武昌区 2020 届高三年级元月调研考试

理科数学

注意事项:

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动, 用橡皮擦干净后, 再选涂其他答案标号。回答非选择题时, 将答案写在答题卡

-,	选择题:	本题共 12 小题,	每小题 5 分,	共60分。	在每小题给出的四个选项中,	只有
	一项是符	符合题目要求的。				

- .	3. 考试结束后, 4	。 身本试卷和答题卡一升	并交回。	
-,	选择题: 本题共 12 一项是符合题目要		共 60 分。在每小题	给出的四个选项中,只有
1.	已知集合 $A = \{x \mid x^2\}$	$x^2 - x - 2 < 0$, $B = \{$	x a-2 <x<a}, th="" 若<=""><th>$A \cap B = \{x \mid -1 < x < 0\}$, \emptyset</th></x<a},>	$A \cap B = \{x \mid -1 < x < 0\}$, \emptyset
	$A \cup B =$	D (0.0)	G (A N	
	A. (-1,2)	B. (0,2)	C. $(-2,1)$	D. (-2,2)
2.	已知复数 z 满足	<u>z</u> - i - 则 z 在复平面	آ内对应的点位于	
	A. 第一象限	B. 第二象限	C. 第三象限	D. 第四象限
3.	已知 {a,,} 是各项均	为正数的等比数列,	$a_1 = 1$, $a_3 = 2a_2 + 3$,	则 $a_n =$
	A. 3^{n-2}	B. 3 ⁿ⁻¹	C. 2^{n-1}	D. 2^{n-2}
4.	已知 $a = \log_{0.1} 0.2$,	$b = \log_{1.1} 0.2$, $c = 1$.	1 ^{0.2} ,则 <i>a</i> ,b,c的	大小关系为
	A. $a > b > c$	B. $a > c > b$	C. $c > b > a$	D. $c > a > b$
5.	等腰直角三角形力	$ABC + \frac{\pi}{2}$, $AC = BC = 2$, 点	P是斜边 AB 上一点,且
	$BP=2PA$,那么 \overline{C}	$\overrightarrow{CP} \cdot \overrightarrow{CA} + \overrightarrow{CP} \cdot \overrightarrow{CB} =$		
	A4	B2	C. 2	D. 4
6.	某学校成立了 A、	B、C 三个课外学习	小组,每位学生只能	申请进入其中一个学习小
	组学习. 申请其中任	E意一个学习小组是等	穿可能的,则该校的位	£意 4 位学生中,恰有 2
	人申请 A 学习小组	l的概率是		
	A. $\frac{3}{64}$	B. $\frac{3}{32}$	C. $\frac{4}{27}$	D. $\frac{8}{27}$
7.				Γ_n 为数列 $\{b_n\}$ 的前 n 项和.

若对任意的 $n \in \mathbb{N}^*$,不等式 $\lambda T_n < 9n + 3$ 恒成立,则实数 λ 的取值范围为 高三理科数学 第1页(共5页)

- 8. 已知过抛物线 $y^2 = 4x$ 焦点 F 的直线与抛物线交于点 A , B , |AF| = 2|FB| ,抛物线 的准线l与x轴交于点C, $AM \perp l$ 于点M,则四边形AMCF的面积为
- B. $\frac{5\sqrt{2}}{1}$
- C. $5\sqrt{2}$
- 9. 如图,已知平行四边形 ABCD 中, $\angle BAD = 60^{\circ}$, AB = 2AD, E 为边 AB 的中点,将 $\triangle ADE$ 沿直线 DE 翻折成 ΔA_iDE . 若 M 为线段 A_iC 的中点,则在 ΔADE 翻折过程中,给出以 下命题:
 - ①线段 BM 的长是定值;
 - ②存在某个位置, 使 $DE \perp A_iC$;
 - ③存在某个位置,使MB//平面ADE. 其中, 正确的命题是
 - A. ①
- B. (1)(3)
- c. 23
- D. (1)(2)(3)

- 10. 函数 $f(x) = A\sin(\omega x + \varphi)$ (A > 0, $\omega > 0$, $0 < \varphi < \frac{\pi}{2}$) 的部分图象如图所示,给出下 列说法:
 - ①函数 f(x) 的最小正周期为 π ;
 - ②直线 $x = -\frac{5\pi}{12}$ 为函数 f(x) 的一条对称轴;
 - ③点 $\left(-\frac{2\pi}{3},0\right)$ 为函数 f(x) 的一个对称中心;
 - ④函数 f(x) 的图象向右平移 $\frac{\pi}{3}$ 个单位后得

