Байесовский подход

Содержание

1	Kpı	итерия отношения правдоподобия. Лемма Неймана-Пирсона	5
	1.1	Общая форма критерия отношения правдоподобия	5
	1.2	Теорема Неймана-Пирсона	5
	1.3	Пример: нормальное распределение	5
2	Бай	есовский подход к проверке простых гипотез	6
	2.1	Теоретические основы	6
	2.2	Определение e-value	6
	2.3	Вероятностная интерпретация	6
		2.3.1 1. Условная вероятность	6
		2.3.2 2. Минимальная апостериорная вероятность	6
	2.4	Сравнение с p-value	7
	2.5	Пример 1: Нормальное распределение	7
	2.6	Пример 2: Модель Бернулли	7
	2.7	Пример 3: Проверка формы распределения	8
	2.8	Интерпретация результатов	S
3	Свя	зь между частотным и байесовским подходами через критерий отноше-	
		правдоподобия	9
	3.1	Общая форма критерия отношения правдоподобия	g
	3.2	Связь с байесовским фактором	g
	3.3	Пример: нормальное распределение	10
	3.4	Различия в интерпретации	10
	3.5	Теорема Неймана-Пирсона	10
	3.6	Асимптотическая связь	10
	3.7	Пример: биномиальное распределение	10
	3.8	Выводы	11
4	Раз	ница в интерпретации через байесовский фактор и апостериорные ве-	
-		тности	11
	-	Формальное определение	11
		Ключевые различия	11
	4.3	Пример с нормальным распределением	11
	4.4	Чувствительность к априорным вероятностям	12
	4.5	Шкалы интерпретации	12
	T.U	4.5.1 Для байесовского фактора	12
		4.5.2 Для апостериорных вероятностей	13
	4.6	Практические рекомендации	13
	1.0	iipaniii ioonii penomengagiii	10

	4.7	Выводы	13
5	Про	верка гипотез со сложной альтернативой в байесовском подходе	13
	5.1	Определение сложной гипотезы	13
	5.2	Изменение расчёта байесовского фактора	14
	5.3	Пример 1: Нормальное распределение	14
	5.4	Пример 2: Модель Бернулли	14
	5.5	Влияние выбора априора	14
	5.6	Вычислительные методы	15
	5.7	Интерпретация результатов	15
	5.8	Сравнение с простыми гипотезами	16
	5.9	Практические рекомендации	16
	5.9	практические рекомендации	10
6		очники априорных распределений для параметров	16
	6.1	Классификация априорных распределений	16
	6.2	Экспертные знания	16
	6.3	Сопряжённые априоры	16
	6.4	Reference Prior (Референсное априорное распределение)	17
		6.4.1 Определение и построение	17
		6.4.2 Ключевые свойства	17
		6.4.3 Примеры	17
		6.4.4 Сравнение с другими априорами	17
		6.4.5 Преимущества и критика	17
	6.5	Эмпирические байесовские методы	18
	6.6	Иерархические априоры	18
	6.7	Проблемы выбора априоров	18
	6.8	Практические рекомендации	18
	_		
7	-	оверка гипотез с ограничениями на альтернативу	19
	7.1	Постановка задачи	
	7.2	Байесовский подход	19
		7.2.1 Модификация априорного распределения	
		7.2.2 Байесовский фактор	19
	7.3	Частотный подход	19
		7.3.1 Модифицированный критерий отношения правдоподобия	19
		7.3.2 Доверительные интервалы	19
	7.4	Пример 1: Нормальное распределение	19
	7.5	Пример 2: Биномиальное распределение	20
	7.6	Методы численного интегрирования	20
	7.7	Интерпретация результатов	20
	7.8	Практические рекомендации	20
0	T#	row popower DODE was open a white-	กา
8		ользование ROPE и его связь с другими методами	21
	8.1	Oпределение ROPE	21
	8.2	Алгоритм использования ROPE	21
	8.3	Пример применения	21
	8.4	Связь с байесовскими факторами	21
	8.5	Сравнение с частотными методами	22
	8.6	ВОРЕ и анализ мошности	22

	8.7	ROPE в регрессионных моделях	22
	8.8	Критика и ограничения	22
	8.9	Практические рекомендации	22
9	Про	блема расхождения BF и апостериорной вероятности и введение в е-	
	valu	\mathbf{e}	23
	9.1	Феномен расхождения	23
	9.2	Причины расхождения	23
		9.2.1 Экстремально малые априорные вероятности	23
		9.2.2 Парадокс Линдли	23
	9.3	Методы решения проблемы	23
		9.3.1 Коррекция априоров	23
		9.3.2 Использование e-value	24
	9.4	Сравнение мер	24
	9.5	Практические рекомендации	$\overline{24}$
	9.6	Пример расчёта	24
	9.7	Выводы	$\frac{21}{25}$
	5.1	рыводы	20
10	_	оятностная интерпретация e-value	2 5
	10.1	Oпределение e-value	25
	10.2	Вероятностная интерпретация	25
		10.2.1 1. Условная вероятность	25
		10.2.2 2. Минимальная апостериорная вероятность	25
	10.3	Сравнение с p-value	26
		Пример интерпретации	26
		Преимущества e-value	26
		Ограничения	26
		A /D	00
ΤŢ		именение байесовского подхода к ${f A}/{f B}$ тестам и оценка денежных потерь	
		Базовый алгоритм байесовского A/B тестирования	27
		Пример расчета на R	27
		Перевод результатов в денежные потери	
		Интерпретация результатов	28
	11.5	Преимущества байесовского подхода	28
12	.Jeffi	reys Prior (Общий случай и примеры)	28
		Определение	28
		Свойства	29
		Примеры	$\frac{23}{29}$
	14.0	12.3.1 Бернулли-распределение $(X \sim \mathrm{Bern}(p))$	$\frac{29}{29}$
			$\frac{29}{30}$
		12.3.2 Нормальное распределение $(X \sim \mathcal{N}(\mu, \sigma^2))$	
	10.4	12.3.3 Экспоненциальное распределение $(X \sim \text{Exp}(\lambda))$	30
		Критика	30
	12.5	Связь с частотными методами	30
		12.5.1 Эффективность оценок	30
		12.5.2 Асимптотика байесовских доверительных интервалов	31
		12.5.3 Инвариантность и параметризация	31
		12.5.4 Сравнение с другими неинформативными априорами	31

13	Сопряженность нормального распределения для среднего нормальной вы- борки с известной дисперсией
	13.1 Постановка задачи
	13.2 Доказательство
14	Сопряжённость бета-распределения для распределения Бернулли
	14.1 Постановка задачи
	14.2 Доказательство
15	Сравнение байесовского и частотного подходов к построению доверитель-
	ных интервалов
	15.1 Философские основания
	15.2 Формальные определения
	15.2.1 Частотный доверительный интервал
	15.2.2 Байесовский кредитный интервал
	15.3 Вычислительные методы
	15.4 Пример: интервал для доли
	15.4.1 Частотный подход (Вальд)
	15.4.2 Байесовский подход (Beta-априор)
	15.5 Ключевые различия
	15.6 Рекомендации по выбору априоров
	15.7 Пример в R
	15.8 Преимущества и недостатки
	15.9 Выводы
	16.1 Постановка задачи
	10.0 Вывод
17	Априорные распределения для математического ожидания
	17.1 Случай известной дисперсии
	17.2 Выбор априоров
	17.3 Апостериорное распределение
18	Сравнение подходов
	18.1 Частотный доверительный интервал
	18.2 Байесовский кредитный интервал
	18.3 Код на R для сравнения
19	Выводы
20	Критический анализ проблемы априорных распределений в байесовском подходе 20.1 Объективная проблема: Смещение, вносимое априором

20.4	Объективные минусы байесовского подхода	42
20.5	Заключение: Не преимущество, а компромисс	42

1 Критерия отношения правдоподобия. Лемма Неймана-Пирсона

1.1 Общая форма критерия отношения правдоподобия

Для простых гипотез $H_0: \theta = \theta_0$ и $H_1: \theta = \theta_1$ статистика отношения правдоподобия имеет вид:

$$\Lambda(X) = \frac{L(\theta_1|X)}{L(\theta_0|X)} = \frac{P(X|\theta_1)}{P(X|\theta_0)} \tag{1}$$

где $L(\theta|X)$ — функция правдоподобия.

1.2 Теорема Неймана-Пирсона

Для простых гипотез критерий отношения правдоподобия являетсяся асимптотически *наи- более мощным* (UMP) в частотном подходе. Для сложных гипотез (с подстановкой достаточных статистик) - равномерно наиболее мощным.

1.3 Пример: нормальное распределение

Для $X \sim N(\mu, \sigma^2)$ при известной σ^2 :

$$\Lambda = \exp\left(\frac{n(\mu_1 - \mu_0)}{\sigma^2} \left(\bar{X} - \frac{\mu_0 + \mu_1}{2}\right)\right) \tag{2}$$

Пусть $\mu_1 > \mu_0$. Пороговое значение t_{α} — такое, что $P(\Lambda) > t_{\alpha}|H_0) = \alpha$.

