Reanalysis of 06-Wile

Simon Schwab

13/05/2020

Reference

Wile et al. (2017). Serotonin and dopamine transporter PET changes in the premotor phase of LRRK2 parkinsonism: cross-sectional studies. *Lancet Neurology*, 16(5), 351–359. https://doi.org/10.1016/S1474-4422(17)30056-X

Notes from reading methods section

- Dependant variable: 11C-DASB in cortex (first of many ANCOVAs reported)
- Independant variable: Group
 - Healty controls (n=9)
 - LRRK2 w/o PD (n=9)
 - LRRK2 w PD (n=7)
 - sporadic PD (n=13)
- Covariate: age
- age was not estimable for LRRK2 without manifest Parkinson's disease
- Design: 4-way ANCOVA with group as IV and age as covariate

Loading data

Data is loaded, reshaped if necessary, and factors are specified.

Descriptives

Number of samples and mean (SD) in levels of the independant variables. See Table 3 in publication.

```
idx = c(1, 3, 2, 4) # sorting as in publication
tab1 = array(NA, dim=c(4,3))
tab1[,1] = levels(data$Group.factor)
tab1[,2] = summary(data$Group.factor)
tab1[,3] = tapply(data$Cortex, data$Group.factor,
                  function (x) sprintf("\%0.2f(\%0.2f)", mean(x), sd(x)))
colnames(tab1) = c("group", "n", "mean (SD)")
print(tab1)
##
        group
                                  mean (SD)
## [1,] "healthy control"
                             "9" "0.43 (0.10)"
## [2,] "LRRK2 premanifest" "9" "0.55 (0.10)"
                             "7" "0.38 (0.09)"
## [3,] "LRRK2 affected"
## [4,] "sporadic PD"
                             "13" "0.42 (0.15)"
Figure 2 in Publication
ggplot(data, aes(y=Cortex, x=Group.factor, color=Group.factor)) +
  geom_boxplot() +
  geom_point(position = position_jitter(width = 0.15, height = 0)) +
 theme_minimal() +
  theme(axis.text = element_blank(), legend.title = element_blank()) +
  xlab("group") + ylab("11C-DASB in cortex")
<sup>1</sup>C-DASB in cortex
                                healthy control
                                 LRRK2 premanifest
                                 LRRK2 affected
                                 sporadic PD
```

ANCOVA

group

```
fit = aov(Cortex ~ Group.factor + `Age at PET`, data = data)

# Type I SS are appropriate for balanced (oqual n per group)
# Type II SS are used by SAS and SPSS and appropriate for unbalanced designs
# result = summary(fit) # Type I
result = Anova(fit, type=3) # Type III
print(result)

## Anova Table (Type III tests)
##
## Response: Cortex
```

```
##
                Sum Sq Df F value
## (Intercept) 0.30582 1 21.1500 5.984e-05 ***
                                     0.0555 .
## Group.factor 0.12125 3 2.7951
## `Age at PET` 0.00073 1 0.0502
                                     0.8241
## Residuals
               0.47717 33
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# For Type I SS
# stats.reanalysis = data.frame(Fvalue = sprintf("%.2f",result[[1]]$`F value`[1]),
                                df1 = result[[1]] Df[1],
#
                               df2 = result[[1]] Df[2],
#
                               pvalue = formatPval(result[[1]]$`Pr(>F)`[1]))
# For Type III SS
stats.rep.IV = data.frame(Fvalue = sprintf("%.2f",result$`F value`[2]),
                             df1 = result Df[2],
                             df2 = result Df [4],
                             pvalue = formatPval(result$`Pr(>F)`[2]))
stats.rep.CV = data.frame(Fvalue = sprintf("%.2f",result$`F value`[3]),
                             df1 = result Df[3],
                             df2 = result Df [4],
                             pvalue = formatPval(result$`Pr(>F)`[3]))
```

Comparing ANCOVA in original study with reanalysis

Independant variable

Covariate