Unit-7: Linear Temporal Logic

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 1: Introduction to LTL

$$AP = \{ p_1, p_2 \}$$

Transition System

Property

Transition system TS satisfies property P if

 $Traces(TS) \subseteq P$

Here: Another formalism - Linear Temporal Logic

 $\phi :=$

 $\phi := \text{true}$

$$\phi := \text{true} \mid p_i \mid$$

$$p_i \in AP$$

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 |$$

$$p_i \in AP$$
 $\phi_1, \phi_2 : LTL \text{ formulas}$

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 |$$

$$p_i \in AP$$
 $\phi_1, \phi_2 : LTL \text{ formulas}$

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 |$$

$$p_i \in AP$$
 $\phi_1, \phi_2 : LTL \text{ formulas}$

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid$$

$$p_i \in AP$$
 $\phi_1, \phi_2 : LTL$ formulas

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid$$

$$p_i \in AP$$
 $\phi_1, \phi_2 : LTL \text{ formulas}$

$$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : LTL formulas

 $\phi := \text{ true } \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \wedge \phi_2 \ | \neg \phi_1 \ | \ X \phi \ | \ \phi_1 \ U \ \phi_2$$

$$\{p_1\} \qquad \{p_1\} \qquad \{p_1\} \qquad \{p_2\} \qquad \{p_1\}$$

$$\neg (p_1 \ U \ p_2) \rightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$$

$$\phi := \text{ true } \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

$$\phi := \text{ true } \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | X \phi | \phi_1 U \phi_2$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | X \phi | \phi_1 U \phi_2$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | X \phi | \phi_1 U \phi_2$$

Derived operators

$$\blacktriangleright F \phi$$
: true $U \phi$ (Eventually)

$$ightharpoonup G \phi: \neg F \neg \phi$$
 (Always)

G F ϕ (Infinitely often)

G F ϕ (Infinitely often)

F G ϕ (Eventually forever)

Coming next: More examples

Atomic propositions $AP = \{ crit_1, wait_1, crit_2, wait_2 \}$

► Safety: both processes cannot be in critical section simultaneously

$$\mathbf{G} (\neg crit_1 \lor \neg crit_2)$$

Liveness: each process visits critical section infinitely often

$$\mathbf{G} \mathbf{F} \operatorname{crit}_1 \wedge \mathbf{G} \mathbf{F} \operatorname{crit}_2$$

Summary

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi_1 \ | \ X \phi \ | \ \phi_1 \ U \ \phi_2$$

 $F \phi$: true $U \phi$ (Eventually) $G \phi$: $\neg F \neg \phi$ (Always)

Unit-7: Linear Temporal Logic

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2: Semantics of LTL

Property 1: p_1 is always true

Property 1: p_1 is always true

Property 1: p_1 is always true

Property 2: p_1 is true at least once and p_2 is always true

Property 1: p_1 is always true

Property 2: p_1 is true at least once and p_2 is always true

 $\{A_0A_1A_2\cdots\in AP\text{-INF}\mid \text{ exists }A_i \text{ containing }p_1 \text{ and every }A_j \text{ contains }p_2\}$

```
{p_2}{p_1,p_2}{p_2}{p_2}{p_2}{p_1,p_2}{p_2}...
{p_1,p_2}{p_2}{p_2}{p_2}{p_2}{p_2}...
\vdots
```

A property over AP is a subset of AP-INF

A property over AP is a subset of AP-INF

LTL can be used to **specify properties**

A property over AP is a subset of AP-INF

LTL can be used to specify properties

LTL can be used to describe subsets of AP-INF

$$\phi := \text{ true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

LTL formula $\phi \longrightarrow \operatorname{Words}(\phi)$

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 | \neg \phi_1 | \ X \phi \ | \phi_1 \ U \phi_2$$

LTL formula
$$\phi \rightarrow \operatorname{Words}(\phi) \subseteq \operatorname{AP-INF}$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | X \phi | \phi_1 U \phi_2$$

LTL formula
$$\phi \rightarrow \operatorname{Words}(\phi) \subseteq \operatorname{AP-INF}$$

Words(ϕ): set of words in AP-INF that satisfy ϕ

When does a word satisfy LTL formula ϕ ?

