

# **Honeywell**

---

## **H-316-20 DATA MULTIPLEX MULTIPLEX CONTROL OPTION**

Order No. 70130072180L Order No. FT13

---

# **Honeywell**

---

## **H-316-20 DATA MULTIPLEX MULTIPLEX CONTROL OPTION**

Order No. 70130072180L Order No. FT13

---

June 1975

COPYRIGHT © 1969, 1970, HONEYWELL INC.

COPYRIGHT © 1971, 1972, 1973, 1974, HONEYWELL INFORMATION SYSTEMS INC.

The information contained herein is the exclusive property of Honeywell Information Systems Inc., except as otherwise indicated, and shall not be disclosed or reproduced, in whole or in part, without explicit written authorization from the company. The distribution of this material outside the company may occur only as authorized.

REVISION HISTORY

| New Revision Level of Manual | Change No. | Effective Date | Number and New Revision Level of Affected Drawings   | Pages Affected by Revision |
|------------------------------|------------|----------------|------------------------------------------------------|----------------------------|
| B                            | 7763       | Jan. 1970      | --                                                   | CC-480 pages 1, 2          |
| C                            | 7904       | Feb. 1970      | C70025580B<br>C70025582B<br>C70025585B<br>C70025577B | 21<br>25<br>31<br>33       |
| D                            | 7942       | Feb. 1970      | --                                                   | CC-480 page 2              |
| E                            | 8300       | July 1970      | --                                                   | CC-480 page 1              |
| F                            | 9425       | June 1971      | --<br>C70025580C<br>C70025585C<br>C70025577C         | 2, 3<br>21<br>31<br>33     |
| G                            | 10168      | Feb. 1972      | C70025580D<br>C70025584B<br>C70025147D               | 21<br>29<br>35 added       |
| H                            | 10238      | Mar. 1972      | C70025577D                                           | 33                         |
| J                            | 20704      | Dec. 1972      | C70025580E<br>C70025577E                             | 21<br>33                   |
| K                            | 31864      | Mar. 1974      | C70025583B                                           | 27                         |
| L                            | 10169      | June 1974      | C70025585D                                           | 31                         |

Publications Department, Field Engineering Division, Newton, MA 02161

Printed in the United States of America  
All rights reserved

## CONTENTS

|                                 | <u>Page</u> |
|---------------------------------|-------------|
| <b>Introduction</b>             | 1           |
| <b>Reference Documents</b>      | 1           |
| <b>Physical Characteristics</b> | 1           |
| <b>Functional Description</b>   | 1           |
| <b>Operation</b>                | 1           |
| <b>Installation</b>             | 3           |
| <b>PAC Locations</b>            | 3           |
| <b>Power Source</b>             | 3           |
| <b>Interface Connections</b>    | 3           |
| <b>Theory of Operation</b>      | 3           |
| <b>Timing Level Generator</b>   | 5           |
| <b>Synchronization</b>          | 6           |
| <b>DMC Cycle</b>                | 6           |
| <b>Detailed Analysis</b>        | 7           |
| <b>Sync Cycle</b>               | 7           |
| <b>First DMC Cycle</b>          | 9           |
| <b>Second DMC Cycle</b>         | 10          |
| <b>Third DMC Cycle</b>          | 10          |
| <b>Fourth DMC Cycle</b>         | 10          |
| <b>Special Wiring</b>           | 11          |
| <b>Parts List</b>               | 11          |
| <b>Logic Block Diagrams</b>     | 15          |

### APPENDIX A FLOW CHARTS AND ANALYSES

A-1

### APPENDIX B SPECIAL PAC DESCRIPTIONS

B-1

## ILLUSTRATIONS

|                                           | <u>Page</u> |
|-------------------------------------------|-------------|
| 1      DMC Signal Interface Block Diagram | 2           |
| 2      DMC Cycles                         | 7           |
| 3      DMC Timing Cycle                   | 8           |
| 4      H316-20 DMC PAC Layout             | 12          |
| 5      Cable Assembly, Special Purpose    | 14          |

## TABLES

|                                              | <u>Page</u> |
|----------------------------------------------|-------------|
| 1      Starting and Ending Address Locations | 3           |
| 2      Function Index                        | 4           |

**H316-20**  
**DATA MULTIPLEX CONTROL**

#### INTRODUCTION

The data multiplex control (DMC) option provides direct access for input/output data transfers between the memory of the H316 General Purpose Digital Computer and external devices requiring this service.

Multiplexed service provides either 4, 8, 12, or 16 channels, each being serviced according to its priority. Channel 1 has the highest priority and channel 16 the lowest.

The H316-20 option requires four 1.6  $\mu$ sec cycles for each data transfer.

#### Reference Documents

| <u>Title</u>                                           | <u>Doc. No.</u> |
|--------------------------------------------------------|-----------------|
| H316 Central Processor Description                     | 70130072176     |
| H316 Central Processor Instructions and Logic Diagrams | 70130072174     |
| H316 Interface Manual                                  | 70130072167     |

#### Physical Characteristics

The DMC option consists of integrated circuit  $\mu$ -PACs packaged in a 2 x 3 BLOC. This BLOC is inserted into the H316 main frame drawer.

#### Functional Description

The DMC is a passive device that responds to the needs of the devices which use its control lines. (See Figure 1.) When a particular device has data to input, or is ready to accept data, the device then uses the DMC control lines to request service. The DMC will then send a break request to the CPU. A DMC cycle will be executed when the current instruction has been completed; however, in the case of a multiple cycle instruction, such as a shift, the break request will be honored before the instruction is completed. During this cycle the appropriate transfer between the device and the memory will take place, using the standard I/O bus.

#### OPERATION

Instructions for operating the various DMC devices can be found in operation instructions for that particular unit. Preliminary programming necessary for operating a device is:

- a. Store the starting address, with bit 1 a ONE for input mode, ZERO for output mode, in the assigned location for the starting address. (See Table 1.)

- b. Store the ending address in assigned location for ending address. (See Table 1.)
- c. Using appropriate OCPs, set up the device in the input or output mode and set up the DMC mode. The order of these OCPs is specified in each device specification.
- d. If a program interrupt is to be used to detect end of data transmission, the PI mask flip-flop for the device must be set up to a ONE, and the desired interrupt routine must be part of the program.



Figure 1. DMC Signal Interface Block Diagram

Table 1.  
Starting and Ending Address Locations

| <u>Channel No.</u> | <u>Starting Address</u> | <u>Ending Address</u> |
|--------------------|-------------------------|-----------------------|
| 1                  | 00020                   | 00021                 |
| 2                  | 00022                   | 00023                 |
| 3                  | 00024                   | 00025                 |
| 4                  | 00026                   | 00027                 |
| 5                  | 00030                   | 00031                 |
| 6                  | 00032                   | 00033                 |
| 7                  | 00034                   | 00035                 |
| 8                  | 00036                   | 00037                 |
| 9                  | 00040                   | 00041                 |
| 10                 | 00042                   | 00043                 |
| 11                 | 00044                   | 00045                 |
| 12                 | 00046                   | 00047                 |
| 13                 | 00050                   | 00051                 |
| 14                 | 00052                   | 00053                 |
| 15                 | 00054                   | 00055                 |
| 16                 | 00056                   | 00057                 |

## INSTALLATION

### PAC Locations

The DMC option consists of integrated circuit  $\mu$ -PACs packaged in a 2 x 3 BLOC. This BLOC is inserted into the H316 main frame. (See PAC allocation drawing, LBD No. 239.)

