Tükrözéscsoportok

Elek Balázs University of Toronto

2019. január 10.

1. Motiváció: Szabályos politópok

- 1.1. Definíció. Vegyünk egy véges S ponthalmazt az \mathbb{R}^n n-dimenziós térben, a ponthalmaz konvex burka $\mathrm{Kb}(S)$ a az S-t tartalmazó összes konvex halmaz metszete.
- **1.2.** Definíció. Egy politóp olyan P részhalmaza \mathbb{R}^n -nek amire igaz hogy P = Kb(S).
- **1.3.** Definíció. A P politóp dimenziója az a legkisebb m-dimenziós altér $V \subset \mathbb{R}^n$ amire igaz hogy $P \subseteq V$.
- 1.4. Példa. Egy 2-dimenziós politóp egy sokszög.

Minden $n \geq 3$ pozitív egészre létezik egy szabályos sokszög

1. ábra. Szabályos sokszögek

A szabályos sokszög megfelelője a 3-politópok közott a szabályos poliéder. Szabályos poliéderből már csak öt darab van.

2. ábra. Szabályos poliéderek

Szabályos 4-politópból hat,

Bármilyen $n \ge 5$ pozitív egészre pedig három szabályos n-politóp létezik. Ezt a tételt (is) beláthatjuk a véges tkrözéscsoportok klasszifikációjából.

3. ábra. Szabályos 4-politópok

2. Szabályos politópok szimmetriái

Vizsgáljuk meg egy szabályos $n\text{-}\mathrm{sz\"{o}g}$ szimmetriáit.

Az n szimmetriatengely mindegyikén át való tükrözéssel kapunk n tükrözést, valamint létezik még n forgatásos

szimmetria.

2.1. Tétel. Egy szabályos n-szög összesen 2n szimmetriával rendelkezik. Továbbá az összes szimmetria kifejezéséhez elegendő 2 szomszédos szimmetriatengelyen át való tükrözés.

Bizonyítás Egy sokszög legfeljebb 2n szimmetriával rendelkezhet, mivel ha tudjuk hogy egy szimmetria hová küld egy csúcsot és egy vele szomszédos élt, akkor a szimmetria determinált. Mivel a 2n előzőleg talált szimmetria mind különböző, az első állítást már beláttuk.

A második állításhoz jelöljük a két szomszédos szimmetriatengelyen át tükrözést s_{α} -val és s_{β} -val. Vegyük észre hogy $r=s_{\alpha}s_{\beta}$ egy $2\pi/n$ szöggel való forgatás, így megkaphatjuk az n különböző forgatást r hatványaiként. Az n különböző tükrözést pedig megaphatjuk $r^ks_{\alpha}r^{-k}$ formában.

A bizonyítás részleteihez vegyük észre hogy

2.2. Feladat. Ha az α egy, a szimmetriasíkra merőleges vektor, és $\vec{x} \in \mathbb{R}^n$, akkor

$$s_{\alpha}(\vec{x}) = \vec{x} - \frac{2(\vec{x} \cdot \alpha)}{(\alpha \cdot \alpha)} \alpha,$$

ahol · a skaláris szorzat.

valamint

2.3. Feladat. Legyen $\vec{x} \in \mathbb{R}^2$, lássuk be a 2.2 használatával hogy $s_{\beta}s_{\alpha}$ egy (a két egyenes által bezárt szög kétszeresével való) forgatás. Tipp: A képlet egyszerűbb ha (az általánosság elvesztése nélkül) feltesszük hogy $\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ és azt hogy $\beta = \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$.

A fenti eredményeket a következőképp összegezhetjük:

- 1. Minden szabályos sokszög szimmetriacsoportja két tükrözés által generált.
- 2. A szimmetriacsoport determinált ha tudjuk a két tükrözés közötti szöget.
- 3. Egy szimmetriacsoporthoz csak egy szabályos sokszög tartozik.

A fentebbi észrevételek természetes általánosítása pedig az alábbi formában igaz:

- 1. Minden szabályos n-politóp szimmetriacsoportja n tükrözés által generált.
- 2. A szimmetriacsoport determinált ha tudjuk a bármely két tükrözés közötti szöget.
- 3. Egy szimmetriacsoporthoz legfeljebb két szabályos n-politóp tartozik (a duális politópok szimmetriacsoportja megegyezik).

