# **Curso Machine Learning**

Tema 2: Probabilidad y Estadística, conceptos básicos.

Magdalena Lucini, Sebastián Filipigh, Luis Duarte

FaCENA - UNNE - 2023

## Introducción

## Estadística

## Algunas definiciones:

- Disciplina científica que se ocupa de la obtención, orden y análisis de un conjunto de datos con el fin de obtener explicaciones y predicciones sobre fenómenos observados.
- Disciplina que estudia la variabilidad, recolección, organización, análisis, interpretación y presentación de los datos, así como el proceso aleatorio que los genera siguiendo las leyes de la probabilidad
- Ciencia que se ocupa de la recolección, resumen, análisis, e interpretación de hechos o datos numéricos.

## **Algunos objetivos**

- ► Extraer conocimiento a partir de un conjunto de datos, con el fin de tomar decisiones en base a la mejor información posible (siempre existe incertidumbre).
- Obtener información de una población, sin necesidad de estudiar todos los elementos que la componen.
- Sacar conclusiones sobre alguna característica de una población en base a una muestra respresentativa de la misma

## Introducción



## Introducción

#### Estadística Descriptiva:

- Herramientas para resumir un conjunto de datos (modelados como realizaciones de una variable aleatoria), a través de ciertas medidas numéricas. Representa la información de una manera distinta para facilitar su interpretación, pero no permite realizar predicciones o inferencias
- Muchos datos (modelados como realizaciones de alguna variable/vector aleatorio): recolectar/resumir/presentar/graficar/analizar.
- Métodos no supervisados (reducción de dimensionailidad)
- Facilita interpretación, NO permite realizar predicciones o inferencias.

#### Estadística Inferencial

- ▶ Usar datos disponibles para aprender, predecir, hacer generalizaciones , etc.
- Estimar, predecir, inferir, pronosticar, ajustar, etc
- Pruebas de hipótesis, regresión, clasificación, etc.

# Algunos conceptos de Estadística Descriptiva

## Organización y Presentación de resultados

- Representaciones tabulares (tablas): 1<sup>er</sup> paso en la organización de datos, que se ordenan en filas y columnas para documentar y comunicar la información.
- Representaciones gráficas (histogramas, gráficos de barras, circulares, etc): brindan un resumen visual de los datos.
- Medidas descriptivas numéricas (variables cuantitativas): medidas de tendencia central, posición, dispersión, forma.
- Dependiendo del tipo de datos e información a comunicar se elegirá qué tipo de representación utilizar.

## Ejemplo: Base de datos diabetes gestacional

Base de datos con información de un estudio observacional de factores de riesgo en la presencia de Diabetes Gestacional (DG), llevado a cabo en un grupo de 48 mujeres en el año 2018 en la ciudad de Córdoba, Argentina.

| caso_control | Respuesta: Presencia o ausencia de Diab. Gestaciona | al (DG) 0= no tiene DG 1= tiene DG                     |
|--------------|-----------------------------------------------------|--------------------------------------------------------|
| Edad         | Edad en años                                        |                                                        |
| estacivil    | Estado civil:                                       | 1 casada 2=concubina 3= separada                       |
| Pp           | Peso pregestacional (Kg)                            | 5                                                      |
| Pa           | Peso actual (Kg)                                    |                                                        |
| Talla        | Estatura (m)                                        |                                                        |
| enpregest    | Estado nutricional pregestacional                   | 1= bajo peso 2= peso normal 3= sobrepeso 4= obesidad   |
| Enactual     | Estado nutricional actual                           | 1= bajo peso 2= peso normal 3= sobrepeso 4= obesidad   |
| Obrasoc      | Obra social                                         | 0= no tien 1= si tiene                                 |
| Estudios     | Máximo nivel de estudios alcanzados                 | 1= primario 2= secundario 3= terciario o universitario |
| Estrsoc      | Estrato social                                      | 1= bajo 2= medio 3=alto                                |
| Actfpre      | Actividad física pregestacional                     | 0=NO 1=Si                                              |
| Antdb        | Antecedentes familiares de diabetes                 | 0=NO 1= Si                                             |
| Fumaud       | Estatus de Fumadora previo al embarazo              | 0=NO 1= Si                                             |
| Eg           | Edad estacional (semanas de gestación)              |                                                        |
| comidas_dia  | Cantidad de comidas realizadas al día               |                                                        |
| Vet          | Valor energético total de la dieta (calorías/día)   |                                                        |
| Fe           | Hierro dietario (mg/día)                            |                                                        |
| Calico       | Calcio dietario (mg/día)                            |                                                        |
| Cho          | Carbohidratos dietarios (g/día)                     |                                                        |
| beb_azucar   | Consumo de bebidas azucaradas (cc/día)              |                                                        |

