დავალებები 1-30-ის პასუხები:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
5						X		X										
δ		X		X					Х								X	X
გ			X							X				X				
Q							X				X				X			
O O	X				X							X	X			X		

	19	20	21	22	23	24	25	26	27	28	29	30
٥					X				X	X		X
δ				X								
გ	X		X				X					
Q		X				X					X	
J								X				

დავალებები 1-30-ის შეფასების სქემა: ყოველი დავალების სწორი პასუხი ფასდება 1 ქულით, ხოლო მცდარი პასუხი - 0 ქულით.

დავალება 31 (5 ქულა)

ბრტყელი კონდენსატორი დამუხტეს და გამორთეს დენის წყაროდან. ამის შემდეგ ფირფიტებს შორის მანძილი 2-ჯერ შეამცირეს. ფირფიტებს შორის ჰაერია. შეუსაბამეთ ციფრებით დანომრილ ფიზიკურ სიდიდეებს ასოებით დანომრილი შესაძლო ცვლილებები. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი \mathbf{X} .

1	კონდენსატორი	l, 0 , 1, ,
- 1	ついしいしいいいいいいん	D 74467WWW7
	7, x0 60 1000 (), x, x, x,	

2. კონდენსატორის მუხტი

3. ძაბვა კონდენსატორზე

4. ველის დაძაბულობა კონდენსატორში

5. კონდენსატორის ენერგია

6. მიზიდულობის ძალა ფირფიტებს შორის

	ສ ຸລ.	6	1	2
ა.	სეს(ვირდა	4 -XJ	('

ბ. შემცირდა 2-ჯერ

გ. არ შეიცვალა

დ. გაიზარდა 2-ჯერ

ე. გაიზარდა 4-ჯერ

ვ. გაიზარდა 8-ჯერ

	1	2	3	4	5	6
ა						
δ			X		X	
გ		X		X		X
გ დ	X					
0						
3						

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

დავალება 32 (5 ქულა) შეუსაბამეთ ციფრებით დანომრილ ფიზიკურ სიდიდეებს ასოებით დანომრილი განზომილებები, რომლებიც გამოსახულია SI სისტემის მირითადი ერთეულებით. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი \mathbf{X} .

- 2. k კულონის მუდმივა
- 3. ელექტრული ტევადობა
- 4. წინაღობა
- 5. მაგნიტური ინდუქცია
- 6. ინდუქციურობა

- ა. $\delta^2 \cdot \beta \partial^4 / (3 \partial \cdot \partial^2)$
- ბ. კგ⁄ (ა∙წმ²)
- გ. კგ \cdot მ 2 / (ა \cdot წმ 3)
- დ. კგ \cdot მ²/ (ა² \cdot წმ³)
- ე. კგ-მ²/ (ა²-წმ²)
- ვ. კგ \cdot მ 3 /(ა $^2\cdot$ წმ 4)

	1	2	3	4	5	6
5			X			
δ					X	
გ	X					
Q				X		
8 @ 3						X
3		X				

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

დავალება 33 (2 ქულა)

ნახატზე გამოსახული ორი ტოლი მუხტიდან თითოეული ${
m A}$ წერტილში ქმნის ${
m E}$ დაძაბულობის ველს.

- 1) განსაზღვრეთ ორივე მუხტით შექმნილი ველის დაძაბულობა A წერტილში;
- 2) განსაზღვრეთ ველის დაძაბულობა A წერტილში, თუ მუხტებს გადავიტანთ შუა B წერტილში.

ამოხსნა:

1) მუხტების მიერ A წერტილში შექმნილი დაძაბულობების ვექტორები მიმართულია სამკუთხედის ფერდების გასწვრივ, ერთმანეთთან ადგენს 60° -იან კუთხეს და, როგორც ვიცით, თითოეული მათგანი მოდულით E-ს ტოლია. ამიტომ, ამოცანის სიმეტრიიდან გამომდინარე, ჯამური ვექტორი მიმართული იქნება ვერტიკალურად. ვერტიკალურ ღერმზე თითოეული ვექტორის გეგმილია $E\cos 30^{\circ} = \frac{1}{2} E\sqrt{3}$, ჯამური დაძაბულობა კი A წერტილში ამ გეგმილების ჯამის ტოლი იქნება: $E_A = E\sqrt{3}$ (1 ქულა)

2) მუხტების B წერტილში გადატანისას მათი დაშორება A წერტილამდე $(2/\sqrt{3})$ -ჯერ მცირდება. ამიტომ თითოეული მუხტი A წერტილში შექმნის $\mathrm{E}(2/\sqrt{3})^2 = \frac{4}{3}\,\mathrm{E}$ -ს ტოლ დაძაბულობას, თანაც შესაბამისი ვექტორები მიმართულია ერთ მხარეს - ვერტიკალურად. სრული დაძაბულობა A წერტილში ტოლი იქნება $\mathrm{E}_\mathrm{A} = \frac{8}{3}\,\mathrm{E}$ (1 ქულა)

