

SEQUENCE LISTING

Robinson, John Allen
Stojanovic-Susulic, Vedrana
Babij, Philip
Murrills, Richard John

<120> A Novel PTH Responsive Gene

<130> AM100401

<150> US 60/425,532

<151> 2002-11-12

<160> 63

<170> PatentIn version 3.2

<210> 1

<211> 2146

<212> DNA

<213> Rat

<400> 1
ccggcttag cgcagccgc agccgcaagc cgaacggccg ctgggcgcgc ccgcaacagg 60
ggaggatggg ctgcggcggg agccgagccg atgccatcga gccccgctac tatgagagct 120
ggaccggga gaccgagtcc acctggctca cctacaccga ctcggacgcg ctgcccagcg 180
ccgcagccac ggacagcggc cccgaggcgg gcggcctgca cgccggtgtg ctgaaagacg 240
ggccgtcctc taacggtgtg ctccgacactg cagccccagg tggaaatagcc aaccaggaga 300
agaagatgaa ctgtgggacc caatgtccca actcacagag cctcagctca ggcctctga 360
cccagaagca gaatggcctt tggaccacag aggctaaaag ggatgccaag cgaatgtctg 420
caagagaagt cgcttatcagc gtcacagaga atatccggca gatggacaga agtaaaaggg 480
tcacaaagaa ctgcatcaat tagcagtgtc tgggtgtgaa agcacatgaa cttcttgtg 540
gcgtccagtc aaagaatatt gaagaagtgg gtgtcactca ctgaacgtgg atgcctctga 600
gcgacgcacg gccacccacg cggtgacgac catcccggtt tcctgtttat cacatacaga 660
aaatacatcg aaaagtccctg gaatatgttc acagattgcc aaactatggt ttgttttcc 720
tctctgcagc ttccgtagca gggctgctg taaccatggt gaagcccgtg ggcctgtgaa 780
tgaatattgg aatccccggg gcaaggagct cacgctagcg tagaaatttc acagtgcgtg 840
gtttcggaca agctcccttt tcctcctttc tttttaaata cggccattgt tttcacttaa 900
gagctggctc tcaccaactc taaactcaa aatacaagaa tcagagaaac agagagactc 960
agaatgagat tcatcagtcc tagttcacg tgctgactcc cgggtgccta tgcgggcct 1020
ttaggaggtg tctatgacac acacacacac acacacacac acacacacac 1080
acacacctgt tcctcctcta cctggaaagg tctccaggc tggcatcagg cattggcttc 1140
cgaatcacaa tgtcacatgt ttggggccct tgcacccaac ctgcacccgc tttggacct 1200
agctccatgt ggctttccc atagcttct agtccctgt tcttctcatg gactttgtac 1260
tccagtcagg tcatttgcag ctgtaatcaa agactggaca ccactcccg gggaaaggta 1320

ccttaggaaca	catggtgaca	cacacgatgc	ccccttggcc	tttctgtaca	cagccccaaag	1380
gaccgtgtta	ttttggtata	tgcaaagcaa	ttagtttggaa	aagccagagc	ctgggttgcgt	1440
tatattccctg	ctgacatcg	accaagaagg	caactgtattt	gaaaggcaggc	agccaaacaca	1500
gccaagccat	gctctgat	ggacccttcc	cccacattcc	taaacacatc	ctcctgcaaa	1560
gtatggcaca	gcctgagttt	gaaaggaccg	ttcacattgt	tgggcttattt	aaaggtatag	1620
tccaaagtgt	gtcaaactgt	atcaacagac	tccacatcta	gcagcaagag	cagtctggtg	1680
acatgtttat	acgacacagt	ccaagagaag	taacctaagc	gggctaaaat	gcagatgctc	1740
acgcctgtct	ctgaagtgtat	ttctccaaca	cagacagaac	tgtaaactgt	gcgtttattc	1800
gtattaaaat	tcactgccaa	tcttgtgcca	gctacagtaa	cagacacaga	gggggttgga	1860
gtctggcagt	cacgaccgta	catctgactc	tatggggagg	tttgagactc	aggagaatga	1920
cctgaaccct	gcggcacagg	accaaccatt	gcagtgaaat	ctcacttcta	ggttaaaggt	1980
agctttctat	ccatcgaaa	tgtatgtctt	ctcctctgcc	rtgtagacta	cagttttccc	2040
caacctctct	caccttgact	ccttgtcaaa	gggcttttag	ggaacttcat	gttctgacaa	2100
tttaactaat	aaaacaaaag	caagccccgt	aaaaaaa	ccgggc		2146

