GOVDOC BRA 3065 3 9999 06583 288 1

Functional Design Report

The offer copy
Kept on This #
is more complete

Reconstruction of MERRIMAC STREET, CAUSEWAY STREET, LOMASNEY WAY, MARTHA ROAD and J.F.F. EXPRESSWAY SURFACE ROAD

AN. 00. 583

Prepared for

The Boston Redevelopmen Authority

September 1984

Incomplète?

Intersection MERRIMAC ST. AT NEW CHARDON ST. Design Hour 1967 PM PH Problem Statement FIND 1967 LOS Step 1. Identify Lane Geometry | Step 4. Left Turn Check Step 6b. Volume Adjustment for Multiphase Signal Overlap Possible Volume Approach Probable Carryover 2 3 Volume to next Volume in voh a. Number of change intervals per hour b. Left turn capacity on change interval. MERRIMIAC in vph c. G/Ć Approach Ratio d. Opposing volume in yoh e. Left turn capacity on green, in vph f. Left turn capacity in vph (b + e) g. Left turn volume in vph h. Is volume > capac-Approach 4 ity (g > f)? Step 5. Assign Lane Volumes, Step 7. Sum of Critical Volumes Step 2. Identify Volumes, in vph in vph 213 + 225 + 321 + 295 Approach 3 Approach 3 = <u>759</u> vph TH = 348 22 22 LT = 321 H H Step 8. Intersection Level of Service -174 (compare Step 7 with Table 6) Step 9. Recalculate Geometric Change 639 Signal Change ___ Volume Change _ Step 3. Identify Phasing Step 6a. Critical Volumes, in vph Comments (two phase signal) Approach 3 AI OT AZ ¥ 1/2 A384 AZBB 321 Approach - вз A4 B2 ___ B4 _

LOMASHEY WAY AT CAUSEWAY ST.

Intersection Theretain 31	<u>a</u> 21151 [[=0](Jesigii Houi Taba Fit Fit
Problem Statement	ND 1967	LOS FOR	ALTERHATE "A"
Step 1. Identify Lane Geometry	Step 4. Left 1	Turn Check	Step 6b. Volume Adjustment for Multiphase Signal Overlap
н <u>3</u> Арргоасh 3	a. Number of	Approach 1 2 3 4	Probable Critical Carryover Critical Phase Volume to next Volume in vph phase in vph
Lomasnev	change intervals per hour b. Left turn capacity on change interval,	40 40 40 80 80 80	1A4 B3 246 0 246
Approach 2	in vph c. G/C Ratio d. Opposing volume	.25 .25 .40	A354 38(64) 479.246 38 A354 38(64) 479.246 38 Pet (32 140) 0 140
de la	in vph e. Left turn capacity on green, in vph	72 0 116	- AI BZ 439(AI) 0 299 - AJ 273.439(AI) 0
- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	f. Left turn capacity in vph (b + e) g. Left turn volume	152 80 196	11 0- 190
Se -	in vph h. Is volume > capacity (g > \(\gamma\)?	on on ok	
Step 2. Identify Volumes, in vph	Step 5. Assign	n Lane Volumes,	Step 7. Sum of Critical Volumes
Approach 3 RT = 56 TH = 314		proach 3	200 + 38 + 299 + 190 = 1113 vph
E # 5	644	190 10	Step 8. Intersection Level of Service
Approach :	1439 273	7 190	(compare Step 7 with Table 6)
	₹ <u>₹₹₹</u>		Step 9. Recalculate Geometric Change
T = 439 TH = 303 RT = 242 Approacn 4 5 7 6	Āŗ	proach 4	Signal Change Volume Change
Step 3. Identify Phasing	Step 6a. Critic (two)	al Volumes, in vpl ohase signal)	Comments Overlice equivalent of on
.15 - 94 A4B3 - A3B4	a Ar	oproach 3	timed every other cycle,
35 AIS2 or A3] "I		
A1 0~ A2031	Approach 1	190	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
A1 A3 B1 B3 1		7%.4	
A2 A4 4 B2 4 B4 1		1	

LOMASHEY WAY AT CAUSEWAY ST. __ Design Hour 1967 PM PH ntersection HERRIMAC ST & STAMIFORD ST. ALTERHATE "B" Problem Statement FIND 1987 LOS FOR Step 1. Identify Lane Geometry Step 4. Left Turn Check Step 6b. Volume Adjustment for Multiphase Signal Overlap Adjusted Critical Possible Volume Approach Probable Carryover Critical 2 3 4 Phase Volume Volume to next in vph in.vph a. Number of phase 40 40 change intervals 40 200(A403) 446-200:246 per hour -A483 b. Left turn capacity Bo 80 80 Merrimac on change interval, 246 1A4133 in vph 479-246: A3 84 c. G/Ć 36 (84) .40 38 .25 Approach .25 Ratio 233 (AS) 4 Fed BZ 1400 140 d. Opposing volume 278, 557 364 439-140=299(82) 0 41 132 in vph e. Left turn 299 233 (A3) Ö A3 capacity on 72 273 - 439 (AI) green, in voh f. Left turn 194 152 80 capacity in vph (b + e) 190 g. Left turn volume 12 35 100 AZBI in voh h. Is volume > capac-Approach 4 Oh 04 ОК ity (g > 1)? Step 2. Identify Volumes, in vph Step 5. Assign Lane Volumes, Step 7. Sum of Critical Volumes in vph , 299 + 190 Approach 3 Approach 3 127 RT = .56 _1113 vph TH = 314 15 Step 8. Intersection Level of Service. 190 (compare Step 7 with Table 6) Approach ōei D Step 9. Recalculate Geometric Change __ 95 LT = 439 Signal Change TH = 303 RT = 242 Volume Change _ Approach 4 Step 6a. Critical Volumes, in vph Step 3. Identify Phasing Comments (two phase signal) Overicle equivalent of an G/C Approach 3 second pedestrian movement A4B3 timed every other cycle 44 B3 0 A3 B4 A132 0- A3 190 pproach A1 05 A201 A3 . B3 ~ A4 B2 → B4 L Approach 4

