Sannolikhetslära

Def Om ett experiment har m lika sannolika utfall varav q är gynnsamma för händelsen A, så är sannolikheten för A

$$P(A) = g/m.$$

Def P är ett **sannolikhetsmått** om

1.
$$0 \le P(A) \le 1$$

2.
$$P(\Omega) = 1$$

3.
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

för alla händelser $A\subset\Omega$ där Ω är hela utfallsrummet.

Multiplikationsprincipen

Om ett experiment kan indelas i j delexperiment där det första kan få n_1 utfall

andra kan få n_2 utfall

j:te kan få n_j utfall

<u>så</u> har experimentet totalt $n_1 \cdot n_2 \cdots n_i$ utfall.

Additionssatsen

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

A och B är **oberoende händelser** om $P(A \cap B) = P(A)P(B)$ Def

Den betingade sannonlikheten för A givet B är $P(A|B) = \frac{P(A \cap B)}{P(B)}$ Def

Bayes sats $\underline{\mathrm{Om}}\ A_1,\ldots,A_n$ är en partition av Ω

(dvs att
$$i \neq j \Rightarrow A_i \cap A_j = \emptyset$$
 och $\bigcup_{i=1}^n A_i = \Omega$)

$$(\text{dvs att } i \neq j \Rightarrow A_i \cap A_j = \emptyset \text{ och } \bigcup_{i=1}^n A_i = \Omega).$$

$$\underline{\text{så}} \quad \text{är} \quad P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^n P(B|A_i)P(A_i)} \text{ för varje } k = 1, 2, \dots, n.$$

Kombinatorik

Antalet sätt som k element kan väljas bland n möjliga, utan återläggning och utan hänsyn till ordningen, är

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 2\cdot 1}$$

X diskret: Sannolikhetsfunktion: p(x) = P(X = x)Stokastiska

Fördelningsfunktion: $F(x) = P(X \le x) = \sum_{k \le x} p(k)$, variabler

X kont.:

Täthetsfunktion: $f(x) = \frac{d}{dx}P(X \le x)$ **Fördelningsfunktion**: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$.

Väntevärdet av g(X): $E(g(X)) = \begin{cases} \sum_{k \in S} g(k) p(k) & \text{om } X \text{ diskr.} \\ \int_{S} g(t) f(t) dt & \text{om } X \text{ kont.} \end{cases}$ Väntevärde och varians

Väntevärdet av X: $\mu = E(X)$

Variansen av X: $\sigma^2 = V(X) = E((X - \mu)^2)$.

Kovariansen av X och Y: $Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y))$ Korrelationen mellan X och Y: $\rho = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$

Standardavv. $\sigma = \sqrt{V(X)}$.

E(aX + bY) = a E(X) + b E(Y) för alla stokastiska Linjaritet:

variabler X och Y och reella tal a och b.

Om X, Y ober. $V(aX + bY) = a^2V(X) + b^2V(Y)$.

Regler:

Om X diskret $E(g(X)) = \sum_{x \in \Omega} g(x) p(x)$ $V(X) = E(X^2) - (E(X))^2$ $Cov(X,Y) = \sum_{x \in \Omega_x} \sum_{y \in \Omega_y} xy p(x,y) - E(X)E(Y)$

Normalfördelning

betecknas $N(\mu, \sigma)$ där μ är väntevärde och σ är standardavvikelse N(0,1) kallas standard normalfördelning, dess fördelningsfunktion $\Phi(x)$

 $\underline{Om}\ X \in N(\mu, \sigma) \ \underline{\text{så}}\ P(X \leq x) = \Phi\left(\frac{x-\mu}{\sigma}\right) \text{ för alla } x \in \mathbb{R}.$

Symmetri: $\Phi(-x) = 1 - \Phi(x)$ för alla $x \in \mathbb{R}$.

Sannolikheter: $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ för all $a < b \in \mathbb{R}$

De stokastiska variablerna X_1, X_2, \dots, X_n är ett **stickprov** på X om X_i har Def samma fördelning som X, $i = 1, \ldots, n$, och alla variabler är oberoende av varandra på alla nivåer.

CGS (Centrala gränsvärdessatsen)

 $\underline{\mathrm{Om}}\ X_1,\ldots,X_n$ stickprov där $E(X_i) = \mu \text{ och } V(X_i) = \sigma^2, i = 1, ..., n$

 $\underline{\text{så}} \quad P\left(\frac{\sqrt{n}}{\sigma}(\bar{X} - \mu) \le x\right) \to \Phi(x) \quad \text{då } n \to \infty.$ $\text{Därför är } \sum_{i=1}^{n} X_i \text{ approximativt } N(n\mu, \sigma\sqrt{n})$ och \bar{X} approximativt $N(\mu, \frac{\sigma}{\sqrt{n}})$ för stora n.

