University of Oxford

ELLIPTIC PDES -PROBLEM SHEET THREE

Aili Shao

Exercise 1. Given Ω a bounded open set in \mathbb{R}^d , and $p \in L^1(\Omega)$ such that $p > \alpha > 0$ a.e. in Ω , we define

$$H^1(p,\Omega)=\{u\in L^2(\Omega)\colon \nabla u\in L^1_{loc}(\Omega)\ \ and\ \ p\nabla u\in L^2(\Omega)\}.$$

We endow $H^1(p,\Omega)$ with the norm

$$||u||_{H^1(p,\Omega)}^2 = ||u||_{L^2(\Omega;\mathbb{R})}^2 + ||p\nabla u||_{L^2(\Omega;\mathbb{R}^d)}^2.$$

Show that $H^1(p,\Omega) \subset H^1(\Omega)$. Show that $H^1(p,\Omega)$ with the above norm is a Hilbert Space. We set

$$H_0^1(p,\Omega) = H^1(p,\Omega) \cap H_0^1(\Omega).$$

Check that $H_0^1(p,\Omega)$ is a closed linear subspace of $H^1(p,\Omega)$. Given $h \in L^2(\Omega)$, show that there exists a unique $u \in H_0^1(p,\Omega)$ such that

$$\int_{\Omega} p^2 \nabla u \cdot \nabla v = \int_{\Omega} hv \text{ for all } v \in H_0^1(p, \Omega).$$

Proof. • Claim 1: $H^1(p,\Omega) \subset H^1(\Omega)$.

If $u \in H^1(p,\Omega)$, $||u||_{L^2(\Omega)} < \infty$ and $||p\nabla u||_{L^2(\Omega)} < \infty$. Then

$$\|\nabla u\|_{L^2(\Omega)}^2 = \int_{\Omega} \frac{1}{p} \nabla u \cdot p \nabla u \leq \int_{\Omega} |\frac{1}{p} \nabla u| |p \nabla u| \leq \frac{1}{4\varepsilon} \|p \nabla u\|_{L^2(\Omega)}^2 + \frac{\varepsilon}{\alpha^2} \|\nabla u\|_{L^2(\Omega)}^2.$$

Choosing ε small enough, then we have

$$\|\nabla u\|_{L^2(\Omega)} \le C(\alpha, \varepsilon) \|p\nabla u\|_{L^2(\Omega)} < \infty.$$

That is, $u \in H^1(\Omega)$. Thus, $H^1(p,\Omega) \subset H^1(\Omega)$.

• Claim 2: $H^1(p,\Omega)$ with the above norm is a Hilbert space. Define the corresponding inner product to be

$$\langle u, v \rangle_{H^1(p,\Omega)} := \int_{\Omega} u \cdot v + \int_{\Omega} p^2 \nabla u \cdot \nabla v.$$

It is easy to check that $\langle \cdot, \cdot \rangle_{H^1(p,\Omega)}$ is a well-defined inner product on $H^1(p,\Omega)$, so it suffices to show completeness. Assume $\{u_m\}_{m=1}^{\infty}$ is a Cauchy sequence in $H^1(p,\Omega)$, then $\{u_m\}_{m=1}^{\infty}$ and $\{p\nabla u_m\}_{m=1}^{\infty}$ are Cauchy sequences in $L^2(\Omega)$. By completeness of $L^2(\Omega)$, we know that there exist $u, v \in L^2(\Omega)$ such that

$$u_m \to u$$
 in $L^2(\Omega)$ and $p\nabla u_m \to v$ in $L^2(\Omega)$.

Now we aim to show that $p\nabla u = v$ a.e. By claim 1, we know that $\{\nabla u_m\}_{m=1}^{\infty}$ is also a Cauchy sequence in $L^2(\Omega)$ and thus converges to $w \in L^2(\Omega)$. Note that for $\varphi \in C_c^{\infty}(\Omega)$,

$$\int_{\Omega} u \nabla \varphi = \lim_{m \to \infty} \int_{\Omega} u_m \nabla \varphi = -\lim_{m \to \infty} \int_{\Omega} \nabla u_m \varphi = -\int_{\Omega} w \varphi.$$

Thus $w = \nabla u$, that is $\nabla u_m \to \nabla u$ in $L^2(\Omega)$. Passing to a subsequence, we have $\nabla u_{m_k} \to \nabla u$ almost surely, thus $p \nabla u_{m_k} \to p \nabla u$ almost surely. By uniqueness of limit, $v = p \nabla u$. Therefore, we have $u_m \to u$ in $H^1(p,\Omega)$ as required.

• Claim 3: $H_0^1(p,\Omega) = H^1(p,\Omega) \cap H_0^1(\Omega)$ is a closed linear subspace of $H^1(p,\Omega)$. Assume that $\{u_m\}_{m=1}^{\infty} \in H_0^1(p,\Omega)$ is a sequence such that $u_m \to u$ in $H^1(p,\Omega)$. We need to show that $u \in H_0^1(p,\Omega)$, that is tr(u) = 0. Note that

$$0 = tr(u_m) \to tr(u) \text{ in } L^2(\partial\Omega)$$

by trace theorem. Thus, $H_0^1(p,\Omega)$ is a closed linear subspace of $H^1(p,\Omega)$. As a consequence, $H_0^1(p,\Omega)$ is a Hilbert space as well.

