School of Mathematical and Computational Sciences

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Lesson 8

1. Subgroup generated by subsets of a group

Proposition 1.1. *If* A *is any nonempty collection of subgroups of* G*, then*

$$\bigcap_{H\in\mathcal{A}}H\leq G.$$

Definition 1.2. Let *A* be any subset of *G*. The **subgroup generated by** *A* is

$$\langle A \rangle := \bigcap_{\substack{A \subseteq H \\ H \le G}} H.$$

This definition says that $\langle A \rangle$ is the smallest subgroup of G that contains A. It is clear that if the subgroup generated by a subgroup H is H itself. What would be the subgroup generated by \varnothing ?

Remark 1.2.1. (i) If *A* is a finite set, say $A = \{a_1, ..., a_n\}$, then we simply write $\langle A \rangle = \langle a_1, ..., a_n \rangle$

- (ii) Recall from the previous lesson that $\langle a \rangle$ denotes the cyclic subgroup generated by a. With the definition above, it is easy to see that this is the same as the subgroup generated by $\{a\}$. Thus the notation is unambiguous.
- (iii) If $A, B \subset G$, then we write $\langle A, B \rangle$ to mean $\langle A \cup B \rangle$. This subgroup is denoted $A \vee B$.

Definition 1.3. Let $A \subset G$. Define

$$\overline{A} = \left\{ a_1^{k_1} a_2^{k_2} \cdots a_n^{k_n} \mid n \in \mathbb{Z}_0^+, a_i \in A, k_i = \pm 1 \text{ for all } 0 \le i \le n \right\}$$

Note that n can vary and the a_i may repeat. We form finite products of elements of A because it would not make sense to form an infinite product of elements in a group. These finite products are called words. Note that A is not required to be finite. We convey $\overline{\varnothing} = \{1\}$. This way \overline{A} is never empty.

Proposition 1.4. *If* A *is any subset of* G*, then* $\langle A \rangle = \overline{A}$.

Proof. We leave to the student to prove that \overline{A} is a subgroup. Now it is clear that $A \subseteq \overline{A}$. Then $\langle A \rangle \subseteq \overline{A}$ since $\langle A \rangle$ is the smallest subgroup that contains A and \overline{A} is one of the groups that contain A. On the other hand, the product of any two elements of A belongs to $\langle A \rangle$ because $\langle A \rangle$ contains A and it is closed under products. However, \overline{A} consists exactly of any finite product of elements of A. Hence it easy follows $\overline{A} \subseteq \langle A \rangle$. The proof is complete.

Remark 1.4.1. (i) In light of this result, we write

$$\langle A \rangle = \left\{ a_1^{k_1} a_2^{k_2} \cdots a_n^{k_n} \mid n \in \mathbb{Z}^+, a_i \in A, k_i \in \mathbb{Z} \text{ and } a_i \neq a_{i+1} \text{ for any } 1 \leq i \leq n \right\}$$

2. Normality, quotient groups and homomorphisms

A useful reference for this section is Hungerford, chapter 1, section 5.

There are two standard groups associated to any group-homomorphism: its kernel and its image.

Definition 2.1. Let $\psi \colon G \to H$ be a morphism of groups. The kernel of ψ is

$$\ker \psi = \{ g \in G \mid \psi(g) = 1_H \}.$$

The image of ψ is

$$Im\psi = \{\psi(g) \mid g \in G\}$$

Exercise 1 (Classwork). With ψ as above, prove $\ker \psi \leq G$ and $\operatorname{Im} \psi \leq H$.

Proposition 2.2. *Let* ψ : $G \rightarrow H$ *be a group-homomorphism.*

- (i) $\psi(1_G) = 1_H$
- (ii) $\psi(g^{-1}) = (\psi(g))^{-1}$
- (iii) $\psi(g^n) = (\psi(g))^n$

Proof. See Dummit & Foote, page 75.

The only way to interpret $\psi(g)^{-1}$ is as the inverse of $\psi(g)$. Thus we may drop the parenthesis in $(\psi(g))^{-1}$.

Theorem 2.3. Let $N \leq G$. The following conditions are equivalent.

- (i) Left congruence modulo N and right congruence modulo N define the same partition of G.
- (ii) For any $g \in G$, Ng = gN.
- (iii) For any $g \in G$, $gNg^{-1} \subseteq N$. Here $gNg^{-1} = \{gxg^{-1} \mid x \in N\}$.
- (iv) For any $g \in G$, $gNg^{-1} = N$. This means any g normalizes N.

Definition 2.4. If $N \leq G$ satisfies $gNg^{-1} = N$ for any $g \in G$, then we say N is a normal subgroup of G. In this case we use the notation $N \subseteq G$.

By the previous result, N is normal if it satisfies any of the equivalent conditions of Theorem 2.3. The easiest way to verify a subgroup is normal is condition (iii). Thus

$$N \subseteq G \iff gNg^{-1} \subseteq N$$

for any $g \in G$.

Theorem 2.5. Let K and N be subgroups of a group G with $N \subseteq G$. Then (i) $N \cap K \subseteq K$ (ii) $N \subseteq N \vee K$ (iii) $NK = N \lor K = KN$ (iv) If K is normal in G and $K \cap N = \{e\}$, then nk = kn for all $k \in K$ and $n \in N$. **Exercise 2.** Provide examples that show when these conditions fail if *N* is not required to be normal in *G*. (i) We have to prove that $a(N \cap K)a^{-1} \subseteq N \cap K$ for any $a \in K$. Let $n \in N \cap K$ and $a \in K$. Then $ana^{-1} \in N$ because $N \subseteq G$. Since $n, a \in K$ and $K \subseteq G$, we have $ana^{-1} \in K$. Thus $ana^{-1} \in N \cap K$. (ii) Trivial (Why? Note $N \leq N \vee K$) (iii) Exercise (iv) Exercise **Exercise 3.** Prove (iii) and (iv) of the preceeding theorem. We have introduced normal groups for a reason: to make the quotient set of a group by a (normal) subgroup into a group. In this way we can build new groups out of old. **Theorem 2.6.** *If* $N \subseteq G$, *then* $G/N = \{ xN \mid x \in G \}$ is a group under the operation (xN)(yN) = (xy)N. Moreover, the order of G/N is |G:N|. *Proof.* It suffices to show that the operation is well-defined, that is, Theorem 2.7. Proof.

Remark 2.7.1.

Theorem 2.8.

Theorem 2.9.

Proof.

Proof.

Corollary 2.10.	
Proof.	
Corollary 2.11.	
Proof.	