<210> 2
<211> 145
<212> PRT
<213> Rat

<400> 2

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
1 5 10 15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
20 25 30

Ser Asp Ala Leu Pro Ser Ala Ala Ala Thr Asp Ser Gly Pro Glu Ala
35 40 45

Gly Gly Leu His Ala Gly Val Leu Glu Asp Gly Pro Ser Ser Asn Gly
50 55 60

Val Leu Arg Pro Ala Ala Pro Gly Gly Ile Ala Asn Pro Glu Lys Lys
65 70 75 80

Met Asn Cys Gly Thr Gln Cys Pro Asn Ser Gln Ser Leu Ser Ser Gly
85 90 95

Pro Leu Thr Gln Lys Gln Asn Gly Leu Trp Thr Thr Glu Ala Lys Arg
100 105 110

Asp Ala Lys Arg Met Ser Ala Arg Glu Val Ala Ile Ser Val Thr Glu
115 120 125

Asn Ile Arg Gln Met Asp Arg Ser Lys Arg Val Thr Lys Asn Cys Ile
Page 2

130

135

140

Asn
145

<210> 3
 <211> 2847
 <212> DNA
 <213> Homo sapiens

<400>	3					
gccccggacta	ggggcggcgg	gcaccgcagg	agctccgcgc	ggctgcagcg	cgggcgggag	60
cggggacgcg	atgtcgccgc	cggccgcctcc	ttgcgggccc	gggctgcgcc	tccggggctg	120
agccgcccgc	agagccgaca	gccgagcagc	cgctgggcgc	tcccgcggcg	caggaggatg	180
ggctgcggcg	ggagccgggc	ggatgccatc	gagccccgct	actacgagag	ctggaccgg	240
gagacagaat	ccacctggct	cacctacacc	gactcggacg	cggcccccag	cgccgcccgc	300
ccggacagcg	gccccgaagc	ggcggcctg	cactcggca	tgcttggaa	tggactgccc	360
tccaatggtg	tgcccccgtc	tacagcccc	ggtggaaatac	ccaacccaga	gaagaagacg	420
aactgtgaga	cccagtgc	aaatccccag	agcctcagct	caggccctct	gaccaggaaa	480
cagaatggcc	ttcagaccac	agaggctaaa	agagatgcta	agagaatgcc	tgcaaaagaa	540
gtcaccatta	atgtaacaga	tagcatccaa	cagatggaca	gaagtgcgaag	aatcacaaag	600
aactgtgtca	actagcagag	agtccaaagca	gaagggcaga	tggacttctt	cagtgtcctt	660
cacggcactg	gatcccatca	aagaaccttg	aagaagtggc	tgcccccgtc	tggacctgaa	720
ttctactgag	tccctggcaa	gactgtctt	cctggcagca	aactgctgcc	tgatttgg	780
ggaccttctg	agccttctac	ttatcatgta	aatgtattgg	cacagtgcct	acatatgtta	840
ataaaactgca	aatgtgcagt	tcagttgtc	tcttgcaac	tcctgtata	cggctggtg	900
taaaagttagt	gagttaaagc	tacaggtcag	tttatgaaac	agaaaaagtag	gaatgcattt	960
tctgggtgaa	agagtcacac	cttagtgcta	taactctcct	gcccatgata	gtgtattctg	1020
tttcaggcaa	gcttattctt	tccttcttc	atttaaata	ttgtcattac	aatcttacc	1080
aggttcactt	aaaagctggc	tttcatccaa	ctctaaaccc	acatattgaa	aaaatcaagg	1140
tacaggaaaa	ctccttgtta	tccttgtttc	cttagcttgg	tatgagacag	atcggatcca	1200
gtttccatg	caccaaccca	ctgcccattgg	catgtcttgc	ggaggtgtct	gtgaagcagt	1260
catacgtct	cctcatctgc	ctggaaagtc	ctcctattcc	agtgtccatg	ttggcctcca	1320
gtccttaatg	tcaccatgct	tgtggccaaat	gcatccaaat	aaggataaccc	ctcagggctc	1380
agctagacat	tgcaattttg	catagcttgc	cagttccctt	tgcttgcatt	cttgactgtt	1440
ttccctctct	atcggggtca	cttgcaatttgc	ttaatcaaag	attgaacact	gcgttaggaga	1500
gggagatgtat	ccagagacat	gtggcagcag	gcatggcttc	cccttggcct	ctctgtacac	1560
tgccccagga	ctgtcatttt	ggcatctgca	aaggaatcac	tttagaaagc	cagcacctgg	1620
ttgatgtgta	ttcataactga	cattagatttgc	atgtgcactg	cattagaaat	gaggtagctg	1680

