THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Постановка задачи

Современные методы «стрижки» нейросетей позволяют уменьшить количество параметров более чем на 90%.

Однако в большинстве случаев получившаяся в итоге нейронная сеть не покрывает все компоненты исходной, необходимые для быстрого обучения.

Необходимо попытаться найти в исходной сети такую подсеть, что за одинаковое количество итераций добивалась точности сопоставимой с исходной.

The Lottery Ticket Hypothesis

- Пусть у нас есть сеть $f(x;\theta)$ с изначальными параметрами $\theta = \theta_0 \sim D_\theta$. Определим подсеть следующим образом: $f(x;m\odot\theta_0)$, где m маска: $m\in\{0,1\}^\theta$
- Гипотеза: $\exists m: j' \leqslant j, \alpha' \leqslant \alpha, ||m||_0 \ll |\theta|$
- где j количество итераций, alpha точность.

Identifying winning tickets (one-shot)

- 1. Случайным образом инициализируем сеть $f(x; \theta_0)$
- 2. Обучим на ј итерациях, достигнув параметра $heta_j$
- 3. Исключим р% параметров из θ_j (жадно), создав маску m.
- 4. Заменим оставшиеся параметры на θ_0 и создадим выигрышный билет $f(x; m \odot \theta_0)$

Iterative pruning

- Будем повторять one-shot pruning n раз, каждый раз обнуляя $p^{1/n}$ % весов, оставшихся после предыдущего этапа.
- Экспериментально показано, что итеративный подход позволяет находить выигрышные билеты меньшего размера, чем one-shot.

Параметры применения выигрышных билетов в полносвязных сетях.

- LeNet 300-100 (2 скрытых слоя размеров 300 и 100 соответственно, на выходе 10 так как MNIST)
- Соединения с выходным слоем обрезаются вполовину в сравнении с остальными
- Learning rate 0,0012
- Pruning rate: 0.2
- Optimization: SGD

Выигрышные билеты в полносвязных нейросетях

(a) Early-stopping iteration and accuracy for all pruning methods.

Выигрышные билеты в полносвязных нейросетях

(b) Accuracy at end of training.

Выигрышные билеты в полносвязных нейросетях

(c) Early-stopping iteration and accuracy for one-shot pruning.

CNN архитектура

- Используются свертки с 2,4, 6 сверхточными слоями
- После каждых 2 сверхточных слоев применяется max-pooling
- Перед выходом нейросети применяются 2 полносвязных слоя

•

CNN параметры

- Learning rate: CONV2 0.0002, CONV4&CONV6 0.0003
- Pruning Rate: CONV2 & CONV4 10%, CONV6 15%
- Learning Rate for dropout: 0.0003
- Эксперименты проводились на CIFAR10 (50,000 32*32*3 обучающая выборка, 10000 test)

CNN

CNN with dropout

VGG (напоминание)

VGG результаты

Figure 7: Test accuracy (at 30K, 60K, and 112K iterations) of VGG-19 when iteratively pruned.

Важные свойства выигрышных билетов

- Важность корректной инициализации
- Важность структуры
- Улучшенная обобщающая способность
- Применение для нейросетевой оптимизации

Будущие направления исследований

- Разработка менее ресурсоемкого алгоритма (итерационный подход вычислительно сложный)
- Попробовать другие способы «стрижки» более оптимизированные под современные библиотеки.
- Выяснить, почему при обучении в глубоких сетях (Resnet-18, VGG-19) не удается найти выигрышный билет без проведения «разогрева» (warmup)

Общие результаты

Network	Lenet	Conv-2	Conv-4	Conv-6	Resnet-18	VGG-19
				64, 64, pool	16, 3x[16, 16]	2x64 pool 2x128
			64, 64, pool	128, 128, pool	3x[32, 32]	pool, 4x256, pool
Convolutions		64, 64, pool	128, 128, pool	256, 256, pool	3x[64, 64]	4x512, pool, 4x512
FC Layers	300, 100, 10	256, 256, 10	256, 256, 10	256, 256, 10	avg-pool, 10	avg-pool, 10
All/Conv Weights	s 266K	4.3M / 38K	2.4M / 260K	1.7M / 1.1M	274K / 270K	20.0M
Iterations/Batch	50K / 60	20K / 60	25K / 60	30K / 60	30K / 128	112K / 64
Optimizer	Adam 1.2e-3	Adam 2e-4	Adam 3e-4	Adam 3e-4	← SGD 0.1-0.	.01-0.001 Momentum 0.9 →
Pruning Rate	fc20%	conv10% fc20%	conv10% fc20%	conv15% fc20%	conv20% fc0%	conv20% fc0%

Источники

- https://www.researchgate.net/figure/llustration-of-the-network-architecture-of-VGG-19-model-conv-means-convolution-FC-means_fig2_325137356
- https://arxiv.org/pdf/1803.03635.pdf