Weak convergence proof (in progress)

Suzie Brown

October 2, 2020

Theorem 1. Let $\nu_t^{(1:N)}$ denote the offspring numbers in an interacting particle system satisfying the standing assumption and such that, for any N sufficiently large, for all finite t, $\mathbb{P}\{\tau_N(t) = \infty\} = 0$. Suppose that there exists a deterministic sequence $(b_N)_{N>1}$ such that $\lim_{N\to\infty} b_N = 0$ and

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t \{ (\nu_t^{(i)})_3 \} \le b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t \{ (\nu_t^{(i)})_2 \}$$
 (1)

for all N, uniformly in $t \geq 1$. Then the rescaled genealogical process $(G_{\tau_N(t)}^{(n,N)})_{t\geq 0}$ converges weakly to Kingman's n-coalescent as $N \to \infty$.

Proof. Define $p_t := \max_{\xi \in E} \{1 - p_{\xi\xi}(t)\} = 1 - p_{\Delta\Delta}(t)$, where Δ denotes the trivial partition of $\{1, \ldots, n\}$ into singletons. For a proof that the maximum is attained at $\xi = \Delta$, see Lemma 1. Following Möhle (1999), we now construct the two-dimensional Markov process $(Z_t, S_t)_{t \in \mathbb{N}}$ with transition probabilities

$$\mathbb{P}(Z_{t} = j, S_{t} = \eta \mid Z_{t-1} = i, S_{t-1} = \xi) = \begin{cases}
1 - p_{t} & \text{if } j = i \text{ and } \xi = \eta \\
p_{\xi\xi}(t) + p_{t} - 1 & \text{if } j = i + 1 \text{ and } \xi = \eta \\
p_{\xi\eta}(t) & \text{if } j = i + 1 \text{ and } \xi \neq \eta \\
0 & \text{otherwise.}
\end{cases} \tag{2}$$

The construction is such that the marginal (S_t) has the same distribution as the genealogical process of interest, and (Z_t) has jumps at all the times (S_t) does plus some extra jumps. (The definition of p_t ensures that the probability in the second case is non-negative, attaining the value zero when $\xi = \Delta$.)

Denote by $0 = T_0^{(N)} < T_1^{(N)} < \dots$ the jump times of the rescaled process $(Z_{\tau_N(t)})_{t \geq 0}$, and $\omega_i^{(N)} := T_i^{(N)} - T_{i-1}^{(N)}$ the corresponding holding times $(i \in \mathbb{N})$.

Lemma 1. $\max_{\xi \in E} (1 - p_{\xi \xi}(t)) = 1 - p_{\Delta \Delta}(t)$.

Proof. Consider any $\xi \in E$ consisting of k blocks $(1 \le k \le n-1)$, and any $\xi' \in E$ consisting of k+1 blocks. From the definition of $p_{\xi\eta}(t)$ (Koskela et al., 2018, Equation (1)),

$$p_{\xi\xi}(t) = \frac{1}{(N)_k} \sum_{\substack{i_1,\dots,i_k \text{all distinct}}} \nu_t^{(i_1)} \cdots \nu_t^{(i_k)}. \tag{3}$$

Similarly,

$$p_{\xi'\xi'}(t) = \frac{1}{(N)_{k+1}} \sum_{\substack{i_1, \dots, i_k, i_{k+1} \\ \text{all distinct}}} \nu_t^{(i_1)} \cdots \nu_t^{(i_k)} \nu_t^{(i_{k+1})}$$

$$= \frac{1}{(N)_k (N-k)} \sum_{\substack{i_1, \dots, i_k \\ \text{all distinct}}} \left\{ \nu_t^{(i_1)} \cdots \nu_t^{(i_k)} \sum_{\substack{i_{k+1} = 1 \\ \text{also distinct}}}^N \nu_t^{(i_{k+1})} \right\}. \tag{4}$$

Discarding the zero summands,

$$p_{\xi'\xi'}(t) = \frac{1}{(N)_k(N-k)} \sum_{\substack{i_1,\dots,i_k \\ \nu_t^{(i_1)},\dots,\nu_t^{(i_k)} > 0}} \left\{ \nu_t^{(i_1)} \cdots \nu_t^{(i_k)} \sum_{\substack{i_{k+1}=1 \\ \text{also distinct}}}^N \nu_t^{(i_{k+1})} \right\}.$$
 (5)

The inner sum is

$$\sum_{\substack{i_{k+1}=1\\\text{also distinct}}}^{N} \nu_t^{(i_{k+1})} = \left\{ \sum_{i=1}^{N} \nu_t^{(i)} - \sum_{i \in \{i_1, \dots, i_k\}} \nu_t^{(i)} \right\} \le N - k \tag{6}$$

since $\nu_t^{(i_1)}, \dots, \nu_t^{(i_k)}$ are all at least 1. Hence

$$p_{\xi'\xi'}(t) \le \frac{N-k}{(N)_k(N-k)} \sum_{\substack{i_1,\dots,i_k \\ \text{all distinct:} \\ \nu_t^{(i_1)},\dots,\nu_t^{(i_k)} > 0}} \nu_t^{(i_1)} \cdots \nu_t^{(i_k)} = p_{\xi\xi}(t). \tag{7}$$

Thus $p_{\xi\xi}(t)$ is decreasing in the number of blocks of ξ , and is therefore minimised by taking $\xi = \Delta$, which achieves the maximum n blocks. This choice in turn maximises $1 - p_{\xi\xi}(t)$, as required.

Lemma 2. For any t > 0,

$$\lim_{N \to \infty} \mathbb{E} \left[\prod_{r=1}^{\tau_N(t)} (1 - p_r) \right] = e^{-\alpha t}$$
 (8)

where $\alpha := n(n-1)/2$.

Proof. The strategy is to find upper and lower bounds on $\mathbb{E}\left[\prod_{r=1}^{\tau_N(t)}(1-p_r)\right]$, both of which converge to $e^{-\alpha t}$.

Lower Bound

From Brown et al. (2020, Equation (14)), taking $\xi = \Delta$, we have

$$1 - p_t = p_{\Delta\Delta}(t) \ge 1 - \alpha(1 + O(N^{-1})) \left[c_N(t) + B_n D_N(t) \right]$$
(9)

where $B_n > 0$ and the $O(N^{-1})$ term does not depend on t. In particular,

$$1 - p_t = p_{\Delta\Delta}(t) \ge 1 - \frac{N^{n-2}}{(N-2)_{n-2}} \alpha c_N(t) - \frac{N^{n-3}}{(N-3)_{n-3}} B_n D_N(t).$$
(10)

Since $D_N(t) \leq c_N(t)$, a sufficient condition for the bound to be positive is

$$E_t := \left\{ c_N(t) < \frac{(N-3)_{n-3}}{N^{n-3}} \left(\alpha \left(1 + \frac{2}{N-2} \right) + B_n \right)^{-1} \right\}. \tag{11}$$

Hence, by a multinomial expansion,

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \ge \prod_{r=1}^{\tau_{N}(t)} \left\{ 1 - \alpha (1 + O(N^{-1})) \left[c_{N}(r) + B_{n} D_{N}(r) \right] \right\} \times \prod_{r=1}^{\tau_{N}(t)} \mathbb{1}_{E_{r}}$$

$$= \left(1 + \sum_{k=1}^{\tau_{N}(t)} \sum_{\substack{r_{1} < \dots < r_{k} \\ = 1}}^{\tau_{N}(t)} \prod_{j=1}^{t} \left\{ -\alpha (1 + O(N^{-1})) \left[c_{N}(r_{j}) + B_{n} D_{N}(r_{j}) \right] \right\} \right) \times \prod_{r=1}^{\tau_{N}(t)} \mathbb{1}_{E_{r}}$$

