ESTATISTIKA METODOAK INGENIARITZAN

6. Estimazioa

6. Estimazioa

- 6.1 Estimazioaren kontzeptua
- 6.2 Puntu estimazioa
- 6.3 Estimatzaileen propietateak
- 6.4 Tarte estimazioa (konfiantza tarteak)
 - 6.4.1 Populazio normalaren batezbestekorako konfiantza-tartea
 - 6.4.2 Edozein populazioaren batezbestekorako konfiantza-tartea
 - 6.4.3 Bi banaketa normal independenteen batezbestekoaren arteko kenduraren konfiantza-tartea

6. Estimazioa

- 6.4.4 Edozein bi banaketa independenteen batezbestekoaren arteko kenduraren konfiantza-tartea
- 6.4.5 Banaketa normalaren bariantzarako konfiantza-tartea
- 6.4.6 Bi banaketa normal independenteen bariantzen arteko zatiduraren konfiantzatartea
- 6.4.7 Banaketa binomialaren parametrorako konfiantza-tartea (n>100)
- 6.4.8 Bi banaketa binomial independenteen proportzioen arteko kenduraren konfiantza-tartea (n,m>100)

6. Estimazioa

6.4.9 Bi banaketa normal ez independenteen batezbestekoen diferentziarako konfiantza-tartea

- 6.5 Laginaren tamaina
- **6.6 Parametroak**

6.1 Estimazioaren kontzeptua

Inferentzia estatistikoa edo Estatistika Induktiboa

Zorizko lagin bakun batetik ateratako informaziotik populaziorako orokortasunak, ondorioak eta aurresanak lortzea ahalbidetzen duen alorra.

Estimazioa

n tamainako zorizko lagin bakunak erabiliz eta laginketaren emaitzez baliatuz, populazioaren parametro ezezagunen balio hurbilduak kalkulatzea du helburu.

Parametroak

 μ, σ, p

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.1 Estimazioaren kontzeptua

Puntu-estimazioa

Lagineko informazioa erabiliz populazioaren parametrorako balio zehatz bat finkatzean datza.

Tarte-estimazioa (konfiantza-tartea)

Lagineko informazioa erabiliz populazioaren parametrorako tarte bat zehaztean datza.

Konfiantza-maila: $1-\alpha$

Oharra

Estimazioz lortzen den balioa ez da ziurra, estimazioa burutzean probabilitateak parte hartzen du.

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.2 Puntu estimazioa

Izan bedi X populazioaren ezaugarri bat aztertzen duen zorizko aldagaia.

Demagun θ parametroaren balio hurbildua (estimazioa) lortu nahi dugula:

n tamainako zorizko lagin bakuna hartuko da:

$$X_{1}, X_{2}, ..., X_{n}$$

- Parametroaren <u>estimatzailea</u>: $\hat{\theta} = \hat{\theta} (X_1, X_2, ..., X_n)$
- Lortutako balio hurbilduari estimazioa deritzo.

Ahal den kasu guztietan **estimatzaile hoberena** erabiliko da.

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.2 Puntu estimazioa

Puntu-estimazioa lortzeko hainbat metodo daude:

- 1. Momentuen metodoa
- 2. Egiantz handieneko metodoa
- 3. ...

Estimatzaile hoberenen zenbait adibide:

- 1) n eta p parametroetako banaketa binomialeko populazioaren p arrakasta probabilitatearen estimatzailea:
 - Lagineko arrakasta-kopuruaren proportzioa

$$\hat{p} = \frac{x}{n}$$

n proba kopurua eta x arrakasta kopurua izanik

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.2 Puntu estimazioa

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

2) μ eta σ parametroetako banaketa normalaren batezbestekorako estimatzailea:

Laginaren batezbestekoa

$$\hat{\mu} = \bar{X}$$

3) μ eta σ parametroetako banaketa normalaren bariantzarako estimatzailea:

Laginaren kuasibariantza

$$\hat{\sigma}^2 = S^2$$

6.3 Estimatzaileen propietateak

Egiantz Handieneko Metodoa erabiliz estimatzaile "onak" lortzen dira.

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileer propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

1. Zentratua edo Alboragabea

 $\hat{\theta}, \theta$ parametroaren estimatzaile alboragabea edo zentratua da baldin eta hurrengo berdintza betetzen badu:

$$E[\hat{\theta}] = \theta$$

Alborapena

$$b(\theta) = E[\hat{\theta}] - \theta$$

6.3 Estimatzaileen propietateak

2. Batezbesteko errore koadratikoa

 $\hat{\theta}$ -ren , hau da, θ parametroaren estimatzailearen, batezbesteko errore koadratikoa ondoko eran definitzen da:

$$BEK(\hat{\theta}) = E[(\theta - \hat{\theta})^2] = Var[\hat{\theta}] + [Alborapena(\hat{\theta})]^2$$

Batezbesteko errore koadratikoa txikia bada $\hat{\theta}$ estimatzaileak lagin desberdinetan hartzen duen balioa θ -tik hurbil dago.

