BEAD FILLER RUBBER COMPOSITION

 Publication number: JP55054337 (A)
 Also published

 Publication date:
 1980-04-21
 ☑ JP57030856

 Inventor(s):
 MIYAKE ITSUC; OKAMOTO KEIZOU; BUNDOU MOTONORI; NODA AKIHIRO
 ☑ DE2941701 (

 Applicant(s):
 BIIGESTONE TIRE COLTD
 ☑ US4421891

Applicant(s): BRIDGESTONE TIRE CO LTC
Classification:

- international: C08L7/00; B29C67/00; B29D30/00; B29D30/48; B60C15/06;

C08K3/04; C08L21/00; C08L7/00; B29C67/00; B29D30/00; B29D30/06; B60C15/06; C08K3/00; C08L21/00; (IPC1-

7): B29H17/32; C08K3/04; C08L21/00

- European: B60C15/06; C08L21/00

Application number: JP19780127256 19781018
Priority number(s): JP19780127256 19781018

Abstract of JP 55054337 (A)

PURPOSE:An extremely hard rubber composition usable for bead filler rubber, having improved rigidity and durability, comprising a (modified) novolate phenolic resin and carbon black. CONSTITUTION:A composino comprising (A) 100 parts by wt. of natural polytisoprene, polybutadiene, or styrene-butadiene copolymer rubber, or their blend, (B) 40-170 parts by wt., preferably 60-120 parts by wt., of carbon black having a dibutyl phthalate abstrption 8tt;=130ml/100g and an iodine adsorption of 40-130m/gg, (C) 15-45 parts by wt., preferably 20-40 parts by wt. based on 100 parts by wt., of (B) of a (modified) novolack phenolic resin, and (D) a curing agent, e.g. hexamethylenetertamine. The use of a movolak phenolic resin and its modified one at a weight ratio of 80:20-20:80 improves the durability syneroistically.

Data supplied from the esp@cenet database -- Worldwide

Miyake et al.

-

Dec. 20, 1983

[24]	BEAD FIL	LER RUBBER COMPOSITION
[75]	Inventors:	Itsuo Miyake, Kodaira; Keizo

Okamoto, Higashikurume; Motonori Bundo, Higashimurayama; Akihiro Noda, Kodaira, all of Japan

[73] Assignee: Bridgestone Tire Company Limited, Tokyo, Japan

[21] Appl. No.: 238,875

[22] Filed: Feb. 27, 1981

Related U.S. Application Data

[63] Continuation of Ser. No. 85,346, Oct. 16, 1979, abandoned.

[56] References Cited

FOREIGN PATENT DOCUMENTS

1260138 3/1961 France .

Primary Examiner—Theodore E. Pertilla
Attorney, Agent, or Firm—Sughrue, Mion, Zinn,
Macpeak, and Seas

[57] ABSTRACT

A rubber composition comprising rubber, novolak-type phenolic resin and carbon black is very rigid and is adapted to be used as a beaf filler rubber of a tire. Tires using the rubber composition are excellent in the high speed performance, lateral rigidity, ride feeling and durability.

8 Claims, 2 Drawing Figures

BEAD FILLER RUBBER COMPOSITION

This is a continuation of application Ser. No. 85,346, filed Oct. 16, 1979, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a rubber composition, and more particularly, relates to a super rigid rub- 10 ber composition comprising rubber, novolak-type phenolic resin and carbon black, and adapted to be used as a bead filler rubber of a tire.

2. Description of the Prior Art

There have been variously investigated the structure 15 have accomplished the present invention. of bead portion of radial tire in order to satisfy the rigidity and durability required to tire. For example, it has been attempted to improve the dynamic performance and durability of tire by arranging a bead-reinforcing layer in the bead portion. However, this method 20 has drawbacks that a large number of production steps are necessary and the productivity of the tire is very

Japanese Utility Model Application No. 16,084/72, French Patent No. 1,260,138 and U.S. Pat. No. 25 4,067,373 disclose methods for improving the running performance and other property by arranging super rigid rubber in the bead portion. However, these methods do not substantially think of rubber, which can develop fully a function as a bead filler rubber subjected 30 to complicated forces during the running of a tire and can give a sufficiently high durability to a rubber tire.

While, it is well known to use novolak-type phenolic resin in the production of rigid rubber compositions. However, these rubber compositions substantially con- 35 cern nitrile rubber and neoprene rubber having a high compatibility with the resin. The nitrile rubber series of neoprene rubber series rigid rubber is very difficult to be vulcanized together with natural rubber, polybutadiene rubber and the like, which are commonly used as a 40 blends thereof. Carbon black is compounded to the rubber for tire, and therefore when the nitrile rubber series or neoprene rubber series rigid rubber is used as a tire part, the rubber is apt to be separated from natural rubber, polybutadiene rubber or the like, and can not be practically used

In order to solve the above described drawbacks, the inventors have variously investigated how to produce a super rigid rubber composition by compounding novolak-type phenolic resin to natural rubber, polybutadiene rubber or the like, and found out the following facts. 50 Novolak-type phenolic resin is essentially incompatible with natural rubber and other rubbers. Therefore, novolak-type phenolic resin is formed into spherical agglomerates during the kneading commonly carried out in the production of rubber, and has the filling effect only. 55 versely the dispersibility of the resin, and carbon black This phenomenon still occurs even when various resins are used as a resin in place of novolak-type phenolic resin for producing a homogenous mixture of the resin with the rubber. However, when novolak-type phenolic resin is compounded to natural rubber or other rubber 60 together with carbon black, the mixture of the resin and carbon black exhibits a reinforcing effect on the rubber, which is completely different from the reinforcing effect of the resin alone on the rubber or the reinforcing effect of the carbon black alone on the rubber, depend- 65 resin. The novolak-type phenolic resin includes novoing upon the mixing ratio of the resin to the carbon black, and a super rigid rubber composition having a durability remarkably superior to that of conventional

resin-reinforced rubber can be obtained. That is, when natural rubber or diene series rubber is mixed with novolak-type phenolic resin, which is essentially incompatible with the rubber, the resin is separated from the rubber to form island-like large agglomerates in the mixture, but when a mixture of novolak-type phenolic resin and carbon black is compounded to natural rubber or other diene series rubber, the resin disperses uniformly in the rubber without forming large agglomerates similarly to the dispersed state in an ordinary mixture of rubber and carbon black. This action of carbon black to the resin is highly influenced by the mixing

ratio of the carbon black to the resin and by the kind of the carbon black. Based on the discovery, the inventors SUMMARY OF THE INVENTION

The feature of the present invention is the provision of a bead filler rubber composition, comprising 100 parts by weight of a rubber selected from the group consisting of natural rubber, polyisoprene rubber, polybutadiene rubber, styrene-butadiene copolymer rubber and blends thereof, 40-130 paris by weight of carbon black, 15-45 parts by weight based on 100 parts by weight of the carbon black of at least one of novolaktype phenolic resin and novolak-type modified phenolic resin, and a hardener for the resin.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional view of the side portion of a tire according to the present invention; and FIG. 2 is a cross-sectional view of the side portion of

a conventional tire.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The rubber to be used in the present invention includes natural rubber, polyisoprene rubber, polybutadiene rubber, styrene-butadiene copolymer rubber and rubber in an amount of 40-130 parts by weight, preferably 60-120 parts by weight, more preferably 65-85 parts by weight, based on 100 parts by weight of the rubber. The use of carbon black in an amount of less than 40 parts by weight is too small to disperse homogeneously the necessary amount of resin for reinforcing the rubber. While, when the amount of carbon black is more than 130 parts by weight, the resulting rubber composition is brittle and is very poor in the durability. Further, in the present invention, carbon black having an iodine adsorbability (IA) of 40-130 mg/g and a dibutyl phthalate absorbability (DBP) of not more than 130 ml/100 g defined in ASTM D 1765 is preferably used. Carbon black having an IA of less than 40 mg/g affects adhaving an IA of more than 130 mg/g is poor in the dispersibility in itself. Therefore, the use of such carbon black is not preferable. When carbon black has a DBP of more then 130 ml/100 g, the carbon black used in an amount sufficient to disperse the resin can not be fully dispersed in the rubber.

In the present invention, the above described carbon black is used together with at least one of novolak-type phenolic resin and novolak-type modified phenolic lak-type phenol resin, novolak-type cresol resin and novolak-type resorcinol resin. The novolak-type modified phenolic resin includes resins obtained by modify-

ing the above described novolak-type phenolic resin with oils, such as rosin oil, tall oil, cashew nut oil, linoleic acid, oleic acid, linolenic acid and the like: resins obtained by modifying the novolak-type phenolic resin with aromatic hydrocarbons, such as xylene, mesitylene 5 and the like; resins obtained by modifying the novolaktype phenolic resin with rubbers, such as nitrile rubber and the like. These resins are added to the rubber in an amount of 15-45 parts by weight, preferably 20-40 parts by weight, based on 100 parts by weight of carbon 10 black. When the amount of resin is less than 15 parts by weight, the effect of the resin does not substantially appear, while when the amount of resin exceeds 45 parts by weight, excess resin forms agglomerates to cause phase separation in the resulting rubber composition. and deteriorates noticeably the physical properties of the rubber composition.

