Goal: 33 Total: 38

1. If $\angle C = 50^{\circ}$, $\angle B = 60^{\circ}$, and $\angle A = 70^{\circ}$, find arc(AB) - arc(DE). (1)

2. Find *x*. (1)

3. Find *x*. (1)

4. Find *x*. (1)

5. Given that A, B, C, and D are all on the circumference of the same circle, that BE is the angle bisector of $\angle BAC$, that $\angle AEB = \angle CEB$, and that $\angle ADC = 50^{\circ}$, find $\angle BAC$. (2)

- 6. Given points A, B, C, D, E such that BE is the angle bisector of $\angle ABC$, $\angle AEB = \angle CEB$, $\angle BAC + \angle BDC = \angle ABD + \angle ACD$, and $\angle ADC = 48^{\circ}$, find $\angle BCA$. (2)
- 7. Points A, B, Q, D, and C lie on the circle as shown and the measures of arcs BQ and QD are 42° and 38° respectively. Find $\angle P + \angle Q$. (2)

8. Segments PA and PT are tangent to the circle. Find $\angle TXA$ if $\angle P = 42^{\circ}$. (2)

- 9. Consider any cyclic pentagon (a pentagon that can be inscribed within a circle) ABCDE. Then prove that, no matter what, ABCP is not cyclic, where P is the center of the circle. (2)
- 10. Consider chord AB of length 8 inside a circle of radius 5. Prove that only one line DE has a length of 2 such that D is on the arc AB and E is on the line AB. (3)
- 11. Consider points A, B, I such that $\overline{AI} = \overline{BI}$. Given a point X such that $\angle IAX = \angle IBX = 90^{\circ}$, find $\overline{AX} \overline{BX}$. (2)
- 12. Given that $\overline{AD} = 4$, $\overline{DC} = 8$, $\overline{AH} = 1$, and $\overline{EH} = 1$, find the area of $\triangle ABD$. (2)

13. Consider $\triangle ABC$ with inradius r such that $\overline{AB} = 9$, $\overline{BC} = 12$, and $\overline{AC} = \overline{AB} + \overline{BC} - 2r$. Find [ABC]. (3)

14. Consider $\overline{AB} = x$ and circle N centered at B with radius r such that r < x. Find the length of the tangent from A to N. (3)

15. Given that $m \angle BAC = m \angle BGC = 40^{\circ}$, $m \angle ABG = 80^{\circ}$, $m \angle GEB = 2m \angle DBE$, and $m \angle DBE = m \angle GBE$, find $m \angle ADB$. (4)

16. Consider $\triangle ABC$ with point D on BC. Let M,N be the circumcenters of $\triangle ABD$ and $\triangle ACD$, respectively. Let the circumcircles of $\triangle ACD$ and $\triangle MND$ intersect at $H \neq D$. Prove A, H, M are collinear. (\star 7)