

Matemática 12^a Classe/2013

República de Moçambique Ministério da Educação

Exame Extraordinário

Conselho Nacional de Exames, Certificação e Equivalências

120 Minutos

Esta prova contém 40 perguntas com 4 alternativas de resposta para cada uma. Escolha a alternativa correcta e RISQUE a letra correspondente na sua folha de respostas. Responda a todas as primeiras 35 perguntas. As últimas 5 perguntas responda somente às da sua secção (Letras ou Ciências).

1. Q ı	ual das e	expressões represen	ta uma proposição	?	
A	$2 + 2 \cdot 6$	$\mathbf{B} \ 2x$	-1 = 0	\mathbf{C}	5+5=15

A
$$2 + 2 \cdot 6$$

$$\mathbf{R} \ 2x - 1 = 0$$

$$C = 5 + 5 = 15$$

$$\mathbf{D} x < 0$$

2. Considere $p \lor \sim q$ como uma proposição falsa. Qual das proposições é verdadeira?

$$\mathbf{A} p \wedge q$$

$$\mathbf{C} p \Leftrightarrow q$$

B
$$p \land \sim q$$

D
$$p \Leftrightarrow \sim q$$

3. Qual das expressões é equivalente a $\left(\frac{1}{m-n} - \frac{1}{m+n}\right) : \frac{2}{3m-3n}$?

$$\mathbf{A} \quad \frac{3n}{m+n}$$

$$\mathbf{B} \;\; \frac{2n}{m+n}$$

$$\mathbf{B} \ \frac{2n}{m+n} \qquad \qquad \mathbf{C} \ -\frac{2n}{m+n}$$

$$\mathbf{D} - \frac{3n}{m+n}$$

4. Qual é o segundo termo do desenvolvimento de $\left(x + \frac{1}{x}\right)^2$?

$$\mathbf{A} \ \frac{1}{x^2}$$

$$\mathbf{B} \ \frac{1}{x}$$

$$\mathbf{C} \quad 2x^2$$

5. Qual é o resultado da soma do número 3 com a solução da equação $\frac{2}{x} - \frac{1+3x}{3} = \frac{2-3x^2}{3x}$?

 \mathbf{A} 3

B 5

C 7

6. Qual é o conjunto solução da equação $\frac{\left(3^{x}\right)^{2}}{27} = 3^{x-1}$?

 $A \{2\}$

C {0;1}

D $\{0; 2\}$

7. Um avião levanta voo fazendo um ângulo de 30° em relação ao solo. Percorridos 8km, a que altura o avião se encontrará em relação ao solo?

- $\mathbf{A} \sqrt{3}km$
- **B** 4*km*

C $4\sqrt{3}km$

D 16km

- 8. Considerando $\cos \alpha = \frac{\sqrt{3}}{2}$ com $\alpha \in 1^{\circ}$ quadrante, a que é igual sena cosa?

 - **A** $\frac{-1-\sqrt{3}}{2}$ **B** $\frac{-1+\sqrt{3}}{2}$
- $C \frac{1-\sqrt{3}}{2}$

D $\frac{1+\sqrt{3}}{2}$

- 9. Qual é a condição para que |-x+1| = x-1?
 - $\mathbf{A} \quad x > 1$
- **B** $x \ge 1$

 $\mathbf{C} \quad x < 1$

D x < -1

- 10. Qual é o conjunto solução da equação |3x+2| = -1?
 - $A \left\{-\frac{3}{2}\right\}$

 $\mathbf{C} \left\{ -\frac{1}{3}; 1 \right\}$

- **D** $\left\{\frac{1}{3};1\right\}$
- 11. Quantas palavras com ou sem sentido podem ser escritas, com todas as letras da palavra ESCOLA, tal que sempre haja a sequência COL, nesta ordem?

- **D** 6
- 12. O João tem 4 pares de sapatos e 10 pares de meias. De quantas maneiras diferentes ele poderá calçar, utilizando de cada vez, um par de meias e um de sapatos?
 - **A** 4

B 10

- **D** 40
- 13. Lança-se um dado equilibrado, de faces numeradas de 1 a 6. Qual será a probabilidade de sair um número par?

