CFGS AUTOMATIZACIÓ I ROBOTICA INDUSTRIAL

MÒDUL 4: SISTEMES ELECTROTÈCNICS DE POTÈNCIA

UF 2: Màquines elèctriques

Activitat 4. Exercici control de velocitat d'un motor de cc

Alumne: Jose Granados Diaz

Professor: Josep Vargas

Curs: 2021-2022

Data: Dimarts 19 d' Abril del 2022

Activitat 4. Exercici control de velocitat d'un motor de cc

Objectiu

Dissenyar un rectificador controlat per a un motor de cc.

Activitats

Disposem d'un motor de cc amb les següents característiques:

Potència: 200 W Velocitat: 1.500 rpm

Tensió excitació: 195 V I excitació: 0,3 A R excitació: 650Ω Tensió alimentació: 160 V I alimentació: 1,7 A R induït: $94,12\Omega$

Per a facilitar el disseny del rectificador treballarem amb unÁtæ) • -{ | { æå[| Á&^ÁCHETFGÍ X es faran els càlculs considerant el condensador C1, tanmateix el muntatge es farà sense.

Cal dissenyar el rectificador controlat necessari per alimentar el motor, determinant els següents paràmetres:

- Transformador necessari (amb alimentació monofàsica)
- Pont de díodes necessaris per a suportar la intensitat amb un marge de seguretat del 200%
- Dissipador necessari per al pont de díodes i per al tiristor per a la potència a dissipar (simular el circuit amb el Multisim per a veure quina serà la potència – tensió en borns dels components per intensitat que hi circula que dissiparà el pont de díodes i el tiristor i fer els càlculs amb els paràmetres determinats i considerant una temperatura ambient de 40 °C)
- Condensador necessari amb un arrissat màxim de 5V únicament a efectes de càlcul
- Tiristor necessari amb un marge de seguretat del 200%.
- Per al circuit de comandament agafa'l de l'exemple que us vaig passar modificant el valor de resistències per tal que reguli correctament de 0 a 150V

Presenta un informe amb el següent contingut:

- Portada
- Enunciat (aquest pdf)
- Esquema del muntatge amb indicació dels components (amb el Multisim)
- Càlculs efectuats (taules, fórmules, etc)
- Datasheets dels components (díodes, tiristor, dissipadors de temperatura, etc)

<u>Índex</u>

1.	Càlculs efectuats	4
2.	Esquema amb Multisim	5
3.	Components	8

1. <u>Càlculs efectuats</u>

Dades:

Potencia: 40W

Tensió excitació: 195V Tensió alimentació 160V

I excitació: 0,3A I alimentació: 1,7A R excitació: 650 Ω R induït: 94,12 Ω

- Transformador necessari (Monofàsic)

Transformador de 230 AC Monofàsic a 125 AC Monofàsic.

$$Vmed = \frac{Vmax}{\sqrt{2}} = \frac{195V}{\sqrt{2}} = 137,89V$$

$$Vf = \frac{Vmed}{1,11} = \frac{137,89V}{1,11} = 124,22V$$

- Pont de díodes necessari:

Pont de díodes monofàsic ona complerta 4A 200V mínim.

$$Itotal = I1 + I2 = 0.3A + 1.7A = 2A$$
 $Marge\ de\ seguretat\ 200\% = \frac{2A * 200}{100} = 4\ A$
 $Vmax = Vmed * 1.57 = 125V * 1.57 = 196.25V$

Díode escollit que estigui en la base de dades del Multisim i superior a 4A de 200V es el pont de díodes d'ona complerta monofàsic MDA2502 un pont de díodes de la marca Motorola de 200V i 25A.

- Tiristor escollit:

Tiristor 2N1774 de 200V i 4,7A deixant el 200% de seguretat en la intensitat.

$$Itotal = I1 + I2 = 0.3A + 1.7A = 2A$$
 $Marge\ de\ seguretat\ 200\% = \frac{2A * 200}{100} = 4\ A$
 $Vmax = Vmed * 1.57 = 125V * 1.57 = 196.25V$

- Dissipador necessari:

Dissipador escollit hs14-1852840 de 2°C/W.

