Decision Trees

Dr. Daniele Cattaneo, J.-Prof. Dr. Josif Grabocka

Machine Learning Course Winter Semester 2023/2024

Albert-Ludwigs-Universität Freiburg

 $cattaneo@informatik.uni-freiburg.de,\ grabocka@informatik.uni-freiburg.de$

November 13, 2023

Step Functions as Prediction Models

Legend:

Leaf

Trees — Depth and Height

The depth D of a node in a tree is the distance from the root node. The height of a tree is the maximum depth of any node in the tree.

An Equivalent Tree

Feature space partitioning

• Trees partition the feature space into regions

Feature space partitioning

• Trees partition the feature space into regions

- In this lecture we will use binary splits
 - Every k-ary split can be seen as a sequence of binary splits
 - Binary splits are faster and often yield better predictions

Tree Predictions

- Consider a dataset $D := \{(x_i, y_i)\}_{i=1}^N \in (\mathcal{X} \times \mathcal{Y})^N$
- Partition the feature space \mathcal{X} into regions R_1, \ldots, R_J

 \bullet For each R_i we aggregate a constant prediction model

$$\hat{y}^{(R_j)} = \operatorname{aggregate} (\pi_y(\{(x, y) \in D \mid x \in R_j\}))$$

• Mathematically, a decision/regression tree f(x) is specified by $\langle R_1, \dots, R_J, \hat{y}^{(R_1)}, \dots, \hat{y}^{(R_J)} \rangle$

Tree Prediction Model

Tree Prediction

The prediction of a decision/regression tree with parameters $\theta = \langle R_1, \dots, R_J, \hat{y}^{(R_1)}, \dots, \hat{y}^{(R_J)} \rangle$ is $f(x, \theta) = \sum_{i=1}^{n} \hat{y}^{(R_j)} \mathbb{I}(x \in R_j)$

Here and throughout, I is the indicator function

$$\mathbb{I}(a) := \left\{ \begin{array}{ll} 1 & , & \text{if } a = true \\ 0 & , & \text{otherwise} \end{array} \right.$$

Intuition on splits: Regression

Intuition on splits: Regression

Intuition on splits: Classification

Height (x) and Gender (y):

X	У
180	m
170	m
160	f
170	f
170	m
160	f
170	m

```
Split candidate: x < 165 \rightsquigarrow
\{(160, f), (160, f)\} \in R_1
\{(180, m), (170, m), (170, f), (170, m), (170, m)\} \in R_2
\hat{v}^{(R_1)} := [P(v = m | x \le 165) = 0, P(y = f | x \le 165) = 1]
\hat{y}^{(R_2)} := [P(y = m|x > 165) = 0.8, P(y = f|x > 165) = 0.2]
Split candidate: x < 175 \rightsquigarrow
\{(170, m), (160, f), (170, f), (170, m), (160, f), (170, m)\} \in R_1
\{(180, m)\} \in R_2
\hat{y}^{(R_1)} := [P(y = m | x \le 175) = 0.5, P(y = f | x \le 175) = 0.5]
\hat{v}^{(R_2)} := [P(v = m|x > 175) = 1.0, P(v = f|x > 175) = 0.0]
```

Answer: Splits that maximize purity

• A split $x \le v$ divides $D := \{(x_i, y_i)\}_{i=1}^N \in (\mathcal{X} \times \mathcal{Y})^N$ into $D^{(L)} := \{(x, y) \in D \mid x \le v\} \text{ and } D^{(R)} := \{(x, y) \in D \mid x > v\}$

- The impurity of a set is $H(D): (\mathcal{X} \times \mathcal{Y})^{|D|} \to \mathbb{R}_+$
- The best split $x \le v$ maximizes the gain $I(x \le v)$ in purity:

$$I(x \le v) = \underbrace{|D| \cdot H(D)}_{\text{Impurity before split}} - \underbrace{\left(|D^{(L)}| \cdot H\left(D^{(L)}\right) + |D^{(R)}| \cdot H\left(D^{(R)}\right)\right)}_{\text{Impurity after split}}$$