• Claim 4: Given $h \in L^2(\Omega)$, there exists unique $u \in H^1_0(p,\Omega)$ such that

$$\int_{\Omega} p^2 \nabla u \cdot \nabla v = \int_{\Omega} hv \text{ for all } v \in H_0^1(p,\Omega).$$

We define the bilinear form as

$$a(u,v) = \int_{\Omega} p^2 \nabla u \cdot \nabla v.$$

 $a(\cdot,\cdot)$ is continuous as

$$a(u,v) \le ||p\nabla u||_{L^2(\Omega)} ||p\nabla v||_{L^2(\Omega)} \le ||u||_{H^1(p,\Omega)} ||v||_{H^1(p,\Omega)}.$$

 $a(\cdot,\cdot)$ is coercive as

$$a(u,u) = \|p\nabla u\|_{L^2(\Omega)}^2 \geq \frac{1}{2} \|p\nabla u\|_{L^2(\Omega)}^2 + C\|\nabla u\|_{L^2(\Omega)} \geq \tilde{C}(\|p\nabla u\|_{L^2(\Omega)}^2 + \|u\|_{L^2(\Omega)}^2)$$

where the second inequality follows from claim 1 and the last inequality follows from Poincaré inequality.

We can take the right hand side of the integral in the claim as F(v) where $F \in H_0^1(p,\Omega)^*$. Then by Lax-Milgram theorem, there exists unique u such that a(u,v) = F(v).

Suppose $d \geq 3$, $A \in W^{1,p_1}(B_R; \mathbb{R}^{d \times d}) \cap L^{\infty}(B_R; \mathbb{R}^{d \times d})$, $B_1, B_2 \in W^{1,p_2}(B_R; \mathbb{R}^d) \cap L^{\infty}(B_R; \mathbb{R}^d)$, $c \in W^{1,p_3}(B_R; \mathbb{R}) \cap L^{\infty}(B_R; \mathbb{R})$ and $f \in W^{1,2}(B_R; \mathbb{R})$ with the usual coercivity hypothesis. Consider a solution $u \in H^1(B_R)$ of

$$-div(A\nabla u + B_1 u) + B_2 \cdot \nabla u + cu = f \text{ in } \mathcal{D}'(B_R).$$

We wish to find p_1, p_2, p_3 such that $u \in W^{2,2}(B_R)$ for R' < R.

Exercise 2. Show that when $p_1 = \infty$, $p_2 = d$ and $p_3 = \frac{d}{2}$ then indeed $u \in W^{2,2}(B_{R'})$ for all R' < R.

Proof. We adapt the notation from Gilbarg and Trudinger's book and write $a^{ij}(x) = A(x)$, and

$$Lu := -D_i(a^{ij}(x)D_ju + B_1^i(x)u) + B_2^i(x)D_iu + c(x)u = f.$$

Testing against $v \in H_0^1(B_R)$ (or simply $v \in C_c^{\infty}(B_R)$ and then conclude using a density argument), we have

$$\int_{B_R} a^{ij} D_j u D_i v dx = \int_{B_R} g v dx$$

where $g:=(B_1^i-B_2^i)D_iu+(D_iB_1^i-c)u+f$. For $|2h|< dist(\mathrm{supp}v,\partial B_R)$, let us replace v by its difference quotient $\Delta^{-h}v=\Delta_k^{-h}v=\frac{v(x-he_k)-v(x)}{h}$ for some $k,\,1\leq k\leq d$, we then obtain

$$\int_{B_R} \Delta^h(a^{ij}D_ju)D_iv = -\int_{B_R} a^{ij}D_juD_i\Delta^{-h}vdx = -\int_{B_R} g\Delta^{-h}vdx.$$

Note that

$$\Delta^{h}(a^{ij}D_{j}u) = \frac{1}{h} \left(a^{ij}(x + e_{k}h)D_{j}u(x + e_{k}h) - a^{ij}(x)D_{j}u(x) \right)$$

$$= \frac{1}{h} \left[a^{ij}(x + e_{k}h)D_{j}u(x + e_{k}h) - a^{ij}(x + e_{k}h)D_{j}u(x) \right]$$

$$+ \frac{1}{h} \left[a^{ij}(x + e_{k}h)D_{j}u(x) - a^{ij}(x)D_{j}u(x) \right]$$

$$= a^{ij}(x + e_{k}h)\Delta^{h}D_{j}u(x) + \Delta^{h}a^{ij}(x)D_{j}u(x).$$

Then we have

$$\begin{split} \int_{B_R} a^{ij}(x+e_kh)D_j\Delta^h uD_iv &= \int_{B_R} -\Delta^h a^{ij}D_j uD_iv - \int_{B_R} g\Delta^{-h}v dx \\ &= -\int_{B_R} \bar{\mathbf{g}}\cdot Dv + g\Delta^{-h}v dx \end{split}$$

where $\bar{\mathbf{g}} = (\bar{g_1}, \dots, \bar{g_n})$ with $\bar{g_i} = \Delta^h a^{ij} D_j u$. Since $A \in W^{1,\infty}(B_R; \mathbb{R}^{d \times d}) \cap L^{\infty}(B_R; \mathbb{R}^{d \times d})$, $\|\Delta^h a^{ij}\|_{L^{\infty}(B_R)}$ is bounded.

Let $K := \max \left(\|a^{ij}\|_{L^{\infty}(B_R)}, \|\nabla a^{ij}\|_{L^{\infty}(B_R)}, \|B_1^i\|_{L^{\infty}(B_R)}, \|B_2^i\|_{L^{\infty}(B_R)}, \|c\|_{L^{\infty}(B_R)} \right)$. Then

$$\begin{split} \int_{B_R} \bar{\mathbf{g}} \cdot Dv \leq & \|\Delta^h a^{ij}\|_{L^{\infty}(B_R)} \|Du\|_{L^2(B_R)} \|Dv\|_{L^2(B_R)} \\ \leq & K \|u\|_{H^1(B_R)} \|Dv\|_{L^2(B_R)} \end{split}$$

and

$$\begin{split} -\int_{\Omega} g \Delta^{-h} v &= \int_{B_R} \left[(B_2^i - B_1^i) D_i u + c u - D_i B_1^i u - f \right] \Delta^{-h} v \\ &\leq 2 K \|Du\|_{L^2(B_R)} \|Dv\|_{L^2(B_R)} + K \|u\|_{L^2(B_R)} \|Dv\|_{L^2(B_R)} \\ &+ \|DB_1^i\|_{L^d(B_R)} \|u\|_{L^{\frac{2d}{d-2}}(B_R)} \|Dv\|_{L^2(B_R)} + \|f\|_{L^2(B_R)} \|Dv\|_{L^2(B_R)} \\ &\leq \left[C(d,K) \|u\|_{H^1(B_R)} + \|f\|_{L^2(B_R)} \right] \|Dv\|_{L^2(B_R)} \end{split}$$

Where C(d, K) is a constant depending on d, K. Note that the middle line follows from Sobolev embedding and the condition that $B_1 \in W^{1,d}(B_R)$.

