Lecture: The Absoluteness of Constructibility

We would like to show that L is a model of V = L, or, more precisely, that L is an interpretation of ZF + V = L in ZF. We have already verified that σ^L holds (in ZF) for all axioms σ of ZF. To verify that $ZF \vdash (V = L)^L$, we need to show (in ZF) that

$$(\forall x \exists \alpha \ x \in L_{\alpha})^{L}$$

holds. Since $L \cap \text{Ord} = \text{Ord}$, the former is equivalent to

$$\forall x \in L \exists \alpha (x \in L_{\alpha})^{L}.$$

This could fail to hold if the definition of L "inside L" yields a different structure then the constructible hierarchy itself. Therefore, we have to analyze the function $\alpha \mapsto L_{\alpha}$ and show that it is *absolute* for L. We identify L with this function, i.e. we let L: Ord $\to V$ be given by $L(\alpha) = L_{\alpha}$. We have to show that $L^{L}(\alpha) = L(\alpha)$ for all ordinals.

To do this, we analyze the set theoretic complexity of the definability notion.

Gödelization

We assign to every variable v_n the Gödel number (or rather the Gödel set)

$$\lceil v_n \rceil = (1, n).$$

We also extend our language by introducing, for every set a, a new constant \underline{a} . This way, we can address elements of a set theoretic structure (M, \in) when defining, for example, the relation $(M, \in) \models \varphi[a]$. When, for $a \in M$, the interpretation of \underline{a} is to be a itself, we speak of the *canonical interpretation*. The Gödel number of a constant is

$$\lceil \underline{a} \rceil = (2, a).$$

Now we can recursively assign Gödel numbers to all set theoretic formulas (in the extended language).

$$\lceil x = y \rceil = (3, (\lceil x \rceil, \lceil y \rceil))
 \lceil x \in y \rceil = (4, (\lceil x \rceil, \lceil y \rceil))
 \lceil \neg \varphi \rceil = (5, \lceil \varphi \rceil)
 \lceil \varphi \wedge \psi \rceil = (6, (\lceil \varphi \rceil, \lceil \psi \rceil))
 \lceil \exists v_n \varphi \rceil = (7, (n, \lceil \varphi \rceil))$$

Definability of syntactical notions

We can express "*a* is (the Gödel number of) a variable" as (recall the definition of a set theoretic pair)

$$Var(a) \leftrightarrow \exists y \in a \exists x \in y \ (a = (1, x) \land x \in \omega).$$

We want to keep track of the complexity of the definitions. All quantifiers are bounded, so Var is Δ_0 , provided the expression $x \in \omega$ is Δ_0 , too. A proof of the latter fact is given in Lemma 12.10 in Jech [2003], for example.

Using Var, we can go on to define set theoretic formulae saying

Fmlⁿ(e) \leftrightarrow e is the Gödel number of a formula φ whose free variables are among v_0, \dots, v_{n-1} ,

 $\operatorname{Fml}_a^n(e) \longleftrightarrow e$ is the Gödel number of a formula φ whose free variables are among v_0, \ldots, v_{n-1} , and which contains constants \underline{a}_i with $a_i \in a$.

The definition of Fml is not difficult, but a little tedious and has to be worked out carefully. Details can be found in Devlin [1984], Section 1.9 (but see also [Mathias, 2006]).

Informally, the definition of $\operatorname{Fml}^n(e)$ says that there exists a finite sequence of Gödel numbers of formulae and a way to put them together (a "formula tree") so that the resulting formula has Gödel number e, and the only free variable that occur are among v_0, \ldots, v_n . One needs to resort to a suitable recursion principle to do this.

This definition of Fml is no longer Δ_0 . In order to still be able to establish absoluteness results, one has to provide a careful analysis of the logical complexity of Fml.

