

DC5290

Compilation Principle 编译原理

第四章 语法分析 (5)

郑馥丹

zhengfd5@mail.sysu.edu.cn

CONTENTS 目录

01 自顶向下分析 Top-Down Parsing 02 LL(1)分析 LL(1) Parsing 03 自底向上分析 Bottom-Up Parsing 04 LR分析 LR Parsing

1. LR分析概述

- 由 Donald Ervin Knuth (高德纳) 提出
 - 《计算机程序设计的艺术》[The Art of Computer Programming]系列
 - 《计算机与排版》 (Computers and Typesetting)
 - 提出"算法"和"数据结构"概念
 - 提出LR分析法
 - 提出双向链表
 - 提出KMP算法(Knuth-Morris-Pratt)
 - 提出Tex排版系统
 - 算法大师Knuth如何看待GPT?
 - 最年轻的图灵奖获得者记录的保持者 (36岁)

1. LR分析概述

- 自底向上分析法的关键问题是在分析过程中如何确定句柄
- LR分析法:根据当前符号栈中的符号串和向前顺序查看输入串的k个符号 (k>=0)就可唯一地确定句柄
- •目前最流行的自底向上语法分析器都是基于LR(k)语法分析,其中
 - L表示从左到右扫描输入串
 - R表示最左规约(即最右推导的逆过程)
 - k表示向前查看输入串符号的个数
 - ✓ 当k=1时,能满足当前绝大多数高级语言编译程序的需要,所以着重介绍 LR(0), SLR(1), LR(1), LALR(1)方法
 - ✓ 省略(k)时, 一般指k=1

- · LR分析的特点
 - 是规范归约(最右推导/规范推导的逆过程)
 - **适用范围广**,适用于大多数上下文无关文法描述的语言(比LL(k)分析方法和 算符优先分析方法对文法的限制要少得多)
 - ✓ LR(k): 只要在一个最右句型中看到某个产生式右部,再向前看k个符号就可以 决定是否使用这个产生式进行归约
 - ✓ LL(k):要向前查看某个产生式右部推导出的串的前k个符号,才能决定是否使用这个产生式进行推导
 - ✓ 算符优先分析: 仅适用于算符优先文法(如表达式)
 - 分析速度快
 - 在对输入进行自左到右扫描时能尽早准确定位错误
 - 缺点: LR分析器构造的工作量大

- LR(0)分析
 - 根据当前符号栈中的符号串和向前顺序查看输入串的0个符号就可唯一地确定 句柄以进行归约,即,仅凭符号栈中的符合串即可确定句柄,做出归约决定, 不需要向前查看输入符号
 - 对文法的限制较大, 对绝大多数高级语言的语法分析器不适用
 - 构造LR(0)分析表的思想和方法是构造其他LR分析表的基础

- •项目[item]
 - LR语法分析器通过维护一些状态,用这些状态来表明我们在语法分析过程中 所处的位置,从而做出shift或reduce决定
 - 状态由项目[item]集表示
 - 在文法G中每个产生式的**右部适当位置添加一个圆点**构成项目
 - 例:产生式A→XYZ 对应有4个项目

$$[0] A \rightarrow \bullet XYZ$$

$$[1] A \rightarrow X \cdot YZ$$

[2]
$$A \rightarrow XY \cdot Z$$

[3]
$$A \rightarrow XYZ \bullet$$

产生式 $A \rightarrow ε$ 只有一个项目 $A \rightarrow •$

• 项目的含义

- 圆点在最左部 (A→ XYZ) 表示希望用产生式的右部归约
- 圆点的左部 (A→X YZ) 表示分析过程中已识别过的部分
- 圆点的右部 ($A \rightarrow X \cdot YZ$) 表示待识别部分
- 圆点达到最右边 (A→XYZ•) 表示句柄已形成,可以进行归约

• 项目分类

- 移进项目[shift item]
 - ✓ 形如A→α•aβ的项目,其中a∈V_T, α,β∈V*
 - ✓ 即圆点后面为终结符的项目
 - ✓分析时把a移进符号栈
- 待约项目[reduce-expected item]
 - ✓ 形如 $A \rightarrow \alpha \cdot B$ β的项目,其中 $B \in V_N$, α,β∈V*
 - ✓ 即圆点后面为非终结符的项目
 - ✓表明:用产生式A的右部归约时,首先要将B的产生式右部归约为B,对A的右部才能继续进行分析,即,期待着继续分析过程中**首先能归约得到**B