到 $y = \sqrt{2} \sin 2x$ 的图象. 其中正确说法的个数是

C. 3

- 11. 已知 F_1 , F_2 分别为双曲线 $\frac{x^2}{9} \frac{y^2}{4} = 1$ 的左、右焦点,过 F_2 且倾斜角为 60°的直线与双 曲线的右支交于 A, B 两点,记 ΔAF_1F_2 的内切圆半径为 r_1 , ΔBF_1F_2 的内切圆半径为 r_2 , 则 气 的值等于
 - A. 3
- C. $\sqrt{3}$
- 12. 已知函数 $f(x) = xe^x \ln x x 2$, $g(x) = \frac{e^{x-2}}{x} + \ln x x$ 的最小值分别为 a , b ,则
 - A. a=b

B. a < b

C. a > b

D. a, b 的大小关系不确定

高三理科数学 第2页(共5页)

二、填空题:本题共4小题,每小题5分,共20分。

- 13. $(2x + \frac{1}{\sqrt{x}})^6$ 的展开式中, x^3 项的系数是_____.
- 14. 已知一组数据 10, 5, 4, 2, 2, x, 且这组数据的平均数与众数的和是中位数的 2 倍,则x所有可能的取值为
- 15. 过动点 M 作圆 C: $(x-2)^2 + (y-2)^2 = 1$ 的切线,N 为切点. 若|MN|=|MO| (O 为坐标原点),则|MN|的最小值为_____.
- 16. 用 M_I 表示函数 $y = \sin x$ 在闭区间 I 上的最大值,若正数 a 满足 $M_{[0,a]} = \sqrt{2} M_{[a,2a]}$,则 a 的值为______.
- 三、解答题: 共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题: 共 60 分。
- 17. (本题 12分)

在 $\triangle ABC$ 中,已知 $AB = \frac{5\sqrt{6}}{2}$, AC = 7 , D 是 BC 边上的一点, AD = 5 , DC = 3 .

- (1) 求 B:
- (2) 求 ΔABC 的面积.

18. (本题 12分)

如图,在直三棱柱 $ABC-A_1B_1C_1$ 中, $AC\perp AB$, $A_1A=AB=AC=2$, D , E , F 分别为 AB , BC , B_1B 的中点.

- (1) 证明: 平面 A,C,F 上 平面 B,DE;
- (2) 求二面角 $B-B_1E-D$ 的正弦值.

19. (本题 12分)

已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{1}(a > b > 0)$ 的两焦点与短轴一端点组成一个正三角形的三个项点,且焦点到椭圆上的点的最短距离为 1.

- (1) 求椭圆 E 的方程:
- (2) 若不过原点的直线I与椭圆交于A, B两点, 求 ΔOAB 面积的最大值.

高三理科数学 第3页(共5页)

20. (本题 12分)

某健身馆在 2019 年 7、8 两月推出优惠项目吸引了一批客户. 为预估 2020 年 7、8 两月客户投入的健身消费金额,健身馆随机抽样统计了 2019 年 7、8 两月 100 名客户的消费金额,分组如下: [0,200), [200,400), [400,600), …, [1000,1200](单位:元),得到如图所示的频率分布直方图:

- (1)请用抽样的数据预估 2020 年 7、8 两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
- (2) 若把 2019 年 7、8 两月健身消费金额不低于 800 元的客户, 称为"健身达人". 经数据处理, 现在列联表中得到一定的相关数据, 请补全空格处的数据, 并根据列联表判断是否有 95%的把握认为"健身达人"与性别有关?

	健身达人	非健身达人	总计
男	10		
女		30	
总计			

(3) 为吸引顾客,在健身项目之外,该健身馆特推出健身配套营养品的销售,现有两种促销方案.

方案一: 每满 800 元可立减 100 元;

方案二:金额超过 800 元可抽奖三次,每次中奖的概率为 $\frac{1}{2}$,且每次抽奖互不影响,中奖 1 次打 9 折,中奖 2 次打 8 折,中奖 3 次打 7 折.

若某人打算购买 1000 元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

附:

$P(K^2 \ge k)$	0.150	0.100	0.050	0.010	0.005
k	2.072	2.706	3.841	6.635	7.879

$$K^{2} = \frac{n(ad - bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}.$$

21. (本题 12分)

已知函数 $f(x) = e^x + x - e - 1$.