# Base de datos diabetes gestacional

| 1 | caso_control | edad | eg | estacivil    | pp    | pa     | talla | IMC_pg | IMC_actual | enpregest enactual | obrasi | oc estudio | estrsoc | actfpre | antdb | fumaud | comidas_ | vet     | fe    | calcio  | cho    | beb_azucar |
|---|--------------|------|----|--------------|-------|--------|-------|--------|------------|--------------------|--------|------------|---------|---------|-------|--------|----------|---------|-------|---------|--------|------------|
| 2 | Tiene DG     | 30   |    | 35 casada    | 70,00 | 78,00  | 1,60  | 27,34  | 30,47      | 3                  | 2      | 1          | 2 Medio | 0       | 1     |        | 5        | 2243,34 | 16,29 | 621,92  | 450,00 | 98         |
| 3 | No tiene DG  | 31   |    | 28 casada    | 58,50 | 63,00  | 1,65  | 21,49  | 23,14      | 2                  | 2      | 1          | 3 Alto  | 1       | 1     |        | 1 4      | 2449,85 | 17,83 | 621,79  | 223,04 | 114,2      |
| 1 | No tiene DG  | 33   |    | 36 casada    | 55,00 | 66,00  | 1,53  | 23,50  | 28,19      | 2                  | 2      | 1          | 3 Alto  | 1       | 0     |        | 3        | 2321,03 | 16,96 | 426,21  | 310,97 | 228,5      |
| 5 | Tiene DG     | 30   |    | 28 Concubina | 83,00 | 90,00  | 1,60  | 32,42  | 35,16      | 4                  | 3      | 1          | 3 Bajo  | 0       | 1     |        | 1 4      | 5034,36 | 35,96 | 1134,84 | 483,74 | 914,2      |
| 5 | No tiene DG  | 32   |    | 35 casada    | 79,00 | 86,00  | 1,60  | 30,86  | 33,59      | 4                  | 3      | 1          | 2 Bajo  | 0       | 0     |        | 1 2      | 2546,82 | 19,28 | 355,20  | 197,48 | 50         |
| 7 | No tiene DG  | 31   |    | 39 Concubina | 61,00 | 75,00  | 1,60  | 23,83  | 29,30      | 2                  | 2      | 1          | 1 Alto  | 1       | 0     |        | 5        | 2314,75 | 13,21 | 772,41  | 265,15 | 342,8      |
| 3 | Tiene DG     | 21   |    | 38 casada    | 80,00 | 88,00  | 1,65  | 29,38  | 32,32      | 3                  | 3      | 1          | 1 Bajo  | 0       | 1     |        | 0 2      | 3662,79 | 26,34 | 721,94  | 391,02 | 32         |
| 9 | No tiene DG  | 23   |    | 34 casada    | 49,00 | 54,00  | 1,56  | 20,13  | 22,19      | 2                  | 1      | 1          | 2 Bajo  | 0       | 1     |        | 9 4      | 2251,56 | 16,92 | 594,60  | 266,94 | 12         |
| 0 | No tiene DG  | 18   |    | 37 casada    | 49,00 | 64,00  | 1,73  | 16,37  | 21,38      | 1                  | 1      | 1          | 2 Bajo  | 1       | 1     |        | 3        | 2106,17 | 19,77 | 635,10  | 235,01 | 85,7       |
| 1 | Tiene DG     | 25   |    | 33 casada    | 60,00 | 53,00  | 1,58  | 24,03  | 21,23      | 2                  | 1      | 1          | 1 Bajo  | 0       | 1     |        | 1 4      | 2540,21 | 14,23 | 854,70  | 304,35 | 91         |
