MSc - Data Mining

Topic 06: Classification

Data Mining (Week 6)

Outline

1. Introduction

2.2. Multiclass Classification

1.1. Classification vs Regression	4
1.2. Summary of Classification Models	7
1.3. Lazy vs Eager Learners	8
2. Evaluating Classification Models	9

Classification vs Regression

Supervised data models have a target.

If target is quantitate (continuous) then have a regression model, if categorical then classification model.

Classification models aim to:

- predict class/label for each new observation,
- define a decision boundary between classes,
- and possibly the probability of being in each class.

Regression models aim to

• predict a continuous value for each new observation.

Classification vs Regression

- Unlike regression, statistical distributions play a limited role in evaluating a classifier:
 - Scope for hypothesis testing is limited (there is no equivalent of the statsmodels diagnostic output (covered by Bernard, in week 5).
 - Rely on empirical metrics accuracy, precision, recall, f1-score, auc, ...
- Classification metrics tend to be easier to use/understand than those in regression classification metrics are based on counts of correct (or incorrect) cases divided by a subset of cases.
- Central concept in classification model is the confusion matrix:

		Predicted		
		Negative	Positive	
Actual	Negative	True Negative (TN)	Type I error False Positive (FP)	N
	Positive	Type II error False Negative (FN)	True Positive (<i>TP</i>)	P
		Ñ	\hat{P}	T

Unbalanced Classification Datasets

Practical classification datasets are often unbalanced — where the frequency of the classes in the target are very uneven:

Introduction

- Telecommunication customer churn datasets.
- Credit Card Fraud Detection
- National Institutes of Health Chest X-Ray Dataset

Churn rate of 2%-10%.

0.172% (492 frauds / 284.807 transactions).

14 cases, (size 13 to 3.044) in 5.606 cases

Solutions

Use suitable metrics and/or

Summary of Classification Models

	Data Pre-proc	cessing*	Impact	from	
Model	Normalisation	Scaling	Collinearity	Outliers	Summary
Logistic Regression	~	×	✓	V	Descriptive with good accuracy Reasonable computational requirements
Naïve Bayes	NA	NA	✓	V	Works with categorical features onlySuitable for small train datasets
KNN	✓	✓	✓	✓	 Local approximation, lazy learner Heavy computational requirements
Random Forest (Week 8)	×	×	×	~	High prediction accuracy Limited explainability Works with both continuous and categorical features
Support Vector Classi (Week 8)	fier 🗶	×	X / V	v	High prediction accuracy Explainability depends on kernel Computational effort depends on kernel
Neural Networks (Week 12)	×	V	v	v	High prediction accuracy Self-extract features Heavy computational requirements

^{*}Use StandardScaler, or RobustScaler if have outliers.

Lazy vs Eager Learners

Lazy learner

Stores training data (or only minor processing) and uses this to compute prediction when given test data.

- Does not generalise until after training
- Does not produce a standalone model
- Training data must be kept for prediction
- Local approximations
- Often based on search
- If new data is just added to the training data, it can respond more easily to changing conditions

Eager learner

Builds a model from the train set, before receiving new data for prediction

- Training has an extra goal: to generalise from the data
- Training has an extra output: standalone model
- Training data can be discarded after use
- Local and/or global approximations
- Based on *computation*
- Models drift with time, so not suited to highly dynamic contexts, as it needs retraining

Usually an (eager) model requires much less memory than a (lazy) training set.

Lazy vs Eager Learners

Lazy learner

Stores training data (or only minor processing) and uses this to compute prediction when given test data.

- Does not generalise until after training
- Does not produce a standalone model
- Training data must be kept for prediction
- Local approximations
- Often based on search
- If new data is just added to the training data, it can respond more easily to changing conditions

Eager learner

Builds a model from the train set, before receiving new data for prediction

- Training has an extra goal: to generalise from the data
- Training has an extra output: standalone model
- Training data can be discarded after use
- Local and/or global approximations
- Based on *computation*
- Models *drift* with time, so not suited to highly dynamic contexts, as it needs retraining

Usually an (eager) model requires much less memory than a (lazy) training set.

