

Napredni algoritmi i strukture podataka – jesenski ispitni rok

28. kolovoza 2020.

Ovaj ispit donosi ukupno **50 bodova** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Pogrešni odgovori u nekim zadatcima donose negativne bodove (drugi broj u zagradi, iza ;)! Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

- 1. (4; -2) Opišite, sažeto, kako u RB stablu nastaje stanje koje modeliramo pomoću dvostruko crnog čvora. Drugim riječima, objasnite kada se u RB stablu pojavljuje dvostruko crni čvor.
- 2. (10) Potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža (ANN; *Artificial Neural Network*) ima strukturu 2×3×2, pri čemu je aktivacijska funkcija neurona u skrivenom sloju tangens hiperbolni (tanh), dok je u izlaznom sloju aktivacijska funkcija za izlaz 1 sigmoid, a za izlaz 2 je Adaline.

Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (*on-line learning*) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice.

_	ulaz 1	ulaz 2	izlaz 1	izlaz 2
	-1	3	0.4	-2
	-1	6	0.2	-6
	-9	4	-0.4	8
	5	-3	0.4	_9

Početne vrijednosti svih parametara mreže postavite na nula, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko objasnite ulogu te veličine.

Napomena: $tanh(x)=2\sigma(2x)-1$

- 3. (5, -5) Koje su tvrdnje istinite?
 - a) Dinamičko programiranje je posebna vrsta (grana) linearnog programiranja.
 - b) Kada je primjenjiva lakoma (greedy) strategija, primjenjivo je i dinamičko programiranje.
 - c) Kada je primjenjivo dinamičko programiranje, primjenjiva je i lakoma (greedy) strategija.
 - d) Nužan uvjet za primjenu dinamičkog programiranja je preklopljenost podproblema (overlapping subproblems), a dovoljan optimalna podstruktura (optimal substructure) problema.
 - e) Nužan uvjet za primjenu dinamičkog programiranja je optimalna podstruktura (optimal substructure) problema, a dovoljan preklopljenost podproblema (overlapping subproblems).

Napomena: u ovom zadatku se može steći najviše 5 bodova, ali i dobiti do 5 negativnih bodova. Vi navodite tvrdnje koje smatrate istinitima, a prilikom bodovanja će se pretpostaviti da tvrdnje koje niste naveli smatrate neistinitima. Time će Vaši odogovori postati vektor s 5 elemenata ISTINA ili NEISTINA, a bodovanje će se provesti kao binarna usporedba s točnim vektorom. Svaka podudarnost elemenata u vektoru Vaših odgovora i odgovarajućih elemenata u točnom vektoru donijet će 1 bod, a nepodudarnost –1 bod. Jedini način da se ovaj zadatak boduje s nula (0) bodova jest da uopće ništa ne napišete.

- 4. (10) U prazno B-stablo 2. reda upišite redom sljedeće elemente: 26, 4, 22, 16, 30, 17, 31, 20, 6, 1, 21 i 27.
- 5. (9) Bondy-Chvatalovim algoritmom (tj. koristeći Bondy-Chvatalov teorem) pronađite Hamiltonov ciklus u grafu zadanom sljedećom matricom susjedstva (udaljenosti).

	1	2	3	4	5	6
1		7				2
2	7				1	
3				4		3
4			4		3	1
5 6		1		3		4
6	2		3	1	4	

6. (12) Za skup S zadan sljedećim nejednadžbama:

$$z \ge 3$$

 $2x + y + 2z \le 18$
 $-2x + y + 2z \le 6$
 $-y + z \le 4$

- a) (6) Odredite je li skup S neprazan.
- b) (6) Kako biste odredili da li je skup S u prvom ortantu (tj. da li su sve koordinate svih točaka skupa S nenegativne)? Ne trebate provoditi postupak, ali specificirajte sve potrebno za početak postupka te detaljno opišite nastavak postupka.

Napomena: Pod a) i b) se priznaju odgovori nastali na temelju provođenja efikasnih algoritamskih postupaka.

