Principio Presupuestario de Información, Entropía (KS) y Predictibilidad

Idea general

En sistemas caóticos, las trayectorias cercanas se separan (en promedio) de forma exponencial al ritmo del exponente de Lyapunov $\lambda_{\text{máx}}$. Si observamos el estado inicial con resolución ε y consideramos que la predicción deja de ser útil cuando el error supera un umbral Δ , el horizonte de predictibilidad (o tiempo de Lyapunov) satisface la relación operativa

$$T_p(\varepsilon, \Delta) = \frac{1}{\lambda_{\text{máx}}} \ln \frac{\Delta}{\varepsilon}$$
.

Cuando la medida natural del sistema es de tipo SRB (hipótesis de Pesin), la entropía de Kolmogórov–Sinai h_{μ} coincide con la suma de los exponentes positivos, y en sistemas con una única dirección inestable $h_{\mu} = \lambda_{\text{máx}}$.

Principio Presupuestario de Información

Sea X_0 el estado inicial observado con resolución ε y X_t el estado a tiempo t observado con umbral de utilidad Δ . Denotemos por $I_{\varepsilon}(X_0; X_t)$ la información mutua (a esa resolución) entre pasado y presente, y por h_{μ} la entropía de Kolmogórov–Sinai (tasa de novedad, en nats/unidad de tiempo) de la dinámica con la medida natural.

$$I_{\varepsilon}(X_0; X_t) + h_{\mu} t \approx H_{\varepsilon}(X_0)$$

mientras $I_{\varepsilon}(X_0; X_t) \geq 0$. El instante en que $I_{\varepsilon} \to 0$ define el horizonte de predictibilidad $T_p(\varepsilon, \Delta)$, para el que resulta

$$h_{\mu} T_p(\varepsilon, \Delta) \approx \ln \frac{\Delta}{\varepsilon}$$

En sistemas con una única dirección inestable y medida SRB (hipótesis de Pesin), $h_{\mu}=\lambda_{\text{máx}},$ y

$$T_p(\varepsilon, \Delta) = \frac{1}{\lambda_{\text{máx}}} \ln \frac{\Delta}{\varepsilon}$$

Lectura: la novedad acumulada $h_{\mu}t$ "consume" la información útil que conecta el presente con el pasado; cuando se agota, la predicción deja de ser operativa.

Esquema: flujo de información y (no) invertibilidad

$$I_{\varepsilon}(X_0; X_t) + h_{\mu}t \approx H_{\varepsilon}(X_0)$$

$$\Rightarrow T_p \approx \frac{1}{h_{\mu}} \ln \frac{\Delta}{\varepsilon}$$

Tabla de ejemplos con fórmulas explícitas

En los siguientes sistemas (hiperbólicos/expansivos con la medida natural), $h_{\mu} = \lambda$ y conocemos λ en forma cerrada:

Sistema	Definición/parámetro	Fórmulas
Duplicación (Bernoulli)	$x_{n+1} = 2x_n \bmod 1$	$\lambda = \ln 2, T_p = \frac{1}{\ln 2} \ln \frac{\Delta}{\varepsilon}$
Tent (carpa)	pendiente $s \in (1, 2]$	$\lambda = \ln 2, T_p = \frac{1}{\ln 2} \ln \frac{\Delta}{\varepsilon}$ $\lambda = \ln s, T_p = \frac{1}{\ln s} \ln \frac{\Delta}{\varepsilon}$
Baker (panadero)	factor de estiramiento \boldsymbol{b}	$\lambda = \ln b, T_p = \frac{1}{\ln b} \ln \frac{1}{\varepsilon}$
Gato de Arnold (toral)	$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$	$\lambda = \ln \sigma_+, \ \sigma_+ = \frac{3+\sqrt{5}}{2}, T_p = \frac{1}{\ln \sigma_+} \ln \frac{\Delta}{\varepsilon}$
Logístico (caso patrón)	$x_{n+1} = 4x_n(1 - x_n)$	$\lambda = \ln 2, T_p = \frac{1}{\ln 2} \ln \frac{\Delta}{\varepsilon}$