NATIONAL UNIVERSITY OF COMPUTER AND EMERGING SCIENCES LAHORE CAMPUS

<u>Differential Equations (Calculus-II)-MT 224 Outline according to OBE Spring-2020</u>

Prepared By: Dr. Akhlaq Ahmad Bhatti

FILE CONTENTS

Outline of Differential Equations (Calculus-II)

Dr. Mubashar Baig	g - Coordinator Math Courses	in CS Department
	Signature for Final Approval	

National University

of Computer & Emerging Sciences

DEPARTMENT OF SCIENCES & HUMANITIES			
Department	Department of Computer Science Dept. Code CS		
Course Title	Differential Equations(Calculus-II) Course Code MT-22		
Pre-requisite(s)	Calculus & Analytical Geometry Credit Hrs.		3
Moderator	Dr. Saeeda Zia		
Course Instructor(s)	Dr. Akhlaq Ahmad Bhatti, Dr. M. Farasat Shamir, Dr. Saeeda Zia, Dr. Sumaira Hafeez, Ms. Hina Firdous,		
Note:	It is a tentative schedule of the course. It may vary (if required).		

Course Objective	The objective is to impart training to the students in this important branch of		
	Mathematics. Students are expected to learn, Convergence/Divergence of Series,		
	system of linear equations & Differential Equations arising from different		
	Physical systems. Attempt will be made to introduce the students how to solve		
	Linear systems, Ordinary & Partial Differential Equations using different		
	techniques. Concept of Fourier Series will also be explained for PDE's solution.		

No.	Assigned Program Learning Outcome (PLO)	Level	Tool
01	An ability to identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural science and engineering sciences.	R	

I = Introduction, R = Reinforcement, E = Evaluation.

A = Assignment, Q = Quiz, M = Midterm, F = Final, LA = Linear Algebra, DE = Differential Equation.

No.	Course Learning Outcome (CLO) Statements	Tools
01	• Solution of infinite sequences & series using different methods.	Q1, A1, M1, F
02	Solution of different type of ODE's using different methods.	A2, M1, Q2, M2, F
03	Solution of some basic ODE's like Linear, Exact, Bernouli etc.	A2, Q2, M2, F
04	• Existence/Independence of solutions of Initial/Boundary value problems for first & second order ODE's through different techniques.	Q2, M2, A2, Q3, F
05	• Solution of PDE's by Fourier series using orthogonal set of functions.	Q3, A3, M2, F

National University of Computer & Emerging Sciences

Text Book(s)	Title	Thomas Calculus / A first course in Differential Equations (DE) with modeling applications / Differential Equations with boundary-value problems.	
	Authors	G. B. Thomas / Dennis G. Zill (DE) (Latest Editions).	
Ref. Book(s)	Title	Elementary Differential Equations (DE) with applications.	
	Author	C. H. Edwards. David, E.	

Week	Course Contents	Chapter	CLO
	Infinite Sequences and Series		
01	10.1 Introduction to Sequences10.2 Infinite series	10 (13 th Edition)	01
02	10.3 The integral test10.4 Comparison tests	10 (13 th Edition)	01
03	10.5 Absolute convergence; The ratio and root test 10.6 Alternating series and conditional convergence Quiz#1	10 (13 th Edition)	01
04	10.7 Power series10.8 Taylor and Maclaurin series	10 (13 th Edition)	01
05	 1st Order Differential Equations: 2.1 Basic concepts, formation and solution of differential equations by direct integration and by separating the variables. Direction Fields. 2.2 Separable variables. 	2 (9 th Edition)	02
06 (Mon- Wed)	MID TERM-I		
07-09	2.3 Linear Equations.2.4 Exact Equations.Solution by Substitution	02 (9 th Edition)	03-05
	 2.5 Equations (Homogeneous & Bernoulli's DE) reducible to linear equations & Riccati. 3.1 01st order ODE's arising from Real life problems. 3.3 01st order ODE's arising from Real life problems. 	03 (9 th Edition)	
10-12	2nd & Higher Order Differential Equations 4.1 Initial and Boundary value problem, Existence of a unique solution. Homogeneous DEs', Linear Dependence and Independence. Wronskian and non-homogeneous Linear Differential Equation. 4.2 Reduction of order. Quiz#2 4.3 Homogeneous Linear Equations with Constant Coefficients. 4.4 Undetermined coefficients-Superposition approach. 4.5 The operator D, Inverse operator 1/ D, Solution of	04 (9 th Edition)	06, 07

National University

of Computer & Emerging Sciences

	differential equations by operator D methods, Special cases. 4.5 Undetermined coefficients-Annihilator approach. 4.6 Variation of parameters. 4.7 Cauchy Euler equation.		
13	Partial Differential Equations 12.1 Basic concepts and formation of partial differential equations. Linear homogeneous partial differential equations and relations to ordinary differential equations. 12.2 Classical Equations & Boundary Value Problems. 12.3 Heat Equation 12.4 Wave Equation 12.5 Laplace Equation	12(3 rd Edition)	08
14 (Thu-Sat)	MID TERM II		
15-16	Orthogonal Functions and Fourier Series 11.1 Orthogonal Functions 11.2 Fourier Series Quiz#3 11.3 Fourier Cosine & Sine Series (Periodic functions and expansion of periodic functions in Fourier series and Fourier coefficients.) 11.4 Sturm-Liouville Problem.	11 (3 rd Edition)	09
	Series Solutions of Linear Equations: (If time permits)	09 th edition	
	6.2 Solution about ordinary point & Singular points. FINAL EXAM		

Evaluation Scheme & Marks Distribution: Relative grading scheme will be used for final assignment of grades. Marks distribution is given below.

Assessment Tools	Total No.	Weightage
Quizzes	3 (at least)	10%
Assignments	3(at least)	8%
Homework	As per instructors advice.	7%
Mid Term Exam	2	25%
Final Exam	1	50%

Note:

- 1. Reaching 10 minutes late after the class starts will not be considered present.
- 2. Late submission of home works will not be rewarded.
- 3. Relative grading scheme will be followed in the course.

Important links:

 $\frac{https://www.youtube.com/watch?v=8yEE2YURbAo\&list=PLlXfTHzgMRUK56vbQgzCVM9vxjKxc8DCr\&index=31}{}$