

Powerking Electronics (ShenZhen) Co., LTD.

深圳市柏健電子有限公司

地址: 深圳市福虹路世贸广场 C 座 2604-2605 室 电话: 86-755-83003169 、83003189 传真: 86 755 83003179

承认书

SPCEIFICATION FOR APPROVER

各户名称 (Customer Name)	迈科科技有限公司 ————————————————————————————————————
日 期 (Date)	2008-04-18
品 牌(Brand)	BCD
型 号(Parts No)	AS358M-E1
客户签章(Customer's Signa	ature)
全部承认(Pull Approved)	
日 期(Date)	

LOW POWER DUAL OPERATIONAL AMPLIFIERS

General Description

Features The AS358/358A consist of two independent, high from a single power supply. Operation from split ply current drain is independent of the magnitude of the power supply voltages Typical applications include transducer amplifiers, DC gain blocks and amplifiers, they are specifically designed to operate gain and internally frequency compensated operational power supply is also possible and the low power supmost conventional operational amplifier circuits.

The AS358/358A series are compatible with industry standard 358. AS358A has more stringent input offset voltage than AS358

The AS358 is available in DIP-8, SOIC-8, TSSOP-8 and MSOP-8 packages, AS358A is available in DIP-8 and SOIC-8 packages

- Internally Frequency Compensated for Unity
- Large Voltage Gain: 100dB (Typical)
- Low Input Bias Current: 20nA (Typical)
- Low Input Offset Voltage: 2mV (Typical) Low Supply Current: 0.5mA (Typical)
- Wide Power Supply Voltage Single Supply, 3V to 36V Dual Supples, ~1 SV to ±18V Input Common Mode Voltage Range Includes Ground
 - Large Output Voltage Swing: 0V to V_{CC} -1.5V

Applications

- Ванегу Спатрет
- Cordless felephone
- Switching Power Supply

Figure 1. Package Types of AS358/358A

Mar 2007 Rev 1 7

BCD Semiconductor Manufacturing Limited

Data Sheet

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Pin Configuration

M/P/G/MM Package

E.L. OUTPUT 2 L.L. INPUT 2-5 INPUT 2+ (SOIC-8/DIP-8/TSSOP-8/MSOP-8) Ncc √cc GND [OUTPUT 1 INPUT 1-INPUT 1+ TTT

Figure 2. Pin Configuration of AS358/358A (Top View)

Functional Block Diagram

Figure 3 Functional Block Diagram of AS358/358A,

(Each Amplifier)

Mar 2007 Rev 1 7

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Ordering Information

Packape	Temperature	Par	Part Number	Mar	Marking ID	
L	Range	Tin Lead	Lead Frer	Tin Lead	Lead Free	Packing Type
		ASSSM	AS358M-E1	AS358M	AS358M-E1	Tube
8-DIOS	3698 m (II)	AS358MTR	AS358MTR-E1	AS358M	AS358M-E1	Tape & Reel
	2		AS358AM-E1		AS358AM-E1	Tube
			AS358AMTR-111		AS388AM-E1	Tape & Ree
8-dIO	100000000000000000000000000000000000000	ASSSRP	AS358P-E1	AS358P	AS358P-E1	Tubc
	7 o ou		AS:38AP-E1		AS358AP-E1	Tube
TSSOP-8			AS358G-F1		EG3A	Tube
			AS358GTR-E1		EG3A	Tape & Reel
MSOP-8	Josa et III		AS348MM-E1		AS358MM-E1	Tube
			AS358MM1R-1 1		AS358MM-EJ	Tape & Reel

BCD Senuconductor's Ph-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

BCD Semiconductor Manufacturing Limited

Mar 2007 Rev 1 7

Data Sheet

LOW POWER DUAL OPERATIONAL AMPLIFIERS ASSE

Absolute Maximum Ratings (Note 1)

Parameter	- 1			
	одшас	Value	ë	ie.
Power Supply Voltage	VCC	40		>
Differential Input Voltage	VII	40		>
Input Voltage	VIC	-0.3 to 40	, 40	>
		DIP-8	830	
000 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	۵	SOIC-8	550	-
rower Dissipation (1A=25°C)	£	TSSOP-8	\$00	шw
	_	MSOP-8	470	-
Operating Junction Temperature		150		دِ ا
Storage Temperature Range	TSTU	-65 to 150	150) o
Lead Temperature (Soldering, 10 Seconds)	TLEAD	260		ه ا
				,

Note 1: Stresses greater than those listed under "Absolute Maximum Rahings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under 'Recommended Operating Conditions' is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Max		36	\$8
Min		٣.	
Symbol	*		T
Parameter		Supply Voltage	Ambient Operating Temperature Range

BCD Semiconductor Manufacturing Limited

Mar 2007 Rev. 1 7

VS358/358.A

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Electrical Characteristics

Limits in standard typeface are for $I_A=25^{\circ}$ C, **bold** typeface applies over -40°C to 85°C (Note 2), V_{CC} -5V, GND-0V, unless otherwise specified.

