

Quantitative Aptitude:

Number Systems

Remainders

Remainders: Problems Part 3

2

×

Q1. What is the remainder when 62^{62} is divided by 5?

A. 2

B. 1

C. 0

$$\frac{62^{62}}{5}$$

R

 $\frac{2^{62}}{5}$

R

 $\frac{2^{62}}{5$

Q2. What is the remainder when 27^{27} is divided by 5?

A. 2

B. 1

C. 0

$$\frac{27}{5}$$

B. 1

 $\frac{27}{5}$

B. 1

 $\frac{26}{5}$
 $\frac{2^{13} \times 2}{5}$
 $\frac{2^{13} \times 2}{5}$
 $\frac{2^{13} \times 2}{5}$
 $\frac{2^{13} \times 2}{5}$

Rem = 5+(-2)

 $\frac{2^{13} \times 2}{5}$

Q3. What is the remainder when 24^{47} is divided by 7?

A. 2

B. 1

$$\frac{24}{7}$$

B. $\frac{3}{7}$

B. $\frac{3}{47}$

B. $\frac{3}{7}$

C. $\frac{3}{7}$

C

D. 3

Q4. What is the remainder when $(1^1 + 2^2 + 3^3 + ... + 100^{100})$ is divided by 4?

A. 2
B. 1

$$\frac{1^{1}+2^{2}+3^{3}+44}{4}$$
 $\frac{5^{5}+6^{6}+7^{7}+8^{6}}{4}$
 $= 0$

B. 1

 $\frac{1^{5}+2^{6}+(-1)^{7}+0}{4}$
 $= 0$

B. 1

 $\frac{1^{5}+2^{6}+(-1)^{7}+0}{4}$
 $= 0$

Q5. What is the remainder when $(7^{21} + 7^{22} + 7^{23} + 7^{24})$ is divided by 25?

A. 24
B. 1

$$\frac{7^{20}(7+7^2+7^3+7^4)}{25)49(2}$$
 $\frac{25}{(7^2)^{10}(7+7^2+7^2x7+(7^2)^2)}$
 $\frac{(7^2)^{10}(7+7^2+7^2x7+(7^2)^2)}{25}$
 $\frac{25}{(-1)^{10}[7+(-1)+(-1)x7+(-1)^2]}$
 $= 0$

Q6. $P = (1!)^2 + (2!)^2 + (3!)^2 + ... + (100!)^2$. The remainder when 5^{2P} is divided by 13 is:

A. 7

$$\frac{5^{2}P}{13} = \frac{25}{13} \stackrel{R}{=} (-1) \stackrel{(-1)}{=} \frac{1}{13} \stackrel{(-1)}{=} \stackrel{(-1)}{=} \frac{1}{13} \stackrel{(-1)}{$$

Q7. Find the remainder:

Thanks

