SANYO PHC-25

Programmation BASIC

Version du 2025-06-05

Dédicace à tous ceux qui préserve le patrimoine informatique. Un grand merci à Olipix qui a lancé les GAME JAM.
on grand more a output qui a tance les of 11412 of 1141.

Table des matières

Table des matières	5
Introduction	9
ABS	10
ASC	11
CHR\$	12
CLEAR	13
CLOAD	14
CLOAD?	15
CLS	16
COLOR	17
CONSOLE	21
CONT	22
COS	23
CSAVE	24
CSRLIN	25
CTOFF	26
CTON	27
DATA	28
DEFFN	29
DIM	30
ELSE	31
END	32
EXEC	33
EXP	34

FRE	35
FOR	36
GOSUB	37
GOTO	38
IF	39
INKEY\$	40
INP	41
INPUT	42
INPUT#	43
INT	44
KEY	45
LCOPY	46
LEFT\$	47
LEN	48
LET	49
LINE	50
LIST	52
LLIST	53
LOCATE	54
LOG	55
LPOS	56
LPRINT	57
MID\$	58
NEW	59
NEXT	60
ON GOSUB	61

ON GOTO	62
OUT	63
PAINT	64
PEEK	65
PLAY	66
POINT	68
POKE	69
POS	70
PRESET	71
PRINT	72
PRINT#	73
PSET	74
READ	75
REM	76
RESTORE	77
RETURN	78
RIGHT\$	79
RND	80
RUN	81
SCREEN	82
SCREEN 1	83
SCREEN 2	84
SCREEN 3	85
SCREEN 4	86
SCRIN	87
SGN	88

SIN	89
SLOAD	90
SOUND	91
SPC	92
SQR	93
SSAVE	94
STICK	95
STOP	96
STRIG	97
STR\$	98
TAB	99
TAN	100
TIME	101
THEN	102
USR	103
VAI	104

Introduction

Reprise des documentations sur le BASIC du SANYO PCH-25.

La documentation étant peu loquace, le but est d'avoir un document le plus juste et le plus complet possible.

Les tests de syntaxes et autres ont été effectuées pour la plupart sur émulateur.

D'autres ont pu être fait sur des machines réelles.

Le second but de ce document c'est la GAME JAM 2025 sur SANYO PHC-25.

De façon à fournir une bonne base de documentation pour pouvoir créer un logiciel.

Il est toujours possible de participer aux GAME JAM après coup.

C'est d'ailleurs très utile pour compléter les logithèques de ces machines obscures.

La programmation du Z80 n'est pas abordée ici.

Toutefois, cette documentation essaye d'expliquer le How To pour un programme binaire au travers les instructions pour le langage machine.

La documentation étant quasi nulle sur le sujet.

Pour les INP et OUT du SANYO PHC-25 nous aimerions bien avoir plus d'indication.

ABS

Objet

Renvoie la valeur absolue de l'argument fourni.

Syntaxe

ABS(x)

x : Nombre.

Exemple

10 PRINT ABS(9*(-2))

ASC

Objet

Renvoie le code ASCII du premier caractère d'une chaîne de caractères.

Syntaxe

ASC(a\$)

a\$: Chaîne de caractère.

Exemple

```
10 A$="TEST"
20 PRINT ASC(A$)
```

Affiche 84 car la valeur ASCII du T est 84.

Mots clés associés

CHR\$

CHR\$

Objet

Génère un caractère de code ASCII égal à la valeur fournie en argument. Cette fonction est utilisée pour envoyer un caractère spécial.

Syntaxe

CHR\$(x)

x : nombre entier de 20 à 127.

Exemple

PRINT CHR\$(42) PRINT CHR\$(20)+CHR\$(49)

Mots clés associés

ASC, LEFT\$, MID\$, RIGHT\$, STR\$, VAL

CLEAR

Objet

Remettre à zéro toutes les variables numériques et à valeur nulle toutes les valeurs alphanumériques.

Syntaxe

CLEAR I [J]

- I : Taille de la mémoire pour y stocker des données. Obligatoire.
- J : Optionnel. Limite supérieure de la mémoire pour le programme BASIC.

Exemple

CLEAR 400,&hE050

400 caractères réservé.

Limite de mémoire supérieur &hE050, adresse au-delà de laquelle on met un programme en langage machine.

Mots clés associés

FRE

CLOAD

Objet

Charger en mémoire un programme ou un fichier existant sur une cassette. CLOAD efface le programme précédent avant de charger celui qui est sur la cassette.

Syntaxe

CLOAD"nom"

nom : Le nom est une chaîne dont les six premiers caractères sont significatifs et doivent être identiques au nom sous lequel le programme a été sauvegardé par CSAVE.

Le guillemet de fin n'est pas obligatoire.

CLOAD seul chargera le premier programme de la cassette.

Exemple

CLOAD

CLOAD"othelo"

Mots clés associés

CLOAD?

CLOAD?

Objet

Une comparaison est faite entre le programme en mémoire et celui qui est sur la cassette.

Syntaxe

CLOAD?"nom"

Nom : nom du programme à tester. Seul les 6 premier caractères compte.

Exemple

CLOAD?"prog"

CLS

Objet

Syntaxe

Exemple

Mots clés associés

SCREEN

COLOR

Objet

Désignation de la couleur des caractères, ou graphiques affichés sur l'écran. Même si on désigne les mêmes chiffres, la couleur affichée est différente selon le mode écran choisi (1,2,3,4).

Syntaxe

COLOR a,b,c

a : défini selon les modes la couleur du texte,

b : défini selon les modes 2, 3 et 4, la couleur de fond,

c : défini la palette de couleurs utilisées dans les modes écran 1,2,3 et 4.

Mode 1

Dans ce mode, la couleur de l'écran est désignée par les valeurs a et c sans tenir compte de b. La couleur de l'écran entier est changée en exécutant l'instruction COLOR et ensuite CLS. Il n'y a pas de graphique possible en mode 1. Ce mode est textuel, de type console. Les paramètres a et c peuvent être utilisés seul ou ensemble.

a	c	Caractère	Fond
1	1	Vert clair	Vert
2	1	Vert	Vert clair
1	2	Blanc	Orange
2	2	Orange	Blanc

Exemples:

COLOR ,,1

Passe la console sur la palette 1, Vert et Vert clair. Le changement de palette affecte tout l'écran.

COLOR 1

Passe le texte en mode normal.