### Power Source

The DMC unit power requirements are supplied by the main frame power supply.

### Interface Connections

Connections between the I/O bus and interface logic for the DMC are shown on LBD No. 238. For further information, refer to the H316 Interface Manual, Doc. No. 70130072167.

## THEORY OF OPERATION

Refer to Table 2 for a list and descriptions of DMC mnemonics. See Figure 1, a block diagram of the DMC signal interface, and LBD No. 231 through LBD No. 238 for DMC logic.

### NOTE

Starting with Revision E, all H316 HSDMC options will be able to break during an F, I, or A cycle except during the first A cycle of a three-cycle instruction (JST, IRS, etc.) or the F cycle of an I/O instruction. Therefore, the maximum latency for any instruction is two cycles.

Table 2.  
Function Index

| <u>Mnemonic</u> | <u>Description</u>                                                                  |
|-----------------|-------------------------------------------------------------------------------------|
| ADREN           | Address enable to IY bus                                                            |
| CLDCR           | Clear address counter                                                               |
| CLEAR           | Clear priority network                                                              |
| CLMTR           | Clear M-register storage                                                            |
| CO112           | Carry out from any of channels 1 through 12                                         |
| CO14X           | Carry out from any of channels 1 through 4                                          |
| CO116           | Carry out from any of channels 1 through 16                                         |
| CQ18X           | Carry out from any of channels 1 through 8                                          |
| DALEN           | Device address line enable                                                          |
| DALnn           | Device address line, channels 1-16                                                  |
| DCRnn           | Address counter register bit nn                                                     |
| DCY2X           | DMC cycle, phase 2                                                                  |
| DCY3X           | DMC cycle, phase 3                                                                  |
| DILnn           | Data interrupt line, channels 1-16                                                  |
| DMC1X           | DMC cycle, phases 1 and 2                                                           |
| DMC2X           | DMC cycle, phases 2 and 3                                                           |
| DMCCY           | DMC cycle                                                                           |
| DMCRQ           | DMC request                                                                         |
| DMCWR           | DMC write/read level to memory                                                      |
| DMCYQ           | DMC cycle (CPU)                                                                     |
| DRQnn           | DMC request, channel nn                                                             |
| DMRRL           | DMC reset ready line                                                                |
| EAMTS           | Emit address to M-register timing strobe                                            |
| EENBL           | Enable timing level E                                                               |
| EMMTA           | Emit M-register storage to CPU M-register                                           |
| EOIDR           | End of instruction and DMC request                                                  |
| EORTS           | Output bus to address counter (gating signal)                                       |
| ERLXX           | End of range                                                                        |
| EIMTS           | Emit input bus to M-register strobe                                                 |
| EMDTS           | Emit CPU M-register to M-register storage                                           |
| INBnn           | Input bus, bits 1-16                                                                |
| INRT2           | Inhibit repeat TL2                                                                  |
| IYBnn           | Input to Y-register bus, bits 2 through 16 used by DMC option and program interrupt |
| MnnDF           | M-register storage                                                                  |
| MADCL           | Memory address clear                                                                |
| MCSET           | Master clock, set phase                                                             |
| MSTCL           | Master clear (overall initialization)                                               |

**Table 2. (Cont)**  
**Function Index**

| <u>Mnemonic</u> | <u>Description</u>                               |
|-----------------|--------------------------------------------------|
| OBINH           | CPU output bus inhibit                           |
| OTBnn           | Output bus, bits 1-16                            |
| RR LIN          | Reset ready line                                 |
| SAMPL           | Sample DILs                                      |
| SETTA           | Set TLAFF signal                                 |
| SETTB           | Set TLBFF signal                                 |
| SETTC           | Set TLCFF signal                                 |
| SETTD           | Set TLDFF signal                                 |
| SETTE           | Set TLEFF signal                                 |
| SETTF           | Set TLFFF signal                                 |
| TACFF           | Timing level A through timing level C flip-flops |
| TBDFF           | Timing level B through timing level D flip-flops |
| TEFFF           | Timing level E through timing level F flip-flops |
| TL1FF           | Timing level TL1                                 |
| TL2FF           | Timing level TL2                                 |
| TL3FF           | Timing level TL3                                 |
| TL4FF           | Timing level TL4                                 |

Timing Level Generator

The DMC timing level generator (LBD No. 232) generates the various timing levels required for a DMC cycle. A DMC request (DMCYQ) enables the CPU master clock oscillator outputs MCSET, MCRST, and MTLG, to trigger the DMC timing level flip-flops. There are six of these flip-flops: TLAFF, TLBFF, TLCFF, TLDFF, TLEFF, and TLFFF. The transition from one level to the next is controlled by TACFF, TBCFF, TEFFF, and EENBL. Note that the TL4FF flip-flop (LBD No. 118) is inhibited while the DMC timing level generator is enabled.

During DMC cycles, timing levels TLA and TLE, followed by TLB and TLF occur simultaneously except at the beginning of the first cycle, when only TLA followed by TLB is generated, and the end of the last cycle, when only TLE followed by TLF is generated. The levels for one DMC transfer are generated as shown below. If successive transfers follow, then timing levels E and F are overlapped with A and B and timing level 4 does not occur until DMC requests are not pending.



Each channel has one DILXX line and one DALXX line. A device uses one of the DILXX lines to request a DMC cycle when it has data to input or is ready to accept data. The DMC will then send a break request to the CPU. A DMC cycle will be executed when the current instruction has been completed; however, in the case of a multiple cycle instruction, such as a shift, the break request will be honored before the instruction is completed.

The DALXX lines are used to notify a device that its request has been honored and a DMC cycle is currently being executed.

The DMC executes an input if bit 1 of the starting address location is a ONE. An output is executed if bit 1 is a ZERO.

Bits 2 through 16 of the starting address specify a memory location where the data on the input bus will be stored when a DMC input is executed. The data in this location will be transferred to the device via the output bus when a DMC output is executed.

RRLIN is generated during each DMC cycle to notify the device that the data transfer is complete.

If the device is in the input mode, it uses DALXX to gate its data onto the input bus. If the device is in the output mode, it uses the coincidence of DALXX and RRLIN to strobe the data on the output bus into its buffer. Note that when in the output mode, the device must not gate data onto its input bus.

During each DMC cycle, the contents of the starting address location will be increased by one. The first of the DMC transfers concerns the memory location initially stored in the starting address location. The second transfer concerns the next higher memory location, etc.

The terminal address is compared with the starting address during each DMC cycle. An end-of-range (ERLXX) signal is generated upon equality. The device may gate DALXX with ERLXX to inhibit further generation of requests. It may also generate an interrupt upon receipt of ERLXX.

### Synchronization

Sync cycles occur when the DMC is not executing a DMC cycle. During this sync cycle, the DIL lines are interrogated. If a DIL is detected, a computer break is requested. The DMC will then send a break request to the CPU. A DMC cycle will be executed when the current instruction has been completed; however, in the case of a multiple cycle instruction, such as a shift, the break request will be honored before the instruction is completed.

### DMC Cycle

The standard DMC (H316-20) requires four 1.6  $\mu$ s cycles for each data transfer.

The DMCWR flip-flop controls the direction of the four DMC memory cycles. When it is set, a write cycle is executed. When reset, a read cycle is executed.

