Санкт-Петербургский Государственный Политехнический Университет Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ

По лабораторным работам №4-5 Дисциплина: Телекоммуникационные технологии Тема:

Аналоговая модуляция. Частотная модуляция. Фазовая модуляция.

Выполнила студентка гр. 33501/2		<u> Белобородова В. Г.</u>
Преподавателі	ь	Богач Н.В.
<	>	2018 г.

Санкт-Петербург 2018

Оглавление

1. Цель работы	3
2. Постановка задачи	3
3. Теоретические сведения	3
4. Ход работы	4
Амплитудная модуляция – глубина модуляции	4
Амплитудная модуляция – с подавлением несущей	8
Амплитудная модуляция – однополосная модуляция-демодуляция	9
Фазовая модуляция-демодуляция	11
Частотная модуляция-демодуляция	14
5. Вывод	17
Список иллюстраций	
Рис. 4.1 – Исходный синусоидальный сигнал	5
Рис. 4.2 – Модулированный сигнал, М=1	
Рис. 4.3 – Модулированный сигнал, М=0.75	6
Рис. 4.4 – Модулированный сигнал, М=1.25	6
Рис. 4.5 – Спектр модулированного сигнала, М=1	7
Рис. 4.6 – Спектр модулированного сигнала, М=0.75	
Рис. 4.7 – Спектр модулированного сигнала, М=1.25	
Рис. 4.8 – Модулированный сигнал с подавлением несущей	
Рис. 4.9 – И его спектр	9
Рис. 4.10 – Однополосный модулированный сигнал	10
Рис. 4.11 – Спектр однополосного модулированного сигнала	10
Рис. 4.12 – Оригинальный и демодулированный сигналы	11
Рис. 4.13-4.15 – Фазово-модулированные сигналы, девиация фазы 1, 1.25, 0.5	12
Рис. 4.16-4.18 – И их спектры соответственно	13
Рис. 4.19 – Оригинальный и демодулированный сигналы	14
Рис. 4.20-4.21 — Частотно-модулированные сигналы, девиация 15 и 5 соответств	енно15
Рис. 4.22-4.23 – И их спектры соответственно	16
Рис. 4.24-4.25 – Оригинальный и демодулированные сигналы соответственно	17

1. Цель работы

Изучение амплитудной модуляции/демодуляции сигнала. Изучение частотной и фазовой модуляции/демодуляции сигнала.

2. Постановка задачи

- 1. Сгенерировать однотональный сигнал низкой частоты.
- 2. Выполнить амплитудную, частотную и фазовую модуляции сигнала по закону

$$u(t) = (1 + MU_m cos(\Omega t))cos(w_0 t + \phi_0)$$

для различных значений глубины модуляции М. Встроенные функции MatLab: ammod, ssbmod, fmmod, pmmod.

- 3. Получить спектр модулированного сигнала.
- 4. Выполнить модуляцию с подавлением несущей

$$u(t) = MU_m \cos(\Omega t) \cos(\omega_0 t + \phi_0)$$

Получить спектр.

5. Выполнить однополосную модуляцию:

$$u(t) = U_m \cos(\Omega t) \cos(\omega_0 t + \phi_0) + \frac{U_m}{2} \sum_{n=1}^{N} M_n (\cos(\omega_0 + \Omega_n) t + \phi_0 + \Phi_n)$$

положив n=1.

- 6. Выполнить синхронное детектирование и получить исходный однополосный сигнал.
- 7. Рассчитать КПД амплитудной модуляции.

$$\eta_A M = \frac{U_m^2 M^2}{4P_U} = \frac{M^2}{M^2 + 2}$$

- 8. Сгенерировать однотональный сигнал низкой частоты.
- 9. Выполнить фазовую модуляцию/демодуляцию сигнала по закону $u(t) = (Um \cos(\Omega t + ks(t)), используя встроенную функцию MatLab pmmod, pmdemod.$
 - 10. Получить спектр модулированного сигнала.
 - 11. Выполнить частотную модуляцию/демодуляцию по закону

$$u(t) = U_m \cos(\omega_0 t + k \int_0^t s(t)dt + \phi_0)$$

используя встроенные функции MatLab fmmod, fmdemod.

3. Теоретические сведения

Процесс переноса спектра сигналов из низкочастотной области на заданную частоту (т.е. выделенную для их передачи область частот) называется **модуляцией**. Исходный информационный сигнал называется модулирующим, а результат модуляции - модулированным сигналом.

В зависимости от того, какой из параметров несущего колебания изменяется, различают виды модуляции:

- амплитудная
- частотная
- фазовая и др.

Амплитудная модуляция (АМ) — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

В результате частотного типа модуляции сигнал модулирует частоту опорного сигнала, а не мощность.

В процессе фазовой модуляции модулирующий сигнал использует фазу опорного сигнала.

4. Ход работы

Амплитудная модуляция – глубина модуляции

Построим сигнал и 3 его амплитудные модуляции с разными глубинами модуляции:

```
f = 3; % Частота

f0 = 1; % Начальная фаза

fs = 1000; % Частота дискретизации, раз в сек

t=0:1/fs:1; % Шкала времени

s = sin(2*pi*f*t+f0);

fc = 100; % Carrier frequency

am1 = ammod(s, fc, fs, [], 1);

am2 = ammod(s, fc, fs, [], 1/0.5);

am3 = ammod(s, fc, fs, [], 1/(1/0.5));
```

```
plot(t, s);
figure; plot(t, am1);
figure; plot(t, am2);
figure; plot(t, am3);
```

Графики, полученные в ходе выполнения программы:

Рис. 4.1 – Исходный синусоидальный сигнал

Рис. 4.2 -Модулированный сигнал, M=1

Рис. 4.3 – Модулированный сигнал, М=0.75

Рис. 4.4 – Модулированный сигнал, М=1.25

Т.е. в Матлабе при увеличении глубины модуляции минимальное значение амплитуды возрастает. Соответственно, при значении М меньше 1 наблюдается перемодуляция.

