Home Work Assignment - 04

Critical Thinking Group 5
Arindam Barman
Mohamed Elmoudni
Shazia Khan
Kishore Prasad

Contents

1 Overview	2
2 Data Exploration and Cleanup / Common Transformations	3
2.1 Variable Identification	3
2.2 Data Cleanup	4
2.3 Common Transformations	5
2.4 Create Missing Flags / Impute Missing Values	5
3 Logistic Regression for TARGET_FLAG	7
3.2 Data Preparation	21
3.3 Build Models	27
3.4 Model Evaluation Using VALID Data	
	31
3.5 Final Logistic Model Selection Summary	32
4 Linear Regression for TARGET_AMT	37
4.1 Data Summary and Correlation Analysis	38
4.2 Data Preparation	42
4.3 Build Models	47
4.4 Final Linear Model Selection Summary	51
5 Prediction Using Evaluation Data	57
5.1 Tranformation of Evaluation Data	57
5.2 Model Output for Logistic Regression	57
5.3 Model Output for Linear Regression	57
5.4 Conclusion	58
Appendix A: DATA621 Homework 04 R Code	59
## NULL	

1 Overview

The data set contains approximately 8161 records. Each record represents a customer profile at an auto insurance company. Each record has two response variables.

The first response variable, TARGET_FLAG, is a 1 or a 0. A "1" means that the person was in a car crash. A zero means that the person was not in a car crash.

The second response variable is TARGET_AMT. This is the amount spent on repairs if there was a crash. This value is zero if the person did not crash their car. But if they did crash their car, this number will be a value greater than zero.

We will be exploring, analyzing, and modeling the training data. Since there are 2 different predictions, we will deal with each prediction independently. The following are the 2 predictions we will be modeling for:

- 1. TARGET_FLAG This dependent variable tells whether there was a crash or not. This is a binary variable and as such we will be using a Logistic Regression Model.
- 2. TARGET_AMT This dependent variable gives the amount / cost of repairs if there was a crash. This is a continuous variable and we will be using a Linear Regression.

Each of the above models will be built and evaluated separately. In the first section of this document we will deal with the Logistic Model for TARGET_FLAG and in the second section we will deal with Linear Model for the TARGET AMT.

Out of the many models for each task, we will shortlist one model that works best. We will then use these models (one for each task) on the test / evaluation data.

To attain our objective, we will be follow the below steps for each modeling exercise:

- 1 -Data Exploration
- 2 -Data Preparation
- 3 -Build Models
- 4 -Select Models

Please note that for Model Selection, as strategy, we will split the train dataset into 2 parts: TRAIN and VALID. In the VALID dataset, we will hold out some values to validate how well the model is trained using the TRAIN dataset. Then we will use the Model that performs best on the EVALUATION data to give the required output. We will split the TRAIN / VALID data after the Data Exploration / Preparation before the Build Models section.

Please Note:

- There are some common clean-up and transformations that we will carry out initially that will serve all the models
- While working on the Linear Models for the TARGET_AMT, we will be using only a subset of the data where the TARGET_FLAG = 1. This will give us all the records where there was a crash and subsequently a repair amount.
- While Predicting the TARGET_AMT with the given Evaluation dataset, We will take the output of the TARGET_FLAG predictions on the Evaluation dataset and use only those rows that were classified as a "Crash" and use it as the input to the TARGET_AMT prediction. So this is a two step prediction, one for the TARGET_FLAG and using the output to predict TARGET_AMT.

2 Data Exploration and Cleanup / Common Transformations

In this section we go ahead and perform some common cleanup and create additional variables that will be used for modeling both the logistic as well as the linear regressions. We will explore and gain some insights into the dataset by pursuing the below high level steps and inquiries:

- Variable Identification / Relationships
- Data Clean-up
- Common Transformations
- Create Missing Flags / Impute Missing Values

2.1 Variable Identification

First let's display and examine the data dictionary or the data columns as shown in below table:

Table 1: Variable Description

VARIABLE	DEFINITION	THEORETICAL_EFFECT
INDEX	Identification Variable (do not use)	None
TARGET_FLAG	Was Car in a crash? 1=YES 0=NO	None
TARGET_AMT	If car was in a crash, what was the cost	None
AGE	Age of Driver	Very young people tend to be risky. Maybe very old people also.
BLUEBOOK	Value of Vehicle	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_AGE	Vehicle Age	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_TYPE	Type of Car	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_USE	Vehicle Use	Commercial vehicles are driven more, so might increase probability of collision
CLM_FREQ	# Claims (Past 5 Years)	The more claims you filed in the past, the more you are likely to file in the future
EDUCATION	Max Education Level	Unknown effect, but in theory more educated people tend to drive more safely
HOMEKIDS	# Children at Home	Unknown effect
HOME_VAL	Home Value	In theory, home owners tend to drive more responsibly
INCOME	Income	In theory, rich people tend to get into fewer crashes
JOB	Job Category	In theory, white collar jobs tend to be safer
KIDSDRIV	# Driving Children	When teenagers drive your car, you are more likely to get into crashes

VARIABLE	DEFINITION	THEORETICAL_EFFECT
MSTATUS	Marital Status	In theory, married people drive more safely
MVR_PTS	Motor Vehicle Record Points	If you get lots of traffic tickets, you tend to get into more crashes
OLDCLAIM	Total Claims (Past 5 Years)	If your total payout over the past five years was high, this suggests future payouts will be high
PARENT1	Single Parent	Unknown effect
RED_CAR	A Red Car	Urban legend says that red cars
		(especially red sports cars) are more risky. Is that true?
REVOKED	License Revoked (Past 7	If your license was revoked in the past 7
	Years)	years, you probably are a more risky driver.
SEX	Gender	Urban legend says that women have less crashes then men. Is that true?
TIF	Time in Force	People who have been customers for a long time are usually more safe.
TRAVTIME	Distance to Work	Long drives to work usually suggest greater risk
URBANICITY	Home/Work Area	Unknown
YOJ	Years on Job	People who stay at a job for a long time are usually more safe

We notice that there are 2 dependent variables - TARGET_FLAG and TARGET_AMT. Apart from these 2 dependent variables, we have 23 independent or predictor variables.

2.2 Data Cleanup

From the Variable Level table below we can make the following observations:

- Some of the variables like MSTATUS, SEX, EDUCATION, JOB, CAR_TYPE, URBANICITY have some of the values encoded with "z_". Not that this will impact the analysis, but it will look a bit odd. So we will be fixing this.
- EDUCATION has 2 "High School" values one starting with "<" and another starting with "z_". It is assumed that both these values are to be converted to "HIGH School".
- JOB has a "" value. This would indicate that the job is unknown or is not coded. Hence, we will replace this with "Unknown".

Table 2: Variable Levels

MSTATUS	SEX	EDUCATION	CAR_TYPE	URBANICITY	CAR_USE	REVOKED	JOB
Yes	Μ	<high school<="" td=""><td>Minivan</td><td>Highly Urban/ Urban</td><td>Commercial</td><td>No</td><td></td></high>	Minivan	Highly Urban/ Urban	Commercial	No	
z _No	z_F	Bachelors	Panel Truck	z_Highly Rural/Rural	Private	Yes	Clerical
Yes	${ m M}$	Masters	Pickup	Highly Urban/Urban	Commercial	No	Doctor
z _No	z_F	PhD	Sports Car	z_Highly Rural/Rural	Private	Yes	Home Maker
Yes	${\bf M}$	z_High School	Van	Highly Urban/Urban	Commercial	No	Lawyer
z _No	z_F	<high school<="" td=""><td>z_SUV</td><td>z_Highly Rural/Rural</td><td>Private</td><td>Yes</td><td>Manager</td></high>	z_SUV	z_Highly Rural/Rural	Private	Yes	Manager

MSTATUS	SEX	EDUCATION	CAR_TYPE	URBANICITY	CAR_USE	REVOKED	JOB
Yes	Μ	Bachelors	Minivan	Highly Urban/ Urban			Professional
z_No	$z_{-}F$	Masters	Panel Truck	z_Highly Rural/Rural	Private	Yes	Student
Yes	${\bf M}$	PhD	Pickup	Highly Urban/Urban	Commercial	No	z _Blue Collar

In addition, from the summary output, some numeric variables like INCOME, HOME_VAL, BLUEBOOK, OLDCLAIM have been converted to Factor variables which need to be rectified.

In addition, there are records where CAR_AGE is negative or zero, which is improbable. Upon investigation, we find that there are 4 records that are affected. We will remove these records.

2.3 Common Transformations

SEX

URBANICITY

In this section, we will create dummy variables for all the factors. Below is a summary of the old and new variable transformation:

Old.Value New.Variable Old. Variable New.Value CAR USE Commercial CAR_USE_Commercial private 0 **MSTATUS** $MSTATUS_Yes$ Yes 1 No 0 PARENT1 Yes PARENT1_Yes No RED_CAR Yes RED_CAR_yes

Table 3: Variable Transformation

• Please note that we will not be using INDEX variable as it serves as just an identifier for each row. And has no relationships to other variables.

 SEX_M

URBANICITY_Rura

1

0

1 0

Making the above fixes to the data, we now have a "clean" dataset which can be explored further.

2.4 Create Missing Flags / Impute Missing Values

No

М

else

Highly Rural/Rural

Based on the missing data from the below table, we can see that there are a few missing values for AGE, YOJ, INCOME, HOME_VAL, CAR_AGE variables. We will create flags to indicate that there are missing values in some of the variables.

Table 4: Missing Values

	missings
TARGET_FLAG	0
$TARGET_AMT$	0
KIDSDRIV	0
AGE	6

-	missings
HOMEKIDS	0
YOJ	454
INCOME	445
HOME VAL	464
TRAVTIME	0
BLUEBOOK	0
TIF	0
OLDCLAIM	0
CLM FREQ	0
MVR PTS	0
CAR AGE	510
CAR_USE_Commercial	0
MSTATUS_Yes	0
PARENT1_Yes	0
RED_CAR_yes	0
REVOKED_Yes	0
SEX_M	0
${\bf URBANICITY_Rural}$	0
EDUCATION_Bachelors	0
EDUCATION_High.School	0
EDUCATION_Masters	0
EDUCATION_PhD	0
JOB_Blue.Collar	0
JOB_Clerical	0
JOB_Doctor	0
JOB_Home.Maker	0
JOB_Lawyer	0
JOB_Manager	0
JOB_Professional	0
JOB_Student JOB_Unknown	
CAR_TYPE_Minivan	0
CAR_TYPE_minivan CAR_TYPE Panel.Truck	0
CAR_TYPE_raner.rruck CAR_TYPE_Pickup	0
CAR TYPE Sports.Car	0
CAR TYPE SUV	0
CAR TYPE Van	0

We now impute values to AGE, YOJ, INCOME, HOME_VAL, CAR_AGE. However, while doing the impute, we will impute to a new variable so as not to impact the original variables. We will look at the distributions for each of the variable to determine the value to use to impute. Given that Age and YOJ look to be somewhat normally distributed, we can go ahead and use the mean to impute the missing values for these variables. For INCOME, HOME_VAL and CAR_AGE the median seems to be a better value to impute since there are strong right skews. We will carry out these transformation while data preparation.

Histogram of insure_train_full\$A Histogram of insure_train_full\$\iotnote{\text{Insure_train_full}}\iotnote{\

stogram of insure_train_full\$HOMstogram of insure_train_full\$CAF

Now that we are done with the common clean-up and transformations, we can proceed to each specific model as below.

3 Logistic Regression for TARGET_FLAG

In this section we will use Logistic regression to model the TARGET_FLAG. We will first start with the Data Summary and Correlation.

3.1.1 Data Summary

In this section, we will create summary data to better understand the relationship each of the variables have with our dependent variables using correlation, central tendency, and dispersion as shown below:

Table 5: Data Summary

	vars	\mathbf{n}	mean	sd	median	$\operatorname{trimmed}$	mad
TARGET_FLAG	1	8157	2.638225 e-01	4.407312e-01	0	2.048414e-01	0.0000
TARGET_AMT	2	8157	1.504882e+03	4.705092e+03	0	5.944205e+02	0.0000
KIDSDRIV	3	8157	1.708962e-01	5.112480 e-01	0	2.527960 e-02	0.0000
AGE	4	8157	4.479021e+01	8.626488e+00	45	$4.483051e{+01}$	8.8956
HOMEKIDS	5	8157	7.207307e-01	1.116104e+00	0	4.967060 e-01	0.0000
YOJ	6	8157	1.049825e+01	3.977187e + 00	11	1.104615e+01	2.9652
INCOME	7	8157	6.147181e + 04	4.629838e+04	54046	5.655987e + 04	38967.1758
HOME_VAL	8	8157	1.552083e+05	1.254299e + 05	161160	1.450380e + 05	131595.5760
TRAVTIME	9	8157	3.348903e+01	1.590913e+01	33	3.299908e+01	16.3086
BLUEBOOK	10	8157	1.571152e + 04	8.420070e + 03	14440	1.503899e + 04	8450.8200
TIF	11	8157	5.350129e+00	4.145349e+00	4	4.839589e+00	4.4478
OLDCLAIM	12	8157	4.030096e+03	8.767493e + 03	0	1.717216e + 03	0.0000
CLM_FREQ	13	8157	7.982101e-01	1.158368e+00	0	5.883254 e-01	0.0000
MVR_PTS	14	8157	1.695844e + 00	2.147412e+00	1	1.314386e+00	1.4826
CAR_AGE	15	8157	8.312247e+00	5.517924e+00	8	7.962157e + 00	5.9304
CAR_USE_Commercial	16	8157	3.713375e-01	4.831921e-01	0	3.392064 e-01	0.0000
MSTATUS_Yes	17	8157	5.996077e-01	4.900079e-01	1	6.244829 e-01	0.0000
PARENT1_Yes	18	8157	1.320338e-01	3.385483 e-01	0	4.014100 e-02	0.0000
RED_CAR_yes	19	8157	2.915287e-01	4.544943e-01	0	2.394668e-01	0.0000
REVOKED_Yes	20	8157	1.223489e-01	3.277084 e-01	0	2.803740 e-02	0.0000
SEX_M	21	8157	4.637734e-01	4.987165e-01	0	4.547265 e-01	0.0000
URBANICITY_Rural	22	8157	2.044869e-01	4.033509 e-01	0	1.306879e-01	0.0000
EDUCATION_Bachelors	23	8157	2.747334e-01	4.464072 e-01	0	2.184771e-01	0.0000
EDUCATION_High.School	24	8157	4.330023e-01	4.955214 e-01	0	4.162709 e-01	0.0000
EDUCATION_Masters	25	8157	2.031384e-01	4.023593 e-01	0	1.290026e-01	0.0000
EDUCATION_PhD	26	8157	8.912590 e-02	2.849429e-01	0	0.000000e+00	0.0000
JOB_Blue.Collar	27	8157	2.237342e-01	4.167715 e-01	0	1.547418e-01	0.0000
JOB_Clerical	28	8157	1.556945e-01	3.625877e-01	0	6.971040 e - 02	0.0000
JOB_Doctor	29	8157	3.003560 e-02	1.706956e-01	0	0.000000e+00	0.0000
$JOB_Home.Maker$	30	8157	7.858280 e- 02	2.691030 e-01	0	0.000000e+00	0.0000
JOB_Lawyer	31	8157	1.023661e-01	3.031477e-01	0	3.064200 e-03	0.0000
JOB_Manager	32	8157	1.210004 e-01	3.261477e-01	0	2.635210 e-02	0.0000
JOB_Professional	33	8157	1.368150 e-01	3.436730 e-01	0	4.611610 e-02	0.0000
JOB_Student	34	8157	8.728700 e-02	2.822725 e - 01	0	0.000000e+00	0.0000
JOB_Unknown	35	8157	6.448450 e-02	2.456291e-01	0	0.0000000e+00	0.0000
CAR_TYPE_Minivan	36	8157	2.627191e-01	4.401381e-01	0	2.034625 e-01	0.0000
CAR_TYPE_Panel.Truck	37	8157	8.287360 e-02	2.757080e-01	0	0.000000e+00	0.0000
CAR_TYPE_Pickup	38	8157	1.700380e-01	3.756892e-01	0	8.763600 e-02	0.0000
CAR_TYPE_Sports.Car	39	8157	1.111928e-01	3.143901e-01	0	1.409530 e-02	0.0000
CAR_TYPE_SUV	40	8157	2.812308e-01	4.496274 e - 01	0	2.265972 e-01	0.0000
CAR_TYPE_Van	41	8157	9.194560 e-02	2.889668e-01	0	0.000000e+00	0.0000
YOJ_MISS	42	8157	5.565770 e-02	2.292736e-01	0	0.000000e+00	0.0000
INCOME_MISS	43	8157	5.455440 e-02	2.271222e-01	0	0.000000e+00	0.0000
HOME_VAL_MISS	44	8157	5.688370 e-02	2.316344e-01	0	0.000000e+00	0.0000
CAR AGE MISS	45	8157	6.252300 e-02	2.421178e-01	0	0.000000e+00	0.0000

Table 6: Data Summary (Cont)

	min	max	range	skew	kurtosis	se
TARGET_FLAG	0	1.0	1.0	1.0716217	-0.8517313	0.0048799
TARGET_AMT	0	107586.1	107586.1	8.7043164	112.2364581	52.0958190
KIDSDRIV	0	4.0	4.0	3.3544611	11.8047140	0.0056607
AGE	16	81.0	65.0	-0.0289590	-0.0609233	0.0955144
HOMEKIDS	0	5.0	5.0	1.3425541	0.6535085	0.0123577
YOJ	0	23.0	23.0	-1.2379372	1.4229728	0.0440363
INCOME	0	367030.0	367030.0	1.2446991	2.4535676	512.6259028
HOME VAL	0	885282.0	885282.0	0.4947333	0.1567474	1388.7880484
TRAVTIME	5	142.0	137.0	0.4466705	0.6644712	0.1761494
BLUEBOOK	1500	69740.0	68240.0	0.7942563	0.7914970	93.2288765
TIF	1	25.0	24.0	0.8908250	0.4237528	0.0458982
OLDCLAIM	0	57037.0	57037.0	3.1245638	9.9049577	97.0756265
CLM FREQ	0	5.0	5.0	1.2096086	0.2865283	0.0128257
MVR PTS	0	13.0	13.0	1.3475573	1.3742211	0.0237766
CAR AGE	1	28.0	27.0	0.3026810	-0.5951905	0.0610957
CAR USE Commercial	0	1.0	1.0	0.5324869	-1.7166681	0.0053500
MSTATUS Yes	0	1.0	1.0	-0.4065056	-1.8349781	0.0054255
PARENT1 Yes	0	1.0	1.0	2.1735218	2.7245310	0.0037485
RED CAR yes	0	1.0	1.0	0.9172643	-1.1587682	0.0050323
REVOKED Yes	0	1.0	1.0	2.3045169	3.3112039	0.0036285
SEX M	0	1.0	1.0	0.1452613	-1.9791417	0.0055219
URBANICITY Rural	0	1.0	1.0	1.4651104	0.1465665	0.0044660
EDUCATION_Bachelors	0	1.0	1.0	1.0091192	-0.9817988	0.0049427
EDUCATION_High.School	0	1.0	1.0	0.2703797	-1.9271310	0.0054865
EDUCATION Masters	0	1.0	1.0	1.4754234	0.1768960	0.0044550
EDUCATION PhD	0	1.0	1.0	2.8835517	6.3156446	0.0031550
JOB_Blue.Collar	0	1.0	1.0	1.3255796	-0.2428685	0.0046146
JOB_Clerical	0	1.0	1.0	1.8989243	1.6061105	0.0040147
JOB_Doctor	0	1.0	1.0	5.5057871	28.3171632	0.0018900
JOB_Home.Maker	0	1.0	1.0	3.1316299	7.8080632	0.0029796
JOB_Lawyer	0	1.0	1.0	2.6230461	4.8809695	0.0033565
JOB_Manager	0	1.0	1.0	2.3238133	3.4005250	0.0036112
JOB_Professional	0	1.0	1.0	2.1132906	2.4662995	0.0038052
JOB_Student	0	1.0	1.0	2.9238588	6.5497534	0.0031254
JOB_Unknown	0	1.0	1.0	3.5456888	10.5732053	0.0027197
CAR_TYPE_Minivan	0	1.0	1.0	1.0780788	-0.8378488	0.0048733
CAR_TYPE_Panel.Truck	0	1.0	1.0	3.0254856	7.1544401	0.0030527
CAR TYPE Pickup	0	1.0	1.0	1.7563536	1.0849109	0.0041597
CAR_TYPE_Sports.Car	0	1.0	1.0	2.4731030	4.1167430	0.0034810
CAR_TYPE_SUV	0	1.0	1.0	0.9729937	-1.0534124	0.0049784
CAR_TYPE_Van	0	1.0	1.0	2.8238842	5.9750546	0.0031995
YOJ_MISS	0	1.0	1.0	3.8756126	13.0219693	0.0025386
INCOME MISS	0	1.0	1.0	3.9220378	13.3840215	0.0025330 0.0025147
HOME_VAL_MISS	0	1.0	1.0	3.8255290	12.6362214	0.0025147 0.0025647
CAR AGE MISS	0	1.0	1.0	3.6133098	11.0573631	0.0026808
	U	1.0	1.0	9.0199090	11.0010001	0.0020000

3.1.2 Correlations

Now we will produce the correlation table between the independent variables and the dependent variable - $TARGET_FLAG$

Table 7: Correlation between TARGET_FLAG and predictor variables

	Correlation_T.	ARGET_FLAG
TARGET FLAG		1.0000000
TARGET AMT		0.5343138
MVR PTS		0.2192671
CLM_FREQ		0.2159652
PARENT1 Yes		0.1576594
REVOKED Yes		0.1517045
CAR USE Commercial		0.1427163
EDUCATION High.School		0.1382094
OLDCLAIM 3		0.1378435
HOMEKIDS		0.1161499
KIDSDRIV		0.1040583
JOB Blue.Collar		0.1018097
JOB Student		0.0770293
CAR_TYPE_Sports.Car		0.0572627
CAR_TYPE_Pickup		0.0563353
TRAVTIME		0.0480461
CAR TYPE SUV		0.0450376
JOB Clerical		0.0450370 0.0275791
JOB Home.Maker		0.0273791 0.0112577
CAR AGE MISS		0.0112577 0.0085607
YOJ MISS		0.0085007 0.0039126
		0.0039126
CAR_TYPE_Van		0.0000=00
CAR_TYPE_Panel.Truck		-0.0003471
HOME_VAL_MISS		-0.0016978
JOB_Unknown		-0.0031380
RED_CAR_yes		-0.0069595
INCOME_MISS		-0.0090653
SEX_M		-0.0206620
JOB_Professional		-0.0391996
EDUCATION_Bachelors		-0.0431408
JOB_Doctor		-0.0580794
JOB_Lawyer		-0.0617528
EDUCATION_PhD		-0.0652170
YOJ		-0.0684748
EDUCATION_Masters		-0.0761613
TIF		-0.0821748
CAR_AGE		-0.0974530
AGE		-0.1032152
BLUEBOOK		-0.1035337
JOB_Manager		-0.1052506
MSTATUS_Yes		-0.1347552
CAR_TYPE_Minivan		-0.1367604
INCOME		-0.1377852
HOME_VAL		-0.1785848
URBANICITY Rural		-0.2241940
		J.22 110 10

The above table suggests that none of the variables seem to have a very strong correlation with TAR-GET_FLAG. However, CAR_TYPE_Van, RED_CAR_no, JOB_Home.Maker, SEX_F, JOB_Clerical, CAR_TYPE_SUV, TRAVTIME, CAR_TYPE_Pickup, CAR_TYPE_Sports.Car, JOB_Student, JOB_Blue.Collar, KIDSDRIV, HOMEKIDS, MSTATUS_No, OLDCLAIM, EDUCATION_High.School, CAR_USE_Commercial, REVOKED_Yes, PARENT1_Yes, CLM_FREQ, MVR_PTS, URBANIC-ITY_Highly.Urban..Urban have a positive correlation.

