# FIN2010 Financial Management Capital Budgeting Techniques

# **Example of Capital Budgeting**

- Project: Open a restaurant in CUHK (SZ)
- Question: can I make money?
  - ... but what exactly does "make money" mean? Most of the projects require investment at the beginning and only generate cash flows in the future.
    - Today: how do we evaluate the profitability or a project with given cash flow?
    - Next two lecture: what is the cash flow of the project?
    - Then: what are the risks of the project and how do we account for the risks?

## **Agenda**

- Evaluating a project
  - Net present value
  - Payback period
  - Discounted payback period
  - Internal rate of return
  - Profitability index
- Multiple projects
  - Mutually exclusive projects
  - Capital rationing

# **Our Case Study**

• Suppose we plan to rent a spot on campus and provide food service. We have two choices. The cost of capital is 12% per year.

| Time | Coffee shop CF | Sandwich shop CF |
|------|----------------|------------------|
| 0    | (20,000)       | (20,000)         |
| 1    | 15,000         | 6,000            |
| 2    | 15,000         | 7,000            |
| 3    | 13,000         | 6,000            |
| 4    | 3,000          | 6,000            |

## **Agenda**

- Evaluating a project
  - Net present value
  - Payback period
  - Discounted payback period
  - Internal rate of return
  - Profitability index
- Multiple projects
  - Mutually exclusive projects
  - Capital rationing

#### **NPV**—Decision Rule

- If the NPV is non-negative, accept the project
- A non-negative NPV means that the project is expected to add value to the firm and will therefore increase the wealth of the owners.
- Since our goal is to increase owner wealth, NPV is a direct measure of how well this project will meet our goal.

# **NPV**—Computation

| Time | Time Discount | Coffee shop CF | PV(CF)   | Sandwich shop CF | PV(CF)   |
|------|---------------|----------------|----------|------------------|----------|
| 0    | 1             | (20,000)       | (20,000) | (20,000)         | (20,000) |
| 1    | 1.12-1=0.893  | 15,000         | 13,393   | 6,000            | 5,357    |
| 2    | 1.12-2=0.797  | 15,000         | 11,958   | 7,000            | 5,580    |
| 3    | 1.12-3=0.712  | 13,000         | 9,253    | 6,000            | 4,271    |
| 4    | 1.12-4=0.636  | 3,000          | 1,907    | 6,000            | 3,813    |
| NPV  |               |                | 16,510   |                  | (979)    |

Based on the NPV decision rule, we should

- Accept the coffee shop project
- Reject the sandwich shop project

# **NPV Profile for the Project**



NPV profile: a graph that illustrates a project's NPV against various discount rates, with the NPV on the y-axis and the cost of capital on the xaxis.

When future cash flows (CF1, CF2...) are all positive: Conditional on future cash flows, the higher discount rate, the lower NPV.



#### **NPV—Pros and Cons**

#### Advantages

- Easy to understand
- Accounts for the time value of money
- Offers information on the valued added by a project to the firm

#### Disadvantages

- Requires estimation of cost of capital
- May not include managerial options embedded in the project (we will discuss this in topic 15)

# Payback Period—Definition

How long does it take to get the initial cost back in a nominal sense?

- To compute,
  - Estimate the cash flows
  - Subtract the future cash flows from the initial cost until the initial investment has been recovered (i.e., the first time the cumulative CF turns positive)
- Decision Rule Accept if the payback period is less than some preset limit

# Payback Period—Computation

Suppose we want to recover the cost within 2 years.

| Time | Coffee shop CF | Cumulative CF | Sandwich shop CF | Cumulative CF |
|------|----------------|---------------|------------------|---------------|
| 0    | (20,000)       | (20,000)      | (20,000)         | (20,000)      |
| 1    | 15,000         | (5,000)       | 6,000            | (14,000)      |
| 2    | 15,000         | 10,000        | 7,000            | (7,000)       |
| 3    | 13,000         | 23,000        | 6,000            | (1,000)       |
| 4    | 3,000          | 26,000        | 6,000            | 5,000         |

- Coffee shop's payback period = less than 2 years
- Sandwich shop's payback period = less than 4 years
- We should accept the coffee shop and reject the sandwich shop according to the payback period rule!

