Spielregeln

Alle Spieler starten mit **25** Geld. Initial müssen alle Spieler ein Modell auswählen und ihre Daten beschaffen.

Es werden insgesamt 5 Runden gespielt. Pro Runde wird reihum gewürfelt.

Ein Spielzug besteht aus folgenden Schritten:

- 1. Geld auf Basis von Kosten und Gewinn berechnen
- 2. würfeln (je nach Ereignis evtl. mehrfach)
- 3. abschließend auf Basis vom Ereignis neu Geld/Kosten/Gewinn berechnen

Gewinn

Der Gewinn berechnet sich aus der Accuracy des gewählten Modells minus 0,3 mal 15, dies anschließend aufgerundet. Beispiele:

$$(0.85 - 0.3) * 15 = 9$$

 $(0.6 - 0.3) * 15 = 5$

initiale Kosten

Deep Learning: 4 Geld pro Runde	KNN: 4 Geld pro Runde
Decision Tree: 2 Geld pro Runde	Regelsystem: 2 Geld pro Runde

weitere Kosten

- Daten beschaffen:
 - initial: 10 Geldspäter: 5 Geld
- Passenden ML Ansatz designen: 5 Geld
 - Extrakosten Deep Learning: 5 Geld

(jede Iteration braucht länger und bessere Hardware)

Modell nachtrainieren: 2 Geld

Ereignisse
Die Ereignisse treten in Abhängigkeit von der gewürfelten Zahl ein.
☐ Die Last verändert sich (nochmal würfeln)
□□□ Last steigt: Ressourcen kosten jetzt das Doppelte (Maximum: 10)
□ □ □ Last sinkt: Ressourcen kosten jetzt die Hälfte (Minimum: 1)
☐ Ü Übles Ereignis (nochmal würfeln)
Buzzer abfeuern nicht vergessen!
□□ Kunden fordern Erklärung
→ Notabschaltung und Fallback auf Regelsystem bei geringer Erklärbarkeit Investigativer Journalismus: Bias / Altersdiskriminierung
→ Notabschaltung und Fallback auf (Not-)Regelsystem, wenn Alter für Vorhersage zwingend notwendig ist
☐ Adversarial Attack: Angreifer versuchen, die Vorhersage zu manipulieren
→ Bei simplen Decision Boundaries funktioniert dies leicht,
aber du bemerkst den Schaden erst spät, da kein Drift vorliegt: du gehst pleite
■ Hackerangriff
→ Wenn du Kundendaten in Produktion hast: du bist aus dem Geschäft
☐ ☑ Die Welt ändert sich, Drift setzt ein
Du musst neue Daten beschaffen: 5 Geld
Beim Regelsystem fallen keine weiteren Kosten an, ansonsten nochmal würfeln
□□ Das Modell performt auf den neuen Daten immer noch super
□
→ bei instabilem Modell doppelte Kosten
☐ Dramatischer Absturz der Performance
→ Notabschaltung und zurück zu Regelsystem
Neue Modell-Architektur erreicht ursprüngliche Performance
mit vertretbarem Aufwand
→ passenden ML-Ansatz nochmal designen: 5 Geld
(hier auch bei Deep Learning)

■ Es läuft alles rund