7: Discrimination and Classification

John H Maindonald

November 25, 2013

Ideas and issues illustrated by the graphs in this vignette

The methods illustrated here have the character of regression models where the outcome is categorical, one of g classes. For example, the fgl dataset has measurements of each on nine physical properties, for 214 samples of glass that are classified into six different glass types.

Note: The versions of Figures 7.9 and 7.10 that are shown in Section 2 are for a substantially reduced number of points, relative to the text *Statistically Informed Data Mining.*¹.

1 Code for the Figures

¹Display of the figures can be suppressed, when processing this vignette through *knitr*, by placing an object doFigs=FALSE in the workspace.

```
ld1 <- LDmat[,1]</pre>
    ld2 <- LDmat[,2]</pre>
    gm <- sapply(cuckoos[, c("length", "breadth")], mean)</pre>
    av1 \leftarrow gm[1] + ld1[2]/ld1[1]*gm[2]
    av2 \leftarrow gm[1] + 1d2[2]/1d2[1]*gm[2]
    assign('av1', av1, pos=1)
    assign('av2', av2, pos=1)
    assign('ld1', ld1, pos=1)
    assign('ld2', ld2, pos=1)
    addlayer <- latticeExtra::layer(panel.abline(av1, -ld1[2]/ld1[1], lty=1),
                                      panel.abline(av2, -ld2[2]/ld2[1], lty=2))
    gph + addlayer
fig7.3 <- function(){</pre>
    ## This will show decision boundaries
    gph <- xyplot(length ~ breadth, groups=species, data=cuckoos,</pre>
                   type=c("p"), auto.key=list(space="right"), aspect=1,
                   scales=list(tck=0.5), par.settings=simpleTheme(pch=16))
    x <- pretty(cuckoos$breadth, 20)
    y <- pretty(cuckoos$length, 20)
    Xcon <- expand.grid(breadth=x, length=y)</pre>
    cucklda.pr <- predict(cuckoos.lda, Xcon)$posterior</pre>
    cuckqda.pr <- predict(cuckoos.qda, Xcon)$posterior</pre>
    m <- match("wren", colnames(cucklda.pr))</pre>
    ldadiff <- apply(cucklda.pr, 1, function(x)x[m]-max(x[-m]))</pre>
    qdadiff <- apply(cuckqda.pr, 1, function(x)x[m]-max(x[-m]))</pre>
    addlayer1 <- latticeExtra::as.layer(contourplot(ldadiff ~ breadth*length,
                                        at=c(-1,0,1), labels=c("", "lda",""),
                                        label.style="flat",
                                        data=Xcon), axes=FALSE)
    addlayer2 <- latticeExtra::as.layer(contourplot(qdadiff ~ breadth*length,
                                       at=c(-1,0,1), labels=c("", "qda",""),
                                       label.style="flat",
                                       data=Xcon), axes=FALSE)
    gph + addlayer1 + addlayer2
    if(!exists('bronchit')){
        cat("Will try to load dataset 'bronchit' from package 'SMIR'")
        if(!require(SMIR))stop("Package 'SMIR' is not installed") else {
            data(bronchit)
    bronchit <-
```

```
fig7.4 <- function(seed=47){
  opar <- par(xpd=TRUE)
  ## xpd=TRUE allows labels to extend outside of figure region
    b.rpart <- rpart(rfac ~ cig+poll, data=bronchit)
    plot(b.rpart, uniform=TRUE)
    text(b.rpart)
  par(opar)
}</pre>
```

```
fig7.6 <-
function () {
plot.root <- function(text='Reduction in "error" (Gini) = 20.55',</pre>
                      cutoff="cig<4.375", left="138/11", rt="28/35",
                      xlef=0.15, xrt=0.85,
                      treetop=0.85, treebot=0.1){
   par(mar=rep(0,4))
   plot(0:1, 0:1, axes=F, xlab="",ylab="", type="n")
    lines(c(xlef,xlef, xrt,xrt), c(.1,treetop,treetop,.1))
    lines(c(.5,.5),c(-0.01,0.01)+treetop)
    chh <- strheight("0")</pre>
    text(.5, treetop+chh, cutoff)
