De la programmation dynamique à l'apprentissage par renforcement

Abel Verley 11550

Sommaire

- 1 Motivations
- 2 Formalisation : Processus de décision markovien (MDP)
- 3 Un algorithme de programmation dynamique
- 4 Apprentissage par renforcement

Motivations : Régimes de traitement dynamique

Maladies chroniques : "Une maladie chronique est une maladie de longue durée, évolutive, souvent associée à une invalidité et à la menace de complications graves" - Ministère de la santé

Exemples

- Diabète
- Asthme
- Parkinson
- **...**

Motivations : Régimes de traitement dynamique

Définition

Régimes de traitement dynamique (DTRs) : Séquence d'instructions qui détermine les étapes d'un traitement personnalisé tenant compte de l'historique médical d'un patient

Définitions

Définition

Processus de décision markovien (MDP) : On appelle processus de décision markovien un quadruplet (S, A, p, r) où :

- S est un ensemble fini d'états
- A est un ensemble fini d'actions
- lacksquare p est une fonction de transition aléatoire : p(s'|a,s)
- r est la fonction de récompense : r(s, a, s')

Définitions

Implémentation:

$$\forall a \in A, [P_a]_{s,s'} = p(s'|a,s):$$

$$P_0 = \begin{pmatrix} 1 & 0 \\ 0,7 & 0,3 \end{pmatrix}$$

$$P_1 = \begin{pmatrix} 0,8 & 0,2 \\ 0 & 1 \end{pmatrix}$$

$$\forall a \in A, [R_a]_{s,s'} = r(s,a,s')$$

$$R_0 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} R_1 = \begin{pmatrix} -10 & 0 \\ 0 & -2 \end{pmatrix}$$

Définitions

Définition

Politique : Application $\pi:S\longrightarrow A$. On note $\mathcal D$ l'ensemble des politiques markoviennes déterministes

Définitions

Pour comparer les politiques :

Définition

Fonction de valeur : Soit $\gamma \in]0,1[,\pi$ une politique. On définit la fonction de valeur :

$$V^\pi_\gamma: s \in \mathcal{S} \mapsto \mathbb{E}^\pi[\sum_{t=0}^{+\infty} \gamma^t r(s_t, a_t, s_{t+1}) | s_0 = s]$$

Définitions

Pour comparer les politiques :

Définition

Fonction de valeur : Soit $\gamma \in]0,1[,\pi$ une politique. On définit la fonction de valeur :

$$V^\pi_\gamma: s \in \mathcal{S} \mapsto \mathbb{E}^\pi[\sum_{t=0}^{+\infty} \gamma^t r(s_t, a_t, s_{t+1}) | s_0 = s]$$

Remarque:

γ sert à : faire converger la somme

Définitions

Définition

Politique optimale : Sous réserve d'existence, on note π^* une politique optimale, c'est à dire,

$$\forall \pi \in \mathcal{D}, V^* = V_{\gamma}^{\pi^*} \geq V_{\gamma}^{\pi}$$

L'objectif est de déterminer π^* et V^* .

Propriétés et théorèmes

Propriété

Soit π une politique. Si

$$\forall s \in S, \ \pi(s) \in \operatorname{argmax}_{a \in A} \sum_{s' \in S} p(s'|a,s) (r(s,a,s') + \gamma V^*(s'))$$

alors π est optimale

- cf.annexe 1.1

Il suffit donc de trouver V^*

Propriétés et théorèmes

Caractérisation de la fonction de valeur optimale :

Théorème

Equation de Bellman:

Soit $\gamma \in]0,1[$ alors $,V^{*}$ est l'unique solution de l'équation

$$\forall s \in \mathcal{S}, \ V(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \rho(s'|a,s) (r(s,a,s') + \gamma V(s'))$$

- cf.annexe 1.2

Propriétés et théorèmes

Caractérisation de la fonction de valeur optimale :

Théorème

Equation de Bellman:

Soit $\gamma \in]0,1[$ alors , V^* est l'unique solution de l'équation

$$orall s \in S, \ V(s) = \max_{a \in A} \sum_{s' \in S} p(s'|a,s) (r(s,a,s') + \gamma V(s'))$$

- cf.annexe 1.2

Remarque : On en déduit une manière **itérative** d'estimer V^* :

$$V_{n+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} p(s'|a,s) (r(s,a,s') + \gamma V_n(s'))$$

