

DATA

- 306 entries
- 3 Features:
 - Age
 - Year of operation
 - Positive Axillary nodes
- 2 Classes:
 - 1. The patient survived 5 years or longer
 - 2. The patient died within 5 years

Haberman dataset with labels

DATA

- 306 entries
- 3 Features:
 - Age
 - Year of operation
 - Positive Axillary nodes
- 2 Classes:
 - 1. The patient survived 5 years or longer
 - 2. The patient died within 5 years

DATA

- 306 entries
- 3 Features:
 - Age
 - Year of operation
 - Positive Axillary nodes
- 2 Classes:
 - 1. The patient survived 5 years or longer
 - 2. The patient died within 5 years

DATA ANALYSIS

- Amount
- Means
- Min/Max
- Quantiles
- Distributions
 - Priors
 - Covariances

	Age	Year of operation	Positive	axillary nodes
Survive		• • • • • • • • • • • • • • • • • • • •		
count	225	225	225	3
mean	52.018	62.862	2.791	3 1
std	11.012	3.223	5.870	
min	30.000	58.000	0.000	
25%	43.000	60.000	0.000	
50%	52.000	63.000	0.000	
75%	60.000	66.000	3.000	2
max	77.000	69.000	46.000	
Died				
count	81	81	81	3
mean	53.679	62.827	7.457	3
std	10.167	3.342	9.186	
min	34.000	58.000	0.000	
25%	46.000	59.000	1.000	
50%	53.000	63.000	4.000	
75%	61.000	65.000	11.250	
max	83.000	69.000	52.000	

DATA ANALYSIS

- Amount
- Means
- Min/Max
- Quantiles
- Distributions
 - Priors
 - Covariances

Priors = 0.7353 0.2647 Covariances_matrices(:,:,1) = 0.0432 0.0108 -0.0020 0.0108 0.0858 0.0012 -0.0020 0.0012 0.0127 Covariances_matrices(:,:,2) = 0.0368 -0.0095 -0.0032 -0.0038 -0.0095 0.0923 -0.0032 -0.0038 0.0312

Feature selection

• For each possible subset permutation

$$J_{INTER/INTRA} = trace\left(\mathbf{S}_w^{-1}\mathbf{S}_b\right)$$

[Age, Year of operation, Positive axillary nodes]

Feature selection (visual inspection)

• How do these results correlate with an visual insepection of each feature?

Training

- With these results
 - Hard for any classifier to classify with high precision
- Evaluate the following classifiers:
 - Linear classifier (ldc)
 - > Clearly not cut out for such a task
 - Quadratic classifier (qdc)
 - Has potential
 - Nearest Neighbor Classifier (knnc)
 - Has potential

Results

Best subset

Cross validation:

- \rightarrow qdc: [3] \rightarrow 0.236842
- \rightarrow Idc: [3] \rightarrow 0.233083
- \rightarrow knnc:[3] \rightarrow 0.221805

• Performance estimation (testc):

- \rightarrow qdc: [3] \rightarrow 0.35
- \rightarrow Idc: [3] \rightarrow 0.375
- → knnc: [1,3] →0.45

- Idc
 - Decision boundary plot
 - Confusion matrix
 - ROC plot
- qdc
 - Decision boundary plot
 - Confusion matrix
 - ROC plot
- knnc
 - Decision boundary plot
 - Confusion matrix
 - ROC plot

[1,3]

- Idc
 - Decision boundary plot
 - Confusion matrix
 - ROC plot
- qdc
 - Decision boundary plot
 - Confusion matrix
 - ROC plot
- knnc
 - Decision boundary plot
 - Confusion matrix
 - ROC plot

- Idc
 - Contour plot
 - Confusion matrix
 - ROC plot
- qdc
 - Contour plot
 - Confusion matrix
 - ROC plot
- knnc
 - Contour plot
 - Confusion matrix
 - ROC plot

0

6

2

0

2

2

2

2

[3]

- Idc
 - Contour plot
 - Confusion matrix
 - ROC plot
- qdc
 - Contour plot
 - Confusion matrix
 - ROC plot
- knnc
 - Contour plot
 - Confusion matrix
 - ROC plot