Exhaustive Search of Decision Splits

- Mid-points of the unique values of the j-th feature are $V^{(j)}$
 - E.g. In a dataset $D \in (\mathbb{N}^2 \times \{0,1\})^N$ with values $D := \{((1,5),1), ((3,4),0), ((1,6),1), ((5,5),1), ((4,8),1)\}$ • Then $V^{(1)} = \{2,3.5,4.5\}, V^{(2)} = \{4.5,5.5,7\}$

 - Categorical features can be converted to numerical ones

• The optimal split $x_{:,i} \le v$ in a dataset with M features is:

$$\underset{v \in V^{(j)}}{\operatorname{argmax}} I(x_{:,j} \le v)$$

• Runtime complexity is $\mathcal{O}(N^2M)$ when implemented naively

Classification and Regression Trees

```
Algorithm 1: CART - Train Decision Tree
```

```
Data: Params: Set D := \{(x_i, y_i)\}_{i=1}^{|D|}, Node n, Depth \ell
Hyper-params: Max Depth: L, Min Instances for Split: \delta
if |D| > \delta \wedge \ell < L then
    (x_{::i}, v) := SearchSplit(D); // Find best split
    Decision node: n \leftarrow (x_{:,i} \le v, yes/no?);
    D^{(L)} := \{(x, y) \in D \mid x_{i} < y\};
    CART(D^{(L)}, n.left, \ell + 1); // Create left sub-tree
    D^{(R)} := \{(x, y) \in D \mid x_{:,i} > v\};
    CART(D^{(R)}, n.right, \ell + 1); // Create right sub-tree
else
   Leaf n \leftarrow \hat{y} = \operatorname{aggregate}(\pi_{v}(D));
end
```

Call initially: CART(D, Root Node, 1)

Regression: Impurity = Variance

For a split x < v dividing D into $D^{(L)}$, $D^{(R)}$

The predicted target is the mean target of the split subset:

$$\hat{y}^{(\mathsf{L})}(x) = \frac{1}{|D^{(\mathsf{L})}|} \sum_{(x,y) \in D^{(\mathsf{L})}} y \quad \text{ and } \quad \hat{y}^{(\mathsf{R})}(x) = \frac{1}{|D^{(\mathsf{R})}|} \sum_{(x,y) \in D^{(\mathsf{R})}} y$$

The impurity of the split subsets are the variances:

$$|D^{(L)}| \cdot H(D^{(L)}) = \sum_{(x,y) \in D^{(L)}} \left(y - \hat{y}^{(L)}(x) \right)^2$$
$$|D^{(R)}| \cdot H(D^{(R)}) = \sum_{(x,y) \in D^{(R)}} \left(y - \hat{y}^{(R)}(x) \right)^2$$

Best split for regression: $\underset{x < v}{\operatorname{argmin}} |D^{(L)}| \cdot H(D^{(L)}) + |D^{(R)}| \cdot H(D^{(R)})$

Classification Trees

- Conceptually the same as for regression
- Leaf model: majority vote; probability of data in the leaf
- Split criterion: Gini index; variance reduction; information gain

Intuition on Classification Purity

Classification: Impurity=Entropy

Definition: Entropy

The entropy of a discrete random variable V with K possible outcomes v_k of respective probability $p(v_k)$ (for k = 1, ..., K) is

$$H(V) = -\sum_{k=1}^{K} p(v_k) \log_2 p(v_k)$$

Classification: Impurity=Entropy

• Distance to the worst-case $q(v_k) = \frac{1}{K}, \forall k \in \{1, \dots, K\}$ is:

$$KL(p,q) = \sum_{k=1}^{K} p(v_k) \log_2 \left(\frac{p(v_k)}{q(v_k)}\right)$$

$$= \sum_{k=1}^{K} p(v_k) \log_2 \left(\frac{p(v_k)}{\frac{1}{K}}\right)$$

$$= \sum_{k=1}^{K} p(v_k) \log_2 (p(v_k)) + \log_2 (K) \sum_{k=1}^{K} p(v_k)$$

• Therefore: $\max KL(p,q) = \min (-KL(p,q)) = \min H(V)$

Classification: Impurity=Entropy

Definition: Entropy

The entropy of a discrete random variable V with K possible outcomes v_k of respective probability $p(v_k)$ (for k = 1, ..., K) is

$$H(V) = -\sum_{k=1}^{K} p(v_k) \log_2 p(v_k)$$

Examples for a Boolean random variable V with outcomes v_1 and v_2 :

