Week 4: Logistic Regression

Two ways to solve the equations

- The obvious approach: just to solve a set of simultaneous linear equations, one per meal
 - analytical solution with exact solution but costly.
- Or, use a numerical solution: making guesses at the solution and testing whether the problem is solved well enough to stop.

The prices of the portions are like the weights: $\mathbf{W} = (w_{sandwich}, w_{chips}, w_{candybar})$

start with guesses for the weights and then adjust the guesses to give a better fit to the prices given by the cashier.

Batch Adaline Review

- Define the error as the Sum of Squared Errors over all training $E = \frac{1}{2} \sum_{n} (y_n \hat{y}_n)^2$ cases:
- Now differentiate to get error derivatives for weights $\frac{\partial E}{\partial w_i} = \frac{1}{2} \sum_n \frac{\partial \hat{y}_n}{\partial w_i} \frac{\partial E_n}{\partial \hat{y}_n}$ $= -\sum_n x_{i,n} \left(y_n \hat{y}_n \right)$
- The batch learning rule changes the weights in proportion to their error derivatives summed over all training sample.

$$\Delta w_i = -\varepsilon \frac{\partial E}{\partial w_i}$$

A Simple Example of Learning

- Each day you get lunch at a new cafeteria.
 - Your lunch consists of sandwich, chips, and candy bars.
 - You get several portions of each per meal.
 - The cashier only tells you the total price of the meal.
- you want to find out the total price for my future purchase.

Each meal price gives a linear constraint on the prices of the portions:

$$price = x_{sandwich} w_{sandwich} + x_{chips} w_{chips} + x_{candybar} w_{candybar}$$

Adaline Review

 The output of an Adaline neuron: a real value output which is a weighted sum of its inputs:

$$\sum_{i} w_{i} x_{i} = \mathbf{w}^{T} \mathbf{x}$$
 Input vector

- The aim of learning is to minimize the discrepancy between the predicted output and the actual output.
 - How do we measure the discrepancies/errors/loss?
 - How do we update the weights?

Error Surface

- For a linear neuron of two features, the error surface of the cost function lies in a space with a horizontal axis for each weight and one vertical axis for the error.
 - Vertical cross-sections are parabolas.
 - Horizontal cross-sections are ellipses.

Batch v.s. Stochastic

- Batch learning does steepest descent on the error surface
- Stochastic Gradient Descent (Online learning) zig-zags around the direction of steepest descent

Bias

• The bias in an Adaline model makes it more flexible

$$\hat{y} = b + \sum_{i} x_i w_i$$

 A bias is exactly equivalent to a weight on an extra input line that always has the input value of 1.

Activation Function

Adaline model uses the identify function f(x) = x as the activation function. But there are limitations...

Logistic Regression

- A better model to fit binary classification problems
- Simple idea: use a sigmoid activation function to squash the input into a logistic curve:

the output values are always in the range of 0 to 1.

Sigmoid Function $\sigma(z) = \frac{1}{1+e^{-z}}$ 1.0 0.0 $z = \sum_{w_i x_i + bias}$

$Image\ source: https://towards data science.com/introduction-to-logistic-regression-66248243c148$

Cost Function for Logistic Regression

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

$$P(y=1 \mid x;\theta) = h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Taken from Prof. Andrew Ng.'s Coursera ML course

The goal is to maximize the likelihood of predicting the expected output.

Cost Function for Logistic Regression

Cost Function for Logistic Regression

Exercise

 Compare the simple Python implementation for both the Adaline model and Logistic Regression model.

Learning Is Impossible

- · What's my rule (model)?
 - 123 ⇒ satisfies rule
 - 4 5 6 ⇒ satisfies rule
 - 6 7 8 ⇒ satisfies rule
 - 9 2 31 ⇒ does not satisfy rule
- Possible rules (models)
 - 3 consecutive single digits
 - 3 consecutive integers
 - 3 numbers in ascending order
 - 3 numbers whose sum is less than 25
- WHATS THE MATTER. 3 numbers, each < 10
 - 1, 4, or 6 in first column
 - "yes" to first 3 sequences, "no" to all others

Slides adopted from Bias and Variance by Mike Mozer

Model Space

· More data helps

Model Space

- · Restricting model class can help
- · Or it can hurt
- Depends on whether restrictions are appropriate

Selecting Models

· Models range in their flexibility to fit arbitrary data

loonstraimed

bigdonatrainced

- Regardless of training sample, or size of training sample, model will produce consistent errors
- Models with high bias over-simplify the model.
- The problem of underfitting

- Different samples of training data yield different model fits
- Model with high variance pays a lot of attention to training data and does not generalize on unseen
- · The problem of overfitting.

Use Regularization to Reduce Overfitting

Add a term to the cost function to penalize large weight values

$$\begin{split} J(\mathbf{w}) &= -\sum_{i=1}^{n} y^{(i)} \log \left(\phi \left(z^{(i)} \right) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \phi \left(z^{(i)} \right) \right) \\ J(\mathbf{w}) &= \sum_{i=1}^{n} \left[-y^{(i)} \log \left(\phi \left(z^{(i)} \right) \right) - \left(1 - y^{(i)} \right) \log \left(1 - \phi \left(z^{(i)} \right) \right) \right] + \frac{\lambda}{2} \left\| w \right\|^{2} \end{split}$$

The hyper-parameter C in logistic regression model is the inverse-regularization parameter: smaller values specify stronger regularization and thus smaller the weight coefficients.