Планирование эксперимента для оценивания параметров обобщенной модели Михаэлиса-Ментен

Романов Егор Николаевич, гр. 522

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д. ф.-м. н., профессор Мелас В.Б. Рецензент: к. ф.-м. н., доцент Шпилев П.В.

Санкт-Петербург 2014г.

Введение

В дипломной работе рассматривается задача планирования эксперимента для оценивания параметров модели Михаэлиса-Ментен и ее обобщения.

Модель Михаэлиса-Ментен $\frac{\theta_1 x}{x+\theta_2}$. Обобщенная модель Михаэлиса-Ментен (Emax) $\theta_1+\frac{\theta_2 x}{x+\theta_3}$.

Эксперименты проводят в определенных точках, которые называют опорными. Параметры оценивают методом наименьших квадратов.

В ряде статей получена оценка числа опорных точек в оптимальных планах для рассматриваемых мной моделей, но дальнейшего метода нахождения оптимальных планов предложено не было.

Целью моей работы является нахождение локально оптимальных планов в смысле различных критериев.

Основные понятия теории планирования эксперимента

Общая модель нелинейной регрессии:

$$y_j = \eta(x_j, \theta) + \varepsilon_j$$
 $j = 1, \dots, N$, $x_j \in \mathcal{X}$, ε_j H.o.p., $\mathbf{E}\varepsilon_j = 0$, $\mathbf{D}\varepsilon_j = \sigma^2$.

План эксперимента – дискретная вероятностная мера на компактном множестве $\mathfrak X$ (множество планирования)

$$\xi = \left\{ \begin{array}{l} x_1, \dots, x_n \\ \omega_1, \dots, \omega_n \end{array} \right\}.$$

Информационная матрица $\mathrm{M}(\xi) = \sum_{i=1}^n f(x_i) f^\mathrm{T}(x_i) \omega_i$, где $f(x) = \nabla_\theta \eta(x,\theta)$. Дисперсионная матрица $\mathrm{D}(\xi) = \mathrm{M}^{-1}(\xi)$.

Критерий оптимальности – функционал над множеством информационных или дисперсионных матриц. Критерии, которые используются в работе:

- ullet D-критерий: $\xi^* = \arg\min_{\xi} [\det(\mathrm{D}(\xi))]$,
- ullet Е-критерий: $\xi^* = \arg\min[\lambda_{\max}(\mathrm{D}(\xi))]$,
- L-критерий: $\xi^* = \arg\min_{\xi} [\mathrm{tr}(\mathrm{LD}(\xi))], \ \mathrm{L}$ фиксированная, неотрицательно определенная.

Задачи

- Построение локально L- и Е-оптимальных планов для модели Михаэлиса-Ментен на множестве планирования $\mathfrak{X} = [0,d];$
- Сравнительный анализ разных типов планов для модели Михаэлиса-Ментен (D, L, E);
- Построение локально L- и E-оптимальных планов для обобщенной модели Михаэлиса-Ментен на множестве планирования $\mathfrak{X} = [0,d];$
- Сравнительный анализ разных типов планов для обобщенной модели Михаэлиса-Ментен (D, L, E).

Полученные ранее результаты для числа опорных точек

Результаты из статьи Янг, Штуфкен, 2009.

Функции $arphi_1, arphi_2, arphi_3$ на [a,d] (d может равняться бесконечности), такие что

- ullet $\varphi_1, \varphi_2, \varphi_3$ три раза непрерывно дифференцируемы на [a,d],
- $\varphi_1'(c)\left(rac{arphi_2'(c)}{arphi_1'(c)}
 ight)'\left(\left(rac{arphi_3'(c)}{arphi_1'(c)}
 ight)'/\left(rac{arphi_2'(c)}{arphi_1'(c)}
 ight)'\right)'>0$ для $c\in[a,d)$,
- $\lim_{c \to d} \frac{\varphi_2'(c)}{\varphi_1'(c)} \left(\varphi_1(d) \varphi_1(c) \right) = 0.$

Теорема (Янг, Штуфкен, 2009, Следствие 3)