Similarly, URBANICITY_Highly.Rural..Rural, HOME_VAL, PARENT1_No, REVOKED_No, CAR_USE_Private, INCOME, CAR_TYPE_Minivan, MSTATUS_Yes, JOB_Manager, BLUEBOOK, AGE, CAR_AGE, TIF, EDUCATION_Masters, YOJ, EDUCATION_PhD, JOB_Lawyer, JOB_Doctor, EDUCATION_Bachelors, JOB_Professional, SEX_M, RED_CAR_yes, CAR_TYPE_Panel.Truck have a negative correlation.

Lets now see how values in some of the variable affects the correlation:

CAR_TYPE - If you drive Minivans and Panel Trucks you have lesser chance of being in a crash as against Pickups, Sports, SUVs and Vans. Since the distiction is clear, we believe that binning this variable accordingly will help strengthen the correlation.

EDUCATION - If you have only a high school education then you are more likely to crash than if you have a Bachelors, Masters or a Phd. Again binning this variable will strengthen the correlation.

JOB - If you are a Student, Homemaker, or in a Blue Collar or Clerical job, you are more likely to be in a crash against Doctor, Lawyer, Manager, professional or Unknown job. Again binning this variable will strengthen the correlation.

3.1.3 Binning of Variables

Lets have a look at the following numeric variables to see how they are distributed vis-a-vis TARGET_FLAG: INCOME, YOJ, HOME_VAL, OLDCLAIM, CLM_FREQ, MVR_PTS, CAR_AGE, AGE, BLUEBOOK, TIF, TRAVTIME. The goal here is to see if we can bin these variables into zero and non-zero bin values and check the correlations. While doing that we will also see how the variables are distributed vis-a-vis TARGET_FLAG.

BLUEBOOK TIF

From the outputs above, we can come to the following conclusions:

- INCOME Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this at zero value.
- YOJ Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this.
- HOME_VAL Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this.
- OLDCLAIM- There is a huge difference in the coorrelation when we transform this variable. Binning this variable seems like a good idea.
- CLM_FREQ Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this.
- MVR_PTS Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this.
- CAR_AGE There are quite a few records with a 1 year car age. We will use this bound to generate a binned variable as well as retain the original varible as is.
- AGE There is no specific pattern that emerges. We will retain this variable as is.
- BLUEBOOK There is no specific pattern that emerges. We will retain the variable as is.
- TIF Looking at the plots, values and the correlations with TARGET_FLAG, we can conclude that this is not a good variable for binning. We will retain this variable as is.

• TRAVTIME - from the plot, we can see that there is a clear pattern around the value - 20. We will go ahead and create a binned variable for this.

We will carry out the above transformations in the Data Preparation phase.

3.1.4 Outliers identification

In this sub-section, we will look at the boxplots and determine the outliers in variables and decide on whether to act on the outliers. We will do the outliers only on some of the currency and few other variables. Below are the plots:

From the "Outliers identification" plot above, we see that we have few outliers that we need to treat. We will treat the outliers in this variable when we do the data preparation for modeling the TARGET_FLAG.

3.1.5 Analysis of the link function

In this section, we will investigate how our initial data aligns with a typical logistic model plot.

Recall the Logistic Regression is part of a larger class of algorithms known as Generalized Linear Model (glm). The fundamental equation of generalized linear model is:

$$g(E(y)) = a + Bx_1 + B_2x_2 + B_3x_3 + \dots$$

where, g() is the link function, E(y) is the expectation of target variable and $B_0 + B_1x_1 + B_2x_2 + B_3x_3$ is the linear predictor (B_0, B_1, B_2, B_3 to be predicted). The role of link function is to 'link' the expectation of y to linear predictor.

In logistic regression, we are only concerned about the probability of outcome dependent variable (success or failure). As described above, g() is the link function. This function is established using two things: Probability of Success (p) and Probability of Failure (1-p). p should meet following criteria: It must always be positive (since p >= 0) It must always be less than equals to 1 (since p <= 1).

Now let's investigate how our initial data model aligns with the above criteria. In other words, we will plot regression model plots for each variable and compare it to a typical logistic model plot:

3.1.5.1 Interpretation

You can see that the probability of crashing increases as we get closer to the "1" classification for the CAR_TYPE_Van, RED_CAR_no, JOB_Home.Maker, SEX_F, JOB_Clerical, CAR_TYPE_SUV, TRAVTIME, BLUEBOOK, CAR_TYPE_Pickup, CAR_TYPE_Sports.Car, JOB_Student, KIDSDRIV, JOB_Blue.Collar, HOMEKIDS, MSTATUS_No, EDUCATION_High.School, CAR_USE_Commercial, REVOKED_Yes, PARENT1_Yes, OLDCLAIM, CLM_FREQ, MVR_PTS, URBANICITY_Highly.Urban..Urban variables.

You can see that the probability of crashing decreases as we get closer to the "1" classification for the HOME_VAL, CAR_TYPE_Minivan, MSTATUS_Yes, JOB_Manager, AGE, CAR_AGE, TIF, EDU-CATION_Masters, YOJ, EDUCATION_PhD, JOB_Lawyer, JOB_Doctor, EDUCATION_Bachelors, JOB_Professional, INCOME, SEX_M, RED_CAR_yes, CAR_TYPE_Panel.Truck variables.

3.2 Data Preparation

Now that we have completed the data exploration / analysis, we will be transforming the data for use in analysis and modeling.

We will be following the below steps as guidelines: - Outliers treatment - Adding New Variables

3.2.1 Outliers treatment

In this sub-section, we will check different transformations for AGE, BLUEBOOK and TIF to create the appropriate outlier-handled / transformed variables.

• Transformations for TIF

Outliers identification

From the above charts we can see that a log, sqrt, sin or an inverse transformation works well for TIF. However, the sin transformation seems to be better distributed. Hence, We will create this variable.

• Transformations for BLUEBOOK

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1500 9290 14440 15710 20850 69740

Outliers identification

From the above charts we can see that a sin transformation works well. Hence, We will create this variable.

• Transformations for AGE

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.00 39.00 45.00 44.79 51.00 81.00
```

Outliers identification

From the above charts we can see that a sin works well for AGE.Hence, We will create this variable.

3.2.2 Adding New Variables

In this section, we generate some additional variables that we feel will help the correlations. The following were some of the observations we made during the data exploration phase for TARGET FLAG

CAR_TYPE - If you drive Minivans and Panel Trucks you have lesser chance of being in a crash as against Pickups, Sports, SUVs and Vans. Since the distiction is clear, we believe that binning this variable accordingly will help strengthen the correlation. Accordingly, we will bin this variable as below:

CAR TYPE FLAG BIN:

- 1 : if CAR_TYPE is Minivans or Panel Trucks
- 0 : if CAR_TYPE is Pickups, Sports, SUVs or Vans

EDUCATION - If you have only a high school education then you are more likely to crash than if you have a Bachelors, Masters or a Phd. Again binning this variable will strengthen the correlation:

EDUCATION FLAG BIN:

- 0: if EDUCATION is High School
- 1: if EDUCATION is Bachelors, Masters or Phd

JOB - If you are a Student, Homemaker, or in a Blue Collar or Clerical job, you are more likely to be in a crash against Doctor, Lawyer, Manager or professional. Again binning this variable will strengthen the correlation:

JOB TYPE FLAG BIN:

- 1: if JOB TYPE is Student, Homemaker, or in a Blue Collar or Clerical
- 0: if JOB_TYPE is Doctor, Lawyer, Manager, professional, Unknown
- INCOME Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this at zero value.

INCOME FLAG BIN:

- 1: if INCOME ≤ 0
- 0: if INCOME > 0
- YOJ Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this.

YOJ_FLAG_BIN:

- 1: if $YOJ \le 0$
- 0 : if YOJ > 0
- HOME_VAL Binning this variable seems to make a difference in the correlation. We will go ahead
 and create a binned variable for this.

HOME VAL FLAG BIN:

- 1: if HOME VAL ≤ 0
- $0: \text{if HOME_VAL} > 0$
- OLDCLAIM- There is a huge difference in the coorrelation when we transform this variable. Binning this variable seems like a good idea.

OLDCLAIM FLAG BIN:

- 1: if OLDCLAIM ≤ 0
- 0: if OLDCLAIM > 0
- CLM_FREQ Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this.

$CLM_FREQ_FLAG_BIN:$

- 1: if $CLM_FREQ \le 0$
- 0: if CLM FREQ > 0
- MVR_PTS Binning this variable seems to make a difference in the correlation. We will go ahead and create a binned variable for this.

$MVR_PTS_FLAG_BIN:$

- 1: if MVR PTS ≤ 0
- $0: \text{ if MVR_PTS} > 0$
- CAR_AGE There are quite a few records with a 1 year car age. We will use this bound to generate a binned variable as well as retain the original varible as is.

CAR_AGE_FLAG_BIN:

- 1: if CAR AGE ≤ 1
- 0: if CAR AGE > 0
- AGE There is no specific pattern that emerges. We will retain this variable as is.
- BLUEBOOK There is no specific pattern that emerges. We will retain this variable as is.
- TRAVTIME from the plot, we can see that there is a clear pattern around the value 20. We will go ahead and create a binned variable for this.

$TRAVTIME_FLAG_BIN:$

1: if TRAVTIME <= 20
 0: if TRAVTIME > 0

3.2.3 Additional Binned Variables

After having prepared the data, we will go ahead and drop some of the variables.

```
##
   'data.frame':
                    8157 obs. of 39 variables:
##
    $ TARGET_FLAG
                                0 0 0 0 0 1 0 1 1 0 ...
                         : int
    $ KIDSDRIV
                                0 0 0 0 0 0 0 1 0 0 ...
                         : int
   $ AGE
##
                               60 43 35 51 50 34 54 37 34 50 ...
                         : num
##
    $ HOMEKIDS
                                0 0 1 0 0 1 0 2 0 0 ...
                         : int
    $ YOJ
                               11 11 10 14 10.5 ...
##
                         : num
##
    $ INCOME
                         : num
                                67349 91449 16039 54046 114986 ...
                               0 257252 124191 306251 243925 ...
##
    $ HOME VAL
                         : num
##
    $ TRAVTIME
                         : int
                               14 22 5 32 36 46 33 44 34 48 ...
                               14230 14940 4010 15440 18000 ...
##
    $ BLUEBOOK
                         : num
##
    $ TIF
                         : int
                               11 1 4 7 1 1 1 1 1 7 ...
##
   $ OLDCLAIM
                         : num
                               4461 0 38690 0 19217 ...
##
    $ CLM_FREQ
                                2 0 2 0 2 0 0 1 0 0 ...
                         : int
    $ MVR_PTS
##
                         : int
                                3 0 3 0 3 0 0 10 0 1 ...
##
    $ CAR_AGE
                                18 1 10 6 17 7 1 7 1 17 ...
                         : int
##
    $ CAR_USE_Commercial: num
                                0 1 0 0 0 1 0 1 0 1 ...
##
    $ MSTATUS_Yes
                         : num
                                0 0 1 1 1 0 1 1 0 0 ...
##
    $ PARENT1_Yes
                                0 0 0 0 0 1 0 0 0 0 ...
                         : num
##
    $ RED_CAR_yes
                               1 1 0 1 0 0 0 1 0 0 ...
                         : num
   $ REVOKED_Yes
                                0 0 0 0 1 0 0 1 0 0 ...
##
                         : num
##
    $ SEX M
                               1 1 0 1 0 0 0 1 0 1 ...
                         : num
    $ URBANICITY Rural
                                0 0 0 0 0 0 0 0 0 1 ...
##
                        : num
##
    $ YOJ_MISS
                               0 0 0 0 1 0 1 1 0 0 ...
                         : num
    $ INCOME_MISS
                               0 0 0 1 0 0 0 0 0 0 ...
                         : num
    $ HOME VAL MISS
                               0 0 0 0 0 0 1 0 0 0 ...
                         : num
```

```
$ CAR AGE MISS
                               0 0 0 0 0 0 0 0 0 0 ...
##
                        : num
                               -1 0.841 -0.757 0.657 0.841 ...
##
   $ TIF_sin
                        : niim
##
   $ BLUEBOOK sin
                        : num
                               -0.988 -0.988 0.971 0.8 -0.97 ...
   $ AGE_sin
                              -0.305 -0.832 -0.428 0.67 -0.262 ...
##
                        : num
##
   $ CAR TYPE FLAG BIN : num
                              1 1 0 1 0 0 0 0 0 0 ...
##
   $ EDUCATION FLAG BIN: num
                              1 0 0 0 1 1 0 1 1 1 ...
##
   $ JOB TYPE FLAG BIN : num
                               0 1 1 1 0 1 1 1 1 0 ...
##
   $ INCOME FLAG BIN
                        : num
                               0 0 0 0 0 0 0 0 0 0 ...
##
   $ YOJ_FLAG_BIN
                        : num
                               0000000000...
##
   $ HOME_VAL_FLAG_BIN : num
                               1 0 0 0 0 1 0 0 1 1 ...
   $ OLDCLAIM_FLAG_BIN : num
                               0 1 0 1 0 1 1 0 1 1 ...
   $ CLM_FREQ_FLAG_BIN : num
##
                               0 1 0 1 0 1 1 0 1 1 ...
##
   $ MVR_PTS_FLAG_BIN
                       : num
                               0 1 0 1 0 1 1 0 1 0 ...
##
   $ CAR_AGE_FLAG_BIN
                       : num
                               0 1 0 0 0 0 1 0 1 0 ...
   $ TRAVTIME_FLAG_BIN : num 1 0 1 0 0 0 0 0 0 ...
```

3.3 Build Models

In this section, we will create 3 models. Aside from using original and transformed data, we will also using different methods and functions such as Linear Discriminant Analysis, step function, and logit function to enhance our models. newline newline Below is our model definition:

- -Model 1- This model will be created using all the variables in train data set with logit function GLM.
- -Model 2: This model step function will be used to enhance the model 1.
- -Model 3- This model will be created using calssification and regression tree.

3.3.1 Prepare TRAIN and VALID datasets

However, prior to that, we hold out a subset of data as a validation dataset to check model performance. This will be useful when we select a model.

3.3.2 Model 1 and enahncement of Model 1 with step function (Model 2)

In this model, we will be using all the given variables in train data set. We will create model using logit function. We will then step thru the model to remove unnecessary variables and generate the refined model. We will highlight the summary of the refined model.

```
##
## Call:
## glm(formula = TARGET_FLAG ~ ., family = "binomial", data = na.omit(DS_TARGET_FLAG_TRAIN))
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   30
                                           Max
  -2.4903 -0.7193 -0.4098
                               0.6561
                                        3.1494
##
## Coefficients: (1 not defined because of singularities)
##
                        Estimate Std. Error z value Pr(>|z|)
                                 3.403e-01
## (Intercept)
                      -3.988e-01
                                             -1.172 0.241181
## KIDSDRIV
                       3.979e-01
                                 6.763e-02
                                              5.883 4.03e-09 ***
## AGE
                      -4.759e-03
                                  4.458e-03
                                             -1.067 0.285793
## HOMEKIDS
                       1.818e-02 4.169e-02
                                              0.436 0.662766
## YOJ
                       1.598e-02 1.378e-02
                                              1.159 0.246305
## INCOME
                      -3.058e-06 1.260e-06 -2.427 0.015231 *
```

