Automates, algèbre, applications - AAA CM 1

Uli Fahrenberg Sven Dziadek Philipp Schlehuber Adrien Pommellet Etienne Renault

EPITA

S6 2022

Program of the course

Foreword

00000

O CM 1 : Weighted automata	5 May
TD : Weighted automata	12 May

- CM 2 : ω -Automata 19 May **o** TP : ω -Automata 2 June CM 3 : Automata learning 16 June
- CM 4 : LTL model checking 16 June

Program of the course

Foreword

00000

OM 1 : Weighted automata	5 May
TD : Weighted automata	12 May
3 CM 2 : ω -Automata	19 May
OM (noté)	
1 TP : ω -Automata	2 June
OCM 3 : Automata learning	16 June
CM 4 : LTL model checking	16 June

CM 1: Weighted automata

Semirings

Foreword

00000

- Weighted automata
- Matrix semirings
- Stars of matrices
- Power series
- Kleene-Schützenberger theorem

Sources:

- my "book" covers almost everything, except for the last two slides
- for these, see Chapter 4 of the *Handbook* (which also covers many more things)

Other things to note

DM noté / graded homework:

- énoncé available just after CM 2, 19 May
- to be handed in three days after CM 4, 19 June 13:37 (Paris time)
- exercises mostly on the topics of CM 1 & CM 2 (and TD and TP), but also a bit on CM 3 and CM4 (!)

Automates et applications

This is an électif developed and given by most of the Automata & applications ($A\forall$) group at LRDE:

We're always happy for research students / internships etc. $\ddot{\smile}$

THLR DM 4 exo 6

Foreword

• Let L_i be the language recognized by A with initial state q_i

$$\begin{array}{c} L_3 = \{a\}L_2 \cup \{b\}L_3 \cup \{\varepsilon\} \\ \text{or, as matrix-vector equation:} \end{array} \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix} = \begin{bmatrix} a & b & \emptyset \\ b & \emptyset & a \\ \emptyset & a & b \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix} \cup \begin{bmatrix} \emptyset \\ \emptyset \\ \varepsilon \end{bmatrix}$$

Foreword

• Let L_i be the language recognized by A with initial state q_i

$$\Rightarrow L_1 = \{a\}L_1 \cup \{b\}L_2$$

$$L_2 = \{a\}L_3 \cup \{b\}L_1$$

$$L_3 = \{a\}L_2 \cup \{b\}L_3 \cup \{\varepsilon\}$$

• or, as matrix-vector equation:

$$\vec{L} = M \vec{L} \cup \vec{f}$$

$$\begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix} = \begin{bmatrix} a & b & \emptyset \\ b & \emptyset & a \\ \emptyset & a & b \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix} \cup \begin{bmatrix} \emptyset \\ \emptyset \\ \varepsilon \end{bmatrix}$$

Slogan

A finite automaton on Σ is an affine transformation in a "vector space" on the semiring $\mathcal{P}(\Sigma^*)$.

Another example

Foreword

Definition

A weighted automaton with n states on a semiring S is given by a matrix $M \in S^{n \times n}$ and two vectors $\vec{i}, \vec{f} \in S^n$.

• here:
$$S = \mathcal{P}(\Sigma^*)$$
, $M = \begin{bmatrix} \{a\} & \{a,b\} & \emptyset \\ \emptyset & \emptyset & \{a\} \\ \{a\} & \emptyset & \{b\} \end{bmatrix}$, $\vec{i} = \begin{bmatrix} \{\varepsilon\} \\ \{\varepsilon\} \\ \emptyset \end{bmatrix}$, $\vec{f} = \begin{bmatrix} \{\varepsilon\} \\ \emptyset \\ \{\varepsilon\} \end{bmatrix}$

Linear algebra

Foreword

Definition

A weighted automaton with n states on a semiring S is given by a matrix $M \in S^{n \times n}$ and two vectors $\vec{i}, \vec{f} \in S^n$.