Посмотрим на спектры полученных сигналов:

Рис. 4.5 – Спектр модулированного сигнала, М=1

Рис. 4.6 – Спектр модулированного сигнала, М=0.75

Рис. 4.7 – Спектр модулированного сигнала, М=1.25

Рассчитаем КПД модуляций по формуле:

$$\eta_A M = \frac{U_m^2 M^2}{4 P_U} = \frac{M^2}{M^2 + 2}$$

- M = 1 $\eta = 0.(3)$
- M = 0.5 $\Pi = 0.(1)$
- M = 0.3 $\eta = 0.005$

Амплитудная модуляция - с подавлением несущей

```
am4 = ammod(s, fc, fs); % Suppressed-carrier modulation\
figure; plot(t, am4);
spektr_am4 = fft(am4,dots);
figure; plot(abs(spektr_am4));
```


Рис. 4.8 – Модулированный сигнал с подавлением несущей

Рис. 4.9 – И его спектр

Амплитудная модуляция – однополосная модуляция-демодуляция

```
am5 = ssbmod(s, fc, fs); % Single sideband amplitude modulation
figure; plot(t, am5);
spektr_am5 = fft(am5,dots);
figure; plot(abs(spektr_am5));
dm1 = ssbdemod(am5, fc, fs); % Single sideband amplitude demodulation
figure; plot(t, dm1);
```


Рис. 4.10 – Однополосный модулированный сигнал

Рис. 4.11 – Спектр однополосного модулированного сигнала

Рис. 4.12 – Оригинальный и демодулированный сигналы

Закодированный сигнал получен верно.

Фазовая модуляция-демодуляция

Исходный сигнал не изменился. Изменилась частота несущей — она стала ниже, чтобы можно было что-то рассмотреть на графиках модулированного сигнала.

```
f = 3;
            % Частота
f0 = 1;
            % Начальная фаза
fs = 1000; % Частота дискретизации, раз в сек
t=0:1/fs:1; % Шкала времени
s = \sin(2*pi*f*t+f0);
            % Carrier frequency
fc = 25;
pm1 = pmmod(s, fc, fs, 1);
pm2 = pmmod(s, fc, fs, 1.25);
pm3 = pmmod(s, fc, fs, 0.5);
plot(t, s);
figure; plot(t, pm1);
figure; plot(t, pm2);
figure; plot(t, pm3);
dots = 1024;
             % Количество линий Фурье спектра
spektr pm1 = fft(pm1,dots);
spektr pm2 = fft(pm2, dots);
spektr pm3 = fft(pm3, dots);
figure; plot(abs(spektr pm1));
figure; plot(abs(spektr pm2));
figure; plot(abs(spektr pm3));
```

Полученные графики есть смысл приводить друг над другом:

Рис. 4.13-4.15 — Фазово-модулированные сигналы, девиация фазы 1, 1.25, 0.5

Рис. 4.16-4.18 – И их спектры соответственно

Для примера демодулируем сигнал с девиацией фазы 1.25:

```
dm2 = pmdemod(pm2, fc, fs, 1.25);
figure; plot(t, dm2);
```


Рис. 4.19 — Оригинальный и демодулированный сигналы

Частотная модуляция-демодуляция

```
f = 3;
            % Частота
f0 = 1;
            % Начальная фаза
fs = 1000; % Частота дискретизации, раз в сек
t=0:1/fs:1; % Шкала времени
s = sin(2*pi*f*t+f0);
fc = 25;
          % Carrier frequency
fm1 = fmmod(s, fc, fs, 15);
fm2 = fmmod(s, fc, fs, 5);
plot(t, s);
figure; plot(t, fm1);
figure; plot(t, fm2);
dots = 1024; % Количество линий Фурье спектра
spektr pm1 = fft(fm1,dots); % BN\Phi
spektr pm2 = fft(fm2, dots);
figure; plot(abs(spektr pm1));
```

figure; plot(abs(spektr_pm2));

Полученные сигналы:

Рис. 4.20-4.21 — Частотно-модулированные сигналы, девиация 15 и 5 соответственно

Рис. 4.22-4.23 – И их спектры соответственно

Демодулируем оба сигнала:

```
dm1 = fmdemod(fm1, fc, fs, 15);
figure; plot(t, dm1);
dm2 = fmdemod(fm2, fc, fs, 5);
figure; plot(t, dm2);
```


Рис. 4.24-4.25 — Оригинальный и демодулированные сигналы соответственно

Из полученных картинок можно сделать вывод, что девиация частоты 15 было слишком большим значением для несущей 25 Гц. Для сигнала с девиацией 5 полученная форма сигнала является верной.

5. Вывод

В данной работе исследованы аналоговые модуляции: амплитудная, фазовая, частотная. Также проведены демодуляции сигналов, чтобы посмотреть, какая из модуляций и как искажает сигнал.

Разные способы модуляции необходимы, потому что они используются в разных случаях. Например, частотная модуляция устойчива к помехам амплитуды, фазовая модуляция устойчива к помехам амплитуды и частоты, амплитудная модуляция наиболее проста и потому широко использовалась на ранних этапах развития техники.