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileer propietateak

Tarte estimazioa (konfiantza tarteak)

6.3 Estimatzaileen propietateak

3. Bariantza minimoa

Estimatzaile batek laginean dagoen informazio guztia erabili beharko luke:

$$Var[\widehat{\theta}] \ge \frac{1}{nE\left[\left(\frac{\partial lnf(x)}{\partial \theta}\right)^{2}\right]}$$
 Laginari buruz θ duen informazioa

$$(\sigma^2 \downarrow \Rightarrow informazioa^{\uparrow})$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Izan bitez populazioaren θ parametro ezezaguna eta $X_1, X_2, ..., X_n$ n tamainako zorizko lagin bakuna.

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

Helburua:

 $h_1(X_1, X_2, ..., X_n)$ eta $h_2(X_1, X_2, ..., X_n)$ estatistikoak lortzea da non:

$$P[h_1(X_1, X_2, X_n) \le \theta \le h_2(X_1, X_2, X_n)] = 1 - \alpha \quad \alpha \text{ txikia izanik}$$

Konfiantza maila: $1-\alpha$ ($0 < \alpha < 1$)

Lagin bat dugunean:

$$P[h_1(X_1, X_2, X_n) \le \theta \le h_2(X_1, X_2, X_n)] = 1 - \alpha$$

Notazioa:

Puntu estimazioa

Estimazioaren kontzeptua

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

$$I_{\theta}^{1-\alpha} = [L_1 \le \theta \le L_2]$$

 θ parametroa estimatzeko 1- α konfiantza tartea.

Konfiantza maila erabilienak: 0.90, 0.95, 0.99,...

(α txikia eta 1- α handia)

 $\alpha/2$

 $X_{-\alpha/2}$

6.4.1 <u>Populazio normalaren batezbestekorako</u> konfiantza-tartea

A. σ ezaguna:

 $\hat{\mu}=ar{X}$ (Puntu estimazioa)

$$\overline{X} = \sum_{i=1}^{n} \frac{1}{n} X_{i} \Rightarrow \overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \qquad \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N\left(0, 1\right)$$

$$\mu_{\overline{x}} = \mu$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.4.1 <u>Populazio normalaren batezbestekorako</u> <u>konfiantza-tartea</u>

A. <u>σezaguna:</u>

$$P\left[-Z_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le Z_{\alpha/2}\right] = 1 - \alpha$$

$$P\left[-\overline{X} - Z_{\alpha/2} \cdot \sigma / \sqrt{n} \le -\mu \le -\overline{X} + Z_{\alpha/2} \cdot \sigma / \sqrt{n}\right] = 1 - \alpha$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.4.1 <u>Populazio normalaren batezbestekorako</u> konfiantza-tartea

A. σ ezaguna:

$$P\left[\overline{X} + Z_{\alpha/2} \cdot \sigma/\sqrt{n} \ge \mu \ge \overline{X} - Z_{\alpha/2} \cdot \sigma/\sqrt{n}\right] = 1 - \alpha$$

$$P\left[\overline{X} - Z_{\alpha/2} \cdot \sigma / \sqrt{n} \le \mu \le \overline{X} + Z_{\alpha/2} \cdot \sigma / \sqrt{n}\right] = 1 - \alpha$$

 μ batezbestekoaren 1- α konfiantza-mailako konfiantza tartea:

$$I_{\mu}^{1-\alpha} = \left[\overline{x} - z_{\alpha/2} \cdot \sigma/\sqrt{n}, \overline{x} + z_{\alpha/2} \cdot \sigma/\sqrt{n} \right]$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazio (konfiantza tarteak)

6.4.1 <u>Populazio normalaren batezbestekorako</u> <u>konfiantza-tartea</u>

B. <u>σezezaguna:</u>

 $\hat{\mu}=ar{m{X}}$ (Puntu estimazioa)

$$\overline{X} = \sum_{i=1}^{n} \frac{1}{n} X_{i} \qquad t = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.4.1 <u>Populazio normalaren batezbestekorako</u> <u>konfiantza-tartea</u>

