Math 185 Definitions

- 1. **Complex Numbers,** \mathbb{C} . The set of complex numbers \mathbb{C} is the real vector space \mathbb{R}^2 with the properties $(x_1,y_1)+(x_2,y_2)+(x_1+x_2,y_1+y_2)$ and $a(x_1,y_1)=(ax_1,ay_1)$ and we write z=x+iy=(x,y) for any $z\in\mathbb{C}$.
- 2. **Polar Form.** Let $z = a + bi \in \mathbb{C}$. Then norm (a.k.a. modulus, absolute value) of $z \in \mathbb{C}$ is written $|z| \in \mathbb{R}$ and is defined by $|z| = \sqrt{a^2 + b^2}$. Then, define the argument of z as $\arg(z) = \theta \in [0, 2\pi)$ as the angle z makes with the real axis. Then, the polar form of z is written as $z = |z|(\cos\theta + i\sin\theta)$.
- 3. **Rectangular form.** If $z \in \mathbb{C}$ is written as z = x + iy, with $x, y \in \mathbb{R}$, then z is written in rectangular form.
- 4. Complex Conjugate. If z = a + ib, then its complex conjugate is $\bar{z} = a ib$.
- 5. **Open Sets.** A set $\Omega \subseteq \mathbb{C}$ is called open if for each $z_0 \in \mathbb{C}$, there is an $\varepsilon > 0$ such that $D_{\varepsilon}(z_0) \subseteq \Omega$.
- 6. Neighborhoods. An ε -neighborhood of a point z_0 is a set N which contains some open disk $D_{\varepsilon}(z_0)$.
- 7. ε -deleted neighborhoods. An ε -deleted neighborhood of a point z_0 is a set N which contains a "punctured" open disk $D_{\varepsilon}(z_0) \setminus \{z_0\}$.
- 8. **Homeomorphism.** A function is a homeomorphism if it is continuous with a continuous inverse.
- 9. **Periodic.** f(z) is w-periodic (with $w \in \mathbb{C}$) if f(z+nw)=f(z) for all $z \in \mathbb{C}, n \in \mathbb{Z}$.
- 10. **Limits.** Let $f: \Omega \to \mathbb{C}$ where Ω is an r-deleted neighborhood of a point z_0 . Then f has a limit as $z \to z_0$, and write $\lim_{z \to z_0} f(z) = a$. This means that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $z \in \Omega$ has $|z z_0| < \delta$, then $|f(z) a| < \varepsilon$.
- 11. **Continuity.** Let $\Omega \subseteq \mathbb{C}$ be an open set. Then $f : \Omega \to \mathbb{C}$ is continuous at a point $z_0 \in \Omega$ if $\lim_{z \to z_0} f(z) = f(z_0)$.
- 12. **Closed Sets.** A subset $F \subseteq \mathbb{C}$ is called closed if its complement $\mathbb{C} \setminus F$ is open.
- 13. **Compact.** A subset $K \subseteq \mathbb{C}$ is called compact if every open cover of K has a finite subcover.
- 14. **Uniform Convergence.** A sequence of functions $f_n : \Omega \to \mathbb{C}$ converges uniformly to a function $f : \Omega \to \mathbb{C}$ if for all $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n \ge N$, then $|f_n(z) f(z)| < \varepsilon$ for all $z \in \Omega$.
- 15. **Real Differentiable.** f is real differentiable at z_0 if the following limit exists: $\lim_{h\to 0} \frac{f(z+h)-f(z)-D(f'(z))h}{h}$, where D(f'(z)) is the Jacobian matrix.
- 16. **Derivative.** Let $f: \Omega \to \mathbb{C}$, where Ω is a neighborhood of z_0 . The derivative of f at z_0 is the limit $f'(z_0) = \lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$. We call f **complex differentiable** at z_0 if this limit exists. If $f'(z_0)$ exists for all $z_0 \in \Omega$, we call f **holomorphic** on Ω .
- 17. **Branch of the Argument.** This is a choice of interval (here, $[-\pi, \pi)$ or $[a, a+2\pi)$).
- 18. **Principal Branch of the Logarithm.** Pick a branch $[a, a+2\pi)$. Then, $\log : \mathbb{C} \setminus \{0\} \to \mathbb{R} \times i[a, a+2\pi)$ is defined by $\log z = \log |z| + i \arg z$, where $\arg z \in [a, a+2\pi)$. We call the branch $[-\pi, \pi)$ the principal branch.