Outline

2. Evaluating Classification Models

2.2. Multiclass Classification

2.1. Imperfect Tests

1. 1	Introduction
1.1	. Classification vs Regression
1.2	2. Summary of Classification Models
1.3	. Lazy vs Eager Learners

10

14

Consider an imperfect test with two outcomes, there are four possible outcomes:

Consider an imperfect test with two outcomes, there are four possible outcomes:

		Predicted		
		Negative	Positive	
nal	Negative	True Negative (TN)		N
Act	Positive		True Positive (<i>TP</i>)	P
		Ñ	\hat{P}	T

Consider an imperfect test with two outcomes, there are four possible outcomes:

Confusion Matrix

Predicted

		Negative	Positive	
	N	~	Type I error	λ/
E I	Negative	True Negative (TN)	False Positive (FP)	1 V
Positive		Type II error	✓	D
		False Negative (FN)	True Positive (TP)	Γ
		Ñ	\hat{P}	T

Consider an imperfect test with two outcomes, there are four possible outcomes:

Confusion Matrix

Predicted Negative Positive Positive Positive Positive (TN) Positive (TN) Positive (TN) Positive (TN) Prue Positive (TN) Pr

- If the test is applied to $T = P + N = \hat{P} + \hat{N}$ observations / subjects / instances then we have four independent quantities TP, TN, FP, and FN
- How do we combines these quantities into a single metric.
- The fraction of correct results seems like a good idea

$$accuracy = \frac{TP + TN}{P + N}$$

But what happens, if we are testing for an rare event? Maximising accuracy will result in the test always returning negative.

- Ideally we want the probability of either error to be zero but that may not be possible.
- Depending on the conditions we often modify the test to reduce probability of the type of error we don't want at the expense of increasing the probability of the other — think court case vs medical condition

Consider an imperfect test with two outcomes, there are four possible outcomes:

Confusion Matrix

Predicted Negative Positive Positive Type I error Positive Type II error Type II error False Negative (FN) \hat{N} Predicted Negative Positive Positive (FN)Type I error False Negative (FN)True Positive (TP) \hat{N}

- If the test is applied to $T = P + N = \hat{P} + \hat{N}$ observations / subjects / instances then we have four independent quantities TP, TN, FP, and FN
- How do we combines these quantities into a single metric.
- The fraction of correct results seems like a good ide:

$$accuracy = \frac{TP + TN}{P + N}$$

But what happens, if we are testing for an rare event? Maximising accuracy will result in the test always returning negative.

- Ideally we want the probability of either error to be zero but that may not be possible.
- Depending on the conditions we often modify the test to reduce probability of the type of error we don't want at the expense of increasing the probability of the other — think court case vs medical condition

Consider an imperfect test with two outcomes, there are four possible outcomes:

Confusion Matrix

$\begin{array}{|c|c|c|c|c|} \hline & & & & & & \\ \hline & Negative & Negative & Positive \\ \hline Negative & & & & & & & \\ \hline Negative & & & & & & & \\ \hline Negative & & & & & & & \\ \hline True Negative (TN) & False Positive (FP) & \\ \hline Positive & & & & & & \\ \hline Positive & False Negative (FN) & True Positive (TP) & \\ \hline \hline \hat{N} & \hat{P} & T \\ \hline \end{array}$

- If the test is applied to $T = P + N = \hat{P} + \hat{N}$ observations / subjects / instances then we have four independent quantities TP, TN, FP, and FN
- How do we combines these quantities into a single metric?
- The fraction of correct results seems like a good idea

$$accuracy = \frac{TP + TN}{P + N}$$

But what happens, if we are testing for an rare event? Maximising accuracy will result in the test always returning negative

