ECE 3030 Spring 2025 Homework 1 Solutions

1. (a)
$$\left(\frac{1}{1}, \frac{1}{3}, \frac{1}{1}\right) \Rightarrow (313)$$

$$(b)\left(\frac{1}{4},\frac{1}{2},\frac{1}{4}\right) \Rightarrow (121)$$

2. The linear density, **LD**, is the ratio of $\mathbf{L_c}$ and $\mathbf{L_l}$ where $\mathbf{L_c}$ is the portion of line covered by atoms and $\mathbf{L_l}$ is the total line length. For the [110] direction in BCC, $\mathbf{L_c} = 2\mathbf{R}$, whereas $\mathbf{L_l} = 4\mathbf{R}\sqrt{2}$

 $\frac{4\textbf{R}\sqrt{2}}{\sqrt{3}} \text{ (since the body diagonal} = 4R = a \ \sqrt{3}, \ a = 4R/\sqrt{3}, \ and \ L_1 \ along \ (110) = \sqrt{2} \ a). Therefore$

$$LD = \frac{L_c}{L_1} = \frac{2R}{\frac{4R\sqrt{2}}{\sqrt{3}}} = 0.61$$

For the [111] direction in BCC, $\mathbf{L_c} = \mathbf{L_l} = 4\mathbf{R}$; therefore $\mathbf{L_D} = \frac{4\mathbf{R}}{4\mathbf{R}} = 1.0$

3. Planar density, **PD**, is defined as PD = $\frac{A_c}{A_p}$

where $\mathbf{A_p}$ is the total plane area within the unit cell and $\mathbf{A_c}$ is the circle plane area within this same plane. For the (100) plane in BCC, in terms of the atomic radius, \mathbf{R} , and the unit cell edge length \mathbf{a}

$$A_p = a^2 = \left(\frac{4R}{\sqrt{3}}\right)^2 = \frac{16R^2}{3}$$

Also, upon examination of that portion of the (100) plane within a single unit cell, that there resides a single equivalent atom--one-fourth from each of the four corner atoms. Therefore,

$$\boldsymbol{A}_c = \pi \boldsymbol{R}^2$$

Hence, PD =
$$\pi R^2/(16R^2/3) = 0.59$$

That portion of a (110) plane that passes through a BCC unit cell forms a rectangle as shown below.

1

In terms of the atomic radius ${\bf R}$, the length of the rectangle base is $4{\bf R}\sqrt{2}/\sqrt{3}$, whereas the height is ${\bf a}=\frac{4{\bf R}}{\sqrt{3}}$. Therefore, the area of this rectangle, which is just ${\bf A_p}$ is

$$A_{p} = \left(\frac{4R\sqrt{2}}{\sqrt{3}}\right)\left(\frac{4R}{\sqrt{3}}\right) = \frac{16R^{2}\sqrt{2}}{3}$$

Now for the number equivalent atoms within this plane. One-fourth of each corner atom and the entirety of the center atom belong to the unit cell. Therefore, there is an equivalent of 2 atoms within the unit cell. Hence $A_c = 2(\pi R^2)$

And PD =
$$2\pi R^2/(16R^2\sqrt{2/3}) = 0.83$$

4. Find the number of atoms/unit cell and the nearest neighbor distance for sc, bcc, and fcc lattices.

sc: atoms/unit cell = $8 \cdot 1/8 = 1$; nearest neighbor distance = a

bcc: atoms/unit cell = $(8 \cdot 1/8) + 1 = 2$; nearest neighbor distance = $a\sqrt{3}/2$

fcc: atoms/unit cell = (8.1/8) + 6.1/2 = 4; nearest neighbor distance = $a\sqrt{2}/2$

- 5. (a) Simple cubic: a = 2r = 3.9 Å
 - (b) fcc: $a = 4r/\sqrt{2} = 5.515 \text{ Å}$
 - (c) bcc: $a = 4r/\sqrt{3} = 4.503 \text{ Å}$
 - (d) diamond: $a = 2 (4r/\sqrt{3}) = 9.007 \text{ Å}$
- 6. (a) a = 5.65 Å. 1/4 of the body diagonal $(\sqrt{3} \text{ a}) = \sqrt{3}$ a/4 so $2r = \sqrt{3}$ a/4 and $a = 8r/\sqrt{3}$.

Then
$$r = \frac{a\sqrt{3}}{8} = \frac{(5.65)\sqrt{3}}{8} = 1.223 \text{ Å}$$

Center of one Ge atom to center of nearest neighbor = 2r = 2.45 Å.

(b) Number density N = $\frac{8}{(5.65 \times 10^{-8})^3} = 4.44 \times 10^{22}$ cm⁻³ since 2 x 4 = 8 atoms/unit cell in diamond lattice (two interpenetrating fcc lattices)

(c) Mass density =
$$\rho = \frac{N(At.Wt.)}{N_A} = \frac{(4.44 \times 10^{22})(72.61)}{6.02 \times 10^{23}} \rightarrow \rho = 5.35 \text{ grams/cm}^3.$$

- 7. Density of silicon atoms = 4 electrons per atom x 4 atoms/FCC lattice x 2 FCC lattices/unit cell divided by unit cell volume $V=a^3$. Lattice constant $a=5.43 \times 10^{-8}$ cm so $V=5 \times 10^{22}$ cm⁻³ and 4 valence electrons per atom, so density of valence electrons = 2×10^{23} cm⁻³.
- 8. Here is a crystalline substance with the unit cell structure shown, an atomic weight of 35.2g/mol, and a density of 3.65 g/cm³. Solve for the atomic radius.

 $\rho=(n/Vc)A/N_A$ Simple cubic so 2R=a #atoms/unit cell = 1/8 x 8 = 1 Vc = a^3 = (nA/ ρ N_A = 1 atom x 35.2 g/mol / (3.65 g/cm³ x 6.02 x 10^{23} atoms/mole)

$$a^3 = 1.602 \times 10^{-23} \text{ cm}^3$$

$$a = 2.52 \times 10^{-8} \text{ cm} = 2.52 \text{ Å}$$

$$a = 2R \text{ so } R = 1.26 \text{ Å}$$

9. Lattice constants of AlSb, AlAs, and InP are 6.14 Å, 5.66 Å, and 5.87 Å, respectively from Appendix. Using Vegard's Law,

$$6.14\text{Å} \cdot x + 5.45 \text{ Å} \cdot (1-x) = 5.87 \text{ Å} \rightarrow x = 0.44$$

AlSb_{0.44}As_{0.56} lattice matches InP and has Eg=1.9 eV from Fig. 1-13.