#### U.S. DEPARTMENT OF CONSIERCE National Technical Information Service

AD-A015 907

DEVELOPMENT OF ENCINEERING DATA ON THE MECHANICAL AND PHYSICAL PROPERTIES OF ADVANCED COMPOSITES MATERIALS

IIT RESEARCH INSTITUTE

PREPARED FOR
AIR FORCE MATERIALS LABORATORY

FEBRUARY 1974

# **KEEP UP TO DATE**

Between the time you ordered this report—which is only one of the hundreds of thousands in the NTIS information collection available to you—and the time you are reading this message, several new reports relevant to your interests probably have entered the collection.

Subscribe to the Westly Government Abstracts series that will bring you summaries of new reports as soon as they are received by NTIS from the originators of the research. The WGA's are an NTIS weekly newslatter service covering the most recent research findings in 25 areas of industrial, inchnological, and sociological interestinally interestinally and professionals who must keep up to date.

The executive and professional information service provided by NTIS in the Wastly Government Abstracts newsletters will give you thorough and comprehensive coverage of government-conducted or sponsored research activities. And you'll get this important information within two weeks of the time it's released by originating agencies.

WGA newsletters are computer produced and electronically photocomposed to stash the time gap between the release of a report and its availability. You can learn about technical innovations immediately—and use them in the most meaningful and productive ways possible for your organization. Please request NTIS-PR-205/PCW for more information.

The weekly newsletter series will keep you current. But learn what you have missed in the past by ordering a computer ICTISearch of all the research reports in your area of interest, dating as far back as 1964, if you wish. Please request NTIS-PR-188/PCN for more information.

WRITE: Managing Editor 5285 Purt Royal Road Springfield, VA 22161

# Keep Up To Date With SRIM

SRIM (Selected Research in Microfiche) provides you with regular, automatic distribution of the complete texts of NTIS research reports only in the subject areas you select. SRIM covers almost all Government research reports by subject area and/or the originating Federal or total government agency. You may subscribe by any category or subcategory of our WGA (Weekly Government Abstracts) or Government Reports Announcements and Index caregories, or tithe reports issued by a particular agency such as the Department of Defense, Federal Energy Administration, or Environmental Protection Agency. Other options that will give you greater selectivity are available on reduest.

The cost of SRIM service is only 45¢ domestic (60¢ foreign) for each complete

microfiched report. Your SRIM service begins as soon as your order is received and processed and you will receive blweekly shipments thereafter. If you wish, your service will be backdated to furnish you microfiche of reports issued earlier.

Bocause of contractuel arrangements with several Special Technology Groups, not all NTIS reports are distributed in the SRIM program. You will receive a notice in your microfiche shipments identifying the exceptionally priced reports not available through SRIM

A deposit account with NTIS is required before this service can be initiated. If you have specific questions concerning this service, please call (703) 451-1558, or write NTIS, attention SRIM Product Manager.

This information product distributed by



U.S. DEPARTMENT OF COMMERCE National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

# REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

|      | If this blo | ock is check | ked, the co  | py furnished  | to DTIC      |
|------|-------------|--------------|--------------|---------------|--------------|
| cont | ained page  | es with cold | or printing, | that when r   | eproduced in |
| Blac | k and Whi   | te, may cha  | ange detail  | of the origin | al copy.     |

Unclassified

|         | _  |      |          |    |           |                     |
|---------|----|------|----------|----|-----------|---------------------|
| RCHEITY | CL | ASSI | FICATION | 0. | THIS PAGE | (When Days Entered) |

| REPORT DOCUMENTATION PAGE                                                                                                     | READ DISTRUCTIONS DEPORE COMPLETING FORM                       |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                                                                                               | 1. RECIPIENT'S CAVALOG NUMBER                                  |
| APML-TR-72-205 Part II                                                                                                        |                                                                |
| e. TITLE (and Section) Development of Engineering                                                                             | TYPE OF REPORT & PERIOD COVERED                                |
| Data On The Mechanical And Physical Prop                                                                                      | Final Report                                                   |
| erties of Advanced Composite Materials                                                                                        | 6 PERFORMING ONG REPORT NUMBER                                 |
| 7. Au THORra:                                                                                                                 | - D6063                                                        |
| Hofer, Jr., K.E.; Rao, N. and Larsen, D.                                                                                      |                                                                |
| nozez, ozi, kizi, maj in ana zazonijot                                                                                        |                                                                |
| S DESCRIPTION OF AND                                                                      | M. PROGRAM EL EMENT PROJECT TASK                               |
| 5. Performing ORGANIZATION NAME AND ADDRESS IIT Research Institute                                                            | 16. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| 10 W. 35th Street                                                                                                             |                                                                |
| Chicago, Illinois 60616                                                                                                       |                                                                |
| II. CONTROLLING OFFICE NAME AND ADDRESS                                                                                       | 12. REPORT DATE                                                |
|                                                                                                                               | Pehrnary 1974                                                  |
|                                                                                                                               | 499                                                            |
| 14 MONITORING AGENCY NAME & ADDRESS(st different from Controlling Office)                                                     | 18. SECURITY CLASS. (of Mio report)                            |
|                                                                                                                               | Unclassified                                                   |
|                                                                                                                               | ISO. DECLASSIFICATION DOWNGRADING                              |
| VS. DIS (RIBUTION STATEMENT (of this Report)                                                                                  |                                                                |
| 17. DISTRIBUTION STATEMENT (of the abotract entered in Block 20, If different fro                                             | - Respect                                                      |
| TO DISTRIBUTION STATEMENT IN THE SECURET SHIPTED IN DISCR 24, IT WHITEHAM IN                                                  |                                                                |
|                                                                                                                               | 1                                                              |
|                                                                                                                               |                                                                |
| 18. SUPPLEMENTARY NOTES                                                                                                       |                                                                |
|                                                                                                                               | 1                                                              |
|                                                                                                                               |                                                                |
|                                                                                                                               | Ì                                                              |
| 19. REY WORDS (Continue in reverse side if necessary and identify by block trimber) Advanced Composites, fiber reinforced pla |                                                                |
| movanced composites, liber reinforced pla<br>posite, tension, compression, in-plane sh                                        | •                                                              |
| ditioning, humidity effects, accelerated                                                                                      |                                                                |
| mal conditioning, fatigue, stress-rupture                                                                                     |                                                                |
| elens, the conduction its density aten                                                                                        |                                                                |
| 20. A \$5.5 RACT (CENTIME ON TOTAL STEE IT NOCUSERS) ONE TOWNING BY SIDER WINDOW                                              | ,,                                                             |
| The program generated basic data on the                                                                                       | effect of various en-                                          |
| vironmental variables on the physical, the                                                                                    |                                                                |
| properties of selected resin matrix and matrix                                                                                |                                                                |
| The three resin matrix aterials systems                                                                                       |                                                                |
| Modmor II Graphite/Narmco 5206 and Court                                                                                      |                                                                |
| Hercules 3002M systems. The two metal ma                                                                                      | itrix materials systems                                        |

DD 1 JAN 73 1473 EDITION OF 1 NOV 45 IS OBSOLETE

Unclassified

Em TRITY CLASSIFICATION OF THIS PAGE (When Data Enterril)

#### 19. (continued)

thermo-humidity cycling, interlaminar shear, flex tests, boron/
epoxy composites, graphite/epoxy, composites, aluminum/boron composites, titanium/Borsic composites, laminate data, laminate fabrication, moisture weight gain

#### 20. (continued)

were 6061 Aluminum/Boron and 6Al-4V - Titanium/BorSic Composites. The resin matrix systems were procued in the form of prepreg tapes and specimens were fabricated at IITRI materials laboratory. The metal matrix composites were fabricated by vendors in laminate form and supplied to IITRI for specimen fabrication and testing. The environments included steady state and cyclic thermal, thermo-humidity, and humidity conditioning.

Part II

# DEVELOPMENT OF ENGINEERING DATA ON THE MECHANICAL AND PHYSICAL PROPERTIES OF ADVANCED COMPOSITES MATERIALS

K. E. Hofer, Jr. N. Rao D. Larsen

IIT Research Institute

Technical Report AFML-TR-72-205, Part II
February, 1974

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Air Force Materials Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

#### **FOREWORD**

This technical report summarizes the work accomplished during Contract No. F33615-71-C-1713, "Development of Engineering Data on the Mechanical and Physical Properties of Advanced Composite Materials;" it was prepared by the Mechanics Research Division of the IIT Research Institute. The work reported herein was accomplished under the joint sponsorship of two divisions of the Air Force Materials Laboratory the Systems Support and the Advanced Development Division, under Project No. 7381, "Material Application, Task No. 738106, Design Data Development and Advanced Composite ADP." Messrs. M. Knight, AFML/MXE, of Systems Support Division and Capt. 1. Woodrum and R. Neff, of the Advance i Development Division three the Air Force Project Engineers.

An advanced composite team under the direction of the Materials Engineering Section of the Mechanics Research Division performed the work described herein. IITRI personnel associated with this program and their respective responsibilities are delineated below:

- K. E. Hofer, Program Manager
- N. Rao, Overall Engineering and Scheduling
- V. Humphrevs, Analytical Methods and Reporting
- D. Larsen, Thermophysical Testing
- R. Labedz, Fabrication
- H. Lane, Static Test Engineer
- L. C. Beinett, Fatigue Test Engineer
- R. A. Stuchmer, Creep Test Engineer

This is the final technical report and summarizes the technical activities from June 1, 1971 through November 30, 1973.

This technical report has been reviewed and is approved.

> Kenneth E. Hofer, Jr., Materials Engineering and **Building Technology Section** Project Engineer

For The Commander

albut abouted.

Materials Engineering Branch Systems Support Division Air Force Materials Laboratory

#### ABSTR CT AND SUPPMARY OF RESULTS

The present program was initiated to generate data on the effect of various environments on the physical, thermal, and mechanical properties of three resin matrix composites: (AVCO 5505/Boron, Modmor II Graphite/Parmoo 5206 and Courtaulds HMS Graphite/Hercules 3002M) and two metal matrix composites (6061 Aluminum/Boron and 6A1-4V ~ Titanium/BorSiC). The resin matrix systems were procured in the form of prepreg tapes and laminates and specimens were fabricated at IITRI. The metal matrix composites were fabricated by vendors in laminate form and supplied to TITRI 6 % and a supplied to TITRI 6 % and a supplied

The environments included steady state humidity conditioning for two exposure periods, cyclic humidity conditioning which included the effects of thermal shocks and the effect of photodegradative exposures, and steady and cyclic thermal exposures.

Part I of this report described the material procurement, materials specifications, laminate fabrication, quality control and material quality assurance tests, and presents the test procedures in detail. Part II of this report presents a complete summary of the data and results of all static, fatigue, creep and thermo-physical properties of the five composites.

On a material by material basis the following conclusions were reached:

# AVCO 5505/Boron

There was a general deterioration in the baseline tensile, compressive and in-plane shear strengths of AVCO 5505/Boron with increasing temperature. The elastic moduli of the 0° properties were relatively unaffected up to 350°F but the transverse (90°)

and in-plane shear moduli decreased with temperature. The  $[0/45/135/0/\overline{90}]_8$  baseline tensile and compressive moduli were relatively unaffected up to  $350^{\circ}F$ .

The steady state humidity conditioning caused the strengths of AVCO 5505/Boron to fall below the baseline values particularly at elevated temperatures (by up to 30% for 350°F compression). This occurred for all orientations and in tension, compression and shear (the differences were generally of the order of 10%). The elastic moduli of AVCO 5505/Boron were reduced to a small extent (generally 2-4%) by the steady state humidity conditioning; the strongest effects were noted for the in-plane shear (10%) and transverse moduli (30%). The steady state conditioning increased the moduli of the  $[0/45/135/0/\overline{90}]_g$  laminates by 5-10%.

High humidity and thermal shock as indicated by the thermo-humidity cycle results had the same effect as steady state humidity conditions but had greatest impact on the room temperature static strength results (up to 20% for tension of 90°). The largest degradatory effects were obtained for combined humidity and ultraviolet on both strengths and modulus of all three orientations although a mixed effect was noted at elevated temperatures (losses up to 50% of the 90° compressive strength were seen).

The steady state humidity conditioning degraded the fatigue performance of AVCO 5505/Boron composites (losses of approximately 10%). The thermo-humidity cycle degraded the fatigue performance of AVCO 5505/Boron at the higher cyclic levels thus shifting the S-N curves downward and rotating the curve about the low cycle levels (losses up to 25% were encountered at high cycle levels). Accelerated weathering had the least effect on the fatigue behavior.

The steady state humidity conditioning had a detrimental effect on stress-rupture behavior of 0° AVCO 5505/Boron (loss of 25%) but enhanced the stress rupture behavior of  $[0/45/135/0/\overline{90}]_8$  composites by approximately 10%.

Steady thermal conditioning enhanced the strength (up to 8%) and modulus (up to 6%) of AVCO 5505/Boron. The cyclic thermal conditioning had a mixed (but moderate rather than severe) effect on the strength and moduli of all three orientations.

2

S

3

3

The interlaminar shear strengths were decreased by humidity conditioning (by up to 25%) but were unaffected by both steady state and cyclic thermal conditioning.

The AVCO 5505/Boron composite fatigue behavior was degraded by 10% at all temperatures by steady-state thermal conditioning. The stress-rupture behavior was improved by up to 5% by steady state thermal conditioning. Similarly stress-rupture improvement (20%) and fatigue degradation (10 to 15%) were shown for prior exposure to cyclic thermal preconditioning.

### Modmor II Graphite/Na mco 5206

A general reduction in the tensile, compressive and inplane shear strengths with increasing temperature was demonstrated for the Modmor II Graphite/Narmco 5206 composites (except for the  $0/45/135/0/\overline{90}$ , laminates). The elastic moduli of the 0° orientation remained relatively unaffected although the tensile modulus increased slightly with increasing temperature up to  $350^{\circ}$ F. The shear modulus and the tensile and compressive moduli of the  $90^{\circ}$  composites decreased with increasing temperature. The  $[0/45/135/0/\overline{90}]_{S}$  tensile modulus also increased with temperature. Residual stresses are suspect in this behavior.

Steady state humidity conditioning affected the moduli of the Modmor II graphite/Narmco 5206 system the least of the three resin matrix composites studied. The strengths of this system decreased below the values of the baseline strengths particularly at elevated temperatures (up to 35%). The exception to this behavior was the  $0^{\circ}$  tensile strength which showed some improvement (about 20%) with prior steady state humidity conditioning.

The thermo-humidity cycle conditioning influenced the static behavior in a manner similar to that produced by steady state conditioning except that the effects were worse at higher temperatures (up to 25% degradation). The greatest effects on modulus and strength were observed for the combined humidity and ultraviolet conditioning particularly at room temperature.

The thermo-humidity cycle degraded the fatigue behavior of the 90° Modmor II Graphite/Narmco 5206 more substantially at the higher cyclic levels, thus shifting the S-N curves downward and rotating the curve about the low cycle levels. The accelerated weathering had the least effect on the fatigue S-N curves (less than 10%). Steady state humidity conditioning degraded the fatigue behavior as well.

The stress rupture characteristics of Modmor II Graphite/
Narmco 5206 were benefited by steady state and cyclic humidity
conditioning. Residual stresses in the composites become suspect.

The static response of Modmor II Graphite/Narmco 5206 to steady state and cyclic thermal conditioning was quite similar to that shown for AVCO 5505/Boron. The interlaminar shear strengths decreased for humidity conditioning but were unaffected by either steady state or cyclic thermal conditioning. The

fatigue behavior of Modmor II Graphite/Narmco 5206 was improved with prior steady state thermal exposure. Cyclic thermal exposure, on the other hand degraded the fatigue behavior but appeared to be highly dependent on cyclic levels. The stress-rupture behavior was not affected substantially by either steady state or cyclic thermal conditioning.

### Courtaulds HMS Graphite/Hercules 3002M

The baseline static tensile strengths of all three orientations of Courtaulds HMS Graphite/Hercules 3002M composites increased with increasing test temperature by approximately 20%. The presence of degradatory residual stresses derived in the cure process becomes a suspect in this behavior. The 0° tensile modulus of this composite increased by 10% up to 350°F. The compressive and shear moduli exhibited mixed behavior over the temperature range. The baseline 90° moduli decreased by 10% with temperature. The  $[0/45/135/0/\overline{90}]_{S}$  moduli showed a straight increase of 20% in tension and a compressive decrease of 20%.

Steady state humidity conditioning caused a decrease of 15% in Courtaulds HMS Graphite/Hercules 3002M composite static strengths except in the case of the 0° tensile strengths which improved by 20%. The moduli of this composite was the most affected by steady state humidity conditioning (up to 50% for in-plane shear). The thermo-humidity cycle affected the strengths of this composite greatest at elevated temperatures (the 90° strength loss was 75%). The combined effects of humidity and ultraviolet light on static strengths were greatest at room temperature. Accelerated weathering also affected the elastic moduli of this composite.

The fatigue performance of Courtaulds HMS Graphite/
Hercules 3002M was degraded by steady state humidity conditioning

at high test temperatures and enhanced at room temperature.

Again as in the case of the other resin matrix composites, the thermo-humidity cycle had substantial effects on the S-N behavior of this composite, while the accelerated weathering cycle had the least effect.

Also, the effect of steady state and cyclic humidity conditioning on the stress-rupture properties of Courtaulds HMS Graphite/Hercules 3002M composites was beneficial as in the case of the other two resin matrix composites.

The strengths and moduli of Courtaulds HMS Graphite/
Hercules 3002M composites increased by 10% with steady state
thermal conditioning, while the cyclic thermal conditioning
decreased the static properties by up to 20% in the case of
compression. The interlaminar shear strengths were unaffected
by either steady state or cyclic thermal conditioning.

The fatigue behavior was degraded by 10% steady state and cyclic thermal conditioning. The creep and stress-rupture were affected only slightly by both steady state and cyclic thermal exposure.

#### 6061 Aluminum/Boron

The steady state thermal exposure reduced the 0° tensile strength of 6061 Aluminum/Boron by up to 20% while cyclic exposure to the same temperature reduced the tensile strengths by about 25%. The corresponding 0° compressive strengths were approximately the same as those of the tensile strengths when compared on total exposure time basis. The 90° tensile and compressive strengths were also reduced (by as much as 35%) for similar exposure periods.

Elevated temperatures reduced the tensile, compressive and fully reversed fatigue behavior of 6061 Aluminum/Boron composites, but not severely except in the case of the 90° orientation where up to 50% of the fatigue strengths were lost.

3

#### 6A1-4V Titanium/BorSiC

Reductions in the 0° tensile strength of 6Al-4V titanium/BorSiC were approximately 10% for steady state and cyclic thermal exposures. The corresponding compressive strength losses were approximately 10 to 20%, the highest losses occurring at the highest test temperatures. The transverse or 90° tensile strengths degraded up to 50% for steady state and 60% for prior cyclic thermal exposures.

Corresponding compressive strengths losses were of the order of 10 to 15%.

#### General

Some general commentary on the resin matrix composite behavior is also in order.

The moisture weight gain for all three composites depended only on the total time of high humidity exposure and was not affected by the intervening high or low temperatures, drying periods or U.V. exposures.

The thermal expansion characteristics of the resin matrix composites are dependent on the presence of absorbed moisture in the resin.

# TABLE OF CONTENTS

| Section |                      |         |                                                                   | Page       |  |
|---------|----------------------|---------|-------------------------------------------------------------------|------------|--|
| 1.0     | INTR                 | ODUCTIO | <u>N</u>                                                          | 1          |  |
| 2.0     | TECHNICAL DISCUSSION |         |                                                                   |            |  |
|         | 2.1                  | Resin   | Matrix Studies                                                    | 8          |  |
|         |                      | 2.1.1   | Materials                                                         | 8          |  |
|         |                      | 2.1.2   | Material Procurement, Quality Assurance a. 1 Processing           | 9          |  |
|         |                      | 2.1.3   | Fabrication of Laminates                                          | 10         |  |
|         |                      | 2.1.4   | Conditioning Treatments                                           | 13         |  |
|         |                      | 2.1.5   | Testing Specimens and Test Procedures                             | 20         |  |
|         |                      | 2.1.6   | Static Properties                                                 | 23         |  |
|         |                      | 2.1.7   | Fatigue Test Results                                              | 111        |  |
|         |                      | 2.1.8   | Creep and Stress Rupture Lest Results                             | 125        |  |
|         |                      | 2.1.9   | Thermo Physical Properties                                        | 145        |  |
|         |                      | 2.1.10  | Fracture Modes                                                    | 167        |  |
|         | 2.2                  | Metal   | Matrix Studies                                                    | 167        |  |
|         |                      | 2.2.1   | Materials                                                         | 168        |  |
|         |                      | 2.2.2   | Material Procurement                                              | 169        |  |
|         |                      | 2.2.3   | Metal Matrix Material Test Specimens                              | 171        |  |
|         |                      | 2.2.4   | Static Test Results for Metal Matrix<br>Composites                | 176        |  |
|         |                      | 2.2.5   | Fatigue Test Results                                              | 185        |  |
|         |                      | 2.2.6   | Creep and Stress Rupture Results                                  | 185        |  |
|         |                      | 2.2.7   | Physical and Thermophysical Properties of Metal Matrix Composites | 186        |  |
|         |                      | 2.2.8   | Frature Modes of Metal Matrix Composites                          | 198        |  |
|         | REFE                 | RENCES  |                                                                   | 204        |  |
|         |                      | NDIX I  |                                                                   | 207        |  |
|         |                      | MDIX II |                                                                   | 279        |  |
|         |                      | NDIK IV |                                                                   | 352<br>421 |  |
|         |                      | NDIX V  |                                                                   | 447        |  |

# LIST OF ILLUSTRATIONS

| <b>Figure</b> |                                                                                                                                                        | Page |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1             | Moisture Weight Gain Percentages for Various<br>Humidity Conditions for AVCO 5505/Eoron Composites                                                     | 24   |
| 2             | Moisture Weight Gain Percentages for Various<br>Humidity Conditions for Narmco 5206/Modmor II<br>Graphite Composites                                   | 25   |
| 3             | Moisture Weight Gain Percentages for Various<br>Humidity Conditions for Hercules 3002M/Courtaulds<br>HMS Graphite Composites                           | 26   |
| 4             | Comparative Tensile Behavior of 0° AVCO 5505/Boron<br>Before and After 500 and 1000 Hours Exposure to 98%<br>RH when tested at Room Temperature        | 29   |
| 5             | Comparative Tensile Behavior of 90° AVCO 5505/Boron Before and After 500 and 1000 hours exposure to 98% RH when tested at room temperature             | 30   |
| 6             | Comparative Tensile Behavior of 90° AVCO 5505/Boron Before and After 1000 hours exposure to 98% RH when tested at 260°F                                | 31   |
| 7             | Comparative Tensile Behavior of 90° AVCO 5505/Boron Before and After 1000 hours exposure to 98% RH when tested at 350°F                                | 32   |
| 8             | Comparative Tensile Behavior of AVCO 5505/Boron Laminate 0/45/135/0/90] before and after 1000 hours exposure to 98% RH when tested at room temp.       | 34   |
| 9             | Comparative Tensile behavior of AVCO/5505/Boron Laminate 0/45/135/0/90] before and after 1000 hours exposure to 98% RH when tested at 350°F            | 35   |
| 10            | Comparative Shear Stress-Shear Strain Behavior of AVCO 5505/Boron Composite before and after 500 and 1000 hours exposure to 98% RH when tested at Room |      |
|               | Temperature                                                                                                                                            | 36   |
| 11            | Effect of Humidity Conditioning on Strengths of AVCO 5505/Boron Composites - 0°                                                                        | 38   |
| 12            | Effect of Humidity Conditioning on Strengths of AVCO 3505/Boron Composites - 90°                                                                       | 39   |
| 13            | Effect of Humidity Conditioning on Strength: of AVCO 5505/Boron Laminates [0/45/135/0/90]                                                              | 40   |

# LIST OF ILLUSTRATIONS (Cont'd)

| <b>Figure</b> |                                                                                                                                     | Page |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| 14            | Effect of Humidity Conditioning on Elastic Moduli of AVCO 5505/Boron Composites - 0°                                                | 41   |
| 15            | of AVCO 5505/Boron Composites - 90°                                                                                                 | 42   |
| 16            | Effect of Humidity Conditioning on Elastic Moduli of AVCO 5505/Poron Composites - [0/45/135/0/90]                                   | 43   |
| 17            | Effect of Humidity Conditioning on the Strengths of Narmco 5206/Modmor II Graphite Composites - 0°                                  | 45   |
| 18            | Effect of Humidity Conditioning on the Strengths of Farmeo 5206/Modmor II Graphite Composites - 90°                                 | 46   |
| 19            | Effect of Humidity Conditioning on the Strengths of Narmco 5206/Modmor II Graphite Composites [0/45/135/0/90]                       | 47   |
| 20            | Effect of Humidity Conditioning on the Elastic<br>Moduli of Narmco 5206 Modmor II Graphite - 0°                                     | 48   |
| 21            | Effect of Humidity Conditioning on the Elastic Moduli of Narmco 5206/Modmor II Graphite Composites 90°                              | 49   |
| 22            | Effect of Humidity Conditioning on the Elastic Moduli of Narmco 5206/Modmor II Graphite Composites $[0/45/135/0/\overline{90}]_{e}$ | 50   |
| 23            | Effects of Humidity Conditioning on the Strengths of Hercules 3002M/Courtaulds H-IS Graphite Composites 0°                          | 51   |
| 24            | Effects of Humidity Conditioning on the Strengths of Hercules 3002M/Courtaulds HMS Graphite Composites 90°                          | 52   |
| 25            | Effects of Humidity Conditioning on the Strengths of Hercules $3002\text{M/Courtaulds}$ HMS Graphite Composites $[0/45/135/0/90]_g$ | 53   |
| 26            | Effects of Humidity Conditioning on the Elastic Moduli of Hercules 3002M/Courtaulds HMS Graphite Composites - 0°                    | 54   |
| 27            | Effect of Humidity Conditioning on the Elastic<br>Moduli of Hercules 3002M/Court ulds HMS Graphite<br>Composites ~ 90°              | 55   |
| 28            | Effect of Humidity Conditioning on the Elastic Meduli of Merculca 3002M/Courtealds MMD Craphice Composites - [0/45/135/0/90]        | 56   |

# LIST OF ILLUSTRATIONS (Cont'd)

| Figure |                                                                                                                                                                            | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 29     | Comparative Tensile Behavior of 90° AVCO 5505/Boron Composite before and after 500 hours exposure to 260°F when tested at 260°F                                            | 61   |
| 30     | Comparative Tensile Behavior of 90° AVCO 5505/Boron Composite before and after 500 hours exposure to 350°F when tested at 350°F                                            | 62   |
| 31     | Comparative Tensile Behavior of AVCO 5505/Boron<br>Laminate [0/45/135/0/90] before and after 500<br>hours exposure to 260°F when tested at room temp-<br>erature           | 63   |
| 32     | Comparative Tensile Behavior of AVCO 5505/Boron<br>Laminate [0/45/135/0/90] before and after 500<br>hours exposure to 350°F when tested at room temp-<br>erature           | 64   |
| 33     | Comparative Tensile Behavior of 90° Modmor II<br>Graphite/Narmco 5206 Composite before and after<br>100 and 500 hours exposure to 260°F when tested<br>at room temperature | 66   |
| 34     | Comparative Tensile Behavior of 90° Modmor II Graphite/Narmco 5206 Composite before and after 100 and 500 hours exposure to 350°F when tested at room temperature          | 67   |
| 35     | Effect of Steady State Thermal Conditioning on the strengths of AVCO 5505/Boron Composites - 0°                                                                            | 68   |
| 36     | Effect of Steady State Thermal Conditioning of the strengths of AVCO 5505/Boron Composites - 90°                                                                           | 69   |
| 37     | Effect of Steady-State Thormal Conditioning on the strengths of AVCO 5505/Boron Composites - [0/45/135/0/90] <sub>8</sub>                                                  | 70   |
| 38     | Effect of Steady State Thermal Conditioning on<br>the moduli of AVCO 5505/Boron Composites - 0°                                                                            | 71   |
| 39     | Effect of Steady State Thermal Conditioning on<br>the Elastic Moduli of AVCO 5505/Boron Composites<br>90°                                                                  | 72   |
| 40     | Effect of Steady State Thermal Conditioning on the Elastic Moduli of AVCO 5505/Boron Composites [0/45/135/0/90]                                                            | 73   |

# LIS' OF ILLUSTRATIONS (Cont'd)

| Figure |                                                                                                                                                                                 | Page |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 41     | Effect of Steady State Thermal Conditioning on<br>the strengths of Narmco 5206/Modmor II Graphite<br>Composites - 0°                                                            | 75   |
| 42     | Effect of Steady State Thermal Conditioning on<br>the strengths of Narmco 5206/Modmor II Graphite<br>Composites - 90°                                                           | 76   |
| 43     | Effect of Steady State Thermal Conditioning on the strengths of Narmo $\frac{5206}{Modmor}$ II Graphite Composites - $\left[\frac{0}{45}/\frac{135}{0}\right]_{S}$              | 77   |
| 44     | Effect of Steady State Thermal Conditioning on the Elastic Moduli of Narmco 5206/Modmor II Graphite Composites - $0^\circ$                                                      | 78   |
| 45     | Effect of Steady State Thermal Conditioning on the Elastic Moduli of Narmeo 5206/Modmor II Graphite Composites - 90°                                                            | 79   |
| 46     | Effect of Steady State Thermal Conditioning on the Elastic Moduli of Narmoo $\frac{5206}{Modmor}$ II Graphite Composites - $\left[\frac{0}{45}/135/0/\overline{90}\right]_{S}$  | 80   |
| 47     | Effect of Steady State Thermal Conditioning on the strengths of Hercules 3002M/Courtaulds HMS Graphite Composites - $0^{\circ}$                                                 | 81   |
| 48     | Effect of Steady State Thermal Conditioning on<br>the Strengths of Hercules 300 M/Courtaulds HMS<br>Graphite Composites - 90°                                                   | 82   |
| 49     | Effect of Steady State Thermal Conditioning on the strengths of Hercules $3002\text{M/Courtaulds HMS}$ Graphite Composites - $\left[0/45/135/0/\overline{90}\right]_{\text{c}}$ | 83   |
| 50     | Effect of Steady State Thermal Conditioning on<br>the Elastic Moduli of Hercules 3002M/Courtaulds<br>HMS Graphite Composites - 0°                                               | 85   |
| 51     | Effect of Steady State Thermal Conditioning on<br>the Elastic Moduli of Hercules 3002M/Courtaulds<br>HMS Graphite Composites - 90°                                              | 86   |
| 52     | Effect of Steady State Thermal Conditioning on the Elastic Moduli of Hercules 3002M/Courtaulds HMS Graphite Composites - [0/45/135/0/90]                                        | 87   |

# LIST OF ILLUSTRATIONS (Cont'd)

| Effect of Cyclic Thermal Conditioning on the strengths of AVCO 5505/Boron Composites - 0° 88  Effect of Cyclic Thermal Conditioning on the strengths of AVCO 5505/Boron Composites - 90° 89  Effect of Cyclic Thermal Conditioning on the strengths of AVCO 5505/Boron Composites - [0/45/135/0/90] 90 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| strengths of AVCO 5505/Boron Composites - 90° 89  55 Effect of Cyclic Thermal Conditioning on the strengths of AVCO 5505/Boron Composites -                                                                                                                                                            |
| strengths of AVCO 5505/Boron Composites -                                                                                                                                                                                                                                                              |
| g.                                                                                                                                                                                                                                                                                                     |
| 56 Effect of Cyclic Thermal Conditioning on the Elastic Moduli of AVCO 5505/Boron Composites - 0° 91                                                                                                                                                                                                   |
| 57 Effect of Cyclic Thermal Conditioning on the Elastic Moduli of AVCO 5505/Boron Composites - 90° 92                                                                                                                                                                                                  |
| Effect of Cyclic Thermal Conditioning on the Ela tic Moduli of AVCO 5505/Boron Composites - [0/45/135/0/90] 93                                                                                                                                                                                         |
| 59 Effect of Cyclic Thermal Conditioning on the strengths of Narmco 5206/Modmor II Graphite Composites - 0° 94                                                                                                                                                                                         |
| 60 Effect of Cyclic Thermal Conditioning on the strengths of Narmco 5206/Modmor II Graphite Composites - 90° 95                                                                                                                                                                                        |
| 61 Effect of Cyclic Thermal Conditioning on the strengths of Narmco 5206/Modmor II Graphite Composites - [0/45/135/0/90] 96                                                                                                                                                                            |
| 62 Effect of Cyclic Thermal Conditioning on the Elastic Moduli of Narmco 5206/Modmor II Graphite Composites - 0° 97                                                                                                                                                                                    |
| 63 Effect of Cyclic Thermal Conditioning on the Elastic Moduli of Narmco 5206/Modmor II Graphite Composites - 90° 98                                                                                                                                                                                   |
| Effect of Cyclic Thermal Conditioning on the Elastic Moduli of Narmco 5206/Modmor II Graphite Composites - [0/45/135/0/90] 99                                                                                                                                                                          |
| 55 Effect of Cyclic Thermal Conditioning on the strength; of Hercules 3002M/Courtaulds HMS Graphite Composites - 0°                                                                                                                                                                                    |

C

# LIST OF TLLUSTRATIONS (Cont'd)

| Figure |                                                                                                                                              | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 66     | Effect of Cyclic Thermal Conditioning on the strengths of Hercules 3002M/Courtaulds HMS Graphite Composites - 90°                            | 102  |
| 67     | Effect of Cyclic Thermal Conditioning on the strengths of Hercules 3002M/Courtaulds HMS Graphite Composites - [0/45/135/0/90] <sub>S</sub>   | 103  |
| 68     | Effect of Cyclic Thermal Conditioning on the Elastic Moduli of Hercules 3002M/Courtaulds HMS Graphite Composites - 0°                        | 104  |
| 69     | Effect of Cyclic Thermal Conditioning on the Elastic Moduli of Hercules 3002M/Courtaulds HMS Graphite Composites - 90°                       | 105  |
| 70     | Effect of Cyclic Thermal Conditioning on the Elastic Moduli of Hercules 3002M/Courtaulds HMS Graphite Composites - [0/45/135/0/90]           | 106  |
| 71     | Effect of Various Environmental Conditioning on<br>the Interlaminar Shear Strength of AV 30 5505/Boron<br>Composites                         | 108  |
| 72     | Effect of Various Environmental Conditioning on<br>the Interlaminar Shear Strength of Narmoo 5206/<br>Mocmer II Graphite Composites          | 109  |
| 73     | Effect of Various Environmental Conditioning on<br>the Interlaminar Shear Strengths of Hercules 3002M/<br>Courtaulds HMS Graphite Composites | 110  |
| 74     | Effect of Humidity Conditioning on the Fatigue SN curves for AVCO 5505/Boron Composites - 0°                                                 | 112  |
| 75     | Effect of Humidity Conditioning on the Fatigue SN curves for AVCO 5505/Boron Composites - [0/45/135/0/90] <sub>S</sub>                       | 113  |
| 76     | Effect of Humidity Conditioning on the Fatigue SN curves for Narmco 5206/Modmor II Graphite Composites - 0°                                  | 114  |
| 77     | Effect of Humidity Conditioning on the Fatigue SN curves for Narmco 5206/Modmor II Graphite Composites - [0/45/135/0/90]                     | 115  |

# LIST OF ILLUSTRATIONS (Cont'd)

| Figure |                                                                                                                                              | Page |            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| 78     | Effect of Humidity Conditioning on the Fatigue SN curves for Hercules 3002M/Courtaulds HMS Graphite Composites - 0°                          | 13.6 | O          |
| 79     | Effect of Humidity Conditioning on the Fatigue SN curves for Hercules 3002M/Courtaulds HMS Graphite Composites - [0/45/135/0/90]             | 117  | 0          |
| 80     | Effect of Steady State Thermal Conditioning on<br>the Fatigue SN curves for AVCO 5505/Boron<br>Composites - 0°                               | 119  |            |
| 81     | Effect of Steady State Thermal Conditioning on the Fatigue SN curves for AVCO 5505/Boron Composites - [0/45/135/0/90]                        | 120  | Đ          |
| 82     | Effect of Steady State Thermal Conditioning on<br>the Fatigue SN curves for Mcdmor II/Narmco 5206<br>Composites - 0°                         | 121  | ຍ          |
| 83     | Effect of Steady State Thermal Conditioning on<br>the Fatigue SN curves for Modmor II Graphita/<br>Narmco 5206 Composites - [0/45/135/0/90]  | 122  |            |
| 84     | Effect of Steady State Thermal Conditioning on<br>the Fatigue SN curves for Hercules 3002M/Courtaulds<br>HMS Graphite Composites - 0°        | 123  | Đ          |
| 85     | Effect of Steady State Thermal Conditioning on the Fatigue SN curves for Hercules 3002M/Courtaulds HMS Graphite Composites - [0/45/135/0/90] | 124  | 5          |
| 86     | Effect of Cyclic Thermal Conditioning on the Fatigue SN curves for AVCO 5505/Boron Composites - 0°                                           | 126  |            |
| 87     | Effect of Cyclic Thermal Conditioning on the Fatigue SN curves for AVCO 5505/Boron Composites - [0/45/135/0/90]                              | 127  | <b>.</b>   |
| 88     | Effect of Cyclic Thermal Conditioning on the Fatigue SN curves for Narmco 5206/Modmor II Graphite Composites - 0°                            | 128  | <u>:</u> , |
| 89     | Effect of Cyclic Thermal Conditioning on the Fatigue SN curves for Narmco 5206/Modmor II                                                     |      |            |
|        | Graphite Composites - $[0/45/135/0/\overline{90}]$                                                                                           | 129  |            |

# LIST OF ILLUSTRATIONS (Cont'd)

| <b>Figure</b> |                                                                                                                                            | Page |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| 90            | Effect of Cyclic Thermal Conditioning on the Fatigue SN curves for Hercules 3002M/Courtaulds HMS Graphite Composites - 0°                  | 130  |
| 91            | Effect of Cyclic Thermal Conditioning on the Fatigue SN curves for Hercules 3002M/Courtaulds HMS Graphite Com, sites - [0/45/135/0/90]     | 131  |
| 92            | Effect of Humidity Conditioning on the Stress<br>Rupture Behavior of AVCO 5505/Boron Composites - 0°                                       | 133  |
| 93            | Effect of Humidity Conditioning on the Stress Rupture Behavior of AVCO 5505/Boron Composites - [0/45/135/0/90]                             | 134  |
| 94            | Effect of Humidity Conditioning on the Stress<br>Rupture Behavior of Narmco 5206/Modmor II Graphite<br>Composites - 0°                     | 135  |
| 95            | Effect of Humidity Conditioning on the Stress Rupture Behavior of Narmco 5206/Modmor II Graphite Composites - [0/45/135/0/90]              | 136  |
| 96            | Effect of Humidity Conditioning on the Stress Rupture Behavior of Hercules 3002M/Courtaulds HMS Graphice Composites - 0°                   | 137  |
| 97            | Effect of Humidity Conditioning on the Stress Rupture Behavior of Hercules 3002M/Courtaulds HMS Graphite Composites - [0/45/135/0/90]      | 138  |
| 98            | Effect of Steady State Thermal Conditioning on<br>the Stress Rupture Behavior of AVCO 5505/Boron<br>Composites - 0°                        | 140  |
| 99            | Effect of Steady State Thermal Conditioning on the Stress Rupture Behavior of AVCO 5505/Boron Composites - [0/45/135/0/90]                 | 141  |
| 100           | Effect of Steady State Thermal Conditioning on<br>the Stress Rupture Behavior of Narmco 5206/<br>Modmor II Graphite Composite - 0°         | 142  |
| 161           | Effect of Steady State Thermal Conditioning on the Stress Rupture Behavior of Narmco 5206/ Modmor II Graphite Composites - [0/45/135/0/90] | 143  |

#### The second state of the second second

0

C

ũ

2

t

| Figure |                                                                                                                                                                         | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 102    | Effect of Steady State Thermal Conditioning on the Stress Rupture Behavior of Hercules 3002M/Courtaulds HMS Graphite Composites - [0/45/135/0/90]                       | 144  |
| 103    | Effect of Cyclic Thermal Conditioning on the Stress Rupture Behavior of AVCO 5505/Boron Composites - 0°                                                                 | 146  |
| 104    | Effect of Cyclic Thermal Conditioning of the Stress Rupture Behavior of AVCO 5505/Boron Composites - [0/45/135/0/90] <sub>s</sub>                                       | 147  |
| 105    | Effect of Cyclic Thermal Conditioning on the Stress Rupture Behavior of Narmco 5206/Modmor II Graphite Composites - 0°                                                  | 148  |
| 106    | Effect of Cyclic Thermal Conditioning on the Stress Rupture Behavior of Narmco 5206/Modmor II Graphite Composites - [0/45/135/0/90]                                     | 149  |
| 107    | Effect of Cyclic Thermal Conditioning on the Stress Rupture Behavior of Hercules 3002M/Courtaulds HMS Graphite Composite - 0°                                           | 150  |
| 108    | Effect of Cyclic Thermal Conditioning on the Stress Rupture Behavior of Hercules 3002M/Courtaulds HMS Graphite Composites - [0/45/135/0/90]                             | 151  |
| 109    | Thermal Expansion Behavior of Courtaulds HMS Graphite/Hercules 3002M in the 90° Orientation                                                                             | 153  |
| 110    | Coefficient of Thermal Expansion for AVCO 5505/<br>Boron Composites                                                                                                     | 154  |
| 111    | Coefficient of Thermal Expansion for Courtaulds HMS Craphite/Hercules 3002M Composites                                                                                  | 155  |
| 112    | toefficient of Thermal Expansion for Narmco 5206/<br>Modmor II Graphite Composites                                                                                      | 156  |
| 113    | Thermal Expansion Behavior of Graphite Reinforced<br>Resin Composite (Courtaulds HMS Graphite/Hercules<br>5002M, 90 Orientation) Cured at 350°F for 63 hours            | 161  |
| 114    | Thermal Expansion Behavior of Graphite Reinforced<br>Resin Composite (Courtailds HMS Graphite Hercules<br>3002M, 90° Orientation) Exposed to 100% R.H. for<br>812 hours | 162  |

\_ \_

# I IST OF ILLUSTRATIONS (Cont'd)

| Figure |                                                                                                              | Page |
|--------|--------------------------------------------------------------------------------------------------------------|------|
| 115    | Thermal Conductivity of AVCO 5505/Boron Composites                                                           | 163  |
| 116    | Thermal Conductivity of Modmor II Graphite/Narmco 5206 Composites                                            | 164  |
| 117    | Thermal Conductivity of Courtaulds HMS Graphite/<br>Hercules 3002M Composites                                | 165  |
| 118    | Metal Matrix Test Specimens                                                                                  | 172  |
| 119    | Effect of Prior Thermal Conditioning on the Tensile Properties of Boron/6061 Aluminum Composites - 0°        | 177  |
| 120    | Effect of Prior Thermal Conditioning on the Compressive Properties of Boron/6061 Aluminum Composites - 0°    | 178  |
| 121    | Effect of Prior Thermal Conditioning on the Tensile strengths of 6061 Aluminum/Boron Composites - 90°        | 179  |
| 122    | Effect of Prior Thermal Conditioning on the Compressive strengths of 6061 Aluminum/Boron Composites - 90°    | 180  |
| 123    | Effect of Prior Thermal Conditioning on the Tensite Properties of 6Al-4V-Titanium/BorSiC Composites - 0°     | 181  |
| 124    | Effect of Prior Thermal Conditioning on the Compressive strengths of 6Al-4V-Titanium/BorSiC Composites - 0°  | 182  |
| 125    | Effect of Prior Thermal Conditioning on the Tensile strengths of 6Al-4V-Titanium/BorSiC Composites - 90°     | 183  |
| 126    | Effect of Prior Thermal Conditioning on the Compressive strengths of 6Al-4V-Titanium/BorSiC Composites ~ 90° | 104  |
| 127    | Thermal Empansion Behavior of 6061 Aluminum/<br>Boron Material in the 0° Orientation                         | 187  |
| 128    | Thermal Expansion Behavior of 6061 Aluminum/<br>Boron Material in the 90° Fiber Orientation                  | 188  |
| 129    | Coefficient of Thermal Expansion for £061 Aluminum/Boron Composites                                          | 189  |

# LIST OF ILLUSTRATIONS (Cont'd)

| <u>Figure</u> |                                                                                                 | Page |
|---------------|-------------------------------------------------------------------------------------------------|------|
| 130           | Thermal Expansion Behavior of 6Al-4V-Titanium/<br>BorSiC Materials in the 0° Fiber Orientation  | 190  |
| 131           | Thermal Expansion Behavior of 6Al-4V-Titanium/<br>BorSiC Materials in the 90° Fiber Orientation | 191  |
| 132           | Coefficient of Thermal Expansion for 6Al-4V-<br>Titanium/BorSiC Composites                      | 192  |
| 133           | Thermal Conductivity of 6061 Aluminum/Boron Composites                                          | 196  |
| 134           | Thermal Conductivity of 'Al-4V-Titanium/BorSiC Composites                                       | 197  |

# LIST OF TABLES

| Number |                                                                                                                                                                 | Page          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| I      | Resin Matrix Baseline Data Program                                                                                                                              | 3             |
| 11     | Resin Matrix Humidity Exposure Data Program                                                                                                                     | 4             |
| III    | Resin Matrix Thermal Exposure Data Program                                                                                                                      | 5-6           |
| IV     | Metal Matrix Data Program                                                                                                                                       | 7             |
| V      | Quality Assurance Test Data For Resin Matrix<br>Prepreg Tape Materials                                                                                          | 1:            |
| VI     | Volumetric Measures of Fiber And Matrix Contents<br>In AVCO 5505/Boron Composites                                                                               | 14            |
| VII    | Volumetric Measures of Fiber and Matrix Contents<br>In Modmor II Graphite/Narmco 5206 Composites                                                                | 15            |
| VIII   | Volumetric Measures of Fiber and Matrix Contents<br>In Hercules 3002M Graphite/Courtaulds HMS Composit                                                          | l6<br>ces     |
| IX     | Summary of Tensile Tests At Room Temperature<br>On Various Composites Coated With Super Pesothane<br>Polyurethane And Subjected To The Thermo-Humidity<br>Cycle | 60            |
| Х      | Average Instantaneous Coefficient of Expansion<br>Data of Resin Matrix Composites                                                                               | 157           |
| XI     | Average Instantatious Coefficient of Thermal Expansion Data For Met Matrix Composites                                                                           | 194           |
| XII    | Static Properties Summary - AVCO 5505/Boron Composites                                                                                                          | 209-<br>223   |
| XIII   | Fatigue Properties Summary AVCO 5505/Boron Composites                                                                                                           | 240-<br>249   |
| XIV    | Creep and Stress Rupture Properties Summary<br>AVCO 5505/Boron Composites                                                                                       | 257-<br>266   |
| ΧV     | Static Properties Summary NARMCO 5206 Graphice/MODMOR II Graphite Composites                                                                                    | 281 ··<br>295 |
| XV *   | Fatigue Properties Summary NARMCO 5206 Graphite/MODMOR II Graphite Composites                                                                                   | 313-<br>323   |
| xvii   | Creep and Stres: Rupture Properties Summary - NAZMCO 5206/MODMOR II Graphite Composites                                                                         | 330 -         |

#### list of table - come'd)

| 1 | Number |                                                                                                    | Page                  |
|---|--------|----------------------------------------------------------------------------------------------------|-----------------------|
|   | XVIII  | Static Properties Summary Hercules 3002M/Courtaulds HMS Graphite Composites                        | 354 <b>-</b><br>369   |
|   | XIX    | Fatigue Properties Summary Hercules 3002M/Courtaulds HMS Graphite Composites                       | 387 -<br>397          |
|   | XX     | Creep and Stress Rupture Properties Summary -<br>Hercules 3002M/Courtaulds HMS Graphite Composites | 404 -<br>411          |
|   | XXI    | Static Properties Summary 6061 Aluminum<br>Boron Composites                                        | 423-<br>428           |
|   | XXII   | Fatigue Properties Summary 6061 Aluminum<br>Matrix/Boron (5.6 mil) Composites                      | 435 -<br>439          |
|   | IIIXX  | Creep and Stress Rupture Properties Summary - 6061 Aluminum/Boron Composites                       | 442 <b>-</b><br>443   |
|   | VIXX   | Static Properties Summary 6Al-4V-<br>Titanic /Borsic Components                                    | 449 -<br>4 <b>5</b> 4 |
|   | xxv    | Fatigue Properties Summary 6Al-4V-Matrix/Borsic (5.7 mil) Composites                               | 461-<br>465           |
|   | xxvı   | Creep and Stress Rupture Properties Summary - 6Al-4V-Titanium Borsic (5.7 mil) Composites          | 468 -<br>469          |

#### SECTION I

#### 1.0 INTRODUCTION

The objective of this program was to generate basic information on the effect of various environmental variables on the physical, thermal and mechanical properties of advanced composites suitable for application to primary aircraft components. The program encompassed the following tasks:

1.0 Generation of Physical, Thermal and Mechanical Properties of Boron/Epoxy and Graphite/Epoxy composites (Resin Matrix Studies).

The evaluation of the resin matrix materials was further subdivided into the following activities:

- 1.1 material procurement
- 1.2 laminate fabrication
- 1.3 quality assurance testing
- 1.4 baseline data establishment in the following specific areas:
  - 1.4.1 tension
  - 1.4.2 compression
  - 1.4.3 in plane shear
  - 1.4.4 interlaminar shear
  - 1.4.5 flexural tests
  - 1.4.6 fatigue
  - 1.4.7 creep and stress rupture
  - 1.4.8 thermo-physical properties thermal expansion, thermal conductivity
  - 1.4.9 density

- 1.5 exposure of samples to elevated humidity environments
- 1.6 exposure of samples to elevated temperature environments
- 1.7 data generation on the samples exposed to items 1.5 and 1.6 and tested similar to items 1.4.1 through 1.4.8
- 1.8 selective testing of coated samples analysis, correlation of data and reporting activities.
- 2.0 Generation of similar data for Boron/Aluminum and BorSiC/Tital fum Composites (Metal Matrix Studies). The evaluation of the metal matrix composites followed the same general process except that the effect of saidity exposure was not examined.

I thirt is IV. Tables I through III show the overall resinmat. I marrial programs that include baseline tests consisting of unexposed specimens, humidity exposure tests and thermal exposure tests. Table IV shows the metal matrix material program including both baseline and thermal exposure tests.

Table I Resin watrex base line data proceam

|                     |                                       |              | Poroc/A      | FC 5505     |            | TORROY   | r 11 Grap    | 11 Graphite/Harmeo 5206 | \$025 05         | Mercu    | Mercules 3002M/Courtenids | Courtenle  |          | 11         |
|---------------------|---------------------------------------|--------------|--------------|-------------|------------|----------|--------------|-------------------------|------------------|----------|---------------------------|------------|----------|------------|
| -                   | Tiber<br>Orient                       | =            | 2.092        | 260°F 350°F | Total      | 드        | 3.09Z        | 350.6                   | Total            | E        | 260°F                     | 7,050      | Tocal    | Total      |
|                     |                                       |              | 61           |             | н          |          |              |                         | 11               |          |                           |            | 11       | il .       |
| Tenston             | •                                     | \$ (3)*      |              | 2 (3)       | (£)        | <b>2</b> | ر<br>(ع)     | (2)                     |                  | ć        | (3)                       | <u> </u>   |          |            |
|                     |                                       | S (3)        | 5 (3)        | 5 (3)       | 15 (9)     | \$ (3)   | S (3)        | 5 (3)                   | 15 (3)           | <b>S</b> | s<br>(3)                  | ÷          | £        |            |
|                     | 0./90./+ 45.                          | 5 (3)        | (3)          | 5 (3)       | 15 (9)     | \$ (3)   | 5 (3)        | 6) 5                    | 15 (9)           | <b>6</b> | 3<br>3                    | S (C)      | 15 (9)   | 45 (27)    |
|                     |                                       | 3            |              | 5           | 10 (6)     | 5 3      |              | 60 3                    | 10 (6)           | S S      |                           | \$ (3)     | 10 (3)   | (35)<br>SA |
| S radich been       | > <b>\$</b>                           | 3            | •            | 3           |            | 3 3      | •            | (5)                     |                  | 3        | ٠                         | £ 3        | S 2      | (E)        |
|                     | . 57 7/.00/.0                         | 6 6          |              | 3           |            | 8 6      | •            | 5                       |                  | 60 \$    | •                         | © \$       | (C)      | (97) 98    |
| ar <sup></sup>      | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; |              |              | }           |            | ;        | •            |                         |                  |          | Ś                         | •          | <b>(</b> | 74 (32)    |
| ompression.         | •                                     | (c) <b>s</b> | S (3)        | 6           |            | G<br>\$  | <b>?</b> (3) | 6 6                     |                  | 66       | Ĉ.                        | 3 6        |          |            |
| Compon              | 8                                     | <u>S</u>     | ```          | ê<br>S      |            | <b>S</b> | 5 (3)        | (£) 5                   |                  | 3 6      | e e                       | 3 5        |          |            |
|                     | 0° /90°/± 45°                         | 5 (3)        | <b>S</b> (3) | 5 (3)       | 15 (9)     | S (3)    | €<br>3       | 3                       | (E)              | (E)      |                           | ĉ          |          |            |
| In Plane Sheer      | + 45                                  | €<br>•       | î \$         | \$ (3)      | 15 (9)     | 5 (3)    | 5 (3)        | \$ (3)                  | 15 (9)           | 3<br>3   | s<br>Ö                    | 60 5       | છ જ      | £ 3        |
| Total Shear         |                                       |              | ~            | ٠-,         | ສ          | ×        | \$           | 'n                      | 15               | •        | ~                         |            | 13       | \$         |
|                     |                                       |              | J            |             | ·          | J.       | <b>.</b> ~   | •                       | 15               | ~        | •                         | <b>4</b> 7 | ສ        | \$         |
|                     | 2 T/ R/-D                             |              | , .          | , .         | : :        |          | -            | -                       | 2                | _        | _                         | ~          | 21       | S          |
| Plesure             | <b>.</b>                              | ^ -          | Λ·           | n •         | 3 2        | , ,      | <b>.</b> . r | , <b>.</b>              |                  |          | . ~                       | ·          | 23       | 45         |
|                     | 3                                     | ^ •          | Λ <b>-</b>   | n <b>u</b>  | 3 4        | , ,      | س.           |                         | : 2              | · ~      | ~                         | <b>~</b>   | ສ        | 45         |
|                     | 0./90./+ 43                           | ړ            | `            | ۱,          |            |          |              |                         |                  |          | !                         |            | 5        | 8          |
| 1. true 8 . 0.1     | •                                     | 2            | 2            | 2           | 2          | 9        | 2            | 2                       | 8                | 2 :      | <b>2</b> :                | 3 :        | R S      | 2 8        |
| •                   |                                       | 91           | 91           | 9           | 8          | 9        | 21           | 2                       | <b>R</b>         | 2 :      | <b>3</b> :                | a :        | R 1      | R 8        |
|                     | -57 +/.06/.0                          | 92           | 91           | 2           | 8          | 22       | 10           | 01                      | 8                | 2        | 3                         | 2          |          | 2          |
|                     |                                       |              | (01)         | 10 (10      | (S)<br>92  |          | 10 (10)      | 10 (10)                 | ( <b>QE</b> ) Q2 | ,        |                           |            | <b>8</b> | 3<br>3     |
| Creep &             |                                       |              | 10 (10)      |             |            |          | (01) 01      | 10 (10)                 | ( <u>R</u> )     | •        |                           |            |          |            |
| Propertie           | .57 +/.06/.0                          | •            |              |             | (원<br>원    |          | 01) 01       | 10 (10)                 | (02) 02          | •        | 10 (10)                   | (E)        | R<br>R   | 3          |
|                     |                                       |              | .            | _           | _          | ŀ        |              | ~                       | 3                | e        |                           | 9          | <u></u>  | 2          |
| THE PART THE PAIR   | · •                                   |              | •            | . "         | <b></b>    | •        | •            |                         | •                |          | •                         | ~          | ~        | 2 :        |
|                     | 57 +/.00/.0                           | ٠            | •            | ~           |            | •        | •            | 3                       | 3                | ·        |                           | -          | 7        | اِ         |
|                     |                                       |              |              | -           | -          | Ŀ        | •            | -                       | 9                | •        | •                         | •          | _        | 2          |
| Theres Conductivity | -                                     | ,            |              | ٦ -         | ` ~        |          | •            | •                       | 3                | ٠        | •                         | ~          | ۰,       | 21         |
|                     | 2 2 2                                 |              |              | , ~         | . m        | •        | •            | m                       | <u></u>          | •        | •                         | 3          | 3        | 12         |
|                     | 3,                                    |              |              |             | <u> </u>   | -        |              |                         | _                | _        |                           | •          | 3        | 12         |
| In sity (at MT)     | <b>.</b>                              | m ·          | •            | •           | ~ <b>_</b> | ~ ~      | ,            | •                       |                  | _        | ٠                         | •          | _        | 12         |
|                     |                                       | ~            | •            | •           | ` .        | ۰ ,      | •            | •                       |                  |          | •                         | •          | _        | 71         |
|                     | 0./30./+ 45.                          | <b>~</b>     |              |             | -          | <u> </u> |              |                         |                  |          |                           |            |          |            |
|                     | Strate to design the running          | Ingeru       |              | Speciants.  |            |          |              |                         |                  |          |                           |            |          |            |

\* Numbers in paramethesis indicate instrumented Species

TABLE 11

RESIN NATRIX HUMIDITY EXPOSURE DATA PROCRAM

(THIS TABLE APPLIES FOR EACH OF THE FOLLOWING MATERIALS:)

(1) BORDON/A"CO 5505 (2) INTRICOL 11/MAINTON 5206 (3) COUNTAULIDS NOS/HERCULES 3002M)

| Transfer   Steelay 1500 Hearth   Act   A | Propert     | Humid . ty             | ô        | 0° Orientation | et lon |        | \$   | Orient at ion | at ion |                    | 61    | 0/45/135/0/901 | 1901 Drient. | ¥.     | . 59 1    | Orientation | rt ion |       | Overall |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|----------|----------------|--------|--------|------|---------------|--------|--------------------|-------|----------------|--------------|--------|-----------|-------------|--------|-------|---------|
| Figure   Steelay   100   Heatward   11   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Supremark              |          | 1 007          | 320.7  | 100    |      | 100/          |        |                    |       |                | - 1          | 1010   | 7         | 1.047       |        | Total | Total   |
| Stocial Dior Heavest   10.5   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1  | Tenston     | Steady '500 Hrs. **    | 3(2)+    |                | ٠<br>- | 9(3)   | 3(3) |               |        | 9(3)               | 3(3)  | -              | ~            | (6)6   |           |             |        | •     | 27(9)   |
| The composition   Continue   Co |             | Steady 1000 Hrs.**     | 9        | (3)            | 3(3)   | (6)6   | 3(3) | 3(3)          | 3(3)   | ( <del>s</del> ) 6 | 3(3)  | 3(3)           | 3(3)         | 9(9)   |           | •           | •      | ,     | 27(27)  |
| Steady 500 Hearth   1(3)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1(1)   1 |             | Thermo-Hum. Co., vara  | 373.     | ~              |        | 3(3)   | 3(3) | •             | _      | <u> </u>           | 303   | <b>"</b> "     | -            | 606    | ,         |             | ,      | ,     | 27(9)   |
| Steady Soft Hest-resolution   Stea |             | Acc. Wthrng. ***       | 1( ).    | 1(3)           | 34.31  | 6(6)   | 3(3) | 3(3)          | 3(1)   | (6)6               | 3(3)  | 3(3)           | 3(3)         | (6)6   | •         | •           |        |       | (12)12  |
| Steady   S | Compression | Steady '500 Hrs.**     | 3(3)     | -              | 3      | 9(1)   | 300  |               | 3      | 9(3)               | (1.)( | ٦              | ~            | 9(3)   |           |             |        |       | 27(9)   |
| The Theorem   Front   The Theorem   The Theorem   The Theorem   The Theorem   The Theorem   Th | _           | Steady 100 Hrs         | 3030     | 3(3)           | 3(3)   | 6(6)   | 3(3) | 1(3)          | 3(3)   | (6)6               | 3(3)  | 3(3)           | 1631         | (6)6   | ٠,        |             | _      | ,     | 27(27)  |
| In Plane   Stock Wethers. ****   3(1)   1(3)   1(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3(3)   3( |             | The case-Him Cvc. ***  | 303      | •              |        | 9(3)   | 3(3) | 6             | •      | 4(3)               | 3(3)  |                | -            | 9(3)   | ,         | •           | •      | ,     | 27(9)   |
| In Plant   Storady Short Hrs.**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Acc. Wthrns. ***       | 3(3)     | (٢)            | 1(3)   | 6)6    | 3(3) | 3(3)          | 3(3)   | (6)6               | 3(3)  | 3(3)           | 3(3)         | 6(6)   |           | ,           | •      | •     | 27(27)  |
| Shear   Steady 100   Hrs.**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In Plant    | Steady 500 Hrs. **     | <u> </u> |                | 1      | ,      |      | ,             |        |                    |       |                |              | -      | 3(3)      |             | _      | 9(3)  | 9(3)    |
| The modellun, Cvo, first   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Shear       | Steady 100 Hrs.**      | ,        | •              | 1      | ,      |      |               |        | •                  | ٠     |                |              | ,      | 3(3)      |             | 3(3)   | (6)6  | 6)6     |
| Stady 500 Hrs.1"   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | The mo-Hur. Cvc. ***   | ,        | •              | ,      | ,      | ,    |               | •      | ,                  | ,     | •              |              | •      | 3(3)      | _           | _      | 9(3)  | 9(3)    |
| Strady 500 Hrs.** 3 3 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Acc. Wihrn, 147        | ,        | •              |        | •      |      |               |        | ,                  | ,     | •              | ,            | 1      |           |             | (3)    | (6)6  | 9(9)    |
| Strady 100" Hrs.**         3         3         9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ╄                      | -        | ~              | 2      | 6      |      |               |        | ,                  |       |                | ,            |        |           |             | ,      | •     | 6       |
| The properties of the first state of the first st | Shear       | St.adv 100 Hrs.**      | ~        | 3              | 3      | 6      | 1    |               |        | '                  | ,     | ,              | ,            | •      | •         | ,           |        | ,     | •       |
| Acc. Withing. ***         3         3         3         9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | The man-Hum, Cyc. www  | 3        | 3              | 3      | 6      | •    |               | ,      | •                  | •     |                |              | ,      | 1         | •           | <br>I  | 1     | •       |
| Stcady/500 Hrs.***         -         5         5         15         -         -         5         5         15           Stcady/100 Hrs.***         5         5         5         15         -         -         5         5         15           Act. Wthrn.         5         5         5         15         -         -         -         5         5         15           Stcady JHrs.**         5         5         5         16(10)         -         -         -         5(5)         5(5)         10(10)           Stcady JHrs.**         -         5(5)         5(5)         10(10)         -         -         -         5(5)         5(5)         10(10)           Stcady JHrs.**         -         5(5)         5(5)         10(10)         -         -         -         5(5)         5(5)         10(10)           Accthms. Cyc.****         -         5(5)         5(5)         10(10)         -         -         -         5(5)         5(5)         10(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Acc. Wthmg. ***        | 3        | £              | 3      | 6      | •    | ,             | •      | ,                  | •     |                | -            | •      |           |             |        | •     | 6       |
| Strand 100 Hrs. + 5 5 5 15 5 5 5 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Faction     | Stoady/500 Hrs. Th     | <u>.</u> | 5              | >      | 15     |      |               |        | ,                  | ~     | 5              | \$           | 15     | •         | •           |        |       | OK      |
| Thermo-Hum, Cyc.****   5   5   15     5   5   5   15   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R = 0.1     | St23dv 100 Hrs.**      | ·r       | ĸ              | ~      | 15     | ,    | ı             | 1      | ,                  | \$    | \$             | •            | 15     |           |             | ,      | •     | 8       |
| Acc. Wthm1, ***         5         5         15         -         -         5         5         5         15           Stcady O Wrs.**         -         5(5)         10(10)         -         -         -         5(5)         5(5)         -           Stcady O Wrs.**         -         5(5)         5(5)         10(10)         -         -         -         5(5)         5(5)         10(10)           The contract of thms.         -         5(5)         5(5)         10(10)         -         -         -         5(5)         5(5)         -           Acc. others.         -         5(5)         5(5)         10(10)         -         -         -         5(5)         5(5)         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | The case-Hum. Cyc. *** | 2        | 5              | ٠,     | 1.5    |      | •             |        | •                  | \$    | ~              | \$           | 15     |           | •           | 1      | •     | 8       |
| SECRETAL OF HTE.TT . 5(5) 5(5) 10(10) 5(5) 5(5) 5(5) 5(5) 5(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Acc. Wthrns. ***       | ~        | ម្នា           | 5      | 15     | •    | •             | •      | •                  | ٠     | ~              | 5            | 15     | •         | -           | •      | -     | ρź      |
| Stelly 1000 Brs.** - 5(5) 5(5) 10(10) 5(5) 5(5) 5(5) 5(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Creer and   | :                      | ,        | 5(5)           | (5);   | 10(10) |      |               | ,      | ,                  |       | 5(5)           | \$(\$)       | •      | <br> <br> |             |        |       | 20(20)  |
| This results Cyclerate 5 (5) 5 (5) 10 (10) 5 (5) 5 (5) 5 (5) Acc. Then 5 the 5 (5) 5 (5) 10 (10) 5 (5) 5 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stress      | Stell 4000 Brs.**      | ,        | 5(5)           | 5(5)   | 10(10) | ,    | 1             | ,      | •                  | •     | \$(5)          | 5(5)         | 10(10) | ,         | •           | •      |       | 20(20)  |
| Acc:htmg. +++   - 5(5) 5(5)   10(10) 5(5) 5(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rupture     | This - Hill Cyc. ***   | ,        | 5(5)           | 5(5)   | 10(10) | ı    | ,             | ,      | '                  | •     | \$(5)          | 5(5)         | •      |           |             |        |       | 20(20)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Accthmg. ***           | '        | 5(5)           | 5(5)   | 10(10) | •    | ,             | ı      | •                  | •     | \$(5)          | 5(5)         | 10(10) |           | •           | ,      |       | 20(20)  |

" Numbers in parenthesis indicate instrumented specimens

The Steady State Humidity Conditioning Consisted of 96% RM, 120°F for the stated time period see Section 2.1.4.1

The most middity and Accelerated Weathering Cycles are defined in Section 2.1.4.2

ť

TABLE 111

RESIN MATRIX THERMAL EXPOSURE DATA PROGRAM

(TILS TABLE APPLIES FOR EACH OF THE POLLOGING MATERIALS:)

(1) BORON AVICE 5505 (2) MONDR 11/NARMOD 5206 (3) OCURTABILDS INIS/HERICULES 3002M)

| O Orientation |
|---------------|
|               |
|               |
|               |
| ~             |
| 3+3)          |
| -             |
| 3(3)          |
| m             |
| 3(3)          |
|               |
| ,             |
| <b>'</b> ~    |
| 3(3)          |
|               |
| 3(3) -        |
| 0             |
| 3(3)          |
| •             |
| •             |
| •             |
| •             |
| ,             |
| 1             |
| •             |
| •             |

<sup>\* !:</sup>mbers in parenthesis indicate instrumented specimens

emerature mediament elim meser. Seel vicine milaneary ce estamble estamble estambles estambles estambles estamb

<sup>\*\*</sup> For the details of the steady state thermal conditioning, see Section 2.1.4.3

<sup>\*\*\*</sup> Could thermal conditioning involved thermal changes from 100°F to the stated temperature and back to 100°F at a mate of one cph for the stated comber of cycles, see Section 2.1.4.4

(Am') TIL - Continued

|              |          |                                   |          |                       |       |         | 1     |                                  | 1   | -     |          |               | -                         |              | !    |                            |   | -     |                  |
|--------------|----------|-----------------------------------|----------|-----------------------|-------|---------|-------|----------------------------------|-----|-------|----------|---------------|---------------------------|--------------|------|----------------------------|---|-------|------------------|
| Property     | <b>1</b> | Thermal Conditioning              | <b>.</b> | 0. Ori.nta<br>d 260°F | 350°F | Lotal   | 5 tz  | <b>Orientati</b> er<br>260°F SJC | اها | -otal | ž        | ]<br>g 3:     | n g certent.<br>Son P. Ya | of.<br>Intal | ÷182 | Orientation<br>260'F 350'F |   | Total | Overal!<br>Total |
| Inter! minar | Steady   | Interiguinar Steady 260°F'100 hra |          | -                     | ,     | 5       | :<br> |                                  | -   | ,     | 1        | :<br>!<br>! . |                           |              | ,    |                            |   | ,     | ٠                |
|              | Steady   | Stredy 260°F/500 hrs              | ۳        | ۳                     |       | c       |       | •                                |     |       |          |               |                           | ,            |      |                            |   | •     | æ                |
|              | Steady   | Steady 350"F/100 hrs              | m        | •                     | ,     | ı       | ٠     | ,                                |     | ,     | ,        |               |                           | ,            | •    | •                          | • | •     | ø                |
|              | Steady   | Steady 350'F 500 hrs              | 3        | •                     | -     |         | •     | • !                              |     | ,     | . :      | , ;           | - )<br>- !                | _            | ,    | ,                          |   | •     | 9                |
|              | Cyclic   | Cyclic 260'F'50C Cyc              | 6        |                       | •     | ٠.      | ,     |                                  |     |       | ,        |               | ,                         | ,            |      | •                          |   |       | 9                |
|              | Cyclic   | Cyclic 260°F/1000 Cv              | سم       | -                     | ,     | ų       | 1     |                                  | ,   | 1     |          | •             | 1                         |              |      |                            |   | ,     | •                |
|              | Cyclic   | 300 CCS13-050                     |          | ű                     | •     | £       |       |                                  | •   | ,     |          |               | ,                         |              |      |                            |   | ,     | 9                |
|              | Cyclic   | Cyclic 350'F/100' Cy              | ~.       | 1                     | ۳     | 9       |       | 1                                |     |       |          | ,             |                           | •            |      |                            |   | •     | <b>.</b>         |
| Fatigue      | Steady   | Steady 260°F 500 hrs              | 5        | ş                     | ,     | 10      |       | ı                                |     | ,     | ٠,       | s.            | ,                         | 01           | ,    | ٠                          |   |       | 50               |
| R = 0.1      | Steady   | Steady 350°F 500 hrs              | ٠,       | 1                     | iri   | 0.1     |       | •                                | 1   | ,     |          | ,             | - 1                       | 10           | ,    | •                          | - | •     | 20               |
|              | Cyclic   | 260°F'500 Cvc                     |          |                       | 1     | 10      |       | •                                |     | ,     | ۍ.       | v             |                           | 01           |      |                            |   | •     | 20               |
|              | Cyclic   | Cyclic 260°F/1909 Cv              |          | ,                     |       | 10      | 1     | ,                                | ,   | ,     | <u>د</u> | 5.            |                           | 1            |      |                            |   | ,     | 20               |
|              | CVelle   | 350.5.30C CAL                     | רט       |                       | ·r    | 10      | 1     |                                  | 1   | ,     | ٠.       | ,             | ,                         | 01           | ,    |                            |   |       | 20               |
|              | Cyclic   | Cyclic 350 F 1000 Cv              | ·^       | •                     |       | 13      | •     | •                                | ,   | -     | ٠.       |               | ,                         | 16           | •    | 1                          |   | •     | 20               |
| Creep and    | Sready   | Sready 260°F'500 hrs              | ,        | 515                   | 1.215 | 10/10)  | ,     | •                                |     | -     | ,        | \$13.         | 5(5)                      | 10(10)       |      |                            |   | •     | 20(20)           |
| Stress       | Steady   | Steady 350'F 500 nrs              |          | 715)                  | 5(3)  | 10(10)  | ,     | ,                                |     |       | '        | 5(3)          | 5(5)                      | 10(10)       | ,    | ,                          | _ | •     | 70(20)           |
| Rupture      | کرد      | Cyc. 1 260 F 500 Cyc              | ,        | 5(5)                  | 3(5)  | (01.)01 |       |                                  |     | ,     |          | 503           | _                         | 10(10)       |      |                            |   | ,     | 20(20)           |
|              | Cyclic   | Cyclic 2607F 1000 Cv              |          | 515)                  | 5:3:  | 101101  | ,     | 1                                |     | ,     | 1        | 5(5)          | 5(5)                      | 10(10)       |      |                            |   | ,     | 10(20)           |
|              | Cyclic   | Cyclic 350°F/500 Cyc              | ı        | 5(5)                  | 5(5)  | 10(10)  |       |                                  |     | ,     |          | 5(5)          | 5(5)                      | 10(10)       | •    | ,                          |   | ,     | 20(20)           |
| _            | Cyclic   | Cyclic 350°F/1000 Cy              | ,        | 5(5)                  | 5(5)  | (01)01  | ı     |                                  |     | ,     |          | 5(5)          | 5(5)                      | 10(10)       |      |                            |   | ,     | 20(20)           |
|              |          |                                   |          |                       |       |         |       |                                  |     | 1     |          |               |                           |              |      |                            |   |       | 1                |

\* Lors in parenthesis indicate instrumented specimens

\*\* For the details of the steady state thermal conditioning, see Secti 21.4.3

\*\*\* Cyclic thermal conditioning involved thermal changes from 100°F to the stated temperature and back to 100°F at a rate of one c.p.h. for the stated number of cycles, see Section 2,1,4,4

į.

ζ

ξ

Table IV

# METAL MATRIX DATA PROGRAM

|                                   |                                                 | NO. OF                              | SPECIMEN | S TO BE TES                           | NO. OF SPECIMENS TO BE TESTED AT VARIOUS TEMP.* | TEMP. *    |
|-----------------------------------|-------------------------------------------------|-------------------------------------|----------|---------------------------------------|-------------------------------------------------|------------|
|                                   | Thermal Conditioning of Specimens               | 6064 A1/Boron<br>0° 90°             | /Boron   | 6A1-4V -                              | T1/BorS1C<br>90°                                | TOTAL      |
| Tension:                          | None                                            | 20(12)                              | 20(12)   | 20(12)                                | 20(12)                                          | 80(48)     |
|                                   | Steady State @ T-max** for 100, 500 & 1000 hrs. | . 60(36)                            | 60(36)   | (98)09                                | 60(36)                                          | 240(144)   |
|                                   | Cyclic @ T-max for 100, 500 & 1000 cycles***    | 60(36)                              | 60(36)   | 60(36)                                | (96)                                            | 240(144)   |
| Compression:                      | None                                            | 20(12)                              | 20(12)   | 20(12)                                | 20(12)                                          | 80(48)     |
|                                   | Steady State @ T-max for 100 & 500 hrs.         | 40(24)                              | 40(24)   | 40(24)                                | 40(24)                                          | 160(96)    |
|                                   | Cyclic @ T-max for<br>500 cycles                | 20(12)                              | 20(12)   | 20(12)                                | 20(12)                                          | 80(48)     |
| Flexure:                          | None                                            | 20                                  | 20       | 20                                    | 20                                              | ပ <b>စ</b> |
| Int. Shear                        | None                                            | 10                                  | 10       | 10                                    | 10                                              | 07         |
| Fatigue<br>(R = 0.1,-1,16)        | None                                            | 09                                  | 09       | .09                                   | 09                                              | 240        |
| Creep and<br>Stress Rupture       | None                                            | 20                                  | 20       | 20                                    | 20                                              | 80         |
| Thermal Exp.***<br>& Conductivity | None                                            | 10                                  | 10       | 10                                    | 10                                              | 07         |
| Test T<br>T-max                   | RT,<br>600                                      | A1/Boron<br>RT, 160°F, 400°F, 600°F | 600°F    | T1/Bors1C<br>RT, 400°F, 600°<br>800°F | T1/BorS1C<br>400°F, 600°F, 800°F<br>F           |            |
| ATTY TEMP. Kange                  | 1 07C-                                          | 4 00/ 04                            |          | 1 07C-                                | 7.00 F                                          |            |

\*\*\*\* Temp. Range
\*\*\*\* Thermal cycles consisted of a thermal change from 100°F to the stated temperature and back to 100°F at one CPH for the stated number of cycles. Numbers in parenthesis indicate instrumented specimens.

**開発は高級の**所のであっていまう。これを実施的できるは他には同じに対していませんできるを対している。 しょうしょう しょうしょく しょうしゅうしゅ はっちゃく しゅぎょう ま

NCTE:

7

#### SECTION II

### 2.0 TECHNICAL DISCUSSION

#### 2.1 Resin Matrix Studies

#### 2.1.1 Materials

Advanced composite materials have been under intensive development because of their promise for aircraft structural weight savings, improved capability and potential lower cost compared to conventional structural materials such as aluminum, steel and titanium. The advanced composite materials possess a high strength-to-weight and stiffness-to-weight ratios.

Three resin matrix material systems were selected for study in this portion of the program.

The boron/epoxy system selected was the AVCO 5505/Boron prepreg material. This system was extensively characterized at room temperature and at several elevated temperatures. However, little or no data existed for the effect on the material properties of long-term aging in high humidity and elevated temperature environments. This program included several conditioning environments which will be of interest to designers with boron/epoxy components as flying hardware.

In the time intervening between the purchase of the AVCO 5505/Boron prepreg for use on this program and the completion of this report, the prepreg material was substantially upgraded in average tensile strength. Therefore the values for the AVCO 5505/Boron composites are somewhat lower than can be expected from the newer materials, however, the degradation of the material as a percentage of the ultimate strength will be of value to the designer. In the text, the AVCO 5505/Boron composite summary curves are shown as percentages of the baseline room temperature values.

O

Two graphite/epoxy systems were a so selected:

- 1) Modmor II/Graphite Narmco 5206 (a high strength system), and
- 2) Courtaulds HMS Graphite/Hercules 3002M system (a high-modulus system a stiffness of 25 x  $10^6$  psi).

The raw material was supplied in the three-inch wide tape form for all three systems.

The specifications, to which the systems were ordered and fabricated, were:

- 1) For boron/AVCO 5505 system: General Dynamics specification F.M S.-2001A "Advanced Composite Materials Specifications." The specific type raterial was Type II "Heat Resistant to 420°F. AVCO 5505 has qualified under this specification.
- 2) For Narmoo 5206/Modmor II graphite system: McDonnell Douglas Corporation specification DMS-1936B and all amendments "Tape Unidirectional High Modulus Graphite Filament" was employed. The specific type of interest was Type 1 Continuous filament tape of specified width Class 2 (35 x 10<sup>6</sup> psi modulus filaments and 195,000 laminate U.T.S.). The Modmor II/Narmoo 5206 system has been qualified by McDonnell Corporation under class 2. 3) For Hercules 3002M/Courtaulds HMS graphite:
  McDonnell Douglas Corporation Specification MMS 546, "Type III Graphite/Epoxy Prepreg Material," and IITRI Specification 0316, "Type HMS Graphite/Epoxy Prepreg Material."

Copies of the three specifications were presented in the Annual Report (AFML-TR-72-205, Part I) and are not repeated here.

2.1.2 Material Procurement, Quality Assurance, and Processing
The following quantities of prepreg tape we e ordered
and received for use on this program: -

AVCO 5505/Boron - 45 lbs.

Modulite 5206 Type II Modmor II/
Narmco 5206 Graphite - 38 lbs.

Hercules 3002M/Courtaulds HMS
Graphite - 55 lbs.

The incoming materials were checked for quality assurance in accordance with the specifications listed in section 2.1.1 of this report. The quality assurance requirements and quality certification reports were presented in AFML TR-72-205, Part I and are not repeated here. A summary of the quality assurance test results are shown in Table V.

Note that the elevated temperature 0° tensile strengths of the Courtaulds HMS Graphite/Hercules 3002M are higher than the room temperature tensile strengths. It is common to this particular system. A more detailed study of this phenomenom is made later in the discussion of the program results.

### 2.1.3 Fabrication of Laminates

The resin matrix laminates were fabricated using an autoclave to provide the pressure and temperature cycle required.

The autoclave, with internal dimensions of 5'3" in length and 1'8" in diameter provide for the fabrication of either one large plate or several smaller plates simultaneously. The movement of the aluminum heating plate into and out of the autoclave was facilitated by a trolley. The autoclave itself is TABLE V

QUALITY ASSURANCE TEST DATA FOR RESIN

| ACCEPTANCE PANEL                             | CE PAREL                                    | THICKNESS OF FIFTEEN PLIES |                                                     | O. FLEXIME                                      |                                           |                                                    | 90° FLEXURE | URE                                           | 1808  | HORIZONTAL SHEAR | 3     |
|----------------------------------------------|---------------------------------------------|----------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------|-----------------------------------------------|-------|------------------|-------|
| Paterial                                     |                                             | Max Non Kax                | RT                                                  | 260°F                                           | 350:F                                     | RT                                                 | 3.09Z       | 350⁴F                                         | ㅂ     | 260°F            | 350.7 |
| -                                            | Penel                                       | in (in) (in.               | (ks1)                                               | (ks1)                                           | (ksi)                                     | (ksi)                                              | (ks1)       | (ksi)                                         | (481) | (ks1)            | (ks1) |
| Beron/Aves<br>5305                           | Gen Dyn PMS-20(1<br>requirements            | 180.7970.7970.             | 275                                                 | 195                                             | 170                                       | 13.0                                               | 10.0        | 6.0                                           | 13.0  | 7.0              | 5.0   |
|                                              | Vendor Q.C.<br>Batch 419                    | •                          | 306                                                 | ,                                               | 227                                       | 8.21                                               | •           | 15.6                                          | 15.0  | •                | 9.0   |
|                                              | IITAL Q.C.<br>Batch 419                     | 510./810./710.             | 263                                                 | 240                                             | 218                                       | 14.0                                               | •           | 9.5                                           | 13.2  | 12.0             | 9.1   |
| Mcdmor II Graphite/<br>Narmco 5206           | MAC AIR DMS<br>1935 Requirements            | 1                          | 195                                                 | ,                                               | •                                         | •                                                  | •           | •                                             | 14.0  |                  | •     |
|                                              | Vendor Q.C.                                 |                            | 6.205                                               | ,                                               | 1                                         | •                                                  |             | •                                             | 16.8  |                  |       |
|                                              | IITRI Q.C.<br>Batch 342                     | •                          | 195.1                                               | •                                               | •                                         |                                                    | •           | •                                             | 14.0  | •                | •     |
| Ccurtaulds<br>NS Graphite/<br>Hercules 3002H | MAC AIR HAS<br>548 Type III<br>Requirements | - /505/ -                  | 0° Tensile<br>Modulus<br>Room Temp.<br>26 x 10° psi | 0° Tensile<br>Strength<br>Loca Temp.<br>100 ksi | O Tensile<br>Strength<br>350°F<br>100 ksi | 90' Tensile<br>Strength<br>doom Temp.<br>5,000 pei | •           | 90° Tensile<br>Strength<br>350°F<br>3,500 psi | •     | •                | 3     |
|                                              | Vendor Q.C.<br>Batch 110                    | - /5/07/ -                 | 32.8 × 10 <sup>6</sup>                              | 138 ks1                                         | •                                         | 5,440 pst                                          | •           | 3,679 psi                                     |       |                  | •     |
|                                              | IITRI Q.C.<br>Batch Lilo                    | - /505/ -                  | 29.0 x 10 <sup>6</sup>                              | 119 1241                                        | 136 kai                                   | 5,300 psf                                          | ,           | 4,670 pet                                     | '     |                  |       |

permanently mounted on a steel frame. The heat cycle (maximum capacity 550°F) was automatically controlled. There was a provision for two separate vacuum systems that were used at the same time for fabricating two plates simultaneously. Air pressure up to 100 psi was obtained directly from the air line in the fabrication laboratory.

The preliminary layup procedures followed were developed for the autoclave process. (For the purposes of description in this section, a laminate will mean any composite of several layers of fibers, although the fiber may all be in the same direction.) The tape was first removed from the freezer storage area but was not unwrapped until it had reached ambient conditions. This was done to prevent moisture condensation on the tape surface. The tape was cut to required lengths using a conventional paper cutter and was stacked to the appropriate orientation. (The AVCO 5505/boron laminates required an additional layer of plain woven fiberglass scrim-cloth placed over the entire laminate.) After all plies had been stacked the plate was ready for cure, if convenient, or storage. (Green uncured laminates were sealed in a Mylar bag and stored in a freezer prior to cure if a delay was encountered.)

A stainless steel caul plate, approximately three inches longer and wider than the boron laminate, was used during the curing process. A sheet of TX-1040 separator sheet of the same size as the boron laminate, was placed directly on the stainless steel plate. Next the green laminate and a second separator sheet was added. The aggregate was covered with fiberglass bleeder cloth which was also trimmed to the size of the green laminate. A chloroprene dam consisting of 3/8 inch wide strips of chloroprene was placed around the aggregate. A Mylar perforated sheet was then added. A sheet of 181 fiberglass cloth was then placed on top this stack. The complete package was then placed

on the heater plate in a vacuum bag. Before the cure cycle was initiated, full vacuum was applied to the package, any leaks v re corrected, and a check were made to insure that there were no wrinkles on the laminate.

The cure cycles and postcure used for the three material systems were described in AFML TR-72-205, Part I. Following the cure the individual plates went to specimen cutting, tabling or environmental conditioning processes as appropriate. Individual specimens were inspected visually for flaws and delaminations. Composite describes and fiber and resin volume percentages were determined as escribed in AFML TR-72-205, Part I. The data for individual laminates are presented in Tables VI through VIII.

The densities shown in Tables VI through VIII were determined using the gravimetric process. The values for the densities of the fibers and matrices were obtained from the tape suppliers. No void contents are shown in Tables VI through VIII. This does not imply that the composites were void-free but of low voids. Several inherent inaccuracies are present in resin dissolution methods currently available thus leading to void contents with errors of 100% or greater.

# 2.1.4 Conditioning Treatments

The various conditioning treatments, to which the composite materials were exposed are described in this section. The equipment and procedures followed in the accomplishment of these conditioning treatments are found in AFML TR-72-205, Part I and are not repeated here.

VOLUMETRIC MEASURES OF FIBER AND MATRIX CONTENTS

IN BORON/AVCO 5505 COMPOSITES

| Fiber<br>Orientation     | No. of<br>Plies | Specimen<br>Number | Specimen<br>Length<br>(in.) | Specimen<br>Width<br>(in,) | Density of<br>Composite<br>Gm/cc | Fiber<br>Volume<br>(Percent) | Resin<br>Volume<br>(Percent) | Fiberglass<br>Volume *<br>(Percent) |
|--------------------------|-----------------|--------------------|-----------------------------|----------------------------|----------------------------------|------------------------------|------------------------------|-------------------------------------|
| 0.                       | 6               | N-1005             | 1.018                       | 0.972                      | 2.000                            | 49.87                        | 43.77                        | 6.36                                |
|                          |                 | N-1007             | 2,000                       | 0.250                      | 2.001                            | 49.96                        | 43.70                        | 6.34                                |
|                          |                 | N-1008             | 2.000                       | 0.250                      | 2.013                            | 50.75                        | 42.89                        | 6.36                                |
|                          |                 | N-1009             | 2.000                       | 0.250                      | 1.996                            | 49.41                        | 44.08                        | 6.51                                |
|                          |                 | N-1011             | 2.000                       | 0,250                      | 1.992                            | 49.25                        | 44.34                        | 6.41                                |
|                          |                 | N-1012             | 2.000                       | 0.250                      | 1.995                            | 50.00                        | 44.08                        | 5.92                                |
|                          |                 |                    | AVERACI                     | E                          | 2.000                            | 49.87                        | 43.81                        | 6.32                                |
| 90 °                     | В               | N-1002             | 2,050                       | 0.441                      | 1.980                            | 48.60                        | 45.25                        | 6.15                                |
|                          |                 | N-1013             | 2.000                       | 0.250                      | 1.960                            | 47.26                        | 46.77                        | 5.97                                |
|                          |                 | N-1014             | 2. <b>00</b> 0              | 0.250                      | 1.962                            | 47.36                        | 46.58                        | 6.06                                |
|                          |                 | N-1015             | 2.000                       | 0.250                      | 1.961                            | 47.31                        | 46.77                        | 5.92                                |
|                          |                 | N-1017             | 2.000                       | 0.250                      | 1.959                            | 47.11                        | 46,82                        | 6.07                                |
|                          |                 | N-1018             | 2.000                       | 0.250                      | 1.985                            | 48,70                        | 45.20                        | 6.10                                |
|                          |                 |                    | AVERAGI                     | Ξ.                         | 1,968                            | 47.72                        | 46.23                        | 6.05                                |
| <b>+</b> / 5°            | b               | ₹-10;2             | 2.000                       | 0.222                      | 2,010                            | 50,44                        | 42.98                        | 6.58                                |
|                          |                 | N-1023             | 2.000                       | 0.250                      | 1.979                            | 48.43                        | 45.45                        | 6.12                                |
|                          |                 | N-1024             | 2.000                       | 0.250                      | 1.992                            | 49.31                        | 44.50                        | 6.19                                |
|                          |                 | N-1025             | 2.00C                       | 0.250                      | 1.993                            | 49.41                        | 44.36                        | 6.23                                |
|                          |                 | N-1026             | 2.000                       | 0.250                      | 1.992                            | 49.39                        | 44.44                        | 6.17                                |
|                          |                 |                    | AVERAGE                     | 2                          | 1,993                            | 49.40                        | 44.35                        | 6.25                                |
| 10/55/135/0/ <b>9</b> 0, | ),_9            | N-1027             | 1.553                       | 0.561                      | 1.980                            | 48,74                        | 45.23                        | 6.03                                |
|                          | •               | N-1028             | 2.000                       | 0.250                      | 1.979                            | 48.71                        | 45.36                        | 5.93                                |
|                          |                 | <b>%-1029</b>      | 2,000                       | 0.250                      | 1,959                            | 47.14                        | 46.89                        | 5.97                                |
|                          |                 | N-1030             | 2.900                       | 0.250                      | 1.978                            | 48,60                        | 45.50                        | 5.90                                |
|                          |                 | N-1031             | 2.000                       | 0.250                      | 1.966                            | 47.75                        | 46.40                        | 5.85                                |
|                          |                 | N-1032             | 2.000                       | 0.250                      | 1.985                            | 49,00                        | 44.91                        | 6.09                                |
|                          |                 | N-1033             | 2.000                       | 0.250                      | 1.996                            | 49.71                        | 44.15                        | 6.14                                |
|                          |                 | N-1034             | 2.000                       | 0,250                      | 1.985                            | 48.70                        | 45.18                        | 6.12                                |
|                          |                 | N-1034             | 2.000                       | 0.250                      | 1.972                            | 47.55                        | 56.48                        | 5 97                                |
|                          |                 | N-1036             | 2,000                       | 0.250                      | 1.973                            | 48.19                        | 45.8                         | 5.99                                |
|                          |                 | N-1037             | 2,000                       | 0.250                      | 1,969                            | 47.77                        | 46 08                        | 6,15                                |
|                          |                 | 8-1038             | 2,000                       | 0.250                      | 1.973                            | 47.93                        | 45.86                        | 6.21                                |
|                          |                 | N-1040             | 2.000                       | 0.250                      | 1.967                            | 47.36                        | 46.33                        | 6.31                                |
|                          |                 | N-1041             | 2,000                       | 0 250                      | 1.965                            | 47.44                        | 46.35                        | 6.21                                |
|                          |                 | N-1042             | 2.000                       | 7,.250                     | 1.964                            | 47.65                        | 45.51                        | 5.84                                |
|                          |                 |                    | AVERAGE                     | -                          | 1.974                            | 48.15                        | 45.80                        | 6.05                                |

<sup>\*</sup> of carrier glass scrim cloth

Table VII

VOLUMETRIC MEASURES OF FIBER AND MATRIX CONTENTS
IN MODMOR II GRAPHITE/NARMCO 5206 COMPOSITES

| Fiber<br>Orientation        | No. of<br>Plies | Specimen<br>Number | Density of<br>Composite<br>(gm/cc) | Fiber<br>Volume<br>(percent) | Resin<br>Volume<br>(percent) |
|-----------------------------|-----------------|--------------------|------------------------------------|------------------------------|------------------------------|
| 0,                          | 6               | M1105              | 1.491                              | 53.15                        | 46.85                        |
|                             |                 | M1106              | 1.521                              | 60.46                        | 39.54                        |
|                             |                 | M1107              | 1,515                              | 58.81                        | 41.19                        |
|                             | }               | M1108              | 1,517                              | 58.79                        | 41.21                        |
|                             |                 | M1109              | 1.493                              | 54.21                        | 45.79                        |
|                             |                 | M1110              | 1.481                              | 51.70                        | 48.30                        |
|                             |                 | M1111              | 1.496                              | 54,48                        | 45.52                        |
|                             |                 | M1112              | 1.485                              | 51,45                        | 48.55                        |
|                             |                 | AVERAGE            | 1.499                              | 55.38                        | 44.62                        |
|                             | 15              | M1101              | 1,513                              | 58.09                        | 41.91                        |
|                             | 10              | M1147              | 1,503                              | 55.97                        | 44.03                        |
| 90 -                        | 8               | M1102              | 1,516                              | 58,72                        | 41.28                        |
|                             | ]               | M1103              | 1,474                              | 49.80                        | 50.20                        |
|                             |                 | M1104              | 1.501                              | 55.55                        | 44.45                        |
|                             |                 | M1113              | 1.473                              | 61.03                        | 38.97                        |
|                             |                 | M1114              | 1,504                              | 55,13                        | 44.87                        |
|                             |                 | MILIS              | 1.467                              | 47.27                        | 52.73                        |
|                             |                 | M1116              | 1.479                              | 50.74                        | 49.26                        |
|                             |                 | M1117              | 1,516                              | 58,71                        | 41.29                        |
|                             |                 | M1118              | 1,504                              | 56,57                        | 43.43                        |
|                             |                 | M1120              | 1.486                              | 51.84                        | 48.16                        |
|                             |                 | AVERAGE            | 1,492                              | 54.54                        | 45.46                        |
| + 45°                       | 8               | M1122              | 1.490                              | 53.47                        | 46.53                        |
|                             |                 | M1123              | 1,496                              | 54 <b>.55</b>                | 45.45                        |
|                             |                 | M1124              | 1,475                              | 49.84                        | 50.16                        |
|                             |                 | M1125              | 1.484                              | 52.04                        | 47.96                        |
|                             |                 | M1126              | 1,488                              | 52,72                        | 47.22                        |
|                             |                 | AVERAGE            | 1,486                              | 52.53                        | 47.47                        |
| 0/45/135/0/ <del>9</del> 0} | 9               | M1127              | 1.479                              | 50,76                        | 49.24                        |
| 5                           |                 | M1128              | 1.473                              | 49.64                        | 50.36                        |
|                             |                 | M1129              | 1.471                              | 49,22                        | 50.78                        |
|                             |                 | M1130              | 1.481                              | 51.28                        | 48,72                        |
|                             |                 | M1131              | 1.465                              | 52,11                        | 47.89                        |
|                             |                 | м113°              | 1,480                              | 51,14                        | 48,86                        |
|                             |                 | M1133              | 1.465                              | 47.92                        | 52.08                        |
|                             |                 | M1134              | 1.47:                              | 49.52                        | 50.48                        |
|                             |                 | M1135              | 1,495                              | 54.25                        | 45.75                        |
|                             |                 | M1136              | 1.505                              | 56.49                        | 43.51                        |
|                             |                 | M1137              | 1,489                              | 52,95                        | 47,05                        |
|                             |                 | M1138              | 1,483                              | 48,68                        | 51.32                        |
|                             |                 | M1139              | 1.488                              | 52.83                        | 47.17                        |
|                             |                 | H1140              | 1.479                              | <b>50</b> -82                | 49.18                        |
|                             |                 | M1141              | 1,498                              | 54.87                        | 45.13                        |
|                             |                 | M1142              | 1.477                              | 50.41                        | 49.59                        |
|                             |                 | H1146              | 1,472                              | 69,36                        | 50.64                        |
|                             |                 | AVERAGE.           | 1,481                              | 51,30                        | 45.70                        |

Table VIII

VOLUMETRIC MEASURES OF FIBER AND MATRIX CONTENTS
IN HERCULES 3002M/COURTEULDS HMS GRAPHITE COMPOSITES

| Orf ntation                  | No. of<br>Plies | Specimen<br>Number | Density of<br>Composite<br>(gm/cc) | Fiber<br>Volume<br>(percent) | Resin<br>Volume<br>(percent) |
|------------------------------|-----------------|--------------------|------------------------------------|------------------------------|------------------------------|
| 0.1                          | 6               | C1205              | 1.593                              | 49.72                        | 50.28                        |
|                              |                 | C1206              | 1.568                              | 45.73                        | 54.27                        |
|                              |                 | C1207              | 1,585                              | 48,44                        | 51.56                        |
| ,<br>[                       |                 | C1208              | 1.573                              | 46.50                        | 53.50                        |
|                              |                 | C1209              | 1.605                              | 51 <b>.61</b>                | 48.39                        |
|                              |                 | C1210              | 1.589                              | 49.07                        | 50.93                        |
|                              |                 | C1211              | 1.574                              | 46.72                        | 53.28                        |
|                              |                 | C1212              | 1.567                              | 45.58                        | 54.42                        |
| ŧ                            |                 | AVERAGE            | 1,581                              | 47.92                        | 52.08                        |
| l                            | 10              | C1247              | 1,507                              | 51.91                        | 48.09                        |
| ae.                          | 8               | C1202              | 1.578                              | 47.3%                        | 52.66                        |
| ·                            |                 | C1203              | 1 601                              | 51.95                        | 49,05                        |
|                              |                 | C120a              | 1,569                              | 45,90                        | 54.10                        |
|                              |                 | (121)              | 1.55+                              | 43.35                        | 56.65                        |
| :                            |                 | C1214              | 1,580                              | 47.63                        | 52.37                        |
| :                            |                 | C1215              | 1,572                              | 46.37                        | 53.63                        |
|                              |                 | C1216              | 1,591                              | 49.38                        | 50.62                        |
| 1                            |                 | 61217              | 1,594                              | 49.85                        | 50.15                        |
|                              |                 | C1218              | 1,584                              | 48,25                        | 51.75                        |
|                              |                 | C1219              | 1,569                              | 45,88                        | 54.12                        |
|                              |                 | AVFRAGE            | 1.579                              | 47.49                        | 52.51                        |
| ± 45°                        | 8               | C1222              | 1,613                              | 52.86                        | 47.14                        |
|                              |                 | C1223              | 1.589                              | 49,06                        | 50.94                        |
| i<br>1                       |                 | C1224              | 1.573                              | 46,43                        | 53.57                        |
| ĺ                            |                 | C1225              | 1,584                              | 48,26                        | 51.74                        |
| ,                            |                 | C1226              | 1.578                              | 47.31                        | 52,69                        |
| <u> </u>                     |                 | AVERAGE            | 1.587                              | 48.78                        | 51.22                        |
| 10/45/135/0/ <del>90</del> 1 | G,              | C1221              | 1 589                              | 49.06                        | 50.94                        |
| ,                            |                 | C1227              | 1,599                              | 48,10                        | 51 <b>.9</b> 0               |
|                              |                 | 1 C1228            | 1,579                              | 47,46                        | 52,54                        |
|                              |                 | €1230              | 1,550                              | 42.85                        | 57.15                        |
|                              |                 | İ (1231            | 1,583                              | 48,10                        | 51.90                        |
|                              |                 | €1232              | 1,539                              | 41.11                        | 58,89                        |
| :                            |                 | C1233              | 1,560                              | 44.44                        | 55.56                        |
| '                            |                 | · C1234            | 1,553                              | 48.86                        | 51.14                        |
| ļ                            |                 | C1236              | 1,552                              | 43.20                        | 56.80                        |
|                              |                 | C1237              | 1,531                              | 39,85                        | 60.15                        |
| :                            |                 | i (123)            | 1.550                              | 42.87                        | 57.13                        |
| :                            |                 | C1239              | 1.566                              | 45.37                        | 54.63                        |
|                              |                 | C1240              | 1,566                              | 44,45                        | 55.55                        |
| ;<br>!                       |                 | C1261              | 1.572                              | 46.35                        | 50.00                        |
| ļ                            |                 | C124               | 1.555                              | 43.66                        | 56,34                        |
|                              |                 | C126.              | 1,570                              | 46 04                        | 53,96                        |
|                              |                 | AVERAGE            | 1,563                              | 45.11                        | 54.89                        |

In addition, a comparison base of data was obtained against which the effects of these various conditioning treatments might be measured. The extent of this baseline data program was described in Section I, Table I. The individual baseline data for the three resin matrix systems are found in Appendices I through III.

