Experiments and Quantitative Analysis

Experiments

- Why now?
 - Some of you have comparative questions
 - · I want to talk about some of the crisper results we have
 - "what's the bottom line?"
- · Today: a crash course in experimental design and statistics

Observational vs. Interventional Studies

- · Observational: watch something (without controlling it)
 - Can establish correlation
 - Do C programs have more security vulnerabilities than Haskell programs?
 - · Look at a bunch of programs, count vulnerabilities, and compare
- · Interventional: change something and watch what happens
 - Can establish causation
 - · Recruit programmers, assign them to use C or Haskell, count bugs in resulting programs.

Causation Vs. Correlation

- · I observe: it is raining. People are using umbrellas.
- Possibilities:
 - · Rain causes people to use umbrellas.
 - Umbrellas cause rain.
 - Both rain and umbrellas are caused by a third, unseen factor (e.g. wind)

Causation

- Are people more likely to click ads if I put them at the top of the page or the bottom of the page?
- · If I randomly choose whether the ad is at the top or bottom
- · AND THEN people are more likely to click the ad in one condition
- THEN it is likely that the choice of top or bottom **caused** the difference in behavior.

Variables

- · Independent variables: ones the experimenter controls
- Dependent variables: ones the experimenter measures
- · Want to know if red squiggly underlines in IDEs help people finish tasks faster.
 - |\/?
 - whether underlines appear
 - D\?
 - task completion time
 - Confounding variable?
 - Color-blindness

Correlation

• What if it's impossible, too expensive, or unethical to manipulate an IV?

- Does smoking cause cancer?
- Is Rust better than C in projects with > IM LOC?

Vocabulary

- Randomized controlled studies (RCTs)
- A/B tests: RCTs with only two conditions

Dealing With Confounding Variables

- Two options:
 - Control them (mitigate their effects or restrict participant population)
 - Record them

Multiple Factors

- What if there are two IVs?
- · Factorial design: try every combination
- Example: factors influencing exam scores:
 - IV I: test time (morning or afternoon)
 - IV 2: coffee (0 or 1 cups)
 - DV: exam scores
- 2 x 2 design

	morning	afternoon
No coffee	(scores)	(scores)
l cup of coffee	(scores)	(scores)

```
int result;
if (x > 42) {
  result = 37;
}
else {
  result = 95;
}
```

```
int result = (x > 42) ? 37 : 95;
```

- Q: can people answer code understanding questions faster with **if** statements or with the ternary operator?
- · Within-subjects: every participant gets both kinds of code problems
- Between-subjects: some participants get only if; others only get ternary operators

- Within: have to worry about learning effects. But otherwise more statistical power.
- Between: greater variance; might accidentally have demographic differences between groups
 - Randomly assign to conditions. Suppose participants in one group accidentally have more programming experience?
 - · Need to balance groups.

- Task: fix a bug in codebase X.
- · Conditions: Ildb vs. print ln debugging
- Surely once you've fixed the bug once, it's much easier to fix it again!

- · Within also known as repeated measures
- Used with paired tests

SIMPSON'S PARADOX

	Men		Women	
	Applicants	Admitted	Applicants	Admitted
Total	8442	44%	4321	35%

UC Berkeley, Fall 1973

Conclusion: discrimination against women?

Credit: Wikipedia contributors

ADMISSIONS BIAS?

Donartmont	Men		Women	
Department	Applicants	Admitted	Applicants	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
C	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

Bickel et al.: women tended to apply to competitive departments with low rates of admission even among qualified applicants (such as in the English Department), whereas men tended to apply to less-competitive departments with high rates of admission among the qualified applicants (such as in engineering and chemistry).

KIDNEY STONES

Both	78% (273/350)	83% (289/350)
	73% (192/263)	69% (55/80)
Large stones	Group 3	Group 4
Small stones	93% (81/87)	87% (234/270)
	Group I	Group 2
	Treatment A	Treatment B

When the less effective treatment (B) is applied more frequently to Credit: Wikipedia coless severe cases, it can appear to be a more effective treatment.

HYPOTHESISTESTING

- · Context: drawing from two populations.
- Null hypothesis: $\mu_1 = \mu_2$
- Alternative hypothesis: $\mu_1 \neq \mu_2$
- · Question: what is the probability the null hypothesis is true?
- This is what p-value captures.

https://rpsychologist.com/d3/nhst/

ERRORS

- Testing: $\mu_1 = \mu_2$
- Type I error: conclude $\mu_1 \neq \mu_2$ when $\mu_1 = \mu_2$
- Type 2 error: find no significant difference when $\mu_1 \neq \mu_2$
- a: P(type I error)
- β: P(type 2 error)

POWER

- Recall: β: P(type 2 error)
- Power: I β
- · Probability of rejecting null hypothesis if it is false
- Want more power?
 - Increase N
 - Decrease variance (σ^2)
 - Increase $|\mu_1 \mu_2|$

EFFECT SIZE

- Small p-value does not imply a large effect!
- Instead, calculate effect size (Cohen's d)

$$d = \frac{\mu_1 - \mu_2}{S}$$

• s: pooled standard deviation

Interpretation	d
Very small	0.01
Small	0.02
Medium	0.5
Large	0.8
Very large	1.2
Huge	2