Problem: Trigonometry – Bài Tập Lượng Giác

Nguyễn Quản Bá Hồng*

Ngày 7 tháng 5 năm 2023

Tóm tắt nôi dung

Mục lục

1	Hệ Thức về Cạnh & Đường Cao Trong Tam Giác Vuông	1
2	Tỷ Số Lượng Giác của Góc Nhọn	2
3	Hệ Thức về Cạnh & Góc Trong Tam Giác Vuông	3
4	Miscellaneous	3
Tà	i liêu	3

1 Hệ Thức về Cạnh & Đường Cao Trong Tam Giác Vuông

Bài toán 1 ([Tuy23], Thí dụ 1, p. 103). Cho hình thang ABCD có $\widehat{B}=\widehat{C}=90^\circ$, 2 đường chéo vuông góc với nhau tại H. Biết $AB=3\sqrt{5}$ cm, HA=3 cm. Chứng minh: (a) HA:HB:HC:HD=1:2:4:8. (b) $\frac{1}{AB^2}-\frac{1}{CD^2}=\frac{1}{HB^2}-\frac{1}{HC^2}$.

Bài toán 2 ([Tuy23], 1., p. 105). Cho hình thang ABCD, $AB \parallel CD$, 2 đường chéo vuông góc với nhau. Biết AC = 16 cm, BD = 12 cm. Tính chiều cao của hình thang.

Bài toán 3 ([Tuy23], 2., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH, đường phân giác AD. Biết BH=63 cm, CH=112 cm, tính HD.

Bài toán 4 ([Tuy23], 3., p. 105). Cho $\triangle ABC$ vuông tại A. 2 đường trung tuyến AD, BE vuông góc với nhau tại G. Biết $AB = \sqrt{6}$ cm. Tinh cạnh huyền BC.

Bài toán 5 ([Tuy23], 4., p. 105). Gọi a, b, c là các cạnh của 1 tam giác vuông, h là đường cao ứng với cạnh huyền a. Chứng minh tam giác có các cạnh a + h, b + c, \mathcal{E} h cũng là 1 tam giác vuông.

Bài toán 6 ([Tuy23], 5., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH. Gọi I, K thứ tự là hình chiếu của H trên AB, AC. Dặt c = AB, b = AC. (a) Tính AI, AK theo b, c. (b) Chứng minh $\frac{BI}{CK} = \frac{c^3}{b^3}$.

Bài toán 7 ([Tuy23], 6., p. 105). Cho $\triangle ABC$, AB=1, $\widehat{A}=105^\circ$, $\widehat{B}=60^\circ$. Trên cạnh BC lấy điểm E sao cho BE=1. Vẽ $ED\parallel AB$, $D\in AC$. Chứng minh: $\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{4}{3}$.

Bài toán 8 ([Tuy23], 7., p. 105). Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh: $\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}$.

Bài toán 9 ([Tuy23], 8., p. 105). Cho 3 đoạn thẳng có độ dài a, b, c. Dựng đoạn thẳng x sao cho $\frac{1}{x^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$.

Bài toán 10 ([Tuy23], 9., p. 105). Cho hình thơi ABCD có $\widehat{A}=120^{\circ}$. 1 đường thẳng d không cắt các cạnh của hình thơi. Chứng minh: tổng các bình phương hình chiếu của 4 cạnh với 2 lần bình phương hình chiếu của đường chéo AC trên đường thẳng d không phụ thuộc vào vị trí của đường thẳng d.

Bài toán 11 ([Tuy23], 10., p. 106). Cho ΔABC vuông tại A. Từ 1 điểm O ở trong tam giác ta vẽ OD⊥BC, OE⊥CA, OF⊥AB. Xác đinh vi trí của O để OD² + OE² + OF² nhỏ nhất.

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

Bài toán 12 ([Bìn+23], Ví dụ 1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết $AB : AC = 3 : 4 \ \& AB + AC = 21 \ \mathrm{cm}$. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH, BH, CH.

Bài toán 13 (Mở rộng [Bìn+23], Ví dụ 1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết AB:AC=m:n & AB+AC=p cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH, BH, CH.

