Глава I ЛОГИКА И СКУПОВИ

ОСНОВНИ ПОЈМОВИ МАТЕМАТИЧКЕ ЛОГИКЕ

- 1° Константе. Знаци, као 1, 2, 7, -3, $\sqrt{2}$, π и сл. који служе за означавање одређених математичких предмета називају се константе.
- 2° Променљиве. Знаци као $x, y, z, A, B, C, x_1, y_1, z_1, \ldots$ обично служе као заједничке ознаке за више одређених предмета. То су тзв. променљиве. Променљиве које се јављају у једначини зову се непознате.
- 3° Операцијски знаци. Знаци као $+, \cdot, -, \cup, \cap$, и други који обично служе за означавање операција су тзв. операцијски знаци.
- 4° Релацијски знаци. Знаци као =, \cong , <, >, \leq , \geq , \perp , \parallel обично служе за означавање релација; то су тзв. релацијски знаци.
- 5° Знаци логичких операција. Знаци као \Rightarrow , \Leftrightarrow , \wedge , \vee , \neg , су знаци основних логичких операција.
- 6° Изрази. Знаци констаната и променљивих као и константе и променљиве везане знацима операција су изрази. На пример: (1) x је израз; (2) 5 је израз; (3) x+5 је израз; (4) y-1 је израз; (5) (x+5)(y-5) је израз. Код израза заграде имају помоћну улогу.
- 7° *Формуле*. Математичким симболима записана реченица (која има смисла) назива се формула.
- $8^{\rm e}$ Исказ. Реченица која има тачно једну истинитосну вредност: Т-тачно или \perp -нетачно, назива се исказ. Истинитосна вредност исказа p означава се са $\tau(p)$.
- 9° Исказна формула. Исказне константе (\top, \bot) , исказна слова (A, B, ..., P, Q, p, q, m ...) и сви сложени искази настали помоћу знакова логичких операција $(\lor, \land, \Rightarrow, \Leftrightarrow, \neg)$ називају се исказне формуле.
- 10° *Таутологије*. Исказне формуле које су тачне за све вредности исказних слова називају се таутологијама.

11° Универзални квантификатор ∀. Обрнуто слово A као почетно слово енглеске речи all = cви, а значи "сваки", "ма који ", "било који".

12° Eгзистенцијални квантификатор \exists . Обрнуто слово E као почетно слово енглеске речи exist = постоји, а значи "најмање један", "макар један", "неки", "постоји бар један".

1.1. ОСНОВНЕ ОПЕРАЦИЈЕ СА ИСКАЗИМА

Конјункција исказа p и q је исказ $p \wedge q$ чија је истинитосна вредност одређена таблицом 1.

 \mathcal{L} исjункциjа исказа p и q је исказ $p \lor q$ чиjа је истинитосна вредност одређена таблицом 2.

 $\mathit{Импли}$ кација исказа p и q је исказ $p \Rightarrow q$ чија је истинитосна вредност одређена таблицом 3.

Eквиваленција исказа p и q је исказ $p \Leftrightarrow q$ чија је истинитосна вредност одређена таблицом 4.

Hezauuja исказа p је исказ $\neg p$ чија је истинитосна вредност одређена таблицом 5.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14011	nigom of				
p	q	$p \wedge q$	$p \mid q \mid p \lor$	q p	q	$p \Rightarrow q$
\top	Т	Ť	TTT			Т
T		1 1	$ \top \bot \top$	T	1	1
1	Т	1	_ _	1	T	Ţ
1	1	1		_	1	Т
Габлица 1			Таблица 2	Табл	ица 3	
\overline{p}	ą	$p \Leftrightarrow q$				
Т	T	Т	$p \neg p$			
Т	1	1	T L			
1	Т	1	<u> </u>			
1	1	T	\			
абл	ица 4		Таблица 5			

1. Испитати тачност формуле $(x \in \mathbf{R})$:

a)
$$(-x)^2 = x^2$$
; 6) $x^4 \cdot x^2 = x^8$; B) $3x^3 - x^3 = 3$; r) $2x^3 \cdot 3x^2 = 6x^5$;

 $5) 6x^3 \cdot 3x^2 - 5x \cdot x^4 = 13x^5;$

д)
$$50x + 10x \cdot 10 = 600x$$
;
b) $6x^3 \cdot 3x^2 - 5x \cdot x^4 = 13x^5$;
e) $(10 - 5x) - (8 - 4x) = x$;
ж) $2x^2 - x^2(1 - x) + x^3 = x^2$.

2. Одредити да ли су следеће реченице искази и ако јесу одредити им истинитосну вредност:

б) 6 < 5;

a)
$$5 = 2 + 3$$
;

- в) сваки троугао има три угла;
- г) постоји највећи природан број;
- д) реченица: "Да ли је данас петак?" је исказ;
- \mathfrak{h}) ε је врло мали број;
- е) једначина 1 (1 (2 x)) = 5 нема решење.
- 3. Одредити истинитосну вредност следећих реченица:

a)
$$2+2=4 \land 2+3=4$$
;

$$6) 2 + 2 = 4 \lor 2 + 3 = 4;$$

B)
$$2+2=4 \Rightarrow 2+3=4$$
;

$$\Gamma$$
) $2+2=4 \Leftarrow 2+3=4$;

$$\pi$$
) $2+2=4 \Leftrightarrow 2+3=4$;

$$\mathfrak{h}) \ 1 > 2 \Rightarrow 3 > 4;$$

e)
$$3 = 7 \Leftrightarrow 5 = 6$$
;

ж)
$$\neg (2 = 1) \Rightarrow 2 = 1;$$

3)
$$\neg (2 = 1) \Leftarrow 2 = 1$$
;

и)
$$\neg (3=2) \Leftrightarrow 5 > 6$$
.

a) $p: (1\frac{2}{9} + 1\frac{1}{6}) \cdot (2 - 1\frac{25}{42}) = (5\frac{1}{2} - 2\frac{3}{4}) : \frac{3}{2}, q: (\frac{2}{3} + 3 : \frac{6}{5}) : \frac{1}{3} = 9\frac{1}{2}, F:$

$$\begin{array}{c} (p \wedge \neg q) \Leftrightarrow p; \\ 6) \ \ p: 1\frac{2}{5} - 3\frac{1}{2}: 1\frac{3}{7} = 7\frac{1}{6}: (-7\frac{1}{6}) - \frac{1}{20}, \ q: \frac{3}{5} \cdot \frac{4}{6} + \frac{7}{8}: \frac{3}{4} < (-\frac{1}{14} - \frac{2}{7}): \\ (-3) - 6\frac{1}{13}: (-6\frac{1}{13}), \ F: (\neg p \vee q) \Rightarrow (p \wedge q). \end{array}$$

5. Између следећих исказа поставити одговарајући симбол \Rightarrow , \Leftarrow , или \Leftrightarrow

a)
$$a + b = a + c \cdot \cdot \cdot b = c$$
;

$$6) \ ab = ac \cdots b = c;$$

$$B) \ a+b>a+c\cdots b>c;$$

r)
$$a-b > a-c \cdots b < c$$
;

д)
$$a+b=0\cdots a=-b;$$

$$\mathfrak{h}) \ a \cdot b = 1 \cdots a = \frac{1}{b} \ (b \neq 0);$$

e)
$$a > 0 \cdots a^2 > 0$$
;

ж)
$$a < 0 \cdots a^2 > 0$$
;

$$a = 0 \cdots a^2 = 0;$$

и)
$$n$$
 је паран \cdots n^2 је паран;

$$j) x = |x| \cdots x > 0;$$

$$\kappa) \ x = |x| \cdots x \ge 0,$$

где су $a, b, c, x \in \mathbb{R}, n \in \mathbb{N}$.