- (1) 若 $f(x) \ge ax e$ 对 $x \in \mathbb{R}$ 恒成立,求实数 a 的值;
- (2) 若存在不相等的实数 x_1 , x_2 , 满足 $f(x_1)+f(x_2)=0$, 证明: $x_1+x_2<2$.

高三理科数学 第4页(共5页)

- (二)选考题: 共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。
- 22. [选修 4-4: 坐标系与参数方程] (本题 10 分)

在直角坐标系 xOy 中,曲线 C_1 的参数方程为 $\begin{cases} x=-\frac{\sqrt{2}}{2}t,\\ y=2+\frac{\sqrt{2}}{2}t \end{cases}$ (t 为参数). 在以坐标原点

为极点, x 轴正半轴为极轴的极坐标系中, 曲线 C_2 的极坐标方程为 $\rho^2 = \frac{9}{3-2\cos^2\theta}$.

- (1) 写出 C_1 的普通方程和 C_2 的直角坐标方程;
- (2) 若 C_1 与y轴交于点M, C_1 与 C_2 相交于A、B两点,求 $|MA|\cdot |MB|$ 的值.
- 23. [选修 4-5: 不等式选讲] (本题 10 分)
 - (1) 已知 f(x)=|x-a|+|x|, 若存在实数 x, 使 f(x)<2 成立, 求实数 a 的取值范围;
 - (2) 若m>0, n>0, 且m+n=3, 求证: $\frac{1}{m}+\frac{4}{n}\geq 3$.

武昌区 2020 届高三年级元月调研考试

理科数学参考答案及评分细则

一、选择题:

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	D	A	В	D	D	D	A	C	В	С	A	A

二、填空题:

13. 240 14. -11, 3, 17 15.
$$\frac{7\sqrt{2}}{8}$$
 16. $\frac{3\pi}{4}$ $\overrightarrow{\cancel{1}}$ $\frac{9\pi}{8}$

三、解答题:

17. (本题 12分)

在 $\triangle ABC$ 中,已知 $AB = \frac{5\sqrt{6}}{2}$, AC = 7 , D 是 BC 边上的一点, AD = 5 , DC = 3 .

- (1) 求B;
- (2) 求 ΔABC 的面积.

解: (1) 在 ΔADC 中,由余弦定理,得 cos $\angle ADC = -\frac{1}{2}$,

所以 ∠ADC = 120°, 从而 ∠ADB = 60°.

(2) 由 (1) 知 $\angle BAD = 75^{\circ}$, 且 $\sin 75^{\circ} = \frac{\sqrt{2} + \sqrt{6}}{4}$.

所以
$$S_{\Delta ABD} \frac{1}{2} AB \cdot AD \sin \angle BAD = \frac{25(\sqrt{3}+3)}{8}$$
,

$$S_{\Delta ADC} = \frac{1}{2} DA \cdot DC \sin \angle ADC = \frac{15\sqrt{3}}{4}$$
,

所以
$$S_{\Delta ABC} = S_{\Delta ABD} + S_{\Delta ADC} = \frac{55\sqrt{3} + 75}{8}$$
. (12分)

18. (本题 12分)

解: (1) 因为 AC L AB, DE // AC, 所以 DE L AB.

因为 AA, ⊥平面 ABC, DE ⊂ 平面 ABC, 所以 AA, ⊥ DE.

因为 $AB \cap AA = A$, 所以 $DE \perp$ 平面 $AA B_1B$.

因为AF ⊂平面 AABB, 所以 DE ⊥AF.

易证 $DB_1 \perp A_1F$,因为 $DB_1 \cap D_1E = D$,

所以A,F 上平面B,DE.

因为AF \subset 平面AC,F,

所以平面 A_iC_iF 上平面 B_iDE (4分)

(2) 方法一: 过B作 $BH \perp B_1D$, 垂足为H, 过H作 $HG \perp B_1E \mp G$, 连结BG, 则可证 $\angle BGH$ 为二面角 $B - B_1E - D$ 的平面角.

高三理科数学参考答案及评分细则 第1页(共4页)

在 Rt ΔB_1BD 中,求得 $BH = \frac{2}{\sqrt{5}}$: 在 Rt ΔB_1BE 中,求得 $BG = \frac{2\sqrt{2}}{\sqrt{6}}$.