В данном случае получаем, что критерий со статистикой Λ эквивалентен обычному критерию со статистикой $t=\bar{x}$ или, эквивалентно, $t=\frac{\sqrt{n}(\bar{x}-\mu_0)}{\sigma}$ с распределением N(0,1).

Реализация в R:

```
1 # Параметры
2 n <- 100; mu0 <- 0; mu1 <- 0.5; sigma <- 1

3
4 # Генерация данных
5 set.seed(42)
6 x <- rnorm(n, mean=mu1, sd=sigma)

7
8 # Вычисление отношения правдоподобия
9 x_bar <- mean(x)
10 LR <- exp(n*(mu1-mu0)/sigma^2 * (x_bar - (mu0+mu1)/2))

11
12 cat("Отношение правдоподобия =", round(LR, 3), "\n")
13 cat("Байесовский фактор =", round(LR, 3), "\n") # Совпадает для простых гипотез
```

2 Байесовский подход к проверке простых гипотез

2.1 Теоретические основы

Байесовский подход к проверке простых гипотез основан на теореме Байеса:

$$P(H_i|\text{данныe}) = \frac{P(\text{данныe}|H_i)P(H_i)}{P(\text{данныe})}$$
(3)

где:

- $P(H_i)$ априорная вероятность гипотезы H_i
- P(данные $|H_i)$ правдоподобие данных при гипотезе H_i
- $P(\text{данныe}) = \sum_{j} P(\text{данныe}|H_{j})P(H_{j})$ нормирующая константа

Для двух гипотез H_0 и H_1 вводится **Байесовский фактор**:

$$BF_{10} = \frac{P(\text{данныe}|H_1)}{P(\text{данныe}|H_0)} \tag{4}$$

2.2 Определение e-value

E-value (evidence value) определяется как:

$$e := \frac{P(X|H_1)}{P(X|H_0) + P(X|H_1)} = \frac{BF_{10}}{1 + BF_{10}}$$
(5)

где BF_{10} – байесовский фактор в пользу H_1 .

2.3 Вероятностная интерпретация

E-value допускает две вероятностные интерпретации:

2.3.1 1. Условная вероятность

При равных априорных вероятностях $(P(H_0) = P(H_1) = 0.5)$:

$$e = P(H_1|X) \tag{6}$$

Таким образом, в этом частном случае e-value *совпадает* с апостериорной вероятностью.

2.3.2 2. Минимальная апостериорная вероятность

В общем случае e-value представляет *нижснюю границу* для апостериорной вероятности:

$$e \le P(H_1|X)$$
 для любых $P(H_1) \in (0,1)$ (7)

Это означает, что e-value всегда даёт консервативную оценку поддержки H_1 .

Свойство	e-value	p-value
Основа	Байесовская	Частотная
Интерпретация	$P(H_1 X)$ (при равных априорах)	$P(X$ или более крайние $ H_0\rangle$
Диапазон	[0,1]	[0,1]
Зависимость от альтернативы	Да	Нет

2.4 Сравнение с p-value

2.5 Пример 1: Нормальное распределение

Рассмотрим проверку гипотез о среднем значении нормального распределения с известной дисперсией:

$$H_0: \mu = \mu_0 \quad \text{vs} \quad H_1: \mu = \mu_1$$
 (8)

Правдоподобия для выборки $X = (x_1, ..., x_n)$:

$$P(X|H_i) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_j - \mu_i)^2}{2\sigma^2}\right)$$
(9)

Байесовский фактор:

$$BF_{10} = \exp\left(-\frac{n}{2\sigma^2}\left[(\bar{x} - \mu_0)^2 - (\bar{x} - \mu_1)^2\right]\right)$$
(10)

Пример кода на R:

```
1 # Параметры нормального распределения
           # Размер выборки
2 n <- 100
                # Среднее при НО
3 mu0 <- 0
             # Среднее при Н1
# Стандартное отклонение (известно)
4 mu1 <- 0.5
5 sigma <- 1
7 # Генерация данных (в реальном анализе используем фактические данные)
8 set.seed(42)
9 x <- rnorm(n, mean=mu1, sd=sigma)
11 # Вычисление выборочного среднего
12 x_bar <- mean(x)</pre>
14 # Расчет байесовского фактора
15 BF10 \leftarrow exp(-n/(2*sigma^2) * ((x_bar-mu0)^2 - (x_bar-mu1)^2)
17 # Вывод результатов
18 cat("Байесовский фактор BF10 =", round(BF10, 3), "\n")
19 cat("Поддержка H1:", ifelse(BF10 > 3, "сильная", "недостаточная"), "\n")
```

2.6 Пример 2: Модель Бернулли

Для проверки гипотез о вероятности успеха в схеме Бернулли:

$$H_0: p = p_0 \quad \text{vs} \quad H_1: p = p_1$$
 (11)

При наблюдении k успехов в n испытаниях:

$$BF_{10} = \frac{p_1^k (1 - p_1)^{n-k}}{p_0^k (1 - p_0)^{n-k}}$$
(12)

Пример кода:

2.7 Пример 3: Проверка формы распределения

Проверка гипотез о форме распределения:

$$H_0: X \sim N(0,1) \text{ vs } H_1: X \sim \text{Laplace}(0,1)$$
 (13)

Плотности распределений:

$$f_N(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \tag{14}$$

$$f_L(x) = \frac{1}{2}e^{-|x|} \tag{15}$$

Байесовский фактор:

$$BF_{10} = \prod_{i=1}^{n} \frac{f_L(x_i)}{f_N(x_i)} = 2^{-n} (2\pi)^{n/2} \exp\left(\sum_{i=1}^{n} \frac{x_i^2}{2} - |x_i|\right)$$
(16)

Реализация в R:

```
1 # Установка пакета для генерации распределения Лапласа
2 if (!require("VGAM")) install.packages("VGAM")

4 # Генерация данных (здесь из нормального распределения)

5 n <- 100

6 x <- rnorm(n)

7

8 # Функции плотности
9 log_dnorm <- function(x) -0.5*log(2*pi) - x^2/2

10 log_dlaplace <- function(x) -log(2) - abs(x)

11

12 # Вычисление логарифма байесовского фактора
13 log_BF10 <- sum(log_dlaplace(x) - log_dnorm(x))

14 BF10 <- exp(log_BF10)
```

2.8 Интерпретация результатов

Шкала интерпретации Байесовского фактора:

Диапазон BF	Поддержка H_1	Аналог p-value
$BF_{10} < 1$	Поддержка H_0	p > 0.1
1 - 3	Слабая	0.05 - 0.1
3 - 10	Умеренная	0.01 - 0.05
10 - 30	Сильная	0.001 - 0.01
> 30	Очень сильная	< 0.001

Апостериорные вероятности при равных априорах:

$$P(H_1|\text{данныe}) = \frac{BF_{10}}{1 + BF_{10}} \tag{17}$$

3 Связь между частотным и байесовским подходами через критерий отношения правдоподобия

3.1 Общая форма критерия отношения правдоподобия

Для простых гипотез $H_0: \theta = \theta_0$ и $H_1: \theta = \theta_1$ статистика отношения правдоподобия имеет вид:

$$\Lambda(X) = \frac{L(\theta_1|X)}{L(\theta_0|X)} = \frac{P(X|\theta_1)}{P(X|\theta_0)}$$
(18)

где $L(\theta|X)$ - функция правдоподобия.

3.2 Связь с байесовским фактором

Для простых гипотез байесовский фактор *совпадает* со статистикой отношения правдоподобия:

$$BF_{10} = \frac{P(X|H_1)}{P(X|H_0)} = \Lambda(X) \tag{19}$$

Однако интерпретация различается:

- В частотном подходе Λ сравнивается с критическим значением
- В байесовском BF интерпретируется как степень поддержки H_1

3.3 Пример: нормальное распределение

Для $X \sim N(\mu, \sigma^2)$ при известной σ^2 :

$$\Lambda = \exp\left(\frac{n(\mu_1 - \mu_0)}{\sigma^2} \left(\bar{X} - \frac{\mu_0 + \mu_1}{2}\right)\right) \tag{20}$$

Реализация в R:

```
1 # Параметры
2 n <- 100; mu0 <- 0; mu1 <- 0.5; sigma <- 1

3
4 # Генерация данных
5 set.seed(42)
6 x <- rnorm(n, mean=mu1, sd=sigma)

7
8 # Вычисление отношения правдоподобия
9 x_bar <- mean(x)
10 LR <- exp(n*(mu1-mu0)/sigma^2 * (x_bar - (mu0+mu1)/2))

11
12 cat("Отношение правдоподобия =", round(LR, 3), "\n")
13 cat("Байесовский фактор =", round(LR, 3), "\n") # Совпадает для простых гипотез
```

3.4 Различия в интерпретации

Критерий	Частотный подход	Байесовский подход
Основа	p-value	BF
Порог	$p < \alpha \; (\text{обычно} \; 0.05)$	BF > 3 (умеренная поддержка)
Интерпретация	Вероятность ошибки I рода	Относительная поддержка гипотез

Таблица 1: Сравнение интерпретаций

3.5 Теорема Неймана-Пирсона

Для простых гипотез критерий отношения правдоподобия является *наиболее мощным* (UMP) в частотном подходе. В байесовском подходе BF минимизирует общую вероятность ошибки при равных априорных вероятностях.

