In this lecture, we introduce t-structures on stable ∞-categories.

1. Definitions

1.1. Let C be a stable ∞ -category. A t-structure on C is just a t-structure on the triangulated category hC.

Definition 1.2. Let C be a stable ∞ -category. A **t-structure** on C is defined to be a pair of full sub- ∞ -categories ($C^{\leq 0}$, $C^{\geq 0}$) of C such that when we write

$$\mathsf{C}^{\leq n} \coloneqq \mathsf{C}^{\leq 0} [-n], \; \mathsf{C}^{\geq n} \coloneqq \mathsf{C}^{\geq 0} [-n]$$

we have:

- (0) Both $\mathsf{C}^{\leq 0}$ and $\mathsf{C}^{\geq 0}$ are stable under isomorphisms in $\mathsf{C}.$
- (1) For $X \in C^{\leq 0}$ and $Y \in C^{\geq 1}$, we have $\mathsf{Maps}_{\mathsf{C}}(X,Y) \simeq \{0\}$.
- (2) We have inclusions $C^{\leq -1} \subseteq C^{\leq 0}$ and $C^{\geq 1} \subseteq C^{\geq 0}$.
- (3) For any $X \in C$, there exists a fiber-cofiber sequence $X' \to X \to X''$ such that $X' \in C^{\leq 0}$ and $X'' \in C^{\geq 1}$.

Warning 1.3. We use the cohomological convention. To compare with notations in the homological convention, let

$$\mathsf{C}_{\leq n} \coloneqq \mathsf{C}^{\geq -n}, \; \mathsf{C}_{\geq n} \coloneqq \mathsf{C}^{\leq -n}$$

Exercise 1.4. The assignment

$$(\mathsf{C}^{\leq 0}, \mathsf{C}^{\geq 0}) \mapsto (\mathsf{h} \mathsf{C}^{\leq 0}, \mathsf{h} \mathsf{C}^{\geq 0})$$

gives a bijection between t-structures on C with t-structures on the triangulated category $\mathsf{h}\mathsf{C}$.

Exercise 1.5. The assignment

$$(C^{\leq 0}, C^{\geq 0}) \mapsto ((C^{\geq 0})^{op}, (C^{\leq 0})^{op})$$

gives a bijection between t-structures on C with t-structures on C^{op} .

Exercise 1.6. Show that for m < n, $C^{\leq m} \cap C^{\geq n} \simeq \{0\}$.

Lemma 1.7. Let $n \ge 0$. For any $X \in C^{\le 0}$ and $Y \in C^{\ge -n}$, the mapping space $\mathsf{Maps}_{\mathsf{C}}(X,Y)$ is a homotopy n-type.

Sketch. First note that the connected components of $\mathsf{Maps}_\mathsf{C}(X,Y)$ are weakly homotopy equivalent to each other because it is the loop space of $\mathsf{Maps}_\mathsf{C}(X,\Sigma Y)$. Hence we only need to show $\pi_m\mathsf{Maps}_\mathsf{C}(X,Y) \simeq 0$ for m > n and the base point $0 \in \mathsf{Maps}_\mathsf{C}(X,Y)$. This follows from observation that $\Omega^{n+1}\mathsf{Maps}_\mathsf{C}(X,Y) \simeq \mathsf{Maps}_\mathsf{C}(X,\Omega^{n+1}Y)$ is weakly contractible because $\Omega^{n+1}Y \in \mathsf{C}^{\geq 1}$.

Date: Nov. 15, 2024.

Definition 1.8. Let C be a stable ∞ -category equipped with a t-structure. The **heart** of this t-structure is defined to be

$$\mathsf{C}^{\heartsuit} := \mathsf{C}^{\leq 0} \cap \mathsf{C}^{\geq 0}.$$

Theorem 1.9. The ∞ -category $\mathsf{C}^{\triangledown}$ is an ordinary abelian category. Moreover, $0 \to X'' \to X \to X' \to 0$ is a short exact sequence in $\mathsf{C}^{\triangledown}$ iff $X'' \to X \to X'$ is a fiber-cofiber sequence of C contained in $\mathsf{C}^{\triangledown}$.

Sketch. By Lemma 1.7, C° is an ordinary category. It follows it can be identified with $hC^{\leq 0} \cap hC^{\geq 0}$, which is the heart of the triangulated category hC. Now the claims follow from the corresponding well-known claims for triangulated categories.

