Grammaires et automates à piles

Corrigé partiel de la feuille de travaux dirigés n°10 13 avril 2009

1. $M = [Q = \{q\}, \Sigma = \{a, b\}, \Gamma = \{A, S\}, q, \emptyset, S, \delta]$ avec la table de transition :

état	lecture	pile	nouvel état	empiler
\overline{q}	a	S	q	\overline{AA}
q	a	A	q	S
q	b	A	q	S
q	a	A	q	_

2. Une grammaire intuitive (on construit l'égalité du centre vers les extrémités) est la suivante :

$$N = \{S\}, T = \{1, 2, =, +\}, S$$

$$P \left\{ \begin{array}{l} S \rightarrow 1 + S + 1 \mid 1 + 1 + S + 2 \mid 2 + S + 1 + 1 \mid 2 + S + 2 \mid 1 = 1 \mid 1 + 1 = 2 \mid 2 = 1 + 1 \mid 2 = 2 \right. \end{array} \right.$$

Hélas elle ne permet pas de reconnaître un mot comme 1+2+2=2+1+2. On la corrige en la grammaire suivante :

$$N = \{S, L, R\}, \ T = \{1, 2, =, +\}, \ S$$

$$P \left\{ \begin{array}{l} S \to 1 + S + 1 \mid 2 + S + 2 \mid 1 + L + 2 \mid 2 + R + 1 \mid 1 = 1 \mid 1 + 1 = 2 \mid 2 = 1 + 1 \mid 2 = 2 \\ L \to 1 + S \mid 2 + R \mid 2 = 1 \\ R \to S + 1 \mid L + 2 \mid 1 = 2 \end{array} \right.$$
Pour construire un outerwise à rile rous utilisers le grammeire quivente chterus à partir de la grammeire quivente chterus à restir de la grammeire qui entre de la grammeire d

Pour construire un automate à pile nous utilisons la grammaire suivante obtenue à partir de la grammaire intuitive :

$$\begin{split} N &= \{S, L, P, U, R, E, D\}, \ T = \{1, 2, =, +\}, \ S \\ &= \begin{cases} S \to 1PSPU \mid 2PSPD \mid 1PLPD \mid 2PRPU \mid 1EU \mid 1PUED \mid 2EUPU \mid 2ED \\ L \to 1PS \mid 2PR \mid 2EU \\ P \to + \\ U \to 1 \\ R \to SPU \mid LPD \mid 1ED \\ E \to = \\ D \to 2 \end{split}$$

Nous obtenons : $M = [\{q\}, \{1, 2, +, =\}, \{S, L, R, P, U, E, D\}, q, \emptyset, S, \delta]$

état	lecture	pile	nouvel état	empiler		état	lecture	pile	nouvel état	empiler
\overline{q}	1	S	q	PSPU	•	\overline{q}	2	L	q	\overline{PR}
q	2	S	q	PSPD		q	2	L	q	EU
q	1	S	q	PLPD		q	arepsilon	R	q	SPU
q	2	S	q	PRPU		q	arepsilon	R	q	LPD
q	1	S	q	EU		q	1	R	q	ED
q	1	S	q	PUED		q	+	P	q	_
q	2	S	q	EUPU		q	1	U	q	_
q	2	S	q	ED		q	=	E	q	_
$\underline{}q$	1	L	q	PS		q	2	D	q	

Remarque : Un automate à pile plus simple à obtenir est basé sur l'idée d'empiler la valeur du membre gauche de l'égalité. Ainsi on calcule la somme par le nombre de lettres empilées (c.a.d. pour un 1 on empile un symbole, pour un 2 deux symboles) :

$$M = [\{q_0, q_1, q_2\}, \{1, 2, +, =\}, \{Z, X\}, q_0, \{q_1\}, Z, \delta]$$

état	lecture	pile	nouvel état	empiler
q_0	1	Z	q_0	XZ
q_0	2	Z	$ q_0 $	XXZ
q_0	+	X	$ q_0 $	X
q_0	1	X	$ q_0 $	XX
q_0	2	X	q_0	XXX

état	lecture	pile	nouvel état	empiler
q_0	=	X	q_1	X
q_1	1	X	q_1	_
q_1	2	X	q_2	_
q_2	ε	X	$ q_1 $	_

Malheureusement cet automate présente quelques imprécisions. En effet, on peut avoir plusieurs "+" consécutifs. De même, on peut avoir plusieurs chiffres (1 ou 2) consécutifs. Par ailleurs, l'acceptation est compliquée, car se fait par état q_1 et pile ne contenant que Z. Comme il serait intéressant de vérifier le résultat, nous proposons de changer l'automate, pour obtenir :

$$M = [\{q_0, q_1, q_2, q_3\}, \{1, 2, +, =\}, \{Z, X, Y\}, q_0, \emptyset, Z, \delta]$$

