1、(10)

 $\hbox{1-bit comparator - logic expression , draw the circuit and complete the time} \\$ $\hbox{diagram}$

Α	В	F _{A<b< sub=""></b<>}	F _{A=B}	F _{A>B}
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

Expression:

 $F_{A=B} = \overline{A \oplus B}$

 $\mathbf{F}_{A < B} = \overline{A} \mathbf{B}$

 $F_{A>B} = A \overline{B}$

Circuit: (4p)

Time diagram: (6p)

2、 reduce the expression $F(x,y,z,w) = \sum m(2,4,6,8,13,14,15) + \sum d(0,7,9,10)$ (6p)

ху	00	01	11	10
zw			1	
00	a	1	/	1
01			1	d
11		d	1	
10	1	1	1	d

$$F = \overline{y}\overline{w} + \overline{x}\overline{w} + yz + x\overline{z}w \qquad (4p)$$

3、(15p) truth table of 1-bit full adder & implement it using 1-of-8 multiplexer

(8p)

Α	В	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

4,
$$f(a,b,c) = b\overline{c} + a\overline{b} + abc$$

1)(10p) SOP and POS

$$\sum m(2,4,5,6,7) = \overline{a}b\overline{c} + a\overline{b}\overline{c} + a\overline{b}c + ab\overline{c} + abc$$
 (5p)

$$\prod M(0,1,3) = (a+b+c)(a+b+\overline{c})(a+\overline{b}+\overline{c})$$
 (5p)

2) (10p)nand gates

$$f(a,b,c) = \overline{b\overline{c} \cdot a\overline{b} \cdot a\overline{bc}}$$
 (5p) (或者是 $\overline{\overline{a} \cdot \overline{b\overline{c}}}$)

3) (15p) 3-line-to-8-line decoder

(使能信号可以是 CS1,CS2,CS3 的形式 (取 1, 0, 0) 等,输出也可以采用低有效输出,使用与门连接 0, 1, 3,或者采用与非门连接 2, 4, 5, 6, 7)

4)(15p) 1-of-16 decoder (4-to-16 decoder)

与上一小问类似,可以将最高位连接 1,此时采用输出位 8-15,若是低有效输出采用与门或者与非门连接,或者将最高位接 0,此时采用输出位 0-7,高有效输出时采用或门,低有效输出时与上面类似)

5)(15p)1-of-4 multiplexer

(4p)

ab c	00	01	11	10
0	0	1	1	1
1	0	0	1	1

降维(4p)

a b	0	1
0	0	1
1	C'	1

选择一个数据输入端作为信号输入, S1 连接 a,S0 连接 b,D0 接地, D1 接 c',D2 和 D3 接 Vcc (7p)