Approximationer Fördelning Villkor Approximativ fördelning

Bin(n,p)n > 10 och 0.1Po(np)

Bin(n,p) $np(1-p) \ge 10$ $N(np, \sqrt{np(1-p)})$

 $Po(\mu)$ $\mu \ge 15$ $N(\mu,\sqrt{\mu})$

Fördelningar, väntevärden och varianser

	X	p(k), f(x)	E(X)	V(X)
	Bern(p)	$(1-p)I(X=0) + pI(X=1)$ där $p \in [0,1]$ och $S = \{0,1\}.$	p	p(1-p)
	$\mathrm{U}(N)$	$1/N \operatorname{där} N \in \mathbb{Z}^+ \operatorname{och} S = \{1, 2, \dots, N\}.$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$
	Bin(n,p)	$\binom{n}{k} p^k (1-p)^{n-k} \text{ där } n \in \mathbb{N}, p \in [0,1]$ och $S = \{0, 1, \dots, n\}.$	np	np(1-p)
ıgar	$Po(\lambda)$	$e^{-\lambda}\lambda^k/k!$ där $\lambda \in \mathbb{R}^+$ och $S = \mathbb{N}$.	λ	λ
Diskreta fördelningar	Geo(p)	$(1-p)^k p \text{ där } p \in [0,1] \text{ och } S = \mathbb{N}.$	$\frac{1-p}{p}$	$\frac{(1-p)(2-2p+p^2)}{p^3}$
Diskreta	$\mathrm{Hyp}(N,n,p)$	$\frac{\binom{v}{k}\binom{N-v}{n-k}}{\binom{N}{n}} \overset{\text{där }}{\text{där }} n, v, N \in \mathbb{N}, \ 0 \le k \le v, \\ 0 \le n - k \le N - v, \ v = Np \text{ och } S = \mathbb{Z}^+.$	np	$\frac{N-n}{N-1}np(1-p)$
	U(a,b)	$\frac{1}{b-a} \operatorname{d\ddot{a}r} a, b \in \mathbb{R} : a < b \text{ och } S = [a, b].$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$
	$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x} \operatorname{där} \lambda \in \mathbb{R}^+ \operatorname{och} S = \mathbb{R}^+.$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
ï	$N(\mu, \sigma)$	$(\sigma\sqrt{2\pi})^{-1}e^{-(x-\mu)^2/(2\sigma^2)} \text{ där } \mu \in \mathbb{R},$ $\sigma \in \mathbb{R}^+ \text{ och } S = \mathbb{R}.$	μ	σ^2
Kont. fördelningar	$\operatorname{Wei}(\lambda, c)$	$\lambda c(\lambda x)^{c-1} e^{-(\lambda x)^c} \text{ där } \lambda, c \in \mathbb{R}^+ \text{ och }$ $S = \mathbb{R}^+.$	$\frac{1}{\lambda}\Gamma(1+\frac{1}{c})$	$\frac{1}{\lambda^2} \left(\Gamma(1 + \frac{2}{c}) - (\Gamma(1 + \frac{1}{c}))^2 \right)$
Kont. fö	$\operatorname{Gamma}(\lambda,c)$	$\frac{\lambda}{\Gamma(c)} x^{c-1} e^{-\lambda x} \text{ där } \lambda, c \in \mathbb{R}^+ \text{ och } $ $S = \mathbb{R}^+.$	$\frac{c}{\lambda}$	$\frac{c}{\lambda^2}$

Här är I är indikatorfunktionen:

$$I(A) = \begin{cases} 1 & \text{om } A \text{ \"{a}r sann} \\ 0 & \text{annars} \end{cases}$$

och Γ är gammafunktionen:

$$\Gamma(c) = \int_0^\infty t^{c-1} e^{-t} dt$$

Speciellt är $\Gamma(k)=(k-1)!$ för alla $k\in\mathbb{Z}^+$.

 $\begin{array}{ll} \textbf{Simulering} & \underline{\text{Om}} \ F \ \text{uppfyller kraven för en fördelningsfunktion och } U \in U(0,1) \\ & \underline{\text{så}} & \text{har den stokastiska variabeln } X = F^{-1}(U) \ \text{fördelningsfunktionen } F. \end{array}$

STATISTIK

Punktskattning

 $\underline{\operatorname{Om}} E(X) = \mu, V(X) = \sigma^2 \text{ och } X_1, \dots, X_n \text{ stickprov på } X$ så är exempel på punktskattningar av μ och σ^2 :

$$\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\hat{\sigma}^{2} = S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \mu^{2}$$
om μ är känd
$$\hat{\sigma}^{2} = S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \bar{X}^{2} \right)$$
om μ är okänd

Def En punktskattning, θ^* , av en parameter θ är **väntevärdesriktig** om $E(\theta^*) = \theta$. Om θ_1^* och θ_2^* är väntevärdesriktiga skattningar av θ , så är θ_1^* **effektivare** än θ_2^* om $V(\theta_1^*) < V(\theta_2^*)$.

Enkel linjär regression En linjär modell, Y = a + bX, som beskriver sambandet mellan slumpvariablerna X och Y baserad på det parade stickprovet $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ fås med regressionskoefficienten

$$\hat{b} = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \quad \text{och interceptet} \quad \hat{a} = \bar{y} - \hat{b}\bar{x}.$$

Den har då förklaringsgraden R^2 där R är korrelationen

$$R = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - (\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{\sqrt{\left(n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}\right) \left(n \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}\right)}}$$

Konfidensintervall Antag X_1, \ldots, X_m och Y_1, \ldots, Y_n är oberoende och normalfördelade $N(\mu_X, \sigma)$ resp. $N(\mu_Y, \sigma)$. Då är $100(1 - \alpha)\%$ konfidensintervall för parametern θ :

θ	Konf. int.	Anm.
μ_X	$\bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{m}}$	σ känd
μ_X	$\bar{x} \pm t_{\alpha/2,m-1} \frac{s}{\sqrt{m}}$	σ okänd
σ^2	$\left(0, (m-1)s^2/(\chi^2_{1-\alpha,m-1})\right)$	
$\mu_X - \mu_Y$	$\bar{\Delta} \pm t_{\alpha/2,m+n-2} s_{\Delta} \sqrt{\frac{1}{m} + \frac{1}{n}}$	σ okänd $\bar{\Delta} = \bar{x} - \bar{y}$ $s_{\Delta}^2 = \frac{(m-1)s_X^2 + (n-1)s_Y^2}{m+n-2}$
p	$p^* \pm \lambda_{lpha/2} \sqrt{rac{p^*(1-p^*)}{n}}$	
$p_1 - p_2$	$p_1^* - p_2^* \pm \lambda_{\alpha/2} \sqrt{\frac{p^*(1-p^*)n_1n_2}{n_1+n_2}}$	$p^* = \frac{n_1 p_1^* + n_2 p_2^*}{n_1 + n_2}$

Hypotestest Antag x_1, \ldots, x_n är ett stickprov på X fördelad med parametern θ respektive x_1, \ldots, x_{n_1} och y_1, \ldots, y_{n_2} på X och Y fördelade med parametern θ . För att testa

 $\begin{cases} H_0: \ \theta = \theta_0 & \text{(nollhypotesen)} \\ H_1: \ \theta \in \Theta & \text{(alternativhypotesen)} \end{cases}$

används teststatistikan $T = T(X_1, \ldots, X_n)$ och beslutsregeln A_{α} som svarar mot Θ enligt fördelningen av F_U under H_0 vid signifikansnivån α .

Testregeln är $\left\{ \begin{array}{l} \mbox{F\"{o}rkasta}\ H_0\ \mbox{om}\ A_{\alpha} \\ \mbox{F\"{o}rkasta}\ \mbox{inte}\ H_0\ \mbox{om}\ \mbox{inte}\ A_{\alpha} \end{array} \right.$