### 2.1.4.1 Steady State Humidity Conditioning

The steady state humidity conditioning of specimens includes 500 and 1000 hr. (3 weeks and 6 weeks) exposure to 98% ± 2% relative humidity and 120°F (see Table II). This exposure is the same as that recommended by Mil Handbook 17.

The specimens which were subjected to humidity exposure were prepared as follows:

- 1) All specimens were finish machined and the appropriate room temperature or elevated temperature tabs were bonded prior to initiation of the preconditioning treatment. For elevated temperature tests subject to prior humidity exposure the tab adhesive was Metalbond 329. For room temperature tests subject to prior humidity conditioning the adhesive was FM 1000.
- 2) All specimens for static and creep tests were instrumented (as required) with electrical resistance foil strain gages. The gages were protected with M-coat resin coating taking care to cover a minimum area.
- 3) The edges of the samples were not protected since protection could not be guaranteed to be only to the edges and not to the surfaces of specimen.

- 4) The samples were individually weighed prior to insertion in the chamber.
- 5) Each sample was arranged in the chamber to permit maximum exposure to the moisture-laden air as it flowed from the inlet orifice to the chamber.

1

These steps were followed to permit rapid testing of the samples after removal from the chamber. Upon removal from the chamber, the specimens were reweighed, wires were attached to the strain gages and the specimens were tested within 8 hours of removal from the chamber. For certain long term fatigue and creep tests, where the tests were held up for a longer time due to machine unavailability, the samples were sealed in a protective vinyl, moisture proof container. These samples were then reweighed, prior to testing, to determine if moisture loss had occurred.

## 2.1.4.2 Cyclic Humidity Conditioning

# 2.1.4.2.1 Thermo-Humidity Cycle

Table II listed two cyclic humidity conditioning exposures for resin matrix composites. The first humidity cycle was the Thermo-Humidity cycle selected from a review of previous aerospace practices. The Webber Environmental Chamber was again used for the humidity exposure.

The details of the Thermo-Humidity cycle employed are: (1) The total time period for the cycle was 500 hours. (2) During this period the specimens were placed in the environmental chamber and exposed to a relative humidity of  $95\pm2\%$  at  $120^{\circ}\pm5$ °F except for one and one half hour each work day of the week when they were taken out and subjected to thermal shock. (3) This shock treatment consisted of exposing the

specimens for one hour at ~65°F in a cold chamber followed by an exposure of one half hour at 250°F in an oven. (4) During The weekend the specimens remained in the environmental chamber continuously exposed to the humidity conditions mentioned above.

The frost conditions on the samples after exposure to -65°F were noted and some sample delaminations occurred after removal from the 250°F portion of the cycle.

All appropriate specimens were strain gaged in the same manner as the steady-state exposure and were wired after exposure prior to testing. The test specimens were made ready for testing within eight hours after removal from the test chamber as was done for the steady state humidity conditioning exposures.

### 2.1.4.2.2 Accelerated Weathering Humidity Cycle

The second humidity cycle was an accelerated weathering cycle. An Atlas Twin ARC Weatherometer, Type D as specified in ASTM G23-69 was employed for these tests. All panels and/or specimens were exposed in the weatherometer to the following operation schedule. The recommended practice for this equipment was as described in ASTM D1499-64 and ASTM G23-69. The apparatus was operated 5 days per week, and each 2-hour cycle of operation was divided into periods, during which the panels and specimens were exposed 102 minutes to light without water and 18 minutes of light with water spray. The test specimens remained undisturbed during the remaining 2 days of the week.

The exposure procedures followed were as follows:

The black panel thermometer unit was placed in the test panel rack and with the light on and the water off, the thermometer regulator was set so that the temperature of the thermometer read  $145^{\circ} \pm 5^{\circ} F$ , when the thermometer was at the point where the maximum heat was produced as the panel rack revolved around the light.

The water supply was adjusted so that the pressure of the water at the spray nozzle was between 12 and 15 pounds per square inch so that the water struck the specimens in a fine spray in sufficient volume to wet the entire surface of the specimens upon impact.

New carbons and clean filters were installed in the light assembly and the weatherometer was started. At the end of the burning period, the old carbons were removed and the decomposition ash was cleaned from the carbon holders and other parts of the light assembly, and the filters were washed with detergent and water. The position of the test panels and specimens were transposed to provide a uniform distribution of light in a vertical plane over the entire surface of the test specimens. New carbons were installed, the filters were replaced and the weatherometer restarted. These operations were repeated after each burning period of the light until the test specimens were exposed for a time period of 500 hours including weekend rest periods. (This resulted in a 360 hour active exposure time plus 140 hours of rest periods.)

# 2.1.4.3 Steady State Thermal Conditioning

For steady state thermal exposure conditioning conventional circulating air ovens were used to obtain exposures at 260°F for time periods of 100 and 500 hrs. The samples were arranged to get uniform distribution of air circulation over the specimens without localized hot spots.

# 2.1.44 Cyclic Thermal Conditioning

Thermal cycles from 100°F to 260°F to 100°F and from 100°F to 350°F to 100°F were adopted for cyclic thermal conditioning. Exposure of tes- samples for both 500 cycles and 1000 cycles were undertaken. A cyclic rate of one cycle per hour was established.

# 2.1.5 <u>Testing Specimens and Test Procedures</u>

This section briefly lists the test specimens and procedures utilized for generating the data during this program.

A detailed description of the test specimens, specimen fabrication procedures and test equipment is found in Appendix II of AFML TR-72-205, Part I.

# 2.1.5.1 Tensile, Fatigue and Creep Specimens

The same specimen configuration was utilized for tension, fatigue (R=0.1) and tensile creep tests. In addition in plane shear properties were determined using a  $\pm$  45° tensile test. The IITRI straight-sided tab ended coupon was utilized for these properties. After environmental conditioning, each static tensile specimen was fitted with three electrical-resistance foil strain gages.

#### 2.1.5.2 Compression Testing

Two types of specimens were employed for compressive testing. The first was the sandwich beam compression specimen which was utilized only in the generation of baseline data. The second specimen was a coupon specimen commonly known as the Celanese specimen which is an adaptation of the IITRI tensile coupon with longer tabs, reduced gage section and a narrower width. The coupon test fixture was the TITRI compression coupon test fixture.

(All comparative performance results are shown using the coupon test data for the baseline and conditioned curves).

# 2.1.5.3 Flexural and Interlaminar Shear Tests

The specimens used for all flexural testing was the fifteen ply, coupon universally used for testing advanced composites. Specimens were loaded in a 3 or 4-point bending fixture. Elevated temperature tests were conducted in a Missimer circulating air oven and loads were applied in tension to a flexural test rig.

The maximum interlaminar shear strength of oriented fiber composites was determined on short beam shear specimens.

Elevated temperature tests were performed with the assistance of the fixture described above.

#### 2.1.5.4 In-Plane Shear Properties

The in-plane shear stress-strain curve was determined from a  $\pm$  45° angle ply laminate tested in uniaxial tension supplemented with data from the 0° and 90° tests, and the incrementation of the  $\pm$  45° tensile stress strain curve.

### 2.1.5.5 Fatigue Tests

The fatigue tests (R = 0.1) were performed at a cyclic rate of 1800 cpm, employing occentric weight mechanical dynamic-load applicators.

C

3

ij

:1

#### 2.1.5.6 Creep and Stress Rupture Tests

The creep equipment consisted of 32 tensile stands located on a vibration-free floor. Each stand was provided with a set of tensile grips enclosed in individually controlled ovens. The ovens are capable of achieving specimen temperatures of up to 800°F. A jig was used to align and grip the specimens prior to installation on the creep stands. For the creep stands employed, the load multiplication factor was 10:1.

# 2.1.5.7 Thormophysical and Bonsity Proporties

The linear expansion was measured by an automatic recording dilatometer similar to that described in ASTM Designation: C337-57. The dilatometer used had an accuracy of more than 99% and a reproducibility within  $\pm$  2%.

Thermal conductivity measurements were made using the steady state longitudinal heat flow technique. The sample consisted on ten  $3/64 \times 1/2 \times 2$ -inch laminates sandwiched together to form a  $1/2 \times 1/2 \times 2$ -inch conductivity specimen. Data are obtained from ambient room temperature to  $350^{\circ}\mathrm{F}$  in air for three specimens in each of three laminate orientations. Densities of the laminates were determined by the gravimetric method,

# 2.1.6 Static Properties

#### 2.1.6.1 Baseline Data

The static baseline data are found summarized in Appendices I through III including average stress strain curves in tension compression, and shear for  $0^{\circ}$ ,  $90^{\circ}$  and  $\left[0/45/135/0/90\right]_{\rm g}$  laminates. The data were obtained from strain gages and were reduced and plotted using computer plotting routines. To average the values of stress and strain obtained from three tests conducted at a given temperature, a program (least squares) to fit a curve to the data was used as a sub-routine to the plotting program.

## 2.1.6.2 Effects of Humidity Conditioning

The steady state exposure of the three resin matrix composite materials to 98% relative humidity resulted in moisture pickup by the exposed uncoated samples. Fig. 1 shows the moisture pickup versus time for AVCO 5505/Boron. This figure is an aggregate of moisture pickup for three orientations three thicknesses (ply thickness) and two widths of sample so that the ratio of surface area to volume of the samples varies over a substantial range and the ratio of exposed fiber ends to surface area also varies.

Figures 2 and 3 also present the moisture pickup versus time for the Modmor II/Narmco 5206 Composite and the Courtaulds HMS Graphite/Hercules 3002M epoxy composites respectively. The moisture pickups are presented as a percentage of the original weight of the specimens. In plotting these gains for the four different humidity environments account was taken of the various orientations, specimens sizes etc. (see legend on each figure). Thus while the surface area to volume ratio for a nine ply  $[0/45/135/0/90]_S$  laminate may remain virtually the same as a six pty  $[0/35/135/0/90]_S$  laminate, the exposed Those challed on the  $[0/.5/135/0/90]_S$ 



MOISTURE WEIGHT GAIN PERCENTAGES FOR VARIOUS HUMIDITY CONDITIONING FOR AVCO 5505/BORON COMPOSITES rig.

Q

O

()



MOISTURE WEIGHT GAIN PERCENTAGES FOR VARIOUS HUMIDITY CONDITIONING FOF NARMCO 5206/MODMOR II GRAPHITE COMPOSITES Fic.



MOISTURE WEIGHT GAIN PERCENTAGES FOR VARIOUS HUMIDITY CONDITIONING FOR HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES ന Fig.

laminate provide more potential entry paths for moisture to enter the specimen.

Groups of specimens of a given type were inserted at various times into the humidity chamber on their appropriate schedules. Therefore several different points appear at the same total exposure time. Each point represents an average of from 10 to 20 specimens of the type indicated. Thus the variability of moisture pickup from group to group can be obtained from Figs. 1 - 3 as well. Figs. 1 and 2 do not show any 1000 hour steady-state moisture pickups. This data was not obtained.

関係の で 新元を 間できる で は 日本です とれない !!

The results for the Thermo-Humidity Cycle and the accelerated weathering cycles show marked differences between specimen orientation. By examining the AVCO 5505/Boron spread for the Thermo-Humidity cycle one sees that the 0° specimens percentage weight gain falls to the lower side of the spread of data while the 90° and  $[0/45/135/0/\overline{90}]_S$  specimens generally lie at the top of the spread of data (indicating higher moisture pickup percentages). The same qualitative remarks apply to the accelerated weathering mo sture pickup data even though the mean and spread of the accelerated weathering data are smaller.

In general, the Thermo-Humidity cycle data corresponds to approximately 500 hour— f constant humidity exposure and the accelerated weathering data corresponds with approximately 50 to 150 hours of constant humidity exposure (for AVCO 5505/Boron). Slightly smaller weight gains were recorded for the Narmoo 5206/Modmor II Graphite than were recorded for the AVCO 5505/Boron system. However, qualitatively the relationship of fiber orientation to moisture pickup remained the same. Similarly the correspondence of the constant relative humidity to the Thermo-Humidity cycle and the accelerated weathering cycles remained the same.

The largest moisture pickups and greatest data spreads were found in the Courtaulds HMS Graphite/Hercules 3002M system. Here the moisture pickup for the Thermo-Humidity cycle exceeded the moisture pickup for constant humidity at 500 hours, corresponding more closely with a constant humidity exposure of approximately 800 hours. Similarly, the accelerated weathering moisture pickup was greated but less than in the Thermo-Humidity cycle, and corresponded to constant humidity exposures ranging from a couple of hours up to 500 hours. The greatest number of data points fell nearer the bottom of this range (at or near 75 hours exposure on the constant humidity moisture pickup curve).

These correspondences with the constant humidity moisture pickup curves were not surprising since, in fact, the total exposure time for the Thermo-Humidity cycle to 98% RH at 120°F (the constant humidity exposure) was 500 hours less than the 1-1/2 hours per day times 15 days or approximately 478 hours exposure. Similarly the net exposure time for the accelerated weathering samples to high moisture was,

15 x  $(\frac{18}{60})$  x 12 periods - 54 hours of net exposure time to moisture with 306 hours of light and heat plus 140 hours of inactivity out of a total of 500 hours in the exposure cycle.

In summary the cyclic humidity conditioning treatment: produce moisture gains approximately the same as that for the net moisture exposure time during the constant humidity exposures.

The room temperature longitudinal tensile stress-strain behavior of AVCO 5505/Boron composite material is shown in Fig. 4 after 500 and 1000 hours exposure to 98% RH. The transverse tensile stress-strain behavior of AVCO 5505/Boron is shown in Figs. 5 to 7 for room temperature, 260°F and 350°F respectively. It is apparent from these curves that the effect of moisture is



C

517 417

COMPARATIVE TENSILE BEHAVIOR OF 0° BORON/AVCO 5505 BEFORE AND AFTER 500 AND 1000 HOURS EXPOSURE TO 98, R.H. WHEN TESTED AT ROOM TEMPERATURE N.



١.,

Ū

Ş

Fig.





to generally reduce the strength (and ultimate strain) capabilities of the 90° composite. However, the stress-strain characteristics, and particularly, the initial modulus, were not radically altered by the exposure. The effect on cross-ply laminates is shown in Figs. 8 and 9 where no significant changes in strength or modulus are observed.

The in-plane shear behavior as affected by moisture is shown in Fig. 10. Here there is a gradual loss in modulus, a slight reduction in strength and a slight gradual increase in ultimate strain capability. This 'oss in modulus is reflective of a matrix and interface change and does not indicate a change in fiber modulus.

The Thermo-Humidity cycle delaminated several of the samples after a hundred hours of exposure. The back-to-back high-low thermal changes were chiefly responsible. This effect was most noticeable in the high-modulus graphite and seemed to be least present for the boron/AVCO 5505 epoxy composites. This effect is caused more by the high differential thermal expansion present in the graphite/epoxy composites compared with that in the boron/epoxy composites.

The greatest damage was sustained by the Hercules 3002M/Courtaulds HMS Graphite system. Damage was noted in some of the  $[0/45/135/0/90]_8$  systems with delamination clear to the end of the sample. Where such damage was detected, the samples were tested and the delamination noted in the data tables in the appendices to this report.

The Thermo-Humidity cycle is discussed in (1)\*.

<sup>\*</sup> Numbers in parenthesis refer to the References at the end of this report.



COMPARATIVE TENSILE BEHAVIOR OF BORON/AVCO 5505 LAMINATE [0/45/135/0/90] BEFORE AND LETER 1000 HOURS EXPOSURE TO 98, R.H. WHEN TESTED AT ROOM TEMPERATURE (d) (d)



COMPARATIVE TENSILE BEHAVIOR OF BORON/AVCO 5505 LAMINATE (0/45/135/0/90 BEFORE AND AFTER 1000 HOURS EXPOSURE TO 987 R.M. WHEN TESTED AT 350°F ġ, F. 19.

γ,



COMPOSITE BEFORE AND AFTER 500 AND 1000 HOURS EXPOSURE TO 987 R.H. WHEN TESTED AT ROOM TEMPERATURE COMPARATIVE SHEAR STRESS-SHEAR STRAIN BEHAVIOR OF BORON/AVCO 5505 10 Fig.

<u>.</u>

The accelerated weathering cycle contained a U.V. exposure contribution which was not present in the other humidity cycles. A great deal has been published on the correlation between laboratory exposure times and field times, or on the relationship between exposure duration in one area versus exposure duration in another area. The basic photodegradative process is fairly simply stated: the weathering mechanism is a process of chemical change in which the ultraviolet radiation is the source of the energy for these changes and the air and/or water provides the oxygen etc. for the chemical change. The photodegradative efficiency of the solar energy is inversely related to the wavelength, the shorter or U.V. wavelengths causing the greatest damage.

Accelerated weathering cycles are discussed more extensively in references (2) through (13).

Several parametric crossplots illustrating the effect of moisture pickup on the mechanical properties were prepared. Figures 11 to 13 show the effects of moisture on strengths of 0°, 90° and  $\left[0/45/135/0/\overline{90}\right]_{\rm S}$  laminates of AVCO 5505/Boron composite material. Figures 14 to 16 show the effects of moisture on the elastic moduli of these three composites.

AVCO 5505/Boron with temperature for the baseline data as shown in Fig. 11. Similar effects are seen for the 0° compressive and 0° shear strengths. With the exception of the room temperature tensile strengths, Figs. 11a -c show that the strengths generally decrease for 500 hours exposure to 98% RH with additional decrease after 1000 hours exposure. The room temperature tensile strengths are probably too low in Fig. 11a. The cyclic humidity conditioning resulted in generally greater



Fig. 11 EFFECT OF HUMIDITY CONDITIONING
ON STRENGTHS OF AVCO 5505/BORON COMPOSITES - 0°



The second second second

Fig. 12 EFFECT OF HUMODITY CONDITIONING ON STRENGTHS OF AVCO 5505/BORON COMPOSITES - 90°



O

O

(j

Fig. 13 EFFECT OF HUMIDITY CONDITIONING ON STRENGTHS OF AVCO 5505/BORON LAMINATES [0/45/135/0/90]s



Fig. 16 EFFECT OF HUMIDITY COMDITIONING ON ELASTIC MODULI OF ALCO 5505/BOROR COMPOSITES -0



Fig. 15 EFFECT OF HUMIDITY CONDITIONING ON ELASTIC MODULI OF AVCO 5505/BORON CCMLOSITES 90°



Fig. 16 EFFECT OF HUMIDITY CONDITIONING ON ELASTIC MODULI OF AVCO 5505/30RON COMPOSITES [0/45/135/0/90]s

strength reductions than did the steady state exposures. The transverse strengths are shown in Fig. 12a - c. Again the cyclic humidity exposures affected the tensile and compressive strengths more than did the constant humidity exposures.

The laminate strengths are plotted in Fig. 13. The elevated temperature compressive properties of the  $[0/45/135/0/\overline{90}]_8$  laminates were severly affected by both the steady state and cyclic humidity exposures.

The 0° elastic moduli were not as substantially affected by humidity environment (See Fig. 14) as were the 90° and laminate elastic moduli (See Figs. 15 and 16 respectively). The crossply laminate,  $\left[0/45/135/0/\overline{90}\right]_8$ , stiffnesses increased over baseline values as a result of the humidity conditioning. The rate of stiffness decrease with temperature did not change for the 0° and 90° composites as it altered for the laminates.

 $\Xi$ 

With regard to the compression strength plots it should be noted that the coupon compressive values were used for these comparisons as in all following comparisons.

Similarly cross plots were made for Modmor II Graphite/ Narmco 5206 composites (Figs. 17 - 22) and Courtaulds HMS Graphite/ Hercules 3002M Composites (Fig. 23 - 28).

In several ways, the two graphite composites behaved similarly. The 0° tensile strength for both Modmor II/Narmco 52° and Hercules 3002M/Courtaulds HMS Graphite Composites increased over the baseline 0° strength at room temperature although the latter's strengths at elevated temp ratures full below the baseline strengths. The inplane shear strengths for the two materia's fell close to the baseline values over the entire temperature range. Furthermore, the inplane shear strengths



Fig. 17 EFFECT OF HUMIDITY CONDITIONING ON THE STRENG HS OF NARMCO 5206/MODMOR II GRAPHITE COMPOSTIES -



Fig. 18 EFFECT OF HUMIDITY CONDITIONING
ON THE STRENGTHS OF NARMCO 5206/MODMOR II
GRAPHITE COMPOSITES - 90°



Fig. 19 EFFECT OF HUMIDITY CONDITIONING

ON THE STRENGTHS OF NARMOO 5206/MODMOR 11

GRAPHITE COMPOSITES - [0°/45/135/0°/90]



7ig. 20 EFFECT OF HUMIDITY CONDITIONING ON THE ELASTIC MODULI OF NARMCO 5206/MODMOR II GRAPHITE - 0° -45-

O

0

C

O



Fig. 21 EFFECT OF HUMIDITY CONDITIONING ON THE ELASTIC MODULI OF NARMCO 5206/MODMOR II GRAPHITE COMPOSITE - 90°

ツ



Fig. 22 EFFECT OF HUMIDITY CONDITIONING ON THE ELASTIC 'MODULI OF NARMCO 5206/MODMOR II GRAPHITE [0/45/135/0/90]



Fig 23 EFFECTS OF HUMIDITY CONDITIONING ON THE STRENGTHS OF HERCU: S 3002M/COURTAULDS HMS GRAPHITE COMPOSITES = 0°



C.

Fig. 24 EFFECTS OF HUMIDITY CONDITIONING ON THE STRENGTHS OF HERCULES 3002M/ COURTAULDS HMS GRAPHITE COMPOSITES - 90°



· 医 · ·

Fig. 25 EFFECTS OF HUMIDITY CONDITIONING ON THE STRENGTHS OF HERCHIES 3002 M/COURT AULDS HM S GRAPHITE COMPOSITES - (0/45/135/0/90)s



Fig. 26 EFFECTS OF HUMIDITY CONDITIONING ON THE ELASTIC MODULI OF HERCULES 3002 M/COURTAULDS HMS GRAPHITE COMPOSITES - 0°



Fig. 27 EFFECT OF HUMIDITY CONDITIONING ON THE ELASTIC MODULI OF HURCHLES 30024/COURTAVEDS 9MS GRAPHITE COMPOSITES - 90:



Fig. 28 EFFECT OF HUAIDITY CONDITIONING ON THE ELASTIC

MODULI OF HERCULES 3002M/COURTAULDS HMS GRAPHITE

COMPGATTES - [0/45/135/0/90]

dropped rapidly with temperature increase. The 0° compressive strengths for both materials fell below the baseline values at room temperature but at elevated temperatures some of the conditioning treatments resulted in slight increases in the compressive strengths. Finally the laminate baseline tensile strengths of both materials increased with increasing temperature. influence of he humidity conditioning on the laminate was to increase the tensile strengths at room temperature, show tensiles at 260°F fairly close to the baseline values and show a decrease at 350°F. The tensile strengths of the laminates showed an increase in the rate of change with temperature as a result of the humidity conditioning (See Figs. 19 and 25). This effect was previously noted for AVCO 5505/Boron (See Fig. 13) but much less so than in the two graphite laminates. The 90° baseline compressive strengths of both graphite materials were affected by temperature and the rate of strongth decrease with temperature was higher as a result of prior humidity conditioning. The compressive strengths of the two graphite/epoxy composites were not influenced substantially by either temperature or prior humidity conditioning. The Modmor 11/Narmco 5206 Graphite laminate was affected proportionately less than was the Hercules 3002M/Courtaulds HMS Graphite laminates.

The moduli of the two graphite composite systems are shown in Figs. 20 - 22 and Figs. 26 - 28 for the Modmor II/
Narmoo 5206 and the Hercules 3002M/Courtaulds HMS Graphite respectively. The O' is a language of compressive strength of Modmor II Graphite/Narmoo 5206 remained constant over the temperature range but the Hercules 3002M/Courtaulds HMS Graphite O' compressive strength increased with increasing temperature. The baseline implane shear strength of both materials decreased

transverse moduli and the laminate compressive baseline moduli decreased with increasing temperatures. Similarly the baseline tensile moduli of the laminate,  $[0/45/135/0/\overline{90}]_s$ , increased with increasing temperatures. Humidity conditioning did not substantially change the 0° moduli of either material. The 90° and  $[0/45/135/0/\overline{90}]_s$  moduli were affected substantially by the humidity conditioning. No real differences between steady state and cyclic humidity conditioning were noted for the graphites as they were in AVCO 5505/Boron as far as moduli alterations were concerned.

In summary, the prior humidity conditioning affected both unidirectional and laminate properties. In those cases where low residual stresses were present (as evidenced by a monotonic decreasing strength versus temperature curve), the presence of humidity conditioning generally decreased the strengths. In those cases where substantial residual stresses were present (as evidenced by a peaking or increasing strength versus temperature curve), the humidity conditioning frequently led to an increase in the strength of the composite. In addition it is evident that the amount of moisture absorbed by the composites depends on the total time exposure to high moisture, regardless of the intervening high temperature, low temperature, drying time or U.V. exposure.

On the basis of the static humidity results the Thermo-Humidity Cycle was selected for some additional studies. A limited test program was then initiated to ascertain the effect that moisture protective coatings might have on the static mechanical properties of composites subjected to this high humidity cycle.

Accordingly, aerospace companies were contacted to ascertain the most appropriate coatings for the composites. Air Force Spec. Mil-C-83286 and MACDAC Spec. MMS-420 were utilized to procure the coatings. A polyurethane coating was selected\*. This particular system required a four hour drying period at 77°F and was fully cured in 7 days.

The coated samples were then statically tested. Table IX presents a summary of the test results. Unfortunately tape supplies of the system affected the most by the Thermo-Humidity cycle (namely Hercules 3002M/Courtaulds HMS Graphite) were exhausted and new supplies were unavailable in time for the coating tests.

## 2.1.6.3 Effects of Thermal Conditioning

The exposure of the resim matrix composites to steady state temperature affected the composites differently depending on the material. The Avco 5505/Boron composites appear in general to:

- 1) increase in stiffness slightly (in fact the entire stress-strain curve shifts slightly to the left)
- 2) increase in strength
- 3) have a slightly reduced ultimate strain capacity.

This behavior is illustrated in Figs. 29 and 30 for the laminae (90° tension and in-plane shear) which are most sensitive to prolonged exposure to elevated temperature. The steady-state temperature exposure would appear to be acting as an additional post cure to the AVCO 5505/Beron composite laminae. The laminate behavior is shown in Figs. 31 and 32 and appears to be less severe.

 <sup>\*</sup> Super Desothane, A product of DeSoto, Inc.

TABLE IX

SUMMARY OF TENSILE TESTS AT ROOM TEMPERATURE
ON VARIOUS COMPOSITES COATED WITH SUPER DESOTHANE
POLYURETHANE AND SUBJECTED TO THE THERMO-HUMIDITY CYCLE

| SYSTLM                                | ORIENTATION              | CONDITION                                                  | dult<br>(ksi)              | <sup>ε</sup> ult<br>(μ-in/in) | E (ps1 x 10 <sup>6</sup> )   | ,<br>(fn/in)                 |
|---------------------------------------|--------------------------|------------------------------------------------------------|----------------------------|-------------------------------|------------------------------|------------------------------|
| Avco 5505/<br>Buron                   | 0 0                      | Bare<br>Coated<br>Bare/Th-Hum Cycle<br>Coated/Th-Hum Cycle | 183<br>185<br>188<br>e 186 | 6420<br>6200<br>6360<br>6180  | 29.6<br>29.6<br>29.6<br>29.1 | 0.23<br>0.25<br>0.17<br>0.22 |
| Varmeo 5206/<br>Modmer II<br>Graphite | °Û                       | Bare<br>Coated<br>Bare/Th-Hum Cycle<br>Coated/Th-Hum Cycle | 161<br>171<br>163<br>e 170 | 6920<br>6840<br>7230<br>6960  | 22.5<br>21.9<br>22.0<br>22.0 | 0.30<br>0.27<br>0.24<br>0.26 |
| Varnco 5206/<br>Modmor II<br>Graphice | [0/45/135/0/ <u>90</u> ] | Bare<br>Coated<br>Bare/Th-Hum Cycle<br>Coated/Th-Hum Cycle | 72<br>70<br>80<br>e 73     | 6610<br>6580<br>6820<br>6950  | 11.1<br>10.8<br>11.5<br>11.1 | 0.38<br>0.32<br>0.42<br>0.43 |



COMPARATIVE TESSILE BEHAVIOR OF 90° BORON/AVCO 5505 COMPOSITE BEFORE AND AFTER 500 HOURS EXPOSURE TO 260°F WHEN TESTED AT 260°F F1g. 29





COMPARATIVE TENSILE BEHAVIOR OF BORON/AVCO 5505 LAMINATE [0/45/135/0/90], BEFORE AND AFTER 500 HOURS EXPOSURE TO 260°F WHEN TESTED AT ROOM TEMPERATURE 33 (1. 14 14,



COMPARATIVE TENSILE BEHAVIOR OF BORON/AVCO 5505 LAMINATE [0/45/135/0/90] BEFORE ANT AFTER 500 HOURS EXPOSURE TO 350°F WHEN TESTED AT ROOM TEMPERATURE ( ) ( )

Prolonged exposure of Modmor II Graphite/Narmco 5206 epoxy laminae (see Figs. 33 and 34) to elevated temperature acts as a typical detrimental factor by decreasing transverse modulus, ultimate transverse strength and ultimate transverse strain capabilities of the lamina. The modulus reduction would appear to be primarily confined to the early portion of the exposure since after 100 hours and 500 hours the two stress-strain curves are coincident. However additional transverse strength and transverse strain capabilities were lost.

i,

Several parametric cross plots are available for the purposes of illustrating the effects of steady-state thermal conditioning on the static properties of the three resin matrix composite material: Thus Figs. 35 - 40 present the effects of steady state conditioning on the tensile compressive and shear strength and moduli of 0°, 90° and  $[0/45/135/0/\overline{90}]$  AVCO 5505/ Boron composites. In Figs. 35 and 36 the tensile strength of the 0° and compressive strengths of the 90° and  $\frac{0.045/135/0.000}{90.000}$ laminates showed a decrease after exposure to steady state thermal conditioning. The 0° compressive strength, the in-plane shear strength of the 0° composites, the tensile strengths of the  $90^{\circ}$  and  $.0/45/135/0/\overline{90}_{1_{\mathbf{S}}}$  showed increases in strength particularly at the elevated temperatures. These latter strengths are more resh sensitive than the former strengths. The steadystate thermal conditioning acts as an additional post-cure on the resin matrix.

The elastic moduli of the 0° AVCO 5505/Boron composites were increased slightly at the elevated temperatures (See Fig. 38) as a result of the steady-state thermal conditioning. In addition, the steady-state thermal conditioning produced medical versus test temperatures more nearly equal between the tension



COMPARATIVE TENSILE BEHAVIOR OF 90° MODMOR II GRAPHITE/NARMCO 5206 COMPOSITE BEFORE ANI AFTER 100 AND 500 HOURS EXPOSURE TO 260°F WHEN TESTED AT ROOM TEMPERATURE Fig. 33



COMPARATIVE TENSILE BEHAVIOR OF 90° MODMOR II GRAPHITE/NARMOO 5206 COMPOSITE BEFORE AND AFTER 100 AND 500 HOURS EXPOSURE TO 350°F WHEN TESTED AT ROOM TEMPERATURE Fig. 34



Fig. 35 EFFECTS OF STEAL STATE HERMAL CONDITIONING ON THE STRENGTHS OF AVOID 55 RE/BORON COMPOSITION - 0.3



THE ACTOR SERVICE

Fig. 36 EFFECTS OF STEADY STATE THERMAL CONDITIONING
OF THE STRENGTHS OF AVCO 5505/BORON COMPOSITES - 90°



Fig. 37 EFFECTS OF STEP DY-STATE THERMAL CONDITIONING ON THE STRENGTHS OF AVCO 5505/BORON COMPOSITE -  $\left[ 0/45/135/0/\overline{90} \right]_S$ 



獨立 被人獨立的祖一家的是國際國際時間所以其一首 中 等三百万八八八

Fig. 38 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE MODULI OF AVOID 5505/ROBON COMPOSITES - 0°



Fig. 39 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE ELASTIC MODULI OF AVCO 5505/BORON COMPOSITES - 90°



0 ...

Fig. 40 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE ELASTIC MODULI OF AVGO 5505/BORON COMPOSITES - [0/45/135/0/90] =

and compression modes (See Fig. 39). The tensile moduli of the  $10/45/135/0/\overline{90}$  laminates increased over the entire temperature range as a result of prior thermal conditioning while the corresponding compressive moduli decreased at the higher test temperatures.

The effect of steady state thermal conditioning on the strength of Narmoo 5206/Modmor II graphite composites is shown in Figs. 41-43. In general the strengths of this graphite/epoxy composite increased as a result of the steady-state thermal conditioning. The 260°F exposures resulted in small increase: in strength or no change for almost all types of loading and composite orientations. The 350°F exposures showed lower exposed strengths than did the 260°F exposures and often times, as in the case of the 90° tensile strengths, a substantial reduction was detected.

The effect of steady state thermal conditioning on the elastic moduli of Narmco 5206/Modmor II graphite composites is shown in Figs. 44 to 46. The tensile and in-plane shear moduli were not affected substantially by steady state thermal conditioning. The compressive moduli were affected substantially; for all three orientations the 500 hours at 260°F was the worst culprit.

The effect of steady state thermal conditioning on the strengths of Hercules 3002M/Courtaulds HMS Graphite composites is shown in Figs. 47 to 49. In general, for the 0° and  $10/45/135/0/\overline{90}$  composites, the tensile and compressive strengths increased above the baseline values at all temperatures. However the 90° tensile strengths were substantially lower, at all temperatures, than the baseline values.



Fig. 41 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE STRENGTHS OF NARREO 5200/HODBOK II GRAFATTE COMPOSITES - 0°



Fig. 42 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE STRENGTHS OF NARMOO 5206/MODMOR II GRAPHITE COMPOSITES - 90°

.,



Fig. 43 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE STRENGTHS OF NARMCO 5206/MODMOR II GRAPHITE COMPOSITES - [0/45/135/0/ $\overline{90}$ ] s



:;

Fig. 44 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE ELASTIC MODULI OF NARMOO 5206/MODMOR II GRAPHITE.

COMPOSITES - 0°



Fig. 45 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE ELASTIC MODULI OF NARMOO 5206/MODMOR II GRAPHITE COMPOSITES - 90°



Fig. 46 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE ELASTIC MODULL OF NARMOO 5206/MODMOR II GRAPHITE COMPOSITES - [0/45/135/0/90]<sub>S</sub>



Fig. 47 EFFECTS OF STEADY STATE THERMAN CONDITIONING ON THE STRENGTHS OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPUSITES - 0°



Fig. 48 EFFECTS OF STEADY-STATE THERMAL CONDITIONING ON THE STRENGTHS OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - 90°



無いる 東京の のでは、 のでき、 はんできない

Fig. 49 EFFECTS OF STEADY STATE THERMAL CONDITIONING ON THE STRENGTHS
OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - [0/45/135/0/90]

Figures 50 to 52 show the effect of thermal conditioning on the clastic moduli of Hercules 3002M/Courtaulds HMS graphite. Very little change in the elastic moduli of the 0° composites was evident. The  $\left[0/45/135/0/\overline{90}\right]_8$  composites showed substantial modulus reduction in the compressive moduli for the 500 hour exposure at  $260^\circ\text{F}$ .

Cyclic thermal conditioning effects on the strengths of AVCO 5505/Boron are indicated in Figs. 53 to 55. The most substantial changes were in the 90° compression strengths, particularly, the room temperature strengths. In addition the 0° tensile strengths were reduced by cyclic thermal conditioning over the entire range of temperatures.

Ð

7

The effect of cyclic thermal conditioning on the elastic moduli of AVCO 5505/Boron composites is shown in Figs. 56 to 58. Most of the reduction in elastic moduli, from the baseline values took place at room temperature. The exception to this trend was for the compressive moduli of the  $[0/45/135/0/\overline{90}]_8$  composites.

The effects of cyclic thermal conditioning on the strengths of Narmoo 5206/Modmor II graphite are shown in Figs. 59 to 61. The in-plane shear strength of Narmoo 5206/Modmor II graphite was altered so as to make the strength nearly constant over the entire range of temperatures. The 0° tensile strength were altered from the baseline strength levels so as to produce an increase in strength with temperature. The most scattered results were again shown for the  $10/45/135/0/901_{\rm S}$  composites particularly the compressive strengths. The tensile strengths of the  $10/45/135/0/901_{\rm S}$  laminates also became more constant over the entire range than were the baseline strengths.

Modulus changes in Narmoo 5206/Modmor II graphit as a result of cyclic thermal conditioning are shown in Figs. 62 to 64.



丁 中間を一下をあると、大きないとない、いころう

ş

Fig. 50 EFFECTS OF STEADY-STATE THERMAL CONDITIONING ON THE ELASTIC MODULI OF HIRCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES- 0"



Fig. 51 EFFECTS OF STEADY STATE THERMAL CONDITIONING ON THE ELASTIC MODULE OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - 90°



Fig. 52 EFFECT OF STEADY-STATE THERMAL CONDITIONING ON THE ELASTIC MODULI OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - [0/45/135/0/90]<sub>8</sub>



Fig. 53 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE STRENGTHS OF AVGO 5505/BORON COMPOSITES - 0°



Fig. 54 EFFECTS OF CYCLIC THERMAL CONDITIONING ON THE STRENGTHSOF AVOID 5505/BORON COMPOSITES - 90°

1)



Ç

Fig. 55 EFFECTS OF CYCLIC THERMAL CONDITIONING ON THE STRENGTHS OF AVCO 5505/BORON COMPOSITES -  $[0/45/135/0/90]_s$ 



Fig. 56 EFFECTS OF CYCLIC THERMAL CONDITIONING ON THE ELASTIC MODULI OF AVCO 5505/BORON COMPOSITES - 0°



Fig. 57 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE ELASTIC MODULI OF AVEO 5505/BORON COMPOSITES - 90°



Fig. 58 EFFECTS OF CYCLIC THERMAL CONDITIONING ON THE ELASTIC MODULI OF AVCO 5505/BORON COMPOSITES - [0/45/135/0/90]<sub>R</sub>



::

EFFECT OF CYCLIC THERMAL CONDITIONING ON THE Fig. 59 STRENGTHS OF NARMOO 5206/MODMOR II GRAPHITE COMPOS ITES () o

94



Fig. 60 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE STRENGTHS OF NARMOO 5206/MODMOR 11 GRAPHITE COMPOSITES - 90°



Fig. 61 EFFECT OF CYCLIC THERMAL CONFITTONING ON THE STRENGTHS OF NARMCO 5206/MODMOR II GRAPHITE COMPOSITES - [0/45/135/0/90]<sub>S</sub>



Fig. 62 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE ELASTIC MODULI OF NARMOO 5206/MODMOR II GRAPHITE COMPOSITES - 0°



Ũ

Ü

Fig. 63 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE ELASTIC MODULI OF NARMCO 5206/MODMOR II GRAPHITE COMPOSITES - 90°

B



Fig. 64 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE ELASTIC MODULI OF NARMOO 5206/MODMOR II GRAPHITE COMPOSITES - [0/45/135/0/90]

The largest changes from the baseline behavior were evident in the 90° compressive room temperature behavior. In almost every case the elastic moduli became more constant over the temperature range than in the baseline or unconditioned state.

Figures 65 to 67 show the effect of cyclic thermal conditioning on the strengths of Hercules 3002M/Courtaulds HMS graphite composites. The greatest reduction in strength were evident for the 90° tensile strengths at elevated temperatures falling substantially below the baseline strengths. Increases in strengths were determined for the 0° and  $\left[0/45/135/0/90\right]_8$  tensile strengths and the laminate compressive strengths.

The elastic moduli of Hercules 3002M/Courtaulds HMS graphite were also affected by the cyclic thermal conditioning as is shown in Figs. 68 to 70. The tensile and compressive moduli of the  $\left[0/45/135/0/\overline{90}\right]_{\rm S}$  imminates were clearly affected substantially.

The steady state thermal conditioning generally increased the strength and stiffness of the unidirectional and  $\left[0/45/135/0/\overline{90}\right]_g$  composites, decreasing the ultimate strain capabilities at the same time. The transverse strengths were decreased, transverse moduli increased and the strength versus temperature curves altered to a more constant value over the entire temperature range.

The cyclic thermal conditioning also made the variation of strengths and moduli with temperature more constant over the temperature range. The moduli were affected less than steady state exposures and were generally decreased.

## 2.1.6.4 Effect of Conditioning on Interlaminar Shear

The interlaminar shear strengths of the resin matrix composites are also affected by moisture and thermal conditions in the but to a lesser extent than other mechanical strengths.



Fig. 65 EFFECTS OF CYCLIC THERMAL CONDITIONING ON THE STRENGTHS OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - 0°



Fig. 66 EFFECTS OF CYCLIC THERMAL CONDITIONING ON THE STRENGTHS OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - 90°

O



Fig. 67 EFFECTS OF CYCLIC THERMAL CONDITIONING ON THE STRENGTHS OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - [0/45/135/0/90]<sub>S</sub>



9

D

()

Fig. 68 EFFECTS OF CYCLIC THEPELL CONDITIONING ON THE ELASTIC MODULI OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - 0°



Fig. 69 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE ELASTIC MODULI OF HERCULES 3002 M/COURTA DS HMS GRAPHITE COMPOSITES - 90°



Fig. 70 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE ELASTIC MODULI OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - [0/45/135/0/90]<sub>S</sub>

Figures 71, 72 and 73 show how the interlaminar shear strengths are affected by such prior exposures for AVCO 5505/Boron, Narmco 5206/Modmor II Graphite and Hercules 3002M/Courtaulds HMS Graphite composites respectively. All interlaminar shear strengths were obtained on the 0° fifteen-ply short beam specimens.

AVCO 5505/Boron composites show a loss of interlaminar shear strength with exposure to moisture (see Fig. 71a) and all environments result in practically the same loss of interlaminar shear strength.

Constant (noncyclic)temperature exposures (Fig. 71b) increased the interlaminar shear strength. The largest increases were for the least severe exposure (100 hours at 260°F), while the most severe exposure (500 hours at 350°F) increased the interlaminar shear strength the least. In fact the room temperature i.s.s. were least affected while the elevated temperature interlaminar shear strengths were affected substantially more.

Cyclic exposures affected the interlaminar shear strength of AVCO 5505/Boron differently, depending on the peak temperature per cycle. The shear strengths of specimens cycled to 260°F were relatively unaffected by the cyclic exposures whereas some increase or decrease in the interlaminar shear strength was noted for the specimens with 350°F upper temperatures per cycle.

Qualitatively the same effects were noted for the two graphite-epoxy composites (see Figs. 72 and 73) humidity generally decreasing the interlaminar shear strengths over the entire temperature range and mixed effects noted for the steady-state and cyclic thermal conditioning.



Fig. 71 EFFECT OF VARIOUS ENVIRONMENTAL CONDITIONING ON THE INTERLAMINAR SHEAR STRENGTH OF AVCO 5505/BORON COMPOSITES

.,



Fig. 72 EFFECT OF VARIOUS ENVIRONMENTAL CONDITIONING ON THE
INTERLAMINAR SHEAR STRENGTH OF NARMOO 5206/MODMOR 11

GRAPHITE COMPOSITES  $_{109}$ 



Fig. 73 EFFECT OF VARIOUS ENV CONMENTAL CONDITIONING ON THE INTERLAMINAR SHEAR STRENCTHS OF HERCULES 3002H/COURT AULDS HMS GRAPHITE COMPOSITES

110

## 2.1.7 Fatigue Test Results

## 2.1.7.1 Baseline Fatigue Data

The baseline fatigue data are presented in S-N plot form in Appendices I through III. It should be noted that there is a general decline in the fatigue resistance of all three composites with increasing temperature.

## 2.1.7.2 Effects of Humidity Conditioning on Fatigue Behavior

The parametric effects of humidity conditioning on the S-N fatigue behavior is shown in Figs. 74 and 75 for AVCO 5505/Boron unidirectional  $[0/45/135/0/90]_{\rm S}$  laminates respectively. The effects are shown at each of the three test temperatures (RT, 260°F and 350°F).

Note that the cyclic humidity conditioning treatments degraded the fatigue resistances of the AVCO 5505/Boron composites considerably more than did the steady-state humidity conditioning treatments.

Similarly the humidity effects on the graphite/epoxy composites are presented in Figs. 76 to 79.

With regard to the fatigue S-N behavior for Narmco 5206/ Modmor II Graphite Composites, it is seen in Fig. 76 note that the ranking is (1) baseline, (2) 500 hours 98% RH, (3) Accelerated weathering, (4) 1000 hours 98% RH and (5) Thermo-Humidity cycle at room temperature. At higher temperatures the 500 and 1000 hours exposures degraded the fatigue behavior more than did the humidity cycles. Similar comments applied to the  $[0/45/135/0/\overline{90}]_{s}$  laminates as well (see Fig. 77).

The fatigue degradation due to high humidity conditions for Courtaulds HMS Graphite/Hercules 3002M composites are seen in Figs. 78 and 79. The behavior shown is complex. Some liberal



Fig. 74 EFFECT OF HUMIDITY CONDITIONING ON THE FATIGUE SN CURVES FOR AVCO 5505/BORON COMPOSITES - 0°



Cycles to reliure, Cycles

EFFECT OF HUMIDITY CONDITIONING ON THE FATIGUE SN CURVES

FOR AVGO 5505/BORON COMIOSITES [0/45/135/0/90] Fig. 75



Fig. 76 EFFECT OF HUMIDITY CONDITIONING ON THE FATIGUE SN CURVES FOR NARMCO 5206/MODMOR II GRAPHITE COMPOSITES - 0°



Fig. 77 EFFECT OF HUMIDITY CONDITIONING ON THE FATIGUE SN CURVES FOR NARMCO 5206/MODMOR II GRAPHITE COMPOSITES -10/45/135/0/9()s



Fig. 78 EFFECT OF HUMIDITY CONDITIONING ON THE FATIGUE SN CURVES FOR HERCULES 3002M/COURTAIN DS HMS GRAPHITE COMPOSITES 0°.



Fig. 79 EFFECT OF HUMIDITY CONDITIONING ON THE FATIGUE S-N CURVES FOR HERCULES 3002 M COURTAULDS HMSGRAPHITE COMPOSITES [0/45/135///90]

interpretation must be applied to the room temperature baseline data which is probably shown too low in Fig. 78. On the other hand, the static strengths rose with temperature and it is possible that the fatigue S-N behavior mirrors this to some extent.

### 2.1.7.3 Effects of Thermal Conditioning on Patigue Behavior

Several parametric cross plots on the effects of thermal conditioning on fatigue behavior were prepared. The effect of steady-state thermal conditioning are presented as follows:

AVCO 5505/Boron - Figs. 80 and 81

Modmor II Graphite/Narmco 5206 - Figs. 82 and 83

Courtaulds HMS Graphite/Hercules 3002M - Figs. 84 and 85

0

0

0

The classic degradation of the fatigue S-N behavior with prior steady-state thermal conditioning is seen in Fig. 80 for  $0^{\circ}$  AVCO 5505/Boron composites. More degradation at the higher cyclic lives is seen in Fig. 81 for the  $[0/45/135/0/\overline{90}]_{s}$  composites of AVCO 5505/Boron.

The Narmoo 5206/Modmor II Graphite composites show more complex behavior. Both long term aging effects at the higher cyclic lives and some strengthening effects at the lower cyclic lives are seen in Fig. 82, for 0° composites, particular the room temperature fatigue behaviors. Similar behavior was noted in the case of the  $\left[0/45/135/0/\overline{90}\right]_{\rm S}$  laminates although the strengthening was more uniform over the entire range of cyclic lives.

Similar effects are seen for the Hercules 3002M/Courtaulds HMS Graphite composites, (see Figs. 84 and 85).

Cyclic thermal conditioning effects on the fatigue behavior of the three resin matrix composites is shown as follows:



Fig. 80 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE FATIGUE SN CURVES FOR AVCO 5505/BORON COMPOSITES-0°



Fig. 81 EFFECT OF SIRADY STATE THERMAL CONDITIONING
ON THE FATIGUE SN CURVES FOR AVCO 5505/BORON COMPOSITES
[0/45/135/0/90]s 120



Fig. 82 EFFECT OF STEADY-STATE THERMAL CONDITIONING ON THE FATIGUE SN CURVES FOR MODMOR II/NARMCO 5206 COMPOSITES-0°



EFFECT OF STEADY-STATE THERMAL CONDITIONING ON THE FATIGUE SN CURVES FOR MODMOR 11 GRAPHITE/NARMCO 5206 COMPOSITES - 10/45/135/0/90s Fig. 83



Fig. 84 EFFECT OF STEADY-STATE THERMAL CONDITIONING ON THE FATIGUE SN CURVES FOR HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - 0°123



Fig. 85 EFFECT OF STEADY-STATE THERMAL CONDITIONING ON THE FATIGUE SN CURVES FOR RERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES [0/45/135/0/90]<sub>S</sub>

AVCO 5505/Boron - Figs. 86 and 87

Narmco 5206/Modmor II caphite - Figs. 88 and 89

Hercules 3002M/Courtaulds HMS Graphite - Figs. 90 and 91

The behavior shows consistant degradation in the following increasing order (1) 260°F for 500 cycles, (2) 260°F for 1000 cycles, (3) 350°F for 500 cycles and the worst (4) 350°F for 1000 cycles. The fatigue data indicates that the materials still retain satisfactory strengths at high temperature after thermal cycling.

#### 2.1.8 Creep and Stress Rupture Test Results

#### 2.1.8.1 Baseline Creep and Stress Rupture Data

loads. Because of the greater creep susceptability of resin matrix composites at elevated temperatures, the creep and stress rupture tests were conducted at elevated temperatures (260°F and 350°F) only. The creep test data were generated in the form of creep strain versus time curves at various percentages of average ultimate tensile stress of the particular material at that temperature. The stress versus time to rupture data was obtained for the composite materials at various percentages of the ultimate tensile stress levels at the two temperatures. Those tests which ran to 1000 hours were terminated at that time and the specimens removed from the test stands. The test results for individual specimens are shown in Appendices I to III. Both stress rupture versus time and creep-time curves are also presented.

Many specimens failed prior to the attainment of the intended load or "during loading." These specimens are so indicated in the tabular presentation of data. Where the majority of specimens for a given conditioning treatment fell into this category, no stress rupture curves were prepared for that particular condition. As this occasionally happened for



EFFECT OF CYCLIC THERMAL CONDITIONING CATHE FATIGUE SN CURVES FC. AVCO 5505/BORON C. MPOSITES - 0°

O

Û

0

0

0

C

0

Ũ

-



Fig. 87 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE FATIGUE SN CURVES FOR AVCO 5505/BORON COMPOSITES [0/45/135/0/90] 8

1)



Fig. 88 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE FATIGUE SN CURVES FOR NARMCO 5206/MODMOR II GRAPHITE COMPOSITES -0°.



Fig. 89 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE FAZIOUE SN CURVES FOR NARMCO 5206/MODMOR II GRAPHITE COMPOSITES -[0/45/135/0/90]

ment years and a second



Cycles to Failure, Cycles

Fig. 90 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE FATIGUE SN

CURVES FOR HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES 0°

130



Fig. 91 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE FATIGUE SN CURVES FOR HERCHIES 3002M COURTAULDS HMS GRAPHITE COMPOSITES-10/45/135/0/90).

baseline data as well, some baseline stress-rupture versus time curves are also missing. Where data was obtained over a portion of the time range only, the stress versus time to rupture curves were so indicated.

# 2.1.8.2 Effects of Humidity Conditioning on the Creep and Stress Rupture Properties

The effect of humidity conditioning, treatments, both steady state exposure and cyclic humidity pretreatments on the creep and stress-rupture properties of AVCO 5505/Boron, Marmoo 5206/Modmor II Graphite, and Hercules 3002M/Courtaulds HMS Graphite composites are presented in Figs. 92 and 93, Figs. 94 and 95, and Figs. 96 and 97 respectively. Both 0° and  $[0/45/135/0/\overline{90}]_{a}$  composites were investigated.

Baseline data is not available to compare the effect of himidity conditioning on the stress rupture properties of 0° AVCO 5505/Boron composites at 260°F. Some reduction in the stress-rupture behavior of 0° AVCO 5505/Boron at 350°F is seen in Fig. 92. The stress rupture behavior of the [0/45/135/0/90] laminates at both 260°F and 350°F appears to be only slightly affected (and improved over baseline behavior) after steady state and cyclic humidity conditioning.

A similar set of humidity effects on the stress-rupture behavior of Narmco 5206/Modmor II Graphite Composites is shown in Figs. 94 and 95. All conditioning treatments increased the stress-rupture curves over the original baseline values. The  $0^{\circ}$  composites were affected the most while the  $[0/45/135/0/\overline{90}]_{8}$  laminates were affected the least.

Figures 96 and 97 show the effect of prior humidity conditioning on the stress-rupture behavior of Hercules 3002M/Courtaulds HMS graphite. The only substantial reduction in the



Fig. 92 EFFEC OF HUMIDITY CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF AVCO 5505/BORON COMPOSITES - 0°



Fig. 93 EFFECT OF HUMIDITY CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF AVOID DOUD/BURGIN COMPOSITION [0/45/135/0/90]



**1)** 

Fig. 94 EFFECT OF HUMIDITY CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF NARMCO 5206/MODMOR II GRAPHITE COMPOSITES - 0°



Fig. 95 EFFECT OF HUMIDITY CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF NARMCO 5206/MODMOR II GRAPHITE COMPOSITES - [0/45/135/0/90]s



Fig. 96 EFFECT OF HUMIDITY CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF HERCULES 3002 M/COURTAULDS HMS GRAPHITE COMPOSITES - 0°



Fig. 97 EFFECTS OF HUMIDITY CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES - [0/45/135/0/90]<sub>s</sub>

stress-rupture curves with humidity conditioning for all three materials was detected at  $350^{\circ}F$  for the  $\left[0/45/135/0/\overline{90}\right]_{g}$  laminates. The accelerated weathering cycle stress-versus time to rupture curves shown in Fig. 97 at  $350^{\circ}F$  is coincident with the baseline behavior. However, the 1000 hour at 98% RH data showed a decrease from the baseline values.

Overall, the stress versus time to rupture behavior of the three resin matrix composites in the unidirectional as well as  $[0/45/135/0/90]_8$  laminates was either not affected by prior humidity conditioning or showed a slight improvement in the resistance to rupture under sustained stress.

# 2.1.8.3 Effects of Thermal Conditioning on the Creep and Stress Rupture Properties

The effects of steady state thermal conditioning on the stress-rupture behavior of the three resin matrix composites are shown in Figs. 98 to 102. Both 0° and  $[0/45/135/0/\overline{90}]_{\rm g}$  composites and two temperatures of testing (260°F and 350°F) are presented.

The effect of steady state thermal exposure on the stress versus time to rupture behavior of AVCO 5505/Boron composites is shown in Figs. 98 and 99. In general the exposure at 350°F for 500 hours enhanced the sustained stress properties while the 500 nour exposure to 200°F showed both degradatory and enhancement of the stress rupture properties relative to the unexposed baseline properties. From a logical point of view, it is reasonable to conclude that the thermal exposure may not have enhanced the stress rupture properties but that this conditioning had no adverse affects on the stress-rupture behavior.

The effect of steady-state thermal exposure on the stress versus time-to-rupture behavior of Narmco 5206/Modmor II graphite composites is presented in rigs. 100 and 101. Again the higher temperature exposure (350°F for 500 hours) increased the resistance to failure under sustained load above the 0° baseline



O

0

C

€

**(**)

Û

Fig. 98 EFFECTS OF STEADY-STATE THERMAL CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF AVCO 5505/BORON COMPOS TES - 0°



**f** ...

FIG. 99 EFFECTS OF STEADY-STATE THERMAL CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF AVCO 5505/BORON COMPOSITES [0/45/135/0/90]s



O

O

Fig. 100 EFFECT OF STEADY-STATE THERMAL CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF NARMCO 5206/MODMOR II GRAPHITE COMPOSITE - 0°



Fig. 101 EFFECT OF STEADY STATE THERMAL CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF NARMCO 5206/MODMOR 11 GRAPHITE COMPOSITES - [0/45/135/0/90] s



Fig. 102 FFECT OF STEADY STATE THERMAL CONDITIONING ON THE STATES RUPTURE BEHAVIOR OF HERCULES 3002M/COURTAULDS HM 3 GRAPHITE COMPOSITES ~ [0/45/135/0/90]

behavior at 350°F. The 500 hour exposure to 260°F resulted in minor degradation from the baseline behavior.

The 0° stress versus time to failure behavior of Hercules 3002M/Courtaulds HMS graphite is n \* shown because the data does not exist or all specimens were 1000 hour runouts. The laminate behavior is shown in Fig. 102. Again the 500 hour exposure to 350°F enhanced the stress-rupture behavior while the 260°F exposure for 500 hours degraded the stress-rupture behavior.

The effect of cyclic thermal conditioning on the stress-rupture behavior of AVCO 5505/Boron composites is shown in Figs. 103 and 104. The rest is showed behavior similar to that of the steady state thermal conditioning. The 500 hours exposure to 350°F showed better performance than both baseline and 500 hours exposure to 260°F. The exception was the  $[0/45/135/0/\overline{90}]_8$  laminate creep-tested at 350°F. Baseline data at 260°F for the 0° composites were missing because all baseline coupons were 1000 hours runouts. (See Appendix I - Table XIV.).

Figures 105 and 106 show the effect of cyclic thermal conditioning on the stress versus time to rupture behavior of Narmco 5206/Modmor II graphite composites. The behavior is similar to that for AVCO 5505/Boron composites as discussed above. Finally the stress rupture behavior of the second graphite/epoxy system, Hercules 3002M/Courtaulds HMS graphite is shown in Figs. 107 and 108. No beneficial cyclic conditioning was indicated, all conditioning proving to be degradatory.

### 2.1.9 Thermo Physical Properties

## 2.1.9.1 Thermal Expansion

Thermal expansion measurements were made for the three resin matrix composite systems, AVCO 5505/Boron, Modmor II



Fig. 103 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF AVCO 5505/BORON COMPOSITES - 0°

Fig. 104 EFFECT OF CYCLIC THER AL. CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF AVCO 5505/BORON COMPOSITES - [0/45/135/0/90] g



Fig. 105 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF NARMCO 5206/MODMOR II GRAPHITE COMPOSITES - 0°



•

Fig. 106 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF NARMCO 5206/MODMOR 11 GRAPHITE COMPOSITES - [0/45/135/0/90]<sub>s</sub>



Fig. 107 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE STRESS RUPTURE BEHAVIOR OF HERCULES 3002M/COURTAULDS HMS
CRAPHITE COMPOSITE - 0°



Fig. 103 EFFECT OF CYCLIC THERMAL CONDITIONING ON THE SERESS
RUPTURE DERAVIOR OF RERCULES 3002M/COURTAGLDS HMS GRAPHITE
COMPOSITES [0/45/135/0/90]<sub>8</sub>

Craphite/Narmoo 5206, and Courtaulds HMS Graphite/Hercules 300\_M. Three samples in each of three fiber orientations (0°, 90°, and  $\left[0/45/135/0/\overline{90}\right]_{\rm S}$  with respect to the expansion direction) were tested in air at 4°F/min. from ambient RT to 350°F for each material system employing the NETZSCH Automatic recording pushrod dilatometer described previously (AFML-TR-72-205, Part I).

fiber orientation) a 0.1 to 0.5 percent shrinkage was observed after the first heating/cooling cycle. Stable expansion behavior was observed during the subsequent cycles. This effect was also seen in the 0° and  $[0/45/135/0/90]_s$  orientations. The thermal expansion behavior of material of this orientation is much lower. This effect is illustrated in Fig. 109, where percent expansion is plotted against temperature for both heating and cooling cycles for the Courtaulds HMS Graphite/Hercules 3002M material (typical of other materials). Materials experienced slight weight loss during testing, typical weight losses ranging from 0.1 to 0.3 percent.

The instantaneous coefficient of thermal expansion for each resin matrix material and fiber orientation tested was determined for the second cycle stable expansion behavior and is plotted as a function of temperature in Figs. 110 to 112, and tabulated in Table X.

The low expansion of the 0° (longitudinal) fiber orientation composites results from the high modulus fibers restricting the expansion of the low modulus matrix. Since the tensile moduli of the boron and graphite fibers are much higher than tensile moduli of the epoxy resin matrices, it can be predicted from strain compatability considerations that the prope are of the reinforcing fibers control the uniaxial (0°) expansion

Fig. 109 THERMAL EXPANSION BEHAVIOR OF COURTAULDS HMS GRAPHITE/HERCULES 3002M IN THE 90° ORIENTATION



Fig. 110 COEFFICIENT OF THERMAL EXPANSION FOR BORON /AVCC 5505 COMPOSITES

D

3



Fig. 111 COEFFICIENT OF THEOMAL EXPANSION FOR COURTABLES HMS GRAPHITE/HERCULES 3002M COMPOSITES

LJJ



Fig. 112 COEFFICIENT OF THERMAL EXPANSION FOR MODMOR II GRAPHITE/NARMCO 5206 COMPOSITES

Table X

ERAGE INSTANTANEOUS COEFFICIENT OF EXPANSION DATA OF RESIN MATRIX COMPOSITES\*

|                                          | COEF  | COEFFICIENT OF EXPANSION, u in/in °F | F EXPANSI | ON, u in, | /1n °F |
|------------------------------------------|-------|--------------------------------------|-----------|-----------|--------|
| Temperature, °F                          | RT**  | 100                                  | 200       | 300       | 350    |
| Boron/AVCO 5505                          |       |                                      |           |           |        |
| 0° Ortentation                           | 2.4   | 2.4                                  | 2.5       | 2.8       | 3.0    |
| [0/45/135/0/90] <sub>g</sub> Orientation | 2.6   | 2.6                                  | 2.75      | 2.95      | 3.2    |
| 90° Orientation                          | 12.3  | 13.5                                 | 18.6      | 25.1      | 30     |
| Modmor II Gr./Narmco 5206                |       |                                      |           |           |        |
| 0° Orientation                           | -0.13 | -0.13                                | -0.20     | -0.18     | -0.07  |
| [0/45/135/0/90]g Orientation             | 0.30  | 0.30                                 | 0.30      | 0.19      | 0.0    |
| 90° Orientation                          | 18.9  | 18.9                                 | 18.9      | 30.6      | 43.7   |
| Court. HAS Gr./Hercules 3002M            |       |                                      |           |           |        |
| 0° Orientation                           | -0.13 | -0.20                                | -0.27     | -0.33     | -0.45  |
| [0/45/35/0/90] Orientation               | 0.20  | 0.23                                 | 0.27      | 0.32      | .35    |
| 90° Ormentation                          | 18.6  | 19.5                                 | 25.9      | 36.3      | 42.2   |

<sup>\*</sup> Based on 2nd cycle, stable behavior

<sup>\*\*</sup> Extrapolated

behavior. This was found to occur as evidenced by the data in Table X. Boron fibers exhibit a uniaxial expansion coefficient of  $2.7 \times 10^{-6}$  in/in°F (14), and the AVCO 5505/Boron composite exhibited expansion coefficients ranging from 2.5 - 3.0 in/in°F (from ambient RT to 350°F) in the 0° direction.

Typical graphite fibers used in advanced graphite/epoxy composites exhibit negative expansion coefficients. Both graphite reinforced systems tested exhibited negative composite expansion coefficients in the 0° direction as seen in Table X. It was estimated that the high modulus graphite/epoxy system (Courtaulds HMS Graphite/Hercules 3002M) would have a lower uniaxial (0°) expansion coefficient than the high strength fiber system (Modmor II Graphite/Narmco 5206). This was also observed experimentally, the uniaxial expansion coefficient of the high modulus system being more negative than that of the high strength graphite reinforced material.

These data conform with composite thermal expansion data on boron - and graphite - reinforced epoxy systems found in the literature (14, 15).

The large expansion coefficients for the 90° fiber orientation (transverse) are mainly a result of matrix expansion without restraint effects produced by reinforcement. This increase in importance of the matrix expansion coefficient can be predicted from strain compatability considerations, and is observed in the experimentally generated data summarized in Table X. Data for the transverse (90°) orientation exhibit the general magnitude and temperature dependence of typical epoxy materials as compared to the dependence of the expansion behavior on the reinforcement in the 0° orientation.

Considering both uniaxial and transverse expansion behavior, the reinforcing fibers alone more strongly control the uniaxial expansion behavior than does the matrix alone control the transverse expansion behavior. Thus the fibers have a stranger influence or transverse expansion behavior than the influence of the matrix or uniaxial expansion behavior. These observations are in concurrence with predictions based on stress equilibrium and strain compatability analyses.

In the  $[0/45/135/0/\overline{90}]_s$  fiber orientation of each material tested the composite expansion coefficient is also low, indicating the few 0° plies present offer significant restraint to the composite. The angled plies also offer significant reinforcement according to literature data (16).

# 2.1.9.2 Effect of Absorbed Moisture on Thermal Expansion Behavior of Resin Matrix Composites

It has been demonstrated that each epoxy resin matrix composite investigated absorbs water vapor during shelf storage, as evidenced by weight gain, which results in unstable thermal expansion behavior upon initial heating and cooling, with more stable behavior in subsequent thermal cycles. This behavior has been observed in similar materials systems (15). In particular, the graphite/epoxy composites showed this behavior most clearly.

The unstable first cycle, stable second cycle expansion behavior for the transverse orientation Courtaulds HMS Graphite/
Hercules 3002M material was presented before in Fig. 109. To indicate the role that absorbed water vapor has on this phenomena, a sample, not praviously tested, of the same material was exposed

to a 350°F environment for 63 hours. A thermal expansion test was then conducted on this material, the result of which is shown in Fig. 113. The prolonged temperature exposure has resulted in the elimination of the unstable first cycle behavior. This identical sample was then subjected to 98% R.H. (relative humidity) for 812 hours, until the sample regained its pre-350°F cure weight. Subsequent thermal expansion testing indicated unstable first cycle and a more stable second cycle expansion behavior as presented in Fig. 114. This behavior is similar to that shown in Fig. 109, indicating that the absorbed moisture is responsible for the observed unstable expansion behavior.

0

0

0

0

### 2.1.9.3 Thermal Conductivity Results

Thermal conductivity measurements were made on three reinforced epoxy systems, AVCO 5505/Boron, Modmor II graphite/Narmco 5206, and Courtaulds HMS graphite/Hercules 3002M. Three samples in each of three fiber orientations (0°, 90°, and [0/45/135/0/90], with respect to the heat flow direction) were tested from ambient RT to 350°F employing the guarded steady state longitudinal heat flow method previously described AFML-TR-72-205, Part I.

Thermal conductivity results for these resin matrix materials are presented as a function of temperature in Figs. 115 to 117. For all three materials systems the thermal conductivity in the 0° direction (parallel to fibers) is higher than in the transverse (90°) direction, with the minud ply  $[0/45/135/0/90]_g$  orientation data folling in between. The straight-line representation of the data shown for each material orientation was derived from a linear least squares data analysis. Typical thermal conductivity data scatter for these composite



Fig. 113 THERMAL EXPANSION BEHAVIOR OF GRAPHITE REINFORCED RESIN COMPOSITE (COURTAULD'S HMS GRAPHITE/HERCULES 3002M, 90° ORIENTATION) CURED AT 350°F for 63 HOURS





Figure 115

163





Figure 117 THERMAL CONDUCTIVITY OF COURTAULDS HHS GRAPHITE/HERCULES 3002m COMPOSITES

materials ranged from  $\pm$  4 to  $\pm$  12% maximum deviation from the linear representation shown. Data for the uniaxial Courtaulds HMS Graphite/Hercules 3002M material, however, exhibited  $\pm$  20% variation from the linear representation, owing to sample variability.

The Courtaulds HMS Graphite/Hercules 3002M materials (high modulus fibers) exhibited thermal conductivity data substantially higher than the Modmor II Graphite/Narmco 5206 materials (high strength fibers). Although the properties of the Hercules 3002M and Narmco 5206 Matrices are not readily available, this result is possibly due to the increase in uniaxial fiber thermal conductivity with increasing uniaxial tensile modulus that has been observed in other graphite reinforced epoxy composites (17).

The AVCO 5505, Boron exhibited lower thermal conductivity than either of the two graphite reinforced composites studied. Although the properties of the respective matrix materials are not readily available, this result would not be unexpected owing to the lower thermal conductivity of boron fibers as compared to graphite fibers.

3

3

•

Both graphite reinforced materials exhibited substantially higher thermal conductivity directional anisotropy than the borom reinforced material. This is presumably due to the greater difference between fiber and matrix conductivity for the graphite reinforced materials as compared to the borom reinforced composites.

In general, good agreement was obtained in comparing the experimentally generated data for the 0° and 90° fiber orientations of the three resin matrix systems studied with data derived from analytical prediction techniques employing familiar parallel and series thermal analogies (16).

### 2.1.1.0 Fracture Modes

The failure patterns for 0° resin matrix composites depended upon mode and type of loading and on the prior conditioning to a lesser extent. Static tension of the AVCO 5505/ Boron composites produced fractures which generally propagated fully or partially across the specimens in a straight path. The partial fractures also had straight smooth transverse fracture paths which were coupled with longitudinal fractures parallel to the filament directions thus resulting in an overall steplike fracture pattern. Fatigue fracture patterns of the 0° AVCO 5505/Boron composites contained more of such steps with many fibers involved in each transverse path. The creep fracture patterns of the 0° AVCO 5505/Boron were different from both static and fatigue patterns. The creep patterns in the  $0^{\circ}$ AVCO 5505/Boron composites showed many individual filaments pulled from the matrix in random locations so as to appear as a bundle of broken fibers of various lengths. Environmental conditioning modified these appearances only slightly. Humidity conditioning caused the fatigue and creep fractures to appear less fragmentary. Thermal conditioning caused the fracture surfaces to appear more fragmentary except in the case of fatigue and creep fracture surfaces where the fractures assumed a more straight or transverse crack direction. The two graphite composites behaved similarly to the AVCO 5505/Boron composites except that the fatigue fracture modes were more fragmentary than the corresponding AVCO 5505/Boron fractures.

The failure patterns for 90° composites showed practically no differences between the various fibers. Static tension failures were clear, flat and very nearly lay in plane perpendicular to the direction of loading. The 90° compression

failures (coupon specimens) consistently broke in a fracture plane inclined to the direction of loading. A wedge shaped piece was nearly always broken from the coupons after completion of the test specimens. The fatigue and creep fracture patterns were quite similar to the static tensile patterns for all three resin matrix composites except that the Hercules 3002M/Courtaulds HMS Graphite composites also delaminated.

.

Laminate  $[0/45/135/0/\overline{90}]_s$ , composites generally failed in an irregular path, but straight across the specimens rather than in long steps as in the 0° static tensile patterns. Static compression patterns were so fragmentary that no analysis could be made of the origin and progress of the racking. The fatigue failures generally showed two fractures after testing, but one of these most likely occurred as a result of unrestrained compression followed by bending of the sample following initial specimen failure before the fatigue machine finally stops. Creep failures of the  $[0/45/135/0/\overline{90}]_s$  composites also showed double failures on a frequent basis. Considerable delamination of the static tensile, fatigue and creep specimens of Hercules 3002M/Courtaulds HMS graphite composites was evident after testing.

## 2.2 Metal Matrix Studies

### 2.2.1 Materials

Although the excellent specific strength and stiffness properties of certain metal-matrix composite materials have been known to the aerospace industry for some time, the application of these materials to structural components has been delayed because of high initial material cost and the lack of fabrication methods that are economical and capable of producing

panels of consistent quality. Two promising methods that are commercially used to fabricate metal-matrix composites were considered for this program.

- 1) Diffusion bonding in which the filaments are encapsulated by hot pressing of the matrix foils in an inert atmosphere.
- 2) Plasma spraying technique where matrix plasma is sprayed on filaments to form composite monolayers (or tapes). This method then requires further processing to produce multilayer laminates.

A substantial number of aerospace applications for metal matrix composites utilize 6061 Aluminum together with the boron fiber. Therefore, this system (6061 aluminum/boron) was selected for characterization in this program.

The second metal matrix system selected was 6A1-4V-Titanium/BorSiC because of its utilization in turbine blade applications. A least two aerospace companies have shown an interest in this material.

#### 2.2.2 Material Procurement

The maximum capability temperature of the aluminum matrix composites is generally defined as 600°F and the titanium matrix composites, 800°F. 5.6 mil boron and 5.7 mil BorSiC were used in the preparation of the laminates. Table IV in Section II presented the test program utilized for evaluation of the metal matrix composites.

Specifications for metal matrix composites did not exist at the time that these two materials were ordered for use on this program. The aluminum/boron composites fabricated contained 50 percent fiber volume. The titanium BorSiC composites contained 45 volume percent fibers. Preparation of the titanium composites was on a best efforts basis.

Inc. The vendor fabricated the material was procured from Amercom Inc. The vendor fabricated the material in laminate form. The composite was diffusion-bonded in vacuum. It was initially assembled by winding boron filaments onto a thin foil of 6061 Aluminum. The filaments were held in place by a "Fugitive binder". The sheets of foil and filaments were then assembled to the requisite lamination, placed in a stainless steel vacuum bag and the bag was evacuated. The binder was eliminated at a low pressure and temperature under a dynamic vacuum. The heat was then raised to the pressing temperature and consolidation was carried out in the solid state under pressure. Following the consolidation the fully consolidated laminate was removed from the bag trimmed and chemically cleaned prior to delivery.

6Al-4V - Titanium/BorSiC material was fabricated by TRW Inc. These laminates were prepared as follows.

BorSiC filaments were wound on a 16 inch diameter drum mounted in a filament-winding machine. The filament spacing was accurately maintained to provide the desired filament volume percent. The filaments were drawn through a glass nozzle in the process which added a polystyrene binder coating to the fiber. The collimated fiber mat is next cut and inserted between two titanium foils. This monolayer was then placed between two stainless steel or molybdenum separator which is coated with graphite and boron nitride antiadhesive coatings. The assembly

is then placed inside a stainless-steel capsule which is then evacuated. Following this the capsule is hot pressed which breaks down the polystyrene into gaseous decomposition products and these are removed by a dynamic vacuum. When the bonding temperature is reached, the pressure is increased and the assembly is bonded for a period of time. Following this the load is reduced the monolayer is removed and the surface is etched to a 50 fiber volume percent thickness. Then the monolayers were stacked between 20 mil thick doubler plates and the new assembly is subjected to pressure and elevated temperature. Thus two distinct diffusion bonding operations are used in the overall process.

### 2.2.3 Metal Matrix Material Test Specimens

Figure 118 presents the specimen geometries of the various metal matrix test specimens employed in this program.

Referring to the Fig. 118a the tension, and tensile fatigue and creep specimens were similar to the IITRI straight sided tab ended coupons used for the resin matrix studies with 2 in. gage lengths and 4 inches long. The specimen shape was arrived at by machining of the 20 mil doubler plates bonded during plate fabrication on top and bottom surfaces instead of bonding of a tab on the laminate as with resin matrix composite tests specimens. With the removal of 18 mil foil layer on either surface, the specimen thickness was approximately 44 mils.

Figure 118b shows the 15-ply compression and R=-1 and 10 fatigue coupon geometry which was obtained by machining in a manner similar to the tension specimens. The specimen had a gage length of 1/2 in. and with the removal of 18 mil cover on either side, the test section thickness came to about 110 mils.



Fig. 118 METAL MATRIX TEST SPECIMENS

(d) Interiamine Shear Specimen

The flexural specimens of 0° and 90° fiber orientations were the same as those for the resin matrix composites. These oppositions had 15 plies with a thicknesses of 110 mils after the removal of the cover. These specimens were tested in a manner similar to the testing of the resin matrix flexure specimens.

18

Interiaminar shear specimens were also 15 mils thick and they were 1/2 in, wide and 0.6 in, long. The test procedure was identical to that for the resin matrix specimens with three point loading.

Thermal conductivity and Thermal expansion specimens were 2 in. by 1/2 in. by 6 plies in thickness. For the former tests, several of these specimens were stacked together to a total thickness of 1 inch.

Density determinations were made on specimens similar in size to those used for thermal property tests. The fiber volume density was measured by gravimetric means.

### 2.2.3.1 General Specimen Machining Procedures

The 6061 Aluminum/boron panels fabricated by Amercom Inc. had a 20 mil thick 6061 aluminum doubler plates diffusion-bonded to both the top and bottom surfaces of the panels.

The tension and compression specimens required tabs at the grips. By machining away the doubler plates in the test section of the specimens (to a depth of 18 mils) we were left with 18 mil thick tabs on each end of the sample on both sides of the specimen. This provided a composite specimen with a uniform matrix covering the filaments throughout the entire test section. For specimens that did not require the tab thicknesses such as in flexure and interlaminar shear tests, the

doubler plates were machined to remove 18 mils uniformly over the full area of the specimen.

The actual machining work was done as described below:

The blank plates were held in a fixture on the surface grinder to permit two cuts in the longitudinal direction, using a 1/16" cutoff wheel. These two cuts removed the rough edges. The plates were then turned 90° and held in a similar clamping fixture to cut the plates to the specimen length. The reduced section was then ground in the plates using a grinding wheel with the corner radius dressed on both edges. At this point the plates were held in a fixture and the specimens were cut to the proper width with a cutoff wheel. After this operation the specimens were deburred.

A similar procedure was adapted for specimen fabrication from the 6Al-4V - Titanium/BorSiC material which also had a matrix foil cover of 20 mil thickness on either face.

# 2.2.3.2 <u>Machining Procedure for Titanium/BorSiC Composite</u> Specimens from Diffusion Bonded Plates

The edge condition of each blank plate was examined. If there was any doubtful edge sections, a predetermined amount was removed to assure a uniform density.

This whole operation was done in a steel hold down fixture in a surface grinder, (the clamp bar being 0.015" to 0.030" away from the cutoff wheel) to prevent fiber separation. The wheel utilized was an.

ALLISON, VA-602-M-RA, (1/16" x 3" x 12") operated at 2800 RPM spindle speed. A normal traverse, 0.001" downfeed--water soluble coolant was employed.

Depending on the fiber orientation relative to the specimen geometry, the specimen blanks were removed in the following manner:

- (A) Specimens that required the fibers in the longitudinal direction were cut in strips to the correct width and the full length of the plate. (Using the fixture described above).
- (B) Specimens with transverse fibers were cut to the correct width from sections that were cut from the blank plate-each section cut to the specimen length and parallel to the fiber direction. A smaller plate fixture of similar design was used to cut transverse specimens to the correct width. The wheel utilized was the same as above.

The reduced area was ground in a hold down fixture that accommodated twelve specimens and which clamped the specimens within 1/3?" of the reduced section. Equal amounts were removed from each side. When the specimens were turned over for grinding, a suitable shim was placed in the original reduced area to prevent deflection and to act as a heat sink. The wheel used was a,

NORTON, 37C-60-JVK, (1" x 3" x 12") operated at 2200 RPM spindle speed. A normal traverse, 0.0005" downfeed-soluble coolant was employed.

The radius was dressed on both edges of the wheel. The final grind, on both sides, was at 0.0001" to 0.00015" downfeed.

The amount of stock removed per pass was critical; any increase in the grinding cut caused excessive heat and tended to make the specimen deform upwards into the wheel, exposing the fibers.

Plain specimen blanks (no reduced section) were produced as described above for the specimen blanks.

The material removal of the entire surface of the plain blanks was done individually. A vise with "step jaws" was used to hold the specimens during the grinding operation. An equal amount of material was ground from each surface. The wheel used was as described above for removing material for tensile coupons.

The grinding of large sections resulted in deflection, due to the heat generated at the wheel contact point (even with coolant), and resulted in damaged areas with some fibers exposed. Inspection was required.

#### 2.2.4 Static Test Results for Metal Matrix Composites

#### 2.2.4.1 Baseline Data

Baseline data were generated for both 6061 Aluminum/boron and 6Al-4V Titanium/BorSiC Composites for both 0° and 90° properties, in tension and compression at various temperatures: 70°F, 160°F, 400°F, 600°F and at 800°F for the Titanium/BorSiC. These results are presented in Appendices IV and V. Both tabularized data on strengths and moduli and stress-strain curves are shown there.

# 2.2.4.2 <u>Effects of Thermal Conditioning on the Static</u> Properties of Metal Matrix Composites

Both steady-state and cyclic thermal conditioning treatments were applied to the two metal matrix composites. The effects of these conditioning treatments are summarized in Figures 119 - 126. In general, the steady state treatments appeared to have a mixed effect on the tensile strengths of the two composites, while the cyclic thermal effects appeared to cause a general degradation of the tensile strengths. Both



Fig. 119 L. FECT OF PRIOR THERMAL CONDITIONING ON THE TENSILE PROPERTIES OF BORON/6061 ALUMINUM COMPOSITES - 0°.
177



Fig. 120 EFFECT OF PRIOR THERMAL CONDITIONING ON THE COMPRESSIVE PROPERTIES OF BORON/6061
ALUMINUM COMPOSITES 0.



Temperature, degrees Fahrenbeit

Fig. 121 EFFECT OF PRIOR THERMAL CONDITIONING ON THE TENSILE STRENGTHS OF 6061 ALUMINUM/BORON COMPOSITES 90°.



Fig. 1.22 EFFECTS OF PRIOR THERMAL CONDITIONING ON THE COMPRESSIVE STRENGTHS OF 6061 / LUMINUM/BORON COMPOSITES 90°.





Fig. 123 EFFECT OF PRIOR THERMAL CONDITIONING ON THE TENSILE PROPERTIES OF 6A1-4V TITANIUM/BORSIC COMPOSITES 0°.



Fig. 124 EFFECT OF PRIOR THERMAL CONDITIONING ON THE COMPRESSIVE STRENGTHS OF 6A1-4V-TITANIUM/BORSIC COMPOSITES O°.





Fig. 125 EFFECT OF PRIOR THERMAL CONDITIONING ON THE TENSIVE STRENGTHS OF 6A1-4V TITANIUM/BOR-SIC COMPOSITE 90°.





Fig. 126 EFFECT OF PRIOR THERMAL CONDITIONING ON THE COMPRESSIVE STRENGTHS OF 6A1-4V-TITANIUM/BORSIC COMPOSITES: 90°

conditioning treatments appeared to cause a degradation of the compressive strengths.

### 2.2.5 Fatigue Test Results

Both metal matrix composites were subjected to fatigue at various R ratios (R - 0.1, -1, and 10) at a cyclic frequency  $\Phi = 1800$  rpm. No conditioning was applied to the metal matrix composites but the materials were tested at temperatures of 70°F, 160°F, 400°F, 600°F and at 800°F for the 6A1-4V-Titanium/BorSiC Composites. Fatigue in both the longitudinal (0°) and transverse (90°) directions was studied.

The results are presented in Appendices IV and V and in Figs. 551 to 556 and 588 to 593.

The 6061 Aluminum/Boron tensile fatigue (R-0.1) results fell within a very narrow band for all temperatures, with only a slight degradation in strength with increasing temperature of the 0° composite. A much wider spread in the S-N curves was shown for the fully-reversed loading (R-1) and considerable scatter in the compression fatigue (R-1.0) results of the 0° composites. Similar results were evidenced for the 90° 6061 aluminum/boron composites.

The 6A1-4V - Titanium/BorSiC fatigue results show a greater reduction in strength with temperature and a greater scatter in the fully reversed and compression fatigue data for all temperatures and both longitudinal and transverse load-carrying capacities.

## 2.2.6 Creep And Stress Rupture Results

Both metal matrix composites were also subjected to long term tensile stress-rupture and creep testing. Both 0° and 90° composites were tested in creep at 70°F, 160°F, 400°F, 600°F

and 800°F. The results are presented in Appendices IV and V in tabular form, creep curves and stress versus time to rupture curves.

The test results indicate considerable scatter for the 6061 aluminum/boron composites and vary little useful data for the 6Al-4V titanium matrix composites. The 6061 aluminum/boron stress versus time to rupture curves are extremely flat similar to the fatigue S-N curves. In addition it should be noted that the transverse creep strain versus time curves for the 6061 aluminum/boron composites showed a tendency to increase in growth rate at elevated temperatures similar to the familiar aluminum base metal creep curve performance. (The room temperature strains did not increase as quickly as those at the elevated temperatures). The 0° creep strain versus time curves were quite flat out to 1000 hours.

# 2.2.7 Physical and Thermophysical Properties of Metal Matrix Composites

## 2.2.7.1 Thermal Expansion Test Results

Thermal expansion measurements were made for the two fiber reinforced metal matrix systems, 6061 Aluminum/Boron and 6A1-4V-Titanium/BorSiC. Five samples in each of two fiber orientations (0° and 90° with respect to the expansion direction) were tested in air with the NETZSCH automatic recording pushrod dilatometer described previously. Testing was conducted from -320°F to 700°F for the 6061 Aluminum/Boron material, and from -320°F to 900°F for the 6A1-4V Titanium/BorSiC material.

Typical results for the 6061 Aluminum/Boron and 6A1-4V-Titanium/BorSiC materials are presented in Figs. 127 to 132, where percent expansion is plotted against temperature for both heating and cooling cycles above and below ambient RT. For the



THERMAL EXPANSION BEHAVIOR OF 6061 ALUMINUM/BORON MATERIAL IN THE 0° FIBER ORIENTATION Fig. 127



THERMAL EXPANSION BEHAVIOR OF 6061 ALUMINUM BORON MATERIAL IN THE 90° FIBER ORIENTATION

Jig. 128

188



9)

Fig. 129 COEFFICIENT OF THERMAL EXPANSION FOR 6061 ALUMINUM/BORON COMPOSITES

一般の通過の表現を使うなというとは、 これのでは、 これのできない はない はんしゅう これの これのこと 




大学の大学をあるというである。



(**4 ur/ur т) цохвиво**мя у**яшха**ны, до энатэт<u>гд</u>вор **192** 

6061 Aluminum/Boron system the overall expansion from -320°F to 700°F was 0.3 percent or the 0° direction and 0.95 percent or the 90° direction. Over the temperature range -320°F to 900°F the 6Al-4V Titanium/BorSiC materials exhibited 0.39 percent and 0.5 percent expansion in the longitudinal (0°) and transverse (90°) directions, respectively. For both metal matrix systems tested good sample-to-sample reproducibility was observed, with no unstable expansion behavior such as was obtained for the resin matrix materials.

The instantaneous coefficient of thermal expansion was determined for both metal matrix systems or the longitudinal and transverse directions and is presented as a nunction of temperature in Figs. 131 and 132 and is summarized in Table XI.

In the 0° direction (parallel to fibers) expansion coefficients are low due to fiber reinforcement effects. Expansion data for the uniaxial (0°) 6061 Aluminum/Boron metal matrix material are similar to the resin-matrix AVCO 5505/Boron system previously discussed. However, the boron fibers more strongly control the uniaxial expansion behavior in the resin matrix system. This can be predicted by considering the relative fiber and matrix moduli in both metal - and resin - matrix systems.

The uniaxial (0°) expansion coefficients of the 6A1-4V Titanium/BorSiC material were similar to those observed for the 6001 Aluminum/Boron system. Both materials were boron fiber reinforced which controlled the uniaxial expansion behavior.

The larger expansion coefficients for these metal matrix materials in the transverse (90°) direction represent relatively unrestrained matrix expansion, the boron fibers offering only minimal reinforcement. The transverse 6061 Aluminum/Boron material expansion coefficients are similar to those of the

Table Af

Ű.

AVERAGE IN TANTANEOUS (GENERALE) THERMAL EXPANSION DATA FOR METAL MATRIX COMPOSITIES

|                        |       | COEFFIC   | IENT OF   | COEFFICIENT OF EXPANSION, uin/in°F | ION, IL | In/ta°F |      |
|------------------------|-------|-----------|-----------|------------------------------------|---------|---------|------|
| TEMPERATUIE, °F        | -300* | -100      | 100       | 300                                | 200     | 700     | 906  |
| Ę                      |       | i<br>1    | 9         |                                    |         | ,       |      |
| -                      | 68.0  | 2.55      | 30.0      | 3.75                               | 90.     | 07.7    | :    |
| 90° orientation        | 3.55  | 7.33      |           | 9.70 11.50                         | 12.70   | 13.10   | ;    |
|                        |       | •         |           |                                    |         |         |      |
| 6A1-4V-Titani m/Borsic |       |           |           |                                    |         |         |      |
| 0° orientation         | 05.0  | 2.05      | 2.05 3.00 | 3.70                               | 4.18    | 4.55    | 4.73 |
| 90° orienta:ion        | 1.20  | 3.05 3.92 | 3.92      | 49.4                               | 2.08    | 5.30    | 5.47 |
|                        |       |           |           |                                    |         |         |      |
|                        |       |           |           |                                    |         |         |      |
|                        |       |           |           |                                    |         |         |      |

· ·

\*extrapolated

į,

6061 Aluminum matrix ( $\sim 13~\mu\text{-in/in}^\circ\text{F}$  at RT), and the transverse expansion coefficients of the 6A1-4V-Titanium/BorSiC material are similar to those of titanium ( $\sim 4.7~\mu\text{-in/in}^\circ\text{F}$  at RT). In both materials transverse expansion coefficients were slightly lower than for their respective matrix materials only, due to the contribution of the reinforcing fibers in the transverse direction.

The 6Al-4V titanium/BorSiC material exhibited less thermal expansion anisotropy than the 6061 Aluminum/Boron materials. This occurred presumably because the individual fiber and matrix component expansion coefficients were closer for the 6Al-4V-titanium/BorSiC system.

### 2.2.7.2 Thermal Conductivity of - Metal Matrix Composites

Thermal conductivity measurements were made on the two metal matrix composites: 6061 Aluminum/Boron and 6Al-4V-Titanium/BorSiC. Five samples in each of two fiber orientations, longitudinal (0°) and transverse (90°), were tested. Testing was conducted to 700°F and 900°F for the aluminum matrix and titanium matrix materials, respectively.

Thermal conductivity results are presented in Figs. 133 and 134, where the rual conductivity is plotted as a function of temperature for both the longitudinal and transverse orientations. The thermal conductivity parallel to the fiber reinforcement was higher than in the transverse (normal to fibers) direction. The straight-line representations shown for each material/orientation are the result of linear least equares data fits. Data scatter for these metal matrix materials was roughly  $\pm$  4 to  $\pm$  12% (maximum variation), with some evidence of sample-to-sample variability.





Ç)

.

197

The thermal conductivity of the boron reinforced aluminum material was higher than for the boron (coated with Silicon carbide) reinforced titanium matrial due to the higher matrix thermal conductivity. A lower degree of directional anisotropy was observed for the 6A1-4V Titanium/BorSiC materials, which agrees with the thermal expansion results where lower directional anisotropy was also observed for the 6A1-4V Titanium/BorSiC material compared to the 6061 Aluminum/Boron material.

### 2.2.7.3 Densities

The densities of the metal matrix composites were also determined using gravimetric and leaching processes. These determinations were made to verify the fabricator's stated fiber densities. The average fiber density, from three plates of the 6061 aluminum/boron was 49 %. Similarly the average fiber density, from three determinations of the 6A1-4V-Titanium/BorSiC was 46 %.

## 2.2.8 Fracture Modes of Metal Matrix Composites

The 0° 6Al-4V-Titanium/BorSiC composites exhibited tensile fracture surfaces which were rough but lay in planes relatively transverse to the load direction. No steplike fractures were evident, as was the case for resin matrix composites, for the baseline data. Similar results were obtained for all levels of steady-state thermal exposure. However those samples which had been cyclically exposed to thermal conditioning showed both delamination and multiple step fractures particularly in the surface plies. The 0° compression failures of all 6Al-4V-Titanium composites were impossible to analyze because of severe crushing, multiple fractures, metal smearing and occasional delamination particularly those tested at elevated temperatures. Interlaminar shear and flexural fail are modes at room temperature

appeared to be as is normally encountered for resin matrix composites.

At room temperature the 90° tension fracture in 6A1-4V-Titanium/BorSiC composites appeared similar for the baseline, steady-state thermal and cyclic thermal conditioning. Failures are transverse to the load direction, generally lie in a plane perpendicular to the load direction. There is often a shear lip on one side of the specimen if there was sufficient metal from the cover plates remaining after grinding of the surfaces. Compression failures of the 90° 6A1-4V-titanium/BorSiC composites were flat and lay in a plane always at 45° to the load direction. At room temperature little or no delamination was evident although metal smearing was present and may have hidden this delamination. At elevated temperatures (above 400°F) the failures were quite different. The fractures surfaces were generally out of plane but more perpendicular to the load direction and included some overall out-of-plane curvature to the gage section This latter phenomenom may indicate buckling of the 90° 6Al-4V-titanium BorSiC composites at elevated temperature due to the combined effects of modulus reduction and some delamination which is partially evident looking at the side of the fractured samples. The prior cyclic thermal conditioning and steady state thermal conditioning did not alter this failure mode.

The 0° 6061 aluminum/boron tension failures at room temperature were closer to those encountered in the corresponding resin matrix tests. The fracture surfaces were very rough, did not lie in a plane and multiple stepping in the fracture patterns was clearly evident. Prior steady state and cyclic thermal conditioning resulted in a higher percentage of failures

close to the ends of the gage section near the tabs. 0° compressive failures of the baseline 6061 aluminum/boron composites at room temperature showed substantial flow present in the gage section, but whether this was encountered prior to failure or just after fracture is not known. Both steady-state and cyclic thermal conditioning caused less flow to be present as judged from post fracture examinations of the broken specimens.

Both baseline and steady state thermal conditioning of the 90° 6061 aluminum/boron composites resulted in fractures exhibiting considerable plastic flow as judged by post-fracture examinations and some curvature to the entire gage section of the sample. However the cyclic thermal conditioning resulted in room temperature compression failures of the 90° 6061 aluminum/boron composites which were generally flat, and at a 45° angle to the load direction. Occasionally some samples showed a double angle meeting at the center plane of the coupon. Tensile failures of the 90° 6061 aluminum/boron composites were similar to the failures of the 6Al-4V-Titanium/BorSiC composites except that many of the specimens exhibited a short (about 10 fiber diameters) steps in the failure surface.

The 6061 aluminum/boron composite fatigue failures were varied. Tensile fatigue (R = 0.1) of the 0° coupons appeared to follow the static fracture patterns. The compression fatigue (R = 1.0) failures, however, generally were different from the static tests with a short (approximately, 1/16 inch) segment of the 0° coupon broken away from the sample, thus resulting in three pieces after failure. Compression fatigue failure surfaces were normal to the load direction. The fully reversed 6061 aluminum/boron  $\cup$ ° composites frequently fractured into

Four or more pieces with the failure surfaces more like the tensile fatigue, i.e. irregular with some steplike appearance. The 90° 6061 aluminum/boron tensile fatigue (R = 0.1) failures contained some fiber failures resulting in a small step of a few fiber diameters on each failure surface. The compressive fatigue failures of the 90° composites frequently resulted in several post fracture pieces. Fully reversed failures were a mixture of these two modes.