Ez alapján ha sikerül klasszifikálnunk a véges tükrözéscsoportokat, ezt felhasználhatjuk a szabályos politópok klasszifikációjához.

3. Gyökrendszerek

3.1. A_2

Térjünk vissza a szabályos háromszög szimmetriáihoz (4. ábra): Fejezzük ki az összes szimmetriát s_{α} és s_{β} szorzataként:

	α	β	$\alpha + \beta$	$-\alpha$	$-\beta$	$-\alpha - \beta$
\overline{e}	α	β	$\alpha + \beta$	$-\alpha$	$-\beta$	$-\alpha - \beta$
s_{lpha}	$-\alpha$	$\alpha + \beta$	β	α	$-\beta - \alpha$	$-\beta$
s_{eta}	$\alpha + \beta$	$-\beta$	α	$-\alpha - \beta$	β	$-\alpha$
$s_{lpha}s_{eta}$	β	$-\alpha - \beta$	$-\alpha$	$-\beta$	$\alpha + \beta$	α
$s_{eta}s_{lpha}$	$-\alpha - \beta$	α	$-\beta$	$\alpha + \beta$	$-\alpha$	β
$s_{lpha}s_{eta}s_{lpha}$	$-\beta$	$-\alpha$	$-\alpha - \beta$	β	α	$\alpha + \beta$

1. táblázat. A szimmetriacsoport reprezentációja az A_2 gyökrendszeren

4. ábra. Az A_2 gyökrendszer

Vegyük észre hogy minden szimmetria permutálja a $\Phi_{A_2} = \{\alpha, \beta, \alpha + \beta, -\alpha, -\beta, -\alpha - \beta\}$ halmazt valamint azt hogy a Φ_{A_2} -n való reprezentáció elegendő a szimmetria leírásához. Ez egy fontos eredmény, mivel így az eredetileg bonyolult geometriai reprezentációt sikerült lecserélnünk egy véges (kombinatorikai) problémára.

3.2. B_2

Próbáljuk ezt megismételni a négyzet esetében (5. ábra): A releváns halmaz ez esetben $\Phi_{B_2} = \{\alpha, \beta, \alpha + \beta, 2\alpha + \beta$

5. ábra. A B_2 gyökrendszer

$$\beta - \alpha, -\beta, -\alpha - \beta, -2\alpha - \beta$$
.

3.1. Feladat. Írjunk fel egy, a 1-höz hasonló táblázatot a Δ_{B_2} gyökrendszerre.

3.3. Általános gyökrendszerek

- **3.2.** Definíció. Egy véges $\Phi \subseteq (\mathbb{R}^n \setminus \{\vec{0}\})$ halmazt akkor nevezünk gyökrendszernek ha
 - $\Phi \cap L_{\alpha} = \{\alpha, -\alpha\} \quad \forall \alpha \in \Phi,$

• $s_{\alpha}\Phi = \Phi \quad \forall \alpha \in \Phi.$

ahol az L_{α} az α vektor által meghatározott (és $\vec{0}$ -n áthaladó) egyenes.

3.3. Feladat. Győződjünk meg róla hogy az A_2 és B_2 gyökrendszerek megfelelnek ezeknek a feltételeknek.

Ekkor definiálhatjuk a W_{Φ} tükrözéscsoportot úgy mint az összes tükrözés $\{s_{\alpha}|\alpha\in\Phi\}$ által generált szimmetriacsoportot. Hasonlóképp, bármilyen véges W tükrözéscsoportból kiindulva kaphatunk egy gyökrendszert ha veszünk minden szimmetriasíkhoz egy rá merőleges két egységvektort, ekkor egy Φ gyökrendszert kapunk amire igaz hogy $W=W_{\Phi}$. Egy tükrözéscsoporthoz több gyökrendszer is tartozhat (például B_2 esetében válaszhattunk nem egységvektorokat is).

