Problem 6.1

Suppose that instead of the Poisson model (6.1), we assume a binomial model

$$Pr\{x_k = x\} = \binom{n}{x} \theta_k^x (1 - \theta_k)^{n-x},$$

n some fixed and known integer such as n = 10. What is the equivalent of Robbins' formula (6.5)?

Solution By Robbins' formula, $\mathbb{E}(\theta|x) = \frac{\int_0^1 \theta p_{\theta}(x)g(\theta)d\theta}{f_g(x)}$ where $f_g(x) = \int_0^1 p_{\theta}(x)g(\theta)d\theta$. Then,

$$\begin{split} \int_0^1 \theta p_\theta(x) g(\theta) d\theta &= \int_0^1 \binom{10}{x} \theta^{x+1} (1-\theta)^{10-x} g(\theta) d\theta \\ &= \binom{10}{x} \left(\int_0^1 (\theta^{x+1} (1-\theta)^{9-x} - \theta^{x+2} (1-\theta)^{9-x}) g(\theta) d\theta \right) \\ &= \binom{10}{x} \left(f_g(x+1) / \binom{10}{x+1} \right) - \int_0^1 \theta^{x+2} (1-\theta)^{9-x} g(\theta) d\theta \right) \\ &= \frac{x+1}{10-x} f_g(x+1) - \binom{10}{x} \left(\int_0^1 (\theta^{x+2} (1-\theta)^{8-x} - \theta^{x+3} (1-\theta)^{8-x}) g(\theta) d\theta \right) \\ &= \frac{x+1}{10-x} f_g(x+1) - \frac{(x+2)(x+1)}{(10-x)(9-x)} f_g(x+2) + \binom{10}{x} \int_0^1 \theta^{x+3} (1-\theta)^{8-x} g(\theta) d\theta \\ &= \cdots \text{ (Continue this process)} \\ &= \sum_{k=1}^{10-x} \frac{(x+k)(x+k-1) \cdots (x+1)}{(10-x)(9-x) \cdots (11-x-k)} (-1)^{k-1} f_g(x+k) \\ &= \sum_{k=1}^{10-x} \frac{(x+k)! (10-x-k)!}{(10-x)! x!} (-1)^{k-1} f_g(x+k) \end{split}$$

Therefore, the Robbins' formula is equivalent to

$$\mathbb{E}(\theta|x) = \frac{1}{f_g(x)} \sum_{k=1}^{10-x} \frac{(x+k)!(10-x-k)!}{(10-x)!x!} (-1)^{k-1} f_g(x+k)$$

Problem 6.2

Define $\mathbb{V}\{\theta|x\}$ as the variance of θ given x. In the Poisson situation (6.1), show that

$$\mathbb{V}\{\theta|x\} = \mathbb{E}\{\theta|x\} \cdot (\mathbb{E}\{\theta|x+1\} - \mathbb{E}\{\theta|x\}),$$

where $\mathbb{E}\{\theta|x\}$ is as given in (6.5).

Solution By Robbins' formula, $\mathbb{E}(\theta|x) = (x+1)\frac{f_g(x+1)}{f_g(x)}$, where $f_g(x) = \int_0^\infty p_\theta(x)g(\theta)d\theta$ is marginal distribution of x. Then, we know that $\mathbb{V}\{\theta|x\} = \mathbb{E}(\theta^2|x) - (\mathbb{E}(\theta|x))^2$. So we'll show that $\mathbb{E}(\theta^2|x) = \mathbb{E}(\theta|x) \cdot \mathbb{E}(\theta|x+1)$.

$$\mathbb{E}(\theta^{2}|x) = \frac{\int_{0}^{\infty} \theta^{2} p_{\theta}(x) g(\theta) d\theta}{f_{g}(x)} = \frac{\int_{0}^{\infty} \theta^{2} \frac{\theta^{x} e^{-\theta}}{x!} g(\theta) d\theta}{f_{g}(x)}$$

$$= (x+2)(x+1) \frac{\int_{0}^{\infty} \theta^{x+2} \frac{e^{-\theta}}{(x+2)!} g(\theta) d\theta}{f_{g}(x)} = (x+2)(x+1) \frac{f_{g}(x+2)}{f_{g}(x)} = (x+2)(x+1) \frac{f_{g}(x+2)}{f_{g}(x)}$$

$$= (x+2)(x+1) \frac{f_{g}(x+2)}{f_{g}(x+1)} \frac{f_{g}(x+1)}{f_{g}(x)} = \mathbb{E}(\theta|x+1) \cdot \mathbb{E}(\theta|x)$$

Therefore, we have shown that the above equation holds.