acacagaaaa	aggatgttt	gataggaata	atttcttagt	atgtcttcaa	acatgttcat	1740
ctggaaagtat	tttcctccaa	agtaatgtag	catgattttt	caaggattgt	taacatgcct	1800
gggattggga	aagataggac	taaagttgtg	ccaaactata	tcaataaatt	ccatgtttag	1860
cagaaatagg	cagcctattg	gtgttatgtt	tatgtAACAT	agtccagaga	actgacatgc	1920
aggtaaaaag	tcaGatacgc	aacccctta	tctgctaact	ctgttattct	tcaaacacaa	1980
gtgggttagtg	tcattttcc	ttccttcctt	ccattggcag	attgtatatt	tattcacaaa	2040
acattaaatg	tccatcctgt	gccaggtact	atgcagatgt	tgagggattt	ggggctgggt	2100
tagtcgtgac	tatctatcct	gaatctaaca	gtgacttcat	aactaggaga	ctgaattaga	2160
cccttaaggt	atagtgtgt	ttgcaaATCA	ctctgcaatg	gaaactttt	tattcagggt	2220
aggTTTGTG	cttaaactag	gtgttctaAT	caatgtacAA	gactttacca	tacacgcaac	2280
tttagttttt	ctaaaccttc	atcattttgt	gattcttga	gaaaggggctt	ttaggaactt	2340
tatgttctaa	aaaatgtttt	taacaataat	aagataaaag	aaaaacctgt	gattcatatg	2400
tccccactgg	cattactcg	caggagcccc	cagctGCCA	aggTTGGCAG	tgatcctgca	2460
agttcaaggg	ctcttctcc	ctggggatgt	gctttgtggc	ttctctttac	agctttgttt	2520
ctgcatcagt	tcactgctgc	atgttgtttg	gaatttatca	ccttaagaaa	gtgtctctgt	2580
tttatataga	aacactttct	cacttacagg	ggagaaggaa	atgcaggGCA	catgatctgg	2640
ccctccccag	aacaatctgg	atttcacgga	gacagcaacc	agaagttaaa	ccatgtgact	2700
aaaaatgcat	ctggctactt	tttcatgtat	gtatgagaca	gaaactaATC	cttactatcc	2760
tattaggata	ccactttca	ttgcaaagtt	tgtgtcaata	aagtcatTA	ttttaaacat	2820
aaaaaaaaaa	aaaaaaaaaa	aaaaaaag				2847

<210> 4
 <211> 145
 <212> PRT
 <213> Homo sapiens

<400> 4

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
 1 5 10 15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
 20 25 30