LOMASHEY WAY AT CAUSEWAY ST. Design Hour 1967 PM PH intersection HERRIMAC ST & STAMIFORD ST. ALTERHATE "C" & "D" Problem Statement FIND 1987 LOS F-017 Step 1. Identify Lane Geometry Step 4. Left Turn Check Step 6b. Volume Adjustment for Multiphase Signal Overlap Volume Adjusted Approach Probable Carryover Phase Volume to next Volume in vph a. Number of 40 40 40 change intervals 200 (84 83) 441-200:246 per hour A4 B3 200 80 80 Lest turn capacity Lomasney Merrimac on change interval, 246 A4 63 in vph c. G/C .40 .25 Approach 35 (84) 479-296 Ratio A3 84 38 = 233 (44) d. Opposing volume 60. 40 557 in vph 1403 140 e. Left turn Ped B2 116 capacity on green, in vph A1 62 439-140:299 299 f. Left turn 80 196 733 (A3 } 152 capacity in vph 273-439 (AI) (b + e) g. Left turn volume 38 100 AI in vph 190 h. Is volume > capac-190 04 04 18 SA ity (g > f)? Step 7. Sum of Critical Volumes Step 2. Identify Volumes, in vph Step 5. Assign Lane Volumes, in vph Approach 3 Approach 3 127 RT = 56 = 1211 voh TH = 314 LT =_ 12 Step 8. Intersection Level of Service 190012/0 (compare Step 7 with Table 6) Approach 190XI-2 Step 9. Recalculate Geometric Change _ LT = 439 TH = 303 Signal Change RT = 242 Volume Change Approach Approach 4 Step 6a. Critical Volumes, in vph Step 3. Identify Phasing Comments (two phase signal) (1) 3 second all red results in a loss of lane volume of 1/2 A4B3 vehicles per cycle for 40 44 B3 or A3 B4 cycles = 60 @ Vehicle aguivalent of on 18 A132 or A3 190 second pedestron movement Approach A1 or A2(3) timed every other cycle 3) Traffic volume increased a factur of 1.2 to cover delacaused by doi lea movement A3 1 ВЗ B2 _ ⊾ 84 ل A4 1 A2 -Approach

Critical Movement Analysis: PLANNING

Calculation Form 1

Intersection MERRIMAC ST & STAHIFORD ST Design Hour 2000 PM PH ALTERHATE "C" & "D" Problem Statement FIND 2000 LOS Step 4. Left Turn Check Step 1. Identify Lane Geometry Step 6b. Volume Adjustment for Multiphase Signal Overlap Volume Possible Adjusted Approach Probable Critical Сагтуочег Critical 4 Phase Volume Volume to next in-vph in vnh nhase a. Number of 40 40 40 change intervals 200 (A4 B3) 573.200 200 per hour 1A4 B3 Left turn capacity 80 80 80 373 omasne on change interval. A4 53 37.5 in vph 373 35 30 45 c. G/Ċ -೧೯೩ Approach 38 (04) 519-373 38 Ratio A3 84 = 146(A3) All Red d. Opposing volume 664 435 40 0 60 in vph e. Left turn 140 3 = 192(02) 105 Ped 140 capacity on 32 \circ green, in voh f. Left turn 390-146 = 244(A1) 60 41 BZ 92 185 capacity in vph 146 (b + c) A3 146 150 g. Left turn volume 38 ں ا in vph 244 h. Is volume > capacor OK 279 A281 279 ity (g > f)? Step 2, Identify Volumes, in vph Step 5. Assign Lane Volumes, Step 7. Sum of Critical Volumes in vph 146 . (279X1.2) Approach 3 Approach 3 8 RT = 52 3 = 1291 vnh TH = 496 228 519 LT = 10 Step 8. Intersection Level of Service œ َ**ه** 279X1.7N (compare Step 7 with Table 6) 270 Step 9. Recalculate Geometric Change ___ LT = 463 TH = 51 & Signal Change RT = 264 Volume Change _ Approach 4 Step 6a. Critical Volumes, in vph Step 3. Identify Phasing Comments G/c (two phase signal) 1 3 second allited decorance ٥٤. Approach 3 interval results in a loss officia volume of 11/2 vehicles per cycle for 40 .35 279 Contical volume increased .15 a factor of 1.2 to cover delay caused by dos les movement 3 Vehicle equivalent of an second pedestinan movement В3 A1 ___ A3 timed every other cycle B2 __ B4 L_ A2 -A4 1 Approach 4

Unsignalized "T" Intersection Capacity Calculation Form

Intersection CAUSEWAY ST AT PORTLAND ST.