- 项目分类
 - 归约项目[reduce item]
 - ✓ 形如 $A \rightarrow \alpha$ •的项目, $\alpha \in V^*$, $\alpha = \epsilon$ 对应的项目为 $A \rightarrow \bullet$
 - ✓ 即圆点在最右端的项目
 - ✓表明该产生式的右部已分析完, 句柄已形成, 可以把α归约为A
 - 接受项目[accept item]
 - ✓ 当归约项目为S'→S•, 其中S'是文法开始符
 - ✓ 即对文法开始符的归约项目
 - ✓表明输入串可归约为文法开始符,分析结束

- LR(0)项目集[canonical LR(0) collection]
 - 用一个LR(0)项目的集合来表示LR(0)自动机的一个状态
 - 为了构造文法的LR(0)项目集,需定义**拓广文法[augmented grammar]**和两个函数: CLOSURE函数和GOTO函数

・拓广文法

- 在原有文法上,新增开始符号S'和产生式S'→S
- 例:文法G[S]: S→aAcBe, A→b, A→Ab, B→d 其拓广文法G'[S']为: S'→S, S→aAcBe, A→b, A→Ab, B→d
- 拓广原因: 文法开始符S可能出现在产生式的右部,在归约过程中,不能判断是否已经归约到文法的最初开始符,还是归约到在产生式右部出现的开始符,而S'只在产生式左部出现,确保不会混淆

CLOSURE函数

- 如果I是文法G的一个项目集,定义和构造I的闭包CLOSURE(I)如下:
 - ① I的项目均在CLOSURE(I)中
 - ② 若A→α•Bβ属于CLOSURE(I), B∈V_N,则每一形如B→•r的项目也属于 CLOSURE(I)
 - ③ 重复②直到CLOSURE(I)不再扩大为止
- 说明: 圆点后为终结符或圆点在产生式的最后, 求闭包时不会增加新的项目
- 例: S'→E, $E \rightarrow aA|bB$, $A \rightarrow cA|d$, $B \rightarrow cB|d$, $Z = \{S' \rightarrow \bullet E\}$ 则 CLOSURE(I)= $\{S' \rightarrow \bullet E\}$ $\{E \rightarrow \bullet aA, E \rightarrow \bullet bB\}$
- CLOSURE(I)作为DFA的一个状态

GOTO函数

- 由DFA的一个状态求其他状态通过状态转换函数GOTO
- 设I为文法G的某一项目集(状态), X∈V_N∪V_T,则:

GOTO(I, X)=CLOSURE(J)

其中J = {任何形如A \rightarrow αX \bullet β的项目 $| A\rightarrow$ α \bullet Xβ \in I}, 称J为 "核"

- 例: S'→E, E→aA|bB, A→cA|d, B→cB|d
 - 若I = {S'→•E, E→•aA, E→•bB}, 则:
 - \checkmark GOTO(I,E)=CLOSURE($\{S' \rightarrow E \bullet \}\}$)= $\{S' \rightarrow E \bullet \}$
 - \checkmark GOTO(I,a)=CLOSURE({E \rightarrow a•A})={E \rightarrow a•A}, $\land \land \rightarrow \bullet$ cA, $\land \land \rightarrow \bullet$ d}
 - \checkmark GOTO(I,b)=CLOSURE({E \rightarrow b \bullet B})={E \rightarrow b \bullet B, B \rightarrow •cB, B \rightarrow •d}

- ·构造以LR(0)项目集为状态的DFA
 - ① 构造初始状态IS₀=CLOSURE({S'→•S}),并且它是未被标记的;
 - ② 从已经构造的DFA部分图中选择一个未被标记的状态IS_i,标记IS_i,若项目集IS_i中含有项目U->x•Ry(R∈V,x,y为任一符号串),且GOTO(IS_i,R)=IS_j,若IS_j不在DFA中,则将IS_j作为未被标记的加入DFA中,且从IS_i出发引一条标记为R的弧到IS_i;
 - ③ 重复②直到没有未被标记的状态为止。