The 0° 6Al-4V-titanium/BorSiC composites tested in tensile fatigue showed irregular fracture surfaces but a continuous non-stepped fracture path. The 0° compressive specimens invariably failed at the ends of gage section and considerable damage of the fracture surface took place after the initial fatigue failure. The 0° fully-reversed fractures more closely resembled the tensile fatigue failures. The 90° tensile fatigue failures were flat, planar and perpendicular to the load direction. The compression fatigue fracture surfaces of the 90° 6Al-4V-titanium composites were flat, planar and at 45° to the load direction.

#### SECTION III

#### 3.0 CONCLUSIONS

In conclusion this program has demonstrated the capabilities of composites in retaining mechanical properties after exposure to various humidity and thermal environments. This data appears at a particularly appropriate time in the evolution of composite technology, when emphasis is being placed on composite reliability and durability. The effectiveness of composites in resisting environmental degradation has been demonstrated.

Several items of particular concern to aerospace desimers and test engineers planning to utilize these materials in preliminary or advanced design were established during this program. These items can be summarized as follows:

The boron/epoxy system was particularly sensitive to moisture conditioning and moisture coupled with high/low temperature shocks. The boron/epoxy strengths were affected to a greater degree than were the moduli. Overall the results showed that the properties of the composite which depend largely on the resin constituent properties were affected the greatest. These included interlaminar shear strength, transverse strength and modulus and compressive strengths (the latter would appear to be a result of resin softening by plasticization which increases the tendency toward microbuckling). A somewhat similar properties loss in the transverse compressive strength was also observed for humidity coupled with ultraviolet radiation (accelerated weathering). Long term (high cyclic level) fatigue performance also was affected deleteriously by humidity coupled with thermal sbocks.

3

The high-strength graphite/epoxy system were affected substantially by moisture and moisture/thermal shock conditioning. Again interlaminar shear strength, transverse strength and modulus and compressive strengths all properties sensitive to changes in the resin constituent properties, were affected the greatest.

The high-modulus graphite/epoxy exhibited less deleterious response to moisture than did the boron/epoxy or high strength graphite/epoxy systems. In fact, the presence of residual fabrication stresses in the high-modulus graphite/epoxy system led to some enhancement of the strengths from prior humidity conditioning. However the combined humidity/thermal conditioning radically affected the high-modulus graphite/epoxy transverse strength (losses up to 75%) and fatigue behaviors.

The metal matrix composites exhibited very improved transverse and compressive strength properties over the resin matrix composites. Losses in fatigue strength due to prior thermal conditioning were primarily confined to the transverse direction and were worse for cyclic (thermal) rather than steady-state conditioning.

Upon the introduction of these composite materials into an aerospace component design, the test engineer could obtain a rapid reading on the feasibility of their utilization by an examination of the above properties.

Certain portions of this program have led to other new questions such as the importance and characterization of residual fabrication stresses particularly in the graphite/epoxy systems.

The role of moisture in degrading (or enhancing) the mechanical properties of resin matrix composites is not entirely understood. The complimentary roles of simultaneous heat-cold cycles and ultraviolet are also vague. Although the data appear consistent, the frequently confusing nature of the qualitative and quantitative response implies that, to fully exploit these composites, further study of the fundamental nature of these causative factors would be in order.

#### REFERENCES

- 1. G. Lubin, et al., Final Report for Contract F33615-69-C-1498, "Repair Technology for Boron-Epoxy Composites", AFML-TR-71-270, February 1972.
- 2. N.Z. Searle and R.C. Hirt, "Ultraviolet Spectral Energy Distribution of Sunlight", J. Opt Soc. Amer. Vol. 55, No. 11, Nov. 1965, pp 1413-1421.
- 3. R.C. Hirt, N.Z. Searle, R.G. Schmidt, "Ultraviolet Degradation of Plastics and the Use of Protective Ultraviolet Absorbers, Trans. S.P.E. vol 1, No. 1 Jan. 1961.
- 4. I.H. Updegraff, R.C. Hirt, P. Giesecke, "Energy Measurements for Correlation Among Indoor and Outdoor Light Stability Tests, Proc. 17th Annual Meeting of R.P. Div. of S.P.I.
- 5. R.C. Hirt, ... Schmidt, N. D. Searle and A.P. Sullivan, "Ultraviolet Spectral Energy Distributions of Natural Sunlight and Accelerated Test Light Sources", J. Opt Soc. Amer. Vol. S No. 7 July 1960, pp 706.
- Plastec Report 24, 'Weathering of Class Reinforced Plastics,' Jan. 1966.
- 7. K.G. Kimball, "Effects of Weathering on the Mechanical Properties of Four Reinforced Plastic Laminates", WADC-TR-55-319 Supplement 4, October 1962.
- 8. J.M. Fitzgerald Ed. "Analytical Photochemistry & Photochemical Analysis, Solids Solutions and Polymers, Chapter 9- Analysis of Methods for Study of Photodegradation of Polymers, July 1971.
- 9. R.C. Hirt and N.Z. Searle, "Energy Characteristics of Outdoor and Indoor Exposure Sources and Their Relation To The Weatherability of Flastics", Applied Polymer Symposia, No. 4 (1967) pp 61-83.
- R. C. Hirt, R. G. Schmidt, N. D. Searle and A. P. Sullivan, "Ultraviolet Spectral Energy Distributions of Natural Sunlight and Accelerated Test Light Sources", J. Opt. Soc. Amer. Vol. 50, No. 7, (July 1960), pp 706-713.
- 11. D. R. Dregen, "How Dependable Are Accelerated Weathering Tests for Plastics and Finishes", Nov. 29, 1973.
- 12. S. H. Pinner, 'Weathering and Degradation of Plastics", Gordon and Breach, Science Publishers Inc., 1966, pp 131

- 13. Kamal M. R. "Weatherability of Plastic Materials", Interscience Publishers, 1967, 306 pp.
- 14. Advanced Composites Design Guide Advanced Development Division, Air Force Materials Laboratory, Air Force Systems Command, Third Edition January 1973 (Prepared under Contract No. F33615-71-C-1362).
- 15. W. T. Freeman and M. D. Campbell, "Thermal Expansion Characteristics of Graphite Reinforced Composite Materials", Composite Materials: Testing and Design (Second Conference) ASTM STP497, 1972, pp 121-142

0

0

O

0

- 16. A. A. Famy and A. N. Ragai, "Thermal Expansion of Graphite Epoxy Composites", J. Appl. Phys. Vol. 41, No. 13, pp 5112-5115, 1970.
- 17. O. L. Blakslee, et. al., "Fabrication, Testing and Design Studies with Thermal Graphite fiber/Epoxy Resin Composites", 12th National Sampe Symposium.
- 18. G. S. Springer and S.W.Tsai, Thermal Conductivities of Unidirectional Materials", J. Composite Materials, Vol. 1, 1967, pp. 166-375.
- 19. M. F. Miller, "Development of Improved Metal Matrix Fabrication Techniques for Aircraft Structures", Tech. Rept. No. AFML-TR-71-181, July 1971.

### APPENDIX I

## DATA SUMMARY FOR AVCO 5505/BORON COMPOSITES

# TABLE OF CONTENTS

## APPENDIX I

| Item | Description                                                                         | Pages   |
|------|-------------------------------------------------------------------------------------|---------|
| 1    | Table XII - Static Properties Summary - Avco 5505/Boron Composites                  | 209-222 |
| 2    | Fig. 135 to 201 Static Stress Strain Curves                                         | 223-239 |
| 3    | Table XIII - Fatigue Properties Summary - Avco 5505/Boron Composites                | 240-250 |
| 4    | Figs. 202 to 223 Fatigue S-N Curves                                                 | 251-256 |
| 5    | Table XIV - Creep and Stress Rupture Properties Summary -AVCO 5505/Boron Composites | 257-266 |
| 6    | Figs. 224 to 241 Stress Versus Time To<br>Rupture Curves                            | 267-271 |
| 7    | Figs. 242 to 269 Creep Strain Versus Time<br>Curves                                 | 271-278 |

TABLE XII STATIC PROPERTIES SURBARY - A LCO 5505/BURON

| Orient at lor                | Typo Load     | Prior<br>Conditioning | Test Temp.<br>(*p) | E (psi x 10 <sup>6</sup> ) | ,<br>(1a/1a) | °alt<br>(ksi) | ευlτ<br>(μ-10. 'tm.) |   |
|------------------------------|---------------|-----------------------|--------------------|----------------------------|--------------|---------------|----------------------|---|
| 0.                           | Tersion       | None                  | £                  | 29.6                       | 0.23         | 183           | 6423                 | 1 |
| •                            | Teru ion      | Mone                  | 260°F              | 28.6                       | 0.21         | 181           | 6383                 |   |
| •                            | Tersion       | Bone                  | 350°F              | 28.5                       | 0.22         | 111           | 6230                 |   |
| • 06                         | Tersion       | None                  | £                  | 2.69                       | <b>3</b> .0  | 8.85          | 3900                 |   |
|                              | Ten sion      | None                  | 260°F              | 1.84                       | 0.03         | 6.56          | <b>2€87</b>          |   |
| • 0\$                        | Tension       | Mone                  | 350°F              | 07.1                       | 0.03         | 5.32          | 2.87                 |   |
| (0/45/135/0/30) <sub>6</sub> | Tension       | None                  | Ē                  | 14.9                       | 0.45         | 85.1          | 6280                 |   |
| [0/45/135/0/30]              | Terse i on    | Note                  | 260°F              | 13.9                       | 0.42         | 82.6          | 96190                |   |
| [0/45/13: /0 96              | Tenston       | None                  | 350°F              | 14.1                       | 77.0         | 78.9          | 6190                 |   |
| •                            | Compress ton  | None                  | · CE               | 31.5                       | 67.0         | 362           | 11,270               |   |
| •                            | Compression   | None                  | Ē                  | 26.6                       | 0.20         | 18            | 96.30                |   |
| •                            | Compression   | Morre                 | 260°F              | 27.1                       | 0.30         | 172           | 0009                 |   |
| •0                           | Compression   | Hors                  | 350°F*             | 29.4                       | 0.52         | 265           | 9530                 |   |
| •0                           | Compression   | None                  | 350 F              | 7.62                       | 0.17         | 126           | 4170                 |   |
| • 06                         | Compression   | None                  | Ē                  | 3.55                       | 0.03         | 29.3          | 9620                 |   |
| *                            | Compress i on | None                  | Ē                  | 3.89                       | 0.0          | 35.5          | 13,620               |   |
| •                            | Compression   | Mone                  | 260°F              | 1.77                       | 0.0          | 26.8          | 21,530               |   |
| •                            | Compression   | None                  | 350°F*             | 4.05                       | 00.0         | 23.5          | 9959                 |   |
| •06                          | Compression   | Mone                  | 350°F*             | 2.15                       | 0.0          | 19.9          | 16,300               |   |

Sanderich Blas Beta

TABLE XII STATIC PROPERTY SUMMARY - ALCO

\$505 BURON (COUL' d)

| Orient(:ion                  | Type Load      | Prior<br>Confitioning | Test Temp.<br>(*F) | E (psf x 10 <sup>6</sup> ) | ,<br>(1n/1n) | dult<br>(kai) | ult<br>(u-1n./in.) |
|------------------------------|----------------|-----------------------|--------------------|----------------------------|--------------|---------------|--------------------|
| 0/45/11:5/6/90               | Compression    | None                  | RTD*               | 18.2                       | 3.°0         | 236           | 13,350             |
| 06/0/5/17970                 | Coerression    | None                  | •                  | 13.5                       | 94.0         | H.7.6s        | 14,280             |
| 0/43/103/0/90                | Compression    | Kone                  | 260°F              | 13.9                       | 0.45         | 164           | 13,430             |
| 06/0/5/17/57/0               | Compression    | .V.                   | 350°F*             | 16.0                       | 0.52         | 183           | 11,990             |
| . <u>06</u> /0/5:1/57/0]     | Compression    | 9607                  | 350°F*             | 13.9                       | 77.0         | 151           | 10,790             |
| . 0                          | In-Plane Shear | None                  | £                  | 0.84                       | 1            | 9.7           | 26,000             |
| 0                            | In-Plane Shear | None                  | 260⁴F              | 0.50                       | •            | 7.1           | 32,000             |
| 0                            | In-Plane Shear | Mone                  | 350⁴F              | 0.25                       | •            | 6.4           | 17,000             |
| . 0                          | Int. Shear     | None                  | RTD                | ·                          | •            | 15.2          | 1                  |
| : 0                          | Int. Shear     | None:                 | 2 <b>60°F</b>      | •                          | •            | 12.0          | •                  |
| . 0                          | int . Shear    | Youe                  | 350°F              | •                          | •            | 9.1           | •                  |
| 0/45/135/0/990               | Int. Shear     | None                  | e <b>t</b>         | į                          | •            | 10.9          | •                  |
| [0/45/135/0/ <del>90</del> ] | Int. Shear     | None                  | 260°F              | •                          | •            | 7.9           | •                  |
| .06/0/5ET/57/0]              | Int. Shear     | None                  | 350°F              | •                          | •            | 6.4           | •                  |
| •                            | Flex           | None                  | E                  | •                          | •            | 263           | •                  |
| •0                           | Flex           | None                  | 260°F              | •                          | ·            | 240           | •                  |
| •                            | Fla            | None                  | 350°F              | •                          | •            | 218           | •                  |
| ,06                          | Flex           | None                  | Ē                  | •                          | •            | 14.0          | •                  |
| .06                          | Flex           | - Kone                | 260°F              | •                          | •            | 12.5          | •                  |
| • 06                         | Flex           | None                  | 350°F              | •                          | ,            | 9.5           | •                  |
| [0/45/135/0/90]              | Flex           | Hone                  | E                  | •                          | •            | 107           | 1                  |
| (0/45/135/0/90)              | Flex           | None                  | 260°₽              | •                          | ,            | 101           | •                  |
| 06/08/138/0/80               | Flex           | Kone                  | 350%               | •                          | •            | 93            | •                  |

O

P. E. V.L. STALE MOSERTES

|             |            |                       | -                  |                            |              |               |                                 | ı   |
|-------------|------------|-----------------------|--------------------|----------------------------|--------------|---------------|---------------------------------|-----|
| hrientation | T, pe Load | Prior<br>Conditioning | Test Temp.<br>(*F) | E (ps1 x 10 <sup>6</sup> , | ,<br>(16/10) | gult<br>(kaf) | <sup>ε</sup> υ1ε<br>(μ-in./in.) | i i |
| •0          | Tension    | 98% KH /500 Krs.      | £13                | 28.7                       | 0.20         | 147           | 5670                            | 1   |
| •0          | Tension    | 98% RH/500 Hrs.       | 260°F              | •                          | •            | 177           | 5670                            |     |
| • 0         | Tension    | 98% RM/500 Hrs.       | 350°F              | •                          | •            | 131           | •                               |     |
| • 0         | Tension    | 987 RH /1000 Hrs.     | RTD                | 29.4                       | 0.21         | 153           | 2960                            |     |
| • •         | Tension    | 98% RH /1000 Hrs.     | 2 <b>60</b> 'F     | 30.3                       | 0.21         | 163           | 5540                            |     |
| • 0         | Tension    | 952 RH /1000 Hrs.     | 350°F              | •                          | •            | ı             | •                               |     |
| •0          | Tension    | Thermo-Humidity Cycle | RTD                | 29.6                       | 0.17         | 981           | 6360                            |     |
| .0          | Tension    | Thermo-Humidity Cycle | 266 °F             | •                          | ı            | 158           | •                               |     |
| •0          | Tension    | Thermo-Humidity Cycle | 350°F              | ,                          | •            | 120           | •                               |     |
| •0          | Tension    | Acc. Wthrmg.          | OT.N               | 9.5.                       | 0.17         | 190           | 6710                            |     |
| • 0         | Tension    | Acc. Wthrng.          | 260°F              | 36.7                       | 0.27         | 157           | 9400                            |     |
| •0          | Tension    | Acc. Wthrng.          | 350°F              | 30.1                       | 0.22         | 146           | C#87                            |     |
| , 06        | Tension    | 987 RH-500 Hrs.       | <b>CTA</b>         | 2.58                       | 0.01         | 7.8           | 3330                            |     |
| . 3         | Tenston    | 98% RH/500 Hrs.       | 260°F              | •                          | •            | 5.6           | •                               |     |
| • 06        | Tension    | 98% PH/500 Hrs.       | 350°F              | 4                          | •            | 4.4           | •                               |     |
| .06         | Tension    | 987 RH/1000 Hrs.      | <b>GT X</b>        | 2.55                       | 0.02         | 1.6           | 3430                            |     |
| • 06        | Tension    | 98% RH /1000 Hrs.     | 260°F              | 1.56                       | 0.01         | 4.9           | 4830                            |     |
| •06         | Tenston    | 987 RH/1000 Nrs.      | 350°F              | 1.06                       | 00.00        | 4.4           | 6750                            |     |
| .06         | Tension    | Thermo-Humidity Cycle | £                  | 2.18                       | 0.0          | 6.9           | 3720                            |     |
| .06         | Tension    | Thermo-Humidity Cycle | 4.09₹              | •                          | 1            | 5.4           | •                               |     |
| • 06        | Tension    | Thermo-Humidity Cycle | 3 <b>50°F</b>      | •                          | •            | 3.6           | •                               |     |
|             |            |                       |                    |                            |              |               |                                 |     |

ARUJ. ATT. STATTC PROPURETURS STAMBY \* AVEO \$505/RORON COMPOSTTES (GARL'd)

「我は我は我は我のないないないないないないないないないないないないないないというできょう こうしょう こうきょう

| Orientat fon                               | Two Load | Sujacyty, we act in   | (ab)  | 8<br>(pst × 10 <sup>6</sup> ) | 411.7 | 'ult<br>(231) | fult<br>(n-ta./fu.) |
|--------------------------------------------|----------|-----------------------|-------|-------------------------------|-------|---------------|---------------------|
| 8 90                                       | Tension  | Acc. kthrng           | RTD   | 66.7                          | 0.00  | 7.8           | 3480                |
| 06                                         | Tension  | Acc. Wthrng           | 760°F | 1.32                          | 0.02  | 4.0           | 2980                |
| 06                                         | Tension  | Acc. Wthrng           | 350°F | 0.51                          | 0.01  | 2.9           | 6340                |
| . <u>06</u> /0/ <u>32</u> /0/ <u>57</u> 0. | Tension  | 98% KH/500 Hrs.       | ктр   | 16.0                          | 0.43  | 8.4           | 0909                |
| 0/45/135/0/90                              | Tension  | 98% RH/500 Hrs.       | 7.097 | •                             | 1     | •             | •                   |
| \$                                         | Tension  | 98% RH/500 Hrs.       | 350°F | •                             | 1     | 69            | •                   |
| S = 1/2/25/1/57/0                          | Tension  | 98% RH/1000 Hrs.      | RTD   | 15.4                          | 0.44  | 98            | 0209                |
| 0/45/135/0/90's                            | Tension  | 98% RH/1000 Hrs.      | 260°F | 15.7                          | 97.0  | 7.1           | 5820                |
| 0/43/133/0/30 s                            | Tension  | 98% RH/1000 Hrs.      | 350°F | 14.1                          | 0.38  | 7.7           | 5920                |
| 3/45/135/0/60                              | Tension  | Thermo-Humidity Cycle | RTD   | 15.2                          | 09.0  | 7.2           | 5070                |
| 06/0/51/57/0                               | Tension  | Thermo-Humidity Cycle | 260°F | •                             | •     | 81            | •                   |
| s                                          | Tension  | Thermo-Humidity Cycle | 350°F | •                             | •     | 68            | •                   |
| 0/42/135/0/ <u>90</u>                      | Tension  | Acc. Wthrng           | RTD   | 16.3                          | 0.42  | 88            | 5830                |
| \$ 06/0/51/57/0                            | Tension  | Acc. Wthrng           | 260°F | 16.1                          | 0.43  | 74            | 2020                |
| 10/45/135/0/90                             | Tension  | Acc. Wthrng           | 350°F | 15.4                          | 0.56  | 89            | 0867                |
|                                            |          |                       |       |                               |       |               |                     |

€;

| Orientalion  | property (US) | Majuaj # Pruoj.       |         |              | (u, u) | <sup>2</sup> :1 <b>c</b><br>(×84) | *ult<br>(1-fn./fm.) |
|--------------|---------------|-----------------------|---------|--------------|--------|-----------------------------------|---------------------|
| 0            | Graphession   | LY KH 100 HTS.        |         | e e e        | 0.23   | 60 i                              | 0768                |
| 0,           | unissend of   | y and aboutes.        | 1 09-   | •            | •      | 150                               | •                   |
| ç Q          | C. Tression   | 43' KH/500 Hrs.       | 350°F   | •            | •      | 159                               | •                   |
| ناد          | 30 mpression  | 937 RH/1000 Hrs.      | RID     | 25.7         | 0.17   | 186                               | 8290                |
| ۽ (          | Compression   | 437 RH /1000 Hrs.     | 260° F  | 5.95         | 0.25   | 129                               | 0977                |
| U °          | G. pression   | 937 RH/1000 Hrs.      | 150°F   | 2.5          | 0.14   | 106                               | 7 260               |
| 0.           | hapression    | Thermo-Humidity Cycle | r<br>di | 25.8         | 0.15   | 207                               | 8110                |
| .0           | Compression   | Thermo-Mumidity Cycle | 1.00°F  | •            | •      | 119                               | •                   |
| 9.6          | Scapression   | Thermo-Humidity Cycle | 35075   | •            | •      | 93                                |                     |
| J.           | forpression   | Acc. Wthmg            | нТр     | 30.2         | 0.24   | 179                               | 06.29               |
| 3-           | Ct. spression | Acc. Wthrng           | 260 ℃   | Å.Ö.         | 0.28   | 123                               | 7200                |
| ,<br>O       | Compression   | Acc. Wthmg            | .50°₽   | 28.2         | 0.15   | 7.7                               | 2560                |
| 90\$         | Cc pression   | 93% RH /500 Hrs.      | M. D    | 2.39         | 0.0    | 33.2                              | 17,580              |
| , C <b>c</b> | Compression   | 937 RH /500 Hrs.      | 250°F   | •            | •      | 18.9                              | •                   |
| 433          | Compression   | 937 RN /500 Hrs.      | 350°F   | •            | •      | 15.0                              | •                   |
| • 06         | Compression   | 93% RH /1000 Hrs.     | RTD     | •            | •      | 28.5                              | •                   |
| 937          | Compression   | 930 PH /1000 Hrs.     | 3€0•F   | 1.75         | 0.0    | 17.9                              | 21,980              |
| 93*          | Compression   | 9 2" RH/1000 Hrs.     | 350°F   | <b>79</b> .0 | 0.0    | 8.9                               | 16,840              |
| 90.          | Compression   | Thermo-Humidity Cycle | RTD     | 2.33         | 0.01   | 30.4                              | 17,630              |
| 90°          | Ccmpression   | Thermo-Humidity Cycle | 260°₽   | •            | •      | 18.2                              | •                   |
| .06          |               |                       | 3.US?   | •            | ,      | 71 4                              | •                   |

| Silatation             | Te . L         | Prior<br>Conditioning  | [est iv n.<br>(*F) | E E C C S S S S S S S S S S S S S S S S | · (in in | "ult<br>(ket) | "ult<br>(x-in.'(n.) |
|------------------------|----------------|------------------------|--------------------|-----------------------------------------|----------|---------------|---------------------|
| , 06                   | (Chress())     | Acc. withrng           | 919                | 2.45                                    | 0.0      | 53.3          | 15,340              |
| , Or                   | CC_bress: 53   | Acc. Wthrnk            | J. 097             | 1.53                                    | 0        | 20.3          | 21,620              |
| , 0¢                   | G. Tression    | Acc. Wthrng            | 3×0×8              | 6,43                                    | 0.0      | 10.5          | 19,650              |
| <u> 36,0/581/54 0.</u> | ucijssnad. "J  | 98 RH:500 Hrs.         | G.                 | 14.3                                    | 0.10     | 69:           | 13,160              |
|                        | thissaid_n0    | 98" KF /500 Hrs.       | <b>J</b> 04.       | ı                                       | •        | 9.8           | •                   |
| 0 45 135/0/4C          | Gerpression    | 98 IIB 30C Hz :        | 350°F              | ,                                       | •        | 9,            | •                   |
|                        | C: _pre-ston   | 98' an 1000 Prs.       | RID                | ;                                       | 0.41     | 157           | 9470                |
|                        | C. pression    | 98C 2H/1000 Ers.       | 26078              | 1                                       | 0.54     | 98            | 6250                |
|                        | Compression    | 98' RE 1000 Brs.       | 3,05 <b>f</b>      | ,                                       | 6.57     | 62            | 0009                |
| 20/0/581/57.0.         | ucissaud_22    | Thermo-Humfdity Ocle   | 5<br>T             | 14.8                                    | 0.50     | 169           | 10,360              |
|                        | Compression    | Thermo-Humidity Cycle  | 260°F              | r                                       | 1        | 92            | •                   |
| \$ 35/0/5ET sh 0.      | Compression    | Therrac-Hunfdity cycle | 350°F              | ı                                       | •        | 78            | •                   |
| .0/22/132/0/ <u>9C</u> | (c-pression    | Acc. Wthrng            | RTD                | 7.51                                    | 0.50     | 171           | 13,160              |
| 0 +5 135/0/9C          | Compression    | Acc. Sthrng            | 260'F              | 13.3                                    | 0.57     | 100           | 7360                |
| <u>36</u> /0/581,55 0, | Commession     | Acc. Wthrng            | 350°F              | 13.0                                    | 0.51     | 92            | 6320                |
| ,                      | Ir-Plane Shear | 98% RH7500 Hrs.        | RTD                | 98.0                                    | •        | 6.9           | 30,000              |
| ő                      | Ir-Plane Shear | 98% RH/500 Hrs.        | 260°F              | •                                       | •        | <b>† 5</b>    |                     |
| ຳດີ                    | Ir-Plane Shear | 98" RH /500 Hrs.       | 350°F              |                                         | •        | 4.5           | •                   |
| 0                      | Ir-Plane Shear | 98° RH/1000 Hrs.       | RTD                | 97.0                                    | •        | 9.5           | 30,000              |
| ပံ                     | Ir-Plane Shear | 987, RH/1000 Hrs.      | 260°F              | 17.0                                    | ı        | 6.0           | 30,000              |
| °                      | Ir-Plane Shear | 987 RH /1000 HTS.      | 350 °F             | 0.28                                    | •        | 5.2           | 30,000              |
|                        |                |                        |                    |                                         |          |               |                     |

ANTE ALL STATIC PROPERTIES SIMPLEMENT - AVOD FOLLOWING

| Orientation | Type Load       | Prior<br>Condictoning                  | Test Temp.<br>(*F) | E (pst x 10 <sup>6</sup> ) | (in/in) | dult<br>(ksf) | *ult<br>'u-in./in.) |
|-------------|-----------------|----------------------------------------|--------------------|----------------------------|---------|---------------|---------------------|
| ,0          | In-Plane Shear  | In-Pisne Shear Thermo-Munidity Cycle   | E                  | 0.74                       | •       | 9.1           | 30,M0               |
| •           | In-Plane Shear  | In-Plane Shear Thermo-Bunidity Cycle   | 260°F              | •                          | •       | 5.1           | •                   |
| • 0         | In-P. une Shear | In-F. une Shear Thermo-Burnidity Cycle | 350°F              | •                          | •       | 3.8           | •                   |
| • 0         | In-Plane Shear  | Acc. Wihmig                            | <b>6.7.3</b>       | 6.72                       | •       | 7.6           | 30,000              |
| •0          | In-Plane Shear  | Acc. Wthrng                            | 260°F              | 0.25                       | •       | 5.0           | 30,000              |
| • 0         | In-Plane Shear  | Acc. Withrag                           | 350°F              | 0.11                       | •       | 3.6           | 30,000              |
| 0           | Inc. Shear      | 967 EH/500 Brs.                        | £                  | •                          | •       | 14.6          | •                   |
| •0          | Inc. Shear      | 967 EH 500 Nrs.                        | 4.092              | •                          | •       | 9.5           | •                   |
| •           | Int. Shear      | 967 EH/500 Hrs.                        | 350°F              |                            | •       | <b>9</b> .0   | •                   |
| •           | Int. smear      | 96% MH 1000 Nrs.                       | <b>E</b>           | •                          | •       | 14.3          | 1                   |
| • 0         | Int. Shear      | 987 BH '1000 Hrs.                      | 260°F              | •                          | ı       | 9.1           | •                   |
| •           | Int. Shear      | 96% EH/1000 NES.                       | 330°F              | •                          | •       | 5.9           | •                   |
| •0          | Int. Shear      | Thermo-Bunidity Cycle                  | £                  | ,                          | •       | 12.0          | •                   |
| • 0         | Int. Shear      | Thermo-Bunddity Cycle                  | 260°F              | •                          | •       | 9.2           | •                   |
| • 0         | Int. Shear      | Thermo-Bunddity Cycle                  | 350°F              | •                          | •       | 6.1           | Ī                   |
| •           | Int. Shear      | Acc. Wthrag                            | Ę                  | •                          | •       | 12.5          | •                   |
| •0          | Int. Shear      | Acc. Wehring                           | 260 * F            |                            | •       | 9.5           | •                   |
| •           | Int. Shear      | Acc. Wthrag                            | 350*7              |                            | •       | 5.9           | •                   |

TABLE XII STATIC PROPERTIES

| Oriestatica | Type Loud | Prior<br>Conditioning | Tent Tem.<br>(*p)    | E (pei x 10 <sup>6</sup> ) | ,<br>(1a/1a) | gult<br>(ks1) | *ult<br>(4-fn./in.) |
|-------------|-----------|-----------------------|----------------------|----------------------------|--------------|---------------|---------------------|
| .0          | Tension   | 260°F.160 Nrs.        | C.L.                 |                            |              | 182           | ,                   |
| 0.          | Tension   | 260°F/100 Hrs.        | 260°F                | •                          | •            | 152           | ı                   |
| • 0         | Tension   | 260 F. 500 Mrs.       | £                    | 29.4                       | 0.18         | 188           | 6530                |
| <b>,</b> 0  | Tension   | 260°F 500 Hrs.        | 260°F                | 28.5                       | 0.19         | 169           | 6210                |
| ٥٥          | Tension   | 350°F/100 Hrs.        | Ē                    | •                          | •            | 180           | •                   |
| ٥           | Tension   | 350°F/100 Hrs.        | 260°F                | 29.0                       | 0.16         | 177           | 6180                |
| •0          | Tension   | 350°F/100 Hrs.        | 350.8                | 30.2                       | 0.13         | 791           | 2000                |
| •0          | Tension   | 350°F '500 Hrs.       | £                    | 29.3                       | 0.19         | 190           | 0499                |
| •0          | Tension   | 350°F /500 Hrs.       | 350°F                | 31.2                       | 0.13         | 174           | 0409                |
| •0€         | Tension   | 250°F /100 Hrs.       | Ē                    | ,                          | •            | 0.8           | •                   |
| •0€         | Tension   | 260°F/100 Hrs.        | 260°F                | •                          | •            | 7.2           | •                   |
| .0€         | Tenston   | 260°F/500 Hrs.        | E                    | 2.75                       | 0.0          | 6.7           | 3440                |
| • Of        | Tension   | 260°F/500 Hrs.        | <b>₹</b> 09 <b>₹</b> | 3.1                        | 0.0          | 7.1           | 4330                |
| • O.E       | Tension   | 350°F/100 Hrs.        | E                    | •                          | •            | 7.6           | •                   |
| •06         | Tension   | 350°F (100 Hrs.       | 260⁴₹                | ı                          | •            | 6.7           | •                   |
| .0€         | Tension   | 350 F/100 Hrs.        | 3.060                | •                          | ,            | 6.9           | •                   |

TABLE XII STATIC LANGURITES SUMMARY - AVCO 5305/PARKN

| Orientation        | Type Load   | Prior<br>Conditioning | Test 70p. | E (psi x 10 <sup>6</sup> ) | ,<br>(10/18) | oult<br>(ks1) | υlt<br>(μ-in./in.) |
|--------------------|-------------|-----------------------|-----------|----------------------------|--------------|---------------|--------------------|
| , 26               | Tension     | 350°F/500 Hrs.        | RTD       | 3.21                       | 0.0          | 1.3           | 2560               |
| . 06               | Tension     | 350*F/500 Hrs.        | 350°F     | 1.44                       | 0.01         | 5.6           | 2110               |
| 05/0/51/35/0/      | Tension     | 260°F/100 Hrs.        | RTD       | •                          | •            | *             | •                  |
| (٥/45/135/٥ بقت) _ | Tension     | 260 F/100 Hrs.        | 260 € ₹   | •                          | ,            | 19            | •                  |
| (0/45/135/0/90)    | Tension     | 260"F/500 Hrs.        | RTD       | 16.5                       | 0.45         | ž             | 5770               |
| [048/138/0/80]     | Tension     | 260 "F/500 Hrs.       | 260°F     | 15.2                       | 0.48         | 1             | 0009               |
| 06/0/51/32/0/30    | Tension     | 350°F/100 Hrs.        | CIX       | i                          | •            | 7.5           | •                  |
| [0/45/135/6/90]    | Tenston     | 350 F/100 Hrs.        | 260°F     |                            | ,            | 23            |                    |
| [0/6/2/135/0/90]   | Tension     | 350*F/109 Hrs.        | 350*F     | •                          | •            | 62            | •                  |
| (0/45/135/0/90)    | Tenstor.    | 350*F/500 Hrs.        | RŦD       | 15.1                       | 0.43         | 62            | 5820               |
| [0/45/135/0/90]    | Tensior.    | 350°F.500 Hzs.        | 350°F     | 16.1                       | 0.43         | 18            | 2660               |
|                    | Compression | 260 F, 100 Hrs.       | QT.       | ,                          | 1            | 207           | •                  |
| •0                 | Compression | 260 F, 100 Hrs.       | 260°F     | •                          | •            | 163           | ì                  |
| •0                 | Compression | 26C*F/500 Hrs.        | E         | 27.8                       | 0.20         | 213           | 0798               |
|                    | Compression | 260°F/500 Hrs.        | 260°F     | 29.3                       | •            | 195           | 6710               |
| •                  | Compression | 350 F. 100 Hrm.       | e         | 27.0                       | 0.18         | 238           | 9190               |
| •0                 | Compression | 350°F'100 Hrs.        | 350*F     | •                          | •            | 149           | •                  |
| •0                 | Compression | 350 F / 500 Hrs.      | e E       | 30.6                       | 0.20         | 232           | 8390               |
| •0                 | Compression | 350 F/500 Hrs.        | 350°F     | 26.9                       | 0.24         | 172           | 7110               |

TABLE XII STATIC PROPERTIES SUPPORT - AVCO

| Orientation                   | Daor acki      | Pricr<br>Conditioning | Test Temp.<br>(*F) | E (ps1 x 10 <sup>6</sup> ) | ,<br>(11/11) | dule<br>(kai) | *ulc<br>(p-40./10.) |
|-------------------------------|----------------|-----------------------|--------------------|----------------------------|--------------|---------------|---------------------|
| .06                           | Corpression    | 260°F/109 Hrs.        | 7.<br>T.T.         | •                          | •            | 33.2          | •                   |
| ,06                           | Compression    | 260°F/100 Hrs.        | 260°F              | •                          | •            | 23.7          | 1                   |
| 60 م                          | Compression    | 260°F/500 Hrs.        | E E                | 2.57                       | 0.0          | 37.2          | 16,830              |
| 8                             | Compression    | 260°F/500 Hrs.        | 350°F              | 2.40                       | 0.01         | 25.2          | 19,350              |
| . 26                          | Compression    | 350°F/100 Hrs.        | £                  | ł                          | 1            | 33.6          | ı                   |
| , 26                          | Compression    | 350°F/100 Hrs.        | 350°F              | ı                          | •            | 18.1          | 1                   |
| ື ງ6                          | Compression    | 350°F/500 Mrs.        | RTD                | 2.50                       | 0.0          | 29.3          | 13,550              |
| ູ ງ6                          | Compression    | 350°F/500 Hrs.        | 350°F              | 2.05                       | 0.0          | 17.9          | 17,370              |
| .c/45/135,0/90.               | Compression    | 260°F/100 Hrs.        | £                  | ı                          | •            | 194           | •                   |
| 106/0/132/0/ <u>30</u>        | Compression    | 260°F/100 Hrs.        | 260°F              | •                          | 1            | 137           | •                   |
| E/45/135, 3/90]               | Compression    | 260°F/500 Hrs.        | E                  | 13.3                       | 0.51         | 186           | 12,760              |
| 3.06/0, SE1/57/0              | Compression    | 260°F/500 Hrs.        | 260°F              | 13.6                       | 0.51         | 147           | 11,390              |
| [0/45/135/0/ <b>30</b> ]      | Compression    | 350°F/100 Hrs.        | £                  |                            | •            | 190           | •                   |
| [0 <u>6</u> /0, set/sh/o]     | Compression    | 350"F/100 Hrs.        | 350⁴F              | 1                          | 1            | 93            | ı                   |
| *( <u>04</u> 6/0,'\$E1/\$7/0) | Compression    | 350 °F /500 Hrs.      | E                  | 14.1                       | 97.0         | 161           | 13,850              |
| (06) 0/ \$2 // \$7/ U         | To be a second | 350°E 600 Hrs         | 4.05E              | 12.9                       | 0.38         | 128           | 0696                |

Ū

Ū

Ō

TABLE XII STATIC PROPERTIES SUPPARY - AVCO 5505/BORUN COMPCITES (Cont'd)

| Orientation | Type Load      | Prior<br>Conditioning | Test Temp.<br>(*F) | E<br>(ps1 x 10 <sup>6</sup> ) | ,<br>(1n/1n) | <sup>d</sup> ult<br>(ks1) | <sup>e</sup> ult<br>(μ-fn./fn.) |
|-------------|----------------|-----------------------|--------------------|-------------------------------|--------------|---------------------------|---------------------------------|
| 0.          | In-Plane Shear | 260°F/100 Hrs.        | RTD                | ,                             |              | 6.6                       | •                               |
| .0          | In-Plane Shear | 260 F/100 Hts.        | 260°F              | t                             | ı            | 7.1                       | •                               |
| ٥٥          | In-Plane Shear | 260°F/550 Hrs.        | RTD                | 77.0                          | •            | 8.6                       | 24,000                          |
| ٥.          | In-Plane Shear | 260°F/500 Hrs.        | 260'1              | 0.54                          | ı            | 7.4                       | 30,030                          |
| •0          | In-Plane Shear | -/100 Hrs.            | RID                | ı                             | ı            | 9.2                       | ¢                               |
| •0          | In-Plane Shear | JOU'F/100 Hrs.        | 260 °F             | •                             | 4            | 0.0                       |                                 |
| • 0         | In-Plane Shear | 350°F/500 Hrs.        | RID                | 0.79                          | •            | 9.1                       | 21,670                          |
| •0          | In-Plane Shear | 350"F/500 Hrs.        | 350°F              | 0.42                          | •            | 5.6                       | 30,000                          |
| • 0         | Int. Shear     | 260"F/100 Nrs.        | ATD                | •                             | •            | 16.7                      | ,                               |
| • 0         | Int. Shear     | 260 F/100 Hrs.        | 260°F              | •                             | •            | 14.6                      | •                               |
| •0          | Int. Shear     | 260°F/500 Hrs.        | RTD                | •                             | •            | 15.1                      | •                               |
| •0          | Int. Shear     | 260°F/500 Hrs.        | 260°F              | ľ                             | •            | 14.3                      | ٠                               |
| •0          | Int. Shear     | 350°F/100 Hrs.        | RID                | •                             | •            | 15.4                      | •                               |
| •6          | Inc. Shear     | 350"F/100 HEB.        | 260°F              | •                             | ,            | 13.8                      | •                               |
| •0          | Int. Shear     | 350 F/500 Hrs.        | ET.                | •                             | •            | 15.3                      | •                               |
| •           | Int. Shear     | 350"F/500 Hre.        | 350*F              | •                             | •            | 11.0                      | •                               |

TABLE XII STATIC PROPERTIES

| Orientation | Type Load | Prior<br>Conditioning | Test Tap. | E<br>(pet x 10 <sup>6</sup> ) | (12/12) | "alt<br>(bat) | ************************************** |
|-------------|-----------|-----------------------|-----------|-------------------------------|---------|---------------|----------------------------------------|
| .0          | Tension   | 260°F/500 Cy.         | £         | •                             | •       | **            | •                                      |
| • 0         | Tension   | 260 F/500 Cy.         | 7.097     | •                             | •       | 160           | •                                      |
| ,0          | Tension   | 260 °F/1000 Cy.       | E         | 28.1                          | 0.18    | 146           | 9460                                   |
| •0          | Tension   | 260°F/1300 Cy.        | 7.0%      | 29.4                          | 0.10    | 175           | 6010                                   |
| •0          | Tension   | 350*F/300 CF.         | £         | •                             | •       | 189           | •                                      |
| 0.          | Tension   | 350*F/500 CF.         | 260°F     | •                             | •       | 174           | •                                      |
| •0          | Tension   | 350°F/500 Cy.         | 350*F     | J                             | •       | 172           | •                                      |
| • 0         | Tems i on | 350°F/1000 Cy.        | £         | 28.9                          | 0.19    | 169           | 62.90                                  |
| ,0          | Tension   | 350*F/1000 Cy.        | 350°F     | 36.2                          | 0.15    | 141           | 5%0                                    |
| • 06        | Tens ion  | 260 *F/500 CF.        | Æ         | •                             | •       | 7.9           | •                                      |
| • 06        | Tension   | 260 °F/500 Cy.        | 7-042     | ,                             | •       | 6.7           | •                                      |
| • 06        | Tension   | 260 F/1000 Cy.        | £         | 2.79                          | 0.0     | 6.5           | 3410                                   |
| , 06        | Tension   | 260°F/1000 Cy.        | J.092     | 1.78                          | 0.03    | •••           | 4300                                   |
| .06         | Tension   | 350*F/500 C7.         | £         | •                             | •       | 4.4           | •                                      |
| .06         | Tension   | 350*F/500 Cy.         | 1,092     | •                             | •       | 6.9           | •                                      |
| • 0         | Tens ton  | 330*F/500 Cy.         | 350*7     | •                             | •       | 6.3           | •                                      |
| .06         | Tension   | 350°F/1000 Cy.        | £         | 2.28                          | 0.0     | 7.7           | 3150                                   |
| <b>.</b> 06 | Tension   | 350*F/1000 Cy.        | 350°F     | 1.46                          | 0.0     | <b>9. 4</b>   | 9000                                   |

TABLE NOT - STATIO OF COME TON (MARK) - A100 
| Orien ation                  | Type Load    | Prior<br>Comditioning | Test lemp. | E (pst x 10 <sup>6</sup> ) | (in/in) | dult<br>(ket) | <sup>e</sup> ult<br>(μ-in./in.) |  |
|------------------------------|--------------|-----------------------|------------|----------------------------|---------|---------------|---------------------------------|--|
| [0/43/135/0/80]              | Tension      | 260°F:50°1 Cy.        | RTD        |                            |         | 92            |                                 |  |
| [C/45/135 '0/ <sup>E</sup> ] | _ension      | 260°F/500 Cv.         | 250°F      | •                          | •       | 82            | •                               |  |
| <u>" []/0, 5[]/57.0]</u>     | Cension      | 250°F/1000 CV.        | RTD        | 14.7                       | 0.40    | *             | 6070                            |  |
| 12 -1/133/0/ET.              | Tension      | 260°F/1000 3y.        | 260°F      | 14.7                       | 0.40    | *             | 6070                            |  |
| 10/45/135/0/EE               | _ension      | 350 F/500 Cy.         | RTD        | •                          | •       | 91            | •                               |  |
| [C1/65/135/0/J]              | ension       | 350°F/500 Cy.         | 260°F      | •                          | •       | 90            |                                 |  |
| [0,45/135/0/[2]              | Tension      | 350°F/500 Cy.         | 350°F      | •                          | •       | 11            | •                               |  |
| [[/43/135/0/[]]              | Tension      | 350°F/1000 Cy.        | ET.        | 15.5                       | 0.41    | 88            | 6110                            |  |
| [C/45/135/0/[].              | Tension      | 350°F/1000 Cy.        | 350°F      | 15.6                       | 0.43    | 52            | 4010                            |  |
| <sup>,</sup><br>ن            | Compression  | 260°F/500 CV.         | Ę          | •                          | •       | 208           | •                               |  |
| ٥                            | Compression  | 260°F/500 Cy.         | 260 ° F    | •                          | •       | 199           |                                 |  |
| ر.                           | Compression  | 260"F/1090 CY.        | Q.E.       | 25.5                       | 0.19    | 215           | 8920                            |  |
| ື                            | Compression  | 260°F/1000 Cy.        | 260°F      | 27.0                       | 0.23    | 18<br>18      | 7340                            |  |
| ຶບ                           | (compre-ston | 350°F/500 Cy.         | £          | •                          | •       | 202           | •                               |  |
| . ט                          | Compression  | 350°F/500 Cy.         | 350 °F     | •                          | ,       | 149           | •                               |  |
| ຶນ                           | (oupression  | 350°F/1000 Cy.        | 67         | 30.3                       | 0.20    | 123           | 8750                            |  |
| <sub>e</sub> 0               | Compression  | 350°F/1000 Cy.        | 350°F      | 25.4                       | 0.28    | 149           | 5670                            |  |

では、「一個などのないでは、「「「「「」」というできないできないできない。 またい はんしい

DABLE XII STATIC PROPERTIES SUMMENT - AVCO

SUMMENT - AVGO \$505/WOROM COMPOSITES (CORE'4)

| Orientesia                   | Type Load   | P-for<br>Cond.t.foning | 1 t 1 (1) |       | (41/41) | Tale (Jan)  | <sup>0</sup> ult<br>(#-18./18.) |
|------------------------------|-------------|------------------------|-----------|-------|---------|-------------|---------------------------------|
|                              |             |                        |           |       |         |             |                                 |
| • 06                         | Compression | 260*F/500 Cy.          | Ē         | •     | •       | 11 <b>%</b> | •                               |
| • 06                         | Compression | 260°F/500 Cy.          | 7.0%      | •     | •       | <b>4</b> .7 | ,                               |
| •06                          | presition   | 260*F/1000 Cy.         | £         | 27.72 | 0.01    | 76.8        | 20,000                          |
| • 06                         | Compression | 260 F/ 1000 CF.        | 7.0%      | 2.57  | 0.01    | 3.8         | 10,940                          |
| • 06                         | Compression | 350*F/500 Cy.          | E         | ,     | •       | ¥.3         |                                 |
|                              | Compression | 350*F/500 Cy.          | 350*7     | •     | •       | 17.9        | •                               |
| •<br>&                       | Compression | 330*F/1000 CF.         | £         | 2.87  | 0.01    | 17.1        | 12,830                          |
| • 0\$                        | co resuton  | 350 F/1000 CF.         | 350*7     | 1.30  | 0.0     | 16.4        | 12,360                          |
| [0/43/135/0, 35]             | Compression | 260°F/500 Cy.          | E         | •     | 1       | 183         |                                 |
| [0/45/135/0/30]              | Compression | 260*F/500 CF.          | 7.092     | •     | •       | 142         | •                               |
| [0/45/135/0/30]              | Compression | 260 *F/1000 Cy.        | £         | 13.3  | 3.0     | *           | 14,330                          |
| [0/45/135/0/30]              | Compression | 260 °F/1000 CF.        | 4.0%      | 13.2  | 0.37    | 156         | 12,600                          |
| [0/45/135/0/ <sup>2</sup> ]] | Compression | 350°F/500 CF.          | £         | •     | 1       | 18          | •                               |
| [0,45/135/0/,0]              | Compression | 350*T/500 Cy.          | 350'T     | •     | •       | 3           | •                               |
| [0/45/135/0/35]              | Compression | 350*F/1000 CF.         | £         | 15.5  | 0.49    | 133         | 15,140                          |
| [0/47/135/0/37]              | Compression | 330*F/1000 Cy.         | 350.7     | 11.9  | 0.53    | 128         | 11,630                          |



The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

「大は一個のないないないないないでは、できていている」と



C

Q

Ð

D



.

ь<sub>о</sub>

A THE ADMINISTRATION OF THE PARTY OF THE PAR







Ü





CHERCASION STREAM-STRAIN DIAGRAM FOR NOT HORD AND \$500 CHERCATTE. Ftg. 162

(1611) **1621418** Di



::



O

THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

t







Ĉ,

~:



のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、

Š





The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s







LAMINARY TESTON AT VARIOUS TEMPERATURES ANTER 1 OF LYCLEY EXPOSURE TO 156°F

TABLE XIII FATIGUE PROPERTIES SUMMARY - AVEO 55/5/60/BON CORPOSITES

|            |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -    |              |                       |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|---------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|--------------|-----------------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |              |                       | Cycles     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |              | Cycles                | App 1 Ced  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 200        | Thickness     |                         | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRIOR COMDITIONING | Test | Stress Level | <b>3</b> ;            | without    | Resident    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parther    | (Pites) (In.) | Ortentation             | 1ype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Duration           | ĖĐ   | (Tale) (hat) | (cycles)              | (cycles)   | (test)      | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3-45001W   | A - 0 632     |                         | 900%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                  | 1    | 1 2          | 710 000               |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WINDSA.F.  | 1000          | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |      |              |                       | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.VC001K   | 0 - 0.032     | > (                     | E S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                  |      |              |                       | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MICON -ED  | ٠             | . D                     | Mone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | E    | 3            | 8.<br>8               |            | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1100JA-E   | 6 - 0.032     | •0                      | Kone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | Ē    | 175          | 98.                   | •          | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N1005A-E:0 | 6 - 0.032     | •0                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | Ê    | 91           | 37, 980<br>1, 37, 980 | •          | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M1005A-E:1 | 6 - 0.032     | ٥                       | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | e    | 152          | 100                   | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N1005A-E12 | •             | •0                      | Kone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | 6    | 175          | 8                     | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N:005A-E:3 | •             | •                       | , Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                  | 6    | 170          | 24,000                | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4100SA-F14 | ٠             |                         | Hone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | Ē    | 01-          | 20,000                | •          | . (         | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1100Ca     |               | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      | 176          |                       | )          | 1           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13-4701X   | 260.03        | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  | 2 (  | 707          |                       | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7-W007W    | 6 - 0.032     |                         | Mone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | Ē,   | <b>X</b>     | 3,473                 | •          |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N1005A-E3  | 6 - 0.032     | ,<br>O                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | Ē    | 3            |                       |            |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| #1002-6    | 240 0 - 8     | ş                       | a de la constante de la consta | •                  | 8    | 9            | 9                     | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00018      | 440           | :                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1    |              |                       |            | ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-700TH    |               | 2                       | ž,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                  | } {  | 7.           | 3                     | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9-700TN    | 10.0          | 3                       | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                  | 2    | 0.0          |                       | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1002-9    | 3 - 0.044     | . 8                     | Ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                  |      | 0.4          |                       |            | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M1002-10   | 440.0 - 60    | <u>,</u>                | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | E    | 4.5          | 423,000               |            | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1002-11   | 440.0 - B     | •<br>&                  | agog.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                  | E    | 0.4          | •                     | 10,425,000 | <b>F.</b> 7 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| K1002-12   | 8 - 0.044     | •06                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | £    | 5.5          | 10,000                | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1002-13   | 6 - 0 Own     | .06                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | E    | 4.4          | 1,130,500             | •          | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H1002-14   | 9 - 0.044     | •<br>8                  | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | e    | 5.0          | 98.19                 |            | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N1902-15   | 8 - 0.044     | •<br>8                  | Mone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | Ē    | o. <b>.</b>  | 9,000                 | ı          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A-A7001W   | 90            | [0/65/135/0/96]         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                  | Ē    | 3            | 161 000               | ,          | •           | Tek Ares Pellure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |               | Total Control (Control) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | i    | <b>;</b> ;   |                       |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M1027A-7   | 0.030         | [0/45/135/0/90]         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | e    | *            | 8                     | •          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1027A-8   | 9 - 0.050     | [04/0/501/59/0]         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | B    | 8            | 378,000               | į          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1027A-9   | 9 - 0.050     | [0/45/135/0/90]         | Mone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | £    | ~            | 13,000                | •          |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N1027A-10  | 9 - 0.050     | [0//2/135/0/30]         | Kone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | E    | ĸ            | 88°,                  | ,          | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M1027A-11  | 9 - 0.050     | [0//45/135/0/90]        | Mone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | E    | 8            | 1                     | •          | ı           | L fate Pailure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |               |                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 1    | **           |                       |            |             | The state of the s |
| N1027A-1   | 9 - 0.050     | 0/45/135/0/90]          | aco.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                  | 8    | 8            |                       | •          | •           | Tab Area Fallure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M1027A-1   | 9 - 0.050     | [0/42/135/0/90]         | ğ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                  | ê    | 2            | •                     | 16,100,000 | 63.0        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| K1027A~1   | 9 - 0.050     | [0/45/135/0/90]         | None<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                  | 6    | 2            | 000                   | ı          | •           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| W1027A-4   | 0.000         | [0/45/135/0/90]         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 6    | 3            | •                     | 12,900,000 | o. <b>X</b> | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |              |                       |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE XIII FATIORE PROPERTIFS CHORES - AVIO \$505 ROPERTIFS

|                |                   |                 |               |                   |               |              |            |             |           |           | ***              |
|----------------|-------------------|-----------------|---------------|-------------------|---------------|--------------|------------|-------------|-----------|-----------|------------------|
|                |                   |                 |               |                   |               |              |            | Cycles      | Applied   |           |                  |
| Specimen       | Thickness         |                 | No.           | FIOR CONDITIONING | <u>.</u>      | Stress Level | Sere!      | to<br>Pat 1 | without   | Les (des) |                  |
| n contract     | (Pites) (la.)     | Orlentation     | K<br>G        | Duret lon         | (£)           | 'ult)        | ult) (ka1) | (cycles)    | (c)cles)  | (101)     | Commonst         |
| #1007A-11      | 6 - 0.033         | •0              | E CO          | ŧ                 | 260.7         | 32           | 150        | 00          |           |           |                  |
| M1007A-12      | 6 - 0.033         | •0              | MCDe          | •                 | 260°F         | 83           | 120        | 120.000     |           |           |                  |
| #1007A-13      | ١                 | • 0             | Mone          |                   | 260°F         | ) <b>2</b> 6 | 155        | 350,000     | •         |           | • (              |
| #1007A-14      | e - 0.033         | •0              | ACD e         | •                 | Z60 °F        | 69           | 150        | 265.000     |           |           |                  |
| M1007A-15      | 1                 | •0              | Mone          | •                 | 260°F         | 000          | 160        | 12.000      |           |           | . (              |
| M1007A-16      | 1                 | •0              | Pone          | •                 | 260°F         | <b>&amp;</b> | 155        | 000         |           | •         | ٠,               |
| W100"A-17      | 6 - 0.033         | •0              | Mcne          | •                 | 260 °F        | 98           | 145        | 145,000     |           |           | •                |
| #1007A-E1      | ı                 | •0              | <b>K</b> Cne  | •                 | 260°F         | 87           | 157        | 149,000     | •         |           | Tab Area Failure |
| M1007A-19      | 1                 | •0              | #CDC          | •                 | 260°F         | 60           | 148        | 725,000     | •         | •         | Tab Area Zatlute |
| N1007A-20      | 6 - 0.032         | •               | <b>K</b> re   | •                 | 260°F         | 11           | 140        | 244,000     | •         | •         |                  |
| #101% -11      | 2 <b>9</b> 0 0 3  | \$              | 1             |                   | 4.070         | 7.           |            | Ş           |           |           |                  |
|                | •                 | · •             |               |                   | 1.046         | 9, 4         | ۰ ۵        | 3 8         |           |           |                  |
|                |                   | 2               |               | ,                 | 200           | 2;           | ٠.         | 3.5         |           |           |                  |
|                | 200               | 2 8             |               | •                 | 1.067         | 1 5          | <b>.</b>   | 200°        |           |           |                  |
|                | 1                 | 2               |               | ,                 | 1 707         | 10           | 4          | 36.1        |           |           |                  |
|                | •                 |                 | 900           |                   | Z66 F         | 52           | 3.4        | 53,000      |           |           |                  |
|                | 4 - 0 - 0 + 4 - 1 | • O             | MC Je         | •                 | 260°F         | 53           | 3,5        |             |           |           |                  |
|                | ŧ                 | <b>.</b>        | e::a          | •                 | 260°F         | 53           | 3.5        |             |           |           |                  |
| M1013 -18      | E - 0.044         | •<br>\$         | Mene          | •                 | 260°F         | Š            | 3.3        | 229,000     | •         |           |                  |
| M1016 - 1      | 8 - 0.045         |                 | Mene          |                   | 260°F         | 94           | ٣          |             | 2.2 x 10" | 9.9       | Tab Area Failure |
| <b>M</b> 016 2 | E - 0.045         | •               | <b>2</b> 00   | r                 | 260°F         | 6.4          | 3.2        | 1.451 x 10° |           |           |                  |
| K10338- 2      | 640.0 - 5         | [0/45/135/0/90] | 10.34         | •                 | 260 ℃         | 592          | 70         | 11,000      | •         | •         | •                |
| M10338- 3      | 640.0 - 9         | [0/45/135/0/30] | Mene          | 1                 | 260°F         | 79           | 65         | 11,000      | •         | •         | •                |
| M10338- 4      | 640.0 - 5         | [0/45/135/0/30] | ar.o          | •                 | 260°F         | 85           | 5          | 2,000       | •         | •         | •                |
| H1773(38- 5    | 640.0 - 5         | [0/45/135/0/90] | Mone          | •                 | 260 °₽        | 6,           | 65         | 175,000     | •         | ı         | •                |
| 1103[B- 6      | 690"0 - 6         | [0/45/135/0/90] | aco <b>g</b>  | ŧ                 | 260 ⁴F        | 9.1          | 75         | 2,000       | •         | •         | •                |
| M1.358- 7      | 9 - 0.049         | [0/45/135/0/90] | <b>1</b> 0.76 | •                 | <b>2€0.</b> 1 | 81           | 7.2        | 62,000      | •         | •         | •                |
| M10378- 8      | 6 - 0.049         | [0/45/135/0/90] | 3             | •                 | 260°F         | 87           | 72         | 186,000     | •         | •         | Þ                |
| W20338- 9      | 9 - 0.050         | [0/45/135/0/90] | Mone          | •                 | 260 °₽        | 91           | 75         | 10,000      | •         | •         | •                |
| W10338-10      | 6,000 - 6         | [0/42/135/0/90] | <b>Bo</b> ne  | ı                 | 7.09Z         | 82           | 89         | 738,000     | •         | •         | •                |
| W10338-11      | 9 - 0.049         | [0/45/135/0/30] | Mone          | •                 | 260°F         | 82           | 89         | 1,265,000   | •         | •         | •                |
|                |                   | )               |               |                   |               |              |            |             |           |           |                  |

|           | Thickness                              |                 | PRIOR C | PRIOR CONTITIONING | Hear   | Stress Level  | ī       | Cycles    | Cycles<br>Applied<br>without | Kesiduel |                        |
|-----------|----------------------------------------|-----------------|---------|--------------------|--------|---------------|---------|-----------|------------------------------|----------|------------------------|
| Marber    | (Pifes) (In.)                          | Orientation     | Type    | Curation           | ĖE     | (Xoult) (kst) | (kst)   | (cycles)  | (cycles)                     | (keil)   | Comme                  |
| N1007B-1  | 6 - 0.033                              | .0              | None    |                    | 350°F  | ş             | 160     | 3,000     |                              | ,        |                        |
| N10078-2  | ,                                      | ပံ              | None    | •                  | 350°F  | 06            | 160     | 2,000     | •                            | •        | •                      |
| N1007E-3  | ٠                                      | .0              | Mone    |                    | 350°F  | 80            | 155     | 000.      | •                            |          | •                      |
| N 0078-4  | •                                      | •0              | None    | ,                  | 3.00°F | 80            | 155     | ••        | •                            | •        | Impediate tab          |
|           |                                        |                 |         |                    |        |               |         |           |                              |          | failure                |
| N10073-5  | 6 - 2.033                              | 0.              | None    |                    | 350°F  | 85            | 150     | 2,000     |                              | •        | •                      |
| N10073-6  | 6 - 0.033                              | ċ               | None    | •                  | 350°F  | <b>8</b> 2    | 14.5    | 13,000    | •                            | •        | •                      |
| N10078-7  | 6 - 0.033                              | • 0             | None    | •                  | 350°F  | 76            | 167     | ,         | •                            | •        | ,                      |
| 8-87001N  | 6 - 0.033                              | • 0             | None    | •                  | 350°F  | 85            | 150     | •         | •                            | •        | Immediate tab          |
|           |                                        |                 |         |                    |        | į             |         |           |                              |          | fel lure               |
| M10078-9  | 6 - 0.033                              | •0              | Mone    | •                  | 350°F  | 66            | 140     | 9,000     |                              | •        | •                      |
| N1307B-10 | 6 - 0.033                              | 0.0             | Mone    | 1                  | 350°F  | 73            | 130     | 511,000   | •                            |          | 1                      |
| 31014-3   | 9790                                   | •06             | Mone    | •                  | 3.05E  | 7.5           | 7       | 3,000     |                              |          |                        |
| 41014-4   | ************************************** | .06             | None    | •                  | 350 F  | 7.5           | 4       | 3,000     |                              |          |                        |
| X1014-5   | 440.0                                  | ,06             | None    |                    | 350°F  | ጵ             | C       | 268,000   |                              |          |                        |
| 41014-6   | 340.0 - 8                              | •06             | Mone    | ,                  | 350°F  | 53            | 2.8     | 1,789,000 |                              |          |                        |
| 1-91011   | 490.7 - 8                              | .06             | None    |                    | 350°F  | \$            | 3.5     | 1,000     |                              | -        | Excess epoxy not taken |
| 11014-8   | 8 - (.043                              | •06             | None    | •                  | 350°F  | 69            | 3.6     | <b>≈</b>  |                              |          | off. Spec. broke while |
| 11014-9   | 6 - (.043                              | • 06            | Mone    | ,                  | 350°F  | 9             | 3.2     | 135,000   |                              |          | Ful junca              |
| 41014-10  | 8 - 0.043                              | •06             | None    | •                  | 350°F  | 9             | С.      | 10,000    |                              |          |                        |
| 11014-11  | 8 - 0.043                              | • 06            | Mone    |                    | 320.6  | 62            | ۳.<br>ن | 11,000    |                              |          |                        |
| 111014-12 | 740') - B                              | • <del>2</del>  | None    |                    | 350-1  | 9             | 7.7     | 7,000     |                              |          |                        |
| 1:1034A-1 | 670.3 - 6                              | [0/45/135/0/90] | Mone    | •                  | 350 °F | <b>0</b>      | 63      | 668,000   | •                            | 1        | •                      |
| 171034A-2 | 670'0 - 6                              | [0/0/51/37/0]   | None    |                    | 350°F  | <b>6</b> 2    | 65      | 554,000   | •                            | •        | •                      |
| F1034A-3  | 6 - 0.049                              | [0/45/135/0/90] | None    | •                  | 350°F  | 82            | 65      | 10,000    | •                            | ,        | •                      |
| 4-A4601 4 | 640.0 - 6                              | [0/45/135/0/90] | None    |                    | 350°F  | 2             | 70      | 7,000     | ٠                            | •        | •                      |
| X 1034A-5 | 9 - 0.049                              | [0/45/135/3/90] | Mene    |                    | 350°F  | 8             | 70      | 7,000     | •                            | •        | •                      |
| K1034A-6  | 050'0 - 6                              | [0/45/135/0/90] | Kone    | •                  | 350°F  | 88            | 67      | 7,000     | 1                            |          | •                      |
| K1036A-7  | 690'0 - 6                              | [0/42/132/0/90] | Mone    | •                  | 350°F  | *             | 99      | 9,000     | •                            | •        | •                      |
| 8-YAC     | 9 - 0.050                              | [0/48/135/0/90] | Mone    | 1                  | 350 ₽  | 85            | 67      | 10,000    | •                            | •        | •                      |
| H1034A-9  | 6 - 0.049                              | [0/45/135/0/90] | Mone    | •                  | 350.7  | 28            | 99      | 13,000    | ,                            | •        | •                      |
| N 0344-10 | 690'0 - 6                              | [0/45/135/0/90] | Mone    | •                  | 350°F  | 3             | *       | 16,000    | 1                            | ,        | •                      |
| F 0344-11 | 640.0 - 6                              | [0/45/135/0/90] | None    |                    | 350.1  | \$            | 2       | 24,000    | •                            | •        |                        |
| -         |                                        |                 |         |                    |        |               |         |           |                              |          |                        |

| ·                       | Thebase       |             | 2          | PRIOR CHEMICAL | 1081    |               |         | Cycles<br>to         | Cycles<br>Applied<br>without | Les (der)          |                   |
|-------------------------|---------------|-------------|------------|----------------|---------|---------------|---------|----------------------|------------------------------|--------------------|-------------------|
| Pocc Leases<br>Marie or | (Plies) (In.) | Orientation | Ē          | Deretion       | į.      | (T'ult) (ksi) | (F.8.E) | Feilure<br>(cycles)  | Failure<br>(cycles)          | Strength<br>(kal.) | Comment           |
| 410658-7                | 6 - 0.033     | •           | / Ha 1200  | 500 Hrs.       | £       | 2             | 165     |                      | 000                          |                    | Tab Area Pailines |
| 11005B-1                | 6 033         | •0          |            | 500 Hrs.       | 6       | <b>B</b> 2    | 158     |                      | 210,000                      |                    |                   |
| K10058-                 | ,<br>,        | • 0         |            | 500 Hrs.       | 9       |               |         |                      |                              |                    | -(Specimens broke |
| #10058-10<br>#10058-11  | , ,<br>, ,    |             |            | 500 Hrz.       | 6       |               |         |                      |                              |                    | Aduring .         |
| 11-10-01                |               | , ,         |            | 1 200          |         | į             |         |                      |                              |                    | Tablication       |
|                         | 6 - 0.033     | 5 6         |            |                | 1.090   | 6             | 2 2     | . 8                  |                              |                    | Immediate Failure |
|                         | 6 - 0.033     | o <b>c</b>  | / HE 196   |                | 260°F   | 2 62          | 7 P     | 900                  |                              |                    |                   |
| M100 88-18              | 6 0,033       | •0          | / HOT 196  |                | 260°F   | 2             | 135     | 2,000                | •                            |                    |                   |
| 61-E5JUTH               | 6 - 0.033     | .0          | _          | 500 Hrs.       | 260°F   | 7.2           | 127     | . 1                  | 3.176 x 100                  | 135.5              | Tab Failure       |
| #1009A-15               | 6 - 0.032     | .0          | / KM 136   | 500 Hrs.       | 350°F   | 104           | 150     |                      | 4                            |                    | Ismediate Failure |
| H10C94-16               | 6 - 0.033     | •           |            |                | 350°F   | 8             | 55      | ,                    | 2 x 10°                      | 150.3              |                   |
| MICK JA-17              | 6 - 0.032     | •<br>•      | _          | 500 Brs.       | 350 . F | 101.5         | 145     | 3,000                |                              |                    |                   |
| M10K9A-18               | 6 - 0.032     | •0          |            |                | 350°F   | 97.5          | 140     | 900                  |                              |                    |                   |
| K10C9A-19               | 6 - 0.032     | •<br>G      | /<br>E     |                | 350°F   | ま             | 135     | 9                    |                              |                    |                   |
| M10C 58-12              | 6 - 0.033     | • 0         | / H21 1296 | 1000 Hrs.      | e E     | 104.5         |         | 1,000                |                              |                    |                   |
| K10C58-13               | 6 - 0.033     | ,0          |            | 1500 Hrs.      | £       | 101.0         |         | 13,000               |                              |                    |                   |
| H10C 5B-14              | 6 - 0.933     | • 0         |            |                | e E     | 2             |         | 903,000              |                              |                    | Tab Feilure       |
| M10C 58-15              | 6 - 0.033     | •           | / HE 196   | 1000 Hrs.      | Ê       | 8             | 153     | 62,000               |                              |                    |                   |
| MOC 58-16               | 6 - 0.033     | •0          |            | 1000 Ars.      |         | 2             |         | 3,000                |                              |                    |                   |
| #10C3B-20               | 6 - 0.033     | ÷           | / 821 126  | 1000 Brs.      | 260°F   | 92            |         | 000,4                |                              |                    |                   |
| F100%-1                 | 6 - 0.033     | • 0         | _          | 1000 Ers.      | 2.09Z   | 2             |         | 90.                  |                              |                    |                   |
| F10C 9A-2               | 6 - 0.033     | •           | 7 226      | 1000 Ers.      | 260°F   | 2             | 9       | 9                    |                              |                    |                   |
| F10C 94-3               | 6 - 0.033     | •           | _          |                | 260 F   | 2             |         | 000 81               |                              |                    |                   |
| 110CSE-1                | 6 - 0,033     | •           | _          |                | 260     | 44            |         | 2,492,000            |                              |                    |                   |
| FLOK 94-20              | 6 - 0.032     | <b>.</b>    | _          |                | 350 F   | *             |         | 8                    |                              |                    |                   |
| F10C98-1                | 6 - 0,033     | •           | / E 186    |                | 350 F   | •             | 135     | 86.                  |                              |                    |                   |
| 110/31-2                | € . 0.032     | •           | 7 116      | 1000 Hrs.      | 320.6   | *             | 221     | 8                    |                              |                    |                   |
| 110C-38-3               | 6 - 0.033     | • •         | 7 126      |                | 350°F   | *             | 120     | 000                  |                              |                    |                   |
| F10C 98-5               | 6 - 0.033     | •           | 7 126      |                | 350 F   | *             | 113     | 2,000                |                              |                    |                   |
|                         |               |             |            |                |         | *             | data    | o date not evailable | •                            |                    |                   |
|                         |               |             |            |                |         |               | חונ     |                      |                              |                    |                   |

\* o.1. data not available

| nt<br>nt                               |                                                                                                                           |                                                                                             | 17.e                                                                                                  |                                                                  | ıre                                               | Tab Failure<br>Immediate Failure                 |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| Comment                                |                                                                                                                           |                                                                                             | Tab Failure<br>Tab Failure<br>Tab Failure                                                             |                                                                  | Tab Failure                                       | Tab Feilure<br>Immediate F                       |
| Residual<br>Strength<br>(ksl)          |                                                                                                                           | 154.3                                                                                       |                                                                                                       |                                                                  | 168.8<br>163.1                                    |                                                  |
| Cycls Applied Without Failure (cycles) |                                                                                                                           | 2.1 × 10 <sup>6</sup>                                                                       |                                                                                                       |                                                                  | 2.25 × 10 <sup>6</sup><br>2.791 × 10 <sup>6</sup> |                                                  |
| Cycles to Failure (cycles)             | 2,000<br>90,000<br>27,000<br>2,000<br>3,000                                                                               | 2,000<br>5,000<br>6,000                                                                     | 12,000<br>8,000<br>12,000<br>13,000<br>314,000                                                        | 30,000<br>45,000<br>9,000<br>176,000                             | 51,000                                            | 1,000<br>236,000<br>9,000                        |
| Stress Level                           | 85 160<br>82.5 155<br>84 158<br>81.5 153<br>79 148                                                                        | 98 155<br>92 145<br>87.5 138<br>82.5 130<br>76 120                                          | 108 130<br>104 125<br>100 120<br>96 115<br>92.5 110                                                   |                                                                  | 89 140<br>83 130<br>79.5 125<br>81.5 128          | 82 120<br>79 115<br>72 105<br>75.5 116           |
| 1 (a)                                  |                                                                                                                           | 260°F<br>260°F<br>260°F<br>260°F                                                            | 350 F<br>350 F<br>350 F<br>350 F                                                                      |                                                                  | 260°F<br>260°F<br>260°F<br>260°F                  | 350°F<br>350°F<br>350°F                          |
| NIOR COMBITIONING<br>TPE Duration      | Thermo-Humidity Cycle<br>Thermo-Humidity Cycle<br>Thermo-Humidity Cycle<br>Thermo-Humidity Cycle<br>Thermo-Humidity Cycle | midity Cycle<br>midity Cycle<br>midity Cycle<br>midity Cycle                                | midity Cycle<br>midity Cycle<br>midity Cycle<br>midity Cycle<br>midity Cycle                          | Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. | Wihrng.<br>Wihrng.<br>Wihrng.                     | Wthrng.<br>Wthrng.<br>Wthrng.                    |
| Type                                   | Thermo-Humidity<br>Thermo-Humidity<br>Thermo-Humidity<br>Thermo-Humidity<br>Thermo-Humidity                               | The ruo-Bandity<br>The ruo-Bandity<br>The ruo-Bandity<br>The ruo-Bandity<br>The ruo-Randity | Thermo-Humidity (<br>Thermo-Humidity (<br>Thermo-Humidity (<br>Thermo-Humidity (<br>Thermo-Humidity ( | Acc. W                                                           |                                                   | Acc. W                                           |
| Orientation                            | 60000                                                                                                                     | , <b>,</b> , , , , , , , , , , , , , , , , ,                                                | 00000                                                                                                 |                                                                  |                                                   | 0000                                             |
| Thickness (311es) (In.)                | 6 - 0.033<br>6 - 0.033<br>6 - 0.033<br>6 - 0.033<br>6 - 0.033                                                             | 6 - 0.033<br>6 - 0.033<br>6 - 0.033<br>6 - 0.033<br>6 - 0.033                               | 6 - 6.033<br>6 - 6.033<br>6 - 6.033<br>6 - 6.033<br>6 - 0.033                                         | 6 - 0.033<br>6 - 0.033<br>6 - 0.033<br>6 - 0.033<br>7 - 0.033    | 1 1 1 1                                           | 6 - C.033<br>6 - C.033<br>6 - C.032<br>6 - C.033 |
| Spectmen                               | N1G05B-17<br>N1G05B-18<br>N1G05B-20<br>N1G05B-20<br>N1G05B-21                                                             | N1009A-5<br>N1009A-6<br>N1009A-7<br>N1009A-8<br>N1009A-9                                    | 20068-5<br>N10098-6<br>N10098-8<br>8-850CIN<br>8-850CIN                                               | M1005C-1<br>M1005C-2<br>M1005C-3<br>M1005C-4<br>M1005C-5         | N1009A-11<br>N1009A-12<br>N1009A-13<br>N1009A-14  | N10098-10<br>N10098-11<br>N10098-12<br>M10098-13 |

AND AND AND AND PROPERTY OF A COMPANY OF THE COMPAN

| 1<br>1<br>2<br>2                        | Thickness                |                      | PRIOR        | PRIOR CONDITIONING FEST | rest     | Stress Level               | wel        | Cycles         | Cycles Applied Without | Residuel |                                        |  |
|-----------------------------------------|--------------------------|----------------------|--------------|-------------------------|----------|----------------------------|------------|----------------|------------------------|----------|----------------------------------------|--|
| Number                                  | (.nl) (saild)            | Orientation          | adái         | Duration                | Ē        | (T <sup>3</sup> ult) (ksi) | (ks1)      | (cycles)       | (cycles)               | (kai)    | Comment                                |  |
| •                                       |                          |                      | ī            |                         | į        |                            |            |                |                        |          |                                        |  |
| 11.(283-5                               | 100                      |                      | •            |                         | <u>.</u> | <u>3</u>                   | 75         | 6,000          |                        |          | Tan Area Failure                       |  |
| NEC253-5                                | 19010 1 1                |                      |              |                         | <u>C</u> | -6                         | 20         | 20 <b>,000</b> |                        |          |                                        |  |
| X10283-7                                | ()                       | -                    | Thermo-      | Thermo- Humidity Cycle  | RTD      | 93                         | <i>:</i> 9 | 36,000         |                        |          |                                        |  |
| N1C283-8                                |                          | -                    | The Tayl     | Humidity Cycle          | ET.      | \$                         | 4.5        | 000            |                        |          | drift ware a waitline                  |  |
| Y10188-9                                | GC:0-5                   | =                    | 1200         | Dermo- Humidity Gyale   | č.       | 63                         | 09         | 764,000        |                        |          | Teb Area Failure                       |  |
| X1036A-1                                | (F)                      | =                    |              | Humidity Cycle          | ь:<br>;  | i c                        | ý          | ,              |                        |          | 1                                      |  |
| N. 136A-D                               | on in                    | -                    | 1000         | Humicity                | 2b. F    | 62                         | 5 5        | •              | 7 47 - 10t             | 6 97     | יייייייייייייייייייייייייייייייייייייי |  |
| N.C.363-3                               | or or                    | -                    | The 1120-    | Humidity Cycle          | 260°F    | 1 de                       | :          | 000 07         | 21.7                   | 7.2,     |                                        |  |
| XI - 364-                               | 250.0 - 6                | -                    | -OBCTOR      | Humidity Cycle          | 360 F    | 74.5                       | 9          | 000            |                        |          |                                        |  |
| 71136A-5                                | (1)<br>(1)<br>(1)<br>(1) | 2                    | Therman      | Therew- Humidity Cycle  | 2e0.F    | 3                          | 5          | 15,000         |                        |          |                                        |  |
| V. F 3 " A- !                           |                          | -                    | -65735       | Termo- Humidity Ovels   | 350 °F   | 52                         | 30         |                | $2.062 \times 10^{6}$  | 58.0     |                                        |  |
|                                         |                          | Ξ                    |              | Franchista Carlo        | 3.50 F   | or or                      | Ç          | 86.000         |                        |          |                                        |  |
| 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | . (. )<br>. (. )         | =                    |              | Heridity                | 350 F    |                            |            | 000            |                        |          |                                        |  |
|                                         | 1 m                      | ÷                    |              |                         | 350°F    | 92.5                       | ٠ (        | 000°           |                        |          |                                        |  |
| X10378-5                                | 1                        | -                    | Thermo-      | Chermo- Humidiry Cycle  | 350°F    | 26.5                       | 200        | 78,000         |                        |          |                                        |  |
| C1-68001X                               | 50° - 6                  | -                    | Acc.         | Acc. Withrog.           | KTD      | 980                        | 70         | 7, 000         |                        |          |                                        |  |
| 1000                                    | 190°C - 6                | :                    | 7.0▼         | thrus                   | RTD      | 1                          | , y        | 672,000        |                        |          | Tah Estlute                            |  |
|                                         | 5 - 5.053                | =                    | Acc          | Vihing.                 | RTD      | 77.5                       | 99         | 377,000        |                        |          | 3                                      |  |
| 0-76201N                                | 140°C = c                | =                    | Acc.         | Wthrng.                 | CT.      | 83.5                       | 73         | 2,000          |                        |          |                                        |  |
| X1129A-3                                | . (C)                    | £                    | Acc.         | Athrng.                 | gta      | <b>9</b> 8                 | 70         | 691,000        |                        |          | Tab Failure                            |  |
| 7.1.36A-5                               | 3 € 0,352                | <u>.</u>             | Acc.         | Wthrng.                 | 260°F    | 81.5                       | 09         | 3,000          |                        |          |                                        |  |
| X1036A-7                                | 10.05                    |                      | Acc.         | Wthrng.                 | 260°F    | 74.5                       | 35         | 1              |                        |          | Immediate Failure                      |  |
| X1036A-5                                | 5 - 0.051                | :                    | Acc.         | Vchrng.                 | 260 F    | 72                         | 53         | 1,412,000      |                        |          |                                        |  |
| X10363-3                                | בורים.<br>ביים ביים      | -                    | Acc.         | uthrng.                 | 260°F    | 77.5                       | 56         | 7,000          |                        |          |                                        |  |
| N.C36A-19                               | 4 - 0,051                | r                    | Acc.         | Wthrag.                 | 260°F    | 76                         | 26         | 38,000         |                        |          |                                        |  |
|                                         |                          | :                    |              |                         | 35005    | 9                          | 4          | 000 170        |                        |          |                                        |  |
| Nic3/A-0                                | . `                      | :                    | Acc.         | Henring.                | 3500     | 8 8                        | 20         | 000,17         |                        |          |                                        |  |
| MECS/A1                                 | 0000                     | :                    | , 200<br>100 |                         | 7,056    | 7 7 8                      | 3 0        | 75.100         |                        |          | F                                      |  |
| 0-8, 6378                               |                          | a                    | , oc.        | יייין דיווקי            | 7007     | 2.00                       | 7 4        | 30,00          |                        |          | ido ratture                            |  |
| V1037A-9                                | ;;                       |                      |              |                         | 350 5    | 2.5                        | 7 (        | 200.           |                        |          |                                        |  |
| 07-4-6072                               | 5 - 5                    | S 04: 1, CF*, C*, () | <b>Y</b> 00. | weneng.                 | 2000     | č<br>Č                     | 6          | 14,000         |                        |          |                                        |  |

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

| ,                    |                     | ;            |               |                    |               |                |                  |                                   | Cycles             |                      |                       |
|----------------------|---------------------|--------------|---------------|--------------------|---------------|----------------|------------------|-----------------------------------|--------------------|----------------------|-----------------------|
| 0 m                  | Thickness           |              | PRIOR CO.     | PRIOR CONTITIONING | Test          | Stress Lovel   | ove1             | F84 1114                          | Without<br>F. Turk | Residual<br>Strength |                       |
| - <b>Car</b>         | (Pifes) (In.)       | Orient at 1. | Type          | Duration           | (4.)          | (Toute   [kst] | (kst)            | (cacles)                          | (cycles)           | (kai)                | Comment               |
| 1* 1 <b>40</b> 0 1 X | 5E - 2              | ن            | a speak       | F . 500 Hrs.       | Ê             | c<br>T         | 7.               | 1.000                             | •                  | •                    |                       |
| 0 - 400 N            |                     | . c          |               |                    | . IX          | Ľ.             | 1.41             | 20,000                            | •                  | •                    | Tab Linea Failume     |
| -190/IF              |                     | ٠. ت         |               | 500                | ¥             | ű              | 3                | £30,00r                           |                    |                      | Tab Irea Tailure      |
| 7 000 X              | E - 0 - 4           | Ť            |               | F 500 Hrs.         | 7             | ď,             | 165              | 000                               |                    | •                    | •                     |
| 4 DG 4               | £ {\(\frac{1}{2}\)} | ن.           | Steady 260°F  | 200                | ж.<br>:       | č              | 551              | 000°4a.                           | 1                  | •                    |                       |
| 7 - 14 - 3           | Ck. 9 - 9           | <u>.</u>     | Steady 350 F  | F 500 Mrs.         |               | S. SX          | -1-              | 1,000                             | ,                  | ٠                    | Tak grea Failure      |
| 1900 E               |                     | ċ            |               | . 500              | C.F.          | úć             | 161              | .)00                              |                    | •                    |                       |
| 4 - V90C IN          | 200 0 - 4           | č            |               | 005                | CTX           | oʻ,            |                  |                                   |                    | •                    | Isl Srea Failure      |
| 7 - 1 400 R          | 6 - 11, 132         | ,<br>O       |               | 604                | ∴<br><b>£</b> | 7.5            | ن <del>ا</del> ( | 5.671 × 10°                       | 1                  | •                    |                       |
| 8 90C ×              | N 132               | င်           |               |                    | KTD           | 92             | -1<br>-1         | 15,000                            | ,                  | •                    | Tab area Failure      |
| Ø : 1 4 ± 2 : 1      | <b>4</b> . 0 . 4    | ,0           | Ccc11c 260°   | F . 500 Cvc.       | . T.          | 90             | 191              | 1,400,000                         |                    |                      |                       |
| 31-1900 N            | 5 - 0.0 <b>34</b>   | .0           | Cvc11c 260°F  | •                  | Ē             | 44             | ું <b>દ</b> ્    | 110,000                           |                    |                      |                       |
| - 906                | 6 - 0,133           | ,0           |               | ٠,                 | RT.           | 10:            | 190              | 3,000                             |                    |                      |                       |
| 90                   | 6 - 0,333           | °0           | . velle 260°F | ٠,                 | <u></u>       | ٥٥. ۶          | 185              | 1,000                             |                    |                      |                       |
| F (D06.1-3           | h - 0.033           | Ċ            | Cvc11c 260°1  | ~ .                | E C           | 41.5           | 170              | 206,000                           |                    |                      |                       |
| N (00)               | 5 - 0.033           | 11.1         | C.clic 260"F  | ٠.,                | KT            | 41.5           | 170              | į                                 |                    |                      | Immediate failure     |
| 2. (OC) X            | 0 - 0.034           | ć            | Cyc.11c 260"F | ~                  | CT3           | 98             | 091              | •                                 | •                  |                      | Immediate Sailure     |
| 4.7.00 T. F          | 6 - 0.033           | . 0          | Cyc.11c 260°F |                    | <b>EL</b>     | 20             | 130              | ,                                 | 2.021x10°          | 185.4                | Tab failure           |
| N.9001 N             | 表0.0 - 4            | 0            | Cv:11c 260°1  | ٠.                 | و <b>لا</b>   | 75.5           | 140              | 2,000                             |                    |                      | Tab failure           |
| ਲ : <b>000</b> ਪ     | A - 0.333           | ů            | Cyclic 260°F  | F / 1000 Cyc.      | ¢<br>L<br>K   | 80.5           | 150              |                                   |                    |                      | Immediate Tab Failure |
| 2 · 1 (90%) #        | £ - C.033           | .0           | Cyclic 350°F  | /                  | RT            | 06             | 170              | 1,000                             |                    |                      |                       |
| M (0063-10           | 6 - 0.034           | .0           | Cyclic 350°F  | ٠.                 | <b>L</b>      | 85             | 160              | 4,000                             |                    |                      |                       |
| N1006 - : 1          | 4 . 0.033           | ئ            | Cyclic 350°F  | •                  | <b>ول</b>     | 82             | 155              | 292,000                           |                    |                      |                       |
| N : 006 3- 1 2       | 6 - 0.033           | · o          | Cyclic 350°F  | -                  | <b>RT</b> D   | 83.5           | 158              | 3,000                             |                    |                      | :                     |
| K1006:13             | <b>7€0.</b> 0 - €   | ٥.           | Cyclic 550*1  | `                  | <b>11</b>     | 80.5           | 152              | 22,000                            |                    |                      | Tab Failure           |
| #   CO6.7 - 1 a      | 6 - 0,033           | •            |               | -                  | <b>12</b>     | 42             | 155              | 890,000                           |                    |                      |                       |
| M 1006 t- 15         | 6 - 0.033           | •0           | Cyc11r 350"   | / 1000             | <b>E</b>      | 94.5           | 160              | 137,000                           |                    |                      |                       |
| N 1 0063 16          | 6 - 0,433           | •<br>c       | Cyc11c 350"F  | 7                  | <b>61</b>     | \$7.5          | 165              | 8,000                             | •                  |                      |                       |
| #1000E-17            | ,<br>10             | 0            |               | 7                  | <b>Z</b>      | Spec           | imen Bro         | Specimen Broke During Fabrication | prication          |                      |                       |
| M 1006:1-18          | - 9                 | .0           | Cyc15 .50"F   | F / 1000 Cyc.      | ]<br><b>X</b> | Spec           | ושפו מינ         | ואפ החדיוות נשי                   | ILLCALLUM          |                      |                       |

ń

))

(١

Ö

|                |                       |                  |                |                | 1                  |            |               |            | 1                   |                            |                  |                  |
|----------------|-----------------------|------------------|----------------|----------------|--------------------|------------|---------------|------------|---------------------|----------------------------|------------------|------------------|
|                | \$8.30 <sub>407</sub> | į                |                | PRIOR          | PRIOR COMUNICATION | 100        |               | :<br>      | Cycles              | Cycles<br>Appli<br>without | Residual         |                  |
|                | (P : cs) (ln.         |                  | Orten' #110n   | 1              | Durat ion          | ĖĒ         | (L'ult) (kst) | (ks1)      | failure<br>(cycles) | Failure<br>(cycles)        | Streeth<br>(bat) | Comment          |
| - 4000         | 3 . 0 . 0             | 0.050            | [3/45 3 15 46] | 1, 097         | / 500 Hrs.         | a <b>L</b> |               | . 04       | 000                 |                            | ,                |                  |
| 1.0 GH         | 2 - 0.051             | 150              |                | + ()4.         |                    | e          | 3             | 2.         | 261,000             | •                          |                  | . )              |
| - 200          | 1.0.0                 | 1,0              | •              | £ 09%          | / 590 H78.         | 911        | 97.           | 76         | 2.000               | •                          | •                | ı                |
| - 500          |                       | 651              | -              | 1.092          | / 500 H-s.         | Ê          | ş             | ž          | 2000                | •                          | •                | ,                |
| - E00          | 2 . 0.0               | 051              | -              | 3.047          | / SOO Hrs.         | Ë          | 95.           | 7.3        | 14,000              |                            |                  |                  |
| 10XC           | . 0.0                 | 050              | -              | 15.13          | / 500 Hrs.         | Ė          | <i>3</i>      | 92         | 000 899             | •                          | ı                | 1                |
| - <b>100</b> 0 | 0.050                 | 0 <del>.</del> 0 |                | ÷              | W.H. HTS.          | Ē          |               | <b>S</b>   | 000                 | . •                        | 1 (              | • •              |
| 620            | 8 - 0.056             | 050              |                | 7507F          | , SOO Hrs.         | Ê          | •             |            | 39,000              | •                          | •                | , ,              |
| - 1500         | 050.0 - 6.050         | 050              | •              | 151            | / 500 Hrs.         | Ē          | 5             |            | 1.000               | •                          |                  |                  |
| - 100          | 3.0 . 0               | 0.0.0            |                | <u>ا</u> الم   | / 500 Hrs.         | Ē          | ř             | ş          |                     | 2.0 × 10 <sup>5</sup>      | o.08             | •                |
| . 116.         | •                     | 950              | -              | : ·¥:          | 100 CVC            | Ē          | 76            | 7.7        | 17 000              |                            |                  | Tak Walthurs     |
| - 1160.        | ٠,                    | ن کرن            | -              | . 6            | 200 CVC            | Ê          |               | ž          |                     | 2 418x10 <sup>6</sup>      | 7 62             |                  |
| - 531A         | ۲ زان                 | ۵۶ر              |                | 4,090          | 1 SIN CAR          | Ė          |               | Ç          | ,                   | 0 57 12 10                 |                  |                  |
| . 0513         | 3. J                  | 0.050            |                | 3 <b>-</b> 097 | / 5 Cyc            | É          | <br>60        | ,0         | 2.000               |                            | 9.0              | ISD ATER PRITUE  |
| 23.5           | J. )                  | ) <b>,</b> ()    | -              | 26C°F          | / 500 Cyc          | Ê          | 7,            | 68         | 1,504,000           |                            |                  | Tab Area Failure |
| 0314           | د د                   | .50              | •              | 3.092          | / 1000 CVC         | e <b>P</b> |               | ٧٠         | 4.000               |                            |                  |                  |
| . 03LA -       |                       | 151              |                | 26035          | / 1000 CVc         | É          | ,             | <b>.</b> 3 | 3,719,000           |                            |                  | Tab Area Failure |
| 0.514          | 9 ·                   | 050              | -              | 2667F          | / 1000 Cyr         | Ê          | 0 /           | NO<br>CO   | 2,243,000           |                            |                  | Tab Area Failure |
| 0314           | J\$0.0 · 0.05C        | 0,50             | ž.             | 260°F          | / 1000 Cyc         | Ê          | r .<br>80     | 7;         | 3,000               |                            |                  |                  |
| =<br>ح<br>د    | ນ - ເ 0 <b>ວ</b> າ    | <b>0</b> 50      | -              | 280°F          | / 1000 Cyc         | Ē          | <b>80</b>     | 7.3        | 178,000             |                            |                  | Tab Failure      |
| 0.00           | \$0.0                 | 150              | -              | 350°F          | / 500 Cyc          | Ê          | 11            | ů,         | 2,000               |                            |                  |                  |
| - P. CO.       | . (.05)               | .;               |                | 350'F          | / 500 Cvc          | Q.         | \$            | <u>,</u>   | 10,000              |                            |                  |                  |
| 1 - VACO!      | 150.0 - 0.051         | 951              | •              | 350°F          | 200 CA             | Ē          | 9             | .,<br>.,   | 2,000               | •                          |                  | Tab Failure      |
| . M. M.        | 0.0                   | 150              | ÷              | 350°F          | ري<br>√ 200 کيد    | Ē          | <u>ج</u>      | . )        | •                   | 2.0 x 10°,                 | 75.3             |                  |
| .0318          | 2 - 0.C               | 153              | Ξ              | 350°F          | , 300 Cyc          | ظَ         | 6.5           | 33         | •                   | 2.468 x 10°                | 6.11             |                  |
| 6160           | ۱ - 0.0               | 350              | -              | 330.8          | / 1000 Cyc         | É          | 82.5          | 5          | 2,000               |                            |                  |                  |
| 10318 - 1      | 0.0                   | 350              | •              | 35( )}         | / 1000 Cyc         | Ē          | 7t.5          | 65         | 413,000             |                            |                  |                  |
| 10314          | S . 0.050             | 35               | •              | 350°F          | 260 00C /          | Ē          | ä             | 3          | و<br>د :            |                            |                  |                  |
| . 11605        | 050.0 - 0.050         | 8                | =              | 350 F          | / 1000 Cyc         | Ê          | 2             | 3          | 421,000             |                            |                  |                  |
| 0314           | 7 - 0.0               | 150              | [.6/0/51/57/0] | 350.4          | / 1000 Cyc         | Ê          | 2             | 63         | 7,000               |                            |                  |                  |

FABLE VIII FATTOTE PROPERTIES SUMMARY - AVYO 5505 SORIN COMPOSITES

| Specials   | Thickness<br>(Pites) (In.) | Orientation                             | PLIOR       | PRIOR COMDITIONING<br>Type Duration | ž į E   | Stress Level (T <sup>o</sup> ult) (ksf.) | evel<br>(kat) | Cycles<br>to<br>Failure<br>(cycles) | Cycles<br>Applied<br>without<br>Pailure<br>(cycles) | Residual<br>Strength<br>(kai) | Comment               |
|------------|----------------------------|-----------------------------------------|-------------|-------------------------------------|---------|------------------------------------------|---------------|-------------------------------------|-----------------------------------------------------|-------------------------------|-----------------------|
| K10404 - 1 | 80°C - 6                   | (0. 5/135/0/ <u>90</u> )                | Stende      | 260°F/ 506 Hrs                      | 260 ₽   | 2                                        | ×             | 3.000                               |                                                     |                               |                       |
| ٠          | ı                          | [0/13/138/0/90]                         |             | Š                                   |         | 80                                       | 2             | 000.6                               |                                                     |                               |                       |
| #1060A - 3 | 9 - 0,051                  |                                         |             | 8                                   |         | 7.7                                      | 9             | 25,000                              |                                                     |                               |                       |
| •          | ٠                          | -                                       | Steedy      |                                     |         | 1,                                       | 3             | 195,000                             | •                                                   |                               |                       |
| 310404 - S | 9 - 0,051                  | [04/25/135/0/90]                        | Steady      | 260"F/ 500 Hrs                      | . 260"F | \$                                       | 57            |                                     | 2.014 × 10°                                         | 70.7                          |                       |
|            |                            |                                         |             | 741076                              |         |                                          |               |                                     |                                                     |                               |                       |
| 40 40 E    | 10.01                      | 0.0000000000000000000000000000000000000 | Cyclic      | 260 /4-045                          | 7.047   | 73                                       | 3:            | 77,000                              |                                                     |                               |                       |
| / - SOLE   | •                          |                                         |             | 000 / 1.007                         |         | ? i                                      | 6             | ,                                   |                                                     |                               | Immediate Tab Failure |
|            | •                          | [06/0/cs1/cs/0]                         |             | 8                                   |         | ٠ <u>٠</u>                               | 2             | 9,000                               |                                                     |                               |                       |
| - YOU'L    | 10.101                     | [0/1.5/135/0/90]                        |             | 8                                   |         | 5.69                                     | 53            | 000,064                             |                                                     |                               |                       |
| 01- 1000   | •                          | [06/0/SS1/Cw01                          | Cyclic      | 280 F/ 300 Cyc.                     | . 280°F | 75.5                                     | 79            | 66,000                              |                                                     |                               |                       |
| 1 - 8040 K | 9 - 0.350                  | [0//03/135/0/90]                        | Ceclic      | 260*F/1000 CVC                      | 260°F   | 75.5                                     | 59            | 210,000                             |                                                     |                               |                       |
| N 0408 - 2 | ## CO                      | _                                       |             |                                     |         | 87.5                                     | :             | 47,000                              |                                                     |                               |                       |
| X10408     | •                          | _                                       |             |                                     |         |                                          | . 20          | 000                                 |                                                     |                               |                       |
| ٠          | 9 - 0, 350                 | [0/15/135/0/90]                         |             |                                     |         | 3                                        | 25            | •                                   | 4. 344 x 106                                        | 63.7                          |                       |
| N1040B - 5 | •                          |                                         |             | 250*F/1000 Cyc.                     | . 260°F | 81.5                                     | 2             | 11,000                              |                                                     |                               |                       |
|            |                            |                                         |             |                                     |         | ř                                        | ,             | 8                                   |                                                     |                               |                       |
| 0 - 0000 H | •                          |                                         |             |                                     | _       | 7.                                       | 2 :           | 38                                  |                                                     |                               |                       |
| 7 - 000    | 640 C - 6                  |                                         | C. C. C. C. | 3 5                                 |         | 9 4                                      | 2 2           | 38                                  |                                                     |                               |                       |
|            | ٠                          | 100/0/SEL/ST/01                         |             | Ş                                   |         | 5 67                                     | 3             | 1 158 000                           |                                                     |                               |                       |
|            | 670 - 6                    | [0/12/133/0/40]                         |             | 350 Mrs                             | 350°F   | Se                                       | 45            | 818,000                             |                                                     |                               |                       |
|            |                            | (00) 0) 36 () 3 () 0)                   |             |                                     | 1000    | 7                                        | ,             | 6                                   |                                                     |                               |                       |
|            | •                          |                                         | Cyclic      |                                     |         | 16                                       | 2 4           | 98                                  |                                                     |                               |                       |
|            |                            |                                         |             | 5                                   |         | ;<br>;                                   | 2 4           | 26,36                               |                                                     |                               |                       |
| 4 4 4      |                            | [0/(5/135/6/90]                         |             | 350 F/ 500 Crc.                     | 350"    | 200                                      | 3 %           | 200                                 |                                                     |                               |                       |
|            | •                          | 0.00/0/5/11/5 //0/                      |             | 8                                   |         | . ec                                     | 3 3           | 200                                 |                                                     |                               |                       |
|            |                            |                                         |             |                                     |         | 3                                        | 3             | 2                                   | •                                                   |                               |                       |
| 8 - A140EM | ٠                          | [0//2/135/0/90]                         |             | 350*F/1000 Cyc.                     |         | *                                        | 09            | •                                   | 2.0 × 10 <sup>6</sup>                               | 0.08                          | Tab Failure           |
| 1.04th - 7 | 6 - 0.04                   | [0/(5/133/0/30]                         | Cyclife     |                                     |         | 103                                      | 65            | 382,000                             |                                                     |                               |                       |
| #.0614 - 8 | •                          | [0/(5/135/0/90]                         | Cyc Ite     | 350°F/1000 CY                       |         | 112                                      | 2             | 22,000                              |                                                     |                               |                       |
|            | 9 - 0,049                  | [0/4.5/135/0/90]                        |             | 350" F/1000                         | 350'F   | 109                                      | 89            | 295,000                             |                                                     |                               |                       |
| 01- Y H    | ٠                          | [0/(2/132/0/30]                         |             | 350°F/1000                          |         | 117                                      | 73            | 14,000                              |                                                     |                               |                       |





7

O

•

4

Ð

0

Ö

O

IJ



Þ



Ü

C

Ü

€.