Further, in the present invention, a mixture of the novolak-type phenolic resin and the novolak-type penodi-zolor novolak-type phenolic resin is preferably used, because the use of zolor the mixture can improve synergistically the durability of the resulting rubber composition as compared with the case where these resins are used alone. In this case, the mixing ratio of novolak-type phenolic resin to novo-lak-type modified phenolic resin, particularly which is the proposition of novolak-type phenolic resin to novolak-type cashew modified phenol resin or novolak-type tall oil modified phenol resin, should be 80/20-20/80, preferably 60/40-40/60.

In the present invention, as the hardener for the resin, adehyde-donors, that is, aldehyde-generating agents, such as hexamethylenetetramine, paraformaldehyde, hexamethoxymethylmelamine and the like, are preferably used. The hardener is used in an amount enough to 35 hardener is used in an amount enough to 35 hardener is used.

In the present invention, in addition to the above described ingredients, vulcanizing agents, such as sul-

described ingredients, vulcanizing agents, such as sulfirt, N.N'-dithodiamines, thirums and the like, vulcanization accelerator, antioxidant, fillers other than carbon 40 black, such as silica and the like, process oil and other additives may be contained in the rubber composition.

The following examples are given for the purpose of illustration of this invention and are not intended as limitations thereof

EXAMPLE 1

Homogeneous rubber compositions having a compounding recipe (parts by weight) shown in the following Table 1 were vulcanized at 145° C. for 40 minutes in 50 a press to produce vulcanized rubber sheets having a thickness of 2 mm. The elongation at break (Eb), 20% modulus and dynamic modulus of the rubber sheets are shown in Table 1. The elongation at break and 20% modulus were measured with respect to an ASTM F 55 type dumbbell according to ASTM D 412. The dynamic modulus was measured at room temperature with respect to a strip-shaped sample having a length of 25 mm, a width of 5 mm and a thickness of 2 mm by means of a high-power spectrometer made by Iwamoto 60 Seisakusho by vibrating the sample at a frequency of 10 Hz and under a dynamic strain of 2%, the sample being used under an elongated state of 5% obtained by applying a static pressure.

It can be seen from Table I that a rubber composition 65 containing resin and carbon black in a mixing ratio defined in the present invention has remarkably improved 20% modulus and dynamic modulus, and fur-

ther has a satisfactorily high elongation at break for practical use.

In order to make a tire light in weight and to improve the ride feeling thereof, provision was made of a tire 1 shown in FIG. 1, which had a size of 165 SR 13 and comprised a belt layer 2 composed of two steel cord plies and a carcass layer 3 composed of one ply formed of polyethylene terephthalate fiber of 1500 d/2 and a bead filler 6, the carcass ply having a turn-up portion 3' extending up to a low position near a rim flange Rr. In FIG. 1, the numeral 4 represents a bead portion, the numeral 5 represents a side wall portion, the numeral 7 represents a bead wire, and the letter R represents a rim. Rubber composition No. 1, No. 3, No. 5, No. 7 and No. 8 shown in Table I were used as a rubber for the bead filler 6 of the tire shown in FIG. 1, and the high speed performance, lateral rigidity index, ride feeling and durability (condition A) of the tire were evaluated. The obtained results are shown in the following Table 2. For comparison, rubber composition No. 1 (conven-

tional rubber composition) described in Table I was used as a rubber for the bead filler 26 of a conventional tire 21 shown in FIG. 2, which had a structure that the turn-up portion 23 of a careas by extended up to the Vicinity of the maximum width portion of the side wall portion 25. In FIG. 3, the numeral 22 represents a bed layer, the numeral 23 represents a carcass layer, the numeral 23 represents a carcass layer, the aumeral 24 represents a carcass layer, the latter R represents a rim and the letter R represents a represent a represent a representation of the representation of the letter R represents a rim and represents a representation of the representation representation

The evaluation of the performances was carried out in the following manner.

(1) High speed performance?

A trie is assembled in a 44 7 tim, inflated under an 40 internal pressure of 2.1 kg/cm² and pressed on a drum having a diameter of 1.7 m under a load of 300 kg/cm². The tire is run on the drum at a speed of 80 km²/tr for 2 hours and left to sind for 3 hours. Then, the trie is run at a speed of 121 km²/tr for 30 minutes. When the tire runs without trouble, the speed is raised stepwide by 8 kin²/hr every 30 minutes. The high speed performance of the tire is constanted by the speed at the breakage at the tire and by the running time until the breakage at the

(2) Lateral rigidity index:

A tire's assembled in 44.7 rim and inflated under an internal pression of 1.7 kg/cm². The tire is pressed and fixed to a push car, which has a jagged non-silp surface, under a vertical load of 320 kg, the push car is pulled to 15 a direction perpendicular to the direction of the tire, and the lateral road, which is caused at a lateral shift of the tire of 15 mm, is measured. The lateral rigidity index of a sample tire is indicated by the ratio of the lateral road of the simple tire to that, calculated as 100, of 0 Conventional tire A.

(3) Ride feeling: The ride feelings of the above obtained tires were compared with each other by the impact index and damping index measured in the following manner.

"A tire is travelled at a speed of 50 km/hr on a road having rubber projections of 10 mm height fixed thereto, and the vibration subjected to the tire in the upraid-down direction is measured in the form of a

reaction in the rotating shaft of the tire by means of an

6 tire without trouble is over 30,000 km, the tire is evalu-

celeration meter. The impact at	osoroing	proper	ty of a	ateo	as an	accepta	ble tire.			
			TA	BLE						
Rubber composition No.	1	2	3	4	5	6	7	8	9	10
Compounding recipe (parts by weight)										
Natural rubber	100	100	100	100	100	100	100	100	50	50
Styrene-butadiene copolymer rubber									50	
Polybutadiene rubber										50
Carbon black*	70		70	70	70	70	70	100	70	70
Novalak-type cashew modified		20	8	14	20	26	40	30	20	20
phenol resin**									-	20
Stearie acid	2	2	2	2	2	2	2	2	2	2
Zine white	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
Noxydiethylenebenzothiazole	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
sulfeneamide									***	1.0
Sulfur	4	4	4	4	4	4	4	4	4	
Hexamethylenetetramine		2	0.8	1.4	2.0	2.6	4.0	3.0	2.0	2.0
Property								510	2.0	2.0
Elongation at break (%)	170	380	220	230	225	200	100	145	220	190
20% modulus (kg/cm²)	13.5	7.5	35.0	43.0	60,5	69.0	92.0	89.0	55.0	63.5
Dynamic modulus (kg/cm²)	120	40	350	520	.730	890	1 530	1 420	710	775

^{*}IA.82 mg/g. DBP:102 mt/100 g NAZ mg/g, Dentited me/100 g Yovelak-type phenol resin obtained by modifying 100 parts by weight of phenol with 40 parts by weight of cashoew nut oil

TABLE 2											
Tire	A	В	С	D	E	F					
Tire structure Rubber composition used in bead filler Performance High-speed performance	FIG. 2 No. 1	FIG. 1 No. I	FIG. 1 No. 3	FIG. 1 No. 5	FIG. 1 No. 7	FIG. 1 No. 8					
Speed (km/h) Running time (min) Lateral rigidity index Ride feeling	185 23 100	169 28 75	-177 27 93	185 28 103	193 2 112	193 4 110					
Impact index Damping index Durability (condition A)	100 100 run over 30,000 km	115 86 11,000 km	112 93 21,500 km	109 110 run over 30,000 km	105 115 16,500 km	106 113 run over 30,000 km					

sample tire is indicated by the impact index, which is the reciprocal of the ratio of the amplitude in the first per- 40 composition of the present invention is used as a bead iod of the above measured wave shape in the tire to that, calculaed as 100, in Conventional tire A.

The vibration damping property of a sample tire is indicated by the damping index, which is the recprocal of the ratio of the damping coefficient calculated from 45 the above measured wave shape in the tire to that, calculated as 100, in Conventional tire A.

(4) Durability (condition A):

A tire is assembled in a 41 J rim, and pressed on a metal drum having a diameter of 1.7 m under an over- 50 load and over internal pressure condition that the strain energy concentrated to the turn-up end of the carcass ply is as large as about 4 times of the strain energy in a practically running tire. Then, the tire is run at a speed of 60 km/hr, and the durability of the tire is shown by 55 the running distance until breakage occurs at the turnup end of carcass ply. When the running distance of a

It can be seen from Table 2 that, when the rubber filler rubber of a tire, the tire has equal or superior to Conventional tire A in the high speed performance, cornering stability and durability and further is remarkably superior to Conventional tire A in the ride feeling.

EXAMPLE 2

Rubber compositions were produced in the same compounding recipe as that of Rubber composition No. 5 in Table 1, except that only the carbon black is replaced by carbon blacks shown in the following Table
3. The viscosity of the resulting rubber compositions
was measured according to JIS K 6300, and the elongation at break, 20% modulus and dynamic modulus thereof were measured in the same manner as described in Example 1. Then, tires having a structure shown in FIG. 1 were produced by the use of the rubber compositions, and the performances of the tires were evaluated in the same manner as described in Example 1. The obtained results are shown in Table 3.