•例:拓广文法G':S'→E,E→aA|bB,A→cA|d,B→cB|d,构造以LR(0)

项目集为状态的DFA $I_7 \quad E \rightarrow bB^{\bullet}$ $B \rightarrow d^{\bullet}$ d $I_3 \to b \bullet B$ $I_8 \rightarrow c \cdot B$ b B—•cB B $B \rightarrow cB \bullet$ $B \rightarrow cB$ $\mathbf{B} \longrightarrow \mathbf{d}$ $\mathbf{B} \rightarrow \mathbf{d}$ E—•aA $I_2 \to a \cdot A$ $E \rightarrow bB$ a $I_5 \quad A \rightarrow c \cdot A$ $A \rightarrow cA$ $A \rightarrow cA \bullet$ Ε $A \rightarrow \bullet d$ I_1 S' \rightarrow E• ↓ d $I_{4} \to aA^{\bullet}$ $A \rightarrow d^{\bullet}$

- LR(0)DFA识别的语言
 - 可行前缀[viable prefix]
 - ✓ 一个可行前缀是一个最右句型(规范句型)的前缀,并且它没有越过该最右句型的最右句柄的右端
 - ✓ 形成句柄之前(包括句柄在内)的所有规范句型的前缀称为可行前缀,即规范句型的不含句柄右边符号的前缀称为可行前缀

例:文法G[S]: S→aAcBe, A→b, A→Ab, B→d, 输入串abbcde的规范归约: abbcde ├ aAcde ├ aAcde ├ aAcBe ├ S 以规范句型aAbcde为例,其句柄为Ab, 其可行前缀为: ε, a, aA, aAb 以规范句型aAcBe为例,其句柄为aAcBe, 其可行前缀为: ε, a, aA, aAc, aAcB, aAcB, aAcBe

- LR(0)DFA识别的语言
 - 句型acd的归约过程:acd|-acA|-aA|-E|-S'
 - 对句型acd:
 - ✓ 可行前缀为ε, a, ac, acd
 - 对句型acA:
 - ✓ 可行前缀为ε, a, ac, acA
 - 对句型aA:
 - ✓ 可行前缀为ε, a, aA

- 可见,**可行前缀是已被DFA正确识别的规范句型的一部分**,其对应的LR分析 的操作为**移进(符号栈)**

- 可行前缀[viable prefix]
 - 可行前缀一定是某个规范句型(右句型)的前缀,即, $S \Rightarrow_{rm}^* αω$,其中α为符号 栈中的内容,ω不含非终结符
 - 并不是所有规范句型的前缀是可行前缀

例:对文法G[E]: $E \rightarrow TE'$, $E' \rightarrow +TE' |_{\epsilon}$, $T \rightarrow FT'$, $T' \rightarrow *FT' |_{\epsilon}$, $F \rightarrow (E) |_{n}$, $E \rightarrow_{rm}^{*} F \times n \rightarrow_{rm} (E) \times n$, (, (E, (E)是可行前缀,但(E)×不是可行前缀 因为(E)是句柄,句柄一旦出现,就被归约,不可能与后面的字符构成可行前 缀。

- 有效项目[valid item]
 - 如果存在一个推导过程S'⇒ $_{rm}^*$ αAω⇒ $_{rm}$ αβ₁β₂ω,则称项目A→β₁•β₂对于可行前缀αβ₁有效(是αβ₁的有效项目),其中ω仅含终结符
 - 可帮助决定分析时是进行移进或归约:
 - \checkmark 若 $β_2 \ne ε$,则表明句柄还没有被全部移进栈中,应**移进[shift]**
 - ✓ 若 $β_2=ε$,则 $β_1$ 为句柄,应选用产生式 $A→β_1$ 进行**归约**[reduce]
 - 可用于构造DFA的状态:
 - ✓ CLOSURE(): \overline{A} \rightarrow β_1 B β_2 对于可行前缀α β_1 有效且有产生式A \rightarrow β_1 β_2 可行前缀α β_1 有效(S' $\Rightarrow_{rm}^* αAω \Rightarrow_{rm} αβ_1Bβ_2ω \Rightarrow_{rm} αβ_1γβ_2ω$)
 - ✓ GOTO(): $\overline{A} \rightarrow \beta_1 \cdot X \beta_2 = \alpha \beta_1$ 的有效项目,则 $A \rightarrow \beta_1 X \cdot \beta_2 = \alpha \beta_1 X$ 的有效项目 ($S' \Rightarrow_{rm}^* \alpha A \omega \Rightarrow_{rm} \alpha \beta_1 X \beta_2 \omega$)