Пусть $c_i\in[a,d)$ и $\omega_i>0$, $i=1,\ldots,k,k\geq 2$. Тогда для функций $\varphi_1,\varphi_2,\varphi_3$ определенных выше существует единственная пара c_x,ω_x , где $c_x\in(a,d)$ и $\omega_x\in(0,\sum_{i=1}^k\omega_i)$ такие, что

$$\sum_{i=1}^{k} \omega_i \varphi_j(c_i) = \omega_x \varphi_j(d) + \left(\sum_{i=1}^{k} \omega_i - \omega_x\right) \varphi_j(c_x), \quad j = 1, 2,$$

$$\sum_{i=1}^{k} \omega_i \varphi_3(c_i) < \omega_x \varphi_3(d) + \left(\sum_{i=1}^{k} \omega_i - \omega_x\right) \varphi_3(c_x).$$

Применение полученных результатов для модели Михаэлиса-Ментен

Представление элементов информационной матрицы для модели Михаэлиса-Ментен в виде функций $\varphi_1, \varphi_2, \varphi_3$ (Янг, Штуфкен, 2009).

$$f = \begin{pmatrix} \frac{x}{x+\theta_2} & \frac{-\theta_1 x}{(x+\theta_2)^2} \end{pmatrix}^{\mathrm{T}}.$$

$$\begin{split} \mathbf{M}(\theta_1,\theta_2) &= \mathbf{A}(\theta_1,\theta_2)^{\mathrm{T}}\mathbf{C}(\theta_1,\theta_2)\mathbf{A}(\theta_1,\theta_2), \text{ где} \\ \mathbf{A}(\theta_1,\theta_2) &= \begin{pmatrix} \frac{1}{\theta_1} & \frac{-1}{\theta_2} \\ 0 & \frac{1}{\theta_1\theta_2} \end{pmatrix}, \quad \mathbf{C}(\theta_1,\theta_2) &= \begin{pmatrix} \sum\limits_{i=1}^k \varphi_1\omega_i & \sum\limits_{i=1}^k \varphi_2\omega_i \\ \sum\limits_{i=1}^k \varphi_2\omega_i & \sum\limits_{i=1}^k \varphi_3\omega_i \end{pmatrix}, \\ \varphi_1 &= \begin{pmatrix} \frac{\theta_1x_i}{x_i+\theta_2} \end{pmatrix}^2, \quad \varphi_2 &= \begin{pmatrix} \frac{\theta_1x_i}{x_i+\theta_2} \end{pmatrix}^3, \quad \varphi_3 &= \begin{pmatrix} \frac{\theta_1x_i}{x_i+\theta_2} \end{pmatrix}^4. \end{split}$$

Теорема 5 (Янг, Штуфкен, 2009): для некоторого класса критериев, любой оптимальный план модели Михаэлиса-Ментен состоит из двух опорных точек, одна из которых лежит на правой границе.

Вопрос построения оптимальных планов авторами не рассматривался.

Построение L-оптимального плана для модели Михаэлиса-Ментен

В соответствии с результатами Янга-Штуфкена искомый план имеет вид:

$$\left\{ \begin{array}{cc} x & d \\ \omega & 1 - \omega \end{array} \right\}.$$

L-оптимальный план: $\xi^* = \arg\min_{\xi} \operatorname{tr}(\operatorname{LD}(\xi)).$

Решается экстремальная задача $\min_{\xi} \operatorname{tr}(\operatorname{LD}(\xi)).$

$$\begin{cases} \operatorname{tr}(\operatorname{LD}(\xi))_x' = 0\\ \operatorname{tr}(\operatorname{LD}(\xi))_w' = 0. \end{cases}$$

Систему можно решить, используя, например, математический пакет Maple, как это было сделано в дипломной работе.

Для проверки правильности найденных значений используется теорема эквивалентности (Мелас В.Б., Шпилев П.В., 2012). Если ξ оптимальный план, то имеет место равенство $\max_{t\in\mathcal{X}}f^{\mathrm{T}}(t)\mathrm{M}^{-1}\mathrm{LM}^{-1}(\xi)f(t)=\mathrm{tr}\mathrm{LM}^{-1}(\xi).$

Пример L-оптимального плана

Построим L-оптимальный план для модели $\dfrac{20x}{x+15}, \quad x \in [0,100].$

Зададим L равную I (минимизация суммы дисперсий).