NAPREDNI ALGORITMI I STRUKTURE PODATAKA

1. Jesenski rok

a.g. 2019/2020

ZADATAK 1 (4 2)

OZNAKE: struktura stablo RB

Opišite, sažeto, kako u RB stablu nastaje stanje koje modeliramo pomoću dvostruko crnog čvora. Drugim riječima, objasnite kada se u RB stablu pojavljuje dvostruko crni čvor.

Odgovor 1 bodovi: 4

To se događa prilikom brisanja. Kako u RB stablu brišemo kopiranjem, onda ćemo čvor kojeg brišemo kopirati u neki list, čvor u kojeg smo upisali ono što brišemo premjestiti (kopirati) u čvor kojeg brišemo. Tada se može dogoditi da je taj čvor kojeg je bilo lako obrisati bio crn, a ako je i njegov roditelj crn, onda dolazimo do stanja dvostruko crnog čvora.

ZADATAK 2 (10)

OZNAKE: neuronska mreža backpropagation adaline tanh

Potpuno povezana, unaprijedna (feedforward) troslojna neuronska mreža (ANN; $Artificial\ Neural\ Network$) ima strukturu $2\times3\times2$, pri čemu je sloju tangens hiperbolni (tanh), dok je u izlaznom sloju aktivacijska funkcija za izlaz 1 sigmoid, a za izlaz 2 je Adaline. Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (on-line learning) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice.

ulaz 1	ulaz 2	izlaz 1	izlaz 2
-1	3	0.4	-2
-1	6	0.2	-6
-9	4	-0.4	8
5	-3	0.4	-9

Početne vrijednosti svih parametara mreže postavite na nula, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko objasnite ulogu te veličine.

Napomena: $tanh(x) = 2\sigma(2x) - 1$

Prvo skicirajmo mrežu:

Pojedine tokove u mreži označili smo s I (input), α , β , γ i O (output). Znamo da nam trebaju gradijenti za svaki tok izuzev ulaza, kao i gradijenti za svaki skup parametara. Osim označenih W_1 i W_2 imamo i b_1 i b_2 . Umjesto da pišemo parcijalne derivacije, pisat ćemo gradijent prefiksiran s nablom. Na primjer, umjesto $\frac{\partial \mathcal{L}}{\partial O}$ pišemo ∇O .

Dakle, potrebni su nam sljedeći gradijenti:

- ∇O , $\nabla \gamma$, $\nabla \beta$, $\nabla \alpha$
- ∇W_2 , ∇b_2 , ∇W_1 , ∇b_1

Prvi gradijenti su gradijenti specifičnog toka, tj. točke unutar mreže. Drugi gradijenti su gradijenti po parametrima, koje koristimo za ažuriranje parametara.

Podrazumijevana funkcija gubitka \mathcal{L} je MSE:

$$\mathcal{L}(\text{target}, \text{prediction}) = \frac{1}{2} \left(\text{target} - \text{prediction} \right)^2 \tag{1}$$

Prvi gradijent kojeg možemo izračunati je ∇O . On je derivacija gubitka po izlazu (predictionu) je

$$\nabla O = prediction - target \tag{2}$$

Ako ovo pretvorimo u matrični oblik, dobivamo:

$$\nabla O = \begin{bmatrix} O_0 - Y_0 \\ O_1 - Y_1 \end{bmatrix} \tag{3}$$

nazovemo li prediction vektor \vec{O} , a target vektor \vec{Y} .

S obzirom na to da je $\nabla\gamma$ kompozitna funkcija, morat ćemo $\frac{\partial O}{\partial\gamma}$ raspisati matrično:

$$\frac{\partial O}{\partial \gamma} = \begin{bmatrix} \sigma(\gamma_0) \left(1 - \sigma(\gamma_0) \right) \\ 1 \end{bmatrix} = \begin{bmatrix} O_0 \left(1 - O_0 \right) \\ 1 \end{bmatrix} \tag{4}$$

Stoga uz ulančano pravilo vrijedi

$$\nabla \gamma = \begin{bmatrix} \nabla O_0 \cdot O_0 \left(1 - O_0 \right) \\ \nabla O_1 \end{bmatrix} \tag{5}$$

