Interpretable Machine Learning

Linear Regression Model

Learning goals

- LM basics and assumptions
- Interpretation of main effects in LM
- What are significant features?

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ullet ϵ : remaining error / residual
- θ_j : weight of input feature x_j (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- \bullet ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p + 1 weights

Properties and assumptions ► Faraway (2002)

Checking assumptions in R & Python

Linear relationship between features and target

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p+1 weights

Properties and assumptions Faraway (2002)

Checking assumptions in R & Python

- Linear relationship between features and target
- \bullet and y | x are normally distributed with constant variance (homoscedastic)

$$\sim \epsilon \sim N(0, \sigma^2) \ \Rightarrow \ (y|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$$

→ if violated, inference-based metrics (e.g., p-values) are invalid

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p+1 weights

Properties and assumptions Faraway (2002).

Checking assumptions in R & Python

- Linear relationship between features and target
- \bullet and y | x are normally distributed with constant variance (homoscedastic) $\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (\mathbf{y}|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$ → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p+1 weights

Properties and assumptions Faraway (2002).

Checking assumptions in R & Python

- Linear relationship between features and target
- \bullet and y | x are normally distributed with constant variance (homoscedastic) $\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (\mathbf{y}|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$
 - → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual
- θ_i : weight of input feature x_i (intercept θ_0) \rightsquigarrow model consists of p+1 weights

Properties and assumptions Faraway (2002).

Checking assumptions in R & Python

- Linear relationship between features and target
- \bullet and y | x are normally distributed with constant variance (homoscedastic)

$$ightsquigarrow \epsilon \sim \textit{N}(0, \sigma^2) \ \Rightarrow \ (\textit{y}|\textbf{x}) \sim \textit{N}(\textbf{x}^{\top}\theta, \sigma^2)$$

- → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Features x_i independent from error term ϵ
- No or little multicollinearity (i.e., no strong feature correlations)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (feature effects) depend on type of feature:

• **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \rightsquigarrow reference category $x_j = 0$

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- Binary x_j : Weight θ_j is active or not (multiplication with 1 or 0) \leadsto reference category $x_j = 0$

- Create L-1 one-hot-encoded features $x_{j,1}, \ldots, x_{j,L-1}$ (each having its own weight)
- Left out cat. is reference (\(\hat{=}\) dummy encoding)
- \sim Interpretation: Outcome changes by $\theta_{j,i}$ for category *i* compared to reference cat., c.p.

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (*ceteris paribus* (c.p.) means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) \leadsto reference category $x_j = 0$

- Create L-1 one-hot-encoded features $x_{j,1}, \ldots, x_{j,L-1}$ (each having its own weight)
- Left out cat. is reference (\(\hat{=}\) dummy encoding)
- \leadsto Interpretation: Outcome changes by $\theta_{j,i}$ for category i compared to reference cat., c.p.
- Intercept θ_0 : Expected outcome if all feature values are set to 0

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) \triangleq \text{reliability of estimate})$

$$|t_{\hat{ heta}_j}| = \left|rac{\hat{ heta}_j}{ extit{SE}(\hat{ heta}_j)}
ight|$$

High t-values ⇒ important (significant) feat.

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with standard error $(SE(\hat{\theta}_j) \triangleq \text{reliability of estimate})$

$$|t_{\hat{ heta}_j}| = \left|rac{\hat{ heta}_j}{ extsf{SE}(\hat{ heta}_j)}
ight|$$

- High *t*-values ⇒ important (significant) feat.
- **p-value**: probability of obtaining a more extreme test statistic assuming H_0 is correct (here: $\theta_j = 0$)

 \rightsquigarrow High $|t| \Rightarrow$ small p-val. (speak against H_0)

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

• Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categorical: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.

Bike data: predict no. of rented bikes using 4 numeric, 1 categorical feat. (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \\ & \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \\ & \hat{\theta}_5 x_{hum} + \hat{\theta}_6 x_{windspeed} + \\ & \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

Interpretation:

- Intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Categorical: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.
- Numerical: Rentals increase by $\hat{\theta}_4 =$ 120.5 if temp increases by 1 °C, c.p.