$$2^{5} \equiv -9 \pmod{41}$$
 $(2^{5})^{4} \equiv (-9)^{4} \pmod{41}$
 $\equiv (-1)(-1) \pmod{41}$
 $\equiv 1 \pmod{41}$
 $2^{0} \equiv 1 \pmod{41}$

Exc. Find the Remainder of

$$= 11 + 2! + 3! + 4! + \cdots + 100!$$

$$= 1! + 2! + 3! \pmod{92}$$

$$= 9 \pmod{12}$$

Theorem: If
$$ac \equiv bc \pmod{n}$$

then $a \equiv c \pmod{\frac{n}{d}}$, $d = (c_i n)$
Proof:

Corollary 2: 4 ac = bc (mod n) + $n = p \neq c$, p is a prime then a = b (mod n)

Linear Congruences: An Equation of the form $ax \equiv b \pmod{n}$ is called a linear Congruence equation.

An integer to such that $ax_0 = b \pmod{n}$ is a solution of $ax = b \pmod{n}$

 $\rightarrow ax_0 = b(modn) \Leftrightarrow max_0 - b \Leftrightarrow ax_0 - b = ny_0$ for some $y_0 \in \mathbb{Z}$.

Tinear Congruence equation $ax = b \pmod{n}$ is equivalent to linear Diophantine Equation ax-ny=b.

Theorem: The Linear Congruence $ax \equiv b \pmod{n}$ has a solution iff db where d = gcd(a,n). If db, then it has d mutually in congruent solutions modulo n.

Proof: $ax \equiv b \pmod{n}$ is equivalent to ax - ny = b

ax-ny=b is solvable iff d|b $d=\gcd(a,n)$

If x_0, y_0 is any particular solution, then any other solution has the form $x = x_0 + \frac{n}{d}t$ $y = y_0 + at$; $t \in \mathbb{Z}$

 $y = y_0 + a_t$, $t \in \mathbb{Z}$ Dr. Vandana

Consider the solutions for
$$t=0,1,2,...,d-1$$

 x_0 , $x_0+\frac{n}{d}$, $x_0+\frac{2n}{d}$, ..., $x_0+\frac{(d-1)n}{d}$

Above integers are incongruent modulo nas shown below

$$3C_0 + \frac{m}{d}t_1 = 3C_0 + \frac{m}{d}t_2 \pmod{m}$$

$$0 \le t_1 \le d-1$$

$$\Rightarrow \frac{\eta}{d} t_1 = \frac{\eta}{d} t_2 \pmod{\eta}$$

$$gcd \left(n, \frac{\eta}{d}\right) = \frac{\eta}{d}$$

$$=$$
 $t_1 = t_2 \pmod{d}$

a contoradiction as $0 < t_1 - t_2 < d$

Dr. Vandana

To show any other solution

Xo + m t is congruent modulo n

to one of the d-integers.

By division algoouthm

$$x_0 + \frac{n}{d}t = x_0 + \frac{n}{d}(2d + n)$$

$$=$$
 $x_0 + \frac{n}{d}$ 8 $(mod n)$

360 + nt is conquent modulon

to one of d selected solutions.

Costollary: If (a,n) = 1, then $ax = b \pmod{n}$ has a unique sofution.

$$\Rightarrow$$
 $ax \equiv 1 \pmod{n}$ has unique solution \Rightarrow if $(a_1n) = 1$ and $x = \bar{a}^1 \pmod{n}$.

Dr. Vandana

Exc:
$$18x = 30 \pmod{42}$$

gcd (18, 42) = 6 and 6/30

The Linear Congruence equation has exactly

6 in congruent mod 42 solutions.

By Inspection, $x_0 = 4$ is one solution

Other six in congruent solutions are

 $x = 4 + \frac{42}{6} \pm 1 \pm 27, \ t = 0,1,2,3,4,5$

= 4 + 7 t

= 4, 11, 18, 25, 32, 39 (mod 42)

Exc: $9x = 21 \pmod{30}$ — ①

gcd (9,30) = 3 + 3/21

thoree in congruent solutions

Divide (1) by (3)

3x =7 (mod 10)

 $\chi = 3 \times 7 \pmod{10}$

= 7.7 (mod 10) (3 = 7 (mod 10))

= 9 (mod lo)

 $x = x_0 + 10t = 9 + 10t, t = 0,1/2$

= 9,19,29

Dr. Vandana

31)

Euclidean Algorithm to solve

$$9x = 21 \pmod{30}$$
 $9x - 30y = 21$
 $9cd (9,30) = 3$

White $3 = 9x + 30y$
 $3 = 9(-3) + 30 \cdot 1$
 $21 = 9(-21) + 30(7)$
 $20 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$
 $30 = -21$

Dr. Vandana