- 19. **Exponentiation of complex numbers** a,b. Choose a branch of log, with $\log : \Omega \to \mathbb{C}$ and $a,b \in \mathbb{C}$. Then, define $a^b := e^{b \log a}$.
- 20. **Contour Integral.** Suppose f is continuous on an open set Ω and $\gamma:[a,b]\to\Omega$ is a smooth curve. Then the contour integral of f along γ is defined to be $\int_{\gamma} f:=\int_{\gamma} f(z)dz:=\int_{a}^{b} f(\gamma(t))\gamma'(t)dt$.
- 21. **Re-parametrization of** γ . A piecewise smooth $\tilde{\gamma}: [\tilde{a}, \tilde{b}] \to \mathbb{C}$ is called a re-parametrization of γ if there exists a continuously differentiable $\alpha: [a,b] \to [\tilde{a},\tilde{b}]$ such that $\alpha(a) = \tilde{a}$ and $\alpha(b) = \tilde{b}$, and $\alpha'(t) > 0$ with $\gamma(t) = \tilde{\gamma}(\alpha(t))$.
- 22. **Primitive.** We say a function $f: \Omega \to \mathbb{C}$ has a primitive on Ω if there exists a holomorphic function $F: \Omega \to \mathbb{C}$ such that F'(z) = f(z) for all $z \in \Omega$.
- 23. **Path-connected.** We say an open set $\Omega \subseteq \mathbb{C}$ is path-connected if for any pair of points $z_0, z_1 \in \Omega$ there exists a continuous path $\gamma : [0,1) \to \mathbb{C}$ such that $z_0 = \gamma(0)$ and $z_1 = \gamma(1)$, with $\gamma([0,1)) \subseteq \Omega$.
- 24. **Path-independence.** If $z_0, z_1 \in \Omega$, then any paths $\gamma, \tilde{\gamma}$ (with shared endpoints $\gamma(0) = \tilde{\gamma}(0), \gamma(1) = \tilde{\gamma}(1)$) have $\int_{\gamma} f(z) dz = \int_{\tilde{\gamma}} f(z) dz$.
- 25. **Homotopy.** Let $\gamma_{0,1}: [a,b] \to \mathbb{C}$ be curves with shared endpoints z_a, z_b . A homotopy is a continuous function $H: [a,b] \times [0,1] \to \mathbb{C}$ with $t \times s \to H_s(t)$ such that $H_0(t) = \gamma_0(t)$ and $H_1(t) = \gamma_1(t)$.
- 26. **Simply-connected.** A set *A* is called simply-connected if every closed curve (loop) is homotopic to a point in *A*, with $H_s(t) \in A$ for all s,t. (Note: a point in *A* is a constant loop).
- 27. **Winding Number.** Let γ be a loop in $\mathbb C$ and $z_0 \in \mathbb C$ but not on γ . Then the winding number of γ (with respect to z_0) is $I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-z_0} dz$.
- 28. **Entire.** We call a function $f: \mathbb{C} \to \mathbb{C}$ entire if it is holomorphic on \mathbb{C} .
- 29. **Closure.** The closure of a set A, written \overline{A} , is $\overline{A} = \{\text{limit points of } A\}$.
- 30. **Boundary of** A. The boundary ∂A of a set $A \subseteq \mathbb{C}$ is $\partial A = \overline{A} \cap \overline{(\mathbb{C} \setminus A)}$.
- 31. **Reflection:** $\tilde{z} = \frac{R^2}{\bar{z}}$. $\tilde{z} = \frac{R^2}{\bar{z}}$ is the reflection over the line the circle $|\xi| = R$.
- 32. **Analytic.** A function $f: \Omega \to \mathbb{C}$ is analytic at $z_0 \in \Omega$ if there is a neighborhood \mathscr{U} of z_0 on which $f(z) = \sum_{k=0}^{\infty} a_k (z z_0)^k$ (for all $z \in \mathscr{U}$) where the RHS is a convergent power series.
- 33. **Pole of Order** m. If f is holomorphic on a deleted neighborhood $\mathcal{U} \setminus z_0$, we say f has a pole of order m if $\frac{1}{f}$ has a zero of order m.