Càlcul dissipador pont díodes:

$$P = 40W$$

$$Rtj \ h - a = \frac{Tj - Tamb}{P} - (Rtj \ j - mb) = \frac{175^{\circ}C - 40^{\circ}C}{40W} - 2^{\circ}C/W = 3,375 - 2 = 1,375 \, ^{\circ}C/W$$

Càlcul dissipador tiristor:

$$P = 40W$$

$$Rtj\ h - a = \frac{Tj - Tamb}{P} - (Rtj\ j - mb) = \frac{125^{\circ}C - 40^{\circ}C}{40W} - 1,5^{\circ}C/W = 2,125 - 1,5 = 0,625^{\circ}C/W$$

Dissipador necessari:

$$Rtj h - a (Total) = 1,375 °C/W + 0,625 °C/W = 2 °C/W$$

- Condensador:

Condensador escollit 101C402T200EE2B de 200V i 4000uF

Vmed: 125V R excitació: 650Ω

R induït: $94,12 \Omega$

Vriz: 5V

$$Rt = \frac{1}{\frac{1}{R1} + \frac{1}{R2}} = \frac{1}{\frac{1}{94,12} + \frac{1}{600}} = \frac{1}{0,0106 + 0,0016} = \frac{1}{0,0122} = 81,96 \,\Omega$$

$$Vmax = Vmed \cdot \sqrt{2} = 125 \cdot \sqrt{2} = 176,8V$$

$$Vmed = Vmax - \frac{Vriz}{2} = 176,8V - \frac{5V}{2} = 174,3V$$

$$Imed = \frac{Vmed}{Rt} = \frac{174,3V}{81,96} = 2,12A$$

$$C = \frac{Imed}{fr \cdot Vriz} = \frac{2,12A}{(50Hz \cdot 2) \cdot 5V} = \frac{2,12A}{100Hz \cdot 5V} = \frac{2,12A}{500} = 0,004F = 4.000uF$$

2. Esquema amb Multisim

- Simulació:

Com es pot observar amb el potenciòmetre al 100% tenim 167V a la resistència del induït amb una corrent de 1,77A i 135mV en el tiristor. També tenim un voltatge de riçat molt petit com es pot veure en el oscil·loscopi.

En posar el potenciòmetre al 0 aquest deixa un voltatge de 78mV a la resistència del induït amb una corrent de 841uA i 174V al tiristor.

3. Components

- Transformador 230VAC - 125VAC Monofàsic 500VA AT-500

- Pont de díodes d'ona complerta monofàsic MDA2502 Motorola de 200V i 25A.
- Tiristor 2N1774 de 200V i 4,7A deixant el 200% de seguretat en la intensitat.
- Condensador 101C402T200EE2B de 200V i 4000uF
- Dissipador hs14-1852840 de 2°C/W.

MDA2500 Series

MOTOROLA SEMICONDUCTOR **TECHNICAL DATA**

RECTIFIER ASSEMBLY

... utilizing individual void-free molded rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base
- UL Recognized
- 1800 Volt Heat Sink Isolation

SINGLE-PHASE **FULL-WAVE BRIDGE**

> **25 AMPERES** 50-600 VOLTS

MAXIMUM RATINGS

					MDA				
Rating (Per Diode)	Symbol	2500	2501	2502	2504	2506	2508	2510	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
DC Output Voltage Resistive Load Capacitive Load	Vdc	30 50	62 100	124 200	250 400	380 600	500 600	620 1000	Volts
Sine Wave RMS Input Voltage	VR(RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 55°C)	ю				25				Amp
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions)	IFSM			-	400				Amp
Operating and Storage Junction Temperature Range	TJ, Tstg			-6	i5 to +	175			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	RøJC			°C/W
Each Die		4.5	6.0	İ
Total Bridge		2.0	2.8	

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (iF = 40 A).*	٧F	-	0.95	1.05	Volts
Reverse Current (Per Diode) (Rated VR)	IR		_	10	μΑ

MECHANICAL CHARACTERISTICS

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal designation embossed on case:

- +DC output
- -DC output
- AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished through the surface opposite the terminals. Use silicone heat sink compound on mounting surface for maximum heat transfer.

WEIGHT: 25 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for applications greater than 15 amperes.

MOUNTING TORQUE: 20 in-lb max

- NOTES:
 1. DIMENSION "Q" SHALL BE MEASURED ON
- HEATSINK SIDE OF PACKAGE.