The Levy hierarchy of set theoretic formulae

We have already discussed the notion of Δ_0 formulae. If we allow unbounded quantifiers, we obtain a hierarchy of formulae, classified according to the number of quantifier changes (similar to the arithmetical hierarchy of number theoretic formulae).

```
\varphi is a \Sigma_1 formula \longleftrightarrow \varphi = \exists \nu_1 \dots \exists \nu_n \psi, for a \Delta_0 formula \psi, \varphi is a \Pi_1 formula \longleftrightarrow \varphi = \forall \nu_1 \dots \forall \nu_n \psi, for a \Delta_0 formula \psi,
```

Continuing inductively (letting $\Sigma_0 = \Pi_0 = \Delta_0$), we put

$$\varphi$$
 is a Σ_{n+1} formula $\longleftrightarrow \varphi = \exists \nu_1 \dots \exists \nu_n \psi$, for a Π_n formula ψ , φ is a Π_{n+1} formula $\longleftrightarrow \varphi = \forall \nu_1 \dots \forall \nu_n \psi$, for a Σ_n formula ψ ,

Note that these definitions only apply to formulae in prenex normal form. However, we can extend the definition to other formulae by saying φ is Σ_n (Π_n) if it is logically equivalent to a Σ_n (Π_n) formula.

Sometimes a proof that a certain formula is Σ_n requires not only logical equivalences (such as $\exists v_1 \neg \forall v_3 \psi \longleftrightarrow \exists v_1 \exists v_2 \neg \psi$), but set theoretic axioms. For example, consider the definition of an ordinal,

$$Ord(a) \leftrightarrow a$$
 is transitive and a is well-ordered by \in

The property of being well-ordered by \in is formalized as

$$\forall x \ [x \subseteq a \ \to \exists b \in x \forall c \in x (c \notin b)].$$

This definition is not Δ_0 . However, if we assume the Axiom of Regularity, every set is well-founded with respect to \in , so it suffices to require that a is *linearly ordered* by \in . In fact, it suffices to require (exercise!) that

a is transitive and
$$\forall x, y \in a (x \in y \lor x = y \lor y \in x)$$
,

which is Δ_0 .

In some cases, one can use set theoretic operations to bound quantifiers. For instance, using the definition of $\bigcup a$, we obtain that

$$\exists x \in []a \dots \leftrightarrow \exists y \in a \exists x \in y \dots$$

is a bounded quantifier in the sense of Δ_0 formulae. Regarding other set theoretic operations, this kind of argument has to be used with caution, though. A quantifier of the form

$$\exists x \in \mathcal{P}(a)$$

cannot be regarded as bounded, since the definition of $\mathcal{P}(a)$ is not Δ_0 , but Π_1 .

If T is a theory (in the language of set theory) we say

 φ is Σ_n^T iff there exists a Σ_n formula ψ so that $T \vdash \varphi \longleftrightarrow \psi$, φ is Π_n^T iff there exists a Π_n formula ψ so that $T \vdash \varphi \longleftrightarrow \psi$, φ is Δ_n^T iff φ is Σ_n^T and Π_n^T .

Extending absoluteness

We are particularly interested in the case n=1, since this allows us to extend absoluteness results beyond Δ_0 is a relatively easy manner.

Proposition 1.1: *Let* M *be a transitive model of* T, *where* T *is a subtheory of* ZF .

- (1) For any Σ_1^T formula φ , $\varphi^M \to \varphi$.
- (2) For any Π_1^T formula φ , $\varphi \to \varphi^M$.
- (3) For any Δ_1^T formula φ , $\varphi^M \longleftrightarrow \varphi$.

We say Σ_1 formulae are upward absolute, whereas Π_1 are downward absolute.