COLOR 2

Passe le texte en mode inverse vidéo.

```
COLOR 1,1,1
COLOR 1,2,1
```

Ces 2 instruction on le même résultat, le paramètre b est ignoré.

Mode 2

La valeur de a définie la couleur des caractères. Il y a 4 couleurs disponibles. La valeur de b définie la couleur de fond de l'écran. Il y a 9 couleurs disponibles. La valeur de c définie la palette de couleur utilisée. Il y a 2 palettes disponibles.

Préalable:

SCREEN 2,1,1

Ci-dessus, le mode 2 est appliqué à l'écran 1 et est affiché.

NB: Le PHC-25 dispose de la possibilité d'avoir 2 écrans au détriment de l'espace mémoire.

Le choix de la palette se fait via la valeur de c.

Palette no 1:

a	b	c	Caractères	Fond	Graphiques
0	0	1	Vert	Noir	Noir
1	1	1	Vert	Vert	Vert
2	2	1	Vert (inversé)	Jaune	Jaune
3	3	1	Orange	Bleu	Bleu
4	4	1	Orange inversé)	Rouge	Rouge
5	5	1	Orange inversé)	Blanc	Blanc
6	6	1	Orange inversé)	Bleu clair	Bleu clair
7	7	1	Orange inversé)	Violet	Violet
8	8	1	Orange inversé)	Orange	Orange

Exemple:

COLOR ,,1

Passe sur la palette 1, ceci affecte tout l'écran.

Palette no 2:

a	b	c	Caractères	Fond	Graphiques
0	0	2	Orange	Noir	Noir
1	1	2	Orange	Blanc	Blanc
2	2	2	Orange (inversé)	Bleu clair	Bleu clair
3	3	2	Vert	Violet	Violet
4	4	2	Vert (inversé)	Orange	Orange
5	5	2	Vert (inversé)	Vert	Vert
6	6	2	Vert (inversé)	Jaune	Jaune
7	7	2	Vert (inversé)	Bleu	Bleu
8	8	2	Vert (inversé)	Rouge	Rouge

Exemple:

```
COLOR ,,2
```

Passe sur la palette 2, ceci affecte tout l'écran.

Exemples:

```
1000 SCREEN 2,1,1
1010 COLOR ,,1
1020 CLS
1030 PSET (120,120),3
1040 LINE(12,12)-(48,48),2,BF
1050 LOCATE 5,12:PRINT"Hello World!"
9000 GOSUB 9980
9910 END
9980 K$="":K$=INKEY$:IF K$="" THEN 9980
9990 RETURN
```

Mode 3

La valeur de a définie la couleur des caractères. Il y a 4 couleurs disponibles. La valeur de b définie la couleur de fond de l'écran. Il y a 5 couleurs disponibles. La valeur de c définie la palette de couleur utilisée. Il y a 2 palettes disponibles.

NDR: La documentation originale est insuffisante.

Mode 4

La valeur de a définie la couleur des caractères. Il y a 2 couleurs disponibles. La valeur de b définie la couleur de fond de l'écran. Il y a 2 couleurs disponibles. La valeur de c définie la palette de couleur utilisée. Il y a 2 palettes disponibles.

a	b	c	Caractères	Fond	Graphiques
1	0	1	Vert	Noir	Vert
0	1	1	Noir	Vert	Noir
1	0	2	Blanc	Noir	Blanc
0	1	2	Noir	Blanc	Noir

Exemple:

COLOR ,,1

Passe sur la palette 1, ceci affecte tout l'écran.

Addendum

Les valeurs a, b, c, peuvent varier de 0 à 255 avec des effets de bord selon le mode choisi.

Mots clés associés

SCREEN, CLS,

CONSOLE

Objet

Désigne les limites de déplacement vers le bas et le haut de l'écran. Seules les lignes désignées vont scroller ou être effacées.

Syntaxe

CONSOLE a,b a : ligne de départ b : nombre de ligne (>0)

Exemple

```
10 CLS
20 PRINT "TITRE"
30 CONSOLE 1,15
40 CLS
```

Le titre n'est pas effacé par le CLS de la ligne 40

Mots clés associés

CLS,

CONT

Objet

Syntaxe

Exemple

Mots clés associés

END, STOP

COS

Objet

Le cosinus de X exprimé en radians. Le résultat est donné en simple précision.

Syntaxe

COS(x)

X : angle en radians.

Exemple

PRINT COS(0.4)

Affichera 0.921060995.

Mots clés associés

SIN, TAN

CSAVE

Objet

Syntaxe

Exemple

CSRLIN

Objet

Obtient la ligne de la position du curseur.

Syntaxe

CSRLIN

Exemple

```
10 LOCATE 12,7
20 PRINT CSRLIN
```

Le curseur est en position colonne 12, ligne 7, le programme affichera 7.

Mots clés associés

LPOS, POS

CTOFF

Objet

Fermer l'interrupteur de commande à distance du magnétophone (REMote Control) arrêtant ainsi le défilement de la cassette.

Syntaxe

CTOFF

Exemple

Mots clés associés

CTON,

CTON

Objet

Mettre le magnétophone en marche dans le cas ou la touche PLAY est enfoncée.

La commande à distance du magnétophone est enclenchée par cette commande, démarrant ainsi la cassette.

Vérifier que la touche PLAY du magnétophone est bien enclenchée.

Syntaxe

CTON

Exemple

Mots clés associés

CTOFF,

DATA

Objet

Utilisé pour enregistrer dans un programme des valeurs numériques et des caractères constants qui seront appelés par des instructions READ.

Les chaines de caractères doivent être encadrées de guillemets

Les lignes DATA peuvent se situer n'importe où dans le programme.

Syntaxe

DATA ...

Exemple

```
10 FOR I=1 TO 3: READA$(I): NEXT I
20 FOR I=1 TO 3: READB(I): NEXT I
30 FOR I=1 TO 3: PRINT A$(I);"=";B(I);"F": NEXT I
100 DATA"PAIN","VIN","JAMBON",2,6.50,10
```

Mots clés associés

READ, RESTORE

DEFFN

Objet

Définir une fonction écrite par l'utilisateur et lui donner un nom.

NDR : La documentation indique qu'il serait possible d'avoir N paramètre séparé par une virgule. Apparemment ce n'est pas fonctionnel, il faudrait approfondir le sujet.

Syntaxe

```
DEF FN <nom>(x)=<fonction>
```

nom : le nom donné à la fonction.

x : le paramètre.

fonction : la formule de la fonction.

