DOMFIGO INTENT

CLAIMS

What is claimed is:

1	1.	A method comprising:
2		connecting a transmitter to a transmission line;
3		receiving an input signal; and
4		transmitting the input signal on the transmission line by switching between a first
5		power source and a second power source to generate a balanced current
6		signal.
1	2.	The method of claim 1, wherein the balanced current signal comprises a positive
2		domain image and a negative domain image and wherein the negative domain
3		image is inverted from the positive domain image.
1	3.	The method of claim 1, wherein the transmission line is a twisted pair cable.
1	4.	The method of claim 1, wherein the input signal is a digital signal.
1	5.	The method of claim 1, wherein the first power source is comprised of a direct
2		current voltage source.
1	6.	The method of claim 5, wherein the second power source is comprised of a
2		sinusoidal waveform generator and the direct current voltage source.
1	7.	The method of claim 6, wherein the sinusoidal waveform generator includes a
2		direct current voltage offset.

1

8.

A method comprising:

- 2 connecting a receiver to a transmission line; 3 detecting a balanced current signal on the transmission line by sensing a change in 4 a current flowing through the transmission line. 9. The method of claim 8, wherein the balanced current signal is received as a 1 2 positive domain signal image and a negative domain signal image. The method of claim 8, wherein the transmission line is a twisted pair cable. 1 10. The method of claim 8, wherein the change in current is detected by sensing a 1 11. 2 change in a magnetic field surrounding the transmission line. 1 12. The method of claim 11, wherein the change in the magnetic field surrounding the 2 transmission line is detected using a magnetic field sensor that includes giant 3 magnetoresistive materials. The method of claim 8, further comprising: 1 13. determining that the transmission line is active if current flow is detected through 2 the transmission line. 3 The method of claim 7, further comprising: 1 14. 2 determining that the transmission line is inactive if no current flow is detected 3 through the transmission line.
- 1 15. A method comprising:
- 2 connecting a transceiver to a transmission line;
- 3 obtaining an input signal;

4		transmitting the input signal on the transmission line by switching between a first
5		power source and a second power source to generate a balanced current
6		signal; and
7	/	detecting the balanced current signal on the transmission line by sensing a change
8		in a current flowing through the transmission line.
1	16.	The method of claim 15, wherein the balanced current signal comprises a positive
2		domain image and a negative domain image and wherein the negative domain
3		image is inverted from the positive domain image.
1	17.	The method of claim 15, wherein the transmission line is a twisted pair cable.
1	18.	The method of claim 15, wherein the input signal is a digital signal.
1	19.	The method of claim 15, wherein the first power source is comprised of a direct
2		current voltage source.
1	20.	The method of claim 19, wherein the second power source is comprised of a
2		sinusoidal waveform generator and the direct current voltage source.
1	21.	The method of claim 20, wherein the sinusoidal waveform generator includes a
2		direct current voltage offset.
1	22.	The method of claim 15, wherein the change in current is detected by sensing a

change in a magnetic field surrounding the transmission line.

28.

1	23.	The method of claim 22, wherein the change in the magnetic field surrounding the
2		transmission line is detected using a magnetic field sensor that includes giant
3		magnetoresistive materials.
1	24.	The method of claim 15, further comprising:
2		determining that the transmission line is active if current flow is detected through
3		the transmission line.
1	25.	The method of claim 15, further comprising:
2		determining that the transmission line is inactive if no current flow is detected
3		through the transmission line.
1	26.	A transmitter comprising:
2		a connection to a transmission line;
3		a plurality of power sources; and
4		a switch, wherein the switch is coupled to the plurality of power sources and
5		wherein the switch generates a balanced current signal by switching
6		between the plurality of power sources.
1	27.	The transmitter of claim 26, wherein the balanced current signal comprises a
2		positive domain image and a negative domain image and wherein the negative
3		domain image is inverted from the positive domain image.

The transmitter of claim 26, wherein the transmission line is a twisted pair cable.

- 1 29. The transmitter of claim 26, wherein the plurality of power sources is comprised of a first power source and a second power source.
- 1 30. The transmitter of claim 29, wherein the first power source is comprised of a direct current voltage source.
- 1 31. The transmitter of claim 30, wherein the second power source is comprised of a sinusoidal waveform generator and the direct current voltage source.
- 1 32. The transmitter of claim 31, wherein the sinusoidal waveform generator includes 2 a direct current voltage offset.
- 1 33. A receiver comprising:
- 2 a connection to a transmission line;
- a current detector, wherein the current detector detects a balanced current signal
 by sensing a change in a current in the transmission line.
- 1 34. The receiver of claim 33, further comprising an amplifier to increase the
 2 amplitude of the balanced current signal prior to detection by the current detector.
- 1 35. The receiver of claim 33, wherein the balanced current signal is received as a positive domain signal image and a negative domain signal image.
- 1 36. The receiver of claim 33, wherein the transmission line is a twisted pair cable.
- 1 37. The receiver of claim 33, wherein the current detector detects the balanced current signal by sensing a change in a magnetic field surrounding the transmission line.

