Bipartite graphs

Bipartite graphs

Lemma 1

Let $G = \langle V, E \rangle$ be a graph. Then G is bipartite if and only if it does not have any odd cycle.

Lemma 2

Let $G = \langle V, E \rangle$ be a graph and let M be its **incidence** matrix. Then G is bipartite if and only if M is totally unimodular.

Max cardinality matching

Instance

An unweighted graph $G = \langle V, E \rangle$ with bipartition A, B

$$\max \sum_{(v,w)\in E} e_{v,w} \quad \text{subject to} \tag{1}$$

$$\sum_{v,w} e_{v,w} \le 1 \quad \forall v \in A \tag{2}$$

$$\sum_{v \in A} e_{v,w} \le 1 \quad \forall w \in B$$

$$e_{v,w} \in \{0,1\} \quad \forall (v,w) \in E$$

(3)

Max cardinality matching

Max cardinality matching as Max flow

Min weighted perfect matching

Instance

An edge-weighted graph $G = \langle V, E \rangle$ with bipartition S, T, with weight function c

$$\min \sum_{(v,w) \in E} c(v,w)e_{v,w} \quad \text{subject to}$$

$$\sum_{w \in T} e_{v,w} \le 1 \quad \forall v \in S$$

$$\sum_{v \in S} e_{v,w} \le 1 \quad \forall w \in T$$

$$e_{v,w} \in \{0,1\} \quad \forall (v,w) \in E$$

Max weighted matching

Instance

An edge-weighted graph $G = \langle V, E \rangle$ with bipartition S, T, with weight function c

Primal

$$\min \sum_{(v,w) \in E} c(v,w) e_{v,w} \quad \text{subject to}$$

$$\sum_{w \in N(v)} e_{v,w} \leq 1 \quad \forall v \in V$$

$$e_{v,w} \geq 0 \quad \forall (v,w) \in E$$

Dual

$$\max \sum_{v \in V} l(v)$$
 subject to $l(v) + l(w) \le c_{v,w}$ $\forall (v,w) \in E$

Invariants

- Always a dual feasible solution $l(v) + l(w) \le c_{v,w}$
- $R_S \subseteq S$, $R_T \subseteq T$ are the **uncovered** vertices
- G_l : take only the edges $(v, w) \in E$ of G such that $l(v) + l(w) = c_{v,w}$.
 - Arcs in *M* are from *T* to *S*.
 - Arcs not in M are from S to T.
 - ullet G_l has all the edges of M.
- \blacksquare *Z*: vertices reachable from R_S in G_l
- $(v, w) \in M \Rightarrow l(v) + l(w) = c_{v, w}$

Algorithm

```
Data: Undirected bipartite weighted graph G = \langle V, E \rangle, bipartition (S, T), cost
M \leftarrow \emptyset, l = \bar{0}:
while M is not perfect do
    if R_T \cap Z \neq \emptyset then
         Found an alternating path;
         Extend M:
    else
         \Delta = \min_{c \in S \cap Z, t \in T \setminus Z} \{c(s, t) - c(s) - c(t)\};
         foreach v \in V do
              if v \in S \cap Z then l(v) \leftarrow l(v) + \Delta;
              if v \in T \cap Z then l(v) \leftarrow l(v) - \Delta;
return M
```

Algorithm correctness

Lemma

Let M, l be a current solution such that M is not a perfect matching. Then there is an augmenting path in G, which implies:

- **1** there is an augmenting path in G_l or
- \mathbf{z} there is a loose-tailed path in G

Faster and incremental algorithm

We have an optimal solution on the vertices $S_{j-1} \cup T$ and we add the vertex j.

Data: M current solution on $S_{j-1} \cup T$, vertex j to add $Z \leftarrow \{j\}$; $\Delta = \min_{t \in T \setminus Z} \{c(j,t) - c(j) - c(t)\}$; x is the argmin;

foreach $v \in V$ do

if
$$v \in S \cap Z$$
 then $l(v) \leftarrow l(v) + \Delta$;

if
$$v \in T \cap Z$$
 then $l(v) \leftarrow l(v) - \Delta$;

if *x is covered by M* **then**

Add x and its mate to Z, then iterate;

else

Found an augmenting path;

return M