```
## HOME VAL
                      -8.986e-07
                                   6.553e-07
                                              -1.371 0.170277
## TRAVTIME
                       1.334e-02
                                   2.786e-03
                                               4.786 1.70e-06 ***
                       -1.680e-05
                                              -3.527 0.000420 ***
## BLUEBOOK
                                   4.762e-06
## TIF
                      -5.153e-02
                                   9.256e-03
                                              -5.567 2.59e-08 ***
## OLDCLAIM
                      -2.124e-05
                                   4.735e-06
                                              -4.487 7.23e-06 ***
## CLM FREQ
                       7.001e-02 4.953e-02
                                               1.413 0.157567
## MVR PTS
                        1.042e-01
                                   2.119e-02
                                               4.918 8.73e-07 ***
## CAR AGE
                        5.177e-03
                                   1.077e-02
                                               0.481 0.630837
## CAR_USE_Commercial 7.512e-01
                                   7.643e-02
                                               9.828
                                                       < 2e-16 ***
## MSTATUS_Yes
                      -5.337e-01
                                   9.590e-02
                                              -5.565 2.62e-08 ***
## PARENT1_Yes
                        3.787e-01
                                   1.219e-01
                                               3.106 0.001898 **
## RED_CAR_yes
                       -1.602e-02
                                   9.656e-02
                                              -0.166 0.868237
## REVOKED_Yes
                       1.052e+00
                                   1.032e-01
                                              10.194
                                                      < 2e-16 ***
## SEX_M
                      -7.591e-03
                                   9.676e-02
                                              -0.078 0.937467
## URBANICITY_Rural
                      -2.313e+00
                                   1.254e-01 -18.453 < 2e-16 ***
## YOJ_MISS
                       -9.088e-02
                                   1.503e-01
                                              -0.605 0.545393
## INCOME_MISS
                      -8.443e-02
                                   1.491e-01
                                              -0.566 0.571275
## HOME VAL MISS
                      -1.280e-02
                                   1.414e-01
                                              -0.091 0.927878
## CAR_AGE_MISS
                                   1.351e-01
                                               1.975 0.048291
                        2.667e-01
## TIF sin
                        2.893e-02
                                   5.475e-02
                                               0.528 0.597165
## BLUEBOOK_sin
                      -2.722e-02
                                   4.562e-02
                                              -0.597 0.550670
## AGE sin
                        1.864e-02
                                   4.599e-02
                                               0.405 0.685238
## CAR_TYPE_FLAG_BIN
                                              -6.760 1.38e-11 ***
                      -5.584e-01
                                   8.259e-02
## EDUCATION FLAG BIN -3.764e-01
                                   9.592e-02
                                              -3.923 8.73e-05 ***
## JOB TYPE FLAG BIN
                        3.225e-01
                                   9.760e-02
                                               3.304 0.000953 ***
## INCOME_FLAG_BIN
                       4.796e-01
                                   3.508e-01
                                               1.367 0.171569
## YOJ_FLAG_BIN
                       8.043e-02
                                   3.797e-01
                                               0.212 0.832256
## HOME_VAL_FLAG_BIN
                        1.107e-02
                                   1.552e-01
                                               0.071 0.943148
## OLDCLAIM_FLAG_BIN
                      -4.899e-01
                                   1.371e-01
                                              -3.572 0.000354 ***
## CLM_FREQ_FLAG_BIN
                                                            NA
                               NA
                                          NA
                                                  NA
## MVR_PTS_FLAG_BIN
                        2.785e-02
                                   9.490e-02
                                               0.293 0.769170
## CAR_AGE_FLAG_BIN
                        8.810e-02
                                   1.170e-01
                                               0.753 0.451457
## TRAVTIME_FLAG_BIN
                      -9.989e-02
                                  1.104e-01
                                              -0.905 0.365589
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
   (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 7551.7
                                        degrees of freedom
##
                               on 6524
## Residual deviance: 5886.1
                               on 6487
                                        degrees of freedom
  AIC: 5962.1
##
## Number of Fisher Scoring iterations: 5
```

Interpretation for the TF_Model1 and TF_Model1_ref TF Model1:

From model 1 summary we can find following important points-

- (i) Variable URBANICITY_Rural has most significant association with lowest p value. negative value of log odd function indicates that chances of accidents ae higher in Urbancity areas compare to rural area.
- (ii) For MSTATUS_Yes variable log odd is negative which indicates married people tend to drive slowly and have less number of accidents.

- (iii) Sex variable has no significant association which means driving patters does not depend on men and women.
- (iv) variable REVOKED_Yes has strong association which indicates if person's license has been revoked in last 7 years then chane of end up in accidents are much higher with log odds value of 0.809090.
- (v) If person has a claim in last 5 years then chances of more claims are higher. Variable OLD-CLAIM_FLAG_BI indicates that with negative log odds value(1 is here no claim -0.559409).
- (vi) AIC value of the model is AIC: 6078.7 and number of iteration was 5.

TF Model1 ref:

Model 1 has AIC value 6078.7 and enhaned model TF_Model1_ref has AIC value 6064.9 slightly better compared to model1. We will look into more details on model1 ref below-

- (i) Based on the outcome from model_ref, it can be seen that following variables KIDSDRIV,PARENT1_Yes, MSTATUS_Yes,CAR_USE_Commercial, REVOKED_Yes, TIF_sin, CAR_TYPE_FLAG_BIN, EDUCATION_FLAG_BIN, JOB_TYPE_FLAG_BIN, INCOME_FLAG_BIN, HOME_VAL_FLAG_BIN,OLDCLAIM_FLAG_BIN,MVR_PTS_FLAG_BIN, TRAVTIME_FLAG_BIN, URBANICITY_Rural are only statistically significant. Most of the variables are having similar association as above model 1.
- (ii) As for the statistically significant variables, URBANICITY_Rural has the lowest p-value suggesting a strong association of the URBANICITY_Rural to the target variable. Implication is also same negative value indicate lower chances of accidents in rural areas.
- (iii) One interesting outcome is when childrens are diriving your car then more chances of accidents with log odd value of 0.41327 for variable KIDSDRIV.
- (iv) For variable CAR_TYPE_FLAG_BIN there is high negative corelation is there with log odds value of -0.65867 that means Mnivan and Panel truck has higher chance of getting into an accident.
- (v) Variable EDUCATION_FLAG_BIN has negative log odds value of -0.46755 indicating that people with higher education above high school has less chance of an accident comared to the other group.
- (vi) No. of iterations are 5 before lowest value of AIC was derived for this model.

3.3.3 Model 3

In this model, we will be using original variables; however we use the CART (Classification and Regression Trees) algorithm to train the model. We will then Prune the tree and have a look at the summary of this pruned model.

*Pruned Classification Tree for TARGET_FLAG

Interpretation for Model 3

Following analysis can be drawn from this model:

- (i) The following variables have been used for classification OLD_CLAIM, JOB_TYPE_FLAG_BIN, URBANICITY_Rural, KIDSDRIV, MVR_PTS, REVOKED_Yes.
- (ii)lowest Cp value and Xerror occured on split 7.
- (iii) OLDCLAIM_FLAG_BIN is the first variable used to split the classification based on its value 0 and 1. When there is claim (1 in abobe variable) branch is further split to other branches by variable JOB_TYPE_FLAG_BIN (based on value 0 and 1). Based on value of JOB_TYPE_FLAG_BIN (0 and 1) there is two different routes in calssification. one Split (774/323) is based on variable KIDSDRIV and the other one (738/675) is based on URBANICITY_Rural variable. Using the above variable total 7 splits have been performed for classification.

3.4 Model Evaluation Using VALID Data

Lets go ahead and apply the above models to the VALID dataset that we had held out. Below is the table of predictions for each of the models:

3.4.1 Evaluation of Model 1

Table 8: Model 1 evaluation KPIs

	Accuracy	Error_Rate	Precision	sensitivity	specificity	F1_Score	AUC
1	0.7947304	0.2052696	0.447619	0.6460481	0.8269948	0.3926341	0.8079817

Model 1 has good accuracy value close to 78.3%. sensitivity value is lower than the specificity value.

3.4.2 Evaluation of Model 2

Table 9: Model 2 evaluation KPIs

	Accuracy	${\bf Error_Rate}$	Precision	sensitivity	specificity	$F1_Score$	AUC
2	0.7830882	0.2169118	0.2690476	0.70625	0.7914402	0.2537439	0.8079817

Model 2 has good accuracy value close to 77.3% and very close to model1. sensitivity value is lower than the specificity value.

3.4.3 Evaluation of Model 3

Table 10: Model 3 evaluation KPIs

	Accuracy	Error_Rate	Precision	sensitivity	specificity	F1_Score	AUC
1	0.7947304	0.2052696	0.4476190	0.6460481	0.8269948	0.3926341	0.8079817
2	0.7830882	0.2169118	0.2690476	0.7062500	0.7914402	0.2537439	0.8079817
3	0.7561275	0.2438725	0.1666667	0.5932203	0.7688243	0.1451789	0.6733272

This model has accuracy value of 75.4%. AUC for this model is 67.4% and less compared to the other two models.

3.5 Final Logistic Model Selection Summary

Following is the comparison of various metrics for above 3 models

Table 11: Model Performance Metrics Comparison

Model_No	Accuracy	Error_Rate	AUC	Precision	sensitivity	specificity	F1_Score
1	0.7947304	0.2052696	0.8079817	0.4476190	0.6460481	0.8269948	0.3926341
2	0.7830882	0.2169118	0.8079817	0.2690476	0.7062500	0.7914402	0.2537439
3	0.7561275	0.2438725	0.6733272	0.1666667	0.5932203	0.7688243	0.1451789

From the comparison table, we see that Model 1 is quite superior from the accuracy and AUC perspective.

The AUC provides the best score on probability of correctly identifying the patterns at various cut off values. The Accuracy, on the other hand, is calculated as specific cut off value. For this assignment we will go with

cut off value of 0.5 and choose the Model 1 based on Accuracy value for further prediction on evaluation data set.

3.5.1 Detailed Inference for Final Model

The following analysis will be carried out on the final model:

- (i) Relevant variables in the model
- (ii) Estimate confidence interval for coefficient
- (iii) odds ratios and 95% CI
- (iv) AUC curve
- (v) Distribution of prediction

3.5.2 Most important variables in the model

```
##
## Call:
## glm(formula = TARGET_FLAG ~ ., family = "binomial", data = na.omit(DS_TARGET_FLAG_TRAIN))
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -2.4903 -0.7193 -0.4098
                               0.6561
                                        3.1494
##
## Coefficients: (1 not defined because of singularities)
                        Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                      -3.988e-01 3.403e-01 -1.172 0.241181
## KIDSDRIV
                       3.979e-01
                                 6.763e-02
                                              5.883 4.03e-09 ***
## AGE
                      -4.759e-03
                                 4.458e-03
                                            -1.067 0.285793
## HOMEKIDS
                       1.818e-02
                                 4.169e-02
                                              0.436 0.662766
## YOJ
                       1.598e-02 1.378e-02
                                              1.159 0.246305
## INCOME
                      -3.058e-06
                                 1.260e-06
                                            -2.427 0.015231
## HOME VAL
                      -8.986e-07
                                  6.553e-07
                                             -1.371 0.170277
## TRAVTIME
                      1.334e-02 2.786e-03
                                              4.786 1.70e-06 ***
## BLUEBOOK
                      -1.680e-05 4.762e-06
                                            -3.527 0.000420 ***
## TIF
                      -5.153e-02 9.256e-03
                                            -5.567 2.59e-08 ***
## OLDCLAIM
                      -2.124e-05
                                  4.735e-06
                                             -4.487 7.23e-06 ***
## CLM_FREQ
                       7.001e-02 4.953e-02
                                              1.413 0.157567
## MVR PTS
                       1.042e-01 2.119e-02
                                              4.918 8.73e-07 ***
## CAR AGE
                       5.177e-03 1.077e-02
                                              0.481 0.630837
## CAR USE Commercial 7.512e-01
                                 7.643e-02
                                              9.828
                                                    < 2e-16 ***
## MSTATUS_Yes
                      -5.337e-01 9.590e-02
                                            -5.565 2.62e-08 ***
## PARENT1 Yes
                                              3.106 0.001898 **
                       3.787e-01
                                 1.219e-01
## RED_CAR_yes
                      -1.602e-02 9.656e-02
                                            -0.166 0.868237
## REVOKED Yes
                      1.052e+00
                                  1.032e-01
                                             10.194
                                                     < 2e-16 ***
## SEX_M
                      -7.591e-03 9.676e-02
                                            -0.078 0.937467
## URBANICITY_Rural
                      -2.313e+00
                                 1.254e-01 -18.453
                                                    < 2e-16 ***
## YOJ_MISS
                      -9.088e-02
                                            -0.605 0.545393
                                 1.503e-01
                                            -0.566 0.571275
## INCOME_MISS
                      -8.443e-02 1.491e-01
## HOME_VAL_MISS
                      -1.280e-02 1.414e-01
                                            -0.091 0.927878
## CAR_AGE_MISS
                       2.667e-01 1.351e-01
                                              1.975 0.048291 *
## TIF_sin
                       2.893e-02 5.475e-02
                                              0.528 0.597165
## BLUEBOOK_sin
                      -2.722e-02 4.562e-02 -0.597 0.550670
```

```
## AGE sin
                      1.864e-02 4.599e-02
                                             0.405 0.685238
## CAR_TYPE_FLAG_BIN -5.584e-01 8.259e-02 -6.760 1.38e-11 ***
## EDUCATION FLAG BIN -3.764e-01 9.592e-02 -3.923 8.73e-05 ***
## JOB_TYPE_FLAG_BIN
                      3.225e-01 9.760e-02
                                             3.304 0.000953 ***
## INCOME FLAG BIN
                      4.796e-01
                                3.508e-01
                                             1.367 0.171569
## YOJ FLAG BIN
                      8.043e-02 3.797e-01
                                             0.212 0.832256
## HOME VAL FLAG BIN
                      1.107e-02 1.552e-01
                                             0.071 0.943148
## OLDCLAIM FLAG BIN
                     -4.899e-01 1.371e-01
                                            -3.572 0.000354 ***
## CLM_FREQ_FLAG_BIN
                             NA
                                        NA
                                                NA
                                                         ΝA
## MVR_PTS_FLAG_BIN
                      2.785e-02 9.490e-02
                                             0.293 0.769170
## CAR_AGE_FLAG_BIN
                      8.810e-02 1.170e-01
                                             0.753 0.451457
## TRAVTIME_FLAG_BIN -9.989e-02 1.104e-01 -0.905 0.365589
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 7551.7 on 6524
                                      degrees of freedom
## Residual deviance: 5886.1 on 6487
                                      degrees of freedom
## AIC: 5962.1
##
## Number of Fisher Scoring iterations: 5
```

Following are the most relevant variables for the model:

CAR_USE_Commercial, REVOKED_Yes, URBANICITY_Rural, CAR_TYPE_FLAG_BIN,TRAVTIME, OLDCLAIM_FLAG_BIN, MVR_PTS, TIF_SIN, KIDSDRIV, PARENT1_Yes, EDUCATION_FLAG_BIN, MSTATUS Yes, BLUEBOOK, OLDCLAIM, JOB TYPE FLAG BIN, HOME VAL, INCOME FLAG BIN.

We can write the equation of the Model 1 as:

 $log(y) = -0.4015 + 0.3431 * KIDSDRIV - 0.000001027 * HOME_VAL + 0.01557 * TRAVTIME - 0.00001858 * BLUEBOOK - 0.05103 * TIF - 0.00001873 * OLDCLAIM + 0.1043 * MVR_PTS + 0.7632 * CAR_USE_Commercial - 0.4066 * MSTATUS_Yes + 0.5246 * PARENT1_Yes + 1.025 * REVOKED_Yes - 2.221 * URBANICITY_Rural - 0.5662 * CAR_TYPE_FLAG_BIN - 0.3996 * EDUCATION_FLAG_BIN + 0.3584 * JOB_TYPE_FLAG_BIN + 0.311 * INCOME_FLAG_BIN - 0.627 * OLDCLAIM_FLAG_BIN$

3.5.3 Analysis of odds ratios of variables 95% CI

```
2.5 %
##
                              OR
                                                97.5 %
## (Intercept)
                      0.67113058 0.34449416 1.3074714
## KIDSDRIV
                      1.48862259 1.30382382 1.6996140
                      0.99525237 0.98659334 1.0039874
## AGE
## HOMEKIDS
                      1.01834688 0.93844701 1.1050495
## YOJ
                      1.01610813 0.98902600 1.0439318
## INCOME
                      0.99999694 0.99999447 0.9999994
## HOME VAL
                      0.99999910 0.99999782 1.0000004
## TRAVTIME
                      1.01342437 1.00790509 1.0189739
## BLUEBOOK
                      0.99998320 0.99997387 0.9999925
## TTF
                      0.94977489 0.93269993 0.9671624
## OLDCLAIM
                      0.99997876 0.99996948 0.9999880
## CLM FREQ
                      1.07251612 0.97328473 1.1818647
## MVR PTS
                      1.10986959 1.06470918 1.1569455
## CAR_AGE
                      1.00519015 0.98418928 1.0266391
```

```
## CAR USE Commercial 2.11945792 1.82459644 2.4619701
## MSTATUS_Yes
                      0.58643036 0.48593986 0.7077019
## PARENT1 Yes
                      1.46035120 1.14992968 1.8545705
## RED_CAR_yes
                      0.98410869 0.81442639 1.1891436
## REVOKED_Yes
                      2.86451319 2.33977796 3.5069293
## SEX M
                      0.99243744 0.82099263 1.1996844
## URBANICITY Rural
                      0.09894387 0.07738989 0.1265009
## YOJ_MISS
                      0.91313153 0.68015614 1.2259085
## INCOME_MISS
                      0.91903450 0.68611221 1.2310296
## HOME_VAL_MISS
                      0.98728640 0.74837344 1.3024707
## CAR_AGE_MISS
                      1.30565907 1.00200553 1.7013335
## TIF_sin
                      1.02935564 0.92462226 1.1459523
## BLUEBOOK_sin
                      0.97314416 0.88991133 1.0641617
## AGE_sin
                      1.01881446 0.93100276 1.1149085
## CAR_TYPE_FLAG_BIN
                      0.57214143 0.48662962 0.6726796
## EDUCATION_FLAG_BIN
                      0.68635498 0.56871853 0.8283239
  JOB_TYPE_FLAG_BIN
                      1.38053840 1.14018363 1.6715608
## INCOME FLAG BIN
                      1.61542333 0.81225230 3.2127856
## YOJ_FLAG_BIN
                      1.08375386 0.51487406 2.2811839
## HOME_VAL_FLAG_BIN
                      1.01113208 0.74588194 1.3707103
## OLDCLAIM_FLAG_BIN
                      0.61268865 0.46828247 0.8016259
## CLM FREQ FLAG BIN
                              NA
                                          NA
## MVR_PTS_FLAG_BIN
                      1.02824027 0.85372369 1.2384312
## CAR AGE FLAG BIN
                      1.09209197 0.86830795 1.3735506
## TRAVTIME_FLAG_BIN
                      0.90493543 0.72885274 1.1235577
```

The following points can be made for the important variables in the model:

In keeping all other variables same, the odds of an accident increases as follow: 1.8449962 for per unit change in CAR_USE_Commercial, 2.2458626 per unit change in REVOKED_Yes, 0.1104633 for per unit change in URBANICITY_Rural, etc. Any value which is less than 1, it means that there is less chance of an event with the per unit increase of the variable.

3.5.4 ROC curve for the selected model


```
##
## Call:
## roc.formula(formula = DS_TARGET_FLAG_VALID$TARGET_FLAG ~ DS_TARGET_FLAG_VALID$M1_TARGET_FLAG, da
##
## Data: DS_TARGET_FLAG_VALID$M1_TARGET_FLAG in 1212 controls (DS_TARGET_FLAG_VALID$TARGET_FLAG_O) < 420
## Area under the curve: 0.808</pre>
```

3.5.5 Distribution of the Predictions

