Tute 05

01)
$$X-time$$
 that elapses between the start and the the time the officer signs.

$$f(x) = \begin{cases} kx^2 & 0 < \pi < 10 \\ 0 & 0 \end{cases}$$

$$f(x) \cdot dx = 1$$

$$\int_{0}^{\infty} f(x) \cdot dx = 1$$

$$\int_{0}^{\infty}$$

d)
$$V(x) = E(x^2) - E(x)^2$$

$$E(x) = \int_{0}^{10} x \cdot f(x) \cdot dx = \int_{0}^{10} x \cdot k \cdot x^2 \cdot dx$$

$$= \frac{3}{1000} \int_{0}^{10} x^3 \cdot dx$$

$$= \frac{3}{1000} \left[\frac{x^4}{4} \right] = \frac{3}{1000} \times \frac{10000}{4}$$

$$= \frac{30}{4} = \frac{3}{100} \times \frac{10000}{4}$$

$$= \frac{30}{4} = \frac{3}{100} \times \frac{100000}{4}$$

$$= K \int_{0}^{10} x^4 \cdot dx$$

$$= K \int_{0}^{10} x^4 \cdot dx$$

$$= K \left[x^5 \right]_{0}^{10}$$

$$= \frac{3}{100000} \times \frac{1000000}{5} = \frac{3}{1000000} = \frac{3}{5}$$

$$= \frac{3}{10000000} \times \frac{1000000}{5} = \frac{3}{5}$$

$$= \frac{3}{1000000} \times \frac{1000000}{5} = \frac{3}{5}$$

$$= \frac{3}{1000000} \times \frac{1000000}{5} = \frac{3}{5}$$

$$= \frac{3}{1000000} \times \frac{1000000}{5} = \frac{3}{5}$$

$$= \frac{3}{10000000} \times \frac{1000000}{5} = \frac{3}{5}$$

$$= \frac{3}{100000000} \times \frac{1000000}{5} = \frac{3}{5}$$

$$= \frac{3}{10000000} \times \frac{1000000}{5} = \frac{3}{5}$$

$$= \frac{3}{100000000} \times \frac{10000000}{5} = \frac{3}{5}$$

$$= \frac{3}{10000000} \times \frac{10000000}{5} = \frac{3}{5}$$

$$= \frac{3}{100000000} \times \frac{10000000}{5} = \frac{3}{5}$$

x - time taken to assemble a car x~ N(20,22)

a)
$$P(X < 19.5) = P(X - M < 19.5 - M)$$

$$= P(Z < 19.5 - 20)$$

$$= P(Z < -0.25)$$

$$= 0.40129$$

b)
$$P(20 \le X \le 2^2) = P(20-20 \le Z \le 2^2 \le 2^2)$$

$$= P(O(Z(Z(I)))$$

$$= P(Z(Z(I))) - P(Z(Z(I))$$

a)
$$p(x>80) = p(Z>80-70) = p(Z>\frac{10}{10})$$

$$= \rho(Z>1)$$

$$\begin{array}{l} \text{(64)} & \times \text{-speed of a car} \\ & \times \text{N}(90, 10^2) \\ & P(x > 100) = P(Z > 100 - 90) = P(Z > 1) \\ & = 0.15866. \\ & = 0.15866. \\ & \times \text{- birth weight of a baby.} \\ & \times \text{N}(3500, 500^2) \\ & P(x < 3100) = P(Z < 3100 - 3500) \\ & = P(Z < -0.8) = 1 - P(Z > -0.8) \\ & = 1 - 0.78814 \\ & = 0.21186. \\ & \times \text{N}(70, 2^2) \\ & \text{a)} & P(x > 73) = P(Z > 73 - 70) = P(Z > 1.5) \\ & = 0.06681. \\ \end{array}$$

