

SINGLE-STAGE EXPERIMENTAL EVALUATION OF TANDEM-AIRFOIL ROTOR AND STATOR BLADING FOR COMPRESSORS

PART VII - DATA AND PERFORMANCE FOR STAGE E

by J. G. Cheatham

PRATT & WHITNEY AIRCRAFT
DIVISION OF UNITED AIRCRAFT CORPORATION
FLORIDA RESEARCH AND DEVELOPMENT CENTER

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center Contract NAS3-11158

REPRODUCED BY:
U.S. Department of Commerce
National Technical Information Service
Springfield, Virginia 22161

		•
		•
		1
		1 1
		1 1 1
		4 4 1
		1
		1 1 1

1. Report No. NASA CR-134529	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle "SINGLE-STAGE EXPERIMENTAL E	ANDEM-AIRFOIL	5. Report Date 28 January 197	7.4	
ROTOR AND STATOR BLADING FOR DATA AND PERFORMANCE FOR ST		6. Performing Organization Code		
7. Author(s)			8. Performing Organiz	ation Report No.
J. G. Cheatham			FR-5955	
9. Performing Organization Name and Address Pratt & Whitney Aircraft			10. Work Unit No.	
Florida Research and Development C	enter	Ī	11. Contract or Grant	No.
West Palm Beach, Florida 33402			NAS3-11158	
			13. Type of Report an	nd Period Covered
12. Sponsoring Agency Name and Address			Contractor Re	enort.
National Aeronautics and Space Admi Washington, D. C. 20546	nistration		14. Sponsaring Agency	
15. Supplementary Notes		<u> </u>		•
Project Manager, Everett E. Bailey, NASA-Lewis Research Center, Cleve	, Fluid System Con eland, Ohio 44135	nponents Division,		
An axial flow compressor stage, having tandem airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1, 265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0, 8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of single-airfoil blading designed for the same vector diagrams and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, Rotor E achieved a maximum adiabatic efficiency of 90, 0% at design equivalent rotor speed and a pressure ratio of 1,322. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 83,7% at a pressure ratio of 1,275. Tip radial distortion of the inlet flow at design rotor speed caused a 7.0% reduction in surge pressure ratio whereas hub radial and circumferential distortion produced reductions of approximately 2,5 and 2.5%, respectively.				
17. Key Words (Suggested by Author(s)) Compressor Tandem Blading Secondary Flow		18. Distribution Statement Unclassified - un		
19. Security Classif, (of this report)	20. Security Classif. (o	of this page)	21. No. of Pages	20_ Dring*
Unclassified	Unclassifie	d	280	

FOREWORD

This report was prepared by the Pratt & Whitney Aircraft Division of United Aircraft Corporation, West Palm Beach, Florida, to present the data and performance for Stage E, which was tested under Contract NAS3-11158, Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors. Mr. Everett E. Bailey, NASA-Lewis Research Center, Fluid System Components Division, was Project Manager.

The requirements of NASA Policy Directive NPD 2220.4 (September 14, 1970) regarding the use of SI Units have been waived in accordance with the provisions of paragraph 5d of that Directive by the Director of Lewis Research Center.

CONTENTS

	PAGE
ILLUSTRATIONS	v
TABLES	xv
SUMMARY	1
INTRODUCTION	2
DESIGN SUMMARY	2
Blading Design	2
TEST EQUIPMENT	6
Compressor Test Facility	6 6 6
PROCEDURES	8
Test Procedures	8
Shakedown Tests	8 8
Data Reduction Procedures	9
Overall Performance	9
Data	10
Surge Transient Data	10
PRESENTATION OF DATA	10
Uniform Inlet	10
Overall Performance	10
Data	11
Rotor Blade Element Performance	11 12 13

CONTENTS (Continued)

	PAGE
Hub and Tip Radial Inlet Flow Distortion	13
Overall Performance	13
Data	14
Rotor and Stator Blade Element Performance Flow Distribution Data	14 14
Circumferential Distortion	14
Overall Performance	14 16
SUMMARY REMARKS	16
APPENDIX A - Tabulated Overall and Blade Element Performance and Flow Distribution Data	159
APPENDIX B - Stator E Static Pressure Coefficients	247
APPENDIX C - Definition of Symbols Definition of Overall Performance Variables Definition of Blade Element Performance	251 253
Variables	254
REFERENCES	257

ILLUSTRATIONS

FIGURE		PAGE
1	Stage E Airfoils	17
2	Compressor Research Facility	18
3	Single-Stage Compressor Rig	19
4	Flowpath Dimensions	20
5	Instrumentation Layout	21
6	Eight-Degree Wedge Traverse Probe	22
7	Stator E Static Pressure Orifice Locations	23
8	Twenty-Degree Wedge Traverse Probe	24
9	Total Pressure/Total Temperature Circumferential Traverse Unit	25
10a	Composition of Station 1 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions	26
10b	Composition of Station 2 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions	27
10c	Composition of Station 2A Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions	28
11	High-Response Probe	29
12	Typical Plot of Transient Data	30
13	Station O Equivalent Static Pressure vs Equivalent Weight Flow for Stage E Flowpath With Support Screen	31
14	Overall Performance of Rotor E; Uniform Inlet Flow	32
15	Overall Performance of Stage E; Uniform Inlet Flow	33
1 6a	Rotor E Blade Element Performance; 5% Span From Tip; Uniform Inlet Flow	34
16b	Rotor E Blade Element Performance; 10% Span From Tip; Uniform Inlet Flow	35
16 c	Rotor E Blade Element Performance; 15% Span From Tip; Uniform Inlet Flow	36
16d	Rotor E Blade Element Performance; 30% Span From Tip; Uniform Inlet Flow	37
16e	Rotor E Blade Element Performance; 50% Span; Uniform Inlet Flow	38
1 6f	Rotor E Blade Element Performance; 70% Span From Tip; Uniform Inlet Flow	39

FIGURE	-	PAGE
16g	Rotor E Blade Element Performance; 85% Span From Tip; Uniform Inlet Flow	40
16h	Rotor E Blade Element Performance; 90% Span From Tip; Uniform Inlet Flow	41
16 i	Rotor E Blade Element Performance; 95% Span From Tip; Uniform Inlet Flow	42
17a	Rotor E Loss Parameter vs Diffusion Factor; 10% Span From Tip; Uniform Inlet Flow	43
17b	Rotor E Loss Parameter vs Diffusion Factor; 30% Span From Tip; Uniform Inlet Flow	44
17 c	Rotor E Loss Parameter vs Diffusion Factor; 50% Span; Uniform Inlet Flow	45
17d	Rotor E Loss Parameter vs Diffusion Factor; 70% Span From Tip; Uniform Inlet Flow	46
17e	Rotor E Loss Parameter vs Diffusion Factor; 90% Span From Tip; Uniform Inlet Flow	47
18	Rotor E Tip Static Pressure Ratio vs Percent Axial Chord; 100% Design Equivalent Rotor Speed; Uniform Inlet Flow	48
19a	Stator E Blade Element Performance; 5% Span From Tip; Uniform Inlet Flow	49
19b	Stator E Blade Element Performance; 10% Span From Tip; Uniform Inlet Flow	50
19c	Stator E Blade Element Performance; 15% Span From Tip; Uniform Inlet Flow	51
19d	Stator E Blade Element Performance; 30% Span From Tip; Uniform Inlet Flow	52
19e	Stator E Blade Element Performance; 50% Span; Uniform Inlet Flow	53
19f	Stator E Blade Element Performance; 70% Span From Tip; Uniform Inlet Flow	54
19g	Stator E Blade Element Performance; 85% Span From Tip; Uniform Inlet Flow	55
19h	Stator E Blade Element Performance; 90% Span From Tip; Uniform Inlet Flow	56
19i	Stator E Blade Element Performance; 95% Span From Tip; Uniform Inlet Flow	57
20a	Stator E Loss Parameter vs Diffusion Factor; 10% Span From Tip; Uniform Inlet Flow	58

FIGURE		PAGE
20 b	Stator E Loss Parameter vs Diffusion Factor; 30% Span From Tip; Uniform Inlet Flow	59
20c	Stator E Loss Parameter vs Diffusion Factor; 50% Span; Uniform Inlet Flow	60
20d	Stator E Loss Parameter vs Diffusion Factor; 70% Span From Tip; Uniform Inlet Flow	61
20e	Stator E Loss Parameter vs Diffusion Factor; 90% Span From Tip; Uniform Inlet Flow	62
21a	Stator E Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 121.43 lb/sec; Uniform Inlet Flow	63
21b	Stator E Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 117.78 lb/sec; Uniform Inlet Flow	64
21c	Stator E Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 111.27 lb/sec; Uniform Inlet Flow	65
21d	Stator E Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 106.84 lb/sec; Uniform Inlet Flow	66
21e	Stator E Static Pressure Coefficient vs Percent Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 105.92 lb/sec; Uniform Inlet Flow	67
21f	Stator E Static Pressure Coefficient vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.92 lb/sec; Uniform Inlet Flow	68
21g	Stator E Static Pressure Coefficient vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.95 lb/sec; Uniform Inlet Flow	69
21h	Stator E Static Pressure Coefficient vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 93.27 lb/sec; Uniform Inlet Flow	70
22a	Wall Static Pressure Distributions Upstream and Down- stream of Stator E; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 111.27 lb/sec; Uniform Inlet	
2 2b	Wall Static Pressure Distribution Upstream and Downstream of Stator E; 100% Design Equivalent Rotor Speed;	71
	Equivalent Weight Flow = 93.27 lb/sec; Uniform Inlet Flow	72

FIGURE		PAGE
23	Typical Rotor Inlet Total Pressure Profiles With Hub and Tip Radial Distortion; 100% Design Equivalent Rotor Speed.	73
24	Overall Performance of Rotor E; Hub Radial Distortion Compared With Uniform Inlet Flow	74
25	Overall Performance of Stage E; Hub Radial Distortion Compared With Uniform Inlet Flow	75
26	Overall Performance of Rotor E; Tip Radial Distortion Compared With Uniform Inlet Flow	76
27	Overall Performance of Stage E; Tip Radial Distortion Compared With Uniform Inlet Flow	77
28a	Rotor E Blade Element Performance; 5% Span From Tip; Hub and Tip Radial Distortion	78
28b	Rotor E Blade Element Performance; 10% Span From Tip; Hub and Tip Radial Distortion	79
28c	Rotor E Blade Element Performance; 15% Span From Tip; Hub and Tip Radial Distortion	80
28d	Rotor E Blade Element Performance; 30% Span From Tip; Hub and Tip Radial Distortion	81
28e	Rotor E Blade Element Performance; 50% Span; Hub and Tip Radial Distortion	82
28f	Rotor E Blade Element Performance; 70% Span From Tip; Hub and Tip Radial Distortion	83
28g	Rotor E Blade Element Performance; 85% Span From Tip; Hub and Tip Radial Distortion	84
28h	Rotor E Blade Element Performance; 90% Span From Tip; Hub and Tip Radial Distortion	85
28i	Rotor E Blade Element Performance; 95% Span From Tip; Hub and Tip Radial Distortion	86
29a	Stator E Blade Element Performance; 5% Span From Tip; Hub and Tip Radial Distortion	87
29 b	Stator E Blade Element Performance; 10% Span From Tip; Hub and Tip Radial Distortion	88
29c	Stator E Blade Element Performance; 15% Span From Tip; Hub and Tip Radial Distortion	89
29d	Stator E Blade Element Performance; 30% Span From Tip; Hub and Tip Radial Distortion	90
29e	Stator E Blade Element Performance; 50% Span; Hub and Tip Radial Distortion	91
29f	Stator E Blade Element Performance; 70% Span From Tip; Hub and Tip Radial Distortion	92

FIGURE		PAGE
29g	Stator E Blade Element Performance; 85% Span From Tip; Hub and Tip Radial Distortion	93
29 h	Stator E Blade Element Performance; 90% Span From Tip; Hub and Tip Radial Distortion	94
29i	Stator E Blade Element Performance; 95% Span From Tip; Hub and Tip Radial Distortion	95
30a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 114.81 lb/sec; Hub Radial Distortion	96
30b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 100.63 lb/sec; Hub Radial Distortion	97
30c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 93.49 lb/sec; Hub Radial Distortion	9 8
31a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 104.66 lb/sec; Hub Radial Distortion	99
31b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.29 lb/sec; Hub Radial Distortion	100
31c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 82.24 lb/sec; Hub Radial Distortion	101
32a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 83.81 lb/sec; Hub Radial	
	Distortion	102

FIGURE		PAGE
32b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 70.40 lb/sec; Hub Radial Distortion	103
32c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 61.83 lb/sec; Hub Radial Distortion	104
33a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 114.99 lb/sec; Tip Radial Distortion	105
33b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 109.16 lb/sec; Tip Radial Distortion	106
3 3c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.95 lb/sec; Tip Radial Distortion	107
34a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 105.22 lb/sec; Tip Radial Distortion	108
34b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 99.16 lb/sec; Tip Radial Distortion	109
34c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 94.04 lb/sec; Tip Radial Distortion	110
35a	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 82.97 lb/sec; Tip Radial Distortion	111

FIGURE		PAGE
35b	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 77.98 lb/sec; Tip Radial Distortion	112
35 c	Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 71.91 lb/sec; Tip Radial Distortion	113
36	Typical Rotor Inlet Total Pressure Distribution With Circumferential Distortion; 100% Design Equivalent Rotor Speed; 94.0% Design Equivalent Flow (103.40 lb/sec); 50% Span	114
37	Overall Performance of Rotor E; Circumferential Distortion Compared With Uniform Inlet Flow	115
38	Overall Performance of Stage E; Circumferential Distortion Compared With Uniform Inlet Flow	116
39	Overall Performance of Rotor E With Circumferential Distortion	117
40	Overall Performance of Stage E With Circumferential Distortion	118
41a	Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	119
41b	Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	120
41c	Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	121
4 1 d	Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	122
41e	Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	123
41f	Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	124
41g	Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	

FIGURE		PAGE
41h	Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	126
41 i	Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	127
41 j	Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	128
41k	Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	129
411	Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	130
41m	Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion	131
42a	Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	132
42b	Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	133
42c	Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	134
42 d	Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	135
42e	Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	136
42f	Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	137
42g	Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	138

SECTION		PAGE
42h	Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	139
42i	Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	140
42j	Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	141
42k	Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	142
421	Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	143
42m	Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion	144
43a	Rotor Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circum- ferential Distortion	145
43b	Rotor Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	146
43c	Rotor Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	147
43d	Rotor Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	148
43e	Stator Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Dis-	140
43f	stator Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Dis-	149
	tortion	150

FIGURE		PAGE
43g	Stator Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	151
43h	Stator Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	152
43i	Stator Exit Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	153
43j	Stator Exit Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	154
43k	Stator Exit Total Temperature vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	155
431	Stator Exit Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	156
43m	Stator Exit Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion	157

TABLES

TABLE		PAGE
I	Tandem Rotor E Blade Element Design	4
II	Tandem Stator E Blade Element Design	5
A-1	Overall Performance - Stage E, Uniform Inlet	161
A-2	Blade Element Performance - Uniform Inlet, Untranslated	162
A-3	Blade Element Performance - Uniform Inlet	163
A-4	Overall Performance - Stage E, Radial Distortion	191
A-5	Blade Element Performance - Hub Radial Distortion	192
A-6	Blade Element Performance - Tip Radial Distortion	201
A-7	Overall Performance - Stage E, Circumferential Distortion	210
A-8	Blade Element Performance - Circumferential	211

		•
	,	
		,

SUMMARY

A single-stage axial flow compressor, having tandem-airfoil blading (i.e., blading composed of two airfoils positioned one behind the other so that there was an interblade passage whose width was approximately 10% of the individual airfoil chords) was designed and tested as part of an overall program to evaluate the effectiveness of tandem airfoils for increasing the design point loading capability and stable operating range of compressors. The stage was designed with zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The resulting blading had large variations in twist (i.e., end-bends) in the endwall regions. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. The specific flow and resulting rotor inlet Mach number were generally consistent with design practice for compressor middle stages; however, the blade loading was appreciably higher. The stage was tested with uniform inlet flow and with hub radial, tip radial, and 90-deg one-perrevolution circumferential distortion of the inlet flow.

Overall and blade element performance data for uniform inlet flow were obtained at 50, 70, 90, 100, and 110% of design equivalent rotor speed and are presented herein. At design equivalent rotor speed and flow, the rotor achieved an adiabatic efficiency of 89.7% at a pressure ratio of 1.291, compared with respective design values of 89.9% and 1.28. At the same flow and rotor speed, the stage achieved an adiabatic efficiency of 83.7% at a pressure ratio of 1.275 relative to respective design values of 84.8 and 1.260. At design equivalent rotor speed, maximum rotor and stage adiabatic efficiencies of 90.0 and 83.7% were reached at approximately 98 and 100% of design equivalent flow, respectively.

For both hub radial and tip radial distortion of the inlet flow, overall performance, blade element performance, and flow distribution data were obtained at 70, 90, and 100% of design equivalent rotor speed and are also presented herein. For circumferential distortion of the inlet flow, overall performance data were obtained at 70, 90, and 100% of design equivalent rotor speed. Flow distribution data were also obtained with circumferential distortion of the inlet flow for two operating points (defined as a combination of flow and speed) at design equivalent rotor speed and one operating point at 90% design equivalent rotor speed.

Hub radial and circumferential distortion of the inlet flow produced moderate changes in surge pressure ratio for the stage, whereas tip radial distortion caused a substantial decrease in surge pressure ratio. At design equivalent rotor speed with hub radial, tip radial, and circumferential distortion, the surge pressure ratio decreased 2.5, 7.0, and 2.5%, respectively, when compared with the uniform inlet flow value. At design equivalent rotor speed and flow, hub, tip, and circumferential distortion reduced stage adiabatic efficiency by 4.3, 4.3, and 5.9%, respectively, when compared to the uniform inlet value. Similarly, stage pressure ratio was reduced by 2.4, 2.4, and 1.6%. Comparable reductions in stage efficiency and pressure ratio occurred for all speedlines and at no combination of speed and flow was the performance of Stage E with inlet flow distortion improved over that obtained with uniform inlet flow. With the exception of small increases in stall point efficiency occurring with hub and circumferential distortion of the inlet flow at 90 and 100% design equivalent rotor speed, the rotor also exhibited a similar trend towards reduced efficiency and pressure ratio with the addition of inlet flow distortion.

INTRODUCTION

The effectiveness of tandem airfoils as a means for increasing the loading limit and stable operating range of highly loaded compressor blade rows was investigated for the National Aeronautics and Space Administration at the Florida Research and Development Center of Pratt & Whitney Aircraft under Task I of Contract NAS3-11158 (References 1 through 3). During this program, tandem rotors demonstrated higher pressure rise and efficiency than a single airfoil rotor with identical inlet and exit airfoil angles. The performance of the conventional stage was controlled to a large extent by three-dimensional flow effects associated with high losses near the walls. The three-dimensional flows resulted even though the blading was designed with increased work input near the walls to compensate for the high losses in these regions and, thereby, maintained a constant radial pressure distribution.

A second single-stage compressor investigation was initiated to evaluate the potential of tandem blading for improving the performance over that of a more moderately loaded stage, which was composed of single airfoil blade rows. A study was performed to select a radial work gradient for the rotor, which resulted in maximum rotor and stator loading levels consistent with good performance (Reference 4). Based on this study, a rotor design with uniform work input at all radii and an overall pressure ratio of 1.28 at a design rotor tip speed of 757 ft/sec was chosen for this investigation. This rotor has lower work input near the walls than the rotors of References 1 through 3. This lower work input near the walls should reduce the three-dimensional flows and high wall losses that are characteristic of highly loaded blade rows and provide a stage design that is not characterized by a highly three-dimensional flow and associated poor performance.

A single-airfoil rotor and stator, a dual-airfoil tandem rotor and a dual-airfoil tandem stator were designed and fabricated for this investigation. Because of the large inlet boundary layer noted during the testing described in References 1 through 3, a design procedure was used that accounted for the inlet total pressure gradient and the effects of axial velocity ratio and secondary flow on blade row performance. This report presents the data and performance obtained with Stage E, which was composed of tandem rotor and stator blading. A discussion of the aerodynamic and mechanical design of Stage E is presented in Reference 4. The overall and blade element performance for the single airfoil blading designed for the same vector diagrams are given in Reference 5.

DESIGN SUMMARY

Blading Design

The stage was designed with zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. A rotor tip inlet Mach number of approximately 0.8 and a specific flow of 33 lb/sec-ft² were selected to be generally representative of current design practice for highly loaded compressor middle stages.

To ensure a valid comparison between the conventional single-airfoil and the tandem-airfoil stages, the design velocity diagrams selected for the conventional stage were used in the design of the tandem stage. The design velocity diagrams were calculated by means of a computer program that solves the continuity, energy, and radial equilibrium equations for an axisymmetric flow field. The rotor inlet total pressure distortion from the data of the Reference 1 program was used for the velocity diagram calculations. Radial gradients of enthalpy and entropy were included in the calculation, and the influences of wall and streamline curvature on the radial distribution of static pressure were taken into account.

Simulated double-circular-arc airfoil sections (i.e., the mean camber line and the suction and pressure surface lines of each blade element are lines with a constant rate of angle change with path distance on a specified conical surface) were selected for the rotor and stator blading to be as consistent as possible with studies being conducted by NASA-Lewis Research Center (Reference 6). To ensure interchangeability with the conventional stage, radial distributions of overall axial chord for the tandem airfoils were maintained equal to the distributions selected for the conventional Stage D blading. To minimize the number of variables to be investigated in the selection of tandem Stage E metal geometry, the individual airfoil maximum thickness-to-chord ratio for each tandem airfoil was maintained equal to the corresponding values selected for the conventional Stage D airfoils. The individual airfoil chords of the tandem blades were arbitrarily set equal. The rotor and stator camber angles were selected to provide approximately an equal distribution of lift between the front and rear airfoils. The individual airfoils for both the rotor and stator were positioned so that:

- 1. The leading edge metal angle of the front airfoil and the trailing edge metal angle for the rear airfoil were equal to the leading and trailing edge metal angles, respectively, selected for Stage D.
- 2. There was zero axial overlap of the front and rear airfoils.
- 3. The passage width between the airfoils was approximately 10% of the front airfoil chord.
- 4. The passage between the airfoils would be slightly convergent (inlet-to-exit area ratio slightly greater than one).

Photographs of both the Rotor E and Stator E blading are shown in figure 1. The large variations in twist in the endwall regions resulted from using the actual inlet pressure gradient in the velocity diagram calculation and including the effects of axial velocity ratio and secondary flow on blade row performance. Details of the Stage E blading aerodynamic and mechanical design are presented in Reference 4.

Rotor and stator design velocity diagram data, blade element geometry data, and predicted performance are presented in tables I and II for the tandem rotor and stator, respectively. Symbols and performance variables are defined in Appendix C.

Table I. Tandem Rotor E Blade Element Design

VELOCITY DIAGRAM DATA

Per	Percent Span From	n From Tip											
7 4	Leading Edge	Trailing Edge	V'le (ft/sec)	$^{ m V_{zle}}_{ m (ft/sec)}$	V'øle (ft/sec)	β 'le (deg)	Ule (ft/sec)	V'te (ft/sec)	Vzte (ft/sec)	V'øte (ft/sec)	eta^{\prime} te (deg)	Ute (ft/sec)	a (cleg)
Hub 96	80	95.0	758.6	458.8	608.7	53.00	608.7	416.8	371.3	193,5	27,95	610.5	1,52
92	0.	90.0	787.8	488.5	615.8	51.50	615,8	493.9	448.9	204.8	24,55	9.219	1.3
98	6	85.0	800.7	500,5	623,8	51,10	623.8	535,6	491.5	215.9	23.72	624.7	٠. د
71	0.	70.0	819.8	501.1	642.9	52.20	642.9	575.8	519.6	249.0	25,70	645.9	-1.1
49	49.5	50.0	844.3	499.9	680.6	53.60	680.6	603.1	525,8	293.7	29,35	674.3	-4.2
28	.1	30.0	869.4	496.5	713.2	55.00	713.2	622.8	521,1	339,8	32.95	702.6	-7.1
12	0	15.0	877.9	473,4	737.8	57,10	737.8	596.0	464.2	370.0	38,35	723.9	-9.3
2	7.1	10.0	861,4	428.7	745.3	59.80	745.3	553.0	400.9	379.7	43,48	730.9	9.6-
Tip 3	3.0	5.0	837.2	375.1	751.5	64.10	751,5	483.5	270.0	388.9	53.00	738.0	-9.0
vote: B	e = 0 and	Note: $oldsymbol{eta}_{le}=0$ and is constant with radius.	it with rad.	ius.									
					DESIGN	PERFO	DESIGN PERFORMANCE DATA	ATA					
Rotor]	Rotor Pressure Ratio:		1.282							Adiabatic	Adiabatic Efficiency:	y: 89.9%	

89.9%		Tte (°R)	561.14	561,14	561,14	561,34	561,34	561,07	561,28	561,14	561.38
Adiabatic Efficiency:		Pte (psia)	17,765	18,361	18,735	19,000	19,063	19,010	18,465	17,915	17,130
Adiabatic E		The (°R)	518.7	518.7	518.7	518.7	518,7	518.7	518.7	518,7	518.7
		Ple (psia)	14,427	14,659	14,694	14,699	14,693	14,701	14,602	14,308	13,820
		ۇ (deg)	12,79	10.38	90.6	7.05	6.16	5.44	6.82	10,45	17.12
		Loss Parameter	0.0604	0.0432	0.0288	0.0177	0.0129	0.0158	0,0335	0.0382	0.0428
		EI,	0,236	0.162	0,106	0.064	0.046	0.056	0.123	0.150	0,201
		Q .	0.604	0.530	0.484	0.453	0.436	0.426	0.461	0.504	0.567
	,	i (deg)	0.57	0.58	0.52	0.15	-0.36	-0.88	-1.41	-2,32	-3.90
53	a	$ m M_{1e}^{\prime}$	0.697	0.719	0.732	0,750	0.774	0.796	0,801	0.783	0.757
Ratio: 1.28	ın From Tip	Trailing Edge	95.0	0.06	85.0	70.0	50.0	30.0	15.0	10.0	5.0
totor Pressure Ratio: 1, 28	Percent Span	Leading Edge	8.96	92.0	86.9	71.0	49.5	28.1	12.0	7.1	3.0
Rotor	. 7		Hub								Tip

밁
리
≿
ETH
ΣI
뜅
•

	in.	11	رد	0.078	0.076	074	. 068	090.	0.052), 046	. 044	0.042
	. 2,57	Each Airfoi]	ŗ									
	Length	Each	ρ	0.904	0.896	0,88	0.859	0,81	0.77	0.73	0,71	0.70
	Overall Chord Length: 2,57 in.		rte (in.)	0.000	0.006	0.000	0,006	0.006	900.0	0,006	0.000	0.006
	Ove	١	rle (in.)	0,006	900.0	900.0	900.0	0.006	0.006	0,006	900.0	900.0
		lic	γ° (deg)	28.780	27,615	27.725	31,110	34,330	37.670	41,160	42,730	45.830
		Rear Airfoil	φ (deg)	27,280	26,930						19,400	19.920
,			K te (deg)	15,140	14,150	14,630	18,640	23, 190	27.500	31,530	33,030	35.870
			K _{le}	42,420	41,180	41,140	43.580	45,470	47.640	50.790	52, 430	55,790
GEOMETRY DATA	Number of Blades: 70		rte (in.)	0.006	9000	900.0	900.0	9000	900.0	900.0	900.0	0.006
GEOMI			rle (in.)	900.0	0.006	900.0	0,006	0.006	900.0	0.008	0,011	0,016
	4	rfoil	γ° (deg)	45,820	44,410	44.180	45.960	48, 275	50,520	53,300	55.570	60,050
		Front Airfoil	(geb)	13,200	13,000	12,780	12,160	11,370	10,720	10,420	13, 100	15,900
		,	k te (deg)	39,220	37,910	37.790	39,880	42,590	45,160	48.090	49.020	52,100
	Arc		K _{le} (deg)	52,420	50,910	50,570	52,040	53,960	55,880	58,510	62,120	68,000
	Airfoll: Simulated Double-Circular-Arc	From Tip	Rear Body Trailing Edge	95.0	0.06	85.0	70.0	50.0	30.0	15.0	10,0	5.0
1	oll: Simulated D	Percent Span From Tip	Front Body Leading Edge	8.96	92,0	6,98	71.0	49.5	28.1	12.0	7.1	3.0
	Airfe			Hub								Tip

Table II. Tandem Stator E Blade Element Design

VELOCITY DIAGRAM DATA

								2, 35 in.	irfoil	١ , و	0.09 0.09 0.09 0.09 0.09 0.09 0.09
								Length: 2.	Each Airfoil	б	0.75 0.738 0.7138 0.656 0.656 0.614 0.613
								Overall Chord Length:		r _{le} (in.)	0.008 0.007 0.006 0.006 0.006 0.006 0.006
J.	.	3 + 60 61 61 4 9						Ove		r _{lc}	0.006 0.006 0.006 0.006 0.006 0.006 0.006
Equivalent Weight Flow = 110 lb/sec	a (dob)	-0.29 -0.57 -0.86 -1.72 -2.86 -4.00 -4.86 -5.14		Stage Adiabatic Efficiency: 84.8%	P _{te} (psia)	17, 419 18, 117 18, 472 18, 748 18, 864 18, 762 18, 153 17, 534 16, 738			rfoil	۲° (deg)	9, 670 5, 815 1, 840 3, 960 3, 740 3, 330 1, 125 13, 400
Flow -	β _{(c} (deg)	000000000		fficiency	هٔ (deg)	8.83 11.31 11.31 11.31 10.97 11.01 11.66 12.44 4.85			Rear Airfoil	ф (deg)	37, 00 34, 25 32, 35 32, 36 29, 86 29, 50 29, 98 32, 04 33, 61
t Weight	Vøle (ft/sec)	000000000000000000000000000000000000000		rbatic El	(رد (ط	8.83 11.31 11.31 10.97 11.01 11.66 12.44 12.68				i (3	- 8.830 -11,310 -11,310 -10.970 -11,010 -11,660 -12,440 -12,680 -12,680
guivalen	Vzte (ft/sec)	395.1 472.2 514.3 543.9 544.2 547.8 446.2 298.4		age Adia	Loss Parameter	0.02216 0.02027 0.01902 0.01714 0.01610 0.01865 0.03165 0.04575				K _{te} (deg)	
ធ			ATA	š	Paı			99 :		K _{lc} (deg)	28, 170 22, 940 20, 990 18, 890 18, 490 18, 320 19, 600 20, 930 31, 650
	Vtc (ft/sec)	395.1 472.2 514.3 543.9 554.2 547.8 647.8 486.2 417.2	ANCE I		13	0.0972 0.0803 0.0712 0.0634 0.0537 0.0995 0.1506	GEOMETRY DATA	Number of Vanes: 66	ł		90 90 90 90 90 90 90
	$eta_{ m lc}$	47.65 41.90 39.20 37.00 35.50 34.40 36.50 40.40	RFORM			0,540 0,462 0,423 0,389 0,369 0,418 0,418 0,488	OMETR	umber		rte (in.)	0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
	V 9 1c (ft/sec)	417.7 412.8 407.9 396.8 380.5 362.9 354.3 349.0	DESIGN PERFORMANCE DATA		D		뜅	z		rle (in.)	0.008 0.007 0.006 0.006 0.006 0.008 0.013
	Vzle (ft/sec) (383.9 456.9 501.1 526.2 533.7 471.9 407.2	DE		im (deg)	-2.51 -1.08 -1.08 -1.08 -1.18 -1.43 -2.15 -3.11			Front Airfoil	γ° (deg)	37.660 31.580 28.955 27.450 26.680 26.150 27.825 31.235 43.140
ud	V _{Ic} (ft/sec) (569.9 616.8 645.3 659.8 655.9 642.5 595.2 538.1			M le	0.5024 0.5463 0.5751 0.5867 0.5832 0.5709 0.5262 0.4748			Front	φ (deg)	25.00 23.60 22.65 21.14 20.00 19.36 21.65 23.75
= 4210 r				1,265	n Tip ling çe	00000000				Kte (deg)	25.160 19.780 17.630 16.880 16.680 16.470 17.000 19.360 27.140
Equivalent Rotor Speed = 4210 rpm	Percent Span From Tip Leading Trailing Edge Edge	95.0 90.0 85.0 70.0 50.0 15.0 10.0		Stage Pressurc Ratio: 1,265	Percent Span From Tip Leading Trailing Edge Edge	95.0 90.0 85.0 70.0 70.0 30.0 15.0		-Arc		κle (deg)	50, 160 43, 380 40, 280 38, 020 36, 680 35, 830 43, 110 59, 140
alent Ro	Percent S Leading Edge	95.0 90.0 85.0 70.0 50.0 30.0 15.0		Pressu	Percent Leading Edge	95.0 90.0 85.0 70.0 50.0 30.0 15.0		Arcular-	<u>,a</u>	Rear Body Leading Edge	
Equiv		Hub		Stage		Hub	ı	ouble-C	From 1	Rear Body Leading Ec	95.0 90.0 85.0 70.0 50.0 30.0 115.0 5.0
								Airfoil; Simulated Double-Circular-Arc	Percent Span From Tip	Front Body Leading Edge	Hub 95.0 90.0 85.0 70.0 50.0 30.0 15.0 Tip 5.0

TEST EQUIPMENT

Compressor Test Facility

A schematic of the compressor test facility is shown in figure 2. The compressor is driven by a single-stage turbine, powered by exhaust gases from a J75 slave engine, with compressor speed controlled by means of the engine throttle. Air enters the compressor through a 103-ft combined inlet duct, plenum, and bellmouth inlet, and is exhausted through an exit diffuser to the atmosphere. The inlet duct contains a flow measuring orifice designed and installed in accordance with ASME standards. The area contraction ratio from plenum to compressor inlet is approximately 10 to 1.

Compressor Test Rig

A schematic of the compressor test rig is shown in figure 3. The flowpath dimensions are shown in figure 4. The hub/tip ratio at the rotor inlet is 0.798. The test section has a constant hub diameter of 32.85 in., and the outer wall converges from a diameter of 41.15 in. at the rotor leading edge to 39.99 in. at the stator trailing edge. Rotor bearing loads are transmitted to the rig support through struts located in the inlet and exhaust case assemblies. The inlet struts are sufficiently far upstream so that their wakes are dissipated ahead of the rotor. The stage design specifications of zero rotor prewhirl and axial discharge flow eliminated the need for inlet and exit guide vanes. Flowrate and/or backpressure were varied with a set of motor-driven throttle vanes located in the exhaust case.

Distortion Screens

Twenty-mesh, 0.020-in. diameter wire was used for the distortion screens (i.e., tip radial, hub radial, and circumferential). The tip and hub radial distortion screens covered 35 and 40% of the inlet annulus area, respectively, and the circumferential screen covered a 90-deg sector of the inlet annulus area. The distortion screens were mounted on a 1.0-in. mesh 0.125-in. diameter wire support screen located approximately one rotor radius upstream of the rotor leading edge. The support screen, which spanned the entire annulus, was installed for all the Stage E tests.

Instrumentation

Instrumentation was provided to obtain overall and blade element performance data for each blade or vane row. The locations of axial instrumentation stations are indicated in figure 4. Axial and circumferential locations of the instrumentation are shown in figure 5. Except for the omission of one rotor inlet total pressure probe during uniform inlet and radial distortion tests, dual instrumentation was provided at each axial station. The dual instrumentation provided: (1) a redundant set of measurements during uniform and radially distorted inlet flow testing, and (2) measurements within and outside of the distorted region during the circumferential distortion testing.

Airflow was measured with an ASME standard thin-plate orifice located in the compressor facility inlet duct. Compressor rotor speed was measured with an electromagentic sensor mounted adjacent to a 60-tooth gear on the rotor shaft. Gear tooth passing frequency was displayed as rpm on a digital counter. Rotor rpm was also recorded on magnetic tape. Inlet total temperature was measured in the inlet plenum by means of six half-shielded total temperature probes; inlet total pressure was measured in the plenum by means of five Kiel total pressure probes. Six equally spaced static pressure orifices were located on both the inner and outer walls at instrumentation Station 0.

Radial distributions of static pressure at the rotor inlet and exit and at the stator exit were measured by means of 8-deg wedge probes (figure 6). Four inner and four outer wall static pressure orifices, approximately equally spaced, were located at each of these stations. The rotor exit (i.e., stator inlet) instrumentation station also had two inner and three outer wall orifices installed across a vane gap to measure the static pressure variation across the gap. Likewise, the stator exit instrumentation station had four inner and four outer wall orifices installed across a vane gap to measure the gap-wise static pressure gradient on each wall. Eleven static pressure orifices were located over the rotor blade tips on the outer wall, between -26 and 107% rotor axial chord, to measure the rotor tip static pressures. Stator surface static pressure distributions at 10 and 90% span were measured with eight suction surface and three pressure surface orifices equally spaced from approximately 15 to 85% chord at both span locations for the front and rear airfoils of the tandem stator. The three pressure surface orifices at each percent span were installed on the same airfoil, i.e., one front and one rear airfoil; a different stator vane was used for each group of eight suction surface pressure orifices at a given percent span, i.e., two front airfoils and two rear airfoils for a total of six instrumented stators. The six stators were positioned in the stator assembly so that at least one uninstrumented vane separated those with static pressure orifices. The circumferential location of each instrumented airfoil and the location of the pressure orifices in terms of percent chord are shown in figure 7.

Twenty-deg wedge probes (figure 8) were used to measure the radial distributions of total pressure and flow angle at the rotor inlet and exit, and flow angle at the stator exit. Stator exit total pressure and temperature across a stator gap were measured at each of two circumferential locations by means of circumferentially traversed radial rakes with elements at nine radial positions (figure 9). The elements of each radial rake were designed to measure both total pressure and temperature. A fixed radial rake with five Kiel-type total pressure sensors was also installed downstream of the stator for use with the wall static measurements to calculate the freestream Mach number. This Mach number was used to correct the total temperature and the 8-deg wedge static pressure measurements.

As previously stated, dual instrumentation was provided at each axial measuring station to provide measurements within and outside of the distorted regions during the circumferential distortion testing. The dual instrumentation also reduced the number of circumferential distortion screen locations required to obtain a uniform spacing of flow distribution data relative to a reference screen location. Six screen locations resulted in the cirfumerential distributions (relative to a reference screen location) of data shown in figures 10a through 10c for Stations 1, 2, and 2A, respectively.

Steady-state pressure data were measured with a multichannel pressure transducer scanning system that includes automatic data recording on computer cards. Steady-state temperature measurements were also automatically recorded on computer cards by a multichannel scanning system in conjunction with a temperature reference oven and a digital voltmeter. Traverse pressure and temperature data and transient pressure data were recorded on magnetic tape at up to 600 samples per minute per channel.

One static pressure orifice located in the plenum, two of the outer wall static pressure orifices at Station 0, and a total pressure probe with sensors at 10, 50, and 90% spans at the rotor exit were close-coupled to transducers with 9-in. lengths of 0.040-in. inner diameter tubing for transient recording during operation into and out of surge. High-response pressure transducers mounted as total pressure probes at 10, 50, and 90% span from the tip behind the rotor (figure 11) were used to measure high-frequency total pressure oscillations and to indicate the initiation of rotating stall and/or surge. The high-response transducer output was recorded on magnetic tape and correlated in time with the transient recording of the plenum and Station 0 static and the stage exit total pressures.

Five rotor blades were instrumented with strain gages to provide vibratory stress data. Gage locations were determined by bench vibration tests with the aid of stress-coat, and the selected locations were verified by a fatigue test. The gage outputs were displayed on oscilloscopes and visually monitored during tests.

PROCEDURES

Test Procedures

Shakedown Tests

A shakedown test was performed to check out the rig and blade vibration levels, blade stress levels, instrumentation, and data reduction programs. Overall and blade element performance data were obtained for five operating points with uniform inlet flow at design equivalent rotor speed. One stall transient was performed during this test.

Performance Tests

Overall performance, blade element performance, flow distribution, and surge transient data were obtained during the uniform inlet flow tests at 50, 70, 90, 100, and 110% of design equivalent rotor speed. Five data points (defined as a combination of flow and speed) were recorded at each rotor speed to define stage performance between maximum obtainable flow and near surge. The near-surge point was determined on the basis of flow and rotor exit pressure. Overall performance, blade element performance and flow distribution data were obtained at three flow conditions, including maximum and near-surge flow, at 70, 90, and 100% of design equivalent rotor speed for the hub and tip radial inlet flow distortion tests. For circumferential distortion of the inlet flow, overall performance data were recorded for three data points at each of 70, 90, and 100% of design equivalent rotor speed. At each overall performance data point, data were recorded for two locations of the circumferential distortion

screen to assure a sampling of the rotor and stage performance in both the undistorted and distorted zones of the flow field. Flow distribution data were also obtained with circumferential distortion of the inlet flow for two of the data points at design equivalent rotor speed and one data point at 90% design equivalent rotor speed. To obtain an approximately uniform spacing of flow distribution data around the circumference of the compressor, data were recorded for six screen locations for each of these three data points. The resulting circumferential locations of the instrumentation relative to a reference screen location are shown in figure 10.

At each data point, traverse surveys were followed by the recording of fixed pressure and temperature instrumentation data. Blade stresses were monitored during steady-state and surge transient operation at all rotor speeds.

Transient measurements of bellmouth static pressure, rotor speed, and rotor exit total pressure were recorded 10 times per second to define surge characteristics as the stage was operated into and out of surge. The output from a high-response total pressure probe (10, 50, and 90% spans) at the rotor exit was also recorded as the stage was operated into and out of surge. These high-response total pressure probe data were correlated in time with the other transient measurements.

Data Reduction Procedures

Data reduction was accomplished in two steps. The first step involved the use of two computer programs (1) to convert millivolt readings to appropriate engineering units, and (2) to provide a tabulated and plotted array of pressures, temperature, and air angle data at each station. Conversion of data to absolute values, appropriate Mach number corrections, and adjustment of pressures and temperature to equivalent NASA standard day conditions were performed in the second computer program.

The second step in the data reduction procedure involved a third computer program to calculate overall and blade element performance variables for the rotor and stator. The array of data provided in step one, above, was analyzed for the selection of radial distributions of pressures, temperature, and air angle at each axial station for input into this computer program.

Overall Performance

Total pressure ratios and adiabatic efficiencies were calculated for the rotor and the rotor-stator (stage). The rotor and stator exit total pressures and total temperatures were weighted according to local mass flow to obtain average values. The mass-averaged stator exit total temperatures were used for both the rotor and stage efficiency calculations.

The stator wake total pressures and total temperatures at each radial measuring station were mass-averaged using the local total pressure in the wake, the local total temperature in the wake, and the 8-deg wedge probe static pressure. Mach number was determined from the local total and static pressure measurements. The local mass flow was then obtained from the relationship

$$\overline{m} = \frac{W\sqrt{T}}{PA} = \sqrt{\frac{\gamma g_c}{R}} M \left[1 + \frac{\gamma - 1}{2} M^2\right]^{\frac{1+\gamma}{2(1-\gamma)}}$$

where A is the flow area associated with each radial measurement increment.

For circumferential distortion, the mass flow averaged values of total pressure and total temperature measured at one circumferential location within and one circumferential location outside of the undistorted flow region, were weighed according to the circumferential extent of the distorted and undistorted flow to obtain the values used to calculate the pressure ratio and efficiency (i.e., the values from the undistorted region were multiplied by 3/4 and the values from the distorted region were multiplied by 1/4 and the resultant answers added to obtain the final average performance). It was necessary to record data for two screen positions to ensure that measurements were obtained both within and outside of the distorted region at all instrumentation stations. It was assumed that the relative extent of distorted and undistorted flow remained the same through each blade row.

Blade Element Performance and Flow Distribution Data

Blade element performance and flow distribution data are presented for each blade row for uniform and radially distorted inlet flow. Performance calculations were made along design streamlines that pass through 5, 10, 15, 30, 50, 70, 85, 90, and 95% span at instrumentation Station 2. The calculations were performed at the instrumentation stations and at the rotor and stator leading and trailing edges. The pressures, temperatures, and air angles at the blade row leading and trailing edges were obtained by translating the measured values from the instrumentation stations assuming conservation of angular momentum, conservation of energy, continuity, and flow along design streamlines. A description of the translation method is presented in Reference 3. For circumferentially distorted inlet flow, flow distribution data (i.e., total pressure, total temperature, flow angle, velocity, Mach number, and turning) are presented for the three data points with six screen positions. These flow distribution data are at the instrumentation stations and not translated to the blade row leading and trailing edges.

Surge Transient_Data

Bellmouth static pressure at incipient surge was determined from plots similar to the one shown in figure 12 and the corresponding weight flow was determined from the correlation of bellmouth static pressure and orifice weight flow shown in figure 13. The steady-state pressure ratio data were extrapolated to the surge flow using the shape of the transient data curve as a guide line. Incipient surge points were determined in this manner for each rotor speed.

PRESENTATION OF DATA

Uniform Inlet

Overall Performance

Overall performance data are presented in terms of total pressure ratio and adiabatic efficiency as functions of equivalent weight flow $(W\sqrt{\theta/\delta})$ and equivalent rotor speed $(N/\sqrt{\theta})$ for the rotor in figure 14 and the rotor-stator (stage) in figure 15. The design total pressure ratio and adiabatic efficiency for the rotor were 1.28 and 89.9%, respectively, at design flow. The corresponding design values for the stage were 1.26 and 84.8%. The design point is shown on each figure for comparison with the performance results. The solid

symbol on the stall line in figures 14 and 15 is the surge point determined from the transient data. Pressure ratio, adiabatic efficiency, and polytropic efficiency for the rotor and stage are also tabulated for the steady-state data points in table A-1 of Appendix A.

Based on a curve faired through the data points, the rotor achieved an adiabatic efficiency of 89.7% and a total pressure ratio of 1.291 at design equivalent rotor speed and flow. At the same flow and rotor speed the stage achieved an adiabatic efficiency of 83.7% and a total pressure ratio of 1.275. At design equivalent rotor speed, maximum rotor and stage adiabatic efficiencies of 89.9 and 83.9%, respectively, were reached at approximately 98 and 100% design equivalent flow.

Blade Element Performance and Flow Distribution Data

As discussed on page 10, the blade element performance and flow distribution data were calculated for the instrumentation stations and for the rotor and stator leading and trailing edges. Table A-2 of Appendix A presents the data at the instrumentation stations at the near design point operating condition and is included only to illustrate the small differences at the near design point between values calculated from the data at the instrumentation stations and the values calculated from the data that have been translated to the rotor and stator leading and trailing edges. Because of the small differences between translated and untranslated values, only the translated values are given in table A-3 of Appendix A for the remaining compressor test points. The plotted results discussed for the rotor and stator in the following paragraphs are based on the translated data.

Rotor Blade Element Performance - Rotor diffusion factor, deviation angle, and loss coefficient are shown as functions of incidence angle in figures 16a through 16i. At the design incidence angle and rotor speed, total pressure losses were less than or equal to the design value from 15 to 95% span from the tip and greater than the design value only at 5 and 10% span. Deviation angles were essentially equal to the design value between 10 and 70% span from the tip, greater than the design value at 5, 85, and 90% span and less at 95% span. The diffusion factor at design incidence angle and rotor speed was greater than the design value at 5, 10, 15, 85, and 90% span from the tip, approximately equal to the design value at 30, 50, and 70% span, and slightly less than the design value at 95% span.

Loss parameter versus diffusion factor is presented in figures 17a through 17e for 10, 30, 50, 70, and 95% span, respectively. The design curve representing a correlation of the minimum loss data from Reference 3, References 8 through 14, and unpublished Pratt & Whitney Aircraft in-house data are shown in these figures for comparison with the performance data. Although the data from References 8 through 14 are for Series 65 blade sections, the data presented in Reference 7 indicate that a single correlation of loss parameter vs diffusion factor can be used for Series 65 and double-circular-arc blade sections. The range of data in the Reference 7 correlation and the two-dimensional cascade data from figure 149 of Reference 7 are also shown at 10, 50, and 90% span in figures 17a, 17c, and 17e, respectively, for comparison with the selected design loss curves. At design equivalent rotor speed, the loss parameter value

that corresponds to the minimum loss coefficient at 10, 30, 50, 70, and 90% span (figures 16b, 16d, 16e, 16f, and 16h, respectively) are above the design curve at 10 and 90% span and on or slightly below the design curve at 30, 50, and 70% span.

Axial gradients of rotor tip static pressure ratio (p $_{\rm L}$ /p at -7.0% axial chord) are shown in figure 18 for each flowrate at design equivalent rotor speed. This figure indicates (1) that the rotor tip loading shifted toward the leading edge of the blade as the compressor was throttled toward surge flow; and (2) that approximately an equal static pressure rise occurred across both front and rear airfoils at design equivalent flow.

Stator Blade Element Performance - Stator diffusion factor, deviation angle, and loss coefficient are presented as functions of incidence angle in figures 19a through 19i. For design incidence angle and rotor speed, the stator losses were less than design at 30, 50, 70, and 95% span from the tip and greater than design at 5, 10, 15, 85, and 90% span. Deviation angles, at design incidence, were from 1 to 3 deg greater than the design values from 5 to 90% span and approximately 1 deg less than design at 95% span. Diffusion factors, at design incidence angle and rotor speed, were less than the design value at 5, 10, 15, 30, and 95% span from the tip, approximately equal to the design value at 50 and 70% span, and greater than the design value at 85 and 90% span.

Loss parameter versus diffusion factor is shown in figures 20a through 20e for 10, 30, 50, 70, and 90% span, respectively. The design curve, representing a correlation of the minimum loss data derived from the same references discussed in the rotor blade element performance section, is shown on each figure. The design point, the range of stator data from Reference 7, and the two-dimensional cascade data from Reference 7 are also included in the figures for comparison with Stator E performance data. For design equivalent rotor speed, the loss parameter values corresponding to the minimum measured loss coefficients were below the design curve at 10, 30, 50, and 70% span from the tip and above the design curve value at 90% span.

The stator static pressure coefficient distributions at 10 and 90% span from the tip are shown in figures 21a through 21h for design equivalent rotor speed. Static pressure coefficient distributions for all uniform inlet data points are tabulated in Appendix B. Vane suction surface instrumentation at 10% span and 30 and 45% chord on the front airfoil (i.e., 11.6 and 16.5% overall axial chord); and pressure surface instrumentation at 10% span and 15% chord on the rear airfoil (i.e., 56.5% overall axial chord) was inoperative and prevented the calculation of static pressure coefficients at these locations. As shown on figure 21, the rear airfoil loading, represented by the area between the suction surface and the pressure surface static pressure coefficients, decreased, while the front airfoil loading increased, as the compressor was throttled toward surge flow. The ability of the tandem-airfoil configuration to control the stator rear airfoil incidence is suggested by the variations in the shape of the static pressure coefficient distribution for each airfoil. Operating between the maximum and minimum flowrates at design equivalent rotor speed, the stator front airfoil experienced large variations in the shape of its static pressure coefficient distribution, while the shape of the corresponding distribution for the rear airfoil exhibited only slight variations.

Wall Static Pressure - The wall static pressure data were examined to determine if circumferential gradients with respect to the stator vanes were significant. In general, the variations of static pressure at different circumferential locations (solid symbols in figure 22), at approximately the same location relative to the stator vane, are as large as any variations that may be noted within one stator vane pitch. It was, therefore, concluded that no significant pitch variation was present in these data. Representative curves for two flow conditions at design equivalent rotor speed are presented as figures 22a and 22b.

Hub and Tip Radial Inlet Flow Distortion

Overall performance, blade element performance, and flow distribution data were obtained with hub radial and tip radial distortion of the inlet flow. The screens used to produce the distortion are described on page 6. At flows of approximately 115 lb/sec (i.e., 105% design equivalent flow), the hub and tip radial distortion screens produced 14.6 and 14.0% total pressure distortion, i.e., $(P_{1max} - P_{1min})/P_{1max}$. Rotor inlet total pressure profiles are presented in figure 23.

Overall Performance

Overall performance data obtained with hub radial distortion of the inlet flow are presented in terms of pressure ratio and adiabatic efficiency as functions of equivalent weight flow and equivalent rotor speed for the rotor in figure 24 and the stage in figure 25. Similarly presented in figures 26 and 27 is the overall performance obtained with a tip radial distortion of the inlet flow. Uniform inlet flow data and the rotor and stage design points are presented in these figures for comparison with the radially distorted inlet flow data. The surge line shown was determined from surge transient data. Pressure ratio, adiabatic efficiency, and polytropic efficiency for the rotor and stage are also tabulated for the steady-state data points with radial distortion in table A-4 of Appendix A.

With hub radial distortion of the inlet flow, rotor pressure ratio, and efficiency at design equivalent flow and rotor speed were 1.265 and 86.7%, compared with 1.291 and 89.7% for uniform inlet flow. Similarly, stage pressure ratio and efficiency were 1.245 and 79.4% as compared with 1.275 and 83.7% with uniform inlet flow. With the addition of hub radial distortion at 70, 90, and 100% design equivalent rotor speed, there were 0.9, 3.4, and 2.5% reductions, respectively, in stage surge pressure ratio. Therefore, Stage E was moderately affected by hub radial distortion.

With tip radial distortion of the inlet flow, rotor pressure ratio at design equivalent flow and rotor speed was 1.266 as compared with 1.291 for the uniform inlet flow. Rotor efficiency under the same conditions was 86.5%, compared with 89.7% for uniform inlet flow. The corresponding stage pressure ratio and efficiency were 1.245 and 79.4% as compared with 1.275 and 83.7% for the uniform inlet. Stage surge pressure ratio decreased by 3.6, 7.8, and 7.0% at 70, 90, and 100% design equivalent rotor speed, respectively, when compared to the uniform inlet test results. Consequently, Stage E was substantially affected by tip radial distortion.

Blade Element Performance and Flow Distribution Data

Blade element performance and flow distribution data with radial distortion were calculated for each of the nine design streamline locations, and the results, based on data translated to the blade row leading and trailing edges, are presented in tables A-5 and A-6 of Appendix A.

Rotor and Stator Blade Element Performance - Diffusion factor, deviation angle, and loss coefficient with hub radial and tip radial distortion of the inlet flow-are presented as functions of incidence angle in figures 28a through 28i for the rotor and in figures 29a through 29i for the stator. Comparison of the data shown in figures 28 and 29 with the uniform inlet flow data shown in figures 16 and 19 indicates that the rotor and stator deviation angle, loss coefficient, and diffusion factor distributions with radial distortion are generally equivalent to or are a normal extension of the values obtained with uniform inlet flow.

Flow Distribution Data - Radial distributions of total and static pressure, total temperature, air angle, and axial velocity for the rotor inlet, stator inlet and stator exit are presented for hub and tip radial distortion of the inlet flow in figures 30a through 32c and 33a through 35c, respectively. The values for the nine design streamline locations are also tabulated in tables A-5 and A-6 of Appendix A.

The similarity of the stage inlet and exit total pressure and axial velocity profiles shown in figures 30a and 33a for hub and tip distortion, respectively, at design rotor speed and approximately 115 lb/sec (i.e., 105% design flow) indicates very little attenuation of either distortion pattern. Generally, this result is typical of the results obtained at other rotor speeds and flows.

Circumferential Distortion

Rotor and stage overall performance were obtained with circumferential distortion of the inlet flow. The screen used to produce the distortion is described on page 6. At a flow of approximately 117 lb/sec (i.e., 106% design equivalent flow), the screen produced 13.5% total pressure distortion, i.e., $(P_{1max} - P_{1min})/P_{1max}$. A typical rotor inlet total pressure distribution at 94.0% design equivalent flow is presented in figure 36. The profile at approximately 106% design equivalent flow is not shown because at that flow, pressure data were recorded at only two circumferential locations.

Overall Performance

The rotor and stage overall performance achieved with circumferential distortion of the inlet flow are compared with uniform inlet performance in figures 37 and 38, respectively. The half-solid symbols of figures 37 and 38 indicate the data points for which both overall performance and flow distribution data were recorded, while the solid symbols are the surge points determined from the transient data. The surge line was extrapolated above 80 lb/sec flow because the surge flow obtained from the transient data at design rotor speed was greater than

the measured near-surge steady-state flow. The abrupt surge characteristics of Stage E preclude the possibility of a data point being taken in surge. Pressure ratio, adiabatic efficiency, and polytropic efficiency for the rotor and stage are also tabulated for the steady-state data points with the circumferential distortion in table A-7 of Appendix A.

With circumferential distortion of the inlet flow, rotor pressure ratio, and efficiency at design equivalent rotor speed and flow were 1.273 and 84.3% compared with 1.291 and 89.7% for uniform inlet flow. Similarly, stage pressure ratio and efficiency were 1.255 and 77.8%, compared to 1.275 and 83.7% with uniform inlet flow. Surge pressure ratio for the stage decreased by 2.6, 2.7, and 2.5% with circumferentially distorted inlet flow when compared with uniform inlet flow results at 70, 90, and 100% design equivalent rotor speed, respectively. Consequently, the Stage E surge margin was only moderately affected by circumferential distortion.

The peak rotor efficiency (figure 37) at 70, 90, and 100% design equivalent rotor speed with circumferential distortion was 6.3, 3.9, and 4.2 percentage points lower than the comparable values from the uniform inlet flow tests. Stage efficiencies (figure 38) were 3.8, 3.6, and 5.3 percentage points lower than the uniform inlet results. Peak efficiency for the rotor and the stage occurred at 100 and 90% design equivalent rotor speed, respectively.

As discussed on page 10, the overall performance shown in figures 37 and 38 was calculated from pressures and temperatures measured at one circumferential location within and one circumferential location outside the distorted region. In an effort to verify these pressure ratios and efficiencies, the overall performance was recalculated for the three data points of figures 37 and 38 for which data were recorded at six screen locations using a larger sample of the data within and outside of the distorted area. Average pressures and temperatures were obtained by area weighing the spanwise mass-average values from each of 12 circumferential locations around the flow field, thus providing a better average of the rotor and stage exit pressures and temperature than was used to calculate the pressure ratios and efficiencies shown in figures 37 and 38 and in table A-7. The overall performance calculated from the data at 12 circumferential locations is compared with the performance calculated from 2 circumferential locations in figures 39 and 40 for the rotor and stage, respectively. As shown in figure 39, the larger data sample resulted in 0.006 and 0.012 losses in design speed rotor pressure ratio at near stall and midpoint flowrates. Corresponding efficiency losses were 1.37 and 1.68 percentage points. There was no change in the 90% design speed near stall rotor pressure ratio, but a 1.0% efficiency loss was calculated. The values calculated for stage pressure ratio at design speed using the larger data sample (figure 40) were essentially unchanged, but efficiency increases of 0.86 and 1.60% were obtained for the near stall and midpoint flowrates, respectively. The 90% design speed near stall pressure ratio and efficiency remained essentially unchanged. This comparison of the two calculation procedures indicates fair agreement; however, additional data samples should be obtained in future test programs if a more accurate assessment of rotor and stator performance with circumferential distortion of the inlet flow is desired.

Flow Distribution Data

Table A-8 of Appendix A presents flow distribution data at the instrumentation stations for circumferential increments of 30 deg around the compressor annulus. Circumferential distributions of total pressure, static pressure, total temperature, air angle, and axial velocity for each instrumentation station at the nine design streamline locations are shown in figures 41 through 43. Figures 41 and 42 present the values for the two data points at design equivalent rotor speed, and figure 43 presents the data for the one point at 90% design equivalent rotor speed. The measured variables (pressure, temperature, and air angle) are plotted at the circumferential locations of the measuring instrument relative to the distortion screen, and the axial velocity is plotted at circumferential locations corresponding to the locations of the 20-deg wedge probes relative to the distortion screen. A comparison of the circumferential distributions of total pressure and axial velocity at the rotor inlet with the corresponding values at the stage exit indicates very little attenuation of the inlet distortion by either the hub or the tip sections of the compressor. This result is consistent with the results obtained with radial distortion of the inlet flow.

Summary Remarks

Stage E, composed of Rotor E and Stator E, was tested with uniform inlet flow and with hub radial, tip radial, and 90-deg one-per-revolution circumferential distortion of the inlet flow. The results of these tests provide performance data for: (1) evaluating the potential of tandem blading for extending the loading limit and stable operating range of compressor, (2) evaluating the effectiveness of accounting for the inlet boundary layer, axial velocity ratio and secondary flows in compressor design, and (3) evaluating the effects of inlet flow distortion on the stage performance.

With uniform inlet flow at design equivalent rotor speed and flow, the rotor achieved an adiabatic efficiency of 89.7% at a pressure ratio of 1.291 compared with respective design values of 89.9% and 1.28. At the same flow and rotor speed, the stage achieved an adiabatic efficiency of 83.9% at a pressure ratio of 1.275. At design equivalent rotor speed, maximum rotor and stage adiabatic efficiencies of 89.9 and 83.9%, respectively, were reached at approximately 98 and 100% design equivalent flow.

With tip radial distortion of the inlet flow, significant decreases in stage surge pressure ratio occurred, i.e., at design equivalent rotor speed, the surge pressure ratio decreased by 7.0%. The surge pressure ratio at design speed with hub radial and circumferential distortion of the inlet flow showed only a small change from the uniform inlet test results, i.e., respective stage surge pressure ratio decreases of 2.5 and 2.5% occurred at design equivalent rotor speed. Peak adiabatic efficiency for the stage with inlet flow distortion was affected as follows: hub radial distortion - respective decreases of 5.8, 4.2, and 3.5% from uniform inlet flow results at 70, 90, and 100% design equivalent rotor speed; tip radial distortion - decrease of approximately 3.8% at all three design rotor speed conditions; circumferential distortion - decreases of 3.8, 3.6, and 5.3%, at 70, 90, and 100% design rotor speed. For both radial and circumferential distortion of the inlet flow, the hub and tip regions of the compressor produced very little attenuation of the inlet distortion.

TANDEM STATOR E

Figure 1. Stage E Airfoils

Figure 2. Compressor Research Facility

Figure 3. Single-Stage Compressor Rig

FD 75492

NOTE: ALL DIMENSIONS ARE IN INCHES.

Figure 4. Flowpath Dimensions

Figure 5. Instrumentation Layout

FD 58981A

0.375

0.125

- 0.375 DIA

NOTE: ALL DIMENSIONS ARE IN INCHES

- 0.020 DIA

Figure 6. Eight-Degree Wedge Traverse Probe

PERCENT OVERALL CHORD LOCATION

FRONT BODY		REAR BODY	
90% SPAN FROM TIP		90% SPAN FROM TIP	
SUCTION SURFACE (16° 24')	PRESSURE SURFACE (32º 42')	SUCTION SURFACE (5° 24')	PRESSURE SURFACE (332° 30')
6.7 11.4 16.2 21.0 26.1 31.2 36.5	7.5 24.9 42.6	56.5 61.9 67.3 72.6 77.7 82.8 87.8	56.1 74.4 92.2
41.8		92.7	FROM TIR
10% SPAN FROM TIP		10% SPAN FROM TIP	
SUCTION SURFACE (343°30')	PRESSURE SURFACE (32 ⁰ 42 ['])	SUCTION SURFACE (354 ⁰ 30 ['])	PRESSURE SURFACE (332 ⁰ 30 ['])
6.9 * 11.6 * 16.5 21.4 26.5 31.6 36.9 42.1	7.6 25.2 42.8	57.0 62.3 67.5 72.7 77.8 82.9 87.4 92.8	* 56.5 74.5 92.4

NOTES:

- 1. NUMBERS IN PARENTHESIS INDICATE THE CIRCUMFERENTIAL POSITION OF THE INSTRUMENTATED AIRFOIL IN THE STATOR ASSEMBLY. ZERO DEGREES IS TOP CENTER; THE ANGLE INCREASES CLOCKWISE LOOKING AFT.
- 2. ASTERISK INDICATES ORIFICE WHICH WAS INOPERATIVE DURING TEST.

Figure 7. Stator E Static Pressure Orifice Locations

FD 77157

FD 47069

STATIC PRESSURE ORIFICE -

- THERMOCOUPLE

- TOTAL PRESSURE

ORIFICE

NOTE: ALL DIMENSIONS ARE IN INCHES

Figure 8. Twenty-Degree Wedge Traverse Probe

Figure 9. Total Pressure/Total Temperature Circumferential Traverse Unit

FD 47068

Figure 10a.

Composition of Station 2 Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions Figure 10b.

Composition of Station 2A Instrumentation Relative to the Circumferential Distortion Screen for Six Screen Positions Figure 10c.

NOTE: ALL DIMENSIONS ARE IN INCHES

Figure 11. High-Response Probe

FD 58984B

Figure 12. Typical Plot of Transient Data

FD 75494

Figure 13. Station 0 Equivalent Static Pressure vs Equivalent Weight Flow for Stage Flowpath with Support Screen

Figure 14. Overall Performance of Rotor E; Uniform DF 98209 Inlet Flow

Figure 15. Overall Performance of Stage E; Uniform DF 98210 Inlet Flow

Figure 16a. Rotor E Blade Element Performance; 5% Span from Tip; Uniform Inlet Flow

Figure 16b. Rotor E Blade Element Performance; 10% Span from Tip; Uniform Inlet Flow

 $\mathbf{DF}\ 98076$

Figure 16c. Rotor E Blade Element Performance; 15% Span From Tip; Uniform Inlet Flow

Figure 16d. Rotor E Blade Element Performance; 30% Span From Tip; Uniform Inlet Flow

Figure 16e. Rotor E Blade Element Performance; 50% Span; Uniform Inlet Flow

Figure 16f. Rotor E Blade Element Performance; 70% Span From Tip; Uniform Inlet Flow

Figure 16g. Rotor E Blade Element Performance; 85% Span From Tip; Uniform Inlet Flow

Figure 16h. Rotor E Blade Element Performance; DF 98082 90% Span From Tip; Uniform Inlet Flow

Figure 16i. Rotor E Blade Element Performance; 95% Span From Tip; Uniform Inlet Flow

Figure 17a. Rotor E Loss Parameter vs Diffusion Factor; 10% Span From Tip; Uniform Inlet Flow

Figure 17b. Rotor E Loss Parameter vs Diffusion Factor; 30% Span From Tip; Uniform Inlet Flow

Figure 17c. Rotor E Loss Parameter vs Diffusion Factor; 50% Span; Uniform Inlet Flow

Figure 17d. Rotor E Loss Parameter vs Diffusion Factor; 70% Span From Tip; Uniform Inlet Flow

Figure 17e. Rotor E Loss Parameter vs Diffusion Factor; 90% Span From Tip; Uniform Inlet Flow

Figure 18. Rotor E Tip Static Pressure Ratio vs DF 98089 Percent Axial Chord; 100% Design Equivalent Rotor Speed; Uniform Inlet Flow

Figure 19a. Stator E Blade Element Performance; 5% Span From Tip; Uniform Inlet Flow

Figure 19b. Stator E Blade Element Performance; 10% Span From Tip; Uniform Inlet Flow

Figure 19c. Stator E Blade Element Performance; 15% Span From Tip; Uniform Inlet Flow

Figure 19d. Stator E Blade Element Performance; 30% Span From Tip; Uniform Inlet Flow

Figure 19e. Stator E Blade Element Performance; 50% Span; Uniform Inlet Flow

Figure 19f. Stator E Blade Element Performance; 70% Span From Tip; Uniform Inlet Flow

Figure 19g. Stator E Blade Element Performance; 85% Span From Tip; Uniform Inlet Flow

Figure 19h. Stator E Blade Element Performance; 90% Span From Tip; Uniform Inlet Flow

Figure 19i. Stator E. Blade Element Performance; 95% Span From Tip; Uniform Inlet Flow

Stator E Loss Parameter vs Diffusion Factor; 10% Span From Tip; Uniform Inlet Flow Figure 20a.

Figure 20b. Stator E Loss Parameter vs Diffusion Factor; 30% Span From Tip; Uniform Inlet Flow

Stator E Loss Parameter vs Diffusion Factor; 50% Span; Uniform Inlet Flow Figure 20c.

Stator E Loss Parameter vs Diffusion Factor; 70% Span From Tip; Uniform Inlet Flow Figure 20d.

Stator E Loss Parameter vs Diffusion Factor; 90% Span From Tip; Uniform Inlet Flow Figure 20e.

Figure 21a. Stator E Static Pressure Coefficient vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 121.43 lb/sec; Uniform Inlet Flow

Figure 21b. Stator E Static Pressure Coefficient vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 117.78 lb/sec; Uniform Inlet Flow

Figure 21c. Stator E Static Pressure Coefficient DF 98213 vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 111.27 lb/sec; Uniform Inlet Flow

Figure 21d. Stator E Static Pressure Coefficient vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 106.84 lb/sec; Uniform Inlet Flow

Figure 21e. Stator E Static Pressure Coefficient DF 98215 vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 105.92 lb/sec; Uniform Inlet Flow

Figure 21f. Stator E Static Pressure Coefficient vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 102.92 lb/sec; Uniform Inlet Flow

Figure 21g. Stator E Static Pressure Coefficient DF 98217 vs Percent Overall Chord; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 97.95 lb/sec; Uniform Inlet Flow

Figure 21h. Stator E Static Pressure Coefficient vs Percent Overall Chord; 100% Design Equivalent Rotor Speed, Equivalent Weight Flow = 93. 27 lb/sec; Uniform Inlet Flow

Figure 22a. Wall Static Pressure Distributions Upstream and Downstream of Stator E; 100%
Design Equivalent Rotor Speed; Equivalent
Weight Flow = 111.27 lb/sec; Uniform Inlet
Flow

Figure 22b. Wall Static Pressure Distributions Upstream and Downstream of Stator E; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 93.27 lb/sec; Uniform Inlet Flow

Figure 23. Typical Rotor Inlet Total Pressure Profiles DF 98221 With Hub and Tip Radial Distortion; 100% Design Equivalent Rotor Speed

Figure 24. Overall Performance of Rotor E; Hub Radial DF 98222 Distortion Compared With Uniform Inlet Flow

Figure 25. Overall Performance of Stage E; Hub
Radial Distortion Compared with Uniform
Inlet Flow

Figure 26. Overall Performance of Rotor E; Tip DF 98224
Radial Distortion Compared With Uniform
Inlet Flow

Figure 27. Overall Performance of Stage E; Tip DF 98225
Radial Distortion Compared With Uniform
Inlet Flow

Figure 28a. Rotor E Blade Element Performance; 5% Span From Tip; Hub and Tip Radial Distortion

Figure 28b. Rotor E Blade Element Performance; 10% Span From Tip; Hub and Tip Radial Distortion

Figure 28c. Rotor E Blade Element Performance; 15% Span From Tip; Hub and Tip Radial Distortion

Figure 28d. Rotor E Blade Element Performance; DF 98107 30% Span From Tip; Hub and Tip Radial Distortion

Figure 28e. Rotor E Blade Element Performance; DF 98108 50% Span; Hub and Tip Radial Distortion

Figure 28f. Rotor E Blade Element Performance; DF 98109 70% Span From Tip; Hub and Tip Radial Distortion

Figure 28g. Rotor E Blade Element Performance; DF 98110 85% Span From Tip; Hub and Tip Radial Distortion

Figure 28h. Rotor E Blade Element Performance; DF 98111 90% Span From Tip; Hub and Tip Radial Distortion

Figure 28i. Rotor E Blade Element Performance; DF 98112 95% Span From Tip; Hub and Tip Radial Distortion

Figure 29a. Stator E Blade Element Performance; 5% Span From Tip; Hub and Tip Radial Distortion

Figure 29b. Stator E Blade Element Performance; 10% Span From Tip; Hub and Tip Radial Distortion

Figure 29c. Stator E Blade Element Performance; DF 98115 15% Span From Tip; Hub and Tip Radial Distortion

Figure 29d. Stator E Blade Element Performance; 30% Span From Tip; Hub and Tip Radial Distortion

Figure 29e. Stator E Blade Element Performance; DF 98117 50% Span; Hub and Tip Radial Distortion

Figure 29f. Stator E Blade Element Performance; 70% Span From Tip; Hub and Tip Radial Distortion

Figure 29g. Stator E Blade Element Performance; DF 98119 85% Span From Tip; Hub and Tip Radial Distortion

Figure 29h. Stator E Blade Element Performance; 90% Span From Tip; Hub and Tip Radial Distortion

Figure 29i. Stator E Blade Element Performance; 95% Span From Tip; Hub and Tip Radial Distortion

Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 114.81 lb/sec; Hub Radial Distortion Figure 30a.

Figure 30b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 100.63 lb/sec; Hub Radial Distortion

Figure 30c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 93,49 lb/sec; Hub Radial Distortion

Figure 31a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 104.66 lb/sec; Hub Radial Distortion

Figure 31b. Total and Static Pressure, Total Temperature, Air Angle and Áxial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92, 29 lb/sec; Hub Radial Distortion

Figure 31c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 82, 24 lb/sec; Hub Radial Distortion

Figure 32a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 83.81 lb/sec; Hub Radial Distortion

Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 70.40 lb/sec; Hub Radial Distortion Figure 32b.

Figure 32c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity Rotor Speed; Equivalent Weight Flow = 61.83 lb/sec; Hub Radial Distortion vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent

Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 114,99 lb/sec; Tip Radial Distortion Figure 33a.

Figure 33b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 109.16 lb/sec; Tip Radial Distortion

Figure 33c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.95 lb/sec; Tip Radial Distortion

Figure 34a. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 105.22 lb/sec; Tip Radial Distortion

Figure 34b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 99.16 lb/sec; Tip Radial Distortion

Figure 34c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 94.04 lb/sec; Tip Radial Distortion

Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 82.97 lb/sec; Tip Radial Distortion Figure 35a.

Figure 35b. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 77.98 lb/sec; Tip Radial Distortion

Figure 35c. Total and Static Pressure, Total Temperature, Air Angle and Axial Velocity vs Span at Rotor Inlet, Stator Inlet and Stator Exit; 70% Design Equivalent Rotor Speed; Equivalent Weight Flow = 71.91 lb/sec; Tip Radial Distortion

Typical Rotor Inlet Total Pressure Distribution with Circumferential Distortion; 100% Design Equivalent Rotor Speed; 94.0% Design Equivalent Flow (103.40 lb/sec); 50% Span Figure 36.

Figure 37. Overall Performance of Rotor E; Circumferential Distortion Compared With Uniform Inlet Flow

Figure 38. Overall Performance of Stage E; Circum- DF 98228 ferential Distortion Compared With Uniform Inlet Flow

Figure 39. Overall Performance of Rotor E With Circum- DF 98229 ferential Distortion

Figure 40. Overall Performance of Stage E With Circum- DF 98230 ferential Distortion

Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41a.

Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41b.

Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41c.

Figure 41d. Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion

Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41e.

DF 98157

Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41f.

Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41g.

Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41h.

Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41i.

TE DO AT LEGO ST. A DO ST. A D

Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103,40 lb/sec; Circumferential Distortion Figure 41j.

00.31

00 6.1

00.61

DF 98162

-00-02

-: 51: 00:

00:61

00 01

Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41k.

Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 411.

Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 103.40 lb/sec; Circumferential Distortion Figure 41m.

DF 98165

Rotor Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42a.

Rotor Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42b.

Rotor Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42c.

Rotor Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92, 60 lb/sec; Circumferential Distortion

Stator Inlet Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42e.

Stator Inlet Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42f.

Stator Inlet Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42g.

Stator Inlet Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42h.

DF 98147

.500:00

00 61 00 61 00 S3UNSS3UA TUTOL

Stator Exit Total Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42i.

8

8

60 91

-00'\$:1∺

DF 98148

cores

00.55 00.5

Stator Exit Static Pressure vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42J.

00.062 00.03 00.092

00,0\$2

00'015 00'085

Stator Exit Total Temperature vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42k.

8

00:025^D

DF 98150

00.003 ... 00.003

290'06

Stator Exit Air Angle vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 421.

DF 98151

320'00 - 400'00 - 420

00.085

00.00E

Stator Exit Axial Velocity vs Circumferential Location; 100% Design Equivalent Rotor Speed; Equivalent Weight Flow = 92.60 lb/sec; Circumferential Distortion Figure 42m.

DF 98152

00'0\$9 '0'009

00'0\$\$ 00'06\$

Figure 43a. Rotor Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion

Rotor Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43b.

Rotor Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43c.

| S20.00 | S

00'00h

00 OSh

0.005

Figure 43d. Rotor Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion

8

00.051 00.00

00; DEZ

Stator Inlet Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43e.

DF 98170

Stator Inlet Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43f.

Figure 43g. Stator Inlet Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion

Stator Inlet Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43h.

Stator Exit Total Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43i.

DF 98174

Stator Exit Static Pressure vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43j.

Stator Exit Total Temperature vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43k.

Stator Exit Air Angle vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 431.

00.0\$4 00.064 00.0\$8 \$3[1[0]3A]E[X

00,000

00-059 00-069 00-055

00'005

Stator Exit Axial Velocity vs Circumferential Location; 90% Design Equivalent Rotor Speed; Equivalent Weight Flow = 84.27 lb/sec; Circumferential Distortion Figure 43m.

DF 98178

157**/**158

00

	•			
,		-		

APPENDIX A TABULATED OVERALL AND BLADE ELEMENT PERFORMANCE AND FLOW DISTRIBUTION DATA

Rotor E and Stage E overall performance with a uniform inlet, hub radial distortion, tip radial distortion, and circumferential distortion of the inlet flow is tabulated in tables A-1, A-4, and A-7, respectively. Rotor E and Stator E blade element performance and flow distribution data for uniform inlet, hub radial distortion of the inlet flow, and tip radial distortion of the inlet flow are presented in tables A-3, A-5, and A-6, respectively. The flow distribution data with circumferential distortion of the inlet flow are given in table A-8 for circumferential increments of 30 deg around the compressor annulus. Table A-2 is presented to illustrate the small differences at the near design point between values calculated from the data at the instrumentation stations, and the values calculated from the data that have been translated to the blade row leading and trailing edges.

The blade element performance and flow distribution data with uniform inlet flow and radial distortion of the inlet flow are arranged in order of decreasing rotor speed and decreasing flow at each rotor speed. The flow distribution data with circumferential distortion of the inlet flow are given at the instrumentation station planes and are arranged for a given equivalent rotor speed and flow combination in order of increasing circumferential position. The circumferential positions of the data at each instrumentation station are noted at the top of each data sheet. These positions were selected so that they would correspond as close as possible to the locations of the 20-deg wedge probes relative to the distortion screen and provide data at increments of 30 deg around the compressor annulus.

NOMENCLATURE USED FOR OVERALL PERFORMANCE TABULATION

Mass-Averaged Rotor Inlet Total Pressure	$\mathbf{\tilde{P}_{1}}$
Mass-Averaged Stator Inlet Total Pressure	$\overline{ ext{P}}_2$
Mass-Averaged Stator Exit Total Pressure	\overline{P}_{2A}
Adiabatic Efficiency*	$\eta_{ m ad}$
Polytropic Efficiency*	$\eta_{ m p}$

NOMENCLATURE USED FOR BLADE ELEMENT AND DISTORTION DATA TABULATION

Exit Percent Span from Tip	PCT SPAN
Exit Diameter	DIA
Absolute Flow Angle	BETA
Relative Flow Angle	BETA (PR)
Absolute Velocity	V
Axial Velocity	VZ
Absolute Tangential Velocity	V-THETA
Relative Tangential Velocity	V-THETA PR
Rotor Speed	U
Absolute Mach Number	M
Relative Mach Number	M (PR)
Relative Turning Angle	TURN (PR)
Loss Coefficient ($\overline{\omega}$)**	UUB AR
Loss Parameter**	LOSS PARA
Diffusion Factor**	DFAC
Polytropic Efficiency**	\mathbf{EFFP}
Adiabatic Efficiency**	\mathbf{EFF}
Incidence**	INCID
Deviation**	DEVM
Total Pressure	P
Total Temperature	T
Stator Exit Average Freestream Total Pressure from Wake Rakes	P2 FS
Loss Coefficient Based on P2FS ($\overline{\omega}_{\mathrm{fs}}$)	UUBAR FS
Loss Parameter Based on UUBAR FS	LOSS PARA FS

^{*}Efficiencies calculated from mass-averaged values of total pressure and total temperature.

^{**}Denotes variables excluded from circumferential distortion data.

Where applicable the appropriate instrumentation station is noted.