Sada nas zanimaju gradijenti parametara (∇W_2 i ∇b_2). Prvo trebamo $\frac{\partial \gamma}{\partial W_2}$ i $\frac{\partial \gamma}{\partial b_2}$, a oni su istog oblika kao i W_2 i b_2 :

$$\frac{\partial \gamma}{\partial W_2} = \begin{bmatrix} \beta_0 & \beta_0 \\ \beta_1 & \beta_1 \\ \beta_2 & \beta_2 \end{bmatrix} \qquad \frac{\partial \gamma}{\partial b_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \tag{6}$$

pa kad primijenimo ulančano pravilo dobivamo

$$\nabla W_2 = \begin{bmatrix} \beta_0 \nabla \gamma_0 & \beta_0 \nabla \gamma_1 \\ \beta_1 \nabla \gamma_0 & \beta_1 \nabla \gamma_1 \\ \beta_2 \nabla \gamma_0 & \beta_2 \nabla \gamma_1 \end{bmatrix} \qquad \nabla b_2 = \begin{bmatrix} \nabla \gamma_0 \\ \nabla \gamma_1 \end{bmatrix}$$
 (7)

Zatim tražimo $\nabla \beta$, a to je težinska suma težina po retcima sa zadnjim gradijentom toka (u našem slučaju s γ):

$$\nabla \beta = \begin{bmatrix} W_2^{0,0} \nabla \gamma_0 + W_2^{0,1} \nabla \gamma_1 \\ W_2^{1,0} \nabla \gamma_0 + W_2^{1,1} \nabla \gamma_1 \\ W_2^{2,0} \nabla \gamma_0 + W_2^{2,1} \nabla \gamma_1 \end{bmatrix}$$
(8)

Slično kao i prije, trebamo pomnožiti naš gradijent elementwise s gradijentom aktivacijske funkcije. Uz zadatak smo dobili hint:

$$tanh(x) = 2\sigma(2x) - 1 \tag{9}$$

pa stoga možemo reći

$$\frac{\partial tanh(x)}{\partial x} = 4\sigma(x) \cdot * (1 - \sigma(x)) \tag{10}$$

intuitivno, kada gledate tanh(x), to je sigmoida koja je samo duplo izdužena u visinu. Povećanje u visinu će kvadratno povećati gradijent, a $2^2 = 4$.

Sada možemo dobiti i $\nabla \alpha$. Uzevši u obzir da vrijedi

$$\frac{\partial \beta}{\partial \alpha} = 4\sigma(\alpha) \cdot (1 - \sigma(\alpha)) \tag{11}$$

uz ulančano pravilo možemo pisati

$$\nabla \alpha = \begin{bmatrix} 4\sigma(\alpha_0) (1 - \sigma(\alpha_0)) \nabla \beta_0 \\ 4\sigma(\alpha_1) (1 - \sigma(\alpha_1)) \nabla \beta_1 \\ 4\sigma(\alpha_2) (1 - \sigma(\alpha_2)) \nabla \beta_2 \end{bmatrix}$$
(12)

Finalno, ponovimo sve slično kao u jednadžbi (6):

$$\frac{\partial \gamma}{\partial W_1} = \begin{bmatrix} I_0 & I_0 & I_0 \\ I_1 & I_1 & I_1 \end{bmatrix} \qquad \frac{\partial \gamma}{\partial b_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 (13)

pa uz ulančano pravilo dobivamo

$$\nabla W_1 = \begin{bmatrix} I_0 \nabla \alpha_0 & I_0 \nabla \alpha_1 & I_0 \nabla \alpha_2 \\ I_1 \nabla \alpha_0 & I_1 \nabla \alpha_1 & I_1 \nabla \alpha_2 \end{bmatrix} \qquad \nabla b_1 = \begin{bmatrix} \nabla \alpha_0 \\ \nabla \alpha_1 \\ \nabla \alpha_2 \end{bmatrix}$$
(14)

Time smo izračunali sve što nam treba pa možemo krenuti na prvi korak učenja.

