Seminarios de Investigación

Resumen

Durante esta asignatura se irán presentando distintos investigadores ponentes para explicar sus investigaciones y aportaciones bioinformáticas.

Índice general

.1	Bioinformática en la investigación dentro de institutos de investigación	
	sanitaria	2
.2	Comparative primate genomics to understand evolution, health, and	
	disease	3
.3	Gut microbiota-derived metabolites: discovery of biomarkers and	
	therapeutic targets in CVDs	Z
.4	Introduction to the use of GitHub and its applications in bioinformatics	Ę

.1. Bioinformática en la investigación dentro de institutos de investigación sanitaria

Val Fernández - investigador Instituto Ramón y Cajal de Investigación Sanitaria

Hay dos grandes fuentes en ciencia para dar financiación: ministerio de ciencia (agencia estatal de investigación) y ministerio de sanidad (Instituto de Salud Carlos III). Este último financia sólo proyectos relacionados con la sanidad, el otro no. La agencia estatal financia todo, denominado como "plan nacional". El ISCIII tiene una cogobernanza con el ministerio de ciencia. Pueden pedir financiación IIS y CNIO/CNIC/CNE/etc y todos aquellos proyectos de universidades y CSIC siempre y cuando estén asociados a un IIS (FIS).

Dentro del hospital están los IIS: IRYCIS, IdiPaz, etc. Pero también hay algunos grupos concretos dentro del IIS que están asociados a universidades. Dentro de los hospitales y los IIS están las fundaciones, que son los encargados de gestionar el dinero de investigación y que no se mezcle con el dinero destinado a tratar pacientes.

Puede haber bioinformáticos clínicos contratados por el hospital y bioinformáticos contratados por la fundación. Esto hace que los bioinformáticos contratados no deberían hacer labor asistencial. En general se divide:

- Bioinformático en IIS: realiza investigación en un área temática determinada en un grupo de investigación.
- Bioinformático clínico: realiza análisis bioinformáticos destinados a la actividad asistencial. Un bioinformático puede trabajar en la genética médica, oncología, hematología, microbiología, enfermedades infecciosas, inmunología, unidad de data science, etc. En la parte asistencial, la realidad es que depende de cada hospital. Normalmente los bioinformáticos clínicos están asociados a la genética médica, y la oncología está algo atrasada en cuanto a la secuenciación masiva.
- Bioinformático servicio: proporciona soporte bioinformático a los investigadores del instituto. Esto se cobra de los proyectos, pero es una unidad central a la que poder pedir soporte y ayuda. Entre todas las labores que se hacen es apoyo a las ómicas, asesoramiento y ayuda en el diseño de proyectos que incluyan análisis bioinformático, data mining, desarrollo de herramientas de análisis, formación del personal del IIS, etc. Se suele dar servicio a todos los grupos que no tengan un bioinformático. Cuando un grupo se va adentrando en un tema, suelen contratar a un bioinformático y no acuden al servicio. En algunos campos, todos los investigadores tendrán que aprender algo de bioinformática para poder al menos analizar sus datos.

Las ómicas siempre son distintas en los grupos de ciencia y los del hospital. No se puede calcular un tamaño muestral, se realizan análisis multivariante en donde se suele buscar qué variable nos sirve, y lo más importante, trabajamos con lo que podemos. Pero existen unos mínimos.

Se debe tener en cuenta la variabilidad técnica-muestra. El problema de la muestra humana es que hay muchas variables distintas entre todos, y se debe tener muy en

cuenta. Por ello, la complejidad del estudio en términos de grupos a comparar debe ser un balance entre ambición y realidad. Los grupos control son esenciales, y en ocasiones se necesita más de un grupo control. Algunas ómicas son dependientes de referencia y otras independientes, y algunas tienen referencias fácilmente buscables en el NCBI o bases de datos similares.

En el análisis, se debe saber si existe un consenso en la comunidad, si existen pipelines estandarizados (en nf-core o similares) y si hay infraestructura para analizarlo.

Un bioinformático de servicio debe saber de todo: análisis de secuencias, anotaciones de genomas, análisis de la expresión génica, análisis de la regulación, análisis de mutaciones, predicción de la estructura de las proteínas, genómica comparativa, modelado de sistemas biológicos, análisis de imagen de alto rendimiento, acoplamiento proteína-proteína, etc.

.2. Comparative primate genomics to understand evolution, health, and disease

David Juan - investigador Centro Nacional de Biotecnología

Primates are one of the model systems. The closest relatives of humans are chimpanzees and bonobos, although the most commonly used model animal is the mouse. Primates have a higher relevance for disease, immunity, cognition and aging, unique phenotypes absent in rodents like longevity, brain development and cancer resistance, and more similar genomes and transcriptomic and epigenomic regulation. However, working with primates is very difficult due to ethical and legal restrictions, limited availability, high maintenance cost, slower breeding cycles, fewer genetic tools and established inbred lines compared to mice and smaller sample sizes reduce statistical power.

