

Ejercicio 2.3

[71.14] Modelos y Optimización I Curso 4 $2 \hbox{C 2021}$

Alumno:	Grassano, Bruno
Número de padrón:	103855
Email:	bgrassano@fi.uba.ar

$\mathbf{\acute{I}ndice}$

1.	Enunciado	2
2.	Análisis de la situación problemática	2
3.	Objetivo	2
4.	Hipótesis y supuestos	2
5 .	Definición de variables	3
6.	Modelo de programación lineal	3
7.	Resolución por software	4
8.	Informe de la solución óptima	5

1. Enunciado

Tu grupo de Modelos I quiere entrar al negocio de los dulces. Se está considerando producir dos tipos de dulces: Candy y Sweety, que se componen solamente de azúcar, nueces y chocolate.

Actualmente se cuenta con 100 kg. de azúcar, 20 kg. de nueces y 30 kg. de chocolate.

La mezcla para producir Candy tiene que contener por lo menos un 20 % de nueces.

La mezcla para producir Sweety tiene que contener por lo menos un $10\,\%$ de nueces y por lo menos un $10\,\%$ de chocolate.

Cada kg. de mezcla de Candy se vende a 25 pesos y cada kg. de mezcla de Sweety se vende a 20 pesos.

¿Qué es lo mejor que se puede hacer con los datos disponibles?

2. Análisis de la situación problemática

- Se puede ver que es un problema de mezcla, donde tenemos dos productos (tipos de dulces).
- En el enunciado no se menciona un periodo de tiempo en especifico, interpreto que el periodo en que se realiza el problema es suficiente para la producción.
- El esquema del proceso es el siguiente, se destaca que no se menciona cuanto es necesario de algunos de los componentes.

3. Objetivo

Determinar la cantidad de kilogramos de mezcla de dulces Candy y Sweety que se pueden producir para maximizar la ganancia total durante un periodo de tiempo.

4. Hipótesis y supuestos

- Todo lo producido se vende.
- El resultado final de cada mezcla es el mismo tipo de dulce independientemente de la composición.
- No hay costos.
- Hay estabilidad económica de forma tal de que no se afecte el proceso.
- Se tiene la maquinaria/mano de obra suficiente para producir.
- Los dulces no pueden salir estropeados.

- Se dispone del tiempo para producir las mezclas.
- No hay restricciones comerciales que obliguen a fabricar cantidades mínimas de los dulces.
- No hay perdidas en la producción de los dulces.
- La mezcla no altera los kilogramos usados. El total resultante va a ser la suma de los kilogramos usados de los componentes.

5. Definición de variables

*Con tipos y unidades

- AS: Cantidad de kilogramos de azúcar a usar para la mezcla de Sweety. (kg/periodo) (continua)
- AC: Cantidad de kilogramos de azúcar a usar para la mezcla de Candy. (kg/periodo) (continua)
- NS: Cantidad de kilogramos de nueces a usar para la mezcla de Sweety. (kg/periodo) (continua)
- NC: Cantidad de kilogramos de nueces a usar para la mezcla de Candy. (kg/periodo) (continua)
- CS: Cantidad de kilogramos de chocolate a usar para la mezcla de Sweety. (kg/periodo) (continua)
- CC: Cantidad de kilogramos de chocolate a usar para la mezcla de Candy. (kg/periodo) (continua)

6. Modelo de programación lineal

*Indicando en cada restricción o grupo de restricciones la función que cumplen.

Buscamos maximizar la ganancia:

$$\max(20\tfrac{\$}{kg}\cdot(AS+NS+CS)+25\tfrac{\$}{kg}\cdot(AC+NC+CC))$$

Como restricciones tenemos primero las cantidades de componentes que tenemos.

- \blacksquare Para el azúcar: $AS + AC \leq 100 \frac{kg}{periodo}$
- \blacksquare Para las nueces: $NS + NC \leq 20 \frac{kg}{periodo}$
- \blacksquare Para el chocolate: $CS + CC \leq 30 \frac{kg}{periodo}$

Después tenemos de restricciones la composición de las mezclas.

- Para Sweety:
 - $NS \ge (AS + NS + CS) \cdot 0,10$
 - $CS \ge (AS + NS + CS) \cdot 0,10$
- Para Candy: $NC \ge (AC + NC + CC) \cdot 0,20$

7. Resolución por software

El modelo realizado es:

```
MAX 20 AS + 20 NS + 20 CS + 25 AC + 25 NC + 25 CC SUBJECT TO

LIMAZ) AS + AC < 100

LIMNU) NS + NC < 20

LIMCH) CS + CC < 30

COMPSN) NS - 0.10 AS - 0.10 NS - 0.10 CS > 0

COMPSC) CS - 0.10 AS - 0.10 NS - 0.10 CS > 0

COMPCN) NC - 0.20 AC - 0.20 NC - 0.20 CC > 0

END
```

Los resultados:

LP OPTIMUM FOUND AT STEP 5

OBJECTIVE FUNCTION VALUE

1)	3250.	$\Delta \Delta \Delta$
Ι)	3230.	000

1)	3230.000	
VARIABLE	VALUE	REDUCED COST
AS	60.000000	0.000000
NS	10.000000	0.000000
CS	30.000000	0.000000
AC	40.000000	0.000000
NC	10.000000	0.000000
CC	0.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
LIMAZ)	0.000000	15.000000
LIMNU)	0.000000	65.000000
LIMCH)	0.000000	15.000000
COMPSN)	0.000000	-50.000000
COMPSC)	20.000000	0.000000
COMPCN)	0.000000	-50.000000
NO. ITERATI	ONS= 5	

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ	COEFFICIENT	RANGES
	ATT OWARTE	

VARIABLE	CURRENT COEF	ALLOWABLE INCREASE	ALLOWABLE DECREASE
4.0			
AS	20.000000	0.000000	8.333334
NS	20.000000	25.000000	75.000000
CS	20.000000	INFINITY	0.00000
AC	25.000000	18.750000	0.00000
NC	25.000000	75.000000	25.000000
CC	25.000000	0.000000	INFINITY

RIGHTHAND SIDE RANGES

ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
LIMAZ	100.000000	50.000000	33.333336
LIMNU	20.000000	8.333334	5.55556
LIMCH	30.000000	50.000000	25.000000
COMPSN	0.000000	5.000000	5.000000
COMPSC	0.000000	20.000000	INFINITY
COMPCN	0.000000	4.44445	6.666667

8. Informe de la solución óptima

La mejor solución consiste en realizar la mezcla de Sweety con 60kg de azúcar, 10kg de nuez, y 30kg de chocolate. Después para la mezcla Candy, el mejor resultado es usar 40kg de azúcar, 10kg de nuez, y 0kg de chocolate. De esta forma se obtiene una ganancia de \$3250.

Los principales limitantes son la cantidad disponible de materia prima y que se esta cumpliendo con lo mínimo en ambos productos con la cantidad de nueces.