OSI Model

Communication Architecture

- Strategy for connecting host computers and other communicating equipment.
- Defines necessary elements for data communication between devices.
- A communication architecture, therefore, defines a standard for the communicating hosts.
- A programmer formats data in a manner defined by the communication architecture and passes it on to the communication software.
- Separating communication functions adds flexibility, for example, we do not need to modify the entire host software to include more communication devices.

Layer Architecture

- Layer architecture simplifies the network design.
- It is easy to debug network applications in a layered architecture network.
- The network management is easier due to the layered architecture.
- Network layers follow a set of rules, called protocol.
- The protocol defines the format of the data being exchanged, and the control and timing for the handshake between layers.

Open Systems Interconnection (OSI) Model

- International standard organization (ISO) established a committee in 1977 to develop an architecture for computer communication.
- Open Systems Interconnection (OSI) reference model is the result of this effort.
- In 1984, the Open Systems Interconnection (OSI) reference model was approved as an international standard for communications architecture.
- Term "open" denotes the ability to connect any two systems which conform to the reference model and associated standards.

QSI Reference Model

- The OSI model is now considered the primary Architectural model for inter-computer communications.
- The OSI model describes how information or data makes its way from application programmes (such as spreadsheets) through a network medium (such as wire) to another application programme located on another network.
- The OSI reference model divides the problem of moving information between computers over a network medium into SEVEN smaller and more manageable problems.
- This separation into smaller more manageable functions is known as layering.

QSI Reference Model: 7 Layers

QSI: A Layered Network Model

- The process of breaking up the functions or tasks of networking into layers reduces complexity.
- Each layer provides a service to the layer above it in the protocol specification.
- Each layer communicates with the same layer's software or hardware on other computers.
- The lower 4 layers (transport, network, data link and physical Layers 4, 3, 2, and 1) are concerned with the flow of data from end to end through the network.
- The upper four layers of the OSI model (application, presentation and session—Layers 7, 6 and 5) are orientated more toward services to the applications.
- Data is Encapsulated with the necessary protocol information as it moves down the layers before network transit.

The interaction between layers in the OSI model

Figure 2.4 An exchange using the OSI model

Physical Layer

- Provides physical interface for transmission of information.
- Defines rules by which bits are passed from one system to another on a physical communication medium.
- Covers all mechanical, electrical, functional and procedural - aspects for physical communication.
- Such characteristics as voltage levels, timing of voltage changes, physical data rates, maximum transmission distances, physical connectors, and other similar attributes are defined by physical layer specifications.

Figure 2.5 Physical layer

Note

The physical layer is responsible for movements of individual bits from one hop (node) to the next.

Pata Link Layer

- Data link layer attempts to provide reliable communication over the physical layer interface.
- Breaks the outgoing data into frames and reassemble the received frames.
- Create and detect frame boundaries.
- Handle errors by implementing an acknowledgement and retransmission scheme.(error control)
- Implement flow control.
- Supports points-to-point as well as broadcast communication.
- Supports simplex, half-duplex or full-duplex communication.

Figure 2.6 Data link layer

Figure 2.7 Hop-to-hop delivery

Note

The data link layer is responsible for moving frames from one hop (node) to the next.

Metwork Layer

- Implements routing of frames (packets) through the network.
- Defines the most optimum path the packet should take from the source to the destination
- Defines logical addressing so that any endpoint can be identified.
- Handles congestion in the network.
- Facilitates interconnection between heterogeneous networks (Internetworking).
- The network layer also defines how to fragment a packet into smaller packets to accommodate different media.

Figure 2.8 Network layer

Figure 2.9 Source-to-destination delivery

Transport Layer

- Purpose of this layer is to provide a reliable mechanism for the exchange of data between two processes in different computers.
- Ensures that the data units are delivered error free.
- Ensures that data units are delivered in sequence.
- Ensures that there is no loss or duplication of data units.
- Provides connectionless or connection oriented service.
- Provides for the connection management.
- Multiplex multiple connection over a single channel.

Figure 2.10 Transport layer

Figure 2.11 Reliable process-to-process delivery of a message

Session Layer

- Session layer provides mechanism for controlling the dialogue between the two end systems. It defines how to start, control and end conversations (called sessions) between applications.
- This layer requests for a logical connection to be established on an end-user's request.
- Any necessary log-on or password validation is also handled by this layer.
- Session layer is also responsible for terminating the connection.
- This layer provides services like dialogue discipline which can be full duplex or half duplex.
- Session layer can also provide check-pointing mechanism such that if a failure of some sort occurs between checkpoints, all data can be retransmitted from the last checkpoint.

Figure 2.12 Session layer

Presentation Layer

- Presentation layer defines the format in which the data is to be exchanged between the two communicating entities.
- Also handles data compression and data encryption (cryptography).

Figure 2.13 Presentation layer

Application Layer

- Application layer interacts with application programs and is the highest level of OSI model.
- Application layer contains management functions to support distributed applications.
- Examples of application layer are applications such as file transfer, electronic mail, remote login etc.

Figure 2.14 Application layer

QSI in Action

- A message begins at the top application layer and moves down the OSI layers to the bottom physical layer.
- As the message descends, each successive OSI model layer adds a header to it.
- A header is layer-specific information that basically explains what functions the layer carried out.
- Conversely, at the receiving end, headers are striped from the message as it travels up the corresponding layers.

TCP/IP Model

QSI & TCP/IP Models

TCP/IP Model

Application Layer

Application programs using the network

Transport Layer (TCP/UDP)

Management of end-to-end message transmission, error detection and error correction

Network Layer (IP)

Handling of datagrams: routing and congestion

Data Link Layer

Management of cost effective and reliable data delivery, access to physical networks

Physical Layer

Physical Media

TCP/IP PROTOCOL SUIT

- TCP/IP, or the Transmission Control Protocol/Internet Protocol, is a suite of communication protocols used to interconnect network devices on the internet.
- TCP/IP can also be used as a communications protocol in a private network (an intranet or an extranet)
- TCP/IP specifies how data is exchanged over the internet by providing end-to-end communications that identify how it should be broken into packets, addressed, transmitted, routed and received at the destination.
- TCP/IP requires little central management, and it is designed to make networks reliable, with the ability to recover automatically from the failure of any device on the network.

TCP

- TCP defines how applications can create channels of communication across a network.
- It also manages how a message is assembled into smaller packets before they are then transmitted over the internet and reassembled in the right order at the destination address.
- IP defines how to address and route each packet to make sure it reaches the right destination.
- Each gateway computer on the network checks this IP address to determine where to forward the message.

TCP/IP (Transmission Control Protocol/Internet Protocol)

OSI Layers	TCP/IP Layers	TCP/IP Protocols					
Application Layer Presentation Layer	Application Layer	нттр	FTP	Telnet	SMTP	DNS	
Session Layer		<u> </u>					
Transport Layer	Transport Layer	TCP			UDP		
Network Layer	Network Layer	IP					
Data Link Layer	Network Interface	Ethernet		Token Ring	Other	Other Link-Layer Protocols	
Physical Layer	Layer			lokonining	Pr		

Types of addressing:

