Devoir maison 8.

À rendre le jeudi 30 janvier 2025

Exercice

Le but de cet exercice est de déterminer l'ensemble de toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues et qui vérifient :

(*) :
$$\forall (x, y) \in \mathbb{R}^2$$
, $f(\sqrt{x^2 + y^2}) = f(x)f(y)$.

Partie 1

Dans cette partie, on suppose que f est une solution du problème.

- **1**°) Montrer que f(0) = 0 ou f(0) = 1.
- 2°) Supposons que f(0) = 0.

Montrer que : f est nulle sur \mathbb{R}_+ , puis que f est nulle sur \mathbb{R} .

Dans toute la suite de la partie 1, on suppose désormais que f(0) = 1.

- **3°)** Montrer que : $\forall x \in [0, +\infty[, f(x) \ge 0.$
- 4°) Supposons dans cette question qu'il existe un réel $x_0 > 0$ tel que $f(x_0) = 0$.
 - a) On pose : $\forall n \in \mathbb{N}, u_n = \frac{x_0}{\sqrt{2}^n}$.

Montrer que : $\forall n \in \mathbb{N}, 2u_{n+1}^2 = u_n^2$.

- **b)** En déduire que : $\forall n \in \mathbb{N}, f(u_n) = 0.$
- c) En déduire une contradiction.
- **5°)** On peut donc poser, pour tout $x \in \mathbb{R}_+$, $g(x) = \ln(f(\sqrt{x}))$. Montrer que pour tout $x \in \mathbb{R}_+$ et tout $n \in \mathbb{N}$, g(nx) = ng(x).
- **6°)** On pose a = g(1). Montrer que pour tout $r \in \mathbb{Q}_+$, g(r) = ar.
- **7°)** Montrer que : $\forall x \in \mathbb{R}_+, g(x) = ax$.
- 8°) En déduire que : $\forall x \in \mathbb{R}_+, f(x) = \exp(ax^2)$.
- 9°) Montrer que f est paire. En déduire f sur \mathbb{R} .

Partie 2

10°) Conclure.