In 2023, we had 20 long-read and 40 short-read assemblies, in addition to some RNA-seq data for almost all these species. Epigenomic studies exist only for great apes and a few other primates. Most studies are focused on the evolution of the human brain, why humans are so intelligent. That being said, omic data per tissue is scarse, mostly concentrated on the brain.

In 2023, 17 new long-read assemblies were published together with 233 primate short-read genomes (assemblies and several individuals).

The group is focusing on great apes to understand human mutational processes. To study aberrant mutational processes in tumors, they compare them to normal germline mutations extracted from genomic population data.

Populations of great apes are better models for understanding the accumulation of somatic mutations in human cells than human population. In fact, gorillas and chimpanzees are more correlated to human tumors than humans themselves.

.3. Gut microbiota-derived metabolites: discovery of biomarkers and therapeutic targets in CVDs

Annalaura Mastrangelo - Immunology Lab CNIC

Atherosclerosis (AT) is a silent precursor of cardiovascular diseases (CVDs). Traditional cardiovascular risk factor-based scores fail to identify individuals at risk at early stages. The rate of CV events remains high despite good cholesterol control. The only treatments available today are lipid-lowering. However, microbiota-host crosstalk has been suggested as a contributor to AT. Microbial imidazole propionate (ImP) is associated with complex diseases and all-causes mortality like Alzheimer's.

How does the gut microbiota affect AT? A murine model was used with different diets and antibiotics after 4 weeks. Antibiotics were able to decrease the progression of atherosclerosis. Plasma metabolome is altered by diet and antibiotics, and the microbiome diversity is reduced in HC diet. The metabolite TMAO was already associated to AT in the literature, but ImP, a microbial metabolite, was also associated in mice.

Higher plasmatic ImP is independently and strongly associated with subclinical AT, particularly active AT. ImP shows additive value when included to established AT biomarkers. To validate the biomarker, the patophysiology of AT and the role of ImP must be studied, as well as if there is a causal role.

Two murine models with AT were used to see if the metabolite alone was able to induce the disease. ImP in drinking water was able to induce the disease in both models. So, ImP induces AT in proAT mice fed chow diet without affecting cholesterol levels in plasma. In the blood, ImP administration expanded proinflammatory Ly6C high monocytes, T-helper 17 (Th17) and Th1 cells. ImP administration induced an increase in fibroblasts, endotelial cells and immune cells, particularly T and B cells.

ImP exerts its role on its targets cell by acting on the imidazoline 1 receptor (I1R Nisch), which is blocked by AGN192403. In vivo, ImP drived atherosclerosis via I1R in myeloid cells. AGN was able to prevent AT progression upon high-cholesterol disease.

ImP is associated with AT in mice and humans, possibly serving as a biomarker of early and active AT. ImP alone induces AT by activating proatherogenic systemic innate and adaptative responses, without influencing bloodstream cholesterol.

The ongoing project is to test synergistic therapy with lipid-lowering treatments and generation of new molecules blocking the ImP/I1R axis. In addition, the development of a MS-based diagnostic tool to establish robust, standardized MS-based methodologies and ready-to-use kits for the reliable and reproducible quantification of ImP in biofluids for clinical applications. In clinics, it is important to define the use of high ImP as a marker for prognosis of future cardiovascular events and define physiological and pathological ranges of ImP in biofluids, together with testing the novel diagnostic devices for ImP quantification in clinical samples.

.4. Introduction to the use of GitHub and its applications in bioinformatics

Adrián Martín Segura - IMDEA Nutrición

GitHub Pages allows to host websites for free.

Git is an open-source version control system, a software to track the changes in code, manage files and directories and revert the changes. Git Bash is an easy way to use git on Windows. GitHub is an online hosting service, the cloud for git.

The advantage of GitHub is to be able to have different versions and merge them into a common one. Basic GitHub terms:

- Clone: making a local copy of a repository
- Commit: register the changes from a file
- Pull: take the main branch to the local copy
- Push: take the recent commits to the main branch of the remote from the local copy

If you clone a repository, you create a local copy. If you are not the owner of the repo, you have to ask permition every time you want to push (pull request). If you do a fork, you create a remote copy to your GitHub.

```
cd route/to/your/directory
git init
git add README.md
git commit -m "first commit"
git branch -M main
git remote add origin https://github.com/username/repo_name.git
git push -u origin main
git clone https://github.com/username/repo_name.git
git branch branch_name
git checkout branch_name
# Alternativa en un comando: git checkout -b branch_name
git branch
nano README.md
git add README.md
git commit -m "Update README via terminal"
git push
```