• here:
$$S = \mathcal{P}(\Sigma^*)$$
, $M = \begin{bmatrix} \{a\} & \{a,b\} & \emptyset \\ \emptyset & \emptyset & \{a\} \\ \{a\} & \emptyset & \{b\} \end{bmatrix}$, $\vec{i} = \begin{bmatrix} \{\varepsilon\} \\ \{\varepsilon\} \\ \emptyset \end{bmatrix}$, $\vec{f} = \begin{bmatrix} \{\varepsilon\} \\ \emptyset \\ \{\varepsilon\} \end{bmatrix}$

compute fixed point to

$$\vec{L} = M \vec{L} + \vec{f}$$

② then $L(A) = \vec{i} \vec{L}$

Another example

Foreword

Definition

A weighted automaton with n states on a semiring S is given by a matrix $M \in S^{n \times n}$ and two vectors $\vec{i}, \vec{f} \in S^n$.

• here:
$$S = \mathcal{P}(\Sigma^*)$$
, $M = \begin{bmatrix} \{a\} & \{a,b\} & \emptyset \\ \emptyset & \emptyset & \{a\} \\ \{a\} & \emptyset & \{b\} \end{bmatrix}$, $\vec{i} = \begin{bmatrix} \{\varepsilon\} \\ \{\varepsilon\} \\ \emptyset \end{bmatrix}$, $\vec{f} = \begin{bmatrix} \{\varepsilon\} \\ \emptyset \\ \{\varepsilon\} \end{bmatrix}$

- ① compute fixed point to $\vec{l} = M \vec{l} + \vec{f}$
- ② then $L(A) = \vec{i} \vec{L}$

• compute fixed point to

$$\vec{L'} = \vec{L'} M + \vec{i}$$

② then $L(A) = \vec{L'}\vec{f}$

Lots to unpack . .

Foreword

« Automata are affine transformations in "vector spaces" over semirings, and their languages are fixed points to these transformations. »

- What is a semiring?
- What are "vector spaces" (semimodules) over semirings?
- How to compute fixed points to affine transformations in semimodules?
- And to what use is all this? $\stackrel{\sim}{\sim}$

Definition

Foreword

Remember STAI?

A ring: algebraic structure $(S, +, \cdot, 0, 1)$

- + associative, commutative, neutral element 0, inverses
- · associative, neutral element 1 may be non-commutative
- distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc

Canonical example: Z

Definition

Remember STAI?

A ring: algebraic structure $(S, +, \cdot, 0, 1)$

- + associative, commutative, neutral element 0, inverses
- · associative, neutral element 1 may be non-commutative
- distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc

Canonical example: **Z**

Definition

A semiring: algebraic structure $(S, +, \cdot, 0, 1)$

+ associative, commutative, neutral element 0

may have no inverses

- associative, neutral element 1
- distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc
- annihilation: a0 = 0a = 0

Annihilation?

Lemma

In any ring, a0 = 0a = 0 holds for every a.

Annihilation?

Foreword

Lemma

In any ring, a0 = 0a = 0 holds for every a.

Proof.

$$a0 = a(1-1) = a - a = 0$$

■ in semirings, no « — »!

Linear algebra

Examples

Foreword

Definition

- + associative, commutative, neutral element 0
- associative, neutral element 1
- distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc
- annihilation: a0 = 0a = 0
- to avoid confusion, sometimes write $(S, \oplus, \otimes, 0, 1)$

Foreword

Definition

- + associative, commutative, neutral element 0
- · associative, neutral element 1
- distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc
- annihilation: a0 = 0a = 0
- natural numbers: $(\mathbb{N}, +, \cdot, 0, 1)$
 - commutative semiring
 - ullet also \mathbb{Z} , \mathbb{Q} , \mathbb{R}

