

80-N9811-1 C

Confidential and Proprietary – Qualcomm Technologies, Inc.

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm or its subsidiaries without the express approval of Qualcomm's Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Qualcomm reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed for any damages arising directly or indirectly by their use or application. The information provided in this document is provided on an "as is" basis.

This document contains confidential and proprietary information and must be shredded when discarded.

Qualcomm is a trademark of QUALCOMM Incorporated, registered in the United States and other countries. All QUALCOMM Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

> Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A. © 2012, 2014 Qualcomm Technologies, Inc. All rights reserved.

Revision History

Revision	Date	Description		
А	Feb 2012	Initial release		
В	May 2012	Revised slides 7, 10, 21, 49; added slides 11 to 17 and 45 to 48		
С	May 2014	Revised slides 8 and 24		

Contents

- LTE Cell Selection
- Registration
- Tracking Area Update
- References
- Questions?

Objectives

- At the end of this presentation, you will:
 - Be familiar with the LTE cell selection, registration, TAU procedure
 - Understand message exchange between various layers of the LTE Protocol stack

LTE Cell Selection

What Happens at UE Powerup

- The acquisition process begins when the UE powers up and NAS sends a Service Request indication to RRC by including the Requested PLMN values.
- RRC then executes a Cell Search Procedure to acquire and camp on a cell.
- Based on the scan results, RRC returns an RRC_SERVICE_IND to NAS.
 This can indicate full service (normal operation), limited service (emergency calls only), or no service.
- If camping was successful, RRC moves to IDLE_CAMPED.
- NAS then initiates the Attach procedure, which prompts RRC to request MAC to start the RACH procedure.

Cell Selection Procedure

- Search for PLMNs requested by NAS
- Scan all RF channels in the E-UTRA bands to find PLMNs (UE may optimize this search by using stored information in acquisition database)
- Search for the strongest cell and read the system information to determine the PLMN
- Confirm that cell access restrictions do not prohibit camping on the cell
- Confirm that cell selection criteria are fulfilled on the cell

Cell Selection Procedure Introduction

- Using the cell selection procedure, the UE shall select a suitable cell based on Idle mode measurements and cell selection criteria.
- There are two types of cell selection:
 - Initial cell selection
 - UE scans all RF channels in the E-UTRA bands according to its capabilities
 - Stored cell selection
 - UE scans all RF channels as stored in its acquisition database

Reasons for Cell Selection

- When is cell selection triggered
- Cell selection is triggered in the following scenarios:
 - Service Request from NAS
 - State Transition (connected to Idle)
 - Inter-frequency Redirection
 - Out of Service Indication from ML1 (Idle mode)
 - Radio Link Failure (Connected mode)
 - Inter-RAT Reselection/Redirection to LTE (from WCDMA, GSM, 1X)

Terminology

- PLMN Public Land Mobile Network
- RPLMN Last Registered PLMN
- HPLMN Home PLMN
- EHPLMN Equivalent HPLMN
- VPLMN Visitor PLMN
- PPLMN Preferred PLMN
- OPLMN Operator Preferred PLMN
- UPLMN User Preferred PLMN
- FPLMN Forbidden PLMN

EF, NV, and EFS Items

- EFs used by the UE are:
 - EFIMSI IMSI
 - EFPLMNwAcT User-controlled PLMN selector with Access Technology
 - EFHPPLMN Higher-priority PLMN search period
 - EFFPLMN Forbidden PLMNs
 - EFLOCI Location information
 - EFOPLMNwACT Operator-controlled PLMN selector with Access Technology
 - EFHPLMNwAcT Home HPLMN selector with Access Technology

Confidential and Proprietary – Qualcomm Technologies, Inc.

- EFEHPLMN Equivalent HPLMN
- EFLRPLMNSI Last RPLMN selection indication
- EFPSLOCI Packet-switched location information
- EFEPSLOCI EPS location information

Note: For further details, see [Q2].

EF, NV, and EFS Items (cont.)

- NVs used by the UE are:
 - NV 1190 NV_RPLMNACT_I Stores the last RPLMN RAT information

Confidential and Proprietary – Qualcomm Technologies, Inc.

- NV 850 NV_SERVICE_DOMAIN_PREF_I Determines the service preference for the device
- NV 849 NV_NET_SEL_MODE_PREF_I Determines the network mode of operation for the device
- EFS items
 - RAT Priority List (/sd/rat_acq_order) Determines the RAT priority list for PLMN selection

Note: For further details, see [Q2].