$$= \prod_{r=1}^{\tau_{N}(t)} \mathbb{1}_{E_{r}} + \sum_{k=1}^{\tau_{N}(t)} \left\{ -\alpha (1 + O(N^{-1})) \right\}^{k} \left(\prod_{r=1}^{\tau_{N}(t)} \mathbb{1}_{E_{r}} \right) \sum_{r_{1} < \dots < r_{k}}^{\tau_{N}(t)} \prod_{j=1}^{t} \left\{ c_{N}(r_{j}) + B_{n} D_{N}(r_{j}) \right\}. \tag{12}$$

Taking expectations,

$$\mathbb{E}\left[\prod_{r=1}^{\tau_{N}(t)}(1-p_{r})\right] \geq \mathbb{E}\left[\prod_{r=1}^{\tau_{N}(t)}\mathbb{1}_{E_{r}}\right] \\
+ \mathbb{E}\left[\sum_{k=1}^{\infty}\left\{-\alpha(1+O(N^{-1}))\right\}^{k}\mathbb{1}_{\left\{k\leq\tau_{N}(t)\right\}}\mathbb{1}_{\bigcap E_{r}}\sum_{r_{1}<\dots< r_{k}}^{\tau_{N}(t)}\prod_{j=1}^{k}\left\{c_{N}(r_{j})+B_{n}D_{N}(r_{j})\right\}\right] \\
= \mathbb{P}\left[\bigcap_{r=1}^{\tau_{N}(t)}E_{r}\right] \\
+ \sum_{k=1}^{\infty}\left\{-\alpha(1+O(N^{-1}))\right\}^{k}\mathbb{E}\left[\sum_{r_{1}<\dots< r_{k}}^{\tau_{N}(t)}\prod_{j=1}^{k}\left\{c_{N}(r_{j})+B_{n}D_{N}(r_{j})\right\}\right| k\leq\tau_{N}(t), \bigcap_{r=1}^{\tau_{N}(t)}E_{r}\right] \\
\times \mathbb{P}\left[k\leq\tau_{N}(t), \bigcap_{r=1}^{\tau_{N}(t)}E_{r}\right]. \tag{13}$$

We want to show that the conditional expectation on the right converges to $t^k/k!$, for reasons that will become clear. The strategy is to upper and lower bound this expectation by quantities that converge to $t^k/k!$.

First the lower bound. Assume that $k \leq \tau_N(t)$, ensuring that the sum is non-empty. From Koskela et al. (2018, Equation (8)),

$$\sum_{\substack{r_1 < \dots < r_k \\ = 1}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) + B_n D_N(r_j) \right\} \ge \sum_{\substack{r_1 < \dots < r_k \\ = 1}}^{\tau_N(t)} \prod_{j=1}^k c_N(r_j) \\
\ge \frac{1}{k!} \left(\sum_{s=1}^{\tau_N(t)} c_N(s) \right)^k - \frac{1}{k!} \binom{k}{2} \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \left(\sum_{s=1}^{\tau_N(t)} c_N(s) \right)^{k-2} \\
\ge \frac{1}{k!} t^k - \frac{1}{k!} \binom{k}{2} (t+1)^{k-2} \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \tag{14}$$

by the definition of τ_N . Then, since the conditioning can only decrease the values of $c_N(s)$,

$$\mathbb{E}\left[\sum_{\substack{r_1 < \dots < r_k \\ = 1}}^{\tau_N(t)} \prod_{j=1}^k \left\{c_N(r_j) + B_n D_N(r_j)\right\} \middle| k \le \tau_N(t), \bigcap_{r=1}^{\tau_N(t)} E_r\right] \\
\ge \frac{1}{k!} t^k - \frac{1}{k!} \binom{k}{2} (t+1)^{k-2} \mathbb{E}\left[\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \middle| k \le \tau_N(t), \bigcap_{r=1}^{\tau_N(t)} E_r\right] \\
\ge \frac{1}{k!} t^k - \frac{1}{k!} \binom{k}{2} (t+1)^{k-2} \mathbb{E}\left[\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \middle| \longrightarrow \frac{1}{k!} t^k\right] \tag{15}$$

as $N \to \infty$ using Brown et al. (2020, Equation (5)).