Approach	A 🕶		В		c ~	
Movement	A _T —	A _R	B _L	B,	C_{L}	C, /-
Volume	887	0	0	664	24	43
pch (see Table 1)	-	100	0		26	47

Step 1	Right Turn from C	C _R
	Conflicting Flows = M _H = (from Fig. 1) Critical Gap from Table 2 T _g = Capacity from Fig. 2 = Shared Lane — See Step 3	$\frac{1/2}{2} A_R + A_T = \frac{0}{2} + \frac{887}{2} = \frac{967}{2} + \frac{9687}{2} = \frac{967}{2} + \frac{9687}{2} = \frac{9687}{2} + \frac{9687}{2} = $
	No Shared Lane Demand = Available Reserve = Delay & Level of Service (Table 3)	$C_A = \frac{47}{\text{pch}}$ $M_1 - C_R = \frac{183}{\text{pch}}$ Long Traffic Delays D
Step 2	Left Turn from B	B _L
	Conflicting Flows = M _N = (from Fig. 1) Critical Gap from Table 2 T _p = Capacity from Fig. 2 = Demand = Capacity Used =	$A_R + A_T =$ $+$ Sec $M_{Ne} = M_2 =$ $B_L =$ Pch $O(B_L/M_2) =$ C
	Impedance Factor from Fig. 3 = Available Reserve = Delay & Level of Service (Table 3)	P ₂ =
Step 3	Left Turn from C	C, ~
	Conflicting Flows = M _N = (from Fig. 1) Critical Gap from Table 2 T _p = Capacity from Fig. 2 = Adjust for Impedance	$V_2A_R + A_T + B_L + B_T = $ $O + 887 + O + 444 = 1551$ $O + 887 + O + A + A + A + A + A + A + A + A + A$
<u> </u>	No Shared Lane Demand = Available Reserve = Delay & Level of Service (Table 3)	CL = 26 per M3 - CL = 19 per Very lang traffic Delays E
<u></u>	Shared Lane Demand = Shared Lane with Right Turn Capacity of Shared Lane =	$M_{13} = \frac{C_R + C_L = \frac{73}{prh}}{(C_R + C_L)}$ $M_{13} = \frac{(C_R + C_L)}{(C_R M_1) + (C_L / M_3)}$ $M_{13} = \frac{33}{prh}$
	Available Reserve = Delay & Level of Service (Table 3)	Min - Cre = 20 per Very Long Traffic Delays [E]

Overall Evaluation .

Intersection CAUSEWAY ST AT CAHAL ST. Design Hour 1967 PM PH

Problem Statement Fix	nd 19:67 LOS	
Step 1. Identify Lane Geometry	Step 4. Left Turn Check	Step 6b. Volume Adjustment for Multiphase Signal Overlap
Approach 3 Causana Standard Approach 4	Approach 1 2 3 4 a. Number of change intervals per bour b. Left turn capacity on change interval, in vyh c. G/C Ratto d. Opposing volume in vyh e. Left turn capacity on green, in vyh f. Left turn capacity in vyh (b + c) g. Left turn volume in vyh h. Is volume > capacity of yellow yel	Possible Volume Adjusted Critical Carryover Critical Phase Volume to next Volume in vph phase in vph
Step 2. Identify Volumes, in vph	Step 5. Assign Lane Volumes, in vph	Step 7. Sum of Critical Volumes 500
Approach 3 TH = 17 TH = 70 TH = 70 Approach 2 Approach 2	Approach 3 Approach 3 140 400 400 400 400 400 400 40	Step 8. Intersection Level of Service (compare Step 7 with Table 6) Step 9. Recalculate
V = 14 TH = 815	Approach 4	Geometric Change Signal Change Volume Change
Step 3. Identify Phasing A1 — A3 B1 — B3	Step 6a. Critical Volumes, in vph (two phase signal) Approach 3 Approach 3 Approach 4 Approach 4	Comments * Assume 25 second side stret phose for pedestrions. Assume 60 second cycle. 25% × 1200 : 500. Use 500 vehicles for vehicle equivalent of side stred ped movement

CAUSEWAY ST. AT BEVERLY Intersection ST. AHD Design Hour 1987 PM P I-93 TRAMPS Problem Statement Find 1987 LOS Step 1. Identify Lane Geometry | Step 4. Left Turn Check Step 6b. Volume Adjustment for Multiphase Signal Overlap Adjusted Critical Volume Possible Volume Approach Probable Carryover Critical 4 Phase Volume to next in voh in vph phase a. Number of 40 change intervals per bour b. Left turn capacity 80 80 80 80 on change interval, c. G/C Ratio d. Opposing volume e. Left turn capacity on green, in vph f. Left turn capacity in vph g. Left turn volume in vph h. Is volume > capac-Approach 4 ity (g > f)? Step 5. Assign Lane Volumes, Step 7. Sum of Critical Volumes Step 2. Identify Volumes, in vph in vph + 246 + 202 + 171 Approach 3 = 808 vph TH = 427 T= 189 Step 8. Intersection Level of Service (compare Step 7 with Table 6) 7189 Step 9. Recalculate Geometric Change _ 5 Signal Change . TH = <u>737</u> Volume Change .. Step 3. Identify Phasing Step 6a. Critical Volumes, in vph Comments (two phase signal) G/C .23 .20 (10 Sec) 169 .29 11 11 вз 1

