## WAKISSHA JOINT MOCK EXAMINATIONS 2015 UGANDA ADVANCED CERTIFICATE OF EDUCATION MARKING GUIDE



P425/2
MATHEMATICS
PAPER 2
JULY/AUGUST 2015

1. 
$$P(A \cup B) = \frac{1}{3} = P(A)$$

$$P(A \cap B^{1}) = \frac{5}{8}P(A^{1})$$

$$P(A^{1}) = P(A^{1} \cap B) + P(A^{1}B^{1})$$

$$P(A^{1}) = \frac{5}{8}P(A^{1}) + \frac{3}{20}$$

$$P(A^{1}) = \frac{3}{20}X\frac{8}{3}$$

$$= \frac{2}{5}$$

$$P(A^{1}) + P(A) = 1$$

$$P(A) = 1 - \frac{2}{5}$$

$$= \frac{3}{5}$$

$$P(A^{1}B) = \frac{5}{8}P(A^{1})$$
A1

$$P(A^{1}B) = \frac{5}{8}P(A^{1})$$

$$= \frac{5}{8}X\frac{2}{5}$$

$$= \frac{1}{4}$$

$$P(A \cup B^{1}) + P(A \cup B) = P(A)$$

$$P(A \cup B^{1}) = P(A) - P(A \cup B)$$

$$P(A \cup B^{1}) + P(A \cup B) = P(A)$$

$$P(A \cup B^{1}) = P(A) - P(A \cup B)$$

$$= \frac{3}{5} - \frac{1}{3}X\frac{3}{5}$$

$$= \frac{2}{5}$$
M1
A1

2. For AB

For AB
$$U = 2, a = 0.5, t = T$$

$$V = 2 + \frac{T}{2}$$
 (i)
For CB
$$U = 6, a = -2 t = T + 1$$

$$v = 6 - 2(T + 1)$$
 (ii)
$$2 + \frac{T}{2} = 6 - 2(T + I)$$

$$T = \frac{4}{5} seconds$$

$$BC = 6 - \frac{1}{2} (2)(1.8)^{2}$$

$$= 2.76 \text{m}$$
A1

| Food (x) | 200g | 300g | 350g | 450g |
|----------|------|------|------|------|
| Egg (y)  | 1.6m | 1.9m | 2.4m | 2.8m |

| 200g | 272g | 300g |
|------|------|------|
| 1.6m | У    | 1.9m |

$$\frac{1.9-1.6}{300g-200g} = \frac{y-1.6}{272g-200g}$$

M1

**B1** 

$$y - 1.6 = 0.216$$
  
 $y = 0.216 + 1.6$ 

Α1

$$= 1.816cm$$

| 11) |     |     |
|-----|-----|-----|
| 350 | 450 | Х   |
| 2.4 | 2.8 | 3.1 |

$$\frac{x-350}{3.1-2.4} = \frac{450-350}{2.8-2.4}$$
$$x = 525 grams$$

M1

Α1

4. Let X be the random variable for the number of defective nails

= 0.1662(tab)

$$n = 10, p = 0.4 \ q = 0.6$$
  
 $p(x = 0) = 0.0060 \ (tab)$ 

M1A1

$$p(x > 5) = p(x > .6)$$

M1A1

05

5.



let x and y be displacements horizontally and vertically respectively, after 4 seconds

$$from \ s = ut + \frac{1}{2}at^2$$

**B1** 

$$x = 2x4 = 8m$$

$$y = -\frac{1}{2}x9.8 x (4^2)$$
$$= -\frac{1}{2}x9.8 x 16$$

$$=-\frac{1}{2}x9.8 x16$$

= -78.4m

**B1** 

After 4 seconds the particle will be at point

**B1** 

$$= \sqrt{18^2 + 11.6^2}$$

M1

$$=\sqrt{458.56}$$

6.