- Ideally we want the probability of either error to be zero but that may not be possible.
- Depending on the conditions we often modify the test to reduce probability of the type of error we don't want at the expense of increasing the probability of the other — think court case vs medical condition

Consider an imperfect test with two outcomes, there are four possible outcomes:

Confusion Matrix

Predicted Negative Positive Negative Type I error True Negative (TN) False Positive (FP) Type II error False Negative (FN) True Positive (TP) Positive Type II error False Negative (FN) True Positive (TP)

- If the test is applied to $T = P + N = \hat{P} + \hat{N}$ observations / subjects / instances then we have four independent quantities TP, TN, FP, and FN
- How do we combines these quantities into a single metric?
- The fraction of correct results seems like a good idea

$$accuracy = \frac{TP + TN}{P + N}$$

But what happens, if we are testing for an rare event? Maximising accuracy will result in the test always returning negative.

- Ideally we want the probability of either error to be zero but that may not be possible.
- Depending on the conditions we often modify the test to reduce probability of the type of error we don't want at the expense of increasing the probability of the other — think court case vs medical condition

A	TP + TN
Accuracy =	$\overline{P+N}$
(How often is th	ne classifier correct?)

		Predicted			
		Negative	Positive		
Actual	Negative True Negative (TN)		Type I error False Positive (FP)	N	
	Positive	Type II error False Negative (FN)	True Positive (<i>TP</i>)	P	
		Ñ	\hat{P}	1_T	

- Sensitivity = Recall = True positive rate (TPR) = $\frac{TP}{D}$ = 1 FNR
- Specificity = $\frac{TN}{N}$ = 1 FPR
- False positive rate (FPR) = false acceptance = $\frac{FP}{N}$ = 1 Specificity
- **Precision** = positive predictive value (PPV) = $\frac{TP}{\hat{p}} = \frac{TP}{TP + FP}$

A	TP + TN
Accuracy =	$\overline{P+N}$
(How often is th	e classifier correct?)

		Predicted			
		Negative	Positive		
Actual	Negative	True Negative (TN)	Type I error False Positive (FP)	N	
	Positive	Type II error False Negative (FN)	True Positive (<i>TP</i>)	P	
		Ñ	\hat{P}	T	

- Sensitivity = Recall = True positive rate (TPR) = $\frac{TP}{P}$ = 1 FNR
- Specificity = $\frac{TN}{N}$ = 1 FPR
- False positive rate (FPR) = false acceptance = $\frac{FP}{N}$ = 1 Specificity
- **Precision** = positive predictive value (PPV) = $\frac{TP}{\hat{P}} = \frac{TP}{TP + FP}$

A	TP + TN
Accuracy =	$\overline{P+N}$
(How often is th	e classifier correct?)

		Pred	icted	
		Negative	Positive	
ual	Negative	True Negative (TN)	Type I error False Positive (FP)	N
Actua	Positive	Type II error False Negative (FN)	True Positive (<i>TP</i>)	P
		Ñ	\hat{P}	T

- Sensitivity = Recall = True positive rate (TPR) = $\frac{TP}{P}$ = 1 FNR (Of positive cases that exist how many did we mark positive?)
- Specificity = $\frac{TN}{N}$ = 1 FPR
- False positive rate (FPR) = false acceptance = $\frac{FP}{N}$ = 1 Specificity
- **Precision** = positive predictive value (PPV) = $\frac{TP}{\hat{p}} = \frac{TP}{TP + FP}$

	TP + TN
Accuracy =	$\overline{P+N}$
(How often is the	e classifier correct?)

