1 Model

Target Tensor $\mathcal{Y} \in \mathbb{R}^{T \times K \times N_Y}$. Observed $\mathbf{Y} \in \mathbb{R}^{T \times N_Y}$.

Auxiliary tensor $\mathbf{X} \in \mathbb{R}^{T \times K \times N_X}$ is fully observed.

Suppose

$$\boldsymbol{Y} = \sum_{i=1}^{r} \boldsymbol{g}_{i} \circ \boldsymbol{\Lambda}_{i}^{Y} \tag{1.1}$$

$$\mathbf{X} = \sum_{i=1}^{r} \mathbf{g}_i \circ \mathbf{w}_i \circ \mathbf{\Lambda}_i^X$$
 (1.2)

2 Estimation

Consider loss function

$$\left\| \mathbf{X} - \sum_{i=1}^{r} \mathbf{g}_{i} \circ \mathbf{w}_{i} \circ \mathbf{\Lambda}_{i}^{X} \right\|_{F} + \gamma \left\| \mathbf{Y} - \sum_{i=1}^{r} \mathbf{g}_{i} \circ \mathbf{\Lambda}_{i}^{Y} \right\|_{F}$$

$$(2.1)$$

$$\left\| \mathbf{X}_{(1)} - \sum_{i=1}^{r} \mathbf{g}_{i} \circ (\mathbf{\Lambda}_{i}^{X} \otimes \mathbf{w}_{i}) \right\|_{F} + \gamma \left\| \mathbf{Y} - \sum_{i=1}^{r} \mathbf{g}_{i} \circ \mathbf{\Lambda}_{i}^{Y} \right\|_{F}$$
(2.2)

Let $\boldsymbol{H}_i = \boldsymbol{\Lambda}_i^X \otimes \boldsymbol{w}_i$, $\boldsymbol{\Lambda}_{(\gamma)}^T = (\boldsymbol{\Lambda}_Y^T, \boldsymbol{H}^T)$. Identification condition $\frac{1}{N_Y + KN_X} \boldsymbol{\Lambda}_{(\gamma)T} \boldsymbol{\Lambda}_{(\gamma)} = \boldsymbol{I}_r$.

Estimate Λ^X and \boldsymbol{W} with $\sum_{i=1}^r \|\boldsymbol{H}_i - \boldsymbol{\Lambda}_i^X \otimes \boldsymbol{w}_i\|_F$. Fold \boldsymbol{H}_i to $\boldsymbol{H}_i^M \in \mathbb{R}^{N_Y \times K}$, then the problem becomes $\sum_{i=1}^r \|\boldsymbol{H}_i^M - \boldsymbol{\Lambda}_i^X \circ \boldsymbol{w}_i\|_F$. Assume $\boldsymbol{H}_i^{M*} = \boldsymbol{\Lambda}_i^{X*} \circ \boldsymbol{w}_i^*$, then \boldsymbol{H}_i^{M*} becomes a rank-one matrix. The identification condition of $\boldsymbol{\Lambda}_i^{X*}$ and \boldsymbol{w}_i^* is $\|\boldsymbol{\Lambda}_i^{X*}\| = 1$, since the SVD of \boldsymbol{H}_i^{M*} is unique, and $\boldsymbol{\Lambda}_i^{X*}$ is equivalent to the singular factor of \boldsymbol{H}_i^{M*} .

3 Algorithm

- 1. Combine $\boldsymbol{\chi}_{(1)}$ and \boldsymbol{Y}
- 2. Estimate $\hat{\Lambda}_{(\gamma)}$ by PCA.
- 3. Estimate $\hat{\boldsymbol{G}}$ by weighted regression.
- 4. Estimate $\boldsymbol{\Lambda}_i^X$ and \boldsymbol{W}_i for each \boldsymbol{H}_i by rank-1 SVD.

5. Orthogonalize ${m \Lambda}^X$ with SVD. Multiply the same orthogonalization matrix to ${m W}$

4 Simulation

We set $N_X = N_Y = K \in \{5, 10, 15, 20, 25\}$ and $r \in \{2, 3, 4\}$.

5 FRED-Q

This data set contains low-frequency quarterly data from FRED-QD, which records 179 indexes classified by NIPA, Industrial Production, Employment & Unemployment, Housing, Prices, Interest Rates, Money & Credit, and others; high-frequency quarterly data from FRED-MD, which records 112 indexes classified by Output & Income, Trade, Labor Market, Housing, Money & Credit, Interest & Exchange Rates and Prices. We take the data from 1975 to 1995, in total of 20 years.

We take $r=5,\ \gamma=1.8.$ The estimation to the missed GDP in FRED-Q is given as below.

FRED-Q