NW Selection Modes

- NV_NET_SEL_MODE_PREF_I is used to configure the network selection mode for the UE as either Automatic or Manual. Based on this configuration, NAS runs different PLMN selection algorithms to acquire service on a network.
 - Automatic
 - Manual
 - Limited

PLMN/RAT Selection Flow

Log Analysis – PLMN/RAT Selection

\\ EF_RPLMNSI is not set										
18:58:22.390	reg_sim.c	5976	H	LRPLMNSI is - 0						
18:58:22.799	reg_nv.c	821	Н	Read RPLMNACT 64 0						
18:58:24.064	cmregprx.c	1751	H	Send SERVICE_REQ						
		A (),							
\\ Mode set to automatic										
18:58:24.064	cmregprx.c	1767	Н	net_sel_mode 2						
18:58:24.064	cmregprx.c	1770	H	srv_domain 2						
18:58:24.068	reg_state.c	3843	H	CM_SERVICE_REQ						
		ohilpati								
\\ RAT priority list has only LTE										
18:58:24.070	reg_state.c	874	Н	Rat priority list num_items = 1						
18:58:24.070	reg_state.c	880	Н	sys_mode = 9						
				bst_rat_acq_required = 1						
				bst_band_cap = 0x1000						
\\ Reading the RPLMN from NV										
18:58:44.536	reg_nv.c	462	Н	Read RPLMNACT 64 0 from						
				cache						

Log Analysis – PLMN/RAT Selection (cont.)

\\ HPLMN information									
18:58:44.536	reg_sim.c	2269	Н	HPLMN(001- 01)					
			100						
\\ Automatic service request sent									
18:58:44.634	reg_state.c	1193	H	CM_SERVICE_REQ -					
		, C		AUTOMATIC					
\\ Last RPLMN RAT is LTE									
18:58:44.634	reg_sim.c	3149	Н	LAST RPLMN RAT LTE					
18:58:44.635	reg_sim.c	2758	Н	EPS RPLMN(1-1)					
		ar@t							
\\ EMM Received the REG request									
18:58:44.635	reg_send.c	1121	Н	MMR_REG_REQ PLMN(1-1)					
	-			RAT(LTE)					
18:58:44.636	emm_reg_handler	.c 619	Н	EMM: Received					
				MMR_REG_REQ					
\\ RRC layer obtained the service request from NAS									
18:58:44.636	lte_rrc_csp.c	5603	Н	CSP: Processing service request					
18:58:44.638	emm_rrc_if.c	370	Н	EMM: Sent					
				LTE_RRC_SERVICE_REQ					

Frequency Scan

- Using Frequency Scan, the UE selects the frequency/EARFCN for camping.
 - There are two types of frequency scan:
 - System scan, also known as List Frequency scan (similar to Acq DB scan)
 - Upper layers shall provide list of EARFCNs, requested bandwidth, and Duplex mode to L1
 - Band scan, also known as Full Frequency scan
 - Upper layers shall provide band index and the allowed set of bandwidths to L1

Log Analysis – System Scan

//Automatic service Request

11458 76:00:16:20.595reg_state.c1171HCM_SERVICE_REQ -AUTOMATIC 11491 89:00:16:20.600emm_reg_handler.c475HEMM: Received MMR_REG_REQ

//NAS sends service request to AS

11494 81:00:16:20.600emm_rrc_if.c310HEMM: Sent LTE_RRC_SERVICE_REQ

//RRC sends LTE_CPHY_START_REQ to ML1

11537 81:00:16:20.603lte_ml1_mgr_stm.c6923MLTE_CPHY_START_REQ

//LTE AS is initialized

11675 97:00:16:20.620lte_ml1_mgr_cphy_cnf_handlers.c976MLTE_CPHY_START_CNF Status: 0

11680 89:00:16:20.620lte_ml1_mgr_stm.c12645LL1M: INACTIVE STATE ENTER

//ML1 initiates System Scan request

11704 153:00:16:20.620lte_ml1_sm_main.c1118HSM: Sys Scan Req module 1 num_sys 1 min_sys 0 early_abort 0 sys[0] band 13 earfcn 5230 bw 50

//RF tune request

11705 113:00:16:20.620lte_ml1_sm_main.c641HSM: RX cfg req freq 5230 BW 50 cell_id 65535

Log Analysis – Band Scan

//Acquisition database search (System Scan) is exhausted. No system found

11497 89:00:47:21.166lte_rrc_csp.c3603HCSP: All entries tried in acq list

11498 81:00:47:21.166lte_rrc_csp.c9373HCSP: Exhausted acquisition list

//Initiate Band Scan

11506 89:00:47:21.166lte_rrc_csp.c2191XCSP: Sending 1 bands in band scan

11507 81:00:47:21.166lte_rrc_csp.c2210XCSP: Sent Band Scan Request

11520 105:00:47:21.175rtr8600_lte.c866HRF LTE RX is tuned to band 13 and frequency 5230

