Geometría y Álgebra lineal 2

primer semestre de 2022 Primer parcial

27 de abril de 2022.

N° Parcial	Apellido, Nombre	Firma	Cédula

VERDADERO/FALSO (Total: 10 puntos)						
1	2	3	4	5		

Llenar cada casilla con las respuestas V (verdadero) o F (falso), según corresponda. Correctas: 2 puntos. Incorrectas: -1 puntos. Sin responder: 0 punto.

MÚLTIPLE OPCIÓN (Total: 16 puntos)				
1	2			

Llenar cada casilla con las respuestas A, B, C o D, según corresponda. Correctas: 8 puntos. Incorrectas: -2 puntos. Sin responder: 0 puntos.

La duración del parcial es de tres horas y no se permite usar ni calculadora ni material de consulta. La comprensión de las preguntas es parte de la prueba.

SÓLO PARA USO DOCENTE					
VF	MO	Des.	Total		

Ejercicios: Verdadero/Falso (Total: 10 puntos)

Correctas: 2 puntos. Incorrectas: -1 puntos. Sin responder: 0 punto.

El siguiente ejercicio tiene 5 afirmaciones, las cuales se deben determinar si son verdaderas o falsas.

Sea $P_2(\mathbb{R})$ el espacio vectorial real de los polinomios de grado menor o igual a dos.

Sean $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ una transformación lineal, $B = \{1, x, x^2\}$ una base de $P_2(\mathbb{R})$ y $A =_B (T)_B$.

Afirmación 1. Los valores propios de T y A son los mismos.

Afirmación 2. Los vectores propios de T y A son los mismos.

Afirmación 3. Si T tiene tres valores propios distintos dos a dos, entonces T es diagonalizable.

Afirmación 4. Si T(p) = p', donde p' significa la derivada de p, entonces $\lambda = 0$ es valor propio de T.

Afirmación 5. Si B' es otra base $P_2(\mathbb{R})$ y $A' =_{B'} (T)_{B'}$, entonces A - I y A' - I son semejantes, donde I es la matriz identidad.

Ejercicios: Múltiple opción (Total: 16 puntos)

Correctas: 8 puntos. Incorrectas: -2 puntos. Sin responder: 0 puntos.

1. Considere la siguiente función <,>: $\mathbb{C}^3 \times \mathbb{C}^3 \to \mathbb{C}$ dada por: Si $z=(z_1,z_2,z_3)\in \mathbb{C}^3$ y $w=(w_1,w_2,w_3)\in \mathbb{C}^3$ entonces

Si
$$z = (z_1, z_2, z_3) \in \mathbb{C}^3$$
 y $w = (w_1, w_2, w_3) \in \mathbb{C}^3$ entonces

$$\langle z, w \rangle = \langle (z_1, z_2, z_3), (w_1, w_2, w_3) \rangle := z_1 \overline{w_1} + \alpha z_2 \overline{w_2} + 3z_3 \overline{w_3}, \text{ donde } \alpha \in \mathbb{C}.$$

Indicar la opción correcta.

- 1. Para cualquier $\alpha \in \mathbb{C}$ se cumple que $\langle z,z \rangle \geq 0$ para todo $z \in \mathbb{C}^3$.
- 2. La propiedad $\langle z, \lambda w \rangle = \overline{\lambda} \langle z, w \rangle \ \forall \lambda \in \mathbb{C} \ y \ \forall z, w \in \mathbb{C}^3$, se cumple solo si $\alpha \in \mathbb{R}$.
- 3. $\langle (-2,1,0), (1,i,3) \rangle = 0$ se cumple solo para $\alpha = -2i$.
- 4. La propiedad $\langle z,z\rangle=0$ implica $z=\overrightarrow{0}$ vale para todo $\alpha\in\mathbb{R}$ con $\alpha>0$.
- **2.** Sea $T:V\to V$ una transformación lineal con dim(V)=5 y $K=\mathbb{C}$. Se sabe que:
 - Existe $v \in V$ con $v \neq 0$ tal que T(v) = v.
 - El polinomio característico de T, $X_T(\lambda) = (\lambda 2)^2 q(\lambda)$.
 - mg(2) = 2.
 - dim(Ker(T-3I)) = 1.

 \bullet la traza de T es 11.

Indicar la opción correcta:

- 1. T tiene cuatro valores propios distintos dos a dos y T no es diagonalizable.
- $2.\ T$ tiene cinco valores propios distintos dos a dos.
- 3. Los valores propios de T son 1,2 y 3 y además T es diagonalizable.
- 4. Los valores propios de T son 1,2 y 3 y además T no es diagonalizable.

Ejercicio de desarrollo (Total: 14 puntos)

1. (7 puntos) Consideramos \mathbb{R}^4 con el producto interno habitual y sea

$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y - 2z = 0\}.$$

Usando el método de Gram-Schmidt, hallar una base ortonormal $\{u_1, u_2, u_3\}$ de S con $u_1 = (0, 0, 0, 1)$.

2. (7 puntos) Calcular
$$\begin{pmatrix} -4 & 4 \\ -1 & 0 \end{pmatrix}^{1000}$$
.