МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Лабораторная работа №3.3.4 Эффект Холла в полупроводниках

> Работу выполнил Лохматов Арсений Игоревич Б03-303

1 Теоретическая часть

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

Оборудование: электромагнит источником питания; вольтметр; амперметр; миллиамперметр; милливеберметр; источник питания; образцы легированного полупроводника.

1.1 Теоретическая часть

В работе изучаются особенности проводимости полупроволников в геометрии мостика Холла. Ток пропускается по плоской полупроводниковой пластинке, помещённой в перпендикулярное пластинке матнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется констанка Холла, тип проводимости (электронный или дырочный) и на основе соотношения ниже вычисляется концентрация основных носителей заряда.

$$R_H = rac{1}{nq}$$
, где $R_H - nocmoянная Холла.$

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 1.

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре элетромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора источника питания электромагнита. Ток питания электромагнита измеряется амперметром A_1 . Напрвление тока в обмотках электромагнита меняется переключением разъёма K_1 .

Градуировка электромагнита (связь тока с индукцией поля) проводится при помощи милливеберметра на основе датчика Холла.

Прямоугольный образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к источнику питания (1.5B). При замыкании ключа K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 .

В образце, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью вольтметра V.

Контакты 3 и 4 вследствие неточности подпайки могут лежать не на одной эквипотенциали. Тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения вдоль пластинки. Исключить этот эффект можно, изменяя направление магнитного поля, пронизывающего образец. При обращении поля ЭДС Холла меняет знак, а омическое падение напряжения остаётся неизменным. Поэтому ЭДС Холла U_{\perp} может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противо- положных направлений магнитного поля в зазоре: $U_{\perp} = \frac{1}{2}(U_{34}^{(+)} - U_{34}^{(-)})$).

Альтернативно можно исключить влияние омического падения напряжения, если при каждом значении тока через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$U_{\perp} = U_{34} - U_0.$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку U_{\perp} можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле

$$\sigma = \frac{IL_{35}}{U_{35}al},\tag{1}$$

где l — расстояние между контактами 3 и 5, a — ширина образца, h - его толщина.

2 Практическая часть

2.1 Приборные погрешности

$$\sigma_a = \pm 0.2\%; \sigma_v = \pm 0.004\%; \sigma_{vb} = \pm 1.5\%.$$

2.2 Градуировка электромагнита

А можем далее устанавливать такое значение тока, при котором мы уже измерили индукцию магнитного поля. Мы воспользуемся вторым способом.

2.3 Измерение ЭДС Холла

Для разных значений I через образец снимем зависимость ЭДС Холла от тока $I_{\rm M}$ через электромагнит. Результаты измерений занесём в таблицу 2.

Последнее измерение было произведено при изменённой ориентации образца. Теперь вычислим значение \mathcal{E}_x по разности показаний вольтметра и сопоставим токи в электромагните с соответствующими значениями индукции магнитного поля. Полученные результаты занесём в таблицу 3.

По полученным данным построим графики зависимости $\mathcal{E}_x(B)$ для различных значений I.

Рис. 2: График зависимости $\mathcal{E}_x(B)$

Аппроксимируем полученные данные зависимостями вида $\mathcal{E}_x = K(I)B + C$ при помощи метода наименьшего квадрата (модуль curvefit в Python). Результаты аппроксимации заносим в таблицу 1.

<i>I</i> , мА	$K(I) \cdot 10^{-3}, \mathrm{B/T}$ л	$\sigma_{K(I)} \cdot 10^{-3}, \mathrm{B/Tл}$
0.3	2.128	0.132
0.4	2.568	0.134
0.5	3.057	0.163
0.6	3.254	0.240
0.7	3.575	0.202
0.8	4.151	0.218
0.85	7.545	0.219

Таблица 1: Результаты аппроксимации

По этим данным построим график зависимости K(I) от I.

Рис. 3: График зависимости K(I)

Видим, что последняя точка явно выбивается из тренда, поэтому при аппроксимации её цчитывать не будем. Аппроксимируем зависимость прямой вида $K = p \cdot I$. В итоге получаем

$$p = (5.51 \pm 0.25) \frac{\text{B}}{\text{T}_{\pi} \cdot \text{A}}, (\varepsilon = 4.54\%).$$
 (2)

Тогда, согласно формуле

$$\mathcal{E}_x = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a},$$

 $R_x = pa$ — коэффициент Холла, где $a=2\,$ мм — толщина исследуемого образца. После вычислений получаем:

$$R_x = (1.102 \pm 0.005) \cdot 10^{-3} \frac{B \cdot M}{T\pi \cdot A} (\varepsilon = 0.45\%)$$
 (3)