Now for the upper bound. We start with a multinomial expansion and some manipulations of the sums:

$$\sum_{\substack{r_1 < \dots < r_k \\ = 1}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) + B_n D_N(r_j) \right\} = \frac{1}{k!} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) + B_n D_N(r_j) \right\} \\
= \frac{1}{k!} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \sum_{\mathcal{I} \subseteq \{1,\dots,k\}} (B_n)^{k-|\mathcal{I}|} \left\{ \prod_{i \in \mathcal{I}} c_N(r_i) \right\} \left\{ \prod_{j \notin \mathcal{I}} D_N(r_j) \right\} \\
= \frac{1}{k!} \sum_{\mathcal{I} \subseteq \{1,\dots,k\}} (B_n)^{k-|\mathcal{I}|} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i \in \mathcal{I}} c_N(r_i) \right\} \left\{ \prod_{j \notin \mathcal{I}} D_N(r_j) \right\} \\
= \frac{1}{k!} \sum_{I=0}^k \binom{k}{I} (B_n)^{k-I} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i=1}^I c_N(r_i) \right\} \left\{ \prod_{j=I+1}^L D_N(r_j) \right\} \\
+ \frac{1}{k!} \sum_{I=0}^{r_N(t)} \binom{k}{I} (B_n)^{k-I} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i=1}^I c_N(r_i) \right\} \left\{ \prod_{j=I+1}^k D_N(r_j) \right\}. \quad (16)$$

Then, using that $D_N(s) \leq c_N(s)$ for all s (Koskela et al., 2018, p.9), along with the definition of τ_N ,

$$\frac{1}{k!} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i=1}^k c_N(r_i) \right\} + \frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} (B_n)^{k-I} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i=1}^I c_N(r_i) \right\} \left\{ \prod_{j=I+1}^k D_N(r_j) \right\} \\
\leq \frac{1}{k!} \left\{ \sum_{r=1}^{t} c_N(r) \right\}^k + \frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} (B_n)^{k-I} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i=1}^{k-1} c_N(r_i) \right\} D_N(r_k) \\
\leq \frac{1}{k!} \left\{ t + c_N(\tau_N(t)) \right\}^k + \frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} (B_n)^{k-I} \left\{ \sum_{\substack{r_1 \neq \dots \neq r_{k-1} \\ \text{all distinct}}}^{\tau_N(t)} \prod_{i=1}^{k-1} c_N(r_i) \right\} \binom{\tau_N(t)}{r_k} \\
\leq \frac{1}{k!} \left\{ t + c_N(\tau_N(t)) \right\}^k + \frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} (B_n)^{k-I} \binom{\tau_N(t)}{r_{i-1}} c_N(r) \binom{\tau_N(t)}{r_{i-1}} D_N(r) \right\} \\
\leq \frac{1}{k!} \left\{ t + c_N(\tau_N(t)) \right\}^k + \frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} (B_n)^{k-I} (t+1)^{k-I} \binom{\tau_N(t)}{r_{i-1}} D_N(r) \right\}. \tag{17}$$

Taking expectations,

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k \\ = 1}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) + B_n D_N(r_j) \right\} \middle| k \le \tau_N(t), \bigcap_{r=1}^{\tau_N(t)} E_r \right] \\
\le \frac{1}{k!} \lim_{N \to \infty} \mathbb{E} \left[\left\{ t + c_N(\tau_N(t)) \right\}^k \middle| k \le \tau_N(t), \bigcap_{r=1}^{\tau_N(t)} E_r \right] \\
+ \frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} (B_n)^{k-I} (t+1)^{k-1} \lim_{N \to \infty} \mathbb{E} \left[\sum_{r=1}^{\tau_N(t)} D_N(r) \middle| k \le \tau_N(t), \bigcap_{r=1}^{\tau_N(t)} E_r \right] \\
\le \frac{1}{k!} \lim_{N \to \infty} \mathbb{E} \left[\left\{ t + c_N(\tau_N(t)) \right\}^k \right] + \frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} (B_n)^{k-I} (t+1)^{k-1} \lim_{N \to \infty} \mathbb{E} \left[\sum_{r=1}^{\tau_N(t)} D_N(r) \right] \\
= \frac{1}{k!} t^k \tag{18}$$

again using that the conditioning can only decrease the expectations. The limit follows from Brown et al. (2020, Equations (3),(4)) along with the fact that, since $c_N(s) \in [0,1]$ for all s, $\mathbb{E}[c_N(s)^k] \leq \mathbb{E}[c_N(s)]$ for all $k \geq 1$, and the expansion

$$\mathbb{E}\left[\left\{t + c_N(\tau_N(t))\right\}^k\right] = \sum_{i=0}^k \binom{k}{i} t^i \,\mathbb{E}\left[c_N(\tau_N(t))^{k-i}\right] \longrightarrow t^k. \tag{19}$$

Combining these upper and lower limits, we conclude that

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k \\ =1}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) + B_n D_N(r_j) \right\} \middle| k \le \tau_N(t), \bigcap_{r=1}^{\tau_N(t)} E_r \right] = \frac{1}{k!} t^k$$
 (20)

and thus

$$\lim_{N \to \infty} \mathbb{E} \left[\prod_{r=1}^{\tau_{N}(t)} \mathbb{1}_{E_{r}} + \sum_{k=1}^{\tau_{N}(t)} \left\{ -\alpha(1 + O(N^{-1})) \right\}^{k} \left(\prod_{r=1}^{\tau_{N}(t)} \mathbb{1}_{E_{r}} \right) \sum_{r_{1} < \dots < r_{k}}^{\tau_{N}(t)} \prod_{j=1}^{k} \left\{ c_{N}(r_{j}) + B_{n}D_{N}(r_{j}) \right\} \right]$$

$$= \lim_{N \to \infty} \mathbb{P} \left[\bigcap_{r=1}^{\tau_{N}(t)} E_{r} \right]$$

$$+ \lim_{N \to \infty} \sum_{k=1}^{\infty} \left\{ -\alpha(1 + O(N^{-1})) \right\}^{k} \mathbb{E} \left[\mathbb{1}_{\left\{ k \le \tau_{N}(t) \right\}} \left(\prod_{r=1}^{\tau_{N}(t)} \mathbb{1}_{E_{r}} \right) \sum_{r_{1} < \dots < r_{k}}^{\tau_{N}(t)} \prod_{j=1}^{k} \left\{ c_{N}(r_{j}) + B_{n}D_{N}(r_{j}) \right\} \right]$$

$$= \lim_{N \to \infty} \mathbb{P} \left[\bigcap_{r=1}^{\tau_{N}(t)} E_{r} \right]$$

$$+ \sum_{k=1}^{\infty} (-\alpha)^{k} \lim_{N \to \infty} \mathbb{E} \left[\sum_{r_{1} < \dots < r_{k}}^{\tau_{N}(t)} \prod_{j=1}^{k} \left\{ c_{N}(r_{j}) + B_{n}D_{N}(r_{j}) \right\} \right] k \le \tau_{N}(t), \bigcap_{r=1}^{\tau_{N}(t)} E_{r}$$

$$= 1 + \sum_{n = \infty}^{\infty} (-\alpha)^{k} \frac{t^{k}}{k!} \times 1 = e^{-\alpha t}$$

$$(21)$$

as $N \to \infty$, where the last line follows from (20) and Lemma 3.

