Colle MP : Séries et suites de fonctions

26 novembre 2018

Colle 1

Colin (14): bien Solène (17): Très bien

Exercice 1. Comparaison modes convergences.

Exercice 2. Convergence simple et uniforme de $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$? Calculer $\lim_{n \to \infty} \int_{-1}^{1} \sqrt{x^2 + \frac{1}{n}} dx$.

Exercice 3. Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue. On suppose que, pour tout $k \geq 0$, on a $\int_a^b f(t) t^k dt = 0$. Démontrer que $\int_a^b f(t)^2 dt = 0$. En déduire que f est la fonction nulle.

Colle 2

PIERRE Alexandre (14): petites confusions de quantificateurs, dans la démons-

Manon (12): des difficultés pour trouver un contre-exemple (pourtant assez simple)

Exercice 1. Conservation continuité. Contre exemple si la CV n'est pas uniforme?

Exercice 2. Montrer que

$$\int_0^{1/2} \frac{1}{1-x} dx = \sum_{k=1}^\infty \frac{1}{k2^k}$$

En déduire $\sum_{k=1}^{\infty} \frac{1}{k2^k}$.

Exercice 3. Soit $f_n(x) = n^2 x (1 - nx)$ si $x \in [0, 1/n]$ et $f_n(x) = 0$ sinon. Étudier la limite simple de la suite (f_n) .

Calculer $\int_0^1 f_n(t)dt$. Y-a-t-il convergence uniforme sur [0,1]? Étudier la convergence uniforme sur [a,1] pour $a\in]0,1]$.

Colle 3

GAUBERT Baptiste (13) : erreurs de calcul Juliette (13) : erreurs de calcul

Exercice 1. Théorème : limite d'une suite d'intégrales. Contre-exemple si la convergence n'est pas uniforme ?

Exercice 2. Convergence simple et uniforme sur \mathbb{R} de $fn(x) = \frac{nx}{1+n^2x^2}$