## Payback Period - Pros and Cons

#### Advantages

- Easy to understand
- No need to forecast long term cash flows

#### Disadvantages

- Ignores the time value of money
- Requires an arbitrary cutoff point
- Ignores cash flows beyond the cutoff date
- Biased against long-term projects, such as research and development

# **Discounted Payback Period—Definition**

 Compute the *present value* of each cash flow and then determine how long it takes to pay back on a discounted basis

 Decision Rule - Accept the project if it pays back on a discounted basis within the specified time

## **Computing Discounted Payback for the Project**

Suppose we want to recover the cost within 2 years.

|      | Coffee shop |         | Cumulative | Sandwich |         | Cumulative |
|------|-------------|---------|------------|----------|---------|------------|
| Time | CF          | PV(CF)  | PV         | shop CF  | PV(CF)  | CF         |
| 0    | -20,000     | -20,000 | -20,000    | -20,000  | -20,000 | -20,000    |
| 1    | 15,000      | 13,393  | -6,607     | 6,000    | 5,357   | -14,643    |
| 2    | 15,000      | 11,958  | 5,351      | 7,000    | 5,580   | -9,063     |
| 3    | 13,000      | 9,253   | 14,604     | 6,000    | 4,271   | -4,792     |
| 4    | 3,000       | 1,907   | 16,510     | 6,000    | 3,813   | -979       |

- Coffee shop's discounted payback period = less than 2 years
- Sandwich shop's discounted payback period = more than 4 years
- We should accept the coffee shop and reject the sandwich shop according to the discounted payback period rule!

## **Discounted Payback Period—Pros and Cons**

#### Advantages

- Includes time value of money
- Easy to understand
- Does not accept negative NPV projects when all future cash flows are positive

#### Disadvantages

- May reject positive NPV projects
- Requires an arbitrary cutoff point
- Ignores cash flows beyond the cutoff point
- Biased against long-term projects, such as R&D and new products

# Internal Rate of Return (IRR)—Definition

- Definition: IRR is the return that makes the NPV = 0
- Decision Rule Accept the project if the IRR is no less than a required rate of return
  - This required rate of return is often called the hurdle rate
- This is the most important alternative to NPV. It is often used in practice and is intuitively appealing.

# **IRR—Computation**

- Computers use a trial-and-error process to find IRR
  - Guides on Excel and financial calculator at the end



 We should accept the coffee shop and reject the sandwich shop according to the IRR rule!

#### **IRR—Caveats**

- NPV and IRR will generally give us the same result.
  - Given the required rate of return R,  $NPV > 0 \Leftrightarrow IRR > R$
- However, if we have unconventionally cash flows, there might be multiple IRRs or no IRR.
  - Conventional cash flows: outflow first (investment), inflow later (profit). In this case, IRR is unique.
  - Unconventional cash flows: when cash flows switch signs more than once, IRR may not be unique!
  - Maximum possible IRRs = Number of times CFs change signs

# **Example—Multiple IRRs**

 Consider a project with negative cash flow at the end

| Time | CF       |
|------|----------|
| 0    | (90,000) |
| 1    | 132,000  |
| 2    | 100,000  |
| 3    | -150,000 |

•  $IRR_1 = 10.11\%$ ,  $IRR_2 = 42.66\%$ 



**Discount Rate** 

#### Which IRR should we use?

- None!
- When evaluating a project with non-conventional cash flow, you should not use IRR at all.
  - IRR tries to answer the question: what is the rate of return given my initial investment and future profits.
  - If the cash flows do not fit this pattern, then IRR becomes difficult to interpret.

#### **IRR—Pros and Cons**

#### Advantages

- Generates a rate of return (so does not require you to estimate a required of return)
- Easy to compare between projects
- Accounts for the time value of money
- Closely related to NPV, often leading to identical decisions

#### Disadvantages

- Difficult to calculate
- Does not offers information on the valued added of a project
- May have multiple IRRs

# **Profitability Index—Definition**

- Definition: PI = NPV / Initial Investment + 1
- Decision rule Accept the project if PI is no less than 1
  - This is the same as NPV≥0
- Measures the <u>benefit per unit cost</u>, based on the time value of money
- A profitability index of 1.1 implies that for every \$1 of investment, we create an additional \$0.10 in value
- This measure can be very useful in situations in which we have limited capital

