ENGR-3000:

Renewable Energy, Technology, and Resource Economics

Geothermal Heat Pump Systems

S. David Dvorak. Ph.D, P.E.

5 June 2019 Ísafjörður, Iceland

Geothermal Heat Pumps: Outline

- Types of ground loop systems.
- Temperature variations in wells
- Vapor compression cycle
- Coefficient of performance
- Maximum theoretical performance (Carnot)

Geothermal Heat Pump Systems

• 51% of incident solar energy is absorbed by the earth

Types of Ground Loop Systems

- Horizontal Loops
 - About 400-600 ft/Ton

- About 150-450 ft deep

- Pond Loops
 - At least 15 ft deep!

Temperature Variations in Heat Pump Wells

• Location: Northern Europe

Vapor Compression Cycle:

Heat Added (Q_H) **Electricity** Heat Added Removed (W) (Q_I)

• Recall 2nd Law of thermodynamics: It takes energy to get heat to move from a cold region to a hot region

Vapor Compression Cycle

- 1 to 2 Compression from Low to High Pressure
- 2 to 3 Heat Rejection at T_H (Condensation)
- 3 to 4 Throttling from High to Low Pressure
- 4 to 1 Heat Addition at T_L (Evaporation)

Coefficient of Performance

$$COP = \frac{Heating (or Cooling) Benefit}{Power Supplied}$$

$$COP_{Heating} = \frac{Q_{H}}{W} = \frac{Q_{H}}{Q_{H} - Q_{L}}$$

1st Law:
$$Q_H = W + Q_L$$

Carnot Limit:

$$COP_{H})_{Carnot} = \frac{T_{H}}{T_{H} - T_{L}}$$

A Comparison of Air and Ground Source Heat Pumps

• Heat Delivered at 45°C

	COP	Carnot Limit
Air Source Heat Pump		
at -20C	2.0	5.6
at 0C	2.8	7.1
Ground Source Heat Pump		
at 0C	3.7	7.1
at 10C	5.0	9.1

Example: Ground Source Heat Pump

- A ground source heat pump system with a COP = 3.2 provides 18 kW of heat to a radiator/ DHW system at 65°C from a source at 10°C.
- Determine the power required (in kW)
- Compare the performance of this system with the theoretical Carnot limit

GLHP Example, Cont'd

Power Required:

$$W = \frac{Q_H}{COP} = \frac{18kW}{3.2} = 5.63kW$$

Theoretical Carnot Limit:

$$(COP)_{Carnot} = \frac{T_H}{T_H - T_L} = \frac{338K}{338K - 283K} = 6.15$$

Exercise: Heat Pump System

A heat pump requires 12 kW of power to deliver 64 kW of heat from at well at 20°C to a heating system which operates at 70°C.

- Calculate the coefficient of performance for this heat pump system.
- How much heat (in kW) is removed from the well?
- Assuming the power input remains the same (12 kW), estimate the maximum possible amount of heat that could be delivered by a heat pump operating between 20°C and 70°C.