Itération des valeurs

Algorithm 1 Algorithme d'itération des valeurs

- 1: *n* ← 0
- 2: $V_n \leftarrow 0$
- 3: repeat
- 4: $V_{n+1} \leftarrow V_n$
- 5: for $s \in S$ do
- 6: $V_{n+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} p(s'|a,s) (r(s,a,s') + \gamma V_n(s'))$
- 7: end for
- 8: $n \leftarrow n+1$ 9: **until** $||V_{n+1} - V_n||_{\infty} < \varepsilon$
- 10: for $s \in S$ do
- 10: **for** $s \in S$ **do** 11: $\pi(s) \in \operatorname{argmax}_{a \in A} \sum_{s' \in S} p(s'|a,s) (r(s,a,s') + \gamma V_n(s'))$
- 12: end for
- 13: **return** V, π

Limites du modèle

Dans un environnement réel, les fonctions de **transition** et de **récompense** sont initialement **inconnues**

Pour parer à ce problème : l'apprentissage par renforcement

Un **agent** interagit avec son **environnement** pour améliorer sa connaissance de l'environnement et prendre des meilleures actions

ightarrow Essais et erreurs : Estimer la fonction valeur

La fonction de valeur Q

Lorsque l'environnement est inconnu, on ne peut déduire π^* de V^*

Définition

Fonction de valeur Q : Pour une politique π , on définit la fonction Q^{π} telle que :

$$orall s \in S, a \in A, Q^\pi(s,a) = \mathbb{E}^\pi[\sum_{t=0}^{+\infty} \gamma^t r(s_t,a_t,s_{t+1}) | s_0 = s, a_0 = a]$$

La fonction de valeur Q

Lorsque l'environnement est inconnu, on ne peut déduire π^* de V^*

Définition

Fonction de valeur Q : Pour une politique π , on définit la fonction Q^π telle que :

$$orall s \in S, a \in A, Q^\pi(s,a) = \mathbb{E}^\pi[\sum_{t=0}^{+\infty} \gamma^t r(s_t,a_t,s_{t+1}) | s_0 = s, a_0 = a]$$

Remarque : En notant Q^* pour la politique optimale, on a $\forall s \in S$:

- $V^*(s) = \max_{a \in A} Q^*(s, a)$
- \blacksquare $\pi^*(s) \in \operatorname{argmax}_{a \in A} Q^*(s, a)$

Algorithmes de résolution

L'apprentissage se fait sur une séquence d'épisodes de longueurs finies. On impose :

- Un état initial s₀
- Un état final s_f

Algorithmes de résolution : Le choix de l'action

1 : Le choix de l'action

■ Exploration : Découvrir de nouvelles paires de S × A au risque de générer des pénalités

Exploitation : Choisir la solution optimale d'après la connaissance partielle de l'environnement

Algorithmes de résolution : Le choix de l'action

1: Le choix de l'action

■ Exploration : Découvrir de nouvelles paires de S × A au risque de générer des pénalités

Exploitation : Choisir la solution optimale d'après la connaissance partielle de l'environnement

- \rightarrow Stratégie ϵ -greedy :
 - Avec une probabilité ε : l'action est choisie au hasard
 - Avec une probabilité 1ε : l'action est choisie de manière "gloutonne": $a \in \operatorname{argmax}_{a \in A} Q(s, a)$

Algorithmes de résolution : Estimation des fonctions valeur

2 : Estimation des fonctions de valeur : L'action a_n prise depuis l'état s_n génère une récompense r_n et fait passer à l'état s_{n+1} Les fonctions valeur vérifient :

$$V(s_n) = \overline{r}(s_n, a_n, s_{n+1}) + \gamma V(s_{n+1})$$

$$Q(s_n, a_n) = \overline{r}(s_n, a_n, s_{n+1}) + \gamma Q(s_{n+1}, a_{n+1})$$

Or on n'a qu'une approximation :

$$\delta_n^V = r_n + \gamma V(s_{n+1}) - V(s_n) \approx 0$$

$$\delta_n^Q = r_n + \gamma Q(s_{n+1}, a_{n+1}) - Q(s_n, a_n) \approx 0$$

 δ donne une évaluation de l'erreur faite sur l'approximation de V ou Q

Algorithmes de résolution : Estimation des fonctions valeur

2 : Estimation des fonctions de valeur :

