Aprendizado de Máquina

Aula 7: Algoritmos baseados em probabilidade (parte 4)

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos

- Introdução
- Modelos preditivos
- Tarefas de regressão
- Aproximação de funções
- Regressão linear simples
- Regressão polinomial
- Algoritmo de ajuste de parâmetros
- Regressão linear múltipla
- Regularização

- De acordo com o número de variáveis independentes consideradas, uma tarefa de regressão pode ser
 - o Simples: uma única variável independente (atributo preditivo)
 - $f(x) = w_0 x_0 + w_1 x_1$
 - o Múltipla: mais de uma variável independente (atributo preditivo)
 - Linear

•
$$f(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$

Polinomial

•
$$f(x) = w_0 x_0 + w_1 x_1^3 - w_2 x_1^2 + w_3 x_2^4 + w_4 x_1^7$$

Dados estruturados para tarefa de regressão

Atributos de entrada (preditivos)

			,	
Estudou	Assistiu	Jogou	Leu	Nota
20	6	5	2	7.0
10	2	4	1	3.0
30	8	0	3	10.0
10	7	1	2	8.0
6	6	3	1	6.0
4	0	0	0	1.0
			A	tributo a

ПСТ

Dados estruturados para tarefa de regressão

Atributos de entrada (preditivos)

	\						
1			١		Obs.:		
Estudou	Assistiu	Jogou	Leu	Nota	$x_2 = 8$		
20	6	5	2	7.0	x ₀ é uma constante		
10	2	4	1	3.0	 		
30	8	0	3	10.0			
10	7	1	2	8.0			
6	6	3	1	6.0			
4	0	0	0	1.0			
Atributo alvo							

- Busca função capaz de associar
 - Valores de mais de um atributo preditivo ao
 - Valor de um atributo alvo

```
f(x) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d onde:

w_j \notin o \text{ parâmetro } j
x_j \notin o \text{ valor da variável } x_j
```


d é o número de parâmetros

- Busca função capaz de associar
 - Valores de mais de um atributo preditivo a
 - Valor de um atributo alvo

$$f(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$
 onde:

 w_j é o parâmetro j
 x_j é o valor da variável x_j
 x_0 é o valor constante 1
 $d+1$ é o número de parâmetros

 Aplicação de um modelo de regressão linear pode ser visto como uma multiplicação de matrizes

$$f(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$

= $w^T . x$

• Exemplo para
$$d = 4$$
: $w = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 100 \\ 1 \end{bmatrix} e = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

 Aplicação de um modelo de regressão linear pode ser visto como uma multiplicação de matrizes

$$f(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$

= $w^T \cdot x$

• Exemplo para d = 4: w =
$$\begin{bmatrix} 1 \\ 1 \\ -1 \\ 100 \\ 1 \end{bmatrix}$$
 e x =
$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 4 \\ -2 \end{bmatrix}$$

$$w^{T} = \begin{bmatrix} 1, 1, -1, 100, 1 \end{bmatrix}$$

- Encontrar valor para cada parâmetro w_i que reduza o erro cometido pela função
 - Erro: diferença entre valor predito e valor verdadeiro para todos os exemplos
 - Idealmente erro = 0
 - Minimizar função de custo $J(w_0, w_1, w_2 ... w_d)$

$$J(w_0, w_1, w_2 \dots w_d) = \frac{1}{2n} \sum_{i=1}^n (y^i - f(x^i))^2$$

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} (yi - f(x^i))^2$$

$$n \in \text{o número de objetos no conjunto de dados dé o número de atributos preditivos}$$

$$x^i \in \text{o vetor de entrada para o i-ésimo exemplo}$$

onde:

 x^i é o vetor de entrada para o i-ésimo exemplo yi é o valor de saída para o i-ésimo exemplo

Sumarizando

- Função hipótese: $f(x) = w_0x_0 + w_1x_1 + ... + w_dx_d$
- Parâmetros: w_0 , w_1 ,..., w_d
- Função de custo: $J(w_0, w_1, ... w_d) = J(w) = \frac{1}{2n} \sum_{i=1}^n (y^i f(x^i))^2$
- Objetivo: $\min_{w} J(w)$
 - o Ajuste simultâneo

$$aux_0 = w_0 - \alpha \frac{\partial}{\partial w_0} J(w) = w_0 - \alpha \frac{1}{n} \sum_{i=1}^n (y^i - f(x^i)) x_0^i$$

$$aux_1 = w_1 - \alpha \frac{\partial}{\partial w_1} J(w) = w_1 - \alpha \frac{1}{n} \sum_{i=1}^n (y^i - f(x^i)) x_1^i$$

- **.**..