| Children | Family | $f \times x$ | $x^{2f}$           |
|----------|--------|--------------|--------------------|
| 1        | 8      | 8            | 16                 |
| 2        | 9      | 18           | 162                |
| 3        | 16     | 48           | 768                |
| 4        | 25     | 100          | 2500               |
| 5        | 20     | 100          | 2000               |
| 6        | 12     | 72           | 864                |
| 7        | 6      | 42           | 252                |
| 8        | 4      | 32           | 128                |
|          | 100    | 420          | $\sum x^{2f=6690}$ |

$$\bar{x} = \frac{450}{100}$$

$$= 4.2$$

$$= \sqrt{\left(\frac{6690}{100} - 4.2^2\right)}$$

$$= 7.02$$

7. 
$$y = \frac{1}{1+x^2} h = \frac{1-0}{5}$$

= 0.2

| = 0. | <u> </u>  |                     |             |
|------|-----------|---------------------|-------------|
| x    | $y_o y_n$ | $y_1 \dots y_{n-1}$ |             |
| 0 \  | 1         |                     | )           |
| 0.2  |           | 0.9615              |             |
| 0.4  | - B1      | 0.8621              |             |
| 0.6  |           | 0.73553             | <b>≻</b> B1 |
| 0.8  |           | 0.6098              |             |
| 1 ノ  | 0.5       |                     |             |
|      | 1.5       | 3.1687              |             |
|      |           |                     | /           |

$$\int_0^1 \frac{1}{1+x^2} dx = \frac{1}{2}(0.2)(1.5 + 2(3.1687)$$
= 0.78374

$$= 0.784 (3dp)$$
 A1

8.



M1

Α1

M1

Α1

В1

M1

В1

Page **3** of **11** 

|    | Taking moments about B Ray x 100 – 20x 40 =0 Ray = 8N                                                                                                                             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\tan \theta \frac{75}{100} = \theta = 36.9^{\circ}$ $75 \text{cm}$ $100 \text{cm}$ $T \cos \theta = \text{RAX}$ $T = \frac{16}{\cos 36.9^{\circ}}$ $= 20 \text{N}$               |
|    | L = 8cm $el = 0.5w = 4.2cm$ $ew = 0.005$ $A = LxwAmax = Lmax \ X \ Wmin= 8.5 \ x \ 4.265= 36.2525 Amin = Lmin \ x \ Wmin= 7.5 \ x \ 4.255= 31.9125 Range \ 31.91 \le A \le 36.25$ |
| b) | $v = \pi r^2 l$                                                                                                                                                                   |
|    | $V + \Delta_r = \pi (r + \Delta_r)^2 (l + \Delta l)$                                                                                                                              |

9.

$$v = \pi r^2 l$$

$$V + \Delta_r = \pi (r + \Delta_r)^2 (l + \Delta l) \qquad M1$$

$$= \pi (r^2 + 2_r \Delta_r + (\Delta_r)^2) (lx\Delta l)$$

$$= \pi (lr^2 + r^2 \Delta l + 2_r l \Delta_r + 2_r \Delta_l + l\Delta r^2 + \Delta l \Delta r^2)$$

For small  $\Delta r$  and  $\Delta h$ 

$$\Delta r \Delta h, (\Delta r)^2 \Delta h (\Delta r)^2 \simeq 0$$
 B1

$$V + \Delta v = \pi r^2 h + \pi (r^2 \Delta l + 2rh \Delta r)$$

$$|\Delta v| \le |\pi r^2 \Delta h + 2\pi r h \Delta r|$$

$$\left|\frac{\Delta v}{V}\right| \le \left|\frac{\pi r^2 \Delta h + 2\pi r h \Delta r}{\pi r^2 h}\right|$$
 M1

$$\left|\frac{\Delta v}{v}\right| \leq \left|\frac{\pi r^2 \Delta h}{\pi r^2 h}\right| + \left|\frac{2\pi r h \Delta r}{\pi r^2 h}\right|$$

$$\leq \left| \frac{\Delta h}{h} \right| + 2 \left| \frac{\Delta r}{r} \right|$$

B1

M1 A1

M1

Α1

**B1** 

M1 B1

M1 B1 A1

**B1** 



**B1** 

12

10.