```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
```


Considering the target has value 1 (accident occurs) and 0 when no accident, then the above plot illustrates the tradeoff of choosing a reasonable threshold. In other words, if the threshold is increased, the number of false positive (FP) results is lowered; while the number of false negative (FN) results increases.

4 Linear Regression for TARGET_AMT

In this section we will use Linear regression to model the TARGET_AMT. We will first start with the Data Exploration. We will be using only those records where the TARGET_FLAG is 1. This indicates that the vehicle crashed. In such a scenario, we will be modeling the cost of repair using Linear Regression. First, lets create the required data set for the "Crashed" data from the existing "clean" full data and look at the structure of the resulting dataset. We will remove from the new "crashed" dataset all those variables that were created specifically for predicting TARGET_FLAG. We will be creating these variables separately for predicting TARGET_AMT.

We notice that the dependent variable here is TARGET_AMT. Apart from the dependent variables, we have 49 independent or predictor variables.

Also, since we created this dataset from the "Clean" full dataset, we already have taken care of the missing values.

However, we may need to look into the outliers and correlations again since we have a new target variable to correlate against.

4.1 Data Summary and Correlation Analysis

4.1.1 Data Summary

In this section, we will create summary data to better understand the relationship each of the variables have with our dependent variables using correlation, central tendency, and dispersion as shown below:

4.1.2 Correlations

Now we will produce the correlation table between the independent variables and the dependent variable - $TARGET_AMT$

Table 12: Correlation between TARGET_AMT and predictor variables

	Correlation_	_TARGET_AMT
TARGET_AMT		1.0000000
BLUEBOOK		0.1181297
CAR_TYPE_Panel.Truck		0.0682806
SEX_M		0.0513430
CAR_TYPE_Van		0.0499290
CAR_USE_Commercial		0.0496142
INCOME		0.0454604
JOB_Professional		0.0406747
JOB_Unknown		0.0402613
MVR_PTS		0.0396710
YOJ		0.0343807
EDUCATION_PhD		0.0294767
HOME_VAL		0.0291859
AGE		0.0279828
RED_CAR_yes		0.0271768
PARENT1_Yes		0.0238302
JOB_Blue.Collar		0.0155259
EDUCATION_Masters		0.0143267
EDUCATION_Bachelors		0.0136662
JOB_Lawyer		0.0102382
TRAVTIME		0.0053657
CLM_FREQ		0.0023251
INDEX		0.0010044
HOMEKIDS		0.0002698
KIDSDRIV		-0.0000869
URBANICITY_Rural		-0.0048888
OLDCLAIM		-0.0049723
CAR_TYPE_Minivan		-0.0058234
TIF		-0.0060620
JOB_Doctor		-0.0122018
CAR_AGE		-0.0135348
JOB_Clerical		-0.0151891
CAR_TYPE_Sports.Car		-0.0152654
CAR_TYPE_Pickup		-0.0174060
JOB_Manager		-0.0256129
$JOB_Home.Maker$		-0.0293974
JOB_Student		-0.0331511

	${\bf Correlation_TARGET_AMT}$
MSTATUS_Yes	-0.0351848
EDUCATION_High.School	-0.0359529
REVOKED_Yes	-0.0365018
CAR_TYPE_SUV	-0.0405600

The above table suggests that none of the variables seem to have a very strong correlation with TAR-GET AMT.

However, BLUEBOOK, CAR_TYPE_Panel.Truck, SEX_M, CAR_TYPE_Van, CAR_USE_Commercial, INCOME, INCOME_IMPUTE, JOB_Professional, JOB_Unknown, MVR_PTS, YOJ, YOJ_IMPUTE, HOME_VAL_IMPUTE, EDUCATION_PhD, HOME_VAL, AGE, AGE_IMPUTE, RED_CAR_yes, PARENT1_Yes, YOJ_MISS, HOME_VAL_MISS, JOB_Blue.Collar, EDUCATION_Masters, EDUCATION_Bachelors, JOB_Lawyer, TRAVTIME, CLM_FREQ, HOMEKIDS have a positive correlation.

Similarly, KIDSDRIV, TRAVTIME_FLAG_BIN, INCOME_MISS, URBANICITY_Rural, OLDCLAIM, CAR_TYPE_Minivan, TIF, CAR_AGE_MISS, JOB_Doctor, CAR_AGE, CAR_AGE_IMPUTE, JOB_Clerical, CAR_TYPE_Sports.Car, CAR_TYPE_Pickup, JOB_Manager, JOB_Home.Maker, JOB_Student, MSTATUS_Yes, EDUCATION_High.School, REVOKED_Yes, CAR_TYPE_SUV have a negative correlation.

Lets now see how values in some of the variable affects the correlation:

CAR_TYPE - If you drive Vans or Panel Trucks your cost of repair seems to increase as against Minivan, Pickup, Sports.Car, SUV. Since the distiction is clear, we believe that binning this variable accordingly will help strengthen the correlation.

EDUCATION - If you have only a high school education then your cost of repair is less compared to a Bachelors, Masters or a Phd. Again binning this variable will strengthen the correlation.

JOB - If you are a Lawyer, Professional, in a Blue Collar job or the job is unknown, you spend more on repairs as compared to a Doctor, Manager, Home Maker, Student, or Clerical job. Again binning this variable will strengthen the correlation.

4.1.3 Binning of Variables

Lets have a look at the following numeric variables that have 0 as one of their values: INCOME, YOJ, HOME_VAL, OLDCLAIM, CLM_FREQ, MVR_PTS, CAR_AGE, AGE, BLUEBOOK, TIF, TRAVTIME. The goal here is to see if we can bin these variables into zero and non-zero bin values and check the correlations. While doing that we will also see how the variables are distributed vis-a-vis TARGET_AMT.

From the outputs above, we can come to the following conclusions:

- INCOME From the plot we can see that there is a marked difference in the chart at around 125000. We will use this value to bin this variable.
- YOJ We can see that from 7 17 years, there is a visible change in the TARGET_AMT. We will use this bound to create the binned variable.
- HOME_VAL We see from the plot 3 distinct segments Between 0-10000, 60000-400000 and the rest. We will use these values to create 2 bins.
- OLDCLAIM- We can visualize 3 clusters in the data 0-2000, 2000-10000, > 10000, We will use these values to create 2 bins.
- CLM_FREQ Values less than 4 seem to have a positive correlation. We will use this value for binning.
- MVR_PTS We can see from the plot that after 2, the TARGET_AMT starts decreasing. We will use this value for binning.
- CAR_AGE There are quite a few records with a 1 year car age. We will use this bound to generate a binned variable as well as retain the original varible as is.
- AGE There is no specific pattern that emerges in AGE. We will retain the variable as is.
- BLUEBOOK There is no specific pattern that emerges. We will retain the variable as is.
- TIF Looking at the plot we can conclude that this is not a good variable for binning. We will retain this variable as is.

• TRAVTIME - from the plot, we can see that there is a clear pattern around the value - 20. We will go ahead and create a binned variable for this.

We will carry out the above transformations in the Data Preparation phase.

4.1.4 Outliers identification

In this sub-section, we will look at the boxplots and determine the outliers in variables and decide on whether to act on the outliers.

We will do the outliers only on the numeric variables: AGE, BLUEBOOK and TIF. The other variables will be binned and would not beed outlier handling.

Below are the plots:

From the "Outliers identification" plot above, we see that we have few outliers that we need to treat.

We see that all the 3 variables need to be treated when we do the data preparation for modeling the TARGET_AMT.

4.2 Data Preparation

Now that we have completed the data exploration / analysis, we will be transforming the data for use in analysis and modeling.

We will be following the below steps as guidelines: - Outliers treatment - Adding New Variables

4.2.1 Outliers treatment

In this sub-section, we will check different transformations for each of the variables - AGE, BLUEBOOK, TIF - and create the appropriate outlier-handled / transformed variables.

Transformations for AGE

From the above charts we can see that a sin transformation works well for AGE. We will create this variable.

Transformations for TIF

Outliers Treatment TIF TIF_log TIF_sqrt TIF_sin TIF_inv 1.0 -1.00 -3 -20 -4 -0.5 -0.75 -15 **-**2 -3 value 10 -0.0 -0.50 -1 -2 -−0.5 **-**0.25 -5 -0 -1 --1.0 -0 -0.00 -TİF TIF_log TIF_sqrt TIF_sin TIF_inv variable

From the above charts we can see that a log, sqrt, sin or an inverse transformation works well for TIF. However, a sin transformation seems to be more appropriate as it is well centered. Hence, We will create these variables.

Transformations for BLUEBOOK

Outliers Treatment BLUEBOOK 3LUEBOOK_log BLUEBOOK_inv LUEBOOK_sqi 3LUEBOOK_sir 250 -1.0 -11 60000 -6e-04 -200 -0.5 10-40000 -4e-04 -150 -0.0 -20000 -100 2e-04 · -0.5 **-**8 -50 --1.0 **-**0 -0e+00 BLUEBOOK_log BLUEBOOK_sqrt **BLUEBOOK** BLUEBOOK_sin BLUEBOOK inv variable

From the above charts we can see that a sin transformation works well for BLUEBOOK. We will create these variables.

4.2.2 Adding New Variables

In this section, we generate some additional variables that we feel will help the correlations. The following were some of the observations we made during the data exploration phase for TARGET_AMT.

The following were some of the observations we made during the data exploration phase for TARGET_AMT

CAR_TYPE - If you drive Vans or Panel Trucks your cost of repair seems to increase as against Minivan, Pickup, Sports.Car, SUV. Since the distiction is clear, we believe that binning this variable accordingly will help strengthen the correlation. Accordingly, we will bin these variables as below:

CAR TYPE AMT BIN:

- 1: if CAR TYPE is Vans or Panel Trucks
- 0 : if CAR_TYPE is Pickups, Sports, SUVs or Minivans

EDUCATION - If you have only a high school education then your cost of repair is less compared to a Bachelors, Masters or a Phd. Again binning this variable will strengthen the correlation. Accordingly, we will bin these variables as below:

EDUCATION_AMT_BIN:

- 0: if EDUCATION is Bachelors, Masters or Phd

JOB - If you are a Lawyer, Professional, in a Blue Collar job or the job is unknown, you spend more on repairs as compared to a Doctor, Manager, Home Maker, Student, or Clerical job. Again binning this variable will strengthen the correlation. Accordingly, we will bin these variables as below:

JOB_TYPE_AMT_BIN:

- 1: if JOB_TYPE is Lawyer, Professional, Unknown or in a Blue Collar
- 0: if JOB TYPE is Doctor, Manager, Home Maker, Student, or Clerical

INCOME - From the plot we can see that there is a marked difference in the chart at around 125000. We will use this value to bin this variable.

INCOME AMT BIN:

- 1 : if INCOME <= 125000
- 0: if INCOME > 125000
- YOJ We can see that from 7 17 years, there is a visible change in the TARGET_AMT. We will use this bound to create the binned variable.

YOJ AMT BIN:

- 1: if YOJ >= 7 and YOJ <= 17
- 0 : ELSE 0
- HOME_VAL We see from the plot 3 distinct segments Between 0-10000, 60000-400000 and the rest. We will use these values to create 2 bins.

HOME_VAL_AMT_0_10K_BIN:

- 1 : if HOME VAL >=0 and HOME VAL <=10000
- 0 : ELSE 0

$HOME_VAL_AMT_60K_400K_BIN:$

- 1: if HOME VAL >=60000 and HOME VAL <=400000
- 0 : ELSE 0

OLDCLAIM- We can visualize 3 clusters in the data - 0-2000, 2000-10000, > 10000, We will use these values to create 2 bins.

OLDCLAIM AMT 0 2K BIN:

- 1: if OLDCLAIM \geq =0 and OLDCLAIM \leq = 2000
- 0 : ELSE 0

OLDCLAIM_AMT_2K_10K_BIN:

- 1: if OLDCLAIM \geq =2000 and OLDCLAIM \leq = 10000
- 0 : ELSE 0

• CLM_FREQ - Values less than 4 seem to have a positive correlation. We will use this value for binning.

$CLM_FREQ_AMT_BIN:$

- 1: if $CLM_FREQ < 4$
- $0: \text{ if CLM_FREQ} >= 4$
- MVR_PTS We can see from the plot that after 2, the TARGET_AMT starts decreasing. We will use this value for binning.

$MVR_PTS_AMT_BIN:$

- 1: if $MVR_PTS \le 2$
- 0: if MVR PTS > 0
- CAR_AGE There are quite a few records with a 1 year car age. We will use this bound to generate a binned variable as well as retain the original varible as is.

CAR AGE AMT BIN:

- 1: if CAR AGE ≤ 1
- 0: if CAR AGE > 0
- TRAVTIME from the plot, we can see that there is a clear pattern around the value 20. We will go ahead and create a binned variable for this.

TRAVTIME_AMT_BIN:

- 1: if TRAVTIME ≤ 20
- 0: if TRAVTIME > 0

4.3 Build Models

Now that we have the dataset in a shape that can be modeled, we will go ahead and train the model for TARGET_AMT. We will train 2 models and select the best among these 2 models. The following will be the model specifications:

- Model1 (All Variables in Linear Dataset) This will use the standard lm for building the model. We will use all available variables.
- Model2 (A few selected variables) This will use the standard lm for building the model. However, we will use only a few selected variables that seemed to have a good correlation with TARGET_AMT.

4.3.1 Model 1

In this model, we will be using the standard lm modeling technique. We will use the entire set of variables from the Linear dataset.

```
##
## Call:
  lm(formula = TARGET_AMT ~ ., data = na.omit(DS_TARGET_AMT))
##
   Residuals:
##
      Min
              1Q Median
                                   Max
    -9677
##
           -3249
                  -1387
                            792
                                 75391
##
##
  Coefficients:
##
                                Estimate Std. Error t value Pr(>|t|)
                               2.005e+03
                                          6.472e+03
                                                       0.310
                                                              0.75674
  (Intercept)
## KIDSDRIV
                                                      -0.009
                              -1.683e+01
                                           1.782e+03
                                                              0.99247
## AGE
                               1.114e+01
                                          2.565e+01
                                                       0.434
                                                              0.66415
## HOMEKIDS
                               3.102e+02
                                          4.101e+02
                                                       0.756
                                                              0.44956
## YOJ
                                                      -1.083
                              -1.288e+02
                                          1.189e+02
                                                              0.27895
## INCOME
                              -1.149e-02
                                          1.083e-02
                                                      -1.061
                                                              0.28897
## HOME VAL
                               1.941e-03
                                          4.389e-03
                                                       0.442
                                                              0.65832
## TRAVTIME
                               5.253e+00
                                                       0.320
                                          1.641e+01
                                                              0.74890
## BLUEBOOK
                               1.528e-01
                                          3.399e-02
                                                       4.496 7.41e-06
## TIF
                              -4.696e+01
                                          1.116e+02
                                                      -0.421
                                                              0.67391
## OLDCLAIM
                               1.300e-02
                                          4.408e-02
                                                       0.295
                                                              0.76809
## CLM_FREQ
                              -5.938e+02
                                          3.286e+02
                                                      -1.807
                                                              0.07095
## MVR_PTS
                               6.051e+02
                                          2.594e+02
                                                       2.332
                                                              0.01980 *
## CAR_AGE
                                                      -2.217
                              -1.689e+02
                                          7.621e+01
                                                              0.02678 *
## CAR_USE_Commercial
                               6.193e+01
                                           5.625e+02
                                                       0.110
                                                              0.91235
                                                      -2.928
## MSTATUS_Yes
                              -1.815e+03
                                          6.199e+02
                                                              0.00346
                                                      -0.988
## PARENT1_Yes
                              -7.486e+02
                                          7.574e+02
                                                              0.32309
## RED_CAR_yes
                                          5.557e+02
                                                      -0.236
                              -1.314e+02
                                                              0.81308
## REVOKED_Yes
                                                      -1.830
                              -1.130e+03
                                          6.178e+02
                                                              0.06749
                                                       2.666
## SEX_M
                               1.924e+03
                                          7.219e+02
                                                              0.00776 **
## URBANICITY Rural
                              -2.500e+02
                                          8.220e+02
                                                      -0.304
                                                               0.76106
## EDUCATION Bachelors
                                                      -2.620
                              -3.466e+03
                                          1.323e+03
                                                              0.00887 **
## EDUCATION_High.School
                              -4.125e+03
                                          1.420e+03
                                                      -2.904
                                                              0.00373 **
                                                      -2.065
## EDUCATION_Masters
                              -2.236e+03
                                          1.083e+03
                                                              0.03911
## JOB_Blue.Collar
                                                       0.677
                               8.884e+02
                                          1.311e+03
                                                              0.49824
## JOB_Clerical
                              -1.907e+02
                                          1.376e+03
                                                      -0.139
                                                              0.88981
## JOB_Doctor
                                                      -1.673
                              -3.153e+03
                                          1.885e+03
                                                              0.09460
## JOB_Home.Maker
                              -1.200e+02
                                           1.503e+03
                                                      -0.080
                                                              0.93638
                                                      -0.300
## JOB_Lawyer
                              -3.472e+02
                                          1.156e+03
                                                              0.76396
## JOB_Manager
                              -9.609e+02
                                           1.227e+03
                                                      -0.783
                                                              0.43367
## JOB_Professional
                               1.427e+03
                                          1.289e+03
                                                       1.107
                                                              0.26827
## JOB_Student
                               2.542e+01
                                                       0.016
                                          1.563e+03
                                                              0.98703
## CAR_TYPE_Minivan
                               1.140e+02
                                          8.588e+02
                                                       0.133
                                                              0.89438
                                                      -0.073
## CAR_TYPE_Panel.Truck
                              -6.953e+01
                                          9.576e+02
                                                              0.94213
## CAR_TYPE_Pickup
                               5.865e+02
                                          8.258e+02
                                                       0.710
                                                              0.47769
## CAR_TYPE_Sports.Car
                                                       1.975
                               2.203e+03
                                           1.115e+03
                                                              0.04839 *
## CAR_TYPE_SUV
                               1.972e+03
                                                       1.882
                                          1.047e+03
                                                              0.05998
## AGE sin
                              -1.392e+01
                                          2.635e+02
                                                      -0.053
                                                              0.95788
                              -2.987e+02 3.791e+02
## TIF_sin
                                                      -0.788
                                                              0.43086
```

```
1.310e+02 2.608e+02
                                                     0.502
                                                            0.61557
## BLUEBOOK sin
## INCOME_AMT_BIN
                             -5.870e+02 1.278e+03
                                                   -0.459
                                                            0.64598
## YOJ AMT BIN
                              1.765e+03
                                        1.017e+03
                                                     1.735
                                                            0.08296
## HOME_VAL_AMT_O_10K_BIN
                                                     1.201
                              2.353e+03
                                         1.959e+03
                                                            0.22985
## HOME_VAL_AMT_60K_400K_BIN 2.907e+03
                                         1.496e+03
                                                     1.944
                                                            0.05212
## OLDCLAIM AMT O 2K BIN
                                        1.453e+03
                                                   -1.501
                             -2.182e+03
                                                            0.13344
## OLDCLAIM_AMT_2K_10K_BIN
                             -4.936e+02 1.139e+03
                                                    -0.434
                                                            0.66466
## CLM_FREQ_AMT_BIN
                             -1.331e+03
                                        1.183e+03
                                                    -1.125
                                                            0.26082
## MVR_PTS_AMT_BIN
                              1.740e+03
                                        7.970e+02
                                                     2.183
                                                            0.02918 *
## CAR_AGE_AMT_BIN
                             -6.829e+02 7.036e+02
                                                    -0.971
                                                            0.33190
## TRAVTIME_AMT_BIN
                             7.007e+01
                                        6.639e+02
                                                     0.106
                                                            0.91596
## KIDSDRIV_AMT_BIN_O
                             -9.347e+02
                                        1.928e+03
                                                    -0.485
                                                            0.62787
                              2.079e+03 2.355e+03
                                                     0.883
## KIDSDRIV_AMT_BIN_1
                                                            0.37742
                             -5.618e+02 9.971e+02
## HOMEKIDS_AMT_BIN_O
                                                    -0.563
                                                            0.57318
## HOMEKIDS_AMT_BIN_3
                              8.051e+02
                                        1.428e+03
                                                     0.564
                                                            0.57285
## YOJ_AMT_BIN_O_AND_9To14
                              6.615e+02
                                        7.114e+02
                                                     0.930
                                                            0.35259
## INCOME_AMT_BIN_MISS_O
                                                    -0.122
                             -2.171e+02
                                        1.778e+03
                                                            0.90283
## TIF AMT BIN 6
                             -1.557e+02 8.834e+02
                                                    -0.176
                                                            0.86015
## OLDCLAIM_AMT_BIN_MISS_O
                              4.083e+02
                                        1.026e+03
                                                     0.398 0.69059
## MVR PTS AMT BIN O
                              4.155e+02 6.288e+02
                                                     0.661
                                                            0.50888
## MVR_PTS_AMT_BIN_5
                              1.819e+03 1.083e+03
                                                     1.680 0.09312 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7577 on 1642 degrees of freedom
## Multiple R-squared: 0.05812,
                                    Adjusted R-squared:
## F-statistic: 1.717 on 59 and 1642 DF, p-value: 0.0006848
```

Interpretation of the Model

Based on the Model output, below are the characteristics of the refined model:

• The Residual standard error is 7577

• Multiple R-squared: 0.05812

• Adjusted R-squared: 0.02428

• F-statistic: 1.717 on 59 and 1642 DF

• p-value: < 0.0006848

4.3.2 Model 2

In this model, we will be using the standard lm modeling technique. We will use only those variables that seemed to have a good correlation with TARGET_AMT.

```
##
## Call:
  lm(formula = TARGET_AMT ~ ., data = DS_SELECTED_VARS)
##
  Residuals:
##
##
      Min
              1Q Median
                             3Q
                                   Max
    -9665 -3182 -1427
                                 75206
##
                            758
##
## Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept)
                             -8.686e+02 6.126e+03 -0.142
                                                             0.88725
                              1.359e+01
## AGE
                                                      0.533
                                                             0.59414
                                         2.550e+01
## BLUEBOOK
                              1.533e-01
                                         3.261e-02
                                                      4.702
                                                             2.8e-06 ***
## CAR_AGE
                             -1.077e+02
                                         7.287e+01
                                                     -1.478
                                                             0.13958
## CAR_AGE_AMT_BIN
                             -2.792e+02
                                         6.877e+02
                                                     -0.406
                                                             0.68485
                             -1.467e+01
                                                     -0.027
## CAR USE Commercial
                                         5.460e+02
                                                             0.97857
## CLM FREQ
                             -6.803e+02
                                         2.613e+02
                                                     -2.603
                                                             0.00932 **
## CLM_FREQ_AMT_BIN
                             -1.586e+03
                                         1.128e+03
                                                     -1.406
                                                             0.15978
## HOME VAL
                              1.886e-03
                                         4.376e-03
                                                      0.431
                                                             0.66661
## HOME_VAL_AMT_O_1OK_BIN
                              2.213e+03
                                         1.955e+03
                                                      1.132
                                                             0.25778
## HOME_VAL_AMT_60K_400K_BIN 2.762e+03
                                         1.492e+03
                                                      1.851
                                                             0.06430
## HOMEKIDS
                              2.804e+02
                                         4.087e+02
                                                      0.686
                                                             0.49275
## HOMEKIDS_AMT_BIN_O
                                                     -0.549
                             -5.455e+02
                                         9.930e+02
                                                             0.58280
## HOMEKIDS_AMT_BIN_3
                              6.281e+02
                                         1.424e+03
                                                      0.441
                                                             0.65922
                                                     -0.778
## INCOME
                             -8.304e-03
                                         1.067e-02
                                                             0.43654
## INCOME_AMT_BIN
                             -1.080e+03
                                         1.259e+03
                                                     -0.858
                                                             0.39089
## KIDSDRIV
                                                      0.046
                              8.219e+01
                                         1.779e+03
                                                             0.96315
## KIDSDRIV AMT BIN O
                                                     -0.440
                             -8.472e+02
                                         1.925e+03
                                                             0.65983
## KIDSDRIV_AMT_BIN_1
                                         2.351e+03
                                                      0.926
                              2.178e+03
                                                             0.35447
## MSTATUS Yes
                             -1.760e+03
                                         6.180e+02
                                                     -2.848
                                                             0.00445 **
## MVR_PTS
                              6.149e+02 2.590e+02
                                                      2.374
                                                             0.01769 *
## MVR PTS AMT BIN
                              1.798e+03
                                         7.952e+02
                                                      2.261
                                                             0.02387 *
## MVR_PTS_AMT_BIN_O
                                                      0.600
                              3.765e+02
                                         6.280e+02
                                                             0.54890
## MVR PTS AMT BIN 5
                              1.901e+03
                                         1.082e+03
                                                      1.757
                                                             0.07910 .
## OLDCLAIM
                              6.387e-03
                                         4.365e-02
                                                      0.146
                                                             0.88368
## OLDCLAIM_AMT_O_2K_BIN
                             -2.130e+03
                                         1.385e+03
                                                     -1.538
                                                             0.12431
## OLDCLAIM_AMT_2K_10K_BIN
                             -6.152e+02
                                         1.135e+03
                                                     -0.542
                                                             0.58796
## PARENT1_Yes
                             -6.825e+02
                                         7.537e+02
                                                     -0.905
                                                             0.36538
## RED_CAR_yes
                             -1.771e+02 5.530e+02
                                                     -0.320
                                                             0.74888
## REVOKED_Yes
                                                     -1.734
                             -1.065e+03
                                         6.139e+02
                                                             0.08303 .
## SEX_M
                              1.898e+03
                                         7.037e+02
                                                      2.697
                                                             0.00707 **
## TIF
                              2.202e+01
                                                      0.270
                                                             0.78754
                                         8.168e+01
## TIF_AMT_BIN_6
                              3.152e+02
                                         7.370e+02
                                                      0.428
                                                             0.66892
                              6.230e+00
                                                      0.380
## TRAVTIME
                                         1.640e+01
                                                             0.70399
                                                      0.080
## TRAVTIME AMT BIN
                              5.334e+01
                                         6.636e+02
                                                             0.93594
## URBANICITY_Rural
                             -1.737e+02 8.191e+02
                                                     -0.212
                                                             0.83210
## YOJ
                             -1.253e+02
                                         8.558e+01
                                                     -1.464
                                                             0.14351
## YOJ_AMT_BIN
                              1.847e+03
                                                      1.824
                                                             0.06828
                                         1.012e+03
## YOJ_AMT_BIN_O_AND_9To14
                              6.231e+02
                                         5.531e+02
                                                      1.127
                                                             0.26003
## EDUCATION_Masters
                                                    -0.361
                             -2.763e+02 7.656e+02
                                                             0.71822
## EDUCATION_High.School
                             -7.452e+02 5.639e+02
                                                     -1.322
                                                             0.18646
## JOB_Clerical
                             -1.080e+03
                                         6.458e+02
                                                     -1.672
                                                             0.09478
## JOB_Doctor
                             -1.692e+03
                                         1.709e+03
                                                     -0.990
                                                             0.32210
## JOB_Home.Maker
                             -6.548e+02 1.021e+03
                                                    -0.641
                                                             0.52151
## JOB_Lawyer
                             -2.863e+02
                                         1.029e+03
                                                     -0.278
                                                             0.78096
## JOB_Professional
                              3.888e+02
                                         7.117e+02
                                                      0.546
                                                             0.58492
## JOB_Manager
                             -1.396e+03
                                         9.149e+02
                                                     -1.526
                                                             0.12711
                                         9.216e+02
## JOB_Student
                             -7.835e+02
                                                     -0.850
                                                             0.39537
## CAR_TYPE_Panel.Truck
                             -2.730e+01
                                         8.979e+02
                                                     -0.030
                                                             0.97575
## CAR_TYPE_Pickup
                              5.834e+02
                                                      0.978
                                         5.965e+02
                                                             0.32815
## CAR_TYPE_Sports.Car
                                                      2.582
                                                             0.00992 **
                              2.118e+03
                                         8.203e+02
## CAR_TYPE_SUV
                              1.814e+03 7.294e+02
                                                      2.487
                                                             0.01297 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 7577 on 1650 degrees of freedom
## (450 observations deleted due to missingness)
## Multiple R-squared: 0.05333, Adjusted R-squared: 0.02407
## F-statistic: 1.823 on 51 and 1650 DF, p-value: 0.0004045
```

Interpretation of the Model

Based on the backward stepwise selection, below are the characteristics of the refined model:

• The Residual standard error is 7577

Multiple R-squared: 0.05333Adjusted R-squared: 0.02407

 $\bullet~$ F-statistic: 1.823 on 51 and 1650 DF

• p-value: < 0.0004045

4.4 Final Linear Model Selection Summary

Based on the Models above, it is clear that Model 1 performs slightly better than Model 2. We will now use this model to validate further. We will create plots to validate the assumption of Linear Regression:

Normality check of residual values:

Distribution of Residuals

Based on the normality plot it appears that residual distribution is nearly normal. This indicates the mean of the difference between our predictions.

Distribution of residual values are random around base line and do not show any pattern around base line.

Evaluate homoscedasticity:

The test confirms the non-constant error variance test. It also has a p-value higher than a significance level of 0.05.

Analysis of collinearity:

##	KIDSDRIV	AGE
##	5.929505	1.359778
##	HOMEKIDS	YOJ
##	2.659453	2.901429
##	INCOME	HOME_VAL
##	2.532339	2.860978
##	TRAVTIME	BLUEBOOK
##	1.354146	1.549806
##	TIF	OLDCLAIM
##	2.404457	2.435889
##	CLM_FREQ	MVR_PTS
##	2.240646	3.678998
##	CAR AGE	CAR USE Commercial