Proof. (1) Assume φ is Σ_1^T . Suppose φ is equivalent over T to a formula $\exists v\psi(v)$, where ψ is Δ_0 . Assume σ^M holds for every $\sigma \in T$. Let θ be a conjuction of finitely many sentences from T that prove $\varphi \leftrightarrow \exists v\psi(v)$. Then, since $\vdash \theta \to (\varphi \leftrightarrow \exists v\psi(v))$, and validities are absolute for any structure, $\theta^M \to (\varphi^M \leftrightarrow \exists v \in M\psi^M(v))$, and hence $\varphi^M \leftrightarrow \exists v \in M\psi^M(v)$. So if φ^M , then $\exists v \in M\psi^M(v)$ and hence $\exists v\psi^M(v)$. Since Δ_0 formulas are absolute for transitive models, we obtain $\exists v\psi(v)$. Since T is a fragment of ZF, it follows that $\mathsf{ZF} \vdash \varphi \leftrightarrow \exists v\psi(v)$, and thus φ .

The proof for (2) is similar, and (3) follows from (1) and (2). \Box

Defining definability

We mentioned above that the definition of $\operatorname{Fml}^n(e)$ states the existence of a sequence of Gödel numbers of formulae and a way to put them together (a "formula tree"). This turns out to be a Σ_1 definition. However, one can bound the domain from which the sequence is drawn by a set theoretic operation A. This set theoretic operation is Δ_1^T definable for a finite fragment T of ZF . Using this operation, we can rewrite the definition of $\mathsf{Fml}^n(e)$ as " $\forall a \ (if \ u = A(e) \ then \exists x \in u \ such \ that \ x \ is \ a \ sequence \ of \ G\"{o}del \ numbers \dots)$ ".

This way we can establish

Proposition 1.2: $\operatorname{Fml}^n(e)$ and $\operatorname{Fml}^n_a(e)$ are $\Delta_1^{\operatorname{\sf ZF}}$.

To show $\operatorname{Fml}^n(e)$ and $\operatorname{Fml}^n_a(e)$ are Δ_1 , it suffices to consider a weak fragment of ZF. *Kripke-Platek set theory* (KP) consists of the Axioms of Extensionality,

Pairing, and Union, and also of the following axiom schemes:

$$(\Delta_0\text{-Separation}) \qquad \exists y \, \forall z (z \in y \iff x \in a \land \varphi(x))$$

$$(\Delta_0\text{-Replacement}) \qquad \forall x \, \exists y \, \varphi(x,y) \rightarrow \exists z \, \forall x \in a \, \exists y \in z \, \varphi(x,y)$$

$$\forall x \, \varphi(x) \rightarrow \exists x (\varphi(x) \land \forall y \in x \neq \varphi(y))$$

Here, the first two schemes only apply to Δ_0 formulae φ . KP_{∞} denotes the theory obtained by also adding the Axiom of Infinity.

 KP_∞ can be seen as a generalized recursion theory and is strong enough to develop the recursive definitions needed to develop syntactical notions such as $\mathsf{Fml}^n(e)$. In particular, one can show that $\mathsf{Fml}^n(e)$ and $\mathsf{Fml}^n_a(e)$ are $\Delta_1^{\mathsf{KP}_\infty}$.

Now we can go on an give set-theoretic definitions of semantical notions. There exists a set theoretic formula Sat(a,e) which is $\Delta_1^{\mathsf{KP}_\infty}$ and expresses the following

Sat(a,e): e is the code of a formula $\varphi(\underline{a}_1,\ldots,\underline{a}_n)$ with no free variables and φ holds in (a,\in) under the canonical interpretation.

We also write $(a, \in) \models e$ instead of Sat(a, e). One can use Sat to formally establish the equivalence of a formula holding relativized and holding in the corresponding set theoretic structure (for *set* structures only).

Proposition 1.3: Let $\varphi(v_0,...,v_{n-1})$ be a formula, let M be a set, and let $a_0,...,a_{n_1} \in M$. Then it holds (in KP_{∞}) that

$$\varphi^M(a_0,\ldots,a_{n_1}) \longleftrightarrow \operatorname{Sat}(M,\lceil \varphi(\underline{a}_0,\ldots,\underline{a}_{n_1})\rceil).$$

This is proved by induction over the structure of φ . The atomic case works because we require $\varphi(\underline{a}_0, \dots, \underline{a}_{n_1})$ to hold under the canonical interpretation.