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi_1 \ | \ X \phi \ | \ \phi_1 \ U \ \phi_2$$

Word $\sigma: A_0A_1A_2 \dots \in AP$ -INF

$$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

Word $\sigma: A_0 A_1 A_2 \dots \in AP$ -INF

Every word satisfies true

$$\phi := \text{ true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

Word
$$\sigma: A_0A_1A_2 \dots \in AP$$
-INF

Every word satisfies true

 σ satisfies p_i if $p_i \in A_0$

$$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

Word $\sigma: A_0A_1A_2 \dots \in AP$ -INF

Every word satisfies true

 σ satisfies p_i if $p_i \in A_0$

 σ satisfies $\phi_1 \wedge \phi_2$ if σ satisfies ϕ_1 and σ satisfies ϕ_2

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | X \phi | \phi_1 U \phi_2$$

$$\text{Word } \sigma : A A A_2 \dots \in \text{AP-INF}$$

Word $\sigma: A_0A_1A_2 \dots \in AP$ -INF

Every word satisfies true

 σ satisfies p_i if $p_i \in A_0$

 σ satisfies $\phi_1 \, \wedge \, \phi_2 \quad \text{if} \quad \sigma \text{ satisfies } \phi_1 \quad \text{and} \quad \sigma \text{ satisfies } \phi_2$

 σ satisfies $\neg \phi$ if σ does not satisfy ϕ

$$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

$$\text{Word } \sigma : A_0 A_1 A_2 \ldots \in \text{AP-INF}$$

$$\text{Every word satisfies } \textit{true}$$

$$\sigma \text{ satisfies } p_i \quad \text{if} \quad p_i \in A_0$$

$$\sigma \text{ satisfies } \phi_1 \land \phi_2 \quad \text{if} \quad \sigma \text{ satisfies } \phi_1 \quad \text{and} \quad \sigma \text{ satisfies } \phi_2$$

$$\sigma \text{ satisfies } \neg \phi \quad \text{if} \quad \sigma \text{ does not satisfy } \phi$$

 σ satisfies $X \phi$ if $A_1 A_2 A_3 \dots$ satisfies ϕ

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi_1 \ | \ X \phi \ | \ \phi_1 \ U \ \phi_2$$

$$\textbf{Word } \sigma : A_0 A_1 A_2 \ \dots \ \in \text{AP-INF}$$

$$\textbf{Every word satisfies} \quad \textit{true}$$

$$\sigma \text{ satisfies } p_i \quad \text{if} \quad p_i \in A_0$$

 σ satisfies $\phi_1 \wedge \phi_2$ if σ satisfies ϕ_1 and σ satisfies ϕ_2 $\sigma \text{ satisfies } \neg \phi \quad \text{if} \quad \sigma \text{ does not satisfy } \phi$ $\sigma \text{ satisfies } X \phi \quad \text{if} \quad A_1 A_2 A_3 \dots \text{ satisfies } \phi$

 σ satisfies $\phi_1 U \phi_2$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ_2 and for all $0 \le i < j$ $A_i A_{i+1} \dots$ satisfies ϕ_1

 $\mathbf{Words}(\phi) = \{ \ \sigma \in \mathsf{AP}\text{-}\mathsf{INF} \ | \ \sigma \ \mathsf{satisfies} \ \phi \ \}$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | X \phi | \phi_1 U \phi_2$$
Every word satisfies true
$$\sigma \text{ satisfies } p_i \text{ if } p_i \in A_0$$

$$\sigma$$
 satisfies p_i if $p_i \in A_0$

$$\sigma$$
 satisfies $\phi_1 \wedge \phi_2$ if σ satisfies ϕ_1 and σ satisfies ϕ_2

$$\sigma$$
 satisfies $\neg \phi$ if σ does not satisfy ϕ

$$\sigma$$
 satisfies $X \phi$ if $A_1 A_2 A_3 \dots$ satisfies ϕ

$$\sigma$$
 satisfies $\phi_1 U \phi_2$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ_2 and for all $1 \le i < j$ $A_i A_{i+1} \dots$ satisfies ϕ_1