- 6. Уместо ... ставити речи НЕОПХОДНО (ПОТРЕБНО) или ДОВОЉ-НО тако да се добије тачна реченица
- а) Да је цео број дељив са 10 ... је да је дељив са 5, а ... је да је дељив са 100.
 - б) Да се налазимо у Југославији ... је да се налазимо у Београду.
 - в) Да је природан број већи од 100 ... је да је једнак 1000.
 - г) Да је четвороугао квадрат ... је да је ромб.
- 7. Одредити све вредности променљиве x из скупа $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ тако да следеће формуле буду тачне:

a)
$$x \neq 1 \land x \neq 2 \Rightarrow x = 3$$
;

6)
$$x = 1 \lor x = 2 \lor x = 3$$
;

в)
$$x = 1 \Leftrightarrow x = 2;$$
 г) $x \in \{1, 2\} \Rightarrow x \in \{2, 3, 4\};$ д) $x \ge 2 \land x \ge 5;$ в) $x \ge 2 \lor x \ge 5;$ ж) $x \in \{2, 3\} \land x \in \{3, 4, 5\};$ з) $x \in \{2, 3\} \lor x \in \{3, 4, 5\};$ з) $x \in \{2, 3\} \lor x \in \{3, 4, 5\};$ з) $x \in \{2, 3\} \lor x \in \{3, 4, 5\};$ зо $x \in \{2, 3\} \lor x \in \{3, 4, 5\};$ зо $x \in \{2, 3\} \lor x \in \{3, 4, 5\};$ зо $x \in \{2, 3\} \lor x \in \{3, 4, 5\};$ зо $x \in \{2, 3\} \lor x \in \{3, 4, 5\}.$ 8. Саставити таблицу истинитости за следеће формуле:

a) $(p \Rightarrow q) \land (q \Rightarrow p);$ г) $(p \Rightarrow \neg q) \Leftrightarrow (q \Rightarrow \neg p).$
9. а) Познато је да је $p \Rightarrow q$ тачно. Шта се може рећи о исказу $q \Rightarrow p$?

6) Познато је да је $p \Rightarrow q$ тачно. Шта се може рећи о исказима $\neg p \Leftrightarrow q$, $\neg p \Rightarrow q$, $q \Rightarrow p$?

6) Саставити таблицу истинитости за следеће формуле и одредити које од вих су таутологије:

a) $(p \land q) \Rightarrow r;$ б) $(p \land \neg r) \Rightarrow \neg q;$ в) $(p \Rightarrow q) \lor (q \Rightarrow p);$ г) $(p \lor q) \land (q \lor r) \land (p \lor r);$ л) $((p \Rightarrow q) \Rightarrow (r \Rightarrow \neg p)) \Rightarrow (\neg q \Rightarrow \neg r);$ ђ) $(p \Rightarrow q) \Rightarrow (r \Rightarrow \neg p)) \Rightarrow (\neg q \Rightarrow \neg r);$ ђ) $(p \Rightarrow q) \Rightarrow (\neg p \lor q);$ е) $(p \Rightarrow q) \Rightarrow (p \Rightarrow q) \land (q \Rightarrow p).$

11. Испитати да ли су следеће формуле таутологије:

a) $(p \land p) \Rightarrow \neg p;$ г) $((p \Rightarrow \neg q) \Rightarrow (r \land \neg p)] \Rightarrow (p \Rightarrow q);$ л) $((p \Rightarrow \neg q) \Rightarrow r);$ р) $(p \Rightarrow (q \Rightarrow r)) \land (r \leftarrow \neg p) \land (q \Rightarrow \neg r)] \Rightarrow \neg r;$ ђ) $(p \lor (q \land r)) \Rightarrow q;$ е) $(p \Rightarrow q) \Rightarrow [(p \Rightarrow q) \Rightarrow (p \Rightarrow r)].$

12. Локазати да су следеће формуле таутологије:

a) $p \lor \neg p$ (Закон непротивречности);

b) $(p \land q) \Leftrightarrow \neg p \lor \neg q,$ $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$ (Закон нокључења трећег);

б) $\neg (p \land \neg p)$ (Закон непротивречности);

c) $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$ (Закон контрапозиције);

л) $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$ (Закон контрапозиције);

л) $(p \Rightarrow q) \Leftrightarrow (q \land p,$ $p \lor q \Leftrightarrow q \land p,$ $p \lor q \Leftrightarrow q \lor p$ (комутативност операција \land, \lor);

e)
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r),$$
 дистрибутивност \lor према \land , $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ тj. \land према \lor).

- Полазећи од супротне претпоставке да за неке вредности исказних слова формула има вредност ⊥ (свођењем на апсурд) доказати да су следеће формуле таутологије:
 - a) $(p \land (p \Leftrightarrow (\neg q \land r))) \Rightarrow (q \Rightarrow (s \lor t));$
 - 6) $((p \Leftrightarrow q) \Rightarrow \neg r) \lor ((s \land \neg t) \Rightarrow (r \lor p));$
 - B) $(p \Leftrightarrow (q \vee r)) \Rightarrow ((q \wedge s) \Rightarrow (t \vee p));$
 - $\Gamma) ((\neg p \land \neg q) \Rightarrow (r \lor s)) \lor ((r \land t) \Leftrightarrow p).$
- 14. Доказати да је формула $(\neg q \Rightarrow \neg p) \Rightarrow (p \Rightarrow q)$ таутологија и користећи ово расуђивање доказати: Ако је број a цео и ако је a^2 паран, онда је и a паран број.
- **15.** Доказати импликацију: $(x + y \neq 5 \Rightarrow x \neq 1 \lor y \neq 4)$.
- 16. а) Доказати да је формула $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$ таутологија и користећи тврђење $xy = 0 \Leftrightarrow x = 0 \lor y = 0$, доказати тврђење: $xy \neq 0 \Leftrightarrow x \neq 0 \land y \neq 0$.
 - б) Применом претходног тврђења, решити формулу $x(x-1) \neq 0$.
- 17. Доказати да је формула $(p \land \neg r \Rightarrow \neg q) \Leftrightarrow (p \land q \Rightarrow r)$ таутологија и на основу тога следеће тврђење: Ако је број дељив са 2 и није дељив са 6, онда он није дељив са 3.
- **18.** Дата је формула $p \lor q$. Наћи њој еквивалентну формулу, која се састоји само од слова p, q и везника \Rightarrow .
- 19. Дата је таблица:

	p	\overline{q}	
	Т	Т	1
a)	Т		T
	1	Т	1
	1	1	Т

	p	q	
		T	
б)	Т	1	1
	ı	Т	Т
	1	4	⊥

Наћи бар једну формулу алгебре исказа, која задовољава ову таблицу. **20.** Описати све исказне формуле x такве да је $(p \Leftrightarrow x) \Leftrightarrow q$, где су p и q дати искази.