Warning 1.10. A t-structure is not determined by its heart. Most information in a stable ∞ -category cannot be recovered from the heart. For instance, for $X, Y \in C^{\circ}$, the groups $\operatorname{Ext}^{\bullet}_{C}(X,Y)$ and $\operatorname{Ext}^{\bullet}_{C^{\circ}}(X,Y)$ are not isomorphic in general.

Definition 1.11. Let C and D be stable ∞ -categories equipped with t-structures. For an exact functor $F: C \to D$, we say

- the functor F is **left t-exact** if it sends $C^{\geq 0}$ into $D^{\geq 0}$
- the functor F is **right t-exact** if it sends $C^{\leq 0}$ into $D^{\leq 0}$
- the functor F is **t-exact** if it is both left t-exact and right t-exact.

Exercise 1.12. Show that the left adjoint of a left t-exact functor is right t-exact.

Exercise 1.13. Construct an exact functor $F : C \to D$ that preserves the hearts but is not t-exact.

2. Cohomologies

Proposition-Definition 2.1. Let C be a stable ∞ -category equipped with a t-structure. For any n, the inclusion functor $C^{\leq n} \to C$ admits a right adjoint $\tau^{\leq n}$, and the inclusion functor $C^{\geq n} \to C$ admits a left adjoint $\tau^{\geq n}$. These functors are called the **truncation functors** for the t-structure.

Remark 2.2. One can memorize the above handedness as $C^{\leq 0} \longleftrightarrow C \longleftrightarrow C^{\geq 1}$.

Exercise 2.3. Prove the above proposition by verifying the following claim. Let $X \in C$ and $X' \to X \to X''$ be any fiber-cofiber sequence with $X' \in C^{\leq 0}$ and $X'' \in C^{\geq 1}$, then

(1) For any $Y \in C^{\leq 0}$, the morphism $X' \to X$ induces equivalences

$$\mathsf{Maps}_\mathsf{C}(Y,X') \xrightarrow{\simeq} \mathsf{Maps}_\mathsf{C}(Y,X).$$

(2) For any $Z \in C^{\geq 1}$, the morphism $X \to X''$ induces equivalences

$$\mathsf{Maps}_{\mathsf{C}}(X,Z) \xrightarrow{\simeq} \mathsf{Maps}_{\mathsf{C}}(X'',Z).$$

Deduce that $X' \simeq \tau^{\leq 0} X$ and $X'' \simeq \tau^{\geq 1} X$.

Exercise 2.4. We have Cartesian squares

In particular, $C^{\leq 0}$ and $C^{\geq 0}$ determine each other.

Exercise 2.5. The full sub- ∞ -category $C^{\leq 0} \subseteq C$ is stable under colimits, while $C^{\leq 0} \subseteq C$ is stable under limits.

Exercise 2.6. A limit in $C^{\leq 0}$ is isomorphic to the $\tau^{\leq 0}$ -truncation of the corresponding limit in C. Dually, a colimit in $C^{\geq 0}$ is isomorphic to the $\tau^{\geq 0}$ -truncation of the corresponding colimit in C.

2.7. The following exercises say that for a fiber-cofiber sequence $X' \to X \to X''$, amplitude estimations of two terms give an estimation for the third one.

Exercise 2.8. Let $X' \to X \to X''$ be a fiber-cofiber sequence.

- (1) If $X', X'' \in C^{\leq 0}$, then $X \in C^{\leq 0}$.
- (2) If $X \in C^{\leq 0}$ and $X'' \in C^{\leq -1}$, then $X' \in C^{\leq 0}$. (3) If $X \in C^{\leq 0}$ and $X' \in C^{\leq 1}$, then $X'' \in C^{\leq 0}$.

In particular, the full sub- ∞ -categories $C^{\leq 0} \subseteq C \supseteq C^{\geq 0}$ are stable under extensions.

Exercise 2.9. Give examples to show the above estimations are optimal.

Exercise 2.10. The truncation functors $\tau_{\leq \bullet}$ and $\tau_{\geq \bullet}$ commute with each other.