	-	Т	AB	LE 3				
Rubber Composition No.	11	12		13	 5	15	16	17
Carbon black								
1A (mg/g)	36	43		86	82	84	121	145
DBP (ml/100 g)	91	121	2	60	102	150	114	113
Property		1.00						
Monney viscosity	66	73	ì	. 85	92	125	105	132
Elongation at break (%)	200	220		250	225	200	210	190
20% modulus (kg/cm²)	38.5	50.5		51.5	60.5	45.0	53.0	42.5

		TABLE	3-continue	1			
Dynamic modulus (kg/cm²)	420	610	625	750	595	715	530
Tire	G	н	1	D		3	
Performance High-speed performance			4 1.				
Speed (km/hr) running time (min) Lateral rigidity index	185 10 95	185 21 97	185 20 97	185 28 103		185 20 98	
Durability (condition A)	18,000 km	run over 30,000 km	run over 30,000 km	run over 30,000 km		run over 30.000 km	

It can be seen from Table 3 that tires having more improved durability can be obtained by the use of carbon black having an IA of 40-130 mg/g and a DBP of not higher than 130 ml/100 g. Rubber composition No. 15 15 and No. 17 are very poor in the fluidity in the unvulcanized state, and are very difficult in the extrusionmolding. Therefore, the evaluation of tires using the rubber compositions are omitted.

EXAMPLE 3

Rubber compositions were produced according to the compounding recipe shown in the following Table 4. The fatigue life of the rubber compositions was measured in the method as explained later, and other prop25 shown in Table 5. erties thereof were measured in the same manner as described in Example 1. The obtained results are shown in Table 4.

The fatigue life of the rubber composition was mea-

fatigue tester, and the number of vibrations until the durmbbell was broken was measured.

Then, tires having a structure shown in FIG. 1 were produced by the use of Rubber composition Nos. 22-26 shown in Table 4, and the performance of the tires was evaluated in the same manner as described in Example 1. In this case, the durability of the tires was evaluated. not only under condition A, but also under a more 20 severe condition (condition B), that is, under a super overload and super over internal pressure condition, wherein strain energy concentrated to the turn-up end of carcass ply is as large as 8 times of the strain energy

It can be seen from Tables 4 and 5 that, when unmodified phenolic resin is used together with modified phenolic resin, the resulting rubber composition has a synergistically improved durability.

			TABL	E 4	15				
Rubber Composition No.	18	19	20	21	22	23	24	25	26
Compounding recipe (parts by weight)							,		-
Natural rubber	100	100	100	100	100	100	100	100	100
Carbon black*	75	75	75	75	75	75	75	75	75
Cashew-modified phenol resin**	24	18	. 18	6	13	13	/3	/3	75
Phenol resin***		6	12	. 18 .	24.	. 18	12	6	
Tall oil-modified phenol resin****									
Stearic acid			_	_	1		12	18	24
Zine white			. 2	2	2	2	2	2	. 2
	10	10	10	10	10	10	10	10	10
N—oxydiethylenebenzothiazote sulfeneamide	1	- 1	1	1 -		1	ï	i.	ï
Sulfur	6	6	6	. 6					
Hexamethylenesetramine	2.4	2.4	2.4	2.4	2.4	2.4	٠.	•	. 6
Property		- ****·	. 2.9	4.9	. 24	. , 2.4	2.4	2.4	2.4
Elongation at break (%)	160	160 -	155	140	120	- 145	170	165	160
20% modulus (kg/cm²)	72	70	67 :	58 - :-	52	58	65	66	. 67
Dynamic modulus (kg/em²)	980	920	890	715	650				
Fatigue life (number of vibrations)	2 × 10 ⁶	3 × 106				710	780	840	880
rangue me (mamoer of vibrations)	2 X 10°	3 × 10°	5 × 106	4×10^{6}	3×10^{6}	6 × 106	8 × 10 ⁶	4 × 10 ⁶	1 × 106

by modifying 100 parts by weight of phonol with 40 parts by weight of tall oil

- N - 1.		TABLE S	5		
Tire	K	· L	М	N	0
Rubber composition used in bead filler High speed performance	No. 22	No. 23	No. 24	No. 25	No. 26
Speed (km/h) Running time (min) Lateral rigidity index Durability (condition A) Durability (condition B)	185 12 98 run over 30,000 km rubber is broken after 9,800 km running	185 21 101 run over 30,000 km run over 13,000 km	185 28 105 run over 30,000 km run over 13,000 km	185 27 106 run over 30,000 km run over 13,000 km	185 28 106 run over 30,000 km rubber is broken after 13,000 km

sured in the following manner according to ASTM D 65 412. That is, an ASTM F type dumbbell of the rubber composition was fixed under an elongated state of 35% and vibrated at 170° C. by means of an elongation type

What is claimed is

- A bead filler rubber composition, consisting essentially of:
 - (a) 100 parts by weight of a rubber selected from the group consisting of natural rubber, polyisoprene rubber, polybutadiene rubber, styrene-butadjene 5 copolymer rubber and blends thereof;
 - (b) 40-130 parts by weight of carbon black having an iodine adsorbability of 40-130 mg/g and a dibutyl phthalate absorbability of not higher than 130 ml/100 g;
- mi/100 g:

 (c) 13-45 parts by weight per 100 parts by weight of carbon black of a mixture of a novolak phenolic resin selected from the group consisting of novolak phenol resin, novolak resortion lor tesin, and a novolak modified phenolic resin is obtained by modifying with a compound selected from the group consisting of olds, aromatic hydrocarbons, or rubbers, wherein the mixing ratio of the novolak phenolic resin 15 modified phenolic resin 15 modified phenolic resin 16 mod
- A bead filler rubber composition according to claim 1, wherein the amount of the carbon black is 60-120 parts by weight based on 100 parts by weight of the rubber.
- 3. A bead filler rubber composition according to claim 1, wherein the amount of the novolak-type pheno-

- lic resin is 20-40 parts by weight based on 100 parts by weight of the carbon black.
- 4. A bead filler rubber composition according to claim 1, wherein the mixing ratio of the novolak phenolic resin/the modified novolak phenolic resin is 60/40-4060.
- 5. A bead filler rubber composition according to claim 1 wherein said novolak modified phenolic resins are novolak phenolic resins modified with an oil selected from the group consisting of rosin oil, tall oil and cashew nut oil.
- 6. A bead filler rubber composition according to claim 1, wherein said novolak modified phenolic resins are novolak phenolic resins modified with an oil selected from the group consisting of linoleic acid, oleic acid and linolenic acid.
- carbons, or rubbers, wherein the mixing ratio of the novolak phenotic resin is from 80/20 to 20/80 by weight, an anoffective amount of a hardener for the resin.

 A bead filler rubber composition according to claim 1, wherein said novolak modified phenotic resins are novolak phenotic resins modified with an aromatic hydrocarbon selected from the group consisting of xy-lene and mesitylene.
 - A bead filler rubber composition according to claim 1, wherein said novolak modified phenolic resins 25 are novolak phenolic resins modified with a nitrile rubber.

30

50

55

65

BEAD FILLER RUBBER COMPOSITION Inventors: Itsuo Miyake, Kodaira; Keizo Okamoto, Higashikurume; Motonori Bundo, Higashimurayama; Akihiro

Noda, Kodaira, all of Japan

[73] Assignce: Bridgestone Tire Company Limited,
Tokyo, Japan

[21] Appl. No.: 238,875

[22] Filed: Feb. 27, 1981

Related U.S. Application Data

[63] Continuation of Ser. No. 85,346, Oct. 16, 1979, abandoned

[56] References Cited

-		ENT DOCUMENTS	
3,586,735	6/1971	Giller et al	525/139
4,014,827	3/1977	Hart et al	524/511
4,067,373	1/1978	Delobelle et al.	152/354 R
4,250,939	2/1981	Shibata et al	156/362 R

FOREIGN PATENT DOCUMENTS

1260138 3/1961 France .

Primary Examiner—Theodore E. Pertilla
Attorney. Agent, or Firm—Sughrue, Mion, Zinn,
Macpeak, and Seas

7] ABSTRACT

A rubber composition comprising rubber, novolak-type phenolic resin and carbon black is very rigid and is adapted to be used as a bead filter rubber of a tire. Tires using the rubber composition are excellent in the high speed performance, lateral rigidity, ride feeling and durability.

8 Claims, 2 Drawing Figures

BEAD FILLER RUBBER COMPOSITION

This is a continuation of application Ser. No. 85,346, filed Oct. 16, 1979, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a rubber composition, and more particularly, relates to a super rigid rub- 10 ber composition comprising rubber, novolak-type phenolic resin and carbon black, and adapted to be used as a bead filler rubber of a tire.

2. Description of the Prior Art

There have been variously investigated the structure 15 have accomplished the present invention. of bead portion of radial tire in order to satisfy the rigidity and durability required to tire. For example, it has been attempted to improve the dynamic performance and durability of tire by arranging a bead-reinforcing layer in the bead portion. However, this method 20 has drawbacks that a large number of production steps are necessary and the productivity of the tire is very

Japanese Utility Model Application No. 16,084/72, French Patent No. 1,260,138 and U.S. Pat. No. 25 4,067,373 disclose methods for improving the running performance and other property by arranging super rigid rubber in the bead portion. However, these methods do not substantially think of rubber, which can develop fully a function as a bead filler rubber subjected 30 to complicated forces during the running of a tire and can give a sufficiently high durability to a rubber tire.

