Notatki - Matematyka

Adrian Startek

Studia I stopnia

Spis treści

Ι	\mathbf{Se}	mestr	r I		1		
1	Elementy logiki i teorii mnogości						
	1.1	Podst	awowe definicje i oznaczenia		3		
		1.1.1	Zbiory liczbowe		3		
		1.1.2	Kwantyfikatory		4		
	1.2	Rachu	ınek zdań logicznych		4		
					4		
		1.2.2	Ważniejsze tautologie		6		
	1.3	Rachu	ınek zbiorów		6		
		1.3.1			6		
		1.3.2	Relacje		7		
2	Alg	ebra li	iniowa		9		
	_		anie, grupa, ciało		9		
			Liczby zespolone		10		
3	Ana	aliza m	natematyczna		15		

Część I

Semestr I

Rozdział 1

Elementy logiki i teorii mnogości

1.1 Podstawowe definicje i oznaczenia

Definicja 1.1.1. Zdanie logiczne: zdanie, któremu można przyporządkować wartość logiczną "prawda"(1) lub "falsz"(0).

Definicja 1.1.2. Tautologia: zdanie logiczne, które zawsze jest prawdziwe.

Definicja 1.1.3. Funkcja zdaniowa $\phi(x)$: wyrażenie, które po podstawieniu konkretnej wartości x staje się zdaniem logicznym.

Definicja 1.1.4. Para uporządkowana (x,y): zbiór $\{\{x\}, \{x,y\}\}$. Elementem pierwszym w parze jest ten, który jest elementem obu zbiorów, co jednoznacznie określa kolejność.

1.1.1 Zbiory liczbowe

 $\mathbb N$ - zbiór liczb naturalnych

 $\mathbb Z$ - zbiór liczb całkowitych

 \mathbb{Q} - zbiór liczb wymiernych

 $\mathbb R$ - zbiór liczb rzeczwistych

Fakt należenia elementu x do zbioru A oznacza się przez $x \in A$. Analogicznie, "x nie należy do zbioru A" ocznacza się $x \notin A$.

Zbiór można definiować podając jego elementy wprost: $A = \{a, b, c\}$ lub zadając warunek na przynależność elementów do zbioru: $A = \{x \in X : \phi(x)\}$.

1.1.2 Kwantyfikatory

Kwantyfikator ogólny. Wyrażenie "dla każdego x należącego do X zachodzi $\phi(x)$ " oznacza się: $\forall_{x \in X} \phi(x)$

Kwantyfikator szczególny. Wyrażenie "istnieje x należący do X, dla którego zachodzi $\phi(x)$ " oznacza się: $\exists_{x \in X} \phi(x)$

Zaprzeczenia kwantyfikatorów. Zachodzi:

$$\neg [\,\forall_{x \in \mathbb{R}} \, \phi(x)\,] \Leftrightarrow \exists_{x \in \mathbb{R}} \, \neg \phi(x)$$

$$\neg [\,\exists_{x \in \mathbb{R}} \, \phi(x)\,] \Leftrightarrow \forall_{x \in \mathbb{R}} \, \neg \phi(x)$$

$$\neg [\, \forall_{x \in \mathbb{R}} \, \phi(x) \lor \psi(x) \,] \Leftrightarrow \exists_{x \in \mathbb{R}} \, \neg \phi(x) \land \neg \psi(x)$$

$$\neg [\exists_{x \in \mathbb{R}} \phi(x) \land \psi(x)] \Leftrightarrow \forall_{x \in \mathbb{R}} \neg \phi(x) \lor \neg \psi(x)$$

1.2 Rachunek zdań logicznych

1.2.1 Ważniejsze operacje na zdaniach

Negacja Wartością negacji zdania logicznego jest wartość odwrotna do wartości tego zdania (tabela 1.1).

Tabela 1.1: Negacja

$$\begin{array}{c|c} p & \neg p \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$

Alternatywa Alternatywa przyjmuje wartość "prawda", jeśli co najmniej jedno ze zdań jest prawdziwe (tabela 1.2).

Tabela 1.2: Alternatywa

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

Tabela 1.3: Koniunkcja

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Koniunkcja Koniunkcja przyjmuje wartość "prawda", tylko jeśli oba zdania są prawdziwe (tabela 1.3).