დავალება 34 (3 ქულა)

როდესაც სხეული უძრავად ჰკიდია L სიგრძის ძაფზე, ძაფის დაჭიმულობის ძალაა T. ძაფი უძლებს მაქსიმუმ 1,4 T დაჭიმულობას. სხეული გადახარეს, გაათავისუფლეს და მან დაიწყო რხევა. რა მაქსიმალურ h სიმაღლემდე შეიძლება გადავხაროთ ტვირთი, რომ ძაფი არ გაწყდეს რხევის პროცესში? თავისუფალი ვარდნის აჩქარებაა g.

ამოხსწა:

ვიპოვოთ ძაფის დაჭიმულობის F ძალა სხეულის წონასწორობის მდებარეობაში გავლისას. ამ მომენტში სხეულის სიჩქარე იყოს v, მისი მასა აღვნიშნოთ m-ით (ამოცანის პირობის თანახმად T=mg). ენერგიის მუდმივობის გამო $\frac{1}{2}\,mv^2=mgh$, ანუ

წონასწორობის მდებარეობის გავლისას $\ F-mg=rac{1}{L}\,mv^2=rac{2mgh}{L}$, საიდანაც

$$F = mg(1 + \frac{2h}{L})$$
 (1 ქულა)

ეს ძალა არ უნდა აღემატებოდეს $1.4~{
m T}=1.4~{
m mg}$ -ს. ამიტომ $1+\frac{2h}{L}\le 1.4~{
m co}$, საბოლოოდ, $h\le 0.2~{
m L}$

დავალება 35 (5 ქულა)

m მასისა და 2m მასის ძელაკები გადაბმულია ძაფით და მოთავსებულია ჰორიზონტალურ ზედაპირზე. მარჯვენა ძელაკს მოსდეს ჰორიზონტალურად

მიმართული ძალა, რომლის მოდულია F (იხ. ნახ.). თავდაპირველად უგულებელყავით ხახუნი და გამოთვალეთ:

- 1) სისტემის აჩქარება;
- 2) ძაფის დაჭიმულობის ძალა;
- 3) S მანძილის გავლისას სისტემის მიერ შეძენილი კინეტიკური ენერგია;
- 4) ახლა ჩათვალეთ, რომ ძელაკებსა და ზედაპირს შორის ხახუნის კოეფიციენტია μ და გამოთვალეთ ძაფის დაჭიმულობის ძალა. განიხილეთ შესაძლო შემთხვევები. თავისუფალი ვარდნის აჩქარებაა g.

ამოხსნა:

$$1) \ a = \frac{F}{3m} \ (1 \ \text{ქულა})$$

2)
$$F_{\text{QS}} = ma = \frac{F}{3}$$
 (1 ქულა)

4) თუ
$$\mathbf{F} \leq 2 \mu \mathbf{mg}$$
, მაშინ $\mathbf{F}_{\text{QoJ}} = \mathbf{0}$

თუ 2
$$\mu$$
mg < F \leq 3 μ mg, მაშინ F $_{\text{Qo}}$ = F $-$ 2 μ mg

თუ $F>3\mu mg$, მაშინ ვიყენებთ ნიუტონის მეორე კანონს თითოეული სხეულისათვის: $F-F_{\text{და}}-2\mu mg=2ma$, $F_{\text{და}}-\mu mg=ma$.

ამ განტოლებებიდან მიიღება, რომ
$$F_{\text{და}} = \frac{F}{3}$$

სრული ამოხსნა - 2 ქულა

არასრული ამოხსნისას ნაპოვნია მესამე შემთხვევის აჩქარება ან მითითებულია სამი შემთხვევის შესაძლებლობა – 1 ქულა

დავალება 36 (5 ქულა)

ეკრანიდან 90 სმ მანძილზე მოთავსებულია ეკრანის პარალელური სანთელი. 20 სმ ფოკუსური მანძილის მქონე შემკრები ლინზა, რომელიც საწყის მომენტში ეკრანთანაა, მოძრაობს სანთლისაკენ თანაბრად 2 მმ/წმ სიჩქარით. ლინზა ეკრანის პარალელურია. სანთლის ალის სიმაღლეა 2 სმ.