Table A-1. Overall Performance - Stage E Uniform Inlet

Equivalent		Rotor			Stage				
Weight Flow, lb/sec	$\overline{\bar{P}}_2/\overline{\bar{P}}_1$	η_{ad}	$\eta_{ \mathbf{p}}$	$\mathbf{\bar{P}}_{2\mathrm{A}}/\mathbf{\bar{P}}_{1}$	$\eta_{ m ad}$	$\eta_{ m p}$			
110% Design Equivalent Rotor Speed									
127.64	1.2478	0.7886	0.7951	1.2106	0.6771	0.6858			
1 22.36	1.3607	0.9148	0.9184	1.3302	0.8437	0.8499			
116.81	1.3736	0.8995	0.9039	1.3440	0.8343	0.8411			
111.46	1.3882	0.8895	0.8945	1.3593	0.8291	0.8364			
107.01	1.3973	0.8763	0.8820	1.3645	0.8104	0.8185			
100% Design Equivalent Rotor Speed									
121.43	1.2064	0.7558	0.7622	1.1811	0.6676	0.6754			
117.78	1.2638	0.8984	0.9018	1.2420	0.8288	0.8339			
111.27	1.2862	0.8717	0.8762	1.2666	0.8159	0.8219			
106.84	1.2993	0.8953	0.8992	1.2774	0.8343	0.8399			
105.92	1.3028	0.8556	0.8609	1.2823	0.8018	0.8086			
102.92	1.3054	0.8884	0.8926	1.2827	0.8270	0.8330			
97.95	1.3183	0.8799	0.8845	1.2939	0.8175	0.8240			
93.27	1.3217	0.8389	0.8452	1.2948	0.7741	0.7822			
	90%	Design E	quivalent Ro	otor Speed	•				
114.30	1.1779	0.8849	0.8875	1.1564	0.7824	0.7868			
106.88	1.2126	0.8834	0.8866	1.1945	0.8121	0.8168			
98.57	1.2348	0.8844	0.8878	1.2185	0.8262	0.8310			
88.91	1.2464	0.8445	0.8493	1.2289	0.7878	0.7939			
82.57	1.2546	0.8179	0.8237	1.2332	0.7534	0.7606			
70% Design Equivalent Rotor Speed									
92.73	1.1102	0.8467	0.8490	1.0976	0.7525	0.7558			
83.59	1.1229	0.8828	0.8847	1.1133	0.8153	0.8181			
75.87	1.1368	0.8781	0.8803	1.1275	0.8200	0.8230			
68.30	1.1434	0.8448	0.8478	1.1348	0.7955	0.7991			
61.93	1.1469	0.8091	0.8128	1.1372	0.7573	0.7617			
50% Design Equivalent Rotor Speed									
64.65	1.0530	0.7769	0.7785	1.0481	0.7055	0.7075			
61.51	1.0587	0.8226	0.8240	1.0543	0.7617	0.7635			
55.53	1.0637	0.8323	0.8338	1.0601	0.7852	0.7870			
48.51	1.0684	0.8228	0.8244	1.0646	0.7632	0.7793			
42.99	1.0720	0.5220	0.5244 0.7742	1.0677	0.7764	0.7290			
- '			- • · · · 		J U L	5,.200			

Table A-2. Blade Element Performance
Stage E, Rotor E - Stator E
Calculations Using Untranslated Values
Percent Equivalent Rotor Speed = 100.28 Equivalent Rotor Speed = 4221.89 Equivalent Weight Flow = 111.27
Uniform Inlet

INLET								12.00	7.10	3.00	PCT SPAN
	PCT SPAN DIA	96.80 33.118	92.00 33.520	86.90 33.947	71.00 35.279	49.50 37.080	28.10 38.872	12.00 40.221	40.631	40.975	DIA
STATION C	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA D
STATION 1	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA I
	v o	443.00	443.00	443.00	443.00	443.00	443.00	443.00	443.00	443.00 421.37	V 0 V 1
	V 1 VZ O	462.57 443.00	505.23 443.00	514.73 443.00	517.90 442.99	510.22 442.97	495.72 442.93	467.87 442.90	456.43 442.89	442.88	YZ O
	v2 1	462.56	505.22	514.73	517.89	510.19	495.66	467.79	456.35	421.33	V2 1
	V-THETA O	-0.00	-0.00	-0.00	-0.00	-0.00	⊸.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	~0.00	-0.00	-0.00	V-THETA 1
	M O	0.4032 0.4216	0.4032 0.4621	0.4032 0.4712	0.4032 0.4742	0.4032 0.4668	0.4032 0.4530	0.4032 0.4266	0.4032 0.4158	0.4032 0.3829	M 0 M 1
	M L TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.4811	0.3148	0.2852	0.2827	0.2839	0.2878	0.3520	0.3861	0.5390	UUBAR
	DFAC	-0.044	-0.140	-0.162	-0.169	-0.152	-0.119	-0.056	-0.030	0.049	DFAC
	EFFP	0.1643	0.5034	0.5663	0.5800	0.5501	0.4820 -0.0000	0.2572 -0.0000	0.1437 -0.0000	-0.2257 -0.0900	EFFP INCID
	INC ID DEVM	0.000	-0.0000 0.000	-0.0000 0.000	-0.0000 0.000	-0.0000 0.000	0.000	0.000	9.000	0.000	DEVM
	PO	15.216	15.216	15.216	15.216	15.216	15.216	15.216	15.216	15.216	PO
	Ρl	14.441	14.709	14.756	14.761	14.759	14.752	14.649	14.594	14.347	P 1
	T 0	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700 518.700	T 0 T 1
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	2100100	• •
ROTUR E	PCT SPAR	94.99	90.00	84.99	70.00	50.00	30.00	14.98	9.9 9	4.98	PCT SPAN
	DIA	33.234	33.617	34.001	35.151	36.685	38.219	39.371	39.754	40.138	DIA
STATION 1 STATION 2	BETA 1 Beta 2	-0.000 44.500	-0.000 42.250	-0.000 39.800	-0.000 37.900	-0.000 37.400	-0.000 36.860	-0.000 38.800	-0.000 43.200	-0.000 49.000	BETA 1 Beta 2
31411014 2	BETA(PR)	52.831	50.710	50.542	51.449	53.244	55.310	57.734	58.629	60.830	BETA(PR) 1
	BETA(PR) 2	24.552	25.889	25.400	25.516	29.054	34.060	38.436	42.959	49.986	BETA(PR) 2
	A 7	462.57	505.23	514.73	517.90	510.22	493.72	467.87	456.43	421.37	A 1
	∀ 2 ∀2 1	596.28	600.30	623 .29 514 . 73	653.49 517.89	644.69	618.24 495.66	583.72 467.79	538 <i>-2</i> 5 456.35	402.14 421.33	A1 7 A 5
	V2 2	462.56 425.29	505.22 444.35	478.86	515.63	510.19 511.92	494.38	453.96	391.57	315.78	₩Z 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	417.93	403.61	398.97	401.41	391.39	369.84	365.00	367.70	363.26	V-THETA 2
	V(PR) 1	765.6	797.8	809.9	831.0	852.6	870.9 597.6	876-3	876.7	864.5 491.9	V(PR) 1
	V(PR) 2 VTHETA PRI	467.6 -610.1	493.9 -617.5	530.1 -625.4	571.4 -649.9	585.9 -683.1	-716.1	580.8 -740.9	936.1 -748.5	-754.8	V(PR) 2 VTHETA PRI
	VTHETA PR2	-194.3	-215.7	-227.4	-246 · l	-284.4	-334.2	-360.3	-364.6	-376.1	VTHE TA PRZ
	U 1	610.08	617.49	625.35	649.69	683.07	716.08	740.93	748 . 48	754.82	Ul
	U 2	612.22	619.27	626.35	647.53	675.79	704.05	725.27	732.33	739.40	U 2
	M 1 M 2	0.4216 u.5265	0.4621 0.5308	0.4712 0.5529	0.4742 0.5805	0.4668 0.5720	0.4530 0.5475	0.4266 0.5151	0.4158 0.4730	0.3829 0.4214	# 1 # 2
	M(PR) 1	0.6978	0.7297	0.7414	0.7609	0.7801	0.7959	0.7990	0.7927	0.7856	P(PR) 1
	M(PR) 2	0.4129	0.4368	0.4702	0.5076	0.5199	0.5292	0.5125	0.4711	0.4299	M(PR) 2
	TURN(PR)	26.279	24.821	25.142	25.934	24.205	21.303	19.389	15.775	10.953	TURN (PR)
	UUBAR LOSS PARA	0.1170 0.0308	0.1378 0.0364	0.0938 0.0252	0.0492 0.0137	0.0609 0.0171	0.0748 0.0208	0.1159 0.0315	0.1889 0.0485	0.2258 0.0514	LUBAR Loss Para
	DFAC	0.5477	0.5295	0.4919	0.4608	0.4598	0.4554	0.4803	0.5339	0.5783	DFAC
	EFFP	0.8415	0.8095	0.8734	0.9238	0.9192	0.8976	0.8575	0.7750	0.7146	EFFP
	EFF	0.8359	0.8033	0.8690	0.9209	0.9161	0.8939	0.8525	0.7678	0.7050	EFF
	INCID DEVM	0.404 9.404	-0.200 11.731	-0.033 10.767	-0.592 6.875	-0.727 5.841	~0.591 6.495	-0.790 6.807	-3.504 9.014	-7.172 14.000	DEAM INCID
	P 1	14-441	14.709	14.756	14.761	14.759	14.752	14.649	14.594	14.347	Pi
	P 2	18.412	18.474	18.774	19.230	19.230	19.033	18.702	18.226	17.697	P 2
	T 1 T 2	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
	1 2	563.303	562.149	561.214	562.916	563.172	562.518	562.681	562.985	564.095	T 2
			_	4		_					
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	. 10.00	5.00	PCT SPAN
STATION 2	DIA BETA 2	33.207 44.500	33.564 42.250	33.921 39.800	34.992 37.900	36.420 37.400	37.848 36.800	38.919 38.800	39.276 43.200	39.633 49.000	DIA Beta 2
STATION 2A	BETA ZA	-1.350	1.250	1.950	1.950	1.150	0.880	1.940	2.500	0.500	BETA ZA
	A 5	596.28	600.30	623.29	653.49	644.69	618.24	583.72	538.25	482.14	¥ 2
	V 2A	450.79	442.36	448.28	522.95	548 - 41	545.42	483.63	458-05	44Z.41	¥ 2A
	VZ 2 VZ 2A	425.29 450.66	444.35 442.24	478.86 448.01	515.63 522.59	511.92 548.17	494.38 545.15	453.96 483.11	391.57 457.35	315.78 442.07	VZ 2A
	V-THETA 2	417.93	403.61	398.97	401.41	391.39	369.84	365.00	367.70	363.26	V-THETA 2
	V-THETA 2A	-10.62	9.65	15.25	17.79	11.00	8.37	16.36	19.97	3.86	V-THETA ZA
	M 2	0.5265	0.5308	0.5529	0.5805	0.5720	0.5475	0.5151	0.4730	0.4214	M 2
	H 2A Turn(pr)	0.3934 45.849	0.3862 40.999	0.3919 37.850	0.4590 35.948	0.4822	0.4798	0.4233	G.4001	0.3856	M 2A
	UUBAR	0.0657	0.1030	0.1629	0.0921	36.230 0.0217	35.862 -0.0100	36.764 0.1007	40.592 0.0256	48.389 -0.1522	TURN (PR) UUBAR
	LOSS PARA	C.0221	0.0351	0.0561	0.0291	0.0080	-0.0039	0.0399	0.0102	-0.0614	LOSS PARA
	DFAC	0.4862	0.4867	0.4930	0.4089	0.3687	0.3442	0.4097	0.4092	0.3851	DFAC
	EFFP INCID	0.8617 -5.668	0.7960 -1.138	0.6951 -0.489	0.7985 -0.126	0.9313	1.0400	0.7090	0.9152	1.0053	EFFP
	DEVM	7.482	12.562	13.260	12.925	0.693 12.162	0.909 12.546	0.045 14.380	-0.028 15.179	-10.256 5.354	INCID DEVM
	P 2	18.412	18.474	18.774	19.230	19.230	19.033	18.702	18.226	17.697	P 2
	P 2A	18.204	18.142	10.201	18.908	19.147	19.068	18.390	18.159	18.007	P 2A
	T 2 T 2A	563.303 563.303	562.149 562.149	561.214 561.214	562.916 542.916	563.172 563.172	562.518	562.681	562.985	564.095	T 2
	ULUBAR FS	J.U8JO	562.149 0.1220	561.214 0.1236	562.916 0.0489	5 63.172 0.0375	5 62.518 0.0337	562.681 0.1884	562.985 0.2086	564-095	T ZA
	P2 FS	18.451	18.544	18.616	19.093	19.292	19.191	19.036	18-824	0.2227 18.679	UUBAR FS P2 FS
	LOSS PARA F		0.0415	0.0425	0.0173	0,0138	0.0131	0.0749	0.0831	0.0898	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 110,70 Equivalent Rotor Speed = 4660.48 Equivalent Weight Flow 127.64
Uniform Inlet

744 F T											
INLET	PCT SPAN	96.80	92.CO	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAM
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O Beta 1	-0.060 -0.060	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000	-0.000	~0.000	→.000	-0.000	BETA O
	V C	511.45	511.45	511.45	511.45	-0.000 511.45	-0.000 511.45	-0.00 <i>6</i> 511.45	-0.000 511.45	-0.000 511.45	BETA 1 V O
	V 1	549.50	565.86	561.15	556.48	550.87	552.86	549.24	536.03	516.95	v i
	V2 0	511.45	511.45	511.45	511.44	511.41	511.36	511.32	511.31	511.31	VZ 0
	VZ L V-THETA U	549.50 -0.00	565.86 -0.00	561.15 -0.60	556.48 -0.00	550.83 -0.00	552.77 -0.00	549.10 -0.00	535.88 -0.00	516.82 -0.0 0	VZ 1 V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-6.00	-0.00	-0.00	-0.00	V-THETA 1
	M S	i.468i	Q-468C	0.4680	0.4680	0.4680	0.4680	0.468ú	0.4660	0.4680	M O
	M 1 Turn	0.5046	C-5204	0.5158	0.5113	0.5059	0.5078	0.5043	0.4916	0.4733	H 1
	UUBAR	C.Ú C.5714	ن.ن 0.ن	0. C 6.3624	0.0 0.3682	0.0 0.3609	0.0 0.3609	0.0 0.3902	0.0 0.4576	0.0 0.5411	TURN UUBAR
	DFAC	074	-0.106	-0.097	-0.088	-0.077	-0.081	-0.074	-0.048	-0.011	DFAC
	[FFP	Ú.2225	0.3788	0.3772	0.3495	0.3231	0.3344	0.2966	0.1866	0.0406	EFFP
	DEVM	0000.3-	0.000	0.000	-0.0000 0.000	-0.000 0.000	-0.000 0.000	-0.0000 0.000	-0.0000 0.000	-0.0000 0.000	DEAM INCID
	P 0	15.546	15.546	15.546	15.546	15.546	15.546	15.546	15.546	15.546	PO
	P 1	14.309	14.690	14.761	14.749	14.765	14.765	14.701	14.555	14.374	P 1
	T 0 T 1	518.700 518.700	518.700 516.760	518.700 518.700	518.700 518.700	518.700	518.700 518.700	518.700	518.700	518.700	T 0 T 1
	, .	310.700	310.700	210.100	210.100	518.700	310.100	518.700	518.700	518.700	1 1
KOTJR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	DIA Beta 1	33.236 -< .000	33.621 -0.000	34.007 -0.600	35.164 -0.000	36.706 -0.000	38.248 -0.000	39.465 -0.600	39.791 -0.000	43.176 -G.006	DIA BETA 1
ROTUR -f.t.	BETA 2	35.499	32.709	31.411	29.787	28.707	26.509	27.491	31.031	39.256	BETA 2
	BETA(PR) L	50.716	48.414	48.238	49.503	51.572	52.842	53.776	54.659	55.796	BETA(PR) 1
	BETA(PR) 2	27.523	26.623	26.337	26.217	30.164	33.297	37.537	41.989	55.362	BETA(PR) 2
	V 1 V 2	550.9R 672.58	604.91 710.20	616.28 732.84	612.28 773.77	598.32 754.25	600.63 753.32	602.00	589.01	568.98	V 1
	vz i	550.87	664.77	616.21	612.25	597.58	598.2C	702.73 598.04	630.50 584.82	466.88 565.27	V 2 V2 1
	V2 2	547.55	597.14	625.42	671.52	661.24	673.07	621.79	538.84	360.74	¥2 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-6.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2 V(PR) 1	390.54 870.1	384.37 911.2	381.93 925.2	384.38	362.12	335.71	323.55	324.17	294.80	V-THETA 2
	V(PR) 2	617.5	668.0	697.9	942.8 748.5	961.9 765.1	991.8 806.4	1014.4 785.7	1013.5 726.4	1007.6 635.4	V(PR) 1 V(PR) 2
	VTHETA PR1	-673.4	-681.5	-690.1	-716.9	-753.2	-789.3	-016.4	-824.7	-831.6	VTHETA PRI
	VTHETA PR2	-285.3	-299.3	-309.6	-330.7	-384.3	-442.1	⊸77.8	-485. 0	-522.2	VTHETA PR2
	U 1 U 2	673.41 675.85	661.50 683.69	690.11	716.93	753.19	789.29	816.45	824.71	831.63	Ul
	M I	0.5060	0.5585	691.53 0.5696	715.06 0.5657	746.42 0.5520	777.79 0.5543	001.31 0.5556	809.15 C.5429	816.99 0.5234	U 2 M 1
	M 2	(·.5987	0.6356	0.6582	0.6960	0.6774	G.6782	0.6299	0.5611	C.4094	M 2
	M(PR) 1	3.7991	0.8413	0.8552	0.6711	0.8874	0.9153	0.9362	6.9341	0.9269	M(PR) 1
	M(PR) 2 Turn(Pr)	ú.5496 23.169	U•5979 21•767	0.6268 21.898	0.6733	0.6872	0.7259	0.7043	0.6464	0.5573	M(PR) 2
	UUBAR	0.2135	0.2014	0.1705	23.285 0.1215	21.388 0.1304	19.484 0.1053	16.150 0.1785	12.579 0.2710	0.354	TURN (PR.) UUBAR
	LOSS PARA	J.0549	L.0528	0.0454	0.0335	0.0363	0.0296	0.0491	0.0706	0.0787	LOSS PARA
	DFAC	0.4206	6.3908	0.3684	0.3313	0.3252	0.3000	0.3351	0.3943	6.4721	DFAC
	EFFP EFF	ú.7290 ú.72⊾9	0.7430 0.7354	0.8035 0.7973	0.8398	0.8230	0.8668	0.7549	0.6049	0.2892	EFFP
	INC 1D	-1.716	-2.502	-2.340	0.8341 -2.540	0.8169 -2.432	0.8623 -3.157	0.7479 -4.922	0.5960 -7.663	0.2815 -12.379	EFF Incid
	DEVM	12.373	12.463	11.703	7.576	6.954	5.738	5.914	8.850	19.392	DEVM
	P 1 P 2	14.309	14.690	14.761	14.749	14.765	14.765	14.701	14.555	14.374	P 1
	T 1	17.626 518.700	15.050 518.700	18.356 518.700	18.885 518.760	18.716 516.700	18.695 518.700	17.923 518.7C0	17.023	15.510 518.700	P 2
	Ť Ž	562.674	561.443	560.504	564.219	563.216	560.667	559.095	518.700 558.535	559.195	T 1 T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2 BETA 2A	35.776	32.552	30.738	29.824	26.167	26.375	28.143	32.083	40.983	BETA 2
STATCR-T.E.	V 2	-C.200 668.11	1.100 714.60	1.400 747.64	0.800 773.77	-0.100 768.21	0.800 758.02	0.650	-0.800	-5.002	BETA 2A
	V 2A	610.92	627.80	653.77	715.09	703.19	698.97	68 8.57 615.26	612.68 580.88	451.23 562.12	V 2 V 2A
	VZ Z	542.02	602.33	642.57	671.17	676.76	678.43	606.34	518.42	340.23	VZ 2
	VZ ZA	610.91	627.66	653.54	714.92	702.95	698.49	614.72	500.31	559.39	VZ ZA
	V-THETA 2 V-THETA ZA	390.61 -2.13	304.50 12.05	382.11 15.97	384.75 9.98	362.68 -1.23	336.40 9.76	324.34	324.99	295.58	V-THETA 2
	M 2	0.5944	C+6399	0.6727	0.6960	0.6911	0.6828	6.98 0.6162	-0.11 0.5443	~48. 96 0.3953	V—THETA 2A M 2
	M 2A	0.5404	0.5 57 0	0.5821	0.6387	6.6278	0.6253	0.5464	0.5145	0.4967	M ZA
	TURN(PR) UUBAR	35.978	31.452	29.337	29.018	28.271	25.546	27.451	32.835	45.920	TURN (PR)
	LOSS PARA	0.0768 0.6259	v.1196 ≎.0408	0.1073 0.0369	0.0498	0.0550	0.0815	0.1954	0.0886	-0.6440	UUBAR
	DFAC	0.2837	0.2991	0.2943	0.0177 0.2483	0.0204 0.2606	0.0314 0.2446	0.0774 0.29 0 1	0.0354 6.2705	-0.2588 0.0635	LOSS PARA Deac
	EFFP	0.5916	0.5485	0.6141	0.7175	0.7184	0.5449	0.1567	0.2209	-0.0459	EFFP
	INC14 DEVM	-14.389	-10.835	-9.552	-8.206	-8.516	-9.487	~10.557	-11.084	-18.221	INCID
	P 2	8.632 17.626	12.412 18.050	12.710 18.356	11.775 18.885	10.912 16.716	12.466	13.091	11.880	-G.142	DEVM
	P ZA	17.339	17.529	17.641	18.625	18.435	18.695 18.287	17.923 17.131	17.023 16.748	15.510 16.530	P 2 P 2A
	T 2	562.874	561.443	560.504	564.219	563.216	560.667	559.095	558.535	559.195	T 2
	T ZA UUBAR FS	562.674	561.443	560.504	564.219	563.216	560.667	559.695	558.535	559.195	T ZA
	P2 E4	0.1487	0.1386	0.0923	0.0346	0.0309	0.0408	0.2732	0.3140	0.3062	UUBAR FS
	LESS PARA	FS 17.943	14.144	18.276	18.803	18.589	18.483	18.356	18.044	17.679	P2 FS LOSS PARA FS
		J = (J , 1	0.3472	J.J317	0.0123	0.0114	0.0157	0.1082	0.1254	J.1230	EUJU FARA FJ

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 109.62 Equivalent Rotor Speed = 4614.80 Equivalent Weight Flow: 122.36
Uniform Inlet

INLET	DCT FRAN	94 96	93.00	*4 **	71 00	49.50	20.10	** **	* **	3.00	PCT SPAN
	PCT SPAN DIA	96.80 33.122	92.00 33.529	86.90 33.962	71.00 35.312	37.137	28.10 38.954	12.00 40.321	7.10 40.737	3.00 41.085	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA L	-0.000	-0.000	-0-000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	y 0	490.72	490.72	490.72	490.72	490.72	490.72	490.72	490.72	490.72	Y 0 Y 1
	V I VZ O	512.41 490.72	531.49 490.72	528.61 490.72	517.35 490.71	526.49 490.68	524.08 490.64	522.57 490.59	507.29 490.59	460.19 490.59	YZ 0
	VZ 1	512.40	531.49	528.61	517.34	526.45	523.99	522.44	507-15	480.06	VZ 1
	V-THETA D	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.∞	-0.00	-0-00	V-THETA O
	W-THETA 1 M O	-6.00 0.4483	-0.00 0.4483	-0.00 0.4483	-0.00 0.4483	-9.00 0.4483	-0.00 0.4483	-0.00	-0.00 9.4483	-0.00 0.4483	Y—THETA 1 M O
	M 1	0.4689	0.4872	0.4845	0.4737	0.4824	0.4801	0.4483 0.4787	0.4641	0.4383	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.5447	0.3603	0.3228	0.3212	0.3196	0.3254	0.3782	0.4332	0.5383	LAUBAR
	DFAC EFFP	-0.044 0.1489	-0.083 0.33 95	-0.077 0.3477	-0.054 0.2711	-0.073 0.3365	-0. 06 8 0.3165	-0.065 0.2745	-0.034 0.1441	0.021 -0.0 9 06	OFAC EFFP
	INCID	-0.0000	-0.0000	-0.0000	-3.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEAM	0.000	0.000	0.000	0.000	0.000	0-000	0.000	0.000	0.000	DEAM
	P 0 P 1	15.406 14.325	15.406 14.691	15.446 14.766	15.406 14.769	15.406 14.772	15.406 14.760	15.406 14.656	15.406 14.547	15.406 14.338	P 0 P 1
	To	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T Ĉ
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	⊸.∞∘	BETA 1
ROTOR -T.E.	BETA 2	45.600	44.290	41.155	37.984	37.533	36.578	36.721	42.461	48.728	BETA 2
	BETA(PR) 1 BETA(PR) 2	52.394 26.414	50.003 27.458	49.780 26.525	51.425 25.7 9 5	52.635 28.623	54.130 32.376	54.956 36.646	55.971 40.7 17	57.592 47.035	BETA(PR) 1 BETA(PR) 2
	V 1	513.72	566.32	577.96	566.23	570.19	567.43	570.77	555.38	526-20	V 1
	V 2	630.18	632.58	662.32	710.64	709.58	697.81	659.27	612.81	555.02	V 2
	VZ 1 VZ 2	513-62 440.90	566.19 452. 79	577.89 498.67	566.20 560.10	569.49 562.49	565.13 559.67	567.01 513.35	551.43 451.21	522.77 365.55	VZ 1 VZ 2
	V-THETA 1	-0-00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	450.23	441.70	435.86	437.35	432.13	415.32	411.50	412.09	416.50	V-THETA 2
	V(PR) 1 V(PR) 2	841.7 492.3	881.0 510.3	895.0 557.4	908.1 622.1	938.8 641.1	965.8 663.6	989.6 641.1	987.6 596.5	977.2 537.2	V(PR) 1 V(PR) 2
	VTHETA PRI	-666.8	-674.8	-683.3	-709.9	-745.8	-701.6	-608.4	-816.6	-823.5	VTHETA PRI
	VTHETA PR2	-219.0	-235.3	-248.9	-270.7	-307.0	-354.8	-361.9	-388.3	-392.5	VINETA PR2
	U 1 U 2	666.81 669.23	674.82 676. 99	683.34 684.76	709.90 708.05	745.81 739.11	781.55 770.16	808.44 793.45	816.63 80 1.22	823.48 808.98	U 1 U 2
	M 1	0.4702	0.5208	0.5321	0.5207	0.5246	0.5219	0.5251	0.5102	0.4821	H 1
	N 2	0.5544	0.5573	0.5859	0.6308	0.6296	0.6187	0.5793	0.5377	0.4838	M 2
	M(PR) 1	0.7704	0.8102	0.8240	0.8351	0.8637	0.6883	0.9105	0.9073	0-8954	M(PR) 1
	M(PR) 2 TURN(PR)	0.4331 25.976	0.4496 22.540	0.4930 23.252	0.5523 25.629	0.5688 23.992	0.5884 21.694	0. 5639 18.221	0.5234 15.164	0.4683 10.488	M(PR) 2 TURN(PR)
	UUBAR	0.1092	0.1565	0.1071	0.0381	0.0425	0.0461	0.1070	0.1694	0.2323	UUBAR
	LOSS PARA	0.0283	0.0407	0.0285	0.0106	0.0120	0.0131	0.0298	0.0450	0.0561	LOSS PARA
	DFAC EFFP	0.5703 0.8575	0.56 8 0 0.8102	0.5220 0.8788	0.4629 0.96 0 4	0.4647 0.9750	0.4565 0.9815	0.4952 0.8511	0.5412 0.8187	0.5 999 0.7386	DFAC EFFP
	EFF	0.8516	0.8030	0.8738	0.9585	0.9738	0.9806	0.8445	0.8114	0.7289	EFF
	INCID	-0.037	-0.914	-0.799	-0.618	-1.368	-1.668	-3.74E	-6.348	-10.578	INCID
	DEVM P 1	11.265 14.325	13.298 14.691	11.891 14.766	7.154 14.769	5.413 14.772	4.817	5.024	7.579	11-058	DEAM
	P 2	19.082	19.135	19.554	20.288	20.445	14.760 20.393	14.656 19.837	14.547 19.240	14.338 18.579	P 1 P 2
	T 1	518.700	510.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Tì
	T 2	576.701	569.359	568.299	570.086	570.534	569.876	574.189	571.864	573.387	T 2
STATOR E	PCT SPAN DIA	95.00 33.207	90.00 33.564	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	BETA 2	45.972	44.011	33.921 40.332	34.992 38.033	36.420 36.892	37.848 36.417	38.919 39.663	39.27 6 44. 037	39.633 51.383	OIA Beta 2
STATOR-T.E.	BETA 2A	-2.400	0.300	1.550	2.000	0.850	1.100	1.201	0.750	-1.751	BETA ZA
	V 2 V 2A	626.29	635.96	673.79	710.64	721.26	701.61	647.07	596.06	534.91	¥ 2
	V2 2	476.86 435.27	470.44 457.38	476.86 513.62	559.71 559.66	591.92 576.60	386.67 5 64 .14	517.84 497.60	484.99 428.08	469.52 333.57	¥2 2
	VZ ZA	476.44	470.42	476.66	559.30	591.65	586.21	517.31	484.91	468.81	AI SV
	V-THETA 2 V-THETA 2A	450.30 -19.97	441.85	436.07	437.76	432.79	416.17	412.58	413.94	417.60	V-THETA 2
	M 2	0.5508	2.46 0.5605	12.90 0.5968	19.53 0.63 08	8.78 0.6408	11.26 0.6223	10.84 0.5684	6.34 0.5221	-14.33 0.4655	V-TWETA 2A M 2
	M ZA	0.4141	0.4088	0.4150	0.4895	0.5190	0.5144	0.4509	0.4210	0.4065	M ZA
	TURN(PR) UUBAR	48.372 0.0271	43.710 0.0579	38.780	36.026	36.023	35.283	30.424	43.234	53.074	TURN (PR)
	LOSS PARA	0.0091	0.0197	0.1383 0.0476	0.0921 0.0327	0.0419 0.0155	0.0530 0.0204	0.1378 0.0546	0.0813 0.0325	-0.0900 -0.0363	UUBAR Loss Para
	DFAC	0.4916	0.4957	0.5087	0.4220	0.3977	0.3871	0.4473	0.4614	0-4497	DFAC
	EFFP Incid	0.9425 -4.195	0.8861 0.623	0.7542 0.041	0.7699 0.002	0.8903	0.8479	0.8507	0.7828	1.3562	EFFP
	DEVM	6.432	11.612	12.860	12.975	0.186 11.862	0.549 12.766	0.956 13.641	0.865 13.430	-7.820 3.105	INC I D
	P 2	19.082	19.135	19.554	20.288	20.445	20.393	19.837	19.240	18.579	P 2
	P 2A T 2	18.986 570.7ul	18.922 569.359	18.975 568.299	19.849 570.086	20.239 570.534	20.144	19.299	18.974	18.810	P ZA
	T ZA	570.701	569.359	568.299	570.086	570.534	5 69 .876 5 69 .876	574.189 571.189	571 .86 4 571 . 864	573.387 573.387	T 2 T ZA
	UUBAR FS	0.680	0.1186	0.1376	0.0505	0.0233	0.0229	0.2033	0.2260	0.2141	UUBAR FS
	P2 FS LOSS PARA F	19.319	19.387	19.550	20.079	20.352	20.248	20.158	19.849	19.571	P2 FS
	, ,	- 0.0295	0.0403	0.0473	0.0179	0.0086	0.0088	0.0805	0.0903	0.0863	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 109.38 Equivalent Rotor Speed = 4605.05 Equivalent Weight Flow = 116.81
Uniform Inlet

INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT week
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	AIO
	BETA O	⊸ം∞	-0.000	-0.000	⊸.•••	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 6
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.600	-0.000	-0.000	BETA 1
	A C	467.18 490.01	467.18 502.32	467.18 494.31	467.18 494.46	467.18 503.92	467.18	467.18 436.57	467.18	467.18	A 0
	VZ C	967.18	467.18	467.18	467.17	467.15	501.72 467.10	467.06	477.52 467.05	449.15 467.06	A 1
	VZ 1	490.01	502.31	494.31	494.45	505.88	501.64	486.45	477.39	449.03	vz i
	V-THETA O	-0-00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1 M U	-0.00 0.4260	-0.00 0.426ù	-0.00 0.4260	-0.00 0.4260	-0.90	-0.00	-0.60	-0.00	-0.00	Y-THETA 1
	M 1	0.4476	0.4593	0.4517	0.4518	0.426 0 0.4627	0 -42 60 0.4587	0.4260 0.4443	0.4260 0.4353	0.4260 0.4090	# 0 # 1
	TURM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	TURN
	UUBAR	0.5054	0.3301	0.3005	0.3000	0.2980	0.3040	0.3632	0.4027	0.5332	UUBAR
	DFAC EFFP	-0.049 C.1725	-0.075 0.3348	-0.058 0.2977	-0.038 0.2992	-0.033 0.3815	-0.074 0.3497	-0.042 0.1984	-0.622 0.1051	0.039	DFAC
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.1747 -0.0000	effp Incid
	DEAM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DE AM
	P 0 P 1	15.300	15.300	15.300	15.300	15.300	15.300	15.300	15.300	15.300	PG
	TO	14.394 518.700	14.708 518.700	14.761 518.700	14.762 518.700	14.764 518.700	14.755 518.700	14.649 518.700	14.578 518.700	14.344 516.700	P 1 T O
	Y D	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TI
ROTOR E	PCT SPAN	99.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAM
	DIA	33.236	33.621	34.007	35.164	36.706	39.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA L
LOTOR -T.E.	BETA 2	48.399	47.294	44.476	40.582	39.839	39.170	42.166	46.062	51.586	BETA 2
	BETA(PR) 1 BETA(PR) 2	53.568 25.978	51.593 20.530	51.714 27.674	52.698 26.471	53.734 20.737	55.308 32.855	56.901	57.588	59.330	BETA(PR) 1
	A 1	491.23	533.99	538.33	539.73	546.69	542.06	37.21 <i>2</i> 529.37	41.342 521.10	46.857 490.53	BETA(PR) 2 V 1
	¥ 2	623.39	612.19	635.76	686.85	694.95	679.53	642.71	601.93	558.85	₩ 2
	V2 1	491-14	533.87	538.27	539.70	546.02	539.86	525.88	517.39	487.33	VZ 1
	VZ 2 V-THETA 1	413.88 -0.00	415.20 -0.00	453.63 -0.00	521.64 -0.00	533.43 -0.00	526.21 -0.00	475.53 -0.00	416.94	346.76	VZ 2
	V-THETA 2	466-14	449.85	445.41	446.81	445.05	426.70	430.67	-0.00 432.69	-0.00 437.28	V-THETA 1 V-THETA 2
	A(PR) I	827.1	859.4	868.6	890.6	923.4	949.8	964.9	967.3	957.0	VIPR) 1
	V(PR) 2	460.4	472.6	512.2	582.7	608.6	627.3	598.3	556.5	507.9	V(PR) 2
	VTHETA PRI	-665.4 -201.7	-673.4 -225.7	-681.9 -237.9	-708 .4 -259 . 7	-744.2 -292.5	-779.9 -339.8	-806.7	-814.9 -344.8	-821.7	VIMETA PRI
	Ul	665.40	673.40	681.90	708.40	744.23	779.90	-361.1 806.74	-366.8 814.90	-370.0 821.74	VTHETA PR2 U 1
	U Z	667.81	675.56	683.31	706.55	737.54	768.53	791.70	799.53	807.27	ŭ ž
	M 1	0-4488	0.4896	0.4938	0.4951	0.5018	0.4974	0.4852	0.4773	0.4481	M 1
	M 2 M(PR) 1	0.5466 0.7556	0.5368 0.7860	0.5595 0.7969	0.6071 0.8170	0.6345	0.6000	0.5645	0.5261	0.4857	M 2
	HIPR) 2	0.4637	0.4144	0.4508	0.5150	0.8477 0.5382	0.6715 0.5539	0.8844 0.5255	0.8859 0.4864	0.8742 0.4415	M(PR) 1 M(PR) 2
	TURN (PR)	27.586	23.058	24.037	26.226	24.977	22.395	19.605	16.162	12.410	TURN (PR)
	UUBAR Loss Para	0.1073	0.1561	0.1161	0.0641	0.0600	0.0511	0.1219	0.1854	0.2255	UUBAR
	DFAC	0. 0279 0.6069	0.0402 0.6039	0.0305 0.5628	0.0121 0.4998	0.0113 0.4954	0.0144 0.4903	0.0337 0.5334	0.0468 0.5801	0.0546 0.6297	LOSS PARA DFAC
	EFFP	0.8478	0.7877	0.8489	0.9405	0.9733	0.9656	0.8850	0.8067	0.7377	EFFP
	EFF	0.8412	0.7794	0.8426	0.9378	0.9720	0.9640	0.8798	0.7986	U.7478	EFF
	DEAM INCID	1.137	0.676	1.135	0.655	-0.269	-0.687	-1.791	→.726	-8.835	INCID
	Pl	10.829 14.394	14.370 14.708	13.040 14.761	7.830 14.762	5.527 14.764	5.296 14.755	5.590 14.649	8.204 14.578	10.886 14.344	DEVM P 1
	P Ž	19.399	19.295	19.638	20.367	20.648	20.555	20.034	19.493	19.014	PZ
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.70C	518.700	<u>T</u> 1
	Т 2	573.585	572.369	571.017	571.978	572.375	572.159	573.871	574.919	576.867	T 2
574700 F	PCT SPAN	OF ^^	00 00	86 00	70 00	** **	20.00	ne	36 55	<i>a</i>	DCT CO
STATOR E	DIA	95.00 33.207	90.00 33.564	65.00 33.921	70.00 34.992	50.00 36.420	30.00 37.648	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN DIA
TATOR-L.E.	BETA 2	48.805	46.994	43.598	40.634	39.166	39.003	43.204	47.835	54.556	BETA 2
TATOR-T.E.	BETA ZA	-2.300	0.150	1.250	2.580	1.170	1.310	1.240	1.701	1.000	BETA ZA
	V 2	619.59	615.36	646-24	686.85	706-03	683.09	631.19	585.73	538.55	A 5
	V 2A V2 2	460.05 408.07	448.61 419.72	448.08 467.99	519.12 521.16	557.11 547.18	556.22 530.44	493.06 459.66	464.51 392.85	453.62 312.09	V 2A VZ 2
	VZ ZA	459.68	448.60	447.95	518.52	556.80	555.74	492.54	463.90	453.07	VZ ZA
	V-THETA 2	466.22	450.00	445.63	447.23	445.73	429.58	431.71	433.79	438-44	V-THETA 2
	V-THETA 2A	-18.46	1.17	9.77	23.37	11.37	12.71	10.66	13.77	7.91	V-THETA 2A
	M 2 M 2A	0.5431 0.3980	0.5398 0.3882	0.5693 0.3882	0.6071 0.4517	0.6251 0.4861	0.6034 0.4854	0.5537 0.4275	0.5112 0.4015	0.4673 0.3911	Ħ 2 Ħ 2A
	TURN (PR)	51.105	46.843	42.346	38.048	37.977	37.658	41.915	46.083	53.500	TURN (PR)
	UUBAR	0.0275	0.0312	0.1166	0.1060	0.0575	0.0564	0.1249	0.0648	-0.0599	UUBAR
	LOSS PARA Deac	0.0092	0.0106	0.0401	0.0376	0.0213	0.0217	0.0495	0.0259	-0.0242	LOSS PARA
	EFFP	0.5211 6.9452	0.5195 0.9403	0.5390 0.7991	0.4640 0.7829	0.4395 0.8683	0.4219 0.8540	0.4846 0.7124	0.4955 0.8418	0.4820 1.1878	DFAC EFFP
	INCID	-1.362	3.606	3.307	2.604	2.460	3.135	4.496	4.663	→.64 6	INCID
	DEAM	6.532	11.462	12.560	13.555	12.182	12.976	13.680	14.379	5.853	DEAW
	PZ PZA	19.399 19.302	19.295 19.186	19.638	20.367	20.648	20.555	20.034	19.493	19.014	P 2
	1 2	573.585	572.369	19.186 571.017	19.891 571.978	20.374 572.375	20.302 572.159	19.563 573.871	19.286 574.919	19.172 576.867	P 2A T 2
	T 2A	573.585	572.369	571.017	571.978	572.375	572.159	573.871	574.919	576.867	T 2A
	UUBAR FS	0.09 14	0.1259	0.1509	0.0859	0.0309	0.0339	0.1868	0.1952	0.1679	UUBAR FS
	P2 FS LOSS PARA F	19.602	19.674 0.0431	19.794 0.0519	20.268 0.0304	20.518 0.0114	20.450 0.0130	20.320 0.0740	20.008 0.0780	19.727 0.0678	P2 FS LDSS PARA FS
	(MIM)		0.0454	0.002.9	0,000	0.0114	5-5130	0.0170	0.0760	0.0078	EUSS FARR FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 109.36 Equivalent Rotor Speed = 4604.26 Equivalent Weight Flow = 111.46
Uniform Inlet

INLET	0CT C04W	04 80	03.00	84 80	71 00	40.50	20.10	12.00	7 10	3.00	PCT SPAN
	PCT SPAN DIA	96.80 33.122	92.00 33.529	86.90 33.962	71.00 35.312	49.50 37.137	28.10 38.954	12.00 40.321	7.10 40.737	3.00 41.085	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V 0 V 1	444.45	444.45	444.45	444.45	444.45	444.45	444.45	444.45	444.45	Y 0 Y 1
	vz o	459.31 444.45	469.24 444.45	463.49 444.45	474.75 444.44	473.64 444.42	475.51 444.38	450.92 444.34	451.89 444.33	419.52 444.34	vz o
	VZ 1	459.31	469.24	463.49	474.74	473.61	475.43	458.80	451.77	419.41	vž i
	V-THETA O	-0.00	⊸.∞	-0.00	⊸.00	-0.00	-0.00	~0.00	-0.00	~0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.4046 0.4185	0.4046 0.4279	0.4046 0.4225	0.4046 0.4331	0.4046 0.4321	0.4046 0.4336	0.4046 0.4182	0.4046 0.4116	0.4046 0.3812	M 0 M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUB AR	0.4807	0.3141	0.2847	0.2828	0.2815	0.2873	0.3524	0.3081	0.5350	UUBAR
	DFAC EFFP	-0.033 0.1291	-0.056 0.2786	-0.043 0.2457	-0.046 0.3459	-0.066 0.3382	-0.670 0.3481	-0.033	-0.017	9.056	DFAC EFFP
	INCID	-0.0000	-C.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.1653 -0.0000	0.0836 -0.0000	-0.2696 -0.0000	INCID
	DEAM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEAN
	P D	15.215	15.215	15.215	15.215	15-215	15.215	15.215	15,215	15.215	PO
	P 1 T 0	14.435 518.700	14.706 518.700	14.753 518.700	14.756 518.700	14.758 518.700	14.749 518.700	14.643 518.700	14.585 518.700	14.347 518.700	P 1 T 0
	Ťì	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ť 1
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	DIA BETA 1	33.236 -0.000	33.621 -0.000	34.007 -0.000	35.164 -0.000	36.706 -0.000	38.246 -0.000	39.405 -0.000	39.791 -0.000	40.176 -0.000	DIA Beta 1
ROTOR -T.E.	BETA 2	50.999	50.603	47.895	43.080	42.445	41.859	45.696	50-516	55.712	BETA 2
	BETA(PR) 1	55.319	53.537	53.574	53.870	55.590	56 .79 6	56.483	59.064	61.074	BETA(PR) 1
	BETA(PR) 2 V 1	23.839	28.884	29.394	26.470	29.518	33.077	38.403	42.423	45.103	BETA(PR) 2
	V 2	460.42 632.78	497.64 601.54	503.19 610.21	517.08 674.92	510.33 675.09	512.42 667.52	497.89 624.67	491.83 591.74	457-01 580-67	V 1
	¥2 1	460.33	497.52	503.13	517.05	509.70	510.34	494.61	488.33	454.03	VZ 1
	VZ 2	398.22	381.78	409.13	492.96	498.00	496 .62	435.60	375.72	326.75	VZ 2
	V-THETA 1 V-THETA 2	-6.60 491.75	-0.00 464.83	-0.00 452.72	-0.00 460.97	-0.00 455.46	-0.00 444.95	-0.00 446.35	-0.00	-0.00	V-THETA 1
	V(PR) 1	809.1	837.2	847.4	876.9	902.3	933.1	947.9	456.04 951.7	479.21 9 40.1	V-THETA 2 V(PR) 1
	V(PR) 2	435.4	436.0	469.6	550.7	572.5	593.5	557.0	510.0	463.8	V(PR) Z
	VTHETA PRI	-665.3	-673.3	-681.8	-708.3	-744 - 1	-779.8	-606.6	-814.8	-621.6	VTHETA PRI
	VTHETA PR2 U 1	-176.0 665.28	-210.6 673.28	-230.5 681.78	-245.5 708.28	-282.0 744.11	-323.5 779.77	-345.3 806.60	-343.4 814.76	-327.9 821.60	VTHETA PR2 U 1
	υż	667.70	675.45	683.19	706.43	737.42	768.40	791.64	799.39	807.14	U 2
	M L	0.4196	0.4549	0.4601	0.4734	0.4670	0.4690	0.4551	0.4493	0.4164	M I
	M 2	0.5531	0.5254	0.5346	0.5950	0.5950	0.5877	0.5464	0.5158	0.5042	H 2
	M{PR} } M(PR) 2	0.7373 0.3806	0.7653 0.3809	0.7749 0.4114	0.8029 0.4855	0.8256 0 .504 6	0.8539 0.5225	0.8664 0.4872	0.8695 0.444 5	0.8566 0.4026	M(PR) 1 M(PR) 2
	TURN(PR)	31.477	24.649	24.178	27.399	26.054	23.664	20.002	16.562	15.915	TURN (PR)
	UUBAR	0.0999	0.1599	0.1286	0.0413	0.0441	0.0560	0.1365	0.2068	0.2443	UUBAR
	LOSS PARA DFAC	0.0265 0.6382	0.0411 0.6423	0.0333 0.6046	0.0114 0.5335	0.0124 0.5273	0.0158 0.5232	0. 0377 0.5743	0.0535	0.0611	LOSS PARA
	EFFP	0.8427	0.7763	0.8249	0.9505	0.9706	0.9694	0.8671	0.6306 0.8133	0.6857 0. 79 43	DFAC EFFP
	EFF	0.8354	0.7672	0.8176	0.9482	0.9691	0.9679	0.8610	0.8052	0.7850	EFF
	INCID DEVM	2.888 8.689	2.621 14.724	2.996 14.760	1.826 7.830	1.588	0.803	-0.205	-3.246	-7.085	INCID
	P 1	14.435	14.706	14.753	14.756	6.307 14.758	5.517 14.749	6.779 14.643	9.285 14.585	9.126 14.347	DEVM P 1
	P 2	19.860	19.508	19.674	20.595	20.782	20.782	20.171	19.736	19.581	P 2
	Ť 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
	T 2	577.955	575.553	573.074	573.373	573 . 6 8 4	573.858	576.425	576.837	580.092	T 2
STATOR E	PCT SPAN Dia	95.00 33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	BETA 2	51.450	50.272	46.945	43.137	36.420 41.738	37.848 41.683	38.919 46.852	39.276 52.590	39.633 59.297	DIA Beta 2
STATOR-T.E.	BETA 2A	-2.350	-0.100	0.750	1.650	1.300	1.250	0.930	1.420	1.621	BETA 2A
	V 2	628.59	604.61	619.89	674.92	685.45	670.94	613.77	575.99	559.12	V 2
	V 2A V2 2	461.89 391.92	439.81 386.43	426.56 423.18	487. 83 49 2.44	525.82	520.40	472.51	445.59	441.91	V ZA
	VZ ZA	461.49	439.80	426.50	497.56	511.29 525.51	500 .73 519.97	419.41 472.06	349.68 445.05	285.32 441.27	VZ 2 VZ 2A
	V-THETA 2	491.83	464.99	452.94	461.41	456.16	445.87	447.43	457.19	480.48	A-THETA S
	V-THETA ZA M Z	-18.94 0.5495	-0.77 0.5282	5.58 0.5436	14.04	11.93	11.35	7.66	11.04	12.48	V-THETA ZA
	H ZA	0.3981	0.3793	0.3684	0.5950 0.4230	0.6048 0.4571	0.5910 0.4521	0.5363 0.4081	0.5014 0.3840	0.4845 0.3796	M 2 M 2A
	TURN(PR)	53.800	50.371	46.194	41.480	40.420	40.396	45.672	51.119	57.626	TURM (PR)
	UUBAR LOSS PARA	0.0250	-0.0080	0.0763	0.1339	0.0756	0.0895	0.1002	0.0492	0.0076	UUBAR
	DFAC	0.6064 0.5392	-0.0027 0.5350	0.0263 0.5606	0.0476 0.5133	0.0280 0.4737	0.0345 0.4749	0.0397 0.5156	0.0197	0.0032 0.5493	LOSS PARA
	EFFP	6.9516	1.0152	0.8695	0.7515	0.8393	0.8021	0.7783	0.5380 0.8886	0.9810	DFAC EFFP
	INC ID	1.283	6.884	6.655	5.106	5.033	5.814	8.144	9.419	0.100	INCID
	DEVM P 2	6.482 19.860	11.212 19.508	12.060 19.674	12.625	12.312	12.916	13.371	14.099	6.473	DEVM
	P 2A	19.768	19.535	19.400	20.595 20.008	20.782 20.438	20.782 20.390	20.171 19.811	19.736 19.583	19.581 19.558	P Z P ZA
	T Z	577.955	575.553	573.074	573.373	573.684	573.858	576.425	576.837	580.092	T 2
	T 2A UUBAR FS	577.955	575.553	573.074	573.373	573.684	573.858	576.425	576.837	580.092	T 2A
	P2 FS	0.1148 20.234	0.1344	0.1366	0.1227	0.0651	0.0688	0.1690	0.1460	0.1251	UUBAR FS
	LOSS PARA F	S .0.0385	20.063 0.0453	19.923 0.0471	20.539 0.0436	20.731	20.684	20.467	20.089	19.970 0.0513	P2 FS LOSS PARA FS
		•			0.0430	0.0241	0.0265	0.0669	0.0584	010313	

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 110, 30 Equivalent Rotor Speed = 4643,61 Equivalent Weight Flow = 107,01
Uniform Inlet

INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	30.954	40.321	40.737	41.085	DIA
	BETA O	⊸.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	A 0	425.36 442.78	425.36 455.17	425.36 455.81	425,36 453,22	425.36 458.24	425.36 460.46	425.36 436.95	425.36 430.03	425.36 399.49	A 0
	¥2 0	425.35	425.36	425.36	425.35	425.32	425.29	425.25	425.24	425.24	wz o
	VZ 1	442.78	455.17	455.81	453.22	458.21	460.38	436.84	429.91	399.38	VZ 1
	A-THETY O	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	⊸.00	-9.00	V-THETA O
	Y-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	#1 ·	0.3866	0.3866 0.4146	0.3866 0.4152	0.3866 0.4128	0.3866 0.4175	0.3866 0.4196	0.3866 0.3975	0.3866 0.3910	0.3866 0.3625	M O M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURIN
	UUBAR	0.4682	0.3049	0.2737	0.2709	0.2702	0.2695	0.3397	0.3758	0.5224	UUBAR
	DFAC EFFP	-0.041 0.1572	-0.070	-0.072	-0.066	-0.077	-0.003	-0.027	-0.011	0.061	DFAC
	INCID	-0.0000	0.3340 -0.0000	0.3640 -0.0000	0.3453 -0.0000	0.3856 -0.0000	0.4026 -0.0000	0.1460 -0.0000	0.0580 -0.0000	-0.3663 -0.0000	EFFP INCID
	DEVA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	PO	15.153	15.153	15.153	15.153	15.153	15.153	15.153	15.153	15.153	P 0
	P 1 7 0	14.458	14.700	14.747	14.751	14.752	14.753	14.649	14.595	14.378	P 1
	7 D	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	7 0 7 1
		,,,,,,	7100700	3401.00	7101700	2101700	3202700	3101.00	7101.00	3101.00	
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	DIA BETA 1	33.236 -0.000	33.621 -0.000	34.007 -0.000	35.164 -0.000	36.706 -0.000	38.248	39.405	39.791	40.176	DIA
ROTOR -T.E.	BETA 2	51.999	52.107	49.709	44.778	43.751	-0.000 43.850	-0.000 49.121	-0.000 53.120	-0.000 58.783	BETA 1 Beta 2
	BETA (PR) 1	56,521	54.623	54.282	55.410	56.726	57.888	59.978	60.556	62.480	BETA (PR) 1
	BETA(PR) 2	24.362	29.911	30.854	27.340	29.894	33.570	39.966	44.092	45.977	BETA(PR) 2
	V 1 V 2	443.84	482.26	494.49	492.64	493.08	495.56	473.20	467.18	434.55	V 1
	A 5 _ 1	631.26 443.75	596.27 482.15	599.65 494.43	665.02 492.61	672.17 492.47	662.27 493.56	612.85 470.08	584.43 463.86	585.58 431.72	V 2 VZ 1
	AZ Z	388.64	366.21	387.77	472.05	485.40	477.11	400.53	350.28	303.20	VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	497.42	470.54	457.39	468.41	464.68	458.34	462.73	466.88	500.31	V-THETA 2
	V(PR) 1 V(PR) 2	804.5 426.7	832 . 9 422 . 5	847.0 451.7	867.7 531.4	8 9 8.0 560.1	929.5 573.4	941.1 523.6	945.2 488.6	935.7 437.1	V(PR) 1 V(PR) 2
	VTHETA PRE	-671.0	-679.0	-687.6	-714.3	-750.5	-786.4	-013.5	-821.7	-828.6	VTHE TA PRI
	VTHETA PRZ	-176.0	-210.7	-231.6	-244.1	-2 79。G	-316.6	-335.7	-339.3	-313.7	VTHE TA PR2
	UI	670.97	679.04	687.61	714.33	750.47	786.43	813.49	821.73	828.62	U 1
	U 2 # 1	673.41 0.4040	681.22 0.4403	689.03 0.4519	712.47 0.4501	743.72 0.4505	774.97 0.4529	798.41 0.4317	806.22 0.4260	614.03 0.3953	U 2 H 1
	A 2	0.5513	0.5202	0.5243	0.5844	0.5909	0.5814	0.5341	0.5076	0.5078	M 2
	H(PR) 1	0.7322	0.7603	0.7739	0.7928	0.8205	0.8495	0.8585	0.8619	0.8516	M(PR) 1
	M(PR) 2	0.3726	0.3686	0.3949	0.4670	0.4924	0.5034	0.4563	0.4244	0.3790	M(PR) 2
	TURM(PR) UUBAR	32.156 0.0960	24.708 0.1580	23.426 0.1338	28.069 0.0531	26.815 0.0460	24.265	19.940	16.391	16.451	TURN (PR)
	LOSS PARA	0.0253	0.0402	0.0341	0.0145	0.0126	0.0740 0.02 07	0.1768 0.0470	0.2275 0.0573	0.2679 0.0660	UUBAR Loss para
	DFAC	6.6491	0.6587	0.6272	0.5534	0.5421	0.5478	0.6127	0.6546	0.7206	DFAC
	ይኖም ይምም	0-6542	0.7871	0.8187	0.9267	0.9581	0.9458	0.8339	0.7838	0.8009	EFFP
	INCID	0.8473 4.090	0.7782 3.707	0.8111 3.703	0.9231 3.367	0,9559 2.725	0.9430 1.896	0.8262 1.295	0.7742 -1.749	0.7916 -5.674	EFF INCID
	DEAM	9.212	15.751	16.219	8.699	6.683	6.010	8.341	10.953	10-000	DEVM
	P 1	14.458	14.700	14.747	14.751	14.752	14.753	14.649	14.595	14.378	PI
	P 2 T l	20.058 518.700	19.656 518.700	19.748 518.700	20.677 518.700	20.965	20.924	20.202	19.831	19.852	P 2
	Ť Ž	578.721	576.383	574.353	575.615	518.700 576.021	510.700 576.451	518.700 579.085	518.700 580.026	518.700 581.967	T 1 T 2
							3100131	3176003	300.020	3018701	v 2
STATOR E	PCT SPAN	95.00	90.00	65.00	70.00	50.00	30.00	16 00	10.00	E 00	DCT CDAN
01710K E	DIA	33.207	33.564	33.921	34.992	36.420	37.848	15.00 30.919	10.00 39.276	5.00 39.633	PCT SPAN Dea
STATOR-L.E.	BETA 2	52.465	51.761	48.714	44.839	43.017	43.666	50.410	55.384	62.900	BETA 2
STATOR-T.E.	BETA 2A	-1.160	0.050	-0.100	0.600	1.460	1.070	0.840	1.500	1.881	BETA 2A
	V 2	627.39 443.05	599.29 419.05	609.01 405.08	665.02 469.57	682.41	665.63	602.34	569.08	563.75	V 2
	V2 2	382.23	370.92	401.83	471.51	506.69 498.76	513.22 401.10	464.63 383.59	444.09 323.08	440.54 256.70	V 2A V2 2
	WZ ZA	442.96	419.04	405.06	469.47	506.35	512.82	464.20	443.54	439.84	VZ ZA
	V-THETA 2	497.51	470.70	457.61	468.86	465.39	459.28	463.85	468.06	501.64	V-THETA 2
	V-THETA 2A M 2	-8.97 0.5477	0.37 0.5230	-0.71 0.5329	4.92 0.5844	13.09 0.6006	9.58 0.5845	6.61	11.62	14.44	V-THETA ZA
	M ZA	0.3811	0.3607	0.3490	0.4058	0.4389	0.4446	0.5245 0.4001	0.4936 0.3816	0.4879 0.3778	M 2 M ZA
	TURN(PR)	53.625	51.710	48.812	44.232	41.518	42.560	49.521	53.635	60.973	TURN (PR.)
	UUBAR	0.0602	0.0164	0.0802	0.1563	0.1207	0.1036	0.0714	0.0210	0-0360	UUBAR
	LOSS PARA DFAC	0.0203 0.5658	0.0056 0.5681	0.0276 0.5942	0.0555 0.5423	0.0447	0.0399	0.0283	0.0084	0.0145	LOSS PARA
	EFFP	0.8923	0.9711	0.8699	0.7217	0.5038 0.7626	0.4904 0.7740	0.5309 0.8408	0.5423 0.9512	0 -56 92 0 -9 158	DFAC EFFP
	INCID	2.298	8.373	6.423	6.808	6.311	7.797	11.703	12.215	3.707	INCID
	DFAW	7.672	11.362	11.210	11.575	12.492	12.736	13.281	14.179	6.733	DEVM
	P 2 P 2A	20.058 19.835	19.656 19.601	19.748 19.470	20.677 20.009	20,965	20.924	20 - 202	19.831	19.852	P 2
	T 2	578.721	576.383	574.353	575.615	20.418 576.021	20.477 576.451	19.956 579.085	19.767 580.026	19.744 581.967	P 2A T 2
	T 2A	578.721	576.383	574.353	575.615	576.021	576.451	579.085	580.026	581.967	T ZA
	UUBAR FS	0.1039	0.1304	J.1578	0.1403	0.0842	0.0781	0.1753	0.1629	0.1519	UUBAR FS
	P2 F5 LOSS PARA F		20.094	20.068	20.596	20 . 784	20.805	20.638	20.346	20.259	P2 FS
		J + < J 5 €	0.3445	0.0543	0.0498	0.0311	0.0301	0.0695	0.0651	0.0612	LOSS PARA FS

Table A-3. Blade Element Performance
Stage E, Rotor E - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 100.54 Equivalent Rotor Speed = 4232.66 Equivalent Weight Flow = 121.43
Uniform Inlet

INLET.					71 00	40 50	20.10	12.00	7.10	3.00	PCT SPAN
	PCT SPAN DIA	96.60 33.122	92.00 33.529	86.90 33.96 <i>2</i>	71.00 35.312	49.50 37.137	28.10 38.954	12.00 40.321	40.737	41.085	DIA
	BETA O	-6.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BSTA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	A 9	486.04 529.16	486.04 548.99	486.04 542.37	486.04 531.35	486.04 526.94	486.04 527.29	486.04 522.34	486.04 510.97	486.04 486.50	V 0 V 1
	vzio	486.04	486.04	486.04	486.03	486.00	485.96	485.91	485.91	485.91	vz o
	VZ 1	529.16	548.99	542.37	531.34	526.90	527.20	522.21	510.83	486.37	VZ 1
	V-THETA O	-0.00	-0.00	-0.00	-0.00	~0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1 M C	-0.00 U.4438	-0.CD 0.4438	-0.00 0.4438	-0.00 0.4438	-0.00 0.4438	-0.00 0.4438	-0.00 0.4438	-0.00 0.4438	-0.00 0.4438	V-THETA 1 M O
	H 1	0.4850	0.5041	0.4977	0.4871	0.4829	0.4832	0.4784	0.4676	0.4443	M I
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR DFAC	0.5418 -C.u69	0.3535 -0.130	0.3212 -0.116	0.3239 -0.093	0.3164 -0.084	0.3266 ~0.085	0.3788	0.4347 -0.051	0.5402 -0.001	UUBAR DFAC
	EFFP	0.2654	0.4553	0.4503	0.3924	0.3727	0.3672	-0.075 4.3039	0.2045	0.0037	EFFP
	INCIU	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEAM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEAN
	P 0 P 1	15.392 14.337	15.392 14.704	15.392 14.767	15.392 14.762	15.392 14.776	15.392 14.756	15.392 14.655	15.392 14.546	15.392 14.341	P 0 P 1
	Tô	518.760	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TO
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
NO 1011 E	DIA	33.236	33.621	34.007	35.164	36.766	38.248	39.405	39.791	40.176	DIA
ROTCH -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTUK -T.E.	BETA 2 BETA(PR) 1	34.001 49.065	31.359 46.577	30.381 46.540	29.238 48.183	28.341 50.196	26.717 51.569	27.924 52.609	30.960 53.429	37.700 54.942	BETA 2 Beta(PR) 1
	BETA(PR) 2	26.394	25.514	25.545	26.495	29.925	33.081	37.116	40.773	51.041	BETAIPR) 2
	V 1	530.54	585.90	594.00	582.55	570.71	571.11	570.50	559.66	533.47	V 1
	V 2	632.41	669.17	684.13	703.30	691.11	685.91	641.74	587.61	467.70	V 2
	VZ 1	530.44 524.25	585.77 571.39	593.93 590.17	582.52 613.68	570.00 608.00	568.80 611.73	566.74 565.58	555.67 502.56	529.99 369.23	V2 1 V2 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	353.63	348.22	345.99	343.51	327.93	307.90	299.76	301.49	285.37	A-THETA 5
	V(PR) 1 V(PR) ∠	809.6 585.3	852.3 633.2	863.5 654.1	873.7 685.7	890.9 701.8	916.5 731.1	935.6 710.7	935.0 665.0	924.7 588.1	V(PR) 1 V(PR) 2
	VTHETA PRI	-611.6	-618.9	-626.8	-651.1	-684.1	-716.8	-741.5	-749.0	-755.3	VTHETA PRI
	VTHETA PRZ	-260.2	-272.7	-282.1	-305.9	-350.0	-398.5	-428.0	-433.4	-456.6	VTHETA PR2
	U 1 U 2	611.59 613.81	618.94 620.93	626.76 628.05	651.11 649.42	684.05 677.90	716.84 706.39	741.50 727.75	749.01 734.87	755.29 741. 99	U 1 U 2
	M 1	C.4863	0.5399	0.5478	0.5366	0.5251	0.5255	0.5249	0.5144	0.4891	M 1
	M 2	0.5630	0.5989	0.6141	0.6313	0.6197	0.6156	0.5739	0.5228	0.4118	M 2
	M(PR) 1 M(PR) 2	0.7421 0.5211	0.7853 0.5667	0.7963 0.5872	0.8048	0.8196	0.8433 0.6561	0.860B	C.8593	0.8478	M(PR) 1 M(PR) 2
	TURN(PR)	22.666	21.059	20.993	0.6155 21.686	0.6293 20.251	18.426	0.6357 15.400	0.5917 12.562	0.5178 3.825	TURN(PR)
	UUSAR	0.1664	0.1519	0.1310	0.1057	0.1172	0.1001	0.1598	0.2340	0.3360	UUBAR
	LOSS PARA	0.0432	0.0402	0.0351	0.0291	0.0327	0.0282	0.0442	0.0621	0.0748	LOSS PARA
	DFAC EFFP	0.4038 0.7121	6.3771 0.7363	0.3616 0.7941	0.3360 0.8059	0.3302 0.7877	0.3145 0.8185	0.3505 0.7397	0.4008 0.6246	0.4724 0.3974	DFAC EFFP
	EFF	6.7045	C.7293	0.7884	0.8002	0.7816	0.8133	0.7332	0.6168	0.3893	EFF
	INCID	-3.367	-4.339	-4.038	-3.860	-3.807	-4.432	-6.093	-8.896	-13.234	INCID
	DEVM P 1	11.245 14.337	11.354 14.704	10.911 14.767	7.855 14.762	6.715 14.776	5.522 14.756	5.493 14.655	7.635 14.546	15.066 14.341	DEVM P 1
	P 2	17.221	17.651	17.860	18.112	18.017	17.986	17.420	16.823	15.755	P 2
	T 1	516.700	518.700	518.700	518.700	518.700	518.700	518.700	510.700	518.700	T 3
	T 2	558.279	. 556.801	555.439	557.705	557.387	555.802	554.516	554.383	554.986	T 2
£7.4700 £	857 CO411										
STATOR E	PCT SPAN Dia	95.CO 33.2C7	90.00 33.564	85.00 33.921	70.00 34.992	50.00 36.420	30.00 37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN Dia
STATUR-L.E.	BETA 2	34.250	31.170	29.796	29.274	27.899	26.605	28.526	31.955	39.333	BETA 2
STATUR-T.E.	BETA 2A	-0.250	1.600	1.800	0.150	0.300	1.800	1.601	1.000	-1.70B	BETA 2A
	V 2 V 2A	628.45 566.94	673.03 585.36	696.66 608.60	703.30 659.41	702.26 659.63	689.62 659.63	630.07	571.67	451.99	V 2
	¥2 2	519.47	575.86	604.53	613.36	620.31	615.98	576 .9 8 552.83	546.61 484.56	531.27 349.17	A SV
	VZ ZA	566.93	585.12	608.27	659.32	659.40	658.91	576.23	546.04	530.48	VZ ZA
	V-THETA 2 V-THETA 2A	353.69 -2.47	348.34 16.34	346.16	343.84	328.43	308.53	300.49	302.26	286.13	V-THETA Z
	M 2	(.5593	0.6026	19.12 0.6262	1.73 0.6313	3.45 0.6304	20.71 0.6192	18.11 0.5628	9.53 0.5081	-15.75 0.3975	V-THETA ZA M Z
	M 2A	0.5016	0.5195	0.5420	0.5890	0.5894	0.5903	C.5128	0.4846	0.4701	M ZA
	TURN (PR) UUP AR	34.500 [.0912	29.569	27.994	29.118	27.584	24.777	26.685	30.908	40.973	TURN (PR)
	LOSS PARA	0.6307	0.1364 0.0464	0.1124 0.0387	0.0300 0.0107	0.0163 0.0061	0.0327 0.0126	0.1744 0.0691	0.1118 0.0447	-0.3544 -0.1429	UUBAR LOSS PARA
	DFAC	C.2888	0.2983	0.2882	0.2356	0.2326	0.2050	0.2629	0.2501	0.0954	DFAC
`	EFFP	0.5655	0.5092	0.5894	0.7890	0.8820	0.6712	0.0364	-0.1698	0.1543	EFFP
	INCID PEVM	-15.917 8.582	-12.218 12.912	-10.495 13.110	-8.756 11.125	-6.803 11.312	-9 .256	-10.174	-11.212	-19.870	INCID
	ΡZ	17.221	17.651	17.860	18.112	18.017	13.465 17.986	14.240 17.420	13.679 16.823	3.155 15.755	DE VM P 2
	P 2A	10.921	17.127	17.394	17.984	17. 94 8	17.852	16.833	16.519	16.331	P ZA
	T 2 T 2A	558.2 7 9 558.2 79	556.801 556.801	555.439	557.705	557.387	555.802	554.516	554.383	554.986	T 2
	UUBAR FS	J.1561	556.801 0.1250	555.439 040970	557.705 U.0458	557.387	555.802	554.516 0.2423	554.363 0.2724	554.986 0.2775	T 2A Uubar FS
	P2 FS	17-475	17.601	17.789	18.182	0.0419 18.130	0•0333 17•988	17.721	17.422	17.176	P2 FS
	LOSS PARA F	5525	0.1425	J.0334	0.0163	0.0157	0.0128	0.0960	0.1089	0.1119	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 99.65 Equivalent Rotor Speed = 4195.46 Equivalent Weight Flow = 117.78
Uniform Inlet

INLCI											
	PCT SPAN	96.63	92.00	86.90	71.00	49.50	28.10	12.0C	7.10	3.60	PCT SPAN
	LIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	bila u	-000	-0.560	-6.000	-0.000	⊸.000	-0.000	-0.000	-6.000	-0.000	SETA C
	PETA 1		-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-c.000	-0.000	BETA 1
	V G	471.36 503.49	471.36 515.60	471.36 508.54	471.38	471.38	471.38	471.38	471.38	471.38	¥ 0
	vz ·	471.37	471.38	471.38	506.86 471.37	498.93 471.34	497.93 471.30	490.41 471.26	483.56 471.25	456.53 471.25	V 1 V2 0
	VZ 1	503.48	515.60	568.54	566.85	498.90	497.85	490.28	483.43	456.41	V2 0
	V-THETA C	-0.00	-0.00	-6.00	-0.00	-0.00	-0.00	-G.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.60	-0.00	-0.60	-0.00	-0,-00	-0.00	-0.00	-c.00	-0.00	V-THETA 1
	MG	C.4299	0.4299	0.4299	0.4299	0.4299	0.4299	0.4299	0.4299	0.4299	M O
	M I	0.4604	C.4720	0.4653	0.4636	0.4561	0.4551	0.4480	0.4415	0.4159	H 1
	TUKN UUHAK	. (.6 0.5128	0.C u.3342	0.0 6.3029	0.0	0.6	0.0	0.0	6.0	0.0	TURN
	UFAL	-0.068	-0.094	-0.079	0.3040 -0.075	0.3029 -0.058	C.3063 -0.056	0.3679	0.4067	0.5350	UUBAR
	LFFP	0.2245	6.3853	0.3662	0.3543	0.2977	0.2875	-0.040 0.1921	-∪.626 0.1199	0.032 -0.1383	DFAC EFFP
	INC 1D	-0.0000	-0.0000	-0.0000	-C.0000	-0.0000	-0.3000	-0.0000	-C.0000	-0.0000	INCID
	DLVM	(.:c6	0.000	0.000	0.000	U.000	0.000	0.000	0.000	0.000	DEVM
	P 1	15.218	15.316	15.318	15.316	15.318	15.318	15.318	15.318	15.318	PG
	Pi	14.340	14.707	14.764	14.762	14.764	14.758	14.645	14.574	14.540	P 1
	1 1	518.700 518.706	518.700 518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.760	T G
	• •	310.700	310.700	516.700	518.766	518.760	518.700	518.700	518.700	518.700	T 1
FOILE E	PCT SPAN	95.00	90.5.	85.00	70.00	50.00	30.00	15.00	10.00	5.60	PCT SPAN
	AIU	33. 2ء	33.621	34.667	35.164	36.766	38.248	39.405	39.791	40.176	DIA
KUTUK -Let.	DETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
KUTCK -T.L.	ttla 2	40.146	37.720	35.508	33.735	33.001	31.803	32.756	35.371	41.079	BETA 2
	ESTA(PR) 1 BETA(Pk) 2	50.223 26.137	48.200 25.912	48.243 25.664	49.358 25.581	51.560	52.994	54.193	54.771	56.491	BETAIPR) 1
	V 1	504.76	548.66	554.68	554.03	29.458 538.84	33.257 537.71	36.902 533.74	40.166	47.989	BETA (PR) 2
	V 2	576.60	617.92	641.20	675.14	66G.12	646.63	616.62	528.04 576.30	498.95 493.30	V 1 V 2
	V2 1	504.67	548.54	554.61	554.00	538.18	535.54	536.23	524.28	495.70	vz 1
	VZ Z	456.Cl	488.76	521.95	561.44	553.39	548.77	517.37	468.60	371.10	¥2 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2 V(PF1 1	364.66	378.02	372.41	374.94	359.39	340.29	332.68	332.80	323.49	V-THETA 2
	V(PR) 2	788.8 506.0	623.1 543.4	832.8	850.6	866-1	891.1	908.3	911.1	699.7	V(PR) 1
	VTHE IA PP1	-666.2	-613.5	578.8 -621.2	622.5 -645.4	635.8 -678.0	657.2 -716.5	648.3 -735.0	614.7 -742.4	555.4	V(PK) 2
	VTHETA PR2	-423.6	-237.5	-250.1	-268.8	-312.6	-359.9	-368.5	-395.6	-748.6 -412.0	VTHETA PRI VTHETA PR2
	Ul	606.21	613.5C	621.25	645.39	678.04	710.54	734.98	742.42	748.65	U I
	U Z	608.42	615.47	622.53	643.71	671.94	700.18	721.35	728.42	735.47	Ŭ Z
	M 1	0.4616	0.5037	0.5096	0.5089	0.4943	U.4932	0.4894	0.4839	0.4561	н :
	M 2 M(PR) 1	6.5205	2.5496	0.5723	0.6035	0.5891	0.5767	0.5483	0.5165	0.4336	M 2
	M(Pk) 2	0. 7 215 0.4500	U.7557	0.7651 6.5166	0.7813	0.7945	0.8173	6.8328	0.8349	U.8224	M(PR) 1
	TURN(PA)	24.062	22.284	22.636	0.5565 23.776	6.5675 22.082	3.5861 19.677	0.5765 17.201	6.5445 14.519	0.4881	M(PK) ¿
	HAEUU	0.1.75	0.1297	0.0834	0.0387	0.0447	0.0429	0.0769	0.1369	8.431 0.2074	TURN (PR) UUBAR
	LUSS PARA	0.0306	6.0342	6.6223	0.0107	0.0125	0.0121	0.0213	0.0367	0.0492	LOSS PARA
	UFAC	6.4475	0.4747	J.4379	0.4036	C.3989	0.3900	0.4123	0.4522	0.5090	DFAC
	EFFP EFF	0.8155	0.8256	6.9071	0.9556	0-9454	0.9468	0.9047	0.6213	v.6866	EFFP
	INCID	5.8347 -2.206	6∙8264 -2•716	0.9041 -2.335	0.9540 -2.685	0.9435 -2.443	0.9470	0.9015	0.8159	0.6786	EFF
	DEVM	10.967	11.752	10.971	6.941	6.247	-3.00 4 5.698	-4.506 5.280	-7.551 7.023	-11.682 12.01?	INCID DEVM
	P 1	14.386	14.767	14.764	14.762	14.764	14.758	14.645	14.574	14.340	Pi
	P 2	17.288	15.149	18.472	18.920	16.878	18.806	18.451	17.982	17.156	P 2
	1 1	510.700	516.700	518.700	518.700	518.700	518.760	518.700	518.700	518.700	T 1
	T .	559.922	557.856	556.628	558-655	558.704	557.975	557.959	558.036	558.916	1 2
STATOR E	PCT SPAN	95.06	90.60	85.GC	70.00	50.00	30.00	15.00	16.00	5.00	PCT SPAN
	DIA	33.267	33.564	33.921	34.992	36.420	37.846	38.919	39.276	39.633	DIA
STATEN-L.E.	bela 2	46.444	37.500	34.847	33.777	32.504	31.680	33.467	36.537	42.971	BETA 2
\$1/10K-1.E.	BETA ZA	-1.1vL	1.000	1.650	0.660	0.300	0.586	0.900	-0.300	-3.901	BETA 2A
	A 58	593.66 495.78	621.16	652.12	675.14	670.14	649.88	605.83	561.11	476.36	V 2
	vz 2	451.34	495.35 492.81	513.89 535.16	584.75 561.09	592.67 564.90	586,91 552,54	521.45	493.15	486.78	V ZA
	VZ ZA	495.68	495.26	513.65	564.63	591.86	586.53	564.77 520.96	450.29 492.70	348.18 479.16	VZ 2
	V-THETA 2	364.72	378.15	372.59	375.29	359.94	340.99	333.68	333.65	324.35	VZ ZA V-THETA Z
	V-Intla ZA	-9.52	8.64	14.80	6.12	3.10	5.94	8.19	-2.58	-32.68	V-THETA ZA
	M 2	0.5252	0.5527	6.5827	C.6035	0.5987	6.5798	0.5381	0.4963	0.4182	M 2
	M ZA Turn(Ph)	0.4354	0.4359	0.4534	6.5160	6.5249	0.5204	6.4597	0.4338	0.4222	M ZA
	UUCAP	41.544 0.0303	36.560 6.1011	33.195 0.1266	33.171	32.187	31.068	32.522	36.786	46.809	TURN (PR)
	LOSS PARA	0.01.2	U.0344	0.1266	0.0439 6.0156	0.0156 0.0058	0.0308	0.1614 6.0640	C.1182 G.0473	-0.1811 -0.0729	UUBAR LOES BARA
	LFAC	0.3680	6.4052	0.4016	C.3286	0.3143	0.2964	0.3533	0.3621	0.2945	LOSS PARA Deac
	EFFP	C • 9L 99	0.7514	0.7036	0.8474	0.9383	0.8543	0.4381	6.5262	-7.9547	EFFP
	INCID	-9.723	-5.667	-5.444	د 25. 4-	→.2 00	-4.185	-5.237	-6.633	-16.233	INCID
	UF AW	7.732	12.312	12.960	11.575	11.312	12.246	13.341	12.380	0.957	DEVM
	P Z P Z A	17.588	18.149	18.472	18.920	18.878	18.806	18.451	17.982	17.158	P 2
	1 4	17.755 559.922	17.865 557.856	17.991	16.739	16.815	18.688	17.918	17.653	17.511	P 2A
	1 2A	559.922	557.656	556.628 556.628	558.655 558.655	558.704 558.764	557.975 557.975	557.959 557.959	558.036	558.916	T 2
	UUBAR FS	0.1055	0.1272	0.1139	0.0260	0.0175	0.0233	557.959 0.2324	558.036 0.2600	558.916	T 2A Uubar FS
	P2 FS	10 164	15.250	18.417	18.844	18.886	18.776	18.755	18.516	0.2498 18.276	P2 FS
	LUSS PARA F	\$ 0.3365	0 432	0.0392	0.0092	0.0055	0.0089	0.0921	0.1040	U.1005	LOSS PARA FS
									•		-

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.28 Equivalent Rotor Speed = 4221.89 Equivalent Weight Flow = 111.27
Uniform Inlet

71.15*											
INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA C
	BETA 1	-6.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V 0	443.01	443.01	443.01	443.01	443.01	443.01	443.01	443.01 449.43	443.01 419.05	V 0
	V I VZ O	469.16 443.01	486.59 443.01	483.72 443.01	481.42 443.01	473.54 442.98	469.35 442.94	455.75 442.90	442.89	442.90	v2 o
	VZ 0	469.15	486.59	483.72	481.42	473.50	469.27	455.64	449.30	418.94	V2 1
	V-THETA C	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 0
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.4632	6.4032	0.4032	0.4032	0.4032	0.4032	0.4032	0.4032	0.4032	M O
	M 1	0.4278	0.4444	0.4416	0.4395	0.4320	0.4280	0.4152	0.4092	0.3807	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.5389	TURN UUBAR
	UUBAR DFAC	0.4811 -0.059	0.3148 -0.098	0.2852 -0.092	0.2826 -0.087	0.2839 -0.069	0.2078 ~0.059	0.3520 -0.029	0.3861 -0.014	0.054	DFAC
	EFFP	0.2093	0.4100	0.4169	0.4045	0.3474	0.3107	0.1488	0.0736	-0.2553	EFFP
	INCID	-è.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	ΡQ	15.216	15.216	15.216	15.216	15.216	15.216	15.216	15.216	15.216	PO
	P 1	14.441	14.709	14.756	14.761	14.759 518.700	14.752	14.649 518.700	14.594	14.347	P 1 T G
	T 0 T 1	518.700 516.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700	518.700 518.700	518.700	518.700 518.700	518.70G 518.700	T 1
	' '	210.100	210.100	210.700	2101100	7101100	3100.00	7101100	2101100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• •
ROTOR E	PCT SPAN	95.00	90.03	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
KOTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTUR -T.E.	BETA 2	44.49B	42.328	40.031	37.883	37.520 53.246	36.689 54.849	38.276 56.419	42.420 56.980	47.838 58.953	BETA 2 Beta(PR) 1
	BETAIPR) 1 BETAIPR) 2	52.375 24.558	50.081 25.967	49.913 25.605	51.061 25.545	29.226	34.038	38.013	42.287	48.938	BETA (PR) 2
	V ì	470.30	516.67	526.25	524.81	510.21	505.51	494.31	489.03	456.48	V 1
	V 2	596.28	599.34	620.18	653.49	642.52	619.32	589.87	545.65	490.37	V 2
	V2 1	470.21	516.55	526.19	524.78	509.58	503.47	491.05	485.55	453.50	VZ 1
	VZ 2	425.30	443.08	474.86	515.77	509.42	496.00	462.14	402.02	328.62	VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-6.00	V-THETA 1
	V-THETA 2 V(PR) 1	417.91 770.3	403.56 805.0	398.90 817.2	401.26 835.0	391.17 852.0	369.56 875.7	364.66 889.6	367.35 892.9	362.90 88 0. 9	V-THETA 2 V(PR) 1
	V(PR) 2	467.6	492.9	526.6	571.7	584.0	599.4	587.8	544.5	501.0	VIPR) Z
	VTHE1A PRI	-610.0	-617.4	-625.2	-649.5	-682.3	-715.0	-739.6	-747.1	-753.4	VTHETA PRI
	VTHETA PR2	-194.3	-215.B	-227.6	-246.5	-285.0	-335.0	-361.2	-365.6	-377.2	VTHETA PR2
	Ul	610.03	617.37	625.16	649.46	682.31	715.01	739.61	747.10	753.37	U 1
	0 2	612.25	619.35	626.45	647.76	676.18	704.59	725.90	733.00	740.11	U 2
	M I	C.4289	0.4730	0.4822	0.4808	0.4668	0.4624	0.4517	0.4467	0.4159	M 1 M 2
	M 2 M(PR) 1	0.5265 0.7025	0.5299 0.7370	0.5500 0.7488	0.5805 0.7650	0.5700 0.7796	0.5485 0.8009	0.5208 0.8129	0.4798 0.8156	0.4288 0.8025	M(PR) 1
	M(PR) 2	0.4129	0.4358	0.4670	0.5078	0.5181	0.5308	0.5190	0.4788	0.4382	M(PR) 2
	TURN (PF)	27.813	24.109	24.306	25,515	24.001	20.754	18.321	14.608	9.951	TURN (PR)
	UUBAH	0.1157	0.1357	0.0923	0.0488	0.0610	0.0741	0.1131	0.1833	0.2189	UUBAR
	LOSS PARA	0.0305	0.0358	0.0247	0.0135	0.0171	0.0207	0.0309	0.0476	0.0509	LOSS PARA
	DFAC	0.5504	0.5350	0.5007	0.4630	0.4617	0.4564	0.4803	0.5331	0.5758	DFAC
	EFFP EFF	0.8415 0.8359	0.8095 0.8033	0.8734 0.8690	0.9238 0.9209	0.9192 0.9161	0.8976 0.8939	0.8575 0.8525	0.7750 0.7678	0.7146 0.7060	EFFP EFF
	INCID	-0.056	-0.835	-0.665	-0.982	-0.757	-1.147	-2.275	-5.337	-9.212	INCID
	DEVM	9.409	11.807	10.971	6.904	6.016	6.478	6.390	9.149	12.962	DEVM
	P 1	14.441	14.709	14.756	14.761	14.759	14.752	14.649	14.594	14.347	P 1
	P 2	18.412	18.474	18.774.	19.230	19.230	19.033	18.702	18.226	17.697	P 2
	T 1 T 2	518.700 563.303	518.700 562.149	518.700 561.214	518.700 562.916	518.700 563.172	518.700 562.518	518.700 562.681	518.700 562.985	518.700 564.095	T 1 T 2
	, ,	303.303	3021149	301.214	302.710	703.112	702.710	302.001	702.707	204.072	, 2
	-										
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.CO	PCT SPAN
CTATOD-1 F	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA DETA 2
STATUR-L.E. STATUR-T.E.	BETA 2 Beta 2a	44.842 -1.350	42.078 1.250	39.290 1.950	37.931 1.950	36.950 1.150	36.554 0.880	39.123 1.941	43.884 2.501	50.256 0.500	BETA 2 Beta 2a
JIAICH IIE	v 2	592.75	602.42	630.26	653.49	652.01	622.28	579.93	531.80	473.62	V 2
	V 2A	450.61	442.38	448.30	522,93	548.41	545.42	483.64	458.06	442.43	V 2A
	V2 2	420.29	447.13	487.77	515.36	520.84	499.47	449.43	382 .9 2	302.56	VZ 2
	VZ 2A	450.68	442.27	448.02	522.56	548.12	545.03	482.97	457.22	441.95	VZ ZA
	V-THETA 2	417.98 -16.62	403.70	399.09	401.65	391.77	370.32	365.55	368.29	363.86	V-THETA 2
	V-THETA 2A	0.5232	9.65 0.5328	15.25 0.5594	17.79 0.5805	11.00 0.5789	8.37 0.5512	16.36 0.5116	19.97 0.4671	3.86 Q.4137	V-THETA 2A M 2
	H ZA	0.3934	0.3863	0.3919	0.4590	0.4823	0.4798	0.4233	0.4001	0.3856	M ZA
	TURN(PR)	46.192	40.827	37.338	35.975	35.782	35.640	37.135	41.332	49.697	TURN (PR)
	UUBAR	0.0664	0.1024	0.1596	0.0821	0.0212	-0.0099	0.1019	0.0262	-0.1574	UUBAR `
	LOSS PARA	0.3224	0.0348	0.0549	0.0291	0.0079	-0.0038	0.0404	0.0105	-C.0635	LOSS PARA
	DFAC	0.4831	0.4885	0.4986	0.4090	0.3759	0.3486	0.4060	0.4022	0.3742	DFAC
	EFFP Incid	0.8577 -5.325	0.7991 -1.310	0.7089 -1.001	0.7985 -0.100	0.9365 0.245	1.0377 0.686	0.6964 0.416	0.9070 0.712	2.1390 -8.948	EFFP INCID
	DEVM	7.482	12.562	13.260	12.925	12.162	12.546	14.380	15.179	5.354	DEAW
	P 2	18.412	18.474	18.774	19.230	19.230	19.033	18.702	18.226	17.697	PZ
	P 2A	18.204	16.142	18.201	18.908	19.147	19.068	18.390	18.159	18.007	P ZA
	Ť 2	563.303	562.149	561.214	562.916	563.172	562.518	562.681	562.985	564.095	T 2
	T 2A	563.303	562.149	561.214	562.916	563.172	562.518	562.681	562.985	564.095	T ZA
	UUBAR FS P2 FS	0.1809 15.461	C+1213 19+544	3.1210 18.616	0.0489	0.0367	0.0334	0.1905	0.2125	0.2279	UUBAR FS P2 FS
	LOSS PARA F	15.401 S.,., 772	0.0412	3.0416	19.093 0.0173	19.292 J.D136	19.191 0.0128	19.036 0.0755	19.824 0.0851	18.679 3.0919	LOSS PARA FS
			0.0-16	0.0710	0.0112	÷-0130	0-0120	5.5155	0.0001	0.0717	

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 99, 97 Equivalent Rotor Speed = 4208, 84 Equivalent Weight Flow Uniform Inlet

INLET											
14751	PCT SPAN	96.35	92.60	86.90	71.60	49.50	28.10	12-00	7.10	3.60	PCT SPAN
	Ú1A	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	ELTA C	-0.00'0	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.606	BETA O
	LEIA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	A 7	424.50	424.58	424.58	424.58	424.58	424.58	424.58	424.58	424.58	Y 0
	vzůo	442-41 424.58	456.39 424.58	454.39 424.58	455.31 424.57	450.16 424.55	452.92 424.51	440.54 424.47	433.64 424.46	401.10 424.47	V 1 VZ 0
	VZ 1	442.41	456.39	454.39	455.30	450.12	452.84	440.43	433.52	400.99	VZ I
	V-THETA .	00	-0.6	-(.00	-€.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M C	0.1659	0.3859	0.3859	0.3859	0.3859	0.3859	0.3859	0.3859	0.3859	M 0
	M 1	0.4626	0.4156	0.4139	0.4148	0.4099	0.4125	0.4009	0.3944	0.3640	H 1
	TURN	(, , ,	0.0	5.0 6.3747	0.0	(.6	0.0	0.0	6.0	0.0	TURN
	UUBAK SFAC	(.46 Tu -u .142	6.3053 -0.675	0.2747 ~∪.076	0.2691 -0.072	0.2765 -v.060	0.2733 -0.067	0.3388 -0.035	C.3757 -0.021	0.5284 0.055	LAUBAR Deac
	EFFP	0.1607	6.3492	U.3583	0.3706	0.3263	0.3477	0.1920	6.1074	-0.2680	EFFP
	INCIU	-0.000C	-0.0000	-0.0000	-0.0000	-0.0000	-G.0000	-0.0000	-0.0000	-0.0000	INCID
	LEAM	0.00	0.000	6.600	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	F C	15.153	15.153	15.153	15.153	15.153	15.153	15.153	15.153	15-153	PC
	<u>~ 1</u>	14.461	14.702	14.747	14.755	14.753	14.749	14.652	14.597	14.372	P 1
	† 6 T 1	518.700	518.760	518.700	518.700	518.760	518.700	518.700	518.700	516.700	ŢO
	' *	518.700	518.760	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
RUTUR L	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.256	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTUR -L.E.	BETA 1	-6.000	-0.00	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
KUTUr -1.E.	261A 2	46.997	45.584	42.845	40.185	39.421	38.482	40.632	44.073	50.227	BETA 2
	BETAIPK) 1 BETAIPR) 2	53.906 24.998	51.646 26.672	51.665 26.446	52.602 26.088	54.596	55.759	57.260	57.862	60.006	BETA(PR) 1
	V i	443.47	483.59	492.88	495.00	29.744 484.06	33.595 487.14	37.355 477.22	41.774 471.25	47.372 436.35	BETA(PR) 2 V 1
	V 2	581.68	579.31	597.60	633.54	626.45	615.66	589.21	547.42	564.84	v ž
	VZ i	443.35	483.48	492.82	494.97	483.46	485.17	474.08	467.89	433.50	VZ 1
	V2 4	396.71	405.42	438.29	483.99	483.76	481.37	446-32	392.57	322.50	VZ 2
	V-THETA 1	-0.00	-0.06	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.06	V-THETA 1
	V-THLTA Z V(PR) l	425.3b	413.76	406.51	408.79	397.67	382.65	362.97	380.06	387.45	V-THETA 2
	V(PR) 2	752.7 437.7	782.7 453.7	794.6 469.5	815.6 538.9	634.9 557.4	863.4 578.7	876.3 562.6	881.4 527.4	868.6 477.0	V(PR) 1
	VTHETA PHA	-6Ch.1	-615.5	-623.2	-647.5	-680.2	-712.8	-737.3	-744.6	-751.0	V(PR) 2 VTHETA PR]
	VTHETA PRI	-185-6	-263.7	-218.0	-237.0	-276.4	-319.8	-340.7	-350.7	-350.4	VTHETA PRZ
	Ul	608.15	615.46	623.23	647.45	680.20	712.80	737.33	744.79	751.04	U 1
	U 2	.616.36	617.44	624.52	645.76	674.09	702.41	723.66	730.74	737.82	U 2
	M 1	0.4036	0.4415	0.4503	0.4524	0.4420	0.4449	0.4355	0.4298	0.3969	M 1
	M 2 M(PK) 1	0.5127 0.6051	û.5110 6.7146	0.5288 0.7260	0.5618 G.7448	0.5549	0.5449	0.5196	0.4806	0.4411	M 2
	M(PR) 2	C-3c58	C.4002	C.4330	0.4778	0.7622 0.4938	C.7885 O.5122	0.8015 0.4962	C.8039 O.4630	6.7902 6.4168	M(PR) 1 M(PR) 2
	TURN(PR)	28.963	25.171	25.216	26.514	24.834	22.107	19.822	16.005	12.573	TURN (PR)
	UUBAR	0.1044	6.1395	0.0986	0.6509	0.0526	0.0565	0.1057	6.1668	0.2163	UUBAR
	LOSS PARA	0.0274	(.0366	0.0262	0.0141	0.0147	0.0158	0.0292	0.0436	6.0519	LOSS PARA
	DFAC	J.5624	0.5756	6.5366	0.4929	0.4850	0.4777	0.5093	6.5513	6.6075	DFAC
	FFFP FFF	0.8613 6.8562	0.8211 0.8150	0.879û 0.8747	0.9434 0.9412	0.9478 0.9457	0.9461 0.9440	0.8896	0.7995	0.7506	EFFP
	INCIL	1.474	0.932	1.086	0.560	0.594	-0.236	0.8855 -1.431	G.7926 -4.4 51	0.7423 -8.156	EFF Incid
	DEVM	9.849	12.513	11.813	7.447	6.533	6.036	5.732	8.636	11.395	DEVM
	P 1	14.461	14.702	14.747	14.755	14.753	14.749	14.652	14.597	14.372	P 1
	P 2	16.594	18.588	16.831	19.305	19.362	19.326	19.016	18.532	18.099	P 2
	T 1 T 2	516.700	516.760	515.700	518.700	518.700	518.700	518.700	518.700	518.760	T 1
		563.502	562.816	561.599	562.690	562.997	562.811	564.001	564.674	566.285	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
47.7.5	DIA	33.267	33.564	33.921	34.992	36.420	37.84B	38.919	39.276	39.633	DIA
STATUR-L.F. STATUR-T.E.	LETA Z Leta za	47.366	45.312	42.054	40.237	36.835	38.340	41.555	45.631	52.898	BETA 2
JIMICK-116.	V 2	−1.300 57€.36	0.250 582.21	1.300 607.20	1.850	0.800	0.900	1.200	1.550	1.050	BETA ZA
	V ZA	453.49	421.72	424.64	633.54 495.08	635.38 520.11	618.60 514.67	579.31 457.62	533.51	487.44	V 2
	VZ 2	391.69	409.43	45G.84	483.56	494.73	484.82	433.08	430.00 372.73	418.72 293.82	V 2A
	VZ ZA	4.3.17	421.71	424.51	494.75	519.89	514.30	457.15	429.46	418.20	VŽ ZA
	V-THETA 2	425.45	413.91	406.71	409.18	398.27	383.43	383.96	381.03	368.47	V-THETA 2
	V-IHETA ZA	-9.63	1.84	9.63	15.98	7.26	8.08	9.58	11.62	7.67	V-THETA 2A
	M 2 M 2a	0.5096 0.3775	C.5137	0.5376	0.5618	0.5633	0.5476	0.5104	0.4676	0.4253	M 2
	TUKN(PK)	40.000	0.3675 45.661	0.3705 40.753	0.4337 38.380	0.4564 38.017	0.4515 37.405	0.3993 40.306	0.3742	0.3637	M 2A
	UUBAR	0.0505	0.0795	i.1365	0.0812	0.0275	0.0446	0.1392	44.028 0.0719	51.792 -0.0648	TURN (PR) UUBAR
	LLSS PARA	(.617(0.6271	0.0470	Ú.Ú288	0.0102	0.0172	0.0552	0.0288	-0.0261	LOSS PARA
	DFAL	0.5044	0.5168	0.5260	0.4396	0.4160	0.4028	0.4675	0.4726	0.4580	DFAC
	EFFP INCL.)	0.8955	0.8460	0.7576	0.8143	0.9264	C.8711	0.6623	0.8110	1.2286	EFFP
	DEAM INCID	-2.861 7.532	1.924	1.763	2.206	2.130	2.472	2-847	2.458	-6.304	INCID
	P 2	18.594	11.562 18.588	12.610 18.831	12.825 19.305	11.812	12.566	13.640	14.229	5.903	DEAN
	PLA	16.441	18.345	18.372	19.003	19.362 19.259	19.326 19.167	19.016 18.585	18.532 16.346	18.099 18.236	P 2
	1 2	563.002	502.816	561.599	562.690	562.997	562.811	564.001	564.874	566.285	P 2A T 2
	T ZA	503.062	562.816	561.599	562.690	562.997	562.811	564.001	564.874	566.285	T ZA
	UUSAK FS	0.0681	0.1066	0.1120	0.0537	0.0221	0.0376	0.1981	0.2148	0.1958	UUBAR FS
	P2 FS LCSS PARA F	18.650	18.681	18.738	19.197	19.341	19.300	19.243	19.001	18.784	P2 FS
	COUG FREA F	- 0. 779	0.0363	0.0385	0.0190	0.0082	0.0145	0.0785	0.0860	0.0788	LOSS PARA FS

- ..