B. σezezaguna:

$$P\left[-t_{n-1;\alpha/2} \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le t_{n-1;\alpha/2}\right] = 1 - \alpha$$

$$P\left[-\overline{X} - t_{n-1;\alpha/2} \cdot \frac{S}{\sqrt{n}} \le -\mu \le -\overline{X} + t_{n-1;\alpha/2} \cdot \frac{S}{\sqrt{n}}\right] = 1 - \alpha$$

$$\mu_{\bar{x}} = \mu$$

kontzeptua
Puntu estimazioa

Estimazioaren

Estimatzaileen

propietateak

Tarte estimazioa (konfiantza tarteak)

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.1 <u>Populazio normalaren batezbestekorako</u> konfiantza-tartea

B. <u>σezezaguna:</u>

$$P\left[\overline{X} + t_{n-1;\alpha/2} \cdot \frac{S}{\sqrt{n}} \ge \mu \ge \overline{X} - t_{n-1;\alpha/2} \cdot \frac{S}{\sqrt{n}}\right] = 1 - \alpha$$

$$P\left[\overline{X} - t_{n-1;\alpha/2} \cdot \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{n-1;\alpha/2} \cdot \frac{S}{\sqrt{n}}\right] = 1 - \alpha$$

 μ batezbestekoaren 1- α konfiantza-mailako konfiantza tartea:

$$I_{\mu}^{1-\alpha} = \left[\overline{x} - t_{n-1;\alpha/2} \cdot S / \sqrt{n}, \overline{x} + t_{n-1;\alpha/2} \cdot S / \sqrt{n} \right]$$

6.4.2 <u>Edozein populazioren batezbestekorako</u> konfiantza-tartea

A. σ ezaguna n>30: (Limite zentralaren teorema)

 $\hat{\mu}=ar{X}$ (Puntu estimazioa)

$$\overline{X} = \sum_{i=1}^{n} \frac{1}{n} X_{i} \qquad \overline{X} \approx N \left(\mu, \frac{\sigma}{\sqrt{n}} \right) \quad \Rightarrow \quad \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \approx N \left(0, 1 \right)$$

 μ batezbestekoaren 1- α konfiantza-mailako konfiantza tartea:

$$I_{\mu}^{1-\alpha} = \left[\overline{x} - z_{\alpha/2} \cdot \sigma/\sqrt{n}, \overline{x} + z_{\alpha/2} \cdot \sigma/\sqrt{n} \right]$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazio (konfiantza tarteak)

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.2 <u>Edozein populazioren batezbestekorako</u> konfiantza-tartea

B. σ ezezaguna n>100:

$$\hat{\mu} = \overline{X}$$
 (Puntu estimazioa)

$$\overline{X} = \sum_{i=1}^{n} \frac{1}{n} X_i \qquad \overline{X} \approx N \left(\mu, \frac{S}{\sqrt{n}} \right) \quad \Rightarrow \quad \frac{\overline{X} - \mu}{S / \sqrt{n}} \approx N \left(0, 1 \right)$$

 μ batezbestekoaren 1- α konfiantza-mailako konfiantza tartea:

$$I_{\mu}^{1-\alpha} = \left[\bar{x} - z_{\alpha/2} \cdot S / \sqrt{n}, \bar{x} + z_{\alpha/2} \cdot S / \sqrt{n} \right]$$

Bi banaketa normal independenteen Estimazioaren batezbestekoaren arteko konfiantza-tartea

 σ_1^2 eta σ_2^2 ezagunak:

$$\begin{split} &\widehat{\left(\mu_{1}-\mu_{2}\right)}=\overline{X}_{1}-\overline{X}_{2} \quad \text{(Puntu estimazioa)} \\ &\overline{X}_{1}\sim N\left(\mu_{1},\sigma_{1}\right); \overline{X}_{2}\sim N\left(\mu_{2},\sigma_{2}\right) \implies \overline{X}_{1}\sim N\left(\mu_{1},\frac{\sigma_{1}}{\sqrt{n}}\right); \overline{X}_{2}\sim N\left(\mu_{2},\frac{\sigma_{2}}{\sqrt{m}}\right) \\ &\Longrightarrow \overline{X}_{1}-\overline{X}_{2}\sim N\left(\mu_{1}-\mu_{2},\sqrt{\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{n}}\right) \end{split}$$

Batezbestekoen kenduraren 1- α konfiantza-mailako konfiantza tartea:

$$I_{\mu_1-\mu_2}^{1-\alpha} = \left[(\overline{x}_1 - \overline{x}_2) - z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}, (\overline{x}_1 - \overline{x}_2) + z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \right]$$

kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

tarteak)

6.4.3 <u>Bi banaketa normal independenteen</u> batezbestekoaren arteko konfiantza-tartea