1.2. КВАНТИФИКАТОРИ (КВАНТОРИ)

Симболи ∀ и ∃ називају се универзални, односно егзистенцијални квантификатор и користе се као ознаке за:

$$(\forall x)\alpha(x)$$
 — "за сваки x важи $\alpha(x)$ ", $(\exists x)\alpha(x)$ — "постоји x за које важи $\alpha(x)$ ".

Често су у употреби и тзв. ограничени (или условни) квантификатори:

$$(\forall x \in A)\alpha(x) - (\forall x)(x \in A \Rightarrow \alpha(x))$$
$$(\exists x \in A)\alpha(x) - (\exists x)(x \in A \land \alpha(x))$$

Понашање квантификатора у односу на негацију види се из следећих увек тачних формула:

$$\neg(\forall x)\alpha(x) \Leftrightarrow (\exists x)\neg\alpha(x);$$
$$\neg(\exists x)\alpha(x) \Leftrightarrow (\forall x)\neg\alpha(x).$$

- 21. Које од следећих реченица су тачне у скупу природних бројева?
 - a) $(\exists x)(x < 5)$;
- 6) $(\forall x)(x \ge 0);$ B) $(\exists x)(3x + 2 = 3);$
- г) $(\exists x)(x+7=11);$ д) $(\forall x)(x\cdot 1=1);$
- f_{0}) $\neg(\exists x)(x>2)$;
- e) $(\exists x)(x < 5 \land x > 10)$; ж) $\neg(\forall x)(x > 10 \lor x < 5)$.
- 22. Испитати тачност формуле у скупу природних бројева:

 - a) $(\forall x)(\exists y)(x < y);$ 6) $(\exists x)(\forall y)(x \le y);$ B) $(\forall x)(\exists y)(x > y);$

- $\Gamma) (\forall x)(\forall y)(x+y=y+x);$
- $\exists x$) $(\forall x)(\exists y)(x \cdot y = x)$.
- 23. Испитати које од следећих формула су тачне у скупу реалних бројева:
 - a) $(\forall x)(\forall y)(\exists z)(xz+y=0);$
- 6) $(\forall x)(\forall y)(\exists z)(xz+y\neq 0);$
 - B) $(\exists x)(\exists y)(\forall z)(xz+y=0);$ Γ) $(\exists x)(\exists y)(\forall z)(xz+y\neq 0);$
 - $\exists A$) $(\forall x)(\forall y)(\exists z)(x(xz+y)=0);$
- $\mathfrak{h}) \ (\exists x)(\forall y)(\forall z)(x+y=x+z).$
- 24. Написати негације следећих реченица
 - a) $(\forall x)(x=0)$;

6) $(\exists x)(x^2 < 0)$;

 $\mathbf{B}) \ (\forall x)(x \cdot 0 = 0);$

- г) $(\exists x)(x$ је цео број $\land x+5>0$);
- д) $(\exists x)(x$ је природан број $\land x > 0$;
- \mathfrak{h}) $(\forall x)(x \in \mathbb{N} \Rightarrow x \in \mathbb{Z}).$
- 25. Користећи логичке операције, записати следеће реченице:
 - а) z је најмањи заједнички садржалац за x и y;
 - δ) x је потпун квадрат;
 - в) постоји највише један број чији је квадрат нула;
 - г) постоји тачно један број чији је квадрат нула;
- д) постоје највише два различита броја, чија је апсолутна вредност једнака 3;
 - б) ниједан прост број није једнак 1;

- e) између свака два различита рационална броја постоји рационалан број;
 - ж) постоји најмањи природан број;
 - з) ван сваке праве постоји бар једна тачка;
 - и) две мимоилазне праве не припадају истој равни;
 - ј) за свако x постоји највише једно $y \ge 0$ тако да је $x^2 = y$.

1.3. СКУПОВИ И СКУПОВНЕ ОПЕРАЦИЈЕ

Уобичајено је да се користе ознаке:

 $a \in A$ -елемент a припада скупу A;

 $a \notin A$ -елемент a не припада скупу A;

 $A = \{a | \alpha(a)\}$ — скуп свих елемената за које важи $\alpha(a);$

∅-празан скуп, тј. скуп без елемената;

A = B-скупови A и B су једнаки ако и само ако су сви елементи једног скупа елементи и другог и обрнуто, тј: A = B акко $(\forall x)(x \in A \Leftrightarrow x \in B)$;

 $A\subset B-$ скуп A је подскуп скупа B ако и само ако $(\forall x)(x\in A\Rightarrow x\in B).$

Најважније скуповне операције: *пресек, унија, разлика и ком*племент дефинишу се на следећи начин:

$$A \cap B = \{x | x \in A \land x \in B\}$$

$$A \cup B = \{x | x \in A \lor x \in B\}$$

$$A \setminus B = \{x | x \in A \land x \notin B\}$$

$$A' = \{x | x \notin A\}.$$

Партитивни скуп P(A) скупа A је скуп свих подскупова скупа A.

Ако су елементи двочланог скупа $\{a, b\}$ поређају у низ, тј. одреди се који је елемент први, а који други, добија се уређени пар. Уређени пар чији је први елемент a, а други b означава се (a, b).

За уређене парове важи:

$$(a_1,b_1)=(a_2,b_2)$$
 акко $a_1=a_2 \ \land \ b_1=b_2.$

Декартов производ скупова A и B је скуп $A \times B = \{(a,b) \, | \, a \in$

На сличан начин дефинишу се уређене тројке, четворке, ..., п-торке елемената и Декартови производи три, четири, ..., пскупова.

- $^{\smile}$ **26.** Дати су скупови $A=\{a,b,c,d\}$ и $B=\{a,c,e\}$. Одредити скупове $A \cup B$, $A \cap B$ и $A \setminus B$.
- \bigcup 27. Дати су скупови $A = \{m, n, p, q\}, B = \{m, n, r\}, C = \{m, p, q\}.$ Одредити скупове:
 - a) $(A \cup B) \cap C$:
- б) $(A \cap C) \cup B$; в) $(A \setminus B) \setminus C$.

