TP: méthode d'Euler Informatique pour tous

Soit $y:[a,b] \longrightarrow \mathbb{R}$ une solution de:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

On veut approximer cette solution y.

On rappelle que la méthode d'Euler consiste à subdiviser I en des points $t_0 = a, t_1, ..., t_n = b$ régulièrement espacés de h (donc $t_k = t_0 + k \times h$) et à approximer chaque $y(t_k)$ par y_k ($0 \le k \le n$) défini par récurrence:

- $y_0 = y(t_0)$
- $y_{k+1} = y_k + h \times f(t_k, y_k)$

Par exemple, considérons la solution y de l'équation différentielle suivante:

$$\begin{cases} y'(t) = ty(t)^2 - t^2 \\ y(-2) = -1 \end{cases}$$

Dans ce cas, $t_0 = -2$, $y_0 = -1$ et $f(a, b) = ab^2 - a^2$.

Pour approximer y sur [-2,0] avec un pas de 0.1, c'est à dire pour $t_0=-2$, $t_1=-1.99$, $t_2=-1.98$, ..., $t_n=0$, on calcule donc la suite y_k définie par récurrence:

- $y_0 = -1$
- $y_{k+1} = y_k + 0.1 \times (t_k y_k^2 t_k^2)$

On a alors $y_k \approx y(t_k)$.

1. Retrouver d'où vient l'équation de récurrence $y_{k+1} = y_k + h \times f(t_k, y_k)$.

Dans la suite, on veut approximer sur [-1, 5] une solution y de l'équation différentielle suivante, en utilisant un pas de 0.02:

$$\begin{cases} y'(t) = t^3 - y(t)^3 \\ y(-1) = 4 \end{cases}$$

- 2. Quels temps d'approximations t_k peut-on utiliser?
- 3. Écrire l'équation de récurrence vérifiée par les y_k de la méthode d'Euler.
- 4. Écrire des instructions Python pour stocker dans des listes t et y ces t_k et y_k . Ainsi, t[k] doit contenir t_k et y[k] doit contenir y_k .
- 5. Afficher graphiquement l'approximation obtenue. Pour cela on rappelle qu'il faut écrire:
 - import matplotlib.pyplot as plt
 - plt.plot(t, y) pour afficher y en fonction de t
 - plt.show() pour afficher la fenêtre graphique
- 6. Afficher d'autres solutions de la même équation différentielle $y'(t) = t^3 y(t)^3$ pour d'autres valeurs initiales (par exemple pour y(-1) = -3, y(-1) = 0, y(-1) = -2).

On peut afficher plusieurs courbes sur le même dessin en écrivant plusieurs plt.plot. Par exemple, pour dessiner y1 en fonction de t et y2 en fonction de t, on peut écrire: plt.plot(t, y1)

```
plt.plot(t, y2)
plt.show()
```

7. Que peut-on conjecturer sur le comportement asymptotique des solutions de $y'(t) = t^3 - y(t)^3$? On pourra aussi dessiner la courbe y = x.