State Space LSTM for NLP

T. Kirscher, Y. Remmache, L. Morisset

ENSAE - IP Paris

January 9, 2024

Introduction

- Significance of LSTMs in sequence modeling
 - LSTMs' ability to capture long-range dependencies
 - Applications in natural language processing (NLP)
- Interpretability advantages of state space models
- Motivation: Integrating interpretability of state space models with the power of LSTMs.
- Reference Paper: [1] State Space LSTM Models with Particle MCMC Inference, Xun Zheng et al., CoRR, 2017

Overview

Table of content

- From LSTM and SSM to State Space LSTM (SSL)
- ② Application of the SSL model to the "Topical SSL" experiment
- 3 Inference with Particle Gibbs
- 4 Results
- 5 Conclusion

- From LSTM and SSM to State Space LSTM (SSL)
- 2 Application of the SSL model to the "Topical SSL" experiment
- 3 Inference with Particle Gibbs
- 4 Results
- 5 Conclusion

Reccurent Neural Network: a type of neural network designed to process sequential data

Forward propagation (one hidden layer):

$$s_t = g_1(W_{ss}s_{t-1} + W_{sx}x_t + b_s)$$

 $\hat{y}_t = g_2(W_{ys}s_t + b_y)$

Back Propagation Through Time (BPTT) and Vanishing gradient

To train an RNN we need to back-propagate through layers and through time.

$$\frac{\partial \mathcal{L}}{\partial W_{ss}} = \sum_{t=1}^{t} \frac{\partial \mathcal{L}^{(t)}}{\partial W_{ss}}$$
$$\frac{\partial \mathcal{L}^{(t)}}{\partial W_{ss}} = \sum_{k=0}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial s_{i}}{\partial s_{i-1}} \right) \frac{\partial s_{k}}{\partial W_{aa}}$$

Vanishing gradient appends when $|rac{\partial s_i}{\partial s_{i-1}}| < 1$:

- Contributions from faraway steps vanish and don't affect the training
- Difficult to learn long-range dependencies

←□ ト ←□ ト ← 분 ト · 분 · ∽ ♀ ○

LSTM: a type of RNN introduced to learn long-term dependencies

Simplified LSTM:

We add a new path: the **memory** cell c_t

- The candidate cell value \tilde{c}_t is added to the memory cell if the update gate Γ_u is open.
- The hidden state is output if the output gate Γ_o is open

LSTM vs. SSM

Model	Pros	Cons
LSTM	Capture long-term dependencies	Not interpretable
SSM	Interpretable	Cannot capture long-term dependencies due to the Markovian nature of the latent variable process

Table: Comparison of LSTM and SSM

SSL: a combination of SSM and LSTM models

Main idea: we place an LSTM on the latent space to simulate the states z_t . We then generate the observations x_t from a SSM.

Generative process:

- $x_t|z_t \sim p_\phi(x; h(z_t))$ (SSM part)

- 1 From LSTM and SSM to State Space LSTM (SSL)
- 2 Application of the SSL model to the "Topical SSL" experiment
- 3 Inference with Particle Gibbs
- 4 Results
- 5 Conclusion

Background

Topical SSL:

- $x = (x_1, \dots, x_t, \dots, x_T)$ is a text sequence of length T
- $z = (z_1, ..., z_t, ..., z_T)$ is a sequence of unobserved topics which characterize the words in x

Example:

- $\bullet x = ("I", "was", "born", "in", "Palaiseau", "in", "1999")$
- z = ("Pronoun", "Verb", "Verb", "Preposition", "City", "Preposition", "Date")

Goal: create a generative model. Given a sequence (x_1, \ldots, x_t) , we want to predict (x_{t+1}, \ldots, x_T) .

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 Q ○

Generative model

 x_t and z_t are discrete variables:

- $x_t \in \{1, ..., N\}$
- $z_t \in \{1, ..., K\}$

Where N is the size of the vocabulary and K is the number of topics. The SSL model can be written as:

- ① $z_t|z_{1:t-1} \sim \text{Categorical}(\text{softmax}(\textit{Ws}_t + b)) (\textit{LSTM})$
- ② $x_t|z_t \sim \mathsf{Categorical}(\phi_{z_t})$ (SSM)

Where
$$\phi_{z_t} = (p(x = 1|z), ..., p(x = N|z))'$$

Dataset used, pre processing and technical aspects

Dataset:

- IMBD dataset [2] : 25,000 movie reviews, keep n = 200 reviews
- Consider the 5000 "top words": N = 5000
- Truncation of the sequences: T=170
 - $T_{\text{train}} = 100$
 - $T_{\text{test}} = 70$