3.6 Асимптотическая связь

При больших выборках и регулярных условиях:

$$2\log\Lambda \approx 2\log BF_{10} \sim \chi_d^2$$
 при H_0 (21)

где d - разница в размерности параметров H_1 и H_0 .

3.7 Пример: биномиальное распределение

Для $X \sim Bin(n, p)$:

$$\Lambda = \left(\frac{p_1}{p_0}\right)^X \left(\frac{1-p_1}{1-p_0}\right)^{n-X} \tag{22}$$

```
1 n <- 100; p0 <- 0.5; p1 <- 0.6
2 X <- 55 # Число успехов

3
4 LR <- (p1/p0)^X * ((1-p1)/(1-p0))^(n-X)
5 BF <- LR # Для простых гипотез

6
7 cat("LR =", round(LR, 3), " BF =", round(BF, 3), "\n")
```

3.8 Выводы

- Для простых гипотез LR и BF численно совпадают
- Различия проявляются в интерпретации и подходе к проверке
- В частотном подходе LR используется для построения критериев
- В байесовском ВГ напрямую измеряет поддержку гипотез

4 Разница в интерпретации через байесовский фактор и апостериорные вероятности

4.1 Формальное определение

Байесовский фактор (BF) и апостериорные вероятности - два взаимосвязанных, но различных способа интерпретации результатов в байесовском анализе:

$$BF_{10} = \frac{P(X|H_1)}{P(X|H_0)}$$
 (Байесовский фактор) (23)

$$P(H_1|X) = \frac{BF_{10} \cdot P(H_1)}{BF_{10} \cdot P(H_1) + P(H_0)}$$
 (Апостериорная вероятность) (24)

4.2 Ключевые различия

Характеристика	Байесовский фактор	Апостериорная вероятность
Зависимость от априоров	Нет	Да
Диапазон значений	$(0, +\infty)$	[0, 1]
Интерпретация	Относительная сила доказательств	Абсолютная вероятность гипоте
Учет баланса гипотез	Нет	Да

Таблица 2: Сравнение байесовского фактора и апостериорной вероятности

4.3 Пример с нормальным распределением

Рассмотрим проверку гипотез о среднем значении:

```
1 # Параметры
2 n <- 100
3 mu0 <- 0
4 mu1 <- 0.5
```

```
5 sigma <- 1
6 prior_H0 <- 0.5
7 prior_H1 <- 1 - prior_H0

9 # Генерация данных
10 set.seed(42)
11 x <- rnorm(n, mean=mu1, sd=sigma)

12
13 # Вычисление байесовского фактора
14 x_bar <- mean(x)
15 BF10 <- exp(n*(mu1-mu0)/sigma^2 * (x_bar - (mu0+mu1)/2))

16
17 # Вычисление апостериорной вероятности
18 post_H1 <- BF10 * prior_H1 / (BF10 * prior_H1 + prior_H0)

19
20 cat("Байесовский фактор BF10 =", round(BF10, 3), "\n")
21 cat("Апостериорная вероятность P(H1|X) =", round(post_H1, 3), "\n")
```

Результат выполнения:

Байесовский фактор BF10 = 56.598Апостериорная вероятность P(H1|X) = 0.983

4.4 Чувствительность к априорным вероятностям

Апостериорная вероятность зависит от априорных вероятностей гипотез, в отличие от BF:

Если
$$P(H_0) \to 0$$
, то $P(H_1|X) \to 1$ независимо от данных (25)

Пример с разными априорами:

4.5 Шкалы интерпретации

4.5.1 Для байесовского фактора

Значение BF	Интерпретация
$BF_{10} < 1$	Π оддержка H_0
$1 \le BF_{10} < 3$	Слабая поддержка H_1
$3 \le BF_{10} < 10$	Умеренная поддержка
$10 \le BF_{10} < 30$	Сильная поддержка
$BF_{10} \ge 30$	Очень сильная поддержка

4.5.2 Для апостериорных вероятностей

Вероятность	Интерпретация
$P(H_1 X) < 0.5$	Поддержка H_0
$0.5 \le P(H_1 X) < 0.75$	Слабая поддержка H_1
$0.75 \le P(H_1 X) < 0.95$	Умеренная поддержка
$0.95 \le P(H_1 X) < 0.99$	Сильная поддержка
$P(H_1 X) \ge 0.99$	Решающая поддержка

4.6 Практические рекомендации

- Используйте байесовский фактор, когда:
 - Нужно сравнить две конкретные модели
 - Априорные вероятности гипотез неизвестны или неопределены
 - Важна относительная сила доказательств
- Используйте апостериорные вероятности, когда:
 - Известны или могут быть обоснованы априорные вероятности
 - Нужно принять решение на основе полной вероятности
 - Требуется учесть баланс между гипотезами

4.7 Выводы

- BF измеряет *относительную* поддержку данных для гипотез, независимо от их априорных вероятностей
- Апостериорная вероятность дает абсолютную оценку вероятности гипотезы с учетом априоров
- Для полного байесовского вывода рекомендуется использовать оба показателя
- Интерпретация должна учитывать контекст задачи и обоснованность априорных предположений

5 Проверка гипотез со сложной альтернативой в байесовском подходе

5.1 Определение сложной гипотезы

Сложная гипотеза в байесовском анализе означает, что альтернативная гипотеза H_1 содержит:

- ullet Неопределённый параметр heta с некоторым априорным распределением
- Множество возможных значений параметров

Формально:

$$H_0: \theta = \theta_0 \quad \text{vs} \quad H_1: \theta \sim p(\theta|H_1)$$
 (26)

5.2 Изменение расчёта байесовского фактора

Для сложной альтернативы байесовский фактор вычисляется как:

$$BF_{10} = \frac{P(X|H_1)}{P(X|H_0)} = \frac{\int P(X|\theta)p(\theta|H_1)d\theta}{P(X|\theta_0)}$$
(27)

где:

- $P(X|\theta)$ функция правдоподобия
- $p(\theta|H_1)$ априорное распределение параметра при H_1

5.3 Пример 1: Нормальное распределение

```
Проверка H_0: \mu = 0 \text{ vs } H_1: \mu \neq 0:

library(BayesFactor)

set.seed(42)

x <- rnorm(100, mean=0.3, sd=1)

# Простая гипотеза

BF_simple <- dnorm(mean(x), mean=0.5, sd=1/sqrt(100)) /

dnorm(mean(x), mean=0, sd=1/sqrt(100))

# Сложная гипотеза (используем априор Коши)

ttestBF(x, mu=0, rscale=0.707)
```

5.4 Пример 2: Модель Бернулли

Проверка $H_0: p = 0.5$ vs $H_1: p \neq 0.5$:

$$BF_{10} = \frac{\int_0^1 p^k (1-p)^{n-k} Beta(p|a,b) dp}{0.5^k (1-0.5)^{n-k}}$$
(28)

```
1 k <- 55; n <- 100
2 # Априор Beta(1,1) - равномерное распределение
3 marg_lik_H1 <- integrate(function(p) dbinom(k,n,p)*dbeta(p,1,1), 0,1)$value
4 lik_H0 <- dbinom(k,n,0.5)
5 BF10 <- marg_lik_H1 / lik_H0
```

5.5 Влияние выбора априора

При сложной альтернативе важную роль играет выбор априорного распределения:

Тип априора	Формула	Влияние на BF
Сопряжённый	Beta(a,b)	Аналитическое решение
Референсный	Коши, нормальный	Объективность
Субъективный	Экспертные оценки	Учёт внешних знаний

5.6 Вычислительные методы

Для сложных моделей используются:

- MCMC (Markov Chain Monte Carlo)
- Интегрирование по параметрам
- Методы аппроксимации (Laplace, BIC)

Пример с МСМС:

```
1 library(rstan)
 2 model_code <- "</pre>
3 data {
     int n;
     int k;
7 parameters {
     real < lower = 0, upper = 1 > p;
9 }
10 model {
p ~ beta(1,1); // Априор
     k ~ binomial(n,p);
13 }"
14
15 # Скомпилируем модель
16 stan_model <- stan_model(model_code = model_code) #долго считается
18 # Запустим сэмплирование
19 fit <- sampling(</pre>
  object = stan_model,
    data = list(n = 100, k = 55),
22 chains = 4, # Количество цепей
23 iter = 200, # Общее количество итераций на цепь
24 warmup = 100, # Количество итераций для разогрева
    seed = 42
                          # Для воспроизводимости
26 )
27 print(fit)
```

5.7 Интерпретация результатов

Для сложных альтернатив:

- ВГ зависит от выбора априора
- Необходимо проводить анализ чувствительности
- Рекомендуется использовать ROPE (Region of Practical Equivalence)

Пример анализа чувствительности:

```
1 # Разные априоры для нормального распределения
2 bf_default <- ttestBF(x, mu=0, rscale=0.707)
3 bf_wide <- ttestBF(x, mu=0, rscale=1)
4 bf_narrow <- ttestBF(x, mu=0, rscale=0.5)</pre>
```

