

Example track (last year)

Use sensors to detect changes in the track, then change the inputs accordingly.

Sensors

- There are many kinds of sensors, e.g.
- Light sensor
- Temperature sensor
- Sound sensor
- Motion sensor

Project: Light sensor

LDR

"Light Dependent Resistor"

R low

R high

Example:

R = Ik when light

R = 2k when dark

Y = ?

Your project

- Light sensor in your project:
- How to detect straight line, split?
 - White: low, Green: high

Data Transmission

Transmit this signal:

- Convert to binary first
- E.g. <u>Sample</u> every Ims
- E.g. only 2 levels:
 - V > IV =>"I" (5V)
 - V < IV => "0" (0V)
- Classify each sample into 1/0

Data loss Easier to store & duplicate

Given the sensor signals, determine the Direction & Speed signals for the motor

Sensors		Car	Rota	tion		Left	Moto	or (L)		Right Motor (R)					
L	R	Action	Left	Right	dir	Q3	Q2	Q1	Q0	dir	Q3	Q2	Q1	Q0	
0	0	Turn Left	В	F											
0	1														
1	0														
1	1	Forward	F	F											

2 sensors: Place carefully Fill in the entries in your summary sheet

(You may refer to Tutorial 8 slides)

You decide your own comparator signals

Design your own systems

Lab06 Example

Draw the truth table

(for your reference)

dir: Forward=I Back=0

Sensors		sors	Car Rotation			Left Motor (L)						Right Motor (R)					
L	-	R	Action	Left	Right	dir	Q3	Q2	QI	Q0	dir	Q3	Q2	QI	Q0		
C)	0	Turn left	В	F	0	1	1	1	1	1	1	1	1	1		
C)	I	Turn left	В	F	0	1	1	1	1	1	1	1	1	1		
I		0	Turn right	F	В	1	1	1	1	1	0	1	1	1	1		
I		I	Forward	F	F	1	1	1	1	1	1	1	1	1	1		

Speed: LQ & RQ

```
// initialize output pins.
digitalWrite(pinLDir, HIGH);
digitalWrite(pinRDir, HIGH);
digitalWrite(pinLQ0, ???);
digitalWrite(pinLQ1, ???);
digitalWrite(pinLQ2, ???);
digitalWrite(pinLQ3, ???);
digitalWrite(pinRQ0, ???);
digitalWrite(pinRQ1, ???);
digitalWrite(pinRQ2, ???);
digitalWrite(pinRQ3, ???);
digitalWrite(pinRQ3, ???);
```

Direction: Ldir & Rdir

- ❖ "!" logic NOT
- * "&&" Logical AND

```
// the loop function runs over and over again forever
void loop() {
  leftSensor = digitalRead(pinLeftSensor);
  rightSensor = digitalRead(pinRightSensor);
  if ( leftSensor && rightSensor ) {
                                         HIGH
    digitalWrite(pinLDir, ???);
                                         HIGH
    digitalWrite(pinRDir, ???);
  if ( !leftSensor && rightSensor ) {
                                         LOW
    digitalWrite(pinLDir, ???);
    digitalWrite(pinRDir, ???);
                                         HIGH
    if ( leftSensor && !rightSensor ) {
                                         HIGH
    digitalWrite(pinLDir, ???);
    digitalWrite(pinRDir, ???);
                                         LOW
  if ( !leftSensor && !rightSensor ) {
                                         LOW
    digitalWrite(pinLDir, ???);
    digitalWrite(pinRDir, ???);
                                         HIGH
```