Bài toán 14 ([Bìn+23], Ví dụ 2, p. 6). Cho hình thang ABCD có $\widehat{A} = \widehat{D} = 90^{\circ}$, $\widehat{B} = 60^{\circ}$, CD = 30 cm, $CA \perp CB$. Tính diện tích của hình thang.

Bài toán 15 ([Bìn+23], Ví dụ 3, p. 7). Cho $\triangle ABC$ nhọn, đường cao CK, H là trực tâm. Gọi M là 1 điểm trên CK sao cho $\widehat{AMB} = 90^{\circ}$. S, S_1, S_2 theo thứ tự là diện tích các $\triangle AMB, \triangle ABC, \triangle ABH$. Chứng minh $S = \sqrt{S_1S_2}$.

Bài toán 16 ([Bìn+23], 1.1., p. 7). Cho $\triangle ABC$ vuông cân tại A & điểm M nằm giữa B & C Gọi D, E lần lượt là hình chiếu của điểm M lên AB, AC. Chứng minh $MB^2 + MC^2 = 2MA^2$.

Bài toán 17 ([Bìn+23], 1.2., p. 7). Cho hình chữ nhật $ABCD \, \mathcal{E} \, diểm \, O \, nằm \, trong hình chữ nhật đó. Chứng minh <math>OA^2 + OC^2 = OB^2 + CD^2$.

Bài toán 18 ([Bìn+23], 1.3., p. 8). Cho hình chữ nhật ABCD có AD = 6 cm, CD = 8 cm. Dường thẳng kẻ từ D vuông góc với AC tại E, cắt cạnh AB tại F. Tính độ dài các đoạn thẳng DE, DF, AE, CE, AF, BF.

Bài toán 19 ([Bìn+23], 1.4., p. 8). Cho $\triangle ABC$ có AB=3 cm, BC=4 cm, AC=5 cm. Dường cao, đường phân giác, đường trung tuyến của tam giác kẻ từ đỉnh B chia tam giác thành A gam giác không có điểm trong chung. Tính diện tích của mỗi tam giác đó.

Bài toán 20 ([Bìn+23], 1.5., p. 8). Trong 1 tam giác vuông tỷ số giữa đường cao \mathscr{C} đường trung tuyến kẻ từ đỉnh góc vuông bằng 40 : 41. Tính độ dài các cạnh góc vuông của tam giác đó, biết cạnh huyền bằng $\sqrt{41}$ cm.

Bài toán 21 ([Bìn+23], 1.6., p. 8). Cho $\triangle ABC$ vuông tại A, đường cao AH. Kể $HE \perp AB$, $HF \perp AC$. Gọi O là giao điểm của AH & EF. Chứng minh $HB \cdot HC = 4OE \cdot OF$.

Bài toán 22 ([Bìn+23], 1.7., p. 8).

Bài toán 23 ([Bìn+23], 1.8., p. 8).

Bài toán 24 ([Bìn+23], 1.9., p. 8).

Bài toán 25 ([Bìn+23], 1.10., p. 8).

Bài toán 26 ([Bìn+23], 1.11., p. 8).

Bài toán 27 ([Bìn+23], 1.12., p. 8).

Bài toán 28 ([Bìn+23], 1.13., p. 9).

Bài toán 29 ([Bìn+23], 1.14., p. 9).

Bài toán 30 ([Bìn+23], 1.15., p. 9).

Bài toán 31 ([Bìn+23], 1.16., p. 9).

2 Tỷ Số Lượng Giác của Góc Nhọn

Bài toán 32 ([Tuy23], Thí dụ 2, p. 107). Cho cot $\alpha = \frac{a^2 - b^2}{2ab}$ trong đó α là góc nhọn, a > b > 0. Tính $\cos \alpha$.

Bài toán 33 ([Tuy23], 11., p. 108, định lý sin). Cho $\triangle ABC$ nhọn, BC=a, CA=b, AB=c. Chứng minh: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$. Đẳng thức này còn đúng với tam giác vuông $\mathcal E$ tam giác tù hay không?