Forward pass

Sve težine su na 0, tj. vrijedi:

$$W_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad b_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{15}$$

$$W_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad b_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{16}$$

Kada propustimo prvi primjerak kroz mrežu, dobivamo sljedeće tokove:

$$I = \begin{bmatrix} -1\\3 \end{bmatrix} \quad \alpha = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \quad \beta = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \quad \gamma = \begin{bmatrix} 0\\0 \end{bmatrix} \quad O = \begin{bmatrix} 0.5\\0 \end{bmatrix}$$
 (17)

Backward pass

Sukladno izračunatim gradijentima, pišemo:

$$\nabla O = \begin{bmatrix} 0.5 - 0.4 \\ 0 - (-2) \end{bmatrix} = \begin{bmatrix} 0.1 \\ 2 \end{bmatrix} \tag{18}$$

$$\nabla \gamma = \begin{bmatrix} 0.1 \cdot 0.5 \cdot 0.5 \\ 2 \end{bmatrix} = \begin{bmatrix} 0.025 \\ 2 \end{bmatrix} \tag{19}$$

$$\nabla W_2 = \begin{bmatrix} 0 \cdot 0.025 & 0 \cdot 2 \\ 0 \cdot 0.025 & 0 \cdot 2 \\ 0 \cdot 0.025 & 0 \cdot 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 (20)

$$\nabla b_2 = \begin{bmatrix} 0.025\\2 \end{bmatrix} \tag{21}$$

$$\nabla \beta = \begin{bmatrix} 0 \cdot 0.1 + 0 \cdot 2 \\ 0 \cdot 0.1 + 0 \cdot 2 \\ 0 \cdot 0.1 + 0 \cdot 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (22)

$$\nabla \alpha = \begin{bmatrix} 4 \cdot 0.5 \cdot 0.5 \cdot 0 \\ 4 \cdot 0.5 \cdot 0.5 \cdot 0 \\ 4 \cdot 0.5 \cdot 0.5 \cdot 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (23)

$$\nabla W_1 = \begin{bmatrix} -1 \cdot 0 & -1 \cdot 0 & -1 \cdot 0 \\ 3 \cdot 0 & 3 \cdot 0 & 3 \cdot 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (24)

$$\nabla b_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{25}$$

Ažuriranje parametara

Pravilom

$$\theta^k = \theta^{k-1} - \eta \nabla \theta^{k-1} \tag{26}$$

ažuriramo težine uz stopu učenja 1 (tj. uz $\eta = 1$):

$$W_1' = \begin{bmatrix} 0 - 0 & 0 - 0 & 0 - 0 \\ 0 - 0 & 0 - 0 & 0 - 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (27)

$$b_1' = \begin{bmatrix} 0 - 0 \\ 0 - 0 \\ 0 - 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{28}$$

$$W_2' = \begin{bmatrix} 0 - 0 & 0 - 0 \\ 0 - 0 & 0 - 0 \\ 0 - 0 & 0 - 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 (29)

$$b_2' = \begin{bmatrix} 0 - 0.025 \\ 0 - 2 \end{bmatrix} = \begin{bmatrix} -0.025 \\ -2 \end{bmatrix} \tag{30}$$

Zadatak 3 (5 5)

OZNAKE: dinamičko programiranje

Koje su tvrdnje istinite?

- a) Dinamičko programiranje je posebna vrsta (grana) linearnog programiranja.
- b) Kada je primjenjiva lakoma (*greedy*) strategija, primjenjivo je i dinamičko programiranje.
- c) Kada je primjenjivo dinamičko programiranje, primjenjiva je i lakoma (greedy) strategija.
- d) Nužan uvjet za primjenu dinamičkog programiranja je preklopljenost podproblema (overlapping subproblems), a dovoljan optimalna podstruktura (optimal substructure) problema.
- e) Nužan uvjet za primjenu dinamičkog programiranja je optimalna podstruktura (optimal substructure) problema, a dovoljan preklopljenost podproblema (overlapping subproblems).

Napomena: u ovom zadatku se može steći najviše 5 bodova, ali i dobiti do 5 negativnih bodova. Vi navodite tvrdnje koje smatrate istinitima, a prilikom bodovanja će se pretpostaviti da tvrdnje koje niste naveli smatrate neistinitima. Time će Vaši odogovori postati vektor s 5 elemenata ISTINA ili NEISTINA, a bodovanje će se provesti kao binarna usporedba s točnim vektorom. Svaka podudarnost elemenata u vektoru Vaših odgovora i odgovarajućih elemenata u točnom vektoru donijet će 1 bod, a nepodudarnost -1 bod. Jedini način da se ovaj zadatak boduje s nula (0) bodova jest da uopće ništa ne napišete.