    text(c(xlef,xrt), rep(.1-chh,2), c(left,rt))
   legend(x=0.5, y=1, xjust=0.5, yjust=1, xpd=TRUE,
       legend=text, bg='gray')
   par(fig=c(0,0.5,0,1))
    plot.root(text='Decrease in "error" = 20.55',
              cutoff="cig<4.375", left="138/11", rt="28/35",
              treetop=0.6, treebot=0.1)
   par(fig=c(0.5,1,0,1), new=TRUE)
    plot.root(text='Decrease in "error" = 2.90',
```

```
testInsure <- matrix(0, ncol=repeats, nrow=length(nn0))</pre>
for(i in 1:repeats){
  j<-0
 for(n0 in nn0){
    j<-j+1
    testInsure[j, i] <- bestsize(n0)</pre>
attr(testInsure, "dimnames") <- list(n0=nn0, Repeat=1:repeats)</pre>
## Long version of data frame
testlong <- data.frame(test=as.vector(testInsure),</pre>
                       n0=rep(nn0, repeats),
                       gp=rep(1:repeats, rep(length(nn0),repeats)))
if(!plotit)return(invisible(testlong))
## Plot data
nn0 <- unique(testlong[,"n0"])</pre>
ndistinct <- length(nn0)</pre>
if(ndistinct >= 4){
test.gam <- gam(test ~ s(log(n0), k=min(ndistinct,3)), data=testlong)
plot(test.gam, se=T, residuals=T, pch=1, xaxt="n",
     xlab="n0, in 'sampsize=c(n0, 226)'",
     ylab="# insurances, best 400 test",
     shift=mean(fitted(test.gam)))
axis(1, at=log(nn0), labels=paste(nn0), las=3)
} else
    plot(test ~ log(n0), data=testlong, pch=1, xaxt="n",
   xlab="n0, in 'sampsize=c(n0, 226)'",
   ylab="# insurances, best 400 test")
   mtext(side=3, line=0.5, expression(
          "Curve is fitted only if there are " >= " 4 distinct values of n0"))
invisible(testlong)
fig7.10 \leftarrow function(nn0 = c(3596, 900, 600, 400, 270, 180, 120, 90, 60, 40),
                     repeats=5, seed=NULL, heldlong=NULL, plotit=TRUE){
if(!is.null(seed))set.seed(seed)
if(is.null(heldlong)){
## ---- vary-held ----
heldInsure <- matrix(0, ncol=repeats, nrow=length(nn0))</pre>
for(i in 1:repeats){
 j<-0
```

```
for(n0 in nn0){
    j<-j+1
    heldInsure[j, i] <- bestsize(n0, nselect=800,</pre>
                                   x=ticShown[, -c(1,86)],
                                   y=ticShown[, 86],
                                   xtest=ticHeld[, -c(1,86)],
                                   ytest=ticHeld[, 86])
 }
attr(heldInsure, "dimnames") <- list(n0=nn0, Repeat=1:repeats)</pre>
## ---- plot-held ----
heldlong <- data.frame(insure=as.vector(heldInsure),</pre>
                        n0=rep(nn0, repeats),
                        gp=rep(1:repeats, rep(length(nn0),repeats)))
if(!plotit)return(invisible(heldlong))
## Plot data
nn0 <- unique(heldlong[,"n0"])</pre>
ndistinct <- length(nn0)</pre>
if(ndistinct>=4){
held.gam <- gam(insure ~ s(log(n0), k=min(ndistinct-1,3)), data=heldlong)
plot(held.gam, se=T, residuals=T, pch=1, xaxt="n",
     xlab="n0, in 'sampsize=c(n0, 348)'",
     ylab="# insurances, best 800 prospects",
     shift=mean(fitted(held.gam)))
} else
   plot(insure ~ log(n0), data=heldlong, pch=1, xaxt="n",
   xlab="n0, in 'sampsize=c(n0, 226)'",
   ylab="# insurances, best 400 test")
    mtext(side=3, line=0.5, expression(
          "Curve is fitted only if there are " >= " 4 distinct values of n0"))
axis(1, at=log(nn0), labels=paste(nn0), las=3)
invisible(heldlong)
compareTargets <-</pre>
function(rfobj, prior1, prior2){
    nam1 <- deparse(substitute(prior1))</pre>
   nam2 <- deparse(substitute(prior2))</pre>
   print(c(nam1,nam2))
    err <- rfob;$confusion[,3]</pre>
```

err1 <- sum(err*prior1)/sum(prior1)</pre>

```
err2 <- sum(err*prior2)/sum(prior2)
errvec <- c(err, err1,err2)
names(errvec) <- c("error-good", "error-bad", nam1, nam2)
errvec
}</pre>
```