| 2 | No tiene DG  | 23   |    | 37 casada    | 56,00 | 65,00  | 1,55  | 23,31  | 27,06      | 2                  | 2      | 1          | 2 Medio | 0       | 1     |        | 3        | 3522,14 | 17,67 | 1180,48 | 367,18 | 40         |
| 3 | No tiene DG  | 26   |    | 37 casada    | 57,00 | 72,00  | 1,62  | 21,72  | 27,43      | 2                  | 2      | 1          | 2 Medio | 0       | 1     |        | 0 4      | 2082,93 | 11,17 | 791,40  | 242,73 | 571,4      |
| 4 | Tiene DG     | 27   |    | 37 casada    | 91,00 | 100,00 | 1,73  | 30,41  | 33,41      | 4                  | 3      | 1          | 3 Alto  | 0       | 1     |        | 0 4      | 2496,39 | 24,55 | 876,59  | 311,40 | 87         |
| 5 | No tiene DG  | 29   |    | 28 casada    | 48,00 | 55,50  | 1,60  | 18,75  | 21,68      | 2                  | 1      | 1          | 2 Medio | 1       | 0     | 1      | 5        | 3575,05 | 19,56 | 790,66  | 368,00 | 428,5      |
| 6 | No tiene DG  | 29   |    | 39 casada    | 55,00 | 63,00  | 1,59  | 21,76  | 24,92      | 2                  | 2      | 1          | 2 Medio | 0       | 1     |        | 0 4      | 3698,53 | 14,92 | 952,02  | 307,74 | 66         |
| 7 | Tiene DG     | 24   |    | 30 casada    | 62,00 | 70,50  | 1,50  | 27,56  | 31,33      | 3                  | 3      | 0          | 2 Bajo  | 1       | 1     |        | 1 3      | 2916,38 | 13,06 | 978,96  | 241,45 | 457,1      |
| 8 | No tiene DG  | 26   |    | 37 casada    | 58,00 | 74,00  | 1,67  | 20,80  | 26,53      | 2                  | 2      | 0          | 3 Alto  | 0       | 1     |        | 1 4      | 2994,17 | 22,68 | 266,88  | 301,74 |            |
| 9 | No tiene DG  | 21   |    | 38 casada    | 68,00 | 80,00  | 1,60  | 26,56  | 31,25      | 3                  | 2      | 0          | 2 Medio | 1       | 1     | - 1    | 3        | 3550,62 | 29,40 | 937,04  | 369,79 | 23         |
| 0 | Tiene DG     | 32   |    | 39 casada    | 68,00 | 78,00  | 1,73  | 22,72  | 26,06      | 2                  | 2      | 1          | 2 Medio | 0       | 1     |        | 1 4      | 3212,56 | 24,87 | 399,52  | 383,47 | 80         |

## Generalidades

En general, una base de datos es del tipo:

$$\mathbf{x} = \left[ \begin{array}{ccc} x_1(t_1) & \dots & x_p(t_1) \\ \vdots & \ddots & \vdots \\ x_1(t_n) & \dots & x_p(t_n) \end{array} \right]$$

- x<sub>i</sub>= variables, i = 1 ... p (Cualquier característica susceptibles de tomar distintos estados entre unidades elementales, o que varían dentro de una misma unidad elemental a través del tiempo)
- ▶  $t_j$  = tiempo, observaciones, realizaciones, etc. j = 1, ..., nEs usual agupar los elementos de **x** por
- Filas (clustering)
- Columnas (correlación)

# Estadística descriptiva: Tipos de variables

## Cualitativas

Expresan una cualidad o propiedad que el objeto en estudio tiene o no, o bien lo tiene en distinto grado. Pueden ser **DICOTÓMICAS**:dos categorías o clases (ej: género al nacer) ó **POLICOTÓMICAS**:más de dos categorías (ej: nivel de estudios alcanzado)

## Cuantitativas

Asumen valores numéricos. Expresan una cantidad.