Ser Asp Ala Pro Pro Ser Ala Ala Ala Pro Asp Ser Gly Pro Glu Ala
 35 40 45

Gly Gly Leu His Ser Gly Met Leu Glu Asp Gly Leu Pro Ser Asn Gly
 50 55 60

Val Pro Arg Ser Thr Ala Pro Gly Gly Ile Pro Asn Pro Glu Lys Lys
 65 70 75 80

Thr Asn Cys Glu Thr Gln Cys Pro Asn Pro Gln Ser Leu Ser Ser Gly
 Page 4

85

90

95

Pro Leu Thr Gln Lys Gln Asn Gly Leu Gln Thr Thr Glu Ala Lys Arg
100 105 110

Asp Ala Lys Arg Met Pro Ala Lys Glu Val Thr Ile Asn Val Thr Asp
115 120 125

Ser Ile Gln Gln Met Asp Arg Ser Arg Arg Ile Thr Lys Asn Cys Val
130 135 140

Asn
145

<210> 5
<211> 271
<212> DNA
<213> Homo sapiens

<400> 5
atgggctgcg gcgggagccg ggcggatgcc atcgagcccc gctactacga gagctggacc 60
cgggagacag aatccacctg gtcaccc tac accgactcgg acgcgcggcc cagcgcggcc 120
gccccggaca gcggcccccga agcgggcggc ctgcactcgg gctaaaagag atgctaagag 180
aatgcctgca aaagaagtca ccattaatgt aacagatagc atccaacaga tggacagaag 240
tcgaagaatc acaaagaact gtgtcaacta g 271

<210> 6
<211> 54
<212> PRT
<213> Homo sapiens

<400> 6

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
1 5 10 15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
20 25 30

Ser Asp Ala Pro Pro Ser Ala Ala Ala Pro Asp Ser Gly Pro Glu Ala
35 40 45

Gly Gly Leu His Ser Gly
50

<210> 7
<211> 1988
<212> DNA
<213> Mouse

<400> 7
gcagcagcca cagccgcaag ccgagcggcc gccgggcgcg cccgcaacac gggaggatgg 60
gctgcggcgg gagccgagcc gatgccatcg agcccgcta ctacgagagt tggacccggg 120

agacggagtc cacctggctc acctacaccg actcgacgc gctgccagc gccgcagcca	180
cggacagcgg ccccgaggcg ggccgcctgc acgcgggtgt gctggaagac ggactgtcct	240
ctaacgggt gctccgacct gcagccccgg gtgaaatagc caacccagag aagaagatga	300
actgtggac ccaatgtccc aactcacaga acctcagctc aggccctctg acccagaaac	360
agaatggcct ctggccaca gaggctaaga gggatgctaa gcggatgtct gcaagagaag	420
tggctattaa cgttacagag aatattcggc agatggacag aagtaaaagg gtcaccaaga	480
actgcatcaa ttagcagtgc ccggatgtgg aggcatgatga acttcttggg ggagtctagt	540
caaagaatcc tgaagaagtt gatgtcactc gatgagtgtg gatgcctctg agtacacac	600
ggccacccaa cgctgtacg aacatctcg tttcctgttt atcacatata gaaaatacat	660
cgaaaagtcc tgaaatatgt tcatacgattt ccaaataatgt gtttggggg tcccctctgc	720
agcttccata gcatggtctg ctgttagccat ggcgactggc acagaaaggc tggagtaacg	780
gaatccctgt caaggagctc acactcgtgc agagctttct cagtgtgtgg ttgcagacaa	840
actccttctt tcctcctttc cttttaaata cggccaccac aaaatttact gttttcactt	900
aagagctggc tcccagccaa ctctaaatcc agaaatacaa gaatccaaaa aaccagagag	960
actcggAACG agctgaatca gtcccagctt cacgtgctgg ctcccccggc cctactcggt	1020
gtcttgaga ggtgtctatg agacacgcac atgcacacgc acacacacac acatacctgt	1080
ttctcctcta cctggaaagg actcccaggc tagcatccag gcgttggctt ccaaaccaga	1140
atgtcacatg tctgtggcct ttgctccctt tggtacccat cttcatgttgc cttttccccca	1200
tagcttcca gttccctatt gttctggtgg gctttgtacc ttcagtcagg tggtcatttg	1260
cagctggaca ccactcacag gggggaaagt gacctaggaa cacatggtgg cacacgttat	1320
acccctttgg cccttctgtt cacagccccca aggaccatgt tattttggt atctgcagag	1380
taatttagtt ggaaagccag aggctggttt atgtatattt ctgttgacat agtctaacaa	1440
ggcactcact gtattaaaa acaggcacca acatggtaaa gcgatgctt gataggaacc	1500
cttccccagc attcctaagc acaccccttgc gagagatgtt tgacacacgc atgagtctga	1560
aaggactgtt aacatgcttgg ggttattaa ggtccaagtc atatcaaact gtaccaacaa	1620
actcacatct agcagcaata gtagtctggc ggcacatgtt cgtgacagtt caagagaagt	1680
caccaagcg gattaagatg cagatgctca ctgctgtctc tgacttattt ctccaaacaca	1740
agtagaactg tagactgtat gtttattatgt gttaagattt actgccaacc ttgtggccagc	1800
tacagtaaca gtcgcagagg gattttggagt cgggaagtca cgactgtact tctgactctg	1860
tgaggaggct tggactctag gagactgaca cggaccctgt ggcacaagac caatgattgc	1920
agtggaatct cacacttagg taaaggttagc tttctgtcaa tcacagatgt atgtcttctc	1980
ctttggccg	1988