B. σ_1^2 eta σ_2^2 ezezagunak baina berdinak $\sigma_1^2 = \sigma_2^2$:

$$(\widehat{\mu_1 - \mu_2}) = \overline{X}_1 - \overline{X}_2$$
 (Puntu estimazioa)

$$\overline{X}_1 \sim N(\mu_1, \sigma_1); \overline{X}_2 \sim N(\mu_2, \sigma_2)$$

$$\frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{(n-1)S_{1}^{2} + (m-1)S_{2}^{2}}{n+m-2}}} \sim t_{n+m-2}$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazio (konfiantza tarteak)

6.4.3 <u>Bi banaketa normal independenteen</u> batezbestekoaren arteko konfiantza-tartea

B. σ_1^2 eta σ_2^2 ezezagunak baina berdinak $\sigma_1^2 = \sigma_2^2$:

Batezbestekoen kenduraren 1- α konfiantza-mailako konfiantza tartea:

$$I_{\mu_{1}-\mu_{2}}^{1-\alpha} = \left[\left(\overline{x}_{1} - \overline{x}_{2} \right) \mp t_{\nu;\alpha/2} \cdot \sqrt{\frac{(n-1)S_{1}^{2} + (m-1)S_{2}^{2}}{n+m-2}} \sqrt{\frac{1}{n} + \frac{1}{m}} \right]$$

v = n + m - 2 izanik

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazio (konfiantza tarteak)

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.3 <u>Bi banaketa normal independenteen</u> batezbestekoaren arteko konfiantza-tartea

B. σ_1^2 eta σ_2^2 ezezagunak baina desberdinak $\sigma_1^2 \neq \sigma_2^2$:

$$(\widehat{\mu_1 - \mu_2}) = \overline{X}_1 - \overline{X}_2$$
 (Puntu estimazioa)

$$\overline{X}_1 \sim N(\mu_1, \sigma_1); \overline{X}_2 \sim N(\mu_2, \sigma_2)$$

$$\frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{S_{1}^{2} + \frac{S_{2}^{2}}{m}}{n}}} \sim t_{v} : v = \frac{\left(\frac{S_{1}^{2} + \frac{S_{2}^{2}}{m}}{n}\right)^{2}}{\frac{\left(S_{1}^{2} / n_{1}\right)^{2} + \frac{\left(S_{2}^{2} / n_{2}\right)^{2}}{n_{1} + 1} + \frac{\left(S_{2}^{2} / n_{2}\right)^{2}}{n_{2} + 1}} - 2$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Laginaren tamaina

6.4.3 Bi banaketa normal independenteen batezbestekoaren arteko konfiantza-tartea

 σ_1^2 eta σ_2^2 ezezagunak baina desberdinak $\sigma_1^2 \neq \sigma_2^2$:

Batezbestekoen kenduraren 1- α konfiantza-mailako konfiantza tartea:

$$I_{\mu_{1}-\mu_{2}}^{1-\alpha} = \left[\left(\overline{x}_{1} - \overline{x}_{2} \right) - t_{v;\alpha/2} \cdot \sqrt{\frac{S_{1}^{2}}{n} + \frac{S_{2}^{2}}{m}}, \left(\overline{x}_{1} - \overline{x}_{2} \right) + t_{v;\alpha/2} \cdot \sqrt{\frac{S_{1}^{2}}{n} + \frac{S_{2}^{2}}{m}} \right]$$

$$v = \frac{\left(\frac{S_1^2}{n} + \frac{S_2^2}{m}\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 + 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 + 1}} - 2 \text{ izanik}$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazio: (konfiantza tarteak)

Laginaren tamaina

6.4.4 <u>Edozein bi banaketa independenteen</u> batezbestekoaren arteko konfiantza-tartea

A. σ_1^2 eta σ_2^2 ezagunak eta n,m>15:

$$(\widehat{\mu_1 - \mu_2}) = \overline{X}_1 - \overline{X}_2$$
 (Puntu estimazioa)

$$\overline{X}_1 - \overline{X}_2 \sim N\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}\right)$$

Batezbestekoen kenduraren $1-\alpha$ konfiantza-mailako konfiantza tartea:

$$I_{\mu_1-\mu_2}^{1-\alpha} = \left[(\overline{x}_1 - \overline{x}_2) - z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}, (\overline{x}_1 - \overline{x}_2) + z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \right]$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazio: (konfiantza tarteak)

Laginaren tamaina

6.4.4 <u>Edozein bi banaketa independenteen</u> batezbestekoaren arteko konfiantza-tartea

B. σ_1^2 eta σ_2^2 ezezagunak eta n,m>100:

$$(\widehat{\mu_1 - \mu_2}) = \overline{X}_1 - \overline{X}_2$$
 (Puntu estimazioa)

$$\overline{X}_1 - \overline{X}_2 \sim N\left(\mu_1 - \mu_2, \sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{m}}\right)$$