 $\mathbf{B} \frac{1}{2}$

 $C \frac{1}{2}$

- $D = \frac{2}{3}$
- 14. Num café estão 20 pessoas das quais 8 são mulheres. Qual é a probabilidade de ao escolher uma das pessoas, ao acaso, seja homem?

 $C \frac{2}{5}$

- 15. Considere uma progressão aritmética com $a_{10} = 31$ e $a_{15} = 46$. Qual é a diferença entre os termos dessa progressão?
 - **A** 5

B - 3

 \mathbf{C} 3

- **D** 5
- 16. Os extremos de uma progressão aritmética de cinco termos são 1 e 13. Qual é a soma de todos os termos dessa progressão?
 - **A** 70

B 35

C 14

D 7

- 17. Qual é a soma de todos os termos da sucessão $\left(9; 3; 1; \frac{1}{3}; \frac{1}{9}; \frac{1}{27}; \frac{1}{81}; \dots\right)$?
 - $\mathbf{A} \quad \frac{3}{2}$

B $\frac{5}{2}$

 $C \frac{9}{2}$

- **D** $\frac{27}{2}$
- 18. Sabendo que (x; x+9; x+45;...) formam uma progressão geométrica, **qual é o valor de** x?
 - **A** 3

B 3

C 9

- **D** 27
- 19. Qual é a classificação da sucessão cujo termo geral é $a_n = (-n)^n$?
 - **A** Convergente e infinitamente pequena.
- C Divergente e infinitamente grande.
- **B** Convergente e infinitamente grande.
- **D** Divergente e infinitamente pequena.
- 20. O gráfico da função $f(x) = \frac{k}{x+1}$ passa pelo ponto $\left(1; \frac{2}{3}\right)$. Qual é o valor de k?
 - $\mathbf{A} \ \frac{2}{3}$

- **B** $\frac{3}{4}$
- $C \frac{3}{2}$

- **D** $\frac{4}{3}$
- 21. Seja $\frac{\pi}{4}$ o período da função $f(x) = \cos(2mx)$, com $m \in IR^+$. Qual é o valor de m?
 - $\mathbf{A} \ \frac{1}{8}$

 $\mathbf{B} \ \frac{\pi}{8}$

C 4

D 8

- 22. Qual destas afirmações está correcta?
 - A O gráfico de uma função quadrática é uma linha recta.
 - B Qualquer função do primeiro grau é ímpar.
 - C Qualquer função logarítmica tem assímptota horizontal.
 - **D** As funções trigonométricas são periódicas.
- 23. Quantas assímptotas verticais tem o gráfico da função $y = \frac{x-2}{x^2-4}$?
 - **A** 1

B 2

C 3

- **D** 4
- 24. Em quantos pontos se intersectam os gráficos das funções $f(x) = x^2 4x$ e g(x) = -3?
 - **A** 1

B 2

C 3

D 4

- 25. Qual é o valor de $\lim_{x\to\infty} \sqrt{\frac{3x^2 5x + 7}{27x^2 + 3}}$?
 - **A** 0

B $\frac{1}{9}$

 $C \frac{1}{3}$

D $\frac{7}{3}$

- 26. Qual é o valor de $\lim_{x\to 0} \frac{x + senx}{x + 2senx}$?
 - $\mathbf{A} \ \frac{3}{2}$
- **B** $\frac{2}{3}$

 $C = \frac{1}{3}$

D 0

- 27. Qual é o valor de $\lim_{x\to 0^-} \frac{|x|-3x}{2x}$?
 - \mathbf{A} -2

 ${\bf B}^{-1}$

C 1

- **D** 2
- 28. Considere a função $f(x) = \begin{cases} 2x 1 & \text{se } x \le 3 \\ x^2 + 5 & \text{se } x > 3 \end{cases}$. Qual é o valor de $\lim_{x \to 3^+} f(x)$?
 - **A** 5

B 7

C 8

- **D** 14
- 29. Considere que a função $f(x) = \begin{cases} \frac{x^2 6x + 8}{x^2 16} & \text{se } x \neq 4 \\ k + 1 & \text{se } x = 4 \end{cases}$ é contínua no ponto de abcissa x = 4.

Qual é o valor de k?

$$\mathbf{A}$$
 -1

B
$$-\frac{3}{4}$$

$$\mathbf{C} \frac{1}{4}$$

- **D** 3
- 30. A recta de equação y = 3x é tangente ao gráfico de uma certa função f, no ponto de abcissa x = 1.