- LR(0)分析同样是table-driven的
- LR(0)分析表
 - 一动作表(ACTION): 表示当前状态下面临输入符(终结符和'\$') 应做的动作是移进、归约、接受或出错
 - 转换表(GOTO):表示在当前状态下面临文法符号(可能是终结符或非终结符)时应转向的下一个状态
 - 把关于**终结符**部分的GOTO表和ACTION表重叠,也就是把当前状态下面临 **终结符**应做的移进-归约动作和转向动作表示在一起
- 进行LR(0)分析前应构造LR(0)分析表

- LR(0)分析表的构造算法
 - 含S'→•S项目的项目集对应的状态为初始状态
 - 分析表的ACTION表和GOTO表构造步骤为:
 - ✓ 若项目A→α•aβ∈k, a∈V_T, 且GOTO(k,a)=j, 则置ACTION[k,a]='S_i', 移进;
 - ✓ 若项目A→α•Bβ∈k, B∈V_N, 且GOTO(k,B)=j, 则置GOTO[k,B]='j';
 - ✓ 若项目 $A \rightarrow \alpha \cdot \in K$,且产生式 $A \rightarrow \alpha$ 的编号为j,则对任何a(终结符和'\$'),置

ACTION[k,a]='r_j',归约;<mark>对任何a都归约,不用考虑a具体是哪个字符</mark>—— LR(0)的0之所在

- ✓ 若项目S'→S•∈k, S是原文法开始符号,则置ACTION[k,\$]='acc', ACCEPT;
- ✓ 不能用上述方法填入的分析表的元素可空着,表示ERROR。

- (0) $S' \rightarrow E$ (1) $E \rightarrow aA$
- (2) $E \rightarrow bB$ (3) $A \rightarrow cA$
- $(4) A \rightarrow d \qquad (5) B \rightarrow cB$
- (6) B→d

状		Α	CTIO	GOTO				
状态	а	b	С	d	\$	E	Α	В
0	S ₂	S ₃				1		
1					acc			
2			S ₅	S ₆			4	
3			S ₈	S ₉				7
4	r ₁							
5			S ₅	S ₆			10	

- (0) $S' \rightarrow E$ (1) $E \rightarrow aA$
- (2) $E \rightarrow bB$ (3) $A \rightarrow cA$
- $(4) A \rightarrow d \qquad (5) B \rightarrow cB$
- (6) $B \rightarrow d$

								I_1 $S'-$
状		Α	CTIO	GOTO				
状态	a	b	С	d	\$	E	Α	В
6	r ₄							
7	r ₂							
8			S ₈	S ₉				11
9	r ₆							
10	r ₃							
11	r ₅							

- LR(0)分析器
 - 使用LR(0)分析表的LR分析器称为LR(0)分析器
 - LR(0)分析器在分析的过程中只根据符号栈的内容就能确定句柄,不需要向右 查看输入符号
 - 对文法的限制较大, 对绝大多数高级语言的语法分析器不适用

• LR(0)分析器

- LR(0)分析器的工作过程
 - 根据**符号栈的栈顶状态和输入串的当前符号**查分析表确定应采取的动作(移 进、归约、接受或报错),对**状态栈和符号栈**进行相应的操作。
 - ① 若ACTION[S,a]=S_i, a为终结符,则把a移入符号栈,j移入状态栈;
 - ② 若ACTION[S,a]=r_i, a为终结符或\$,则:
 - 用第j个产生式(A->β)归约,将两个栈弹出k个元素,其中k为第j个产生式右 部符号串β的长度,此时当前面临符号为第j个产生式左部的非终结符(A);
 - 则非终结符A移入符号栈,且:若状态栈当前的栈顶状态为Q,且有 GOTO[Q,A]=P,P移入状态栈;
 - ③ 若ACTION[S, \$]=acc,则为接受,表明分析成功;
 - ④ 若ACTION[S,a]=空白,则转向出错处理。

