Signali i sustavi

Drugi međuispit (grupa C) - 5. svibnja 2011.

1. Zadan je signal od 6 uzoraka $x(n) = \{2,0,3,0,3,0\}$. Vrijednost DFT₆ transformacije signala x(n) za k=3 je:

a) X(3) = -1 b) X(3) = 2 - 6j c) X(3) = 2 + 6j d) X(3) = 8 e) X(3) = 10

2.	Izračunajte IDFT ₄ transformaciju spektra $X(k) = \{\underline{4}, 2j, 0, -2j\}.$
	a) $x(n) = \{\underline{1}, 0, 1, 2\}$ b) $x(n) = \{\underline{4}, 0, 4, 8\}$ c) $x(n) = \{\underline{1}, 2, 1, 0\}$ d) $x(n) = \{\underline{4}, 8, 4, 0\}$ e) $x(n) = \{\underline{0}, 2, 4, -2\}$
3.	Zadan je vremenski kontinuirani signal $x(t) = 2\sin(2t) + 2\cos(4t)$. Signal je očitan s frekvencijom očitavanja $\omega_S = 5$ pa je zatim rekonstruiran idealnim interpolatorom. Koji se signal dobiva nakon tog postupka?
	a) $2\sin(t) + 2\sin(2t)$ b) $2\cos(t) + 2\sin(2t)$ c) $2\sin(2t) + 2\cos(4t)$ d) $2\cos(t) + 2\sin(2t) + 2\sin(3t) + 2\cos(4t)$ e) $2\sin(t) + 2\sin(2t) + 2\cos(3t) + 2\cos(4t)$
4.	Razmatramo očitavanje CTFT spektra $X(j\omega)$ vremenski kontinuiranog signala $x(t)$ konačne energije. Koji od sljedećih uvjeta mora biti zadovoljen kako bi mogli očitati spektar u točkama $k\omega_S,\ k\in\mathbb{Z}$, tako da iz dobivenih uzoraka spektra $X(jk\omega_S)$ bude moguća rekonstrukcija polaznog kontinuiranog spektra $X(j\omega)$?
	 a) Najveća frekvencijska komponenta signala x(t) mora biti dvaput manja od ω_S. b) Signal mora biti jednak nuli izvan konačnog segmenta trajana 2π/ω_S. c) Najmanja frekvencijska komponenta signala x(t) mora biti manja od ω_S. d) Najveća frekvencijska komponenta signala x(t) mora biti veća od ω_S. e) Signal mora biti gladak.
5.	Promatramo kontinuirani signal $x(t)=1+\sin(10\pi t)$. Započevši od trenutka $t=0$ s snimili smo 150 ms danog signala. Dobiveni segment smo zatim očitali uz frekvenciju očitavanja $f_S=20$ Hz te smo iz dobivena četiri uzorka izračunali DFT. Koja vrijednost diskretne Fourierove transformacije odgovara kontinuiranoj frekvenciji $\omega=10\pi\mathrm{rad/s}$?

6. Neka je y(t) odziv sustava S na pobudu u(t), dakle y(t) = S(u(t)), te neka je T realan broj. Za sustav S kažemo da je

a) $\forall T: S(u(t-T)) = y(t+T)$ **b)** $\forall T: S(u(t-T)) = y(t-T)$ **c)** $\forall T: u(t-T) = y(t+T)$ **d)** $\forall T: u(t-T) = y(t+T)$ **e)** $\forall T: S(y(t+T)) = u(t+T)$

7. Zadan je sustav $y(n) = e^{-\lambda n}u(n) + \lambda$ gdje je y(n) izlazni signal, u(n) ulazni signal i $\lambda \in \mathbb{C}$ konstanta. Samo jedna od navedenih tvrdni je točna! Koja?

a) Ako je sustav linearan za neki λ onda je i vremenski nepromjenjiv za taj isti λ . **b)** Sustav je nelinaran za svaki λ .

c) Sustav je nekauzalan. d) Sustav je vremenski promjenjiv za svaki λ . e) Sustav je memorijski.

8. Zadan je sustav $y(t) = e^{3t} \mu(t+3)u(t)$ gdje je y(t) izlazni signal i gdje je u(t) ulazni signal. Zadani sustav je:

a) linearan i vremenski nepromjenjiv b) linearan i memorijski c) linearan i vremenski promjenjiv

d) bezmemorijski i vremenski nepromjenjiv e) memorijski i vremenski promjenjiv

9. Za promatrani diskretni sustav je poznato da na tri ulazna signala $u_1(n) = \delta(n), u_2(n) = \mu(n-1)$ i $u_3(n) = \mu(n)$ redom daje odzive $y_1(n) = h(n)$, $y_2(n) = (n-1)h(n)$ i $y_3(n) = h(n)$. Pri tome je h(n) diskretni signal takav da vrijedi h(n) > 1za svaki n. Samo jedna od navedenih tvrdnji je točna! Koja?

a) Zadani sustav je nelinearan i BIBO stabilan. b) Zadani sustav je nelinearan i BIBO nestabilan.

c) Zadani sustav je linearan i BIBO stabilan. d) Zadani sustav je linearan i BIBO nestabilan.

e) Na temelju zadanog nije moguće ispitati linearnost i BIBO stabilnost.

b) 2i **c)** -2i **d)** i/2 **e)** -i/2

vremenski nepromjenjiv ako za svaku pobudu vrijedi:

a) 4

10. Ako je poznato da je $y_1(n) = 7n \mu(n)$ odziv linearnog vremenski nepromjenjivog sustava na pobudu $u_1(n) = \mu(n)$ odredite odziv $y_2(n)$ sustava na pobudu $u_2(n) = 4\delta(n)$.