Batezbestekoen kenduraren $1-\alpha$ konfiantza-mailako konfiantza tartea:

$$I_{\mu_{1}-\mu_{2}}^{1-\alpha} = \left[(\overline{x}_{1} - \overline{x}_{2}) - z_{\alpha/2} \cdot \sqrt{\frac{S_{1}^{2}}{n} + \frac{S_{2}^{2}}{m}}, (\overline{x}_{1} - \overline{x}_{2}) + z_{\alpha/2} \cdot \sqrt{\frac{S_{1}^{2}}{n} + \frac{S_{2}^{2}}{m}} \right]$$

6.4.5 <u>Banaketa normalaren bariantzarako</u> <u>konfiantza-tartea</u>

A. μ ezezaguna:

 $\hat{\sigma}^2 = S^2$ (Puntu estimazioa)

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.4.5 <u>Banaketa normalaren bariantzarako</u> <u>konfiantza-tartea</u>

A. μ ezezaguna:

$$P\left[\chi_{n-1;1-\alpha/2}^{2} \le \frac{(n-1)S^{2}}{\sigma^{2}} \le \chi_{n-1;\alpha/2}^{2}\right] = 1 - \alpha$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

6.4.5 <u>Banaketa normalaren bariantzarako</u> konfiantza-tartea

A. μ <mark>ezezaguna:</mark>

$$P\left[\frac{1}{\chi_{n-1;1-\alpha/2}^{2}} \ge \frac{\sigma^{2}}{(n-1)S^{2}} \ge \frac{1}{\chi_{n-1;\alpha/2}^{2}}\right] = 1 - \alpha$$

$$P\left[\frac{(n-1)S^{2}}{\chi_{n-1;1-\alpha/2}^{2}} \ge \sigma^{2} \ge \frac{(n-1)S^{2}}{\chi_{n-1;\alpha/2}^{2}}\right] = 1 - \alpha$$

Bariantzarako $1-\alpha$ konfiantza-mailako konfiantza tartea:

kontzeptua
Puntu estimazioa

Estimazioaren

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

$$I_{\sigma^{2}}^{1-\alpha} = \left[\frac{(n-1)S^{2}}{\chi_{n-1;\alpha/2}^{2}}, \frac{(n-1)S^{2}}{\chi_{n-1;1-\alpha/2}^{2}}\right]$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.5 <u>Banaketa normalaren bariantzarako</u> konfiantza-tartea

B. μ <mark>ezaguna:</mark>

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}$$
 (Puntu estimazioa, estimatzaile alboratua)

$$\frac{\sum_{i=1}^{n} \left(x_i - \mu\right)^2}{\sigma^2} \sim \chi_n^2$$

$$P\left[\chi_{n;1-\alpha/2}^{2} \leq \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{\sigma^{2}} \leq \chi_{n;\alpha/2}^{2}\right] = 1 - \alpha$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.5 <u>Banaketa normalaren bariantzarako</u> konfiantza-tartea

B. μ ezaguna:

$$P\left[\frac{1}{\chi_{n;1-\alpha/2}^{2}} \ge \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \mu)^{2}} \ge \frac{1}{\chi_{n;\alpha/2}^{2}}\right] = 1 - \alpha$$

$$P\left[\frac{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{\chi_{n;1-\alpha/2}^{2}} \geq \sigma^{2} \geq \frac{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{\chi_{n;\alpha/2}^{2}}\right] = 1-\alpha$$

Bariantzarako $1-\alpha$ konfiantza-mailako konfiantza tartea:

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.6 <u>Bi banaketa normala independenteen</u>

<u>bariantzen arteko zatiduraren konfiantza-</u>

tartea

A. μ_1 eta μ_2 ezezagunak:

$$\frac{\widehat{\sigma_1^2}}{\sigma_2^2} = \frac{S_1^2}{S_2^2}$$
 (Puntu estimazioa)

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.6 <u>Bi banaketa normala independenteen</u> bariantzen arteko zatiduraren konfiantza-tartea

A. μ₁ eta μ₂ ezezagunak:

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.6 <u>Bi banaketa normala independenteen</u> <u>bariantzen arteko zatiduraren konfiantza-</u> tartea