Критерий	Простая альтернатива	Сложная альтернатива
Вычисление BF	Прямое	Интегрирование
Зависимость от априора	Нет	Сильная
Вычислительная сложность	Низкая	Высокая
Интерпретация	Прямая	Требует осторожности

5.8 Сравнение с простыми гипотезами

5.9 Практические рекомендации

- Всегда указывайте используемое априорное распределение
- Проводите анализ чувствительности к выбору априора
- Для сложных моделей используйте МСМС-методы
- Сообщайте не только ВF, но и апостериорные распределения параметров

6 Источники априорных распределений для параметров

6.1 Классификация априорных распределений

В байесовском анализе априорные распределения можно классифицировать следующим образом:

Тип априора	Описание	Пример
Информативные	Основаны на экспертном знании	Beta(10,10)
Слабые	С малым числом степеней свободы	Beta(1,1)
Референсные	Объективные по умолчанию	Коши(0,1)
Сопряжённые	Сохраняют форму при обновлении	Beta для биномиального

6.2 Экспертные знания

Априоры могут основываться на предыдущих исследованиях или экспертных оценках:

$$p(\theta) = \text{Beta}(\alpha, \beta)$$
, где α, β - параметры, основанные на данных (29)

Пример для вероятности успеха в клинических испытаниях:

- Эксперт оценивает вероятность успеха как $70\pm10\%$
- Соответствующий априор: Beta(α =8.25, β =3.75)

6.3 Сопряжённые априоры

Сопряжённые априоры удобны тем, что сохраняют форму при обновлении: Формальное определение сопряжённости:

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$
 принадлежит тому же семейству, что и $p(\theta)$ (30)

Модель	Сопряжённый априор
Бернулли	Beta
Нормальная (изв. дисп.)	Нормальный
Нормальная (неизв. дисп.)	Норма-Гамма
Пуассон	Гамма

6.4 Reference Prior (Референсное априорное распределение)

Референсное априорное распределение (reference prior) — это тип неинформативного априора, разработанный Бергером и Бернардо (1992) как усовершенствование априора Джеффри для многомерных случаев. Оно получило название от английского "reference" (эталонный), поскольку служит стандартом для сравнения при отсутствии экспертных знаний.

6.4.1 Определение и построение

Для параметра θ референсный априор определяется через максимизацию ожидаемой информации Кульбака-Лейблера между апостериорным и априорным распределениями:

$$\pi(\theta) = \underset{\tau}{\operatorname{argmax}} \mathbb{E}\left[D_{\mathrm{KL}}(p(\theta|X) \| \pi(\theta))\right]$$

В одномерном случае часто совпадает с априором Джеффри:

$$\pi(\theta) \propto \sqrt{I(\theta)}$$

6.4.2 Ключевые свойства

- **Инвариантность**: Сохраняется при перепараметризации $\phi = g(\theta)$
- Согласованность: В многомерных случаях строится итеративно с учётом порядка параметров
- **Асимптотика**: Апостериорное распределение сходится к нормальному вокруг MLEоценки

6.4.3 Примеры

• Для нормального распределения $\mathcal{N}(\mu, \sigma^2)$:

$$\pi(\mu,\sigma) \propto rac{1}{\sigma}$$
 (в отличие от $1/\sigma^2$ у Джеффри)

• Для биномиальной модели Bin(n, p):

$$\pi(p) \propto p^{-1/2} (1-p)^{-1/2} \quad \text{(как у Джеффри)}$$

6.4.4 Сравнение с другими априорами

6.4.5 Преимущества и критика

- + Лучше работает в многомерных моделях, чем априор Джеффри
- + Минимизирует влияние априора на выводы
- Сложность вычисления для сложных моделей
- Требует выбора порядка параметров

Тип априора	Формула	Многомерный случай
Равномерный	$\pi(\theta) \propto 1$	Проблемы
Джеффри	$\sqrt{I(heta)}$	Парадоксы
Референсный	Через KLD-максимизацию	Оптимален

Таблица 3: Сравнение неинформативных априоров

6.5 Эмпирические байесовские методы

Используют сами данные для определения априора:

$$\hat{p}(\theta) = \arg\max_{p} \int p(x|\theta)p(\theta)d\theta \tag{31}$$

Пример с нормальным распределением:

- Оцениваем гиперпараметры по данным
- Используем их для построения априора

6.6 Иерархические априоры

Для сложных моделей с несколькими уровнями:

$$\frac{\theta \sim p(\theta|\eta)}{\eta \sim p(\eta)} \tag{32}$$

Пример:

- Отдельные параметры для каждой группы
- Общий априор для гиперпараметров

6.7 Проблемы выбора априоров

Основные сложности:

- Субъективность выбора
- Влияние на результаты (особенно при малых выборках)
- Вычислительная сложность для нестандартных априоров

6.8 Практические рекомендации

- Всегда проводите анализ чувствительности к выбору априора
- Для научных публикаций используйте референсные априоры
- В прикладных задачах учитывайте экспертные знания
- Документируйте выбор априорных распределений

7 Проверка гипотез с ограничениями на альтернативу

7.1 Постановка задачи

Рассмотрим случай, когда альтернативная гипотеза H_1 имеет ограничения вида:

$$H_0: \theta = \theta_0 \quad \text{vs} \quad H_1: |\theta - \theta_0| \ge \delta$$
 (33)

где $\delta > 0$ - минимальное значимое отклонение.

7.2 Байесовский подход

7.2.1 Модификация априорного распределения

Используем усеченное априорное распределение:

$$p(\theta|H_1) \propto p(\theta)I(|\theta - \theta_0| \ge \delta) \tag{34}$$

где $I(\cdot)$ - индикаторная функция.

7.2.2 Байесовский фактор

Вычисляется как отношение маргинальных правдоподобий:

$$BF_{10} = \frac{\int_{|\theta - \theta_0| \ge \delta} p(x|\theta)p(\theta)d\theta}{p(x|\theta_0)}$$
(35)

7.3 Частотный подход

7.3.1 Модифицированный критерий отношения правдоподобия

Статистика теста:

$$\Lambda = \frac{\sup_{|\theta - \theta_0| \ge \delta} p(x|\theta)}{p(x|\theta_0)} \tag{36}$$

7.3.2 Доверительные интервалы

Отвергаем H_0 , если доверительный интервал уровня $(1 - \alpha)$:

- Не содержит θ_0
- ullet И его границы отстоят от $heta_0$ не менее чем на δ

7.4 Пример 1: Нормальное распределение

Для $X \sim N(\theta, \sigma^2)$ с известной дисперсией:

$$BF_{10} = \frac{\int_{|\theta| \ge \delta} \exp\left(-\frac{n}{2\sigma^2}(\bar{x} - \theta)^2\right) p(\theta) d\theta}{\exp\left(-\frac{n}{2\sigma^2}\bar{x}^2\right)}$$
(37)

Реализация в R:

```
delta <- 0.5
n <- 100; sigma <- 1; x_bar <- 0.6
prior <- function(theta) dnorm(theta, 0, 1)

# Численное интегрирование
integrand <- function(theta) {
   exp(-n/(2*sigma^2)*(x_bar-theta)^2) * prior(theta) *
   (abs(theta) >= delta)
}
BF10 <- integrate(integrand, -Inf, Inf)$value /
   exp(-n/(2*sigma^2)*x_bar^2)</pre>
```

7.5 Пример 2: Биномиальное распределение

Для $X \sim Bin(n,p)$, проверка $H_0: p = p_0$ vs $H_1: |p - p_0| \ge \delta$:

$$BF_{10} = \frac{\int_{|p-p_0| \ge \delta} p^k (1-p)^{n-k} Beta(p; a, b) dp}{p_0^k (1-p_0)^{n-k}}$$
(38)

7.6 Методы численного интегрирования

Для сложных моделей применяют:

- МСМС с ограниченной областью
- Метод Лапласа для аппроксимации интегралов
- Сэмплирование по важности

7.7 Интерпретация результатов

- При $BF_{10} > 1$: данные поддерживают значимое отклонение
- Если $BF_{10} < 1$ но $\hat{\theta} \ge \theta_0 + \delta$:
 - Либо эффект есть, но данные слабые
 - Либо априор слишком консервативен

7.8 Практические рекомендации

- ullet Выбирайте δ на основе предметной области
- Проводите анализ чувствительности к выбору δ
- Для клинических исследований используйте δ , соответствующий минимальному клинически значимому эффекту
- ullet Всегда сообщайте значение δ в публикациях

8 Использование ROPE и его связь с другими методами

8.1 Определение ROPE

Region of Practical Equivalence (ROPE) — это интервал вокруг нулевого значения параметра, внутри которого эффекты считаются практически незначимыми:

$$ROPE = [\theta_0 - \epsilon, \theta_0 + \epsilon] \tag{39}$$

где ϵ — порог практической значимости.