Initial Acquisition

- The acquisition process on a carrier frequency consists of three parts:
 - PSS detection
 - 5 ms frame timing
 - Acquire physical layer identity (3 candidates)
 - SSS detection
 - 10 ms frame timing synchronization (SSS1 in subframe 0 and SSS2 in subframe 5)
 - Cell ID Group detection (168 candidates)
 - PBCH detection
 - MIB acquisition
 - Transmitted 4 OFDM symbols in subframe0
 - TTI is 40 ms
 - SFN, PHICH information, system bandwidth
- With acquiring PSS/SSS/MIB, UE can obtain Reference Signal (RS)
 position, which is based on Cell ID, and read to all scheduled SIBs in DLSCH

Log Analysis – Cell Selection

//Service Request from NAS

00:00:15.734 modem/lte/RRC/src/lte_rrc_csp.c 03975 CSP: Processing service request

00:01:19.598 modem/lte/ML1/manager/src/lte_ml1_mgr_stm.c 05999

LTE CPHY START REQ

00:01:19.599 modem/lte/ML1/manager/src/lte_ml1_mgr_stm.c 04450

LTE_CPHY_START_CNFStatus: 0

//ACQ DB is empty

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 02646 CSP: Zero entries in acquisition list

//Band scan

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 05001 CSP: Starting Band Scan on Mode Change Cnf

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 01478 CSP: Sent Band Scan Request

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 05011 CSP: Processing next band

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 05907 CSP: Band scan returned 1 candidate

//Band Scan results

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 05914 CSP: Preparing acq list from band scan

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 00873 CSP: Initing acq list

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 05967 CSP: Acq list has 1 entry

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 01254 CSP: Roaming restriction is allow none

Log Analysis – Cell Selection (cont.)

//ACQ Request to Layer1

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 01521 CSP: Acq requested on earfcn 5230

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 01539 CSP: Sent Acquisition Request

00:01:19.599 modem/lte/RRC/src/lte_rrc_csp.c 05973 CSP: Started Acquisition

00:01:19.599 modem/lte/ML1/manager/src/lte_ml1_mgr_stm.c 05669

LTE_CPHY_ACQ_REQTrans id 2

//PSS/SSS detection

00:01:19.599 modem/lte/ML1/search/src/lte_ml1_sm_deact.c 00195 LTE ML1 SEARCHER received LTE_ML1_SM_STM_ACQ_STAGE1_REQ in LTE ML1 SM DEACT STATE

00:01:19.599 modem/lte/ML1/search/src/lte_ml1_sm_acq.c 02124 Received Acq Req from L1M in Deact Mode

00:01:19.600 modem/lte/ML1/search/src/lte_ml1_sm_acq.c 00348 LTE ML1 SEARCHER Acquisition Algo init done

00:01:19.612modem/lte/ML1/search/src/lte_ml1_sm_acq.c 00995 LTE ML1 SEARCHER received LTE_ML1_SM_STM_SEARCH_RSP in LTE_ML1_SM_ACQ_DETECT_STATE state

//Found a cell

00:01:19.612modem/lte/ML1/search/src/lte_ml1_sm_acq.c 01022 SM: Init Acq Cnf; num cells: 1

Acquisition Log Packet

Log Analysis - Cell Selection

//PBCH decode request

00:01:19.611modem/lte/ML1/search/src/lte_ml1_sm_sd_if.c 00542 SM:

pBCH_DEC_REQ:

00:01:19.611modem/lte/ML1/search/src/lte_ml1_sm_sd_if.c 00553 SM: Sent Initial PBCH Decode Req;

//UE camped on cell

18:13:56.603 [58]lte_rrc_csp.c5510XCSP: Acq succeeded on physical cell ID 1 on earfcn 5230

//Command to start reading SIBs on the serving cell

18:13:56.603 [58]lte_rrc_sib.c4045HReceived get_sibs_reqwith phy_cell_id = 1, freq = 5230, cause = 0, proc_id = 0

18:13:56.603 [58]lte_rrc_sib.c541HSent cphy_sib_sched_req for phy_cell_id = 1 freq = 5230

//Received MIB

18:13:56.603 [58]lte_rrc_sib.c4844MMIB received for phy_cell_id = 1 & freq = 5230 at SFN 80

//SIB schedule request to acquire SIBs

18:13:56.603 [58]lte_rrc_sib.c541HSent cphy_sib_sched_req for phy_cell_id = 1 freq = 5230

Log Analysis – Cell Selection (cont.)