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \neg \phi_1 \ | \ X \phi \ | \ \phi_1 \ U \phi_2$$
 Every word satisfies $true$ Words $(true) = \text{AP-INF}$ σ satisfies p_i if $p_i \in A_0$
$$\sigma \text{ satisfies } \phi_1 \land \phi_2 \text{ if } \sigma \text{ satisfies } \phi_1 \text{ and } \sigma \text{ satisfies } \phi_2$$

$$\sigma \text{ satisfies } \neg \phi \text{ if } \sigma \text{ does not satisfy } \phi$$

$$\sigma \text{ satisfies } X \phi \text{ if } A_1 A_2 A_3 \dots \text{ satisfies } \phi$$

 σ satisfies $\phi_1 \ U \ \phi_2$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ_2 and for all $1 \le i < j \ A_i A_{i+1} \dots$ satisfies ϕ_1

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \neg \phi_1 \ | \ X \phi \ | \ \phi_1 \ U \phi_2$$
 Every word satisfies true
$$\text{Words}(true) = \text{AP-INF}$$

$$\sigma \text{ satisfies } p_i \quad \text{if } \quad p_i \in A_0$$

$$\text{Words}(p_i) = \{ A_0 A_1 A_2 \dots | p_i \in A_0 \}$$

$$\sigma \text{ satisfies } \phi_1 \land \phi_2 \quad \text{if } \quad \sigma \text{ satisfies } \phi_1 \quad \text{and } \quad \sigma \text{ satisfies } \phi_2$$

$$\sigma \text{ satisfies } \neg \phi \quad \text{if } \quad \sigma \text{ does not satisfy } \phi$$

$$\sigma \text{ satisfies } X \phi \quad \text{if } \quad A_1 A_2 A_3 \dots \text{ satisfies } \phi$$

 σ satisfies $\phi_1 \ U \ \phi_2$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ_2 and for all $1 \le i < j \ A_i A_{i+1} \dots$ satisfies ϕ_1

$$\phi \coloneqq \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$$

Every word satisfies true
$$\operatorname{Words}(true) = \operatorname{AP-INF}$$
 σ satisfies p_i if $p_i \in A_0$
$$\operatorname{Words}(p_i) = \{A_0 A_1 A_2 \dots | p_i \in A_0\}$$
 σ satisfies $\phi_1 \wedge \phi_2$ if σ satisfies ϕ_1 and σ satisfies ϕ_2
$$\operatorname{Words}(\phi_1 \wedge \phi_2) = \operatorname{Words}(\phi_1) \cap \operatorname{Words}(\phi_2)$$
 σ satisfies $\neg \phi$ if σ does not satisfy ϕ
$$\sigma$$
 satisfies $X \phi$ if $A_1 A_2 A_3 \dots$ satisfies ϕ

 σ satisfies $\phi_1 U \phi_2$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ_2 and for all $1 \le i < j$ $A_i A_{i+1} \dots$ satisfies ϕ_1

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | X \phi | \phi_1 U \phi_2$$

 σ satisfies $\phi_1 U \phi_2$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ_2 and for all $1 \le i < j$ $A_i A_{i+1} \dots$ satisfies ϕ_1

$\phi := \text{true} \mid p_1 \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$ Every word satisfies Words(true) = AP-INF σ satisfies p_i if $p_i \in A_0$ $Words(p_i) = \{ A_0 A_1 A_2 \dots | p_i \in A_0 \}$ σ satisfies $\phi_1 \wedge \phi_2$ if σ satisfies ϕ_1 and σ satisfies ϕ_2 $Words(\phi_1 \land \phi_2) = Words(\phi_1) \cap Words(\phi_2)$ σ satisfies $\neg \phi$ if σ does not satisfy ϕ $Words(\neg \phi) = (Words(\phi))^c$ σ satisfies $X \phi$ if $A_1 A_2 A_3 \dots$ satisfies ϕ $\operatorname{Words}(X \phi) = \{ A_0 A_1 A_2 \dots \mid A_1 A_2 \dots \in \operatorname{Words}(\phi) \}$

