

planetmath.org

Math for the people, by the people.

tight and relatively compact measures

 ${\bf Canonical\ name} \quad {\bf TightAndRelativelyCompactMeasures}$

Date of creation 2013-03-22 17:19:37 Last modified on 2013-03-22 17:19:37 Owner fernsanz (8869) Last modified by fernsanz (8869)

Numerical id 6

Author fernsanz (8869) Entry type Definition Classification msc 60F05

Related topic LindebergsCentralLimitTheorem

Definition 1. Let $\mathcal{M} = \{\mu_i, i \in I\}$ be a family of finite measures on the Borel subsets of a metric space Ω . We say that \mathcal{M} is tight iff for each $\epsilon > 0$ there is a compact set K such that $\mu_i(\Omega - K) < \epsilon$ for all i. We say that \mathcal{M} is relatively compact iff each sequence in \mathcal{M} has a subsequence converging weakly to a finite measure on $\mathcal{B}(\Omega)$.

If $\{F_i, i \in I\}$ is a family of distribution functions, relative compactness or tightness of $\{F_i\}$ refers to relative compactness or tightness of the corresponding measures.

Theorem. Let $\{F_i, i \in I\}$ be a family of distribution functions with $F_i(\infty) - F_i(-\infty) < M < \infty$ for all i. The family is tight iff it is relatively compact.

Proof. Coming soon...(needs other theorems before) \Box