Модуль 3. Метод прогонки. Вычислительная устойчивость методов

3.1. Введение: вопросы погрешности, устойчивости и сходимости

3.2. Прогонка: описание метода

Ax=b

Методы решения линейных систем:

- прямые
- итерационные

Определение

Методы, которые решают задачу за конечное число арифметических действий, называются <u>прямыми.</u>

Определение

Методы, которые генерируют последовательность, каждый элемент которой может рассматриваться как приближение, называются <u>итерационными</u>.

Правило Крамора, метод Гаусса – прямые методы.

В практическом смысле прямых методов не бывает из-за вычислительной погрешности. На практике часто встречаются задачи большой размерности, с матрицей определенной структуры. Для них придумывают специальные прямые или итерационные методы.

Метод прогонки – это прямой метод решения линейных систем с 3-х диагональной матрицей.

$$(y_0,y_1,\ldots,y_n) \in \mathbb{R}^{n+1}$$

$$(1) \begin{cases} y_0-\chi_1y_1=\mu_1 \\ A_iy_{i-1}-C_iy_i+B_iy_{i+1}=-\phi_i & \text{Коэффициенты } \chi_1,\chi_2,\,A_i,\,C_i,\,B_i,\,\,i=1,n-1 \text{ - известны.} \\ -\chi_2y_{n-1}+y_n=\mu_2 \end{cases}$$

Правая часть: μ_1 , μ_2 , ϕ_i , i=1,n-1

$$\begin{vmatrix} \alpha_1 & \alpha_n \\ \beta_1 & \beta_n \end{vmatrix}$$
 рассматриваются как параметры

Нужно вывести формулы для α и β, вычислить их, а затем по формулам (2) вычислить компоненты

$$\begin{cases} y_0 = \alpha_1 y_1 + \beta_1 \\ y_1 = \alpha_2 y_2 + \beta_2 \\ \bullet & \bullet \\ y_{n-1} = \alpha_n y_n + \beta_n \end{cases}$$

Пусть $\alpha_1 = \chi_1$, $\beta_1 = \mu_1$ подставляем y_{i-1} из (2) в систему (1).

$$A_i(\alpha_i y_i + \beta_i) - C_i y_i + \beta_I y_{i-1} = -\phi_i$$

$$y_i(A_i\alpha_i-C_i)+B_iy_{i+1}=-\phi_i-A_i\beta_i$$

 $y_1 = \alpha_{i+1} y_{i+1} + \beta_{i+1}$

$$\boxed{\left(3**\right)\alpha_{i+1} = \frac{B_i}{C_i - A_i\alpha_i} \quad \beta_{i+1} = \frac{\phi_i + A_i\beta_i}{C_i - A_i\alpha_i} \quad i = 1, n-1} \\ (3*), (3**) - \text{это прямой ход прогонки, эти}$$

вычисления позволяют вычислить все α, и β.

 $y_{n-1}, \ y_n$ — неизвестны $\mu_2, \ \chi_2, \ \alpha_n, \ \beta_n$ — известны

$$\begin{cases} -\chi_2 y_{n-1} + y_n = \mu_2 \\ y_{n-1} = \alpha_n y_n + \beta_n \end{cases}$$
 Из это системы можно выразить $y_n = \frac{-\chi_2 \beta_n - \mu_2}{\chi_2 \alpha_n - 1}$ (4)

Используя формулу (4) и формулу (2) получим все остальные у. Эти вычисления называются обратным ходом прогонки.

$$\begin{cases} y_i = \alpha_{i+1} y_{i+1} + \beta_{i+1}, & i = n-1, 0 \\ y_n = \frac{-\chi_2 \beta_n - \mu_2}{\chi_2 \alpha_n - 1} \end{cases}$$

Оценка числа действий.

	прямой ход	обратный ход	всего
Умножение	2n-2	n+2	3n
Деление	2n-2	1	2n-1
Слож./Выч.	2n-2	n+2	3n

Размерность системы (1) (n+1)*(n+1). Обозначим m=n+1, тогда число действий в методе прогонки выражается через размерность линейной системы, как 8m-9.

<u>Замечание:</u> для систем с 3-х диагональной матрицей большой размерности, прогонка требует числа действий порядка $\sim 8 \text{m}$, а метод Γ аусса $\sim \text{m}^3$.

3.3. Условия применения метода

$$\begin{cases} y_0 - \chi_1 y_1 = \mu_1 \\ A_i y_{i-1} - C_i y_i + B_i y_{i+1} = -\phi_i \\ -\chi_2 y_{n-1} + y_n = \mu_2 \end{cases}$$

Прямой ход прогонки:
$$\alpha_1 = \chi_1$$
, $\beta_1 = \mu_1$ $\alpha_{i+1} = \frac{B_i}{C_i - A_i \alpha_i}$ $\beta_{i+1} = \frac{\varphi_i + A_i \beta_i}{C_i - A_i \alpha_i}$ $i = 1, n-1$

Обратный ход:
$$y_n = \frac{-\chi_2 \beta_n - \mu_2}{\chi_2 \alpha_n - 1}$$
 $y_i = \alpha_{i+1} y_{i+1} + \beta_{i+1}, \quad i = n-1, 0$

Есть много однотипных теорем, гарантирующих выполнения метода прогонки. Эта теорема, как и многие теоремы линейной алгебры использует диагональное преобладание.