Foreword

Definition

- + associative, commutative, neutral element 0
- · associative, neutral element 1
- distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc
- annihilation: a0 = 0a = 0
- natural numbers: $(\mathbb{N},+,\cdot,0,1)$
- min-plus semiring: $(\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)$
 - commutative semiring
 - also $\mathbb{R}_+ \cup \{\infty\}$ or $\mathbb{N} \cup \{\infty\}$

Foreword

Definition

- + associative, commutative, neutral element 0
- associative, neutral element 1
- distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc
- annihilation: a0 = 0a = 0
- natural numbers: $(\mathbb{N}, +, \cdot, 0, 1)$
- min-plus semiring: $(\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)$
- boolean semiring: ({true, false}, ∨, ∧, false, true)
 - commutative semiring
 - self-dual: ({true, false}, ∧, ∨, true, false)

Definition

- + associative, commutative, neutral element 0
- · associative, neutral element 1
- distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc
- annihilation: a0 = 0a = 0
- natural numbers: $(\mathbb{N},+,\cdot,0,1)$
- ullet min-plus semiring: $(\mathbb{R}\cup\{\infty\}, \min, +, \infty, 0)$
- boolean semiring: ({true, false}, ∨, ∧, false, true)
- language semirings: $(\mathcal{P}(\Sigma^*), \cup, \cdot, \emptyset, \{\varepsilon\})$
 - ullet for any Σ
 - « · » is concatenation of languages
 - non-commutative for $|\Sigma| \ge 2$

Foreword

The min-plus semiring: $(\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)$

• min associative, commutative, neutral element ∞ ?

Foreword

- ullet min associative, commutative, neutral element ∞ ?
 - $\min(\min(a,b),c) = \min(a,\min(b,c))$?

Foreword

The min-plus semiring: $(\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0)$

- min associative, commutative, neutral element ∞ ?
 - min(min(a, b), c) = min(a, min(b, c))
 - min(a, b) = min(b, a) ?

Power series

Foreword

- min associative, commutative, neutral element ∞ ?
 - min(min(a, b), c) = min(a, min(b, c))
 - \bullet min(a, b) = min(b, a)
 - $min(a, \infty) = a$?

Foreword

- \bullet min associative, commutative, neutral element ∞
 - min(min(a, b), c) = min(a, min(b, c))
 - \bullet min(a, b) = min(b, a)
 - $min(a, \infty) = a$
- + associative, commutative, neutral element 0 ?

Foreword

- \bullet min associative, commutative, neutral element ∞
 - min(min(a, b), c) = min(a, min(b, c))
 - \bullet min(a, b) = min(b, a)
 - $\min(a, \infty) = a$
- + associative, commutative, neutral element 0
- distributivity: $a + \min(b, c) = \min(a + b, a + c)$?
 - (was $a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c$)

Foreword

- \bullet min associative, commutative, neutral element ∞
 - min(min(a, b), c) = min(a, min(b, c))
 - \bullet min(a, b) = min(b, a)
 - $\min(a, \infty) = a$
- + associative, commutative, neutral element 0
- distributivity: $a + \min(b, c) = \min(a + b, a + c)$
 - (was $a \otimes (b \oplus c) = a \otimes b \oplus a \otimes c$)
- annihilation: $a + \infty = \infty$?
 - (was $a \otimes 0 = 0$)
 - by convention . . .

Weighted automata

Foreword

Power series

Definition

Foreword

Definition

A weighted automaton over a semiring S: structure (Q, I, F, T)

- Q: finite set of states
- $I, F \subseteq Q$: initial and accepting states
- $T \subseteq Q \times S \times Q$: finite transition relation

Paths

Foreword

- Paths are sequences of transitions (as usual)
- The value of path $\pi=q_1 \xrightarrow{x_1} q_2 \xrightarrow{x_2} \cdots \xrightarrow{x_n} q_{n+1}$: $|\pi|=x_1x_2\cdots x_n$

Power series

Paths

Foreword

- Paths are sequences of transitions (as usual)
- The value of path $\pi=q_1\xrightarrow{x_1}q_2\xrightarrow{x_2}\cdots\xrightarrow{x_n}q_{n+1}$: $|\pi|=x_1x_2\cdots x_n$

