Funciones de valor complejo ortogonales

EJERCICIOS CON MATLAB 6.3

En MATLAB, si la matriz A tiene elementos complejos, A' produce la transpuesta conjugada compleja. Así, si \mathbf{u} y \mathbf{v} son vectores en \mathbb{C}^n , se pueden representar por matrices de $n \times 1$ con elementos complejos y $\langle \mathbf{u}, \mathbf{v} \rangle$ se calcula con $\mathbf{v}' * \mathbf{u}$ y $|\mathbf{u}|$ se calcula con $\mathrm{norm}(\mathbf{u})$ o $\mathrm{sqrt}(\mathbf{u}' * \mathbf{u})$.

En MATLAB se construye la variable i para representar el número imaginario $\sqrt{-1}$. MATLAB reconoce i como tal siempre que no se haya usado para otro propósito.

Para n dada, si se quiere generar un vector aleatorio en \mathbb{C}^n , dé

$$v = 2*rand(n,1) - 1 + i*(2*rand(n,1) - 1)$$

- 1. Genere cuatro vectores aleatorios en C⁴. Encuentre la base ortonormal para el espacio generado por estos vectores utilizando el proceso de Gram-Schmidt. Verifique que el conjunto de vectores ortonormales obtenido con este proceso es ortonormal y que cada vector en el conjunto original es una combinación lineal del conjunto de vectores obtenido.
- 2. a) Sea $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ el conjunto de vectores obtenido en el problema 1 anterior. Sea A la matriz $[\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \ \mathbf{u}_4]$. Sea w un vector aleatorio en \mathbb{C}^4 . Verifique que

$$w = (w, u_1) u_1 + \cdots + (w, u_4) u_4$$

Repita para otro vector w.

- **b)** (Lápiz y papel) ¿Qué propiedad de una base ortonormal para \mathbb{C}^n es expresada en el inciso a)? Describa cómo encontrar las coordenadas de un vector en \mathbb{C}^n respecto a una base ortonormal.
- 3. Genere cuatro vectores aleatorios en \mathbb{C}^6 , \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 y \mathbf{v}_4 . Sea $H = \text{gen } \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$. Sea $A = [v_1 \ v_2 \ v_3 \ v_4]$ y B = orth(A). Sea u_1 la *i*-ésima columna de B.
 - a) Sea w un vector aleatorio en \mathbb{C}^n . Encuentre la proyección de w sobre H, $\mathbf{p} = \operatorname{proy}_H \mathbf{w}$.

Calcule
$$\begin{pmatrix} \langle \mathbf{w}, \mathbf{u}_1 \rangle \\ \langle \mathbf{w}, \mathbf{u}_2 \rangle \\ \langle \mathbf{w}, \mathbf{u}_3 \rangle \\ \langle \mathbf{w}, \mathbf{u}_4 \rangle \end{pmatrix}$$
. Verifique que $z = B' \star w \ y \ p = B \star B' \star w$. Repita para otro vector w .

- b) Sea x un vector aleatorio en \mathbb{C}^4 y forme $\mathbf{h} = A\mathbf{x}$. Entonces \mathbf{h} está en H. Compare $|\mathbf{w} \mathbf{p}|$ y $|\mathbf{w} \mathbf{h}|$. Repita para otros tres vectores \mathbf{x} . Escriba una interpretación de sus observaciones.
- c) Sea $\mathbf{z} = 2\mathbf{v}_1 3\mathbf{v}_3 + \mathbf{v}_4$. Entonces $H = \text{gen} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{z}\}$ (aquí H es el subespacio descrito en los incisos anteriores de este problema). ¿Por qué? Sea $\mathbf{C} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{z}] \ \mathbf{y} \ \mathbf{D} = \text{orth} (\mathbf{C})$. Entonces las columnas de D serán otra base ortonormal para H.

Sea w un vector aleatorio en \mathbb{C}^6 . Calcule la proyección de w sobre H usando B y la proyección de w sobre H usando D. Compare los resultados. Repita para otros dos vectores w. Escriba una interpretación de sus observaciones.

- **4.** a) (Lápiz y papel) Explique por qué el espacio nulo de A' es ortogonal a la imagen de A; es decir, si H = Im(A), entonces el espacio nulo de $A' = H^{\perp}$.
 - b) Sea A una matriz aleatoria con elementos complejos de 7×4 . (Sea $A = 2 \times rand(7, 4) -1 + i \times (2 \times rand(7, 4) -1)$.) Sea B = orth(A) y sea C = null(A') (entonces las columnas de B forman una base ortonormal para H = Im(A) y las columnas de C forman una base ortonormal para H^{\perp}). Verifique que las columnas de C son ortonormales.
 - c) Sea w un vector aleatorio en \mathbb{C}^7 . Encuentre h, la proyección de w sobre H, y p, la proyección de w sobre H^{\perp} . Verifique que $\mathbf{w} = \mathbf{p} + \mathbf{h}$. Repita para otros tres vectores w.