Решив систему уравнений, получим следующий план

$$\left\{ \begin{array}{cc} 8.72 & 100 \\ 0.65 & 0.35 \end{array} \right\}.$$

Иллюстрация численной проверки:

Рис.: Графики левой и правой частей уравнения из теоремы эквивалентности

Построение Е-оптимального плана для модели Михаэлиса-Ментен

Искомый план имеет вид:

$$\left\{ \begin{array}{cc} x & d \\ \omega & 1 - \omega \end{array} \right\}.$$

Необходимое уравнение из теоремы эквивалентности (Мелас В.Б., 1997):

$$\max_{x \in \mathcal{X}} f^{\mathrm{T}}(x) A f(x) = \lambda_{\min}(M(\xi)),$$

где A неотрицательно определена и ${\rm tr} A=1.$

В дипломной работе доказано следующее утверждение.

Предложение

Для любого невырожденного плана информационная матрица модели Михаэлиса-Ментен имеет минимальное собственное число кратности 1.

Следствие

Матрица A имеет ранг 1, то есть матрица A имеет вид $A=pp^T$, где p вектор.

Построение Е-оптимального плана для модели Михаэлиса-Ментен

Обозначение: $\lambda=\lambda_{\min}(\mathrm{M}(\xi))$, $p/\sqrt{\lambda}=(p_1,p_2)$. Проведя преобразования, получаем систему:

$$\begin{cases} \left(\frac{p_1 x}{x + \theta_2} + \frac{-\theta_1 p_2 x}{(x + \theta_2)^2}\right)^2 = 1\\ \left(\frac{p_1 d}{d + \theta_2} + \frac{-\theta_1 p_2 d}{(d + \theta_2)^2}\right)^2 = 1\\ \left(\frac{p_1 x}{x + \theta_2} + \frac{-\theta_1 p_2 x}{(x + \theta_2)^2}\right)'_x = 0. \end{cases}$$

$${
m tr}{
m A}=1$$
, ${
m A}=pp^{
m T}.$
Выразим λ :

$$\mathrm{tr}\mathbf{A} = \lambda p_1^2 + \lambda p_2^2 = 1,$$

$$\lambda = \frac{1}{p_1^2 + p_2^2}.$$

Найдем ω из уравнения $\mathrm{M}p=\lambda p$. Выражение для веса громоздкое и не приводится на слайдах.

С помощью пакета Maple получаем решение системы:

$$x = \frac{db(\sqrt{2} - 1)}{b + 2d - \sqrt{2}d},$$

$$p_1 = \frac{\sqrt{2}b^4 + 8\sqrt{2}db^3 + d^2b^2(4 + 17\sqrt{2}) + d^3b(4 + 12\sqrt{2}) + 2d^4\sqrt{2}}{d^2(b^2(3\sqrt{2} - 4) + 4db(\sqrt{2} - 1) + 2d^2\sqrt{2})},$$

$$p_2 = \frac{b(\sqrt{2}b^4 + 2db^3(3\sqrt{2} + 2) + d^2b^2(15\sqrt{2} + 16) + 4d^3b(4\sqrt{2} + 5) + 2(4d^4 + 3\sqrt{2})}{b^2(3\sqrt{2} - 4) - 4db + 4b\sqrt{2}d + 2d^2\sqrt{2}}.$$

Сравнение оптимальных планов для модели Михаэлиса-Ментен

D-оптимальные планы наиболее изучены и для них известны опорные точки в аналитическом виде. Для критериев L-,E-,D- приведена таблица со значениями оптимальных планов и эффективности относительно друг друга.