Odgovor 1 bodovi: 5

- a) točno
- b) točno (iako pitanje je što znači **primijenjivo**, dosta greedy strategija ne profitira od dinamičkog programiranja)
- c) netočno (npr. 0-1 knapsack)
- d) netočno (oba su nužni uvjeti)
- e) netočno (oba su nužni uvjeti)

Zadatak 4 (10)

OZNAKE: stablo B stablo dodavanje

U prazno B-stablo 2. reda upišite redom sljedeće elemente:

26, 4, 22, 16, 30, 17, 31, 20, 6, 1, 21

Odgovor 1 bodovi: 10

B-stablo drugog reda postoji ako i samo ako je savršeno stablo. S obzirom na to da se radi o on-line dodavanju elemenata, ovo će biti moguće samo za unos 26, a nakon 2. unosa više ne možemo napraviti B-stablo koje zadovoljava sva pravila B-stabla. Nadalje, S obzirom na to da s 12 elemenata ne možemo stvoriti savršeno stablo, čak i da sve elemente upišemo odjednom ne postoji rješenje zadatka. Prema tome, odgovor za sve bodove je: zadatak je krivo zadan i rješenje ne postoji.

Komentar: Riješio sam ovaj zadatak kao AVL stablo i dobio 6 bodova.

ZADATAK 5 (9)
OZNAKE: graf Hamilton Bondy-Chvatal

Bondy-Chvatalovim algoritmom (tj. koristeći Bondy-Chvatalov teorem) pronađite Hamiltonov ciklus u grafu zadanom sljedećom matricom susjedstva (udaljenosti):

	1	2	3	4	5	6
1		7				2
1 2 3	7				1	
3				4		3
4			4		3	1
4 5 6		1		3		4
6	2		3	1	4	

Odgovor 1 BODOVI: 9

TODO

Zadatak 6 (12)

OZNAKE: simpleks nejednadžba skup linearni program

Za skup S zadan sljedećim nejednadžbama:

$$\begin{array}{ccc} z \geq & 3 \\ 2x + & y + 2z \leq 18 \\ -2x + & y + 2z \leq & 6 \\ -y + & z \leq & 4 \end{array}$$

- a) (6) Odredite je li skup S neprezan.
- b) (6) Kako biste odredili da li je skup S u prvom ortantu (tj. jesu li sve koordinate svih točaka skupa S nenegativne)? Ne trebate provoditi postupak, ali specificirajte sve potrebno za početak postupka te detaljno opišite nastavak postupka.

Napomena: Pod a) i b) se priznaju odgovori nastali na temelju provođenja efikasnih algoritamskih postupaka.

Odgovor 1 bodovi: 6

Riješio sam zadatak riješavanjem sustava jednadžbi pod rangom. Dakle pronalazio sam rangove varijabli i postavljao parove jednadžbi. Od tih parova sam zbog linearnosti problema dobio granične točke i uzimao sam stroži dobiveni uvjet. Za to sam dobio 6 bodova, a prof. Brčić mi je rekao što je zapravo trebalo napraviti, pa neka netko tko to zna nadopuni (jer ja ne znam xD):

- a) dvofazni simpleks, treba pokazati da je optimum sintetičke ciljne funkcije $_{0}$
- b) 2 linearna programa (iako je prof. Brčić rekao da se može i jednim al da je dosta teže)

Napredni algoritmi i strukture podataka – drugi jesenski ispitni rok

8. rujna 2020.

Ovaj ispit donosi ukupno **50 bodova** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Pogrešni odgovori u nekim zadatcima donose negativne bodove (drugi broj u zagradi, iza ;)! Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

1. (10) Na raspolaganju imate sljedeće podatke:

X ₁	X 2	izlaz
-1	3	0.1
-1	6	-0.2
_9	4	0.9
5	-3	-0.4

Neuron sa aktivacijskom funkcijom tangens hiperbolni (tanh) s dva ulaza i pomakom (bias) treba uvježbati na dva načina navedena dolje (*a* i *b* dio zadatka). Za svaki način provedite jedan korak uvježbavanja do najboljih parametara izračunljivih u jednom koraku (tj. koristite izravan postupak, ukoliko je primjenjiv, ili inače koristite iterativni postupak).

