

Discosat Ground Station Workshop

14.03.2022 1000 – 1600

IT University of Copenhagen

Julian Priest jucp@itu.dk

https://discosat.github.io/groundstation-workshop

https://discosat.github.io/groundstation-workshop/

Network – ITU guest or eduroam

Coffee – analog - NW

Catering – canteen - SE

WC – Atrium

Julian, Sebastian, Paul, Emil, Jonas, Thomas, Robert, Jon

Emergency exits

Parking

discosat.dk

Program

1000 introduction

1022 noaa18 aos

1030 session 1

1200 lunch

1203 noaa 18 aos

1230 session 2

1400 coffee

1430 project space

1545 remarks

1600 close

12:15

ITU

_F Topics

Satellite Pointer – Paul

Rotator – Julian

Antenna – Emil and Jonas

Observation – Sebastian & Eric

Link budget - ?

Project space

Eric – Aarhus groundstation

Flat Sat – Jon

ML for images – Jacob, Linnea, Robert

++

Workshop Knowledge Base Github

homepage, repo and wiki

https://discosat.github.io/groundstation-workshop/

https://github.com/discosat/groundstation-workshop

https://github.com/discosat/groundstation-workshop/wiki

Nextcloud

https://cloud.phys.au.dk/nextcloud/

Github invitations sent out – please join – make a github account.

Add to the wiki!

Make a howto for one activity.

Groundstation

System Elements

- satellite
- radio transceiver
- antenna
- (link budget)
- rotator
- antenna
- amplification
- radio transceiver
- recording
- demodulation
- message

Workshop topics

satellite pointer

- link budget
- rotator
- antenna mounting
- observation
- demodulation

discosot.dk

Where is the satellite?

Orbital Elements

Orbital elements

Satellite Catalog

Celestrak satellite catalog

Two Line Elements TLE

NOAA 18

1 28654U 05018A 22072.16780969 .00000133 00000-0 96006-4 0 9990

2 28654 98.9587 142.6478 0013494 241.0722 118.9097 14.12697903866472

Identifier, Inclination, Right ascension of the ascending node, eccentricity, argument of perigee,

Mean anomaly, mean motion, drag coefficient

Orbital ephemerides

https://rhodesmill.org/skyfield/

Azimuth and Elevation

Az: compass heading (NESW)

El: angle from horizon (distance from center)

Satellite location

10:26

10:29

Satellite location

Azimuth and Elevation

Generated by gpredict

Prediction Software

Gpredict http://gpredict.oz9aec.net/ n2yo https://www.n2yo.com

Rotator Server

rotctl and rotctld https://hamlib.github.io/

Rotator controller

MD-01 K3ng rotator

Azimuth and Elevation rotator

RF Hamdesign SPX and BIG RAS

Antennas

Different antennas for different frequencies

2.4 Ghz 12.5 cm $\lambda = v/f$ (v=c in vacuo.)

434 Mhz 70cm

144 Mhz 2m, 137 Mhz 2.18m

Antenna components

Radiator or dish feed + passive elements or reflectors

Radiation patterns

www.antenna-theory.com

Polarization

Horizontal, vertical, circular

Antenna types

Yagi, X-quad, helical, v-dipole, parabolic dish

Mounting

Will the system allow communication with the satellite?

Orbital distances

Free space loss

Transmit power

Receive power

Antenna Gain

Pointing loss

Polarization loss

Atmospheric loss

Modulation

Connector and cable loses

Used in frequency allocation

Radio

Software defined radio hardware

RTL-SDR, Hackrf, Funcube dongle pro, Ettus research

LNA

Amplification, wideband, narrow band, filtering

Software defined radio software

https://gqrx.dk/

Doppler

Use gpredict and hamlib rigctl, to compensate for doppler in gqrx.

14.03.22 ground station workshop

Observing NOAA satellites

Use circular polarized ie turnstile or v-dipole (53.4cm) antenna. Gqrx rtl-sdr howto

NOAA-18 Weather satellite

location Frequencies 137.9125 Mhz

Demodulation of APT

Record wav output and downsample to 11025 khz using sox # sox input.wav output.wav rate 11025
Convert to image with wxtoimg or noaa-apt

Test Signal

Try fm test signal using raspberry pi fm transmitter
De-mdodulate NOAA-18 observations from Satnogs

14.03.22 ground station workshop

wxtoimg output.wav output.png

Demodulation