28) Дати су скупови $A = \{x | x \in \mathbf{Z} \land x^2 \le 4\}, B = \{x | x \in \mathbf{N} \land x - 2 < 3\}, C =$ $x | x \in \mathbb{N} \land x | 12$, $D = \{x | x \text{ је прост број } \land x < 8\}, E = \{x | x \in \mathbb{N} \land |x| \le 3\}$, $F = \{x | x \in \mathbf{Z} \land |x| \le 4\}$. Одредити скупове:

- a) $(A \cup B) \setminus (C \cup D)$;
- $(A \setminus B) \cup (C \setminus D);$
- B) $(A \cap B) \setminus (C \cap D)$;
- Γ) $(A \setminus B) \cap (C \setminus D)$;
- μ) $(E \cap C) \cup (F \cap D)$;
- f_{0}) (B \ C) ∪ (F \ A);
- e) $(E \cap F) \setminus (D \cap B)$;
- ж) $(F \setminus D) \cap (B \setminus E)$.
- **29.** Дати су скупови $A = \{a, b, c, d, e, f, g\}$ и $B = \{b, c, e, f, g\}$. Одредити скуп X који задовољава услове $A \cap X = \{c, d\}$ и $B \cup X = \{b, c, d, e, f, g, h, i\}$.
- **30.** Дат је скуп $A = \{1, 2, 3, 6, 7, 8\}$. Одредити онај скуп X за који важи $A \cup X = \{1, 2, 3, 4, 6, 7, 8\}$ и $A \cap X = \{3, 6\}$.
- **31.** Одредити скупове A и B ако је $A = \{x \in \mathbb{R} | 4x 1 < 2x + 1\}$ и B = $\{x \in \mathbb{R} \mid 2x \le 4x - 6\}$, а затим скупове $A \cap \mathbb{N}$ и $B \cap \mathbb{N}$, при чему је \mathbb{N} скуп природних, а R скуп реалних бројева.
- **32.** Ако су [a, b], [a, b), (a, b] и (a, b) уобичајене ознаке за затворене, полуотворене и отворене интервале на бројној оси, израчунати:
 - a) $[0,3] \cap (1,7)$;

6) $(-5,2] \cup (2,4)$;

B) $(-\infty,0) \cup (-2,3)$;

- Γ) $(-\infty, -1) \cap (-2, +\infty)$;
- д) $((-\infty,-1)\cup(1,+\infty))\cap(-2,2);$ \mathfrak{h}) $((-5,4]\cup(7,9])\cap(0,10];$
- e) $((-\infty,3) \cap [0,+\infty)) \cup (-5,5]$;
- \times) $((-2,0] \cup (2,+\infty)) \cap [-1,3)$.
- 33. Одредити партитивне скупове следећих скупова:
 - a) $A = \{a\};$
- $B = \{a, b\};$
- B) $C = \{a, b, c\}.$

- 34. Решити "једначину":
 - a) $x \in a$;

 $f(x) \in a$

при чему је $a = \{1, \{1\}, \{1, \{1\}\}\}$.

35. Одредити скупове $A = \{x | x \in \mathbb{N} \land 1 \le x < 7\}, B = \{x | x \in \mathbb{Z} \land -5 < x < 7\}$ $3x-1\leq 2$ } и $C=\{x|x\in \mathbb{Z} \land 2|x|+5\leq 9\}$, а затим скупове $A\cap B,\ B\setminus C$, $B \cup C$, $(B \cap C) \cup (A \setminus C)$.

36. Доказати да важи:

a)
$$A \cup A = A$$
;

B)
$$A \cup B = B \cup A$$
;

$$д) A \cup (B \cup C) = (A \cup B) \cup C;$$

$$\mathsf{G})\ A\cap A=A;$$

$$\mathbf{r})\ A\cap B=B\cap A;$$

$$\mathfrak{h})\ A\cap (B\cap C)=(A\cap B)\cap C;$$

e)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
; $**$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;

3)
$$A \cup (A \cap B) = A$$
;

$$j) (A \cup B)' = A' \cap B';$$

л)
$$A \cap A' = \emptyset$$
;

H)
$$A \cap \emptyset = \emptyset$$
;

и)
$$A \cap (A \cup B) = A$$
;

$$\kappa) \ (A \cap B)' = A' \cup B';$$

$$M$$
) $A \cup \emptyset = A$;

$$\mathbf{h}$$
) $A \cap B \subset A \cup B$.

37. Доказати да важи:

a)
$$A \cup (A' \cap B) = A \cup B$$
;

$$6) A \cup B = (A \cap B) \cup (A' \cap B) \cup (A \cap B');$$

$$\mathbf{B})\ (A\cap B)\cup (A\cap B')=A;$$

$$\Gamma) (A \cup B') \cap (A' \cup B) = (A \cap B) \cup (A' \cap B');$$

$$\pi$$
) $(A \cup B') \cap (A' \cup B') = B'$.

38. Доказати да важи:

a)
$$\emptyset \setminus A = \emptyset$$
;

$$6) A \setminus \emptyset = A;$$

B)
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$
; (r) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$;

д)
$$A \cup (B \setminus C) = (A \cup B) \setminus (C \setminus A);$$
 (b) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C);$

e)
$$(A_1 \cup A_2) \setminus (B_1 \cup B_2) \subset (A_1 \setminus B_1) \cup (A_2 \setminus B_2)$$
;

ж)
$$(A \setminus B) \setminus C = A \setminus (B \cup C)$$
;

$$(\mathfrak{s})A\setminus (B\setminus C)=(A\setminus B)\cup (A\cap C).$$

39. Дати су скупови $A = \{a, b, c\}$ и $B = \{x, y\}$ Одредити скупове: $A \times B$, $B \times A$, $A \times A$ и $B \times B$.

40. Представити графички скуп $X \times Y$, ако је

a)
$$X = \{-1, 0, 1, 2\}, Y = \{1, 2\};$$

$$5) \ X = \{x \mid -1 \le x \le 1\}, \ Y = \{y \mid 1 \le y \le 2\}.$$

41. Дат је скуп $A \times B = \{(m, 0), (m, 1), (n, 0), (n, 1), (p, 0), (p, 1)\}$. Одредити скупове A и B.

42. Дати су скупови:

a)
$$E_1 = \{(x, y) | x, y \in \mathbb{N}, x + 2y = 10\}, E_2 = \{(x, y) | x, y \in \mathbb{N}, x + y = 3\};$$

б)
$$E_1=\{(x,y)|x,y\in \mathbb{N},3x+2y=10\},\ E_2=\{(x,y)|x,y\in \mathbb{N},x+2y=5\}.$$
 Одредити $E_1\cap E_2,\ E_1\cup E_2,\$ и $E_1\times E_2.$

43. Доказати да важи:

a)
$$(A \cup B) \times C = (A \times C) \cup (B \times C);$$

$$6) (A \cap B) \times C = (A \times C) \cap (B \times C);$$

$$\slash$$
B) $(A \setminus B) \times C = (A \times C) \setminus (B \times C);$

r)
$$A \times (B \setminus C) = (A \times B) \setminus (A \times C);$$

- д) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D);$
- $\mathfrak{h}) \ (A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D).$
- **44.** Унија два скупа има 15 елемената, један од њих има 8, а њихов пресек 5 елемената. Колико елемената има други скуп?
- **45.** У преводилачкој агенцији раде 52 преводиоца. Међу њима 20 говори руски, 19 француски, а 35 енеглески. Даље, познато је да руски и енглески говори 11 преводилаца, француски и руски 7, а француски и енглески њих 9.
 - а) Колико преводилаца говори сва три језика?
 - б) Колико њих говори само руски?
- 46. Сваки ученик једне школе учи бар један од три страна језика (енглески, руски, француски) и то: 280 ученика учи енглески језик, 230 француски, 230 руски, 120 енглески и француски, 110 енглески и руски, 80 учи француски и руски, а 50 ученика учи сва три језика. Колико у тој школи има ученика?