<u>٠</u>.





Ö

Ç

TANTA XIV. GREEP AME STRESS RUPTEAR PROPERTIES STREET, AND AVOID 5505 FROMON, COMPOS, TTES

|                     |                         |                |               |                                 |         |             |          | !                            |                                          |                          |
|---------------------|-------------------------|----------------|---------------|---------------------------------|---------|-------------|----------|------------------------------|------------------------------------------|--------------------------|
| Spe Later<br>Ragber | Thickness (Files) (In.) | : 1 eut at ion | PRIOR O       | PLOR COMPITIONING Type Duratics | ž į į   | Stres level |          | Timero<br>Fallure<br>(Hours) | Applied<br>without<br>Failure<br>(Hours) | Comment                  |
| H.: 0078-11         | 6.037                   |                | ò             |                                 | 350°E   | æ           | 571      | ı                            | Ş                                        |                          |
| W1007F-12           | 0.031                   | * ()           | 3             |                                 | 260     | ,           | 7.       | 1                            | 2                                        |                          |
| W10078-13           | 6 6.031                 |                |               |                                 | 2.092   | ,           | 7 7      | ,                            |                                          |                          |
| 11-21 65%           | 6 0.031                 | ڻ<br>ن         |               |                                 | 760.    | 11          |          | •                            | 9                                        |                          |
| FC 900 78 - 15      | t 6,030                 |                | None          |                                 | 260°F   | <i>;</i>    | 74.16    | ı                            | 1000                                     |                          |
| #1007E-1            | e 0.031                 | č              | NOTE:         |                                 | 260°F   | ύL          | . 6      | ,                            | ,                                        | Instantaneous Facilities |
| #1 000 7A           | . 60 3                  |                | Acase         |                                 | 760°F   | -t          | 78       |                              | 1000                                     |                          |
| 31-8700 DE          | 5 (.03)                 | č              | Mone          |                                 | 260°F   |             | J        |                              | 1000                                     |                          |
| 5 9Z 00 TH          | . (c. 031               | • €            | Mone          |                                 | 7.092   | 43.5        | 7.4      | 1                            | 1000                                     |                          |
| #10078-2C           | 0.031                   | £              | Kone          |                                 | 760°F   | 1           | À        | ı                            | •                                        | Failed during loading    |
| #1006A-1            | r 6,03;                 | ·              | Kon           |                                 | 350.1   | 80          | 6        | ı                            | 1000                                     |                          |
| H1006A              | 0.031                   | i.             |               |                                 | 38C . F | **          | 66.3     | •                            | 1000                                     |                          |
| K1006A-3            | 110°0                   | ·              | Kop           |                                 | 380.1   | ř           | <br>[]   | 231                          | ,                                        |                          |
| H1006A              | 1 C 2 C                 | .,             | Motor         |                                 | 320     | ă           | 3.45     | •                            | 1001.4                                   |                          |
| ¥10008A - 5         | ٠ (٠ <b>ل</b>           | ز              | <b>H</b> CD.  |                                 | 350°F   | 36          | ,<br>•   | ,                            | 1000                                     |                          |
| #1008A              | 6                       | *.,            | NC P          |                                 | 350°F   | 7.          | 12-      | 6.1                          | ı                                        |                          |
| K1008A-             | £ €.02:                 | د ا            | <b>Bran</b> e |                                 | 350°F   | <b>ာ</b>    | 14.      | 5,4                          |                                          |                          |
| #1006K-4            | 150.0                   | ٠, ٠           | None          |                                 | 320.1   | Š           | 15.      | <b>∑9Z</b>                   | •                                        |                          |
| 5-7800 LI           | 0.433                   | L              | Mone          |                                 | 350°F   | 90          | 141      |                              | 1011                                     |                          |
| M1008A-10           |                         | ٠,             |               |                                 | 350'F   | 9           | <i>y</i> | 1                            | •                                        | Failed during loading    |
| 11.048-27           | 0.03                    | :,             | NO.           |                                 | 350°F   | Ĭ.          | . 36:    | ı                            | •                                        | Broke during localing    |
| 1000 L              | F 0.031                 | <b>.</b> c.    | <b>H</b> ope  |                                 | 350 •   | æ           | 14.      |                              | ,                                        | Broke during loading     |
| 1044-3              | t (C3)                  |                | Hope          |                                 | 350 F   | 9           | Š        |                              | •                                        | Broke during loading     |

**電視電視量の機能は関係のでは、これのできない。 との情報の主要を作りますのできる。はないのできませることでは、これでいることできませる。** 

AREA MIV CREEK AND THE COLD OF THE CASE OF THE SAME

|                 |       |               |                              |              |                    |                        | 1'             | : !               | !                     | , <u>;</u>                    |                                   |
|-----------------|-------|---------------|------------------------------|--------------|--------------------|------------------------|----------------|-------------------|-----------------------|-------------------------------|-----------------------------------|
|                 | Ē     | Thicks see    |                              | PRIOR        | PRIOR COMDITIONING | i i                    | Stress Level   | lers 1            | Tica<br>to<br>Fatlure | Applied<br>without<br>Failure |                                   |
| Part Land       | (7116 | (P1fes) (In.) | Orientation                  | Type         | Duration           | 3                      | (1°ult) (1:sf) | (l:st)            | (Hours)               | (Hours)                       | Coment                            |
| 1 174e          | 0     | 30            | [06/0/581/59/0]              | None         |                    | 260°F                  | 70             | 58                | ı                     | 1038                          |                                   |
| 2-14/61         | • •   | 8             | W)                           | 5            |                    | 3 <b>9</b> 0, <b>£</b> | 85             | 70.7              | 233                   | •                             |                                   |
| 1341-1          | · o   | 8             | :                            | None         |                    | 3.096                  | 80             | 56.1              | •                     | 1080                          |                                   |
| 7 17 12         | •     | 8             | :                            | None         |                    | 260°F                  | 7.5            | Ç.                | •                     | 1001                          |                                   |
| 5- <b>1</b> 100 |       |               | =                            | None         |                    | 3€ 397                 | •              | ı                 | ı                     | •                             | Specimen broke during fabrication |
| * ********      | ۰     | 1 20 2        | Ξ                            | į            |                    | 4,097                  | ÜΣ             | 50                | ,                     | 1006                          |                                   |
| 2-04-01         | • •   |               | :                            | - None       |                    | 260°F                  | Ę.             | 56.1              | 979                   | •                             |                                   |
| 2 TALOU         | •     |               | :                            | NO.          |                    | 3.092                  | ,              |                   | •                     |                               | Specimen broke during fabrication |
| 0-440           | 0     | 050           | :                            | 000          |                    | 260°F                  | 980            | 56.1              | ı                     | 1006                          |                                   |
| 01-14CH         | •     | 8             | [0/45/135/0/ <b>9</b> 0]     | None         |                    | 260°F                  | 85             | 39.7              | 17.2                  | r                             |                                   |
|                 |       | 2             | (00/0738173770)              | ě            |                    | 260°F                  | £              |                   | •                     | ,                             | Specimen broke during loading     |
| 10.00 AC        | ·a    | 1             | ×                            | ď            |                    | 260 F                  | 8              |                   | r                     | •                             | Specimen broke during loading     |
| 20,000          | ·or   | 3             | :                            | Noo.         |                    | 260 F                  | 95             |                   | •                     | ,                             | Specimen broke during loading     |
| 7               | •     | 8             | :                            | Nore         |                    | 260°F                  | 63             |                   | •                     |                               | Specimen broke during loading     |
| S. 6401         | · or  | 649           | ŗ                            | Mone         |                    | 2 <b>60°F</b>          | 92             |                   | •                     |                               | Specimen broke during loading     |
| 11049-32        | σ     | 840           | Ξ                            | Kone         |                    | 260°F                  | 45             |                   | •                     |                               | Specimen broke during loading     |
| 1 - 436 - 1     | ٠     | 2             | (06/0/\$8() \$4/J)           | Kone         |                    | 350°F                  | 70             | 35                | 20                    | •                             | Temp Control malfunctioned (J00°F |
| - 500           |       | d             | #                            | None         |                    | 350°F                  | 20             | 35                | 1.4                   |                               |                                   |
| F-3600          | •     | 2             |                              | ou.          |                    | 330.5                  | 080            | Ę.                | 618                   |                               |                                   |
| - XC31          | •     | 0.0           | ı                            | Kone         |                    | 320°F                  | 75             | đ:                | .87                   |                               |                                   |
| ne354-5         | •     | 0 049         | =                            | None         |                    | 350°F                  | 73.5           | £7.88             | <b>r</b> .            | •                             |                                   |
| 4 1961          | a     | 8             | ε                            | N.           |                    | 350°F                  | 02             | 55.1              |                       |                               |                                   |
| 110.33A-8       | •     | 0             | t                            | None         |                    | 350 F                  | 25             | 39.1              |                       |                               |                                   |
| 1.01%-B         | •     | 8             | •                            | None         |                    | 350°F                  | 70             | <br>              | 6.6                   |                               |                                   |
| - M.CO.         | •     | 0             | •                            | Mone         |                    | 350°F                  | 80             | <b>e</b> n<br>(1) | 61.4                  | •                             | •                                 |
| 1:0354-10       | ٠     | 6 do 0        | [0/45/135/0/901 <sub>8</sub> | None         |                    | 350°F                  | <b>8</b> 0     | <b>~</b>          |                       | ı                             | Instantaneous rallure             |
| 11049-37        | •     | 0             | [06/0/135/0/60]              | None         |                    | 350°F                  | 86             |                   | •                     | ,                             | Broken during loading             |
| 11041.21        | •     | 0.0           |                              | Kone         |                    | 350 F                  | <b>9</b> 6     |                   |                       | 1                             |                                   |
| 410a9-26        | •     | 8             |                              | <b>M</b> One |                    | 350°F                  | 95             |                   | 1                     | •                             | Broken during loading             |
| 110-19-28       | •     | 0             | =                            | Mone         |                    | 350°F                  | 76             |                   |                       | •                             |                                   |
| 1069-29         | •     | 0.0           |                              | au de        |                    | 350°F                  | 85             |                   | •                     | •                             | Broken during loading             |
| 1,00,9-21       | •     | 0,049         | [06/0/5(1/59/0]              | Mone         |                    | 350°F                  |                | 159.3             | •                     | ,                             | Overload                          |

C. E. M.W., CALED AND SIGNESS REPORTED BY HER LESS SUSPANDED AND ANGLOSOF COMPANIETES.

|                    |                            |              |         |                                     |                       |                                            |       | į                                | Time                            |                                   |
|--------------------|----------------------------|--------------|---------|-------------------------------------|-----------------------|--------------------------------------------|-------|----------------------------------|---------------------------------|-----------------------------------|
| Spictmen<br>Himber | Thickness<br>(Files) (In.) | Ortentation  | PRIOR C | PRIOR COMDITIONING<br>Type Duration | Teat<br>Temp.<br>(*F) | Stress Level<br>(T <sup>C</sup> ult) (ksf) | (kaf) | rick<br>co<br>Failure<br>(Hours) | Applied without Failure (Hours) | Compens                           |
| #1 17-11           | 2<br>0                     | \$           | ,<br>V  |                                     | 260°F                 | 20                                         | 05    | ı                                | ,                               | rathed during loading             |
| M1 17-14           | 770                        | Ç            | None    |                                     | 260°F                 | ) O                                        | 06.5  | .033                             | ,                               | Tab ayes falled                   |
| W1.17-15           | E 30.00                    | 0,7          | Kone    |                                     | 260°F                 | 06                                         | 2.90  | .016                             | •                               | Tab area fatled                   |
| 41 17-16           | \$ 70.0                    | , 03         | None    |                                     | 260°F                 | ě                                          | 3.43  | 413                              | •                               | Strain gage failed                |
| M1.17-17           | 8 0,045                    | : 06         | None    |                                     | 14. (4.)              | 980                                        | 5.25  | •                                | •                               | Pailed during loading             |
| 81-21. 1k          | 8 0.045                    | ,<br>()      | None    |                                     | 260°F                 | 80<br>80                                   | 5.72  | •                                | 1                               | load applied too quickly          |
| 1 - 601            | 8 0.045                    | , c6         | Kone    |                                     | 260°F                 | 85                                         | 5.58  | •                                | ,                               | Failed during loading             |
| M1 18-2            | 8 0.043                    | .06          | None    |                                     | 250°F                 | 93                                         | 5.45  | 0.10                             | ٠                               |                                   |
| 19-7               | 8                          | . 06         | Kone    |                                     | 260°F                 | 78                                         | 5,11  | 0.008                            | ,                               |                                   |
| M1 18-             | 8 0,045                    | •06          | None    |                                     | 260°F                 | 75                                         | 4.92  | 15.6                             | 1                               |                                   |
| W1 - 179-14        | 8 0.045                    | • 06         | None    |                                     | 260°F                 | 55                                         | 3.6   |                                  | 1005.3                          | Lost Strain Gage on Load          |
| M 178-15           | F 0.045                    | °06          | Жле     |                                     | 260°F                 | 65                                         | F     |                                  | 1005.1                          | Lost Strain Gage on Load          |
| M1:178-5           | 6 0.045                    | , O <b>6</b> | None    |                                     | 350°F                 | 202                                        | 2.13  | 1                                | •                               | Failed during loading             |
| W1 178-6           |                            | : 06         | Kone    |                                     | 350°F                 | 20                                         | 2.13  | 110                              | •                               | )                                 |
| 11.178-7           |                            | -06          | Kone    |                                     | 350°F                 | 75                                         | 2.28  | 541                              | 1                               |                                   |
| 41 178-8           | 20.00                      | <b>3</b>     | Kone    |                                     | 350 F                 | 75                                         | 2.28  | 867                              |                                 | Strain gage failed after 193 hrs. |
| 11 178-9           |                            | • 06         | None    |                                     | 350°F                 | 080                                        | 2.44  | 387                              | •                               |                                   |
| W1 173-10          |                            | •06          | None    |                                     | 350 F                 | <b></b>                                    | 2.44  | 209                              |                                 |                                   |
| M1 178-11          | 8 0,045                    | °<br>8       | None    |                                     | 350°F                 | 85                                         | 2.58  | 3                                |                                 |                                   |
| W1 18-72           | 0.045                      | .0           | Mone    |                                     | 350°F                 | 85                                         | 2.58  | 154.3                            | •                               |                                   |
|                    |                            | \$           | aco.    |                                     | 350 F                 | 8                                          | 2.74  | 126.8                            | •                               |                                   |
| \$ - S             | 440.0                      | 06           | No.     |                                     | 350°F                 | 8                                          | 2.74  | 14.8                             | •                               |                                   |

|                                                                                                                                                                              |           |                           | :           | !!                  |                           |                  |              | :         |                                   | į į                                      |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|-------------|---------------------|---------------------------|------------------|--------------|-----------|-----------------------------------|------------------------------------------|-------------------------------------|
| pecimen<br>Munber                                                                                                                                                            | Th<br>P11 | Thickness<br>Plies) (In.) | Ortentablon | add.                | Type Duration             | Trab.            | "tras low!   | (ks!)     | 11<br>to<br>545 June<br>19. cers) | Appl of<br>without<br>Failure<br>(Heurs) | Comment                             |
| 1-450                                                                                                                                                                        | 4         | 1807.9                    |             | ţ                   | · L.                      |                  | ,            | ŗ         | •                                 | ,                                        | Tab failure - hrive during ' acting |
| 12 T                                                                                                                                                                         | ٤         |                           | •           | ÷                   | , : · · · · · · · · · · · |                  | r            | •         |                                   | ı                                        | TITE                                |
| 1.048-3                                                                                                                                                                      | 4         | 11.631                    | -           | ž                   | 1(M) 11.7 .               | •                | ;            | ÷         |                                   | •                                        | Tab failure - hrray turing loading  |
| 7-4703                                                                                                                                                                       | 4         |                           | =           | •                   | i,                        | :                | ,            | •         | ,                                 | •                                        | Tab failure - brake during loading  |
| 10.8-5                                                                                                                                                                       | •         | E - 1                     | Ξ           | ;                   |                           | -                | <i>t.</i>    | <i>.</i>  | 1                                 | ı                                        | Tab failure - 'rake during leading  |
| 6.1-8-00.19                                                                                                                                                                  | •         | : -                       | 3           | ia<br>1             | 1 42                      | -<br>-<br>-<br>- |              | -         | 17.4                              | 1                                        |                                     |
| - ( - K - 30 )                                                                                                                                                               | ٤.        | C 34                      | c           | #<br>*              |                           | Į.<br>Į          |              | <u>.</u>  | ¥ \$ -3 *.                        | 1                                        |                                     |
| _1-6506[                                                                                                                                                                     | 1         | ( b)                      | c           | ##<br>  C           | Total Street              | <u>ب</u><br>ج    | :            | ·.        | ,                                 | 1                                        | Strain gage failed                  |
| #1-850C                                                                                                                                                                      | £         | <b>(</b>                  | ε           | ¥.                  |                           | -                | ŗ            | •         | ,                                 | •                                        | Oven overheated                     |
| 71-85U(17                                                                                                                                                                    | 4         | 5000                      | E           | .Ti<br>;≇<br>™<br>? | 135 44                    | •                |              | •         | ì                                 | 1000                                     |                                     |
| ر.<br>د. او د د د                                                                                                                                                            | 4         | 16.                       | Ξ           | 7                   | ,<br>,<br>,               | -,               | ,            |           | Î                                 | ,                                        | (wen overheated                     |
| 11068-7                                                                                                                                                                      | ı         |                           | c           | д<br>т              | S.M. Here.                | ٠<br>+ (         | •            | ,         | 1                                 | •                                        | Oven overheated                     |
| \$1.04 F - 8                                                                                                                                                                 |           |                           | С           | I.                  | SON) HTV.                 | <br>             | عر           | =         |                                   | •                                        | Oven werheated                      |
| \$-43C                                                                                                                                                                       | •         | 150.0                     | c           | H.                  | . O HTA                   | 3311 F           | <i>;</i> -   | <b>₹</b>  | ī                                 | •                                        | Oven overheated                     |
| 7₺€-13</td <td>1.</td> <td>(.631</td> <td></td> <td>, X</td> <td>SOFT HEN.</td> <td>3 JES</td> <td>.:</td> <td><u>\$</u></td> <td>ı</td> <td>•</td> <td>Oven overheated</td> | 1.        | (.631                     |             | , X                 | SOFT HEN.                 | 3 JES            | .:           | <u>\$</u> | ı                                 | •                                        | Oven overheated                     |
| 81010A-0                                                                                                                                                                     | 1         | <b>1</b>                  | 9           | E<br>SE<br>T        | , and hre,                | 199              | ~            | <u>,</u>  | 1                                 | ,                                        | Failed during loading               |
| 410104-6                                                                                                                                                                     | £         | 0.033                     | ę           | 7<br>7              | 1 you liez.               | 5.5              | <del>;</del> | 15.4      |                                   |                                          |                                     |
| ( - <b>V</b> ) ( 0 )                                                                                                                                                         | 4         |                           | ç           |                     | 1: 00 Prs.                | 100 F            | J<br>X       | ,<br>,    | ,                                 | ,                                        | Failed during loading               |
| 10101-6                                                                                                                                                                      | 4         | -1                        | عر          | T.                  | 1000 Hrs                  | 404              | í.<br>X      | <u>,</u>  |                                   | •                                        | Failed during loading               |
| 5-7.1-7.                                                                                                                                                                     | 4         | ¥.                        | -           | ¥,,,                | 1000 Hrs.                 | 150 F            | J.           | 1-3       | ı                                 | •                                        | Failed during loading               |
| 11-841                                                                                                                                                                       | ٢         | 160.0                     | ~           | E A                 | The printer of the        | 4 (147           | •            | 145.3     | ,                                 | •                                        | Split lengthwise                    |
| 21-84U.                                                                                                                                                                      | 4         | , n31                     | ث           | 上。由此                | The pro-Harddity Cv. L.   | 14 (14)          |              | · ·       | ,                                 | •                                        | Split lengthwise                    |
| E1-89-13                                                                                                                                                                     | 1         | 0.431                     | ·ċ          | L                   | THE AMERICA CO. In        | 3:092            | ٠            | 151.6     | 1                                 |                                          | Tab failure - broke during loading  |
| 1.048-14                                                                                                                                                                     | £         | 0,311                     | ·C          | FFT                 | Haridit.                  | 3,042            | yκ           | 154.5     | •                                 | 1                                        | Tab failure - broke during loading  |
| .1-450                                                                                                                                                                       | 1         |                           | ÷           | 10 L                | The pro-Hamildity (Note)  | 240 8            | †**.<br>**   | 153.2     | 1                                 |                                          | Tab failure - broke during loading  |
|                                                                                                                                                                              |           |                           |             |                     |                           |                  |              |           |                                   |                                          |                                     |

| Number       | Thick<br>(Plies | Thickness (Plies) (in.) | Orientation     | PATOR C      | PRIOR CONDITIONING Type Duration | Test<br>Temp.<br>(°F) | Stress Level<br>(2 <sup>c</sup> ult) (ks1) | Level<br>(ks1) | Time<br>to<br>Failure<br>(Hours) | Appled without Failure (Hours) | Comment                            |
|--------------|-----------------|-------------------------|-----------------|--------------|----------------------------------|-----------------------|--------------------------------------------|----------------|----------------------------------|--------------------------------|------------------------------------|
|              |                 |                         |                 |              |                                  |                       |                                            |                |                                  |                                |                                    |
| N1C48-16     | 9               | 0.031                   |                 | Therra-Ilu   | midity Cycle                     | 350°F                 | 65                                         | 114.0          | 1.50                             | •                              | Tab failure                        |
| N1048-17     | •               | 0.031                   | .0              | There-Hu     | midity Cycle                     | 350°F                 | 79                                         | 112.8          | 0.82                             |                                | Broke during loading - near middle |
| N10-8-18     | ú               | 0.031                   | 0 °             | The Trans-Hu | midity Ovely                     | 3.05k                 | 63                                         | 5.011          | 0.47                             | •                              | Broke during loading - near middle |
| N1648-19     | œ               | 0.031                   |                 | at-CF-F      | midity Cycly                     | 350°F                 | <u> </u>                                   | 108.0          | 320                              |                                |                                    |
| N1048-20     | φ.              | 0.031                   |                 | Therro-Hu    | Therro-Humidity Cycle            | 350°F                 | 67                                         | 117.6          | •                                | ı                              | Tab failure - broke during loading |
| M1048-31     | φ               | 0.031                   | ٥٥              | The Hu       | midity Cvely                     | 350 F                 | 38.5                                       | 68.3           | •                                | 1000                           |                                    |
| 95-870 LX    | · «c            | 1100                    | °C              | The Tried    | midity Cycle                     | 350 °F                | 90                                         |                |                                  | 1000                           |                                    |
| N1048-34     | <b>.</b>        | 0.931                   | . 0             | Thermo-Hu    | Thermo-Humidity Cycle            | 350°F                 | 36                                         | 63             | 117.6                            | •                              |                                    |
| N1 009B - 20 | vo              | 0.033                   | 0,              | ACC. W       | Wthrng.                          | ₫,697                 | 91                                         | 143            | 419                              | 1                              |                                    |
| N10:04-1     | ve              | 0.033                   | ,0              | Acc. W       | Wthrog.                          | 3,60 ⋅ ₽              | 68                                         | 139            | 921                              | ,                              |                                    |
| N1010A-2     | · •             | 0.033                   | 0,0             |              | Wthrng.                          | 3,09€                 | 87                                         | 136            | ,                                | 1000                           |                                    |
| N1010A-3     | 9               | 0.033                   | ô               | Ac: W        | Wthrng                           | 3.00°E                | 85                                         | 130            |                                  | 1000                           |                                    |
| 41010A-4     | •               | 0.033                   | •0              | Acc. W       | Withing.                         | <b>3.09</b> ₹         | 83                                         | 130            | 11.4                             | •                              |                                    |
| N10104-10    | vo              | 0.034                   | .0              | Acc.         | Wthrng.                          | 350 · F               | 06                                         | 131            | ,                                | ı                              | during                             |
| N1010A-11    | 40              | 0.034                   | 0.              |              | Wthrng.                          | 350°F                 | 92                                         | 134            | ı                                |                                | during                             |
| N10:04-12    | <b>5</b> 0      | 0.033                   | •0              |              | Wthrng.                          | 350%                  | 76                                         | 137            | •                                | •                              | during                             |
| N1010A-13    | vo              | 0.034                   | ٥٥              |              | Wthrng.                          | 350°F                 | 96                                         | 140            | •                                |                                |                                    |
| N1010A-14    | νo              | 0.034                   | .0              | Acc. W       | Wthrng.                          | 320 ₺                 | 80                                         | 143            | i                                | •                              | Failed during loading              |
| N1049-1      | œ               | 0,049                   | [0/45/135/0/90] | / EN %86     | 500 Hrs.                         | 3,092                 | 86                                         | 62             | .016                             | 1                              | Broke at tab                       |
| 2-67018      | o o             | 0.040                   |                 |              |                                  | 260° 5                | 97                                         | 78             | 2                                |                                | Broke at Tab                       |
| V1049-3      | ď               | 0.048                   | z               | 987 R        | 500 Hrs.                         | 260°F                 | 86                                         | 79             | •                                | •                              | Broke during loading               |
| 31049-4      |                 |                         |                 |              |                                  |                       |                                            | i              | ,                                |                                | •                                  |
| 3-670TN      | σ,              | 0.048                   | ÷               | 987. RE /    | 500 Hrs.                         | 260°F                 | 80<br>6                                    | 79             | -                                | ı                              | Broke at tab                       |
| 410.012      | σ               | 6.40                    | =               |              | 560 Hrs.                         | 350°F                 | 88                                         | 61.1           | 252.2                            | •                              |                                    |
| 7-0707       | · o             | 870                     |                 |              |                                  | 350°F                 | 90                                         | 62.5           | 183.2                            | •                              | Tab failure - slipped 1/8"         |
| 8-67017      | ۰ ۵             | 0.048                   | =               | 987 R        |                                  | 350°F                 | 93                                         | 9.49           | 5,1                              | •                              |                                    |
| 6-6701k      | , <b>6</b>      | 0.00                    | =               | 987 R.       | 500 Hrs.                         | 356°F                 | Şó                                         | 0.99           | 239.8                            | •                              |                                    |
| 11049-10     | 6               | 0.047                   | [0/45/135/0/90] | 987. R.: /   | 500 Hrs.                         | 350°F                 | 86                                         | 68.1           | 168.9                            | ,                              |                                    |

TABLE XET CREEP AND STRESS RUPITRE PROPERCIES FORMARY AVIO 5505 FORMON CACIPOSITIES

|                                                  | rícetíon                                                                |                                                          | loading<br>Loading<br>Loading                                                                                                                   |                                                                      |                                                                                                                                   |
|--------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Couperit                                         | Oven overheated<br>Spec. broke during fahricetion                       |                                                          | Tab failure<br>Specimen broke during loading<br>Specimen Broke During Loading<br>Specimen Broke During Loading<br>Specimen Broke During Loading | Broke during loading<br>Broke during loading<br>Broke during loading | Broke during loading<br>Broke during loading<br>Broke during loading                                                              |
| Tim.<br>Applied<br>without<br>Failure<br>(Hours) | 1000                                                                    | 1000                                                     | 11111                                                                                                                                           |                                                                      |                                                                                                                                   |
| Time<br>to<br>Failure<br>(Hours)                 | .043<br>\$1.5<br>-<br>-                                                 | 96.3<br>0.134<br>336                                     |                                                                                                                                                 |                                                                      | 1.0<br>27 min<br>-<br>-<br>8 min                                                                                                  |
| Leve 1 (ks1)                                     | 70.6<br>69.2<br>66.1<br>51.5                                            | 71.4<br>72.9<br>65.2<br>67.7<br>65.4                     | 76.5<br>78<br>71.5<br>67.6<br>71.5                                                                                                              | 79.8<br>79.0<br>78.2                                                 | 60.3<br>66.3<br>66.3<br>60.9                                                                                                      |
| Stress Level                                     | 92<br>90<br>86<br>80                                                    | 96<br>98<br>93<br>93<br>88                               | 95<br>98<br>90<br>90<br>90                                                                                                                      | 99<br>98<br>97<br>84                                                 | 99899999999999999999999999999999999999                                                                                            |
| Test<br>Temp.<br>(*F)                            | 260°F<br>260°F<br>760°F<br>20°F<br>200°F                                | 350°F<br>350°F<br>350°F<br>350°F                         | 260°F<br>260°F<br>260°F<br>260°F                                                                                                                | 260°F<br>260°F<br>260°F                                              | 350 50 FF                                                                                     |
| PRIOR CONDITIONING<br>Type Duration              | / 1060 Hrs.<br>/ 1060 Hrs.<br>/ 1060 Hrs.<br>/ 1060 Hrs.<br>/ 1000 Hrs. | / 1000 Hrs.<br>/ 1000 Hrs.<br>/ 1000 Hrs.<br>/ 1000 Hrs. | mmidity Cycle<br>mmidity Cycle<br>mmidity Cycle<br>midity Cycle<br>midity Cycle                                                                 | midity Cycle<br>midity Cycle<br>midity Cycle                         |                                                                                                                                   |
| PRIOR O                                          | 987. RH<br>987. RH<br>987. RH<br>987. RH                                | 987, RH<br>987, RH<br>987, RH<br>987, RH                 | Thermo-Humidity<br>Thermo-Humidity<br>Thermo-Humidity<br>Thermo-Humidity<br>Thermo-Humidity                                                     | Thermo-Humidity Thermo-Humidity Thermo-Humidity                      | Thermo-Hunfalty<br>Thermo-Hunfalty<br>Thermo-Hunfalty<br>Thermo-Hunfalty<br>Thermo-Hunfalty<br>Thermo-Hunfalty<br>Thermo-Hunfalty |
| Oxtentation                                      | [C/45/135/0/90]                                                         | *( <u>06</u> /0/\$£1/\$ <b>7</b> /0]<br>""               | [0/45/135/0/ <u>90]</u>                                                                                                                         | "<br>[5/65/135/0/90]                                                 | [05/0/511/54/0]                                                                                                                   |
| Thickness (Plies) (In.)                          | 0.051<br>0.052<br>0.052<br>0.051                                        | 0.051<br>0.051<br>0.050<br>0.051<br>0.050                | 0.048<br>0.048<br>0.048<br>0.048                                                                                                                | 0.048                                                                | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                             |
| Thic<br>(Plies                                   | 0,000                                                                   | ው ው ው ው ው                                                | <b>ማ ማ ም ማ ማ</b>                                                                                                                                | თთი თ                                                                | ათთით თათ                                                                                                                         |
| Specimen<br>Muncher                              | N10578-1<br>N10578-2<br>N10578-3<br>N10:78-4<br>N10578-5                | M1058A-1<br>N1058A-2<br>M1058A-3<br>N1058A-4<br>A1058A-5 | N102 9-11<br>N102 9-12<br>N102 9-13<br>N102 9-14<br>N102 9-15                                                                                   | N1049-31<br>N1049-34<br>N1049-35                                     | N1069-12<br>N1069-13<br>N1069-19<br>N1069-20<br>N1069-22<br>N1069-38                                                              |

TABLE XIV CREEP AND STRESS WIPTURE PROPUELLES FINHARY AVOX 5505/BORON COMPOSITES

. c

| Congrent                                | Strain gage failed<br>Strain gage failed                         |                                                                  | Failed in loading                                                                                                         | Pailed in Loading                                                                                                         | Failed during loading Pailed during loading Failed during loading Immediate failure Failed during loading                 | Immediate failure<br>Strain gage failed after .25 hr.<br>Immediate failure<br>Immediate failure                           |
|-----------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Time Applied without Failure (Hours)    | 1001<br>1001                                                     | 1901<br>1001<br>-<br>1001<br>1000                                | 1001                                                                                                                      |                                                                                                                           |                                                                                                                           | 1000                                                                                                                      |
| Time to Failure (Hours)                 | 167.9<br>31.6<br>14.4                                            | 116                                                              | 198                                                                                                                       | .014<br>.05<br>.067                                                                                                       |                                                                                                                           | 9.                                                                                                                        |
| Stress Level (I <sup>G</sup> ult) (ks1) | 94 69.1<br>96 70.6<br>98 72.1<br>90 66.2                         | 93 53.6<br>95 65<br>98 67<br>90 61.5<br>88 60.1                  | 70 118<br>75 127<br>80 135<br>85 144<br>90 152                                                                            | 95 144<br>92 140<br>90 137<br>88 134<br>85 129                                                                            | 93 167<br>94 169<br>90 161<br>91 163<br>89 160                                                                            | 93 162<br>80 139<br>92 161<br>86 153<br>90 157                                                                            |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | 260°F<br>260°F<br>260°F<br>260°F<br>260°F                        | 350°F<br>350°F<br>350°F<br>350°F                                 | 260°F<br>260°F<br>260°F<br>260°F<br>260°F                                                                                 | 350°F<br>350°F<br>350°F                                                                                                   | 260°F<br>260°F<br>260°F<br>260°F<br>260°F                                                                                 | 350°F<br>350°F<br>350°F<br>350°F                                                                                          |
| PRIOR COMDITIONING                      | Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. | Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. | Steady 260°F/500 Hrs.<br>Steady 260°F/500 Hrs.<br>Steady 260°F/500 Hrs.<br>Steady 260°F/500 Hrs.<br>Steady 260°F/500 Hrs. | Steady 260*F/500 Hrs.<br>Steady 260*F/500 Hrs.<br>Steady 260*F/500 Hrs.<br>Steady 260*F/500 Hrs.<br>Steady 260*F/500 Hrs. | Steady 350°F/500 Hrs.<br>Steady 350°F/500 Hrs.<br>Strady 350°F/500 Hrs.<br>Steady 350°F/500 Hrs.<br>Steady 350°F/500 Hrs. | Steady 350°F/500 Hrs.<br>Steady 350°F/500 Hrs.<br>Steady 350°F/500 Hrs.<br>Steady 350°F/500 Hrs.<br>Steady 350°F/500 Hrs. |
| Ortentation 7)                          | [0/45/135/0/90]s                                                 |                                                                  | 0 0 0 0                                                                                                                   | 0° S S C C O O O O O O O O O O O O O O O O                                                                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                     |                                                                                                                           |
| Thickness (Plies) (In.)                 | 9 0.051<br>9 0.051<br>9 0.051<br>9 0.051<br>9 0.051              | 9 0.036<br>9 0.036<br>9 0.036<br>9 0.036                         | 6 0.034<br>6 0.034<br>6 0.033<br>6 0.033<br>6 0.033                                                                       | 0.034<br>6 0.033<br>6 0.033<br>6 0.033<br>6 0.034<br>6 0.034                                                              | 6 0.033<br>6 0.033<br>6 0.033<br>6 0.033<br>6 0.033                                                                       | 6 0.035<br>6 0.035<br>6 0.033<br>6 0.033<br>6 0.033                                                                       |
| Coclass                                 | 10378-6<br>10378-7<br>10378-8<br>10378-9                         | 3.48.60<br>1.0384-8<br>1.0384-8<br>1.0384-9                      | 1.0116-16<br>1.0118-17<br>1.0118-18<br>1.0118-19<br>1.0118-20                                                             | 12012A-1<br>12012A-2<br>12012A-3<br>12012A-4<br>12012A-5                                                                  | 1,312A-16<br>1,312A-17<br>1,312A-18<br>1,312A-19<br>1,312A-20                                                             | F10128-1<br>F10128-2<br>F10128-3<br>F10128-4                                                                              |
|                                         |                                                                  |                                                                  |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                                           |

一種では、「日本のでは、これには大きなはいない。 一世の一大をから、そのには、はなり、トラ

TARLE XIV. GREEP AND STRESS RUFITURE PROPERTIES STOWARY AND \$505 Horder Compositives.

| ္အခရီ၁                 | Thie   | Thickness     |                 | PRIOR COMDITIONING    |          | Teat  | Stress Level  |      | Time to Failure | Time<br>Applied<br>without<br>Feilure |                                     |
|------------------------|--------|---------------|-----------------|-----------------------|----------|-------|---------------|------|-----------------|---------------------------------------|-------------------------------------|
| Marcher                | (Plies | (Plies) (ln.) | Orientation     | Type 2-re             | P-ration | (£)   | (Toule) (ket) | l    | (Hours)         | (Horrs)                               | Coment                              |
| M10418-                | 6      | 0.050         | [0/45/135/0/90] | Steady 260°F/500 Hrs. | Mrs.     | 260°F | 70            | 58.9 |                 |                                       | Ovens overheated, spec. delaminates |
| M10418-                | 6      | 6.0           | <b>10</b>       | Steady 260°F/50       | S Hrs.   | 260°F | 7.5           | 63.1 | ,               | 1007                                  |                                     |
| M0418-                 | 6      | 0.049         | =               |                       | N Hrs.   | 260°F | 90            | 67.3 | 3.7             | 1                                     |                                     |
| H10413-                | ታ      | 0.050         | :               | Steady 260"F/500      | NO HES.  | 260°F | 85            | 71.6 | •               | 1032                                  |                                     |
| M1041F-                | 6      | 0.049         | =               |                       | M Hrs.   | 260°F | 06            | 75.8 |                 | •                                     | Immediate failure                   |
| M10418-                | •      | 0.051         | ī               | St : ady 260 F/50     | X Hrs.   | 350°F | ;}            | 6,   | 910.            | ,                                     |                                     |
| *1041B-                | 6      | 0.050         | :               | Steady 260°F/50       | Mrs.     | 350°F | 06            | 75.6 | -:              | •                                     |                                     |
| <u>୍କମ</u> <b>୪</b> ୦୮ | 6      | 0.051         | :               | Steady 260 F/560 P    | So Hrs.  | 350°F | 88            | 7.7  | .33             | •                                     | Strain Gage Falled                  |
| C-81 401N              | 6      | 0.050         | :               | Stcady 260°F/500      | M Hrs.   | 350°F | 85            | 71.4 | .51             |                                       | Strain Gage Failed                  |
| C 81 401N              | 6      | 0 051         | [0/45/135/0/90] | Steady 260°F/500      | Mrs.     | 350°F | <b>8</b> 0    | 67.2 | 7.67            | •                                     | Strain Gage Failed                  |
| W10428-                | 0      | 0.052         | [0/45/135/0/90] | Steady 350°F/500      | X Hrs.   | 260°F | 95            | 75.6 | .01             | •                                     |                                     |
| N1042B-                | 6      | 0.052         | •               |                       | Mrs.     | 260°F | <b>6</b> 5    | 73.2 | 102             |                                       |                                     |
| 31042B-                | 6      | 0.051         |                 | Steady 350 F/500 P    | 30 Hrs.  | 260°F | *             | 74.8 | .016            | •                                     |                                     |
| N10428-                | 6      | 0,051         |                 |                       | M Hrs.   | 260°F | 88            | 70.0 | 24.6            | •                                     |                                     |
| 31042B-                | 9      | 0.051         | =               |                       | Mrs.     | 260°F | 8             | 71.6 | . 25            | 1                                     | Strain gage failed                  |
| H10428-(               | ø      | 0.052         | Ξ               | Steady 350°F /500 P   | Mrs.     | 350°F | Ł             | 75.7 | 910.            | •                                     |                                     |
| K10428-                | 6      | 0.051         |                 | Steady 350*F/50       | W Hrs.   | 350.7 | 96            | 72.5 | .25             | •                                     | Strain gage failed                  |
| H10428-1               | ø      | 0.051         | =               | Steady 350°F/500 1    | N Hrs.   | 35C*F | 88            | 6.07 | 16.5            | •                                     | ,                                   |
| K10428-5               | 6      | 0,050         | =               | Steady 350 7 /50      | N Hrs.   | 350°F | <b>76</b>     | 67.7 | 42.6            | •                                     | Strain gage failed after .05 hr.    |
| #1042B-                | 50     | 0.050         | [0/45/135/0/90] | Steady 350 F /500     | NO Hrs.  | 350°F | <b>8</b> 0    | 7,49 | 7.8             | •                                     | Strain gat: falled after 1 hour     |

TABLE XIV CREEF AND CONSISTENCY OF CIPPELLY SOMEON AND CONTRACTORS

| Comment Failed in Loading ING ING ING ING ING Strain gage failed Strain gage failed | Failed in LA PRECONDITIONING P |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strain gage failed                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| train                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| train gage f                                                                        | Strain gage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| train gage faile<br>train gage faile                                                | Strain gage<br>Strain gage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| illed in Locaing                                                                    | Failed in L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9                                                                                   | NING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ailed in Loading                                                                    | Failed in LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ven overheated                                                                      | Oven overhea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10AGHU                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| í                          |               |                 |               |             | Test  | ė                          | •              | Time<br>to         | Time<br>Applied    |                      |  |
|----------------------------|---------------|-----------------|---------------|-------------|-------|----------------------------|----------------|--------------------|--------------------|----------------------|--|
| Spectmen in<br>Number (Pii | (Pites) (in.) | Orlentation     | Type Duration | Duration    | (•)   | (Z <sup>d</sup> ult) (ksi) | Level<br>(kai) | Failure<br>(Hours) | Feilure<br>(Hours) | Comment              |  |
| 6 1-07501                  | 0.050         | (0/45/135/0/90  |               | _           | 2607F | 06                         | 96.3           |                    | 1000               |                      |  |
| . 6                        | 0.050         |                 |               | / 1000 cvc. | 260°F | 95                         | 70             | 887                | ,                  |                      |  |
| 3                          | 0.050         | •               |               | _           | 260°F | 86                         | 72.2           | •                  | •                  | during               |  |
| 5                          | 0.050         | :               |               | _           | 260°F | \$                         | 70.7           |                    |                    | during               |  |
| 41047C-5 9                 | 0.050         | =               | Cyclic 350°F  | / 1000 cyc. | 260'F | 93                         | 68.5           | ,                  |                    | Broke during leading |  |
| 9                          | 0.051         | ÷               |               |             | 350°F | 85                         | 53.1           | 25.7               | •                  |                      |  |
| M1-420-7                   | 0.051         | =               |               |             | 350°F | 83                         | 51.8           |                    | 1000               |                      |  |
| 6                          | 0.050         | :               | Cyclic 350°F  | / 1000 cyc. | 350°F | 90<br>90                   | 55             |                    | 1000               |                      |  |
| 6                          | 0.050         | =               |               |             | 350°F | 06                         | 56.3           | •                  | ,                  | Oven overheated      |  |
| 10426-10 9                 | 0.050         | [0/45/135/0/90] | Cyclic 350°F  | / 1000 cyc. | 350°F | 06                         | 56.2           | 3.4                | ,                  |                      |  |





J

IJ









Ċ

5

C

J

7

.,



¥

Ļ

Ž.

Ü

\*\*\*\*

ŧ

.. 5

v U •

CEY



A CONTRACTOR OF THE CONTRACTOR

0

Ţ,

J



**\***:



Ū

U

**(**:



関大の世界となるのかの いからなる あいない ちょうしゃ

1

,



O

O

0

0

0

Đ

C

•

## APPENDIX II

## DATA SUMMARY FOR MOI MOR II GRAPHITE/NARMCO 5206 COMPOSITES

HT RESEARCH INSTITUTE

## TABLE OF CONTENTS

## APPENDIX II

| <u>Item</u> | Description                                                                                          | Pages            |
|-------------|------------------------------------------------------------------------------------------------------|------------------|
| 1           | Table XV - Static Properties Summary - Narmco 5206/Modmor II Graphite Composites                     | 281-295          |
| 2           | Figs. 270 to 335 Static Stress-Strain Curves                                                         | 296-312          |
| 3           | Table XVI - Fatigue Properties Summary - Narmo 5206/Modmor II Graphite Composites                    | 313- <b>3</b> 23 |
| 4           | Figs. 336 to 358 Fatigue S-N Curves                                                                  | 324-329          |
| 5           | Table XVII - Creep and Stress Rupture Properties Summary - Narmco 5206/Modmor II Graphite Composites | 330-339          |
| 6           | Figs. 359 to 373 Stress Rupture Curves                                                               | 340-343          |
| 7           | Figs. 374 to 405 Creep Strain Versus                                                                 | 343-351          |

STATIC PROPERTY STORMS CARNOOL STORMS CANNOT STORM THE CONTRACT THE CO

では、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmの

| Crientation            | Type Coat      | 60.<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | (F)            | . 10°. | ,<br>(in/in) | Cult<br>(kg1) | ευις<br>(μ-ία./im.) |
|------------------------|----------------|-------------------------------------------------|----------------|--------|--------------|---------------|---------------------|
| .0                     | Tens ivn       | N DC N                                          | KTD            | 22.5   | 0.30         | 191           | 6,920               |
| ם ב                    | lension        | None                                            | 3 <b>,09</b> ℃ | 22.5   | 0.26         | 150           | 6,780               |
| 0,                     | Tension        | Nobe                                            | 350°F          | 25.0   | 0.23         | 150           | 6,040               |
| ÷06                    | Tension        | 57.<br>1                                        | KIL            | 1.28   | 0.05         | 5.2           | 7,050               |
| , O <b>6</b>           | Tension        | 7.00                                            | 3°0°£          | Ĝ      | 6.05         | 3.1           | 3,130               |
| ²06                    | Tension        | Mone                                            | i°05£          | 0.81   | 0.05         | 3.0           | 4,510               |
| /45/135/0/ <u>90</u> ] | Tension        | !<br>95                                         | ETD            | 11.1   | 0.38         | 7.2           | 6,610               |
| [0.45/135, 0.790]      | Tension        | 3. J.                                           | i,00?          | 21.6   | 0.45         | 87            | 7,200               |
| 45-133-6 <u>97.</u> ]  | _ension        | None                                            | 356 8          | or<br> | 6.45         | 79            | 7,090               |
| Č                      | ucissarinoj    | Total                                           | KŢD≠           | £.8.   | 0.75         | 141           | 7,610               |
| 90                     | Corression     | one.                                            | RT D=          | 20.5   | 0.24         | 146           | 7,830               |
| 0٠                     | Compression    | None                                            | 260°F          | 20.0   | 0.37         | 138           | 7,570               |
| 0.                     | Compression    | Notice                                          | 350°F*         | 18.9   | 0.66         | 123           | 6,790               |
| Û÷                     | Compression    | None<br>Section                                 | 320, ċ≠        | 19.8   | 0.25         | 129           | 6,150               |
| 。0 <b>6</b>            | Compression    | None                                            | KT D*          | 1.71   | 0.03         | 24.7          | 20,340              |
| 306                    | (ompression)   | X556                                            | RTD*           | 1.47   | 0.01         | 24.9          | 16,970              |
| ,06                    | Conpression    | None                                            | 260°F          | 1.06   | 0.01         | 21.1          | 530° 000            |
| , <b>06</b>            | Company as ion | None<br>Second                                  | 350 F*         | 1.20   | 0.00         | 17.3          | 000 °0€<            |
| ;                      |                |                                                 |                |        | •            | ,             | 000                 |

| Orientation                  | Typ. load      | Sittle 12 to 1 | it Temp.<br>(°F) |                                       | ,<br>(10/10) | Jult<br>(k41) | ε <sub>ux</sub> t<br>(μ-in./in.) |
|------------------------------|----------------|----------------|------------------|---------------------------------------|--------------|---------------|----------------------------------|
| [0/45/135/0/90]              | Complession    | None           | # <b>Q</b> **,   | · · · · · · · · · · · · · · · · · · · | 7.53         | 66            | 10,080                           |
| [0/45/135/0/96]              | Compression    | None           | RTD*             | <br>O                                 | 15.0         | 3             | 11,730                           |
| [0/45/135/0/90]              | Compression    | None           | 250°F            | 9.6                                   | 65.0         | 95            | 9,320                            |
| [0/41/135/0/90]              | Compression    | None           | 350°F*           | 7.01                                  | 95.0         | . <b>.</b>    | 8,780                            |
| [0/45/135/0/90]              | Compression    | Nune           | 350°             | 9.1                                   | ٦,4          | 6.5           | 9,320                            |
| 0                            | In-Plane Shear | None           | RTD              | •                                     | ı            | 2 h           | •                                |
| ီ၀                           | in-Plane Shear | None           | 260°F            | •                                     | •            | 7 3           |                                  |
| 0                            | In-Flane Shear | None           | 350°₽            |                                       | 1            | 3.4           | ı                                |
| Ĵ                            | Int. Shear     | Nont           | RID              | ,                                     | 1            | 12 9          | i                                |
| 0                            | Int. Shear     | None           | 260°F            | 1                                     | •            | œ<br>œ        | ;                                |
| 0,                           | Int. Shear     | None           | 350°F            | ı                                     | ı            | 5.1           | ٠                                |
| [ <u>36</u> /0/981/35/5]     | Int. Shear     | Sone           | RTD              |                                       | •            | 5°.           | •                                |
| [C '45' 135/0/ <b>9</b> C]   | Int. Shear     | None           | 260°F            | ı                                     | •            | 9.9           | •                                |
| [5/45/135/0/ <del>9</del> 6] | Int. Shear     | None           | 350⁴₽            | •                                     | •            | 9.4           | ŧ                                |
| °                            | Flexinal       | None           | CLD              | •                                     | •            | 188           | •                                |
| Ô                            | Flexural       | None           | 260°F            | •                                     | •            | 151           | •                                |
| 0                            | Flexiral       | None           | 350°F            | •                                     | •            | 97            | •                                |
| .05                          | Flexinal       | None           | RTD              | •                                     | i            | 1.7           | •                                |
| ,06                          | Flexiral       | None           | 260°F            | •                                     | •            | 9 9           | •                                |
| .06                          | Flexural       | None           | 350°F            | •                                     | •            | 3.0           | ı                                |
| <u>104/0/381/39/00</u>       | Flexural       | None           | KTD              | 1                                     | 1            | 104           | •                                |
| 1 26/0/581 55/0              | Flemaral       | None           | 260°F            | •                                     | •            | 87            | ı                                |
| [0/43/135/0/9E]              | Flexoral       | None           | 350°F            | 1                                     | •            | 21            | •                                |
|                              |                |                |                  |                                       |              |               |                                  |

Sardwich Beam butt

| Colectation      | Type Load |                       | T st Temp. | E (pol x 10 <sup>6</sup> ) | , (11/n;) | Jule<br>ksf) | est<br>(in. 'te.) |
|------------------|-----------|-----------------------|------------|----------------------------|-----------|--------------|-------------------|
| 3 C              | To sive   |                       |            | 33.5                       | C.25      | 173          | 7,220             |
| ئر               | 401842    | 84 105 HT 186         | 3.0 ·      |                            |           | 173          | •                 |
| ٠,               | Tension   | 98 3H/500 Hrs         |            | ,                          | •         | 166          | •                 |
| a C              | Tension   | 98° 34'1000 Hrs       | KTD        | -3.9                       | ú 25      | 182          | 7,350             |
| ວູ               | Tension   | 98' 3H 100 Hrs        |            | 23.3                       | 0.44      | 163          | 6,710             |
| .0               | Tension   | 98] RH/1000 Hrs       |            | 6.7.                       | ۰ 48      | 148          | 5,250             |
| 0 ء              | Tension   | Thermo-Humidity Cyrie | RTD        | 22.0                       | 0.2-      | 163          | 7,230             |
| ٥,               | _ension   | Thermo-Sumidity Cyale | 260 · F    | •                          | •         | 175          | ,                 |
| ٠, ٥             | Tension   | Thermo-Humidity Cvule | 350°F      | •                          | •         | 151          | •                 |
| ° 0              | Tension   | Acc. Withing.         | RTD        | 6.12                       | 0.28      | 179          | 7,870             |
| ,<br>,           | Tension   | Acc. wthrng.          | 260°F      | 0.                         | 0.25      | 146          | 5, 520            |
| ွင်              | Tersion   | 84 300 Hrs            | RID        | 1.35                       | ,         | 4.0          | 3,010             |
| ,05              | Tension   | 987 PH 500 Hrs        | 260°F      |                            | •         | 3.7          | •                 |
| ,<br>Ot          | Tension   | 987 RH 500 Hrs        | 350°F      | •                          | ,         | 1.6          | ,                 |
| <b>.</b> 05      | Tension   | 98 . 3H 10C3 Hrs      | RTD        | 1.17                       | 00 O      | 2.8          | 2,350             |
| , 0 <del>5</del> | uoisual   | 98% RH 1000 Hrs       | 260°F      | 0.35                       | 0.0       | 1.9          | 4,500             |
| °C <del>S</del>  | Tension   | 98% RH 1000 Hrs       | 350°F      | 0.28                       | 0.00      | 1.2          | 5,690             |
| - 0 <del>ú</del> | Tension   | Thermo-Humidity Cycle | RTD        | 1.13                       | 0.00      | 3.2          | 2,830             |
| , Op             | _ension   | Thermo-Humidity Cycle | 260°F      |                            | •         | 1.5          | •                 |
| ,<br>050         | Tension   | Thermo-Humidity Cycle | 350°F      | •                          | •         | 1.0          |                   |

TABLE XV STATIC PROPERTIES SUPHARY - NARMCO 5206/MODHOR II GRAPHITE COMPOSITES

| <sup>c</sup> ult<br>(μ-fn./ <b>in.</b> ) | 2,360        | 2,870        | Ş            | 0*              |                          |                 | 90              | 01              | 3               | 29                       |                          |                       | 2               | 3                            | ş               |
|------------------------------------------|--------------|--------------|--------------|-----------------|--------------------------|-----------------|-----------------|-----------------|-----------------|--------------------------|--------------------------|-----------------------|-----------------|------------------------------|-----------------|
| 13 - H                                   | 2,3          | 2,8          | 5,0          | 7,1             | · •                      | •               | 6,830           | 6,7             | 6,160           | 9.                       | •                        | •                     | 7,630           | 0,940                        | 5               |
| oult<br>(kat)                            | 2.9          | 1.7          | 1.3          | 1               | 18                       | 3               | 5               | 11              | 65              | 2                        | 18                       | 75                    | 82              | 22                           | 3               |
| ,<br>(16/12)                             | 0.0          | 0.0          | <b>8</b> .0  | 0.39            | •                        | •               | 0.40            | 0.48            | 0.38            | 0.42                     | •                        | •                     | 0.45            | 0.42                         | <b>57</b> 0     |
| E (psi x 10 <sup>6</sup> )               | 1.25         | 0.71         | 0.36         | 11.7            | *                        | •               | 11.7            | 11.3            | 11.4            | 11.5                     | •                        | •                     | 10.9            | 11.4                         | 11.1            |
| Test Temp.<br>(*?)                       | RTD          | 260°F        | 350°F        | RTD             | 260°F                    | 350°F           | ECT.            | 260°F           | 350°F           | 8                        | 260°F                    | 350*F                 | ₽               | 260°F                        | 350°F           |
| Prior<br>Conditioning                    | Acc. Wthrag. | Acc. Wthrng. | Acc. Wthrng. | 98% RR/500 Hrs  | 98% RH/500 Hrs           | 98% RH/500 Hrs  | 987 KN/1000 Hrs | 98% RH/1000 Nrs | 98% RH/1000 Hrs | Thermo-Bueldity Cycle    | Thermo-Bumidity Cycle    | Thermo-Rumidity Cycle | Acc. Wthrng.    | Acc. Wthrng.                 | Acc. Wthrng.    |
| Type Load                                | Tension      | Tension      | Tension      | Tension         | Tension                  | Tension         | Tension         | Tension         | Tension         | Tension                  | Tension                  | Tension               | Tension         | Tenston                      | Tension         |
| Crientifon                               | 06           | <u>.</u>     | : 06         | [0/45/155/c/90] | [0/45/155/c/ <b>90</b> ] | [0/45/1:5/0/90] | [0/45/1[5/0/90] | [0/45/125/0/90] | [0/45/155/0/90] | [0/45/1[5/0/ <u>90</u> ] | [0/45/155/0/ <b>90</b> ] | [0/45/115/0/90]       | [0/45/115/0/90] | [0/45/115/0/ <del>90</del> ] | [0/45/113/0/90] |

| Orientation | Type L'ad       | Prior<br>Conditioning        | Test femp.  | E (psi x 10 <sup>6</sup> ) | ,<br>(1n/1a) | oult<br>(kei) | <sup>e</sup> ult<br>(μ-in./in.) |
|-------------|-----------------|------------------------------|-------------|----------------------------|--------------|---------------|---------------------------------|
| ,0          | Compression     | 98% RH/500 Nrs               | QD          | ,                          | •            | 141           | 4                               |
| •0          | Compression     | 98% RH/500 Nrs               | 260°F       |                            | •            | 143           |                                 |
| •0          | Compine   8 Lon | 98% RH/500 Hrs               | 350°F       | •                          | ,            | 134           | •                               |
| •0          | Compression     | 98% RH/1000 Nrs              | e <b>ta</b> | 21.2                       | 0.26         | 134           | 9,450                           |
| • 0         | Compre: s ton   | 987 RH/1000 Hrs              | 260°F       | 16.8                       | 0.28         | 127           | 009'9                           |
| • 0         | Compression     | 98% RH/1000 Hrs              | 350°F       | 17.1                       | 4.0          | 125           | 7,420                           |
| • 0         | Compression     | Thermo-Humidity Cycle        | RTD         | 18.4                       | 0.22         | 136           | 8,000                           |
| • 0         | Compression     | Thermo-Hamidity Cycle        | 260 ℃       | •                          | •            | 138           | •                               |
| •           | Compression     | Thermo-Humidity Cycle        | 350°F       | •                          | •            | 132           | ı                               |
| • 0         | Compression     | Acc. Wthrng.                 | RTD         | 19.8                       | •            | <b>8</b> 21   | 099.9                           |
| *<br>0      | Compre: ston    | Acc. Wthmg.                  | 260°F       | 20.6                       | 16.0         | 140           | 8,850                           |
| • 0         | Compression     | Acc. Wthrng.                 | 350°₽       | 19.6                       | 0.¥          | 721           | 7,070                           |
| •06         | Compre: sion    | 98% RH /500 Hrs              | £           | 1.12                       | 0.00         | 23.1          | 21,630                          |
| .06         | Compre: sion    | 98% RH /500 Mrs              | 260°₽       | •                          |              | 13.8          | •                               |
| •06         | Compression     | 98% RM/503 Mrs               | 350°₽       | •                          | •            | 7.6           | •                               |
| • 06        | Compre: # fon   | 98% RH /1000 Ers             | œ.          | 1.30                       | 0.00         | 22.4          | 24,600                          |
| • 06        | Compression     | 98% RH /1000 Rrs             | 260°₽       | 1.28                       | 0.01         | 15.2          | 20,260                          |
| °06         | Compression     | 98% RH /1000 Hrs             | 350°F       | #                          | ‡            | :             | ‡                               |
| •06         | Compre. sion    | Thermo-Humidity Cycle        | e e         | 1.38                       | 0.00         | 23.5          | 19,260                          |
| .06         | Compression     | Thermo-Humidity Cycle        | 260⁴₽       | •                          | 1            | 14.6          | •                               |
| •           |                 | Thomas Beatle (at the Can le | 3500        | •                          | •            | 1. e          | •                               |

\*\*Specimen Eroken During Hendling

TABLE NV STATIC PROPERTIES SUPPARY - NARMOD 5206/MODMOR II SRAPHIC COMPETTES

ąj c

| Orientation              | Type Load      | Prior<br>Conditioning | Test Temp.<br>(*F) | E<br>(psi x 10 <sup>6</sup> ) | ,<br>(in/in) | dult<br>(ks1) | e.it<br>(μ-in./in.) |
|--------------------------|----------------|-----------------------|--------------------|-------------------------------|--------------|---------------|---------------------|
| .06                      | Compression    | Acc. Wthrng.          | RTD                | 1.25                          | 00.00        | 24.1          | 21, 320             |
| •06                      | Compression    | Acc. Wthong.          | 260°F              | 1.63                          | 0.00         | 18.0          | 21,040              |
| •06                      | Compression    | Acc. Wthong.          | 350°F              | 99.0                          | 0.00         | 9.2           | 28,420              |
| [0/45/135/0/ <u>90</u> ] | Compression    | 982 RH/500 Hrs        | RTD                | \$.£                          | 0.42         | 88            | 10,100              |
| [0/45/135/0/90]          | Compression    | 98% RH/530 Hrs        | 260 °F             | •                             | ,            | 87            | •                   |
| [0/45/135/0/90]          | Compression    | 98% RH/500 Brs        | 350°F              |                               | ı            | 2             | •                   |
| [0/45/135/0/90]          | Compression    | 987 RH/1000 Hrs       | RTD                | 8.86                          | 0.37         | 88            | 10, 380             |
| [0/45/135/0/90]          | Compression    | 98% RH/1000 Hrs       | 260°F              | 10.32                         | 97.0         | 2             | 9,590               |
| [0/45/135/0/ <u>90</u> ] | Compression    | 981 RH/1000 Hrs       | 350°F              | 9.62                          | 0.45         | 82            | 6,880               |
| [0/45/135/0/ <b>90</b> ] | Compression    | Thermo-Humidity Cycle | RTD                | 9.60                          | 0.43         | 85            | 11,030              |
| [0/45/135/0/90]          | Campression    | Thermo-Numidity Cycle | 260°F              | ,                             | •            | 3             | •                   |
| [0/45/135/0/ <u>90</u> ] | Compression    | Lacran-Humidity Cycle | 350°F              | •                             | •            | 87            | •                   |
| [0/45/135/0/90]          | Compression    | Ase. Wthrng.          | RTD                | 9.86                          | 97.0         | 06            | 11,100              |
| [0/45/135/0/90]          | Compression    | Acc. Wtheng.          | 260°F              | 9.55                          | 0.39         | 98            | 10,170              |
| [0/45/135/0/90]          | Compression    | Acc. Wthrng.          | 350°F              | 9.01                          | 0.37         | 80            | 10, 200             |
| •0                       | In-Plane Shear | 98% RH/500 Hrs        | RTD                | 0.72                          | •            | 8.6           | 18,330              |
| •0                       | In-Plane Shear | 987 KH/SCO Hrs        | 260°F              | ı                             | •            | 7.3           | •                   |
| •0                       | In-Plane Shear | 987 RH/500 Hrs        | 350°₽              |                               | •            | 6.0           | •                   |
| •0                       | In-Plane Shear | 98% RH/1000 Hrs       | £                  | 0.74                          | ŧ            | 4.8           | 23,000              |
| •0                       | In-Plane Shear | 987 RH/1000 Hrs       | 260°F              | 0.17                          | •            | 5.6           | > 30,060            |
| •0                       | In-Plane Shear | 987 RH/1000 Hrs       | 3.20€              | 90.0                          | •            | 3.8           | > 30,000            |

TABLE AV STALLE PROPERTIES STAMARY - TENNES \$20K PROBOK IL STALE TANANS FES

The second secon

第一個のでは、大学のでは、「大学のでは、大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、「大学のでは、」」」

| Orientation | Tyne Load      | or<br>ioning          | Test Temp. | G (ps1 x 10 <sup>6</sup> ) | Tult<br>(ks1) | <sup>ε</sup> ult<br>(μ-in./in.) |
|-------------|----------------|-----------------------|------------|----------------------------|---------------|---------------------------------|
| 30          | In-Plane Stear | Thermo-Humidity Cycle | RID        | 99,0                       | 4.8           | 26,730                          |
| 0.0         | In-Plane Shear | Thermo-Humidity Cycle | 3.00°E     | •                          | 4.9           | •                               |
| ,0          | In-Plane Shear | Thermo-Humidaty Cycle | 350°F      | 1                          | 4.4           | •                               |
| 0 0         | In-Plane Shear | Acc. Wthrng.          | RTD        | 97.0                       | 8.8           | 23,870                          |
|             | In-Plane Shear | Acc. Wthrmg.          | 260 °F     | 0.31                       | 9.9           | > 30,000                        |
| ٥٥          | In-Plane Shear | Acc. WELLIS.          | 350°F      | 0.14                       | 4.5           | > 30,000                        |
| .0          | Int. Shear     | 987 RH/500 Hrs        | RTD        | •                          | 10.4          | •                               |
| ۰۵          | Int. Shear     | 85, 786 Hrs           | 50°F       | 1                          | 6.4           | •                               |
| 0,          | Int. Shear     | 98% RH/500 Hrs        | 350°F      | ı                          | 5.6           | ,                               |
| .0          | Int. Shear     | 98% RH/1000 Hrs       | KTD        | •                          | 9.3           | ,                               |
| Ô           | Int, Shear     | 98% RH/1000 Hrs       | 260°F      | í                          | 7.4           | ı                               |
| ů.          | Int. Shear     | 98% RH/1000 Hrs       | 350°F      | ·                          | 5.5           | ı                               |
| ٥           | Int. Shear     | Thermo-Humidity Cycle | RTD        | •                          | 9.8           | •                               |
| ٥           | Int, Shear     | Thermo-Humidity Cycle | 260°F      | •                          | 6.5           | •                               |
| •0          | Int. Shear     | Thermo-Humidity Cycle | 350°F      | •                          | 4.3           | •                               |
| <b>.</b> 0  | Int. Shear     | Acc. Wthrng.          | RTD        | •                          | 11.8          | •                               |
| <b>°</b> 0  | Int. Shear     | Acc. Dthrng.          | 260 ₽      | •                          | 9.2           | •                               |
| .0          | Int. Shear     | Acc. Wthrng.          | 350 ⁴F     | ı                          | 5.8           | •                               |

のでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmの

FASTE XV STATIC PROPERTIES SUMMARY - NARMOO 5206/MOUMOR II GRAPHITE COMPOSITIES

| Orientacion     | Tvpc Load | Prior<br>Conditioning | Test Temp,<br>(°F) | E<br>(psi x 10 <sup>6</sup> ) | ,<br>(in/in) | dult<br>(ksf) | e <sub>ut</sub><br>(μ-fn./fn.) |
|-----------------|-----------|-----------------------|--------------------|-------------------------------|--------------|---------------|--------------------------------|
| .0              | Tenston   | 260°F/100 Hrs         | KTJ                | 22.5                          | 0.25         | 171           | 7,500                          |
| ٥               | Tension   | 260°F/100 Hrs         | 260°F              | 23.0                          | 0.32         | 170           | 7,340                          |
| ٥               | Tension   | 260°F/500 Hrs         | RTD                | 22.4                          | 0.28         | 170           | 7,330                          |
| °C              | Tension   | 200°F/500 Hrs         | 260°F              | 22.6                          | 0.27         | 163           | 7,120                          |
| ,0              | Tension   | 350°F/100 Hrs         | кТD                | 22.2                          | 0.28         | 167           | 7,180                          |
| ,0              | Tension   | 350°F/100 Hrs         | 260°F              | 22.0                          | 0.28         | 146           | 6,570                          |
| ,0              | Tenston   | 350°F/100 Hrs         | 350°F              | 23.5                          | 0.24         | 160           | 6,630                          |
| ٥٠              | Tension   | 350°F/500 Hrs         | Ę                  | 23.0                          | 0.26         | 173           | 7,410                          |
| °0              | Tension   | 350°E/500 Hrs         | 350°F              | 23.4                          | 0.21         | 159           | 6,450                          |
| <sub>=</sub> 06 | Tenston   | 250°F/100 Hrs         | RTO                | 1.12                          | 0.00         | 4.3           | 3,770                          |
| 06،             | Tension   | 250°F/100 Hrs         | 260°F              | 1.02                          | 0.02         | 3.6           | 3,360                          |
| ۰06             | Tension   | 260°F/500 Hrs         | RTD                | 1.15                          | 0.01         | 4.0           | 3,590                          |
| 06ء             | Tension   | 260°F/500 Hrs         | 260°₽              | 1,09                          | 0.02         | 3,4           | 3,280                          |
| 06،             | Tension   | 35G*F/100 Hrs         | Œ.                 | 1,14                          | 0.0          | 3.8           | 3,370                          |
| ° 0€            | Tension   | 350°F/100 Hrs         | 260°F              | 0.95                          | 0.01         | 2.0           | 2,190                          |
| °06             | Tenston   | 350"F/100 Hrs         | 350°F              | 0.92                          | 0.02         | 2.0           | 2,120                          |

TABLE AV STALLC PROPERTIES SUSMARY - NARMO 1 // NOBYOR II GRAPH EL JEOSTIES

| Orientation              | Type Load   | Prior<br>Conditioning | Test Temp.<br>(*F) | E (ps1 x 10 <sup>6</sup> ) | ,<br>(In/In) | dult<br>(keij) | <sup>e</sup> ult (μ-tn./1α.) |
|--------------------------|-------------|-----------------------|--------------------|----------------------------|--------------|----------------|------------------------------|
| •06                      | Tension     | 350°F/500 Hrs         | rg.                | 1,14                       | 0.01         | 2.7            | 2,310                        |
| • 06                     | Tension     | 350 F/500 Hrs         | 350*               | 1.05                       | 0.02         | 1.8            | 1.740                        |
| [0/45/135/0/90]          | Tension     | 260 F/100 Hrs         | E E                | 10.9                       | 0.36         | 82             | 27.300                       |
| [0/45/135/0/90]          | Tension     | 260°F/100 Nrs         | 260°F              | 11.8                       | 6.41         | . <b>5</b>     | 7 %                          |
| [0/45/135/0/ <u>90</u> ] | Tension     | 260*F/500 Brs         | RTD                | 11.7                       | 0.40         | <b>. . .</b>   | 7.330                        |
| [0/45/135/0/90]          | Tension     | 260*F/500 Hrs         | 260°F              | 11.4                       | 0.37         | <b>9</b>       | 7, 130                       |
| [0/45/135/0/90]          | Tension     | 350°F/100 Hrs         | ET.                | 11.3                       | 0.41         | 82             | 7,210                        |
| [0/45/135/0/90]          | Tension     | 3.50°F/100 Hrs        | 260°F              | 11.3                       | 0.43         | <b>\$</b>      | 27.7                         |
| [6'45/135/0/ <u>90</u> ] | Tension     | 350°F/100 Hrm         | 350⁴₽              | ,                          | •            | - <b></b>      | <u>;</u>                     |
| [0/45/135/0/ <u>90]</u>  | Tension     | 350"F/500 Hrs         | £                  | 11.8                       | <b>3</b> .0  | 2 02           | Ore ?                        |
| [0/45/135/1/90]          | Tension     | 350*F/500 Hrs         | 350⁴₽              | 12.4                       | 0.51         | 78             | 90.9                         |
| • 0                      | Compression | 250°F/100 Hrs         | CD)                | •                          | •            | <b>%</b>       |                              |
| •0                       | Compression | 260°F/100 Hrs         | 260 ⁴F             | ı                          | •            | 148            | ,                            |
| •0                       | Compression | 260 P /500 Hrs        | ē                  | 19.3                       | 0.32         | 134            | 7.950                        |
| • 0                      | Compression | 260°F/500 Hrs         | 260 ° ₽            | 14.0                       | 0.29         | 121            | 9,900                        |
| • 0                      | Compression | 350°F/100 Hrs         | E                  | 16.2                       | 0.31         | 115            | 7,740                        |
| •0                       | Compression | 350*F /100 Hrs        | 3≥0 •₽             | •                          | •            | ž              | 1                            |
| •0                       | Compression | 350°F/500 HE          | ē                  | 19.2                       | 0.30         | 124            | 7.290                        |
| • 0                      | Compression | 350*F/500 Rrs         | 320.1              | 17.5                       | 0.27         | 123            | 7,390                        |

COLE N STATIC PROPERTES SUPEARY - NARMO 5706/MCNOR II GRAPHIC CONFOSTITS

| O <b>rl</b> cat <b>ation</b>            | Type Load    | Perior<br>Conditioning | ,             | E (ps1 x 10 <sup>6</sup> ) | ,<br>(fa/la) | oult<br>(ks!) | enle<br>(1-in./in.) |
|-----------------------------------------|--------------|------------------------|---------------|----------------------------|--------------|---------------|---------------------|
| .06                                     | Compression  | 260°F/100 Hrs          | ATD           | •                          |              | 25.6          | 4                   |
| , 0 <b>6</b>                            | Compression  | 260°F/100 Hrs          | 3.00°F        | •                          | ı            | 21.8          | •                   |
| 93.                                     | Compression  | 260°F/500 Hrs          | ET.           | 1.17                       | 0.01         | 24.7          | 22,920              |
| •06                                     | Compression  | 260°F/500 Hrs          | 26 <b>6°F</b> | 0.90                       | 0.00         | 19.1          | 26,330              |
| 90.                                     | Compression  | 350°F/10C Hrs          | KT            | •                          | •            | 26.0          | •                   |
| ي<br>ئن<br>ئ                            | Сощртенвіоп  | 350°F/100 Hrs          | 350°          | •                          | 1            | 16.5          | •                   |
| 90°                                     | Compression  | 350°F /500 HT8         | RTD           | 1.07                       | 0.01         | 22.5          | 16,610              |
| <b>.</b> 06                             | Compression  | 350°F /503 Hrs         | 350°F         | 1.01                       | 0.01         | 6.71          | 25,970              |
| [0/65/135/0/ <u>90</u> ]                | Compression  | 260°F/100 Hrs          | Œ.            | •                          | •            | 56            | •                   |
| [ <u>06</u> /0/\$£1/5 <b>7</b> /0]      | Compression  | 260°F/100 Hrs          | 260°F         | •                          | •            | 93            | •                   |
| [ <u>06</u> /0/\$£1/\$ <del>9</del> /0] | Compression  | 260*F/500 Hrs          | KTD           | 9.07                       | 97.0         | *8            | 10,480              |
| [06/0/22/132/0]                         | Compression  | 260*F/500 Hrs          | 260°F         | 7.84                       | 0.40         | 11            | 11,500              |
| [0/6/0/32/0/ <u>00</u> ]                | Comp ?ession | 350*F/100 Hr3          | Ę             | •                          | ı            | 93            | ,                   |
| [06/0](T / E7/0]                        | Compression  | 350°F/100 Rrs          | 350°F         |                            |              |               |                     |
| [0/45/135/0/90]                         | Compression  | 350 F /500 Hrs         | Ę             | 9.38                       | 0.42         | Z             | 10,610              |
| [0/45/135/0/90]                         | Compression  | 350*F/500 Hrs          | 350.1         |                            |              |               |                     |

LARLE XV STATIC PROPERTIES SUMMARY - NARRY S 106 /MOUNOR IL LARPITC COMPOSITES

| Ortentation | Type Load      | Prior<br>Conditioning | Test Temp.<br>(°F) | G (psi x 19 <sup>6</sup> ) | <sup>1</sup> ule<br>(3:1) | eult<br>(μ-in./in.) |
|-------------|----------------|-----------------------|--------------------|----------------------------|---------------------------|---------------------|
| c)          | In-Plane Shea: | 260°F/1.00 Hrs        | RTD                | •                          | 4.8                       | •                   |
| ر)          | In-Plane Sheam | 260°F/109 Hrs         | 260°F              | •                          | 8.1                       | 1                   |
| ر،          | In-Plane Shear | 260°F/500 Hrs         | RTD                | 0.70                       | 9.6                       | 22,030              |
| ٠,)         | In-Plane Shear | 260°F/500 Hrs         | 260°F              | 9.51                       | 7.6                       | > 30, 000           |
| ن           | In-Plane Shear | 350°F/100 Hrs         | RTD                | •                          | 7.8                       | 1                   |
| ຳ           | In-Plane Shear | 350°F/100 Hrs         | 260°F              | •                          | 7.4                       | ı                   |
| ပိ          | In-Plane Shear | 350°F/500 Hrs         | €                  | 0.70                       | 8.3                       | 25, 500             |
| ຳ           | In-Plane Shear | 350°F/500 Hra         | 350°F              | 0.47                       | 5.5                       | > 30° 000           |
| ບໍ          | Int. Shear     | 260°F/100 Hrs         | RTO                |                            | 11.1                      | i                   |
| ပံ          | Int. Shear     | 250°F/100 Hrs         | 260°F              | •                          | 9.6                       | ı                   |
| ຳ           | Int. Shear     | 260°F/500 Hrs         | Ē                  | •                          | 11.9                      | r                   |
| ໍ້ບ         | Int. Shear     | 260°F/500 Hrs         | 260°F              | •                          | 8.7                       | ŧ                   |
| ů           | Int, Shear     | 350°F/100 Hrs         | £ £                | •                          | 12.4                      | ù                   |
| ບໍ          | Inc. Shear     | 350*F/100 Hrs         | 260°F              | •                          | 7.6                       | ē                   |
| ໍບ          | Int. Shear     | 350°F/500 Hrm         | £                  | ,                          | 11.9                      | í                   |
| ů           | Int. Shear     | 350°F/500 Hrs         | 350°F              | •                          | 4.5                       | Ç                   |

TABLE XV STATIC PROPERTIES SEWARY - NARMO SZEKZWOWOR TI GRAPHIC CHYPN ITES

| Oriencetion      | Type Load | Prior<br>Conditioning | Test Temp.<br>(°F) | E (ps1 x 13 <sup>6</sup> ) | (a1/a1) | oult<br>(kai) | <sup>ε</sup> ult<br>(μ-1n./1n.) |
|------------------|-----------|-----------------------|--------------------|----------------------------|---------|---------------|---------------------------------|
| .0               | Tension   | 260°F/500 Cy.         | Œ                  | •                          | •       | 145           | •                               |
| ٥                | Tenaton   | 260°F/500 Cy.         | 260°F              |                            | •       | 153           | ı                               |
| ٥                | Tenston   | 260°F/4000 Cy.        | Ē                  | 21.2                       | 0.30    | 165           | 7,440                           |
| <b>.</b> 0       | Tension   | 260°F/1000 Cy.        | 260°F              | 23.7                       | 0.19    | 156           | 6,470                           |
| ô                | Tension   | 350°F/500 Cy.         | Ę                  | •                          | •       | 158           | •                               |
|                  | Tension   | 350°F/500 Cy.         | 260°F              | ı                          | •       | 165           | •                               |
| • 0              | Tension   | 350°F/500 Cy.         | 350°F              | •                          | •       | 158           | •                               |
| ٥٠               | Tension   | 350°F/1000 Cy.        | ę                  | 21.3                       | 0.27    | 15.           | 7,150                           |
| ٥                | Tension   | 350°F/1000 Cy.        | 350°F              | 23.6                       | 0.24    | 071           | 7,160                           |
| .06              | Tension   | 260*F/500 Cy.         | Ę                  | ,                          | •       | 4.2           | •                               |
| ့ ၁ <sub>6</sub> | Tension   | 260°F/500 Cy.         | 260°F              | •                          | ı       | 3.9           | 1                               |
| .06              | Tension   | 260°F/1000 Cy.        | ę                  | 1.22                       | 0.00    | 9.4           | 3,680                           |
| .06              | Tension   | 260°F/1600 Cy.        | 260°F              | 1.12                       | 0.00    | 4.3           | 3,830                           |
| 06،              | T. ston   | 350°F/500 Cy.         | £                  | •                          | •       | 3.6           | •                               |
| .06              | Tension   | 350°F/500 Cy.         | 260°F              | •                          | •       | 3.0           | •                               |
| .06              | Tension   | 350°F/500 Cy.         | 350°F              | •                          | •       | 2.2           | •                               |
| •06              | Tension   | 350*F/1000 Cy.        | £                  | 1.20                       | 0.0     | 3.0           | 2,636                           |
| : 0              | Toneton   | 350°F/1000 Cv.        | 350 %              | 3.0                        | 0.0     | 2.7           | 2,913                           |

o

**[]** 

TABLE XV STATIG PROPERTIES SCHARP SARANGE II GRAPHIC CUMPSSITES

のでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mm

| Orientation                  | Type Load   | Prior<br>Conditioning | Test Temp. | ε<br>( <sup>9</sup> υι × 1να) | ,<br>(in/in) | <sup>c</sup> ult<br>(ks1) | ente<br>'tn./in.) |
|------------------------------|-------------|-----------------------|------------|-------------------------------|--------------|---------------------------|-------------------|
| <u>[06</u> , 0. \$51, £7, 0] | Tension     | 260°F 500 Cy.         | RTD        | •                             | •            | 86                        | •                 |
| [06/0/921 25/0]              | Tension     | 260°F/500 Cy.         | 3e0.F      | ı                             | •            | 85                        | •                 |
| [0/45/135/0/ <u>90]</u>      | Tension     | _6 F71000 Cy.         | RTD        | 11.4                          | 0.42         | 80                        | 7,290             |
| [0/43/125/0/90]              | Tenston     | 260 F /1000 Cy.       | 260°F      | 11.9                          | 0.42         | 81                        | 6,830             |
| [06/0]\$\$[/\$7/0]           | Tension     | 350°F/500 Cy.         | RTD        | 1                             | ī            | 11                        | ,                 |
| [0/45/135/0/90]              | Tension     | 350°F /500 Cy.        | 260°F      | •                             | •            | <b>%</b>                  | •                 |
| [0.45, 135/0/90]             | Tension     | 350°F/500 Cy.         | 350°F      | •                             | •            | 83                        | 4                 |
| [0/05/135/0/0]               | Tension     | 350°F/1000 Cy.        | RTD        | 10.7                          | 0.47         | 78                        | 7,380             |
| [0/45/125/0/90]              | Tension     | 350°F/1000 Cy.        | 350%       | 9.11                          | 97.0         | 90                        | 6,640             |
| ,<br>,                       | Compression | 260°F/500 Cy.         | RTD        | •                             | •            | 146                       | ·                 |
| , 0                          | Compression | 260°F/500 Cy.         | 260°F      | •                             | •            | 142                       | ſ                 |
| ,0                           | Cimpression | 260°F/1050 Cy.        | č.         | 18.3                          | 0.32         | 671                       | 9,260             |
| ຶ່ດ                          | Compression | 260 F /1000 Cy.       | 260°F      | 19.5                          | 0.39         | 145                       | 8,350             |
| ٥ ۽                          | Compression | 350°F /500 Cy.        | E          | •                             | •            | 153                       | •                 |
| ,0                           | Compression | 350°F /500 Cy.        | 3\$0.2     | •                             | •            | 133                       | ı                 |
| <sub>?</sub> 0               | Compression | 350°F /1000 Cy.       | CE S       | 17.9                          | 0.20         | 135                       | 9,280             |
| .0                           | Compression | 350°F /1000 Cy.       | 350°F      | 16.6                          | 0.28         | 103                       | 5,750             |

TABLE W STALIC PROPERCIES SUPMARY - GARAGO 5206 (MDMOR II GRAPHIC COMPOSITES

| Orientation                | Type Load   | Frior<br>Conditioning | Test Temp.<br>(°F) | 5 (pst x 19 <sup>6</sup> ) | ,<br>(in/in) | σult<br>( <b>ks1</b> ) | e <sub>υl</sub> τ<br>(μ-in./in.) |
|----------------------------|-------------|-----------------------|--------------------|----------------------------|--------------|------------------------|----------------------------------|
| ، 46                       | Compression | 260'F 500 Cy.         | RT                 | 1                          |              | 26.4                   | •                                |
| <u></u> 06                 | Compression | 260°F/500 Cy.         | 260°F              | ı                          | 1            | 22.2                   | ,                                |
| 066                        | Compression | 260'F 1000 Cy.        | RTD                | 11.1                       | 0.01         | 25.9                   | 26,160                           |
| >06                        | Compression | 260°F'1000 Cy.        | 260°F              | 1.18                       | 0.00         | 23.6                   | 23,450                           |
| <sub>2</sub> 0 <b>6</b>    | Compression | 350°F'500 Cy.         | Ç                  | ŧ                          | •            | 23.1                   | ı                                |
| ,06                        | Conpression | 350°F /500 CV.        | 350°F              | •                          | •            | 17.4                   | ٠                                |
| ,06                        | Compression | 350°F'1000 Cy.        | CT.                | 60.1                       | 0.01         | 23.3                   | 22,520                           |
| ³06                        | Compression | 350°F/1000 Cy.        | 350·F              | 1.02                       | 0.00         | 17.9                   | 24,170                           |
| [0/45/135/0 90]            | Compression | 260°F'500 Cy.         | Œ.                 | •                          | •            | 100                    | ı                                |
| [0/45/135/6/90]            | Compression | 260°F/500 Cy.         | 260°F              | ı                          | •            | 6                      | •                                |
| [0,45,135/0/90]            | Compression | 260°F/1000 Cy.        | RID                | 10.7°8                     | 0.42         | 82                     | 9,930                            |
| [0/55/135/0/ <u>90</u> ]   | Compression | 260°F/1000 Cy.        | 260°F              | 8.83                       | 0.42         | 62                     | 10,910                           |
| [0/45/135/0/90]            | Compression | 350°F/500 CV.         | RTD                | •                          | •            | 93                     | •                                |
| [0/25/135'0/ <u>90</u> ]   | Compression | 350°F/500 Cy.         | 350°F              | •                          | •            | 16                     | •                                |
| [0//5/135/0/90]            | Compression | 350°F/1000 Cy.        | RTD                | 8. <sub>6</sub>            | 0.42         | 85                     | 12,030                           |
| 8[ <u>06</u> /0 []. \$-,0] | Compression | 350 °F /1000 Cy.      | 350°F              | 9.26                       | 77.0         | 78                     | 12,370                           |

TABLE XV STATIC PROPERTIES SUPPARY - NARMOD 5206 (MODMOR II GRAPHIC COMPOSITES

|                |                |                       |                 | The state of the s |               |                                 |
|----------------|----------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|
| Orientatica    | Tyr. Load      | Prior<br>Conditioning | Test Temp. ('F) | 6 (ps1 x 10 <sup>6</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ult<br>(keil) | <sup>e</sup> υ1ε<br>(μ-in./in.) |
| 0.             | In-Flane Shear | 260°F/500 Cy.         | CTA             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0           |                                 |
| o (            | In-Plane Shear | 260°F/500 Cy.         | 260°F           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.9           | •                               |
| .0             | In-Plane Shear | 260°F/1000 Cy.        | RTD             | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.9           | 18,070                          |
| .0             | In Plane Shear | 260°F/1000 Cy.        | 2 <b>60</b> °F  | 09.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.8           | > 30,000                        |
| 90             | In-Plane Shear | 350*F/500 Cy.         | RTD             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.9           | •                               |
| . 0            | In-Plane Shear | 350°F/500 Cy.         | 260 ℃           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.1           | •                               |
| <sub>2</sub> 0 | In-Plane Shear | 350°F/1000 Cy.        | <b>CT</b> 2     | 69*0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.9           | 17,300                          |
| ٥              | In-Plane Shear | 350°F/1000 Cy.        | 350°F           | 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.1           | > 30,000                        |
| <b>-</b> 0     | Inc. Shear     | 260°F/500 Cy.         | RTD             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.6          | ,                               |
| <b>.</b> 0     | In:, Shear     | 260°F/500 Cy.         | 2 <b>60°F</b>   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.6           | 1                               |
| °O             | In: Shear      | 260°F/1000 Cy.        | æ               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.7          | 1                               |
| . 0            | Inc. Shear     | 260°F/1000 Cy.        | 260°F           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.0           | ı                               |
| .0             | In., Shear     | 350°F/500 Cy.         | Ē               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.5          | ì                               |
| .0             | Inc. Shear     | 350°F/500 Cy.         | 260°F           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5           | ı                               |
| ٥              | Inc. Shear     | 350°F/1000 Cy.        | £               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.6          | •                               |
| • 0            | In:. Shear     | 350°F/1000 Cy.        | 350°F           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.4           | •                               |



O

b

g





Ũ

٥

3

Ð



IEM , EBBMT4

これのことのできないというできないというないかられていることできないのできないというできないというできないというできないというできないというできないというできないというというできないというというできない

- North





(1831) \$63ELS 3AISS384

FIG. 24- COMPRESSION STRESS-CTAIN DIAGRAM FOR C'HOMME II HAMPHITT MARY COPYSITE, TESTER AT VARIOUS TEMPERATHES AFTER I'M HANTS ECHOSIBE TO 92E R.

COMPRESSOR STRAIN, p. 10./ 49

FIR. 284 COMPRESSION STRESS-STRAIN DIAMAMEND "MOMENTE CRAPHITE NAMED NOOL COMPOSITY, TENNED AT ROOM TEMPERATER MATER EXPECTED HOMINITY CYCLE NO. 1 (Therm-Humality Cycle)

3,c1e)





Ð

t

()



STRESS, KEI

MODMOR II GRAFHITE/MARKOD \$206 Speciern: Tension No. of plies: 8 Fiber Orient: 90\*

15X 1353915

\*14. 292 TERRICK STRESS-STRAIN DIAGRAN FOR 90" MONDR II CRANNITE/NAUMCO 5206 CUNFOSITE, TESTED AT VARICES TEOPERATURES AFTER 1000 NOURS EXPOSURE TO 96% R.H.

. 201

Ĺ

ĘĪ

STRAIM, p. -m./m.
Fig. 293 IEESION STRESS-SITAIN DIAGNAR FOR 90' HODGER II CHARHITE/NAMBOO 3206 CONGROSITE,
TESTED AT NOOM TOPERATURE AFTER EXPOSURE TO HUMIDITY CYCLE No. I (Thermo-Sweldity
Cycle)



Ū

Ø

O

0

0

Ð

O



.

¢.

. .

ġ



0

\*





J

7

7

3

X

The same of the same

é

ζ: '



. 48



J



THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

CHARLES TO SELECT SERVICE

1. 以市 田田 子 田田田野



ن



中国 有以以外

8

5,



nem (

W.