A. μ_1 eta μ_2 ezezagunak:

$$P\left[F_{n-1,m-1;1-\alpha/2} \cdot \frac{S_2^2}{S_1^2} \le \frac{\sigma_2^2}{\sigma_1^2} \le F_{n-1,m-1;\alpha/2} \cdot \frac{S_2^2}{S_1^2}\right] = 1 - \alpha$$

$$P\left[\frac{S_{1}^{2}}{F_{n-1,m-1;1-\alpha/2}} \ge \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \ge \frac{S_{1}^{2}}{F_{n-1,m-1;\alpha/2}} F_{n-1,m-1;\alpha/2} \cdot S_{2}^{2} \right] = 1 - \alpha$$

Bariantzaren arteko zatidurarako $1-\alpha$ konfiantza-mailako konfiantza tartea

$$I_{\sigma_{1}^{2}/\sigma_{2}^{2}}^{1-lpha} = \left[egin{array}{c} S_{1}^{\ 2} \ S_{2}^{\ 2} \ F_{n-1,m-1;lpha/2} \ \end{array}, egin{array}{c} S_{1}^{\ 2} \ S_{2}^{\ 2} \ F_{n-1,m-1;1-lpha/2} \ \end{array}
ight]$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Laginaren tamaina

6.4.6 Bi banaketa normala independenteen bariantzen arteko zatiduraren konfiantzatartea

B.
$$\mu_1$$
 eta μ_2 ezagunak:

$$\frac{\widehat{\sigma_1^2}}{\sigma_2^2} = \frac{\sum_{i=1}^n \frac{(x_{1i} - \mu_1)^2}{n}}{\sum_{i=1}^m \frac{(x_{2i} - \mu_2)^2}{m}}$$

$$\frac{\widehat{\sigma_{1}^{2}}}{\widehat{\sigma_{2}^{2}}} = \frac{\sum_{i=1}^{n} \frac{(x_{1i} - \mu_{1})^{2}}{n}}{\sum_{i=1}^{m} \frac{(x_{2i} - \mu_{2})^{2}}{m}} \qquad \frac{\sum_{i=1}^{n} \frac{(x_{1i} - \mu_{1})^{2}}{n}}{\sum_{i=1}^{m} \frac{(x_{2i} - \mu_{2})^{2}}{m}} \sim F_{n,m}$$

Aurreko arrazonamendu bera erabiliz:

Bariantzaren arteko zatidurarako 1- α konfiantza-mailako konfiantza tartea

$$I_{\sigma_{1}^{2}/\sigma_{2}^{2}}^{1-\alpha} = \left[\frac{\sum_{i=1}^{n} \frac{\left(x_{1i} - \mu_{1}\right)^{2}}{n}}{\sum_{i=1}^{m} \frac{\left(x_{2i} - \mu_{2}\right)^{2}}{m}} \cdot \frac{1}{F_{n,m;\alpha/2}}, \frac{\sum_{i=1}^{n} \frac{\left(x_{1i} - \mu_{1}\right)^{2}}{n}}{\sum_{i=1}^{m} \frac{\left(x_{2i} - \mu_{2}\right)^{2}}{m}} \cdot \frac{1}{F_{n,m;1-\alpha/2}} \right]$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.7 <u>Banaketa binomialaren parametrorako</u> <u>konfiantza- tartea (n>100)</u>

$$\hat{p} = \frac{x}{n}$$
 $\hat{p} \approx N\left(p, \sqrt{\frac{pq}{n}}\right)$

Banaketa binomialaren parametrorako $1-\alpha$ konfiantza-mailako konfiantza tartea

$$I_p^{1-\alpha} = \left[\hat{p} - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}\hat{q}}{n}}, \hat{p} + z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}\hat{q}}{n}} \right]$$

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.4.8 Bi banaketa binomial independenteen proportzioen arteko kenduraren konfiantza- tartea (n,m>100)

$$\widehat{p_1 - p_2} = \widehat{p}_1 - \widehat{p}_2$$
 $\widehat{p}_1 - \widehat{p}_2 \approx N \left(p_1 - p_2, \sqrt{\frac{p_1 q_1}{n} + \frac{p_2 q_2}{m}} \right)$

Banaketa binomialaren parametrorako $1-\alpha$ konfiantza-mailako konfiantza tartea

$$I_{p_1-p_2}^{1-\alpha} = \left[(\hat{p}_1 - \hat{p}_2) - z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n} + \frac{\hat{p}_2 \hat{q}_2}{m}}, (\hat{p}_1 - \hat{p}_2) + z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n} + \frac{\hat{p}_2 \hat{q}_2}{m}} \right]$$

6.4.9 <u>Bi banaketa normal ez independenteen</u>
<u>batazbestekoen diferentziarako</u>
konfiantza-tartea

$$D = X - Y \overline{d} = \sum_{i=1}^{n} \frac{d_i}{n} = \sum_{i=1}^{n} \frac{(x_i - y_i)}{n} S^2 = \sum_{i=1}^{n} \frac{(d_i - \overline{d})^2}{n - 1}$$

Oharra:

Parekatutako datuak direnean (lagin ez independenteak) bikoteen diferentziak kalkulatu eta lagin bakarra dela kontsideratu.