To proceed further let us take a cut-off function $\eta \in C_c^{\infty}(B_R)$ such that $0 \le \eta \le 1$, $\eta = 1$ on $B_{R'}$ but vanishes outside B_R with a bounded gradient $D\eta < \frac{2}{R-R'}$. Set $v = \eta^2 \Delta^h u$, then by ellipticity of $A(x)(i.e.A\xi \cdot \xi \ge \lambda \xi \cdot \xi)$ and Cauchy-Schwarz inequality, we have

$$\begin{split} \lambda \int_{B_R} |\eta D\Delta^h u|^2 dx &\leq \int_{B_R} \eta^2 a^{ij} (x + e_k h) \Delta^h D_i u \Delta^h D_j u \\ &= \int_{B_R} a^{ij} (x + e_k h) \Delta^h D_i u \Delta^h D_j v - 2 \int_{B_R} a^{ij} (x + h e_k) D_j \Delta^h u \Delta^h u \eta D_i \eta \\ &\leq \left[C(d,K) \|u\|_{H^1(B_R)} + \|f\|_{L^2(B_R)} \right] \|Dv\|_{L^2(B_R)} \\ &+ \tilde{C}(d,K) \|\eta D\Delta^h u\|_{L^2(B_R)} \|\Delta^h u D\eta\|_{L^2(B_R)} \\ &\leq \left[C(d,K) \|u\|_{H^1(B_R)} + \|f\|_{L^2(B_R)} \right] \left[\|\eta D\Delta^h u\|_{L^2(B_R)} + 2\|\Delta^h u D\eta\|_{L^2(B_R)} \right] \\ &+ \tilde{C}(d,K) \|\eta D\Delta^h u\|_{L^2(B_R)} \|\Delta^h u D\eta\|_{L^2(B_R)} \end{split}$$

By Young's inequality, we have

$$\begin{split} \int_{B_R} |\eta D\Delta^h u|^2 dx &\leq \frac{C(d,K)}{4\lambda \varepsilon} \|u\|_{H^1(B_R)}^2 + \frac{\varepsilon}{\lambda} \|\eta D\Delta^h u\|_{L^2(B_R)}^2 \\ &+ \frac{1}{4\lambda \varepsilon} \|f\|_{L^2(B_R)}^2 + \frac{\varepsilon}{\lambda} \|\eta D\Delta^h u\|_{L^2(B_R)}^2 \\ &+ \frac{C(d,K)}{\lambda} \|u\|_{H^1(B_R)}^2 + \frac{1}{\lambda} \|\Delta^h u D\eta\|_{L^2(B_R)}^2 \\ &+ \frac{1}{\lambda} \|f\|_{L^2(B_R)}^2 + \frac{1}{\lambda} \|\Delta^h u D\eta\|_{L^2(B_R)}^2 \\ &+ \frac{C(\tilde{d},K)}{4\lambda \varepsilon} \|\Delta^h u D\eta\|_{L^2(B_R)}^2 + \frac{\varepsilon}{\lambda} \|\eta D\Delta^h u\|_{L^2(B_R)}^2 \end{split}$$

By rearranging and taking ε small, we have

$$\begin{split} \|\eta\Delta^h Du\|_{L^2(B_R)} \leq & C(d,K,\lambda) \left(\|u\|_{H^1(B_R)} + \|f\|_{L^2(B_R)} + \|\Delta^h u D\eta\|_{L^2(B_R)} \right) \\ \leq & C(d,K,\lambda) \left(1 + \sup_{B_R} |D\eta| \right) \left(\|u\|_{H^1(B_R)} + \|f\|_{L^2(B_R)} \right). \end{split}$$

Thus

$$\|\Delta^h Du\|_{L^2(B_{R'})} \le \tilde{C}(d, K, \lambda, R, R') \left(\|u\|_{H^1(B_R)} + \|f\|_{L^2(B_R)}\right) < \infty.$$

This implies that $Du \in H^1(B_{R'})$, and thus $u \in W^{2,2}(B_{R'})$.

Exercise 3. Suppose $p_1 > d$, $B_1, B_2, c = 0$ and A(x) = a(x)Id where $a \in W^{1,p_1}(B_R; \mathbb{R}) \cap L^{\infty}(B_R; \mathbb{R})$. Using the Schauder Method, show that in a sufficiently small ball within B_R , we have $Du \in L^{2^*}$, and then remove the small ball assumption. (Hint: you may want to use that a is Hölder continuous and therefore close to a constant locally).

Establish the same result when $A \in W^{1,p_1}(B_R; \mathbb{R}^{d \times d}) \cap L^{\infty}(B_R; \mathbb{R}^{d \times d})$ is a symmetric matrix.

