High School Mathematics Test 2014

Year 10

Calculator Allowed

Geometric Reasoning

Name				
------	--	--	--	--

Skills and Knowledge Assessed:

- Apply logical reasoning, including the use of congruence and similarity, to proofs and numerical exercises involving plane shapes (ACMMG244)
- Formulate proofs involving congruent triangles and angle properties (ACMMG243)

Extended Answer Test.

Answers should be supported by relevant mathematical reasoning and/or calculations

Marks will not be awarded for answers with no reasoning..

Complete any diagrams and write all working and answers in the spaces provided on this test paper.

			Marks
1. (a)	Find the value of <i>a</i> .	X	1
		U a° Y	
		48°	
		V	
(b)	Find the size of $\angle EWH$.	\nearrow^F	1
		E	
		53°	
		G	
		11/	

Marks

1

(c) Find the value of b.

.....

2. (a) *KL*, *MN* and *QR* are straight lines which intersect at *P*.

(b) BA, CA, DA and EA intersect at A.∠CAD is a right angle. Find the value of k.

(c) $AB \parallel CD$ HJ, IK and AB intersect at F.

Find the value of x.

Marks

2

3. (a) \triangle *GHI* is an isosceles triangle.

GI is produced to J. Find the value of y.

Find the value of y.

.....

(b) ABCD is a rectangle. E is a point on the diagonal BD. Find the size of $\angle BEA$.

(c) PQRS is a kite whose diagonals intersect at T.

Find the size of ∠*TSP*.

4. (a) Prove that $\triangle ABC = \triangle FED$.

2

Marks

3

3

2

 $VW \parallel UX$ and $VU \parallel WX$. (b)

Prove that $\Delta UVX \equiv \Delta WXV$.

......

5. (a) $KL \parallel ON$.

Prove that $\Delta MLK \parallel \Delta MON$

(b) i) A vertical tree EF casts a shadow FD which measures 12 m. At the same time a vertical fence post BC casts a shadow CA which measures 3.6 m.

Prove that the triangles DEF and ABC are similar.

	" ICA C	Marks
	ii) If the fence post BC is 2.4 metres high, what is the height of the tree EF?	1
6. a)	The circles are concentric with O as the centre. PQ =SR.	3
	Prove that $\triangle OPQ \equiv \triangle OSR$.	
	S	
	R	
	Q	
b)	i) In \triangle ABC, D is the midpoint of AB and E is the midpoint of BC .	2
Ź		
	Prove that $\triangle ABC \parallel \triangle DBE$.	
	E	
	B D A	

		Marks
ii)	DF is drawn parallel to BC. Prove that $\triangle BED \equiv \triangle DFA$.	3
	$\stackrel{C}{\swarrow}$	
••••	E	
• • • •	F	
	B	
	$D \longrightarrow A$	

End of Test

High School Mathematics Test 2014 Geometric Reasoning

ANSWERS

2. a)	$\angle MPR = \angle QPN = 94^{\circ} \text{ (vert opp angles)}$ $\angle LPM + \angle MPR + \angle RPK = 180^{\circ} \text{ (supplement ang)}$ $40 + 94 + s = 180^{\circ}$ $s = 180 - 134$ $s = 46^{\circ}$ L A A A A A A A	2 marks for correct answer with reasoning. 1 mark if an error in otherwise correct solution.
b)	90 + 132 + 2k + k = 360° (angles at a point) $222 + 3k = 360°$ $3k = 360 - 222$ $3k = 138$ $k = \frac{138}{3} = 46°$ E	2 marks for correct answer with reasoning. 1 mark if an error in otherwise correct solution.
c)	$\angle AFE + \angle CEF = 180^{\circ}$ (cointerior angles on lines) ∴ $\angle AFE = 60^{\circ}$ $\angle BFG = \angle FGE = 50^{\circ}$ (alt angles on lines) $\angle AFB + \angle EFG + \angle BFG = 180^{\circ}$ (supplementary ang) $60 + \angle EFG + 50 = 180$ ∴ $\angle EFG = 180 - 110 = 70^{\circ}$ $\angle IFJ = \angle EFG$ (vert opp ang) ∴ $x = 70^{\circ}$	2 marks for correct answer with reasoning. 1 mark if an error in otherwise correct solution.
3. a)	$\angle GIH = 32^{\circ} \text{ (base ang of isos } \Delta)$ $\angle HIJ = 180 - 32 = 148^{\circ} \text{ (supp angles)}$ $y = 148^{\circ}$	2 marks for correct answer with reasoning. 1 mark if an error in otherwise correct solution.