By conversation of energy from A to B

$$\frac{1}{2}m(\sqrt{14\ ag})^2 + mga = \frac{1}{2}mu_1^2$$

M1

$$\frac{1}{2}(14\ ga) + ga = \frac{1}{2}u_1^2$$

$$\frac{u^2}{2} = 8ga$$

M1

$$u^2 = 16ga$$

$$u = 4\sqrt{ga}ms^{-2}$$

Α1

A to B

By conservation of linear momentum

$$m(4\sqrt{ga}) + 0 = 2mu_2$$

M1

 $u_2 = 2\sqrt{ga}ms^{-2}$ 

From B to C

$$\frac{1}{2}(2m)(2\sqrt{ga})^2 = \frac{1}{2}(2m)v^2 + 2mga(1+\cos\theta) M1$$

$$4ga = v^2 + 2ga (1 + cos\theta) \dots \dots \dots \dots (1)$$

By Newton's laws of motion

$$2mgcos\theta = \frac{2mv^2}{a}$$

M1

$$v^2 = ga \cos\theta \dots \dots \dots \dots (2)$$

**B1** 

2 into 1

$$4ag = gacos\theta + 2ga + 2gacos\theta$$

$$2ag = 3gacos\theta$$

$$\cos\theta = \frac{2ag}{3ag} = \frac{2}{3}$$

The particle leaves the surface at a  $\cos\theta = \frac{2}{3}xa$ 

M1

$$= \frac{2}{3}a$$

Α1

**12** 

11.

For 
$$1 \le x \le 2$$
,  $f(2) = \frac{2}{3} + b$ 

For 
$$x \ge 2f(2) = 1$$

$$\frac{2}{3} + b = 1$$

$$b = \frac{1}{3}$$

$$3a = 1 + 3(\frac{1}{3})$$

$$a = \frac{2}{3}$$

$$for  $0 \le x \le 1, f(x) = a = \frac{2}{3}$ 

$$for  $1 \le x \le 2f(x) = \frac{1}{3}$ 

$$P(X + \frac{1}{3}x > 1) = \frac{P(1 < x + \frac{1}{3})}{P(x > 1)}$$

$$= \frac{F(1.5) - f(1)}{1 - f(1)}$$

$$= \frac{\frac{1.5}{3} + \frac{1}{3}x^{2}}{\frac{1}{3}}$$

$$= \frac{1}{6}$$

$$= \frac{1}{7}$$

$$E(x) = \int_{0}^{1} \frac{2x}{3} dx + \int_{1}^{2} \frac{1}{3}x dx$$

$$= \frac{1}{3} \int_{0}^{1} + \frac{1x^{2}}{6} \int_{1}^{2}$$

$$= \frac{1}{6}$$

$$= \frac{1}{6}$$
A1

$$12$$

$$(\sqrt{x})^{2} = (\frac{2}{x})^{2}$$

$$x = \frac{4}{x^{2}}$$

$$x^{3} = 4$$$$$$

© WAKISSHA Joint Mock Examinations 2015

Page **6** of **11** 

a) F=1KN

13.

Considering forces acting on the whole system F-(200g  $\sin\theta + 800g \sin\theta + R_1 + R_2$ )= 1000a $1000 = 1000x9.8x \frac{1}{14} + R_1 + R_2$ 

$$1000 = 700 + R_1 + R_2$$

$$R_1 + R_2 = 300N$$

Total friction resistance = 300N

b) 
$$P = 2kw$$

$$= 2x1000$$
  
 $= 2000w$ 

M1

M1

A1

$$v = 10ms^{-1}$$

i) 
$$F - \left(800g \sin\theta + 200g \sin\theta + (R_1 + R_2)\right) = 1000a \qquad \text{M1}$$
 But  $F = \frac{p}{v}$  
$$F \frac{200}{10} = 200N$$
 
$$200 - \left(1000x9.8x \frac{1}{14} + 300\right) = 1000a$$
 
$$200 - 1000 = 1000a$$
 
$$a = \frac{-800}{1000} \qquad \text{A1}$$
 
$$= -0.8ms^{-2}$$

ii) 
$$T - (200gsin\theta + R_1) = 200a$$

$$T - (200x9.8x \frac{1}{14} + 70) = 200\bar{x}08$$

$$T = -160 + 210$$

$$= 50N$$
M1
$$M1$$

$$12$$

14

a) Positive correlation

b)

| Mock     | 28 | 34 | 36 | 42 | 48  | 52 | 54  | 60 |
|----------|----|----|----|----|-----|----|-----|----|
| exams    | 8  | 7  | 6  | 5  | 4   | 3  | 2   | 1  |
| Av.final | 54 | 62 | 68 | 70 | 76  | 66 | 76  | 74 |
| exams    | 8  | 7  | 5  | 4  | 1.5 | 6  | 1.5 | 3  |

Let  $R_X$  and  $R_y$  represented ranks of mock exam and av. final exam respectively.