Upper Bound

From Koskela et al. (2018, Lemma 1 Case 1), taking $\xi = \Delta$, we have

$$1 - p_t = p_{\Delta\Delta}(t) \le 1 - \alpha(1 + O(N^{-1})) \left[c_N(t) - B_n' D_N(t) \right]. \tag{22}$$

A multinomial expansion as before yields

$$\prod_{r=1}^{\tau_N(t)} (1 - p_r) \le 1 + \sum_{k=1}^{\tau_N(t)} \left\{ -\alpha (1 + O(N^{-1})) \right\}^k \sum_{\substack{r_1 < \dots < r_k \\ =1}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) - B'_n D_N(r_j) \right\}. \tag{23}$$

Analogously to (16), assuming $k \leq \tau_N(t)$ we can write

$$\sum_{\substack{r_1 < \dots < r_k \\ = 1}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) - B'_n D_N(r_j) \right\} = \frac{1}{k!} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i=1}^k c_N(r_i) \right\} \\
+ \frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} \left(-B'_n \right)^{k-I} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}} \left\{ \prod_{i=1}^I c_N(r_i) \right\} \left\{ \prod_{j=I+1}^k D_N(r_j) \right\}.$$
(24)

We start by dealing with the second term:

$$\frac{1}{k!} \sum_{I=0}^{k-1} \binom{k}{I} (-B'_n)^{k-I} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}} \left\{ \prod_{i=1}^{I} c_N(r_i) \right\} \left\{ \prod_{j=I+1}^{k} D_N(r_j) \right\} \\
= \frac{1}{k!} \sum_{\substack{I=0: \\ k-I \text{ even}}} \binom{k}{I} (B'_n)^{k-I} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}} \left\{ \prod_{i=1}^{I} c_N(r_i) \right\} \left\{ \prod_{j=I+1}^{k} D_N(r_j) \right\} \\
- \frac{1}{k!} \sum_{\substack{I=0: \\ k-I \text{ odd}}} \binom{k}{I} (B'_n)^{k-I} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}} \left\{ \prod_{i=1}^{I} c_N(r_i) \right\} \left\{ \prod_{j=I+1}^{k} D_N(r_j) \right\}. \tag{25}$$

This is lower bounded by

$$0 - \frac{1}{k!} \sum_{\substack{I=0\\k-I \text{ odd}}}^{k-1} \binom{k}{I} (B_n')^{k-I} (t+1)^{k-1} \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right)$$
 (26)

using that $c_N(r), D_N(r) \ge 0$ for all r to bound the even terms below, and arguments from (17) to bound the odd terms above. The same arguments lead to the upper bound

$$\frac{1}{k!} \sum_{\substack{I=0\\k-I \text{ even}}}^{k-1} {k \choose I} (B'_n)^{k-I} (t+1)^{k-1} \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) - 0.$$
 (27)

By Brown et al. (2020, Equation (4)), both bounds have vanishing expectation as $N \to \infty$. We are left with the first term in (24), which is upper bounded by

$$\frac{1}{k!} \sum_{\substack{r_1 \neq \dots \neq r_k \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i=1}^k c_N(r_i) \right\} \leq \frac{1}{k!} \left(\sum_{s=1}^{\tau_N(t)} c_N(s) \right)^k \leq \frac{1}{k!} \{ t + c_N(\tau_N(t)) \}^k \tag{28}$$

the expectation of which converges to $t^k/k!$ as in (19). We use Koskela et al. (2018, Equation (8)) to construct a lower bound:

$$\frac{1}{k!} \sum_{\substack{r_1 \neq \dots \neq r_k \\ \text{all distinct}}}^{\tau_N(t)} \left\{ \prod_{i=1}^k c_N(r_i) \right\} \ge \frac{1}{k!} \left(\sum_{s=1}^{\tau_N(t)} c_N(s) \right)^k - \frac{1}{k!} \binom{k}{2} \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \left(\sum_{s=1}^{\tau_N(t)} c_N(s) \right)^{k-2} \\
\ge \frac{1}{k!} t^k - \frac{1}{k!} \binom{k}{2} (t+1)^{k-2} \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \tag{29}$$