8.2 Алгоритм использования ROPE

- 1. Определите ROPE на основе предметных знаний
- 2. Постройте апостериорное распределение параметра
- 3. Сравните 95% HDI (Highest Density Interval) с ROPE:
 - Если HDI полностью вне ROPE значимый эффект
 - Если HDI полностью внутри ROPE отсутствие эффекта
 - Если HDI пересекает ROPE неопределённость

8.3 Пример применения

Для нормального распределения с $\theta_0 = 0$, $\epsilon = 0.2$:

```
library(bayestestR)
posterior <- rnorm(1000, mean = 0.15, sd = 0.1)
rope(posterior, range = c(-0.2, 0.2))</pre>
```

Результат:

- Вероятность внутри ROPE: 12%
- Вероятность слева от ROPE: 3%
- Вероятность справа от ROPE: 85%

Вывод: значимый положительный эффект.

8.4 Связь с байесовскими факторами

Метод	Преимущества	Недостатки
ROPE	Учитывает практическую значимость	Требует выбора ϵ
Байесовский фактор	Объективное сравнение моделей	Чувствителен к априорам

Соотношение:

Если
$$P(\theta \in \text{ROPE}|X) < 0.05$$
 и $BF_{10} > 3 \Rightarrow$ сильная поддержка H_1 (40)

Критерий	ROPE	p-value
Основа	Апостериорное распределение	Статистика теста
Интерпретация	Вероятность нахождения в зоне	Вероятность ошибки
Учёт <i>є</i>	Явный	Неявный через мощность

8.5 Сравнение с частотными методами

Аналог ROPE в частотном подходе — эквивалентность тестов.

8.6 ROPE и анализ мощности

Для планирования исследования:

$$n_{\text{Heofx}} = \arg\min_{n} P(\text{HDI} \cap \text{ROPE} = \emptyset) \ge 0.8$$
 (41)

Пример расчёта в R:

Для t-теста c delta =
$$0.3$$
, sd = 1 power.t.test(delta = 0.3 , sd = 1 , power = 0.8)

8.7 ROPE в регрессионных моделях

Для коэффициентов регрессии β :

$$ROPE_{\beta} = [-0.1, 0.1]$$
 (стандартизированные коэффициенты) (42)

Пример использования:

```
model <- lm(y ~ x)
posterior <- simulate_bayes_model(model)
rope(posterior$beta_x, c(-0.1, 0.1))</pre>
```

8.8 Критика и ограничения

Проблемы метода ROPE:

- \bullet Субъективность выбора ϵ
- Зависимость от масштаба данных
- Не учитывает стоимость ошибок

8.9 Практические рекомендации

- Для стандартизированных коэффициентов используйте $\epsilon=0.1$
- Всегда проводите анализ чувствительности к выбору ROPE
- Сочетайте с визуализацией апостериорных распределений
- Для клинических исследований определяйте ROPE через MCID (Minimal Clinically Important Difference)

9 Проблема расхождения BF и апостериорной вероятности и введение в e-value

9.1 Феномен расхождения

Наблюдается ситуация, когда:

- Байесовский фактор BF_{10} большой (например, > 100)
- Апостериорная вероятность $P(H_1|X)$ остаётся малой (например, < 0.5)

Формально:

$$BF_{10} = \frac{P(X|H_1)}{P(X|H_0)} \gg 1, \quad P(H_1|X) = \frac{BF_{10}P(H_1)}{BF_{10}P(H_1) + P(H_0)} \approx 0$$
 (43)

9.2 Причины расхождения

9.2.1 Экстремально малые априорные вероятности

Когда $P(H_1)$ очень мала:

$$P(H_1|X) = \frac{BF_{10}P(H_1)}{BF_{10}P(H_1) + (1 - P(H_1))} \approx BF_{10}P(H_1)$$
(44)

Пример:

- $BF_{10} = 1000$
- $P(H_1) = 10^{-6}$
- $P(H_1|X) \approx 0.001$

9.2.2 Парадокс Линдли

Возникает при:

- Очень больших объёмах данных
- Жёстких априорных вероятностях против H_1
- Слабой альтернативной гипотезе

9.3 Методы решения проблемы

9.3.1 Коррекция априоров

$$P_{\text{hob}}(H_1) = \frac{P_{\text{cta}}(H_1)}{P_{\text{cta}}(H_1) + k(1 - P_{\text{cta}}(H_1))} \tag{45}$$

где k - коэффициент ослабления скептицизма.

9.3.2 Использование e-value

E-value - альтернативная байесовская мера:

$$e = \frac{P(X|H_1)}{P(X|H_0) + P(X|H_1)} = \frac{BF_{10}}{1 + BF_{10}}$$
(46)

Свойства e-value:

- Всегда в [0, 1]
- Менее чувствителен к экстремальным априорам
- Интерпретация аналогична p-value (но с байесовской основой)

9.4 Сравнение мер

Mepa	Формула	Диапазон	Интерпретация
BF_{10}	$\frac{P(X H_1)}{P(X H_0)}$	$(0,\infty)$	Отношение правдоподобий
$P(H_1 X)$	$\frac{BF_{10}P(H_1)}{1 + BF_{10}P(H_1)}$	[0, 1]	Полная вероятность
e-value	$\frac{BF_{10}}{1+BF_{10}}$	[0,1]	"Байесовский p-value"

9.5 Практические рекомендации

- При больших BF_{10} и малых $P(H_1|X)$:
 - 1. Проверьте априорные вероятности гипотез
 - 2. Рассмотрите e-value как дополнение к анализу
 - 3. Проведите анализ чувствительности к априорам
- Для публикаций:
 - Всегда сообщайте и BF_{10} , и $P(H_1|X)$
 - Указывайте использованные априорные вероятности
 - Для консервативных выводов используйте e-value

9.6 Пример расчёта

Для $BF_{10} = 100$ при разных априорах:

```
# Традиционный байесовский подход
P_H1 <- c(0.5, 0.1, 0.01, 1e-6)
posterior <- (100*P_H1)/(100*P_H1 + (1-P_H1))
```

E-value подход e_value <- 100/(1+100) \approx 0.9901

Результаты:

	$P(H_1)$	$P(H_1 X)$	e-value
	0.5	0.9901	0.9901
ĺ	0.1	0.9174	0.9901
ĺ	0.01	0.5025	0.9901
ĺ	10^{-6}	0.0001	0.9901

9.7 Выводы

- Большой BF_{10} не гарантирует высокую $P(H_1|X)$
- E-value предоставляет устойчивую альтернативу
- Все три меры $(BF_{10}, P(H_1|X), e$ -value) дополняют друг друга
- Критически важно анализировать чувствительность к априорам

10 Вероятностная интерпретация e-value

10.1 Определение e-value

E-value (evidence value) определяется как:

$$e := \frac{P(X|H_1)}{P(X|H_0) + P(X|H_1)} = \frac{BF_{10}}{1 + BF_{10}}$$
(47)

где BF_{10} – байесовский фактор в пользу H_1 .

10.2 Вероятностная интерпретация

E-value допускает две вероятностные интерпретации:

10.2.1 1. Условная вероятность

При равных априорных вероятностях $(P(H_0) = P(H_1) = 0.5)$:

$$e = P(H_1|X) \tag{48}$$

Таким образом, в этом частном случае e-value *coenadaem* с апостериорной вероятностью.

10.2.2 2. Минимальная апостериорная вероятность

В общем случае e-value представляет *нижнюю границу* для апостериорной вероятности:

$$e \le P(H_1|X)$$
 для любых $P(H_1) \in (0,1)$ (49)

Это означает, что e-value всегда даёт консервативную оценку поддержки $H_1.$

Свойство	e-value	p-value
Основа	Байесовская	Частотная
Интерпретация	$P(H_1 X)$ (при равных априорах)	$P(X$ или более крайние $ H_0)$
Диапазон	[0,1]	[0,1]
Зависимость от альтернативы	Да	Нет

10.3 Сравнение с p-value

10.4 Пример интерпретации

Для $BF_{10} = 19$:

$$e = \frac{19}{1+19} = 0.95 \tag{50}$$

Интерпретация:

- При $P(H_1) = 0.5$: $P(H_1|X) = 0.95$
- При $P(H_1) = 0.01$: $P(H_1|X) \approx 0.16$
- Но всегда $P(H_1|X) \ge 0.95$ невозможно (ограничение снизу 0.95)

10.5 Преимущества e-value

- Более устойчив к экстремальным априорам, чем $P(H_1|X)$
- Сохраняет байесовскую интерпретацию
- Обеспечивает нижнюю границу для апостериорной вероятности
- Легко рассчитывается из байесовского фактора

10.6 Ограничения

- Не является полноценной заменой апостериорной вероятности
- Может быть слишком консервативным
- Требует аккуратной интерпретации в контексте конкретной задачи

11 Применение байесовского подхода к A/B тестам и оценка денежных потерь

Байесовский подход предлагает принципиально иную интерпретацию результатов A/B тестов по сравнению с классической частотной статистикой. Вместо р-значений и доверительных интервалов мы работаем с апостериорными распределениями и прямыми вероятностными утверждениями.