- a) (5) Za optimizaciju imate na raspolaganju **SVE** podatke u tablici.
- b) (5) Za optimizaciju imate na raspolaganju <u>samo prva dva retka podataka</u> iz tablice (tj. preostali podatci kao da ne postoje).

U slučaju primjene iterativnih postupaka, početne vrijednosti svih parametara neurona postavite na 1 te koristite stopu učenja α =0.1. Zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko objasnite ulogu te veličine.

Napomena: tanh(x)=2 sigmoid(2x)-1

2. (5, -5) Koje su tvrdnje istinite?

- a) Svi listovi uravnoteženog binarnog stabla uvijek se nalaze u dvije najniže razine.
- b) Pravilno AVL stablo nije nužno savršeno uravnoteženo.
- c) B-stablo nije nužno savršeno uravnoteženo.
- d) Funkcija dobrote (fitness) u svakom trenutku odražava udaljenost pojedine jedinke od najboljeg mogućeg rješenja (globalnog optimuma).
- e) Mala vjerojatnost trajnog ostanka genetskog algoritma u okolini lokalnog ekstrema ciljne (objective) funkcije postiže se ponajviše zahvaljujući mehanizmu križanja jedinki.

Napomena: u ovom zadatku se može steći najviše 5 bodova, ali i dobiti do 5 negativnih bodova. Vi navodite tvrdnje koje smatrate istinitima, a prilikom bodovanja će se pretpostaviti da tvrdnje koje niste naveli smatrate neistinitima. Time će Vaši odogovori postati vektor s 5 elemenata ISTINA ili NEISTINA, a bodovanje će se provesti kao binarna usporedba s točnim vektorom. Svaka podudarnost elemenata u vektoru Vaših odgovora i odgovarajućih elemenata u točnom vektoru donijet će 1 bod, a nepodudarnost –1 bod. Jedini način da se ovaj zadatak boduje s nula (0) bodova jest da uopće ništa ne napišete.

3. (7) Popis elemenata u nekom crveno-crnom (RB) stablu, redom od korijena prema nižim razinama s lijeva na desno do posljednjeg lista, je sljedeći:

- a) (4) Skicirajte to stablo.
- b) (3) Uklonite redom elemente 15, 11 i 14.
- 4. (9) Trgujete valutama te želite zaraditi brzim cikličkim transakcijama iskorištavajući neefikasnosti tržišta. Naime, tražite situacije (devizna arbitraža) gdje krenuvši iz jedne valute, nizom brzih razmjena, se možete vratiti u polaznu valutu sa većim iznosom od polaznog. Postoji li arbitraža u tečaju danom u tablici ispod? Koristite efikasan postupak koji će odgovoriti na pitanje.

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.35	1	0.889	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.62	1	0.953
CAD	0.955	0.732	0.65	1.049	1

Napomena: Izračune provodite sa preciznošću na 3 decimalna mjesta, sa zaokruživanjem na bliže ukoliko je potrebno. Primjer devizne arbitraže: krenete sa 1 USD, mijenjate valute nekim redoslijedom, te u konačnici sve promijenite natrag u USD i završite sa 1.1 USD.

- 5. (8) Za ulazno polje brojeva A=[a₁, a₂,...,a_n] prebrojite sve podsekvence za koje vrijedi da je umnožak njihovih elemenata manji od ulaznog parametra L.
 - *a*) (4) Napišite pseudokod algoritma koji bi riješio zadani problem. <u>Ne priznaje se iscrpna pretraga koja iskušava sve kombinacije.</u>
 - **b**) (4) Provedite algoritam iz a) nad A=[2,3,4,5] i L=16.

Napomena: Podsekvenca je bilo koji niz nastao izbacivanjem 0 ili više elemenata iz A, pri čemu se redoslijed preostalih elemenata ne mijenja. Npr. [a_2 , a_5 , a_9] je podsekvenca od A (ukoliko je n>=9).

