Design of Human Interface Game Software

Collision Detection

Collision Detection

- Collision Detection
 - The computational problem of detecting the intersection of two or more objects

Collision Detection

Complicated for two reasons

- 1. Geometry is typically very complex, potentially requiring expensive testing
- 2. Naive solution is O(n²) time complexity, since every object can potentially collide with every other object

Collision Detection

Two basic techniques

- 1. Overlap testing
 - Detects whether a collision has already occurred
- 2. Intersection testing
 - Predicts whether a collision will occur in the future

Overlap Testing

Facts

- Most common technique used in games
- Exhibits more error than intersection testing

Concept

- For every simulation step, test every pair of objects to see if they overlap
- Easy for simple volumes like spheres, harder for polygonal models

Overlap Testing: Useful Results

- Useful results of detected collision
 - Time collision took place
 - Collision normal vector

Overlap Testing: Collision Time

- Collision time calculated by moving object back in time until right before collision
 - Bisection is an effective technique

Overlap Testing: Limitations

- Fails with objects that move too fast
 - Unlikely to catch time slice during overlap
- Possible solutions
 - Design constraint on speed of objects
 - Reduce simulation step size

Intersection Testing

- Predict future collisions
- When predicted:
 - Move simulation to time of collision
 - Resolve collision
 - Simulate remaining time step

Intersection Testing: Swept Geometry

- Extrude geometry in direction of movement
- Swept sphere turns into a "capsule" shape

Intersection Testing: Sphere-Sphere Collision

$$t = \frac{-(\mathbf{A} \cdot \mathbf{B}) - \sqrt{(\mathbf{A} \cdot \mathbf{B})^2 - B^2 (A^2 - (r_P + r_Q)^2)}}{B^2}, \quad \mathbf{A} = \mathbf{P}_1 - \mathbf{Q}_1$$
$$\mathbf{B} = (\mathbf{P}_2 - \mathbf{P}_1) - (\mathbf{Q}_2 - \mathbf{Q}_1).$$

Intersection Testing: Sphere-Sphere Collision

Smallest distance ever separating two spheres:
(A D)²

$$d^2 = A^2 - \frac{(\mathbf{A} \cdot \mathbf{B})^2}{B^2}$$

If $d^2 > (r_P + r_Q)^2$ there is no collision

Intersection Testing: Limitations

- Issue with networked games
 - Future predictions rely on exact state of world at present time
 - Due to packet latency, current state not always coherent
- Assumes constant velocity and zero acceleration over simulation step
 - Has implications for physics model and choice of integrator

Dealing with Complexity

Two issues

- 1. Complex geometry must be simplified
- 2. Reduce number of object pair tests

Dealing with Complexity: Simplified Geometry

 Approximate complex objects with simpler geometry, like this ellipsoid

Dealing with Complexity: Minkowski Sum

By taking the Minkowski Sum of two complex volumes and creating a new volume, overlap can be found by testing if a single point is within the new volume

Dealing with Complexity: Minkowski Sum

$$X \oplus Y = \{A + B : A \in X \text{ and } B \in Y\}$$

Dealing with Complexity: Minkowski Sum

Dealing with Complexity: Bounding Volumes

- Bounding volume is a simple geometric shape
 - Completely encapsulates object
 - If no collision with bounding volume, no more testing is required
- Common bounding volumes
 - Sphere
 - Box

Dealing with Complexity: Box Bounding Volumes

Axis-Aligned Bounding Box

Oriented Bounding Box

Dealing with Complexity: Achieving O(n) Time Complexity

One solution is to partition space

Dealing with Complexity: Achieving O(n) Time Complexity

Another solution is the plane sweep algorithm

Terrain Collision Detection: Height Field Landscape

Top-Down View

Top-Down View (heights added)

Perspective View

Perspective View (heights added)

Terrain Collision Detection: Locate Triangle on Height Field

$$Q_z \ll Q_x$$

$$\sum R_z > 1 - R_x$$

$$\sum R_z \ll 1 - R_x$$

- Plane equation: Ax + By + Cz + D = 0
- A, B, C are the x, y, z components of the plane's normal vector
- Where $D = -\mathbf{N} \cdot \mathbf{P}_0$ with one of the triangles vertices being \mathbf{P}_0
- Giving: $\mathbf{N}_x(x) + \mathbf{N}_y(y) + \mathbf{N}_z(z) + (-\mathbf{N} \cdot \mathbf{P}_0) = 0$