Problem 6.3

Instead of (6.8), assume $g(\theta) = (1/\sigma)e^{-\theta/\sigma}$ for $\theta > 0$.

- (a) Numerically find the maximum likelihood estimate $\hat{\sigma}$ for the Poisson model (6.1) fit to the count data in Table 6.1.
- (b) Calculate the estimates of $\hat{E}\{\theta|x\}$, as in the third row of Table 6.1.

$$g(\theta) = \frac{\theta^{\nu-1} e^{\theta/\sigma}}{\sigma^{\nu} \Gamma(\nu)}, \text{for } \theta \ge 0, \quad (6.8)$$

Solution

(a) We'll find the maximum likelihood estimates of σ . Tha marginal probability density function of x is $f_g(x) = \int_0^\infty \frac{\theta^x e^{-\theta}}{x!} g(\theta) d\theta = \int_0^\infty \frac{\theta^x e^{-\theta}}{x!} (1/\sigma) e^{-\theta/\sigma} d\theta = \frac{\gamma^{x+1}}{\sigma} \int_0^\infty \frac{1}{\Gamma(x+1)\gamma^{x+1}} \theta^x e^{-\theta/\gamma} d\theta, \text{ where } \gamma = \frac{\sigma}{\sigma+1}.$ Since the function in the integral follows Gamma(x+1, γ) distribution, $f_g(x) = \frac{\gamma^{x+1}}{\sigma} = \frac{\sigma^x}{(\sigma+1)^{x+1}}.$ So the marginal likelihood function of x is $L(\sigma) = \prod_{i=1}^N f_g(x_i)$. Define the log likelihood function $l(\sigma) = log(L(\sigma)) = \sum_{i=1}^N (x_i log\sigma - (1+x_i)log(1+\sigma)).$ The score function is $S(\sigma) = \dot{l}(\sigma) = -\frac{n}{\sigma+1} + \frac{n\bar{x}}{\sigma} - \frac{n\bar{x}}{\sigma+1}$ where $\bar{x} = \sum_{i=1}^N x_i$. So we'll find the mle of σ satisfying $S(\sigma) = 0$.

$$S(\sigma) = 0 \Leftrightarrow -n\sigma + n\bar{x}(\sigma+1) - n\bar{x}\sigma = 0 \Leftrightarrow -n\sigma + n\bar{x} = 0 \Leftrightarrow \sigma = \bar{x}$$

Therefore, the mle of σ is \bar{x} , denoted $\hat{\sigma} = \bar{x}$. So, we plug $\hat{\sigma}$ in $f_g(x)$. Then,

$$f_{\hat{g}}(x) = \frac{\hat{\sigma}^x}{(\hat{\sigma} + 1)^{x+1}}$$

Actually, $\hat{\sigma} = \bar{x} = \frac{1}{9461} \sum_{i=1}^{9461} x_i = \frac{1}{9461} (1317 \cdot 1 + 239 \cdot 2 + 42 \cdot 3 + 14 \cdot 4 + 4 \cdot 5 + 4 \cdot 6 + 1 \cdot 7) = 0.2143537$ Then, $\hat{y}_x = 9461 f_{\hat{g}}(x)$ where $x = 0, 1, \dots, 7$ By using R, we can calculate $\forall y_x$.

In summary,

\hat{y}_x	Fitting value
$\hat{y_0}$	7790.976
$\hat{y_1}$	1375.237
$\hat{y_2}$	242.7523
$\hat{y_3}$	42.84982
$\hat{y_4}$	7.563708
$\hat{y_5}$	1.33512
$\hat{y_6}$	0.235671
$\hat{y_7}$	0.04159986

(b) Since $\hat{E}\{\theta|x\} = (x+1)\frac{f_{\hat{g}}(x+1)}{f_{\hat{g}}(x)} = (x+1)\frac{\hat{\sigma}}{1+\hat{\sigma}}$. So we can calculate the estimates of posterior mean for all $x = 0, 1, \dots, 6$

The R code related to the above is attached to the last page.

$\hat{E}(\theta x)$	Fitting value
$\hat{E}(\theta x=0)$	0.1765167
$\hat{E}(\theta x=1)$	0.3530333
$\hat{E}(\theta x=2)$	0.5295500
$\hat{E}(\theta x=3)$	0.7060667
$\hat{E}(\theta x=4)$	0.8825833
$\hat{E}(\theta x=5)$	1.0591000
$\hat{E}(\theta x=6)$	1.2356167
$\hat{E}(\theta x=7)$	•

Problem 6.7

The nodes data of Section 6.3 consists of 844 pairs (n_i, x_i) .

- (a) Plot x_i versus n_i
- (b) Perform a cubic regression of x_i versus n_i and add it to the plot.
- (c) What would you expect the plot to look like if the values of n_i were assigned randomly before surgery?

