COMP7180: Quantitative Methods for Data Analytics and Artificial Intelligence

Lecture 6: Convex Optimization: Theory II

Jun Qi

Research Assistant Professor in Computer Science @ Hong Kong Baptist University
Affiliated Associate Professor in Electronic Engineering @ Fudan University

22/10/2024

CVX Course Scope

- Convex sets and convex functions
- Convex function properties: 1st and 2nd characterizations
- Conjugate functions
- Duality and optimality (Lagrangian method)

Convex sets

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x, y \in C \implies tx + (1-t)y \in C \text{ for all } 0 \le t \le 1$$

In words, line segment joining any two elements lies entirely in set

Convex combination of $x_1, \ldots, x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \cdots + \theta_k x_k$$

with $\theta_i \geq 0$, i = 1, ..., k, and $\sum_{i=1}^k \theta_i = 1$. Convex hull of a set C, conv(C), is all convex combinations of elements. Always convex

Key properties of convex sets

 Separating hyperplane theorem: two disjoint convex sets have a separating between hyperplane them

Formally: if C, D are nonempty convex sets with $C \cap D = \emptyset$, then there exists a, b such that

$$C \subseteq \{x : a^T x \le b\}$$

$$D \subseteq \{x : a^T x \ge b\}$$

 Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it

Formally: if C is a nonempty convex set, and $x_0 \in \mathrm{bd}(C)$, then there exists a such that

$$C \subseteq \{x : a^T x \le a^T x_0\}$$

Operations preserving convexity

- Intersection: the intersection of convex sets is convex
- Scaling and translation: if C is convex, then

$$aC + b = \{ax + b : x \in C\}$$

is convex for any a, b

• Affine images and preimages: if f(x) = Ax + b and C is convex then

$$f(C) = \{f(x) : x \in C\}$$

is convex, and if D is convex then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

is convex

- Let's analyze the convexity for each of the sets:
 - (a) A slab. A slab is defined as a set of the form:

$$\mathcal{A} = \{ x \in R^n \mid \alpha \le a^T x \le \beta \}.$$

Solution:

To show that this set is convex, consider any two points $x_1, x_2 \in \mathcal{A}$. For any $\lambda \in [0, 1]$, we need to show that the linear combination $\lambda x_1 + (1 - \lambda)x_2$ is also in \mathcal{A} .

$$\alpha \le a^T x_1 \le \beta,
\alpha \le a^T x_2 \le \beta.$$

Consider the point $\lambda x_1 + (1 - \lambda)x_2$:

$$a^T(\lambda x_1 + (1 - \lambda)x_2) = \lambda a^T x_1 + (1 - \lambda)a^T x_2$$

 $\geq \lambda \alpha + (1 - \lambda)\alpha$
 $= \alpha$
 $\leq \beta$.

Therefore, $\alpha \leq a^T(\lambda x_1 + (1-\lambda)x_2) \leq \beta$, and $\mathcal A$ is convex.

- Let's analyze the convexity for each of the sets:
 - (b) A rectangle: A rectangle (or hyperrectangle) is defined as:

$$\mathcal{B} = \{ x \in \mathbb{R}^n \mid \alpha_i \le x_i \le \beta_i, i = 1, ..., n \}.$$

Solution:

Again, consider any two points $x_1, x_2 \in \mathcal{B}$ and any $\lambda \in [0, 1]$. We need to show that $\lambda x_1 + (1 - \lambda)x_2 \in \mathcal{B}$. For each coordinate i:

$$\alpha_i \leq x_{1i} \leq \beta_i,
\alpha_i \leq x_{2i} \leq \beta_i.$$

Consider the *i*-th coordinate of $\lambda x_1 + (1-\lambda)x_2$:

$$\alpha_i \leq \lambda x_{1i} + (1-\lambda)x_{2i} \leq \beta_i,$$

since x_{1i} and x_{2i} are individually bounded by α_i and β_i . Therefore, \mathcal{B} is convex.