NODECE II GAATHIE MARKS 2200 Specimen: Sendelch Beem Ho of plies: 9 Fiber Orlent: 0/45/135 0.FG

-----



COMPLESSES STREETS - STREETS - STREETS IN DIGITAL TOW HODING IT IN METER WANTON 5704 (1.5 s.) 1/5 (1.50) (METANTE TESTE) AT VARIOUS TURNISMENTALINES AFTER 1000 CYCLES EMPOSINE TO 150 F

-2500 -3600 -7500 -2500 -3600 -7500 -1000 - 1000

1,00

TAPLE AVI AT GULLER PRACTOS COMARCO

| Specimen<br>Pumber<br>M1105A-6<br>M1105A-7<br>M1105A-8 | i                          |                          |        |                                     | ,<br>0          |                                |               | Cycles              | Applied             | 900               |                      |
|--------------------------------------------------------|----------------------------|--------------------------|--------|-------------------------------------|-----------------|--------------------------------|---------------|---------------------|---------------------|-------------------|----------------------|
| M1105A-6<br>M1105A-7<br>M1105A-8                       | Inickness<br>(Plies) (In.) | Orientation              | Type   | PRIOR CONDITIONING<br>Type Duration | Temp.           | Stress Level<br>(7, ult) (ksi) | evel<br>(ks1) | Fallure<br>(cycles) | Fallure<br>(cycles) | Strength<br>(ks1) | Comment              |
| M1105A-7<br>W1105A-8                                   | 5 - 0.032                  | ,0                       | Mone   | •                                   | KTX             | 780                            | 1             | 1.000               |                     | ,                 | •                    |
| X1105A-8                                               | 1                          | ó                        | Nune   |                                     | . J.            | ac<br>I                        | 125           | 901                 | •                   | ,                 | Tab Area Failure     |
| 6-850. IK                                              | 6 - 0.033                  | Ç                        | Mone   | i                                   | ي <b>ر</b>      | ł                              | 135           | 2,000               |                     | •                 | •                    |
|                                                        | ٠                          | ě                        | None   | ı                                   | άĽ              | .t<br>r                        | 135           | 105,000             | •                   | •                 | ,                    |
| W1105A-10                                              | ١                          | .0                       | Minne  |                                     | ÇŢ.             | 33                             | 130           | 00u*,               |                     | •                 | Tab Area Failure     |
| H11054-11                                              | •                          | 0                        | No.1e  | •                                   | KT:             | ĩ                              | 30            | 848,000             |                     | •                 |                      |
| M1:05A-12                                              | - 1                        | , 0                      | Methe  | •                                   | GT.             | r.<br>©                        | •             | 1,000               | •                   |                   | Tab Area Failure     |
| M1105A-13                                              | ٠                          | .0                       | None   | •                                   | ٠.<br><b>کا</b> | 8.0                            | .33           | 13,000              | •                   | •                 | Tab Area Failure     |
| M1105A-14                                              | - 1                        | •0                       | None   |                                     | RTD             | .co                            | ٠,            | 2,000               | ,                   | ,                 | Tab Area Failure     |
| M1:05A-15                                              | 6 - 0.032                  | 0.                       | No 16  |                                     | RT.             | ۵٫                             | 1.25          | 5,678,000           | •                   | 1                 | Tab Area Failure     |
| ¥1102-6                                                | 8 - 0.042                  | °.06                     | N. De  | ,                                   | Ę               | : <b></b>                      | 7             | ı                   | •                   | •                 | Immediate Tab        |
|                                                        |                            |                          |        |                                     |                 |                                |               |                     |                     |                   | Failure              |
| M1102-7                                                | 5,00,0                     | <b>.06</b>               | None   |                                     | RT5             | ج.<br>ن                        | ,             | 1,000               | •                   | •                 | Tab Area Failure     |
| M1102-8                                                | ı                          | <b>,06</b>               | None   | ,                                   | RTD             | 52                             |               | 2,000               | •                   |                   | Tab Area Failure     |
| M1102-9                                                | ٠                          | ° 0 <b>6</b>             | None   | 1                                   | CTA             | 39                             | ,             | 6,569,000           | •                   | •                 | Tab Area Failure     |
| M1102-10                                               | 1                          | , 0 <b>6</b>             | None   | ı                                   | £,              | 20                             | - 1           | 881,000             | •                   | 1                 | •                    |
| M1102-11                                               | 8 - 0.043                  | .06                      | None   | •                                   | CT3             | <b>00</b><br>√7                | 3.7           |                     |                     | •                 | 1                    |
| M1102-12                                               | ٠                          | . 06                     | None   | •                                   | RTD             | 67                             | 3.8           |                     |                     | •                 | •                    |
| M1102-13                                               | 8 - 0.043                  | .06                      | None   | ٠                                   | RTD             | 97                             | 3,5           |                     | •                   | •                 |                      |
| Mi 102-14                                              | ٠                          | .06                      | None   | •                                   | RTD             | 47                             | 3.6           |                     | ı                   | •                 | Tab Area Failure     |
| M1102-15                                               | 8 - 0.042                  | . 06                     | None   |                                     | RTD             | r,                             | 3.6           | 6,818,000           | •                   | •                 | •                    |
| M1127A-6                                               | 9 - 0.047                  | (0/45/135/6/90.          | None   | ,                                   | RTD             | Z                              | 09            | •                   | 10 × 106            | 83.2              | ·                    |
| M1127A-7                                               | 9 - 0.047                  | [0/45/135/C/ <u>90</u> ] | None   | t                                   | <b>K</b>        | 86                             | 70            | 324,000             | ı                   | •                 | Immediate Tab Failur |
| M1127A-8                                               | 9 - 0.046                  | 0/45/135/(/90)           | None   |                                     | KTD             | 112                            | <b>9</b>      | 2,000               | •                   | •                 | •                    |
| M1127A-9                                               | 9 - 0.046                  | 0/45/135/C/90            | None   | •                                   | E S             | 105                            | 75            | •                   | •                   | 1                 | Immediate isb Failur |
| M1127A-10                                              | 870.0 - 6                  | [0/45/135/C/90]          | None   | ŧ                                   | £               | 100.5                          | 72            | 1                   | ι                   | •                 | Immediate Tab Failur |
| W1127A-11                                              | 950.0 - 6                  | 0/45/135/6/90]           | None   | •                                   | £               | 91                             | 65            | 10,200,000          | •                   | •                 | 4                    |
| M11278-1                                               | 870.0 - 6                  | [06/0/561/57/0]          | None   | •                                   | 6               | 86                             | 70            |                     | ,                   | ı                 | Immediate Tab Failur |
| M11278-2                                               | 6 - 0.047                  | [06/0/32/6/0]            | None   |                                     | KLD             | 102                            | 73            | 3,000               | •                   |                   | Tab Area Failure     |
| M11278-3                                               | 9±0 0 = 6                  | [0/45/135/0/90]          | None   | 1                                   | £               | 103                            | 7,6           | 1                   | •                   | ı                 | Inmediate Tab Failur |
| 411279-4                                               | 870 0 - 0                  | [0/65/135/0/90]          | Notice | •                                   | Ę               | 100.5                          | 72            | 1,366,000           |                     | 1                 | •                    |

TABLE XVI FALIGIE PROPESTIES SUBMINY - NAMINO 2206/NOMBIN IT GRAPHITE COMPOSITES

| Thickness (Piles) (In.) | Orientation                           | PRIOR C    | PRIOR COMDITIONING<br>Type Duration | ijĖ            | Stress Level (E <sup>g</sup> ult) (ksi) | Level<br>(kai) | Cycles<br>to<br>Failure<br>(cycles) | Cycles Applied without Failure (cycles) | Residual<br>Strength<br>(ksi) | Comment                          |
|-------------------------|---------------------------------------|------------|-------------------------------------|----------------|-----------------------------------------|----------------|-------------------------------------|-----------------------------------------|-------------------------------|----------------------------------|
| - 0.038                 | ů                                     | None       | •                                   | 260°F          | 8                                       | 135            | 1.000                               |                                         |                               |                                  |
| - C.038                 | 0                                     | None       | •                                   | 2 <b>60</b> °F | 47                                      | 130            |                                     |                                         |                               | Immediate Failure                |
|                         | o é                                   | None       | •                                   | 260°F          | 83.5                                    | 125            | 6,000                               | •                                       |                               |                                  |
|                         | ٠<br>ټ (                              | None       |                                     | 260            | 2                                       | 120            | •                                   | 2,113 x 10°                             | 179.0                         |                                  |
| 0.039                   | ່ເ                                    | e e        |                                     | 260°F          | <b>8</b> 5                              | 123            | 3,000                               |                                         |                               | Tab Failure                      |
| •                       | ٥٠                                    | <b>E</b> 1 | •                                   | J. 097         | <b>1</b>                                | 121            | 8                                   |                                         |                               | Tab Feilure                      |
| ٠                       | 5 6                                   | None       |                                     | 260°F          | <b>0</b>                                | 120            | •                                   |                                         |                               | Immediate Tab Pailure            |
| •                       | ;                                     | eon:       |                                     | 260°F          | <b>.</b>                                | 121            | •                                   |                                         |                               |                                  |
| 6 - 0.039               | , °                                   | e de       | 1 ,                                 | 7.092<br>2.092 | <b>9 9</b>                              | 123            | • (                                 |                                         |                               | Ismediate Tab Failure            |
|                         | •                                     | 3100       | •                                   | 3              | 63.3                                    | <b>5</b> 71    | •                                   |                                         |                               | immediate Tab Failure            |
| 9 - 0.044               | •<br>&                                | None       |                                     | 260 °F         | 65                                      | 2              | 70.000                              |                                         |                               |                                  |
| - 0.043                 | \$                                    | Kone       | ,                                   | 260°F          | 96                                      | m              |                                     |                                         |                               | Pailed under static              |
|                         |                                       |            |                                     |                |                                         |                |                                     |                                         |                               | load while coming                |
| - 0.041                 | 8                                     | , and      | ,                                   | 3.090          | 8                                       | 2 6            | 5                                   |                                         |                               | up to temperature                |
| 770                     |                                       |            |                                     | 35             | 4                                       | ; .            | 3 8                                 |                                         |                               | I SO VIES FEITHER                |
| 20                      | •                                     |            |                                     | 3,5            |                                         | , r            | 36.5                                |                                         |                               |                                  |
| 170                     | · •                                   |            |                                     | 5              | ; ;                                     |                | 36                                  |                                         |                               |                                  |
| 0,043                   | .06                                   | None       | ,                                   | 260.7          | , F.                                    | 2.3            | 200                                 |                                         |                               |                                  |
| 270 0 - 8               | . 06                                  | S.         | •                                   | . 92           | 5                                       | . 6            |                                     |                                         |                               | The same of the same of the same |
|                         | •                                     |            |                                     |                |                                         | ?              |                                     |                                         |                               | load while coming                |
|                         | •                                     |            |                                     | ;              | ,                                       |                |                                     | •                                       |                               | up to temperature                |
| E 0                     | , , , , , , , , , , , , , , , , , , , | None       |                                     | 260            | 6                                       | 1.5            | •                                   | 2.1 × 10                                | 3.4                           | Tab Area Failure                 |
| 6.0°                    | ,<br>S                                | Kone       | •                                   | 1,092          | 90<br>37                                | m              |                                     |                                         |                               | Failed under static              |
|                         |                                       |            |                                     |                |                                         |                |                                     |                                         |                               | up to temperature                |
| 870.0 -                 | [0/45/135/0/90]                       | None       | •                                   | 260°F          | 2                                       | 2              | 14,000                              |                                         |                               |                                  |
| 670.0 -                 | [06/0/381/138/0]                      | None       | •                                   | 1.092          | 83.5                                    | 73             | ,                                   |                                         |                               | Immediate Pailure                |
| - 0.048                 | [0/42/132/0/90]                       | None       | •                                   | 4.092          | 2                                       | 2              | 1,900                               |                                         |                               | Tab Pailure                      |
| - 0.048                 | [0/45/135/0/90]                       | None       | ,                                   | Z60.F          | 74.5                                    | 65             | 000.4                               |                                         |                               |                                  |
| 840.0 -                 | [0/45/135/0/90]                       | Mone       |                                     | 7.092          | 74.5                                    | 65             | 10,000                              |                                         |                               |                                  |
| - 0 248                 | [06/0/561/57/0]                       | Kone       | •                                   | 260.7          | 68.5                                    | 3              | 9                                   |                                         |                               | Tab Failure                      |
| 670.0 -                 | [0/45/135/0/90]                       | Kone       | •                                   | 260°F          | 63                                      | 55             |                                     | 2.362 x 10 <sup>6</sup>                 | 78.4                          |                                  |
| - 0.04                  | [0/45/135/0/90]                       | Mone       | •                                   | 260.7          | 68.5                                    | 3              | 8.000                               |                                         |                               |                                  |
| - 0,048                 | [0/45/135/0/90]                       | None       | ,                                   | 260°F          | 56.5                                    | 2              |                                     | 2 327 = 106                             | 7. 7.                         |                                  |
|                         |                                       |            |                                     |                |                                         | :              |                                     |                                         | :                             |                                  |

Ð

0

Q

ij

TABLE XVI FATIGIE PROPERCIES STUMMEN -

Ŷ,

|           |               |                                   |              |                    |        |                            |            | Cycles         | Applied                 |                   |                        |
|-----------|---------------|-----------------------------------|--------------|--------------------|--------|----------------------------|------------|----------------|-------------------------|-------------------|------------------------|
| Spectmen  | Tifokness     |                                   | PRIUR        | PRIUR COMDITIONING | Test   | Stress Level               | Level      | to<br>Fat lury | without                 | Residual          |                        |
| Amber     | (Plies) (In.) | Orientation                       | Type         | Duration           | (°F)   | (Z <sup>d</sup> ult) (ks1) | (ks1)      | cycles)        | (cycles)                | Strengtn<br>(ks1) | Comment                |
| 11078-1   | 6 - C.039     | 0                                 | None         | •                  | 350°F  | <u>,</u>                   | 001        | 2.000          |                         |                   | Tak Failure            |
| 1107B-2   | 6 - 0.039     | ° 0                               | None         |                    | 350°F  | 63.5                       | 95         | •              | •                       |                   | Immediate Fallure      |
| 1107B-3   | •             | •0                                | None         |                    | 350°"  | 9                          | Q.         |                | $2.619 \times 10^{6}$   | 139.2             | Tab Failure            |
| 1107B-4   | 20.03 - 9     | ۰,0                               | None         | t                  | 356    | 1.9                        | 100        | •              | 2.421 x 10 <sup>6</sup> | 140.5             | ,                      |
| 1107B-5   | € - 0.038     | ٥,                                | None         | •                  | 350°F  | 70                         | 105        | 17,000         |                         |                   | Tab Fcilure            |
| 1107B-6   |               | • 0                               | None         | į                  | 350°F  | ĸ                          | 105        | 2,000          |                         |                   |                        |
| 11078-7   | •             | ,0                                | None         |                    | 350°F  | 73.5                       | 110        | 1,000          |                         |                   |                        |
| .107B-6   | ı             | ٥٠                                | None         | •                  | 1.05s  | 6.8.5                      | 103        | 2,000          |                         |                   |                        |
| 1078-9    | 6 - 0.034     | .0                                | None         | 1                  | 350°F  | 63.5                       | 95         | 1,930,000      |                         |                   |                        |
| 0T-8/0TT  | e = 0.037     | ,<br>0                            | None         | •                  | 350°F  | 67.5                       | 101        | 1,000          |                         |                   | Defective Tab          |
| E-71154   | E - 0.041     | 36                                | None         |                    | 350°F  | 30                         | 06.0       | 23,000         |                         |                   |                        |
| 1114-4    | 4             | o o                               | None         | 1                  | 350°F  | 86                         | 3.0        | . 1            |                         |                   | Failed under static    |
|           |               |                                   |              |                    |        |                            |            |                |                         |                   | load while confrg      |
| 1111-5    | 8 ~ 0.043     | ້06                               | None         | •                  | 380°F  | õ                          | 06.0       | 2,000          |                         |                   | up to temperature      |
| 1114-5    | ŧ             | .06                               | None         | •                  | 350°F  | 67                         | 2.0        | ٠,             |                         |                   | Failed under static    |
|           |               |                                   |              |                    |        |                            |            |                |                         |                   | load while coming      |
| F_114-7   | 8 - 9.044     | .06                               | None         |                    | 3.056  | 1.6                        | 07.0       | 000 7          |                         |                   | up to remperature      |
| P_114-8   | ٠             | 06،                               | None         |                    | 350 %  | 16.5                       | 0,50       |                | 7.0 × 10 <sup>6</sup>   | 3.7               |                        |
| 114-9     | 470.0 - 8     | •06                               | None         | ٠                  | 350 F  | 23                         | 0.70       | 8,000          | •                       |                   |                        |
| ₩.114-10  | ł             | 06،                               | None         |                    | 350°F  | 21                         | 0.65       |                | 7.0 x 10"               | 3.7               |                        |
| F1114-11  | 1             | • 26                              | None         | •                  | 350°F  | 33                         | 1.00       | 3,000          |                         |                   |                        |
| M:114-12  | •             | 06                                | None         | •                  | 350°F  | 33                         | 1.00       | 1,000          |                         |                   |                        |
| X.1134A-1 | 9 - 0.550     | [0/45/135/0/90]                   | None         | ,                  | 350°F  | 82                         | 65         | •              |                         |                   | Stec. slipped in grips |
| M.134A-2  | 670°0 - 6     | [0/45/135/0/90]                   | None         | •                  | 350°F  | 82                         | 65         | 2,000          |                         |                   |                        |
| ×.134A-3  | 6 - 0.049     | [0/45/135/0/90]                   | None         | •                  | 350°F  | 63                         | 20         |                | 2.332 x 10 <sup>6</sup> | 0.09              |                        |
| M:134A-4  | 9 - 0.050     | [0/45/135/0/90]                   | -kone        | •                  | 350 °F | 69.5                       | 55         | ,              | 2.033 x 106             | 72.2              |                        |
| M.134A-5  | 9 - 0.050     | [0/45/135/0/90]                   | <b>A</b> cre | •                  | 350°F  | 69.5                       | 55         | ŀ              | 2,fle x 10 <sup>6</sup> | 73.3              |                        |
| M.134A-6  | 6 - 0.049     | [0/45/13 <b>5</b> /0/ <u>90</u> ] | None         | •                  | 350°F  | 92                         | Ç.         | 2,000          |                         |                   |                        |
| M.134A-7  | 9 - 3.049     | [0/45/135/0/90]                   | Mone         | •                  | 350°F  | 92                         | 09         | 000*9          |                         |                   |                        |
| M.134A-8  | 9 - 0.048     | [0/25/135/0/90]                   | Mone         |                    | 350°F  | 7.2                        | 13         | 2,000          |                         |                   |                        |
| M. 134A-9 | 6 - 0.049     | [0/45/135/0/90]                   | None         | •                  | 350°F  | 73.5                       | <b>6</b> 0 | 20,000         |                         |                   |                        |
|           | 0             |                                   | ,            |                    |        | 1                          | ;          |                |                         |                   |                        |

TARGE XVI - COLLUE PROPERS SCHARKY - COMPOSITES CARRESTED SCHEDINGS TO GRAPHITE COMPOSITES

| Specimen<br>Number | Thickness<br>(Pites) (In.) | )rientation | EFIOR C         | FFIOR COMDITIONING<br>Type Duration | Test<br>Temp.<br>(*F) | Stress Level (1 <sup>0</sup> ult) (ksi) | evel<br>(ksf.) | Cycles<br>to<br>Fatlure<br>(cycles) | Cycles Applied without Failure (cycles) | Residual<br>Strength<br>(ksi) | Consent               |
|--------------------|----------------------------|-------------|-----------------|-------------------------------------|-----------------------|-----------------------------------------|----------------|-------------------------------------|-----------------------------------------|-------------------------------|-----------------------|
| X11058-7           | <b>G</b> -                 | 90,         |                 | / 500 Hrs.                          | <b>ECT</b> D          |                                         |                |                                     |                                         | '                             | -(Specimen broke      |
| M1105B-8           | ,                          | ပ်          | .86<br>86       | / 500 Hrs.                          | <b>1</b>              |                                         |                |                                     |                                         | •                             | -(during fabrication  |
| M11058-9           | 6 - 0.032                  | Ö           |                 | / 500 Hrs.                          | Ę                     | 28                                      | 135            | 2,000                               |                                         |                               | Immediate failure     |
| Y11058-10          | •                          | 0           | -               | / 500 Hrs.                          | E                     | ۲.<br>۲.                                | £ :            | ,                                   |                                         |                               | immediate tallure     |
| ¥11058-11          | F - 0.032                  | ,0          | #2<br>80        | / 500 Hrs.                          | E                     | 70.5                                    | 777            | •                                   |                                         |                               |                       |
| 411088-15          | 6 - 0.038                  | Č           | H.3 86          | 500 Hrs.                            | 260°F                 | 69.5                                    | 120            | 1,000                               |                                         |                               |                       |
| 411068-16          | 1                          | Ö           |                 |                                     | 250°F                 | 66.5                                    | 115            | 18,000                              |                                         |                               |                       |
| Y11088-17          | •                          | °           |                 | 500 Hrs.                            | 7.097                 | 68                                      | 11)            | 2,000                               |                                         |                               |                       |
| X1108B-18          | 6 - 0.036                  | °           | ₩2<br>80°       |                                     | 3.09Z                 | 63.5                                    | 011            | 11,900                              | 90.                                     | •                             |                       |
| 41108B-19          | 1                          | ت.          |                 | 500 Hrs.                            | 1.092                 | 61                                      | Se             | •                                   | 2.033 x 10°                             | 186.7                         | Tab Failure           |
| 41109A-15          | 6 - 0.033                  | ຸບ          | 98 RH           | / 500 Hrs.                          | 350 F                 | 63,5                                    | 105            | 2,000                               |                                         |                               |                       |
| 41159A-15          | ن                          | ن د         |                 | / 500 Hrs.                          | 350°F                 | 9                                       | 100            | 7,000                               | •                                       |                               |                       |
| 41109A-17          | ,                          | 0 ،         |                 | / 500 Hrs.                          | 350°F                 | 57                                      | 95             | •                                   | 2.34 × 10                               | 2.3                           |                       |
| 41109A-18          | 0                          | 0 و         |                 |                                     | 350°F                 | 59                                      | <b>60</b>      | 2,000                               |                                         |                               | Tab Failure           |
| £109A-19           | 6 - C.032                  | 0           | 18 RH           | / 500 Hrs.                          | 350°F                 | 58                                      | \$             | 13,000                              |                                         |                               |                       |
| V11058-12          | 6 - 0,032                  | ပ်          | 98' RH          | / 1000 Hrs.                         | KTD                   | 96                                      | 120            | 2,000                               |                                         |                               | Tab Failure           |
| .11C5B-13          | 0                          | £ ()        | ₩<br>86         |                                     | Ē                     | 63                                      | 115            | •                                   |                                         |                               | Immediate 14b Failure |
| H1058-14           | •                          | 0           | 152<br>262<br>7 |                                     | £                     | 60.5                                    | 110            | 2,00                                |                                         |                               | Tab Failure           |
| 411058-15          | 6 - 0.032                  | ů           | 98,<br>38,      |                                     | E                     | 80                                      | 105            | 631,000                             |                                         |                               |                       |
| M11C58-16          | ٠                          | ů           | 98° RH          | / 1000 Hrs.                         | 6                     | 88                                      | 101            | 51,000                              |                                         |                               |                       |
| **11088-20         | 6 - 0.033                  | 0.          | HN .86          | / 1000 Hrs.                         | 260°F                 | 70.5                                    | 115            | 3,000                               |                                         |                               | Tab Failure           |
| M1109A-1           | •                          | .0          | 98, KH          | / 1000 Hrs.                         | 7.097                 | 67.5                                    | 110            | <b>0</b> 0                          |                                         |                               | lab Fallure           |
| F1109A-2           | 6 - 0,035                  | င်          | HE ,85          | / 1000 Hrs.                         | 260°F                 | 61.5                                    | 8              | 11,000                              | 9".                                     | į                             |                       |
| 11109A-3           | 6 - 0.033                  | 0           |                 | / 1000 Hrs.                         | 260°F                 | 25                                      | 8              |                                     | 7.20 × 10,                              | 107                           | 18b reliure           |
| M1109A-4           | 6 - 0.033                  | 0،          | 98° RH          | 1000 Hrs.                           | 260°F                 | 58.5                                    | <b>4</b> 5     |                                     | 7.83 x 10                               | o.                            |                       |
| 06 1001174         | 6 6 032                    | Ċ           | H& .60          | / 1000 Hrs.                         | 350*P                 | 3                                       | 95             | 1                                   | 4,766,000                               |                               |                       |
| 7.1109A-20         | ,                          | ်           |                 |                                     | 350°F                 | 11                                      | 105            |                                     | 1,000                                   |                               | Tab Failure           |
| 0.11008            |                            | Ĉ           |                 | / 1000 Brs.                         | 350*F                 | 67.5                                    | 8              |                                     | 14,000                                  |                               | Tab Failure           |
| 7-100TT            | •                          | . 0         | 18.<br>18.      |                                     | 350*F                 | \$                                      | <b>8</b>       |                                     | •                                       |                               | Immediate Tab Failure |
| 7-86013            | •                          | 0           | 98°. RH         | / 1000 Hrs.                         | 350*F                 | 99                                      | 98             |                                     | •                                       |                               | Failed under static   |
| !                  |                            |             |                 |                                     |                       |                                         |                |                                     |                                         |                               | to temperature        |

TABLE XVI : FAIT DE PEDE ROUS SONMARY - NAVOUS 2206 ROUNDE : CAMPUSITUS

| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | Specimen  | Thiches<br>(File:) (in.) | Orientation | PRIOR COMDITIONING<br>Type Duracton | 1110NTNC<br>Duration | Test<br>Tesp.<br>(*F) | Stress Level (I'ult) (ksi) | .ve.1<br>(ka1) | Cycles<br>to<br>Failure<br>(cycles) | Cycles Applied without Feilure (cycles) | Residual<br>Strength<br>(ksi) | Coment            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|-------------|-------------------------------------|----------------------|-----------------------|----------------------------|----------------|-------------------------------------|-----------------------------------------|-------------------------------|-------------------|
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M11058-17 | 1 1                      | ָּט בֿ      | Thermo-Hundd.                       |                      | <b>6</b>              | 73.5                       | 120            | 1,000                               |                                         |                               | Tab Failure       |
| ### 10.033 0° Thermo-Humidity Cycle RTD 64.5 105 3,000 2 x 106 141.7  ### 10.033 0° Thermo-Humidity Cycle RTD 64.5 105 3,000 2 x 106 141.7  ### 10.033 0° Thermo-Humidity Cycle 260°F 66.5 115 4,000  ### 10.032 0° Thermo-Humidity Cycle 260°F 66.5 116 12,000  ### 10.032 0° Thermo-Humidity Cycle 260°F 66.5 116 12,000  ### 10.033 0° Thermo-Humidity Cycle 260°F 66.5 116 12,000  ### 10.033 0° Thermo-Humidity Cycle 350°F 86.5 116 12,000  ### 10.033 0° Thermo-Humidity Cycle 350°F 86.5 116 12,000  ### 10.033 0° Thermo-Humidity Cycle 350°F 86.5 116 12,000  ### 10.033 0° Thermo-Humidity Cycle 350°F 86.5 116 12,000  ### 10.033 0° Thermo-Humidity Cycle 350°F 86.5 116 12,000  ### 10.033 0° Thermo-Humidity Cycle 350°F 87.5 120 17.00  ### 10.033 0° Thermo-Humidity Cycle 350°F 87.5 120 2.22 x 106 188.4  ### 10.033 0° Thermo-Humidity Cycle 350°F 64.5 110 - 2.22 x 106 188.4  ### 10.033 0° Thermo-Humidity Cycle 350°F 64.5 113 27,000  ### 10.033 0° Thermo-Humidity Cycle 350°F 64.5 115 27.000  ### 10.033 0° Thermo-Humidity Cycle 350°F 64.5 115 27.000  ### 10.033 0° Thermo-Humidity Cycle 350°F 64.5 115 27.000  ### 10.033 0° Thermo-Humidity Cycle 350°F 64.5 115 27.000  ### 10.033 0° Thermo-Humidity Cycle 350°F 67.5 100  | M1105B-19 | •                        | ່ວ          | Thermo-hunid                        |                      | £                     | 70.5                       | 115            | 1,000                               |                                         |                               | Tab Failure       |
| Fig. 10.033   O' Thermo-Hunddity Cycle   NT   63   102   2 x 10°   141.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M11058-20 | 1                        | o°0         | Thermo-Hunid:                       |                      | KT3                   | 64.5                       | 105            | 3,000                               | 7                                       |                               |                   |
| 6 - 0.033 0° Thermo-Hunddity Cycle 260°F 66 113 - 0.0246 x 10° 155.2  6 - 0.033 0° Thermo-Hunddity Cycle 260°F 68.5 116 1,000  6 - 0.033 0° Thermo-Hunddity Cycle 260°F 68.5 116 12,000  6 - 0.033 0° Thermo-Hunddity Cycle 260°F 68.5 116 12,000  6 - 0.033 0° Thermo-Hunddity Cycle 260°F 66.5 116 12,000  6 - 0.033 0° Thermo-Hunddity Cycle 350°F 89.5 130 - 2.339 x 10° 170.0  6 - 0.033 0° Thermo-Hunddity Cycle 350°F 86 130 1,000  6 - 0.033 0° Thermo-Hunddity Cycle 350°F 86 130 1,000  6 - 0.033 0° Thermo-Hunddity Cycle 350°F 81.5 123 1,000  6 - 0.033 0° Thermo-Hunddity Cycle 350°F 81.5 123 1,000  6 - 0.033 0° Thermo-Hunddity Cycle 350°F 81.5 123 1,000  6 - 0.033 0° Thermo-Hunddity Cycle 350°F 81.5 123 1,000  6 - 0.033 0° Acc. Withrug. RTD 61.5 110 - 2.23 x 10° 188.4  6 - 0.031 0° Acc. Withrug. RTD 64.5 115 27,000  6 - 0.033 0° Acc. Withrug. 260°F 61.5 110 - 2.42 x 10°  6 - 0.033 0° Acc. Withrug. 260°F 61.5 110 1,000  6 - 0.033 0° Acc. Withrug. 260°F 63 113 1,357,000  6 - 0.033 0° Acc. Withrug. 260°F 65.5 115 2,000  6 - 0.033 0° Acc. Withrug. 260°F 65.5 117 2,000  6 - 0.033 0° Acc. Withrug. 260°F 65.5 117 2,000  6 - 0.033 0° Acc. Withrug. 350°F 87.5 100  6 - 0.033 0° Acc. Withrug. 350°F 87.5 100  6 - 0.033 0° Acc. Withrug. 350°F 87.5 100  6 - 0.033 0° Acc. Withrug. 350°F 87.5 100  6 - 0.033 0° Acc. Withrug. 350°F 87.5 100  6 - 0.033 0° Acc. Withrug. 350°F 87.5 100  6 - 0.033 0° Acc. Withrug. 350°F 87.5 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M11058-21 |                          | 0,          | Thermo-Hundd                        |                      | Ē                     | 63                         | 102            |                                     | 2 × 10°                                 | 141.7                         |                   |
| 6 - 0.033 0° The race-Hunddity Cycle 260°F 71.5 123 4,000  5 - 0.032 0° The race-Hunddity Cycle 260°F 66.5 118 4,000  6 - 0.033 0° The race-Hunddity Cycle 260°F 66.5 118 12,000  6 - 0.033 0° The race-Hunddity Cycle 260°F 66.5 118 12,000  6 - 0.033 0° The race-Hunddity Cycle 350°F 86 130 17,000  6 - 0.033 0° The race-Hunddity Cycle 350°F 86 130 17,000  6 - 0.033 0° The race-Hunddity Cycle 350°F 86 130 17,000  6 - 0.033 0° The race-Hunddity Cycle 350°F 86 130 17,000  6 - 0.033 0° Acc. Withrag. RTD 67.5 120 41,000  6 - 0.031 0° Acc. Withrag. RTD 67.5 115 27,000  6 - 0.031 0° Acc. Withrag. RTD 67.5 110 - 2.28 x 10 <sup>6</sup> 188.4  6 - 0.031 0° Acc. Withrag. RTD 67.5 110 - 2.22 x 10 <sup>6</sup> 188.4  6 - 0.031 0° Acc. Withrag. 260°F 67 113 1,357,000  6 - 0.033 0° Acc. Withrag. 260°F 67.5 110 1,357,000  6 - 0.033 0° Acc. Withrag. 260°F 64.5 113 1,357,000  6 - 0.033 0° Acc. Withrag. 260°F 65.5 117 2,300  6 - 0.033 0° Acc. Withrag. 260°F 65.5 117 2,300  6 - 0.033 0° Acc. Withrag. 260°F 65.5 117 2,300  6 - 0.033 0° Acc. Withrag. 350°F 87.5 120 2,000  6 - 0.033 0° Acc. Withrag. 350°F 87.5 127 1,000  6 - 0.033 0° Acc. Withrag. 350°F 87.5 127 1,000  6 - 0.033 0° Acc. Withrag. 350°F 87.5 127 1,000  6 - 0.033 0° Acc. Withrag. 350°F 87.5 127 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S-4:01.7  | F                        | 0           | Thermo-Humid:                       |                      | 260°F                 | 99                         | 115            | ٠                                   | 2.246 × 10 <sup>6</sup>                 | 155.2                         |                   |
| 6 - 0.032 0° Thermo-Humidity Cycle 260°F 66.5 1120 1,000 6 - 0.033 0° Thermo-Humidity Cycle 260°F 66.5 118 4,000 7 Thermo-Humidity Cycle 260°F 66.5 118 12,000 7 Thermo-Humidity Cycle 350°F 89.5 135 7 7 Thermo-Humidity Cycle 350°F 89.5 135 7 7 Thermo-Humidity Cycle 350°F 89.5 135 1,000 7 Thermo-Humidity Cycle 350°F 89.5 135 1,000 7 Thermo-Humidity Cycle 350°F 81.5 123 1,000 7 Acc. Wthrmg. RTD 64.5 110 - 2.28 x 10 <sup>6</sup> 188.4 7 C - 0.031 0° Acc. Wthrmg. RTD 64.5 113 27,000 7 Acc. Wthrmg. 260°F 64.5 113 27,000 7 Acc. Wthrmg. 260°F 64.5 113 1,357,000 7 Acc. Wthrmg. 260°F 64.5 113 1,357,000 7 Acc. Wthrmg. 260°F 64.5 113 1,357,000 7 Acc. Wthrmg. 260°F 65.5 110 - 2.42x10 <sup>6</sup> 171.8 7 C - 0.033 0° Acc. Wthrmg. 260°F 65.5 110 - 2.42x10 <sup>6</sup> 171.8 7 C - 0.033 0° Acc. Wthrmg. 260°F 65.5 110 - 2.42x10 <sup>6</sup> 171.8 7 C - 0.033 0° Acc. Wthrmg. 260°F 65.5 112 27,000 7 C - 0.033 0° Acc. Wthrmg. 350°F 85.5 125 27,000 7 C - 0.033 0° Acc. Wthrmg. 350°F 87.5 120 1,000 7 C - 0.033 0° Acc. Wthrmg. 350°F 87.5 120 1,000 7 C - 0.033 0° Acc. Wthrmg. 350°F 87.5 120 1,000 7 C - 0.033 0° Acc. Wthrmg. 350°F 87.5 127 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M_103A-6  | ٠                        | 0,          | The rme-Hundd.                      |                      | 260°F                 | 71.5                       | 125            | 7,000                               |                                         |                               |                   |
| 6 - 0.033 97 Thermo-Humidity Gycle 260°F 67.5 118 4,000  6 - 0.033 0° Thermo-Humidity Gycle 260°F 66.5 116 12,000  7 Thermo-Humidity Gycle 350°F 78.5 120 - 2.329 x 10° 170.0  6 - 0.033 0° Thermo-Humidity Cycle 350°F 88.5 135 - 2.28 x 10° 170.0  6 - 0.032 0° Thermo-Humidity Cycle 350°F 88.5 135 - 1.000  6 - 0.032 0° Thermo-Humidity Gycle 350°F 88.5 125 1,000  6 - 0.033 0° Acc. Whrmag. RTD 67.1 120 41,000  6 - 0.031 0° Acc. Whrmag. RTD 65.5 110 - 2.28 x 10° 188.4  6 - 0.031 0° Acc. Whrmag. RTD 65.5 110 - 2.442 x 10° 188.4  6 - 0.031 0° Acc. Whrmag. 260°F 65.5 115 27,000  6 - 0.033 0° Acc. Whrmag. 260°F 65.5 117 35,000  6 - 0.033 0° Acc. Whrmag. 260°F 65.5 117 35,000  6 - 0.033 0° Acc. Whrmag. 260°F 65.5 117 35,000  6 - 0.033 0° Acc. Whrmag. 260°F 65.5 117 35,000  6 - 0.033 0° Acc. Whrmag. 350°F 89.5 128 272,000  6 - 0.033 0° Acc. Whrmag. 350°F 89.5 128 272,000  6 - 0.033 0° Acc. Whrmag. 350°F 89.5 128 272,000  6 - 0.033 0° Acc. Whrmag. 350°F 87.5 120 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H1109A-7  | •                        | Ö           | The rate-Humid.                     |                      | 260°F                 | 68.5                       | 120            | 1,000                               |                                         |                               | Tab Failure       |
| 6 - 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1109A-8  | 1 1                      | က် ငံ       | Thermo-Hunid.                       |                      | 260°F                 | 67.5                       | 116            | 4, <sup>7</sup>                     |                                         |                               | Tab Failure       |
| 6 - 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                          | ,           |                                     |                      | -                     |                            |                |                                     | •                                       |                               |                   |
| te - 0.033 0' Thermo-Numidity Cycle 150°F 89.5 135 1-0  6 - 0.032 0° Thermo-Humidity Cycle 150°F 86 130 17,000  6 - 0.032 0° Thermo-Humidity Cycle 150°F 81.5 123 1,000  6 - 0.033 0° Thermo-Humidity Cycle 150°F 81.5 123 1,000  6 - 0.031 0° Acc. Withrig. RTD 61.5 110 - 2.335×10 <sup>6</sup> 169.4  6 - 0.031 0° Acc. Withrig. RTD 64.5 115 27,000  6 - 0.031 0° Acc. Withrig. RTD 64.5 115 27,000  6 - 0.031 0° Acc. Withrig. 260°F 61.5 110 - 2.442×10 <sup>6</sup> 111.8  6 - 0.033 0° Acc. Withrig. 260°F 64.5 115 21,000  6 - 0.033 0° Acc. Withrig. 260°F 65.5 117 5,000  6 - 0.033 0° Acc. Withrig. 260°F 65.5 117 5,000  6 - 0.033 0° Acc. Withrig. 260°F 65.5 117 5,000  6 - 0.033 0° Acc. Withrig. 260°F 65.5 117 5,000  6 - 0.033 0° Acc. Withrig. 260°F 65.5 117 5,000  6 - 0.033 0° Acc. Withrig. 350°F 87.5 100  6 - 0.033 0° Acc. Withrig. 350°F 87.5 100  6 - 0.033 0° Acc. Withrig. 350°F 87.5 128 5,000  6 - 0.033 0° Acc. Withrig. 350°F 87.5 128 5,000  6 - 0.033 0° Acc. Withrig. 350°F 87.5 128 5,000  6 - 0.033 0° Acc. Withrig. 350°F 87.5 128 5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111098-5  | - 0                      | Ö           | The rmo-Hunid                       |                      | 350'F                 | 79.5                       | 120            |                                     | 2.329 x 10°                             | 170.0                         |                   |
| E - 0.032       0°       Thermo-Humidity Cycle       350°F       86       130       17,000         6 - 0.033       0°       Thermo-Humidity Cycle       350°F       83       125       1,000       2.28 x 10 <sup>6</sup> 155.2         6 - 0.033       0°       Thermo-Humidity Cycle       350°F       81.5       125       1,000       155.2         6 - 0.031       0°       Acc. Wehring.       RTD       61.5       110       -       2.335 x 10 <sup>6</sup> 169.4         6 - 0.031       0°       Acc. Wehring.       RTD       64.5       115       27,000       2.22 x 10 <sup>6</sup> 188.4         6 - 0.031       0°       Acc. Wehring.       260°F       61.5       110       -       2.442x10 <sup>6</sup> 171.8         6 - 0.033       0°       Acc. Wehring.       260°F       61.5       110       -       2.442x10 <sup>6</sup> 171.8         6 - 0.033       0°       Acc. Wehring.       260°F       61.5       110       -       2.442x10 <sup>6</sup> 171.8         6 - 0.033       0°       Acc. Wehring.       260°F       63.5       113       1,357,000       -         6 - 0.033       0°       Acc. Wehring.       350°F       85.5       112 <td< td=""><td>11098-6</td><td>ŀ</td><td>·, o</td><td>Thermo-Reald:</td><td>ity Cycle</td><td>350°F</td><td>89.5</td><td>135</td><td>•</td><td></td><td></td><td>Immediate Failure</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11098-6   | ŀ                        | ·, o        | Thermo-Reald:                       | ity Cycle            | 350°F                 | 89.5                       | 135            | •                                   |                                         |                               | Immediate Failure |
| 6 - 0.032 0° Thermo-Numidity Cycle 350°F 813 125 1,000 2.28 x 106 155.2 1,000 155.2 1,000 155.2 1,000 155.2 1,000 155.2 1,000 1 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,00 | 1,1098-7  | •                        | Û           | Thermo-Humid:                       |                      | 350°F                 | <b>26</b>                  | 3              | 17,000                              |                                         |                               |                   |
| 6 - 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111098-8  | 1                        | °O          | The rate-Numid                      |                      | 350°F                 | 83                         | 125            | 1,000                               | •                                       |                               |                   |
| 6 - 0.031 0° Acc. Webring. RTD 61.5 110 - 2.335×10 <sup>6</sup> 169.4 6 - 0.032 0° Acc. Webring. RTD 64.5 115 27,000 6 - 0.031 0° Acc. Webring. RTD 64.5 115 27,000 6 - 0.033 0° Acc. Webring. RTD 64.5 113 27,000 6 - 0.033 0° Acc. Webring. 260°F 67 120 - 2.442x10 <sup>6</sup> 171.8 6 - 0.033 0° Acc. Webring. 260°F 67 120 - 2.442x10 <sup>6</sup> 171.8 6 - 0.033 0° Acc. Webring. 260°F 65.5 117 5,000 6 - 0.033 0° Acc. Webring. 260°F 65.5 117 5,000 6 - 0.033 0° Acc. Webring. 350°F 65.5 117 5,000 6 - 0.033 0° Acc. Webring. 350°F 67 120 - 2,000 6 - 0.033 0° Acc. Webring. 350°F 87.5 128 5,000 6 - 0.033 0° Acc. Webring. 350°F 87.5 128 5,000 6 - 0.033 0° Acc. Webring. 350°F 87.5 127 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111098-9  | •                        | 0,          | Thermo-Hundd                        |                      | 350'F                 | 81.5                       | 123            | •                                   | 2.28 x 10°                              | 155.2                         | Tab Failure       |
| 6 - 0.032 0° Acc. Webring. RTD 67 120 41,000 6 - 0.031 0° Acc. Webring. RTD 70 125 6,000 6 - 0.031 0° Acc. Webring. RTD 64.5 115 27,000 6 - 0.033 0° Acc. Webring. 260°F 61.5 110 - 2.442x10 <sup>6</sup> 171.8 6 - 0.033 0° Acc. Webring. 260°F 67 120 - 2.442x10 <sup>6</sup> 171.8 6 - 0.033 0° Acc. Webring. 260°F 65.5 117 1.357,000 6 - 0.033 0° Acc. Webring. 260°F 65.5 117 1.357,000 6 - 0.033 0° Acc. Webring. 350°F 85.5 128 27,000 6 - 0.033 0° Acc. Webring. 350°F 87.5 128 5.000 6 - 0.033 0° Acc. Webring. 350°F 87.5 128 5.000 6 - 0.033 0° Acc. Webring. 350°F 87.5 120 5.000 6 - 0.033 0° Acc. Webring. 350°F 87.5 120 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111050-1  |                          | 0 0         | And Weber                           | 18.                  | Q<br>Q                | 61.5                       | 110            | •                                   | 2.335 × 10 <sup>6</sup>                 | 7.691                         |                   |
| 6 - 0.031 0° Acc. Wthrng. RTD 64.5 115 27,000 2.22 x 10 <sup>6</sup> 188.4 (c. 0.031 0° Acc. Wthrng. RTD 64.5 115 27,000 2.22 x 10 <sup>6</sup> 188.4 (c. 0.031 0° Acc. Wthrng. 260°F 67 120 — 2.442x10 <sup>6</sup> 171.8 (c. 0.033 0° Acc. Wthrng. 260°F 67 120 — 2.442x10 <sup>6</sup> 171.8 (c. 0.033 0° Acc. Wthrng. 260°F 65.5 117 5.000 (c. 0.033 0° Acc. Wthrng. 260°F 65.5 117 5.000 (c. 0.033 0° Acc. Wthrng. 350°F 85.5 127 5.000 (c. 0.033 0° Acc. Wthrng. 350°F 87.5 128 5.000 (c. 0.033 0° Acc. Wthrng. 350°F 87.5 128 5.000 (c. 0.033 0° Acc. Wthrng. 350°F 87.5 127 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11030-2   |                          | °c          | Acc. Lithin                         | 2                    | £                     | 67                         | 120            | 41.000                              |                                         |                               |                   |
| 6 - 0.031 0° Acc. Wthrng. RTD 64.5 115 27,000 2.22 x 10 <sup>6</sup> 188.4 c - 0.031 0° Acc. Wthrng. RTD 63 113 - 2.42x10 <sup>6</sup> 171.8 c - 0.033 0° Acc. Wthrng. 260°F 67 120 - 2.442x10 <sup>6</sup> 171.8 c - 0.033 0° Acc. Wthrng. 260°F 65.5 117 5.000 c - 0.033 0° Acc. Wthrng. 260°F 65.5 117 5.000 c - 0.033 0° Acc. Wthrng. 350°F 89 130 2.000 c - 0.033 0° Acc. Wthrng. 350°F 87.5 128 5.000 c - 0.033 0° Acc. Wthrng. 350°F 87.5 128 5.000 c - 0.033 0° Acc. Wthrng. 350°F 87.5 128 5.000 c - 0.033 0° Acc. Wthrng. 350°F 87.5 127 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11050-3   | t                        | o '0        | Acc. Wthen                          |                      | £                     | 20                         | 125            | 6,000                               |                                         |                               | Teb Failure       |
| 6 - 0.031 0° Acc. Withing. RTD 63 113 - 2.22 x 10° 1884. 6 - 0.033 0° Acc. Withing. 260°F 61.5 110 - 2.442x10 <sup>6</sup> 171.8 6 - 0.033 0° Acc. Withing. 260°F 64.5 115 21,000 6 - 0.033 0° Acc. Withing. 260°F 65.5 117 5,000 6 - 0.033 0° Acc. Withing. 350°F 65.5 120 2,000 6 - 0.033 0° Acc. Withing. 350°F 89 130 2,000 6 - 0.033 0° Acc. Withing. 350°F 87 128 5,000 6 - 0.033 0° Acc. Withing. 350°F 87 127 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11050-4   | •                        | Ö           |                                     |                      | C C                   | \$<br>\$                   | 115            | 27,000                              | •                                       |                               |                   |
| 6 - 0.033 0 0 Acc. Withing. 260°F 61.5 110 - 2.442m10 <sup>6</sup> 171.8 6 - 0.033 0° Acc. Withing. 260°F 64.5 115 21,000 Acc. Withing. 260°F 63 113 1,357,000 6 - 0.033 0° Acc. Withing. 260°F 65.5 117 5,000 6 - 0.033 0° Acc. Withing. 350°F 89 130 2,000 6 - 0.033 0° Acc. Withing. 350°F 87.5 128 5,000 6 - 0.033 0° Acc. Withing. 350°F 87.5 128 5,000 6 - 0.033 0° Acc. Withing. 350°F 87.5 127 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11050-5   | - 1                      | • 0         |                                     |                      | <b>£</b>              | 63                         | 113            | . 1                                 | 2.22 × 10 <sup>6</sup>                  | 188.4                         |                   |
| 6 - 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01-46011  |                          | ٥           | Acc. Uthra                          | ğ                    | 260°F                 | 61.5                       | 110            | •                                   | 2.442x106                               | 171.8                         |                   |
| 6 - 0.033 0° Acc. Wehrng. 260°F 64.5 115 21,000 6 - 0.032 0° Acc. Wehrng. 260°F 63 113 1,357,000 6 - 0.033 0° Acc. Wehrng. 260°F 65.5 117 5,000 6 - 0.033 0° Acc. Wehrng. 350°F 85.5 125 272,000 6 - 0.033 0° Acc. Wehrng. 350°F 87.5 128 5,000 6 - 0.033 0° Acc. Wehrng. 350°F 87.5 128 5,000 6 - 0.033 0° Acc. Wehrng. 350°F 87.5 128 5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11094-11  |                          | စ်          | Acc. Wthrn                          | , j                  | 260°F                 | 67                         | 120            | ,                                   |                                         | )<br>;<br>;                   | Immediate Failure |
| 6 - 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11094-12  | 0                        | ٥           |                                     | · je                 | 260°F                 | 64.5                       |                | 21,000                              |                                         |                               |                   |
| 6 - 0.033 0° Acc. Wehrng. 260°F 65.5 117 5.000<br>6 - 0.033 0° Acc. Wehrng. 350°F 85.5 125 272,000<br>6 - 0.033 0° Acc. Wehrng. 350°F 87.5 128 5.000<br>6 - 0.033 0° Acc. Wehrng. 350°F 87.5 128 5.000<br>6 - 0.033 0° Acc. Wehrng. 350°F 87.5 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11094-13  | 0                        | ٥,          |                                     | اوا ا                | 260°F                 | 63                         |                | 1.357,000                           |                                         |                               |                   |
| 6 - 0.033 0° Acc. Wehring. 350°F 89 1.30 2.000<br>6 - 0.033 0° Acc. Wehring. 350°F 85.5 1.25 272,000<br>6 - 0.033 0° Acc. Wehring. 350°F 87.5 1.28 5,000<br>6 - 0.033 0° Acc. Wehring. 350°F 87.5 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41-V6011  | 0                        | •           |                                     | , pj                 | 260°F                 | 65.5                       |                | 5,000                               |                                         |                               |                   |
| 6 - 0.033 0° Acc. Wehrig. 350°F 85.5 125 272,000<br>6 - 0.033 0° Acc. Wehring. 350°F 87.5 128 5,000<br>6 - 0.033 0° Acc. Wehring. 350°F 87 127 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111098-10 | 1                        | • 0         | Acc. Wthra                          | ž.                   | 350°F                 | 68                         | 130            | 2,000                               |                                         |                               |                   |
| 6 - 0.033 0° Acc. Wehrng. 350°F 87.5 128 5,000<br>6 - 0.033 0° Acc. Wehrng. 350°F 87 127 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11098-11  | ٠                        | °           | Acc. Wehr.                          |                      | 350°F                 | 85.5                       | 125            | 272,000                             |                                         |                               |                   |
| 6 - 0.033 0° Acc. Wthrng. 350°F 87 127 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11098-12  | - 1                      | .0          |                                     | , <del>,</del>       | 350°F                 | 87.5                       | 128            | s, 900                              |                                         |                               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11098-13  | ٠                        | °           | Acc. Wehrn                          | ÷                    | 350 F                 | 87                         | 127            | 90,                                 | 9                                       |                               |                   |

TABLE AVI TO THE STATE OF THE S

| Stress Lave   Cycles   Applied   Cycles   Applied   Cycles   Applied   Cycles   Applied   Cycles   C                      | PRIOR CONDITIONING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |          |              |               |               |          |                         | Selve                         |          |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|--------------|---------------|---------------|----------|-------------------------|-------------------------------|----------|-------|
| Type Duration (T) (Touit) (ks1) (cycles)  s 98" RH / SOO Hrs. RTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type         Duration         (*F)         (T_ult) (kst)         (cycles)           9g* NH         500 Hrs.         RTD         R4.5         73         28.306           9g* NH         500 Hrs.         RTD         R4.5         73         28.306           9g* NH         500 Hrs.         RTD         R4.5         73         28.306           9g* NH         500 Hrs.         RTD         85         72         11.56 × 106           9g* NH         500 Hrs.         260°F         87         60         7.000           9g* NH         500 Hrs.         260°F         84         68         198,000           9g* NH         500 Hrs.         260°F         84         66         1,000           9g* NH         500 Hrs.         350°F         84         57         1,000           9g* NH </th <th></th> <th>PRIOR CC</th> <th>NO IT TONING</th> <th>Test<br/>Temp.</th> <th>Stress V</th> <th></th> <th>Cycles<br/>to<br/>Failure</th> <th>Applied<br/>without<br/>Failure</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | PRIOR CC | NO IT TONING | Test<br>Temp. | Stress V      |          | Cycles<br>to<br>Failure | Applied<br>without<br>Failure |          |       |
| 987 RH         500 Hrs.         RTD         84         75         28,306           987 RH         500 Hrs.         RTD         64.5         73         28,306           987 RH         500 Hrs.         RTD         64.5         73         28,306           987 RH         500 Hrs.         260°F         74.5         60         7,000           987 RH         500 Hrs.         260°F         83         65         191,000           987 RH         500 Hrs.         260°F         83         65         191,000           987 RH         500 Hrs.         260°F         83         66         1,000           987 RH         500 Hrs.         350°F         84         68         388,000           987 RH         500 Hrs.         350°F         89         5         1,000           987 RH         500 Hrs.         350°F         89         5         1,000           987 RH         500 Hrs.         350°F         89         5         1,000           987 RH         1000 Hrs.         87         5         60         1,000           987 RH         1000 Hrs.         86         5         1,000           987 RH         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98° RH / 500 Hrs.         RTD         84         75         28,006           98° RH / 500 Hrs.         RTD         84         73         28,006           98° RH / 500 Hrs.         RTD         85         72         11.05 × 10 <sup>6</sup> 98° RH / 500 Hrs.         RTD         85         72         11.05 × 10 <sup>6</sup> 98° RH / 500 Hrs.         260°F         74.5         60         191,000           98° RH / 500 Hrs.         260°F         83         65         191,000           98° RH / 500 Hrs.         260°F         84         68         1900           98° RH / 500 Hrs.         2500 Hrs.         350°F         84         66         1,000           98° RH / 500 Hrs.         350°F         84         66         1,000           98° RH / 500 Hrs.         350°F         84         66         1,000           98° RH / 500 Hrs.         350°F         84         66         1,000           98° RH / 500 Hrs.         350°F         84         66         1,000           98° RH / 100 Hrs.         350°F         86         55         100           98° RH / 100 Hrs.         260°F         94         60         119,000           98° RH / 1000 Hrs. <th>ਨ ।</th> <th></th> <th>Duration</th> <th>(.F)</th> <th>(Toult)</th> <th>(ks1)</th> <th>(cycles)</th> <th>(cycles)</th> <th>1</th> <th>(ks1)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ਨ । |          | Duration     | (.F)          | (Toult)       | (ks1)    | (cycles)                | (cycles)                      | 1        | (ks1) |
| \$ 98" RH   500 Hrs. RTD   66.5 73 28,306 98" RH   500 Hrs. RTD   66.5 73 11.06 x 10 <sup>6</sup> 98" RH   500 Hrs. RTD   66.5 72 11.06 x 10 <sup>6</sup> 98" RH   500 Hrs. 260°F   80.5 60 191,000 98" RH   500 Hrs. 260°F   80.5 65 191,000 98" RH   500 Hrs. 260°F   80.5 65 11,174,000 98" RH   500 Hrs. 260°F   80.5 65 11,174,000 98" RH   500 Hrs. 260°F   80.5 65 11,000 98" RH   500 Hrs. 350°F   80.5 57 9,000 98" RH   1000 Hrs. RTD   94.5 75 11,000 98" RH   1000 Hrs. RTD   94.5 75 11,000 98" RH   1000 Hrs. RTD   75.5 60 119,000 98" RH   1000 Hrs. 260°F   94.5 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F   94.5 75 75 11,000 98" RH   1000 Hrs. 260°F | \$ 98° NH   500 HFS. RTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19  | o<br>o   | 500 Hrs.     | Œ             | or<br>ac.     | 25       | ,                       |                               |          |       |
| RH / 500 Hrs. RT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98° RH / 500 Hrs. RTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | 984      | 500 Hrs.     | RT.           | \$.5          | 73       | 28,006                  |                               |          |       |
| RH / 500 HFS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 987 RH / 500 Hrs. RTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          | 500 Hrs.     | Ê             | 84.5          | 73       |                         |                               |          |       |
| HH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 987 RH / 500 Hrs. 260°F 74,5 60672 x 10 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |          | 500 Hrs.     | Êi            | iÇ i.<br>AÇ d |          |                         | •                             |          |       |
| KH / 500 Hrs. 260°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 967 RH / 500 Hrs. 260°F 87, 70 3,000 3,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000 9,000           |     |          |              | ^<br>¥        | í,<br>o       | .1       | O1 × 60.                |                               |          |       |
| RH   500 Hrs.   260°F   80°.   5°   191,000   RH   500 Hrs.   260°F   80°.   5°   191,000   RH   500 Hrs.   260°F   84   66   1,000   RH   500 Hrs.   350°F   94   66   1,000   RH   500 Hrs.   350°F   89°.   5°   9,000   RH   500 Hrs.   350°F   89°.   5°   9,000   RH   500 Hrs.   350°F   89°.   5°   9,000   RH   500 Hrs.   350°F   86   5°   9,000   RH   500 Hrs.   350°F   86   5°   1,000   RH   1000 Rrs.   RTD   94°.   5°   1,000   RH   1000 Rrs.   RTD   94°.   5°   1,000   RH   1000 Hrs.   RTD   86°.   5°   1,000   RH   1000 Hrs.   RTD   94°.   5°   1,000   RH   1000 Rrs.   RTD   94°.   5°   1,000   RH   1000 Rrs.   260°F   98   7°   5°   RH   1000 Rrs.   350°F   90   7°   5°   RH   1000 Rrs.   350°F   90   2°   RH   1000 Rrs.   350°F   97   60   2°   RH   1000 Rrs.   350°F   84°.   5°   RH   1000 Rrs.   350°F   84°°F   86°F   8                    | 9F. RH / 500 Hrs. 260°F 80.5 65 191,000 9F. RH / 500 Hrs. 260°F 83.6 65 191,000 9F. RH / 500 Hrs. 260°F 84.6 68 1,174,000 9F. RH / 500 Hrs. 350°F 94.6 1,000 9F. RH / 500 Hrs. 350°F 89.5 57 9,000 9F. RH / 500 Hrs. 350°F 89.5 57 9,000 9F. RH / 500 Hrs. 350°F 89.5 57 9,000 9F. RH / 1000 Hrs. RTD 94.5 57 1,000 9F. RH / 1000 Hrs. RTD 94.5 75 1,000 9F. RH / 1000 Hrs. RTD 94.5 75 1,000 9F. RH / 1000 Hrs. RTD 94.5 75 1,000 9F. RH / 1000 Hrs. RTD 94.5 75 1,000 9F. RH / 1000 Hrs. RTD 94.5 75 1,000 9F. RH / 1000 Hrs. RTD 94.5 75 1,000 9F. RH / 1000 Hrs. RTD 75.5 60 119,000 9F. RH / 1000 Hrs. 260°F 98 75 5,000 9F. RH / 1000 Hrs. 260°F 98 75 5,000 9F. RH / 1000 Hrs. 260°F 98 75 5,000 9F. RH / 1000 Hrs. 350°F 97.8 70 1,000 9F. RH / 1000 Hrs. 350°F 97.8 70 2,000 9F. RH / 1000 Hrs. 350°F 84.5 55 00 2,000 9F. RH / 1000 Hrs. 350°F 84.5 55 00 2,000 9F. RH / 1000 Hrs. 350°F 84.5 53 47,000 2.0 x 106 9F. RH / 1000 Hrs. 350°F 84.5 53 47,000 2.0 x 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |          |              | 260°F         | 74.5          | 99       | •                       | 632 x 10°                     | 82       | 7     |
| RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 987 RH / 500 Hrs. 260°F 83 67 1,174,000 987 RH / 500 Hrs. 260°F 83 67 1,174,000 987 RH / 500 Hrs. 350°F 89, 66 1,000 987 RH / 500 Hrs. 350°F 89, 57 9,000 987 RH / 500 Hrs. 150°F 89, 57 9,000 987 RH / 1000 Hrs. RTD 84, 5 67 1,000 987 RH / 1000 Hrs. RTD 94, 5 75 1,000 987 RH / 1000 Hrs. RTD 84, 5 67 1,000 987 RH / 1000 Hrs. RTD 84, 5 67 1,000 987 RH / 1000 Hrs. RTD 84, 5 67 1,000 987 RH / 1000 Hrs. RTD 75.5 60 119,000 987 RH / 1000 Hrs. 260°F 98 75 5,000 987 RH / 1000 Hrs. 260°F 98 75 5,000 987 RH / 1000 Hrs. 260°F 98 75 5,000 987 RH / 1000 Hrs. 260°F 98 75 5,000 987 RH / 1000 Hrs. 260°F 98 75 5,000 987 RH / 1000 Hrs. 350°F 107 70 1,000 987 RH / 1000 Hrs. 350°F 107 70 1,000 987 RH / 1000 Hrs. 350°F 107 50 2,000 987 RH / 1000 Hrs. 350°F 84, 5 55 60 2,000 987 RH / 1000 Hrs. 350°F 84, 5 55 60 2,000 987 RH / 1000 Hrs. 350°F 84, 5 55 60 2,000 987 RH / 1000 Hrs. 350°F 84, 5 55 60 2,000 987 RH / 1000 Hrs. 350°F 84, 5 55 60 2,000 987 RH / 1000 Hrs. 350°F 84, 5 55 60 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |          |              | 3-097         | 7.60          | ٦٢.      | 3,000                   |                               |          |       |
| RH 500 Hrs. 260°F 83 67 1,174,000 RH 500 Hrs. 260°F 84 68 388,000 RH 500 Hrs. 350°F 94 66 1,000 RH 500 Hrs. 350°F 89.5 57 9,000 RH 500 Hrs. 350°F 89.5 57 9,000 RH 7 500 Hrs. 350°F 89.5 57 9,000 RH 7 1000 Hrs. RTJ 101 80 1,000 RH 7 1000 Hrs. RTJ 101 80 1,000 RH 7 1000 Hrs. RTJ 101 80 1,000 RH 7 1000 Hrs. RTJ 260°F 75 60 119,000 RH 7 1000 Hrs. 260°F 98 75 5,000 RH 7 1000 Rrs. 260°F 94 75 5,000 RH 7 1000 Rrs. 350°F 92.5 71 7,000 RH 7 1000 Rrs. 350°F 92.5 71 7,000 RH 7 1000 Rrs. 350°F 92.5 55 47,000 RH 7 1000 Rrs. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98 RH 500 Hrs. 260°F 83 67 1,114,000 98 RH 500 Hrs. 260°F 84 68 388,000 98 RH 7 500 Hrs. 350°F 102 65 1,000 98 RH 7 500 Hrs. 350°F 89.5 57 9,000 98 RH 7 500 Hrs. 350°F 86 55 1,000 98 RH 7 1000 Hrs. RTJ 101 80 1,000 98 RH 7 1000 Hrs. RTJ 101 80 1,000 98 RH 7 1000 Hrs. RTJ 260°F 75 60 119,000 98 RH 7 1000 Hrs. RTJ 88.5 75 60 119,000 98 RH 7 1000 Hrs. RTD 75.5 60 119,000 98 RH 7 1000 Hrs. RTD 75.5 60 119,000 98 RH 7 1000 Hrs. 260°F 98 75 - 1 x 100 98 RH 7 1000 Hrs. 260°F 98 75 - 1 x 100 98 RH 7 1000 Hrs. 260°F 98 75 - 1 x 100 98 RH 7 1000 Hrs. 260°F 98 75 - 1 x 100 98 RH 7 1000 Hrs. 350°F 92 50 2,000 98 RH 7 1000 Hrs. 350°F 92 60 2,000 98 RH 7 1000 Hrs. 350°F 84.5 55 47,000 98 RH 7 1000 Hrs. 350°F 84.5 55 47,000 98 RH 7 1000 Hrs. 350°F 84.5 55 47,000 98 RH 7 1000 Hrs. 350°F 84.5 55 47,000 98 RH 7 1000 Hrs. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |          |              | 260°F         | 80.3          | 63       | 191,000                 |                               |          |       |
| RH / 500 Hrs. 260°F 84 68 388,000  RH / 500 Hrs. 350°F 94 60 1,000  RH / 500 Hrs. 350°F 94 60 1,000  RH / 500 Hrs. 350°F 89.5 57 9,000  RH / 500 Hrs. 350°F 89.5 57 9,000  RH / 500 Hrs. 350°F 89.5 57 9,000  RH / 1000 Hrs. RTJ 101 80 1,000  RH / 1000 Hrs. RTD 94.5 75 1,000  RH / 1000 Hrs. RTD 84.5 67 119,000  RH / 1000 Hrs. 260°F 78 60 119,000  RH / 1000 Hrs. 260°F 96 75 1 1 x 10°  RH / 1000 Hrs. 260°F 96 75 1 1 x 10°  RH / 1000 Hrs. 260°F 96 75 1 2,000  RH / 1000 Hrs. 350°F 96 75 1 2,000  RH / 1000 Hrs. 350°F 96 75 1 2,000  RH / 1000 Hrs. 350°F 96 2,000  RH / 1000 Hrs. 350°F 97 5 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98° RH / 500 Hrs. 260°F 84 66 388,000  98° RH / 500 Hrs. 350°F 94 60 1,000  98° RH / 500 Hrs. 350°F 89.5 57 9,000  98° RH / 500 Hrs. 350°F 89.5 57 9,000  98° RH / 500 Hrs. 350°F 89.5 57 9,000  98° RH / 500 Hrs. 350°F 89.5 57 9,000  98° RH / 500 Hrs. 870 100 1,000  98° RH / 1000 Hrs. 870 100 1,000  98° RH / 1000 Hrs. 870 1000  98° RH / 1000 Hrs. 260°F 98 75 1000  98° RH / 1000 Hrs. 260°F 98 75 1000  98° RH / 1000 Hrs. 350°F 107 70 1,000  98° RH / 1000 Hrs. 350°F 84.5 55 47,000  2.0 R 106  98° RH / 1000 Hrs. 350°F 84.5 55 47,000  2.0 R 106  98° RH / 1000 Hrs. 350°F 84.5 55 47,000  2.0 R 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          |              | 260°F         | 83            | ı,       | 1,174,000               |                               |          |       |
| RH / 500 Hrs. 350°F 94, 60 1,000 RH / 500 Hrs. 350°F 94, 60 1,000 RH / 500 Hrs. 350°F 89.5 57 9,000 RH / 500 Hrs. 350°F 89.5 57 9,000 RH / 500 Hrs. 350°F 86 55 1°C,000 RH / 1000 Rrs. RTD 94.5 75 1,000 RH / 1000 Rrs. RTD 94.5 75 1,000 RH / 1000 Rrs. RTD 75.5 60 119,000 RH / 1000 Rrs. RTD 75.5 60 119,000 RH / 1000 Rrs. 260°F 98 75 1 1 x 10°C RH / 1000 Rrs. 260°F 98 75 1 1 x 10°C RH / 1000 Rrs. 260°F 98 75 5,000 RH / 1000 Rrs. 350°F 94.5 77 7,000 RH / 1000 Rrs. 350°F 92.5 71 7,000 RH / 1000 Rrs. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98° RH / 500 Hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |          |              | 260°F         | ž             | <b>9</b> | 388,000                 |                               |          |       |
| RH / 500 Hzs. 350°F 94 60 1,000 RH / 500 Hzs. 350°F 89.5 57 9,000 RH / 500 Hzs. 350°F 89.5 57 9,000 RH / 500 Hzs. 350°F 86 55 1 000 RH / 1000 Hzs. RTD 94.5 75 1,000 RH / 1000 Hzs. RTD 94.5 75 1,000 RH / 1000 Hzs. RTD 75.5 60 119,000 RH / 1000 Hzs. RTD 75.5 60 119,000 RH / 1000 Hzs. 260°F 78 60 - 1 x 10° RH / 1000 Hzs. 260°F 98 75 - 1 x 10° RH / 1000 Rzs. 260°F 98 75 - 1 x 10° RH / 1000 Rzs. 260°F 98 75 - 1 x 10° RH / 1000 Rzs. 350°F 92.5 71 7,000 RH / 1000 Rzs. 350°F 92.5 71 7,000 RH / 1000 Rzs. 350°F 92.5 71 7,000 RH / 1000 Rzs. 350°F 92.5 55 47,000 RH / 1000 Rzs. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 967 RH / 500 Hrs. 350°F 89.5 57 9,000 1,000 967 RH / 500 Hrs. 350°F 89.5 57 9,000 2,225 x 10 <sup>6</sup> 98.7 81 7 900 2,225 x 10 <sup>6</sup> 98.7 RH / 500 Hrs. 350°F 86 55 1 000 800 2,225 x 10 <sup>6</sup> 987 RH / 1000 Hrs. RTJ 88.5 75 1,000 800 987 RH / 1000 Hrs. RTJ 88.5 75 60 119,000 987 RH / 1000 Hrs. RTJ 84.5 67 1,000 987 RH / 1000 Hrs. RTJ 84.5 60 119,000 987 RH / 1000 Hrs. RTD 75.5 60 119,000 987 RH / 1000 Hrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Rrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Rrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Rrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Rrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Rrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Rrs. 350°F 92.5 71 7,000 997 RH / 1000 Rrs. 350°F 92.5 71 7,000 2,000 997 RH / 1000 Rrs. 350°F 84.5 55 47,000 2,000 997 RH / 1000 Rrs. 350°F 84.5 55 47,000 2,000 2,000 997 RH / 1000 Rrs. 350°F 84.5 55 47,000 2.0 x 10 <sup>6</sup> 997 RH / 1000 Rrs. 350°F 84.5 55 47,000 2.0 x 10 <sup>6</sup> 997 RH / 1000 Rrs. 350°F 84.5 55 47,000 2.0 x 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |          | 500 Hrs.     | 350 F         | 102           | e<br>E   | 1,000                   |                               |          |       |
| RH / 500 Hre. 350°F 89.5 57 9,000 2.25 x 10 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 987 RH / 500 Hrs. 350°F 89.5 57 9,000 2.25 x 10 <sup>6</sup> 987 RH / 500 Hrs. 350°F 83 53 - 2.25 x 10 <sup>6</sup> 987 RH / 500 Hrs. 350°F 83 53 - 2.25 x 10 <sup>6</sup> 987 RH / 1000 Hrs. RTD 94.5 75 1,000 98° RH / 1000 Hrs. RTD 94.5 75 1,000 98° RH / 1000 Hrs. RTD 84.5 67 6.000 98° RH / 1000 Hrs. RTD 75.5 60 119,000 987 RH / 1000 Hrs. 260°F 78 60 119,000 987 RH / 1000 Hrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Hrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Hrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Hrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Hrs. 260°F 98 75 - 1 x 10 <sup>6</sup> 987 RH / 1000 Hrs. 260°F 98 75 - 2,000 987 RH / 1000 Hrs. 260°F 94 75 5,000 987 RH / 1000 Hrs. 350°F 107 70 1,000 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2,000 2,000 47.00 Hrs. 350°F 84.5 55 47,000 2.00 x 10 <sup>6</sup> 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.00 x 10 <sup>6</sup> 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.00 x 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |          | 500 Hrs.     | 350°F         | \$            | 9        | 1,000                   |                               |          |       |
| RH / 500 Hrs. 350°F 83 5322 x 10 RH / 500 Hrs. 350°F 86 55 1°C00 C22 x 10 RH / 1000 Hrs. RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96° RH / 500 Hrs. 150°F 83 5323 x 10 68°Z RH / 500 Hrs. 150°F 86 55 1°C 90023 x 10 98°Z RH / 1000 Hrs. RTD 94.5 75 1,000 98°Z RH / 1000 Hrs. RTD 84.5 67 1,000 98°Z RH / 1000 Hrs. RTD 84.5 67 1000 Hrs. RTD 75.5 60 119,000 98°Z RH / 1000 Hrs. 260°F 78 60 119,000 - 1 x 10°C 98°Z RH / 1000 Hrs. 260°F 98 75 - 1 x 10°C 98°Z RH / 1000 Hrs. 260°F 98 75 - 1 x 10°C 98°Z RH / 1000 Hrs. 260°F 98 75 - 1 x 10°C 98°Z RH / 1000 Hrs. 260°F 98 75 - 1 x 10°C 98°Z RH / 1000 Hrs. 260°F 98 75 - 1,000 98°Z RH / 1000 Hrs. 260°F 98°Z RH / 1000 Hrs. 350°F 10°Z 80°Z 80°Z 80°Z 80°Z 80°Z 80°Z 80°Z 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |          | 500 Hrs.     | 350°F         | 89.5          | 57       | 000.6                   | 9.                            | ;        |       |
| RH / 500 Hrs. RT: 101 80 1,000 Rrs. RT: 100 88.5 17 900 Rrs. RT: 101 80 1,000 Rrs. RT: 100 88.5 75 1,000 Rrs. RT: 100 88.5 75 1,000 Rrs. RT: 100 88.5 70 6,000 Rrs. RT: 1000 Rrs. RT: 1000 Rrs. RT: 1000 Rrs. 260°F 78 60 119,000 Rrs. 260°F 91 70 - 1 x 100 Rrs. 260°F 94 75 5,000 Rrs. 350°F 107 70 1,000 Rrs. 350°F 107 70 1,000 Rrs. 350°F 95 60 2,000 Rrs. 350°F 95 65 2,000 Rrs. 350°F 94,5 55 47,000 Rrs. 350°F 94,5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 987 RH / 500 Hrs. KT3 101 80 1,000 987 RH / 1000 Hrs. KT3 101 80 1,000 987 RH / 1000 Hrs. KT3 86.5 70 6,000 987 RH / 1000 Hrs. KT3 86.5 67 119,000 987 RH / 1000 Hrs. 260°F 78 60 119,000 987 RH / 1000 Hrs. 260°F 98 75 1 10,000 987 RH / 1000 Hrs. 260°F 98 75 5,000 987 RH / 1000 Hrs. 260°F 98 75 5,000 987 RH / 1000 Hrs. 260°F 94 72 5,000 987 RH / 1000 Hrs. 260°F 94 72 5,000 987 RH / 1000 Hrs. 350°F 107 70 1,000 987 RH / 1000 Hrs. 350°F 97 500 2,000 987 RH / 1000 Hrs. 350°F 97 500 2,000 987 RH / 1000 Hrs. 350°F 84.5 55 47,000 987 RH / 1000 Hrs. 350°F 84.5 55 47,000 987 RH / 1000 Hrs. 350°F 84.5 53 47,000 987 RH / 1000 Hrs. 350°F 84.5 53 47,000 987 RH / 1000 Hrs. 350°F 84.5 53 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |              | 350'F         | 63            | 53       | •                       | 7.25 \$ 10                    | <u>.</u> |       |
| RH / 1000 Hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 967 RH / 1000 Hrs. KT 1 101 80 1,000 967 RH / 1000 Hrs. KT 1 86.5 75 1,000 967 RH / 1000 Hrs. KT 1 84.5 75 1,000 967 RH / 1000 Hrs. KT 1 84.5 67 6.0 119,000 967 RH / 1000 Hrs. 260°F 78 60 119,000 967 RH / 1000 Hrs. 260°F 98 75 1 1000 Hrs. 260°F 98 75 5,000 967 RH / 1000 Hrs. 260°F 94. 75 5,000 967 RH / 1000 Hrs. 260°F 94. 75 5,000 967 RH / 1000 Hrs. 260°F 94. 75 5,000 967 RH / 1000 Hrs. 260°F 94. 75 5,000 967 RH / 1000 Hrs. 350°F 97 8 60 2,000 967 RH / 1000 Hrs. 350°F 97 80 2,000 2,000 967 RH / 1000 Hrs. 350°F 97 84.5 55 60 2,000 2,000 967 RH / 1000 Hrs. 350°F 84.5 55 60 2,000 2,000 2,000 967 RH / 1000 Hrs. 350°F 84.5 55 60 2,000 2,000 2,000 967 RH / 1000 Hrs. 350°F 84.5 55 60 2,000 2,000 2,000 2,000 967 RH / 1000 Hrs. 350°F 84.5 55 60 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,00           |     |          |              | 3507F         | <b>%</b>      | 25       | 000 J.                  |                               |          |       |
| RH / 1000 RTS. RTD 94.5 75 1,000 RH / 1000 RTS. RTD 88.5 70 6,000 RH / 1000 RTS. RTD 84.5 67 - RH / 1000 RTS. RTD 75.5 60 119,000 RH / 1000 RTS. 260°F 78 60 - RH / 1000 RTS. 260°F 98 75 - RH / 1000 RTS. 260°F 98 75 - RH / 1000 RTS. 260°F 98 75 - RH / 1000 RTS. 260°F 99 75 - RH / 1000 RTS. 260°F 96 75 - RH / 1000 RTS. 260°F 96 75 - RH / 1000 RTS. 260°F 96.5 71 7,000 RH / 1000 RTS. 350°F 107 70 1,000 RH / 1000 RTS. 350°F 95 60 2,000 RH / 1000 RTS. 350°F 95 60 2,000 RH / 1000 RTS. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96° RH / 1000 HTW. RTD 94.5 75 1,000 98° RH / 100° "FE. RTD 86.5 70 6,000 98° RH / 100° HTF. RTD 86.5 67 - 98° RH / 1000 HTF. RTD 75.5 60 119,000 98° RH / 1000 HTF. 260°F 78 60 - 98° RH / 1000 HTW. 260°F 98 75 - 98° RH / 1000 HTW. 260°F 98 75 - 98° RH / 1000 HTW. 260°F 99 75 - 98° RH / 1000 HTW. 260°F 99 75 - 98° RH / 1000 HTW. 350°F 107 70 1,000 98° RH / 1000 HTW. 350°F 97 50 2,000 98° RH / 1000 HTW. 350°F 84.5 55 47,000 98° RH / 1000 HTW. 350°F 84.5 55 47,000 98° RH / 1000 HTW. 350°F 84.5 55 - 98° RH / 1000 HTW. 350°F 84.5 55 - 2.0 R 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |          |              | C 13          | 101           | 80       | 1,000                   |                               |          |       |
| RH / 10°C "-s. RT) 88.5 70 6,000  RH / 10°CO HFF. RTD 84.5 67 -  RH / 10°CO HFF. 260°F 78 60 119,000  RH / 10°CO HFF. 260°F 98 75 -  RH / 10°CO RFF. 260°F 94 75 5,000  RH / 10°CO RFF. 260°F 94 75 5,000  RH / 10°CO RFF. 260°F 94. 75 5,000  RH / 10°CO RFF. 260°F 94. 75 5,000  RH / 10°CO RFF. 350°F 10°7 70 1,000  RH / 10°CO RFF. 350°F 10°7 70 1,000  RH / 10°CO RFF. 350°F 95 60 2,000  RH / 10°CO RFF. 350°F 95 60 2,000  RH / 10°CO RFF. 350°F 95 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98° RH / 10° """. RT7 88.5 70 6,000 98° RH / 10° """. RT7 84.5 70 6,000 98° RH / 10° Hrs. RT7 84.5 67 119,000 98° RH / 10° Hrs. 260°F 78 60 1 x 10° 98° RH / 10° Rrs. 260°F 98 75 1 x 10° 98° RH / 10° Rrs. 260°F 98 75 1 x 10° 98° RH / 10° Rrs. 260°F 98.5 71 7,000 98° RH / 10° Rrs. 350°F 10°7 70 1,000 98° RH / 10° Rrs. 350°F 92 60 2,000 98° RH / 10° Rrs. 350°F 84.5 55 47,000 2.0 x 10° 98° RH / 10° Rrs. 350°F 84.5 53 47,000 2.0 x 10° 98° RH / 10° Rrs. 350°F 84.5 53 47,000 2.0 x 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |          | 1000 Hrs.    | KTD           | 94.5          | 7.5      | 1,000                   |                               |          |       |
| RH / 1000 HFF. RTD 64.5 0/ 119,000 RH / 1000 HFF. 260°F 78 60 119,000 RH / 1000 HFF. 260°F 78 60 - 119,000 RH / 1000 HFF. 260°F 94 75 - 1 x 100 RH / 1000 RFF. 260°F 94 75 5,000 RH / 1000 RFF. 260°F 92.5 71 7,000 RH / 1000 HFF. 350°F 107 70 11,000 RH / 1000 HFF. 350°F 92 60 2,000 RH / 1000 HFF. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 987 RH / 1000 Hrs. RTD 75.5 60 119,000 987 RH / 1000 Hrs. 260°F 78 60 - 2.01×10 <sup>6</sup> 987 RH / 1000 Rrs. 260°F 98 75 - 1×10° 987 RH / 1000 Rrs. 260°F 94 72 5,000 987 RH / 1000 Rrs. 260°F 92.5 71 7,000 987 RH / 1000 Hrs. 350°F 107 70 1,000 987 RH / 1000 Hrs. 350°F 92 60 2,000 987 RH / 1000 Hrs. 350°F 92 60 2,000 987 RH / 1000 Hrs. 350°F 92 60 2,000 987 RH / 1000 Hrs. 350°F 92 60 2,000 2.01×10 <sup>6</sup> 987 RH / 1000 Hrs. 350°F 91.5 53 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |          | 100          | <b>E</b>      | 288.5         | 6:       | 9,000                   |                               |          |       |
| RH / 1000 Hrs. 260°F 78 60 - 2.01x10 <sup>6</sup> RH / 1000 Hrs. 260°F 78 60 - 1 x 10 <sup>6</sup> RH / 1000 Hrs. 260°F 94 75 - 1 x 10 <sup>6</sup> RH / 1000 Hrs. 260°F 94 75 5,000  RH / 1000 Hrs. 260°F 92.5 71 7,000  RH / 1000 Hrs. 350°F 107 70 1,000  RH / 1000 Hrs. 350°F 77 50 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 967 RH / 1000 Hrs. 260°F 78 60 - 2.01×10 <sup>6</sup> 967 RH / 1000 Hrs. 260°F 98 75 - 1 × 10 <sup>6</sup> 967 RH / 1000 Hrs. 260°F 94 75 - 1 × 10 <sup>6</sup> 967 RH / 1000 Hrs. 260°F 94 75 5,000 967 RH / 1000 Hrs. 350°F 107 70 1,000 967 RH / 1000 Hrs. 350°F 107 70 2,000 967 RH / 1000 Hrs. 350°F 92 60 2,000 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 × 10 <sup>6</sup> 967 RH / 1000 Hrs. 350°F 84.5 55 20°C 2.0 × 10 <sup>6</sup> 967 RH / 1000 Hrs. 350°F 84.5 55 20°C 2.0 × 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |          | 1050 Hrs.    | Ê             | 3             | <b>6</b> |                         |                               |          |       |
| RH / 1000 Hrs. 260°F 78 60 - 2.01×10 <sup>6</sup> RH / 1000 Hrs. 260°F 98 75 - 1×10 <sup>6</sup> RH / 1000 Hrs. 260°F 94 75 5,000 RH / 1000 Hrs. 260°F 94. 72 5,000 RH / 1000 Hrs. 260°F 92.5 71 7,000 RH / 1000 Hrs. 350°F 107 70 1,000 RH / 1000 Hrs. 350°F 92 60 2,000 RH / 1000 Hrs. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 967 RH / 1000 Hrs. 260°F 78 60 - 2.01×10 <sup>6</sup> 967 RH / 1000 Hrs. 260°F 98 75 - 1 × 10° 967 RH / 1000 Rrs. 260°F 94 75 5,000 967 RH / 1000 Rrs. 260°F 94. 72 5,000 967 RH / 1000 Hrs. 350°F 107 70 1,000 967 RH / 1000 Hrs. 350°F 92 60 2,000 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 × 10° 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 × 10° 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2.0 × 10° 2 |     |          |              | RTD           | (3.3          | 3        | 773                     | ,                             |          |       |
| RH / 1000 Hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 967. RH / 1000 Hrs. 3°F 91 70 - 1 x 10° 957. RH / 1000 Hrs. 260°F 98 75 - 9,000 967. RH / 1000 Hrs. 260°F 92.5 71 7,000 967. RH / 1000 Hrs. 350°F 107 70 1,000 967. RH / 1000 Hrs. 350°F 92 60 2,000 2,000 967. RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 x 10° 967. RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 x 10° 967. RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 x 10°            |     |          |              | 260°F         | 78            | <b>9</b> | •                       | 2.01 x 10°                    | 81.7     |       |
| RH / 1000 Hrs. 260°F 98 75 - RH / 1000 Hrs. 260°F 94, 72 5,000 RH / 1000 Hrs. 260°F 92.5 71 7,000 RH / 1000 Hrs. 350°F 107 70 1,000 RH / 1000 Hrs. 350°F 92 60 2,000 RH / 1000 Hrs. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 967 RH / 1000 Hrs. 260°F 98 75 -<br>967 RH / 1000 Hrs. 260°F 94, 72 5,000<br>967 RH / 1000 Hrs. 350°F 107 70 1,000<br>967 RH / 1000 Hrs. 350°F 92 60 2,000<br>967 RH / 1000 Hrs. 350°F 97 50 -<br>967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 x 10 <sup>6</sup><br>967 RH / 1000 Hrs. 350°F 84.5 55 2.26 x 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |          |              | ጋ * F         | 91            | 2        | 1                       | 1 x 10°                       | 19.      | _     |
| RH / 1000 RFE. 260°F 94, 72 5,000 RH / 1000 RFE. 260°F 92.5 71 7,000 RH / 1000 RFE. 350°F 107 70 1,000 RH / 1000 RFE. 350°F 92 60 2,000 RH / 1000 RFE. 350°F 94.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 967 RH / 1000 RTS. 260°F 94, 72 5,000<br>967 RH / 1000 RTS. 260°F 92.5 71 7,000<br>967 RH / 1000 RTS. 350°F 107 70 1,000<br>967 RH / 1000 RTS. 350°F 92 60 2,000<br>967 RH / 1000 RTS. 350°F 84.5 55 47,000<br>967 RH / 1000 RTS. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |          |              | 260°F         | 86            | 7.5      | •                       |                               |          |       |
| RH / 1000 HTW. 260°F 92.5 71 7,000  EH / 1000 HTW. 350°F 107 70 1,000  EH / 1000 HTW. 350°F 92 60 2,000  EH / 1000 HTW. 350°F 94.5 55 47,000  EH / 1000 HTW. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 967 RH / 1000 Hrs. 260°F 92.5 71 7,000 967 RH / 1000 Hrs. 350°F 107 70 1,000 967 RH / 1000 Hrs. 350°F 92 60 2,000 967 RH / 1000 Hrs. 350°F 77 50 - 2,261×10 <sup>6</sup> 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 967 RH / 1000 Hrs. 350°F 81.5 53 - 2.0 × 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |          |              | 260°F         | đ             | 72       | °,000                   |                               |          |       |
| ER / 1000 Hrs. 350°F 107 70 1,000 RR / 1000 Hrs. 350°F 92 60 2,000 RR / 1000 Hrs. 350°F 77 50 . 2,261x10 RR / 1000 Hrs. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 967 RH / 1000 Hrs. 350°F 107 70 1,000<br>967 RH / 1000 Hrs. 350°F 92 60 2,000<br>967 RH / 1000 Hrs. 350°F 77 50 - 2,261x10 <sup>6</sup><br>967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 x 10 <sup>6</sup><br>967 RH / 1000 Hrs. 350°F 81.5 53 47,000 2.0 x 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |          |              | 260°F         | 92.5          | 71       | 7,000                   |                               |          |       |
| RH / 1000 Hrs. 350°F 92 bd 2,000 2,000 RH / 1000 Hrs. 350°F 77 50 2,261x10 Hr / 1000 Hrs. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 967 RH / 1000 Hrs. 350°F 92 bd 4,000 2,000 967 RH / 1000 Hrs. 350°F 17 50 - 2,261x10 967 RH / 1000 Hrs. 350°F 84.5 55 47,000 2.0 x 10 96° RH / 1000 Hrs. 350°F 81.5 53 - 2.0 x 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |          | 1000 Hrs.    | 350°F         | 107           | 0.5      | 1,000                   |                               |          |       |
| NA 1000 HER. 350°F 84.5 55 47,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 967 RM / 1000 Hrs. 350°F 84.5 55 47,000 2.0 x 10 6 96° RM / 1000 Hrs. 350°F 81.5 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |          | 1900 Hrs.    | 350-1         | 7.6           | 2 5      | 7,000                   | 2.261 x 106                   | 78.      | و.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96" RH / 1000 Hrs. 350"F 81.5 53 - 2.0 x 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |          | 1000         | 350°F         | 3             | 55       | 47,000                  |                               |          |       |

TABLE WI FALLOUF PROPOSITIS SUPERNY - SARGEO SIGN CONTOUR TEACHER OF ROSIFES

**地震 多川川 明 田本 昭 1860年 1860年 1863年 1868年 1** 

| Spi : faen  | I :tckness                              |                     | PALOR CONDITIONING     | 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | Stress Level  | Cycles<br>to<br>Fatlure | Cycles<br>Applad<br>without<br>Pallure | Resident        |                      |
|-------------|-----------------------------------------|---------------------|------------------------|-----------------------------------------|---------------|-------------------------|----------------------------------------|-----------------|----------------------|
| # Ber       | (Plies) (In.                            | Orientat. on        | Type Juration          | £                                       | (1ºulr) (ksi) | (cycles)                | (cycles)                               | ( <b>jes</b> t) | Comment              |
| \$-38E-1    | 90)<br>1<br>1<br>1<br>1<br>1<br>1       | 3 67 89 0           | Themo-Hunfdite Cecle   | 9                                       |               | 1.000                   |                                        |                 | Tab Fatlure          |
| 41.28E-6    | 900 C                                   | ,<br>; <del>:</del> |                        | GIA                                     | 88 70         |                         |                                        |                 | Smediate Tab Failure |
| 460,18      | 4                                       | :                   |                        | RT.)                                    |               | 3,000                   | •                                      |                 | Tab Failure          |
| MIN. 88 - 8 | 9 TC                                    | :                   |                        | RID                                     |               |                         | 2.515 × 100                            | 7.2             | Teb Failure          |
| 6-18: TX    | 9-2:                                    | =                   | Thermo-Humidity Cycle  | €                                       |               | •                       | 2.421 x 10                             | 8.9             | Tab Failure          |
| 1-196.50    | ,                                       | Ξ                   | elas (dire feels       | 260°F                                   |               | 1 999                   | ,                                      |                 |                      |
| ×11.364-2   |                                         | =                   |                        | 260°F                                   | 3             |                         | 2.5 x 10 <sup>6</sup>                  | 81.6            |                      |
| VI.364-3    | •                                       | :                   | The rac Hunddity Ovele | 260 °F                                  |               | •                       | 2.226 × 10                             | 82.7            |                      |
| W1136A-4    | 5-2-2 m                                 | =                   |                        | 260°F                                   | 84.5 72       | 7,300                   |                                        |                 |                      |
| Y1.364-5    | •                                       | =                   | Thermo-Humidity Cycle  | 360°F                                   |               | s, <b>90</b> 0          |                                        |                 |                      |
| 41.174-1    | •                                       | :                   | The Table (see )       | 35038                                   |               | 1,000                   |                                        |                 |                      |
| 7.77-5      | •                                       | :                   |                        | 350 F                                   | 104.5 65      | 3,000                   | •                                      |                 |                      |
| 5-7,6       | (C) | :                   |                        | 350 F                                   | 88.5 55       | •                       | 2.361 x 10°                            | 83.0            |                      |
| 1-7,5318    | •                                       | :                   | Thermo-Manddity Cycle  | 350°F                                   | %;s 60        | 900                     |                                        |                 |                      |
| M137.k-5    | ٠                                       | :                   | Thermo-Hamidity Cycle  | 350°F                                   |               | 2,000                   |                                        |                 |                      |
| X11288-10   | 670°C - 6                               | =                   | Acc. Wthrng.           | £                                       |               | 2.000                   |                                        |                 | Tab Failure          |
| M1128E-11   | c                                       | **                  | Acc. wthrug.           | G                                       |               | 179,060                 |                                        |                 |                      |
| M11294-1    | 0.0                                     | :                   | Acc. Wthrng.           | e<br>E                                  |               | 2,000                   |                                        |                 |                      |
| M11294-2    | و ټ                                     | E :                 | Acc. Wthrng.           | G                                       | 17.5 72       | 1,000                   | 90.                                    |                 | Tab Pailure          |
| M1129A~3    | 3                                       |                     | Acc. Sthrag.           | <b>1</b>                                |               | •                       | 01 x co.7                              | 63.5            |                      |
| M136A-6     | 6 - 0.048                               | Ξ                   | Acc. Wthrng.           | 7.09Z                                   |               | 3,000                   |                                        |                 |                      |
| M136A-7     | ٠                                       | Ξ                   | Acc. Wthrng.           | 760°F                                   |               | 9,000                   | •                                      |                 |                      |
| V.136A-8    | 2 + 0.047                               | <b>:</b>            | Acc. Wthrng.           | 260 °F                                  | 3             | •                       | 2.186 x 10                             | 78.3            | Teb Failure          |
| M1136A-9    | ٠                                       | Ξ                   | Acc. Wth:ng.           | 260°F                                   |               | •                       | $2.667 \times 10_{\rm g}$              | 81.7            | Tab Failure          |
| ¥1136A-10   | 8                                       | Ξ                   | Acc. Wthrmg.           | 3e0 aL                                  |               | •                       | 2.398 x 10"                            | 78.2            |                      |
|             | 875                                     | =                   | Acc. Ethros.           | 350°F                                   | 91.5 60       | 34,000                  | •                                      |                 |                      |
| M1337A-7    | 1975 T 55                               | :                   |                        | 350 'F                                  |               | •                       | 2.178 x 10"                            | 102.4           | Tab Failure          |
| M1137A-8    | (ac)                                    | ÷                   |                        | 350 'F                                  |               | 2,000                   |                                        |                 |                      |
| K1137A-9    | 73.0                                    | = 1                 | Acc. Wthrng.           | 350'F                                   | 8 8           | 88.                     |                                        |                 | *** F-4 1            |
| X2.37A-1    | 3.5.0                                   | 06/03132 0/30       | Acc. Wthrng.           | ₹.<br>2.2.                              |               | 3,5                     |                                        |                 | IND FALIDITE         |

TABLE XVI - SAFT COLOR CONCESS - CON

| VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII<br>VIII |                       | Orientation | Tupe Duration     | Ė          | Stress Level (T <sup>2</sup> ult)             | En Fallure (cycles) | without<br>Faliare<br>(cycles) | Residual<br>Strength<br>(ksi) | Comment                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|-------------------|------------|-----------------------------------------------|---------------------|--------------------------------|-------------------------------|-----------------------------------|
| 2212 <u>3</u> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ÷ - (.03 <sup>-</sup> | -           | 2007 / 500 Brs.   | RTD        |                                               | ı                   | 2.012 x 10 <sup>6</sup>        | 174.8                         |                                   |
| 210 <b>25</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.03                  | κ           |                   | <b>F</b>   | 82.5 140                                      | 75,000              |                                |                               |                                   |
| ile ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                     | ~,          | Š.                | 2          |                                               | 2°000               |                                |                               |                                   |
| 5 gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . C.037               | • 6         |                   | Ê          | 67 730 750 750 750 750 750 750 750 750 750 75 | 7,000<br>7,000      |                                |                               | Tab Area Failure Teb Area Failure |
| जुमा .<br>संस्थ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                     |             | 260 F / 300 Hrs.  | · .        |                                               | 11,000              |                                |                               | I TO VIEW COLLUS                  |
| E);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E - 0.033             | 7.          |                   | c <b>T</b> |                                               | 17,000              | 4                              |                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £ . 3.03              | Ċ.          |                   | Ē          |                                               |                     | 10.09 x 10°                    | 175.9                         |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | € - 0.03              | c           |                   | <u>.</u>   |                                               | 345,000             |                                |                               |                                   |
| ¥1104A-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 - 2,037             | С.          | 200               | E<br>C     | 62.5 160                                      | 1,000               |                                |                               | Tab Failure                       |
| <b>5</b> .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e - [.03]             | ċ           | 350 F / 500 Hrs.  | Ē          |                                               | 2,000               |                                |                               | Tab Failure                       |
| 6T-V9017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -£.'.' 3              | , c         | 267 F / 500 Cyc.  | C 13       |                                               | •                   | 2.5 × 10 <sup>6</sup>          | 181.2                         | Tab Failure                       |
| W1105A-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t - 0.03              | c           | 260°F / 500 Cyc.  | Ę          |                                               | •                   |                                |                               | Immediate Failure                 |
| 411068-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | é - 0.03 <sup>-</sup> | C.,.        | 200               | เม         | 96.5 140                                      | 2,000               |                                |                               | Tab Failure                       |
| V1106B-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 - 0.03°             | · · · · ·   | ,<br>20<br>20     | Û          |                                               | •                   |                                |                               | Immediate Tab Failure             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 - 0.033             | ċ.          | 260°F / 500 Cyc.  | KT.        |                                               | 3,000               |                                |                               | Tab Failure                       |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 - 0.33              | Ċ           | 240°F / 1000 Cyc. | C L        |                                               | •                   | 5.253x106                      | 194.3                         |                                   |
| 5-290EEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 - 0, 33             |             | 260°F / 1000 fyc. | C Dy       | 85 140                                        | 2,000               | •                              |                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                     | O           | 260°F / 1000 Cyc. | <b>12</b>  |                                               | •                   | 7.607x10°                      | 168.3                         |                                   |
| 411(6E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 - 2,336             | C.          | 260"F / 1000 Cyc. | Ę          |                                               | 3,000               | ·c                             |                               | Tab Failure                       |
| 6-890EE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                     | <br>C       | 260°F / 1000 Cyc. | RT.)       |                                               | •                   | 2.436×10                       | 174.9                         | Tab Failure                       |
| 6-89012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 - 0.030             | ن.          | 350"F / 500 Cyc.  | C <b>L</b> | 60.5 110                                      | 9,000               | 7                              |                               |                                   |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 - 5.03              | :0          | 350°F / 500 Cyc.  | <b>612</b> | 63.5 100                                      | •                   | 2.653 x 10 <sup>E</sup>        | 177                           | Tab Failure                       |
| ij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     | ر د         | 350*F / 500 Cyc.  | Ē          |                                               | 95,000              | •                              |                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 - 2.33              | ; o         | 350'F / 500 Cyc.  | £;         |                                               |                     | 2.061 x 10°                    | 177                           |                                   |
| Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F                     | ့်ဝ         | 350'F / 500 Cyc.  | CT3        |                                               | •                   | •                              |                               | Immediate Tab Failure             |
| 71-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 - 0.03-             | ن۔          | 350°F / 1000 Cyc. | RTD        |                                               | •                   | 2.93 x 10 <sup>6</sup>         | 172.6                         |                                   |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 - 0.036             | ů           | / 1000            | e<br>E     | 81 125                                        | 900,4               |                                |                               | Tab Failure                       |
| ا تو<br>ا د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 - 0,03              | د د         | 350°F / 1000 Cyc. | e i        |                                               | 88                  |                                |                               | Tob Endlines                      |
| ts o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                     | ບ ເ         | 30°F / 1000 Cyc.  | T.         |                                               | 8                   |                                |                               | Tab Failure                       |

TABLE XVI FALIGIE PROPERTIES SUNMARY - VANCOUS TE PROMOTE COMPOSITES

| 75 115<br>62 125<br>88.5 135<br>88.5 135<br>91.5 140<br>70.5 110<br>80 140<br>86.5 135<br>47 75<br>69.5 110<br>69.5 110 | 260°F / 1000 Cyc.<br>350°F / 500 Hrs.<br>350°F / 500 Hrs.<br>350°F / 500 Hrs. |                                                                                                      | ာ ပီဝီစီ                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 69.5 110 1,000<br>63 100 64,000<br>66 105 66,000<br>67.5 107 8,000                                                      | 350°F<br>350°F<br>350°F<br>350°F                                              | 500 Hrs.<br>500 Hrs.<br>500 Hrs.<br>500 Hrs.                                                         | 350°F / 500 Hrs.<br>350°F / 500 Hrs.<br>350°F / 500 Hrs.<br>350°F / 500 Cyc.                          |
| 92 145 2,006<br>88.5 140 -<br>85.5 135 15,000<br>84 133 7,000                                                           | 350 °F<br>350 °F<br>350 °F                                                    | 350*F / 500 Cyc. 350*F<br>350*F / 500 Cyc. 350*F<br>350*F / 500 Cyc. 350*F<br>350*F / 500 Cyc. 350*F | / 500 Cyc.<br>/ 500 Cyc.<br>/ 500 Cyc.<br>/ 500 Cyc.                                                  |
| 82.5 140 3,000<br>79.5 135 209,000<br>81 136 1,000<br>78.5 133 59,000                                                   | 350 T<br>350 T<br>350 T<br>350 T                                              |                                                                                                      | 350°F / 1000 Cyc.<br>350°F / 1000 Cyc.<br>350°F / 1000 Cyc.<br>350°F / 1000 Cyc.<br>350°F / 1000 Cyc. |

TABLE XV: FAFIG: PROPERTIES STOCKER: - IVE SLEEK

| Spictmen<br>Namber | Thichness (71ies) (In.) | Orientation     | Falos conditioning | 17 T T T T T T T T T T T T T T T T T T T | Stress Level (I'ult) (ksi) | Cycles<br>to<br>Failure<br>(cycles) | Cycles Applied without Failure (cycles) | Residual<br>Strength<br>(ks1) | Comment               |
|--------------------|-------------------------|-----------------|--------------------|------------------------------------------|----------------------------|-------------------------------------|-----------------------------------------|-------------------------------|-----------------------|
| M. 308-1           | 6 - 0.047               | [0//5/135/0/90] | 88                 | E                                        | 87.5 75                    | 1,000                               | 901 - 300 -                             | 8                             |                       |
| M1.308-2           | 670                     |                 | 260°F / 500 Hrs.   | 8 6                                      | _                          |                                     | 2.15 x 206                              | 81.1                          |                       |
| M1.308-4           | 9                       | ž.              | 8                  | £                                        |                            |                                     |                                         |                               | Immediate Tab Failure |
| M. 308-5           | 8 - 0.048               | Ē.              | 260°F ' 500 Hrs.   | €                                        |                            | 2,0001                              |                                         |                               | Tab Failure           |
| M1 208-6           | 9 - 0.048               | å               |                    | £                                        | 128 90                     | •                                   |                                         |                               | Immediate Failure     |
| H1.308-7           | 840.0 - 6               | į               | 28                 | £                                        |                            | 1,000                               | 9                                       | ;                             |                       |
| M11308-6           | 670.0 - 6               | ٤               | × 3                | £                                        |                            | . ;                                 | 2.17 x 19 <sup>-</sup>                  | 9<br>8                        |                       |
| M11308-9           | 2 - 0.047               | - :             | 8                  | £.                                       | 107 75                     | 3 800                               | 901 - 117 6                             | 7                             |                       |
| M11308-10          | 6 - 0.049               | -               | 350"F / 500 Hrs.   | g II                                     |                            | •                                   | 01 X 619.7                              | •                             |                       |
| M1131A-1           | 9 - 0.348               | ÷               | 250°F / 500 Cyc.   | 0. <b>11</b>                             |                            | 000 <b>.</b> 6                      |                                         |                               |                       |
| M1131A-2           | 840.0 - 6               | -               | 250*F / 500 Cyc.   | d D                                      |                            | 65,000                              |                                         |                               | Tab Failure           |
| M11314-3           | 6 0.047                 | <u> </u>        | 260°F / 500 Cyc.   | Ē                                        |                            | 117,000                             | •                                       | ;                             | :                     |
| K1131A-4           | 870.0 - 6               | _               | 8                  | e E                                      | 73.5 648                   |                                     | 2.495 x 10                              | 50.5                          | Tab Failure           |
| M1314-5            | 9 - 0.048               | ٤               | 8                  | e                                        |                            |                                     | 2.626 x 10                              | 2.9                           |                       |
| A-4171174          | 8 0.048                 |                 | 250 °F / 1000 Cyc. | £                                        | 87.5 70                    | 21,000,                             |                                         |                               | Tab Failure           |
| W11311.7           | 170                     | è               | 260°F / 1000 CVC   | E                                        |                            | 2,282,x10°                          |                                         |                               | Tab Failure           |
| M1111A-8           |                         |                 |                    | E                                        |                            | 18,000                              |                                         |                               | Tab Fallure           |
| X11314-9           | 800                     | 113             | 200 F / 1000 Cyc.  | £                                        | 82.5 66                    |                                     |                                         |                               | Tab Failure           |
| M1131A-10          | 9 - 0.049               | E               | 260*F / 1000 Cyc.  | £                                        |                            | 2,000                               |                                         |                               | Teb Failure           |
| W11304-9           | 570.0                   | \$              | 350°F / 500 Cvc.   | 0.0                                      | 116                        |                                     | •                                       |                               | Immediate Failure     |
| W11101-9           |                         | 2               |                    | E                                        | _                          |                                     | 7.58 × 10°                              | 87.4                          |                       |
| M133A-10           | 9.0.0                   | =               |                    | £                                        | 97 75                      | 164,000                             |                                         |                               |                       |
| K1112              | 370°0 - %               | ÷               |                    | e                                        |                            | 1,000                               |                                         |                               |                       |
| M1313-2            | 540.0 - 6               | =               | 350*F / 500 Cyc.   | e                                        |                            | 27,000                              | •                                       |                               |                       |
| M1118-1            | 70.0                    | 85              | 350*F / 1000 Cyc.  | £                                        | 76.5 60                    | •                                   | 2.076 x 10 <sup>0</sup>                 | 81.8                          |                       |
| 4-81014            | 60.0                    | ¥               | 900                | E                                        |                            | 20,000                              | •                                       |                               |                       |
| Z-11.11            | 870.0                   | =               | _                  | E                                        | 83 65                      | •                                   | $2.412 \times 10^{2}$                   | , Se                          | Tab Failure           |
| M11313-6           | 0.048                   | =               | 0001               | E                                        |                            | 3,000                               |                                         |                               |                       |
| H1131B-7           | 970.0                   | =               | 900                | E                                        |                            | 239,000                             |                                         |                               |                       |

TAK F. XVI. - OVE GER POLITIKE OF STOWARY - CORPOSITES

| Specimen<br>Rumber                           | Thickness (Plies) (In.)                    | Orientation                   | PRICE COMDITIONING<br>Type Euration                                                              | T E                              | Stress Level (Toult) (ksi)                       | .e.1                                    | Cycles<br>to<br>Failure<br>(cycles)                  | Cyc es App.led without Fai.ure (cycles) | Residual<br>Strength<br>(kal) | Summer                                                            |
|----------------------------------------------|--------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|-----------------------------------------|------------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------------------------------------------------|
| M11-0A-1                                     | 78 G                                       | s (06/0/581.35/0)             | 260°F / 500 Hrs.                                                                                 | 280.7                            | *6 8                                             | 02                                      | 7,000                                                | 931 - 106                               |                               | Tab Failure                                                       |
| M11-04-3                                     | 6500 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                               | 8 8 8                                                                                            | 260 1                            | 83.5<br>81                                       | . <b></b>                               | 7, 200<br>1, 000<br>1, 000<br>1, 000                 | 01 × 167.7                              | <b>0</b>                      | Tab Failure                                                       |
| H11-0A-6<br>H11-0A-6                         |                                            |                               | 260*F / 500 Cyc.<br>260*F / 500 Cyc.                                                             | 260°F<br>260°F                   | 32.5                                             | 8 2 5 5                                 | 000                                                  | <b>90</b>                               |                               | Tab Fallure<br>Tab Area Failure                                   |
| M.1.0A-9                                     | 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | . = 1                         |                                                                                                  | 260°F<br>260°F<br>760°F          | 72.5                                             | 6.3                                     | 7.000                                                | 2.5x10<br>2.6x10                        | 81.3                          |                                                                   |
| 1 - 68 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                                            |                               | 260°F / 1000 Cyc.<br>260°F / 1000 Cyc.<br>260°F / 1000 Cyc.<br>260°F / 1000 Cyc.                 | 260°F<br>260°F<br>260°F<br>260°F | 72<br>87<br>80.5                                 | 58<br>70<br>65<br>63                    | 1,021,000                                            |                                         |                               | Tab Failure                                                       |
| X                                            | ( ) ( ) ( ) ( ) ( ) ( ) ( )                |                               | 000                                                                                              | 350°F<br>350°F<br>350°F          | 75.5<br>83.5<br>77.<br>74.5                      |                                         | 2, 6, 600<br>10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | 2.015 x 10 <sup>6</sup>                 | 74.5                          |                                                                   |
| 01- <b>8</b> -11                             |                                            |                               | 350°F / 500 kfs.<br>350°F / 500 Cyc.<br>350°F / 500 Cyc.<br>350°F / 500 Cyc.<br>350°F / 500 Cyc. | 350°F<br>350°F<br>350°F          | 20.5<br>20.5<br>20.5<br>20.5<br>20.5             |                                         | 2,000                                                | 4.427 x 10 <sup>6</sup>                 | <u>`</u> .                    | Immediate Tab Failure                                             |
|                                              |                                            | *( <u>96</u> /0/\$\$1)'\$7/0] | 330°F / 1000 Cyc.<br>330°F / 1000 Cyc.<br>350°F / 1000 Cyc.<br>350°F / 1000 Cyc.                 | 350.F<br>350.F<br>350.F<br>350.F | 3 <b>8 3 3</b> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 6 7 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 | 1,000<br>2,000<br>10,000                             | 2.337 x 10 <sup>6</sup>                 | 85.5                          | Tab Failure<br>Tab Failure<br>Tab Failure<br>Immediate Tab Failur |



Ċ



MR B.R. (R - 0.1, 0 - 1500 cym.)