 2. DIMENSIONS "F" AND "G" SHALL BE MEASURED AT THE REFERENCE PLANE.

	MILLIN	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	25.65	26.16	1.010	1.030_
C	12.44	13.97	0.490	0.550
D	6.10	6.60	0.240	0.260
F	10.01	10.49	0.394	0.413
G	19.99	21.01	0.787	0.827
J	0.71	0.86	0.028	0.034
K	9.52	11.43	0.375	0.450
L	1.52	2.06_	0.060	0.081
P	2.79	2,92	0.110	0.115
a	4.42	4.67	0.174	0.184

CASE 309A-03

^{*}Pulse Width = 100 ms, Duty Cycle ≤ 2%.

MDA2500 Series

MDA2500 Series

.

NOTE 1

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended.

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by:

$$T_J = T_C + \Delta T_{JC}$$

where Δ T JC is the increase in junction temperature above the case temperature. It may be determined

$$\Delta T_{JC} = P_{pk} \bullet R_{\theta JC} \{D + (1 - D) \bullet r(t_1 + t_p) + r(t_p) - r(t_1)\}$$

 $r(t) = normalized value of transient thermal resistance at time, t, from Figure 6, i.e., \\ r(t_1 + t_p) = normalized value of transient thermal resistance at time t_1 + t_p.$

MDA2500 Series

- · -

AMBIENT TEMPERATURE DERATING INFORMATION

NOTE 2: THERMAL COUPLING AND **EFFECTIVE THERMAL RESISTANCE**

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1) $\Delta T_{J1} = R_{\theta 1}P_{D1} + R_{\theta 2}K_{\theta 2}P_{D2} + R_{\theta 3}K_{\theta 3}P_{D3} + R_{\theta 4}K_{\theta 4}P_{D4}$ where ΔT_{J1} is the change in junction temperature of diode 1, Re1 through 4 is the thermal resistance of diodes 1 through 4, PD1 through 4 is the power dissipated in diodes 1 through 4, $K_{\theta 2}$ through 4 is the thermal coupling between diode 1, and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2) $R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$

where PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)
$$\Delta T_{J1} = R_{\theta 1}(P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$

For the conditions where $P_{D1} = P_{D2} = P_{D3} = P_{D4}$, $P_{DT} =$ 4 PD1, equation (3) can be further simplified and by substituting into equation (2) results in

(4)
$$R_{\theta}(EFF) = R_{\theta} 1(1 + K_{\theta} 2 + K_{\theta} 3 + K_{\theta} 4)/4$$

When the case is used as a reference point, coupling between opposite die is negligible for the MDA2500, and coupling between adjacent die is approximately 6%.

FIGURE 108 - IERC HEAT SINK UP3

NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where IA = IB. For circuit B where IA = IB, derating information can be calculated as follows:

(6)
$$T_{R(max)} = T_{J(max)} - \Delta T_{J1}$$

Where TR(max) is the reference temperature (either case or ambient), ΔT_{J1} can be calculated using equation (3) in Note 2. For example, to determine TC(max) for the MDA2500 with the following capacitive load conditions:

IA = 20 A average with a peak of 60 A,

IB = 10 A average with a peak of 70 A,

first calculate the peak to average ratio for IA. I(PK)/I(AV) = 60/10 = 6.0. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average.)

From Figure 5, for an average current of 20 A and an I(PK)/ I_(AV) = 6.0, read P_{DT(AV)} = 40 watts or 10 watts/diode. Thus P_{D1} = P_{D3} = 10 watts. Similarly, for a load current I_B of 10 A, diode #2 and diode

#4 each see 5.0 A average resulting in an I(PK)/I(AV) = 14. Thus, the package power dissipation for 10 A is 20 watts or

5.0 watts/diode, Therefore, PD2 = PD4 = 5.0 watts.
The maximum junction temperature occurs in diodes #1 and #3. From equation (3) for diode #1,

$$\Delta T_{J1} = 10[10 + 0(5) + 0.06(10) + 0.06(5)]$$

 $\Delta T_{J1} \approx 109^{\circ}C.$

Thus, T_{C(max)} = 175 - 109 = 66°C.

The total package dissipation in this example is

 $P_{DT(AV)} = 2 \times 10 + 2 \times 5.0 = 30$ watts,

which must be considered when selecting a heat sink.