//Acquisition complete

00:01:19.698modem/lte/ML1/manager/src/lte_ml1_mgr_stm.c 05913

LTE_CPHY_ACQ_CNFStatus: 0 Trans id: 2

00:01:19.698modem/lte/ML1/manager/src/lte_ml1_mgr_stm.c 05916

LTE_CPHY_ACQ_CNF cell ID: 1, cp: 0

//Issue SIB decode request

00:01:19.699modem/lte/RRC/src/lte_rrc_sib.c 00555 Sent cphy_sib_sched_req for phy_cell_id = 1 freq = 5230; curr_mask = 0x3 next_mask = 0x0 mod_bnd = 65535 00:01:19.699modem/lte/ML1/manager/src/lte_ml1_mgr_stm.c 07022 L1M:LTE_CPHY_SIB_SCHED_REQ

//SIB decoding

00:01:19.707modem/lte/RRC/src/lte_rrc_sib.c 04952 MAC_DL_DATA (SIB1 or SI message) received for phy_cell_id = 1 & freq = 5230 at SFN 80

//Mandatory SIBs received. RRC issues cell select request

00:01:19.906modem/lte/ML1/manager/src/lte_ml1_mgr_stm.c 07239 L1M: LTE_CPHY_CELL_SELECT_REQ

//Service indication to NAS

00:01:19.920 modem/lte/RRC/src/lte_rrc_csp.c 01773 CSP: Sent NAS Service Ind

Registration

RACH Outline

- Why/when to RACH
 - Initial access to the network
 - UL data
 - DL data when out of sync
 - No dedicated resources
 - Handover
 - Radio link failure

Contention vs Non Contention-Based RACH Comparison

Confidential and Proprietary – Qualcomm Technologies, Inc.

- Contention-based RA
 - Initiated by UE
 - Initiated by transmitting a random preamble
 - Uses common preambles

- Non contention-based RA
 - Initiated by eNB
 - Initiated with transmission of an RA preamble assignment
 - Uses dedicated preambles

Random Access Procedure (Contention-Based)

Random Access Procedure (Contention-Based) (cont.)

- Message 1 Random access preamble on PRACH
- Message 2 Random access response on DL-SCH
- Message 3 Sent on UL-SCH Contain the RRC message
- Message 4 Contention resolution performed

Preamble – msg1 (ML1 MSG1 Report)

RAR – msg2 (ML1 MSG2 Report)

RRC Connection Request – msg3 (QXDM Log)

```
_ 🗆 ×
Item View
            Name
                                                                       Timestamp
                                                                                         Summary
Type
MSG
            LTE RRC/CEP
                                                                       00:01:21.533
                                                                                         modem/lte/RRC/src/lte
LOG
            LTE RRC OTA Message
                                                                       00:01:21.533
                                                                                         OTA message Log Packet
                                                                                        modem/1te/L2/mac/src/1
MSG
           LTE MACCTRL/High
                                                                       00:01:21.533
MSG
           LTE RRC/CEP
                                                                       00:01:21.533
                                                                                        modem/lte/RRC/src/lte
           LTE RRC/CTRL
                                                                       00:01:21.533
                                                                                        modem/lte/RRC/src/lte
           LTE MACUL/Rach
                                                                                        modem/1te/L2/mac/src/1
                                                                       00:01:21.533
            LTE MACUL/Rach
                                                                       00:01:21.533
                                                                                        modem/1te/L2/mac/src/
 Results
 OTA msg Log Packet
 RB ID:
                             0
 Phy cell id:
 Freq:
                             2100
 SFN:
 Sub Frame Number:
 PDU num:
 Encoded msg length:
 Decoded msg:
 value UL-CCCH-Message ::=
   message c1 : rrcConnectionRequest :
         criticalExtensions rrcConnectionRequest-r8:
             ue Identity randomvalue : '00101100 11010100 10110110 00000101 011 ...'B,
             establishmentCause mo-Signalling,
             Spare '0'D
```

RRC Connection Setup – msg4

RRC Connection Setup Complete QXDM Log

Tracking Area Update

Tracking Area Update

Purpose

- Used by the UE for a variety of reasons, primarily to update the network with the tracking area the UE is currently in
- Trigger
 - Update registration of actual TA of a UE (Normal TAU)
 - Update registration of actual TA for a UE in CS/PS mode (Combined TAU)
 - Periodic TAU to notify UE availability to the network
 - At inter-system change from UMTS/GSM/CDMA to LTE
 - Update UE-specific parameters/capabilities in the network
 - At recovery from errors
 - Indicate that UE entered S1 (LTE) mode after CSFB
- Types of TAU
 - Normal
 - Combined
 - Periodic

