Matematyka 1

Lista nr 1: "Rachunek zdań. Zdania logiczne. Funktory. Formuły zdaniowe. Tautologia i kontrtautologia.

Prawa rachunku zdań"

Zad.1. Które z podanych wyrażeń są zdaniami logicznymi?

- a) Rozwiąż zadanie!
- b) Jutro będzie piękna pogoda.
- c) Czy pójdziesz dzisiaj do kina?
- d) Zamek wawelski w Krakowie był siedzibą polskich królów.
- e) Wieloryb jest ssakiem.
- f) Funkcja f jest rosnąca.
- g) Kwadrat dowolnej niezerowej liczby rzeczywistej jest liczbą dodatnią.
- h) 2+3=6
- i) x+2 > 0
- j) Która godzina?
- k) Zamknij okno!
- 1) x jest liczbą ujemną.
- m) $x^2 + 2x 35 > 0$.
- n) 5 jest liczbą pierwszą
- o) π jest liczbą wymierną

Zad.2. Oceń wartość logiczną następujących zdań.

- a) $\lim_{n\to\infty} \frac{2+4+6+\cdots+2n}{n^2+n}$ jest liczbą naturalną i $\frac{9^6+81^2\cdot 9^3}{3^{10}-9^9+27^6} = 90$.
- b) Liczba $\sqrt{29 + 12\sqrt{5}} + \sqrt{29 12\sqrt{5}}$ jest naturalna lub spełniona jest nierówność $3\sqrt{2} < 2\sqrt{3}$.
- c) $3|5 \Leftrightarrow (2|8 \Rightarrow 2|7)$.
- d) $(\sqrt{3} \le \sqrt{2}) \Rightarrow \left[(2\sqrt{3})^2 \le \left(2\sqrt{2} \right)^2 \lor -\sqrt{3} \ge -\sqrt{2} \right].$
- e) Zero jest niedodatnie i zero jest nieujemne.
- f) Jeśli nieprawdą jest, że 2 < 1, to 2 < 0 lub $2 \ge 1$.
- g) Jeżeli liczby 3, 4, 5 są długościami boków trójkąta, to obwód tego trójkąta jest równy 12 i trójkąt ten jest prostokątny.
- h) $log_{\sqrt{2}}$ 16 jest liczbą naturalną, co jest równoważne temu, że jeśli $x \le y$, to $log_{\frac{1}{4}}x \ge log_{\frac{1}{4}}y$.
- i) 2 > 1 i log 1 = 10.
- j) $2|6 \vee 3^2 = 8$.
- k) Suma dwóch liczb nieparzystych jest liczbą parzystą
- 1) $\sqrt{x^2} = x$
- m) Jeśli liczba $\sqrt{6+4\sqrt{2}} \cdot \sqrt{6-4\sqrt{2}}$ jest naturalna, to $\frac{1}{\sqrt{2}}$ jest wymierna.

Zad.3. Sprawdzić, które z podanych formuł są tautologiami/kontrtautologiami rachunku zdań.

- a) $p \Longrightarrow (\sim p \lor p)$
- b) $[(p \lor q) \land \sim p] \Rightarrow q$
- c) $\sim (p \Rightarrow q) \Rightarrow (p \land q)$
- d) $(p \Rightarrow q) \Leftrightarrow (p \land \sim q)$

e)
$$[(p \Rightarrow q) \land p] \Rightarrow q$$

f)
$$(p \Rightarrow q) \Rightarrow (q \Rightarrow p)$$

g)
$$(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$$

h)
$$((p \lor q) \Rightarrow (p \lor \sim q)) \Rightarrow (\sim p \lor q)$$

i)
$$[p \lor (q \lor r)] \Leftrightarrow [(p \lor q) \lor r]$$

j)
$$[(p \lor q) \land (p \Rightarrow q)] \Rightarrow (q \Rightarrow p)$$

Zad.4. Sprawdzić, metodą nie wprost, które z podanych formuł są tautologiami rachunku zdań.

a)
$$(\alpha \land \sim \alpha) \Rightarrow (\alpha \lor \sim \alpha)$$

b)
$$\sim (\alpha \Rightarrow \beta) \land (\beta \lor \alpha)$$

c)
$$\alpha \Rightarrow (\beta \Rightarrow \alpha \land \beta)$$

d)
$$[\alpha \Rightarrow (\beta \Rightarrow \gamma)] \Rightarrow [\beta \Rightarrow (\alpha \Rightarrow \gamma)]$$

e)
$$\{[(\alpha \land \beta) \Rightarrow \gamma] \land [(\alpha \land \beta) \Rightarrow \sim \gamma]\} \Rightarrow (\sim \alpha \land \sim \beta \land \sim \gamma)$$

Zad.5. Konstruując odpowiednią formułę rachunku zdań sprawdzić, czy prawdziwe jest zdanie:

- a) jeżeli 13 dzieli się przez 2, to z faktu, że 13 nie dzieli się przez 2 wynika, że 13 dzieli się przez 3.
- b) jeżeli 8 > 5, to warunek $8 \le 5$ jest równoważny równości 8 = 5.
- c) jeżeli $\sqrt{3}$ jest liczbą wymierną i nieprawdą jest, że $\sqrt{3}$ jest liczbą mniejszą od 1, to $3^2 = 10$.

Zad.6. Zdefiniować alternatywę, koniunkcję i równoważność za pomocą implikacji i negacji.

Zad.7. Zdefiniować koniunkcję, implikację i równoważność za pomocą alternatywy i negacji.

Zad.8. Zdefiniować alternatywe, implikację i równoważność za pomocą koniunkcji i negacji.

Zad.9. Zaznaczyć na płaszczyźnie zbiory punktów, których współrzędne spełniają następujące formuły zdaniowe.

- a) $x^2 + y^2 \le 4$.
- b) y + 1 < x.
- c) xy > 0.
- d) $|xy| \le 0$.
- e) |x| = |y|.

Zad.10. Dana jest funkcja $f(x) = \frac{5}{(x-1)(x+2)}$. Określić, kiedy liczba a należy do jej dziedziny. Jakie prawo rachunku zdań trzeba wykorzystać, aby sprawdzić, że liczba a nie należy do dziedziny.