| $R_X$ | $R_{Y}$ | $d = (R_x - R_y)$ | $d^2$             |
|-------|---------|-------------------|-------------------|
| 1     | 3       | -2                | 4                 |
| 2     | 1.5     | 0.5               | 0.25              |
| 3     | 6       | -3                | 9                 |
| 4     | 1.5     | 2.5               | 6.25              |
| 5     | 4       | 1                 | 1                 |
| 6     | 5       | 1                 | 1                 |
| 7     | 7       | 0                 | 0                 |
| 8     | 8       | 0                 | 0                 |
|       |         |                   | $\sum d^2 = 21.5$ |
| ,     | B1      | B1                |                   |

$$y = 1 - \frac{6\sum_{d} 2}{n(n^{2-1})}$$

$$= 1 - \frac{6x21.5}{8(8^{2-1})} \quad M1$$
$$= 0.744 \quad A1$$

It is a high position correlation.

B1 for comment

| 15. | 5 |                   | .0  |
|-----|---|-------------------|-----|
|     |   |                   |     |
|     |   |                   | 21_ |
|     |   |                   | ]   |
|     |   |                   |     |
|     | 7 | <del>«</del> 21 — | > · |

| Portion     | Area               | Weight                | c.o.g from pq   |
|-------------|--------------------|-----------------------|-----------------|
| Square      | $4l^2$             | $4l^2w$               | l               |
|             |                    |                       |                 |
| Semi-circle | $\pi/2 l^2$        | $\pi/2^{l^2w}$        | $^{4l}/_{3\pi}$ |
|             |                    |                       |                 |
| Total       | $4l^2 - \pi/2 l^2$ | $(4l^2 - \pi/2 l^2)w$ | $\bar{y}$       |

В1

В1

В1

LHS

M1

**RHS** 

M1

Taking moments about PQ 
$$4l^{2w.l} - {\pi/2} \, l^{2w.} \, {4l/3\pi} = \left(4c^2 - {\pi/2} \, l^2\right) \! w \; \bar{y}$$

$$4l - \frac{2}{3}l = (4 - \frac{\pi}{2})\bar{y}$$

$$^{10l}/_{3} = \left(\frac{8-\pi}{2}\right)\bar{y}$$

**B1** 





$$x = 2l - \frac{20l}{3(8-\pi)}$$

$$=\frac{28l-6l\pi}{3(8-\pi)}$$

$$=\frac{2(14-3\pi)l}{3(8-\pi)}$$

В1

M1

$$xTan\theta = \frac{x}{l}$$

$$Tan\theta = \frac{\frac{2(14-3\pi)l}{3(8-\pi)}}{l}$$

$$=rac{2(14-3\pi)}{3(8-\pi)}$$
 M1  $heta=32.12^{\circ}$  A1 12

16.

$$\begin{split} & \sum_{i=1}^{10} xi = 2.57 \, \sum_{i=1}^{10} x_i^2 = 0.6610 \\ & mean = \sum_{\frac{i=1}{n}}^{n} x_i = \frac{2.57}{10} \\ & = 0.257kg \end{split} \qquad \qquad \text{M1} \\ & \sum = \sqrt{\frac{\sum x_i^2}{n}} - (\frac{\sum xi}{n})^2 \\ & = \sqrt{\frac{0.16610}{10}} - (0.257)^2 \\ & = 0.00714kg \end{split} \qquad \qquad \text{B1} \end{split}$$

$$1-\alpha=95\%$$

$$\alpha=0.05$$

$$\frac{\alpha}{2}=0.025$$

$$\mu=\overline{X}\pm Z_{\frac{x}{2}}^{\chi}$$

$$= 0.257 \pm 1.96(\frac{0.007}{\sqrt{10}})$$

$$= 0.257 \pm 0.0044$$
M1M1

$$upper\ limit = 0.261kg\ (3dp)$$
 A1  $lower\ limit = 0.253kg\ (3dp)$  A1

$$P(24.12 < \bar{x} < 26.73) = p(\frac{24.12 - 25}{4/\sqrt{16}} < \ge < \frac{26.73 - 15}{4/\sqrt{16}})$$

$$= P(-0.88 < \ge < 1.73)$$

$$= 0.3106 + 0.4582$$

$$= 0.7688$$
B1
A1
12

b)