Implikacja Implikacja $(p \Longrightarrow q)$ jest prawdziwa, jeśli zarówno poprzednik (p) jak i następnik (q) są prawdziwe lub **poprzednik jest fałszywy (z fałszu wynika wszystko)**. (tabela 1.4)

Tabela 1.4: Implikacja

p	q	$p \Longrightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Równoważność Równoważność przyjmuje wartość "prawda" jeśli oba zdania mają tą samą wartość (tabela 1.5).

Tabela 1.5: Równoważność

p	q	$p \Leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Kreska Sheffera (NAND) Zaprzeczenie koniunkcji (tabela 1.6).

NOR Zaprzeczenie alternatywy (tabela 1.7).

Twierdzenie 1.2.1. Za pomocą NAND lub NOR można wyrazić wszystkie inne funktory.

Tabela 1.6: NAND

p	q	$p \mid q$
0	0	1
0	1	1
1	0	1
1	1	0

Tabela 1.7: NOR

p	q	$p \downarrow q$
0	0	1
0	1	0
1	0	0
1	1	0

1.2.2 Ważniejsze tautologie

$p \Longrightarrow p$	(prawo tożsamości)
$p \Longrightarrow (q \Longrightarrow p)$	(prawo symplifikacji)
$p \Leftrightarrow \neg(\neg p)$	(prawo podwójnej negacji)
$p \lor \lnot p$	(prawo wyłączonego środka)
$(\neg p \Longrightarrow p) \Longrightarrow p$	
$\neg p \Longrightarrow (p \Longrightarrow q)$	(prawo Dunsa Szkota)
$\neg(p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$	(prawo De Morgana)
$\neg(p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$	(prawo De Morgana)
$\neg(p \Longrightarrow q) \Leftrightarrow p \land (\neg q)$	
$\neg(p \Leftrightarrow q) \Leftrightarrow (p \land \neg q) \lor (\neg p \land q)$	

1.3 Rachunek zbiorów

1.3.1 Operacje i zależności

Zawieranie. Zbiór A zawiera się w zbiorze B (A jest podzbiorem B), ozn. $A \subset B$, jeśli każdy element zbioru A jest również elementem zbioru B:

$$A \subset B \Leftrightarrow \forall_{x \in A} \, x \in B$$

Równość. Zbiory A i B są równe, jeśli są one nawzajem swoimi podzbiorami:

$$A = B \Leftrightarrow A \subset B \land B \subset A$$

Działania na zbiorach. Definiuje się działania:

$$A \cup B = \{ x : x \in A \lor x \in B \}$$
 (Suma zbiorów)
$$A \cap B = \{ x : x \in A \land x \in B \}$$
 (Iloczyn zbiorów)
$$A \setminus B = \{ x : x \in A \land x \notin B \}$$
 (Różnica zbiorów)
$$A \times B = \{ (a,b) : a \in A, b \in B \}$$
 (Iloczyn kartezjański)

Dopełnienie zbioru.

Definicja 1.3.1. Dopelnieniem zbioru $A \subset C$ do zbioru C nazywa się zbiór wszystkich elementów należących do C, które nie należą do A:

Własności dopełnienia. Niech $A \subset X$, $B \subset X$. Wtedy:

$$\langle (A \cup B) = (\backslash A) \cap (\backslash B)$$
$$\langle (A \cap B) = (\backslash A) \cup (\backslash B)$$
$$\langle (\backslash A) = A$$

1.3.2 Relacje

Definicja 1.3.2. Relacją nazywa się dowolny podzbiór iloczynu kartezjańskiego skończonej liczby zbiorów.

Niech R będzie relacją zadaną na $X \times X$ (tj. R jest relacją dwuargumentową, która przyjmuje za argumenty elementy X). Dodatkowo, niech xRy oznacza wyrażenie "pomiędzy x a y zachodzi relacja R". Wtedy:

R jest relacją zwrotną $\Leftrightarrow \forall_{x \in X} x R x$

R jest relacją przeciwzwrotną $\Leftrightarrow \forall_{x \in X} \neg (xRx)$

R jest relacją symetryczną $\Leftrightarrow \forall_{x,y \in X} (xRy \Longrightarrow yRx)$

R jest relacją słabo antysymetryczną $\Leftrightarrow \forall_{x,y \in X} (xRy \land yRx \Longrightarrow x = y)$

R jest relacją antysymetryczną $\Leftrightarrow \forall_{x,y \in X} (xRy \Longrightarrow \neg (yRx))$

R jest relacją przechodnią $\Leftrightarrow \forall_{x,y,z\in X} (xRy \land yRz \Longrightarrow xRz)$

R jest relacją spójną $\Leftrightarrow \forall_{x,y \in X} (xRy \lor yRx \lor y = x)$

Rozdział 2

Algebra liniowa

2.1 Działanie, grupa, ciało

Definicja 2.1.1. Niech G będzie dowolnym zbiorem. **Działaniem** (dwuargumentowym) w zbiorze G nazywamy dowolne odwzorowanie $f: G \times G \to G$.