LSTM:

- 64 hidden neurons
- Add a dropout layer with p = 0.2
- Optimizer: Adam
- z_t variables are one hot encoded in LSTM part

- 1 From LSTM and SSM to State Space LSTM (SSL)
- 2 Application of the SSL model to the "Topical SSL" experiment
- 3 Inference with Particle Gibbs
- 4 Results
- 5 Conclusion

Particle Gibbs: a way to sample from the variational distribution in EM algorithm

Main idea:

We combine EM algorithm with backpropagation to train the SSL model. For each text and at each iteration of the EM algorithm, we sample $z_{1:T_{\text{train}}}^*$ from the variational distribution in order to compute the MLE of the SSM and the LSTM. To sample $z_{1:T_{\text{train}}}^*$ we use an algorithm called **Particle Gibbs**.

Particle Gibbs Inference

- Sequential Monte Carlo (SMC) method
- Particle Gibbs inference for sampling from joint posterior
- No factorization assumptions

Particle Gibbs Inference

Algorithm Inference with Particle Gibbs

```
Require: P: number of particules, T: length of the sequence
 1: Initialize z_0^p = z_0 and \alpha_0^p = \frac{1}{P} for p = 1, \dots, P
 2: for t = 1, ..., T do
         Fix reference path: set a_{t-1}^1 = 1 and z_{1:t}^1 = z_{1:t}^* from the previous iteration
 3:
 4:
      for p = 2, \ldots, P do
 5:
              Sample ancestors a_{t-1}^p \sim \alpha_{t-1}
 6:
         end for
 7:
         for p = 2, \ldots, P do
             Sample particles z_t^p \sim \gamma_t^p and set z_{1,+}^p = (z_{1,+-1}^{a_{t-1}^p}, z_{+}^p)
8:
9.
         end for
10:
         for p = 1, \ldots, P do
11:
              Compute normalized weights \alpha_t^p
12:
          end for
13: end for
14: Sample r \sim \alpha \tau
15: return the particle path z_{1...T}^{a'_{T}}
```

Training Loop

Algorithm Training Loop for Topical SSL

Require: S_x : set of training sequences, P: number of particules, K: number of topics, N: size of the vocabulary, n: number of training samples, n_epochs: number of epochs, n_iter_EM: number of EM iterations

```
1: for i = 1, ..., n do
          z_{1:T_{\text{train}}}^* \sim \text{i.i.d } \mathcal{U}\{1,\ldots,K\}
 3: end for
 4: for epoch = 1, \ldots, n_{\text{pochs}} do
          S_{z_{1:T_{+...:}}^*} = [\ ]
 5:
 6:
           for i = 1, \ldots, n do
 7:
                for iter_EM = 1, \dots, n_iter_EM do
8:
                     Compute z_{1:T_{\text{train}}}^* by Particle Gibbs using previous z_{1:T_{\text{train}}}^*
9:
                     Train LSTM with z_{1:T_{train}}^* by back-propagation
                      Compute the MLE of the SSM on S_x[1:i] and (S_{\mathbf{Z}^*_{1:T_{t-1}}}, [1:i-1], \mathbf{Z}^*_{1:T_{train}})
10:
11:
                end for
                Add z_{1:T_{\text{train}}}^* to S_{z_{1:T_{\text{train}}}^*}
12:
13:
           end for
14: end for
```

Implementation details

- All the algorithms implemented in pytorch
 - GPU usage for LSTM
 - CPU usage for other parts
- n_epochs = 5 and n_iter_EM = 1 (computational constraint)
- P = 10
- $\bullet \ \ K \in \{10, 50, 100\}$

Results

Perplexity Curves

Standard LSTM

Baseline

Figure: Perplexity through epochs for standard LSTM

Topics Visualization (Interpretability)

Figure: Latent Topics Visualization

Conclusion

- Key results :
 - Impact of Topical SSL on NLP interpretability
 - Newly proposed inference method can be (much) slower
- Potential extensions :
 - Reduce computing time (parallelization)
 - Better optimization of hyperparameters (number of particles, topics, dropout, ...)

References

Xun Zheng, Manzil Zaheer, Amr Ahmed, Yuan Wang, Eric P. Xing, and Alexander J. Smola.

State space LSTM models with particle MCMC inference.

CoRR, abs/1711.11179, 2017.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.

Learning word vectors for sentiment analysis.

In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

Q & A

Thank you! Questions?

