Laporan Tugas Kecil 2 IF2211 Strategi Algoritma

Implementasi Convex Hull untuk Visualisasi Tes *Linear Separability Datase*t dengan Algoritma Divide and Conquer Semester II Tahun 2021/2022

Disusun oleh:

Jevant Jedidia Augustine 13520133

SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA **INSTITUT TEKNOLOGI BANDUNG** 2022

Algoritma Divide and Conquer

Untuk mencari *convex hull* dari kumpulan beberapa titik, akan dicari terlebih dahulu titik yang memiliki absis terkecil (P1) dan yang terbesar (P2). Kemudian kumpulan titik yang dimasukan akan dibagi menjadi 2 bagian, titik yang berada di atas garis P1P2 dan titik yang berada dibawah garis P1P2. Berdasarkan titik-titik yang telah dibagi, akan dicari *convex hull* pada bagian atas garis dan bagian bawah garis.

Fungsi untuk mencari *convex hull* dari bagian bawah dan atas garis merupakan fungsi rekursif. Basis:

- Bila tidak terdapat titik pada bagian tertentu yang akan dicari, maka akan dikembalikan pasangan titik [P1,P2]
- Bila hanya terdapat 1 titik (P3) pada bagian tertentu yang dicari, maka akan dikembalikan pasangan titik [P1.P3] dan [P3.P2]

Rekurens:

- Dari kumpulan titik pada bagian tertentu, akan dicari titik yang terjauh (Pn) dari garis P1P2
- Kumpulan titik pada bagian tersebut kemudian akan dibagi menjadi bagian A, B, C, dan D berdasarkan titik P1, titik terjauh, dan P2. Pembagian dapat dilihat dari gambar dibawah.

- Convex hull pada bagian A dan D akan dicari menggunakan fungsi rekursif. Untuk bagian A, P2 akan diganti dengan titik terjauh, sedangkan untuk bagian B, P1 akan diganti dengan titik terjauh. Bagian B dan C akan dihiraukan karena berada di dalam garis convex hull.
- Hasil gabungan dari *convex hull* bagian A dan D merupakan *convex hull* dari masukan kumpulan titik.

Source Code Program

Fungsi bagiTitik

Fungsi findFar

```
def findFar(P,I,P1,P2): #Cari titik terjauh dari garis P1P2
    distance = []
    numArray = np.array(P)
    A = np.linalg.norm(numArray[P2]-numArray[P1])
    for i in I: #Hitung jarak tiap titik
        d = np.linalg.norm(np.cross(numArray[P2]-numArray[P1],numArray[P1]-numArray[i]))/A
        distance.append(d)
    furthest = max(distance) #Cari jarak terjauh
    for i in range(len(distance)): #Cari indeks dari titik dengan jarak terjauh
        if distance[i] == furthest:
            loc = i
            break
    return I[loc]
```

Fungsi findHull

```
def findHull(P,Pt,P1,P2): #Cari Convex Hull
   if len(Pt) == 0: #BASIS : kembalikan pasangan P1-P2 jika tidak ada titik lagi
       return [[P1,P2]]
   elif len(Pt) == 1: #BASIS : jika hanya ada satu titik (Pt), kembalikan pasangan P1-Pt dan Pt-P2
       return [[P1,Pt[0]],[Pt[0],P2]]
   else:
       C = []
       Pn = findFar(P,Pt,P1,P2) #Cari titik terjauh (Pn) dari garis P1-P2
       kiri1,kanan1 = bagiTitik(P,P1,Pn,Pt) #bagi sekumpulan titik berdasarkan garis P1-Pn
       kiri2,kanan2 = bagiTitik(P,Pn,P2,Pt) #bagi sekumpulan titik berdasarkan garis Pn-P2
       A = findHull(P,kiri1,P1,Pn) #Cari Convex Hull dari bagian yang dibagi garis P1-Pn
       B = findHull(P,kiri2,Pn,P2) #Cari Convex Hull dari bagian yang dibagi garis Pn-P2
       #Gabung hasil dari kedua pencarian convex hull
       for index in A:
           C.append(index)
       for index in B:
           C.append(index)
       return C
```

Fungsi ConvexHull

```
def ConvexHull(P): #Fungsi pencarian ConvexHull
   P2 = 0
   I = []
   for i in range(len(P)): #cari titik dengan absis terkecil dan terbesar
       if P[i][0] <= P[P1][0]:
       if P[i][0] >= P[P2][0]:
           P2 = i
       I.append(i)
   hull = []
   #Bagi kumpulan titik jadi bagian atas dan bawah garis P1-P2
   kiriAtas, kananBawah = bagiTitik(P,P1,P2,I)
   A = findHull(P,kiriAtas,P1,P2) #Cari convex hull untuk bagian atas garis P1-P2
   B = findHull(P,kananBawah,P2,P1) #Cari convex hull untuk bagian bawah garis P1-P2
   #Gabung hasil convex hull
   for index in A:
       hull.append(index)
   for index in B:
       hull.append(index)
   return hull
```

main.py

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from MyConvexHull import ConvexHull
#Driver untuk data Sepal Width vs Sepal Length
data = datasets.load_iris()
#Buat DataFrame
df = pd.DataFrame(data.data, columns=data.feature_names)
df['Target'] = pd.DataFrame(data.target)
plt.figure(figsize = (10, 6))
colors = ['b','r','g']
plt.title('Sepal Width vs Sepal Length')
plt.xlabel(data.feature_names[0])
plt.ylabel(data.feature_names[1])
for i in range(len(data.target_names)):
    bucket = df[df['Target'] == i]
    bucket = bucket.iloc[:,[0,1]].values
    hull = ConvexHull(bucket) #Penggunaan pustaka MyConvexHull
    plt.scatter(bucket[:, 0], bucket[:, 1], label=data.target_names[i])
    for simplex in hull:
        plt.plot(bucket[simplex, 0], bucket[simplex, 1], colors[i])
plt.legend()
plt.show()
```

Screenshot Percobaan

Dataset Petal Length vs Petal Width (Iris)

Dataset Sepal Length vs Sepal Width (Iris)

Dataset Malic Acid vs Alcohol (wine)

Dataset Total Phenol vs Magnesium

Dataset Area vs Perimeter (breast cancer)

Dataset Compactness vs Smoothness

Link Source Code

Github: https://github.com/JevantJedidia/Tucil2_13520133

Poin	Ya	Tidak
1. Pustaka myConvexHull berhasil dibuat	/	
dan tidak ada kesalahan	·	
2. Convex hull yang dihasilkan sudah	✓	
benar	-	
3. Pustaka <i>myConvexHull</i> dapat		
digunakan untuk menampilkan convex	/	
hull setiap label dengan warna yang		
berbeda.		
4. Bonus: program dapat menerima input		
dan menuliskan output untuk dataset	/	
lainnya.		