Traitement des Images Numériques

Morphologie 2019-2020

On effectue une binarisation au niveau 2, on désigne alors par X l'ensemble des pixels de niveau strictement supérieur à 2.

Indiquer le résultat I' de la binarisation

3	1	2	1	2	0
2	3	2	0	2	2
1	0	1	3	2	3
1	0	1	3	3	2
1	2	1	2	3	3
0	1	3	3	1	0
1	1	3	3	3	3
1	1	1	1	2	1

Indiquer le nombre de composantes connexes de X en 4connexité, puis en 8-connexité

En 4 connexité : 5 en 8 connexité : 2

On applique un filtre médian sur l'image I où on considérera un effet miroir pour obtenir une image résultat de même taille que l'image initiale. Indiquer le résultat I' après application du filtre

3	3	1	2	1	2	0	0
3	3	1	2	1	2	0	0
2	2	3	2	0	2	2	2
1	1	0	1	3	2	3	3
1	1	0	1	3	3	2	2
1	1	2	1	2	3	3	3
0	0	1	3	3	1	0	0
1	1	1	3	3	3	3	3
1	1	1	1	1	2	1	1
1	1	1	1	1	2	1	1

3	3	1	2	1	2	0	0
3	3	2	1	2	1	2	0
2	2	2	1	2	2	2	2
1	1	1	1	2	2	2	3
1	1	1	1	2	3	3	2
1	1	1	2	3	3	2	3
0	1	1	2	3	3	3	0
1	1	1	1	3	2	2	3
1	1	1	1	2	2	2	1
1	1	1	1	1	2	1	1

On applique un filtre médian sur l'image I où on considérera un effet miroir pour obtenir une image résultat de même taille que l'image initiale. Indiquer le résultat I" après application du filtre

3	3	1	2	1	2	0	0
3	3	2	1	2	1	2	0
2	2	2	1	2	2	2	2
1	1	1	1	2	2	2	3
1	1	1	1	2	3	3	2
1	1	1	2	3	3	2	3
0	1	1	2	3	3	3	0
1	1	1	1	3	2	2	3
1	1	1	1	2	2	2	1
1	1	1	1	1	2	1	1

3	2	1	2	1	2	
2	2	1	2	2	2	
1	1	1	2	2	2	
1	1	1	2	3	3	
1	1	2	3	3	2	
1	1	2	3	3	3	
1	1	1	3	2	2	
1	1	1	2	2	2	

Indiquer le nombre de composantes connexes de X en 4connexité, puis en 8-connexité

En 4 connexité : 2

en 8 connexité: 2

Appliquer deux fois un filtre médian est-il équivalent à l'application d'un seul filtre médian ? On justifiera la réponse.

3	2	1	2	1	2	
2	2	1	2	2	2	
1	1	1	2	2	2	
1	1	1	2	3	3	
1	1	2	3	3	2	
1	1	2	3	3	3	
1	1	1	3	2	2	
1	1	1	2	2	2	

3	2	1	2	1	2	
2	2	1	2	2	2	
1	1	1	2	2	2	
1	1	1	2	2	3	
1	1	2	3	3	2	
1	1	2	3	3	3	
1	1	1	3	2	2	
1	1	1	2	2	2	

En calculant un produit de convolution de I avec le noyau

$$K = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$
 indiquer le résultat. Que permet de

manière théorique ce produit ?

Préciser l'ensemble des étapes permettant d'atteindre cet

objectif.

3	3	1	2	1	2	0	0	
3	3	1	2	1	2	0	0	
2	2	3	2	0	2	2	2	
1	1	0	1	3 0	2 -1	30	3	
1	1	0	1	3 0	31	20	2	
1	1	2	1	20	3 0	30	3	
0	0	1	3	3	1	0	0	
1	1	1	3	3	3	3	3	
1	1	1	1	1	2	1	1	
1	1	1	1	1	2	1	1	

0	-1	0									
0	1	0	l	ı	ı	ı	l	ı	l	l	
0	0	0	3	3	1	2	1	2	0	0	
		Ü	3	0	0	0	0	0	0	0	
			2	-1	2	0	-1	0	2	2	
			1	-1	-3	-1	3	0	1	3	
			1	0	0	0	0	1	-1	2	
			1	0	2	1	-1	0	1	3	
			0	-1	-1	2	1	-2	-3	0	
			1	1	0	0	0	2	3	3	
			1	0	0	-2	-2	-1	-2	1	
			1	1	1	1	1	2	1	1	

Indiquer la fonction de transformation qui permet de passer de (a) à (b)

$$K = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Calculer le produit de convolution entre les deux noyaux K et K : K*K

	1	1	1
1	1	1	1
1	1	1	1
1	1	1	

$$\begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 4 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{bmatrix}$$

Ouverture et Fermeture

- Combinaison des deux opérateurs de base pour profiter des avantages et compenser les défauts – diminution des tailles
- Ouverture : érosion par un élément structurant suivie d'une dilatation par l'élément structurant symétrique
- Fermeture : dilatation suivie d'une érosion définie par dualité

ouvert

Ouverture

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1	0	1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

Fermeture

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1	0	1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0		Q J

ages - 2019/2020

Propriétés

$$O_B(X) = \bigcup_{B_Z \subset X} B_Z$$

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1	0	1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

Propriétés

• Ouverture et fermeture sont duales l'une de l'autre par rapport au complément

le fermé de X est le complémentaire de l'ouvert du complémentaire de X

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1	0	1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

Propriétés

- $O_B(X) \mid X \mid F_B(X)$
- Croissantes

- Idempotentes
- l'ouverture élimine les petites composantes, et ouvre les petits isthmes
- la fermeture bouche les petites trous, et ferme les petits détroits