# **Profitability Index—Computation**

| Time       | Coffee shop CF | PV(CF)                   | Sandwich shop CF | PV(CF)                  |
|------------|----------------|--------------------------|------------------|-------------------------|
| 0          | (20,000)       | (20,000)                 | (20,000)         | (20,000)                |
| 1          | 15,000         | 13,393                   | 6,000            | 5,357                   |
| 2          | 15,000         | 11,958                   | 7,000            | 5,580                   |
| 3          | 13,000         | 9,253                    | 6,000            | 4,271                   |
| 4          | 3,000          | 1,907                    | 6,000            | 3,813                   |
| NPV        |                | 16,510                   |                  | (979)                   |
| Investment |                | 20,000                   |                  | 20,000                  |
| PI         |                | 1.8255                   |                  | 0.9511                  |
|            |                | $=\frac{16510}{20000}+1$ |                  | $=\frac{-979}{20000}+1$ |

Based on the profitability index decision rule, we should

- Accept the coffee shop project
- Reject the sandwich shop project

## **Profitability Index—Pros and Cons**

#### Advantages

- Closely related to NPV, generally leading to identical decisions
- Easy to understand and communicate
- May be useful when available investment funds are limited

#### Disadvantages

- Does not provide information on value creation
- Cannot be used on project with unconventional cash flows

# **Summary of Decisions for the Project**

| Criteria                     | Benchmark | Coffee shop | Sandwich |
|------------------------------|-----------|-------------|----------|
| Net Present Value            | 0         | 16510       | -979     |
| Payback Period               | 2         | <2          | <4       |
| Discounted<br>Payback Period | 2         | <2          | >4       |
| Internal Rate of<br>Return   | 12%       | 54.7%       | 9.6%     |
| Profitability Index          | 1         | 1.83        | 0.95     |

# Survey evidence on the use of capital budgeting methods



Fig. 2. Survey evidence on the popularity of different capital budgeting methods. We report the percentage of CFOs who always or almost always use a particular technique. IRR represents internal rate of return, NPV is net present value, P/E is the price-to-earnings ratio, and APV is adjusted present value. The survey is based on the responses of 392 CFOs.

• Source: Graham, J.R. and Harvey, C.R. (2001) The Theory and Practice of Corporate Finance: Evidence from the Field. Journal of Financial Economics, 60, 187-243.

## **Agenda**

- Evaluating a project
  - Net present value
  - Payback period
  - Discounted payback period
  - Internal rate of return
  - Profitability index
- Multiple projects
  - Mutually exclusive projects
  - Capital rationing

# **Mutually Exclusive Projects**

- So far we discussed whether to accept one single project
- Some projects are mutually exclusive
  - If you choose one, you can't choose the other
  - E.g., you can choose to attend university at either CUHK (Shenzhen) or Southern University of Science and Technology, but not both
- Intuitively, you would use the following decision rules:
  - NPV choose the project with the higher NPV
  - IRR choose the project with the higher IRR
  - PI choose the highest PI
- When the rules yield different rankings, the NPV decision rule should be followed. Potential reasons for conflict:
  - Scale of Investment
  - Cash-flow Pattern

# Why Disagreement—Scale Difference

Compare a small (S) and a large (L) project. R=10%

|             | NET CASH FLOWS |             |  |
|-------------|----------------|-------------|--|
| END OF YEAR | Project S      | Project L   |  |
| 0           | -\$100         | -\$100,000  |  |
| 1           | 0              | 0           |  |
| 2           | \$400          | \$156,250   |  |
|             | IRR: 100%      | <b>25</b> % |  |
|             | NPV: \$231     | \$29,132    |  |
|             | PI: 3.31       | 1.29        |  |

- Based on your intuition, which one should you choose?
  - L is better because it creates more value for the investment opportunity.
     IRR and PI methods fail to consider the magnitude of projects

#### Why Disagreement—Different Cash Flow Patterns

| Year | Investment A | Investment B |
|------|--------------|--------------|
| 0    | -\$100       | -\$100       |
| 1    | 50           | 20           |
| 2    | 40           | 40           |
| 3    | 40           | 50           |
| 4    | 30           | 60           |



IRR rule: choose A.