Remark 2.11. The precise meaning of the above exercise consists of the following. For m and n, we have

- $\tau_{\geq m} \circ \tau_{\geq n} \simeq \tau_{\geq \max\{m,n\}}, \ \tau_{\leq m} \circ \tau_{\leq n} \simeq \tau_{\leq \max\{m,n\}}.$
- The commutative square

$$\begin{array}{cccc}
C^{\leq m} \cap C^{\geq n} & \xrightarrow{\subseteq} & C^{\leq m} \\
\downarrow^{\subseteq} & & \downarrow^{\subseteq} \\
C^{\geq n} & \xrightarrow{\subseteq} & C
\end{array}$$

is left adjointable along the horizontal direction, and the induced commutative square

$$\begin{array}{c|c}
C^{\leq m} \cap C^{\geq n} & \xrightarrow{\tau^{\geq n}} C^{\leq m} \\
\downarrow^{\subseteq} & \downarrow^{\subseteq} \\
\downarrow^{C^{\geq n}} & \xrightarrow{\tau^{\geq n}} C^{\leq m}
\end{array}$$

is right adjointable along the vertical direction, i.e., induces a commutative square

$$\begin{array}{c|c} \mathsf{C}^{\leq m} \cap \mathsf{C}^{\geq n} & \xrightarrow{\tau^{\geq n}} \mathsf{C}^{\leq m} \\ \hline \tau^{\leq m} & & \tau^{\leq m} \\ \mathsf{C}^{\geq n} & \longleftarrow \mathsf{C} \end{array}$$

Definition 2.12. Let C be a stable ∞-category equipped with a t-structure. Consider the functor

$$\mathsf{H}^n:\mathsf{C}\xrightarrow{\tau^{\leq n}\circ\tau^{\geq n}}\mathsf{C}^{\leq n}\cap\mathsf{C}^{\geq n}\xrightarrow{[-n]}\mathsf{C}^{\lozenge}.$$

For $X \in C$, we call $H^n(X) \in C^{\circ}$ the n-th cohomology of X.

Warning 2.13. It may happen that $H^n(X) \simeq 0$ while X is not isomorphic to 0. For instance, $C^{\leq 0} := C$ and $C^{\geq 0} := \{0\}$ give a t-structure with $C^{\circ} \simeq \{0\}$. There are lots of interesting examples in

- non-regular algebraic geometry
- infinite type algebraic geometry
- infinite dimensional representation theory
- ..
- 2.14. The following result follows from the corresponding well-known result for triangulated categories.

Proposition 2.15. Let C be a stable ∞ -category equipped with a t-structure. For any fiber-cofiber sequence $X' \to X \to X''$, we have a long exact sequence in C°

$$\cdots \to \mathsf{H}^n(X') \to \mathsf{H}^n(X) \to \mathsf{H}^n(X'') \overset{\delta}{\to} \mathsf{H}^{n+1}(X') \to \cdots,$$

where the connecting morphism δ is induced by the morphism $X'' \to X'[1]$.

2.16. The following result relates t-exact functors with exact functors between the hearts.

Exercise 2.17. Let $F: C \to D$ be a left t-exact functor. Show that the composition

$$\mathsf{H}^0F:\mathsf{C}^{\Diamond}\to\mathsf{C}^{\geq0}\xrightarrow{F}\mathsf{D}^{\geq0}\xrightarrow{\tau^{\leq0}}\mathsf{D}^{\Diamond}$$

is left exact.

Warning 2.18. As in Warning 1.10, even a t-exact functor F cannot be recovered from H^0F .

Remark 2.19. Next time, we will define various versions of derived ∞ -categories of an abelian categories A, which are equipped with t-structures whose hearts can be identified with A. By definition, all information about these derived ∞ -categories can be recovered from A.

Under certain assumptions, a left/right t-exact functor F out of these derived ∞ -categories can be identified with the right/left derived functor of H^0F .

3. Bounded, separated and complete

Definition 3.1. Let C be a stable ∞ -category equipped with a t-structure. For an object $X \in C$,

- we say X is **connective** if $X \in C^{\leq 0}$;
- we say X is **coconnective** if $X \in C^{\geq 0}$;
- we say X is n-connective if $X \in C^{\leq -n}$;
- we say X is n-coconnective if $X \in C^{\geq -n}$;
- we say X is eventually connective, or right bounded if

$$X \in \mathsf{C}^- \coloneqq \mathsf{I} \mathsf{I} \mathsf{C}^{\leq n}$$

• we say X is eventually coconnective, or left bounded if

$$X \in C^+ := | | C^{\geq n}$$

• we say X is bounded if X is both left bounded and right bounded:

$$X \in \mathsf{C}^\mathsf{b} \coloneqq \mathsf{C}^\mathsf{+} \bigcap \mathsf{C}^\mathsf{-}.$$

Warning 3.2. As in Warning 2.13, the above properties cannot be tested via the cohomologies.

Exercise 3.3. Show that if X is left bounded, then $X \in C^{\geq 0}$ iff $H^i(X) \simeq 0$ for i < 0.

5

Definition 3.4. Let C be a stable ∞ -category equipped with a t-structure.