Отсюда найдём концентрацию носителей заряда согласно формуле, учитывая, у в нашем случае носителями заряда являются дырки. Погрешность определения концентрации есть погрешность определения постоянной Холла, так как считаем значение элементарного заряда известным.

$$R_x = \frac{1}{ne}.$$

$$n = (543.38 \pm 2.45) \cdot 10^{19} \text{ m}^{-3}, (\varepsilon = 0.45\%)..$$
(4)

2.4 Расчёт удельной проводимости и подвижности

По формуле 1 рассчитаем удельную проводимость нашего образца. По результатам измерений $U_{35}=121.5~\mathrm{mB},~I=0.89~\mathrm{mA},~L_{35}=15~\mathrm{mm}$ и $l=8~\mathrm{mm},~a=2~\mathrm{mm}.$ Погрешность определения проводимости есть погрешность измерений силы тока амперметром ($\sigma=1\%$). В итоге получаем

$$\sigma = (6.87 \pm 0.07) (O_{\rm M} \cdot M)^{-1}, (\varepsilon = 1.02\%).$$
 (5)

Теперь, зная эти характеристики, можно рассчитать подвижность носителей заряда по следующей формуле:

$$\mu = \frac{\sigma}{en}.\tag{6}$$

В итоге получаем

$$\mu = (75.71 \pm 0.76) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}, (\varepsilon = 1.01\%).$$
 (7)

3 Вывод

В ходе выполнения данной лабораторной работы был исследован эффект Холла в полупроводнике. Была определена постоянная Холла для исследуемого образца $R_x = (1.102 \pm 0.005) \cdot 10^{-3} \text{ см}^{-3}/\text{Кл}$. Также была вычислена концентрация носителей заряда $n = (543.38 \pm 2.45) \cdot 10^{19} \text{ м}^{-3}$.

По полярности вольтметра, полярности подключения источника тока и направлению тока в катушках была определён тип проводимости. Тип проводимости оказался дырочным.

Также была вычислена подвижность электронов в образце $\mu = (75.71 \pm 0.76) \text{ см}^2/\text{B} \cdot \text{c}.$

3.1 Приложение

I, MA	0,30		0,40		0,50	
U_0 , MB	-2.58		-3.16		-3.87	
0,	$I_{\text{\tiny M}}, A$	U, MB	$I_{\text{\tiny M}}, A$	U, MB	$I_{\text{\tiny M}}, A$	U, MB
	0.1	-2.18	0.1	-2.8	0.1	-3.44
	0.2	-1.81	0.2	-2.45	0.2	-3.03
	0.3	-1.55	0.3	-2.14	0.3	-2.63
	0.4	-1.34	0.4	-1.9	0.4	-2.36
	0.5	-1.15	0.5	-1.67	0.5	-2.09
	0.6	-1.02	0.6	-1.51	0.6	-1.89
	0.7	-0.89	0.7	-1.36	0.7	-1.72
	0.8	-0.78	0.8	-1.23	0.8	-1.56
	0.9	-0.69	0.9	-1.12	0.9	-1.44
	1.0	-0.62	1.0	-1.03	1.0	-1.31
	1.1	-0.55	1.1	-0.91	1.1	-1.2
	1.2	-0.48	1.2	-0.85	1.2	-1.09
	1.3	-0.41	1.3	-0.76	1.3	-1.0
	1.4	-0.36	1.4	-0.7	1.4	-0.93
	1.5	-0.31	1.5	-0.65	1.5	-0.85
	1.6	-0.31	1.6	-0.58	1.6	-0.81
	1.7	-0.26	1.7	-0.54	1.7	-0.76
	1.8	-0.23	1.8	-0.51	1.8	-0.71
I, MA		,60				
U_0 , MB		.62	0,70 -5.27		0,80 -5.74	
C0, MD	$I_{\mathrm{M}}, \mathrm{A}$.о <u>г</u>			$I_{\text{M}}, A \mid U, \text{ MB}$	
	0.1	-4.1	$I_{\text{\tiny M}}, A$ 0.1	-4.5	0.1	-5.13
	0.1	-3.61	0.1	-4.03	0.1	-4.55
	0.2	-3.21	0.2	-3.56	0.2	-4.07
	0.4	-2.84	0.4	-3.14	0.4	-3.65
	0.5	-2.56	0.5	-2.89	0.5	-3.28
	0.6	-2.33	0.6	-2.64	0.6	-3.01
	0.7	-2.12	0.7	-2.46	0.7	-2.8
	0.8	-1.94	0.8	-2.28	0.8	-2.58
	0.9	-1.78	0.9	-2.13	0.9	-2.42
	1.0	-1.67	1.0	-1.99	1.0	-2.26
	1.1	-1.52	1.1	-1.88	1.1	-2.11
	1.2	-1.4	1.2	-1.73	1.2	-1.99
	1.3	-1.36	1.3	-1.63	1.3	-1.83
	1.4	-1.31	1.4	-1.55	1.4	-1.73
	1.5	-1.24	1.5	-1.47	1.5	-1.62
	1.6	-1.19	1.6	-1.4	1.6	-1.54
	1.7	-1.5	1.7	-1.33	1.7	-1.47
	1.8	-1.12	1.8	-1.28	1.8	-1.39
I, MA				(flip)		
U_0 , MB			-6.53			
00, 112	$I_{\scriptscriptstyle \mathrm{M}},\mathrm{A}$	U, MB	$I_{\text{\tiny M}}, A$	U, MB	$I_{\scriptscriptstyle \mathrm{M}},\mathrm{A}$	U, MB
	0.1	-7.22	0.7	-10.51	1.3	-12.97
	0.1	-7.91	0.8	-10.89	1.4	-13.12
	0.2	-8.55	0.9	-11.08	1.5	-13.21
	0.3 - 0.4	-9.16	1.0	-11.4	1.6	-13.32
	0.4	-9.67	1.1	-11.71	1.7	-13.37
	0.6	-10.11	1.2	-11.96	1.8	-13.4
		10.11	1.4	11.00		10.1