Proof. Note that A = a(x)Id with $a \in W^{1,p_1}(B_R; \mathbb{R}) \cap L^{\infty}(B_R; \mathbb{R})$, then $a \in C^{0,\gamma}(B_R)$ by Morrey's inequality. This implies that a is close to a constant locally. Consider a cut-off function $\eta \in C_c^{\infty}(B_R)$, $0 \le \eta \le 1$ such that $\eta \equiv 1$ on $B_{r'}$ while vanishes outside B_r for 0 < r' < r < R with bounded gradient. Then $u\eta \in H_0^1(B_R)$ and

$$\begin{split} -\operatorname{div}(A\nabla(u\eta)) &= -\operatorname{div}(A\nabla u \cdot \eta) - \operatorname{div}(A\nabla \eta \cdot u) \\ &= -\eta \operatorname{div}(A\nabla u) - 2A\nabla u \cdot \nabla \eta - \operatorname{div}(A\nabla \eta)u \\ &= \eta f - 2A\nabla u \cdot \nabla \eta - \operatorname{div}(A\nabla \eta)u. \end{split}$$

We decompose A as $a_0Id + (a(x) - a_0)Id$ for some constant a_0 for which a(x) is very close to a_0 on $B_{r'}$. Then we obtain

$$-a_0\Delta(\eta u) = div((a(x) - a_0)Id\nabla(u\eta)) + \eta f - 2A\nabla u \cdot \nabla \eta - div(A\nabla \eta)u.$$

That is,

$$-\Delta(u\eta) = div(B\nabla(u\eta)) + \tilde{f} \text{ in } \mathcal{D}'(B_R)$$

where $\tilde{f}:=\frac{1}{a_0}\eta f-\frac{2}{a_0}A\nabla u\cdot\nabla\eta-\frac{1}{a_0}div(A\nabla\eta)u$ and $B:=\frac{1}{a_0}(a(x)-a_0)Id$. Theorem 2.3 from lecture notes shows that $-\Delta$ is an isomorphism between $W_0^{1,q}(B_R)$ and $W^{-1,q}(B_R)$. If we write by Δ_0^{-1} the solution map, that is

$$\Delta_0^{-1} \colon W^{-1,q}(B_R) \to W_0^{1,q}(B_R)$$

$$f \to w$$

where w is the unique solution in $W_0^{1,q}(B_R)$, that is $-\Delta w = f$ in B_R . Note that in this problem $q = 2^*$. We can write

$$u\eta = \Delta_0^{-1}(\operatorname{div}(B\nabla(u\eta))) + \Delta_0^{-1}(\tilde{f}).$$

If we write $v = u\eta \in H_0^1(B_R)$, then

$$v = \Delta_0^{-1}(\operatorname{div}(B\nabla v) + \Delta_0^{-1}(\tilde{f}).$$

$$(Id - T)v = h$$

where $T: W_0^{1,q}(B_R) \to W_0^{1,q}(B_R)$ and $h = \Delta_0^{-1}(\tilde{f})$. Provided that we show that

- $\tilde{f} \in L^2(B_R)$,
- $||h||_{W_0^{1,q}(B_R)} \le C||\tilde{f}||_{L^2(B_R)},$
- and $||T||_{W_0^{1,q}(B_r)} \le K < 1$

the conclusion follows as Id - T is classically invertible with

$$(Id - T)^{-1} = \sum_{k=0}^{\infty} T^k.$$

First, it is easy to show that $\tilde{f} \in L^2(B_R)$. $\frac{1}{a_0}\eta f \in L^2(B_R)$ since $f \in L^2(B_R)$ and $\eta \in C_c^{\infty}(B_R)$ is bounded by 1. $\frac{2}{a_0}A\nabla u\nabla \eta \in L^2(B_R)$ as both $A, \nabla \eta \in L^{\infty}(B_R)$. $\frac{1}{a_0}div(A\nabla \eta)u \in L^2(B_R)$ since u is in $L^2(B_R)$ while $div(A\nabla \eta)$ is bounded on B_R .

Now we show $||h||_{W_0^{1,q}(B_R)} \leq C||\tilde{f}||_{L^2(B_R)}$. Note that $-\Delta$ maps $W^{2,2}(B_R) \cap W_0^{1,2}(B_R)$ to $L^2(B_R)$. Thus $h \in W^{2,2}(B_R) \cap W_0^{1,2}(B_R)$. Thanks to Sobolev embedding, we can conclude that

$$||h||_{W^{1,q}(B_R)} \le C(2,d,B_R)||\tilde{f}||_{L^2(B_R)}$$

for $q=2^*$.

Next, we show that $||T||_{W_0^{1,q}} \leq K < 1$. Given $g \in W_0^{1,q}(B_r)$, we have

$$\|B\nabla g\|_{L^q(B_r)} \leq \|B\|_{L^\infty(B_r)} \|\nabla g\|_{L^q(B_r)} \leq \tilde{C}(B_r) \|\nabla g\|_{L^q(B_r)}$$

where $\tilde{C}(B_r)$ is the constant depending on B_r . Thus

$$||div(B\nabla g)||_{W^{-1,q}(B_r)} = ||B\nabla g||_{L^q(B_r)} \le \tilde{C}(B_r)||g||_{W_0^{1,q}(B_r)}.$$

This implies that

$$||Tg||_{W^{1,q}_{\alpha}(B_r)} \le C(2,d,B_R)\tilde{C}(B_r)||g||_{W^{1,q}_{\alpha}(B_r)}$$

and we can choose r > r' > 0 small enough such that $C(2, d, B_R)\tilde{C}(B_r) = K < 1$. Then we have $||v||_{W_0^{1,q}(B_r)} \leq C||f||_{L^2(B_R)}$. Thus

$$||u||_{W_0^{1,q}(B_{r'})} \le C||\tilde{f}||_{L^2(B_R)}$$

and $Du \in L^{2^*}$ on a small ball.

Note that we need to show that $\tilde{C}(B_r)$ does not blow up as $r \to 0$.