<210> 8
 <211> 145
 <212> PRT
 <213> Mouse

<400> 8

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
1 5 10 15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
20 25 30

Ser Asp Ala Leu Pro Ser Ala Ala Ala Thr Asp Ser Gly Pro Glu Ala
35 40 45

Gly Gly Leu His Ala Gly Val Leu Glu Asp Gly Leu Ser Ser Asn Gly
50 55 60

Val Leu Arg Pro Ala Ala Pro Gly Gly Ile Ala Asn Pro Glu Lys Lys
65 70 75 80

Met Asn Cys Gly Thr Gln Cys Pro Asn Ser Gln Asn Leu Ser Ser Gly
85 90 95

Pro Leu Thr Gln Lys Gln Asn Gly Leu Trp Ala Thr Glu Ala Lys Arg
100 105 110

Asp Ala Lys Arg Met Ser Ala Arg Glu Val Ala Ile Asn Val Thr Glu
115 120 125

Asn Ile Arg Gln Met Asp Arg Ser Lys Arg Val Thr Lys Asn Cys Ile
130 135 140

Asn
145

<210> 9
<211> 1821
<212> DNA
<213> Mouse

<400> 9
gcagcagcca cagccgcaag ccgagcggcc gccgggcgcg cccgcaacac gggaggatgg 60
gctgcggcgg gagccgagcc gatgccatcg agcccccta ctacgagagt tggacccggg 120
agacggagtc cacctggctc acctacaccg actcggacgc gctgcccagc gccgcagcca 180
cggacagcgg cccccgaggcg ggcggcctgc acgcgggcta agagggatgc taagcggatg 240
tctgcaagag aagtggctat taacgttaca gagaatattc ggcagatgga cagaagtaaa 300
agggtcacca agaactgcat caatttagcag tgcccgatg tggaggcaga tgaacttctt 360
ggtgaggatct agtcaaagaa tcctgaagaa gttgatgtca ctcgatgagt gtggatgcct 420
ctgagtgaca cacggccacc caacgctgtg acgaacatct cggttccctg tttatcacat 480
atagaaaata catcgaaaag tcctgaaata tggatcata gttggccaaat gtgggttgtt 540
ttttccccctc tgcagcttcc atagcatggt ctgctgtac catggcgact ggcacagaaa 600

ggctggagta acggaatccc	tgtcaaggag ctcacactcg	tgcagagctt tctcagtgtg	660
tggttgcaga caaactcctt	cttcctcct ttcctttaa	atacggccac cacaaaattt	720
actgtttca cttaaagagct	ggctcccagc caactctaaa	tccagaaaata caagaatcca	780
aaaaaccaga gagactcgga	acgagctgaa tcagtcccag	cttcacgtgc tggctccccg	840
gtgcctactc ggtgtctttg	agaggtgtct atgagacacg	cacatgcaca cgcacacaca	900
cacacatacc tgtttctcct	ctacctggaa aggactccca	ggctagcatc caggcggtgg	960
cttccaaacc agaatgtcac	atgtctgtgg ctttgctcc	ctttgggacc tagcttcatg	1020
ttgctttcc ccatagctt	ccagttccctt attgttctgg	tgggctttgt acttcagtc	1080
aggtggtcat ttgcagctgg	acaccactca cagggggaa	agtgcacctg gaacacatgg	1140
tggcacacgt gataccctt	tggcccttct gtacacagcc	ccaaggacca tgttatTTT	1200
ggtatctgca gagtaattag	tttggaaagc cagaggctgg	ttgatgtata ttcctgttga	1260
catagtctaa caaggcactc	actgttattga aaaacaggca	ccaacatgg aaagcgatgc	1320
ttttagatgg accctcccc	agcattccta agcacacctt	cctgcagagt atgttgacac	1380
agcatgagtc tgaaaggact	gttaacatgc ttggcTTT	taaggcCAA gtcataatcaa	1440
actgtaccaa caaactcaca	tctagcagca atagtagtct	ggcggcatgc ttacgtgaca	1500
gttcaagaga agtcacccaa	gcggattaag atgcagatgc	tcactgctgt ctctgactta	1560
tttctccaac acaagttagaa	ctgttagactg tatgtttatt	agtgttaaga ttcactgcca	1620
accttgc	agctacagta acagtcgcag	agggatttgg agtcggaaag tcacgactgt	1680
acttctgact ctgtgaggag	gcttggtaact caggagactg	acacggaccc tgtggcaca	1740
gaccaatgat tgcagtggaa	tctcacactt aggtaaaggt	agctttctgt caatcacaga	1800
tgtatgtctt ctccttgcc	g		1821

