Continuous Optimization

Spring 2025

Exercise 8: Accelerated Gradient Descent

Lecturer: Aurelien Lucchi

Problem 1 (Convergence of GD on quadratic functions):

Consider the quadratic function $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ with bounded minimum and maximum eigenvalues: $\lambda_{\min}(\mathbf{A}) \geq \eta$ and $\|\mathbf{A}\| \leq L$.

1. Show that the gradient descent update can be written as

$$\mathbf{x}_{k+1} = \mathbf{V}(\mathbf{I} - \eta \mathbf{\Lambda})^k \mathbf{V}^{-1} \mathbf{x}_1,$$

where $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}$ (eigen-decomposition).

- 2. What can you conclude about the convergence rate as a function of the eigenvalues?
- 3. Choose $\eta = \frac{1}{L}$. What is the convergence rate of gradient descent?

Problem 2 (Convergence of AGD on quadratic functions):

Consider the quadratic function $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ with bounded minimum and maximum eigenvalues: $\lambda_{\min}(\mathbf{A}) \geq \eta$ and $\|\mathbf{A}\| \leq L$.

- 1. Write AGD as a recursion of the form $\mathbf{w}_k = \mathbf{G}\mathbf{w}_{k-1}$ and give the explicit form of the \mathbf{G} matrix.
- 2. Following a similar analysis to Heavy ball (see lecture notes), write \mathbf{G} as a block matrix and derive the eigenvalues of the \mathbf{G}_i matrices that compose the blocks of \mathbf{G} .
- 3. Bonus (more difficult): Derive a rate of convergence for AGD based on your previous calculations. Compare this rate to the rate of GD obtained in Problem 1.

Problem 3 (Lyapunov analysis of AGD):

We optimize a function $f: \mathbb{R}^d \to \mathbb{R}$ that is convex and ℓ -smooth using Accelerated Gradient Descent (AGD) whose update is

$$\mathbf{y}_k = \mathbf{x}_k + \gamma(\mathbf{x}_k - \mathbf{x}_{k-1})$$
$$\mathbf{x}_{k+1} = \mathbf{y}_k - \eta \nabla f(\mathbf{y}_k).$$

Define the following Lyapunov function $L_k := f(\mathbf{x}_k) + \frac{1}{2\eta} \|\mathbf{x}_k - \mathbf{x}_{k-1}\|^2$. Prove that for $\eta \leq \frac{1}{\ell}$ and $\gamma \in [0, 1]$,

$$L_{k+1} - L_k \le -\frac{1 - \gamma^2}{2\eta} \|\mathbf{x}_k - \mathbf{x}_{k-1}\|^2.$$

Problem 4 (Programming exercise):

Fill in the TODOs in the associated Jupyter Notebook.