

Lista 2: Cadeias de Markov Discretas

Professor: Eraldo Silveira e Silva Aluna: Maria Fernanda Tutui

- 1. Estudar e implementar no *octave/matlab* o simulador disponibilizado pelo professor.
- 2. Usar o simulador para computar os resultados em regime estacionário. Use 100000 steps. Comparar com os resultados do pacote queueing. Qual estado possui maior e menor ocupação?

Solução: Primeiramente, utilizando o *software* Matlab e a partir do código disponibilizado foram criados 2 arquivos: PMFdata.m e SimMarkov.m.

O primeiro arquivo, PMFdata.m contém uma função que gera os resultados para N tentativas de uma experimento para uma variável aleatória discreta. O mesmo não sofreu alterações.

Em seguida, o arquivo SimMarkov.m além de conter o simulador recebe os dados da matriz estocástica que representa uma DTMC chamada P. O arquivo é também o principal do programa.

```
P = \Gamma
               0.8 0
2
       0.2 0
                       0
                                          0;
           0.2 0.3 0.3 0.2 0
3
       0
                              0
                                  0
                                          0;
4
       0
               0.1 0
                       0
                          0.9 0
                                  0
                                      0
                                          0;
           0
                              1.0 0
5
       0
           0
               0
                  0
                       0
                           0
                                      0
                                          0;
       0
               0
                   0
                      0
                           0.3 0.7 0
                                          0;
6
           0
                 0
             0
       0
           0
                      0
                           0
                              0
                                  0.2 0
                                          0.8;
       0
           0 0 0 0
                              0
                                  0
                                      0.8 0.2;
                           0
       1.0 0 0 0 0
                              0
                                  0
                                      0
                                          0;
           1.0 0 0 0
                                  0
       0
                           0
                                      0
                                          0;
10
       0.2 0.6 0 0
                              0
                                  0
                                          0.2;
11
     ];
```

De acordo com a matriz, os demais dados alterados foram, respectivamente: p0, contendo o vetor de probabilidade inicial e xi, vetor com os estados.

E apresentado também, ainda no SimMarkov.m o código responsável pela verificação dos estados e respectivas ocupações.

Sendo assim, os resultados obtidos através do código foram:

```
O estado 8 possui a menor ocupação, que corresponde a 2.67%.
O estado 2 possui a maior ocupação, que corresponde a 20.692%.
```

Para melhor visualização um histograma foi gerado e pode ser visto na Figura a seguir.

IFSC – CAMPUS SÃO JOSÉ PÁG. 1 de 4

Dando continuidade ao exercício, em seguida, utilizando o *software* Octave juntamente com o pacote queueing e o mesma matriz P a simulação foi feita novamente. O resultado pode ser visto abaixo.

```
dtmc(P)
ans =

0.072210  0.208801  0.133788  0.062640  0.041760  0.132937  0.091873
 0.026587  0.073498  0.155905
```

A partir da avaliação dos dados apresentados, o estado 8 possui a menor ocupação, que corresponde a 2.658% e o estado 2 possui a maior ocupação, que corresponde a 20.88%.

Sendo assim, ambas as simulações obtiveram dados muito semelhantes.

3. Estudar o conceito de Tempo Médio de recorrência. Computar por simulação o tempo médio de recorrência para ir do estado 0 para o estado 5. Comparar o resultado com a função "dtmcfpt" do pacote "queueing".

IFSC – CAMPUS SÃO JOSÉ PÁG. 2 de 4

Solução:

A fim de computar o resultado do tempo médio por recorrência solicitado foi incrementada ao código, uma rotina de verificação e soma de acordo com o estado.

```
for i=1:length(X)
      states(X(i)+1) = states(X(i)+1)+1;
19
20
      if X(i) == 0 && flag == 0
21
          flag = 1;
22
          soma = 0;
23
      elseif X(i) == 5 && flag == 1
24
25
          flag = 0;
          soma = soma + 1;
26
          aux = [aux soma];
27
      elseif flag == 1
          soma = soma + 1;
29
      end
30
  end
```

Como resultado foi verificado que:

```
Tempo médio de ocorrência para ir do estado 0 para o estado 5: 2.3589 épocas.
```

Afim de tornar o resultado da simulação feita com o pacote queueing mais legível o mesmo será apresentado usando uma tabela. A imagem do resultado pode ser vista a seguir o tempo médio de recorrência para ir do estado 0 para o estado 5 encontra-se destacado.

	0	1	2	3	4	5	6	7	8	9
0	13.8484	7.6019	1.2500	20.1359	27.2748	2.3611	16.0564	36.6118	20.2076	4.4514
1	21.2490	4.7892	7.4899	12.5340	19.6729	7.2965	8.4545	41.5473	12.6058	7.5398
2	16.0605	6.3519	7.4745	18.8859	26.0248	1.1111	14.8064	35.3618	18.9576	3.2014
3	23.2365	3.4301	10.2279	15.9641	23.1030	10.0998	1.0000	44.3505	5.1513	8.8318
4	21.0504	4.2733	9.6177	16.8073	23.9462	7.3698	5.1086	41.6206	9.2598	7.1094
5	14.9494	5.2407	7.1939	17.7748	24.9137	7.5224	13.6953	34.2507	17.8465	2.0903
6	22.2365	2.4301	9.2279	14.9641	22.1030	9.0998	10.8846	43.3505	4.1513	7.8318
7	1.0000	8.6019	2.2500	21.1359	28.2748	3.3611	17.0564	37.6118	21.2076	5.4514
8	22.2490	1.0000	8.4899	13.5340	20.6729	8.2965	9.4545	42.5473	13.6058	8.4514
9	17.1867	3.1505	7.1799	15.6845	22.8234	7.3127	11.6050	41.5634	15.7563	6.4142

Com os resultados de 2.3589 épocas para a simulação no Matlab e 2.3611 épocas para o resultado utilizando o pacote queueing no Octave é possível notar que os resultados foram muito próximos.

IFSC – CAMPUS SÃO JOSÉ PÁG. 3 de 4

4. Suponha que a DTMC representa uma entidade de protocolo que somente transmite no estado 2. Suponha que um pacote usa exatamente uma época T para ser transmitido e que pacotes possuem tamanho fixo de 1000 bytes. Assumindo que a energia gasta para transmitir um pacote de tempo T = 10ms é de 0.005J, qual é a potência média gasta para a transmissão em dBm?

Solução:

Levando em consideração que as probabilidades de cada um dos estados pode ser vista na solução do segundo exercício é possível verificar que probabilidade do estado 2 é de 13,37% logo,

$$(0,05/0,01)*0,13377=0,6688$$

para transformar esse valor em dBm,

$$10\log(0,6688/0,001) = 28,25dBm$$

desse modo, o valor da potência média encontrada é de 28,25dBm.

5. Qual seria a vazão em bps?

Solução: A vazão em bps é feita a partir da quantidades de bits dividida pelo tempo e multiplicada pela probabilidade. Logo,

$$8 * 1000 = 8000 bits$$

$$8000/10m = 800kbps$$

$$0,1377 * 800k = 110,16kbps$$

sendo assim a vazão é de 110,16kbps.

IFSC – CAMPUS SÃO JOSÉ PÁG. 4 de 4