An alternate formulation of the PDE:

Testing the original PDE against $\eta \phi$, we have

$$\int_{B_R} a(x) \nabla u \cdot \nabla (\phi \eta) = \int_{B_R} f \eta \phi.$$

$$LHS = \int_{B_R} a(x) \nabla u \cdot \nabla \phi \eta + \int_{B_R} a(x) \phi \nabla u \cdot \nabla \eta.$$

Also,

$$-div(a\nabla(u\eta)) = -div(a\eta\nabla u) - div(au\nabla\eta) \text{ in } \mathcal{D}'(B_R)$$
$$= f\eta - a\nabla u \cdot \nabla\eta - div(au\nabla\eta)$$

$$-div(B\nabla(u\eta)) = \frac{1}{a(x_0)} \left[f\eta - a\nabla u \cdot \nabla \eta - div(au\nabla \eta) \right].$$

Then $u\eta \in W^{1,p^*}(B_\rho)$ if $||B - Id||_{\infty} < \varepsilon$. For each $B_{R'} \subset B_R$, we can cover it with finitely many small balls $\{B_{r_i}\}_{i=1}^{\infty}$ such that $B_{r_i} \subset B_R$ and $Du \in L^{2^*}$ in each B_{r_i} . Then $Du \in L^{2^*}(B_{R'})$. When $A \in W^{1,p_1}(B_R, \mathbb{R}^{d \times d}) \cap L^{\infty}(B_R, \mathbb{R}^{d \times d})$, A is Hölder continuous, and thus

close to a constant matrix $A(x_0)$ on a small ball. As A(x) is symmetric, $A(x_0)$ is symmetric, and thus we can write $A(x_0) = PDP^T$ via eigenvalue decomposition with $D = diag(\lambda_1, \lambda_2, \cdots, \lambda_d)$. We apply change of coordinates here, that is, take $\tilde{u}(y) = u(QPy) = u(x)$ where $Q = diag(\frac{1}{\sqrt{\lambda_1}}, \frac{1}{\sqrt{\lambda_2}}, \cdots, \frac{1}{\sqrt{\lambda_d}})$. Then $A(y) = Q^T P^T A(x) P Q$ and the corresponding matrix $A(y_0) = Q^T P^T A(x_0) PQ = Id$. $\tilde{f}(y) = f(QPy) = f(x)$. we decompose A(y) to be (A(y) - Id) + Id = B(y) + Id. Then our new PDE becomes

$$-\Delta u = div(B\nabla u) + \tilde{f}$$

It follows that $\tilde{f} \in L^2(B_R)$. Then we only need to check that $||B||_{L^{\infty}(QPB_r)}$ is small on an ellipsoid QPB_r obtained from change of coordinates and then apply the proof for the case A = a(x)Id. Note that

$$||B||_{L^{\infty}(QPB_r)} \le C \sup_{x \in B_r} |A(x) - A(x_0)| < \tilde{C}(B_r)$$

where $\tilde{C}(B_r)$ is the constant we can control by adjusting the small ball B_r .

Remark 1. The same result holds for a general matrix $A \in W^{1,p}(B_R; \mathbb{R}^{d \times d}) \cap L^{\infty}(B_R, \mathbb{R}^{d \times d})$.

Proof. For any square matrix A, we can write it as $A = S + \tilde{S}$ where S is symmetric but \tilde{S} is skew-symmetric. Same as Exercise 3.3, we know that A is close to a corresponding constant matrix $S(x_0) + \tilde{S}(x_0)$. Here we need to use the fact that a constant skew-symmetric matrix is divergence-free, that is $div(\tilde{S}\nabla u) = \tilde{S}_{ij}D_{ij}u$ has zero trace if \tilde{S} is a constant skew symmetric matrix. In this case, our PDE is

$$-\Delta u = div(B\nabla u) + \tilde{f} \text{ in } \mathcal{D}'$$

where

$$B := S(y) - Q^T P^T S(x_0) P Q + \tilde{S}(y) - Q^T P^T \tilde{S}(x_0) P Q = Q^T P^T (A(x) - A(x_0)) P Q.$$

Then the rest of the proof follows from Exercise 3.3.

Exercise 4. Show that $p_1 > d$, $p_2 = d$ and $p_3 = \frac{d}{2}$ (for large d) then $u \in W^{2,2}(B_{R'})$. Find also lower p_2 and p_3 (when possible).

Proof. The proof is the same as Exercise 3.2 except the approximation for

$$-\int_{B_R} \Delta^h a^{ij} D_j u D_i v.$$

If we can prove the result in Exercise 3.3 for a general (not necessarily symmetric) matrix $A \in W^{1,p_1}(B_R,\mathbb{R}^{d\times d}) \cap L^{\infty}(B_R;\mathbb{R}^{d\times d})$, non-zero $B_1,B_2 \in W^{1,d}(B_R;\mathbb{R}^d) \cap L^{\infty}(B_R;\mathbb{R}^d)$ and non-zero $c \in W^{1,d/2}(B_R;\mathbb{R}) \cap L^{\infty}(B_R;\mathbb{R})$, we can obtain

$$\begin{split} \int_{B_{R'}} \Delta^h a^{ij} D_j u D_i v \leq & \|\Delta^h a^{ij}\|_{L^d(B_{R'})} \|Du\|_{L^{2^*}(B_{R'})} \|Dv\|_{L^2(B_{R'})} \\ \leq & C(B_R, d, p_1) \|\Delta^h a^{ij}\|_{L^{p_1}(B_{R'})} \|Du\|_{L^{2^*}(B_{R'})} \|Dv\|_{L^2(B_{R'})} \\ < & \infty \end{split}$$

where $2^* = \frac{2d}{d-2}$ and $p_1 > d$.

Now we prove that $Du \in L^{2^*}(B_{R'})$ for 0 < R' < R.

We reformulate the PDE as

$$-div(A\nabla u) = g$$

where $g := f - cu - B_2 \cdot \nabla u + div(B_1 u)$.

In order to apply the Schauder method to prove the result in the remark after Exercise 3.3, we need to check that

$$g \in W^{-1,q}(B_R) = (W^{1,q'}(B_R))^*$$
 where $q' = \frac{2d}{d+2}$.