- 1) რისი ტოლია ლინზის ოპტიკური ძალა?
- 2) რა დროის შემდეგ მიიღება პირველად ეკრანზე ალის მკვეთრი გამოსახულება?
- 3) რა სიმაღლის იქნება ალის გამოსახულება ამ მომენტში?
- 4) რა დროის შემდეგ მიიღება მეორედ ეკრანზე ალის მკვეთრი გამოსახულება?
- 5) რა სიმაღლის იქნება ალის გამოსახულება ამ მომენტში?

ამოხსნა:

1) D=1/F=1/0,2 მ=5 დპტრ

2)
$$\frac{1}{F} = \frac{1}{d} + \frac{1}{f}$$
, $d + f = L$, $F = 20$ bd, $L = 90$ bd $\Rightarrow f^2 - 90f + 1800 = 0 \Rightarrow$ $\Rightarrow f_1 = 30$ bd, $f_2 = 60$ bd. $t_1 = f_1/v = 150$ Fd

$$3)\,rac{H_1}{h}=rac{f_1}{L-f_1}$$
 , სადაც $h=2\,$ სმ $\Rightarrow H_1=1\,$ სმ

4)
$$t_2 = f_2/v = 300 \, \text{fd}$$

$$5)\frac{H_2}{h} = \frac{f_2}{L-f_2}$$
 \Rightarrow $H_2 = 4$ ປ₀

შეფასება:

ნაპოვნია ოპტიკური ძალა - 1 ქულა

მოყვანილია
$$\frac{1}{F}=\frac{1}{d}+\frac{1}{f}$$
 , $d+f=L$ ფორმულები - 1 ქულა

გამოყენებულია t=f/v ფორმულა - 1 ქულა

გამოყენებულია
$$\frac{H}{h}=rac{\mathrm{f}}{\mathrm{d}}$$
 ფორმულა - 1 ქულა

მიღებულია ორი მანძილი და შესაბამისად ორი დრო - 1 ქულა

დავალება 37 (2 ქულა)

განსაზღვრეთ, რა კანონით იცვლება დროის განმავლობაში X ღერძზე მოძრავი m მასის სხეულზე მოქმედი ძალის F_x გეგმილი, თუ კოორდინატი იცვლება შემდეგი კანონით: x=Acos ω t, სადაც A და ω მუდმივი სიდიდეებია.

ამოხსნა:

მალის გეგმილისთვის ნიუტონის მეორე კანონის თანახმად გვაქვს $F_x = ma_x$, სადაც აჩქარების გეგმილი a_x უნდა ვიპოვოთ x კოორდინატის დროით ორჯერ გაწარმოებით. პირველი წარმოებულისთვის ანუ სიჩქარისთვის მივიღებთ $\dot{x} = -A\omega \sin \omega t$ (1 ქულა), მეორისთვის კი $a_x = \ddot{x} = -A\omega^2 \cos \omega t$ (1 ქულა).

საზოლოოდ ძალის დროზე დამოკიდებულებისთვის გვექნება F_x = -m $A\omega^2 cos\omega t$.

დავალება 38 (3 ქულა)

განსაზღვრეთ, რა კანონით იცვლება დროის განმავლობაში X ღერძზე მოძრავი \mathbf{m} მასის სხეულის სიჩქარის $\mathbf{v}_{\mathbf{x}}$ გეგმილი, თუ საწყისი სიჩქარის გეგმილია $\mathbf{v}_{\mathbf{0}\mathbf{x}}$ და სხეულზე მოქმედი ჯამური ძალის გეგმილი იცვლება შემდეგი კანონით:

- 1) F_x = At^3 , სადაც A მუდმივი სიდიდეა;
- 2) F_x = $A\cos\omega t$, სადაც A და ω მუდმივი სიდიდეებია;
- 3) F_x = $Asin\omega t$, სადაც A და ω მუდმივი სიდიდეებია.

ამოხსნა:

სამივე შემთხვევაში სიჩქარის გეგმილი უნდა ვიპოვოთ აჩქარების გეგმილის ინტეგრებით საწყისი პირობის გათვალისწინებით, ანუ შემდეგი ფორმულით:

$$v_x = v_{0x} + \int_0^t a_x dt = v_{0x} + \frac{1}{m} \int_0^t F_x dt$$

გვაქვს

$$1) v_x = v_{0x} + \frac{1}{m} \int_0^t At^3 dt = v_{0x} + \frac{At^4}{4m}$$
 (1 ქულა)

$$2) v_x = v_{0x} + \frac{1}{m} \int_0^t A cos\omega t \, dt = v_{0x} + \frac{A sin\omega t}{\omega m}$$
 (1 ქულა)

$$v_x = v_{0x} + \frac{1}{m} \int_0^t A \sin \omega t \, dt = v_{0x} + \frac{A(1 - \cos \omega t)}{\omega m}$$
 (1 ქულა)