Introdução

Uma Abordagem de Monitoramento dos Sinais Motores da Doença de Parkinson Baseada em Jogos Eletrônicos Defesa de Tese

Aluno: Leonardo Melo de Medeiros

Orientador: Leandro Dias da Silva Orientador: Hyggo Oliveira de Almeida Universidade Federal de Campina Grande - UFCG

9 de Maio de 2016

Finalização

Roteiro

- Introdução
- 2 Estudo de Caso
- 3 Desenv. de Jogos
- Experimentos
- **5** GQM
- 6 Finalização

 Introdução
 Estudo de Caso
 Desenv. de Jogos
 Experimentos
 GQM
 Finalização

 ●00
 000000
 0000000000
 0000000000
 000000000
 0000000

Estratégias de Monitoramento da Saúde

As tecnologias de monitoramento para serem aceitas precisam preservar a privacidade do usuário e integrar-se à sua rotina diária [Aarhus & Ballegaard, 2010].

Motivação para uso de jogos para monitoramento dos dados motores

 Percentual expressivo de adultos e idosos que são usuários de jogos, e os utiliza em sua rotina diária (29% acima dos 50 anos);

Motivação para uso de jogos para monitoramento dos dados motores

Introdução

000

- Percentual expressivo de adultos e idosos que são usuários de jogos, e os utiliza em sua rotina diária (29% acima dos 50 anos);
- O jogo é uma experiência autotélica, logo o usuário joga por puro prazer, sem esperar qualquer benefício por seu uso [Sweetser & Wyeth, 2005];

Motivação para uso de jogos para monitoramento dos dados motores

000

- Percentual expressivo de adultos e idosos que são usuários de iogos, e os utiliza em sua rotina diária (29% acima dos 50 anos);
- O jogo é uma experiência autotélica, logo o usuário joga por puro prazer, sem esperar qualquer benefício por seu uso [Sweetser & Wyeth, 2005];
- As tecnologias de sensores de movimento estão presentes no contexto dos jogos eletrônicos;

Motivação para uso de jogos para monitoramento dos dados motores

000

- Percentual expressivo de adultos e idosos que são usuários de jogos, e os utiliza em sua rotina diária (29% acima dos 50 anos);
- O jogo é uma experiência autotélica, logo o usuário joga por puro prazer, sem esperar qualquer benefício por seu uso [Sweetser & Wyeth, 2005];
- As tecnologias de sensores de movimento estão presentes no contexto dos jogos eletrônicos;
- Possibilita a reprodução de movimentos específicos em um ambiente controlado, o qual permite a aquisição de dados motores.

Objetivo Principal

Neste trabalho, tem-se como objetivo a concepção de uma abordagem computacional para o monitoramento de dados motores. Pretende-se usar jogos eletrônicos como forma de motivar e abstrair o monitoramento de dados de saúde de uma maneira não invasiva e longe do contexto de tratamento de saúde.

Doença de Parkinson

A doença de Parkinson (DP) é uma afecção do sistema nervoso central, a qual é expressa de forma crônica e progressiva.

 Causada pela morte dos neurônios produtores de dopamina da substância negra [Picon et al., 2010].

Doença de Parkinson

A doença de Parkinson (DP) é uma afecção do sistema nervoso central, a qual é expressa de forma crônica e progressiva.

- Causada pela morte dos neurônios produtores de dopamina da substância negra [Picon et al., 2010].
- Caracterizada pelos sinais cardinais de rigidez, bradicinesia, tremor e instabilidade postural [Teive, 2003].

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala UPDRS [Fahn & Elton, 1987] avalia tanto o nível de estrutura e função corporal quanto o nível das atividades. A escala contém itens referentes a:

Mental, comportamento e humor;

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala UPDRS [Fahn & Elton, 1987] avalia tanto o nível de estrutura e função corporal quanto o nível das atividades. A escala contém itens referentes a:

- Mental, comportamento e humor;
- atividades da vida diária;

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala UPDRS [Fahn & Elton, 1987] avalia tanto o nível de estrutura e função corporal quanto o nível das atividades. A escala contém itens referentes a:

- Mental, comportamento e humor;
- atividades da vida diária;
- exame motor;

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala UPDRS [Fahn & Elton, 1987] avalia tanto o nível de estrutura e função corporal quanto o nível das atividades. A escala contém itens referentes a:

- Mental, comportamento e humor;
- atividades da vida diária;
- exame motor;
- complicações no tratamento.

