Fisica Sperimentale I (Meccanica, Termodinamica)

Docente: Elisabetta Comini

Ultimo aggiornamento: 15/02/2025

Domande

- Perché sono qua?
- Perché l'universo è organizzato in questo modo?
- Matematica: scienza pura
- La fisica cerca di usare la matematica insieme ad alcune idee per spiegare i fenomeni naturali
- Fondamento di tutte le altre scienze
 - Chimica
 - Biologia

Interesting quotes

- "Truth is ever to be found in simplicity, and not in the multiplicity and confusion of things" — Sir Isaac Newton
- "I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me." Sir Isaac Newton
- "When you start to change the way you look at things, the things you look at change" — Max Planck
- The most beautiful thing we can experience is the mysterious. It is the source of all true art and science. He to whom the emotion is a stranger, who can no longer pause to wonder and stand wrapped in awe, is as good as dead; his eyes are closed. Albert Einstein

Adventures Inside the Atom, 1948 General Electric, George Roussos (public domain)

Cosa impareremo?

- Moto unidimensionale, bidimensionale...
- Le leggi di Newton e le forze
- Il lavoro e l'energia
- L'impulso e quantità di moto
- Momento angolare e momento di torsione
- Pressione, temperatura, principi della termodinamica

Aree della fisica

- Meccanica classica: moto dei corpi grandi rispetto agli atomi (velocità molto più piccole della velocità della luce)
- Relatività
- Elettromagnetismo
- Ottica
- Meccanica quantistica

Metodo scientifico

Metodo scientifico

- La scienza si basa su risultati di osservazioni e di esperimenti.
- I risultati devono essere (almeno in linea di principio) ripetibili e verificabili da altri scienziati.
- I risultati scientifici devono essere confutabili.
- Il metodo sperimentale si fonda sull'autonomia della scienza; essa trova le sue verità indipendentemente dalla filosofia e dalla fede.

Fisica e Misura

- Fisica: scienza basata su osservazioni sperimentali e misure quantitative
- Obiettivo: determinare le leggi che governano i fenomeni naturali
- Campioni di lunghezza, massa e tempo:
 - 1960 Sistema Internazionale SI

Lunghezza: metro

I unahozza (m)

Tabella 1.1 Valori approssimati di alcune lunghezze

	Lunghezza (m)
Distanza dalla Terra del quasar più distante che si conosca	1.4×10^{26}
Distanza dalla Terra della galassia più lontana	9×10^{25}
Distanza dalla Terra della galassia più vicina (Andromeda)	2×10^{22}
Distanza dal Sole della stella più vicina (Proxima Centauri)	4×10^{16}
Un anno-luce	9.46×10^{15}
Raggio medio dell'orbita della Terra attorno al Sole	1.50×10^{11}
Distanza media Terra-Luna	3.84×10^{8}
Distanza dell'equatore dal Polo Nord	1.00×10^{7}
Raggio medio della Terra	6.37×10^{6}
Quota tipica (dalla superficie) di un satellite che orbita attorno alla Terra	2×10^{5}
Lunghezza di un campo di football	9.1×10^{1}
Lunghezza di una mosca	5×10^{-3}
Dimensione minima di un granello di polvere	$\sim 10^{-4}$
Dimensione tipica di una cellula di un organismo vivente	$\sim 10^{-5}$
Diametro dell'atomo di idrogeno	$\sim 10^{-10}$
Diametro del nucleo dell'atomo	$\sim 10^{-14}$
Diametro del protone	$\sim 10^{-15}$

10

 $^{^{1}}$ Per i numeri con più di tre cifre verrà usata la notazione standard internazionale in cui i gruppi di tre cifre sono separati da uno spazio e non da una virgola. Con questa regola 10 000 equivale a ciò che si scrive in notazione americana come 10,000 e $\pi = 3.14159265$ verrà scritto come 3.14159265.

Tabella 1.2

Valori approssimati delle masse di alcuni corpi

Massa (kg)

	\ 0/
Universo oggi	
osservabile	$\sim 10^{52}$
Via Lattea, la no	ostra
galassia	$\sim 10^{42}$
Sole	1.99×10^{30}
Terra	5.98×10^{24}
Luna	7.36×10^{22}
Squalo	$\sim 10^3$
Uomo	$\sim 10^2$
Rana	$\sim 10^{-1}$
Zanzara	$\sim 10^{-5}$
Batterio	$\sim 1 imes 10^{-15}$
Atomo di	
idrogeno	1.67×10^{-27}
Elettrone	9.11×10^{-31}

Massa: chilogrammo

Tabella 1.3 Valori approssimati di alcuni intervalli di tempo

Interva	ıllo di tempo (s)		
Età dell'Universo	$4 imes 10^{17}$		
Età della Terra	1.3×10^{17}		
Durata media degli studi universitari	6.3×10^{8}		
Un anno	3.2×10^{7}		
Un giorno	8.6×10^{4}		
Una lezione in aula	3.0×10^{3}		
Intervallo fra due battiti cardiaci	8×10^{-1}		
Periodo di un'onda sonora udibile	$\sim 10^{-3}$		
Periodo tipico di un'onda radio	$\sim 10^{-6}$		
Periodo di vibrazione di un atomo in			
un solido	$\sim 10^{-13}$		
Periodo delle onde luminose visibili	$\sim 10^{-15}$		
Durata di una collisione fra nuclei	$\sim 10^{-22}$		
Tempo di attraversamento di un prote	one		
da parte della luce	$\sim 10^{-24}$		

Tempo: secondo

Tabella 1.4 Prefissi per le Potenze di Dieci

Potenza	Prefisso	Abbreviazione	Potenza	Prefisso	Abbreviazione
10^{-24}	yocto	y	10^{3}	kilo	k
10^{-21}	zepto	z	10^{6}	mega	M
10^{-18}	atto	a	10^{9}	giga	G
10^{-15}	femto	\mathbf{f}	10^{12}	tera	T
10^{-12}	pico	р	10^{15}	peta	P
10^{-9}	nano	n	10^{18}	exa	E
10^{-6}	micro	μ	10^{21}	zetta	Z
10^{-3}	milli	m	10^{24}	yotta	\mathbf{Y}
10^{-2}	centi	c		•	
10^{-1}	deci	d			

potenze del dieci

Grandezze

- Fondamentali:
 - lunghezza, massa, tempo
- Derivate:
 - area, velocità, densità

Domanda

- In una officina meccanica vengono fabbricati due tipi di camme, una di alluminio ed una di ferro. Entrambe hanno la stessa massa. Quale camma è più grande? (densità alluminio 2.70 × 10³ kg/m³ densità ferro 7.86 × 10³ kg/m³)
- (a) Quella di alluminio.
- (b) Quella di ferro.
- (c) Le due camme hanno le stesse dimensioni.