We know that $f \in L^2(B_R)$, so it is sufficient to check that $div(B_1u) - B_2 \cdot \nabla u - cu \in (W^{1,\frac{2d}{d+2}}(B_R))^*$. It is trivially true that $B_2 \cdot \nabla u - cu \in L^2(B_R)$ since B_1 and c are in $L^{\infty}(B_R)$ while $u \in H^1(B_R)$. For a function $\phi \in W^{1,\frac{2d}{d+2}}(B_R)$, we have

$$\int_{B_R} B_1^i u D_i \phi \le \|B_1\|_{L^{\infty}(B_R)} \|u\|_{L^{\frac{2d}{d-2}}(B_R)} \|\phi\|_{W^{1,\frac{2d}{d+2}}(B_R)} < \infty,$$

thus $div(B_1v) \in (W^{1,\frac{2d}{d+2}}(B_R))^*$. Combining these estimates together, we know that $g \in W^{-1,q}(B_R)$, so we can apply the result in the remark after Exercise 3.3 to conclude that $u \in W^{1,q}(B_{R'})$ where $q = 2^* = \frac{2d}{d-2}$.

In order to find lower p_2 and p_3 , we need to look at the terms related to weak derivatives of B_1, B_2 and c. Note that we do not use weak derivative of c in our proof, so $c \in L^{\infty}(B_R)$ is good enough. This implies that p_3 can be any positive number.

Look at the term that involves D_iB_1 , then

$$\int_{B_{R'}} D_i B_1^i u \Delta^{-h} v \le \|DB_1\|_{L^{p_2}(B_{R'})} \|u\|_{L^{(2^*)^*}(B_{R'})} \|Dv\|_{L^2(B_{R'})}$$

since we have proved that $u \in W^{1,2^*}(B_{R'})$ and Sobolev embedding implies that $u \in L^{(2^*)^*}(B_{R'})$ where $(2^*)^* = (\frac{2d}{d-2})^* = \frac{2d}{d-4}$. We need $p_2 \ge \frac{1}{\frac{1}{2} - \frac{d-4}{2d}} = \frac{d}{2}$ for the above inequality to be bounded. Note that we need p large enough to make sure that $\frac{2d}{d-4}$ makes sense. Thus, we can take p_2 to be $\frac{d}{2}$.

Exercise 5. Supposing $B_1 = B_2 = c = 0$ and d = 3, show that $A \in H^2(B_R; \mathbb{R}^{d \times d}) \cap L^{\infty}(B_R; \mathbb{R}^{d \times d})$ implies $u \in H^3(B_{R'})$.

Proof. First note that $H^2(B_R)$ is embedded into $W^{1,6}(B_R)$ by Sobolev embedding. 6 > d here, so we can apply the result from Exercise 3.4 to get

$$u \in W^{2,2}(B_{R^{(1)}})$$
 for $0 < R^{(1)} < R$.

Now we aim to show that $Du \in W^{2,2}(B_{R'})$ for $0 < R' < R^{(1)} < R$.

Consider $\tilde{u} := Du \in H^1(B_{R^{(1)}}), v = -D\tilde{v}$, then

$$\begin{split} \int_{B_{R^{(1)}}} a^{ij}D_j u D_i v &= \int_{B_{R^{(1)}}} a^{ij}D_j u D_i (-D\tilde{v}) \\ &= \int_{B_{R^{(1)}}} D_i (a^{ij}D_j u) D_i \tilde{v} \\ &= \int_{B_{R^{(1)}}} a^{ij}D_i (D_j u) D_i \tilde{v} + \int_{B_{R^{(1)}}} D_i a^{ij}D_j u D_i \tilde{v} \\ &= \int_{B_{R^{(1)}}} f v \end{split}$$

Thus we have

$$\int_{B_{R(1)}} a^{ij} D_i(D_j u) D_i \tilde{v} = \int_{B_{R(1)}} \tilde{f} \tilde{v}$$

where

$$\tilde{f} := D_i f + D_{ij} a^{ij} D_j u + D_i a^{ij} D_{ij} u.$$

In order to use elliptic regularity theory to conclude that $\tilde{u} \in H^2(B_{R'})$ for $0 < R' < R^{(1)}$, we need to prove that $\tilde{f} \in L^2(B_{R^{(1)}})$.

- It is clearly that $D_i f \in L^2(B_{R^{(1)}})$ since $f \in H^1(B_R)$.
- $D_{ij}a^{ij}D_iu$ is in $L^2(B_{R^{(1)}})$ if $D_iu \in L^{\infty}(B_{R^{(1)}})$.
- $D_i a^{ij} D_{ij} u$ is in $L^2(B_{R^{(1)}})$ if $D_{ij} u \in L^3(B_{R^{(1)}})$ since Hölder's inequality implies that $\|D_i a^{ij} D_{ij} u\|_{L^2(B_{R^{(1)}})} \le \|D_i a^{ij}\|_{L^6(B_{R^{(1)}})} \|D_{ij} u\|_{L^3(B_{R^{(1)}})}.$

Thus we need to check that

- $\bullet \ D_{ij}u \in L^3(B_{R^{(1)}})$
- $D_i u \in L^{\infty}(B_{R^{(1)}})$

We first show that $D_{ij}u \in L^3(B_{R^{(1)}})$ using $Schauder\ theory$. Note that it is sufficient to prove that $\tilde{u}=Du\in W^{1,3}(B_{R^{(1)}})$. Since A is in $H^2(B_R)$, we may use the result from Exercise 3.3. Note that since our q is 3, so we can achieve the desired result if $\tilde{f}\in L^{3/2}(B_{R^{(2)}})$ for $0< R'< R^{(1)}< R^{(2)}< R$ as $(\frac{3}{2})^*=3$ when d=3. It is obvious that $D_if\in L^{3/2}(B_{R^{(2)}})$ as $D_if\in L^2(B_{R^{(2)}})$. $D_{ij}a^{ij}D_ju+D_ia^{ij}D_{ij}u$ are also in $L^{3/2}(B_{R^{(2)}})$ as