The sequence of the DMC operations is controlled by the DMC master clock (LBD No. 232) and the DMC1X and DMC2X flip-flops (LBD No. 232). They are used to generate the memory cycles shown in Figure 2.

The purpose of each memory cycle is as follows:

- a. Fetch Starting Address. -- The contents of the starting address location are fetched and stored in the address counter register.
- b. Fetch Terminal Address. -- The contents of the terminal address location are fetched and compared with the contents of the address counter register.
- c. Data Transfer. -- The data transfer is controlled by the contents of the address counter register. If bit 1 is a ONE, an input is executed. If bit 1 is a ZERO, an output is executed. The contents of the address counter are increased by one.
- d. Store Updated Starting Address. -- The contents of the address counter register are stored in the starting address location. If another DMC request is waiting, another DMC cycle starts. If no requests are waiting, the CPU resumes control.



6197

Figure 2. DMC Cycles

#### DETAILED ANALYSIS

##### Sync Cycle

The priority network is cleared by  $TL2FF \cdot MCRST$  of every sync cycle (CLEAR). SAMPL is generated by every  $TL2FF \cdot MCSET$ . If any DIL is true during SAMPL, the corresponding channel flip-flop in the priority network is set. (See Figure 3.) (Refer to Appendix A for the flow chart and analysis.)



6198

Figure 3. DMC Timing Cycle

The data in the M-register of the CPU is saved in the DMC every TL3 · MCSET, and cleared every TL2 · MCRST. Therefore, the contents of the CPU M-register are saved throughout the DMC break.

When any of the channel flip-flops are set, the priority network (PN) notifies the CPU that a device has requested a DMC cycle by generating DMCYQ. DMCYQ prepares the CPU for the execution of the DMC cycle by doing the following:

- a. Inhibiting all the transfer paths to the Y-register other than the IY bus.
- b. Inhibiting PIL00 and SEX from using the IY bus.
- c. Inhibiting CPU timing level generator at the end of TL3.
- d. Inhibit RPTT2.
- e. Saving NRMOP.
- f. Inhibiting IOACY.

These steps allow the CPU to complete the current instruction but prevent the starting of another instruction.

The priority network operates in a manner such that the highest priority channel flip-flop, of those which are set, enables the starting address location for that channel to appear on the IY bus. For example, if channel flip-flops 2, 7, and 9 are set, (000022)<sub>8</sub> will appear on the IY bus. SAMPL and CLEAR are inhibited until the end of the DMC cycle so that, after having decided on priority and started the DMC cycle, the output of the priority network remains fixed.

EOINS is a level generated by the CPU which becomes true during the last cycle of each computer instruction. When DMCRQ and MPY, DIV or EOINS occur, the first DMC cycle is initiated.

At TLAFF time, the IY bus is strobed into the Y-register. The DMCWR flip-flop is in the reset state.

#### First DMC Cycle

At TLBFF time MEMCI occurs. This set of conditions produces a memory cycle which fetches the contents of the starting address location and stores them in the M-register. (Refer to Appendix A for the flow chart and analysis.)

During the DMC cycle, the contents of the M-register are gated to the output bus (LBD No. 238).

EORTS+ (LBD No. 236) is used to strobe the contents of the output bus into the address counter register. This completes the fetch of the starting address.

The priority network continues to apply the starting address location to the IY bus. The terminal address location is always an odd number and one higher than the starting address (Table 1); therefore, bit 16 of the IY bus is changed from a ZERO to a ONE. This produces the terminal address location on the IY bus which is strobed into the Y-register at TLAFF time.

### Second DMC Cycle

Because DMCWR+ is still reset, the resulting memory cycle fetches the contents of the terminal address location which subsequently appears on the output bus. This address is compared with the starting address which is currently in the address counter. (Refer to Appendix A for the flow chart and analysis.)

The comparator (LBD 237) is a 15-bit exclusive OR network. The output is true if the 15 low order bits of the output bus are equal to the 15 low order bits of the address counter register, respectively.

ERLXX- is generated if the output of the comparator is true.

The 15 low order bits of the address counter register will be transferred to the Y-register via the IY bus to provide the memory address of the third DMC cycle, which performs the data transfer.

### Third DMC Cycle

If bit 1 of the address counter register is set, an input transfer is called for, and the following operations are carried out:

- a. DMRRRL (LBD 238) is sent to the CPU to generate RRLIN (LBD 232) indicating that the data on the input bus has been taken.
- b. The contents of the input bus are strobed into the M-register at TLC.
- c. The DMCWR flip-flop is set so that the following memory cycle writes the contents of the M-register into the memory.
- d. The DALEN flip-flop is reset, disabling all DAL lines and also clearing the input bus for use by the DMC.

If bit 1 of the address counter register is reset, an output transfer is called for and the following operations are carried out:

- a. In the output mode the contents of the memory location, specified by the 15 low order bits of the address counter register, appear on the output bus after TLC. RRLIN- (LBD 232) is generated by DMRRRL (LBD 238).
- b. The device ANDs DALnn with RRLIN to strobe the contents of the output bus into its buffer. (Refer to the Appendix for the flow chart and analysis.)
- c. The DALEN flip-flop is reset, disabling all DAL lines.

For either input or output, the starting address is updated. The count pulse generated adds one to the contents of the address counter register.

### Fourth DMC Cycle

The contents of the address counter register are then gated into the M-register. The DMCWR flip-flop is set so that this address is stored during the fourth DMC cycle.

The contents of the M-register are transferred to memory to complete the operations necessary for updating the starting address. (Refer to Appendix A for the flow chart and analysis.)

SAMPL is generated, permitting the priority network to be cleared by the CLEAR pulse (LBD 233). TLC generates SAMPL. If any of the channel flip-flops are now set, DMCYQ is sent to the CPU, requesting another DMC cycle. EOIMD is true during the fourth memory cycle of the DMC cycle; therefore, another DMC cycle can immediately follow. DMC cycles continue until all DIL lines are reset.

If no DIL lines are set, the contents of the DMC M-register are transferred to the CPU M-register.

If the CPU has completed its current instruction prior to the DMC break, MEMCI initiates the fetch of the next instruction. If the CPU has not completed its current instruction prior to the DMC break, the current instruction resumes.