Power series

Paths

Foreword

- Paths are sequences of transitions (as usual)
- The value of path $\pi = q_1 \xrightarrow{x_1} q_2 \xrightarrow{x_2} \cdots \xrightarrow{x_n} q_{n+1}$: $|\pi| = x_1 x_2 \cdots x_n$

Paths

- Paths are sequences of transitions (as usual)
- The value of path $\pi = q_1 \xrightarrow{x_1} q_2 \xrightarrow{x_2} \cdots \xrightarrow{x_n} q_{n+1}$: $|\pi| = x_1 x_2 \cdots x_n$

Paths

Foreword

- Paths are sequences of transitions (as usual)
- The value of path $\pi=q_1 \xrightarrow{x_1} q_2 \xrightarrow{x_2} \cdots \xrightarrow{x_n} q_{n+1}$: $|\pi|=x_1x_2\cdots x_n$

Power series

Paths

Foreword

- Paths are sequences of transitions (as usual)
- The value of path $\pi=q_1 \xrightarrow{x_1} q_2 \xrightarrow{x_2} \cdots \xrightarrow{x_n} q_{n+1}$: $|\pi|=x_1x_2\cdots x_n$

Power series

- Accepting paths: as usual
- The value of automaton A:

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

$$|A| =$$

- Accepting paths: as usual
- The value of automaton A:

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

$$|A| = x_2 x_3$$

- Accepting paths: as usual
- The value of automaton A:

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

$$|A| = x_2 x_3 + x_2 x_3 x_4 x_6$$

- Accepting paths: as usual
- The value of automaton A:

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

$$|A| = x_2x_3 + x_2x_3x_4x_6 + x_2x_3x_4x_5x_3$$

Foreword

- Accepting paths: as usual
- The value of automaton A:

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

$$|A| = x_2x_3 + x_2x_3x_4x_6 + x_2x_3x_4x_5x_3 + x_2x_3x_4x_5x_3x_4x_6 + \cdots$$

• an infinite sum !?

Values of weighted automata

Foreword

- The value of a path is the product of its labels.
- The value of a weighted automaton is the sum of the values of all its accepting paths, if that sum exists.

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

• So, how to make sure that |A| exists?

Example: min-plus semiring

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

$$= \min \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

$$= \min \{ 2+1+0, 2+1+2+0, 2+1+2+1+1+0, \dots \}$$

$$= 3$$

- In the min-plus semiring, |A| is the length of a shortest path
- \bullet . . . and |A| always exists

Example: natural numbers

Foreword

$$\begin{aligned} |A| &= \bigoplus \big\{\!\!\big| |\pi| \mid \pi \text{ accepting path in } A \big\}\!\!\big\} \\ &= \bigoplus \big\{\!\!\big| \{2 \cdot 1 \cdot 1, 2 \cdot 1 \cdot 2 \cdot 0, 2 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1, \dots \}\!\!\big\} \\ &= \bigoplus \big\{\!\!\big| \{2, 0, 4, \dots \}\!\!\big\} \\ &= \bigoplus \big\{\!\!\big| \{2, 4, 8, 16, \dots \}\!\!\big\} \to \infty \end{aligned}$$

• In \mathbb{N} , |A| does not always exist

Example: languages

$$|A| = \bigoplus \{ |\pi| \mid \pi \text{ accepting path in } A \}$$

= $\{bca, bcba, bcbdca, bcbdcba, \dots \}$
= $\{b\} \cdot \{cbd\}^* \cdot \{ca, cba\}$

- In $\mathcal{P}(\Sigma^*)$, |A| = L(A), the usual language
- It seems we might need a star...