Exemple

```
1000 REM
1010 DEF FN SEC(X)=1/COS(X): REM secante
1020 DEF FN CSC(X)=1/SIN(X): REM cosecante
1030 DEF FN COT(X)=1/TAN(X): REM cotangente
1040 DEF FN SINH(X) = (EXP(X) - EXP(-X))/2: REM sinus hyperbolique
1050 DEF FN COSH(X) = (EXP(X) \sim EXP(-X))/2: REM cosinus hyperbolique
1060 DEF FN TANH(X)=EXP-(-X)/EXP(X)+EXP(-X))*2+1: REM tangente hyperbolique
1070 DEF FN SECH(X)=2/(EXP(X)+EXP(-X): REM secante hyperbolique
1080 DEF FN CSCH(X)=2/(EXP(X)-EXP(-X): REM cosecante hyperbolique
1090 DEF FN COTH(X) = EXP(-X) / (EXP(X) - EXP(-X) *2+1: REM cotangente hyperbolique
1100 DEF FN ARCSINH(X)=LOG(X+SQR(X*X+1): REM inverse sinus hyperbolique
1110 DEF FN ARCCOSH(X)=LOG(X+SQR(X*X-1): REM inverse cosinus hyperbolique
1120 DEF FN ARCTANH(X)=LOG((1+X)/(1-X))/2: REM inverse tangente hyperbolique
1130 DEF FN ARCSECH(X)=LOG((SQR(-X*X+1)+1/X): REM inverse secante hyperbolique
1140 DEF FN ARCCSCH(X)=LOG((SGN(X)*SQR(X*X+1)/X: REM inverse cosecante hyperbolique
1150 DEF FN ARCCOTH(X)=LOG((X+1)/(X-1))/2: REM inverse cotangente hyperbolique
```

Défini des fonctions supplémentaires de trigonométrie.

DIM

Objet

Préciser les valeurs maximales des indices pour les tableaux et réserver la place utile en mémoire. En même temps on assure la place utile pour ranger la mémoire.

Lorsqu'un tableau de variables est utilisé sans instruction DIM, la valeur maximum est considérée comme étant 10 lignes en 3 dimensions.

Une erreur apparaît si l'on fait appel à une valeur plus grande.

La valeur minimale est zéro.

Syntaxe

Exemple

10 DIM B\$(20,10), C(30), E(10,3,5,7)

ELSE

Objet

Syntaxe

Exemple

Mots clés associés

IF, THEN

END

Objet

Terminer l'exécution d'un programme.

L'instruction END peut être placée n'importe où dans le programme pour terminer l'exécution. Le message BREAK n'est pas imprimé lorsque l'instruction END est exécutée.

La commande CONT ne peut être utilisée après.

Syntaxe

END

Exemple

9990 END

Le programme s'arrête lorsqu'il atteint la ligne 9990.

Mots clés associés

BREAK, CONT,

EXEC

Objet

Le programme en basic ira à l'adresse indiquée par la variable X pour exécuter un programme écrit en langage machine (hexadécimal). Le programme aura été écrit grâce à l'instruction POKE et devra se finir automatiquement par la valeur (&HC9) (RET) qui permettra un retour au langage Basic.

Syntaxe

EXEC &Hx

X est l'adresse hexadécimale du programme à exécuter.

Exemple

```
10 CLEAR 100,&HF000
20 LET J=00
30 INPUT"valeur Hex";A$
40 N=VAL("&H"+A$)
50 IF A$="ZZ" OR A$="ZZ" THEN 90
60 POKE &HF000+(J),N
70 J=J+1
80 GOTO 30
90 END
100 CLS
110 EXEC &HF000
120 PRINT"SORTIE"
130 END
```

Valeur à passer : 3E, 41, 32, 8F, 60 C9

Le programme met le caractère A à la position 16,5 de l'écran (LOCATE).

Son adresse mémoire étant &h608F.

Mots clés associés

USR

EXP

Objet

Renvoie la valeur de e à la puissance x.

Syntaxe

EXP(x)

x : Puissance pour e.

Exemple

10 PRINT EXP(6)

Retourne: 403.428794.

FRE

Objet

Retourne la valeur de la mémoire disponible.

Syntaxe

FRE(x)

 \mathbf{x} :

FRE(x\$)

x\$:

Exemple

```
10 PRINT FRE(x)
```

Nombre d'octets restant dans la mémoire pour le BASIC.

```
10 PRINT FRE(X$)
```

Nombre d'octets restant dans la mémoire pour les chaînes de caractères.

Mots clés associés

CLEAR

FOR

Objet

Syntaxe

FOR variable=X TO Y (STEP Z)

Exemple

Mots clés associés

NEXT, STEP, TO

GOSUB

Objet

Aller à un sous-programme et revenir.

Syntaxe

GOSUB adresse

adresse : numéro de ligne du sous-programme.

Exemple

1010 PRINT"BCD" 1020 GOSUB 1050 1030 PRINT"DEF" 1040 END 1050 PRINT"123" 1060 RETURN

Mots clés associés

ON, RETURN,

GOTO

Objet

Saut inconditionnel à une ligne qui a été désignée. Une erreur est signalée si la ligne désignée n'existe pas.

Syntaxe

GOTO adresse

adresse : ligne cible du saut inconditionnel.

Exemple

IF

Objet

Syntaxe

Exemple

Mots clés associés

THEN, ELSE

INKEY\$

Objet

Obtient le caractère de la touche lorsque l'on appuie sur le clavier. Permet de tester quelle touche a été appuyée.

Syntaxe

INKEY\$

Exemple

```
100 IF INKEY$= "" THEN GOTO 100
110 IF INKEY$<>"A" THEN GOTO 100
```

INP

Objet

Lecture d'un octet sur le port I (adresse de &H00 à &HFF).

Syntaxe

INP(x)

x : adresse du port de 0 à 255.

Exemple

PRINT INP(&H8F)

Renvoie la valeur du port &H8F.

Mots clés associés

OUT

INPUT

Objet

Syntaxe

Exemple

INPUT#

Objet

Lecture de données dans un fichier séquentiel et affectation des valeurs aux variables de la liste. Le numéro du fichier est le numéro associé au fichier au moment de son ouverture.

La liste contient le nom des variables où l'on doit affecter les données existantes sur le fichier. Il faut que les types concordent et il n'y a pas de point d'interrogation sur l'écran comme dans le "INPUT".