B2 **→** B4 **し**

CAUSEWAY ST. AT BEVERLY ST. ntersection AND I-93 RAMES Design Hour 2000 PM PH Problem Statement FIND 2000 LOS Step 1. Identify Lane Geometry | Step 4. Left Turn Check Step 6b. Volume Adjustment for Multiphase Signal Overlap Adjusted Critical Possible Volume Approach Probable Critical Carryover Phase Volume Volume to next in vph a. Number of in.yph phase change intervals per hour b. Left turn capacity on change interval, in vph c. G/Ċ Ratio d. Opposing volume in voh e. Left turn capacity on green, in voh f. Left turn capacity in vph g. Left turn volume in voh h. Is volume > capac-Approach 4 ity (g > 1)? Step 2. Identify Volumes, in vph Step 5. Assign Lane Volumes, Step 7. Sum of Critical Volumes in vph 228 + 259 + 527 + 69 Approach 3 Approach 3 TH = 442 = 1103 vph LT = 226 Step 8. Intersection Level of Service (compare Step 7 with Table 6) Step 9. Recalculate Geometric Change __ 68 フフフ Signal Change _ Volume Change ___ Step 3. Identify Phasing Step 6a. Critical Volumes, in vph Comments (two phase signal) Approach 3 228 7671 B2 __ B4 L_

Approach 4

Critical Movement Analysis: PLANNING Calculation Form 1 CAUSEWAY ST. AT NORTH WASHINGTON Intersection ST AND COMMERCIAL STREET Design Hour 1987 PM PH

Problem Statement	nd 1967 LOS - PROP	OSED PHASING				
Step 1. Identify Lane Geometry	Step 4. Left Turn Check	Step 6b. Volume Adjustment for Multiphase Signal Overlap				
Approach 3	Approach 1 2 3 4 a. Number of change intervals	Possible Volume Adjusted Probable Critical Carryover Critical Phase Volume to next Volume in vph phase in.vph				
Approach 1	per hour b. Left turn capacity on change interval, in vph c. G/C Ratio d. Opposing volume in vph e. Left turn	4 φ				
CAUSED AY Approach 4	capacity on green, in vph f. Left turn capacity in vph (b + e) g. Left turn volume in vph h. Is volume > capacity (g > 0)?	·				
Step 2. Identify Volumes, in vph	Step 5. Assign Lane Volumes, in vph	Step 7. Sum of Critical Volumes				
O O V Approach 3 RT = 350 TH = 277 LT = 37	Approach 3	387 . 157 . 380 . 276 = 1200 vph				
Approach 1	157 N 100	Step 8. Intersection Level of Service (compare Step 7 with Table 6)				
LT = 6.51 TH = 397 RT = 90 Approach 4 TH = 100	256 94 <	Step 9. Recalculate Geometric Change Signal Change Volume Change				
Step 3. Identify Phasing	Step 6a. Critical Volumes, in vph (two phase signal)	Comments				
	Approach 3					
	Approach					
A1 — A3 B1 ~ B3 ~ A2 — A4 B2 — B4	Approach 4					

Critical Movement Analysis: PLANNING

Calculation Form 1 CAUSEWAY ST. AT HORTH WASHINGTON I Irsection ST AND COMMERCIAL ST. Design Hour 1987 PM PH Problem Statement Find 1987 LOS - EXISTING PHASING Step 1. Identify Lane Geometry | Step 4. Left Turn Check Step 6b. Volume Adjustment for Multiphase Signal Overlap Adjusted Critical Possible Volume Approach Approach 3 Probable Critical Carryover 3 Phase Volume to next Volume in vph phase in vph a. Number of 36 30 change intervals per hour 60 60 b. Left turn capacity COUSEWA on change interval, מקי חו .47 c. G/C Approach Ratio 1051 560 d. Opposing volume 40 e. Left turn -467 4 capacity on green, in vph COMMERCUAL f. Left turn 64 40 capacity in vph g. Left turn volume 276 110 in vph h. Is volume > capacyes Yes ity (g > f)? Step 7. Sum of Critical Volumes Step 5. Assign Lane Volumes, Step 2. Identify Volumes, in vph in vph + 276 + 380 + 157 + Approach 3 RT = 350 200 TH = 277 = 1267 vnh LT = 37 보보 Step 8. Intersection Level of Service (compare Step 7 with Table 6) Approach E 360 Step 9. Recalculate Geometric Change ___ LT = 651 TH = 397 Signal Change _ 90 Volume Change _ Approach 4 Step 6a. Critical Volumes, in vph Comments Step 3. Identify Phasing (two phase signal) -Left turn chech shows MIF cerious capacity deliciacies for H. Woshington St Left PED turns 41 1 Vol equivalent for a 157 ped. Phase timed every four 380 cycles В3 A3

Approach 4

ـا B4 فر

B2 _

A2 -

A4 1

Intersection LOMASHEY WAY CH LOMASHEY/HASHUA COHN. Design Hour 1987 PM PH FIND 1987 LOS Problem Statement _____ Step 1. Identify Lane Geometry | Step 4. Left Turn Check Step 6b. Volume Adjustment for Multiphase Signal Overlap Possible Volume Carryover to next Probable Critical Phase Volume Volume in vph in.vph a. Number of 40 change intervals per hour b. Left turn capacity 80 LOMASHEY on change interval. in vph 10 .80 c. G/Ć Approach Ratio d. Opposing volume 961 in vph e. Left turn capacity on green, in vph f. Left turn 90 capacity in vph g. Left turn volume 49. in voh h. Is volume > capac-Approach 4 non ity (g > f)? Step 5. Assign Lane Volumes, Step 7. Sum of Critical Volumes Step 2. Identify Volumes, in vph in vph 90 + 164 + 456 + Approach 3 Approach 3 RT =_50 273 איזאנן . = 710 _ vnh TH = 911 LT = ___ Step 8. Intersection Level of Ξ <u>-</u> Service (compare Step 7 with Table 6) Approach Step 9. Recalculate Geometric Change ____ LT = 49 Signal Change ___ TH = 425 Volume Change _ Approach 4 Step 3. Identify Phasing Step 6a. Critical Volumes, in vph Comments (two phase signal) G/C O First phose to be 10 Approach 3 :20 second advance. AIBZ () This phose will be exclusive left turn place SAIA 456 volumes .70 34 warrant it (year 2000) & equivalent 101 10 A1 -- A3 - B3 advance B2 __ B4 L_ A2 - A4 Approach 4