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit
			4 63 50		7	5	
Input Offset Voltage	> >	~	ASSSS			7	
		V _{CC} =5V to 30V	453584		2	3	è.
						S	
Average Temperature Coeffi- cient of Input Offset Voltage	AV _{IO} /AT	TA40 to 85°C			7		μν//°C
Input Bias Current	Listore	Inch of Inc. Von. 0V			20	200	
	CWIG	W D I NI D NI	1			200	nA N
Input Offset Current	r _l to	In - In Vem-0V			5	30	hn
Input Common Mode Voltage Range (Note 3)	VIR	V _{CC**3} 0V		0		V _{CC} -1.5	>
Supply Current	- T	TA= -40 to 85°C; R; = x VCt = 30V			0.7	C1	
	į.	T _A =-40 to 85°C, R ₁ x V _{CC} =5V			5.0	1.2	TIA.
Large Signal Voltage Gain	Š	Vcc=15V, Vc=1V to 11V, R; > 2kO	C	85	100		4
				980			9
Common Mode Rejection	CMRR	DC, V _{CM} =0V to (V _{CC} -1 5)V	:	09	102		. 4
Kallo		N. C. W.	L	0.9			9
Pewer Supply Rejection	PSRR	V _{cc} =5V to 30V		2	100		9
Katio		,,,,		9			9
Channel Separation	S.)	f=1kHz to 20kHz			-120		dB
Source	Pomerie	$V_{\text{INI}} = V_{\text{INI}} - V_{\text{INI}} = V_{$	-2V	20	40		4
	THE PARTY	O	·	20			¥0.
Output Current		V _{1N} +=0V, V _{1N} -=1V, V _{C1} -=15V V _{C2} =2V	=2V	10	15		í
Sink	ISINK			v			FIII.
		V_{IN} = 0 V, V_{IN} = 1 V, V_{CL} = 15 V, V_{D} = 0.2 V	0.2V	12	20		γ'n
Output Short Circuit Current to Ground	lsc	V _{CC} =15V		İ	40	09	mA
		V _{CC} =30V, R ₁ =2kΩ	: 	26			
				56			2
Output Voltage Swing	-	V _{CC} =30V, R _c =10kΩ		27	78		•
			L	27			
	Vor	Voce 5V. R. + 10kQ			5	20	1 /1-
	į.	1				30	ě

Note 2. Limits over the full temperature are guaranteed by design, but not tested in production

Mar 2007 Rev 1 7

BCD Semiconductor Manufacturing Limited

Data Sheet

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Electrical Characteristics (Continued)

Note 3. The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is $V_{CC^{-1}}$ 5V (at 25°C), but either or both inputs can go to ~36V without damages, independent of the magnitude of the V_{CC} .

Typical Performance Characteristics

Figure 5. Input Current

Figure 4 Input Voltage Range

Figure 6. Supply Current

Mar 2007 Rev 1 7

Figure 7. Voltage Gain

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Typical Performance Characteristics (Continued)

Time (µs)

Figure 9. Voltage Follower Pulse Response

Figure 8 Open Loop Frequency Response

Figure 11, Large Signal Frequency Response

Figure 10. Voltage Follower Pulse Response (Small Signat)

Mar 2007 Rev. 1-7

BCD Semiconductor Manufacturing Limited

Data Sheet

LOW POWER DUAL OPERATIONAL AMPLIFIERS Typical Performance Characteristics (Continued)

Figure 12. Output Characteristics: Current Sourcing

Figure 13. Output Characteristics: Current Sinking

Figure 14. Current Limiting

Mar. 2007 Rev. 1. 7

LOW POWER DUAL OPERATION Typical Application

		The second secon
4	V8388/358V	DNAL AMPLIFIERS
i		

Figure 15, Battery Charger

Figure 17. DC Summing Amplifier

Figure 16. Power Amplifier

BCD Semiconductor Manufacturing Limited

Mar. 2007 Rev 1 7

Data Sheet

LOW POWER DUM, OPERATIONAL AMPLIFIERS

Typical Application (Continued)

