Postadresse: Institut: Telefon: Telefax: D-52056 Aachen, Germany Jägerstraße 17-19, D-52066 Aachen ++49 241 80 96900 ++49 241 80 92184

http://www.xtal.rwth-aachen.de

GRUNDZÜGE DER KRISTALLOGRAPHIE

12. Übung: Röntgenbeugung am Kristallpulver II

Die Braggsche Gleichung lautet:

$$2 \cdot d_{hkl} \cdot \sin(\Theta_{hkl}) = (n \cdot)\lambda \qquad n \in \mathbb{N}$$
 (1)

In dieser Gleichung ist λ bekannt, da es im Experiment vorgegeben wird, Θ wird gemessen, so dass d berechnet werden kann. Im kubischen Fall gilt zusätzlich die Gleichung ("Quadratische Form")

$$\frac{1}{d_{hkl}^2} = \frac{1}{a^2} \cdot (h^2 + k^2 + l^2). \tag{2}$$

Aus d_{hkl} und den Zahlen h, k, l läßt sich der Gitterparameter a bestimmen. Setzt man Gleichung (2) in (1) ein, so ergibt sich:

$$\sin^{2}(\Theta_{hkl}) = \frac{\lambda^{2}}{4a^{2}} \cdot (h^{2} + k^{2} + l^{2})$$

$$= \frac{\lambda^{2}}{4a^{2}} \cdot N$$
(3)

N ist eine Folge von ganzen Zahlen, die entsprechend der im Anhang beigefügten Tabelle für die kubischen Bravaisgitter P, F und I verschieden ist, da zentrierte Zellen Reflexauslöschungen bedingen.

Aufgabe 1:

Bestimmen Sie die Gitterparameter und die Indizierung der beiden kubischen Substanzen (siehe Seite 2). Aus den gegebenen 2 Θ -Reflexpositionen erhalten Sie den Wert von $\sin^2\Theta$. Bestimmen Sie dann, für welche Zahlenfolge N entsprechend Gleichung (3) sich ein gemeinsamer Faktor $\lambda^2/4a^2$ ergibt. Vergleichen Sie Ihre Zahlenfolge N mit den im Anhang angegebenen Zahlenfolgen für die kubischen Bravaisgitter. Bestimmen Sie d, a sowie hkl aus Gleichung (1) bzw. (2).

Hinweis: $\lambda(Cu_{K\overline{\alpha}}) = 1.5418 \text{ Å}$

Substanz 1

Nr.	2 ⊖ [°]	I	$\sin^2\Theta$	$\Delta_{\sin^2\Theta}$	$N = h^2 + k^2 + l^2$	$\frac{\lambda^2}{4a^2}$	d	hkl
1	43.0	4622						
2	50.1	2114						
3	73.6	917						
4	89.0	783						
5	94.2	224						
6	115.7	141						
7	134.8	409						
8	142.8	367						
			$\lambda^2/4a^2 =$	=	\Rightarrow $a =$			

Substanz 2

Nr.	2 ⊖ [°]	I	$\sin^2\Theta$	$\Delta_{\sin^2\Theta}$	$N = h^2 + k^2 + l^2$	$\frac{\lambda^2}{4a^2}$	d	hkl
1	27.3	1051						
2	31.5	8109						
3	45.3	4452						
4	53.7	164						
5	56.2	1212						
6	65.8	481						
7	72.2	87						
8	74.8	892						
)	$\sqrt{1/4a^2} = $	\Rightarrow	a =			

Aufgabe 2:

Um welche Substanzen handelt es sich? Verwenden Sie hierzu die im Anhang gegebenen ASTM-Karteikarten. Dabei werden die d-Werte der drei stärksten Reflexe aus Aufgabe 1 mit den d-Werten in den gegebenen Karten verglichen.

Aufgabe 3:
Welche Struktur haben die Substanzen?
Aufgabe 4:
Welche Abstände haben die benachbarten Atome in den jeweils vorliegenden Struk-
turen? Benutzen Sie hierzu den Gitterparameter, der in Aufgabe 1 bestimmt wurde.
turen: Denutzen die merzu den Gitterparameter, der in Aufgabe i bestimmt wurde.

Aufgabe 5:

Berechnen Sie mit Hilfe der Angaben auf der passenden ASTM-Karteikarte die molare Masse M.

 $\mathit{Hinweis}\colon \text{Benutzen Sie}$ die mit \mathcal{D}_x in der Karte angegebene Dichte in $\frac{g}{cm^3}$ und den Gitterparameter a.