#### **NPV rule**: decision varies with r

- If the cost of capital is [0,11.1%], choose B
- If the cost of capital = 11.1%, indifferent between A and B
- If the cost of capital > 11.1%, choose A

## What should We Do with Conflicting Results?

- Always follow the NPV rule for mutually exclusive projects!
  - Goal: maximize the firm's value
  - Therefore, we should choose the 1 project that adds the most value given our project's cost of capital.

# **Capital Rationing**

- Capital Rationing occurs when a constraint (or budget ceiling)
  is placed on the total size of capital expenditures during a
  particular period.
  - Example: a company only has \$32,500, and can take any combination of the following 8 projects:

| Project | Investment | IRR | NPV   | PI   |
|---------|------------|-----|-------|------|
| А       | 500        | 18% | 50    | 1.1  |
| В       | 5000       | 25% | 6500  | 2.3  |
| С       | 5000       | 37% | 5500  | 2.1  |
| D       | 7500       | 20% | 5000  | 1.67 |
| Е       | 12500      | 26% | 500   | 1.04 |
| F       | 15000      | 28% | 21000 | 2.4  |
| G       | 17500      | 19% | 7500  | 1.43 |
| Н       | 25000      | 15% | 6000  | 1.24 |

# **Choosing Projects with Highest NPVs**

| Project | Investment | IRR | NPV   | PI   |
|---------|------------|-----|-------|------|
| F       | 15000      | 28% | 21000 | 2.4  |
| G       | 17500      | 19% | 7500  | 1.43 |
| В       | 5000       | 25% | 6500  | 2.3  |
| Н       | 25000      | 15% | 6000  | 1.24 |
| С       | 5000       | 37% | 5500  | 2.1  |
| D       | 7500       | 20% | 5000  | 1.67 |
| Е       | 12500      | 26% | 500   | 1.04 |
| Α       | 500        | 18% | 50    | 1.1  |

Projects ranked according to **NPV** 

Budget: \$32,500

- Projects F and G have highest NPVs and they are chosen
- Increase in shareholder's value: \$28,500

# **Choosing Projects with Highest IRRs**

| Project | Investment | IRR | NPV   | PI   |
|---------|------------|-----|-------|------|
| С       | 5000       | 37% | 5500  | 2.1  |
| F       | 15000      | 28% | 21000 | 2.4  |
| Е       | 12500      | 26% | 500   | 1.04 |
| В       | 5000       | 25% | 6500  | 2.3  |
| D       | 7500       | 20% | 5000  | 1.67 |
| G       | 17500      | 19% | 7500  | 1.43 |
| Α       | 500        | 18% | 50    | 1.1  |
| Н       | 25000      | 15% | 6000  | 1.24 |

Projects ranked according to IRR

Budget: \$32,500

- Projects C, F and E have highest IRRs and they are chosen
- Increase in shareholder's value: \$27,000

# **Choosing Projects with Highest Pls**

| Project | Investment | IRR | NPV   | PI   |
|---------|------------|-----|-------|------|
| F       | 15000      | 28% | 21000 | 2.4  |
| В       | 5000       | 25% | 6500  | 2.3  |
| С       | 5000       | 37% | 5500  | 2.1  |
| D       | 7500       | 20% | 5000  | 1.67 |
| G       | 17500      | 19% | 7500  | 1.43 |
| Н       | 25000      | 15% | 6000  | 1.24 |
| Α       | 500        | 18% | 50    | 1.1  |
| Ε       | 12500      | 26% | 500   | 1.04 |

Projects ranked according to Pl

Budget: \$32,500

- Projects F, B, C and D have highest PIs and they are chosen
- Increase in shareholder's value: \$38,000

#### **Horserace of Different Selection Criteria**

| Method | Projects Selected | Value Added |
|--------|-------------------|-------------|
| PI     | F, B, C, D        | \$38,000    |
| NPV    | F, G              | \$28,500    |
| IRR    | C, F, E           | \$27,000    |

• PI generates the greatest increase in shareholder wealth when a limited capital budget exists for a single period.

# **Summary**

- Net Present Value
- Payback Period
- Discounted Payback Period
- Internal Rate of Return
  - Multiple IRR problem
- Profitability Index
- Mutual exclusive projects
  - Always use NPV!
- With limited capital
  - Sort by PI

Evaluating a single project

When dealing with multiple projects