Figure 19 Fixed Current Sources

Figure 18, AC Coupled Non-Inverting Amplifier

Figure 20. Pulse Generator

Mar. 2007 Rev. 1 7

AS358/358A

Mechanical Dimensions

LOW POWER DUAL OPERATIONAL AMPLIFIERS

DIP-8

Unit: mm(inch)

Mat 2007 Rev 1 7

BCD Semiconductor Manufacturing Limited

=

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Data Sheet

Mechanical Dimensions (Continued)

SOIC-8

Unit: mm(inch)

Mar. 2007 Rev 1 7

BCD Semiconductor Manufacturing Limited

Ċ

Mechanical Dimensions

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Data Sheet

Unit: mm(inch)

MSOP-8

0.150(0.006)TYP

0.650(0.026)TYP

EH

0.300(0.012)TYP

Mechanical Dimensions (Continued)

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Unit: mm(inch)

TSSOP-8

SEE DETAIL A 1.200(0.047)____ MAX

3.100(0.112)

 \Box

0.050(0.002)

0.800(0.031)

0.760(0.030) 0.800(0.031)

Ш

(800.0)002.0 (000.0)000.0

3.100(0.112)

2.900(0.114) 3.100(0.122)

4.700(0.185) (100.0001.2

0 410(0.016) 0 650(0.026)

(691 0)006 7

DETAIL A

1.950(0.077)

ЧYТ (920:0)099:0

0400(0016)

Mar. 2007 Rev. 1-7

~

BCD Semiconductor Manufacturing Limited

Mar. 2007 Rev. 1-7

BCD Semiconductor Manufacturing Limited

Ξ

No. SH7042948/CHEM

Date: Apr. 27, 2007

Page 1 of 5

JIANGSU CHANGJIANG ELECTRONIC TECHNOLOGY CO., LTD 78, CHANGSHAN RD, JIANGYIN, JIANGSU CHINA

The following sample(s) was/were submitted and identified by/on behalf of the client as:

Sample Name

: SOP PACKAGE PART (INCLUDE SOP8/20/24/30 HSOP28/34/38 SOP8/PP)

SGS Ref No.

: 10333677-9

Model

: SOP (INCLUDE SOP8/20/24/30 HSOP28/34/38 SOP8/PP)

Sample Receiving Date: Apr.24, 2007

Lestina Period

: Apr.24 - Apr.27, 2007

Test Requested

- : (1) In accordance with the RoHS Directive 2002/95/EC, and its amendment directives
- (2) To determine the PCBs (Polychlorinated Biphenyls) content of the submitted

- (3) To determine the Polychlorinated Naphthalene content of the submitted sample.
- (4) To determine the Short Chain Chlorinated Paraffin content of the submitted

sample.

Test Method

- : (1-1) With reference to IEC 62321 Ed.1 111/54/CDV for Cadmium content. Analysis was performed by ICP.
- (1-2) With reference to IEC 62321 Ed.1 111/54/CDV for Lead content. Analysis was performed by ICP and AAS.
- (1-3) With reference to IEC 62321 Ed.1 111/54/CDV for Mercury content. Analysis was performed by ICP.
- (1-4) With reference to IEC 62321 Ed.1 111/54/CDV for Hexavalent Chromium by Colorimetric Method.
- (1-5) With reference to IEC 62321 Ed.1 111/54/CDV for PBBs / PBDEs content. Analysis was performed by GC/MS.
- (2) With reference to US EPA 8082, Analysis was performed by GC-MS. (3) With reference to US EPA 8081, Analysis was performed by GC-MS.
- (4) With reference to US EPA 8081, Analysis was performed by GC/MS.

Test Results

: Please refer to next pages

Signed for and on behalf of SGS-CSTC Chemical Laboratory

> Ella Zhang Sr. Section Head

Signed for and on behalf of SGS CSTC Chemical Laboratory

> Sandy Hao Lab Manager

No. SH7042948/CHEM

Date: Apr. 27, 2007

Page 2 of 5

Test results by chemical method

(1) Cadmium, Lead, Mercury, Hexavalent Chromium, PBBs(Polybrominated biphenyls) PBBEs(PBDEs)

(Polybrominated biphenyl ethers) content(Unit: mg/kg)