b)
$$P(12(X<13)) = P(\frac{72-70}{2}< \frac{73-70}{2})$$

= $P(1 < 2 < 1.5)$
= $P(2 > 1) - P(2 > 1.5) = 0.15866 - 0.06681$
= $P(2 > 1) - P(2 > 1.5) = 0.09185$

c)
$$P(x>h) = 20\%$$
.
 $P(Z>h-70) = 0.2$

$$\frac{1}{0.2} = 0.84$$

$$\frac{1}{0.84} = \frac{h-70}{2} = 0.84$$

$$\frac{1}{0.84} = \frac{h-70}{2} = 0.84$$

$$\frac{1}{0.84} = \frac{1}{1.68}$$

d)
$$p(x(h) = 0.2$$

 $p(x(h) = 0.2) = 0.2 = D P(z)h-70 = 0.8$
 $-0.84 = h-70$
 $-0.84 = h$
 $-0.84 = h$

$$-0.84 = h-70$$

$$-1.68 = h-70$$

$$70-1.68 = h$$

$$h = 68.32$$

(07) X - Speed of a vehicle
$$\times \sim N(71,8^2)$$

a)
$$P(x \le 6.5) = P(Z \le 6.5 - 71) = P(Z \le -0.75)$$

= 1- $P(Z \ge -0.75)$
= 1- $P(Z \ge -0.75)$
= 0.22663

b)
$$P(X < 50) = P(Z < 50-71)$$

= $P(Z < -2.625)$
= $1-P(Z \ge -2.625)$
= $1-0.99573$
= 4.27×10^{3}

c)
$$P(x>s) = 0.1$$

 $P(Z>5-71)=0.1$
 $\frac{5-71}{8}=1.28$
 $\frac{5-71=10.24}{5=81.24}$

$$P(X(m) = 0.3)$$

$$P(Z(m-120)=0.3$$

$$P(Z > \frac{m-120}{17}) = 0.7$$

$$\frac{m-120}{17} = -0.53$$

$$m-120 = -9.01$$

$$m = 110.99$$

19 = 1000 = 400

Question 09

Let X – Waiting time until the next customer arrives in minutes. ($X \ge 0$)

Given that $\lambda = 20$ per hour. Then, $\lambda = 20/60$ per minute = 1/3 per minute

Thus, $X \sim \text{Exp}(\lambda=1/3)$

Then,
$$P(\text{Next customer arrives within 6 minutes})$$
 = $P(X \le 6)$ = $\int_0^6 f_X(x) \, dx$ = $\int_0^6 \lambda e^{-\lambda x} \, dx = \lambda \int_0^6 e^{-\lambda x} \, dx$ = $\lambda * \left[\frac{e^{-\lambda x}}{-\lambda} \right]_0^6$ = $\left[-e^{-\lambda x} \right]_0^6$ = $\left[-e^{-\left(\frac{1}{3} \right) * 6} \right) - \left(-e^0 \right)$ = $\left(-e^{-2} \right) + 1$ = 0.8647

Question 10

Let X – Time required to repair a machine in hours. ($X \ge 0$)

Given that $\lambda = 0.5$ downs per hour and $X \sim \text{Exp}(\lambda=0.5)$

a) Then,
$$P(\text{Repair time exceeds two hours}) = P(X>2) = \int_{2}^{\infty} f_{X}(x) dx$$

$$= 1 - P(X \le 2) = 1 - \int_{0}^{2} \lambda e^{-\lambda x} dx$$

$$= 1 - \lambda \int_{0}^{2} e^{-\lambda x} dx$$

$$= 1 - \lambda * \left[\frac{e^{-\lambda x}}{-\lambda} \right]_{0}^{2}$$

$$= 1 - \left[-e^{-\lambda x} \right]_{0}^{2}$$

$$= 1 - \left((-e^{-0.5*2}) - (-e^{0}) \right)$$

$$= 1 + (e^{-1}) - 1$$

$$= (e^{-1})$$

$$= 0.3679$$

b) This problem is out of syllabus.