Linear algebra over semirings

Weighted automata as matrices

- Let (Q, I, F, T) be a weighted automaton over S
- Write $Q = \{1, ..., n\}$
- Define a matrix $M \in S^{n \times n}$ by

$$M_{pq} = \bigoplus \{ \{ x \mid (p, x, q) \in T \} \}$$

Weighted automata as matrices

- Let (Q, I, F, T) be a weighted automaton over S
- Write $Q = \{1, ..., n\}$
- Define a matrix $M \in S^{n \times n}$ by

$$M_{pq} = \bigoplus \{ \{ x \mid (p, x, q) \in T \} \}$$

Weighted automata as matrices, II

- (Q, I, F, T) weighted automaton over $S, Q = \{1, \ldots, n\}$
- $M \in S^{n \times n}$ given by $M_{pq} = \bigoplus \{ \{x \mid (p, x, q) \in T \} \}$
- Define vectors $\vec{i}, \vec{f} \in \{0,1\}^n$ by

$$\vec{i}_q = egin{cases} 1 & ext{if } q \in I \ 0 & ext{otherwise} \end{cases}$$
 $\vec{f}_q = egin{cases} 1 & ext{if } q \in F \ 0 & ext{otherwise} \end{cases}$

$$ec{f}_q = egin{cases} 1 & ext{if } q \in F \ 0 & ext{otherwise} \end{cases}$$

$$M = \begin{bmatrix} \{a\} & \{a,b\} & \emptyset \\ \emptyset & \emptyset & \{a\} \\ \{a\} & \emptyset & \{b\} \end{bmatrix}$$

$$ec{i} = egin{bmatrix} \{arepsilon\} \ \emptyset \ \{arepsilon\} \end{bmatrix} \qquad ec{f} = egin{bmatrix} \emptyset \ \{arepsilon\} \ \emptyset \end{bmatrix}$$

Weighted automata as matrices, II

- (Q, I, F, T) weighted automaton over $S, Q = \{1, \ldots, n\}$
- $M \in S^{n \times n}$ given by $M_{pq} = \bigoplus \{\{x \mid (p, x, q) \in T\}\}$
- Define vectors $\vec{i}, \vec{f} \in \{0, 1\}^n$ by

$$\vec{i}_q = egin{cases} 1 & ext{if } q \in I \ 0 & ext{otherwise} \end{cases}$$
 $\vec{f}_q = egin{cases} 1 & ext{if } q \in F \ 0 & ext{otherwise} \end{cases}$

$$ec{f}_q = egin{cases} 1 & ext{if } q \in F \ 0 & ext{otherwise} \end{cases}$$

$$M = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 0 & 1 \\ 7 & 0 & 0 \end{bmatrix}$$
$$\vec{i} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \qquad \vec{f} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Weighted automata as matrices, III

- (Q, I, F, T) weighted automaton over $S, Q = \{1, \ldots, n\}$
- $M \in S^{n \times n}$ given by $M_{pq} = \bigoplus \{ \{x \mid (p, x, q) \in T \} \}$
- $\vec{i}, \vec{f} \in \{0,1\}^n$ given by $\vec{i}_a = 1$ iff $q \in I$, $\vec{f}_a = 1$ iff $q \in F$
- Conversely, if we have (\vec{i}, M, \vec{f}) , we can define (Q, I, F, T):
 - $Q = \{1, \ldots, n\}$
 - $I = \{ g \in Q \mid \vec{i}_g = 1 \}, F = \{ g \in Q \mid \vec{f}_g = 1 \}$
 - $T = \{(p, M_{pq}, q) \mid p, q \in Q\}$

Power series

Weighted automata as matrices, III

- (Q, I, F, T) weighted automaton over $S, Q = \{1, \ldots, n\}$
- $M \in S^{n \times n}$ given by $M_{pq} = \bigoplus \{ \{x \mid (p, x, q) \in T \} \}$
- $\vec{i}, \vec{f} \in \{0,1\}^n$ given by $\vec{i}_a = 1$ iff $q \in I$, $\vec{f}_a = 1$ iff $q \in F$
- Conversely, if we have (\vec{i}, M, \vec{f}) , we can define (Q, I, F, T):
 - $Q = \{1, \ldots, n\}$
 - $I = \{ g \in Q \mid \vec{i}_g = 1 \}, F = \{ g \in Q \mid \vec{f}_g = 1 \}$
 - $T = \{(p, M_{pq}, q) \mid p, q \in Q\}$

Re-definition

Foreword

A weighted automaton with n states on a semiring S is given by a matrix $M \in S^{n \times n}$ and two vectors $\vec{i}, \vec{f} \in S^n$.