Test Item(s):	Method (refer to)	<u>1*</u>	MDL	RoHS Limit
Cadmium(Cd)	(1-1)	ND	2	100
Lead (Pb)	(1-2)	ND	2	1000
Mercury (Hg)	(1-3)	ND	2	1000
Hexavalent Chromium (CrVI)	(1-4)	ND	2	1000
Sum of PBBs		ND	-	1000
Monobromobiphenyl		ND	5	-
Dibromobiphenyl		ND	5	-
Tribromobiphenyl		ND	5	-
Tetrabromobiphenyl		ND	5	-
Hexabromobiphenyl		ND	5	-
Pentabromobiphenyl		ND	5	-
Heptabromobiphenyl		ND	5	_
Octabromobiphenyl		ND	5	-
Nonabromobiphenyl		ND	5	-
Decabromobiphenyl		ND	5	-
Sum of PBDEs (Note 4)	(1-5)	ND	-	1000
Monobromodiphenyl ether		ND	5	-
Dibromodiphenyl ether		ND	5	_
Tribromodiphenyl ether		ND	5	-
Tetrabromodiphenyl ether		ND	5	-
Pentabromodiphenyl ether		ND	5	-
Hexabromodiphenyl ether		ND	5	-
Heptabromodiphenyl ether		ND	5	-
Octabromodiphenyl ether		ND	5	-
Nonabromodiphenyl ether] [ND	5	-
Decabromodiphenyl ether		ND	5	-
Sum of PBDEs (Mono to Deca)		ND	-	-

No. SH7042948/CHEM

Date: Apr. 27, 2007

Page 3 of 5

(2)~(4) PCBs (Polychlorinated Biphenyls) content ,Polychlorinated Naphthalene content and Short Chain Chlorinated Paraffin content (Unit: mg/kg)

<u>Test Item(s):</u>	Method (refer to)	1*	MDL
PCBs (Polychlorinated Biphenyls) content	*	-	-
2.4.4'-Trichlorobiphenyl (PCB 28) CAS 7012-37-5		ND	0.5
2.2'.5.5'-Tetrachloro-biphenyl (PCB 52) CAS 35693-99-3		ND	0.5
2.2'.4.5.5'-Pentachloro-biphenyl (PCB 101) CAS 37680-73-2	(0)	ND	0.5
2.3'.4.4'.5-Pentachlorobiphenyl (PCB 118) CAS 31508-00-6	(2)	ND	0.5
2.2'3.4.4'.5'-Hexachloro-biphenyl (PCB 138) CAS 35065-28-2		ND	0.5
2.2'.4.4'.5.5'-Hexachloro-biphenyl (PCB 153) CAS 35065-27-1		ND	0.5
2.2'.3.4.4'.5.5'-Heptachlorobiphenyl (PCB 180) CAS 35065-29-3		ND	0.5
Polychlorinated Naphthalene content		-	-
2-Chlorinated Naphthalene		ND	5
1,4-Dichlorinated Naphthalene	-	ND	5
1,5-Dichlorinated Naphthalene	(0)	ND	5
1,2-Dichlorinated Naphthalene	(3)	ND	5
1,8-Dichlorinated Naphthalene		ND	5
1,2,3,4-Tetrachlorinated Naphthalene		ND	5
Octa-chlorinaed Naphthalene		ND	5
Short Chain Chlorinated Paraffin	(4)	ND	30

Test Part Description:

1. Black body part (mix all)

Note:

- (1) mg/kg = ppm
- (2) ND = Not Detected
- (3) MDL = Method Detection Limit
- (4) Sum of Mono to NonaBDE & according to 2005/717/EC DecaBDE is exempt.
- (5) "-" = Not Regulated
- (6) The maximum permissible limit is quoted from the document 2005/618/EC amending RoHS directive 2002/95/EC
- (7) * The sample(s) was analyzed on behalf of the applicant as mixing whole/part sample in one testing. The result(s) in report means average of whole sample. The result(s) will be different obviously if the sample(s) was tested as requirement of RoHS, and result(s) may be higher than that of report. The applicant will take the responsibility of all discrepancy and risk.

No. SH7042948/CHEM

Date: Apr. 27, 2007

Page 4 of 5

ATTACHMENTS

Cd and Pb Measurement Flowchart

The samples were dissolved totally by pre-conditioning method according to above flow chart.

Tested by

: Chaven Lian

Checked by

: Terry Wang

No. SH7042948/CHEM

Date: Apr. 27, 2007

Page 5 of 5

Sample photo:

SGS authenticate the photo on original report only

*** End of Report ***