Intersection Lomashey way at Lomashey/Nashua Conhector Design Hour 2000 PM PH Problem Statement FIND 1987 LOS Step 1. Identify Lane Geometry Step 6b. Volume Adjustment for Step 4. Left Turn Check Multiphase Signal Overlap Adjusted Critical Possible Volume Approach Probable Critical Carryover Volume Phase Volume to next in voh in vnh a. Number of 40 change intervals per hour b. Left turn capacity 80 on change interval, in vph c. G/C Ratio .75 d. Opposing volume 1165 in vph e. Left turn capacity on 0 green, in vph f. Left turn 80 capacity in vph g. Left turn volume 180 in voh h. Is volume > capac-Approach 4 Yes ity (g > f)? Step 5. Assign Lane Volumes, Step 7. Sum of Critical Volumes Step 2. Identify Volumes, in vph in vph 180 + 507 + 265 + Approach 3 Approach 3 570 RT = 152 = 972_ von TH = 1013 Step 8. Intersection Level of Service (compare Step 7 with Table 6) B Step 9. Recalculate Geometric Change _____ LT = 180 Signal Change _ TH = 555 Volume Change _ Approach 4 Approach 4 Step 6a. Critical Volumes, in vph Step 3. Identify Phasing Comments (two phase signal) G/c * equivalent of pedestron .20 Approach 3 movement actuated every AI BZ four phases .55 SAIA 507 Approach .25 180 A1 -- A3 1 В3 🗻

A4 4

B2 ____

B4 L

intersection Leverett Circle at J. F.F. Expressuas Surface Policy Design Hour 1987 PM PH

Problem Statement Find	1987 Los	
Step 1. Identify Lane Geometry	Step 4. Left Turn Check	Step 6b. Volume Adjustment for
Approach 3	Approach 1 2 3 4 a. Number of change intervals	Multiphase Signal Overlap Probable Critical Carryover Critical Phase Volume to next Volume in vph phase in vph
Leverett Circle	ber hour b. Left turn capacity on change interval, in vph c. G/C	
Approach 1	Ratio d. Opposing volume in vph e. Left turn capacity on green, in vph	
Approach 4 Solface Rd Solface Rd	f. Left turn capacity in vph (b + e) g. Left turn volume in vph h. Is volume > capac- ity (g > f)?	
Step 2. Identify Volumes, in vph	Step 5. Assign Lane Volumes, in vph	Step 7. Sum of Critical Volumes (3) use 1055 (18 621×1.7)
Approach 3 RT = TH =	Approach 3	= 1676_ vph
E # 5		Step 8. Intersection Level of Service
Approach 1	Approach 2	(compare Step 7 with Table 6)
TH = 554 RT = Approach 4 1 1 1 1 1 1 1 1 1	Approach 4	Step 9. Recalculate Geometric Change Signal Change Volume Change
Step 3. Identify Phasing	Step 6a. Critical Volumes, in vph (two phase signal)	Comments
→ [©] Aı	Approach 3	Otimed concurrently with Charles St phase of Charles
-0		St aleverett Circle Signals
70 A4		3) Timed concurrently with
		Leverett Circle phose of
	Approach	Charles St Dleverett Circle 3this assumes no time
	ddy ddy	restraints (free operation)
).		which is not the case.
A1 - A3 B1 - B3	25.7	the time ratio (therefore the
A2 A4 B2 B4 -	Approach 4	volume ratio) of Aito Ay
		of Charles St to Leverett Circle at that intersection

Table V-1 North Station Urban Renewal Area

EXISTING LAND USE

	Sub-Area I			Sub-/	Sub-Area II			Total		
4	SQ.FT.	ACRES	<u>%</u>	SQ.FT.	ACRES	%	SQ.FT.	ACRES	<u>%</u>	
idential	17,424	. 40	3				17,424	. 40	.8	
ercial	31,363	.72	5				31,363	.72	1.5	
xed esidential/ ommercial	13,504	.31	2				13,504	.31	. 6	
i-Public*	113,256	2.60	19	176,418	4.05	11	189,674	6.65	13.4	
lity				21,780	. 50	1	21,780	.50	1.0	
lroad				180,338	4.14	12	180,338	4.14	8.4	
king	186,001	4.27	32	480,031	11.02	31	666,032	15.29	30.8	
eets	233,481	5.36	· 39	373,510	8.57	24	606,991	13.93	28.1	
irles Iver				313,432	7.20	20	313,432	7.20	14.5	
er Open Dace				19,602	. 45	1	19,602	. 45	. 9	
TAL	595,029	13.66	100	1,565,111	35.93	100	2,160,140	49.59	100	