```
##
                     2.285783
                                                 1.531233
                  MSTATUS_Yes
                                              PARENT1_Yes
##
##
                     1.687018
                                                 1.725320
##
                  RED_CAR_yes
                                              REVOKED_Yes
##
                     1.358885
                                                 1.350861
                                        URBANICITY Rural
##
                        SEX M
                                                 1.032607
##
                     1.954711
##
         EDUCATION Bachelors
                                   EDUCATION_High.School
##
                     3.056577
                                                 3.841265
##
           EDUCATION_Masters
                                          JOB_Blue.Collar
##
                     2.083557
                                                 3.278455
                 JOB\_Clerical
                                               JOB_Doctor
##
##
                     2.898793
                                                 1.282385
               JOB_Home.Maker
##
                                               JOB_Lawyer
##
                     2.196223
                                                 1.654125
##
                  JOB_Manager
                                         JOB_Professional
##
                     1.563833
                                                 2.204776
##
                  JOB Student
                                        CAR_TYPE_Minivan
##
                     2.740883
                                                 1.731236
##
        CAR TYPE Panel.Truck
                                         CAR TYPE Pickup
##
                     1.446472
                                                 1.813465
##
         CAR_TYPE_Sports.Car
                                             CAR TYPE SUV
##
                     2.134942
                                                 2.646477
##
                      AGE_sin
                                                  TIF_sin
##
                     1.019210
                                                 1.398977
##
                 BLUEBOOK_sin
                                          INCOME_AMT_BIN
##
                     1.015772
                                                 1.643573
##
                  YOJ_AMT_BIN
                                  HOME_VAL_AMT_O_1OK_BIN
                     2.047651
##
                                                 5.255209
   HOME_VAL_AMT_60K_400K_BIN
##
                                   OLDCLAIM_AMT_O_2K_BIN
##
                     4.044083
                                                 3.953793
##
     OLDCLAIM_AMT_2K_10K_BIN
                                        CLM_FREQ_AMT_BIN
##
                     3.007588
                                                 1.279461
##
             MVR_PTS_AMT_BIN
                                         CAR_AGE_AMT_BIN
                     2.144426
                                                 1.784942
                                      KIDSDRIV_AMT_BIN_O
##
            TRAVTIME_AMT_BIN
##
                     1.353599
                                                 3.930334
##
          KIDSDRIV_AMT_BIN_1
                                      HOMEKIDS_AMT_BIN_O
                     3.165772
                                                 2.705844
##
                                 YOJ_AMT_BIN_O_AND_9To14
##
          HOMEKIDS_AMT_BIN_3
##
                     1.299757
                                                 1.793634
##
       INCOME_AMT_BIN_MISS_O
                                            TIF_AMT_BIN_6
##
                     3.111211
                                                 2.116778
##
     OLDCLAIM_AMT_BIN_MISS_O
                                       MVR_PTS_AMT_BIN_O
                                                 1.608030
##
                     2.753036
##
           MVR_PTS_AMT_BIN_5
                     2.083625
##
```

Variables have been tested with variance inflation factors (VIF). If any variable has value which is greater than 3 then the highest value variable been removed from model and model performance has been evaluated. Following are the out comes from this assessment steps-

Pass 1- Based on that variance inflation factors (VIF) following variable "KIDSDRIV" has highest value > 3 and is removed from model, and model is evaluated without that variable. Adjusted R^2 value has changed

to 0.02487 due to removal of this variable. Hence this variable is not adding lot of value to the model and can be removed.

```
##
## Call:
## lm(formula = TARGET_AMT ~ . - KIDSDRIV, data = na.omit(DS_TARGET_AMT))
##
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
##
   -9677
          -3249
                 -1393
                           792
                                75391
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
                                                     0.381 0.70325
## (Intercept)
                              1.968e+03 5.166e+03
## AGE
                              1.114e+01
                                         2.564e+01
                                                     0.435
                                                             0.66392
                                                     0.758
## HOMEKIDS
                              3.099e+02
                                        4.091e+02
                                                             0.44879
## YOJ
                             -1.288e+02
                                         1.189e+02
                                                    -1.084
                                                             0.27868
## INCOME
                             -1.149e-02
                                         1.083e-02
                                                    -1.061
                                                             0.28876
## HOME_VAL
                              1.941e-03
                                        4.388e-03
                                                     0.442
                                                             0.65822
## TRAVTIME
                              5.252e+00
                                         1.640e+01
                                                     0.320
                                                             0.74884
## BLUEBOOK
                              1.528e-01
                                         3.398e-02
                                                     4.498 7.33e-06 ***
## TIF
                             -4.693e+01
                                                    -0.421
                                         1.115e+02
                                                            0.67389
## OLDCLAIM
                              1.299e-02
                                        4.406e-02
                                                     0.295
                                                             0.76811
                                                    -1.808
## CLM_FREQ
                             -5.938e+02
                                         3.285e+02
                                                            0.07083
## MVR PTS
                              6.051e+02
                                         2.593e+02
                                                     2.333
                                                             0.01976 *
## CAR AGE
                             -1.689e+02 7.617e+01
                                                    -2.218 0.02670 *
## CAR USE Commercial
                             6.238e+01
                                         5.604e+02
                                                     0.111
                                                            0.91138
                                                    -2.929
## MSTATUS_Yes
                             -1.815e+03
                                         6.197e+02
                                                             0.00345 **
## PARENT1_Yes
                             -7.485e+02
                                         7.570e+02
                                                    -0.989
                                                             0.32296
## RED_CAR_yes
                             -1.314e+02 5.555e+02
                                                    -0.237
                                                             0.81302
## REVOKED Yes
                             -1.130e+03 6.175e+02
                                                    -1.831
                                                            0.06734
## SEX_M
                              1.924e+03
                                         7.216e+02
                                                     2.667
                                                             0.00773 **
                                                    -0.304
## URBANICITY_Rural
                             -2.499e+02 8.217e+02
                                                            0.76107
## EDUCATION_Bachelors
                             -3.466e+03 1.322e+03
                                                    -2.621
                                                             0.00884 **
## EDUCATION_High.School
                             -4.125e+03
                                         1.420e+03
                                                    -2.905
                                                             0.00372 **
## EDUCATION_Masters
                             -2.236e+03
                                         1.082e+03
                                                    -2.065
                                                             0.03905 *
## JOB_Blue.Collar
                              8.878e+02 1.309e+03
                                                     0.678
                                                             0.49790
## JOB_Clerical
                                                    -0.139
                             -1.910e+02 1.375e+03
                                                             0.88957
## JOB_Doctor
                                                    -1.673
                             -3.153e+03
                                         1.884e+03
                                                             0.09450
## JOB_Home.Maker
                             -1.202e+02
                                         1.502e+03
                                                    -0.080
                                                             0.93624
## JOB_Lawyer
                             -3.472e+02 1.156e+03
                                                    -0.300
                                                             0.76392
## JOB_Manager
                             -9.610e+02 1.227e+03
                                                    -0.783
                                                            0.43348
## JOB Professional
                                                     1.108
                              1.427e+03
                                         1.287e+03
                                                             0.26786
## JOB Student
                              2.459e+01
                                         1.560e+03
                                                     0.016
                                                             0.98743
## CAR_TYPE_Minivan
                              1.142e+02 8.585e+02
                                                     0.133
                                                            0.89422
## CAR_TYPE_Panel.Truck
                             -6.954e+01
                                        9.573e+02
                                                    -0.073
                                                            0.94210
## CAR_TYPE_Pickup
                              5.863e+02
                                        8.254e+02
                                                     0.710
                                                             0.47760
## CAR TYPE Sports.Car
                              2.203e+03 1.115e+03
                                                     1.976
                                                             0.04829 *
## CAR_TYPE_SUV
                              1.972e+03 1.047e+03
                                                     1.883
                                                            0.05990
## AGE_sin
                                                    -0.053
                             -1.383e+01
                                         2.633e+02
                                                             0.95810
## TIF_sin
                             -2.986e+02
                                         3.789e+02
                                                    -0.788
                                                             0.43072
## BLUEBOOK_sin
                              1.310e+02 2.608e+02
                                                     0.502
                                                             0.61551
## INCOME_AMT_BIN
                             -5.872e+02
                                        1.277e+03
                                                    -0.460
                                                             0.64574
## YOJ_AMT_BIN
                              1.765e+03 1.016e+03
                                                     1.737 0.08265
```

```
## HOME_VAL_AMT_O_1OK_BIN
                              2.352e+03 1.958e+03
                                                     1.202
                                                            0.22971
## HOME_VAL_AMT_60K_400K_BIN 2.906e+03
                                       1.495e+03
                                                     1.944
                                                           0.05202 .
## OLDCLAIM AMT O 2K BIN
                             -2.182e+03
                                        1.453e+03
                                                   -1.502
                                                            0.13329
## OLDCLAIM_AMT_2K_10K_BIN
                                                    -0.434
                             -4.937e+02
                                        1.138e+03
                                                            0.66450
## CLM FREQ AMT BIN
                             -1.331e+03
                                        1.183e+03
                                                    -1.125
                                                            0.26068
## MVR PTS AMT BIN
                             1.740e+03 7.962e+02
                                                     2.186
                                                           0.02899 *
## CAR AGE AMT BIN
                             -6.830e+02 7.034e+02
                                                    -0.971
                                                           0.33172
## TRAVTIME AMT BIN
                             7.013e+01
                                        6.637e+02
                                                     0.106
                                                            0.91587
## KIDSDRIV_AMT_BIN_O
                             -9.177e+02
                                        7.034e+02
                                                    -1.305
                                                            0.19217
## KIDSDRIV_AMT_BIN_1
                              2.099e+03
                                        9.813e+02
                                                     2.139
                                                           0.03257 *
## HOMEKIDS_AMT_BIN_O
                             -5.624e+02
                                        9.949e+02
                                                    -0.565
                                                           0.57194
## HOMEKIDS_AMT_BIN_3
                              8.055e+02
                                        1.426e+03
                                                     0.565
                                                            0.57237
## YOJ_AMT_BIN_O_AND_9To14
                              6.616e+02
                                        7.110e+02
                                                     0.930
                                                           0.35228
## INCOME_AMT_BIN_MISS_O
                             -2.171e+02
                                        1.778e+03
                                                    -0.122
                                                           0.90281
## TIF_AMT_BIN_6
                             -1.556e+02
                                        8.831e+02
                                                    -0.176
                                                            0.86016
## OLDCLAIM_AMT_BIN_MISS_O
                              4.081e+02
                                        1.025e+03
                                                     0.398
                                                            0.69058
## MVR_PTS_AMT_BIN_O
                                                     0.661
                              4.154e+02 6.286e+02
                                                           0.50879
## MVR_PTS_AMT_BIN_5
                              1.819e+03 1.082e+03
                                                     1.681
                                                            0.09302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7574 on 1643 degrees of freedom
## Multiple R-squared: 0.05812,
                                    Adjusted R-squared:
## F-statistic: 1.748 on 58 and 1643 DF, p-value: 0.0005054
```

Pass 2- Based on that variance inflation factors (VIF) following variable "HOME_VAL_AMT_0_10K_BIN" has highest value < 3 and is removed from model, and model is evaluated without that variable. Adjusted R^2 values changed to 0.02461. Hence this variable is not adding lot of value to the model and can be removed. We stopped at this point as further removal of variables led to a rapid detoriation of Adjusted R^2.

```
##
## Call:
  lm(formula = TARGET_AMT ~ . - KIDSDRIV - HOME_VAL_AMT_0_10K_BIN,
       data = na.omit(DS_TARGET_AMT))
##
##
## Residuals:
              1Q Median
                            3Q
##
     Min
                                  Max
##
   -9838 -3162 -1404
                           806
                                75299
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              3.867e+03
                                         4.919e+03
                                                      0.786 0.43182
## AGE
                              1.254e+01
                                         2.562e+01
                                                      0.489
                                                             0.62457
## HOMEKIDS
                                                      0.705
                              2.883e+02
                                         4.087e+02
                                                             0.48064
## YOJ
                             -1.294e+02
                                         1.189e+02
                                                     -1.088
                                                             0.27662
## INCOME
                             -8.605e-03
                                         1.056e-02
                                                     -0.815
                                                             0.41525
## HOME_VAL
                             -1.617e-03
                                         3.238e-03
                                                     -0.499
                                                             0.61753
                                                      0.305
## TRAVTIME
                              4.999e+00
                                         1.640e+01
                                                             0.76061
## BLUEBOOK
                                                      4.510 6.96e-06 ***
                              1.532e-01
                                         3.398e-02
## TIF
                             -5.043e+01
                                         1.115e+02
                                                     -0.452
                                                             0.65107
                                                      0.347
## OLDCLAIM
                              1.527e-02
                                         4.403e-02
                                                             0.72881
## CLM_FREQ
                             -5.833e+02 3.284e+02
                                                     -1.776 0.07589
## MVR PTS
                              5.892e+02 2.590e+02
                                                      2.275
                                                             0.02306 *
                             -1.687e+02 7.618e+01 -2.214 0.02698 *
## CAR AGE
```

```
## CAR USE Commercial
                              6.536e+01 5.604e+02
                                                     0.117
                                                            0.90718
## MSTATUS_Yes
                                                    -3.064
                             -1.890e+03 6.167e+02
                                                            0.00222 **
## PARENT1 Yes
                             -6.960e+02
                                        7.559e+02
                                                    -0.921
                                                            0.35732
                                                    -0.257
## RED_CAR_yes
                             -1.426e+02 5.555e+02
                                                            0.79743
## REVOKED_Yes
                             -1.119e+03
                                         6.175e+02
                                                    -1.812
                                                            0.07010
## SEX M
                              1.930e+03
                                                     2.675
                                         7.216e+02
                                                            0.00755 **
## URBANICITY Rural
                             -2.570e+02 8.218e+02
                                                    -0.313
                                                            0.75456
## EDUCATION Bachelors
                             -3.421e+03
                                         1.322e+03
                                                    -2.588
                                                            0.00973 **
## EDUCATION_High.School
                             -4.093e+03
                                         1.420e+03
                                                    -2.883
                                                            0.00398 **
## EDUCATION_Masters
                             -2.156e+03
                                         1.081e+03
                                                    -1.996
                                                            0.04613 *
## JOB_Blue.Collar
                              9.015e+02
                                         1.310e+03
                                                     0.688
                                                            0.49133
## JOB_Clerical
                             -2.158e+02
                                         1.375e+03
                                                    -0.157
                                                            0.87530
## JOB_Doctor
                             -3.241e+03 1.883e+03
                                                    -1.721
                                                            0.08539
                                                    -0.155
## JOB_Home.Maker
                             -2.327e+02 1.499e+03
                                                            0.87670
                                                    -0.272
## JOB_Lawyer
                             -3.148e+02
                                         1.156e+03
                                                            0.78533
## JOB_Manager
                             -9.840e+02
                                         1.227e+03
                                                    -0.802
                                                            0.42254
## JOB_Professional
                              1.463e+03 1.287e+03
                                                     1.137
                                                            0.25571
## JOB Student
                              2.080e+02 1.553e+03
                                                     0.134
                                                            0.89348
## CAR_TYPE_Minivan
                              1.520e+02 8.580e+02
                                                     0.177
                                                            0.85939
## CAR TYPE Panel.Truck
                             -2.704e+01
                                         9.568e+02
                                                    -0.028
                                                            0.97745
## CAR_TYPE_Pickup
                              6.040e+02 8.254e+02
                                                     0.732
                                                            0.46439
## CAR_TYPE_Sports.Car
                              2.226e+03
                                         1.115e+03
                                                     1.997
                                                            0.04599 *
## CAR_TYPE_SUV
                                                     1.909
                              1.999e+03
                                         1.047e+03
                                                            0.05641
## AGE sin
                             -7.305e+00
                                         2.632e+02
                                                    -0.028
                                                            0.97787
## TIF sin
                             -3.045e+02 3.789e+02
                                                    -0.804
                                                            0.42164
## BLUEBOOK_sin
                              1.315e+02 2.608e+02
                                                     0.504
                                                            0.61430
## INCOME_AMT_BIN
                             -2.323e+02
                                         1.243e+03
                                                    -0.187
                                                            0.85172
## YOJ_AMT_BIN
                              1.773e+03
                                         1.017e+03
                                                     1.744
                                                            0.08132 .
## HOME_VAL_AMT_60K_400K_BIN 1.341e+03
                                        7.330e+02
                                                     1.830
                                                            0.06751
                             -2.134e+03
## OLDCLAIM_AMT_O_2K_BIN
                                                    -1.470
                                         1.452e+03
                                                            0.14185
## OLDCLAIM_AMT_2K_10K_BIN
                             -4.602e+02
                                         1.138e+03
                                                    -0.404
                                                            0.68598
## CLM_FREQ_AMT_BIN
                             -1.371e+03
                                         1.182e+03
                                                    -1.159
                                                            0.24658
## MVR_PTS_AMT_BIN
                              1.703e+03
                                        7.957e+02
                                                     2.140
                                                            0.03253
                                                    -0.965
## CAR_AGE_AMT_BIN
                             -6.791e+02 7.035e+02
                                                            0.33450
## TRAVTIME_AMT_BIN
                              5.845e+01
                                                     0.088
                                         6.637e+02
                                                            0.92984
## KIDSDRIV_AMT_BIN_O
                             -9.284e+02
                                         7.034e+02
                                                    -1.320
                                                            0.18707
## KIDSDRIV AMT BIN 1
                              2.062e+03 9.810e+02
                                                     2.102
                                                            0.03570 *
## HOMEKIDS_AMT_BIN_O
                                                    -0.559
                             -5.557e+02 9.950e+02
                                                            0.57656
## HOMEKIDS_AMT_BIN_3
                                                     0.529
                              7.544e+02
                                         1.426e+03
                                                            0.59684
## YOJ_AMT_BIN_O_AND_9To14
                              6.725e+02 7.111e+02
                                                     0.946
                                                            0.34438
## INCOME AMT BIN MISS O
                             -2.521e+02 1.778e+03
                                                    -0.142
                                                            0.88723
## TIF_AMT_BIN_6
                                                    -0.206
                             -1.820e+02
                                        8.830e+02
                                                            0.83674
## OLDCLAIM AMT BIN MISS O
                              4.252e+02
                                         1.025e+03
                                                     0.415
                                                            0.67841
## MVR_PTS_AMT_BIN_O
                              3.963e+02 6.285e+02
                                                     0.631
                                                            0.52840
## MVR_PTS_AMT_BIN_5
                              1.761e+03 1.082e+03
                                                     1.628
                                                            0.10374
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7575 on 1644 degrees of freedom
## Multiple R-squared: 0.05729,
                                    Adjusted R-squared:
## F-statistic: 1.753 on 57 and 1644 DF, p-value: 0.000521
```

Final model was derived after number of iterations of variable eliminations were carried out. VIF values in the final model among variables < 3. In this scenario a model with slightly less performance was selected to

avoid collinearity effect among variables and reduced complexity.

5 Prediction Using Evaluation Data

Now that we have selected the final models for both the TARGET_FLAG and the TARGET_AMT, we will go ahead and use these models to predict the results for the evaluation dataset. After transforming the data to meet the needs of the trained models, we will apply the models in 2 steps.

Step 1 - Here we use the transformed evaluation dataset to predict for the TARGET_FLAG using the requisite predictors.

Step 2 - Once we have the prediction for the TARGET_FLAG, we will filter this data for only those rows that were predicted for a CRASH. We then use this smaller dataset to precict for the TARGET_AMT.

5.1 Tranformation of Evaluation Data

First we need to transform the evaluation dataset to account for all the predictors that were used in both the models.

5.2 Model Output for Logistic Regression

We now apply the final Logistic regression model that was trained for predicting the TARGET_FLAG. Below is a table of predictions.

Count for Crash / No Crash

Table 13: Predicted Crash Counts

Crash Predicted?	Counts
0	1410
1	304

5.3 Model Output for Linear Regression

Next we filter for the "predicted" crashes and we apply the final linear model to this smaller dataset to predict the TARGET AMT. Below are the results for ONLY the "Crashed" records.

Top 10 Records by TARGET_AMT for TARGET_FLAG = 1

Table 14: Linear Regression Results

	INDEX	TARGET_FLAG	TARGET_FLAG_prob	TARGET_AMT
3	598	1	0.6446238	486.9448
4	5361	1	0.8441118	746.9066
5	2889	1	0.6840995	1241.5246
6	8672	1	0.7127093	1269.6456
7	6447	1	0.5269622	1638.1470

	INDEX	TARGET_FLAG	${\tt TARGET_FLAG_prob}$	TARGET_AMT
8	748	1	0.5763727	1643.4743
9	6329	1	0.5870784	1715.8916
10	4584	1	0.5368640	1852.6016
11	865	1	0.7076172	1893.0028
12	10115	1	0.6550164	1980.4875

5.4 Conclusion

Outcome from regression model and outcome from linear model was plotted in the chart above. It can be seen from the chart above that probability associated with classification and predicted amount from linear model does not show any specific patterns. From insurance business standpoint cases where probability of incident and repair expense amount is high will be the focus area top right side corner of the chart.

Appendix A: DATA621 Homework 04 R Code