所以
$$\sin \angle BGH = \frac{BH}{BG} = \frac{\sqrt{15}}{5}$$
. (12分)

方法二: 建系,设(求)点的坐标,求两个法向量,求角的余弦,求正弦.

19. (本题 12分)

解: (1) 由
$$\begin{cases} \frac{b}{c} = \sqrt{3}, \\ a - c = 1, \end{cases}$$
 及 $a^2 = b^2 + c^2$,得 $a = 2$, $b = \sqrt{3}$.

所以,椭圆 E 的方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$. (4分)

(2) 当直线l 的斜率存在时,设其方程为 $y = kx + m(m \neq 0)$,代入椭圆方程,整理,得 $(4k^2 + 3)x^2 + 8kmx + 4m^2 - 12 = 0$.

由 $\Delta > 0$, 得 $4k^2 - m^2 + 3 > 0$.

设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, 则 $x_1 + x_2 = -\frac{8km}{4k^2 + 3}$, $x_1 \cdot x_2 = \frac{4m^2 - 12}{4k^2 + 3}$.

于是
$$|AB| = \sqrt{1+k^2} \cdot \sqrt{(x_1+x_2)^2 - 4x_1x_2} = 4\sqrt{3} \cdot \sqrt{1+k^2} \cdot \frac{\sqrt{4k^2-m^2+3}}{4k^2+3}$$
.

又,坐标原点
$$o$$
 到直线 l 的距离为 $d = \frac{|m|}{\sqrt{1+k^2}}$.

所以,
$$\triangle OAB$$
 的面积 $S = \frac{1}{2} \cdot |AB| \cdot d = 2\sqrt{3} \cdot |m| \cdot \frac{\sqrt{4k^2 - m^2 + 3}}{4k^2 + 3}$.

因为
$$|m|$$
· $\frac{\sqrt{4k^2-m^2+3}}{4k^2+3} = \frac{\sqrt{m^2(4k^2-m^2+3)}}{4k^2+3} \le \frac{\frac{m^2+(4k^2-m^2+3)}{2}}{4k^2+3} = \frac{1}{2}$,

所以,
$$S = \frac{1}{2} \cdot |AB| \cdot d \le \sqrt{3}$$
.

当直线l的斜率不存在时,设其方程为x=m,同理可求得

$$S = \frac{1}{2} \cdot |AB| \cdot d = \frac{1}{2} |m| \cdot \sqrt{12 - 3m^2} \le \sqrt{3}.$$

20. (本题 12分)

解: (1) 因为 \bar{x} = (100×0.00050 +300×0.00075 +500×0.00100 +700×0.00125 +900×0.00100 +1100×0.00050)×200 = 620 (元),

所以, 预估 2020 年 7、8 两月份人均健身消费为 620 元.(2分)

(2) 列联表如下:

	健身达人	非健身达人	总计
男	10	40	50
女	20	30	50
总计	30	70	100

因为 $K^2 = \frac{100(10\times30-20\times40)^2}{50\times50\times30\times70} = 4.762 > 3.841$,因此有 95%的把握认为"健身达人"

高三理科数学参考答案及评分细则 第2页(共4页)

......(6分)

(3) 若选择方案一: 则需付款 900 元;

若选择方案二: 设付款 X 元,则 X 可能取值为 700,800,900,1000.

$$P(x=700) = C_3^3 (\frac{1}{2})^3 = \frac{1}{8}, \quad P(x=800) = C_3^2 (\frac{1}{2})^2 = \frac{3}{8},$$

$$P(x=900) = C_3^1(\frac{1}{2})^3 = \frac{3}{8}, \quad P(x=1000) = C_3^0(\frac{1}{2})^3 = \frac{1}{8},$$

所以
$$E(X) = 700 \times \frac{1}{8} + 800 \times \frac{3}{8} + 900 \times \frac{3}{8} + 1000 \times \frac{1}{8} = 850$$
 (元)

21. (本题 12分)

解: (1) 令 $g(x) = f(x) - (ax - e) = e^x + (1 - a)x - 1$, 则 $g'(x) = e^x + 1 - a$.

由题意, 知 $g(x) \ge 0$ 对 $x \in \mathbf{R}$ 恒成立, 等价 $g(x)_{\min} \ge 0$.

当 $a \le 1$ 时, 由 $g'(x) \ge 0$ 知 $g(x) = e^x + (1-a)x - 1$ 在 R 上单调递增.