^{*} North Station/Boston Garden, Registry, Rehabilitation Hospital

V-24

Table V-2
NORTH STATION URBAN RENEWAL PROJECT

Traffic Volumes on Major Project Area Streets and Access Roadways (1980)

Street	P.M. Peak (5-6 p.m.		m.) <u>AWDT</u>
Central Artery (Northbour (Southbour	•	45,635 34,295	71,700 69,000
Storrow Drive Access Ramp	0 (0n) 2,754 (0ff) 2,460	22,129 23,510	46,440 47,300
Storrow Drive (Eastbound) (Westbound)		19,182 23,311	45,190 51,897
Causeway Street	1,452	11,480	25,880
Nashua Street	1,555	11,806	20,364
Lomasney Way	202	4,053	6,041
Martha Road	280	4,617	6,603
Charles River Dam (Northb (Southb		6,277 9,260	17,938 21,542
Merrimac Street	546	4,371	5,712
North Washington Street	1,539	9,453	16,459
Canal Street	257	2,276	5,563

Source: BRA Transportation Planning Department

TIGOUT A-TO

AVERAGE WEEKDAY TRAFFIC NORTH STATION PROJECT EXISTING (1980 NOR TRA

108E

IGURE V-11

NORTH STATION PROJECT TRAFFIC IMPACT AREA

Average weekday (24-hour) volume is 110 trains. During both the morning peak hours (7-9 a.m.) and the evening peak hours (4-6 p.m.), a total of 35 trains arrive at and leave from North Station. Total average weekday ridership (1982) is 20,320 persons.

No MBTA bus routes directly serve the project area. However, several MBTA buses, both local and express, and private commuter bus lines which serve cities and towns outside of the Metropolitan Boston area are available at Haymarket station, a short walk from the North Station area.

Table V-4 below shows the current daily loadings of the public transportation facilities serving the North Station area.

Table V-4

Average Daily Boardings - North Station Area

Orange Line (1978)	
North Station	4,186
Green Line (1978)	
Science Park North Station (elevated) North Station (surface)	722 1,659 2,059
Commuter Rail (1982)	10,314
TOTAL	18,940

Source: MBTA

3.3 Parking Facilities

Within the North Station project area there currently exist a total of 2,332 off-street parking spaces (see Table V-5 and Figure V-14).

Approximately 39% of these spaces, or 905 spaces, are open to the public, 375 spaces being located in a City of Boston-owned lot and the remainder in privately-owned lots. The remaining parking is primarily employee parking, principally for the Massachusetts Department of Public Works (552 spaces) and the Massachusetts General Hospital (800 spaces).

Figure V-16: MAJOR COMBINED SEWER AND STORM DRAINS

TABLE VI.C-2

NORTH STATION AVERAGE WEEKDAY TRIP GENERATION

Phase I

		Daily Perso	on Arrivals
	Arrival Rates Per Day	Alternate 1 (Office)	Alternate 2 (Hotel)
Retail/Commercial	18.3/1,000 s.f.	. 2,290	2,290
Office	7.3/1,000 s.f.	8,760	5,840
Hotel	4.6/Room	-	1,600
		11,050	9,730

Phase II

		Daily Person	Arrivals
	Arrival Rates Per Day	Perferred Program	Optional Program
Retail/Commercial	18.3/1,000 s.f.	1,650 -	457
Office	7.3/1.000 s.f.	-	3,576
Hotel	4.6/Room	1,840	-
Residential	4.0/Unit	4,400	1,200
Public/Museum	10.0/1,000 s.f.	1,484	-
Hospital	4.0/Bed	-	1,140 .
		9,374	6,373

TABLE VI.C-3

EMPLOYEE/NON-EMPLOYEE PERSON TRIPS

	% of Trips	Average Weekday	Person Arriv	<u>vals</u>
		Phase I	Phase	e II
			Preferred	Optional
Retail		•		
Employee	15	343	247	69
Non-employee	85	1946	1403	388
Office				
Employee	66	5781	-	2360
Non-employee	34	2979	-	1216
Hotel				
Employee	24	- .	442	-
Non-employee	76	-	1398	-
Residential				
Employee	2	-	88	24
Non-employee	98	-	4312	1176
Public/Museum				
Employee	5	-	58	-
Non-employee	95	-	1426	-
Hospital				
Employee	66		-	750
Non-employee	34			390
TOTAL				
Employee	178	6124	835	3203
Non-employee	422	4925	8539	3203
			9233	31/0
	600	11047	9374	6373

TABLE VI.C-4

PERCENTAGE OF AVERAGE WEEKDAY TRIPS DURING PEAK HOURS AND PRIME OFF-PEAK HOUR

		ARRIVE			DEPART	
Retail Employee Non-employee	8-9 <u>A.M.</u> 10 0	0FF-PFAK 12 10	5-6 <u>P.M.</u> 10 5	8-9 <u>A.M.</u> 0	OFF-PEAK 12 10	5-6 P.M. 20
Office Employee Non-employee	55 10	15	3	a g	10 2 15	10 55
Hotal Employee Non-employee Residential	5 7	5 8	0 3	0 3	5 8	
Non-employee Public/Museum	25	5 5	5 55	5 55	5 5	2.5 0
Employee Non-employee Hospital	10	12	10 10	g 0	12 12	20 20
Employee Non-employee	50 10	30 10	10	10 10	30 10	5 0