Anhang:

Gittertyp	Beobachtete Reflexe	Ausgelöschte Reflexe
P	h, k, l beliebig	keine
I	h+k+l=2n	h+k+l=2n+1
F	h + k = 2n, k + l = 2n, h + l = 2n	h + k = 2n + 1
	bzw. h, k, l alle gerade	$\& \qquad k+l = 2n+1$
	oder alle ungerade	$\& \qquad h+l=2n+1$
A	k+l=2n	k+l = 2n+1
В	h+l=2n	h+l=2n+1
С	h+k=2n	h + k = 2n + 1
R	-h+k+l=3n	
	(obverse Aufstellung)	
	h - k + 1 = 3n	
	(reverse Aufstellung)	

Anhang A1: Integrale Auslöschungsbedingungen

				-				
N	P	Cubic h²+k² F hkl	+ l ²		N	N = P hkl	Cubic h ² +k ² F hkl	$+l^2I$
ı	100						 	
2	110		110		19	331	331	
3	111	111			20	420	420	420
4	200	200	200		21	421		
5	210				22	332		332
)	7.0				23			
6	211		211					1
					24	422	422	422
7 8	220	220	220		25	500		
9	300				25	430		
9	221				26	510		510
,					26	431		431
10	310		310					
II	311	311	J		27	511	511	
12	222	222	222		27	333	333	
13	320			ĺ	28			
14	321		321		29	520		
')				29	432		
15								
16	400	400	400		30	521		521
17	410	•	•		31			
17	322				32	440	440	440
18	411		411		33	522		
18	330		•		33	44 I		

Anhang A2: Erlaubte (nicht ausgelöschte) Reflextripel hkl für die kubischen Bravaisgitter $P,\ I$ und F.

Dia. Cut off Coli. I/I. G. C. DIFFRACTOMETER d corr. abs.? Ref. SWANSON AND TATGE, JC FEL. REPORTS, NBS (1949) Sys. Cusic S.G. O _H ⁵ - FM3M a 3.6150 b c A C g β γ Z 4 Ref. isid. Ref. isid. 1.008 1.278 1.0090 1.7 311 1.0436 5 222 0.9038 3.8293 9.331 8063 8 400 8293 9.331 8063 8 420	d 1-0846	2,09	1.81	1.28	2.088	Cu						*
Rad. CUKG; λ 1.5405 Filter N: Dia. Cut off Coll. I/I, G. C. DIFFRACTOMETER doorr.abs.? Ref. Swanson and Tatge, JC Fel. Reports, NBS (1949) Sys. Cubic S.G. O ^B - FM3w 2 20 220 a 3.6150 b c A C 3 400 a β γ Z 4 Ref. Ibid. See noβ ?γ Sign TO D _X 8.936 mp Color Ref. Ibid. Johnson and Matthey-speg. Sample, annealed at 7000°C in vacuum. At 26°C To replace 1-1241, 1-1242,2-1225,3-1005,3-1015,		100	46	50	100	Соря	PER			(Cor	PER)	
a 3.6150 b c A C 0.9038 3 400 8893 9 331 8083 8 420 8	Dia.	· ·	Cut off		Coll.	BS 949)	2.089 1.808 1.278 1.0900	100 46 20	111 200 220	d Å	1/1,	hki
ZV D, 8.936 mp Color Ref. BID. JOHNSON AND MATTHEY-SPEC. SAMPLE, ANNEALED AT 700°C IN VACUUM. AT 26°C TO REPLACE 1-1241, 1-1242,2-1225,3-1005,3-1015,	a 3.6	150 b в	c Y	8.G. A Z	0 ⁸ - FM3M C 4		0.9038 .8293	3	400 331			
700°C IN VACUUM. AT 26°C To REPLACE 1-1241, 1-1242,2-1225,3-1005,3-1015,	2V	D _x 8.9	п <i>о f</i> 936 mp		Slgn							
	700°C AT 26 To RE	IN VACUE OC PLACE 1-:	JM.									

đ	2.82	1.99	1.63	3.258	NACL		Ä				
1/1,	100	55	15	13	SODIUM CHLORIDE (HALITE)						
Rad.Cu	Κα	λ 1.5405		Filter Ni	АЬ	I/I ₁	hki	A A	1/1,	bkl	
Dia		Cut off		Coll.	3.258	13	111				
I/I, G.	C. DIFF	RACTOMETE	R d	corr. abs.?	2.821	100	200				
Ref. Sw	ANSON AN	D FUYAT, I	VBS CIRCU	corr.abs.7 LAR 539, \ 4	QL. II. 1.994	55	220				
					1.701	2	311				
Sys. Cu	BIC		8.G.	0 <mark>6 - Fw3</mark> w	1.628	15	222			ĺ	
	402 b	c			1.410	6	400			İ	
a	<i>B</i>	Y	A Z	4	1.294	1	331				
Ref. B	ID.	•			1.261	11	420				
					1.1515		422				
t a		n	5428 y	Sign	1.0855	1	511				
2V				COLORLESS	0.9969	2	440	i i		1	
Ref. in		- mp	- June	AREA-18E48	.9533		531				
					.9401	3	600				
N ACS	REAGENT	GRADE BAL	PLE RECR	YSTALL 12EZ	.8917		620				
		TOROCHLOR			.8601	1	533				
	PATTERN .				.8503	3	622				
					.8141		444				

2003