Exercice 1.

1. On modélise la situation à l'aide d'un diagramme de Venn en notant P pour le ski de piste et F pour le ski de fond:

Sur les 20 touristes, 17 pratiquent au moins un des deux sports donc 3 touristes (20-17) ne pratiquent ni le ski de piste ni le ski de fond.

2. On modélise la situation à l'aide d'un arbre : les branches primaires formées des chiffres 0 ou 1, les branches secondaires formées des lettres a, b ou c.

Ainsi: $C \times L = \{(0; a), (0; b), (0; c), (1; a), (1; b), (1; c).$ D'après le principe multiplicatif $card(C \times L) = 2 \times 3 = 6$.

3. Soit n un entier naturel non nul.

$$\frac{(n+2)!}{n!} = \frac{1 \times 2 \times 3 \times \dots \times n \times (n+1) \times (n+2)}{n!} \text{ d'où } \frac{(n+2)!}{n!} = (n+2)(n+1).$$

- 4. Il y a 5 choix pour placer le premier élève, puis 4 choix pour le second, 3 choix pour le troisième, 2 choix pour le quatrième et donc 1 choix pour le dernier élève. D'après le principe multiplicatif, il y a $5 \times 4 \times 3 \times 2 \times 1 = 120$ manières pour placer les cinq élèves les uns derrière les autres.
- 5. Il y a 5 chiffres pairs. Pour chacun des 5 chiffres formant le nombre entier il y a 5 possibilités. D'après le principe multiplicatif, il y a donc 5⁵ nombres entiers de cinq chiffres ne comportant que des chiffres pairs.

Exercice 2.

1. f est donc dérivable sur $\mathbb R$ et donc sur $[1; +\infty[$.

$$\forall x \in [1; +\infty[, f'(x) = \frac{1(x+1) - x}{(x+1)^2} = \frac{1}{(x+1)^2}.$$

 $\forall x \in [0; +\infty[$ on a 1 > 0 et $(x+1)^2 > 0$ donc f'(x) > 0: la fonction f est donc **strictement croissante** sur $[0; +\infty[$.

2.
$$u_1 = f(u_0)$$
 donc $u_1 = f\left(\frac{1}{2}\right) = \frac{1}{3}$.

3. Soit $\mathscr{P}_n : \ll 0 \leqslant u_{n+1} < u_n \leqslant 1 \gg$

Initialisation: si n = 0 on a $u_0 = \frac{1}{2}$ et $u_1 = \frac{1}{3}$. Ainsi $0 \le u_1 < u_0 \le 1$ et donc \mathscr{P}_0 est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: supposons \mathscr{P}_k vraie pour un entier naturel k quelconque, c'est-à-dire $0 \leqslant u_{k+1} < u_k \leqslant 1$ et montrons que \mathscr{P}_{k+1} est vraie c'est-à-dire $0 \leqslant u_{k+2} < u_{k+1} \leqslant 1$.

Par hypothèse de récurrence, $0 \le u_{k+1} < u_k \le 1$ donc $f(0) \le f(u_{k+1}) < f(u_k) \le f(1)$ car la fonction f est **strictement croissante** sur $[0; +\infty[$.

Or
$$f(0) = 1$$
, $f(u_{k+1}) = u_{k+2}$, $f(u_k) = u_{k+1}$ et $f(1) = \frac{1}{2}$ donc $0 \le u_{k+2} < u_{k+1} \le \frac{1}{2} \le 1$ ce qui prouve que \mathscr{P}_{k+1} est vraie.

<u>Conclusion</u>: \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire à partir du rang n=0, on en déduit que \mathcal{P}_n est vraie pour tout n de \mathbb{N} .

$$\forall n \in \mathbb{N}, \quad 0 \leqslant u_{n+1} < u_n \leqslant 1$$
.

4. $\forall n \in \mathbb{N}$, $u_{n+1} < u_n$ donc la suite (u_n) est décroissante : l'affirmation de l'élève est donc fausse. Le fait que la fonction f soit strictement croissante n'implique que la suite (u_n) soit elle-même strictement croissante.

Exercice 3.

On considère la suite (u_n) définie par :

$$u_0 = 1$$
 et, pour tout entier naturel n , $u_{n+1} = 2u_n - n + 3$.

Ilun a calculé les premiers termes de la suite (u_n) à l'aide d'un tableur. Une copie d'écran est donnée ci-dessous.

	A	В
1	$\operatorname{rang} n$	terme u_n
2	0	1
3	1	5
4	2	19
5	3	77
6	4	307

- 1. Dans la cellule B3 on écrit : = 2*B2-A2+3.
- $2. \ \mathscr{P}_n : \ll u_n = 3 \times 2^n + n 2 \gg.$

Initialisation: si n=0 on a d'après l'énoncé $u_0=1$ et $3\times 2^0+0-2=1$ donc \mathscr{P}_0 est vraie.

 $\pmb{H\acute{e}r\acute{e}dit\acute{e}}$: On suppose \mathscr{P}_k vraie pour un entier naturel k quelconque, c'est-à-dire :

$$u_k = 3 \times 2^k + k - 2$$
 et montrons que \mathscr{P}_{k+1} c'est-à-dire $u_{k+1} = 3 \times 2^{k+1} + k - 1$.

D'après l'énoncé, on a : $u_{k+1} = 2u_k - k + 3$ et par hypothèse de récurrence, on a $u_k = 3 \times 2^k + k - 2$, on en déduit alors que :

$$u_{k+1} = 2(3 \times 2^k + k - 2) - k + 3$$

= $3 \times 2^{k+1} + 2k - 4 - k + 3$
= $3 \times 2^{k+1} + k - 1$

 \mathscr{P}_{k+1} est donc vraie.

<u>Conclusion</u>: \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire à partir du rang n=0, on en déduit que \mathcal{P}_n est vraie pour tout n de \mathbb{N} .

$$\forall n \in \mathbb{N}, \quad u_n = 3 \times 2^n + n - 2$$

3. $\forall n \in \mathbb{N}$,

$$u_{n+1} - u_n = 3 \times 2^{n+1} + n + 1 - 2 - (3 \times 2^n + n - 2)$$

$$= 3 \times 2^{n+1} + n - 1 - 3 \times 2^n - n + 2$$

$$= 3 \times 2^{n+1} - 3 \times 2^n + 1$$

$$= 3 \times 2^n (2 - 1) + 1$$

$$= 3 \times 2^n + 1$$

Pour tout entier naturel n, $3 \times 2^n + 1 > 0$ donc $u_{n+1} - u_n > 0$ ce qui démontre que la suite (u_n) est (strictement) croissante.

4. (a) Voici le programme en Python complet :

(b) Utilisons la calculatrice : on a $u_{18} = 786448$ et $u_{19} = 1572881$ donc la valeur n = 19 est celle qui convient.

21/09/2020 **2**