CMS HL-LHC PROJECTION FOR NON-RESONANT DI-HIGGS PRODUCTION IN THE $b\underline{b}\tau\underline{\tau}$ DECAY CHANNEL

WEW PHILIP

Posters@LHCC, CERN 27/02/19

A summary of the analysis documented in CMS-PAS-FTR-18-019 [1], performed on behalf of the CMS Collaboration by:

Miguel Bengala, Michele Gallinaro, Rodrigo Santo, Giles Strong, and Luca Cadamuro

I—INTRODUCTION

- One parameter of the Higgs boson which we have yet to measure is the strength at which the Higgs boson couples to itself, $\lambda_{\rm hhh}$
- Precise measurements of the Higgs self-coupling are most easily performed using events in which two Higgs boson are produced
- The tiny cross-sections for such events mean that only the HL-LHC and beyond will be capable of detecting a statistically significant number of them
- In this analysis we performed a projection of the sensitivity of the HL-LHC to di-Higgs production using decays to $bb\tau\tau$, a channel which offers
 - The high branching ratio of $h \rightarrow bb$ (58.24%)
 - The QCD-suppressing source of light leptons of $h \rightarrow \tau \tau$ (BR = 6.23%)
- The results of this analysis are then combined with orthogonal analyses for other di-Higgs decay channels

II—DATA & SELECTION

- 14 *TeV* signal and background Monte Carlo samples are generated
 - Signal production cross-section = 36.69 $fb \times BR_{bb\tau\tau}$ [2]
- Delphes [3] detector simulation is used to reconstruct objects, using dedicated tagging efficiencies
- b-tagging assumes the MIP timing detector exists
- \circ τ -tagging assumes an MVA-based discriminator
- Object selection assumes an L1 trigger menu with similar thresholds to those of Run-II
- Kinematic selection follows the Run-II analysis [4] with the exception that no cuts are applied to the masses of the Higgs bosons
- We select events into one of three exclusive categories according to the $\tau\tau$ decay channel:

Channel	# events events @ $\mathcal{L}_{int.}$ = 3000 fb ^{-/}	
	Signal	Background
μau_h	100	4.3×10 ⁶
$e au_h$	70	2.9×10^6
$oldsymbol{ au}_h oldsymbol{ au}_h$	60	1.3×10 ⁵

III—DNN DEVELOPMENT

- The dataset of simulated signal and background events was divided into two equally sized subsamples
- A pair of discriminators are trained, one on each half of the data
- A total of 52 input variables were used, split into:
 - basic (27), e.g. final state 4-momenta and p_{T}^{Miss}
 - high-level-reconstructed (21), e.g. Higgs 4-momenta
 - high-level-global (4), e.g. s_T and jet multiplicity
- The final architecture consists of a pair of weighted ensembles of 10 fully-connected Deep Neural Networks (DNN), each with:
 - 3 hidden layers of 100 neurons
 - SELU activation functions [5]
 - NADAM optimisation [6]
 - Single sigmoid output signal or background
- Models are trained via cross-validation
 - An Initial pre-training is run without sample weights
- The main training phase with sample weights is then performed
- The learning-rate follows a cosine cycle with warm restarts [7]
- Data augmentation is applied to events during training and inference, consisting of
 - lacktriangle rotations over the azimuthal angle, ϕ
- x- and y-axis reflections

 $h_{b\bar{b}}$ mass [GeV]

Implemented in Keras [8] with Tensorflow backend [9]

IV—RESULTS

- The class prediction per event of the DNN ensembles is used as a summary statistic of the data
 - The distributions of class prediction in each of the three channels are binned as histograms
 - A shape analysis is performed using all three channels simultaneously
- Expected systematic uncertainties are accounted for during the fit
- ullet For standard model coupling we expect a signal significance of 1.4 (1.6) σ with(out) systematic uncertainties
- In absence of standard model non resonant production, this would correspond to 95% CL cross-section upper limits of 1.4 (1.3) times the standard model cross-section with(out) systematic uncertainties
- We then extend these results for a range of κ_{λ} by reweighting the signal events to match different coupling values

Negative log-likelihood for κ_{λ} assuming standard model di-Higgs production

Left: 2D Higgs mass distributions for signal (top) and background (bottom) Above: Example prediction distribution shown for events in the $bb\tau_h\tau_h$ channel

BIBLIOGRAPHY

- I. CMS Collaboration, Sirunyan A. et al Prospects for HH measurements at the HL-LHC, CMS-PAS-FTR-18-019 (2018)
- 2. LHC Higgs Cross Section Working Group, de Florian D. et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, CERN Yellow Reports: Monographs (2016), arXiv:1610.07922 [hep-ph], 0.23731/CYRM-2017-002
- 3. DELPHES 3 Collaboration, de Favereau J. et al. DELPHES 3, A modular framework for fast simulation of a generic collider experiment, J. High Energ. Phys. **02** (2014) 57, arXiv:1307.6346 [hep-ex], 10.1007/JHEP02(2014)057
- 4. CMS Collaboration, Sirunyan A. et al Search for pair production of Higgs bosons in the two tau leptons and two bottom quarks final state using proton-proton collisions at sqrt(s) = 13 TeV, Phys. Lett. **B778** (2018) 101-127, arXiv:1707.02909 [hep-ex], 10.1016/j.physletb.2018.01.001
- 5. Klambauer G., Unterthiner T., Mayr A., & Hochreiter S. Self-Normalizing Neural Networks, CoRR (2017), arXiv:1706.02515 [cs.LG]
- 6. Dozat T. Incorporating Nesterov Momentum into Adam, ICLR (2016)
- 7. Loshchilov I. & Hutter F. SGDR: Stochastic Gradient Descent with Warm Restarts, CoRR (2016), arXiv:1608.03983 [cs.LG]
- 8. Chollet F, Keras. https://keras.io (2015)
- 9. Abadi M. et al., *TensorFlow: Large-scale machine learning on heterogeneous systems*, http://tensorflow.org/ (2015), arXiv:1603.04467 [cs.DC]