1.4. РЕЛАЦИЈЕ

Eинарна релација скупа A је сваки подскуп ρ скупа $A \times A$. Ако је $(a,b) \in \rho$ (ово се пите и $a\rho b$) кажемо да су елементи a и b у релацији ρ .

Релација скупа А је:

- (P) рефлексивна, ако је $(\forall x \in A)(x \rho x)$;
- (C) симетрична, ако је $(\forall x, y \in A)(x\rho y \Rightarrow y\rho x)$;
- (A) антисиметрична, ако је $(\forall x, y \in A)(x \rho y \land y \rho x \Rightarrow x = y);$
- (T) транзитивна, ако је $(\forall x, y, z \in A)(x\rho y \land y\rho z \Rightarrow x\rho z)$.

Релацију \sim која је рефлексивна, симетрична и транзитивна називамо релација еквиваленције. Ако је \sim релација еквиваленције на скупу A, тада скуп $C_a = \{x | x \in A, a \sim x\}$, где је $a \in A$ називамо класом еквиваленције елемента a. При томе важи:

- $(1) \ \forall a \in A \ C_a \neq \emptyset;$
- (2) ако је $a \sim b$, онда је $C_a = C_b$;
- (3) ако није $a \sim b$, онда је $C_a \cap C_b = \emptyset$.

Релацију \prec која је рефлексивна, антисиметрична и транзитивна називамо релацијом поретка.

47. На скупу $\{a, b, c\}$ дата је релација $\rho = \{(a, a), (a, b), (b, b), (c, c)\}$. Направити таблицу и нацртати граф релације ρ .

48. Да ли је релација ho одређена таблицом

релација еквиваленције или поретка?

49. У скупу $\{0, 1, 2, 3, 4, 5\}$ уведена је релација

$$x \rho y \Leftrightarrow (x + y = 3 \land x - y = 1).$$

Нацртати таблицу ове релације.

50. У скупу $\{0,1,2,3,4\}$ дефинисана је релација

$$x \rho y \Leftrightarrow y = x - 1.$$

Одредити елементе релације ρ , нацртати њен граф и таблицу. Која од съојстава рефлексивност, симетрија, транзитивност има релација ρ ?

51 У скупу {1,2,3,4,5,6,7,8,9} уведене су релације:

a)
$$x \rho y \Leftrightarrow x + y = 8$$
;

$$6) x \rho y \Leftrightarrow x = 3y.$$

Нацртати граф релације и испитати која од својстава рефлексивност, симетрија, антисиметрија, транзитивност имају ове релације.

- **52.** Испитати која од својстава рефлексивности, симетричности, антисиметричности и транзитивности имају релације:
 - a) $x\rho y \Leftrightarrow x^2 xy + y^2 = 1$;

$$6) x \rho y \Leftrightarrow x^2 \leq y^2$$

у скупу реалних бројева.

53. На скупу $A = \{0, 1, 2, 3\}$ дефинисана је релација ρ :

- a) $x \rho y \Leftrightarrow x + y < 2$;
- $6) x \rho y \Leftrightarrow x + y > 3;$
- B) $x \rho y \Leftrightarrow x + y \leq 2$;
- r) $x \rho y \Leftrightarrow x + y \geq 3$.

Направити таблицу за релацију ρ и испитати која од својстава: рефлексивност, симетрија, антисиметрија и транзитивност има релација ρ .

54.) На скупу $A = \{1, 2, 3, 4\}$ дефинисана је релација:

a) $x \rho y \Leftrightarrow x > y + 1$;

6)
$$x \rho y \Leftrightarrow x < y - 1$$
.

Направити таблицу за релацију ρ и испитати која од својстава: рефлексивност, симетрија, антисиметрија и транзитивност има релација ρ .

55. У скупу једначина

$$J = \left\{ x + 2 = 0, \ x + 1 = 0, \ 2x + 4 = 0; \ \frac{x}{2} = \frac{-1}{2}, \ x^2 = 4, \ 2x + 2 = -2 \right\}$$

уведена је релација $j_1 \sim j_2 \Leftrightarrow$ једначине j_1 и j_2 су еквивалентне. Доказати да је \sim релација еквиваленције и одредити класе.

56. У скупу $\{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$ дефинисана је релација $x \rho y \Leftrightarrow |x| = |y|$. Доказати да је ρ релација еквиваленције и одредити класе.

1.5. ФУНКЦИЈЕ

Пресликавање (функција) скупа A у скуп B у ознаци $f:A\to B$ је релација $f\subset A\times B$ која има својство да је сваки елемент скупа A у релацији f са тачно једним елементом скупа B.

За пресликавање $f:A \to B$ кажемо да је 1-1 ако важи

$$(\forall x_1, x_2 \in A)(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)),$$

или, што је еквивалентно

$$(\forall x_1, x_2 \in A)(f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$$

Пресликавање $f: A \to B$ је HA ако

$$(\forall y \in B)(\exists x \in A)(y = f(x)).$$

Ако су $f:A\to B$ и $g:B\to C$ пресликавања, тада је $g\circ f:A\to C$ производ (композиција) пресликавања f и g и дефинисан је условом

$$(\forall x \in A)((g \circ f)(x) = g(f(x))).$$

Нека је $f\colon A\to B$ 1-1 и НА пресликавање. Тада постоји инверзно пресликавање $f^{-1}\colon B\to A$, тако да је

$$(f^{-1}\circ f)(x)=x.$$

- 57. Дат је скуп $A = \{a, b, c, d\}$.
 - а) Да ли су скупови

$$f = \{(a, b), (b, a), (c, d), (d, c)\}$$
 M
$$g = \{(a, c), (b, a), (c, a), (d, d)\}$$

пресликавања А у А?

- б) Одредити f(f(a)), f(f(b)), f(f(f(d))), g(f(g(a))), g(g(c)).
- в) Решити једначину f(x) = g(x).

58. Нека су f, g функције

$$f(x) = 2 + 3x,$$
 $g(x) = 2 + x,$ $x \in \mathbb{N}$.