Qual é a expressão que pode definir a função f?

A
$$f(x) = x^2 + 2x + 1$$

C
$$f(x) = x^2 + 3x - 1$$

B
$$f(x) = x^2 + 3x + 1$$

D
$$f(x) = x^2 + x + 1$$

- 31. Qual é a ordenada, do extremo máximo do gráfico da função $f(x) = -x^2 + 1$?
 - **A** 1

 $\mathbf{B} = 0$

C -1

 \mathbf{D} -2

- 32. Qual é a primeira derivada da função $y = cos^3(4x)$?
 - **A** $3\cos^2(4x)$

 $\mathbf{C} -12sen(4x)\cos^2(4x)$

B $3sen^{2}(4x)$

D $-12sen^2(4x)\cos(4x)$

- 33. Qual é a segunda derivada da função $f(x) = e^{2x}$?
 - $\mathbf{A} e^2$

 $\mathbf{B} \ e^{2x}$

C $2e^{2x}$

D $4e^{2x}$

34. Observe a figura:

Qual é a ordenada, dos pontos do gráfico, em que a função \underline{NAO} é derivável?

 \mathbf{A} -2

B −1

 \mathbf{C} 0

D 2

35. Observe a figura:

Quais são as abcissas dos pontos em que a função tem derivada nula?

- A -3 e -1
- **B** −1; 0 e 1
- \mathbf{C} -3; -1 e 0
- **D** -1 e 1

Somente para a Secção de Letras

- 36. Dados em IR, os conjuntos $P = \begin{bmatrix} -1,7 \end{bmatrix}$ e $Q = \begin{bmatrix} -\infty,2 \end{bmatrix}$, qual é o conjunto que representa $\overline{\overline{P} \cap Q}$?

 - **A**]-1;+ ∞ [**B** [-1;+ ∞ [**C** [2;7]

- **D** [2;7]
- 37. Qual é o conjunto que resulta da expressão $(Q \cup Q^-) \cap (Z \setminus IR)$?
 - **A** { }

- **D** IR
- 38. Uma escola ofereceu cursos de Matemática e Física, devendo os estudantes se matricularem em pelo menos um deles. Dos 50 estudantes de uma turma, 15 matricularam-se nos dois cursos, 25 matricularam - se em Física.
 - Quantos estudantes matricularam se em Matemática?
 - **A** 10

B 15

D 40

39. Qual é o valor de sen240°?

A
$$-\frac{4\sqrt{3}}{3}$$
 B $-\frac{\sqrt{3}}{2}$

B
$$-\frac{\sqrt{3}}{2}$$

$$\mathbf{C} \ \frac{\sqrt{3}}{3}$$

D
$$\frac{\sqrt{3}}{2}$$

40. Qual é o contradomínio da inversa da função, representada na figura?

 \mathbf{A} IR

 $\mathbf{B} IR_0^+$

 \mathbf{C} IR^+

 \mathbf{D} IR^-

Somente para a Secção de Ciências

- 36. Qual é o valor de k para que as rectas dadas por x-3y+9=0 e kx+y-8=0 sejam Perpendiculares entre si?
 - **A** -3

- **D** 3
- 37. Considere a função f(x) = senx com $x \in [-\pi; \pi]$. Qual é o domínio da função $h(x) = f\left(x + \frac{\pi}{2}\right)$?
 - **A** $\left[-\pi;\pi\right]$
- $\mathbf{B} \left[-\frac{3\pi}{2}; \frac{\pi}{2} \right] \qquad \qquad \mathbf{C} \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$

- $\mathbf{D} \left[-\frac{\pi}{2}; \frac{3\pi}{2} \right]$
- 38. Usando a unidade imaginária *i*, **como pode ser escrito o número** $\sqrt{-16}$?

 \mathbf{C} 4i

D Não existe

39. A que é igual $\int (x^4 + 3x^2 + 1) dx$?

A
$$4x^3 + 6x + c$$

C
$$x^5 + 3x^3 + x + c$$

B
$$\frac{x^5}{5} + x^3 + x^2 + c$$

D
$$\frac{x^5}{5} + x^3 + x + c$$

40. Qual é o gráfico da inversa da função $f(x) = 2^x$?

A

C

D