- Let's analyze the convexity for each of the sets:
 - (c) The set of points closer to a given point than a given set, i.e.,

Solution: $\mathcal{D} = \{ x \mid |x - x_0|_2 \le |x - y|_2 \text{ for all } y \in S \}.$

Consider two points $x_1, x_2 \in \mathcal{D}$ and any $\lambda \in [0, 1]$. We need to show that $\lambda x_1 + (1 - \lambda)x_2 \in \mathcal{D}$. Let's examine the distance relations for any point $y \in S$:

$$||x_1 - x_0||_2 \le ||x_1 - y||_2,$$

 $||x_2 - x_0||_2 \le ||x_2 - y||_2.$

Using the triangle inequality:

$$egin{aligned} \|\lambda x_1 + (1-\lambda)x_2 - x_0\|_2 & \leq \lambda \|x_1 - x_0\|_2 + (1-\lambda)\|x_2 - x_0\|_2 \ & \leq \lambda \|x_1 - y\|_2 + (1-\lambda)\|x_2 - y\|_2 \ & \leq \|\lambda x_1 + (1-\lambda)x_2 - y\|_2. \end{aligned}$$

Therefore, $\lambda x_1 + (1 - \lambda)x_2 \in \mathcal{D}$, and \mathcal{D} is convex.

Convex functions

Convex function: $f: \mathbb{R}^n \to \mathbb{R}$ such that $dom(f) \subseteq \mathbb{R}^n$ convex, and

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for $0 \le t \le 1$

and all $x, y \in dom(f)$

In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

f concave $\iff -f$ convex

Examples:

28/10/2024

Important modifiers:

- Strictly convex: f(tx + (1-t)y) < tf(x) + (1-t)f(y) for $x \neq y$ and 0 < t < 1. In words, f is convex and has greater curvature than a linear function
- Strongly convex with parameter m > 0: $f \frac{m}{2}||x||_2^2$ is convex. In words, f is at least as convex as a quadratic function

Note: strongly convex \Rightarrow strictly convex \Rightarrow convex

(Analogously for concave functions)

Examples of convex functions

- Univariate functions:
 - Exponential function: e^{ax} is convex for any a over $\mathbb R$
 - ▶ Power function: x^a is convex for $a \ge 1$ or $a \le 0$ over \mathbb{R}_+ (nonnegative reals)
 - ▶ Power function: x^a is concave for $0 \le a \le 1$ over \mathbb{R}_+
 - ▶ Logarithmic function: $\log x$ is concave over \mathbb{R}_{++}
- Affine function: $a^Tx + b$ is both convex and concave
- Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \succeq 0$ (positive semidefinite)
- Least squares loss: $||y Ax||_2^2$ is always convex (since A^TA is always positive semidefinite)

Suppose $f: R \to R$ is convex, and $a, b \in dom f$ with a < x < b.

Show that: $f(x) \le \frac{b-x}{b-a} f(a) + \frac{x-a}{b-a} f(b)$

Solution:

Since f is convex, by the definition of convexity, we have:

$$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda)f(b)$$

where $\lambda=rac{b-x}{b-a}$ and $1-\lambda=rac{x-a}{b-a}.$ Notice that $\lambda\in[0,1]$ since $x\in[a,b].$

Now, substituting $\lambda = \frac{b-x}{b-a}$, we get:

$$x = \lambda a + (1 - \lambda)b = \frac{b - x}{b - a}a + \frac{x - a}{b - a}b$$

Then, using the convexity condition:

$$f\left(rac{b-x}{b-a}a+rac{x-a}{b-a}b
ight)\leq rac{b-x}{b-a}f(a)+rac{x-a}{b-a}f(b)$$

Since x is a convex combination of a and b, we can substitute back x:

$$f(x) \leq rac{b-x}{b-a}f(a) + rac{x-a}{b-a}f(b)$$

First-order Convexity Condition

When $f(\mathbf{x})$ is differentiable, can we check whether $f(\mathbf{x})$ is convex by the gradient? Following theorem gives the answer:

Assume that $f(\mathbf{x})$ is differential, then $f(\mathbf{x})$ is convex if and only if the domain C is convex and $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}}(\mathbf{y} - \mathbf{x})$.

First-order Convexity Condition

Theorem 1. Assume that $f(\mathbf{x})$ is differentiable, then $f(\mathbf{x})$ is convex if and only if

the domain C is convex and $f(y) \ge f(x) + \nabla f(x)^T (y-x)$. The proof can be found in Proposition 4 in

https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf

We use the linear function to check the result.

