CMSC303 Introduction to Theory of Computation, VCU Spring 2017, Assignment 1 Solutions

Total marks: 26 marks + 3 bonus marks for LaTeX

NOTE: As this is a warmup assignment intended to refresh your memory on background material, it will be marked only for completeness, *not* correctness. It is your responsibility to compare your answers with the solutions (to be posted after the due date) to gauge how well you understand the concepts on this assignment.

1 Exercises

- 1. (6 marks) Sipser, Ex. 0.3: Let A be the set $\{x, y, z\}$ and B be the set $\{x, y\}$.
 - (a) (1 mark) Is A a subset of B?
 - (b) (1 mark) Is B a subset of A?
 - (c) (1 mark) What is $A \cup B$?
 - (d) (1 mark) What is $A \cap B$?
 - (e) (1 mark) What is $A \times B$?
 - (f) (1 mark) What is the power set of B?

Solution: (a) No. (b) Yes. (c)
$$A \cup B = \{x, y, z\}$$
. (d) $A \cap B = \{x, y\}$. (e) $A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}$. (f) $P(B) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}$.

2. (2 marks) Sipser, Ex. 0.4: If A has a elements and B has b elements, how many elements are in $A \times B$? Explain your answer.

Solution: $|A \times B| = ab$. Proof: The elements of $A \times B$ are obtained by considering all possible pairings between some $x \in A$ and some $y \in B$. Since A and B have sizes a and b, respectively, the total number of such pairings is ab.

3. (2 marks) Sipser, Ex. 0.5: If C is a set with c elements, how many elements are in the power set of C? Explain your answer.

Solution: $P(C) = 2^c$. Proof: The elements of P(C) are obtained by considering all possible subsets of C. To generate all possible subsets, for each element $x \in C$, we must consider two options: Either we include x in the subset, or we do not. Thus, the total number of ways of generating a subset is 2^c , since there are c elements, and each offers us two distinct ways to create a subset. (Alternatively, one can view this as assigning a bit to each $x \in C$. If and only if the bit i is set to 1, we think of x_i as being in our subset. The number of distinct settings for c bits is then 2^c .)

4. (7 marks) Sipser, Ex. 0.6: Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 10\}$. The unary function $f: X \mapsto Y$ and the binary function $g: X \times Y \mapsto Y$ are described in the following tables.

n	f(n)	g	6	7	8	9	10
1	6	1	10	10	10	10	10
2	7	2	10 7	8	9	10	6
3	6	3	7	7	8	8	9
4	7	4	9	8	7	6	10
5	7 6 7 6	5	7 9 6	6	6	6	6

(a) (1 mark) What is the value of f(2)?

- (b) (2 marks) What are the domain and co-domain of f?
- (c) (1 mark) What is the value of g(2, 10)?
- (d) (2 marks) What are the domain and co-domain of g?
- (e) (1 mark) What is the value of g(4, f(4))?

Solution: (a) f(2) = 7. (b) Co-Domain $(f) = \{6, 7, 8, 9, 10\} = Y$. Domain(f) = X. (c) g(2, 10) = 6. (d) Co-Domain(g) = Y. Domain $(g) = X \times Y$. (e) g(4, f(4)) = 8.

- 5. (3 marks) Sipser, Ex. 0.7: For each part, give a relation that satisfies the condition.
 - (a) (1 mark) Reflexive and symmetric but not transitive. Solution: E.g., differenceIsZeroOrOdd(x,y), which given $x, y \in \mathbb{Z}$, asks whether x-y is either 0 or odd. Reflexivity and symmetry are trivial, transitivity breaks because (1,2) and (2,3) are in the relation, but (1,3) is not. Another example is haveHadLunch-Together(x,y), which asks if person x and person y have ever had lunch together. (many possible answers)
 - (b) (1 mark) Reflexive and transitive but not symmetric. Solution: E.g., lessThanOrEqualTo(x,y), which asks whether (say) for $x, y \in \mathbb{Z}$, is $x \leq y$? (many possible answers)
 - (c) (1 mark) Symmetric and transitive but not reflexive. Solution: E.g., let $D = \{a, b, c\}$. Then, we can define a relation $R: D \times D \mapsto \{\text{TRUE}, \text{FALSE}\}$ as $\{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}$.

2 Problems

1. (2 marks) Sipser, Prob. 0.12 (0.11 in 2nd edition): Find the error in the following proof that all horses are the same color.

CLAIM: In any set of h horses, all horses are the same color.

PROOF: By induction on h.

Base Case: For h = 1. In any set containing just one horse, all horses clearly are the same color.

Induction Step: For $k \ge 1$ assume that the claim is true for h = k and prove that it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses in this set are the same color. Remove one horse from this set to obtain the set H_1 with just k horses. By the induction hypothesis, all the horses in H_1 are the same color. Now replace the removed horse and remove a different one to obtain the set H_2 . By the same argument, all the horses in H_2 are the same color. Therefore all horses in H_2 must be the same color, and the proof is complete.

Solution: The problem is that the inductive step does *not* work for all $h \ge 2$; in particular, it fails for h = 2. This is because when h = 2, we have $H_1 \cap H_2 = \emptyset$, and the argument here works only if we can guarantee $H_1 \cap H_2 \ne \emptyset$ (can you see why?).

2. (4 marks) Prove using induction that

$$\sum_{m=0}^{n} m = \frac{n(n+1)}{2}.$$

Solution: Observation: Since when m=0, no value is contributed to the sum, we can instead evaluate the sum $\sum_{m=1}^{n} m = \frac{n(n+1)}{2}$.

2

Base Case (n=1): Here, $\sum_{m=1}^{1} m = 1$, which also equals $1 \cdot (1+1)/2$.

Inductive Hypothesis: Assume the claim holds for n = k for any $k \ge 1$.

Inductive Step: We prove the claim holds for n = k + 1. Specifically,

$$\sum_{m=1}^{k+1} m = (1+2+\cdots+k)+k+1 = \frac{k(k+1)}{2}+k+1 = \frac{k^2+k+2k+2}{2} = \frac{(k+1)(k+2)}{2},$$

as required, where the second equality holds by the Induction Hypothesis. Hence, by the principle of Mathematical Induction, the claim holds for all $n \geq 1$.