Practical 3: Complex Parametric Forms of Conic Sections

Objective

To represent conic sections (circle, ellipse, hyperbola, and parabola) using complex parametric functions of the form s(t) = x(t) + iy(t), where x(t) and y(t) are real-valued functions.

General Notation

- s(t): Complex-valued function representing the curve.
- a: Shape parameter semi-major axis (ellipse), scale (parabola, hyperbola).
- b: Semi-minor axis (ellipse and vertical hyperbola).
- r: Radius (for circle).
- t: Real parameter.

Complex Parametric Forms of Conic Sections

Conic Type	Real Equation	Complex Parametric Form	Comment
Circle	$x^2 + y^2 = r^2$	$s(t) = r\cos t + ir\sin t$	Circle of radius r , centered at origin.
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$s(t) = a\cos t + ib\sin t$	Stretched circle. a : semimajor, b : semi-minor axis.
Hyperbola (vertical)	$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$	$s(t) = a \tan t + ib \sec t$	Derived from identity $\sec^2 t - \tan^2 t = 1$. Opens up/down.
Hyperbola (rectangular)	xy = 1	$s(t) = t + i\frac{1}{t}$	Exponential form where $x = e^t, y = e^{-t}$. Symmetric hyperbola.
Parabola (horizontal)	$y^2 = 4ax$	$s(t) = at^2 + i \cdot 2at$	Opens rightward. Vertex at origin.

Parabola (v	er-	$x^2 = 4ay$	$s(t) = 2at + i \cdot at^2$	Opens	upward.	Vertex a	at
tical)				origin.			

Conclusion

Using complex-valued parametric functions, conic sections can be uniformly expressed and visualized as s(t) = x(t) + iy(t). This is especially useful in software like Maxima, where plotting complex functions is efficient and elegant.