6.862 Applied Machine Learning: Introduction

Feb 10, 2020

Welcome to 6.862!

- Idea: use ML in your research while learning it
- This class is open to your creativity to implement an interesting project. So, have fun!

Today:

- What is this class about?
- Organization
- Some simple basics

Your Team

stefje@mit.edu

Stefanie Jegelka Andrew Rouditchenko Nathan Hunt roudi@mit.edu

nhunt@mit.edu

Overview

- class entails all of 6.036 (70%) plus long project (30%)
- **office hours** (mandatory):
 - regularly meet with instructors in office hours to discuss progress/hurdles
 - sign up for individual slots, meet once in each Phase

now-Mar 1	Phase I (3 weeks)
02/17	pre-proposal due
02/27	full project proposal due
Mar 2 - Apr 4	Phase II (4 weeks + spring break)
04/02	intermediate reports due
Apr 5 - Apr 26	Phase III (3 weeks)
Apr 27 - May 7	Phase IV: meetings optional (2 weeks)
May 7	final project report due

Pre-proposal

1 paragraph, 5% of grade

- title + abstract, think about this before your first OH meeting
- high level idea of project, data you will be using (you must have it now)
- think about: what question do I want to answer? What data probably has that information?

Proposal

1-2 pages, 15% of grade

- What do you want to do? What question are you answering?
- Motivation and formulation as ML problem
- What data will you use? Specific description of data
- What methods will you try and compare?
- What computational resources will you use? (time, feasibility)
- Brief summary of related work
- Project plan: at least 4 steps per team member, deadlines
- Risks: what may be more difficult than expected? Mitigation?

Intermediate Progress Report

3 pages, 20% of grade

- What have you done so far? What worked out / did not? If not, troubleshooting, alternative paths?
- timeline for the remaining time: at least 2 steps per team member
- describe the general layout of at least one plot that will appear in the final report. What are the axes? What will the reader learn from it?

Final Report

4 pages, technical content: 40%, presentation/writing/clarity 20%

- Progress and results of project: what did you do? What did you find?
- Interpret and discuss your results: why did results come out this way? What do they say about your research question?
- Include evidence for each claim you make (graphs, tables, sensitivity analysis, etc).
- Experiments reproducible

Logistics

- Lectures, labs, psets, exams: 6.036.
 Make sure you have access to the 6.036 MITx website
- Report submissions: 6.036 website
- Questions about homeworks, labs, exams, etc related to 6.036:
 6.036 Piazza / office hours
- Sign up for one 6.862 office hour (20 minutes) in each phase. Starting this week.

Formulating a project

- 1. What and why? Research question what is the contribution?
 - what question are you trying to answer? what are you trying to predict?

Formulating a project

- 1. What and why? Research question what is the contribution?
- 2. Phrase it as a Machine Learning problem. E.g.
 - classification
 - regression
 - clustering
 - recommender system
 - reinforcement learning ...

often, there is more than one way!

Full 6.036 lecture notes will be available on Stellar, just for 6.862. If you use methods from later parts/outside of class, read ahead and start them before they are discussed in class.

Formulating a project

- 1. What and why? Research question what is the contribution?
- 2. Phrase it as a Machine Learning problem.
- 3. **What data** do I need? What do I have? labels, amount, noisy, missing entries,...
- 4. **What methods** to try? What exists? Need to develop new ones? try several. Remember baselines, features, ...

Supervised Learning (Classification, Regression)

• data points $x^{(1)},\ldots,x^{(n)}$, labels $y^{(1)},\ldots,y^{(n)}$

$$x^{(i)} = \mathbf{1}$$

$$y^{(i)} = "toxic"$$

$$y^{(i)} = \operatorname{drug} \operatorname{efficacy}$$

Supervised Learning (Classification, Regression)

• data points $x^{(1)},\ldots,x^{(n)}$, labels $y^{(1)},\ldots,y^{(n)}$

 $y^{(i)} \in \{\text{edge, no edge}\}$

Clustering

• data points $x^{(1)}, \ldots, x^{(n)}$

Source: IDS.012 class project by Nate Bailey, Karan Bhuwalka, Hin Lee, Tim Zhong

Feature Learning / Topic Modeling

• data points $x^{(1)}, \ldots, x^{(n)}$

4	10	3	13
ax	labor	women	contract
income	workers	sexual	
taxation		men	liability parties
	emplcyees		parties
:axes	union	sex	contracts
revenue	employer	child	party
estate	employers	family	creditors
subsidies	employment	children	agreement
exemption	work	gender	breach
organizations	emplayee	woman	contractual
уеаг	job	marriage	terms
treasury	bargaining	discrimination	bargaining
consumption	unions	malc	pontracting
laxpayers	worker	social	uell
earnings	collective	female	exchange
			limited
tunds	industrial	parents	umited
6	15	1	16
jury	speech	firms	constitutional
trial	speech free	price	political
crime	amenoment	corporate	constitution
defendant	freedom	firm	government
defendants	expression	value	justice
	protected		amendment
sentencing		market	
judges	culture	cost	history
punishment	context	capital	people
judge	equality	shareholders -	legislative
crimes	values	stock	opin on
cvidence	conduct	insurance	fourteenth
sentence	ideas	efficient	article
jurors	information	assets	majority
offense	protect	offer	citizens
guilty	content	share	republican

Collaborative Filtering

Alpine Spa Himalayas

Hawaii

Scuba

20	??	16	??
??	2	18	10
13	1	??	??
??	13	??	19
18	??	10	??
??	??	0	16

Features

<u>Image</u>

$$h\left(\begin{array}{c} \\ \\ \end{array}\right)$$

$$; \theta$$

<u>Category</u>

mushroom

...

cherry

...

Features: examples for images

deep network

The Power of Features

- above: "spectral embedding"
- typical procedures in statistics: make it look Gaussian
 - log-transform
 - powers
 - exponentiation
 - normalization

A few things to be aware of ...

Error and evaluation

- our aim for a good prediction method: generalize!
- Which error?
 Training and testing subset: train on training set, error on test set
- Tuning parameters?
 the one with lowest error?
 cross-validation

Is my method good?

- Baseline & comparison methods, different datasets (dependent on problem)
- When working with one dataset: try different methods
 When developing a new method: compare to "standard", different data
- error bars
- read related work (Google scholar, NIPS, ICML, KDD, AISTATS, UAI, CVPR, ICCV, NAACL, ...)

Is my method good?

Mind the y axis!

Examples of projects

- CNN approaches to molecular representations for predicting chemical properties
- Characterizing and predicting air traffic delays
- Do signaling networks in brain tumors differ from those of normal brain tissue, and if so, how?
- Analysis of browsing behavior to predict mental state of users

• . . .

Add-ons: other advice

- Make sure you have the computation infrastructure needed. If your data is large, you should still be able to process it.
- Real data can be messy, it can have outliers, missing values etc.
 Document, remember and describe any preprocessing step you do. This is part of the analysis!
- You must have your data when you hand in the pre-proposal.
 E.g., if your data involves human subjects and you need to collect it, you would need approval for that, and that can take time