

1/32

Fig. 1 IgE amino acid surface exposure using the Padlan and Davies 1986 model.

Residue	Surface Area	average/5	>50	مہ 80 <	•	
ARG_1	270 222702	orerage/3	/ 30	-00		
	270.322723					
ASP_2	139.374542					
PHE_3	64.298927	117.361489		1	1	
THR_4	46.170193	64.49491		1	0	
PRO_5	66.64106	39.0209532	2	0	0	
PRO_6	5.989833	29.3644934	!	0	0	
* THR_7	12.004753	21.4426604	1	0	Ō	
VAL_8	16.016628	8.6200336	Ś	0	Ō	
LYS_9	6.561028	10.2708042		0 .	Ŏ	
# ILE_10	2.527926	9.5044914		Ŏ	· Ö	
	14.243686	13.375776		Ŏ	Ŏ	
GLN_12	8.173189	19.2992118		Ŏ	Ŏ	
SER_13	35.373051	29.1890154		Ŏ	Ö	
SER_14	36.178207	32.6313328		Ö	0	
CYS_15	51.976944	39.0100884		0		
ASP_16	31.455273	45.6135238		0	0	
GLY_17	40.066967	50.0871888		U 1	0	
GLY_18	68.390228			ı	0	
GLY 19	58.546532	46.9957994		0	0	
HIS 20	36.519997	59.6253914		!	0	P5
PHE 21	94.603233	63.4215874		į.	0	P5
PRO_22		68.1998406		<u>l</u>	0	P5
	59.047947	65.8523506		1	0	P5
PRO_23	92.281494	62.0824146		1	0	- P5
THR 24	46.809082	50.1635586		1	0	P5
ILE_25	17.670317	38.6392736		0	0	
GLN_26	35.008953	21.6261078		0	0	
LEU_27	1.426522	12.5259452		0	0	
LEU_28	7.215665	10.5518628		0	0	
- CYS_29	1.308269	3.5500722		0	0	
LEU_30	7.799905	4.8164434		0	0	
VAL_31	0	4.0672202		0	Ō	
SER_32	7.758378	3.8055664		Ō	Ō	
GLY_33	3.469549	9.5755666		Ŏ	Ŏ	
TYR_34	0	20.7786542		Ŏ	Ŏ	
THR_35	36.649906	28.9967052		Ŏ	Ŏ	
PRO_36	56.015438	50.2230378		ĭ	Ö	D4
GLY_37	48.848633	57.590085		i	Ö	P6 P6
THR_38	109.601212	73.50021		i	Ö	
ILE_39	36.835236	70.1846368		i	0	P6
- ASN_40	116.200531	73.2560022		i	0	P6
ILE_41	39.437572	51.7217026		i	0	P6
THR_42	64.20546	49.2710734		Ó		P6
TRP_43	1.929714	35.2314448		0	0	
LEU_44	24.58209	49.7665942		0	0	
GLU 45	46.002388	50.9119188		1	0	eggerae
S ASP_46	112.113319	74.3084848		1	0	
GLY_47	69.932083	91.0816862		i	0	
GLN_48	118.912544	85.9516244		•	1 105	
VAL_49	108.448097	91.6210626]	1 P1	
::::::::::::::::::::::::::::::::::::::	100.77007/	71.0210020		1	133	

PCT/EP00/01455

MET_50	20.352079	00 420/21/	_	
ASP_51	140.46051	89.4386316]	1 :22.22 2022
VAL_52		77.095856	1 .	0
ASP_53	59.019928	65.664336	1	0
LEU_54	57.198666	72.8180802	1	0
	51.290497	45.9930286	0	0 - 2
SER_55	56.1208	49.3437382	Ō	Ŏ
THR_56	6.335252	47.723164	Ö	ŏ
ALA_57	75.773476	43.8934994	Ŏ	Ŏ
SER_58	49.095795	51.656078	ĭ	0
THR_59	32.142174	59.4056414	i	0
THR_60	94.933693	72.6291262	i	0
GLN_61	45.083069	73.3905916	i	0 P2
GLU_62	141.8909	99.7907822	i	0 T Z
GLY_63	52.903122	90.626043	i	
GLU_64	164.143127	83.4067496	i	1 7
LEU_65	49.109997	57.2201384	i	1
ALA_66	8.986602	47.5504318	Ó	0
SER_67	10.957844	17.0083172	Ö	V
THR_68	4.554589	7.3021006		0
GLN_69	11.432554	7.2534874	0	0
SER_70	0.578914	5.0619186	0	0
GLU_71	8.743536	8.9567614	0	0
LEU_72	0	10.8120506	0	0
THR 73	24.028803	23.2812776	0	0
EU 74	20.709	37.264713	0	0
SER 75	62.925049	69.375269	Õ	0
GLN_76	78.660713	79.6644746	}	0
LYS_77	160.55278	78.1594206	į	0
HIS_78	75.474831	77.9196576	ļ	0 62.1
TRP_79	13.18373	76.6092892	<u> </u>	0:
LEU_80	61.726234	70.354977	Ī	0 P3
SER 81	72.108871	70.354977 73.244224	1	0
ASP_82	129.281219		1	0 - 1
ARG_83	89.921066	81.9731098	1	1
THR_84	56.828159	69.9061278]	0
TYR_85	1.391324	58.6259284	1	0
THR 86	15.707874	32.7696846	0	0
* CYS_87	_	23.8688072	0	0
GLN_88	0 45.416679	12.5031754	0	0
VAL_89	0	24.6922706	0	0
THR 90	62.3368	22.314276	0	0.
TYR 91	3.817901	48.4045714	0	0
GLN 92	130.451477	45.5941352	0	0
84 _ .	31.364498	47.9061642	0	0
GLY_93 HIS_94 THR_95	11.560145	62.7324992	1	0
THR_95	136.468475	91.805003	1	1
PHE_96	149.18042	85.5324108	1	1
PHE_96 GLU_97 ASP_98	99.088516	87.190961	1	1
ASP_98	39.657249	90.6138422	1	1 -
SER_99		75.8683994	1	1
THR_100	28.67455]	62.1985202	1	0
LYS_101	62.741261	62.538042	1	0
E13_101 EYS_102	80.831024 100.786125	61.892236	1	0
CYS_103	100.7001Z)	65.3434144	1	0 P4
ALA_104	36.428219	66.2248162	1	0
ASP 105	45.930443 67.14927	63.0386422	1	0
נטו ונא	67.14827	64.611715	1	0