```
if (!require("ggplot2",character.only = TRUE)) (install.packages("ggplot2",repos = "http://cran.us.r-pr
if (!require("MASS",character.only = TRUE)) (install.packages("MASS",repos = "http://cran.us.r-project.
if (!require("knitr",character.only = TRUE)) (install.packages("knitr",repos = "http://cran.us.r-projec
if (!require("xtable",character.only = TRUE)) (install.packages("xtable",repos = "http://cran.us.r-proj
if (!require("dplyr",character.only = TRUE)) (install.packages("dplyr",repos = "http://cran.us.r-projec
if (!require("psych",character.only = TRUE)) (install.packages("psych",repos = "http://cran.us.r-projec
if (!require("stringr",character.only = TRUE)) (install.packages("stringr",repos = "http://cran.us.r-pr
if (!require("car",character.only = TRUE)) (install.packages("car",repos = "http://cran.us.r-project.org
if (!require("faraway",character.only = TRUE)) (install.packages("faraway",repos = "http://cran.us.r-pr
if (!require("aod",character.only = TRUE)) (install.packages("aod",repos = "http://cran.us.r-project.or
if (!require("ISLR",character.only = TRUE)) (install.packages("ISLR",repos = "http://cran.us.r-project.
if (!require("AUC",character.only = TRUE)) (install.packages("AUC",repos = "http://cran.us.r-project.org
if (!require("ROCR",character.only = TRUE)) (install.packages("ROCR",repos = "http://cran.us.r-project.
if (!require("leaps",character.only = TRUE)) (install.packages("leaps",repos = "http://cran.us.r-projec
if (!require("pander",character.only = TRUE)) (install.packages("pander",repos = "http://cran.us.r-proj
if (!require("dummy",character.only = TRUE)) (install.packages("dummy",repos = "http://cran.us.r-projec
if (!require("reshape2",character.only = TRUE)) (install.packages("reshape2",repos = "http://cran.us.r-
if (!require("popbio",character.only = TRUE)) (install.packages("popbio",repos = "http://cran.us.r-proj
if (!require("rpart",character.only = TRUE)) (install.packages("rpart",repos = "http://cran.us.r-projec
if (!require("pROC)",character.only = TRUE)) (install.packages("pROC)",repos = "http://cran.us.r-projec
library(ggplot2)
library(MASS)
library(knitr)
library(xtable)
library(dplyr)
library(psych)
library(stringr)
library(car)
library(faraway)
library(dummy)
library(reshape2)
library(popbio)
library(rpart)
library(pROC)
library(pander)
insure_train_full <- read.csv("https://raw.githubusercontent.com/kishkp/data621-ctg5/master/HW4/insuran</pre>
#kable(read.csv("https://raw.qithubusercontent.com/kishkp/data621-ctq5/master/HW4/insurevars.csv"), cap
variables<- read.csv("https://raw.githubusercontent.com/kishkp/data621-ctg5/master/HW4/insurevars.csv")</pre>
pander::pander(variables, split.cells = c(60, 20, 30), split.table = Inf, justify = 'left', caption = "
#str(insure_train_full)
```

```
#levels(insure_train_full$MSTATUS)
#levels(insure_train_full$SEX)
#levels(insure_train_full$EDUCATION)
#levels(insure_train_full$JOB)
#levels(insure_train_full$CAR_TYPE)
#levels(insure_train_full$URBANICITY)
#levels(insure_train_full$REVOKED)
#summary(insure_train_full)
MSTATUS<-levels(insure_train_full$MSTATUS)</pre>
SEX<- levels(insure_train_full$SEX)</pre>
EDUCATION<- levels(insure_train_full$EDUCATION)</pre>
JOB<- levels(insure_train_full$JOB)</pre>
CAR_TYPE<- levels(insure_train_full$CAR_TYPE)</pre>
URBANICITY<- levels(insure_train_full$URBANICITY)</pre>
REVOKED<- levels(insure_train_full$REVOKED)</pre>
CAR_USE<- levels(insure_train_full$CAR_USE)</pre>
levels1<- (data.frame(cbind(MSTATUS,SEX, EDUCATION, CAR TYPE, URBANICITY, CAR USE, REVOKED, JOB)))
kable(levels1, caption = "Variable Levels")
insure_train_full$INCOME <- as.numeric(str_replace_all(insure_train_full$INCOME, pattern = "[$*,]", re
insure_train_full$HOME_VAL <- as.numeric(str_replace_all(insure_train_full$HOME_VAL, pattern = "[$*,]"
insure_train_full$BLUEBOOK <- as.numeric(str_replace_all(insure_train_full$BLUEBOOK, pattern = "[$*,]"</pre>
insure_train_full$OLDCLAIM <- as.numeric(str_replace_all(insure_train_full$OLDCLAIM, pattern = "[$*,]"</pre>
insure_train_full$MSTATUS <- as.factor(str_replace_all(insure_train_full$MSTATUS, "z_", ""))</pre>
insure_train_full$SEX <- as.factor(str_replace_all(insure_train_full$SEX, "z_", ""))</pre>
insure_train_full$EDUCATION <- as.factor(str_replace_all(insure_train_full$EDUCATION, "z_", ""))</pre>
insure_train_full$EDUCATION <- as.factor(str_replace_all(insure_train_full$EDUCATION, "<", ""))</pre>
insure_train_full$CAR_TYPE <- as.factor(str_replace_all(insure_train_full$CAR_TYPE, "z_", ""))</pre>
insure_train_full$URBANICITY <- as.factor(str_replace_all(insure_train_full$URBANICITY, "z_", ""))
insure_train_full$JOB <- as.character(insure_train_full$JOB)</pre>
insure train full$JOB[insure train full$JOB==""] <- "Unknown"</pre>
insure_train_full$JOB <- as.factor(str_replace_all(insure_train_full$JOB, "z_", ""))</pre>
insure_train_full <- insure_train_full[ -which( insure_train_full$CAR_AGE == -3 | insure_train_full$CAR</pre>
trans<- read.csv("https://raw.githubusercontent.com/kishkp/data621-ctg5/master/HW4/trans.csv")
kable(trans, caption = "Variable Transformaton")
# Create Dummy Variable for 2 factor variables
insure_train_full$CAR_USE_Commercial <- ifelse(insure_train_full$CAR_USE=="Commercial", 1, 0)
insure_train_full$MSTATUS_Yes <- ifelse(insure_train_full$MSTATUS=="Yes", 1, 0)</pre>
```

```
insure_train_full$PARENT1=="Yes", 1, 0)
insure_train_full$RED_CAR_yes <- ifelse(insure_train_full$RED_CAR=="yes", 1, 0)</pre>
insure_train_full$REVOKED_Yes <- ifelse(insure_train_full$REVOKED=="Yes", 1, 0)</pre>
insure_train_full$SEX_M <- ifelse(insure_train_full$SEX=="M", 1, 0)</pre>
insure_train_full$URBANICITY_Rural <- ifelse(insure_train_full$URBANICITY=="Highly Rural/ Rural", 1, 0)
# remove original variables
insure_train_full <- select(insure_train_full, -CAR_USE, -MSTATUS, -PARENT1, -RED_CAR, -REVOKED, -SEX,</pre>
insure_without_dummy <- insure_train_full</pre>
#- We will also create dummy variables for all the factors and drop the original variables.
dummy_vars<-as.data.frame(sapply(dummy(insure_train_full), FUN = as.numeric))</pre>
dummy_vars <- dummy_vars-1</pre>
# remove original variables
insure_train_full <- select(insure_train_full, -EDUCATION, -JOB, -CAR_TYPE)</pre>
insure_train_full <- cbind(insure_train_full, dummy_vars)</pre>
insure_train_full <- select(insure_train_full, -INDEX)</pre>
missings <- sapply(insure_train_full,function(x) sum(is.na(x)))
kable(data.frame(missings), caption = "Missing Values")
par(mfrow=c(2,3))
hist(insure_train_full$AGE)
hist(insure_train_full$YOJ)
hist(insure_train_full$INCOME)
hist(insure_train_full$HOME_VAL)
hist(insure_train_full$CAR_AGE)
# Missing Flags
insure_train_full$Y0J_MISS <- ifelse(is.na(insure_train_full$Y0J), 1, 0)</pre>
insure_train_full$INCOME_MISS <- ifelse(is.na(insure_train_full$INCOME), 1, 0)</pre>
insure_train_full$HOME_VAL_MISS <- ifelse(is.na(insure_train_full$HOME_VAL), 1, 0)</pre>
insure_train_full$CAR_AGE_MISS <- ifelse(is.na(insure_train_full$CAR_AGE), 1, 0)</pre>
# Missing Impute
# insure_train_full$AGE_IMPUTE <- insure_train_full$AGE</pre>
# insure_train_full$AGE_IMPUTE[is.na(insure_train_full$AGE_IMPUTE)] <- mean(insure_train_full$AGE_IMPUT
# insure_train_full$YOJ_IMPUTE <- insure_train_full$YOJ</pre>
# insure_train_full$YOJ_IMPUTE[is.na(insure_train_full$YOJ_IMPUTE)] <- mean(insure_train_full$YOJ_IMPUT
{\it \# insure\_train\_full\$INCOME\_IMPUTE <- insure\_train\_full\$INCOME}
\# insure_train_full$INCOME_IMPUTE[is.na(insure_train_full$INCOME_IMPUTE)] <- median(insure_train_full$INCOME_IMPUTE)]
# insure_train_full$HOME_VAL_IMPUTE <- insure_train_full$HOME_VAL
\# insure_train_full$HOME_VAL_IMPUTE[is.na(insure_train_full$HOME_VAL_IMPUTE)] <- median(insure_train_full$HOME_VAL_IMPUTE)]
# insure_train_full$CAR_AGE_IMPUTE <- insure_train_full$CAR_AGE</pre>
\# insure_train_full$CAR_AGE_IMPUTE[is.na(insure_train_full$CAR_AGE_IMPUTE)] <- median(insure_train_full
```

```
# Direct Impute
insure_train_full$AGE[is.na(insure_train_full$AGE)] <- mean(insure_train_full$AGE, na.rm = T)</pre>
insure_train_full$YOJ[is.na(insure_train_full$YOJ)] <- mean(insure_train_full$YOJ, na.rm = T)</pre>
insure_train_full$INCOME[is.na(insure_train_full$INCOME)] <- median(insure_train_full$INCOME, na.rm = T</pre>
insure_train_full$HOME_VAL[is.na(insure_train_full$HOME_VAL)] <- median(insure_train_full$HOME_VAL, na.
insure_train_full$CAR_AGE[is.na(insure_train_full$CAR_AGE)] <- median(insure_train_full$CAR_AGE, na.rm =
# Save point for Original data set with dummies created
insure_orig <- insure_train_full</pre>
ds_stats <- psych::describe(insure_train_full, skew = TRUE, na.rm = TRUE)
#ds stats
kable(ds_stats[1:7], caption= "Data Summary")
kable(ds_stats[8:13], caption= "Data Summary (Cont)")
fun1 <- function(a, y) cor(y, a , use = 'na.or.complete')</pre>
Correlation_TARGET_FLAG <- sapply(insure_train_full, FUN = fun1, y=insure_train_full$TARGET_FLAG)
Correlation_TARGET_FLAG <- sort(Correlation_TARGET_FLAG, decreasing = TRUE)</pre>
kable(data.frame(Correlation_TARGET_FLAG), caption = "Correlation between TARGET_FLAG and predictor var
show_hist <- function(var, t) {</pre>
    col_x <- which(colnames(insure_train_full)==var)</pre>
    h0 <- select(insure_train_full[insure_train_full$TARGET_FLAG==1,], col_x)
    h1 <- select(insure_train_full[insure_train_full$TARGET_FLAG==0,], col_x)</pre>
    min_x <- min(select(insure_train_full, col_x), na.rm = TRUE)</pre>
    max_x <- max(select(insure_train_full, col_x), na.rm = TRUE)</pre>
    by_x \leftarrow (max_x - min_x) / 20
    \#hist(h0[,1], breaks = 20, col=rgb(1,0,0,0.5), main=t, xlab = NA, xaxt = "n")
    hist(ho[,1], breaks = 20, col=rgb(0.1,0.1,0.1,0.5), main=t, xlab = NA, xaxt = "n")
    \#axis(1, at = seq(min_x, max_x, by = by_x), las=2)
    hist(h1[,1], breaks = 20, col=rgb(0.8,0.8,0.8,0.5), add=T) #
    axis(1, at = seq(min_x, max_x, by = by_x), las=2)
    box()
}
check_bins <- function(var, thresholds) {</pre>
    col_x <- which(colnames(insure_train_full)==var)</pre>
    old_x <- select(insure_train_full, col_x)</pre>
    cor_old <- cor(old_x, insure_train_full$TARGET_FLAG,use = 'na.or.complete')</pre>
    ds <- data.frame("Item" = "Original", "Correlation"= round(cor_old, 5))</pre>
    for(i in 1:length(thresholds)) {
```

```
New_x <- ifelse(select(insure_train_full, col_x)<=thresholds[i],0,1)</pre>
        cor_new <- cor(New_x, insure_train_full$TARGET_FLAG,use = 'na.or.complete')</pre>
        ds_1 <- data.frame("Item" = as.character(thresholds[i]), "Correlation"= round(cor_new, 5))
        ds <- rbind(ds, ds_1)
    return (ds)
}
par(mfrow=c(2,2))
show_hist("INCOME", "INCOME")
#check_bins("INCOME", c(0, 20000, 90000, 130000))
show_hist("YOJ", "YOJ")
#check_bins("YOJ", c(0, 4, 8, 15))
show_hist("HOME_VAL", "HOME_VAL")
#check_bins("HOME_VAL", c(0, 20000, 90000, 130000))
show_hist("OLDCLAIM", "OLDCLAIM")
#check_bins("OLDCLAIM", c(0, 5000, 10000, 15000, 20000, 40000))
show hist("CLM FREQ", "CLM FREQ")
#check_bins("CLM_FREQ", c(0, 1, 2, 3, 4))
#table(insure_train_full$MVR_PTS)
show_hist("MVR_PTS", "MVR_PTS")
#check_bins("MVR_PTS", c(0:12))
#table(insure_train_full$CAR_AGE)
show_hist("CAR_AGE", "CAR_AGE")
#check_bins("CAR_AGE", c(1:27))
#table(insure_train_full$AGE)
show_hist("AGE", "AGE")
#check_bins("AGE", c(16:80))
#table(insure_train_full$BLUEBOOK)
show_hist("BLUEBOOK", "BLUEBOOK")
#check_bins("BLUEBOOK", c(11000, 41000, 41050, 57500, 58000))
#table(insure_train_full$TIF)
show hist("TIF", "TIF")
#check_bins("TIF", c(1, 4, 6, 10, 24))
#table(insure_train_full$TRAVTIME)
show_hist("TRAVTIME", "TRAVTIME")
#check_bins("TRAVTIME", c(21, 59, 120))
```

```
mdata<- select(insure_train_full, AGE, BLUEBOOK, TIF)</pre>
mdata2 <- melt(mdata)</pre>
# Output the boxplot
par(mfrow=c(1,1))
p <- ggplot(data = mdata2, aes(x=variable, y=value)) +</pre>
  geom_boxplot() + ggtitle("Outliers Identification")
p + facet_wrap( ~ variable, scales="free")
par(mfrow=c(2,3))
x <- select(insure_train_full, -TARGET_AMT)</pre>
x <- x[complete.cases(x),]</pre>
# sapply(x, FUN = show_chart_logi.hist, y=x$TARGET_FLAG)
logi.hist.plot(x$REVOKED_Yes,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel =
logi.hist.plot(x$CAR_USE_Commercial,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mai:
logi.hist.plot(x$CAR_TYPE_SUV,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel
logi.hist.plot(x$PARENT1_Yes,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel =
logi.hist.plot(x$KIDSDRIV,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = '
logi.hist.plot(x$CAR_AGE,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = 'C.
logi.hist.plot(x$JOB_Clerical,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel
logi.hist.plot(x$HOMEKIDS,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = ';
logi.hist.plot(x$JOB_Doctor,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel =
logi.hist.plot(x$CLM_FREQ,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = '
logi.hist.plot(x$SEX M,x$TARGET FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = 'SEX
logi.hist.plot(x$MVR_PTS,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = 'M
logi.hist.plot(x$EDUCATION_Masters,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', main
logi.hist.plot(x$CAR_TYPE_Van,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel
logi.hist.plot(x$CAR_TYPE_Minivan,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainl
logi.hist.plot(x$YOJ,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = 'YOJ')
logi.hist.plot(x$TIF,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = 'TIF')
logi.hist.plot(x$MSTATUS_Yes,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel =
logi.hist.plot(x$RED_CAR_yes,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel
logi.hist.plot(x$JOB_Lawyer,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel =
logi.hist.plot(x$CAR_TYPE_Pickup,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainla
logi.hist.plot(x$JOB_Student,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel
logi.hist.plot(x$OLDCLAIM,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = '
logi.hist.plot(x$INCOME,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = 'IN
logi.hist.plot(x$EDUCATION_Bachelors,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', ma
logi.hist.plot(x$JOB_Manager,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel =
logi.hist.plot(x$EDUCATION_High.School,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', n
logi.hist.plot(x$JOB_Home.Maker,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlab
logi.hist.plot(x$EDUCATION_PhD,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabe
logi.hist.plot(x$TRAVTIME,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = ''
logi.hist.plot(x$JOB_Professional,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainl
logi.hist.plot(x$URBANICITY_Rural,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainl
logi.hist.plot(x$JOB_Blue.Collar,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainla
logi.hist.plot(x$AGE,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = 'AGE')
logi.hist.plot(x$CAR_TYPE_Sports.Car,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', ma
logi.hist.plot(x$HOME_VAL,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = '
logi.hist.plot(x$BLUEBOOK,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel = '
```