 σ satisfies $\phi_1 U \phi_2$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ_2 and for all $1 \le i < j$ $A_i A_{i+1} \dots$ satisfies ϕ_1

$\phi := \text{true} \mid p_1 \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid X \phi \mid \phi_1 U \phi_2$ Every word satisfies Words(true) = AP-INF σ satisfies p_i if $p_i \in A_0$ $Words(p_i) = \{ A_0 A_1 A_2 \dots | p_i \in A_0 \}$ σ satisfies $\phi_1 \wedge \phi_2$ if σ satisfies ϕ_1 and σ satisfies ϕ_2 $Words(\phi_1 \land \phi_2) = Words(\phi_1) \cap Words(\phi_2)$ σ satisfies $\neg \phi$ if σ does not satisfy ϕ $Words(\neg \phi) = (Words(\phi))^c$ σ satisfies $X \phi$ if $A_1 A_2 A_3 \dots$ satisfies ϕ $\operatorname{Words}(X \phi) = \{ A_0 A_1 A_2 \dots \mid A_1 A_2 \dots \in \operatorname{Words}(\phi) \}$ σ satisfies $\phi_1 U \phi_2$ if there exists j s.t. $A_i A_{i+1} \dots$ satisfies ϕ_2 and for all $1 \le i \le j$ $A_i A_{i+1} \dots$ satisfies ϕ_1

Words $(\phi_1 U \phi_2) = \{A_0 A_1 A_2 \dots \mid \exists j A_i A_{i+1} \dots \in \text{Words}(\phi_2) \text{ and } \}$

 $\forall 0 \leq i < j. A_i A_{i+1} \cdots \in Words(\phi_1)$

F ϕ : true $U \phi$

 $F \phi$: true $U \phi$

 σ satisfies true U ϕ if there exists j s.t. $A_j A_{j+1} \ldots$ satisfies ϕ and for all $0 \le i < j$ $A_i A_{j+1} \ldots$ satisfies true

F ϕ : true $U \phi$

 σ satisfies true $U \phi$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ

F
$$\phi$$
: true $U \phi$

 σ satisfies $true\ U\ \phi$ if there exists j s.t. $A_jA_{j+1}\dots$ satisfies ϕ

$$G \phi$$
: $\neg F \neg \phi$

F
$$\phi$$
: true $U \phi$

 σ satisfies true $U \phi$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ

G
$$\phi$$
: $\neg F \neg \phi$

 σ satisfies $F \neg \phi$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies $\neg \phi$

F
$$\phi$$
: true $U \phi$

$$\sigma$$
 satisfies true $U \phi$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ

$$G \phi$$
: $\neg F \neg \phi$

$$\sigma$$
 satisfies $F \neg \phi$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies $\neg \phi$

$$\sigma$$
 satisfies $\neg F \neg \phi$ if σ does not satisfy $F \neg \phi$

F
$$\phi$$
: true $U \phi$

 σ satisfies true $U \phi$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies ϕ

$$G \phi$$
: $\neg F \neg \phi$

$$\sigma$$
 satisfies $F \neg \phi$ if there exists j s.t. $A_j A_{j+1} \dots$ satisfies $\neg \phi$

$$\sigma$$
 satisfies $\neg F \neg \phi$ if σ does not satisfy $F \neg \phi$

$$\sigma$$
 satisfies $\neg F \neg \phi$ if for all j $A_j A_{j+1} \dots$ satisfies ϕ

$$AP = \{ p_1, p_2 \}$$

Transition System

Property

LTL formula ϕ

$$AP = \{ p_1, p_2 \}$$

Transition System

Property

LTL formula ϕ

Transition system TS satisfies formula ϕ if

$$Traces(TS) \subseteq Words(\phi)$$

TS does not satisfy ϕ TS does not satisfy $\neg \phi$

TS does not satisfy ϕ — TS does not satisfy $\neg \phi$

TS does not satisfy ϕ — TS does not satisfy $\neg \phi$

Above TS does not satisfy $F p_1$ Above TS does not satisfy $\neg F p_1$

Semantics of LTL

Unit-7: Linear Temporal Logic

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 3:

A Puzzle

▶ There is a **boat** that can be driven by the man

- ▶ There is a **boat** that can be driven by the man
- ▶ Man can take only **one passenger** in the boat with him at a time

- ► There is a **boat** that can be driven by the man
- ▶ Man can take only **one passenger** in the boat with him at a time
- ► Goat and cabbage cannot be left in the same bank if man is not there

- ► There is a **boat** that can be driven by the man
- ▶ Man can take only **one passenger** in the boat with him at a time
- ► Goat and cabbage cannot be left in the same bank if man is not there
- ▶ Wolf and goat cannot be left in the same bank if man is not there

- ► There is a **boat** that can be driven by the man
- ▶ Man can take only **one passenger** in the boat with him at a time
- ► Goat and cabbage cannot be left in the same bank if man is not there
- ▶ Wolf and goat cannot be left in the same bank if man is not there

How can the man shift everyone to the right bank?

Coming next: Solution using LTL model-checking

carry =
$$\{g,w,c,0\}$$

man can carry a passenger which has same value as him

man can carry a passenger which has same value as him

NuSMV demo

```
\phi: ((goat = cabbage | wolf = goat) -> man = goat) 
 U (man & cabbage & goat & wolf)
```

```
\phi: ((goat = cabbage | wolf = goat) -> man = goat) U (man & cabbage & goat & wolf)
```

NuSMV checks property on all paths

$$\phi$$
: ((goat = cabbage | wolf = goat) -> man = goat)
 U (man & cabbage & goat & wolf)

NuSMV checks property on all paths

Check $|\phi|$ and look at the **counter-example!**

Summary

LTL model-checking

Use in planning problem

Reference

Section 3.3.2

M. Huth and M. Ryan. Logic in Computer Science (Second Edition, Cambridge University Press)

Unit-7: Linear Temporal Logic

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 3:

A Puzzle

▶ There is a **boat** that can be driven by the man

- ▶ There is a **boat** that can be driven by the man
- ▶ Man can take only **one passenger** in the boat with him at a time

- ► There is a **boat** that can be driven by the man
- ▶ Man can take only **one passenger** in the boat with him at a time
- ► Goat and cabbage cannot be left in the same bank if man is not there

- ► There is a **boat** that can be driven by the man
- ▶ Man can take only **one passenger** in the boat with him at a time
- ► Goat and cabbage cannot be left in the same bank if man is not there
- ▶ Wolf and goat cannot be left in the same bank if man is not there

- ► There is a **boat** that can be driven by the man
- ▶ Man can take only **one passenger** in the boat with him at a time
- ► Goat and cabbage cannot be left in the same bank if man is not there
- ▶ Wolf and goat cannot be left in the same bank if man is not there

How can the man shift everyone to the right bank?

Coming next: Solution using LTL model-checking

carry =
$$\{g,w,c,0\}$$

man can carry a passenger which has same value as him

man can carry a passenger which has same value as him

NuSMV demo

```
\phi \colon ((\text{goat = cabbage } \mid \, \text{wolf = goat}) \, \rightarrow \, \text{man = goat}) 
 U (man & cabbage & goat & wolf)
```

```
\phi: ((goat = cabbage | wolf = goat) -> man = goat) U (man & cabbage & goat & wolf)
```

NuSMV checks property on all paths

$$\phi$$
: ((goat = cabbage | wolf = goat) -> man = goat)
 U (man & cabbage & goat & wolf)

NuSMV checks property on all paths

Check $|\phi|$ and look at the **counter-example!**

Summary

LTL model-checking

Use in planning problem

Reference

Section 3.3.2

M. Huth and M. Ryan. Logic in Computer Science (Second Edition, Cambridge University Press)