The Sat predicate puts us in a position to "define" Def(M).

$$\mathrm{Def}(M) = \{x \subseteq M \colon \exists e \; (\mathrm{Fml}^1_M(e) \; \wedge \; x = \{z \in M \colon (M, \in) \models e(z)\})\}.$$

We have to be careful here, since " $(M, \in) \models e$ " was only defined for *fixed* Gödel numbers, but here this number seems to depend on the set z. We therefore *define* e(z) to be the Gödel number of the following formula: If $e = \lceil \varphi \rceil$, then

e(z) is the Gödel number of the formula $\varphi(\underline{z})$ that we obtain by replacing every occurrence of the (only) variable v_0 by the symbol z:

$$\lceil \varphi(\nu_0) \rceil(z) = \lceil \varphi(z) \rceil.$$

(This transition is, moreover, Δ_1 -definable over KP_{∞} .)

The absoluteness of definability

To establish the desired absoluteness, we have to check the complexity of the formula for Def.

Proposition 1.4: The relation b = Def(a) is $\Delta_1^{KP_{\infty}}$.

Sketch of proof. That Def(M) is defined by a Σ_1 formula is not hard to see once we have established the complexity of Fml and Sat. As noted in [Jech, 2003], Lemma 13.10, graphs of functions with Δ_1 domain are ${\Delta_1}^{\dagger}$.

Having determined the complexity of Def(M), we can go on to show

Proposition 1.5: The function $a \mapsto L_{\alpha}$ is $\Delta_1^{\mathsf{KP}_{\infty}}$.

Proof. Lemma 13.12 in [Jech, 2003] (together with the observation that graphs of Σ_1 functions with Δ_1 domain are Δ_1) reduces this task to verifying that the induction step is $\Sigma_1^{\mathsf{KP}_\infty}$.

For α a successor ordinal, this follows from 1.4. For α limit, $L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta}$ and hence $b = L_{\alpha}$ iff $b = \bigcup_{\beta \in b} L_{\beta}$.

Putting all the pieces together, we obtain

Theorem 1.6: L satisfies the Axiom of Constructibility, V = L.

Furthermore, *L* is the smallest inner model of ZF.

Theorem 1.7: *If* M *is an inner model of* ZF*, then* $L \subseteq M$ *.*

Proof. Suppose M is an inner model. Then M is in particular a model of KP_∞ , and thus the function $\alpha \to L_\alpha$ is absolute for M, which means $L^M = L$ and hence $L = L^M \subseteq M$.

[†]There is another issue here: Working in KP_∞ , we cannot invoke the Power Set Axiom to claim that $\mathsf{Def}(M)$ is a set. This requires a separate argument in KP_∞ (exercise).

The Condensation Lemma

Ordinals α so that $L_{\alpha} \models \mathsf{KP}_{\infty}$ are called *admissible ordinals*. It follows from the preceding sections that for every admissible ordinal, L_{α} is a model of $\mathsf{V} = \mathsf{L}$. This indicates that the L_{α} (at certain stages) exhibit a remarkable robustness and stratification with respect to constructibility. If we refine the analysis of the absoluteness of constructibility a little bit more, we can unearth this stratification in its full glory.

Every proof leading up to Theorem 1.6 uses only finitely many sentences of the theory KP_{∞} . We can collect these sentences in a finite fragment T.

Theorem 1.8: There exists a finite subtheory of KP_{∞} so that $L_{\alpha} \models T$ for all limit ordinals α and such that the following hold.

