Mécanique quantique

TD 3: Systèmes à deux niveaux - Résonance magnétique nucléaire

1 Systèmes quantiques à deux états

La représentation sous forme de matrices des moments cinétiques est extrêmement pratique, car elle se généralise à tout système avec un nombre fini de degrés de liberté. ¹

On considère ici deux atomes isolés (H et Cl pour fixer les idées). On suppose qu'une seule orbitale ϕ_i d'énergie ε_i est accessible pour chacun des atomes. Lorsqu'on rapproche les deux atomes, un couplage entre les deux états s'établit. Dans la base $\{|\phi_1\rangle, |\phi_2\rangle\}$, le hamiltonien du système possède alors des termes croisés non nuls $\langle \phi_2 | \hat{H} | \phi_1 \rangle = \langle \phi_1 | \hat{H} | \phi_2 \rangle^* = W$.

1. Écrire le hamiltonien total du problème sous forme de matrice; calculer ses énergies propres E_+ et E_- . Pourquoi parle-t-on de *levée de dégénerescence*?

On pose $\Delta = \varepsilon_1 - \varepsilon_2$ (le *désaccord*) et $\overline{E} = \frac{1}{2}(\varepsilon_1 + \varepsilon_2)$. De façon très similaire au cas du spin, les états propres d'un tel système peuvent s'écrire sous la forme

$$\begin{cases} |\psi_{+}\rangle = +\cos\frac{\theta}{2}e^{-i\frac{\varphi}{2}}|\phi_{1}\rangle + \sin\frac{\theta}{2}e^{i\frac{\varphi}{2}}|\phi_{2}\rangle \\ |\psi_{-}\rangle = -\sin\frac{\theta}{2}e^{-i\frac{\varphi}{2}}|\phi_{1}\rangle + \cos\frac{\theta}{2}e^{i\frac{\varphi}{2}}|\phi_{2}\rangle \end{cases} \quad \text{avec } \sin^{2}\theta = \frac{4|W|^{2}}{4|W|^{2} + \Delta^{2}}. \tag{1}$$

- 2. Réécrire les énergies propres en fonction de ces variables, et les tracer en fonction de Δ , en maintenant \overline{E} constant, pour plusieurs valeurs de |W|.
- **3.** On prépare le système dans l'état $|\phi_1\rangle$ à t < 0, puis on branche le couplage entre les atomes W. Exprimer l'état $|\psi(t)\rangle$ du système en fonction du temps.
- **4.** Calculer la probabilité qu'il soit après un temps t dans l'état $|\phi_2\rangle$, et la tracer en fonction du temps. On choisira différentes valeurs de Δ . Dans quelle circonstance parle-t-on de couplage fort?

2 Résonance magnétique nucléaire

L'objectif de cet exercice est de décrire le mouvement d'un moment magnétique dans un champ magnétique tournant.

On considère un champ magnétique $\vec{B} = B_0 \vec{e}_z + \vec{B}_1(t)$ où $\vec{B}_1(t)$ est un champ magnétique tournant à la pulsation Ω dans le plan xOy.

Approche classique

Afin de résoudre l'équation d'évolution du moment $\vec{\mu}(t)$, on se place dans un référentiel \mathscr{R}' tournant à Ω selon l'axe Oz. Soit $(\vec{e}_X, \vec{e}_Y, \vec{e}_Z)$ une base orthonormée du référentiel \mathscr{R}' superposée à la base cartésienne $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$ de \mathscr{R} à t = 0. On pose $\omega_1 = -\gamma B_1$. On rapelle que

$$\frac{\mathrm{d}\vec{\mu}}{\mathrm{d}t}\Big|_{\mathscr{R}'} = \frac{\mathrm{d}\vec{\mu}}{\mathrm{d}t}\Big|_{\mathscr{R}} - \omega \vec{e}_{\mathrm{Z}} \wedge \vec{\mu}(t). \tag{2}$$

- 5. Déduire de (2) l'équation du mouvement de $\vec{\mu}(t)$ dans le référentiel tournant. Montrer que cela revient à étudier le mouvement d'un moment dans un champ magnétique effectif *statique* $\vec{B}_{\rm eff}$ dont on donnera l'expression en fonction de γ , $\Delta \omega = \Omega \omega_0$ et ω_1 .
- **6.** Commenter le mouvement du moment dans le référentiel \mathscr{R}' en fonction des valeurs de $\Delta \omega$ et ω_1 . Tracer son évolution temporelle.

^{1.} En particulier, l'analogie avec le spin peut être poussée très loin car tout système à deux degrés de liberté peut s'écrire sous la forme d'un spin fictif.

Approche quantique

7. Rappeler l'expression des opérateurs de moment cinétique propre S_x , S_y et S_z dans la base $\{|+\rangle, |-\rangle\}$ des états propres de S_z . Montrer que le hamiltonien peut s'écrire

$$H = \frac{\hbar}{2} \begin{pmatrix} \omega_0 & \omega_1 e^{-i\omega t} \\ \omega_1 e^{i\omega t} & -\omega_0 \end{pmatrix}$$
 (3)

On s'intéresse à la dynamique d'un état $|\psi\rangle$ qu'on décompose sur la base $\{|+\rangle, |-\rangle\}$ en :

$$|\psi(t)\rangle = a_{+}(t)|+\rangle + a_{-}(t)|-\rangle \tag{4}$$

- **8.** Soit l'état quantique $|\phi(t)\rangle = b_+(t)|+\rangle + b_-(t)|-\rangle$ tels que $b_\pm(t) = e^{\pm i\frac{\omega t}{2}}a_\pm(t)$. Écrire les équations vérifiées par les coefficients $b_\pm(t)$. Quel est l'équivalent classique de ce changement de variables?
- 9. En déduire que cela revient à résoudre l'équation matricielle

$$i\hbar \frac{\mathrm{d}\left|\phi\right\rangle}{\mathrm{d}t} = \tilde{H}\left|\phi\right\rangle \tag{5}$$

avec une matrice \tilde{H} 2 × 2 indépendante du temps que l'on exprimera.

- 10. En utilisant les résultats du premier exercice, calculer les valeurs propres et les vecteurs propres de \tilde{H} .
- **11.** On suppose que $|\psi\rangle(t=0)=|+\rangle$. Montrer que $\mathscr{P}_{+-}=|\langle -|\phi\rangle|^2(t)=|\langle -|\psi\rangle|^2(t)$. En déduire l'expression de $\mathscr{P}_{+-}(t)$ en fonction de ω_1 et $\Delta\omega$.
- 12. Tracer et discuter ce résultat pour $\Delta \omega = 0$ et $2\sqrt{2}|W|$. Justifier la dénomination de « résonance » magnétique.