- **3.4. Tétel.** 1. Bármely $\Phi \subseteq (\mathbb{R}^n \setminus \{\vec{0}\})$ gyökrendszerre igaz hogy válaszhatunk n **szimpla gyökből** álló Δ halmazt, amelyre igaz hogy az összes többi gyököt felírhatjuk a Δ -ban lévő gyökök csak vagy pozitív vagy csak negatív együtthatós lineáris kombinációjaként.
 - 2. Ha $\alpha, \beta \in \Delta$ és $\alpha \neq \pm \beta$ akkor az α és β által bezárt szög tompaszög vagy derékszög.
 - 3. Elegendő a szimpla gyökök közötti szögeket tudnunk hogy a teljes tükrözéscsoportot leírhassuk.
- **3.5.** Példa. A 6 ábran láthatjuk a 3-dimenziós gyökrendszereket.

6. ábra. A $B_3, C_3, A_3 = D_3$ gyökrendszerek, a szimpla gyökök a pirossal jelöltek ($\vec{0}$ a kockák közepén van).

4. A gyökrendszerek klasszifikációja

A fenti észrevételeink alapján szeretnénk meghatározni az összes lehetséges gyökrendszert. A 3.4 tétel szerint csak a szimpla gyökök közotti páronkénti szögekre van szükség. Ha $\alpha_i, \alpha_j \in \Delta$, $\alpha_i \neq \alpha_j$, és az (általuk meghatarozott skban fekvő) ezekre merőleges egyenesek által bezárt szög θ akkor az $s_{\alpha_i}s_{\alpha_j}$ egy forgatás 2θ szöggel, és mivel a véges tükrözéscsoportokat keressük, létezik egy legkisebb pozitív egész $m_{i,j}$ amire igaz hogy $(2\theta) \cdot m_{i,j} = 2\pi$, tehát

$$(s_{\alpha_i}s_{\alpha_i})^{m_{i,j}} = e.$$

4.1. Definíció. Definiáljunk egy gráfot (a tükrözéscsoport Coxeter-gráfját) aminek rendelkezik minden szimpla gyökhöz egy csúccsal, és két csúcs között van egy él $m_{i,j}$ címkével ha $m_{i,j} \geq 3$ (ha $m_{i,j} = 3$ akkor általában elhagyjuk a címkét).

Lásd a 7. ábrát.

7. ábra. A szabályos háromszög, négyszög es hatszög szimmetriacsoportjainak Coxeter-gráfjai

4.1. Az A_n gyökrendszer

- **4.2. Definíció.** Legyen $\vec{e_i} \in \mathbb{R}^{n+1}$ egy vektor aminek i-edik koordinátája 1 a többi pedig 0. Legyen $A_n = \{\vec{e_i} \vec{e_j} | 1 \le i, j \le n, i \ne j\}$.
- **4.3. Feladat.** Lássuk be hogy A_n egy gyökrendszer.
- **4.4. Feladat.** Lássuk be hogy az A_n gyökrendszer tükrözéscsoporja S_{n+1} , azaz megfelel egy n+1-elemű halmaz permutációinak. Ezt használva lássuk be hogy ez az n-szimplex, (a háromszög és a tetraéder természetes megfelelője n dimenzióban). Tipp: Az n-szimplex természetesen megtalálható R^{n+1} -ben mint a \vec{e}_i vektorok konvex burka.
- **4.5. Feladat.** Lássuk be hogy az A_n Coxeter gráfja a 8 ábrán látható.

8. ábra. The Coxeter graph of A_n

5. Coxeter-gráfok

Az egyszerűség kedvéért tegyük fel hogy $m_{i,j}=2,3$ bármelyik két szimpla gyökre, azaz azt, hogy bármely két szimpla gyök által bezárt szög vagy derékszog vagy 120° . Ekkor a szimpla gyököknek megfelelő tükrözések a következőképp hatnak a szimpla gyökökre (ha $i \neq j$):

$$s_{\alpha_i}(\alpha_j) = \begin{cases} \alpha_j & \text{ha } m_{i,j} = 2\\ \alpha_j + \alpha_i & \text{ha } m_{i,j} = 3 \end{cases}$$

Most azokat a gráfokat keressük amik véges tükrözéscsoportokat eredményeznek. Legyen G egy gráf, a következő játékot fogjuk G-n játszani:

- 1. A gráf csúcsaira számokat fogunk írni, a kezdőpozíció az, hogy egy csúcson 1, a többin pedig 0 van.
- 2. Egy csúcs:
 - (a) szomorú ha a rajta található szám kevesebb mint a szomszédjai számai összegének a fele.
 - (b) **boldog** ha a rajta található szám **egyenlő** a szomszédjai számai összegének a felével.
 - (c) **mániás** ha a rajta található szám **több** mint a szomszédjai számai összegének a fele.
- 3. Keressünk egy szomorú csúcsot, és a jelenlegi száma helyére írjuk egy új számot ami egyenlő a szomszédai számainak összege a régi számával.
- 4. Az előző lépést ismételjük amíg vannak szomorú csúcsok.
- 5.1. Tétel. A fenti játék akkor és csak akkor ér véget ha a G gráf egy véges tükrözéscsoport Coxeter-gráfja.