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$$
, then $\nabla f(\mathbf{x})^T = \mathbf{A}$.

$$f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}}(\mathbf{y}-\mathbf{x}) = A\mathbf{x}+\mathbf{b}+A(\mathbf{y}-\mathbf{x})=A\mathbf{y}+\mathbf{b}$$

So
$$f(\mathbf{y})=f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathrm{T}}(\mathbf{y}-\mathbf{x})$$

When $f(\mathbf{x})$ is twice differentiable, how can we check whether $f(\mathbf{x})$ is convex? Answer: We use Hessian Matrix.

Let $\mathbf{x} = (x_1, x_2, ..., x_d)^T$, then the Hessian Matrix of $f(\mathbf{x})$ is a dxd matrix, for the ij-th element in the matrix is

the second-order partial derivatives of f: $\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}$

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \dots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_d \partial x_1} & \dots & \frac{\partial^2 f(\mathbf{x})}{\partial x_d \partial x_d} \end{bmatrix}$$

• If the second-order partial derivatives are continuous functions, then the Hessian Matrix is symmetric, i.e., $\mathbf{H}(\mathbf{x}) = \mathbf{H}(\mathbf{x})^{\mathrm{T}}$

Example:
$$f(x_1, x_2) = x_1^2 + x_2^2$$

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} = 2, \qquad \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_2} = 2, \qquad \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} = 0, \qquad \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_1} = 0$$

So

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Please Compute:

• the Hessian Matrix of $f(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$

• the Hessian Matrix of $f(x_1, x_2) = 2x_1^3 + 6x_1x_2 + x_2^2 + x_2^3$

Solution:

• the Hessian Matrix of $f(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_1 \partial \mathbf{x}_1} = 2, \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_2 \partial \mathbf{x}_2} = 2, \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_1 \partial \mathbf{x}_2} = 2, \frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_2 \partial \mathbf{x}_1} = 2$$

So

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

Solution:

the Hessian Matrix of $f(x_1, x_2) = 2x_1^3 + 6x_1x_2 + x_2^2 + x_2^3$

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} = 12x_1, \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_2} = 2 + 6x_2, \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} = 6, \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_1} = 6$$

So

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} 12\mathbf{x}_1 & 6 \\ 6 & 2 + 6\mathbf{x}_2 \end{bmatrix}$$

Theorem 2. Assume that f(x) is twice differentiable, then f(x) is convex if and only if

the domain C is convex and the Hessian Matrix $\mathbf{H}(\mathbf{x})$ is positive semi-definite. The proof can be found in Proposition 7 in https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf

What is positive semi-definite matrix M?

Positive semi-definite matrix \mathbf{M} is a nxn sysmetric matrix $\mathbf{M} = \mathbf{M}^T$ and for any real n-dimensional vector \mathbf{z} , $\mathbf{z}^T \mathbf{M} \mathbf{z} \ge \mathbf{0}$.

Examples of positive semi-definite matrix:

• $\mathbf{M} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ is a positive semi-definite matrix, if $a \ge 0$ and $b \ge 0$

Because for any (x,y), $(x,y)\mathbf{M}(x,y)^T = ax^2 + by^2 \ge 0$

• Please check that
$$\mathbf{M} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 is a positive semi-definite matrix

• Please check that
$$\mathbf{M} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 is a positive semi-definite matrix

For any (x,y,z), we can check that

$$(x,y,z) \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} (x,y,z)^{T} = 2x^{2}-2xy+2y^{2}-2yz+2z^{2}$$

$$= x^{2} + (x-y)^{2} + (z-y)^{2} + z^{2} \ge 0$$

Examples

• Please verify the following univariate functions are convex.

Exponential function: $f(x) = e^{ax}$

Solution:

First derivative:

$$f(x) = e^{ax}$$
$$f'(x) = ae^{ax}$$

Second derivative:

$$f''(x) = a^2 e^{ax}$$

Since $e^{ax}>0$ for all $x\in\mathbb{R}$, the sign of $f''(x)=a^2e^{ax}$ depends on a^2 .

For any real a, $a^2 \ge 0$. Therefore, $f''(x) = a^2 e^{ax} \ge 0$.

This means e^{ax} is convex for any a over \mathbb{R} .

Examples

• Please verify the following univariate functions are convex.