- 6. (11) Odgovorite na sljedeća pitanja glede linearnog programiranja i simpleksa:
 - a) (4) Napišite proizvoljnu kanonsku simpleks tablicu dimenzija 4x7 (4 retka i 7 stupaca) koja opisuje bazično **nedopustivo** (**neizvedivo**, **nemoguće**) rješenje. Prikladno označite sve elemente tablice i njihovo značenje.
 - b) (3) Napišite proizvoljnu kanonsku simpleks tablicu dimenzija 4x7 na temelju koje biste mogli zaključiti da polazni linearni program **nema dopustivo bazično rješenje**. Prikladno označite elemente tablice na temelju kojih ste donijeli zaključak, te napišite njihovo značenje.
 - c) (4) Napišite proizvoljnu kanonsku simpleks tablicu dimenzija 4x7 na temelju koje biste mogli zaključiti da linearni program **nema optimalno rješenje** zbog neomeđenosti prostora mogućih rješenja. Prikladno označite elemente tablice na temelju kojih ste donijeli zaključak, te napišite njihovo značenje.

Napredni algoritmi i strukture podataka – ispit ljetnog roka

10. srpnja 2020.

Ovaj ispit donosi ukupno **50 boda** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Pogrešni odgovori u nekim zadatcima donose negativne bodove (drugi broj u zagradi, iza ;)! Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

- (5) Skicirajte strukturu Trie koja sadrži riječi:
 MUD, MUDDY, MULLET, MULDER i MUDDLE
- 2. (9) Skicirajte crveno-crno stablo koje zadovoljava sljedeće kriterije:
 - a) sadrži kao elemente brojeve od 0 do 11, tj.

- b) ima maksimalnu razliku između razina "najplićeg" i "najdubljeg" lista
- 3. (3) Koje su poveznice Eulerovog ciklusa i problema kineskog poštara?
- 4. (5) Postavite crveno crna stabla u relaciju s B stablima i objasnite vezu detaljno.
- 5. (9) Zadana je potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža strukture 3x4x2. Aktivacijska funkcija svih neurona u mreži je opći sigmoid.
 - a) (1) Skicirati tu mrežu.
 - b) (8) Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (*on-line learning*) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice:

ulaz 1	ulaz 2	ulaz3	izlaz 1	izlaz 2
-1.8	-6.7	-2	-1	-1.5
-0.5	3.2	0.2	1.1	0.5
1.7	1	0.9	1	-3
3.6	-0.4	3	8	-1

Početne vrijednosti svih parametara mreže postavite na *jedan*, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko naznačite što ta veličina predstavlja.

6. (10) Linearni program:

$$\max z = 3x_1 + 6x_2 - 2x_3 + 4x_4$$

$$uz \ 8x_1 - 2x_2 + 3x_3 - 3x_4 \le 10$$

$$-2x_1 + 6x_2 + x_3 - x_4 \le -6$$

$$x_4 \le 3$$

$$x_1, x_2, x_3 x_4 \ge 0$$

- a) (6) riješite simpleks metodom
- b) (4) riješite grafički za slučaj da vrijedi x3=0, x4=3.
- 7. (9) Pronađite najkraći put od vrha A do vrha D u usmjerenom grafu zadanom sljedećom matricom udaljenosti (slova u tablici su oznake vrhova).

	Α	В	С	D	E	F	G	Н
Α		7			8	5	1	
В			8					9
С				7		3	-8	4
D						1		
E						4		3
F				7				
G			5					
Н				-5				

Napomena: Rješenje treba biti pronađeno koristeći efikasni sistematski pristup za rješavanje ovakvog tipa problema.

RJEŠENJA:

- 1. Na papiru
- 2. Na papiru
- 3. a
- 4. a,b,c,d
- 5. Na papiru

6. Predmeti poredani po rastućim iznosima cijena/vrijednost

	IC	čarape	vodič	štap	cipele	šator
0	0	0	0	0	0	0
200	0	6	6	6	6	6
400	0	6	10	10	10	10
600	<u>19</u>	19	19	19	19	19
800	19	<u>25</u>	25	25	25	25
1000	19	25	29	29	29	29
1200	19	25	<u>35</u>	35	35	35

{IC naočale,čarape,vodič} vrijednosti 35