

Total Pages: 4

209508

Dec., 2018 B.Tech. (ME) Vth Semester MATHS-III (GA-502C)

Time: 3 Hours] [Max. Marks: 75

Instructions:

- (i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- (ii) Answer any four questions from Part-B in detail.
- (iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) Define Dirichlet's Conditions. (1.5)
 - (b) State and Prove Change of scale property of Fourier Transform. (1.5)
 - (c) If $\sin (A + iB) = x + iy$, prove that $x^2 \csc^2 A - y^2 \sec^2 A = 1$. (1.5)
 - (d) Show that the function $e^x (\cos y + i \sin y)$ is an analytic function. Also find its derivative. (1.5)
 - (e) Evaluate $\int_c (12z^2 4iz)dz$ along the curve C joining the points (1, 1) and (2, 3). (1.5)

- 7
- (f) A card is drawn from an ordinary pack and a gambler bets that it is spade or an ace. What are the odds against his winning the bet. (1.5)
- (g) If A and B are two events such that P(A) = 1/4, P(B) = 1/3 and $P(A \cup B) = 1/2$. Show that A and B are independent events. (1.5)
- (h) Six coins are tossed 6400 times. Using the Posson Distribution determine the approximate probability of getting six heads x times. (1.5)
- (i) Find a half-range cosine series for the function $f(x) = x^2$ in the range $0 \le x \le \pi$. (1.5)
- (j) Find the Fourier Sine transform of $f(x) = e^{-ax}$, a > 0. (1.5)

PART-B

2. (a) An Alternating current after passing through rectifier has the form

$$i = \begin{cases} I_0 \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$$

where I_0 is the maximum current and the period is 2π . Express i as a fourier series. (8)

(b) Find the fourier series expansion of f(x) = 1 + |x| defined in -3 < x < 3. (7)

- 3. (a) Find the Fourier cosine Transform of $f(x) = \frac{1}{1+x^2}$. Hence derive fourier sine transform of $\phi(x) = \frac{x}{1+x^2}$. (8)
 - (b) Using finite fourier transform, solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, subject to the conditions:
 - (i) $u_x(0, t) = u_x(6, t) = 0$, for 0 < x < 6, t > 0.
 - (ii) u(x, 0) = x(6 x), for 0 < x < 6. (7)
- 4. (a) If $u v = (x y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is an analytic function of z = x + iy, find f(z) in terms of z by Milne Thomson Method. (8)
 - (b) Prove that $u = x^2 y^2$ and $v = \frac{y}{x^2 + y^2}$ are harmonic functions of (x, y), but are not harmonic conjugates.
- (a) Evaluate $\int_{c} \frac{z^2 2z}{(z+1)^2(z^2+4)} dz$ where c is the circle |z| = 10. (8)
 - (b) Expand f(z) as Taylor's or Laurent's series expansion. $f(z) = \frac{z^2 - 1}{(z+2)(z+3)} \text{ when (i) } |z| < 2 \text{ (ii) } 2 < |z| < 3$ (iii) |z| > 3

- 6. (a) Two-Thirds of the students in a class are boys and the rest are girls. It is known that the probability of a girl getting a first class is 0.25 and that of a boy getting a first class is 0.28. A student is selected at random and is found to get the first class. What is the probability that the student is a boy?

 (8)
 - (b) A die is thrown three times. Events A and B are defined as below:

A: 4 appears on third throw

B: 6 and 5 appears respectively on first two throws. Find the probability of A given that B has already occurred. (7)

- 7. (a) Let X be a random variable defined by the density function $f(x) = \begin{cases} 3x^2, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$. Find E(X), E(3X 2), E(X²).
 - (b) Fit a Binomial Distribution to the following frequency distribution:

х	0	1	2	3	4	5	1
f	13	25	52	58	32	16	4

(7)