

Our Dataset

Merged from the largest databases of police violence in America:

Mapping Police Violence, Deadspin, The Washington Post

Consists of all recorded police killings from 2013 - 2020

Individual-Specific Variables

- Age
- Gender
- Race

Location-Specific Variables

- State
- City
- County
- Geography type: Rural/ Urban/ Suburban

Circumstance-Based Variables

- Weapon on victim
- Whether the victim was perceived to be a threat
- Whether the victim suffered from mental illness
- Cause of death
- Description of death
- Whether the police killing was justified under law
- Police agency responsible

How Have Police Killings Changed Over Time?

Small fluctuations over the years: Police violence has not improved in these Top 5 states!

Bottom 5 states have stayed relatively low over the years

Negative Correlation:

Higher education level = Lower police killings

Different Education Levels

Negative Correlation:

Higher income level = Lower police killings

Different Income Levels

Positive Correlation:

Higher share of people of color = Higher police killings

Different Population Racial Makeup

Create 3 new state-level features:

- 1) state_education_level: Proportion of population completed high school in each state
- 2) state_log_income: Log of median household income in each state
- 3) state_white_share: Share of Whites in each state

Creating New Features Using Correlations Observed

Circumstances Surrounding Police Killings

Circumstance 1: Police killings inside residences

Topic Modelling (LDA) Using *Description of Death* Column

Circumstances Surrounding Police Killing

Circumstance 2: Police killings involving vehicles, where victim is fleeing

Topic Modelling (LDA) Using *Description of Death* Column

Circumstances Surrounding Police Killings

Topic 1: Police killings inside residences

Create new binary feature, *home_involved*

Topic 2: Police killings involving vehicles, where victim is fleeing

Create new binary feature, *vehicle_involved*

Create new binary feature, was_fleeing

Creating New Features using Text Mining Results

How Were Victims Killed?

Group into 3 most common causes of death:

- By gunshot
- By taser
- By physical violence (Beaten/ Physical Restraint/ Asphyxiation/ etc)

Create 3 new binary features:

- 1) killed_by_gunshot
- 2) killed_by_taser
- 3) killed_by_physical_violence

Analysis of Cause of Death Column

Gunshot	6982
shot	1437
Gunshot, Taser	237
Taser	221
shot and Tasered	88
Beaten	29
Vehicle	27
Physical Restraint	23
Tasered	13
Physical restraint	9
Asphyxiated	8
Gunshot, Police Dog	5
Other	5
Pepper Spray	4
Taser, Physical Restraint	2
Gunshot, Pepper Spray	2
Taser, Pepper spray, beaten	1
Baton, Pepper Spray, Physical Restraint	1
Bean bag	1
Beaten/Bludgeoned with instrument	1
Bomb	1
Chemical agent/Pepper spray	1
Gunshot, Beanbag Gun	1
Gunshot, Bean Bag Gun	1
Gunshot, Stabbed	1
Taser, Pepper Spray, Beaten	1

Data Transformation to Create Meaningful Features

Were Victims Armed?

<u>Analysis of *Description of Death* Column</u>

Analysis of Weapon On Victim Column

Data Transformation to Create Meaningful Features

Target Encoding: For Categorical Features With Many Levels

Categorical features encoded:

- 1) state: Consists of 50 unique states
- 2) police_agency: Consists of 2866 unique police agencies

What is Target Encoding:

Encode each level with the mean of the target variable for that level

Advantage over One-Hot Encoding:

Does not add to dataset dimensionality

Encoding Categorical Variables

Inspiration for Machine Learning: Does Race Affect How Police Kill?

Inspiration for Machine Learning: Does Race Affect How Police Kill?

Hispanic people are 4x more likely to be killed than White people.

Black people are 2.5x more likely to be killed than White people.

Trend is **consistent** over time

Dependent Variable (Y): *Black*

Shows whether an individual is Black (0 or 1)

Hypothesis

Given that an individual was killed by the police, there is sufficient difference in the manner they were killed to differentiate whether they are Black

Machine Learning

Accuracy Score: 81%

Model 1: Logistic Regression

Accuracy Score: 81%

Model 1: Logistic Regression

Advantages of Random Forest Model:

1) Does not assume linearity between Y and X variables

Able to handle missing values:

 Column justified has over 4000 rows with missing values
 -> We can include it in our Random Forest model but could not in our Logistic Regression model

Model 2: Random Forest

Accuracy Score: 0.74

CFM: [825, 126], [178, 189]

Model 2: Random Forest

Accuracy Score: 0.81

CFM: [868, 60],

Location Encoded [260, 130]

Model 3: Neural Network