- "no transition $p \to q$ " is equivalent to $M_{pq} = 0$
- have generalized \vec{i} and \vec{f} from $\in \{0,1\}^n$ to $\in S^n$

Theorem

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n \ge 0} \vec{i} M^n \vec{f}$$

Proof (sketch):

Theorem

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n \ge 0} \vec{i} M^n \vec{f}$$

Proof (sketch):

• M collects values of paths of length 1

Theorem

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n \ge 0} \vec{i} M^n \vec{f}$$

Proof (sketch):

- M collects values of paths of length 1
- M^2 collects values of paths of length 2, etc.

Theorem

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n > 0} \vec{i} M^n \vec{f}$$

Proof (sketch):

- M collects values of paths of length 1
- M^2 collects values of paths of length 2, etc.
- $\vec{i} M^n \vec{f}$ selects paths of length n which start in an initial state and end in an accepting state

Theorem

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n \ge 0} \vec{i} M^n \vec{f}$$

Proof (sketch):

- M collects values of paths of length 1
- M^2 collects values of paths of length 2, etc.
- $\vec{i} M^n \vec{f}$ selects paths of length n which start in an initial state and end in an accepting state

$$M = \begin{bmatrix} \{a\} & \{a,b\} & \emptyset \\ \emptyset & \emptyset & \{a\} \\ \{a\} & \emptyset & \{b\} \end{bmatrix}$$

Power series

$\mathsf{Theorem}$

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n \ge 0} \vec{i} M^n \vec{f}$$

Proof (sketch):

- M collects values of paths of length 1
- M^2 collects values of paths of length 2, etc.
- $\vec{i} M^n \vec{f}$ selects paths of length n which start in an initial state and end in an accepting state

Power series

Infinite distributivity

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n \ge 0} \vec{i} M^n \vec{f}$$

Infinite distributivity

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n \ge 0} \vec{i} M^n \vec{f} = \vec{i} \left(\bigoplus_{n \ge 0} M^n \right) \vec{f}$$

- ... if we assume infinite distributivity
- But wait, $\bigoplus_{n>0} M^n$ is a geometric series

Infinite distributivity

Foreword

Let $A = (\vec{i}, M, \vec{f})$ be a weighted automaton. If |A| exists, then

$$|A| = \bigoplus_{n \ge 0} \vec{i} M^n \vec{f} = \vec{i} \left(\bigoplus_{n \ge 0} M^n \right) \vec{f}$$

- ... if we assume infinite distributivity
- But wait, $\bigoplus_{n>0} M^n$ is a geometric series

$$??? \qquad \bigoplus_{n \ge 0} M^n = \frac{1}{1 - M} \qquad ??$$

• in a semiring, no subtraction nor division . . .

Star-continuous semirings

Definition

Foreword

A semiring S is star-continuous if

- the infinite sums $\bigoplus a^n$ exist for all $a \in S$
- - geometric series plus infinite distributivity

Definition

Foreword

A semiring S is star-continuous if

- the infinite sums $\bigoplus_{n>0} a^n$ exist for all $a \in S$
- - geometric series plus infinite distributivity

Definition

In a star-continuous semiring, $a^* = \bigoplus_{n > 0} a^n$

Examples

Foreword

$$a^* = \bigoplus_{n \geq 0} a^n$$

- in $\mathcal{P}(\Sigma^*)$: $L^* = \bigcup_{n>0} L^n = L^*$
- \mathbb{N} is not star-continuous: $\bigcup_{n\geq 0} 2^n \to \infty$
- in min-plus $\mathbb{N} \cup \{\infty\}$: $a^* = \min\{0, a, a+a, a+a+a, ...\} = 0$