Lorsque l'on entre des données par l'intermédiaire du magnétophone, il est nécessaire d'enregistrer ces données par une instruction PRINT£

Syntaxe

INPUT#-n,val

n:

0 : clavier

1: magnétophone

Val : élément à lire, la donnée enregistrée doit correspondre au type.

Exemple

INT

Objet

Retourne le plus grand entier inférieur ou égal à X.

Syntaxe

INT(x)

x : nombre dont on veut l'entier.

Exemple

```
PRINT INT(99.99)
```

Renvoie 99.

PRINT INT(-32,12)

Renvoie -33, c'est bien la valeur inferieur du nombre passé en argument.

KEY

Objet

Les touches F1, F2, F3 et F4 sont reprogrammables en mode normal et en mode SHIFT. Ce qui donne 8 touches au total.

Une touche peut contenir 8 caractères exécutables au maximum.

Syntaxe

KEYn,char

Exemple

```
KEY1, "CONSOLE"
```

La touche F1 écrira « CONSOLE ».

```
KEY7, "CTON"+CHR$ (13)
```

La touche F3 (avec SHIFT) mettra le moteur du magnétophone en marche.

LCOPY

Objet

Envoi de l'information contenue sur l'écran vers l'imprimante. Aussi appelée "HARD COPY". Ne marche que sur imprimante graphique.

Syntaxe

LCOPY

Exemple

Mots clés associés

LPRINT

LEFT\$

Objet

Sélectionne le nombre spécifié de caractère à gauche de la chaîne fourni en argument.

Syntaxe

LEFT\$(A\$,x)

A\$: Chaîne de caractère sur laquelle on veut faire l'extraction.

x : nombre de caractère à extraire.

Si x vaut 0, renvoie une chaîne vide.

La valeur de x ne doit pas dépasser 255.

Si la chaîne est plus courte que le x spécifié, LEFT\$ renvoie toute la châine.

Exemple

LEN

Objet

Renvoie la longueur de la chaîne fournie en argument.

Syntaxe

LEN(A\$)

A\$: Chaîne dont on veut connaître la longueur

Exemple

```
10 D$ = "LES QUATRE SAISONS"
20 PRINT LEN(D$)
```

LET

Objet

La valeur de "expression" est substituée et devient une variable. En fait, le signe égal (=) suffit pour constituer l'affectation de la variable. L'instruction LET a le même but.

Syntaxe

LET NomVariable = Expression

Exemple

10 LET A=B+1

LINE

Objet

Relier les points par une ligne ou les insérer dans un rectangle.

Deux points désignés par des références données sont reliés par une ligne qui a une couleur désignée.

Lorsque "B" est désigné, un rectangle est dessiné utilisant les deux points comme angles opposés. De plus, si F est désigné, le rectangle est coloré par la couleur spécifiée ou celle de la dernière instruction COLOR.

Les définitions en ligne et en colonne sont assujetties à la définition du SCREEN (1,2, 3,4).

Syntaxe

LINE(X1,Y1)-(X2,Y2),(couleur),(BF)

X1 : coordonnées sur l'axe horizontale

Y1: coordonnées sur l'axe verticale

X2 : coordonnées sur l'axe horizontale

Y2 : coordonnées sur l'axe verticale

Couleur:

B: Bordure, il faut utiliser la lettre « B »

F: Fill (remplissage), il faut utiliser la lettre «F»

Exemple

```
LINE (5,5)-(20,20), 3
```

Les points de coordonnées 5,5 et 20,20 sont reliés par une ligne de la couleur 3

```
LINE(5,5)-(20,20),3,B
```

Les points 5,5 et 20,20 appartiennent à un rectangle. Ils sont les deux points opposés.

```
Exemple : LINE(10,8)-(190,130),2,BF
```

Un rectangle colorié de couleur 2 passe par les points de coordonnées 10-8 et 190-130

Mots clés associés

COLOR, SCREEN

LIST

Objet

Syntaxe

Exemple

LLIST

Objet

Syntaxe

Exemple

LOCATE

Objet

Le curseur est déplacé vers une position sur l'écran qui est exprimée par une position horizontale et verticale.

Le coin gauche en haut de l'écran est 0,0.

La position horizontale va de 0 à 31 pour les modes 1,2,4 d'écran.

Toutefois, lorsque l'écran 3 est utilisé, la position horizontale s'arrête à 15.

La position verticale est de 0 à 15 pour tous les modes d'écran.

Syntaxe

LOCATE X,Y

X : Colonne. Y : Ligne.

Exemple

```
10 FOR I=1 TO 100
20 LOCATE 10,10
30 PRINT I
40 NEXT
```

LOG

Objet

Renvoie le logarithme népérien de l'argument. Cet argument doit être positif.

Syntaxe

LOG(x)

Exemple

PRINT LOG(5.4)

LPOS

Objet

Renvoie la position de tête du pointeur de ligne dans le tampon de sortie de l'imprimante.

Syntaxe

LPOS(X)

Exemple

LPRINT

Objet

Écriture de données sur l'imprimante.

Cette instruction est identique à PRINT, la sortie se fait sur l'imprimante connectée au PHC 25.

Syntaxe

LPRINT val

Val est soit du texte soit une valeur numérique.

Exemple

LPRINT"Bonjour."

MID\$

Objet

Renvoie une sous chaîne de la longueur spécifiée depuis un rang spécifié.

Syntaxe

MID\$(A\$,R,L)

R : Rang de début d'extraction.

L : Nombre de caractère à extraire.

R et L doivent être compris entre 0 et 255.

Exemple

```
10 A$= "BONJOUR"
20 PRINT MID$(A$,2,4)
```

Mots clés associés

LEFT\$, RIGHT\$

NEW

Objet

Syntaxe

Exemple

NEXT

Objet

Syntaxe

Exemple

Mots clés associés

FOR, STEP

ON GOSUB

Objet

Branchement multiple suivant la valeur de l'expression. C'est cette valeur qui détermine sur quelle ligne le programme sera branché.

Si la valeur est I, le programme sera branché sur I.

Si l'expression n'est pas intégrale (entière) les décimales seront arrondies.

Si la valeur de l'expression est zéro ou négative ou si elle est plus grande que les numéros de ligne, le programme passera à la ligne suivante.

Syntaxe

ON Valeur GOSUB L1,L2,Ln...

Valeur est la valeur sur laquelle doit s'effectué le test.

En fonction du résultat, branchement sur la ligne n.