Algorithme TD(0):

$$V(s_n) \leftarrow V(s_n) + \alpha \delta_n^V$$

Algorithme SARSA:

$$Q(s_n, a_n) \leftarrow Q(s_n, a_n) + \alpha \delta_n^Q$$

Algorithme Q-learning:

$$Q(s_n, a_n) \leftarrow Q(s_n, a_n) + \alpha[r_n + \gamma \max_{a \in A} Q(s_{n+1}, a) - Q(s_n, a_n)]$$

Avec α le pas d'apprentissage

Algorithmes de résolution

Algorithm 2 Algorithme de Q-Learning

- 1: for épisodes 1 à N do
- 2: $n \leftarrow 0$ 3: $S_n \leftarrow S_0$
- while $s_n \neq s_t$ do 4:
- 5:
- if random[0,1] $< \varepsilon$ then an est choisi aléatoirement 6:
- 7: else
- end if 9:
- 10: observer r_n et s_{n+1} d'après s_n et a_n

 $a_n \leftarrow \operatorname{argmax}_{a \in A} Q_n(s, a)$

- $Q(s_n, a_n) \leftarrow Q(s_n, a_n) + \alpha[r_n + \gamma \max_{a \in A} Q(s_{n+1}, a) \alpha]$ 11:
 - $Q(s_n, a_n)$ $n \leftarrow n + 1$

end while

14: **end for**

8:

12:

13:

Résultats graphiques

Résultats graphiques

MERCI POUR VOTRE ATTENTION!

annexe 1.1 : Démonstration propriété 1

Quelques résultats pour la démonstration de la propriété :

Définition : Soit π une politique. La matrice $P_{\pi} \in \mathcal{M}_{|S|}(\mathbb{R})$ telle que

 $\forall s, s' \in S, [P_{\pi}]_{s,s'} = p(s'|s,\pi(s))$. De même on construit la matrice r_{π} telle que $[r_{\pi}]_s = \sum_{s' \in S} p(s'|s,\pi(s))r(s,\pi(s),s')$

Définition : Soit π une politique, $0 < \gamma < 1$. Dans l'espace vectoriel normé $(E, ||.||_{\infty})$ avec $E = \mathbb{R}^S$ on pose L_{π} l'opérateur tel que $\forall V \in E, L, V = r_{\pi} + \gamma P_{\pi} V$

Théorème : Soit π une politique, $0<\gamma<1$. V^π_γ est l'unique solution de l'équation $V=L_\pi$. V

Preuve : Soit V une solution de l'équation. On a $(I - \gamma P_{\pi})V = r_{\pi}$. La matrice P_{π} étant stochastique, on montre que $|||P_{\pi}||| \le 1$ et on en déduit par sous-multiplicité de |||.||| que $\sum (\gamma^k P_{\pi}^k)$ converge absolument. De plus par télescopage,

$$(I - \gamma P_{\pi})(\sum_{k=0}^{+\infty} \gamma^k P_{\pi}^k) = I \operatorname{donc} (I - \gamma P_{\pi})^{-1} = \sum_{k=0}^{+\infty} \gamma^k P_{\pi}^k. \operatorname{Ainsi} V = \sum_{k=0}^{+\infty} \gamma^k P_{\pi}^k r_{\pi}$$

annexe 1.1 : Démonstration propriété 1

Par ailleurs, pour $s \in S$

$$egin{aligned} V^\pi_\gamma(s) &= \sum_{t=0}^{+\infty} \gamma^t \mathbb{E}^\pi[r(s_t, a_t) | s_0 = s] \ &= \sum_{t=0}^{+\infty} \gamma^t \sum_{s' \in S} \mathbb{P}^\pi(s_t = s' | s_0 = s) \sum_{s'' \in S}
ho(s'' | s', \pi(s')) r(s', \pi(s), s'') \end{aligned}$$

Or P_{π} s'interprète comme la matrice d'adjacence d'une chaine de Markov, on montre alors que $\mathbb{P}^{\pi}(s_t = s' | s_0 = s) = P^t_{\pi | s_s | s'}$ et donc pour $s \in S$

$$egin{aligned} V^\pi_\gamma(s) &= \sum_{t=0}^{+\infty} \gamma^t \sum_{s' \in S} P^t_{\pi,s,s'} r_\pi(s') \ &= \sum_{k=0}^{+\infty} \gamma^k P^k_\pi r_\pi(s) \end{aligned}$$

