Machine Learning to Language Model

Topic 02 - Word Embedding

Jaihua Yen

https://jaihuayen.github.io/homeweb/

Contents

- Deep Neural Network
- Word Embedding
- Transfer Learning
- Wrap Up

Review Bi-Gram Model

A Very Simple Language Model

- Intuition: We only predict the next word based on the previous word.
- Model the predicted probability of a certain word based on a given word.

$$P(c_i | c_{i-1})$$

 c_i is the word in the i position.

Here we give an example of a sentence:

<s> Al could finally be introduced into practice in general tasks <e>

Start Token End Token

A Very Simple Language Model

<s> Al could finally be introduced into practice in general tasks <e>

$$c_{i-1}$$
 c_i

A Very Simple Language Model

<s> Al could finally be introduced into practice in general tasks <e>

 c_{i-1} c_i

Al could

A Very Simple Language Model

<s> Al could finally be introduced into practice in general tasks <e>

$$c_{i-1}$$
 c_i

A Very Simple Language Model

What if the features cannot be extracted only by one layer of neural network?

$$\rho_{\lambda} = \frac{e^{l\lambda}}{\sum_{\lambda=1}^{28} e^{l\lambda}}$$

Deep Neural Network

What Deeper?

Deep Neural Networks (DNN) extract text semantics meanings on a deeper level.

Word Representation

• From all the experiments above, we all use one-hot encodings.

$$v_{dog} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} \qquad v_{cat} = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}$$

Word Representation

However, we cannot extract the meaning between those two words.

$$v_{dog} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad v_{cat} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \qquad \cos(\theta) = \frac{v_{dog}^T v_{cat}}{\|v_{dog}\| \|v_{cat}\|} = 0$$

$$\cos(\theta) = \frac{v_{dog}^T v_{table}}{\|v_{dog}\| \|v_{table}\|} = 0$$

Word Representation

 Word embedding uses a vector representation which could indicate the semantic relationship between words.

https://leemeng.tw/find-word-semantic-by-using-word2vec-in-tensorflow.html

Advantages using word embeddings

- Find the semantic relationship between words.
- Map a high-dimensional one-hot encoding vector to a lower-dimensional word embedding vector

One-hot encoding

•••

A 4-dimensional embedding

https://www.tensorflow.org/text/guide/word_embeddings

How to Train Word Embedding?

Deep Neural Network

Word embedding layer is in the hidden layer of DNN

Let's do this in Colab!

Questions

- What if we have a massive dataset that cannot fit in memory?
- How can we compute gradient with more than one hidden layer?

Further Reading

A Neural Probabilistic Language Model

Journal of Machine Learning Research 3 (2003) 1137–1155

Submitted 4/02; Published 2/03

A Neural Probabilistic Language Model

Yoshua Bengio Réjean Ducharme Pascal Vincent Christian Jauvin BENGIOY@IRO.UMONTREAL.CA
DUCHARME@IRO.UMONTREAL.CA
VINCENTP@IRO.UMONTREAL.CA
JAUVINC@IRO.UMONTREAL.CA

Département d'Informatique et Recherche Opérationnelle Centre de Recherche Mathématiques Université de Montréal, Montréal, Québec, Canada

Editors: Jaz Kandola, Thomas Hofmann, Tomaso Poggio and John Shawe-Taylor

Abstract

A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the **curse of dimensionality**: a word sequence on which the model will be tested is likely to be different from all the word sequences seen during training. Traditional but very successful approaches based on n-grams obtain generalization

Further Reading

Efficient Estimation of Word Representations in Vector Space (Word2Vec)

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com

Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

Abstract

We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations

Transfer Learning

Transfer Learning

Use Pre-trained Model in other tasks

https://www.mdpi.com/1424-8220/23/2/570

Transfer Learning

Use Pre-trained Model in other tasks

Original Task

New Classification Task

Wrap Up

What We Have Gone Through

- Deep Neural Network
- Word Embedding
- Transfer Learning

What's Next

Transformer - Self Attention

Q&A