		Pred	icted	
		Negative	Positive	
ual	Negative	True Negative (TN)	Type I error False Positive (FP)	N
Actual	Positive	Type II error False Negative (FN)	True Positive (TP)	P
		Ñ	\hat{P}	T

- Sensitivity = Recall = True positive rate (TPR) = $\frac{TP}{D}$ = 1 FNR (Of positive cases that exist how many did we mark positive?)
- Specificity = $\frac{TN}{N}$ = 1 FPR (When it's actually no, how often does we predict no?) (Of cases that are negative, how many did we mark negative?)
- False positive rate (FPR) = false acceptance = $\frac{FP}{N}$ = 1 Specificity
- **Precision** = positive predictive value (PPV) = $\frac{TP}{\hat{p}} = \frac{TP}{TP + FP}$

	TP + TN
Accuracy =	$\overline{P+N}$
(How often is the	e classifier correct?)

		Pred	icted	
		Negative	Positive	
nal	Negative	True Negative (TN)	Type I error False Positive (FP)	N
Actual	Positive	Type II error False Negative (FN)	True Positive (<i>TP</i>)	P
		Ñ	\hat{P}	T

- Sensitivity = Recall = True positive rate (TPR) = $\frac{TP}{P}$ = 1 FNR (Of positive cases that exist how many did we mark positive?)
- Specificity = $\frac{TN}{N}$ = 1 FPR (When it's actually no, how often does we predict no?) (Of cases that are negative, how many did we mark negative?)
- False positive rate (FPR) = false acceptance = $\frac{FP}{N}$ = 1 Specificity
- **Precision** = positive predictive value (PPV) = $\frac{TP}{\hat{p}} = \frac{TP}{TP + FP}$

A	TP + TN
Accuracy =	$= {P+N}$
(How often is	the classifier correct?)

		Pred	icted	
		Negative	Positive	
nal	Negative	True Negative (TN)	Type I error False Positive (FP)	N
Actua	Positive	Type II error False Negative (FN)	True Positive (<i>TP</i>)	P
		Ñ	\hat{P}	T

- Sensitivity = Recall = True positive rate (TPR) = $\frac{TP}{P}$ = 1 FNR (Of positive cases that exist how many did we mark positive?)
- Specificity = $\frac{TN}{N}$ = 1 FPR (When it's actually no, how often does we predict no?) (Of cases that are negative, how many did we mark negative?)
- False positive rate (FPR) = false acceptance = $\frac{FP}{N}$ = 1 Specificity
- **Precision** = positive predictive value (PPV) = $\frac{TP}{\hat{p}} = \frac{TP}{TP + FP}$ (Of cases that we marked positive, how many were correct?)

Accuracy — how well model is trained and performs in general

 $Accuracy = \frac{TP + TN}{P + N}$

P + N (How often is the classifier correct?)

• False negative rate (FNR) = $\frac{FN}{P}$ = 1 - TPR

- Predicted

 Negative Positive

 Negative True Negative (TN) False Positive (FP) Positive \hat{N} \hat{P} T
- Sensitivity = Recall = True positive rate (TPR) = $\frac{TP}{P}$ = 1 FNR (Of positive cases that exist how many did we mark positive?)

Recall — important when the costs of false negatives are high

- Specificity = $\frac{TN}{N}$ = 1 FPR (When it's actually no, how often does we predict no?) (Of cases that are negative, how many did we mark negative?)
- False positive rate (FPR) = false acceptance = $\frac{FP}{N}$ = 1 Specificity
- **Precision** = positive predictive value (PPV) = $\frac{TP}{\hat{P}} = \frac{TP}{TP + FP}$ (Of cases that we marked positive, how many were correct?)

Precision — important when the costs of false positives are high

F_1 Score

The F-measure or balanced F-score (F_1 score) is the harmonic mean of precision and recall:

$$F_1 = 2\left[\frac{1}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}}\right] = 2\left[\frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\right]$$

A		A B		С	
		0.8			
			0.1	0.12	

F₁ Score

The F-measure or balanced F-score (F_1 score) is the harmonic mean of precision and recall:

$$F_1 = 2\left[\frac{1}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}}\right] = 2\left[\frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\right]$$

A word of Caution ...