Et donc $V = V_{\gamma}^{\pi}$. L'unicité est immédiate.

annexe 1.1 : Démonstration propriété 1

Démonstration de la propriété : Soit π telle que $\pi \in \operatorname{argmax}_{\pi' \in \mathcal{D}} r_{\pi'} + \gamma P_{\pi'} V^*$. On a alors

$$L_{\pi}V^* = r_{\pi} + \gamma P_{\pi}V^*$$

$$= \max_{\pi' \in \mathcal{D}} r_{\pi'} + \gamma P_{\pi'}V^*$$

$$= LV^*$$

$$= V^*$$

cf.annexe 1.2. (opérateur de programmation dynamique et équation de Bellman) D'après le théorème précédent, $V^\pi_\gamma = V^*$ puis π est optimale.

annexe 1.2 : Démonstration partielle équation de Bellman

On propose la démonstration de l'existence d'une solution. Cette dernière permet de comprendre la convergence des méthodes itératives introduites.

Définition : On définit sur *E* l'opérateur de programmation dynamique *L* :

$$\forall V \in E, L.V = max_{\pi \in \mathcal{D}}(r_{\pi} + \gamma P_{\pi}V)$$

On traduit l'équation de Bellman : V^* est l'unique solution de l'équation V = L.V

Théorème de point fixe de Banach : Soit E un env de dimension finie, f

 λ -lipschitzienne avec $0 \le \lambda < 1$ alors il existe une unique solution u de l'équation f(x) = x et de plus, les suites définies par $u_0 \in E$ et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$

convergent vers u.

Démonstration : On construit une suite (u_n) comme ci-dessus. (u_n) converge si et seulement si $\sum (u_{n+1} - u_n)$ converge. Or

 $\forall n \geq 1$, $|u_{n+1} - u_n| = |f(u_n) - f(u_{n-1})| \leq \lambda |u_n - u_{n-1}|$ on montre alors par récurrence que $\forall n \in \mathbb{N}$, $|u_{n+1} - u_n| \leq \lambda^n |u_1 - u_0|$ qui est le terme général d'une série convergente. Donc $\sum (u_{n+1} - u_n)$ converge absolument ce qui implique, par dimension finie, la convergence de la série et donc de la suite (u_n) vers un vecteur u.

Par ailleurs, f est lipschitzienne donc continue et par passage à la limite dans la définition récurrente de la suite : u = f(u)

Supposons avoir deux points fixes u,u' alors $|u-u'|=|f(u)-f(u')|\leq \lambda |u-u'|$. Et comme $\lambda<1$ ceci n'est possible que si u=u'. D'où l'unicité.

annexe 1.2 : Démonstration partielle équation de Bellman

Théorème: L'opérateur L est une contraction sur E **Démonstration**: Soient $U, V \in E$ et $s \in S$. Posons

 $<\gamma||U-V||$

 $a_s^* \in \operatorname{argmax}_{a \in A} \sum_{s' \in S} p(s'|a,s) (r(s,a,s'+\gamma V(s')))$. Par symétrie supposons,

$$L.V(s) \ge L.U(s)$$
. Alors

$$\begin{aligned} |L.V(s) - L.U(s)| &= L.V(s) - L.U(s) \\ &\leq \sum_{s' \in S} \rho(s'|a_s^*, s) (r(s, a_s^*, s' + \gamma V(s')) - \sum_{s' \in S} \rho(s'|a_s^*, s) (r(s, a_s^*, s' + \gamma U(s'))) \\ &\leq \gamma \sum_{s' \in S} \rho(s'|a_s^*, s') (V(s') - U(s')) \\ &\leq \gamma \sum_{s' \in S} \rho(s'|a_s^*, s') ||V - U|| \end{aligned}$$

Ainsi comme *E* est de dimension finie, le théorème de point fixe de Banach s'applique et on a l'existence et l'unicité d'une solution à l'équation de Bellman, ainsi que la convergence de la méthode itérative.

On admet que cette solution est la valeur optimale, la démonstration impliquant l'introduction de nombreux nouveaux objets et propriétés.

annexe 1.3 : Complément d'analyse algorithmique

Itération des valeurs :

- -Terminaison et correction : Découle du théorème de point fixe de Banach
- -Complexité : Chaque itération a une complexité $O(|S|^2|A|)$. Si p et r sont codés sur b bits, il est établi qu'il suffit d'un nombre d'itération maximale polynomial en $|S|, |A|, b, \frac{1}{(1-\gamma)\log(1/(1-\gamma))}$ pour avoir une politique optimale en sortie.