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.15 Equivalent Rotor Speed = 4216.49 Equivalent Weight Flow = 105.92
Uniform Inlet

INLLT											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN DIA
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085 -0.000	BETA O
	BETA C	-0.000	-0.000 -0.000	-0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000	BETA 1
	BETA 1 V O	-0.000 420.29	420.29	-0.000 420.29	420.29	420.29	420.29	420.29	420.29	420.29	V 0
	νĭ	440.85	454.32	451.33	453.65	454.18	447.29	430.83	423.39	392.66	νĭ
	vzo	420.29	420.29	420.29	420.29	420.26	420.22	420.19	420.18	420.18	vz u
	VZ 1	44C.85	454.32	451.33	453.64	454.15	447.22	430.72	423.27	392.56	VZ 1
	V-THETA U	00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA G
•	V-THETA 1	-0.00	-c.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M C	0.3819	0.3819	0.3819	0.3819	0.3819	0.3819	0.3819	0.3819	0.3819	M O
	M l	0.4012	0.4138	0.4110	0.4132	0.4137	0.4072	0.3918	0.3848	0.3561	H 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAP	0.4649	0.3050	0.2715	0.2680	0.2694	0.2708	0.3369	0.3753	0.5324	UUBAR
	DFAC	-0.049	-0.081	-0.074	-0.079	-0.081	-0.064	-0.025	-0.007	0.066	DFAC
	EFFP	0.1837	0.3678	0.3729	0.3937	0.3965	0.3405	0.1365	0.0395	-0.3294	EFFP
	INCIU	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	-0.000	0.000	0.000	0.000	0.000	DEVM P 0
	PO	15.144	15.144	15.144	15.144	15.144	15.144	15.144 14.656	15.144 14.600	15.144 14.372	Pl
	P 1 T 3	14.470 518.700	14.702 518.700	14.751	14.756 518.700	14.754 518.700	14.752 518.700	518.700	518.700	518.700	T 0
	Ť i	518.700	518.700	518.700 518.700	518.700	518.700	518.700	518.700	518.700	518.700	ŤĬ
		310.700	710.100	310.100	310.100	710.100	3101100	720.100	,,,,,,,,,,	2201.00	• •
KUTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
RUTOR -L.E.	BETA L	-0.000	-ú.000	- ∂.000	-0.000	-0.000	-0.600	⊸.000	-0.000	-0.000	BETA 1
KOTOR -T.E.	BETA 2	47.397	45.584	43.451	40.385	39.625	39.179	42.013	46.802	52.043	BETA 2
	BETA(PR) 1	54.051	52.029	51.911	52.758	54.395	56.152	57.905	58.544	60.590	BETA (PR) 1
	BETA(PR) 2	24.695	26.526	26.074	25.906	29.005	33.544	38.479	43.045	48.782	BETA (PR) 2
	V 1	441.90	481.33	489.43	493.11	488.55	480.87	466.34	459.72	426.91	V 1
	V 2	588.65	581.59	599.89	635.58	634.44	614.93	576.48	535.91	496.55	V 2
	VZ 1	441.61	481.22	489.37	493.09	487.95	478.92	463.27	456.45	424.13	VZ I
	V2 2	348.45	407.01	435.49	484.12	488.50	476.12	427.55	366.22	305.00	VZ 2
	V-THETA 1	-0.00	-C.00	-0.00 412.56	-0.00 411.80	-0.00 404.48	-0.00	-0.00 385.14	-0.00 390.02	-0.00 390.99	V-THETA 1 V-THETA 2
	V-THETA 2 VIPRI 1	433.27 752.6	415.40 782.2	793.3	814.8	838.5	388.02 860.9	873.6	876.4	865.1	V(PR) 1
	V(PR) 2	436.5	454.9	484.8	538.2	558.6	572.0	547.2	502.1	463.6	V(PR) 2
	VTHETA PRI	-609.3	-616.6	-624.4	-648.6	-681.4	-714.1	-738.7	-746.1	-752.4	VTHE TA PRI
	VTHETA PRZ	-170.2	-203.2	-213.1	-235.1	-270.8	-315.7	-339.8	-342.0	-348.2	VTHETA PRZ
	U I	609.25	616.58	624.36	648.63	681.44	714-10	738.67	746.15	752.40	U 1
	U Ž	611.47	618.56	625.65	646.94	675.31	703.69	724.97	732.07	739.16	U 2
	M 1	0.4022	6.4394	0-4471	0.4506	0-4462	0.4389	0.4252	0.4189	0.3881	M 1
	H 2	C.5177	0.5117	0.5292	0.5622	G.5609	0.5429	0.5068	0.4692	0.4328	M 2
	M(PR) 1	C.6849	0.7140	0.7246	0.7445	C.7658	0.7858	0.7965	0.7986	0.7864	M(PR) I
	M(PR) 2	0.3839	U.4003	0.4277	0.4760	0.4941	0.5051	0.4811	0.4396	0.4041	M(PR) 2
	TURN(PR)	29.952	25.498	25.835	26.851	25.371	22.551	19.347	15.419	11.749	TURN (PR)
	UUB AR	0.1115	0.1374	0.1045	0.0465	0.0430	0.0662	0.1329	0.2056	0.2314	UUBAR
	LOSS PARA	0.0295	0.0361	0.0279	0.0129	0.0121	0.0165	0.0361	0.0527	0.0540	LOSS PARA
	DFAC	0.5671	0.5744	0.5434	0.4947	0.4882	0.4860	0.5252	0.5817	0.6228	DFAC
	EFFP EFF	C.8197	0.7792	0.6303	0.8998	0.9198	0.9018	0.8284	0.7510	0.7174	ŁFFP ŁFF
	INCID	1.626	0.7717	0.8242 1.333	0.8958 0.715	0.9165 0.393	0.8979 0.157	0.8221 -0.784	0.7427 -3.767	0.7081 -7.570	INCID
	DEVM	8.946	12.366	11.440	7.265	5.795	5.985	6.855	9.906	12.805	DEVM
	P 1	14.476	14.702	14.751	14.756	14.754	14.752	14.656	14.600	14.372	P 1
	P 2	18.665	18.624	18.682	19.376	19.521	19.350	18.882	18.428	18.067	ΡŽ
	T 1	510.700	518.760	518.700	518.700	518.700	518.700	518.700	518.700	518.700	7 1
	T 2	566.824	565.679	564.696	565.567	565.B3C	565.269	566.061	566.743	568.187	T 2
STATOR E	PCT SPAN	95.00	00.00	96 00	70 00	E0 00	20.00	16 00	10.00		DCT COAL
21 MICK F			90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATUR-L.E.	DIA Beta 2	33.207 47.774	33.564 45.312	33.921 42.64 <i>5</i>	34.992 40.437	36.420 39.028	37.848 39.034	38.919 42.965	39.276 48.505	39.633 54.893	DIA Beta 2
STATUR-T.L.	BETA ZA	-1.000	1.500	2.350	2.050	1.460	0.880	1.951	2.751	2.251	BETA ZA
3141GH 1025	V 2	585.21	584.50	609.33	635.58	643.57	617.85	567.00	522.46	479.53	¥ 2
	V ZA	433.77	420.83	419.08	487.09	517.13	515.83	460.58	435.43	424.10	V ŽA
	V2 2	393.29	411.04	448.20	483.69	499.75	479.56	414.53	345.88	275.59	VZ 2
	VZ 2A	433.70	420.68	418.71	486.71	516.79	515.47	459.94	434.54	423.32	VZ ZA
	V-THETA 2	433.34	415.54	412.76	412.19	405.10	388.82	386.07	391.01	392.02	V-THETA 2
	V-THETA 2A	-7.57	11.01	17.18	17.42	13.17	7.92	15.66	20.88	16.64	V-THETA 2A
	M 2	i.5145	6.5144	0.5380	0.5622	0.5695	0.5457	0.4981	0.4569	0.4175	M 2
	M 2A	0.3769	C.3657	0.3645	0.4253	0.4525	0.4515	0.4012	0.3784	0.3678	M ZA
	TURN(PR)	48.774	43.811	40.291	38.381	37.550	38.119	40.966	45.703	52.589	TURN(PR)
	UUBAR	0.0438	0.0667	0.1417	0.0984	Ú.0511	0.0224	0.0700	-0.0117	-0.1383	UUBAR
	LOSS PARA	0.0147	0.0227	0.0487	0.0349	0.0189	0.0086	0.0277	-0.0047	-0.0558	LOSS PARA
	DFAC EFFP	0.5126	0.5158	0.5359 0.7561	0.4548	0.4227	0.4036	0.4480	0.4517	0.4333	DFAC
	INCID	२.9126 −2.393	0.8743 1.924	2.352	0.7873 2.406	0.8726	0.9344 3.166	0.8126 4.257	1.0353	1.5859	EFFP
	DEVM	7.632	12.812	13.660	13.025	2.323 12.472	12.546	14.390	5.332 15.428	-4.308 7.102	INCID DEVM
	P 2	18.065	18.624	18.882	19.376	19.521	19.350	18.882	18.428	18.067	b S
	P ZA	16.535	18.419	18.403	19.008	19.324	19.271	18.675	18.457	18.356	P ZA
	T 2	566.824	565.679	564.696	565.567	565.830	565.269	566.061	566.743	568.187	T Ž
	T 2A	566.824	565.679	564.696	565.567	565.830	565.269	566.061	566.743	568.187	T ZA
	UUBAR FS	199	0.1228	0.1287	0.0732	0.0494	0.0463	0.1641	0.1767	0.1714	UUBAR FS
	PZ FS	15.9/1	10.320	15.831	19.274	19.514	19.439	19.212	18.991	18.831	P2 FS
	PZ FS LOSS PARA F	3 1	0417	0.0442	0.0259	0.0182	0.0177	0.0649	0.0710	0.0691	LOSS PARA FS
				•							

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 99.24 Equivalent Rotor Speed = 4177.81 Equivalent Weight Flow = 102.92
Uniform Inlet

74.1.5.7											
INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.065	AIG
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	~0.000	-0.000	BETA 1
	V 0	407.80	407.80	407.80	407.80	407.80	407.80	407.80	407-80	407.80	V O
	V 1	421.71	434.89	430.37	433.53	431.43	431.00	418.89	407.76	379.18	A 1
	VI 0 VI 1	407.79 421.71	467.79	407.79 430.37	407.79 433.52	407.77	407-73	407.69 418.79	407.69 409.85	407.69 37 9.0 8	AT J AT O
	V-THETA C	-0.00	434.89 -0.00	-0.00	-0.00	431.40 -0.00	430.92 -0.00	-0.00	-0.00	-0.00	A-THELV C
	V-THETA B	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.3702	0.3702	0.3702	0.3702	0.3702	0.3702	0.3702	0.3702	0.3702	MO
	A 1	0.3832	0.3956	0.3913	0.3943	0.3923	0.3919	0.3606	0.3722	0.3435	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.4597	0.2992	0.2683	0.2630	0.2645	0.2675	0.3293	0.3670	0.5207	UUBAR
	DFAC	-0.034	-0.066	-0.055	-0.063	-0.058	-0.057	-0.027	-0.005	0.070	DFAC
	EFFP	0.1359	0.3252	0.3083 -0.0000	0.3424	0.3216	J.3150	0.1492	0.0293	-0.3684	EFFP
	DEAM IMCID	0.000	-0.0000 0.000	0.000	-0.0000 0.000	-0.0000 0.000	-0.0000 0.000	-0.0000 0.000	-0.0000 0.000	-0. 009 0	DEAM DEAM
	PQ	15.106	15.106	15.106	15.106	15.106	15.106	15.106	15.106	15.106	PO
	P 1	14.479	14.698	14.740	14.747	14.745	14.741	14.657	14.606	14.396	PI
	TO	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TO
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ti
	DCT CO.N	~= ~~									*** ****
ROTOR E	PCT SPAN DIA	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10-00	5.00	PCT SPAN D1A
ROTOR -L.E.	BETA 1	33.236 -0.000	33.621 -0.000	34.007 -0.000	35.164 -0.000	36.706 -0.000	38.248 -0.000	39.405 -0.000	39.791 -0.000	49.176 -0.000	BETA 1
ROTOR -T.E.	BETA 2	49.297	47.689	45.260	41.982	41.377	40.673	43.727	46.700	53.178	BETA Z
	BETA(PR) 1	55.005	53.011	53.018	53.796	55.574	56.915	58.414	59.155	61.233	BETA (PR) 1
	BETA(PR) 2	24.001	27.278	26.865	26.306	29.487	33.292	37.743	41.805	47.049	BETA(PR) 2
	V 1	422.70	460.29	465.93	470.46	463.34	462.86	453.00	444.67	411.69	V 1
	¥ 2	577.87	564.05	581.07	618.52	616.72	607.08	575.35	541.79	507.73	¥ 2
	VZ 1	422.62	460.19	465.88	470.43	462.76	460.98	450.02	441.51	409.26	VZ 1
	VZ 2	376.84	379.69	409.00	459.77	462.62	459.92	415.06	370.94	303.91	VZ 2
	V-THETA 1 V-THETA 2	-0.00 438.07	-0.00	-0.00	-0.00	-0.00 407.52	-0.00	-0.00	-0.00	-0.00 405.92	V-THETA 1
	V(PR) 1	736.9	417.10 764.9	412.73 774.5	413.71 794.5	818.9	395.21 845.5	397.02 860.7	393.63 862.7	951.7	V(PR) 1
	VIPR) 2	412.5	427.2	458.5	512.9	531.7	551.0	526.0	498.6	446.8	VIPRI 2
	VTHETA PRI	-603.7	-610.9	-618.6	-642.7	-675.2	-707.5	-731.9	-739.3	-745.5	VTHETA PRI
	VTHETA PRZ	-167.8	-195.8	-207.2	-227.3	-261.6	-302.0	-321.3	-331.7	-326.5	VTHETA PRZ
	U 1	603.66	610.92	618.63	642.68	675.19	707.55	731.89	739.30	745.50	U 1
	U 2	605.86	612.88	619.91	541.00	649.12	697.23	710.32	725.35	732.38	Ų Ž
	Ħ 1	0.3842	0.4195	0.4248	0.4291	0.4223	0.4219	0.4126	0.4048	0.3741	M 1
	# 2	0.5066	0.4963	0.5127	0.5472	0.5453	0.5364	0.5060	0.4749	0.4431	M 2
	M(PR) 1 M(PR) 2	0.6697 0.3631	0.6971 0.3759	0.7061 0.4045	0.7264 0.4537	0.7464 0.4701	0.7707	0.7840 0.4626	D.7853	0.7735	M(PR) 1
	TURN(PR)	31.000	25.728	26.151	27-490	26.068	0.4868 2 3.5 68	20,591	0.4370 17.271	0.3899 14.132	M(PR) 2 Turm(PR)
	UUBAR	0.1654	0.1369	0.1021	0.0466	0.0516	0.0628	0.1289	0.1731	0.2216	UUBAR
	LOSS PARA	0.0279	0.0357	0.0271	0.0134	0.0145	0.0176	0.0354	0.0452	0.0535	LOSS PARA
	DFAC	0.6127	0.6017	0.5664	0.5157	0.5102	0.5044	0.5476	0.5805	0.6428	DFAC
	EFFP	0.8613	0.8092	0.8668	0.9334	0.9490	0.9459	0.8666	0.8055	0.7683	EFFP
	EFF	0.8561	0.8027	0.8621	0.9308	0.9470	0.9437	0.8615	0-7986	0.7602	EFF
	DEAW	2.573	2.094	2.439	1.754	1.572	0.921	-0.274	-3. 155	-6.921	INCID
	Pl	8.851 14.479	13.118 14.698	12.231 14.740	7.665 14.747	€-276 14-745	5.733 14.741	6.120	8.667	11.072	DEVM
	P 2	18.741	18.628	18.865	19.343	19.461	19.424	14.657 19.050	14.606 18.690	14.396 18.356	P B P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ť Î
	T 2	565.053	563.967	562.644	563.605	563.895	563.775	565.525	566.110	567.761	Ť 2
										_	_
STATOR E	PCT SPAN	05 00	00.00	95 00	70 00	80.00	20.00				
STATUR E	DIA	.95.00 33.207	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	BETA 2	49.695	33.564 47.399	33.921 44.421	34.992 42.037	36.420 40.759	37.848 40.524	38.919 44.739	39.276 48.406	39.633	DIA Beta 2
STATOR-T.E.	BETA ZA	-1.250	0.800	1.600	1.900	1.100	1.100	1.400	1.951	56.183 1.701	BETA 2 Beta 2a
	V 2	574.53	566.85	590-00	618.52	625.38	609.93	565.92	520.11	490.19	¥ 2
	V 2A	417.75	404.11	404.68	468.27	498.42	493.39	437.73	415.59	405.48	V 2A
	VZ 2	371.64	383.69	421.38	459.32	473.52	463.30	401.43	350.30	272.64	VZ 2
	VZ ZA	417.65	404.06	404.50	467.95	498.17	493.01	437.25	414.98	404.87	VZ ZA
	V-THETA 2	438.14	417.24	412.94	414-11	408.14	396.02	397 .98	3 94 .63	407.00	V-THETA 2
	V-THETA ZA M 2	-9.11 0.5055	5.64	11.30	15.52	9.57	9.47	10.69	14.13	12.02	V-THETA ZA
	M ZA	0.3632	0.4989 0.3514	0.5210 0.3523	0.5472 0.4090	0.5534	0.5390	0.4773	0.4624	0.4273	M 2
	TURN (PR)	50.945	46.598	42.819	40.130	0.4362 39.640	0.4317 3 9.388	0.3809	0.3609	0.3514	H ZA
	UUBAR	0.0552	0.0597	0.1303	0.0990	0.0481	0.0578	43.289 0.1239	46.403 0.0751	54.429 -0.0275	TURN (PR) UUBAR
	LOSS PARA	0.0186	0.0203	0.0448	0.0352	0.0178	0.0223	0.0491	0.0300	-0.0275	LOSS PARA
	DFAC	0.5352	0.5345	0.5487	0.4724	0.4398	0.4363	0.4992	0.5029	0.4998	DFAC
	EFFP	0.8935	0.8893	0.7756	0.7917	0.8827	0.8502	0.7175	0.8180	1.0808	EFFP
	INCID	-0.472	4.011	4.130	4-006	4.053	4.655	6.031	5.233	-3.017	INCID
	DEVM P 2	7.582 18.741	12.112	12.910	12.075	12.112	12.766	13.840	14+629	6.553	DEAM
	P ZA	18.741	18.628 18.455	18.665	19.343	19.461	19.424	19.050	18.690	10.356	P 2
	T 2	565.653	563.967	18.450 562.644	18.990 563.605	19.285 563.895	19.223 563.775	18.683 545.525	18.499 566.110	18.416	P 2A T 2
	T ZA	565.053	563.967	562.644	563.605	543.895	563.775	565.525 565.525	544.110	567.761 567.761	T 2A
	UUBAR FS	0.0785	0.1168	0.1517	0.0909	0.0397	0.0450	0.1896	0.1862	0.1738	UUBAR FS
	P2 FS	10 017	18.817	18.946	19.310	19.429	19.377	19.290	19.038	18.884	P2 FS
	LOSS PARA F	5 0.0264	0.0397	0.0521	0.0323	.0.0147	0.0173	0.0751	0.0744	0.0701	LOSS PARA F!

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.28 Equivalent Rotor Speed = 4221.92 Equivalent Weight Flow = 97.95
Uniform Inlet

INLLT	nc# 40.11	24 01			71 00	40.50	20.10	12.00	7.10	3.00	PCT SPAN
	PCT SPAN D1a	96.86 33.122	92.00 33.529	86.90 33.962	71.00 35.312	49.50 37.137	28.10 38.954	40.321	40.737	3.00 41.085	DIA
	BETA C	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	FETA 1	-C.COG	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	v 0	386.41	386.41	386.41	386.41	386.41	386.41	386.41	386.41	386.41 360.16	V C V 1
	V 1 V2 G	401.23 386.41	414.24 386.41	413.50 366.41	417.49 386.40	416.42 386.38	409.65 386.34	400.37 386.31	390.90 386.30	386.31	vz o
	V2 1	461.21	414.24	413.50	417.49	416.38	409.58	400.27	390.80	360.06	VZ 1
	V-THETA C	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA G
	V-THETA 1 M 0	-0.00	-0.00	-0.00 0.3503	-0.00 0.3503	-0.00 0.3503	-0.00 0.3503	-0.00 0.3503	-0.00 0.3503	-0.00 0.3503	V-THETA 1 M O
	M 1	0.3563 0.3641	0.3503 0.3762	0.3756	0.3793	0.3783	0.3720	0.3633	0.3545	0.3260	M I
	TURN	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	TURN
	UUBAR	0.4533	0.2936	0.2618	0.2517	0.2568	0.2794	0.3220	0.3622	0.5094	UUBAR
	DFAC EFFP	-6.038 0.1516	-0.072 0.3469	-0.070 0.3671	-0.080 0.4104	-0.078 0.3967	-0.060 0.3167	-0.036 0.1924	-0.012 0.0629	0.068 -0.3623	DFAC EFFP
	INC ID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	PC Pl	15.360	15.060 14.701	15.060 14.740	15.060 14.752	15.060 14.746	15.060	15.060 14.666	15.060 14.617	15.060 14.436	P 0 P 1
	Ti	14.505 518.700	518.700	518.700	518.700	518.700	14.718 518.700	518.700	518.700	518.700	7 0
	τi	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	ŤĨ
10.70. 5				ar 00	70.00		20.00				PCT CD444
KOTOK E	PCT SPAN Dia	95.00 33.236	90.00 33.621	85.00 34.007	70.00 35.164	50.00 36.706	30.00 38.248	15. 0 0 39.405	10.00 39.791	5.00 40.176	PCT SPAN DIA
ROTER -L.E.	BETA 1	-6.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTON - F.E.	BETA 2	56.997	50.104	48.589	44.279	43.585	43.859	48.868	53.076	57.301	BETA Z
	BETA(PR) 1	56.612	54.655	54.433	55.136	56.817 30.153	58.537 33.788	59.850	60.629	62.741	BETA(PR) 1 BETA(PR) 2
	BETA(PR) 2 V 1	23.815 4u2.14	26.3C6 437.95	27.152 447.09	26.846 452.48	446.76	439.30	39.680 432.45	43.495 423.48	46.394 390.71	V 1
	¥ 2	590.41	571.23	575.15	610.81	609.24	600.08	559.64	535.96	525.93	V 2
	VZ 1	402.06	437.85	447.04	452.46	446.21	437.53	429-61	420.47	388.16	VZ 1
	VZ 2 V-THETA 1	365.28 -0.60	366.37 -0.60	380.43 -0.00	437.30 -0.00	441.17 -0.00	432.25 -0.00	367.61 -0.00	321.56 -0.00	203.83 -0.00	VZ 2 V—THETA 1
	V-THETA 2	451.03	438.24	431.35	426.43	419.90	415.36	420.93	427.91	442.12	V-THETA 2
	V(PR) 1	730.7	756.9	768.6	791.5	815.6	839.2	856.8	858.8	848.7	V(PR) 1
	V(PR) 2	399.3	408.7	427.6	490.1	510.4	520.8	478.6	444.1	412.2	V(PR) 2
	VTHETA PRI VTHETA PRZ	-610.9 -161.2	-617.4 -181.1	-625.2 -195.1	-649.5 -221.3	-682.3 -256.3	-715.0 -289.2	-739.6 -305.0	-747.1 -305.1	-753.4 -298.0	VTHETA PRI VTHETA PR2
	UI	610.64	617.37	625.17	649.46	682.32	715.02	739.62	747.11	753.37	U 1
	U Ž	612.25	619.36	626.46	647.77	676.18	704.59	725.90	733.01	740.11	U 2
	M 1 M 2	C.3650 J.5698	0.3984 (.5018	0.4070 0.5061	0.4121 0.5387	0.4067 0.5373	0.3997 0.5288	0.3933 0.4906	0.3849 0.4685	0.3543 0.4587	M 1 M 2
	MIPR) 1	6.6631	6.6887	0.6997	0.7209	0.7425	0.7636	0.7792	0.7805	0.7696	M(PR) 1
	M(PR) 2	0.3507	0.3590	0.3762	0.4323	0.4502	0.4589	0.4195	0.3682	0.3596	M(PR) 2
	TURN(PR)	32.794	28.345	27.279	28.290	26.646	24.697	20.097	17.062	16.296	TURN(PR)
	UUBAR Loss Para	0.0949 0.0251	0.1315 0.0346	0.1187 0.0314	0.0586 0.0161	0.0602 0.0168	0.0856 0.0239	0.1832 0.0489	0.2370 0.0603	0.2618 0.0640	UUBAR Loss Para
	DFAC	0.6326	6.6301	0.6105	0.5463	0.5392	0.5447	0.6104	0.6559	0.6972	DFAC
	EFFP EFF	0.6675	0.8300	0.8603	0.9157	0.9412	0.9392	0.8390	0.7890	0.7886	EFFP
	INCID	4.181	0.8238 3.739	0.8552 3.854	0.9123 3.094	0.9388 2.816	0.9367 2.547	0.8329 1.166	0.7813 -1.675	0.7866 -5.412	EFF INCID
	DEVM	6.665	12.146	12.518	8.205	6.943	6.228	8.056	10.356	10.417	DEVM
	PI	14.505	14.701	14.740	14.752	14.746	14.718	14.666	14.617	14.436	P 1
	P 2 T 1	19.643 516.760	18.982 518.700	19.064 518.700	19.515 518.700	19.638 518.700	19.597 518.700	19.105 518.700	18.828 518.700	18.726 518.700	P 2 T 1
	T 2	567.356	566.402	564.962	566.020	565.831	565.901	567.573	568.505	569.969	Ť Ž
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOS -1 F	DIA DETA 3	33.267	33.564	33.921	34.992	36.420	37.848	30.919	39.276	39.633	DIA
STATOR-L.E. Statur-t.e.	BETA 2 Beta 2a	51.42C -0.40C	49.783 1.350	47.656 1.600	44.339 1.500	42.926	43.697	50.078	55.237	60.942	BETA 2
STREET TELE	V 2	5776	574.10	583.91	610.81	1.720 617.70	1.250 6 02.87	2.101 550.58	3.001 522.52	3.251 507.38	BETA 2A V 2
	V ZA	411.00	390.74	380.12	440.54	472.02	474.39	420.42	405.58	401.75	V ZA
	VZ 2	359.85	370.68	393.29	436.81	452.14	435.59	353.08	297.75	246.31	VZ 2
	VZ ZA V-THETA 2	416.99 451.11	390.62 438.38	379.95 431.56	440.33 426.84	471.65 420.54	474.00 416.22	419.80 421.94	404.66 429.00	400.68 443.29	VZ ZA
	V-THE TA 2A	-2.67	9.21	10.61	11.53	14.16	10.34	15.40	21.21	22.76	V-THETA 2 V-THETA 2A
	M 2	0.5067	0.5045	0.5142	0.5387	0.5452	0.5314	0.4823	0.4563	0.4419	M 2
	M 2A Turn(Pk)	0.3564 51.820	0.3387 48.432	0.3298 46.055	0.3832	0.4116	0.4137	0.3647	0.3512	0.3474	M ZA
	UUBAR	C.0680	0.1012	0.1486	42.832 0.1266	41.188 0.0804	42.412 0.0691	47.929 0.0864	52.188 0.0360	57.644 0.0118	TURN(PR) UUBAR
	LOSS PARA	0.0229	0.0345	0.0511	0.0450	0.0298	0.0266	0.0342	0.0144	0.0047	LOSS PARA
	DFAC EFFP	C.5528 O.8744	0.5741	0.5974	0.5209	0.4803	0.4736	0.5306	0.5379	0.5446	DFAC
	INCID	1.253	0.8275 6.395	0.7637 7.366	0.7613 6.308	0.8266 6.220	0.8368 7.828	0.8097 11.370	0.9164 12.068	0.9708 1.746	EFFP Incid
	DEVM	8.432	12.662	12.910	12.475	12.732	12.916	14.540	15.678	8.102	DEAW
	P 2 P 2A	19.043	10.982	19.064	19.515	19.638	19.597	19.105	18.828	18.726	P 2
	7 2 A	18.835 567.356	18.675 566.402	18.596 564.962	19.072 566.026	19.349 565.831	19.360 565.901	18.862 567.573	18.738	18.698	P 2A
	T 2A	567.356	566.402	564.962	566.020	565.831	565.901	567.573	568.505 568.505	569.969 569.969	T 2 T 2A
	UUBAR FS	- 37	0.1353	J.1392	0.1113	C • 0 8 7 1	0.0763	0.1644	0.1540	0.1264	UUBAR FS
	P2 FS LOSS PARA F	1/4095	19.100 0.0461	19.029 0.0478	19.454 0.0395	19.664	19.623	19.367	19.177	19.034	P2 FS
			V70 A	0.0710	0.0077	9 .0323	0.0293	0.0650	0.0616	0.0503	LOSS PARA FS

Table A-3. Blade Element Performance (Continued) Stage E, Rotor E - Stator E Calculations Using Translated Values Percent Equivalent Rotor Speed = 99.98 Equivalent Rotor Speed = 4209.37 Equivalent Weight Flow = 93.27

33.4 ¢ \$											
INLET	PCT SPAN	96.86	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	-0.100	~	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1 V C	-0.000 366.74	-0.000 366.74	-0.000 366.74	-0.000 366.74	-0.000 366.74	-0.000 366.74	-0.000 366.74	-0.000 366.74	-0.600 366.74	BETA 1 V O
	νī	375.68	391.11	390.79	395.48	393.67	387.02	374.42	362.97	336.72	νĭ
	V2 0	366.74	366.74	366.74	366.74	366.72	366.68	366.65	366.64	366.65	VZ O
	VZ 1	375.67	391.11	390.79	395.47	393.64	386.96	374.33	362.87	336.64	V2 1
	V-THETA C V-THETA 1	-0.00 -0.00	~0.00 ~0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	V-THETA 0 V-THETA 1
	M C	6.3321	0.3321	0.3321	C.3321	0.3321	0.3321	0.3321	0.3321	0.3321	M O
	M I	∵.34 €4	0.3547	0.3544	0.3588	0.3571	0.3509	0.3392	0.3286	0.3044	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR DFAC	C.4508 -0.024	0.2907 −0.066	0.2555 -0.066	0.2518 -0.078	0.2536 -0.073	0.2555 -0.055	0.3166 -C.021	0.3601 0.010	0.4989 0.082	UUBAR Deac
	EFFP	0.1015	0.3295	0.3556	0.4026	0.3846	0.3165	0.1217	-0.0627	-0.4789	EFFP
	INC 10	-0.0006	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM P C	0.000 15 (15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	Pi	15.616 14.518	15.616 14.695	15.016 14.734	15.016 14.738	15.016 14.736	15.016 14.734	15.016 14.666	15.016 14.618	15.016 14.465	P 0 P 1
	10	518.7CC	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T O
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
KOTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTUR -L.E.	DIA Beta 1	33.236 -0.000	33.621 -0.000	34.007 -0.000	35.164 -0.000	36.706 -0.000	38.248 -0.000	39.405 -0.000	39.791 -0.000	40.176 -0.606	DIA BETA 1
RUTOR -T.L.	BETA 2	51.896	5.1.350	50.104	46.078	45.492	46.447	51.847	56.055	59.615	BETA 2
	BETA(PK) 1	58.245	56.139	55.908	56.538	58.231	59.923	61.456	62.382	64.243	BETA(PR) 1
	BETA(PR) 2	22.517	26.656	26.612	26.812	30.100	34.036	40.892	44.695	45.619	BETA(PR) 2
	V 1 V 2	376.52 565.45	413.11 564.22	421.93 573.79	428.00 603.11	421.81 602.38	414.54 590.83	403.78	392.51	364.79	V 1 V 2
	٧Z 1	376.45	413.02	421.88	427.97	421.29	412.86	548.42 401.13	529.40 389.71	535.40 362.41	۷2 1
	VZ 2	361.26	352.38	368.02	418.36	422.16	406.72	338.37	295.28	270.56	VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2 V(PR) 1	460.67 715.3	440.63 741.3	440.21 752.7	434.40 776.2	429.46 800.4	427.80 824.7	430.72 840.7	438.68 842.0	461.44 835.0	V-THETA 2 V(PR) 1
	VIPR) 2	391.1	394.3	411.6	468.8	488.2	491.5	448.4	416.1	387.5	V(PR) 2
	VTHETA PK1	-608.2	-615.5	-623.3	-647.5	-680.3	-712.9	-737.4	-744.9	-751.1	VTHETA PRI
	VTHETA PR2	-149.8	-176.9	-184.4	-211.4	-244.7	-274.7	-293.6	-292.2	-276.5	VTHETA PRZ
	U 1 U 2	608.∠2 610.43	615.54 617.51	623.31 624.60	647.53 645.84	680.29 674.17	712.89 702.50	737.42 723.75	744.89 730.83	751.13 737.91	U 1 U 2
	H i	0.3412	0.3752	0.3834	0.3891	0.3833	0.3765	0.3665	0.3560	0.3303	M 1
	M 2	0.5130	0.4945	0.5040	0.5307	0.5299	0.5189	6.4787	0.4610	0.4658	M 2
	M(PR) 1	0.6461	0.6733	0.6840	0.7057	0.7274	0.7490	0.7631	0.7636	0.7560	M(PR) 1
	M(PR) 2 Turn(Pr)	0.34∠7 35.725	0.3456 29.479	0.3616 29.293	0.4125 29.725	0.4294 28.114	0.4316 25.839	0.3915 20.497	0.3624 17.622	0.3372 18.580	M(PR) 2 Turn(Pr)
	UUBAR	0.0989	0.1396	0.1224	0.0643	0.0728	0.1124	0.2110	0.2595	0.2828	UUBAR
	LOSS PARA	3.0265	0.0366	0.0325	0.0177	0.0203	0.0313	0.0554	0.0647	0.0701	LOSS PARA
	DFAC EFFP	0.6401 0.6322	0.6427	0.6269	0.5680	0.5621	0.5773	0.6428	0-6867	0.7299	DFAC
	EFF	0.8255	0.8009 6.7936	0.8451 0.8392	G.8941 G.8897	0.9100 0.9063	0.8921 0.8876	0.7800 0.7716	0.7431 0.7337	0.7639 0.7548	EFFP EFF
	INC ID	5.614	5.223	5.330	4.496	4.230	3.936	2.778	0.685	-3.904	INCID
	DEAW	7.367	12.496	11.976	6.172	6.889	6.476	9.267	11.556	9.642	DEVM
	P 1 P 2	14.518 19.150	14.695 18.966	14.734 19.150	14.738 19.559	14.736 19.671	14.734 19.620	14.666 19.079	14.618 18.864	14.465 18.926	P 1 P 2
	7 1	518.700	518.760	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ti
	T 2	570.435	568.131	566.778	567.802	567.947	568.536	571.163	572.129	573.554	T 2
STATOR E	PCT SPAN Ula	95.00 33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00 36.420	30.00 37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN Dia
STATUR-L.E.	BETA 2	52.336	51.017	49.124	46.141	44.797	46.276	53.184	58.471	63.684	BETA 2
STATUR-T.E.	BETA ZA	0.360	1.900	1.850	0.250	1.220	1.300	2.151	3.061	4.151	BETA 2A
	V 2	582.04	567.04	582.49	603.11	610.65	593.53	539.66	516.23	516.37	V 2
	¥ 2A ¥Z 2	469.33 355.64	385.79 356.72	370.66 381.19	425.83 417.84	450.05 433.18	455.72 409.99	413.79 323.19	397.78 269.81	397.95 228.82	V 2A VZ 2
	VZ ZA	409.32	385.57	370.45	425.77	449.80	455.33	413.16	396.86	396.49	V2 2A
	V-THETA 2	460.75	44C.77	440.43	434.82	430.12	428.68	431.76	439.79	462.67	V-THETA 2
	V-THFTA 2A M 2	2.14 0.5009	12.79	11.96	1.86	9.58	10.33	15.52	21.22	28.78	V-THETA 2A
	M ZA	0.3540	C.4971 (.3338	0.5120 0.3209	0.5307 0.3695	0.5376 0.3911	0.5214 0.3959	0.4707 0.3577	0.4491 0.3432	0.4486 0.3429	M 2 M 2A
	TUKN (PK)	52.036	49.116	47.272	45.884	43.558	44.941	50.987	55.365	59.490	TURN (PR)
	UUBAK	6.0752	0.0798	0.1662	0.1458	0.1149	0.1004	0.0586	0.0256	0.0494	UUBAR
	LOSS PARA DFAC	0.0253 0.5622	0.0271 0.5768	0.0572 0.6171	0.0518	0.0425	0.0387	0.0232	0.0102	0.0199	LOSS PARA
	EFFP	0.8646	0.8640	0.7434	0.5496 0.7356	0.5188 0.7727	0.5049 0.7783	0.5406 0.8693	0.5557 0.9418	0.5704 0.8874	DFAC EFFP
	INCIO	2.169	7.629	8.833	8.116	8.091	10.407	14.478	15.304	4.492	INCID
	DEVM	9,132	13.212	13.160	11.225	12.232	12.966	14.590	15.738	9.001	DEVM
	P 2 P 2A	19.150 18.916	18.966 18.731	19.150 18.629	19.559 19.661	19.671	19.620	19.079	18.864	18.926	P 2
	T 2	573.435	568.131	566.778	567.802	19.268 567.947	19.287 568.536	18.921 571.163	18.802 572.129	18.805 573.554	P 2A T 2
	T 2A	570.435	568.131	566.778	567.802	567.947	568.536	571.163	572.129	573.554	T ZA
	UURAR FS P2 FS	0 - 465	0.1478	1774	0.1294	0.1217	0.1023	0.1513	0.1460	0.1416	UUBAR FS
	LOSS PARA F	1 •2/3 • S 1 • 324	14.192 3.5485	19.193 J.J613	19.494	19.699 J.C450	19.627 6.0394	19.372 3.J599	19.208 0.0561	19.188 0.0570	PZ FS LOSS PARA FS
				-,,,,,	4.0404	0,00400	C = U 3 7 4	343377	0.0761	2.22.0	LOSS TANK TS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 89.61 Equivalent Rotor Speed = 3772.62 Equivalent Weight Flow = 114.30
Uniform Inlet

INLET											
	PCT SPAN Dia	96.80 33.122	92.00 33.529	86.90 33.962	71.00 35.312	49.50 37.137	28.1C 38.954	12.00 40.321	7.10 40.737	3.00 41.085	PCT SPAN DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA G
	BETA L	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V 5 V 1	456.03 486.28	456.03 502.22	456.03 499.11	456.03 494.07	456.03 485.10	456.03 487.69	456.03 475.55	456.03 468.85	456.03 437.59	V 0 V 1
	vz o	450.03	456.03	456.03	456.02	456.CO	455.96	455.92	455.91	455.91	VZ C
	VZ 1	486.26	502.22	499.11	494.06	485.06	487.61	475.43	468.72	437.47	VZ 1
	V-THETA C V-THETA 1	-0.00 -0.00	-0.00 -0.00	-0.10 -6.60	-0.00 -0.00	-0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.co -0.co	V-THETA 0 V-THETA 1
	M O	0.4155	0.4155	0.4155	0.4155	0.4155	0.4155	0.4155	C.4155	0.4155	M O
	H I	0.4441	0.4592	0.4563	0.4515	0.4429	0.4454	0.4339	0.4275	0.3981	H 1
	TURN UUBAR	0.0 0.4910	0.0 (.3214	0.0 0.2935	0.0 0.2929	0.C 0.2923	0.0 0.2971	0.C 0.3591	0.0 0.3913	0.0 0.5341	TURN UUBAR
	DFAC	-6.066	-0.101	-0.094	-0.083	-0.064	-0.069	-0.043	-0.028	0.040	DFAC
	EFFP	0.2268	0.4131	C.4178	0.3870	0.3236	0.3395	0.2048	0.1332	-0.1835	EFFP
	INCID DEVM	0.000	-0.0000 0.000	0.000	0.000	-0.0000 0.000	-0.000C	-0.0000 0.000	0.000	0.000	INCID DEVM
	P 0	15.261	15.261	15.261	15.261	15.261	15.261	15.261	15.261	15.261	PO
	P 1	14.422	14.712	14.760	14.761	14.762	14.753	14.647	14.592	14.348	P 1
	T C T 1	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	† 6 † 1
ROTOR F	PCT SPAN Dla	95.00 33.236	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	RETA 1	-C.000	33.621 -0.000	34.007 -0.000	35.164 -0.000	36.706 -0.000	38.248 -0.000	39.405 -0.000	39.791 -0.000	40.176 -0.006	DIA Beta 1
ROTUR -T.E.	BETA 2	33.998	31.254	30.165	28.488	27.779	25.927	25.974	28.526	33.331	BETA 2
	BETA(PR) 1 BETA(PR) 2	48.206 25.308	45.945 24.908	45.772	47.102	49.398	50.642	52.165	52.759	54.833	BETA(PR) 1
	V 1	487.49	533.89	24.556 543.86	25.529 539.29	29.549 523.26	33.106 526.17	36.754 516.69	38.77G 511.14	49.063 477.43	BETA(PR) 2 V 1
	V 2	575.19	604.37	623.73	645.50	624.73	616.05	586.24	555.12	438.27	V 2
	V2 1 V2 2	487.40 476.84	533.77 516.63	543.79 539.25	539.26 567.33	522.61 552.47	524.04 553.18	513.29 525.45	507.50	474.31	VZ 1 VZ 2
	V-THETA 1	-0.00	-(.00	-C.00	-0.00	-0.00	-0.00	525.65 -0.00	486.37 ⊸0.00	365.27 -0.00	V-THETA 1
	V-THETA 2	321.62	313.55	313.41	307.88	291.03	268.92	256.08	264.36	240.22	V-THETA 2
	V(PR) 1 V(PR) 2	731.3 527.5	767.7 569.6	779.6 592.9	792.2 628.7	803.5 635.4	827.7 661.3	838.9 657.4	840.8 625.2	825.3 558.3	V(PR) 1 V(PR) 2
	VTHETA PRI	-545.1	-551.7	-558.6	-580.3	-609.7	-638.9	-660.9	-667.6	-673.2	VTHETA PRI
	VTHETA PR2	-225.5	-230.9	-246.4	-271.0	-313.2	-360.7	-392.6	-390.6	-421.1	VTHETA PR2
	U 1 U 2	545.12 547.10	551.67 553.44	558.64 559.79	580.35 578.83	609.70 604.22	638.93 62 9. 61	660.91 648.65	667.60 655.00	673.20 661.35	U 1 U 2
	M 1	0.4452	0.4895	0.4991	0.4947	0.4793	0.4821	0.4730	0.4677	0.4357	M i
	M 2	0.5147	0.5430	0.5621	0.5811	0.5615	0.5538	0.5259	0.4967	0.3884	M 2
	M(PR) 1 M(PR) 2	C.6679 C.4720	0.7039 0.5118	0.7155 0.5343	0.7268 0.5660	0.7360 0.5710	0.7584 0.5945	0.768C J.5898	C.7694 C.5594	0.7531 0.4947	M(PR) <u> </u> M(PR) 2
	TUHN(PR)	22.888	21.033	21.213	21.571	19.829	17.473	15.317	13.891	5.694	TURN (PR)
	UUBAR LUSS PARA	J-1312	0.1214	0.6877	0.0480	0.0696	0.0540	0.0713	0.1396	0.2353	UUBAR
	DFAC	0.0344 9.4063	(.0323 0.3760	0.6237 0.3596	0.0133 0.3258	0.0195 0.3253	0.0152 0.3095	0.0198 0.3213	0.0382 C.3656	0.0546 0.4257	LOSS PARA Deac
	EFFP	0.8424	0.8681	0.9695	0.9336	0.8986	0.9193	0.8910	0.8106	0.5402	FFFP
	EFF INCID	0.83 8 9 -4.232	0.6652 -4.971	0.9687 -4.807	0.9313 -4.941	0.8962 -4.606	6.9173 -5.359	0.6885 -6.537	Ე . 8067 -9 .568	0.5338 -13.344	EFF Incid
	CEVM	16.150	10.748	9.922	6.889	6.339	5.547	5.132	5.634	13.087	DEAM
	P 1	14.422	14.712	14.760	14.761	14.762	14.753	14.647	14.592	14.348	P 1
	P ≥ T l	16.988 518.700	17.179 518.700	17.428 518.700	17.677 518.700	17.511 518.700	17.449 518.700	17.158 518.760	16.825 518.700	15.808 518.700	P 2 T 1
	T 2	547.221	545.849	544.735	548.144	547.644	546.468	545.690	545.397	545.963	Ť 2
	•										
STATOR E	PCT SPAN	95.00	90.00	85.00	7,0.00	50.00	30.00	15.00	10.60	5.00	PCT SPAN
STATIR-L.E.	UIA BETA 2	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATUR-T.E.	BETA ZA	34.230 0.150	31.083 1.350	29.641 1.650	28.523 0.300	27.398 (.110	25.834 0.450	26.490 1.701	29.395 0.800	34.684 -2.601	BETA 2 BETA 2A
	V 2	571.84	607.53	634.06	645.50	633.73	619.02	576.30	540.74	423.86	V 2
	V 2A V2 2	527.07 472.79	548.60 520.29	574.17 551.06	614.03 567.05	608.73 562.35	602.95 556.59	540.23 515.07	514.16	504.31 348.05	V 2A V2 2
	VZ 2A	527.06	548.44	573.91	613.93	608.53	602.58	539.56	470.45 513.65	503.25	VZ 2A
	V-THETA 2	321.67	313.65	313.56	308.17	291.47	269.48	256.70	265.04	240.86	V-THETA 2
	V-THETA ZA M Z	1.38 0.5115	12.92 0.5460	16.53 C.5720	3.21 · 0.5811	1.17 0.5701	4.73 0.5567	16.02 0.5165	7.17 0.4832	-22.86 0.3752	V-THETA ZA M 2
	M ZA	0.4697	0.4904	0.5150	0.5510	0.5462	0.5414	0.4826	0.4585	0.4491	M 2A
	TURN(PF)	34.086	29.733	27.989	28.217	27.273	25.356	24.751	28.550	37.226	TURN (PR)
	UUBAR Loss para	0.0918 0.0309	0.1077 0.0367	0.0952 0.0328	0.0374 0.0133	0.0129 0.0048	0.0376 0.0145	0.1943 0.0770	C.1915 G.C766	-0.2781 -0.1121	UUBAR LOSS PARA
	DFAC	J.2676	0.2657	0.2559	0.2170	0.2096	0.1914	C.2291	C.2410	Ç.0624	DFAC
	EFFP INC10	0.4493 -15.937	0.4789 -12.304	0.5331	0.6580 -9.507	0.8545	0.3541	-0.4557	-0.8336	0.3827	EFFP
	DEVM	6.962	12.662	-10.650 12.960	11.275	-9.304 11.122	-10.027 12.116	-12.207 14.140	-13.769 13.480	-24.517 2.256	DEAW DEAW
	P 2	16.088	17.179	17.428	17.677	17.511	17.449	17.158	16.825	15.808	P 2
	P 2A T 2	16.634 547.221	16.839 545.849	17.098 544.735	17.542 548.144	17.466 547.644	17.324	16.603	16.350 545 397	16.215	P 2A T 2
	T 2A	547.221	545.849	544.735	548.144	547.644	546.468 546.468	545.690 545.690	545.397 545.397	545.963 545.963	T 2 T 2A
	UUBAR FS	J.1453	0.1139	C.05P9	0.0294	0.0306	0.0368	0.2481	0.2044	0.2964	UUBAR FS
	PZ FS LOSS PARA F	17. 60 S . 680	17.260	17.330	17.647	17.574	17.445	17.361	17.148	17.003	P2 FS LOSS PARA FS
	2-00 Frid !	- 3 - 449	0.1398	0.0237	0.0104	0.0114	0.0142	0.0983	0.1137	J.1194	LUSS PARA PS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 89.99 Equivalent Rotor Speed = 3788.37 Equivalent Weight Flow = 106.88
Uniform Inlet

INLLT											
,	PCT SPAN	96.60	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	PETA D	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-3.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V C V 1	424.76	424.78	424.78	424.78	424.78	424.78	424.78	424.78	424.78	y 0
	Vz c	440.45 424.77	455.72 424.76	453.77 424.78	439,00 424,77	437.91 424.74	445.38 424.71	428.97 424.67	425.71 424.66	400.14 424.66	V 1 VZ 0
	V2 1	440.45	455.72	453.77	439.00	437.88	445.31	428-87	425.60	400.03	VZ 1
	V-THETA C	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-Ū.UO	~0.00	-0.00	-0.00	-6.00	~0.00	-0.00	-0.00	-0.00	V-THETA 1
	M G	0.3861	0.3861	0.3861	0.3861	0.3861	0.3861	0.3861	0.3861	0.3861	M O
	M 1	0.4008	0.4152	0.4133	0.3994	0.3984	0.4054	0.3900	0.3870	0.3631	H 1
	TURN UUŞAR	(.î (.4659	0.C 0.3056	0.0 0.2758	0.0 0.2702	0. <i>0</i> 0.2702	0.0 0.2695	0.0 0.3399	0.0 0.3754	0.0 0.5224	TURN
	DFAC	-0.637	-0.073	-0.068	-0.033	-0.031	-0.049	-0.610	-0.002	0.058	UUBAR DFAC
	EFFP	0.1441	0.3423	0.3507	0.2100	0.1968	0.2800	0.0578	0.0121	-0.2886	EFFP
	INCIU	-0.0000	-0.0000	-6.6000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	3.000	£ .000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	P U P 1	15.151	15.151	15.151	15.151	15.151	15.151	15.151	15.151	15.151	P 0
	TO	14.461 518.700	14.696 518.700	14.743 516.700	14.751 518.700	14.751 518.700	14.752 518.700	14.648 518.700	14.595 518.700	14.378	P 1
	ii	518.700	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700 518.700	T 0 T 1
HUTUP E	PCT SPAN	95.00	بن.90	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
DOTH - 1	DIA	33.236	33.621	34.007	35.164	36- 706	38.248	39.405	39.791	40.176	DIA
ROTUR -L.E. ROTUR -T.E.	BETA 1 Seta 2	-0.000 41.272	-0.000 37.459	-0.000 35.991	-0.000 34.135	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
RETURN - 1816	BETA(PK) 1	51.118	48.930	48.740	50.724	33.371 52.492	32.307 53.378	33.179 55.203	35.602 55.599	40.140 57.393	BETA 2 Beta(PR) 1
	ELTA(PR) 2	25.054	25.836	24.574	26.232	29.488	33.540	36.876	40.011	47.950	BETA (PR) Z
	V l	441.50	482.86	492.19	476-62	470.51	478.80	464.26	462.33	435.27	V 1
	V ž	536.43	559.95	587.00	599.86	593.74	578.34	555.56	521.33	445.99	y 2
	VZ A	441.41	482.75	492.13	476.59	469.93	476.86	461.21	459.04	432.44	VZ 1
	VZ 2 V-THETA 1	404.85 -0.00	446 -7.00	474.93	496.50	495.65	488.13	463.92	422.87	340.23	VZ 2
	V-THETA 2	354.94	340.55	-0.00 344.95	-0.00 336.60	-0.00 326.46	-0.00 308.67	-0.00 303.34	-0.00 302.77	-6.60 286.91	V-THETA 1 V-THETA 2
	V(PR) 1	703.2	734.9	746.3	752.9	772.2	600.6	809.9	814.4	804.0	V(Pk) 1
	V(PR) 2	449.1	493.9	522.3	553.5	569.7	586.4	561.2	553.3	508.8	V(PR) 2
	VTHETA PRI	-547.4	-554.0	-561.6	-582.8	-612.2	-641.6	-663.7	-670.4	-676.0	VTHE TA PRI
	VTHETA PRZ	-19+.4	-215.2	-217.2	-244.6	-280.3	-323.6	-348.0	-355.0	-377.2	VIHETA PR2
	U 1 U 2	547.39 549.36	553.48 555.75	560.97 562.13	582.77	612.25	641.59	663-67	670.39	676.01	Ul
	MI	0.4018	6.4408	0.4497	561.25 0.4349	606.75 0.4291	632.24 0.4370	651.36 0.4232	657.74 0.4214	664.11 0.3959	ป 2 M 1
	M 2	6.4778	0.4984	0.5245	0.5354	0.5297	0.5155	0.4943	0.4624	G.3931	M 2
	M(PF) 1	6.6460	6.6769	C.6816	0.6870	0.7042	0.7306	0.7383	0.7422	6.7314	M(PR) 1
	M(PR) 2	0.3966	0.4396	0.4667	0.4940	0.5082	0.5228	0.5170	0.4907	0.4484	M(PR) 2
	TURN(PR)	25.460	23.069	24.164	24.491	22.984	19.779	18.239	15.498	9.375	TURN (PR)
	UUBAR LUSS PARA	0.1360 0.6539	0.1143 0.0202	0.0769 6.0208	0.0424	0.0457	0.0519	0.0772	0.1310	0.1786	UUBAR
	DEAC	0.5078	0.0302 0.4641	0.4376	0.0117 0.4022	0.0128 0.3978	0.0146 0.396 <i>2</i>	0.0214 0.4113	0.0352 0.4497	0.0424 0.4925	LOSS PARA Deac
	FFFP	G.8164	0.8258	0.9341	0.9164	0.9254	0.9167	0.8934	0.8146	G.695G	LFFP
	EFF	0.8116	0.8214	0.9322	0-9140	C.9232	0.9143	0.8905	0.8099	0.6883	EFF
	INCID	-1.314	-1.986	-1.638	-1.319	-1.511	-2.620	-3.493	-6.721	-10.777	INCIO
	DEAW	16.505	11.677	9.940	7.591	6.278	5.980	5.254	6.874	11.973	DEVM
	P 1 P 2	14.461 17.323	14.698 17.529	14.743 17.838	14.751 18.044	14.751	14.752	14.648	14.595	14.378	P 1
	Τi	518.700	518.700	518.700	518.700	18.065 518.700	17.962 518.700	17.735 518.700	17.395 518.700	16.745 518.700	P 2 T 1 ·
	T 4	556.531	551.286	549.838	552.335	552.194	551.526	551.413	551.627	552.243	Ť Ž
										-	
STATUR E	PCT SPAN	96.00		65.00	70.00	50.00	30.00	1.5 0.0			
SINIUK (DIA	95.00 33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00 36.420	30.00 37.848	15.00 38.919	10.00 3 9. 276	5.00 39.633	PCT SPAM Dla
STATUR-L.F.	LETA 2	41.534	37.264	35.374	34.178	32.920	32.199	33.853	36.715	41.898	BETA 2
STATOM-T.E.	BETA ZA	0.200	1.400	2-400	1.000	0.350	6.900	0.950	0.490	-3.001	BETA ZA
	V 2	535.39	562.64	596.17	599.86	601.89	500.98	546.52	508.34	431.26	V 2
	V ZA	450.43	452.48	468.99	527.08	534.59	529.44	470-11	443.41	432.86	V 2A
	V2 2 V2 2A	400.77 450.43	447.77 452.33	486.09 468.69	496.18 526.93	505.01 534.40	491.18	453.33	407.01	320.63	V2 2
	V-THETA 2	355.00	340.66	345.12	336.92	326.96	529.06 309.30	469.66 304.08	443.00 303.53	431.81 287.67	VZ 2A V—THETA 2
	V-THETA ZA	1.57	11.65	16.37	9.20	3.26	8.31	7.79	3.79	-22.64	V-THETA ZA
	M 2	0.4750	c.5009	0.5332	0.5354	0.5374	0.5180	0.4859	0.4504	0.3797	M 2
	M ZA	0.3976	0.3993	C.4150	0.4674	0.4744	0.4699	0.4154	0.3910	0.3812	M ZA
	TURN(PR)	41.334	35.863	33.373	33.171	32.553	31.267	32.857	36.173	44.857	TURN (PR)
	UUBAR Lüss Para	U.0374 0.0126	0.1005 0.0342	0.1393 0.0479	0.0364	0.0253	0.0258	0.1731	0.1432	-0.1430	UUBAR
	UFAC	0.3811	0.3954	0.4034	0.3159	6.6094 0.3116	0.0099 0.2892	0.0686 0.3558	0.0573 0.3649	-0.0576 0.2879	LOSS PARA Deac
	EFFP	0.8829	0.7407	0.6693	0.8574	0.8935	0.8639	0.3877	0.4440	-16.9031	EFFP
	INCID	-8.633	-6.124	-4.916	-3.853	-3.784	-3.667	-4.852	-6.456	-17.306	INCID
	DF VM	9.032	12.712	13.310	11.975	11.362	12.566	13.391	13.170	1.856	DEAW
	P 2A	17.323	17.529	17.838	18.044	18.065	17.962	17.735	17.395	16.745	P 2
	T 4	17.230 552.531	17.251 551.286	17.461 549.838	17.928 552.335	17.984 552.194	17.885	17.277	17.071	16.972	P ZA
	T ZA	552.531	551.286	549.838	552.335	552.194	551.526 551.526	551.413 551.413	551.627 551.627	552.243 552.243	T 2 T 2A
	UUBAR FS	0.1.72	0.1100	0.0940	0.0167	0.0151	0.0182	0.2226	0.2518	0.2507	UUBAR FS
	F2 F5		17.557	17.681	17.980	18.032	17.939	17.903	17.722	17.578	P2 FS
	LUSS PARA F	°≥ 0. 361	C. 374	0.0323	0.6059	0.0056	0.0070	0.0882	0.1007	0.1009	LUSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 90.61 Equivalent Rotor Speed = 3814.89 Equivalent Weight Flow = 98.57
Uniform Inlet

INLET											
	PCT SPAN Dia	96.60 33.122	92.00 33.529	86.90 33.962	71.00 35.312	49.50 37.137	28.10 38.954	12.00 40.321	7.10 40.737	3.00 41.085	PCT SPAN DIA
	BETA C	-(.000	-0.000	-0.600	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA C
	BETA 1	-0.000	-c.000	-0.000	-0.00C	-0.000	-0.COO	-0.000	-0.000	-0.000	BETA 1
	V 0	389.23	389.23	389.23	389.23	389.23	389.23	389.23	389.23	389.23	V 0
	V 1 V2 0	396.32 389.23	406.50 389.23	404.36 389.23	411.03 389.23	400.95 389.20	403.72 389.17	393.03 389.14	386.53 389.13	359.38 389.13	V 1 VZ G
	vz i	396.32	406.50	404.36	411.03	400.92	403.65	392.93	386.43	359.28	v2 1
	V-THETA C	-0.00	-0.00	-C.00	-0.00	-0.00	-0.00	-0.00	-c.oo	-0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	~).00	-0.00	-0.60	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O M l	0.3529 0.3595	0.3529 C.3690	0.3529 0.3670	0.3529 0.3733	0.3529 0.3638	0.3529 0.3664	0.3529 0.3565	0.3529 C.3504	0.3529 0.3253	M 0 M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.4544	6.2928	0.2655	0.2565	0.2598	0.2606	0.3233	0.3628	0.5105	UUBAR
	DFAC EFFP	-0.018	-0.044 0.2446	-0.039	-0.056 0.3197	-6.03C 6.1973	-0.037	-0.010	0.007	0.077	DFAC
	INCID	0.0773 -0.0000	-(.0000	0.2378 -0.0000	-0.0000	-0.0000	-0.6000	Ú.0594 -0.0000	-0.0413 -0.0000	-0.4253 -0.0000	EFFP INCIO
	DFVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.000	0.000	DEVM
	Ρυ	15.063	15.063	15.063	15.063	15.063	15.063	15.063	15.063	15.063	PC
	P 1 T 0	14.498 518.760	14.699 518.700	14.733 518.700	14.744 518.700	14.740 518.700	14.739 518.700	14.661 518.760	14.612 518.700	14.428 518.700	P 1 T u
	ŤĬ	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	7 1
POIGR F	PCT SPAN Dla	95.00 33.236	90.00 33.621	85.00 34.007	70.00 35.164	50.00 36.706	30.00 36.248	15.00 39.405	10.00 39.791	5.00 40.176	PCT SPAN Dia
RUTCH -L.E.	BETA 1	-0.000	~ .000	-6.000	-0.000	-3.000	-0.000	-0.006	-0.000	-0.000	BETA 1
RUTOY -T.E.	BETA 2	45.998	44.076	41.822	39.282	38.610	37.788	39.733	43.235	48.832	BETA 2
	BETA(PR) 1	54.228	52.406	52.283	52.812	55.153	56.291	57.759	58.379	60.363	BETA (PR) 1
	BETA(PR) 2 V 1	25.069 397.23	27.564 429.61	26.229 436.93	26.284 445.27	30.279 42 9. 79	33.716 432.78	38.251 424.32	42.225 418.63	48.396 389.84	BETA(PR) 2 V 1
	v ž	529.79	522.75	547.47	576.45	565.81	559.11	527.65	492.96	448.30	v ž
	VZ 1	397.15	429.51	436.87	445.24	429.26	431.03	421.53	415.65	387.30	V2 1
	VZ 2	368.03	375.54	407.98	446.18	441.97	441.31	405.00	358.46	294.64	VZ 2
	V-THETA 1 V-THETA 2	-0.CC 301.07	-0.00 363.62	-0.00 365.06	-0.00 364.96	-0.00 352.94	-0.00 342.17	-0.00 336.64	-C.00 337.03	-0.00 336.95	V-THETA 1
	V(PR) 1	679.4	704.1	714.2	736.7	751.6	777.6	791.6	794.3	784.5	V(PR) I
	V(PR) 2	406.3	423.6	454.8	497.6	512-0	531.3	516.6	485.0	444.4	V(PR) 2
	VTHETA PRI VTHETA PR2	-551.2 -172.2	-557.9 -196.0	-564.9 -201.0	-586.8 -220.4	-616.5 -258.6	-646.1 -294.5	-668.3 -319.3	-675.1 -325.3	-680.7	VTHETA PRI VTHETA PR2
	Ul	551.23	557.85	564.90	586.85	616.53	646.08	668.31	675.08	-331.6 600.74	U 1
	U 2	553.23	559.64	566.06	585.32	610.99	636.67	655.92	662.34	668.76	U 2
	H 1	0.3634	0.3966	0.3975	0.4053	0.3906	0.3936	0.3857	3.3803	0.3535	M 1
	M 2 M(PR) 1	0.4695 0.6164	0.4625 3.6402	0.486G 0.6497	0.5120 0.6706	0.502° 0.6834	0.4959 0.7072	0.4663 C.7195	0.4343 0.7217	C.3933 O.7114	M 2 M(PR)]
	MIPR) 2	0.3661	0.3748	0.4037	0.4420	0.4543	0.4712	0.4567	0.4273	0.3899	M(PR) 2
	TURN(PR)	29.155	24.838	26.051	26.528	24.855	22.519	19.428	16.074	11.907	TURN (PR)
	UUBAR Loss Para	0.1110 0.0791	0.1407 0.0366	0.0999	0.0526	0.0578 0.0161	0.0604	0.1102	0.1684	0.2131	UUBAR
	DFAC	0.5647	0.5500	6.0266 3.5151	0.6145 0.4767	0.4693	0.0169 0.4637	0.0301 0.4935	0.0437 0.5368	0.05C1 0.5842	LOSS PARA Deac
	EFFP	0.9020	0.8640	0.8887	0.9191	0.9168	0.9246	0.8522	0.7785	C.7193	EFFP
	EFF INCID	0.8992 1.797	0.7987 1.490	0.6855	0.9165	0.9142	0.9222	0.8478	0.7724,	C.712J	FFF
	DEVM	9.914	13.404	1.704 11.595	0.770 7.643	1.151 7.068	0.297 6.156	-C.931 6.628	-3.933 9.(66	-7.799 12.419	INCID DEVM
	P 1	14.498	14.699	14.733	14.744	14.740	14.739	14.661	14.612	14.428	P 1
	P 2	17.775	17.718	17.99C	18.339	18.339	18.349	18.026	17.688	17.268	Ρż
	T 1 T 2	518.760 553.287	518.700 554.302	518.700 553.108	518.700 555.165	518.700 555.245	518.700 555.036	518.700 555.911	518.7G0 556.380	518.700	T 1
				,,,,,,,,	,,,,,,,,,,	3336643	2228030	222.741	220.300	557.332	† 2
STATOR E	PCT SPAN	95.00	90.00	85.00	76.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.267	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATUK-L.E.	BETA 2	46.335	43.834	41.104	39.332	36.083	37.660	40.573	44.671	51.259	BETA 2
STATGR-T.E.	BETA 2A V 2	-1.00	1.250	1.880	1.750	0.800	1.200	1.310	1.501	1.050	BETA ZA
	V 2A	526.88 404.63	525.21 398.90	555.58 403.55	576.45 463.03	573.33 480.88	561.63 476.68	519.34 425.37	481.06 399.45	433.49	V 2
	VZ 2	363.76	378.85	418.62	445.81	451.10	444.26	394.08	341.78	386.42 271.06	¥ 2A ¥2 2
	VZ ZA	464.56	398.80	403.32	462.75	480.67	476.29	424.91	398.95	385.94	VZ ZA
	V-THETA 2 V-THETA 2A	381.14 -7.06	363.74 8.70	365.24 13.24	365.31 14.14	353.48	342.87	337.45	337.68	337.84	V-THETA 2
	M 2	C.4668	9-4648	0.4935	0.5120	6.71 0.5090	9.98 0.4982	9.72 0.4587	10.45 0.4234	7.68 0.3799	V-THETA ZA M 2
	M ZA	0.3553	C.3498	0.3544	0.4075	0.4237	0.4200	0.3731	0.3497	C.3377	H ZA
	TURN(PR) UUBAR	47.335 0.0507	42.583 0.6500	39.222	37.576	37.264	36.426	39.215	43.119	56.152	TURN (PR)
	LOSS PARA	0.0507	6.0170	0.1278 0.0440	0.696 6.3247	0.0203 C.J075	0.0444 0.0171	0.1168 0.0463	0.0669 0.0268	-0.1001	UUBAR
	DFAC	0.4803	0.4708	0.4920	0.4137	0.3860	0.3806	0.4324	0.4435	-0.0404 0.4182	LOSS PARA Deac
	EFFP	0.8862	C.8911	0.7514	0.8222	0.9381	0.8560	0.6714	C.7989	1.4564	€ F FP
	INCID DEVM	-3.832 7.832	3.446 12.56∠	0.813 13.190	1.302 12.725	1.377 11.812	1.793	1.866	1.499	-7.944	INCID
	P 2	17.775	17.718	17.990	18.339	16.339	12.866 18.349	13.750 18.026	14.179 17.688	5.903 17.208	DEVM P 2
	P 2A	17.650	17.596	17.638	18.130	18.278	18.222	17.743	17.551	17.452	P 2A
	T 2 T 2A	553.287	554.302	553.108	555.105	555.245	555.036	555.911	556.380	557.332	Ť 2
	UUPAR FS	553.287 3751	554.302 0.1148	553.108 3.1236	555.105 0.0515	555.245 0.0274	55 5.036 0.0317	555.911 0.2100	556.380 0.2216	557.332 0.1904	T 2A Uubar FS
	P2 FS	17.540	17.596	17.968	18 281	18.360	10.311	18.311	13.096	17.875	P2 FS
	LOSS PARA F	S 253	J. 1395	J.J415	J.U182	0,0101	0.0122	0.0832	೦.೪೮೮೮	J.0768	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 90.25 Equivalent Rotor Speed = 3799.69 Equivalent Weight Flow = 88.91
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.56	28.10	12.00	7-10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	-0.000	-0000	-0.000	-0.000	-c.000	-0.000	-0.000	-0.000	-0.000	BETA C
	BETA 1	-0.006	-C.00C	-0.000	-0.000	-0.000	-c.000	-0.000	-0.000	-0.000	BETA 1
	V C	348.78	348.70	348.78	348.78	348.78	348.78	348.78	348.78	348.78	V 0
	V 1	354.91	365.24	368.38	365.01	371.90	364.61	351.73	342.68	319.60	V 1
	VZ C	348.78	348.76	348.78	348.77	348.75	348.72	348.69	348.68	348.69	VZ u
	VZ 1	354.90	365.24	368.36	365.01	371.87	364.55	351.64	342.59	319.52	V2 1
	V-THETA G	-0.30	-6.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA G
	V-THETA 1	-0.00	-0.00	-0.60	-0.00	-0.00	-6.00	-0.00	-0.00	-0.00	V-THETA 1
	M U	0.3155	0.3155	0.3155	0.3155	0.3155	0.3155	0.3155	0.3155	0.3155	M O
	M 1	0.3211	0.3307	0.3336	0.3305	0.3369	0.3301	0.3182	0.3099	0.2886	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.4431	0.2879	0.2481	0.2491	C.2491	0.2491	6.3114	0.3542	0.4876	UUBAR
	DFAC	-0.018	-C.047	-0.056	-0.047	-0.066	-0.045	-0.008	0.017	0.084	DFAC
	EFFP	0.6762	0.2580	0.3260	0.2840	0.3633	0.2789	0.0533	-0.1123	-0.5103	EFFP
	INCID	-c.00c0	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	Pu	14.978	14.978	14.978	14.978	14.976	14.978	14.978	14.978	14.978	Ρů
	P 1	14.536	14.691	14.731	14.730	14.730	14.730	14.667	14.625	14.492	P 1
	Ti	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T č
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	7 1
ROTOR Ł	PCT SPAN	95.00	90.60	85.CQ	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	4C.176	DIA
RUTOK -L.E.	BETA 1	-0.000	-0.600	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
RCIOR -T.E.	BETA 2	50.378	49.223	46.979	43.918	43.241	42.870	46.757	50.623	55.400	BETA 2
	BETA(PR) 1	57.067	55.265	54.765	56.002	57.085	58.883	60.521	61.341	63.121	BETA(PR)]
	BETA(PR) 2	23.867	27.968	27.396	27.578	29.946	34.281	39.208	44.193	47.389	BETA(PR) 2
	V 1	355.70	385.33	397.18	394.24	397.58	390.04	378.78	370.14	345.93	V 1
	V 2	523.58	504.89	519.79	544.93	551.03	537.99	508.25	475.37	462.96	V 2
	42 J	355.63	385.24	397.13	394.22	397.49	388.46	376.29	367.50	343.67	WZ 1
	V2 2	333.69	329.74	354.63	392.52	401.29	393.88	347.67	301.14	262.59	V Z 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	403.29	382.32	380.02	377.97	377.37	365.63	369.67	366.92	380.64	V-THETA 2
	V(PRI 1	654.2	676.2	688.7	705.0	731.8	752.5	765.9	767.5	761.2	V(PR) 1
	V(PR) Z	365.1	373.4	399.4	442.8	463.3	477.3	449.6	420.8	388.5	V(PR) 2
	VTHETA PRI	-549.0	-555.6	-562.6	-584.5	-614.1	-643.5	-665.6	-672.4	-678.0	VTHETA PRI
	VTHETA PRZ	-147.7	-175.1	-183.8	-205.0	-231.2	-268.5	-283.6	-292.6	-285.5	VTHETA PK2
	UI	549.03	555.63	562.64	584.51	614.08	643.51	665.65	672.39	678.03	Ul
	U 2	551.02	557.41	563.81	582,99	608.56	634.13	653.31	659.70	666.09	U 2
	H 1	0.3219	0.3493	0.3603	0.3576	0.3611	0.3537	0.3432	0.3352	0.3129	M 1
	M 2	0.4618	0.4449	0.4593	0.4816	0.4871	0.4749	0.4470	0.4168	0.4050	M 2
	M(PR)]	(.5920	C.6130	0.6248	C.6395	0.6639	0.6824	0.6940	0.6952	0.6884	M(PP) 1
	M(PR) 2	C.3220	0.3290	0.3529	0.3914	0.4096	0.4214	0.3953	0.3689	0.3399	M(PR) 2
	TURN(PR)	33.196	27.292	27.386	28.424	27.121	24.551	21.241	17.078	15.682	TURN (PR)
	UUBAR	0.1135	0.1454	0.1151	0.0724	0.0655	0.0870	0.1628	0.2139	0.2468	UUBAR
	LOSS PARA DFAC	0.6293	0.0377	0.0304	0.0198	0.0183	0.0242	0.0438	0.0538	0.0592	LOSS PARA
	EFFP	0.6267 6.8547	0.6139	0.5840	0.5366	0.5322	0.5279	0.5790	0.6178	0.6652	DFAC
	EFF	0.8501	0.7928 3.7869	0.8558 0.8515	0.8774 0.8735	0.9112	0 - 88 79	0.8093	0.7434	0.7341	EFFP
	INCID	4.636	4.349	4.206	3.960	0.9082 3.084	0.8843 2.893	0.8034 1.839	0.7360	0.7263	EFF
	DEVM	8.718	13.808	12.762	8.937	6.736	6.721	7.584	-0.961 11.054	-5.030 11.412	1NC1D DEVM
	P 1	14.536	14.691	14.731	14.730	14.730	14.730	14.667	14.625	14.492	P 1
	P 2	18.063	17.910	18.093	18.379	18.573	18.491	18.185	17.869	17.767	P Z
	T 1	518.700	518.700	516.760	518.700	518.700	518.700	518.700	518.700	518.700	Τί
	T 2	557.771	557.092	555.559	557.468	557.809	558.082	559.599	560.225	561.508	Ť Ž
							220000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,	• •
STATOR E	PCT SPAN	95.00	90.60	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.F.	BETA 2	50.769	46.940	46.149	43.977	42.640	42.725	47.826	52.484	58.574	BETA 2
STATCR-T.E.	BETA 2A	-1.000	1.400	1.800	1.950	1.280	1.250	1.561	2.201	2.451	BETA 2A
	V 2	520.73	507.22	527.25	544.93	550.15	540.37	500.41	464.09	447.51	∀ 2
	V ZA	381.27	366.06	359.43	411.77	431.91	431.53	384.53	365.29	359.80	V ZA
	VZ 2	329.33	333.16	365.26	392.09	410.44	396.70	335.70	282.43	233.20	VZ Z
	VZ ZA	381.21	365.94	359.23	411.48	431.66	431.17	384.08	364.70	359.09	WZ ZA
	V-THETA 2	403.36	382.45	360.21	378.34	377.95	366.38	370.57	367.85	381.65	V-THETA 2
	V-THETA 2A	-6.65	8.94	11.29	14.01	9.65	9.41	10.46	14.01	15.37	V-THETA 2A
	H 2	0.4592	0.4471	0.4661	0.4816	0.4937	0.4771	0.4398	0.4065	0.3911	M Z
	M 2A	0.3330	0.3196	0.3141	0.3604	0.3784	0.3779	0.3353	C.3180	0.3128	M ZA
	TURN(PR)	51.769	47.539	44.347	42.020	41.341	41.439	46.217	50.233	56.073	TURN (PR)
	UUBAR LOSS PARA	0.3570	0.3417	0.1259	0.0858	0.0751	0.0672	0.119C	0.0419	0.0057	UUBAR
		0.3192	0.0142	0.0433	0.0305	C.0278	0.0259	0.0471	6.0167	0.0023	LOSS PARA
	DFAC EFFP	2.5331	0.5292	0.5594	0.4825	0.4713	0.4570	0.5183	C.5197	0.5282	DEAC
		0.8864	0.9192	0.7818	0.8163	0.8290	0.8298	0.7289	0.8967	0.9849	LFFP
	INCID	0.602	5.552	5.858	5.946	5.934	6.856	9-116	9.313	-0.624	INCID
	DEVM	7.832	12.712	13.110	12.925	12.292	12-916	14.000	14.879	7.302	DEVM
	P Z P ZA	18.063	17.910	18.093	18.379	18.573	18.491	18.185	17.869	17.767	P 2
	T 2	17.924	17.814	17.77b	18.147	18.359	18.312	17.916	17.789	17.757	P 2A
	T ZA	557.771 557.771	557.092	555.559	557.468	557-809	558.062	559.599	560.225	561.508	T 2
	UUBAR FS	557.771 J. 712	5 57.092 0.1141	555.559	557.468	557.809	558.082	559.599	560.225	561.508	T 2A
	P2 FS	15.079	14.097	3.1387 18.130	C.0855 18.377	0.0472	0.0630	0.1972	0.1840	0.1674	UUBAR FS
	LOSS PARA F		0 • 4 3 3 8	2.3477	0.0304	18.489 0,0174	18.479	18.405	18.204	18.112	P2 FS
	rana r				0.0000	093114	0.0243	0.0780	0.0733	J.0675	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 90.27 Equivalent Rotor Speed = 3800.22 Equivalent Weight Flow = 82.57
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	36.954	40.321	40.737	41.085	DIA
	BETA	-0.000	-0.000	-0.000 -0.000	-0.000 -0.000	-(.000	-0.000	-0.000	-0.000	-0.000	BETA C
	BETA 1 V D	-6.860 322.57	-0.000 322.57	322.57	322.57	-0.00L 322.57	-0.000 322.57	-0.000 322.57	-0.000 322.57	-0.000 322.57	BETA I V U
	V 1	334.18	346.85	346.14	347.26	345.57	336.27	325.92	320.34	297.25	V 1
	vz c	322.56	322.56	322.57	322.56	322.54	322.51	322.48	322.48	322.48	V2 U
	v2 1	334.18	346.85	346.14	347.26	345.54	336.21	325.84	320.25	297.17	v2 1
	V-THETA C	-0.00	-0.00	-0.00	-0.00	-0.co	-0.00	-0.00	-0.0c	~0.00	V-THETA G
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M C	0.2914	0.2914	0.2914	0.2914	0.2914	0.2914	0.2914	0.2914	0.2914	M O
	M I	0.3020	0.3137	0.3131	0.3141	0.3125	0.3640	0.2944	0.2893	C.2682	м 1
	TURN	0.0	0.0	0.0	c.o	0.0	0.0	0.0	0.0	0.6	TURN
	UUEAR	0.4341	0.2819	0.2415	0.2415	0.2403	0.2474	0.3045	C.3378	0.4722	UUBAR
	DFAC	-0.036	-0.075	~.073	-0.077	-C.071	-0.042	-0.010	0.007	0.078	PFAC
	EFFP	0.1477	0.3639	0.3933	0.4047	0.3884	0.2657	0.0661	-0.0437	-0.4853	EFFP
	INCID	0.000 000.0	-0.0000	-0.5000	-0.0000	-0.0000	-0.000	-0.0000	-0.000	-0.000ú	INCID
	DEVM P G	14.932	14.932	0.00C 14.932	0.000 14.932	0.000 14.932	0.000 14.932	0.00C 14.932	0.000 14.932	0.000 14.932	P C
	Pi	14.561	14.691	14.725	14.725	14.726	14.720	14.672	14.643	14.528	Pi
	Ťů	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TO
	Ti	518.700	510.700	518.700	518.700	518.700	518.766	518.700	518.700	518.700	ΤĬ
											· -
ACTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.60	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
PCIUK -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-c.000	-0.200	-0.000	-0.000	-0.000	BETA 1
ROIOR -T.F.	BETA 2	53.148	51.301	49.623	46.605	46.131	46.703	52.612	56.388	59.510	BETA 2
	BETAIPR) 1	58.625	56.660	56.484	57.344	59.011	60.930	62.388	62.966	64.784	BETA(PR) 1
	BETAIPRI 2	16.024	27.455	28.024	27.715	3(.488	34.040	40.798	44.552	46.111	BETA(PR) 2
	V 1 V 2	334.91 566.73	365 .67 564.40	372.74 509.58	374.69 536.13	369.32 539.28	359.23	356.53	345.60 479.41	321.43 480.00	V 1
	vz i	334.85	365.59	372.69	374.67	368.87	532.97 357.78	496.11 348.22	343.14	319.33	YZ 1
	VZ 2	339.89	315.36	330.10	368.33	373.62	365.16	300.88	265.09	243.32	VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	453.48	393.64	388.19	389.56	388.67	387.54	393.70	398.81	413.24	V-THETA 2
	V(PR) 1	643.2	665.2	675.0	694.4	716.7	737.1	752.4	756.1	750.4	V(PR) 1
	V(PR) 2	353.6	355.4	374.0	416.1	433.6	441.3	398.2	372.7	351.6	V(PR) 2
	VTHETA PRI	-549.I	-555.7	-562.7	-584.6	-614.2	-643.6	-665.7	-672.5	-678.1	VTHETA PRI
	VTHETA PRZ	-97.6	-163.9	-175.7	-193.5	-220.C	-246.7	-259.7	-261.0	-252.9	VTHETA PR2
	U 1	549.11	555.71	562.72	584.59	614.16	643.60	665.74	672.48	678.12	Ul
	U Z	551.10	557.49	563.89	583.37	608.64	634.22	653.40	659.79	666.19	U 2
	M 1 M 2	0.3027	0.3311	0.3376	0.3395	0.3345	0.3251	0.3171	C.3126	0.2903	M 1
	M(PR) 1	0.5006 0.5813	J.4438 G.6G23	0.4492 0.6114	0.4727 0.6291	0.4754 0.6490	0.4691	0.4345 0.6806	(.4192	0.4192	M 2 M(PR) 1
	M(PR) 2	(-3124	0.3127	0.3297	C.3668	0.3824	0.6671 0.3884	C.3488	€.6838 ∪.3258	0.6778 0.3071	M(PR) Z
	TUPN(PR)	42.597	29.200	28.457	29.628	28.506	26.844	21.526	18.351	18.631	TURN(PR)
	UUSAR	0.0968	0.1424	0.1254	0.0810	0.0861	0.1168	0.2255	0.2672	0.2838	UUBAR
	LOSS PARA	0.0270	0.0371	0.0329	0.0221	0.0239	0.0326	0.0593	0.0668	0.0697	LOSS PANA
	DFAL	(.6548	C.6396	0.6169	0.5732	0.5686	0.5769	0.6507	€.6963	0.7248	DFAC
	EFFP	0.9318	c.7930	C.8361	0.8606	0.8789	0.8598	0.7501	0.7190	0.7318	EFFP
	EFF	0.9293	0.7869	0.8311	0.8561	0.8748	C.8551	0.7424	0.7106	0.7234	EFF
	INC 1D	6.194	5.744	5.905	5.301	5.011	4.945	3.713	0.671	-3.361	INCID
	DEVM	0.875	13.296	13.390	9.074	7.278	6.480	9.173	11.413	10.134	DEVM
	P 1 P 2	14.561 18.698	14.691	14.725	14.725	14.726	14.720	14.672	14.643	14-528	P 1
	1 1	518.700	10.657 518.700	16.149 518.700	18.474 518.700	18.616 518.700	18.616 518.700	18.19C 518.7CO	18.037 518.700	18.057 518.700	P 2 T 1
	Ť Ž	560.030	558.730	557.109	559.261	559.768	560.793	562.952	563.495	564.661	T 2
		30.0030	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,	3376100	,00.,,5	,020,72	3036473	704.001	
STATOR E	PCT SPAN	95.00	90.00	85-00	70.00	50.00	30.00	15.00	16.00	5.00	PCT SPAN
174700 4 6	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	53.591	50.996	48.723	46.668	45.478	46.548	53.926	58.73C	63.355	BETA 2
STATUR-T.E.	BETA 2A V 2	-0.120 563.57	1.230 506.72	1.140	0.860	1.110	0.680	1.150	2.711	3.501	BETA 2A
	V ZA	377.10	355.65	516.8C 343.37	536.13 388.90	546.14 407.09	535.26	488.58	468.01 356.75	463.77 358.33	V 2 V 2A
	V2 2	334.51	318.91	340.92	367.86	382.81	408.11 367.91	372.71 287.51	242.81	207.89	VZ Z
	VZ ZA	377.09	355.56	343.29	388.80	406.88	407.84	372.33	356.03	357.28	VZ 2A
	V-THETA 2	453.56	393.77	388.38	389.94	389.26	388.34	394.66	399.83	414.34	V-THETA 2
	V-THETA 2A	-0.79	7.63	6.83	5.84	7.88	4.84	7.48	16.86	21.86	V-THETA ZA
	M 2	0.4977	0.4459	0.4558	0.4727	0.4817	0.4712	0.4277	C.4089	0.4046	M 2
	M ZA	0.3285	0.3099	0.2994	C.3393	0.3554	0.3560	0.3238	0.3095	0.3106	M ZA
	TURN(PR)	53.711	49.765	47.581	45.801	44.349	45.832	52.729	55.974	59.810	TURN(PR)
	UUBAR	(- 2098	0.0573	0.1248	0.1229	0.1149	0.1176	0.0799	0.0606	0.0681	UUBAR
	LOSS PARA	0.0707	C.0195	0.0429	C.G437	0.0425	0.0453	0.0317	0.0242	0.0274	LOSS PARA
	LFAC EFFP	0.6G25 0.6485	(.5578	0.5900	0.5297	0.5145	0.5147	0.5529	C-5670	0.5709	DFAC
	INCID	3.424	0.8950 7.608	6.7919 8.432	0.7601 8.637	0.7619 8.772	0.7405	6.8215	0.8642	0.8412	EFFP
	DEVM	8.712	12.542	12.450	11.835	12.122	10.679 12.346	15.221 13.590	15.564 15.388	4.162 8.351	INCIO Devm
	P 2	18.698	18.057	18.149	18.474	18.616	18.616	18.190	18.037	18.057	P 2
	P 2A	18.087	17.925	17.846	18.152	18.302	18.307	18.018	17.918	17.926	P ZA
	T 2	560.436	558.730	557.109	559.261	559.768	56G.793	562.952	563.495	564.661	T 2
	T ZA	560.338	558.730	557.109	559.261	559.768	560.793	562.952	563.495	564.661	T ZA
	UUBAR FS	1 • (986	0.1397	0.1399	0.1268	0.1123	0.1067	0.1671	0.1456	0.1342	UUBAR FS
	P2 FS	18.338	10.277	18.190	18.486	18.608	18.589	18.414	15.232	18.204	P2 FS
	LOSS PARA F	S 332	L • 475	u∍J48J	3.0451	0,.0415	J.0418	0.0663	0.J5dl	0.6540	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.56 Equivalent Rotor Speed = 2970.64 Equivalent Weight Flow = 92.73
Uniform Inlet

