Chapitre 2 Rapidité des systèmes Savoirs et compétences: Mod3.C2: pôles dominants et réduction de l'ordre du modèle: principe, justifient Res2.C4: stabilité des SLCI: définition entrée bornée – sortie bornée (EB – SB) Res2.C5: stabilité des SLCI: équation caractéristique Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe

٦	Mod3 C2	pôles dominants	et réduction de	l'ordre du mo	dèle ·	nrincine.	instification
-	1110u3.C2.	poics dominants	ci icaaciioii ac	i orare au mo	ucic.	ριπιτιρτ,	justincation

- Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe
- Res2.C7 : stabilité des SLCI : marges de stabilité (de gain et de phase)

1	Rappel : rapidité dans le domaine temporel	2
1.1	Temps de réponse à 5%	2
1.2	Temps de montée	2
2	Résultat dans le diagramme de Bode	2

1 Rappel : rapidité dans le domaine temporel

1.1 Temps de réponse à 5%

Méthode — Détermination du temps de réponse à n%. (En pratique n=5).

- 1. Tracer sur le même graphe la consigne e(t) et la réponse du système s(t).
- 2. Tracer la droite correspondant à la valeur asymptotique de s(t).
- 3. Tracer la bande correspondant à une variation de $\pm n\%$ de la valeur asymptotique.
- 4. Relever la dernière valeur à partir de laquelle s(t) coupe la bande et n'en sort plus.

Temps (s)

Résultat Plus le temps de réponse à 5% d'un système est petit, plus le régime transitoire disparaît rapidement.

■ Exemple Donner le temps de réponse à 5% de la réponse à un échelon donné dans la figure suivante.

Les pièges du temps de réponse à 5%:

- le temps de réponse à 5% se mesure à plus ou moins 5% de la sortie (et pas de l'entrée). Ainsi, si le système est stable, le temps de réponse n'est jamais l'infini;
- si le signal ne part pas de 0 (en ordonnée), il faut réaliser la bande à $S_0 + \Delta s \pm$ $0.05\Delta s$;
- si le signal ne part pas de 0 (en abscisse), il faut tenir compte du décalage des temps.

1.2 Temps de montée

Pour caractériser la rapidité d'un système, on peut aussi utiliser le temps de montée. Il s'agit du temps nécessaire pour passer de 10% à 90% de la valeur finale. Ce temps de montée caractériser la « vivacité » d'un système.

2 Résultat dans le diagramme de Bode Références

- [1] Frédéric Mazet, Cours d'automatique de deuxième année, Lycée Dumont Durville, Toulon.
- [2] Florestan Mathurin, Stabilité des SLCI, Lycée Bellevue, Toulouse, http://florestan.mathurin.free.fr/.