when	who	what
1865	Gregor Mendel	Experiments on Plant Hybridization
1910	Thomas Hunt Morgan	Chromosomes are carriers of genes
1941	E. L.Tatum and G. W. Beadle	Genes encode proteins
1953	J. D. Watson and F. Crick	DNA double helix structure
1961	Marshall W. Nirenberg	Genetic Code discovery
1968	M. Meselson and R. Yuan	Restriction Enzyme discovery
1996	Roslin Institute	Cloned Sheep

Mendel's Laws:

Law of Segregation: There are two alleles for each gene: during the gamete formation, the two alleles of one gene segregate from each other independently

Law of Independent Assortment: During the gamete formation, genes from different chromosomes assort

independently and combine rand	omly
Complete penetrance and unvarying expressivity	X-linked Recessive Traits: Appear more often in males. Not passed from father to son Passed from carrier mother to
	Skip generations

Incomplete penetrance and unvarying expressivity

Incomplete penetrance and variable expressivity

Passed from carrier mother to son Skip generations

X-linked Dominant Traits: Appear in both males and females. Affected males must have affected mother Affected males pass the trait to all of their daughters Do not skip generations

gametes

-linked Traits: Appear only in males Pass from father to son Do not skip generations

Linked Genes

Parentals > Recombinants (RF < 50%)

Linked genes must be syntenic and sufficiently close together on the same chromosome so that they do not assort independently.

Unlinked Genes

Phase (Mitosis)

Parentals = Recombinants (RF = 50%)

Occurs either when two genes are on different chromosomes or when they are sufficiently far apart on the same chromosome that at least one crossover occurs between them in every meiosis.

Filase (Millosis)	# Cilioniosonies	# CHIOHIatius
Prophase	46	92
Metaphase	46	92
Anaphase	92	92
Telophase	92	92
End of Mitosis (separated cells)	46	46
Phase (Meiosis I)	# Chromosomes	# Chromatids
Prophase I	46	92
Metaphase I	46	92
Anaphase I	46	92
Telophase I	46	92
End of Meiosis I (separated cells)	23	46
Phase (Meiosis II)	# Chromosomes	# Chromatids
Prophase II	23	46
Metaphase II	23	46
Anaphase II	46	46
Telophase II	46	46
End of Meiosis II (separated cells)	23	23

- -Hardy Weinberg Equation: $p^2 + 2pq + q^2 = 1$, Heterozygosity(H) = $2pq \rightarrow$ and $P'_m = P_t$, $P'_t = P_m + P_t/2$ when $P_t = P_m = P$ population is in HWE
- Inbreeding coefficient F: $F = \frac{E(F(Aa) O(F(Aa)))}{F(F(Aa))} = \frac{E(H) O(H)}{F(F(Aa))} = \frac{E(H) O(H)}{F(Aa)}$ E(F(Aa))E(H)

Inbreeding increases homozygosity, but relative allele frequencies remain constant if: $F=1 \rightarrow HWE$, if $0 < F < 1 \rightarrow inbreeding$, if $1 < F < 0 \rightarrow inbreeding$ outbreeding.

- -<u>Chi-Squared</u>: $X^2 = \sum \frac{(obs-exp)^2}{exp}$, if $X^2 > 5\%$ in HWE if < not in HWE
- -Genetic drift: $P(\Delta 1 = 0 2N) = \left(\frac{(2N)!}{k!(2N-k)!}\right) p^k a^{2N-k} \rightarrow \text{calculate for}$ all $\Delta 1$ then P(fixed $\rightarrow 1$ G) = P($\Delta 1$ =0) + P($\Delta 1$ =2N) and P(change) = $1-P(\Delta 1=N)$

 $\underline{Number\ A1} {\rightarrow} A2$ Mutation Rate: $\mu = \#$ mutations / (Number of bases * years) = total A loci

parental recombinant

Donor DNA is taken up by recipient

A B C D E F G H

ABCDEEGH

Lysis of donor cell

LMNOPQR

Conjugation

Donor DNA is transferred directly to recipient through a connecting tube. Contact and transfer are promo by a specialized pl in the donor cell.

Rearranged Deletion A D E FIGH

Duplication

Inversion

180° rotation

HDATER

Translocation

IMNOF FIGH

ABCDPQR

BCDFFGH

LOD Ratio

R, N = # recombinants, # non-recomb $OR = (\Theta(\Theta-1)^{N})/(0.5)^{N+R}$, LOD = Log₁₀OR If LOD \geq N \rightarrow Associated If LOD $< N \rightarrow Not$ associated