#### Special Wiring

All unused channels must be wired as shown in the following wire chart.

| <u>Channel</u> | <u>From</u> | <u>To</u> |
|----------------|-------------|-----------|
| 1              | A2103       | A2113     |
| 2              | A2105       | A2123     |
| 3              | A2110       | A2111     |
| 4              | A2116       | A2130     |
| 5              | A2203       | A2213     |
| 6              | A2205       | A2223     |
| 7              | A2210       | A2211     |
| 8              | A2216       | A2230     |
| 9              | A2303       | A2313     |
| 10             | A2305       | A2323     |
| 11             | A2310       | A2311     |
| 12             | A2316       | A2330     |
| 13             | A2403       | A2413     |
| 14             | A2405       | A2423     |
| 15             | A2410       | A2411     |
| 16             | A2416       | A2430     |

#### PARTS LIST

This section supplements Chapter III of the H316 Circuit Modules and Parts Instruction Manual by including a parts complement of the Standard Data Multiplex Control option. The reference designation coding is in accordance with CCD coding Drawing 70023412, sheet 3 of 6, in the H316 Circuit Modules and Parts Instruction Manual. (See Figure 4.)

|   |        |
|---|--------|
| 8 |        |
| 7 | CC-089 |
| 6 | CC-045 |
| 5 | CC-045 |
| 4 | CC-073 |
| 3 | CC-073 |
| 2 |        |
| 1 | DL-335 |

|        |
|--------|
| TG-335 |
| DG-335 |
| DG-335 |
| DG-335 |
| PA-336 |
| PA-336 |
|        |
|        |

|        |
|--------|
| CONN   |
| CONN   |
|        |
| CC-073 |
| CC-044 |
| CC-044 |
| CC-044 |
|        |

5

|   |        |
|---|--------|
| 8 | TG-335 |
| 7 | DN-335 |
| 6 | TG-335 |
| 5 | CM-022 |
| 4 | CC-091 |
| 3 | CC-091 |
| 2 | TG-335 |
| 1 |        |

C

|        |
|--------|
| DI-335 |
| TG-335 |
| TG-335 |
| DI-335 |
| CM-022 |
| CC-480 |
| CC-480 |
|        |
|        |

B

|        |
|--------|
| TG-335 |
| BR-335 |
| BR-335 |
| BR-335 |
| CM-022 |
| CM-022 |
| CONN   |
| CONN   |

A

4

Figure 4. H316-20 Standard DMC PAC Layout

| Fig. & Index No. | Designation                                             | CCD Part No.       | Description                                                                                                                                                             | Qty. per Assy. |
|------------------|---------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 4-               | Located in the Logic Bay (A1)<br>A1A405, A1A406, A1A407 | 70025573<br>BR-335 | STANDARD DATA MULTIPLEX CONTROL OPTION<br><br>BUFFER REGISTER PAC (Refer to $\mu$ -PAC Instruction Manual, Vol. I, Section 2, Doc. No. 130071369, for parts breakdown.) | 1<br>3         |
|                  | A1A501, A1A502, *<br>A1A503, **<br>A1A504***            | CC-044             | PRIORITY PAC (Refer to Appendix B for parts breakdown.)                                                                                                                 | A/R            |
|                  | A1C505, A1C506                                          | CC-045             | NAND TYPE 1 POWER AMPLIFIER PAC (Refer to Appendix B for parts breakdown.)                                                                                              | 2              |
|                  | A1A505, A1C503, A1C504                                  | CC-073             | NAND TYPE 2 POWER AMPLIFIER PAC (Refer to Appendix B for parts breakdown.)                                                                                              | 3              |
|                  | A1C507                                                  | CC-089             | GATED FLIP-FLOP PAC (Refer to Appendix B for parts breakdown.)                                                                                                          | 1              |
|                  | A1C403, A1C404                                          | CC-091             | FAST CARRY COUNTER PAC (Refer to Appendix B for parts breakdown.)                                                                                                       | 2              |
|                  | A1B402, A1B403                                          | CC-480             | DRIVER PAC (Refer to Appendix B for parts breakdown.)                                                                                                                   | 2              |
|                  | A1A403, A1A404, A1B404, A1C405                          | CM-022             | PARALLEL TRANSFER GATE PAC (Refer to Appendix B for parts breakdown.)                                                                                                   | 4              |
|                  | A1B405, A1B408                                          | DI-335             | NAND TYPE 1 PAC (Refer to $\mu$ -PAC Instruction Manual, Vol. I, Section 3, Doc. No. 130071369, for parts breakdown.)                                                   | 2              |
|                  | A1B504, A1B505, A1B506                                  | DG-335             | SELECTION GATE TYPE 1 PAC (Refer to $\mu$ -PAC Instruction Manual, Vol. I, Section 3, Doc. No. 130071369, for parts breakdown.)                                         | 3              |
|                  | A1C501                                                  | DL-335             | NAND TYPE 2 PAC (Refer to $\mu$ -PAC Instruction Manual, Vol. I, Section 4, Document No. 130071369, for parts breakdown.)                                               | 1              |
|                  | A1C407                                                  | DN-335             | EXPANDABLE NAND GATE PAC (Refer to the $\mu$ -PAC Instruction Manual, Vol. I, Section 4, Doc. No. 130071369, for parts breakdown.)                                      | 1              |

\*Added for 5-8 channels.

\*\*Added for 9-12 channels.

\*\*\*Added for more than 12 channels.

| Fig. & Index No. | Designation                                                     | CCD Part No. | Description                                                                                                                 | Qty. per Assy. |
|------------------|-----------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|
|                  | A1B502, A1B503                                                  | PA-336       | POWER INVERTER PAC<br>(Refer to $\mu$ -PAC Instruction Manual, Vol. I, Section 6, Doc. No. 130071369, for parts breakdown.) | 2              |
|                  | A1A408, A1B406,<br>A1B407, A1B507,<br>A1C402, A1C406,<br>A1C408 | TG-335       | TRANSFER GATE PAC<br>(Refer to $\mu$ -PAC Instruction Manual, Vol. I, Section 8, Doc. No. 130071369, for parts breakdown.)  | 7              |
|                  | A1A401, A1A402                                                  | 014998702    | CABLE ASSEMBLY (Refer to Figure 5 for parts breakdown.)                                                                     | 2              |
|                  | A1A507, A1A508                                                  | 013826701    | CABLE ASSEMBLY (Refer to Chapter III, Figure 3-13, Doc. No. 70130072166 for parts breakdown.)                               | 2              |



Figure 5. Cable Assembly, Special Purpose

| Fig. & Index No. | Designation    | CCD Part No. | Description                                                                                     | Qty. per Assy. |
|------------------|----------------|--------------|-------------------------------------------------------------------------------------------------|----------------|
| 5-<br>-1<br>-2   | A1A507, A1A508 | 013826701    | CABLE ASSEMBLY (Refer to Figure 4 for NHA.)                                                     | Ref.           |
|                  |                | 014998701    | PRINTED CIRCUIT CARD (Jumper PAC)                                                               | 2              |
|                  |                | 940404001    | CABLE, FLAT, MULTI-CONDUCTOR -34 conductor, equivalent to 32 AWG, 1.80 in. width, .014 in. thk. | A/R            |

## LOGIC BLOCK DIAGRAMS

Logic block diagrams (listed below) for the H316-20 DMC option follow.

| <u>LBD No.</u> | <u>Title</u>                 | <u>Dwg. No.</u> |
|----------------|------------------------------|-----------------|
| 0.231          | H316 SDMC Priority Net       | 70025578        |
| 0.232          | H316 SDMC Cycle TLG          | 70025579        |
| 0.233          | H316 SDMC Control            | 70025580        |
| 0.234          | H316 SDMC M-Register Storage | 70025581        |
| 0.235          | H316 SDMC M-Register Input   | 70025582        |
| 0.236          | H316 SDMC Address Register   | 70025583        |
| 0.237          | H316 SDMC Comparator IYB     | 70025584        |
| 0.238          | H316 SDMC Cable and Out Bus  | 70025585        |
| 0.239          | PAC Comp/Alloc               | 70025577        |





