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.5 Laginaren tamaina

Adibide bezala σ^2 bariantza ezaguneko populazio normalaren batezbestekoaren konfiantza-tartea kontsideratu da:

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

$$I_{\mu}^{1-\alpha} = \left[\overline{x} - z_{\alpha/2} \cdot \sigma / \sqrt{n}, \overline{x} + z_{\alpha/2} \cdot \sigma / \sqrt{n} \right]$$

$$P\left[\overline{x} - z_{\alpha/2} \cdot \sigma / \sqrt{n} \le \mu \le \overline{x} + z_{\alpha/2} \cdot \sigma / \sqrt{n} \right] = 1 - \alpha$$

$$P\left[-z_{\alpha/2}\cdot\sigma/\sqrt{n} \le \mu - \overline{x} \le +z_{\alpha/2}\cdot\sigma/\sqrt{n}\right] = 1 - \alpha$$

$$P\left|\left|\overline{x}-\mu\right| \le z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right| = 1-\alpha$$

6.5 Laginaren tamaina

Demagun bestalde:

$$P[|\overline{x} - \mu| \le \mathcal{E}] = 1 - \alpha$$

Ondorioz:

$$\varepsilon = z_{\alpha/2} \cdot \sigma / \sqrt{n} \Rightarrow n = \left(z_{\alpha/2} \cdot \sigma / \varepsilon \right)^2$$

Oharrak:

- 1. Laginaren tamaina zenbat eta handiagoa izan, konfiantza tartearen luzera hainbat eta txikiagoa da, hau da, estimazioa zehatzagoa da.
- 2. Ez da komenigarria tamaina handiegiko laginak hartzea (denbora arazoak,...)
- Laginaren tamaina txikiegia bada, emaitzak oso fidagarriak ez izatea gerta daiteke.

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

6.6 Parametroak

Estimazioaren kontzeptua

Puntu estimazioa

Estimatzaileen propietateak

Tarte estimazioa (konfiantza tarteak)

Laginaren tamaina

Parametroak

6. gaia: Estimazioa

Universidad del País Vasco

Unibertsitatea

Parametroa	Populazioa	Lagina	Konfiantza tartea
μ	Normala σ ezaguna		$I_{\mu}^{1-\alpha} = \left[\bar{x} - z\alpha/2.\sigma/\sqrt{n}, \bar{x} + z\alpha/2.\sigma/\sqrt{n}\right]$
μ	Normala σ ezezaguna		$I_{\mu}^{1-\alpha} = \left[\bar{x} - t_{n-1;\alpha/2}.S/\sqrt{n}, \bar{x} + t_{n-1;\alpha/2}.S/\sqrt{n}\right]$
μ	Edozein σ ezaguna	n > 30	$I_{\mu}^{1-\alpha} = \left[\bar{x} - z\alpha/2.\sigma/\sqrt{n}, \bar{x} + z\alpha/2.\sigma/\sqrt{n}\right]$
μ	Edozein σ ezezaguna	n > 100	$I_{\mu}^{1-\alpha} = \left[\bar{x} - z\alpha_{/2}.S/\sqrt{n}, \bar{x} + z\alpha_{/2}.S/\sqrt{n}\right]$