- We say C is **right bounded** if $C \simeq C^-$.
- We say C is **left bounded** if $C \simeq C^+$.
- We say C is **bounded** if $C \simeq C^b$.
- We say C is right separated if

$$\mathsf{C}^{\geq \infty} \coloneqq \bigcap_{n} \mathsf{C}^{\geq n} \simeq \{0\}.$$

• We say C is left separated if

$$\mathsf{C}^{\leq -\infty}\coloneqq \bigcap_n \mathsf{C}^{\leq n} \simeq \{0\}.$$

Definition 3.5. Let C be a stable ∞ -category equipped with a t-structure. The **left** completion \widehat{C} of C is defined to be the limit of the following diagram

$$\cdots \xrightarrow{\tau} \mathsf{C}^{\geq -2} \xrightarrow{\tau} \mathsf{C}^{\geq -1} \xrightarrow{\tau} \mathsf{C}^{\geq 0} \xrightarrow{\tau} \cdots.$$

We say C is **left complete** if the functor $C \to \widehat{C}$ is an equivalence. Dually, the **right completion** is defined to be the limit of

$$\cdots \xrightarrow{\tau} \mathsf{C}^{\leq 2} \xrightarrow{\tau} \mathsf{C}^{\leq 1} \xrightarrow{\tau} \mathsf{C}^{\leq 0} \xrightarrow{\tau} \cdots$$

Exercise 3.6. Show that the right completion of C is equivalent to $Sptr(C^{\leq 0})$.

Exercise 3.7. Show that the left completion \widehat{C} is stable and the functor $C \to \widehat{C}$ is exact.

Exercise 3.8. Show that the left completion \widehat{C} admits an essential unique t-structure such that $C^{\geq 0} \xrightarrow{\simeq} (\widehat{C})^{\geq 0}$.

Exercise 3.9. Show that C is left separated iff the functor $C \to \widehat{C}$ detects zero objects. In particular, C is left separated if it is left complete.

Warning 3.10. A left separated t-structure may not be left complete. For example, any left bounded t-structure is left separated, but is almost never left complete.

Exercise 3.11. Suppose C admits countable products and $C^{\leq 0} \subseteq C$ is stable under countable products¹. Then C is left separated iff it is left complete.

Exercise 3.12. Show that C is left complete iff it is Postnikov complete. The latter means

• Every object $X \in C$ is the limit of its **Postnikov tower**:

$$X \simeq \lim \left[\cdots \to \tau^{\geq n-1} X \to \tau^{\geq n} X \to \tau^{\geq n+1} X \to \cdots \right]$$

• Any **Postnikov tower** in C converges. In other words, any collection $X_n \in \mathbb{C}^{\geq n}$ equipped with isomorphisms $\tau^{\geq n} X_{n-1} \xrightarrow{\tilde{\rightarrow}} X_n$ is the Postnikov tower of

$$X\coloneqq \lim \left[\cdots \to X_{n-1} \to X_n \to X_{n+1} \to \cdots \right] \in \mathsf{C}$$

¹These conditions are often referred as: taking countable products is right t-exact.

4. t-structures on presentable stable ∞-categories

Proposition-Definition 4.1 (HA.1.4.4.13). Let C be a presentable stable ∞ -category equipped with a t-structure. The following conditions are equivalent:

- The ∞ -category $C^{\leq 0}$ is presentable.
- The ∞ -category $C^{\leq 0}$ is accessible.
- The ∞ -category $C^{\geq 0}$ is presentable.
- The ∞ -category $C^{\geq 0}$ is accessible.
- The composition $C \xrightarrow{\tau_{\leq 0}} C^{\leq 0} \to C$ is accessible.
- The composition $C \xrightarrow{\tau_{\geq 0}} C^{\geq 0} \to C$ is accessible.

We say a t-structure on C is accessible if it satisfies the above conditions.

Proposition 4.2 (HA.1.4.4.11). Let C be a presentable stable ∞ -category. A full $sub-\infty$ -category $C' \subseteq C$ determines an accessible t-structure with $C^{\leq 0} \simeq C'$ iff

- C' is accessible
- $C' \subseteq C$ is closed under colimits and extensions.

Remark 4.3. In practice, one can apply the above proposition to the smallest full sub- ∞ -category C' generated by a small collection of objects under small colimits and extensions. Such C' is always accessible.

Definition 4.4. Let C be a presentable stable ∞ -category. We say a t-structure on C is **compatible with filtered colimits** if taking filtered colimits is t-exact.

