Bayesian Networks

aka belief networks, probabilistic networks

- A BN over variables $\{X_1, X_2, ..., X_n\}$ consists of:
 - a DAG whose nodes are the variables
 - a set of CPTs $(Pr(X_i | Parents(X_i)))$ for each X_i

Bayesian Networks

aka belief networks, probabilistic networks

- Key notions
 - parents of a node: $Par(X_i)$
 - children of node
 - descendents of a node
 - ancestors of a node
 - family: set of nodes consisting of X_i and its parents
 CPTs are defined over families in the BN

Parents(C)={A,B} Children(A)={C} Descendents(B)={C,D} Ancestors{D}={A,B,C} Family{C}={C,A,B}

2

An Example Bayes Net

- · A few CPTs are "shown"
- Explicit joint requires 2¹¹ -1 =2047 params
- BN requires only 27 parms (the number of entries for each CPT is listed)

5 Fall 07 - Lecture 7, Oct. 2, 2007

Semantics of a Bayes Net

 The structure of the BN means: every X_i is conditionally independent of all of its nondescendants given its parents:

 $Pr(X_i \mid S \cup Par(X_i)) = Pr(X_i \mid Par(X_i))$

for any subset $S \subseteq NonDescendants(X_i)$

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

Semantics of Bayes Nets

- If we ask for $P(x_1, x_2,..., x_n)$ we obtain assuming an ordering consistent with network
- By the chain rule, we have: $P(x_1, x_2,..., x_n)$
 - $= P(x_n \mid x_{n-1},...,x_1) P(x_{n-1} \mid x_{n-2},...,x_1)...P(x_1)$
 - $= P(x_n \mid Par(x_n)) \ P(x_{n-1} \mid Par(x_{n-1})) ... \ P(x_1)$
- Thus, the joint is recoverable using the parameters (CPTs) specified in an arbitrary BN

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

5

Bayes net example I

- Naïve Bayes model
 - Naïve: because words do not depend on each other.
 - Joint = $Pr(T) \prod_{i} Pr(W_{i}|T)$

S886 Fall 07 - Lecture 7, Oct. 2, 2007

Bayes net example II

- · Tree augmented naïve Bayes classifier
 - Allow arcs between the leaves as long as they form a tree
 - E.g., augment naïve Bayes model with bigram model

Bayes net example III

- Hidden Markov model
 - Ti: hidden variable (e.g., tag)
 - Wi: observable variable (e.g., word)

28886 Fall 07 - Lecture 7, Oct. 2, 2007

8

Maximum Likelihood Learning

- ML learning of Bayes net parameters:
 - For $\theta_{V=true,pa(V)=\mathbf{v}}$ = $Pr(V=true|par(V)=\mathbf{v})$
 - $\theta_{V=true,pa(V)=v}$ = #[V=true,pa(V)=v] #[V=true,pa(V)=v] + #[V=false,pa(V)=v]
 - Assumes all attributes have values...
- What if values of some attributes are missing?

Il 07 - Lecture 7, Oct. 2, 2007

9

Incomplete data

- But many real-world problems have hidden variables (a.k.a latent variables)
 - Values of some attributes missing
- Incomplete data → unsupervised learning
- Examples:
 - Part of speech tagging
 - Topic modeling
 - Market segmentation for marketing
 - Medical diagnosis

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

10

"Naive" solutions for incomplete data

- Solution #1: Ignore records with missing values
 - But what if all records are missing values (i.e., when a variable is hidden, none of the records have any value for that variable)
- Solution #2: Ignore hidden variables
 - Model may become significantly more complex!

\$886 Fall 07 - Lecture 7, Oct. 2, 2007

Heart disease example

- a) simpler (i.e., fewer CPT parameters)
- b) complex (i.e., lots of CPT parameters)

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

"Direct" maximum likelihood

- · Solution 3: maximize likelihood directly
 - Let Z be hidden and E observable
 - h_{ML} = $argmax_h P(e|h)$
 - = $argmax_h \Sigma_z P(e,Z|h)$
 - = $argmax_h \Sigma_Z \Pi_i CPT(V_i)$
 - = $argmax_h log \Sigma_Z \Pi_i CPT(V_i)$
 - Problem: can't push log past sum to linearize product

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

13

15

Expectation-Maximization (EM)

- · Solution #4: EM algorithm
 - Intuition: if we knew the missing values, computing h_{ML} would be trival
- · Guess h_{MI}
- Iterate
 - Expectation: based on h_{ML}, compute expectation of the missing values
 - Maximization: based on expected missing values, compute new estimate of h_{ML}

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

14

Expectation-Maximization (EM)

- · More formally:
 - Approximate maximum likelihood
 - Iteratively compute:
 h_{i+1} = argmax_h Σ_Z P(Z|h_i,e) log P(e,Z|h)

Expectation

Maximization

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

Expectation-Maximization (EM)

Derivation

- log P(e|h) = log [P(e,Z|h) / P(Z|e,h)] = log P(e,Z|h) - log P(Z|e,h) = Σ_Z P(Z|e,h) log P(e,Z|h) - Σ_Z P(Z|e,h) log P(Z|e,h) $\geq \Sigma_Z$ P(Z|e,h) log P(e,Z|h)

• EM finds a local maximum of $\Sigma_Z P(Z|e,h) \log P(e,Z|h)$ which is a lower bound of log P(e|h)

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

16

Expectation-Maximization (EM)

- · Log inside sum can linearize product
 - \tilde{h}_{i+1} = argmax_h $\Sigma_z P(Z|h_i,e) \log P(e,Z|h)$
 - = $\underset{\leftarrow}{\operatorname{argmax}_h} \Sigma_{\mathbf{Z}} P(\mathbf{Z}|\mathbf{h}_i, \mathbf{e}) \log \Pi_j CPT_j$ = $\underset{\leftarrow}{\operatorname{argmax}_h} \Sigma_{\mathbf{Z}} P(\mathbf{Z}|\mathbf{h}_i, \mathbf{e}) \Sigma_j \log CPT_j$
- Monotonic improvement of likelihood
 P(e|h_{i+1}) ≥ P(e|h_i)

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

17

Candy Example

- Suppose you buy two bags of candies of unknown type (e.g. flavour ratios)
- You plan to eat sufficiently many candies of each bag to learn their type
- Ignoring your plan, your roommate mixes both bags...
- How can you learn the type of each bag despite being mixed?

28886 Fall 07 - Lecture 7, Oct. 2, 2007

Candy Example

• "Bag" variable is hidden

Unsupervised Clustering

- · "Class" variable is hidden
- · Naïve Bayes model

20

Candy Example

- · Unknown Parameters:
 - $-\theta_i = P(Baq=i)$
 - θ_{Fi} = P(Flavour=cherry|Bag=i)
 - θ_{Wi} = P(Wrapper=red|Bag=i)
 - θ_{Hi} = P(Hole=yes|Bag=i)
- · When eating a candy:
 - F, W and H are observable
 - B is hidden

86 Fall 07 - Lecture 7, Oct. 2, 2007

21

Candy Example

- · Let true parameters be:
 - θ =0.5, θ_{F1} = θ_{W1} = θ_{H1} =0.8, θ_{F2} = θ_{W2} = θ_{H2} =0.3
- After eating 1000 candies:

	W=red		W=green	
	H=1	H=0	H=1	H=0
F=cherry	273	93	104	90
F=lime	79	100	94	167

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

22

Candy Example

- · EM algorithm
- Guess h₀:
 - θ =0.6, θ_{F1} = θ_{W1} = θ_{H1} =0.6, θ_{F2} = θ_{W2} = θ_{H2} =0.4
- · Alternate:
 - Expectation: expected # of candies in each bag
 - Maximization: new parameter estimates

S886 Fall 07 - Lecture 7, Oct. 2, 2007

Candy Example

- Expectation: expected # of candies in each bag
 - #[Bag=i] = $\Sigma_i P(B=i|f_i,w_i,h_i)$
 - Compute P(B=i|f_j,w_j,h_j) by variable elimination (or any other inference alg.)
- Example:
 - #[Bag=1] = 612
 - #[Bag=2] = 388

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

Candy Example

- Maximization: relative frequency of each bag
 - $-\theta_1 = 612/1000 = 0.612$
 - $-\theta_2$ = 388/1000 = 0.388

C9996 Fell 07 | Leature 7 Out 2 2007

25

Candy Example

- Expectation: expected # of cherry candies in each bag
 - #[B=i,F=cherry] = Σ_i P(B=i|f_i=cherry,w_i,h_i)
 - Compute P(B=i|f_=cherry,w_,h_) by variable elimination (or any other inference alg.)
- Maximization:
 - $-\theta_{F1} = \#[B=1,F=cherry] / \#[B=1] = 0.668$
 - θ_{F2} = #[B=2,F=cherry] / #[B=2] = 0.389

CS886 Fall 07 - Lecture 7, Oct. 2, 2007

26

Candy Example

27

Bayesian networks

- · EM algorithm for general Bayes nets
- Expectation:
 - $\#[V_i=v_{ij},Pa(V_i)=pa_{ik}]$ = expected frequency
- · Maximization:
 - $-\;\theta_{\mathsf{v}_{ij},\mathsf{p}\mathsf{a}_{ik}} = \#[\mathsf{V}_i \mathtt{=} \mathsf{v}_{ij}, \mathsf{Pa}(\mathsf{V}_i) \mathtt{=} \mathsf{pa}_{ik}] \; / \; \#[\mathsf{Pa}(\mathsf{V}_i) \mathtt{=} \mathsf{pa}_{ik}]$

S886 Fall 07 - Lecture 7, Oct. 2, 2007