You will not turn in this assignment, but make sure that your attendance is counted so that you get credit for your work.

Section 1: Equivalence Relations

Symmetry	A relation R on set A is said to be symmetric if for all $a,b \in A$, if $(a,b) \in R$ then $(b,a) \in R$.	
	In terms of arrow diagrams, a symmetric relation has the property that every pair of nodes connected by an arrow is actually connected by two arrows, one in each direction.	

a specific example to illustrate this.

1. For each of the following relations on \mathbb{Z} , decide if the relation is symmetric. If it is not, give (Question 2 from the homework.)

a)
$$R_1 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : a+b \text{ is even}\}$$
 (___/1)

If a + b is even, then is b + a also even? Therefore, is this relation symmetric?

b)
$$R_2 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : a+b \text{ is odd}\}$$
 (___/1)

If a + b is odd, then is b + a also odd? Therefore, is this relation symmetric?

c)
$$R_3 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : a+2b \text{ is even}\}$$
 (___/1)

For (a, b), a + 2b is even, is the result of (b, a), b + 2a also even?

a	b	Result: a + 2b. Is it even?	Result: b + 2a. Is it even?
1	1	3, no, not in relation R_3	3, no, not in relation R_3
2	2	$2 + 2(2) = 6$. Is in R_3 .	$2 + 2(2) = 6$. Is in R_3 .
4	2		
2	1		

Therefore, is the relation symmetric?

Partitions

For a set *A*, a *partition of A* is a set $S = \{ S_{1,}S_{2,}S_{3,}... \}$ of subsets of *A* (each set S_i is called *a part of S*) such that:

- 1. For all i, $S_i \neq \emptyset$. That is, each part is nonempty.
- 2. For all i and j, if $S_i \neq S_j$, then $S_i \cap S_j = \emptyset$. That is, different parts have nothing in common.
- 3. $S_1 \cup S_2 \cup S_3 \cup ... = A$. That is, every element in A is in some part.

2. Which of the following are partitions of the set $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$? For each that is not, explain why not. (Question 4 from the homework)

Let R be a binary relation on a set A.

Remember that a relation can be Reflexive, Irreflexive, or Neither, and it can be Symmetric, Antisymmetric, or Neither.

Reflexive R is said to be *reflexive* if $(a,a) \in R$ for all $a \in A$.

/ **Irreflexive** On an arrow diagram, this means that every node has a loop.

A relation *R* on *A* is *irreflexive* if for all $a \in A$, $(a,a) \notin R$.

On an arrow diagram, this means no loops.

Symmetric A relation *R* on set *A* is said to be **symmetric** if for all $a,b \in A$, if

/ Antisymmetric $(a,b) \in R$ then $(b,a) \in R$

On an arrow diagram, the arrow goes in two directions.

A relation *R* is called *antisymmetric* if for all $a,b \in A$, if $a \neq b$

and $(a,b) \in R$, then $(b,a) \notin R$

On an arrow diagram, the arrow goes only in one direction.

Transitive A relation *R* is called *transitive* if whenever $(a,b) \in R$ and

 $(b,c) \in R$, it must also be the case that $(a,c) \in R$

On an arrow diagram, if you can follow two arrows to get from a node

a to *c*, and you can also get there along a single arrow.

3. Let $S = \{1, 2, 3\}$. For each of the following relations on $\wp(S)$, draw the arrow diagram and decide if the relation is reflexive, symmetric, or transitive. If it is all three (i.e., an equivalence relation), give the corresponding partition of $\wp(S)$. (Question 8 from the homework)

a) $R_1 = \{(A, B) \in \wp(S) \times \wp(S) : A \subseteq B\}$ (___/2)

Reflexive/Irreflexive?

Symmetric/Antisymmetric?

Transitive?

b) $R_3 = \{(A, B) \in \wp(S) \times \wp(S) : A \cap B = \emptyset\}$ (___/2)

Reflexive/Irreflexive?

Symmetric/Antisymmetric?

Transitive?

c) $R_5 = \{(A, B) \in \wp(S) \times \wp(S) : n(A) = n(B)\}$ (___/2)

Reflexive/Irreflexive?

Symmetric/Antisymmetric?

Transitive?

