LABORATORIUM PROJEKTOWANIE I OBSŁUGA SIECI KOMPUTEROWYCH II

Data wykonania ćwiczenia:	27.04.2023
Rok studiów:	3
Semestr:	6
Grupa studencka:	2
Grupa laboratoryjna:	2В

Ćwiczenie nr. 14

Temat: Packet Tracer - Rozwiązywanie problemów - Udokumentuj sieć

Osoby wykonujące ćwiczenia:

1. Igor Gawłowicz

Katedra Informatyki i Automatyki

Packet Tracer - Rozwiązywanie problemów -Udokumentuj sieć

Twój pracodawca został zatrudniony do przejęcia administracji siecią firmową, ponieważ poprzedni administrator sieci opuścił firmę. Nie ma dokumentacji sieciowej i należy ją odtworzyć. Twoim zadaniem jest udokumentowanie hostów i urządzeń sieciowych, w tym wszystkich adresów urządzeń i logicznych połączeń. Będziesz mieć zdalny dostęp do urządzeń sieciowych i użyjesz funkcji wykrywania sieci do uzupełnienia tabeli urządzeń i narysowania topologii sieci.

To jest część I dwuczęściowej serii ćwiczeń. Będziesz używać dokumentacji, którą utworzysz w tym ćwiczeniu, aby poprowadzić Cię podczas rozwiązywania problemów z siecią w części II, Packet Tracer - Rozwiązywanie problemów - używanie dokumentacji do rozwiązywania problemów.

Podczas badania i dokumentowania topologii sieci zanotuj stwierdzone problemy, które nie są zgodne z praktykami przedstawionymi w programie CCNA.

Część 1: Testowanie Połączenia

Wykonaj ping między komputerami a serwerem internetowym, aby przetestować sieć. Wszystkie komputery powinny móc pingować się nawzajem oraz serwer internetowy.

Część 2: Poznawanie Konfiguracji Komputerów

Przejdź do wiersza polecenia każdego komputera i wyświetl ustawienia IP. Zapisz te informacje w tabeli dokumentacyjnej.

Część 3: Poznawanie Informacji o Urządzeniach Bramy Domyślnej

Połącz się z każdym urządzeniem bramy domyślnej za pomocą protokołu Telnet i zapisz informacje o interfejsach używanych w tabeli. Hasło VTY to cisco, a hasło privileged EXEC to class.

C:\> telnet Adres_IP

Część 4: Odtwarzanie Topologii Sieci

W tej części działalności będziesz kontynuować rejestrowanie informacji o urządzeniach w sieci w tabeli Adresacji. Ponadto, zaczniesz opracowywać topologię sieci na podstawie informacji o interakcjach urządzeń, które możesz odkryć.

Krok 1: Dostęp do Tablic Routingu na Każdym Urządzeniu Bramy Domyślnej

Wykorzystaj tablice routingu w każdym ruterze, aby dowiedzieć się więcej o sieci. Dokonaj notatek na temat swoich odkryć.

Krok 2: Odkrywanie Urządzeń Niekoniecznie Bramy Domyślnej

Wykorzystaj protokół odkrywania sieci do dokumentowania sąsiednich urządzeń. Zapisz swoje odkrycia w tabeli adresacji. W tym momencie powinieneś również móc rozpocząć dokumentowanie interakcji urządzeń.

Część 5: Dalsze Eksplorowanie Konfiguracji i Interakcji Urządzeń

Krok 1: Dostęp do Konfiguracji Urządzeń

Podłącz się do innych urządzeń w sieci. Zdobądź informacje na temat konfiguracji urządzeń.

Krok 2: Wyświetlanie Informacji o Sąsiedztwie

Wykorzystaj protokoły odkrywania, aby zwiększyć swoją wiedzę na temat urządzeń sieciowych i topologii.

Krok 3: Podłączanie do Innych Urządzeń

Wyświetl informacje o konfiguracji dla innych urządzeń w sieci. Zapisz swoje odkrycia w tabeli urządzeń.

Teraz powinieneś znać wszystkie urządzenia i konfiguracje interfejsów w sieci. Wszystkie wiersze tabeli powinny zawierać informacje o urządzeniach. Wykorzystaj swoje informacje, aby odtworzyć jak najwięcej topologii sieci, jak to możliwe.