```
logi.hist.plot(x$PARENT1_Yes,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', mainlabel =
logi.hist.plot(x$CAR_TYPE_Panel.Truck,x$TARGET_FLAG,logi.mod = 1, type='hist', boxp=FALSE,col='gray', m
show_charts <- function(x, varlab, ...) {</pre>
   xlabel <- varlab</pre>
   xlab_log <- pasteO(xlabel, '_log')</pre>
   xlab_sqrt <- paste0(xlabel, '_sqrt')</pre>
   xlab_sin <- paste0(xlabel, '_sin')</pre>
   xlab_inv <- paste0(xlabel, '_inv')</pre>
   mdata \leftarrow cbind(x, log(x), sqrt(x), sin(x), 1/x)
   colnames(mdata) <- c(xlabel, xlab_log, xlab_sqrt, xlab_sin, xlab_inv)</pre>
   mdata2 <- melt(mdata)</pre>
   mdata2 <- mdata2[, c(2:3)]
   names(mdata2) <- c("variable", "value")</pre>
   # Output the boxplot
   p <- ggplot(data = mdata2, aes(x=variable, y=value)) + geom_boxplot() + ggtitle("Outliers identific</pre>
   p + facet_wrap( ~ variable, scales="free", ncol=5)
summary(insure_train_full$TIF)
show_charts(insure_train_full$TIF, 'TIF')
insure_train_full$TIF_sin <- sin(insure_train_full$TIF)</pre>
summary(insure_train_full$BLUEBOOK)
show_charts(insure_train_full$BLUEBOOK, 'BLUEBOOK')
insure_train_full$BLUEBOOK_sin <- sin(insure_train_full$BLUEBOOK)</pre>
summary(insure_train_full$AGE)
show_charts(insure_train_full$AGE, 'AGE')
insure_train_full$AGE_sin <- sin(insure_train_full$AGE)</pre>
insure_train_full$CAR_TYPE_FLAG_BIN <- ifelse(insure_train_full$CAR_TYPE_Minivan | insure_train_full$CA
insure_train_full$EDUCATION_FLAG_BIN <- ifelse(insure_train_full$EDUCATION_High.School, 0, 1)</pre>
insure_train_full$INCOME_FLAG_BIN <- ifelse(insure_train_full$INCOME <=0, 1, 0)</pre>
insure_train_full$YOJ_FLAG_BIN <- ifelse(insure_train_full$YOJ <=0, 1, 0)</pre>
insure_train_full$HOME_VAL_FLAG_BIN <- ifelse(insure_train_full$HOME_VAL <=0, 1, 0)
insure_train_full$0LDCLAIM_FLAG_BIN <- ifelse(insure_train_full$0LDCLAIM <=0, 1, 0)
insure_train_full$CLM_FREQ_FLAG_BIN <- ifelse(insure_train_full$CLM_FREQ <=0, 1, 0)</pre>
insure_train_full$MVR_PTS_FLAG_BIN <- ifelse(insure_train_full$MVR_PTS <=0, 1, 0)</pre>
insure_train_full$CAR_AGE_FLAG_BIN <- ifelse(insure_train_full$CAR_AGE <=1, 1, 0)</pre>
```

```
insure_train_full$TRAVTIME_FLAG_BIN <- ifelse(insure_train_full$TRAVTIME <=20, 1, 0)</pre>
#write.csv(insure_train_full, file = "D:/CUNY/Courses/Business Analytics and Data Mining/Assignments/da
#DS TARGET FLAG <- insure train full
DS_TARGET_FLAG <- select(insure_train_full, -TARGET_AMT, -JOB_Blue.Collar, -JOB_Clerical, -JOB_Doctor,
# New Additional Variables.
#-AGE, -AGE_IMPUTE, -BLUEBOOK,-CAR_AGE_IMPUTE, -CAR_AGE_MISS, -CLM_FREQ, -HOME_VAL, -HOME_VAL_IMPUTE, -
str(DS_TARGET_FLAG)
smp_size <- floor(0.80 * nrow(DS_TARGET_FLAG))</pre>
## set the seed to make your partition reproductible
set.seed(123)
train_index <- sample(seq_len(nrow(DS_TARGET_FLAG)), size = smp_size)</pre>
DS_TARGET_FLAG_TRAIN<- DS_TARGET_FLAG[train_index, ]</pre>
DS_TARGET_FLAG_VALID <- DS_TARGET_FLAG[-train_index, ]</pre>
TF_Model1 <- glm(TARGET_FLAG ~ ., data = na.omit(DS_TARGET_FLAG_TRAIN), family = "binomial")
TF_Model1_ref<- TF_Model1</pre>
#TF_Model1_ref<- step(TF_Model1, direction="backward")</pre>
summary(TF_Model1_ref)
 # grow tree
TF_Model2 <- rpart(TARGET_FLAG~., data=DS_TARGET_FLAG_TRAIN, method = "class")
plotcp(TF_Model2)
# plot tree
# plot(model2, uniform=TRUE, main="Classification Tree for TARGET FLAG")
# text(model2, use.n=TRUE, all=TRUE, cex=.8)
# create attractive postscript plot of tree
#post(fit, file = "c:/tree.ps", title = "Classification Tree for Kyphosis")
TF_Model2_ref <- prune(TF_Model2, cp = TF_Model2$cptable[which.min(TF_Model2$cptable[,"xerror"]),"CP"])
\#par(mfrow=c(1,1))
#plot(TF_Model2_ref, uniform=TRUE, main="P")
#text(TF_Model2_ref, use.n=TRUE, all=TRUE, cex=.8)
#printcp(TF_Model2_ref) # display the results
#post(pfit, file = "c:/ptree.ps", title = "Pruned Classification Tree for Kyphosis")
```

```
# plot the pruned tree
par(mfrow = c(1, 3), mar = rep(0.1, 4))
\#par(mfrow=c(1,1))
plot(TF_Model2_ref, uniform=TRUE, main=NA)
text(TF_Model2_ref, use.n=TRUE, all=TRUE, cex=.8)
#plotcp(TF_Model2_ref)
#Following function Eval() will be used to calculate various metrics related to the model like Accuracy
Eval<-function(x){</pre>
       TP<-x$Freq[x$metrics=="TRUE_1"]</pre>
       FP<-x$Freq[x$metrics=="FALSE_1"]</pre>
        TN<-x$Freq[x$metrics=="FALSE_0"]
       FN<-x$Freq[x$metrics=="TRUE_0"]</pre>
       Accuracy <-(TP+TN)/(TP+TN+FP+FN)</pre>
       Error_Rate<-(FP+FN)/(TP+TN+FP+FN)</pre>
       Precision<-TP/(TP+FP)</pre>
        sensitivity<-TP/(TP+FN)
        specificity<-TN/(TN+FP)</pre>
       F1_Score=2*Precision*sensitivity/(sensitivity+specificity)
        eval_result<-data.frame(Accuracy=c(0),Error_Rate=c(0),Precision=c(0),sensitivity=c(0),specificity=c
       eval_result[1,1]<-Accuracy</pre>
        eval_result[1,2]<-Error_Rate
        eval_result[1,3]<- Precision
       eval_result[1,4]<-sensitivity</pre>
       eval_result[1,5]<-specificity</pre>
       eval_result[1,6]<-F1_Score
        eval_result
model_comparison<-data.frame(Accuracy=c(0),Error_Rate=c(0),Precision=c(0),sensitivity=c(0),specificity=
#confusion matrix
DS_TARGET_FLAG_VALID$M1_TARGET_FLAG <- predict(TF_Model1, newdata=DS_TARGET_FLAG_VALID, type="response"
df_pre_train1<-as.data.frame(table(DS_TARGET_FLAG_VALID$M1_TARGET_FLAG>0.5,DS_TARGET_FLAG_VALID$TARGET_
df_pre_train1$metrics <- paste(df_pre_train1$Var1,df_pre_train1$Var2, sep = '_')</pre>
model_comparison[1,]<-Eval(df_pre_train1)</pre>
model_comparison[1,c("AUC")]<-c(auc(DS_TARGET_FLAG_VALID$TARGET_FLAG, DS_TARGET_FLAG_VALID$M1_TARGET_FL
kable(model_comparison[1,],row.names = TRUE, caption = " Model 1 evaluation KPIs")
DS_TARGET_FLAG_VALID$M2_TARGET_FLAG <- predict(TF_Model1_ref,newdata=DS_TARGET_FLAG_VALID)
df_pre_train1<-as.data.frame(table(DS_TARGET_FLAG_VALID$M2_TARGET_FLAG>0.5,DS_TARGET_FLAG_VALID$TARGET_
df_pre_train1$metrics <- paste(df_pre_train1$Var1,df_pre_train1$Var2, sep = '_')</pre>
model_comparison[2,]<-Eval(df_pre_train1)</pre>
model_comparison[2,c("AUC")] <-c(auc(DS_TARGET_FLAG_VALID$TARGET_FLAG, DS_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M2_TARGET_FLAG_VALID$M
kable(model_comparison[2,],row.names = TRUE, caption = " Model 2 evaluation KPIs")
```

```
#ds <- select(DS_TARGET_FLAG_VALID, -AGE, -AGE_IMPUTE, -BLUEBOOK, -CAR_AGE_IMPUTE, -CAR_AGE_MISS, -CLM_
DS_TARGET_FLAG_VALID$M2_TARGET_FLAG <- predict(TF_Model2_ref,newdata=DS_TARGET_FLAG_VALID)[,2]
df pre train1<-as.data.frame(table(DS TARGET FLAG VALID$M2 TARGET FLAG>0.5,DS TARGET FLAG VALID$TARGET
df_pre_train1$metrics <- paste(df_pre_train1$Var1,df_pre_train1$Var2, sep = '_')</pre>
model_comparison[3,]<-Eval(df_pre_train1)</pre>
model_comparison[3,c("AUC")] <-c(auc(DS_TARGET_FLAG_VALID$TARGET_FLAG, DS_TARGET_FLAG_VALID$M2_TARGET_FL
kable (model comparison, row.names = TRUE, caption = " Model 3 evaluation KPIs")
model_comparison$Model_No<-c(1:3)</pre>
kable(model_comparison[,c("Model_No", "Accuracy", "Error_Rate", "AUC", "Precision", "sensitivity", "specifici
summary(TF_Model1)
exp(cbind(OR = coef(TF_Model1), confint.default(TF_Model1)))
#AUC
myRoc <- roc(DS TARGET FLAG VALID$TARGET FLAG~DS TARGET FLAG VALID$M1 TARGET FLAG, DS TARGET FLAG VALID
plot(myRoc, main="ROC Curve for Classification data")
# pred <- prediction(TF_Model1_ref, DS_TARGET_FLAG_VALID$TARGET_FLAG)</pre>
# perf <- performance(pred, measure = "tpr", x.measure = "fpr")</pre>
# auc <- performance(pred, measure = "auc")</pre>
# auc <- auc@y.values[[1]]</pre>
# roc.data <- data.frame(fpr=unlist(perf@x.values),</pre>
                          tpr=unlist(perf@y.values),
                          model="GLM")
# ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +
     geom_ribbon(alpha=0.2) +
#
      geom_line(aes(y=tpr)) +
      ggtitle(paste0("ROC Curve w/ AUC=", auc))
plot_pred_type_distribution <- function(df, threshold) {</pre>
 v <- rep(NA, nrow(df))
 v <- ifelse(DS_TARGET_FLAG_VALID$M1_TARGET_FLAG >= threshold & DS_TARGET_FLAG_VALID$TARGET_FLAG == 1,
 v <- ifelse(DS_TARGET_FLAG_VALID$M1_TARGET_FLAG >= threshold & DS_TARGET_FLAG_VALID$TARGET_FLAG == 0,
  v <- ifelse(DS_TARGET_FLAG_VALID$M1_TARGET_FLAG < threshold & DS_TARGET_FLAG_VALID$TARGET_FLAG == 1,
  v <- ifelse(DS_TARGET_FLAG_VALID$M1_TARGET_FLAG < threshold & DS_TARGET_FLAG_VALID$TARGET_FLAG == 0,
  DS_TARGET_FLAG_VALID$pred_type <- v
  ggplot(data=DS_TARGET_FLAG_VALID, aes(x=TARGET_FLAG, y=M1_TARGET_FLAG)) +
    geom_violin(fill=rgb(1,1,1,alpha=0.6), color=NA) +
    geom_jitter(aes(color=pred_type), alpha=0.6) +
    geom_hline(yintercept=threshold, color="red", alpha=0.6) +
    scale_color_discrete(name = "type") +
    labs(title=sprintf("Threshold at %.2f", threshold))
}
```

```
DS_TARGET_FLAG_VALID$M1_TARGET_FLAG <- predict(TF_Model1_ref, newdata=DS_TARGET_FLAG_VALID, type="responsion.")
plot_pred_type_distribution (DS_TARGET_FLAG_VALID, 0.5)
insure_train_crash <- insure_without_dummy[insure_without_dummy$TARGET_FLAG==1,]</pre>
dummy_vars<-as.data.frame(sapply(dummy(insure_train_crash), FUN = as.numeric))</pre>
dummy vars <- dummy vars-1</pre>
insure_train_crash <- cbind(insure_train_crash, dummy_vars)</pre>
#write.csv(insure_train_crash, file = "D:/CUNY/Courses/Business Analytics and Data Mining/Assignments/d
#insure_train_crash <- select(insure_train_crash, -CAR_AGE_FLAG_BIN, -CAR_TYPE_FLAG_BIN, -CLM_FREQ_FLAG
#str(insure_train_crash)
ds stats <- psych::describe(insure train crash, skew = TRUE, na.rm = TRUE)
#ds stats
kable(ds_stats[1:7], caption= "Data Summary")
kable(ds_stats[8:13], caption= "Data Summary (Cont)")
fun1 <- function(a, y) cor(y, a , use = 'na.or.complete')</pre>
x<-select(insure_train_crash, -EDUCATION, -JOB, -CAR_TYPE)</pre>
Correlation_TARGET_AMT <- sapply(x, FUN = fun1, y=insure_train_crash$TARGET_AMT)</pre>
Correlation_TARGET_AMT <- sort(Correlation_TARGET_AMT, decreasing = TRUE)</pre>
kable(data.frame(Correlation_TARGET_AMT), caption = "Correlation between TARGET_AMT and predictor varia"
check_bins <- function(var, thresholds) {</pre>
    col_x <- which(colnames(insure_train_crash)==var)</pre>
    old_x <- select(insure_train_crash, col_x)</pre>
    cor_old <- cor(old_x, insure_train_crash$TARGET_AMT,use = 'na.or.complete')</pre>
    ds <- data.frame("Item" = "Original", "Correlation"= round(cor_old, 5))</pre>
    old_tresh <- 0
    for(i in 1:length(thresholds)) {
        New_x <- ifelse((select(insure_train_crash, col_x) >= old_tresh & select(insure_train_crash, co
        cor_new <- cor(New_x, insure_train_crash$TARGET_AMT,use = 'na.or.complete')</pre>
        ds_1 <- data.frame("Item" = as.character(thresholds[i]), "Correlation"= round(cor_new, 5))
        ds <- rbind(ds, ds_1)
        old_tresh <- thresholds[i]</pre>
    }
    return (ds)
}
```

```
par(mfrow=c(2,2))
plot(insure_train_crash$INCOME, insure_train_crash$TARGET_AMT, xlab = "INCOME", ylab = "TARGET_AMT")
#check_bins("INCOME", c(0, 50000, 125000, 200000))
plot(insure_train_crash$YOJ, insure_train_crash$TARGET_AMT, xlab = "YOJ", ylab = "TARGET_AMT")
#check_bins("YOJ", c(0:19))
plot(insure train crash$HOME VAL, insure train crash$TARGET AMT, ylab = "TARGET AMT", xlab = "HOME VAL"
#check_bins("HOME_VAL", c(seq(0, 600000, 10000)))
plot(insure_train_crash$OLDCLAIM, insure_train_crash$TARGET_AMT, ylab = "TARGET_AMT", xlab = "OLDCLAIM"
#hist(insure_train_crash$OLDCLAIM, breaks=50)
#check_bins("OLDCLAIM", c(seq(0, 50000, 1000)))
#show hist("CLM FREQ")
plot(insure_train_crash$CLM_FREQ, insure_train_crash$TARGET_AMT, ylab = "TARGET_AMT", xlab = "CLM_FREQ"
#check_bins("CLM_FREQ", c(0, 1, 2, 3, 4))
#table(insure_train_full$MVR_PTS)
plot(insure_train_crash$MVR_PTS, insure_train_crash$TARGET_AMT, ylab = "TARGET_AMT", xlab = "MVR_PTS")
#check_bins("MVR_PTS", c(0:12))
#table(insure train full$CAR AGE)
#show_hist("CAR_AGE")
plot(insure train crash$CAR AGE, insure train crash$TARGET AMT, ylab = "TARGET AMT", xlab = "CAR AGE")
#check bins("CAR AGE", c(1:27))
#table(insure_train_full$AGE)
plot(insure_train_crash$AGE, insure_train_crash$TARGET_AMT, ylab = "TARGET_AMT", xlab = "AGE")
#show_hist("AGE")
#check_bins("AGE", c(16:80))
#table(insure_train_full$BLUEBOOK)
plot(insure_train_crash$BLUEBOOK, insure_train_crash$TARGET_AMT, ylab = "TARGET_AMT", xlab = "BLUEBOOK"
#show_hist("BLUEBOOK")
#check_bins("BLUEBOOK", c(5000, 10000, 20000, 30000, 45000, 57500, 58000))
# table(insure_train_full$TIF)
# show_hist("TIF")
plot(insure_train_crash$TIF, insure_train_crash$TARGET_AMT, ylab = "TARGET_AMT", xlab = "TIF")
# check_bins("TIF", c(1, 4, 6, 10, 24))
#table(insure_train_full$TRAVTIME)
plot(insure train crash$TRAVTIME, insure train crash$TARGET AMT, ylab = "TARGET AMT", xlab = "TRAVTIME"
#show_hist("TRAVTIME")
#check_bins("TRAVTIME", c(21, 59, 120))
# AGE, BLUEBOOK, CAR_AGE, CLM_FREQ, HOME_VAL, HOMEKIDS, INCOME, KIDSDRIV, MVR_PTS, OLDCLAIM, TIF, TRAVT
mdata<- select(insure_train_crash, AGE, BLUEBOOK, TIF)</pre>
mdata2 <- melt(mdata)</pre>
# Output the boxplot
```

```
p <- ggplot(data = mdata2, aes(x=variable, y=value)) +</pre>
 geom_boxplot() + ggtitle("Outliers Identification")
p + facet_wrap( ~ variable, scales="free", ncol=5)
show_charts <- function(x, varlab, ...) {</pre>
    xlabel <- varlab
    xlab_log <- paste0(xlabel, '_log')</pre>
    xlab_sqrt <- paste0(xlabel, '_sqrt')</pre>
    xlab_sin <- paste0(xlabel, '_sin')</pre>
    xlab_inv <- paste0(xlabel, '_inv')</pre>
    mdata \leftarrow cbind(x, log(x), sqrt(x), sin(x), 1/x)
    colnames(mdata) <- c(xlabel, xlab_log, xlab_sqrt, xlab_sin, xlab_inv)</pre>
    mdata2 <- melt(mdata)</pre>
    mdata2 <- mdata2[, c(2:3)]
    names(mdata2) <- c("variable", "value")</pre>
    # Output the boxplot
    p <- ggplot(data = mdata2, aes(x=variable, y=value)) + geom_boxplot() + ggtitle("Outliers Treatment
    p + facet_wrap( ~ variable, scales="free", ncol=5)
#KIDSDRIV, AGE, CAR_AGE, MVR_PTS, TIF, TRAVTIME and YOJ
show_charts(insure_train_crash$AGE, 'AGE')
insure_train_crash$AGE_sin <- sin(insure_train_crash$AGE)</pre>
show_charts(insure_train_crash$TIF, 'TIF')
insure_train_crash$TIF_sin <- sin(insure_train_crash$TIF)</pre>
show_charts(insure_train_crash$BLUEBOOK, 'BLUEBOOK')
insure_train_crash$BLUEBOOK_sin <- sin(insure_train_crash$BLUEBOOK)</pre>
insure_train_crash$CAR_TYPE_AMT_BIN <- ifelse(insure_train_crash$CAR_TYPE_Van | insure_train_crash$CAR_
insure_train_crash$EDUCATION_AMT_BIN <- ifelse(insure_train_crash$EDUCATION_High.School, 1, 0)
insure_train_crash$JOB_TYPE_AMT_BIN <- ifelse(insure_train_crash$JOB_Lawyer | insure_train_crash$JOB_P.
insure_train_crash$INCOME_AMT_BIN <- ifelse(insure_train_crash$INCOME <=125000, 1, 0)</pre>
insure_train_crash$YOJ_AMT_BIN <- ifelse((insure_train_crash$YOJ>=7 & insure_train_crash$YOJ<=17), 1, 0
insure_train_crash$HOME_VAL_AMT_0_10K_BIN <- ifelse((insure_train_crash$HOME_VAL>=0 & insure_train_crash
insure_train_crash$HOME_VAL_AMT_60K_400K_BIN <- ifelse((insure_train_crash$HOME_VAL>=60000 & insure_tra
insure_train_crash$OLDCLAIM_AMT_0_2K_BIN <- ifelse((insure_train_crash$OLDCLAIM>=0 & insure_train_crash
insure_train_crash$OLDCLAIM_AMT_2K_10K_BIN <- ifelse((insure_train_crash$OLDCLAIM>=2001 & insure_train_
```

