

Introduction

What is Airbnb?

A platform connecting hosts renting out homes to potential guests as an alternative to hotels.

Wide Variety of Pricing Factors:

• Listings vary in type, size, amenities, location, and more, influencing prices.

Problem Statement:

- Challenge: Help prospective Airbnb hosts set competitive prices for their listings.
- Goal: Use data to identify key factors influencing prices and suggest a pricing strategy.

===

Dataset

Source:

Airbnb Prices Dataset from <u>Kaggle</u>.

Coverage:

- 57128 Data Points
- Listings from 6 major US cities:
 - New York City
 - Los Angeles
 - San Francisco
 - Washington DC
 - o Boston
 - Chicago

Target Variable:

• log_price: The logarithmic transformation of listing prices.

===

Features:

- Categorical: property_type, room_type, bed_type, etc.
- Numerical: bathrooms, bedrooms, number of reviews, etc.
- Geospatial: latitude, longitude.
- Date Time: first_review, last_review.

Data Cleaning

Dropped Features:

- Host Features:
 - host_has_profile_pic, host_identity_verified, host_response_rate, host_since
 - Reason: Minimal impact on pricing based on exploratory analysis.
- NLP Features:
 - thumbnail url, amenities, description, name, neighbourhood
 - Reason: Encoding results in multiple features, leading to the curse of dimensionality.

Handling Categorical Data:

- Room Type: Condensed into Private & Shared
- Grouped less frequent types into "Other" category based on frequency thresholds.

Handling Time Data:

- Calculated review_duration (days between the first and last review)
- Dropped first_review and last_review due to negligible correlation with price.

===

===

Exploratory Data Analysis

Stage 1: Correlation

Occupancy and Room Features:

 Features related to occupant capacity (e.g., number of bedrooms, beds, and bathrooms) show a positive correlation with price across multiple cities.

Variability by City:

 Correlation strength varies by city, indicating that location-specific factors play a role in pricing.

=□¤

Exploratory Data Analysis Stage 2: Investigating Price Patterns with Dimensionality Reduction

Initial histogram of price provided basic distribution insights but was limited in revealing relationships with other features.

To explore deeper patterns in high-dimensional data, we applied PCA (Principal Component Analysis) and t-SNE (t-distributed

Stochastic Neighbor Embedding).

PCA and t-SNE for Visualization:

- PCA: Reduces features to principal components that capture the most variance in data.
- t-SNE: A non-linear technique focused on preserving local structure, allowing us to see clustering patterns.

In order to visualise patterns we use K-Means clustering on price to obtain Price Classes as a Hue.

Exploratory Data Analysis

Stage 3: Analyzing Geospatial Patterns in Pricing

Map Visualization: The map (as shown) displays Airbnb listings in New York City, color-coded by price_class.

• Listings are color-coded from purple (lower price classes) to yellow (higher price classes), making it easy to spot higher-priced

areas.

Insights from NYC Map

- Higher price_class listings are concentrated in certain areas, such as central Manhattan.
- This pattern suggests that **location within the city** plays a significant role in pricing.

Further Analysis

 We should analyze proximity to transport hubs, landmarks, and attractions to quantify these geospatial influences on pricing.

Landmarks

General Insights:

- Average: Weak negative correlation with price
- Distance-Specific: Weak positive correlation with price

This suggest that dense clusters of landmarks or their proximity could reflect the centrality and desirability of a location which might influence price.

Metro Station

General Insights:

- Shortest distance: Very weak positive correlation with price
- Distance-Specific: Weak positive correlation with price

In general, the location of metro stations may play a role in Airbnb prices, but may only be more useful when paired with other data

Machine Learning Solution

Data without Feature Engineering

- Linear Regression
 - \circ R²: 0.520
 - o RMSE: 93.06
- Decision Tree Regressor
 - o R²: 0.213
 - o RMSE: 119.12
- Random Forest Regressor
 - \circ R²: 0.643
 - o RMSE: 80.26
- XGBoost
 - \circ R²: 0.652
 - RMSE: 79.16

Data with Feature Engineering

- Linear Regression
 - o R²: 0.555
 - o RMSE: 89.59
- Decision Tree Regressor
 - o R²: 0.286
 - o RMSE: 113.72
- Random Førest Regressor
 - o R²: 0.654
 - o RMSE: 78.97
- XGBoost
 - R^2 : 0.666
 - RMSE: 77.57

Insights

- Importance of city: high importance of Chicago and DC
- Importance of engineered features:
 relatively high importance of metro within
 5000m and average distance to landmarks

Conclusion

Outcome

- Solving the problem: Moderately high R² score of 0.67
- Other insights: Our hypotheses on landmarks and metro stations were useful.

Learning Points

- Exploratory data analysis: Dimensionality reduction techniques such as PCA and t-SNE to cluster data points
- Feature engineering: Scraping internet data to augment our dataset
- Model optimization: Advanced model XGBoost that uses gradient boosting to make highly accurate predictions