RECAP: PERFORMANCE MEASURES FOR BINARY CLASSIFICATION

- We encourage readers to first go through Chapter 04.08 in 12ML.
- In binary classification (𝒴 {−1,+1}):

		True Claiss y y			
		+ +	-	L	
Classificationation+	+	TP TP	FP	Γ	PPPPV = #TPL #FP
<u>ŷ</u> ŷ —	-	FN FN	TN	L	PPNPV + WEN+WIN
	ρ	PR = #TP	$\rho \text{ fNR} = \frac{\# \text{TN}}{\# \text{FP} + \# \text{TN}}$		PACC = #IP+#TN

$$\rho_{F_1} \equiv 2 \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\rho_{PPV} + \rho_{TPR}}$$

- Note that β_F, does not account for TN:
- Boes ρ_{Fi}, suffer from data imbalance like accuracy does?

F_{β} IN BINARY CLASSIFICATION

- F₁ puts equal weights to ¹/_{ρ_{FPV}} & ¹/_{ρ_{TPR}} because $F_1 = \frac{\epsilon}{\frac{1}{P_{PPV}} + \frac{1}{P_{TPR}}}$
- F_β puts β² times of weight to ¹/_{PTes}

$$F_{\beta} = \frac{1}{\frac{\beta^2}{1+\beta^2} \cdot \frac{1}{\beta \text{ TPR}} + \frac{1}{1+\beta^2} \cdot \frac{1}{\beta \text{ PPV}}}$$

$$= (1+\beta^2) \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\beta^2 \rho_{PPV} + \rho_{TPR}}$$

- β ≫ 1 → F_β ≈ ρ_{TPR};
- $\beta \ll 1 \rightsquigarrow F_{\beta} \approx \rho_{PPV}$.

G SCORE AND G MEAN

G score uses geometric mean:

$$\rho_G = \sqrt{\rho_{PPV} \cdot \rho_{TPR}}$$

- Geometric mean tends more towards the lower of the two combined values.
- Geometric mean is larger than harmonic mean.

Closely related is the G mean:

$$\rho_{Gm} = \sqrt{\rho_{TNR} \cdot \rho_{TPR}}$$
.

It also considers TN.

Always predicting "negative": ρ_G = ρ_{Gm} = 0 → Robust to data imbalance!

BALANCED ACCURACY

 Balanced accuracy (BAC) balances ρ_{TNR} and ρ_{TPR}:

$$\rho_{BAC} = \frac{\rho_{TNR} + \rho_{TPR}}{2}$$

- If a classifier attains high accuracy on both classes or the data set is almost balanced, then $\rho_{BAC} \approx \rho_{ACC}$.
- However, if a classifier always predicts "negative" for an imbalanced data set, i.e.
 n₊ ≪ n_−, then ρ_{BAC} ≪ ρ_{ACC}. It also considers TN.