 Introdução
 Estudo de Caso
 Desenv. de Jogos
 Experimentos
 GQM
 Finalização

 000
 00●000
 00000000000
 0000000000
 000000000
 0000000

Escala (UPDRS)

Escala (UPDRS)

Impacto nas Atividades Diárias

PD WORKBOOK — THE WE MOVE CLINICIANS' GUIDE TO PARKINSON'S DISEASE | UNIFIED PD DATA FORM | @WE MOVE 2006

Entrevista Semi-Estruturada com Profissionais de Saúde

Objetivo da Pesquisa

Participantes

LEGENDA	PROFISSÃO	EXPERIÊNCIA (ANOS)
FIS_01	Fisioterapeuta	10
FIS_02	Fisioterapeuta	10
NEU_01	Neurologista	15
NEU_02	Neurologista	30

 Com base na rastreabilidade dos fragmentos da entrevista, pode-se concluir que existiram muitas ocorrências sobre:

- Com base na rastreabilidade dos fragmentos da entrevista, pode-se concluir que existiram muitas ocorrências sobre:
 - tremor;

- Com base na rastreabilidade dos fragmentos da entrevista, pode-se concluir que existiram muitas ocorrências sobre:
 - tremor;
 - bradicinesia;

- Com base na rastreabilidade dos fragmentos da entrevista, pode-se concluir que existiram muitas ocorrências sobre:
 - tremor;
 - bradicinesia;
- Para o acompanhamento e monitoramento da doença, os profissionais de saúde citaram a importância de calcular:

- Com base na rastreabilidade dos fragmentos da entrevista, pode-se concluir que existiram muitas ocorrências sobre:
 - tremor;
 - bradicinesia;
- Para o acompanhamento e monitoramento da doença, os profissionais de saúde citaram a importância de calcular:
 - amplitude dos movimentos de abdução e adução dos braços;

- Com base na rastreabilidade dos fragmentos da entrevista, pode-se concluir que existiram muitas ocorrências sobre:
 - tremor;
 - bradicinesia;
- Para o acompanhamento e monitoramento da doença, os profissionais de saúde citaram a importância de calcular:
 - amplitude dos movimentos de abdução e adução dos braços;
 - 2 a velocidade angular desse movimento.

trodução Estudo de Caso **Desenv. de Jogos** Experimentos GQM Finalização oo ooooo oooo ooo ooo ooo

Sensor de Captura de Movimentos

Movimento Angular

Mecanismo de Identificação de Sintomas Motores

trodução Estudo de Caso **Desenv. de Jogos** Experimentos GQM Finalização oo oooooo ooooooooo ooooooo ooo

Técnicas de Picos e Vales do Sinal

trodução Estudo de Caso **Desenv. de Jogos** Experimentos GQM Finalização oo oooooo oooooooo ooooooo ooo

Extração de Início e Fim dos Ciclos de Movimento

ded

Cálculo da Velocidade Angular do Movimento de Abdução e Adução

Filtragem de Dados: Remoção de Ciclos Incompletos

Classificador de Dados

O classificador de dados, é utilizado na abordagem para identificar de possíveis usuários com problemas motores. Desta forma, o classificador irá auxiliar o profissional de saúde no acompanhamento de seus pacientes.

Máquina de Vetor de Suporte (SVM)

- Uma SVM utiliza vetores de separação através de uma técnica de hiperplano de separação ótima.
- Formalmente, classificadores que separam os dados por meio de um hiperplano utilizam um discriminante linear 1.

$$f(x) = w^T x + b \tag{1}$$

Visualização do Vetor Médio do Movimento de Abdução e Adução do Braço

trodução Estudo de Caso **Desenv. de Jogos** Experimentos GQM Finalização oo oooooo oooooooooo ooooooo ooo

Ciclos de Movimento de Abdução e Adução do Braço

Visualização das Características do Movimento

Velocidades °/S				Amplitudes	
Abdução	A bdução	A dução	Adução	Esquerda	Direita
Esquerda	Direita	Esquerda	Direita		
78,95	77,82	83,06	106,42	130,00	124,72
79,94	34,68	104,69	39,98	131,50	132,44
81,05	47,05	107.38	56,52	132,22	123,66
74,73	47,09	109,05	47,75	132,33	122,20
72,01	56,02	102,36	76,00	131,40	119.75