2 Show the Figures

Unless doFigs is found in the workspace and is FALSE, then subject to checks that all necessary datasets and packages are available, the figures are now shown.

```
if(!exists("doFigs")) doFigs <- TRUE

pkgs <- c("DAAG","rpart","randomForest","MASS","mgcv")
z <- sapply(pkgs, require, character.only=TRUE, warn.conflicts=FALSE)</pre>
```

```
Loading required package: DAAG

Loading required package: lattice

Loading required package: rpart

Loading required package: randomForest

randomForest 4.6-7

Type rfNews() to see new features/changes/bug fixes.

Loading required package: MASS

Loading required package: mgcv

Loading required package: nlme

This is mgcv 1.7-27. For overview type 'help("mgcv-package")'.

if(any(!z)){

notAvail <- paste(names(z)[!z], collapse=", ")

stop(paste("The following packages should be installed:", notAvail))
}
```

fig7.1()


```
data=cuckoos)
}
```

fig7.2()

fig7.3()

fig7.4()


```
fig7.5()
```


fig7.6()

fig7.7()

set.seed(31) fig7.8()


```
if(!exists("spam")){
  cat("Will try to load dataset 'spam' from package 'kernlab'")
  if(!require(kernlab))stop("Package 'kernlab' is not installed")}
data(spam)
Warning: data set 'spam' not found
nr <- sample(1:nrow(spam))</pre>
spam0 <- spam[nr[1:2601],]</pre>
                                ## Training
spam1 <- spam[nr[2602:3601],] ## Holdout</pre>
spam01 <- spam[nr[1:3601],]
                                ## Use for training,
                                 ## if holdout not needed
spam2 <- spam[nr[3602:4601],]</pre>
                                 ## Test
spam01.lda <- lda(type~., data=spam01)</pre>
ldaError <- ldaErr()</pre>
                ## Make results precisely reproducible
set.seed(29)
spam01.rp <- rpart(type~., data=spam01, cp=0.0001)</pre>
rpartError <- rpartErr()</pre>
set.seed(29)
spam01.rf <- randomForest(type ~ ., data=spam01)</pre>
rfError <- rfErr()</pre>
if(!exists('ticShown') | !exists('ticHeld')){
        cat("Will try to load dataset 'ticdata' from package 'kernlab'")
        if(!require(kernlab))stop("Package 'kernlab' is not installed") else {
          data(ticdata)
          ## Use first 5822 observations for prediction
          ticShown <- ticdata[1:5822, ]</pre>
          ticHeld <- ticdata[-(1:5822), ]
if(!exists('tictrain') | !exists('tictest')){
tictrain <- ticShown[1:3822, ]</pre>
tictest <- ticShown[-(1:3822), ]</pre>
## Generated with seed=29
testLong <-
structure(list(test = c(61, 63, 65, 66, 65, 65, 67, 67, 63, 62,
62, 63, 65, 62, 65, 64, 63, 67, 67, 62, 59, 66, 68, 65, 62, 66,
66, 64, 65, 63, 59, 63, 65, 64, 66, 62, 65, 67, 65, 64, 64, 65,
63, 67, 63, 64, 68, 66, 68, 63), n0 = c(3596, 900, 600, 400,
270, 180, 120, 90, 60, 40, 3596, 900, 600, 400, 270, 180, 120,
90, 60, 40, 3596, 900, 600, 400, 270, 180, 120, 90, 60, 40, 3596,
```

This plots stored results (seed=29), plus one further data point. Type 'fig7.9(seed=31)' for graph shown in the text.


```
## Generated with seed=43
heldLong <-
structure(list(insure = c(108, 114, 120, 119, 121, 116, 114,
114, 110, 103, 110, 114, 116, 117, 117, 116, 110, 112, 110, 110,</pre>
```

This plots stored results (seed=43), plus one further data point. Type 'fig7.10(seed=47)' for graph shown in the text.


```
if(!exists('Vowel')){
   cat("Will try to load dataset 'Vowel' from package 'mlbench'")
   if(!require(mlbench))stop("Package 'mlbench' is not installed") else
        data(Vowel)
}
```

fig7.11()