<210> 10
 <211> 54
 <212> PRT
 <213> Mouse

<400> 10

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
1 5 10 15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
20 25 30

Ser Asp Ala Leu Pro Ser Ala Ala Ala Thr Asp Ser Gly Pro Glu Ala
35 40 45

Gly Gly Leu His Ala Gly
50

<210> 11
 <211> 16
 <212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<400> 11

Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr Glu Ser Trp Thr Arg Glu
1 5 10 15

<210> 12

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<400> 12

Glu Asp Gly Leu Pro Ser Asn Gly Val Pro Arg Ser
1 5 10

<210> 13

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<400> 13

Glu Ala Lys Arg Asp Ala Lys Arg Met Asp Ala Lys Glu
1 5 10

<210> 14

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic peptide

<400> 14

Gln Met Asp Arg Ser Arg Arg Ile Thr Lys Asn Cys Val Asn
1 5 10

<210> 15

<211> 792

<212> DNA

<213> Mouse

<400> 15

tttgctggtg ttgttcatcc atcgcttta gaacaagtgg ccagaaaact tgggagggggg 60

atttttgtga gcttcggagc tacccagaac agaaagatgg ttttaaagag gggtggatag 120

gtaggtggat gactggatcc gtgggtggat gcacaggtgg acagatgagg gatggatgga 180

tggatggatg ggagcccagg aggtcgactg aagactgaag agggaccctt tttcttcttc 240

ccaccacctg tctgctactc tggcaccg catctgccag aacactgaag aaggactgg 300

cggtctggcg gtgggagagg cgaggtttag gggtgctggg gaaggaaagt ggagaggagg 360
agggccttgg agacagagag gagggggcccc cgggagcccg gcgctggcag cggctctggc 420
ggtagggga ccaatgtcgc tgccgccc tcctcctcg gggccggagc tgcgtcgccc 480
gggctgagca gcagccacag ccgcaagcgg agcggccgcc gggcgccccc gcaacacggg 540
aggatggct gcggcggag ccgagccat gccatcgagc cccgctacta cgagagttgg 600
acccgggaga cggagtccac ctggctcacc tacaccgact cggacgcgct gcccagcgcc 660
gcagccacgg acagcggccc cgaggcgggc ggcctgcacg cgggtgagtg agccccgcgc 720
ccgcgaggcc cggctgcctg cagcgagctg gagctgcagg ggagcctggg ggtagccagc 780
aaccctatgg ca 792

<210> 16
<211> 29
<212> DNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 16
cccacattcc taaacacatc ctccctgcaa 29

<210> 17
<211> 22
<212> DNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 17
ccatgctctg atatggaccc tt 22

<210> 18
<211> 22
<212> DNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 18
tcaaacttag gctgtgccat ac 22

