CAPSTONE PROJECT

SIGN-LINGUAL

BY SIMREN BASRA

PROBLEM STATEMENT

- Over 300 different sign languages are spoken by more than 72 million people worldwide.
- Great disparity between signers and nonsigners.
- To bridge the gap between signers and non-signers, my idea is to develop a machine learning sign language interpreter.

SPRINT 1: INSIGHTS

SPRINT 1: INSIGHTS

<u>SPRINT 2: AN OVERVIEW</u>

MODEL COMPARISON

Model	Train Accuracy	Validation Accuracy	Misclassifications
Logistic Regression	99.99	99.98	G - H [1]
Logistic Regression with Feature Extraction	99.03	98.86	M - S [8] R - D [8] U - R [5]
CNN	99.95	99.93	R - D [3] T -H [1] W -X [1]

FEATURE EXTRACTION

Input Image of A

Image of A after HOG

Image of A after LBP

Colour Histogram

HOG - Histogram of Gradients

LBP - Local Binary Patterns

FEATURE EXTRACTION

<u>CNN</u>

CNN - CONV LAYER 1

CNN - CONV LAYER 2

DATA AUGMENTATION

```
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest'
```


DATA AUGMENTATION

Model	Non -Augmented	Augmented *
Logistic Regression	99.92	25.49
	99.87	17.42
Logistic Regression with Feature Extraction	99.03	40.83
	98.86	36.69
CNN	99.95	78.00
	99.93	94.54

^{*} Augmentation applied on the training data only

NEXT STEPS

MNIST: ASL Dataset

Basic Logistic Regression + Data
Augmentation

Logistic Regression with Feature Extraction

+ Data + Augmentation

Convolutional Neural Network (CNN) Data Augmentation

Real Data

Basic Logistic Regression

Logistic Regression with Feature Extraction

Convolutional Neural Network (CNN) VGG(16)

ResNet(25)

ANY QUESTIONS?