While, it is well known to use novolak-type phenolic resin in the production of rigid rubber compositions. However, these rubber compositions substantially con- 35 cern nitrile rubber and neoprene rubber having a high compatibility with the resin. The nitrile rubber series of neoprene rubber series rigid rubber is very difficult to be vulcanized together with natural rubber, polybutadiene rubber and the like, which are commonly used as a 40 rubber for tire, and therefore when the nitrile rubber series or neoprene rubber series rigid rubber is used as a tire part, the rubber is apt to be separated from natural rubber, polybutadiene rubber or the like, and can not be practically used.

In order to solve the above described drawbacks, the inventors have variously investigated how to produce a super rigid rubber composition by compounding novolak-type phenolic resin to natural rubber, polybutadiene rubber or the like, and found out the following facts. 50 Novolak-type phenolic resin is essentially incompatible with natural rubber and other rubbers. Therefore, novolak-type phenolic resin is formed into spherical agglomerates during the kneading commonly carried out in the production of rubber, and has the filling effect only. 55 This phenomenon still occurs even when various resins are used as a resin in place of novolak-type phenolic resin for producing a homogenous mixture of the resin with the rubber. However, when novolak-type phenolic resin is compounded to natural rubber or other rubber 60 together with carbon black, the mixture of the resin and carbon black exhibits a reinforcing effect on the rubber, which is completely different from the reinforcing effect of the resin alone on the rubber or the reinforcing effect of the carbon black alone on the rubber, depend- 65 resin. The novolak-type phenolic resin includes novoing upon the mixing ratio of the resin to the carbon black, and a super rigid rubber composition having a durability remarkably superior to that of conventional

resin-reinforced rubber can be obtained. That is, when natural rubber or diene series rubber is mixed with novolak-type phenolic resin, which is essentially incompatible with the rubber, the resin is separated from the rubber to form island-like large agglomerates in the mixture, but when a mixture of novolak-type phenolic resin and carbon black is compounded to natural rubber or other diene series rubber, the resin disperses uniformly in the rubber without forming large agglomerates similarly to the dispersed state in an ordinary mixture of rubber and carbon black. This action of carbon black to the resin is highly influenced by the mixing ratio of the carbon black to the resin and by the kind of the carbon black. Based on the discovery, the inventors

SUMMARY OF THE INVENTION

The feature of the present invention is the provision of a bead filler rubber composition, comprising 100 parts by weight of a rubber selected from the group consisting of natural rubber, polyisoprene rubber, polybutadiene rubber, styrene-butadiene copolymer rubber and blends thereof, 40-130 parts by weight of carbon black, 15-45 parts by weight based on 100 parts by weight of the carbon black of at least one of novolaktype phenolic resin and novolak-type modified phenolic resin, and a hardener for the resin.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional view of the side portion of a tire according to the present invention; and FIG. 2 is a cross-sectional view of the side portion of

a conventional tire.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The rubber to be used in the present invention includes natural rubber, polyisoprene rubber, polybutadiene rubber, styrene-butadiene copolymer rubber and blends thereof. Carbon black is compounded to the rubber in an amount of 40-130 parts by weight, preferably 60-120 parts by weight, more preferably 65-85 parts by weight, based on 100 parts by weight of the rubber. The use of carbon black in an amount of less than 40 parts by weight is too small to disperse homogeneously the necessary amount of resin for reinforcing the rubber. While, when the amount of carbon black is more than 130 parts by weight, the resulting rubber composition is brittle and is very poor in the durability. Further, in the present invention, carbon black having an iodine adsorbability (IA) of 40-130 mg/g and a dibutyl phthalate absorbability (DBP) of not more than 130 ml/100 g defined in ASTM D 1765 is preferably used. Carbon black having an IA of less than 40 mg/g affects adversely the dispersibility of the resin, and carbon black having an IA of more than 130 mg/g is poor in the dispersibility in itself. Therefore, the use of such carbon black is not preferable. When carbon black has a DBP of more then 130 ml/100 g, the carbon black used in an amount sufficient to disperse the resin can not be fully dispersed in the rubber.

In the present invention, the above described carbon black is used together with at least one of novolak-type phenolic resin and novolak-type modified phenolic tak-type phenol resin, novolak-type cresol resin and novolak-type resorcinol resin. The novolak-type modified phenolic resin includes resins obtained by modifying the above described novolak-type phenolic resin with oils, such as rosin oil, tall oil, cashew nut oil, linoleic acid, oleic acid, linolenic acid and the like; resins obtained by modifying the novolak-type phenolic resin with aromatic hydrocarbons, such as xylene, mesitylene 5 and the like; resins obtained by modifying the novolaktype phenolic resin with rubbers, such as nitrile rubber and the like. These resins are added to the rubber in an amount of 15-45 parts by weight, preferably 20-40 parts by weight, based on 100 parts by weight of carbon 10 black. When the amount of resin is less than 15 parts by weight, the effect of the resin does not substantially appear, while when the amount of resin exceeds 45 parts by weight, excess resin forms agglomerates to cause phase separation in the resulting rubber composition, 15 and deteriorates noticeably the physical properties of

the rubber composition. Further, in the present invention, a mixture of the novolak-type phenolic resin and the novolak-type modified phenolic resin is preferably used, because the use of 20 the mixture can improve synergistically the durability of the resulting rubber composition as compared with the case where these resins are used alone. In this case, the mixture gate of novolak-type phenolic resin no novo-2 last-type modified phenolic resin, particularly the mixture gate of covidak-type phenolic resin or the modified phenolic resin or to modulat-type lail oil modified phenol resin, should be 80/20-20/80, preferably 80/40-40/80, prefera-

In the present invention, as the hardener for the resin, addehyde-donors, that is, aldehyde-generating agents, such as hexamethylencetramine, paraformaldehyde, hexamethoxymethylmelamine and the like, are preferably used. The hardener is used in an amount enough to 35 harden the resin.

In the present invention, in addition to the above described ingredients, vulcanizing agents, such as sulfur, NN'-dithoidnaimers, thirums and the like, vulcanization accelerator, antioxidant, fillers other than carbon 40 black, such as silica and the like, process oil and other additives may be contained in the rubber composition.

The following examples are given for the purpose of illustration of this invention and are not intended as limitations thereof.

EXAMPLE 1

Homogeneous rubber compositions having a compounding recipe (parts by weight) shown in the following Table 1 were vulcanized at 145° C. for 40 minutes in 50 a press to produce vulcanized rubber sheets having a thickness of 2 mm. The elongation at break (Eb), 20% modulus and dynamic modulus of the rubber sheets are shown in Table 1. The elongation at break and 20% modulus were measured with respect to an ASTM F 55 type dumbbell according to ASTM D 412. The dvnamic modulus was measured at room temperature with respect to a strip-shaped sample having a length of 25 mm. a width of 5 mm and a thickness of 2 mm by means of a high-power spectrometer made by Iwamoto 60 Seisakusho by vibrating the sample at a frequency of 10 Hz and under a dynamic strain of 2%, the sample being used under an elongated state of 5% obtained by applying a static pressure.

It can be seen from Table I that a rubber composition of containing resin and carbon black in a mixing ratio defined in the present invention has remarkably improved 20% modulus and dynamic modulis, and fur-

ther has a satisfactorily high elongation at break for practical use.

In order to make a tire light in weight and to improve the ride feeling thereof, provision was made of a tire 1 shown in FIG. 1, which had a size of 165 SR 13 and comprised a belt layer 2 composed of two steel cord plies and a carcass layer 3 composed of one ply formed of polyethylene terephthalate fiber of 1500 d/2 and a bead filler 6, the carcass ply having a turn-up portion 3' extending up to a low position near a rim flange R7. In FIG. 1, the numeral 4 represents a bead portion, the numeral 5 represents a side wall portion, the numeral 7 represents a bead wire, and the letter R represents a rim. Rubber composition No. 1, No. 3, No. 5, No. 7 and No. 8 shown in Table 1 were used as a rubber for the bead filler 6 of the tire shown in FIG. 1, and the high speed performance, lateral rigidity index, ride feeling and durability (condition A) of the tire were evaluated. The

obtained results are shown in the following Table 2. For comparison, rubber composition No. 1 (conventional rubber composition) described in Table 1 was used as a rubber for the bead filler 26 of a conventional tire 21 shown in FIG. 2, which had a structure that the turn-up portion 23' of a carcass ply extended up to the vicinity of the maximum width portion of the side wall portion 25. In FIG. 2, the numeral 22 represents a belt layer, the numeral 23 represents a carcass layer, the numeral 24 represents a bead portion, the numeral 27 represents a bead wire, the numeral 28 represents a cord layer, the letter R represents a rim and the letter Ry represents a rim flange. The high speed performance, lateral rigidity index, ride feeling and durability (condition A) of the tire 21 using Rubber composition No. 1 were evaluated. The obtained results are also shown in Table 2.

The evaluation of the performances was carried out in the following manner.

(1) High speed performance: A trie is assembled in a 4 J rim, inflated under an internal pressure of 2.1 kg/cm² and pressed on a drum having a diameter of 1.7 m under a load of 39 kg/cm². The tire is run on the drum at a speed of 80 km/hr for 2 hours and left to stand for 3 hours. Then, the tire is run at a speed of 121 km/hr for 30 minutes. When the tire runs without trouble, the speed is raised stepwise by 8

at a speed of 121 km/hr for 30 minutes. When the tire 4s runs without trouble, the speed is raised stepwise by 8 km/hr every 30 minutes. The high speed performance of the tire is evaluated by the speed at the breakage of the tire and by the running time until the breakage at the speed.

