Audio Coding - Practice Lessons

Seminar 3 - Perceptual Model / Masking

Perceptual Audio Encoder

Goal: Using the Psychoacoustics model reduce the amount of audible quantization noise.

<u>Step 1:</u>

- Transformation from MDCT to Bark scale
 - For the input to the psycho-acoustic model, group the MDCT subbands into groups of width of 1/2 Bark
 - Use the function of frequency to Bark for it
 - Within each group, add the powers (squares of the values) of the subbands

Step 2:

Spreading function

Compute the spreading function, centered on each group

Observe that each spreading function extends over all other bark

groups.

Source: U. Zölzer, "Digital Audio Signal Processing"

<u>Step 3:</u>

- Masking threshold
 - Then add up the contributions of all spreading functions within each 1/2 Bark group.
 - This now is our masking threshold as a power, T^2 .
 - This should be equal to our quantization error power, $T^2 = \frac{\Delta^2}{12}$, with quantization step size Δ .

Step 4:

- Quantization step size
 - Take this Δ as quantization step size, and apply it to the quantizers for the MDCT subbands in the corresponding 1/2 Bark group.
 - Do this calculation for each block such that the Masking Threshold can follow the signal

