Pre Lab Exercise #1: Fill in the table below.

Alice's Message (ascii)	Q			K					D															
Alice's mess. (binary)	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1	1	0	1	0	0	0	1	0	0
OTP (binary)	0	0	1	0	0	0	1	0	1	1	0	1	1	0	0	0	1	0	0	1	1	0	1	0
Encrypted mess.	0	1	1	1	0	0	1	1	1	0	0	1	0	0	1	1	1	1	0	1	1	1	1	0
OTP (same as above)	0	0			0	0	1	0	1	1	0	1	1		0		1	0	0	1	1	0	1	0
Bob's mess., binary	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1	1	0	1	0	0	0	1	0	0
Bob's message (ascii)			(Q					TC			K					TO			D	i			

Pre Lab Exercise #2:

(a) Complete the table below for an n=2 protocol, $\delta=2$. If Bob's measurement outcome is unknown, put in a "?". The state sent should be one of (H, V, +, -).

Alice's key a	Alice's basis choice b	State sent	Bob's basis choice b'	Bob's a'	Bob's a'			
0	+/-	+	H/V	?				
1	+/-	-	+/-	1				
1	+/-	-	H/V	?	то			
1	H/V	v	dH/V	1				
1	+/-	-	H/V	?				
0	H/V	н	T4/-	?				
1	H/V	V	14/-	?				
0	+/-	+	+/-	0				
1	+/-	-	H/V	?				
0	H/V	н	H/V	0				

(b) What is the final key that Bob and Alice share?

1100

Pre Lab Exercise #3:

(a) Complete the table similar to Exercise #2, however, with Eve as an interceptor. If Bob's outcome is uncertain, put in a "?". Like Bob, Eve will also be uncertain but must always resend a photon to minimize suspicion.

Bit #	Alice's key a	Alice's basis choice b	Eve's basis choice	Eve's intercepted message	Eve's resend basis	Bob's basis choice b'	Bob's a'
1	0	+/-	H/V	1	H/V	H/V	1
2	1	H/V	+/-	0	+/-	+/-	0
3	1	+/-	H/V	1	H/V	H/V	1
4	1	H/V	+/-	0	+/-	H/V	?
5	1	+/-	+/-	1	+/-	+/-	1
6	0	H/V	+/-	0	+/-	H/V	?
7	1	H/V	H/V	1	H/V	+/-	?
8	0	H/V	+/-	0	+/-	H/V	?
9	1	+/-	+/-	1	+/-	+/-	1
10	0	H/V	H/V	1	H/V	+/-	?

(b) What bit numbers will Alice and Bob keep after communicating? 4,5,6,8,9
(c) What is Alice's final bit string? What is Bob's? What is the probability that Eve did not produce one error?
Alice's final string: 11001 Bob's final string: ? 1??1 Bob's final string: ? 1??1 Calculate the same basis as each other but Eve has a different basis. P(B=A) = .5, so P(B=A\=E) = 1/4. So the probability that eve does not produce an error is 3/4. Calculate the same basis as each other but Eve has a different basis. P(B=A) = .5, so P(B=A\=E) = 1/4. So the probability that eve does not produce an error is 3/4. Calculate the same basis as each other but Eve has a different basis. P(B=A) = .5, so P(B=A\=E) = 1/4. So the probability that eve does not produce an error is 3/4. Calculate the same basis as each other but Eve has a different basis. P(B=A) = .5, so P(B=A\=E) = 1/4. So the probability that eve does not produce an error is 3/4.
EVERY photon, what is the probability, as a function of N, that Eve does NOT produce an error? (3/4)^N TC
(e) Why should Eve choose her measurement basis at random?
The probability in (d) is maximized for when Eve choses their measurement at random, such that they are most likely to have the same basis as both Bob and Alice.
(f) Why won't it work for Eve to make a copy of the photon and then measure it AFTER Alice
and Bob have classically communicated which bits to keep?
Even if Eve knows which bits are being kept, they do not know which basis is being used for each bit by Bob and Alice.
Pre Lab Exercise #4:
(a) What value of λ gives the highest possible probability of getting $k=1$ photon per pulse?
What is that probability P_{k-l} in this case? $\frac{d}{d\lambda}P = -\lambda e^{-\lambda} + e^{-\lambda} \Rightarrow \lambda = 1 \Rightarrow \frac{1}{e} = P$
(b) What's the probability of k=0 and k>1 with the λ in part (a)? What are the ratios of P _{k=0} :
P_{k-1} and $P_{k>j}$: P_{k-1} in this case?
1/e: the ratio of the probabilities is 1.

The ratios of both are still 1/e

Pre Lab Exercise #5: Consider another way to use the photons to generate random numbers and explain.

(c) What is the probability of getting 1 photon if the probability of >1 photon in this case is <1%? (Hint: find λ first.) What are the ratios of P_{k-0} : P_{k-1} and P_{k-1} : P_{k-1} in this case?

Send photon pulses of Horizontally polarized light through a HWP rotated by 22.5 degrees. This will produce light in the state |+> = 1/sqrt2 (|+> + |+> 1/sqrt2). Now measure |+> + 1/sqrt2 (|+> + |+> 1/sqrt2). Now measure |+> + 1/sqrt2 (|+> + |+> 1/sqrt2). Now measure |+> + 1/sqrt2 (|+> + |+> 1/sqrt2).