

UNIVERSIDAD NACIONAL DE COLOMBIA

oritmia Avanzada

http:/ dis.unal.edu.co/profesores/ypinzon/2013308/

Sesión 5

Minimum Spanning Tree Graph Algorithms

Yoan Pinzón, PhD

Universidad Nacional de Colombia Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial ypinzon@unal.edu.co
http://dis.unal.edu.co/profesores/ypinzon

© 2007

Session 5

- MST (Minimum Spanning Trees)

 ▷ The Kruskal's Algorithm

 ▷ The Prim's Algorithm

MST: Minimum Spanning Trees

the following complete graph has sixteen spanning trees: tices and is a tree. A spanning tree of a a graph is just a subgraph that contains all the ver-A graph may have many spanning trees; for instance

have different lengths. of a tree is just the sum of weights of its edges. Obviously, different trees Now suppose the edges of the graph have weights or lengths. The weight

► Example:

The problem: how to find the minimum length/weight spanning tree?

The Kruskal's Algorithm by Joseph Bernard Kruskal, 1956

edge is added to the tree only if it does not create a cycle. and added to the spanning tree in increasing order of their weights. An Kruskal's algorithm is conceptually quite simple. The edges are selected

Pseudo-code:

```
MST-KRUSKAL(G, w)
                                                                                               \infty
                                                                                                                                            O 0
                                                                                                                                                                                            +
                                                                                                                                                                                                                     \omega
 Yoan Pinzon
                                                                                                                                                                 sort the edges of E into nondecreasing order by weight w for each edge (u,v)\in E, taken in nondecreasing order by weight
                                                                                                                                                                                                                                         for each vertex v \in V[G]
                                                                         return A
                                                                                                                                                                                                                                                                      A \uparrow \emptyset
                                                                                                                                                                                                                     do Make-Set(v)
                                                                                                                                           do if Find-Set(u) \neq Find-Set(v)
                                                                                                                   then A \leftarrow A \cup \{(u,v)\}
                                                                                             UNION(u, v)
ALGORITMIA AVANZADA - 2013308
```

The Kruskal's Algorithm Time Complexity Analysis

Time Complexity: $O(m \log n)$

some data structures that perform each test in close to constant time; The line testing whether two endpoints are disconnected looks like it should be slow (linear time per iteration, or O(mn) total). But there are this is known as the union-find problem. The slowest part turns out to be the sorting step, which takes $O(m \log n)$ time.

Kruskal's Algorithm is a standard example of a Greedy Algorithm.

Recall: the A greedy algorithm is considered greedy because it best choice immediately available at each step. selects

The Kruskal's Algorithm

Find the MST for the following graph.

► Solution:

Yoan Pinzoi

ALGORITMIA AVANZADA - 2013308

http://dls.unal.edu.co/profesores/ypinzon/2013308

http://dis.unal.edu.co/profesores/ypinzon/2013308

ALGORITMIA AVANZADA - 2013308

http://dis.unal.edu.co/profesores/ypinzon/2013308

ALGORITMIA AVANZADA - 2013308

14 (d,f)	11 (b,h)	10 (f,e)	9 (d,e)√	8 (b,c)	8 (a,h)√	7 (h,i)	7 (c,d)√	6 (i,g)	4 (c,f)√	4 (a,b)√	2 (g,f)√	2 (i,c)√	1 (h,g)√	initial state	Edge Processed
						$\{a,b\}$	{a,b}	{a,b}	$\{a,b\}$	$\{a,b\}$	{a}	{a}	{a}	{a}	
											{b}	{b}		{b}	
										{c,i}	· {c,i}	{c,i}	{c}	{c}	
								{d}	{b}	{c,i} {d}	{b}	{b}	{b}	{b}	Colle
				{e }	{e}	{e}	{e}	{e}	{e}	{e}	{e}	{e}	{e}	(e)	ction
												{f}	{f}	$\{f\}$	of di
{g,h,f,c,i,d,a,b,e}	{g,h,f,c,i,d,a,b,e}	{g,h,f,c,i,d,a,b,e	{g,h,f,c,i,d,a,b,e}	{g,h,f,c,i,d,a,b}	${g,h,f,c,i,d,a,b}$	{g,h,f,c,i,d}	{g,h,f,c,i,d}	${g,h,f,c,i}$	{g,h,f,c,i}	{g,h,f}	{g,h,f}	{g,h}	{g,h}	{ 9 }	Collection of disjoint sets
}	<mark>e}</mark>	e}	e }										{i}	{h} {i}	

$$A = \{(h,g), (i,c), (g,f), (a,b), (c,f), (c,d), (a,h), (d,e)\}, w = 37$$

ALGORITMIA AVANZADA - 2013308

http://dis.unal.edu.co/profesores/ypinzon/2013308

The Prim's Algorithm

by Robert Clay Prim, 1957

a tree one vertex at a time. Rather than build a subgraph one edge at a time, Prim's algorithm builds

Pseudo-code:

```
MST-Prim(G, w, r)
1 for each u \in V[G]
2 do key[u] \leftarrow \infty
                                                                                          400
                                                                                                                                               ω
                                                        00
                                                                          \neg
                                                                                                                          \overset{.}{key}[r] \leftarrow 0
                                                                                          while Q \neq \emptyset
                                                                                                             Q \leftarrow V[G]
                                                                         do u \leftarrow \text{Extract-Min}(Q)
                                    for each v \in Adj[u]
do if v \in Q and w(u,v) < key[v]
                                                                                                                                             \pi[u] \leftarrow \mathsf{NIL}
                  then \pi[v] \leftarrow u
key[v] \leftarrow w(u,v)
```

The algorithm was first discovered in 1930 by Vojtěch Jarník and later independently by Prim in 1957 and Dijkstra in 1959.

http://dis.unal.edu.co/profesores/ypinzon/2013308

Time Complexity: $O(m \log n)$

 $O(m \log n)$ if a heap is used. The time required by Prim's algorithm is $O(n^2)$. It will be reduced to

complicated data structure known as a Fibonacci heap, you can reduce the weight of an element in constant time. The result is a total time bound of $O(m + n \log n)$. to the corresponding values.) it's weight. (You also have to find the right value on the heap, but that can be done easily enough by keeping a pointer from the vertices binary heap can be done in $O(\log n)$ time. the heap, and at most 2m steps in which we examine an edge f = (u, v). Analysis: We perform n steps in which we remove the smallest element in For each of those steps, we might replace a value on the heap, reducing To reduce the weight of an element of a $(\log n)$ time. Alternately by using a more

Prim's algorithm is also a greedy algorithm, in the sense that it repeatedly makes a best choice in a sequence of stages

ALGORITMIA AVANZADA - 2013308 http://dis.unal.edu.co/profesores/ypinzon,

Yoan Pinzon

Prim's Algorithm Example

Find the MST for the following graph.

Solution:

Prim/Kruskal – Exercise

ttp://dis.unal.edu.co/profesores/ypinzon/201330

Yoan Pinzón

ALGORITMIA AVANZADA - 2013308