

# Current Topics in Data Science and Al

Denoising in Scientific Imaging

Background:

Random Variables

## Discrete Probability Distributions

#### Coin flip experiment:



$$P(X = 1) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbf{1}(X_k = 1)$$
  
Probability Relative frequency



## Discrete Probability Distributions

#### Coin flip experiment:

$$X = 1$$
 (heads)







## $P(X = 1) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbf{1}(X_k = 1)$ Probability Relative frequency

#### **Notation:**



## Probability Mass Function (PMF):

| P(X=1) | P(X=0) |
|--------|--------|
| 0.5    | 0.5    |

$$\sum_{x} p(x) = 1$$

## **Expected Values**

$$\mathbb{E}_{p(x)}[x] = \sum_{x} p(x)x$$

$$= \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} x_k |x_k \sim p(x)|$$

- Center of mass of the distribution
- Expected value minimizes quadratic error

 $(s-x)^2$ 

• Rolling dice:





$$\mathbb{E}_{p(x)}[x] = \sum_{x=1}^{6} \frac{1}{6}x = 3.5$$

## Joint Probability

Consider two random variables:





#### Joint probability p(c, t):

| p(c,t) | T=1  | T = 0                   |
|--------|------|-------------------------|
| C=1    | 0.1  | 0.02<br>p(c=1,t=0)=0.02 |
| C = 0  | 0.08 | 0.8                     |

Joint probabilities sum to 1:

$$\sum_{c} \sum_{t} p(c, t) = 1$$

## Take Home Message – Probability:

#### Always true:

- Marginalisation:  $p(t) = \sum_{c} p(t, c)$ Probability of tooth ache
- Cond. prob.:  $p(c|t) = \frac{p(c,t)}{p(t)}$ Probability of cavity or tooth ache
- Product rule: p(c,t) = p(c|t) p(t)Probability of cavity and tooth ache
- Bayes rule:  $p(c|t) = \frac{p(t|c)p(c)}{p(t)}$

#### **Derive everything from**

p(t,c):

|              | T=1  | T = 0 |
|--------------|------|-------|
| <i>C</i> = 1 | 0.1  | 0.02  |
| C = 0        | 0.08 | 0.8   |

Joint probability is complete model

## Take Home Message – Probability (2):

# Everything holds when conditioned on additional variable:

• Marginalisation: 
$$p(t|x) = \sum_{c} p(t,c|x)$$

• Cond. Prob.: 
$$p(c|t,x) = \frac{p(c,t|x)}{p(t|x)}$$

• Product Rule: p(c,t|x) = p(c|t,x) p(t|x)

• Bayes Rule:  $p(c|t,x) = \frac{p(t|c,x)p(c|x)}{p(t|x)}$ 

#### **Derive everything from**

$$p(t,c|X=1):$$

|              | T=1  | T = 0 |
|--------------|------|-------|
| <i>C</i> = 1 | 0.1  | 0.02  |
| C = 0        | 0.08 | 0.8   |





## Independence

Example: Toss a coin twice

p(x):

| p(X=1) | p(X=0) |
|--------|--------|
| 0.5    | 0.5    |

p(y):

| p(Y=1) | p(Y=0) |
|--------|--------|
| 0.5    | 0.5    |



$$p(x,y) = p(x)p(y)$$



|       | X = 1 | X = <b>0</b> |
|-------|-------|--------------|
| Y = 1 | 0.25  | 0.25         |
| Y = 0 | 0.25  | 0.25         |

• Two random variables X and Y are **independent** iff:

$$p(x|y) = p(x),$$

$$p(y|x) = p(y)$$

$$p(x|y) = p(x)$$
,  $p(y|x) = p(y)$ ,  $p(x,y) = p(x) p(y)$  for all  $x$  and  $y$ .

for all 
$$x$$
 and  $y$ .

Written:  $X \perp \!\!\! \perp Y$ 

Observing one does not give information about the other

## Conditional Independence

• X and T are **conditionally independent** given  $\mathcal C$  iff:

Written: 
$$X \perp \!\!\! \perp T \mid C$$

$$p(x|t,c) = p(x|c)$$
,  $p(t|x,c) = p(t|c)$ ,  $p(x,t|c) = p(x|c) p(t|c)$  for all  $x$ ,  $t$  and  $c$ .

• Observing one does not give information about the other, provided  $\mathcal{C}$  is observed.

• Example: Dentist





## Continuous Probability Distributions

## $\sum$

#### **Calculus**

- Large values -> large sample density
- Completely describes distribution
- $\int_{a}^{b} f(x) \ dx$  is probability  $a \le x_i \le b$



Probability Density Function (PDF)

## Take Home Message – Continuous Probability:

#### Always true:

• Marginalisation:  $p(t) = \int_{0}^{\infty} p(t,c) dc$ 

These are PDFs

• Cond. prob.:  $p(c|t) = \frac{p(c,t)}{p(t)}$ 

• Product rule: p(c,t) = p(c|t) p(t)

• Bayes rule:  $p(c|t) = \frac{p(t|c)p(c)}{p(t)}$ 

#### **Derive everything from**

p(t,c):

#### **Expected value:**

$$\mathbb{E}_{p(x)}[x] = \int_{-\infty}^{\infty} p(x)x = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} x_k | x_k \sim p(x)$$

## (Cond.) Independence

Like in discrete case