Таблица: Сравнение оптимальных планов

d, θ_1, θ_2		L	E	D	L по Е	L по D	E по L	Е по D	D по L	D по Е
2,1,1	ω	0.67	0.68	0.5						
, ,	×	0.39	0.38	0.5	99.99	88.35	99.99	87.70	83.37	82.40
100,1,1	ω	0.67	0.69	0.5						
	×	0.72	0.70	0.98	99.89	88.56	99.89	86.60	84.01	81.14
100,10,1	ω	0.28	0.20	0.5						
	×	0.87	0.70	0.98	94.18	83.67	93.59	66.82	80.42	59.57
100,	ω	0.69	0.69	0.5						
10,15	×	8.54	8.44	11.54	99.99	86.79	99.98	86.05	81.10	79.95
2000,	ω	0.43	0.42	0.5						
500,	X	73.9	65.2	90.9	99.38	96.45	99.27	91.91	95.84	91.71
100										
2000,	ε	0.71	0.71	0.5						
100,	X	248.0	247.8	333.3	99.99	85.11	99.99	85.05	78.35	78.24
500										
2000,	ε	0.69	0.69	0.5						
4000,	X	641.6	640.8	800	99.99	86.89	99.99	86.78	81.07	80.90
4000										

Построение L-оптимального плана для обобщенной модели

Оптимальные планы для обобщенной модели состоят из трех опорных точек, две из которых находятся на границе (Янг, 2010). Оптимальный план имеет вид:

$$\left\{\begin{array}{ccc} 0 & x & d \\ \omega_1 & \omega_2 & 1 - \omega_1 - \omega_2 \end{array}\right\}.$$

Аналогично случаю с двумя параметрами решаем $\min_{\xi} \operatorname{tr}(\operatorname{LD}(\xi)).$

$$\begin{cases} \operatorname{tr}(\operatorname{LD}(\xi))_x' = 0\\ \operatorname{tr}(\operatorname{LD}(\xi))_{w_1}' = 0\\ \operatorname{tr}(\operatorname{LD}(\xi))_{w_2}' = 0. \end{cases}$$

Для проверки правильности найденных значений также используется теорема эквивалентности (Мелас В.Б., Шпилев П.В., 2012). Если ξ оптимальный план, то имеет место равенство $\max_{t\in\mathcal{X}}f^{\mathrm{T}}(t)\mathrm{M}^{-1}\mathrm{LM}^{-1}(\xi)f(t)=\mathrm{tr}\mathrm{LM}^{-1}(\xi).$

Пример L-оптимального плана для обобщенной модели

Построим L-оптимальный план для модели $10 + \frac{20x}{x+15}, \quad x \in [0,100].$

Зададим L равную I (минимизация суммы дисперсий).

Решив систему уравнений, получим следующий план

$$\left\{ \begin{array}{ccc} 0 & 11.23 & 100 \\ 0.27 & 0.45 & 0.28 \end{array} \right\}.$$

Иллюстрация численной проверки:

Рис.: Графики левой и правой частей уравнения из теоремы эквивалентности

Построение Е-оптимального плана для обобщенной модели

Искомый план имеет вид:

$$\left\{\begin{array}{ccc} 0 & x & d \\ \omega_1 & \omega_2 & 1 - \omega_1 - \omega_2 \end{array}\right\}.$$

Как и ранее, рассматриваем уравнение из теоремы эквивалентности (Мелас В.Б., 1997):

$$\max_{x \in \mathcal{X}} f^{\mathrm{T}}(x) A f(x) = \lambda_{\min}(M(\xi)).$$

Предположение: $A = pp^{T}$.

Обозначение: $\lambda = \lambda_{\min}(M(\xi))$, $p/\sqrt{\lambda} = (p_1, p_2, p_3)^T$.

Проведя преобразования, получаем систему:

$$\begin{cases} p_1^2 = 1 \\ \left(p_1 + \frac{p_2 x}{x+b} + \frac{-ap_3 x}{(x+b)^2}\right)^2 = 1 \\ \left(p_1 + \frac{p_2 d}{d+b} + \frac{-ap_3 d}{(d+b)^2}\right)^2 = 1 \\ \left(p_1 + \frac{p_2 x}{x+b} + \frac{-ap_3 x}{(x+b)^2}\right)'_x = 0. \end{cases}$$

Построение Е-оптимального плана для обобщенной модели

Решение системы можно получить с помощью Maple:

$$\mathrm{tr} \mathbf{A} = 1$$
, $\mathbf{A} = pp^{\mathrm{T}}$.
Выразим λ :

$$x = \frac{db}{2b+d}$$
 $p_1 = 1$,
 $p_2 = \frac{8b(d+b)}{d^2}$ $p_3 = \frac{8b(d+b)^2}{ad^2}$.