b)	$\angle ABE + 30 = 90$ (angles in rectangle are 90°) B $\angle ABE = 60^{\circ}$ $\angle BEA + 66 + 60 = 180^{\circ}$ (ang sum of $\triangle ABE$) $\angle BEA = 180 - 126 = 54^{\circ}$	2 marks for correct answer with reasoning. 1 mark if an error in otherwise correct solution.
c)	$\angle PTQ = 90^{\circ} \left(\text{ diagonals of kite meet at } 90^{\circ} \right)$ $\angle PQT + 90 + 26 = 180 \text{ (ang sum } \Delta PTQ)$ $\angle PQT = 180 - 116 = 64^{\circ}$ $\angle TSP = \angle PQT = 64^{\circ} \text{ (symmetry of kite)}$	2 marks for correct answer with reasoning. 1 mark if an error in otherwise correct solution.
4. a)	In $\triangle ABC$ and $\triangle FED$ $AB = EF = 15 \text{ cm (given)}$ $AC = FD = 12 \text{ cm (given)}$ $\angle BAC = \angle EFD = 51^{\circ} \text{ (given)}$ $\therefore \triangle ABC \equiv \triangle FED \text{ (SAS)}$ $A = EF = 15 \text{ cm (given)}$ $A = EF = $	3 marks for correct & complete proof. 2 if a reason or statement is incorrect or missing 1 if one correct statement is made toward proof.

b)		3 marks for
		correct &
	In ΔUVX and ΔWXV	complete
	$\angle UVX = \angle WXV \text{ (alt ang on } \ \text{ lines)}$	proof.
	$\angle UXV = \angle WVX \text{ (alt ang on } \ \text{ lines)}$	proof.
	VX is common	2 if a
	$\therefore \Delta UVX \equiv \Delta WXV \ (AAS)$	reason or
	$U \longrightarrow V$	statement
	71	is incorrect
		or missing
		1 if one
		correct
		statement
		is made toward
		proof.
5.	_	3 marks for
a)	\nearrow^L	correct &
		complete
	In $\triangle MON$ and $\triangle MLK$ $K = M$	proof.
	$\angle O = \angle L$ (alt ang on lines)	
	ZN = ZK (alt ang on lines)	2 if a
	$\angle OMN = \angle LMK$ (vert opp angles)	reason or
	$\therefore \Delta MON \parallel MLK$ (all corr angles equal)	statement
		is incorrect
	$o \sim$	or missing
		1 if one
		correct
		statement
		is made
		toward
b)		proof.
b)	i)	2 marks for correct
		answer with
		reasoning.
	In \triangle ABC and \triangle DEF	
	$\angle BAC = \angle EDF \text{ (corr ang on } \text{ lines)}$	1 mark if an
	$\angle BCA = \angle EFD$ (corr ang on lines)	error in otherwise
	∠ ABC = ∠DEF (ang sum of triangles) ∴ ΔABC Δ DEF (all corresp angles equal)	correct
	AADC A DEF (an corresp angles equal)	solution
		-
	\overline{A} CD \overline{F}	

b)	ii) $\frac{EF}{BC} = \frac{FD}{CA}$ (Ratios of corresponding sides are equal)	1 mark for answer and
	$\frac{EF}{2.4} = \frac{12}{3.6}$	working.
	=	
	$EF = 2.4 \times \frac{12}{3.6}$	
	= 8	
6.	the height is 8 m.	2 montes for
a)		3 marks for correct &
		complete
	In $\triangle OPQ$ and $\triangle OSR$	proof.
	PQ = SR (given)	2 if a
	PO = SO (equal radii of circle PS) OQ = OR (equal radii of circle QR)	reason or
	$\therefore \triangle OPQ \equiv \triangle OSR (SSS)$	statement
		is incorrect
		or missing
	Q	1 if one
		correct statement
		is made
		toward
b)		proof. 2 marks for
	In $\triangle ABC$ and $\triangle DBE$	correct
	$\frac{AB}{DB} = \frac{2}{1} \text{ (D is midpoint of AB)}$	answer with
	$\angle B$ is common	reasoning.
	$\frac{CB}{EB} = \frac{2}{1} $ (E is midpoint of CB)	
	$\therefore \triangle ABC \parallel \triangle DBE$ (2 pairs of sides B	1 mark if an error in
	in the same ratio and included angle equal) A	otherwise
		correct
		solution

b) 3 marks for ii) correct & complete In $\triangle BED$ and $\triangle DFA$ proof. $\angle EBD = \angle FDA$ (Corr Ang on || lines BE and DF) $\angle EDB = \angle FAD$ (Corr Ang in Similar \triangle) 2 if a BD = DA (D is midpoint of AB) $\therefore \Delta BED \equiv \Delta DFA (AAS)$ reason or statement is incorrect or missing 1 if one correct statement is made toward proof.