- а) Наћи f(1), f(2), g(1), g(2), f(g(1)), g(f(1));
- б) Решити једначине f(x) = 17, f(x) = g(x), g(g(x)) = 10;
- в) Наћи f(2x), g(3x), g(f(x)), f(g(x)).
- **59.** Нека је f(x) = 2x 1. Одредити:

a)
$$f(0);$$
b) $f(\frac{1}{2} + \frac{1}{3});$
b) $f(\frac{2}{3} - \frac{1}{6} + \frac{3}{2});$
c) $f(1 - \frac{9}{16});$
d) $f(\frac{16}{3} : (8 + \frac{1}{3}));$
b) $f(\frac{1,5-2,2}{2\sqrt{0.49}});$
e) $f(x+1);$
w) $f(x-1);$
3) $f(2x).$

- **60.** Одредити сва пресликавања скупа $\{a, b\}$ у скуп $\{1, 2, 3\}$ и сва пресликавања скупа $\{1, 2, 3\}$ у скуп $\{a, b\}$.
- **61.** Нека је \mathcal{A} скуп свих дужи у равни, а \mathcal{B} скуп свих тачака те равни и $f: \mathcal{A} \to \mathcal{B}$ дефинисано тако да се свакој дужи AB придружи средиште те дужи. Да ли је f 1-1 и HA?
- 62. Нека је $f: \mathbb{N} \to \mathbb{N}$, тако дефинисано да је f(x) збир цифара броја x.
 - а) Одредити: f(5), f(12), f(253), f(f(253));
 - б) решити једначину f(x) = 5;
 - в) да ли је *f* 1-1 и НА?
- **63.** Нека је $A = \{1, 2, 3, 4\}$ и $f: A \to A$. Које од следећих функција су 1-1, а које НА:

a)
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$
 6) $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix}$ B) $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$
r) $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 2 \end{pmatrix}$ g) $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$ 5) $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 3 \end{pmatrix}$

64. Дата су пресликавања:

$$f = \begin{pmatrix} a & b & c & d \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad g = \begin{pmatrix} a & b & c & d \\ 2 & 4 & 1 & 3 \end{pmatrix} \qquad h = \begin{pmatrix} a & b & c & d \\ 4 & 3 & 2 & 1 \end{pmatrix}$$
$$j = \begin{pmatrix} 1 & 2 & 3 & 4 \\ c & a & d & b \end{pmatrix} \qquad k = \begin{pmatrix} 1 & 2 & 3 & 4 \\ b & c & d & a \end{pmatrix} \text{ if } l = \begin{pmatrix} 1 & 2 & 3 & 4 \\ d & c & b & a \end{pmatrix}$$

Одредити инверзна пресликавања $f^{-1}, g^{-1}, h^{-1}, j^{-1}, k^{-1}$ и l^{-1} .

—65. Нека је $f: \mathbf{R} \to \mathbf{R}$. Доказати да је f 1-1 и НА пресликавање и одредити инверзну функцију f^{-1} :

a)
$$f(x) = 7x - 1;$$
 6) $f(x) = 2x + 3;$ B) $f(x) = \frac{5x - 2}{4};$ r) $f(x) = 5x - \frac{1}{2};$ $f(x) = \frac{x}{3} - \frac{1}{12};$ b) $f(x) = \frac{x + 2}{3}.$

66. Испитати да ли следеће функције $f: \mathbf{R} \to \mathbf{R}$ имају својства 1-1 и НА.

a)
$$f(x) = x^2 + 2x + 1$$
; 6) $f(x) = \frac{x-3}{x+2}$, $x \neq -2$; B) $f(x) = x^2 - 4x + 5$.

67. Ако је f(x) = 2x + 5, g(x) = 5x + 3, одредити $f \circ f$, $f \circ g$, $g \circ f$ и $g \circ g$.

68. Нека је f(x) = 1 + 2x, $g(x) = 1 + x^2$. Наћи $f \circ g$, $g \circ f$, $g \circ g$, $g^3 = (g \circ g \circ g)$, $f \circ q^3$.

769. Нека су $f, g: \mathbf{R} \to \mathbf{R}$

ов. Нека су
$$f,g: \mathbf{R} \to \mathbf{R}$$
 (б) $f(x) = x - 1, \ g(x) = |x|;$ (б) $f(x) = x + 1, \ g(x) = x^2.$ Одредити $(f \circ g)(0), \ (g \circ f)(1), \ f \circ g, \ g \circ f, \ f \circ f, \ g \circ g.$

70. Нека је $f(x)=1-x,\ g(x)=rac{1}{1-x},\ h(x)=rac{x}{x-1},\ x\in {\mathbb R}\setminus\{1\}$. Доказати да је

a)
$$g \circ h = f$$
;

$$\mathbf{B})\ ((f \circ g) \circ h)(x) = x;$$

$$\Gamma) ((g \circ f) \circ h)(x) = \frac{x-1}{x}, x \neq 0.$$

71. Ако је $f(x) + 3f\left(\frac{1}{x}\right) = x^2, x \neq 0$, израчунати f(2).

72. Решити "функционалне" једначине над R:

a)
$$g\left(\frac{3x-1}{x}\right) = 2x;$$
 6) $f(1-x) = x+1;$ B) $h(x^2) = \frac{4}{x}.$

6)
$$f(1-x) = x + 1;$$

$$h(x^2) = \frac{4}{x}$$

73. Одредити f(x) ако је:

a)
$$f(\frac{x}{2} - 3) = x + 1;$$

$$f\left(\frac{x}{3}-1\right)=x-8;$$

B)
$$f\left(\frac{x}{5}+1\right) = x+4;$$
 r) $f\left(\frac{x}{7}-3\right) = x-19;$

$$\mathbf{r}) \ f\left(\frac{x}{7}-3\right)=x-19;$$

1.6. ЕЛЕМЕНТИ КОМБИНАТОРИКЕ

Нека су $A_1, A_2, \dots A_n$ непразни коначни скупови. Означимо са

|A| број елемената скупа A.

 Π равило збира. Ако је за све $i \neq j$ $A_i \cap A_j = \emptyset$, тада је

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|.$$

Правило производа. Број елемената Декартовог производа је

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdots |A_n|.$$

74. а) Колико се троцифрених бројева завршава цифром 3?

- б) Колико има троцифрених бројева дељивих са 5?
- **75.** Колико има четвороцифрених бројева, код којих је збир цифара 10, а цифра десетица једнака 5?
- **76.** На правој p дато је пет разних тачака A, B, C, D, E. Колико има и које су то дужи чији су крајеви дате тачке?
- 77. Нека је $A = \{m, n, p\}$ и $B = \{a, b\}$. Колико има различитих пресликавања скупа A у скуп B?
- 78. У купеу једног воза налазе се две клупе, окренуте једна према другој са по пет места. Од десет путника, четири жели да седи у смеру кретања воза, троје у супротном смеру, а преосталима је свеједно. На колико начина се путници могу распоредити на места у купеу?
- **79.** Дат је скуп тачака међу којима никоје три тачке нису колинеарне. Колико тачака садржи тај скуп ако је број правих одређених тим тачкама два пута већи од броја тачака?
- 80. Колико има десетоцифрених бројева дељивих са 25, код којих се цифре не понављају, не почињу цифром 0, а цифра стотина им је:
 - а) 0 или 5; б) 2 или 3?
- 81. Из града A у град B води 6 путева, а из града B у град C три пута. Из града A може се стићи у C једино ако се пролази кроз B. На колико различитих начина може да се путује из града A у град C?
- 82. Да би се стигло из места A до места D може се проћи кроз место B или кроз место C. Од места A до B воде три директна пута, од A до C четири, од B до C три, од B до D два и од C до D три директна пута. Колико има могућих путева од A до D?
- 83. Од трга A до трга B воде две једносмерне улице пресечене са 7 двосмерних улица. На колико начина возач може стићи са трга A на трг B?
- **84.** Нека скуп A има n елемената, а скуп B m елемената $(m, n \in \mathbf{Z} \ m, n \ge 0)$. Колико елемената могу имати скупови $A \cup B, A \cap B, A \setminus B, B \setminus A, A \times B$?
- 85. Дата је таблица:

ТРОУГАО РОУГАО ОУГАО УГАО ГАО

На колико разних начина се може прочитати реч "троугао" ако се чита по једно слово слева на десно или одозго на доле?

86. На колико начина се на шаховску таблу може поставити 8 различитих топова тако да се никоја два међусобно не туку (никоја два се не налазе у истој врсти или истој колони)?

- 87. Колико различитих делилаца има број 2400?
- 88. Колико има петоцифрених бројева који се завршавају двема истим цифрама?
- 89. Колико има различитих аутомобилских таблица које се састоје из два слова азбуке (од 30 слова) и иза њих четвороцифреног броја (од 0000 до 9999)?
- 90. Колико има петоцифрених бројева дељивих са 4, а у чијим записима не учествују цифре 0, 2, 4, 6?
- 91. У једној комисији има седам чланова. На колико начина се могу изабрати председник, секретар и записничар те комисије?
- **92.** Дати су четворочлани скупови $A = \{a, b, c, d\}$ и $M = \{1, 2, 3, 4\}$. Колико има 1-1 и НА пресликавању $f: A \to M$?
- 93. У равни је дато 12 тачака обијених плавом и 9 обојених црвеном бојом, од којих никоје три не припадају једној правој. Колико има троуглова са теменима у датим тачкама код којих нису сва три темена исте боје?
- 94. Дате су три праве и на свакој од њих по пет тачака, Колико највише има троуглова чија су темена дате тачке?
- 95. У равни α су дата два скупа паралелних правих: a_1, a_2, \ldots, a_{12} и b_1, b_2, \ldots, b_5 . Праве првог скупа секу праве другог скупа. Колико је различитих паралелограма одређено овим правим?
- **96.** Колико на шаховској табли (квадратна мрежа 8 × 8) има правоугаоника?
- 97. На колико начина 8 ученика може сести на:
 - а) 6 различитих столица;
- б) 12 различитих столица?
- 98. Колико има четвороцифрених природних бројева написаних помоћу цифара 0, 1, 3, 5, 7, 9 таквих да се:
 - а) цифре могу понављати;
- б) цифре не могу понављати;
- в) цифре могу понављати и број је дељив са 5;
- г) цифре не могу понављати и број је дељив са 5?
- 99. Колико има шестоцифрених природних бројева код којих је прва цифра паран, друга непаран број, трећа цифра број дељив са три, четврта прост, пета сложен број и последња цифра број који је дељив са 5? (Напомена. Бројеви 0 и 1 нису ни прости ни сложени.)
- **100.** Колико има 100-цифрених природних бројева који се могу записати помоћу цифара 0, 2 и 3?
- 101. У једној држави регистарске таблице на аутомобилима се састоје од шестоцифреног броја (од 000000 до 999999) и једног великог штампаног слова које се исто пише и чита и ћирилицом и латиницом, осим слова "О". Колико различитих регистарских таблица може постојати у тој држави?

- 102. Колико има троцифрених бројева код којих је прва цифра паран број, а последња цифра непаран број?
- **103.** На полици се налази 15 књига, од којих су 7 на руском, 3 на енглеском и 5 на француском језику. На колико различитих начина се могу распоредити књиге на полици, ако се књиге на истом језику морају налазити једна уз другу?
- **104.** Колико се шестоцифрених бројева може саставити од цифара 0, 1, 2, 3, 4, 5 уз услов да се свака цифра појављује тачно једном и да су парне цифре једна уз другу. (Напомена: 0 је парна цифра.)

1.7. ДОДАТАК УЗ ПРВУ ГЛАВУ

- **105.** Испитујући да ли за неке вредности својих исказних слова дата формула може имати истинитосну вредност \bot , доказати да је та формула таутологија:
 - a) $((p \Rightarrow q) \Rightarrow r) \Rightarrow ((r \Rightarrow p) \Rightarrow (q \Rightarrow p));$
 - б) $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r));$
 - B) $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r));$
 - $\Gamma) (p \Rightarrow q) \Rightarrow ((p \lor r) \Rightarrow (q \lor r));$
 - $\not\exists) ((p_1 \Rightarrow p_2) \land (p_2 \Rightarrow p_3) \land \ldots \land (p_{n-1} \Rightarrow p_n)) \Rightarrow (p_1 \Rightarrow p_n), n \geq 2, n \in \mathbb{N};$
 - $\mathfrak{H}(p) (p \Rightarrow r) \Rightarrow ((q \Rightarrow r) \Rightarrow ((p \lor q) \Rightarrow r)).$
- **106.** Доказати да су следеће формуле таутологије $(n \in \mathbb{N})$:
 - a) $[p \Rightarrow (p_1 \lor p_2 \lor \cdots p_n)] \Leftrightarrow [(p \Rightarrow p_1) \lor (p \Rightarrow p_2) \lor \cdots (p \Rightarrow p_n)];$
 - 6) $[p \Rightarrow (p_1 \land p_2 \land \cdots p_n)] \Leftrightarrow [(p \Rightarrow p_1) \land (p \Rightarrow p_2) \land \cdots (p \Rightarrow p_n)];$
 - B) $[(p_1 \lor p_2 \lor \cdots p_n) \Rightarrow p] \Leftrightarrow [(p_1 \Rightarrow p) \land (p_2 \Rightarrow p) \land \cdots (p_n \Rightarrow p)];$
 - $\Gamma) \ [(p_1 \land p_2 \land \cdots p_n) \Rightarrow p] \Leftrightarrow [(p_1 \Rightarrow p) \lor (p_2 \Rightarrow p) \lor \cdots (p_n \Rightarrow p)].$
- 107. Доказати да је формула
- $(p \lor q) \land (q \lor r) \land (r \lor p) \Leftrightarrow (p \land q) \lor (q \land r) \lor (r \land p)$

таутологија и користећи је решити систем једначина $xy=0,\ yz=0,\ zx=0.$

108. Операција "симетрична разлика" скупова дефинише се на следећи начин:

$$A\triangle B=(A\setminus B)\cup (B\setminus A).$$

Доказати да за ову операцију важи:

- a) $A \triangle B = (A \cup B) \setminus (A \cap B);$
- б) $A \triangle B = B \triangle A$;

 $\mathbf{B}) \ A \triangle A = \emptyset;$

 $\Gamma) \ A\triangle(B\triangle C) = (A\triangle B)\triangle C;$

д) $A\triangle(A\triangle B)=B$;

- $\mathfrak{h}) \ A \cup B = (A \triangle B) \triangle (A \cap B);$
- e) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$;
- ж) $(A_1 \cup A_2) \triangle (B_1 \cup B_2) \subset (A_1 \triangle B_1) \cup (A_2 \triangle B_2);$