- 34. **Simple Pole.** If f has a pole of order 1 at $z = z_0$, then f has a simple pole at z_0 .
- 35. **Residue of** f at $z = z_0$. Consider the principal part of the Laurent expansion of f at $z = z_0$. Then, the coefficient a_{-1} is the residue of f at z_0 and we write it as $Res_{z_0}(f) = a_{-1}$.
- 36. **Meromorphic.** A function $f: \Omega \to \mathbb{C}$ is meromorphic if it is holomorphic on all of Ω except at a discrete set of poles.
- 37. **Essential Singularity.** Let f be holomorphic on Ω except at a point z_0 . We call z_0 an essential singularity if z_0 is neither a pole nor a removable singularity.
- 38. Alternative Definition of Essential Singularity. Let f be holomorphic except possibly at a point z_0 . Let $C_1 = \{z_0\}$ and $C_2 = \partial D_r(z_0)$. Then, z_0 is an essential singularity if there are infinitely many a_{-n} in the Laurent series of f, where still $\text{Res}_{z_0}(f) = a_{-1}$.
- 39. **Holomorphic at Infinity.** Let $\mathscr{U} \subseteq \mathbb{C}$ be an open set containing $\mathbb{C} \setminus \overline{D_R(0)}$. A function $f : \mathscr{U} \to \mathbb{C}$ is holomorphic at infinity if g(z) = f(1/z) has a removable singularity at 0, which in that case, we define $f(\infty) = g(0)$.

- 40. **Zero** (respectively, pole) of order at Infinity. Let $\mathscr{U} \subseteq \mathbb{C}$ be an open set containing $\mathbb{C} \setminus \overline{D_R(0)}$. We say that $f : \mathscr{U} \to \mathbb{C}$ has a zero (respectively, pole) of order at ∞ if g(z) = f(1/z) has a zero (respectively, pole) at z = 0 (of order m).
- 41. **Logarithmic Derivative.** Let $f: \Omega \to \mathbb{C}$ be meromorphic. Then, the logarithmic derivative of f is f'/f.
- 42. **Locally injective.** We call a function $f: \Omega \to \mathbb{C}$ locally injective near z_0 if there exists a neighborhood \mathscr{U} of z_0 such that $f: \mathscr{U} \to \mathbb{C}$ is injective.
- 43. **Infinite Product.** Suppose the sequence of finite products $P_N := \prod_{n=1}^N c_n = c_1 c_2 \dots c_N$ converges to a finite number (where $c_i \in \mathbb{C}$ for all i). We define $\prod_{n=1}^{\infty} c_n = \lim_{N \to \infty} \prod_{n=1}^{N} c_n$ to be the infinite product, and say that this infinite product converges.
- 44. **Riemann-Zeta Function.** We define the Riemann-Zeta function to be $\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$.
- 45. **Conformal Maps.** Smooth, invertible maps $f: \mathbb{R}^2 \to \mathbb{R}^2$ whose Jacobian at a point can be factored as (scaling) (rotation) are called conformal maps. (note: by Cauchy-Riemann equations, we have that $\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = |a+bi|^2 \cdot \frac{1}{|a+bi|^2} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, where the $|a+bi|^2$ factor represents scaling and the other factors together represent the orthogonal scaling matrix).
- 46. **Conformal Maps (2nd definition).** Let Ω and Ω' be open connected regions in \mathbb{C} . We say that a map $g:\Omega\to\Omega'$ is conformal if it is holomorphic and invertible with g^{-1} holomorphic.
- 47. **Conformally Equivalent.** We call Ω, Ω' conformally equivalent (write: $\Omega \sim \Omega'$) if there exists a conformal map $g: \Omega \to \Omega'$.
- 48. Set of holomorphic functions / meromorphic functions. Let $\mathcal{H}(\Omega) = \{\text{holomorphic functions } f: \Omega \to \mathbb{C}\}$ and $\mathcal{M}(\Omega) = \{\text{meromorphic functions } f: \Omega \to \mathbb{C}\}.$
- 49. **Conformal Automorphisms.** We call a conformal map $g : \Omega \to \Omega$ a conformal automorphism and write $\operatorname{Aut}(\Omega)$ to denote the collection of automorphisms (strictly conformal) on Ω .
- 50. ADD DEFINITIONS FROM DECEMBER 2 LECTURE