

Auxiliary Protocol

Prof. Ai-Chun Pang National Taiwan University

Email: acpang@csie.ntu.edu.tw

http://www.csie.ntu.edu.tw/~acpang

Outline

- Introduction
- ARP Process
 - APR Table
 - APR Request/Reply
 - APR Package
- ICMP
 - Error Reporting
 - Query

Introduction

- IP provides communication between two remote hosts
- However, IP lacks error detection and reporting mechanisms
 - Auxiliary protocols are used to deal with these problems

李学 National Taiwan University

Address Resolution Protocol ARP

ARP

- Both IP address and MAC address are required to delivery packets in the Internet
- Question: how to determine destination MAC address by only knowing its IP address?
- A mechanism is needed to translate IP addresses to MAC addresses

ARP Table

- Each IP node (e.g., host, router, etc.) on LAN has an ARP table
- ARP Table: IP/MAC address mappings for some LAN devices
 - − < IP address; MAC address; TTL>
 - TTL (Time To Live): time after the address mapping will be expired (typically 20 min)

Example of ARP Process

ARP Request

ARP Reply

Routing to Another Subnet

- Sending a datagram from A to B via R
 - focus on IP (datagram) and MAC layer (frame) levels
 - assume that:
 - A knows B's IP address
 - A knows IP address of router R (how?)
 - A knows R's MAC address (how?)

Routing to Another Subnet

Routing to another subnet

Example of ARP Table

■ 命令提示字元			_	×
Microsoft Windows [版》 (c) 2018 Microsoft Con	本 10.0.17134.523] rporation. 著作權所有	,並保留一切權利。		^
C:\Users\user>arp -a				
介面: 192.168.0.2 網際網路網址 192.168.0.1	0x4 實體位址 10-be-f5-7b-0a-ab	類型動態		
192.168.0.106 192.168.0.255	68-17-29-fb-c3-f4 ff-ff-ff-ff-ff-ff	動態		
224.0.0.2 224.0.0.22 224.0.0.251	01-00-5e-00-00-02 01-00-5e-00-00-16 01-00-5e-00-00-fb	那怨 靜態 靜態		
224.0.0.252 239.255.255.250 255.255.255.255	01-00-5e-00-00-fc 01-00-5e-7f-ff-fa ff-ff-ff-ff-ff	靜態 靜態 靜態		

ARP Packet Format

Hardware type (16 bits)		Protocol type (16 bits)	
Hardware address length (8 bits)	Protocol address length (8 bits)	Operation (16 bits)	
Sender HA (48 bits or other)			
Sender protocol address (32 bits or other)			
Target HA (48 bits or other)			
Target protocol address (32 bits or other)			

Internet Control Message Protocol

ICMP

- If a packet must be dropped by router due to
 - Destination is unreachable
 - TTL is zero
- ICMP is used to
 - Error reporting
 - Status query

ICMP

- Used by hosts & routers to communicate network-level information
 - Error reporting: unreachable host, network, port, protocol
 - Query message: echo request/reply (used by ping)
- Network-layer "above" IP:
 - ICMP messages carried in IP datagrams

ICMP Format

ICMP Packet Format

Error reporting

Type (8 bits)	Code (8 bits)	Checksum (16 bits)	
Undefined or other (32 bits)			
Data section (IP header + 64 bits of original data)			

Query (e.g., echo request/reply)

Type (8 bits)	Code (8 bits)	Checksum (16 bits)		
Identifier (16 bits)		Sequence number (16 bits)		
Data section (Option Data)				

ICMP Message Types

ICMP type	Description	Error reporting	Query
0	Echo reply (to ping)		✓
3	Destination unreachable	✓	
4	Source quench	✓	
5	Redirect	✓	
8	Echo request		✓
9	Router advertisement		✓
10	Router solicitation		✓
11	Time exceeded	✓	
12	Parameter problem	✓	

Error Reporting

- Report problems (5 types)
 - Destination unreachable
 - Source quench
 - Redirect
 - Time exceeded
 - Parameter problem

Send datagram

IP header

Query

- Get specific information
 - Echo Request / Reply
 - Ping, Traceroute
 - Router Advertisement
 - Router Solicitation
 - Timestamp Request / Reply
 - Synchronize, Delay, Host Time

Traceroute

- Source sends series of UDP segments to dest
 - First has TTL =1
 - Second has TTL=2, etc.
 - Unlikely port number
- When nth datagram arrives to nth router
 - Router discards datagram
 - And sends to source an ICMP message (type 11, code 0)
 - Message includes name of router & IP address
 - When ICMP message arrives, source calculates RTT
 - Traceroute does this 3 times

Traceroute (cont.)

- Stopping criterion
 - UDP segment eventually arrives at destination host
 - Destination returns ICMP "destination unreachable" packet (type 3, code 3)
 - When source gets this ICMP, stops

An Example of Traceroute

ICMP Destination unreachable

Reference

- Computer Networking: A Top-Down Approach Featuring the Internet. Jamess F. Kurose, Keith W. Ross, 6rd Edition, Addison Wesley
- RFC 792 Internet Control Message Protocol IETF **Tools**