The expectation of this bound also converges to $t^k/k!$, using Brown et al. (2020, Equation (5)). We can now conclude that

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k \\ 1}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) - B'_n D_N(r_j) \right\} \right] = \frac{1}{k!} t^k$$
 (30)

and thus, by calculations analogous to (21),

$$\lim_{N \to \infty} \mathbb{E} \left[1 + \sum_{k=1}^{\tau_N(t)} \left\{ -\alpha (1 + O(N^{-1})) \right\}^k \sum_{\substack{r_1 < \dots < r_k \\ =1}}^{\tau_N(t)} \prod_{j=1}^k \left\{ c_N(r_j) - B'_n D_N(r_j) \right\} \right] = 1 + \sum_{k=1}^{\infty} (-\alpha)^k \frac{1}{k!} t^k = e^{-\alpha t}$$
 (31)

as $N \to \infty$.

We now have upper and lower bounds on $\lim_{N\to\infty} \mathbb{E}\left[\prod_{r=1}^{\tau_N(t)}(1-p_r)\right]$, both of which are equal to $e^{-\alpha t}$, and the result follows.

Lemma 3. For any $n \leq N \in \mathbb{N}$, for all t > 0, define

$$E_t := \left\{ c_N(t) < \frac{(N-3)_{n-3}}{N^{n-3}} \left(\alpha \left(1 + \frac{2}{N-2} \right) + B_n \right)^{-1} \right\}$$
 (32)

where α and B_n are positive constants as in (9). Then, for all t > 0,

$$\lim_{N \to \infty} \mathbb{P} \left[\bigcap_{r=1}^{\tau_N(t)} E_r \right] = 1. \tag{33}$$

Proof.

$$\mathbb{P}\left[\bigcap_{r=1}^{\tau_N(t)} E_r\right] = 1 - \mathbb{P}\left[\bigcup_{r=1}^{\tau_N(t)} E_r^c\right] \ge 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{P}[E_r^c]\right]. \tag{34}$$

Using the generalised Markov inequality,

$$\mathbb{P}[E_r^c] = \mathbb{P}\left[c_N(t) \ge \frac{(N-3)_{n-3}}{N^{n-3}} \left(\alpha \left(1 + \frac{2}{N-2}\right) + B_n\right)^{-1}\right]$$

$$\le \mathbb{E}[c_N(r)^2] \frac{N^{2(n-3)}}{(N-3)_{n-3}^2} \left(\alpha \left(1 + \frac{2}{N-2}\right) + B_n\right)^2.$$
(35)

Now

$$\mathbb{P}\left[\bigcap_{r=1}^{\tau_{N}(t)} E_{r}\right] \geq 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} \mathbb{E}[c_{N}(r)^{2}] \frac{N^{2(n-3)}}{(N-3)_{n-3}^{2}} \left(\alpha \left(1 + \frac{2}{N-2}\right) + B_{n}\right)^{2}\right] \\
= 1 - \frac{N^{2(n-3)}}{(N-3)_{n-3}^{2}} \left(\alpha \left(1 + \frac{2}{N-2}\right) + B_{n}\right)^{2} \mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} c_{N}(r)^{2}\right] \\
\stackrel{N\to\infty}{\to} 1 - (\alpha + B_{n})^{2} \times 0 = 1.$$
(36)

References

Brown, S., Jenkins, P. A., Johansen, A. M. and Koskela, J. (2020), 'Simple conditions for convergence of sequential Monte Carlo genealogies with applications', arXiv preprint arXiv:2007.00096.

Koskela, J., Jenkins, P. A., Johansen, A. M. and Spanò, D. (2018), 'Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo', arXiv preprint arXiv:1804.01811.

Möhle, M. (1999), 'Weak convergence to the coalescent in neutral population models', *Journal of Applied Probability* **36**(2), 446–460.