CHAPITRE 9

CORRECTION DES ÉPREUVES

CORRECTION BACC A 2001

Exercice 1

1. Résoudre dans \mathbb{R}^2 le système suivant : $\begin{cases} x - 2y = -2 \ (E_1) \\ 2x + y = 6 \ (E_2) \end{cases}$

Nous allons procéder par substitution.

De
$$(E_1)$$
: $x = -2 + 2y$ (*)

(*) dans
$$(E_2)$$
: $2(-2+2y) + y = 6 \Leftrightarrow -4+4y+y = 6$

$$\Leftrightarrow$$
 5 $y = 6 + 4 = 10$

$$\Leftrightarrow y = \frac{10}{2} = 2$$

Ainsi
$$x = -2 + 2 \times 2 = 2$$
 Donc $S = \{(2, 2)\}$

2. Déduisons-en les solutions dans \mathbb{R}^2 des deux systèmes a) et b).

a)
$$\begin{cases} e^{2x+2} - 2e^y = -2\\ 2e^{2x+2} - e^y = 6 \end{cases}$$

posons
$$X = e^{2x+2}$$
 et $Y = e^y$ avec $X > 0$ et $Y > 0$. Le système devient :
$$\begin{cases} X - 2Y = -2 \\ 2X - Y = 6 \end{cases}$$

D'après 1. X = 2 et Y = 2. Ainsi $e^{2x+2} = 2$ et $e^y = 2$, soit $e^{2x+2} = e^{\ln 2}$ et $y = \ln 2$, c'est-àdire $2x + 2 = \ln 2$ et $y = \ln 2$ soit $x = \frac{-2 + \ln 2}{2}$ et $y = \ln 2$.

Donc
$$S = \left\{ \left(-1 + \frac{\ln 2}{2}; \ln 2 \right) \right\}$$

b)
$$\begin{cases} \ln x - 2\ln y = -2 \\ 2\ln x + \ln y = 6 \end{cases}$$

le système a un sens $\Leftrightarrow x > 0$ et y > 0.

Résolution : Posons
$$X = \ln x$$
 et $Y = \ln y$, on a :
$$\begin{cases} X - 2Y = -2 \\ 2X + Y = 6 \end{cases}$$

D'après 1. X=2 et Y=2, soit $\ln x=2$ et $\ln y=2$, c'est-à-dire $x=e^2$ et $y=e^2$.

D'où
$$S = \{(e^2, e^2)\}$$

Exercice 2

Donnons la bonne réponse.

Question	1	2	3	4
Réponse	c	b	В	a

Justification

1.
$$f$$
 telle que $f(x) = -1 + \frac{x^2}{4}$ a pour primitive F telle que $F(x) = -x + \frac{1}{4} \times \frac{x^3}{3} = -x + \frac{x^3}{12}$.

2. De
$$2,718 < e < 2,719$$
, on déduit successivement :

$$-5,438 < -2e < -5,436$$

$$3 - 5,438 < 3 - 2e < 3 - 5,436 \iff -2,438 < 3 - 2e < -2,436$$
.

Ainsi $\frac{(-2,438)+(-2,436)}{2} = -2,437$. Donc une valeur approchée à 10^{-3} est -2,437.

3. On a:
$$5 \times C_n^2 = 5 \times \frac{n!}{2!(n-2)!} = 5 \times \frac{n(n-1)(n-2)!}{2(n-2)!} = \frac{5n \times (n-1)}{2} = 2.5n(n-1).$$

4. Les valeurs possibles qui divisent son âge sont 1, 3 et 5.

Donc
$$Card A = 3$$
.

On a
$$P(A) = \frac{Card A}{Card \Omega} = \frac{3}{6} = 0.5$$
.

Problème

Partie A

rtie A

1. Amplitude:
$$A = 25 - 15 = 35 - 25 = \dots = 75 - 65 \Rightarrow A = 10$$

2. Nuage de points

Poids en kg	[15,25[[25,35[[35,45[[45,55[[55,65[[65,75[Total
Centre x_i	20	30	40	50	50	70	
Prix en y _i	18 000	23 000	30 000	36 000	42 000	45 000	
Effectifs	5	18	35	20	9	3	90
$n_i x_i$	100	540	1400	1000	540	210	3790
$n_i y_i$	90 000	414 000	1 050 000	720 000	378 000	135 000	2 787 000

- 3. Calculons le poids moyen \bar{X} d'un mouton. D'après le tableau ci-dessous, nous avons : $\bar{X} = \frac{1}{N} \sum_{i=1}^{6} n_i x_i = \frac{3790}{90} = 42,11$ Donc le poids moyen d'un mouton est de 42,11kg.
 - 4. Calculons le prix moyen \overline{Y} d'un mouton.

On à :
$$\bar{Y} = \frac{1}{N} \sum_{i=1}^{6} n_i y_i = \frac{2787000}{90}$$

 $\bar{Y} = 30966,66$. Ainsi le prix moyen d'un mouton est 30966,66 F.

5. Déduisons-en les coordonnées du point moyen G.

D'après 3. Et 4., nous pouvons déduire que G a pour coordonnées (42,11; 30966,66).

Partie B

- 1. Vrai ou faux (par lecture graphique)
- a) Faux; b) Faux; c) Vrai; d) Faux.
- 2.
- (a) Par conjecture $\lim_{x \to +\infty} f(x) = -\infty$.
- (b) Dressons le tableau de variation de f.

x	0 +∞
f'(x)	-
f(x)	+8 -8

3.

(a) Calculons f'(x).

$$f'(x) = 0 - \frac{1}{x} \Longrightarrow f'(x) = -\frac{1}{x}$$

(b) Vérification

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 - \ln x) = -\infty; \operatorname{carlim}_{x \to +\infty} \ln x = +\infty.$$

(a) Écrivons une équation cartésienne de la tangente à la courbe de f au point A d'abscisse e

(T):
$$y = f'(e)(x - e) + f(e)$$
 avec $f'(e) = \frac{1}{e}$ et $f(e) = 1 - \ln e = 1 - 1 = 0$

Donc (T):
$$y = -\frac{1}{2}x + 1 = 0.36x + 1$$

(b) Tracé de la courbe de g.

On a g(x) = -f(x). Donc la courbe de g se déduit de celle de f par symétrie orthogonale d'axe (ox).