FIGURE 11 - BASIC CIRCUIT USES FOR **BRIDGE RECTIFIERS**

3-158

High-reliability discrete products and engineering services since 1977

2N1770-2N1778, 2N2619

PHASE CONTROL SCR

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Ratings	Symbol	2N1770	2N1771	2N1772	2N1773	2N1774	Units
Repetitive peak off-state voltage	V_{DRM}	25	50	100	150	200	Volts
Repetitive peak reverse voltage	V_{RRM}	25	50	100	150	200	Volts
Non-repetitive peak reverse voltage	V _{RSM}	40	75	150	225	300	Volts

Ratings	Symbol	2N1775	2N1776	2N1777	2N1778	2N2619	Units
Repetitive peak off-state voltage	V_{DRM}	250	300	400	500	600	Volts
Repetitive peak reverse voltage	V _{RRM}	250	300	400	500	600	Volts
Non-repetitive peak reverse voltage	V _{RSM}	350	400	500	600	720	Volts

Ratings	Symbol	2N1770-2N1778, 2N2619	Units
RMS on-state current	I _{T(RMS)}	7.4	Amps
Average on-state current (nominal) T _C = 60°C	I _{T(AV)}	4.7	Amps
Peak one-cycle surge (non-repetitive) on-state current (60 Hz)	I _{TSM}	60	Amps
Peak one-cycle surge (non-repetitive) on-state current (50 Hz)	I _{TSM}	52	Amps
Critical rate of rise of on-state current (repetitive)	di/dt	40	A/μs
I ² t (for fusing), 8.3ms	l ² t	15	A ² sec
Peak gate power dissipation	P _{GM}	5	Watts
Average gate power dissipation	P _{G(AV)}	0.5	Watts
Peak forward gate voltage	V_{FGM}	10	Volts
Peak forward gate current	I _{FGM}	2	Amps
Peak reverse gate voltage	V_{RGM}	10	Volts
Storage temperature	T _{stg}	-65 to +150	°C
Operating temperature	T _J	-65 to +125	°C
Mounting torque	-	15	Inch-pounds
Mounting torque	-	17.5	kg-cm

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristics	Symbol	Test Conditions	2N1770	2N1771	2N1772	2N1773	2N1774	Units
Voltage-Blocking state maximum Forward leakage, peak	I _{DRM}	$T_J = 125$ °C, $V_D = V_{DRM}$	9.0	9.0	9.0	8.0	6.0	mA
Reverse leakage, peak	I _{RRM}	$T_J = 125^{\circ}C, V_R = V_{RRM}$	9.0	9.0	9.0	8.0	6.0	mA

Characteristics	Symbol	Test Conditions	2N1775	2N1776	2N1777	2N1778	2N2619	Units
Voltage-Blocking state maximum Forward leakage, peak	I _{DRM}	$T_J = 125$ °C, $V_D = V_{DRM}$	5.0	4.0	2.0	2.0	2.0	mA
Reverse leakage, peak	I _{RRM}	$T_J = 125$ °C, $V_R = V_{RRM}$	5.0	4.0	2.0	2.0	2.0	mA

High-reliability discrete products and engineering services since 1977

2N1770-2N1778, 2N2619

PHASE CONTROL SCR

Characteristics	Symbol	Test Conditions	2N	1770-2N1778, 2N2	619	Units
Characteristics	,		Min	Тур	Max	Offics
Current- Conducting state Holding current	I _H	V _D = 6V, T _J = 25°C	-	8.0	-	mA
Peak on state voltage	V _{TM}	T _J = 25°C, I _{TM} = 15A	-	1.6	1.85	Volts
Switching Turn-off time	t _q	T _J = 125°C Reapplied dv/dt = 20V/μs	-	15	-	μs
Turn-on time	t _{on}	Gate supply: 7V, 20 Ω 0.1 μs rise time	-	1.0	-	μs
Typical critical dv/dt exponential to V _{DRM}	dv/dt	-	-	20	-	V/µs
Thermal Maximum thermal resistance, Junction to case	$R_{th(j-c)}$	-	-	1.5	3.1	°C/Watt
Gate- Maximum parameters Gate current to trigger	I _{GT}	$V_D = 12V$, $R_L = 250\Omega$, $T_J = -65^{\circ}C$ $V_D = 12V$, $R_L = 250\Omega$, $T_J = 125^{\circ}C$ $V_D = 12V$, $R_L = 250\Omega$, $T_J = 25^{\circ}C$	- - -	20 4 10	30 8 15	mA
Gate voltage to trigger	V_{GT}	V _D = 12V, R _L = 250Ω, T _J = 25°C	-	1.3	2.0	Volts
Non-triggering gate voltage	V_{GD}	$V_D = V_{DRM}, R_L = 250\Omega, T_J = 125^{\circ}C$	0.3	0.7	-	Volts