30 (2) Lateral rigidity index:

(A) Lateral rigistly insex:

A trie is assembled in a 43 7 rim and inflated under an internal pressure of 1.7 rig/cim². The tis is pressed and freed to a push car, which has a jugged non-slip surface, under a vertical load of 20 kg, the push car is pulled in an additional control of the push cars. It is a superior of the control of the control of the control of 15 mm, is measured. The lateral rigidity index of a sample tire is indicated by the ratio of the lateral road of the sample tire to that, calculated as 100, of Conventional tire A.

(3) Ride feeling: The ride feelings of the above obtained tires were compared with each other by the impact index and damping index measured in the following manner.

"A tire is travelled at a speed of 50 km/hr on a road having rubber projections of 10 mm height fixed thereto," said the vibration subjected to the tire in the up-and-down direction is measured in the form of a

reaction in the rotating shaft of the tire by means of an acceleration meter. The impact absorbing property of a

tire without trouble is over 30,000 km, the tire is evalu-

interest in the impact at	Joording	proper	y Ol a	atec	ı as an	accepta	ole tire.			
-			TA	BLE 1	ı					
Rubber composition No.	1	2	3	4	5	6	7	8	9	10
Compounding recipe (parts by weight)										
Natural rubber Styrene-butadiene copolymer rubber	100	100	100	100	100	100	100	100	50 50	50
Polybutadiene rubber Curbon black*	70		70	70	70	70	70	100	70	50 70
Novalak-type cashew modified phenol resin**		20	8	14	20	26	40	30	20	20
Stearic acid	2	2	2	2	2	2	2	2	2	2
Zinc white	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
N—oxydiethylenebenzothiazole sulfeneamide	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Sulfur	4	4	4	4	4	4	4	4	4	4
Hexamethylenetetramine Property		2	0.8	1.4	2.0	2.6	4.0	3.0	2.0	2.0
Elongation at break (%)	170	380	220	230	225	200	100	145	220	190
20% modulus (kg/cm²)	13.5	7.5	35.0	43.0	60.5	69.0	92.0	89.0	55.0	63.5
Dynamic modulus (kg/cm²)	120	40	350	520	730 -	890	1,530	1,420	710	775

*1A:82 mg/g. DBP:102 ml/100 g -type phenol resin obtained by modifying 100 parts by weight of phenol with 40 parts by weight of enthosw nut oil

		TAI	BLE 2			
Tire	A	В	C	Ď	E	F
Tire structure Rubber composition used in bead filler Performance High-speed performance	FIG. 2 No. I	FIG. 1 No. I	FIG. 1 No. 3	FIG. I No. 5	FIG. 1 No. 7	FIG. 1 No. 8
Speed (km/h) Running time (min) Lateral rigidity index Ride feeling	185 23 100	169 28 75	177 27 93	185 28 103	193 2 112	193 4 110
Impact Index Damping index Durability (condition A)	100 100 run over 30,000 km	115 86 11,000 km	112 93 21,500 km	109 110 run over 30,000 km	105 115 16,500 km	106 113 run over 30,000 km

sample tire is indicated by the impact index, which is the reciprocal of the ratio of the amplitude in the first per- 40 composition of the present invention is used as a bead iod of the above measured wave shape in the tire to that, calculaed as 100, in Conventional tire A.

The vibration damping property of a sample tire is indicated by the damping index, which is the recprocal of the ratio of the damning coefficient calculated from 45 the above measured wave shape in the tire to that, calculated as 100, in Conventional tire A.

(4) Durability (condition A):

A tire is assembled in a 41 J rim, and pressed on a metal drum having a diameter of 1.7 m under an over- 50 load and over internal pressure condition that the strain energy concentrated to the turn-up end of the carcass ply is as large as about 4 times of the strain energy in a practically running tire. Then, the tire is run at a speed of 60 km/hr, and the durability of the tire is shown by 55 the running distance until breakage occurs at the turnup end of carcass ply. When the running distance of a

It can be seen from Table 2 that, when the rubber filler rubber of a tire, the tire has equal or superior to Conventional tire A in the high speed performance, cornering stability and durability and further is remark-

ably superior to Conventional tire A in the ride feeling. EXAMPLE 2

Rubber compositions were produced in the same compounding recipe as that of Rubber composition No. 5 in Table 1, except that only the carbon black is re-placed by carbon blacks shown in the following Table The viscosity of the resulting rubber compositions was measured according to JIS K 6300, and the elongation at break, 20% modulus and dynamic modulus thereof were measured in the same manner as described in Example 1. Then, tires having a structure shown in FIG. 1 were produced by the use of the rubber compositions, and the performances of the tires were evaluated in the same manner as described in Example 1. The obtained results are shown in Table 3.

		TA	BLE 3				
Rubber Composition No.	11	12	13	5	15	16	17
Carbon black							
1A (mg/g)	36	43	86	82	84	121	145
DBP (ml/100 g)	91	121 -	60	102	150	114	113
Property							
Mooney viscosity	66	73	. 85	92	125	105	132
Elongation at break (%)	200	220	250	225	200	210	190
20% modulus (kg/cm ²)	38.5	50.5	51.5	60.5	45.0	53.0	42.5

		TABLE	3-continue	1			
Dynamic modulus (kg/cm²)	420	610	625	750	595	715	530
Tire	G	н	1	. D		3	
Performance High-speed performance			i i.				
Speed (km/hr) running time (mio) Lateral rigidity index Durability (condition A)	185 10 95	185 21 97	185 20 97	185 28 103		185 20 98	
Durability (coedition A)	18,000 km	30,000 km	run over 30,000 km	run over 30,000 km		run over 30.000 km	

It can be seen from Table 3 that tires having more . fatigue tester, and the number of vibrations until the improved durability can be obtained by the use of carbon black having an IA of 40-130 mg/g and a DBP of not higher than 130 ml/100 g. Rubber composition No. 15 15 and No. 17 are very poor in the fluidity in the unvulcanized state, and are very difficult in the extrusionmolding. Therefore, the evaluation of tires using the rubber compositions are omitted.

EXAMPLE 3 ...

Rubber compositions were produced according to the compounding recipe shown in the following Table 4. The fatigue life of the rubber compositions was measured in the method as explained later, and other prop- 25 shown in Table 5. erties thereof were measured in the same manner as described in Example 1. The obtained results are shown in Table 4.

The fatigue life of the rubber composition was mea-

durmbbell was broken was measured.

Then, tires having a structure shown in FIG. 1 were produced by the use of Rubber composition Nos. 22-26 shown in Table 4, and the performance of the tires was evaluated in the same manner as described in Example 1. In this case, the durability of the tires was evaluated, not only under condition A, but also under a more severe condition (condition B), that is, under a super overload and super over internal pressure condition, wherein strain energy concentrated to the turn-up end of carcass ply is as large as 8 times of the strain energy in a practically running tire. The obtained results are

It can be seen from Tables 4 and 5 that, when unmodified phenolic resin is used together with modified phenolic resin, the resulting rubber composition has a synergistically improved durability.

			TABL	E 4					
Rubber Composition No.	18	19	20	21	22	23	24	25	26
Compounding recipe (parts by weight)									
Nutural rubber	100	100	100	100	100	100	100		
Carbon black*	75	75	75	75	75		100	100	100
Cashew-modified phenol resin**	24	18			73	75	75	75	75
Phenol resin***	24		18	.6					
Tall oil-modified phenol resin****		. 6 .	12	. 18 .	24	. 18	12	6	
Stearic acid						6	12	18	24
	. 2	- 2	. 2	2	. 2	2	2	,	
Zine white	10	10	10	- 10 -	10	10	10	10	10
N—oxydiethylenebenzothiazole sulfeneamide	1	- 1	ì	1 :	ĩ	ĩ	ĭ	1	1
Sulfur	6	. 6	6					2 .	
Hexamethylenetetramine	2.4	2.4	2.4	٠.	2.	6,	6	•	- 6
Property		4.7	29	2.4	. 2.4	2.4	2.4	2.4	2.4
Elongation at break (%)	160	160 -	155	140	120	145	170	165	
10% modulus (kg/cm²)	72	70	67	58	52	58		66	160
Dynamic modulus (ke/cm²)	980	920	890	715	650		65		67
Fatigue life (number of vibrations)	2 × 10 ⁶			4 × 106		710	780	840	880
		3 × 10°	5 × 10 ⁶		3 × 106	6 × 106	8 × 106	4 × 106	1 4 10

		IABLES			
Tire	K	L	м	N	0
Rubber composition used in bend filler High speed performance	No. 22	No. 23	No. 24	No. 25	No. 26
Speed (km/h). Running Jime (min) Lateral rigidity index Durability (condition A) Durability (condition B)	185 12 98 run over 30,000 km rubber is broken after 9,800 km	185 21 101 run over 30,000 km run over 13,000 km	185 28 105 run over 30,000 km run over 13,000 km	185 27 106 run over 30,000 km run over 13,000 km	185 28 106 run over 30,000 km rubber is broken after 13,000 km

sured in the following manner according to ASTM D 65 412. That is, an ASTM F type dumbbell of the rubber composition was fixed under an elongated state of 35% and vibrated at 170° C. by means of an elongation type

What is claimed is:

difying 100 parts by weight of phenol with 40 parts by weight of cashew nut oil

ed by modifying 100 parts by weight of phenol with 40 parts by weight of tall oil

