Question number	Answer		Mark
17 (a)	Battery in series with capacitor and resistor Voltmeter/datalogger/oscilloscope in parallel with capacitor Appropriate switching mechanism and discharge circuit completed Example of diagram:	(1) (1) (1)	3
17 (b) (i)	 Exponential decline Symmetry with charging curve, starts at 6.00 V, curves cross at 3.00 V Example of graph p.d. /V <l< td=""><td>(1)</td><td>2</td></l<>	(1)	2
17 (b) (ii)	• Use of $I = I_0 e^{-\frac{t}{RC}}$ with $V = IR$ • Apply total p.d. = sum of p.d.s • Suitable algebra Example of derivation $I = I_0 e^{-\frac{t}{RC}}$ $V_R = RI_0 e^{-\frac{t}{RC}}$ $I_0 R = V_0$ $V_R = V_0 e^{-\frac{t}{RC}}$ $V_{cap} = V_0 - V_R$ $V = V_0 - V_0 e^{-\frac{t}{RC}}$	(1) (1) (1)	3

17 (b) (iii)	• Use of $V = V_0 (1 - 1/e) = 0.63 V_0$ for V at time constant	(1)	
	• Read time constant off graph = 4.9 s (allow range 4.5 s to 5.0 s)	(1)	
	• Use of time constant = RC	(1)	
		(1)	
	$(C = 1.4 \times 10^{-5} \text{ F to } C = 1.5 \times 10^{-5} \text{ F when rounded to 2 s.f.})$		
	Or	(1)	
	• Draws tangent to line at $t = 0$ s to intercept p.d. = 6.00 V line		
	• Read time constant off graph = 4.9 s (allow range 4.5 s to 5.0 s)	(1)	
	• Use of time constant = RC	(1)	
	• $C = 1.5 \times 10^{-5}$ F, so choose 15 μ F capacitor	(1)	
	$(C = 1.4 \times 10^{-5} \text{ F to } C = 1.5 \times 10^{-5} \text{ F when rounded to 2 s.f.})$		
	Or		
	• Record corresponding values of <i>V</i> and <i>t</i> from point (or points)		
	on graph	74 5	
	1	(1)	
	• Use of $V = V_0 - V_0 e^{-\frac{L}{RC}}$	(1)	
	Convert to correct logarithmic form	(1)	
	• $C = 1.5 \times 10^{-5}$ F, so choose 15 μ F capacitor	(1)	
	$(C = 1.3 \times 10^{-5} \text{ F to } C = 1.5 \times 10^{-5} \text{ F when rounded to 2 s.f.})$		
	Or		
	$\bullet \frac{V_0}{2} = V_0 e^{-\frac{t_1}{\frac{2}{RC}}}$		
	$\bullet \frac{70}{2} = V_0 e^{-RC}$		
	$\bullet RC = t_{1/2} / \ln 2$	(1)	
	• Records time for V to increase to $\frac{1}{2}V_0$ (3.4 s)	(1)	
	(allow range 3.0 s to 3.5 s)		
	• $C = 1.5 \times 10^{-5}$ F, so choose 15 µF capacitor	(1)	
	$(C = 1.3 \times 10^{-5} \text{ F to } C = 1.5 \times 10^{-5} \text{ F when rounded to 2 s.f.})$	(1)	
	(C = 1.5 × 10 1 to C = 1.5 × 10 1 which rounded to 2 \$.1.)		
	Example of calculation		
	V at time constant time = 0.63 × 6.00 V = 3.8 V		
	Time from graph = 4.9 s		4
	$4.9 \text{ s} = C \times 3.3 \times 10^5 \Omega$		
	_		
	$C = 1.48 \times 10^{-5} \mathrm{F}$		

17 (b) (iv)	• Use of $Q = CV$ (ecf for C from (iii)) • $Q = 9.0 \times 10^{-5}$ C	(1)	
	• $Q = 9.0 \times 10^{-5} \mathrm{C}$	(1)	
			2
	Example of calculation		
	$1.5 \times 10^{-5} \mathrm{F} \times 6.00 \mathrm{V} = 9.0 \times 10^{-5} \mathrm{C}$		
17 (b) (v)	• Use of $W = \frac{1}{2} CV^2$ (ecf for C from (iii))		
	Or Use of $W = \frac{1}{2} QV$ (ecf for Q from (iv))		
	Or Use of $W = \frac{1}{2} Q^2 / C$ (ecf for C from (iii), for Q from (iv))	(1)	
	• $W = 2.7 \times 10^{-4} \mathrm{J}$	(1)	2
	Example of calculation:		
	$W = \frac{1}{2} \times 1.5 \times 10^{-5} \text{ F} \times (6.00 \text{ V})^2 = 2.7 \times 10^{-4} \text{ J}$		

16

Total for question 17