Tabela 3.1: Extração das Características de Indivíduo Com Diagnóstico da DP

Velocidades °/S				Amplitudes	
Abdução Esquerda	A bdução Direita	A dução Esquerda	Adução Direita	Esquerda	Amplitude
129,35	61,59	78,74	176,30	159,39	143,50
115,67	118,15	71,72	79.46	156,37	153,97
120.96	135,27	66,70	78,17	154,30	149,91
125.96	137,43	64,75	81,57	153,18	154,58
139.99	117,60	69,96	84,08	151,68	148,90
120,51	111,92	75,85	75,18	152,58	148,35

Tabela 3.2: Extração das Características de Indivíduo Sem Diagnóstico da DP

Estudo Analítico de Caso-Controle: Identificação da Bradicinesia

Objetivo da Pesquisa

Introdução

Validar a Hipótese **H2**: É possível capturar dados motores por meio de sensores de movimento utilizados em jogos eletrônicos. Esses dados auxiliam no companhamento de doenças com comprometimento motor.

Estudo Analítico de Caso-Controle: Identificação da Bradicinesia

Objetivo da Pesquisa

Validar a Hipótese **H2**: É possível capturar dados motores por meio de sensores de movimento utilizados em jogos eletrônicos. Esses dados auxiliam no companhamento de doenças com comprometimento motor.

Coleta de Dados

- Protocolo de pesquisa submetido aprovado junto ao CEP da UFCG (CAAE: 14408213.9.1001.5182)
- Coleta realizada nas instituições:
 - Hospital Universitário da UFAL;
 - Fundação Pestalozzi;
 - Olínica Fisioterapia do CESMAC;
 - Instituto Federal de Alagoas;
 - Universidade Federal de Campina Grande.

Amostra

- A técnica de amostragem utilizada para seleção, foi por conveniência, composta por:
 - 15 indivíduos portadores de DP;
 - 2 12 sem o diagnostico, como grupo controle.
- No grupo de portadores de DP, foram inclusos indivíduos até o Estágio 3 (Doença bilateral leve a moderada com alguma instabilidade postural e capacidade para viver independente), segundo a UPDRS.

Coleta dos Dados Utilizando o Jogo: Catch the Spheres

 Voluntário se posiciona a 2m. do sensor de movimento;

- Voluntário se posiciona a 2m. do sensor de movimento;
- Voluntário inicia o jogo;

- Voluntário se posiciona a 2m. do sensor de movimento;
- Voluntário inicia o jogo;
- Voluntário abduz e aduz o braço esquerdo, e depois o direito 10 vezes o mais rápido possível;

- Voluntário se posiciona a 2m. do sensor de movimento;
- Voluntário inicia o jogo;
- Voluntário abduz e aduz o braço esquerdo, e depois o direito 10 vezes o mais rápido possível;
- Voluntário fecha o jogo.

 Ciclo de movimento, normalizado e escalonado em 20 amostras;

- Ciclo de movimento, normalizado e escalonado em 20 amostras;
- amplitude do movimento de abdução do braço esquerdo e direito;

- Ciclo de movimento, normalizado e escalonado em 20 amostras;
- amplitude do movimento de abdução do braço esquerdo e direito;
- velocidade angular de abdução dos braços esquerdo e direito;

- Ciclo de movimento, normalizado e escalonado em 20 amostras:
- amplitude do movimento de abdução do braço esquerdo e direito;
- velocidade angular de abdução dos braços esquerdo e direito;
- velocidade angular de adução do braço esquerdo e direito.

Classificação dos Dados

• Com os dados coletados, realizou-se uma classificação usando SVM com núcleo linear e *bias* de 0,10.

Classificação dos Dados

- Com os dados coletados, realizou-se uma classificação usando SVM com núcleo linear e *bias* de 0.10.
- O resultado com o núcleo linear foi o mais expressivo ante o Polinomial, Radial e MLP.