Autre algorithme : itération des politiques (cf.annexe 2.1)

Q-learning: Terminaison et correction:

Théorème : La convergence de l'algorithme de Q-learning vers Q^* est presque sûre si

$$\sum_{i=0}^{+\infty}\alpha_n=+\infty$$

$$\sum_{n=0}^{+\infty} \alpha_n^2 < +\infty$$

Annexe 2.1 : MDP.py

```
1 import numpy as no
     import matplotlib.pvplot as plt
     import random
     #Implementation des processus de decision markovien (MDP) stationnaire
    class Proba():
         """Les probabilites du MDP sont representees par la liste des IAI matrices P a """
9
10
         def init (self, list proba )->None:
             self.P= list proba
12
13
     class Reward ():
14
         """Les recompenses sont representees par la liste des IAI matrices r a"""
15
16
         def init (self, list rewards)->None:
             self.R = list rewards
18
19
20
     class MDP ():
21
         """Les ensembles S (resp.A) sont caracterises par les entiers ISI (resp.IAI) """
         def init (self.s:int.a:int.p:Proba.r:Reward) -> None:
24
25
             assert len(p.P)== a and len(r.R)==a
26
             self.S = s
             self.A = a
28
             self.P = p.P
29
             self.R = r.R
30
31
         def value iteration(self.gamma:float, eps:float)->tuple:
33
             """Algorithme d'iteration sur les valeurs. Les fonction valeur et les politique sont
34
             representees par des vecteurs de taille ISI"""
35
36
             V= np.array([0]*self.S)
37
             while True:
38
                 newV = np.copv(V)
39
                 for s in range(self.S):
40
                     newV[s]=max([sum([self.P[a][s.s2]*(self.R[a][s.s2]+gamma*V[s2]) for s2 in range(self.S)]) for a in range(self.A)])
                 if np.linalg.norm(newV-V)<=eps:
                     break
43
                 V = newV
44
             pi = np.array([0]*self.S)
45
             for s in range(self.S):
```

Annexe 2.1 : MDP.py

```
f = lambda a : sum([self.P[a][s.s2]*(self.R[a][s.s2]+gamma*V[s2]) for s2 in range(self.S)])
                 pi[s]=argmax(f.self.A)
48
49
50
             return V. pi
51
52
53
54
55 V
          def graph O(self.s:int.a:int.gamma:float. N)->None:
             """Pour tracer l'evolution de O(s.a) au fil des itérations """
56
58
             V= np.arrav([0]*self.S)
             0 = []
60
61 v
             for i in range(N):
                 newV = np.copv(V)
63 V
                 for s in range(self.S):
                      newV[s]=max([sum([self.P[a][s.s2]*(self.R[a][s.s2]+gamma*V[s2]) for s2 in range(self.S)]) for a in range(self.A)])
                 O.append(sum([self.P[a][s.s2]*(self.R[a][s.s2]+gamma*V[s2]) for s2 in range(self.S)]))
             T = np.array(range(N))
69
             0 = np.arrav(0)
70
71
72
             plt.plot(T.O.label = 'Itération des valeurs')
73
74
75
76
77 V
          def policy iteration(self.gamma:float, eps:float)->tuple:
78
             #Algotithme d'iteration sur politiques
79
80
             pi = np.arrav([0]*self.S)
81
             V=np.array([0]*self.S)
83 00
             while True:
84
                 newpi = np.copv(pi)
85
86
                 #prediction:
88 ...
                 while True:
89
                      newV = np.copv(V)
                     for s in range(self.S):
```