Consider the three binary classifiers A, B and C

	A		В		C	
	T	F	T	F	Т	F
Т	0.9	0.1	0.8	0	0.78	0
F	0	0	0.1	0.1	0.12	0.1

F₁ Score

The F-measure or balanced F-score (F_1 score) is the harmonic mean of precision and recall:

$$F_1 = 2\left[\frac{1}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}}\right] = 2\left[\frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\right]$$

A word of Caution ...

Consider the three binary classifiers A, B and C

	A		В		C	
	T	F	T	F	Т	F
Т	0.9	0.1	0.8	0	0.78	0
F	0	0	0.1	0.1	0.12	0.1

Clearly classifier A is useless since it always predicts label T regardless of the input. Also, B is slightly better than C (lower off- diagonal total).

F₁ Score

The F-measure or balanced F-score (F_1 score) is the harmonic mean of precision and recall:

$$F_1 = 2 \left[\frac{1}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} \right] = 2 \left[\frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \right]$$

A word of Caution ...

Consider the three binary classifiers A, B and C

	A		A B		C	
	Т	F	T	F	Т	F
Т	0.9	0.1	0.8	0	0.78	0
F	0	O	0.1	0.1	0.12	0.1

Metric	A	В	\mathbf{C}	(best)
Accuracy	0.9	0.9	0.88	AB
Precision	0.9	1.0	1.0	BC
Recall	1.0	0.888	0.8667	A
F-score	0.947	0.941	0.9286	A

Clearly classifier A is useless since it always predicts label T regardless of the input. Also, B is slightly better than C (lower off- diagonal total).

Yet look at the performance metrics – B is never the clear winner.

F_1 Score

The F-measure or balanced F-score (F_1 score) is the harmonic mean of precision and recall:

$$F_1 = 2 \left[\frac{1}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} \right] = 2 \left[\frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \right]$$

A word of Caution . . .

Consider the three binary classifiers A, B and C

	l A	Λ	I	3	C	:
	T	F	Т	F	Т	F
Т	0.9	0.1	0.8 0.1	0	0.78 0.12	0
F	0	0	0.1	0.1	0.12	0.1

Metric	A	В	\mathbf{C}	(best)
Accuracy	0.9	0.9	0.88	AB
Precision	0.9	1.0	1.0	BC
Recall	1.0	0.888	0.8667	A
F-score	0.947	0.941	0.9286	A

Clearly classifier A is useless since it always predicts label τ regardless of the input. Also, B is slightly better than C (lower off- diagonal total).

Yet look at the performance metrics – B is never the clear winner.

We use some metrics because they are easy to understand, and not because they always give the "correct" result.

Mutual Information is a Better Metric

The mutual information between predicted and actual label (case) is defined

$$I(\hat{y}, y) = \sum_{\hat{y} = \{0,1\}} \sum_{y = \{0,1\}} p(\hat{y}, y) \log \frac{p(\hat{y}, y)}{p(\hat{y})p(y)}$$

where $p(\hat{y}, y)$ is the joint probability distribution function.

This gives the intuitively correct rankings B > C > A

Metric	A	В	C
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286
Mutual information	0	0.1865	0.1735

Micro Average vs Macro Average Performance

In a multi-class classifier we have more than two classes. To combine the metrics for individual classes to get an overall system metrics, we can apply either

Micro-Average Method

Sum up the individual true positives, false positives, and false negatives of the system for different classes and then apply totals to get the statistics.

Macro-average Method

Average the precision and recall of the system on different classes.