Matriz de Confusão

Resultado da Matriz de Confusão do Estudo Analítico Caso-Controle Usando SVM Linear

	Classe Preditiva		
	Parkinson	Não-Parkinson	
Parkinson	12	3	
Não Parkinson	2	10	

 Introdução
 Estudo de Caso
 Desenv. de Jogos
 Experimentos
 GQM
 Finalização

 000
 000000
 0000000000
 0000000000
 0000000
 0000000

Métricas da Classificação

Métricas	
TpRate	80,00%
FpRate	16,67%
Precision	85,71%
Accuracy	81,48%
F-Measure	82,76%

TpRate: taxa de acerto obtido;

FpRate: taxa de falso alarme obtido;

Precision : taxa de acerto de uma instância em determinada

classe;

Accuracy: taxa de acerto de todo o classificador;

F-Measure : análise de classificador binário que mede a acurácia.

Limitações do Método

A aprendizagem estatística deste trabalho é apenas um indicador, o qual necessita da interpretação do profissional de saúde.

rodução Estudo de Caso Desenv. de Jogos **Experimentos G**QM Finalização oo oooooo oooooooooo ooooooooo ooo

Outros Experimentos

Uso de Jogo em Smartphone Para Detecção de Tremor

Insucesso na Quantificação

• Tremor da DP é de repouso.

 Introdução
 Estudo de Caso
 Desenv. de Jogos
 Experimentos
 GQM
 Finalização

 000
 000000
 00000000000
 0000000000
 0000000
 0000000

Outros Experimentos

Uso de Jogo em *Smartphone* Para Detecção de Tremor

Insucesso na Quantificação

- Tremor da DP é de repouso.
- Indivíduos quando utilizavam o jogo reduziam drasticamente o sintoma.

 Introdução
 Estudo de Caso
 Desenv. de Jogos
 Experimentos
 GQM
 Finalização

 000
 000000
 00000000000
 0000000000
 0000000
 0000000

Outros Experimentos

Uso de Jogo em *Smartphone* Para Detecção de Tremor

Insucesso na Quantificação

- Tremor da DP é de repouso.
- Indivíduos quando utilizavam o jogo reduziam drasticamente o sintoma.
- Como os dados não seriam satisfatórios, logo a coleta tornou-se inviável.

 Introdução
 Estudo de Caso
 Desenv. de Jogos
 Experimentos
 GQM
 Finalização

 000
 000000
 0000000000
 0000000000
 ●000000
 000

Análise GQM com Usuários

Objetivo da Pesquisa

Validar a Hipótese **H3**: É possível desenvolver um jogo que tenha mecanismos de captura de dados motores embutidos, e que permita monitorar e quantificar esses dados de maneira não-invasiva.

Participantes

Foram entrevistados um total de 24 indivíduos das seguintes instituições:

- Universidade Federal de Campina Grande;
- Instituto Federal de Alagoas;
- Clínica de Fisioterapia do CESMAC;
- Fundação Pestalozzi.

Questões da Pesquisa

- Se o usuário integraria a abordagem GAHME à sua rotina diária.
- Se a segurança com a integridade física está de acordo com a faixa etária do usuário.

Finalização

rodução Estudo de Caso Desenv. de Jogos Experimentos GQM Finalização oo ooooo ooo oooooo ooo ooo ooo ooo

Integrar a Abordagem à Rotina Diária

 Introdução
 Estudo de Caso
 Desenv. de Jogos
 Experimentos
 GQM
 Finalização

 000
 000000
 00000000000
 0000000000
 000●000
 000

Integrar a Abordagem à Rotina Diária

Métrica 1.3: Integrar o Jogo À Rotina Diária

Integrar a Abordagem à Rotina Diária

Métrica	Sim	Não
1.2: O jogo traz motivação ao usuário?		8,33%
1.4: O usuário considera o jogo simples, sem muitas regras		8,33%
e de fácil entendimento? Ele pode ser aplicado em diferen-		
tes idades?		
1.5: O usuário tem o costume de jogar esses jogos casuais em casa?		58,33%
1.6: O usuário agregaria um jogo desse estilo em sua rotina	75%	25%
diária?		1

rodução Estudo de Caso Desenv. de Jogos Experimentos GQM Finalização oo ooooo ooo oooooo ooo ooo ooo ooo

Segurança à Integridade Física

Segurança à Integridade Física

Métrica	Sim	Não
2.1: Uma criança estaria segura jogando esse jogo, ao efe-	100%	0%
tuar os movimentos dos braços?		
2.2: Um adulto estaria seguro ao jogar esse jogo, ao efetuar	100%	0%
os movimentos dos braços?		
2.3: Um idoso estaria seguro ao jogar esse jogo, ao efetuar	75%	25%
os movimentos dos braços?		