TABLE VI.C-5

PEAK HOUR AND OFF-PEAK HOUR PERSON TRIPS

		ARRIVALS		Phase I		DEPARTURES	
	<u> 4.4.</u>	<u>011</u>	P.M.	rnase 1	<u>a.m.</u>	೧೮	?. <u>¥.</u>
Recail/Commercial Employees Non-Employees	34 0	41 194	34 97		0	41 194	69 194
Office Toployees Non-Employees	31 80 298	116 447	00		00	116 497	3180 298
	3512	798	131		0	798	3741
				Phase II Preferred			
Retail/Commercial Employees Non-Employees	. 25	30 140	2 <u>4</u> 70		0	30 140	49 140
gorsi gorsi gorsi gorsi gorsi gorsi	2 2 100	22 112	9		42	22 112	22 100
Residential Employees Non-Employees	2 <u>2</u>	215	2372		2372	215	. 22
Public/Miseum Similoyees Non-Employees	6	70 171	109		0	70 171	285
	<u>173</u> ×	877	2628		2418	8 <u>77</u>	563
TOTAL	3687	1675	2759		2418	1675	4304
				Phase II Optional		•	
Recard/Commercial Employees Non-Employees	7 0	39	7 19		0	3 39	14
Mon-imioves	1298 122	47 182	9		0	47 182	1298 122
Residential Employees Non-Employees	. 6 0	55 55	604		1 604	<u>1</u> 55	á
Rospical Employees Non-Employees	375 39 1847	225 39 596	39 670		739 719	22 5 19 596	375 39 1893
TOTAL	5359	1394	801		719	1394	5634

Among the considerations incorporated in the modal split percentages are the following specific data describing modal splits currently experienced in Downtown Boston.

- At Jordan Marsh's downtown store, 12% of the employees walk to work, 71% use transit, and 15% drive.
- The proportions of office workers using transit or commuter rail are as follows:

-	First National Bank	73%
-	State Street Bank	68%
-	Liberty Mutual	41%
	John Hancock	54%
-	Prudential	31%
-	Hurley Building	50%
-	John F. Kennedy Building	57%

Table VI.C-6 summarizes the above discussion and statistics as applied to the North Station project.

Vehicle Occupancy

Vehicle occupancy rate - the average number of riders per car - varies by trip purpose. Average auto occupancy rates in downtown Boston are as follows:

	Persons/Vehicle			
	Employees	Non-Employees		
Office Jordan Marsh	1.23 1.00	1.11		
(retail)	1.00	1.12		
Statler Hilton (hotel)	1.00	1.07		

The Central Transportation Planning Staff (CTPS), also using data generated by Wilbur Smith and Associates,(1) suggests that the following occupancy rates are experienced in downtown Boston:

Non-Home Based Trips	1.4 persons/vehicle
Work Trips	1.1 persons/vehicle
Home Based Non-Work Trips	1.75 persons/vehicle

The auto occupancy rates used in the traffic analysis for North Station are presented below:

TABLE VI.C-6

MODAL SPLIT

2	has	I

			<u>2h</u> :	ise I			
	j	ercantages	!		Average W		
	Auto	Transit	Walk	Auto	Transit	Walk	TOTAL
Retail/Commercial Employee Non-Employee	30 40	60 20	10 40	102 778	205 389	34 778	344 1945
Office Smployee Non-Employee	36 45	54 40	10 15	2660 1341	2814 1191	308 447	578 2 29 7 9
		1	OTAL	4881	4599	1567	11047
		•		se II			
	λυτο	Transit	Walk	λυεο	Transit	Walk	TOTAL
Retail/Commercial Employee Non-Employee	30 40	60 20	10 40	75 560	150 280	2 5 560	250 1400
Hotel Employee Non-Employee	12 60	73 25	15 15	53 838	322 349	6 6 210	442 1397
Residential Employee Non-Employee	25 26	60 44	15 , 30	22 1121	53 1897	13 1294	98 4312
Public/Museum Employee Non-Employee	30 40	60 50	10 10	17 570	35 713	6 143	58 1425
		TC	TAL	3144	3614	2283	9144
				se II lonal			
	λυτο	Transit	Walk	Auto	Transit	Walk	TOTAL
Retail/Commercial Employee Non-Employee	30 40	60 20	10 40	21 155	41 78	7 155	69 388
Office Employee Non-Employee	36 45	54 40	10 13	850 547	1274 486	236 182	2360 1216
Residential Employee Non-Employee	. 25 · 26	60 44	15 30	6 30 6	14 517	4 353	24 1176
Hospital Employee Non-Employee	40 50	50 40	10 10	300 195	375 156	75 39	7\$0 390
			TOTAL	2378	2939	1041	6373

VI-25

TABLE VI.C-7

AVERAGE WEEKDAY DAILY NORTH STATION VEHICULAR TRAFFIC ARRIVALS

Vehicles

	Phase I	Phase	Phase II	
		Preferred	Optional	
Retail/Commercial	-			
Employee	73	53	15	
Non-Employee	409	295	82	
Office				
Employee	1784		629	
Non-Employee	1219		497	
Luxury Hotel				
Employee		35	<u></u>	
Non-Employee		524		
Residential				
Employee		17	5	
Non-Employee		1019	259	
Public/Museum				
Employee		13		
Non-Employee		248		
Hospital				
Employee			214	
Non-Employee			59	
TOTAL				
Employee	1857	110	263	
Non-Employee		118	863	
MON-TRIDIOAGE	1628	2086	896	
	3485	2204	1759	

Auto Occpancy Rates

	Retail	<u>Office</u>	Public/ Hotel	Residential	Museum	Hospital
Employees	1.4	1.5	1.3	1.3	1.3	1.4
Non-Employees	1.9	1.1	1.4	1.1	2.3	1.6

1.4 Future Traffic Demand and Impacts

Average Weekday Project-Related Vehicular Traffic

Applying the vehicle occupancy rates to daily person trips by auto yields the daily site-generated traffic, as indicated in Table VI.C-7. Peak hour site-generated traffic by direction is presented in Table VI.C-8, determined by applying the values of Table VI.C-4 to Table VI.C-7.