<210> 19
<211> 22
<212> DNA
<213> Mouse

<220>
<223> Oligonucleotide

<400> 19
tgtgaggagg cttggtaactc ag 22

<210> 20
<211> 22

<212>	DNA	
<213>	Mouse	
<220>		
<223>	oligonucleotide	
<400>	20	
	gagattccac tgcaatcatt gg	22
<210>	21	
<211>	24	
<212>	DNA	
<213>	Mouse	
<220>		
<223>	oligonucleotide	
<400>	21	
	tgacacggac cctgtggcac aaga	24
<210>	22	
<211>	18	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<223>	oligonucleotide	
<400>	22	
	atgcattgtgg ccaatgca	18
<210>	23	
<211>	27	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<223>	oligonucleotide	
<400>	23	
	gatagagagg gaaaacagtc aagaaga	27
<210>	24	
<211>	27	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<223>	oligonucleotide	
<400>	24	
	acccttcagg gtcagctag acattgc	27
<210>	25	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide	
<400>	25	
	ccatcctaat cagactcact atagcgc	27

<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 26
gattccactg caatgggttgg tcct 24

<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 27
aaccgggatg gtcgtcaccg cgtg 24

<210> 28
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> oligonucleotide

<400> 28
ctgtccatct gccggatatt ctctg 25

<210> 29
<211> 22
<212> DNA
<213> Mouse

<220>
<223> oligonucleotide

<400> 29
ttccccagca ttcctaagca ca 22

<210> 30
<211> 24
<212> DNA
<213> Mouse

<220>
<223> oligonucleotide

<400> 30
tacggcaaag gagaagacat acat 24

<210> 31
<211> 20
<212> DNA
<213> Mouse

<220>
<223> oligonucleotide

<400>	31	
gcaggagcca	cagccgcaag	20
<210>	32	
<211>	20	
<212>	DNA	
<213>	Mouse	
<220>		
<223>	oligonucleotide	
<400>	32	
cggcaaagga	gaagacatac	20
<210>	33	
<211>	1086	
<212>	DNA	
<213>	Homo sapiens	
<400>	33	
ctctgaccca	gaaacagaat ggcttcaga ccacagaggc taaaagagat gctaagagaa	60
tgcctgcaaa	agaagtccacc attaatgtaa cagatagcat ccaacagatg gacagaagtc	120
gaagaatcac	aaagaactgt gtcaacttagc agagagtcca agcagaaggg cagatggact	180
tcttcagtgt	ccttcacggc actggatccc atcaaagaac cttgaagaag tggctgcccc	240
ttgctggacc	tgaattctac tgagtccctg gcaagactgt cttacctggc agcaaactgc	300
tgcctgattt	gttgggacct tctgagcctt ctacttatca tgtaaatgta ttggcacagt	360
gcttacatat	gttaataaac tgcaaatgtg cagttcagtt tgtctcttg caactcctgt	420
aatacggtct	ggtgtaaaag tagtgagtt aagctacagg tcagttatg aaacagaaaa	480
gtagggatgc	attttctggg tgaagagtc acaccttagt gctataactc tcctgccccat	540
gatagtgtat	tctgtttcag gcaagcttat tcttccttc tttcattttt aatattgtca	600
ttacaaatct	taccaggttc actaaaagc tggcttcat ccaactctaa acccacatat	660
tgaaaaatc	aaggtaacagg aaaactcctt gttatccttg tttccttagc ttggatgag	720
acagatcgga	tccagttcc catgcaccaa cccactgccc atggcatgtc tttggaggt	780
gtctgtgaag	cagtcataacc tgctcctcat ctgcctggaa agtcctccta ttccagtgtc	840
catgttggcc	tccagtcctt aatgtcacca tgcttgtggc caatgcattcc aaataaggat	900
acccctcagg	gctcagctag acattgcaat tttgcatacg tttccagttc cctttgcttg	960
tcttcctgac	tgtctccct ctctatcggt gtcacttgca attgttaatc aaagattgaa	1020
cactgcgtag	gagagggaga tgatccagag acatgtggca gcaggcatgg cttcccttg	1080
gcctct		1086
<210>	34	
<211>	31	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<223>	oligonucleotide	