- Discretas: Surgen de contar. Son aquellas que sólo toman valores discretos dentro de su campo de variación (ej: cantidad de materias aprobadas)
- Continuas: Surgen de medir. Toman cualquier valor dentro de su rango de variación (ej: altura de un alumno).

# Algunos gráficos variables cualitativas:

### Gráfico de sectores



Figura: Número de comidas al día

### Gráfico de barras



Figura: Número de comidas al día, discriminados por estrato social

# Algunos gráficos variables cuantitativas: Histograma y boxplot



## Gráficos



# Medidas descriptivas numéricas - Caso univariado

- Medidas de Tendencia Central Valores numéricos que se obtienen de variables cuantitativas y cuyos resultados se localizan por el centro de la distribución. Ej: Media (promedio aritmético), Mediana, Moda.
- Medidas de Posición: Valores numéricos que permiten dividir la distribución de datos en partes iguales. Ej: Cuartiles, Deciles, Percentiles.
- Medidas de Dispersión: Valores numéricos que proporcionan una idea sobre cuan esparcidos o concentrados están los datos correspondientes a una variable. Ej: Rango, Rango intercuartílico, varianza, desviación estandar, coeficiente de variación.
- Medidas de Forma: Dan una idea de la forma de la distribución de la variable. Ej: Coeficiente de asimetría, de kurtosis (apuntamiento).

# Media y Varianza: Caso univariado, datos sin agrupar

X variable en estudio, n tamaño de la muestra,  $x_1; \ldots; x_n$  valores que asume la variable,

► Varianza: 
$$Var(x) = s_x^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

► Desviación estándar:  $\sqrt{s_x^2}$ 

## Caso multivariado: Matriz de Covarianza

$$\mathbf{S} = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x} - \bar{\mathbf{x}})^{T} (\mathbf{x} - \bar{\mathbf{x}})$$

donde:

$$\bar{\mathbf{X}} = \begin{bmatrix} x_1 & \dots & x_p \\ \vdots & \ddots & \vdots \\ \bar{x}_1 & \dots & \bar{x}_p \end{bmatrix}$$

donde:
Matriz de medias
$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{x}_1 & \dots & \bar{x}_p \\ \vdots & \ddots & \vdots \\ \bar{x}_1 & \dots & \bar{x}_p \end{bmatrix}$$
Matriz de varianzas-covarianzas
$$\mathbf{S} = \begin{bmatrix} Var(x_1) & \dots & Cov(x_1, x_p) \\ \vdots & \ddots & \vdots \\ Cov(x_p, x_1) & \dots & Var(x_p) \end{bmatrix}$$

$$Cov(x_i, x_j) = s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_i(t_k) - \bar{x}_i)(x_j(t_k) - \bar{x}_j)$$

De forma análoga, y teniendo en cuenta que

$$Corr(x_i, x_j) = \frac{Cov(x_i, x_j)}{s_{x_i}s_{x_i}}$$
 se construye la matriz de correlación.

# Matriz de correlación - heatmap



# Conceptos básicos de Probabilidad

## Variable aleatoria

Una Variable Aleatoria (v.a.) unidimensional es una regla o función X, que asigna a cada elemento del espacio muestral (espacio de estados) **S** un número (real),

$$X:\mathbf{S}
ightarrow\mathbb{R}_{\mathbb{X}}$$

 $R_X$  es el rango de la variable aleatoria.