Annexe 2.1 : MDP.py

```
91
                          newV[s] = sum([self.P[pi[s]][s,s2]*(self.R[pi[s]][s,s2]+gamma*V[s2]) \quad for \ s2 \ in \ range(self.S)])
92
                      if np.linalg.norm(newV-V)<=eps:
93
                          break
94
                      V = newV
95
96
                  #controle:
97
98
                  for s in range(self.S):
99
                      f = lambda a : sum([self.P[a][s,s2]*(self.R[a][s,s2]+gamma*V[s2]) for s2 in range(self.S)])
188
                      pi[s]=argmax(f.self.A)
101
                  if np.linalg.norm(newpi-pi)==0:
102
                      break
103
                  pi = newpi
184
105
              return V , pi
106
107
108
109
      def argmax(f, A:int)->int:
110
          """Détermine un élément de argmax f"""
111
          a = 0
          arg = f(a)
114
          for a2 in range(A):
115
              arg2 = f(a2)
116
               if arg2>arg:
117
                  a = a2
118
                  arg = arg2
119
          return a
128
121
      def make_random_MDP(S:int,A:int,Rmax:float)-> MDP:
122
          """Genere un MDP aleatoire"""
124
          list probas = []
125
          list rewards = []
126
          for a in range (A):
127
              Pa = np, random, rand(S, S)
128
              Pa = Pa/Pa.sum(axis=1)[:,None]
129
              list_probas.append(Pa)
138
              Ra=Rmax*(np.random.rand(S,S))
131
              for s in range(S):
132
                  for s2 in range(S):
133
                      if random.random()<0.5:
134
                          Ra[s][s2]= -Ra[s][s2]
135
              list_rewards.append(Ra)
```

Annexe 2.1: MDP.py

```
135 | List_rewards.append(Ra)
136 | P = Probal(List_probas)
137 | R = Reward(List_rewards)
138 | return MOP(S,A,P,R)
139
140
141
142
```

```
import numpy as no
     from MDP ens import *
     import random
     import matplotlib.pvplot as plt
     class Agent():
8
         def init (self.s0:int, env:MDP)-> None:
9
             self.state = s0
10
             self.env = env
12
13
14
         def SARSA (self. s0:int. sf:int. eps:float. gamma:float. N:int. lr = 0.01)->np.ndarray:
15
             """s0 est l'etat initial, sf est l'état final absorbant, epsilon induit la probabilité d'exploration
16
             (eps-greedy). N est le nombre d'episodes """
18
19
             0 = np.arrav([[0]*self.env.A]*self.env.S, dtvpe= np.float32)
20
21
             for i in range(N):
22
                 colf state - co
                 if random, random() < eps:
24
                     a = random.randint(0.self.env.A-1)
25
                 else:
26
                     Oa = O[self.state][0]
28
                     for b in range (self.env.A):
29
                         02 = 0[self.state][b]
30
                         if 02>0a:
31
                             a = b
32
                             0a = 02
33
34
                 while self.state != sf:
35
                     s2 = etat suivant(self.state.a.self.env)
36
                     if random.random() < eps:
37
                         a2 = random, randint(0, self, env.A-1)
38
                     else:
39
40
                         0a = 0[self.state][0]
41
                         for b in range (self.env.A):
42
                             02 = 0[self.state][b]
43
                             if 02>0a:
44
                                 a2 = b
45
                                 0a=02
```

```
46
                                                    r = self.env.R[a][self.state.s2]
47
48
                                                    new0 = np.copv(0)
49
                                                    newQ[self.state,a]=Q[self.state,a]+lr*(r+gamma*Q[s2,a2] -Q[self.state,a])
50
51
                                                    a = a2
52
                                                    self.state = s2
53
                                                    0 = new0
54
55
56
                                 return 0
57
58
59
                       def 0 learning (self. s8:int. sf:int. eos:float. gamma:float. N:int. lr= 0.01)->np.ndarray:
60
                                 """s0 est l'etat initial, sf est l'etat final absorbant, eosilon induit la probabilité d'exploration
61
                                 (eps-greedy), N est le nombre d'episodes """
62
63
                                 self.state = s0
64
                                0 = np.arrav([[0]*self.env.A]*self.env.S, dtype=np.float32)
65
66
                                # En commentaire: implementation softmax
67
68
                                 #A = np.array([[0]*self.env.A]*self.env.S)
69
                                 #A stocke les taux d'apprentissage selon la methode uncertainty estimation
70
                                 for i in range(N):
                                          self.state = s0
                                          while self.state != sf:
73
                                                    if random.random() < eps:
74
                                                             a = random.randint(0,self.env.A-1)
75
                                                    else:
76
                                                             a = 0
                                                             0a = 0[self.state][0]
78
                                                              for a2 in range (self.env.A):
79
                                                                       02 = 0[self.state][a2]
80
                                                                       if 02>0a:
81
                                                                                 a = a2
82
                                                                                 0a=02
83
                                                    #A[self.state.al+=1
84
                                                    s2 = etat suivant(self.state.a.self.env)
85
                                                    rm self.env.R[a][self.state.s2]
86
                                                    newQ = np.copy(Q)
87
                                                    newQ[self.state,a] = Q[self.state,a] + (lr) * (r+gamma+max([Q[s2][a2] for a2 in range(self.env.A)]) - Q[self.state][a])
88
                                                    \#newQ[self.state,a] = Q[self.state,a] + (1/A[self.state,a]) * (r+gamma*max([Q[s2][a2] for a2 in range(self.env.A)]) - Q[self.state][a]) * (r+gamma*max([Q[s2][a2] for a2 in range(self.env.A)]) + Q[self.state][a]) * (r+gamma*max([a2][a2] for a2 in range(self.env.A)]) * (r+gamma*max([a2][a2] for a2 in range(self.env.A)]) * (r+gamma*max([a2][a2] for a2 in range(self.env.A)]
89
                                                    self.state = s2
```