No. Print	*****											
014	INCE	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
## ATT 1			33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.045	DIA
V C 324-35 364-												
VI												
V			377.38	390.26	381.98	385.70	385.46	371.16	366.46	364.08		V 1
V-THEFA 0												
V-THEFA 1												
Main		V-THETA 1	-0.00	-0.00	~0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
TURN 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												
UBBAR 0,4491 0,2487 0,2484 0,2287 0,2514 0,316.0 0,3563 0,4813 UBBAR 0,4814 0,4												
BEFF 0.1433 0.3456 0.3291 0.3327 0.3327 0.3327 0.3027 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000		UUBAR	0.4491	0.2897	0.2944	0.2522	0.2513	0.2541	0.3160	0.3563		UUBAR
JNCID												
OPEN												
P1		DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
T 0 \$18.700												
ROTOR = PCT SPAN 95.00 910.00 810.700 510.700												
NOTION -		T 1	518.700	518.700								
ROTOR T-LE. RETA 1	RO TOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
## STATEM 1 2 3496 30-725 29-708 22-289 27.346 25-817 25-517 30-425 8ETA 2 18-14 46-207 46-40-509 46-40-509 46-40-509 46-40-509 51-620 51-62	00TON -1 C											
BETA(FR) 1 46-520 46-509 46-509 46-509 47-610 9-3-33 51_023 52_095 53.3-64 55_162 6ETA(FR) 1 8TA(FR) 2 4-350_0 44-500 24-400 24-												
V 1 378-23 412-19 412-21 417-15 412-84 397-18 394-96 393-73 371-36 V 1 V 2 450-60 483-78 495-30 506.18 497-07 482-21 506.0 30-09 359-70 V 2 V 2 350-16 412-18 412-18 412-18 412-18 412-13 305-77 382-38 359-70 V 2 V 2 1 378-16 412-18 412-18 412-18 412-13 305-77 382-38 359-70 V 2 V 2 1 378-16 412-18 412-18 412-18 412-13 305-77 382-38 359-70 V 2 V 2 1 412-13 378-16 412-18 412-18 412-18 412-33 355-77 382-38 359-70 V 2 V - HR 1												
V 2												
V2 1 378-16 412-10 412-16 417-13 412-33 395-57 392-38 390-93 386-96 V2 1 V2 2 V2 2 376-87 415-85 401-18 447-7 441-16 433-52 410-30 302-56 309-33 V2 2 V2 1 V2 V2 V2 V2 V2												
V-THETA 1 2 258.07 2-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 V-THETA 1 V-THETA 2 V-THETA 2 258.07 247.15 245.45 246.45 240.83 228.25 209.41 09.68 19.00 181.11 V-THETA 2 V-THETA 1 V-THETA 2 V-THETA 1 V-THETA 2 V-THETA 1 V-THETA 1 STATUS 1 S		VZ 1										
V-TINETA 2 258.077 237.15 245.15 240.83 228.52 209.41 190.80 190.00 181.71 1 1 1 1 1 1 1 1 1												
V(FR) 1 572-1 598-8 602-8 618-7 633-2 641.0 653-3 656.8 667.2 V(FR) 1 V(FR) 2 416.6 456.7 472-5 496.4 506.0 520.5 519.2 503.5 549.7 V(FR) 1 V(FR) 2 V(FR) 2 V(FR) 3 V(FR) 4 499.9 -457.0 -460.1 -503.1 -520.4 -525.7 -530.1 V(FR) 2 V(FR) 3 V(FR) 4												
VTHETA PRI												
VITHETA PRZ												
U 1 429-24 434-40 439-88 456-39 480-09 503-10 520-41 525-66 530-09 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
M 1		U 1				456.98	480.09					
M 2												
M(PR) 1												
TURNIFR) 24-266 22-104 22-439 21-951 20-052 18-315 15.576 12-854 7.4-64 TURNIFR) UUBAR 0.1214 0.087 0.0486 0.0359 0.0507 0.0421 0.0481 0.0887 0.1665 UUBAR LOSS PARA 0.0320 0.0237 0.0337 0.3173 0.3160 0.0102 0.0132 0.0133 0.0237 0.0387 DFAC EFFP 0.7902 0.8026 0.9886 0.8871 0.8111 0.8564 0.8667 0.7716 0.5933 EFFP EFFF 0.7871 0.8066 0.9886 0.8871 0.8111 0.8564 0.8667 0.7716 0.5933 EFFP INCID -3.611 -4.407 -3.715 -4.432 -4.661 -4.177 -5.716 -8.962 -13.014 INCID 0.6593 EFF INCID -3.611 -4.407 -3.715 -4.432 -4.661 -4.177 -5.716 -8.962 -13.014 INCID 0.6593 EFF P 1 14-524 14.698 14.693 14-739 14-740 14-737 14.669 14-625 14-478 P 1 P 2 16-093 16-27 518-700		M(PR) 1	0.5184	û.543B	0.5475	0.5621	0.5751				0.5862	
UBAR												
USS PARA 0,0320 0,0237 0,0137 0,0100 0,0142 0,0132 0,0133 0,0237 0,0397 0,0397 DFAC												
## FFF 0.7902 0.8066 0.9886 0.8871 0.8711 0.8564 0.8667 0.5933 EFF		LOSS PARA	0.0320	0.0237	0.6131	0.0100		0.0132				
FFF												
INCID												
P 1		INCID	-3.811	→.407	-3.715	-4.432	-4.661	→.177	-5.716	-8.962	~13.014	INCID
P 2												
T 1												
STATOR E PCT SPAN 95.00 90.00 85.00 70.00 50.00 30.00 15.00 10.00 5.00 PCT SPAN DIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 39.276 39.633 DIA 35.576 BETA 2 34.566 30.581 29.271 28.324 27.070 25.711 25.962 27.116 31.576 BETA 2 57.00 1.450 1.500 0.350 0.250 0.800 1.650 0.150 -4.001 BETA 2 57.00 1.450 1.450 1.500 0.350 0.250 0.800 1.650 0.150 -4.001 BETA 2 57.00 1.450 1											518.706	
OIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 30.276 39.633 DIA		1 2	538.292	536.638	535.531	538.133	537.718	537.195	536.230	536.124	536.357	T 2
OIA 33.207 33.564 33.921 34.992 36.420 37.848 38.919 30.276 39.633 DIA	STATOR F	PCT SPAN	95-00	90-00	85.00	70.00	50.00	30.00	15.00	10-00	\$ 00	PCT SDAM
STATOR-L.E. BETA 2	eranan b											
V 2 457.23 485.98 502.29 508.18 503.19 484.20 450.99 418.54 346.47 V 2 V 2A 420.87 437.47 457.62 467.52 485.31 479.05 422.99 402.09 392.91 V 2A V2 2 376.79 418.37 438.13 447.26 447.82 435.82 404.91 371.98 296.43 Y 2 V2 A 420.86 437.32 457.44 487.44 485.14 476.73 422.38 401.73 391.54 YZ 2A V-THETA 2 259.02 247.24 245.57 241.06 228.87 209.84 197.15 190.48 182.20 V-THETA 2 V-THETA 2A -0.73 11.07 11.98 2.98 2.12 6.69 12.17 1.05 -27.39 V-THETA 2A M 2A 0.4087 0.4360 0.4517 0.4561 0.4516 0.4341 0.4037 0.3739 0.3099 M 2A TURN(PR) 34.605 29.130 27.769 27.968 26.805 24.883 42.274 26.923 35.520<			34.506	30.581	29.271	28.324	27.070	25.711	25.962	27.116	31.576	BETA 2
V 2A 420.87 437.47 457.62 487.52 485.31 479.05 422.90 402.09 392.91 V 2A V 2 376.79 418.37 438.13 447.26 447.82 433.82 404.91 371.98 296.43 V 2 2 V 2A 420.86 437.32 457.44 487.44 485.14 476.73 422.38 401.73 391.54 V 2A V 2A V 2 4 420.86 437.32 457.44 487.44 485.14 476.73 422.38 401.73 391.54 V 2A V 2 4 420.86 437.32 457.44 487.46 485.16 476.73 422.38 401.73 391.54 V 2A V 2 4 420.86 437.32 457.44 487.46 485.16 476.73 422.38 401.73 391.54 V 2 A V 2 4 420.86 437.32 457.44 485.16 476.73 422.38 401.73 391.54 V 2 A V 2 4 420.86 437.32 457.44 485.16 476.73 422.38 401.73 391.54 V 2 A V 2 A V 2 4 420.86 437.32 457.44 485.16 476.73 422.38 401.73 391.54 V 2 A V 2 A V 2 4 420.86 487.82 487.8	STATUR-T.E.											
VZ 2 376.79 418.37 438.13 447.26 447.82 435.82 404.91 371.98 296.43 VZ 2 VZ 2A 420.86 437.32 457.44 487.46 485.14 476.73 422.38 401.73 391.54 VZ 2A V—THETA 2 259.02 247.24 245.57 241.06 228.87 209.84 197.15 190.48 182.20 V—THETA 2 V—THETA 2A —0.73 11.07 11.98 2.98 2.12 6.69 12.17 1.05 —27.39 V—THETA 2A M 2 0.4087 0.4360 0.4516 0.4310 0.4037 0.3739 0.3099 M 2 N—THETA 2A N—ZA 0.3752 0.3911 0.4101 0.4366 0.4349 0.4293 0.3778 0.3588 0.3503 M 2A TURN(PR) 34.605 29.130 27.769 27.968 26.805 24.883 24.274 26.923 35.520 TURN(PR) UUBAR 0.00912 0.1138 0.0877 0.0284 0.0205 0.0195 0.2010 0.1806 —0.1278 UUBAR 1.05S PARA 0.0307 0.0387 0.0302 0.0101 0.0076 0.0075 0.2010 0.1806 —0.1278 UUBAR 0.02709 0.2654 0.2492 0.2075 0.2029 0.1730 0.2258 0.2213 0.1161 DFAC 0.2709 0.4423 0.5236 0.6737 0.7312 0.1482 —0.5703 —1.2248 0.5517 EFFP 1.010 —15.662 —12.807 —11.020 —9.706 —9.632 —10.151 —12.735 —16.046 —27.622 INCID 0.0078 0.6877 0.7312 0.1482 —0.5703 —1.2248 0.5517 EFFP 1.010 —15.662 —12.807 —11.020 —9.706 —9.632 —10.151 —12.735 —16.046 —27.622 INCID 0.0078 0.0079 0.2039 16.287 16.409 16.522 16.450 16.330 15.879 15.725 15.648 P 2A 15.933 16.000 16.221 16.459 16.409 16.330 15.879 15.725 15.648 P 2A 17.24 15.932 16.029 536.638 535.531 538.133 537.718 537.195 536.230 536.124 536.357 T 2A 17.24 16.27 16.27 16.459 16.459 16.459 16.382 16.382 16.382 16.324 16.152 P2.FS		V ZA										
V-THETA 2 259.02 247.24 245.57 241.06 228.87 209.84 197.15 190.48 182.20 V-THETA 2 V-THETA 2A -0.73 11.07 11.98 2.98 2.12 6.69 12.17 1.05 -27.39 V-THETA 2A M 2 0.4087 0.4360 0.4517 0.4561 0.4516 0.4341 0.4037 0.3739 0.3099 M 2 M 2 0.4087 0.4360 0.4517 0.4561 0.4516 0.4341 0.4037 0.3739 0.3099 M 2 N 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2								435.82	404.91			
V-THETA 2A												
N 2A 0.3752 0.3911 0.4101 0.4366 0.4349 0.293 0.3778 0.3588 0.3503 H 2A TURN(PR) 34.605 29.130 27.769 27.968 26.805 24.883 24.274 26.923 35.520 TURN(PR) UUBAR 0.6912 0.1138 0.0877 0.0284 0.0205 0.0195 0.2010 0.1806 -0.1278 UUBAR LOSS PARA 0.0307 0.0387 0.0302 0.0101 0.0076 0.0075 0.0796 0.0723 -0.0514 LOSS PARA DFAC 0.2709 0.2654 0.2492 0.2075 0.2029 0.1730 0.2258 0.2213 0.1161 DFAC EFFP 0.4412 0.4423 0.5236 0.6737 0.7312 0.1482 -0.5703 -1.2248 0.5517 EFFP INCID -15.662 -12.807 -11.020 -0.706 -0.632 -10.151 -12.735 -16.046 -27.622 INCID DEVM 6.732 12.762 12.810 11.325 11.267 12.466 14.090 12.830 0.857 DEVM P 2 16.093 16.287 16.409 16.522 16.450 16.368 16.225 15.990 15.520 P 2 P 2A 15.933 16.000 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P 2A T 2 538.292 536.638 535.531 538.133 537.718 537.195 536.230 536.124 536.357 T 2A UUBAR FS 1.1277 0.1.05 0.0551 0.0212 0.0247 J.0262 0.2674 0.2927 J.3091 UUBAR FS P 2 FS 1.1171 19.257 16.155 0.0551 16.459 16.382 16.382 16.382 16.224 16.152 P 2 FS		V-THETA 2A	-0.73	11.07	11.98	2.98	2.12					
TURN(PR) 34.605 29.130 27.769 27.968 26.805 24.883 24.274 26.923 35.520 TURN(PR) UUBAR 0.0912 0.1138 0.0877 0.0284 0.0205 0.0195 0.2010 0.1806 -0.1278 UUBAR 105S PARA 0.0307 0.0387 0.0302 0.0101 0.0076 0.0075 0.0075 0.0796 0.0723 -0.0514 LOSS PARA 0.6307 0.2709 0.2654 0.2492 0.2075 0.2029 0.1730 0.2258 0.2213 0.1161 DFAC 15.602 -12.804 0.536 0.6737 0.7312 0.1482 -0.5703 -1.2248 0.5517 EFFP 10.1412 0.4423 0.5236 0.6737 0.7312 0.1482 -0.5703 -1.2248 0.5517 EFFP 10.151 0.155.662 -12.807 -11.020 -9.706 -9.632 -10.151 -12.735 -16.046 -27.622 INCID DEVM 8.732 12.762 12.810 11.325 11.267 12.466 14.090 12.830 0.857 DEVM P 2 16.093 16.287 16.409 16.522 16.450 16.368 16.225 15.990 15.520 P 2 16.451 16.459 16.460 16.330 15.879 15.725 15.648 P 2A 15.933 16.060 16.221 16.459 16.450 16.330 15.879 15.725 15.648 P 2A 15.933 536.292 536.638 535.531 538.133 537.718 537.195 536.230 536.124 536.357 T 2A 12.803 10.255 10.055 1					0.4517			0.4341		0.3739	0.3099	H 2
UUBAR 0.0912 C.1138 0.0877 0.0284 0.0205 0.0195 0.2010 0.1806 -0.1278 UUBAR 1.055 PARA 0.0307 0.0387 0.0307 0.0307 0.0307 0.0307 0.0307 0.0075 0.0079 0.0079 0.0723 -G.0514 LDSS PARA DFAC 0.2709 C.2654 0.2492 0.2075 0.2029 0.1730 0.2258 0.2213 0.1161 DFAC EFFP 0.4412 0.4423 0.5236 0.6737 0.7312 0.1482 -0.5703 -1.2488 0.5517 EFFP INCID -15.662 -12.807 -11.020 -0.706 -0.632 -10.151 -12.735 -16.046 -27.622 INCID DEVM 8.732 12.762 12.810 11.325 11.262 12.466 14.090 12.830 0.857 DEVM P 2 16.093 16.287 16.409 16.522 16.450 16.368 16.225 15.990 15.520 P 2 P 2 A 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P 2 A 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P 2 A 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P 2 A 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P 2 A 15.933 16.060 16.221 16.459 16.408 16.320 536.242 536.357 T 2 A 536.292 536.638 535.531 538.133 537.718 537.195 536.230 536.124 536.357 T 2 A UUBAR FS 1.127 0.105 0.0558 0.0012 0.0217 0.0247 0.0247 0.0247 0.0242 0.2678 0.2678 0.3891 0.0848 FS 1.1275 15.257 16.335 10.505 16.459 16.382 16.382 16.324 16.322 16.152 P2 FS												
DFAC 0.2709 G.2654 0.2492 0.2075 0.2029 0.1730 0.2258 0.2213 0.1161 DFAC EFFP G.4412 0.4423 0.5236 0.6737 0.7312 0.1482 -0.5703 -1.2248 0.5517 EFFP INCID -15.662 -12.807 -11.020 -9.706 -9.632 -10.151 -12.735 -16.046 -27.622 INCID DEVM 8.732 12.762 12.810 11.325 11.262 12.466 14.090 12.830 0.857 DEVM P.2 16.093 16.287 16.409 16.522 16.450 16.368 16.225 15.990 15.520 P.2 P.2 A 15.933 16.060 16.221 16.459 16.460 16.330 15.879 15.725 15.648 P.2 A 15.933 16.060 16.221 16.459 16.400 16.330 15.879 15.725 15.648 P.2 A 15.935 16.060 16.221 16.459 16.360 16.300 536.124 536.357 T.2 A 536.292 536.638 535.531 538.133 537.718 537.195 536.230 536.124 536.357 T.2 A 15.95 16		UUBAR	0.0912	C.1138	0.0877	0.0284	0.0205	0.6195	0.2010	0.1806	-0.1278	UUBAR
EFFP												
INCID -15.662 -12.807 -11.020 -9.706 -9.632 -10.151 -12.735 -16.046 -27.622 INCID DEVM 8.732 12.762 12.810 11.325 11.262 12.466 14.090 12.830 0.857 DEVM P. 2 16.093 16.287 16.409 16.522 16.450 16.368 16.225 15.990 15.520 P. 2 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P. 2A 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P. 2A 17.2 536.292 536.638 535.531 538.133 537.718 537.195 536.230 536.124 536.357 T. 2 17.2 T. 2		EFFP										
P 2 16.093 16.287 16.409 16.522 16.450 16.368 16.225 15.990 15.520 P 2 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P 2A 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P 2A 15.935 15.892 15.892 15.892 15.893 15.89		INCID	-15.662	-12.807	-11.020	-9.706	-9.632	-10.151	-12.735	-16.046	-27.622	INCID
P 2A 15.933 16.060 16.221 16.459 16.406 16.330 15.879 15.725 15.648 P 2A T 2 536.292 536.638 535.531 536.133 537.718 537.195 536.230 536.124 536.357 T 2 T 2A 536.292 536.638 535.531 538.133 537.718 537.195 536.230 536.124 536.357 T 2A UUBAR FS 0.1237 0.1055 0.0555 0.0055 0.0055 0.0057 0.0027 0.00262 0.2678 0.2927 0.3091 UUBAR FS P2 FS 1.176 1.0257, 16.336 10.505 16.459 16.382 16.382 16.224 16.152 P2 FS												
T 2 536-292 536-638 535-531 538-133 537-718 537-195 536-230 536-124 536-357 T 2 7 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8		P 2A	15.933									
UUBAR FS1237 0.1005 0.00556 0.00212 0.00247 J.262 0.2678 0.2927 J.3091 UUBAR FS P2 FS 1.0176 1.0257, 15.335 10.505 16.459 16.382 16.382 16.224 16.152 P2 FS					535.531	538.133	537.718	537.195	536.230	536.124	536.357	T 2
P2 FS 117F 1257, 16.336 10.505 16.459 16.382 16.382 16.224 16.152 P2 FS												
LOSS PARA FS 0+ 45% 0+341 J.0192 0+3075 J.0091 0+0101 0+1060 0+1171 0+1243 LOSS PARA FS		P2 FS	1175	1 257	15.335	16.505	16.459	16.382	16.382	16.224	16.152	P2 FS
		LOSS PARA F	•S U. 45%	0.5341	J.0192	J.UJ75	J.00 91	0.0101	0.1060	0.1171	0.1243	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.10 Equivalent Rotor Speed = 2951.10 Equivalent Weight Flow = 83.59
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.Cu	86.90	71.00	49.50	28.10	12.00 40.321	7.10	3.00 41.085	PCT SPAN DIA
	DIA Beta G	33.122 -0.300	33.529 0.000	33.962 -0.000	35.312 -0.000	37.137 -0.000	38.954 -0.000	-0.000	40.737 -0.000	-0.000	BETA O
	BETA 1	-000	~	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V 0	326.56	326.56	326.56	326.56	326.56	326.56	326.56	326.56	326.56	V 0
	V 1	331.50	340.96	341.69	340.47	337.46	338.69	335.07	331.80	309.39 326.47	V 1 V2 0
	VZ 0 VZ 1	326.55 331.50	326.55 346.96	326.55 341.69	326.55 340.47	326.53 337.44	326.50 338.63	326.47 334.99	326.47 331.72	309.31	V2 1
	V-THETA L	-0.00	-0.00	-0.00	~ .00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M C	0.295	0.2950	0.2950	0.2950	0.2950	0.2950	0.2950	0.2950	0.2950	M 0 M 1
	M 1 Turn	0.2996 û.U	0.3083 0.0	0.3090 0.0	0.3078 0.0	0.3051 0.0	0.3062 0.0	0.3029 0.0	0.29 9 9 0.0	0.2793 0.0	TURN
	UUBAR	0.4366	0.2816	0.2403	0.2427	0.2427	0.2427	0.3042	0.3437	0.4737	UUBAR
	DFAC	->.015	-0.044	-0.046	-0.043	-C.033	-0.037	-0.026	-0.016	0.053	DFAC
	LFFP Incid	C.0669	0.2488 -0.0000	C.2894 -0.0006	0.2703 -0.0000	0.2242 -0.0000	0.2435 -0.0000	0.1518 -0.0000	0.0885 -0.0000	-0.2843 -0.0000	EFFP INC1D
	DEAM	-0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEAM
	P 0	14.936	14.938	14.938	14.938	14.938	14.938	14.938	14.938	14.938	PO
	PI	14.556	14.692	14.728	14.726	14.726	14.726	14.672	14.637	14.524	P 1
	T C T 1	518.700 518.700	518.700 516.700	518.7CO 518.7OO	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	T 0 T 1
	• •	310.100	310.700	210.100	2101100	3161100	210.100	7101100	31000	7101.00	, .
HOTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
KOTOK -L.E.	DIA BETA 1	33.236 -6.000	33.621 -0.000	34.U07 -0.000	35.164 -0.066	36.706 -0.000	38.248 -0.000	39.405 -0.000	39.791 -0.000	40.176 -0.000	DIA Be ta 1
ROTOR -T.E.	BETA 2	39.395	36.251	34.958	33.635	32.612	31.466	32.431	34.426	39.218	BETA 2
	BETA(PR) 1	52.083	50.219	49.913	51.031	52.948	54.206	55.286	55.745	57.727	BETA(PR) 1
	BETA(PR) 2	25.406	25.424	25.169	26.394	30.154	33.663	37.590	40.471	48.110	BETA(PR) 2
	V 1 V 2	332.23 427.25	359.38 444.20	367.85 457.06	367.23 468.21	360.53 459.84	361.85 452.46	360.54 428.80	350.18 404.71	334.74 346.49	V 1 V 2
	v 2 1	332.16	359.30	367.81	367.21	360.08	360.39	358.16	355.63	332.55	۷2 [°] 1
	VZ 2	333.16	358.20	374.58	389.82	387.18	385.38	361.09	333.01	267.87	VZ Z
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2 V(PR) 1	271.15 540.6	262.66 561.6	261.88 571.2	259.33 583.9	247.73 597.9	235.85 617.0	229.43 630.3	228.24 633.3	218.61 624.0	V-THETA 2 V(PR) 1
	V(PR) 2	365.5	396.6	413.9	435.2	448.0	463.7	456.6	438.7	401.9	V(PR) 2
	VTHETA PRI	-426.4	-431.5	-437.U	-454.0	-4 76.9	-499 .8	-517.0	-522.2	-526.6	VTHETA PRI
	VTHETA PRZ	-156 B	-170.3	-176.0	-193.5	-224.9	-256.7	-278.0	-284.1	-298.7	VTHETA PR2
	U 1 U 2	426.41 427.46	431.54 432.93	436.99 437.89	453.97 452.79	476.94 472.65	499.79 492.51	516.99 567.40	522.22 512.37	526.60 517.33	U 1 U 2
	M I	0.3002	0.3253	0.3331	0.3325	0.3263	0.3276	0.3263	0.3242	0.3026	H 1
	M 2	0.381c	· 0.3969	0.4092	0.4186	0.4109	0.4042	0.3825	0.3604	0.3074	M 2
	M(PR) 1	6.4885	J.5083	9.5173	0.5288	0.5412	0.5586	0.5705	6.5731	0.5640	M(PR) 1
	M(PR) 2 Turn(PR)	0.3259 26.673	ú∙3544 24 ∙79 0	C.3706 24.742	0.3891 24.636	0.4003 22.775	0.4142 20.484	0.4073 17.608	0.3906 15.185	0.3566 9.542	M(PR) 2 Turn(PR)
	UUBAR	6.1091	C.0920	0.0661	0.0443	0.0439	0.0458	0.0792	0.1216	0.1821	UUBAR
	LOSS PARA	0.0286	0.0244	0.0178	0.0122	0.0122	0.0128	0.0218	0.0324	0.0431	LOSS PARA
	DFAC EFFP	(.4693 0.8454	0.4311	0.4117 0.9801	0.3912	0.3836	0.3762	0.4007	0.4325	0.4790	DFAC
	EFF	0.8429	€.6836 ⊎.8818	0.9797	0.917G 0.9104	0.9085 C.9069	0.9103 0.9088	0.8691 0.8670	0.7985 0.7955	0.6719 0.6678	EFFP EFF
	INCID	-0.349	~ .697	-U.665	-1.011	-1.056	-1.792	-3.410	-6.574	-10.442	INCID
	DEAM	10.256	11.265	10.535	7.753	6.943	6.104	5.968	7.333	12.141	DEVM
	P 1 P 2	14.556 16.271	14.692 16.408	14.728 16.530	14.726 16.632	14.726 16.622	14.726 16.591	14.672 16.419	14.637 16.246	14.524 15.876	P 1 P 2
	τī	518.760	518.700	518.760	518.700	518.700	518.700	518.700	518.700	518.70C	Ţĺ
	T 2	536.599	537.563	536.456	530.863	538.838	538.486	538.236	538.414	538.621	Ť Ž
STATUR E	PCT SPAN	95.60	90.60	85.CO	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	DIA BETA ?	33.267	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATUR-T.E.	BETA ZA	39.639 0.206	36.081 1.860	34.445 1.950	33.676 0.750	32.242 0.400	31.381 0.850	33.016 1.100	35.393 0.400	40.812 -2.501	BETA 2 Beta 2a
	V 2	425.11	446.14	463.25	468.21	465.28	454.27	422.61	395.58	335.76	V 2
	V ZA	363.68	366.90	381.41	419.40	423.38	419.60	373.63	354.44	345.50	V ZA
	VZ 2 VZ 2A	327 . 37 363 . 67	360 .56 366 .7 1	362.01	389.57 419.31	393.35	387.47	353.93	322.07	253.82	VZ 2
	V-THETA 2	271.14	262.74	381.17 262.01	259.58	423.23 248.16	419.30 236.33	373.25 229.98	354.12 228.82	344.81 219.19	VZ 2A V-Theta 2
	V-THETA 2A	1.27	11.52	12.98	5.12	2.95	6.22	7.17	2.47	-15.06	V-THETA ZA
	M 2	0.3790	0.3987	C.4150	0.4186	0.4159	0.4059	0.3768	0.3521	6.2977	M 2
	M 2A Turn(pr)	0.3230 39.436	0.3262 34.261	0.3398	0.3737	0.3773	0.3740	0.3321	0.3147	0.3065	M ZA
	UUBAH	0.0457	0.1081	32.493 0.1112	32.970 0.0247	31.825 0.0120	30.499 0.0303	31.87C 0.1486	34.942 0.1371	43.251 -0.1428	TURN (PR.) UUBAR
	LOSS PARA	C.0154	€.0368	0.0382	0.6088	C.0044	0.0117	6.0589	0.0549	-6.0576	LOSS PARA
	DFAC	0.3584	0.3695	0.3619	G.2978	0.2858	0.2723	0.3260	0.3341	0.2538	DFAC
	EFFP INCID	0.8392 -10.529	0.6853 -7.307	0.6762 -5.646	0.8834 -4 .354	0.9352	6.8074	0.3544	0.3362	-1.3230	EFFP TNCTO
	DEVM	9.032	13.112	13.260	11.675	-4.462 11.412	→.484 12.516	-5.688 13.541	-7.777 13.080	-18.392 2.356	INCID DEVM
	P 2	16.271	16.408	16.530	16.632	16.622	16.591	16.419	16.246	15.870	P 2
	P 2A T 2	16.201	16.224	16.325	16.585	16.600	16.538	16.191	16.063	16.005	P ZA
	T ZA	538.599 538.599	537.563 537.563	536.456 536.456	538.863 538.863	538.838 538.838	538.486 538.486	538.238 538.238	538.414 538.414	538.621 538.622	T 2 T 2A
	UUBAR FS	3-1054	C.1114	0.0707	0.0240	0.0176	2.0178	0.2464	0.2350	0.2670	UUBAR FS
	P2 FS	15.373	15.414	16.449	15.630	16.633	16.569	16.617	16.416	16.399	P2 FS
	LOSS PARA F	S C+1355	0.0379	0.0242	0.0085	0.0064	0.0069	0.0976	0.0941	0.1077	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.20 Equivalent Rotor Speed = 2955.62 Equivalent Weight Flow = 75.87
Uniform Inlet

_											
INLET	PCT SPAN	96.8¢	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA G	-0.000	-3.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-c.coo	-0.000	~0.000	-0.000	-0.000	BETA 1
	Υċ	295.26	295.26	295.26	295.26	295.26	295.26	295.26	295.26	295.26	A 0
	V 1	300.85	309.00	310.33	313.59	309.75	306.66	296.61	292.32	272.70	V 1
	V2 0	295.26	295.26	295.26	295.26	295.24	295.22	295.19	295.18 292.24	295.19	V2 0 V2 1
	VZ 1 V-THETA G	3.C.65 -0.0C	309.00 -0.60	310.33 -0.00	313.59 -0.00	309.73 -0.00	306.61 -0.00	296.54 -0.00	-0.00	272.63 -0.00	V-THETA O
	V-THETA 1	-3.66	~	-0.00	-0.00	~0.00	-6.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	C.2063	0.2663	0.2663	0.2663	0.2663	0.2663	0.2663	0.2663	0.2663	M O
	H i	0.2714	0.2789	0.2801	0.2831	0-2796	0.2768	0.2676	0.2636	0.2457	H 1
	TURN	0.0	0.0	0.0	٥.٥	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.4258	0.2674	0.2320	0.2320	0.2362	0.2362	0.2985	0.3268	0.4640	UUBAR
	DFAC	-0.019	-0.047	-0.051	-0.062	-0.049	-0.039	-0.005	0.610	0.076	DFAC
	EFFP Incid	0.0837 -0.0000	0.2673 -0.0000	0.3163 -0.0000	0.3617 -0.0060	0.3040 -0.0000	0.2547 -0.0000	0.0304 -0.0000	-0.0665 -0.0000	-0.4773 -0.0000	EFFP INCID
	DEAM	0.000	5.000	0.000	U.000	0.000	0.000	0.000	0.000	0.000	DEVM
	PO	14.887	14.687	14.667	14.887	14.887	14.887	14.887	14.887	14.887	PO
	P 1	14.582	14.696	14.721	14.721	14.718	14.718	14.673	14.653	14.555	P 1
	T D	518.700	518.760	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T O
	7 1	510.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5 00	PCT SPAN
NO ION E	DIA	33.236	33.621	34.007	35.164	36.706	38.248	15.00 39.405	39.791	5.00 40.176	DIA
ROTOR -L.E.	BETA 1	-0.306	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA L'
ROICE -T.E.	BETA 2 .	45.142	42.659	40.587	39.021	38.186	37.376	39.433	42.716	49.050	BETA 2
	BETA(PR) 1	54.784	53.032	52.685	53.392	55.348	56.932	58.561	59.120	60.977	BETA(PR) 1
	SETA(PR) 2	24.290	26.399	25.845	25.902	29.861	34.034	38.200	43.705	49.830	BETA(PR) 2
	V 1	301.50	325.38	333.62	337.79	330.57	327.24	318.64	315.02	294.55	V 1
	V 2 VZ 1	417.29 301.44	415.86 325.31	430.63 333.58	450.39 337.77	442.78 330.16	431.80 325.91	409.64 316.54	372.42 312.78	338.80 292.63	V 2 VZ 1
	VZ 2	294.33	305.81	327.02	349.91	347.90	342.72	315.78	273.12	221.71	V2 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	295.79	281.79	280.16	283.56	273.63	261.80	259.69	252.11	255.49	V-THETA 2
	V(PR) 1	522.8	541.0	550.3	566.4	580.9	598.0	608.0	610.6	604.1	V(PR) 1
	V(PR) 2	322.9	341.4	363.4	389.0	401.3	414.1	402.6	378.5	344.2	V(PR) 2
	VTHETA PRI VTHETA PRZ	-427.1	→32.2	-437.7 -158.4	-454.7 -169.9	→77.7	-500.6	-517.8	-523.0	-527.4	VTHETA PRI
	U 1	-132.8 427.07	-151.8 432.20	437.66	454.67	-199.7 477.67	-231.5 500.56	-248.5 517.78	-261.0 523.02	-262.6 527.41	VTHETA PR2 U 1
	Ű Ž	428.62	433.59	438.56	453.48	473.37	493.26	508.18	513.16	518.13	Ŭ Ž
	H 1	0.2/20	0.2940	0.3015	0.3054	0.2987	0.2957	0.2878	0.2844	0.2657	MÎ
	M 2	0.3713	0.3702	0.3841	0.4015	0.3944	0.3843	0.3640	0.3300	0.2996	M 2
	M(PR) 1	0.4717	0.4887	0.4974	0.5120	0.5249	0.5403	0.5490	0.5513	0.5449	M(PR) 1
	M(PR) 2	0.2874	(.3040	0.3241	0.3467	0.3575	0.3686	0.3577	0.3354	0.3043	M(PR) 2
	TURN(PR) UUBAR	30.490 0.1063	26 .629 0.11 99	26.838 0.0798	27.489 0.0487	25.468 0.0467	22.844 0.0595	20.263 0.1109	15.337	11.088	TURN (PR)
	LOSS PARA	0.0281	C.0315	0.0213	6.0135	6.0130	0.0166	0.0362	0.1521 0.0386	0.2155 0.0492	UUBAR Loss Para
	DFAC	0.5465	0.5219	0.4910	C-4671	0-4601	0.4537	0.4846	0.5235	0.5787	DFAC
	EFFP	C.8816	0.8463	0.9338	0.9202	0.9264	0.8969	0.8400	0.7548	0.6886	EFFP
	EFF	C.8795	0.8436	0.9326	0.9186	0.9188	0.8950	0.8372	0.7508	0.6839	EFF
	INCID DEVM	2.353	2.116	2.107	1.349	1.346	0.939	-0.127	-3.190	-7.183	INCID
	Pi	9.146 14.582	12.239 14.696	11.211 14.721	7.261 14.721	6.651 14.718	6.474	6.576	10.566	13.854	DEVM
	ΡŽ	16.514	16.509	16.646	16.823	16.837	14.718 16.783	14.673 16.616	14.653 16.413	14.555 16.170	P 1 P 2
	T 1	510.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ti
	T 2	540.644	539.482	538,576	540.651	540.812	540.852	541.100	541.455	541.848	Ť Ž
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15 00	30 00		
312,000	DIA	33.207	33.564	33.921	34.992	36.420	37.848	15.00 38.919	10.00 39.276	5.00	PCT SPAN DIA
STATUR-L.E.	BETA 2	45.438	42.452	39.974	39.071	37.740	37.275	40.189	44.001	39.633 51.333	BETA 2
STATUR-T.E.	BETA ZA	-i.10L	1.300	2.000	1.550	0.820	1.280	1.250	2.001	1.200	BETA ZA
	V 2	415.21	417.64	436.32	450.39	447.93	433.50	403.81	364.20	328.36	¥ 2
	V 2A	325.61	322.45	328.21	371.97	380.36	377.26	336.73	315.62	304.87	V ZA
	VZ 2 VZ 2A	291.35	308.15	334.35	349.62	354.08	344.67	308.17	261.73	204.99	VZ 2
	V-THETA 2	325.81 295.64	522.36 281.89	327.99 280.30	371.79	380.19	376.94	336.38	315.34	304.49	VZ ZA
	V-THETA ZA	-0.57	7.31	11.45	283.83 10.06	274.05 5.44	262.34 8.42	260.32 7.34	252.75 11.02	256.17 6.38	V-THETA 2
	M 2	0.3694	0.3718	0.3893	0.4015	0.3991	0.3859	0.3587	0.3226	0.2902	V-THETA 2A M 2
	M ZA	4.288⇒	G.2855	0.2909	0.3299	0.3374	0.3346	0.2979	0.2790	0.2691	M ZA
	TURN (PR)	45.538	41.151	37.973	37.514	36.901	35.961	38.890	41.948	50.075	TURN (PR)
	UUBAR	0.051.	0.0667	0.1221	0.0567	0.0324	0.0278	0.1111	0.0630	-0.1258	UUBAR
	LUSS PARA Deac	0.6172 0.4558	0.0227 0.4519	0.0420	0.0262	0.0120	0.0107	0.0440	0.0252	-0.0507	LOSS PARA
	EFFP	C.8737	6.8433	0.4601 6.7337	0.3906 0.8324	0.3736 0.8910	0.3564	0.4157	0.3999	0.3802	DFAC
	INCID	-4.729	~u.936	-0.316	1.040	1.034	0-8920 1-408	0.6525 1.481	0.7563 0.828	1.8766	EFFP
	DEVM	8.732	12.612	13.310	12.525	11.832	12.946	13.690	14.679	-7.870 6.053	INCID DEVM
	P 2	16.514	16.509	16.646	16.823	16.837	16.783	16.616	16.413	16.170	P 2
	P ZA	40.43b	16.469	16.444	16.723	16.780	16.737	16.459	16.341	16.285	P ZA
	T 2 T 2A	540.044	539.482	538.576	540.651	540.812	540.852	541.100	541.455	541.848	T 2
	UUBAR FS	5,40.344 0.€911	539.482 0.1073	538.576 0.1016	540.651 0.0374	540.812	540.852	541.100	541.455	541.848	T ZA
	P2 FS	16.552	16.577	16.608	16.787	0.0307 16.832	0•0398 16•803	0.1932 16.760	0.1937 16.597	0.2117	UUBAR FS
	LCSS PARA F		0365	J.C349	0.0133	0.0111	0.0153	0.0765	0.0774	16.562 0.0853	P2 FS LOSS PARA FS
											' ANA ' 3

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 70.39 Equivalent Rotor Speed = 2963.23 Equivalent Weight Flow = 68.30
Uniform Inlet

INLET											DCT COAN
	PCT SPAN Dia	96.80 33.122	92.00 33.529	86.90 33.962	71.00 35.312	49.50 37.137	28.10 38.954	12.00 40.321	7.10 40.737	3.00 41.085	PCT SPAN DIA
	BETA O	-0.360	-3.000	-C.00L	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-3.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V 0	264.81	264.61	264.81	264.81	264.81	264-81	264.81	264.61	264.81	V 0
	V 1 V2 0	266.75 264.80	279.72 264.8J	280.58 264.81	284.15 264.8G	275.69 264.79	277.39 264.76	270.17 264.74	265.10 264.73	243.12 264.74	A 7
	V2 1	268.74	279.72	280.58	284.15	275.67	277.34	270.10	265.03	243.06	VŽ 1
	V-THETA C	-0.00	-0.00	⊸≎.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA D
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	~0.00	-0.00	-0.00	-0.00	~0.00	V-THETA 1
	м О м 1	0.2385 C.2421	0.2385 0.2521	0.2385 0.2529	0.2385 0.2562	0.2385 0.2484	0.2385 0.2500	0.2385 0.2434	0.2385 0.2388	0.2385 0.2188	M O M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	3.4207	J.2559	0.2261	C.2279	0.2279	0.2261	0.2945	0.3225	0.4662	UUBAR
	DFAC	-0.015	-0.056	-0.060	-0.073	-0.041	-0.048	-0.020 0.1240	-0.001 0.0066	0.082 -0.5205	DFAC EFFP
	EFFP Incid	0.0675 -0.0000	0.3157 -0.0000	0.3565 -0.0000	0.4043 -0.0000	0.2729 -0.0006	0.3051 -0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	C.000	3.000	0.000	0.000	0.000	0.000	0.000	0.000	U-000	DEAW
	P 0	14.846	14.846	14.846	14.846	14.846	14-846	14.846	14.846	14.846	P 0
	P 1 T 0	14.664 518.70G	14.699 518.700	14.716 518.700	14.715 518.700	14.715 518.700	14.716 518.700	14.677 518.700	14.660 518.700	14.576 518.700	P 1 T 0
	7 1	516.700	518.700	518.700	516.700	518.700	518.700	518.700	518.700	518.760	ŤĬ
HOTER E	PCT SPAN D1A	95.00	90.00	85.00 34.007	70.00 35.164	50. 00 36.706	30.00	15.00 39.405	10.00 39.791	5.00 40.176	PCT SPAN
ROTOR -L.t.	BETA 1	33.236 -C.000	33.621 -0.000	-0.000	-0.000	-0.000	38.248 -0.000	-0.000	-0.000	-0.000	BETA 1
KOTOR -T.E.	BETA 2	49.546	48.176	46.025	43.626	43.029	42.176	45.431	49,137	54.018	BETA 2
	BETA(PR) 1	57.835	55.824	55.531	56.154	58.500	59.597	60.979	61.618	63.764	BETA(PR) 1
	BETA(PR) 2 V 1	24.468	27.678 294.26	26.916	26.284	30.636	35.121	40.015 289.91	44.276	47.124	BETA(PR) 2 V 1
	V 2	269.32 406.87	397.02	301.26 410.11	305.70 434.u7	293.83 425.66	295.67 415.09	392.07	285.35 369.58	262.31 360.69	v 2
	VZ 1	269.26	294.22	361.22	305.68	293.47	294.47	288.00	283.32	260.60	V2 1
	VZ Z	263.99	264.74	284.75	314.20	311.07	367.29	274.76	241.43	211.65	V2 2
	V-THETA 1 V-THETA 2	-0.00 30 9. 59	⊸0.0; 295.85	-0.00 2 95. 13	-0.00 299.48	-0.00 290.37	-0.00	-0.00 278.86	-0.00 279.08	-0.00 291.51	V-THETA 1 V-THETA 2
	V(PR) 1	505.8	523.8	532.2	548.9	561.9	278.40 582.5	594-6	597.0	590.3	V(PR) 1
	V(PR) 2	290.1	299.0	319.4	350.4	361.7	376.2	359.4	337.8	311.6	V(PR) 2
	VTHETA PRI	-428.2	-433.3	-438.8	-455.8	-478.9	-501.8	-519.1	-524.4	-528.8	VTHETA PRI
	VTHETA PR2 U 1	-120.1 428.17	-138.9 433.32	-144.6 438.78	-155.2 455.84	-184.2 478.90	-216.1 501.85	-230.6 519.11	-235.4 524.37	-220.0 528.77	VTHETA PR2 U 1
	U Z	429.72	434.71	439.69	454.65	474.59	494.53	509.49	514.48	519.46	Ŭ Ž
	H 3	C.2426	0.2654	0.2718	0.2759	0.2650	0.2667	0.2614	0.2573	0.2363	H 1
	M 2	0.3612	0.3525	0.3647	0.3860	0.3782	0.3684	0.3472	0.3267	0.3184	M 2
	M(PR) 1 M(PR) 2	0.455 <i>1</i> 6.2575	0.4725 0.2654	0.4802 0.2840	0.4953 G.3116	0.5068 0.3213	0.5254 0.3339	0.5362 0.3182	0.538 <i>2</i> 0.2986	0.5316 0.2751	M(PR) 1 M(PR) 2
	TURN(PR)	33.363	28.142	28.612	29.870	27.847	24.427	20.895	17.274	16.594	TURN (PR)
	UUBAR	0.1173	G.1428	0.1084	0.0650	0.0787	0.0836	0.1479	0.2003	0.2366	UUBAR
	LOSS PARA DFAC	0.6342	C.G371 C.5952	0.0287 0.5648	0.0179 0.5292	0.021B 0.5219	0.0230 0.5137	0.0393 C.5569	0.0503 0.5965	0.0570 0.6455	LOSS PARA Deac
	EFFP	0.8582	0.8185	0.8943	0.9073	0.8963	0.8682	0.7897	0.7238	0.7224	EFFP
	EFF	V.8556	0.8154	0.8924	0.9054	0.8881	0.8656	0.7858	0.7190	0.7175	EFF
	INC ID	5.404	4.908	4.953	4.112 7.643	4.499	3.608	2.299	-0.683	-4.385	INCID DE VM
	PI	9.319 14.604	13.518 14.699	12.282 14.716	14.715	7.425 14.715	7.560 14.716	8.39G 14.677	11.137 14.660	11.147 14.578	P 1
	P 2	16.641	16.590	16.706	16.919	16.903	16.873	16.701	16.545	16.494	P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
	T 2	541.744	541.086	540.155	542.003	542.301	542.584	543.530	544.060	544.670	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATCR-L.E.	DIA BETA 2	33.267 49.896	33.564 47.928	33.921 45.2 9 2	34.992 43.684	36.420 42.509	37.848 42.063	38.919 46.364	39.276 50.773	39.633 56.820	DIA Beta 2
STATOR-T.E.	BETA ZA	-0.300	1.650	2.000	1.880	1.260	1.140	1.200	2.301	2.351	BETA ZA
	V 2	404.87	398.69	415.48	434.07	430.54	416.70	386.57	361.45	349.44	¥ 2
	V ZA	307.19 260.84	295.93	293.37	331.37	347.81	342.30	307.29	287.67	283.20	V 2A
	V2 2 V2 2A	367.18	267.14 295.80	292.28 293.18	313.86 331.14	317.27 347.61	309.1 5 342. 03	266.54 306.98	228.41 287.18	191.12 2 8 2.66	VZ 2 VZ 2A
	V-THETA 2	309.64	295.94	295.27	299.76	290.81	278.97	279.54	279.78	292.28	V-THETA 2
	V-THETA 2A	-1.61	8.52	10.24	10.87	7.65	6.81	6.43	11.54	11.60	V-THETA 2A
	M Z M ZA	0.3594 0.2712	0.2613	0.3696 0.2592	0.3860 0.2928	0.3826 0.3075	0.3699 0.3025	0.3422 0.2708	0.3193 0.2532	0.3083 0.2491	M 2 M 2a
	TURN (Pk)	5L.19ú	46.277	43.290	41.797	41.230	40.887	45.114	48.421	54.417	TURN (PR)
	UUBAR	0.0235	0.0345	0.1149	0.0991	0.0392	0.0432	0.0863	0.0430	0.0135	UUBAR
	LOSS PARA DFAC	0.0079 0.5003	0.5034	0.0395	0-0352	0.0145	0.0166	0.0342	0.0172	0.0054	LOSS PARA
	EFFP	0.9475	0.9269	0.5303 0.7817	0.4736 0.7752	0.4365 0.8935	0.4312 0.8742	0.4866 0.7757	0.5027 0.8874	0.5155 0.9623	DFAC EFFP
	INCID	-6.277	4.540	5.001	5.653	5.803	6.194	7.656	7.601	-2.379	INCID
	DEVM	6.532	12.962	13.310	12.855	12.272	12.806	13.641	14.979	7.202	DEAN
	P 2 P 2A	16.641 16.667	16.59G 16.543	16.706 16.534	16.919 16.755	16.903 16.840	16.873 16.807	16.701 16.589	16.545 16.496	16.494	P 2 P 2A
	1 2	541.744	541.086	540.155	542.003	542.301	542.584	543.530	544.060	16.480 544.670	T 2
	T 2A	541.744	541.086	540.155	542.003	542.301	542.584	543.530	544.060	544.670	T. 2A
	UUBAR FS P2 FS	0 • 737	3.1088	0.1343	0.0731	0.0470	0.0630	0.2210	0.1903	0.1616	UUBAR FS
	LOSS PARA F	15.717 5 J. 248	16.705 0.0369	16.749 J.0461	16.872 3.0259	16.916 0.0173	16.904 0.0242	16.926 0.0876	16.749 0.0761	16.680 0.0646	P2 FS LOSS PARA FS
						5.55					

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values

Percent Equivalent Rotor Speed = 70.37 Equivalent Rotor Speed = 2962.57 Equivalent Weight Flow = 61.93
Uniform Inlet

INLET			*								
11121	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	PETA O	-0.300	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.500	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	v 0	239.44	239.44	239.44	239.44	239.44	239.44	239.44	239.44	239.44	¥ 0
	V 1	252.41	259.99	260.34	256.04	255.75	251.76	242.00	236.02	218.73	V 1
	VZ O	239.43	239.44	239.44	239.43	239.42	239.40	239.38	239.37	239.37	VZ O
	VZ 1	252.41	259.99	260.34	256.04	255.73	251.72	241.94	235.95	218.67	VZ 1
	V-THETA C	-0.co	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	-0.66	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.2155	0.2155	0.2155	0.2155	0.2155	0.2155	0.2155	0.2155	0.2155	M O
	M) Turn	0.2272 . 0.6	0.2341	0.2345	0.2306	0.2303	0.2267	0.2178	0.2124	0.1967	M 1
	UUBAR	0.4149	0.U 0.25üZ	0.0 0.2288	0.0 0.2267	0.0 0.2246	0.0	0.0 0.2866	0.0	0.0	TURN UUBAR
	DFAC	-0.054	-0.086	-0.087	-0.069	-0.068	0.2288 -0.051	-0.011	0.3251 0.014	0.4683 0.086	DFAC
	EFFP	C-2141	0.4213	0.4477	0.3921	0.3899	0.3196	0.0711	-0.0970	-0.5569	EFFP
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.060	0-000	0.000	0.000	0.000	DEVM
	PO	14.618	14.618	14.818	14.818	14.818	14.818	14.818	14.818	14.818	PO
	P 1	14.622	14.700	14.716	14.711	14.712	14.710	14.683	14.665	14.597	P 1
	T 0	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TO
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	E0 00	30.00	15.00	10.00	E 00	DCT CDAN
	DIA	33.236	33.621	34.007	35.164	50.00 36.706	30.00 38.248	15.00 39.405	10.00 39.791	5.00 40.176	PCT SPAN DIA
RUTOR -L.E.	SETA 1	-6.260	-c.oco	-c.cco	-0.000	-0.000	-0.000	-0.000	-0.000	-0.006	BETA 1
ROTOR -T.E.	BETA 2	51.888	51.234	49.805	47.469	47.162	47.458	52.914	56.422	59.345	BETA 2
	BETA(PR) 1	59.427	57.751	57.518	58.878	60.392	61.976	63.591	64.328	66.100	BETA (PR) L
	BETA(PR) 2	22.467	27.274	26.496	28.332	30.789	35.918	42.596	45.398	45.631	BETA(PR) 2
	A 1	252.94	273.40	279.32	275.17	272.41	268.13	259.44	253.79	235.80	V 1
	V 2	412-60	394.21	404.95	412.71	416.91	403.46	377.16	369.40	376.29	V 2
	VZ 1	252.89	273.33	279.28	275.16	272.08	267.04	257.73	251.99	234.26	VZ 1
	VZ 2	254.65	246.82	261.34	278.98	283.39	272.55	227.16	204.08	191.68	V2 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	324.63	307.36	369.32	304.13	305.63	297.00	300.52	307.42	323.40	V-THETA 2
	V(PR) 1 V(PR) 2	497.2	512.3	520.1	532.4	550.9	568.9	580.2	582.5	578.9	V(PR) 1
	VTHETA PRI	275.5 -428.1	277.7 -433.2	292.0 -4 38.7	317.0 ~455.7	330.6 -4 78.8	337.0	309.1	291.2	274.6	V(PR) 2
	VTHETA PRZ	-105.0	-127.3	-130.3	-150.4	-168.9	-501.7 -197.4	-519.0 -208.9	-524.3 -204.8	-528.6 -105.0	VTHETA PRI VTHETA PR2
	Ul	428.07	433.22	438.69	455.74	478.79	501.74	519.00	-206.9 524.25	-195.9 528.65	U 1
	U Z	429.63	434.61	439.59	454.55	474.49	494.42	509.38	514.36	519.34	ŭ ž
	H 1	U.2277	0.2464	0.2518	0.2480	0.2455	0.2416	0.2336	0.2285	0.2122	N I
	M Z	ú.366L	ú.3495	0.3597	0.3660	0.3697	0.3572	0.3336	0.3259	0.3319	H Z
	M(PR) 1	ú-4477	U-4616	0.4688	0.4798	0.4964	0.5125	0.5225	0.5244	0.5208	M(PR) 1
	M(PR) 2	0.2443	0.2462	0.2594	0.2811	0.2927	0.2983	0.2730	0.2569	0.2422	M(PR) 2
	TURN (PR)	37.017	33.473	31.019	30.545	29.588	26.015	20.937	18.873	20.432	TURN(PR)
	UUBAR	0.1103	0.1466	0.1222	0.0988	0.1001	0.1371	0.2231	0.2645	0.2821	UUBAR
	LOSS PARA	0.0295	0.0382	0.0325	0.0268	0.0277	0.0373	0.0570	0.0651	0.0699	LOSS PARA
	DFAC EFFP	0.6354 0.8637	0.6341 6.8161	0.6153 0.8935	0.5802 0.8495	0.5767	0.5820	0.6453	0.6834	0.7218	DFAC
	EFF	0.861	0.8128	0.8914	0.8465	0.8722 0.8695	0.8144 0.8107	0.7304 0.7254	0.7047 0.6994	0.7333 0.7282	EFFP EFF
	INCID	6.996	6.835	6.940	6.835	6.393	5.993	4.921	2.039	-2.039	INCID
	DEVM	7.257	13.114	11.862	9.691	7.578	8.357	10.970	12.259	9.654	DEVM
	P 1	14.622	14.700	14.710	14.711	14.712	14.710	14.683	14.665	14.597	P 1
	P 2	16.800	16.685	16.790	16.876	16.982	16.891	16.704	16.645	16.702	P 2
	T 1	516.700	518.760	518.700	518.700	518.760	518.700	518.700	518.700	518.700	T 1
	T 2	543.082	542.225	541.112	543.216	543.664	544.483	545.535	546.036	546.646	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	52.272	50.959	48.980	47.535	46.567	47.328	54.141	58.598	62.896	BETA 2
STATOH-T.E.	BETA 2A	-c oo	1.900	1.630	0.630	0.940	0.020	0.830	1.851	3.651	BETA ZA
	V 2	410.52	395.86	410.19	412.71	421.65	405.01	371.92	361.28	364.44	V Z
	V 2A	298.19	280.47	268.47	307.00	314.40	319.33	287.34	275.87	276.60	V ZA
	V2 2	251.20	249.34	269.21	278.61	289.80	274.36	217.74	168.14	166.01	VZ 2
	VZ ZA	298.19	280.30	268.35	306.94	314.25	319.14	287.07	275.48	275.75	VZ ZA
	V-THETA 2 V-THETA 2A	324.69	307.46	309.47	304.42	306.09	297.61	301.25	308.21	324.26	V-THETA 2
	M 2	-0.00 0.3641	9.30 0.3510	7.64	3.38	5.16	0.11	4.16	8.90	17.60	V-THETA ZA
	M ZA	0.2628	C-2472	0.3645 0.2368	0.3660 0.2707	0.3740	0.3586	0.3283	0.3186	0.3212	M 2
	TURN (PR)	52.271	49.058	47.348	46.898	0.2772 45.608	0.2814 47.272	0.2526 53.264	0.2422	0.2428	M ZA
	UUBAR	0.0604	U.0481	0.1459	0.0899	0.1135	0.0646	0.0545	56.701 0.0553	59.194 0.0971	TURN (PR) UUBAR
	LOSS PARA	0.0203	Ú-0164	0.0502	0.0319	0.0420	0.0249	0.0216	0.0221	0.0391	LOSS PARA
	DFAC	U.5401	0.5481	0.5990	0.5159	0.5195	0.4957	0.5457	0.5697	0.5826	DFAC
	EFFP	:.8764	0.9079	0.7559	0.8064	0.7569	0.8375	0.8702	0.8725	0.7794	EFFP
	INCID	2.104	7.571	8.689	9.504	9.861	11.459	15.435	15.431	3.696	INCID
	DEVM	8.832	13.212	12.940	11.605	11.952	11.686	13.271	14.529	8.502	DEAM
	P 2	16.800	16.685	16.790	16.876	16.982	16.691	16.704	16.645	16.702	P 2
	P 2A T 2	16.712 543.082	16.620	16.576	16.742	16.864	16.798	16.638	16.583	16.590	P ZA
	T 2A	543.082	542.225 542.225	541.112 541.112	543.216 543.214	543.664	544 -483	545.535	546.036	546.646	T 2
	UUBAR FS	0. 945	0.1279	0.1386	543.216 0.1227	543.664 0.1039	544.483	545.535	546.036	546.646	V. 2A
	P2 FS	15.856	15.910	16.778	16.931	16.964	0.0967 15.941	0.2199 16.958	0.1663	0.1583	UUBAR FS P2 FS
	LOSS PARA F	S 2 317	0.0436	J.0477	0.0435	0.0384	0.0373	0.0871	16.796 0.0664	16.785 0.0637	LOSS PARA FS
									3.3004	0,0001	eman them 1/3

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 49.99 Equivalent Rotor Speed = 2104.67 Equivalent Weight Flow = 64.65
Uniform Inlet

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50 37.137	28.10 38.954	12.00 40.321	7.10 40.737	3.00 41.085	PCT SPAN DIA
	DIA Beta c	33.122 -0.00	33.529 -0.00u	33.962 -0.000	35.312 -0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-6.000	-6.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V C	250.19	250.19	250.19	250.19	250.19	250.19	250.19	250.19	250.19	V 0
	V 1	267.29	274.C1	271.46	271.22	265.35	265.51	256.76	252.86	235.59	V 1
	VZ O	256.19	250.19	250-19	250.18	250.17 265.33	250.15 265.46	250.12 256.70	250.12 252.79	250.12 235.53	¥2 0 ¥2 1
	VZ 1 V—THETA O	267.29 -0.00	274.61 -0.00	271.46 -0.60	271.22 -0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.60	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.2252	0.2252	0.2252	0.2252	0-2252	0.2252	0.2252	0.2252	0.2252	M G
	H 1	0.2408	0.2469	C-2446	0.2444	0.2390 C.O	0.239Z 0.0	0.2312 0.0	0.2277 0.0	0.2120 0.0	M 1 Turn
	TURN UUBAR	0.0 0.4176	0.C 0.2549	0.0 0.22 94	0.0 0.2235	0.2255	0.2313	0.2902	0.3235	0.4686	UUBAR
	DFAC	-6.068	-0.695	-0.085	-0.084	-0.061	-0.061	-0.026	-0.011	0.058	DFAC
	EFFP	0.2558	0-4437	0.4405	0.4443	0.3607	0.3572	0.1572	0.0631	-0.3248	EFFP
	INCID	-0.0000	-0.0000	-0.00 0 0	-0.0000	-0.0000 0.000	-0.0000 0.000	-0.0000 0.000	-0.0000 9.000	-0.0000 0.000	DEAM INCID
	DEVM P 0	14.83C	0.000 14.83C	14.830	0.000 14.830	14.830	14.830	14.830	14.830	14.830	PÚ
	Pì	14.615	14.698	14.712	14.715	14.714	14.711	14.680	14.663	14.588	P 1
	T O	548.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518-700	T O
	T 1	518.700	518.700	518.700	518.700	510.700	518.700	518.700	518.700	518.700	T 1
ROTOR E	PCT SPAN	95.00	90.0ú	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
KU1UK -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
KOTOR -T.E.	BETA 2	34.375	30.788	29.718 46. 9 30	28.387 47.989	27.331 50.302	25.636 51.676	25.536 53.425	26.942 54.048	29.532 56.090	BETA 2 Beta(PR) 1
	BETA(PR) 1 beta(PR) 2	48.633 24.117	46.883 24.806	24.354	26.035	30.204	33.706	37.463	39.812	49.335	BETA(PR) 2
	V 1	267.85	288.24	291.37	291.65	282.72	282.89	275.39	272.06	254.12	V 1
	V 2	326.76	339.71	351.36	356.76	345.45	340.22	323.22	306.37	245.70	V 2
	VZ 1	267.80	288.17	291.33	291.63	282.37	281.74	273.58	270.12 272.34	252.47 213.20	VZ 1 VZ 2
	VI 2 V-THETA 1	269.68 -0. 03	291.82 -0.6	305.14 -0.00	313.86 -0.00	306.74 -0.00	306.24 -0.00	290.87 -0.00	-6.00	-0.00	V-THETA 1
	V-THETA 2	184.49	173.88	174.18	169.61	158.53	146.96	138.96	138.42	120.78	V-THETA 2
	V(PR) 1	465.3	421.7	426.6	435.8	442.3	455 . 1	460.2	461.2	453.5	V(PR) I
	V(PR) 2	295.5	321.5	335.0	349.3	355.1	366.6	367.2	355.3	327.7	V(PR) 2
	VTHETA PRI VTHETA PR2	-364.1 -120.7	-307.8 -134.9	-311.7 -138.1	-323.8 -153.3	-340.1 -178.6	-356.4 -204.3	-368.7 -222.9	-372.4 -227.0	-375.6 -248.2	VTHETA PRI VTHETA PR2
	Ul	304.11	307.77	311.65	323.76	340.14	356.44	368.71	372.44	375.56	Ul
	U 2	305.21	308.76	312.30	322.92	337.08	351.25	361.87	365.41	368.95	U Z
	M 1	6.2413	0.2599	0.2628	0.2630	0.2549	0.2550	0.2482	0.2451	0.2288	M 1
	M 2 M(PR) 1	0.2723 0.3651	0.3045 J.3802	0.3154 0.3848	0.3196 0.3930	0.3093 0.3987	0.3046 6.4102	0.2892 0.4147	0.2739 0.4156	0.2191 0.4083	M 2 M(PR) 1
	M(PR) 2	6.2643	U-2882	0.3007	0.3129	0.3180	0.3300	0.3286	ú.3177	0.2922	M(PR) 2
	TURN(PR)	29.512	22.072	22.574	21.954	20.078	17.908	15.870	14.142	6.682	TURM (PR)
	UUBAR	0.1234	0.0928	0.6581	G.0458	0.0579	0.0438	0.0609	0.0995	0.1594	UUBAR
	LOSS PARA Deal	0.6326 0.4029	0.0247 0.3587	0.0157 0.3362	C.C126 0.3180	0.0161 0.3121	0.0123 0.2978	0.0168 0.3059	0.0268 0.3339	0.0368 0.3709	LOSS PARA Deac
	EFFP	0.7592	0.8722	1.0446	0.8100	6.7873	0.7843	0.7631	0.6978	0-4940	EFFP
	EFF	0.7574	0.8713	1.0450	0.8085	0.7857	0.7827	0.7614	0.6959	0.4917	EFF
	INCID	-3.799	-4.C33	-3.648	→.053	-3.702	-4.324	-5.275	-8.276	-12.084	INCID
	DEVM P 1	8.967 14.615	10.647 14.698	9.720 14.712	7.394 14.715	6.993 14.714	6.147 14.711	5.840 14.680	6.675 14.663	13.359 14.588	DEVM P 1
	P Z	15.391	15.466	15.542	15.567	15.522	15.507	15.421	15.340	15.068	P 2
	T 1	518.700	518.760	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
	T 2	528.900	527.427	526.551	529.111	528.866	528.757	528.350	528.378	528.491	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.F.	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-T.E.	BETA 2 Beta 2a	34.565 0.750	30.660 1.700	29.332 1.310	28.421 0.740	27.060 0.400	25.576 0.800	25.946 1.601	27.612 0.750	30.576 -3.001	BETA 2 Beta 2a
	V 2	325.23	341.09	355.75	356.76	349.19	341.47	318.86	299.84	238.44	¥ 2
	V 2A	299.09	312.43	325.94	345.47	342.30	339.52	305.22	288.24	281457	V ZA
	VZ 2 VZ 2A	267.62	293.40	310.13	313.70	310.80	307.70	286.32	265.30	204.97	V2 2
	V-THETA 2	299.06 184.52	312.29 173.93	325.84 174.26	345.40 169.77	342.17 158.77	339.29 147.27	304.86 139.31	287.96 138.77	281.19 121.10	VZ ZA V-THETA Z
	V-THETA 2A	3.91	9.27	7.45	4.46	2.39	4.74	8.52	3.77	-14.74	V-THETA ZA
•	M 2	0.2909	0.3058	6.3195	0.3196	0.3128	0.3057	0.2653	0.2680	0.2125	M 2
	M 2A Turn{Pr}	0.2672	6.2797	0.292P	0.3093	0.3065	0.3040	0.2729	0.2575	0.2517	M ZA
	UUB AR	33.615 0.0770	26.959 0.6862	28.021 0.0647	27.675 0.0133	26.644 -0.0040	24.748 0.0125	24.307 0.1549	26.818 0.1770	33.521 -0.2183	TURN (PR) UUBAR
	ISS PARA	C.G259	2.3294	0.0291	0.0047	-0.0015	0.0048	0.0614	0.0708	-0.0879	LOSS PARA
	UFAC	0.2675	0.2485	6.2454	0.1966	0.1861	0.1672	0.2063	0.2198	0.0487	DFAC
	EFFP Incid	J.5179	0.4840	0.4939	0.7956	1.0981	-0.0506	-0.7920	-1.2693	0.4645	EFFP
	DEAW	-15.602 9.582	-12.728 13.012	-10.958 12.620	-9.609 11.715	-9.643 11.412	-10.285 12.466	-12.751 14.040	-15.551 13.430	-28.621 1.856	IMCID DEVM
	P 2	15.391	15.466	15.542	15.567	15.522	15.507	15.421	15.346	15.068	P 2
	P ZA	15.323	15.383	15.452	15.553	15.526	15.495	15.290	15.200	15.170	P ZA
	T 2 T 2A	528.900 528.900	527.427 527.427	526.551 524 551	529.111	528.866	528.757	528.350	528.378	520.491	T 2
	UUBAR FS	0.1240	0.1934	526.551 0.0585	529.111 0.0195	528.866 0.0240	528.757 0.0287	528.390 0.2979	528.378 0.2971	528.491 0.2900	T∙2A Uubar FS
	P2 FS	15.437	15.474	15.512	15.573	15.551	15.523	15.594	15.467	15.402	P2 FS
	LOSS PARA F	S J. 417	0.0318	0.0235	0.0069	0.0090	0.0110	0.1181	0.1188	0.1167	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 50.22 Equivalent Rotor Speed = 2114.26 Equivalent Weight Flow = 61.51
Uniform Inlet

INLLT											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12-00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	RETA O	-0.500	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	EETA 1 V ú	-0.3u0 237.72	-0.600 237.72	-0.006 237.72	-0.000 237.72	-0.000 237.72	-0.000 237.72	-0.006 237.72	-0.000 237.72	-0.000 237.72	BETA 1 V O
	v i	245.12	254.26	251.31	248.81	245.42	246.74	241.22	237.80	219.84	γĭ
	VZ C	237.72	237.72	237.72	237.72	237.71	237.68	237.66	237.66	237.66	VZ C
	VZ_1	245.12	254.26	251.31	248.80	245.40	246.69	241.16	237.74	219.78	VZ 1
	V-THETA C	-0.00	-0.00	-0.00	~0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1 M O	-J.00 0.2139	-0.00 6.2139	-0.06 0.2139	-0.00 0.2139	-0.00 0.2139	-0.00 0.2139	-0.00 0.2139	-0.00 0.2139	-0.00 0.2139	V-THETA 1 M O
	H i	0.2266	0.2289	0.2262	0.2240	0.2209	0.2221	0.2171	0.2140	0.1977	Äi
		6.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UULAR	L.4164	0.2473	0.2299	0.2256	0.2212	0.2299	0.2819	0.3253	0.4685	UUBAR
	DFAC	-(.631	-0.070	-0.057	~0.047	-0.032	-0.036	-0.015	-0.000	0.075	DFAC
	EFFP Incid	1332 -0.00∪0	0.3718 -∪.000ú	0.3420 -0.0000	0.3005 -0.0000	0.2321 -0.0000	0.2545 -0.0000	0.0964 -0.0000	0.0016 -0.0000	-0.4559 -0.0000	EFFP INCID
	DEVM	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEAW
	Pυ	14.615	14.815	14.815	14.815	14.815	14.615	14.815	14.815	14.815	PG
	P 1	14.021	14.700	14.708	14.713	14.712	14.708	14.684	14.663	14.597	P 1
	1 5	518.700	516.700	518.700	518.700	518.700	518.700	518.700	510.700	518.700	T 0
	T 1	518.700	518.760	518.700	518.700	518.700	518.7G0	518.700	518.700	518.700	T 1
KO TOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
RCTu1 -Let.	BETA 1		-0.000	-0.000	-0.000	-c.000	-0.000	-0.000	-0.000	->·000	BETA 1
HUTUR -T.S.	BETA 2	37.294 51.204	34.693 49.158	33.133 49.275	31.984 50.583	30.958	29.604	29.841	31.461	35.843	BETA 2
	BETA(PR) 2	24.865	24.831	24.903	26.559	52.625 30.578	53.840 34.187	55.256 38.245	55.038 40.557	58.031 50.184	BETAIPR) 1 BETAIPR) 2
	V 1	245.64	267.33	269.55	267.33	261.33	262.74	258.59	255.73	237.00	V 1
	V 2	314.94	376.63	335.41	340.16	331.77	325.81	308.49	293.99	238.46	¥ 2
	VZ 1	245.59	267.27	269.52	267.31	261.00	261.68	256.89	253.91	235.46	VZ 1
	VZ 2	250.54	268.55	280.87	288.52	284.38	282.86	266.93	250.11	192.65	VZ 2
	V-THETA 1 V-THETA 2	-0.30 190.82	-J.UO 185.90	-0.00	-0.00	-0.00	-0.00	-0.00	-0.60	-0.00	V-THETA 1
	V(PR)	392.0	408.7	183.33 413.1	180.17 421.C	170.59 430.2	160.71 444.1	153.13 451.7	153.03 453.2	139.30 445.5	V-THETA 2 V(PR) 1
	V(PR) 2	276.0	295.9	309.7	322.6	330.5	342.4	340.6	329.9	301.6	V(PR) 2
	VTHETA PRI	-305.5	-309.2	-313.1	-325.2	-341.7	-358.1	-370.4	-374.1	-377.3	VTHE TA PRI
	VTHETA PR2	-115.6	-124.3	-130.4	-144.2	-168.0	-192.1	-21ú.4	-214.6	-231.3	VTHETA PRZ
	Ul	305.50	309.17	313.07	325.24	341.69	358.07	370.39	374.14	377.27	UI
	U 2 M 1	396.60 0.2211	310.16 2.2468	313.72	324.39	338.62	352.85	363.52	367.08	370.63	U Z
	H 2	1.2617	C-2926	0.2429 0.3008	0.2408 0.3043	0.2354 0.2967	0.2366 6.2913	0.2329 0.2756	0.2303 0.2625	0.2132 0.2124	M 1 M 2
	M(PR) 1	0.3528	(.3682	0.3722	0.3793	0.3874	0.4000	0.4968	0.4081	0.4009	M(PR) 1
	M(PR) 2	U.2469	0.2651	0.2777	U.2886	0.2955	0.3061	0.3043	0.2945	0.2686	M(PR) 2
	TURN(P+1	26.395	24.322	24.369	24.023	22.028	19.595	16.924	15.192	7.779	TURN (PR)
	UUP AR	(.1000	0.0983	0.0583	0.0409	0.0482	0.0453	0.0690	0.1058	0.1664	UUBAR
	LOSS PARA DFAC	J.0263 J.4371	0.0262 0.4096	0.G157 0.3823	0.0113 0.3653	0.0134 0.3589	0.0126	0.0188	0.0282	0.0378	LOSS PARA
	EFFP		0.9422	1.0765	0.8509	0.8305	0.3499 0.8110	0.3627 0.7796	0.3894 0.7226	0.4328 0.5584	DPAC EFFP
	EFF	6.8863	5.9418	1.0771	0.8495	0.8290	0.8094	0.7779	0.7206	0.5559	EFF
	INCID	-1.226	-1.759	-1.303	-1.459	-1.376	-2.157	-3.441	-6.482	-10.137	INCID
	DEVM P 1	9.655 14.621	16.671	16.276	7.918	7.367	6.627	6.622	7.419	14.209	DEAN
	P Z	15.476	15.537	14.768 15.597	14.710 15.637	14.712 15.614	14.708 15.592	14.684 15.506	14.663 15.431	14.597	P 1 P. 2
	T 1	518.700	518.760	516.700	518.700	518.700	518.700	518.766	518.700	15.192 518.700	7.1
	† 2	528.345	527.482	526.645	529.461	529.432	529.479	529.167	529.266	529.409	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.2.7	33.504	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATER-L.t.	BETA 2	37.569	34.546	32.696	32.023	30.646	29.536	30.331	32.267	37.179	BETA 2
STATOR-T.E.	BETA ZA	0.250	1.560	1.890	0.660	0.420	0.800	1.200	0.700	-2.551	BETA ZA
	V 2 V 2A	313.44	327.95	339.56	340.16	335.33	327.00	304.36	287.77	231.43	V 2
	VZ Z	273.43 248.64	279.34 270.12	292.26 285.74	316.66 288.35	315.98 288.36	312.63	280.19	263.95	258.60	V ZA
	VZ ZA	273.42	279.23	292.08	316.59	315.87	284.23 312.62	262.36 279.90	243.00 263.70	184.15 258.67	VZ 2 VZ 2A
	V-THETA 2	190.85	185.96	183.42	186.34	170.85	161.04	153.50	153.42	139.67	V-THETA 2
	V-THETA 2A	1.19	7.70	9.64	3.65	2.32	4.37	5.86	3.22	-11.50	V-THETA ZA
	M 2	0.2863	0.2936	0.3046	0.3043	G.300C	0.2924	0.2719	0.2568	0.2061	M 2
	M 2A Turn(pr)	(-244)	0.2497	0.2615	6.2830	G.2824	0.2795	0.2500	0.2353	0.2305	M ZA
	RABUU	37.258 3.6736	32.965 5.1627	30.804 Ú.0965	31.357 0.0145	30.210	28.705 6.0157	29.088	31.519	39.670	TURN (PR)
	LUSS PARA	0.1248	6.0349	0.0332	0.0052	0.0011 C.0004	0.0061	0.1363 0.0540	0.1501 0.0600	-0.2390 -0.0963	UUBAR LOSS PARA
	DFAC	C.3315	·.3334	0.3157	G.2541	0.2444	0.2287	0.2727	0.2927	0.1474	DFAC
	EFFP	0.7017	i.6381	0.6410	0.8956	0.9908	0.8214	0.1311	0.0776	0-0612	EFFP
	INCID	-12-659	-8.842	-7.594	-6.007	-6.057	-6.3 <i>2</i> 8	-8.371	-10.901	-22.023	INCID
	DEVM P 2	9.082 15.476	12.892 15.537	13.200	11.635	11.432	12.466	13.641	13.386	2.306	DEVM
	P 2A	15.416	15.444	15.597 15.503	15.637 15.623	15.614 15.613	15.592 15.578	15.506	15.431	15.192	P 2
	T 2	528.345	527.482	526.845	529.461	529.432	15.578 529.479	15.400 52 9. 167	15.327 529.266	15.298 529.409	P 2A T 2
	T 2A	528.345	527.482	526.845	529.461	529.432	529.479	529.167	529.266	529.409	T ZA
	UUBAK FS	J.1 78	0.0915	J.0669	0.0139	0.0115	0.0169	0.2819	0.2502	0.2594	UUBAR FS
	P2 FS LOSS PARA F		15.525	15.266	15.636	15.623	15.593	15.663	15.523	15.490	P2 FS
	LUJJ PRKA P	₩ • 363	0.0311	0.0230	0.6050	0.0041	0.0065	0.1117	0.1000	0.1045	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 49.65 Equivalent Rotor Speed = 2090.12 Equivalent Weight Flow = 55.53
Uniform Inlet

INLET										2 22	
	PCT SPAN Dla	96.6¢ 33.1∠2	92.00 33.529	86.90 33.962	71.00 35.312	49.50 37.137	28.10 38.954	12.00 40.321	7.16 40.737	3.00 41.085	PCT SPAN DIA
	BETA C	-0.500	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-G.COC	-0.00C	-c.ooc	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V C	213.95	213.95	213.95	213.95	213.95 222.77	213.95	213.95	213.95	213.95 194.78	V 0 V 1
	V 1 V2 G	218.22 213.94	226.79 213.94	223.97 213.94	225.40 213.94	213.93	219.30 213.91	215.44 213.89	209.06 213.89	213.89	vz o
	VZ 1	218.22	226.79	223.97	225.40	222.76	219.27	215.38	209-01	194.73	VZ 1
	V-THETA C	-0-60	-0.00	-6.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-G.CC 0.1923	-0.60 ŭ.1923	-0.60 0.1923	-0.00 0.1923	-0.00 0.1923	-0.00 0.1923	-0.00 0.1923	-0.00 0.1923	-0.00 0.1923	V-THETA 1 M O
	Mi	0.1962	C-2046	0.2014	0.2027	C.2003	0.1972	0.1937	6.1879	0.1750	M I
	TURN	G.C	0.0	0.0	0.0	6.0	C.D	0.0	0.0	0.0	TURN
	UUBAR	0.4195	0.2432	0.2245	0.2218	C.2218	0.2271	0.2672	0.3286	0.4676	UUBAR
	DFAC EFFP	-0.020 0.0684	-0.060 0.3399	-0.047 0.3021	-0.054 0.3343	-0. 041 0.2776	-0.025 0.1839	-0.007 0.0501	0.023 -0.1617	0.090 -0.5866	DFAC EFFP
	INCID	-6.0000	-C.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	J-000	0.000	0.000	0.000	0.300	0.000	0.000	0.000	0.000	DEVM
	P U P 1	14.791 14.633	14.791 14.700	14.791 14.707	14.791 14.708	14.791 14.708	14.791 14.706	14.791 14.696	14.791 14.667	14.791. 14.615	P O P 1
	Tè	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TO
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.7G0	518.700	518.700	T 1
RUTOR E	PCT SPAN	95.Cû	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	. 36.706	38.248	39.405	39.791	40.176	DIA
R010k -L.E.	BETA 1	-6.000	-0.000	-0.660	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
KOTOR -T.E.	BETA 2 Setaipr) l	42.398 54.699	40.055 52.063	38.257 52.269	36.879 53.033	36.068 54.971	35.061 56.712	35.963 57.948	38.779 58.910	44.408 66.797	BETA 2 Beta(PR) 1
	BETAIPR) 2	24.573	25.012	25.078	26.304	30.006	34.277	38.035	42.335	48.098	BETAIPR) 2
	V 1	218.67	238.31	240.63	242.01	237.07	233.36	230.78	224.63	209.84	V 1
	V 2 V2 1	29 9. 53 218.63	366.44	314.34 240.60	322.13	317.26	308.46 232.41	295.09	272.11	245.39 208.47	V 2 V2 1
	VZ Z	221.19	238.25 234.55	246.83	241.99 257.67	236.78 256.35	252.15	229.26 238.34	223.03 211.66	174.98	VZ 2
	V-THETA 1	-0.00	~°.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	⊸0.00	V-THETA 1
	V-THETA 2	∠01.96	197.19	194.63	193.32	186.71	176.96	172.93	170.05	171.40	V-THETA 2
	V(PR) 1 V(PR) 2	372.9 243.2	387.6 258.8	391.7 272.5	402 .4 28 7.4	412.7 296.2	424.0 305.6	432.8 303.2	432.7 286.9	427.9 262.4	V(PR) 1 V(PR) 2
	VTHETA PRI	-362 et	-365.6	-309.5	-321.5	-337.8	-354.0	-366.2	-369.9	-373.0	VTHETA PRI
	VTHETA PK2	-101.1	-109.4	-115.5	-127.4	-148.0	-171.9	-186.4	-192.B	-195.0	VTHETA PR2
	U 1 U 2	302.01 303.10	305.64 306.62	309.50 310.14	321.53 320.69	337.79 334.75	353.98 348.02	366.16 359.37	369.87 362.89	372.97 366.40	U 1 U 2
	мī	0.1966	0.2144	0.2160	0.2178	0.2133	0.2099	0.2076	0.2020	0.1886	M I
	4 2	0.2676	0.2740	0.2614	0.2878	0.2833	0.2753	0.2632	0-2424	0.2184	M 2
	M(PR) 1 M(PR) 2	3353	0.3487 0.2315	0.3524 0.2440	0.3622 0.2568	0.3713 0.2645	0.3814 0.2727	0.3893	0.3892	0.3647 0.2335	M(PR) 1 M(PR) 2
	TURN(PK)	29.522	27.046	27.128	26.728	24.946	22.380	0.2705 19.834	0.2556 16.496	12.641	TURN (PR)
	UU5 AR	t.5999	C.1089	0.0733	0.0469	0.0537	0.0603	0.0922	ü.1426	0.1943	UUBAR
	LOSS PARA DFAC	0.0263 0.5048	0.0290	0.0197	0.0129	C.0150	0.0167	0.0252	0.0370	0.0460	LOSS PARA
	EFFP	6.9008	0.4816 0.9218	0.4519 1.0360	0.4334 0.8589	0.4274 0.8486	0.4187 0.8173	0.4368 0.7775	ú.4735 3.6962	0.5274 0.6452	DFAC EFFP
	EFF	0.8999	0.9212	1.0363	C.8576	0.8472	0.8156	0.7756	0 • 68 78	0.6427	EFF
	INC ED DEVM	1.667 9.424	1.147 10.852	1.630 10.444	0.991 7.663	0.969 6.796	0.718 6.717	-0.741 6.411	-3.400 9.196	-7.363 12.121	INCID DE VM
	P 1	14.633	14.700	14.707	14.768	14.708	14.706	14.690	14.667	14.615	P 1
	P 2	15.547	15.584	15.634	15.693	15.689	15.660	15.597	15.487	15.376	ΡZ
	T 1 T 2	5.8.7.0	518.700	518.700	518.700	518.700	518.700	518.700 530.246	518.700 530.504	518.700 530.490	T 1 T 2
	1 2	528.765	528.183	527.519	530.012	530.105	530.227	330.240	330.304	330.470	
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.03	5.00	PCT SPAN
JINTUN L	DIA SPAN	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATUR-L.E.	BETA 2	42.648	39.879	37.736	36.926	35.694	34.980	36.585	39.840	46.25C	BETA 2
STATUR-T.E.	BETA ZA V 2	>√C	1.650	2.000	1.500	0.680	1.280	1.180	1.110	-0.100	BETA 2A
	V 2A	296.15 246.07	307.66 244.75	310.18 251.61	322.13 281.60	320.64 284.95	309.57 282.46	291.17 257.55	266.41 233.42	238.14 226.75	V 2 V 2A
	VZ 2	219.36	236.10	251.62	257.48	260.29	253.43	233.54	204.33	164.52	V Z 2
	VZ ZA	245.99	244.65	251.45	281.47	284.84	282.22	257.29	233.17	226.51	VZ ZA
	V-THETA 2 V-THETA 2A	201.99 6.44	197.26 7.05	194.73 8.78	193.50 7.37	187.00 3.38	177.32 6.31	173.35 5.30	176.49 4.52	171.85 -0,40	V-THETA 2 V-THETA 2A
	M 2	0.2064	0.2751	0.2849	0.2878	0.2864	0.2763	0.2597	0.2373	0.2119	M 2
	M ZA	0.2193	0.2183	0.2246	0.2511	0.2541	0.2518	0.2294	J. 2076	0.2016	M ZA
	TUPN(PR) UUGAR	41.146 1.6457	38.228 0.0958	35.734 6.1093	35.420 0.0252	34.996 0.0104	33.666 0.0075	35.357 0.0916	38.678 6.0778	46.290 -0.0808	TURN (PR.) UUBAR
	LUSS PARA	6.0154	0.0326	0.0376	C.CO95	0.6039	0.0029	0.0363	0.0311	-6.0326	LOSS PARA
	UFAL	0.3957	6.4151	C.4106	0.3316	0.3241	0.3013	0.3454	0.3745	0.3412	DFAC
	EFFP INCID	0.8605 -7.519	0.7464 -3.509	0.7171 -2.555	0.8968 -1.104	0.9522	0.9567 -0.887	0.5902	0.6730	1.8479 -12.955	EFFP Incid
	DEVM	10.332	12.962	13.310	12.475	-1.011 11.692	12.946	-2.121 13.621	-3.332 13.789	4.754	DEAM
	P 2	15.547	15.584	15.634	15.693	15.689	15.660	15.597	15.487	15.376	P 2
	P 2A T 2	15.513 528.765	15.508	15.540 527.519	15.671	15.680	15.654	15.532	15.440	15.414	P 2A
	T 2A	528.705	528.183 526.183	527.519	530.012 530.012	530.105 530.165	530.227 530.227	530.246 530.246	530.504 530.504	530.490 530.490	T 2 T 2A
	UUBAR FS	0.1.79	0.1162	0.1067	0.0346	0.0301	0.0389	0.2521	0.2482	0.2541	UUBAR FS
	P2 FS LOSS PARA F	15.599	15.602	15.631	15.701	15.706	15.686	15.750	15.621	15.588	P2 FS
	EUSS FRRE F	0363	0.0395	0.0367	0.0123	0.0112	0.0150	0.0999	0.0992	0.1025	LOSS PARA FE

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 49.70 Equivalent Rotor Speed = 2092.57 Equivalent Weight Flow = 48.51
Uniform Inlet

INLET	PCT SPAN	96.6~	92.00	86.90	71.00	49.50	28.10	12.00	7.16	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA C	-0.366	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1		-0.000	-0.000	-0.000	-0.600	-0.000	-0.000	-0.000	-0.000	BETA 1
	٧ <u>.</u>	166.49	186.49	186.49	186.49	186.49	186.49	186.49	186.49	186.49	V 0
	V 1 V2 ;	192.15 186.49	199.60 186.49	196.17 186.49	197.78 186.48	193.22 186.47	192.00 186.46	189.18 186.44	180.68 186.44	168.81 186.44	V 1 V2 0
	vz i	192.15	199.00	196.17	197.78	193.20	191.97	189.14	180.63	168.77	V2 1
	V-THETA 6	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.10	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M S M 1	1.1675	C-1675	0.1675	0.1675	0.1675	0.1675	0.1675	0.1675	0.1675	M O
	TUKN	C.1726	0.0	6.1763 C.O	0.1777 6.0	0.1736 0.0	0.1725 0.0	0.1699 0.0	C.1623 O.O	0.1515 0.6	M 1 Turn
*	UUBAR	4.4140	0.2366	0.2211	0.2176	0.2211	0.2281	0.2491	0.3298	0.4562	UUBAR
	DFAC	- 0.030	-0.067	-0.052	-V.061	-0.036	-0.030	-0.014	0.031	0.095	DFAC
	EFFP	6.1363	0.3698	0.3270	0.3668	0.2512	0.2095	0.1054	-0.2314	-0.6642	EFFP
	INC 1D DEVM	0.3∪C.3− 830.€	-0.000 000.u	0.0000 000.0	0.000	-0.0000 3.000	0.000	0.000	-0.0000 0.000	0.000	DEAM INCID
	P (14.765	14.765	14.765	14.765	14.765	14.765	14.765	14.765	14.765	PU
	P 1	14.647	14.697	14.702	14.703	14.702	14.700	14.694	14.671	14.635	Pl
	T 0	518.700	518.700	518.700	518.700	518.700	516.700	518.700	518.700	518.700	Ţ (
	т 1	516.700	516.700	518.700	518.700	518.700	518.700	518.70G	518.700	518.700	T 1
KOTOR E	PCT SPAN	95.60	90.00	85.60	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
66301 1 5	DIA	33.236	33.621	34.007	35.164	36.756	38.246	39.465	39.791	40.176	DIA
RCIOR -L.E. ROTUR -T.E.	BETA 1 BETA 2	-0.000 40.597	-0.000 46.968	-0.000 45.304	-0.000 43.179	-0.000 42.491	-0.000	-0.600 44.481	-0.000	-0.000	BETA 1 Beta 2
RETOR -TILL	BETA(PR) 1	57.515	55.674	55.867	56.609	58.749	41.788 60.153	61.241	47.627 62.518	52.796 64.193	BETA (PR) 1
	BETA(PR) 2	24.007	27.476	26.446	27.082	31.157	35.667	40.182	45.533	48.466	BETA(PR) 2
	A 1	192.55	20 8.99	210.08	217.19	205.48	204.17	202.52	194.00	181.75	V 1
	V 2	290.28	282.72	292.74	303.71	298.99	290.97	276.53	255.31	248.33	V 2
	V2 1 V2 2	192.51 191.97	197.92	210.05 205.89	212.18 221.47	205.22 270.40	2u3.35 216.72	201.19 196.97	192.62 171.78	180.56 149.96	VZ 1 VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.60	V-THETA 1
	V-THETA 2	217.72	206.66	208.09	207.82	201.89	193.69	193.44	188.31	197.54	V-THETA 2
	V(PR)]	358.5	374.6	374.4	385.5	395.7	409.0	418.8	418.0	415.3	V(PR) 1
	V(PR) 2 VTHETA PRI	210.3	217.5	230.0	248.7	257.7	267.1	258.3	245.7	226.5	V(PR) 2
	VTHETA PRZ	-302.4 -85.7	-306.0 -100.3	-309.9 -162.4	-321.9 -113.2	-338.2 -133.3	-354.4 -155.5	-366.6 -166.4	-370.3 -175.0	-373.4 -169.3	VTHETA PRI VTHETA PR2
	U 1	5:2.36	306.00	309.86	321.90	338.19	354.39	366.59	370.30	373.46	U 1
	U 2	363.46	366.98	310.50	321.06	335.15	349.23	359.79	363.31	366.83	Ú Ž
	M 1	0.1730	0.1879	0.1886	0.1907	0.1847	0.1835	0.1820	0.1743	0.1632	M 1
	M 2 M(PR) 1	∵.2591 ∪.322c	0.2524 0.3331	0.2616	0.2709	0.2666	0.2593	0.2462	0.2276	0.2267	M 2
	MIPR) 2	L.1677	0.1941	0.3365 0.2055	0.3466 0.2219	0.3556 0.2298	0.3676 0.2380	0.3764 0.22 9 9	0.3756 0.2184	0.3730 0.2013	M(PR) 1 M(PR) 2
	TURN (PR.)	33.445	28.194	29.416	29.527	27.576	24.439	20.991	16.921	15.661	TURN(PR)
	UUB AR	6.1074	3.1337	0.1622	0.0738	0.0780	0.0857	0.1465	C.1828	0.2256	UUBAR .
	LOSS PARA	0.0284	0.0348	0.0272	0.0202	0.0215	0.0234	0.0388	U-0449	0.0530	LOSS PARA
	DFAC EFFP	1.5897 5.9221	J.5775 G.8899	0.5509 0.9955	0.5205 0.8569	0.5124 0.8561	0.5051	0.5421	G.5688	0.6216	DEAC
	EFF	0.9214	0.8869	0.9955	0.8555	0.8547	0.8222 C.8205	0.7416 0.7393	0.6759 0.6732	0.6692 0.6664	EFFP EFF
	INCID	5.054	4.758	5.289	4.567	4.749	4.166	2.562	0.221	-3.954	INCIO
	DEVM	4.917	13.316	11.812	6-441	7.946	8.106	8.558	12.394	12.490	DEVM
	P 1 P 2	14.647	14.697	14.702	14.703	14.702	14.700	14.694	14.671	14.635	P 1 P 2
	7 1	15.645 518.700	15.615 518.700	15.676 518.760	15.741 518.706	15.746 518.700	15.726 518.700	15.657 518.700	15.560 518.700	15.532 518.760	7 1
	Ť 2	524.412	528.894	528.335	534.634	530.713	531.004	531.550	531.766	532.048	Ť Ž
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATER-L.F.	ELTA 2	48.957	46.747	44.646	43.237	42.026	41.691	45.331	49.096	55.327	BETA 2
STATUR-T.E.	BETA 2A V 2	~0.15C	1.480	1.560	1.650	1.150	1.100	1.300	1.841	2.461	BETA ZA
	V ŽA	288.94 219.78	283.83 211.86	296.27 210.93	303.71 240.95	302.15 251.34	292.62 248.69	272.89 222.96	250.00 205.81	240.99 202.42	V 2 V 2A
	VZ 2	189.91	194.49	210.78	221.24	224.37	217.91	191.68	163.59	137.01	V2 2
	VZ ZA	219.77	211.80	210.84	240.82	251.21	248.50	222.74	205.52	202.02	VZ ZA
	V-THETA 2	217.76	206.72	208.19	208.62	202.20	194.09	193.91	188.78	198.06	V-THETA 2
	V-THETA 2A M 2	-0.58 3.2579	5.47	5.74	6.94	5.04	4.77	5.06	6.60	8.68	V-THETA 2A
	M ZA	0.1956	i.2534 j.1686	0.2648 6.1879	0.2739 0.2144	0.2695 0.2237	0.2663 0.2212	0.2429 0.1981	0.2222 0.1827	0.2141 0.1796	M 2 M 2A
	TURN (PR)	49.057	45.266	43.084	41.580	40.857	40.555	43.982	47.198	52.813	TURN (PR)
	UUBAR	0.0483	U.J516	0.1307	0.0655	0.0246	0.0236	0.0862	0.0287	-0.0041	UUBAR
	LOSS PARA	0163	0.6176	0.0456	0.0233	C-0091	0.0091	0.0341	0.0115	-0.0017	LOSS PARA
	DFAC EFFP	0.4940 0.8882	0.4951 0.8864	0.5235 0.7414	0.4424 0.8283	0.4106 0.9224	0.3992 0.9166	0.4586 0.7466	0.4699 0.9128	0.4790 1.0139	DFAC EFFP
	INCIO	-1.260	3.360	4.355	5.206	5.320	5.822	6.623	5.918	-3.874	INCID
	DEAM	8.682	12.792	12.870	12.625	12.162	12.766	13.740	14.519	7.312	DEAW
	P 2	15.645	15.615	15.676	15.741	15.746	15.726	15.657	15.560	15.532	P 2
	P 2A	15.611	15.580	15.578	15.690	15.727	15.709	15.603	15.545	15.534	P ZA
	T 2 T 2A	529.412 524.412	528.894 528.894	528.335 528.335	530.634 530.634	53C.713 530.713	531.004 531.004	531.550 531.550	531.766 531.766	532.048 532.048	T 2 T 2A
	UUBAR FS	J748	J.1093	0.1128	3.0588	0.0386	0.0495	0.2598	0.1900	0.1864	UUBAR FS
	D? ES		15.659	15.660	15.735	15.757	15.745	15.805	15.664	15.646	P2 FS
	LOSS PARA F	S 0. 252	0.0372	0.0388	0.0209	0.0142	0.0191	0.1027	0.0751	0.0772	LOSS PARA FS

Table A-3. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 50.51 Equivalent Rotor Speed = 2186.35 Equivalent Weight Flow: 42.99
Uniform Inlet

							/				
INLET											
INCE	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA C	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1 V C	-:.:00 164.90	-0.000 164.90	-0.660 164.90	-0.000 164.90	-0.000 164.90	-0.060 164.90	-0.000 164.90	-0.000 164.90	-0.006 164.90	BETA 1
	v i	177.57	186.23	184.05	185.12	179.70	173.43	169.68	162.36	153.83	v i
	V2 0	164.96	164.96	164.90	164.90	164.69	164.87	164.86	164.86	164.86	VZ O
	VZ 1	177.57	186.23	184.05	185.12	179.69	173.40	169.64	162.32	153.79	VZ 1
	V-THETA D	-0.60 -0.60	~0.00 ~0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	V-THETA O
	мэ	0.1480	C.146C	6.1480	0.1480	6.1480	0.1480	0.1486	0.1486	0.1480	M O
	H 1	0.1594	C.1673	0.1653	C.1663	C.1614	0.1557	0.1523	0.1457	0.1381	<u>H</u> 1
	TURN UUBAR	(.0 0. 394 3	0.0 0.2286	0.0 0.2062	0.C 0.2151	0.0 0.2151	0.0 0.2241	0.0 0.2336	0.0	0.0	TURN
	DFAC	-0.077	-(·.129	-0.116	-0.123	-0.090	-0.052	-0.029	0.3271 0.015	0.4212 0.067	UUBAR DFAC
	EFFP	0.2890	0.5483	0.5455	0.5498	0.4678	0.3227	0.2620	-0.1038	-0.4500	EFFP
	INCID DEVM	3030.0- 3 0 5.)	0000.J-	0.000	-0.000 0.000	-0.000D 0.000	-0.0000	-0.0000	-0.0066	-0.0000	INCID
	Pu	14.748	14.746	14.748	14.748	14.748	0.000 14.748	0.000 14.748	0.000 14.748	0.000 14.748	DEAW
	P 1	14.659	14.696	14.701	14.699	14.699	14.697	14.695	14.674	14.653	P 1
	T C	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T O
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
KCTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
KOTOK -L.E.	DIA Beta i	33.236 -0.000	33.621 -0.000	34.007 -0.606	35.164 -0.000	36.706 ′ -0.000	38.248	39.405	39.791	40.176	DIA
RCTOK -T.L.	BETA 2	51.696	51.179	46.668	47.696	47.307	-0.000 48.022	-0.00U 52.319	-0.000 56.194	-0.000 59.530	BETA 1 Beta 2
	BETA(PR) 1	59.929	57.841	57.965	58.744	60.958	62.984	64.163	65.307	66.562	BETA(PR) 1
	BETA(PR) 2 V 1	21.620 177.93	28.405 195.54	28.184	27.671	31.798	35.983	43.365	47.281	48.397	BETA(PK) 2
	v ž	299.27	276.99	197.64 285.60	198.54 298.62	191.05 294.84	184.36 288.98	181.57 267.43	174.26 257.83	165.57 26G.36	V 1 V 2
	VZ 1	177.90	195.50	197.02	198.53	190.81	183.62	180.37	173.02	164.49	VZ 1
	V2 2 V-THETA 1	165.49 -0.00	174.89	188.61	200.99	199.86 -0.60	193.12	163.27	143.29	131.91	VZ Z
	V-THETA 2	234.84	-0.00 217.36	-0.00 214.45	-0.00 226.85	216.65	-0.00 214.64	-0.00 211.39	-0.00 214.00	-0.00 224.20	V-THETA 1 V-THETA 2
-	V(PR) I	355.6	367.3	371.4	382.6	393.2	404.6	414.4	414.7	414.0	V(PR) 1
	V(PR) 2 VTHETA PRI	199.5	198.8	214.0	227.0	235.3	239.0	225.0	211.6	199.0	V(PR) 2
	VTHETA PR2	-507.2 -73.5	-310.9 -94.6	-314.9 -101.1	-327.1 -105.4	-343.6 -123.9	-360.1 -140.2	-372.5 -154.2	-376.3 -1 55. 2	-379.4 -148.6	VTHETA PRI VTHETA PR2
	Ul	307.24	310.94	314.86	327.10	343.65	360.12	372.51	376.28	379.43	נט
	U 2 M 1	368.36	311.94	315.51	326.25	346.56	354.87	365.60	369.18	372.75	U 2
	M 2	0.1598 C.2669	0.1757 0.2487	0.1770 0.2548	0.1784 0.2660	0.1716 0.2626	0.1656 0.2571	0.1631 0.2376	0.1565 0.2289	0.1486 0.2311	M 1 M 2
	M(PR) 1	0.3188	C.3300	0.3337	0.3436	6.3532	0.3634	0.3722	0.3723	0.3716	M(PR) 1
	M(PR) 2	0.1780	0.1773	0.1909	0.2022	0.2095	0.2126	0.1999	0.1878	0.1766	M(PR) Z
	TURN (PR) UUBAR	38.305 G.1292	29.434 0.1584	29.778 0.1237	31.072 0.1085	29.146 0.1182	26.959 0.1458	20.743 0.2319	17.973 0.2625	18.129 0.2920	TURN (PR) UUBAR
	LOSS PARA	0.0348	C.0469	U.0324	0.6296	C.0324	0.0397	0.0585	0.0624	6.0687	LOSS PARA
	JFAC EFFP	0.6299	0.6325	0.5955	0.5842	0.5783	0.5865	0.6326	0.6690	0.7095	DFAC
	£FF	0.9002 0.8992	0.8384 0.8369	0.9182 0.9174	0.8180 0.8161	0.8130 6.8111	0.7708 0.7685	0.6644	0.6460 0.642B	0.6555 0.6523	EFFP EFF
	INCID	7.498	6.925	7.386	6.702	6.959	7.003	5.495	3.022	-1.575	INCID
	DEVM P 1	6.471 14.659	14.243 14.696	13.550 14.701	9.030	8.586	8.422	11.739	14.147	12.420	DEVM
	P 2	15.747	15.664	15.704	14.699 15.787	14.699 15.797	14.697 15.789	14.695 15.671	14.674 15.633	14.653 15.647	P L P 2
	7 l	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	ΤĪ
	T 2	530.621	530.094	529.459	531.800	531-999	532.664	533.238	533.420	533.746	T 2
STATOR E	PCT SPAN Dia	95.00	90.0C	85.00	70.00	50.60	30.00	15.00	10.00	5.00	PCT SPAN
STATUR-L.E.	BETA 2	33.267 52.345	33.564 50.923	33.921 47.932	34.992 47.762	36.420 46.759	37.848 47.906	38.919 53.457	39.276 58.236	39.633 62.898	DIA BETA 2
STATOR-T.E.	BETA 2A	6.940	1.700	2.000	0.960	1.050	0.300	0.770	2.021	4.001	BETA ZA
	V 2 V 2A	297.69	280.09	289.03	298.62	297.94	290.02	263,92	252.47	252.63	V 2
	VZ 2	218.25 183.21	206.71 176.56	199.42 193.65	223.72 200.72	229.88 204.05	230.83 194.30	214.04 157.05	200.82 132.84	201.44 115.04	V 2A VZ 2
	VZ ZA	218.22	266.61	199.29	223.65	229.77	230.69	213.85	200.52	200.74	VZ 2A
	V-THETA 2 V-THETA ZA	234.88	217.43	214.56	221.06	216.98	215.09	211.91	214.54	224.80	V-THETA 2
	M 2	3.58 3.2657	6.13 3.2497	6.96 0.25 7 9	3.75 0.2660	4.21 0.2654	1.21 0.2580	2.87 0.2344	7.07 0.2241	14.04 0.2242	V-THETA 2A M 2
	M 2A	0.1940	C.1838	6.1773	0.1987	C.2042	0.2049	0.1898	0.1779	0.1784	M ZA
	TURN(PR) UUBAR	51.135	49.223	45.930	46.795	45.690	47.570	52.639	56.169	50.852	TURN (PR)
	LCSS PARA	C.0745 G.C251	6.0272 6.0093	6.1089 6.0374	0.0993 0.0353	0.0811 0.0300	0.0815 6.0314	0.0222 0.0088	0.0299 0.0119	0.0466 0.0188	UUBAR LOSS Para
	DFAC	C-5296	0.5190	0.5576	0.5100	0.4937	0.4894	0.5045	0.5352	0.5413	DFAC
	EFFP Incid	C.6433 1.878	U.9419	0.7972	0.7795	0.8048	0.7834	0.9367	0.9203	0.8746	EFFP
	DEVM	9.772	7.536 13.012	7.641 13.310	9.731 11.935	10.053 12.062	12.037 11.966	14.751 13.211	15.069 14.699	3.705 8.851	DEAM INCID
	P∠	15.747	15.664	15.704	15.767	15.797	15.769	15.671	15.633	15.647	P 2
	P 2A T 2	15.691	15.646	15.627	15'.712	15.736	15.731	15.658	15.617	15.622	P 2A
	T 2A	530.621 530.621	530.094 530.094	529.459 529.459	531.800 531.800	531 .999 531 .99 9	532.664 532.664	533.238 533.238	533.420	533.746	T 2
	UUBAR FS	J 532	3.1312	0.1312	0.1170	0.1114	0.1200	0.2700	533.420 0.1828	533.748 0.1542	T ZA Uubar Fs
	PZ FS	16.743	15.743	15.722	15.802	15.823	15.820	15.870	15.733	15.715	P2 FS
	LOSS PARA F	3 3. 314	0.5448	J.3450	3.0415	0.0412	0.0462	0.1070	0.0727	0.0622	LOSS PARA FS

Table A-4. Overall Performance - Stage E, Radial Distortion

Equivalent Weight Flow,	R	OTOR		STAGE				
Weight Flow, lb/sec	$\overline{P}_2/\overline{P}_1$	η_{ad}	$\eta_{ m p}$	$\overline{P}_{2A}/\overline{P}_{1}$	$\eta_{ m ad}$	$\eta_{ m p}$		
		Hub Rad	<u>ial Distorti</u>	<u>on</u>				
	100%	Design E	quivalent Ro	otor Speed				
114.81	1.2498	0.8559	0.8604	1.2249	0.7755	0.7819		
100.63 93.49	1.2843 1.2940	$0.8670 \\ 0.8509$	0.8717 0.8562	1.2599 1.2654	$0.7976 \\ 0.7737$	$0.8041 \\ 0.7811$		
	90%	Design E	quivalent Re	otor Speed				
104.66	1.1949	0.8266	0.8309	1.1786	0.7605	0.7660		
92.29 82.24	1.2244 1.2326	0.8345 0.8244	0.8392 0.8295	1.2089 1.2092	$0.7800 \\ 0.7462$	$0.7858 \\ 0.7529$		
02.24					0.7402	0.1020		
	70%	Design E	quivalent Ro	otor Speed				
83.81	1.1200	0.8356 0.8191	0.8382	1.1093	0.7627	0.7662		
70.40 61.83	1.1360 1.1421	0.8191	0.8223 0.8143	1.1252 1.1282	$0.7561 \\ 0.7343$	0.7601 0.7388		
		Tip Rac	lial Distorti	ion				
	100%		quivalent Ro					
114.99	1.2400	0.8442	0.8489	1.2155	0.7629	0.7693		
109.16	1.2699	0.8665	0.8710	1.2463	0.7954	0.8017		
103.95	1.2827	0.8684	0.8729	1.2564	0.7930	0.7996		
	90%	Design E	quivalent Ro	otor Speed				
105.22	1.1940	0.8121	0.8168	1.1743	0.7334	0.7394		
99.16	1.2170	0.8465	0.8502	1.1988	0.7791	0.7847		
94.04	1.2257	0.8524	0.8566	1.2072	0.7861	0.7918		
	70%	Design E	quivalent Ro	otor Speed				
82.97	1.1153	0.8141	0.8170	1.1053	0.7454	0.7490		
77.98 71.91	1.1299 1.1324	$0.8486 \\ 0.8196$	$0.8512 \\ 0.8227$	$1.1203 \\ 1.1228$	$0.7876 \\ 0.7618$	0.7910 0.7657		
1 I • 0 I	1.1044	0.0190	0.0221	1.1440	0.1010	0.1007		

Table A-5. Blade Element Performance
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.80 Equivalent Rotor Speed = 4243.76 Equivalent Weight Flow = 114.81
Hub Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122 -0.000	33.529 -0.000	33.962 -0.000	35.312 -0.000	37.137 -0.000	38.954 -0.000	40.321 -0.000	40.737 -0.000	41.065 -0.000	DIA Beta o
	BETA O Beta 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V 0	421.40	421.40	421.40	421.40	421.40	421.40	421.40	421.40	421.40	V D
	A I	366.74	406.28	387.29	303.76	503.69	590.13	583.76	572.15	519.82	V 1
	VZ O	421.40	421.40	421.40	421.39	421.37	421.33	421.29	421.29	421.29	V2 0
	VZ 1 V—THETA O	386.74 -0.00	406.28 -0.00	387.28 -0.00	383.76 -0.00	503.65 0.00	590.03 -0.00	583.61 -0.00	571. 99 -0.00	519.68 -0.00	VZ 1 V—THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.90	Y-THETA 1
	M O	0.3829	0.3829	0.3829	0.3829	0.3829	0.3829	0.3829	0.3829	0.3829	M O
	M 1	0.3506	0.3688	0.3511	0.3479	0.4606	0.5440	0.5378	0.5265	0.4760	M 1
	TURN UUBAR	0.6 1.97 9 7	0.0 1.8488	0.0 1.8983	0.0 1. 908 9	0.0 1.1840	0.0 0.4413	0.0 0.4965	0.0 0.5899	0.0 0.9251	TURN . UUBAR
	DFAC	0.082	0.036	0.081	0.089	-0.195	-0.400	-0.385	-0.358	-0.234	DFAC
	EFFP	-0.0627	-0.0383	-0.0856	-0.0942	0.2680	0.6975	0.6614	0.6001	0.3666	EFFP
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM P 0	0.000	0.000 16.367	0.000	0.000	0.000 16.387	0.000	0.000 16.387	0.000 16.387	0.000 16.387	P O
	Pi	16.387 13.266	13.472	16.387 13.3 94	16.387 13.377	14.520	16.387 15.691	15.604	15.457	14.928	Pi
	ΤÖ	51E.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T O
	TI	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E. Rotor -T.E.	BETA 1 Beta 2	-0.000 47.347	-0.000 46.687	-0.000 43.951	-0.000 37.587	-0.000 29.393	-0.000	-0.000 27.807	-0.000 31.159	-0.000 37.210	BETA 1 Beta 2
ACTOR -1.E.	BETA(PR) 1	57.707	55.327	56.368	57.557	51.602	26.318 48.227	49.313	50.106	53.102	BETA(PR) 1
	BETA(PR) 2	24-108	27.647	27.644	27.396	29.910	33.097	35.417	41.147	50.641	BETA(PR) 2
	V 1	387.62	429.37	418.06	415.00	544.24	644.61	643.40	632.28	572.26	V 1
	V 2 .	592.53	572.78	587.90	637.97	685.47	690.30	667.76	583.92	473.19	¥ 2
	VZ 1 VZ 2	367.55 401.46	429.27 392.91	418.01 423.24	414.98 505.53	543.56 596.96	642.00 617.78	639.17 589.15	627.78 498.37	568.53 376.00	VZ 1 VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	435.77	416.75	408.02	389.13	336.27	305.57	310.72	301.33	285.51	V-THETA 2
	V(PR) 1	725.4	754.6	754.8	773.6	875.5	965.4	983.2	981.7	949.2	V(PR) 1
	V(PR) 2	439.8	443.6	477.8	569.4	689.0	738.4	724.5	663.2	593.8	V(PR) Z
	VTHETA PRI VTHETA PRZ	-613.2 -179.6	-620.6 -205.8	-628.4 -221.7	-652.8 -262.0	-685.8 -343.4	-718.7 -402.7	-743.4 -418.9	-751.0 - 4 35.5	-757.3 -+58.4	VTHETA PRI VTHETA PR2
	U 1	613.19	620.57	628.40	652.82	685.84	718.72	743.44	750.97	757.27	U 1
	U 2	615.42	622.56	629.70	651.12	679.68	708.24	729.66	736.80	743.94	U Z
	M 1	0.3515	0.3904	0.3798	0.3770	0.4995	0.5976	0.5964	0.5854	0.5266	M 1
	M 2 M(PR) 1	0.5227 0.65 77	0.5048 0.6861	0.5195 0.6857	0.5661 0.7027	0.6135 0.8035	0.6199 0.8951	0.5984 0.9114	0.5191 0.9089	0.4165 0.8734	M 2 M(PR) 1
	M(PR) 2	0.3880	ú.3909	0.4222	0.5052	0.6167	0.6631	0.6492	0.5896	0.5226	M(PR) 2
	TURN(PR)	33.595	27.676	28.722	30.161	21.672	15.066	13.797	8.859	2,361	TURN (PR)
	UUBAR	0.0997	0.1576	0.0836	-0.0734	-0.0379	0.0905	0.1289	0.2211	0.2719	UUBAR
	LOSS PARA DFAC	0.0264 0.5680	0.0409 0.5744	0.0220	-0.0200	-0.0106	0.0255	0.0365	0.0584	0.0611	LOSS PARA Deac
	EFFP	0.8994	0.8217	0.5276 0.9110	0.4185 1.0369	0.3362 1.0066	0.3408 0.8192	0.3718 0.7965	0.4311 0.6078	0.4801 0.4849	EFFP
	EFF	0.8956	0.8156	0.9077	1.0385	1-0068	0.8140	0.7909	0.5998	0.4763	EFF
	INCID	5.276	4.411	5.790	5.515	-2.402	-7.776	-9.393	-12.225	-15.078	INCID
	DEVM P 1	8.959	13.487	13.010	8.755	6.699	5.537	3.796	8.009 15.457	14.666	P 1
	P 2	13.266 17.264	13.472 17.063	13.394 17.275	13.377 17.947	14.520 18.847	15.691 19.115	15.604 18.870	17.844	14.928 16.784	P 2
	Ti	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T I
	T 2	563.973	563.121	561.790	562.451	558.559	555.665	555.287	554.916	555.774	T 2
STATOR E	PCT SPAN DIA	95.00	90.00 33.564	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	BETA 2	33.207 47.726	46.407	33.921 43.141	34.992 37.635	36.420 28.939	3 7.848 26.207	38.919 28.432	39.276 32.157	39.633 38.821	DIA Beta 2
STATOR-T.E.	BETA ZA	-0.800	1.440	2.150	1.380	-G. 200	0.200	1.230	1.000	-1-000	BETA ZA
	V 2	569.04	575.62	597.02	637.97	696.38	694.06	655.07	568.35	457.23	¥ 2
	V ZA	457-11	445.31	450.55	546.1B	629.62	632.07	561.04	524.54	508.21	V 2A
	VZ Z VZ ZA	396.23 457.07	396.90 445.16	435.62 450.21	505.14 545.95	609.12 629.41	622 .08 631 .70	575.27	480-52	355.78 507.59	VZ 2 VZ 2A
	V-THETA 2	435.85	416.89	408.22	389.50	336.79	306.20	560.46 311.47	524.00 302.09	286.27	V-THETA 2
	V-THETA 2A	-6.38	11.19	16.90	13.15	-2.20	2.21	12.04	9.15	-8.86	V-THETA ZA
	M 2	0.5194	0.5074	0.5280	0.5661	0.6240	0.6235	0.5862	0.5046	0.4020	M 2
	M ZA Turn(pr)	0.3989 48.526	0.3885 44.966	0.3937 40.989	0.4805 36.248	0.5603	0.5641 25.978	0.4976	0.4639 31.109	0.4485 39.762	M 2A Turn(Pr)
	UUBAR	0.0561	0.0191	0.0769	0.0134	29.123 -0.0028	0.0660	27.161 0.2460	0.1093	-0.3229	WBAR
	LOSS PARA	0.6189	0.0065	0.0265	0.0047	-0.0010	0.0254	0.0975	0.0437	-0.1303	LOSS PARA
	DFAC	0.4769	0.4665	0.4712	0.3540	0.2767	0.2587	0.3257	0.2845	0.1502	DFAC
	EFFP Incid	0.8725	0.9570	0.8387	0.9560	1.0132	0.6674	0.1749	0.3315	-0.2515	EFFP
	DEVM	-2.441 8.032	3.019 12.752	2.850 13.460	-0.396 12.355	-7.764 10.812	-9.655 11.866	-10.268 13.670	-11.011 13.680	-20.382 3.855	DEAM DEAM
	P 2	17.264	17.063	17.275	17.947	18.847	19.115	18.870	17.844	16.784	P 2
	P 2A	17.101	17.010	17.045	17.900	18.860	18.824	17.906	17.532	17.355	P ZA
	T 2	563.973	563.121	561.790	562.451	558.559	555.665	555.287	554.916	555.774	T 2
	T 2A UUBAR FS	563.973 0.0780	5 63.121 0.1198	5 61.790 0.1310	562.451 0.0566	558.559 0.0623	555.665 0.0282	555.287 0.2559	554-916 0•2735	555.774 0.2501	T 2A UUBAR FS
	P2 FS	17.332	17.377	17.460	18.107	19.150	18.943	18.921	18.486	18.135	P2 FS
	LOSS PARA F	S 0.0262	0.0407	0.0451	0.0198	0.0222	0.0108	0.1014	0.1093	0.1009	LOSS PARA FS

Table A-5. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 99.60 Equivalent Rotor Speed = 4193.36 Equivalent Weight Flow = 100.63
Hub Radial Distortion

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA Beta o	33.122 -0.000	33.529 -0.000	33.962 -0.000	35.312 ~0.000	37.137 -0.000	38.954 -0.000	40.321 -0.000	40.737 -0.000	41.085 -0.000	DIA RETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	~0.000	BETA O BETA 1
	V C	376.25	376.25	376.25	376.25	376.25	376.25	376.25	376.25	376.25	V 0
	V 1	341.74	345.39	341.86	338.91	430.21	506.89	498.77	491.94	448.38	Y 1
	VZ 0 VZ 1	376.25 341.74	376.25 345.39	376.25 341.86	376.24 338.90	376.22 430.18	376.19	376.15 498.64	376.15	376.15	VZ O
	V-THETA O	-0.00	-0.00	~0.00	-0.00	-0.00	506.81 -0.00	-0.00	491.81 -0.00	448.26 -0.00	VZ 1 V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.3409	0.3409	0.3409	0.3409	0.3409	0.3409	0.3409	0.3409	0.3409	N C
	M 1	0.3090	0.3124	0.3091	0.3064	0.3912	0.4637	0.4559	0.4494	0.4082	M 1
	TURN UUBAR	C.O 1.6638	0.0 1.5802	0.0 1.5661	0.0 1.5846	0.0 1.0517	0.0 0.3911	0.0 0.4475	0.0 9.4985	0.0	TURN
	DFAC	0.092	6.082	0.091	0.099	-0.143	-0.347	-0.326	-0.307	0.8095 -0.192	UUSAR DFAC
	EFFP	-0.1152	-0.1087	-0.1233	-0.1328	0.2285	0.6857	0.6385	0.5970	0.3472	EFFP
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0060	-0.0000	-0.0000	INCID
	DEVM P O	0.000 15.838	0.000 15.838	0.000 15.838	0.000 15.838	0.000 15.838	0.000	0.000	0.000	0.000	DEVM
	P 1	13.802	13.905	13.922	13.899	14.551	15.838 15.360	15.838 15.291	15.838 15.228	15.838 14.848	P 0 P 1
	T G	518.700	518.700	518.760	518.700	518.700	518.700	518.700	518.700	518.700	T Č
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
ROTOR &	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	DIA BETA 1	33.236 -0.000	33.621 -0.000	34.007 -0.000	35.164 -0.000	36.706 -0.000	38.248	39.405	39.791	40.176	DIA
ROTOR -1.8.	BETA 2	55.846	56.268	55.000	48.376	37.710	-0.000 31.802	-0.000 33.054	-0.000 36.351	-0.000 41.855	BETA 1 Beta 2
	BETA(PR) 1	60.527	59.304	59.347	60.464	55.751	52.465	53.693	54.269	56.972	BETA(PR) 1
	BETA(PR) 2	18.590	26.198	29.094	27.349	31.424	32.808	36.991	40.234	40.076	BETA(PR) 2
	V 1 V 2	342.49	364.11	368.04	365.52	461.99	547.85	543.33	537.66	489.65	A J
	VZ 1	598.34 342.43	556.79 364.03	546.62 368.00	589.69 365.50	613.55 461.42	652.01 545.64	614.06 539.76	572.73	492.13	V 2 V2 1
	V2 2	335.91	309.18	313.52	391.69	485.21	553.34	513.50	533.83 460.20	486.46 365.83	V2 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	495.13	463.04	447.76	440.79	375.15	343.12	334.17	338.69	327.73	V-THETA 2
	V(PR) 1 V(PR) 2	696.0 354.4	713.2 344.6	721.6 358.8	741.4 441.0	820.2 568.9	896.9	913.7	916.4	.894.2	V(PR) 1
	VTHETA PRI	-605.9	-613.2	-620.9	-645.1	-677.7	659.3 -710.2	644.2 -734.6	604.1 -742.1	548.4 -748.3	V(PR) 2 VTHETA PRI
	VTHETA PR2	-113.0	-152.1	-174.5	-202.6	-296.5	-356.7	-386.8	-389.4	-407.4	VTHETA PRZ
	U 1	665.91	613.20	620.94	645.07	677.70	710.18	734.61	742.05	748.27	U 1
	U 2 M 1	608.11 0.3097	615.17 0.3297	622.22 0.3333	643.39 0.3310	671.61	699.83	720.99	728.05	735.10	U 2
	M 2	0.5248	0.4678	0.4794	0.5189	0.4211 0.5430	0.5030 0.5807	0.4986 0.5451	0.4931 0.5065	0.4473 0.4319	M 1 M 2
	M(PR) 1	0.6294	0.6457	0.6537	0.6713	0.7475	0.8235	0.8385	0.8405	0.8168	M(PR) 1
	M(PR) 2	0.3109	0.3019	0.3147	0.3881	0.5035	0.5871	0.5718	0.5342	0.4813	M(PR) 2
	TURN(PK) UUBAR	41.934 6.1541	33.102	30.251	33.114	24.309	19.596	16.611	13.942	8.826	TURN(PR)
	LOSS PARA	C.0423	0.2022 0.0532	0.1882 0.0488	0.0778 0.0213	0.0291 0.0080	0.0386 0.0109	0.0817 0.0227	0.1482 0.0397	0.1908 0.0452	UUBAR LOSS PARA
	DFAC	0.6972	6.7075	6.6873	0.5879	0.4531	0.3927	0.4207	0.4691	0.5154	DFAC
	EFFP	0.8550	0.8016	0.8253	0.9249	0.9258	0.9163	0.8657	0.7921	0.7005	EFFP
	EFF INCID	0.8490 8.0 9 7	0.7945 8.388	0.8190	0.9218	0.9230	0.9134	0.8613	0.7858	0.6923	EFF
	DEVM	3.440	12.038	8.769 14.460	8.422 8.709	1.749 8.213	-3.535 5.249	-5.006 5.369	-8.054 7.096	-11.1 99 12.099	INCID DE VM
	P 1	13.802	13.905	13.922	13.899	14.551	15.360	15.291	15.228	14.848	PI
	P 2	18.367	17.947	17.903	18.469	18.927	19.639	19.240	18.777	17.952	P 2
	T 1 T 2	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ţ 1
	1 2	570.668	568.079	565.894	566.311	562.546	560.010	559.558	559.410	560.465	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	56.364	55.684	53.872	48.443	37.170	31.679	33.769	37.556	43.799	BETA 2
STATOR-T.E.	BETA 2A V 2	-0.150 594.80	-0.000 559.49	-1.330	-1.300	2.400	1.370	1.331	0.950	-1.901	BETA 2A
	V ŽA	408.05	380.73	554.65 366.20	589.69 446.84	622.14 498.10	655.31 565.89	603.36 504.39	557.72 477.83	475.28 465.94	V 2 V 2A
	VZ 2	329.47	313.80	327.01	391.14	495.55	557.16	500.96	441.61	342.67	¥2 2
	VZ ZA	408.05	380.72	366.09	446.67	497.50	565.40	503.84	477.34	465.19	VZ ZA
	V-THETA 2 V-THETA 2A	495.22	463.20	447.98	441.21	375.73	343.82	334.97	339.55	328.60	V-THETA 2
	M 2	-1.07 0.5216	-0.00 0.4902	-8.50 0.4868	-10.14 0.5189	20.85 0.5511	13.52 0.5838	11.70 0.5350	7.92 0.4926	-15.44	V-THETA 2A
	M ZA	0.3528	0.3294	0.3172	0.3888	0.4365	0.4999	0.4434	0.4193	0.4166 0.4081	M 2 M 2A
	TURN(PR)	56.514	55.883	55.201	49.736	34.752	30.277	32.394	36.554	45.638	TURN (PR)
	UUBAR LOSS PARA	C.1505	0.0876	0.1107	0.0950	0.0855	0.0690	0.1721	0.1371	-0.1494	UUBAR
	DFAC	0.05 07 0.5951	0.0298 0.6016	0.6381 0.6233	0.0337 0.5148	0.0316 0.4113	0.0266 0.3315	0.0682	0.0549	-0.0602	LOSS PARA
	EFFP	0.7404	0.8502	0.8192	0.7976	0.7871	0.7620	0.3775 0.4827	0.3824 0.5282	0.3131 4.5327	DFAC EFFP
	INC.D	6.197	12.496	13.582	10.412	0.464	-4.187	-4.935	-5.615	-15.406	INCID
	DEVM	8.682	11.312	9.980	9.675	13.412	13.036	13.771	13.630	2.955	DEVM
	P 2 P 2A	16.367 17.899	17.947 17.708	17.963 17.607	18.469 18.175	18.927	19.639	19.240	18.777	17.952	P 2
	T Z	570.66B	568.079	565.894	566.311	18.626 562.546	19.360 560.010	18.654 559.558	10.383 559.410	18.254 5 60. 465	P 2A T 2
	T 2A	570.668	568.079	565.894	566.311	562.546	560.010	559.558	559.410	560.465	T ZA
	UUBAR FS	0.1300	0.1691	0.1697	0.1304	0.1297	0.0413	0.2365	0.2528	0.2335	UUBAR FS
	P2 FS LUSS PARA F	18.293	18.212	18.094	18.595	19.107	19.522	19.527	19.220	18.962	P2 FS
	TOOU FRINA I	- 0 = 0 4 3 /	0.0575	0.0584	0.0462	0.0479	0.0159	0.0937	0.1012	0.0941,	LOSS PARA FS

Table A-5. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 99.65 Equivalent Rotor Speed = 4195.38 Equivalent Weight Flow = 93.49
Hub Radial Distortion

INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000 351.53	BETA 1 V O
	V 0	351.53	351.53 304.44	351.53 303.33	351.53 303.18	351.53 390.44	351.53 462.05	351.53 45 7. 13	351.53 452.12	411.01	V i
	V 1 V2 C	318.00 351.53	351.53	351.53	351.53	351.51	351.47	351.44	351.44	351.44	V2 0
	VZ 1	316.67	304.44	303.33	303.18	390.41	461.97	459.02	452.00	410.90	VZ 1
	V-THETA C	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	Y-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00 0.3180	-0.00 0.3180	-0.00 0.3180	-0.00 0.3180	-0.00 0.3160	-0.00 0.3180	M O
	M 0 H 1	0.3180 0.2880	0.3180 0.2747	0.31 8 0 0.2737	0.2736	0.3541	0.4211	0.4184	0.4118	0.3732	Äl
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	1.5271	1.5301	1.5096	1.5271	0.9923	0.3760	0.4243	0.4836 -0.286	0.7781 -0.169	UUBAR DFAC
	DFAC EFFP	0.093 -0.1296	0.134 -0.1925	0.137 -0.2011	0.138 -0.1987	-0.111 0.1925	-0.314 0.6681	-0.306 0.6333	0.5835	0.3252	EFFP
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEAM
	PO	15.636	15.636	15.636	15.636	15.636	15.636	15.636 15.187	15.636 15.124	15.636 14.812	P 0 P 1
	P 1 T 0	14.619 518.700	14.016 518.700	14.039 518.700	14.019 518.700	14.585 518.700	15.238 518.700	518.700	518.700	518.700	ŤÔ
	τĭ	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
****** *	00T 60AN	05.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR E	PCT SPAN DIA	95.00 33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTUM -L.t.	BETA 1	-0.000	-0.000	-0.060	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTUR -T.E.	BETA Z	57.995	58.628	56.195	52.772	43.929	34.597	35.220	38.544	41.751	BETA 2
	BETA(PR) 1 BETA(PR) 2	62.208	62.419 26.473	62.313 28.557	63.169 26.650	58.361 32.656	55.118 33.017	56.048 36.727	56.650 39.207	59.300 46.503	BETA(PR) 1 Beta(PR) 2
	V 1	19.634 319.57	320.55	326.01	326.47	418.28	497.34	498.13	492.09	447.43	¥ 1
	Ÿ Ž	566.66	552.96	547.68	585.27	581.77	635.79	609.41	578.84	507.47	V 2
	VZ 1	319.51	320.47	325.97	326.45	417.76	495.33	494.85	488.59	444.51 377.84	VZ 1 VZ 2
	VZ 2 V-THETA 1	310.9Z -0.00	287.86 -0.00	288.64 -0.00	354.08 -0.00	418.86 -0.00	522.67 -0.00	496.77 -0.00	451.73 -0.00	~0.00	V-THETA 1
	V-THETA 2	497.48	472.11	465.44	466.00	403.49	360.52	350.70	359.89	337.25	V-THETA 2
	V(PR) 1	685.3	692.2	701.6	723.3	796.7	867.3	887.9	890.7	872.2	V(PR) 1
	V(PR) 2	330.1	321.6	328.6	396.2	497.7	624.2	621.1	584.2 -742.4	549.9 -748.6	V(PR) 2 VTHETA PR1
	VTHETA PRI VTHETA PR2	-606.2 -110.9	-613.5 -143.3	-621.2 -157.1	-645.4 -177.7	-678.0 -268.4	-710.5 -339.6	-735.0 -370.6	-368.5	-398.2	VTHETA PRI
	U 1	606.20	613.49	621.24	645.38	678.03	710.52	734.97	742.41	748.64	U 1
	Ų Ž	608.40	615.46	622.52	643.70	671.93	700.17	721.34	728.40	735.46	UZ
	# 1	0.2886	0.2895	0.2945	0.2949	0.3800	0.4546	0.4553	0.4496 0.5109	0.4474 0.4449	H 1 H 2
	M 2 M(PR) 1	0.5136 0.6189	0.4840 0.6252	0.4798 0.6338	0.5136 0.6534	0.5122 0.7238	0.5639 0.7927	0.5393 0.8116	0.8138	0.7940	M(PR) 1
	M(PR) 2	G.2890	Ü.2815	0.2879	0.3476	0-4382	0.5536	0.5497	0.5157	0.4821	M(PR) 2
	TURN(PR)	42.570	35.942	33.755	36.518	25.689	22.044	19.235	17.356	12.734	TUIUN (PR)
	UUBAR LOSS PARA	0.1893 0.0>16	0.2043 0.0536	0.2001 0.0522	0.1197 0.0329	0.1166	0.0478 0.0135	0.0759 0.0211	0.1400 0.0380	0.1538 0.0375	UUBAR Loss Para
	DFAC	0.7289	0.7358	0.7288	0.6502	0.5376	0.4191	0.4363	0.4844	0.5053	DFAC
	EFFP	0.8221	0.6186	0.8407	0.9000	0.8565	0.8985	0.8718	0.8248	0.7475	EFFP
	EFF INCID	0.8149 9.777	0.8117 11.503	0.8346 11.735	0.8958 11.126	0.8512 4.360	0.8948 -0.878	0.8672 -2.647	0.8189 -5.667	0.7398 -8.865	EFF INCID
	DEAM	4.485	12.313	13.923	8.010	9.444	5.458	5.105	6.070	10.526	DEVM
	Pl	14.019	14.016	14.039	14.019	14.585	15.238	15.187	15.124	14.612	P 1
	P 2	18.547	18,236	18.254	18.760	18.856	19.686	19.420	19.063	16.345	P 2 T 1
	T 1 T 2	516.700 571.669	518.700 568.633	518.700 567.122	518.700 568.949	518.700 565.089	518.700 562.711	510.700 562.226	518.700 562.008	518.700 562.889	T 2
											_
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
JIHION L	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	56.550	58.210	56.926	52.849	43.290	34.466	35.992	39.860	43.708	BETA 2
STATUR-T.E.	BETA ZA V Z	0.320 583.25	-2.000 555.63	-4.130 555.72	→.550 585.27	2.700 589.55	2.851 638.91	1.791 5 78.8 8	1.821 563.57	-0.200 489.90	BETA 2A V 2
	V 2A	394.23	364.50	353.19	429.04	461.14	530.64	505.04	475.00	460.54	V ZA
	VZ Z	304.32	292.70	303.27	353.42	428.97	526.30	484.00	432.13	353.75	VZ 2
	VZ ZA	394.22	364.27	352.25	427.63	460.47	529.67	504.38	474.34	460-05	VI ZA
	V-THETA 2 V-THETA 2A	497.57 2.20	472.27 -12.72	465.66 -25.43	466.44 -34.03	404.10 21.72	361.26 26.37	351.55 15.77	360.80 15.08	338.15 -1.61	V-THETA 2 V-THETA 2A
	H 2	0.5104	0.4864	0.4872	0.5136	0.5194	0.5668	0.5295	0.4968	0.4269	M Z
	M ZA	0.3462	0.3149	0.3053	0.3720	0.4021	0.4661	0.4429	0.4157	0.4023	M 2A
	TURN(PR)	58.229	60.209	61.054	57.392	40.572	31.584	34.156	37.988	43.849	TURN(PR)
	UUBAR LOSS PARA	0.1631 0.0549	0.1433 0.0488	0.1747 0.0600	0.1629 0.0577	0.1162 0.0430	0.1181 0.0454	0.1438 0.0569	0.1443 0.0577	-0.0733 -0.0296	UUBAR LOSS PARA
	DFAC	ú.6102	0.6414	0.6689	0.5713	0.4588	0.3724	0.3801	0.4040	0.3412	DFAC
	EFFP	0.7244	6.7675	0.7285	0.6777	0.7282	0.6612	0.5500	0.5443	1.5803	EFFP
	INCID DEVM	8.382 9.152	14.822 9.312	16.635 7.180	14.519 6.426	6.584 13.711	-1.400 14.515	-2.713 14.230	-3.312 14.4 9 9	-15.496 4.654	DEAM INCID
	P 2	18.547	10.238	18.254	18.760	18.856	19.686	19.420	19.063	18.345	P 2
	P ZA	18.054	17.848	17.777	10.257	18.487	19.230	18.934	18,636	18.505	P ZA
	T 2	571.689	568.633	567.122	568.949	565.089	562.711	562.226	562.008	562-889	T 2
	T 2A UUBAR FS	571.689 0.1613	568.633 0.2148	567.122 0.2323	568.949 0.1861	5 65.089 0.1583	562.711 0.0810	562.226 0.1821	562.008 0.2080	5 62.889 0.2039	T 2A UUBAR FS
	PZ FS	18.540	18.486	18.460	18.848	19.013	19.529	19.577	19.300	19.104	P2 FS
	LOSS PARA F	\$ 0.0543	0.0731	0.0797	0.0659	0.0586	0.0311	0.0720	0.0831	0.0823	LOSS PARA

Table A-5. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 89.63 Equivalent Rotor Speed = 3773,22 Equivalent Weight Flow = 104.66
Hub Radial Distortion

THEFT											
INLFT	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	~0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	y 0	389.75	389.75	389.75	389.75	389.75	389.75	389.75	389.75	389.75	Y O
	V 1 VZ O	357.97 389.75	376.40 389.75	371.70 389.75	349.99 389.74	436.31	520.74	516.95	508.64	450.96 389.65	V 1 VZ 0
	V2 1	357.97	376.40	371.70	349.98	389.72 436.27	389.68 520.65	389.65 516.82	389.64 508.50	450.84	VZ 1
	V-THETA O	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	~0.00	-0.00	V-THETA 1
	M O	0.3534	0.3534	0.3534	0.3534	0.3534	0.3534	0.3534	0.3534	0.3534	M O
	M 1	0.3240	0.3410	0.3367	0.3166	0.3969	0.4769	0,4733	0.4653	0.4107	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR DFAC	1.7060 0.082	1.6278	1-6402 0.046	1.6361 0.102	1.0767 -0.119	0.4006 -0.336	0.4540 -0.326	0.5067 -0.30 5	0.6653	UUBAR DFAC
	EFFP	-0.0985	-0.0424	-0.0573	-0.1314	0.1922	0.6729	0.6364	0.5915	-0.157 0.2 6 59	EFFP
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	PO	15.969	15.969	15.969	15.969	15.969	15.969	15.969	15.969	15.969	PO
	Pl	13.715	13.819	13.802	13.808	14.547	15.440	15.369	15.300	14.826	P 1
	T 0 T 1	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	T 0 T 1
	• •	3100	2101.00	>201100	2101100	3201700	7101.00	3100.00	3101100	225.100	• •
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTOR -T.E.	BETA 2 BETA(PR) 1	46.997 56.658	45.380 54.251	43.635 54.348	37.829 56. 94 9	29.178 52.486	25.329 48.706	26-221 49-700	28.633 50.369	32.841 53.989	BETA 2
	BETA(PR) 2	22.228	26.544	26.169	27.887	30.630	33.287	36.779	40.059	48.500	BETA(PR) 1 BETA(PR) 2
	V 1	358.77	397.28	400.83	377.69	468.74	563.56	564-30	556.95	492.59	V 1
	V 2	541.77	520.91	535.42	561.38	601.88	617.60	584.72	539.70	444.46	¥ 2
	V2 1	358.70	397.19	400.78	377.67	468.16	561.28	560.59	552.98	489.38	VZ 1
	VZ 2	369.49	365.88	387.50	443.39	525.27	557.34	523.18	472.39	372.49	VZ 2
	V-THETA 1 V-THETA 2	~0.00	~0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V(PR) 1	396.19 652.7	370.76 679.9	369.46 687.6	344.29 692.5	293.30 769.1	2 63.79 852.0	257.68 869.1	257.90 869.5	240.43 834.3	V-THETA 2 V(PR) 1
	VIPRI 2	399.2	409.0	431.8	501.7	610.7	667.6	654.6	618.5	563.0	V(PR) 2
	VTHETA PRI	-545.2	-551.8	-558.7	-580 -4	-609.8	-639.0	-661.0	-667.7	-673.3	VTHETA PRI
	VTHETA PRZ	-151.0	-162.8	-190.4	-234.6	-311.0	-365.9	-391.1	-397.2	→21.0	WTHETA PR2
	U 1	545.20	551.76	558.72	580.44	609.80	639.03	661.01	667.70	673.30	U I
	U 2 M 1	547.18	553.53	559.88 0.3637	578.93	604.32	429.71	648.76	655.11	661.45	U 2
	M 2	0.3247 0.4793	0.3604 0.4604	0.4745	0.3422 0.4980	0.4274 0.5377	0.5182 0.5538	0.5189 0.5230	0.5117 0.4810	0.4501 0.3931	M 1 M 2
	H(PR) 1	0.5907	0.6168	0.6240	0.6275	0.7014	0.7834	0.7991	0.7989	0.7622	M(PR) 1
	M(PR) 2	0.3531	0.3615	0.3826	0.4450	0.5456	0.5986	0.5855	0.5512	0.4979	M(PR) 2
	TURN(PR)	34.427	27.703	28.176	29.061	21.836	15.355	12.824	10.211	5.412	TURN (PR)
	UUBAR	0.1391	0.1645	0.1152	-0.0106	-0.0427	0.0529	0.0940	0.1598	0.1939	UUBAR
	LOSS PARA Deac	0.0373 0.5645	0.0432 0.5586	0.0307 0.5318	-0.0029	-0.0118	0.0149	0.0261	0.0429	0.0455	LOSS PARA
	EFFP	0.8431	0.7744	0.8636	0.4283 0.9242	0.3282 0.9544	0.3198 0.8162	0.3488 0.7648	0.3917 0.6630	0.4263 0.5627	DFAC EFFP
	EFF	0.8385	0.7684	0.8597	0.9218	0.9530	0.8119	0.7598	0.6568	0.5558	EFF
	INC 1D	4.227	3.335	3.769	4.907	-1.517	-7.296	-7.006	-11.961	-14.189	INCID
	DEVM	7-078	12.384	11.536	9.247	7.419	5.727	5.156	6.921	12.524	DEVM
	P 1 P 2	13.715 16.645	13.819 16.628	13.802	13.608	14.547	15.440	15.369	15.300	14.826	P 1
	Τì	518.700	518.700	16-824 516-700	17.193 518.700	17.867 518.700	10.193 518.700	17.856 518.700	17.389 518.700	16.552 518.700	P 2 T 1
	ŤŽ	556,119	555.356	553.806	555.081	551.627	549.361	548-587	548.112	548.525	Ť 2
STATOR E	PCT SPAN	95.00	90 00	85 00	70 00	50 00	20				
31410K E	DIA	33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00 36.420	30.00 37.848	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	BETA 2	47.346	45.127	42.880	37.877	28.791	25.238	38.919 26.742	39.276 29.490	39.633 34.173	DIA BETA 2
STATOR-T.E.	BETA ZA	-0.900	1.500	2.250	1.500	0.200	0.600	2.001	1.250	-1.701	BETA ZA
	V 2	538.79	523.35	543.25	561.38	610.24	620.58	574.84	525.98	429.79	Y 2
	V 2A	424.58	417.40	417.86	489.86	560.71	579.91	517.01	487.32	472.79	V ZA
	VZ 2 VZ 2A	365.06 424.52	369.24 417.25	398.07 417.52	443.05	534.53	560.76	512-64	457.18	355.08	AS S
	V-THETA 2	396.26	370.88	369.65	489.62 344.61	560.52 293.75	579.54 264.33	516.28 258.30	486.78 258.56	472.08 241.07	VZ ZA V-THETA 2
	V-THETA 2A	-6.67	10.92	16.40	12.82	1.96	6.07	18.03	10.62	-14.02	V-THETA 2A
	M 2	0.4765	0.4626	0.4817	0.4980	0.5456	0.5566	0.5137	0.4682	0.3797	H 2
	M ZA	0.3723	0.3661	0.3671	0.4320	0.4990	0.5181	0.4597	0.4325	0.4190	M ZA
	TURN (PR) UUBAR	48.246	43.627	40.628	36.370	28.575	24-611	24.703	28.195	35.817	TURN(PR)
	LOSS PARA	0.0766 0.0258	0.0153 0.0052	0.0911 0.0313	0.0004 0.0001	-0.0040 -0.0015	0.0485	0.1925	0.1560	-0.2045	LOSS GADA
	DFAC	0.4639	0.4368	0.4549	0.3379	0.2584	0.0187 0.2265	0.0762 0.2672	0.0624 0.2632	-0.0825 0.1406	LOSS PARA Deac
	EFFP	0.8143	0.9613	0.7951	0.9985	1.0226	0.4625	0.0623	-0.0152	0.0780	EFFP
	INCIO	-2.821	1.740	2.589	-0.154	-7.912	-10.622	-11.956	-13-674	-25.027	INCID
	DEAW	7.932	12.812	13.560	12.475	11.212	12.266	14.440	13.929	3.155	DEVM
	P 2 P 2A	16.645 16.659	16.628 16.593	16.824	17.193	17.867	18.193	17.856	17.389	16.552	P 2
	7 2	556.119	555.356	16.599 553.806	17.192 555.081	17.880 551.627	18.026	17-290	17-010	16.872	P 2A
	T ZA	556.119	555.356	553.806	555.081	551.627	549.341 549.361	548.587 548.587	548.112 548.112	548.525 548.525	T 2 T 2A
	UUBAR FS	0.0800	0.1123	0.0980	0.0533	0.0623	0.0341	0.2602	0.2853	0.2882	UUBAR FS
	PZ FS		16.875	16.843	17.343	16.098	18.142	18.125	17.826	17.636	PZ FS
	LOSS PARA F	0.0269	0.0381	0.0336	0.0133	0.0233	0.0131	0.1030	0.1141	0.1163	LOSS PARA F

Table A-5. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 89.44 Equivalent Rotor Speed = 3765.60 Equivalent Weight Flow = 92.29 Hub Radial Distortion

INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1 V O	-0.000 347.22	-0.000 347.22	-0.000 347.22	-0.000 347.22	-0.000	-0.000 347.22	-0.000 347.22	-0.000 347.22	-0.000	BETA 1 V O
	¥ 1	287.42	300.45	301.64	295.70	347.22 371.16	450.62	438.21	435.24	347.22 395.63	A 1
	VZ O	347.22	347.22	347.22	347.21	347.19	347.16	347.13	347.12	347.13	AX 0
	VZ 1 V—THETA O	287.42 -0.00	300.45 -0.00	301.64 -0.00	295.69	371.14	450.54	438.10 -0.00	435.12	395.53	VZ I
	V-THETA 1	-0.00	-0.00	-0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00	-0.00 -0.00	-0.00 -0.00	V-THETA D
	M O	0.3141	0.3141	0.3141	0.3141	0.3141	0.3141	0.3141	0.3141	0.3141	# O
	R 1	0.2592	0.2711	0.2722	0.2667	0.3362	0.4104	0.3987	0.3959	0.3589	M 1
	TURN UUBAR	0.0 1.5798	0.0 1.5201	0.0 1.5057	0.0 1.5181	0.0 0.9846	0.0 0.3749	0.0 0.4243	0.0 0.4830	0.0 0.7765	TURN LAJBAR
	DFAC	0.172	0.135	0.131	0.148	-0.069	-0.298	-0.262	-0.254	-0.139	DFAC
	eff P Incid	-0.2445 -0.0000	-0.1954 -0.0000	-0.1921 -0.0000	-0.2179 -0.0000	0.1279 -0.0000	0.6547 -0.0000	0.5914 -0.0000	0.5501 -0.0000	0.2814 -0.0000	effp incid
	DEAW	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEAN
	PO	15.609	15.609	15.609	15.609	15.609	15.609	15.609	15.609	15.609	PG
	P 1 T 0	13.979 518.700	14.041 518,700	14.056 518.700	14.043 518.700	14.593 518.700	15.222 518.700	15.171 518.700	35.111 510.700	14.008	P 1 T Ø
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	510.700 510.700	T 1
ROTOR E	PCT SPAN Dia	95.00 33.236	90.00 33.621	85.00 34.007	70.00 35.164	50.00 36.706	30.00 38.248	15.00 39.405	10.00 39.791	5.00 40.176	PCT SPAN Dia
ROTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTOR -T.E.	BETA 2	54.594	54.713	53.323	47.177	37.397	31.909	33.088	36.102	41.115	BETA 2
	BETA(PR) 1 BETA(PR) 2	62.109 18.675	60.131 25.248	59.830 27.275	61.213 27.091	56.902 31.860	52 . 883 33.450	54.446 38.013	54.822 51.117	57.539 48.446	BETA(PR) 1 BETA(PR) 2
	V 1	288.03	316.31	324-17	318.31	397.18	484.57	474.60	473.05	430.23	A J
	V 2	540.21	507.42	503-39	534.40	547.95	577.70	540.41	506-24	438.78	¥ 2
	VZ 1 VZ 2	287.98 312.98	316.23 293.12	324.13 300.68	318.29 363.24	396.69 435.15	482.61 489.71	471.48 451.74	469.69 408.07	427。43 329。90	AS S AS U
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	440.30	414.18	403.72	391.95	332.66	304.92	294.35	297.59	207.94	V-TMETA 2
	V(PR) 1 V(PR) 2	615.6 330.4	635.0 324.1	645.0 338.3	661.0 408.0	726.7 512.6	860.9 587.7	812.7 574.5	817.2 542.8	7 97.9 498.1	V(PR) L V(PR) 2
	VTHETA PRI	-544.1	-550.6	-557.6	-579.3	-608.6	-637.7	-659.7	-666.4	-671.9	WTHETA PRI
	VTHETA PR2	-105.8	-138.2	-155.0	-185.8	-270.4	-323.5	-353.1	-356.2	-372.2	VTHETA PRZ
	U 1 U 2	544.10 546.08	550.65 552.41	557.60 558.75	579.27 577.76	608.57 603.10	637.74 628.44	659.68 647.45	666.36 653.78	671.94 660.12	U 1 U 2
	M I	0.2597	0.2856	0.2928	0.2875	0.3603	0.4424	0.4330	0.4315	0.3912	# I
	M 2	0.4756	0.4462	0.4432	0.4714	0.4854	0.5141	0.4793	0.4479	0.3861	# Z
	M(PR) 1 M(PR) 2	0.5551 0.2909	0.5734 0.2850	G.5826 G.2979	0.5969 0.3599	0.6593 0.4540	0.7313 0.5230	0.7414 0.5096	0.7455 0.4802	0.7255 0.4383	M(PR) 1 M(PR) 2
	TURN (PR)	43.431	34.880	32.553	34.121	25.025	19.373	16.345	13.613	9.025	TURN (PR)
	UUBAR	0.1374	0.1704	0.1515	0.0466	0.0175	0.0420	0.0833	0.1396	0.1737	UUBAR
	LOSS PARA Deac	0.6377 0.6709	0.0452 0.6812	0.0400 0.6615	0.0128 0.5649	0.0048 0.4414	0.0118 0.3933	0.0228 0.4176	0.0369 0.4623	0.0408 0.5024	LOSS PARA Deac
	EFFP	0.8462	6.8613	0.8356	6.9057	0.8961	0.8678	0.8047	0.7476	0.6784	EFFP
	EFF Incid	0.8410	0.7952	0.8305	0.9025	0.8928	0.8640	0.7996	0.7416	0.6713	EFF
	DEAM	9.678 3.525	9.216 11.088	9.252 12.642	9.170 8.450	2.901 8.649	-3.116 5.890	-4.252 6.389	-7.500 7.979	-10.631 12.469	DE AM IMCID
	P 1	13.979	14.041	14.056	14.043	14.593	15.222	15.171	15.111	14.808	P 1
	P 2 T I	17.655 518.700	17.373 518.700	17.389 518.700	17.767 518.700	18.072 518.700	18.521 518.700	18.196 518.700	17.867 518.700	17.278 518.700	P 2 T 1
	Ť Ž	561.235	559.622	557.853	558-655	555.296	553.311	553.292	553.002	553.514	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2 Beta 2a	55.069 1.000	54.368 0.800	52.305 -0.500	47.242 0.300	36.910	31.802	33.748	37.214	42.926	BETA 2
STATOR-T.E.	V 2	537.14	509.77	510.48	534.40	1.900 555.01	1.400 580.33	1.200 531.77	0.900 493.88	-2。651 424。38	Beta 2a V 2
	V_2A	376.72	353.28	340,46	407.82	458.60	510.07	456.67	426.39	414.80	¥ ZA
	VZ 2 VZ 2A	307.56 376.66	296.97 353.24	312.13 340.44	362.76 407.75	443.59 458.19	492.76 509.62	441.63 456.20	392.85 425.96	3 10.40 413. 9 2	A5 5V A5 5
	V-THETA 2	440.37	414.32	403.92	392.32	333.17	305.55	295.06	298.34	268.70	V-THETA 2
	V-THETA ZA	6.57	4.93	-2.97	2.14	15.20	12.46	9.56	6.69	-19.16	V-THETA ZA
	M 2 M ZA	0.4727 0.3279	0.4483 0.3075	0-4497	0.4714 0.3564	0.4919 0.4034	0.5165 0.4513	0.4713 0.4024	0.4365 0.3750	0.3731 0.3644	M 2 M 2A
	TURN (PR)	54.069	53.567	52.803	46.935	34.992	30.370	32.502	36.263	45.515	TURN (PR)
	UUBAR LOSS PARA	0.1314 0.0443	0.0897 0.0305	0.1311 0.0451	0.0962 0.0342	0.0547 0.0203	0.0421	0.1257 0.0498	0.1110 0. 04 44	-0.1550 -0.0625	UUBAR Loss Para
	DFAC	0.5708	0.5806	0.6077	0.4969	0.3866	0.3165	0.3552	0.3742	0.3166	DFAC
	EFFP	0.7605	0.8394	0.7797	0.7877	0.8428	0.8337	0.5588	0.5944	4.2472	EFFP
	DEAW INCID	4.902 9.832	10.980 12.112	12.014 10.810	9.211 11.275	0.204 12.912	→.063 13.066	-4.957 13.640	-5.957 13.579	-16.278 2.206	DEAW INCID
	P 2	17.655	17.373	17.389	17.767	18.072	18.521	18.196	17.867	17.278	P 2
	P ZA	17.325	17.172	17.094	17.526	17.921	18.392	17.874	17.624	17.523	P 2A
	T 2 T 2A	561.235 561.235	559.622 559.622	557.853 557.853	558.655 558.655	555.296 555.296	553.311 553.311	553.292 553.292	553.002 553.002	553.514 553.514	T 2 T 2A
	UUBAR FS	0.1034	0.1373	0.1533	0.1093	0.0824	0.0319	0.2179	0.2659	0.2520	UUBAR FS
	P2 FS	17.576	17.496	17.448	17.804	18.154	18.489	18.500	18.330	18.138	P2 FS
	LOSS PARA F	5 0.0348	0.0467	0.0527	0.0388	0.0305	0.0122	0.0863	0.1063	0.1016	LOSS PARA FS

Table A-5. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 89.02 Equivalent Rotor Speed = 3747.66 Equivalent Weight Flow = 82.24
Hub Radial Distortion

INLET											
MELI	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.065	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	~0.000	⊸	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V 0	310.84 245.30	310.84 245.30	310.84 244.55	310.64	310.84	310.84	310.04	310.84 376.81	310.84 342.14	V 0 V 1
	¥2 0	310.84	310.84	310.84	247.59 310.84	330.99 310.82	397.38 310.79	385.14 310.77	310.76	310.76	vz o
	V2 1	245.29	245.30	244.55	247.59	330.97	397.32	385.04	376.70	342.05	VZ 1
	V-THETA O	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 0
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.2806	0.2806	0.2806	0-2806	0.2806	0.2006	0.2806	0.2804	0,7804	M O
	M 1	0.2208	0.2208	0.2201	0.2229	0.2991	0.3605	0.3491	0.3414	0.3094	M 1
	TURN UUBAR	0.0 1.5269	0.0 1.4732	0.0 1.4630	0.0 1.4502	0.0 0.9450	0.0	0.0 0.3964	0.0 0.4693	0.0 0.7532	TURN UUBAR
	DFAC	0.211	0.211	0.213	0.203	-0.065	0.3274 -0.278	-0.239	-0.212	-0.101	DFAC
	EFFP	-0.3238	-0.3403	-0.3483	-0.3336	0.1251	0.6665	0.5814	0.5066	0.2220	EFFP
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEAW	0.000	0.000	0.000	0.000	0.000	0.000	9.000	0.000	0.000	DEAW
	PO	15.378	15.378	15.378	15.378	15.378	15.378	15.378	15.378	15.378	PO
	P 1	14.129	14.173	14.181	14.191	14.605	15.110	15.054	14.994	14.762	P 1
	T O	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	T 0 T 1
	• •	320.100	2101100	7101100	3151100	7101100	3161100	3101100	3200100	720.100	• •
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTOR -T.E.	BETA Z	57.598	58.320	58.072	53.774	45.528	36.394	36.633	39.917	44.861	BETA 2
	BETA(PR) 1 BETA(PR) 2	65.589 20.282	64.807 25.724	64.710 27.592	65.232 26.903	59.760 32.935	56.246	57.836 37.156	58.591 40.353	61.154 46.548	BETA(PR) 1 BETA(PR) 2
	A 1	245.81	257.86	262.24	266.01	353.51	33.144 425.88	415.60	407.85	370.77	V 1
	A S	521.41	497.99	494.26	519.64	514.30	559.66	535.40	504.16	452.78	v ž
	VZ 1	245.76	257.80	262.21	266.00	353.07	424-16	412.86	404.95	368.35	VZ 1
	A5 5	279.39	261.53	261.39	307.09	360.20	449.93	427.63	365.86	320.26	VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.0 0	~0.00	V-THETA 1
	V-THETA 2	440.23	423.78	419.48	419.19	366.89	331.64	320.29	322.82	310.92	V-THETA 2
	V(PR) 1 V(PR) 2	594.7 297.9	605.7 290.3	613.8 294.9	634.9 344.4	701.3 429.3	764.3 538.1	777.0 537.7	778.6 507.4	764.6 466.4	V(PR) 1 V(PR) 2
	VTHETA PRI	-541.5	-548.0	-554.9	-576.5	-605.7	-634.7	-656.5	-663.2	-668.7	VTHETA PRI
	VTHETA PR2	-103.3	-126.0	-136-6	-155.8	-233.3	-293.8	-324.1	-327.8	-338.0	VTHETA PRZ
	U 1	541.51	548.02	554.94	576.51	605.67	634.70	656.53	663.18	668.74	U 1
	U 2	543.48	549.78	556.09	575.00	600.23	625.45	644.36	650.67	656.97	U Z
	M 1	0.2212	0-2322	0.2362	0.2396	0.3199	0.3671	0.3775	0.3703	0.3358	M 1
	M 2 M(PR) 1	0.4583 0.5353	0.4376	0.4347	0.4570	0.4534	0.4961	0.4737	0-4450	0.3980	M 2
	M(PR) 2	0.2618	0.5454 0.2551	0.5528 0.2594	0.5719 0.30 29	0.6345 0.3785	0.6948 0.4770	0.7058 0.4757	0.7068 0.4479	0.6926 0.4100	M(PR) 1 M(PR) 2
	TURN(PR)	45.305	39.079	37.116	38.328	26.809	23.046	20.599	18.157	14.549	TURN (PR)
	UUBAR	0.1554	0.1863	0.1784	0.1243	0.1219	0.0668	0.0864	0.1441	0.1762	UUBAR
	LOSS PARA	0.0422	0.0492	0.0469	0.0341	0.0329	0.0188	0.0239	0.0385	0.0429	LOSS PARA
	DFAC	0.7139	0.7262	0.7226	0.6605	0.5555	0.4409	0.4498	0.4923	0.5364	DFAC
	EFFP	0.8332	0.8189	0.8506	0.8677	0.8297	0.8590	0.8319	0.7806	0.7367	EFFP
	EFF INCID	0.8276 13.159	0.8132 13.892	0.8459 14.132	0.8632 13.189	0.8246 5.760	0.854 8 0.252	0.8270 -0.854	0.7747 -3.720	0.7300 -7.005	EFF INCID
	DEVM	5.133	11.565	12.958	8.262	9.724	5.585	5.533	7.215	10.571	DEAM
	P 1	14.129	14.173	14.181	14.191	14.605	15.110	15.054	14.994	14.762	P 1
	P 2	17.792	17.614	17.645	17.959	18.006	18.582	18.378	18.064	17.635	PZ
	<u>T 1</u>	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	<u>T</u> 1
	T 2	561.368	559.570	558.212	560.514	957.475	555.635	555.489	555.294	555.735	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	58.109	57.941	56.885	53.854	44.906	36.272	37.588	41.196	46.984	BETA 2
STATOR-T.E.	BETA 2A	0.930	-1.100	→.450	-4.780	2.600	3.001	2.201	2.101	1.100	BETA 2A
	V 2 V 2A	518.58 347.93	500.21	501.09	519.64	520.68	562.18	526.93	491.90 414.98	437.77	V 2 V 2A
	VZ 2	273.97	326.49 265.50	315.40 273.75	374.92 306.48	404.72 368.66	461.05 452.87	437.35 417.09	369.74	402.90 298.36	VZ 2
	VZ ZA	347.88	326.42	314.43	373.56	404.17	460.14	436.68	414.33	402.40	VZ ZA
	V-THETA 2	440.30	423.92	419.69	419.59	367.45	332.32	321.07	323.64	319.77	V-THETA 2
	V-THE TA 2A	5.65	-6.27	-24.47	-31.24	18.35	24.12	14.78	15.20	7.73	V-THETA 2A
	M 2	0.4557	0.4396	0.4410	0.4570	0.4592	0.4985	0.4659	0.4338	0.3844	M 2
	M 2A	0.3023	0.2838	0.2744	0.3265	0.3540	0.4055	0.3841	0.3640	0.3530	M ZA
	TURN(PR) Uubar	57.179 0.1658	59.040 0.1616	61.333 0.2059	58.627 0.1847	42.287 0.1200	33.236 0.1313	35.341 0.1488	39.044 0.1065	45.825 -0.0619	TURN (PR) UUBAR
	LOSS PARA	0.0558	0.0550	0.0707	0.0654	0.0444	0.0505	0.0589	0.0426	-0.0249	LOSS PARA
	DFAC	0.6115	0.6403	0.6760	0.5873	0.4718	0.3921	0-4002	0.4087	0.3689	DFAC
	EFFP	0.7185	0.7358	0.6790	0.6404	0.7189	0.6333	0.5576	0.4557	1.3789	EFFP
	INCID	7.942	14.553	16.595	15.824	8.200	0.404	-1.118	-1.976	-12.220	INCID
	DEVM	9.762	10.212	6.860	6.196	13.611	14.665	14.640	14.779	5.953	DEVM
	P 2 P 2A	17.792 17.400	17.614 17.260	17.645	17.959	18.006	18.582	18.378	16.064	17.635	P 2
	1 2	561.368	559.570	17.191 558.212	17.516 560.514	17.715 557.475	18.201 555.635	18.000 555.489	17.830 555.294	17.740 555.735	P 2A T 2
	T ZA	561.368	559.570		560.514	557.475	555.635	555.489	555.294	555.735	T 2A
	UUBAR FS	0.1628	0.2183	0.2407	0.1996	0.1537	0.0717	0.2066	0.2078	0.2084	UUBAR FS
	P2 FS	17.783	17.772	17.746	18.003	18.102	18.395	18.563	18.343	18.217	P2 FS
	LOSS PARA F	S 10 - J548	0.0743	0.0826	0.0706	0.0569	0.0275	0.0818	0.0831	0.0838	LOSS PARA FS

Table A-5. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed - 69.99 Equivalent Rotor Speed = 2946.55 Equivalent Weight Flow = 83.81
Hub Radial Distortion

**** **											
INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.065	DIA
	BETA O BETA 1	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.600 -0.600	-0.000 -0.000	-0. 900 -0.900	BETA O BETA 1
	A O	316.30	316.30	316.30	316.30	316.30	314.30	316.30	316.30	316.30	A C DEIW T
	V 1	271. 9 0	279.32	274.05	278.18	345.04	407.94	391.78	384.69	347.40	y 1
	AS O	316.30	316.30	316.30	316.30	316.28	316.25	316.22	316.22	316.22	AY O
	VZ B V—THETA C	271.90 -0.00	279.32 -0.0 0	274.05 -0.00	278.18 -0.00	345.02 -0.00	407.87 -0.99	391.68 -0.0 0	384.50 -0.6 0	347.31 -0.63	vz 1 V—Theta c
	W-THETA 1	~0.00	⊸.∞	-0.00	-0.00	-0.00	-0.00	-0.00	-0.0 0	-0.00	V-THETA 1
	MO _	0.2856	0.2856	0.2856	0.2856	0.2854	0.2056	0.2856	9.2856	0.2056	я о
	m 1 Turk	0.2450 0.0	0.2518 0.0	0.2470 0.0	0.2507 0.0	0.3120 0.0	0.3704 0.0	0.3553 0.0	0.3487 0.0	0.3142 0.0	m 1 Turk
	UUBAR	1.5374	1.4756	1.4732	1.4596	0.9442	0.3535	0.4029	0.4684	9.7986	LGJ8AR
	OFAC	0.140	0.117	0.134	0.121	-0.09k	-0.290	- 9°. 239	-0.216	- 0.098	DF AC
	effp Incid	-0.2022 -0.0000	-0.1738 -0.0000	-0.2019 -0.0000	-0.1822 -0.0000	0.1690 -0.000 0	0.6595 -0.6660	0.5772 -0.6690	9.5125 -0.0000	0.21 65 -0. 60 00	effp ircio
	DEAN	0.000	0.000	0.000	0.000	Ø. 000	0.000	0.000	0.000	0.000	DEAM
	PO	15.425	15.425	15.425	15.425	15.425	15.425	15.425	15.425	15.425	PQ
	P 1 T O	14.119 518.700	14.171 518.700	14.173 518.700	14.105 518.700	14.623 518.700	15.124 516.700	15.082 518.7 9 0	15.027 516.700	14.760 516.700	P 1 7 0
	T 1	518.700	518.700	518.700	518.700	518.700	519.700	516.709	518.700	518.700	TA
ROTER E	PCT SPAN	95.00	90:00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E. ROTOR -T.E.	BETA I BETA 2	-0.000	-0.000	-0.000	-0.000	-0.000	⊸0.600	-0.000	-0.000	-0.000	GETA 1
KD1UK -1.66	BETA(PR) 1	46.193 57.307	44.062 55.712	42.398 56.014	37.432 56.572	29.064 52.221	24.939 43.879	24.530 50.654	26.605 51.577	29.947 54.566	BETA 2 Beta(PR) 1
	BETA(PR) 2	21.853	25.751	25.335	26.268	29.660	32.844	37.473	39.865	48.993	BETA(PR) 2
	A I	272.48	293.86	294.17	299.21	368.75	437-43	422.94	416.58	376,58	A I
	¥ 2 ¥ 2 1	427.62 272.42	414.83 293.80	427.02 294.14	452.23 299.19	479.04 368.30	489.12 435.66	456.60 420.16	428.86 413.62	344.27 3 74.1 3	A5 J A 5
	AZ 5	296.00	298.00	315.34	359.10	419.23	442.60	414.27	301.60	299.23	AT S
	A-THETA I	-0.00	-0.00	-0.00	-0.00	-0.00	-0.90	-0.00	-0.00	-0.00	A-IMELU I
	V-THETA 2 V(PR) 1	308.59 505.5	208.48 521.5	287.92 526.2	274.87 543.1	233.00	205.90	189.05	192.84	172.39	Y-TMETA 2
	V(PR) 2	318.9	331.0	348.9	400.5	602.3 482.7	663.6 527.8	667.3 523.1	667.4 493.3	646.7 456.7	A(bu) S A(bu) I
	VTHETA PRE	-425.8	-4 30.9	-436.3	- 453.3	-476.2	-<9 79.0	-516.2	-521.4	-525.0	VTHETA PRI
	U I	-118.7	-143.8	-149.3	-177.2	-230.9	-289.8	-317.6	-318.7	-344.1	VTHETA PRZ
	0 1	425.76 427.30	430.88 432.26	436.31 437.22	453.27 452 .0 9	476-20 471-92	499.02 491.75	516.19 506.62	521.42 511.50	525.79 516.54	U 1 U 2
	M 1	0.2455	0.2651	0.2653	0.2699	0.3340	0.3980	0.3844	0.3784	0.3412	M 1
	A 2	0.3800	0.3685	0.3801	0.4026	0.4292	0.4384	0.4085	0.3831	0.3077	M 2
	M(PR) 1 M(PR) 2	0.4555 0.2834	0.4704 0.2940	0.4746 0.3106	0.49 00 0.3567	0.54 54 0.4316	0.6037 0.4731	0.6065 0.4660	0.6063 0.4452	0.5860 0.4059	M(PR) 1
	TURM (PR)	35.530	29.957	30.677	30.304	22.582	15.970	13.288	11.613	5.497	M(PR) 2 TURM(PR)
	UUBAR	0.1250	0.1240	0.0851	-0.0177	-0.9483	0.0342	0.0500	0.1039	0.1432	UUBAR
	LOSS PARA Deac	0.0336 0.5462	0.0328 0.5279	0.0228 0.4996	-0.0049 0.4182	-0.0135	0.0097	0.0138	0.0280	0.0333	LOSS PARA
	EFFP	0.8277	0.7840	0.8829	0.9279	0.3225 0.9561	0.3083 0.8236	0.3136 0.7725	0.3537 0.7210	0.3674 0.5665	DFAC EFFP
	EFF	0.8245	0.7803	0.8807	0.9264	0.9353	0.8210	0.7694	0.7179	0.5623	EFF
	DEAW INCID	4.956 6.704	4.796 11.591	5.436 10.702	4.530 7.627	-1.722	-7.124	-7.848	-10.752	-13-611	INCID
	Pi	14.119	14.171	14.173	14.185	&. 469 14.623	5.285 15.124	5.850 15.082	6.728 15.027	13.017 14.780	6 I D€A∺
	P 2	16.050	15.971	16.082	16.307	16.656	16.790	16.586	16-376	15.830	P 2
	T 1 T 2	518.700	518.700	518.700	518.700	518.700	516.700	518.700	518.700	518.700	T 1
	1 2	542.174	541.808	540.344	541.458	539.2 79	537.847	537.250	536.674	536.964	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	16 00	10 00		DET COAS
	DIA	33.207	33.564	33.921	34° 99 2	36.420	37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAM Dia
STATOR-L.E.	BETA 2	46.503	43.844	41.748	37.479	28.736	24.868	24.954	27.522	31.059	BETA 2
STATOR-T.E.	BETA ZA V Z	0.300 425.48	1.400	1.900 432.64	1.350	0.230	0.590	2.130	1.220	-2.401	BETA ZA
	V ZA	347.12	416.60 343.07	344.70	452.23 403.05	495.63 448.88	491.15 461.35	449.84 418.20	419.00 389.18	335.55 379.28	A 58
	VZ 2	292.86	300.46	322.77	358.82	425.60	445.15	407.26	371.04	287.00	¥2 2
	VZ ZA	347.11	342.96	344.49	402.88	448.73	461.06	410.58	388.75	378.55	AS SV
	V-THETA 2 V-THETA 2A	308.64 1.82	288.57 8.38	288.06 11.43	275.13 9.49	233.35 1.80	206.33 4.02	199.51 15.27	193.33 8.28	172.85 -15.87	V-THETA 2
	# 2	0.3780	0.3701	0.3853	0.4028	0.4346	0.4403	0.4023	0.3741	0.2960	V—THETA 2A M 2
	M ZA	0.3070	0.3034	0.3053	0.3578	0.4006	0.4127	0.3667	0.3468	0.3377	# 2A
	TURN(PR) UUBAR	46.203 0.0668	42.443 0.0364	39.846 0.0852	36.123	26.489	24.340	22.787	26.259	33.405	TURN (PR)
	LOSS PARA	0.0225	0.0124	0.0293	0.0128 0.0045	0.0135 0.0050	0.0456 0.0176	0.1920 0.0761	0.1852 0.0741	-0.1998 -0.0805	UUBAR Loss para
	DFAC	0.4271	0.4057	0.4236	0.3179	0.2526	0.2200	0.2403	0.2489	0.0976	DFAC
	EFFP Incid	0.8108 -3.664	0.8929 0.456	0.7794 1.457	0.9420	0.9147	0.6419	-0.1015	-0.2814	0.3144	EFFP
	DEVM	9.132	12.712	13.210	12.325	7.968 11.242	-10.993 12.166	-13.742 14.570	-15.641 13.899	-28.138 2.456	INCID DEVM
	P 2	16.050	15.971	16.082	16.307	16.656	16.790	16.586	16.376	15.830	P 2
	P 2A T 2	15.949	15.919	15.948	16.285	16.629	16.695	16.250	16.096	16.019	P 2A
	T ZA	542.174 542.174	541.808 541.808	540.344 540.344	541.458 541.458	539 .279 539 .279	537 .8 47 537 .8 47	537.250 537.250	536.674 536.674	534,044	T 2 T 2A
	UUBAR FS	0.0949	0.1162	0.0939	0.0416	0.0319	0.0230	0.2819	0.2868	0.2887	UUBAR FS
	P2 FS LOSS PARA F	16.096	16.101	16.096	16.359	16.694	16.742	16.805	16.590	16.479	P2 FS
	LUJJ FARA P	→ 0.0319	0.0395	0.0323	0.0146	0.0118	0.0089	0.1117	0.1147	0.1163	LOSS PARA FS

Table A-5. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.19 Equivalent Rotor Speed = 2955.05 Equivalent Weight Flow = 70.40
Hub Radial Distortion

INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA 0 BETA 1	-0.000	-0.000	-0.000 -0.000	~0.000	-0.000 -0.000	-0.000	-0.000	-0.000 -0.000	-0.000	BETA O Beta 1
	A O BELY I	-0.000 267.00	-0.000 267.00	267-00	-0.000 267.00	267.00	-0.000 267.00	-0.000 26 7.0 0	267.00	-0.000 267.00	A C
	V 1	214.32	219.64	218.48	214.13	261.17	332.68	327.62	322.36	291.11	V 1
	VZ O	267.00	267.00	267.00	267.00	266.98	266.96	266.93	266.93	266.93	V2 0
	VZ 1 V—THETA O	214.32 -0.00	219.64 -0.00	218.48 -0.00	214.13 -0.00	281.15 -0.00	332.63 -0.00	327.54 -0.00	322.27 -0.00	291.04 -0.00	VZ 1 V—THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.2405	0.2405	0.2405	0.2405	0-2405	0.2405	0.2405	0.2405	0.2405	M C
	M 1 Turn	0.1927 0.0	0.1975 0.0	0.1964 0.0	0.1925 0.0	0.2535 0.0	0.3007 0.0	0.2960 0.0	0.2912 0.0	0.2625 0.0	M 1 Turn
	UUBAR	1.4986	1.4038	1.3951	1.3969	0.8726	0.3415	0.3880	0.4415	0.7105	UUBAR
	DFAC	0.197	0.177	0.182	0.198	-0.053	-0.246	-0.227	-0.207	-0.090	DFAC
	EFFP Incid	-0.3085 -0.0000	-0.2975 -0.0000	-0.3686 -0.0000	-0.3410 -0.0000	0.1118 -0.0000	0.6233 -0.0000	0.5710 -0.0000	0.5139 -0.0000	0.2120 -0.0000	EFFP INCID
	DEAM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	P O P I	15.179	15.179	15-179	15.179	15.179	15.179	15.179	15.179	15.179	P O P 1
	T 0	14.281 518.700	14.338 518.700	14.343 518.700	14.342 518.700	14.656 518.700	14.974 518.700	14. 94 6 518.700	14.914 518.700	14.753 518.700	1 0
	YA	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Ťì
ROTOR E	PCT SPAR	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTOR -T.E.	BETA 2 Beta(PR) 1	53.989 63.303	53.993 61.902	53.287 61.856	48.069 63.181	38.885 57.919	33.410 54.734	34.257 55.932	36.812 56.559	41.262 59.335	BETA 2 Beta(PR) 1
	BETA(PR) 2	19.354	25.649	26.907	27.206	31.931	33.722	38.172	41.246	48.861	BETA(PR) 2
	A J	214-76	230.76	234.10	229.83	299.73	355.34	352.39	347.82	314.71	V 1
	V 2 V2 1	422.04 214.72	397.27 230.71	396.81 234.08	416.93 229.82	425.43 2 99 .36	445.79 353.91	419.92 350.07	395.21 345.34	341.50 312.66	V 2 V2 1
	¥2 2	248.13	233.54	237.22	278.60	331.04	371.62	346.30	315.67	256.19	¥Z 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00 245.13	-0.00	-0.00	-0.00	V-THETA 1
	V-TMETA 2 V(PR) 1	341.38 478.0	321.36 489.9	318.10 496.3	310.17 509.4	266.97 563.8	613.8	235.85 626.2	236.26 628.0	224.76 614.1	V—THETA 2 V(PR) 1
	V(PR) 2	263.0	259.1	266.0	313.3	390.2	447.4	441.4	420.7	390.0	V(PR) 2
	VTHETA PRI	-4 27.0	-432.1	-437.6	-454.6 -143.3	-477.6 -206.3	-5 00.5	-517.7 -272.2	-522 . 9	-527.3 -393.3	VTHETA PRI VTHETA PR2
	VTHETA PR2	-87.2 426.98	-112.I 432.12	-120.4 437.57	-143.2 454.58	477.57	-248.0 5 00. 46	-272.2 517.68	- 276.8 522.92	-293.3 527.31	U I
	U 2	428.53	433.51	438.48	453.39	473.28	493.17	508.08	513.06	518.03	U 2
	M 1	0.1931	0.2076	0.2106	0.2067	0.2704	0.3216	0.3188	0.3146	0.2841	M 1 M 2
	M 2 M(PR) 1	0.3742 0.4297	0.3519 0.4407	0.3518 0.4465	0.3696 0.4582	0.3780 0.5087	0.3970 0.5554	0.3733 0.5666	0.3509 0.5681	0.3022 0.5545	M(PR) 1
	M(PR) 2	0.2332	0.2295	0.2359	0.2777	0.3467	0.3984	0.3924	0.3735	0.3451	M(PR) 2
	TURN(PR) UUBAR	43.946 0.1144	36.249 0.1588	34. 94 7 0.1508	35.974 0.0663	25.971 0.0376	20.954 0.0431	17.675 0.0784	15.227 0.1263	10.411 0.1555	TURN (PR) Uubar
	LOSS PARA	0.0313	0.0420	0.0399	0.0181	0.0103	0.0121	0.0214	0.0333	0.0362	LOSS PARA
	DFAC	C.6570	0.6638	0.6545	0.5721	0.4597	0.4044	0.4247	0.4608	0.4934	DFAC
	EFFP EFF	0.8749 0.8723	0.8103 0.8066	0.8534 0.8506	0.8683 0.8656	0.8557 0.8529	0.8413 0.8385	0.7878 0.7842	C.7399 0.7359	0.6654 0.6607	EFFP EFF
	INCID	10.873	10.987	11.278	11.138	3.918	-1.263	-2.762	-5.758	-8.830	INCID
	DEVM P 1	4.205	11.490	12.273	8.565	B.720	6.162	6.548	8.108	12-884	b 7 DEAM
	P 2	14.281 16.538	14.338 16.376	14.343 16.396	14.342 16.587	14.656 16.740	14.974 16.968	14.946 16.7 94	14.914 16.621	14.753 16.282	P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
	T 2	544.160	543.588	542.453	544.121	542.240	541.192	541.102	540.859	541.131	T 2
	007 0000	ne	A A A F	85 55	3	F0 00			•		
STATOR E	PCT SPAN Dia	95.00 33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00 36.420	30.00 37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN DIA
STATOR-L.E.	BETA 2	54.397	53.689	52.360	48.136	38.435	33.320	34.880	37.864	42.976	BETA 2
STATOR-T.E.	BETA 2A	1.300	1.360	0.200	-0.300	1.800	1.600	1.430	1.060	-1.400	BETA 2A
	V 2 V 2A	419.94 299.01	398.94 282.45	401.91 276.54	416.93 320.55	430.31 356.63	447.56 388.44	413.90 342.36	306.35 323.12	330.96 310.72	¥ 2 ¥ 2A
	VZ Z	244.47	236 .24	245.44	278.22	336.93	373.66	339.14	304.66	241.87	WZ Z
	VZ ZA V—THETA Z	298.93 341.44	282.36 321.47	276.52 318.25	320.50 310.47	356.33	388.06	341.97 236.42	322.78 236.86	310.30	VZ 2A V—THETA 2
	V-THETA 2A	6.78	6.70	0.97	-1.68	267.38 11.20	245.63 10.84	8.54	5.97	225•36 -7•59	V-THETA ZA
	M 2	0.3723	0.3534	0.3565	0.3696	0.3824	0.3986	0.3679	0.3428	0.2927	M Z
	M 2A Turm (PR)	0.2633 53.097	0.2487 52.328	0.2436 52.158	0.2826 48.4 29	0.3155 36.617	0.3446 31.687	0.3030 33.404	0.2857 36.752	0.2745 44.315	M ZA TURN (PR)
	UUBAR	0.1198	0.0801	0.1161	0.0886	0.0514	0.0575	0.1655	0.1377	-0.1066	UUBAR
	LOSS PARA	0.0403	0.0273	0.0400	0.0315	0.0190	0.0221	0.0656	0.0551	-0.0430	LOSS PARA
	DFAC EFFP	0.5565 0.7687	0.560B 0.8467	0.5840 0.7891	0.4977 0.7 94 1	0.3924 0.8450	0.3351 0.7811	0.3922 0.5008	0.4041 0.5612	0.3466 1.8642	DFAC EFFP
	INCID	4.230	10.301	12.069	10.105	1.730	-2.546	-3.824	-5.307	-16.229	INCID
	DEVA	10.132	12.672	11.510	10.675	12.812	13.265	13.870	13.739	3.455	DEVM
	P 2 P 2A	16.538 16.357	16.376 16.267	16.3 96 16.235	16.587 16.454	16.740 16.657	16.968 16.867	16.794 16.546	16.621 16.442	16.282 16.382	P 2 P 2A
	T 2	544.160	543.588	542.453	544.121	542.240	541.192	541.102	540.859	541.131	T 2
	T 2A UUBAR FS	544.160	543.588	542.453	544.121	542.240	541.192	541.102	540.859	541.131	T ZA
	P2 FS	0.0921 16.491	0.1438	0.1315 16.419	0.1032 16.610	0.0979 16.822	0.0312 16.920	0.2424 16.946	0.2101 16.739	0.2029 16.646	UUBAR FS P2 FS
	LOSS PARA F		0.3490	0.0453	0.0367	0.0362	0.0120	0.0961	0.0841	0.0818	LOSS PARA FS

Table A-5. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 70.87 Equivalent Rotor Speed = 2983.57 Equivalent Weight Flow = 61.83
Hub Radial Distortion

INLET											
14551	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O Beta 1	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	A O	234.88	234.88	234.88	234.88	234.88	-0.000 234.88	-0.000 234.68	-0.000 234.88	-0.000 234.88	BETA 1 V O
	V 1	186.44	201.13	198.03	190.22	238.05	297.14	267.72	285.46	262.47	V 1
	VZ O	234.88	234.88	234.88	234.88	234.87	234.84	234.82	234.82	234.82	VZ 0
	VZ 1 V-THETA O	186.44 -0.00	201.13 -0.00	198.03 -0.00	190.22 -0.00	238.03 -0.00	297.09 -0.00	287.65 -0.00	285.39 -0.00	262.40 -0.00	VZ 1 V—THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.2113	0.2113	0.2113	0.2113	0.2113	0.2113	0.2113	0.2113	0.2113	M 0
	M 1 TURN	0.1675 0.0	0.17907 0.0	0.1779 0.0	0.1709 0.ú	0.2142 0.0	0.2680 0.0	0.2 594 0.0	0.2574	0.2364	M 1 Turn
	UUBAR	1-4304	1.2971	1.2971	1.3304	0.9462	0.3309	0.3820	0.0 0.4175	0.0 0.6530	UUBAR
	DFAC	0.206	0.144	0.157	0.190	-0.013	-0.265	~0.225	-0.215	-0.117	DFAC
	EFFP Incid	-0.3470 -0.0000	-0.2585 -0.0000	-0.2864 -0.0000	-0.3479 -0.0000	0.0279 -0.0000	0.6486	0-5710	0.5370 -0.0000	0.2780	EFFP
	DEAM	0.000	0.000	0.000	0.000	0.000	-0.0000 0.000	-0.0000 0.000	0.000	-0.0000 0.000	DEAW INCID
	PO	15.062	15.062	15.062	15.062	15.062	15.062	15.062	15.062	15.062	PO
	P 1 T D	14.402 518.700	14.464	14.464	14.448	14.626	14.910	14.686	14.870	14.761	P 1
	Ťĺ	518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	7 G 7 1
00 700 5	DCT FRAN	05.00	80.00								
ROTOR E	PCT SPAN Dia	95.00 33.236	90.00 33.621	85.00 34.007	70.00 35.164	50.00 36.706	30.00 38.248	15.00 39.405	10.00 39.791	5.00 40.176	PCT SPAN DIA
ROTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTOR -T.E.	BETA 2	58.065	58.681	58.955	55.618	46.472	38.442	37.852	40.357	45.135	BETA 2
	BETA(PR) 1 BETA(PR) 2	66.574 20.317	64.170 25.385	64.360 26.082	66.033 26.963	62.30 4 33.321	58.005 34.565	59.579 38.179	59.959 41.571	62.129 47.709	BETA(PR) 1 Beta(PR) 2
	V 1	186.83	211.24	212.08	204.04	253.43	316.96	308.95	307.51	283.39	V 1
	V 2	414.25	397.57	399.13	411.46	403.53	429.27	416.38	392.24	353.00	V 2
	VZ 1	186.79	211.19 206.65	212.06	204.03	253.11	315.68	306.91	305.32	281.54	VZ 1
	V-THETA 1	219.12 -0.00	-0.00	205.83 -0.00	232.35 -0.00	267.47 -0.00	335.82 -0.00	328.11 -0.00	298.27 -0.00	248.58 -0.00	VZ 2 V—THETA 1
	V-THETA 2	351.54	339.63	341.95	339.57	302.02	266.56	254.99	253.46	249.75	V-THETA 2
	V(PR) 1	469.B	484.7	490.1	502.3	544.7	596.5	607.2	611.0	603.1	V(PR) 1
	V(PR) 2 VTHETA PRI	233.7 -431.1	228.8 -436.3	229.2 -44 1.8	260.7 →59.0	320.2 -482.2	408.3 -505.3	418.2 -522.7	399.5 ~528.0	370.0 -532.4	V(PR) 2 VTHETA PRI
	VTHETA PR2	-01.1	-98.1	-100.8	-118.2	-175.8	-231.4	-258.0	-264.5	-273.3	VTHETA PRZ
	U 1	431.11	436.29	441.80	458.97	482.18	505.29	522.68	527.97	532.40	U 1
	U 2 M 1	432.67 0.1678	437.69 0.1899	442.71 0.1906	457.77 0.1834	477.85 0.2282	497 .9 3 0.2862	512 .99 0.2789	518.01 0.2775	523.03 0.2555	U 2 M 1
	M 2	0.3668	0.3520	0.3538	0.3641	0.3576	0.3814	0.3696	0.3477	0.3122	M 2
	M(PR) 1	0.4220	0.4357	0.4405	0.4514	0.4904	0.5386	0.5480	0.5515	0.5437	M(PR) 1
	M(PR) 2 Turn(Pr)	0.2069 46.255	0.2026 38.782	0.2031 38.276	0.2307	0.2838 28.969	0.3628	0.3713	0.3542	0.3272	M(PR) 2
	UUBAR	0.1811	0.2236	0.2214	39.069 0.1794	¢.1523	23.388 0.0851	21.324 0.0867	18.313 0.1368	14.367 U.1762	TURN (PR) UUBAR
	LOSS PARA	0.0492	0.0592	0.0596	0.0492	0.0415	6.0236	0.0237	0.0359	0.0420	LOSS PARA
	DFAC EFFP	0.7198 0.8397	0.7339 0.6150	0.7397 0.8628	0.6887	0.5899	0.4646	0.4556	0.4902	0.5319	DFAC
	EFF	0.8363	0.8114	0.8601	0.8273 0.8237	0.8250 0.8216	0.8306 0.8274	0.8119 0.8085	0.7614 0.7573	6.7070 0.7024	EFFP EFF
	INCID	14.144	13.255	13.782	13.991	8.306	2.014	0.894	-2.347	-6.026	INCID
	DEVM P 1	5.167 14.402	11.226 14.464	11.448 14.464	8.323 14.448	10.109 14.626	7.005	6.556	8.433	11.733	DEVM P 1
	P 2	16.659	16.560	16.606	16.729	16.739	14.910 16.988	14.886 16.914	14.870 16.739	14.761 16.493	9 2
	T I	518.700	518.700	518.700	518.700	518.700	518.700	518 -70 0	518.700	518.700	T 1
	T 2	545.044	543.906	542.977	545.632	543.524	542.520	542-540	542.275	542.490	T 2
					=		4				
STATOR E	PCT SPAN DIA	95.00 33.207	90.00 33.564	85.00 33.921	70.00 34.992	50.00 36.420	30.00 37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN DIA
STATOR-L.E.	BETA 2	58.549	58.318	57.811	55.704	47.855	38.338	38.572	41.556	47.124	BETA 2
STATOR-T.E.	BETA ZA	1.050	-0.650	-3.350	-4.530	1.650	3.001	2.001	2.801	2.851	BETA ZA
	V 2 V 2A	412.15 274.39	399.24 256.93	404.27 251.07	411.46 288.34	408.08 316.09	430.95	410.39	383.47 317.14	342.04	V 2 V 2A
	V2 2	215.05	209.68	215.35	231.83	273.74	353.44 337.76	333.82 320.51	286.65	310.52 232.50	A1 5
	VZ ZA	274.34	256.91	250.63	287.40	315.85	352.75	333.35	316.48	309.81	VZ 2A
	V-THETA 2 V-THETA 2A	351.60 5.03	339.74 -2.91	342.12	339.89	302.48	267.11	255.60	254.10	250.42	V-THETA 2
	H 2	0.3649	0.3536	-14.67 0.3584	-22.77 0.3641	9.10 0.3617	18.49 0.3829	11.64 0.3642	15.48 0.3398	15.43 0.3023	V-THETA 2A M 2
	H 2A	0.2411	0.2259	0.2209	0.2534	0.2787	0.3126	0.2949	0.2800	0.2740	M ZA
	TURN (PR) UUBAR	57.499	58.967	61.159	60.227	46.186	35.304	36.524	38.704	44.217	TURN (PR)
	LOSS PARA	0.1694 0.0571	0.1705 0.0580	0.2230 0.0766	0.1919 0.0680	0.1190 0.0441	0.1160 0.0446	0.1558 0.0617	0.1108 0.0443	-0.0648 -0.0261	UUBAR LOSS PARA
	DFAC	0.6176	0-6489	0.6830	0.6130	0.4925	0.4032	0.4235	0.4234	0.3710	DFAC
	EFFP Incid	0.7088 8.382	0.7207 14.930	0.6510 17.521	0.6390	0.7163	0.6643	0.5609	0.6642	1.3535	EFFP INCID
	DEAM	9.882	10.662	7.960	17.673 6.445	11.149 12.662	2.470 14.665	-0.135 14.440	-1.617 15.478	-12.080 7.702	INCID Devm
	P 2	16.659	16.560	16.606	16.729	16.739	16.988	16.914	16.739	16.493	P 2
	P 2A T 2	16.411	16.326	16.291	16.448	16.567	16.799	16.683	16.597	16.559	P 2A
	T ZA	545.044 545.044	543.906 543.906	542.977 542.977	545.632 545.632	543.524 543.524	542.520 542.520	542.540 542.540	542.275 542.275	542.490 542.4 9 0	T 2 T 2A
	UUBAR FS	0.1559	0.21184	0.2420	0.2213	0.1397	0.0786	0.2346	0.1877	0.1949	UUBAR FS
	P2 FS	15.635	16.625	16.640	16,784	16.774	16.922	17.066	16.861	16.820	P2 FS
	LOSS PARA F	- U. 15/5	0.0709	0.0831	0.0784	0.0517	0.0303	0.0929	0.0750	J.0785	LOSS PARA FS

Table A=6. Blade Element Performance
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 99.94 Equivalent Rotor Speed = 4207.34
Tip Radial Distortion Equivalent Weight Flow : 114.99

INLET											
214 CE 1	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	01A	33.122	33.529	33.962	35.312	37. 137	38.954	40.321	40.737	41.085	DIA
	BLTA O	-0.000	-0.000	-0.000	⊸.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BLTA 1	-0.000 430.35	-0.000 430.35	-C.000 430.35	-0.000 430.35	-0.000 430.35	-0.000	-0.000	-0.000	-0.000	BETA 1
	νĭ	571.71	577.34	569.83	571.95	562.67	430.35 415.67	430.35 381.28	430.35 374.57	430.35 363.49	A 1
	VZ O	430.35	430.35	430.35	430.35	430.32	430.28	430.24	430.24	430.24	vz o
	V	571.71	577.34	569.83	571.94	562.63	415.60	381.19	374.47	363.40	VZ 1
	V-THETA C V-THETA 1	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00	-0.00 -0.00	-0.00 -0.00	-0.00	-0.00	V-THETA O
	M G	د 391ء	6.3913	0.3913	0.3913	-0.CO 0.3913	0.3913	-0.00 0.3913	-0.00 0.3913	-0.00 0.3913	V-THETA 1 M O
	M 1	0.5261	0.5315	0.5242	0.5263	0.5173	0.3776	0.3456	0.3393	0.3291	M I
	TURN	.0.0	C.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	DUBAR DFAC	0.7369 -0.328	0.5087 -0.342	0.4646 -0.324	0.4211 -0.329	0.5760 -0.307	1.5513	1.7482	1.7652	1.8026	UUBAR
	EFFP	0.5196	0.6239	0.6315	0.6585	0.5640	0.034 -0.0444	0.114 -0.1355	0.130 -0.1534	0.155 -0.1814	DFAC EFFP
	INC 1D	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	P 0 P 1	16.118 14.928	16.118 15.297	16.118 15.368	16.118 15.438	16.118	16.118	16.118	16.118	16.118	P 0
	ŤŰ	518.700	518.700	518.700	518.700	15.188 518.700	13.613 518.700	13.295 518.700	13.268 518.700	13.207 518.700	P 1 T 0
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	510.700	518.700	518.700	T 1
KOTOR E	PCT SPAN	95.00	90.00	` გ5.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
LOTE - L	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
KOTUK -L.E. RUIUK -T.E.	BETA 1 Beta 2	—ბ.ნინ 36.ნ64	-0.000 33.063	-0.000 31.379	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	BETAIPP) 1	46.686	44.882	44.832	29.388 45.731	29.797 48.044	35.294 58.065	41.335 60.995	44.664 61.604	50.519 62.439	BETA 2 Betaipr) 1
	BETA(PR) 2	24.016	27.185	26.852	27.096	28.808	33.705	39.275	42.857	48.831	BETA (PR) 2
	V 1	573.29	617.92	626.75	630.94	612.06	445.93	411.35	405.38	394.41	V 1
	V 2 V2 1	643.44 573.18	632.43 617.78	655.16 626.68	689.31 630.91	692.04 611.30	626.51	568.64	536.96	492.77	V 2
	V2 2	520.50	530.00	559.32	600.59	600.28	444.13 510.69	408.64 426.19	402.49 381.21	391.84 312.86	V2 1 V2 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	Y-THETA 1
	V-THETA 2	378.22	345.61	341.13	338.25	343.74	361.51	374.87	376.77	379.79	V-THETA 2
	V(PR) 1 V(PR) 2	835.6 569.9	872.0 595.9	883.7 626.9	903.9 674.7	914.9 685.4	840.6	844.1	847.7	848.1	V(PR) I
	VTHETA PRI	-607.9	-615.2	-623.0	-647.2	-680.0	614.7 -712.5	551.6 -737.1	521.0 -744.5	476.0 -750.8	V(PR) 2 VTHETA PR]
	VTHETA PR2	-231.9	-272.2	-283.2	-307.3	-330.1	-340.7	-348.5	-353.7	-357.8	VTHETA PRZ
	U 1	607.93	615.24	623.01	647.22	679.96	712.55	737.06	744.53	750.77	Ul
	U 2 M 1	610.14 0.5276	617.22 0.5712	624.30 0.5800	645.53 0.5841	673.85 0.5655	702.16 0.4059	723.40 0.3735	730.48	737.56	U 2
	M 2	0.5754	0.5660	0.5884	0.6191	0.6210	0.5575	0.5016	0.3680 0.4718	G.3578 D.4307	M 1 M 2
	M(PR) 1	C.7690	6.8061	0.8177	0.8368	0-8452	0.7652	0.7665	0.7695	0.7693	M(PR) 1
	M(PR) 2 Turn(Pr)	0.5096	Ú.5333	0.5631	0.6060	0.6150	0.5470	0.4866	0.4578	0.4160	M(PR) 2
	UUBAR	22.666 0.1555	17.692 0.1794	17.977 0.1401	18.635 0.1063	19.215 0.6967	24.307 0.0007	21.651 0.0968	18.678 0.1587	13.556 0.2315	TURN (PR) UUBAR
	LOSS PARA	0.0411	0.0466	6.0371	0.0291	0.0273	0.0002	0.0260	0.0408	0.0540	LOSS PARA
	DFAC	0.4494	0.4329	0.4053	0.3686	0.3713	0.4123	0.4992	0.5397	0.5959	DFAC
	EFFP EFF	0.8445 U.8400	0.7483 0.7423	0.8392 0.8350	0.8244 0.8194	0.861 0.8619	1.0640	0.9321	0.8455	0.7445	EFFP
	INCID	-5.746	-6.034	-5.747	-6.311	-5.961	1.0666 2.074	0.9296 2.316	0.8401 -0.696	0.7363 -5.715	EFF Incid
	DEVM	8.666	13.026	12.218	8.455	5.597	6.145	7.651	9.718	12.855	DEVM
	P 1 P 2	14.928 18.209	15.297	15.36B	15.438	15.188	13.613	13.295	13.268	13.207	P 1
	T 1	518.760	18.078 518.700	18.407 518.700	18.862 518.700	18.813 518.700	17.902 518.700	17.244 518.700	16.915 518.700	16.498 518.760	P 2 T 1
	T 2	554.763	552.855	551.561	555.367	556.643	558.285	561.743	563.066	564.931	T 2
STATOR E	PC1 SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATER-L.E.	DIA Beta 2	33.237 36.277	33.564 32.673	33.921 36.806	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-T.E.	BETA ZA	-C.7JO	6.400	1.100	29.424 1.200	29.327 -0.350	35.162 1.400	42.257 2.401	46.241 1.851	53.200 0.400	BETA 2 Beta 2a
	V 2	639.34	635.86	666.56	689.31	703.23	629.55	559.36	523.45	475.91	V 2
	V 2A	514.37	530.87	555.80	613.64	621.99	574.26	477.17	448.35	437.64	V ZA
	V2 2 V2 2A	515.41 514.33	534.03	572.52 555.68	600.29	612.79	514.24	413.60	361.70	284.87	VZ 2
	V-THETA 2	3/6.29	345.12	341.30	613.42 338.57	621.77 344.26	573.75 362.25	476.37 375.78	447.71 377.73	437.17 380.79	VZ 2A V—THETA 2
	V-THETA 2A	-6.28	3.71	10.67	12.85	-3.80	14.03	19.97	14.46	3.05	V-THETA 2A
	M 2 M 2A	0.5715 0.4546	0.5693	0.5994	0.6191	0.6318	0.5603	0.4930	0.4594	0.4154	M 2
	TURN(PR)	36.977	G.4707 32.472	0.4944 29.699	0.5468 28.218	0.5541 29.661	0.5064 /33.729	0.4178	0.3913	0.3810	M ZA
	UUBAR	0.1977	0.1138	0.1164	0.0492	0.0349	-0.0361	39.808 0.0848	44.339 0.0660	52.743 -0.0843	TURN (PR) UUBAR
	LOSS PARA	0.0666	0.0387	0.0400	0.0175	0.0129	-0.0139	0.0336	0.0264	-0.0340	LOSS PARA
	UFAC EFFP	0.398)	0.3480	0.3371	0.2781	0.2994	0.3019	0.4005	0.4227	0.4024	DFAC
	1NC 16	0.4975 -13.690	0.6664 -10.515	0.6648 -9.490	0.7961 -6.606	0.8632 -7.376	1.1879 -0.704	0.7162 3.549	0.7719	1.5053	EFFP
	DEVM	8.132	11.712	12.410	12.175	10.662	13.066	14.840	3.069 14.529	-6.00Z 5.254	DEAW INCID
	P 2	16.209	16.078	18.407	10.802	18.813	17.902	17.244	16.915	16.498	P 2
	P Z A T 2	17.494 554.763	17.672 552.855	17.945 551.561	18.591	18.658	18.026	17.020	16.765	16.654	P 2A
	T 2A	554.763	552,855	551.561	555.367 555.367	556.643 55 <u>6</u> .643	558.285 558.285	561.743 561.743	563.066 563.066	564.931	† 2 T 2A
	UUBAR FS	0.1363	0.1273	0.0875	0.0584	0.0560	0.0519	0.2127	0.2017	564.931 0.1763	T ZA Uubar Fs
	P2 FS	17.952	19.133	18.281	18.843	18.912	18.221	17.672	17.302	17.083	P2 FS
	LCSS PARA F	-3 0.6659	0.0433	0.0300	0.0207	0.0207	0.0200	0.0842	0.0806	0.0711	LOSS PARA FS

Table A-6. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.05 Equivalent Rotor Speed = 4211.98 Equivalent Weight Flow = 109.16
Tip Radial Distortion

INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA G	-C.00G	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1 V O
	V 6 V 1	412.31 530.91	412.31 545.24	412.31 542.60	412.31 551.90	412.31 529.75	412.31 407.53	412.31 357.23	412.31 357.79	412.31 348.31	V 1
	vzo	412.30	412.30	412.31	412.30	412.28	412.24	412.20	412.19	412.20	V2 0
	VZ 1	530.91	545.24	542.60	551.89	529.71	407.46	357.14	357.69	348.22	VZ 1
	V-THETA O	-0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	V—THETA O V—THETA 1
	V-THETA 1 M 5	-0.00 0.3744	0.3744	0.3744	0.3744	0.3744	0.3744	0.3744	0.3744	0.3744	M O
	M 1	0.4867	0.5004	0.4979	0.5069	0.4855	0.3700	0.3233	0.3238	0.3151	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.7038 -0.288	0.4345 -0.322	0.3865 -0.316	0.3666 -0.339	0.5341 -0.285	1.3972 0.012	1.6207 0.134	1.6244 0.132	1.6701 0.155	UUBAR Deac
	DFAC EFFP	0.4927	0.6448	0.6665	0.6955	0.5606	-0.0167	-0.1773	-0.1748	-0.2009	EFFP
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM P O
	P O P I	15.87G 14.839	15.870 15.234	15.870 15.304	15.870 15.333	15.870 15.088	15.870 13.824	15.870 13.497	15.870 13.492	15.870 13.425	P 1
	TÖ	516.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	TO
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	T 1
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BCTA 1	-0.300	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
KOTOR -T.E.	BETA 2 BETA(PR) 1	39.598 48.831	36.366 46.643	34.300 46.387	32.586 46.878	34.107 49.899	41.370 58.612	49.653 62.612	54.338 62.741	58.542 63.476	BETA 2 Beta(PR) 1
	BETA(PR) 2	28.205	27.304	26.316	25.700	28.669	33.825	41.405	45.037	48.535	BETA(PR) 2
	V 1	532.30	581.71	594.28	606.83	573.93	436.98	384.82	386.78	377.59	V 1
	V 2	581.40	612.64	642.95	684.55	666.63	604.68	544.02	524.40	511.97	¥ 2
	V2 1 V2 2	532.20 447.97	581.58 493.30	594.21 531.12	606.80 576.77	573.22 551.74	435.21 453.29	382.29 351.73	384.03 305.35	375.13 266.92	¥Z 1 ¥Z 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	370.57	363.24	362.31	368.67	373.66	399.20	414.05	425.53	436.29	V-THETA 2
	V(PR) 1	808.5	847.2	861.5	987.7	890.4	836.5	832.2	839.7	841.1	V(PR) 1
	V(PR) 2 VTHETA PR1	568.4 -608.6	555.2 -615.9	592.5 -623.7	640.1 -647.9	628.8 -680.7	546.4 -713.3	469.8 -737.9	432.9 -745.3	403.7 -751.6	V{PR} 2 VTHETA PR1
	VTHETA PR2	-240.2	-254.7	-262.7	-277.6	-300.9	-303.7	-310.1	-305.8	-302.1	VTHETA PRZ
	UI	608.60	615.92	623.69	647.93	680.71	713.33	737.88	745.35	751.60	U 1
	U 2 M 1	610.81	617.90 0.5358	624.98	646.24 0.5603	674.59 0.5282	702 .94 0 .39 75	724.20 0.3489	731.28 0.3507	738.37 0.3421	U 2 M 1
	M 2	0.4880 0.5151	0.5453	0.5480 0.5748	0.6129	0.5951	0.5353	0.4771	0.4585	0.4463	M 2
	M(PR) 1	ú.7413	0.7803	0.7945	0.8197	0.8194	0.7610	0.7544	0.7613	0.7621	M(PR) 1
	M(PR) 2	0.4503	0.4942	0.5298	0.5732	0.5613	0.4837	0.4120	0.3785	0.3519	M(PR) 2
	TURN(PR) UUBAR	20.623 0.1547	19.334 0.1499	20.069 0.1046	21.177 0.0683	21.270 0.0948	24.736 0.0681	21.144 0.1727	17.639 0.2377	14.892 0.2781	TURN (PR) UUBAR
	LOSS PARA	0.0395	0.0391	6.0278	0.0189	0.0268	0.0190	0.0450	0.0589	0.0652	LOSS PARA
	DFAC	C.5043	0.4706	0.4372	G.4065	0.4284	0.5062	0.6066	0.6605	0.7021	DFAC
	EFFP EFF	0.7632 0.7565	0.7822 0.7762	0.8837 0.8802	0.9114 0.9084	0.9044 0.9011	1.0091	0.8736 0.8687	0.8089 0.8019	0.7667 0.7583	EFFP EFF
	INCID	-3.600	-4.274	-4.192	-5.165	-4.104	2.622	3.738	0.445	-4.674	INCID
	DEVM	13.055	13.145	11.682	7.059	5.399	6.265	9.780	11.898	12.559	DEVM
	Pi P2	14.839	15.234	15.304	15.333	15.088	13.824	13.497	13.492	13.425	P 1 P 2
	T 1	1d.069 518.760	18.468 518.700	18.868 518.700	19.359 518.700	19.138 518.700	18.290 518.700	17.599 518.700	17.388 518.700	17.248 518.700	T 1
	Ť Ž	558.379	556.493	555.025	558.034	559.167	561.488	565.731	567.334	569.475	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.267	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATER-L.E. STATUR-T.E.	BETA 2 BETA 2A	39.883 -1.100	36.158 1.150	33.664 1.850	32.627 1.500	33.582 -0.100	41.218 1.621	50.887 1.951	56.585 1.901	62.318 1.401	BETA 2 Beta 2a
STRICK TOLE	V 2	578.01	615.86	653.95	684.55	676.87	607.51	535.30	511.39	494.22	V 2
	V ZA	475.21	477.78	497.12	577.54	578.34	505.21	426-41	402.66	400.67	V ZA
	VZ 2 VZ 2A	443.54 475.12	497.23 477.67	544.26 496.84	576.43 577.26	563.63 578.14	456.65 504.72	337.46 425.81	281.46 402.08	229.49 400.13	VZ 2A
	V-THETA 2	370.63	363.36	362.49	369.02	374.23	400.02	415.05	426.61	437.45	V-THETA 2
	V-THETA 2A	-9.12	9.59	16.05	15.12	-1.01	14.28	14.50	13.34	9.78	V-THETA 2A
	M 2	0.5119 0.4173	0.5483	0.5853	0.6129	0.6049	0.5379	0.4691	0.4466	0.4302	M 2
	M 2A Turn(Pr)	40.983	J.4204 35.007	0.4387 31.813	0.5116 31.120	0.5118 33.665	0.4434 39.563	0.3707 48.889	0.3490 54.637	0.3466 60.870	M 2A Turn(Pr)
	UUBAR	0.0139	0.1174	0.1570	0.0620	0.0160	0.0205	0.0386	0.0291	-0.0173	UUBAR
	LOSS PARA	0.0047	0.0400	0.0546	0.0220	0.0059	0.0079	0.0153	0.0116	-0.0070	LOSS PARA
	DFAC FFFP	0.3992 0.9614	0.4199 0.7351	0.4224 0.6688	0.3404 0.8135	0.3515 0.9489	0.4141 0.9408	0.5016 0.9030	6.5377 0. 929 1	0.5404 1.0468	DFAC EFFP
	INC ID	-10.284	-7.230	-6.626	-5.404	-3.122	5.349	12.180	13.417	3.124	INCID
	DEAW	7.732	12.462	13.160	12.475	10.912	13.286	14.390	14.579	6.253	DEVM
	P 2 P 2A	18.069	18.468	18.868	19.359	19.138	18.290	17.599	17.388	17.248	P 2
	T 2	18.028 558.379	18.068 556.493	18.254 555.025	19.090 558.034	19.071 559.167	18.223 561.488	17.504 565.731	17.323 567.334	17.283 569.475	P 2A T 2
	T ZA	558.379	556.493	555.025	558.034	559.167	561,488	565.731	567.334.	569.475	T ZA
	UUBAR FS	0.1095	0.1241	0.1077	0.0405	0.0381	0.1127	0.1600	0.1305	0.1170	UUBAR FS
	P2 F.S LOSS PARA F	18:396 S 0:0370	18.494 0.0422	18.651 0.0370	19.261 0.0143	19.234 0.0140	18.629 0.0434	17.954 0.0634	17.647 0.0520	17.560 0.0473	PZ FS LOSS PARA FS
	· · · · · · · · · · ·		0.0411	5,0570	0.01-3	550140	0.0434	0.0034	2.0720	J.J., J	EUSS FRAM PS

Table A-6. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 100.29 Equivalent Rotor Speed = 4222.38 Equivalent Weight Flow = 103.95
Tip Radial Distortion

INLET											
ANCEI	PCT SPAN	96.80	92.00	86.90	71.00	47.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	-6.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1 V U	-0.00G 394.21	-0.000 394.21	-0.000 394.21	-0.000 394.21	-0.000 394.21	-0.000 394.21	-0.000 394.21	-0.000 394.21	-0.000 394 .21	BETA 1
	v i	510.50	530.28	526.12	524.32	505.17	378.94	337.82	335.08	319.04	V 1
	V2 0	394.21	394.21	394.21	394.21	394.18	394.15	394.11	394.11	394.11	VZ O
	VZ 1	510.50	530.28	528.12	524.31	505.13	378.88	337.74	334.99	318.96	VZ 1
	V-THETA D V-THETA 1	-0.00 -0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.60	V-THETA O
	M O	0.3576	-೦.ಯ 0.3576	-0.00 0.3576	-0.00 0.3576	-0.00 0.3576	-0.00 0.3576	-0.00 0.3576	-0.00 0.3576	-0.00 0.3576	V-THETA 1 N 0
	H 1	C.4671	0.4861	0.4840	0.4803	0.4620	0.3434	0.3054	0.3029	0.2881	# i
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	TURN
	UUBAR	0.6927	0.4039	0.3460	0.3444	0.5238	1.3429	1.5601	1.5762	1.6245	UUBAR
	DFAC EFF P	-0.295 0.5031	-0.345 0.6781	-0.340 0.7076	-0.330 0.7016	-0.281 0.5612	0.039 -0.0597	0.143 -0.2011	0.150 -0.2091	0.191	DFAC
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.2626 -0.0000	EFFP INC1D
	DEAM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	PO	15.713	15.713	15.713	15.713	15.713	15.713	15.713	15.713	15.713	PO
	P 1 T 0	14.793 518.700	15.177 518.700	15.254 518.700	15.256 518.700	15.017 518.700	13.929	13-640	13.618	13.554	P 1
	τĭ	518.700	518.700	518.700	510.700	518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	T 0 T 1
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E.	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTOR -T.E.	BETA 2 BETA(PR) 1	41.396 50.013	38.371	35.812	33.635	36.213	45.751	56.372	60.992	64.322	BETA 2
	BETA(PR) 2	26.405	47.547 26.237	47.282 25.619	48.518 25.815	51.377 28.427	60.531 34.795	63.977 44.682	64.324	65.520	BETA(PR) 1
	V 1	511.81	564.97	577.38	574.32	545.86	405.71	363.54	47.663 361.78	50.920 345.31	BETA(PR) 2 V 1
	V 2	592.36	615.05	643.28	677.21	658.39	587.20	526.47	521.55	516.22	v Ž
	VZ 1	511.71	564.84	577.31	574.29	545.19	404.07	361.15	359.21	343.06	VZ 1
	V2 2 V—THETA 1	444.33 -0.00	482.19 -0.00	521.65 -0.00	563.82 -0.00	531.60	409.35	291.27	252.70	223.54	VZ 2
	V-THETA 2	391.70	361.77	376.38	375.10	-0.00 3 88. 83	-0.00 420.22	-0.00 437.93	-0.00 455.73	-0.00 464.93	V-THETA 1 V-THETA 2
	V(PR) 1	796.4	836.9	851.1	867.0	873.9	822.2	824.2	830.2	828.8	V(PR) 1
	V(PR) 2	496.1	537.6	578.5	626.3	604.1	499.1	410.3	375.8	355.1	V(PR) 2
	VTHETA PRI VTHETA PRZ	-610.1 -220.6	-617.4 -237.6	-625.2 -250.1	-649.5	-682.4	-715.1	-739.7	-747.2	-753.5	VTHETA PRI
	U 1	610.10	617.44	-250.1 625.23	-272.7 649.53	-287.4 682.39	-284.5 715.09	-288.1 739.70	-277.4 747.19	-275.3	VTHETA PR2
	U Z	612.32	619.42	626.53	647.84	676.26	704.67	725.98	733.09	753.45 740.19	U 1 U 2
	M 1	0.4684	0.5195	0.5316	0.5266	0.5010	0.3683	0.3291	0.3275	0.3123	μį
	M 2	0.5247	0.5468	0.5743	0.6051	0.5863	0.5181	0.4601	0.4549	0.4491	M 2
	M(PR) 1 M(PR) 2	0.7288 0.4394	0.7696 0.4779	0.7835 0.5165	0.7980 0.5596	0.8021 0.5380	0.7463	0.7462	0.7515	0.7496	M(PR) 1
	TURN (PR)	23.603	21.306	21.660	22.703	22.930	0.4404 25.689	0.3586 1 9.238	0.3278 16.604	0.3089 14.558	M(PR) 2 TURN(PR)
	UU8 AR	0.1370	0.1437	0.0905	0.0462	0.0979	0.1370	0.2514	0.3009	0.3264	UUBAR
	LOSS PARA	0.0355	0.0378	0.0242	0.0128	0.0277	0.0378	0.0621	0.0711	0.0729	LOSS PARA
	DFAC EFFP	0.5198 0.8203	0.4916 0.8144	0.4516	0.4105	0.4514	0.5636	0.6849	0.7380	0.7685	DFAC
	EFF	0.8147	0.8089	0.9111 0.9082	0.9322 0.9297	0.9130 0. 9 098	0.9535 0.9516	0.8144 0.8074	0.7833 0.7752	0.7561	EFFP EFF
	INCID	-2.419	-3.369	-3.296	-3.524	-2.626	4.545	5.308	2.035	0.7470 -2.622	INC1D
	DEVM	11.256	12.077	10.985	7.174	5.217	7.235	13.056	14.524	14.945	DEAM
	P 1 P 2	14.793	15.177	15.254	15.256	15.017	13.929	13.640	13.618	13.554	P 1
	Ti	18.393 518.700	18.693 518.700	19.099 518.700	19.527 518.700	19.265 518.700	18.329 518.700	17.666	17.613	17.559	P 2
	ŤŽ	559.589	556.039	556.590	559.466	560.751	563.178	518.700 567.971	518.700 569.718	518.760 5 7 2. 0 07	T 1 T 2
									2070120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
STATOR-L.E.	DIA Beta 2	33.207 41.706	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-T.E.	BETA ZA	-1.100	38.147 1.230	35.140 2.000	33.677 2.200	35.657	45.584	57.941	63.969	69.361	BETA 2
	V 2	588.86	618.29	654.28	677.21	1.530 668.33	0.290 589.89	-0.900 518.24	0.150 506.66	0.050 498.26	BETA ZA V Z
	V ZA	476.57	461.09	476-20	558.56	550.59	470.87	404.71	368.23	392.14	V ŽA
	VZ 2	439.62	486.23	535.01	563-46	542.80	412.59	274-94	223-15	175.58	VZ 2
	VZ ZA V—THETA Z	470.49 391.77	460.97 381.90	475.89	558.07	550.21	470.59	404.33	387.88	391.73	VZ ZA
	V-THETA ZA	-9.03	9.90	376.57 16.62	375.46 21.44	3 89. 42 14.70	421.08 2.38	438.99 -6.35	456.89 1.02	466.16	V-THETA 2
	M 2	0.5214	0.5498	0.5848	0.6051	0.5958	0.5206	0.4526	0.4432	0.34 0.4 3 29	V-THETA ZA M 2
	M ZA	0.4127	0.4046	0.4189	0.4933	0.4854	0.4116	0.3507	0.3355	0.3363	M ZA
	TURN(PR) UUBAR	42.805 0.0196	36.916	33.138	31.471	34.109	45.258	58.795	63.776	69.271	TURN (PR)
	LOSS PARA	0.0066	0.1275 0.0434	0.1769 0.0609	0.0670 0.0238	0.0348 0.0129	0.0232 0.0089	-0.0076 -0.0031	0.0231 0.0092	-C.0050	UUBAR
	DFAC	0.4302	0.4592	0.4618	0.3614	0.3845	0.4763	0.5613	0.5972	-0.0020 6.5922	LOSS PARA Déac
	EFFP	0.9512	0.7414	0.6638	0.8174	0.9055	0.9425	1.0185	0.7488	1.0123	EFFP
	INCID	-6.462 7 777	-5.240	-5.151	→.353	-1.048	9.715	19.238	20.807	10.177	INCID
	b S DEA⊯	7.732 18.393	12.542 18.693	13.310 19.0 9 9	13.175 19.527	12.542	11.956	11.541	12.630	4.904	DEAM
	P 2A	18.332	18.250	18.401	19.240	19.265 19.121	18.329 18.257	17.666 17.684	17.613 17.561	17.559 17.570	P 2 P 2A
	T 2	559.589	558.039	556.590	559.466	560.751	563.178	567.971	569.718	572.007	T 2
	T ZA	359.509	558.039	5 5 6。5 9 0	559.466	560.751	563.178	567.972	5 69.72 8	572 .0 07	,T ZA
	UUBAR FS P2 FS	0.0824 18.605	0.1285	0.1179	0.0341	0.0506	0.1175	0.1778	0.1425	0.1360	UUBAR FS
	LOSS PARA F	\$ 0.0277	18.696 0.0437	18.835	19.380 0.0121	19.332 0.0187	16.659	18.189 0.0706	17.921 0.0567	17.905 0.0544	P2 FS LOSS PARA FS
			0.0-01	0.0408	0.0121	0.010/	0.0451	0 = 0 / 0 0	0.000	0 0 0 0 9 4 4	LUJJ PARM FS

Table A-6. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 90.40 Equivalent Rotor Speed = 3805.68 Equivalent Weight Flow 105.22
Tip Radial Distortion

INLLT		4							7 10	2 00	OCT COAN
	PCT SPAN	96.80 33.122	92.00 33.529	86.90 33.962	71.00 35.312	49.50 37.137	28.10 38.954	12.00 40.321	7.10 40.737	3.00 41.085	PCT SPAN Dia
	DIA BETA G	-0.006	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.060	-0.000	-0.00c	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	Vυ	398.05	398.05	398.05	398.05	398.05	398.05	398.05	398.05	398.05	V 0
	V 1	516.10	70 ، 8 ذ 5	536.62	538.54	523.08	416.32	370.76	370.38	353.47	Y_1_
	VZ O	398.05	398.05	398.05	398.04	398.02	397.98	397.95	397.94	397.94	VZ 0
	VZ 1	516.59	538.78	536.62	538.53	523.04	416.26	370.67	370.28	353.37	VZ 1 V—THETA 0
	V-THETA D	-0.CU -0.GO	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	-0.00 -0.00	V-THETA 1
	4 0	0.3011	0.3611	0.3611	0.3611	0.3611	0.3611	0.3611	0.3611	0.3611	M O
	H I	U.4725	0.4942	0.4922	0.4940	0.4792	0.3762	0.3358	0.3355	0.3198	M 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAK	0.6949	0.4166	0.3530	0.3498	0.5259	1.3550	1.5746	1.5840	1.6314	UUBAR
	DFAC	-0.297	-0.354	-0.348	-0.353	-0.314	-0.046	0.069	0.070 -0.0909	0.112	DFAC EFFP
	EFFP Incid	C.5039 -0.0000	C.6807 -0.0000	0.7094 -0.0000	0.7146 -0.0000	0.5909 -0.0000	0.0647 -0.000C	-0.0902 -0.0000	-0.0000	-0.1456 -0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVN
	PO	15.766	15.766	15.766	15.766	15.766	15.766	15.766	15.766	15.766	PÜ
	P 1	14.822	15.208	15.286	15.290	15.051	13.925	13.626	13.613	13.549	P 1
	T C	516.760	518.700	518.700	518.700	518.700	518.700	518.700	518.700	516.700	T G
	T 1	518.700	518.700	518.700	518,700	518.700	518.700	518.700	518.700	518.700	T 1
KOTUR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
40To/ -L.C.	BETA 1	-6.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
KCTUK -T.E.	BETA 2	35.598	32.054	30.662	28.988	29.587	35.695	41.260	44.309	49.592	BETA 2
	BSTA(PR) 1	46.750	44.697	43.819	44.730	47.399	55.387	59.223	59.427	60.719 47.075	BETA(PR) 1 BETA(PR) 2
	BETA(PR) 2 V 1	27.255 517.39	26.195 574.46	25.951 587.32	25.863 591.01	28.435 566.29	33.040 446.66	38.788 399.71	42.528 400.70	383.30	V 1
	v ž	551.38	589.16	608.13	642.62	632.15	572.06	518.78	488.58	458.13	Ÿ Ž
	V2 1	517.29	574.33	587.25	590.97	565.59	444.85	397.08	397.85	380.86	VZ 1
	V2 2	448.32	499.32	523.09	562.10	549.48	463.99	389.26	348.98	296.53	V2_2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	320.94 755.0	312.66 799.8	310.13 813.9	311.42	311.98 836.0	333.35 784.2	341.50	340.66 783.6	348.32 779.8	V-THETA 2 V(PR) 1
	V(PR) 1 V(PR) 2	504.3	556.5	581.8	831.9 624.7	625.1	554.3	777.3 500.4	474.5	436.1	V(PR) 2
	VTHETA PRI	-549.9	-556.5	-563.5	-585.4	-615.0	-644.5	-666.7	-673.4	-679.1	VTHETA PRI
	VTHETA PR2	-231.0	-245.6	-254.6	-272.5	-297.5	-361.8	-312.8	-320.1	-318.8	VTHETA PR2
	UI	549.89	556.51	563.53	585.43	615.05	644,52	666.70	673.45	679.10	U 1
	U 2	551.89	558.29	564.70	583.91	609.52	635.13	654.34	660.74	667-14	UZ
	M 1 M 2	0.4737 0.4909	0.5287 6.5273	0.5412	0.5448 0.5774	0.5208 0.5668	0.4066 0.5093	0.3627 0.4585	0.3636 0.4304	0.3474	M 1 M 2
	M(PR)]	i.6913	0.7361	0.5461 0.7501	0.7669	0.7689	0.7139	0.7054	0.7111	0.706B	M(PR) L
	MIPR) 2	U.4490	0.4981	Ú.5224	0.5613	0.5606	0.4935	0.4423	0.4179	0.3827	M(PR) 2
	TURN(PR)	19.491	17.698	17.866	18.866	18.942	22.290	20-359	16.823	13.585	TURN(PR)
	UUE AR	1.1663	0.1549	0.1289	0.0855	0.0855	0.0561	0.1223	0.1808	0.2633	UUBAR
	LOSS PARA	0.0426	0.0468	0.0344	0.0237	0.0242	0.0158	0.0331	0.0467	0.0635	LOSS PARA
	DFAC EFFP	C.4554 C.7667	0.4191 0.7349	0.3985 0.8118	0.3641 0.8383	0.3719 0.8524	0.4351 0.9743	0.5074 0.8721	0.5455 0.7790	0.5975 0.6793	DFAC EFFP
	EFF	C.7026	0.7295	0.8078	0.8343	0.8486	0.9735	0.8683	6.7729	0.6713	EFF
	INCID	-5.681	-6.819	-6.759	-7.312	-6.606	-0.609	- 0.537	-2.881	-7.441	INCID
	DEVM	12.106	12.035	11.317	7.222	5.225	5.480	7.164	9.389	11.098	DEVM
	P 1 P 2	14.822	15.208	15.286	15.290	15.051	13.925	13.626	13.613	13.549	P 1
	Ti	17.167 518.700	17.543 518.700	17.768 518.700	18.133 518.700	18.004 518.760	17.242 518.700	16.759 518.700	16.470 518.700	16.116 518.700	P 2 T 1
	Ť Ž	550.346	546.315	546.904	549.734	550.800	552.245	555.G89	556.230	557.958	Ť Ž
CTATOR 6	DCT COAN	OF 20	96.06	05.00	70.00	EC 00	20.00	10			DCT #B ***
STATOR E	PCT SPAN DIA	95.00 33.267 -	90.00 33.564	85.00 33.921	70.00 34.992	50.00 36.420	30.00 37.848	15.00 38.919	10.00 39.276	5.00 39.633	PCT SPAN Dia
STATUR-L.E.	BETA 2	35.836	31.882	30.141	29.023	29.173	35.575	42.142	45.797	52.110	BETA Z
STATOK-T.E.	BETA ZA	-0.600	C.800	1.200	0.800	-0.700	1.150	2.601	2.251	-0.006	BETA ZA
	V 2	548.27	592.17	617.95	642.62	641.34	574.65	510.68	476.83	442.88	V 2
	V 2A	457.24	499.18	526.22	582.10	576.67	524.63	441.90	412.61	399.68	V ZA
	VZ 2 VZ 2A	444.47	502.83	534.38	561.82	559.70 575.84	467.00 524.21	378.30	332.15	271.79	VZ 2
	V-THETA 2	457.21 326.99	499.12 312.76	526.08 310.28	581.96 311.71	312.46	334.04	441.09 342.33	411.92 341.52	399.26 349.24	VZ ZA V—THETA Z
	V-THETA ZA	-4.19	6.97	11.02	8.13	-7.04	10.53	20.03	16.19	-0.00	V-THETA ZA
	M 2	0.4880	0.5302	0.5554	0.5774	0.5756	0.5117	0.4511	0.4196	0.3882	H 2
	M 2A	0.4040	0.4433	0.4690	0.5200	0.5138	0.4652	0.3883	0.3615	0.3494	M ZA
	TURN(PR)	36.436	31.081	28.940	28.217	29.856	34.392	39.494	43.495	52.052	TURN (PR)
	UUBAR LOSS PARA	0.1431 0.0462	0.1232 J.0419	0.1016 0.0350	0.0342 0.0122	0.0234 0.0087	~0.0259	0.0884	0.0628	-0.0938	UUBAR
	DFAC	0.3662	0.3330	0.3153	0.2624	0.2868	-0.0100 0.3049	0.0350 0.3862	0.0251 0.4092	-0.0378 0.4174	LOSS PARA DFAC
	EFFP	0.5687	0.6158	0.6705	0.8332	0.8940	1.1389	0.6744	0.7668	1.4718	EFFP
	INCID	-14.331	-11.506	-10.149	-9.007	-7.531	-0.292	3.435	2.625	-7.093	INCID
	DEVM	8.232	12.112	12.510	11.775	10.312	12.816	15-040	14.929	4.854	DEVM
	P 2 P 2A	17.167 16.798	17.543 17.166	17.768 17.427	18.133 18.007	18.004 17.919	17.242	16.759	16.470	16.116	P 2
	1 2	550.178	548.315	546.904	549.734	550.800	17.315 552.245	16.566 555.089	16.352 556.230	16.265 557.958	P 2A T 2
	T 2A	550.348	548.315	546.904	549.734	550.800	552.245	555.089	556.230	557.958	T ZA
	UUBAR FS	0.2655	0.1280	0.0842	0.0619	0.0407	0.0486	0.2041	0.2078	0.1739	UÙBAR FS
	P2 FS LCSS PARA F	17.597	17.559	17.754	18.240	18.069	17.463	17.076	16.813	16.631	P2 FS
	LUSS PARA P	3 010874	0.0435	0.0290	. 0.0221	0.0151	0.0187	0.0808	0.0830	0.0701	LOSS PARA FS

Table A-6. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 90.09 Equivalent Rotor Speed = 3792.92 Equivalent Weight Flow = 99.16
Tip Radial Distortion

THIET											
INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	AIG	33.122	33.529	33.962	35.312	37.137	38.754	40.321	40.737	41.085	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	~0.000	-0.000	-0.000	⊸.000	BETA 1
	V O	376.75	376.75	376.75	376.75	376.75	376-75	376.75	376.75	376.75	Y 0
	V 1 VZ 0	474.96	496.76 376.75	493.35	490.76	471.16	354.30	309.20	309.46	297.71	¥ 1
	V2 1	376.75 474.96	496.76	376.75 493.35	376.75 490.75	376.73 471.13	376.69 356.24	376.66 309.13	376.65 3 09.3 8	376.65 297.63	VZ 0
	V-THETA O	-6.60	-6.00	-0.00	-0.00	-0.00	-0.00	-9.00	-0.00	-0.00	VZ 1 V-THETA 0
	V-THETA 1	-0.60	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M O	0.3414	0.3414	0.3414	0.3414	0.3414	0.3414	0.3414	0.3414	0.3414	M O
	H 1	C.4333	0.4540	0.4508	0.4483	0.4297	0.3224	0.2791	0.2793	Q.2686	M I
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR OFAC	0.6860 -0.261	0.3857 -0.319	0.3294 -0.309	0,3286 -0.303	0.5131	1.3125	1.5198	1.5339	1.5971	UUBAR CTAC
	EFFP	0.4721	0.6670	0.6945	0.6897	-0.251 0.5331	0.054 -0.0873	0.179 -0.2686	0.179 -0.2642	0.210 -0.3003	DFAC EFFP
	INCID	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEAN	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	PO	15.596	15.596	15.596	15.596	15.596	15.596	15.596	15.596	15.596	PG
	P 1	14.774	15.130	15.198	15.199	14.976	14.010	13.760	13.743	13.666	P 1
	TO T1	516.70C 518.70C	518.700 518.700	518.700 518.700	518.700 518.700	516.70C	518-700	518.700 518.700	518.700	518.700	T 0 T 1
	, •	3201100	210.100	3202700	3101100	510.700	518.700	216.700	518.700	518.700	1 4
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTUK -L.E.	DIA Deta 1	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
RDTUR -T.E.	BETA 1 BEVA 2	-0.000 39.598	-0.000 36.060	-0.000 33.976	-0.000 32.487	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
1010114E	BETA(PR) 1	49.022	46.423	46.276	47.457	34.095 50.410	41.176 5 9. 430	48.522 63.5 79	52.746 63.725	56.815 64.707	BETA 2 Beta(PR) 1
	BETAIPR) 2	26.247	26.494	26.223	25.977	28.533	33.943	39.996	44.415	47.649	BETAIPR) 2
	¥ 1	476.13	527.88	537.23	535.49	507.54	380.76	332.33	333-73	321.93	V 1
	A 5	546.70	561.18	581.84	613.82	601.23	543.96	500.48	474.70	463.09	V 2
	V2 1	476.04	527.76	537.17	535.46	506.92	379.44	330.15	331.36	319.83	V2 1
	VZ 2 V-THETA 1	416.61	453.63	482.49	517.75	497.68	409.98	331.01	286.98	253.20	VZ 2
	V-THETA 2	-0.00 344.62	-0.00 330.31	-0.00 325.15	-0.00 329.68	-0.00 336.89	-0.00 357。73	-0.00 374.43	-0.00 377.34	-0.00 387.15	V-THETA 1 V-THETA 2
	V(PR) 1	726.0	765.7	777.2	792.0	795.8	746.8	742.9	749.6	749.5	V(PR) 1
	VIPR) 2	464.5	506.9	537.9	576.0	566.7	493.7	432.9	402.5	376.5	V(PR) 2
	VTHETA PRI	-546.1	-554.6	-561.6	-5 83.5	-613.0	-642.4	-664.5	-671.2	-6 76.8	VTHETA PRI
	VTHETA PRZ	-205 4	-226.1	-237.7	-252.3	-270.6	-275.3	-277.7	-281.2	-277.B	VTHETA PR2
	U 1 U 2	548.05	554.64	561.64	583.47	612.98	642.36	664.46	671-19	676.82	U 1
	M 1	550.04 0.4344	556.42 0.4838	562.80 0.4927	581.95 0.4911	607.47 0.4643	633.00 0.3453	652.14 0.3003	658.53 0.3016	664.91	U 2 M 1
	M Z	0.4803	0.5001	0.5202	0.5490	0.5366	0.4821	0.4404	0.4165	0.2908 0.4052	M 2
	M(PR) 1	0.6624	0.7617	0.7128	0.7262	0.7280	0.6769	0.6714	0.6775	0.6770	M(PR) 1
	M(PR) 2	0.4126	0.4518	0.4808	0.5152	0.5058	0.4375	0.3810	0.3531	0.3294	M(PR) 2
	TURN(PR)	22.772	19.924	20.051	21.479	21.857	25.437	23.523	19.250	17.015	TURN (PR)
	UUBAR LOSS PARA	6.1316	0.1354	0.0966	0.0631	0.0815	0.0657	0.1628	0.2205	0.2581	UUBAR
	DFAC	0.0342 0.4979	0.0355 0.4647	0.0257 0.4323	0.0175 0.4007	0.0231 0.4236	0.0183 0.4989	0.0433 0.5906	0.0552 0.6379	0.0616 0.6791	LOSS PARA
	EFFP	0.7965	0.7872	0.8682	0.8866	0.8978	0.9772	0.8589	0.7862	0.7486	DFAC EFFP
	EFF	0.7915	V.7823	0.8650	0.8835	0.8949	0.9764	0.8544	0.7798	0.7412	EFF
	INCID	-3.409	-, 4.494	-4.302	-4.586	-3.593	3.441	4.909	1.433	-3.438	INCID
	DEAM	11.097	12.334	11.589	7.337	5.323	6.383	8.372	11.276	11.672	DEAM
	P 1 P 2	14.774 17.555	15.130 17.789	15.198 18.043	15.199 18.383	14.976 18.256	14.010 17.598	13.760 17.152	13.743	13.666 16.802	P 1 P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	16.918 518.700	518.700	Ti
	T Z	551.800	550.090	548.839	551.488	552.438	554.455	558.150	559.406	561.241	τż
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATUR-L.E.	BETA 2	39.865	35.668	33.407	32.527	33.626	41.041	49.647	54.764	60.183	BETA 2
STATOR-T.E.	BETA 2A	-0.9UC	1.000	1.900	1.100	-0.000	1.600	2.081	2.151	1.901	BETA ZA
	V 2 V 2A	537.74	563.94	590.87	613.82	609.56	546.33	492.89	463.45	447.63	V 2
	V 2 2	436.57 412.75	441.89 456.99	462.48 493.23	527.43 517.44	525.17	463.42	393.31	373.71	372.74	V 2A
	VZ ZA	436.52	441.81	462.21	527.26	507.33 525.00	411.77 462.97	318.91 392.73	267.21 373.11	222.46 372.14	VZ 2 VZ 2A
	V-THETA 2	344.63	330.42	325.31	329.99	337.40	358.46	375.34	378.30	388.17	V-THETA 2
	V-THETA 2A	-6.66	7.71	15.33	10.12	-0.00	12.93	14.27	14.01	12.35	V-THETA 2A
	M 2	0.4775	0.5027	C.5287	0.5490	0.5445	0.4843	0.4335	0.4063	0.3913	M 2
	M 2A	0.3847	0.3901	0.4094	0.4681	0.4656	0.4081	0.3436	0.3257	0.3243	M 2A
	TURN (PR) Uubar	46.705 0.0567	34.867 0.1201	31.505	31.421	33.609	39.406	47.518	52.565	58.233	TURN (PR)
	LOSS PARA	0.0204	0.1201	0.1334 0.0459	0.0452 0.6161	0.0213	0.0130	0.0807	0.0356	-0.0151	UUBAR
	DFAC	0.4084	0.4114	0.3981	0.3263	0.0079 0.3441	0.0050 0.3965	0.0320 0.4939	0.0142 0.5099	-0.0061 0.5080	LOSS PARA Deac
	EFFP	0.8369	0.7159	0.6880	0.8466	0.9265	0.9578	0.7931	0.9046	1.0464	EFFP
	INCID	-16.302	-7.520	-6.883	-5.503	-3.078	5.173	10.939	11.595	0.987	INCID
	DEVM	7.932	12.312	13.210	12.075	11.012	13.265	14.520	14.829	6.753	DEVM
	P 2 P 2A	17.555 17.401	17.789	18.043	18.383	18.256	17.598	17.152	16.918	16.802	P 2
	T 2	551.860	17.450 550.090	17.626 548.839	18.229 551.488	18.185 552.438	17.564 554.455	16.984 558.150	16.854 559.406	16.827 561.241	P 2A T 2
	T ZA	551.860	550.090	548.839	551.488	552.438	554.455	558.150	559.406	561.241	T ZA
	UUBAR FS	0.1296	0.1312	0.1089	0.0282	0.0208	0.0675	0.1617	0.1244	0.1155	UUBAR FS
	P2 FS	17.755	17.824	17.957	18.323	18.254	17.750	17.352	17.103	17.050	P2 FS
	LOSS PARA F	3 0.11435	0.0447	0.0374	0.0100	0.0077	0.0259	0.0641	0.0496	0.0466	LOSS PARA FS

Table A-6. Blade Element Performance (Continued)

Stage E, Rotor E - Stator E

Calculations Using Translated Values
Percent Equivalent Rotor Speed = 89.78 Equivalent Rotor Speed = 3779.77 Equivalent Weight Flow = 94.04

Tip Radial Distortion

INLET 49.50 37.137 -0.000 -0.000 7.10 40.737 -0.000 -0.000 92.00 33.529 86.90 33.962 71.00 35.312 28.10 38.954 12.00 40.321 3.00 41.085 PCT SPAN 96.60 PCT SPAN DIA BETA O DIA BETA C 33.122 -0.000 -0.000 357.56 465.13 357.56 -0.000 -0.000 357.56 289.44 357.47 289.36 -0.000 -0.000 357.54 -0.000 -0.000 -0.000 -0.000 -0.060 BETA 1 -0.000 -0.000 357.56 450.23 357.56 464.91 357.55 357.56 444.47 357.53 357.56 330.84 357.56 Y 0 v n 357.56 466.52 285.22 265.69 357.50 VZ O 357-56 YZ O 444.43 -0.00 450.23 466.52 464.90 285.14 265.62 465.13 330.78 -0.00 -0.00 -0.00 0.3236 -0.00 -0.00 0.3236 -0.00 -0.00 0.3236 -0.00 -0.00 -0.00 -0.00 -0.00 V-THETA O V-THETA O V-THETA 3 V-THETA 1 0.3236 0.4046 0.0 0.5087 0.3236 M O 0.3236 D. 3236 0.3236 0.3236 . 0.4100 0.4238 0.2990 0.2610 0.2373 0.0 1.4968 0.191 0.0 TURN TURN 0.0 0.0 0.0 0.0 0.0 0.0 UUSAR DFAC 1.5065 1.5795 UUBAR 0.6263 0.3216 0.3219 1.2867 DFAC -0.305 0.075 -C.259 -0.301 -0.300 -0.243 -0.1256 -0.3869 FEED 0.4907 0.6602 0.6923 -0.0000 0.6911 0.5258 -0.3131 EFFP INCID -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0-0000 -0.0000 THETO 0.000 0.000 0.000 0.000 0.000 0.000 DEVM 0.000 0.000 0.000 15.484 P o PO 15.484 15-484 15.135 518.700 14.933 13.773 15.076 14.090 13.852 518.700 T 0 T D 518-700 518.700 518.700 518.700 518.700 518.760 518.700 518.700 518.700 518.700 518.700 15.00 ROTUR E PCT SPAN 95.00 90.00 85-00 70.00 50.00 30.00 10.00 5.00 PCT SPAN 33.621 DIA 33.236 34-007 35.164 36.706 38.248 39.405 39.791 40-176 DIA -0.000 35.787 47.942 25.480 505.05 577.42 -0.000 37.863 48.179 ROTOR -L.F. BETA 1 -C.300 -0.000 34.085 -0.000 -0.000 44.862 -0.000 55.630 -0.000 59.818 -0.000 62.744 BETA 3 BETA 2 ROTOR -T.E. BETA 2 36.501 50.437 25.795 451.31 537.00 52.003 28.516 477.79 48.976 61.200 34.535 64.998 43.499 65.483 46.557 RETAIDES 1 67.091 BETA(PR) 1 BETA(PR) 2 25.981 BETA(PR) 2 47.684 353.34 529.19 v 1 494.67 555.35 505.91 310.84 307.24 286.90 587.06 505.88 499.94 477.20 351.91 374.73 308.80 269.54 305.06 236.46 285.03 218.00 VZ 1 VZ 2 451.22 494.55 504.99 405.29 438.42 468.39 V-THETA R -0.00 -0.00 -0.00 337.65 -0.00 338.30 -0.00 -0.00 372.92 -0.00 -0.00 406.57 -0.00 V-THETA 1 V-THE TA 2 352.25 340.84 741.7 349.07 V-THETA 2 394.10 423.16 V(PR) 1 V(PR) 2 770.7 555.3 731.2 455.5 731.5 733.0 324.3 V(PR) 1 V(PR) 2 768.5 753.9 775.5 736.1 450.2 537.1 344.5 VTHETA PRI -546-2 -552.7 -559.7 -581-4 -610.9 -256.3 -640.1 -257.9 -662.2 -255.8 -668.9 -249.7 -674.5 -239.4 VTHETA PRI VTHETA PRZ -195.9 -213.6 -241.6 581.45 579.93 0.4627 0.5390 0.7050 559.69 674.47 662.60 0.2587 552.72 662.16 U 1 U 1 546.15 610.86 640.14 668.86 548.13 554.49 560.85 0.4619 605.37 630.80 656.24 M 1 0.3197 0.2806 H 1 M 2 M(PR) 1 0.4764 0.4943 0.5155 0.5229 0.4193 0.4679 0.4123 0.4167 0.6643 0.6609 6-6452 0.6895 0.6616 0.6603 M(PR) 1 0.4784 23.468 0.0905 M(PR) 2 0.3994 0.4341 0.4632 0.4028 0.3265 M(PR) 2 TURN (PR) 24.638 22.194 21.446 19.375 23.179 26-619 18.875 TIRM (PR) 0.1248 0.0788 UUBAR 0.1205 0.0466 0.1093 0.2864 UUBAR LOSS PARA 0.0318 0.0129 0-0256 0.0691 0.0738 0.0303 0.0599 LOSS PARA DEAC 0.5069 0.4774 0.4449 0.4517 0.5473 EFF P EFF 0.8684 0.9128 0.7685 0.8015 0.7683 FFFP 0.9103 -3.067 7.155 15.135 0.9040 0.9003 0.9409 5.215 0.8185 0.7610 EFF INCID -1.994 -2.738 3.199 13.418 13.852 -1.043 11.707 13.773 -z.000 6.334 INCID 5.306 14.933 6.975 14.090 DEVM 10.646 11.621 10.846 DE VH P 1 14.805 15.076 15.136 P 1 13.862 18.493 518.700 552.279 17.935 18.304 518.700 17.671 518.700 17.166 518.700 18,209 17.102 T 1 518.700 518.700 T 1 518.700 518-700 559.769 552.046 550.933 549.813 553.201 555.555 STATOR E PCT SPAN 95.00 33.267 90.00 33.564 85.00 70.00 50.00 30.00 37.848 44.715 PCT SPAN 15.00 10.00 5.00 DIA 33.921 35.183 34.992 34.128 36.420 38.919 57.090 39.276 39.633 RETA 2 37.660 STATGR-L.F. 41.286 BETA 2 1.000 531.46 428.24 377.42 427.93 STATOR-T.E. 2.000 603.66 504.85 0.750 595.04 498.90 BETA ZA -0.600 2.200 -0.250 470.81 1.751 0.850 533.95 558.07 422.18 586.32 437.55 V 2 459.65 355.47 212.05 V 2 374.23 255.67 360.23 170.11 2A VZ 2 VZ 2A 401.22 422.37 441.78 479.19 481.18 VZ 2 422.07 437.21 504.47 373.93 355.11 VZ ZA V-THETA 2 498.69 359.68 V-THE TA 2 352.31 -4.42 337.02 16.79 338.62 17.62 349.61 6.53 0.5304 373.69 7.47 340.96 424.29 V-THETA 2A 9.21 -1.63 0.4128 5.27 10.99 V-THETA ZA H 2 0.4736 0.4968 0.5239 0.5390 0.4700 0.4022 H 2 M ZA TURN(PR) 0.3716 U.3720 0.3863 0.3758 43.680 0.3261 57.295 0.3128 N ZA TURN(PR) 0.4469 0-4410 0.3091 36.409 0.1223 32.981 41.486 61.621 UURAR 0.0468 0.0508 0.0195 0.0280 0.0449 0.0352 0.0033 UUBAR LOSS PARA 0.0537 0.4424 0.0158 0.0416 0.0180 0.0072 0.0136 -0.0013 LOSS PARA DFAC 0.4460 0.3758 0.9413 -0.705 11.762 0.3531 0.4608 0.5817 DFAC 0.5407 0.5787 0.7380 -5.728 0.8653 0.6792 0.8489 1-0084 0.9345 INCID -8.681 8.232 -5.108 -3.902 8.846 12.666 17.671 18.387 19.352 13.530 8.040 INCID DEVM 12.562 17.935 13.510 12.975 DEVM 2 2 A 17.714 16.209 18.493 18.304 17.166 17.102 17.150 P 2 P 2A 17.724 549.813 17.596 17.594 18.325 18.241 17.584 17.172 17.069 17.052 550.933 552.279 555.555 559.749 562.776 562.776 553.201 560.993 T ZA 552.646 550.933 549.813 552.279 553.201 555.555 559.769 560.993 UUBAR FS P2 FS 0.1121 0.1279 0.1097 0.0272 0.0368 0.1469 0.1348 UUBAR FS 0.1051 0.1728 17.952 17.999 18.413 18.360 17.865 17.570 17.354 17.338 P2 FS LOSS PARA FS 0. 378 0.0435 0.0377 0.0096 0.0136 0.0543 LOSS PARA FS 0.0680

Table A-6. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 69.61 Equivalent Rotor Speed = 2930.53 Equivalent Weight Flow = 82.97
Tip Radial Distortion

INLET	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	38.954	40.321	40.737	41.085	DIA
	BETA O	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA O
	BETA 1 V D	-0.000 316.13	-0.000 316.13	-0.000 316.13	-0.000 316.13	-0.000 316.13	-0.000 316.13	-0.000 316.13	-0.000 316.13	-0.000 314.13	BETA 1 V O
	v i	387.74	411.18	410.69	405.10	384.12	299.47	263.62	248.29	243.84	νĭ
	VZ C	316.13	316.13	316.13	316.13	316.11	316.08	316.05	316.05	316.05	VZ O
	V2 1	387.74	411.18	410.69	405.09	384.10	299.42	263.55	248.22	243.78	VZ 1
	V-THETA C V-THETA 1	-0.00	-0.00	-0.00	-0.00	⊸.∞	-0.00	-0.00	-0.00	-0.00	V-THETA O V-THETA L
	M O	0.2855	-0.00 G.2855	-0.00 0.2855	-0.00 0.2655	-0.00 0.2855	-0.00 0.2 0 55	-0.00 0.2855	-0.00 0.2855	-0.00 0.2855	M O
	M I	0.3516	0.3734	0.3729	0.3677	0.3482	0.2702	0.2375	0.2235	0.2195	N 1
	TURN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	TURN
	UUBAR	0.6384	0.3526	0.3044	0.3056	0.4912	1.2112	1.4339	1.4463	1.5094	UUBAR
	DFAC EFFP	-0.227 0.4469	-0.301 0.6695	-0.299 0.7002	-0.281 0.6847	-0.215 0.4989	0.053 -0.0927	0.166 -0.2674	0.215 -0.3565	0,229 -0.3618	DFAC EFFP
	INCID	-0.0000	-C.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEAM
	P 0 P 1	15.287 14.751	15.287 14.991	15.287	15.287 15.030	15.287 14.874	15.267	15-287	15.267	15.287	P 0 P 1
	TO	516.700	518.700	15.031 518.700	518.700	518.700	14.269 518.700	14.082 518.700	14.071 518.700	14.018 518.700	ŤÔ
	Ť Î	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	ŤĬ
ROTUR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
-c-70" ()	DIA	33.236	33.621	34.007	35.164	36.706	38.248	39.405	39.791	40.176	DIA
ROTOR -L.E. ROTOR -T.E.	BETA 1 Beta 2	-0.000 34.247	-0.000 31.545	-0.000 29.935	-0.000 28.391	-0.000 29.115	-0.000 34.905	-0.000 40.025	-0.000 42.317	-0.000 46.780	BETA 1 Beta 2
NOTOR -TECE	BETA(PR) 1	47.461	44.600	44.349	45.785	49.058	57.336	61.310	62.915	63.443	BETA(PR) 1
	BETA(PR) 2	25.343	24.824	24.757	26.135	29.452	33.905	38.735	42.558	47.337	BETAIPR) 2
	Y 1	388.62	434.66	443.97	438.65	411.37	319.48	282.81	267.10	263.09	V 1
	V 2 VZ t	445.37 388.55	468.65 434.56	483.90	495.68	479.21	435.92	401.49	377.02	349.63	¥ 2
	V2 2	366.13	399.37	443.91 419.33	438.62 436.05	410.86 418.48	318.19 357.03	280.95 306.86	265.20 278.23	261.38 239.03	VZ 1 VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	250.63	245.17	241.46	235.68	233.06	249.11	257.72	253.33	254.36	V-THETA 2
	V(PR) 1 V(PR) 2	574.7	610-4	620.8	629.0	627.3	590.2	586.1	503.3	585.4	Y(PR) 1
	VIHETA PRI	407.4 -423.4	440.1 -428.5	461.8 -433.9	485.7 -4 50.8	480.8 -473.6	430.8 -496.3	394.2 -513.4	378.5 -518.6	353.3 -522.9	V(PR) 2 VTHETA PR1
	VTHETA PR2	-174.4	-184.7	-193.4	-214.0	-236.3	-240.0	-246.1	-255.5	-259.4	VTHETA PRZ
	U 1	423.44	428.53	433.94	450.81	473.61	496.31	:13.39	518.58	522.93	U 1
	U 2 M 1	424.98 0.3524	429.91	434.84	449.63	469.35	489.08	503.87	508.80	513.73	U 2
	H 2	0.3977	0.3954 6.4200	0.4041 0.4348	0.3991 0.4446	0.3736 0.4291	0.2885 0.3887	0 .2550 0 .3566	0.2406 0.3342	0.2370 0.3091	M 1 M 2
	M(PR) 1	0.5211	0.5552	0.5651	0.5723	0.5697	0.5331	0.5284	0.5255	0.5273	H(PR) 1
	M(PR) 2	0.3636	0.3944	0.4149	0.4357	0.4305	0.3841	J.3501	0.3355	0.3124	M(PR) 2
	TURN(PR) UUBAR	22.114 0.1139	19.771	19.590	19.649	19.586	23.377	22.506	20.294	16.057	TURN (PR)
	LOSS PARA	0.0298	0.12 04 G.0321	0.0840 0.0226	0.0527 0.01 46	0.0601 0.0169	0.0398 0.0111	0.0971 0.0263	0.1438 0.0371	0.1974 0. 0474	UUBAR Loss Para
	DFAC	0.4178	0.3970	0.3718	0.3429	0.3527	0.4111	0.4787	0.5020	0.5490	DFAC
	EFFP	0.7523	0.8005	0.9244	0.8501	0.8471	0.9429	0.8587	0.7749	0.6961	EFFP
	EFF Incid	0.7488 -4.971	0.7978 -6.316	0.9233 -6.229	0.8478 -6.258	0.8448 -4.946	0.9419 1.343	0.8561	0.7711	0.6914	EFF Incid
	DEVM	10.193	10.664	10.123	7.494	6.241	6.346	2.632 7.111	0.620 9.419	→.707 11.361	DEVM
	P 1	14.751	14.991	15.031	15.030	14.874	14.269	14.082	14.071	14.018	P 1
	P 2 T 1	16.272	16.459	16.635	16.719	16.584	16.204	15.970	15.814	15.632	PZ
	† 2	518.700 538.399	518.700 536.288	518.700 534.905	518.700 537.597	518.700 538.084	518.700 539.079	518.700 540.880	518.700 541.518	518.700	T 1 T 2
			>301100	2516763	2211271	3301004	3378077		341.510	542.422	1 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
CTATOD	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E. STATOR-T.E.	BETA 2 Beta 2a	34.452 0.700	31.399 1.300	29.503	28.425	28.785	34.811	40.794	43.594	48.889	BETA 2
SINION TELE	V 2	443.10	470.75	1.500 490.58	0.900 495.68	-0.370 484.99	1.250 437.64	2.651 3 95. 81	2.611 368.68	1.700 338.79	BETA ZA V 2
	V 2A	383.38	400.48	418.95	457.33	447.62	409.19	348.86	326.26	321.29	V ŽA
	VZ 2	365.38	401 .BO	426.94	435.84	424.84	359.01	299.36	266.75	222.56	V2 2
	V2 2A V-Theta 2	363.35	400.36	418.79	457.21	447.46	408.85	348.20	325.64	320.81	VZ ZA
	V-THETA 2A	250 .67 4.68	245.25 9.09	241.58 10.97	235.91 7.18	233.41 -2.89	249.62 8.92	258.34 16.12	253.97 14.85	255.03	V-THETA 2 V-THETA 2A
	M 2	0.3956	6.4220	0.4410	0.4446	0.4345	0.3903	0.3514	0.3266	9.52 0.2 99 4	M 2
	M ZA	0.3409	0.3572	0.3747	0.4090	0.3999	0.3642	0.3089	0.2884	0.2837	M ZA
	TURN(PR) UUBAR	33.752	30.098	28.002	27.519	29.139	33.528	30.096	40.932	47.132	TURN (PR)
	LOSS PARA	0.1032 0.0347	0.1283 0.0437	0.1188 0.0409	0.0250 0.0089	0.0046 0.0017	-0.0283 -0.0109	0.0955 0.0378	0.0914 0.0365	-0.0320 -0.0129	UUBAR Loss para
	DFAC	C-3218	0.3262	0.3080	0.2417	0.2580	0.2778	0.3625	0.3761	0.3457	DFAC
	EFFP	0.6135	0.5652	0.5920	0.8452	0.9711	1.2107	0.5922	0.5955	1.3058	EFFP
	INC ID DEVM	-15.715 9.532	-11.989	-10.787	-9.605	-7.918	-1.056	2.086	0.421	-10.314	INCID
	P 2	16.272	12.612 16.459	12.810 16.605	11.875 16.719	10.642 16.584	12.916 16.204	15.090 15.970	15.208 15.814	6.553 15.632	DEVM P 2
	P 2A	16.100	16.215	16.358	16.666	16.574	16.250	15.845	15.711	15.662	P ZA
1	T 2	536.399	536.288	534.905	537.597	538.084	539.079	540.880	541.518	542.422	T 2
	T 2A UUBAR FS	538.399 0.1454	536.288	534.905	537.597	538.084	539.079	540,880	541.518	542.422	T. 2A
	P2 FS	16.354	0.1085 16.416	0.0518 16.458	0.0245 16.717	0.0342 16.645	0.0361 16.312	0.2112 16.161	0.1849 15.943	0.1541 15.839	UUBAR FS P2 FS
	LCSS PARA F	S 0.0489	0.0369	0.0178	0.0087	0.0126	0.0139	0.0836	0.0738	0.0621	LOSS PARA FS

Table A-6. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Calculations Using Translated Values
Percent Equivalent Rotor Speed = 69.77 Equivalent Rotor Speed = 2937.39 Equivalent Weight Flow 77.98
Tip Radial Distortion

INLET	DCT CDAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	PCT SPAN Dia	33.122	33.529	33.962	35.312	37.137	28.10 38. 954	40.321	40.737	41.085	DIA
	BETA C	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA G
	BETA 1	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
	V 0	297.47	297.47	297.47	297.47	297.47	297.47	297.47	297.47	297.47	Y 0
	V 1	357.55	375.39	373.26	371.33	354.38	270.44	231-43	220.08	214.52	V 1
	V2 0 V2 1	297.47 357.54	297.47 375.39	297.47 373.26	297.46 371.33	297.45 354.36	297.42 270.41	297.39 231.37	297.39 228.02	297.39 216.46	VZ 0 VZ 1
	V-THETA O	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	Y-THETA 1
	M O	0.2684	0.2684	0.2684	0.2684	0.2684	0.2684	0.2684	0.2684	0.2484	M O
	M 1	0.3236	0.3401	0.3381	0.3363	0.3207	0.2437	0.2082	0.2051	0.1947	M 1
	TURN UUBAR	0.0 U.6232	0.0 0.3402	0.0 0.2942	0.0 0.2942	0.0 0.4796	0.0	0.0 1.3 99 7	0.0 1.4207	0.0 L.4834	TURN UUBAR
	DFAC	-0.202	-0.262	-0.255	-0.248	-0.191	1.1767 0.091	0.222	0.233	0.272	DFAC
	EFFP	0.4213	0.6416	0.6679	0.6614	0.4722	-0.1731	-0.3899	-0.4049	-0.4562	EFFP
	INC1D	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.9000	-0.0000	INCID
	DEVM	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	P 0 P 1	15.199 14.737	15.199 14.947	15.199 14.981	15.199 14.981	15.199 14.844	15.199	15.199 14.161	15.1 99 14.145	15.1 9 9 14.099	P 0 P 1
	TG	518.700	518.700	518.700	518.700	518.700	14.326 518.700	518.700	518.700	518.700	TÔ
	T 1	518.700	518.700	518.700	518.700	510.700	518.700	518.700	510.700	518.700	ŤĨ
ROTOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
ROTOR -L.E.	DIA BETA 1	33.236 -0.000	33.621 -0.000	34.007 -0.000	35.164 -0.000	36.706 -0.000	38.248 -0.000	39.405 -0.000	39.791 -0.000	40.176 -0.000	DIA Beta 1
ROTOR -T.E.	BETA 2	38.395	35.551	33.853	32.386	33.656	40.384	47.588	50.883	54.543	BETA 2
	BETA(PR) 1		47.318	47.220	48.399	51.439	60.015	64.414	64.904	66.136	BETA(PR) 1
	BETA(PR) 2		25.003	24.999	25.857	28.741	34.077	40.101	44.502	44.951	BETA(PR) 2
	V I	358.34	396.20	402.55	401.22	378.90	288.21	248.03	245.20	233.40	V 1
	¥ 2 ¥ 2 1	429.26 358.27	448.49 396.11	461.58 402.50	476. 99 401.20	465.67 378.43	421.93 287.04	387.20 246.39	365.88 243.45	35 9. 13 231.88	¥ 2 ¥Z 1
	VZ 2	336.42	364.87	383.32	402.79	387.46	321.03	260.77	230.50	208.08	VZ 2
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V-THETA 2	266.60	260.75	257.12	255.47	257.97	273.06	285.45	283.46	292.18	V-THETA 2
	V(PR) L V(PR) 2	555.5 372.3	584.4	592.6	604.3	607.4	574.9	571.2	574.7	573.8	V(PR) L
	VTHETA PRI	-424.4	402.6 -429.5	423.0 -435.0	447.6 -451.9	442.1 -474.7	388.1 -497.5	341.6 -514.6	323.8 -519.8	305.3 -524.2	V(PR) 2 VTHETA PRI
	VTHETA PRZ	-159.4	-170.2	-178.7	-195.2	-212.5	-217.2	-219.6	-226.5	-222.8	VTHETA PR2
	U 1	424.43	429.54	434.96	451.86	474.72	497.47	514.59	519.80	524.16	V I
	U Z	425.97	430.92	435.86	450.68	470.45	490.22	505.05	509.99	514.93	U Z
	M 1 M 2	0.3243 0.3828	0.3594 0.4010	0.3653	0.3641	0.3434	0.2599	0.2233	0.2207	0.2100	M 1
	M(PR) 1	0.5027	0.5361	0.4135 0.5379	0.4267 0.5484	0.4160 0.5504	0.3752 0.5184	0.34 29 0.5142	0.3233 0.5173	0.3170 0.5162	M 2 M(PR) 1
	MIPRI 2	C.3320	0.3600	0.3789	0.4004	0.3949	0.3452	0.3024	0.2861	0.2695	M(PR) 2
	TURN(PR)	24.478	22.310	22.218	22.54L	22.678	25.890	24.257	20.348	19.148	TURN (PR)
	UUBAR	0.0930	0.0999	0.0649	0.0416	0.0539	0.0562	0.1457	0.1922	0.2291	UUBAR
	LUSS PARA DFAC	0.0243 0.4691	0.0265 0.4421	0.0175 0.4153	0.0115 0.3892	0.0152 0.4083	0.0157 0.4835	0.0387 0.5739	0.0481 0.6080	0.0554 0.6466	LOSS PARA Deac
	EFFP	0.8416	0.8659	0.9615	0.8909	0.8941	0.9374	0.8275	0.7564	0.7285	EFFP
	EFF	0.8391	0.8638	0.9609	0.8890	0.8922	0.9362	0.8242	0.7520	0.7236	EFF
	INCID	-2.600	-3.598	-3.359	-3.644	-2.564	4.027	5.748	2.617	-2.003	INCID
	DEVM P 1	10.200 14.737	10.844 14.947	10.365 14.981	7.216 14.981	5.531	6.517	8.477	11.363	10.974	DEVM
	P Z	16.457	16.626	16.757	16.878	14.844 16.796	14.326 16.442	14.161 16.188	14.145 16.043	14.099 15.992	P 1 P 2
	T 1	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	518.700	Τì
	T 2	538.510	537.243	536.260	538.918	539.597	540.936	543.225	543.968	544.972	T Ž
STATOR E	PCT SPAN	95.00	90.00	85.G0	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E.	BETA 2	36.631	35.384	33.358	32.426	33.268	40.275	48.596	52.627	57.402	BETA 2
STATOR-T.E.	BETA 2A	0.200	1.800	2.020	0.890	-0.000	1.640	2.381	2.431	1.701	BETA ZA
	V 2 V 2A	427.11 348.33	450.46 354.48	467.86 371.84	476.99 419.24	471.21 412. 99	423.57	361.78	357.84	347.94	A 5
	vz 2	333.65	367.25	390.76	402.55	393.80	368.04 322.92	313.50 252.31	2 95 .97 217.06	295.91 187.34	V 2A VI 2
	VZ ZA	348.33	354.30	371.59	419.13	412.85	367.67	312.90	295.44	295.47	V2 2A
	V-THETA 2	266.64	260.83	257.25	255.72	258.36	273.62	286.14	284.18	292.95	V-THETA 2
	V-THETA 2A M 2	1.22 0.3809	11.13	13.11	6.51	-0.00	10.53	13.01	12.54	8.77	V-THETA ZA
	M ZA	0.3091	0.4028 0.3151	0.4193 0.3311	0.4267 0.3735	0.4211 0.3675	0.3767 0.3262	0 .3379 0 . 2765	0.3161 0.2606	0.3069	H 2
	TURN(PR)	38.430	33.583	31.336	31.529	33.251	38.600	46.167	50.147	0.2603 55.649	M 2A Turn{pr}
	UUBAR	0.0706	0.1382	0.1360	0.0229	0.0139	0.0040	0.0715	0.0299	-0.0102	UUBAR
	LOSS PARA	0.0238	0.0470	0.0468	0.0081	0.0052	0.0016	0.0283	0.0119	-0.0041	LOSS PARA
	DFAC EFFP	0.3938 0.80 0 6	0.4019 0.6574	0.3851	0.3071	0.3272	0.3715	0.4639	0.4784	0.4610	DFAC
	INCID	-11.536	-B.004	0.6533 -6.933	0.9065 -5.605	0.9441 -3.436	0 .98 43 4 .40 7	0.7901 9.888	0.90 9 3 9.457	1.0355 -1.7 9 7	EFFP INCID
	DEVM	9.032	13.112	13.330	11.865	11.012	13.305	14.820	15.109	6.553	DEAW
	P 2	16.457	16.626	16.757	16.878	16.796	16.442	16.188	16.043	15.992	PZ
	P 2A	16.346	16.383	16.497	16.833	16.770	16.435	16.100	16.011	16.002	P ZA
	1 2 T 2A	538.510 538.510	537.243 537.243	536.260 536.260	538.918 538.918	539.597 539. 59 7	540.936 540.936	543.225 543.226	543.968	544.972	T 2
	UUBAR FS	0.1085	0.1048	0.0675	-0.0211	0.0233	0.0606	543.225 0.1901	543.968 0.1318	544.972 0.1293	T 2A Uubar FS
	P2 FS	15.523	16.560	16.616	16.874	16.815	16.533	16.368	16.169	16.153	P2 FS
	LOSS PARA F	S 0.0365	0.0356	0.0232	0.0074	0.0087	0.0242	0.0752	0.0524	0.0519	LOSS PARA FS

INLET											
	PCT SPAN	96.80	92.00	86.90	71.00	49.50	28.10	12.00	7.10	3.00	PCT SPAN
	DIA	33.122	33.529	33.962	35.312	37.137	30.954	40.321	40.737	41.085	DIA
	BETA D BETA 1	-0.000 -0.000	-0.000 -c.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	-0.000 -0.000	BETA 0 Beta 1
	V 0	274.46	274.48	274.48	274.48	274.48	274-48	274.48	274.48	274.48	V 0
	V 1	335.70	352.86	352.45	353.93	339.10	264.45	222.72	216.26	203.30	V 1
	V2 0 V2 1	274.48 335.70	274 .48 352.86	274 • 48 352 • 45	274.48 353.92	274.46 339.07	274.44 264.40	274.41 222.67	274.41 216.20	274.41 203.24	YZ 0 YZ 1
	V-THETA O	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA O
	V-THETA 1	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	M 0 M 1	0.2474 0.3034	0.2474 0.3193	0.2474 0.3189	0.2474 0.3202	0.2474 0.3066	0.2474	0.2474	0.2474	0.2474	M O
	TURN		0.0	0.0	0.0	0.0	0.2382 0.0	0.2003 0.0	0.1944 0.0	0.1827 0.0	M 1 Turn
	UUBAR	0.5863	8616.0	0.2760	0.2809	0.4524	1.1171	1.3457	1.3784	1.4437	UUBAR
	DFAC	-C.223	-0.286	-0.284	-0.289	-0.235	0.037	0.189	0.212	0.259	DFAC
	EFFP INCID	0.4626 -0.0000	0.6786 -0.0000	0.7069 -0.0000	0.7076 -0.0000	0.5430 -0.0000	-0.0688 -0.0000	-0.3386 -0.0000	-0.3773 -0.0000	-0.4508 -0.0000	EFFP INCID
	DEVM	0.000	0.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	DEVM
	Pύ	15.105	15.105	15.105	15.105	15.105	15.105	15.105	15.105	15.105	P 0
	P 1 T 0	14.736 518.750	14.966 518.700	14.932 518.700	14.929	14.821	14.402	14.258	14.238	14.197	P 1
	τĭ	518.700	518.700	518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	518.700 518.700	7 G T 1
ROTOR E	BCT FRAN	05.00									
NO TOR E	PCT SPAN DIA	95.00 33.236	90.00 33.621	85. 0 0 34.007	70.00 35.164	50.00 36.706	30.00 38.248	15.00 39.405	10.00 39.791	5.00 40.176	PCT SPAN DIA
ROTOR -L.E.	BETA 1	-0.00	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	BETA 1
ROTOR -T.E.	BETA 2	41.093	38.505	36.365	34.764	36.683	44.366	53.694	57.810	60.657	BETA 2
	BETA(PR) 1	51.406	48.906	48.687	49.590	52.489	60.401	65.112	65.913	67.308	BETA (PR) 1
	BETA(PR) 2 V 1	25.239 336.44	24.775 372.09	24.559 379.66	25.269 382.03	28.197 3 62. 30	33.455 281.75	42.108	44.802	45.983	BETA(PR) 2
	v ž	417.76	434.98	450.42	467.17	454.90	415.90	230.63 374.40	232.40 368.59	219.07 371.15	V 1 V 2
	V2 1	336.37	372.61	379.61	362.00	361.85	280.61	237.06	230.75	217.64	ŸZ 1
	VZ Z	314.83	340.38	362.69	383.77	364.67	297.02	221.43	196.16	101.72	VZ 2
	V-THETA 1 V-THETA 2	-0.00 274.58	-0.00 270.79	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	V-THETA 1
	V(PR) 1	539.3	566.0	267.06 575.1	266.37 589.3	271,65 594. 5	290.52 568.7	301.37 564.0	311.61 566.1	323.25 564.7	V-THETA 2 V(PR) 1
	V(PR) 2	348.1	374.9	398 . 8	424.4	414.0	356.5	299.0	277.0	262.0	V(PR) 2
	VTHETA PRI	-421.5	-426.5	-431.9	-448.7	→71. 4	-494.0	-511.0	-516.2	-520.5	VTHETA PRI
	VTHETA PR2 U 1	-148.4 421.46	-157.1	-165.7	-181.2	-195.5	-196.3	-200.1	-194.8	-188.1	VTHETA PR2
	u z	422.99	426.52 427.89	431.91 432.80	448,69 447,52	471.39 467.15	493.98 486.78	510.98 501.50	516.15 506.41	520.48 511.32	U 1 U 2
	H 1	0.3041	0.3370	0.3441	0.3463	0.3280	0.2540	0.2147	0.2091	0.1970	M 1
	M 2	0.3720	0.3882	0.4028	0.4173	0.4057	0.3693	0.3308	0.3253	0.3273	H 2
	M(PR) 1 M(PR) 2	0.4875 0.3099	0.5127	0.5211	0.5341	0.5382	0.5126	0.5075	0.5092	0.5078	M(PR) 1
	TURN (PR)	26.163	0.3346 24.126	0.3566 24.125	0.3791 24.320	0.3692 24.272	0.3165 2 6.897	0.2642 22.952	0.2445 21.061	0.2310 21.293	M(PR) 2 Turm(Pr)
	UUBAR	0.1095	0.1181	0.0718	0.0446	0.0792	0.1185	0.2300	0.2766	0.3002	UUBAR
	LOSS PARA	0.0287	C.0315	0.0194	0.0124	0.0225	0.0333	0.0592	0.0688	0.0739	LOSS PARA
	DFAC EFFP	0.5023	0.4782	0.4446	0.4187	0.4502	0.5437	0.6536	0.7019	0.7371	DFAC
	EFF	0.8148 C.8119	0.8392 0.8367	0.9330 0.9319	0.8852 0.8832	0.8704 0.8681	0.8756 0.8732	0.7461 0.7415	0.7196 0.7145	0.7124 0.7070	EFFP EFF
	INCID	-1.025	-2.011	-1.691	-2.453	-1.514	4.414	6.448	3.631	-0.826	INCID
	DEVM	10.589	10.616	9.925	6.628	4.987	5.896	10.482	11.663	10.006	DEVM
	P 1 P 2	14.736 16.474	14.906 16.609	14.932 16.756	14.929 16.890	14.821 16.800	14.402	14.258	14.238	14.197	P 1
	Τì	518.700	518.700	518.700	518.700	518.700	16.494 518.700	16.201 518.700	16.161 518.700	16.183 518.700	P 2 T 1
	T 2	539.371	538.165	537.340	539.784	540.495	542.171	544.705	545.465	546.667	Ť 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
CTATOR_A C	OIA OFTA 3	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
STATOR-L.E. STATOR-T.E.	BETA 2 BETA 2A	41.350 -6.200	36.322 1.540	35.828 2.200	34.807 1.530	36.255	44.245	54.956	60.115	64.409	BETA 2
31	V 2	415.69	436.87	456.48	467.17	0.640 460.25	0.830 417.50	0.340 3 69 .21	1.126 360.48	2.711 359.51	BETA ZA V Z
	V 2A	334.85	335.00	346.20	395.68	390.31	342.39	301.69	285.42	286.51	V ŽA
	VZ 2	312.05	342.73	370.09	383.51	370.98	298.89	211.00	179.53	155.23	VZ 2
	VZ ZA V—THETA Z	334.84 274.62	334.87 270.88	345.93 26 7.1 9	395.49 266.62	390.16 272.06	342.15 291.12	301.44	285,12	285.88	VI 2A
	V-THE TA ZA	-1.17	9.00	13.29	10.56	4.36	4.96	302.10 1.79	312.40 5.58	324.11 13.54	V-THETA 2 V-THETA 2A
	M 2	0.3761	0.3900	0.4084	0.4173	0.4106	0.3708	0.3261	0.3180	0.3168	M 2
	M ZA	0.2967	C.2972	0.3075	0.3517	0.3466	0.3027	0.2655	0.2509	0.2515	M 2A
	TURN(PR) Uubar	41.550 0.0461	36.781 0.1169	33.627 0.1482	33.271 0.0377	35.597 0.0134	43.380 0.0330	54.569	58.949	61.655	TURN (PR)
	LOSS PARA	0.0135	0.0398	0.0510	0.0134	0.0050	0.0127	-0.0027 -0.0011	0.0301 0.0120	0.0416 0.0168	UUBAR Loss Para
	DFAC	0.4180	6.4374	G.4333	0.3482	0.3680	0.4451	0.5069	0.5506	0.5537	DFAC
	EFFP	0.8916	0.7315	0.6709	0.8754	0.9555	0.9045	1.0078	0.9226	0.8905	EFFP
	INCIL Devm	-8.817 8.632	-5.066 12.852	-4.462 13.510	-3.223 12.505	-0.450	8.376	16.251	16.949	5.218	INCID
	P 2	16.474	16.609	16.756	16.890	11.652 16.800	12.496 16.494	12.701 16.201	13.799 16.161	7.562 16.183	DEVM P 2
	P 2A	16.414	16.416	16.487	16.818	16.776	16.445	16.204	16.128	16.137	P ZA
	T 2	539.371	538.165	537.340	539.784	540.495	542.171	544.705	545.465	546.667	T 2
	T 2A Uubah FS	539.371	538.165	537.340	539.784	540.495	542.171	544.705	545.465	546.667	T, 2A
	80 55	0.1051	0.1171 16.609	0.0916 16.643	0.0325 16.879	0.0437 16.859	0 = 1009 16 • 607	0.1842	0.1423	0.1473	UUBAR FS P2 FS
	LOSS PARA F	S 0.0353	0.0398	0.0315	0.0115	0.0163	0.0388	0.0750	0.0567	0.0594	LOSS PARA FS
				•							_

Table A-7. Overall Performance - Stage E Circumferential Distortion

Equivalent		Rotor			Stage	
Weight Flow, lb/sec	${f ar{P}_2}/{ar{P}_1}$	η_{ad}	$\eta_{ m p}$	$ar{P}_{2A}/ar{P}_{1}$	$\eta_{ m ad}$	η_{p}
,	100	% Design I	Equivalent Ro	tor Speed		
116.75	1.2430	0.8042	0.8084	1.2272	0.7555	0.7608
*1 03.40	1.2934	0.8568	0.8630	1.2657	0.7823	0.7904
* 92.60	1.3081	0.8352	0.8380	1.2668	0.7320	0.7379
	90%	Design E	quivalent Roto	or Speed		
106.41	1.1928	0.8377	0.8382	1.1778	0.7761	0.7781
95.23	1.2272	0.8492	0.8537	1.2105	0.7908	0.7965
* 84.27	1.2334	0.8452	0.8515	1.2072	0.7563	0.7643
	70%	Design E	quivalent Roto	or Speed		
86.61	1.1167	0.8187	0.8251	1.1098	0.7721	0.7788
75.67	1.1279	0.8229	0.8176	1.1219	0.7858	0.7814
65.42	1.1381	0.8166	0.8226	1.1249	0.7417	0.7485

^{*}Data taken at multiple screen positions.

Table A-8. Blade Element Performance
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 99.59 Equivalent Rotor Speed = 4192.94 Equivalent Weight Flow - 163.46

Circumferential Distortion
Station 1 (16*) - Station 2 (6*) - Station 2A (355*)

4.98 PCT SPAN	_		61.828 BETA 2		49.711 BETA(PR) 2							857.6 V(PR) 1				749.64 U I	734.33 U 2		_			14.674 TURNIPRI								510.95 V 2		7 7/ 20*147		450.02 V-IHEIA Z		_	_	58-856 TURN(PR)		571.978 T 2	575.425 T 2A
66.6			57.036 6										466.3		- 6*687-				_			18.001			۸.۸		39.276		2.305					_				54.632 5		~	_
14.98	39.571	-3.489	53.433	62.885	39.952	389.74	553.81	388.95	329.53	-23.71	444.25	853.4	430.8	-759.6	-276-6	735.85	720.30	0.3534	0.4834	0.7739	0926-9	23.025	18.475	400	571.656	15.00	38.919	53.433	1.294	553.81	432-13	35.4.26	04.254	67-444	9.11	0.4834	6.3732	52.045	16,180	571.650	575.082
30,00	36.219	617.4-	48.453	65.089	34.732	393.15	579.26	392.04	383.83	-28.92	433.12	837.5	467.7	-740.1	-266.1	711.17	699.22	0.3566	0.5067	0.7597	0.4091	27.410	14.754	210 400	571.846	30.00	37.848	48.453	0.372	579.26	04.844	383.83	71.844	433.12	2.91	0.5667	0.3875	48.021	16.300	577.846	575.084
50.Ci	36.685	4.285	46. TUB	994.39	194.62	402.52	597.08	401.38	393.89	-30.06	448.48	814.3	452.7	-766.4	-222-1	678.38	671.16	0-3653	0.5232	0.4820	1965.0	31.001	18.86	007 619	571.527	50.00	36.420	46.708	0.864	597.08	451.19	393.89	471.65	448.44	6.36	6.5232	0.3637	47.824	16.677	571.527	574-605
76.60	35.151	4.396	49.624	59.454	27.523	400.16	584.99	398.99	378.95	-30.67	445.64	785.1	427.5	1-676-1	-197.5	645.43	643.09	0.3631	6.5138	0.7124	6.3753	31.933	18.631	7 0 7 0 1 7	564.069	76.00	34-992	49-624	-1.972	584.99	377.90	3/8.95	*0*/10	440.04	-13.00	0.5136	0.3258	51.593	17.751	568.009	571.647
84.99	34.001	-4-420	54.623	29.441	31.189	385.39	534.01	384.24	313.71	-29.70	432.15	7.55.7	366.7	-65C.B	-186.9	621.07	622-05	0.3494	0.4675	0.6851	0.3210	28.251	17.971	7 7 7 7 7	566.768	85.00	33.921	54.023	-2.312	534.01	339. 7B	313.71	00.400 00.400	432-15	-13.71	0.4675	0.2928	56,335	17.551	506.708	569.695
30.06	33.617	065.4	55.672	59.483	24.960	379.73	565.13	378.61	318.69	-29.67	466.69	745.6	351.5	-642.3	-148.3	613.25	615.03	0.3441	0.4957	0.6757	6.3084	34.523	18.263	004 514	567.369	90.06	33.564	55.672	-1.136	565.13	352.4	318.69	95.756	400.00	6.	0.4957	0.3638	56.807	17.644	567.369	570.552
66.46	33.234	-4.249	55.316	61.187	18.863	346.43	598.02	347.47	346.28	-25.82	491.76	721.0	359.6	-631.7	-116.3	605.90	668.62	0.3152	0.5256	6.6522	0.3166	42.324	18.632	3007 313	568.539	95.00	33.207	55,318	0.273	598.02	366.65	340.28	300.04	491.76	1.76	0.5256	6.3177	55.044	17.758	564.539	571.667
PLT SPAN	PIA	bETA 1	BETA 2	BETA(PR) 1	(PR)	۲ >	2 ×	1 7/	VZ 2	V-THE TA 1	V-THETA 2	V(PR) 1	V(PR) 2		VTHETA PR2	1 0			2 н	M(PR) 1	M(PR) 2	TURN(PR)	- ^			PCT SPAN	DIA	BETA 2	⋖	2 >	V 2A	7 7 7			V-THE TA ZA	~ ¥	M 2A	TURN(PR)	P 2A		T 2A
KOTCK E		STANICH I	STATION 2													-										STATOR E		STATION 2	STATION 2A												

Table A-8. Blade Element Performance (Continued)
Stage E., Rotor E - Stator E
Percent Equivalent Rotor Speed = 99.59 Equivalent Rotor Speed = 4192,94 Equivalent Weight Flow = 103,40
Circumferential Distortion
Station 1 (46°) - Station 2 (36°) - Station 2A (25°)

PCT SPAN 94.99 DIA 33.234 BETA 1 3.657 BETA 2 46.183	90.00 35.617 3.384	84.99 34.601 5.567	70.00 35.151 2.522	50.00 36.085 2.579	36.00 38.219 1.744	14.96 39.371 3.049	9.99 39.754 3.562	4.98 4(.138 2.487	PCT SPAN DIA BETA 1
7 40.183 43.514 41.279 [PR] 1 51.567 50.757 50.182 [PR] 2 20.592 27.622 26.250		יי אוי	6.353 7.188	39.148 52.210 30.861	37.633 54.600 35.375	40.256 56.351 40.632	57.443 57.443 44.947	51.329 60.223 52.803	BETA 2 Beta(PR) Beta(PR)
457-42 478.68 493.16 569-24 575.87 603.66		6 5	16.51 25.81	508.81 613.34	505.81	473.80 560.67	457.43	418.95	1 2
492.20		S.	16.00	508.27	505.51	473.04	456.47	418.52	VZ 1
ETA 1 30.77 28.25 30.68		*	22.73	72.89	472.12	75.20	366-44	286.06	VZ 2 V-THETA 1
2 416.73 396.56 398.41		'n	92.91	387.05	364.01	361.58	361.54	357.43	V-THETA 2
1 734.2 755.4 768.6			808.7	859.5	860.1	853.7	846.3	842.8	V(PR) 1
440.7 471.3 505.7			547.6	554.2	579.8	558.8	518.7	473.8	V(PR) 2
		T	522.7	-625.5	-695.8	-710.7	-714-9	-731.5	VIHETA PRI
0°577 - 2T00°5 - 2T0°5 - 2T0°50'5		7 7	7•nc	1-497-	79666-	1.908-	365.6	-376-9	VTHETA PRZ
615.23 621.07		8 2	643.09	678.38	699.22	720.30	727.35	749.64	- -
0.4369 0.4506		0	4729	0.4655	0.4626	0.4322	0.4168	0.3807	
0.5035 6.5103 6.5370		0	0.5573	0.5455	0.5306	0.4961	0.4545	0.4018	N 2
0.6690 0.6894 0.7023		•	404	0.7589	0.7867	0.7768	6.7729	0.7657	M(PR) 1
0.3898 0.4177 0.4498		ં	928	0.4929	0.5153	0.4945	0.4572	0.4153	M(PR) 2
		23	167	21.366	18.679	16.411	12-601	7-527	TURNIPR
18.306 18.418 18.742		19	19.086	19-640	18.976	18.602	18.157	17.659	. 0
518,699 518,699	•	518	669	518.699	518.699	518.699	518.699	518.699	1 1
556.939 557.495 556.136 557	•	551	• 406	557.404	556.446	557.643	557.935	559.255	1 2
90.00 85.00		-	0.00	20.00	30.00	15.00	10.00	2.00	PCT SPAN
33.207 33.564 33.921		ň.	-992	36.420	37.848	38.919	39.276	39.633	VIQ
2 46.183 43.514 41.299		90	.893	39.146	37.633	40.256	44.614	51.329	BETA 2
ZA U.009 U.125 -0.045 540.24 F7E 67 462 44		ġ ;	40.0	0.778	424.0	096.0	1.423	0.115	BETA 2A
410-60 414-60		7 7		485.87	476.28	200000	300-18	301, 20	× × ×
394.11 417.62 453.51		48	90.7	475.45	472.12	427-02	366.44	286.06	V2 2
420.92 410.59 413.99		4	3.95	485.72	476.09	416.78	398.83	391.01	VZ 2A
2 410.73 396.50 396.41		39	2.91	387.05	364.01	361.58	361.54	357.43	V-THETA 2
0.90		T	95.0	09*9	3.52	96.9	9.91	0.78	V-THETA 2A
0.5035 0.5103 0.5370		3	5573	0.5455	6.5306	0.4961	0.4545	0.4018	H 2
0.3679 0.3592 0.3627		ن.	4163	0.4272	0.4188	0.3648	0.3487	0.3411	H 2A
43.388 41.344		ጽ;	935	38.350	37.151	39.199	43.082	51.104	TURN (PR)
75-300 TR-418 TH-145		-	•080	19.040	18.976	16.602	16.157	17.659	P 2
16.059 18.058	_ `	ã	16.581	18.715	16.586	16.047	17.902	17-861	P 2A
556.495 556.136		Š	400	257.404	556.446	557.643	557.935	559.255	1 2
164.066		Š	107-	257.957	556.996	558.433	558.736	560.244	T 2A

Table A-8. Blade Element Performance (Continued)

Stage E., Rotor E - Stator E

Percent Equivalent Rotor Speed = 99, 59 Equivalent Rotor Speed = 4192, 94 Equivalent Weight Flow = 103, 10

Circumferential Distortion

Station 1 (76°) - Station 2 (56°) - Station 24 (55°)

PCT SPAN	VIO	BETA 1	BETA 2	BETA(PR) 1.	BETA(PR) 2	- >	7 	٧2 1	7 7 7	V-THETA 1	V-THETA 2	V(PR) 1	V(PR) 2	VTHETA PRI	VTHETA PR2	1 0	7 N	7 H	2 H	M(PR) 1	M(PR) 2	TURN (PR.)	- c	J =	12	PCT SPAN		BETA 2	BETA 2A	۸ 2	V 2A	V2 2	V2 2A	V-THETA 2	V-THETA 2A	7	M 2A	TURN (PR)		1 2	T 2A
4.98	40.138	£.728	47.116	69-289	46.361	430.99	508-63	430.91	345.56	-5.48	372.01	869.4	501.6	-755.1	-362.3	749.64	734.33	0.3919	6.4464	9064-0	6.4402	14.037	410-41 18 C04	060401	561.870	2.00	39.633	47.116	-1.794	568.63	8.44	345.50	444.37	372.01	-13.92	0.4464	0.3890	48 - 796	16.216	561.870	560.833
66.6	39.754	06000	40.604	57.927	38.883	469.16	577.10	469.06	437.18	-5.16	374.76	883.4	562.9	-748.5	-352.5	743.35	727.31	0.4278	0.5096	0.8056	6.4971	19-147	18.700	007 019	561.324	10.00	39.276	409-04	906.0	577.10	463-01	437.18	462.69	374.76	7.32	9605*0	0.4056	39.590	18.368	461.324	560.101
14.98	39.371	-1.604	37,921	57.108	35.537	481.52	612.76	481-36	482.34	1.9	375.77	886.4	594.1	-744.3	-344.5	735.85	720.30	9664-0	0.5429	5.8092	0.5264	21.659	10.269	110 400	561.290	15.00	38.919	37.921	0.741	612.76	489.20	485.34	488.91	375.77	6.32	0.5429	0.4294	37.084	18.598	261.290	559.973
30.40	38.219	-v-622	36.297	54.725	31.548	507.05	644.26	506.96	518.54	5.50	380.86	877.9	609	-716.7	-318.4	711.17	699.22	0.4638	C.5727	C-8031	0.5417	23-227	19-519	410 400	561-167	30.00	37.848	36-297	0.473	644.26	543.70	518.54	543.48	380.86	4.49	0.5727	0.4795	35.766	16.230	561-187	559.604
50.00	36.685	-C. 764	36.661	52.843	27.819	519.01	658.07	518,95	527.65	-6.38	392.74	859.2	596.9	-684.8	-278.4	678.38	671.16	0.4753	0.5855	C.7868	C.5311	25.640	16.57	616 400	561.661	50.00	36.420	36.661	6.693	658.07	548.65	527.65	548.49	392.74	6.63	0.5855	0.4838	35.948	19.425	561-661	560.226
70.00	35.151	694.0-	37.176	50.807	24.535	529.82	664.41	529.86	529.37	4.34	401.46	838.4	581.9	-649	-241.6	645.43	643.09	0.4856	0.5925	0.7684	0.5196	26.275	10.530	007 015	559.982	70.00	34.992	37.176	1.489	664.41	524.59	529.37	524.36	401.46	13.63	0.5925	0.4622	35.685	19.67H	1,59,987	556.894
84.59	34.001	95L-9-	39.269	51.341	23.788	502.49	638.52	502.44	494.33	-7.00	404-16	804.3	540.2	-628.1	-217.9	621.07	622.05	0.4595	6.5683	0.7355	0.4806	27.553	14.112	210 7 015	559.276	85.00	33.921	39.269	1.816	638.52	450.66	494-33	450.36	404.16	14.28	0.5683	0.3950	37.453	18.355	559.27H	558.311
33°06	53.617	-0.716	40.976	52.080	24.709	482.48	613.11	482.44	462.88	6.03	462.C4	785.0	506.5	619.3	-213.0	613.25	615.03	C-4405	6.5438	0.7167	6.4519	27.371	18.800	618 600	566.313	90.00	33.564	40.976	1.136	613.11	440.86	462.88	440-76	405.04	8.74	0.5438	0.3859	39.839	18.274	506.314	559.356
66.46	33.234	-0-175	43.560	53.430	24.365	450.52	597.69	450.51	433.11	-1.38	411.87	756.1	475.5	607-3	-196-2	66.539	608.02	0.4103	0.5287	0.6886	0.4206	29.065	18.612	27 7 7 7 7	561.648	95.60	33.207	43.560	-0.192	597.69	445.97	433.11	445.97	411.87	-1.49	0.5287	0-3900	43.751	18.747	561.04.6	560.663
PCT SPAN	VIQ			BETA(PR) 1	A (PR)	۲ >	۸ 2	٧2 ا	VZ 2	V-THETA 1	V-THETA 2		V(PR) 2	VTHETA PRI	VTHETA PR2	1 7	0 Z		M 2		M(PR) 2	TURN(PK)	• •		2 1	PCT SPAN	DIA		BETA 2A	~	Y 2 Y	2 2				2 H	M 2A	TURN(PR)		1.2	T 2A
ROTOK E		STATION 1	STATION 2																							STATOR E			STATION 2A												

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Percent Equivalent Rotor Speed = 99, 59 Equivalent Rotor Speed = 4192, 94 Equivalent Weight Flow = 103, 40
Circumferential Distortion

	(82°)
	2A
5	Station
	ı
	98
5	2
	Station
	ı
	106°)
	_
	Station

KOTOR E	PCT SPAN	66.46	90.00	84.99	70.00	50.00	30.00	14.98	66.6	4.98	PCT SPAN
	VIO	33.234	33.617	34.061	35.151	36.685	38.219	39.371	39.754	4C.138	VI 0
STATION 1		-£-206	-C. 135	C.121	698*3	-i.c.i5	-6.139	-1.369	-1.044	-1.572	6ETA 1
STATION 2	BETA 2	42.653	39.809	37.740	35.961	35.546	34.858	36.249	39.214	45.669	BETA 2
	BETA(PR) 1	54.000	52.567	52.026	51.988	52.897	55,350	57.764	58.852	61.900	BETA(PR) 1
	BETA(PR) 2	25.155	27.798	26.191	26.542	29.836	34.686	38,324	42.807	49.989	BETA(PR) 2
	1 >	441.37	470.29	483.98	502.38	513.24	492.29	471.37	454.41	406.43	۲ ۸
	2 A	594.39	588.44	621.38	648.61	640.71	621.41	587.52	540.04	475.37	V 2
	1 7/	441.56	470.28	483.98	562.38	513.22	492.22	41.174	454.26	406.23	VZ 1
	VZ 2	437.15	452.02	461.34	524.97	521.67	509.19	472,75	417.46	331.43	۷۶ ۶
	V-THETA 1	-1.59	-1-11	1.02	2.71	-0-13	-1.02	-11.26	-8.28	-11.15	V-THETA 1
	V-THETA 2	402.73	376.73	380.38	380.87	372,31	354.66	346.62	340.64	339.50	V-THETA 2
	V(PR) 1	750.9	773.7	786.6	8.518	850.8	865.8	883.3	878.3	862.5	V(PR) 1
	V (PR) 2	483.0	511.0	547.6	586.9	0.109	615.7	603.9	570.2	516.3	V(PR) 2
	VTHETA PRI	607.5	4.4	-620.0	-642.7	-678.5	-712.2	-747.1	-75156	-760.8	VTHETA PRI
	VTHETA PR2	-205.3	-538.3	-241.7	-262-2	-298.5	-344.6	-373.7	-386.7	-394-8	VTHETA PR2
	. 0	605.90	613.25	621.07	645.43	678.38	711.17	735.85	743.35	749.64	1 0
	n 2	608.02	615.03	622.05	643.09	671.16	699.22	720.30	727.31	734.33	N 2
	- E	0.4017	0.4289	0.4419	0.4594	1694.0	6.4498	0.4299	0.4139	0.3690	- H
	Z H	0.5255	0.5208	0.5525	0.5770	0.5693	0.5515	0.5193	6-4753	6.4159	N 2
	M(PR) 1	0.6833	0.7056	0.7181	0.7459	1877.0	0.7910	0.8057	0.8000	6.783C	MIPR) 1
	M(PR) 2	0.4270	0.4522	0.4869	0.5220	0.5340	0.5464	0.5338	0.5019	0.4517	M(PR) 2
	TURNI PR)	28 845	24.769	25.835	25.447	23.077	21.317	19.531	16-150	12-019	TURN(PR)
	-	14.551	14.818	816-41	240-61	15.140	15.066	14.959	14.879	810-41	- :
	2 .	18.676	18.628	19.021	19.449	19.400	19,335	19.004	18.476	17.865	2 -
	▼	518.699	518.699	518.699	518-699	518.699	518-699	518.699	518.699	518.699	-
	T 2	561.675	566.093	558.457	560.922	561.197	560.515	561.285	561.421	562.454	1 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	10.00	2.60	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	PIA
		42.653	39.869	37.746	35.961	35.546	34.858	36.249	39.214	45.689	BETA 2
STATION 2A	BETA 2A	-0.125	1.107	1.958	1.567	0.673	0.581	0.870	1.473	-1.092	BETA 2A
	~	594.39	588.44	621.38	648.61	646.71	621.41	587.52	540.04	475.37	~ ~
	V 2A	468.82	460.60	467.80	541.68	554.42	544.17	477.47	449.46	436.22	V 2A
	VZ 2	437.15	452-02	461.34	524.97	521.07	509.19	472.75	417.46	331.43	V2 2
	V2 2A	468.82	460.50	467.51	541.42	554.26	543.94	477-17	449.05	435.82	VZ 2A
	•	402.73	376.73	380,36	360.87	372.31	354.66	346.62	340.64	339.50	V-THETA 2
	V-THE 1 . 2A	-1.02	8.90	15.98	14.81	6.51	5.52	7.25	11.55	-6-31	V-THETA 2A
	X 2	0.5255	0.5208	0.5525	0.5779	0.5693	0.5515	0.5193	0.4753	0.4159	Z H
	H 2A	0.4103	0-4036	0.4108	0.4770	0.4688	6.4797	0.4184	0-3930	0.3807	H 2A
	TURN(PR)	16-576	36.701	35.766	34-392	34-854	34.220	35.285	37-634	40.668 7.465	TURN(PR)
	P 2A	16-533	16.481	18.550	19-295	19.416	19.282	18.524	18.288	18.180	P 2A
	1.2	561.875	560.093	556.457	560.922	561.197	560.515	561.285	561.421	562.454	1.2
	T 2A	561.614	559.733	557.874	560.999	560.942	560.154	561.627	866-095	562.686	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 99.59 Equivalent Rotor Speed = 4192.94 Equivalent Weight Flow = 103.40