- 10 1. A bead filler rubber composition, consisting essenlic resin is 20-40 parts by weight based on 100 parts by tially of:
 - (a) 100 parts by weight of a rubber selected from the group consisting of natural rubber, polyisoprene rubber, polybutadiene rubber, styrene-butadiene 5 copolymer rubber and blends thereof;
 - (b) 40-130 parts by weight of carbon black having an iodine adsorbability of 40-130 mg/g and a dibutyl
- phthalate absorbability of not higher than 130 ml/100 g: (c) 15-45 parts by weight per 100 parts by weight of
- carbon black of a mixture of a novolak phenolic resin selected from the group consisting of novolak phenol resin, novolak cresol resin, novolak resorcinol resin; and a novolak modified phenolic resin 15 obtained by modifying with a compound selected from the group consisting of oils, aromatic hydrocarbons, or rubbers, wherein the mixing ratio of the novolak phenolic resin to the novolak modified effective amount of a hardener for the resin.
- 2. A bead filler rubber composition according to claim 1, wherein the amount of the carbon black is 60-120 parts by weight based on 100 parts by weight of the rubber.
- 3. A bead filler rubber composition according to claim 1, wherein the amount of the novolak-type pheno-

- weight of the carbon black.
- 4. A bead filler rubber composition according to claim 1, wherein the mixing ratio of the novolak phenolic resin/the modified novolak phenolic resin is 60/40-40/60.
- 5. A bead filler rubber composition according to claim 1 wherein said novolak modified phenolic resins are novolak phenolic resins modified with an oil selected from the group consisting of rosin oil, tall oil and cashew nut oil.
- 6. A bead filler rubber composition according to claim 1, wherein said novolak modified phenolic resins are novolak phenolic resins modified with an oil selected from the group consisting of linoleic acid, oleic acid and linolenic acid.
- 7. A bead filler rubber composition according to claim 1, wherein said novolak modified phenolic resins phenolic resin is from 80/20 to 20/80 by weight, an 20 are novolak phenolic resins modified with an aromatic hydrocarbon selected from the group consisting of xylene and mesitylene.
 - 8. A bead filler rubber composition according to claim 1, wherein said novolak modified phenolic resins 25 are novolak phenolic resins modified with a nitrile rub-

35

45

SO 55

② 特 許 公 報(B2)

B257 - 30856

⊕ Int.Ct.³	激別記号	庁内整理番号	❷❷公告 昭和57年(1982) 7月1日
C 08 L 7/00 B 29 H 17/32 C 08 K 3/04 C 08 L 9/00 /(C 08 L 7/00 61/10)	CAM	6516 4 J 7166 4 F 6516 4 J	発明の数 1
(C 08 L 9/60 61/10)			(全月頁)

QCードフィラーゴム組成物

£0.4€ 順 昭53-127256 倒出 顧 昭53(1978)10月18日 開 鉛55--54337 660公

(Q)635 (1980) 4 A 21 B

79発明者三年途男

小平市小川東町2800-1 **70**発 明 者 岡本摩三

東久留米市柳窪 2~6~4 和祭 明 者 文章元副

東村山市恩多町 2-29-1

加强 明 考 野田昭弘 小平市小川東町2800~1

の出版人プリデストンタイヤ株式会社 東京都中央区京橋1丁目10番1号

四代 理 人 并理士 杉村皖秀 外1名

の特許請求の範囲

1 天然ゴム、ボリイソプレンゴム、ポリプタジ 20 フイラーゴム組成物。

エンゴムまたはステレンーブタジエン共前会体ゴ ム若しくはとれらのブレンドゴム100重量額に 対して、40~130重量部のカーボンプラツク と、ガーボンブラツク100重量部当り15~45 重量部の割合でノボラツク型フェノール系樹脂お 25 発明の詳細な説明

よび!またはノボラツク型変件フエノール英樹脂 を加え、更に樹脂用硬化剤を配合したことを特徴 とするビードフイラーゴム組成物。

2 特許請求の範囲第1項記載のゴム組成物にお いて、カーボンブラツクがヨウ素吸着量(IA)が 30 関する。 40~130m/g. ジプチルフタレート吸油量

(DBP)が130×1/1009以下であるカーボンブ ラツクであるビードフイラーゴム組成物。

3 特許豁水の範囲第1項記載のゴム組成物にお ド部に配置することによつてタイヤの運動性能、 いて、カーボンブラツクの配合量が、ゴム100 85 耐久性能等を改善させる試みがなされているが、

演員部に対して60~120演員部であるビード フイラーゴム組成物。 4 特許請求の範囲第1項記載のゴム組成物にお

いて、ノボラツク型フェノール系樹脂の配合量が 5 カーボンブラツク100重量部当り20~40重

最部であるビードフイラーゴム組成物。 5 特許請求の範囲第1項記載のゴム組成物にお いて、ノボラツク型フエノール系樹脂がノボラツ ク型フエノール樹脂、ノボラツク型クレゾール樹

10 階、ノボラツク類レゾルシン後脂であるビードラ イラーゴム組成物。

6 特許請求の範囲第1項記載のゴム組成物にお いて、ノポラツク型変性フェノール系樹脂が、ロ ジン油、トール油、カシユー油、リノール酸、オ 15 レイン酸、リノレイン酸等のオイルで変性した/ ボラツク型フエノール系樹脂、キシレン、メシチ レン等の芳香族炭化水業で変性したノボラツク型 フエノール系樹脂、ニトリルゴム等のゴムで変性 したノボラツク型フェノール系物能であるビード

7 特許請求の範囲第1項記載のゴム組成物にお いて、ノボラツク型フェノール系樹脂とノボラツ ク型変性フエノール系樹脂の混合割合が80/20 ~20/80であるビードフィラーゴム組成物。

本発明はゴム組成物、詳しくはノボラツク型フ エノール系機能とカーボンブラツクを併用して配 合することによって、勢にタイヤのビードフィラ - ゴムに好適に使用される整硬質のゴム組成物に

ラジアルタイヤのビード部構造はタイヤとして 要求される剛性と耐久性を満足させるべく種々の 検討がなされており、例えばビード補強層をビー このようなものは製造工数が多くなり生産性が著 しく劣るといつた欠点を有していた。

一方、超硬質のゴムをピード部に配置するとと によつて運動性能等を改善することは、実公路 47-16984号公報、フランス国務許第 1,260.138号明細書、米国特許第4,067,373 号明細書等によりよく知られていることである。 しかしタイヤ走行中の複雑な入力下にあるビード フイラーゴムとしての機能を十分に発揮させ、そ んど考慮されていないのが現状である。

他方、硬質ゴム組成物としては、ノボラツク型 フエノール系樹脂を使用することは以前からよく 知られているが、それは樹脂と招稿性の良いニト リルゴムやネオプレンゴムについてのものがほと 15 本発明において使用するゴムは上記の如く天然 んどで、このようなニトリルゴムやネオブレンゴ ム系の硬質ゴムをタイヤ部材として使用するには、 従来からタイヤ用ゴムとしてよく使用されている 天然ゴム、ポリブタジエンゴム等との共加硫性が 用に供し得ない。

上記欠点を解決するため本発明者らは天然ゴム やポリブタジエンゴム等にノボラツク型フエノー ル系樹脂を配合して超硬ゴム組成物を得んとして フェノール系樹脂は本質的に非相溶であり、適常 のゴム製造で行なわれているゴム温燥の手法では ノボラツク型フェノール系側脂は球状の凝集体と なつてしまい、単なる究権効果しか示さず、この 樹脂を用いたとしても大差はない。しかしながら 上記の天然ゴム等とノボラツク型フェノール系樹 脂の深にカーボンブランクを併用するとその併用 比により、ゴムと樹脂系による補強効果あるいは く異質の補強効果が現われ、従来の樹脂精強ゴム には見られなかつた極めて耐久性に優れた認硬ゴ ム組成物が得られることを確かめた。すなわち本 米互に非相感で梅島状の大きな相分離状態となる ノール系制脂との混合系にカーボンプラツクを併 **角していくと、ゴム中で樹脂は大きな相分離状態** から通常のゴムとカーボンブラツク系にみられる 様なカーボンブラツクの分散状態に近い領域まで 均質に分散されるようになり、このカーボンブラ ツクの樹脂に対する相互作用はカーボンブラツカ と側盾の併用比あるいはカーボンブラツクの種類 によつても大きく影響を受けるととを見出し本発

5 朝を達成するに至つた。

従つて本発明は、天然ゴム、ボリイソブレンゴ ム、ポリブタジエンゴムまたはスチレンーブタジ エン共量合体ゴム若しくはとれらのブレンドゴム 100 重量部に対して、40~130 重量部のカ の上でタイヤとして必要な耐久性等についてほと 10 ーボンブラツクと、カーボンブラツタ100重量 部当り15~45重量部の割合でノボラツク型フ エノール系樹脂および/またはノボラツク型変性 フェノール系樹脂を加え、更に樹脂用酸化剤を配 合したビードフイラーゴム組成物に関する。