Exercise 4.5. Let C be a presentable stable ∞ -category equipped with a t-structure. Show that the following are equivalent:

- The t-structure is compatible with filtered colimits.
- The embedding $C^{\geq 0} \subseteq C$ is stable under filtered colimits.
- $\tau^{\leq 0}$ preserves filtered colimits.

Remark 4.6. Note that $\tau^{\geq 0}$ and $C^{\leq 0} \subseteq C$ always preserve any colimits because they admit right adjoints.

Definition 4.7. Let C be a presentable stable ∞ -category. We say a t-structure on C is **compactly generated** if $C^{\leq 0}$ is compactly generated, and the functor $C^{\leq 0} \to C$ preserves compact objects.

Exercise 4.8. Show that any compactly generated t-structure is accessible and compatible with filtered colimits.

Exercise 4.9. Let C be a presentable stable ∞ -category equipped with a right complete t-structure. Show that the following is equivalent:

- The t-structure is compactly generated.
- The ∞ -category $C^{\leq 0}$ is compactly generated.

Moreover, under these conditions, C is compactly generated, and compact objects in C are given by Y[n] for some compact object Y in $C^{\leq 0}$ and integer n.

Exercise 4.10. Let C_0 be a small stable ∞ -category equipped with a bounded t-structure. Show that $C := Ind(C_0)$ has a compactly generated right complete t-structure with $C^{\leq 0} := Ind(C_0^{\leq 0})$.

Warning 4.11. The above t-structure on $Ind(C_0)$ is in general not left complete. There are lots of interesting examples in the settings listed in Warning 2.13.

LECTURE 16 7

Warning 4.12. Compact objects in C may not be closed under truncations. Hence not all compactly generated t-structures come from ind-completion. There are lots of interesting examples in the settings listed in Warning 2.13.

5. t-structure on Sptr

Proposition-Construction 5.1 (HA.1.4.3.4). Let C be a pointed presentable ∞ -category. We have an accessible t-structure on Sptr(C) given by the following.

- Let $\operatorname{Sptr}(\mathsf{C})^{\geq 1}$ be the full $\operatorname{sub-\infty-category}$ of objects X such that $\Omega^{\infty}(X) \simeq 0$.
- Let $\operatorname{Sptr}(\mathsf{C})^{\leq 0}$ be the full $\operatorname{sub-\infty-category}$ generated by the essential image of the functor Σ^{∞} under extensions and small colimits.

Proposition 5.2 (HA.1.4.3.6). Let Sptr be equipped with the above t-structure. Then

- (1) This t-structure is compactly generated², left complete and right complete.
- (2) The Eilenberg-Maclane spectrum functor $A \mapsto \mathbb{H} A$ gives an equivalence $Ab \stackrel{\simeq}{\to} \mathsf{Sptr}^{\triangledown}$.

Exercise 5.3. Show that the cohomology functor $H^i: \operatorname{Sptr} \to \operatorname{Sptr}^{\circ}$ can be identified with π_{-i} via the equivalence $\operatorname{Ab} \xrightarrow{\simeq} \operatorname{Sptr}^{\circ}$.

Warning 5.4. Let A_1 and A_2 be abelian groups. In general, the extension groups $\operatorname{Ext}^i_{\operatorname{Sptr}}(\mathbb{H}A_1,\mathbb{H}A_2)$ and $\operatorname{Ext}^i(A_1,A_2)$ are not isomorphic. For instance, the graded ring $\operatorname{Ext}^{\bullet}_{\operatorname{Sptr}}(\mathbb{HF}_q,\mathbb{HF}_q)$ is the **mod** p **Steenrod algebra**.

5.5. Next time, we will construct a natural homomorphism

$$\operatorname{Ext}^{i}(A_{1}, A_{2}) \to \operatorname{Ext}^{i}_{\operatorname{Sptr}}(\mathbb{H}A_{1}, \mathbb{H}A_{2})$$

which should be viewed as derived direct images along $Spec \mathbb{Z} \to Spec \mathbb{S}$.

Appendix A. Prestable ∞-categories

A.1. Let C be a stable ∞ -category equipped with a t-structure. Sometimes it is more convenient to study $C^{\leq 0}$ rather than C. It is possible to find several axioms that characterize ∞ -categories of the form $C^{\leq 0}$. Such ∞ -categories are called **prestable** ∞ -categories.

A.2. Suggested readings. SAG.C.

 $^{^2\}mathrm{Compact}$ generation is not proved in HA, but it follows from the fact that Spc_\star is compactly generated.