**APPENDIX A**  
**FLOW CHARTS AND ANALYSES**



6199

DMC SYNC CYCLE

DMC Sync Cycle

| Signal                   | Origin             | Cyc | Time | Clk | Signal Component                     | Origin | Destination                   | Operation Description                                                                                                     |
|--------------------------|--------------------|-----|------|-----|--------------------------------------|--------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| CLEAR-                   | 233-E4             | CPU | T2   |     | (SAMPX+)(MCRST+)                     | 233-C1 | 231-B4/ B10<br>K4/ K10        | Clears PN                                                                                                                 |
| MDFCL-                   | 234-B5             | CPU | T2   |     | (MCRST+)(TL2FF+)                     | 234-A5 | 234                           | Clear DMC M-Register                                                                                                      |
| SAMPL+                   | 233-H1             | CPU | T2   |     | (SAMPX-)(MCSET+)                     | 233-D1 | 231-A2/ K2/<br>A8/ K8         | Enable active DILXX<br>requests to set associated<br>PN channel flip-flops<br>which generate DRQXX-<br>and COXXX- signals |
| DIL01+<br>thru<br>DIL16+ | External<br>Device |     |      |     |                                      |        | 236/N11<br>231                | Clear Address Counter<br>Data transfer request<br>to PN                                                                   |
| EMDTS+                   | 234-C4             | CPU | T3   |     | (MCSET+)(TL3FF)                      | 234-A4 | 234                           | Save CPU M-register                                                                                                       |
| COXXX-                   | 231                | CPU | T3   |     | (SAMPL+)(DILXX+)                     | 231    | 231-F7                        | Generate DMCRQ+                                                                                                           |
| DRQXX-                   |                    |     |      |     |                                      |        | 237-C/ G                      | Generate most significant<br>portion of starting address<br>location in IYBXX+ lines                                      |
| DMCYQ+                   | 233-F8             | CPU | T3   |     | (EOIDR-)(DMCCY-)                     | 233-B8 | 233                           | Generate DMC request                                                                                                      |
| ADREN+                   | 233-N3             | CPU | T3   |     | (DMCRQ+)(DCY2X-)                     | 233-J3 | 237-C3                        | Enables PN Address to<br>IY bus                                                                                           |
| INRT2-                   | 233-M9             | CPU | T3   |     | (DMCRQ+)(EOIMD+)<br>(TL3FF+)(TL23F-) | 233-L9 | 233-P10                       | Inhibit RPTT2                                                                                                             |
| NRMST-                   | 233-M6             | CPU | T3   |     | (NRMOP+)(TL3FF+)                     | 233-L6 | 233-P6                        | Save NRMOP                                                                                                                |
| DALEN+                   | 232-C6             | DMC | TLA  |     | (TLAFF+)(DMC2X-)                     | 232-B6 | 231                           | Set DAL Lines                                                                                                             |
| DALXX                    | 231                | DMC | TLA  |     | (DALEN+)(DILXX)                      | 231    | 238                           | Device Address Lines                                                                                                      |
| DMCCY+                   | 232-C11            | DMC | TLA  |     | (TLAFF-)                             | 232    | 232-E5<br>233-P11<br>238-A/ B | Reset EENBL<br>Enable DMC MADCL<br>Enable DMC OTB                                                                         |
| EIYTS-A                  | 233-M5             | DMC | TLA  |     | (TLAFF+)                             | 233    | 238-D2                        | Gates IY bus bits<br>10-16 to Y-register<br>10-16                                                                         |



6200

DMC CYCLE NO. 1

## DMC Cycle No. 1

| Signal           | Origin             | Cyc | Time | Clk | Signal Component                         | Origin                   | Destination      | Operation Description                                                 |
|------------------|--------------------|-----|------|-----|------------------------------------------|--------------------------|------------------|-----------------------------------------------------------------------|
| CLMTR-<br>DMC1X+ | 233-P1<br>232-F5   | DMC | TLB  |     | (DMCLM+)(MCRST+)<br>(DMC2X-)(TLBFF+)     | 233-N1<br>232-E5         | 238-F4<br>237-F6 | Clears M-register<br>Puts a ONE on IYB16+ as the final address is odd |
| MEMCI+<br>EORTS+ | 126-K12<br>236-G12 | DMC | TLB  |     | (TLBFF-)<br>(DMC1X+)(DMC2X-)<br>(TLDFF+) | 238-F4<br>236-D12<br>236 |                  | Initiates memory cycle<br>Enables output bus to address counter       |
| EIYTS-A          | 233-M5             | DMC | TLA  |     | (TLAFF+)                                 | 233-M5                   | 238-E2           | Gates IY bus bits 10-16 to Y-register bits 10-16                      |



6201

DMC CYCLE NO. 2

DMC Cycle No. 2

| Signal  | Origin  | Cyc | Time | Clk | Signal Component             | Origin | Destination                       | Operation Description                                                                                              |
|---------|---------|-----|------|-----|------------------------------|--------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|
| MEMCI+  | 126-K12 | DMC | TLB  |     | (TLBFF-)                     |        |                                   | Initiate memory cycle                                                                                              |
| DMC2X+  | 232     | DMC | TLB  |     | (DMC1X+)(TLBFF+)             | 232-B3 | 232-E6<br>232-A1                  | Enable reset DMC1X<br>Generate DCY2X+                                                                              |
| CLMTR-  | 233-P1  | DMC | TLB  |     | (DMCLM+)(MCRST+)             | 233-N1 | 238-F4                            | Clears M-register                                                                                                  |
| DCY2X+  | 232-C1  | DMC | TLB  |     | (DMC1X+)(DMC2X+)             | 232-A1 | 237-N8<br>236-E2<br>233-A9<br>237 | Enable ERLXX-<br>Enable increment<br>address counter<br>Enable RRL input mode<br>gate address counter to<br>IY bus |
| EIYTS-A | 233-M5  | DMC | TLA  |     | (TLAFF+)                     | 233-M5 | 238-E2                            | Gates IY bus bits 10-16<br>to Y-register bits 10-16                                                                |
| EIYHS+  | 129-P6  | DMC | TLA  |     | (DCY2X+)(MCSET+)<br>(EIYTS+) | 232-C2 | 109-P12<br>237-K                  | Gates IY bus bits 2-9<br>to Y-register bits 2-9                                                                    |
| ERLXX-  | 237-P8  | DMC | TLA  |     | (DCY2X+)(TLAFF+)<br>(ERLXX+) | 237-M8 | 238-P5<br>238-P10                 | Enable end of range<br>to device                                                                                   |