135

```
91
                      Q = newQ
92
93
              return Q
94
95
96
          def graph_Q(self, s0:int, sf:int, eps:float, gamma:float,s2: int, a2:int, M:int, pas = 10)->None:
97
              """Trace Q(a,s) en fonction du nombre d'episodes"""
98
99
              #il faut que l'etat final soit associé à une recompense nulle
100
              for a in range(self.env.A):
101
                  for s in range(self.env.S):
102
                      (self.env.R)[a][s.sf]=0
103
184
              0.sa = 0
105
              for i in range(0,M,pas):
186
                  Q = self.Q_learning(s0,sf,eps,gamma,i)
197
                  Q_sa.append(Q[s2,a2])
108
                  print(i)
109
110
              T = np.array(range(0,M,pas))
              Q_sa = np.array(Q_sa)
112
              plt.plot(T,Q_sa, color ='red', label = 'Q-learning : epsilon = '+ str(eps))
113
114
115
          def graph_SARSA(self, s0:int, sf:int, eps:float, gamma:float,s2: int, a2:int, M:int, pas=10)->None:
116
              """Trace Q(a,s) en fonction du nombre d'episodes"""
118
              #il faut que l'état final soit associe à une recompense nulle
119
              for a in range(self.env.A):
120
                  for s in range(self.env.S):
121
                      (self.env.B)[a][s.sf]=0
              Q_sa = []
124
              for i in range(0,M,pas):
                  Q = self.SARSA(s0,sf,eps,gamma,i)
126
                  Q_sa.append(Q[s2,a2])
127
                  print(i)
128
129
              T = np.array(range(0,M,pas))
130
              Q sa = np.array(Q sa)
              plt.plot(T,Q sa, color = 'blue', label = 'SARSA: epsilon = '+ str(eps))
132
133
134
```

```
136
      def etat suivant(s:int,a:int, env:MDP)->int:
137
          """Determine l'etat suivant lorsqu'on prend l'action a depuis l'etat s"""
138
139
          p = random.random()
140
          list probas = [env.P[a][s.s2] for s2 in range(env.S)]
141
          for i in range(env.S):
142
              if p<list probas[i]:
143
                  return i
144
              else:
145
                  p-=list probas[i]
146
148
149
      if name == ' main ':
150
151
          S = 10
          A = 5
          Pnay - 100
          G = make random MDP(S.A.Rmax)
155
          agent = Agent(0,G)
156
157
          si = 0
          sf = 9
158
159
          eps = 0.3
160
          gamma = 0.9
161
          s = 2
162
          a = 3
          iter = 2000
163
164
165
166
          agent.graph SARSA(si.sf.eps.gamma.s.a.iter)
167
          agent.graph_Q(si,sf,eps,gamma,s,a,iter )
168
          agent.env.graph O(s.a.gamma.iter)
169
          plt.xlabel('Itération')
170
          plt.vlabel('0(2.3)')
171
          plt.legend()
173
          #agent.graph O(si.sf.0.1.gamma.s.a.iter)
174
          #agent.graph O(si.sf.0.5.gamma.s.a.iter)
175
          #agent.graph O(si.sf.0.9.gamma.s.a.iter)
176
          #plt.xlabel('Itération')
          #plt.ylabel('Q(2,3)')
178
          #plt.legend()
179
          #plt.title(label = 'Influence de epsilon')
180
          nlt.show()
```