- (1) The relations $b = \text{Def}(a), b = L_{\alpha}, b \in L_{\alpha}$ are Δ_1^T . The relation $b \in L$ is Σ_1^T . The sentence V = L is Π_2^T .
- (2) If M is a transitive model of T, then

 $L_{\alpha}^{M}=L_{\alpha}$ for all ordinals α , and in particular: $L^{M}=L$, if M is a proper class, $L^{M}=L_{\gamma}$, if M is a set and $\alpha=\mathrm{Ord}\cap M$.

(3) If M is a transitive model of T + V = L, then

$$M = \begin{cases} L, & \text{if } M \text{ is a proper class} \\ L_{\alpha}, & \text{if } M \text{ is a set and } \alpha = \text{Ord} \cap M \end{cases}$$

Proof. The preceding sections have shown that a finite fragment of KP_{∞} exists so that (1) holds for any model of KP_{∞} . Similarly for the first statement of (2).

To establish the remaining statements, we work within KP_{∞} and then argue that we needed only finitely many axioms.

First assume that M is a proper class. We first show that $\operatorname{Ord} \subseteq M$. Suppose α is an ordinal. Since M is not a set, $M \nsubseteq V_{\alpha}$, there exists an $x \in M$ with $\operatorname{rank}(x) \ge \alpha$. One can show that the rank-function is absolute for transitive models of $\operatorname{KP}_{\infty}$ (it is defined by recursion), thus $\operatorname{rank}(x) = \operatorname{rank}^M(x) \in M$. Since M is transitive, we have $\alpha \in M$.

Now we have, by absoluteness of $\alpha \mapsto L_{\alpha}$ and of Ord,

$$L^M = \bigcup_{\alpha \in M} L^M_\alpha = \bigcup_{\alpha \in \operatorname{Ord}} L_\alpha = L.$$

For the third statement of (2), let $\alpha = M \cap \text{Ord}$. We make T strong enough to show that no largest ordinal exists. (Again, this can be done by including finitely many axioms from KP_{∞} .) Then α is a limit ordinal and hence

$$L_{\alpha} = \bigcup_{\beta \in M} L_{\beta}.$$

But by absoluteness of $\alpha \mapsto L_{\alpha}$

$$L^M = \bigcup_{\beta \in M} L^M_\beta = \bigcup_{\beta \in M} L_\beta$$

and thus $L^M = L_\alpha$.

To prove (3), note that if M is transitive and a model of T + V = L (T comprising now all the sentences used to establish (1)+(2)), we have

$$(\forall x \exists \alpha (x \in L_{\alpha}))^{M}$$

which means

$$\forall x \in M \exists \alpha (x \in L_{\alpha}^{M})$$

that is, $M = L^M$. Both cases now follow immediately from the corresponding statement in (2).

We can rephrase (3) as follows: There exists a single sentence $\sigma_{V=L}$ (namely, the conjunction of all sentences in T + V = L) so that for any transitive M,

$$(M, \in) \models \sigma_{V=L}$$
 iff $M = L_{\alpha}$ for some limit ordinal α .

Now it is easy to infer the $G\ddot{o}del$ Condensation Lemma, a fundamental tool in the analysis of L. The result follows directly from the preceding theorem together with the Mostowski collapse.

Theorem 1.9 (Gödel Condensation Lemma): If (X, \in) is an elementary substructure of L_{α} , α limit, then (X, \in) is isomorphic to some (L_{β}, \in) with $\beta \leq \alpha$.

The canonical well-ordering of L

Every well-ordering on a transitive set X can be extended to a well-ordering of $\operatorname{Def}(X)$. Note that every element of $\operatorname{Def}(X)$ is determined by a pair (ψ,\vec{a}) , where ψ is a set-theoretic formula, and $\vec{a}=(a_1,\ldots,a_n)\in X^{<\omega}$ is a finite sequence of parameters. For each $z\in\operatorname{Def}(X)$ there may exist more than one such pair (i.e. z can have more than one definition), but by well-ordering the pairs (ψ,\vec{a}) , we can assign each $z\in\operatorname{Def}(X)$ its *least* definition, and subsequently order $\operatorname{Def}(X)$ by comparing least definitions. Elements already in X will form an initial segment. Such an order on the pairs (ψ,\vec{a}) can be obtained in a definable way: First use the order on X to order $X^{<\omega}$ length-lexicographically, order the formulas through their Gödel numbers, and finally say

$$(\psi, \vec{a}) < (\varphi, \vec{b})$$
 iff $\psi < \varphi$ or $(\psi < \varphi$ and $\vec{a} < \vec{b})$.