6202

DMC CYCLE NO. 3

## DMC Cycle No. 3

| Signal  | Origin  | Cyc | Time | Clk | Signal Component             | Origin  | Destination      | Operation Description                                |
|---------|---------|-----|------|-----|------------------------------|---------|------------------|------------------------------------------------------|
| INCTR-  | 236-E2  | DMC | TLB  |     | (DCY2X+)(TLBFF+)<br>(MCSET+) | 236-D2  | 236-G4           | Increment address counter by 1                       |
| MEMCI+  | 126-K12 | DMC | TLB  |     | (TLBFF-)                     |         |                  | Initiate memory cycle to readout or store data words |
| ADREN+  | 233-N3  | DMC | TLB  |     | (DMCRQ+)(DCY2X-)             | 233-J3  | 237-C3           | Enables PN address to IY bus                         |
| EIMTS+  | 235-C10 | DMC | TLB  |     | (INRRL+)(MCSET+)             | 235-A10 | 235-G11          | Enables IYB to M-register                            |
| DMCWR+  | 233-K10 | DMC | TLB  |     | (TLBFF+)(INRRL-)             | 233-B9  |                  | Set DMCWR                                            |
| DCY3X+  | 232-C8  | DMC | TLB  |     | (DMC1X-)(DMC2X+)             | 232-A8  | 236-L2           | Gates incremented address register to M-register     |
| DMC1X-  | 232-F6  | DMC | TLB  |     | (DMC2X+)(TLBFF+)             | 232-C3  | 232-A1<br>232-A8 | Disable DCY2X+ Generate DCY3X+                       |
| DMRRL+  | 233-C11 | DMC | TLB  |     | (INPUT+)(DCY2X+)<br>(TLBFF+) | 233-A8  | 134-P10          | Enable RRL in Input mode                             |
| RRLIN+  | 232-A6  | DMC | TLB  |     | (RRLIN-)                     | 134-P10 | 232-C6           | Reset DALEN in Input mode                            |
| DMRRL+  | 233-C1  | DMC | TLD  |     | (DCY3X+)(TLDFF)              | 233-A8  | 134-P10          | Enable RRL in Output mode                            |
| RRLIN+  | 232-A6  | DMC | TLD  |     | (RRLIN-)                     | 134-P10 | 232-C6           | Reset DALEN in Output mode                           |
| EIYTS-A | 233-M5  | DMC | TLA  |     | (TLAFF+)                     | 233-M5  | 238-E2           | Gates IY bus bits 10-16 to Y-register bits 10-16     |



6203

DMC CYCLE NO. 4

DMC Cycle No. 4

| Signal | Origin  | Cyc | Time | Clk | Signal Component             | Origin  | Destination            | Operation Description                                                                                                     |
|--------|---------|-----|------|-----|------------------------------|---------|------------------------|---------------------------------------------------------------------------------------------------------------------------|
| MEMCI+ | 126-K12 | DMC | TLB  |     | (TLBFF-)                     |         |                        | Initiate memory cycle                                                                                                     |
| EAMTS+ | 236-P2  | DMC | TLB  |     | (DCY3X+)(TLBFF+)<br>(MCSET+) | 236-M2  | 236-A1-12<br>236-A1-P1 | Enables address counter<br>to CPU M-register                                                                              |
| DMCWR+ | 233-K10 | DMC | TLB  |     |                              | 233-F11 |                        | Sets DMCWR flip-flop                                                                                                      |
| DMC2X- | 232-C3  | DMC | TLB  |     | (DMC1X-)(TLBFF+)             | 232-C3  | 232-A6                 | Disables DCY3X+                                                                                                           |
| CLEAR- | 233-E3  | DMC | TLC  |     | (SAMPX+)(MCRST+)             | 233-L5  | 231-B4/<br>B10<br>K4   | Clears priority net-<br>work                                                                                              |
| SAMPL+ | 233-H1  | DMC | TLC  |     | (SAMPX+)(MCSET+)             | 233-D1  | 231-A2/K2<br>A8<br>K8  | Enables active DILXX<br>request to set associated<br>PN channel flip-flops<br>which generate DRQXX-<br>and COXXX- signals |
| CLDCR- | 236-P11 | DMC | TLC  |     | (SAMPL+)                     | 233-H1  | 236-M11                | Clear address register                                                                                                    |
| EMMTS+ | 235-D12 | DMC | TLF  |     | (EMMTA+)(MCSET+)             | 235-A12 | 235-B7                 | Restores M-register<br>to CPU                                                                                             |

**APPENDIX B  
SPECIAL PAC DESCRIPTIONS**

**Descriptions of the following special PACs (listed below) are presented in this Appendix.**

**CC-044  
CC-045  
CC-073  
CC-089  
CC-091  
CC-480**

## PRIORITY PAC, MODEL CC-044

### GENERAL DESCRIPTION

The Priority PAC, Model CC-044 (Figure 1), contains five F-01, two F-02, and two F-03 microcircuits. They are interconnected to perform the priority function in a digital computer.

### SPECIFICATIONS

|                                    |                                                                        |
|------------------------------------|------------------------------------------------------------------------|
| <u>Frequency of Operation</u>      | <u>Circuit Delay</u> (measured at +1.5v,<br>averaged over two stages): |
| DC to 5 MHz                        | 30 ns (max)                                                            |
| <u>Input Loading</u>               | <u>Current Requirements</u>                                            |
| 1 unit load per F-01 gate          | +6v: 160 ma (max)                                                      |
| 1 unit load per F-02 gate          |                                                                        |
| 2 unit loads per F-03 amplifier    | <u>Power Dissipation</u>                                               |
| <u>Output Drive Capability</u>     | 0.96w (max)                                                            |
| <u>Pins</u> <u>Unit Loads Each</u> |                                                                        |
| 19, 21, 29, 31                     | 25                                                                     |
| 8, 17, 18, 24,<br>28               | 8                                                                      |
| 6                                  | 7                                                                      |
| 11, 13, 23, 30                     | 4                                                                      |

### Electrical Parts List

| Ref.<br>Desig. | Description                                                                | Part No.    |
|----------------|----------------------------------------------------------------------------|-------------|
| M1, M5, M7-M9  | MICROCIRCUIT:<br>F-01, dual NAND gate integrated circuit                   | 950 100 001 |
| M2, M6         | MICROCIRCUIT:<br>F-02, quad NAND gate integrated circuit                   | 950 100 002 |
| M3, M4         | MICROCIRCUIT:<br>F-03, power amplifier integrated circuit                  | 950 100 003 |
| C1             | CAPACITOR, FIXED, PLASTIC DIELECTRIC:<br>0.033 $\mu$ f $\pm 20\%$ , 50 vdc | 930 313 016 |
| CR1-CR19       | DIODE                                                                      | 943 083 001 |



Figure 1. Priority PAC, Model  
CC-044, Schematic Diagram

## NAND TYPE I POWER AMPLIFIER PAC, MODEL CC-045

## GENERAL DESCRIPTION

The NAND Type I Power Amplifier PAC, Model CC-045 (Figure A-28), contains three 4-input and three 2-input NAND gates that can be used to drive heavy loads. One of the 2-input gates has a node connected to pin 7 which can be used for input expansion. A three-diode cluster is also provided for expansion of input gating. Built-in short circuit protection limits the output current if the output is accidentally grounded.

## CIRCUIT FUNCTION

Each gate performs the NAND function for positive logic and the NOR function for negative logic. When all inputs to a gate are positive or not connected, the output will be at ground. If any input is at ground, the output goes to a positive voltage.

## NOTE

The following pins must be jumpered together on the connector into which a CC-045 is inserted. These jumpers should be made as short as possible.

