

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

P2P SYSTEMS

Lecture H

KELIPS

KELIPS - A 1 HOP LOOKUP DHT

- k "affinity groups"
 - $k \sim \sqrt{N}$
- Each node hashed to a group (hash mod k)
- Node's neighbors
 - (Almost) all other nodes in its own affinity group
 - One contact node per foreign affinity group

KELIPS FILES AND METADATA

- File can be stored at any (few) node(s)
- Decouple file replication/location (outside Kelips) from file querying (in Kelips)
- Each filename hashed to a group
 - All nodes in the group replicate pointer information, i.e., <filename, file location>
 - Affinity group <u>does not</u> store files

KELIPS LOOKUP

- Lookup
 - Find file affinity group
 - Go to your contact for the file affinity group
 - Failing that try another of your neighbors to find a contact
- Lookup = 1 hop (or a few)
 - Memory cost $O(\sqrt{N})$
 - 1.93 MB for 100K nodes, 10M files
 - Fits in RAM of most workstations/laptops today (COTS machines)

KELIPS SOFT STATE

- Membership lists
 - Gossip-based membership
 - Within each affinity group
 - And also across affinity groups
 - O(log(N)) dissemination time
- File metadata
 - Needs to be periodically refreshed from source node
 - Times out

CHORD VS. PASTRY VS. KELIPS

- Range of tradeoffs available
 - Memory vs. lookup cost vs. background bandwidth (to keep neighbors fresh)

WHAT WE HAVE STUDIED

- Widely-deployed P2P systems
 - 1. Napster
 - 2. Gnutella
 - 3. Fasttrack (Kazaa, Kazaalite, Grokster)
 - 4. BitTorrent
- P2P systems with provable properties
 - 1. Chord
 - 2. Pastry
 - 3. Kelips