θ	H_0	H_1	T	A_{α}	<i>p</i> -värde
π	$\pi = \pi_0$	$\pi < \pi_0$ $\pi > \pi_0$ $\pi \neq \pi_0$	$\frac{\sqrt{n}(p-\pi_0)}{\sqrt{\pi_0(1-\pi_0)}} \qquad \begin{array}{l} \text{där } \pi = P(B(X)), \\ p = \frac{\#\{x_i:B(x_i)\}}{n}, \\ \text{Villkor: } n\pi_0(1-\pi_0) > 5 \end{array}$	$T < -\lambda_{\alpha}$ $T > \lambda_{\alpha}$ $ T > \lambda_{\alpha/2}$	
π_1,π_2	$\pi_1 = \pi_2$	$\pi_1 < \pi_2$ $\pi_1 > \pi_2$ $\pi_1 \neq \pi_2$	$\frac{p_1 - p_2}{\sqrt{p(1-p)(\frac{1}{n_1} + \frac{1}{n_2})}} \qquad \begin{array}{l} \text{där } p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} \\ \text{Villkor:} \\ n_1 \pi_1 (1 - \pi_1) > 5 \\ n_2 \pi_2 (1 - \pi_2) > 5 \end{array}$	$T < -\lambda_{\alpha}$ $T > \lambda_{\alpha}$ $ T > \lambda_{\alpha/2}$	$\begin{aligned} \Phi(T) \\ 1 - \Phi(T) \\ 2(1 - \Phi(T)) \end{aligned}$
$\begin{array}{ c c c c c }\hline \mu \\ (\sigma^2 \text{ känd}) \\ \hline \end{array}$	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$rac{\sqrt{n}(ar{x}-\mu_0)}{\sigma}$	$T < -\lambda_{\alpha}$ $T > \lambda_{\alpha}$ $ T > \lambda_{\alpha/2}$	$\begin{array}{c} \Phi(T) \\ 1 - \Phi(T) \\ 2(1 - \Phi(T)) \end{array}$
μ		$\mu < \mu_0$	$\frac{\sqrt{n}(\bar{x}-\mu_0)}{s}$	$T < -t_{\alpha, n-1}$	$(\alpha_1, \alpha_2): t_{\alpha_2} < -T < t_{\alpha_1}$
σ^2 okänd)	$\mu = \mu_0$	$\mu > \mu_0$	s	$T > t_{\alpha, n-1}$	$(\alpha_1, \alpha_2): t_{\alpha_2} < T < t_{\alpha_1} (\alpha_1, \alpha_2):$
		$\mu \neq \mu_0$		$ T > t_{\alpha/2, n-1}$	$ t_{\alpha_2/2} < T < t_{\alpha_1/2}$
		$\mu_1 < \mu_2$	$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} $ då $\sigma_1 = \sigma_2$ men okända, och min $(n_1, n_2) \le 30$	$T < -t_{\alpha, n_1 + n_2 - 2}$	$ \begin{aligned} &(\alpha_1, \alpha_2): \\ &t_{\alpha_2} < -T < t_{\alpha_1} \\ &(\alpha_1, \alpha_2): \end{aligned} $
μ_1, μ_2	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}\left(\frac{1}{n_1}+\frac{1}{n_2}\right) \qquad n_2) \le 30$	$T > t_{\alpha, n_1 + n_2 - 2}$	$\begin{array}{c} (\alpha_1, \alpha_2) : \\ t_{\alpha_2} < T < t_{\alpha_1} \\ (\alpha_1, \alpha_2) : \end{array}$
		$\mu_1 \neq \mu_2$		$ T > t_{\alpha/2, n_1 + n_2 - 2}$	$\begin{array}{ c c }\hline (\alpha_1, \alpha_2):\\ t_{\alpha_2/2} < T < t_{\alpha_1/2}\\ \hline (\alpha_1, \alpha_2):\\ \end{array}$
		$\mu_1 < \mu_2$	$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{s_1^2} + \frac{s_2^2}{s_1^2}}} \qquad \text{då } \sigma_1 = \sigma_2 \text{ men okända,} $ $\text{och } \min(n_1, n_2) > 30$	$T < -t_{\alpha, n_1 + n_2 - 2}$	$\begin{array}{c} (\alpha_1, \alpha_2) : \\ t_{\alpha_2} < -T < t_{\alpha_1} \\ (\alpha_1, \alpha_2) : \end{array}$
μ_1, μ_2	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$\bigvee n_1$, n_2	$T > t_{\alpha, n_1 + n_2 - 2}$	$\begin{array}{c} (\alpha_1, \alpha_2) : \\ t_{\alpha_2} < T < t_{\alpha_1} \\ (\alpha_1, \alpha_2) : \end{array}$
		$\mu_1 \neq \mu_2$	$1 \sum_{i=1}^{n} (n) i \cdots \sum_{i=1}^{n} T_i \qquad \qquad \theta^*$	$ T > t_{\alpha/2, n_1 + n_2 - 2}$	$ t_{\alpha_2/2} < T < t_{\alpha_1/2}$
θ	$\theta = \theta_0$	$\theta \neq \theta_0$	$\frac{1}{(1+a)^n} \sum_{i=s}^n \binom{n}{i} a^i \text{där } s = \sum_{i=1}^n I(x_i < y_i), a = \frac{\theta^*}{1-\theta^*}$	$T < \alpha$	T
m_1, m_2	$m_1 = m_2$	$m_1 \neq m_2$	$\frac{2r - n_1(n_1 + n_2 + 1)}{\sqrt{n_1 n_2(n_1 + n_2 + 1)/3}} \operatorname{där} r = \sum_{i=1}^{n_1} r_i$	$ T > \lambda_{\alpha/2}$	$2(1-\Phi(T))$
F_X	$F_X = F_0$	$F_X \neq F_0$	$\sum_{k=1}^{K} \frac{(O_k - E_k)^2}{E_k} \qquad \text{där } E_k = NP(X \in I_k \mid H_0)$ och $E_k > 2$ för alla klasser k	$T > \chi^2_{\alpha, K-1}$	$\begin{pmatrix} (\alpha_1, \alpha_2) : \\ \chi_{\alpha_2}^2 < T < \chi_{\alpha_1}^2 \end{pmatrix}$

