Escuela Rafael Díaz Serdán Ciencias y Tecnología: Química 3° de Secundaria (2022-2023) Examen de la Unidad 3

Prof.: Julio César Melchor Pinto

mbre del alumno:	Fecha	•	
nstrucciones: Lee con atención cada pregunta y realiza lo que se te pide. De ser necespacio determinado para cada pregunta o en una hoja en blanco por se completo, el número del problema y la solución propuesta.			
prendizajes a evaluar:	_ Califica		
Argumenta acerca de posibles cambios químicos en un sistema con	Pregunta	Puntos	Obtenido
base en evidencias experimentales.	1	20	
Reconoce y valora el uso de reacciones químicas para sintetizar	2	10	
nuevas sustancias útiles o eliminar sustancias indeseadas.	3	10	
Reconoce la utilidad de las reacciones químicas en el mundo actual.	4	10	
	5	15	
Explica, predice y representa cambios químicos con base en la se- paración y unión de átomos o iones, y se recombinan para formar	6	20	
nuevas sustancias.	7	15	
	Total	100	
Calcula: 1a Los moles de sustancia introducidos.			
b ¿Cuántas moléculas de CO ₂ y átomos de carbono y de oxígeno hay	en el recipien	te?	
1b) ¿Cuántas moléculas de CO ₂ y átomos de carbono y de oxígeno hay	en el recipien	te?	

- 2 [10 puntos] Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.
 - $2 \text{Na} + \text{ZnI}_2 \longrightarrow 2 \text{NaI} + \text{Zn}$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - **D.** Doble desplazamiento
 - (2c) Zn(s) + 2 HCl(ac) \longrightarrow ZnCl₂(ac) + H₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (2d) 2 C(s) + O₂(g) \longrightarrow 2 CO(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - $2 \text{Na} + \text{H}_2\text{O} \longrightarrow 2 \text{NaOH} + \text{H}_2$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento

- 2f 2 Al(s) + 3 S(s) \longrightarrow Al₂S₃(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (2g) Mg(s) + H₂O(l) \longrightarrow Mg(OH)₂(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- $2 \operatorname{NaCl}(s) \longrightarrow 2 \operatorname{Na}(s) + \operatorname{Cl}_2(g)$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (2j) SO₂(g) + H₂O(l) \longrightarrow H₂SO₃(ac)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- [10 puntos] El peso molecular de la sacarosa, $C_{12}H_{22}O_{11}$, es 342.3 g/mol. ¿Cuál es la masa en gramos de 0.287 moles de sacarosa? Expresa la respuesta con 3 cifras significativas.

KBr

119.0

4 [10 puntos] Ba	dancea la siguient	e ecuación química	<i>:</i>
		HgO -	$\longrightarrow \mathrm{Hg} + \mathrm{O}_2$
[15 puntos] Ha	ılla la masa de ozo	ono O_3 , que contien	ne 1×10^{25} átomos de oxígeno.
	on base en la info taje de potasio		a 1, ¿cuál de los siguientes compuestos contiene el
\square KNO $_3$ \square F	KF 🗆 KClO	□ KBr	
Tabla 1: Co	ompuestos que con	ntienen potasio	
Compuesto	$egin{array}{c} { m Masa \ molar} \ { m (g/mol)} \end{array}$	Porcentaje de potasio (%)	
KNO ₃	101.1	<u> </u>	
KF	58.1		
KClO	90.6		

		.70 g contiene 0.	.0109 mol de ácido	ascórbico ($C_6H_8O_6$). (La m
molar de $C_6H_8O_6$ es				
-	ntaje de masa de C_6H	${}^{1}_{8}\mathrm{O}_{6}$ en la tab 1	leta?	
Escribe tu respuesta	en notación científica.			