SUBSTITUTE SHEET (RULE 26)

PCT/EP00/01455

3/32

SER_106 64.900154 71.4769134 1 0

Fig. 2 Scheme 1, solid phase peptide synthesis

Scheme 1

Fig. 4 Chemistry Scheme 4, Peptide/carrier conjugation

Scheme 4

Fig. 5 C67-8 Anti-IgE Data

Fig. 6 Competition assay with soluble IgE and IgE C67-8 peptide.

10000

Serum Dilution

1000000

Fig. 7 PT1079 Anti-IgE Data

Fig. 8 Competition assay with soluble IgE and PT1079 peptide.

Fig. 9 PT1078 Anti-IgE Data

Fig. 10 Competition assay with soluble IgE and PT1078 peptide.

Fig. 11 PT1079gs Anti-IgE Data

Fig. 12 Competition assay with soluble IgE and PT1079 peptide.

Fig. 13 Inhibitory Activity of Mouse BSA-C67-8 induced Antisera

Fig. 14 Inhibitory Activity of Mouse Antisera induced by BSA-1078 and BSA-1079.

Fig.15 Inhibitory Activity of Mouse Antisera induced by HBC-C67-8, HBC-1078, HBC-1079 and HBC-1079gs

Fig. 16 shows the concentration dependent binding of antibody PTmAb0005 and PTmAb0011 to IgE.

WO 00/50460

Fig. 17 shows the concentration dependent inhibition of IgE binding to an Fc∈R1α/IgG construct with antibody PTmAb0005 and PTmAb0011 compared to control.

PCT/EP00/01455

WO 00/50460

Fig. 18 shows the concentration dependent inhibition of IgE binding to clipped ectodomain of Fc€Rlα-bound directly to plastic plates, by antibody PTmAb0005, compared to control.

Fig. 19 shows IgE binding to Fc€RII (CD23) by antibody PTmAb0005 (GE-1) and PTmAb0011.

shows the concentration-dependent blocking of histamine release from allergic human blood basophils with antibody PTmAb0005 and PTmAb0011 compared to control.

Fig. 21

Inhibition of LoIP1-Triggered Histamine Release in Allergic Human Basophils

Fig. 22 PTmAb0011 binding to different IgE.

Fig. 22

C. Binding to Antigen Orientated IgE

D. Binding to Heat Denatured IgE

Fig. 23 Inhibition of IgE Binding to FcεR1α by PTmAb0011.

Fig. 24 Binding of PTmAb0011 to Receptor Bound IgE.

Fig. 25 The effect of PTmAb0011 on IgE binding to FccRII on RPMI 8866 cells.

Fig. 26 Analysis of the effects of PTmAb0011 on IgE binding to Fc€RII on primary human B-cells.

Fig. 27 Effects of PTmAb0011 on IgE secretion from primary human B-cells.

Fig. 28 Anaphylactogenicity of anti-human IgE monoclonal antibodies in allergic (A) and non-allergic (B) human basophils

Fig. 29 Anaphylactogenicity of anti-human IgE antibodies in sensitised (A) and non-sensitised (B) human lung mast cells

Fig. 30 Anaphylactogenicity of anti-human IgE antibodies in RBL J41 cells through human Fc€RI (A) and mouse Fc€RI (B)

Fig. 31 Inhibition of allergen-triggered histamine release in human basophils by PTmAb0011

Fig. 32 Inhibition of passive cutaneous anaphylaxis in Monkey skin by PTmAb0011 and PTmAb0005.