Bài toán 34 ([Tuy23], 12., p. 108). Chứng minh: (a) $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$. (b) $1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$. (c) $\cot^2 \alpha - \cos^2 \alpha = \cot^2 \alpha \cdot \cos^2 \alpha$. (d) $\frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 - \cos \alpha}$.

Bài toán 35 ([Tuy23], 13., p. 108). Rút gọn biểu thức: (a) $A = \frac{1 + 2\sin\alpha \cdot \cos\alpha}{\cos^2\alpha - \sin^2\alpha}$. (b) $B = (1 + \tan^2\alpha)(1 - \sin^2\alpha) - (1 + \cot^2\alpha)(1 - \cos^2\alpha)$. (c) $C = \sin^6\alpha + \cos^6\alpha + 3\sin^2\alpha\cos^2\alpha$.

Bài toán 36 ([Tuy23], 14., p. 108). Tính giá trị của biểu thức $A = 5\cos^2\alpha + 2\sin^2\alpha$ biết $\sin\alpha = \frac{2}{3}$.

Bài toán 37 ([Tuy23], 15., p. 108). Không dùng máy tính hoặc bảng số, tính: (a) $A = \cos^2 20^\circ + \cos^2 30^\circ + \cos^2 40^\circ + \cos^2 50^\circ + \cos^2 60^\circ + \cos^2 70^\circ$. (b) $B = \sin^2 5^\circ + \sin^2 25^\circ + \sin^2 45^\circ + \sin^2 65^\circ + \sin^2 85^\circ$.

Bài toán 38 ([Tuy23], 16., p. 108). Cho $0^{\circ} < \alpha < 90^{\circ}$. Chứng minh: $\sin \alpha < \tan \alpha$, $\cos \alpha < \cot \alpha$. Áp dụng: (a) Sắp xếp các số sau theo thứ tự tăng dần: $\sin 65^{\circ}$, $\cos 65^{\circ}$, $\tan 65^{\circ}$. (b) Xác định α thỏa mãn điều kiện: $\tan \alpha > \sin \alpha > \cos \alpha$.

Bài toán 39 ([Tuy23], 17., p. 108). Cho $\triangle ABC$ vuông tại A. Biết $\sin B = \frac{1}{4}$, tính $\tan C$.

Bài toán 40 ([Tuy23], 18., p. 108). Cho biết $\sin \alpha + \cos \alpha = \frac{7}{5}$, $0^{\circ} < \alpha < 90^{\circ}$, tính $\tan \alpha$.

Bài toán 41 ([Tuy23], 19., p. 109). $\triangle ABC$, đường trung tuyến AM. Chứng minh nếu cot $B = 3 \cot C$ thì AM = AC.

Bài toán 42 ([Tuy23], 20., p. 109). Cho $\triangle ABC$, trực tâm H là trung điểm của đường cao AD. Chứng minh tan $B \tan C = 2$.

Bài toán 43 ([Tuy23], 21., p. 109). Cho $\triangle ABC$ nhọn, 2 đường cao BD, CE. Chứng minh: (a) $S_{\triangle ADE} = S_{\triangle ABC}\cos^2 A$. (b) $S_{BCDE} = S_{\triangle ABC}\sin^2 A$.

Bài toán 44 ([Tuy23], 22., p. 109). Cho $\triangle ABC$ nhọn. Từ 1 điểm M nằm trong tam giác vẽ $MD \bot BC$, $ME \bot AC$, $MF \bot AB$. Chứng minh $\max\{MA, MB, MC\} \ge 2\min\{MD, ME, MF\}$, trong đó $\max\{MA, MB, MC\}$ là đoạn thẳng lớn nhất trong các đoạn thẳng MA, MB, MC & $\min\{MD, ME, MF\}$ là đoạn thẳng nhỏ nhất trong các đoạn thẳng MD, ME, MF.

3 Hệ Thức về Cạnh & Góc Trong Tam Giác Vuông

4 Miscellaneous

Tài liệu

- [Bìn+23] Vũ Hữu Bình, Nguyễn Ngọc Đạm, Nguyễn Bá Đang, Lê Quốc Hán, and Hồ Quang Vinh. *Tài Liệu Chuyên Toán Trung Học Cơ Sở Toán 9. Tập 2: Hình Học.* Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 240.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.