Exemple

ON K GOSUB 100,200,300,400

Si K<=0, ligne suivante

Si K>=5, ligne suivante

Si K=1, ligne 100

Si K=2, ligne 200

Si K=3, ligne 300

Si K=5, ligne 400

Après le RETURN, ligne suivante.

Mots clés associés

GOSUB, GOTO, RETURN

ON GOTO

Objet

Branchement multiple suivant la valeur de l'expression. C'est cette valeur qui détermine sur quelle ligne le programme sera branché.

Si la valeur est I, le programme sera branché sur I.

Si l'expression n'est pas intégrale (entière) les décimales seront arrondies.

Si la valeur de l'expression est zéro ou négative ou si elle est plus grande que les numéros de ligne, le programme passera à la ligne suivante.

Syntaxe

ON Valeur GOTO L1,L2,Ln...

Valeur est la valeur sur laquelle doit s'effectué le test. En fonction du résultat, branchement sur la ligne n.

Exemple

ON K GOTO 100,200,300,400

Si K<=0, ligne suivante

Si K>=5, ligne suivante

Si K=1, ligne 100

Si K=2, ligne 200

Si K=3, ligne 300

Si K=5, ligne 400

Mots clés associés

GOSUB, GOTO, RETURN

OUT

Objet

Cette instruction permet d'envoyer sur le port I l'octet J.

Syntaxe

OUT I,J

I : No de port,

J: Octet.

Exemple

OUT &h20,&h64

La valeur &h64 sera envoyée sur le port no &h20.

Mots clés associés

INP

PAINT

Objet

Les coordonnées x et y définissent 1 point se situant dans une zone de l'écran. Cette zone est peinte avec la couleur C sauf le périmètre de couleur P.

Syntaxe

PAINT (X,Y),c,p

X : coordonnée horizontale.

Y: coordonnée verticale.

c : couleur selon le SCREEN.p : couleur selon le SCREEN.

Exemple

```
10 LINE(0,0)-(255,0),2,BF
20 LINE(255,0)-(255,191),2,BF
30 LINE (255,191)-(5,186),2,BF
40 LINE(5,186)-(0,0,),2,BF
50 PAINT (80,80),4,2
```

NDR: exemple à revoir car nécessite SCREEN.

Mots clés associés

LINE, PRESET, PSET, SCREEN

PEEK

Objet

Renvoie la valeur de l'octet de l'adresse spécifiée. Les valeurs retournées vont de &H00 à &HFF.

Syntaxe

PEEK(x)

X : adresse mémoire dont on veut lire l'octet.

Exemple

A=PEEK (&H2AOO)

Mots clés associés

POKE

PLAY

Objet

La musique est produite par le générateur de son (vendu en option).

Syntaxe

PLAY"ox [sx] [mx] [vx] [lx] [tx] [rx] [x+] [x-] n"

Les fonctions entre crochet sont facultatives

Avec n: (cdefgab), notation Anglo-saxonne de la musique.

c	d	e	f	g	a	b
do	ré	mi	fa	sol	la	si

Dans l'instruction PLAY, pour la chaîne de caractères, les caractères suivants sont utilisés pour donner des significations spéciales :

OX	Désigne l'octave (l'octave plus haute est o4) initial 4			
SX	Désigne la forme de l'enveloppe (se référer à 1'annexe D.)			
mx	Désigne la période de l'enveloppe (1<=x<=65535)			
VX	Désigne le volume (0<=x<=15) initial 8			
lx	Désigne la durée du son (0<=x<=64)			
tx	Désigne la vitesse (tempo) du son initial 170			
rx	Désigne la durée de la période de silence (aucun son) (1<=x<=64)			
X +	Le son est remonté d'un demi-ton			
Х-	Le son est descendu d'un demi-ton			

Tous les caractères de PLAY doivent être en minuscule.

Exemple

PLAY"o4 18 v2 s5 a"

octave 4; longueur 8; volume 2; enveloppe 5 voix; note LA

```
10 FOR I=0 TO 10
20 PLAY"06132c"
30 NEXT I

10 FOR I=0 TO 10
20 PLAY"041cdfgabo5c"
30 NEXT I
```

10 PLAY

"o7 fard 134 faf dbc fao 5 farecfer af bcfl 56 gbfddaeedae ae addcfffd fbfebacd fedaeo 4129 ggab gagafdfd faf fad dee adaddbccffc fdo 7 ffac ca"

Mots clés associés

SOUND

POINT

Objet

Renvoie le numéro de la couleur sélectionnée par les coordonnées (x,y).

Syntaxe

POINT(x,y)

Exemple

```
10 PSET(7,30),3
20 PRINT POINT(7,30)
```

Mots clés associés

PRESET, PSET

POKE

Objet

Insert un octet à une adresse désignée de la mémoire.

Syntaxe

POKE Expression 1, Expression 2

Expression 1 : Adresse mémoire

Expression 2 : Octet à placer (&H00 à &HFF)

Exemple

```
10 POKE &H6010, &H81
20 POKE 4053,24
POKE &h6080,42
```

Affiche le caractère « * » première colonne 5 ème ligne.

Mots clés associés

EXEC, PEEK, USR

POS

Objet

Renvoie la position du curseur sur la colonne.

Syntaxe

POS(X)

Exemple

10 LOCATE 12,7 20 PRINT POS(X)

PRESET

Objet

Effacer le point de coordonnées (X,Y) sur l'écran. Forte dépendance vis-à-vis de l'instruction SCREEN.

Syntaxe

PRESET (X,Y)

X : coordonnée horizontale. Y : coordonnée vertical.

Exemple

```
5 SCREEN 4,1,1 TO 20
6 CLS
9 FOR X=1 TO 100
10 PSET (X,100),3
11 IF X> 20 THEN PRESET (X,100)
12 IF X> 50 THEN PSET(X,100),3
15 NEXT
20 GOTO 20
```

Mots clés associés

LINE, PAINT, PSET, SCREEN

PRINT

Objet

Écrire des données sur l'écran.

Si la liste d'expressions est absente, une ligne blanche s'en suivra.

La position de chaque élément de la ligne est déterminée par la ponctuation.

Syntaxe

PRINT élément[,|;[élément]]...

Les caractères doivent obligatoirement être encadrés entre guillemets.

Lorsque l'on écrit un nombre multiple d'expressions, chacune doit être séparée par une virgule (,) ou un point-virgule (;).

Une virgule entre deux expressions de la liste fait que l'expression suivant la virgule est imprimée au début de la zone suivante.

