# An FPT algorithm for counting subgraphs

Jess Ryan

December 30, 2018

# What is the subgraph counting problem?

#### Problem Statement

How many (unlabelled) copies of the graph H are contained in the graph ĊЭ

We call the graph G the host graph and H the pattern graph.

#### Why do we care?

subgraph isomorphism Generalisation of

Network analysis



#### Algorithmic complexity

#### NP-hard

*NP-hard* problems cannot be solved in polynomial time unless P=NP, which we do not expect is true.

### Fixed-parameter tractable (FPT)

A problem is FPT if it can be solved in time depending polynomially on the input size and exponentially on some other parameter.

### Subgraph counting is hard!

ullet Subgraph isomorphism is NP-hard o subgraph counting is NP-hard

 Assuming Exponential Time Hypothesis → subgraph counting is not in FPT in general

• (Enright and Meeks) Subgraph counting is in FPT when the host graph has almost bounded degree

#### My PhD Mini-Project

#### Bounded degree graph

A graph G has bounded degree k if each vertex in G has degree at most k.

#### Almost bounded degree graph

A graph G has almost bounded degree k if G contains at most k vertices with degree greater than *k*.

#### Project objective:

Design and implement an FPT algorithm for subgraph counting in host graphs with almost bounded degree.

#### Algorithm: General Idea

- Consider each way to assign part of H to high degree vertices in G
- For each feasible assignment, count ways to assign the rest of H to the bounded degree part of G
- ullet Sum up the counts to obtain number of labelled copies of H in G
- Divide by the number of copies of H in H to obtain number of unlabelled copies of H in G



h<sub>3</sub>

 $h_2$ 

 $h_1\colon g_1,g_2,g_3,g_4$ 

*h*2: *g*1, *g*2, *g*3, *g*4 *h*3: *g*1, *g*2, *g*3, *g*4

December 30, 2018

りなの



84



 $h_1\colon g_1,g_2,g_3,g_4$ 

*h*2: *g*1, *g*2, *g*3, *g*4 *h*3: *g*1, *g*2, *g*3, *g*4

December 30, 2018

りなの

 $h_2$ 

Subset of V(H):  $\emptyset$ Count = 0

 $h_1: g_1, g_2, g_3, g_4$ 

 $h_2$ :  $g_1, g_2, g_3, g_4$ 

h3: g1, g2, g3, g4

μij

*g*4



Subset of V(H):  $\emptyset$ Count = 0

 $h_1 o g_1$   $h_2 : g_1, g_2, g_3$   $h_3 : g_1, g_2, g_3$ 

php

I



9

 $g_4$ 



Subset of V(H):  $\emptyset$ Count = 0

 $h_1 o g_1$ 

 $h_2 o g_3$ 

h3: 83

php





Subset of V(H):  $\emptyset$ Count = 0

 $h_1 o g_2$   $h_2 : g_1, g_2, g_3$   $h_3 : g_1, g_2, g_3$ 

php

*g*4



Subset of V(H):  $\emptyset$ Count = 0

 $h_1 o g_3$  $h_2 : g_1, g_2, g_3$ 

h3: g1, g2, g3

An FPT algorithm for counting subgraphs

December 30, 2018

php



Subset of V(H):  $\emptyset$  $\mathsf{Count} = 0$ 

 $h_1 o g_3$  $h_2 o g_1$  48

15 /

December 30, 2018

An FPT algorithm for counting subgraphs

 $h_1$ 

*g*4



h3

 $h_2$ 

Subset of V(H):  $h_1$ Count = 0

h<sub>1</sub>: g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub>, g<sub>4</sub> h<sub>2</sub>: g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub>, g<sub>4</sub>

h3: g1, g2, g3, g4

December 30, 2018

とくの

μij

I

 $h_2$ 

*g*4



Subset of V(H):  $h_1$ Count = 0

 $h_1 o g_4$ 

 $h_2$ :  $g_1, g_2, g_3$ 

 $h_3:g_1,g_2,g_3$ 

December 30, 2018

とめの

php

hз



Connected components of  $H \setminus h_1$ :

$$C_1 = h_2$$

$$C_1 = h_2$$
$$C_2 = h_3$$

December 30, 2018

とめの

copies of  $C_1$  and  $C_2$  in  $G\setminus g_4=$  (copies of  $C_1$  in  $G\setminus g_4$ 