$${\rm tr} {\bf A} = \lambda p_1^2 + \lambda p_2^2 + \lambda p_3^2 = 1,$$

$$\lambda = \frac{1}{p_1^2 + p_2^2 + p_3^2}.$$

Веса ω_1,ω_2 найдены из уравнения $\mathrm{M}p=\lambda p$.

$$\omega_1 = \frac{A_1}{B_1} \qquad \omega_2 = \frac{A_2}{B_2} \text{, где}$$

$$A_1 = d^4a^2 + 96b^4d^2 + 64b^5d + 24b^3a^2d + 16b^6 + 64b^3d^3 - 8bd^3a^2 + 16b^4a^2 + 16b^2d^4,$$

$$B_1 = d^4a^2 + 64b^2a^2d^2 + 128b^3a^2d + 64b^4a^2 + 64b^2d^4 + 256b^3d^3 + 384b^4d^2 + 256b^5d + 64b^6,$$

$$A_2 = 32b^2(4bd^3 + 6d^2b^2 + 4db^3 + a^2d^2 + 2ba^2d + b^2a^2 + d^4 + b^4),$$

$$B_2 = d^4a^2 + 64b^2a^2d^2 + 128b^3a^2d + 64b^4a^2 + 64b^2d^4 + 256b^3d^3 + 384b^4d^2 + 256b^5d + 64b^6.$$

Пример Е-оптимального плана для обобщенной модели

Построим Е-оптимальный план для модели

$$10 + \frac{20x}{x+15}, \quad x \in [0, 100].$$

Получившийся план

$$\left\{ \begin{array}{ccc} 0 & 11.54 & 100 \\ 0.24 & 0.49 & 0.27 \end{array} \right\}.$$

Для проверки ${\bf A}=pp^{\rm T}$ достаточно проверить равенство кратности минимального собственного числа информационной матрицы 1. Собственные числа информационной матрицы:

$$\{0.015, 0.079, 1.26\}.$$

Полученный план действительно является Е-оптимальным.

Сравнение оптимальных планов для обобщенной модели

Для нахождения D-оптимальных планов использовались результаты из статьи Dette, Kiss, Bevanda, Bretz, 2010. Для критериев L-,E-,D- приведена таблица со значениями оптимальных планов и эффективности относительно друг друга.

Таблица: Сравнение оптимальных планов

d, θ_1, θ_2		L	E	D	L по Е	L по D	Е по L	E по D	D по L	D по Е
2,1,1,1	ω	0.24	0.23	0.33	_				_	
,,_,_	- "	0.49	0.49	0.00						
	×	0.5	0.5	0.5	99.92	90.26	99.93	88.74	86.11	83.86
100,1,1,1	ω	0.29	0.26	0.33						
' ' '		0.46	0.49							
	×	0.96	0.98	0.98	99.59	93.06	99.55	89.61	90.01	85.55
100,10,	ω	0.26	0.25	0.33						
		0.49	0.49							
15,100	×	11.46	11.54	11.54	99.94	90.46	99.94	89.07	86.60	84.68
100,80,	ω	0.23	0.20	0.33						
		0.47	0.49							
50,50	×	24.46	25	25	99.60	90.99	99.62	87.77	86.65	81.26
100,50,	ω	0.24	0.24	0.33						
		0.50	0.5							
80,50	×	30.73	30.77	30.77	99.99	89.28	99.99	88.86	84.86	84.26
2000,2000,	ω	0.27	0.11	0.33						
		0.37	0.47							
500,1000	×	279.7	333.3	333.3	96.27	80.21	94.21	82.63	94.62	58.78

Заключение

В дипломной работе построены L- и E-оптимальные планы для моделей Михаэлиса-Ментен и ее обобщения.

Для Е-оптимальных планов получен результат в явном аналитическом виде для произвольных значений параметров (на $\mathcal{X}=[0,d]$). Проведено сравнение L-,E- и D-оптимальных планов.

Выводы:

- L- и Е-оптимальные планы близки по значениям критериев оптимальности;
- D-оптимальные планы для некоторых значений параметров существенно отличаются от L- и E-оптимальных;
- На практике логичнее всего использовать Е-критерий.

Спасибо за внимание!