Si c'est un point-virgule, l'expression se fait immédiatement après la dernière expression écrite. Un ou plusieurs espaces entre deux expressions ont le même effet que le point-virgule.

Exemple

```
10 A$="PROGRAMME"
20 B$="No.":C=15
30 D$="exemple de programme"
40 PRINT D$
50 PRINT
60 PRINT A$;B$;C
70 PRINT "suivant"
```

Mots clés associés

LOCATE, SPC, TAB

PRINT#

Objet

Écriture des données dans un appareil désigné. La désignation de l'appareil se fait par le numéro suivant PRINT #

Syntaxe

PRINT#-n

N=0 : écran

N=1 : magnétophone N=3 : imprimante.

Exemple

Mots clés associés

LPRINT, PRINT

PSET

Objet

Un point ayant une couleur désignée est affiché à l'endroit spécifié par les coordonnées X,Y. La couleur c dépend du SCREEN 1,2,3,4 et de la couleur choisie (COLOR).

Syntaxe

PSET(X, Y), c

X : coordonnée horizontale Y : coordonnée verticale

C : couleur

Exemple

Mots clés associés

COLOR, LINE, PRESET, PSET, SCREEN

READ

Objet

Lecture des valeurs dans une instruction DATA et affectation aux variables citées.

Une instruction READ doit toujours être utilisée en relation avec une ou plusieurs instructions DATA.

L'instruction READ distribue les valeurs données dans l'instruction 'DATA aux variables mentionnées.

Ces variables sont numériques ou de type chaîne et doivent s'accorder, sinon il peut y avoir "erreur de syntaxe".

S'il reste des DATA inutilisés, le READ suivant les utilise.

S'il n'en reste pas, ils seront ignorés.

On peut relire les DATA grâce à l'instruction RESTORE.

Syntaxe

READ valeur[,valeur]

Exemple

Mots clés associés

DATA, RESTORE

REM

Objet

Insérer des remarques et des notes dans le programme.

Bien que l'instruction REM ne soit pas exécutable, elle figure dans la liste avec le contenu du texte qui l'accompagne.

L'instruction REM ne peut pas être continuée en la séparant des autres instructions par un point-virgule (;).

Syntaxe

REM <texte>

Exemple

10 REM Menu

RESTORE

Objet

Permettre de relire des données à partir d'une certaine ligne.

Après l'instruction RESTORE, le premier READ prend ses valeurs dans la première instruction DATA.

Lorsque le numéro de ligne est spécifié, la lecture se fera à partir de cette ligne.

Syntaxe

RESTORE [n]

N : numéro de ligne pour relire les données.

Exemple

RESTORE

Restaure la lecture au premier DATA du programme.

RESTORE 100

Restaure la lecture à la ligne 100

Mots clés associés

DATA, READ

RETURN

Objet

Syntaxe

Exemple

Mots clés associés

GOSUB

RIGHT\$

Objet

Sélectionne le nombre spécifié de caractère à droite de la chaîne fourni en argument.

Syntaxe

RIGHT\$(A\$,)

A\$: Chaîne de caractère sur laquelle on veut faire l'extraction.

x : nombre de caractère à extraire.

Si x vaut 0, renvoie une chaîne vide.

La valeur de x ne doit pas dépasser 255.

Si la chaîne est plus courte que le x spécifié, RIGHT\$ renvoie toute la chaîne.

Exemple

```
10 A$="ABCDEFG"
20 PRINT RIGHT$(A$,4)
```

RND

Objet

Initialiser le générateur de nombres aléatoires.

Si l'expression facultative manque, l'exécution est suspendue.

Si l'on utilise RND sans initialiser le générateur à chaque exécution du programme, la même suite de nombres aléatoires sera produite.

Syntaxe

```
RND(x)
```

x>0 commence une nouvelle séquence

x=0 donne le dernier nombre généré

x<0 génère un nouveau nombre aléatoire

Exemple

```
10 FOR I=1 TO 5
20 PRINT INT(RND(1.0)*100)
30 NEXT I

10 CLS:PRINT"RND TEST"
20 A=1:B=13
30 I=RND(-RND(1)*100):PRINT"SEED:";I: REM NEW SEED
40 FOR I=1 TO 10
50 N=A+INT((B-A+1)*RND(1)): REM BETWEEN [A,B]
60 PRINT "E";I;" :";A;" -"; B; " ="; N
70 NEXT I
80 END
```

RUN

Objet

La touche F1 contient par défaut l'instruction RUN.

Syntaxe

RUN [n]

N : numéro de ligne, n'est pas obligatoire.

Exemple

RUN

Mots clés associés

END, STOP

Objet

Le PHC 25 a deux pages d'écran qui sont définies à la mise sous tension.

- mode avec 1 page d'écran, la mémoire disponible sera de 14265 octets.
- mode avec 2 pages d'écran, la mémoire disponible sera de 8121 octets.

Ce qui correspond à la question posée à l'allumage « SCREEN ? ».

Il ne faut pas confondre le choix du nombre de pages utilisées et la façon d'utiliser ces pages.

Syntaxe

SCREEN a,b,c

La valeur a fixe le choix de la taille d'écran.

Il y a 4 possibilités d'utilisation d'une page suivant le tableau ci-dessous.

a	1	2	3	4	
Texte	16L 32C	16L 32C	16L 16C	16L 32C	
Graphique	$(16x32)^*$	64x48	128x192	256x192	

^(*) Les instructions graphiques fonctionnent.

La valeur b désigne le numéro de la page affectée par les instructions qui suivent.

La valeur c désigne le numéro de la page affichée à l'écran. (NDR : selon le choix fait au démarrage de la machine).

Exemple

Voir ci-après pour les 4 mode d'écran.

Objet

Voir information avec SCREEN.

Syntaxe

SCREEN 1,b,c

Exemple

Mots clés associés

CLS

Objet

Voir information avec SCREEN.

Syntaxe

SCREEN 2,b,c

Exemple

Objet

Voir information avec SCREEN.

Syntaxe

SCREEN 3,b,c

Exemple

Objet

Voir information avec SCREEN.

Syntaxe

SCREEN 4,b,c

Exemple

SCRIN

Objet

Renvoie la valeur ASCII du caractère de coordonnées d'écran (c,l).

Syntaxe

SCRIN(c,l)

c : numéro de la colonneL : numéro de la ligne

Exemple

```
5 CLS
10 PRINT"ABCDEF"
20 Z=SCRIN(5,0)
30 PRINT Z
```

La valeur renvoyée est bien 70 qui est le code ASCII de F. Les coordonnées texte commence en haut à gauche (0,0).