Typ I fel är att förkasta H_0 då H_0 är sann. $P(\text{Typ I fel}) = \alpha$. Typ II fel är att inte förkasta H_0 då H_1 är sann. $P(\text{Typ II fel}) = \beta$. Testets styrka är sannolikheten att förkasta H_0 då H_1 är sann, dvs $1 - \beta$.

Normalfördelningsvärden

 $\Phi(x)$

Tabell över värden på $\Phi(x) = P(X \le x)$ där $X \in N(0,1)$. För x < 0 utnyttja relationen $\Phi(x) = 1 - \Phi(-x)$.

x	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
								=	. 6 6	
x	+0.0	+0.1	+0.2	+0.3	+0.4	+0.5	+0.6	+0.7	+0.8	+0.9
3	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Normal-percentiler: Några värden på λ_{α} sådana att $P(X > \lambda_{\alpha}) = \alpha$ där $X \in N(0, 1)$

α	λ_{lpha}	α	λ_{lpha}
0.1	1.281552	0.005	2.575829
0.05	1.644854	0.001	3.090232
0.025	1.959964	0.0005	3.290527
0.01	2.326348	0.0001	3.719016

t-percentiler

Tabell över värden på $t_{\alpha,df}$.

df	α 0.25	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.0000	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567	318.3088
2	0.8165	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248	22.3271
3	0.7649	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409	10.2145
4	0.7407	1.5332	2.1318	2.7764	2.9986	3.7470	4.6041	7.1732
5	0.7267	1.4759	2.0150	2.5706	2.7565	3.3649	4.0322	5.8934
6	0.7176	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074	5.2076
7	0.7111	1.4149	1.8946	2.3646	2.5168	2.9980	3.4995	4.7853
8	0.7064	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554	4.5008
9	0.7027	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498	4.2968
10	0.6998	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693	4.1437
12	0.6955	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545	3.9296
14	0.6924	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768	3.7874
17	0.6892	1.3334	1.7396	2.1098	2.2238	2.5669	2.8982	3.6458
20	0.6870	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453	3.5518
25	0.6844	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.4502
30	0.6828	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500	3.3852
50	0.6794	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778	3.2614
100	0.6770	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259	3.1737

