Zero Knowledge Proofs for Income Statements

Pepijn Overbeeke, Deloitte

Questions?

Overview of problem and our solution

4

Component overview and ZKP explanation

About me

Current process

Hackathon

10

- Data minimalization
- Applicability
- People focused
- (រុំរុំរុំ) Inclusive

Deloitte

Rabobank

De Alliantie

Ecosystem partners

Government

Our solution

User

Housing corporations

Government

Implications

User

Housing corporations

14

Component overview

Boudot, Fabrice. "Efficient proofs that a committed number lies in an interval." *International Conference on the Theory and Applications of Cryptographic Techniques*. Springer, Berlin, Heidelberg, 2000.

16

Range Proof

Requirements

 $g \in \mathbb{Z}_n^*$ and h element of group generated by g.

Fujisaki-Okamoto Commitment: $E(x,r) = g^x h^r$, where $r \in [-2^s n + 1, 2^s n - 1]$. Note that E(x + y, r + s) = E(x, r)E(y, s).

Proof that a commitment $E(x^2, r)$ hides a square.

17

CFT proof, which proves that $x \in [0, b]$ is in $[-2^{t+l}b, 2^{t+l}b]$.

Proof that $x \in [a, b]$ is in $[a - \theta, b + \theta]$ where $\theta = 2^{t+l+1}\sqrt{b-a}$. Let E = E(x, r).

- 1. Set $\tilde{E}=E/g^a$, $\bar{E}=g^b/E$, $\tilde{x}=x-a$ and $\bar{x}=b-x$.
- 2. Let $\tilde{x}_1 = \lfloor \sqrt{x a} \rfloor$, $\tilde{x}_2 = \tilde{x} \tilde{x}_1^2$, $\bar{x}_1 = \lfloor \sqrt{b x} \rfloor$ and $\bar{x}_2 = \bar{x} \bar{x}_1^2$.
- 3. Select \tilde{r}_1 , \tilde{r}_2 , \bar{r}_1 and \bar{r}_2 such that $\tilde{r}_1+\tilde{r}_2=r$ and $\bar{r}_1+\bar{r}_2=-r$.
- 4. Compute $\tilde{E}_1 = E(\tilde{x}_1^2, \tilde{r}_1)$ and $\bar{E}_1 = E(\bar{x}_1^2, \bar{r}_1)$. Let $\tilde{E}_2 = E(\tilde{x}_2, \tilde{r}_2)$ and $\bar{E}_2 = E(\bar{x}_2, \bar{r}_2)$. Note that $\tilde{E}_2 = \tilde{E}/\tilde{E}_1$ and $\bar{E}_2 = \bar{E}/\bar{E}_1$.
- 5. Create proofs that \tilde{E}_1 and \bar{E}_1 hide squares and create CFT proofs that $\tilde{x}_2 \in [-\theta, \theta]$ and $\bar{x}_2 \in [-\theta, \theta]$.

Verifier is convinced that \tilde{E} and \bar{E} are greater than $-\theta$ and since \tilde{E} hides x-a and \bar{E} hides b-x, verifier is convinced $x \in [a-\theta,b+\theta]$.

18

Range Proof

Proof that $x \in [a, b]$ is in [a, b].

Let
$$T = 2(t + l + 1) + |b - a|$$
 and $x' = 2^{T}x$. Then $E' = E^{2^{T}}$.

Execute range proof proving $x' \in [2^T a - \theta', 2^T b + \theta']$ where $\theta' = 2^{t+l+T/2+1} \sqrt{b-a}$. It can be shown that $\theta' < 2^T$.

Verifier is convinced $x' \in [2^T a - \theta', 2^T b + \theta']$ and thus $x' \in]2^T a - 2^T, 2^T b + 2^T [$ and $x \in]a - 1, b + 1[$.

19

Range Proof Cont.

Government sends the MyID app:

- The income *x*
- The committed income E(x,r) and r
- Government signature sig(E(x,r))
- n, g and h

MyID app sends housing corporation:

- Range proof which includes E(x,r)

20

- Signature sig(E(x,r))
- n, g and h

Next steps

Questions?