**観光神道が振ぶら 生間の水動産業の自合を含みないます。半点の1900年まで、1000年に** 

0



()

Û

0

Q



人名麦斯斯斯人名人名人名

•

•



Ù





TABLE XV.1.1 CREEP AND STRESS RUFTURE PROPERTIES STANDARY - NARKO 5206/JRD/40R [1 CRAPLITE COMPASTTES

| Stress Leve: Failure Failure (7°ult) (keil) (Hours) (H |             |                  |                  |             |               |                         | 1      |                               |                | Time               | Applied                       |                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------|-------------|---------------|-------------------------|--------|-------------------------------|----------------|--------------------|-------------------------------|-----------------------------------|
| 111 6 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Specimen    | Trick<br>(Plies) | kness<br>) (In.) | Orientation | Tipe          | ONDITIONING<br>Duration | Temp.  | Stress<br>(X <sup>0</sup> ult | level<br>(KB1) | Failure<br>(Hours) | Feilure<br>Feilure<br>(Hours) | Comment                           |
| 112 6 0,032 3° None - 260°F 85 128 - 1002  1.4 6 0,032 3° None - 260°F 87 112 - 1002  1.5 6 0,032 3° None - 260°F 80 130 - 1002  1.6 6 0,033 0° None - 260°F 90 135 - 1007  1.7 6 0,033 0° None - 260°F 90 135 - 1003  1.8 6 0,033 0° None - 260°F 90 135 - 1003  1.9 6 0,033 0° None - 260°F 90 135 - 1003  1.0 6 0,033 0° None - 260°F 90 135 - 1003  1.0 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K11078-11   | 9                | 0.037            | <u>د</u> .  | None          | ,                       | 260°F  | æ                             | 120            |                    | 1010                          |                                   |
| 1002   1002   1002   1002   1002   1002   1002   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003   1003      | F11078-12   | 9                | 0,032            | نۍ          | None          |                         | 260°F  | 85                            | 128            | •                  | 1001                          |                                   |
| -14 6 0.032 2° None - 260°F 80 120 - 1007 -15 6 0.034 0° None - 260°F 90 135 - 1007 -16 6 0.037 0° None - 260°F 90 135 - 1003 -17 6 0.037 0° None - 260°F 90 135 - 1003 -18 6 0.037 0° None - 260°F 90 135 - 1003 -20 6 0.033 0° None - 260°F 90 135 - 1011 -21 6 0.033 0° None - 260°F 90 135 - 1011 -22 6 0.033 0° None - 260°F 90 135 - 1011 -23 6 0.033 0° None - 260°F 90 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M11078-13   | ص                | 0.032            | , C         | Mene          | 1                       | 260°F  | 7.5                           | 112            | •                  | 1002                          |                                   |
| -15 6 0.034 3° None - 260°F 90 135 - 1007  -16 6 0.033 0° None - 260°F 90 135 - 1003  -17 6 0.033 0° None - 260°F 90 135 - 1003  -18 6 0.034 0° None - 260°F 90 135 - 1003  -20 6 0.033 0° None - 260°F 90 135 - 1011  -21 6 0.033 0° None - 260°F 90 135 - 1011  -22 6 0.033 0° None - 260°F 90 135 - 1011  -23 6 0.033 0° None - 260°F 90 137 1011  -24 6 0.033 0° None - 260°F 90 135 1011  -25 6 0.033 0° None - 260°F 90 135 1011  -26 6 0.033 0° None - 260°F 90 135 1011  -27 6 0.033 0° None - 260°F 90 135 1011  -28 6 0.034 0° None - 260°F 90 135 1011  -29 6 0.034 0° None - 260°F 90 135 1011  -29 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F11078-14   | •                | 0,032            | 500         | Mene          | ,                       | 260°F  | <b>၁</b>                      | 120            | •                  | 1012                          |                                   |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1107B-15   | ø                | 0.034            | C;          | None          | 1                       | 260°F  | 06                            | 135            | •                  | 1007                          |                                   |
| -17 6 0.037 0° NGDC - 260°F 90 135 - 1003 -18 6 0.032 0° NGDC - 260°F 95 143 - 1001 -19 0 0.034 0° NGDC - 260°F 90 135 - 1001 -21 6 0.033 0° NGDC - 260°F 90 135 - 1011 -22 6 0.033 0° NGDC - 260°F 92 127 - 1011 -23 6 0.035 0° NGDC - 260°F 90 120 - 120 -24 6 0.035 0° NGDC - 260°F 90 120 - 130 -25 6 0.035 0° NGDC - 260°F 90 135 - 130 -26 0 0.035 0° NGDC - 260°F 90 135 - 130 -30 0 0.035 0° NGDC - 260°F 90 135 - 130 -31 5 0.034 0° NGDC - 260°F 94 141 - 131 -32 5 0.034 0° NGDC - 260°F 96 144 0.17 - 131 -33 5 0.034 0° NGDC - 260°F 96 144 0.17 - 131 -34 6 0.033 0° NGDC - 260°F 96 144 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×11078-16   | w                | 0.033            | 0,          | None          | •                       | 260°F  | <b>6</b>                      | 135            | ı                  | 7001                          |                                   |
| -18 6 C.032 0° NGDE - 260°F 95 143 - 1003 -19 C.034 0° NGDE - 260°F 90 135 - 1.4 -20 C.033 0° NGDE - 260°F 90 135 21.4 -21 6 C.033 0° NGDE - 260°F 98 147 - 1011 -22 6 C.033 0° NGDE - 260°F 80 127 - 123 -24 6 C.035 0° NGDE - 260°F 80 117 .033 - 124 -25 6 C.035 0° NGDE - 260°F 99 117 .033 - 124 -25 6 C.035 0° NGDE - 260°F 99 125 - 124 -26 6 C.035 0° NGDE - 260°F 99 125 - 124 -27 6 C.035 0° NGDE - 260°F 90 125 - 124 -28 6 C.035 0° NGDE - 260°F 99 125 - 124 -29 6 C.035 0° NGDE - 260°F 99 125 - 124 -29 6 C.035 0° NGDE - 260°F 99 125 - 124 -29 6 C.035 0° NGDE - 260°F 99 125 - 124 -29 6 C.035 0° NGDE - 260°F 99 125 - 124 -29 6 C.035 0° NGDE - 260°F 99 125 - 124 -29 6 C.035 0° NGDE - 260°F 99 141 - 125 -29 6 C.035 0° NGDE - 260°F 99 144 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71.076.17   | vo               | 0.037            | .0          | Nene          | •                       | 260 F  | 06                            | 135            |                    | 1003                          |                                   |
| -19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K11078-18   | ve               | 0.032            | ů           | <b>¥</b> C∃e  | •                       | 260°F  | 95                            | 143            |                    | 1003                          |                                   |
| -20 6 C.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M11078-19   | 1                | \$ 03¢           | ل ه         | NCJe          | •                       | 260°F  | 06                            | 135            | •                  | 1011                          |                                   |
| -21 6 C.033 0° NCTC - 260°F 98 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M11078-20   | 9                | C.038            | •ປ          | Mene          | ı                       | 360°F  | 06                            | 135            | 21.4               | •                             |                                   |
| -22 6 C.033 C° NG-P - 260°F 55 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | JD               | 0.933            | <b>.</b> 0  | MCJE          | ,                       | 260°F  | 86                            | 147            | ı                  | 1                             | Broke during Loading              |
| -23 6 C.033 C° NGTE - 260°F 92 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | v.               | C.033            | ت و         | MC.3e         |                         | 260°F  | ė, č                          | 127            | ,                  |                               | Tab Failure, broke during loading |
| -24 6 C.035 C° NGR6 - 260°F 80 120 - 260°F 78 117 .033 - 250°F 0.035 C° NGR6 - 260°F 95 143 - 250°F 90 135 C° NGR6 - 260°F 90 141 C° NGR6 - 260°F 90 141 C° C° NGR6 - 260°F 90 144 C° C° NGR6 - 260°F 90 144 C°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | • •              | 0.033            | ໍ່ບໍ        | Nc∷e          | ,                       | 2007F  | 35                            | 138            |                    | •                             | Broke during landing              |
| -25 6 C.035 C° None - 260°F 78 117 .03329 6 C.035 C° None - 260°F 95 14330 0.034 C° None - 260°F 90 13532 5 0.034 C° None - 260°F 92 13834 5 0.034 C° None - 260°F 94 14135 5 0.034 C° None - 260°F 95 14336 0.033 0° None - 260°F 96 144 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 9                | 0.035            | •<br>•      | NC:0e         |                         | 260°F  | 0 <b>8</b> 0                  | 120            |                    | •                             | Broke during loading              |
| -29 6 C.035 C° NGDe - 260°F 95 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 9                | C.035            | ຳ           | Mcne          | ı                       | 260°F  | 78                            | 117            | .033               | •                             | Broke at tabs                     |
| -30 0.035 C° No.e - 260°F 90 135 260°F 90 0.035 C° No.e - 260°F 90 135 260°F 90 135 260°F 90 135 260°F 90 135 260°F 92 138 260°F 94 141 260°F 95 143 260°F 96 144 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | ve               | 0.035            | °           | 9<br>2        | •                       | 260 °F | 95                            | 143            |                    | •                             | Broke during loading              |
| -31 6 0.034 C° None - 260°F 90 125 260°F 92 138 260°F 94 141 260°F 95 143 260°F 95 143 260°F 95 144 0.17 260°F 96 144 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | <b>)</b> (5      | 0.035            | . ບໍ        | <b>#</b> 016  |                         | 260°F  | 06                            | 135            |                    | •                             | Broke dur loading                 |
| -32 6 0.031 C° None - 260°F 92 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | · vta            | 0.034            | ٺ           | <b>X</b> 0.70 |                         | 260°F  | 90                            | 135            | •                  | •                             | Broke during loading              |
| -34 6 C.034 C° None - 260°F 94 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | · Æ              | 0.031            | ప           | Mone          |                         | 260°F  | 92                            | 138            |                    |                               | Broke during loading              |
| -35 5 0.034 C° None - 260°F 95 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 140              | 0.034            | ໍ່ບ         | Morrie        | ,                       | 260°F  | 75                            | 141            | •                  | •                             | Broke during loading              |
| -33 6 0.033 0° None - 260°F 96 144 0.17 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26 - 871 -W | u                | 75.0             | e<br>C      | a C           | ,                       | 260 °F | 95                            | 143            | ı                  | •                             | Broke during loading              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148 -33     | ı ıţ.            | 0.033            | ိုင်        | None          |                         | 260°F  | *                             | 144            | 0.17               | •                             | Broke during loading              |

TABLE XVII CREEP AND STRESS RUFFURE PROFESTIES SUPPLIE - WANDO 52/6/YOHOR II GAAFIIIE CONTOSITES

THE REPORT OF THE PERSON BELOW

| -                                      |               |                |               |      |               |       |                                            | 1          |                    |                                | 1                       |
|----------------------------------------|---------------|----------------|---------------|------|---------------|-------|--------------------------------------------|------------|--------------------|--------------------------------|-------------------------|
|                                        | i             |                |               |      |               | ] !   |                                            |            | *                  | App 1: 4                       |                         |
|                                        | (Pites) (in.) | (ie.)          | Ortentation   | Type | Type Darecton | ĮįE,  | Stress Level<br>(R <sup>0</sup> ult) (ksi) | (12 E)     | failure<br>(Sours) | of thout<br>Failure<br>(Bours) | <b>3</b>                |
| 1-4-0104                               | •             | 6.037          | è             | 1    | ,             | 3.92  | <b>§</b>                                   | Š          | 69                 |                                |                         |
| 7-18                                   | •             | 8              |               | į    | •             | 5     | 8 6                                        | 301        | 697                | •                              |                         |
| 10 X 10 41 - 3                         | *             | 0              | •             |      |               | 3     | 5 8                                        |            | 100                |                                |                         |
| 1 1 1 1                                | •             | 7              |               |      | )             | 100   | 8 8                                        | 2          | ÷.                 | . !                            |                         |
| 2-41-01-91                             | •             |                |               |      | •             | 200   | 2 8                                        | <u> </u>   | , ;                |                                |                         |
|                                        | •             |                | ,             | ľ    | •             | 320.1 | 3                                          | 120        | Š                  |                                |                         |
| 4 A 18 14 4                            | •             |                |               |      | •             | 4.05% | d                                          | 151        |                    | ı                              | 1                       |
| 7-Y-                                   | •             | 20.0           |               |      | •             | 5     | 6                                          | <b>3</b> 5 |                    |                                | Surface during house to |
| 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- | •             | 0.037          |               | 1    | •             | 5     | : 8                                        | 3.5        |                    | ;                              |                         |
| TENT                                   | •             | 5              |               |      | •             | 5     | <u> </u>                                   | 1          | 234.5              | 1                              |                         |
|                                        | •             |                | <b>.</b>      | į    | •             | 380   | 2                                          | 501        | 97                 | •                              |                         |
|                                        |               |                |               |      |               |       |                                            |            |                    |                                |                         |
| 17-   WE                               | •             | 9.60           | 5             | 1    | •             | 350*7 | 98                                         | 121        | •                  | •                              | Broke during loading    |
| A- ST                                  | •             |                | n<br><b>Q</b> | į    |               | 350   | 28                                         | 120        | •                  | •                              | Broke during loading    |
|                                        | •             |                |               | Ĭ    | •             | 350.7 | 78                                         | 127        | 0.02               | •                              |                         |
| A THE                                  | •             | o. <b>63</b> 5 | t             | Į    | 1             | 150   | 75                                         | 11.        |                    | •                              | Broke derive landing    |
| MM27                                   | *             | 9.63           | ະ             | Į    | •             | 350°F | <b>:</b>                                   | 77         | e.:                |                                |                         |
| *-                                     | •             |                | i             | 1    | •             | 350°5 | ł                                          | 145        | ,                  | •                              | 1                       |
|                                        | •             | 0.633          | £,            | į    | •             | 7.030 | 92                                         | 91         | •                  |                                | ¥                       |
| 7                                      | •             | 3              | ະ             | l    | •             | 1.051 | *                                          | 152        | •                  | •                              | Broke at Lond           |
| N- STEE                                | •             | Č              | ະ             | į    |               | 1501  | æ                                          | ភ          | •                  | •                              | ¥                       |
| T T                                    | •             |                |               | į    | •             | 1.00  | ×                                          | 351        | 0-01               | •                              |                         |

TABLE AVII CREEP AND STRESS REPORTED STREET 
(J

| Thic       | Thickness     |                         | PRICR O      | PRICE CONDITIONING | Test<br>Tono. | Stresa              | Stress Level               | 1 ime<br>to<br>Failure | Applied vithout Failure |                      |
|------------|---------------|-------------------------|--------------|--------------------|---------------|---------------------|----------------------------|------------------------|-------------------------|----------------------|
| (Plies,    | (Files) (It.) | Orientation             | Type         | Durstion           | ( <b>.</b> E) | (7 <sup>3</sup> ult | (7 <sup>3</sup> ult) (ks1) | (Hours)                | (Hours)                 | Comment              |
| -          | 0.043         | 06                      | None         | ı                  | 260°F         | 0,                  | 2.14                       | •                      | 101                     |                      |
| 80         | 0.(44         | , 0 <b>6</b>            | None         |                    | 260°F         | <b>9</b>            | 2,40                       | .067                   | •                       |                      |
| <b>9</b> 0 | 770.0         | <sub>=</sub> 06         | None         | •                  | 260°F         | ,                   | ı                          | ٠                      | •                       | Broke in Handling    |
| œ          | 0.044         | <sub>=</sub> 06         | None         | •                  | 260°F         | •                   |                            | •                      | •                       | Broke in Handling    |
| 90         | 770.0         | 906                     | None         |                    | 260°₽         | 75                  | 2.29                       | 077                    | •                       |                      |
| 20         | 770           | . 06                    | Non          | ,                  | 260°F         | 980                 | 2.40                       | 776                    |                         |                      |
| •          | 777.0         | . 06                    | None         | •                  | 360°F         | ,                   | •                          | ,                      | •                       | Broke in Rondling    |
| ۰          | 0.043         | ,<br><b>&amp;</b>       | None         |                    | 260°F         | 85                  | 2.60                       | 139.0                  | •                       | 1                    |
| <b>œ</b> 0 | 0.044         | <sub>2</sub> 0 <b>6</b> | None         | •                  | 260°F         | 80                  | 2.40                       |                        |                         | Broke during loading |
| <b>æ</b>   | 0.(44         | ³ 0 <b>6</b>            | None         | •                  | 260°F         | ş                   | 2.75                       | 43.1                   | ,                       |                      |
| æ          | 0.044         | , 06                    | None         | ,                  | 350°F         | 080                 | 2.43                       | .25                    | 1                       | Strain gauge failed  |
| <b>*</b>   | 0.043         | ₌ 0 <b>6</b>            | None         | •                  | 350°F         | 7.7                 | , K                        | •                      |                         | Failed in loading    |
| •0         | 0.043         | . D6                    | None         | •                  | 350°F         | 73                  | 2.21                       |                        | •                       | Failed in loading    |
| <b>*</b>   | 0.043         | ,<br><b>26</b>          | Hone         |                    | 350°F         | 2                   | 2.13                       | .167                   |                         |                      |
| <b>e</b> c | 0.043         | 8                       | None         | ,                  | 350°F         | 89                  | 5.09                       | ٠                      |                         | Failed in loading    |
| •0         | 0.044         | <sub>0</sub> 06         | None         |                    | 350°F         | 0,                  | 1.22                       | ,                      | •                       | Failed in loading    |
| <b>ao</b>  | 0.043         | <b>&amp;</b>            | <b>X</b> CDE | ¢                  | 350°F         | <b>6</b> 2          | 1.88                       | г.                     |                         |                      |
| 0          | 0.043         | · 06                    | None         | ,                  | 350°F         | 69                  | 2.71                       | •                      | •                       | Sailed in loading    |
| ,          | 0.043         | - 06                    | None         | •                  | 350°F         | 58                  | 1.76                       | •                      |                         | Failed in loading    |
| •          | 0.044         | <u>.</u>                | None         | •                  | 350°F         | <b>2</b> 6          | 1.69                       | 6.05                   | 1                       |                      |
| œ          | 0.0.50        | [0/45/135/0/90]         | Kone         |                    | 260°F         | 70                  | 61.3                       | ,                      | 1010                    |                      |
| . 0        | 0.051         | -                       | None         |                    | 260°F         | 70                  | 61.3                       |                        | 1011                    |                      |
| o          | 0.050         | :                       | None         | •                  | 260°F         | 980                 | 92                         | •                      | 1009                    |                      |
| •          | 0.050         | =                       | Hone         | 1                  | 260°F         | 8                   | 2                          | ೫                      |                         |                      |
| •          | 0.051         | [0/45/135/0/90]         | None         | •                  | 260°F         | 8                   | 78.8                       | 16                     | 1                       |                      |
| •          | 050           | [0/45/135/0/90]         | Kone         |                    | 260°F         | 8                   | 78.8                       | •                      | •                       | [mmediate failure    |
|            | 0.050         |                         | None         |                    | 260°F         | 85                  | 74.4                       | 674                    | •                       |                      |
| • •        | 0.030         | =                       | None         | •                  | 260°F         | 82                  | 74.4                       | 766                    | •                       |                      |
| o          | 0.050         | =                       | None         | •                  | 260°F         | 75                  | 65.5                       | 725                    |                         |                      |
| c          | 0             | [00/0/201/27/0]         | į            | ,                  | 36.095        | S                   |                            | ı                      |                         | action destroy adone |

(.

Q

0

ن

Ð

TABLE XVII CREFP AND STRESS SCITTRE FROPERTIES SUMMARY - NARMOD 5206 NODWOR II GRAPHITE, COMPOSITES

**(** 

| Specimen  | Thickness    | Desa  |                              | PRIOR CC | PRIOR CONDITIONING | Test<br>Test | Stress Level  | Levei | Time to Failure | Applied without Failure |                              |
|-----------|--------------|-------|------------------------------|----------|--------------------|--------------|---------------|-------|-----------------|-------------------------|------------------------------|
| J ACTION  | (rure) (mr.) | (m)   | Orlencarion                  | 1ype     | Duration           | (#.)         | (1 ult) (ks1) | (K61) | (Hours)         | (Hours)                 | Comment                      |
| M1149-24  | σ            | 0.050 | [0/45/135/0/90]              | None     | 1                  | 3.09?        | 85            | 7,7   |                 | ,                       | Broke during loading         |
| M1149-25  | o            | 0.050 |                              |          | •                  | 260°F        | ş             | 7.8   | •               | •                       | durine                       |
| 16-9-11W  | · o          | 840   | :                            |          | •                  | 260°F        | Ş             |       | •               | •                       | 7.14.10                      |
| FE-671 DM | ·or          | 0 70  |                              | , and    | •                  | 3.090        | 26            | 4 2 6 | 50              |                         | 200                          |
| M1149-12  | · σ          | 2     | Ξ                            | Mone of  | •                  | 260 %        | 8 %           | 20.00 | · ·             |                         | 4114                         |
| M1149-22  | on.          | 0.050 | :                            | Mone     | •                  | 260°F        | 8             | 74.5  | 111.4           | •                       |                              |
| M1149-25  | O-           | 670   | Ξ                            | e II C   | •                  | 260 ° F      | 65            | 77.9  | 0.05            | •                       | •                            |
| M1140-22  | · a          | 7.70  | :                            |          |                    | 260.5        | . 0           | . 44  |                 |                         | United Assessment Conference |
| M1140-23  | ı. O         | 3     | :                            | anow.    |                    | 1007         | . 6           | 7.0   | ) 1             |                         | Broke duting loading         |
| M1149-54  | n d          | 3     | :                            |          |                    | 20.70        | 2 6           |       |                 |                         | decke immediately            |
| 75 6717   | <b>^</b> C   |       | =                            |          | 1                  | 1007         | 7.0           |       | 0               |                         |                              |
| M1149-35  | ra           | 5.5   | (05/0/581/57/0)              | Mone     | , ,                | 260°F        | 6             | 2.89  | 0.4             | , ,                     | •                            |
|           |              | :     | 100                          | 1        |                    |              | ·<br>i        |       | •               |                         |                              |
| #1149-28  | 6            | 0.050 | $(0/45/135.0/\overline{90})$ | None     | •                  | 350°F        | 06            | 71.2  | •               | ı                       | Broke during loading         |
| M1149-29  | 6            | 0.050 | ī.                           | None     |                    | 350°F        | 85            | 67.3  |                 | •                       | Broke during loading         |
| 01149-30  | ď            | 0.050 | Ξ                            | None     | •                  | 350 °F       | 80            | 63.3  | •               | •                       | during                       |
| M1149-36  | Ω,           | 0.050 |                              | None     | •                  | 350°F        | 20            | 55.7  |                 | •                       |                              |
| M1149-19  | 6            | 0.050 | z                            | None     | ,                  | 350°F        | 88            | 9.69  | ,               | 1                       | during                       |
| M1149-37  | 6            | 0.050 | Ξ                            | Mone     | •                  | 350°F        | 92            | 76.8  |                 |                         | Broke during loading         |
| M1149-39  | 5            | 0.049 | =                            | None     | •                  | 350°F        | 95            | 79.3  |                 | •                       |                              |
| M1149-46  | O.           | 0.051 | =                            | None     | •                  | 350°F        | 4             | 80.9  |                 |                         |                              |
| M1149-38  | 6            | 0,049 | [0/45/135/0/ <u>90</u> ]     | None     | ,                  | 320 °F       | 93            | 77.6  | 2.01            | ı                       | )                            |
| M11354-1  | σ            | 0,40  | [0/45/135/2/90]              | None e   | •                  | 350°F        | 70            | 55.4  | 309.4           | •                       |                              |
| M1135A-2  | ď            | 0,0   |                              | Mone     |                    | 350°F        | 75            | 59.4  | 214.1           | •                       |                              |
| M11354-3  | · o          | 200   | =                            | a more   | •                  | 150°F        | 80            | 63.3  | 769             | •                       |                              |
| AC117     | · o          | 0,0   | •                            | No.      |                    | 350°F        | - C           | 63.3  | 657             | •                       |                              |
| M1135A-5  | . 0          | 0,049 | =                            | None     | 1                  | 350°F        | 88            | 67.3  | 800             | •                       |                              |
| M1135A-6  | •            | 0,049 | =                            | Mone     | •                  | 350°F        | 83.5          | 99    | w.              | •                       |                              |
| W1135A-7  | •            | 0,049 | :                            | Mone     |                    | 350.5        | 2             | 55.4  | 125             |                         |                              |
| M1135A-8  | ď            | 0,00  |                              | None     | •                  | 350 F        | 81.6          | 65.6  |                 | •                       | Immediate failure            |
| H1135A-9  | ·o·          | 0,049 | :                            | None     | •                  | 350 F        | 02            | 55.4  | ۵.              | •                       |                              |
|           |              |       | i                            |          |                    |              |               |       |                 |                         |                              |

THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

TANGE AVIT GREEP AND STRESS RUPTURE PROPERTIES STREAM - NARMOGE 5206/HIDDMOR II GANDRIFF GOMENSTIES

|                                  |               |                 |                    |                    |               |              |                |                    | Applied |                                   |
|----------------------------------|---------------|-----------------|--------------------|--------------------|---------------|--------------|----------------|--------------------|---------|-----------------------------------|
| S a magn                         | Thickness     |                 | PRIOR Q            | PRICE CONDITIONING | i de i        | Stress Level | Cevel<br>(bed) | Failure<br>(Hours) | Fatture | Comment                           |
| N Ser                            | (Files) (in.) | a.) Orientation | 1 yp e             | Maracton           |               | וא חזר)      | (20)           | (2.50)             | )       |                                   |
| 1.8.1                            | vc            | ပိ              | .86<br>.88         | 500 Hrs.           | 260°F         |              |                |                    |         |                                   |
| 2 - 8 - 1 - 8<br>- 2 - 8 - 1 - 8 | o ve          | • 0             |                    | 500 Hrs.           | 3€0,₽         |              |                |                    |         |                                   |
| 2.026                            | ve            | °ບ              | H2 786             | 500 Hrs.           | 260°F         |              |                |                    |         |                                   |
| 90                               | w             | 0,              |                    | / 500 Hrs.         | 260°F         |              |                |                    |         |                                   |
| k 148-5                          | 9             | •0              |                    | 500 Hrs.           | 2 <b>60°F</b> |              |                |                    |         |                                   |
| GI ST                            | 920 c         | *C              | ₽5 39              | SMO Hrs.           | 350°F         | 65           | 108            | ,                  | 4       | Broke during loading              |
| D 0 7 1 2                        |               |                 |                    | 500 Hrs.           | 350°F         | 75           | 125            | •                  | ,       |                                   |
| / = 0 17 T                       |               |                 |                    | SOC HES.           | 350 F         | 080          | 133            | •                  |         |                                   |
| 0 0 0                            |               |                 | ##<br>#86          |                    | 350°F         | 85           | 1+1            |                    | •       |                                   |
| ×.148-10                         | 6 0.034       | 03%             |                    | , 500 Hrs.         | 3≥0 3€        | <b>6</b>     | 149            | •                  |         | Broke during loading              |
|                                  |               |                 |                    | 7 1000 HTS         | 36038         | 8            | 145            |                    | 1000    |                                   |
| C1-9601.2                        |               |                 |                    | 1000 H             | 3,090         | 200          | 142            | ,                  | 0001    | Strain gage failed after 485 brs. |
| 67-9601-E                        |               |                 | 1 20               |                    | 260°F         | 8            | 32             | 12.4               | •       | )<br>)                            |
| 01-0601.7                        |               |                 | 186                | 1000 Hrs.          | 260°F         | 83           | 135            | 8. 44              |         |                                   |
| 61-8601 K                        | 6 0.033       | 033 0.          |                    |                    | 200°F         | 81           | 132            | •                  | 1000    |                                   |
|                                  |               |                 | H: 680             | 7 1000 Hrs.        | 35008         | 90           | 130            | 50.7               | ,       |                                   |
| A-1104-5                         |               |                 |                    | / 1000 Hrs.        | 350°F         | *            | 127            |                    | 1000    | Lost strain gage at .067 hrs.     |
| 1104-7                           |               |                 | 1286<br>1886       | / 1000 Hrs.        | 350 F         | *            | 124            | ,                  | 1000    | Strain gage failed after 568 hrs. |
| 0 TOT                            |               |                 |                    | / 1000 Hrs.        | 350 °F        | 82           | 121            |                    | 1000    |                                   |
| 110A-9                           | 6 5.033       | 033 0.          | 987 FH             | / 1006 Hrs.        | 350°F         | <b>98</b> 0  | 118            | •                  | 1000    | Strain gage failed                |
| O S                              |               |                 | The rate -Hull     | idity Cycle        | 260 ⋅ F       | 80           | 140            | .033               |         |                                   |
| 14.0-12                          |               |                 | The Tar            | idity Cycle        | 260°F         | 78           | 137            | •                  |         |                                   |
| 14.8-13                          |               |                 | Der et et          | idity Cycle        | 260°F         | 8            | 158            | •                  |         | broke during                      |
| 21-051 M                         |               |                 | The Table          | idity Cycle        | 260°F         | <b>3</b>     | 154            | •                  | •       | broke during                      |
| M. 148-15                        | 6 0.033       | 033 0*          | Thermo-Humidity C  | idity Cycle        | 260°F         | 92           | 149            | •                  | •       | Tab failure, broke during loading |
|                                  |               |                 | High Carried T     | idiry Cycle        | 250°F         | ð            | 166.5          | ,                  | •       | Broke during loading              |
| 17-95T.M                         |               |                 | The rate - Huga    | 1diry Cycle        | 260°F         | 92           | 191            | •                  |         |                                   |
| 57-041-W                         | 2000 A        | 000             | Thereno-Jumidity C | Idity Cycle        | 260°F         | <b>80</b>    | 72             | •                  | •       |                                   |
| 07-017-1                         |               |                 |                    |                    |               |              |                |                    |         | •                                 |

3

\*

TABLE NOTE ORELP A 30 STREAS REPONDE ESCHARTLES STRAMES - NARKO 5236 A OPHOREIT CRAPHITE CORPOSITES

10

.8

|                                      | louding<br>louding<br>louding                                                                                     | 78                                                               | 4 *4 £                                                                              | loading<br>loading<br>loading<br>loading                             | loading<br>loading<br>loading<br>loading                                                              |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Comment                              | Broke during loss<br>Borke during loss<br>Broke during loss                                                       | Strain gage failed                                               | Strain gage Eailed<br>Failed in loading<br>Strain gage Eailed<br>Strain gage Eailed | Broke during loading<br>Broke during loading<br>Broke during loading | Broke during loss<br>Broke during loss<br>Broke during loss<br>Broke during loss<br>Broke during loss |
| Tim. Applied without Fail.re (Woure) | 000                                                                                                               |                                                                  | 1990<br>1070                                                                        |                                                                      | • • • • •                                                                                             |
| Time<br>to<br>Failure<br>(Hours)     | 0.25                                                                                                              | .033<br>.05<br>1.0<br>6.2<br>6.2                                 | 926                                                                                 | 0.02<br>0.01<br>2.5                                                  |                                                                                                       |
| Level<br>(kst)                       | 132.6<br>137.4<br>140.4<br>143.4<br>141.9                                                                         | 150<br>163<br>157<br>154<br>154                                  | 133<br>130<br>127<br>124<br>121                                                     | 76.6<br>65.3<br>66.1<br>64.5<br>72.6                                 | 62.5<br>61.2<br>59.3<br>57.4<br>56.1                                                                  |
| Stress Level (10ult) (ksi)           | 98<br>93<br>95<br>84                                                                                              | 48 <b>88</b> 8                                                   | 99 99 99 99 99 99 99 99 99 99 99 99 99                                              | 8 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8                              | # % & & &                                                                                             |
| Test<br>(*)                          | 350°F<br>350°F<br>350°F<br>350°F                                                                                  | 260°F<br>260°F<br>260°F<br>260°F                                 | 350°F<br>350°F<br>350°F<br>350°F                                                    | 260°F<br>260°F<br>260°F<br>260°P                                     | 350°F<br>350°F<br>350°P<br>350°P                                                                      |
| PRIOR COMDITIONING Type Duration     | idity Cycle<br>idity Cycle<br>idity Cycle<br>idity Cycle                                                          | Wthing.<br>Wthing.<br>Wthing.<br>Wthing.                         | Wthrng.<br>Wthrng.<br>Wthrng.<br>Wthrng.                                            | 500 H/s.<br>500 H/s.<br>500 H/s.<br>500 H/s.<br>500 H/s.             | 500 Brs.<br>500 Brs.<br>500 Brs.<br>500 Brs.<br>500 Hrs.                                              |
| PRIOR CC<br>Type                     | Thermo-Humidity of Thermo-Humidity of Thermo-Humidity of Thermo-Humidity of Thermo-Humidity of Thermo-Humidity of | Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. Acc. Wthrng. | Acc. VI                                                                             | 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                               | 25.25.25<br>28.88.8                                                                                   |
| Ortente: ton                         |                                                                                                                   |                                                                  | ••••                                                                                | [0/45/135/0/30]                                                      |                                                                                                       |
| Dees (1s.)                           | 0.031<br>0.033<br>0.034<br>0.034                                                                                  | 0.032<br>0.033<br>0.033<br>0.031                                 | 0.032<br>0.031<br>0.032<br>0.032                                                    | 0.050<br>0.050<br>0.049<br>0.049                                     | 0.045<br>0.059<br>0.050<br>0.050                                                                      |
| Thickness<br>(Flies) (Im.)           | 00000                                                                                                             | ****                                                             | သလလာလာလ                                                                             | <b>ው</b> ው ው ው                                                       | ው ድ ው ድ ው                                                                                             |
| Specimen                             | M1148-16<br>M1148-17<br>M1148-18<br>M1148-19<br>M1148-20                                                          | M11098-20<br>M1110A-2<br>M1110A-2<br>M1110A-3<br>M1110A-4        | MILLOA-10<br>MILLOA-11<br>MILLOA-17<br>MILLOA-15<br>MILLOA-14                       | M1169-1<br>M1169-4<br>M1169-3<br>M1169-2<br>M1.49-5                  | M1149-6<br>M1149-7<br>M1149-8<br>M1149-9<br>M1149-10                                                  |

|       | Comment                          |                                              | -<br>-<br>-<br>Rroke during loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Broke during loading  Tab failure, broke during loading | Overload<br>Broke on Loading<br>Broke on Loading                                                                                                            | Immediate failure<br>Oven overheated<br>No strain readings                         | Broke during loading                                                  |
|-------|----------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1 1 1 | Applied without Failure (Hours)  | 1000<br>1000<br>1000<br>1000<br>1000         | 1000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                             |                                                                                    | 1000                                                                  |
|       | to<br>Eatlure<br>(Hours)         |                                              | 1 ( 1 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  | 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -                                                                                                                     | 140.9                                                                              |                                                                       |
|       | Tiress truel<br>Tult (Keiz       | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      | 1 4 7 110<br>4 3 4 6 7<br>5 5 6 6 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TWO THE                                                                                                                                                          | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>3.00<br>4.00<br>4.00<br>4.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5                                                   | 77.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7                                             | 62.9<br>59<br>61<br>67.7<br>59.6                                      |
|       | <i>₹</i> .                       | !<br>:                                       | मामामामामा<br>इ.स.च. १९                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | per tar tar tar tar                                                                                                                                              | ir irr ger ber ber<br>au ch ch ch ch ch ch<br>au ch                                                                     | ######################################                                             | ######################################                                |
|       | Trst<br>Tebp.                    | 100 100 100 100 100 100 100 100 100 100      | in the factor to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  | 35000000000000000000000000000000000000                                                                                                                      | 250 PE                                                                             | 350°F<br>350°F<br>350°F<br>350°F                                      |
|       | 28108 CONECTIONING Type Duration | 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8       | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | There is a firth Court. There is a firth Court. The ground is the Court. There is a firth Court. There is a firth Court. The ground is a firth Court.            | The Transmission (volume) are remained to (volume). The Transmission (volume) are remained to (volume). The Transmission (volume) are remained to (volume). | Acc. Athrop. Acc. Withing. Acc. Withing. Acc. Withing. Acc. Withing. Acc. Withing. | Acc. Withing. Acc. Withing. Acc. Withing. Acc. Withing. Acc. Withing. |
|       | JR 108                           |                                              | တွေထွာ်ထွားသည်<br>စွေတွင်းပေး                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                  | វ៉ាំងគឺដំបាំវ៉ា                                                                                                                                             |                                                                                    | w <b>v</b> o                                                          |
|       | Sefentation                      | 2 5 13 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (195 (195 (195 (195 (195 (195 (195 (195                                                                                                                          |                                                                                                                                                             | .0 45 235 P 90.                                                                    | \$ [06/0, \$£1 \$5.0]<br>"<br>"<br>\$ [06/0, \$£1, \$7.0]             |
|       | Thickno<br>(Piles, (In.)         | 0.050                                        | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81 888<br>3000<br>2000<br>2000<br>2000                                                                                                                           | # 6 2 6 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                   | 0.05<br>0.05<br>0.04<br>0.05<br>0.05                                               | 0.050<br>0.050<br>0.050<br>0.050                                      |
|       | Thickno<br>(Piles, (             | a 7 7 a a                                    | ტი დი ი ი ი                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a a a a a a a                                                                                                                                                    | சம்சரும்                                                                                                                                                    | თ. თ. თ. თ. თ. თ.                                                                  | တတ္တေတာ့တ္                                                            |
|       | Specinen<br>Munder               | X X X X X X X X X X X X X X X X X X X        | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | 21129-11<br>VIL49-12<br>VIL49-13<br>VIL49-13                                                                                                                     | 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                      | M11378-6<br>V11378-7<br>V11378-8<br>W11378-9<br>H11378-1                           | M1138A-6<br>M1138A-7<br>M1138A-9<br>M1138A-9                          |

TAST XV.I (FIED AV) STUSS HEPTRE PROPERTIES SPONGAY - VARING FOR OUR DR. II (RAPHITE OLD PROPERTIES

|                                            |                                                                              |                                                                                                                                                              | fter .5 hrs<br>, temp too                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comment                                    |                                                                              | Strein Gage Pailed                                                                                                                                           | Strain gage felled after .5 hrs<br>Heater malfunctioned, temp two<br>high                                                                                                                                                                                                                                                                                            |
| Time Applied without Failure (Hours)       | 1055<br>1061<br>1061                                                         | 1018<br>1015<br>1004<br>1006<br>1000<br>1000<br>1000                                                                                                         | 1012 1012 1015 1006 1007 1006 1007 1007 1007 1007 1007                                                                                                                                                                                                                                                                                                               |
| Tine<br>to<br>Failure<br>(Hours)           | - + - 627                                                                    |                                                                                                                                                              | 97.7<br>685<br>918<br>950<br>186<br>186<br>186<br>186<br>186<br>186<br>186<br>186<br>186<br>186                                                                                                                                                                                                                                                                      |
| Level<br>(kai)                             | 114<br>122<br>130<br>114                                                     | 1121                                                                                                                                                         | 138<br>127<br>1121<br>1121<br>1127<br>1127<br>127<br>127<br>127<br>127                                                                                                                                                                                                                                                                                               |
| Stress Level (T <sup>d</sup> ult) (ket)    | <b>96</b><br>5.                                                              | 50555 B558                                                                                                                                                   | £ 986788 90888 50888 50888 50888 50888 50888 50888 50888 50888 50888 50888 50888 50888 50888 50888 50888 50888                                                                                                                                                                                                                                                       |
| Test<br>Temp.<br>('F)                      | 260°F<br>260°F<br>260°F<br>260°F                                             | 350°F<br>350°F<br>350°F<br>350°F<br>260°F<br>260°F                                                                                                           | 250°F<br>350°F<br>350°F<br>350°F<br>350°F<br>350°F<br>350°F<br>350°F<br>350°F<br>350°F<br>350°F                                                                                                                                                                                                                                                                      |
| FRICE COMDITIONING<br>Type Duration        | 260°F ' 500 hrs.<br>260°F ' 500 hrs.<br>260°F ' 500 hrs.<br>260°F ' 500 hrs. | 260°F / 500 HTG.<br>260°F / 500 HTG.<br>260°F / 500 HTG.<br>260°F / 500 HTG.<br>260°F / 500 HTG.<br>350°F / 500 HTG.<br>350°F / 500 HTG.<br>350°F / 500 HTG. | 350°F / 500 Hrs.<br>350°F / 500 Hrs.<br>350°F / 500 Hrs.<br>350°F / 500 Hrs.<br>350°F / 500 Hrs.<br>260°F / 500 Hrs. |
|                                            | % % % %                                                                      | สีสีคลัล ครีคคร                                                                                                                                              | n nnan aaaaa aaaaa                                                                                                                                                                                                                                                                                                                                                   |
| Orientation                                | 0000                                                                         |                                                                                                                                                              | [04/0/86]<br>[04/0/86]<br>[04/0/86]<br>[04/0/86]                                                                                                                                                                                                                                                                                                                     |
| Th chaess<br>(Pitzs) (in.)                 | 0.032<br>0.032<br>0.032<br>0.032                                             | 0.032<br>0.032<br>0.032<br>0.033<br>0.033<br>0.033                                                                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                |
| 1 c (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 | <b></b>                                                                      |                                                                                                                                                              | ନ ବ୍ୟବନ୍ଦ ବ୍ୟବଶ୍ୟ ବ୍ୟବବ୍ୟ                                                                                                                                                                                                                                                                                                                                            |
| Specimen<br>Number                         | MIIIB-16<br>MIIIB-17<br>MIIIB-18<br>MIIIB-19<br>MIIIIB-20                    | MILIZA-1<br>MILIZA-3<br>MILIZA-4<br>MILIZA-4<br>MILIZA-16<br>MILIZA-16<br>MILIZA-17<br>MILIZA-18                                                             | ######################################                                                                                                                                                                                                                                                                                                                               |

OF IT CAPER AND STRESS REPT AND SCHOOL SCHOOL OF THE SCHOOL STRESS ASSETS AS FIRST COMPOSITES

| Comment                          |                                                                  | Broke                                        | rheated                                                     |                                                                         | Strain gage failed<br>Strain gage failed                                |                                                               |
|----------------------------------|------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|
|                                  |                                                                  |                                              | Oven overheated                                             |                                                                         | Strain g                                                                |                                                               |
| Applied without Failure (Hours)  | 1008<br>1004<br>1004                                             | 111.                                         | -<br>1000<br>1000                                           | 1000<br>1000<br>1000<br>1000                                            |                                                                         | 1000                                                          |
| Ti-c<br>to<br>Fatlure<br>(Hours) |                                                                  | 309<br>309<br>10.1                           | 39<br>50<br>508                                             | 89                                                                      | 9.8<br>2.4<br>167<br>168<br>918                                         | 861<br>1.5<br>0.167                                           |
| Siress Level                     | 0 9 80 40 40<br>0 10 10 10 10 10 10 10 10 10 10 10 10 10         | 0 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | 104<br>123<br>133                                           | 118<br>110<br>104<br>126<br>133                                         | 83<br>i30<br>138<br>130<br>121                                          | 119<br>128<br>136<br>144<br>153                               |
| Stress<br>(A <sup>c</sup> ult    | \$ -1 - 1.36<br>\$ -2 - 1.35                                     | 15 U      | ტ ყო დ ყო ბ<br>ტ 10 00 00 00                                | 75<br>75<br>70<br>90<br>90                                              | 83<br>79<br>79<br>73                                                    | 70<br>75<br>80<br>885<br>90                                   |
| Test<br>Temp.<br>(°F)            | 19 19 19 19 19 19 19 19 19 19 19 19 19 1                         | 350 PE S S S S S S S S S S S S S S S S S S   | 260°F<br>260°F<br>260°F<br>260°F                            | 350°F<br>350°F<br>350°F<br>350°F                                        | 260°F<br>260°F<br>260°F<br>260°F                                        | 350°F<br>350°F<br>350°F<br>350°F                              |
| OR CONDITIONING e Duration       | \$00 hrs.<br>\$00 hrs.<br>\$00 hrs.<br>\$00 hrs.                 | 500 hrs.<br>500 hrs.<br>500 hrs.<br>500 hrs. | 1000 cyc.<br>1000 cyc.<br>1000 cyc.<br>1000 cyc.            | / 1000 eye.<br>/ 1000 eye.<br>/ 1000 eye.<br>/ 1000 eye.<br>/ 1000 eye. | / 1000 cyc.<br>/ 1000 cyc.<br>/ 1000 cyc.<br>/ 1000 cyc.<br>/ 1000 cyc. | 1000 cyc.<br>1000 cyc.<br>1000 cyc.<br>1000 cyc.              |
|                                  |                                                                  |                                              | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 250 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                               | 350°E/<br>350°E/<br>350°E/<br>350°E/<br>350°E/                          | 350° E'                                                       |
| Orientation                      | \$ <u>10e</u> v \$81.57 ú,                                       | :<br>:06 0 561'54 5                          | 00000                                                       | <b>.</b>                                                                | 00000                                                                   | , ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                       |
|                                  | 0.051<br>0.051<br>0.051<br>0.050                                 | 870.0<br>870.0<br>870.0                      | 0.033<br>0.033<br>0.033<br>0.033                            | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000             | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                          | 0.033<br>0.033<br>0.033<br>0.033                              |
| Th.kness (Plics) (In.)           | 00000                                                            | ው ው ው ው ው                                    | καφφω                                                       | σινσυ                                                                   | σφφφφ                                                                   | φφφφφ                                                         |
| Specimen                         | M11428-1<br>M11428-1<br>M1428-1<br>M1428-1<br>M1428-1<br>M1428-1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        | H1112A-6<br>H1112A-7<br>H1112A-8<br>H1112A-9                | M1112A-11<br>M112A-12<br>M112A-13<br>W112A-14                           | M11128-6<br>C1112B-7<br>M1112B-8<br>M1112B-9<br>M1112B-10               | M.1128-12<br>M.1128-12<br>M.1128-12<br>M.1128-14<br>M.1128-14 |

J

TARLE NVIE (REFE AND STRESS REPTURE PROPERTIES STMMARY - NARMO 5706/1000KMF II GRAPHITE (OMPUSITES

|             |               |                             |                    |              |               |              |                       | ē                   |                                   |
|-------------|---------------|-----------------------------|--------------------|--------------|---------------|--------------|-----------------------|---------------------|-----------------------------------|
| Special     | .hickness     |                             | PRIOR COMDITIONING | Test<br>Test | Stress Level  | [eae]        | Time<br>ro<br>Fallure | Applied<br>erithout |                                   |
| * mber      | (Piies) (In.) | .) Ordentation              | Type Duration      | £            | (Toult) (kat) | (ks1)        | (Hours)               | (Hours)             | Counent                           |
| M 142A-1    | 050-0         | 50 (545/1135/0/95)          | /1000              | 260°F        | 8             | 72.5         | ,                     | 0001                | 1                                 |
| M1142A-2    | 0.050         |                             | 1000               | 260°F        | 2             | 6.07         | •                     |                     | Tab failure, broke during loading |
| H1142A-3    | 670.0         | : 6.9                       | /1000              | 260°F        | 93            | 6.47         | •                     |                     | Broke during loading              |
| M1142A-4    | 670.0         | . 65                        | 0001               | 260°F        | 92            | 74.1         | 1                     | 1000                | •                                 |
| H1142A-5    | 0.048         | :                           | 260°F / 1000 cyc.  | 260°F        | 95            | 9.92         | •                     | 1                   | Oven overheated                   |
| ¥1142A-6    | ن             | 05.                         | / 1000             | 350°F        | 80            | 71.2         | 910.                  | •                   |                                   |
| W1142A-7    | 670.0         |                             | /1000              | 350.1        | <b>7</b>      | 68           | 65.5                  |                     |                                   |
| 8 - 4C-7L-3 | 0.050         | 05                          | / 1000             | 350°F        | 26            | 8.79         | .039                  |                     |                                   |
| 91142A-9    | 670.0         | - 6.                        | /1000              | 350°F        | 2             | 9.69         | 312.9                 | •                   |                                   |
| H1142A-10   | 0.051         |                             | 260 F . 1000 cyc.  | 350°F        | 82            | 7.99         | \$2.                  | •                   | Tab failure                       |
| M1142C-1    | 870.0         | <u>[36, 0/\$21,132/6]</u>   | /1000              | 260°F        | 70            | 55.8         | •                     | 1001                |                                   |
| M1142C-2    | 870           |                             | 71000              | 260°F        | 75            | 59.7         | •                     | 100                 |                                   |
| M1142C-3    | 870.0         | : 00,4                      | /1000              | 260°F        | 8             | 63.7         | •                     | 1060                |                                   |
| H1142C-4    | 870.0         | . 95                        | 1000/              | 260°F        | 20            | 55.8         |                       | 9101                |                                   |
| ¥1142C-5    | 8700'0 6      | 89:                         | 350°F /1000 cyc.   | 260°F        | 2             | 63.7         | •                     | 1005                |                                   |
| 81142C-6    | 9,0,0         | :                           | /1000              | 350°F        | 2             | 3.3          | ,                     | 0001                |                                   |
| M1142C-7    | 870.0         |                             | /1000              | 350°F        | 75            | 58.0         | •                     | 1000                |                                   |
| M1142C-8    | 6             | : 20,                       | 350 *F / 1000 cyc. | 350°F        | 2             | 62.3         | •                     | 9001                |                                   |
| ¥1142C-9    | 9.0           |                             | / 1000             | 350          | <b>\$</b>     | <b>66.</b> 2 | 345                   | •                   | ,                                 |
| M1142C-10   | 870.0         | 48 [0/45/135/0/ <u>90</u> ] |                    | 350.8        | ş             | ٦.<br>ج      |                       | •                   | Broke in loading                  |
|             |               |                             |                    |              |               |              |                       |                     |                                   |



D

ŋ

新聞の 100mm 
E (

inni

· \* <u>:4-, :</u>



ŧ





Ũ

0

0

Ð

O



POLICE AND THE CARRY CHARAN CHARA CONTRACTOR OF THE CARRY CONTRACTOR OF THE SECTION OF THE CHARACTER CONTRACTOR OF THE CARRY C

CONTROLLERATION AND A APPROXIMATE TO APPROXIMATE AND A CARACTERISTIC

A RIVER STRAIG WHANGS TIME THE RIVER OF

TIME (HOURS]

THE WARRE II SEAPHITH

5

The state of the state of

\*

14. 15 14. 15

Ð

THESTLE CHEEP STATE THESES THE CHEVES FOR  $[0/45/135/0^{140}]_{4}$  and the 12 Grammer is allowed to the ATTS for Lateral of the Depth 
Pig. 386

1

3



ŧ,

Ľ

ţ



ij

.)

Ü

Э



, ... 1

With the second transfer of the second

manufact of the Contra

, (

r-81



FIG. 402 TENSILF CREEF STRAIN VERSUS TIME CONVER FOR [04/45/135/0/96], MARIOD 2506/NEWORD TE CALMINES : ANTINESS TESTED AT 260.°F AFTER 1800 CYCLES EXPONENTE TO 240.°F

TOTAL LES CHEMBER THAIN VERSUS TITRE CHEMBER 0° MARKET STELLENGE TOTALS EXPRESSED TO NO. "AN UNITE CHEMBER 19 TISSET STELLENGE OFFICES EXPRESSED TO NO. "AN UNITE CHEMBER 19 TISSET STELLENGE OFFICES EXPRESSED TO NO. "AN UNITE CHEMBER 19 TISSET STELLENGE OFFICES EXPRESSED TO NO. "AN UNITE CHEMBER 19 TISSET STELLENGE OFFICES EXPRESSED TO NO. "AN UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICES TO NO. "AND UNITE CHEMBER 19 TISSET STELLENGE OFFICE STELLE

7

3

2

Commission Terminal Symmetric Commission Com

Stat.

•

401 H (MAY 40 - 4) P LINE 18





## APPENDIX III

## DATA SUMMARY FOR HERCULES 3002M/COURTAULDS HMS GRAPHITE COMPOSITES

## TABLE OF CONTENTS

## APPENDIX III

| Item | Description                                                                                               | Pages   |
|------|-----------------------------------------------------------------------------------------------------------|---------|
| 1    | Table XVIII - Static Properties Summary - Hercules 3002M/Courtaulds HMS Graphite Composites               | 354-369 |
| 2    | Figs. 406 to 472 Static Stress-Strain Curves                                                              | 370-386 |
| 3    | Table XIX - Fatigue Properties Summary - Hercules 3002M/Courtaulds HMS Graphite Composites                | 387-397 |
| 4    | Figs. 473 to 495 Fatigue S-N Curves                                                                       | 398-403 |
| 5    | Table XX - Creep and Stress Rupture Properties Summary -Hercules 3002M/Courtaulds HMS Graphite Composites | 404-411 |
| 6    | Figs. 496 to 506 Stres: Rupture Curves                                                                    | 412-414 |
| 7    | Figs. 507 to 528 Creep Strain Versus Time Curves                                                          | 414-420 |

FABIT AVI () FATIC FRUPERTIES SPEAKY FACTOR 3002PC OFFICIALS HIS FAMILY FOR FEET

| Orientatis:     | Type Load   | Price<br>Condict ming | fest Temp.     | E x 10°) | (u)/u) | ult<br>(kei) | <sup>e</sup> ult<br>(a-in./in.) |
|-----------------|-------------|-----------------------|----------------|----------|--------|--------------|---------------------------------|
| .0              | Tension     | Kone                  | KTD            | 26.9     | 0.20   | 86           | 3,360                           |
| •               | Teneion     | X: 114                | 260°F          | 28.3     | 0.23   | 119          | 4,100                           |
| •               | Teneton     |                       | 350°F          | 29.8     | 0.20   | 115          | 3,850                           |
| %               | Teneton     | Kone                  | Ē              | 86°U     | 0.00   | 2.3          | 2,260                           |
| .04             | Traston     | Kone                  | 3,092          | 0.45     | 0.00   | 4.7          | 5,000                           |
| • 0             | Tension     | Kone                  | 350°F          | 0.89     | 0.03   | 4.1          | 4,570                           |
| [04/07811/87/0] | i. aston    | Kone                  | Ę              | 13.9     | 0.45   | 3            | 3,500                           |
| 0/45/135/0 90.  | Tention     | Kone                  | 24C-F          | 17.2     | 0.47   | *            | 3,530                           |
| [048/138/0/90]  | Tension     | Kme                   | 3° )\$E        | 16.2     | 17.0   | 23           | 3,500                           |
| .0              | Compression | Mone                  | reta<br>Teta   | 24.6     | 0.68   | 700          | 4,300                           |
| .0              | Compression | Mone                  | ****           | 22.5     | 0.20   | 46           | 4,110                           |
| .0              | Compression | ì                     | 2 <b>6</b> 0'F | 25.8     | 0.30   | *            | 3,870                           |
| ,<br>O          | Compression | None                  | 350*           | 24.6     | 0.55   | •3           | 3,540                           |
| •0              | Compression | lone                  | 350°F          | 24.9     | 0.23   | 92           | 3,420                           |
| \$              | Compression | Mon                   | Ě              | 1.25     | 0.01   | 21.4         | 19,670                          |
| . 8             | Compression | Mone                  | , cr           | 1.21     | 0.00   | 32.9         | 29,000                          |
| 2               | Compression | Mon                   | 360°F          | 11.11    | 0.01   | 7.62         | > 30,000                        |
| \$              | Compression | Hone                  | 350 %          | 1.36     | 0.01   | 16.7         | 20, 530                         |
| \$              |             | j                     | 350,035        | -        | 5      | 11 1         | 900 000                         |

Sandy (c. Bras De.

And the second section of the second 
|                          |                |              |                |               |         |                   | •                  |
|--------------------------|----------------|--------------|----------------|---------------|---------|-------------------|--------------------|
| Or: entation             |                |              |                |               | Tr., s. | (kat) (a.in 'in') | "ule<br>(,17 'in.) |
| (0 -> 135 ( 90)          | Compression    |              |                |               | į       | 60                | 9.9.               |
| 0.45/13576.90.           | Capresion      | N. 13¢       | <b>41</b> ()*  | 11.6          |         | 59                | 4,720              |
| 0/45 135/0/90]           | Complex of Con | ¥.ne         | 4,79,          | 7.6           |         | ĸ                 | 6,410              |
| [ <u>98</u> /8/511 5+/0] | . of was do.   | Kone         | <b>4</b> υς    | 1.2.5         |         | 55                | 069.7              |
| 0/.5.115/0/40]           | Compression.   | Жэле         | 34048          | ,<br>o        |         | 53                | 5,750              |
| ί                        | in-Plan Shear  | Your.        | Ê              | 0 <b>.8</b> > |         | 10.4              | •                  |
| • • •                    | n-Plus Shear   | You          | 1 09/          | <b>3.</b> 0   | •       | ø.                | <b>30</b> ,000     |
| 0.                       | n-Flanc Shear  | Mone         | 150°F          | 15.5          | ,       | 6.3               | » 30° 000          |
| .0                       | Int. Shear     | None         | <b>E</b> TI    | ,             | ı       | 13.7              |                    |
| , 0                      | Inc. Shear     | Nune         | 1 04           | •             | P       | 4.7               | •                  |
| . 0                      | Int. Shear     | Mon          | 350 F          | •             | •       | 7.5               |                    |
| [0/4 1/135 /0/90]        | Int. Shear     | Kone         | ē              | •             | •       | 10.2              |                    |
| (5/45/135/0/90)          | Int. Shear     | None         | 2 <b>6</b> C F | •             | •       | 7.4               | •                  |
| 109/0.411/17/            | Irt. Steat     | Kone         | 1.051          | •             | •       | 5.2               | •                  |
| ò                        | Fierment       | Kone         | E              | •             | •       | 130               | •                  |
| , 0                      | Fierman        | section      | 260.7          | •             | •       | 110               | •                  |
| . 0                      | YI smare!      | Kina         | 1.050          | ı             | ,       | 107               | •                  |
| * O *                    | Plemeal        | <b>Scott</b> | £              | •             | •       | 5'01              | •                  |
| • • •                    | Flemmel        | Mone         | 260⁴₽          | •             | ,       | <b></b>           | •                  |
|                          | *) .mira)      | Ever         | 1.052          |               | •       |                   | •                  |

My are seit bede Deta

| Oriun ation    | Orien ation Type Load | Prior   | . 8 ( T. ∰.)<br>( F) | r G<br>( 10 x 10°) | ,<br>(in/in) | Jult or Tult<br>(kal) | *ult<br>(u-fn./in.) |
|----------------|-----------------------|---------|----------------------|--------------------|--------------|-----------------------|---------------------|
| ( 18 18: 0 Get | lenor.                | , n     | •                    |                    | •            | 83                    | •                   |
| 20 138 1 St 12 | T T KIND OF THE       | N state | 3,0%                 | ,                  | •            | Z.                    | •                   |

ACTED STAFFG INDE CO. TANKS
HERETTES TO COMPUTE TO SERVICE STAFF

|             |           |                       |                      |                           | 11        |              |             |
|-------------|-----------|-----------------------|----------------------|---------------------------|-----------|--------------|-------------|
| Orientation | Type Load | Brior<br>Conditioning | , et l'en .<br>( 'F) | , ps: x 10 <sup>5</sup> , | in/in)    | ult<br>(ks1) | 1 de (1877) |
| •0          | Tension   | 987, RH /500 Hrs      | ÇL.                  | 6,85                      | 0.24      | 117          | 3,910       |
| •0          | Tension   | 987 RH/500 hrs        |                      | •                         | ,         | 601          |             |
| •0          | Tension   | 987 RH/500 Hrs        | 350°F                | •                         | ,         | 109          | •           |
| •0          | Tension   | 980 RH /1000 Hrs      |                      | 26.6                      | 0.20      | 601          | 3,930       |
| •0          | Tension   | 987 RH/1000 Hrs       |                      | 28.1                      | 77.0      | 124          | 4,280       |
| • 0         | Tension   | 98°, 84/1000 Hrs      |                      | 25.6                      | <b>19</b> | 101          | 3,830       |
| •           | Tension   | Thermo-Humidity Cycle | <b>ct</b>            | 17.1                      | 0.29      | 105          | 3, 790      |
| • 0         | Tension   | Thermo-Humidity Cycle | 2 <b>60°F</b>        | •                         | •         | 126          | ;           |
| •0          | Tension   | Thermo-Humidity Cycle |                      | ı                         | •         | 115          |             |
| • 0         | Tension   | Acc. Wthrng.          |                      | 26.9                      | 0.29      | 101          | 3,681       |
| • 0         | Tension   | Acc. Wthrng.          | 260°F                | 28.3                      | 0.39      | 133          | 069.4       |
| • 0         | Tension   | Acc. Wthrng.          | 350°F                | 27.5                      | 0.45      | 114          | 4,140       |
| • 06        | Tension   | 967 RH/500 HTS        |                      | 0.95                      | 0.00      | 1.7          | 1,810       |
| • 06        | Tenston   | 987 RH/500 hrs        | 260°F                | •                         | •         | 2.4          | •           |
| . 06        | Tension   | 98% RH/500 Hrs        | 350°F                | 1                         | ı         | 3.5          | •           |
| • 28        | Tension   | 98% RH/1000 Hrs       | e e                  | 1.07                      | 0,00      | 1.5          | 1,360       |
|             | Tension   | 967 RH/1000 Hrs       | 260°F                | 1.13                      | 0.00      | 1.7          | 1,620       |
| <b>.</b>    | Tension   | 98% RH/1000 Hrs       | 350°F                | 0.89                      | 0.01      | ŋ. <b>4</b>  | 4,780       |
| ` <b>Z</b>  | Yension   | Thermo-Humidity Cycle | e <del>ra</del>      | 1.08                      | 0.00      | 1.7          | 1,660       |
| • 06        | Tension   | Thermo-Rumidity Cycle | 260°F                | •                         | •         | 1.1          |             |
| °06         | lension   | Thermo-Humidity Cycle | 350*F                | •                         | •         | 6.0          |             |
|             |           |                       |                      |                           |           |              |             |

TABLE XVIII STATIC PROPERTED SCHWARY - OF CORRESPONDED ON CORRESPONDED CONTRACTORS

| Ortentation     | Type Load | Prior<br>Conditioning | Test Tesp. | L<br>(pst x 10 <sup>6</sup> ) | ,<br>(10/1n) | ult<br>(kst) | <sup>6</sup> ult<br>(μ-fn./fn.) |
|-----------------|-----------|-----------------------|------------|-------------------------------|--------------|--------------|---------------------------------|
| ,06             | Tension   | Acc. Wthrng.          | £          | 1.22                          | 0.01         | 5.5          | 099'7                           |
| .06             | Tension   | sec. Whiring.         | 260°F      | 0.87                          | 0.0          | 2.0          | 4,240                           |
| ,06             | Tension   | Acc. Winting.         | 350°F      | 0.27                          | 0.0          | 1.1          | 7,940                           |
| [0]/d/5E1/57/0] | Tension   | 98% RH/530 Hrs        | <b>6</b>   | 14.4                          | 67.0         | 53           | 3,600                           |
| [0/25/105/0/[0] | Tension   | 987 RM/530 Hrs        | 260 ₹      | ·                             | •            | 23           | •                               |
| [0/45/135.0/[0] | Tenston   | 96% RH/530 Hrs        | 350*F      | •                             | •            | 15           | •                               |
| [0/45/135/0/[3] | Tension   | 98% AH/1300 Nrs       | Ę          | 14.0                          | 0.43         | <b>*</b>     | 3,990                           |
| [0]/0/251/57/0] | Tension   | 98% RH/1 00 Rrs       | 260°F      | 13.5                          | 0.43         | 55           | 4,020                           |
| [0/45/135/0/{0] | Tension   | 96% RH/1300 Hrs       | 350°F      | 12.6                          | 0.59         | <b>4</b> 3   | 3,470                           |
| [0/45/135/0/50] | Tenston   | Thermo-Hum dity Cycle | e          | 14.7                          | 0.45         | 32           | 3,500                           |
| [0/45/145/0]    | Tension   | Thermo-Hum dity Cycle | 260°F      | •                             | •            | <b>88</b>    | •                               |
| [0/45/135/0/93] | Tension   | Thermo-Hum.dity Cycle | 356°F      | •                             | ı            | 20           | •                               |
| [0/45/135/0/95] | Tens      | Asc. Wthrng.          | E          | 15.6                          | 0.46         | 8            | 3,530                           |
| [0/45/135/0/9]  | Tension   | Acc. Wthrng.          | 260°F      | 14.2                          | 0.42         | 2            | 4.040                           |
| [0/45/135/0/9]] | Tenston   | Acc. Wthrng.          | 350*7      | 14.1                          | 0,40         | 51           | 4,190                           |

(Add. AVLUE State Belling RTUS SPACINY)
(1997) Seat MOUNTANDS
(1997) SAPPLED OF BRIDGE

| eute<br>/4-ta./ta.)                  | 4.370            | •              | •              | 4,290            | 3,900           | 3,640           | ن<br>ب                | ,                     |                       | 3,670        | 3,510        | 3,070        | > 30,000       | •                | •              | > 3(,000        | > 36, 000        | > 3( '000       | 209, 2                | •                     | •                     |
|--------------------------------------|------------------|----------------|----------------|------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------------|--------------|--------------|--------------|----------------|------------------|----------------|-----------------|------------------|-----------------|-----------------------|-----------------------|-----------------------|
| (n) (ket)                            | 8                | 108            | 47             | *                | 3               | 82              | 700                   | 105                   | 108                   | 16           | 7.8          | 65           | 30.0           | 18.2             | 12.1           | 27.3            | 15.4             | 9.1             | 25.7                  | 17.5                  | 12.3                  |
| (in in)                              | 0.22             |                | •              | 0.26             | 0.22            | 0.30            | °, 38                 | •                     | •                     | 0.45         | 0.26         | 0.24         | 0.0            | ı                | •              | 0.01            | 0.0              | 0.0             | 0.00                  |                       | •                     |
| that x ice,                          | 31.6             | ,              | 1              | 23.1             | 20.9            | 23.5            | 24.3                  |                       | •                     | 22.6         | 21.0         | 23.2         | 1.09           | •                | •              | 1.23            | 0.78             | 0.45            | 1.19                  | •                     | •                     |
| 'test Temp.                          | HTD              | 3.09T          | 350°F          | RTD              | 3.09C           | 320°F           | KTD                   | 3.097                 | 350 °F                | ET.          | 260°F        | 350°F        | RTD            | ₹90%             | 3.50 ₽         | OT.             | 260°F            | 350°F           | RTD                   | 260°F                 | 350⁴₽                 |
| Prior tent Temp. L Conditioning ('F) | 987. Riv 300 Hrs | 98% RH/500 Hrs | 987 RH/500 Hrs | 98". RH/1000 Hrs | 987 RH/1000 Nrs | 987 RH/1000 Hrs | Thermo-Humidity Cycle | Thermo-Humidity Cycle | Thermo-Runddity Cycle | Ace, Wthrng. | Acc. wthrng. | Acc. Wthrng. | 98% RH/500 Hrs | 987, RH. 500 Hrs | 987 RH/500 Hrs | 987 RH/1000 Hrs | 9E7 RH. 1000 Hrs | 987 RH 1000 Hrs | Thermo-Humidity Cycle | Thermo-Humidity Cycle | Thermo-Humidity Cycle |
| Orientation Type Load                | Compression      | Compression    | Compression    | Compression      | Compression     | Compression     | Compression           | Compression           | Compression           | Compression  | Compression  | Compression  | Compression    | Compression      | Compression    | Compression     | Compression      | Compression     | Compression           | (ompression           | Capression            |
| Orientation                          | 1                |                |                |                  |                 |                 |                       |                       |                       |              |              |              |                |                  |                |                 |                  |                 |                       |                       |                       |

| n de la companya de<br>La companya de la co |              |                       |                    |               |          |               |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|--------------------|---------------|----------|---------------|---------------------|
| Orientation                                                                                                                                                                                                                     | Typ. Lead    | Prior<br>Conditioing  | fest femp.<br>(°F) | E E M Jack    | (11, 11) | fult<br>(kst) | *ult<br>(4-11./1n.) |
| ÷06                                                                                                                                                                                                                             | Compression  | Acc. Wthang.          | 발길                 | 61 -          | (10,10)  | 29.0          | 900° UE <           |
| , 96                                                                                                                                                                                                                            | Compression  | Acc. Webring.         |                    | 6, 0          | 00,0     | 15.9          | > 30,000            |
| °06                                                                                                                                                                                                                             | Compression  | Acc. Wtheng.          |                    | 6.17          | 00. u    | 9.5           | > 36,000            |
| 0,45/135/0/90                                                                                                                                                                                                                   | Compression  | 981 RH/520 Hrs        |                    | 10.6          | 0.32     | 52            | 5, 180              |
| 0.75 /135 /0/90.                                                                                                                                                                                                                | Compression  | 981 RH/520 Hrs        |                    |               |          | 53            | •                   |
| 0.45/135/0/90]                                                                                                                                                                                                                  | Compression  | 987 RH. 570 Hrs       | 350                | ,             | •        | 53            | •                   |
| 06/0,501/57/0]                                                                                                                                                                                                                  | Cumpression  | 98" RH 15:00 Hrs      | RTD                | f : <b>10</b> | 1L U     | 55            | 6,010               |
| 0.45,135,0/90.                                                                                                                                                                                                                  | Compression  | 98] RH/1000 Hrs       | 260                | i d           | 0.37     | 2             | 5,430               |
| 0/45/135 0/90]                                                                                                                                                                                                                  | Compression  | 98% RH/1300 Hrs       | 350                | 10.5          | 0.K      | 61            | 4,420               |
| [0/45/135/0/96]                                                                                                                                                                                                                 | Compression  | Thermo-Humidity Cycle | RTD                | 11.5          | •        | x             | 3,810               |
| 0/45/135/0/901                                                                                                                                                                                                                  | Compression  | Thermo-Humidity Cycle | 260                | •             | •        | 51            | ė                   |
| 06/02:135:0/90]                                                                                                                                                                                                                 | Compression  | Thermo-Hunidity Cycle | 350                | •             | •        | 8             |                     |
| 0/45/135/0/90]                                                                                                                                                                                                                  | Compression  | Acc. Wthing.          | R T T              | 5.6           | 97.0     | *             | 5,170               |
| 0/45/135 '0/90]                                                                                                                                                                                                                 | Compression  | Acc. Wthang.          | 266                | 10.1          | 77.0     | 555           | 5, 050              |
| 0.45/135.0/90]                                                                                                                                                                                                                  | Compression  | Acc. Wthong.          | 350                | 8.2           | 0.27     | \$            | 5,700               |
| 20                                                                                                                                                                                                                              | In Plane Shr | 98% RH/530 Hrs        | RTD                | 78.0          | •        | 11.7          | > 30,000            |
| ູ້ນ                                                                                                                                                                                                                             | In Plane Shr | 98% RH/500 Hrs        | 260                | •             | •        | 5.5           | •                   |
| <b>.</b>                                                                                                                                                                                                                        | In Plane Shr | 98% RH/530 Hrc        | 350                | 06.0          | •        |               | > 30,000            |
| .0                                                                                                                                                                                                                              | In Plene Shr | 98% RH/1300 Hrs       | RTD                | 06.0          | •        | 11.1          | > 30,000            |
| . 0                                                                                                                                                                                                                             | In Plane Shr | 98% RH/1100 Hrs       | 260                | 0.71          | •        | 0.0           | > 30,000            |
| ę ()                                                                                                                                                                                                                            | Ir Plane Shr | 98% RH/1 00 Hrs       | 350                | 0.10          | •        | 5.3           | > 30,000            |
|                                                                                                                                                                                                                                 |              |                       |                    |               |          |               |                     |

一門 一般 一門 一年 新り 一般 自動 はない こうかい こうかん かんしゅう かんしゅう かんしゅう しゅうしゅう 
CONTRACTOR OF THE PARTY OF THE CONTRACTOR OF THE

| Crim cation                                   | Type Load      | Prior<br>Comifeioning | Total (emp. | - 7   | (10/40) | 9 (3 (8 (8 (8 (8 (8 (8 (8 (8 (8 (8 (8 (8 (8 | alt<br>Lastra 'sn |
|-----------------------------------------------|----------------|-----------------------|-------------|-------|---------|---------------------------------------------|-------------------|
|                                               | in Plane Shr   | Thermo-Humidity Cycle | KTD         |       |         | , ' < -                                     | 90°.,0€ <         |
| ص<br>0                                        | In Plane Shr   | Thermo-Runidity Cycle | ، 4ر        | ·     |         | 2 4                                         |                   |
| о<br>г.                                       | ir Piane Shr   | Thermo-Humidity Cycle | 150         |       |         | \$                                          | 1                 |
| e<br>m                                        | In Flane Shr   | Acc. Wthrmg.          | KTD         | 69,68 |         | 11.3                                        | 29, 700           |
| и<br><i>Г</i> 1                               | In Plane Shr   | Acc. Whiring.         | 760         |       |         | <b>9</b> .1                                 | 30,006            |
| a<br>C.                                       | ads andid of   | Acc. Wthrng.          | 350         |       |         | 5.2                                         | 30, 100           |
| G<br>, ,                                      | interl or shr  | 981 RH 500 Brs        | RTD         | ,     |         | 12.5                                        | ,                 |
| 753                                           | Inter! or Shr  | 287 RH/500 Hrs        | 260         | •     |         | 15.2                                        |                   |
| r: 1                                          | Interlour Shr  | 987 RH > 500 Hrs      | 350         |       |         | 7.3                                         |                   |
| <u>, , , , , , , , , , , , , , , , , , , </u> | Interlim: Shr  | 98% RH/1000 Hrs       | KTD         | ,     |         | ¢.\$                                        | i                 |
| ٥.                                            | Interl'mr Shr  | 98% RH/! 000 Hrs      | 260         |       |         | 4.5                                         | ı                 |
| <b>G</b><br>T*.                               | Interl ar Shr  | 98% RH/1000 Hrs       | 350         | ,     |         | 5.4                                         | ,                 |
| to<br>for                                     | Interlug Shr   | Thermo-Humidity Cycle | Q.          |       |         | 10.4                                        | •                 |
| ά<br>(*,                                      | Interl par Shr | Thermo-Humidity Cycle | 097         | ,     |         | 2 2                                         | •                 |
| <b>8</b>                                      | Interl mr Shr  | Thermo-Humidity Cycle | 350         | •     |         | o<br>1                                      | ,                 |
| <b>(</b>                                      | interl mr Shr  | Acc. Wthmg.           | <b>ET</b>   | •     |         | 1 11                                        | ı                 |
| či<br>L                                       | Interl'mr Shr  | Acc. Wthrng.          | 260         |       |         | 9.6                                         | 1                 |
| o<br>t                                        | Interlar Shr   | Acc. Wthrng.          | 350         | •     |         | 7.1                                         | ,                 |

TABLE NATURE TRANSPORTER OF THE PERCENTIAN AND MACHINES SHOOT MACHINES COMPANIES COMPA

| Orientation | Page 1  | Petuc<br>Codinicates | Total Temp. | ε<br>Cost # 10 <sup>E</sup> : | . in/fai    | , : ik<br>(kn f.) | () () (u) |
|-------------|---------|----------------------|-------------|-------------------------------|-------------|-------------------|-----------|
| .0          | tosten  | 260°F/103 Hrs        | KTD         |                               |             | 140               |           |
| .0          | Tension | 260 F/100 Hrs        | 760         | •                             | •           | 135               | ٠         |
| °o          | Tension | 260°F/500 Hrs        | RTD         | 28 8                          | 0.27        | •                 | 3,310     |
| .0          | Tension | 260°F/500 Hrs        | 260         | 28.9                          | <b>96</b> 0 | 129               | 4,460     |
| 0           | Tension | 350*F/100 Hrs        | KTD         |                               | •           | 111               | •         |
| •           | Tension | 350°F/100 Hrs        | 260         | •                             | •           | 130               | •         |
| •0          | Tengica | 350*F/100 Hrs        | 350         | •                             | •           | 128               | •         |
| .0          | Tensica | 350*F/560 Hrs        | et.         | 27.1                          | 0 25        | 101               | 3,860     |
| ູ້ດ         | Tension | 350°F/500 Nrs        | 350         | 30.7                          | 9.36        | 121               | 006'5     |
| .06         | Tension | 260°F/100 Hrs        | KTD         | •                             | •           | 7.0               | •         |
| <b>206</b>  | Tension | 260°F/109 Hrs        | 260         | •                             | •           | <b>4</b> .1       | •         |
| 90ء         | Tension | 260°F/500 Hra        | RTD         | 1.00                          | 0.01        | 2 2               | 2,180     |
| <b>.</b> 06 | Tension | 260°F/500 Hrs        | 240         | •                             | •           | •                 | •         |
| ,06         | Tension | 350°F/100 Hrs        | CE2         | ⁴.                            |             | 1.3               | •         |
| .06         | Tension | 350°F/100 Hrs        | 260         | •                             | •           | 0.2               | •         |
| °0°         | Tenefor | 350°F /100 Hr.       | 5           | •                             | •           | -                 | •         |

\*\* Specimens Broke During Conditioning Cycle

TABLE OF THE SOUTH PROPERTIES SCHOOLS THANK THE BEST STOCKNES OF CANADA STOCKNESS OF C

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

1. C. A. N.

Ę.

| Orientation                  | Type Load   | Prior<br>Conditioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Temp. (pri x 10°, (pri x 10°, | (pri x 10°) | (u <sub>1</sub> , u <sub>1</sub> , | <sup>J</sup> ult<br>(kai) | 1.3 <b>r</b><br>(2.3n./1n |
|------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|------------------------------------|---------------------------|---------------------------|
| •06                          | Tension     | 350°F/50 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EF.                                | <b>%</b> 0  | <b>2</b> c                         | 0.7                       | ok 1 ° t                  |
| •06                          | Tension     | 350"F'570 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 350                                | 2870        | 0.0                                | 0 7                       | 1,040                     |
| [0/45/135/0/ <del>9</del> 5] | Tension     | 260°F/130 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RTD                                | •           | •                                  | 57                        | ٠                         |
| [0/45/135/0/∯(1)]            | Tension     | 260*F/130 Nrm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 260                                | •           | 5                                  | 3                         | •                         |
| [0/45/135/0/95]              | Tension     | 260°F/530 Hrm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ę                                  | 13.9        | 0 39                               | 4.7                       | 3,280                     |
| [0/45/135/0/93]              | Tension     | 260°F/500 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 260                                | 3<br>12     | 0, 6                               | 6.5                       | 1,960                     |
| [0/45/135/0/95]              | Tersion     | 350°F/100 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Œ.                                 | •           |                                    | 4.3                       | •                         |
| [0/45/135/0/ <del>9</del> ]] | Tension     | 350°F/100 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 260                                | •           |                                    | 63                        | •                         |
| [0/45/135/0/ <u>9</u> ]]     | Tension     | 350°F/130 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 350                                | ı           | ,                                  | 99                        | •                         |
| [0/45/135/0/9]]              | Tension     | 350*F/500 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £                                  | 14.4        | 0 43                               | 21                        | 3.430                     |
| [0/45/135/6/9]]              | Tension     | 350°F/500 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 350                                | 15.5        | 95.0                               | 53                        | 3, 390                    |
| ,                            | Compression | 260°F/150 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | £                                  | •           | •                                  | 44                        | •                         |
| •0                           | Compression | 260°F/100 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 260                                | •           | •                                  | 103                       | •                         |
| 0.0                          | Compression | 260°F/500 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e E                                | 21.6        | 97.0                               | į                         | 9,190                     |
| Û                            | Compression | 260°F/530 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 340                                | 17.5        | 3, 31                              | ë                         | 4,620                     |
| 0.0                          | Compression | 350°F/100 thre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | £                                  | 20.5        | 0.29                               | 6                         | 7,010                     |
| 0.0                          | Compression | 350°F/139 Nrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 350                                | •           | ,                                  | 10;                       | •                         |
| ိုင                          | Compression | 350°F/500 Ers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ē                                  | 22.8        | 0.20                               | 45                        | 7,110                     |
| 200                          |             | CONTRACTOR OF THE CONTRACTOR O | Ş                                  | 73.0        | ç                                  | 8                         | 4.00 A                    |

TABLE XVIII STOTIC : STORY BESTELLE STORY GROOT

|                          |                   |                      |                                         |              | ,           |                |           |
|--------------------------|-------------------|----------------------|-----------------------------------------|--------------|-------------|----------------|-----------|
| Sol wattin               | באַרָר בּייִלאָרָ | Prior<br>Comitioning | ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | 1. 4<br>2. 4 | (fn/fa)     | Tule<br>(Nest) | (ln./in.) |
| 93,                      | Cumpression       | 260 F /100 hrs       | GIS                                     |              |             |                |           |
| .06                      | Compression       | 260°F/100 Hrs        | <b>56</b> 0                             | •            | •           |                | •         |
| 9).                      | Compression       | 260°F/500 Hrs        | RID                                     | 1.10         | 0.0         |                | > 30, 000 |
| 406                      | Compression       | 260°F/500 Hrs        | 366                                     | 1 17         | <b>0</b> 0  | 30.9           | > 30,000  |
| °C6                      | Compression       | 350°F /100 Nrs       | RID                                     |              | ,           | ě,             | •         |
| £0.6                     | Compression       | 350°F /100 Hrs       | 350                                     | •            |             | 21.5           | •         |
| •06                      | Compression       | 350°F/500 Hrs        | RID                                     | C 32         |             | 27.6           | 904 03 <  |
| ° 06                     | Copression        | 350°F /500 Hrs       | 350                                     | 37.0         |             | 22 6           | 28, 000   |
| [0/45/135/0/90]          | Compression       | 260°F/100 Hrs        | RID                                     | •            | •           | 57             | •         |
| [0/45/135/0/90]          | Compression       | 260°F/100 Hrs        | 200                                     | •            | ,           | 9              | •         |
| [0/45/135/0/ <u>90</u> ] | Compression       | 260°F/500 Hrs        | RTD                                     | 8.31         | ø. <b>%</b> | X.             | 6, 580    |
| [0/45/135/0/90]          | Compression       | 260°F/500 Hrs        | 260                                     | \$7.86       | 0 28        | \$             | 5,350     |
| [0/45/135/0/90]          | Cempress ton      | 350"F/100 Hrs        | KTD                                     | •            |             | 9              | •         |
| [0/45/135/0/90]          | Compression       | 350°F/100 Hrs        | 350                                     | •            | ,           | \$\$           | •         |
| [0/45/135/0/90]          | Compression       | 350 F /500 Hrs       | £                                       | 10.50        | 0.33        | Ł              | 7,470     |
| [0,43/135/0/90]          | Compression       | 350°F/500 Hrs        | 350                                     | 10.02        | 0.32        | 23             | 6,470     |

|             |              |                      | 1           | ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! |          |               | 1                   |
|-------------|--------------|----------------------|-------------|-----------------------------------------|----------|---------------|---------------------|
| Ortentation | Type lead    | Prior<br>Calitivains |             | E                                       | . In/In) | Cult<br>(ks1) | cult<br>(u-in./in.) |
| °°          | In Plane Shr | 260°F 100 Hrs        | KTD         |                                         |          | 9 6           | ٠                   |
| °0          | In Plane Shr | 260 F /1 Hrs         | <b>26</b> 0 | •                                       | •        | 8.7           |                     |
| • D         | In Plane Shr | 260°E /303 Hrs       | KTD         | \$£.0                                   |          | 10.0          | 17,196              |
| 0.          | In Plane Shr | 260°F/500 Hrs        | 26.0        | 64.0                                    | •        | 10            | 9 30, 000           |
| .0          | In Plane Shr | 350°F/100 Hrs        | RTD         | 1                                       | ,        | 9 01          |                     |
| 0           | In Plane Shr | 350'F/100 Hrs        | 340         | •                                       | ÷        | 0.0           |                     |
| •0          | In Plane Shr | 350°F/500 Hrs        | KTD         | 87.0                                    | •        | 6.6           | 19, 300             |
| °o          | in Plene Shr | 350"F/500 Hrs        | 350         | 97.0                                    | •        | 6.7           | > 30,000            |
| , 0         | Int Shear    | 260°F/100 Hrs        | RTD         |                                         | ,        | 13.5          | •                   |
| .0          | Int Shear    | 260'F/100 Hrs        | 260         | •                                       | 1        | 9.5           | •                   |
| <b>,</b> 0  | Int Shear    | 260°F/500 Hrs        | Ę           | •                                       | 1        | 13.4          | •                   |
| .0          | Int Shear    | 260°F/500 Hrs        | 260         |                                         |          | • •           |                     |
| 0           | Int Shear    | 350°F/100 Hrs        | e E         |                                         | ı        | 1.1           | •                   |
| 0           | Int Shear    | 350°F/100 Hrs        | 260         | •                                       | •        | 10.0          | •                   |
| 0           | Int Shear    | 350'F/500 Hrs        | Ē           | •                                       | ŧ        | 13.6          | •                   |
| ືບ          | Int Shear    | 350°F/500 Nrs        | 350         | •                                       | •        | 5.2           | •                   |

| Orthitalion | Typinad | C. nell'anding    | 2   |        | = :         |              | ( - <del>  -   -   -   -   -   -   -   -   - </del> |
|-------------|---------|-------------------|-----|--------|-------------|--------------|-----------------------------------------------------|
| .0          | Tension | 260'F'500 evelus  | a:  | ·      |             | 0.17         |                                                     |
| 0,0         | Tension | Selono 200 Sector | 260 | ,      | ,           | -71          | •                                                   |
| ٥.          | Tenstor | 200 F'1000 eveles | KTD | 7.     | \$6.0       | 113          | ं ह                                                 |
| 0.          | Tension | 260°F/1000 cv.les | 240 | £ 5 c. | <b>5</b> 6. | 116          | 3,439                                               |
| 0.0         | Tersion | 350°F'500 cv. les | RIC | ,      |             | 104          |                                                     |
| • 0         | Tension | 3+0.1 2005/1.05£  | 260 |        | •           | 118          |                                                     |
| 0.          | Tension | 350°F 500 cvcles  | ů.  |        |             | 124          |                                                     |
| 0,0         | Tension | 350°F/1000 cvcles | RTD | - w    | 1           | 114          | ± 100                                               |
| ٥٠          | Tension | 350°F/1000 cycles | 150 | ş.     | <b>or</b>   | 129          | 04.                                                 |
| 06ء         | Tension | 260°F/500 cycles  | RTD | ,      |             | 1.6          | •                                                   |
| •06         | Tension | 260°F/500 cycles  | 260 |        |             | 1.6          | •                                                   |
| .0.         | Tenston | 560°F/1000 cycles | RID | 11 11  | 000 %       | 2.7          | 2,420                                               |
| .06         | Tension | 260"F/100G cycles | 260 | 1.64   | 0.00        | 1.7          | 1.590                                               |
| •06         | Tension | 350°F/500 cycles  | KID |        |             | 2.3          | •                                                   |
| .05         | Tension | 350"F/500 cycles  | 260 | •      |             | 1.6          | ,                                                   |
| ,05         | Tension | 350°F/500 cycles  | 05، | •      |             | 1.2          | •                                                   |
| °0.5        | Te sion | 350'F/1000 cycles | кTD | ‡,     | •           | •            | •                                                   |
| .05         | Tension | 350°F/1000 cycles | 350 | 0.83   | 00.00       | <b>•</b> . o | 1,190                                               |

\*\* Broken During Conditioning

| Orientation               | Type :: ad  | Section (           | C.F.     | , paf m 106, | , (10/fn)    | uit<br>(ka1) | ( city (u) - r |
|---------------------------|-------------|---------------------|----------|--------------|--------------|--------------|----------------|
| [3/45/135/0/90]           | Tenston     | 26 FF/500 Cales     | £,       |              |              | (7)          |                |
| [ ./45/135/0/ <u>90</u> ] | Tension     | 26 F/500 creles     | 260      |              |              | 09           | ı              |
| \$ [06/0, SE1/55/C]       | Tensian     | 26 °F/1000 eyeles   | £        | 13.7         | 0.43         | 23           | 3, 530         |
| [.06/0, 5£1, 55 · ]       | Tension     | 26( °F/1000 cycles  | 260      | 15.1         | 69.0         | \$           | 3,880          |
| 3/06/0, \$21/39/()        | Tensi n     | 35/°F/500 c; cles   | Ę        |              | •            | 1            | •              |
| [ ] /45 /135 /0/90]       | Tension     | 35( *F/500 cycles   | 260      |              |              | \$           | •              |
| [ 06/0/51/37/]            | Tension     | 350 °F/500 cycles   | 350      |              |              | 3            | •              |
| [ 3/45/135/0/90]          | Tension     | 35 °F/1000 eveles   | <b>E</b> | 1.           | 9.3 <b>6</b> | 14           | 2, 760         |
| [06/0/321/57/:]           | Tension     | 35( °F/1000 cycles  | 350      | 15.1         | 69.0         | *            | 3,760          |
|                           | Compression | 261 7F/500 cycles   | 91       |              | •            | 10           | •              |
| • 0                       | Compression | 260°F/500 cycles    | 260      | •            | •            | 109          | ı              |
| .0                        | Compression | 26f 2F /1090 cycles | <b>E</b> | 19.2         | 0.28         | *            | 096.4          |
| Ū,                        | Compression | 26( °F/1000 cycles  | 260      | 24.0         | 0.23         | 102          | 0%,4           |
| .0                        | Compression | 35( °F /500 cvcles  | RTD      | •            | •            | 101          | ,              |
| 0,                        | Compression | 35(°F/500 c) cles   | 350      | •            | •            | 001          | •              |
| 0.                        | Compression | 35( °F/1000 cycles  | MTD      | 20.8         | 0.19         | 106          | 5,270          |
| °,                        | Compression | 35( F/1000 cvcles   | 350      | 20.6         | 0.23         | 66           | 7.900          |

| Orfecta: ton             | 7yr - Joac  | Cand Cioning       |      |       | cal s        | ult<br>#41, | -                   |
|--------------------------|-------------|--------------------|------|-------|--------------|-------------|---------------------|
| , O.D.                   | Compression | 260 F. 500 cv. Tes | n).  |       |              |             | i ,                 |
| 90,                      | Compression | 256787 1 1 1 1 25  | 047  | •     | ,            | 2B.£        | •                   |
| • O                      | Compression | 2607F, 1005 colles | RTD  |       | 0.70         | 32.6        | J00' 18 <b>&lt;</b> |
| 000                      | Compression | 26) P'inon eveles  | 260  | 1     | <b>0</b> 0 0 | 29.8        | 300' % <            |
| •05                      | Compression | 350°F/500 eveles   | KTD  | •     | •            | 29.9        | •                   |
| , C 5                    | Compression | 350°F/500 cycles   | 350  | ı     | i            | 22          | •                   |
| و ۵ م                    | Compression | 350°F/1000 cvcles  | RTD  | · -   | 69           | 35 6        | 200° 8 8            |
| ر ع                      | Compression | 320°F/1003 coules  | 350  | 7.77  | (G) (B)      | 2           | ) w. 00             |
| [0.45/131/0/90]          | Compression | 260°F/300 evcles   | N.T. | ,     | •            | 65          | •                   |
| [0/45,135/0/ <u>90</u> ] | Compression | 200°F/;00 cycles   | 260  | ,     | ,            | 58          | •                   |
| [0,45/135/0/ <u>80]</u>  | Complession | 260°F/1000 eveles  | CIN  | 0.01  | E#10         | 62          | 6.100               |
| [C/45/135/0 90]          | Compression | 160°F/1000 eveles  | 260  | 10.2  | 0.33         | 59          | τ, 26               |
| [C:/25/135/0/90]         | Compression | 350°F/500 cvcles   | RID  | r     | •            | 59          | •                   |
| [C'45/135/0/90]          | Compression | 350°F, 500 cycles  | 350  | •     | •            | 55          | ٠                   |
| [C/45/135/0/90]          | Compression | 350°F/1000 cycles  | RTD  | us. o | 0.38         | 59          | 6,410               |
| [0/45/135/0/90]          | Compression | 350°F/1000 cycles  | 350  | 3.6   | 0.29         | X.          | 5,56(               |

HEROTES SOURCES SOURCE

| tonfacton | Type Load    | Str. Ford Charles | (i.e. t.g. (f) (e) (e) |      | ,<br>(11/11) | <sup>c</sup> ul.<br>(ks1) | "ult<br>(u-fn./fn.) |
|-----------|--------------|-------------------|------------------------|------|--------------|---------------------------|---------------------|
| , C       | In Plane Shr | 2507Finon weles   | кТD                    |      |              | 10.8                      | •                   |
| с.<br>•   | In Flane Shr | 260°F'SOO cycles  | 260                    | 1    |              | 7.0                       |                     |
| <b>a</b>  | In Flane Shr | 260°F/1000 cycles | RTD                    | 0.79 |              | 10.7                      | 23,500              |
| · 1       | In Plane Shr | 260°T/1000 cyrles | 260                    | 0.65 |              | 7.4                       | 25,000              |
| 'n        | In Plane Shr | 350°F/590 cycles  | RTD                    | •    |              | 7.6                       | •                   |
| 0,,       | In Plane Shr | 350°F/500 cycles  | 260                    | ı    |              | •                         | •                   |
| J.        | in Plane Shr | 350'F'1000 eveles | RTD                    | 0 76 |              | 9.6                       | 17,100              |
| <u>ر</u>  | I- Plane Shr | 153:E/1030 cycles | 350                    | 97.0 |              | 6.0                       | > 30,000            |
| 0         | Int Shear    | 260:97500 cycles  | KTD                    | •    |              | 12.7                      | •                   |
| 0 -       | Int Shear    | 26077'500 cycles  | 260                    | •    |              | 9.5                       | •                   |
| 0.        | Int Shear    | 260°7'1000 cvcles | KTD                    | •    |              | 14.2                      | ı                   |
| 0,0       | Int Shear    | 260°7/1000 cycles | 260                    | ,    |              | 11.6                      | •                   |
| ί.        | Int Shear    | 350°F/500 cvcles  | RTD                    | •    |              | 12.9                      | •                   |
| ٥         | Int Shear    | 350°F/500 cycles  | 260                    | •    |              | 10.7                      | •                   |
| ٥٥        | Int Shear    | 350°=/1000 cycles | RTD                    |      |              | 13.0                      | •                   |
| .0        | Int Shear    | 350°F/1000 cycles | 350                    | 1    |              | 7.9                       | •                   |



5. i





vit's

0

D



Ġ



O

O

C

0

0

Ö

O

Ó



٩.