(10) 11	7 12 7 10 1 7	'	<u>, -), 10, -</u> , - ;	, ~]						
état	lecture	pile	nouvel état	empiler		état	lecture	pile	nouvel état	empiler
$\overline{q_0}$	1	Z	q_0	\overline{YZ}		$\overline{q_1}$	1	X	q_3	_
q_0	2	Z	q_0	YXZ		q_3	ε	X	q_1	Y
q_0	+	Y	q_0	X		q_1	2	X	q_2	_
q_0	1	X	$ q_0 $	YX		q_2	ε	X	q_3	_
q_0	2	X	q_0	YXX		q_1	+	Y	q_1	X
q_0	=	Y	q_1	X		q_3	ε	Z	q_3	_

Observons que nous avons préferé introduire de nouveaux symboles plutôt que de nouveaux états pour faciliter une vérification.

3. On peut remarquer qu'un mot sur l'alphabet $\{a,b,c\}$ appartient à L soit parce qu'il n'est pas un mot de $a^{\star}b^{\star}c^{\star}$, soit parce que les deux conditions requises ne sont pas respectées. Ainsi, on a :

L = $L_1 \cup L_2 \cup L_3$ avec $L_1 = \{a^i b^j c^k \mid i \geq j\}$, $L_2 = \{a^i b^j c^k \mid j \geq k\}$, $L_3 = \{w \in (a+b+c)^* \mid w \not\in a^*b^*c^*\}$. Nous construisons d'abord des automates à pile pour chacun des trois langages.

• Pour $L_1: M_1 = [\{q_1, q_2, q_3\}, \{a, b, c\}, \{Z, A\}, q_1, \{q_3\}, Z, \delta_1]$

état	lecture	pile	nouvel état	empiler	état	lecture	pile	nouvel état	empiler
$\overline{q_1}$	a	Z	q_1	AZ	q_2	b	A	q_2	_
q_1	a	A	q_1	AA	q_2	arepsilon	A	q_2	_
q_1	ε	A	q_2	A	q_2	arepsilon	Z	q_3	Z
q_1	ε	Z	q_2	Z	q_3	c	Z	q_3	Z

• Pour $L_2: M_2 = [\{q_4, q_5\}, \{a, b, c\}, \{V, B\}, q_4, \{q_5\}, V, \delta_2]$

état	lecture	pile	nouvel état	empiler	état	lecture	pile	nouvel état	empiler
q_4	a	V	q_4	V	q_4	arepsilon	V	q_5	V
q_4	b	V	q_4	BV	q_4	arepsilon	B	q_5	B
q_4	b	B	q_4	BB	q_5	c	B	q_5	_
	Г.) (,)	()	 - 0 1				

• Pour $L_3: M_3 = [\{q_6, q_7, q_8, q_9\}, \{a, b, c\}, \{W\}, q_6, \{q_9\}, W, \delta_3]$

état	lecture	pile	nouvel état	empiler	état	lecture	pile	nouvel état	empiler
$\overline{q_6}$	\overline{a}	W	q_6	W	$\overline{q_8}$	\overline{a}	W	q_9	\overline{W}
q_6	b	W	q_7	W	q_8	b	W	q_9	W
q_6	c	W	q_8	W	q_8	c	W	q_8	W
q_7	a	W	q_9	W	q_9	a	W	q_{9}	W
q_7	b	W	q_7	W	q_9	b	W	q_{9}	W
q_7	c	W	q_8	W	q_9	c	W	q_9	W

Ainsi nous obtenons l'automate à pile suivant :

 $M = [\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9\}, \{a, b, c\}, \{X, Z, V, W, A, B\}, q_0, \{q_3, q_5, q_9\}, X, \delta]$

ĻŲ	état	lecture		nouvel état		, — , · <u>,</u>
	q_0	arepsilon	X	q_1	\overline{Z}	_
	q_0	ε	X	q_4	V	
	q_0	ε	X	q_6	W	
	q_1	a	Z	q_1	AZ	
	q_1	a	A	q_1	AA	
	q_1	arepsilon	A	q_2	A	
	q_1	arepsilon	Z	q_2	Z	
	q_2	b	A	q_2	_	
	q_2	arepsilon	A	q_2	_	
	q_2	ε	Z	q_3	Z	
	q_3	c	Z	q_3	Z	
	q_4	a	V	q_4	V	
	q_4	b	V	q_4	BV	
	q_4	b	B	q_4	BB	_
	q_4	ε	V	q_5	V	

état	lecture	pile	nouvel état	empiler
q_4	ε	В	q_5	B
q_5	c	B	q_5	_
q_6	a	W	q_6	W
q_6	b	W	q_7	W
q_6	c	W	q_8	W
q_7	a	W	q_9	W
q_7	b	W	q_7	W
q_7	c	W	q_8	W
q_8	a	W	q_9	W
q_8	b	W	q_9	W
q_8	c	W	q_8	W
q_9	a	W	q_9	W
q_9	b	W	q_9	W
q_9	c	W	q_9	W