Cogr	noms:					Nom: .			
1er Control Arquitectura de Computadors						Cur	Curs 2010-2011 Q2		
Un comp	na 1. (4 punto outador está fo de componente	rmado por los	•			_			nuestra el
	Componente	Fuente alimentación	СРИ	Ventilador CPU	Placa base	DIMMs	Disco duro	SSD *	
	Nº	1	1	1	1	4	1	1	
	MTTF (horas)	125.000	1.000.000	100.000	200.000	1.000.000	100.000	500.000	
El tiempo	olid State Disc (o o medio para re cula el tiempo r	eemplazar un d	component	•	-	time to rep	oair) es de 10	O horas.	
	cula el tiempo r		·).					
La CPU do	e este sistema n nm². El coste e	tiene una supe	erficie de 20						
MJoules.	Durante este ples por dado y e	proceso el fact	or de yield	es del 80%.	El coste de	empaqueta	ado y test fi		
d) Cal	cula el coste en	ergético de ur	n dado (ant	es del empa	quetado y 1	testeo final)).		
′									
e) Cal o	cula el coste en	ergético final	de una CPL	J.					

5 September 2011 11:16 am 1/5

	este sistema tenemos instalado el entorno usado en el laboratorio de AC y hemos medido que un programa se ha cutado en 2 segundos usando 6x10 ⁹ ciclos y ha ejecutado 4,8x10 ⁹ instrucciones
f)	Calcula el CPI del programa y la frecuencia de la CPU (usa el prefijo del sistema internacional más adecuado).
com prog acce	empo de ejecución calculado anteriormente se corresponde al tiempo de CPU (usuario + sistema). Usando el nando "time" de linux hemos obtenido que el tiempo de CPU representa solo el 20% del tiempo total del grama (wall time). El 80% restante es tiempo de entrada/salida (accesos al disco duro concretamente). Cada eso al disco duro tarda 8 milisegundos, mientras que si los datos estuviesen en el disco SSD cada acceso tardaría microsegundos.
g)	Calcula la ganancia en la parte de entrada salida si los datos del programa estuviesen en el SSD en lugar de el disco duro.
h)	Calcula la ganancia total en el programa a partir de la ganancia en entrada salida.
	eno rendimiento la CPU tiene una carga capacitiva equivalente de 16 nF (nanoFaradios), funciona a un voltaje de 5 V y una frecuencia de 2GHz. Se ha determinado que esta CPU tiene una corriente de fugas de 8 A.
i)	Calcula la potencia media debida a fugas, la debida a conmutación y la total cuando la CPU esta a pleno rendimiento.
bajo	CPUs actuales, cuando no están a plena carga, reducen el voltaje y la frecuencia para ahorrar energía. En modo o consumo nuestra CPU consume tan solo 20 W. Sabemos que nuestro sistema está 4 horas diarias en modo alto dimiento, 10 horas en modo bajo consumo y el resto esta totalmente apagado (consumo 0 W).
j)	Calcula la energía que ahorramos cada día gracias a la reducción de frecuencia y voltaje de la CPU (usa el prefijo del sistema internacional más adecuado).
	r ^r

5 September 2011 11:16 am 2/5

Cognoms:	. Nom:
1er Control Arquitectura de Computadors	Curs 2010-2011 Q2

Problema 2. (3 puntos)

Dado el siguiente código escrito en C:

```
typedef struct {
  int a;
  char b;
  char c;
  double d;
} s1;

typedef struct {
  short e[5];
  s1 f;
} s2;

short F(s1 *alto, int bola, char *cola);
int examina(s1 uno, char dos, s2 *tres) {
  char v11;
  int v12;
  ...
}
```

a) **Dibuja** como quedarían almacenadas en memoria las estructuras s1 y s2, indicando claramente los deplazamientos respecto al inicio y el tamaño de todos los campos.

b) **Dibuja** el bloque de activación de la función examina, indicando claramente los desplazamientos relativos al registro EBP necesarios para acceder a los parámetros y a las variables locales.

5 September 2011 11:16 am 3 / 5

c) Traduce la siguiente sentencia a ensamblador del x86, suponiendo que está dentro de la función examina:
vl1=dos+uno.b;
d) Traduce la siguiente sentencia a ensamblador del x86, suponiendo que está dentro de la función examina:
tres->e[1]=F(&uno, vl2, &uno.c);
e) Traduce la siguiente sentencia a ensamblador del x86, suponiendo que está dentro de la función examina:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<pre>vl2 = tres->f.a;</pre>

5 September 2011 11:16 am 4/5

Cognoms:	. Nom:
1er Control Arquitectura de Computadors	Curs 2010-2011 Q2

Problema 3. (3 puntos)

Dado el siguiente código escrito en C:

```
int Exa(int v[], int x);
int XProb3(int v[], int *p, int m){
 int i;
 for (i=0; i<1000000; i++)
   v[i] += Exa(v, *p);
 return *p + m;
}
```

- a) **Dibuja** el bloque de activación de de la subrutina Xprob3.
- b) **Traduce** a ensamblador del x86 la subrutina Xprob3.

5/5 5 September 2011 11:16 am