C

Ū

Û

Ū

Ç.

, o , i , ii.



. . . . . .



Ü

0

0

0

Ð

<del>ن</del>

£

Ū

í



Vancourse on an one



ڙ



a.

----



3

r

Water the second 






THE PERSON NAMED IN COLUMN 1

. .





FIG. 472 CONFIESTON STREET-STREET SIZENA TO CONTRACTO ON CONFITTINGCIES 300 MG (0/45/135/0/PG), LANIMAN TESTED AS VALOUS TESTEMBRIES AFTER 1000 CHILES EXPOSED TO 330'F

Ú ji

Ç

IJ

Ü

ABIT NIX FALLS PROFERITOS STATES

| or as                                      | Thickness                                  |                                             | PR TON O      | PRION CONDITIONING | 1                                        | Stress W.                  | 1          | 1        | Applied without Failure | Residue! |                         |
|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------|--------------------|------------------------------------------|----------------------------|------------|----------|-------------------------|----------|-------------------------|
| N amber                                    | (Plies) (In.)                              | Orlensacion                                 | Type          | Duration           | (°F)                                     | (T <sup>o</sup> ult) iksti | ikst.      | (cycles) | (cycles)                | (ks1)    | Comment                 |
| C1205A-t                                   | 70°° - 3                                   |                                             | 3 <u>4</u> .7 | ,                  | :<br>*                                   | · · ·                      | 01         |          |                         |          | Failed under static     |
| 1                                          | -                                          |                                             |               |                    | į                                        | 4                          | -          |          |                         |          | load at tab             |
| C1205A-7                                   | •                                          |                                             | 3000          | ,                  | : 4<br>:                                 | -                          | # /i       |          | 7 10 . z 10 t           | . (11    | Timediate 180 Fallois   |
| (120:A-8                                   | ·                                          |                                             | Seo.          | ,                  | i<br>k                                   | · · · ·                    | - 1        |          | 7. IA2 X 11:            | 7 . 4 .  | Toward it. Tak Endlines |
| 9- <b>4</b> <0213                          |                                            | -                                           |               |                    | x a                                      | r. Od                      | ê ä        |          |                         |          | Teh Feilure under       |
| C1 202 A-10                                | •                                          |                                             | WW.           | •                  | e<br>K                                   |                            | ć          |          |                         |          | statte lead             |
| .: "\$00,10                                |                                            |                                             | Kana          | ,                  | ŝ                                        | · .                        | , <b>"</b> |          |                         |          | Immediate Tab Failure   |
| C120213                                    |                                            |                                             | J. Co.        | ,                  | É                                        | 76.5                       | :          |          |                         |          | Immediate Tab Failure   |
| C1205A-13                                  | ,                                          | c                                           | Kone          |                    | RT                                       | ,r<br>zo                   | ž          |          | ,                       |          | Immediate Tab Failure   |
| 41-450210                                  | •                                          |                                             | Mone          |                    | يَلَ                                     |                            | <i>*</i> . |          | , o <b>r</b>            | 112.6    | Tab Failure             |
| C1:05A-15                                  | F                                          | C                                           | ¥rin.         | 1                  | ်<br>ည                                   | 76.5                       | ï          | 363,000  |                         |          |                         |
| 9 .00.10                                   | ,<br>C                                     | í,                                          | 2             | ,                  | 2 : 1 to 1 |                            | c.         | 000.7    |                         |          |                         |
| C1.02.78                                   | G : .                                      | ć                                           |               |                    | É                                        | e/                         | ء .        |          |                         |          | Immediate Tab Failure   |
| (A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C | e<br>C                                     | ;<br>\$                                     | , Lo          | •                  | KTD                                      | 41                         | - 1        | 545,0(4  |                         |          |                         |
| 7-80870                                    | \$ 6 5 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 | ç                                           | None          |                    | RTD                                      | *,                         | ŗ          | 9.000    |                         |          |                         |
| - L - L U                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      |                                             | Mone          | •                  | 8                                        | ٠,                         | ,          |          |                         |          | immediate Tab Failure   |
| C1303-11                                   | , C   00                                   | Ot.                                         | Monc          | •                  | Ê                                        | :-                         | ر.<br>•    | 000.1    |                         |          | (                       |
| 01307-13                                   | E - P.(157                                 | Q.b                                         | Mone          | ŀ                  | Ê                                        | ≉.                         | . ت        |          |                         |          | Immediate Tab Failure   |
| C1 102-13                                  | •                                          | ê                                           | Mone          |                    | E L                                      | 7, 1                       |            | 000      |                         |          |                         |
| C1192-1-                                   | 8 - 4.055                                  | , 06                                        | None          |                    | Ē                                        | ٠<br>: ٢                   |            | 900      |                         |          |                         |
| C1.32-15                                   | .8 - 0.05 <sup>7</sup>                     | 100                                         | Ę             |                    |                                          | ?·                         | ^          | 7,000    |                         |          |                         |
| C1027A-s                                   | 9 - 0.962                                  | 0/45/135/0/90                               | None          |                    | a La                                     | 125                        | 60         | •        |                         |          | Immediate Tab Failure   |
| C1127A-7                                   | 6 - 0.063                                  | 0/45/:23/0/93                               | Kone          | 1                  | E                                        | 105                        | 9,0        | 1,000    | ,                       |          | ab Failure              |
| C1227A-3                                   | ₹ - 0.063                                  | 0/45/135/0/90                               | None          | •                  | E                                        | 2                          | <b>9</b>   | •        | 10,                     | 59.1     |                         |
| 517.278-3                                  | 9 - 0.058                                  | 0/45/135/0/90                               | None          | •                  | Ē                                        | 105                        | s          | ı        | ,                       |          | Jumediate Tab Failure   |
| C1127A-10                                  | 9 - 0,062                                  | (0/45/135/0/90)                             | None          | •                  | E                                        | z                          | 57         | Ą        | , <sub>0</sub> 1        | 66.2     |                         |
| C1 - 27A- 11                               | 090-0 - 6                                  | [0/45/135/0/90]                             | NO.           | ,                  | €                                        | 48.5                       | 14         | 3,000    |                         |          |                         |
| C17278-                                    | 190'0 - 6                                  | (06/0/5):1/5 <b>*</b> /0]                   | None          | ı                  | É                                        | 961                        | <b>60</b>  | 1,000    |                         |          |                         |
| - 22                                       | 9 - 0.062                                  | 06/0/501/55/01                              | None          | •                  | E                                        | <b>\$</b>                  | 97         | ,        | $3.09 \times 10^{6}$    | 3.7      | Tab Failure             |
| 1 5 1 3<br>1 4 2 2 1 3                     | •                                          | 0/45/105/0/90                               | Rone          | ٠                  | Ē                                        | 901                        | 87         |          |                         |          | Immediate Tab Failure   |
|                                            |                                            | \$ (00/0/00/00/00/00/00/00/00/00/00/00/00/0 | į             | ,                  | Ē                                        | sr<br>eg<br>Ø              | 7.4        |          |                         |          | Immediate Tab Failure   |
| C12273-4                                   | 790.0 - 6                                  | 10/45/155/0/a                               |               |                    |                                          |                            | ;          |          |                         |          |                         |

AND ALK CALIFOR AGENCIES SCOME TO SERVE TO STATE TO SERVE THE CONTRACT OF SERVE TO SERVE THE SERVE TO SERVE THE SERV

| 101.1   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.2   100.   | Specimen<br>Marber | Thickness (Flies) (In.)               | Orien, actor                  | FRIOR C                               | RIOR COMBITIONING | Test<br>Temp.<br>("F) | (387) (10 ) | ا<br>آها<br>په چ | Cycles<br>to<br>Failure<br>cycles) | Cycles Applied without Fallure (cycles) | Residual<br>Strength<br>(ksi) | Competit                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|-------------------------------|---------------------------------------|-------------------|-----------------------|-------------|------------------|------------------------------------|-----------------------------------------|-------------------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1207A-11          | £ - 1,013                             |                               | # · ·                                 |                   | -                     |             | ,                |                                    | 3 168=106                               | 101.1                         | Tab Failure                       |
| 6 - 0.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00  | C.207A-12          | C. C+-                                |                               | 1                                     |                   | <del>.</del>          |             |                  |                                    | 2 500.106                               | 8                             | Tab Failure                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1207A-13          |                                       |                               | ř.                                    |                   | -<br>F,               |             | -                |                                    |                                         |                               | Isb Failed under                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1297A-1-          | 0 - 0 PL                              |                               |                                       | •                 | ع                     |             | £                | yU12**                             |                                         |                               | Tab Failure                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1207A-15          | O                                     |                               | ÷.                                    |                   | · .                   | :           | -                |                                    |                                         |                               | Immediate Isb Failure             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.18-24 C         | , i                                   |                               |                                       | •                 |                       | 1           | (03              | •                                  |                                         |                               | Impediate fab Failure             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V:0.               |                                       | -                             | 1.1                                   | •                 | 2                     |             | :03              | •                                  |                                         |                               | Immediate 1sb Failure             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (120/A-18          | <u> </u>                              | **                            | Ē                                     | •                 | Ž                     |             |                  | ٠,<br>ار                           |                                         |                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1207A-19          | 6 - 6.0.                              |                               | ŭ,                                    |                   |                       |             | ·                | ت. نارین                           | ,                                       |                               | Teb Failure                       |
| F = Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C:20_A-70          | ı                                     |                               | ć<br>~                                |                   |                       |             |                  |                                    | DE 187                                  | 27.0                          | 14b Fallure                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1213-11           | 1                                     | ÷                             | ří.                                   |                   | 1.47                  |             |                  | 300° 12                            |                                         |                               |                                   |
| F = 7.01.2   F   F   F   F   F   F   F   F   F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C1213-12           | 6.43.3 - ×                            | 5                             |                                       |                   | Ł,                    | ÷           | ~                | •                                  |                                         |                               | Failed under Static Load          |
| 6 - C. 1042 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C1213-13           | , , , , , , , , , , , , , , , , , , , | ٠                             | ٠٦٠.                                  |                   | i.                    | 4           |                  | · .                                |                                         |                               | Tab Area Failure                  |
| F = C   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1213-14           | ı                                     | ¥                             | 70                                    |                   |                       |             |                  | <u>غ</u><br>ئە                     |                                         |                               |                                   |
| 6 - ( f. c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1213-15           | 3-0-3                                 | ð                             | 31.7                                  |                   |                       | 4           |                  |                                    |                                         |                               |                                   |
| K = 1,045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1213-16           | (1) ) - p                             | ð                             | Mone.                                 |                   | ٠                     | ? ,         |                  | # å .                              |                                         |                               |                                   |
| No.    | C1213-17           | , 10°, 1                              | ð                             | ٠<br>٢                                | •                 | Ξ.                    |             | -:               | (H)                                |                                         |                               | And I shall be maked to the first |
| 8 - C.04.7 97 8 72.7 260°F 95 7 7 131810°F 94.1 260°F 95 7 7 131810°F 94.1 260°F 95 7 7 7 131810°F 94.1 260°F 95 7 7 7 131810°F 95 7 7 7 131810°F 95 7 9 7 9 10.00 9 - C.06.7 10.457135°0/90° 8 80°F 95 7 7 7 131810°F 95 7 9 10.00 9 - C.06.3 10.457135°0/90° 8 80°F 95 7 9 10.00 9 10.00 9 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10. | C1213-18           | 3                                     | ੱ<br>ਰ                        | )<br>()<br><b>4</b>                   |                   | ر بنا<br>ر بغ         | J           | ٠.               |                                    | 906                                     | 7                             | Failed Under Static Logs          |
| 9 - C.0c.   0.45/135'0/90's   Nanc   260°F   91   57   - 7.131x10°   44.1   9 - C.0c.   0.45/135'0/90's   Nanc   260°F   91   57   - 7.131x10°   44.1   9 - C.0c.   0.45/135'0/90's   Nanc   260°F   91   50   9.000   9 - C.0c.   0.45/135'0/90's   Nanc   260°F   91   50   9.000   9 - C.0c.   0.45/135'0/90's   Nanc   260°F   86.5   48   - 7.301x10°   53.8   9 - C.0c.   0.45/135'0/90's   Nanc   260°F   100   55   - 7.301x10°   53.8   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   - 7.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   - 7.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100°   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100°   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100°   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100°   55   2.000   9 - C.0c.   0.45/135'0/90's   Nanc   - 260°F   100°   55   2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1214              | ı                                     | <u>:</u> حَدَ                 |                                       |                   | E .                   | 1 0         | : .              | •                                  | 11 × 1                                  | • .                           | Father under Static Load          |
| 9 - C.0e1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1214-             | •                                     | ÷                             | ŗ                                     | t                 |                       | <b>;</b>    |                  |                                    |                                         |                               |                                   |
| 9 - C.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C12338-2           | 1                                     | 0.670, 311,55.0               | # Sine                                | •                 | 3.09;                 |             | 5.               | •                                  |                                         |                               | Immediate Tab Failure             |
| 9 - C.06C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C12738-3           | - 1                                   | 06/0.38(1/57/0]               | ארייא                                 | ,                 | 560'5                 |             | : <sub>7</sub>   | •                                  | 7.131×106                               | Ţ.                            |                                   |
| 9 - C.0e3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C12338-4           | •                                     | 06/9,521/54/0.                | Mine                                  | •                 | 260°F                 | 160         | <b>~</b> ;       | 0,00,1                             |                                         |                               | Tab Failure                       |
| 9 - 0.062 (0/45/135'0/90) Nane - 260°F 86.5 48 - 28.100 9 - 0.062 (0/45/135'0/90) Nane - 260°F 86.5 48 - 2.301x106 9 - 0.061 (0/45/135'0/90) Nane - 260°F 100 55 - 2.301x106 9 - 0.061 (0/45/135'0/90) Nane - 260°F 95.5 53 186,00°C 9 - 0.062 (0/45/135'0/90) Nane - 260°F 10°C 55 2,00°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C12335-5           | ì                                     | 06/01/01/05/01                | 100                                   | •                 | 260°F                 | σ.          | 50               | 9,000                              |                                         |                               | Tab Failure                       |
| 9 - 0.062 (0/45/135'0/90) Nanc - 260'F 86.5 48 - 2.301x106 9 - 0.061 (0/45/135'0/90) Nanc - 260'F 100 5: - 2.301x106 9 - 0.061 (0/45/135'0/90) Nanc - 260'F 95.5 53 186,00°C 9 - 0.062 (0/45/135'0/90) Nanc - 260"F 10°C 55 2,00°C 9 - 0.062 (0/45/135'0/90) Nanc - 260"F 10°C 55 2,00°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C12338-6           |                                       | 06/0,361,57/0                 | None                                  | ı                 | 360°F                 | 80.5        | Ę                | 48,100                             |                                         |                               |                                   |
| 9 - 0.061 (0/45/135'0/ <del>90</del> 's Nanc - 260'F 100 53 - 260'F 0/45/135'0/ <del>90's Nanc - 260'F 100 53 186,00C 9 - 0.061 (0/45/135'0/90's Nanc - 260'F 100' 53 186,00C 9 - 0.062 (0/45/135'0/90's Nanc - 260'F 100' 53 2,000 30731306</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C12138-7           | •                                     | 06/0,561/57/0                 | ř                                     | •                 | 260°F                 | 86.5        | 87               |                                    | 2.301×106                               | 53.E                          |                                   |
| 9 - 0.061 30/45/135 0/90.5 Mane - 260°F 95.5 53 186,000<br>9 - 0.062 30/45/135 0/90 Mane - 260°F 100 55 2,000<br>9 - 0.062 30/45/135 0/90 Mane - 260°F 100 55 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C12335-8           | ı                                     | (0/45/135 /0/ <del>9</del> 0. | Suc.                                  | •                 | 3.09Z                 | 100         | ç;               |                                    |                                         |                               | Falled under Static               |
| 9 - 0.062 (0/45/135.9/90 s Name - 260*F 100 55 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ST ME              | ,                                     | (0/45/135 0/90]               | None                                  | ,                 | 260 °F                | 45.5        | 53               | 1 <b>86.</b> 000                   |                                         |                               |                                   |
| 901-1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01-348-10          | •                                     | 06/0.381/59/0                 | <u>#</u> .πe                          | •                 | 260 € F               | 100         | 55               | 2,300                              |                                         |                               | Tab Failure                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | בו יוננינט         |                                       |                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ,                 | 260'F                 | , .<br>60   | ,<br>,           |                                    | 2.673x106                               | 51.8                          | Tab Failure                       |

HING SHOPPING WINDS

| Specimen  | Thickness (Plies) (In.) | Ortentation     | FLIOE O   | COMPLITIONING<br>Duration | Test<br>Temp.<br>(*F) | Stress Levei<br>(T <sup>o</sup> ult) (ks1) | eve i<br>(ks1) | Cycles<br>to<br>Failure<br>(cycles) | Cycles Applied without Failure (cycles) | Residual<br>Strength<br>(ks1) | Coment                 |
|-----------|-------------------------|-----------------|-----------|---------------------------|-----------------------|--------------------------------------------|----------------|-------------------------------------|-----------------------------------------|-------------------------------|------------------------|
| 1-670-17  | E 30                    | C               | , di      |                           | ::                    | F. 5                                       | 10,            | 1.29b.0%                            |                                         |                               |                        |
| C12078-   |                         | ی د             | 2         |                           | 4500E                 | 3.                                         | ž              |                                     | $2.142 \times 10^6$                     | 7 98                          | Tab Estlure            |
| C12078-1  | 100                     | . c             | # NO.     | ,                         | 0.7                   |                                            | , D            | 2. ng                               |                                         | 3                             | Tab Mailure            |
| C12075-4  | 770                     | , c             | juo j     | •                         | 1.00                  | £.                                         | 1              |                                     |                                         |                               | Tab Failure            |
| 21070-1   | ر<br>ان<br>ان           | . 2             |           | •                         | 1.051                 | 91.5                                       | 501            | ;                                   |                                         |                               | Immediate Tab Failure  |
| C12078-6  | )<br>o                  |                 | Evole .   |                           | 120.F                 | 90.5                                       | 3              | •                                   | 2.474 × 10 <sup>6</sup>                 | 114.5                         |                        |
| C1297E-   | 5,000                   | ٠.              | None<br>S | ,                         | 3,0°F                 | £:,5                                       | 105            | 25,000                              |                                         |                               | Tab Failure            |
| C12C7B-8  | 6 - 2 043               | 5               | Kope      | •                         | 350                   | ٠<br>ت                                     | .01            | 79,000                              |                                         |                               | Tab Failure            |
| C12078-9  | 770 0 - 9               | 5               | *COD      | •                         | 320.1                 | <b>26</b>                                  | š              | •                                   | -4                                      |                               | Ispediate Tab Failure  |
| C1207B-10 | e - C. Je.              | 9               | None      | •                         | 350-F                 | , 68<br>,                                  | 103            | •                                   | 5.071 x 10°                             | 106.2                         |                        |
| C1214-3   | 8 - 0.043               | - 36            | None      | •                         | 350°F                 | 37                                         | 1.5            | •                                   |                                         |                               | Failed Under Static    |
| C1214-4   | 8 - 0.044               | 3               | NOCA      | •                         | 350 F                 | 24.5                                       |                | ı                                   |                                         |                               | \ Load while coming up |
| C1214-5   | 8 - 0.043               | , Co            | Hone      | •                         | 350 F                 | 5.61                                       | ĸ,             |                                     |                                         |                               | to Temperature         |
| C1214-6   | 6 - 7.043               | •06             | None      | •                         | 350°F                 | 17                                         | . 7            | 10,000                              |                                         |                               |                        |
| C1716-7   | 26 - C. 04.3            | •<br>\$         | Kon       | ,                         | 350 F                 | 17                                         | ۲.             | ,                                   |                                         |                               | Immediate Failure      |
| C1214-8   | 8 - 0.0r.3              | ŝ               | None      | •                         | 350°F                 | ,<br>,                                     | 9,             | 1,000                               |                                         |                               |                        |
| C1214-9   | 8 . 0.043               | • <b>\$</b>     | Mone      | •                         | 350°F                 | <b>S</b> :                                 | ξ.             |                                     |                                         |                               | Failed Under Static Ld |
| C1514-1C  | 3.0°C - 80              | 8               | Cope      | •                         | 350.4                 | <u>.</u>                                   | Ţ              | 24,000                              |                                         |                               |                        |
| 01214-11  | 4                       | <b>.</b><br>3.  | je j      | ı                         | 350 F                 | ĵ.,                                        | ٠, ۲           | 200.7                               |                                         |                               |                        |
| 71-71717  | 50.0                    | 2               |           | •                         | R                     | ن                                          | ?              | 3                                   | 4                                       |                               |                        |
| C1234A-1  | 9 - 0.451               | 06/0/58/1/55/0  | Hone      | •                         | 350°F                 | 83                                         | 50             | •                                   | 2.504 x 10°                             |                               |                        |
| C1234A-2  | 9 - 0.053               | (0/45/135/0/90  | )<br>J    | •                         | 350°F                 | \$.                                        | 09             | 1,000                               |                                         |                               | Tab Fallure            |
| C1234A-3  | 9 - 6.053               | [0/45/135/0/90] | <u>.</u>  | 1                         | 3507                  | 88                                         | 53             | 132,000                             |                                         |                               |                        |
| C1234A-4  | 9 - 0.052               | 06/0/51/32/0/30 |           | •                         | 350°F                 | 2                                          | 53             |                                     |                                         |                               | Immediate Failure      |
| C1234A-5  | 9 - 0.050               | (0/45/135/0/90) |           | •                         | 350°F                 | 8                                          | 75             | ,                                   | 2.068 x 106                             | 52.5                          |                        |
| C12344-6  | 9 - 0.054               | [0/45/135/0/90] |           | •                         | 3.050                 | 93                                         | £              | 11,000                              |                                         |                               | Tab Failure            |
| C1234A-7  | 9 - 0.054               | [0/45/135/0/90] | 100       | ı                         | 350°F                 | 93                                         | *              | 12,000                              |                                         |                               |                        |
| C1234A-8  | 9 - 0.053               | [0/45/135/0/90] | į         | •                         | 350°F                 | 99.5                                       | 3              | 22,000                              |                                         |                               | Tab Failure            |
| C1234A-9  | 450.0 - 6               | [0/45/135/0/90] | į         | •                         | 350°F                 | 91.5                                       | \$5            | ı                                   |                                         |                               | Immediate Tab Pailure  |
|           |                         |                 |           |                           |                       |                                            | :              |                                     |                                         |                               | : : : : : :            |

TABLE KIN FALLOTE PROPERTIES SURVAPOLEM BIORUMS 100 CONTRACTOR (COMPONING COMPONING CO

| Cycles Appl: ed Mesidual re Failure Strength (cyc.es) (kal) Comment | Tab Failure Tab Failure Tab Area Failure | 2,23 x 10 <sup>6</sup> 71.9 Failed while coming 2,163 x 10 <sup>6</sup> 91.3 up to temperature Immediate Failure | Falled coming up to temp.  Imacdiate Tab Falluro  2.07 × 10 <sup>6</sup> 79.1 Tab Fallure  Falled under static load  2.25 × 10 <sup>6</sup> 89.2 Tab Fallure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | 2.29 x 10 <sup>6</sup> 62.6                      |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|
| Cycles  Exp. Fatlure  (cycles)                                      | 90° -                                                                                                                                                           | ) t + ) t                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,000<br>33,000<br>21,000<br>1,000                                         | 1,000                                            |
| Stress Level                                                        | 85.5 100<br>84 98<br>79.5 93                                                                                                                                    | 64 70<br>50.5 55<br>59.5 65<br>55 60<br>59.5 60                                                                  | 64<br>45<br>41,5<br>44,5<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44,44<br>44 |                                                                            | 40.5<br>48.5<br>60<br>47<br>47<br>88<br>88       |
| Test<br>Test<br>('F)                                                | 55.55                                                                                                                                                           | 260 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                                                                        | 350 m<br>350 m<br>350 m<br>350 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MTD<br>MTD<br>MTD<br>MTD<br>MTD                                            | 260°F                                            |
| PRIOR COMDITIONING<br>Type Duration                                 | 500 Hrs.<br>500 Hrs.<br>500 Hrs.<br>500 Hrs.                                                                                                                    | 500 Hrs.<br>500 Hrs.<br>500 Hrs.<br>500 Hrs.<br>500 Hrs.                                                         | 500 Hrs.<br>500 Hrs.<br>500 Hrs.<br>500 Hrs.<br>500 Hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            | 1000 Hrs.<br>1000 Hrs.<br>1000 Hrs.<br>1000 Hrs. |
| Pator CO                                                            | 96 RM 196                                                                                                                                                       | H2 136                                                                                                           | HM 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |                                                  |
| Orlentation                                                         | 65,000                                                                                                                                                          | လိုင <b>်</b> ဝေ                                                                                                 | ဝင်္က ဝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                                  |
| Thickness<br>(Piles) (In.)                                          | 6 - 0.043<br>6 - 0.043<br>6 - 0.045<br>6 - 0.045                                                                                                                | 6 - 0.0-3<br>6 - 0.044<br>6 - 0.044<br>6 - 0.044                                                                 | 0.042<br>0.042<br>0.043<br>0.043<br>0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                      | 35000<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     |
| , pecimen<br>Murber                                                 | 112058-7<br>112058-8<br>112058-9<br>112058-10<br>012058-11                                                                                                      | C12(98-15<br>C1208:-16<br>C1208:-17<br>C1208:-18<br>C1208:-19                                                    | (1209A-15<br>(1209A-16<br>(1209A-17<br>(1209A-18<br>(1209A-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C12058-12<br>C12058-13<br>C12058-14<br>C12058-14<br>C12058-16<br>C12058-16 | C1209A-1<br>C1209A-2<br>C.209A-3<br>C1209A-4     |

**(**)

TALLE VIX POTTOR PROPERTIES SCHWAS - GASLLES 3000 FOR TRITISHINS CRAPPORTE CARBOSCHES

| , and the second | Thickness     |                 | 300                   |               | Stress Level | 7         | Cycles<br>to<br>Failure | Applied without Failure | Residual<br>Strength |                         |
|------------------|---------------|-----------------|-----------------------|---------------|--------------|-----------|-------------------------|-------------------------|----------------------|-------------------------|
|                  | (LTTER) (TU.) | OLI CURRENCI CO | Type Duration         | (.)           | (Z'ult) (ksi | KB1.      | (cycles)                | (cycles)                | (ksi)                | Comment                 |
| C12058-17        | 6 - 6.041     | ٠.              | Therac-Humidity Cycle | 3             | 36           | 2         | ,                       |                         |                      | January Sat Lat lives   |
| C1 205B-18       | 6 - 0.043     |                 | ThermHunidity Cycle   | RTD           | 66.5         | 5         |                         | •                       |                      | Immediate Tab Failure   |
| C12048 -19       | 270.0 - 9     | ۲.,             | Therms-Humidity Cycle | RTD           | 2.5          | 0         |                         | 2.45 × 10°              | 7.78                 |                         |
| C1:038-20        | 6 . C.042     | ų.              | Thermo-Humidity Cycle | Ĺ             | 29           | د ک       | 00.7.40                 |                         |                      | Tab Patline             |
| C17028-71        | 6 - (.043     |                 | Thermo-Hunidity Cycle | C.            | 65           | 89        | 77,00€                  |                         |                      |                         |
| C1.209A-5        | 6 - 0.0-2     |                 | Thermo-Humidity Cycle | 260°F         | -            | Ş         | ,                       | 2 087 - 106             | 3 (4)                | Fat 0.41                |
| C1 209A-6        | 6 - 0.042     | 6               | Thermo-Bunddity Cycle | 3,09€         | 55.5         | 32        | •                       | 2.194 × 10              | 0.000                |                         |
| C1209A-7         | 6 - 0.04?     | ن               | rac-Humidity          | 260°F         | 79.5         | 100       | ,                       |                         |                      | Parediate Teb Pailings  |
| C1209A-8         | 170.0 - 9     | Ç.              | rao-Humidity          | 260°F         | 71.5         | ۶         | 200°                    |                         |                      | Teb Faflure             |
| C1209A-9         | C + 0,042     | _               | Thermo-Humidity Cycle | 260°F         | 75.5         | 45        | 000 788                 |                         |                      | Tab Pailure             |
| C12096 -5        | 6 - 0.043     | 5               | Thermo-Humidity Cycle | 3504          | 65           | 75        | 1                       | •                       |                      | Failed coming to temp.  |
| C12098-6         | 6 - 0.043     |                 | Thermo-Humidity Cycle | 350°F         | 56.5         | 65        | •                       | 2.472 x 10 <sup>6</sup> | 91.6                 |                         |
| C12098-7         | 0.042         | c               | Thermo-Hunidity Cycle | 350°F         | 61           | 50        | •                       | 2.345 x 10°             | 0.8                  | Tab Failure             |
| C12098-8         | 6 - 0.043     | ن:              | Thermo-Humidity Cycle | 350°F         | 9            | 75        | 1                       |                         |                      | Peiled coming to temp.  |
| C12038-9         | 9 - 0.04:     | ċ               | Thermo-Humidity Cycle | 350°6         | 63.5         | 73        | 67,000                  |                         |                      | Tab Pailure             |
| C1205C-1         | 9.0.0 - 9     | ŋ               | Acc. Wthrng.          | <b>e</b>      | <b>.</b>     | 87        |                         |                         |                      | Immediate Tab Pailure   |
| C120\$C-2        | 6 - 0.043     | つ               | Acc. Wining.          | E             | C <b>20</b>  | <b>\$</b> | 165,000                 |                         |                      | Tab Pailure             |
| C1205C-1         | 6 - 0.043     | ,0              | Acc. Wthrng.          | Q.            | 885          | <b></b>   |                         |                         |                      | Immediate Tab Pailure   |
| 40X0310          | 6 - 0.043     | ပ               | Acc. Wthrng.          | Ē             | 76           | 2         | •                       |                         |                      | Immediate Tab Pailure   |
| C1205C-5         | 6 - 0.043     | ,0              | Acc. Wthrmg.          | Q L           | 75           | 75        | •                       |                         |                      | Immediate Tab Failure   |
| C1209A-10        | 6 - 0.043     | •3              | Acc. Wthrng.          | <b>260°</b> F | 5.2          | 75        | •                       | 9012417 6               | 105.0                |                         |
| C1209A-11        | 6 - 0 043     | •0              | Acc. Uthrug.          | 3 <b>60</b>   | 3            | 85        | •                       | 7.685x106               | 4.5                  | Tab Patlure             |
| C1209A-12        | 6 - 0,045     | •0              | Acc. Wthrng.          | 260°F         | 75           | 001       | 1                       | !                       |                      | Immediate Teb Pailure   |
| C1209A-13        | § - 0.04§     | ່ດ              | Acc. Wthmg.           | 260°F         | 67.5         |           | 1.040,000               |                         |                      |                         |
| C1209A-14        | 6 - 0.043     | ů               | Acc. Wthrag,          | 260'F         | 71.5         | 95        | 000                     |                         |                      | Tab Failure             |
| C12098-10        | - 0.0e- 9     | •6              | Acc. Wchrng.          | 350.5         | \$           | 75        | . ,                     | 2.085 x 10 <sup>6</sup> | 98.6                 |                         |
| C1209B-11        | . 0.0k        | ,0              | Acc. Wthrmg.          | 350           | 74.5         | <b>S</b>  | •                       |                         |                      | Teb Failed under Static |
| C12098-12        | 6 - 0.04.     | ູ້ວ             |                       | 350"#         | 2            | 8         | •                       | 4                       |                      | Tab Failed under Static |
| C110013          | 6 - 0.043     | •               | Acc. Wthrng.          | 350°7         | ¥7.5         | 77        | •                       | 2.458 x 10°             | 101.9                |                         |
| C120978-14       | 6 - 0.043     | •0              | Acc. Wehrng.          | 350°F         | <b>£</b> 0.5 | 2         |                         |                         |                      | Tab Failed under        |

,我们就是我们的一个时间,我们就是我们的一个时间,我们就是我们的一个时间,我们就是我们的一个时间,我们也没有一个时间,我们的一个时间,这种时间,也是这个时间,也 一个时间,我们就是我们的一个时间,我们就是我们的一个时间,我们就是我们的一个时间,我们就是我们的一个时间,我们就是我们的一个时间,我们就是我们的一个时间,我们也是

COLUMN TERROR PHONE BY THE COLUMN TO THE SECOND SECONDARY SECONDAR

|             |                    |                 |               |                    |        |              | ;<br>!      | Cyc.ies  | Cycles             |             |                          |
|-------------|--------------------|-----------------|---------------|--------------------|--------|--------------|-------------|----------|--------------------|-------------|--------------------------|
| Seectmen    | Thickness          |                 | PRIOR (       | PRIOR CONDITIONING | ,      | Stress Level | 401         | Failure  | without<br>Failure | Residue!    |                          |
| Jack .      | (Piter) (In.)      | Orientation     | Type          | Duration           | E      | (Lait) (kst) | ks1)        | (cycles) | (cycles)           | (kst)       | Comment                  |
| C12384-6    | 9000-0             | 06 1.55 1.59/0  | -86           | 500 Hrs.           | g g    | <b>1</b>     | 2           | •        |                    |             | Immediate Tab Failure    |
| C1228A-7    | 90.0               |                 | 126           | / 500 Hrs.         | Ê      | 95           | ž           |          | •                  |             | Immediate Tab Faliure    |
| C12284-8    | 790.0 - 6          | :               |               | / 500 Hrs.         | ţ      | 76           | ټ           |          | 2.121 :: 10°       | я           | Tab Area Peilure         |
| C12284-9    |                    |                 | 187 RH        | / 500 Hrs.         | KT.)   | 85.5         | Ş           | 1,300    | •                  |             |                          |
| C17284-10   | 990.0 - 6          | Ŧ               |               | . 500 Hrs.         | KTD    | 81.5         | 7           | •        | 2.755 × 10°        | 53.6        | Teb Area Failure         |
| C12354-1    | 590 0 - 6          | •               | 196. EM       | / 500 Hrs.         | 260*   | <b>96</b>    | 53          | •        | •                  |             | immediate tab failure    |
| 233         |                    | :               |               | 500 Hrs.           | 240°F  | 70           | 9           | ,        | 2.475 x 10°        | 48.9        | Tab Area Fallura         |
| 1217        | 0.0                | •               | 2 .56         | / 500 Hrs.         | 260 F  | 78.3         | 45          |          |                    |             | Fellod coming to two.    |
| 5.00        | 9 - 0.065          | :               |               | 500 Hrs.           | 3.097  | ز.۱.         | 7           | •        |                    |             | Semediate Tab Paibure    |
| ر.<br>و     | 940.0 - 6          | ÷               | 98. RH        | / S00 Hrs.         | 200'F  | 22           | 43          | ı        |                    |             | immediate tab Failure    |
| 1 3 4 6 1 7 | 340.0              | s               | 987 RH        | , 500 Hrs.         | 350°F  | 5            | \$          |          |                    |             | Tab Patlure to Tame.     |
| -12380-     | 590.0              | :               |               |                    | 350 F  | 118          | 3           | ,        |                    |             | lemediate teb Patluce    |
| 712 KB - 1  | 0.063              | •               | 200           |                    | 350 'F | <b>3.</b> 5  | 3           | •        |                    |             | immediate 1sb Pailure    |
| 7.348.4     | 800                | :               | . B.          | 500 Brs.           | 3.00.  | S-86         | 3           | •        | 4                  |             | Tob Felled under static  |
| C12368-5    | 9 - 0.043          | :               |               | / 500 Brs.         | 350°F  | 88.5         | <b>*</b> 2  |          | 2.0 × 10           | 51.6        | loss cenist to temp.     |
| C12364-11   | \$ <b>90</b> ℃ * e | *               |               | / 1000 Hrs.        | ŧ      | 3            | 65          | •        |                    |             | Immediate 1sb Pailure    |
| (12721)     | \$ 60 C            | :               | £             |                    | £      | 103          | 3           | •        |                    |             | Insedicte Teb Fallure    |
| C1324R-7    | 593.               | ٤               |               | / 1000 Hrs.        | £      | 2            | Z           |          |                    |             | Pailed mader static load |
| C12202-1    | \$ 6 C F 2         | :               |               |                    | £      | 6.8.5        | 3           | •        | •                  | ;           | Empediate Tab Failure    |
| C12288-4    | 9 - 0,065          | Ξ               | 186<br>188    |                    | ē      | 51.5         | 2           |          | 2 z 10-            | 41.3        | Tab Failure              |
| 712151.4    | 1900               | £               | 226           | / 1000 Hrs.        | 1.092  | \$           | 2           | •        | •                  |             | Immediate Failure        |
| C1715E-7    | 190                | :               |               |                    | 7.09Z  | ş            | 35          | •        | 2.06 x 10,         | 20.4        | Tab Padlure              |
| C12358-R    | 290                | :               |               | / 1000 Brs.        | 250°F  | 72.5         | 9           | •        | 2.323 x 10°        |             | Tab Fallure              |
| 5-85273     | 190                | :               | 98". 84       | / 1000 Nrs.        | 260°F  | 81.5         | 45          | •        |                    |             | Falled under static 1d.  |
| C12355-10   | 9 - 0.063          | :               | 86. RH        | / 100C Hrs.        | 260 F  | 81.5         | <b>•</b> •2 | •        |                    |             | Immediate Tab Failure    |
| 617348-6    | 790                | =               | HW 186        | / 1000 Hrs.        | 350 FF | 108          | 14          |          | •                  |             | Impediate Failure        |
| C12.208-0   | 790                |                 | 987 EH        |                    | 350°F  | 43           | 3           |          | 2.377 a 10°        | o. <b>1</b> |                          |
| CEC 300-7   | 590                | :               | 796<br>HM 796 | / 1000 Hrs.        | 350    | 103.5        | 53          |          | 4.6 x 106,         | 55.7        |                          |
| 0-00071     | 290                | =               | ₩ 196         | / 1000 Brs.        | 350 F  | 113          | Z           | •        | 2, 666 x 10°       | <br>S       | Tab Failure              |
| C12368-10   | 9063               | (0/45/135/0/90, | 957 EE        | / 1000 Hrs.        | 350 F  | 126          | 55          |          |                    |             | Immediate Fallure        |

"AB B XIX FALLAGY NEW KLITS SCHEAKS - HERCILLS BOTO CONTROL DO A CONTROL DO A CONTROL 
| įį        | Thickness<br>(Pitec) (in. | Ortemeation     | PRIOR COMPITIONING<br>Type Duracton | ijĖ   | Stress Level | (kei)      | Cycles<br>to<br>Failure<br>(cycles) | Cycles Applied without Failure (cycles) | Residual<br>Strongth<br>(kat) | 1                                      |
|-----------|---------------------------|-----------------|-------------------------------------|-------|--------------|------------|-------------------------------------|-----------------------------------------|-------------------------------|----------------------------------------|
| C122fa-5  | 9 - 0.065                 | 05/0/SE1/S\$/0] |                                     | £     | \$°          | 50         | 1,000                               |                                         |                               | The Patlure                            |
| C12248-6  | 9 - 0.(63                 | ,<br>= =        | idity.                              | e     | 67.5         | <u>۾</u>   | . 1                                 | 2.23 x 10 <sup>b</sup>                  | 50.1                          | Tab Failure                            |
| C12288-8  | 990.0                     | :               | Thermo-Hamidity Cycle               | 2     | 73.5         | ) e        |                                     | 2 267 - 106                             | 6                             | Emmediate Failure                      |
| C12288-9  | 9 - 0.666                 | =               | -                                   | E     | 81           | 4.2        | 1,000                               | 21 4 21:1                               |                               | Teb Failure                            |
| C12364-1  | 6 - 0.662                 | <b>z</b> ;      | midity.                             | 3,092 | 78           | 4.5        | •                                   | 2.037 × 10.6                            | 40<br>40<br>7                 | Tab Fedlur                             |
| C12344-2  | 0.063                     | <b>.</b> :      | Thermo-Bundity Cycle                | 260°F | 65.          | 5.5        | 1                                   | 2.603 × 106                             | )<br>;<br>;                   | y 151111                               |
| C1236A-4  | 9 - 0.062                 | Ξ               |                                     | 260 7 | 36.5         | y 4        |                                     | 2.469 x 10°                             | 57.8                          | Tab Failure                            |
| C1236A-5  | 9 - 0.663                 | Ξ               | addey.                              | 260°F | 3            | 9          | 900                                 |                                         |                               | Isb Failure                            |
| C1237A-1  | 9 - 0.051                 | =               |                                     | 350°F | 110          | 55         | • •                                 |                                         |                               | Immediate Teb Zailure                  |
| C1237A-2  | 9 - 0.651                 | <b>=</b> :      | ddity                               | 350°F | 80           | 07         | •                                   |                                         |                               | (Tab failed under static               |
| C1237A-3  | 1.5.0 · 6                 | : ;             | dairy                               | 350*  | <b>ာ</b>     | 07         |                                     | **                                      |                               | ( load coming to temp.                 |
| C1237A-4  | C - 0 - 6                 | : 1             | Thermo-buildity Cycle               | 7.05. | 2 %          | 35         | •                                   | 2.25 x 10°                              | ۳.<br>۲.                      | Tab Pailure                            |
|           |                           | :               | Ì .                                 |       | 2            | 2          | •                                   | 01 X 70.7                               |                               |                                        |
| C12288-10 | 3000 - 6                  |                 | Acc. Vol. m.;                       | 6     | 200          | 5 5        | 160,000                             |                                         |                               | Tat " . Ilure                          |
| C1229A-1  | 400                       | r               |                                     | 3 6   | 77 5         | 9 9        | , 000<br>,                          | 901 - 10 6                              |                               | Tab Failure                            |
| C1229A-2  | 9 - 0.055                 | z               |                                     | E     | 28.          | 7          | 000                                 | 01 × 10.7                               | 21.0                          | Tes Failure                            |
| C1229A-3  | 9 - 0.0°5                 | £               |                                     | £     | 91           | . S        | 3                                   |                                         |                               | immediate Tab Pailure                  |
| C1236A-6  | 6                         | 2               | Acc. Wehring.                       | 260°F |              | 20         | 3.000                               | •                                       | ,                             |                                        |
| C1236A-7  |                           | 2               |                                     | 260°F |              | 45         | 900                                 |                                         | •                             |                                        |
| C1236A-8  | •                         | <b>z</b> :      | _                                   | 260°F |              |            | •                                   |                                         |                               | Immediate Tab Failure                  |
| C1236A-9  | i i<br>i i<br>ch gr       |                 | Acc. Without.                       | <br>  |              | <b>%</b> 5 | 1,020,000                           | • •                                     | •                             |                                        |
|           | 0.00                      |                 | -                                   |       | ;            |            | 33,11                               | •                                       | •                             |                                        |
| C1237A-6  |                           | : 2             |                                     | 25    | \$ 5         | ጸ :        | 30.0                                |                                         |                               | ;                                      |
|           |                           | •               | -                                   | 1,055 | 3 2          | i :        | 36,                                 |                                         |                               | Tab Pailure                            |
| C1237A-9  | 9 - 0.0' 1                | •               |                                     | 350.7 | 5.5          | 3          | •                                   | 2.163 x 106                             | 55.4                          | Served makes pressed in .              |
| C1237A-10 | 5 - <b>0.0</b> - 6        | [0/45/135/0/90] | Acc. Williams.                      |       | 707          | 25         | •                                   |                                         |                               | Teb Pailed under Static                |
|           |                           |                 |                                     |       |              |            |                                     |                                         |                               | Load While Condrg up<br>to Tomostature |

A Section of the sect

| c Applied Residual Festidual Contaent (cycles) (ks) Contaent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140 Teb Fallure 100.6 Teb Fallure 100.6 Teb Fallure 100.0 Teb Fallure 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.0 × 10 <sup>6</sup> 116.6 Tab Failure<br>000 7.056 × 10 <sup>6</sup> 99.4 Tab Failure | J, (UG Tab Failure | Tab  Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *c1e<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,330,00m<br>1,330,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00m<br>1,00 | <b>"</b>                                                                                 | , <del>-</del>                                                                                         | <b>%</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stress level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 x 3 5 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                   | <b>发生</b>                                                                                              | 88.7 10.7 2.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E E E E E E                                                                              | ######################################                                                                 | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Polow CONDITIONING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 260 F 7 300 60 c. 2 360 F 7 300 80 c. 2 260 F 7 300 F 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***                                                                                      | 260 F 7 500 Cvc.<br>260 F 7 500 Cvc.<br>260 F 7 50 Cvc.<br>260 F 70 Cvc.<br>260 F 70 Cvc.              | 260°F / 1000 (W., 260°F / 1000 (W., 260°F / 1000 (W., 260°F / 1000 (W., 260°F / 300°C (W., 350°F / 300°C (W., 350°C |
| in the contract of the contrac |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sec.                                                                                     | <u>.</u> • .                                                                                           | ည်း ကား ကုလ်လို့လို့ပြု                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Thickness<br>(Plest the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sp. timen<br>R. Sber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                                        | 68-10<br>01.088-10<br>01.088-10<br>01.088-10<br>01.088-11<br>01.088-11<br>01.088-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

TABLE XIN FATIOT PROPERTIES SINCHARY RPPOTIES \$002R/CONTACIDS NOS
GRAPHITE CONPOSITES

| C12114-5<br>C12114-6<br>C12114-7<br>C12114-9<br>C12114-10<br>C12114-10<br>C12114-11<br>C12114-15<br>C12114-15<br>C12114-16<br>C12114-16<br>C12114-16<br>C12114-16<br>C12114-16<br>C12114-16<br>C12114-16<br>C12114-16 | (Pites) (In.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ordens et fra | 7996<br>260 F<br>260 F<br>260 F<br>260 F<br>260 F<br>260 F | Suration<br>Sur hra. |                |              |            | ,,,,     |               |             |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------|----------------------|----------------|--------------|------------|----------|---------------|-------------|-------------------------|
| Omegae 500000.                                                                                                                                                                                                        | 50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.0000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.000<br>50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 260 F<br>260 F<br>260 F<br>260 F<br>260 F<br>260 F         | Sin hir.             | ( <b></b> )    | i viti (481, | K51,       | (£3()(8) | (cyc.ee)      | (201)       |                         |
| Omages 50000 10000 1000                                                                                                                                                                                               | 20000 00000 00000<br>20000 00000 00000<br>20000 00000 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 260 F<br>260 F<br>260 F<br>260 F<br>260 F<br>260 F         | SOC HEE              | é              | 3            | à          | 1        | ,             |             | Pailed under Static La  |
| ഠാലയിയുടെ വിക്കുക്കും<br>കൊരുന്ന പ്രത്യേക ഉപ്തുക്ക് നുകൾ<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                     | 2000 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. <b>2</b>   | 260 F<br>260 F<br>260 F<br>260 F<br>260 F<br>260 F         |                      | ,<br>Q         | <u>, ,</u>   | 7.         | ì        | 2.26 # 10°    | 5.5         | Teb Fallure             |
| Omerica cista (187).                                                                                                                                                                                                  | 200 0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5           | 260°F<br>260°F<br>260°F<br>260°F                           |                      | 7.74           | •            | ¥          |          |               |             | Failed under Static Ld  |
|                                                                                                                                                                                                                       | 99999999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. <u>2</u>   | 260°F<br>260°F<br>260°F<br>260°F                           |                      | <br>6. 4       | . 4          | ; ;;       | 63,650   |               |             | Teb Pailters            |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. <b>.</b>   | 260°F<br>260°F<br>260°F                                    | E                    | 4              |              | ) sa<br>T  |          |               |             | Immediate Tab Failure   |
|                                                                                                                                                                                                                       | 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nu s          | 260°E<br>260°E<br>260°E                                    | MO ETS.              |                | 5            | :          |          |               |             |                         |
|                                                                                                                                                                                                                       | 18 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N. S. C. A.   | 260°F                                                      | <b>50</b> 0 Cvc.     | # 0 <b>9</b> 0 | 76.3         | 95         | 2,000    | 9"            | •           |                         |
|                                                                                                                                                                                                                       | 1000 0000<br>1000 0000<br>1000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Now 1         | 260 +                                                      |                      | 14. 147        | 65.5         | ٠.<br>و٠   |          | 2.04t x 10    | ŗ.          |                         |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                 | 20 00000<br>20 00000<br>20 000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.</u> .    |                                                            | 20                   | 3.09Z          | ;;           | ¥          | •        | 7. 363 x 10   | 7.5         |                         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                 | 14 9 3 6 3 6 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 3.00Z                                                      | 300                  |                | ð. je        | ğ          | 8        | 9             | ,           |                         |
| , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                | 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                            | 200                  | 360 8          | ′,           | ē.         | ,        | 2.48 × 10     | . 69.       | TO FALLET               |
|                                                                                                                                                                                                                       | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0. |               | 1                                                          |                      | 400            |              |            |          |               |             | Introduce Teb Fellan    |
|                                                                                                                                                                                                                       | 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 3 <b>9</b> 0.1                                             | اور<br>د د د         | 7.0.7          |              | . 0        | . (      |               |             | immediate Tab Follower  |
|                                                                                                                                                                                                                       | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 7.095                                                      | 100 CV:              | 9-             | 7            | 0          | ,        |               |             | Total Petilogram        |
|                                                                                                                                                                                                                       | 5 6<br>6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | £.097                                                      |                      | 36.            | , .<br>•     | ζ:         | 200      | 9 me 1 - 106  | 1           |                         |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | F. 097                                                     | 100 CA               |                | × .          | Ç;         | •        | 901 - 100 - 1 | 8           | Tab Patlane             |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,             | 3.09E                                                      | 1000 Cyc.            | 260°F          | , .<br>1     | ()         |          |               |             |                         |
| 1 1 1<br>4 40 4                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 5                                                          | 344 39 /             | 350 F          | *            | 7.         | •        | 2.04 m 10.    | 1.8         |                         |
| i i                                                                                                                                                                                                                   | ٠<br>ا<br>ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . (           | <br>3 5                                                    | 2                    | 350°F          | į            | ĭ          | 261,000  |               |             | \$ 41                   |
| •                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7- <b>€</b>   | 25                                                         | 500 Hrs.             | 355 ·F         | 65.5         | S.         | •        |               |             | Intelligie 140 February |
| )<br>•                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ÷             | 5                                                          | , 500 Hrs.           | 1.056          | ع'           | 83         | •        | 4             | •           | TOTAL MENT STORY        |
| ٠                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | č             | 1.55                                                       | . See Brs.           | 350°F          | ę.           | <b>6</b>   | •        | 2.392 x 10    | ī           |                         |
| Cizilb-5 6 -                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ;           |                                                            | 700                  | 3.056          | \$ 79        | <b>9</b>   | •        | 7.482 m 10    | <b>4.7</b>  |                         |
| C12118-6 6 -                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . :           | 1,000                                                      |                      |                | 7. 7         | 8          | 968,000  |               |             | 1                       |
| 9                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ا ت           | 1000                                                       |                      | 350°F          | . C.         | 200        | 900      |               |             |                         |
| •                                                                                                                                                                                                                     | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1000                                                       | 3 2                  | 1.03           | 76.5         | 56         |          |               |             | Immediate To Palies     |
| •                                                                                                                                                                                                                     | c.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ت :           | 1,016                                                      |                      | 1,050          | eri<br>13    | 93         | •        |               |             | Pation unter Park in.   |
| . 9 0                                                                                                                                                                                                                 | ٥.<br>دع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ت             | 1 DC1                                                      |                      |                | ;            | ï          | •        |               |             | lamedists Tob Pailter   |
| 7                                                                                                                                                                                                                     | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ئر            | 1.05.                                                      | . 1000 CAC           | 330-1          | C. (         | n e        | 97.      |               |             | Tab Petlure             |
| CIZIID-II                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ن.            | 350°F                                                      | 1000 Cyc             | 33C F          | : · ·        | 3 8        | 3        |               |             | Tab Patlure             |
| C12115-12 6 -                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 356.1                                                      | 1000 Cyc             | 1000           | 2 4          | 2 =        | 000      | •             |             | Tab Failure             |
| - 9                                                                                                                                                                                                                   | 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 2                                                          | 1000 CVC             | 200            | 9            | <b>.</b> £ |          | 2.126 x 10°   | <b>K</b> .2 |                         |
| C12118-15 6 -                                                                                                                                                                                                         | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ີ.            | 386                                                        | , 1000 Cyc.          | 100°C          | 5            | :          |          |               |             |                         |

A TIMEN FACE FROM ALD STUDBERS FOR THE PROPERTY OF THE PROPERT

「「「「「「「「」」」というない。 「「「」」という、「「」」というない。 「「」」というない。 「「」」というないできません。 「「「」」というない。 「「」」というない。 「「」」というない。 「「」」というない。 「「」」というない。 「「」」というない。 「「」」というない。 「「」」というない。

| Spicinen<br>Fimber   | Thickness<br>(Plies) (In.) | Orientation | PRION C      | PRION CONDITIONING | <b>₽ ₽ 3</b><br>31 0<br>1 1 1 1 1 | Stress level   | evel<br>(ksi) | Cycles to Failure | Cycles Applied without Failure [cycles] | Residus!<br>Strength<br>(ks1) | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|----------------------------|-------------|--------------|--------------------|-----------------------------------|----------------|---------------|-------------------|-----------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01,130               |                            | 1.          | 4            | ).<br>             | 1                                 | 1              | ۶             |                   |                                         |                               | Land to the Control of the Control o |
| (1736-1)             | un                         | •           | , i.         | į į                | : 'c                              |                | 2 5           |                   |                                         |                               | Impediate Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8-306-3<br>1 - 306-3 | 0 . 0.057                  |             | ; <b>9</b> , |                    | ×                                 | <u>(</u> )     | 50            |                   |                                         |                               | Immediate Tob Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14円のしつこう             | 50.                        |             | ė            | -                  | ox<br>[                           | ć              | ৽             |                   | •                                       |                               | Immediate Tat Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C1.30E-5             |                            |             | 0            | Ģ.                 | ž                                 | :              | S             | •                 | 4.651 x 10°                             | 43.0                          | Tab Fat.ure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C1330E-5             | .0.0 - 0                   | -           | 350          |                    |                                   | ż              | 30            | •                 |                                         |                               | Immediate failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C1.1308-7            | 20000                      |             | 35.          |                    | -E                                | Œ.             | . <b>1</b>    | 2,000             | ,                                       | •                             | Possible Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 71.230E-8            | 160 U - 3                  |             | 350 :        |                    | ĸ                                 | 3<br>¥         | 3,            |                   | 2.256 x 10 <sup>0</sup>                 | 17.1                          | Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6-30E71J             | 100 - 1 2                  |             | 350 ₽        |                    | ų.                                | 7.5            | 38            | 000*611           | •                                       | •                             | Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C1336F-1f            | 1277 - 3                   | -           | 35018        | 'F 500 Hrs.        | a.                                | ¥8.5           | 7             |                   | •                                       | •                             | Immediate Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 010314-1             | , (C. C                    |             | 26           |                    | 'n                                |                | 13            | •                 |                                         |                               | Immediate Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C1231A-2             | 1                          | :           | 3: J97       | •                  | æ                                 | 15<br><b>4</b> | ŭ,            |                   | •                                       |                               | Immediate Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 011314-3             | 550.0 - 6                  | 1           | 260.07       |                    | œ                                 | 63.            | Ā             | ,                 | 5.066 x 107                             | 48.2                          | Tab Fatlure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C1131A-              | 150°0 - 5                  | -           | 360          |                    | S.                                | .1             | ¥.,           | 335,000           |                                         |                               | Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C1.31A-5             | 1667                       | -           | 260 F        |                    | !z:                               | i.             | ž             | 74,060            |                                         |                               | Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C1231A-F             | USC 0 - 6                  | :           | 3€€ ₹        |                    | RIJ                               | 115            |               | 1                 |                                         |                               | Tab Fallure Under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C1-31A-              |                            |             | 26€ · F      | 1000               | R                                 | 96             |               | •                 |                                         |                               | Immediate Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C1.316-              | -50°C - 5                  |             | 7-007        | 1000               | R.T.                              | 86.5           |               | ,                 | <b>y</b>                                |                               | Immediate tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C1.31A-6             | 130 C + 0 C                | ٠.          | 260°F        | 7. 1000 Cyc.       |                                   | 57.5           | e 9           |                   | 2.202×10°                               | 47.0                          | Tab Failure<br>Tempediate Tab Estima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C1C3TA-10            | 200 - A                    |             | 00.          |                    | č                                 |                |               | •                 |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C1030A-8             | 5 + 0.051                  | ٤           | 350°F        | °F / 500 Cyc.      | RIC                               | 114            | Ö,            |                   |                                         |                               | Immediate Tab Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C1230A-9             | 670 0 - 5                  | •           | 350 - F      | -F '500 Cyc.       | E.                                | 103            |               | 1,000             |                                         |                               | The statement with market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C1030A-10            | 6 - 0.048                  | -           | 350°F /      | F / 500 Cyc.       | RI                                | 41.5           |               | ' '               |                                         |                               | THE CLASS FAILURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C12318-1             | 9 - 0.052                  | :           | 350          | F / 500 Cyc.       | E                                 | 200            |               | 44,000            | 901 - 46                                | 1 31                          | Tel Pallure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 010318-0             | 9 - 0.05ê                  | =           | 350°F        |                    | KT :                              | 68.5           |               | •                 | 01 × C.2                                | 1.07                          | 140 FALIUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C11313-3             | •                          | ž           | 350 ℃        |                    | RIC                               | 110            | 4.5           | 2,000             | 9                                       |                               | :<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C12318-4             | 6-0.7 - 6                  | -           | 350 °F /     | 1000               | . \<br><b>\</b>                   | 97.5           | 07            | ı                 | 2,092 x 10°                             | 52.4                          | Tab Fallure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C12313-5             | 1                          | =           | 350°F        | 1000               | RTD                               | 105            |               | - 0               |                                         |                               | insectate lab rallure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C12318-6             | 670.0 - 6                  | Ē           | 350°F        | 000                | CIX                               | 707            | 71 ,          | 22,000            |                                         |                               | Ten serious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C12316-7             | 570.0 - 6                  | Ē           | 350°F        | 1000               | XI.                               | 200            | <br>3         | 1,000             |                                         |                               | ied ratiure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

TABLE XIX FATTULE FROPERTIES SUMMARY +
HPERTIES 3702M/COURTALLDS HMS
GRAPHITE COMPOSITES

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thickness (Piles) (In.) 9 - 0.053 9 - 0.054 9 - 0.054 9 - 0.054 9 - 0.054 9 - 0.054 9 - 0.054 9 - 0.053 9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Orientation [0/45/135/0/90] | FRIOR CONDITIONING Type Duration 260°F / 500 Hrs. | Ceat   |                  |                |                         |                |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------|--------|------------------|----------------|-------------------------|----------------|---------------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 - 0.053<br>9 - 0.054<br>9 - 0.054<br>9 - 0.054<br>9 - 0.051<br>9 - 0.053<br>9 - 0.053<br>9 - 0.053<br>9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 (                         | Durat<br>160°F / 500                              | CHE.   | Stress Level     | Fat lure       | without<br>Pailure      | Straneth       |                           |
| C1240A-1 C1240A-2 C1240A-3 C1240A-4 C1240A-6 C1240A-6 C1240A-8 C1240A-10 C1240A-10 C1240B-1 C1240B-1 C1240B-6 C1240B-6 C1240B-6 C1240B-6 C1240B-7                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | 200                                               | °F)    | (10ult) (ks.     | (cycles)       | (cycles)                | ( <b>E</b> e1) | Comment                   |
| C1240A-2 C1240A-3 C1240A-4 C1240A-5 C1240A-6 C1240A-9 C1240A-9 C1240A-9 C1240A-9 C1240B-1 C1240B-1 C1240B-6 C1240B-7 | $(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \dots, r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                                                   | 260°F  | 77 50            |                |                         |                | ignoffate Tab Pailure     |
| C12404-5 C12404-6 C12404-6 C12404-6 C12404-8 C12404-8 C12404-10 C12404-10 C12408-1 C12408-6 C12408-6 C12408-6 C12408-6 C12408-6 C12408-6 C12408-6 C12408-6 C12408-7 C12408-8                 | ( <b>1</b> , 1 | 117 17 <b>5</b> 1           | 250°F / 500 Hrs.                                  | 260°F  | 61.5 40          | •              | 2.173x106               | 5              |                           |
| C1240A-5 C1240A-6 C1240A-6 C1240A-8 C1240A-8 C1240A-10 C1240A-10 C1240B-1 C1240B-1 C1240B-6 C1240B-6 C1240B-6 C1240B-6 C1240B-6 C1240B-6 C1240B-7                                                                                                                                                                                                                       | $(\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},\mathbf{I}_{-},$                                                                                                                                                                                                                                                                                                                                                | <b>.</b>                    | 200                                               | 260 F  |                  |                |                         | ;              | Tab Pailure               |
| C12404-5 C12404-8 C12404-8 C12404-9 C12404-9 C12404-10 C12408-1 C12408-4 C12408-6 C12408-6 C12408-6 C12408-6 C12408-7 C12408-7 C12408-9 C12408-9 C12408-9 C12408-9 C12408-9 C12408-10 C12408-10 C12408-10 C12408-10 C12408-10                                                                                                                                                                                                                                                                                                    | $(-1,-1,-1,-1,-1,-\epsilon)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r 1 ( <b>5 1</b>            | / 500                                             | 260°F  | 30 52            | 2.000          |                         |                | Tab Failure               |
| C12404-6 C12404-9 C12404-9 C12404-10 C12408-1 C12408-1 C12408-4 C12408-6 C12408-6 C12408-6 C12408-6 C12408-6 C12408-6 C12408-8                                                                                                                                                | 9 - 0.054<br>9 - 0.054<br>9 - 0.053<br>9 - 0.054<br>9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 7 <b>5 1</b>              | / 500                                             | 260°F  | Specimen         | ă              | Pabrication             |                |                           |
| C1240A-5<br>C1240A-6<br>C1240A-10<br>C1240A-10<br>C1240B-1<br>C1240B-4<br>C1240B-5<br>C1240B-6<br>C1240B-6<br>C1240B-6<br>C1240B-6<br>C1240B-6<br>C1240B-1<br>C1241A-1<br>C1241A-1                                                                                                                                                                                                                                                                                                                                               | 9 - 0.054<br>9 - 0.053<br>9 - 0.054<br>9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : <b>: :</b>                | 260'F / 500 Cyc.                                  | 260°F  |                  | •              | •                       |                | lemediate Jab Failure     |
| C1240x-8 C1240x-10 C1240x-10 C1240x-10 C1240x-10 C1240x-1 C1240x-1 C1240x-1 C1240x-1 C1240x-1 C1240x-1 C1240x-1 C1241x-1 C1241x-1                                                                                                                                                                                                                                                                                                                                                                                                | 9 - 0.053<br>9 - 0.054<br>9 - 0.053<br>9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : :                         |                                                   | 260°F  | 75 45            | •              | 7.462 x 10              | 46.1           |                           |
| C12404-9 C12404-10 C12404-10 C12408-1 C12408-4 C12408-6 C12408-6 C12408-6 C12408-8 C12408-9 C12408-9 C12408-9 C12408-9 C12408-9 C12408-9 C12408-10 C12414-1                                                                                                                                                                                                                                                                                                                                                                      | 9 - 0.054<br>9 - 0.053<br>9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                           | 260°F / 500 Cyc.                                  | 260°F  |                  | 2,000          | 1                       |                | Tab Paillers              |
| C12404-10<br>C12408-1<br>C12408-1<br>C12408-5<br>C12408-5<br>C12408-6<br>C12408-6<br>C12408-9<br>C12408-9<br>C12408-9<br>C12408-10<br>C12414-1                                                                                                                                                                                                                                                                                                                                                                                   | 9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                   | 260°F  |                  | 115,000        |                         |                | Teb Pailure               |
| C12408-1<br>C12408-2<br>C12408-5<br>C12408-6<br>C12408-6<br>C12408-9<br>C12408-9<br>C12408-9<br>C12408-9<br>C12408-9<br>C12408-1<br>C12408-1<br>C12414-1                                                                                                                                                                                                                                                                                                                                                                         | 9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                           | 260 F / 500 Cyc.                                  | 260°F  | 81.5 49          | 1,000          |                         |                | ich Failure               |
| C12408-2<br>C12408-3<br>C12408-4<br>C12408-6<br>C12408-7<br>C12408-9<br>C12408-9<br>C12408-9<br>C12408-10<br>C12414-1                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ξ                           | 260°F / 1000 Cyc.                                 | 260°₽  | 38               | 1.000          | •                       |                | Tab Patlure               |
| C12408-1<br>C12408-5<br>C12408-5<br>C12408-8<br>C12408-8<br>C12408-1<br>C12414-1<br>C12414-1<br>C12414-1<br>C12414-1                                                                                                                                                                                                                                                                                                                                                                                                             | 650 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                           | / 1000                                            | 260 °F | 76 45            |                | 2.293 x 10 <sup>b</sup> | 52.8           | Tab Pailure               |
| C12408-4<br>C12408-5<br>C12408-6<br>C12408-8<br>C12408-9<br>C12408-10<br>C12414-1<br>C12414-1                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.00 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z                           |                                                   | 260°F  |                  | •              | 2.3% x 106              | 53.7           |                           |
| C12408-6<br>C12408-6<br>C12408-6<br>C12408-7<br>C12408-9<br>C12414-1<br>C12414-1<br>C12414-3<br>C12414-3                                                                                                                                                                                                                                                                                                                                                                                                                         | 750 0 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                           | 900                                               | 266. F | ٠,               | 1,000          |                         |                | Tob Paillure .            |
| C12408-6<br>C12408-7<br>C12408-8<br>C12408-9<br>C12408-10<br>C12414-1<br>C12414-2<br>C12414-3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                           | 1000                                              | 260°F  |                  | . 1            |                         |                | leardists Inb fullers     |
| C12408-7<br>C12408-8<br>C12408-9<br>C12408-10<br>C12414-1<br>C12414-1<br>C12414-3<br>C12414-4                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>4</b> 0 0 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                           |                                                   | 350°F  | 94.5 50          | •              |                         |                | 4                         |
| C1269-8<br>C1268-9<br>C1268-9<br>C12614-1<br>C12614-2<br>C12614-3<br>C12614-3                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٤                           | 200                                               | 350°F  | 85 45            |                | 4                       |                | Tab Pailing under Statie. |
| C12408-10<br>C12414-1<br>C12414-1<br>C12414-2<br>C12414-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 750 0 - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £                           | •                                                 | 350°F  | 75.5 60          | •              | 2.234 x 10              | <b>%</b>       | Load coming to Temp.      |
| C12406-10<br>C12414-2<br>C12414-2<br>C12414-3<br>C12414-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                           | <u>8</u>                                          | 350°F  | 81 43            | •              | 2. X5 x 10°             | 4.7.4          | Teb Pailure               |
| C12614-1<br>C12614-2<br>C12614-3<br>C12614-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | ~                                                 | 320.6  | Specialen        | n Broke During | Pahrication             |                |                           |
| C12414-2<br>C12414-3<br>C12614-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | 350'F / 50' Cre.                                  | 350*   | 106.5 65         |                |                         |                | Pailed und Trette 1d.     |
| C1241A-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 950.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t                           | 8<br>/                                            | 350*F  |                  | 2.<br>2.       |                         |                |                           |
| CL241A-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | 350 *# / 500 Cyc.                                 | 350°F  |                  | •              |                         |                | Pailed under Makic 14.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 8<br>×                                            | 350°F  | 80.5             | •              |                         |                | Descripte Teb Failure     |
| C12414-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 - 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £                           | 350"F / 500 Cyc.                                  | 350°F  | 75 45            | •              |                         |                | Immediate Teb Failure     |
| 77786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 460.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                           | 350°F / 1000 Cyc.                                 | 350°F  | 103              | •              |                         |                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ε                           | 1000                                              | 3.00   |                  | •              |                         |                | ٠_                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı                           | 100                                               | 350°F  | •                | •              | 7                       | :              | Demotiate Tab Pailure     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z                           | 350°F / 1000 Cyc.                                 | 350'F  | <b>6</b> 0<br>35 |                | 2.459 x 10°             | 47.2           | Tet Paflure               |
| 01.WID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 - 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [0/45/135/0/30]             | 100                                               | 350°F  | •                | •              |                         |                | Baseflete Teb Failure     |



ن



ķı







 $\odot$ 

į.



TABLE XX CREEP AND STRESS FUTTURE PROPERTIES SUPMAR. - HERCHES BOYCH COURT'T DS HES - GRAPHIE CONTNETS.

| P. 11.                                | () Comment     | Fat led at tal |           |          | fedland at tak | failed at tab  | 4 6 70 70 70 |           |            | Tab Area Pailure | Teb Ares Failure |           |           |           |           |          |           |          | Strain Gage | Strain    | Strain gage Failed |          |       | Strain gage failed | Failed during loading | •            |          |          |      |
|---------------------------------------|----------------|----------------|-----------|----------|----------------|----------------|--------------|-----------|------------|------------------|------------------|-----------|-----------|-----------|-----------|----------|-----------|----------|-------------|-----------|--------------------|----------|-------|--------------------|-----------------------|--------------|----------|----------|------|
| Tine<br>Applied<br>without<br>Failure | (Hours)        |                | •         | •        | •              | 1              |              | •         |            |                  |                  | •         |           | •         | ,         | •        | •         | •        | 1000        | 1000      | •                  | •        | •     | •                  | ٠                     |              | •        |          | •    |
| fisc<br>to<br>Failure                 | (Hours)        | 800.           | .016      | 6        | 800            | .016           | 800          | 8 ~       | . 6.       | .033             | .00R             | 60        | 1.3       | 5.5       | 80        | 32       | 7.        | 926      | ,           | •         | 165                | .167     | 900   | .016               |                       | 8            | 8        | i        | Š    |
| Level                                 | (kst)          | 116            | 116       | 114      | 114            | 112            | 113          | 5         | 8          | 5.76             | 95.2             | 108       | 011       | 113       | 8         | š        | 101       | 98.9     | 9.9         | ;;<br>;;  | 92.0               | 1.65     | 2.8   | 2.13               | 7.76                  | 2.8          | 2.2.03   |          | 77.7 |
| Stress Level                          | (I dult) (ksi) | 85             | 86        | *        | 8              | ま              | j            | 76        | . <b>3</b> | 50               | <b>6</b>         | *         | \$        | 96        | 65        | 2        | 3         | 2        | 1           | 23        | 2                  | £        | S     | \$                 | 8                     | <b>S</b>     | <b>.</b> | :        | ì    |
| 12 T                                  | (.t)           | 260°F          | 26C°F     | 260°F    | 3.90°          | 260°F          | 340.         | 260°F     | 260°F      | 260°F            | 260°F            | 350°F     | 350°F     | 350°F     | 350 F     | 350°F    | 350°F     | 350°F    | 1.056       | 350 %     | 4. OKE             | 260.7    | 260°F | 10 · E             | 260°F                 | 1.092        | 260°F    | 2.00     |      |
| PRIOR COMPITIONING                    | Duration       |                |           |          |                |                |              |           |            |                  |                  |           |           |           |           |          |           |          |             |           |                    |          |       |                    |                       |              |          |          |      |
| FEIOR                                 | Type           | None           | None      | None     | None           | Mone           | NO.          | None      | None       | Mone             | None             | None      | Mone      | None      | Mone      | Mone     | Mone      | Mone     | Morse       | ec :      | ago de             | Mone     | Mone  | Mone               | Mone                  | None         | Mone     | į        |      |
|                                       | Orientation    |                | رز        | ت        | ڼ              | ٠,             | 6            | , 0       | ئن         | č:               | : o              | .0        | : 0       | ຸ່ ບ      | ţ,        | Ö        | ,0        | ပီ       | °o          | • •       | 5                  | • 06     | \$    | •<br>\$            | •<br>&                | 8            | E        | \$       | 2    |
|                                       | ( <b>B</b> ,   | 0,045          | 0.045     | 0.045    | 0.9            | 0.0 <b>4</b> 3 | 10.0         | 0.045     | 0.045      |                  | 0.04             | 0.04      | 0.04      | 7000      | 0.04-     |          | 0.04      | 90.0     | 3           | 9 9       | 3                  | 0.046    | 0.045 | , <b>8</b> ,       | 5                     | 0.00<br>0.00 |          | 5        |      |
| Thicmess                              | (Plice, (In.)  |                |           | 4,       |                |                |              |           | •          |                  |                  |           |           | ۵         |           |          |           |          |             | · ·       |                    |          |       |                    |                       | œ (          |          | œ        |      |
| u u u                                 | 70.0           | C12378-11      | C12778-12 | C1273-13 | C12:78-14      | C123 18-15     | C12378-16    | C12:78-17 | C12:78-18  |                  | C11 78-20        | C12 )8A-1 | C12 384-2 | C12 )84-3 | C12 384-4 | C12:8A-5 | C12 )8A-6 | C12 84-7 | C12 :64-8   | C12 184-9 | 07-W0: 777         | C12.7-13 |       | C12 7-15           | 012.7-16              | C12_7-17     | C12.7-18 | C12: 3-1 |      |

Ę.

ť.

٤٠

€

のでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mm

| l                                          | 1       |             |                    |                       |            | 96                           | 9 54                         |                       |                   |                       |                    | ire.                           | •                  |                   |        |                |          |          |                 |                       |                       |                 |          |          |          |          |          | 116 10                          | ore nre.                 |                       |                       |
|--------------------------------------------|---------|-------------|--------------------|-----------------------|------------|------------------------------|------------------------------|-----------------------|-------------------|-----------------------|--------------------|--------------------------------|--------------------|-------------------|--------|----------------|----------|----------|-----------------|-----------------------|-----------------------|-----------------|----------|----------|----------|----------|----------|---------------------------------|--------------------------|-----------------------|-----------------------|
| Comment                                    |         |             | Strain game failed | Failed during loading |            | Failed at tak during loading | Failed at tab during loading | Failed during loading | Impediate fediuse | Fatled during loading | Strain gage failed | Oven overheated after 666 hrs. | Strain gage failed |                   |        |                |          |          | Oven overheated | Failed during loading | Failed during loading |                 |          |          |          |          |          | Committee Pathod Africa 014 Day | Stiell Dege Felled Altel | Fallad during loading | Failed during loading |
| Time Applied without Failure (Hours)       |         |             |                    | •                     | •          | ,                            | ,                            | ı                     | ,                 |                       | ı                  | ,                              |                    |                   | 1000   | 000.           | 0001     | 1000     | •               |                       | +                     | ,               | •        | 1000     |          | 1        | ,        | <b>)</b>                        |                          |                       | 1 1                   |
| Time<br>to<br>Failure<br>(Mours)           |         | ×<br>E.     | <b>€</b> \$:•      |                       | , E.J.     |                              | •                            | 1                     |                   |                       | <u>-</u> :         |                                | 17                 | .37               | •      | 1              | ,        | •        |                 | •                     |                       | 070             | 800.     |          | 070.     | .020     |          |                                 |                          | : .                   |                       |
| Stress Level<br>(2 <sup>d</sup> ult) (ksi) |         |             |                    | ,                     |            | •                            | ž.                           | uç<br>E               | 7                 |                       | 3.45               | 54.3                           | 53.2               | 52.1              | 7.67   | 5.07           | 5.1      | 53.2     | 52.1            | 53.2                  | <br>Y:                | 58.7            | 57.7     | 55.3     | 7.       | 56.5     | 6,5      |                                 | 505                      | 57.7                  | 58.7                  |
| Stress Level (2 <sup>d</sup> ult) (ksi     | ;<br>   | ĉ           | · .                | į                     | F          | J,                           | £                            | 30                    |                   |                       | .g                 | ź                              | <del>5</del> 6     | ð                 | 6      | Ġ.             | 6        | 36       | ð               | 8                     | 86                    | 86              | *        | 92       | <b>6</b> | 7        |          | 8 2                             | 3 2                      | ; ¥                   | 8 8                   |
| Test<br>Temp.<br>('F)                      | 1 1 1 1 | <br>        | 130 F              | 1.000                 | 3.51       | 33.1 F                       | ÷<br>:                       | 1.1358                | 350 F             | 350.5                 | 350°F              | 260 'F                         | H (197             | 3,092             | 3600   | J. 097         | 240°F    | 3.092    | 260°F           | 260 'F                | 260°F                 | 350°F           | 350°F    | 350°F    | 350°F    | 350°F    | 350°F    | 350.5                           | 350°F                    | 350.5                 | 350°F                 |
| CONDITIONING Duration                      |         |             |                    |                       |            |                              |                              |                       |                   |                       |                    |                                |                    |                   |        |                |          |          |                 |                       |                       |                 |          |          |          |          |          |                                 |                          |                       |                       |
| PRIOR G                                    | 3       | o<br>E      | Acn                | Non                   | None       | None                         | No.10                        | None                  | None              | None                  | None               | None                           | Non-               | None              | None   | None           | None     | None     | None            | None                  | None                  | None            | None     | None     | None     | None     | 9        | , and                           | Kon                      | 900                   | None                  |
| Orientation                                | Co      | íá          | <u>.</u>           | ã                     | ÷          | 3                            | ( )                          | و                     | ĩ                 | . 05                  | ă                  | 00 0 11 5+ 3                   |                    | 1                 | =      | :              | ε        | :        | :               | -                     | .0/45/135/0/90 s      | [0/45/135/0/90] | <b>.</b> | =        | =        | =        | :        | :                               | :                        | :                     | . 0/45/135/0/90;      |
| Th. 2kmess<br>11.3) (In.)                  |         | 1           | 1                  | · [ ]                 | 6-2-5      | 6.0.0                        | ¥- j.'∂                      | 1.0.3                 | ٠<br>١٠<br>١      | 4.0.0                 | <b>'</b> ;         | 1.21                           | 1.75               | ر.<br>د د د       | 6.000  | ٠.٥٥٠          | 0.053    | 0.054    | 0.053           | 0.033                 | 0,053                 | 0.055           | 7,055    | 0.055    | 0.055    | 0.055    | 5500     | 0.05                            | 0.055                    | 0.05                  | 0.055                 |
| Th.<br>(P14                                | g:      | 5 4         | L                  | r                     | <b>x</b> ∪ | uc                           | <b>x</b> .                   | oz.                   | œ                 | ,                     | 3                  | j                              | ţ                  | ,                 | j      | 7              | g.       | ъ.       | 3               | 5                     | J.                    | •               | 5        | ø.       | σ        | σ        | ci       | · a                             | J                        | œ                     | • •                   |
| Specimen<br>Number                         | 5-8:515 | 7 0 . 6 . 7 | 0-0"717            |                       | C12.8-5    | C1218+6                      | 01-9777                      | C12.8-73              | (11.8-12          | 3.12.3-13             | C10.8-1-           | 11:10:10                       | .1235              | 7 - a - 7 - 1 - 1 | 01:3-b | S - 84 T C T T | C12348-6 | C11348-7 | 19 - HT 11 7    | C12748-9              | C12348-10             | C1235A-1        | C1235A-2 | C1235A-3 | C1235A-1 | C1235A-5 | 4-45-517 | C1215A-7                        | C1235A-8                 | C1235A-9              | C1235A-10             |

TABLE XX CRIEP AND STRESS REPTURE PROPERTIES SUFFARY - HEMCULES JOOPH CHREGATION HYS - GRAPHITE CHMPASITES

|                                                   | 1                                        | Londing                | in in its second                                         | 1        |                         | 100                    | losding                | in the second          |                            |         |           |           |                            |                            |        |           |           |                            |                        |             |             |             |                 |                        |             |             |             |               |
|---------------------------------------------------|------------------------------------------|------------------------|----------------------------------------------------------|----------|-------------------------|------------------------|------------------------|------------------------|----------------------------|---------|-----------|-----------|----------------------------|----------------------------|--------|-----------|-----------|----------------------------|------------------------|-------------|-------------|-------------|-----------------|------------------------|-------------|-------------|-------------|---------------|
| Comment                                           | Tak Gadinaa                              | failure - broke during | Tob failure - broke during<br>Tab failure - broke during |          | fellure a broke desired | failure - broke during | failure - broke during | failure - broke during | Broken during Canditioning | der i e | duribe    | durie     | Broken during Conditioning | Broken durine Conditionine | in the | during    | During    | Broken During Conditioning | Broken in Conditioning | =           | 5           | 5           | 5               | Brokes to Confittoning | 4           | 5           | 5           | •             |
| Time<br>Applied<br>with our<br>Pailare<br>(Rours) | 0001                                     | •                      | . ,                                                      | •        |                         |                        |                        | •                      |                            | •       | •         |           | •                          | •                          | •      | •         | •         | 1                          | •                      | •           | •           | •           | ŧ               | •                      | •           | •           | •           |               |
| Time to Patlure (Nours)                           | Ş                                        | }.                     |                                                          | •        |                         | •                      |                        | •                      | •                          | •       | •         |           |                            | •                          |        | •         |           | •                          | •                      |             |             | •           | •               | ·                      |             |             |             |               |
| Stress Level<br>(I <sup>©</sup> ult) (ksi)        | 98.1                                     | 2                      | 10.7                                                     | 9 50     |                         | 97.6                   | 7.06                   | 88.3                   |                            | •       | 1         | •         | •                          | •                          |        |           |           | •                          |                        | •           | •           |             | •               | •                      |             | •           |             | 1             |
| Stree<br>(L <sup>o</sup> u)                       | 23                                       | 35                     | ¥ \$                                                     | 88       | 2                       | <b>2</b>               | <b>\$</b>              | <b>~</b>               | •                          | •       | •         | •         | •                          | •                          | •      | •         | •         | ,                          | •                      | •           | ٠           | •           | •               | •                      | •           | •           | •           | ,             |
| Test<br>Samp.<br>(*)                              | 260°F<br>260°F                           | 2.09E                  | 700.E                                                    | 1 05L    | 350'r                   | 350°F                  | 350°F                  | 350°F                  | 260 € F                    | 260°F   | 200°F     | 260°F     | 260°F                      | 350 'F                     | 350    | 350.7     | 350°F     | 350.7                      | 7.09Z                  | 760.7       | 7.04Z       | 1.092       | 760°F           | 350°F                  | 320.6       | 350°F       | 350°F       | 160.0         |
| PAIOR COMPITIONING<br>Type Derecton               | 500 Hrs.<br>500 Hrs.                     |                        | 500 Hrs.                                                 | 500 Hrs. |                         |                        |                        | 500 Nrs.               | 1000 Hrs.                  |         | 1000 Hrs. | 1000 Hrs. | 1000 Hrs.                  | 1000 Hrs.                  |        | 1000 Hrs. | 1000 Hrs. | 1000 Hrs.                  | dity Cycle             | dity Cycle  | dity Cycle  | dity Cycle  | dity Cycle      | dity Cycle             | dity Cycle  | dity cycle  | dity Cycle  | Athen Carollo |
| Paton o                                           | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 |                        |                                                          |          |                         |                        | \ \tag{2}              |                        |                            |         |           | - M 15    |                            | / HE 196                   |        |           | / HE 196  |                            | Thermo-Shari           | The Carried | Thermo-line | Chermo-Hund | Thermo-Humidity | Thermo-Bunidity (      | Thermo-Hund | Thermo-Head | Thermo-Hunt | The same of   |
| Orientation                                       | ခ် ဝ                                     | <u>.</u>               | : c                                                      | ·        | c                       | Ė                      |                        | ,<br>C                 | •                          | ć       | •0        | 0         | ,<br>C                     | ۍ                          | ,0     | c         | 0         | •                          | • 0                    |             |             | •           |                 |                        |             |             | •           |               |
| Thickness<br>(Flies) (Im.)                        | 0,047                                    | 0.045                  |                                                          | 6 (.047  |                         |                        | 6.047                  | 5 40.0                 | 6 (.043                    |         |           | 6 (0.043  |                            | 5.00.0                     |        |           | 0.043     | 5 0. <b>043</b>            | 0.045                  | 710.0       |             |             | 770.0           | 0.045                  | 9,0,0       | 0.045       | 0.04        | 200           |
| Specimen T<br>Mumber (P)                          |                                          | 01246-3                |                                                          | C1248-6  |                         |                        |                        | C1248-10 (             |                            |         |           |           | C12098-19 6                | C1210A-5 6                 |        |           |           | C12104-3 6                 | C1248-1: 6             | C1248-1.: 6 | C1248-1; 6  | C1248-14 6  | C1248-15 6      | C1248-16 6             | CL246-17 6  | C1246-16 6  | C1248-19 6  | C1248-70 6    |

O

O

O

O

TABLE XN CREEP AND STRESS RUPTURE PROPERTIES SUPPARY - HERCLES 3002h CO'RTAULDS HWS - GRAPHITE COMPOSITES

| Specimen<br>Marie       | Thác<br>(P1108 | Thickness (Flies) (In.) | Orientetion     | PRIOR      | PRIOR COMPITIONING Type Duration | Test<br>Tap.<br>(*F) | Stress Level<br>(T <sup>0</sup> ult) (ksi) | Leve l<br>(kst) | Time to Failure (Hours) | Time Applied without Failure (Houre) | Coment                             |
|-------------------------|----------------|-------------------------|-----------------|------------|----------------------------------|----------------------|--------------------------------------------|-----------------|-------------------------|--------------------------------------|------------------------------------|
| C12C98-20               | .م             | 0.0<br>⊒.0.0            | , 0             |            | licheng.                         | 260°F                | 80                                         | 117             |                         | •                                    | Oven overheated                    |
| 01710<br>01710<br>01710 |                | રી તે<br>કે લે<br>કે લ  | = <             | VCC.       | Wining.                          | 7.00°F               | <b>8 5</b>                                 | <u> </u>        | <b>80</b> (             | 0001                                 |                                    |
| 01210                   | <b>.</b>       |                         | ی د             |            | Tithing.                         | 7 097<br>F 096       | g<br>S                                     | 100             |                         | 201                                  |                                    |
| C1210A-4                | , æ            | ۰.0.                    |                 |            | Wthrng.                          | 260°F                | <b>3</b>                                   | 111.5           | 29,6                    |                                      |                                    |
| C12:0A=10               | £              | ر<br>ا                  | Ċ               | ACC.       | Withrag.                         | 350 F                |                                            | •               | •                       | ,                                    | Broken during Conditioning         |
| C12104-11               | <b>.</b>       | 0.0                     | c               |            | Vchrag.                          | 32035                | ٠                                          | •               | •                       | 1                                    |                                    |
| C1210A-12               | ¥              | 0.0                     | . 0             | Acc.       | Vthrng.                          | 350 F                | •                                          |                 |                         | •                                    |                                    |
| C1230A-13               | vc             | 0.053                   | ¢               |            | With Trans.                      | 350°F                |                                            |                 | •                       | •                                    | during                             |
| C12.0A-14               | •              | 6.7.9                   | 0               | Acc. 1     | Wthrng.                          | 350°F                |                                            |                 | •                       | ,                                    |                                    |
| 01249-1                 | J.             | 0.067                   | 07/25/135 0/90  | 48.7 RH    | / 500 Hrs.                       | 260 F                | •                                          |                 | ı                       | •                                    | Broken during Conditioning         |
| C1249-2                 | ٠.             | 0.066                   | <b>v</b>        | 12.96      | / 500 Hrs.                       | 260°F                | •                                          |                 | •                       | •                                    | during                             |
| C1249-3                 | ı ur-          | 0.066                   |                 |            |                                  | 260°F                | •                                          | •               |                         | •                                    | during                             |
| C1249-4                 | ŋ,             | 0.065                   | <del>.</del>    |            | , 500 Hrs.                       | 260°F                | •                                          |                 | •                       | •                                    |                                    |
| C1249-5                 | Jr.            | 0.066                   | ÷               | 98°. 24    | 500 Hrs.                         | 260 °F               | •                                          |                 | •                       | •                                    | Broken during Conditioning         |
| 61349-6                 | و              | ر<br>ا<br>ا             | 1               | 48°        | 500 Hrs.                         | 350°F                | •                                          |                 |                         | •                                    | Broken during Conditioning         |
| C1249 - 7               | U              | 0.756                   | ÷               |            |                                  | 350 °F               |                                            | ,               |                         | •                                    |                                    |
| C1249-8                 | U              | 0.066                   | =               |            | / 500 Hrs.                       | 350°F                | •                                          |                 | ,                       |                                      | Broken during Conditioning         |
| C12-5-9                 | ij.            | 0.067                   | =               | 987. RH    | / 500 Hrs.                       | 350°F                | •                                          | •               |                         | •                                    | Broken during Conditioning         |
| C1249-10                | J              | 990.0                   | .0/45/135/0/90. | 987. RH    | / 500 Hrs.                       | Дц.<br>С<br>С        | ı                                          | ,               | ŧ                       | •                                    | Broken during Conditioning         |
| 012378-1                | J              | 0.062                   | 06/0/381/57/0   | 967 RH     | , 1000 Hrs.                      | 260'F                | 96                                         | 53.1            | •                       | 1000                                 |                                    |
| C12378+2                | J              | 0.063                   | <b>10</b>       | 987, EH    |                                  | 260 F                | ጀ                                          | 8.67            | •                       | 1000                                 |                                    |
| C12378-3                | ٠              | 090                     | :               |            | / 1000 Hrs.                      | 260°F                | 86                                         | 52              | •                       | •                                    | Teb feilure - broke during loading |
| 4 K C C C               | J              | 0.063                   | :               |            |                                  | 260 F                | 46                                         | 53.7            |                         | 1000                                 |                                    |
| C1237B-5                | 0              | 0.063                   | 2               | 98. RH     | / 1000 Hrs.                      | 260 °F               | 66                                         | %<br>%          | ,                       | 1000                                 |                                    |
| C1238A-1                | J              | 0.065                   | =               |            | / 1000 Hrs.                      | 350°F                | 8                                          | 39.0            | •                       | 1000                                 |                                    |
| C1238A-2                | J              | 0.065                   | :               | 987 EH     | / 1000 Hrs.                      | 350°F                | 93                                         | 40.3            | ,                       | 1000                                 |                                    |
| C1238A-3                | U              | 790.0                   | =               |            | 1000 Hrs.                        | 350°F                | <b>9</b> 6                                 | 42.5            | •                       | 1000                                 |                                    |
| C1238A-4                | J              | 990.0                   | Ξ               |            | / 1000 Hrs.                      | 350°F                | *                                          | 41.6            | •                       | 1000                                 |                                    |
| C1238A-5                | ن              | 790.0                   | 0/45/135/0/90   | .86<br>.86 | 1000 Hrs.                        | 350°F                | 95                                         | 41.2            | •                       | 1000                                 |                                    |

IABLE XX CREEP AND STRESS RUPTURE PROPERTIES SUPPARY - RERCULES 3002M COURTAULDS HMS - GRAPHITE COMPOSITES

| Coment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | during conditioning |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | during conditioning |          | _                     | -        |          |          | during conditioning |                 | failure - broke during loading |          |          |             |           |       |          |           |            |                  | during loading and split | furing loading and split | leading at | T split   |        |                | Broke during locating and split | •        | broke during |             | failure - broke during 10001Mg |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|----------|-----------------------|----------|----------|----------|---------------------|-----------------|--------------------------------|----------|----------|-------------|-----------|-------|----------|-----------|------------|------------------|--------------------------|--------------------------|------------|-----------|--------|----------------|---------------------------------|----------|--------------|-------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Broke di              | Broke d             | Broke 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Broke di | Broke di            |          | _                     |          | •        | •        | Broke 4             |                 | 12                             |          |          |             |           |       |          |           |            |                  | Broke d                  | Broke                    | Broke d    |           |        |                | Broke                           |          |              | 15          |                                |
| Applied<br>without<br>Failure<br>(Houre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                     |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        |                     |          | •                     | •        | •        | •        |                     |                 | •                              | • •      |          | 8           |           | •     | 0001     | 9001      | 1000       | 1000             | •                        | •                        | •          | •         | •      | ,              | •                               | 900      | •            | •           | •                              |
| Time<br>to<br>Failure<br>(Hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                     | •                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | •                   |          | •                     |          | •        |          | •                   |                 | • !                            | 259.7    | •        | •           | 8         | +30.2 |          | •         | •          | ı                | •                        | •                        | •          | •         | , ,    | •              | •                               | •        | •            | ~           | •                              |
| Level<br>(kat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                     |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                     |          | •                     | •        |          | •        |                     |                 | 55.3                           | 51.9     | 52.9     | <b>7</b> .5 | 55.9      | 6.8   | 49.0     | 46.5      | 45.1       | <b>2</b> 0.1     | 126.4                    | 123.8                    | 121.2      | 114 6     | 0.011  | 1.011          | 101.1                           | 92.3     | 95.2         | o. <b>1</b> | 95.2                           |
| Stress Level<br>(1,0ult) (ksi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                     | •                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        | •                   |          | •                     | •        | •        | •        | •                   |                 | *                              | \$       | 95       | ኔ           | 6         | *     | 2        | 93        | 8          | 9                | ā                        | <b>8</b> 3               | 2 3        | t S       | 2 6    | <b>3</b>       | <b>S</b>                        | 2        | 8            | 2           | \$                             |
| 15 15 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 260°F                 | 260.5               | 260.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 240.7    | 7403                |          | 150°F                 | 350°F    | 150°F    | 350 %    | 350 F               |                 | 260°F                          | 260 F    | 260°F    | 260°F       | 260°F     | 350°F | 3.00     | 350       | 350°F      | 350°F            | 40000                    | 207                      | 3.090      | 1007      | 1.007  | 26C'F          | 1.05                            | 95       | 200          | 1.051       | 350*F                          |
| PRIOR COMPITIONING<br>Type Duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thermo-Humidiev Cycle |                     | The state of the s |          |                     |          | Thermo-Hamidity Cycle |          |          |          |                     |                 | Acc. Wthrng.                   |          |          | _           | _         |       | _        |           | Acc urbine |                  |                          |                          |            |           |        | 260 F/500 Hrs. | 140 003 / 40 03C                |          |              |             |                                |
| Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 0/361/3/10         |                     | : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : :      | : 3                 |          | r                     |          | Ξ        | :        | 00 3. Sell 2000     | B 06 0 001.04/0 | 0,6,5,1135 C 90                |          | -        | •           | =         | -     | =        | : #       | :          | [0/45/135/( )90] |                          | • 0                      | •0         | • 0       | •      | •0             | •                               | . 0      |              | 5 6         | . •                            |
| Thick ses<br>(Plies) (In.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 95                  | <b>8</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8        | 28.                 | 8.5      | ,                     | 980.0    | 95.5     | 8        | 8.                  | 990.            | . 963                          | 3        | 3        | 28          | <b>88</b> | ,     | 198      |           | 9.0        | 6.0              |                          | 0.045                    | 3.648      | 3.044     | 0.047  | 0.045          |                                 | 0.00°    | 970.0        | 0.046       | 9 <b>90.</b> 0                 |
| Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Special<br>Specia<br>Specia<br>Specia<br>Specia<br>Specia<br>Specia<br>Specia<br>Specia<br>Specia |                       | C1249-11            | C1249-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1249-13 | C1249-14            | C1249-15 |                       | C1249-16 | C1549-17 | C1249-18 | C124.9-19           | C1249-20        | 9 86 66 70                     | 0-8/5713 | C123/8-/ | C123/8-0    | C12378-9  |       | C12384-6 | C123 EA-7 | C1238A-8   | C12384-9         | 01-10-5110               | C1211B-16                | C12113-17  | C12118-18 | 014110 | C12138-20      |                                 | C1212A-1 | C1212A-2     | C1212A-3    | C1212A-4<br>C1212A-5           |

C

TABLE MX CREEP ANY STRESS BUTIFURE PROPERTIES S. "ARE A PERTUES 300, A CONTINUE S NO. A CONTINUE TILLS S NATHERY CONTINUE TILLS

3.

|                                                  | Thic     | Thichness<br>(*1ies) (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Orienten. Con | PLOS CONDITIONING<br>Type Durecton                                       | i i î                   | Stress Level (X <sup>d</sup> ult) (kei | Stress Level<br>(1 <sup>0</sup> ult) (ksi) | Time<br>to<br>Failure<br>(Nours) | Applied<br>without<br>Fatlure<br>(Hours) | Comment                                                                                                            |
|--------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|-------------------------|----------------------------------------|--------------------------------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| C12124-6<br>C12124-7                             | υ w      | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66            | 260°F/1000 cyc.<br>260°F/1000 cyc.                                       | 260°F<br>260°F          | 853                                    | 26.4<br>26.4<br>26.6                       | 135.4                            | , , ,                                    | Job fallure - broke during lecting<br>Broke - demile tab failure<br>Broke during leading 1/4" from tab             |
| C1212A-0<br>C1212A-9<br>C1212A-10                | en en en | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | သမာ           | 260°F/1000 cyc.<br>260°F/1000 cyc.<br>260°F/1000 cyc.                    | 260'F                   | 388                                    | \$ \$<br>\$.5<br>\$.5                      | .012                             | 1000                                     | Broke - domble tab falluro                                                                                         |
| C1212A-11                                        | ۰۰       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | င်င်          | 260°F/1000 cyc.<br>260°F/1000 cyc.                                       | 350 F<br>350 F          | £ \$                                   | 100 1                                      |                                  | 1000                                     | broke during leading - double fail.                                                                                |
| 11-421213<br>612124-12<br>612124-14              | s 😻 🗴    | 566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ລ້ວໍ່ຕໍ່ເ     | 260°F/1000 eve.<br>260°F/1000 eye.<br>260°F/1000 eye.                    | 350°F<br>350°F          | 222                                    | 100<br>101.<br>100.1                       | 7.91                             | 8                                        | Tob failure - broke during leading                                                                                 |
| C12126-13<br>C12126-6<br>C12126-7                | • ••     | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , , ,         |                                                                          | 260 F<br>260 F<br>260 F | 238                                    | 98.2                                       |                                  |                                          | Tab failure - broke during leading<br>broke during leading - dumble field.<br>Broke during leading - demble field. |
| C12128-9<br>C12128-9                             | •••      | 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , <b>.</b> .  | 350°F/1000 cvc.                                                          | 260°F                   | <b>3</b> 8                             | 101.7                                      |                                  | ,                                        | tab failure - broke during leading                                                                                 |
| C12126-11<br>C12126-12<br>C12126-13<br>C12126-14 |          | 9.00 0<br>9.00 0<br>1.00 0<br>1. | 0000          | 350°F/1000 eye.<br>350°F/1000 eye.<br>350°F/1000 eye.<br>350°F/1000 eye. | 350'F<br>350'F<br>350'F | 28485                                  | 109.6<br>116<br>103<br>103<br>109.6        | 26.                              | , , , , 991                              | Tab failure<br>Tab failure - bruke during landing<br>Tab area failure<br>Tab failure - bruke during loading        |

TARLE XX CREEF AND STRESS REPTURE IN DEPRITIES STREAM - HERCHLES BROAD OF MARCHINE HERCHLES TONIONSTES

| 1112.4.16   6 0 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.06   6 0.0   | Section 1       | Thic<br>(Pites | Thickness<br>(Pites) (In.) | Orientation                      | PRICE CUMDITIONING Type Duration | Test<br>Trap | Serves<br>Control | Stress Love)                          | fil<br>to<br>radlure<br>(Rours)         | Time<br>Applied<br>without<br>Failure<br>(hours) | Cognent                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------------------|----------------------------------|----------------------------------|--------------|-------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------------|
| 6 0.048 0° 330 F'500 Hrs. 140° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12124-16        | 9              | 970 0                      | ,0                               | 350°F'300 HF                     |              |                   | ,                                     |                                         | ,                                                | 5                                  |
| 6 6 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12124-17        | φ              | 670.0                      | ٥,                               | 350 F 50° HE                     | .,           |                   | ,                                     |                                         |                                                  | S                                  |
| 6 6 0.046 0° 330 F*500 rec, 66 ° F · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1212A-16        | •              | 0.748                      | 6.7                              | 350 F 500 FF                     | •            | ٠                 |                                       |                                         | ,                                                |                                    |
| 6 0.046 0.0  1 300 F 500 F 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1212A-19        | •              | 690.0                      | .0                               | 350 F '500 HE                    |              |                   |                                       |                                         | •                                                |                                    |
| F C.046   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31212A-20       | æ              | 0.048                      | ċ                                | 350 F 500 · r                    |              |                   |                                       | 1                                       | •                                                | Delaminated in Conditioning        |
| 6 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.0  | 112128-1        | 4              | 970.0                      | , O                              |                                  |              | -                 |                                       | 5,4                                     | •                                                |                                    |
| ## 0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12128-2         | c              | 5                          | , ~                              |                                  |              | ,                 | 7.7                                   |                                         | •                                                |                                    |
| 6 0.046 0.0<br>9 0.057 C −5.135.0/90 2 2.0 F 5.0 Hrs. 350 F 40 81. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.8 1. 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1212B-3         | ط ا            | 970 0                      | .53                              | 5                                |              | . 4.              |                                       | : .                                     | 1001                                             | Strain east failed after 1 hour    |
| 6 0.046 0.7 C ±5:35 0/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12121           | Ų              | 90                         | . C                              | and Green Tables                 |              | Š                 |                                       | 36 4                                    | ·<br>: •                                         |                                    |
| 9 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 312125-5        | w              | 0.046                      | D                                | 350°F 50°F fir                   |              | <b>5</b>          | ;<br>;                                | .014                                    | •                                                |                                    |
| 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.036 9 0.045/135/0/97,8 130/p/500 Hrs. 150/p 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0.037 10 0. | ~1241B-1        | œ              | 0.057                      | t.                               |                                  | 06           | Ī                 | 7.5,                                  | ( · · · · · · · · · · · · · · · · · · · | •                                                |                                    |
| 9 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12418-2         | יכי            | 0.056                      | •                                |                                  | 260          | 3                 | -                                     | 8                                       | •                                                | Tab Fatlure                        |
| 9 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 124.18-3        | ď              | 0.056                      | :                                | 260°F/500 Hr                     |              | 3                 | 1,                                    | r.<br>ci                                |                                                  | Tab Failure                        |
| 9 0.056 " 260°F'500 Hrs. 350°F 90° 42.5 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12418-          | <b>o</b> n     | 0.059                      | :                                | 200°F 500 Hr                     |              | \$                | 1.61                                  | ξ.                                      | •                                                | Tab Tailure                        |
| 9 C.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>112418-5</b> | σ              | 0.056                      | ÷                                | 240,2,200 Hz                     |              | \$                | · · · · · · · · · · · · · · · · · · · |                                         |                                                  | Tab fallure - broke during loading |
| 9 C.059 " 260°F'500 Hrs. 150°F ' 2.5.5 140.4" 9 C.066 "0.45/135/0.90.5 260°F'500 Hrs. 150°F 97 45.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 312418-6        | σ·             | 0.056                      | :                                |                                  |              | ક                 | 42.5                                  | •                                       | •                                                | Broke during loading               |
| 9 C.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 112418-7        | <b>o</b> r     | 0.059                      | :                                |                                  |              | 3                 | 43.5                                  | 1.04                                    |                                                  | Broke in middle                    |
| 9 C.066 [0.45/135/0.97], 260°F/500 Hrs. 330°F 94 44.4 .33 1000   9 C.066 [0.45/135/0.97], 330°F/500 Hrs. 260°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C12413-8        | <b>U</b> i     | C-8.5                      | :                                |                                  |              | 88                | 9:14                                  | 289                                     | •                                                | Strain Gage Failed                 |
| 9 C.056 [0.45.135/0.97], 260 Fr.500 Hrs. 150 F 97 45.8 - 1000 9 C.066 [0.45.135/0.97], 350 F/500 Hrs. 160 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C12618-9        | or.            | 0.060                      | :                                |                                  |              | 76                | 7.17                                  | .33                                     |                                                  | Tab failure                        |
| 9 C.066 '0.45/135/0.50's 350'F/500 Hrs. 160'F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C12418-10       | or .           | C.058                      | . 0.45.135 '0 '97. <sub>\$</sub> |                                  |              | 47                | 45.B                                  |                                         | 1000                                             |                                    |
| 9 C. Ueb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1747R-1         | Or             | 990                        | 05.0713870.00                    | 350 F / 500 HE                   |              | 1                 | ,                                     | 1                                       | 1                                                |                                    |
| 9 C.066 " 350°F/500 Hrs. 260°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12428-0         | יני            | 990                        | U.                               | 350°F '500 Hr                    |              | 1                 |                                       |                                         |                                                  |                                    |
| 9 C.066 " 350°F/500 Hrs. 260°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12428-3         | . 0            | 95                         | ī                                | 350°F/500 Hr                     |              | 1                 |                                       | 1                                       | •                                                | Eroke during conditioning          |
| 9 C.066 " 350°F/500 Hrs. 260°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1242B-4         |                | 990,                       | :                                | 350*F/500 HE                     |              |                   | •                                     |                                         | ٠                                                | Broke during conditioning          |
| 9 C.066 " 350°F/500 Hrs. 350°F 90 44.6 - 1000 9 C.066 " 350°F/500 Hrs. 350°F 93 49.2 - 1000 9 C.067 " 350°F/500 Hrs. 350°F 97 51.3 202.4 - 1000 9 C.063 " 350°F/500 Hrs. 350°F 95 50.2 - 1000 0 C.063 [0.45/135/0/90] <sub>5</sub> 350°F/500 Hrs. 350°F 99 52.3 - 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 312428-5        | 6              | 990.0                      | =                                |                                  |              | •                 | į                                     | ì                                       | •                                                | Broke during conditioning          |
| 9 C.066 " 350°F/500 Hzs. 350°F 93 49.2 - 1000 9 C.067 " 350°F/500 Hzs. 350°F 97 51.3 202.4 - 1000 9 C.063 " 350°F/500 Hzs. 350°F 95 50.2 - 1000 0 C.065 [0:45/135/0/90] <sub>5</sub> 350°F/500 Hzs. 350°F 99 52.3 - 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C12428-6        | o,             | 0.068                      | Ξ                                | 35C F/500 Hr                     |              | ò                 | 9.74                                  | 1                                       | 1000                                             |                                    |
| 9 C.067 " 350°F/500 Hrs. 350°F 97 51.3 202.4 - 1000 C.063 " 350°F/500 Hrs. 350°F 95 50.2 - 1000 C.065 [0:45/135/0/90] <sub>5</sub> 350°F/500 Hrs. 350°F 99 52.3 - 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -12428-7        | o              | 990                        | =                                | 350°F/500 Hr                     |              | 63                | 7.65                                  | •                                       | 1000                                             |                                    |
| 9 C.063 " 350°F/500 Hrs. 350°F 95 50.2 - 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 012428-8        | 0              | 790.                       | ī                                | 350°F/500 Hr                     |              | 46                | 51.3                                  | 202.4                                   | •                                                | Broke in middle                    |
| 9 C.065 [0:45/135/0/96] <sub>s</sub> 350°P/500 Hrs. 350°F 99 52.3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01242B-9        | •              | 063                        | =                                | 350 PF / 500 HE                  |              | 95                | 50.2                                  | •                                       | 0001                                             |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31242B-10       | . on           | C.065                      | [ <u>05/0/32//55;0]</u>          | 350°F/500 Hr                     |              | 66                | 52.3                                  |                                         | 1000                                             |                                    |

١,

Û

TABLE XX CREEP AND STRESS RUPTURE PROPERTIES SUPPLY. - MERCULES 3002M COURTAINES

| Comment                                    | Broke in middle<br>Tab feilure - broke during loading<br>Int failure - broke during loading | Broke during loading                                                                        | lab failure - broke during lossing<br>Oven overheaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tab failure<br>Tab failure - broke during losding |
|--------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Applied Applied Atthor Faiure (Houre)      | . Tab<br>. Tab<br>1000                                                                      | 1000<br>1000<br>1000                                                                        | 1 ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |
| Time to Failure (Hours)                    | 5.2<br>-<br>-<br>246                                                                        | 18.5<br>256                                                                                 | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 25                                              |
| (kat)                                      | 53.5<br>54.0<br>52.9<br>52.2                                                                | 5.74<br>4.74<br>4.74<br>4.74                                                                | 44.3<br>41.0<br>45.3<br>45.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.1                                              |
| Stress Level<br>(T <sup>o</sup> ult) (kai) | 90 90 90 90<br>3 4 9 1 8                                                                    | 90<br>90<br>90<br>90<br>90<br>90                                                            | <b>58</b> 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88                                                |
| i.c                                        | 260'F<br>260'F<br>260'F<br>260'F                                                            | 330°F<br>350°F<br>350°F<br>350°F                                                            | 260°F<br>260°F<br>260°F<br>260°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 350*F                                             |
| PRIOR COMPITICATING<br>Type Duration       | 260°F/1000 cyc.<br>260°F/1000 cyc.<br>260°F/1000 cyc.<br>260°F/1000 cyc.<br>260°F/1000 cyc. | 260°F-1000 cyc.<br>260°F/1000 cyc.<br>260°F/1000 cyc.<br>260°F/1000 cyc.<br>260°F/1000 cyc. | 350*F/1000 cyc.<br>350*F/1000 cyc.<br>350*F/1000 cyc.<br>150*F/1000 cyc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 350°F/1000 eyc.                                   |
| PEIOE C                                    | *******                                                                                     |                                                                                             | HMMRM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>6</b> 00                                       |
| Culentation                                | 10.75/1337/0/90 s                                                                           |                                                                                             | 8.048/135/0/90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r :                                               |
| Thickness<br>(Plica) (In.)                 | 0.066<br>0.067<br>0.067<br>0.065                                                            | \$ 3 4 4 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0. | 0.065                                             |
| Thich<br>(Pites)                           | ் கைக்கைக்                                                                                  | . நாருகுக                                                                                   | <b>თტაა</b> თ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ar a                                              |
| Specimen                                   | (12424-1<br>(12424-1<br>(12424-3<br>(12424-3<br>(12422-4                                    | 01242A-6<br>01242A-7<br>01242A-7<br>01242A-9<br>01242A-10                                   | C12420-1<br>C1C-20-2<br>C-2420-3<br>C12420-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C1242C-6                                          |







Û



THE REAL PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF T



O

Ç.