Таблица 2: Измерение ЭДС Холла

I, мА	0,30		0,40		0,50	
	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ
	74.667	0.4	74.667	0.36	74.667	0.43
	133.333	0.77	133.333	0.71	133.333	0.84
	186.667	1.03	186.667	1.02	186.667	1.24
	246.667	1.24	246.667	1.26	246.667	1.51
	306.667	1.43	306.667	1.49	306.667	1.78
	377.333	1.56	377.333	1.65	377.333	1.98
	426.667	1.69	426.667	1.8	426.667	2.15
	484.0	1.8	484.0	1.93	484.0	2.31
	540.0	1.89	540.0	2.04	540.0	2.43
	588.0	1.96	588.0	2.13	588.0	2.56
	645.333	2.03	645.333	2.25	645.333	2.67
	693.333	2.1	693.333	2.31	693.333	2.78
	732.0	2.17	732.0	2.4	732.0	2.87
	773.333	2.22	773.333	2.46	773.333	2.94
	800.0	2.27	800.0	2.51	800.0	3.02
	825.333	2.3	825.333	2.58	825.333	3.06
	853.333	2.32	853.333	2.62	853.333	3.11
	866.667	2.35	866.667	2.65	866.667	3.16
I, мА	0,6	50	0,7	70	0,8	80
,	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ
	74.667	0.52	74.667	0.77	74.667	0.61
	133.333	1.01	133.333	1.24	133.333	1.19
	186.667	1.41	186.667	1.71	186.667	1.67
	246.667	1.78	246.667	2.13	246.667	2.09
	306.667	2.06	306.667	2.38	306.667	2.46
	377.333	2.29	377.333	2.63	377.333	2.73
	426.667	2.5	426.667	2.81	426.667	2.94
	484.0	2.68	484.0	2.99	484.0	3.16
	540.0	2.84	540.0	3.14	540.0	3.32
	588.0	2.95	588.0	3.28	588.0	3.48
	645.333	3.1	645.333	3.39	645.333	3.63
	693.333	3.22	693.333	3.54	693.333	3.75
	732.0	3.26	732.0	3.64	732.0	3.91
	773.333	3.31	773.333	3.72	773.333	4.01
	800.0	3.38	800.0	3.8	800.0	4.12
	825.333	3.43	825.333	3.87	825.333	4.2
	853.333	3.12	853.333	3.94	853.333	4.27
	866.667	3.5	866.667	3.99	866.667	4.35
I, мА			0.85 (flip)			
	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ
	74.667	-0.69	426.667	-3.98	732.0	-6.44
	133.333	-1.38	484.0	-4.36	773.333	-6.59
	186.667	-2.02	540.0	-4.55	800.0	-6.68
	246.667	-2.63	588.0	-4.87	825.333	-6.79
	306.667	-3.14	645.333	-5.18	853.333	-6.84
	377.333	-3.58	693.333	-5.43	866.667	-6.87

Таблица 3: Результаты вычислений