Dougy's question on money

7/16/2025

Problem. Doug asked a very interesting question: How many coins do we need to carry if we were to be able to pay any denomination from 0 to 99 cents?

I took the liberty to change his question into something completely different: Given we have enough coins of each kind (Quarters, Dimes, Nickles, and Pennies) in how many different ways can we represent money from 1 to 100 cents?

So here we will examine my question, and ignore his.

Solution. We introduce a function, C(100, Q, D, N, P), representing the number of such combinations, using quarters (Q), dimes (D), nickles (N), and pennies (P)

We make some simple observations. One is that $C(0, \dots) = 1$: There is one combination to pay 0 cents (that is to use no coins!)

Also C(100, Q) = 1 (use 4 quarters), and so on...

1 A simple example

As we begin to dive deeper, we see that C(5, N, P) = 2, the two combinations that can be visualized with the table:

N	P
0	5
1	0

2 Using only Nickles and Pennies

The following tables will come in handy later:

$$C(100, N, P) = 21$$

N	P
0	100
1	95
2	90
20	0

$$C(75, N, P) = 16$$

N	P
0	75
1	70
2	65
15	0

$$C(50, N, P) = 11$$

N	P
0	50
1	45
2	40
10	0

$$C(25, N, P) = 6$$

N	P
0	25
1	20
2	15
5	0

Finally, C(0, N, P) = 1

3 Introducing the Dime!

Given the previous explorations with just Nickles and Pennies, we can build larger tables using the new Dime. Let's start with C(100, D, N, P):

D	N	P	Notice
0	0	100	
0	1	95	
0	2	90	C(100, N, P) = 21 combinations
0			
0	20	0	
1	0	90	
1	1	85	C(90, N, P) combinations
1			
2	C(80, N, P)		
3	C(70, N, P)		
•••			
10	C(0, N, P)=1		

Hence we that C(100, D, N, P) depends on various C(100, N, P), C(90, N, P), etc. Similarly, it's easy to see that:

Q	
0	C(100, D, N, P)
1	C(75, D, N, P)
2	C(50, D, N, P)
3	C(25, D, N, P)
4	C(0, D, N, P)=1

4 Trees with Dimes, Nickles, & Pennies

Figure 1: 116 conbinations (100 cents using D, N, and P)

Figure 2: 72 combinations (75 cents using D, N, and P)

Figure 3: 36 combinations (50 cents using D, N, and P)

Figure 4: 12 combinations (25 cents using D, N, and P)

5 Putting it all together

The last coin, the Quarter, can be used 0, 1, 2, 3, or 4 times. The following tree shows the desired root node, and its dependency on the five previously established values:

Figure 5: 277 combinations (100 cents using Q, D, N, and P)

Thus we see that using all four kind of coins, we have 237 combinations to represent any value from 0 to 100 cents.