Санкт-Петербургский Политехнический университет Петра Великого

Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе №1 по дисциплине "Анализ данных с интервальной неопределенностью"

Выполнил студент:

Иванов Андрей Игоревич, группа $5040102 \setminus 20201$

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Пос	становка задачи	3
2	Теория		4
	2.1	Интервальная выборка	4
	2.2	Индекс Жаккара	4
	2.3	Оптимальный корректирующий множитель	4
3	3 Реализация		6
4	Результаты		7
	4.1	Выборка X_+	7
	4.2	Выборка X	8
	4.3	Поиск корректирующего множителя R_{opt}	10
	4.4	Выборка $X_+ \cup R_{out} \cdot X$	12

Список иллюстраций

1	График интервальной выборки	7
2	Гистограмма отступов	7
3	График частоты моды	8
4	График интервальной выборки	9
5	Гистограмма отступов	9
6	График частоты моды	10
7	График зависимости $JK(X)$ от R_{opt}	11
8	График интервальной выборки	12
9	График частоты моды	12

1 Постановка задачи

Даны две вещественные выборки X_{+}, X_{-} . Необходимо:

- \bullet Сформировать интервальные выборки $\mathbf{X}_+,\mathbf{X}_-;$
- Реализовать алгоритм вычисления индекса Жаккара;
- Найти оптимальный корректирующий множитель R_{opt} такой, что выборка $\mathbf{X}_{+} \cup R_{opt} \cdot \mathbf{X}_{-}$ была наиболее совместной в смысле индекса Жаккара;
- Реализовать алгоритм поиска моды выборки;

2 Теория

2.1 Интервальная выборка

Формирование выборки происходит следующим образом:

Пусть X - выборка вещественных чисел. Тогда соответствующая интервальная выборка ${\bf X}$ определяется как:

$$\mathbf{X} = \{ (x_i - \delta; x_i + \delta) | x_i \in X, i \in \overline{1, |X|}, \delta = \frac{1}{2^{14}} \}$$
 (1)

2.2 Индекс Жаккара

Степень совместности двух интервалов x и y может быть определена как коэффициент Жаккара:

$$JK(x,y) = \frac{wid(x \wedge y)}{wid(x \vee y)}$$
 (2)

где \wedge и \vee — операции взятия минимума и максимума по включению в полной интервальной арифметике Каухера. Для данной меры совместности справедливо:

$$-1 \le JK(x,y) \le 1 \tag{3}$$

Введенная числовая характеристика JK(x,y) может быть естественным образом обобщена на случай интервальной выборки $X=\{x_k\}_{k=1}^n, k=\overline{1,n}$ для определения ее меры совместности

$$JK(X) = \frac{wid(\bigwedge_k x_k)}{wid(\bigvee_k x_K)} \tag{4}$$

Выражение индекса Жаккара можно переписать используя операции взятия минимума и максимума в соответствии с определением ширины интервала в классической интервальной арифметике:

$$JK(X) = \frac{\min(\overline{x_k}) - \max(\underline{x_k})}{\max(\overline{x_k}) - \min(\underline{x_k})}$$
 (5)

2.3 Оптимальный корректирующий множитель

Для нахождения $R_o pt$ необходимо получить нижнюю и верхнюю границы для последующего уточнения:

$$\underline{R} = \frac{\min(\underline{x_i})}{\max(\overline{x_i})} \tag{6}$$

$$\overline{R} = \frac{max(\underline{x_i})}{min(\overline{x_i})} \tag{7}$$

Уточнение R_opt производится либо итерационно с заданным шагом, либо методом половинного деления. Ввиду лучшей скорости для уточнения был использован метод половинного деления, для наглядного отображения зависимости величины R_{opt} от индекса Жаккара использовался итерационный способ с шагом $\frac{wid(\bigcup X)}{100}$.

3 Реализация

Лабораторная работа выполнена на языке Python $3.10\ c$ помощью загружаемых пакетов NumPy и MatPlotLib. Исходный код лабораторной работы находится на GitHub репозитории.

4 Результаты

4.1 Выборка X_{+}

Рис. 1: График интервальной выборки

Рис. 2: Гистограмма отступов

Рис. 3: График частоты моды

Данные для формирования интервальной выборки X_+ были считаны из файлов

- $\bullet \ +0_5V_4_.txt$
- \bullet ZeroLine_4.txt

Мода выборки: [0.42645, 0.42743]

На показаниях с порядковым номером в районе 1950 наблдюаются выбросы.

4.2 Выборка X_{-}

Рис. 4: График интервальной выборки

Рис. 5: Гистограмма отступов

Рис. 6: График частоты моды

Данные для формирования интервальной выборки X_+ были считаны из файлов

- $\bullet \ \ \text{-}0_5V_8_.txt$
- $\bullet \ \ ZeroLine_8.txt$

Мода выборки: [-0.42511, -0.42511]

На показаниях с порядковым номером в районе 1000 наблюдаются выбросы.

4.3 Поиск корректирующего множителя R_{opt}

Было получено значение корректирующегомножителя

$$R_{opt} = -1.0000042926186499 \tag{8}$$

с соответствующим индексом Жаккара:

$$JK(X_{+} \cup R_{opt} \cdot X_{-}) = -0.9971593104169201 \tag{9}$$

Рис. 7: График зависимости JK(X) от R_{opt}

4.4 Выборка $X_+ \cup R_{opt} \cdot X_-$

Рис. 8: График интервальной выборки

Рис. 9: График частоты моды