First name:	 	 	 	
Last name:	 	 	 	
Student ID number:				

1st Midterm Exam

course name

INTRODUCTION TO MACHINE LEARNING AND DATA MINING

Instructions:

- Write your FIRST NAME, LAST NAME and STUDENT ID NO. on each piece of paper with solutions;
- This midterm is composed of **6 assignments** for the total amount of **100 points**;
- Solving time is **90 minutes**;
- Only a calculator and 1 piece of paper (A4 format) with written notes and formulas is allowed;
- All other literature, the use of Internet, laptops, mobile phones and other electronic devices is strictly forbidden!

the red color is for task number 3.

I	D	D_d	E	F	G	С
100	2000.000	D1	1	С	1	а
101	2003.210	D1	0	а	4	b
102	2012.104	D2	1	b	11	а
103	2004.443	D1	0	a	10	а
104	2002.508	D1	0	С	8	b
105	2013.675	D2	1	b	15	b
106	2020.000	D3	1	С	4	С
107	2016.345	D3	0	a	8	а
108	2011.248	D2	1	b	17	b
109	2017.565	D3	0	b	6	а
110	2008.225	D2	1	а	14	С

- I: Identifier [0, ∞)
- D: Date in KSP format
- E: Nominal value {0, 1}
- F: Nominal value {a, b, c}
- G: Numeric value [0, 20]

C: Class; nominal value {a, b, c}

green part for task 5

blue part task 6

I	D (not KSP)	D_d	E	F	G	C _{NB}	C _{DT}
200	11.2.2017	D3	0	а	17	а	a
201	1.5.2011	D2	1	С	1	С	b
202	21.6.2012	D2	1	b	9	b	b

- 1. Transform the values of attribute **D** for the examples with *I* = 200, 201 and 202 into the KSP format (leap year is **bolded**)! Round your results to 3 decimal places! (10 points)
- 2. Draw a boxplot that will represent the values of attribute **G** (take into consideration only examples with l = 100 110)! (10 points)
- Discretize attribute D into 3 bins using the equal height discretization technique (take into consideration only examples with I = 100 110)! Denote the values of this new (discretized) attribute D_d as D1, D2 and D3. Draw the histogram! (10 points)
- 4. Use the **OneR** algorithm to classify the examples with known class value (examples with l = 100 110)! Check just the attributes **E** and **F**. Sketch the (one level) decision tree! What is the error of this classifier? (15 points)
- 5. Use the **Naïve Bayes** classifier to classify the examples with unknown class value (examples with *I* = 200, 201 and 202)! Build the probability tables by using just the attributes **E** and **F**. Use the Laplace correction to calculate the probabilities! (25 points)
- 6. Build a one level decision tree (root node only) by using the TDIDT principle (ID3 algorithm). Check just attributes E, F and D_d (as potential candidates for the root node). Use the <u>information gain</u> as the »impurity measure« for ranking the attributes. Draw this »partially constructed« decision tree and use it to classify the examples with unknown class value (examples with I = 200, 201 and 202)! (30 points)