- ▶ Si  $R_X$  finito o infinito numerable  $\Rightarrow X$  v.a. discreta
- Si existe (a,b) intervalo de números reales  $(a,b) \subset R_X$ 
  - $\Rightarrow$  X v.a. continua

## Variables aleatorias

## Función de distribución acumulada (cdf)

Sea (S, A, P) un espacio de probabilidad y sea X una v.a. definida sobre dicho espacio. La función  $F: \mathbb{R} \to [0, 1]$  definida por

$$F(x) = P(X \le x)$$

es llamada Función de distribución (de probabilidades) de X

## Función de probabilidad de masa (f.p.m)

Si X v.a. discreta que puede asumir los distintos valores  $x_1, x_2, \ldots x_n$  (o  $x_1, x_2, \ldots$  si X puede asumir una cantidad infinita numerable de valores distintos) .

La función de probabilidad de masade X es una función  $p:I\subseteq\mathbb{R}\to[0,1]$  definida como  $p(x_i)=P(X=x_i)=P(\{\omega\in\mathbf{S}:X(\omega)=x_i\})$ 

## Función de densidad de probabilidades (pdf)

Si X v.a continua ,  $F_X(x)=P(X\leq x)$  su función de distribución acumulada, y si existe una función  $f(x)\geq 0$  tal que  $F_X(x)=\int_{-\infty}^x f(s)ds, \ \forall x\in\mathbb{R}$ , entonces f recibe el nombre de función de densidad (de probabilidades) de la v.a. X.

# Algunas distribuciones discretas

# Distribución Binomial $X \sim \mathcal{B}(n, p)$

X = número de éxitos
 observados en las n
 repeticiones de un experimento
 binomial, p= probabilidad de
 éxito en cada repetición

$$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$F(x) = P(X \le x) =$$

$$\sum_{k=0}^{x} \binom{n}{k} p^{k} (1-p)^{n-k}$$

#### prob. masa dist. Binomial



# Algunas distribuciones discretas

# Distribución de Poisson

X v.a que cuenta el número de eventos que ocurre en un intervalo de tiempo (espacio, volumen)  $\Rightarrow X$  tiene distribución de Poisson de parámetro  $\lambda$ ,  $\lambda$  es la tasa media de ocurrencia del evento en un intervalo de tiempo, (espacio, volumen, etc.)

$$P(X = r) = \frac{\lambda^r}{r!} e^{-\lambda}, r = 0, 1, 2, ...$$

$$E(X) = \lambda$$
,  $Var(X) = \lambda$ 

#### prob. masa dist. Poisson



## Distribuciones continuas

Distribución Gaussiana (Normal)

También conocida como distribución gaussiana, es una de las distribuciones más comunmente utilizadas por físicos, químicos e ingenieros ya que

- Si repite un experimento una cierta cantidad de veces entonces la variable que representa el promedio de los resultados tiene aproximadamente una distribución normal.
- Aparece en el estudio de numerosos fenómenos físicos (por ejemplo: velocidad de moléculas (Maxwell))
- Se la denomina "normal" porque representa un gran número de fenómenos en la naturaleza

## Distribución Normal

Si X es una v.a. con Distribución Normal con media  $\mu$  y desviación estándar  $\sigma$ , entonces  $X \sim N(\mu, \sigma^2)$ 

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}} - \infty < x < \infty$$

$$F(x) = \frac{1}{2} \left( 1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma \sqrt{2}}\right) \right), \text{ con } \operatorname{erf}(x) = \frac{2}{\pi} \int_0^z e^{-t^2} dt$$

$$ightharpoonup E(X) = \mu$$

$$V(X) = \sigma^2$$

## Distribución Normal



## Distribución Normal



# Estadística Inferencial: Estimación de parámetros Máxima Verosimilitud (estimación puntual)

### Definiciones:

Sean  $x_1, \dots, x_n$  realizaciones de  $X_1, \dots, X_n$ , muestra aleatoria de una v.a. con función de densidad (o probabilidad de masa) f(x) que involucra a algún parámetro  $\theta$  (la denotaremos  $f(x; \theta)$ ).