Bizonyítás(Nagyvonalakban) A játék azt modellezi hogy egy szimpla gyökből hány különböző gyököt találhatunk azáltal hogy a többi szimpla gyöknek megfelelő tükrözéseket végezzük el rajta. Ha ez nem egy véges mennyiség akkor végtelen mennyiségű tükrözés található a tükrözéscsoportban.

5.2. Feladat. Lássuk be hogy a 9 ábrán látható gráfok egyike sem vezet véges tükrözéscsoporthoz (ez nehezebb mint az előző feladatok).

Tipp: Az összes eset bizonyítása hasonló. Az \widetilde{A}_n esetében vegyük észre, hogy a helyzet ahol minden csúcson 1 es szám van (és mindenki boldog) sosem áll elő. Ugyanakkor ezen a konfiguráción semmilyen tükrözés nem változtat. Ezek felhasználásával lásssuk be hogy tetszőlegesen nagy számokat elő tudunk állítani az A_n gráfon.

Ha egy G gráf H algráfjára igaz hogy H nem vezet véges tükrözéscsoporthoz akkor G sem, tehát a fenti feladatban talált gráfok mindegyike "tiltott".

5.3. Feladat. A fenti eredményt felhasználva lássuk be hogy csak a 10 ábrán látható gráfok vezetnek véges tükrözéscsoportokhoz (ez szintén egy nehezebb feladat).

10. ábra. Véges tükrözéscsoportok Coxeter-gráfjai

Tipp: Tegyük fel hogy a vizsgált gráf nem tartalmazza semmilyen az előző feladatban talált tiltott gráfok egyikét. Mivel G nem tartalmazhat kört, ezért G egy fagráf. Ha G-nek nincsenek elágazási pontjai akkor G az A_n gráf. Ez az elágazási pont legfeljebb 3 másik csúccsal lehet szomszédos, mivel G nem tartalmazhatja a \widetilde{D}_3 gráfot. Továbbá G nem tartalmazhat több mint egy elágazási pontot, mivel ekkor tartalmazná a \widetilde{D}_n tiltott gráfot. Már csak azt kell megállapítanunk hogy az elágazási ponttól számítva a gráf ágai milyen hosszúak lehetnek. Mivel az \widetilde{E}_6 gráf tiltott, legalább az egyik ág legfeljebb 1 hosszúságú. Mivel \widetilde{E}_7 tiltott, a második legrovidebb ág legfeljebb 2 hosszúságú. Ha ennek a hossza 1 akkor a D_n esetben vagyunk, ellenkező esetben pedig a gráf E_6 , E_7 vagy E_8 , mivel az \widetilde{E}_8 gráf tiltott.

Már említettük hogy az A_n tükrözéscsoport az n-szimplex szimmetriacsoportja. A B_n/C_n csoport a négyzet/kocka/oktaéder politópcsalád szimmetriacsoportja. Ezen kívül csak a D_n csoport létezik tetszölegesen magas dimenzióban, de ehhez nem tartozik szabályos politóp (a politóp aminek a D_n természetes szimmetriacsoportja az n-kockábol kapható ha a csúcsok felét elhagyjuk).

Hivatkozások

- [1] —, Reflection groups: Notes for a short course at the Ithaca high school senior seminar http://www.math.toronto.edu/~balazse/reflection_groups_2016.pdf
- [2] Humphreys, James E., Introduction to Lie Algebras and Representation Theory, GTM 9, Springer 1972.

- [3] Humphreys, James E., Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics 29, Cambridge University Press 1990.
- [4] Björner, Anders, Brenti, Francesco, Combinatorics of Coxeter Groups, GTM 231, Springer 2005