Interrogation écrite	N^014
INTERRUGATION ECRITE	

NOM: Prénom: Note:

1. Soit $x_0, ..., x_n$ des réels deux à deux distincts. Montrer que l'application $(P, Q) \in \mathbb{R}_n[X] \mapsto \langle P, Q \rangle = \sum_{k=0}^n P(x_k)Q(x_k)$ est un produit scalaire sur $\mathbb{R}_n[X]$.

2. Montrer que le groupe $SO_2(\mathbb{R})$ est commutatif.

3.	On munit \mathbb{R}^4 de son produit scalaire usuel et on note $F = \{(x, y, z, t) \in \mathbb{R}^4, \ x + z = y + t = 0\}$. Déterminer des bases orthonormales de F et F^{\perp} .
4.	Justifier que $\mathrm{O}_n(\mathbb{R})$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.

5. Calculer la signature de la permutation
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 5 & 4 & 2 \end{pmatrix}$$
. On justifiera sa réponse.

6. Soit
$$(a, b, c) \in \mathbb{R}^3$$
. Calculer le déterminant $D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$ sous forme *factorisée*. On précisera les opérations effectuées.