The normal can be constructed by taking the cross product of two sides:

$$\mathbf{N} = (\mathbf{P}_1 - \mathbf{P}_0) \times (\mathbf{P}_2 - \mathbf{P}_0)$$

Solve for y and insert the x and z components of Q, giving the final equation for point within triangle:

$$\mathbf{Q}_{y} = \frac{-\mathbf{N}_{x}\mathbf{Q}_{x} - \mathbf{N}_{z}\mathbf{Q}_{z} + (\mathbf{N} \cdot \mathbf{P}_{0})}{\mathbf{N}_{y}}$$

- Triangulated Irregular Networks (TINs)
 - Non-uniform polygonal mesh
- Barycentric Coordinates

$$Point = w_0 \mathbf{P}_0 + w_1 \mathbf{P}_1 + w_2 \mathbf{P}_2$$

$$\mathbf{Q} = (0)\mathbf{P}_0 + (0.5)\mathbf{P}_1 + (0.5)\mathbf{P}_2$$

$$\mathbf{R} = (0.33)\mathbf{P}_0 + (0.33)\mathbf{P}_1 + (0.33)\mathbf{P}_2$$

 Calculate barycentric coordinates for point Q in a triangle's plane

$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \frac{1}{V_1^2 V_2^2 - (\mathbf{V}_1 \cdot \mathbf{V}_2)^2} \begin{bmatrix} V_2^2 & -\mathbf{V}_1 \cdot \mathbf{V}_2 \\ -\mathbf{V}_1 \cdot \mathbf{V}_2 & V_1^2 \end{bmatrix} \begin{bmatrix} \mathbf{S} \cdot \mathbf{V}_1 \\ \mathbf{S} \cdot \mathbf{V}_2 \end{bmatrix} \begin{bmatrix} \mathbf{S} \cdot \mathbf{V}_1 \\ \mathbf{V}_1 = \mathbf{P}_1 - \mathbf{P}_0 \\ \mathbf{V}_2 = \mathbf{P}_2 - \mathbf{P}_0 \end{bmatrix}$$

$$\mathbf{W}_0 = \mathbf{1} - \mathbf{W}_1 - \mathbf{W}_2$$

If any of the weights (w_0, w_1, w_2) are negative, then the point Q does not lie in the triangle

Collision Resolution: Examples

- Two billiard balls strike
 - Calculate ball positions at time of impact
 - Impart new velocities on balls
 - Play "clinking" sound effect
- Rocket slams into wall
 - Rocket disappears
 - Explosion spawned and explosion sound effect
 - Wall charred and area damage inflicted on nearby characters
- Character walks through wall
 - Magical sound effect triggered
 - No trajectories or velocities affected

Collision Resolution: Parts

- Resolution has three parts
 - 1. Prologue
 - 2. Collision
 - 3. Epilogue

Collision Resolution: Prologue

- Collision known to have occurred
- Check if collision should be ignored
- Other events might be triggered
 - Sound effects
 - Send collision notification messages

Collision Resolution: Collision

- Place objects at point of impact
- Assign new velocities
 - Using physics or
 - Using some other decision logic

Collision Resolution: Epilogue

- Propagate post-collision effects
- Possible effects
 - Destroy one or both objects
 - Play sound effect
 - Inflict damage
- Many effects can be done either in the prologue or epilogue

Collision Resolution: Resolving Overlap Testing

- 1. Extract collision normal
- 2. Extract penetration depth
- 3. Move the two objects apart
- 4. Compute new velocities

Collision Resolution: Extract Collision Normal

- Find position of objects before impact
- Use two closest points to construct the collision normal vector

Collision Resolution: Extract Collision Normal

- Sphere collision normal vector
 - Difference between centers at point of collision

Collision Resolution: Resolving Intersection Testing

- Simpler than resolving overlap testing
 - No need to find penetration depth or move objects apart
- Simply
 - 1. Extract collision normal
 - 2. Compute new velocities