- 3) $(A_1 \cap A_2) \triangle (B_1 \cap B_2) \subset (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$.
- 109. Наћи све скупове X за које је $A\Delta X = B$, ако је
 - a) $A = \{a, b, c, d\}, B = \{b, c, e\};$ 6) $A = \{a, c, d\}, B = \{b, c, d, e\}.$
- 110. Означимо са P(A) партитивни скуп скупа A тј. скуп свих подскупова скупа A: $P(A) = \{B|B \subset A\}$.
 - а) Одредити $P(\{1, 2\});$
 - б) Одредити $P(\emptyset), P(\{\emptyset\}), P(\{\emptyset, \{\emptyset\}\});$
 - в) Доказати $P(A \cap B) = P(A) \cap P(B)$;
 - г) Доказати $P(A) \cup P(B) \subset P(A \cup B)$.
- 111. Ако из $S\subset A\cup B$ следи $S\subset A$, или $S\subset B$, доказати да је $A\subset B$, или $B\subset A$.
- 112. Решити "скуповне једначине":
 - a) $\{1, 2\} \cap X = \{1, 2, 3\};$
- $6) \{1, 2\} \cup X = \{1, 2, 3\};$
- B) $\{1, 2, 3\} \cap X = \{1, 2\}.$
- **113.** Одредити све скупове X који задовољавају услове:
 - a) $X \setminus \{2\} \subset \{0,1\};$

- б) $\{0\} \subset \{0,1,2\} \setminus X$ и $X \subset \{0,1,2,3\}$.
- 114. Да ли су следећа тврђења тачна за све скупове A, B, C:
 - a) $A \in B \land B \in C \Rightarrow A \in C$;
- б) $A \subset B \land B \in C \Rightarrow A \in C$?
- 115. Да ли постоје такви скупови A, B, C да је $A \cap B \neq \emptyset, A \cap C = \emptyset$ и $(A \cap B) \setminus C = \emptyset$?
- **116.** Наћи све подскупове A и B скупа C тако да за сваки подскуп $X \subset C$ важи $X \cap A = X \cup B$.
- 117. На једном скупу, међу 20 учесника, 16 говори енглески, 15-француски, а 17-немачки језик. Доказати да бар осам учесника говори сва три језика.
- 118. У скупу $\mathbf{Z} \times \mathbf{Z}$ дефинисане су релације
 - a) $(a, b)\rho_1(c, d) \Leftrightarrow a + d = b + c;$
 - $6) (a, b)\rho_2(c, d) \Leftrightarrow ad = bc, b, d \neq 0.$

Доказати да су ρ_1 и ρ_2 релације еквиваленције и наћи класе.

- 119. У скупу целих бројева уведена је релација $a \equiv b \pmod{m} \Leftrightarrow m \mid a b \Leftrightarrow a b = m \cdot k$, где је $m \in \mathbb{N}$ и $k \in \mathbb{Z}$. Доказати да је конгруенција по модулу $m \pmod{m}$ релација еквиваленције и наћи класе.
- 120. Нека је ρ релација неког скупа A и нека је ρ^{-1} релација истог скупа дефинисана на следећи начин

$$x\,\rho^{-1}\,y \ \Leftrightarrow \ y\,\rho\,x, \ x,\,y \in A.$$

а) Ако је ρ релација еквиваленције, доказати да је и ρ^{-1} релација еквиваленције.

б) Ако је ρ релација поретка, доказати да је и ρ^{-1} релација поретка. **121.** Дат је неки скуп A и једна његова рефлексивна релација ρ , за коју важи:

$$(\forall x, y, z \in A) (x\rho z \land y\rho z \Rightarrow x\rho y).$$

Доказати да је тада

`a) ρ - симетрична;

б) ρ - транзитивна.

122. Дата је функција $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$. Испитати да ли је f бијекција (1-1 и НА пресликавање):

a)
$$f\left(\frac{2x-3}{x}\right) = \frac{4x-9}{2x-3};$$
 6) $f\left(\frac{3x}{2x+1}\right) = \frac{2x-1}{x};$
B) $f\left(\frac{5-2x}{4x}\right) = \frac{6x+25}{5-2x};$ r) $f\left(\frac{3x}{1-2x}\right) = \frac{1}{x}.$

123. Дата је функција $f: \mathbf{R} \to \mathbf{R}$,

a)
$$f(x) = \begin{cases} x+1, & x<0 \lor x>1 \\ x^2+1, & 0 \le x \le 1 \end{cases}$$
, 6) $f(x) = \begin{cases} x^2-1, & 0 \le x \le 1 \\ x-1, & x<0 \lor x>1 \end{cases}$;

Доказати да је f 1-1 и НА пресликавање и одредити $f^{-1}(x)$.

124. Дате су функције:

a)
$$f(x) = \begin{cases} 0, x < 0 \\ x, x \ge 0 \end{cases}$$
, $g(x) = \begin{cases} 0, x < 0 \\ -x^2, x \ge 0 \end{cases}$;

6)
$$f(x) = \begin{cases} x^2, & x \le 0 \\ 0, & x > 0 \end{cases}$$
, $g(x) = \begin{cases} x, & x \le 0 \\ 0, & x > 0 \end{cases}$.

Наћи $f \circ f$, $f \circ g$, $g \circ f$ и $g \circ g$.

125. Нека су $f: B \to C$ и $g: A \to B$ 1-1 и НА пресликавања. Доказати да је и $h = f \circ g: A \to C$ такође 1-1 и НА пресликавање.

126. Доказати да ако функција f(x) задовољава релацију

$$f\left(\frac{x}{x-1}\right) - 2f\left(\frac{x-1}{x}\right) = 0$$

тада је f(x) = 0 за све $x \neq 0, x \neq 1$.

127. Ако је:

a)
$$f\left(\frac{x+1}{x-2}\right) + 2f\left(\frac{x-2}{x+1}\right) = x$$
, наћи $f(x)$.

б)
$$f\left(\frac{x+1}{x-2}\right) + 3f\left(\frac{x-2}{x+1}\right) = x$$
, наћи $f(x)$.

128. Одредити $f \circ g$ и $g \circ f$, ако важи:

a)
$$f\left(\frac{1}{x}\right) - 2g\left(\frac{x-1}{x}\right) = x-2$$
, $f\left(\frac{1}{x}\right) + g\left(\frac{x-1}{x}\right) = x+1$, so $x \neq 0$;

6)
$$f\left(\frac{x}{x-1}\right) + g(2x+1) = 2x$$
, $f\left(\frac{x}{x-1}\right) - g(2x+1) = x$, so $x \neq 1$.

- 129. Колико има четвороцифрених бројева који се записују са највише два знака?
- 130. Колико има седмоцифрених бројева чији је збир цифара паран?
- 131. У једном насељу свака улица сече сваку улицу и не постоје три улице које се секу у истој раскрсници. Број раскрсница је 21.
 - а) Колико има улица у том насељу?
- б) Колико има стамбених четврти ограничених са свих страна улицама?
- 132. Колико има целих бројева између 100 и 10 000 код којих су гачно три цифре једнаке?