Let $T \in \mathbb{R}^{n \times n}$ be an invertible matrix and $A \in \mathbb{R}^{n \times n}$ be any matrix. Show that A and TAT^{-1} have the same eigenvalues.

Solution:

 $Q \in \mathbb{R}^{n \times n}$ orthogonal, $A \in \mathbb{R}^{n \times n}$

1. Show: $\sigma(A) = \sigma(QAQ^T)$ Proof:

$$\lambda \in \sigma(A) \Leftrightarrow \exists v \in \mathbb{R}^n \setminus \{0\} : Av = \lambda v$$

$$\Leftrightarrow \exists v \in \mathbb{R}^n \setminus \{0\} : QA \underbrace{Q^T Q}_{=1} v = \lambda \underbrace{Qv}_{=\tilde{v}}$$

$$\Leftrightarrow \exists \tilde{v} \in \mathbb{R}^n \setminus \{0\} : QAQ^T \tilde{v} = \lambda \tilde{v}$$

$$\Leftrightarrow \lambda \in \sigma(QAQ^T) (3P)$$

2. $\frac{\mathsf{Show:}}{\mathsf{Proof:}} \left| \mathsf{det}(Q) \right| = 1$

$$1 = \det(I) = \det(Q^T Q) = \det(Q^T) \det(Q) = (\det(Q))^2$$

$$\Rightarrow |\det(Q)| = \sqrt{1} = 1 \quad (3P)$$