

Факультет программной инженерии и компьютерной техники

Теоретические основы компьютерной графики и вычислительной оптики

Лабораторная работа №3: Расчет яркости в точке на плоскости от точечного источника света.

Вариант 5

Преподаватель: Потемин Игорь Станиславович

Выполнил: студент: Кульбако Артемий Юрьевич, Р34115

Задание

Исходные данные: Система координат, диффузная плоскость, коэффициент диффузного отражения, библиотека двунаправленных функций рассеяния (ДФР, BSDF), точечный источник света с равноинтенсивной диаграммой излучения, координаты точек в которых следует рассчитать яркость.

Цель работы: Овладеть навыками расчета яркости на диффузной плоскости как аналитически, так и с помощью компьютерного моделирования с использованием комплекса программ Lumicept.

Задачи:

- Провести аналитический расчет яркости в заданных точках плоскости.
- Сформировать сцену в Lumicept с заданной геометрией и оптическими свойствами.
- Провести численный расчет яркости в заданных точках плоскости с помощью программного комплекса Lumicept.
- Провести моделирование изображения с различными двунаправленными функциями отражения (ДФО, BRDF).

Отчет представить в электронном виде: Формат MS Word или MS PowerPoint, эскиз схемы с указанием заданных точек. Для подготовки эскиза можно использовать скриншоты из Lumicept. Результаты моделирования представить в виде таблицы. Сравнить с результатами аналитического расчета. К отчету приложить файл скрипта (*.py) и финальной сцены (*.iof).

Вариант 05 Плоскость: ХОХ Kd = 0.68прямоугольник 2х3 метра Color model: Grayscale (R=G=B =0.91) Точечный источник Положение: (1, -2, 1.5) -1 Световой поток: 100 Ватт Спектр: равноэнергетический Определить: белый (380 - 780 нм) яркость в точках (0, 0, 0)(-1, 0, 1)-1.5 Lmin $\mathsf{L}_{\mathsf{max}}$ В направлениях Цветовая модель (Target Color Model): Спектральная (0, -1, 0)(0, -1, -1)В конусе +/- 30 град +/- 5 град

ЛР_3. Расчет яркости в точке на плоскости от точечного источника света

Выполнение

Создал скриптом lab3-18.10.22.py сцену с 4 обсёрверами, накрывающими плоскость, задал параметры (направление, угол обзора). В сравнении с прошлой лабораторной работы изменился материал плоскости и цветовая модель. После расчётов, были получены следующие карты яркости:

Как можно видеть, в обсёрверы с меньшим углом обзора попадает меньше лучей, поэтому изображение получается зашумлённым. Результаты были занесены в таблицу lab3-18.10.22.xlsx, где также были произведены аналитические расчёты и сравнение полученных результатов.

Radiometric			Photometric		
Analitycal	Lumicept		Analitycal	Lumicept	
L	L	ΔL %	L	L	ΔL%
0,1605882	0,15942	0,73	28,585885	29,088	1,76
0,1605882	0,15207	5,30	28,585885	27,746	2,94
0,1605882	0,15511	3,41	28,585885	28,301	1,00
0,1605882	0,14538	9,47	28,585885	26,526	7,21
0,1322938	0,13034	1,48	23,549299	23,782	0,99
0,1322938	0,13746	3,91	23,549299	25,081	6,50
0,1322938	0,13104	0,95	23,549299	23,91	1,53
0,1322938	0,12762	3,53	23,549299	23,286	1,12
0,0447247	0,045476	1,68	7,961325	8,2974	4,22
0,0447247	0,04326	3,27	7,961325	7,8931	0,86
0,0447247	0,04597	2,78	7,961325	8,3875	5,35
0,0447247	0,04883	9,18	7,961325	8,9094	11,91
0,3918599	0,37542	4,20	69,753948	68,498	1,80
0,3918599	0,35996	8,14	69,753948	65,677	5,84
0,3918599	0,37679	3,85	69,753948	68,748	1,44
0,3918599	0,37399	4,56	69,753948	68,238	2,17
0,1605882	0,15942	0,73	28,585885	29,088	1,76

Далее было проведено моделирование изображения с различными двунаправленными функциями отражения (BRDF) и рассеивания (BTDF) из библиотеки Lumicept. Такие функции описывают перенос энергии между направление падения и

отражения света. Как можно видеть на картинках, это позволяют придать вид различных материалов из физического мира. Я загрузил одну из готовых сцен (C:\Users\Public\Documents\Integra\Lumicept 11.31 x64\scenes\btdf\blue.iof) и применил к объекту шара сцены.

Рисунок 1: Оригинальная сцена: diff BRDF = blue, spec BRDF = blue, spec BTDF = violet

Вывод

Так как аналитические и программные расчёты сошлись с небольшой погрешностью, можно сделать вывод о том, что я научился рассчитывать яркость в точках сцены.