ゴム、ポリイソプレンゴム、ポリブタジエンゴム、 またはスチレンーブタジエン共重合体ゴム若しく はこれらのブレンドゴムで、かかるゴム100章 盤部に対してカーボンプラツクを40~130隻 着しく劣るため、セパレーション等を転じ易く类 20 最部好ましくは60~120嵐量部、更に好まし くは65~85重量部配合する。カーボンブラツ クが40重量部以下では、補強効果を与えるのに 必要な量の樹脂を均一に分配させるには少なすぎ、 130重量部以上ではゴムが脆くなりゴム細酸物 種々研究したところ、天然ゴム等とノボラツク型 25 の耐久性が確端に悪化するため好ましくない。更 に本発明ではカーボンブラツクとして ASTMD 1765に規定するヨウ素敷治量(IA)が40~ 1 3 0 mg / g、ジブチルフタレート吸油量(DBP) が130吨/100分以下のカーポンプラツクであ ことはゴムとの相談性を高めるために各種の変性 30 ればより好適である。IAが40㎏/8以下では 樹脂の分散性に悪影響を与え、130%/1009 以上ではカーボンブラツク自体の分散性が劣るた め好ましくない。またDBPが130m2/1009 以上では、樹脂を分散させるために必要なカーボ ゴムとカーボンブラツク系による補強効果とは全 35 ンプラツク量において、カーボンブラツクの分散 性が悪化してしまう。

本発明の組成物においては、上記カーボンブラ **ツクに、ノボラツク型フェノール系樹脂および/** またはノボラツク型変性フェノール系制脂を併用 天然ゴムや他のジェン系ゴムとノボラツク壺フェ 40 するが、ノボラツク型フエノール系樹脂とは、ノ ポラツク型フエノール樹脂、ノボラツク型クレゾ ール歯能、ノボラツク型レゾルシン樹脂であり、 ノボラツク型変性フェノール系樹脂とは前記のノ ポラツク型フエノール系数艦を、ロジン油、トー ル油、カシユー油、リノール酸、オレイン酸、リ / レイン酸等のオイルで変性した樹脂、キシレン、 メシチレン等の芳香族炭化水素で変性した樹脂。 ニトリルゴム等のゴムで変性した樹脂である。そ してこれらの倒路はカーボンブラツク100重量 5 で制定した。 部当り15~45重量部、好ましくは20~49 重量部をゴムに加える。樹脂の添加量が15重量 部以下では樹脂を添加した効果がほとんどなく補 強効果は期待できず、45重量部以上では過剰の 樹脂が凝集体を形成し相分離を起とし、ゴム組成 10 している。 物の物性を著しく低下させるため好ましくない。 また本祭明においては後述の実施例で説明するよ うにノボラツク型フェノール系樹脂とノボラツク 型変性フェノール系樹脂を併用することによつて 各々単微で使用した場合に此較して、添加したゴ 15 繊維からなる層の1プライを備えたサイズ1 6 5 ムの耐久性が相乗的に向上するため、このように 併用して用いることが好ましい。この場合、ノボ ラツク型フエノール系削齢とノボラツク型変性フ エノール系樹脂、好ましくはノポラツク盟フェノ ール額脂とノボラック型カシユー変性フェノール 20 47 およびん 8 の名種ゴム組成物を用いて高速走 樹脂あるいはノボラツク型トール油変性フェノー ル樹脂を併用した時の混合割合は重量比で80/ 20~20/80、更に好ましくは69/40~ 40/60である。

供与体であるヘキサメチレンテトラミン。パラホ ルムアルデヒド、ヘキサメトキシメチルメラミン 等のホルムアルデヒド発生剤が好流で、樹脂を硬 化させるのに必要な最を配合することができる。

本発明においては、前記以外にも硫黄、N,N 30 1) 高速走行性 ージテオジアミン類やチウラム類等の加碳剤、加 硫促進剤、老化防止剤、カーボンブラツク以外の 例えばシリカ等の充塩制、プロセスオイル等を添 加しても良い。

以下実施例により本発明を更に詳しく説明する。35 突縮例 1

第1表に示す配合内容(重量部)により、混練 りした各種ゴム組成物をプレス中にて145℃で 4.0分間加硫して、厚さ2㎜の加硫ゴムシートを 作成した。とのゴムシートを用いて破断時の伸び 40 2) 横剛性指数 (Eb)、20%モジュラスおよび動的弾性率を削 定した。鎖果を第1表に示す。尚、Ebと20% モジュラスについてはASTMD 412に準じ ASTM P似ダンベルにて測定した。また動的弾性

塞については岩本製作所製ハイパワースペクトロ メーターを用い、室弧にて長さ25mg、幅5mg。

厚さ240短冊状サンプルに、静的に5%神長さ せた状態で、局族数10Hz、動盃2%で振動させ

第1要より明らかな如く、樹脂とカーボンブラ ツクを本発明の併用比にて配合したゴム銀成物は 20%モジュラスおよび動的弾性薬が落しく向上 し、破断伸びにおいても実用上満足される値を有

次いでタイヤの軽量化や乗心地性能を向上させ るために、朝1図に示すようなベルト暦2として 2プライのスチールコード階とカーカス層3とし て15004/2のポリエテレンテレフタレート SR 13のタイヤ1において、カーカスプライの 折返し3をリムフランジ firの近傍の低い位置に とどめた供試タイヤ1のビードフィラー6のゴム として前記第1表に示す配合が1,463,465, 行性、横剛性指数、特殊耐久ドラム試験(A条件。 B条件) について検討した。結果を第2表に示す。 参考のために、第2回に示すカーカスプライの折 返し23/をサイドウオール部25の最大幅付近ま 本発明において、樹脂用硬化剤とはアルデヒド 25 で延長した機能を育するタイヤク1のビードフィ ラー26のゴムとして、前記第1表の配合※1の ゴム組成物を用いた従来タイヤについても検討し、 結果を合せて第2巻に示す。

尚、評価法は次の通りである。

タイヤを4 1/2 Jリムに組み、2.1 kg/cdの 内圧を充填し、商径1.7元の金属ドラム上に 390kgの荷量で圧然し、80km/hの速度で 2時間の低し走行を行なつた後、3時間放置。 次いで121㎞/1の速度で30分間走行させ 異常なく完定すると、8㎞/ b 速度を上げ30 分間走行させる。同様に完造すると以下8㎞/6 3 0分の刻みで連続ステツブアツプし、故障発 生時の速度および逆行時間を評価した。

タイヤを4 シッよりムに組み1.7kg/cdの内 圧を充填し、表面に鋸歯状の滑り止めを施した 台車上に320kgの垂直荷車で圧禁固定し、5 イヤの側方向に台車を引張り、タイヤ機変位

1 5 amの時に生じる傾荷重を測定し従来タイヤ を 1 0 0 として指数で表示した。

を190として指数で表示した。 3) 乗心地性

路面に高さ10mのゴム状突起を固定し、こ イの上を50加入1の透慮で通過するときの上下 5 通常 万向振動をタイト取付他の反力として加速度計 にて測定した。この時記費される放影から第1 同期の振幅を当り稿数として、従来タイト対比 の連数で表示、又、上記の記録成形より表表係 示し数を求め、従来タイト対比の運動の破験指数と 10 た。

して表示した。 4) 特殊耐久ドラム試験(A条件)

タイヤを4 1/2 J リムに組み、カーカスプライの抗急し端部に集中する恵まネルギーが映車 高常老行時の約4倍となる際な過剰意、適内区の条件で画程1.7 まの金属ドラム上に圧光して60加/hの速度で走行させ、カーカスプライ抗名したか30,000 にまで走行すれば合格とした。

ß

	N	m		s,	ý	7	œ	6	1.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1	100	100	100	100	100	001	20	5.0
- ステファーシャン・ス大田和存コル								20	
ポリプタジェンゴム									5 th
カーボンブラック・1 .9 70		1.0	0.2	10	2.0	2 0	100	2.0	0 2
ノボシンの製カツリー製和フェノーを整路	2.0	ø	1 4	2.0	2.6	4 0	3.0	2 0	0 2
ステアコン製	63	63	63	23	60	2	67	81	23
學 卷 图	40	2.5	r.	7. 8	2,5	7. 5	7.5	e.	7.5
N-オキンジルサレンスンブキアゾー 1.5 システンドンド・ド	÷.	1.5	1.5	1.5	.; ss	1.5	1.3	1.5	1.5
*	**	*	4	*	4	7	4	4	₹
ハッルールハコネスやすく	62	6.8	1.4	2.0	2.6	4.0	3.0	2.0	2.0
秋									
被形略の伸び、% 170	380	220	230	2 2 5	200	100	1 4 5	220	190
20%キジュラス、19/0前 13.5	5.5	3 5.0	4 3.0	6 0.5	6.9.0	9 2.0	9 9 0	S 55.0	63.5
報記 報知 · 2 / 2	4.6	350	520	730	068	1530	1420	710	775

フェノール100重量部に対してカシュー袖40英最部で変性したノボラツク型フェノール樹脂 *1 1A82時/8,DBP102%/1008 *2 フェノール100戦闘略K対してカシュー語。

12

タイヤ内容	A	В	c	D	E	F
タイヤ構造	第2図	第1図	第1図	第1図	第1回	第1図
ビードフィラーに使用したゴム配合ル	16 1	461	A6.3	<i>1</i> 6.5	16.7	16.8
結	185 23	169 28	177	185	193	193
掰 幣 性 指 数	100	7 5	9 8	103	112	110
乗心地性 当り指数 減衰指数	100	1 1 5 8 6	112 93	109	105	106
特殊耐久ドラム試験(A条件)	3 0,0 0 0 km 完走	11,000 km	2 1,5 0 0 km	30,000 /ar 完定	16.500 km	3 0,0 0 (/ar 完走