因为
$$g(-1) = \frac{1}{e} - (1-a) - 1 < 0$$
,所以 $a \le 1$ 不合題意;

当a>1时,若 $x\in(-\infty,\ln(a-1))$,则g'(x)<0,若 $x\in(\ln(a-1),+\infty)$,则g'(x)>0,

所以,g(x)在 $(-\infty, \ln(a-1))$ 单调递减,在 $(\ln(a-1), +\infty)$ 上单调递增.

所以 $g(x)_{\min} = g(\ln(a-1)) = a-2+(1-a)\ln(a-1) \ge 0$.

记 $h(a) = a - 2 + (1 - a) \ln(a - 1)$ (a > 1) ,则 $h'(a) = -\ln(a - 1)$.

易知h(a)在(1,2)单调递增,在 $(2,+\infty)$ 单调递减,

所以 $h(a)_{max} = h(2) = 0$, 即 $a-2+(1-a)\ln(a-1) \le 0$.

 $\overline{\text{min}} g(x)_{\min} = a - 2 + (1 - a) \ln(a - 1) \ge 0$,

(2) 因为 $f(x_1) + f(x_2) = 0$, 所以 $e^{x_1} + e^{x_2} + x_1 + x_2 = 2(e+1)$.

因为
$$e^{x_1} + e^{x_2} \ge 2e^{\frac{x_1 + x_2}{2}}$$
, $x_1 \ne x_3$, 所以 $e^{x_1} + e^{x_2} > 2e^{\frac{x_1 + x_2}{2}}$.

 $\Rightarrow x_1 + x_2 = t$, $\text{ yl } 2e^{\frac{t}{2}} + t - 2e - 2 < 0$.

记 $m(t) = 2e^{\frac{t}{2}} + t - 2e - 2 < 0$,则 $m'(t) = e^{\frac{t}{2}} + 1 > 0$,所以m(t)在**R**上单调递增.

又m(2) = 0,由 $2e^{\frac{t}{2}} + t - 2e - 2 < 0$,得m(t) < m(2),

所以t < 2,即 $x_1 + x_2 < 2$. (12分)

另证:不妨设 $x_1 < x_2$,因为 $f'(x) = e^x + 1 > 0$,所以f(x)为增函数.

要证 $x_1 + x_2 < 2$, 即要证 $x_2 < 2 - x_1$, 即要证 $f(x_2) < f(2 - x_1)$.

因为 $f(x_1) + f(x_2) = 0$, 即要证 $f(x_1) + f(2-x_1) > 0$.

记
$$h(x) = f(x) + f(2-x) = e^x + e^{2-x} - 2e$$
 , 则 $h'(x) = \frac{(e^x - e)(e^x + e)}{e^x}$.

所以 $h(x)_{\min} = h(1) = 0$,从而h(x) = f(x) + f(2-x) > 0,得证.

22. [选修 4-4: 坐标系与参数方程] (本题 10 分)

解: (1) 方程
$$\begin{cases} x = -\frac{\sqrt{2}}{2}t, & \text{可化为 } x + y - 2 = 0. \\ y = 2 + \frac{\sqrt{2}}{2}t \end{cases}$$

方程
$$\rho^2 = \frac{9}{3 - 2\cos^2\theta}$$
 可化为 $\frac{x^2}{9} + \frac{y^2}{3} = 1$. (5分)

设方程 $2t^2 + 6\sqrt{2}t + 3 = 0$ 的两根分别为 t_1 , t_2 , 则

$$|MA| \cdot |MB| = |t_1| \cdot |t_2| = \frac{3}{2}.$$
 (10 分)

23. [选修 4-5: 不等式选讲] (本题 10 分)

解: (1) 方法一: 因为 $f(x) = |x-a| + |x| \ge |x-a-x| = |a|$,

因为存在实数x, 使 f(x) < 2成立, 所以 |a| < 2, 解得 -2 < a < 2.

方法二: 当a=0时, 符合题意.

当
$$a > 0$$
 时,因为 $f(x) = |x - a| + |x| =$
$$\begin{cases} 2x - a, & x > a, \\ a, & 0 \le x \le a, \text{ 所以 } f(x)_{\min} = a. \\ -2x + a, & x < 0, \end{cases}$$

因为存在实数x, 使 f(x) < 2成立, 所以a < 2.

当a<0时,同理可得a>-2.

综上, 实数 a 的取值范围为(-2,2). (5分)

(2) 因为m+n=3,