Arbre de Décision - CART

Arbre de Décision (CART)

Théorie

L'algorithme CART (Classification and Regression Trees) est un modèle d'apprentissage supervisé qui construit un arbre de décision en divisant l'espace des caractéristiques en sous-ensembles homogènes.

Évaluation des performances

Lorsqu'on évalue un modèle de classification, plusieurs métriques sont utilisées :

- Matrice de confusion : Tableau qui résume les performances du modèle en comparant les vraies classes aux classes prédites. Les lignes correspondent aux classes réelles, et les colonnes aux classes prédites.
- Accuracy (Précision globale): Proportion des prédictions correctes parmi l'ensemble des données.
- Precision (Précision par classe) : Nombre de vrais positifs divisé par la somme des vrais positifs et des faux positifs. Indique la fiabilité des prédictions positives.
- Recall (Rappel): Nombre de vrais positifs divisé par la somme des vrais positifs et des faux négatifs. Indique la capacité du modèle à détecter les échantillons positifs.
- **F1-score** : Moyenne harmonique entre précision et rappel, utile lorsque les classes sont déséquilibrées.

Exemple en Python

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split
# Chargement des ensembles de données déjà préparés
train_data = pd.read_csv('covertype_train.csv')
val_data = pd.read_csv('covertype_val.csv')
test_data = pd.read_csv('covertype_test.csv')
# Préparation des données
X_train = train_data.drop('Cover_Type', axis=1)
y_train = train_data['Cover_Type']
X_val = val_data.drop('Cover_Type', axis=1)
y_val = val_data['Cover_Type']
X_test = test_data.drop('Cover_Type', axis=1)
y_test = test_data['Cover_Type']
# Recherche de la meilleure profondeur d'arbre en utilisant l'ensemble de validation
depth_range = range(1, 30)
train_accuracies = []
val_accuracies = []
for depth in depth range:
    tree = DecisionTreeClassifier(max_depth=depth, random_state=42)
   tree.fit(X_train, y_train)
    # Évaluation sur l'ensemble d'entraînement
   y_train_pred = tree.predict(X_train)
   train_accuracies.append(accuracy_score(y_train, y_train_pred))
    # Évaluation sur l'ensemble de validation
    y_val_pred = tree.predict(X_val)
    val_accuracies.append(accuracy_score(y_val, y_val_pred))
# Sélection de la meilleure profondeur basée sur l'ensemble de validation
best depth = depth range[val accuracies.index(max(val accuracies))]
print(f"Meilleure profondeur d'arbre: {best_depth}")
```

```
# Affichage du graphique comparant l'entraînement et la validation
plt.figure(figsize=(8, 6))
plt.plot(depth_range, train_accuracies, marker='o', linestyle='dashed', label='Train Accuracies
plt.plot(depth_range, val_accuracies, marker='s', linestyle='dashed', label='Validation Accuracy
plt.xlabel("Profondeur de l'arbre")
plt.ylabel("Taux de bonnes prédictions")
plt.title("Optimisation de la profondeur de l'arbre pour CART")
plt.legend()
plt.show()
# Modèle final avec la meilleure profondeur
tree = DecisionTreeClassifier(max_depth=best_depth, random_state=42)
tree.fit(X_train, y_train)
# Évaluation sur l'ensemble de test
y_test_pred = tree.predict(X_test)
# Affichage de la matrice de confusion avec annotations
conf_matrix = confusion_matrix(y_test, y_test_pred)
print("\nMatrice de confusion (les lignes représentent les vraies classes et les colonnes le
print(conf_matrix)
print("\nÉvaluation sur l'ensemble de test")
print(classification_report(y_test, y_test_pred))
```

Meilleure profondeur d'arbre: 14

Optimisation de la profondeur de l'arbre pour CART

Matrice de confusion (les lignes représentent les vraies classes et les colonnes les classes

	L281	391	0	0	3	0	33]
[399	1802	25	0	13	21	1]
[2	34	205	5	0	35	0]
[0	0	5	12	0	4	0]
[2	50	1	0	21	0	0]
[1	29	52	0	1	61	0]
[39	3	0	0	0	0	117]]

Évaluation sur l'ensemble de test

	precision	recall	f1-score	support
1	0.74	0.75	0.75	1708
2	0.78	0.80	0.79	2261
3	0.71	0.73	0.72	281

4	0.71	0.57	0.63	21
5	0.55	0.28	0.38	74
6	0.50	0.42	0.46	144
7	0.77	0.74	0.75	159
accuracy			0.75	4648
macro avg	0.68	0.61	0.64	4648
weighted avg	0.75	0.75	0.75	4648