•
$$p(v_1) = 0.5$$
, $p(v_2) = 0.5$. Then,
 $H(V) = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$

•
$$p(v_1) = 0$$
, $p(v_2) = 1$. Then,
 $H(V) = -\lim_{x\to 0} x \log_2(x) - 1 \log_2(1) = 0$

Information Gain

- Split $x \le v$ divide D into $D^{(L)}$ and $D^{(R)}$
- p(V) is the distribution of the N target values of D
- $p(V^{(L)})$ is the distribution of the $N^{(L)}$ target values of $D^{(L)}$
- $p(V^{(R)})$ is the distribution of the $N^{(R)}$ target values of $D^{(R)}$
- The Information Gain of the split $x \le v$ is:

$$I(x \le v) = N \cdot H(V) - N^{(L)} \cdot H(V^{(L)}) - N^{(R)} \cdot H(V^{(R)})$$

$$= -N \sum_{v_k \in V} p(v_k) \log_2 p(v_k)$$

$$+ N^{(L)} \sum_{v_k^{(L)} \in V^{(L)}} p(v_k^{(L)}) \log_2 p(v_k^{(L)})$$

$$+ N^{(R)} \sum_{v_k^{(R)} \in V^{(R)}} p(v_k^{(R)}) \log_2 p(v_k^{(R)})$$

Information Gain: Example

$$I(x \le v) = N \cdot H(V) - N^{(L)} \cdot H\left(V^{(L)}\right) - N^{(R)} \cdot H\left(V^{(R)}\right)$$

- Example: Splitting 8 emails (4 \times spam, 4 \times non-spam).
 - $V = \{\text{spam}, \text{non-spam}\}, p(V) = \{0.5, 0.5\}, N \cdot H(V) = 8 \cdot 1 = 8$
 - Split 1: Left: $4 \times \text{spam}, 0 \times \text{non-spam}$; Right: $0 \times \text{spam}, 4 \times \text{non-spam}$
 - $p(V^{(L)}) = \{1.0, 0.0\}, p(V^{(R)}) = \{0.0, 1.0\}$
 - $N^{(L)} \cdot H(V^{(L)}) = 4 \cdot 0 = 0, \ N^{(R)} \cdot H(V^{(R)}) = 4 \cdot 0 = 0$
 - I = 8 0 0 = 8 (maximal gain in purity)
 - Split 2: Left: $2 \times \text{spam}$, $2 \times \text{non-spam}$; Right: $2 \times \text{spam}$, $2 \times \text{non-spam}$
 - $p(V^{(L)}) = \{0.5, 0.5\}, p(V^{(R)}) = \{0.5, 0.5\}$
 - $N^{(L)} \cdot H(V^{(L)}) = 4 \cdot 1 = 4$, $N^{(R)} \cdot H(V^{(R)}) = 4 \cdot 1 = 4$
 - I = 8 4 4 = 0 (no gain in purity)

A Classification Example: Revisited (I)

$$I(x \le v) = N \cdot H(V) - N^{(L)} \cdot H\left(V^{(L)}\right) - N^{(R)} \cdot H\left(V^{(R)}\right)$$

Height (x) and Gender (y):

