IEI Al Solution and Vision Acceleration Card Accelerate To The Future

Outline

- Al frameworks and tools
- Intel® OpenVINO™ Toolkit
- Al Roadmap
- Al Accelerate Cards
- Al Accelerate Platforms
- Applications

Al frameworks and tools

Frameworks

Caffe

Caffe2

CNTK

MXNet

Neon

PyTorch

Tensorflow

...

Topology / Model architectures

Image Classification

AlexNet, VGG16, GoogLeNet, ResNet, MobileNet, etc.

Face Detection / Recognition

MTCNN, DeepFace, Facenet, etc.

Object Detection

SSD, Yolo v1/v2/v3,R-FCN, RCNN, Faster RCNN, etc.

Video Classification

RNN, LSTM, etc.

Image Segmentation

SegNet, U-Net, FCN, DeepLab v1/v2, etc.

Speech Recognition

DeepVoice, WaveNet, etc

Training Platform

Inference Platform

Intel OpenVINO
TensorRT

OS Linux, Windows 10

Inference Edge Computing

- The advantages of edge computing:
 - Reduce data center loading, transmit less data, reduce network traffic bottlenecks.
 - Real-time applications, the data is analyzed locally, no need long distant data center.
 - Lower costs, no need to implement sever grade machine to achieve non complex applications.

OpenVINO™ Toolkit

- Allows users to easily deploy open source deep learning frameworks for Intel architecture to realize the concept of one SDK for multiple acceleration platforms (CPU, GPU, FPGA, VPU).
- OpenVINO[™] toolkit can optimize pre-trained deep learning model such as Caffe, MXNET, Tensorflow into IR binary file then run the inference engine.

Mustang Al Accelerate Selections

Accelerator

CPU

Mustang-200

- Two Intel Core ULT
- 4 DDR4 UDIMM
- 2 NVMe, 2 eMMC
- 10GbE based
- PCIe x4 interface

Accelerator

FPGA

Mustang-F100-A10

- Intel Arria 10 GX 1150 FPGA
- PCle Gen3 x 8
- Low profile , half size

Accelerator

VPU

Mustang-V100-MX8

- Intel Movidious solution
- 8 x Myriad X VPU
- PCIe Gen2 x4
- Low profile , half size

Intel FPGA

Intel VPU

Mustang-200

■ Mustang-200

- > 10 Gigabit Ethernet Based x86 Computing Nodes support decentralized computing architecture.
- Perfectly Integrated QNAP QTS-Lite provides a flexible and secure developing environment
- Support Virtualization technology, Virtualization Machine (VM) & Docker Container technology
- > Fit standard server, compatible with PCI-Express x4, x8, x16
- Increase computing power, support decentralize computing
- > Achieve higher densities computing and lower the total cost.

Numerous Face Analysis

Numerous Car Plate Analysis

Mustang-F100-A10

■ Mustang-F100-A10

Compact Size: Half-height, Half-Length, double slot, compact size.

Low latency: Algorithms implemented into FPGA provide

deterministic timing, with latencies one order of magnitude less than GPUs.

Low power consumption: (25images/Sec/Watt)

Compared to CPU or GPU, FPGA power consumption is extremely efficient.

PCI Express x 8 AI acceleration card, Low profile, Intel® Arria10 FPGA, RoHS

- Power economy
- ➤ 1.4 TFLOPS.

Excellent in low batch size (1) inference suit for real-time applications. Direct input Storage Network

High Performance 19x higher than conventional CPU solution. Std. Caffe on CPU Intel* OpenVINO** on CPU Intel* OpenVINO** on GPU Intel* OpenVINO** on FPGA FPS Comparison on Public Models

Mustang-V100-MX8

Mustang-V100-MX8

Multi-Tasks: Eight myriad X chips can execute eight topologies

simultaneously.

Compact Size: Half-height, half-length, single slot.

Low power consumption:

approximate 2.5W for each Myriad X Soc.

Mustang-V100-RX8-R10

PCI Express x 4 AI acceleration card, Low profile, 8 Intel® Movidius™ Myriad ™ X VPU, RoHS

- One card for eight inference
- Power economy
- > 1 TFLOPS for each chips, 8 TFLOPS for one card.

Mustang-V100-mPCle, M.2

- Intel® Movidius™ Myriad™ X mPCle
 - > 2x MYDX
 - **Intel® OpenVINO™ Toolkit**
 - Available Q3, 2019
 - Dimension: 30 x 50mm
- Intel® Movidius™ Myriad™ X M.2 A/E Key
 - > 1x MYDX
 - Intel® OpenVINO™ Toolkit
 - > Available Q3, 2019
 - Dimension: 22 x 42mm
- Intel® Movidius™ Myriad™ X M.2 B/M Key
 - > 2x MYDX
 - Intel® OpenVINO™ Toolkit
 - > Available Q3, 2019
 - Dimension: 22 x 60mm

AL Accolorate Card Family

Myriad X

-10G2SF

-10G1T

-2P

Mustang-V100-MX4

Mustang-V100-MX4

Myriad X + RJ45x1Mustang-V100-MX4

MYX-MPCIE-MX2

MYX-M2BM-MX2

Myriad X, BM Key

Myriad X

M.2 M key x2

Myriad X + SFPx2

Myriad X

2018/10/E

VPU x1

MYX-M2AE-MX2

Myriad X, AE Key

Al Accelerate Card ramily						
(intel)			(intel)	• a curdius		
Interface		Kaby Lake	ARRIA*10 inside*		LAN MAN	ind X
		CPU	FPGA	VPU x8	VPU x4	VPU x2
	N/A	Mustang-200	Mustang-F100-A10	Mustang-V100-MX8	Mustang-V100-MX4	

Intel® Arria10 FPGA

2018/10/B

PCle

10G SFP

10G RJ45

M.2

MPCIE

M.2

MP

intel Kabylake CPU

Developing

QNAP x IEI offerings - Making AI possible!

Al Inference System TANK-870Al

Al Inference System TANK-870Al

- TANK-870AL
 - Deep learning inference ready.
 - CPU VPU FPGA accelerating.

Easy to use Deployment Workflow

.xml

.bin

Training

Caffe

Train your own Deep Learning model using major popular open frameworks and platforms

Convert

 Using pre-optimized TANK AloT Developer kit include Intel® OpenVINO™ on supported platform

Run the Model Optimizer to produce an optimized Intermediate Representation (IR) of model

Development & Deployment

Applications

Intel® OpenVINO™ Toolkit Inference Engine

Mustang Series

TANK-870AI

Integrate the Inference Engine in your application to deploy the model in the target environment

da.

params

Al Inference System RACK-500AI & PAC-400AI

Retail

- Self checkout
- Interactive digital signage
- Customers behavior analyze

Machine Vision

- Assist conventional AOI to double check fail products.
- Food, textile industry which does not have consistence features.

Textile Defect

Food Classification

Agriculture

- Livestock Monitoring
- Agriculture Robots
- Drone Analytics
- Precision Farming

Condition monitoring

Strawberry
Harvesting robot

3D image drone, pesticide spray

Surveillance

- Behavior monitoring
- Facial recognition
- People counting

Unexpected behavior monitoring

Healthcare

- Diagnosis assistant
- Patient monitoring

Diagnosis

Baby CAM

Thanks for your attention!