$$\int_{B_{R^{(2)}}} (D_i a^{ij} D_{ij} u)^{3/2} \leq \left(\int_{B_{R^{(2)}}} (D_i a^{ij})^{\frac{3}{2} \cdot 4} \right)^{1/4} \left(\int_{B_{R^{(2)}}} (D_{ij} u)^{\frac{3}{2} \cdot \frac{4}{3}} \right)^{3/4} < \infty$$

and

$$\int_{B_{R(2)}} (D_{ij}a^{ij}D_{j}u)^{3/2} \le \left(\int_{B_{R(2)}} (D_{ij}a^{ij})^{\frac{3}{2}\cdot\frac{4}{3}}\right)^{3/4} \left(\int_{B_{R(2)}} (D_{j}u)^{\frac{3}{2}\cdot4}\right)^{1/4} < \infty.$$

By the result from Exercise 3.3, we can conclude that $D_i u \in W^{1,3}(B_{R^{(1)}})$.

Now we use Stampacchia theorem to show that $\tilde{u} = D_i u \in L^{\infty}(B_{R^{(1)}})$. We may choose a cut-off function η such that $\eta \tilde{u} \in H^1_0(B_{R^{(1)}})$. It is sufficient to check that $\tilde{f} \in L^p(B_{B^{(1)}})$ with 2 > p > 3/2. Note that $D_i u \in W^{1,3}(B_{R^{(1)}})$ and d = 3 implies that $D_i u \in L^q$ for any $1 \le q < \infty$ and $D_{ij} u \in L^3(B_{R^{(1)}})$.

$$\int_{B_{R^{(1)}}} (D_i a^{ij} D_{ij} u)^p \leq \left(\int_{B_{R^{(1)}}} (D_i a^{ij})^{\frac{6}{p} \cdot p} \right)^{p/6} \left(\int_{B_{R^{(1)}}} (D_{ij} u)^{p \cdot \frac{6}{6-p}} \right)^{(6-p)/6} < \infty$$

since $\frac{6p}{6-p} < \frac{6 \cdot 2}{6-2} = 3$. Similarly,

$$\int_{B_{R^{(1)}}} (D_{ij}a^{ij}D_iu)^p \leq \left(\int_{B_{R^{(1)}}} (D_{ij}a^{ij})^{p\cdot\frac{2}{p}}\right)^{p/2} \left(\int_{B_{R^{(1)}}} (D_iu)^{\frac{2}{2-p}\cdot p}\right)^{(2-p)/2} < \infty$$

since $\frac{2p}{2-p} < \infty$.

Thus, $\tilde{u} = D_i u \in L^{\infty}(B_{R^{(1)}})$. Together with $D_i u \in W^{1,3}(B_{R^{(1)}})$, we obtain $\tilde{f} \in L^2(B_{R^{(1)}})$. Therefore, by the regularity result from Exercise 3.4, we have $\tilde{u} \in H^2(B_{R'})$, that is, $u \in H^3(B_{R'})$.

Exercise 6. Suppose that $B_1 = B_2 = c = 0$ and $A \in W^{1,p}(B_R; \mathbb{R}^{d \times d}) \cap L^{\infty}(B_R; \mathbb{R}^{d \times d})$ with p > d. Show that if $u \in H_0^1(B_R)$, then $u \in C^{0,\alpha}(B_R)$.

Proof. Recalling the remark after Exercise 3.3, we deduce that $u \in H^2(B_{R'})$ for a general matrix $A \in W^{1,p}(B_R; \mathbb{R}^{d \times d}) \cap L^{\infty}(B_R; \mathbb{R}^{d \times d})$. Now we aim to show that $u \in H^2(B_R)$. For each $x_0 \in \partial B_R$, we can find a small ball $B(x_0, r)$ such that the Schauder method can be applied to $B(x_0, r) \cap B_R$. Take a smaller ball $B(x_0, r')$ with r' < r and consider $V_0 := B(x_0, r') \cap B_R$. Note that $u \in H^1_0(B_R)$, u = 0 on $B(x_0, r) \cap \partial B_R$, so we can choose a cut-off function $\eta \in C_c^{\infty}(B_R)$ such that $\eta = 1$ on V_0 but vanishes outside $B(x_0, r) \cap B_R$. Then we can show that $u \in H^2(V_0)$ by using Schauder method as in Exercise 3.3. Since ∂B_R is compact, we can cover it with finitely many sets $V_0, V_1, \cdots V_N$ as defined above. We sum the resulting estimates, along with the interior estimate, to find $u \in H^2(B_R)$. Note that d = 3 and $2 > \frac{d}{2}$, so we have $u \in C^{0,\gamma}(B_R)$ by Sobolev inequality.

Proof. An alternative way to show that $u \in W^{1,p^*}(B_R)$ globally. Define

$$\tilde{f} = \begin{cases} f & \text{in } B_R \\ 0 & \text{in } \mathbb{R}^d \setminus B_R \end{cases}$$

$$\tilde{A}(x) = \begin{cases} A(x) & \text{if } |x| < R \\ A(\frac{Rx}{|x|}) & \text{if } |x| \ge R \end{cases}$$

and

$$\tilde{u} = \begin{cases} u & \text{in } B_R \\ 0 & \text{in } \mathbb{R}^d \setminus B_R \end{cases}.$$

Then $\tilde{f} \in L^2(\mathbb{R}^d), u \in H^1(\mathbb{R}^d), \tilde{A} \in W^{1,p}_{loc}(\mathbb{R}^d)$ and

$$-div(\tilde{A}(x)\nabla \tilde{u}) = \tilde{f} \text{ in } \mathcal{D}'(\mathbb{R}^d).$$

Consider $B_{R'} \supset \supset B_R$, we have $u \in W_{loc}^{1,2^*}(B_{R'})$. This implies that $u \in W^{1,2^*}(B_R) \hookrightarrow C^{0,\frac{1}{2}}(B_R)$.