```
insure_train_crash$CLM_FREQ_AMT_BIN <- ifelse(insure_train_crash$CLM_FREQ <4, 1, 0)</pre>
insure_train_crash$MVR_PTS_AMT_BIN <- ifelse(insure_train_crash$MVR_PTS <=2, 1, 0)</pre>
insure_train_crash$CAR_AGE_AMT_BIN <- ifelse(insure_train_crash$CAR_AGE <=1, 1, 0)</pre>
insure_train_crash$TRAVTIME_AMT_BIN <- ifelse(insure_train_crash$TRAVTIME <=20, 1, 0)
insure_train_crash$KIDSDRIV_AMT_BIN_0 <- ifelse(insure_train_crash$KIDSDRIV <=0, 1, 0)
insure train crash$KIDSDRIV AMT BIN 1 <- ifelse(insure train crash$KIDSDRIV <=1, 1, 0)
insure_train_crash$HOMEKIDS_AMT_BIN_0 <- ifelse(insure_train_crash$HOMEKIDS <=0, 1, 0)
insure_train_crash$HOMEKIDS_AMT_BIN_3 <- ifelse(insure_train_crash$HOMEKIDS <=3, 1, 0)</pre>
insure_train_crash$YOJ_AMT_BIN_0_AND_9To14 <- ifelse((insure_train_crash$YOJ ==0 | (insure_train_crash
insure_train_crash$INCOME_AMT_BIN_MISS_0 <- ifelse((is.na(insure_train_crash$INCOME) | insure_train_c
insure_train_crash$HOME_VAL_AMT_BIN_MISS_0 <- ifelse((is.na(insure_train_crash$HOME_VAL) | insure_tra</pre>
insure_train_crash$EDUCATION_AMT_BIN_HS <- ifelse(insure_train_crash$EDUCATION_High.School==1, 1, 0)
insure_train_crash$EDUCATION_AMT_BIN_HS_B <- ifelse((insure_train_crash$EDUCATION_Bachelors | insure_
insure_train_crash$JOB_AMT_BIN_CPSB <- ifelse((insure_train_crash$JOB_Clerical | insure_train_crash$J
insure_train_crash$TIF_AMT_BIN_6 <- ifelse(insure_train_crash$TIF <=6, 1, 0)</pre>
insure_train_crash$CAR_TYPE_AMT_BIN_V_PT_MV <- ifelse((insure_train_crash$CAR_TYPE_Van | insure_train
insure_train_crash$OLDCLAIM_AMT_BIN_MISS_0 <- ifelse((is.na(insure_train_crash$OLDCLAIM) | insure_tra
insure_train_crash$CLM_FREQ_AMT_BIN_0 <- ifelse(insure_train_crash$CLM_FREQ<=0, 1, 0)
insure_train_crash$CLM_FREQ_AMT_BIN_3 <- ifelse(insure_train_crash$CLM_FREQ<=3, 1, 0)
insure_train_crash$MVR_PTS_AMT_BIN_0 <- ifelse(insure_train_crash$MVR_PTS<=0, 1, 0)</pre>
insure_train_crash$MVR_PTS_AMT_BIN_5 <- ifelse(insure_train_crash$MVR_PTS<=5, 1, 0)</pre>
#write.csv(ds, file = "D:/CUNY/Courses/Business Analytics and Data Mining/Assignments/data621-ctq5/HW4/
insure_train_crash <- select(insure_train_crash, -TARGET_FLAG, -INDEX)</pre>
DS_TARGET_AMT <- insure_train_crash
#DS_TARGET_AMT <- select(insure_train_crash, -AGE, -BLUEBOOK, -CAR_AGE, -CAR_TYPE_Minivan, -CAR_TYPE_Pa
DS_TARGET_AMT <- select(insure_train_crash, -EDUCATION, -JOB, -CAR_TYPE, -EDUCATION_AMT_BIN_HS_B, -EDUC
#origvars <- c(3, 9, 14, 44, 35, 36, 37, 38, 39, 40, 15, 12, 22, 23, 24, 25, 7, 43, 4, 6, 42, 26, 27, 2
#DS_TARGET_AMT <- select(DS_TARGET_AMT, )</pre>
# TA_Model1 <- lm(TARGET_AMT~.-EDUCATION-JOB-CAR_TYPE-EDUCATION_AMT_BIN_HS_B-EDUCATION_AMT_BIN_HS-EDUCA
TA_Model1 <- lm(TARGET_AMT~., data=na.omit(DS_TARGET_AMT))</pre>
summary(TA_Model1)
```

```
# TA_Model1_ref<-step(TA_Model1, direction="backward", test="F")</pre>
# summary(TA_Model1_ref)
DS_SELECTED_VARS <- select(DS_TARGET_AMT, TARGET_AMT, AGE, BLUEBOOK, CAR_AGE, CAR_AGE_AMT_BIN, CAR_USE_
TA_Model2<- lm(TARGET_AMT~., data=DS_SELECTED_VARS)
summary(TA Model2)
# #DS_TARGET_AMT_TRAIN_ORIG <- select(DS_TARGET_AMT_TRAIN, origuars)
# TA_Model2 <- lm(TARGET_AMT~., data=na.omit(DS_TARGET_AMT))</pre>
# summary(TA_Model2)
{\it \# TA\_Model2\_ref <- step (TA\_Model2, direction="backward", test="F")}
# summary(TA_Model2_ref)
# TA_model2 <- lm(TARGET_AMT~.-EDUCATION_PhD-JOB_Unknown-CAR_TYPE_Van-CAR_TYPE_AMT_BIN-EDUCATION_AMT_BI
# TA model2 <- lm(TARGET AMT~BLUEBOOK+CAR AGE+REVOKED Yes+SEX M+EDUCATION Bachelors+EDUCATION High.Scho
# Analysis of plot on residuals to verify normal distribution of residuals
library(MASS)
sresid <- studres(TA_Model1)</pre>
hist(sresid, freq=FALSE,
     main="Distribution of Residuals")
xfit<-seq(min(sresid),max(sresid),length=40)</pre>
yfit<-dnorm(xfit)</pre>
lines(xfit, yfit)
step4.res <- resid(TA_Model1)</pre>
score<-predict(TA_Model1,type="response")</pre>
plot(score, step4.res, ylab="Residuals", xlab="Predicted Cost of Repair", main="Residual vs Predicted
abline(0, 0)
##
## library(car)
##
## ncvTest(TA_Model1)
## # plot studentized residuals vs. fitted values
## spreadLevelPlot(TA_Model1)
##
##
##
library(faraway)
# Evaluate Collinearity of the variables in model "step4" vif(step4) # variance inflation factors
#kable(sqrt(vif(TA_Model1)), caption = 'Analysis of collinearity')
```

```
sqrt(vif(TA_Model1))
TA_Model1 <- lm(TARGET_AMT~.-KIDSDRIV, data=na.omit(DS_TARGET_AMT))</pre>
#summary(TA Model1)
TA_Model1 <- lm(TARGET_AMT~.-KIDSDRIV, data=na.omit(DS_TARGET_AMT))</pre>
summary(TA_Model1)
# Adjusted R2 = 0.02461
TA_Model1 <- lm(TARGET_AMT~.-KIDSDRIV-HOME_VAL_AMT_0_10K_BIN, data=na.omit(DS_TARGET_AMT))
summary(TA Model1)
# # Adjusted R2 = 0.01871
# TA Model1 <- lm(TARGET AMT~.-KIDSDRIV-HOME VAL AMT 0 10K BIN-OLDCLAIM AMT 2K 10K BIN-EDUCATION High.S
# summary(TA_Model1)
eval_ds <- read.csv("https://raw.githubusercontent.com/kishkp/data621-ctg5/master/HW4/insurance-evaluat
eval_ds$INCOME <- as.numeric(str_replace_all(eval_ds$INCOME, pattern = "[$*,]", replacement = ""))</pre>
eval_ds$HOME_VAL <- as.numeric(str_replace_all(eval_ds$HOME_VAL, pattern = "[$*,]", replacement = ""))
eval_ds$BLUEBOOK <- as.numeric(str_replace_all(eval_ds$BLUEBOOK, pattern = "[$*,]", replacement = ""))
eval_ds$OLDCLAIM <- as.numeric(str_replace_all(eval_ds$OLDCLAIM, pattern = "[$*,]", replacement = ""))
eval ds$MSTATUS <- as.factor(str replace all(eval ds$MSTATUS, "z ", ""))
eval ds$SEX <- as.factor(str replace all(eval ds$SEX, "z ", ""))</pre>
eval ds$EDUCATION <- as.factor(str replace all(eval ds$EDUCATION, "z ", ""))
eval_ds$EDUCATION <- as.factor(str_replace_all(eval_ds$EDUCATION, "<", ""))</pre>
eval_ds$CAR_TYPE <- as.factor(str_replace_all(eval_ds$CAR_TYPE, "z_", ""))</pre>
eval_ds$URBANICITY <- as.factor(str_replace_all(eval_ds$URBANICITY, "z_", ""))</pre>
eval_ds$JOB <- as.character(eval_ds$JOB)</pre>
eval_ds$JOB[eval_ds$JOB==""] <- "Unknown"
eval_ds$JOB <- as.factor(str_replace_all(eval_ds$JOB, "z_", ""))</pre>
eval_ds <- eval_ds[ -which( eval_ds$CAR_AGE == -3 | eval_ds$CAR_AGE == 0 ) , ]
# Create Dummy Variable for 2 factor variables
eval_ds$CAR_USE_Commercial <- ifelse(eval_ds$CAR_USE=="Commercial", 1, 0)
eval_ds$MSTATUS_Yes <- ifelse(eval_ds$MSTATUS=="Yes", 1, 0)</pre>
eval_ds$PARENT1_Yes <- ifelse(eval_ds$PARENT1=="Yes", 1, 0)</pre>
eval_ds$RED_CAR_yes <- ifelse(eval_ds$RED_CAR=="yes", 1, 0)
eval ds$REVOKED Yes <- ifelse(eval ds$REVOKED=="Yes", 1, 0)
eval ds$SEX M <- ifelse(eval ds$SEX=="M", 1, 0)
eval_ds$URBANICITY_Rural <- ifelse(eval_ds$URBANICITY=="Highly Rural/ Rural", 1, 0)
# remove original variables
eval_ds <- select(eval_ds, -CAR_USE, -MSTATUS, -PARENT1, -RED_CAR, -REVOKED, -SEX, -URBANICITY)
#- We will also create dummy variables for all the factors and drop the original variables.
dummy_vars<-as.data.frame(sapply(dummy(eval_ds), FUN = as.numeric))</pre>
dummy_vars <- dummy_vars-1</pre>
```

```
# remove original variables
#eval_ds <- select(eval_ds, -EDUCATION, -JOB, -CAR_TYPE)</pre>
eval_ds <- cbind(eval_ds, dummy_vars)</pre>
eval_ds$YOJ_MISS <- ifelse(is.na(eval_ds$YOJ), 1, 0)</pre>
eval_ds$INCOME_MISS <- ifelse(is.na(eval_ds$INCOME), 1, 0)</pre>
eval_ds$HOME_VAL_MISS <- ifelse(is.na(eval_ds$HOME_VAL), 1, 0)</pre>
eval_ds$CAR_AGE_MISS <- ifelse(is.na(eval_ds$CAR_AGE), 1, 0)</pre>
# Direct Impute
insure_train_full$AGE[is.na(insure_train_full$AGE)] <- mean(insure_train_full$AGE, na.rm = T)</pre>
insure_train_full$YOJ[is.na(insure_train_full$YOJ)] <- mean(insure_train_full$YOJ, na.rm = T)</pre>
insure_train_full$INCOME[is.na(insure_train_full$INCOME)] <- median(insure_train_full$INCOME, na.rm = T</pre>
insure_train_full$HOME_VAL[is.na(insure_train_full$HOME_VAL)] <- median(insure_train_full$HOME_VAL, na..
insure_train_full$CAR_AGE[is.na(insure_train_full$CAR_AGE)] <- median(insure_train_full$CAR_AGE, na.rm =
eval_ds$TIF_sin <- sin(eval_ds$TIF)</pre>
eval_ds$BLUEBOOK_sin <- sin(eval_ds$BLUEBOOK)</pre>
eval_ds$AGE_sin <- sin(eval_ds$AGE)</pre>
eval_ds$CAR_TYPE_FLAG_BIN <- ifelse(eval_ds$CAR_TYPE_Minivan | eval_ds$CAR_TYPE_Panel.Truck, 1, 0)
eval_ds$EDUCATION_FLAG_BIN <- ifelse(eval_ds$EDUCATION_High.School, 0, 1)
eval_ds$JOB_TYPE_FLAG_BIN <- ifelse(eval_ds$JOB_Student | eval_ds$JOB_Home.Maker | eval_ds$JOB_Clerica
eval_ds$INCOME_FLAG_BIN <- ifelse(eval_ds$INCOME <=0, 1, 0)</pre>
eval_ds$YOJ_FLAG_BIN <- ifelse(eval_ds$YOJ <=0, 1, 0)</pre>
eval_ds$HOME_VAL_FLAG_BIN <- ifelse(eval_ds$HOME_VAL <=0, 1, 0)
eval_ds$OLDCLAIM_FLAG_BIN <- ifelse(eval_ds$OLDCLAIM <=0, 1, 0)
eval ds$CLM FREQ FLAG BIN <- ifelse(eval ds$CLM FREQ <=0, 1, 0)
eval_ds$MVR_PTS_FLAG_BIN <- ifelse(eval_ds$MVR_PTS <=0, 1, 0)</pre>
eval_ds$CAR_AGE_FLAG_BIN <- ifelse(eval_ds$CAR_AGE <=1, 1, 0)
eval_ds$TRAVTIME_FLAG_BIN <- ifelse(eval_ds$TRAVTIME <=20, 1, 0)
new_ds_full <- eval_ds</pre>
#eval_ds <- select(eval_ds, -JOB_Blue.Collar, -JOB_Clerical, -JOB_Doctor, -JOB_Home.Maker, -JOB_Lawyer,
## Create Variables for Linear Regression
eval_ds$AGE_sin <- sin(eval_ds$AGE)</pre>
```

```
eval_ds$TIF_sin <- sin(eval_ds$TIF)</pre>
eval ds$BLUEBOOK sin <- sin(eval ds$BLUEBOOK)</pre>
eval_ds$CAR_TYPE_AMT_BIN <- ifelse(eval_ds$CAR_TYPE_Van | eval_ds$CAR_TYPE_Panel.Truck, 1, 0)
eval ds$EDUCATION AMT BIN <- ifelse(eval ds$EDUCATION High.School, 1, 0)
eval_ds$JOB_TYPE_AMT_BIN <- ifelse(eval_ds$JOB_Lawyer | eval_ds$JOB_Professional | eval_ds$JOB_Blue.Co
eval_ds$INCOME_AMT_BIN <- ifelse(eval_ds$INCOME <=125000, 1, 0)</pre>
eval_ds$YOJ_AMT_BIN <- ifelse((eval_ds$YOJ>=7 & eval_ds$YOJ<=17), 1, 0)
eval_ds$HOME_VAL_AMT_0_10K_BIN <- ifelse((eval_ds$HOME_VAL>=0 & eval_ds$HOME_VAL<=10000), 1, 0)
eval_ds$HOME_VAL_AMT_60K_400K_BIN <- ifelse((eval_ds$HOME_VAL>=60000 & eval_ds$HOME_VAL<=400000), 1, 0)
eval_ds$OLDCLAIM_AMT_0_2K_BIN <- ifelse((eval_ds$OLDCLAIM>=0 & eval_ds$OLDCLAIM<=2000), 1, 0)
eval_ds$OLDCLAIM_AMT_2K_1OK_BIN <- ifelse((eval_ds$OLDCLAIM>=2001 & eval_ds$OLDCLAIM<=10000), 1, 0)
eval_ds$CLM_FREQ_AMT_BIN <- ifelse(eval_ds$CLM_FREQ <4, 1, 0)
eval_ds$MVR_PTS_AMT_BIN <- ifelse(eval_ds$MVR_PTS <=2, 1, 0)</pre>
eval_ds$CAR_AGE_AMT_BIN <- ifelse(eval_ds$CAR_AGE <=1, 1, 0)
eval_ds$TRAVTIME_AMT_BIN <- ifelse(eval_ds$TRAVTIME <=20, 1, 0)</pre>
eval ds$KIDSDRIV AMT BIN 0 <- ifelse(eval ds$KIDSDRIV <=0, 1, 0)
eval ds$KIDSDRIV AMT BIN 1 <- ifelse(eval ds$KIDSDRIV <=1, 1, 0)
eval_ds$HOMEKIDS_AMT_BIN_0 <- ifelse(eval_ds$HOMEKIDS <=0, 1, 0)
eval_ds$HOMEKIDS_AMT_BIN_3 <- ifelse(eval_ds$HOMEKIDS <=3, 1, 0)</pre>
eval_ds$YOJ_AMT_BIN_O_AND_9To14 <- ifelse((eval_ds$YOJ ==0 | (eval_ds$YOJ>=9 & eval_ds$YOJ>=14)), 1, 0
eval_ds$INCOME_AMT_BIN_MISS_0 <- ifelse((is.na(eval_ds$INCOME) | eval_ds$INCOME<=0), 1, 0)
eval_ds$HOME_VAL_AMT_BIN_MISS_0 <- ifelse((is.na(eval_ds$HOME_VAL) | eval_ds$HOME_VAL<=0), 1, 0)
eval_ds$EDUCATION_AMT_BIN_HS <- ifelse(eval_ds$EDUCATION_High.School==1, 1, 0)
eval_ds$EDUCATION_AMT_BIN_HS_B <- ifelse((eval_ds$EDUCATION_Bachelors | eval_ds$EDUCATION_High.School
eval_ds$JOB_AMT_BIN_CPSB <- ifelse((eval_ds$JOB_Clerical | eval_ds$JOB_Blue.Collar | eval_ds$JOB_Prof
```

```
eval_ds$TIF_AMT_BIN_6 <- ifelse(eval_ds$TIF <=6, 1, 0)</pre>
eval_ds$CAR_TYPE_AMT_BIN_V_PT_MV <- ifelse((eval_ds$CAR_TYPE_Van | eval_ds$CAR_TYPE_Panel.Truck | eva
 eval\_ds \$OLDCLAIM\_AMT\_BIN\_MISS\_0 \ <- \ ifelse((is.na(eval\_ds \$OLDCLAIM) \ | \ eval\_ds \$OLDCLAIM <= 0), \ 1, \ 0) 
eval_ds$CLM_FREQ_AMT_BIN_0 <- ifelse(eval_ds$CLM_FREQ<=0, 1, 0)
eval ds$CLM FREQ AMT BIN 3 <- ifelse(eval ds$CLM FREQ<=3, 1, 0)
eval_ds$MVR_PTS_AMT_BIN_0 <- ifelse(eval_ds$MVR_PTS<=0, 1, 0)
eval_ds$MVR_PTS_AMT_BIN_5 <- ifelse(eval_ds$MVR_PTS<=5, 1, 0)
eval_ds$TARGET_FLAG_prob <- unlist(data.frame(predict(TF_Model1, type ="response", newdata=eval_ds)))</pre>
eval_ds$TARGET_FLAG<-ifelse(eval_ds$TARGET_FLAG_prob>0.5,1,0)
# eval_ds$TARGET_FLAG <- ifelse(eval_ds$TARGET_FLAG_prob>0.5, 1, 0)
x <- as.data.frame(table(eval_ds$TARGET_FLAG))</pre>
names(x) <- c("Crash Predicted?", "Counts")</pre>
# x \lceil 1.1 \rceil \leftarrow FALSE
# x[2,1] <- TRUE
kable(x, caption="Predicted Crash Counts")
###Top 10 Records by Index
#kable(head(eval_ds)[,c(1,2,94)], caption="Logistic Regression Results")
# eval_ds$TARGET_FLAG <- ifelse(eval_ds$TARGET_FLAG_prob>0.5, 1, 0)
#table(eval ds$TARGET FLAG)
\#kable(eval\_ds[eval\_ds$TARGET\_FLAG\_prob="NA",c(1,61,62)], caption="Outcome on evaluation data set")
eval_ds$TARGET_AMT <- 0
eval_ds_TA <- filter(eval_ds, TARGET_FLAG == 1)</pre>
eval_ds_TA$TARGET_FLAG<-as.numeric(eval_ds_TA$TARGET_FLAG)</pre>
eval_ds_TA$TARGET_AMT <- predict(TA_Model1, newdata=eval_ds_TA)</pre>
x<-arrange(eval_ds_TA, (TARGET_AMT))</pre>
x < -x[-c(1:2),]
kable(x[1:10,c(1,2,94,3)], caption="Linear Regression Results")
```

```
Class_Expense<-lm(TARGET_AMT~TARGET_FLAG_prob,data=eval_ds_TA)
plot(eval_ds_TA$TARGET_FLAG_prob,eval_ds_TA$TARGET_AMT)
abline(Class_Expense,col="red")
###</pre>
```