2

$$A_{m \circ m} = \begin{bmatrix} a_{11} & \bullet & a_{1m} \\ \bullet & \bullet & \bullet \\ a_{m1} & \bullet & a_{mm} \end{bmatrix}$$
Диагональное преобладание: $\left|a_{ij}\right| > \sum_{i \neq j}^{m} \left|a_{ij}\right| \ i = 1, m$, если выполнено со

знаком ≥ - нестрогое диагональное преобладание.

		0	0	0
			0	0
0				0
0	0			
0	0	0		

Теорема о применимости прогонки:

Пусть в системе (1) все $A_i \neq 0$, все $B_i \neq 0$,

$$(*) \; |C_i| {\geq} |A_i| {+} |B_i|, \; \; i{=}1, n{-}1, \; \; |\chi_1| {\leq} 1, \; \; |\chi_2| {<} 1$$

Тогда при любой правой части μ_1 , μ_2 , ϕ_i , i=1,n-1 система (1) имеет единственное решение и его можно найти методом прогонки.

Доказательство: 1) доказать знаменатель ≠0

2) доказать существование решения.

$$\begin{aligned} 1) \quad |\alpha_1| = |\chi_1| \leq 1 \Longrightarrow |C_i - \alpha_1 A_i| \geq ||C_i| - |\alpha_i| \cdot |A_i|| \geq ||C_i| - |A_i|| > 0, \text{ т.к. } B_i \neq 0 \text{ if } |C_i| \geq |A_i| + |B_i| > |A_i| \\ \left|\alpha_2\right| = \frac{\left|B_i\right|}{\left|C_i - \alpha_i A_i\right|} \leq \frac{\left|B_i\right|}{\left\|C_i\right| - \left|\alpha_i\right|\left|A_i\right|} \leq \frac{\left|B_i\right|}{\left\|C_i\right| - \left|A_i\right|} \leq \frac{\left|B_i\right|}{\left|B_i\right|} = 1 \end{aligned}$$

для всех остальных α_i, β_i по индукции доказывается, что знаменатель $\neq 0$ и все $|\alpha_i| \leq 1$.

$$|1-\alpha_n\chi_2|\ge \|1|-|\alpha_n||\chi_2\|\ge \|1|-|\chi_2\|>0$$
 - знаменатель не обращается в $0!$

- По способу построению полученные у_п являются решениями системы.
 по теореме Гержгорина возможно, что система вырождена.
- в курсе ГА Альтернатива Фредгольма:
- 1) $A_{m \times m}$ Ax = b, $det A \neq 0 \Rightarrow \forall b \exists ! x$
- Ах=b, detA=0⇒ для некоторых b не ∃ х и для некоторых b ∃ много решений.

По Альтернативе Фредгольма линейная система с 3-х диагональной матрицей, удовлетворяет условию (*) не вырождена. (Система имеет решение при \forall b \Rightarrow возможен только 1-й вариант Альтернативы).

3.4. Вычислительная устойчивость прогонки

Определение:

Численный метод называется вычислительно устойчивым, если вычислительная погрешность возникшая на некотором шаге больше не возрастает.

Теорема:

При условиях теоремы о применимости прогонки, этот метод вычислительно устойчив.

<u>Доказательство:</u> обратный ход прогонки: $y_n = \{\text{по формуле}\}$ $y_i = \alpha_{i+1}y_{i+1} + \beta_{i+1}$ i = n-1,0 предположим, что на некотором шаге машина вместо y_k , за счет округления, вычислила \hat{y}_k . $|y_k - \hat{y}_k|$ - вычислительная погрешность шага. $\delta_k = |y_k - \hat{y}_k|$ на следующем шаге должны вычислить $y_{k-1} = \alpha_k y_k + \beta_k$ а вычислим $\hat{y}_{k-1} = \alpha_k \hat{y}_k + \beta_k = \alpha_k \left(y_k - \delta_k\right) + \beta_k = y_{k-1} - \delta_k \alpha_k$, вычислительная погрешность следующего шага при этом составит: $\delta_{k-1} = y_{k-1} - \hat{y}_{k-1} = \delta_k \alpha_k$. Мы рассуждаем, что новые вычислительные погрешности не появляются, а просто вычисляем последствия старой погрешности. $|\delta_{k-1}| \leq |\delta_k|$, т.к. в условиях теоремы о применимости прогонки $|\alpha_k| < 1$.

Выводы:

- 1) Есть много разных вариантов теорем об условиях применения метода прогонки.
- Есть много разных вариантов самой прогонки (циклическая прогонка).
- Есть матричная прогонка с блочной 3-х диагональной матрицей, на диагоналях стоят не нулевые блоки.

К истокам:

- проблемы вычислительной устойчивости решена (теорема)
- проблема сходимости не ставиться, т.к. прогонка дает точное решение линейной системы.