1.Download the dataset 2.Load the dataset

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import·warnings

data=pd.read_csv("Churn_Modelling.csv",encoding='ISO-8859-1')
data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
4									>

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000
4						>

data.dtypes

RowNumber int64
CustomerId int64
Surname object

CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

3. Perform Below Visualizations Univariate Analysis ,Bi - Variate Analysis,Multi - Variate Analysis

```
#univariate analysis "Histogram"
sns.histplot(data["Gender"],color='darkorange')
```


#univariate analysis "Countlot"
sns.countplot(data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f1af6924410>

#bivariate analysis"Barplot"
sns.barplot(x='Geography',y='Age',data=data)

<matplotlib.axes. subplots.AxesSubplot at 0x7f1af64c2c90>

#bivariate analysis"Pointplot"
sns.pointplot(x='Geography',y='Age',data=data,color='darkorange')

#Multivariate analysis"Pairplot"
sns.pairplot(data)

4. ** Perform descriptive statistics on the dataset.**

Descriptive statistics of the data set accessed.
data.describe().T

	count	mean	std	min	25%	5(
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+(
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074e+(
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000e+(
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000e+(
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000e+(
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+(
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000e+(
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000e+(
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000e+(
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939e+(
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000e+(
1						•

5. Handle the Missing values.

```
data.isnull().sum().sum()
0
```

This dataset does not contain any missing value.

```
missing_values=data.isnull().sum()
missing_values[missing_values>0]/len(data)*100
Series([], dtype: float64)
```

6. Find the outliers and replace the outliers

```
sns.boxplot(data['Age'],data=data)
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the FutureWarning

/mathlotlib axes subplots AxesSubplot at 0x7f1af0c099d0>
```


7. Check for Categorical columns and perform encoding.

```
print(data['Gender'].unique())
print(data['Age'].unique())

['Female' 'Male']
  [42 41 39 43 44 50 29 27 31 24 34 25 35 45 58 32 38 46 36 33 40 51 61 49 37 19 66 56 26 21 55 75 22 30 28 65 48 52 57 73 47 54 72 20 67 79 62 53 80 59 68 23 60 70 63 64 18 82 69 74 71 76 77 88 85 84 78 81 92 83]
```

```
data['Gender'].value_counts()
data['Age'].value_counts()
     37
           478
           477
     38
     35
           474
           456
     36
     34
           447
     92
             2
     82
             1
     88
             1
     85
             1
     83
             1
     Name: Age, Length: 70, dtype: int64
```

one_hot_encoded_data = pd.get_dummies(data, columns = ['Age', 'Gender'])
print(one_hot_encoded_data)

	D 11 1		- 1	6	6		_		-	,	
	RowNumber			Surname		litScore		-		\	
0	1		4602	Hargrave		619	Frai		2		
1	2	1564	7311	Hill	l	608	Spa	ain	1		
2	3	1561	9304	Onio)	502	Frai	nce	8		
3	4	1570	1354	Boni	i	699	Frai	nce	1		
4	5	1573	7888	Mitchell	l	850	Spa	ain	2		
				• • •							
9995	9996	1560	6229	Obijiakı	J	771	Frai	nce	5		
9996	9997	1556	9892	Johnstone	2	516	Frai	nce	10		
9997	9998	1558	4532	Liu	J	709	Frai	nce	7		
9998	9999	1568	2355	Sabbatini	i	772	Germa	any	3		
9999	10000			Walker	1	792	Frai	-	4		
	Balance	NumOfP	roduct	s HasCr(Card I	sActive	Member		Age_80	\	
0	0.00)		1	1		1		0		
1	83807.86)		1	0		1		0		
2	159660.80)		3	1		0		0		
3	0.00)		2	0		0		0		
4	125510.82)		1	1		1		0		
				•							
9995	0.00)		2	1		0		0		
9996	57369.61	•		1	1		1		0		
9997	0.00)		1	0		1		0		
9998	75075.31			2	1		0		0		
9999	130142.79)		1	1		0		0		
	Age_81 A	ge_82 A	ge_83	Age_84	Age_85	Age_88	B Age_9	92 (Gender_Fe	male	\
0	0	0	0	0	6) (9	0		1	
1	0	0	0	0	6) (9	0		1	
2	0	0	0	0	6) (9	0		1	
3	0	0	0	0	6) (9	0		1	
4	0	0	0	0	6) (9	0		1	
						• • •					
9995	0	0	0	0	6) (9	0		0	

9996	0	0	0	0	0	0	0	0
9997	0	0	0	0	0	0	0	1
9998	0	0	0	0	0	0	0	0
9999	0	0	0	0	0	0	0	1

	<pre>Gender_Male</pre>
0	0
1	0
2	0
3	0
4	0
• • •	• • •
9995	1
9996	1
9997	0
9998	1
9999	0

[10000 rows x 84 columns]

8. Split the data into dependent and independent variables.

```
from sklearn.datasets import load_iris

from sklearn import preprocessing
data = load_iris()

# separate the independent and dependent variables
X_data = data.data
target = data.target
print("Dependent variable")
print(X_data)
print("Independent variable")
print(target)
```

```
Dependent variable [[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1]
```

```
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
```

9. Scale the independent variable**

scale of independent variables

```
standard = preprocessing.scale(target)
print(standard)

[-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.2247487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.2247487 -1.2247487 -1.2247487 -1.2247487 -1.2247487 -1.2247487 -1.2247487 -1.2247487 -1.2247487 -1.2247487 -1.2247487 -1.224748
```

```
-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
-1.22474487 -1.22474487 0.
                                     0.
0.
             0.
                                                             0.
                                     0.
                                                 0.
             0.
0.
                         0.
                                     0.
                                                 0.
                                                             0.
0.
             0.
                         0.
                                     0.
                                                 0.
                                                             0.
 0.
             0.
                         0.
                                     0.
                                                 0.
                                                             0.
 0.
             0.
                         0.
                                     0.
                                                 0.
                                                             0.
 0.
             0.
                                                             0.
                         0.
                                     0.
                                                 0.
 0.
             0.
                         0.
                                     0.
                                                 0.
                                                             0.
                                                             1.22474487
 0.
             0.
                                     0.
                                                 1.22474487
                         0.
 1.22474487 1.22474487
                        1.22474487
                                     1.22474487 1.22474487
                                                             1.22474487
 1.22474487 1.22474487
                        1.22474487
                                    1.22474487 1.22474487 1.22474487
 1.22474487 1.22474487
                        1.22474487
                                     1.22474487 1.22474487 1.22474487
 1.22474487 1.22474487
                        1.22474487
                                    1.22474487 1.22474487 1.22474487
 1.22474487 1.22474487
                        1.22474487
                                     1.22474487 1.22474487
                                                             1.22474487
 1.22474487 1.22474487
                        1.22474487
                                     1.22474487 1.22474487 1.22474487
 1.22474487 1.22474487
                        1.22474487
                                     1.22474487
                                                1.22474487
                                                             1.22474487
 1.22474487 1.22474487 1.22474487
                                    1.22474487 1.22474487 1.22474487]
```

10. Split the data into training and testing

```
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# get the locations
X = data.iloc[:, :-1]

y = data.iloc[:, -1]

# split the dataset
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.05, random_state=0)
```