Parametroa	Populazioa	Lagina	Konfiantza tartea
$\mu_1 - \mu_2$	Normalak independenteak σ_1 , σ_2 ezagunak		$I_{\mu_1 - \mu_2}^{1 - \alpha} = \left[(\bar{x}_1 - \bar{x}_2) \pm z \alpha_{/2} \cdot \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \right]$
$\mu_1 - \mu_2$	Normalak independenteak σ_1 , σ_2 ezezagunak $\sigma_1 = \sigma_2$		$I_{\mu_1 - \mu_2}^{1 - \alpha} = \left[(\bar{x}_1 - \bar{x}_2) \pm t_{\nu; \alpha/2} \cdot \sqrt{\frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}} \sqrt{\frac{1}{n} + \frac{1}{m}} \right]$ $non \nu = n + m - 2$
$\mu_1 - \mu_2$	Normalak independenteak σ_1 , σ_2 ezezagunak $\sigma_1 \neq \sigma_2$		$I_{\mu_{1}-\mu_{2}}^{1-\alpha} = \left[(\bar{x}_{1} - \bar{x}_{2}) \pm t_{v;\alpha/2} \cdot \sqrt{\frac{S_{1}^{2} + S_{2}^{2}}{n}} + \frac{S_{2}^{2}}{m} \right]$ $v = \frac{\left(\frac{S_{1}^{2} + S_{2}^{2}}{n}\right)^{2}}{\frac{\left(\frac{S_{1}^{2}}{n}\right)^{2} + \left(\frac{S_{2}^{2}}{m}\right)^{2}}{n+1} + \frac{\left(\frac{S_{2}^{2}}{m}\right)^{2}}{m+1}} - 2$ OHARRA: Formula hauetan kuasibariantza dira S guztiak
$\mu_1 - \mu_2$	Edozein independenteak σ_1 , σ_2 ezagunak	n > 15 m >15	$I_{\mu_1 - \mu_2}^{1 - \alpha} = \left[(\bar{x}_1 - \bar{x}_2) \pm z \alpha_{/2} \cdot \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \right]$
$\mu_1 - \mu_2$	Edozein independenteak σ_1 , σ_2 ezezagunak	n > 100 m >100	$I_{\mu_1 - \mu_2}^{1 - \alpha} = \left[(\bar{x}_1 - \bar{x}_2) \pm z \alpha_{/2} \cdot \sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{m}} \right]$

Parametroa	Populazioa	Konfiantza tartea
σ^2	Normala μ ezaguna	$I_{\sigma^{2}}^{1-\alpha} = \left[\frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{\chi_{n;\alpha/2}^{2}}, \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{\chi_{n;1-\alpha/2}^{2}}\right]$
σ^2	Normala μ ezezaguna	$I_{\sigma^2}^{1-\alpha} = \left[\frac{(n-1)S^2}{\chi_{n-1;\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1;1-\alpha/2}^2} \right]$

Parametroa	Populazioa	Konfiantza tartea
$\frac{\sigma_1^2}{\sigma_2^2}$	Normalak μ ₁ , μ ₂ ezagunak	$I_{\sigma_{1}^{2}/\sigma_{2}^{2}}^{1-\alpha} = \left[\frac{\sum_{i=1}^{n} (x_{1i} - \mu_{1})/n}{\sum_{i=1}^{m} (x_{2i} - \mu_{2})/m} \cdot \frac{1}{F_{n,m;\alpha/2}}, \frac{\sum_{i=1}^{n} (x_{1i} - \mu_{1})/n}{\sum_{i=1}^{m} (x_{2i} - \mu_{2})/m} \cdot \frac{1}{F_{n,m;1-\alpha/2}} \right]$
$\frac{\sigma_1^2}{\sigma_2^2}$	Normalak μ ₁ , μ ₂ ezezagunak	$I_{\sigma_{1}^{2}/\sigma_{2}^{2}}^{1-\alpha} = \left[\frac{S_{1}^{2}/S_{2}^{2}}{F_{n-1,m-1};\alpha/2}, \frac{S_{1}^{2}/S_{2}^{2}}{F_{n-1,m-1};1-\alpha/2}\right]$

Parametroa	Lagina	Konfiantza tartea
p	n >100	$I_p^{1-\alpha} = \left[\hat{p} - z\alpha/2, \sqrt{\frac{\hat{p}\hat{q}}{n}}, \hat{p} + z\alpha/2, \sqrt{\frac{\hat{p}\hat{q}}{n}}\right]$

Parametroa	Lagina	Konfiantza tartea
$p_{1} - p_{2}$	n >100 m >100	$I_{p_1-p_2}^{1-\alpha} = \left[(\hat{p}_1 - \hat{p}_2) \pm z\alpha_{/2} \cdot \sqrt{\frac{\hat{p}_1\hat{q}_1}{n} + \frac{\hat{p}_2\hat{q}_2}{m}} \right]$

Adibideak

Adibidea

- 1) Demagun litiozko baterien iraupena banaketa normalekoa dela. Zoriz 20 bateria hartu dira, batez besteko iraupena 12.300 ordukoa eta kuasibariantza 2.500 (ordu)² direlarik.
 - a) %98 konfiantza-mailaz, zehatz bedi litiozko baterien batez besteko iraupena.
 - b) %98 konfiantza-mailaz, estima bedi litiozko baterien iraupenaren bariantza.

Adibideak

Adibidea

- 2) Enpresa handi bateko gazteen proportzioa (30 urtetik behera) aztertu nahi da. Zoriz enpresako 150 langileko talde bat hartu da, horietatik 27 gazteak izanik.
 - a) Kalkulatu errorearen balioa, konfiantza-maila %95 denean.
 - b) %98 konfiantza-mailaz, zein tartetan koka daiteke enpresako gazteen proportzioa?

