Recitation 10 (12/2)

Reminders:

- MQ10 on Monday (12/5)
- PSet 5 due Wednesday (12/7) at 9pm

Lecture Recap: Writing Efficient Programs & Complexity

Writing Efficient Programs

- Until now, we've mostly talked about <u>correctness</u>, but we also need think about <u>efficiency</u> when writing programs.
- When we talk about improving efficiency, we often mean writing a program in a different way so that it is executed faster.

Some ways to evaluate the efficiency of programs

1. With a timer and using the time module

```
Example:
import time # import time module
tstart = time.time() # "start" timer
count = 0
for i in range(1000):
    count += 1
tend = time.time() # "end" timer
dt = tend - tstart
print(dt) # print time to run program
```

2. Counting number of operations

The following steps take constant time:

- a. Mathematical operations
- b. Comparisons
- c. Assignments
- d. Accessing objects in memory
- 3. Abstraction of order of growth (see next section).

Complexity/Order of Growth

- "Big-O" notation.
- Gives us an idea of how long an algorithm will take to run with respect to the size of its inputs (arguments), regardless of what machine it's running on.
- Gives the worst case scenario.
- We don't care about lower-order terms or constants. We are interested in trends as input grows very large, so highest order terms dominate.
 - Adding:

$$O(n^2) + O(n) + O(1) \rightarrow O(n^2 + n + 1) \rightarrow O(n^2)$$

Multiplicative or additive constants don't matter

$$0(10*n) \rightarrow 0(n)$$

 $0(n) * 0(n) \rightarrow 0(n^2)$
 $0(\log_2(n)) \rightarrow 0(\log(n)/\log(2)) \rightarrow 0(\log(n))$
 $0(n + 1) \rightarrow 0(n)$

- We want the tightest bound possible. Technically, an algorithm that is O(n) is also O(n²), O(2ⁿ), etc, since O is just <=, but we want the closest upper bound possible.
- Big Θ bound is a lower and upper bound on the growth of some function tighter bound: $f(x) = \Theta(x^2) \neq \Theta(n^3) \neq \Theta(2^x)$ $n^2 + 2n + 6 \rightarrow \Theta(n^2)$

Common orders of growth ordered by increasing complexity. Ideally, we want to design algorithms as close to the top of the table as possible.

Complexity	Time	Examples
O(1)	Constant	Adding two numbers together,
		appending to a list – Independent of
		input size!
O(log(n))	Logarithmic	Binary search
O(n)	Linear	list.copy(), or scanning through an entire
		list to look for a value
O(nlog(n))	Log-linear	Merge-sort
$O(n^2)$, $O(n^3)$	Polynomial	Nested for loops
etc		
O(2 ⁿ), O(3 ⁿ)	exponential	Trying to guess an n-character password
etc		

Complexity of Python methods/objects https://wiki.python.org/moin/TimeComplexity

- Constant-time operations:
 - Assigning a variable (x = 1)
 - Performing basic operations (+, -, /, **, <, >, ==, etc.)
 - Some built-in methods for data structures in Python are also constant-time, but many are not. Although we don't look at the underlying machinery of many built-in methods, the complexity of their implementations affects the complexity analysis of our own methods.
- Dictionaries (will depend on hash function)
 - o O(1): lookup, checking if key in dictionary, length, insert, delete
 - o O(n): d.keys() or d.values() list of length n must be generated
- Lists
 - O(1): append, length
 - o O(n): insert, delete (move around elements), copy, check if item in (unsorted) list
 - O(nlog(n)): sort

Strategies for Order-of-Growth Analysis

- Loops: # of iterations times cost of each iteration
- Recursive functions
 - o How many recursive calls are being made?
 - o How much work does each recursive call take?
 - Draw a tree connecting subproblems

Helpful Big-O Complexity Chart

MIT OpenCourseWare https://ocw.mit.edu

6.100L Introduction to CS and Programming Using Python Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms