Notes I

- New irit logo
- Reva logo
- colonization strategies > objective
- do write ecosystem
- sum up of the presentation
- remove all overviews but after the forewords
- directed graph under genotype
- metabolism: picture?
- remove performed OF
- Overview > sample of diversity
- Leaves with classes (same with other three)
- ■CSR > isut remove
- Organ count put fitness in whole letters
- No overlay for reproduction
- \blacksquare longer simulations (put numerics)
- \blacksquare Merge future work slides

Self-sustainability Challenges of Plants Coloninization Strategies in Virtual 3D Environments

GODIN-DUBOIS Kevin & CUSSAT-BLANC Sylvain & DUTHEN Yves

April 25, 2019

Morphogenetic engineering

Sims (1994)

Bornhofen (2008)

Disset et al. (2016)

•0000

Replicators

00000

Gardner (1970)

Metivier et al. (2002)

Ventrella (2005)

Ecosystems

Miconi (2008)

Bornhofen et al. (2011)

1 min (3" 0') 3/19

Objective

00000

- Graphtal-based genotype & autonomous reproduction
- Collaboration/Competition strategies
- Ecosystem self-sustainability

30 s (3" 30')

Overview

0000

- Context
 - ► Morphogenetic engineering
 - ► Replicators
 - ► Ecosystems
 - ► Objective
- Model
- Experiments
- Conclusion

•00000

 $\operatorname*{Genotype}_{\scriptscriptstyle (\mathrm{Directed\ graph})}$

Phenotype

Plants Repetitions

$$i \longrightarrow j$$

$$\Rightarrow$$

$$i$$
 R(z,5) \rightarrow j

$$\Rightarrow$$

$$i$$
 — $_{\mathrm{S}(5)}$ \rightarrow j

$$\Rightarrow$$

Metabolism

- Seed: Initial reserves
- Local diffusion
- ${\color{blue} \bullet}$ Controlled by ${\bf A}, {\bf S}$

Water uptake

Reproduction

8/19

Reproduction

Environment

Dynamic sun

Populating

90 s (8" 0')

- Context
- Model
 - ▶ Plants
 - ► Metabolism
 - ► Reproduction
 - ► Environment
- Experiments
- Conclusion

Fitnesses

$$F_b = \nu \sum_{t < N} \sum_{p \in P} biomass(p, t)$$

$$F_p = \nu \sum_{t < N} \sum_{p \in P} production(p, t)$$

$$F_c = \frac{\nu}{W^2} \sum_{t < N} surface(t)$$

$$F_a = \nu \sum_{p \in P} lifespan(p) * 2^{-\alpha_p}$$

 F_m : Multi-objective

W Environment size (10m) Simulated steps (60000) Initial plants count (100) Plant population 1/NP

•000000000

Morphologies Diversity sample

Morphologies Leaves

Large, fixed orientation

Radial - ${\cal F}_c$

Storage - F_{mb}

Massive - F_b

Small, multiple orientations

Shoots - F_a

Scattered - F_{ma}

Survival - F_{mb}

Morphologies Roots

Single trunk

Balanced - F_{ma}

Shoots - F_a

Scattered - $F_{m\,a}$

Direct connection

Radial - ${\cal F}_c$

Massive - F_b

Reproduction - F_{ma}

Morphologies Fruits

Marginal

Balanced - F_{ma}

Shoots - F_a

Scattered - F_{ma}

Sterile

Survival - F_{mb}

Optimized

Reproduction - F_{ma}

Main strategies

1 min (14" 0')

Organ count repartition

1 min (15" 0')

Reproduction

Hypothesis on self-sustainability

- F Bootstrapping fruit dissemination
- D Death-related stress

Reproduction

'Checkpoints'

None No sexual organs Flowers Unfecundated flowers

Fruits Unplanted seeds

Repro. Self-reproduction occured

1 min (18" 0')

Conclusion

- 'Graphtal'-based plants
- Environment-impacted morphogenesis
- Self-reproduction scheme

- Survival/Reproduction schism
- Robustness improved by multi-objective fitness
- Validation of hypotheses **F** & **D**

Future work

Automated phylogeny

- More dynamical environment (topology, hygrometry, ...)
- Simplification for longer simulations (100K years)

Species dynamics

Annexes

• References

References

S. Bornhofen, S. Barot, and C. Lattaud. "The evolution of CSR life-history strategies in a plant model with explicit physiology and architecture". In: *Ecological Modelling* 222.1 (Jan. 2011), pp. 1–10.

Stefan Bornhofen. "Emergence de dynamiques évolutionnaires dans une approche multi-agents de plantes virtuelles". PhD thesis. Paris 11, 2008, 1 vol. (180 p.)

Jean Disset, Sylvain Cussat-Blanc, and Yves Duthen. "Evolved Development Strategies of Artificial Multicellular Organisms". In: 15th International Symposium on the Synthesis and Simulation of Living Systems (ALIFE XV 2016). Cancun, Mexico: The MIT Press, 2016, pp. 1–8.

M Gardner. "Mathematical games: The fantastic combinations of John Conway's new solitaire game "life"". In: $Scientific\ American\ (1970)$. arXiv: arXiv:1011.1669v3.

Marc Metivier et al. "A Stress-based Speciation Model in LifeDrop characters". In: $Artificial\ Life\ (2002).$

Thomas Miconi. "In silicon no one can hear you scream: Evolving fighting creatures". In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 4971 LNCS. 2008, pp. 25–36.

References (cont.)

Karl Sims. "Evolving 3D Morphology and Behavior by Competition". In: Artificial Life 1.4 (1994), pp. 353–372.

Jeffrey Ventrella. "GenePool: Exploring the interaction between natural selection and sexual selection". In: $Artificial\ Life\ Models\ in\ Software\ (2005),\ pp.\ 81–96.$