MATH-F211: Topologie

TP 6 - Espaces de Hausdorff

Thomas Saillez, Andriy Haydys

Exercice 1 (3.1.1). Soit X un ensemble, montrer que X avec la topologie cofinie est un espace de Hausdorff ssi X est fini.

Exercice 2 (3.1.2). Soit (X, \mathcal{T}_X) un ensemble muni de la topologie grossière et (Y, \mathcal{T}_Y) un espace de Hausdorff. Démontrer que $f: X \to Y$ est continue ssi elle est constante.

Exercice 3 (3.1.3). Soit X un espace de Hausdorff et $x \in X$. Démontrer que l'intersection des ouverts contenants x est le singleton $\{x\}$.

Ensuite, donner un espace qui n'est pas Hausdorff mais qui a cette propriété.

Exercice 4 (3.1.4). Démontrer les fait suivants.

- (a) Soit X un espace de Hausdorff et $A\subseteq X$, démontrer que la topologie induite sur A est Hausdorff.
- (b) Soient X, Y deux espaces de Hausdorff, alors la topologie induite sur $X \times Y$ est Hausdorff.
- (c) Si $f: X \to Y$ est une application injective et continue entre deux espaces topologiques et que Y est Hausdorff alors X l'est également.
- (d) Si X est Hausdorff et Y est homéomorphe à X alors Y est Hausdorff.

Exercices frigo

Exercice 5 (2.1.5). Soit $f: X \to Y$ une fonction, on rappelle la définition du graphe de f:

$$G_f := \{(x, f(x)) \in X \times Y | x \in X\}.$$

- 1. Supposons que f est une application continue entre deux espaces topologiques et que Y est Hausdorff. Démontrer qu'alors G_f est un fermé de $X \times Y$.
- 2. Donner un exemple de fonction $f: \mathbb{R} \to \mathbb{R}$ dont le graphe n'est pas fermé.

Exercice 6. Soit X un espace de Hausdorff et $A \subseteq X$. Démontrer que $x \in \overline{A}$ ssi tout voisinage ouvert de x contient une infinité de points de A.