χ^2 -percentiler

Tabell över värden på $\chi^2_{\alpha,df}$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d\!f$	$\alpha = 0.999$	0.995	0.99	0.95	0.05	0.01	0.005	0.001
3 0.0243 0.0717 0.1148 0.3518 7.8147 11.3449 12.8382 16.2662 4 0.0908 0.2070 0.2971 0.7107 9.4877 13.2767 14.8603 18.4668 5 0.2102 0.4117 0.5543 1.1455 11.0705 15.0863 16.7496 20.5150 6 0.3811 0.6757 0.8721 1.6354 12.5916 16.8119 18.5476 22.4577 7 0.5985 0.9893 1.2390 2.1673 14.0671 18.4753 20.2777 24.3219 8 0.8571 1.3444 1.6465 2.7326 15.5073 20.0902 21.9550 26.1245 9 1.1519 1.7349 2.0879 3.3251 16.9190 21.6660 23.5894 27.8772 10 1.4787 2.1559 2.5582 3.9403 18.3070 23.2093 25.1882 29.5883 12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 <th>1</th> <th>0.0000</th> <th>0.0000</th> <th>0.0002</th> <th>0.0039</th> <th>3.8415</th> <th>6.6349</th> <th>7.8794</th> <th>10.8276</th>	1	0.0000	0.0000	0.0002	0.0039	3.8415	6.6349	7.8794	10.8276
4 0.0908 0.2070 0.2971 0.7107 9.4877 13.2767 14.8603 18.4668 5 0.2102 0.4117 0.5543 1.1455 11.0705 15.0863 16.7496 20.5150 6 0.3811 0.6757 0.8721 1.6354 12.5916 16.8119 18.5476 22.4577 7 0.5985 0.9893 1.2390 2.1673 14.0671 18.4753 20.2777 24.3219 8 0.8571 1.3444 1.6465 2.7326 15.5073 20.0902 21.9550 26.1245 9 1.1519 1.7349 2.0879 3.3251 16.9190 21.6660 23.5894 27.8772 10 1.4787 2.1559 2.5582 3.9403 18.3070 23.2093 25.1882 29.5883 12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 28.2995 32.9095 14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 </th <th>2</th> <th>0.0020</th> <th>0.0100</th> <th>0.0201</th> <th>0.1026</th> <th>5.9915</th> <th>9.2103</th> <th>10.5966</th> <th>13.8155</th>	2	0.0020	0.0100	0.0201	0.1026	5.9915	9.2103	10.5966	13.8155
5 0.2102 0.4117 0.5543 1.1455 11.0705 15.0863 16.7496 20.5150 6 0.3811 0.6757 0.8721 1.6354 12.5916 16.8119 18.5476 22.4577 7 0.5985 0.9893 1.2390 2.1673 14.0671 18.4753 20.2777 24.3219 8 0.8571 1.3444 1.6465 2.7326 15.5073 20.0902 21.9550 26.1245 9 1.1519 1.7349 2.0879 3.3251 16.9190 21.6660 23.5894 27.8772 10 1.4787 2.1559 2.5582 3.9403 18.3070 23.2093 25.1882 29.5883 12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 28.2995 32.9095 14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 31.3193 36.1233 17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087	3	0.0243	0.0717	0.1148	0.3518	7.8147	11.3449	12.8382	16.2662
6 0.3811 0.6757 0.8721 1.6354 12.5916 16.8119 18.5476 22.4577 7 0.5985 0.9893 1.2390 2.1673 14.0671 18.4753 20.2777 24.3219 8 0.8571 1.3444 1.6465 2.7326 15.5073 20.0902 21.9550 26.1245 9 1.1519 1.7349 2.0879 3.3251 16.9190 21.6660 23.5894 27.8772 10 1.4787 2.1559 2.5582 3.9403 18.3070 23.2093 25.1882 29.5883 12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 28.2995 32.9095 14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 31.3193 36.1233 17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087 35.7185 40.7902 20 5.9210 7.4338 8.2604 10.8508 31.4104 37.56	4	0.0908	0.2070	0.2971	0.7107	9.4877	13.2767	14.8603	18.4668
7 0.5985 0.9893 1.2390 2.1673 14.0671 18.4753 20.2777 24.3219 8 0.8571 1.3444 1.6465 2.7326 15.5073 20.0902 21.9550 26.1245 9 1.1519 1.7349 2.0879 3.3251 16.9190 21.6660 23.5894 27.8772 10 1.4787 2.1559 2.5582 3.9403 18.3070 23.2093 25.1882 29.5883 12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 28.2995 32.9095 14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 31.3193 36.1233 17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087 35.7185 40.7902 20 5.9210 7.4338 8.2604 10.8508 31.4104 37.5662 39.9968 45.3147 25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	5	0.2102	0.4117	0.5543	1.1455	11.0705	15.0863	16.7496	20.5150