11.1 Базовый алгоритм байесовского А/В тестирования

- 1. Выбираем априорное распределение для конверсии (обычно Beta распределение)
- 2. Собираем данные по вариантам А и В
- 3. Обновляем апостериорные распределения по формуле Байеса
- 4. Анализируем разницу между распределениями

Формально, если $X_A \sim Beta(\alpha_A, \beta_A)$ и $X_B \sim Beta(\alpha_B, \beta_B)$, то апостериорные распределения после наблюдения данных:

$$X_A|data \sim Beta(\alpha_A + conversions_A, \beta_A + failures_A)$$
 (51)

$$X_B|data \sim Beta(\alpha_B + conversions_B, \beta_B + failures_B)$$
 (52)

11.2 Пример расчета на R

```
# Установка априорных параметров (например, Beta(1,1) - равномерное распределение)
alpha_prior <- 1
beta_prior <- 1
# Данные по варианту А: 150 конверсий из 1000 показов
conversions_A <- 150
trials_A <- 1000
# Данные по варианту В: 170 конверсий из 1000 показов
conversions_B <- 170
trials_B <- 1000
# Расчет апостериорных распределений
posterior_A <- rbeta(100000, alpha_prior + conversions_A,</pre>
                    beta_prior + trials_A - conversions_A)
posterior_B <- rbeta(100000, alpha_prior + conversions_B,</pre>
                    beta_prior + trials_B - conversions_B)
# Вероятность того, что вариант В лучше А
prob_B_better <- mean(posterior_B > posterior_A)
```

11.3 Перевод результатов в денежные потери

Для оценки денежных потерь необходимо:

- 1. Определить средний доход с одной конверсии (ARPU)
- 2. Рассчитать ожидаемую потерю дохода при выборе неоптимального варианта

Формула ожидаемой потери:

$$ExpectedLoss = ARPU \times \max(0, E[X_B] - E[X_A]) \times N \tag{53}$$

где N - количество пользователей в будущем периоде.

11.4 Интерпретация результатов

- Вероятность превосходства В над А: prob_B_better
- Ожидаемая потеря при выборе A: expected_loss рублей
- Рекомендация: если ожидаемая потеря превышает стоимость переключения на вариант B, следует выбрать B

11.5 Преимущества байесовского подхода

Преимущество	Описание
Прямая интерпретация	Вероятность того, что вариант В лучше А
Учет априорной информации	Можно использовать данные предыдущих те-
	СТОВ
Оценка потерь	Прямой расчет ожидаемых финансовых по-
	следствий
Гибкость	Возможность остановить тест при достижении
	определенной уверенности

12 Jeffreys Prior (Общий случай и примеры)

12.1 Определение

Распределение Джеффри (Jeffreys prior) — это **неинформативное априорное распре- деление**, предложенное Гарольдом Джеффрисом (Harold Jeffreys) в рамках байесовского подхода. Оно строится на основе **информации Фишера** и обладает свойством **инвари- антности** относительно параметризации модели.

Для параметра θ априор Джеффри задаётся в виде:

$$\pi(\theta) \propto \sqrt{\det I(\theta)},$$

где $I(\theta)$ — матрица информации Фишера:

$$I(\theta)_{ij} = -\mathbb{E}\left[\frac{\partial^2 \log p(x|\theta)}{\partial \theta_i \partial \theta_j}\right].$$

В одномерном случае:

$$\pi(\theta) \propto \sqrt{I(\theta)}, \quad I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log p(x|\theta)}{\partial \theta^2}\right].$$

12.2 Свойства

• Инвариантность: Если $\phi = g(\theta)$ — перепараметризация, то априорное распределение для ϕ согласовано:

$$\pi(\phi) = \pi(\theta) \left| \frac{d\theta}{d\phi} \right|.$$

- Неинформативность: Минимизирует влияние априорных предположений, особенно полезно при отсутствии экспертных знаний.
- **Автоматическое определение**: Зависит только от вида правдоподобия $p(x|\theta)$.

12.3 Примеры

12.3.1 Бернулли-распределение $(X \sim Bern(p))$

Правдоподобие:

$$p(x|p) = p^{x}(1-p)^{1-x}, \quad x \in \{0, 1\}.$$

Логарифмическое правдоподобие:

$$\log p(x|p) = x \log p + (1 - x) \log(1 - p).$$

Вторая производная:

$$\frac{\partial^2 \log p(x|p)}{\partial p^2} = -\frac{x}{p^2} - \frac{1-x}{(1-p)^2}.$$

Информация Фишера:

$$I(p) = -\mathbb{E}\left[\frac{\partial^2 \log p(x|p)}{\partial p^2}\right] = \frac{1}{p(1-p)}.$$

Априор Джеффри:

$$\pi(p) \propto \sqrt{I(p)} = p^{-1/2}(1-p)^{-1/2} \implies p \sim \text{Beta}(1/2, 1/2).$$

$oxed{12.3.2}$ Нормальное распределение $(X \sim \mathcal{N}(\mu, \sigma^2))$

• Случай μ (известно σ):

$$I(\mu) = \frac{1}{\sigma^2} \implies \pi(\mu) \propto 1$$
 (равномерный априор).

• Случай σ (известно μ):

$$I(\sigma) = \frac{2}{\sigma^2} \implies \pi(\sigma) \propto \frac{1}{\sigma}.$$

• Оба параметра неизвестны:

$$\pi(\mu, \sigma) \propto \frac{1}{\sigma^2}.$$

12.3.3 Экспоненциальное распределение $(X \sim \text{Exp}(\lambda))$

$$p(x|\lambda) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

Информация Фишера:

$$I(\lambda) = \frac{1}{\lambda^2} \implies \pi(\lambda) \propto \frac{1}{\lambda}.$$

12.4 Критика

- Может быть **несобственным** (не интегрируемым), например, $\pi(\mu) \propto 1$ для нормального распределения.
- В многомерных случаях иногда приводит к парадоксальным результатам.
- Альтернативы: reference priors, maximum entropy priors.

12.5 Связь с частотными методами

Априор Джеффри тесно связан с классическими частотными (frequentist) методами статистики через понятие **информации Фишера** $I(\theta)$. Эта связь проявляется в нескольких аспектах:

12.5.1 Эффективность оценок

В частотной статистике информация Фишера определяет нижнюю границу дисперсии несмещённых оценок (неравенство Крамера—Рао):

$$\operatorname{Var}(\hat{\theta}) \ge \frac{1}{I(\theta)}.$$

Априор Джеффри $\pi(\theta) \propto \sqrt{I(\theta)}$ автоматически "взвешивает" параметр θ в соответствии с его **предполагаемой точностью** в данных. Это согласуется с байесовским принципом учёта информации: области, где данные дают больше информации о θ (больше $I(\theta)$), получают более "плотное" априорное распределение.

30

12.5.2 Асимптотика байесовских доверительных интервалов

При больших объёмах выборки $(n \to \infty)$ апостериорное распределение для θ с априором Джеффри становится близким к нормальному:

$$\theta \mid X \approx \mathcal{N}\left(\hat{\theta}_{\mathrm{ML}}, \frac{1}{I(\hat{\theta}_{\mathrm{ML}})}\right),$$

где $\hat{\theta}_{\rm ML}$ — оценка максимального правдоподобия. Таким образом, байесовские **доверительные интервалы** с априором Джеффри асимптотически совпадают с частотными **интервалами на основе MLE**:

$$\hat{\theta}_{\mathrm{ML}} \pm z_{\alpha/2} \cdot \frac{1}{\sqrt{I(\hat{\theta}_{\mathrm{ML}})}}$$

12.5.3 Инвариантность и параметризация

В частотной статистике MLE инвариантен относительно перепараметризации: если $\phi = g(\theta)$, то $\hat{\phi}_{\text{ML}} = g(\hat{\theta}_{\text{ML}})$. Априор Джеффри сохраняет это свойство:

$$\pi(\phi) = \pi(\theta) \left| \frac{d\theta}{d\phi} \right| \propto \sqrt{I(\phi)}.$$

Например, для модели Bern(p):

- При $\theta = p$: $\pi(p) \propto p^{-1/2} (1-p)^{-1/2}$.
- При $\phi = \log \frac{p}{1-p}$ (логит): $\pi(\phi) \propto 1$ (равномерный априор).

12.5.4 Сравнение с другими неинформативными априорами

- Равномерный априор $\pi(\theta) \propto 1$ не учитывает $I(\theta)$ и может приводить к неинвариантным выводам.
- Reference priors (Berger-Bernardo) обобщают априор Джеффри для многомерных случаев.

13 Сопряжённость нормального распределения для среднего нормальной выборки с известной дисперсией

13.1 Постановка задачи

Пусть имеется выборка данных:

$$X_1, X_2, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2),$$

где σ^2 известно, а μ – неизвестный параметр.

Выберем априорное распределение:

$$\mu \sim \mathcal{N}(\mu_0, \tau_0^2),$$

где μ_0 и au_0^2 – гиперпараметры.

