Language Understanding

06 - Training Strategies

Hossein Zeinali

Training Strategies

- There are various types of training in Deep Learning
 - Standard Training (training from scratch)
 - o Pre-Training and Fine-Tuning
 - Self-supervise learning
 - Few-Shot Learning
 - o One-Shot Learning
 - Zero-Shot Learning

• There are no clear advantages for each strategy, and the best one should be selected based on the task.

Standard Training

- Train a model from scratch
 - We have to do training time to time
- It needs considerable labeled training data for each task
 - o Data collection process is time-consuming and expensive
- Most of the conventional NLP systems were trained using this strategy
- Usually, the training process is slow and needs lots of computation cost, especially for DNN based methods.

Pre-Training and Fine-Tuning

- raining data is
- As mentioned before, collecting an abundant labeled training data is expensive
- Idea: pre-train a model somehow using unlabeled data and fine-tune the model to the specific task using small training data
- Fine-Tuning (FT) has been the most common approach in recent years
 - The weights of a pre-trained model are updated by training on a supervised dataset.
 - o Typically, thousands to hundreds of thousands of labeled examples are used.
- The main advantage of fine-tuning is strong performance on many benchmarks.
- The main disadvantages are the need for a new large dataset for every task, the potential for poor generalization out-of-distribution.

Pre-Training and Fine-Tuning

Self Supervision

- Supervised training:
 - o Need a labeled training data
- Unsupervised training
 - o Does not any labeled training data
 - o Is useful in the generative scenario
- Self supervision: train a supervised model using unlabeled data
 - o NLP: language modeling using next-word prediction of text data
 - o Speech: acoustic modeling using next-frame prediction of speech data
 - Image: find the relation between patches or recovered the distorted images

Self Supervision

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Self Supervision

Few-Shot Learning

- The model is given a few demonstrations of the task at inference time as conditioning, but no weight updates are allowed.
- Few-shot works by giving K examples of context and completion, and then one final example of context, with the model expected to provide the completion. K is typically set in the range of 10 to 100 based on the model's context window.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```


One-Shot Learning

- Is the same as few-shot except that only one demonstration is allowed, in addition to a natural language description of the task.
- This condition most closely matches the way in which some tasks are communicated to humans.

```
Translate English to French: 

≥ sea otter => loutre de mer 

≥ cheese => 

→ prompt
```


Zero-Shot Learning

- Is the same as one-shot except that no demonstrations are allowed, and the model is only given a natural language instruction describing the task.
- This method provides maximum convenience, potential for robustness, and avoidance of spurious correlations, but is also the most challenging setting.

Thanks for your attention

References and IP Notice

 Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).