Definicja 2.1.2. Zbiór G z określonym działaniem \circ - parę (G, \circ) nazwiemy grupą, jeśli spełnione są następujące warunki:

1. $Działanie \circ jest lączne$:

$$\forall_{a,b,c \in G} \left[\left(\, a \circ b \, \right) \circ c = a \circ \left(\, b \circ c \, \right) \, \right]$$

2. Istnieje element neutralny e:

$$\exists_{e \in G} \, \forall_{a \in G} \, (\, a \circ e = e \circ a = a \,)$$

3. Dla każdego elementu a istnieje element odwrotny a^{-1} :

$$\forall_{a \in G} \exists_{a^{-1} \in G} (a \circ a^{-1} = a^{-1} \circ a = e)$$

Jeżeli działanie \circ jest dodatkowo przemienne, to (G, \circ) nazwiemy **grupą przemienną** lub **Abelową** (Niels Henrik Abel - matematyk norweski). Opuszczając natomiast warunek 3 (istnienie elementu odwrotnego) otrzymamy definicję struktury ogólniejszej, zwanej **półgrupą**.

Twierdzenie 2.1.1. *Jeśli* (G, \circ) *jest grupą, to isteniej dokładnie 1 element neutralny.*

Dowód. Załóżmy, że $e, e' \in G$ są elementami neutralnymi. Wtedy:

$$e = e \circ e' = e' \circ e = e'$$

Co prowadzi do sprzeczności.

Twierdzenie 2.1.2. *Jeśli g i h są elementami grupy spełniającymi g* \circ *h* = e, to są one wzajemnie odwrotne.

Twierdzenie 2.1.3. Jeśli (G, \circ) jest grupą oraz $a \in G$ to istnieje dokładnie jeden element odwrotny a^{-1} .

Definicja 2.1.3. Zbiór G z określonymi działaniami "mnożenia" \odot i "dodawania" \oplus - trójke (G, \odot, \oplus) - nazywamy ciałem, jeżeli spełnione są warunki:

1. Oba działania są przemienne:

$$\forall_{a,b\in G} (a\oplus b=b\oplus a)$$

$$\forall_{a,b\in G} (a\odot b = b\odot a)$$

2. Oba działania są łączne:

$$\forall_{a,b,c \in G} [(a \oplus b) \oplus c = a \oplus (b \oplus c)]$$

$$\forall_{a,b,c \in G} [(a \odot b) \odot c = a \odot (b \odot c)]$$

- 3. Istnieje element neutralny dodawania ("zero" O) oraz element neutralny mnożenia ("jeden" 1)
- 4. Dla każdego elementu zbioru G istnieje element odwrotny względem dodawania:

$$\forall_{a \in G} (a \oplus a^{-1} = a^{-1} \oplus a = \mathbb{O})$$

Dla każdego elementu, poza elementem neutralnym dodawania, istnieje element odwrotny względem mnożenia:

$$\forall_{a \in G, a \neq 0} (a \odot a^{-1} = a^{-1} \odot a = 1)$$

5. Zachodzi rozdzielność mnożenia względem dodawania:

$$\forall_{a,b,c \in G} [a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)]$$

6. Elementy neutralne działań są od siebie różne:

$$\mathbb{O} \neq \mathbb{1}$$

2.1.1 Liczby zespolone

Definicja 2.1.4. Niech $\mathbb{C} := \mathbb{R} \times \mathbb{R}$. Określmy działania \oplus, \odot :

$$\oplus$$
 : $(a,b) \oplus (c,d) = (a+c,b+d)$

$$\odot : (a, b) \odot (c, d) = (ac - bd, ad + bc)$$

Trójkę (G, \oplus, \odot) nazywamy ciałem liczb zespolonych.