a) $y_2(n) = 28 \mu(n-1)$ b) $y_2(n) = 28 \mu(n)$ c) $y_2(n) = 7 \mu(n-1)$ d) $y_2(n) = 7n\delta(n)$ e) $y_2(n) = 7 \mu(n)$

- **11.** Sustav $y(n) = u(n^6)$ je:
 - a) BIBO stabilan i nelinearanb) BIBO nestabilan i nelinearan c) BIBO stabilan i vremenski nepromjenjiv
 - d) BIBO stabilan i vremenski promjenjiv e) BIBO nestabilan i vremenski nepromjenjiv
- 12. Izračunajte $(\delta(n+2)*2^n) \cdot \delta(4n-12)$.
 - **a**) 32
- **b)** $32\delta(4n-12)$ **c)** 2^{n-1}
- d) $\frac{1}{4}\delta(4n-12)$
- e) $\frac{1}{64}$
- 13. Izračunajte konvoluciju vremenski diskretnih signala konačnog trajanja $x_1(n) = \delta(n-1) + 2\delta(n-2)$ i $x_2(n) = \delta(n+1) + 2\delta(n-2)$ $\delta(n) + \delta(n-1)$.
 - **a)** $\delta(n) + 3\delta(n-1) + 3\delta(n-2) + 2\delta(n-3)$ **b)** $2\delta(n+3) + 3\delta(n+2) + 3\delta(n+1) + \delta(n)$ **c)** $\delta(n+1) + 3\delta(n) + 3\delta(n-1) + 2\delta(n-2)$

 - **d)** $\delta(n) + 3\delta(n-1) + 3\delta(n-2) + 3\delta(n-3) + 2\delta(n-4)$ **e)** $2\delta(n) + 3\delta(n-1) + 3\delta(n-2) + 3\delta(n-3) + \delta(n-4)$
- 14. Odredite konvoluciju $x_1(t) * x_2(t)$ signala konačnih trajanja zadanih slikom.

- **15.** Ako je poznato da je y(t) = u(t) * h(t) izrazite u(t+5) * h(t-3) preko y(t)!
 - **a)** u(t+5)*h(t-3) = y(t-3) **b)** u(t+5)*h(t-3) = y(t-2) **d)** u(t+5)*h(t-3) = y(t+5) **e)** u(t+5)*h(t-3) = y(t+8)
- c) u(t+5) * h(t-3) = y(t+2)

- **d)** u(t+5) * h(t-3) = y(t+5)
- 16. Impulsni odziv kauzalnog, linearnog i vremenski nepromjenjivog diskretnog sustava opisanog jednadžbom diferencija y(n) - 2y(n-1) + y(n-2) = u(n) je:

 - a) $h(n) = \mu(n)$ b) $h(n) = (1+2n)\mu(n)$ c) $h(n) = (1+n)\mu(n)$ d) $h(n) = (1-n)\mu(n)$ e) $h(n) = (-1)^n\mu(n)$

- 17. Za sustav iz prethodnog zadataka odredite odziv MIRNOG sustava na pobudu $u(n) = 4 \mu(n)$.
 - **a)** $y_m(n) = (2n + 2n^2) \mu(n)$ **b)** $y_m(n) = (4 + 8n) \mu(n)$
- c) $y_m(n) = (4 + 8n + 2n^2) \mu(n)$
- **d)** $y_m(n) = (4 + 6n + 2n^2) \mu(n)$ **e)** $y_m(n) = 2n^2 \mu(n)$
- 18. Promatramo kauzalni sustav zadan jednadžbom $y(n) + \frac{1}{3}y(n-1) = u(n-1)$. Odredite PRISILNI odziv sustava na svevremensku pobudu $u(n) = 10\sin(\frac{\pi}{2}n)$.

 - **a)** $y_p(n) = 3\cos(\frac{\pi}{2}n) 9\sin(\frac{\pi}{2}n)$ **b)** $y_p(n) = -3\cos(\frac{\pi}{2}n) + 9\sin(\frac{\pi}{2}n)$ **c)** $y_p(n) = 3\sin(\frac{\pi}{2}n) 9\cos(\frac{\pi}{2}n)$ **d)** $y_p(n) = -3\sin(\frac{\pi}{2}n) + 9\cos(\frac{\pi}{2}n)$ **e)** $y_p(n) = -3\cos(\frac{\pi}{2}n) 9\sin(\frac{\pi}{2}n)$

- 19. Za sustav iz prethodnog zadatka odredite PRIRODNI odziv ako je poznato da je y(-1) = -39.
 - a) $y_0(n) = 12(-\frac{1}{3})^n \mu(n)$ b) $y_0(n) = 12(-\frac{1}{3})^n \mu(n) + 3\cos(\frac{\pi}{2}n)$ c) $y_0(n) = -(-\frac{1}{3})^n \mu(n)$ d) $y_0(n) = 13(-\frac{1}{3})^n \mu(n)$ e) $y_0(n) = 13(-\frac{1}{3})^n \mu(n) + 3\sin(\frac{\pi}{2}n)$

- **20.** Za kauzalni sustav opisan jednadžbom $y(n) + \frac{1}{3}y(n-1) = u(n)$ odziv mirnog sustava na pobudu $u(n) = \mu(n) \mu(n-10)$ u koraku n = 152 iznosi:

- a) $\frac{1}{4}3^{-152} + \frac{3}{4}$ b) $-\frac{1}{4}3^{-142}$ c) 3^{-152} d) $\frac{1}{4}(3^{-152} 3^{-142})$ e) $\frac{1}{4}(3^{-152} 3^{-144})$