Homework #3

Due date: 11/3

Prime factorization and divisor

Given an integer $n \ge 2$, factor it into primes and use the factorization to determine the number and sum of divisors of n.

Let $n=p_1^{\ e_1}p_2^{\ e_2}\cdots p_k^{\ e_k}$, where $p_1< p_2< \cdots < p_k$ are primes and $e_i>0$, be the prime factorization of n. Then,

the number of divisors of
$$n = \prod_{i=1}^{k} (1 + e_i)$$

and

the sum of divisors of
$$n = \prod_{i=1}^k \sum_{j=0}^{e_i} p_i^j$$

For example, $20=2^2\cdot 5$ has 6 divisors, namely, 1,2,4,5,10 and 20. By the formulas, we see that the number of divisors of 20 is (1+2)(1+1)=6, and the sum of divisors of 20 is $(2^0+2^1+2^2)(5^0+5^1)=42$, as desired.

Requirements

1 You shall write the following function

```
void factorization(int n);
```

to factor n and compute the number and sum of its divisors. The kernel of this function is the following loop:

```
while (not finish yet) {    Let p= the next prime    Let e= the largest integer such that p^e divides n Let n=n/p^e }
```

For example, let $n=20=2^2\cdot 5$, the values of p,e, and n at the end of each iteration are shown below:

$$1^{\text{st}}$$
 iteration $p=2$ $e=2$ $n=5$
 2^{nd} iteration $p=3$ $e=0$ $n=5$
 3^{rd} iteration $p=5$ $e=1$ $n=1$

In this case, the loop terminates when n=1. In other cases, we don't need to wait until n=1 to terminate the loop.

For example, let $n = 84 = 2^2 \cdot 3 \cdot 7$, then

```
1^{	ext{st}} iteration p=2 e=2 n=21
2^{	ext{nd}} iteration p=3 e=1 n=7
3^{	ext{rd}} iteration p=5 e=0 n=7 (redundant)
4^{	ext{th}} iteration p=7 e=1 n=1 (redundant)
```

The last two iterations are redundant, because n is already a prime at the end of the 2^{nd} iteration

Figure out a good termination condition for the loop.

- 2 Compute the value of p_i^j incrementally. That is, do not compute p_i^j from scratch. Instead, use the value of p_i^{j-1} to compute p_i^j .
- 3 Refer to the sample run below for the required output format

Sample run

```
Enter an integer >= 2: 20
Prime factorization of 20 = pow(2,2)pow(5,1)
Number of divisors = 6
Sum of divisors = 42

Enter an integer >= 2: 84
Prime factorization of 84 = pow(2,2)pow(3,1)pow(7,1)
Number of divisors = 12
Sum of divisors = 224
```

Enter an integer >= 2: 427309124
Prime factorization of 427309124 = pow(2,2)pow(11,1)pow(9711571,1)
Number of divisors = 12
Sum of divisors = 815772048

Enter an integer >= 2: 291347131
Prime factorization of 291347131 = pow(291347131,1)
Number of divisors = 2
Sum of divisors = 291347132

Enter an integer >= 2: ^Z