MECHANICAL CHARACTERISTICS

Case:	TO-64
Marking:	Alpha-numeric
Polarity	Anode is stud

	TO-64							
	Inc	hes	Millin	neters				
	Min	Max	Min	Max				
Α	0.300	0.410	7.620	10.414				
В	0.080	0.140	2.030	3.556				
ΦD	-	0.424	-	10.770				
ΦD ₁	0.400	-	10.160	-				
Е	0.424	0.437	10.770	11.100				
е	0.013	-	0.330					
e ₁	0.060	×	1.520					
F	0.060	0.175	1.520	4.450				
J	0.700	0.855	17.780	21.720				
ΦМ	0.163	0.189	4.140	4.800				
Ň	0.400	0.453	10.160	11.510				
N ₁	-	0.078	-	1.980				
ΦТ	0.040	0.075	1.020	1.910				

High-reliability discrete products and engineering services since 1977

2N1770-2N1778, 2N2619

PHASE CONTROL SCR

Type 101C -55 °C to 105 °C Low-ESR, Wide-Temperature Grade

Specifications

The Ultimate in Cold Performance and ESR

The Type 101C is the wide-temperature, low voltage version of the Type 550C. It is ideal for high-ripple current military and industrial applications that need full performance to −40 °C and solid performance to −55 °C. It also excels as a power-supply output capacitor because of its exceptionally low ESR. The extended cathode foil of the 101C assures heat flow from the capacitor element to the can in all mounting orientations.

Highlights

- 5,000 hour load life
- Ripple Current to > 100 amps @ 55 °C
- ESRs to 2.5 $m\Omega$
- > 90% capacitance at -40 °C
- Thermal-Pak™ extended cathode construction

•					
Temperature Range	−55 °C to +105 °C				
Rated Voltage Range	7.5 to 250 Vdc				
Capacitance Range	290 μF to 1.5 F				
Capacitance Tolerance	7.5 to 150 Vdc: -10% +75%, 200 & 250 Vdc: -10% +50%				
Leakage Current	\leq 1.5 $\sqrt{\text{CV}}$ μ A, 4 mA max, 5 minutes				
Ripple Current Multipliers	Ambient Temperature				
	45 °C 55 °C 65 °C 75 °C 85 °C 95 °C 105				
	1.66 1.52 1.37 1.20 1.00 0.75 0.3				
	Frequency 50 60 120 360 1 5 10 kHz Hz Hz Hz kHz kHz & up				
	1 3/8" & 1 3/4" Diameters				
	7.5 to 150 V 0.91 0.93 1.00 1.06 1.08 1.09 1.09				
	200 & 250 V 0.82 0.86 1.00 1.14 1.20 1.23 1.23				
	2" & 2 1/2" Diameters				
	7.5 to 150 V 0.92 0.94 1.00 1.05 1.07 1.08 1.08				
	200 & 250 V 0.82 0.86 1.00 1.14 1.20 1.23 1.27				
	3" Diameters 7.5 to 150 V 0.95 0.96 1.00 1.03 1.04 1.05 1.05				
	7.5 to 150 V 0.95 0.96 1.00 1.03 1.04 1.05 1.05 200 & 250 V 0.85 0.88 1.00 1.11 1.15 1.18 1.18				
	200 & 230 V 0.83 0.86 1.00 1.11 1.13 1.16 1.16				
Low Temperature Characteristics	Impedance ratio: $Z_{-55^{\circ}C}/Z_{+25^{\circ}C} \le 3$				
Endurance Life Test	5,000 h at 105 °C and full load Δ Capacitance $\pm 20\%$ ESR 200% of limit DCL 100% of limit				
Shelf Life Test	500 h at 105 °C Capacitance 100% of limit ESR 100% of limit DCL 100% of limit				
Vibration 10 to 55 Hz, 0.06" and 10 g max, 1.5 h each of two axis					
	RoHS Compliant				

Type 101C -55 °C to 105 °C Low-ESR, Wide-Temperature Grade

Part Numbering System

Outline Drawing

Stud Dimensions

Case	Stud	P± 0.039"			
Diam.	Thread	(±1.0 mm)			
1.375	M8	0.470" (12.0)			
1.750	M8	0.470" (12.0)			
2.000	M12	0.630" (16.0)			
2.500	M12	0.630" (16.0)			
3.000	M12	0.630" (16.0)			

Thermal Pad

NOTE: With the stud-mount feature, a thermally-conductive disk can be inserted in the bottom flush with the outer insulating sleeve. This reduces the thermal resistance through the can bottom by 0.3 °C/W. Can Style P.

