

Primena Sarsa algoritma za obučavanje veštačkog agenta za igranje retro igara

MASTER RAD

Student:

Mentor:

Filip Stamenković

doc. dr Aleksandar Milosavljević

- Podela mašinskog učenja:
 - Nadgledano učenje
 - Nenadgledano učenje
 - Reinforcement Learning
- Jednostavan koncept, agent uči samo na osnovu nagrade i kazne.
- Retro video igre su veoma jednostavne i odličan su benchmark za RL algoritme.

Artwork by Robert Aguilera

- Glavni elementi RL-a:
 - Stanje stanje u kom se agent nalazi
 - Akcija izvršava je agent nad okruženjem
 - Nagrada nagrada koju agent dobija
- Cilj agenta je da maksimizuje nagradu koju dobije od okruženja.

- Komponente RL-a (agent može imati jednu ili više):
 - Funkcija vrednosti
 - Stanja definiše koliku nagradu agent očekuje za dato stanje.
 - Akcije definiše koliku nagradu agent očekuje za dato stanje i akciju.
 - Polisa opisuje ponašanje agenta.
 - Model u zavisnosti od toga da li je agentu model okruženja poznat, algoritmi se mogu podeliti na
 - Model-Based Agentu je poznat model okruženja, pomoću dinamičkog programiranja ili planning algoritama agent može rešiti RL problem
 - Model-Free Agentu nije poznat model okruženja

- Cilj agenta da maksimizuje nagradu koju dobija.
- γ discount faktor, govori koliko agent vrednuje buduće nagrade u odnosu na trenutnu.

•
$$G_t = \sum_{i=0} \gamma^i R_{t+i}$$

- Funkcija vrednosti stanja:
 - $V(S_t) = E[G_t]$
 - $V(S_t) = E[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots]$
 - $V(S_t) = E[R_t + \gamma V(S_{t+1})]$
 - Stanje je "dobro" koliko nagrada dobijena u tom stanju + očekivana nagrada iz narednog stanja sa uračunatim *discount* faktorom.

- Istraživanje obilaženje neposećenih stanja.
- Iskorišćavanja ići sigurnim putem zarad veće nagrade.
- Agent mora istražiti što više stanja ali da ne gubi previše nagrade usput.
- Analogija za ovaj problem može se naći i u realnom životu, npr. odabir restorana za ručak
 - Istraživanje ići u novi neposećeni restoran
 - Iskorišćavanje ići u omiljeni restoran
- ε-greedy mehanizam rešava ovaj problem.

Monte Carlo

- MC uči direktno iz interakcije sa okruženjem.
- MC je *Model-Free* algoritam.
- MC uči na osnovu celih epizoda.
- MC ima jednostavnu ideju: vrednost stanja jednaka je prosečnoj vrednosti.
- MC formula za predikciju:

•
$$V(S_t) = V(S_t) + \frac{1}{N(S_t)} \left(G_t - V(S_t) \right)$$

- TD isto kao i MC uči direktno iz interakcije sa okruženjem i *Model-Free* je algoritam, ali ne uči na osnovu celih epizoda, nego nakon n koraka.
- TD formula za predikciju u 1 korak:

•
$$V(S_t) = V(S_t) + \alpha \left(R_t + \gamma V(S_{t+1}) - V(S_t) \right)$$

• TD formula za predikciju u **n** koraka:

•
$$V(S_t) = V(S_t) + \alpha \left(G_t^{(n)} - V(S_t)\right)$$

•
$$G_t^{(n)} = \sum_{i=0}^{n-1} \gamma^i R_{t+i} + \gamma^n V(S_{t+n})$$

• α – definiše u kojoj meri novi podaci prebrisuju stare.

Sarsa

- Sarsa je *on-line* TD algoritam za kontrolu.
- Koristi funkciju vrednosti akcije, a ne stanja.
- Ime je skraćenica koja opisuje način rada algoritma (*State-Action-Reward-State-Action*).
- On-line algoritmi svaki put kada izračunaju novu Q vrednost modifikuju i polisu.

Sarsa u **n** koraka

- Sarsa u **n** koraka je algoritam za kontrolu.
- Funkcija akcije i polisa se modifikuju tek posle **n** koraka.
- Rešava problem "pristrastnosti".
- Formula za kontrolu u **n** koraka:

•
$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

•
$$q_t^{(n)} = \sum_{i=0}^{n-1} \gamma^i R_{t+i} + \gamma^n Q(S_{t+n}, A_{t+n})$$

Path taken

Action values increased by one-step Sarsa

Action values increased by 10-step Sarsa

- Objektno-orijentisan framework za testiranje veštačkog agenta koji igra Atari 2600 igre.
- ALE je razvijen 2013. godine na Univerzitetu u Alberti.
- Koristi Stella emulator.
- Podrška za preko 50 Atari igre.
- Lako dodavanje nove igre.
- Jezgro emulatora nezavisno od renderovanje slike i zvuka.
- Lak pristup ekranu igre (niz piksela) i ROM-u same igre.
- Mnoga druga okruženja se baziraju na ALE-u: RLE, Xitari, OpenAl Gym...