Postać kartezjańska. Liczby zespolone posiadają naturalną interpretację geometryczną. Są one parami (uporządkowanymi) liczb rzeczywistych, więc można im przypisać punkty na płaszczyźnie. Liczbie $z=(a,b), z\in\mathbb{C}$ odpowiada punkt o odciętej a i rzędnej b. Płaszczyznę, na której w ten sposób przedstawiamy liczby zespolone nazywamy **płaszczyzną Gaussa**.

Postać kanoniczna. Podzbiór ciała $\mathbb C$ złożony z liczb postaci $(x,0), x \in \mathbb R$, również jest ciałem. Odwzorowanie $x \to (x,0)$ z $\mathbb R$ w rozważany podzbiór $\mathbb C$ zadaje izomorfizm ciał. Pozwala to na wprowadzenie utożsamienia $(x,0) \equiv x$. Wprowadźmy oznaczenie i:=(0,1) i nazwijmy ten element **jednostką urojoną**. Łatwo sprawdzić, że:

$$i^2 = (-1, 0) \equiv -1$$

Dowolną liczbę zespoloną z = (a, b) można przedstawić w postaci:

$$z = (a, b) = (a, 0) + (b, 0)(0, 1) \equiv a + bi$$

Zapis liczby zespolonej z w postaci z=a+bi nazywamy **postacią kanoniczną**. Liczbę $a\in\mathbb{R}$ nazywamy **częścią rzeczywistą** liczby zespolonej i oznaczamy $\Re z$ (lub Re(z)). Analogicznie, liczbę $b\in\mathbb{R}$ nazywamy **częścią urojoną** i oznaczamy $\Im z$ (lub Im(z)).

Definicja 2.1.5. Liczbą sprzężoną do liczby z = a + bi nazywamy liczbę

$$\bar{z} = a - bi$$

W interpretacji geometrycznej liczba sprzężona \bar{z} jest odbiciem liczby zwzględem osi odciętych.

Postać trygonometryczna. Niech z = a + bi będzie liczbą zespoloną.

Definicja 2.1.6. Modułem liczby zespolonej nazywamy liczbę

$$r = |z| = \sqrt{z\bar{z}} = \sqrt{a^2 + b^2}$$

Moduł można interpretować jako długość odcinka pomiędzy początkiem układu współrzędnych a punktem reprezentującym liczbę zespoloną.

Niech φ będzie kątem pomiędzy dodatnią półosią rzeczywistą a odcinkiem łączącym początek układu współrzędnych a punktem reprezentującym liczbę zezpoloną. Zachodzi wtedy:

$$r = |z|$$

$$sin\varphi = \frac{b}{|z|} \Longrightarrow b = |z| sin\varphi$$

 $cos\varphi = \frac{a}{|z|} \Longrightarrow a = |z| cos\varphi$

Wynika z tego możliwość przedstawienia liczby zespolonej z=a+bi w postaci:

$$z = a + bi = |z|\cos\varphi + i|z|\sin\varphi = |z|(\cos\varphi + i\sin\varphi)$$

Twierdzenie 2.1.4. Niech $z \in \mathbb{C}$, $z = |z|(\cos\varphi + i\sin\varphi)$. Zachodzi:

$$\forall_{n \in \mathbb{N}} z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi))$$

Twierdzenie 2.1.5. Niech $z \in \mathbb{C}$, $z \neq (0,0)$, $z = |z|(\cos\varphi + i\sin\varphi)$. Istnieje dokładnie n pierwiastków n-tego stopnia z liczby z. k-ty pierwiastek dany jest wzorem:

$$w_k = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right), k \in \langle 0; n - 1 \rangle, k \in \mathbb{N}$$

 $Dow \acute{o}d.$ Niech $w=|w|(cos\alpha+i sin\alpha)$ będzie pierwiastkiem n-tegostopnia z liczby z. Zatem:

$$w^{n} = z$$

$$w^{n} = |w|^{n} (\cos n\alpha + i \sin n\alpha) = |z| (\cos \varphi + i \sin \varphi)$$

$$|w|^{n} = |z| \Longrightarrow |w| = \sqrt[n]{|z|}$$

$$n\alpha = \varphi + 2k\pi \Longrightarrow \alpha = \frac{\varphi + 2k\pi}{n}$$

Rozdział 3

Analiza matematyczna