MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2019-20

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (15m de tolerância)

1ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos <u>três grupos</u> utilizando <u>folhas de capa distintas</u>. Na resolução da prova deve utilizar uma esferográfica azul ou preta.

GRUPO I

- **1.** [**7,2**] Seja o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subset \mathbb{R}^4$, onde $\vec{a} = (1,1,-1,-2)$, $\vec{b} = (2,1,-1,0)$, $\vec{c} = (0,1,1,2)$ e $\vec{d} = (1,-1,1,1)$. Sejam $H = \{(x,y,z,w) \in \mathbb{R}^4 : x-y-z-w=0\}$ um subespaço de \mathbb{R}^4 e os vetores $\vec{e} = (1,1,0,2)$ e $\vec{f} = (-1,2,1,1)$.
 - a) Verifique, justificando, se o conjunto S é linearmente independente.
 - **b**) Determine o subespaço gerado pelo conjunto S, L(S); indique uma base para o subespaço obtido e conclua em relação à sua dimensão. Justifique.
 - c) Obtenha uma base ortogonal, W, para H que contenha o maior número possível de elementos de S.
 - d) Calcule um vetor \vec{g} de modo que o conjunto $U = \{\vec{e}, \vec{f}, \vec{g}\} \subset \mathbb{R}^4$ seja linearmente independente e, além disso, não exista em U nenhum par de vetores ortogonais.
- **2.** [1,3] Sejam B = $\{\vec{b}_1, \vec{b}_2, ..., \vec{b}_{i-1}, \vec{b}_i, \vec{b}_{i+1}, ..., \vec{b}_n\}$ uma base para o espaço \mathbb{R}^n e o vetor $\vec{v} = c_1 \vec{b}_1 + ... + c_{i-1} \vec{b}_{i-1} + c_i \vec{b}_i + c_{i+1} \vec{b}_{i+1} + ... + c_n \vec{b}_n$, $c_j \in \mathbb{R}$, j = 1, ..., n, e tal que $c_i \neq 0$. Mostre que o conjunto B₁ = $\{\vec{b}_1, \vec{b}_2, ..., \vec{b}_{i-1}, \vec{v}, \vec{b}_{i+1}, ..., \vec{b}_n\}$ é uma base para \mathbb{R}^n , sabendo que B₁ foi obtido a partir de B substituindo o vetor \vec{b}_i pelo vetor \vec{v} .

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (15m de tolerância)

1ª Prova de Avaliação

GRUPO II

- **3.** [2,6] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores não nulos do espaço \mathbb{R}^3 , tais que $S = \left\{ \vec{a}, \vec{b} \right\}$ é uma base ortonormada para L(S), subespaço gerado pelo conjunto S, $\vec{d} = (\vec{a} \times \vec{b}) 2\vec{c}$, $\vec{c} \in L(S)$, $\|\vec{c}\| = \sqrt{2}$ e $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c} = 1$. Calcule:
 - a) O volume do prisma definido pelos vetores \vec{a} , \vec{b} e \vec{d} .
 - **b**) O ângulo, α , formado pelos vetores \vec{d} e $\vec{a} \vec{c}$.
 - c) O valor do produto escalar $(\vec{a} \times \vec{c}) \cdot (\vec{b} \times \vec{c})$.

GRUPO III

- **4.** [5,1] Sejam o plano M: x+y+z=1, o ponto R=(-1,0,1) e a reta, r, com a equação vetorial $X(t)=P+t\vec{a}$, $t\in\mathbb{R}$, em que P=(1,0,1) e $\vec{a}=(0,-1,-2)$.
 - a) Classifique a reta r quanto à sua posição relativa em relação ao plano M e determine a distância do ponto R a M.
 - **b**) Calcule o ângulo, α , que a reta r faz com o plano M e obtenha a equação vetorial da reta, r_1 , que é a projeção ortogonal de r sobre M.
- 5. [2,6] Considere os dados indicados na pergunta 4.. Determine as equações vetoriais das retas, h e h_1 , que passam no ponto R, são concorrentes com a reta r e fazem, com esta reta, um ângulo, α , tal que $\alpha = \arccos \sqrt{5}/3$.
- **6.** [1,2] Seja S = $\{\vec{a}, \vec{b}\}\subset \mathbb{R}^3$ um conjunto linearmente independente. Verifique se o conjunto V = $\{\vec{a} \vec{b}, \vec{a} + 2\vec{b}, \vec{a} + (\vec{a} 2\vec{b}) \times (\vec{a} + \vec{b})\}$ é uma base para o espaço \mathbb{R}^3 . Justifique.