Solution

(a)

Figure 1:

(b)

Figure 2:

Problem 2

Show that the marginal distribution of "x" (in the missing species problem) is negative binomial.

Solution In the book, the distribution of $x|\theta$ and θ are $x|\theta \sim Poisson(\theta)$ and $\theta \sim Gamma(\nu, \sigma)$. Then, the joint probability density function of (x, θ) is $f(x, \theta) = p_{\theta}(x)g(\theta)$ where $p_{\theta}(x)$ and $g(\theta)$ are pdf of $x|\theta$ and θ . Then, the marginal pdf of x is

$$f(x) = \int_0^\infty f(x,\theta)d\theta = \int_0^\infty \frac{\theta^x e^{-\theta}}{x!} \frac{1}{\Gamma(\nu)\sigma^\nu} \theta^{\nu-1} e^{-\theta/\sigma} d\theta$$

$$= \frac{\Gamma(x+\nu)\gamma^{x+\nu}}{\Gamma(\nu)x!\sigma^\nu} \int_0^\infty \frac{1}{\Gamma(x+\nu)\gamma^{x+\nu}} \theta^{x+\nu-1} e^{-\theta/\gamma} d\theta \quad \text{(where } \gamma = (1+\frac{1}{\sigma})^{-1}\text{)}$$

$$= \frac{(\nu+x-1)(\nu+x-2)\cdots(\nu+1)\nu}{x!} (\frac{1}{\sigma+1})^\nu (\frac{\sigma}{1+\sigma})^x$$

$$= \binom{x+\nu-1}{x} (\frac{1}{\sigma+1})^\nu (\frac{\sigma}{1+\sigma})^x \quad \text{if } \nu \text{ is natural number}$$

Therefore, if ν is natural number, then the marginal pdf of x follows negative binomial distribution, denoted $Nebin(\nu, \frac{1}{1+\sigma})$.

Problem 3

Verify $E(t) = e_1 \frac{1 - (1 + \gamma t)^{-\nu}}{\gamma \nu}$ where $\gamma = (1/\sigma + 1)^{-1}$. (See the lecture note Chapter 6-2, page 5, parametric approach)

Solution In lecture note Chapter 6-2 page 5, we assume that the prior distribution of θ is $Gamma(\nu, \sigma)$. Let the pdf of θ be $g(\theta) = \frac{1}{\Gamma(\nu)\sigma^{\nu}}\theta^{\nu-1}e^{-\frac{\theta}{\sigma}}$. The moment generating function of θ is $M_{\theta}(t) = E(e^{t\theta}) = (1 - \sigma t)^{-\nu} \quad \forall t < \frac{1}{\sigma}$. To calculate E(t), we use the mgf of θ .

$$E(t) = S \int_0^\infty e^{-\theta} (1 - e^{-\theta t} g(\theta) d\theta = SE(e^{-\theta} (1 - e^{-\theta t}))$$

$$= S(E(e^{-\theta}) - E(e^{-\theta(1+t)})) = S((1+\sigma)^{-\nu} - (1+\sigma(1+t))^{-\nu})$$

$$= S(1+\sigma)^{-\nu} (1 - (1+\frac{\sigma}{1+\sigma}t)^{-\nu})$$

$$= S(1+\sigma)^{-\nu} (1 - (1+\gamma t)^{-\nu})$$

Next, we'll show that $e_1 = E(y_1) = S\gamma\nu(1+\sigma)^{-\nu}$.

$$e_{1} = E(y_{1}) = S \int_{0}^{\infty} \theta e^{-\theta} g(\theta) d\theta$$

$$= S \frac{\Gamma(\nu+1)\gamma^{\nu+1}}{\Gamma(\nu)\sigma^{\nu}} \int_{0}^{\infty} \frac{1}{\Gamma(\nu+1)\gamma^{\nu+1}} \theta^{\nu} e^{-\frac{\theta}{\gamma}} d\theta$$

$$= S \frac{\nu \gamma^{\nu+1}}{\sigma^{\nu}} = S \nu \frac{(\sigma/(1+\sigma))^{\nu+1}}{\sigma^{\nu}}$$

$$= S \nu \frac{\sigma}{(1+\sigma)^{\nu+1}} = S \nu \frac{\sigma}{1+\sigma} \frac{1}{(1+\sigma)^{\nu}}$$

$$= S \nu \gamma (1+\sigma)^{-\nu}$$

Therefore,

$$E(t) = S(1+\sigma)^{-\nu} (1 - (1+\gamma t)^{-\nu}) = e_1 \frac{(1 - (1+\gamma t)^{-\nu})}{\gamma \nu}$$