See classification_report from sklearn.metrics (Example: IRIS dataset)

		(1	
	precision	recall	f1-score	support
setosa	1.00	0.95	0.97	19
versicolor	0.81	0.74	0.77	23
virginica	0.71	0.83	0.77	18
accuracy			0.83	60
macro avg	0.84	0.84	0.84	60
weighted avg	0.84	0.83	0.84	60

Outline

2.2. Multiclass Classification

3. IRIS Dataset — Classification using Logistic Regression

1.1. Classification vs Regression	4
1.2. Summary of Classification Models	7
1.3. Lazy vs Eager Learners	8

15

Example: IRIS Dataset — Load


```
from sklearn import datasets
iris = datasets.load_iris()

df = pd.DataFrame(iris.data)
df.columns = iris.feature_names
df['target'] = iris.target_names[iris.target]
df.sample(4)
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
141	6.9	3.1	5.1	2.3	virginica
42	4.4	3.2	1.3	0.2	setosa
9	4.9	3.1	1.5	0.1	setosa
52	6.9	3.1	4.9	1.5	versicolor

The data set contains, four numeric features, 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.

Example: IRIS Dataset — Preprocess Data

We will cover some classifiers in a moment, but for now just treat the classifiers (LogisticRegression) as a black box and focus on the general process:

Extract the data (features and target)

The IRIS dataset has 4 features, but to simplify visualisation we are only going to use the first two ('sepal length' and 'sepal width'):

```
dataset_name = "<mark>IRIS"</mark>
X, y, target_names = iris.data[:,:2], iris.target, iris.target_names
```

Split dataset into train and test

We will keep 40% of the data for testing. Setting the parameter random_state to a value means that we will get a random — but sill reproducible — split.

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.6, random_state=666)
```

Example: IRIS Dataset — Fit Model and Predict

Select classifier

Scikit-learn supports a large set of classifiers, and aims to have a consistent interface to all. First import classifier and create instance . . .

from sklearn.linear_model import LogisticRegression
model = LogisticRegression(max_iter=500)

Train model

Then we train (fit) the classifier/model using only the features (X_train) and targets (y_train) from the train dataset . . .

model.fit(X_train, y_train)

Predict

LogisticRegression(max_iter=500)

Now that model is trained, we can use it to generate predictions, using the features (X_test) from the test dataset ...

y_pred = model.predict(X_test)

Example: IRIS Dataset — Evaluate

Scoring and confusion matrix

We could just compute the score using whatever metric we have picked ...

```
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
```

But this needs context, and even if good can hide critical flaws. Lets look at the confusion matrix ...

or, to get a nicer output, convert to a DataFrame ...

```
df_cm = pd.crosstab(target_names[y_test], target_names[y_pred])
df_cm.index.name = 'Actual'
df_cm.columns.name = 'Predicted'
df_cm
```

Pr	edicted	setosa	versicolor	virginica

Actual			
setosa	18	1	0
versicolor	0	17	6
virginica	0	3	15

Example: IRIS Dataset — Evaluate

The confusion matrix is fundamental in evaluating a classifier, so find a presentation/visualisation that you like and use it. Here I have a heat map representation that I tend to use.

Predicted setosa versicolor virginica

Actual				
setosa	18	1	0	_
versicolor	0	17	6	
virginica	0	3	15	

The first class setosa was only misclassified once, while the classifier had more difficulty between the second two classes.

plt.figure(figsize=(6,6))
g = sns.heatmap(df_cm, annot=True, cmap="Blues")
g.xaxis.set_ticks_position("top")
g.xaxis.set label position('top')

Example: IRIS Dataset — Evaluate

The classification report, constructed from the confusion matrix, summaries the most common metrics per class and for overall averages . . .

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred, target_names=target_names))

precision (setosa) =
$$11/(11+0) = 1$$

recall (setosa) = $11/(11+1) = 0.92$

Predicted	setosa	versicolor	virginica
Actual			
setosa	18	1	0
versicolor	0	17	6
virginica	0	3	15

pr	ecision	recall	f1-score	support
setosa versicolor virginica	1.00 0.81 0.71	0.95 0.74 0.83	0.97 0.77 0.77	19 23 18
accuracy macro avg weighted avg	0.84 0.84	0.84 0.83	0.83 0.84 0.84	60 60 60

accuracy =
$$(11 + 13 + 12)/45 = 0.8$$

f1-score (virginica) = $2/(1/0.71 + 1/0.80) = 0.75$