Terminal Dimensions

	For Case		Post Di	ameter	Hn	nax		min Full Thread		Torque	
Terminal Style	Diameters	Code	in	mm	in	mm	Thread	in	mm	in∙lb	N∙m
Low Post	13/8 to 3	Α	0.314	8.0	0.094	2.4	10–32	0.218	5.5	25	2.82
High Post	1% to 3	В	0.314	8.0	0.281	7.1	10-32	0.375	9.5	25	2.82
High Current, Med	2½ to 3	D	0.434	11.0	0.190	4.8	1/4-28	0.312	7.9	50	5.65

Type 101C –55 °C to 105 °C Low-ESR, Wide-Temperature Grade

		ESR Max	Ripple Max	:			ESR Max	Ripple Max	
Cap.	Catalog	@ 25 °C	@ 85 °C	Nominal Size	Cap.	Catalog	@ 25 °C	@ 85 °C	Nominal Size
(μ F)	Part Number	120 Hz	120 Hz	DxL	(μ F)	Part Number	120 Hz	120 Hz	DxL
		(mΩ)	(A)	(in)			(mΩ)	(A)	(in)
200 Vdc (275 Vdc Surge)						250 Vdc (350 Vdc Surg	e)	
380	101C381T200AK2B	453.7	2.0	1 3/8 x 1 5/8	290	101C291T250AK2B	548.8	1.8	1 3/8 x 1 5/8
680	101C681T200AA2B	253.5	3.0	1 3/8 x 2 1/8	530	101C531T250AA2B	300.3	2.7	1 3/8 x 2 1/8
890	101C891T200EA2B	223.5	3.7	1 3/4 x 2 1/8	700	101C701T250EA2B	227.4	3.7	1 3/4 x 2 1/8
980	101C981T200AH2B	175.9	3.9	1 3/8 x 2 5/8	760	101C761T250AH2B	209.4	3.5	1 3/8 x 2 5/8
1,100	101C112T200BA2B	180.9	4.5	2 x 2 1/8	890	101C891T250BA2B	163.9	4.7	2 x 2 1/8
1,300	101C132T200AB2B	132.6	4.8	1 3/8 x 3 1/8	990	101C991T250AB2B	160.8	4.3	1 3/8 x 3 1/8
1,400	101C142T200EH2B	142.1	5.0	1 3/4 x 2 5/8	1,100	101C112T250EH2B	144.7	5.0	1 3/4 x 2 5/8
1,600	101C162T200AJ2B	107.8	5.6	1 3/8 x 3 5/8	1,200	101C122T250AJ2B	132.6	5.0	1 3/8 x 3 5/8
1,800	101C182T200BH2B	110.5	6.1	2 x 2 5/8	1,400	101C142T250BH2B	104.2	6.3	2 x 2 5/8
1,900	101C192T200EB2B	104.7	6.2	1 3/4 x 3 1/8	1,500	101C152T250AC2B	106.1	5.9	1 3/8 x 4 1/8
1,900	101C192T200AC2B	88.9	6.4	1 3/8 x 4 1/8	1,500	101C152T250EB2B	106.1	6.2	1 3/4 x 3 1/8
2,200	101C222T200AD2B	90.4	6.7	1 3/8 x 4 5/8	1,700	101C172T250AD2B	101.4	6.3	1 3/8 x 4 5/8
2,400	101C242T200EJ2B	82.9	7.3	1 3/4 x 3 5/8	1,900	101C192T250AE2B	90.7	6.9	1 3/8 x 5 1/8
2,400	101C242T200BB2B	82.9	7.5	2 x 3 1/8	1,900	101C192T250EJ2B	83.8	7.3	1 3/4 x 3 5/8
2,500	101C252T200AE2B	79.6	7.4	1 3/8 x 5 1/8	1,900	101C192T250BB2B	69.8	8.2	2 x 3 1/8
2,800	101C282T200AF2B	71.0	8.1	1 3/8 x 5 5/8	2,200	101C222T250AF2B	84.4	7.4	1 3/8 x 5 5/8
3,100	101C312T200BJ2B	64.2	9.0	2 x 3 5/8	2,300	101C232T250CH2B	75.0	8.6	2 1/2 x 2 5/8