Mots clés associés

CHR\$,

SGN

Objet

Connaître le signe d'un nombre.

Syntaxe

SGN(x)

x : Nombre dont on veut connaître le signe.

Renvoie 1 si $x \ge 0$

Renvoie -1 si x < 0

Exemple

PRINT SGN (912)

SIN

Objet

Calcule le sinus de l'angle en radians. Le résultat est obtenu en précision simple.

Syntaxe

SIN(x)

x : angle dont on veut le sinus.

Exemple

PRINT SIN(0.32)

Résultat : .314566561

Mots clés associés

COS, DEF FN, TAN

SLOAD

Objet

L'information de l'écran mémorisée par la cassette est enregistrée dans la mémoire de l'écran. Si la page de l'écran utilisée n'est pas celle qui a été mémorisée, la commande SLOAD est arrêtée et une ERREUR est affichée.

Syntaxe

SLOAD "nom"

Le nom est sensible à la casse. 8 caractères maximum.

Exemple

SLOAD "data"

Mots clés associés

SSAVE

SOUND

Objet

Une sortie de son est produite directement en envoyant les commandes au générateur de son. La sortie du son désiré peut être faite en désignant l'information (DATA) qui est dans le registre et les registres de 0 à 13 listés ci-dessous.

Syntaxe

SOUND registre,data

Registre : Data :

Exemple

Mots clés associés

PLAY

SPC

Objet

Écrit le nombre spécifié d'espace.

Syntaxe

SPC(x)

x : nombre d'espace.

Exemple

- 10 PRINT"GAME"
- 20 PRINT SPC(3)
- 30 PRINT"OVER"

Place 3 espaces entre les 2 mots.

Mots clés associés

PRINT, LPRINT

SQR

Objet

Renvoie la racine carrée de x.

Syntaxe

SQR(x) x doit être zéro ou positif

Exemple

PRINT SQR (10)

Résultat : 3.16227766

Mots clés associés

DEF FN

SSAVE

Objet

L'information affichée sur l'écran est sauvegardée sur la cassette du magnétophone.

SSAVE peut servir de commande ou d'instruction.

Avant l'exécution d'un SAVE, s'assurer que le magnétophone est correctement branché et que les touches RECORD et PLAY sont bien enfoncées.

Syntaxe

SSAVE "fichier"

Fichier: nom du fichier qui contiendra les informations de l'écran. Le nom est sensible à la casse.

Exemple

SSAVE "data"

STICK

Objet

Permet de tester les manettes et le clavier (touches de direction) Nécessite d'avoir le synthétiseur pour les joysticks.

Syntaxe

```
STICK(x)
x=0: Touches du clavier
x=1: Joystick 1
x=2: Joystick 2.
```

Exemple

```
10 IF STICK(1)=1 then print "nord"
20 IF STICK(1)=2 then print "nord-est"
30 IF STICK(1)=3 then print "est"
40 IF STICK(1)=4 then print "sud-est"
50 IF STICK(1)=5 then print "sud"
60 IF STICK(1)=6 then print "sud-ouest"
70 IF STICK(1)=7 then print "ouest"
80 IF STICK(1)=8 then print "nord-ouest"
90 IF STICK(1)=0 then print "manette inactive"
```

Mots clés associés

STRIG

STOP

Objet

Arrête le programme en exécution.

Le STOP peut être mis à n'importe quel endroit du programme pour arrêter son exécution. Toutefois, contrairement à l'instruction END, lorsque STOP est exécuté, le message suivant apparaît :

BREAK in nnnnn

Nnnnn étant le numéro de ligne où se situe le STOP.

Syntaxe

STOP

Exemple

9990 STOP

Mots clés associés

END

STRIG

Objet

Test du bouton de Joystick ou barre espace.

Syntaxe

STRIG(x)

x=0 : Barre espace.

x=1: Bouton Joystick 1.

x=2 : Bouton Joystick 2.

Renvoie 1 si l'appuie est détecté, sinon 0.

Exemple

```
10 IF STRIG(0)=0 THEN GOTO 10
```

Attend l'appuie sur la barre d'espace.

Mots clés associés

STICK

STR\$

Objet

Transforme un nombre en chaîne de caractères.

Syntaxe

STR(x)

Exemple

Mots clés associés

LEFT\$, RIGHT\$, MID\$, VAL

TAB

Objet

Met des espaces jusqu'à la colonne spécifiée.

Syntaxe

TAB(x)

x : numéro de colonne.

Exemple

```
10 PRINT"XXX"; TAB(10); "XXX"
20 PRINT"PHC-25"; TAB(10); "PROGRAMME"
```

Affichera la 2^{ème} partie du PRINT à partir de la colonne 10.

Mots clés associés

SPC

TAN

Objet

Renvoie en simple précision la tangente de l'angle, exprimée en radians

Syntaxe

TAN(x)

x : angle dont on veut la tangente.

Exemple

PRINT TAN(1.34)

Renvoie: 4.67344123

Mots clés associés

COS, SIN

TIME

Objet

Compteur de temps qui ajoute 1 chaque 1/360 secondes. Le compteur à une précision faible.

Syntaxe

TIME

Exemple

```
10 A=TIME
20 B=TIME-A
30 PRINT INT(B/360)
40 GOTO 20
```

THEN

Objet

Syntaxe

Exemple

Mots clés associés

ELSE, IF

USR

Objet

Exécute un programme fait par l'utilisateur en langage machine (Z80).

Syntaxe

USR(x)

Exemple

Mots clés associés

EXEC, PEEK, POKE

VAL

Objet

Renvoie la valeur de la chaine de caractères fournie en argument.

Si le premier caractère de la chaîne n'est pas +, -, &, ou un chiffre, la valeur renvoyée est 0. En notation hexadécimale [0-9],[A-F], les autres caractères sont ignorés.

Syntaxe

VAL(x\$)

x\$: Chaîne à convertir

Exemple

```
10 FOR I=1 TO 3
20 READ A$
30 PRINT VAL("&H"+A$);
40 NEXT
50 DATA C3,40,FF
```

L'écran du SANYO PCH-25

Les résolutions d'écran

Le tableau ci-dessous donne les possibilités du PHC-25.

a	1	2	3	4
Texte	16L 32C	16L 32C	16L 16C	16L 32C
Graphique	32x16	48x64	128x192	256x192

Les coordonnées texte commencent en haut à gauche en 0,0.