O.





Ð

O

Ø

0

O

O

**T** 

新の大学に、ないであるを開発したが、あため、はいる「ますのできた」をあるた

;



Sections of success



Static Ultimate Temaile Strength at 350°F for Conditioning Stated in 379 hal

HENCELES NOOTH/CONTENENS

TH CONCRETES THEFTO AT 1907 AFTER 1000 CFGLES EXPOSURE TO 350\*T

TENE LE CREAT STEMEN PORCE TENE COUNTS POP

2



Ĭ

in o

FIG. 536 TERRILL CHREY STRAIN VIRGING THAIR CHRISTA FOR 10/45/135/0/FOL; INDICAGE 500EN/CHREADANA

State Utimaca Temaile Strength at 190°F for Conditioning Stated in 50 km (Interpolation)

Pig. 327 TERRIA CREEP STRAIN VERSON THE CONVEN STRE [0.657155/07/80], MELCHAR 30026/CONSTANTOS MIN GRANNETE LANDARIZE TANDED AT 250°P APTER 1000 CRCAIN EXPONENT TO 330°P.



## APPENDIX IV

## DATA SUMMARY FOR 6061 ALUMINUM/BORON COMPOSITES

## TABLE OF CONTENTS

## APPENDIX IV

| Item | Description                                                                                     | Pages   |
|------|-------------------------------------------------------------------------------------------------|---------|
| 1    | Table XXI - Static Properties Summary - 6061 Aluminum Boron Composites                          | 423-428 |
| 2    | Figs. 529 to 550 Static Stress Strain Curves                                                    | 429-434 |
| 3    | Table XXII - Fatigue Properties Summary - 6061 Aluminum Matrix/Boron (5.6 mil) Composites       | 435-439 |
| 4    | Figs. 551 to 556 Fatigue S-N Curves                                                             | 440-441 |
| 5    | Table XXIII - Creep and Stress Rupture<br>Properties Summary -6061 Aluminum/Boron<br>Composites | 442-443 |
| 6    | Figs. 557 to 558 Stress Versus Time to Rupture Curves                                           | 444     |
| 7    | Figs. 559 to 566 Creep Strain Versus Time                                                       | 444-446 |

₹)

FABLE NX: STATIC PROPERTIES SUBGARY - 6061 AT N. N. BORON COMPOSITES

| е <sub>иле</sub><br>(н-ба./ба.) | 7,150   | 6,920 | 078'9 | 6, 560 | 3,780       | 4,000 | 4,650       | 2,370 | 11,550           | 11,900      | 10,930 | 9,610 | 11,450 | 12, 510 | 14,640 | 4,630 | •        | •  | •   | •   |
|---------------------------------|---------|-------|-------|--------|-------------|-------|-------------|-------|------------------|-------------|--------|-------|--------|---------|--------|-------|----------|----|-----|-----|
| "alk<br>(Bet)                   | 205     | ¥     | 180   | \$1    | 23.5        | 25.9  | <b>4</b> .2 | 20.0  | <b>18</b>        | 35          | 324    | 72    | 42.4   | 43.7    | 67.6   | 31.1  | ž        | ž  | ã   | 82  |
| ,<br>(1a/1a)                    | 0.27    | 0.79  | 0.21  | 0.21   | 0.12        | 0.15  | 0.14        | •     | 0.26             | <b>9</b> .0 | 0.14   | 0.28  | 9.0    | 8.0     | 8.0    | 8.0   | •        | •  | •   | •   |
| E<br>(paf x 10 <sup>6</sup> )   | 29.0    | 30.0  | 33.8  | 29.7   | 19.9        | 18.6  | 13.2        | 14.9  | 33.7             | 31.9        | 30.€   | 32.5  | 17.9   | 18.2    | 15.0   | 12.6  | •        | •  | •   | •   |
| Test Temp.<br>(*P)              | ב       | 160   | 9     | 89     | £           | 091   | 99          | 9     | ᄕ                | 160         | 99     | 909   | t      | 91      | 004    | 9     | Ħ        | 91 | 004 | 909 |
| Frior<br>Conditioning           | None    |       |       |        |             |       |             |       |                  |             |        |       |        |         |        |       |          |    |     |     |
| Type Loss:                      | Tension |       |       |        |             |       |             |       | Compares \$ 1 on |             |        |       |        |         |        |       | Florurei |    |     |     |
| Orientation                     | ,0      |       |       |        | , <b>06</b> |       |             |       | 0                |             |        |       | 26     |         |        |       | <br>O    |    |     |     |

TABLE XXI STATIC PROPERTIES SUMMARY - 6061 ALTHIN M BORON COMPOSITES

| Orientation | Type Load     | Prior<br>Conditioning | Test Temp.<br>(*F) | E (ps1 x 10 <sup>6</sup> ) | ,<br>(11/11) | dult<br>(ksi) | *ult<br>(p-im./in.) |
|-------------|---------------|-----------------------|--------------------|----------------------------|--------------|---------------|---------------------|
| .06         | Flexural      | None                  | ĸŢ                 | •                          |              | 52.5          |                     |
|             |               |                       | 160                | •                          | •            | 51.3          | •                   |
|             |               |                       | 907                | •                          | •            | 1.47          | •                   |
|             |               |                       | 099                | •                          | •            | 36.9          | •                   |
| 0.          | Intl'mar Sh'r |                       | RT                 | •                          | ,            | 20.1          | ,                   |
|             |               |                       | 160                | •                          | •            | 19.9          | •                   |
|             |               |                       | 700                | •                          | •            | 17.2          | •                   |
|             |               |                       | 009                | ,                          | •            | 14.2          | ı                   |
| .06         |               |                       | Ł                  | •                          | •            | 7.5           | •                   |
|             |               |                       | 160                | •                          | •            | 7.2           | •                   |
|             |               |                       | 007                | ŧ                          | •            | 5.1           | ,                   |
|             |               |                       | 909                | •                          | •            | 3.2           | •                   |

Ū

VILVINAL STATIC PROPERTIES SUMMRY - 6061 ALUMINUM BORON COMPOSITES

| Orientation | Type Load  | efor<br>Consistentag | Test Temp.<br>(*F) | E<br>(psf x 10 <sup>6</sup> ) | ,<br>(11/11) | <sup>g</sup> ult<br>(ksi) | *ult<br>(u-in./in.) |
|-------------|------------|----------------------|--------------------|-------------------------------|--------------|---------------------------|---------------------|
| ن،          | uo r sua j | 500°F/109 hrs        | 73                 | 27.1                          | 0.27         | 177                       | 6,800               |
|             |            |                      | 160                | 28.2                          | 0.19         | 179                       | 7,740               |
|             |            |                      | 007                | 28.2                          | 0.21         | 159                       | 6,190               |
|             |            |                      | 909                | 31.7                          | 0.18         | 173                       | 7,360               |
|             |            | 500 F/500 hrs        | RŢ                 | 28.5                          | 0.26         | 183                       | 6, 370              |
|             |            |                      | 160                | 27.6                          | 0.19         | 165                       | 6, 780              |
|             |            |                      | 007                | 31.2                          | 0.18         | 153                       | 5, 140              |
|             |            |                      | 009                | 31.7                          | 0.24         | 163                       | 5, 990              |
|             |            | 603°F/1000 hrs       | er<br>t-           | 27.8                          | 0.28         | 162                       | 6,070               |
|             |            |                      | 091                | 24.6                          | 3.27         | 169                       | 6, 780              |
|             |            |                      | 004                | 29.7                          | 0.20         | 170                       | 6,50                |
|             |            |                      | 9                  | 28.7                          | 0.20         | 991                       | 5,726               |
| .06         |            | 600°7/100 hrs        | ¥                  | 15.8                          | 0.03         | 16.7                      | 5,020               |
|             |            |                      | 160                | 10.6                          | 0.19         | 16.2                      | 8,170               |
|             |            |                      | 700                | 14.4                          | 0.14         | 15.8                      | 4, 510              |
|             |            |                      | 9                  | 12.8                          | 9.0          | 10.9                      | 6, 890              |
|             |            | 600°F/500 hrs        | TH.                | 1.81                          | 0.0          | 17.3                      | 7,750               |
|             |            |                      | 160                | 17.7                          | 9.0          | 16.6                      | 7,130               |
|             |            |                      | 004                | 12.9                          | 9.0          | 14.9                      | 5,200               |
|             |            |                      | 009                | 13.7                          | 9.0          | 12.5                      | 9,810               |

TABLE XXI STATIC PROPERTIES SUMMARY - 6061 ALIMINIM BORCE COMPOSITES

| Orientation | Type Load   | Prior<br>Conditioning | Test Temn.<br>(*F) | E<br>(psi x 10 <sup>6</sup> ) | (in/in) | ult<br>(ksi) | ult<br>(u-fn,/fn,) |
|-------------|-------------|-----------------------|--------------------|-------------------------------|---------|--------------|--------------------|
| , 26        | Tension     | 600°F/1000 hrs        | RT                 | 17.6                          | 0.00    | 17.6         | 026'7              |
|             |             |                       | 160                | 19.5                          | 0.00    | 17.1         | 5,100              |
|             |             |                       | 004                | 12.6                          | 0.00    | 15.2         | 5,640              |
|             |             |                       | 909                | 6.01                          | 0.0     | 12.6         | 3, 530             |
| <b>.</b>    | Compression | 600°F/100 hrs         | E                  | 29.7                          | 0.29    | 311          | 10,160             |
|             |             |                       | 160                | 29.5                          | 0.27    | 23           | 9,910              |
|             |             |                       | 007                | 29.0                          | 0.25    | 288          | 9,940              |
|             |             |                       | 009                | 27.5                          | 0.25    | 246          | 9,230              |
|             |             | 600*F/50G hrs         | RT                 | 30.1                          | 0.29    | 275          | 8,890              |
|             |             |                       | 160                | 31.2                          | 0.23    | 285          | 9,240              |
|             |             |                       | 00*                | 30.1                          | 0.38    | 279          | 10, 100            |
|             |             |                       | 609                | 30.7                          | 0.26    | 72           | 9, 380             |
| <b>،</b> کو |             | 600°F/100 hrs         | RI                 | 11.9                          | 0°.0    | 29.7         | 13, 700            |
|             |             |                       | 160                | 11.8                          | 8.0     | 30.8         | 14, 900            |
|             |             |                       | 004                | 9.7                           | 8.0     | 29.8         | 13, 600            |
|             |             |                       | Ç                  | 1,1                           | 3       | 27.8         | 20, 500            |

TABLE XXI STATIC PROPERTIES SUMMARY - 6061 ALUMINUM RORON COMPOSITES

| Orientatica | Type Load        | Prior<br>Conditioning | Test Temp. | E (pet x 10 <sup>6</sup> ) | ,<br>(in/in) | ğř   | "ult<br>(s-in./in.) |
|-------------|------------------|-----------------------|------------|----------------------------|--------------|------|---------------------|
| •06         | Coap re 1 a f.on | 600'F/500 hrs         | ħ          | 11.8                       | 0.0          | 30.9 | > 30,000            |
|             |                  |                       | 160        | 0'6                        | 9.0          | 30.5 | > 30,000            |
|             |                  |                       | 904        | 9.1                        | 9.0          | 27.8 | > 30,000            |
|             |                  |                       | 009        | 9.0                        | 8.6          | 28.1 | > 36,000            |
| • 0         | Tens lon         | 600'F/100 cycles      | Ľ          | 27.6                       | 0.27         | 205  | 7,488               |
|             |                  |                       | 160        | 28.2                       | 0.29         | 196  | 7,220               |
|             |                  |                       | <b>400</b> | 23.1                       | 0.22         | 173  | 6, 846              |
|             |                  |                       | 009        | 28.9                       | 0.19         | 107  | 7,300               |
|             |                  | 600°F/500 cycles      | Ħ          | 26.9                       | 0.28         | 13   | 7,020               |
|             |                  |                       | 160        | 25.5                       | 6. X         | 2    | 6, 76               |
|             |                  |                       | 00+        | 27.9                       | 9,30         | *1   | €, 01€              |
|             |                  |                       | 009        | 28.3                       | 0.19         | 31   | 6, 830              |
|             |                  | 600*F/1000 cycles     | E          | <b>4</b> .1                | 0.2          | 191  | 6,78                |
|             |                  |                       | 160        | 3. ¥                       | 0.25         | 181  |                     |
|             |                  |                       | 904        | 28.0                       | •            | 147  |                     |
|             |                  |                       | 9          | 26.6                       | 0.Z          | 1    | 8,970               |
| • 06        |                  | 600*F/100 cycles      |            | 17.7                       | 8.           | 10.9 | 5,060               |
|             |                  |                       | 91         | 16.1                       | 8.6          | 17.6 | 5, 720              |
|             |                  |                       | 9          | 11.9                       | 9.0          | 15.2 | 3,960               |
|             |                  |                       |            |                            |              |      |                     |

TABLE XXI STATIC PROPERTIES SUPPARY - 6061 ALIMINIM BORON COMPRAIR

| eult<br>(14-fn./fn.)          | 6, 550           | 5,640 | 6, 580 | 5,440 | 019.4             | 6,690 | 960'9 | 9,820 | 10, 330          | 9, 730    | 10,150 | 9,050 | 30,000           | 30,000 | 30,000 | 30,000 |
|-------------------------------|------------------|-------|--------|-------|-------------------|-------|-------|-------|------------------|-----------|--------|-------|------------------|--------|--------|--------|
| dult<br>(kel)                 | 15.9             | 15.5  | 13.2   | 10.1  | 14.9              | 15.2  | 12.8  | 9.1   | 230              | <b>50</b> | 292    | 242   | 29.6             | 31.4   | 30.1   | 27.7   |
| ,<br>(11/11)                  | 0.0              | 0.00  | 0.0    | 0.00  | 0.00              | 0.00  | 0.0   | 0.00  | 0.23             | 0.23      | 0.27   | 0.26  | 9.0              | 0.0    | 0.60   | 0.0    |
| E<br>(psi x 10 <sup>6</sup> ) | 17.2             | 17.4  | 10.5   | 9.2   | 16.5              | 4.91  | 11.11 | 9.5   | 29.0             | 29.1      | 28.0   | 28.9  | 6.9              | 0.6    | 9.0    | 0.8    |
| Test Temp.<br>(*F)            | RŢ               | 091   | 007    | 009   | ㅂ                 | 091   | 700   | 009   | Ħ                | 091       | 004    | 909   | Ľ                | 160    | 004    | 009    |
| Prior<br>Conditioning         | 600*F/500 cycles |       |        |       | 600°F/1000 cycles |       |       |       | 600"F/500 cycles |           |        |       | 600°F/500 cycles |        |        |        |
| Type Load                     | Tension          |       |        |       |                   |       |       |       | Compression      |           |        |       |                  |        |        |        |
| Orientation                   | а<br>С <b>U</b>  |       |        |       |                   |       |       |       | •0               |           |        |       | <b>.</b> 05      |        |        |        |

•







では、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmのでは、100mmので



€)

ij





6041 ALMINER MATLE/LORDE Speciamu: Tematom No. of Plies: 6 Fiber Orient: 90\*

E . 091 <u>ل</u> 80,7 2.004

---



THEFOR STREET-STALE DIAGRAM FOR 90' 6651 ALMOSTE METRIC/SECTION (5.6 ed.).
CORPOSITES TEATED AT VALIDES PT-PETALVERS AFTER 348 CITLES ENGINEE TO 640'7. Fig. 54



TAST NXII PROPERTIES SUPPRINCE - LANGER VARIETY FORCES

| Ppeceta<br>Rumber | Thickness<br>(Fifes) (In.) | <b>26</b> 16<br>(In.) | Ortentation | R-Ratio | lest<br>Temp.<br>(*F) | Stress Level<br>(? <sup>c</sup> ult) (ksi) | (bas)        | Cycles<br>to<br>Fatlure<br>(cycles) | Opeles<br>Applied<br>Mithese<br>Failure<br>(cycles) | Residual<br>Strength<br>(kel) | 3                 |
|-------------------|----------------------------|-----------------------|-------------|---------|-----------------------|--------------------------------------------|--------------|-------------------------------------|-----------------------------------------------------|-------------------------------|-------------------|
| 1929P-86          | 9                          | 0.043                 |             | 1.0     | RTD                   | 73                                         | 150          | 28.000                              |                                                     | ,                             |                   |
| 1929P-8;          | r                          | 0.04.                 | U           | 1.0     | RTD                   | 7.1                                        | 145          | . ,                                 |                                                     |                               | Ismediate Pailure |
| 1929P-88          | •                          | 0. (£2.               | ί,          | 1.0     | Ę                     | 68.5                                       | 140          | 900                                 |                                                     | •                             |                   |
| 1929P-89          | 9                          | 0.0                   |             | 1.0     | £                     | 99                                         | 135          | 28,000                              |                                                     | •                             |                   |
| 192 <b>9P-9</b> 0 | \$                         | 0.(43                 |             | 0.1     | E                     | 63.5                                       | 130          | 102,000                             | •                                                   | •                             |                   |
| 1929P-91          | ı                          | 0.042                 | ů           | 0.1     | 1,091                 | 27.5                                       | 150          | 1,000                               |                                                     | •                             |                   |
| 1929P-92          | ر                          | 6.043                 |             | 0.1     | 160 F                 | 7.5                                        | 140          | •                                   | •                                                   | •                             | Immediate Pailure |
| 1929P-93          | Ų                          | 9.043                 | ij          | 0.1     | 16035                 | <b>6</b> 7                                 | 2            | 161,000                             | •                                                   | •                             |                   |
| 1929P-94          | 9                          | 0.063                 | L           | 1.0     | 1.09T                 | 69.5                                       | 135          |                                     | •                                                   | ٠                             | Immediate Felluce |
| 36-4626?          | vo                         | 0.043                 | ·O          | 1.0     | 1.091                 | £.5                                        | 125          | •                                   | •                                                   | •                             | bestiete Patluer  |
| 96-46261          | 4                          | 0.044                 | Ċ           | 0.1     | J 007                 | 69.5                                       | 125          | 34. 080                             |                                                     | •                             |                   |
| 1929P-97          | •                          | 0.042                 | c           | 1.0     | 4,007                 | 3                                          | 115          | 314,000                             | •                                                   |                               |                   |
| 19297-98          | 4                          | 9.0                   | ů.<br>C     | 0.1     | 4.007                 | 75                                         | 135          | 142,000                             | •                                                   | •                             |                   |
| 1929P-99          | ·                          | 0.0                   |             | 0.1     | 1,004                 | <b>8</b> 0.5                               | 145          | 184,000                             |                                                     | •                             |                   |
| 19298-100         | •                          | 0.043                 | ò           | 0.1     | 4.00*                 | 2                                          | 91           | 1,000                               | •                                                   | •                             |                   |
| 1929P-101         | ų                          | <b>3</b>              | <b>ت</b>    | 0.1     | 1.009                 | 8                                          | 0*1          | 42,000                              | •                                                   | •                             |                   |
| 1929P-102         | 9                          | <br>6.0               | •0          | 0.1     | J. 009                | \$.5                                       | 160          | ~<br>8                              | •                                                   | •                             |                   |
| 1929P-103         | ΨO                         | C. 68.3               | •0          | 0.1     | 4.009                 | *                                          | 14.5<br>24.5 | 2°80                                | •                                                   | •                             |                   |
| 1929P-104         | •                          | 0.043                 | •0          | 0.1     | 9                     | 72                                         | 2            | 137,000                             | •                                                   | •                             |                   |
| 19299-105         | us                         | 0.042                 | °           | 1.0     | 1.009                 | Z.                                         | 21           | 374,000                             | •                                                   | •                             |                   |
| 1928-1            | ø                          | 0.045                 | ٥           | -1      | 6                     | **                                         |              | 2,492,000                           | •                                                   | •                             |                   |
| 1928-2            | vo                         | 770.0                 | •0          | 7       | £                     | ž                                          |              | 2°.                                 | •                                                   |                               |                   |
| 1926-3            | φ                          | 0.0                   | 0           | -       | 6                     | 63.5*                                      | <b>R</b>     | 9.00                                | •                                                   | •                             |                   |
| 1928-4            |                            | 0.045                 | •           | 7       | E                     | *.3                                        |              | 200                                 |                                                     | •                             |                   |
| 1928-5            | ٠                          | 9,0                   | ,           | -       | £                     | **                                         | <b>B</b>     | 9.2                                 | •                                                   | •                             |                   |

\* Prom Tenaile Ultimate Stress

| Specimen                                            | Thic<br>(P14-s   | Thickness (Plies) (In.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Orientation | R-Matio      | Test<br>Tesp.<br>(*)             | Stress Let :1<br>(I <sup>6</sup> ult) (  sf)                 | Le (1<br>(1 et)                                                    | Opeles<br>to<br>Failure<br>(eyeles)    | Opeles<br>Applicated<br>atthese<br>Patlace<br>(opeles) | Street<br>(tent) | 3                      |
|-----------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|------------------|------------------------|
| 1928-6<br>1928-7<br>1928-8<br>1928-9<br>1928-10     | <b>ကာကာလာ</b> က  | 0.045<br>0.045<br>0.043<br>0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 7777         | 160°F<br>160°F<br>160°F<br>160°F | * 2.62<br>* 2.62<br>* 4.54<br>* 5.54                         | 1+1+1+1+1<br>100<br>1100<br>1100<br>1100<br>1100<br>1100           | 3,000<br>14,000<br>73,000<br>2,956,000 | 2.0 × 10°                                              | • • • • •        |                        |
| 1928-11<br>1928-12<br>1928-13<br>1928-14            | ന <b>ക ക ക</b> ക | 0.0.06<br>0.045<br>0.045<br>0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000       | तन <b>नन</b> | £.007<br>£.007<br>£.007          | 55.5<br>61.5<br>52.5<br>62.5<br>64.5<br>64.5<br>64.5<br>64.5 | +100<br>+1100<br>+1110<br>+1115                                    | 89,000<br>2,000<br>29,000<br>116,000   | • • • • •                                              |                  |                        |
| 1926~16<br>1928~17<br>1928~18<br>1928~19            | <b>കാനതു</b> ക   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0. | 00000       | 77777        | 4.009<br>4.009<br>4.009          | 55.55<br>55.55<br>55.55<br>55.55<br>55.55                    | ********                                                           | 2888<br>8888<br>8888                   |                                                        |                  | matter Patient         |
| 1928-21<br>1926-22<br>1926-23<br>1926-24<br>1916-25 | <b>6</b>         | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0. |             | 0 <b>000</b> | 66 <b>66</b> 6                   | ******                                                       | 130                                                                |                                        | 2.013 m 195<br>2.4 m 186                               | 33               | Desertation Publishers |
| 1928-26<br>1928-27<br>1928-28<br>1928-29<br>1928-30 | <b>*</b>         | 9.9.9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••••        | 2222         | 11111                            | ingrs<br>ingrs                                               | 800<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |                                        | 2.433 x 10 <sup>6</sup><br>2.433 x 10 <sup>6</sup>     | 37               | Burdiche Patiene       |

Party Careel la Wiedones Stones

TABLE ANTI LATIGUE PROPERTUS SUPERMI NOST ALLYMBET WATRLE FORENT (T. eff.) COMPOSITIS -

| Specimen          | en Thickness<br>r (Pites) (In.) | as Trientation In.) |          | Test<br>Tap.<br>(*F) | Stress Level | cy ves<br>to<br>to<br>Failure<br>(eycles) | Applied without Failure (cycles) | Reciberal<br>Strength<br>(tot) | • |
|-------------------|---------------------------------|---------------------|----------|----------------------|--------------|-------------------------------------------|----------------------------------|--------------------------------|---|
| 1 - 20, 51        |                                 |                     | <u>.</u> | 3.007                |              |                                           |                                  |                                |   |
|                   | 9                               |                     | ٠,       | 1000                 |              |                                           |                                  | •                              |   |
| 10 - 100 C C C    | :                               | ÷                   | 91       | 3                    |              |                                           | •                                | •                              |   |
| 19262 - 33        | :                               | -                   | 1:       | 4004                 |              |                                           | •                                | •                              |   |
| 10,083-34         |                                 | ٠                   | 0.5      | 3 :00 <b>7</b>       | 110<br>110   |                                           | •                                | •                              |   |
| 1926F-35          | o<br>o                          |                     | 21       | 00% د ا              | 35.5 - 115   | 31,000                                    |                                  | •                              |   |
| 19788 - 36        | 9                               | D 99                | 0        | ,009                 |              |                                           | •                                | •                              |   |
| 19765-37          |                                 |                     | 2.5      | 1.009                |              |                                           | •                                | •                              |   |
| 1076s 10          | - C                             | ر<br>م              | 2        | 1.009                |              |                                           | •                                | •                              |   |
| 197A8-39          |                                 |                     | : 31     | 4,004                |              |                                           | •                                | •                              |   |
| 1928H-40          | 970.0                           |                     | 01       | 1.009                | 97           | 21,000                                    | •                                |                                |   |
| 42 - <b>40</b> 20 | <br>(.                          | ָּטֶל.<br>ניי       | -        |                      |              |                                           |                                  | •                              |   |
| 72.00             | . r                             |                     | • • •    | Ē                    |              |                                           |                                  | •                              |   |
| 1,200-1           | i c                             |                     | 1.0      | 00                   | 91 19        |                                           | •                                |                                |   |
| 25.100.00         |                                 |                     | 0.1      | O LA                 |              |                                           | •                                | •                              |   |
| J8-30F61          | 6 0.044                         | -                   | 0.1      | £                    | 42.5 10      | 136,000                                   | •                                |                                |   |
| 18.308.81         | \frac{1}{2}                     |                     | 0.1      | 1.091                |              |                                           | •                                | •                              |   |
| 19308 - 82        | ا<br>د<br>د                     | 0.5                 | 0.1      | 1,091                | 17           | 900.4                                     | •                                | •                              |   |
| 1930B · 83        | 20.00                           |                     | 1.0      | 1.091                |              |                                           | •                                | •                              |   |
| 77-80(6)          | 9                               |                     | 0.1      | 160 5                | _            |                                           | •                                | •                              |   |
| 1930C-85          | 6,00.0                          |                     | 0.1      | 1.091                |              |                                           | •                                | •                              |   |
| 10.000            | 2                               | • 98                | 0.1      | 4.007                |              |                                           | •                                | •                              |   |
| 1930C-87          | 9 40                            |                     | 1.0      | 1.007                |              |                                           | •                                | •                              |   |
| 10.70C-10         |                                 |                     | - C      | 1.007                |              |                                           | •                                | •                              |   |
| 100-10            | 90.0                            | .06                 | 0.1      | 1.007                | 49.5 12      | 100,000                                   | •                                | •                              |   |
| 10.70.4           | 2                               |                     | 0,1      | 1.007                |              | ~                                         | •                                | •                              |   |

48) NATE FIELD PROPERTY NO 6061 ALIMININ'NS ATTENDED NO 17 OFFINE OFFINE TO 18 OFFI

| Specimen<br>Number | se nicka: | n 38<br>In, ) | Orientation     | R-Ratio          | Test<br>(F)  | Strict Vel<br>Cout) kst) | cos<br>ro<br>allure<br>(cycles) | Cycles Applicd without Failure (cycles) | Residual<br>Strength<br>(ksi) | S                       |
|--------------------|-----------|---------------|-----------------|------------------|--------------|--------------------------|---------------------------------|-----------------------------------------|-------------------------------|-------------------------|
| 16-30C-51          | 1£)       | ;<br>()       | 0.5             | 6.1              | 4:004        | 2                        | 1, no                           | •                                       | •                             |                         |
| .930C-92           | . ψ       | 7             | <b>3</b>        | r                | 1:000        | <u> </u>                 | 00°                             | •                                       | •                             |                         |
| 1930C-93           | ٠         | ν<br>-<br>-   | 36              | 0.1              | 4,004        |                          | 175,000                         |                                         |                               |                         |
| 1930C-94           | ų         | 3 <b>-0</b> 7 | Š               | 0.1              | ₹.004        | 33.5                     | 17,000                          | •                                       | •                             |                         |
| 1530c-95           | ţ         | e.            | يُن             | 0                | J. 309       | 29 E                     | 1                               | •                                       | ı                             | Failed Under Static 14. |
| 1928C1             | £.        | 5.40          | °Ú6             |                  | RTo          | 42.5* +10                | 14,000                          | 1                                       | •                             |                         |
| 1928C-42           |           | 0.13          | 0 1/10          |                  | α <b>Ι</b>   | 15.5* + 6                | 1,153,000                       | •                                       | •                             |                         |
| .928C-43           | w         | 670           | . 06            | 1.               | (L <b>1)</b> | 90<br> + <br>            | 1+4,000                         |                                         | •                             |                         |
| 1928C-44           | ŗ         | 0.43          | ٠, <b>٢</b>     | -1               | KTD          | 1+1                      | 26,000                          | •                                       | •                             |                         |
| 1928c-45           | ٥         | 04.3          | 06ء             | • <del>•</del> • | <b>KT</b> D  | 30 + + 7                 | 100,000                         | •                                       | •                             |                         |
| 19286-46           | Ω         | (?<br>()      | 6د,             | 7                | 1.091        |                          | 25,000                          | •                                       | •                             |                         |
| 1928C-47           | æ         | m<br>101      | . 36            | -1               | 1,041        | £.5* ±12                 | 8.                              | •                                       | •                             |                         |
| 1928C-48           | ų.        | ∴ 043         | n ( )           |                  | 1,041        |                          | 72,000                          | ٠                                       | •                             |                         |
| 1928n-19           | ¥         | 0.043         | 3               | -1               | 160          |                          | 481,000                         | •                                       | •                             |                         |
| 1928D-50           | œ         | 3.044         | ٠,              | -1               | 160°F        |                          | 302,000                         |                                         |                               |                         |
| .928D-51           | ·L·       | 2,043         | . 5             |                  | 3.007        |                          | 376,000                         | •                                       | •                             |                         |
| 1928D-57           | 14.       | 043           | .06             | -1               | 400°F        |                          |                                 | •                                       |                               |                         |
| 19282-53           | 4,        | 0,043         | <sup>3</sup> 06 | -1               | 4.007        | 37 * +19                 |                                 | •                                       | •                             |                         |
| 1928D-54           | ı         | 0.043         | ء<br>06         |                  | 4.007        |                          |                                 | •                                       | •                             |                         |
| 1928E-55           | 9         | 0.043         | °06             | <b>-</b> '       | 4.007        |                          |                                 | •                                       | •                             |                         |
| 19285-56           | •         | 0.043         | • 06            | -                | 4.009        | 01+ × 85                 | 5,000                           | •                                       | •                             |                         |
| 1928E-57           | ···       | 043           | °06             | -1               | £ 009        | 6 + + 67                 | 30,000                          | •                                       | •                             |                         |
| 1926E-56           | 9         | 0.042         | :06             | -1               | £009         | 38 + + 86                | 37,000                          | •                                       | •                             |                         |
| 1928E-59           | 9         | 3.043         | .06             | -1               | 4.009        | 33.5* + 7                | 164,000                         | ,                                       |                               |                         |
| 1928E-60           | 90        | 0.042         | 。0 <b>6</b>     | -1               | 600°F        | 29 * <del>+</del> 6      | 457,000                         | •                                       | •                             |                         |
|                    |           |               |                 |                  |              |                          |                                 |                                         |                               |                         |

|                   |              |                  | !!<br>!!    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11                  |               | :           | • • • • • • • • • • • • • • • • • • • • | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                      |
|-------------------|--------------|------------------|-------------|-----------------------------------------|---------------------|---------------|-------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| Specimen.         | 1916<br>1116 |                  | ;           |                                         | <b>da</b><br>38 (7) | Stress Livel  | Live        | voles<br>to<br>Failure                  | DATE OF STATE OF STAT | Residuel<br>Strength |                      |
| I CON             |              | 1                | 'T161,5110n | . P¥-X                                  | <b>(1</b> )         | (% ult) (ket) | (ket)       | (c)cles)                                | (cycles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ket)                | Committee            |
| 928E-61           |              | ; <b>1</b><br>-  |             | rs<br>es                                |                     | Š             | 31.         | ,                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |
| .928F-82          | ۵            | ال-0′0           | :           | 10                                      | Ē                   |               |             |                                         | 901.507 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.4                 | Tamenteca Fallure    |
| 19265-63          | ,            | رة<br>ج          | ਤੰ          | 10                                      | CL2                 | 2             |             |                                         | 4 885×106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                      |
| 19227-64          | •            | 5.9              | ,           | 10                                      | C.                  | 70.5          | į.          | 600                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                    |                      |
| 19285-45          |              | 3.05             |             | 10                                      | E                   | 63.5          | ٠,4         | 1,511,000                               | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                      |
| :928F-66          | ŧ            | 5                | á           | <u>ب</u>                                | 160.5               | 7 79          | 6           | 9                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                      |
| 3-585-67          | ÷            | 0.0              | ئ.          | 207                                     | 1600 F              |               |             | 27.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |
| .928F             | æ            | 0.043            | ş           | 10                                      | 1.041               | 68.5          | . 2.        | 000                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Specimen has shooms! |
| 1928(1-63         | ¢            | 3                | ς,          | 01                                      | 1,041               | 7.0           | -28         | 2                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                    | VERIETI O'TH WIRTH   |
| J2-136(-6)        | æ            | 0.063            | ç           | 10                                      | 160°F               | 22            | -25         | ;                                       | 2.007×106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.7                 |                      |
| , almos a         | £            | 0.063            | ·,          | 10                                      | 4.007               | 52.5          | -25         | •                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                    | Immediace Patlure    |
| [2+C+,+           | ı            | ÷.8              | ş           | 10                                      | 1,007               | 98            | <b>8</b> 7- | 20,000                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                      |
| 14287-13          | ۵            | O, 0             | ,<br>ŏ      | 01                                      | 10×10               | 31.6          | 57          | 226,000                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                      |
|                   | 4            | 790.0            |             | 20                                      | 1 00%               | 42            | -20         | 9,000                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                      |
| # T T T           | ت            | 0 04.3           |             | 91                                      | J.007               | 25            | -15         | . •                                     | 2.0x106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.8                 |                      |
| 5 36-51           | ۲            | c. 08.           | ş           | 01                                      | 4.004               | 48.5          | - 25        | 107,000                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                    |                      |
| 142BC 77          | ىد           | J.04.1           | Ī           | 10                                      | 1.009               | 64.5          | -70         | 2,000                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                    |                      |
| 1928M-78          | 4            | - <b>1</b><br>2. | Ī           | 10                                      | £.009               | 32            | 97-         | . •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Ismediane Patlure    |
| 192 <b>8H-</b> 79 | •            | 0.0              | Š           | 01                                      | 1.009               | 42            | ä           | 127,000                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                    |                      |
| 1928H-#0          | ø            | 0 041            | S           | 10                                      | 1.009               | 29            | •           | 763,000                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                      |





|             |               |                            |             |                                       |                               |                                            | Time               | Applied            |                           |
|-------------|---------------|----------------------------|-------------|---------------------------------------|-------------------------------|--------------------------------------------|--------------------|--------------------|---------------------------|
| Specimen    | 14th (P. 14th | 'hichness<br>(P ies; (In.) | Orfentation | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Stress<br>(T <sup>C</sup> ult | Stress Level<br>(1 <sup>c</sup> ult) (ks1) | Estlure<br>(Hours) | Failure<br>(Hours) | Comment                   |
| 0           |               | 170.0                      | -           | £.                                    | 7.<br>61                      | 188.                                       | •                  | •                  | Broke during loading      |
| 01-4-1      | ů             | 0, 143                     | ر           | CLu                                   | Ç.                            | 185.6                                      | ,                  | ı                  | Broke during loading      |
| 1-1-1-10>   |               | 2                          | 9           | Ή                                     | נ                             | 196.5                                      | Ę.                 | •                  | 0                         |
| 1-1-d-1-10- |               | ÷.                         | ؿ           | e T                                   | Uj                            | 164.3                                      |                    | •                  | Broke during loading      |
| p10         |               | TO .                       | ن           | , EE                                  | 3                             | 164.5                                      | •                  | 0001               | Lust gauge during loading |
|             | ı             | . <b>1</b>                 | O           | 1,091                                 | i,                            | 9.75                                       | 57.                |                    |                           |
| 42-P-       | •             | ;                          | ڻ           | 4,091                                 | •                             | ξα3                                        | •                  | 1000               |                           |
| 61.7.000    | r             | 1                          | ,0          | 160 F                                 | ę,                            | 180.2                                      |                    |                    | Broke during loading      |
| 142-1-11    | 1             | •                          | ė           | 160 F                                 | ý.<br>5                       | 184.3                                      |                    | •                  | Broke during loading      |
| 1620k-115   | ι             | <br>                       | , J         | 1.00°F                                | ۴3                            | 130.4                                      | •                  | 1000               |                           |
| -1 -4-2-    |               | ر<br>م                     | ບ           | 3 307                                 | 8                             | nc.                                        | ,                  | 1000               |                           |
| 1-2-1-317   | υ             | 3.0                        | . 0         | 1.00°                                 | χ<br>U                        | 158                                        | .75                | •                  |                           |
| 41:- 7.71   | ſ             | ( )<br>( )                 | ن           | 4-00+                                 | 0.8                           | 111                                        |                    | 1000               |                           |
| 611-02      | •,            | 7, (24.5                   | ن           | ±,005                                 | Z                             | 151                                        |                    | •                  | Broke C. Ing loading      |
| ±           | <b>U</b>      | 9.064                      | ړ           | 4.00÷                                 | 66                            | 551                                        | ,                  | •                  | Broke during loading      |
| 1.24P-121   | £             | 0.045                      | O           | 600°F                                 | 90                            | 152                                        | ,                  | 1000               |                           |
| 19 7. 122   | D             | 1. (O.)                    | .0          | 4,009                                 | 97                            | 156                                        | ,                  | 1000               |                           |
| 1,248-124   | ပ             | 0.045                      | ņ÷          | ₹ 009                                 | 86<br>8                       | 106                                        | •                  | ı                  | Broke during loading      |
| 1927P-124   | Þ             | 0.045                      | °O          | و00 د                                 | 96                            | 162                                        | 1                  | •                  | Broke during loading      |
| 1929P-125   | •             | 7.0                        | •0          | F 009                                 | 96                            | 159                                        |                    | 1000               | Lost sause during loading |

|            |                            | 1                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Cost Atomisms (S. mit.) confession | 7           |       | ; ;<br>; ;                       |                                                  |                      |
|------------|----------------------------|------------------------|---------------------------------------|------------------------------------|-------------|-------|----------------------------------|--------------------------------------------------|----------------------|
| # 4        | Thickners<br>(Files) (In.) | म्<br>स्माः<br>(स्माः) | 071.0                                 |                                    | Stres level | (F21) | Tine<br>to<br>Falture<br>(Hours) | line<br>Applied<br>without<br>Fallure<br>(Hours) | Comment              |
| 76.0861    |                            | ا<br>ا                 | ø                                     |                                    | ž           | š. š. | •                                | 1000                                             |                      |
| 0.97       |                            | ż                      | <b>3</b>                              | ET.                                | ٠,          | 17.4  | •                                | 0001                                             |                      |
| 3.0        | ı                          | ٠.                     | .06                                   | a<br>Light                         | ŭ           | 1.97  |                                  | 1011                                             |                      |
| 16.11.00   | J                          | ξ.                     | 2                                     | Ė                                  | Ç           | 20.0  |                                  | ? <b>00</b> 1                                    |                      |
| 1030-105-1 |                            | 1 C J                  | .00                                   | :<br>E                             | ş           | 1.1-  | r                                | 1008                                             |                      |
| 1.006.1    |                            |                        | Ş                                     | 1691                               | 22          | 4     | 451.7                            | ,                                                |                      |
| 1930-102   |                            | 0,000                  | S.                                    | 140 1                              | <b>3</b>    | 23.3  | 45.7                             |                                                  |                      |
| - 1:3      | .,                         | <u>.</u>               | 3                                     | 1.091                              | Ç           | 14.1  | .03                              | •                                                |                      |
| 20.        |                            | c ·                    | . 06                                  | 4.097                              | S)          | 21.7  | 116.2                            | •                                                |                      |
| . 10,      | ı                          | 1.1.6                  | <b>S</b>                              | 1.001                              | s;          | 22.0  | 426.3                            | 1                                                |                      |
| .930:103   | 4                          | 9-1-                   | Ų÷                                    | d. 007                             | £3          | 22.5  | 25                               | •                                                |                      |
| ۔ ان       |                            | ô <del>k</del> .       | .06                                   | 400 F                              | 7           | 22.7  | •                                | •                                                | Broke during Loading |
| 5          | e<br>e                     |                        | هن.                                   | ±.00*                              | 96          | 21.8  | 258                              | c                                                | •                    |
|            |                            |                        | , Dé                                  | Ji. 00.                            | *           | 23.2  |                                  | •                                                | Broke during Loading |
| 1930-110   |                            | .;<br>3<br>.∍          | ° 06                                  | £.007                              | 92          | 22.2  | •                                | 1000                                             |                      |
| 111 060    |                            | 9-11 û                 | \$                                    | 1.009                              | 8           | 18.6  | 14.8                             | •                                                |                      |
| -          |                            | 5.                     | .06                                   | J. 009                             | 92          | 19.2  | •                                | •                                                | Broke during Loading |
| 1930-113   |                            | 1.1.52                 | •<br>\$                               | 1.009                              | 92          | 19.2  |                                  | •                                                | Broke during Londing |
| 114        | 9                          | 3                      | &                                     | ₹.009                              | z           | 19.6  | 4.4                              | •                                                |                      |
| 115        |                            | .051                   | \$                                    | 4,009                              | 92          | 10.2  | •                                | 1000                                             |                      |



 $\psi = \prod_{i \in I}$ 





## APPENDIX V

## DATA SUMMARY FOR 6A1-4V-TITANIUM/BORSIC COMPOSITES

IIT RESEARCH ENSTITUTE

## TABLE OF CONTENTS

## APPENDIX V

| Item | Description                                                                                      | Pages   |
|------|--------------------------------------------------------------------------------------------------|---------|
| 1    | Table XXIV - Static Properties Summary 6A1-4V-Titanium/BorSiC Components                         | 449-454 |
| 2    | Figs. 567 to 587 Static Stress Strain Curves                                                     | 455-460 |
| 3    | Table XXV - Fatigue Properties Summary 6Al-4V Titanium Matrix/BorSiC (5.7 mil) Composites        | 461-465 |
| 4    | Figs. 588 to 593 Fatigue SN Curves                                                               | 466-467 |
| 5    | Table XXVI Creep and Stress Rupture<br>Properties Summary - 6Al-4V-Titanium<br>BorSiC Composites | 468-469 |
| 6    | Fig. 594 Creep Strain Versus Time Curves                                                         | 470     |

TABLE XI IV STATIC PROPERTIES SUMMARY 6A1-4V-TITANIUM/BorSiC COMPOSITES

| (rientation  | May I age to   | Prior<br>Conditioning | Test Temp.<br>(*F)     | E (pst x 10 <sup>6</sup> ) | ,<br>(in/in) | oule<br>(kst) | *ult<br>(#-fa./in.) |
|--------------|----------------|-----------------------|------------------------|----------------------------|--------------|---------------|---------------------|
| 0.           | Tention        | None                  | RI                     | 38.8                       | 0.20         | 171           | 4,260               |
| ن.           | Tencion        | None                  | 700                    | 37.7                       | 0.22         | 170           | 057'7               |
| 0,           | Tention        | None                  | 009                    | 37.3                       | 0.23         | 145           | 3,960               |
| , <b>0</b>   | Tention        | None                  | 900                    | 37.9                       |              | 138           | 077'7               |
| .06          | Teri ion       | None                  | ĸ                      | 28.2                       | 97 0         | 85.1          | 8, 310              |
| , C <b>6</b> | Tention        | None                  | 007                    | 23.1                       | 0.15         | 53.9          | 5,050               |
| ۵۰ <u>5</u>  | Tention        | None                  | 600                    | 22.4                       | 0.17         | 0.72          | 3,630               |
| ↓0 <b>6</b>  | Tention        | None                  | <b>80</b> 0            | 24.2                       | ı            | 47.8          | 4,610               |
| ູ້ບ          | Compression    | N. SM.                | Þ                      | 36.8                       | 0.25         | 069           | 19, 500             |
| .0           | Compress.on    | None                  | 00%                    | 35.8                       | 0.23         | 198           | 19,170              |
| •0           | Comp Tess      | None                  | 900                    | 35.1                       | 0.23         | 629           | 18, 360             |
| • 0          | Cuar ress      | None                  | 900                    | 7. 7.                      | 0.23         | 577           | 20,000              |
| .06          | Comp resulton  | None                  | Ħ                      | 29.6                       | 0.17         | 506           | 11,480              |
| •06          | Cong ress lon  | None                  | <b>00</b> <del>7</del> | 29.7                       | 0.17         | 201           | 11,700              |
| .06          | Compresson     | None                  | 009                    | 28.7                       | 0.16         | 186           | 13,060              |
| .06          | Comp ress !.on | None                  | 800                    | 27.8                       | 0.13         | 195           | 14,030              |
| °            | Flexirel       | None                  | Ŀ                      | •                          | ı            | 218           | •                   |
| •0           | Flex arel      | Mone                  | 007                    | •                          | •            | 211           | •                   |
| , o          | Flexical       | Kone                  | 909                    | •                          | 1            | 192           | •                   |
| •            | i              | ;                     | 000                    |                            |              | (             |                     |

TABLE XXIV S.A.TIC PREPIRITIES STEERN 6A1-4V-111AN, "TB, FTS GO 4POSITES

| Orientecien | Type Lond    | Prior<br>Conditioning | Test Temp.<br>(*F) | E (pai × lt <sup>2</sup> ) | (in <sup>7</sup> in) | gult<br>(kai) | *ule<br>(#-£8./£8.) |
|-------------|--------------|-----------------------|--------------------|----------------------------|----------------------|---------------|---------------------|
|             | Tension      | 800°F/1000 Hrs        | KT                 | ا<br>الله                  | 0.22                 | 991           | 4, 290              |
| • 0         | I en g i on  | 8CU*F/1090 Hrs        | 907                |                            | 0.24                 | 156           | 7, 350              |
| ۲,          | I en si con  | 660°F'1000 Hr.        | <b>004</b>         | 35.3                       | 0.23                 | 136           | 3,780               |
| •           | Tens (on     | 800°F/1000 Hrs        | 008                | 35.7                       | •                    | 113           | 3,280               |
| °0.         | de la la     | 800°F/100 Hrs         | F                  | 27.3                       | 0.18                 | <b>8</b> .2   | 3,740               |
| ÷0÷         | 1675177      | 800°F/100 Hrs         | 007                | 25.7                       | 0 21                 | 6 09          | 4,310               |
| •04         | Tension      | \$00*7/100 Mrs        | 009                | 22.9                       | 0.24                 | 7 99          | 4,410               |
| .06         | Tens i on    | 800°F/100 Hrs         | <b>9</b> 00        | 23.2                       | •                    | 62.8          | 2,650               |
| , O+,       | Tension      | 800*F/500 Hrs         | Ħ                  | 23.6                       | 61.0                 | 59.5          | 3,090               |
| •00         | Tension      | 800*F/500 Hrs         | 904                | 23.4                       | 0.21                 | <b>6</b> 0.8  | 3,860               |
| ,<br>O      | Ten # Lon    | \$00°F/500 Hrs        | 009                | 5.12                       | 0.23                 | £ .2          | 3,7:0               |
| . 0,        | Tension      | \$00°F/500 Mrs        | 90                 | 13.7                       | ı                    | 39.8          | . 250               |
| ,0 <i>1</i> | Tene i oc.   | 800"F/1000 Mrs        | t                  | 25.5                       | 0.29                 | 51 C          | 2,140               |
| • US        | Tenston      | \$00°F/1000 Mrs       | 904                | 25 5                       | 0.29                 | \$0.0         | 2,630               |
| •0+         | Teneton      | 800°F/1000 Mars       | 909                | 23.3                       | 0.20                 | 7.00          | 1,940               |
| .03         | Tens Lon     | 800°F/1000 Mrs        | 00                 | 15.9                       | •                    | 25.8          | 3,160               |
| • 0         | Compression  | 800°F/100 Mrs         | 달                  | 37.7                       | 0.22                 | 653           | 20,730              |
| •0          | Compression  | 800"F/100 Hrs         | 004                | 35 7                       | 0.23                 | <b>%</b>      | 12,660              |
| •0          | Compress ton | \$00°F/100 Hrs        | 009                | 31.3                       | 0.20                 | 556           | 24, 590             |
| ċ           | Commercial   | 800°F/100 Mrs         | 004                | 31.9                       | 0.22                 | 535           | 16, 790             |

Õ

Çı

l

No Material Left

| <sup>e</sup> ult<br>(μ-fa./fa.) | 18,070         | 17,610        | 16,910            | 16,000        | 10, 320       | 10,000                | 8,400             | 9,360         | 10, 390        | 11,230         | 10,270           | 10,930        | 4,290         | 3,970         | 3,490         | 3, 200        | 4,790         | 4,120        | 3,860         | 3,950         |
|---------------------------------|----------------|---------------|-------------------|---------------|---------------|-----------------------|-------------------|---------------|----------------|----------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------|
| ult<br>(ksi)                    | 630            | 565           | 527               | 200           | 205           | 20%                   | 185               | 190           | 212            | 198            | 190              | 189           | 160           | 149           | 125           | 128           | 174           | 148          | 139           | 146           |
| ,<br>(1a/tn)                    | 0.23           | 6.23          | 0.20              | 0.21          | 0.16          | 91.0                  | 0.19              | 0.19          | 0 19           | 0 16           | 0.19             | 0 18          | 0.23          | 0.18          | 0.19          | •             | 0.22          | 0.20         | 0.24          | •             |
| psi x 10 <sup>f</sup>           | 34.6           | 8. ¥          | 33.6              | 32.9          | ब .<br>इ.स.   | 27.5                  | 27.5              | 27.4          | 24 h           | 28.1           | 28 2             | 25.1          | 38.2          | 38.7          | 38.4          | 39.6          | 38.0          | 7.07         | 1.15          | 39.1          |
| 4 (a.                           | <u>.</u>       | 007           | <b>6</b> 00       | 800           | r,            | 707                   | 909               | 008           | 1,7            | 00,            | 900              | 800           | RT            | 00,           | 069           | 900           | 臣             | 007          | 209           | 800           |
| Petor<br>Linditioning           | SH078/500 HES  | 800 T/500 Hrs | 800°F/500 Hrs     | 800 F/500 Hrs | 800 F/100 Hrs | 800 £/100 Hr.         | S007F/100 Hrs     | 800 F7100 Hrs | 800 F 7500 Hrs | 800°F/500 1:rs | 800°F/500 Hrs    | 800°F'500 Hrs | 800°F/100 Cy. | 800°F/100 Cy. | 800°F/100 Cv. | 800'F/109 C). | 800°F/500 Cy. | 800°F/500 Cy | 800°F/500 Cy. | 800°F/500 Cy. |
| Isal Leal                       | Compare es fon | Compression   | ريت 16 د و د الله | Le. pres. for | nores son     | <b>Wind</b> - Alleman | UO - 6 - BY HELVY | 62 - 1 - 5    | C. Marie Maria | Camprie - 1 m  | Combatter States | படர்க்கோர்வ   | Jensi. A      | Tension       | Tens ic       | Tensio        | Tension       | Tension      | Tention       | Tension       |
| rientation                      | ,0             | · ·           | ပ                 | , û           | aş.           | :<br>ق                | O.                | • C C         | ر<br>او        | £05            | £0.5             | ٠,            | c.            | 7             | ٥٠            | ő             | <u>.</u>      | °°           | •0            | •0            |

Ċ

6LE XXIII FILE PROPERTEE SCHAARS

| Orientation | Type Load        | Prior<br>Conditioning | rest lemp. | (ps1 x 10 <sup>6</sup> ) | (11/11) | ult<br>(kef) | <sup>e</sup> ult<br>(u-fn./fn.) |
|-------------|------------------|-----------------------|------------|--------------------------|---------|--------------|---------------------------------|
| -0          | Iension          | 800°F/1000 CN         | RT         | 1.6.                     | 0.31    | 148          | 070'7                           |
| , O         | Tension          | e F/1000 Cv.          | U0+        | 38.5                     | 0.21    | 141          | 3,910                           |
| 0,          | :ension          | 800°E/1000 CV         | 00+        | 40.4                     | 0.33    | 123          | 3,410                           |
| ÷0          | 1. 18 co 1       | 800°F/1000 Cv.        | HOU        | 32.2                     | ,       | 9.96         | 4,330                           |
| ≥06         | Tensin           | 800°F/100 Cy          | Rī         | 7.72                     | 0.19    | 9.87         | 3,260                           |
| ÷06         | Tenspor          | 890°E/100 Fe.         | 00+        | 26.2                     | 0.22    | 35.0         | 2,620                           |
| ್ಥಿರಿಕ      | Tension          | 800°F. LUO CH.        | 90.        | 24.7                     | 0.25    | 26.6         | 1,470                           |
| ,06         | C. William       | 800°F/100 Cv.         | 800        | 19.6                     | ,       | 29 1.        | 3,880                           |
| .06         | Tension          | 800°F/560 Cv.         | ĸŧ         | 26.7                     | 97.0    | 50.4         | 2,530                           |
| . 06        | Tension          | 80C°F/500 Cy.         | 700        | 21 6                     | 91.0    | 38.6         | 5, 300                          |
| .06         | Jension          | 800°F/500 Cy.         | 009        | 20.1                     | 0.16    | 30.4         | 2,370                           |
| ្តប្        | Tension          | 300°F/500 Cy.         | 9.00       | 20.2                     | •       | 26.5         | 3,090                           |
| ون<br>د     | Tension          | 800°F/1000 Cy.        | RŢ         | 22.9                     | 0.21    | 9.07         | 2,940                           |
| €06         | Sen <b>si</b> on | 800°F/1000 Cy.        | 4 90       | 7.12                     | 0.20    | 36.1         | 3,380                           |
| ≥0 <b>6</b> | Tension          | 800 F/1000 CV.        | 009        | 22.5                     | 0.22    | 30.4         | 2,350                           |
| 06،         | .ension          | 800°F/1000 Cy.        | 800        | 21.7                     | •       | 27.0         | 3, 380                          |
| ٠0          | Compression      | 800°F/500 Cy.         | RI         |                          |         |              |                                 |
| .0          | Compression      | 800°F/500 Cy.         | 700        |                          |         |              |                                 |
| 0.          | Compression      | 800 °F/300 C3.        | 009        |                          |         |              |                                 |
| ٥           |                  | 800'E/500 Cv.         | 800        |                          |         |              |                                 |

IABLE XXIV STATIC PROPERTIES COMPACTOR SALESTITIANTINGS OF TO CONTRACTORS

| ".lt<br>(in./in.)         | 957 11        | 027 71        | 10,290        | 11,030        |
|---------------------------|---------------|---------------|---------------|---------------|
| <sup>3</sup> ult<br>(ksf) | 203           | 197           | 182           | 182           |
| (in/in)                   | 6.19          | 0 15          | 0.20          | 0.19          |
| 01 8 ,54                  | 2<br>3        | 2, " 5        | 28 €          | 27.7          |
| Test Temp. (°F)           | RT            | 700           | 969           | 800           |
| Prior<br>Conditioning     | 800°F/500 Cy. | 800°F/500 Cy. | 800°F/500 Cy. | 800°F/500 Cv. |
| Type Load                 | Compression   | Compress: n   | Compression   | Compression   |
| Orlentation               | ۰ 06          | a06           | ್ತಿ06         | .06           |







THE REPORT OF THE PARTY OF THE





 $\frac{\tilde{\gamma}}{g}$ 

•

•



COMPRESSION STRESS-STRAIN DIAGRAM FOR 90° 6 AL-4V-TITANIUM/BorSic COMPOSITES TESTED AT VARIOUS TEMPERATURES AFTER 500 CYCLES EXPOSURE TO 800°F Fig. 587

は、「一般のでは、「他のでは、「なって、これをはない。」というない。 「他のでは、「他のでは、「他のでは、「他のでは、」」というない。 「はいいない」というない。 「はいいない」というない。 「はいいない これがられる これ

TATE OF THE PROPERTIES SUPPLY OF TANKING ROPES OF TANKING ROPES OF TANKING ROPES OF TANKING THE TANKING TANKIN

| Comment                                             |            |             |           |           |           |               |             |           |           |            |           |           |           |           |           |           |            |               |           |            |           |           |           |             |             |
|-----------------------------------------------------|------------|-------------|-----------|-----------|-----------|---------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|---------------|-----------|------------|-----------|-----------|-----------|-------------|-------------|
| Ress <sup>d</sup> us)<br>Strength<br>(kei)          | •          |             |           | •         | 1         | •             |             | •         | •         | •          | •         | •         |           | •         | 1         | ı         | •          | •             |           | 180        | •         | •         |           | •           | •           |
| Cycles<br>Applied<br>without<br>Failure<br>(cycles) | •          | •           | ٠         | •         | •         | I             | •           |           | •         | •          | •         | •         |           | •         | ı         | •         | •          | •             | ,         | 7.33 x 10° | •         | •         |           | •           |             |
| Cycles<br>to<br>Fallure<br>(cycles)                 | 34,000     | 39,000      | 12,000    | 000       | 76,000    | 000 71        | 2,000       | 1,000     | 000.61    | 30,000     | 000.81    | 29,000    |           | 1,000     | 76,000    | 14,000    | 41,000     | 000,19        | 211,000   | •          | 32,000    | 17,000    | 9.00      | 2,000       | 78. e11     |
| .eve 1<br>(ks1)                                     | 175        | ů,          | G<br>*    | 120       | 113       | 123           | <u>ي. ۲</u> | 120       | 115       | ž.         | 43        | 105       | 130       | 130       | <b>60</b> | 45        | <b>8</b> 5 | 75            | 9         | <b>2</b>   | 9         | +62       | 1,00      | <b>2</b> ,5 | 2,          |
| Stress Lavel                                        | 7.3        | 76          | 25        | 70.5      | (7.5      | 73.5          | 76.5        | 70.5      | £         | 6.5        | 65.5      | 72.5      | 83        | 89.5      | 58.5      | 69        | 61.5       | 54.5          | 43.5      | 36         | 474       | 55.5*     | 7 7       | * 1         | <b>L</b> ,7 |
| Tanp.                                               | , TŒ       | KT.J        | СĽУ       | eT.       | K II      | 1,00          | <b>.</b> 3€ | 3.007     | J. 00.    | 4 007      | 4,000     | FOO F     | 3.009     | J. 009    | 4 du9     | 3,008     | ¥.009      | €00°F         | £009      | 3,00g      | Ę         |           | £         | 2           | 011         |
| h-Rat I.v                                           | ٥. ١       | 0.1         | 0.1       | ···c      | ů.:       | . :           | <b>-</b>    | ٠.1       | 0         | ن.:        | 0.1       | 0.1       | 1.0       | ٠.٠       | 0.1       | 0         | 0.1        | 0.1           | 0.1       | 0.1        | -1        |           | 7         | <b>.</b>    | 7-          |
| Orientation                                         | 2          | -           | •         | ,         | ۲.        | ¢.            | •           | •         |           |            |           | r,        | 19        | Ö         | 0         | . 0       | ی          | 0,            | ٥٠        | Û          | •0        | .0        | .0        | • •         | •0          |
| ess<br>(In.                                         | ر.<br>برور | ن<br>ا<br>ا | 0.047     | 14:1.0    | 0.6-      | 6.04s         | \$ 70°      | 1300      | 0         | 5+3.0      | 0.05.     | 0.050     | 0.051     | 0.051     | 0.050     | 0.048     | 6.6        | . <b>6</b> .0 | 0.048     | 0.043      | 0,043     | 0,043     | 0.042     | 0.038       | 0.043       |
| Thickness (Plies) (In.                              | t          | 4-          | Φ         | ·         | vc.       |               | w           |           |           |            | 9         | φ         |           |           |           | vc        | ن، ر       |               |           |            | 40        |           |           | 9           | ø           |
| Specimen                                            | SN26-18-1  | SN26-16-4   | SN26-18-7 | SN26-1C-2 | SN26-1C-5 | SN26 - 10 - 8 | SN26-10-3   | SN26-10-6 | SN26-1D-9 | 57.26-23-1 | SN26-23-4 | SN26-25-7 | SN26-2C-2 | SN26-2C-5 | SN26-2C-8 | F-02-9283 | SN26-20-6  | SN26-22-9     | SN26-38-1 | SN26-3B-4  | SX26-5B-1 | SN26-58-2 | SN26-5B-3 | SN26-58-4   | SN26-5C-1   |

TABLE XXV. FATIGUE PROPERTIES SUPPARY
641-4V TITANIUM BURSIC
15. mil) COMPOSITES BASELINF DATA

| ,           | Thie     | Thickness     |             |         | Test        |               |                  | Cycles                                                             | Cycles<br>Applied | Residue           |                   |
|-------------|----------|---------------|-------------|---------|-------------|---------------|------------------|--------------------------------------------------------------------|-------------------|-------------------|-------------------|
| Member      | (11166)  | (Flies) (In.) | Orientation | R-Xat i | Tog.<br>(*) | (T'ult) (kai) | ( <b>jes</b> )   | Fatlure<br>(cycles)                                                | Failure           | Strength<br>(ks1) | Š                 |
| SN26-5C-2   | ų        | 3             | ذ           | -       |             |               | ä                |                                                                    |                   |                   |                   |
| EN25-50-3   | 40       | 3             | ·c          |         |             |               |                  |                                                                    |                   | •                 |                   |
| SN26-5C-4   | ع        | 1-1-0<br>0    | · c         | -       | . L         | : :           | ; :              | 903.47                                                             | •                 |                   |                   |
| SNZ6-50-1   | ء د      | . 1<br>. 1    |             | 7.      | -<br>•      |               |                  |                                                                    |                   | ٠                 |                   |
| SN26-5D-2   | •        | 9r) 0         | . C.        |         | (S) 4       | <u>.</u>      | £ =              | 200<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 1 +               | • 1               |                   |
| 1           |          |               |             |         |             |               |                  | •                                                                  |                   | )                 |                   |
| 5.426-50-3  | ، ث      | 0.044         | (5          | -       | ¥ 1604      | :             | ,<br>a,          | 000                                                                | ,                 |                   |                   |
| 1-89-1-58-I | ۰        | 53.0          | <b>်</b>    | -1      | 4(1)4       | ;<br>-        | ÿ0.              | .00                                                                | •                 | •                 |                   |
| 5.827-68-2  | vo       | ິດ5ດ          | c           |         | 1, 1414     | :<br>2        | <u>.</u>         | 18,000                                                             | •                 | •                 |                   |
| SN27-6B-3   | υ        | 0.051         | ű           |         | Ŏ.          | \$ US         | <u>0</u>         | 9                                                                  | •                 |                   |                   |
| SE27-6C-1   | ٥        | 0.051         | ¢,          |         | 1, 009      | ٠,٠           | غَ<br>ا          | 90,00                                                              | •                 | · ,               |                   |
| SH27-6C-2   | Ð        | 0.053         | ů           | -       | 1:OX        | 1 200         |                  |                                                                    |                   |                   |                   |
| SN27-6C-3   | vo       | 0.0           | O           |         | 1,00        |               |                  |                                                                    |                   |                   |                   |
| SN27-6D-1   | ψ        | 0.05          | 0           | • -     | #_[11]#     |               |                  |                                                                    |                   |                   |                   |
| SN27-6D-2   | 90       | 0.05          | ۍ د         | -       | ROO F       | 14.00         | Tent of Services |                                                                    |                   |                   |                   |
| SX27-6D-3   | •0       | 0.053         | 9,          | 1-      | 8001°F      | 1086          | Tests were not   |                                                                    |                   |                   |                   |
| SN25-58-1   | 9        | 0.043         | ,0          | 10      | , <b>IX</b> | -1            | ě,               | •                                                                  | 2 51 2 106        |                   |                   |
| SN25-58-2   | •        | 0.043         | <b>້</b> ວ  | 2       | £           | . <b>C</b> .  | 9.1-             | 1 016 000                                                          |                   | Ì,                |                   |
| SN25-58-3   | vo       | 0.044         | •0          | 01      | £           |               | - 105            |                                                                    | , , , , , , ,     | , <u>1</u>        |                   |
| S:/25-5c-1  | φ        | 0.045         | . 0         | 10      | £           |               | .173             | 344,000                                                            |                   | } .               |                   |
| S325-5C-2   | 9        | 9,046         | 0 د         | 10      | £           |               | -185             | 1,677,000                                                          | •                 | •                 |                   |
| 5/25-50-3   | 9        | 0.046         | •0          | 10      | 3.007       | 28            | -185             | U00 967                                                            | •                 | •                 |                   |
| SN25-50-1   | •        | 0.044         | •0          | 10      | 4,007       | 30            | -200             | 000                                                                |                   | •                 |                   |
| 5725-50-2   | •        | 0.045         | ó           | 61      | 1.005       |               | -220             | 000                                                                | •                 | •                 |                   |
| SH25-50-3   | •        | 0.045         | 0،          | 01      | 4.007       | 33            | -210             |                                                                    | •                 | •                 | Immediate Bathur. |
| One Spec.   | c. Singe |               |             |         |             |               |                  |                                                                    |                   |                   |                   |

| Specimen<br>Number | Thickness<br>(Plies) (In.) | ness<br>(In.) | Grientation  | R-Ratio | Test<br>Temp.<br>(*F) | her se Livel | Live:            | Cycles<br>to<br>Failure<br>(cycles) | Cyclis<br>Applied<br>without<br>Failure<br>(cycles) | Residual<br>Strength<br>(ksi) | Сошности           |
|--------------------|----------------------------|---------------|--------------|---------|-----------------------|--------------|------------------|-------------------------------------|-----------------------------------------------------|-------------------------------|--------------------|
| 5427-32-1          | 4                          | F 5 J         | J            | 01      | 3 18)9                | 11           | -180             | -                                   | •                                                   | •                             |                    |
| SN27-38-2          | , ,0                       | 0.0           | •            | 21      | 4.003                 | <b>58</b>    | -160             | 2.000                               |                                                     | •                             |                    |
| SN27-3A-3          | 5                          | 850.0         |              | : 9     | 1000                  | 1            | 071-             | 759,030                             | •                                                   |                               |                    |
| SN27-34-4          | 9                          | 0.016         | 5            | 10      | 4,009                 | 9,           | -150             | • •                                 | •                                                   | •                             | Immediate Failure  |
| SN27-3A-5          | 9                          | 0.049         | i.e.         | 10      | a (00) a              | 57           | -145             | 32,000                              | •                                                   | •                             |                    |
| SN27-32-6          | a                          | 0.030         | U            | 10      | 800 F                 | - Test       | s were no        | ב בתני                              |                                                     |                               |                    |
| SN27-3A-7          | 40                         | 650.0         | U            | 10      | SOU F                 | - Test       | S were no        | The second of the second            |                                                     |                               |                    |
| SN27-3A-8          | J.                         | 0.047         | i,           | 10      | 800 F                 | - Test       | - Tests were not | י שתבי ז                            |                                                     |                               |                    |
| SN27-34-9          | þ                          | 0.048         | 6            | 10      | 800 · F               | - Test       | s were no        |                                     |                                                     |                               |                    |
| SN27-3A-10         | ۵                          | 340.0         |              | 10      | 800 °F                | · Test       | S Were Du        | <b></b>                             |                                                     |                               |                    |
| SN26-24-22         | ¢                          | 0,040         | Ú÷.          | 0.1     | RT                    | 70.3         | 09               | ,                                   | ,                                                   |                               | immediate Pail tre |
| SN26-35-21         | ų                          | 0,046         |              | 0.1     | RTD                   | 53           | 57               | 000                                 | •                                                   |                               |                    |
| SN26-3A-22         | ۵                          | 9,0.0         | , ?,         | 0.1     | RTD                   | 35           | 30               | 8,000                               | •                                                   | •                             |                    |
| SN26-4A-21         | 9                          | 370.0         | , CT         | 0.1     | RTD                   | 23.5         | 20               | 34,000                              |                                                     |                               |                    |
| SN26-4A-22         | æ                          | 0.048         | <u>.</u> ن   | 6.1     | RTD                   | 12           | <u> </u>         | •                                   | 2.15 × 10°                                          | 51.2                          |                    |
| SN27-2A-1          | 9                          | 0,043         | 96           | 0,1     | 4,00%                 | 93           | 20               | 3,000                               | ,                                                   | •                             |                    |
| SN27-2A-2          | 9                          | 0.044         | 06)          | 1.0     | 4.00%                 | 74           | 07               | 000°s                               | •                                                   | •                             |                    |
| SN27-2A-3          | 9                          | 0.644         | , 06         | 0.1     | 4.004                 | <b>56</b>    | 30               | 27,000                              | •                                                   | •                             |                    |
| SN27-2A-4          | 9                          | 770 0         | <b>36</b> و  | 0.1     | 4.00 ÷                | 46.5         | 25               | 206,000                             |                                                     |                               |                    |
| SN27-2A-5          | •                          | 950.0         | "ე6          | 0.1     | £,007                 | 33           | 20               | ₹<br>000                            | •                                                   | •                             |                    |
| SN27-2A-6          | 9                          | 0,047         | , ú <b>6</b> | 0.1     | 4.009                 | *            | 45               | •                                   | •                                                   |                               | Immediate Failure  |
| SH27-2A-7          | 9                          | 2750          | <u>، ن</u> 6 | 0.1     | 600°F                 | 42.5         | 20               | 23,000                              | •                                                   | •                             |                    |
| SN27-24-8          | 9                          | 0.047         | , 0 <b>6</b> | 0.1     | £009                  | 79           | 30               | 000.4                               | ٠                                                   | •                             |                    |
| SN27-24-9          | 9                          | 873.0         | °06          | 0.1     | ¥,009                 | 32           | 21               | 67,000                              |                                                     |                               |                    |
| SN27-14-10         | 9                          | 0.047         | ့ပ <b>6</b>  | 0.1     | ₽.009                 | 21           | 10               | 134,000                             | •                                                   | •                             |                    |

TABLE XXV FATTURE PROPERTIES SCHMANY
6A1-4V TITANTIV BOESS
(5.7 of 1) COSPOSTIES RASELLNI DATA

| Specimen<br>Nurber                                                 | Thickness<br>(Flies) (In | Thickness<br>(Fifes) (In.)                   | Orientation                             | N-Ratio       | Test<br>Temp.<br>(°F)                    | Ctriss Live!                              | uve!<br>(ket)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cycles Ed Ed Saflure (cycles)                                                                                               | Cycles<br>Applied<br>without<br>Failure<br>(cycles) | Residual<br>Strength<br>(ks.1) | Comment                                                                           |
|--------------------------------------------------------------------|--------------------------|----------------------------------------------|-----------------------------------------|---------------|------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|
| SN27-2A-11<br>SN27-2A-12<br>SN27-2A-13<br>SN27-2A-14<br>SN27-2A-14 | <b>ተ</b> መጠመግ            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | , , , , , , , , , , , , , , , , , , ,   | <b>555</b> 55 | 3.008<br>3.008<br>3.008                  | ·                                         | 95883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13,001<br>2,644<br>7,600<br>-                                                                                               | 1 1 ( 1 1                                           |                                | Failed under Stat Load                                                            |
| SN26-5A-21<br>SN26-5A-2<br>SN26-5A-3<br>SN26-5A-4<br>SN26-5A-4     | 99999                    | 0.042<br>0.043<br>0.043                      | 900<br>666<br>1066<br>1066<br>1066      | त्त्रात्      | KTTC<br>KTTC<br>KTTC<br>KTTC<br>KTCC     | 35 × 17 × 17 × 17 × 17 × 17 × 17 × 17 × 1 | ## # # # <br>\$\sum_c \dagger \dag | 2,000                                                                                                                       | 3.0 × 10 <sup>6</sup>                               | •                              | lamediate Prilure<br>Immediate Prilure<br>Failed in Northing<br>Immediate Prilure |
| SN26-5A-6<br>SN26-5A-7<br>SN26-5A-8<br>SN26-5A-9<br>SN26-5A-10     | <b>ወ</b> ውጥ <b>ወ</b> ወ   | 0.045<br>0.045<br>0.043<br>0.043             | , , , , , , , , , , , , , , , , , , ,   | 7777          | # 0007<br># 0007<br># 0007<br># 0007     | 76.05<br>55.55<br>46.05                   | +1+1+1 ++1<br>5 % % % 0<br>1 % % % 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21,000<br>1,000<br>5,000                                                                                                    | -<br>-<br>2.675 x 10 <sup>6</sup>                   | -<br>-<br>-112                 | Immediate Prilure                                                                 |
| SN26-5A-11<br>SN26-5A-12<br>SN26-5A-13<br>SN26-5A-14<br>SN26-5A-15 | ଦନ୍ଦ୍ର                   | 0.00<br>0.042<br>0.042<br>0.043<br>0.043     | 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44444         | 3,009<br>4,009<br>4,009<br>4,009         | 53.5;<br>42.5;<br>32.4                    | +1+1+1+1<br>20<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000<br>3,000<br>356,000<br>53,000                                                                                         |                                                     | , , , , ,                      |                                                                                   |
| SN26-5A-16<br>SN26-5A-17<br>SN26-5A-18<br>SN26-5A-19<br>SN26-5A-20 | மைம்மை                   | 0.043<br>0.044<br>0.044<br>0.043             |                                         | 7777          | 800 ° F<br>800 ° F<br>800 ° F<br>800 ° F | TITEST TEST TEST TEST TEST TEST TEST TES  | Tests were not run<br>Tests were not run<br>Tests were not run<br>Tests were not run<br>Tests were not run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tests were not run - Tests were not run |                                                     |                                |                                                                                   |

\* From tensile ultimate stress

TO WAS FAIL TO PROPERTIES STOMASTOR FAILS OF STOMASTOR

FAILT THANKE 6 PS10

| Co∎€nt                                   |                                      |                        |                                                  | Immediate Failure<br>Immediate Failure                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|--------------------------------------|------------------------|--------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residual<br>Strength<br>(ksf)            | 231                                  |                        | 130                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cycl. 8 Applied without Failure (cycles) | 10.3 × 10 <sup>6</sup>               |                        | 3.016 x 10 <sup>6</sup>                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cycles to Eatlure (cycles)               | 137,000                              | 1,000                  | 2,000<br>4,000<br>110,000<br>215,000             | 45,000<br>2,000<br>-<br>557,000                                    | C Tun (C  |
| Stress Level                             | -100                                 | -130<br>- 95           | -100<br>-120<br>-110<br>-105                     | -100<br>-115<br>-105<br>-110                                       | were not were not were not were not were not were not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Stress Level                             | 87,<br>8,6                           | 62<br>45.5             | 49.5<br>60<br>55<br>52.5<br>57.5                 | 53<br>61.5<br>56<br>58.                                            | Teats<br>Tests<br>Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test<br>Temp<br>(字)                      | RTE<br>RTI)                          | gg g                   | 4,007<br>4,007<br>4,007                          | 4,009<br>4,009<br>4,309<br>4,009                                   | 800°F<br>800°F<br>800°F<br>800°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| R-Ratio                                  | 10<br>10                             | 01                     | 01<br>10<br>10<br>01<br>01                       | 10<br>10<br>10<br>10                                               | 10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Orientation                              | 6 . 6<br>9 6 5                       | - 06<br>- 06           | , ° ; ; ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °          | , 06<br>06<br>06                                                   | , 06<br>06<br>06<br>06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nesa<br>(In.)                            | 0.032                                | 0.053                  | 0.053<br>0.053<br>0.054<br>0.054                 | 0.052<br>0.051<br>0.052<br>0.052                                   | 0.052<br>0.053<br>0.053<br>0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Thickness<br>(Plies) (In.)               | <b>மை</b> ம                          | o o o                  | <b>ကားသတ္</b> ကာ                                 | <b>2</b> 00000                                                     | <b>\$</b> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Specimen<br>Wasser                       | SN27-6A-21<br>SN27-6A-2<br>SN27-6A-3 | SN27-6A-4<br>SN27-6A-5 | SN27-64-6<br>SN27-64-7<br>SN27-64-8<br>SN27-64-9 | SN27-6A-11<br>SN27-6A-12<br>SN27-64-13<br>SN27-64-14<br>SN27-6A-14 | SN27-6A-16<br>SN27-6A-17<br>SN27-6A-18<br>SN27-6A-19<br>SN27-6A-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

The state of the same of the s





TABLE DAY: CREEP AND STRESS RUPTURE PROGRETES - PORCHY 6A1-4V TITANIUM BOYSIC (5.7 · i); COMPOSITES

|                    |              |                         |                |                       |                 |                           | Time                     | Time                          |                          |
|--------------------|--------------|-------------------------|----------------|-----------------------|-----------------|---------------------------|--------------------------|-------------------------------|--------------------------|
| Specimen<br>Number | Thd<br>(Plie | Thickness (Plies) (In.) | Orientation    | Test<br>Temp.<br>(*F) | Stress<br>(Tult | Stress Level (Tult) (ksi) | to<br>Fallure<br>(hours) | without<br>Failure<br>(hours) | Comment                  |
| SW26-38-7          | 9            | 0.048                   | .0             | 2                     | 25              | 147.5                     |                          | <br>                          | Broke during leading     |
| SH26-3C-3          | • •          | 0.051                   | , 0            | ₽                     | 8               | 141.3                     | •                        | 1000                          |                          |
| SN26-3C-5          | 9            | 0.051                   | .0             | RTD                   | 93              | 146.0                     |                          | 1000                          | Lost gage @ 3 min.       |
| SN26-3C-8          | ψ            |                         | ູ້ກ            | RTD                   |                 |                           |                          |                               | broke during fabrication |
| SN26-33-3          | ·Li          | 0.053                   | Û              | RTD                   | 92              | 144.4                     | •                        | 1000                          |                          |
| 3N26-3D-6          | Ψ            | 6-0.0                   | 0,             | ₫.007                 | 85              | 144.5                     | •                        | ,                             | Broke during leading     |
| SNZ6-3D-9          | Ψ            | 0.049                   | .0             | 4,00¢                 | 79              | 134.3                     | •                        | •                             | Broke during lending     |
| SN2C-48-1          | ¥            | 0,048                   | 0 ۽            | 4.007                 | 06              | 153.0                     | 11.3                     |                               | Broke in Middle          |
| SN26-4P .4         | 'n           | 0.04%                   | 0 ،            | 4.007                 | 88              | 149.6                     | 910.                     |                               | Broke in Middle          |
| SN26-48-7          | ψ            | 0.049                   | 0,             | ₹.007                 | 82              | 139.0                     | •                        |                               | Broke during leading     |
| \$X26-4C-2         | 9            | 0.052                   | 0.             | 4.009                 | 85              | 121,8                     | •                        | ı                             | Broke during lending     |
| SW26-4C-5          | 9            | 0.053                   | <sub>.</sub> 0 | 4.009                 | <b>3</b> 2      | 122.9                     | 050                      | •                             |                          |
| SN26-4C-8          | 9            | 0.052                   | .0             | ₫,009                 | 83              | 118.6                     |                          | •                             | Broke after 2 hours      |
| 5,426-40-3         | ø            | 0.052                   | 0,             | £.009                 | 9               | 128.7                     | •                        |                               | Broke during lending     |
| SN26-40-6          | w            | 0.053                   | 0,             | 9,009                 |                 |                           | •                        | •                             | Broke during lesding     |
| 6-07-92NS          | yo           | 0.052                   | , O            | 800 °F                | 980             | 108.8                     | •                        | •                             | de rie                   |
| SN28-44-3          | vo           | 0.054                   | ,0             | ₹.002                 | *               | 130,5                     | •                        | •                             | Broke during it ading    |
| SN28-4A-4          | vo           | 0.054                   | ,0             | 800 °F                | 9               | 122.4                     | •                        | •                             | 1                        |
| SN28-4A-5          | w            | 0.054                   | ٥.             | 3.000 F               | ż               | 127.8                     | •                        | •                             | į                        |
| SN28-64-6          | 40           | 0.056                   | •0             | 4.008                 | 85              | 115.6                     | . 167                    |                               |                          |

TABLE XXVI (REEP IV SUR SS CUIDA PROGRAM CONDINCT PROGRAM)

| Specimen<br>Number | Thic<br>(Pite | Thiciness<br>(Plies) (In.) | Orientation  | Test<br>Temp.<br>(*f) | Stress<br>(*Outr | Stress Level<br>("Oult) (MB1) | Time to Failure (hours) | Time Applied Without Feilure (hours) | Comment                  |
|--------------------|---------------|----------------------------|--------------|-----------------------|------------------|-------------------------------|-------------------------|--------------------------------------|--------------------------|
| SN25-5A-1          | ص             | 0.047                      | 06           | GT.                   | 8                | 58                            | ,                       | <br> <br> <br>                       | Broke during loading     |
| N25-5A-2           | ıΩ            | 840.0                      | : 06         | RTD                   | 89               | 63.8                          | •                       | •                                    | Broke during loading     |
| SR25-5A-3          | φ             | 6.0                        | . 06         | CF3                   | ž                | 6.09                          | •                       | •                                    | Broke during loading     |
| 3N25-5A-4          | ø             | 0.047                      | , <b>C</b> o | RTD                   | 17               | 7.62                          | •                       | 1000                                 | ,                        |
| SN25-5A-5          | φ             | 0.048                      | ,06          | RTD                   | 20               | 36.2                          | •                       | 1001                                 |                          |
| N25-5A-6           | 9             | 0.048                      | . 06         | J. 007                | 85               | 45.8                          | ,                       | •                                    | Broke during loading     |
| SN25-5A-7          | φ             | 0.047                      | - 06         | 4.007                 | 92               | 6.04                          | •                       | •                                    | Broke during loading     |
| N25-5A-8           | v             |                            | - 06         | 4.007                 |                  |                               |                         |                                      | Broke during Eubrication |
| N.25-5A-9          | Ð             | 0.049                      | .06          | 3.007                 | 78               | 42.0                          | •                       | •                                    | Broke during loading     |
| SN25-5A-10         | φ             | 970.0                      | . 06         | 4.00¢                 | <b>9</b>         | 43.1                          | .033                    | •                                    | Brcke                    |
| N25-5A-11          | 9             | 0.041                      | ∘ 06         | ₫. 009                | 8                | 42.3                          | ı                       | ١                                    | Broke during loading     |
| N25-5A-12          | ø             | 0.041                      | ₌0 <b>6</b>  | 4.009                 | <b>.</b>         | 39.9                          | •                       | •                                    | Broke during loading     |
| N75-54-13          | 9             | 0.041                      | : 06         | £ 009                 | 80               | 37.ń                          | 1.0                     | •                                    |                          |
| SN25-5A-14         | ů.            | 0.042                      | . 06         | €000°F                | 83               | 39.0                          | •                       | •                                    | Broke during loading     |
| SN25-5A-15         | w             | 0.042                      | . 06         | 4.009                 | 7.8              | 36.6                          | .033                    | ı                                    |                          |
| SN25-54-16         | v             | 0.050                      | , 06         | 3.008                 | 88               | 42.0                          | •                       | •                                    | Broke during loading     |
| N25-5A-17          | છ             | 0.050                      | : 0 <b>6</b> | 800°F                 | <b>8</b>         | 38.2                          | •                       | •                                    | Broke during loading     |
| 3N25-5A-18         | 9             | 0,050                      | .06          | 9.008                 | 78               | 37.2                          | •                       | 1                                    | Broke furing loading     |
| SN25-5A-19         | v             | .051                       | .06          | 3.009                 | 75               | ر<br>م                        | •                       | ı                                    | Broke during loading     |
| C175 5-54-20       | v             | 0.00                       | •06          | #-008                 | z                | 40.4                          | •                       | •                                    | (Ran 1.8 bours)          |



TENSILE CREEP STRAIN VERSUS TIME CURVES FOR 0° 6A1-4V-TITANIUM BORSIC COMPOSITES TESTED AT ROOM TEMPERATURE Fig. 5.94

O