8 0.8571 1.3444 1.6465 2.7326 15.5073 20.0902 21.9550 26.1245 9 1.1519 1.7349 2.0879 3.3251 16.9190 21.6660 23.5894 27.8772 10 1.4787 2.1559 2.5582 3.9403 18.3070 23.2093 25.1882 29.5883 12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 28.2995 32.9095 14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 31.3193 36.1233 17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087 35.7185 40.7902 20 5.9210 7.4338 8.2604 10.8508 31.4104 37.5662 39.9968 45.3147 25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	6	0.3811	0.6757	0.8721	1.6354	12.5916	16.8119	18.5476	22.4577
9 1.1519 1.7349 2.0879 3.3251 16.9190 21.6660 23.5894 27.8772 10 1.4787 2.1559 2.5582 3.9403 18.3070 23.2093 25.1882 29.5883 12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 28.2995 32.9095 14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 31.3193 36.1233 17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087 35.7185 40.7902 20 5.9210 7.4338 8.2604 10.8508 31.4104 37.5662 39.9968 45.3147 25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	7	0.5985	0.9893	1.2390	2.1673	14.0671	18.4753	20.2777	24.3219
10 1.4787 2.1559 2.5582 3.9403 18.3070 23.2093 25.1882 29.5883 12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 28.2995 32.9095 14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 31.3193 36.1233 17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087 35.7185 40.7902 20 5.9210 7.4338 8.2604 10.8508 31.4104 37.5662 39.9968 45.3147 25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	8	0.8571	1.3444	1.6465	2.7326	15.5073	20.0902	21.9550	26.1245
12 2.2142 3.0738 3.5706 5.2260 21.0261 26.2170 28.2995 32.9095 14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 31.3193 36.1233 17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087 35.7185 40.7902 20 5.9210 7.4338 8.2604 10.8508 31.4104 37.5662 39.9968 45.3147 25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	9	1.1519	1.7349	2.0879	3.3251	16.9190	21.6660	23.5894	27.8772
14 3.0407 4.0747 4.6604 6.5706 23.6848 29.1412 31.3193 36.1233 17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087 35.7185 40.7902 20 5.9210 7.4338 8.2604 10.8508 31.4104 37.5662 39.9968 45.3147 25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	10	1.4787	2.1559	2.5582	3.9403	18.3070	23.2093	25.1882	29.5883
17 4.4161 5.6972 6.4078 8.6718 27.5871 33.4087 35.7185 40.7902 20 5.9210 7.4338 8.2604 10.8508 31.4104 37.5662 39.9968 45.3147 25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	12	2.2142	3.0738	3.5706	5.2260	21.0261	26.2170	28.2995	32.9095
20 5.9210 7.4338 8.2604 10.8508 31.4104 37.5662 39.9968 45.3147 25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	14	3.0407	4.0747	4.6604	6.5706	23.6848	29.1412	31.3193	36.1233
25 8.6493 10.5197 11.5240 14.6114 37.6525 44.3141 46.9279 52.6197 30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	17	4.4161	5.6972	6.4078	8.6718	27.5871	33.4087	35.7185	40.7902
30 11.5880 13.7867 14.9535 18.4927 43.7730 50.8922 53.6720 59.7031	20	5.9210	7.4338	8.2604	10.8508	31.4104	37.5662	39.9968	45.3147
	25	8.6493	10.5197	11.5240	14.6114	37.6525	44.3141	46.9279	52.6197
	30	11.5880	13.7867	14.9535	18.4927	43.7730	50.8922	53.6720	59.7031
50 24.6739 27.9907 29.7067 34.7643 67.5048 76.1539 79.4900 86.6608	50	24.6739	27.9907	29.7067	34.7643	67.5048	76.1539	79.4900	86.6608
100 61.9179 67.3276 70.0649 77.9295 124.342 135.807 140.169 149.449	100	61.9179	67.3276	70.0649	77.9295	124.342	135.807	140.169	149.449

