4.1.3. Рефрактометр Аббе

Цель работы: измерить показатели преломления твёрдых и жидких тел в монохроматическом свете.

В работе используются: технический рефрактометр Аббе; осветитель; набор стеклянных образцов; жидкости с неизвестными показателями преломления (глицерин, этиловый спирт); монохлорнафталин; дистиллированная вода.

Теоретическая часть:

1. Формула Лоренц—Лорентца, связывающая показатель преломления n изотропного вещества с числом молекул N в единице объёма и поляризуемостью α молекул вещества:

$$\frac{n^2 - 1}{n^2 + 2} = \frac{4\pi}{3} N\alpha. \tag{1}$$

Также вводят величину удельной рефракции (ρ — плотность вещества):

$$r = \frac{1}{\rho} \frac{n^2 - 1}{n^2 + 2}.$$

Тогда:

$$r = \frac{4\pi}{3} \frac{\alpha}{m_0} = \text{const}$$

2. Для смеси веществ хорошо выполняется соотношение:

$$r = c_1 r_1 + c_2 r_2 + \dots,$$

где r_1, r_2, \ldots — удельные рефракции компонетов, а c_1, c_2, \ldots — их массовые доли. То есть, рефракция обладает свойством аддитивности.

Также вводят понятие атомной рефракции:

$$R = Ar$$

где A — атомная масса элемента. И, аналогично, вводят молекулярную рефракцию R_M :

$$R_M = Mr = \frac{M}{\rho} \frac{n^2 - 1}{n^2 + 2} = \frac{4\pi}{3} N_A \alpha.$$

Тогда:

$$R_M = q_1 A_1 r_1 + q_2 A_2 r_2 + \dots = q_1 R_1 + q_2 R_2 + \dots$$

Определив в ходе работы рефрацкции воды, глицерина и этилового спирта, получим систему:

$$R_{H_2O} = 2R_H + R_O$$

$$R_{C_3H_8O_3} = 3R_C + 8R_H + 3R_O$$

$$R_{C_2H_6O} = 2R_C + 6R_H + R_O$$

Экспериментальная установка:

Принцип работы рефрактометра Аббе

$$\sin \varphi_{\rm np} = \frac{n_1}{n_2}$$

Рис. 1: Предельный угол полного внутреннего отражения (а) и предельный угол преломления (б)

Для измерения показателей преломления используются 2 метода — метод полного внутреннего отражения и метод скользящего луча.

Рис. 2: Ход лучей в рефрактометре при измерении показателя преломления жидкости методом скользящего луча

Рис. 3: Ход лучей в рефрактометре при измерении показателя преломления жидкости методом полного внутреннего отражения

Ход работы:

1. Измерим показатели преломления 3 стеклянных образцов используя оба метода. Для каждого образца проведем по 5 измерений каждым методом. Сведем результаты в таблицу:

Номер эксперимента	1	2	3	4	5	\bar{n}	σ_n
n_1	1.5135	1.514	1.514	1.513	1.512	1.5133	$6 \cdot 10^{-4}$
n_2	1.6535	1.653	1.654	1.652	1.655	1.6535	$7 \cdot 10^{-4}$
n_3	1.652	1.6515	1.652	1.650	1.653	1.6517	$7 \cdot 10^{-4}$

Таблица 1: Метод скользящего луча

Номер эксперимента	1	2	3	4	5	\bar{n}	σ_n
n_1	1.513	1.5145	1.5135	1.514	1.525	1.516	$6 \cdot 10^{-4}$
n_2	1.6485	1.6495	1.650	1.649	1.653	1.650	$7 \cdot 10^{-4}$
n_3	1.6525	1.657	1.658	1.66	1.65	1.6555	$7 \cdot 10^{-4}$

Таблица 2: Метод полного внутреннего отражения

Описание образцов:

- (а) толстый восьмиугльник
- (b) тонкий маленькй прямоугольник
- (с) тонкий большой прямоугольник
- 2. Аналогично измерим показатели преломления глицерина и этилового спирта.

Номер эксперимента	1	2	3	4	5	\bar{n}	σ_n
$n_{C_3H_8O_3}$	1.451	1.452	1.4505	1.4515	1.45	1.451	$2 \cdot 10^{-4}$
$n_{C_2H_6O}$	1.395	1.361	1.360	1.3605	1.359	1.36	$5 \cdot 10^{-4}$

Таблица 3: Метод скользящего луча

Номер эксперимента	1	2	3	4	5	\bar{n}	σ_n
$n_{C_3H_8O_3}$	1.4505	1.4515	1.45	1.452	1.451	1.451	$4 \cdot 10^{-4}$
$n_{C_2H_6O}$	1.390	1.360	1.3605	1.361	1.3595	1.36	$6 \cdot 10^{-4}$

Таблица 4: Метод полного внутреннего отражения

Итого имеем:

$$n_{C_3H_8O_3} = 1.451 \pm 0.0001, \ n_{C_2H_6O} = 1.36 \pm 0.0005.$$

3. Теперь можем вычислить молекулярные рефракции и поляризуемости по формуле (1):

$$R_{H_2O} = 3.67 \frac{\text{cm}^3}{\text{моль}}$$
 $R_{C_3H_8O_3} = 20.35 \frac{\text{cm}^3}{\text{моль}}$
 $R_{C_2H_6O} = 12.86 \frac{\text{cm}^3}{\text{моль}}$

4. Решая сиситему линейных уравнений, находим атомарные рефракции углерода, водорода и кислорода:

$$R_H = 1.11 \frac{\text{см}^3}{\text{моль}}$$
 $R_O = 1.45 \frac{\text{см}^3}{\text{моль}}$
 $R_C = 2.37 \frac{\text{см}^3}{\text{моль}}$

5. Предполагая справедливым правило аддитивности, можем вычислить рефракцию для этилового спирта и его показатель преломления:

$$R_{CH_4O} = 8.27 \frac{\text{cm}^3}{\text{MOJIb}}, \ n_{CH_4O} = 1.33$$

Табличное значение: n=1.33, из чего можно сделать вывод, что наши эккспериментальные данные хорошо согласовываются с теорией.

Для льда по нашим данным получаем: $n_{\mbox{\tiny лёд}}=1.294,$ при табличном значении n=1.31

Вывод:

Измерили показатели преломления твердых и жидких тел в монохроматическом свете при помощи рефрактометра Аббе. Используя метод полного внутреннего отражения и метод скользящего луча, получили одинаковые результаты с большой точностью. Убедились в аддитивности рефракции.