43.

Ţ	38.	The receiver of claim 37, wherein the current detector is a magnetic field sensor
2		that includes giant magnetoresisitive materials.
1	39.	The receiver of claim 33, wherein the receiver determines that the transmission
2		line is active if current flow is detected through the transmission line.
1	40.	The receiver of claim 33, wherein the receiver determines that the transmission
2		line is inactive if no current flow is detected through the transmission line.
1	41.	A transceiver comprising:
2		a connection to a transmission line;
3		a transmitter comprising:
4		a plurality of power sources, and
5		a switch, wherein the switch is coupled to the plurality of power sources
6		and wherein the switch generates a first balanced current signal by
7		switching between the plurality of power sources; and
8		a receiver comprising:
9		a current detector, wherein the current detector detects a second balanced
10		current signal by sensing a change in current.
1	42.	The transceiver of claim 41, wherein the first and second balanced current signals
2		comprise a positive domain image and a negative domain image and wherein the
3		negative domain image is inverted from the positive domain image.

The transceiver of claim 41, wherein the transmission line is a twisted pair cable.

- 1 44. The transceiver of claim 41, wherein the plurality of power sources is comprised 2 of a first power source and a second power source.
- 1 45. The transceiver of claim 44, wherein the first power source is comprised of a direct current voltage source.
- 1 46. The transceiver of claim 45, wherein the second power source is comprised of a sinusoidal waveform generator and the direct current voltage source.
- 1 47. The transceiver of claim 46, wherein the sinusoidal waveform generator includes 2 a direct current voltage offset.
- The transceiver of claim 41, wherein the receiver further comprises an amplifier to increase the amplitude of the second balanced current signal prior to detection by the current detector.
- The transceiver of claim 41, wherein the current detector detects the second balanced current signal by sensing a change in a magnetic field surrounding the transmission line.
- 1 50. The transceiver of claim 49, wherein the current detector is a magnetic field 2 sensor that includes giant magnetoresistive materials.
- The transceiver of claim 41, wherein the transceiver determines that the transmission line is active if current flow is detected through the transmission line.

1	52.	The transceiver of claim 41, wherein the transceiver determines that the
2		transmission line is inactive if no current flow is detected through the
3		transmission line.
1	53.	A communications system comprising:
2		a transmission line;
3		a transmitter coupled to the transmission line, wherein the transmitter transmits a
4		digital signal on the transmission line by switching between a first power
5		source and a second power source to generate a transmitted signal and
6		wherein the transmitted signal is a balanced current signal; and
7		a receiver comprising a current detector, wherein the receiver is coupled to the
8		transmission line and wherein the receiver detects the transmitted signal
9		generated by the transmitter by sensing the current changes in the
10		transmission line using the current detector.
1	54.	The communications system of claim 53, wherein the transmission line is a
2		twisted pair cable.
1	55.	The communications system of claim 53, wherein the first power source
2		comprises a direct current voltage source.
1	56.	The communications system of claim 55, wherein the second power source

comprises the direct current voltage source and a sinusoidal wave generator.

61.

- 1 57. The communications system of claim 53, wherein the current detector detects the transmitted signal by sensing a change in a magnetic field surrounding the
- 3 transmission line.
- 1 58. The communications system of claim 53, wherein the current detector is a
 2 magnetic field sensor that includes giant magnetoresistive materials.
- The communications system of claim 53, wherein the transmitter or receiver

 determines that the transmission line is active if current flow is detected through

 the transmission line.
- 1 60. The communications system of claim 53, wherein the transmitter or receiver
 2 determines that the transmission line is inactive if no current flow is detected
 3 through the transmission line.
- means for transmitting a balanced current signal on a twisted pair cable; and
 means for receiving the balanced current signal by detecting a change in current
- 4 on the twisted pair cable.

A communications system comprising:

- 1 62. The communications system of claim 61, wherein the means for transmitting a
 2 balanced current signal comprises means for switching between two power
- 3 sources to generate a positive signal image and a negative signal image.

2

- 1 63. The communications system of claim 63, wherein the means for receiving the
 2 balanced current signal comprises means for sensing a change in a magnetic field
 3 surrounding the twisted pair cable.
- 1 64. A method comprising:

loop.

- encoding a communication signal into a balanced current signal by switching
 between a plurality of voltage potentials, wherein the communication
- signal is comprised of a positive signal image and a negative signal image;

 transmitting the current signal on a current loop; and

 detecting the current signal by sensing a change in current through the current
- 1 65. The method of claim 64, wherein the plurality of voltage potentials is comprised

of a constant voltage potential and a sinusoidal voltage potential.

- 1 66. The method of claim 65, wherein the sinusoidal voltage potential is a sinusoidal voltage that is offset by a constant voltage.
- 1 67. The method of claim 64, wherein the communication signal is a digital signal.
- 1 68. The method of claim 64, wherein the sensing the change in current comprises 2 sensing a change in a magnetic field surrounding the current loop.