Based on this, we can order all levels of *L* so that the following hold:

- (1) $<_L |V_{\omega}|$ is the canonical well-order on V_{ω} .
- (2) $<_L |L_{\zeta+1}|$ is the order on $\mathcal{P}_{Def}(L_{\zeta})$ induced by $<_L |L_{\zeta}|$.
- (3) $<_L |L_{\zeta} = \bigcup_{\zeta < \xi} <_L |L_{\zeta} \text{ for a limit ordinal } \xi > \omega.$

It is straightforward to verify that this is indeed a well-ordering on L. But more importantly, for any limit ordinal $\xi > \omega$, $<_L | L_\xi$ is definable over L_ξ . To facilitate notation, we denote the restriction of $<_L$ to some L_ξ by $<_\xi$.

Proposition 1.10: There is a Σ_1 formula $\varphi_{<}(x_0, x_1)$ such that for all limit ordinals $\xi > \omega$, if $a, b \in L_{\xi}$,

$$L_{\xi} \models \varphi_{<}[a,b]$$
 iff $a <_{\xi} b$.

The proof of this proposition is similar to the proof that the sequence of $(L_{\zeta})_{\zeta<\xi}$ is definable in L_{ξ} . It relies on the strong closure properties of L_{ξ} under the Sat-function.

Theorem 1.11: *If* V = L *then* AC *holds.*

The Continuum Hypothesis in *L*

We can now present Gödel's proof that the Generalized Continuum Hypothesis (GCH) holds if V = L.

Theorem 1.12: If V = L, then for all infinite ordinals α , $\mathcal{P}(L_{\alpha}) \subseteq L_{\alpha^+}$.

Proof. Assume V = L and let $A \subseteq L_{\alpha}$. Since we assume V = L, there exists a limit δ so that $A \in L_{\delta}$. Let $X = L_{\alpha} \cup \{A\}$. The Löwenheim-Skolem Theorem and a Mostowski collapse yield a set M such that

- (M, \in) is a transitive, elementary substructure of (L_{δ}, \in) ,
- $X \subseteq M \subseteq L_{\delta}$,
- |M| = |X|.

The Condensation Lemma 1.9 yields that $M = L_{\zeta}$ for some $\zeta \leq \delta$. Since for all $\xi \geq \omega$, $|L_{\xi}| = |\xi|$, we obtain

$$|M| = |X| = |L_{\alpha}| = |\alpha| < \alpha^{+}$$

and hence $A \in L_{\zeta} \subseteq L_{\alpha^+}$

Theorem 1.13: *If* V = L *then* GCH *holds.*

Proof. If V = L, then by the preceding theorem, for each cardinal κ ,

$$\mathcal{P}(\kappa) \subseteq \mathcal{P}(L_{\kappa}) \subseteq L_{\kappa^+}$$
.

Therefore,

$$2^{\kappa} \leq |L_{\kappa^+}| = \kappa^+.$$

In the previous proofs we have used the Axiom of Choice in various places (Löwenheim-Skolem, proof of the lemma), but since V = L implies AC, this is not a problem.

References

- K. J. Devlin. *Constructibility*. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1984. ISBN 3-540-13258-9.
- T. Jech. *Set Theory*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.
- A. R. D. Mathias. Weak systems of Gandy, Jensen and Devlin. In *Set theory*, Trends Math., pages 149–224. Birkhäuser, Basel, 2006.