3,400	101C342T200EC2B	58.5	9.1	1 3/4 x 4 1/8	2,300	101C232T250EC2B	69.2	8.4	1 3/4 x 4 1/8
3,500	101C352T200ED2B	56.8	9.7	1 3/4 x 4 5/8	2,400	101C242T250BJ2B	58.0	9.5	2 x 3 5/8
4,000	101C402T200EE2B	49.7	10.7	1 3/4 x 5 1/8	2,700	101C272T250ED2B	58.9	9.5	1 3/4 x 4 5/8
4,000	101C402T200CB2B	49.7	11.2	2 1/2 x 3 1/8	2,900	101C292T250BC2B	50.3	10.7	2 x 4 1/8
4,000	101C402T200BC2B	43.1	11.5	2 x 4 1/8	3,100	101C312T250CB2B	55.6	10.6	2 1/2 x 3 1/8
4,400	101C442T200BD2B	45.2	11.7	2 x 4 5/8	3,100	101C312T250EE2B	51.3	10.5	1 3/4 x 5 1/8
4,500	101C452T200EF2B	44.2	11.7	1 3/4 x 5 5/8	3,400	101C342T250BD2B	45.6	11.7	2 x 4 5/8
5,000	101C502T200BE2B	39.8	12.9	2 x 5 1/8	3,500	101C352T250EF2B	45.5	11.6	1 3/4 x 5 5/8
5,100	101C512T200CJ2B	39.0	13.3	2 1/2 x 3 5/8	3,900	101C392T250BE2B	42.0	12.6	2 x 5 1/8
6,100	101C612T200BF2B	32.6	14.7	2 x 5 5/8	4,000	101C402T250CJ2B	43.1	12.6	2 1/2 x 3 5/8
6,500	101C652T200CC2B	26.3	16.9	2 1/2 x 4 1/8	4,500	101C452T250BF2B	38.3	13.6	2 x 5 5/8
7,200	101C722T200CH2B	27.6	14.1	2 1/2 x 2 5/8	4,700	101C472T250DB2B	42.3	13.6	3 x 3 1/8
7,200	101C722T200CD2B	27.6	17.1	2 1/2 x 4 5/8	5,100	101C512T250CC2B	30.6	15.6	2 1/2 x 4 1/8
7,600	101C762T200DJ2B	29.7	17.0	3 x 3 5/8	5,700	101C572T250CD2B	28.9	16.7	2 1/2 x 4 5/8
8,300	101C832T200CE2B	24.0	19.0	2 1/2 x 5 1/8	5,900	101C592T250DJ2B	33.7	16.0	3 x 3 5/8
9,300	101C932T200DC2B	21.4	20.9	3 x 4 1/8	6,500	101C652T250CE2B	26.6	18.0	2 1/2 x 5 1/8
10,000	101C103T200CF2B	21.2	20.8	2 1/2 x 5 5/8	7,200	101C722T250DC2B	27.6	18.4	3 x 4 1/8
11,000	101C113T200DD2B	20.5	22.1	3 x 4 5/8	7,700	101C772T250CF2B	24.1	19.5	2 1/2 x 5 5/8
13,000	101C133T200DB2B	17.8	20.9	3 x 3 1/8	8,500	101C852T250DD2B	23.4	20.7	3 x 4 5/8
13,000	101C133T200DE2B	17.8	24.5	3 x 5 1/8	9,700	101C972T250DE2B	20.5	22.8	3 x 5 1/8
14,000	101C143T200DF2B	16.9	25.9	3 x 5 5/8	11,000	101C113T250DF2B	18.1	25.0	3 x 5 5/8
15,000	101C153T200DP2B	15.9	27.1	3 x 5 7/8	12,000	101C123T250DP2B	16.6	26.5	3 x 5 7/8
20,000	101C203T200DN2D	12.5	33.9	3 x 7 5/8	16,000	101C163T250DN2D	13.4	32.8	3 x 7 5/8
23,000	101C233T200DG2D	10.4	37.8	3 x 8 5/8	18,000	101C183T250DG2D	11.1	36.7	3 x 8 5/8

Type 101C -55 °C to 105 °C Low-ESR, Wide-Temperature Grade

Typical Performance Curves

