SPO

Problem Statement: Write a CPP program to implement tollowing acheduling algorithmy: FCFS, SIF, priority 4 Round Robin.

Theory:

CPU Scheduling:
Scheduling of processes/work is done
to thish the work on time.
Below are different time with respect to a
process:

1) Arrival Time: Time at which process completes is

2) Bunt Time! Time acquired by a process for

3) completion Time at which process completes it energiation

4) Turn Around Time Difference bet " completion of arrival

s) Waiting time: Time difference been turn around time and burst time.

Why do we need scheduling.

A typical process involves both 20
time of CPU time In unit programming for system like Ms-Dos, time spent waiting for 20 is wasted of CPU is free during this time. This is only possible with process scheduling.

_

	8 3 1 20 1 110 2 4 4		
EF	Diffeent	CPU Schedul	ng Algorithms:
1	Fint Co	me flut Berv	٥!
)	11.5	Simplest ach	eduling algorithm that schedule time of processes fint serve States that the process CPU fint is allocated to implemented using FIFO Queen
	according	b arival	time of except fint serv
and the second	Scheduling	algorithm	States that the march
	that	dequest the	CPU first is allocated to
9995 51	tle CPU	fint. It is	implemented using FIFO dues
	When a	process enter	il or queu When CPU is
n of h	do link	ed into to	il of Quew When CPU 15
	11-66 11	16 allocated	to the manne at head
digital po	of que	we. The running	of process i Then removed
	from qu	rever It is no	on-premphu
111 1/91	17 3 1	d baciety to	
	Chample:		
tager at	C	made to	
	Proces	Amival time	Compution time
1000	1 4412	PAIST DAVIN	
	Po	0	3
ni bru	Phon	and Inschif	4
	P ₂	2	2
- 1	Ps	3	5
10 10	1		Leave to the second
016 91	Gentt cha	A:	Lang A Carlotte Control
a ing	MINGON	Alrea De La Company	
69 W	Po	P1 P2	Ro
34	Miretale	7	9 14
	saifing fi	me:- Po=0, P1	= 2, P2 = 5 P2 = C

Avg. waining time = (0+2+1+6)/ 4=8.055.

2) 8 h	onat	Job	Fint Ipu	mphie]:		
		he	Digray	whith a	no alla l	amount of
tim	e x	maining	unh	comple	thon is	selected to
ene	cote	sina	correcty	execution	g proces	selected to
V 1/V	1.471	11)	ZVID/D ¥44 LA	CT BY VALLE	14	man land
200	46	thin on,	9 8100	e that	time	ahould only
alea	214	as	enecuhon	pogh	ches, p	should only occasies will process is
mdd	en of	hat	Dhi con	pleke or	new'	process is
CANON	0	na	ordana o	oma	er amou	nt of hine.

enample:

Process	Prival	time	Sunt time	9	
Po	n		0		
Pı	1	,	4	25	
P2	2		2 .		
Ps	3		5		

Granht Chart

Waiting time: Po=0, P1=4, P0=11, Ps=6

Avg. waiting time: (0+1+4+6)/9 = 2.75 s.

Priority Scheduling [Premptive]

of Scheduling process that is based on priority In this algorithm, the schedular selects the tasks to work as per the priority. The processes with higher priority should be arrived out first whereas job with equal priorities are corned out on a mund-robbo.

Priority depends upon memory requirements.

example:

Pancoss	Arrival time	Priority	Burst time
)	
Po	0	3	3
PI	1	7	4
P ₂	2	2	2
1 P3	3		3

Waiting time: Po=7, P1=9, P2=7, P3=0.

Avg. waiting time: 23/4 = 5.75 s

Ganht chart:

4) Round-robbin:

Round robbin is one of the algorithms employed by process and network schedulers in computing As the term is generally used time slices are assigned to each process in equal portions and in circular order, handling all processes without priority. Round-trobbin scheduling is simple, easy to implement, and starvation-tree Round-robbin scheduling can be applied to other scheduling problems. Such as data packets scheduling in computer networks. It is an operating system concept:

example:

Process	Arrival time	Burst time
P.	0	9
Pr		4
P2	2	, 2
Р3	3	5

Gant Chart:

Waifing Mime: Po=6, P=6, Po=2, Po=6 Avg. Waifing time: 20/4 = 5 s.

Condusion: We studied 4 implemented scheduling