13.2 Доказательство

Функция правдоподобия:

$$P(\mathbf{X} \mid \mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(X_i - \mu)^2}{2\sigma^2}\right) \propto \exp\left(-\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{2\sigma^2}\right)$$

Априорное распределение:

$$P(\mu) \propto \exp\left(-\frac{(\mu - \mu_0)^2}{2\tau_0^2}\right)$$

Апостериорное распределение пропорционально произведению правдоподобия и априорного:

$$P(\mu \mid \mathbf{X}) \propto P(\mathbf{X} \mid \mu) P(\mu) \propto \exp\left(-\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{2\sigma^2} - \frac{(\mu - \mu_0)^2}{2\tau_0^2}\right)$$

Выделим полный квадрат относительно μ в показателе экспоненты. Показатель экспоненты:

$$-\frac{1}{2} \left[\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} + \frac{(\mu - \mu_0)^2}{\tau_0^2} \right]$$

Раскроем квадраты:

$$\sum_{i=1}^{n} (X_i - \mu)^2 = n\mu^2 - 2n\bar{X}\mu + \sum_{i=1}^{n} X_i^2,$$

где
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

где $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Таким образом, показатель экспоненты принимает вид:

$$-\frac{1}{2}\left[\left(\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}\right)\mu^2 - 2\left(\frac{n\bar{X}}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right)\mu + \text{const}\right]$$

Это квадратичная форма относительно μ , что соответствует нормальному распределению. Обозначим:

$$\tau_n^{-2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}, \quad \mu_n = \tau_n^2 \left(\frac{n\bar{X}}{\sigma^2} + \frac{\mu_0}{\tau_0^2} \right)$$

Тогда апостериорное распределение:

$$P(\mu \mid \mathbf{X}) \propto \exp\left(-\frac{(\mu - \mu_n)^2}{2\tau_n^2}\right)$$

Следовательно:

$$\mu \mid \mathbf{X} \sim \mathcal{N}(\mu_n, \tau_n^2)$$

Что и доказывает сопряжённость нормального априорного распределения.

14 Сопряжённость бета-распределения для распределения Бернулли

14.1 Постановка задачи

Пусть имеется выборка данных:

$$X_1, X_2, \ldots, X_n \sim \text{Bernoulli}(\theta),$$

где θ — неизвестный параметр.

Выберем априорное распределение:

$$\theta \sim \text{Beta}(\alpha, \beta)$$
,

где $\alpha, \beta > 0$ – гиперпараметры.

14.2 Доказательство

Функция правдоподобия:

$$P(\mathbf{X} \mid \theta) = \prod_{i=1}^{n} \theta^{X_i} (1 - \theta)^{1 - X_i} = \theta^{\sum X_i} (1 - \theta)^{n - \sum X_i}$$

Априорное распределение:

$$P(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)} \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Апостериорное распределение пропорционально произведению правдоподобия и априорного:

$$P(\theta \mid \mathbf{X}) \propto P(\mathbf{X} \mid \theta) P(\theta) \propto \theta^{\sum X_i} (1 - \theta)^{n - \sum X_i} \cdot \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Объединяя степени, получаем:

$$P(\theta \mid \mathbf{X}) \propto \theta^{\alpha + \sum X_i - 1} (1 - \theta)^{\beta + n - \sum X_i - 1}$$

Это пропорционально плотности бета-распределения:

$$\theta \mid \mathbf{X} \sim \text{Beta}(\alpha + \sum_{i=1}^{n} X_i, \beta + n - \sum_{i=1}^{n} X_i)$$

Что и доказывает сопряжённость бета-априорного распределения для модели Бернулли.

15 Сравнение байесовского и частотного подходов к построению доверительных интервалов

15.1 Философские основания

- **Частотный подход** рассматривает параметр как фиксированную величину, а доверительный интервал как случайную область
- Байесовский подход трактует параметр как случайную величину с апостериорным распределением

15.2 Формальные определения

15.2.1 Частотный доверительный интервал

Для параметра θ строится интервал [L(X),U(X)] такой, что:

$$P(L(X) \le \theta \le U(X)|\theta) = 1 - \alpha \tag{54}$$

где вероятность вычисляется по распределению данных X.

15.2.2 Байесовский кредитный интервал

Для апостериорного распределения $p(\theta|X)$ выбирается область C:

$$P(\theta \in C|X) = \int_C p(\theta|X)d\theta = 1 - \alpha$$
 (55)

15.3 Вычислительные методы

Метод	Частотный подход	Байесовский подход
Основа	Выборочное распределение статистики	Апостериорное распределег
Нормальное приближение	$\hat{\theta} \pm z_{\alpha/2} SE$	Использование квантилей а
Бутстреп	Многократная перевыборка данных	Не требуется
MCMC	Неприменимо	Основной метод для сложн

15.4 Пример: интервал для доли

Для данных $X \sim Bin(n, p)$:

15.4.1 Частотный подход (Вальд)

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \tag{56}$$

15.4.2 Байесовский подход (Beta-априор)

C априором Beta(a,b) апостериор:

$$p|X \sim Beta(a+x, b+n-x) \tag{57}$$

Интервал строится по квантилям этого распределения.

15.5 Ключевые различия

15.6 Рекомендации по выбору априоров

При отсутствии экспертной информации:

- Для пропорций: Beta(1,1) (равномерный) или Beta(0.5,0.5) (Джеффриса)
- Для нормального среднего: $N(0, 10\sigma^2)$
- Для дисперсии: InvGamma(0.001, 0.001)

Характеристика	Сравнение подходов	
Интерпретация		
	• Байесовский: Вероятность для парамет-	
	pa	
	 Частотный: Доля покрытий в повторных выборках 	
Учет априорной информации	Выоорках	
o sor surprise to February	• Байесовский: Явный через априорное распределение	
	• Частотный: Отсутствует	
Вычислительная сложность		
	• Байесовский: Требует интегрирования/MCMC	
	• Частотный: Часто аналитические решения	
Поведение при малых выборках		
	• Байесовский: Более стабилен (с хорошим априором)	
	• Частотный: Может давать бессмыслен- ные интервалы	

Таблица 5: Сравнение байесовского и частотного подходов к доверительным интервалам

15.7 Пример в R

```
# Частотный подход (95% ДИ для доли)
prop.test(x=15, n=100)$conf.int
# Байесовский подход
bayes_prop_ci <- function(x, n, alpha = 0.05, a_prior = 1, b_prior = 1) {</pre>
  a_post <- a_prior + x</pre>
  b_post <- b_prior + n - x
  ci <- qbeta(c(alpha/2, 1 - alpha/2), a_post, b_post)</pre>
  list(
    estimate = a_post / (a_post + b_post),
    ci = ci,
    a_post = a_post,
    b_post = b_post
  )
}
# Пример использования
result <- bayes_prop_ci(x=n.p, n=n, a_prior = 1, b_prior = 1)
```

15.8 Преимущества и недостатки

• Байесовские интервалы:

- + Естественная интерпретация
- + Учет априорной информации
- Зависимость от априоров
- Вычислительная сложность

• Частотные интервалы:

- + Объективность
- + Стандартизированные методы
- Контр-интуитивная интерпретация
- Проблемы при малых выборках

15.9 Выводы

- Байесовские интервалы дают прямую вероятностную интерпретацию параметра
- При отсутствии априорной информации можно использовать слабоинформативные априоры
- Для сложных моделей байесовский подход часто более гибок
- В больших выборках оба подхода дают схожие результаты

16 Совпадение доверительного и байесовского интервалов

Существует классический и важный пример, когда доверительный интервал (ДИ) и байесовский достоверный интервал (Credible Interval) полностью совпадают по форме, но коренным образом различаются по интерпретации. Это случай оценки среднего значения нормального распределения с известной дисперсией.

16.1 Постановка задачи

Пусть имеется выборка данных:

$$X_1, X_2, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2),$$

где:

- μ неизвестное среднее значение (параметр, который нужно оценить),
- σ^2 известная дисперсия.

16.2 Частотный подход (Доверительный Интервал)

- Оценка: Выборочное среднее $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ является точечной оценкой для μ .
- Стандартная ошибка: $SE = \frac{\sigma}{\sqrt{n}}$.
- 95% Доверительный Интервал (ДИ) строится по формуле:

$$\left[\bar{X} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \quad \bar{X} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right]$$

Интерпретация: "Если бы мы многократно повторяли эксперимент и каждый раз строили такой интервал, то в 95% случаев эти интервалы накрыли бы истинное значение μ ."

16.3 Байесовский подход (Достоверный Интервал)

• Априорное распределение: Выбирается неинформативное априорное распределение, отражающее полную неопределённость:

$$P(\mu) \propto 1$$
.

• Апостериорное распределение: Можно показать, что апостериорное распределение для μ будет нормальным:

Среднее апостериорного: \bar{X} ,

Дисперсия апостериорного: $\frac{\sigma^2}{n}$.

• 95% Достоверный Интервал (Credible Interval) для μ :

$$\left[\bar{X} - 1.96 \cdot \frac{\sigma}{\sqrt{n}}, \quad \bar{X} + 1.96 \cdot \frac{\sigma}{\sqrt{n}} \right]$$

Интерпретация: "Исходя из наших данных, мы на 95% уверены, что истинное значение μ лежит в этом интервале."

16.4 Сравнительная таблица

Аспект	Частотный подход	Байесовский подход
Формула	$X \pm 1.96 \cdot \frac{\sigma}{\sqrt{n}}$	Та же самая: $\bar{X} \pm 1.96 \cdot \frac{\sigma}{\sqrt{n}}$
Численный результат	Интервал $[a,b]$	$oxed{Tot}$ же интервал $[a,b]$
Интерпретация	О долгосрочных свойствах ме-	О степени уверенности в кон-
	тода	кретном значении парамет-
		$\mathbf{pa}\;\mu$
Объект вероятности	Процедура (доверительный	Параметр μ
	интервал)	

16.5 Вывод

В данном примере численные значения интервалов полностью совпадают. Вся разница заключается исключительно в их интерпретации:

- Частотный подход отказывается говорить о вероятности нахождения параметра μ в рассчитанном интервале, описывая лишь свойства процедуры его построения.
- Байесовский подход даёт прямую вероятностную интерпретацию для конкретного рассчитанного интервала.