Poissonfördelningsvärden Tabell över värden på $P(x) = P(X \le x)$ där $X \in Po(\lambda)$.

λ	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0.5	0.607	0.910	0.986	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1	0.368	0.736	0.920	0.981	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	0.135	0.406	0.677	0.857	0.947	0.983	0.995	0.999	1.000	1.000	1.000	1.000	1.000	1.000
3	0.050	0.199	0.423	0.647	0.815	0.916	0.966	0.988	0.996	0.999	1.000	1.000	1.000	1.000
4	0.018	0.092	0.238	0.433	0.629	0.785	0.889	0.949	0.979	0.992	0.997	0.999	1.000	1.000
5	0.007	0.040	0.125	0.265	0.440	0.616	0.762	0.867	0.932	0.968	0.986	0.995	0.998	0.999
6	0.002	0.017	0.062	0.151	0.285	0.446	0.606	0.744	0.847	0.916	0.957	0.980	0.991	0.996

Binomialfördelningsvärden Tabell över värden på $P(x)=P(X\leq x)$ där $X\in Bin(n,p)$. För p>0.5, utnyttja att $P(X\leq x)=P(Y\geq n-x)$ där $Y\in Bin(n,1-p)$.

					`	1	`	,		`	- /	
n	p	0	1	2	3	4	5	6	7	8	9	10
3	0.1	0.729	0.972	0.999	1.000	_	_	_	_	_	_	
	0.2	0.512	0.896	0.992	1.000	_	_	_	_	_	_	_
	0.3	0.343	0.784	0.973	1.000	_	_	_	_	_	_	_
	0.4	0.216	0.648	0.936	1.000	_	_	_	_	_	_	_
	0.5	0.125	0.500	0.875	1.000	_	_	_	_	_	_	_
4	0.1	0.656	0.948	0.996	1.000	1.000	_	_	_	_	_	_
	0.2	0.410	0.819	0.973	0.998	1.000	_	_	_	_	_	_
	0.3	0.240	0.652	0.916	0.992	1.000	_	_	_	_	_	_
	0.4	0.130	0.475	0.821	0.974	1.000	_	_	_	_	_	_
	0.5	0.062	0.312	0.688	0.938	1.000		_	_	_	_	_
5	0.1	0.590	0.919	0.991	1.000	1.000	1.000	_	_	_	_	_
	0.2	0.328	0.737	0.942	0.993	1.000	1.000	_	_	_	_	_
	0.3	0.168	0.528	0.837	0.969	0.998	1.000	_	_	_	_	_
	0.4	0.078	0.337	0.683	0.913	0.990	1.000	_	_	_	_	_
	0.5	0.031	0.188	0.500	0.812	0.969	1.000		. –	_	_	_
6	0.1	0.531	0.886	0.984	0.999	1.000	1.000	1.000	_	_	_	_
	0.2	0.262	0.655	0.901	0.983	0.998	1.000	1.000	_	_	_	_
	0.3	0.118	0.420	0.744	0.930	0.989	0.999	1.000	_	_	_	_
	0.4	0.047	0.233	0.544	0.821	0.959	0.996	1.000	_	_	_	_
	0.5	0.016	0.109	0.344	0.656	0.891	0.984	1.000		. –	_	_
7	0.1	0.478	0.850	0.974	0.997	1.000	1.000	1.000	1.000	_	_	_
	0.2	0.210	0.577	0.852	0.967	0.995	1.000	1.000	1.000	_	_	_
	0.3	0.082	0.329	0.647	0.874	0.971	0.996	1.000	1.000	_	_	_
	0.4	0.028	0.159	0.420	0.710	0.904	0.981	0.998	1.000	_	_	_
	0.5	0.008	0.062	0.227	0.500	0.773	0.938	0.992	1.000	_	-	_
8	0.1	0.430	0.813	0.962	0.995	1.000	1.000	1.000	1.000	1.000	_	_
	0.2	0.168	0.503	0.797	0.944	0.990	0.999	1.000	1.000	1.000	_	_
	0.3	0.058	0.255	0.552	0.806	0.942	0.989	0.999	1.000	1.000	_	_
	0.4	0.017	0.106	0.315	0.594	0.826	0.950	0.991	0.999	1.000	_	_
	0.5	0.004	0.035	0.145	0.363	0.637	0.855	0.965	0.996	1.000	1 000	_
9	0.1	0.387	0.775	0.947	0.992	0.999	1.000	1.000	1.000	1.000	1.000	_
	0.2	0.134	0.436	0.738	0.914	0.980	0.997	1.000	1.000	1.000	1.000	_
	0.3	0.040	0.196	0.463	0.730	0.901	0.975	0.996	1.000	1.000	1.000	_
	0.4	0.010	0.071	0.232	0.483	0.733	0.901	0.975	0.996	1.000	1.000	_
10	0.5	0.002	0.020	0.090	0.254	0.500	0.746	0.910	0.980	0.998	1.000	1.000
10	0.1	0.349	0.736	0.930	0.987	0.998	1.000	1.000	1.000	1.000	1.000	1.000
	0.2	0.107	0.376	0.678	0.879	0.967	0.994	0.999	1.000	1.000	1.000	1.000
	0.3	0.028	0.149	0.383	$0.650 \\ 0.382$	0.850	0.953	0.989	0.998	1.000	1.000	1.000
	$0.4 \\ 0.5$	$0.006 \\ 0.001$	$0.046 \\ 0.011$	$0.167 \\ 0.055$	0.382 0.172	0.633 0.377	0.834 0.623	$0.945 \\ 0.828$	$0.988 \\ 0.945$	$0.998 \\ 0.989$	1.000 0.999	1.000
	0.0	0.001	0.011	0.055	0.172	0.377	0.023	0.828	0.945	0.989	0.999	1.000