```
多春勒公式
```

局部域がは、 $f(x) = f(x) + f'(x)(x-x_0) + f''(x)(x-x_0)^2 + ... + f''(x)(x-x_0)^n + o((x-x_0)^n)$

证明: $\frac{1}{2} \int_{-\infty}^{\infty} \frac{f(x) - \int_{-\infty}^{\infty} (x - x_0)^n}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f(x) - \int_{-\infty}^{\infty} \frac{f(x) - \int_{-\infty}^{\infty} \frac{f(x)}{n!}}{n!} = 0$ 借分升低斯元穷小量废谷必然的记忆

地学

表為好公式: Xo=0 付 f(x)= f(0) + f(0) X + ··· + f(0) × n

常用表充为补公式: $e^{x} = 1 + x + - - \frac{1}{n!}x^{n} + o(x^{n})$

In (I+X) = x-\frac{1}{2}x^2+ \dots - + (1) \dots + \frac{x^n}{n} + o(x^n)

(1+x) = 1+xx+ 0(a-1) x2+...+ (a-h)! n! xn+ o(x")

 $Sin X = x - \frac{1}{3!} x^3 + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \left\{ \begin{array}{c} o(x^{2n-1}) \\ o + o(x^{2n}) \end{array} \right\}$

 $65X = 1 - \frac{1}{2}X^{2} + \cdots + (-1)^{m} \frac{X^{2n}}{2n!} + \begin{bmatrix} 0 & (X^{2n}) \\ 0 + O(X^{2n+1}) \end{bmatrix}$

7100 = \$55 A.= fcxo1 Epile (x) - f(x) = A1 + A2 (x-xo) + ... + An(x-xo) + a o((x-xo)), x -> x.

 $\lim_{x \to \infty} \frac{f(x) - f(x)}{x - x_0} = \lim_{x \to \infty} f'(x)$ $= f'(x_0) = A_1$ $= \lim_{x \to \infty} f(x_0) = \lim_{x \to \infty} f'(x_0) = \lim_{x \to \infty}$

求 色型的麦克劳特质丹式

1€t=-x2 et= ---

保证 X→O对,t→o,即最后设施强重

节拉格朗日军项码表等的展开式:f(x)=f(x++---+ fⁿ/x₀)(x-x₀)ⁿ+ fⁿ⁺¹/(n+1)!(x-x₀)ⁿ⁺

(x-x0) = f(x) - --- - f(x0) (x-x0) G(x) = (t-x0) +1

显性 F(X6) = 0, 6 (X6)=0

 $\frac{F(x) - F(x_0)}{G(x) - G(x_0)} = \frac{F^1(x_1) - F'(x_0)}{G(x_0)} = \frac{F^{(n+1)}(x_1)}{G^{(n+1)}(x_2)}$

ep F(x) = f(n+1) (x-x0) (x-x0)

议等

常凡函数的拉格的用家项:Xin						.h		CBY.			2nt
常见函数的拉格的用金项 $x \to 0$ $e^x \sim \frac{e^x}{(n+1)!} x^{n+1}$		514 X	. \ 	^	(-	1.)'		(2nt		• X 	
(n(1+x) \ \ \frac{1}{(n+1)} \cdot \(\frac{1}{1+\left\eta}\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		us X	 	∕`.	Н).).	Er	152 1+2)	- · ·	X ^{2h}	+ 2
(1+x) ~ (d-n-1) (n+1) x x+1		· · · · · · · · · · · · · · · · · · ·									

常用求极限方法 1°选择合适换方法 2°提前提出确定极限 3°无穷小量代换 4°泰勒虚开至医奇级数