- 1. Se define la función de verosimilitud  $\mathcal{L}(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$
- 2. El estimador de máxima verosimilitud del parámetro  $\theta$  es el valor de  $\theta$  que maximiza la función  $\mathcal{L}(x_1, \dots, x_n; \theta)$

# Distribución Gaussiana univariada: estimación de $\mu$ y $\sigma^2$ por MV

Sean  $x_1, \cdots, x_n$  observaciones de  $X_1, \cdots, X_n$  muestra aleatoria de una v.a. con distribución normal  $N(\mu, \sigma^2)$ .

Recordar que  $f(x_i; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$ 

Entonces:

$$\mathcal{L}(x_{1},...,x_{n};\mu,\sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$
$$= \frac{1}{\sigma^{n}(2\pi)^{n/2}} \exp\left(-(1/2\sigma^{2})\sum_{i=1}^{n}(x_{i}-\mu)^{2}\right)$$

# Estimación de $\mu$ y $\sigma^2$ por MV - continuación

- ► Los EMV se denotan por  $\hat{\mu}$  y  $\hat{\sigma^2}$
- $(\hat{\mu}, \hat{\sigma^2}) = \arg\max_{(\mu, \sigma^2)} \mathcal{L}(x_1, \dots, x_n; \mu, \sigma^2)$
- ► Resolver  $\frac{d \ln \mathcal{L}(x_1,...,x_n;\mu,\sigma^2)}{d\mu} = 0$  y  $\frac{d \ln \mathcal{L}(x_1,...,x_n;\mu,\sigma^2)}{d\sigma^2}$
- Resultan
  - $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i,$
  - $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$

## **Vectores Aleatorios**

### **Vectores Aleatorios**

Sea (S, A, P) un espacio de probabilidad y sea  $n \in \mathbb{N}$ . Un Vector Aleatorio n-dimensional  $(X_1, X_2, \dots, X_n)$  es una aplicación del espacio muestral S en  $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \dots \mathbb{R}$ , es decir

$$\mathbf{S} \to \mathbb{R} \times \mathbb{R} \dots \times \mathbb{R}$$
  
 $\omega \to (X_1(\omega), X_2(\omega), \dots, X_n(\omega))$ 

Cada componente del vector aleatorio es una variable aleatoria unidimensional.

## Vectores aleatorios bidimensionales

- Pueden modelarse dos v.a X e Y conjuntamente
- ►  $F_{X,Y}(x,y) = P(X \le x, Y \le y)$  es la función de distribución acumulada conjunta
- ►  $f_{XY}(x, y)$  ( $f_X(x)$ ,  $f_Y(y)$ ) es la densidad conjunta (marginales) de X e Y

# Distribuciones Marginales

Si bien (X, Y) es un "vector aleatorio", tanto X como Y son variables aleatorias unidimensionales, y como tales tienen su propia distribución.

## Distribuciones Marginales

Dada  $F_{XY}(x, y)$  función de distribución conjunta de (X, Y) se define la función de distribución marginal de X como

$$F_X(x) = P(X \le x) = P(X \le x, Y \le +\infty), \ x \in \mathbb{R}$$

Análogamente, se define la función de distribución marginal de Y como

$$F_Y(x) = P(Y \le y) = P(X \le +\infty, Y \le y), \ y \in \mathbb{R}$$

## Densidad marginal caso continuo

(X,Y) va continuo con función de densidad conjunta f(x,y). Las funciones de densidad marginales de X e Y están dadas por

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy, \ x \in \mathbb{R}, f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx \ y \in \mathbb{R}$$



# Distribuciones condicionadas (continuas)

## Distribuciones Condicionadas Continuas

Se definen la función de densidad de X condicionada al valor y de Y (y fijo) como

$$f_{X/Y=y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}, \quad x \in \mathbb{R}$$

y la función de densidad de Y condicionada al valor x de X (x fijo) como

$$f_{Y/X=x})(y)=\frac{f_{XY}(x,y)}{f_{X}(x)}, y\in\mathbb{R}$$

donde  $f_X(x)$  y  $f_Y(y)$  son las densidades marginales de X e Y, respectivamente.