Circumferential Distortion
Station I (136°) - Station 2 (126°) - Station 24 (115°)

PCT SPAN	DIA		BETA 2	BETA(PR) 1	BETA(PR) 2	۷ ،	7	VZ 1	V2 2	V-THETA 1	V-THETA 2	V(PR) 1	V(PR) 2	VTHETA PRI	VTHETA PR2	- I	7 0	-	~ 1	M(PR) 1	M(PR) 2	TURN (PR)	-	P 2	1 1	12	PCT SPAN	DIA	BETA 2	BETA 2A	۷ 2	V 2A	V2 2	V2 2A	V-THETA 2	V-THETA 2A	M 2	⋨	TURNIPRI	2	P 2A	7.1	T 2A
86*4	4C-138	-1.920	45.915	*16*09	49.154	425.21	483.CB	424.93	335.45	-14.25	346.34	874.1	513.8	-763.9	-388-0	749.64	734.33	0.3865	0.4226	0.7946	0.4494	11.869	14.679	17.970	518.699	563.180	5.00	39.633	45.915	-0.675	483.08	446.83	335.45	446.48	346.34	-5.26	0.4226	6.3899	114.95	17.970	18.293	563.180	443 634
66.6	39.754	-1.856	40.047	58.674	41.374	461.56	553.20	461.25	422.53	-14.50	355.14	887.2	564.3	-757.8	-372.2	743.35	727.31	0.4207	0.4870	0.8086	0.4968	17.405	14.914	18.663	518.699	562,385	10.00	39.276	240.04	1.786	553.20	464.73	422.53	464.24	355.14	14.48	0.4870	0.4064	36.154	18.663	18.461	562.385	. 00 . 77
14.98	39.371	-C-756	37,723	57.692	37.272	469.37	594.71	469.24	469.39	-6.19	363.09	878.0	591.1	-742.0	-357.2	735.85	720.30	0.4280	0.5257	0.8007	0.5226	20.511	14.946	19,125	518.699	561.994	15.00	38.919	37.723	0.982	594.71	489.37	469.39	489.05	363.09	8.38	0.5257	0.4288	36.646	19.125	18,672	561.994	000
36.00	38.219) #3·0-	36.113	55.567	32.769	492.61	631.15	492.49	509.17	-7.22	371.47	871.0	606.4	-718.4	-327.7	711.17	699.22	0.4501	0.5600	C. 7958	0.5381	22.856	15.088	19.493	.18.699	169-195	30.00	37.848	36.113	0.697	631-15	553.67	209.17	553.43	371.47	6.73	0.5630	0.4879	35.359	19.493	19.409	561.691	.7
00.04	36.685	-1.026	36.551	53.481	28.534	509.20	650.45	50.9.09	522.28	51.6	367.19	855.5	594.8	-687.5	-284.0	678.38	671.16	0.4659	0.5781	0.7827	0.5287	24.963	15.146	19.616	518.699	561.983	50.00	36.426	36,551	0.713	650.45	557.27	522.28	557.16	387.19	6.93	0.5781	0.4916	35.816	19.618	19.502	561,963	
7C.CO	35.151	-1.283	37.171	52,183	25.250	96.605	656.25	509.83	522.89	-11-42	396.48	831.5	578.2	6.959-	-246.6	645.43	643.09	0.4666	0.5844	6.7608	0.5149	26.934	15.103	19.573	118,699	560-522	70.00	34.992	37,171	1.532	656.25	537.59	522.89	537.34	396.48	14.37	0.5844	0.4734	35.637	19.573	19.297	566.522	
66.49	34.001	-6.661	36.779	50.812	24.702	511.16	631.59	511.12	492.36	-5.90	395.57	808.9	542.0	7.729	-226.5	621.07	622.05	0.4676	C.5614	C.7402	0.4817	26.110	15.128	19.164	518.699	559.944	85.00	33.921	38.779	1.945	631.59	462.99	492.36	462.71	395.57	15.71	0.5614	0.4057	30.034	19.164	18.545	259.944	200
90°06	33.617	-U.517	41.157	51.680	25,635	488.18	603.32	488.15	454.24	4.40	397.05	787.3	503.6	-617.7	-218.0	613.25	615.03	0.4459	6.5343	0.7190	C-4462	26.045	14.933	18.619	516.699	566.861	90.06	33.564	41.157	1.016	603.32	456.69	454.24	456.61	397.05	9.10	6.5343	0.3996	40.140	18.819	16.473	560.861	CEC 0.3
66.46	35.46	-(.196	43.649	53.626	25.480	457-34	587.44	457-33	425.05	-1-56	405.47	760.4	470.9	-407-5	-202-6	605.90	608.02	0.4167	0.5188	0.6928	6.4159	27.546	14.678	16.621	518.699	562.227	95.00	33.207	43.649	-0.129	587.44	461.34	455.05	461.34	465.47	-1.04	C.5188	0.4033	43-777	120.31	18.504	562.227	
PCT SPAN	DIA	beTA 1			BETA(PR) 2	٦ >	~ ~	٧2 ا	V2 2		V-THETA 2		V(PR) 2	VTHETA PRI	VTHETA PR2	. 0	n 2	 E	3 2		M(PR) 2	\rightarrow			7 -	7 ,	PCT SPAN	OIA		BETA 2A	۷ 2	V 2A	VZ 2			V-THETA 2A	M 2	H 2A	TURN(PR)	7 .		T 2	* · ·
KOTOR 'E		STATION 1	STATION 2																								STATOR E			STATION 2A													

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 99.59 Equivalent Rotor Speed = 4192.94 Equivalent Weight Flow = 103.40

Circumferential Distortion
Station 1 (196°) - Station 2 (186°) - Station 2A (175°)

PCT SPAN DIA BETA 2 BETA 2 BETA (PR) 1 BETA (PR) 2 V 1 V 2 V 2 V 2 V 3 V 4 V 7 V 7 V 7 V 7 V 7 V 7 V 7	PCT SPAN DIA BETA 2 BETA 2 BETA 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 M
4.98 4.98 6.414 6.414 6.414 6.414 6.414 6.414 6.414 6.426 6.43	5.00 39.633 65.170 12.091 846.433 846.433 846.433 846.433 96.3902 18.119 18.119 18.128 561.128
9.99 29.754 (.311) 40.254 40.256 40.256 462.36 429.49 2.51 363.64 873.8 743.8 743.8 743.8 17.879 17.879 17.879 17.879 17.879 17.879 18.806 560.523	10.00 39.276 40.254 0.869 564.01 464.83 429.49 464.51 363.64 7.05 0.4071 18.866 18.463 560.523
14.98 39.371 0.831 37.960 57.055 472.56 595.78 472.42 468.73 6.85 868.73 6.85 868.1 729.0 -354.6 720.30 0.5216 0.5216 0.5216 0.5216 15.011 19.017	15.00 38.919 37.960 1.008 595.78 491.13 491.13 36.673 19.5276 0.5276 0.4313 19.172 19.472
36.00 36.219 -0.10 35.957 35.957 55.146 497.75 511.56 -3.56 371.09 871.0 608.7 -714.7 -71	30.00 37.848 35.957 0.943 632.86 348.23 511.56 371.09 91.09 91.09 19.561 19.341 19.341
50.00 36.685 0.209 36.762 52.756 52.756 514.35 645.54 514.35 678.38 674.35 678.38 671.16 678.38 671.16 678.38 671.16 678.38 671.16 678.38 671.16 678.38 671.16 678.38	50.60 36.420 36.762 0.971 645.54 547.10 516.93 346.17 9.27 0.5742 0.4821 19.395 19.395
7C.00 35.151 0.133 37.765 51.596 51.596 510.80 648.60 512.76 11.19 397.24 822.2 568.7 643.09 643.09 0.5783 0.5783 0.5783 15.155 15.155	70.00 34.992 37.765 1.573 648.66 525.51 512.76 37.24 14.42 0.5783 0.4631 36.190 19.178
84.99 34.601 0.675 38.999 51.590 24.966 491.91 621.91 0.64 394.99 791.81 621.07 622.05 0.4494 0.4789 14.989 18.181	85.00 33.921 38.998 2.042 627.46 487.81 452.16 394.99 16.12 0.3968 36.956 18.472 18.472 556.024
9C.66 33.617 6.409 41.574 51.409 25.990 486.64 598.11 3.47.44 3.47.44 3.47.44 497.8 -609.8 -218.1 613.25 615.03 0.7124 0.7124 0.5303 0.7124 0.6444 0.6303 0.7124 0.7124	90.00 33.564 41.574 1.212 598.11 447.05 447.44 446.94 396.89 96.89 96.89 96.89 96.89 96.89
94.99 33.234 1.002 43.574 52.395 25.220 460.57 596.03 460.40 427.46 427.46 427.46 412.5 606.03 608.02 608.02 0.4197 0.4183 27.1724 14.724 14.724 16.678	95.00 33.207 43.574 -0.468 590.03 451.59 427.46 451.57 406.69 -3.69 0.3952 44.041 18.648 18.648 566.043
PCT SPAN BLA 1 BETA 2 BETA 2 BETA(PR) 1 BETA(PR) 2 V	PCT SPAN DIA BETA 2 BETA 2A V 2A V 2A V 2A V 2A V 2A V 2A M 2A M 2A T 12A
STATION 1 SIATION 2	STATOR E STATION 2 STATION 2A

Table A-8. Blade Element Performance (Continued)

Stage E. Rotor E - Stator E

Percent Equivalent Rotor Speed = 99, 59 Equivalent Rotor Speed = 4192, 94 Equivalent Weight Flow = 103,40

Circumferential Distortion

Station 1 (226°) - Station 2 (216°) - Station 2A (205°)

PCT SPAN DIA BETA 1 BETA 2 BETA 2 BETA (PR) 1 BETA (PR) 2 V 2 V 2 V 1 V 2 V 2 V 1 V 2 V 1 V 2 V 1 V 2 V 1 V 2 V 1 V 2 V 1 V 2 V 1 V 2 V 1 V 2 V 3 V 4 V 4 V 7 V 7 V 7 V 8 V 1 V 1 V 1 V 1 V 2 V 1 V 2 V 1 V 2 V 1 V 2 V 2 V 3 V 4 V 4 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7	PCT SPAN DIA BETA 2 BETA 2A V 2 V 2 V 2 2 V 2 A V THETA 2A W 2A I URN (PR) P 2 P 2 T 2 A
4.98 40.138 7.879 6.426 59.880 49.312 423.15 482.05 482.05 331.65 331.65 21.25 348.58 349.58	5.00 39.633 46.426 -1.350 434.45 434.45 438.91 -10.23 -10.23 0.4726 17.663 17.663 17.663 18.196 561.870
9.99 39.754 1.703 40.655 50.933 40.933 40.933 40.22 556.88 439.95 422.80 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 13.08 143.38 127.88 18.658 18.658	10.00 39.276 40.455 1.145 556.88 448.07 422.80 447.72 360.53 0.3918 0.3918 18.307 560.674
14.98 39.371 1.300 37.354 57.618 37.667 461.99 597.98 461.78 474.29 10.48 10.48 362.02 599.9 599.9 720.9 10.5294 0.5294 0.5294 10.118 518.699	15.00 38.919 37.354 1.220 597.98 477.20 477.20 36.02 10.5294 0.4184 0.4184 18.555 560.743
30.00 38.219 1.320 35.147 55.144 33.469 487.68 487.69 511.23 11.23 360.41 853.0 614.8 711.17 699.2 0.5565 0.5565 0.5565 15.113 19.394 560.851	30.00 37.848 35.147 1.086 626.95 545.91 511.92 545.61 10.34 0.4809 19.320 19.320 19.320
50.00 36.685 2.115 2.115 35.745 53.102 29.464 495.93 495.93 18.30 376.32 825.4 598.38 671.16 671.16 0.5725 0.5725 19.492 560.669	50.00 36.420 35.795 0.841 643.71 547.05 521.88 546.67 376.32 8.03 0.5725 0.4821 19.385 19.385
70.00 35.151 2.521 36.957 50.442 26.109 514.94 517.59 807.8 807.8 807.8 907.8 645.4 645.4 0.5769 0.5769 0.5769 0.5769	70.00 34.992 36.957 1.344 647.76 536.46 517.59 536.26 12.58 0.4725 0.4725 19.444 19.303 559.478
84.99 34.001 2.257 38.472 51.623 25.623 25.623 476.96 476.96 476.96 476.96 476.96 476.96 476.96 476.96 18.80 18.80 18.80 18.80 18.80 18.80 19.094 556.580	85.00 33.921 38.472 2.159 627.09 466.01 390.13 1.57 0.4098 0.4098 19.601 18.601 556.936
90.00 33.617 1.510 40.652 51.954 26.559 470.39 470.39 470.39 12.39 385.69 763.0 512.9 613.2 613.	90.00 33.564 40.052 1.865 599.38 454.43 385.69 143.20 0.3987 10.3987 18.499 557.656
94.99 33.234 1.505 42.564 53.084 26.1084 26.13 446.33 446.33 446.33 396.13	95.00 33.207 42.564 -0.188 585.65 460.00 491.33 460.06 196.13 -1.51 0.4031 18.584 18.584 18.584
PCT SPAN DIA BETA 1 BETA 2 BETA 8 1 BETA 8 2 V	PCT SPAN DIA BETA 2 BETA 2A V 2 V 2 V 2 V 2 V 2A V 2 A V 2 A M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2
STATION 2 STATION 2	STATOR E STATION 2 STATION 2A

	(235°)
	ξ
=	Station 2A
2	ı
DISTORTION	2 (246°)
	2
Circumierentia	Station
cni	ı
	(256°)
	Station 1

PCT SPAN D1A BETA 1 BETA 2 BETA (PR) 1 BETA (PR) 2 V 1 V 2 V 2 V 3 V 4 V 7 V 7 V 7 V 7 V 1 V 7 V 1 V 7 V 1 V 7 V 1 V 7 V 1 V 1 V 7 V 1 V 7 V 1 V 7 V 1 V 7 V 1 V 7 V 1 V 7 V 7 V 1 V 7 V 7 V 1 V 7 V 7 V 7 V 7 V 1 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7	PCT SPAN DIA BETA 2 BETA 2A V 2A
4.98 1.906 50.225 50.225 50.225 50.225 50.320 47.598 409.32 320.32 320.32 340.32 436.0 -736.0	5.00 39.633 50.225 -0.292 446.64 320.64 446.31 384.73 -2.27 0.3998 0.3903 50.406 18.070
9.99 39.754 1.647 43.460 59.191 400.555 436.06 435.80 435.80 403.81 12.53 850.9 850.9 950.9 743.35 724.9 743.35 724.9 743.35 724.9 743.35 724.9 744.9 743.35 724.9 743.35 724.9 743.35 724.9 743.35 724.9 743.35 724.9 724.9	10.00 39.276 43.460 1.451 857.03 466.20 405.78 382.38 382.38 382.38 11.80 0.4083 41.900 18.619 18.619 560.629
14.98 39.371 1.474 38.831 57.692 36.967 458.12 458.12 457.88 462.46 11.78 11.7	15.00 38.919 38.919 38.919 1.345 594.90 491.78 462.46 491.39 372.24 11.54 0.554 0.554 19.045 19.045 19.045
30.00 38.219 1.596 36.563 32.796 477.08 476.83 504.49 13.29 374.16 845.3 601.0 -697.9 -325.1 711.17 699.22 0.5342 15.167 19.390 559.757	30.00 37.848 36.564 0.949 628.95 550.49 550.21 374.16 9.11 0.5590 0.4855 19.390 19.390 19.390
50.00 30.685 1.578 37.477 53.31677 53.316 28.53 494.35 494.35 494.35 494.35 13.61 13	50.00 36.426 37.477 0.673 645.35 547.47 511.92 547.31 392.48 6.43 0.5743 0.5743 19.486 19.486 19.486
70.00 35.151 1.283 38.268 52.056 25.257 494.75 494.62 510.14 11.08 804.4 11.08 804.4 11.08 645.4 645.4 645.4 0.5799 0.7351 0.5034 26.801 15.208 19.515	70.00 34.992 38.268 0.955 649.79 535.76 402.42 8.93 0.4731 19.515 19.557.899
04.99 34.001 1.814 39.641 51.004 23.653 490.33 490.33 15.53 407.05 779.1 536.3 -215.0 621.07 622.05 0.4481 15.136 15.23 0.7117 0.4786 27.370 15.136	85.00 33.921 39.641 2.094 476.85 491.33 476.51 17.42 0.5693 0.4196 37.547 19.293 18.657 556.524
9C.00 33.617 1.334 40.484 51.220 24.084 483.81 621.75 472.89 11.26 403.65 772.2 518.0 613.25	90.00 33.564 40.484 2.174 621.75 462.35 462.35 403.65 17.55 0.4065 38.309 19.671 18.671 18.671
94.99 33.234 1.212 1.212 53.208 53.208 24.45.30 602.56 445.32 466.81 464.81 464.81 605.90 608.90 608.90 608.90 608.90 608.90 608.90 608.90 608.90 608.90	95.00 33.207 42.208 42.208 602.56 466.58 466.58 404.81 60.5349 0.5349 0.5349 18.825 18.578 558.279
PCT SPAN DIA BETA 1 BETA 2 BETA (PR) 2 V 1 V 2 V 2 V 2 V 2 V 3 V 4 V 7 V 7 V 7 V 1 V 7 V 7 V 1 V 7 V 1 V 7 V 7 V 1 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7	PCT SPAN DIA BETA 2 BETA 2A V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 1 M 2 M 2 M 2 M 2 M 2 TURN(PR) P 2 P 2 P 2 P 2 T
STATION 1 STATION 2	STATOR 2 STATION 2A STATION 2A

PER

Table A-8. Blade Element Performance (Continued)

Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 99, 59 Equivalent Rotor Speed = 4192, 94 Equivalent Weight Flow = 103, 40

Circumferential Distortion

Station 1 (286°) - Station 2 (276°) - Station 2 (276°)

PCT SPAN	66.46	30.06	84.99	30.06	50.00	30.00	14.98	66.6	4.98	PCT SPAN
	33.634	33.617	34.001	35.151	36.665	38.219	34.371	39.754	40.138	VIQ
	-1.150	-1.723	-1.670	-0.587	-1.594	0.296	0.911	-C-838	996.0	BETA 1
7	45.621	42.453	41.457	40.964	40.885	41.339	43,305	45.506	449-64	BETA 2
	55.349	54.360	54.520	55.738	56.001	29.448	62.622	64.522	67.930	BETA(PR) 1
BETA(PR) 2	22.990	23.530	23.618	25.564	26*435	34.159	38.055	41.024	74.890	BETA(PR) 2
	424.76	449.60	448.73	442.77	431.57	418.57	384-36	356.79	306.10	1 >
	614.58	617.35	658.49	632.79	621.67	598.35	574.74	550.75	522.74	, 2 >
	424.67	449.39	448.65	442.74	431.38	418.51	384.24	356.69	306.C3	٧2 ا
VZ 2	452-23	455.49	471.C2	476.25	469.35	44B.72	417.48	385.26	337.93	V2 2
TA 1	-8.52	-13.52	-8.38	4.54	-12.00	2.16	6.11	5.22	٠١٠٢	V-THETA 1
V-THETA 2	416.15	416.70	416.09	414.33	406-35	394.75	393.48	392-12	397.69	V-THETA 2
V(PR) 1	746.9	771.2	773.0	786.4	814.1	823.3	835.6	829.2	814.5	V(PR) 1
V(PR) 2	491.3	496-8	514.1	530 • 2	539.2	543.1	531.3	511.8	4.77.9	V(PR) 2
VTHETA PRI	-614.4	-626.8	-629-4	-650.0	-690.4	-400-0	-742.0	-748.6	-754·B	VTHETA PRI
VTHETA PR2		-198.3	-206.0	-228 • B	-264°B	-304.5	-326.8	-335.2	-336.6	VTHETA PR2
		613.25	621.07	645.43	678.38	711.117	735.85	743.35	749.64	()
	6C8.02	615.03	622.05	643.09	671.16	699.22	720.30	727.31	734.33	7 n
	0.3861	0.4094	0.4086	0.4030	0.3925	6.3803	0.3484	0.3229	0.2763	- E
	0.5432	0.546	0.5574	0.5604	0.5490	C.5276	0.5051	0.4828	0.4566	H 2
M(PR) 1	6819-7	0.7023	0.7038	0.7158	0.7403	0.7486	0.7575	0.7504	0.7351	M(PR) 1
H(PR) 2	0.4342	0.4397	0.4559	0.4695	1974.0	0.4788	6994.0	0.4486	0.4174	M(PR) 2
TURN(PR)	32,359	30.830	30.902	30-176	28.586	25.342	24.658	23.603	23.151	TURN(PR)
	100.41	10.047	10.000	993-01	101-01	17.080	746-61	618-41	14.040	- c
			700.4	70404	101-61	106.01	11.01	100	77401	
	010°010	216.033	440.010	216.039	660.016	210.079	660*BTC	440°01'	210-017	- i
	564.083	562.948	561.942	563.920	564.596	565.013	566.343	566.734	568.217	7
SPAN	95.00	90.06	85.00	70.00	50.00	30.00	15.00	10.00	5.00	PCT SPAN
	33,207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39 . 633	VIO
BETA 2	42.621	42.453	41.457	40.00	46.885	41.339	43.305	45.506	49.64	BETA 2
	-0-239	1.600	1.637	0.260	0.465	0.145	1.226	1.667	1.199	
	614.58	617.35	658.49	632.79	621.07	598.35	574-74	550.75	522.74	7 7
V 2A	470.80	463.81	471.46	524.05	529.19	520.72	457.56	433.90	426.88	V 2A
V2 2	452.23	455.49	471.02	478.25	469.35	448.72	417-48	385.26	337.93	V2 2
V2 2A	470.79	463.62	471.25	523.99	529.05	520.52	457.22	433.47	426.48	VZ 2A
V-THETA 2	416.15	416.70	416.09	414.33	406.35	394.75	393.48	392.12	397.69	V-THETA 2
V-THETA 2A	-1.96	12.95	13.47	2.38	4.29	1.32	9.79	12.62	8.93	V-THETA 2A
	0.5432	0.5464	6.5574	0.5664	0.5490	0.5276	0.5051	0.4828	0.4566	H 2
H 2A	0.4129	0.4070	0.4143	0.4611	0.4659	0.4584	0.4002	0.3787	0.3719	H 2A
TURN(PR)	45.859	40.852	39.820	40.642	40.400	41.134	41.981	43.730	48.335	TURN (PR)
	16.035	189.81	19.062	19.155	15.101	18.961	1e.741	18.489	18.225	7
2 A	18.643	18.560	18.645	19.139	19.198	19,059	16.404	18.213	18.162	4 5 A
7	564.083	562.948	561.942	563.920	564.596	565-013	566.343	566.734	568-217	7 7
	559.451	558.431	557.492	560.374	560.167	559.487	561.385	561.837	563.530	T 2A

Table A-8. Blade Element Performance (Continued)

Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 99, 59 Equivalent Rotor Speed = 4192. 94 Equivalent Weight Flow = 103, 40

Circumferential Distortion

Station 1 (316") - Station 2 (306") - Station 2A (295")

		34.001	70,30 35,151	36.685	36.06 38.219	14.98	96.6	40.138	PCT SPAN DIA
1		59.346	51.371	51.496	52.652	58.428	659-09	-12.613	BETA 2
64.910 66.034		65.316	65.298	65.426	67.158	68.132	68.701	69.928	BETA(PR) 1
312.22	ሳጠ	322.20	334.68	345.60	331.29	328.23	322.72	305.71	0 1 V 1
539.66	ķ	534.68	576-03	576.10	573.35	534.99	518.20	516.93	۷ 2
304.06	3	315.49	327.42	339.57	325.49	321.59	315.74	296.30	V2 1
269.73	ių.	72-66	359.59	356.55	347.55	279.84	253.69	231.34	V2 2
	ĭ ¾	70.00	96-097	450-72	455.44	76.557	451.36	455 16	V-THEIA 2
748.6	! !-	755.5	783.5	616.5	838.5	863.4	869.2	869.2	V(PR) 1
307.5	6	17.2	408-2	421.1	425.1	386.1	375.5	363.2	V(PR) 2
-684.1	۴	-686.5	-711.6	-742.6	-772.7	-801.3	6.608-	-016.4	VTHETA PRI
-147.7	7	-162.1	-193.1	-22C.4	-243.8	-564.9	-276.0	-279-2	VTHETA PR2
613.25	621	0.	645.43	678.38	711.117	735.85	743.35	749-64	~ ; ⊃ ;
0005.02 013.03 02.0	0 0	2010	643.04	01110	2007	05.021	16.121	00000	
0.4691		0.4651	0.5028	0-5016	8264°0	0.4631	67470	0-4411	- ~ E =E
0.6758	9.0	624	0.7081	0.7385	0.7577	0.7801	0.7852	0.7844	M(PK) 1
0.2673	0-2	759	0.3563	0-3666	0.3691	0.3342	0.3246	0.3136	M(PR) 2
37.333	96	583	37.063	33.860	32.165	24-795	21.394	19.679	TURN(PR)
18.275 17.957 17.	17	616	16.528	16.650	16.712	18.316	18.170	16-126	- Z d
518.699	518	669	518.699	518-699	518.699	518.699	518.699	518.699	1 1
574.823	573.	573.807	573.715	576.552	579-297	579.075	579.266	580.056	1.2
00° 06		85.CO	76.00	20.05	36.00	15.00	16.00	5.00	PCT SPAN
33.564		33.921	34.992	36.426	37.848	38.919	39.276	36.633	VIO
600.09		940	51.371	51.498	55.652	58.428	69.09	63.054	BETA 2
0, 749		0.676	72°0	1.397	-0.353	191-1	1.918	2.476	BETA 2A
			210.03	710010	213.32 447 45	411 10	3000	300.045	× ×
269.73		272.66	359.59	358.55	347.55	279.84	253.69	231.34	V2 2
382.28		• 16	417.52	434.94	442.28	410.89	389.80	389.42	VZ 2A
467.35		76.6	85.674	456.72	455.44	455.37	451.30	455.10	V-THETA 2
30.4		4-41	74.20	3.01	-2.73	8.33	13.05	16.84	V-THETA 2A
		4651	0.5C2E	0.5016	0.4978	0.4631	0.4479	0.4411	M 2
0.3298		0.3230	C-3613	0.3759	0.3817	0.3540	0.3355	0.3351	H 2A
56.756 59.259 56		58.664	51.946	51.001	52.947	57.179	58.64E	60-489	TURN(PR)
17.155		7.792	16.092	16.206	18.246	17.992	17.867	17.869	P 2A
574.623	•	573.667	575.715	576.552	579.247	579.075	579.260	580.056	T 2
571.246	•	576.244	570.436	575.021	575.315	575.384	575.643	109.925	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 99, 59 Equivalent Rotor Speed = 4192, 94 Equivalent Weight Flow = 103,40

Circumferential Distortion
Station 1 (346°) - Station 2 (336°) - Station 2A (325°)

9 90 10 10				3	i c	4		900	c c		
אטוטא נ	TO STAN	74.77	200	64.77	0 1	0.	00.00	06.41	7.77		TC STAN
		35.634	33.617	34.001	35.151	36.645	36.219	39.371	29.754	40.138	VI0
STATION 1	EFTA 1	-7.292	-6.645	-5.8.4	-5.609	-5.763	766.9-	662.5-	-6.761	2.665	BETA 1
STATION 2	BETA 2	56.057	660.65	58.728	50.920	49.138	762.84	50.529	53.943	57.917	BETA 2
	BETA(PR) 1	64.619	62.788	62.603	63.718	64.127	66.166	909-99	68.253	71.352	BETA (PR) 1
	BETA(PK) 2	22.265	28.866	33.561	27.850	29.764	33.473	39.225	43.687	46.369	BETA(PR) 2
		508.53	397.90	341.61	336.60	347.79	334.48	334.74	313.47	263.05	- >
	2 A	570.82	538.95	518.77	579.72	593.90	589.15	558.78	531.33	523.45	V 2
	1 7 1	306.03	335.59	339.85	334.99	346.01	331.99	332.96	311.24	261.74	V2 1
	V2 2	302.00	276.78	269.29	365.45	388.43	387.79	354.71	312.32	277.72	V2 2
		-39.16	-39,39	-34.66	-32,90	-35.04	-40.35	-33.82	-36.90	-25.96	V-THETA 1
	V-THETA 2	484-38	462.45	443.40	450.00	449.02	442.81	430-74	428.98	443.01	V-THETA 2
		714.0	733.9	738.6	756.5	792.9	821.6	638.6	840.1	818.6	V(PR) 1
	V(PR) 2	326.3	316.1	323.2	413.3	447.7	465.6	458.8	432.8	403.2	V(PR) 2
	VTHETA PRI	-645.1	-652.6	-655.7	-678.3	-713.4	-751.5	-769.7	-780.2	-775.6	VTHETA PRI
	VTHETA PRZ	-123.6	-152.6	-178.7	-193.1	-222.1	-256.4	-289.6	-298.3	-291•3	VTHETA PR2
	1 0	96.579	613.25	621.07	645.43	678.38	711.17	735.85	743.35	7.6.2	1 n
	U 2	608.02	615.03	622.05	643.09	671.16	699.22	720.36	727.31	734.33	0 2 0
	~ ¥	C-2785	0.3055	0.3069	0.3043	0.3146	0.3023	0.3026	0.2830	C.2369	- T
	m 2	*164*0	0.4689	6.4510	6.5052	0.5181	C.5135	0.4853	C-4604	0.4529	H 2
	M(PR) 1	C.6444	0-6634	0.6678	0.6839	ú.7172	0.7426	0.7586	0.7584	6.7373	M(PR) 1
	M(PR) 2	C=2844	6-2749	0.2809	0.3602	0.3905	0.4058	0.3985	0.3750	0.3489	M(PR) 2
	_	42.355	33.922	29.042	35.870	34.379	32.746	27.474	24.672	25.094	TURN (PR.)
		13.539	13.689	13.699	13.656	13.661	13.670	13,753	13.695	13.536	- -
	P 2	16.237	17.922	17.792	18.531	18.808	18.816	18.461	18.192	18.163	Р 2
	1 1	516.699	516.699	518.699	518.699	518.659	518.699	518.699	518.699	518.699	1 1
	T 2	575.192	574.051	573.070	575.678	576.214	576.672	577.687	577-660	578.651	1 2
STATOR E	PCT SPAN	95.00	90.00	85.66	70.00	20.00	30.00	15.00	16.60	2.00	PCT SPAN
	VIQ.	33.207	33.564	33.921	34-992	36.420	37.848	38.919	39.276	39.633	DIA
STATION 2	BETA 2	58.057	660.65	58.728	50.920	49.138	46.790	50.529	53.943	57.917	BETA 2
STATION 2A	•	C• C C C C 	-0.503	-1.434	-1.726	C-672	6.025	1.269	2.294	3.223	BETA 2A
	7	570-62	538.95	516.77	519.12	593.90	589.15	558.78	531,33	523.45	۷ 2
	V 2A	320.41	311.64	315.57	385.08	417.85	440.94	410.17	396.42	403.25	V 2A
	V2 2	362.00	276.78	269.29	365.45	388.43	387.79	354.71	312.32	27.772	V2 2
	VZ 2A	320.41	311.62	315.46	384.86	417.73	446.77	409.85	395.88	402.32	VZ 2A
		484.38	462.45	443.40	456.00	70.655	445.81	430.74	458.98	443.01	V-THETA 2
	V-THE TA 2A	. 0.35	-3-06	25.6	-11.60	76.4	c.19	9.22	15.86	22.66	V-THETA 2A
	¥ 5	0.4974	0-4689	0.4510	6.5052	0.5181	6.5135	0.4853	6-4604	0.4529	Z = 2
	H 2A	0.2743	0.2670	C-2707	0.3306	0.3597	0.3799	6.3523	0.3402	0.3458	H 2A
		57.994	59.661	60-162	52.644	955 A5	48.705	49.143	51.546	54.595	TURN (PR)
	P 2	18.237	17.922	17.792	16.531	16.808	16.816	18.461	18.192	18.163	7 4
	P 2A	17.407	17.416	17.430	17.832	16,055	16.241	18.006	17.929	17.983	P 2A
	1 2	575.192	574.651	573.07c	575.878	576.214	576.672	577.687	577.660	578.651	cu i
	T 2A	576.295	575.064	573.876	576.793	576.C17	576.684	578.105	578.198	579.456	1 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 100, 31 Equivalent Rotor Speed = 4222, 87 Equivalent Weight Flow 92,60

Circumferential Distortion

	(355)
	ž
1011	Station
3	1
	(9)
	N
	Station
	,
)	(16°)
	_
	tation

A BOTON	MAGN TO	70	3	50	36. (0	77 77	6	7.	9	,	
		*		66.00	,	00.0	0.00	06-61	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20.0	PC SPAN
		1 .	1 1 1		4	100.00	617900	176.76	14. (34	461.14	710
A NOTIFIED		140.1	799.1-	22.1-	-1.596	-7.05c	16.43	-6.474	-P. 4 14	-6.156	BETA 1
STATION 2		56.04L	57.574	56.598	51.C.)	49.343	50.562	59.853	64.169	126-19	BETA 2
		63.586	64.453	60.957	61.394	62.000	63.101	64.316	64.486	65.945	BETAIPR) I
	BETA(PR) 2	14.353	23.684	29.616	25.818	26.612	32.257	43.017	48.126	51.093	BETA(PR) 2
	- →	328.47	366.75	379.63	385.69	391.73	387.69	379.49	386.61	356.15	~
	2 >	626.34	573.46	545.64	558.71	606.95	600-63	54.55	558.85	531.34	7
	۸2 ا	325.38	303.29	376.24	362.51	348.76	385.40	377.00	377.57	354.66	۱ ۸۷
		341.64	36.4.96	300.49	376.35	345.32	581.85	273.25	230.11	199.79	7 Z X
	V-THETA 1	-44.64	-50.17	12.52	-56.9R	46.64	-43.43	42.81	-42.45	-38.19	V-THETA 1
		524.93	445.65	455 . 68	465.60	460.30	463,23	4.10.49	475.78	492.63	V-THETA 2
	V(PR) 1	731.4	760.2	775.0	798.5	626.1	651.9	869.9	876.6	868.6	V(PR) 1
	V(PR) 2	357	333.L	345.6	418.1	450.6	452.2	374.4	345.5	518.6	V(PR) 2
		-655.1	4.199	-677.6	J. 101-	-731.2	1.9.7-	-783.9	-791-1	-793.2	VTHETA PRI
	VTHETA PK2	1-67-4	-133.8	-170.8	-162.1	-215.6	-241.0	7-555-	-256.7	-247.5	VTHETA PRZ
	~ n	610.22	617.63	625.50	650.04	683.23	716.24	741.10	748.66	154.99	-
	n 5	612.36	619.42	656.49	647.68	675.95	704.21	725.44	732.50	739.57	2 0
	-	C-2968	6.3321	C-3445	0.3497	6-3553	C.3517	0.3439	0.3444	6.3223	~
		0.5496	C.5014	6.4763	0.5242	c.53ú3	0.5243	0.4729	6.4589	1.04467	¥ 2
	M(PK) 1	6.6604	1.6884	0.7624	0.7239	0.7510	C.7724	6.7883	L. 7944	0.7661	M(PK) 1
	M(PR) 2	0.3695	C.2912	6-3016	6.3661	6.3956	6.3446	0.3251	0.2996	6.2763	M(PR) 2
	TURN (PR)	49.232	37.769	31.341	35.578	33.404	30.895	21.394	16.463	14.960	TURN (PR.)
	- .	13.567	13.730	13.756	13.714	13.708	13.717	13.753	13.756	13.663	-
	2	19.266	18.645	18.275	19.080	19.244	19.299	18.659	18.541	18.599	6 2
	-	51c-699	£18.699	516-699	518-699	516.699	518-699	518.699	518.699	518.699	٦,
	7 2	573.526	571.767	571.296	572.656	575.628	576.454	576.478	576.099	576.980	7.7
STATOR E	PCT SPAN	95.00	ეე - 06	85.00	20.07	20.00	30.00	15.00	10.00	2.00	PCT SPAN
		33.217	404.50	33.9%1	34.992	34.426	37.646	38.919	39.276	39.633	V1 0
STATION 2		26.440	57.674	56.598	51.051	49.343	205-205	59.853	64.189	936.79	BETA 2
STATION CA	LE14 2A	50000	140 P - 7 - 1	-3.223	-4.398	1.439	-0.387	0.406	2.210	3.965	BETA 2A
	7 .	45.070	373.40	140.040	17.866	606.95	606.83	544.55	68.82	531.34	Z >
	V 7.	26.5	17.766	332.40	37.0.46	411-17	442-19	16.625	413.41	415.51	42 A
	7 (7	373	040	331 44	0.010	27.0.02	00100	C7.61.7	11.007	199.19	7 74
	V-7461A 2	900	37.317	37 937	VO - C - C - C - C - C - C - C - C - C -	1000	70.75	450.00	10.714	77-414	47 7A
	V-THETA .	75.4.73	100.00	00 000		100.00	405.23	A	10.00	50-24+	V-IHEIA Z
	A - I	74.7-	-11-36	40 · DI -	17.61-	10.32	66-7-	3.02	15.93	797	V-THETA ZA
	7 1	96400	7.2014	0.4763	0.5242	0.5303	0.5243	0.4729	C-4589	0.4607	H 2
	47 H	0.3210	0.35.24	0-2852	ŭ.3223	0.3528	0.3799	0.3654	c.3546	c.3561	M 2A
	LON PK)	57.304	59.721	59.421	53.447	47.884	56.829	59.361	61.694	63-659	TURN (PR)
	7 -	007.6	70.01	10.01	14.000	17.504	19.279	10.00	10.01	10.079	
	47 F	10.01	000-11	76.63	10.406	16.258	10.404	16-326	487-81	18.283	۲ , ۲ ۲
	2 L	574 134	101.11.5	571.5290	760-716	870.07	404.000	010000	70.074	700.780	7 -
	¥, -	10.10	317.700	0.00	110.017	062.410	200.100	774.000	217.757	200.000	٧٧ -

Table A-8. Blade Element Performance (Continued)
Stage E. Rotor E - Stator E

Percent Equivalent Rotor Speed = 100,31 Equivalent Rotor Speed = 4222.87 Equivalent Weight Flow = 92.60

Circumferential Distortion
Station I (46°) - Station 2 (36°) - Station 2A (25°)

ROTOR E	PCT SPAN	66.46	00.06	84.99	70°C0	50.00	30,00	14.98	66.6	4.98	PCT SPAN
	DIA	33,234	33.617	34.661	35.151	36.685	38.219	59.371	39.754	46.138	V10
STAFION 1	BETA 1	3.676	3,210	3.577	2.296	2.527	1.121	2.210	2.636	3.579	BETA 1
STATION 2	BETA 2	44.133	47.273	44.175	41.204	41.674	40.154	43.450	47.996	55.621	BETA 2
	BETA(PR) 1	53,909	52.234	51.981	52,326	53.670	55.779	57.827	58.773	61-178	BETA(PR) 1
	BETA(PR) 2	26.284	23.285	27.431	27.651	30.941	35,283	41-184	45.475	516.15	BETA(PR) 2
	۱ >	425.82	459.29	467.16	487.26	487.13	480.91	455.58	442.11	402.44	۲ >
	٧ 2	567.33	563-27	586.00	615,15	608.14	594.67	549.37	515.47	477.49	V 2
	1 7/	424.93	458.56	466.24	486.87	466.64	480.75	455.16	441.57	401-62	٧2 ١
	V2 2	371.20	382.18	420.29	462.80	454.07	453.95	398.10	344.35	273,38	V2 2
	V-THETA 1	27.30	25.72	29.15	19.52	21.48	14.6	17.57	20.33	25.12	V-THETA 1
	V-THETA 2	429-03	413.77	408.35	405.21	404-19	383.60	377.13	382.38	390.73	V-THETA 2
	V(PR) 1	721.4	748.8	757.0	196.6	821.4	854.9	854.8	851.8	833.1	V(PR) 1
	V(PR) 2	414.0	434.0	473.5	522.5	529.5	556.9	530.0	492.0	443.9	V(PR) 2
		-582.9	-591.9	-596-4	-630.5	-661.7	-706.8	-723.5	-728.3	-129.9	VTHETA PRI
	VTHEIA PR2	-183-3	-205 -7	-218.1	-245.5	-271.8	-321.2	-348.3	-350.1	-348.8	VTHETA PR2
	n 1	610.22	617.63	625.50	650.04	663.23	716.24	741.10	748.66	154.99	1 0
	N 2	612.36	619.42	656.49	647.68	675.95	704.21	725.44	732.50	139.57	7 n
	 E	0.3871	0.4185	0.4260	0.4450	0.4449	0.4390	0.4150	0-4024	0.3652	-
		6.5005	0.4974	0.5193	0.5461	0.5397	0.5274	0.4845	0.4531	0.4179	я 2
		0.6557	6-6823	0-6902	0.7275	0.7502	0.7803	C.7788	0.7752	0.7561	M(PR) 1
	M(PR) 2	0.3653	0.3833	0.4197	0.4638	0.4699	0.4939	0.4675	0.4325	0.3885	H(PR) 2
	TURN(PR)	27-625	23.950	24.550	24.676	22-786	20.549	16.737	13.403	9.370	TURN (PR)
	-	CBC. P1	14.196	14.844	14.90	14.493	15.020	14-915	998-41	14.038	-
	2 -	18.490	18.472	16.757	19.191	19.224	19.188	18.738	16.392	18.033	P 2
	1 1	516.699	518.699	518.699	516.699	518.699	518.699	518.699	218.699	518.699	-
	1 2	561-463	559-943	558 395	559.576	559.163	558,566	560-048	560.658	562-246	T 2
STATOR E	PCT SPAN	95.00	90.00	85.CO	70.00	20.00	30.00	15.00	10.00	2.00	PCT SPAN
		33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
		49,133	47.273	44.175	41.204	41.674	40.154	43.450	47.996	55.021	BETA 2
STATION 2A	BETA 2A	-6.792	0.316	-0.662	-0-139	1.162	0.359	0.816	2.224	2.311	BETA 2A
	7	567.33	563.27	266.00	615.15	608.14	294.67	549.37	515.47	471.49	~ ~
	V 2A	401.67	387.78	382-09	438.67	456-19	451.97	403.70	380.69	377.54	V 2A
	7 7 7	3/1-20	382.18	47.074	08.204	10-101	45.4	37.845	344.33	273.38	7 74
		60.174	700	20.200	70.864	400-00	421.4	0.00 E	380-19	370.77	V7 7A
	V-1ME IA Z	50.674	413.11	408-35	405.21	41.404	383.60	377.13	382-38	390.73	V-THETA 2
	THETA	-5-55	-2-14	1	-1.06	27.8	2.83	5.75	14.76	15.21	V-THEIA ZA
	7	0.5005	7265-0	0.5193	0.5461	0.5397	0.5274	0.4845	6.4531	0.4179	~
	M 2A	0.3497	0.3378	0.3333	0.3834	0.3995	0.3959	0.3519	C.3313	0.3280	M 2A
		43.924	47.588	44.777	41,341	40.552	39.735	42.536	45-664	52.606	TURN (PR)
		064.91	714-91	161-01	14.141	677°61	17.180	16.750	745-01	TG-CD-	7 6
	P 2A	16.240	18-122	16.088	18.534	16.693	16.631	18.198	16.069	16.037	4 2 4 -
	7 5	561,463	559.943	558-395	559.576	559.163	558.566	560.048	560.658	562.246	, Z L
	T 2A	562.448	560-760	259.097	566.716	554.966	559,333	561.111	561.630	563.276	1 2A

Table A-8. Blade Element Performance (Continued)
Stage E., Rotor E - Stator E

Percent Equivalent Rotor Speed = 4222, 87 Equivalent Weight Flow = 92,60

Circumferential Distortion

	(22,)
	2Α
	Station
	•
	(.99
	8
	Station
	t
,	(46°)
	_
	Station

000	1000	70		000	200	1	0.0	36.00	0	7 00	DCT CDAM
40.04		750 55	2000	100 98	25.	24 Aus	מני מנ	175.05	70, 754	44.1.14	
	•	F0.3.0				790.0	21.0		1	271	DETA 1
	BEIA !	770=7	067-0-	107-0-	000	007.00	10.20	0000		0.140	1 4110
STATION 2		166.34	45.010	47.178	46.032	39.475	177-66	41.369	44.956	24.056	BEIA Z
	BETA(PR) 1	54.451	53.432	52.892	52.470	54.640	55.987	58.548	60-134	61.837	BETA(PR) 1
	BETA(PR) 2	23.021	24.025	23-866	24.757	28.404	32.183	35.888	38.963	46-214	BETA(PR) 2
	۷ ،	435.92	459.33	474.47	466.38	486.46	484-65	455.51	432.10	403-69	~ >
	v 2	601.25	605.88	624.30	656.11	642.33	629.64	603-22	573.88	517.91	۷ 2
	V2 1	435.91	459.32	474.46	499.38	486.43	484.59	455.41	432.02	403.65	1 7/
	V2 2	413.13	428.34	458.60	497.75	495.98	487.17	450.29	405.31	317.99	V2 2
	V-THETA 1	0.21	-1.56	-1.66	-0.05	-2.26	-1.84	-3.44	-3.68	1.02	V-THETA 1
		436.82	428.49	423.60	418.14	407.72	397.62	399.63	404.72	407.82	V-THETA 2
	V(PR) 1	749.8	771.0	786.4	819.8	840.6	866.3	672.8	867.6	855.2	V(PR) 1
	V(PR) 2	448.9	0.694	501.5	548-2	564.2	576.5	557.1	522.5	4094	V(PR) 2
	VTHETA PRI	-616.0	-619.2	-627.2	-650.1	-685.5	-718.1	-744.5	-752.3	-154.0	VTHETA PR1
	VTHETA PR2	-175.5	-190.9	-202.9	-229.5	-268.2	-306.6	-325.8	-327.8	-331.7	VTHETA PR2
		610.22	617.63	625.50	650.04	683.23	716.24	741.16	748.66	754.99	7 0
	U 2	612.36	619.42	656.49	647.68	675.95	704.21	725.44	732.50	739.57	n 2
	H 1	0.3965	0.4186	G-4329	0.4565	0-4442	0.4425	0.4150	0-3930	0.3664	- T
	2 H	0.5310	6.5358	0.5536	0.5776	0.5694	0.5575	0.5325	0.5051	0.4532	N 2
	M(PR) 1	C.6820	C.7625	C.7175	0.7494	0.7676	0.7916	0.7951	0.7896	0.7763	H(PR) 1
	M(PR) 2	0.3964	0.4147	0.4447	0.4871	0.5001	C.51C4	0.4918	0.4598	0.4028	M(PR) 2
	TURN (PR)	31,430	29.407	29.026	27.714	26.251	23.855	22.749	21.274	15.734	TURN (PR.)
	Ь1	14.543	14.729	14.856	12.001	14.925	14.973	14.854	14.708	14.538	Т а
	Р 2	18.849	18.882	19.118	19.529	19.543	19.533	19.265	18.919	18.341	P 2
	1 1	518.699	518.699	518.699	518.659	518.699	518.699	516.699	518.699	518.699	
	1 2	563.636	562.673	561.731	562.292	563.933	563.851	564.226	564.652	565.874	T 2
STATOR E	PCT SPAN	95.00	00.06	85.00	70.00	50.00	30.00	15.00	10.00	2.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.648	38.919	39.276	39.633	PIQ
STATION 2	BETA 2	46.597	45.010	42.728	40.032	39.422	39.221	41.589	44.958	52.056	BETA 2
		-C.868	1.045	1.553	1.725	0.789	0.764	1.019	2.066	1.010	BETA 2A
	2 >	601.25	605.88	624.30	650.11	642.33	629.64	603.22	573.88	517.91	A 2
	V 2A	427.28	418.14	416.34	482.34	516.01	514.73	468.84	437.39	421.65	V 2A
	۷2 2	413.13	458.34	458.60	497.75	495.98	487.17	450-29	405.31	317.99	V2 2
	VZ 2A	427.23	418.06	416.17	482.08	515.85	514.50	468.53	436.86	421-29	VZ 2A
	V-THETA 2	436.82	428.49	423.6C	418-14	407.72	397.62	399.63	404-72	407.82	V-THETA 2
	V-THETA 2A	-6.47	7.63	11.28	14.52	7.10	6.86	8.33	15.76	7.43	V-THETA 2A
	И 2	0.5310	0.5358	6-5536	0.5776	6.5694	0.5575	0.5325	0.5051	0.4532	H 2
	M 2A	0.3725	0.3647	0.3634	0.4228	0.4529	0.4519	0.4099	0.3814	0.3669	M 2A
	TURN(PR)	47.404	43.964	41.175	38,305	38.613	38.398	27.03	42.783	50.937	TURN(PR)
	P 2	18.849	18.882	19.118	19.529	19.543	19.533	19.265	616-81	18.341	7
	P 2A	18.421	18.350	16.350	18.946	19.297	19.244	16.745.	18.486	18.343	P 2A
	1 2	563.630	562.673	561.731	262.295	563.933	563.651	564.226	264-652	565.874	T 2
	T 2A	562.683	561.624	560.554	561.087	562.241	562.025	562.611	563.116	564.420	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 100.31 Equivalent Rotor Speed = 4222.87 Equivalent Weight Flow = 92.60

Circumferential Distortion
Station 1 (106°) - Station 2 (96°) - Station 2A (85°)

an Trice	MA GO TTO	00 76	00	00 74	70.05	9	טַטַ 'טַצַ	17.08	00	40 7	DCT CDAN
i i	1 7	73-234	23 617	100 98	26 151	357 78	20000	175 05	30 754	941 57	17.
CIATION	0 5 7 4	77.0		100.00	104			1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	101		- 41.0
T NOTIFIC		100.00	70717	747-0	000000	16700		50.00	60101-	77.00	DE 1 A 1
		104.01	44.008	41.656	37.432	16.475	36.117	37.73	44.CI4	4A. /A/	BEIA 2
	BETA(PR) 1	55.185	53.884	53.183	52.842	54-339	56.484	58.515	59.812	62.233	BETA(PR) 1
	A (PR)	24.581	26.392	27-542	26.869	36.472	34.636	39.341	43.691	50.156	BETA(PR) 2
	- >	422.41	449.16	466.75	488-88	488.69	475.03	455.45	440.62	399.66	- - -
	۷ 2	589.02	571.49	594.24	631.97	624.53	607.49	572.18	531.13	481.86	۷ 2
	V2 1	422.39	449.15	466.75	488.86	488.66	474.96	455.36	440.46	399.66	V2 1
	VZ 2	406.19	410.62	443.98	489.50	488.72	477.32	437.84	381.22	310.58	V2 2
		2.83	2.05	1.97	5.02	2.19	76*0	-2.42	-8.50	-3.99	V-THETA 1
	V-THETA 2	426.55	397.47	394-96	399.68	388.39	374.50	366.55	368.32	367,38	V-THETA 2
	V(PR) 1	739.8	762.0	778.9	806.3	836.2	860.2	871.9	3.978	857.8	V(PR) 1
	V(PR) 2	446.7	466.8	2.005	548.8	567.3	581.0	567.3	528.3	485.5	V(PR) 2
	VTHETA PRI	 607.4	-615.6	-623.5	-645.U	-681.0	Z*L17-	-743.5	-757-2	-759.0	VTHETA PRI
	VTHETA PR2	-185.8	-221.9	-231.5	-248.0	-287.6	-329.7	-358.9	-364.2	-372.2	VTHETA PR2
	1 0	610.22	617.63	625.50	650.04	683,23	716.24	741.10	748.66	754.99	-
	. 2 0	612.36	619.42	656.49	647.68	675.95	704-21	725.44	732.50	739.57	n 2
		0.3839	0.4090	0.4256	0.4465	0.4464	0.4334	0.4149	0.4010	0.3627	~ E
	H 2	0.5193	6.5037	0.5256	0.5601	0.5529	0.5371	0.5036	0.4656	0.4262	H 2
	M(PR) 1	0.6724	0.6939	0.7102	0.7392	0.7656	0.7848	0.7943	0.7971	0.7783	M(PR) 1
	M(PR) 2	0.3938	0.4114	0.4429	0.4863	0.5023	0.5137	0.4993	0.4631	0.4234	M(PR) 2
	TURN(PR)	30-604	25.493	25.641	25.975	23.884	21-905	19.267	16-227	12-186	TURN (PR)
		14.543	14.740	14.882	14.989	15.033	14.979	14-923	14.865	14.654	-
	P 2	18.813	18.627	16.904	19.435	19.452	19.376	19.613	18.564	18.669	2
		516.699	518.699	518.699	518.699	518.699	518.699	518.699	518.699	518-659	- L
	T 2	564-184	562.784	561.271	563.068	563.381	563-653	564.504	565.001	566.566	T 2
STATOR E	PCT SPAN	95.00	00-06	65.00	70.00	50.00	30.00	15.00	10-00	2.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	DIA
		46.401	44.06B	41.656	39.232	36.475	38.117	39.935	44.014	49.789	BETA 2
STATION 2A	BETA 2A	-6.554	1.191	1.448	1.876	C-779	0.832	1.245	1.834	0.852	BETA 2A
	۷ 2	589.02	571.49	594.24	631.97	624.53	607.49	572.18	531.13	481.86	7
	V 2A	440.57	455.54	454.44	495.30	514.76	508.27	443.46	416.03	403.28	V 2A
	VZ 2	406.19	410.62	443.98	489.50	488.72	477.32	437.84	381.22	310.58	7 7
	VZ 2A	440.55	455.44	424.28	494.99	514.60	508.03	443,13	415.58	402.95	V2 2A
		426.55	397.47	394.96	399-68	368.39	374.50	366.55	368.32	367.38	V-THETA 2
	V-THE TA ZA	-4.26	8.64	16.73	16-21	7.00	7.38	9.63	13.31	5.99	V-THETA 2A
	X 2	0.5193	6.5637	0.5256	0.5601	0.5529	0.5371	0.5036	0.4656	0.4202	H 2
	H 2A	0.3838	6-3769	C-3705	0.4335	0.4513	0.4455	0.3863	0.3616	0.3498	H 2A
	TURN(PR)	46.954	42.876	40-208	37.354	37.676	37.227	38.593	42-071	48-827	TURN (PR)
	2	16.013	19.627	16.904	19.435	19.456	19,370	19.013	50C-RI	490°81	7 6
	P 2A	16.691	16.571	18.568	19.235	19.452	19.355	18.693	18.47	18.384	4 7 4
	1 S	564-184	562.784	561.471	263.C68	563-381	563.653	564.504	565.001	200-200	7 1
	T 2A	564-383	562-812	561.248	563.583	563,557	563,112	564.750	565.116	566.682	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E., Rotor E - Stator E

Percent Equivalent Rotor Speed = 100, 31 Equivalent Rotor Speed = 4222.87 Equivalent Weight Flow = 92.60

Circumferential Distortion

Station 1 (136°) - Station 2 (126°) - Station 24 (115°)

4.98 4.138 4		39.371 39.754	-0.442 -0.427 -0.714	41.616 45.525 51.376	60.543 61.432 61.652	37.764 41.288 47.631	420.49 409.37	584.24 552.30 505.40	420.40 409.29 410.10	434.63 386.21 314.99	-3.24 -3.05 -5.11 V-THETA	388.74 393.35 394.24	854.9 855.9 863.7	551.0 515.1 468.2	-744.3 -751.7 -760.1 VTHETA	-336.7 -339.1 -345.3	741.10 748.66	725.44 732.50 739.57	0.3821 0.3717	0.5151 0.4853 0.4418	0.7768 0.7772 0.7843 M(PK)	0.4858 0.4526 0.4093	22-870 20-250 14-131 TURN	14.726 14.680 14.728	19.215 18.828 18.361	518,699 518,699 516,699	564.393 565.804	15.00 10.00 5.00	38.919 39.276 39.633	41,810 45,525	1.333 1.622 0.685	584.24 552.30 505.46	451.11 422.48	434.63 386.21 314.99	450.76 422.07 404.97	388.74 393.35 394.24	10.49 11.95 4.84	0.5151 0.4853 0.4418 M	0.3935 0.3676 0.3518	+0.379 43.794 50.582 TI	19.215 16.626	16.806 18.575	
	6.0	39.75	-0-45	45.52	61°43	41.28	409.3	552.3	409.2	386.2	-3.0	393.3	855	515	-751.	-339	748.6	732.5	0.371	0.485	0.777	0-452	20.25	14.68	18.82	518.69	564.39	10.0	39.27	45.52	1.62	552.3	422.4	386.2	422.0	393.3	11.9					18.57	164.19
W. 14 04 4 W 4 W 1 L L L L L L L L L L L L L L L L L L	14.98	39.371	-0.445	41.616	60.543	37.764	420.49	584.24	420.40	434.63	-3.24	388.74	854.9	551.0	-744.3	-336.7	741.10	725.44	0.3821	0.5151	0.7768	0.4858	22.870	14.726	19.215	518.699	563.742	15.00	38.919	41.810	1.333	584.24	451.11	434.63	450-76	388.74	10.49	6.5151	0.3935	+0-379	19.215	16.806	563.747
	36.00	38-219	-0.314	39,302	57.045	32.918	466.07	621.59	466.00	480.39	-2.55	393.22	856.7	573.1	-718.8	-311.0	716.24	704.21	0.4249	0.5503	0.7816	C.5074	24-179	14.942	19.609	518.699	503-135	30.00	37.848	39.302	0.938	621.59	505.14	480.39	504.89	393.22	8.27	6.5503	C.4427	38-365	19.609	19,369	543 145
14.98 19.371 19.371 11.98 19.371 11.98 13.37.764 13.60.5610 13.60.764 16.60.60 16.60	90.09	36.685	0.026	39.729	54.581	29.378	485.75	630.75	485.73	484.89	0.22	402.97	838.1	556.7	-683.0	-273.0	683.23	675.95	0.4436	0.5589	0.7653	0.4933	25.219	15.033	19.582	518.699	563.088	50.00	36.420	39.729	0.802	630.75	509.44	464.89	509.28	405.97	7.13	0.5589	0.4466	36.967	19.582	19.436	20.2
36.00 14.98 38.219 39.371 -0.314 -0.442 39.371 -0.314 -0.442 37.045 60.543 466.07 60.543 666.07 620.49 666.07 620.49 666.00 634.03 -2.55 388.74 896.39 620.40 678.0 0.424 0.424 0.488 621.59 584.24 11.333 621.59 584.24 30.00 37.848 30.00 37.848 86.39 518.699 503.13 563.142 11.333 621.59 518.699 621.59 638.21 625.39 638.21 625.39 638.24 627 628.699 628.699 518.699 628.699 518.699 628.699 518.699 628.699 518.699 628.699 518.699 628.699 518.699 628.699 638.24 628.699 638.33 621.59 638.33 621.59 638.33 621.59 639.33 621.59 639.33	ŢĊ-0C	35.151	-0.518	40.533	53.958	25.851	476.16	636.18	476.14	483.49	4.30	413.42	809-2	537.3	-654.3	-234.3	650.04	647.68	0.4345	0.5649	0.7384	0.4771	28.109	14.954	19.526	516.699	561.533	70.00	34.992	40.533	198-1	636.18	418.54	483.49	478.24	413.42	15.54	0.5649	0.4190	38.670	19.526	19.132	553 133
50.00 30.00 14.98 30.665 38.219 39.371 0.026 -0.314 -0.442 39.372 39.302 41.610 54.581 32.918 37.764 485.75 662.59 584.24 485.75 662.59 584.24 485.75 662.59 584.24 485.75 662.59 584.24 683.0 -22 393.22 388.74 838.1 856.7 856.9 -273.0 -311.0 -336.7 683.2 778.2 673.1 573.1 -683.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -273.0 -718.8 -744.3 -746.0 -742.9 -746.0 -742.9 -740.0 -742.9 -74	84.99	34.001	0.336	42.846	52.321	24.789	480.91	615.03	466.89	450.93	2.82	416.24	766.8	1.96×	-622.7	-208.3	625.50	656.49	0.4390	0.5452	0.7181	0.4403	27.532	15.011	19.167	516.699	561.109	85.00	33.921	45.846	1,368	615.03	407.60	450.93	407.67	418-24	42-6	C.5452	0.3555	41.478	19-167	18-561	0 10 0
76_0C	ეე• 96	33.617	0.518	45.576	53,415	26.894	455.41	579.34	455.38	405.49	4.12	413.76	764.1	454.7	-613.5	-205-7	617.63	619.42	0.4149	0.5112	0969*0	0.4012	26.522	14.813	18.712	516.699	562,300	30.0€	33.564	45.578	1.178	579.34	414.10	405.49	414.00	413.76	8.51	0.5112	3095.0	44.399	16.712	10.521	567 450
84.99 76.00 50.00 36.31 34.001 35.151 30.685 38.219 39.371 0.336 -0.518 0.0026 -0.314 -0.442 42.846 40.533 39.729 39.302 41.610 52.321 53.958 54.581 57.045 60.543 52.321 53.958 54.289 41.610 42.442 480.91 476.18 485.75 466.07 420.49 480.92 476.18 485.75 466.07 420.49 480.91 476.14 485.75 466.07 420.49 480.92 483.49 486.89 480.39 434.63 480.92 483.49 486.39 436.34 486.69 480.92 483.49 486.39 436.34 486.69 480.92 483.49 486.39 436.34 486.39 480.92 483.49 486.39 436.34 436.34 480.92 483.03 446.89 486.39 436.36 <td>66.96</td> <td>33.234</td> <td>0.516</td> <td>47.11B</td> <td>54.442</td> <td>24.727</td> <td>433.43</td> <td>585.36</td> <td>433.41</td> <td>398.33</td> <td>3.90</td> <td>428.92</td> <td>745.3</td> <td>438.5</td> <td>-606.3</td> <td>-183.4</td> <td>610.22</td> <td>612,36</td> <td>0.3942</td> <td>0.5164</td> <td>0.6779</td> <td>0.3869</td> <td>29.715</td> <td>14.642</td> <td>18.769</td> <td>514.699</td> <td>565.172</td> <td>95.00</td> <td>33.207</td> <td>47.118</td> <td>-0-309</td> <td>585,36</td> <td>458.91</td> <td>398.33</td> <td>428°9ú</td> <td>76.875</td> <td>-2.31</td> <td>0.5164</td> <td>6.3757</td> <td>47-426</td> <td>16.709</td> <td>10.026</td> <td>563-17</td>	66.96	33.234	0.516	47.11B	54.442	24.727	433.43	585.36	433.41	398.33	3.90	428.92	745.3	438.5	-606.3	-183.4	610.22	612,36	0.3942	0.5164	0.6779	0.3869	29.715	14.642	18.769	514.699	565.172	95.00	33.207	47.118	-0-309	585,36	458.91	398.33	428°9ú	76.875	-2.31	0.5164	6.3757	47-426	16.709	10.026	563-17
96.00 86.99 70.00 50.60 36.00 16.96 38.219 39.311 0.336 -0.518 0.0026 -0.314 -0.442 0.336 -0.518 0.0026 -0.314 -0.442 0.336 -0.518 0.0026 -0.314 -0.442 0.336 -0.518 0.0026 -0.314 -0.442 0.336 -0.518 0.0026 -0.314 -0.442 0.336 -0.518 0.0026 -0.314 -0.442 0.336 -0.518 0.0026 -0.314 -0.442 0.346 -0.518 0.3036 -0.314 0.0026 -0.314 0.0026 0.342 0.342 0.0026 0.342	PCT SPAN	DIA	•	BETA 2		BETA(PR) 2	۷ ا	2 A	VZ 1	VZ 2	ETA		V(PR) 1	V(PR) 2			n 1	n 2		Z 2	M(PR) 1	M(PR) 2	TURN (PR)		P 2	1 1	1 2	PCT SPAN	DIA			۷ 2	V 2A	VZ 2				Z H	M 2A	TURN (PR.)	P 2		· -
SPAN 94,99 90,000 84,99 70,000 30,000 14,98 1 0,516 0,336 0,2516 0,020 0,314 -0,442 1 0,516 0,336 0,518 0,020 0,314 -0,442 1 0,516 0,236 36,237 39,239 39,231 39,231 1 2,471 52,341 52,321 52,361 57,364 60,593 1 2,472 40,531 40,531 40,531 40,518 40,548 1 2,472 40,531 40,531 40,531 40,518 40,548 1 3,472 460,693 463,49 475,14 485,73 466,693 485,49 466,693 485,49 466,693 485,49 466,693 485,49 466,693 485,49 466,693 485,49 466,693 485,49 466,693 485,49 466,693 485,49 466,693 485,49 466,693 485,49 466,23 462,196 462,196 462,196 <td>KDTCR E</td> <td></td> <td>STATION 1</td> <td>STATION 2</td> <td></td> <td>STATOR E</td> <td></td> <td></td> <td>STATION 2A</td> <td></td>	KDTCR E		STATION 1	STATION 2																								STATOR E			STATION 2A												

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Percent Equivalent Rotor Speed = 100.31 Equivalent Rotor Speed = 4222.87 Equivalent Weight Flow = 9
Circumferential Distortion

		Percent Equi	ivalent Rotor	Speed = 100.31	Stage E, nous Equivalent Circumferen	Stage E, Rotor E = Stator E Equivalent Rotor Speed = 4 Circumferent(s) Distortion	4222.87 Equi	Stage E., Rotor E = Stator E. Percent Equivalent Rotor Speed = 100.31 Equivalent Rotor Speed = 4222.87 Equivalent Weight Flow = 92.60 Circumforently Distortion	Now = 92,60		
				Station 1 ()	166°) - Statio	n 2 (156°) – s	Station 1 (166°) - Station 2 (156°) - Station 2A (145°)	5°)			
RO TUR E	PCT SPAN	64.99	13 - 06	66.43	70.07	50.00	36.60	14,98	66.6	40.4	NEGY TOW
	DIA	33.234	53.617	34.001	35.151	36.085	38.219	39.371	39.754	4C-138	61A
	Bt TA 1	2.673	2.244	2.274	2.445	1.826	1.687	4.427	2-011	3.427	
STATION 2		46 - 344	47.032	44.151	41.580	40.838	40-171	42.645	46.613	52.924	
		53.657	52.445	52.066	52.848	54.576	56.265	58.497	60.110	62.138	BETA(PR) 1
	BETA(Pk) Z	25.568	26.840	25.936	25.704	26.707	32.568	37.743	41.408	46.965	BETA(PR) 2
•	→	14.004	461.34	413.27	471.56	475.55	467.98	443-19	422-14	367.59	~ >
	V 2	74.062	575-34	27-665	632.70	633.02	622-23	562.91	550.71	513.66	2 7
	7 7 7	467.43	401.98	06.214	71-1/4	67-614	10-10-	17.244	19-17-6	300 64	1 7/
	_	272.40	18.06	16.78	26.37	15.17	14.40	72 61	10.116	308.81	7 10
		441.17	2007	417.37	419.88	413.78	400-89	304.16	1000	408 75	V-TH-TA 2
		726.9	756.3	7.697	790-0	819.9	842.6	647.3	846.5	827-F	
		428.2	439.5	476.1	525.3	546.1	564.3	542.4	504.6	453.4	V(PR) 2
		-588-6	299.6	-606.7	-629.7	-666.1	-160.8	-722.3	-733.6	-731.8	VINETA PRI
	VTHETA PRZ	-171-2	-198.4	-209.1	-22 7 .8	-262.2	-303-3	-331.3	-333°C	-336.8	VTHETA PR2
	7 7	610.22	617.63	625.50	650.04	683.23	716.24	741.10	748.66	754.99	1 0
	O 2	612.36	619.42	650.49	647.68	675.95	704.21	725.44	732.50	759.57	0 S
	T:	0.3914	6.4205	0.4317	0.4358	0.4339	0.4267	0.4034	0.3836	6.3514	7 H
		0.5214	C.506C	6383	0.5612	0.5612	C-5512	0.5140	0.4841	C-4491	7 1
	M(PK) 1	0.6628	6.6893	0.7017	0.7209	0.7461	v. 7683	6.7711	0.7693	0.7566	M(PR)
	THUM S	0.3781	0.3661	0.4236	0.4659	0.4841	0.4999	C. 4782	0.4436	6966	M(PR) 2
	P 1	14.71	14.908	14.969	14.999	14.999	14.994	20-845	14.788	15-283	TURN(PR)
	P 2	18.431	18.672	166.31	19-451	19.580	19.578	19.165	18.794	18.409	, Z
	1 i	513.699	516.699	518.699	516-699	516.099	518.699	518.699	518.699	£ 18.699	7 _
		562-756	561.281	560.068	562-151	562.845	562.611	563.514	563.678	564.973	T 2
STATOR E	PCT SPAN	95.60	~n=06	85.00	26.00	50.00	36.00	15.00	16.00	5.00	PCT SPAN
	ΝIO	33.207	33.564	33.921	34-992	36.420	37.846	38.919	39.276	39.633	VIO
		48.344	47.032	44.151	41.580	40.638	40.171	45.645	46.613	52.924	BETA 2
SIAILUN ZA	BEIR CA	4000	1.040	1881	19991	6.838	197-1	1.124	1.482	C-165	BETA 2A
	7 ~ ~	77.067	910.04	07.660	035.70	20.660	67.770	16-795	11.000	513.06	7 ×
	۷, ۷	302.44	302 16	400.4	10.014	70.000	7,4	443.C4	415.07	80°704	47 A
	VZ 2A	429.43	410.97	400-74	67.77	5,00.45	40.404	46.744	10.116	2000-01	7 7 7 A
	V-THETA 2	441.17	420.99	417.37	419. HB	413.7B	460.89	394-16	300	408.75	1
		-2.65	7.50	13.36	15.72	7.41	11.10	8.69	10.68	1.16	V-THEIA 2A
	И 2	0.5214	0.5080	6.5369	0.5612	0.5612	0.5512	0.5140	6.4841	0-4491	
	H 2A	ú.3744	0.3564	6.3552	6.4182	0.4440	0.4422	C.3864	6.3593	0.3496	M 2A
	TURN(PR)	169.87	45.985	42-270	39-693	34.480	38.851	41.423	45.022	52.651	~
	7.	1 1 2 5 B 1	18.672	16.451	19.451	39.5EC	19.578	19.163	18.794	18.404	
	4 7 6 4 4	16.587 642 284	16.465	11.456	19.067	19.374	19.306	16.666	16.465	16.376	P 2A
	7 24	562.130	561.281	566.JGB	202-151	564.845	562.611	563.514	563.678	564.973	c4 i
		100.796	174-106	194=466	202-640	563.046	562.196	564.034	564-125	565.550	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 4222.87 Equivalent Weight Flow = 92.60

Circumferential Distortion

Station 1 (196°) - Station 2 (186°) - Station 24 (175°)

1 19.422 19.421 19.422 19.515 7 516.659 516.659 566.624 562.354	14.65c 19.091 516.659 559.686	**	18.764 518.099 560.667	18-327 18-76- 514-699 518-659 562-c18 560-667
507.354 50.00 36.426 46.657 6.887 6.887 6.887 6.87 6	70.00 34.992 41.502 1.792 6477.28 4477.27 477.27 415.64 14.93 0.4184 19.422 19.422 19.422	85.00 70.00 33.921 41.502 2.286 1.7792 606.55 411.55 477.27 41.502 415.81 415.64 477.27 415.81 415.81 415.64 477.27 415.81 415.64 477.27 415.81 415.64 477.27 416.93 0.5376 19.622 19.622 19.622 19.622	85.00 70.00 33.921 41.502 2.286 1.792 606.54 41.562 411.55 4477.27 41.55 4477.27 415.20 15.56 469.77 27 415.81 415.81 415.64 15.57 14.93 19.62 1	90.00 85.00 70.00 33.564 33.921 34.992 45.611 43.279 41.502 1.299 0.00.5561.42 606.54 41.792 561.42 606.54 41.702 416.07 441.56 477.27 416.06 415.81 415.64 9.43 415.81 415.64 44.311 40.993 39.708 14.72 10.472 10.422 14.42 11.472 10.472 10.422 14.42 15.44 56.456 56.46 15.81 19.422 14.72 10.472 10.472

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Equivalent Rotor Speed - 100, 31 Equivalent Rotor Speed = 4222, 87 Equivalent Weight Flow

Percent Equivalent Rotor Speed - 100, 31 Equivalent Rotor Speed = 4222, 87 Equivalent Weight Flow = 92,60 Circumferential Distortion Station 1 (226°) - Station 2 (216°) - Station 2 (216°)

KG1CK E	PUT SPAN	64.46	ún = 96	64.99	71.00	10.00	30.06	14.98	66.5	4.90	PCT SPAN
		33.234	23.017	34.002	101.66	36.665	38.219	39.371	34.754	40.136	νIO
STATION 1		44c •4	525-6	₹÷•	5.475	5.256	5-263	4-326	5.498	6.894	BETA 1
STATION 2	BETA 2	45.424	44.014	45.464	41.624	46.666	40.00	42.705	140.047	165.15	DETA 2
	BETA(PR) 1	55.654	52.912	52.865	52.716	54.934	57,113	59.922	969.67E	62.753	BETA(PR) 1
	A (PK)	26.031	27.175	26-361	26.283	29.576	33.576	57.868	46.197	46.438	BETA(PK) 2
	۸ ،	416.99	437.62	444.20	463.35	452.4C	439.00	412.48	397.74	366.70	- ·
	2 >	586.39	54.615	66.645	626.77	054-90	612.41	582.18	556.08	516.00	2 >
	٧2 ا	417.15	435.89	442-14	461.23	450.48	437.10	411.23	395.85	366.00	V2 1
-		46.7.34	411.CB	439.06	468-10	473.61	466.49	427.62	381.05	317.27	V2 2
		39.13	41.04	42.91	44.24	41.46	46.26	31.06	38.10	44.25	V-THETA 1
	V-THETA 2	413.41	408.42	404.92	416.31	407.15	393.24	394.11	403.61	465.96	V-THETA 2
	V(PR) 1	767.2	722.8	731.4	761.4	784.1	965.6	820.6	813.4	799.5	V(PK) 1
	V(PR) 2	453.3	462.1	3.064	522.6	545.1	563.1	541.7	564.5	461.3	V(PR) 2
	VTHETA PRI	-571.1	576.6	-587.0	-605-B	-641.8	0-919-	-710.0	-710.6	-710.7	VTHETA PRI
	VIHETA PR2	-198.9	-2115-0	-217.6	-231.4	-268.9	-311.0	-331.3	-328 • 9	-333.6	VTHE TA PR2
	_	610.22	617.63	625.50	40.059	683.23	716.24	741.10	748.66	154.99	n 1
	n 5	612.36	619.42	656.45	647.68	675.95	764.21	725.44	732.50	739.57	n 2
	~ ¥	0.3607	6.3963	0.4043	0.4224	0.412C	C-3994	0.3746	6-3669	0.3339	~
	M 2	6.5135	(.5132	6.5328	6.5565	0.5541	C.5419	0.5126	0.4880	0.4506	2 H
		0.6426	0.6576	7599.0	0*69*0	6.7141	C.7325	0.7452	0.7380	6.7240	M(PR) 1
-	M(PR) 2	1104.0	0.4092	0.4351	0.4640	0.4833	6.4983	6924-0	0.4427	0.4027	M(PR) 2
	TURN(PR)	27-623	25.742	56.445	26.435	25.374	23.596	22-205	20.185	16.426	TURN(PR)
		14.751	14.907	14.949	15.083	15.622	15.010	14.909	14.665	14.757	ь 1
	P 2	16.740	16.746	49.C16	16.402	14.463	16.409	19.073	18.785	18.374	2 d
	-	516.699	510.659	516.699	518.659	516.699	516.699	518.699	516.699	518.699	
	1.2	559.722	558.599	557.683	560.482	561.780	562.627	565.070	566.051	567.975	1 2
STATOR E	PCT SPAN	95.00	00-06	95.00	70.00	56.60	30.00	15.00	10.66	9°C0	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	OIA
STATION 2		45.424	44.814	45.964	41.624	46.666	40.004	42.705	149.94	166-16	BETA 2
STATION 2A	BETA 2A	580°3	2.499	2.310	1.437	£904	1.200	1.408	2.019	1.945	BETA 2A
	^ 2	580.39	579.49	299.99	626.77	96.479	612.41	582.18	556.08	516.60	< 2
	V 2A	447.28	433.99	454.53	491.01	495.43	484.22	430.33	413.61	415.23	V 2A
	V2 2	467-34	411.06	439.06	46d . 5C	473.81	466.49	427°C2	381.05	317.27	7 7
		447.27	433.56	434.16	490.61	494.86	463.94	429.98	413.12	414.69	VZ 2A
		413.41	438.42	4CB . 92	416.31	467-65	393.24	394-11	463.01	465.96	V-THETA 2
	V-THETA 2A	0.66	18.52	17.51	12.31	7.81	16.14	10.57	14.56	14.06	V-THETA 2A
	H 2	6.5135	t.5132	0.5328	C.5565	0.5541	0.5419	0.5126	0.4886	0.4506	7 H
	M 2A	6.3513	5.3797	ú.3806	0.4305	6.4338	C.4237	0.3744	6.3592	6.3661	M 2A
	JURN (PR.)	45.33B	42.314	40.054	4C.165	39.742	38.750	41-199	44.520	49.938	TURN (PR)
	Ь 2	12.746	16.746	19.010	19.462	15.463	634.64	19.073	16.765	16 - 374	. 7 d
	47 d	16.755	16.644	16.659	19.172	19.199	19.062	16.530	16.461	18.416	P 2A
	2.1	554.722	556.559	557.063	560.482	561.76€	29.795	365.670	\$60°C5	567.975	7 1
	T 2A	560.437	\$59.43\$	556.073	561.475	562.405	562.513	565.153	565.914	561.695	T 2A

Table A-8. Blade Element Performance (Continued) Slage E. Rofor E - Stator F

	NA GY	00.40	5	9	7.7	٠. •	93	36 26	90	90	100
)	4. /	219 - 83	[] * 4¢	12.14.1	34.45	3 1 2 2 2 2	26 - 17	36 754	1970	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
STATION 1	4	4.611	4.556	450-4	4.767	10000	4-671	5.77	5.0PA	6-67.	7 T T T T
STATION 2	BETA 2	45.551	42.985	42.610	41,363	42.284	47.979	66.459	65,329	605.69	BETA 7
	BETA(PR) 1	59.277	57,165	57.154	57.611	59.834	62.735	65.886	67.244	76.540	BETA(PR) 1
	A(PK)	24.122	23.649	23.367	25.379	26.254	34.206	45.848	47.648	45.917	
	۱ >	347.C2	360-16	365,35	394.97	381.47	355.44	319.96	302.50	258.57	
	V 2	662.48	616.10	625.65	636.47	631.75	588.42	526.94	536.35	545.94	7 /
	۸۶ ۱	345.66	378.96	384.14	395.87	380.36	354.22	318.57	300.80	257.10	٧2 1
		433.74	452-15	463.41	478.05	467.20	393.52	259.59	223.73	192.80	77 7
	V-THETA 1	28.26	30.40	30.46	29.39	28.61	26.94	29.46	31.54	27.35	V-THETA 1
	۲	416.14	451.45	426.27	450.91	424.88	436.72	458.05	487.07	510.48	
	V(PR) I	0.776	6.869	708.3	735.1	756.9	773.2	779.6	7.11.7	7.17	V(PR) I
	N	475.3	493-6	504.8	529.1	536.7	476.5	373.5	332.7	299.9	V(Pk) 2
	VTHETA PRI	-562.0	7.84	-595-0	-620-7	-654.4	, -687.3	-7111-7	-717-1	-727-6	VTHETA PRI
	EIA	-194.2	-196.	-2000-2	-526.8	-251.1	-267.5	-267.4	-245.4	-526-1	VTHE TA PKZ
	. o	610.22	617.63	625.50	650-04	663.23	716.24	741.10	748.66	154.99	7
	2 : 0 :	612.36	619-42	650.49	647.6H	675.95	764.21	725.44	732.50	739.57	7 N
	 E :	6.3139	0.3445	0.3493	0.3583	0.3457	0.3216	0.2890	0.2730	ċ.2329	~ H
		6.5337	6847.0	0.5600	0.5662	0.5599	6.5184	C.4604	0.4684	0.4762	2 H
	(6-6123	C. 6334	0.6421	0.6668	686€	C*6991	0.7042	0.7017	J_695ü	M(PR) 1
	M(PR) Z	6.421¢	L+434.	0644.0	404	C.47C4	0.4198	0-3262	t-2965	0.2616	M(PR) 2
	DEN (PR)	35.155	33.516	33-787	32.224	31.596	28.582	20.133	19-701	20-132	TURN (PR)
	. 4	14.083	16-104	190361	303.01	16.470	15.957	18.265	18.41	145.HI	4 · ·
		569-015	516-699	\$18-699	916.616	515.699	116-696	009-8:4	41 H . 699	516.549	7 -
	· ~	566.509	550.404	559.175	560-638	567.073	565-613	564 16.2	240 646	571 757	• ·
))				674.4700		7000 105	202		
STATOR E	PCT SPAN	95.00	90.06	85.00	70.00	50.00	36.60	15.00	10.00	5.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.426	37.848	36.919	39.276	39.633	DIA
	BETA 2	43.951	45.985	42.610	41.363	42.284	47.979	60.459	65.329	60.309	BETA 2
STATION 2A		1-640	3-450	2.493	1.192	C. 717	-0-127	0.622	1.874	3.361	
	7	602-48	618.10	629.65	636.97	631.75	588.42	526.94	536.35	545.94	V 2.
	V 2A	447.49	438.25	444.67	49C-12	490.06	462.26	398.55	385.85	393.38	V 2A
	2 2/	433.74	452.15	463.41	478.05	467.20	393.52	259.59	223.73	192.86	VZ 2
	VZ 2A	447.41	437.45	444.43	489.97	469.91	462.09	398.32	385.43	392.42	V2 2A
		418.14	421.42	426.27	420.91	454.88	436.72	458.05	487.07	510.48	V-THETA 2
		8.12	26.37	19.35	10.19	6.13	-1.02	4.32	12.61	23.05	V-THETA 2A
		6.5337	0.5489	0.5600	0.5662	6655.0	6.5184	0-4604	0.4684	0.4762	M 2
	M 2.A	C.3917	6.3636	0.3699	0.4364	0.4295	6.4037	0.3458	0.5341	0-3402	M ZA
	TURN(PK)	42.910	39.534	40.117	40.169	41.547	46.046	59.752	63.373	65.876	TURN (PR)
	~; (L :	18.403	15.194	19.365	19.5.0	15.470	19.957	18.295	18.411	16.564	, 2 d
	4 2 A		10.652	16.720	19.141	19.004	108-97	16.286	18.196	18.241	P 2A
	., . - H	201.51.9	229-465	554-155	56.4.4.5		5.45.7.14	CVI 071		1	•
					, , , , , ,	1111	10101	701.00-	269.646	201.02	2

Table A-8. Blade Element Performance (Continued)

Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 100,31 Equivalent Rotor Speed = 4222,87 Equivalent Weight Flow = 92,60

Circumferential Distortion

Station 1 (286") - Station 2 (276") - Station 2A (265")

KGIDK L						•					
	PCI SPAN	56°\$5	S. 3.	66.47		20.00	00.00	14.98	66.6	46.4	PCT SPAN
	0.1A	33.234	710-55	34.001	35.151	36.065	36.219	39,371	39.754	40.136	CI A
	BETA 1	-5-224	-5. 100	-7.448	-4.540	917°4-	-5.686	£.269	-4.088	*66° †	BETA 1
STATION 2	beTA 2	44.513	44.521	44.074	46.477	50.365	55.105	61.799	64.125	66.602	
	BETA(PK) 1	60.40	59.460	59.769	296.09	63.492	66.036	69.340	71.883	75.819	BETA(PR) I
	A (PR)	21.164	19,5,57	22,103	24.266	28.339	33.037	41.275	44.612	47.051	BETA (PR) 2
	- 1	365.64	366.83	367.36	386.08	356.37	352.82	290.81	252.58	195.84	1 ×
	2 >	626.69	630.15	631.54	626.00	606.87	591.08	566.15	554.75	556.46	7 7
	V2 i	364.51	386.89	585.62	378.72	348.90	331.47	289.52	251.70	195.06	V2 1
	VZ 2	446.68	449.28	148.9	431.06	387.61	337.91	264.50	241.94	218.46	VZ 2
	V-THFTA 1	-43.31	-38.66	-36.78	-32.11	-31.86	-29.50	-26.76	-20.64	-17.05	
		454.35	441.83	444-17	453.90	467.23	494.43	493-28	498.76	504.88	V-THETA 2
	V(PR) 1	739.5	761.8	766.4	780.2	7.367	616.1	820.6	809.4	796.3	V(PR) 1
	V(PR) 2	479.2	483.1	484.6	472.7	435.5	*03°7	352.6	337.1	321.2	V(PR) 2
	VTHETA PRI	-643.5	-656.3	-662.3	-682.1	-715.1	-745.7	-767.8	-169.3	-772.0	VTHETA PRI
	VTHETA PR2	-173.0	-177.6	-182.5	-193.6	-208.7	-219.7	-232.2	-233.7	-234.7	F 1
	- -	610.22	617.63	625.50	650.04	683-23	716.24	741-10	748.66	154.99	1 0
	0 2 0	612.36	619.42	650.49	647.68	675.95	764.21	725.44	732.50	739.57	2 D
	- *	C.3313	0.3526	0.3512	0.3445	0.3170	6.3608	6.2623	0.2274	0-1760	
		C.5515	0.5554	0.5572	0.5566	6.5368	6.5146	0.4845	0.4791	0-4744	Z #
		7699-0	ú.69úb	6.6948	0.7071	0.7198	0.7376	0.7460	0.7287	6-7155	M(PR)
	H(PR)	C.4218	425E	C.4275	0.4153	6.3848	0.3514	0.3050	0.2911	6-2769	M(PR) Z
	TUKN(PK)	39.321	37.913	37-686	36.757	35.669	33.052	28.160	27.978	26.879	TURN (PK)
	→ (19.182	14.901	14.907	716.41	14.901	766-41	14.897	14.756	14.583	
	7 -	041-61	19.216	19.253	19.561	19.041	16.90	18.601	18.564	18.572	P 2
	1 1	516.659	518.699	518.699	518.699	518.609	518.699	518.699	518.699	518 • 699	1 1
	7 7	569.939	568.746	567.780	571.756	574-658	576.122	582.362	583.590	585,391	1 2
2 4014	700	9	6	90	6 6	3	ć		3		
	בו אות בי	00000	23 74	22.00	20.00	00.00	20.00	00.0	10.00	00.00	PC STAN
C MATTERN 2	DETE	207000	100.00	174.00	24.17	200.00	010000	56.419	017.46	54.655	
STATION 24		010.	176***	14004	100	000	020	01.05	671-60	200.00	DETA Z
	•	626.69	41.059	431.54	626-00	666.67	101	5644-15	554.75	550-46	DE 18 68
	V 2A	471.46	459.85	457.65	489.66	468.75	444-69	393.00	385.06	396.48	V 2A
	7 Z X	446.88	449.26	56 · 855	431.68	387.C1	337.91	264.50	241.94	218.46	V2 2
	VZ 2A	410.04	458.50	456.91	489.49	468-65	443.41	392.24	384.84	395.31	V2 2A
		439.35	441.63	444.17	453.90	467.23	484.47	493.28	498.70	504.88	V-THETA 2
	V-THETA 2A	27.73	24.62	87.45	11.21	92.0-	-31.46	-20.91	0.55	26.4	V-THETA 2A
	Я 2	0.5515	0.5554	0.5572	0.5506	6.5368	0.5146	6.4845	0.4791	6-4744	N 2
	H 2A	6.4113	5104.0	0.3996	6.4267	0.4671	ٕ3845	0.3371	0.3297	0.3390	M 2A
	TUKN(PR)	41-140	40-052	41.465	45.163	50.352	59.105	64.767	63.955	969.29	TURN (PR.)
	V :	19.150	19.210	19.253	19.2.7	16.041	16.967	18.001	16.564	725-91	7
	4 7 4	16.353	16.74.	18.731	18.965	10.742	18.504	16.129	18.091	18-169	P 2A
	٦,	269.939	2 cb . 74c	267.760	571.756	574.655	576.122	282.362	583 - 590	585.391	7.5
	W 7 -	565.396	267.495	263.260	567.866	569.883	575-141	578.454	579.996	562.276	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Percent Equivalent Rotor Speed = 100.31 Equivalent Rotor Speed = 4222.87 Equivalent Weight Flow = 92.60
Circum farential Distortion