Power function: $f(x) = x^a$ is convex for $a \ge 1$ or $a \le 0$ over R_+ .

Solution:

First derivative:

$$f(x) = x^a \ f'(x) = ax^{a-1}$$

Second derivative:

$$f''(x)=a(a-1)x^{a-2}$$

We analyze the sign of f''(x):

For x > 0:

If a > 1:

 $a\geq 1$ and $x^{a-2}>0$, hence $f''(x)=a(a-1)x^{a-2}\geq 0$.

If $a \leq 0$:

 $a-1 \le -1$, hence $x^{a-2} \ge 0$. Therefore, $f''(x) = a(a-1)x^{a-2} \ge 0$.

This means x^a is convex for $a \geq 1$ or $a \leq 0$ over \mathbb{R}_+ .

Examples

• Please verify the following univariate functions are convex.

Logarithmic function: $f(x) = \log x$

Solution:

First derivative:

$$f(x) = \log x$$
$$f'(x) = \frac{1}{x}$$

Second derivative:

$$f''(x) = -\frac{1}{x^2}$$

For x > 0:

$$f''(x)=-rac{1}{x^2}\leq 0$$

This means $\log x$ is concave over \mathbb{R}_{++} (the set of positive real numbers).

Optimization terminology

Reminder: a convex optimization problem (or program) is

$$\min_{x \in D} f(x)$$
subject to $g_i(x) \le 0, i = 1, ..., m$

$$Ax = b$$

where f and g_i , $i=1,\ldots,m$ are all convex, and the optimization domain is $D=\mathrm{dom}(f)\cap\bigcap_{i=1}^m\mathrm{dom}(g_i)$ (often we do not write D)

- f is called criterion or objective function
- g_i is called inequality constraint function
- If $x \in D$, $g_i(x) \le 0$, i = 1, ..., m, and Ax = b then x is called a feasible point
- The minimum of f(x) over all feasible points x is called the optimal value, written f^*

- If x is feasible and $f(x) = f^*$, then x is called optimal; also called a solution, or a minimizer¹
- If x is feasible and $f(x) \leq f^* + \epsilon$, then x is called ϵ -suboptimal
- If x is feasible and $g_i(x) = 0$, then we say g_i is active at x
- Convex minimization can be reposed as concave maximization

$$\min_{x}$$
 $f(x)$ \max_{x} $-f(x)$ subject to $g_{i}(x) \leq 0,$ \iff $i = 1, \dots, m$ $i = 1, \dots, m$ $Ax = b$

Both are called convex optimization problems

Local minima are global minima

For a convex problem, a feasible point x is called locally optimal is there is some R>0 such that

$$f(x) \le f(y)$$
 for all feasible y such that $||x - y||_2 \le R$

Reminder: for convex optimization problems, local optima are global optima

Proof simply follows from definitions

Example: lasso

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, consider the lasso problem:

$$\min_{\beta} \qquad ||y - X\beta||_2^2$$

subject to
$$||\beta||_1 \le s$$

Is this convex? What is the criterion function? The inequality and equality constraints? Feasible set? Is the solution unique, when:

- $n \ge p$ and X has full column rank?
- p > n ("high-dimensional" case)?

How do our answers change if we changed criterion to Huber loss:

$$\sum_{i=1}^{n} \rho(y_i - x_i^T \beta), \quad \rho(z) = \begin{cases} \frac{1}{2}z^2 & |z| \le \delta \\ \delta|z| - \frac{1}{2}\delta^2 & \text{else} \end{cases} ?$$

Example: support vector machines

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$ with rows $x_1, \dots x_n$, consider the support vector machine or SVM problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$
subject to $\xi_i \ge 0, \ i = 1, \dots, n$

$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots, n$$

Is this convex? What is the criterion, constraints, feasible set? Is the solution (β, β_0, ξ) unique? What if changed the criterion to

$$\frac{1}{2}\|\beta\|_2^2 + \frac{1}{2}\beta_0^2 + C\sum_{i=1}^n \xi_i^{1.01}?$$

For original criterion, what about β component, at the solution?

Continuing CVX Next Week

- Convex sets and convex functions
- Convex function properties: 1st and 2nd characterizations
- Conjugate functions
- Duality and optimality (Lagrangian method)