Deep Learning Lab17: Deep RL

Pin-Yu Wang & Datalab

- From RL to Deep RL
- Deep *Q*-Network
 - Naïve Algorithm(TD)
 - Experience Replay
 - Delayed Target Network
 - Complete Algorithm
 - Implementation
- Assignment

- From RL to Deep RL
- Deep Q-Network
 - Naïve Algorithm(TD)
 - Experience Replay
 - Delayed Target Network
 - Complete Algorithm
 - Implementation
- Assignment

From RL to Deep RL

- (Tabular) RL
 - *Q*-learning:

$$Q^*(s,a) \leftarrow Q^*(s,a) + \eta[(R(s,a,s') + \gamma \max_{a'} Q^*(s',a')) - Q^*(s,a)]$$

- It requires a large table to store Q^* values in realistic environments with large state/action space.
 - Flappy bird: $O(10^5)$, Tetris: $O(10^{60})$, Automatic car: ???
- Hard to visit all (s, a)'s in limited training time.
- Agents must derive efficient representations of the environment from highdimensional inputs and use these to generalize past experience to new situations.

- From RL to Deep RL
- Deep Q-Network
 - Naïve Algorithm(TD)
 - Experience Replay
 - Delayed Target Network
 - Complete Algorithm
 - Implementation
- Assignment

- To learn a function $f_{Q^*}(s,a;\theta)$ that approximates $Q^*(s,a)$
 - Trained by a small number of samples.
 - Generalize to unseen states/actions.
 - Smaller θ to store.

- Naïve Algorithm(TD)
 - 1. Take action a from s using some exploration policy π' derived from f_{Q^*} (e.g. ε -greedy).
 - 2. Observe s' and reward R(s, a, s'), and update θ using SGD:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} C$$
, where

$$C(\theta) = [(R(s, a, s') + \gamma \max_{a'} f_{Q^*}(s', a'; \theta)) - f_{Q^*}(s, a; \theta)]^2$$

Recall the Q-learning update formula:

$$Q^*(s,a) \leftarrow Q^*(s,a) + \eta[(R(s,a,s') + \gamma \max_{a'} Q^*(s',a')) - Q^*(s,a)]$$

- However, the naïve TD algorithm diverges due to:
 - 1. Samples are correlated (violates i.i.d. assumption of training examples).
 - 2. Non-stationary target $(f_{0^*}(s', a'; \theta))$ changes as θ is updated for current a).

- As a result, the Deep Q-Network applies two stabilization techniques to solve each problem respectively:
 - 1. Experience Replay
 - 2. Delayed Target Network

- From RL to Deep RL
- Deep *Q*-Network
 - Naïve Algorithm(TD)
 - Experience Replay
 - Delayed Target Network
 - Complete Algorithm
 - Implementation
- Assignment

- Experience Replay
 - To remove the correlations in the observation sequence.
 - Use a replay memory \mathbb{D} to store recently seen transitions (s, a, r, s'), s.
 - Sample a mini-batch from $\mathbb D$ and update θ .
 - The sample from the mini-batch is not a sequence now.

- From RL to Deep RL
- Deep *Q*-Network
 - Naïve Algorithm(TD)
 - Experience Replay
 - Delayed Target Network
 - Complete Algorithm
 - Implementation
- Assignment

- Delayed Target Network
 - To avoid chasing a moving target.
 - Set the target value to the output of the network parameterized by old θ^- .
 - Update $\theta^- \leftarrow \theta$ every K iterations.
 - Update formula of naïve TD algorithm:

$$C(\theta) = [(R(s, a, s') + \gamma \max_{a'} f_{Q^*}(s', a'; \theta)) - f_{Q^*}(s, a; \theta)]^2$$

Update formula after applying Delayed Target Network:

$$C(\theta) = [(R(s, a, s') + \gamma \max_{a'} f_{Q^*}(s', a'; \theta^-)) - f_{Q^*}(s, a; \theta)]^2$$

- From RL to Deep RL
- Deep *Q*-Network
 - Naïve Algorithm(TD)
 - Experience Replay
 - Delayed Target Network
 - Complete Algorithm
 - Implementation
- Assignment

- Complete Algorithm
 - Naïve algorithm(TD) + Experience Replay + Delayed Target Network
 - Initialize θ arbitrarily and set $\theta^- = \theta$. Iterate until converge:
 - 1. Take action a from s using some exploration policy π' derived from f_{Q^*} (e.g. ε -greedy).
 - 2. Observe s' and reward R(s, a, s'), add (s, a, R, s') to \mathbb{D} .
 - 3. Sample a mini-batch of (s, a, R, s')'s from \mathbb{D} , do:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} C$$
, where

$$C(\theta) = [(R(s, a, s') + \gamma \max_{a'} f_{Q^*}(s', a'; \theta^-)) - f_{Q^*}(s, a; \theta)]^2$$

4. Update $\theta^- \leftarrow \theta$ every K iterations.

- From RL to Deep RL
- Deep *Q*-Network
 - Naïve Algorithm(TD)
 - Experience Replay
 - Delayed Target Network
 - Complete Algorithm
 - Implementation
- Assignment

- From RL to Deep RL
- Deep Q-Network
 - Naïve Algorithm(TD)
 - Experience Replay
 - Delayed Target Network
 - Complete Algorithm
 - Implementation
- Assignment

Assignment – state-based DQN

What you should do:

- Change the input from stack of frames to game state(as Lab 16).
- Change the network structure from CNNs to Dense layers.
- Train the state-based DQN agent to play Flappy Bird.

Evaluation metrics:

- Code (Whether the implementation is correct) (50%).
- The bird is able to fly through at least 1 pipes (50%).

• Requirements:

- Upload the notebook and html file to google drive, and submit the link to iLMS.
 - Lab17_{student_id}.ipynb
 - Lab17_{student_id}.html
- Deadline: 2020-12-31(Thur) 23:59.