				Station 1 (Circumferer 316°) - Statio	Circumferential Distortion Station 1 (316°) - Station 2A (295°)	n Station 2A (29)	2.)			
			:		6	,	9			,	
ROILRE	PCT SPAN	44.	30°0%	A	30.0	0 · 0 · 0 · 1	30.00	96.41	6 6 7	86.4	PLI SPAN
	CIA	33.634	33.617	34.001	35.151	30.00	38.219	39.3/1	39.154	₩.138	OIA
STATION A		-21.464	-21.46B	-19.255	-16.513	-16.32	-19.622	-20.547	-21.850	-23.065	PETA 1
STATION 2	BETA 2	56.292	58.293	56.032	54.718	57.085	62-194	70.159	72.993	75.943	BETA 2
	(PR)	968.69	69.345	69.065	154.89	70.136	71.917	72.971	73.975	75.016	BETA (PR) 1
	BETA(PR) 2	19.630	26.248	26.750	26.409	32.296	38.144	55.205	60.594	65.374	BETA(PR) 2
	•	280.44	289.21	292.20	311.96	295.39	261.04	273.90	261.87	248.01	۲ >
	· >	593,18	558.06	244.9	587.13	571.53	563.23	507.83	496.69	493.18	2 A
	V2 1	266.95	270.95	275.86	295.81	280.40	264.69	256.43	243.02	228.17	V2 1
	V2 2	329,30	293.31	266.27	339.12	310.50	262.62	172.30	145.23	119.76	VZ 2
	I	-102-71	-101-13	-96-35	-99.05	-92.87	-94.36	-96-12	-97.45	-97.16	
	V-THE TA 2	453.61	474.76	469.57	479.27	479.69	497.97	477.50	474.82	478.30	V-THETA 2
		759.2	768.1	772.8	805.4	825.2	852.7	875.6	880.3	882.2	V(PK) 1
	V(PR) 2	350.1	327.6	326.5	378.7	367.5	334.4	302.3	296.1	287.6	V(PR) 2
	VTHETA PRI	-712.9	-718.8	-721.8	-749.1	-776.1	-610.6	-837.2	-646.1	-652.2	VIHETA PRI
	VTHETA PR2	-116.8	-144.6	-156.9	-168.4	-196.3	-206.2	-241.9	-257.7	-261.3	VTHETA PR2
	10	616.22	617.63	625.50	650.04	663.23	716.24	741.10	748.66	754.99	1 0
	U 2	612,36	619.42	676.49	647.68	675.95	734.21	725.44	732.50	739.57	U 2
	, E	0.2528	0.2608	0.2635	C.2816	C.2665	0.2533	C.2468	0.2359	0.2232	- I
	Z.	0.5156	0.4841	0.4770	6.5103	6.4943	C.4855	0.4355	0.4255	0.4222	H 2
	M(Pk) 1	6.6843	J.6927	6969*7	5.7271	0.7444	C.7687	0.7891	6.7929	0.7941	M(PR) 1
	M(PR) 2	6.3643	0.2837	0.2831	0.3291	6.3179	C.2882	0.2592	0.2536	0.2462	M(PR) 2
	TURN(PR)	50.066	43.698	40.355	45-044	37.857	33.829	17,856	13.472	9.720	TURN(PR)
	ь 1	13.883	13.927	13.937	14.013	14.012	14.016	14.013	13.989	13.949	٦ ۵
	.7 d	14.750	16.399	16.564	16.658	16.819	18.757	16.268	16.183	18.197	P 2
		518-659	518.699	516.699	518.699	516.699	518.699	518.699	516.699	\$18.699	
	1 2	580.117	576.670	576.338	579.608	583.479	586.479	587.232	587.508	588.194	7.7
		,	•		6			99			14 65 A 56
STATOR E	PCI SPAN	00"56	90.06	33 021	34.992	00.00	37.448	12.00 38.919	39.276	20.65	
2 101111	01A	107 75	1000	12.4.E	54.718	57-045	761.67	70.150	72.993	75.943	BETA 2
STATION 2		36.2.00	2000	2,669	0.783	-0.256	30.0	295.4-	-0-795	4-129	BETA 2A
		543.38	558-08	544.95	587.13	571.53	563.23	507.83	496.69	493.18	
	× 2 ×	428.85	410.67	401.44	463.68	382.62	376.74	355.56	348.00	356.79	V 2A
	VZ 2	329.50	293,31	280.27	339.12	310.50	262.62	172.30	145.23	119.76	V2 2
	VZ 2A	427.62	410.14	40C.99	403.60	382.74	376.47	354.05	347.77	355.61	VZ 2A
	V-THE TA 2	493.61	474.78	469.57	479.27	419.69	497.97	477.50	474.82	478.30	
		32.44	20.71	18.69	5.52	-1.71	-40.17	-30.76	4.83	25.67	V-THETA 2A
		6.5158	0.4841	0.4770	0.5103	0.4945	0.4855	0.4355	0.4255	0.4222	М 2
	M 2A	0.3691	0.3534	6.3455	0.3468	0.3274	0.3228	6.3623	0.2956	0.3029	M 2A
	TURN(PR)	51.953	55.402	55.963	53.933	57.322	68-232	75.056	73.726	71.764	œ
	P 2	16.750	16.399	18.564	16.858	16.419	16.757	18.266	16.183	18-197	
	P 2A	16.573	16.219	18-136	18.144	17.965	17.942	17.815	17.799	17.843	
	7 1	566.117	576.070	576.538	5.79.6CB	563.479	566-479	587.232	587.508	588-174	7 7
	T 2A	577.189	575.949	575.348	577.237	581.290	584.634	566.334	586.923	587.863	T 2A

Table A-8. Blade Element Performance (Continued)

Stage E., Rotor E - Stator E

Percent Equivalent Rotor Speed = 100.31 Equivalent Rotor Speed = 4222.87 Equivalent Weight Flow = 92,60

Circumferential Distortion

Station 1 (346°) - Station 2 (336°) - Station 2A (325°)

PCT SPAN D1A BETA 1 BETA 2 BETA(PR) 1 BETA(PR) 2 V 1	VZ 1 VZ 2 VZ 2 V-THETA 1 V-THETA 2 VIPR1 2 VTHETA PR2 U 1 U 1 U 2 M 1 M 2 M 2 M 1 M 1 M 2 M 2 TURN(PR) 1 T 2	PCT SPAN DIA BETA 2 BETA 2A V 2 V 2 V 2 VZ 2A V-THETA 2 H 2 T URN (PR) P 2 P 2 T 2 T 2
4.98 44.136 -9.892 66.648 71.311 275.273		5.00 39.633 66.648 4.332 517.34 386.17 264.94 384.79 474.67 6.3290 62.237 18.337 18.337 18.337
9.99 39.754 -4.584 63.113 68.856 48.708 314.21	309.77 -52.31 -664.39 858.8 357.4 -801.0 -268.1 748.66 732.50 0.7754 0.3079 13.933 18.943 583.284	16.00 39.276 63.113 0.863 521.08 376.29 235.47 376.04 464.39 (.3268 62.162 18.343 18.343
14.46 29.371 -10.030 60.051 67.659 45.500 330.065	324.94 263.49 -57.31 862.2 376.6 -788.6 -266.1 741.10 725.44 0.7791 0.3245 22.455 22.455 13.964 18.699	15.60 38.919 60.651 -2.086 528.24 384.97 263.49 384.52 15.3284 15.3284 15.3284 15.3284 15.3284 52.056 15.3284 584.212
30.00 58.219 58.216 52.969 67.288 34.319 333.85	327.28 350.67 464.83 847.7 425.2 -781.9 -239.4 716.24 704.21 0.3017 0.3017 0.3017 0.3086 33.023 13.911 16.992	3C. 60 37.848 52.968 52.968 52.968 411.46 411.72 411.72 411.72 464.83 65.996 15.982 16.982 55.996 16.982 55.996
50.00 56.685 -11.143 52.066 65.674 31.344 581.36	342.13 357.26 458.62 830.6 418.5 418.5 418.5 663.23 675.95 0.3166 0.5144 0.7514	50.00 36.420 52.066 6.747 561.30 391.65 458.36 458.36 6.3644 0.3644 0.3355 51.299 11.930 12.400 560.719
70.06 35.151 -11.271 52.755 64.617 26.617 347.34	340.64 357.04 469.62 794.62 399.0 -117.5 -178.1 650.04 647.68 0.31.2 0.31.2 0.31.2 0.31.2 0.31.2 13.963 13.963 18.869	76.60 34.992 52.755 52.755 589.95 365.26 365.11 -9.62 -9.62 -9.63 0.3122 0.3122 17.917 54.169 14.889
54.99 34.001 ~12.26 58.993 64.570 333.45	331.76 275.17 457.812 457.813 772.5 322.7 625.60 626.49 6.3069 6.3069 6.4633 0.6984 6.2799 33.663 13.696 13.696 13.696 576.999	85.00 33.921 58.993 58.993 534.16 297.31 297.31 457.63 0.2541 10.192 17.555 570.693
900.0 53.017 -15.001 59.491 64.625 27.425 337.91	329.17 279.53 776.36 476.37 768.1 314.9 617.63 617.63 617.63 617.63 617.63 618.63 13.92 13.92 18.29 518.699	90.00 33.564 59.491 59.491 50.014 302.41 44.31 44.31 6.478 6.478 6.478 6.478 17.57 17.57 57.564 18.564
94.99 33.234 -14.725 57.696 60.046 19.968 517.32	306.90 315.10 496.63 496.63 756.6 335.1 610.25 612.56 6.2865 0.5127 0.6865 6.5127 0.6865 6.2915 46.140 10.705 10.705 10.705	95.00 33.407 57.696 1.794 589.53 316.43 496.25 496.25 69.27 0.5102 17.666 579.65
PCT SPAN LIA LETA 1 BETA 2 BETA(PR) 1 8ETA(PR) 2 V 1	VZ 1 VZ 2 VZ 2 VTHETA 1 V(PR) 1 V(PR) 2 VTHETA PR1 VTHETA PR2 U 1 U 2 M 1 M 1 M 1 M P 1 P 1 T 2	PCT SPAN DIA BETA 2 BETA 2A V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2
KOTUR E Station 1 Station 2		STATOR E STATION 2 STATION 2A

Table A-8. Blade Element Performance (Continued)
Stage E., Rotor E - Stator E
Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 84.27
Circumferential Distortion
Station 1 (16°) - Station 2 (6°) - Station 2A (355°)

		,	1	4			,	30	ò	ć	W. 02 F.30
FOTOR E	PCT SPAN	シャ・エブ	ر. در	50.00	٠.٠	J. • VC .	2	L	6.4	D (מעני פוע
	11°	35.24	110.55	24.00 J	55.11.1	30.08	28.21	110.40	27.134	27.075	CIA.
STATION 1	E:13. 1	PJ-1-5	-7.157	-7.5.5	-7.136	-6.653	-5-224	-6.JC.	-6.300	-6.275	BEIA 1
C NOTATA	RETA V	56.174	56.742	55.441	51.143	50.42E	50.820	16.257	01.659	65.565	DETA 2
	60	65.194	63.057	63.061	62.523	62,300	64.uC2	65.101	65.188	66.732	BETA(PR) 1
	PETA (DD)	16.34	25.587	31,399	27.580	30.658	33,347	43.893	48.269	51.385	BETA (PR) 2
		268.4	291.23	303.45	322.66	339.63	328.58	323.00	324.88	303.50	- · >
	• >	661.19	407.41	69-525	516.21	521.17	523.90	473.85	460.08	458.66	V 2
	V 1	266.36	298.94	36.036	320.16	337,33	326.60	320.99	322.87	301.65	NZ 1
	7 7	306-43	272.78	268,93	325.15	331.91	336.7	50.642	216.81	189.66	V2 2
	HETA	-33.22	-36.2F	-56.57	-40.07	-39.35	-35.65	-35.49	-35.64	-33.17	V-THETA 1
	V-THETA 2	457.89	415.94	390.44	463.52	401.61	405.76	402.56	405.34	417.30	V-THETA 2
		632.3	650.7	4.499	693.8	727.1	745.1	762.4	769.4	763.6	V(PR) 1
	V(PR) 2	316.2	303.2	215.1	366.8	386.1	396.5	346.2	326.3	364.3	V(PR) 2
	-	4.673-	-583.0	£.595-	-615.5	-644.1	669.1	691.5	-698-4	-761.5	VTHE TA PRI
	VTHETA PRZ	7 . + P-	-132.4	-164.1	-109.è	-196.7	-217.6	-239.6	-243.1	-237.4	VTHE TA PRZ
		540.18	546.74	553.70	575.43	904.86	634.03	656.04	662-72	668.33	n 1
	U 2	542.67	548.32	554.58	573.34	598.36	623.38	642.17	648-42	654.65	? n
	E	6.2418	6.2626	0.2738	0.2914	0.3071	0.2969	0.2918	6.2935	0.2739	~ T
	2	C.4563	47644	i.4164	0.4562	0.4576	6.4601	0.4146	C.4021	C.4008	'V
	M(PK) 1	7.5096	C.586b	4664.7	C.6267	C+6574	5.6732	C.6867	C.6951	0.689¥	M(PR) 1
	M(PR) 2	0.2617	1.2666	0.2767	6.3229	0,3390	0.3482	0.3629	5.2852	C.2659	M(PR) 2
	0	49.741	37.750	31.662	34.944	31.719	30.707	21.302	17.024	15.455	TURN (P.K.)
	- L	13.867	13.909	13,932	13.933	13.559	13.983	14.00b	14.046	13.948	- -
	P 2	15.100	17.041	17.462	17.962	18.069	16.185	17.735	17.616	17.631	PŽ
	1 1	510.699	516.699	5.18.659	118.645	513.699	518.659	518.695	516.699	516.699	1
	T 2	559.801	556.781	55F.120	559.279	562.292	794.795	562.245	562.266	562.594	1 2
			,								
STATOR E	PCT SPAN	95.00	00.06	85.60	70.00	5C.CO	30.00	15.00	10.00	5.00	PCT SPAN
		53.207	33.564	33.921	34.952	36.426	27.848	38.919	39.276	39.633	VIQ .
STATION 2	BETA 2	56.174	56.742	55.441	51.143	5C.428	50.820	58.257	61.859	65.565	BETA 2
	BETA 2A	0.556	-1.500	-2.859	-2.800	1.122	-0.727	0.132	1.574	4-361	BETA 2A
	۸ 2	551.19	14.764	63.474	516.21	521.17	523.90	473.83	460.08	45B.66	< 2
	V 2A	343.39	522.25	J(7.30	339.86	363.75	389.28	372.83	360.61	363.32	V 2A
	V2 2	366.53	272.78	266.53	325.10	351.91	330.70	249.05	216.81	189.60	7 ZA
	V2 2A	343.37	322.13	366.91	339.42	363.60	369.11	372.64	360.27	362.03	V2 2A
	V-THETA 2	457.69	415.94	340044	403.52	461.61	405.7t	402.56	405.34	417.30	V-THETA 2
	V-THETA 2A	3.03	-6.44	-15,33	-16.6	7.12	70.1	ڊ . 86	9.90	27.23	V-THETA 2A
	H 2	C-4863	C.4574	0.4164	C-4562	0.4576	0.4601	0.4146	C.4021	0.4008	2
	M 2A	C.29HC	9617.	7.2666	6.2949	C.3153	0.3377	0.3231	C.3124	C.3147	M 2A
•	TURN(PR)	55.667	58.241	20.36.0	53.940	44.286	51.487	58.C36	60.194	61-162	TURN (PR)
		16.169	17.641	11.462	17.962	18.069	16.160	17.735	17.616	17.631	P 2
	P 2A	17.385	17.242	17.141	17.315	11.443	17.637	17.534	17.485	11.511	42 d
	1.2	55%.e(1	550.781	550.12c	559.275	.62.292	504.462	+ 62.245	2,62.266	502.594	T 2
	T 2A	562.262	561.254	560.565	562.262	564.983	565.519	565.507	5.65.436	565.795	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow 84.27
Circumferential Distortion

(22)
ž
Station
ı
(36°)
7
Station
ı
(46°)
Station 1

			5.	9		6	99	3	30	7	44 02 T 70
אט ויא	AA	66.46	بر د د د د د د د د د د	* · · · · · · · · · · · · · · · · · · ·		1	00000	0 f o f	r	0.	יייי זיייי
	4 1	107.00	10.00	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 2 2 2	00000	70.00	11000	F	00100	
STATION	6114 1	10 -0	30%.0	20:11	1.5.4	1+6-7	1:0-1	1.404	2115	2.747	SEIA 1
STATION 2	CETA 2	49.91	47.802	44.763	41.960	41.913	41.180	44.330	49.30E	55.114	BETA 2
	BETA (PF) 1	53.269	51.514	51.7c7	53.205	54-249	56.255	56.491	59.411	62.725	BETA (PR) 1
	BETA(PR) 2	25.61B	196.72	27.341	28.217	31.268	35,361	40.525	45.778	52.030	BETA (PR) 2
	۲ >	386.75	413.11	417.43	420-17	450.46	415.79	368 • 39	381.56	335.38	۸ ا
	7 ^	504.41	19.554	517.68	537.02	534.01	523.37	490.97	454.76	422.06	V 2
	۷2 ا	35 6. 10	412.13	416.61	419.93	419.88	415.56	368.10	381.06	334.81	V2 1
	VZ 2	325.08	335.62	567.50	399.26	397.61	393.44	356.58	296.02	241.09	VZ 2
	V-THETA 1	24.03	28.37	26.04	14.00	21.57	11.96	12.90	60.81	18.96	V-THETA 1
,	V-THEIA 2	366.19	376.16	364.54	359.11	356.91	344.19	342.48	344.25	345.77	V-THETA 2
	V(PR) 1	644.5	662.2	672.3	761.1	718.7	748.1	751.2	748.9	730.6	V(PR) 1
	V(PR) 2	366.5	380.0	413.B	453.1	465.4	463.1	462.1	425.2	392.4	V(PR) 2
	VTHETA PRI	-510.1	-518-4	-527.7	-561.4	-583.2	-622.1	-643.1	-644.6	4.649	VTHE TA PRI
	VTHE TA PR2	-155.9	-178.2	-16C • C	-214.2	-241.4	-279.2	-599.1	-304.2	6*80c-	VTHETA PRZ
	1 0	540.18	546.74	553.70	575.43	604.80	634.03	656.04	662.72	668.33	1 0
	0 S	542.07	548.32	554.55	573.34	598.36	623.38	642.17	648.42	654.68	0 2
	T I	0.3506	0.3752	6.3792	0.3818	0.3821	C.3777	0.3522	0.3458	0.3031	
	И 2	C.4468	0.4427	6654.0	6.4772	6-4749	C.4648	0.4344	C.4611	6.3709	2 #
	M(PR) 1	6.5843	0.0015	C.6108	6.6371	0.6530	0.6796	C.6811	V-6787	4,996.9	H(PR) 1
	M(PR) 2	0.3191	(.3366	C.3676	0.4027	0.4135	0.4291	6804.0	C.3751	0.3449	M(PR) Z
	TURN(PR)	27.591	23.553	24.366	24.996	22.997	20.948	18.459	13,739	10.802	TURN(Pk)
	~	14.600	14.964	14.850	14.891	14.947	14.952	14.664	14.45(14.626	ъ П
	٦.	17.676	17.655	17.642	18-105	18.170	18.145	17.489	17.562	17.298	P 2
		654.316	516.699	516.699	516.699	515.699	516.699	118.699	518.659	669* RTS	~ ⊢
	7.7	552,309	554.986	549.678	551.012	550.965	556.392	551.596	552,081	553.573	12
STATOR E	PCT SPAN	95.00	90.06	35.00	70.00	20.00	30.00	15.00	10.00	5.00	PCT SPAN
	DIA	33.267	33.564	33.921	34.992	36.420	37.846	38.919	39.276	39.633	PIQ
STATION 2		46.911	47.862	44.763	41.969	41.913	41.186	44.336	49.308	55.114	BETA 2
STATION 2A	BETA 2A	Ú.642	0.279	-c.166	-0.270	0.936	0.180	2.797	1.688	2.522	BETA 2A
	۷ 2	504.61	499.67	517.66	537.02	534.51	523.37	16.055	454.76	455.06	V 2
	V 2A	363.71	350.42	344.5b	395.11	404.68	400.47	357,32	339.94	337.24	V 2A
	V2 2	325.08	335.62	367.56	369.26	397.61	393.44	350.58	296.02	241.09	VZ 2
	VZ 2A	363.68	350.41	344.56	395.16	404.73	400.32	357.10	339.66	336.67	VZ 2A
		386.19	376.16	564.54	359.11	356.91	344.19	345.48	344.25	345.77	V-THETA 2
	V-THETA 2A	4°C7	1.71	00°1−	-1-66	6.61	1.26	16.4	10.01	14.83	V-THETA 2A
	М 2	6.4468	0.4427	0.4599	7114.0	6424-0	0.4648	0.4344	(.4011	0.3709	2 H
	M 2A	C.3167	C.3U73	6-3625	C.3472	0.3561	0.3523	0.3132	C.2975	C.2947	M ZA
		49.269	47.522	44.429	42.237	40.957	40.94r	45.434	47.512	52.488	TURN (PR)
		17.670	17.653	17.042	18.10>	10.170	16.145	17.689	17.562	17.296	P 2
	F 2A	1 / 4 /	17.445	17.405	17.71	17.533	17.775	17.45	17.353	17,338	4 2 d
	7	552.00	550.900	246.67	251.012	550.965	550.392	551.596	552.061	553.575	1.2
	T 2A	553.620	151.462	246.477	551.639	551.475	550.942	552,350	552.802	554-362	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 84, 27
Circumferential Distortion

	55°)
	Š
1017	Station 2A (55°)
3	ı
Circumferential Distortion	Station 1 (76°) - Station 2 (66°)
	Station

				1			}	-			
ROTCK E	PCT SPAN	54.76	30.03	55.40	70.00	30.00	30.00	14.98	66.6	P5-7	PLT SPAN
	D]A	23.404	710.cc	34.001	25,151	36.682	36.214	39.371	29.754	156. 4	
ST/IICN I	HETA 1	-0.423	769.5-	3000	661-3-	7,00.7	060-0-	-1.124	10.8cm	047.34	B+T4 1
STATION 2	BETA 2	46.454	44.364	42.389	40.299	39.349	35.516	41,551	45.747	201.04	BETA 2
	PR)	55.767	55.630	53.451	53.542	55.176	56.965	29.474	60.679	201170	
	BETA(PR) 2	22.199	23.685	23.459	844°47	27.646	32,224	37,197	41.104	46.015	HETA (DD)
	۸ ،	369.43	406.29	414.36	429.09	423.97	415.16	392.31	375.27	348.07	V)
	V 2	538.47	539.73	557.55	577.11	574.02	556. us	522.57	490.24	453.24	. ~
	VZ 1	369.41	406.26	414.32	429.Gb	423.92	415.08	592.16	375.16	348.61	V2 1
		371.24	365.74	411.PC	440.13	443.45	428.41	390.31	341.34	277.68	V2 2
		-2.73	-4.91	-5.82	-5.31	4.45	4.27	-7.69	-5.25	1	V-THETA 1
	V-THETA 2	396.58	377.50	375.88	373.24	364.11	353,35	345.94	350.61	557,37	V-THETA 2
	V(PR) 1	656.7	685.1	696.2	722.0	742.2	761.4	771.0	766.1	757.7	V(PR) 1
	V(Pk) 2	4C1 . L	+21.9	448.9	4.83.5	501.6	567.2	491.1	454.0	467.6	V(PR) Z
	VTHE1A PRI	-545.9	-551.6	-559.5	1.085	-609-3	-638.3	-663.7	0.899-	-673.1	VIHETA PRI
	VTHETA PR2	-151.5	-176.8	T.871-	-200-1	-234.3	-276.0	-2962-	-297.8	-297.3	
	. 0	540.18	546.74	553.70	575.43	98. 429	634.03	40.959	662.72	668.33	
	0 2	542.07	548.32	554.58	573.34	598.36	623.38	642.17	648.42	654.68	2 0
	- E	0.3346	C-3688	6.3764	C-3901	0.3853	0.3771	C.3558	0.3400	0.3146	- T
		9225	6.4788	0.4957	0.5138	6.5101	0.4935	0.4623	ú.4325	0.3984	2
		C.5947	6.6219	6.6324	0.6565	0.6746	C-6916	0.6992	1769-7	C.6854	M(PR)
	M(PR) 2	0.3554	C.3743	0.3991	0.4305	0.4459	0.4561	C.4344	0.4005	0.3583	M(PR) 2
	_	33.568	29.745	30-05	29.096	27.340	24.792	22,317	19.680	15.814	TURN (PR.)
		14.535	14.767	14.851	14.935	14.962	14.930	14.862	14.77	14.618	
	ь 2	18.019	16.017	16.212	16.501	16.552	18.465	18,164	17.856	17.531	P 2
		510.699	€18 • 699	518.699	116.699	518.699	518,699	518.659	518.699	516.699	
	T 2	553.880	553.018	552.245	552.754	554.483	554.083	554.414	554.702	555.568	
STATUR E	PCT SPAN	95.00	00.06	85.00	70.07	30.06	36.00	15.60	10.00	5.00	PCT SPAN
		53.217	33.564	33.921	34.992	36.420	37.646	38.919	39.276	39.633	VIQ.
STATION 2	BETA 2	40.454	44.362	45.389	40.299	39.589	39.516	41.551	45.767	52.152	BETA 2
STATION ZA	•	694.5	1.715	2.099	1.723	C. 778	6.730	1.128	1.718	1.263	BETA 2A
	2	538.87	539.73	557.55	577.11	574.62	\$56.C3	522.57	480.24	453.24	2 ^
	4	380.07	574.63	575.25	434-14	457.37	452.43	403.89	385.34	372.05	V 2A
	7 7A	371.24	385.74	411.65	440-13	443.45	428.41	390.31	341.34	277.68	V2 2
		380.03	374.46	374.96	433.90	457.22	452.23	403.61	384.95	371.69	VZ 2A
		390.58	377.50	375. x8	373.24	364.11	353,35	345.94	350.61	357,37	V-THETA 2
	V-THETA 2A	5.23	11.21	13.74	13.65	6.21	5.76	7.95	11.55	8.19	V-THETA 2A
	Z E	C.4776	0.4748	C • 4957	0.5138	6.5101	C.4935	0.4623	0.4325	0.3984	2 W
	M 2A	C-3333	3287	0.3295	0.3825	0.4031	0.3988	6.3547	C-3379	6.3257	M 2A
	_	45.664	45.666	962.04	38.574	38.591	38.727	40.325	43.940	50.781	TURN(PR)
		16,019	10.01	16.212	18.561	18-552	16.465	18,164	17.856	17,531	, Z
	A 2 4	17.664	17.626	17.624	16,063	10.27:	16.266	17.767	17.635	17.540	P 2A
	2 I	553,880	155.18	552.245	554.754	554.482	554.0e3	.54,414	. 54.762	555.568	1 2
	1 2A	553.124	552.23	551,393	551,870	555.19k	552.741	553.232	553.617	554.656	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 88,79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 84,27

Circumferential Distortion
Station 1 (106°) - Station 2 (96°) - Station 2A (85°)

		!	1								
KC1CK E	PCT SPAN	56.76	03*05	56.45	700	3 1 0 3	360	14.96	50°5	4.48	PCT SPAN
	ulA	33.34	53.617	100.40	35.151	36.065	36.219	29.37.	39.754	4C.136	CIA
STAILCN 1	BETA 1	-0.495	6.318	115.1	C * 947	4.578	-C.137	10.467	-1.366	-C.5C4	BETA 1
STATION 2	BETA 2	46.000	44.098	41.560	39.386	36.545	38.246	39.66	45.667	49.3J.	BETA 2
	_	57,130	140.36	53.628	54.063	54.749	57.171	69.766	61.083	63.591	BETA(PR) 1
		23.372	26.535	26.032	26,329	30.063	33.623	39,359	43.545	50.151	BETA(Pk) 2
	. 1 >	349.63	360.77	464.82	427.07	459.44	469.75	384.01	371.15	333.40	~ >
	د، ۲	531.69	519.99	539.03	563.78	556.43	546.93	566.82	471.06	425.99	۷ 2
	1 7 1	349.82	380.76	404.80	427.01	429.41	469.70	383.93	370.98	333•35	٧2 ١
	VZ 2	369.34	573.43	403-33	435.71	435.00	428.97	389.37	340.08	277.32	7 2 2
	V-THETA 1	-1-19	2.11	4.08	7.C6	-2.17	86.0	-2.73	-6.85	-2.93	V-THETA 1
	V-THETA 2	352.40	361.85	357.59	357.72	346.57	336.13	322.81	324.62	322.42	V-THETA 2
	V(PR) 1	9,11,9	664.5	682.6	710.9	744.0	755.7	762.5	767.3	749.5	V(PR) 1
	V(PR) 2	**70*	417.4	6.844	486.2	502.9	515.9	204.6	440.5	433.5	V(PR) 2
	VTHETA PRI	1-541.4	-544.0	0.645-	4.80€	- c07.6	−635°C	-656.8	-671.6	-671.3	VTHE TA PRI
	VTHETA PR2	-159.6	-166.5	-197.C	-215.6	-251.8	-265.3	-516-	-323.8	-332.3	VIHETA PR2
	n 1	540.18	546.74	553.70	575.43	604.86	634.03	656.04	662.72	668.33	~ n
	U 2	542.67	546.32	554.58	573.34	598.36	623.38	642.17	648.42	654.68	, 1
	H .	0.3165	0.3451	0.3675	C.3882	0.3905	0.3721	0.3461	0.3362	0.3013	
	T 5	0.4765	4004	C-4787	6.5006	· 0.4936	6+8+0	6.4473	0.4146	0.3733	N 2
	M(PR) 1	L.5831	6.6023	ŭ₌6196	C. 6463	0.6765	C • 68 62	C*6915	6469*)	4229	M(PR) 1
	M(PR) 2	U.3561	0.3696	0.3986	6.4317	C.4463	0.4574	0.4454	0.4141	6.3799	M(PR) 2
	TURN(PR)	33.758	28.567	27.597	26.755	24-702	23.600	20.550	17.594	13.549	TURN(PR)
	1	14.537	669.41	14.836	14.056	14.964	14.926	14.485	14-829	14.627	٦ م
	P 2	16.027	17.926	16.125	13.441	16.444	18.442	1e-093	17.77	17.395	2 J
	- 1	516.695	£ 10.699	£10.699	516.699	518-649	516.699	518.699	218.659	518.659	-
	1 2	55+ 853	553,337	551.827	554.164	554.638	554.329	555.541	555.694	556-869	T 2
STATOR E	PCT SPAN	95.00	90.00	85.00	70.00	50.00	30.00	15.00	16.00	5.00	PCT SPAN
	DIA	33.267	33.564	33.921	34.992	36.420	37.848	38.919	39.276	39.633	
		46.000	44.098	41.560	39.386	38-545	38.246	39.660	43.667	49.301	BETA 2
STATION 2A	BETA 2A	0.066	1.542	2.278	1.639	0-865	C-845	1.024	1.741	1.571	BETA 2A
	2 /	531.69	519.99	534.03	563.78	556.43	546.93	506.82	471.06	452.99	2 >
	V 2A	406.78	393.69	391.47	454.09	469.22	464-23	408.31	384.69	373.49	V 2A
	7 7 7	369.34	373.43	403.33	435.71	435.00	428.97	389.37	340.08	277.32	7 7 7
		406-75	393.54	391.14	453.86	469.06	464.01	468.03	384.36	573-68	VZ 7A
		382.46	361.85	557.59	357.72	346.57	336.13	322.81	324.62	322-42	V-THETA 2
	V-THFTA 2A	. 4-87	10.59	15.56	12.99	7.54	9.62	7.24	11.66	16.23	V-THETA 2A
	M 2	0.4705	0.4604	C.4787	0.5006	0.4936	0.4849	C-4473	0-4146	6.3733	7 1
	M 2A	0.3566	C.3454	0.3440	0.3996	C.4133	0.4040	6.3579	0.3367	ċ.3263	M 2A
		45.313	42.555	34-265	37.745	37.665	37.345	38.539	41.817	47.620	TURN (PR)
		18.647	17.926	19-125	16.441	16.444	18.442	18.693	17.77	17.395	P 2
	P 2A	17.089	17.760	17.769	16.273	16.406	16-524	17.823	17.660	17.591	P 2A
	T 2.	554.h93	555.337	551-827	554.154	554.638	554.324	155.541	555.694	550.869	7 1
	T 2A	555-123	553.573	551.629	554.510	554.659	554.182	555.583	555.644	556.812	T 2A

Table A-8. Blade Element Performance (Continued)

Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738, 16 Equivalent Weight Flow = 84, 27

Circumferential Distortion

Station 1 (136") - Station 2 (126") - Station 2A (115")

24.06 25.539 377.15 402.66 377.15 402.65 359.53 374.61 2.07 372.69 357.1 381.50 373.8 372.69 657.1 67.8 552.67 6.4665 6.4417 6.4665 6.4417 6.4665 6.4417 6.4665 6.4417 6.4665 6.4417 6.4665 6.4417 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4641 6.4665 6.4765 6.4
-6.33 -6.53 36.66 88 367.38 367.38 443.4 475.9 443.4 475.9 553.70 575.43 553.70 575.43 553.70 575.43 553.85 59.04677 6.03958 6.4231 6.525.246 552.937
5554.70 554.58 0.3456 0.3958 0.3958 14.9559 16.175 552.240
90.00 85.00 70.00 33.504 33.921 34.992 42.467 40.573 528.43 544.62 564.62 385.27 384.62 445.20 385.15 383.71 445.61 272.69 366.88 367.38 9.27 15.09 11.29 0.340 6.3371 0.5202 43.474 44.155 39.122 11.067 10.175 18.476 11.763 15.751 18.476

5.60 39.633 39.633 39.633 0.862 434.12 360.40 332.52 0.3862 36.70 5.42 117.457 117.457 117.457 117.457 9.99 4.10911 61.6303 6 10.00 339.276 472.42 472.43 369.33 369.93 369.93 369.93 369.93 369.93 372.68 11.72 0.4161 42.775 17.74 17.774 17.774 Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 38.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 84.27

Circumferential Distortion
Station I (166°) - Station 2 (156°) - Station 2A (145°) 14.95
16.371
16.371
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17.474
17. 15.6C 41.8 . 61.9 41.8 . 61.9 41.8 . 61.9 41.8 . 62.9 40.6 . 62.9 40.6 . 62.9 40.6 . 62.9 40.6 . 62.9 40.6 . 62.9 40.6 . 62.9 40.6 . 62.9 40.6 . 62.9 36.00 36.215 36.215 36.215 57.165 57.165 57.166 36.00 37.848 16.015 16.015 16.015 334.14 446.92 446.92 446.92 346.92 37.46.92 37.46.92 37.46.92 37.46.92 37.46.92 37.46.92 37.46.93 37.46.93 37.46.93 37.46.93 0.00 50.00 34.00 34.00 6.34.0 6.34.0 9.34.0 4.57.0 4.37.0 1.3.0 1.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 25.00 25.171 1.172 1.174 1.174 26.00 26.00 416.00 416.00 416.00 416.00 416.00 416.00 416.00 416.00 416.00 60.00 76.60 34.992 16.593 16.593 4461.569 4461.569 6.9495 6.9495 6.9495 11.899 6.9488 11.899 6.9488 11.899 6.9488 11.899 6.9488 11.899 6.9488 85.00 23.921 2.255 2.255 2.256.94 396.88 376.88 376.57 559.76 6.431.86 6.3310 44.465 17.465 17.465 17.465 17.465 17.465 17.465 34.(51 22.153 22.355 52.365 52.365 52.365 52.365 51.36 51.36 6.414 6.6144 6 90.00 133.00 10.00 94.49 13.454 46.7c1 55.619 55.613 55.613 361.34 95.00 46.2781 6.5381 6.5381 525.25 393.05 393.05 393.05 393.05 0.3446 46.245 17.944 17.944 DIA BETA 1 BETA 2 BETA 2 BETA (PR) 1 V 2 V 2 V 2 V 3 V 4 V 6 V 1 V (PR) 1 2 A Z PCT SPAN DIA BETA 2 BETA 2 V 2 V 2 V 2 V 2 A V 2 HETA 2 V 1 HETA 2 M 2 M 2 M 2 M 2 T 1 2 T 2 A 22 STATION 1 STATOK E STATION STATIUN

2 A Z

H 2A H 2A TURN(PR) P 2 P 2A T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 84.27
Circumferential Distortion
Station 1 (196') - Station 2 (186') - Station 2A (175')

PCT SPAN	シケ・サケ	37.00	65.48	23.37	30.00	37.36	14.96	66.6	46.4	PCT SPAN
	35.2.4	53.017	34.001	35.111	360.36	38.L1	39.371	29.754	46.156	ΓΙΑ
	1.071	1.5.4	1.120	506°0	3.4.4.6	474.0	1.73	1.333	1.407	bETA 1
	10.04	176.44	42.623	41.166	40.197	39.879	41.764	45.223	51.378	BETA 2
_	55.185	13.404	53.797	5.4.417	55.493	57.915	56° 435	65.094	63.526	SETA(PR) 1
~	22.685	26.100	25.63y	26.313	29.247	34.149	38.786	45.444	496.94	BETA(PR) 2
	366.33	396.22	39.665	467.29	40.6.81	395.82	374.93	546.86	528.79	۲ ۲
	532.34	520.72	538.26	556.34	557.46	537.23	508.48	479.80	436.63	2 7
	368.17	396.07	349.54	407.24	49.604	395.75	374.66	346.76	328.65	V2 1
	364.62	.368.71	396°C	418.78	475.62	411.80	376.55	337.31	272.99	VZ 2
1	10.74	10.56	7.65	6.46	8.87	2.79	11.35	8.07	8.43	V-THETA 1
2	368.42	567.69	364.49	366.26	359.64	344.06	. 338.03	339.94	341.70	V-THETA 2
	6.4499	663.1	676.5	1.669	723.2	745.1	7.5.7	740.8	757.2	V(PR) 1
4	395.1	416.6	439.3	467.2	€.884	498.3	466.6	458.0	416.0	V(Pk) 2
VTHETA PRI	-529.4	-536.2	-545.6	J-695-	->95.5	-631.2	-644.7	1.454	6.659	VTHE TA PRI
PR2	-153.7	-180.6	-1961-	-207-1	-238.7	-279.3	-304.1	-308.5	-313.6	VTHETA PR2
	540.18	246.74	553.70	575-43	964.80	634.65	656.04	662.72	666.33	1 0
	542.07	546.32	554.56	573.34	598.36	623.38	642.17	648.42	654.68	7 0
	0.3356	6.3539	0.3626	8696.0	0.5721	6.3591	0.3397	C.3137	0.2971	
	0.4716	C.4615	6.4761	5.4947	5464.3	6.4762	ú.4495	C. 423C	0.3847	N 2
1	6.564	0.6013	0.6138	C-6352	C.6567	0.6759	0.6756	J076-0	0.6661	M(PR) 1
2	Ū.35v2	1.3639	6.3963	C.4154	0.4335	Ü.4417	6.4302	€.4038	0.3654	M(PR) 2
TURN(PR)	32,301	77.864	26.158	28.691	26.222	23.619	21.147	19.756	14.731	TURN(PR)
	14.045	14.779	14.654	14.939	14.907	14.437	176.41	14.765	14.661	. - 1
	16.054	17.953	18.155	18.358	10.494	16.373	18.141	17.874	17.534	ь 2
	510.699	518.699	516.099	518.699	510.699	516.699	518.699	418.699	518.699	1 1
	553.308	552.283	551.449	552.158	553.769	553.659	554.017	554.489	555.471	1 2
SPAN	95.00	90°	65.0	70.00	30°08	30,00	15.00	16.00	2,00	PCT SPAN
	33.207	33.564	53.921	34.992	36.423	37.646	38.919	39.276	39.633	DIA
~	128.94	126.44	42.623	41.168	46.197	39.879	41.764	45.223	51.378	BETA 2
2A	0.646	1.962	2.221	1.565	C. 994	1,217	1.082	1.995	0.624	BETA 2A
	532.34	520.72	538.26	556.34	557.46	537.28	508.48	479.80	438.03	۷ 2
	365.57	376.12	370.00	435.14	453.71	453.06	408.89	385.99	374.19	V 2A
	364.62	368.71	396.06	418.76	425.62	411.60	378.55	337.31	272.99	VZ 2
	345.55	375.09	376.36	434.95	453.54	452.80	408.61	385.54	373.90	V2 2A
	386.42	367.69	364.45	366.20	359.64	344.06	336.03	339.94	341.70	V-THETA 2
V-THETA 2A	4.35	12.68	14.60	11.88	7.87	6.62	7.72	13.43	4.07	V-THETA 2A
	0.47±B	C.4615	6.47e1	0.4947	67640	0.4762	0.4495	0.4236	0.3847	Z =
	0.2366	6.3299	0.3307	C.3831	C.3994	3989	0.3588	C-3381	0.3272	M 2A
TURN(Pk)	46.210	42.958	40.402	39.661	39.183	38.663	46.584	43.119	50.645	TURN (PR)
	18.154	17.953	11.15	18.395	16.494	16.373	18.141	17.874	17.534	Ρź
	17.146	17.725	17.733	16.175	10.036	18.29C	17.680	17.721	17.639	P 2A
	553.3CB	552.545	151.449	:54.158	153.709	555.654	154.017	564.489	555.471	T 2
	553,751	552.643	551.71L	552.653	554.009	553.815	. 54.295	554.750	555.752	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Percent Equivalent Rotor Speed = 3738,16 Equivalent Weight Flow = 84,27
Circumferential Distortion
Statton 1 (226') - Station 2 (216') - Station 2A (205')

1 3 11 0 1	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	03 73	ن د د	99		ن د د	37. 70	10 71	0	10	MAGN TOG
		, (°	7 6 6 6		20.00	200	3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	140.05	76.		
	4 I	10000	10.00	100.40	101000	00.00	-17-00	110062		0010	
1 2011415	BLIA 1	1111	4.691	114.4	401.4	1.031	3-161	2.134	4.661	*16.	CEIA A
STATION 2	BETA 2	46.823	44.745	43.393	41.753	46.646	39.940	42.447	46.181	51.461	BETA 2
	BETA(FR) 1	54.916	53.400	53.646	53.065	55.037	57.910	60.903	926*09	65.262	BETA (PR) 1
	BETA(PK) 2	24.349	25.542	25.102	25.596	29.454	33.594	36.493	45.894	48.052	BETA (PR) 2
	۷ ا	361.63	384.90	392.70	4CB.55	402.81	364.82	356.12	353.19	322.77	٧ ،
	۸ 2	521.78	525.53	534.7ë	560.37	554.34	542.15	569.93	475.98	444.40	۸ 2
	N 2 1	360.63	363,81	391.25	467.14	401.64	384.18	355.65	351.86	521.35	V2 1
	V2 2	357.05	373.23	392.24	418.03	420.43	415.16	375.57	328.96	276.46	VZ 2
•	V-THETA 1	26.70	28.80	33.62	33.86	30.42	21.35	16.98	29.92	29.89	V-THETA 1
		380.50	369.96	370.83	373.15	360.94	347.62	343.51	345.BC	347.67	V-THETA 2
	V(PR) 1	627.4	1.449	9.059	6777.5	4007	723.2	731.4	724.1	714.8	V(PR) 1
	V(PR) 2	391.6	415.7	433.1	463.5	483.1	499.1	48C . 5	6.654	414.3	V(PR) 2
	VTHETA PRI	-513.4	-517.9	-520.1	-541.6	-574.4	-612.7	-639.1	-632.8	-638.4	VTHETA PRI
	VTHETA PR2	-161.6	-178.4	-183.8	-2000-2	-237.4	-275.6	-298.7	-365.6	-207.6	VTHE TA PRZ
	n 1	540.18	546.74	553.70	575.43	604.80	634.03	656.04	662.72	668.33	. .
	U 2	542.07	548 • 32	554.56	573,34	598.36	623.36	642.17	24.849	654.68	2 n
	~ ¥	0.3274	6.3489	0.3562	0.3709	0.3656	0.3489	0.3223	6.3196	0.2915	
	M 2	0.4630	C.4671	6.4608	1865.0	C-4925	ú.4611	0.4509	C.4197	9366.0	M 2
		0.56FC	0.584	£965•0	0.6152	6.6301	0.6556	ō.6619	£.6551	5.6456	M(PR) 1
	M(PR) 2	0.34.72	C.3677	0.3858	6.4125	0.429½	0.4430	0.4252	C.3968	6.3641	M(PR) 2
	TURN(PR)	30.567	27.919	27.944	27.477	25.599	24.369	22.502	18.136	15.340	TURN (PR)
	- L	14.699	14.845	14.908	15.022	14.968	14.966	14.861	14.845	14.733	-
		17.694	17.546	18.109	16.386	16.397	18.361	16.076	17.751	17.499	P 2
	1 1	518.699	518.699	515.699	516.699	515.699	516.699	518,699	516.659	518.699	~
		551.158	549.783	548.747	551.622	552.670	552,793	553.766	553.978	555.141	1 Z
STATOR E	PCT SPAN	95.00	00.06	85.00	70.00	50.00	36-00	15.00	10.00	2.00	PCT SPAN
	DIA	33.207	33.564	33.921	34.992	36.426	37.846	36.919	39.276	39.633	DIA
STATION 2		46-823	44. 748	43.393	41.753	40.646	39.946	42.447	46.181	51.461	BETA 2
STATION 2A	BETA 2A	1.130	2.568	2.136	1.395	1.618	1.419	1.615	2:510	1.913	BETA 2A
	۷ 2	521.78	525.53	539.78	560.37	554,34	542.15	509.93	475.98	04.44	7 S
	V 2A	366.41	374.37	376.76	435.50	440-39	441.96	391.72	369.25	359.55	V 2A
	7 7	357.63	373.23	392.24	418.03	420.43	415.16	375.57	328.96	276.46	V2 2
	V2 2A	386.33	373.99	370.50	435.33	440.22	44 i • 66	591.36	368.68	359.09	V2 2A
	V-THETA 2	380.56	369.96	376.83	373,15	366-54	347.62	343.51	342-86	347.07	V-THETA 2
	V-THETA 2A	7.62	16.77	14.06	10.60	7.82	10.94	11.03	16.16	11.99	V-THETA 2A
	N 2	0.4630	C.4671	0.4808	C.4987	0.4925	0.4811	0.4509	6.4197	0.3906	7 H
	M 2A	0.3394	C-3290	C.3316	0.3835	0.3877	C.3892	i.3436	0.3234	0.3145	H 2A
	TURN (PR)	45.692	45.179	41.255	41.356	37.608	36.462	40.734	43.563	78.440	TURN (PR.)
	P 2	17.654	17.946	18.169	18.386	16.397	16.361	16.076	17.751	17.499	b 2
	P 2A	17.100	17.702	17.725	16.175	16.227	16.199	17.766	17.609	17.546	P 2A
	T 2	551.158	245.783	54E.747	551.622	552.670	552-193	553.766	553.97b	555.141	1.2
	T 2A	551.135	550.384	549.034	552,461	553.618	552.801	553.745	553,773	554.763	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
ercent Equivalent Rotor Speed = 388.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 84.5

Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738, 16 Equivalent Weight Flow = 84, 27	Circumferential Distortion	Station 1 (256°) - Station 2 (246°) - Station 2A (235°)
--	----------------------------	---

								i			
KCTON -	PCT SPAN	54.46	40.0x	£4.49	70.06) · · · · ·	31.00	14.46	66.4	86.4	PCT SPAN
	DIA	4.1.4	13.617	34.001	1:1.22	36.083	V 1 7 8 8 5	176.92	34.754	40.138	DIA
STATION	65-TA 3	3.706	7.7.0	3.576	3.983	3.405	3.641	3.470	5.167	5.144	6ETA 1
NULLATA	BETA ?	496.44	44 - 1 H 3	43.491	40.00	42.427	45.399	55.142	59.146	64.352	BETA 2
	ELTA (PR)	56-387	54.9.35	55.046	55.764	57.926	60.177	62-486	65-161	65.081	BETA (PR) 1
		72.084	22.339	22.4.75	266-42	77. bab	32.482	40.044	41.F5B	44-526	BETA(PR)
		366.7	367-17	369.77	374.77	365.85	351.47	330.63	795-61	299.27	
	· >	540.78	557.45	566.27	56% 45	562.37	537.41	490.33	492.49	493.64	- >
	7 7	343.95	366.43	368.68	373.86	365.17	356.67	329.7b	294.59	298.03	V2 1
	V2 2	332.67	396.55	456.46	414.66	414.94	373.61	24.672	252,32	213,51	7 Z ZA
	V-THETA 1	22.76	14-67	25.60	26.04	22.10	22.31	22.92	26.33	26.83	V-THETA 1
		382.14	365.38	365.60	360.03	379.25	365.53	401.88	422.36	444.68	V-THETA 2
		621.3	637.6	2.449	6.499	687.7	765.1	713.9	761.3	707	V(PR) 1
	V(PR) 2	414.7	428.7	440.2	457.5	4.69.5	443.6	369.6	339.5	300.1	V(PR) 2
	VTHETA PRI	-517.4	-522.1	-626.1	-246.4	-582.7	119-	-633.1	-636.4	-641.5	VTHETA PRI
	VTHETA PR2	-159.9	-162.9	-169.(-143.3	-219.1	-237.9	-240.3	-226.1	-216.6	VTHETA PR2
	n 1	546.18	546.74	553.70	575.43	604.Bu	634 - 63	656.04	562.72	668.33	1 0
	n 2	542-07	546.32	554.58	573.34	598.36	623.36	642-17	24.849	654.68	n 2
		0.3117	6.3326	C.3349	0.3395	6.3313	6.3179	C-2968	C.2666	0.2700	- E
	2 1	0.4805	0-4924	6.4994	6.5003	96650	0.4756	0.4316	6.4333	0.4337	R 2
	M(PR) 1	6.5619	6.5776	6.5834	. 602ù	C.6227	6.6379	0.6451	0.6326	0.6382	M(PR) 1
	M(PR) 2	0.3685	0.361b	6.3923	0.4075	C.4171	6.3927	6.3255	6.2987	0.2637	M(PR) 2
		33.763	32.597	32.491	50.769	30.105	27.746	21.935	23.468	20.666	TURN (PK)
	 	14.754	14.910	14.950	14.996	14.994	14.975	14.916	14.776	14.799	Р.
		18.655	18.201	16.361	15.371	16.467	16.166	17.765	17.732	17.789	P 2
	1 1	516.699	659.915	218.659	516.699	513.699	518.699	518.699	518.699	518.699	7 1
		551.539	550.163	546-642	551.224	553.672	555.007	556.666	557.673	559.361	T 2
STATOR E	PCT SPAN	95.00	07.76	85.60	70.00	20.00	30.00	15.00	10.00	2.00	PCT SPAN
	DIA	33.267	33.564	33,921	34.992	36.426	37.648	38.919	39.276	39.633	DIA
STATION 2		44.964	44.185	43.451	45.509	42-427	45.899	55.142	59.146	64.352	BETA 2
STATION 2A	BETA 2A	1.747	3.062	2.234	1.186	6.837	0.352	1.004	2.378	3.147	BETA 2A
	۷ 2	54C-7e	555.95	560.27	562.45	562.37	537.41	490.31	492.49	463-64	2
	V 2A	395.49	396.12	396.76	436.23	443.22	455.44	368.34	349.47	349.69	V 2A
	V2 2	382.62	396.53	406.46	414.60	414.94	373.61	24.672	252.32	213.51	7 7
		365.31	369.56	396.38	438.69	443°(.B	422.27	368.10	348.97	348.92	VZ 2V
		382.14	365.36	385.60	38 0. 09	379.25	365.53	401.88	422.36	444.68	V-THETA 2
	V-THE TA 2A	12.06	70.64	15.46	6.03	6.47	2.59	6.45	14.49	19.16	V-THETA 2A
	М 2	0.4805	7764.7	7667.0	C. 5008	0.4996	0.4758	C.4318	0.4333	0.4337	M 2
	M 2A	0.3479	0.3434	0.3495	6.3866	£06E*)	C+3712	0.3223	6.3052	0.3050	H 2A
	TURNIPE	43,216	41.120	41.257	41.321	41.570	45.487	24.046	56.673	61.119	TURN (PR)
		18.055	10.201	13.301	16.371	18.407	16.166	17.765	17,732	17.789	Р 2
	P < A	17.513	17.77	17.822	10.147	le . 17!	17.972	17.552	17.435	17.428	P 2A
	7 1	551.339	554.163	595.64	151.224	555.672	155.007	250.666	£57.673	559.361	7.7
	T 2A	550.940	549.66E	549.288	550.136	552.677	553.780	554.977	555.711	557.225	T 2A

Table A-8. Blade Element Performance (Continued)

Stage E, Rotor E - Stator E

Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow - 84.27

Circumferential Distortion

Station 1 (286") - Station 2 (276") - Station 2A (265")

SPAN 9	94.99	91.01C	64° 49	70 . C	50.00 30.00 20.00	0,0 - 0,0 0,0 - 0,0	14.98	65.5	4.56	PCT SPAN
7	-3-269	-3.53c	-3.511	11.21.1	454.4	-1.698	110.40	17.046	1.0004	DIA BETA 1
4	44.109	44.742	44.984	46.505	776.64	52.341	56.623	59.586	264.29	BETA 2
7	60.035	55.648	59.512	60.226	62.802	64.552	67.590	70.635	74.240	BETA(PR) 1
22	22.6.35	22.589	22.373	23.993	27.950	32.215	39.192	40.759	44.003	BETA(PR) 2
ä	322.67	341.17	340.46	335.77	348.13	306.20	273.51	236.08	190.21	~ >
2,	546.68	552.66	555.67	555.70	540.80	530.22	506.81	499.75	491.54	۷ 2
Š	322.11	340.51	339.67	335.5d	317.62	306.03	273.37	235.89	196.12	٧2 1
36	368.11	392.54	393.03	382.47	348.09	323.69	275.23	252.79	226.84	V2 2
ī	-18.96	-21.05	-23.22	-11.15	-13.68	-9.67	-6.89	-8.44	-5.32	V-THETA 1
36	364.99	589.42	392.61	403.11	413.67	419.43	417.77	430.53	435-66	V-THETA 2
v	645.3	662.1	669.5	8.579	4.569	712.2	1.717	711.4	7007	V(PR) 1
4	418.7	453.6	425.0	418.7	394.3	383.2	355.5	334.5	316.0	VIPK) 2
î	-559.1	-567.6	-576.9	-586.6	-618.5	-643.1	-662.9	-671.2	F-673-7	VTHETA PRI
7	-157.1	-159.3	-161.8	-170-2	-184.7	-204.0	-224.4	-217.9	-519.1	VTHETA PK2
7	540.18	546.74	553.76	575.43	664.80	634.03	656.04	662.72	668-33	1 0
<u>۸</u>	542.07	548.32	554.58	573.34	598.36	623.38	642-17	648.42	654.68	2 0
•	0.2915	v.3065	∂.3078	0.3035	C-2873	6.2764	6.2465	0.2124	C.1769	~ =
င်	C-4634	6.4893	C-4925	0.4939	C.4762	0.4656	0.4375	0.4362	C.4262	; vi
ပံ	6785.0	C.5946	6459-0	0.6109	0.6280	0.6428	6.6462	C.6401	0.6258	2
ဒ်	6.3702	0.3751	0.3767	C-3699	C • 3472	0.3364	0.3169	C.2915	6.2753	M(PR) 2
ų.	38.020	36-960	37.139	36.234	34.868	52.369	28.492	29.981	30.347	TURN (PR)
₹ :	14.760	14. YOB	14.919	376.4	14.914	14.631	14.059	14.741	14.601	_
~	16.169	16.162	16.230	16.247	16.145	18.004	17.792	17.792	17.759	P 2
2 .	516.699	510.699	510.099	16.699	\$10.699	510.689	669.815	518.699	518.659	~
52	267.166	556.199	555.411	558.863	561.650	563.135	506.105	963-195	566.488	1 <
•	,			i		;	,	;	,	
, (70.00	20.00	23.62	00.07	30-36	30.00	15.60	10.00	2.00	PCT SPAN
,	33.50	33.304	33.921	34.46	36.420	37.848	36.919	39.276	39.633	DIA
1	44.169	74. 145	44.984	46.505	44.920	52.341	56.623	59.580	62.492	BETA 2
'N'	2.624	3,301	2.837	626.0	C-155	-3.778	-2.437	0.624	3.689	BETA 2A
7	546.68	552.66	555.67	555.70	240.80	53n-25	500.81	499.75	491.54	2
4	425.25	414.38	413.28	448.01	433.47	412.81	373.52	364.66	374.08	Y 2. A
ñ	398.11	392.54	393.63	382.47	348.09	353.69	275.23	252.79	226.84	V2 2
4,7	454.BC	413.68	412.76	447.90	433.17	411.76	372.99	364.37	372.95	V2 2A
38	384.99	369.02	392.81	403.11	413.67	419.43	417.77	436.53	435.60	V-THETA 2
-	19.47	23.66	20.45	7.65	1.17	-27.19	-15.87	3.97	25,35	V-THETA 2A
ċ	0.4434	0.4893	0.4925	6065-0	6.4762	C.4656	6.4375	0.4362	0.4282	2 H
င်	6.3737	0.3642	0.3635	ć. 3935	16.5797	0.3606	C -3244	0.3162	0.3246	H 2A
7	42.144	41.440	42-147	45 .524	49.745	56.059	58.96d	58.660	56.513	TURN(PR)
16	16.109	15.162	10.730	16.247	10.145	18.00	17.794	17.792	17.759	P 2
~	18.(16	7.923	11.5.11	10.163	15.(16	17.431	17.536	17.496	17.546	P 2A
'n	557.092	556.154	155.411	£88•3¢4	260-106	£63.135	106-105	267-196	568 •48B	T 2
2	553.898	552.968	552-125	556.254	157.558	559.424	563-235	204.444	566.264	T 2A

Table A-8. Blade Element Performance (Continued)
Stage E, Rotor E - Stator E
Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 8.

Equivalent Weight Flow = 84, 27		A (295°)
rcent Equivalent Rotor Speed = 89.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 84.27	Circumferential Distortion	Station 1 (316°) - Station 2 (306°) - Station 2A (295°)

70.00 5C.1C 3C.0C 14.9E 9.99 4.5B PCT SPAN 35.151 56.685 36.219 39.371 39.754 4C.158 DIA -16.721 -16.769 -17.18C -18.065 -19.519 -2C.0Cc 8ETA 1 54.054 54.25 61.920 68.426 71.466 75.888 BETA 2 47.496 69.327 71.656 73.734 74.772 76.118 BETA 2 24.145 51.281 34.075 49.573 56.133 61.673 BETA [PR] 2 284.27 266.94 245.21 222.55 211.37 195.17 V 1 534.49 511.50 515.8C 471.87 455.89 443.82 V 2 272.25 257.49 2242.48 173.41 145.29 123.13 V 2	-140.6 -156.9 -168.5 -203.6 -216.5 -228.4 VTHETA PRZ 573.4	70.60 56.60 36.00 15.00 10.00 5.60 PCT SPAN 34.992 36.420 37.848 38.919 39.276 39.633 DIA 54.094 36.420 37.848 38.919 39.276 39.633 DIA 54.054 59.235 61.926 68.428 71.408 73.888 BETA 2 63.264 64.32 BETA 2 63.244 511.50 511.50 471.87 45.89 443.82 BETA 2 63.244 511.50 511.50 471.87 455.89 443.82 BETA 2 A 313.75 261.59 242.88 173.41 145.29 123.13 VZ 2 351.81 339.62 339.11 316.56 308.49 309.21 VZ 2 452.87 64.384 55.24 64.387 65.395 0.3649 42.37 0.4463 0.4463 0.4463 0.4463 0.4463 0.4463 0.4696 0.2566 0.2669 M ZA 11.92 11.7924 17.7924 17.595 17.446 P. Z
84.59 17.543	-124.4 553.70 554.55 6.4546 6.6179 0.2761 44.617 14.135 17.627 9 563.493	85.00 85.00 11 55.09 12 5.30 13 518.39 13 528 13 528 13 78 13 78 17 529 17 529 17 529
94,99 93,234 93,234 94,649 94,748 96,462 15,947 26,863 15,947 26,863 15,947 26,863 15,947 26,863	-91.1 -111.3 540.16 546.74 542.07 548.32 0.2196 6.2352 6.4849 0.4619 0.5935 0.6090 0.2911 6.2741 53.514 47.639 14.010 17.863 16.110 17.863 516.699 518.699	95.00 90.00 33.207 33.564 54.744 56.241 2.856 2.661 552.70 351.77 318.75 292.09 376.24 351.39 376.29 436.09 18.47 16.33 0.4449 0.4610 0.321 0.3056 51.691 53.579 11.539 17.853
PCT SPAN 9 DIA 333 BETA 1 -16 BETA 2 54 BETA (PR) 1 69 BETA(PR) 2 15 V 1 24 V 2 25 V 2 23	VTHETA PR2 54 U 1 2 54 U 2 54 H 1 0 0. H 2 0. H (PR) 1 0. H (PR) 2 0. TURN (PR) 53 TURN (PR) 1 14 P 2 1 1 516	PCT SPAN 99 DIA 333 BETA 2 54 BETA 2 54 V 2 337 V 2 331 V 2 4 V 2 4 37 V 2 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ROTCK E Station 1 Station 2		STATION 2 STATION 2A

Table A-8. Blade Element Performance (Continued)
Stage E., Rotor E - Stator E

Percent Equivalent Rotor Speed = 88.79 Equivalent Rotor Speed = 3738.16 Equivalent Weight Flow = 84,27

Circumferential Distortion
Station 1 (346") - Station 2 (336") - Station 2A (325")

			Į,								
ROTCR C	PCT SPAN	56"46	07 - 36	44.99	700	30.00	30.00	14.98	66.6	86°4	PCT SPAN
	DIA	33.234	33.617	34.001	25.151	36.685	58.219	39.371	39.754	40.138	DIA
I NOTATO	RETA 1	-12	-11.269	-16.791	100	-11 400	-10.326	-0.047	074 H-	7	BETAI
T NOTE OF		10101	07.7		576431			1000	61.5		00.10
		20.112	279.10	C10.12	21.965	23.146	24.146	01.33/	0400	0/.303	BEIA 2
	BETA(PR) 1	65.227	£3.732	64.327	65.252	66.751	68.152	69.678	76.663	73.407	BETA(PR) 1
	A (PK)	17.388	25.264	30,176	25.813	29.581	34.252	46.056	48.627	52.052	BETA(PR) 2
	٧ ،	263.65	305.15	298.27	296.46	291.26	278.75	261.54	246.32	210.77	٦ >
	7 A	537.89	466.51	479.62	526-12	524.72	515.71	467.36	466.53	462.17	7
	٧2 ا	277.14	289.26	293.00	291.10	285.20	274-24	258.22	245.52	208.44	1 2/
	VZ 2	295.22	266.03	256.99	325.39	314.63	297.49	224.00	200.35	178.23	V2 2
	V-THETA 1	-60.33	-59.63	-55.84	-56.07	-59.06	76.64	41.21	-36.91	-31-15	V-THETA 1
	V-THETA 2	649.63	422.17	4:5.19	415.95	419.76	426.81	409.16	420.95	426.13	V-THETA 2
	V(PR) 1	4.199	676.2	6.929	695 .4	722.5	736.9	743.5	741.5	729.9	V(PR) 1
	V(PR) 2	369.4	294.2	297.3	361.5	362.6	360.4	323.3	303.6	290.3	V(PR) 2
	VTHETA PRI	600	4.909-	-609 -5	-631.5	-663.9	-684.C	-697.2	9.669-	-669	VTHE TA PRI
	VTHETA PR2	-92.4	-125.5	-149.4	-157.4	-178.6	-202-	-232.4	-227.5	-528.6	VTHETA PR2
	1 0	540.18	546.74	553.70	575.43	664.80	634.03	656.04	662.72	668.33	~ ⊃
	7 N	542.07	548.32	554.58	573,34	598.36	623.38	642.17	648.42	654.68	n 2
	 E	0.2557	0.2754	0.2691	0.2674	6.2627	0.2513	0.2356	0.2235	0.1895	1 H
	¥ 5	0.4717	0.4372	C.4198	0.4624	0.4589	0.4503	C-4062	0.4055	0.4013	M 2
	M(PR) 1	6.5963	C-6102	0.6101	0.6273	0.6516	6-6642	2699-0	·.6674	0.6561	M(PR)
	M(PR) 2	0.2713	6.2575	6.2661	0.3165	6.3166	6.3147	0.2810	0.2639	0.2520	M(PR) 2
		47.839	38.468	34.158	39-441	37,187	33.954	23.717	22.142	21.462	TURN(PR)
		13.974	1+.063	14.051	14.050	14.060	14.070	14.095	14.669	13.966	P 1
	P 2	17.930	17.571	17.441	17.966	16.045	17.997	17.561	17.570	17.561	, Z
	- 1	518.659	518.699	514.699	518.699	518.699	518.699	518.699	516.699	518.699	T 1
	1 2	565-140	563.967	562.964	566.003	566.890	568.011	509.059	568-969	569.666	T 2
STATOR E	PCT SPAN	95.00	90.06	85.00	70.00	50.00	30.00	15.00	10.00	9.00	PCT SPAN
		33.207	33.564	33,921	34.992	36.420	37.848	36.919	39.276	39.633	VIO
STATION 2		56.712	57.820	57.615	51.965	53.147	54.742	61.337	64.548	67,303	BETA 2
STATION 2A	BETA 2A	1.519	C.013	-1.688	-1.948	0.590	-3-299	-2.012	0.650	4.682	BETA 2A
	^	537.89	499.51	479.82	528.12	524.72	515.71	467.36	466.53	462.17	V 2
	V 2A	302.62	292.07	287.42	341.84	348.15	360.98	326.45	326.89	333.72	V 2A
	VZ 2	295.22	266.03	256.99	325.39	314.63	297.49	224.00	200-35	178.23	7 7
		302.51	292.06	267.36	341.60	348.06	366.25	326.05	326.68	332,37	V2 2A
		449.63	422.77	405.19	415.95	419.76	420.61	409.76	450.95	426.13	V-THETA 2
	V-THETA 2A	8.02	-0.07	-5.46	-11.62	3.58	-20.77	-11.46	3.71	27.22	V-THETA 2A
	N 2	0.4717	0.4372	0.4198	0.4624	0.4589	6.4563	7904-0	0.4055	6.4013	H 2
	M 2A	0.2613	0.2523	C.2485	0.2954	6036-3	Ć.∃118	0.2811	0.2815	C.2872	M 2A
	_	55.192	57.832	58.7C3	53.911	52,537	57.983	63,265	63,813	62.544	TURN(PR)
		17.556	17.571	17.441	17.966	16.045	17.997	17.561	17.576	17.561	P 2
	P 2A	17.140	17.093	17.061	17.331	17.468	17.470	17.266	17.277	17,332	P 2A
	1 2	565-140	565.967	562.964	566.003	269.995	568.011	109.059	568.969	569.860	7 7
	T 2A	565.949	564.666	563.457	267.000	567.172	568.647	570.170	576-141	571.299	T 2A

APPENDIX B STATOR E SUCTION SURFACE STATIC PRESSURE COEFFICIENTS AT 10% SPAN FROM TIP

 $C_{p} = \frac{P_{surface} - P_{2}}{(\rho \sqrt{2/2})_{2}}$

Percent Design	Equivalent							Ą	ercent O	Percent Overall Chord	ord					!	
Equivalent Rotor	Weight				Front .	Front Airfoil							Rear Airfoil	trfoil			
Speed	(lb/sec)	6.9	11.6	16.5	21,4	26.5	31.6	36.9	42.1	57.0	62,3	67.5	72.7	77.8	82.9	87.4	92.8
110	127.63	-0.77	*	*	-0.72	-0.88	-0, 99	-0.91	-0.88	-0.80	-1.13	-1.18	-1.23	-0.95	-1.01	-0.75	-0.52
110	122,36	-0.67	*	*	-0.89	-0.93	-0.92	-0.81	-0.71	69.0-	-0.93	-0.93	-0.95	-0.71	-0.75	-0.51	-0.29
110	116.81	-0.50	*	*	-0.69	-0.71	99.0-	-0.54	-0.43	-0.42	-0.60	-0,60	-0.61	-0.38	-0.42	-0.21	0.0
110	111.46	-0.58	*	*	-0.61	-0.61	-0.57	-0.45	-0.42	-0.33	-0.41	-0.36	-0,33	-0.18	-0.18	-0.04	0.09
110	107.00	-0.77	*	*	-0.59	-0.57	-0.55	-0.54	-0.52	-0.34	-0.34	-0.27	-0.22	-0.11	-0.10	-0.02	0.07
100	121.43	-0.68	*	*	-0.70	-0.86	-0.98	-0.95	-0.92	68.0-	-1.27	-1.30	-1.34	-1.03	-1,10	7	-0 49
100	117.78	-0.53	*	*	-0,72	-0.83	-0.87	-0.80	-0.72	-0.68	-0.98	66.0-	-1.02	-0.75	18.0	-0-	-0.28
100	111.26	-0.58	*	*	-0.79	-0.85	-0.85	-0.72	-0.63	-0.58	-0,83	-0.82	-0.84	-0.59	-0.62	-0.39	-0.16
100	106.84	-0.52	*	*	-0.72	-0.75	-0.72	-0.60	-0.50	-0.46	-0.67	-0.65	-0.67	-0.45	-0.48	-0.26	90.0-
100	105.92	-0.57	*	*	-0.77	-0.80	-0.75	-0.64	-0.52	-0.48	-0.65	-0.65	99.0-	-0.44	-0.48	-0.26	90.0-
100	102.92	-0.52	*	*	69.0-	-0.71	-0.65	-0.52	-0.41	-0.38	-0.54	-0.49	-0.51	-0.31	-0.34	-0.14	0,02
100	97.94	-0.73	*	*	-0.60	-0.61	-0.54	-0.47	-0.42	-0.31	-0.36	-0.32	-0.29	-0.16	-0.18	-0,03	0.09
100	93.26	-0.88	*	*	-0.55	-0.52	-0.52	-0.50	-0.47	-0.28	-0.29	-0.20	-0.17	-0.07	-0.07	0.02	0,11
8		9	,	,	00			,	0		,	,	;	;		į	
06	114.30	9.0			-0.62	08.0-	-0.93	0.00	68.0-	62.0	-1.12	-1.17	-1.22	-0.97	-1.02	-0.74	-0.46
06	106.88	-0.51	*	*	-0.67	-0-77	-0.83	92.0-	99.0-	-0.63	-0.92	-0.94	-0.97	-0.72	-0.78	-0.51	-0.26
06	98.57	-0.55	*	*	-0.74	-0.78	-0.77	-0.67	-0.57	-0.52	-0.76	-0.76	-0.76	-0.54	-0.59	-0,35	-0.13
96	88.90	-0.63	*	*	-0.68	-0.70	-0.64	-0.52	-0.41	-0.38	-0.50	-0.47	-0.46	-0.29	-0.31	-0.14	0.02
06	82.57	-0.81	*	*	-0.56	-0.54	-0.48	-0.44	-0.42	-0.27	-0.29	-0.21	-0.17	-0,05	-0.06	0.02	0.11
20	99 73	9	*	*	99 0-	70 0-	6	90 0-	8	20 0-	-1 %	1 90	-	-1 06	1.	70	7
20	83.58		*	*	63.0	75.0-		7.5	9 0	99.0-	200	30	1 -	-0.77	68.0	2 0	2,0
70	75.87	-0.62	*	*	-0.77	-0.82	-0.84	-0.73	-0.63	9 0	-0.85	2	98	-0.64	10°0	43	2 2
70	68,29	-0.61		*	-0.71	-0.73	-0.68	-0.57	-0.45	-0.42	-0.57	-0.54	-0.54	-0.37	-0.39	-0.22	-0.02
20	61,93	-0.82			-0.58	-0.55	-0.54	-0.54	-0.50	-0.32	-0.31	-0.26	-0.20	-0.07	-0.07	0.00	0.08
,				•													
20	64.65	-0.62	*	* -	99.0-	-0.81	-0.93	-0.93	-0.89	-0.87	-1.22	-1.28	-1.31	-1.07	-1.14	-0.84	-0.56
20	61.51	-0.56	*	*	-0.67	-0.80	-0.87	-0.83	-0.79	-0.77	-1.08	-1.07	-1.07	-0.87	-0.94	99.0-	-0.37
20	55,53	6. 2.	*	*	-0.78	-0.85	-0.88	-0.80	-0.71	-0.68	-0.93	-0.95	-0.94	-0.73	-0.77	-0.52	-0.28
20	48.51	-0.62	*	*	-0.77	-0.77	-0.72	-0.62	-0.51	-0.49	99.0-	-0.65	-0.65	-0.45	-0.47	-0.27	-0.07
20	42,99	-0.88	*	*	-0.63	-0.62	-0.60	-0.60	-0.56	-0.37	-0.38	-0.32	-0.29	-0.19	-0.14	90.0-	0.04
*Asterisk	*Asterisk indicates orifice whi	which wa	s Inoper	ative du	ch was inoperative during test.												

APPENDIX B STATOR E SUCTION SURFACE STATIC PRESSURE COEFFICIENTS AT 90% SPAN FROM TIP

 $C_{\mathbf{p}} = \frac{p_{\mathbf{surface}} - p_{\mathbf{fs}}}{(\boldsymbol{\rho} v^2/2)_{\mathbf{fs}}}$

_						_																	_						_	_	
		92.7	-0.39	-0.11	-0.08	-0.09	-0.08	-0.38	-0.25	-0.13	-0.07	-0.09	-0.05	-0.02	-0.04		-0.41	-0.23	-0.15	-0.06	-0.08	-0.37	-0.26	91.0-	-0.09	-0.08	-0.43	-0.32	-0.20	-0.10	-0.11
		87.8	-0.49	-0.10	-0.05	-0.03	-0.01	-0.46	-0.30	-0.14	-0.05	-0.07	-0.02	0.02	0.01		-0,50	-0.30	-0.16	-0.04	-0.05	-0.50	200	61.0-	-0.10	-0.06	-0.51	-0.39	-0.26	-6.11	-0.09
		82.8	-0.58	-0.13	-0.07	-0.04	0.00	-0.53	-0.37	-0.18	-0.09	-0.10	-0.04	0.03	0.02		-0.60	-0.38	-0.20	-0.05	-0.05	-0.60	-0.40	-0.24	-0.12	-0.06	-0.59	-0.46	-0.31	-0.14	-0.10
	Airfoil	77.7	-0.52	-0.06	0.00	0.03	0.02	-0.48	-0.31	-0.11	-0.01	-0.02	0.02	0.10	01.0		-0.55	-0.31	-0.13	0.01	0.03	-0.54	-0.36	-0.33	-0.04	0.02	-0.54	-0.41	-0.25	-0.07	-0.02
	Rear Ai	72.6	-0.46	-0.01	0.05	0.08	0.12	-0.42	-0.25	-0.06	0.03	0.02	0.07	0.15	0, 15		-0.49	-0.26	-0.08	90.0	90.0	-0.48	56.0-	67.0-	0.00	0.06	-0.49	-0.35	-0.20	-0.03	0.01
		67.3	-0.33	0.05	0.10	0.13	0.17	-0.29	-0.16	0.01	0.09	90.0	0.13	0.19	0.19		-0.37	-0.16	00.0	0.11	0.13	-0.37	-0.50	-0.03	0.05	0.11	-0.39	-0.26	-0.12	0.0 E	0.08
		61.9	-0.18	0.14	0.17	0.18	0.23	-0.12	-0.02	0.12	0.18	0.17	0.21	0.26	0.25		-0.18	-0.02	0.10	0.19	0.20	-0.20	90.0-	90.0	0.14	0.19	-0.23	-0.13	0.00	0.12	0.15
all Chord		56.5	-0.05	0.23	0.25	0,24	0.28	-0.01	0.11	-0.23	0.28	0.26	0.29	0.31	0.31	,	-0.05	0.12	0.21	0.27	0.27	-0.04	80.0	61.0	0.24	0.27	-0.07	0.02	0.12	0.23	0.55
Percent Overall Chord		41.8	-0.60	-0.16	-0.14	-0.17	-0.19	-0,53	-0.29	-0.13	-0.09	-0.10	-0.08	-0.07	-0.11		-0.58	-0.29	-0.18	-0.08	-0.14	-0.52	20.0-	-0.20	-0.12	-0.12	-0.54	-0.39	-0.26	-0.13	-0.12
ď		36.5	-0, 72	-0.27	-0.24	-0.22	-0.21	-0.61	-0.40	-0.24	-0.20	-0.20	-0.18	-0.11	-0.14		-0-67	-0.41	-0.30	-0.17	-0.15	-0.62	-0.42	-0.31	-0.22	-0.15	-0.61	-0.48	-0.36	-0.24	-0.17
		31.2	-0.78	-0.37	-0.35	-0.30	-0.24	-0.68	-0.48	-0.34	-0.30	-0.30	-0.28	-0.18	-0.16		-0.71	-0.48	-0.39	-0.27	-0.07	-0.62	67.0-	01.0-	-0.32	-0.21	-0.65	-0.54	-0.43	-0.34	-0.26
	irfoil	26.1	-0.81	-0.47	-0.45	-0.41	-0.33	-0.69	-0.55	-0.42	-0.40	-0.40	-0.39	-0.28	-0.25		-0.72	-0.54	-0.48	-0.38	-0.28	-0.58		-0.49	-0.43	-0.30	-0.66	-0.57	-0.50	-0.44	-0.35
	Front Airfoil	21.0	-0.71	-0.54	-0.56	-0.54	-0.47	-0.57	-0.55	-0.45	-0.47	-0.48	-0.48	-0.40	-0.36		-0.65	-0.55	-0.55	-0.49	-0.41	-0.59	-0.54	45.0-	-0.53	-0.43		-0.55	-0,53	-0.52	-0.48
		16.2	-0.61	-0.59	-0.63	-0.65	-0.61	-0.49	-0.54	-0.50	-0.53	-0.54	-0.56	-0.50	-0.48		-0.58	-0.57	-0.61	-0.59	-0.53	-0.53	-0.53	-0.58	-0.61	-0.55			-0.55	-0.58	-0, 57
		11.4	-0.41	-0.55	-0.64	-0.72	-0.76	-0.32	-0.45	-0.47	-0.53	-0.54	-0.58	-0.56	-0.60		-0.36	-0.44	-0.57	-0.61	-0.62	-0.35	-0 42	-0.53	-0.61	-0.61	-0.38	-0.41	-0.48	-0.58	-0.63
		6.7	-0.22	-0.55	-0.71	-0.95	-1.11	-0.14	-0.36	-0.45	-0.55	-0.57	-0.65	-0.81	-0.95		-0.18	-0.35	-0.58	-0.74	-0.89	-0.17	-0.34		-0.67	-0.87	-0.21	-0.28	-0.42	-0.62	-0.84
Equivalent	Weight	(lb/sec)	127.63	122.36	116.81	111.46	107.00	121.43	117.78	111.26	106.84	105.92	102.92	97.94	93.26		114, 30	106,88	98. 57	88.90	82.57	92.73	83.58	75.87	68, 29	61.93	64.65	61.51	55.53	48.51	42.99
Percent	Design Equivalent	Rotor Speed	110	110	110	110	110	100	100	100	100	100	100	100	100		05	06	06	06	06	20	202	20	20	7.0	20	20	20	20	20

APPENDIX B STATOR E PRESSURE SURFACE STATIC PRESSURE COEFFICIENTS

 $C_{p} = \frac{P_{surface} - P_{fs}}{(\rho v^{2}/2)_{2}}$

Percent						P(Percent Overall Chord	rall Chord					
Design Equivalent	Equivalent Weight			Front Airfoil	Airfoil					Rear ,	Rear Airfoil		
Speed	rlow, lb/sec	10% S	Span From Tip	Tip	8 206	Span From Tip	Tip	10%	Span From Tip	Tip	506	Span From	Tip
		7.6	25.2	42.8	7.5	24.9	42.6	56, 5	74.5	92.4	56.1	74.4	92.2
110	127.63	-0.42	-0.21	-0.25	-0.34	0.02	0,16	,	-0.12	-0.34	0.26	0.24	0.12
110	122.36	-0.04	-0.03	-0.15	0.29	0.30	0.36	*	-0.12	-0.34	0.51	0.47	0.37
110	116.81	0.31	0.26	0.12	0.35	0.31	0.35	*	0.33	0.13	0.52	0.48	0.38
110	111.46	0.49	0.37	0.20	0.37	0.32	0.34	• +	0.42	0.24	0.51	0.47	0.36
011	107.00	0.48	0.34	0. L.	0.45	0.37	0.38		0.40	0, 22	0.55	0,52	0.42
100	121.43	-0.42	-0.15	-0.21	-0.23	0.09	0, 20	•	-0.03	-0,30	0.30	0.28	0.15
100	117,78	-0.05	0.01	-0.08	0.12	0.21	0.30	*	0.10	-0.15	0,42	0.39	0.27
100	111.26	0.09	0.12	-0.03	0.31	0.35	0.38	*	0.19	-0.02	0.54	0.50	0.39
100	106.84	0.26	0.20	0.04	0.38	0.35	0.39	*	0.27	90.0	0,55	0.51	0.40
100	105.92	0.27	0,21	0.03	0.38	0.34	0.38	*	0.27	0.07	0.54	0.51	0.40
100	102.92	0.39	0.30	0.12	0.42	0.37	0.40	*	0.36	0.16	0,57	0,53	0.42
100	97.94	0.49	0.35	0,17	0.47	0.41	0.42	*	0.40	0,24	0.57	0.54	0,45
100	93. 26	0.54	0.39	0.20	0.48	0,40	0.41	•	0.41	0.28	0,58	0.55	0,44
06	114.30	98 0-	-0 15	00 0-	-0.25	0	0 17	٠	-0 03	80 0-	0 28	0.05	0 10
06	106.88	-0.02	0.05	-0.07	0.14	0.23	0.32	•	0.13	-0.11	0.44	0.41	0.29
06	98.57	0,19	0.15	-0.01	0.30	0.29	0.33	٠	0.22	0.00	0.50	0.46	0.35
06	88.90	0.45	0.30	0.09	0.43	0.37	0.38	*	0.35	0.16	0.55	0.52	0.40
06	82.57	0, 57	0.41	0.22	0.45	0.37	0.36	*	0,45	0.26	0,56	0.51	0.40
102	92, 73	-0.38	-0 12	-0 22	-0 11	0 10	0 18	*	-0 02	55	0 32	0.28	0
0.2	83.58	10.0	0.05	-0.07	0.14	0.21	0.29	*	0.13	-0.10	0.42	0.38	0.26
7.0	75.87	0,21	0,15	-0.04	0.32	0,30	0.34	•	0,22	00.00	0,51	0.46	0.34
70	68.29	0.44	0.27	0.05	0.43	0.36	0.36	•	0.34	0.13	0.53	0.50	0,39
20	61.93	0.58	0.37	0.18	0,46	0,38	0,37		0.41	0.25	0.55	0.52	0.40
į	i i	ç	-	i	9	-	:	•	9		8		;
0.0	64,65	-0.33	97.0	-0.2/	-0.09	0.02	0.14	• •	80.0-	-0.33	0.29	0.25	0.11
00	56.53	20.00	10.0-	61.0	0.0		7.5		3 6	2100	0.39	0.33	0.22
00 00	33, 33	60.0	0.09	77.0-	0.20	77.0	3.7		0.13	01.0	9.0	0.42	0.31
20	42.99	0.56	0.35	0, 13	0.47	0,36	0.34	*	0,43	0, 23	0.54	0.50	0.40
*Asteris	*Asterisk indicates orifice which was inoperative during test.	rifice whic	h was inor	erative du	ring test.			į				i	

	•				
					1
•					
			.		
				•.	
					4
					1

APPENDIX C DEFINITIONS

Definitions of Symbols

a _o	Inlet relative stagnation velocity of sound, ft/sec
c	Chord length, inches
$C_{\mathbf{p}}$	Static pressure coefficient
d	Diameter, inches
D .	Diffusion factor
$g_{\mathbf{c}}$	Gravitational acceleration, 32.174 ${\rm lb_m}$ - ${\rm ft/lb_f\text{-}sec^2}$
l _m	Incidence angle, degree from axial direction
M	Mach number
m	Mass flow, lbm/sec
N	Rotor speed, rpm
P	Total pressure, psia
PR	Rotor tip static pressure ratio (ratio of local static pressure to static pressure at -7.0% axial chord)
p	Static pressure, psia
R	Gas constant for air, 53.34 ft-lb _f /lb _m -°R
r	Radius, inches
S	Blade passage gap (leading edge), inches
t	Blade maximum thickness, inches
T	Total temperature, °R
$\mathtt{T}_{\mathtt{S}}$	Static temperature, °R
U	Rotor speed, ft/sec
v	Velocity, ft/sec
W	Actual flowrate, lb _m /sec
α	Cone angle (angle of plane tangent to conic surface that approximates the design streamline of revolution), deg
β .	Air angle, degrees from axial direction

Definitions of Symbols (Continued)

γ	Ratio of specific heats
γ°	Blade-chord angle, degree from axial direction
δ	Ratio of total pressure to NASA standard sea level pressure of 14.694 psia
δ°	Deviation angle, degree
η	Efficiency
θ	Ratio of total temperature to NASA standard sea level temperature of 518.7°R
K	Blade metal angle, degree from axial direction
ρ	Density, $lb_f/sec^2/ft^4$
σ	Solidity, chord divided by blade spacing (c/S)
φ	Blade camber angle, κ_1 - κ_2 , degree
ω	Loss coefficient
$\overline{\omega}\cos \beta/2\sigma$	Loss parameter
Subscripts	
0	Compressor inlet (bellmouth)
1	Rotor inlet
2	Rotor exit/stator inlet
2A	Stator exit
ad	Adiabatic
f	Force
fs	Freestream value
id	Isentropic condition
L	Local
m	Mean or mass
max	Maximum
min	Minimum

Definition of Symbols (Continued)

Subscripts (Continued)

le Leading edge

p Polytropic

te Trailing edge

s Static condition

z Axial component

θ Tangential component

Superscripts:

' Related to rotor blade

Mass average value

Definitions of Overall Performance Variables

Pressure ratio:

Rotor:
$$\frac{\overline{P}_2}{\overline{P}_1}$$

Stage:
$$\frac{\overline{P}_{2A}}{\overline{P}_{1}}$$

Equivalent flow:

$$\frac{\mathbf{W}\sqrt{\theta}}{\lambda}$$

Equivalent rotor speed:

$$N/\sqrt{\theta}$$

Adiabatic efficiency:

Rotor:
$$\eta_{ad} = \frac{\left(\overline{P}_2/\overline{P}_1\right)^{\frac{\gamma-1}{\gamma}} - 1}{\overline{T}_{2A}/518.7 - 1}$$
 Stage: $\eta_{ad} = \frac{\left(\overline{P}_{2A}/\overline{P}_1\right)^{\frac{\gamma-1}{\gamma}} - 1}{\overline{T}_{2A}/518.7 - 1}$

Definitions of Overall Performance Variables (Concluded)

Polytropic efficiency:

Rotor:
$$\eta_{p} = \frac{\frac{\gamma - 1}{\gamma} \ln (\overline{P}_{2}/\overline{P}_{1})}{\ln (\overline{T}_{2}/518.7)}$$
 Stator: $\eta_{p} = \frac{\frac{\gamma - 1}{\gamma} \ln (\overline{P}_{2A}/\overline{P}_{2})}{\ln (\overline{T}_{S2A}/\overline{T}_{S2})}$

Change in surge pressure ratio:

$$\Delta \, \text{Surge Pressure Ratio} = \left[1.0 - \frac{(\overline{P}_{2A}/\overline{P}_{1})_{\text{Distorted}}}{(\overline{P}_{2A}/\overline{P}_{1})_{\text{Uniform Inlet}}} \right]_{N/\sqrt{6} = \text{ constant}}$$

Values of pressure ratio for each condition are at constant value of flow, which corresponds to the flow at surge with distortion.

Average pressures and temperatures for circumferential distortion tests:

$$\overline{P}_1 = \frac{(3) \ (\overline{P}_1 \ \text{Undistorted}) + (1) \ (\overline{P}_1 \ \text{Distorted})}{4}$$

$$\overline{P}_2 = \frac{(3) \ (\overline{P}_2 \ \text{Undistorted}) + (1) \ (\overline{P}_2 \ \text{Distorted})}{4}$$

$$\overline{P}_{2A} = \frac{(3) \ (\overline{P}_{2A} \ \text{Undistorted}) + (1) \ (\overline{P}_{2A} \ \text{Distorted})}{4}$$

$$T_1 = \text{Plenum Conditions (corrected to standard day)}$$

$$\overline{T}_2 = \text{Set equal to } \overline{T}_{2A}$$

$$\overline{T}_{2A} = \frac{(3) \ (\overline{T}_{2A} \ \text{Undistorted}) + (1) \ (\overline{T}_{2A} \ \text{Distorted})}{4}$$

Definitions of Blade Element Performance Variables

Incidence angle:

Rotor:
$$i_m = \beta_1' - \kappa_{le}$$
 Stator: $i_m = \beta_2 - \kappa_{le}$

Diffusion factor:

Rotor: D = 1 -
$$\frac{V_2'}{V_1'}$$
 + $\frac{d_2V_{\theta_2} - d_1V_{\theta_1}}{(d_1 + d_2)V_1' \sigma}$

Definitions of Blade Element Performance Variables (Continued)

Diffusion factor:

Stator: D = 1 -
$$\frac{V_{2A}}{V_{2}}$$
 - $\frac{d_{2}V_{\theta 2} - d_{2A}V_{\theta 2A}}{(d_{2} + d_{2A}) V_{2}\sigma}$

Deviation angle:

Rotor:
$$\delta^{\circ} = \beta'_{2} - \kappa_{te}$$
 Stator: $\delta^{\circ} = \beta_{2A} - \kappa_{te}$

Loss coefficient:

Rotor:
$$\overline{\omega}' = \frac{(\overline{P}'_2)_{id} - P'_2}{\overline{P}'_1 - p_1}$$

where:

$$(P'_2)_{id} = P'_1 \qquad \left\{1 + \frac{\gamma - 1}{2} \cdot \left(\frac{U_2^2}{a_{0_1}^2}\right) \cdot \left[1 - \left(\frac{d_1}{d_2}\right)^2\right] \quad \right\}^{\frac{\gamma}{\gamma - 1}}$$

P' is found from
$$p/P' = \left[1 + \frac{\gamma - 1}{2} - M'^2\right]^{\frac{\gamma}{1 - \gamma}}$$

and M' is calculated using trigonometric functions and the measurements of U, β , P, and p.

Stator:
$$\overline{\omega} = \frac{P_2 - \overline{P}_{2A}}{P_2 - p_2}$$
 $\overline{\omega}_{fs} = \frac{P_{2A_{fs}} - \overline{P}_{2A}}{P_{2A_{fs}} - p_2}$

where:

 $P_{2A_{fs}}$ = stator exit average freestream total pressure from wake rakes

 P_2 = stator inlet total pressure from 20-deg wedge probes

Definitions of Blade Element Performance Variables (Concluded)

Rotor tip static pressure ratio:

$$PR = \frac{p_L}{p \text{ at } -7.0\% \text{ axial chord}}$$

Stator static pressure coefficient:

$$Cp = \frac{p_{surface} - p_{2fs}}{(\rho V^2/2)_{2fs}}$$

REFERENCES

- 1. Brent, J. A., J. G. Cheatham, and A. W. Nilsen, 'Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part I Analysis and Design of Stages A, B, and C," NASA CR-120803, FR-4667, June 1972.
- 2. Brent, J. A., and D. R. Clemmons, "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading For Compressors, Part III Data and Performance for Stage C," NASA CR-120938, FR-5028, August 1972.
- 3. Brent, J. A., "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator-Blading for Compressors, Part II Data and Performance for Stage A," NASA CR-120804, FR-4719, July 1972.
- 4. Brent, J. A., J. G. Cheatham, and D. R. Clemmons, "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part V Analysis and Design of Stages D and E," NASA CR-121008, FR-5212, December 1972.
- 5. Clemmons, D. R., "Single-Stage Experimental Evaluation of Tandem-Airfoil Rotor and Stator Blading for Compressors, Part VI Data and Performance for Stage D," NASA CR-134511, FR-4852, November 1973.
- 6. Sanger, N. L., "Analytical Study of the Effects of Geometric Changes on the Flow Characteristics of Tandem-Bladed Compressor Stators," NACA TND-6264, March 1971.
- 7. "Aerodynamic Design of Axial Flow Compressor" (Revised), NASA SP-36, 1965.
- 8. Linder, C. G., and B. A. Jones, "Single-Stage Experimental Evaluation of Slotted Rotor and Stator Blading, Part V Data and Performance for Slotted Rotor 3 Slotted Stator 2," NASA CR-54548, FR-2285, August 1967.
- 9. Linder, C. G., and B. A. Jones, "Single-Stage Experimental Evaluation of Slotted Rotor and Stator Blading, Part VIII Data and Performance for Slotted Stator 3," NASA CR-54551, FR-2288, October 1967.
- 10. Miller, M. L., and G. Seren, "Single-Stage Experimental Evaluation of Boundary Layer Blowing Techniques for High Lift Stator Blades, Part III Data and Performance of Single-Slotted 0.65 Hub Diffusion Factor Stator," NASA CR-54566, Allison EDR-5759, June 1968.
- 11. Carmody, R. H., and G. Seren, "Single-Stage Experimental Evaluation of Boundary Layer Blowing Techniques for High Lift Stator Blades, Part IV Data and Performance of Double-Slotted 0.75 Hub Diffusion Factor Stator," NASA CR-54567, Allison EDR-5861, August 1968.

- 12. Horn, R. A., Jr., G. Seren, and R. H. Carmody, "Single-Stage Experimental Evaluation of Boundary Layer Bleed Techniques for High Lift Stator Blades, Part IV Data and Performance of Triple-Slotted 0.75 Hub Diffusion Factor Stator," NASA CR-54572, Allison EDR-5944, August 1969.
- 13. Brent, J. A., and B. A. Jones, "Single-Stage Experimental Evaluation of Compressor Blading with Slots and Vortex Generators, Part II Data and Performance for Stage 5 Without Slots or Vortex Generators," NASA CR-72634, FR-3481, March 1970.
- 14. Brent, J. A., "Single-Stage Experimental Evaluation of Compressor Blading with Slots and Vortex Generators, Part IV Supplemental Data for Stage 4," NASA CR-72778, FR-4135, December 1970.