Pin 20 to pin 33  
 Pin 27 to pin 30  
 Pin 30 to pin 33

## SPECIFICATIONS

| <u>Frequency of Operation</u> | <u>Output Drive Capability</u>                                                                  |
|-------------------------------|-------------------------------------------------------------------------------------------------|
| DC to 10 MHz                  | 12 unit loads and 70 pf stray capacitance, or<br>25 unit loads and 250 pf stray capacitance     |
| <u>Input Loading</u>          |                                                                                                 |
| 2 unit loads                  |                                                                                                 |
| <u>Current Requirements</u>   | <u>Circuit Delay</u> (measured at +1.5v, averaged over two stages)                              |
| +6v - 90 ma (max)             | 15 ns (max) with 12 unit loads and 70 pf load<br>30 ns (max) with 25 unit loads and 250 pf load |
| <u>Power Dissipation</u>      |                                                                                                 |
| 0.54w (max)                   |                                                                                                 |

## Electrical Parts List

| Ref.<br>Desig. | Description                                                                | 3C Part No. |
|----------------|----------------------------------------------------------------------------|-------------|
| M1-M3          | MICROCIRCUIT:<br>F-09, power amplifier integrated circuit                  | 950 100 009 |
| C1             | CAPACITOR, FIXED, PLASTIC DIELECTRIC:<br>0.033 $\mu$ f $\pm 20\%$ , 50 vdc | 930 313 016 |
| CR1-CR3        | DIODE                                                                      | 943 083 001 |



Figure A-28. NAND Type I Power Amplifier PAC, Model CC-045,  
Schematic Diagram and Logic Symbol

## NAND TYPE II POWER AMPLIFIER PAC, MODEL CC-073

### GENERAL DESCRIPTION

The NAND Type II Power Amplifier PAC, Model CC-073 (Figure A-32), contains six 3-input NAND gates that can be used to drive heavy loads. One of the gates has a node connected to pin 8 which can be used for input expansion. A three-diode cluster is also provided for expansion of input gating. Built-in short circuit protection limits the output current if the output is accidentally grounded.

### CIRCUIT FUNCTION

Each gate performs the NAND function for positive logic and the NOR function for negative logic. When all inputs to a gate are positive or not connected, the output will be at ground. If any input is at ground, the output goes to a positive voltage.

#### NOTE

The following pins must be jumpered together on the connector into which a CC-073 is inserted. These jumpers should be made as short as possible.

From pin 18 to pin 33  
From pin 25 to pin 28  
From pin 28 to pin 33

### SPECIFICATIONS

| <u>Frequency of Operation</u>                                       | <u>Current Requirements</u> |
|---------------------------------------------------------------------|-----------------------------|
| DC to 10 MHz                                                        | +6v: 90 ma (max)            |
| <u>Output Drive Capability</u>                                      | <u>Power Dissipation</u>    |
| 12 unit loads and 70 pf stray, or<br>25 unit loads and 250 pf stray | 0.54w (max)                 |
| <u>Input Loading</u>                                                |                             |
| 2 unit loads                                                        |                             |
| <u>Circuit Delay</u> (measured at +1.5v, averaged over two stages)  |                             |
| 15 ns (max) with 12 unit loads and 70 pf load                       |                             |
| 30 ns (max) with 25 unit loads and 250 pf load                      |                             |



A3561

Figure A-32. NAND Type II Power Amplifier PAC, Model CC-073, Schematic Diagram and Logic Symbols

**Electrical Parts List**

| Ref.<br>Desig. | Description                                                                | 3C Part No. |
|----------------|----------------------------------------------------------------------------|-------------|
| M1-M3          | MICROCIRCUIT:<br>F-09, power amplifier integrated circuit                  | 950 100 009 |
| C1             | CAPACITOR, FIXED, PLASTIC DIELECTRIC:<br>0.033 $\mu$ f $\pm 20\%$ , 50 vdc | 930 313 016 |
| CR1-CR3        | DIODE                                                                      | 943 083 001 |

## GATED FLIP-FLOP PAC, MODEL CC-089

The Gated Flip-Flop PAC, Model CC-089 (Figures A-50 and A-51), contains four independent flip-flops. A versatile input structure allows control from a variety of levels and pulses. Typical applications are storage, counting and shifting, and control.

### INPUT AND OUTPUT SIGNALS

DC Set and DC Reset. -- A signal at 0v for 80 nsec or longer on a dc set (or reset) input will set (or reset) the flip-flop.

Common Reset. -- A signal at 0v for 80 nsec or longer on the common reset input clears all four stages simultaneously.

Set Control and Reset Control. -- +6v is the enabling level on the control inputs.

Clock. -- The flip-flop changes state on the negative transition of the clock input.

### SPECIFICATIONS

#### Frequency of Operation (System)

DC to 5 mc

#### Input Loading

DC inputs: 2/3 unit load each

Control inputs: 1 unit load each

Common reset: 3 unit loads

Clock: 1 unit load each

#### Output Drive Capability

8 unit loads each

#### Circuit Delay

Clock input to set or reset output:  
60 nsec (max)

DC set input to dc set output, or dc  
reset input to reset output: 80 nsec (max)

DC set input to reset output, or dc  
reset input to set output: 60 nsec (max)

#### Current Requirements

+6v: 100 ma (max)

#### Power Dissipation

0.60w (max)

#### Handle Color Code

Blue

### APPLICATIONS

The CC-089 can be used as a counter (Figure A-52) or as a shift register (Figure A-53). The method of parallel information drop-in is shown in Figure A-54.

Data may be transferred to the flip-flop with a single-ended signal by first resetting all stages, then setting the appropriate ones. For double-ended data transfer, complementary signals applied to the dc set and dc reset inputs set the flip-flop to the appropriate state in one operation.



Figure A-50. Gated Flip-Flop PAC, Model CC-089,  
Schematic Diagram and Logic Symbol

Parts Location



3143

Electrical Parts List

| Ref.<br>Desig. | Description                                                                | 3C Part No. |
|----------------|----------------------------------------------------------------------------|-------------|
| M1-M4          | MICROCIRCUIT:<br>F-04, flip-flop integrated circuit                        | 950 100 004 |
| C1             | CAPACITOR, FIXED, PLASTIC DIELECTRIC:<br>0.033 $\mu$ f $\pm 20\%$ , 50 vdc | 930 313 016 |
| R1             | RESISTOR, FIXED, COMPOSITION:<br>22K $\pm 5\%$ , 1/4w                      | 932 007 081 |
| R2-R9          | RESISTOR, FIXED, COMPOSITION:<br>51K $\pm 5\%$ , 1/4w                      | 932 007 090 |

Figure A-51. Gated Flip-Flop PAC, Model CC-089,  
Parts Location and Identification



Figure A-52. Gated Flip-Flop PAC, Model CC-089,  
Counter Operation



623A

Figure A-53. Gated Flip-Flop PAC, Model CC-089,  
Shift Register Operation



623

Figure A-54. Gated Flip-Flop PAC, Model CC-089,  
Parallel Information Drop-In

## FAST CARRY COUNTER PAC, MODEL CC-091

The Fast Carry Counter PAC, Model CC-091 (Figures A-56 and A-57), contains eight pre-wired counter stages that can be set up by a few PAC connector jumpers to operate as an eight-stage binary counter or a two-digit BCD counter. In either configuration, carries are anticipated by gating structures, to reduce counter propagation delays.

Each stage has a dc set input for presetting a starting count, and a common reset input for clearing all eight stages simultaneously.

### INPUT AND OUTPUT SIGNALS

Count. -- The contents of the counter increase by one on the negative transition of the count input. This input is the same as the clock input of the integrated circuit flip-flop.

Common Reset. -- A signal at 0v for 80 nsec or longer on the common reset input clears all eight counter stages simultaneously.

BCD and BIN inputs. -- These points are to be connected as shown in Figure A-58 for binary counting or as shown in Figure A-59 for BCD counting.

