Programare logică

Sisteme de rescriere abstracte

Un sistem de rescriere abstract este o pereche (T, \rightarrow) , unde T este o mulţime şi $\rightarrow \subseteq T \times T$ (\rightarrow este o relaţie binară pe T).

Definiții

```
\leftarrow:=\to^{-1} (relaţia inversă)

\leftrightarrow:=\to\cup\leftarrow (închiderea simetrică)

\stackrel{*}{\to}:=(\to)^* (închiderea reflexivă şi tranzitivă)

\stackrel{*}{\leftrightarrow}:=(\leftrightarrow)^* (echivalenţa generată)
```

 $(T_{\Sigma}(X)_s, \rightarrow_s)$ sistem de rescriere abstract

Exemplu

$$T := \mathbb{N} \setminus \{0, 1\}, \rightarrow := \{(m, k) \mid k < m, k | m\}$$

$$\blacksquare \leftarrow = \{(k,m) \mid k < m, k | m\}$$

$$\longrightarrow \leftarrow = \{(k_1, k_2) \mid k_1 \neq k_2, k_1 | k_2 \text{ sau } k_2 | k_1 \}$$

$$\stackrel{+}{\longrightarrow} = \{ (m, k) \mid \mathbf{ex}.n \ge 0, \quad \mathbf{ex}. \ k_1, \cdots, k_n \in T \\ m \to k_1 \to \cdots \to k_n \to k \}$$

$$\stackrel{*}{\longrightarrow} = \stackrel{+}{\rightarrow} \cup \{(k,k)|k \in T\}$$

■Cine este $\stackrel{*}{\leftrightarrow}$?

Teorema lui Birkhoff

 (S,Σ) signatură, X mulţime de variabile, E mulţime de ecuaţii necondiţionate, R_E sistemul de rescriere determinat de E, $\rightarrow_E \subseteq T_\Sigma(X) \times T_\Sigma(X)$ relaţia de rescriere

Teoremă. Fie $t, t' \in T_{\Sigma}(X)_s$. Sunt echivalente:

(1)
$$E \models (\forall X)t \doteq_s t'$$

(2)
$$E \vdash (\forall X)t \stackrel{.}{=}_s t'$$

(3)
$$E \vdash_{\mathsf{R},\mathsf{S},\mathsf{T},\;\mathsf{SR}_E} (\forall X) t \doteq_s t'$$

(4) $t \stackrel{*}{\leftrightarrow}_E t'$, unde $\stackrel{*}{\leftrightarrow}_E$ este echivalenţa generată de \rightarrow_E .

 (T, \rightarrow) sistem de rescriere (T mulţime, $\rightarrow \subseteq T \times T$)

Definiții

 $t \in T$ este reductibil dc. ex. $t' \in T$ a.î. $t \to t'$ $t_0 \to t_1 \to t_2 \to \cdots$ reducere $t \in T$ este formă normală (ireductibil) dc. nu este reductibil t_0 este o formă normală a lui t dc. $t \stackrel{*}{\to} t_0$ şi t_0 este formă normală $t_1 \downarrow t_2$ dc. ex. $t \in T$ a.î. $t_1 \stackrel{*}{\to} t \stackrel{*}{\leftarrow} t_2$ $(t_1$ şi t_2 se întàlnesc, \downarrow relația de întâlnire)

Exemple

- $T := \mathbb{N} \setminus \{0,1\}, \rightarrow := \{(m,k) \mid k < m, k | m\}$ k este formă normală dacă este număr prim $k_1 \downarrow k_2$ dacă nu sunt prime între ele k este formă normală a lui m dacă k este factor prim al lui m
- $T := \{a,b\}^*$, $\rightarrow := \{(ubav, uabv) | u,v \in T\}$ $w \in T$ este formă normală dacă $w = a^n b^k$ cu $n, k \geq 0$ $w_1 \downarrow w_2$ dacă $nr_a(w_1) = nr_a(w_2)$ şi $nr_b(w_1) = nr_b(w_2)$

 (T, \rightarrow) sistem de rescriere (T mulţime, $\rightarrow \subseteq T \times T$)

Definiții (T, \rightarrow) se numește

noetherian: nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow \cdots$

(orice rescriere se termină)

confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$

Church-Rosser: $t_1 \stackrel{*}{\leftrightarrow} t_2 \Rightarrow t_1 \downarrow t_2$

local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$

normalizat: orice element are o formă normală complet (convergent, canonic): confluent şi noetherian

■ $T := \mathbb{N} \setminus \{0, 1\}, \rightarrow := \{(k, m) \mid k < m, k | m\}$ (T, \rightarrow) e noetherian, nu e confluent

Propoziţii.

- $\blacksquare(T, \rightarrow)$ confluent $\Leftrightarrow (T, \rightarrow)$ Church-Rosser
- ■(Lema lui Newmann) Dacă (T, \rightarrow) este local confluent şi noetherian atunci este confluent
- Dacă (T, \rightarrow) este complet atunci orice termen are o singură formă normală.
 - În acest caz vom nota fn(t) forma normală a lui $t \in T$.

Exerciţiu

$$T = \{a, b, c, d\}$$

 $\rightarrow = \{(a, b), (a, c), (b, a), (b, d)\}$

Putem descrie sistemul de rescriere (T, \rightarrow) prin

$$R = \{a \to b, a \to c, b \to a, b \to d\}$$

Vom identifica $R = (T, \rightarrow)$

- ullet arătaţi că R e local confluent
- ullet arătaţi că R nu e confluent
- arătaţi că R nu e noetherian
- ullet determinați formele normale ale lui R
- adăugaţi o regulă de rescriere a.î. R să devină confluent
- ullet ștergeți o regulă de rescriere a.î. R să devină confluent

Teorema

 (S,Σ) signatură, X mulţime de variabile, E mulţime de ecuaţii necondiţionate, R_E sistemul de rescriere determinat de E, $\rightarrow_E \subseteq T_\Sigma(X) \times T_\Sigma(X)$ relaţia de rescriere $t,t' \in T_\Sigma(X)_s$

Teoremă. Dacă R_E este complet atunci sunt echivalente:

(1)
$$E \models (\forall X)t \doteq_s t'$$

(2)
$$E \vdash (\forall X)t \stackrel{\cdot}{=}_s t'$$

(3)
$$t \stackrel{*}{\leftrightarrow}_E t'$$

(4) fn(t) = fn(t') (t şi t' au aceeaşi formă normală)

Logica ecuaţională şi rescrierea

- ■Terminarea unui sistem de rescriere este nedecidabilă.
- Pentru sisteme de rescriere particulare putem decide asupra terminării.
- ■Dacă E este o mulţime de ecuaţii a.î. R_E este un sistem de rescriere complet atunci deducţia ecuaţională $E \vdash (\forall X)t \doteq_s t'$ este decidabilă:
 - $\blacksquare t \stackrel{*}{\rightarrow} fn(t)$
 - $\blacksquare t' \stackrel{*}{\to} fn(t')$
 - $\blacksquare E \vdash (\forall X)t \stackrel{\cdot}{=}_s t' \Leftrightarrow fn(t) = fn(t')$
- Pentru sisteme de rescriere noetheriene, confluenţa este decidabilă.