Importante diferenciar entre:

$$f(x) = x^4 - 4x^2 + 2x + 4$$
 (PS)

$$f(x) = x_1^4 - 4x_2^2 + 2x_3 + 4$$
 (PM)

$$w_0 = aux_0$$

$$w_1 = aux_1$$

$$w_d = aux_d$$

Regressão com regularização

- Algoritmos de regressão podem induzir modelos sobre-ajustados aos dados (overfitting)
 - Processo de indução do modelo leva em conta detalhes (ruídos) da distribuição dos dados (variância)
 - Possíveis causas de overfitting:
 - Grande número de atributos preditivos ou baixo número de exemplos
 - Baixa proporção do número de exemplos em relação ao número de atributos preditivos
 - A distribuição dos dados é muito complexa
 - o Overfitting pode ser reduzido restringindo a complexidade dos modelos induzidos
 - Incorporando um termo de regularização para restringir o valor dos parâmetros
 - Aumenta presença de viés (bias) na função de custo

Regularização

- Funções conseguem se ajustar melhor aos dados se puderem ter valores positivos e negativos muito grandes
- Adiciona um termo de penalidade à função de custo
 - Reduz a complexidade dos modelos gerados
 - Encolhe (*shrink*) os valores dos coeficientes
 - Penaliza função de custo quando coeficientes têm valores elevados
 - Quanto mais complexo o modelo, maior a penalidade

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} (y^i - f(x^i))^2 + \lambda Penalidade$$

- Principais técnicas de regularização:
 - Regressão Lasso
 - Regressão de Ridge
 - Redes elásticas

Lasso

- Least Absolute Shrinkage and Selection Operator
- Regularização L1 (função de perda, loss function, L1)
 - o Penalidade: soma dos valores absolutos dos coeficientes
 - Método de menor desvio absoluto
 - Encolhe modelo gerado

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} (y^{i} - f(x^{i}))^{2} + \lambda ||w||_{1}$$

$$L1 = \lambda ||\mathbf{w}||_1 = \lambda \sum_{j=1}^d |\mathbf{w}_j|$$

Ridge

- Regularização L2 (função de perda, loss function, L2)
 - Penalidade mais usada
 - O Quanto maior o valor do parâmetro (positivo ou negativo) , mais ele é penalizado
 - Adiciona à função de custo um termo de penalidade (soma dos quadrados dos coeficientes)

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} (yi - f(x^i))^2 + \lambda ||w||_2^2$$

$$L2 = \lambda ||\mathbf{w}||_2^2 = \lambda \sum_{j=1}^d \mathbf{w}_j^2$$

Rede elástica

- Flastic net
- Combina a regressão Lasso com a regressão de Ridge
 - Utilizando as penalidades L1 e L2
 - L1 para gerar dados esparsos
 - L2 para remover limite de número de variáveis selecionadas

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} (yi - f(x^{i}))^{2} + \lambda_{1} \sum_{j=1}^{d} |w_{j}| + \lambda_{2} \sum_{j=1}^{d} w_{j}^{2}$$

Alternativa:

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} (yi - f(x^{i}))^{2} + \lambda \sum_{j=1}^{d} |w_{j}| + (1 - \lambda) \sum_{j=1}^{d} w_{j}^{2}$$

Conclusão

- Tarefas de regressão
- Regressão linear
 - Simples
 - Múltipla
- Regressão polinomial
 - Simples
 - o Múltipla
- Algoritmo de ajuste de parâmetros
- Regularização

Fim do apresentação