Это наглядно демонстрирует, что спор между подходами часто является не спором о вычислениях, а спором о значении и интерпретации этих вычислений.

17 Априорные распределения для математического ожидания

17.1 Случай известной дисперсии

При известной дисперсии σ^2 рассматриваем модель:

$$X_i \sim N(\mu, \sigma^2), \quad i = 1, \dots, n$$
 (58)

17.2 Выбор априоров

• Равномерный априор (неинформативный):

$$p(\mu) \propto 1$$
 (59)

• Нормальный априор (сопряжённый):

$$\mu \sim N(\mu_0, \tau^2) \tag{60}$$

где μ_0 – априорное среднее, au^2 – априорная дисперсия

• Априор Джеффриса:

$$p(\mu) \propto 1$$
 (61)

(совпадает с равномерным для этого случая)

17.3 Апостериорное распределение

Для нормального априора апостериорное распределение:

$$\mu|X \sim N\left(\frac{\frac{n\bar{X}}{\sigma^2} + \frac{\mu_0}{\tau^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}}, \left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1}\right)$$
 (62)

Для равномерного априора $(\tau^2 \to \infty)$:

$$\mu | X \sim N\left(\bar{X}, \frac{\sigma^2}{n}\right)$$
 (63)

18 Сравнение подходов

18.1 Частотный доверительный интервал

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \tag{64}$$

18.2 Байесовский кредитный интервал

$$\mu_{\text{post}} \pm z_{\alpha/2} \sqrt{\text{Var}(\mu|X)} \tag{65}$$

18.3 Код на R для сравнения

```
compare_mean_intervals <- function(x, sigma, alpha = 0.05,</pre>
                                   mu_prior = 0, tau_prior = Inf) {
 n <- length(x)</pre>
 x_bar <- mean(x)</pre>
 # Частотный подход
  z <- qnorm(1 - alpha/2)
  freq_ci <- c(
    lower = x_bar - z * sigma / sqrt(n),
    upper = x_bar + z * sigma / sqrt(n)
  )
 # Байесовский подход
  if (is.infinite(tau_prior)) {
    # Равномерный априор
    post_mean <- x_bar</pre>
    post_var <- sigma^2 / n</pre>
  } else {
    # Нормальный априор
    post_precision <- n/sigma^2 + 1/tau_prior^2</pre>
    post_mean <- (n*x_bar/sigma^2 + mu_prior/tau_prior^2) / post_precision</pre>
    post_var <- 1 / post_precision</pre>
  bayes_ci <- c(
    lower = qnorm(alpha/2, post_mean, sqrt(post_var)),
    upper = qnorm(1 - alpha/2, post_mean, sqrt(post_var))
  )
  # Результаты
 data.frame(
    Method = c("Частотный", "Байесовский"),
    Estimate = c(x_bar, post_mean),
    Lower = c(freq_ci["lower"], bayes_ci["lower"]),
    Upper = c(freq_ci["upper"], bayes_ci["upper"]),
    Width = c(diff(freq_ci), diff(bayes_ci))
```

```
)
# Пример использования
set.seed(42)
data \leftarrow rnorm(30, mean = 5, sd = 2)
sigma <- 2 # Известная дисперсия
# 1. Равномерный априор
compare_mean_intervals(data, sigma)
# 2. Информативный априор (mu_prior = 0, tau = 1)
compare_mean_intervals(data, sigma, mu_prior = 0, tau_prior = 1)
# 3. Визуализация влияния априора
library(ggplot2)
tau_values <- c(0.5, 1, 2, 5, 10, Inf)
results <- lapply(tau_values, function(tau) {
  res <- compare_mean_intervals(data, sigma, mu_prior = 0, tau_prior = tau)</pre>
  res$TauPrior <- ifelse(is.infinite(tau), "Inf (равномерный)", as.character(tau))
  res
})
results_df <- do.call(rbind, results)</pre>
ggplot(results_df[results_df$Method == "Байесовский",],
       aes(x = TauPrior, y = Estimate)) +
  geom_point() +
  geom_errorbar(aes(ymin = Lower, ymax = Upper), width = 0.2) +
  labs(title = "Влияние априорной дисперсии на байесовский интервал",
       x = "Априорное SD (tau)", y = "Оценка среднего") +
  geom_hline(yintercept = mean(data), linetype = "dashed",
             color = "red", size = 1) +
  annotate("text", x = 3, y = mean(data) + 0.2,
           label = "Выборочное среднее", color = "red")
```

19 Выводы

- При равномерном априоре байесовский интервал совпадает с частотным
- Информативные априоры "сдвигают" оценку в сторону априорного среднего
- \bullet Чем меньше au, тем сильнее влияние априора
- При больших выборках влияние априора уменьшается

20 Критический анализ проблемы априорных распределений в байесовском подходе

Ваша критика затрагивает самый уязвимый элемент байесовской методологии: зависимость выводов от субъективного выбора априорного распределения, особенно в условиях малых данных.

20.1 Объективная проблема: Смещение, вносимое априором

Фундаментальная проблема заключается в следующем: байесовский вывод производится по формуле:

$$P(\theta \mid \text{Данные}) \propto P(\text{Данные} \mid \theta) \cdot P(\theta)$$

где $P(\theta)$ — априорное распределение. Если априорное распределение выбрано неудачно, оно становится источником систематической ошибки, которая **не исчезает** с ростом количества данных, а лишь асимптотически подавляется. В случае малых выборок это смещение может доминировать в окончательном выводе.

Это не теоретическая абстракция, а практическая проблема: два исследователя, работающие с одними и теми же данными, но придерживающиеся разных априорных убеждений, могут прийти к статистически значимо различным выводам.

20.2 Некорректность утверждений о преимуществе при малых данных

Вы совершенно правы, критикуя фразу о «практичных результатах при малых данных». Это утверждение верно лишь с огромной оговоркой: байесовский подход даёт чёткий и интерпретируемый результат при малых данных, но этот результат может быть сильно смещён, если априор выбран poorly. Таким образом, «уверенность» в результате является в этом случае в большей степени отражением первоначальных убеждений исследователя, нежели объективной информации, извлечённой из данных.

Чем меньше данных, тем **большее влияние** на финальный вывод оказывает произвол в выборе априорного распределения. Следовательно, утверждение о практической полезности подхода в условиях малых данных без указания на эту фундаментальную проблему является некорректным.

20.3 Сравнение с частотным подходом: Два разных ответа на один вопрос

Вы правы, что данные одни и те же, и оба подхода оперируют с одной и той же информацией. Разница заключается в том, какой вопрос они задают и какую форму ответа выдают.

- **Частотный подход** отвечает на вопрос: «Каковы были бы свойства моего алгоритма оценки, если бы эксперимент повторялся многократно?». Ответ доверительный интервал это характеристика **метода**.
- **Байесовский подход** отвечает на вопрос: «Как мне следует обновить свои убеждения о параметре в свете новых данных?». Ответ апостериорное распределение это обновлённое состояние **знания** (или незнания) исследователя.

Прямое сравнение «точности» здесь некорректно, так как эти подходы производргіпсіраllу разные продукты. Один производит алгоритм с гарантированными долгосрочными свойствами, другой — сиюминутную количественную оценку субъективной уверенности.

20.4 Объективные минусы байесовского подхода

- 1. **Субъективизм**. Выводы зависят от выбора априора, который часто произволен. Анализ чувствительности лишь констатирует эту зависимость, но не устраняет её.
- 2. **Вычислительная сложность**. Для сколь-либо сложных моделей получение апостериорного распределения требует применения методов Монте-Карло (МСМС), что computation expensive и introduces свои источники ошибок (сходимость, автокорреляция).
- 3. **Иллюзия точности**. Красивые графики апостериорных распределений могут создавать ложное впечатление точности и объективности, маскируя то, что эта «точность» могла быть заложена в априор изначально.

20.5 Заключение: Не преимущество, а компромисс

Таким образом, байесовский подход не является «более точным» или «более практичным» по умолчанию. Он представляет собой **методологический компромисс**:

В обмен на возможность инкорпорировать предварительные знания (когда они действительно есть) и получать прямые вероятностные утверждения о параметрах, исследователь:

- 1. Вносит в анализ элемент субъективизма.
- 2. Принимает риск получения смещённых оценок при неудачном выборе априора.
- 3. Берет на себя burden доказательства того, что его выводы робастны к выбору априорного распределения.

Сила байесовского подхода проявляется не тогда, когда априор «предполагается», а тогда, когда он осмыслен и обоснован (например, прошлыми исследованиями или механизмом генерации данных). Во всех остальных случаях его использование является не строгим преимуществом, а сознательным выбором в пользу одной из парадигм статистического вывода со всеми её inherent limitations.