Approach Sectors

Trips to and from the North Station area were allocated to approach streets on the basis of data compiled in the 1977 Origin and Destination Survey for the Boston Central Artery (5) prepared by the Massachusetts Department of Public Works, supplemented by up-to-date intersection turning movement counts taken at 15 locations within the North Station Traffic Impact Area (Figure V-12). The North Station Traffic Impact Area has been defined, by EOEA, to include the proposed Urban Renewal Area and adjacent areas within a perimeter bounded by Merrimac Street/Lomasney Way/Martha Road, New Sudbury Street, North Washington Street, and the Charles River, including the intersections along this perimeter. This assignment is indicated in Table VI.C-9 below. Appendix H shows the percentages of sitegenerated traffic assigned to streets within the North Station Traffic Impact Area. The actual site-generated traffic assigned to streets within the Traffic Impact Area for each of the build alternatives also is presented in Appendix H for the P.M. peak hours and in Figures VI.C-3a through VI.C-3c for the Average Weekday Traffic.

TABLE VI.C-8 (continued)

Peak-Hour North Station Vehicular Traffic

Phase II Optional

	A.M. Peak-Hour		P.M. Peak-Hour	
	To	From	<u>To</u>	From
Retail/Commercial				
Employee	2	0	2	3
Non-Employee	0	0	4	8
*Office				
Employee	346	0	0	346
Non-Employee	50	0	0	50
Residential				
Employee	1	. 1	. 1	1
Non-Employee	o	143	143	0
*Hospital				
Employee	151	30	0	151
Non-Employee	17	17	17	17
Sub-Total	567	191	167	576
TOTAL (Optional)	1672	191	194	1730

^{*49%} of office trips and 100% of hospital trips are existing traffic from Registry Building and Massachusetts Rehabilitation Hospital.

TABLE VI.C-8

Peak-Hour North Station Vehicular Traffic

Phase I

	A.M. Peak-Hour P.M.			. Peak-Hour
	To	From	To	From
Retail/Commercial			•	
Employee	7	0	7	15
Non-Employee	0	0	20	41
Offica				
Employee	976	0	a	976
Non-Sup Loyee	122	0	0	122
Sub-Total	1105	0	27	1154
		Phas		
Retail/Commercial		Prefe	LIBO	
Employee	5	0	5	10
Non-Employee	ō	ā	15	30
Office				
Employee	345	0 .	a	345
Non-Employee	50	ā	ā	50
Luxury Hotal				
Employee	2	0	a	2
Non-Employee	37	. 16	16	37
Residential				
Employee	4.	1	. 1	4
Non-Employee	a	560	560	ō
Public/Museum				
Employee	1	g	1	3
Non-Employee	0	a	25	50
Sub-Total	394	576	622	481
TOTAL (Preferred)	1499	576	649	1635

TRAFFIC ASSIGNMENTS NORTH STATION

PHASE I 1987

Table VI.C-9 Traffic Assignments by Approach

	%
North Washington Street Bridge	13
Commercial Street	8
Haymarket Southbound On-ramp	2
Blackstone Street	2
New Congress Street	9
New Chardon Street	2
Staniford Street	8
Storrow Drive	18
Charles River Dam	19
Leverett Circle On-ramp	6
Causeway Street Southbound On-ramp	<u>13</u>
	100

1987 and 2000 Traffic Volumes

Total future traffic within the North Station Traffic Impact Area has been forecasted by adding future background traffic and future project-generated traffic, for both the preferred program and the optional program. In calculating future background traffic, a uniform growth factor of 0.5% per year was utilized.

Total 1987 and 2000 P.M. Peak Hour Directional traffic volumes at intersections affected by the North Station development are presented in Table VI.C-10 for the preferred and optional programs. Figures VI.C-4a through VI.C-4e indicate 1987 and 2000 average weekday traffic volumes for the development programs (background plus site-generated), together with the No-build AWDT for comparative purposes.

Intersection Capacity Analysis

Analysis of the capacity of major street intersections in the study area was undertaken to assess the traffic impact of the North Station project on the proposed street system and on related environmental factors, such as air quality. The capacity calculations and the production of parameters required for the air quality assessment were based upon a simplified critical lane method of analyses as presented in the National Cooperative Highway Research Bulletin 187.(6)

Each intersection was analyzed for the P.M. peak hour for existing (1980) conditions, the 1987 and 2000 no-build base condition, and the Phase I and Phase II (preferred and optional) development in the same corresponding future years.

Capacity analysis must assume a certain "Level-of-Service" which is related to the speed at which the traffic may flow, the number of stops, the occurrence of delays, etc. Lower volumes of traffic yield higher levels-of-service, so capacity must be defined at a

FIGURE VI.C-3(b)

TRAFFIC ASSIGNMENTS NORTH STATION

PHASE II 2000 PREFERRED PROGRAM