- UE actions on receiving TAU Accept
 - Update GUTI, TAI list, Update Status, EPLMN list
 - Send TAU Complete, if needed
- UE actions when TAU Reject is received
 - Behavior shall depend on reject cause received
 - If combined update is successful for EPS services only, MM LOCI shall be updated and appropriate state will be entered for follow-up actions
 - If UE is configured to support UMTS/GSM, MM and GMM parameters shall be updated as if this reject cause is received on UMTS/GSM

Call flows


```
2011 Dec 29 18:58:24.395 [00] 0xB0C0 LTE RRC OTA Packet
                                                                  BCCH_DL_SCH
Radio Bearer ID = 0, Physical Cell ID = 1
Freq = 5230
SysFrameNum = 212, SubFrameNum = 5
                                     Msg Length = 17
PDU Number = BCCH_DL_SCH Message,
message c1 : systemInformationBlockType1 :
        cellAccessRelatedInfo
        plmn-Identity
                mcc
                  0,
                  0,
                mnc
                  0,
              cellReservedForOperatorUse notReserved
          trackingAreaCode '00000000 00000001'B,
```

// Upon cell selection, EMM receives a service indication from RRC -TAI of the current cell not part of existing TAI List

emm esm handler.c295HEMM: Sent ATTACH COMPLETE

emm_esm_handler.c297HEMM: Set state 3 (REGISTERED)

emm esm handler.c297HEMM: Set substate 0 (NORMAL SERVICE)

emm rrc handler.c931HEMM: Received new RRC Service Indication

emm_rrc_handler.c582HEMM: TAI is not part of the existing TAI list. Start TAU

// RRC connection established successfully and UE gets the TAU ACCEPT from network

emm_update_lib.c2714HEMM: T3430 has been started

emm connection handler.c370HEMM: Start RRC connection establishment

emm rrc if.c491HEMM: Sent LTE RRC CONN EST REQ

emm_update_lib.c2737HEMM: Set state 4 (EMM_TRACKING_AREA_UPDATING_INITIATED)

emm_connection_handler.c819HEMM: Received LTE_RRC_CONN_EST_CNF

emm connection handler.c592HEMM – RRC connection has been established successfully

emm_update_lib.c2912HEMM - Received TAU Accept message

//EMM sends service indication to REG and responds with a TAU complete to the network

emm_update_lib.c2914HEMM: T3430 has been stopped

emm_sim_handler.c524HEMM: Set EPS update status to 0

emm_reg_handler.c1039HMM sent MMR_SERVICE_IND

emm_update_lib.c3077HEMM: Send TAU COMPLETE message to NW

emm_rrc_if.c544HEMM: Sent LTE_RRC_UL_DATA_REQ

Keywords for Log Analysis

- Use the following key words for analysis
 - LTE_CPHY_, acq req, acq cnf, cell id, pbch_dec, MIB cell, service ind, barred, CSP, Phy_cell_Id, Plain OTA, RRC OTA, TAU COMPLETE, acq succ, EMM:,mmr_service_ind, TAU accept

LTE Cell Selection, Registration, and TAU — QXDM Dashboard

 QXDM window showing the filtered view, ML1 acquisition, PBCH serving measurements, ML1 Real time RSRP, RRC state change plot

LTE Cell Selection, Registration, and TAU — Configuring the **Filtered View-OTA Messages**

 This window shows which RRC\NAS OTA messages that must be enabled to see the messages in filtered view

LTE Cell Selection, Registration, and TAU – LTE ML1 Acquisition, PBCH, Serving Measurements

- This window shows:
 - EARFCN number of the cell
 - Phy_Cell_ID (PCI) of the cell
 - Bandwidth Bandwidth of the system
 - PBCH decode result of cell whether is it successful or failure
 - PSS_SNR 10 log 10 (Primary Synchronization Signal (PSS) Correlation result /128)
 - SSS_SNR 10 log 10 (Secondary Synchronization Signal (SSS) correlation result /256). SSS SNR < 0 is considered as weak cell.

LTE Cell Selection, Registration, and TAU – ML1 Real Time **RSRP**

 This window shows the real-time Reference Signal Received Power (RSRP) of the cell

Confidential and Proprietary - Qualcomm Technologies, Inc.

References

Ref.	Document	
Qualcomm Technologies		
Q1	Application Note: Software Glossary for Customers	CL93-V3077-1
Q2	Application Note: PLMN/RAT Selection – GSM/WCDMA/LTE Targets	80-N9533-2

Questions?

https://support.cdmatech.com