第2表から明らかなように、本発明のビードフ イラーゴム組成物を使用すれば高速走行性、操縦 安定性および耐久性が従来タイヤAと同等若しく 20 -粘度をJIS K 6300に準じて測定し、更に はそれ以上になり、しかも無心地性が差しく改善

されている。 実施例 2 前記第1表の配合%5の組成でカーポンプラツ

クのみを第3数に示した各種のカーボンブラツク に換えて連練りしたゴム組成物について、ムーニ 実施例1と同様に破断時の伸び、20%モジュラ シ、動的弾性率を求めた。次いでタイヤにおける

評価を第1図に示した構造のタイヤで実施例1と 同様に行なつた。結果を第3表に示す。

练 表

配合內容	11.	1 2	1 3	- 5	1 5	1 6	1 7
カーボンブラツク IA ***タ/3 DBP **セ/1009	3 6 9 1	43 121	8 6 6 0	8 2 1 0 2	8 4 1 5 0	121	145
結果 ムーニー粘度 破断時の伸び % 20%モジュラスkg をは 動的 弾性 塞 kg /をは	66 266 38.5 420	73 220 50.5 610	8 5 2 5 0 5 1. 5 6 2 5	9 2 2 2 5 6 0.5 7 5 0	125 200 45.0 595	103 210 53.0 715	1 3 2 1 9 0 4 2.5 5 3 0
タイヤ記号	G	н	I	D	-	J	
結 架 高速走行性 km/h 分	185	185	185	185	7	185	/
機剛性指数	95	9 7	9 7	103	1	98	/
特殊耐久ドラム試験 (A 柴 件)	18,000 km	30,500 編 完定	30,000 左 完定	30.000 宛走		3 0,0 0 0 km 完走	/

第3表から明らかな様化、カーボンプラツク IAN40~130mg/8 T. DBP #130me/ 100分以下であれば耐久性が一段と改善されて いる。尚、配合※15と※17のゴム組成物は、 未加硫時の流動性が著しく劣り、拇出成型が非常 5 実施例1と同様に行なつた。但し耐久性について に困難であつたために、タイヤとしての評価は省 略した。

実施例 3

第4級および第5表に示した配合内容により混 練りした各種ゴム組成物について複労汚命と他は B 件と同様の特殊耐久ドラム試験(B条件)を行な 実施例1と同様に評価した。結果を第4表および 第5表に示す。尚、核労務命については、ASPMD 412 化準じASTM F型ダンベルにて定体基型症 労試験機を用い温度 70℃、伸長率 35%に固定 し振動を与え、欲断するまでの振動数を求めた。 お いる。

次いでタイヤにおける評価を上記簿4袋の配合ル 22~配合化26のゴム組成物および第5祭の配 合派27,28,30,32,34および36のゴム 組成物を使用して第1図に示した機造のタイヤで は特殊耐久ドラム試験(A条件)に加え、悪に渦 酷な条件、すなわちカーカスプライの折返し端線 に集中する歪エネルギーが実事通常走行時の約8 倍となる様な結婚荷重、超過内圧の条件にてA条 つた。結果を集 6表に示す。

第4~6表から明らかなように、飯変性のフェ ノール系衝撃を変性したフェノール系樹脂を併用 すると、相乗的にゴム組成物の耐久性が向上して

椒

絿

5 6	100	7.5			23	2	1 0	-	4	4		160	6.7	880	1×10
2.5	100	7.5		9	1 8	63	1.0		6D	2.4		165	6 6	8 4 0	4×10
2 4	160	7.5		1 2	1.2	83	10	-	9	63		170	6.5	082	8 × 1 0°
23	100	7.5		1.8	9	81	10	. 7	¢	2.4		1 4 5	\$ \$	7.10	6×10°
2.2	100	7.5		2.4		~	10	-	9	2.4		120	200	650	3×10°
2.1	100	7.5	•	8 1		63	1.0		·c	24		140	8	715	4×10°
2.0	100	5 2	2	12		~	0.	-	9	2.4		155	6.7	068	5×10 ⁶
1.9	100	2 2	8 7	ø		~7	10	=	ø	7.4		160	2.0	920	3×10
1.8	100	2 2	2 4			7	10	-	9	2.4		160	7.2	086	2×106
E & K			- ケ粒脂 * 3	er;				アンバンド	-	ナトラミン		88	7 Kg/Gg	78 CS	Ø
医谷内容	実践に	カーボンブラック*1	カンユー安性フェノール協脂 *2	フェノール資脂・3	トール油液性フェノール樹脂*	ステアリン酸	報 参 組	N ーダキンジ ロチワンベンブ チアプーアスキンロング ニア	紙盤	くか サイナンファ オキャン	胀堰	被散略の伸び	20%モジュラス	動的弹性率	被分寿命

フェノール100重量部に対してカシュー論40重量部で変性したノボラツク型フェノール機器 IA82mg/8, DBP 102mg/1008 -

* *

無変性のノボラック型フェノール樹脂

フェノール100盤量部に対してトール油60重量部で変性したノボランク型フェノール制度

熈

s

		2	17	Т	_	7	4	21		_1	9	2.4	٥	216	· ·	90	
e .	100	2				_	23	_	-	_			1.6	2.5	7.3	4× 1 08	
8	100	7 5	9				18	~	10		9	2. 4	150	6.2	765	5×10 ⁶	遊園
3.4	100	7.5	1.2				1.2	2	1 0	-	S	2.4	3 4 0	6 1	760	6×106	ノール機能フェノール
3 3	100	7.5	1.8				9	2	1.0	1	9	2.4	130	5.7	730	4×10	トルエン変性ノホラツク型フエノール機能 ニトリルゴム変性ノギラツク型フエノール機能
3.2	100	7.5				24		23	1.0	1	9	2.4	160	9 9	750	4×106	ン変性ノホニルゴム液性)
3.1	100	5.2	9			1.8		2	10	1	9	2.4	150	63	800	5×106	* 4 + 1.7.7
3.0	100	7.5	1.2			1.2		2	1.0	¥	9	2.4	140	6 2	0 2 2	90 I ×9	* *
2 9	100	7.5	1.8			9		2	1.0	-	ç	2.4	130	5.8	740	4×10°	・ノール戦略・バール機能
2.8	100	3.5			2.4			2	1.0	-	9	2.4	100	4.8	470	4 × 1 0 ⁶	無変性のノボラツク型フェノール報簡 様変性のノボラツク型クレゾール右脂
2.7	100	7.5		2 4				2	1.0	_	٥	2, 4,	160	0.9	089	2×10	残骸のノボ破骸のノボ
配合内容	天然はよ	カーボンブラック	フェノール樹脂 *1	クレゾール哲語 *2	アンランンを語 *3	労香飯設化水煮変性フェ×4 ノール樹脂	ゴム変性フェノール樹脂*5	スチブリン製	樹塚	Nーオキンジエチレンベンン チアゾーカステレコンドド	級	くサナメナンア・リッン	(結果)被断時の伸び(%)	20%モジュラス (kg/cm)	御的學性率(kg/cai)	疲労寿命 (回)	* 1 年 * 4 日 * 4 日

無変性のノボラツク型フェノール樹脂 係変性のノボランク型クンゾール哲蹈 **無変性のノボラツク型アプタツン製船** * * *

-121-

20

年 6	奖
-----	---

タイヤ記号	К	L	M	N	0	p
ピードフイラー に 使用したゴム配合/%	A6 2 2	A6 2 3	A6.2.4	A6 2 5	A626	1627
高速走行性 km/k 分	185 12	185 21	185 28	185	185 28	185
微剛性指数	98	101	105	106	106	101
特殊耐久ドラム試 験(A条件)	30,000 ㎞ 完走	30,000 km 完 定	30,000 tan 完 走	30,000 km 完 走	30,000 km 完 定	30.000 km 完建
特殊耐久 ドラム試 験(B条件)	9,800 km ゴム破機	13.000 ka 完 走	13,000㎞	13,000 km 完 走	13.800 編 ゴム破壊	11,000㎞ ゴム破壊

タイヤ記号	Q	R	s	r	ט
ビードフィ ラー に 使用したゴム配合ル	A628	<i>1</i> 630	A632	A634	A636
高速走行性 km/h	177	185	185	185	185
模剛性指数	9 6	103	101	102	9 9
特殊耐久ドラム試 験(A条件)	28,000 編 ゴム碳膜	30,000 km 完建	30,000 fat 完 走	30,000 km 完 走	30,000 kg 完 走
特殊耐久ドラム試 験(B条件)	6,700㎞ ゴム破壊	13,000 km 完 走	12,000㎞	13,000 kg	11.500 km ゴム破壊

図面の簡単な説明

使用したタイヤの性能評価に利用したタイヤの側 方部分断面図、第2図は従来タイヤの側方部分断 面図である。

1,21……タイヤ、2,22……ベルト層、

3,23……カーカス層、3,23……カーカス 第1図は本発明のビードフイラーゴム組成物を 30 プライの折返し、4 · 2 4 ····· ビード部、5 , 25……サイドウオール部、6,26……ビード フィラー、7,27 ピードワイヤー、28... …コード層、R……りム、R_T……りムフランジ_c