- Besplatna mobilna igra napravljena za Android i iOS platforme.
- Nastala 2013. godine, pravu popularnost stekla 2014.
- Igru je razvio Dong Nguyen u kompaniji dotGEARS.
- Protagonista je ptica koja konstantno leti s leva na desno i na koju konstantno utiče gravitacija.
- Pritiskom na ekran, ptica "poleti na gore".
- Ptica "gine" kada udari u tlo ili u prepreku.
- Cilj igre je proći što više prepreka.

- Postoje samo dve akcije: Skoči (Jump) i bez operacije (NOOP).
- Cilj agenta je: naći optimalnu polisu tako da ptica ne pogine.
- Nagrade:
 - +1 za svaki frame kada je ptica živa
 - -100 kada ptica pogine
- Stanje u kome se ptica može naći se određuje pomoću:
 - Visina ptice: 1-180
 - Smer ptice: 1-5
 - Visina prepreke: 1-180
- Broj različitih "stanje-akcija" para: 180 * 5 * 180 * 2 = 324.000.
- Ako se visina ptice i visina prepreke zamene jednom karakteristikom: relativna udaljenost ptice od prepreke, broj "stanje-akcija" para: 180 * 5 *2 = 1.800.

Epizoda	Skor
10	0
15	1
21	5
24	21
25	48
30	20
33	102
42	682 (optimalna polisa)

Breakout

- Atari 1976. razvio Breakout arkadnu igricu.
- Na ekranu se nalaze 108 cigle podeljene u 6 reda i 18 kolona, jedna loptica i lopatica.
- Cilj igre je razbiti što više cigle a ne "poginuti".
- Igra se završava kada igrač "očisti 2 ekrana cigli" ili pogine 5 puta.
- Igrač kontroliše lopaticu, i njegov zadatak je da lopticu odbije od svoje lopatice kako bi cigle srušio.

- Akcije koje agent može da izvrši:
 - Levo (LEFT)
 - Desno (RIGHT)
 - Bez akcije (NOOP)
- Stanje u kome se agent može naći je opisano:
 - X pozicija loptice: 250 (mogućih različitih vrednosti)
 - Y pozicija loptice: 250
 - Pozicija lopatice: 250
 - X brzina loptice: 7
 - Y brzina loptice: 7
 - Širina lopatice: 2
 - Promljive koje opisuju koje cigle su srušene: 2¹⁰⁸

- Broj različitih "stanje-akcija" para je:
 - $N = 2^{108} * 250^3 * 7 * 7 * 2 * 3 \approx 1.5 * 10^{42}$
- Ako se vrednosti pamte pomoću *float* (4B) promenljivih, potreban RAM je:
 - 4B * N \approx 5.6 * 10³³ GB
- ALE najbrže može da procesira 6.000 frame-a u sekundi, tako da minimalno potrebno vreme da se obiđe svaki različit par "stanje-akcija" poseti jednom je:
 - $1.5 * 10^{42} / (6000 \text{ Hz}) \approx 2.6 * 10^{30} \text{ godina}$
- Breakout je nemoguće rešiti tabelarno ako se koriste sve neophodne informacije.
- Moguće je napraviti kompromis, i stanje predstaviti samo pomoću relativne udaljenosti između loptice i lopatice.
- Agent bi naučio da ne pogine, ali cigle bi rušio "slučajno".

- Zbog prevelikog broja stanja i zbog potrebe agenta da generalizuje iz sličnih situacija koristi se aproksimator funkcije.
- Aproksimizacija funkcije se koristi u primenjenoj matematici, u računarstvu kod nadgledanog učenja, prepoznavanja uzorka itd.
- Sve tehnike za aproksimizaciju funkcije iz pomenutih oblasti se mogu koristiti i kod *Reinforcement Learning*-a.
- Najčešće korišćeni aproskimatori kod RLa su:
 - Linearni vektor karakteristika (*feature vector*)
 - Nelinearni neuronska mreža

- Analizom igre pomoću Stella debugger-a, uočava se da se sva potrebna stanja mogu predstaviti pomoću 45 različitih karakteristika.
- Svaka karakteristika predstavlja vrednost ROM memorije na određenoj lokaciji.

- Agent ne uspeva da uoči bitne karakteriste i uvek bira akciju **Levo**.
- Problem rešava nova dodata karakteristika: relativna udaljenost između loptice i lopatice.
- Nova karakteristika mora da ima veći opseg vrednosti od ostalih, kako bi agent naučio da je ta karakteristika najvažnija.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Broj epizode

Rezultati

- Rezultat koji prosečan čovek može ostvariti u igri Flappy Bird je ~ 100.
- Sarsa agent je nakon 42. epizode naučio optimalnu polisu tako da ptica nikad ne "gine".
- Za Breakout igru, prosečan čovek nakon 2 sata igranja igre ostvaruje prosečan rezultat od 31 poen.
- Sarsa agent je već u prvoj epizodi ostvari maksimalan rezultat od 864.
- Oba Sarsa agenta su ostvarila njihov zadatak, ostvarila su bolje rezultate bolje nego prosečan čovek.

Pitanja?