Les coordonnées graphiques commencent en haut à gauche en 0,0.

La première position est l'axe des abscisses.

La deuxième position est l'axe des ordonnées.

Exemple:

Trace une ligne en haut de l'écran.

Selon le SCREEN choisi, la dimension de la ligne changera.

Pour les instructions graphiques, il faut toujours se référer à la dimension maximum, soit 256x192 pixels.

Caractères non affichables par CHR\$

Les caractères spéciaux de &h10 à &h1C (voir table page 75 de la documentation) ne sont pas affichable par PRINT CHR\$(n).

Il faut donc passer par la solution du poke ci-dessus.

Le screen 1

Le screen 1 est de 32 colonnes sur 16 lignes.

Il s'agit d'un mode texte uniquement. Son adresse mémoire va de &h6000 à &h61FF. Soit 512 octets, ce qui correspond bien à 32x16 caractères.

La numérotation par du coin en haut à gauche de l'écran, de 0 à 31 et 0 à 15. Table d'adressage simplifiée :

Ligne	Colonne 1	Colonne 32
0	&h6000	&h601F
1	&h6020	&h603F
2	&h6040	&h605F
3	&h6060	&h607F
4	&h6080	&h609F
5	&h60A0	&h60BF
6	&h60C0	&h60DF
7	&h60E0	&h60FF
8	&h6100	&h611F
9	&h6120	&h613F
10	&h6140	&h615F
11	&h6160	&h617F
12	&h6180	&h619F
13	&h61A0	&h61BF
14	&h61C0	&h61DF
15	&h61E0	&h61FF

Il est possible de simuler le LOCATE x,y directement sur l'écran en pokant directement l'adresse avec la valeur du caractère souhaité.

La valeur de l'octet mis à l'écran correspond au générateur de caractère (voir page 75 de la documentation) ou l'annexe.

Il est possible de tracer des lignes, des rectangles, des rectangles pleins, etc. avec les fonctions BASIC. Il faut cependant considérer que la résolution est de 32x16 pixel.

Il est donc possible de faire du ASCII art sur cette résolution.

Exemple:

```
1000 REM Poke direct sur le screen 1
1010 SCREEN 1,1,1: CLS
1020 A=0
1030 FOR I=&h10 to &h85
1040 POKE &h6000+A,I
1050 A=A+1
1060 NEXT I
1070 GOSUB 9980
1080 END
9980 K$="":K$=INKEY$:IF K$="" THEN 9980
9990 RETURN
```

Ce programme affiche les caractères de &h10 à &h85 sur un screen 1.

Ce principe permet d'aller assez vite pour afficher à l'écran car on écrit directement dans la mémoire vidéo du PHC-25.

Exemple:

Pour faire un LOCATE 10,10 (colonne 10, ligne 10). L'adresse de la ligne 10 et &h6140.

La colonne 10 est un incrément de &hA.

La localisation est donc &h614A.

POKE &h614A, &h2A

Ou

POKE &h6140+10, &h2A

Affichera « * » en colonne 10 ligne 10.

CONSOLE ne bloquera pas le POKE.

Le Screen 2

Description

Le Screen 2 est un mixe entre mode texte et mode graphique. La résolution texte et de 32 colonnes et 16 lignes. La résolution graphique est de 64x48 pixels. Il y a de nombreuse restriction sur le fonctionnement de ce mode.

Un graphique ne peut pas s'afficher correctement sur du texte.

Le fond pour la partie graphique doit toujours être BLACK (valeur 0).

Il faut donc utiliser CONSOLE pour définir les lignes sur lesquelles mettre du texte ou du graphique.

Il y à 2 palettes de couleurs disponibles (voir COLOR). Un changement de palette affecte l'écran entier.

Concernant le texte, il est possible de faire des PRINT CHR\$, sauf des caractères spéciaux de &h10 à &h1C.

La mémoire vidéo est la même qu'avec le SCREEN 1. Soit de &h600 à &h61FF.

Il est donc aussi possible de poker dedans une valeur de &h00 à &hFF.

Particularité des pixels en mode 2

Si la couleur de fond n'est pas noire (valeur 0), alors cette partie d'écran est considérée comme du texte. La couleur de fond doit donc être obligatoirement noire pour y mettre du graphique. L'écran se subdivise en 32 colonnes par 16 lignes.

Il y a alors 512 cases disponibles qui ont la dimension d'un caractère.

Ces cases ne peuvent avoir que 2 couleurs dont obligatoirement le noir (le fond).

L'autre couleur étant choisie dans la palette (8 possibles, voir COLOR).

Les cases ont une dimension de 2x3.

Subdivisé à la résolution :

O	О	О	О	О	О	О	O
Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο
Ο	O	О	Ο	Ο	O	О	Ο
Ο	0	О	O	Ο	0	О	O
О	О	О	О	О	О	О	O
Ο	Ο	О	Ο	Ο	Ο	О	Ο
О	О	О	О	О	О	О	O
Ο	0	О	O	Ο	0	О	O
О	О	О	О	О	О	О	0
Ο	Ο	О	Ο	Ο	Ο	О	Ο
О	О	О	Ο	О	О	О	O
Ο	Ο	О	Ο	Ο	Ο	О	Ο

Chaque « O » est un pixel de la résolution de 256x192.

Si la figure ci-dessus représente le coin haut, gauche :

Elle couvre les points de (0,0) à (7,11), un PSET dans ces limites mets la même couleur sur tous les pixels déjà allumés.

Un PSET mis sur 0,0 allume tous les pixels de (0,0) à (3,3).

L'adresse de cette case mémoire vidéo est &h6000.

Un POKE sur &h6000 va donc allumer 0 à 6 des portions avec une des 9 couleur selon la palette (1 ou 2, voir COLOR).

Quand 2 lignes graphiques se croisent, à l'intersection, la case prend la couleur de la dernière ligne qui s'y affiche Pour les pixels déjà allumés (ils font 4x4 en screen 2).

Positionner un pixel (PSET) implique la mise à la même couleur des pixels déjà présent (0 étant non présent).

POKE mémoire vidéo

La plage d'adresse va de &h6000 à &h61FF. 256 valeurs sont possibles (&h00 à &hFF).

Soit l'octet &x00000000. Dont nous trouvons les bits dans la matrice.

5	4
3	2
1	0

&x00000000, matrice éteinte. &x00111111, matrice allumée, couleur 0 ?

Le Screen 3

Le Screen 4