X	у
180	m
170	m
160	f
170	f
170	m
160	f
170	m

•
$$K = 2, N = 7, V = \{m, f\}, p(V) = \{0.57, 0.43\}$$

 $H(V) = -(0.57 \log_2(0.57) + 0.43 \log_2(0.43)) \approx 0.98$

• Split candidate $x \le 165$

$$\{(160, f), (160, f)\} \in R^{(L)}$$

$$\{(180, m), (170, m), (170, f), (170, m), (170, m)\} \in R^{(R)}$$

$$p(V^{(L)}) = \{1.0, 0.0\} \text{ and } p(V^{(R)}) = \{0.8, 0.2\}$$

$$H\left(V^{(L)}\right) = -\left(1\log_2\left(1\right) + 0\log_2\left(0\right)\right) = 0$$

$$H\left(V^{(R)}\right) = -\left(0.8\log_2\left(0.8\right) + 0.2\log_2\left(0.2\right)\right) \approx 0.72$$

$$I(x \le 165) = 7 \cdot 0.98 - 2 \cdot 0 - 5 \cdot 0.72 = 3.92$$

A Classification Example: Revisited (II)

$$I(x \le v) = N \cdot H(V) - N^{(L)} \cdot H\left(V^{(L)}\right) - N^{(R)} \cdot H\left(V^{(R)}\right)$$

Height (x) and Gender (y):

X	у
180	m
170	m
160	f
170	f
170	m
160	f
170	m

- $K = 2, N = 7, V = \{m, f\}, p(V) = \{0.57, 0.43\}$
- Split candidate $x \le 175$

$$\{(170, m), (160, f), (170, f), (170, m), (160, f), (170, m)\} \in R^{(L)}$$

$$\{(180, m)\} \in R^{(R)}$$

$$p(V^{(L)}) = \{0.5, 0.5\} \text{ and } p(V^{(R)}) = \{1.0, 0.0\}$$

$$H\left(V^{(L)}\right) = -\left(0.5\log_2\left(0.5\right) + 0.5\log_2\left(0.5\right)\right) = 1.0$$

$$H\left(V^{(R)}\right) = -\left(1.0\log_2\left(1.0\right) + 0.0\log_2\left(0.0\right)\right) = 0.0$$

$$I(x \le 175) = 7 \cdot 0.98 - 6 \cdot 1 - 1 \cdot 0.0 = 0.9$$

Alternative Types of Splits

Axis-aligned split are standard, but more complex splits are possible

Pros and Cons of Decision and Regression Trees

- + Flexible framework with exchangeable components: splitting criterion, leaf model, type of split
- + Interpretability
- + Handle categorical input values natively
- + Handle unimportant features well
- + Scalable for large datasets
 - Tend to overfit
- Deterministic, i.e. not suitable for some ensemble methods

Hyperparameters of Decision and Regression Trees

Regression and decision trees have several hyperparameters:

- Minimum number of samples in a leaf (min_leaf)
- Maximal depth of the tree (max_depth)
- Total number of nodes
- Leaf model (weak learner; here constant)
- Split criterion

Bias and Variance of Trees

- Facts about tree-based models
 - Trees are very expressive models
 - When you slightly change the data, you might get a very different tree
- As a result:
 - Trees are a high-variance model.
 - Trees are a low-bias model.

Computational Complexity of CART

- N data points of dimensionality M, axis-aligned splits
- Finding the best split value for a given feature (pre-sorted):
 O(N)
 - Amortized analysis: O(N) to initialize all data points to the left child, O(1) for moving one data point from left to right at a time
- Finding best split point at root: O(MN)
- Let T(N) denote the time we pay for a complete subtree with N data points; this has a part due to the cost at the root and parts due to the 2 smaller child subtrees
- Best case: balanced trees
 - Fitting: T(N) = O(MN) + 2T(N/2)
 - This leads to $O(MN \log N)$ since we pay $O(M \cdot N)$ at each of $\log N$ levels
 - Prediction: $O(\log N)$

Computational Complexity of CART

- N data points of dimensionality M, axis-aligned splits
- Finding the best split value for a given feature (pre-sorted):
 O(N)
 - Amortized analysis: O(N) to initialize all data points left to the left child, O(1) for moving one data point from left to right at a time
- Finding best split point at root: O(MN)
- Let T(N) denote the time we pay for a complete subtree with N data points; this has a part due to the cost at the root and parts due to the 2 smaller child subtrees
- Worst case: splitting off one data point at a time
 - Fitting: T(N) = O(MN) + T(N-1); this leads to $O(MN^2)$
 - Prediction: O(N)