S3 - Matemáticas para Videojuegos

Dada una pirámide cuadrangular, definida por los siguientes vértices en su sistema de referencia local (coordenadas de Modelo): A = (1, -1, -1), B = (1, 1, -1), C = (-1, 1, -1), D = (-1, -1, -1) y E = (0, 0, 1). Los vértices ABCD forman la base de la pirámide, y E es el vértice superior.

En un momento dado, la matriz neta de transformación 4x4 de la pirámide se define como:

1000

0012

0-1 0 2

0001

a) ¿Cuáles son las coordenadas Universales de los vértices de la pirámide?

Multiplicamos la matriz dada sobre los puntos de referencia local de la pirámide y obtenemos los puntos en el sistema de coordenadas universal.

Como sabemos que el centro de la pirámide es desde el centro de su base h/2. Sabiendo que Cnt (0, 0, 0) y aplicando la matriz neta anterior, sabemos que el Cnt en el Universal esta en Cnt' (0, 2, 2).

b) Si aplicamos a la pirámide una traslación de 3 unidades respecto del eje Y del Sistema de Referencia Universal y una rotación de 45º respecto de su eje X local.

b.1) ¿Cuáles serían las nuevas coordenadas Universales de los vértices?

Para calcular las nuevas coordenadas universales lo que tenemos que hacer, partiendo de las coordenadas que hemos calculado en el **apartado a**:

- 1) Realizar la traslación de la pirámide 3 unidades en el eje Y.
- 2) Para realizar la traslación de 45º sobre el eje X:
 - a. Trasladamos la pirámide al centro de coordenadas Universales. Partiendo del vector de traslación desde **Cnt' a To**.
 - b. Aplicamos la traslación de 45º sobre el eje X.
 - c. Volvemos a situar la pirámide donde estaba aplicando la operación inversa del apartado 2.a.

Como resultado nos da la siguiente matriz neta:

Matriz Neta				
1	0	0	0	1
0	0,70710678	-0,70710678	4,121320344	1
0	0,70710678	0,70710678	1,292893219	1
0	0	0	1	1

	To-1					
	1	0	0	0		
=	0	1	0	2		
	0	0	1	2		
	0	0	0	1		

	R 45°				
	1	0	0	0]
*	0	0,70710678	-0,70710678	0	1
	0	0,70710678	0,70710678	0	1
	0	0	0	1]

	To				
	1	0	0	0	
*	0	1	0	-2	
	0	0	1	-2	
	0	0	0	1	

Ty(3)				
1	0	0	0	
0	1	0	3	
0	0	1	0	
0	0	0	1	

Y aplicando dicha matriz neta a los puntos A', B', C', D' y E' obtenemos las nuevas coordenadas universales (multiplicando dicha matriz por cada uno de los puntos de la pirámide de la misma manera que se ha hecho en el apartado a): A'' = (1, 2.707106781, 4.121320344), B'' = (1, 4.121320344, 2.707106781), C'' = (-1, 4.121320344, 2.707106781), D'' = (-1, 2.707106781, 4.121320344) y E'' = (0, 4.828427125, 4.828427125). También obtenemos la nueva posición del centro de la pirámide Cnt'' = (0, 4.121320344, 4.828427125)

b.2) ¿Y las Coordenadas Locales (de Modelo) de los vértices?

Las coordenadas locales no han variado siguen siendo: A = (1, -1, -1), B = (1, 1, -1), C = (-1, 1, -1), D = (-1, -1, -1) y E = (0, 0, 1)

c) Partiendo de la posición obtenida en b), aplicamos a los vértices de la base una traslación de una unidad negativa respecto de la dirección de su vector normal.

c.1) ¿Cuáles serían las nuevas coordenadas Universales de los vértices de la pirámide?

Obtenemos el vector normal de los $\underline{Cnt''B''} = (1, 0, -1.414213562)$ y $\underline{Cnt''A''} = (1, -1.414213562, 0)$, para que salga el vector normal inverso, haciendo el producto vectorial de $\underline{Cnt''B''}$ X $\underline{Cnt''A''}$ obtenemos el vector $\underline{P} = (-2, -1.414213562, -1.414213562)$.

Como hay que desplazarlo solo una unidad, obtenemos el vector unitario de \underline{P} , siendo \underline{Pu} = (-0.707106781, -0.5, -0.5).

Y aplicando la matriz de traslación, tomando como vector de traslación <u>Pu</u>, a los puntos A", B", C" y D" (el punto E" no varia) para obtener el resultado de este apartado.

Siento la matriz de traslación:

1	0	0	-0,70710678
0	1	0	-0,5
0	0	1	-0,5
0	0	0	1

Y aplicando la matriz anterior a cada uno de los puntos obtenemos: A''' = (0.292893219, 2.207106781, 3.62132034), B''' = (0.292893219, 3.621320344, 2.207106781), C''' = (-1.70710678, 3.62132034, 2.20710678) y <math>D''' = (-1.70710678, 2.20710678, 3.62132034).

c.2) ¿Cuáles serían las coordenadas Locales (de Modelo) de los vértices?

Al mover la base de la pirámide lo que hemos hecho ha sido, respecto al eje de coordenadas local, **trasladando en el eje Z la pirámide una coordenada negativa** (ya que el eje de la pirámide es el eje Z). Por lo que si volvemos a situar el eje de coordenadas Locales de la pirámide, los puntos A, B, C y D decrecerían en dicho eje de coordenadas -0.5 unidades, quedando A = (1, -1, -1.5), B = (1, 1, -1.5), C = (-1, 1, -1.5) y D = (-1, -1, -1.5); y el punto E, ya que habría que desplazarlo una coordenada positiva respecto al eje Z, se desplazaría en dicho eje de coordenadas -0.5 unidades quedando el nuevo punto E en E = (0, 0, 1.5). Y así el centro de la pirámide seguiría estando en el punto (0, 0, 0).