 $\times$  copies of  $C_2$  in  $G \setminus g_4$ )

overlapping copies of  $C_1$  and  $C_2$  in  $G \setminus g_4$ 



$$G \setminus g_4$$





Count =0

 $h_2: g_1, g_2, g_3$ 

 $\mathcal{C}_1$ 

 $G \setminus g_4$ 





Count =0+1

 $h_2 o g_1$ 

$$\mathcal{C}_1$$

$$G \setminus g_4$$





Count =1+1

$$h_2 \rightarrow g_2$$

$$\mathcal{C}_1$$

$$G \setminus g_4$$





Count 
$$=2+1=3$$

$$h_2 \rightarrow g_3$$

An FPT algorithm for counting subgraphs

 $C_2$ 

 $G \setminus g_4$ 



Count =0

 $h_3:g_1,g_2,g_3$ 

 $C_2$ 

$$G \setminus g_4$$



 $g_1$ 

Count =0+1

$$h_3 o g_1$$

 $\mathcal{C}^{2}$ 

$$G \setminus g_4$$





Count =1+1

$$h_3 o g_2$$

$$G \setminus g_4$$



$$\begin{pmatrix} g_2 \\ g_3 \end{pmatrix}$$

Count =2+1=3

$$h_3 o g_3$$

$$C_1 \cap C_2$$

$$G \setminus g_4$$





Count =0

 $h_2/h_3$ :  $g_1, g_2, g_3$ 

$$C_1\cap C_2$$

$$G \setminus g_4$$



$$\begin{pmatrix} g_2 \\ g_3 \end{pmatrix}$$

Count =0+1

$$h_2/h_3 \rightarrow g_1$$

$$C_1 \cap C_2$$

$$G \setminus \mathcal{B}_4$$



$$\begin{pmatrix} g_2 \\ g_3 \end{pmatrix}$$

Count =1+1

$$h_2/h_3 \rightarrow g_2$$

$$C_1 \cap C_2$$

$$G \setminus g_4$$



$$\begin{pmatrix} g_2 \\ g_3 \end{pmatrix}$$

Count =2+1=3

$$h_2/h_3 \rightarrow g_3$$

copies of  $C_1$  and  $C_2$  in  $G\setminus g_4=$  (copies of  $C_1$  in  $G\setminus g_4$ 

 $\times$  copies of  $C_1$  in  $G \setminus g_4$ )

overlapping copies of  $C_1$  and  $C_2$  in  $G \setminus g_4$ 

copies of 
$$C_1$$
 and  $C_2$  in  $G\setminus g_4=(3 imes3)-3$ 

9 =

December 30, 2018

000

 $h_2$ 

9

I

5000

php

▲ |III| ▼

▲ |ll|l

34 / 48

h3

*g*4



Subset of V(H):  $h_2$ Count = 6

 $h_1: g_1, g_2, g_3, g_4$ 

 $h_2$ :  $g_1, g_2, g_3, g_4$ 

h3: g1, g2, g3, g4

php

h3

 $h_2$ 

9

*g*4



Subset of V(H):  $h_2$ Count = 6

 $h_1\colon g_1,g_2,g_3$ 

 $h_2 o g_4$ 

 $h_3:g_1,g_2,g_3$ 

php

Connected components of  $H \setminus h_2$ :  $C_1 = h_1, h_3$ 





Count =0

*h*<sub>1</sub>: *g*<sub>1</sub>, *g*<sub>2</sub>, *g*<sub>3</sub> *h*<sub>3</sub>: *g*<sub>1</sub>, *g*<sub>2</sub>, *g*<sub>3</sub>





Count =0

 $h_1 o g_1$ 

 $h_3: g_1, g_2, g_3$ 





Count =0+1

$$h_1 \rightarrow g_1$$
 $h_3 \rightarrow g_3$ 

plipl

48





Count =1

 $h_1 o g_2$ 

h3: g1, g2, g3





Count =1

 $h_1 o g_3$ 

 $h_3: g_1, g_2, g_3$ 



 $C_1$ 



Count =1+1

$$h_1 \rightarrow g_3$$
  
 $h_3 \rightarrow g_1$ 

plipl



**8**2

84



 $g_1$ 

 $g_3$ 

Subset of V(H):  $h_2$ Count = 6+2

December 30, 2018

5000

84

Subset of V(H):  $h_3$ Count = 8+2

 $g_4$ 



Count = 10

December 30, 2018

とくら



Count = 10

Number of copies of H in H=2

84

 $\mathsf{Count} = 10$ 

Number of copies of H in H=2

ightarrow Number of unlabelled copies of H in G=10/2=5