Refleksja

Mogłeś zauważyć, że niektóre praktyki używane do konfigurowania urządzeń sieciowych są przestarzałe, niewydajne lub niebezpieczne. Sporządź listę zaleceń dotyczących ponownej konfiguracji urządzeń zgodnie z praktykami, które nauczyłeś się w programie CCNA.

- Wszystkie urządzenia używają tych samych prostych i dobrze znanych haseł. Powinny być one zmienione, powinny się różnić między urządzeniami, a także powinny być silniejsze.
- Większość portów przełącznika znajduje się w VLAN 1. Należy je przenieść do innych VLAN-ów.
- Wszystkie nieużywane porty przełącznika znajdują się w VLAN 1 i są aktywne. Nieużywane porty przełącznika powinny zostać wyłączone i przeniesione do nieużywanego VLAN-u.
- OSPF jest aktywne na interfejsach LAN. Pasywne interfejsy zmniejszą niepotrzebny ruch sieciowy.
- VLAN 99 jest utworzony tylko na SW-B2. Nie jest używany, nie ma nazwy i powinien zostać usunięty.
- Routera buforującego ma ustawione polecenie ip default-gateway, a adres IP to jego własny adres.

Device Interface Device Type IP Address Subnet Mask Default Gateway

Device	Interface	Device Type	IP Address	Subnet Mask	Default Gateway
PC1	NIC	Host	192.168.1.153	255.255.255.0	192.168.1.1
PC2	NIC	Host	192.168.3.50	255.255.255.0	192.168.3.1
PC3	NIC	Host	192.168.4.115	255.255.255.0	192.168.4.1
PC4	NIC	Host	192.168.5.83	255.255.255.128	192.168.5.1
PC5	NIC	Host	192.168.5.227	255.255.255.128	192.168.5.129
PC6	NIC	Host	192.168.2.48	255.255.255.224	192.168.2.33
PC7	NIC	Host	192.168.2.67	255.255.255.224	192.168.2.65
Hub	G0/0/0	Router	192.0.2.1	255.255.255.252	N/A
Hub	S0/1/0	Router	192.168.0.1	255.255.255.252	N/A
Hub	S0/1/1	Router	192.168.0.5	255.255.255.252	N/A
Hub	S0/2/0	Router	192.168.0.9	255.255.255.252	N/A
Hub	S0/2/1	Router	192.168.0.13	255.255.255.252	N/A
Branch-1	G0/0/0	Router	192.168.1.1	255.255.255.0	N/A
Branch-1	S0/1/0	Router	192.168.0.2	255.255.255.252	N/A
Branch-2	G0/0/0	Router	192.168.2.33	255.255.255.224	N/A
Branch-2	S0/1/0	Router	192.168.0.6	255.255.255.252	N/A
Factory	G0/0/0	Router	192.168.3.1	255.255.255.0	N/A
Factory	G0/0/1	Router	192.168.4.1	255.255.255.0	N/A
Factory	S0/1/0	Router	192.168.0.14	255.255.255.252	N/A
HQ	G0/0/0.1	Router	192.168.6.1	255.255.255.0	N/A
HQ	G0/0/0.5	Router	192.168.5.1	255.255.255.128	N/A
HQ	G0/0/0.10	Router	192.168.5.128	255.255.255.128	N/A
HQ	S0/1/0	Router	192.168.0.10	255.255.255.252	N/A
SW-B1	VLAN 1	Switch	192.168.1.252	255.255.255.0	192.168.1.1
SW-B2	VLAN 1	Switch	192.168.2.62	255.255.255.0	192.168.2.1
SW-F1	VLAN 1	Switch	192.168.3.252	255.255.255.0	192.168.3.1
SW-F2	VLAN 1	Switch	192.168.4.252	255.255.255.0	192.168.4.1
SW-HQ1	VLAN 1	Switch	192.168.6.252	255.255.255.0	192.168.6.1
SW-HQ2	VLAN 1	Switch	192.168.6.253	255.255.255.0	192.168.6.1
SW-HQ3	VLAN 1	Switch	192.168.6.254	255.255.255.0	192.168.6.1