CS 435: Introduction to Cryptography

Fall 2020

Homework 5

Professor Somesh Jha

Due: Nov 14

1. Exercise 4.8

Let F be a pseudorandom function. Show that the following MAC for messages of length 2n is insecure: Gen outputs a uniform $k \in \{0,1\}^n$. To authenticate a message $m_1||m_2|$ with $|m_1| = |m_2| = n$, compute the tag $F_k(m_1)||F_k(F_k(m_2))$.

Solution:

Let \mathcal{A} be an adversary that queries its oracle with two messages $m = m_0||m_1$ and $m' = m'_0||m'_1$, where $m_0 \neq m'_0$ and $m_1 \neq m'_1$. Let $t = t_0||t_1$ and $t' = t'_0||t'_1$ be the respective responses from its oracle. \mathcal{A} then outputs the message $\tilde{m} = m_0||m'_1$ and tag $\tilde{t} = t_0||t'_1$. By the definition of Mac, it follows that \tilde{t} is a correct tag for \tilde{m} and thus $\mathsf{Vrfy}_k(\tilde{m},\tilde{t}) = 1$ always. Furthermore, since $m_0 \neq m'_0$ and $m_1 \neq m'_1$ we have that $\tilde{m} \notin \mathcal{Q}$. Thus \mathcal{A} succeeds with probability 1 and the scheme is not secure.

2. In LectureLet 21, we did the Merkle-Damgrad construction which took a hash function h that compresses by a factor of 1/2 and constructs a hash function H by a factor of 1/3. Repeat the construction to construct a hash function H that compresses by a factor of 1/5. Also redo the proof of collision resistance that was done in the LectureLet.

Solution:

Let x be a string of length L and assume the compression function (Gen, h) compresses its input by half. We can construct a collision-resistant hash function (Gen, H) that maps inputs of length 5n to outputs of length n as follows: let $x_1, x_2, ..., x_5$ be the five blocks of x, then

Based on the assumption that h^s is collision-resistant, we now prove that the constructed H^s is also collision-resistant. Proof by contradiction, assume $H^s(x) = H^s(x')$ for $x \neq x'$ where $x = x_1x_2x_3x_4x_5L$ and $x' = x'_1x'_2x'_3x'_4x'_5L'$.

- If $L \neq L'$, $h^s(L||z_5) = h^s(L'||z_5')$ for $L||z_5 \neq L'||z_5'$ is not possible because h^s is collision-resistant.
- If L = L' and $z_5 \neq z_5'$, $h^s(L||z_5) = h^s(L'||z_5')$ is not possible because $L||z_5 \neq L'||z_5'$ and h^s is collision-resistant.
- If L = L', $z_5 = z_5'$ and $x_5 \neq x_5'$, $z_5 = h^s(x_5||z_4) = h^s(x_5'||z_4') = z_5'$ is not possible because $x_5||z_4 \neq x_5'||z_4'$ and h^s is collision-resistant.
- If L = L', $z_5 = z_5'$, $x_5 = x_5'$ and $z_4 \neq z_4'$, $z_5 = h^s(x_5||z_4) = h^s(x_5'||z_4') = z_5'$ is not possible because $x_5||z_4 \neq x_5'||z_4'$ and h^s is collision-resistant.
- ... (repeat down to $z_4, x_4, z_3, x_3, z_2, x_2, z_1$)
- If $L = L', z_5 = z_5', x_5 = x_5', z_4 = z_4', x_4 = x_4', z_3 = z_3', x_3 = x_3', z_2 = z_2', x_2 = x_2', z_1 = z_1'$ and $x_1 \neq x_1', z_1 = h(x_1||z_0) = h(x_1'||z_0') = z_1'$ is not possible because $x_1||z_0 \neq x_1'||z_0'$ and h^s is collision-resistant.
- If $L = L', z_5 = z_5', x_5 = x_5', z_4 = z_4', x_4 = x_4', z_3 = z_3', x_3 = x_3', z_2 = z_2', x_2 = x_2', z_1 = z_1', x_1 = x_1'$ and $z_0 \neq z_0', z_1 = h(x_1||z_0) = h(x_1'||z_0') = z_1'$ is not possible because $x_1||z_0 \neq x_1'||z_0'$ and h^s is collision-resistant.

To have no collision, we should have L = L', $x_5 = x_5'$, $x_4 = x_4'$, $x_3 = x_3'$, $x_2 = x_2'$, $x_1 = x_1'$, which contradicts the assumption $x \neq x'$. Therefore, $H^s(x) \neq H^s(x')$ for two different x and x', and H^s is collision-resistant.

- 3. Alice has six files F_1 , F_2 , F_3 , F_4 , F_5 , F_6 that she wants to store on Bob's computer (Bob just purchased a new server that has a gigantic hard disk). However, Alice is worried that Bob might corrupt or modify the files. Answer the following:
 - (a) Show a Merkle hash tree for F_1 , F_2 , F_3 , F_4 , F_5 , F_6 where the root is binary and the internal nodes are ternary. This shows that Merkle hash tree doesn't necessarily have to be binary.
 - (b) What is stored on Alice's computer?

Solution:

(a)
$$h_1 = H(F_1), h_2 = H(F_2), h_3 = H(F_3), h_4 = H(F_4), h_5 = H(F_5), h_6 = H(F_6).$$

(b) Alice stores the root hash (h_{123456}) on her computer.

- 4. Now Alice wants to retrieve file F_3 from Bob's computer.
 - (a) What does Bob send to Alice? Recall that Bob needs to "prove" to Alice that the file has not been modified.
 - (b) Show that it is "hard" for Bob to generate a "proof" for Alice for a file F'_3 different from F_3 . We of course assume that hash functions that the Merkle hash tree is constructed from is *collision resistant*.

Solution:

(a) Bob sends the file F_3' and hashes (h_1', h_2', h_{456}') . Alice computes

$$h'_{3} = H(F'_{3})$$

$$h'_{123} = H(h'_{1}||h'_{2}||h'_{3})$$

$$h'_{123456} = H(h'_{123}||h'_{456})$$

and then checks if $h'_{123456} = h_{123456}$, where h_{123456} was stored on Alice's computer.

- (b) Suppose Alice's file was F_3 . Bob gives a proof $(F'_3, h'_1, h'_2, h'_{456})$ such that $F_3 \neq F'_3$. We prove this is not possible with high probability. Throughout, not possible means not possible with high probability.
 - $h'_3 = H(F'_3) = h_3 = H(F_3)$. Not possible if H is collision resistant as $F_3 \neq F'_3$.
 - $h'_3 \neq h_3$, but $h'_{123} = H(h'_1||h'_2||h'_3) = h_{123} = H(h_1||h_2||h_3)$. Again, not possible because $h_3 \neq h'_3$ and H is collision resistant.
 - $h'_3 \neq h_3, h'_{123} \neq h_{123}$, but $h'_{123456} = H(h'_{123}||h'_{456}) = h_{123456} = H(h_{123}||h_{456})$. Not possible because $h_{123} \neq h'_{123}$ and H is collision resistant.

Therefore, Bob cannot provide a proof to Alice for a mutated file F'_3 such that $F'_3 \neq F_3$ with high probability.