Assignment - [1]

18K440562

* simple linear regression model using stochastic gradient descent optimizer.

sample (1)	u; a	yi a
1	0-2	03.4
2	0.4	3.8
3	0.6	4.2
4	0.8	hok

Calculations 1-

Step41
$$\frac{\partial E}{\partial m} = -(3.4 - 1(0.2) + 1)(0.2) = -0.84$$

 $\frac{\partial E}{\partial c} = -(3.4 - 1(0.2) + 1) = -4.2$

Step 5'
$$\Delta m = + (0.1)(0.84) = 0.084$$

 $\Delta c = - (0.1)(-4.2) = 0.42$

step 3: sample =
$$\frac{1}{2}$$

step 4: $\frac{3E}{8m} = -\left(\frac{3}{2}\cdot 4\right) - \left(\frac{1}{2}\right)\left(\frac{1}{2}\cdot 2\right) + 0.18\right)(0.2)$

= -0.668
 $\frac{3E}{8m} = -\left(\frac{3}{2}\cdot 4\right) - \left(\frac{1}{2}\right)\left(\frac{1}{2}\cdot 2\right) + 0.18$
 $\frac{3E}{8m} = -\left(\frac{3}{2}\cdot 4\right) - \left(\frac{1}{2}\cdot 2\right)\left(\frac{1}{2}\cdot 2\right) + 0.18$

Step 5: $\Delta m = -(0.1)\left(\frac{1}{2}\cdot 3\cdot 34\right) = 0.334$

Step 6: $m = m + \Delta m = 1.24 + 0.066 = 1.3$
 $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 7: $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 8: $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 4: $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 4: $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 4: $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 4: $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 5: $c = c + 4c = 0.18 + 0.33 = 0.15$
 $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 4: $c = c + 4c = 0.18 + 0.33 = 0.15$
 $c = c + 4c = 0.18 + 0.33 = 0.15$

Step 5: $c = c + 4c = 0.18 + 0.18 + 0.18$
 $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 5: $c = c + 4c = 0.18 + 0.066 = 1.3$
 $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 5: $c = c + 4c = 0.18 + 0.066 = 1.3$
 $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 5: $c = c + 4c = 0.18 + 0.066 = 1.3$
 $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 5: $c = c + 4c = 0.18 + 0.066 = 1.3$
 $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 5: $c = c + 4c = 0.18 + 0.066 = 1.3$
 $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 5: $c = c + 4c = 0.18 + 0.066 = 1.3$
 $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 5: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 6: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 7: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 6: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 7: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 7: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 8: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 8: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 8: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 8: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 9: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 9: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 9: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 9: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 9: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 9: $c = c + 4c = 0.18 + 0.066 = 1.3$

Step 9: $c =$

m=m+ sm= 1.3 + 0012 = 1.42 step 6: C=C+DC = 0.15+0.31 = 0.46 sample += 1 on a super mind algorite + Slep 7: of (sample > ns) 1/3 > 2 goto step 9 else gobo step 4 1 ben += 1 3. step 91 if (iber > epoches) (/3 > 2 steplo' golo step11 else goto step3. · step11. m= 1.42 L = 0046