### SPECIFICATIONS

#### Frequency of Operation (System)

DC to 5 mc

#### Input Loading

DC set inputs: 2/3 unit load each

Common reset: 5 unit loads

Complement: 2 unit loads

#### Output Drive Capability

| <u>Output</u>           | <u>Binary Mode</u> | <u>BCD Mode</u>   |
|-------------------------|--------------------|-------------------|
| A and E                 | 5 unit loads each  | 5 unit loads each |
| $\bar{A}$ and $\bar{E}$ | 8 unit loads each  | 8 unit loads each |
| B and F                 | 5 unit loads each  | 6 unit loads each |
| $\bar{B}$ and $\bar{F}$ | 8 unit loads each  | 8 unit loads each |
| C and G                 | 6 unit loads each  | 7 unit loads each |
| $\bar{C}$ and $\bar{G}$ | 8 unit loads each  | 8 unit loads each |
| D                       | 6 unit loads each  | 6 unit loads each |
| H                       | 8 unit loads each  | 8 unit loads each |
| $\bar{D}$ and $\bar{H}$ | 8 unit loads each  | 6 unit loads each |

Circuit Delay

|                                                                    |                |
|--------------------------------------------------------------------|----------------|
| Counter propagation delay per group of 4 stages:                   | 100 nsec (max) |
| Counter propagation delay for the 8 stage counter:                 | 200 nsec (max) |
| DC set input to set output, or common reset input to reset output: | 80 nsec (max)  |
| DC set input to reset output, or common reset input to set output: | 60 nsec (max)  |

Current Requirements

+6v: 200 ma (max)

Power Dissipation

1.2w (max)

Handle Color Code

Blue

APPLICATIONS

Figure 3 shows the  $\mu$ -PAC wired as an 8-bit binary counter. Frequency division by multiples of 2, up to 256, may be attained. Figure 4 shows the  $\mu$ -PAC wired as a 2-decimal digit BCD counter. The counter can be preset to a number by first resetting all stages, then setting only the appropriate ones.



LEGEND

- (1) PIN NUMBER OF PAC
- (2) PIN NUMBER OF MICROCIRCUIT
- M3 REFERENCE DESIGNATION OF MICROCIRCUIT
- F-04 TYPE OF MICROCIRCUIT

6224



SCHEMATIC

|              |    |               |
|--------------|----|---------------|
| COUNT        | 30 | CC-091        |
| DC SET A     | 29 | A             |
|              | 31 | $\bar{A}$     |
|              | 20 | BIN B         |
|              | 24 | B             |
|              | 27 | $\bar{B}$     |
|              | 22 | BIN C         |
|              | 18 | C             |
|              | 23 | $\bar{C}$     |
|              | 16 | D             |
|              | 19 | $\bar{D}$     |
|              | 28 | BCD $\bar{D}$ |
| DC SET E     | 13 | E             |
|              | 15 | $\bar{E}$     |
|              | 8  | BIN F         |
|              | 2  | F             |
|              | 11 | $\bar{F}$     |
|              | 10 | BIN G         |
|              | 4  | G             |
|              | 3  | $\bar{G}$     |
|              | 12 | H             |
|              | 5  | $\bar{H}$     |
| DC SET G     | 1  |               |
|              | 7  |               |
| COMMON RESET | 32 | BCD $\bar{H}$ |

Figure A-56. Fast Carry Counter PAC,  
Model CC-091, Schematic Diagram  
and Logic Symbol

Parts Location



A 3326

Electrical Parts List

| Ref.<br>Desig. | Description                                                                | 3C Part No. |
|----------------|----------------------------------------------------------------------------|-------------|
| M1-M8          | MICROCIRCUIT:<br>F-04, flip-flop integrated circuit                        | 950 100 004 |
| C1             | CAPACITOR, FIXED, PLASTIC DIELECTRIC:<br>0.033 $\mu$ f $\pm 20\%$ , 50 vdc | 930 313 016 |
| R1             | RESISTOR, FIXED, COMPOSITION:<br>10 K $\pm 5\%$ , 1/4w                     | 932 007 073 |
| R2-R9          | RESISTOR, FIXED, COMPOSITION:<br>51 K $\pm 5\%$ , 1/4w                     | 932 007 090 |

Figure A-57. Fast Carry Counter PAC, Model CC-091,  
Parts Location and Identification



Figure A-58. Fast Carry Counter PAC, Model CC-091,  
Jumper Connections for Binary Counting



Figure A-59. Fast Carry Counter PAC, Model CC-091,  
Jumper Connections for BCD Counting

**DRIVER PAC, MODEL CC-480**

The CC-480 Driver PAC, Model CC-480 (Figure 1), contains six dual four-input power NAND gates without collector pullup. An external resistor is added at different values for different output drive capability. Connect signal pins 2, 12, and 22 to a signal-ground pin other than pin 33 of this PAC.

**SPECIFICATIONS ( $V_{cc} = 6$  volts)****Input Loading**

- Pins 1, 4, 6, 7, 11, 13, 16, 18, 19, 21, 23, 29: 1.6 mA (max)
- Pins 25, 26, 28, 30: 3.2 mA (max)
- Pins 3, 8: 6.4 mA (max)

**Output Loading**

- Pins 5, 9, 10, 14, 15, 17, 20, 24, 27, 31: 34 mA (max)
- Pin 32: 64 mA (max)

**Typical Delay (two gates)**

- From input to pins 7, 11, 6, to output pins 5, 15, 14:  $Td_1$  and  $Td_2 = 105$  ns.
- From input pin 26 to output pin 32:  $Td_1$  and  $Td_2 = 60$  ns.

**Electrical Parts List**

| Ref.<br>Desig. | Description                                                    | Part No.       |
|----------------|----------------------------------------------------------------|----------------|
| C1, C2         | CAPACITOR, FIXED, PLASTIC:<br>.033 $\mu$ F $\pm 20\%$ , 50 Vdc | 70 930 313 016 |
| M1 - M6        | MICROCIRCUIT:<br>944, Dual Power NAND Gate                     | 70 950 105 008 |



SCHEMATIC

## NOTE:

CONNECT SIGNAL PINS 2, 12, AND 22  
TO A SIGNAL GROUND PIN OTHER THAN  
PIN NUMBER 33 OF THIS PAC.

\* TO PIN 7 OF M5 AND M6

\*\* TO PIN 7 OF M3 AND M4

LOGIC SYMBOL



## LEGEND

- 1 PIN NUMBER OF PAC
- 2 PIN NUMBER OF MICROCIRCUIT
- M3 REFERENCE DESIGNATION  
OF MICROCIRCUIT
- 930 TYPE OF MICROCIRCUIT

Figure 1. Driver PAC, Model CC-480  
Schematic Diagram and Logic Symbol

USERS' REMARKS FORM

TITLE:

DOC. PART NO. \_\_\_\_\_  
DATED \_\_\_\_\_

ERRORS NOTED:

Fold

SUGGESTIONS FOR IMPROVEMENT:

Fold

DATE \_\_\_\_\_

FROM: NAME \_\_\_\_\_

COMPANY \_\_\_\_\_ M/S \_\_\_\_\_

TITLE \_\_\_\_\_

ADDRESS \_\_\_\_\_

ZIP \_\_\_\_\_

HONEYWELL INFORMATION SYSTEMS INC.

CEO B

300 CONCORD ROAD

BILLERICA, MA. 01821

ATTN: CEOB PUBLICATIONS, MS 872-A

**Honeywell**

The Other Computer Company:  
**Honeywell**

HONEYWELL INFORMATION SYSTEMS

In the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154  
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario

FT13