Exercise 7. Prove the weak maximum principle for L_{ND} on a bounded domain (the case c = 0, Lu < 0, was done in the lectures and hints are given in the lecture notes). Claim: Suppose Ω is open and bounded and $c \geq 0$ and $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies

$$L_{ND} \leq 0$$

where the coefficients of L_{ND} are continuous on Ω . Then

$$\max_{\bar{\Omega}} \le \max_{\partial \Omega} u^+.$$

Proof. We first consider $c \equiv 0$. Supposing first that we have a *strict* subsolution, $L_{ND}(u) < 0$, the statement follows by elementary calculus: if u has a local maximum at $x_0 \in \Omega$, then $Du(x_0) = 0$ and $D^2u(x_0) \leq 0$ (i.e. $D^2u(x_0)$ is negative semi-definite). Using the ellipticity $A(x) = \{a^{ij}(x)\}_{i,j=1}^n \geq \theta > 0$, some linear algebra (details can be found in Evans) shows that $a(x)^{ij}(x_0)u_{ij}(x_0) \leq 0$, so $L_{ND}u(x_0) \geq 0$, a contradiction.

Now suppose only $L_{ND}u \leq 0$ in Ω . Given $\varepsilon > 0$, set $u_{\varepsilon} := u(x) + \varepsilon e^{\lambda x_1}$ for some $\lambda > 0$ to be chosen. Compute

$$L_{ND}(u_{\varepsilon}) = L_{ND}(u) + \varepsilon e^{\lambda x_1} \left(-\lambda^2 a^{11}(x) + \lambda b^1(x) \right) \le \varepsilon e^{\lambda x_1} \left(-\lambda^2 \theta + \|b\|_{L^{\infty}(\Omega)} \lambda \right) < 0$$

in Ω for λ large enough. So by the above,

$$\max_{\bar{\Omega}} u \le \max_{\bar{\Omega}} u_{\varepsilon} = \max_{\partial \Omega} u_{\varepsilon}$$

and then letting $\varepsilon \searrow 0$, $\max_{\bar{\Omega}} u \leq \max_{\partial \Omega} u$.

Now suppose $c(x) \geq 0$. If $u(x) \leq 0$, we are done. Otherwise, consider the shifted operator $K := L_{ND} - c$ on the non-empty open set $V := \{x \in \Omega \mid u(x) > 0\}$, on which $Ku = L_{ND}u - cu \leq 0$. So by the above, $\max_{\bar{V}} u = \max_{\partial V} u$. If $x \in \partial V$, then either $x \in \partial \Omega$ or else u(x) = 0, and so

$$\max_{\bar{\Omega}} u = \max_{\bar{V}} u = \max_{\partial \Omega} u.$$

Exercise 8. Suppose that Ω is an arbitrary open set in \mathbb{R}^d . Show that if $u \in H^1(\Omega) \cap C(\overline{\Omega})$ is a weak solution of $-\operatorname{div}(A\nabla u) + u = f$ in $\mathcal{D}'(\Omega)$, with A elliptic and $f \in L^2(\Omega)$, then

$$\min\left(\inf_{\partial\Omega}u,\inf_{\Omega}f\right)\leq u\leq \max\left(\sup_{\partial\Omega}\sup_{\Omega}f\right).$$

Hint: use Stampacchia's truncations, $G \in C^1(\mathbb{R}), G'(x) > 0$ for x > K, $\lim_{\infty} G(x) \to \infty$ and G(x) = 0 for $x \leq K$, with $K = \max(\sup_{\partial \Omega}, \sup_{\Omega} f) < \infty$.

Proof. We first prove the upper bound. If $\max(\sup_{\partial\Omega}, \sup_{\Omega} f) = \infty$, we are done. Otherwise, define $K := \max(\sup_{\partial\Omega}, \sup_{\Omega} f) < \infty$ and consider v = u - K. Then

$$L(v) = -div(A\nabla u) + u - K = f - K < 0.$$

Testing against $v^+ = \max(v, 0)$, we have

$$\int_{\Omega} A \nabla v \cdot \nabla v^{+} + \int_{\Omega} v v^{+} \leq 0.$$

But

$$\int_{\Omega} A \nabla v \nabla v^+ + \int_{\Omega} v v^+ = \int_{\Omega} A \nabla v^+ \nabla v^+ + \int_{\Omega} v^+ v^+ \ge \theta \int_{\Omega} |\nabla v^+|^2 + \int_{\Omega} |v^+|^2 \ge 0.$$

Thus $v^+ = (u - K)^+ = 0$ in Ω , that is $u \le K$ in Ω . Now we apply the same technique to prove the lower bound. Similarly, define $k := \min \left(\inf_{\partial \Omega} u, \inf_{\Omega} f\right)$. Consider v = u - k, then $L(-v) \le 0$. By the above result, we can conclude that $-v \le 0$ in Ω , that is, $u \ge k$.

Proof. We need to consider both $|\Omega| < \infty$ and $|\Omega| = \infty$. For $|\Omega| < \infty$, the proof is the same as above. $\sup_{\Omega} f < \infty$, $f \in L^2$, we have $\sup_{\Omega} f > 0$. Now test against $(u - k')^+$ where k' > K is arbitrary and then take $k' \to K$.

Exercise 9. Find a counter example for the Maximum principle for a fourth order operator, in one dimension.

Proof. Consider $u=e^{-x^2}$ on $\Omega:=(-\frac{1}{2},\frac{1}{2})$. Define $Lu=-u^{''''}$. Then $Lu=-4e^{-x^2}(4x^4+2x^2+3)<0$ in Ω . But the maximum of u achieves at x=0 instead of the boundary points $x=\{\frac{1}{2},-\frac{1}{2}\}$ as $1=e^0>e^{-\frac{1}{4}}$.