Publicações

Foram publicados três artigos, em conferências internacionais, relacionados à tese:

- Abstract: Monitoring Parkinson related Gait Disorders with Eigengaits, no, XX World Congress on Parkinson's Disease and Related Disorders (2013) [?];
- Full Paper: A Game-Based Approach to Monitor Parkinson's Disease: The bradykinesia symptom classification, no, International Symposium on Computer-Based Medical Systems (CBMS 2016) [?];
- Full Paper: A Gait Analysis Approach to Track Parkinson's Disease Evolution Using Principal Component Analysis, no, International Symposium on Computer-Based Medical Systems (CBMS 2016) [?].

 Realizar estudo de Regressão Linear nos Dados do estudo Caso-Controle (Ms-Kinnect);

Introdução

- Realizar estudo de Regressão Linear nos Dados do estudo Caso-Controle (Ms-Kinnect);
- Realizar estudos de curva de aprendizagem nos Dados do estudo Caso-Controle;

Finalização ○●○

Introdução

- Realizar estudo de Regressão Linear nos Dados do estudo Caso-Controle (Ms-Kinnect);
- Realizar estudos de curva de aprendizagem nos Dados do estudo Caso-Controle;
- Refinar o processo de desenvolvimento para as fases de Construção e Pós-Validação;

Finalização

Introdução

- Realizar estudo de Regressão Linear nos Dados do estudo Caso-Controle (Ms-Kinnect);
- Realizar estudos de curva de aprendizagem nos Dados do estudo Caso-Controle;
- Refinar o processo de desenvolvimento para as fases de Construção e Pós-Validação;
- Analisar o motivo da ocorrência de 2 indivíduos de controle que foram classificados como Parkinsonianos.

Finalização

A partir dos resultados apresentados nesta tese e extensão da mesma, alguns trabalhos futuros são propostos para contribuição científica:

- Coletar uma amostra maior de pacientes com dp, e agrupá-los de acordo com o estágio da doença [?];
- Usar técnicas de multi-classificação de dados [?] para identificar o progresso do dp de acordo com as escalas de avaliação (ex.: UPDRS [?];
- Avaliar o sinal da bradicinesia em diferentes momentos do dia, para verificar a eficácia do tratamento medicamentoso [Picon et al., 2010].

DÚVIDAS?

Aarhus, Rikke, & Ballegaard, Stinne Aaløkke. 2010.

Negotiating boundaries: managing disease at home.

Pages 1223–1232 of: Proceedings of the 28th international conference on human factors in computing systems.

New York, NY, USA: ACM.

Alemdar, Hande, & Ersoy, Cem. 2010.

Wireless sensor networks for healthcare: A survey.

Computer networks, **54**(15), 2688–2710.

Fahn, S., & Elton, R. 1987.

Unified parkinson's disease rating scale.

Pages 153-63 of: et al Fahn, S. (ed), Recent developments in parkinson's disease.

New Jersey: Macmillan Health Care Information.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch., Mark, R. G., Mietus, J. E., Moody,

G. B., Peng, C.-K., & Stanley, H. E. 2004, Novembro.

Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals.

Circulation, 101(23), e215-e220.

Circulation Electronic Pages:

http://circ.ahajournals.org/cgi/content/full/101/23/e215 PMID:1085218; doi: 10.1161/01.CIR.101.23.e215.

McGinnis, P. 2013.

Biomechanics of sport and exercise.

Human Kinetics.

Neumann. D.A. 2012.

Cinesiologia do aparelho musculoesquelético: Fundamentos para reabilitação.

Elsevier Health Sciences.

Picon, Paulo Dornelles, Gadelha, Maria Inez Pordeu, & Beltrame, Alberto, 2010.

Protocolo clínico e diretrizes terapêutica - doença de parkinson.

Ministério da Saúde.

Smith, Lindsay I. 2002 (February 26).

A tutorial on principal components analysis.

Tech. rept. Cornell University, USA.

Sweetser, Penelope, & Wyeth, Peta. 2005.

Gameflow: a model for evaluating player enjoyment in games.

Comput. entertain., 3(3), 3–3.

Teive, Hélio A. G. 2003.

Doença de parkinson - meneses.

Guanabara Koogan.