• LR(0)分析器的工作过程

- (0) $S' \rightarrow E$ (1) $E \rightarrow aA$
- (2) $E \rightarrow bB$ (3) $A \rightarrow cA$
- (4) $A \rightarrow d$ (5) $B \rightarrow cB$
- (6) $B \rightarrow d$

状		Α	CTIO	N		GOTO					
态	а	b	С	d	\$	E	Α	В			
0	S ₂	S_3				1					
1					acc						
2			S ₅	S ₆			4				
3			S ₈	S ₉				7			
4	r ₁	r ₁	r ₁	r ₁	r ₁						
5			S ₅	S ₆			10				
6	r ₄										
7	r ₂										
8			S ₈	S ₉				11			
9	r ₆										
10	r ₃	r ₃	r ₃	r ₃	r ₃						
11	r ₅										

状		Α	CTIO	N			GOTO)	(0)5	$(0)S' \rightarrow E (1)E \rightarrow aA (2)E \rightarrow bB$							输入串	
态	а	b	С	d	\$	Е	Α	В	(3)A	∕—→C ∕	(4))A—→C	d (5))B→c	B (6	6)B⊸	d bo	cd\$
0	S ₂	S_3				1			6	r ₄	r ₄	r ₄	r ₄	r ₄				
1					acc				7	r ₂	r ₂	r ₂	r ₂	r ₂				
2			S ₅	S ₆			4		8			S ₈	S ₉				11	
3			S ₈	S ₉				7	9	r ₆	r ₆	r ₆	r ₆	r ₆				
4	r ₁	r ₁	r ₁	r ₁	r ₁				10	r ₃	r ₃	r ₃	r ₃	r ₃				
5			S ₅	S ₆			10		11	r ₅	r ₅	r ₅	r ₅	r ₅				

步骤	状态栈	符号栈	输入串	ACTION	GOTO
1	0	\$	bccd\$	S_3	
2	03	\$b	ccd\$	S ₈	
3	038	\$bc	cd\$	S ₈	
4	0388	\$bcc	d\$	S ₉	
5	03889	\$bccd	\$	r ₆	11

状	ACTION G				GOTO			(0)S'→E (1)E→aA (2)E→bB 输入串						入串				
态	а	b	С	d	\$	Е	Α	В	(3)A	\longrightarrow C \searrow	(4))A→c	d (5))B→c	B (6	6)B→	d bo	ccd\$
0	S ₂	S_3				1			6	r ₄	r ₄	r ₄	r ₄	r ₄				
1					acc				7	r ₂	r ₂	r ₂	r ₂	r ₂				
2			S ₅	S_6			4		8			S ₈	S ₉				11	
3			S ₈	S_9				7	9	r ₆	r ₆	r ₆	r ₆	r ₆				
4	r ₁	r ₁	r ₁	r ₁	r ₁				10	r ₃	r ₃	r ₃	r ₃	r ₃				
5			S ₅	S_6			10		11	r ₅	r ₅	r ₅	r ₅	r ₅				

步骤	状态栈	符号栈	输入串	ACTION	GOTO
6	0388 (11)	\$bccB	\$	r ₅	11
7	038 (11)	\$bcB	\$	r ₅	7
8	037	\$bB	\$	r ₂	1
9	01	\$E	\$	acc	

- 小结——LR(0)分析过程
 - ① 对文法进行拓广:对文法G[S],增加一条产生式S'→S,拓广为文法G'[S']
 - ② 根据产生式构造LR(0)项目集: CLOUSRE函数和GOTO函数
 - ③ 根据项目集构造LR(0)DFA
 - ④ 根据LR(0)DFA构造LR(0)分析表
 - ⑤ 根据LR(0)分析表进行LR(0)分析