

Digital Twin for Plant Health Monitoring

Rayan Contuliano Bravo

Université Libre de Bruxelles Supervisors : Pr. Gianluca Bontempi, Mr. Pascal Tribel

May 22, 2025

Context & Problem Statement

► Critical role of agriculture

- Essential for food supply & economy
- Facing challenges: population growth, shrinking farmland

Current issues

- Manual monitoring: time-consuming, subjective, not real-time
- Need for better efficiency, sustainability, biodiversity

How can we continuously, and reliably monitor plant health using digital twins for actionable insights?

Aim of This Project

Design a modular, scalable digital twin for real-time plant health monitoring.

System Architecture

- ► Modular & Independent: Each component (sensors, processing, storage, analytics, dashboard) is loosely coupled. Easy test and implement. Cloud-Ready
- ▶ Robust Data Pipeline: Data is cleaned, validated, and stored for both instant monitoring and historical trends.
- ► Cloud-Ready: Design supports migration to cloud

Sensor Integration & Data Pipeline

- Sensor:
 - Soil moisture, temperature, humidity, and light intensity sensors
 - Direct connection via Raspberry Pi pins
- Data Acquisition Pipeline:
 - Scheduled polling for real-time updates

Physical setup

Data Storage & Streaming

- Modular Streaming: Sensor data flows via Kafka for flexible, independent scaling.
- ► Reliable & Extensible:

 Add preprocessing/analytics modules.
- Real-Time Preprocessing:Spark Streaming for live cleaning and merging.
- Efficient Storage: InfluxDB enables fast trends, analytics, and archiving.

Sequence Diagram demonstrating the flow of the sensor readings in the system.

- VERSITÉ LIBRE DE BRU
- Real-time Visualization: Live updates for sensor readings.
- Historical Data Exploration: Custom time-window selection for trend review (e.g. last 24 hours).
- Responsive and Extensible: Modular design allows easy addition of new charts for more sensors.

Direction for Next Year

- ▶ Data Preprocessing
 - Handle anomalies, missing data
 - Increase reliability
- Advanced Analytics & ML
 - ► Forecasting, health state classification
 - ► ML model registry
- Expanded Sensing & Automation
 - Automated watering, lighting, heating
 - Closed-loop control
- Enhanced UI
 - Hardware/model control
 - Modern, user-friendly

Goal: An intelligent, autonomous digital twin for plant health environment.

Thank you for your attention!