<400> 34		
gaagatctcc accatggct gcggcgggag c		31
<210> 35		
<211> 28		
<212> DNA		
<213> Homo sapiens		
<220>		
<223> oligonucleotide		
<400> 35		
gaagatctct agttgacaca gttcttg		28
<210> 36		
<211> 18		
<212> DNA		
<213> Homo sapiens		
<220>		
<223> oligonucleotide		
<400> 36		
atgggctgcg gcgggagc		18
<210> 37		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<220>		
<223> oligonucleotide		
<400> 37		
gatcaactgt gtcaagaaac		20
<210> 38		
<211> 20		
<212> DNA		
<213> Mouse		
<220>		
<223> oligonucleotide		
<400> 38		
ccccgctact acgagagttg		20
<210> 39		
<211> 20		
<212> DNA		
<213> Mouse		
<220>		
<223> oligonucleotide		
<400> 39		
ctacgtcaag aaccactggg		20
<210> 40		
<211> 397		
<212> DNA		
<213> Mouse		

<400> 40
gccccgctac tacgagagtt ggacccggga gacggagtcc acctggctca cctacaccga 60
ctcggacgcg ctgcccagcg ccgcagccac ggacagcggc cccgaggcgg gcggcctgca 120
cgcgggtgtg ctggaagacg gactgtcctc taacgggtg ctccgacctg cagccccggg 180
tggaatagcc aacccagaga agaagatgaa ctgtggacc caatgtccca actcacagaa 240
cctcagctca ggccctctga cccagaaaaca gaatggcctc tgggccacag aggctaagag 300
ggatgctaag cgatgtctg caagagaagt ggctattaac gttacagaga atattcggca 360
gatggacaga agtaaaaggg tcaccaagaa ctgcatac 397

<210> 41
<211> 21
<212> DNA
<213> Homo sapiens

<220>
<223> Oligonucleotide

<400> 41
gctggaagat ggactgcccct c 21

<210> 42
<211> 22
<212> DNA
<213> Homo sapiens

<220>
<223> Oligonucleotide

<400> 42
ctctgtggtc tgaaggccat tc 22

<210> 43
<211> 21
<212> DNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 43
gaagacgggc cgtcctctaa c 21

<210> 44
<211> 21
<212> DNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 44
gtccaaaggc cattctgctt c 21

<210> 45
<211> 18
<212> DNA
<213> Rat

<220>		
<223>	oligonucleotide	
<400>	45	
	acgggccgtc ctctaacg	18
<210>	46	
<211>	22	
<212>	DNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	46	
	acattgggtc ccacagttca tc	22
<210>	47	
<211>	24	
<212>	DNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	47	
	agcccccagg ggaatagcca accc	24
<210>	48	
<211>	21	
<212>	RNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	48	
	uagccaaaccc agagaagaau u	21
<210>	49	
<211>	21	
<212>	RNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	49	
	uucuuucucug gguuggcuau u	21
<210>	50	
<211>	21	
<212>	RNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	50	
	cucacagagc cucagcucau u	21
<210>	51	
<211>	21	

<212>	RNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	51	
	ugagcugagg cucugugagu u	21
<210>	52	
<211>	21	
<212>	RNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	52	
	gaacugcauc aauuagcagu u	21
<210>	53	
<211>	21	
<212>	RNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	53	
	cugcuaauug augcaguucu u	21
<210>	54	
<211>	21	
<212>	RNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	54	
	cuucuuugug gcguccaguu u	21
<210>	55	
<211>	21	
<212>	RNA	
<213>	Rat	
<220>		
<223>	oligonucleotide	
<400>	55	
	acuggacgccc acaaagaagu u	21
<210>	56	
<211>	21	
<212>	RNA	
<213>	Homo sapiens	
<220>		
<223>	oligonucleotide	
<400>	56	
	uccaccuggc ucaccuacau u	21

<210> 57
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> oligonucleotide

<400> 57
uguaggugag ccagguggau u 21

<210> 58
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> oligonucleotide

<400> 58
uacccaaccc agagaagaau u 21

<210> 59
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> oligonucleotide

<400> 59
uucuucucug gguuggguau u 21

<210> 60
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> oligonucleotide

<400> 60
gagaugcuaa gagaaugccu u 21

<210> 61
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> oligonucleotide

<400> 61
ggcauucucu uagcaucucu u 21

<210> 62
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> oligonucleotide

<400> 62
gcagaaggc agauggacuu u

21

<210> 63
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> oligonucleotide

<400> 63
aguucaucug cccuucugcu u

21