, T. J. Am. Chem. Soc. 1993, 115, 6460-6461.

Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt, P. J. Am. Chem. Soc. 1999, 121, 7559-7573.

Evans, D. A.; Barnes, D. M.; Johnson, J.; Lectka, T.; von Matt, P.; Miller, S. J.; Murry, J. A.;

Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 7582-7594.

Asymmetric Catalysis of the Diels–Alder Reaction with a Chiral Amine through Reversible Iminium Ion Formation:

R	yield	exo : endo	exo ee (%)	endo ee (%)
Me	75	1:1	86	90
<i>n</i> -Pr	92	1:1	86	90
<i>i</i> -Pr	81	1:1	84	93
Ph	99	1.3 : 1	93	93
Furyl	89	1:1	91	93

diene	R	product	yield	endo : exo	ee (%)
	Н	СНО	82	14 : 1	94
CH ₃	Н	CH ₃ CHO	84	-	89
Ph	Н	Ph , , , , R	90	_	83
	CH ₃	CHO	75	_	90
CH ₃ CH ₃	Н	CH ₃ ,CH ₃	75	5 : 1	90

· Stereochemical model:

- Selective formation of the (illustrated) (*E*)-iminium isomer is proposed, avoiding unfavorable interactions between the substrate olefin and the geminal dimethyl substituents.
- The benzyl substituent shields the β -face of the dienophile.

Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243-4244.

Jacobsen's Catalyst:

Jacobsen's Cr (III) salen complex 14 catalyzes highly enantioselective Diels
 –Alder reactions of
 1-amino-3-silyloxydienes and acroleins:

$$t\text{-Bu} \xrightarrow{\text{IV}} \text{N} = \text{N} \text{N}$$

R ₁	R_2	yield	ee (%)
Me	Н	93	97
Et	Н	91	97
<i>i</i> -Pr	Н	92	>97
TBSO(CH ₂) ₂	Н	93	95
TBSO	Н	86	>97
-(CH ₂) ₃ -		76	96

· No exo products were observed in these cycloadditions.

Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2000, 122, 7843-7844.

- X-ray analysis of the (1*R*, 2*R*)-salen–Co(III)-SbF₆•2PhCHO complex suggested that replacing the *t*-butyl groups with bulkier trimethylsilyl substituents might create a steric interaction (between the trimethylsilyl groups) that would twist the aromatic rings out of plane.
- This modification has resulted in an exceptionally selective and active Diels-Alder catalyst:

entry	R ₁	R_2	mol % cat.	time (h)	yield	ee (%)
1	CH ₃	Н	4	1	98	98
2	CH ₃	Н	0.05	72	93	98
3	CH ₂ CH ₃	Н	0.1	30	93	>97
4	TBSO(CH ₂) ₂	Н	0.5	18	100	>97
5 ^a	Н	Н	0.1	18	100	85
6 ^b	Н	Н	2	40	90	>97
7	-(CH ₂) ₄ -		2	72	78	>95

- ^a Reaction performed at 0 °C. ^b Reaction performed at –78 °C.
- Entry 2 represents the lowest substrate/catalyst ratio (s:c = 2000) reported for an asymmetric Diels-Alder reaction.

Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 5950.

Catalysis via Hydrogen Bonding

entry	R	% yield 1	% yield 2	% ee of 2
1	Н	_	77	73
2	CH ₃	85	82	91
3	CH ₂ CH ₃	80	83	88
4	<i>i</i> -Pr	77	81	92
5	Bn	84	82	89
6	CH ₂ CH ₂ OTBS	80	80	86

•The following stereochemical model has been proposed:

• The diene approaches from the face opposite the napthyl group.

Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5846.

Catalytic, Asymmetric Hetero-Diels-Alder Reactions:

The same TADDOL derivative catalyzes hetero-Diels-Alder reactions:

· Products:

Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature, 2003, 424, 146.

• A 2nd-generation catalyst was developed, expanding the substrate scope. See: Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. *J. Am. Chem. Soc.* **2005**, *127*, 1336. Seth B. Herzon

hatara

R	ee (%)	yield (%)	CH ₃
Ph	90	72	
CH ₂ OTBS	>99	97	
CH ₂ OBn	94	94	
<i>n</i> -C ₅ H ₁₁	98	85	Ċŕ
(CH ₂) ₄ CH=C	CH ₂ 98	78	0 ^
CH ₂ CH ₂ Ph	98	78	14 X = SbF ₆ 15 X = Cl
2-furyl	95	77	

- The diastereoselectivity was >95% in all cases, favoring the illustrated endo product.
- Use of acetone as solvent in the cycloaddition generally improves enantioselectivities, and is critical in the case of aromatic aldehydes.
- Both enantiomers of the aminoindanol ligand are commercially available.
- Excellent enantioselectivities were maintained with several other dienes in reactions catalyzed by 15:

Diene	Diene Product		yield (%)
OTES H ₃ C	H ₃ C" O .,, OTBS	98	78
OTES CH ₃	H ₃ C', OTBS	91	50
H ₃ CO	H ₃ CO ^W O.,,OTBS	>99	91

• This is the first effective method for the asymmetric HDA reaction between dienes with less than two oxygen substituents and unactivated carbonyl compounds.

Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 1999, 38, 2398-2400.

Inverse Electron Demand Hetero-Diels-Alder Reactions catalyzed by Bis(oxazoline) Copper(II) Complexes:

diene	hetero dienophile	product	endo : exo	yield (%)	ee (%)
EtO. C	U OEt E	R E E O O O O O O O O O			
		R = Me	24 : 1	87	97
		R = Ph	> 20 : 1	93	97
		R = <i>i</i> -Pr	22 : 1	95	96
		R = OMe	59 : 1	90	98
EtO. C	€ E	atO ₂ C O H			
		R = Ph	16 : 1	96	97
		R = <i>i</i> -Pr	16 : 1	94	95
EtO. C.	U _{SR}	Ph EtO ₂ C O'''SR			
		R = Et	> 20 : 1	94	97
		R = Ph	> 20 : 1	91	99

$$(MeO)_{2P} \xrightarrow{R_{1}} O \xrightarrow{+} X \xrightarrow{5 \text{ mol}\% 16} \xrightarrow{R_{2}} \xrightarrow{R_{1}} O \xrightarrow{*} (MeO)_{2P} \xrightarrow{R_{1}} O \xrightarrow{*} X$$

R ₁	R_2	Х	yield (%)	endo : exo	ee (%)
Me	Н	OEt	84	36 : 1	93
Ph	Н	OEt	95	22 : 1	97
<i>i</i> -Pr	Н	OEt	92	22 : 1	95
OEt	Н	OEt	92	44 : 1	97
Me	Me	OEt	98	25 : 1	≥90
Me	Н	SEt	75	16 : 1	96

- The hetero-Diels–Alder reactions catalyzed by **16** have a favorable temperature-enantioselectivity profile, affording dihydropyrans with high enantioselectivities even at 0 °C.
- · Stereochemical Model:

- square planar transition structure
- · heterodiene binds in a chelated fashion
- attack of heterodienophile occurs from the less hindered $\alpha\text{-face}$
- The product dihydropyrans are synthetically versatile:

MeO₂C CHO
$$R_2 = H$$
 $R_2 = H$ $R_3 = H$ $R_4 = H$ $R_$

Evans, D. A.; Johnson, J. S.; Olhava, E. J. J. Am. Chem. Soc. 2000, 122, 1635-1649.

Catalytic, Asymmetric Diels-Alder Reactions – Applications in Synthesis: Gibberellic Acid:

Br CO₂Me 1.
$$\Delta$$
 2. NaCl, DMSO, Δ Br Gibberellic Acid

Corey, E. J.; Guzman-Perez, A.; Loh, T.-P. J. Am. Chem. Soc. 1994, 116, 3611-3612.

Gracilin B:

(20 mol %)
$$Ar$$
, Ar
 F_3CO_2SN , NSO_2CF_3

TMS

 $Ar = 3,5$ -dimethylphenyl

toluene, $-78 \, ^{\circ}C$
 $Ar = 3,5$ -dimethylphenyl

 $Ar = 3,5$

Corey, E. J.; Letavic, M. A. J. Am. Chem. Soc. 1995, 117, 9616-9617.

Estrone

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{C} \\ \text{H} \\$$

Hu, Q.; Rege, P. D.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 5984.

- † (a). Ananchenko, S. N.; Torgov, I. V. *Tetrahedron Lett.* **1963**, *4*, 1553. (b) Quinkert, G.; Grosso, M. D.; Dőring, A.; Döring, W.; Schenkel, R. I.; Bauch, M.; Dambacher, G. T.; Bats, J. W.; Zimmermann, G.; Dürner, G. *Helv. Chim. Acta* **1995**, *78*, 1345.
- · Both enantiomers of the catalyst are accessible.
- The following pre-transition-state assembly was suggested:

The application of the oxazaborolidinium catalysts to once racemic syntheses has been demonstrated:

racemic synthesis: Kende, A. S.; Bentley, T. J. J. Am. Chem. Soc. 1974, 96, 4332.

Hu, Q.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 13708.

racemic synthesis: Tsunoda, T.; Kodama, M.; Ito, S. Tetrahedron Lett. 1983, 24, 83.

Hu, Q.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 13708.

Seth B. Herzon