# Distribuciones condicionadas



# Covarianza y correlación

## Covarianza entre X e Y

$$\sigma_{XY} = Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E(XY) - E(X)E(Y)$$

## Correlación entre X e Y

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$



## Dos variables X e Y son independientes si

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

### **Observaciones**

- 1. Si  $\sigma_{XY} = 0$  se dice que X e Y son no correlacionadas o incorreladas.
- 2.  $\rho_{XY}$  indica el grado de relación lineal entre las variables X e Y.
- 3. Si X e Y son independientes, entonces:
  - son no correlacionadas. (La recíproca no es cierta)
  - $f_{X/Y=y}(x) = f_X(x) \text{ y } f_{Y/X=x}(y) = f_Y(y)$
  - $I_{X/Y=y}(X) = I_X(X) \text{ y } I_{Y/X=x}(y) = I_Y(y)$ E(XY)=E(X)E(Y)
  - $\triangleright$  Var(aX+Y)=aVar(X)+Var(Y)

# Distribución Gaussiana Bivariada $\mathcal{N}(\mu, \Sigma)$

$$\mu = E(\mathbf{X}) = [\mu_X, \mu_Y]^T$$

$$\Sigma = \begin{bmatrix} \sigma_X^2 & Cov(X, Y) \\ Cov(Y, X) & \sigma_Y^2 \end{bmatrix}$$

## Función de densidad de probabilidades

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}\left(\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}\right)^T \Sigma^{-1}\left(\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}\right)\right)$$

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2\sigma_X^2\sigma_Y^2(1-\rho^2)}\left(\sigma_Y^2(x-\mu_X)^2 + \sigma_X^2(y-\mu_Y)^2 - \frac{1}{2\sigma_X\sigma_Y\rho(x-\mu_X)(y-\mu_Y)}\right)\right\}$$

# Distribución Gaussiana Bivariada $\mathcal{N}(\mu, \Sigma)$



Figura: pdf distribución Gaussiana bivariada



Figura: curvas nivel pdf distribución Gaussiana bivariada

# Distribución Gaussiana bivariada: matriz de covarianza $\Sigma$



## Propiedades de distribuciones Gaussianas

- Sean  $X_1$  y  $X_2$  dos variables aleatorias gaussianas
- Y =  $X_1 + X_2$  también es gaussiana! (la suma de gaussianas, es gaussiana)



## Propiedades de la suma de variables aleatorias

- $E(X_1 + X_2) = E(X_1) + E(X_2) = \mu_1 + \mu_2$
- $Var(X_1 + X_2) = Var(X_1) + Va(X_2) + 2Cov(X_1, X_2)$

# Distribución Gaussiana multivariada $\mathcal{N}(\mu, \Sigma)$

El vector  $\mathbf{X} = (X_1, \dots, X_n)$  tiene distribución Normal (Gaussiana) multivariada si la función de densidad conjunta está dada por:

$$f_{\mathbf{X}}(x_1, x_2, \dots, x_n) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{X} - \mu)^T \Sigma^{-1}(\mathbf{X} - \mu)\right)$$

donde:

 $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ ,  $\mu = [\mu_{X_1}, \dots, \mu_{X_n}]^T$  es el vector de medias y  $\Sigma$  es a matriz de varianza-covarianza de las  $X_i$ , y  $|\Sigma|$  es el determinante de esa matriz.

### Observaciones

- No hay una expresión analítica para las funciones de verosimilitud.
- Para estimar  $\mu$  y  $\Sigma$  deben usarse otros métodos o técnicas (ej. algoritmo EM)

## Comentarios

- Ejercicios y ejemplos de esta unidad en notebooks jupyter disponibles en página curso
- Bibliogafía sugerida: Bishop C., 2006: Pattern Recognition and Machine Learning. Springer