Power series

Examples

Foreword

$$a^* = \bigoplus_{n \geq 0} a^n$$

- in $\mathcal{P}(\Sigma^*)$: $L^* = \bigcup_{n>0} L^n = L^*$
- \mathbb{N} is not star-continuous: $\bigcup_{n\geq 0} 2^n \to \infty$
- in min-plus $\mathbb{N} \cup \{\infty\}$: $a^* = \min\{0, a, a+a, a+a+a, \dots\} = 0$

Operationally, stars are loops

• in min-plus, shortest paths never include loops

Power series

Stars are fixed points

Look:

$$a^* = \bigoplus_{n \ge 0} a^n = \frac{1}{1 - a}$$

$$\iff (1 - a)a^* = 1$$

$$\iff a^* - aa^* = 1$$

$$\iff a^* = 1 + aa^*$$

Stars are fixed points

Look:

Foreword

$$a^* = \bigoplus_{n \ge 0} a^n = \frac{1}{1 - a}$$

$$\iff (1 - a)a^* = 1$$

$$\iff a^* - aa^* = 1$$

$$\iff a^* = 1 + aa^* \iff \mathsf{true}$$

Lemma

If S is star-continuous, then $a^* = aa^* + 1 = a^*a + 1$ for all $a \in S$.

Matrices

Foreword

If S is a semiring (and $n \ge 1$), then $S^{n \times n}$ is also a semiring

with usual matrix addition and matrix multiplication

Lemma

If S is star-continuous, then so is $S^{n \times n}$, with

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ (d+ca^*b)^*ca^* & (d+ca^*b)^* \end{bmatrix}$$

for any block matrix.

- so this is recursive: a, b, c, d may be matrices themselves
- see Floyd-Warshall! see Brzozowski-McCluskey!

Power series

Stars of matrices

Foreword

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ (d+ca^*b)^*ca^* & (d+ca^*b)^* \end{bmatrix}$$

Floyd-Warshall:

$$\begin{aligned} & \text{for } p \in Q \text{ do} \\ & \text{for } q \in Q \text{ do} \\ & \text{for } r \in Q \text{ do} \\ & & M_{pq} \leftarrow \min \left(M_{pq}, M_{pr} + M_{rq} \right) \end{aligned}$$

- aka $M_{pq} \leftarrow M_{pq} \oplus M_{pr} \otimes M_{rq}$
- why no star?

Stars of matrices

Foreword

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ (d+ca^*b)^*ca^* & (d+ca^*b)^* \end{bmatrix}$$

Brzozowski-McCluskey (one step):

Choose $r \in Q$ for $p \in Q$ do

for $q \in Q$ do $M_{pq} \leftarrow M_{pq} + M_{pr}M_{rr}^*M_{rq}$ $Q \leftarrow Q \setminus \{r\}$

Power series

Putting things together

Foreword

« Automata are affine transformations in "vector spaces" over semirings, and their languages are fixed points to these transformations. »

- a weighted automaton over S with n states: (\vec{i}, M, \vec{f})
 - \vec{i} . $\vec{f} \in S^n$. $M \in S^{n \times n}$

Putting things together

Foreword

« Automata are affine transformations in "vector spaces" over semirings, and their languages are fixed points to these transformations. »

- a weighted automaton over S with n states: (\vec{i}, M, \vec{f})
 - $\vec{i}, \vec{f} \in S^n$, $M \in S^{n \times n}$
- if \vec{L} is the vector of values with initial states i, then $\vec{L} = M \vec{L} + \vec{f}$
 - $\vec{x} \mapsto M \vec{x} + \vec{f}$ is an affine transformation $S^n \to S^n$
 - viewing S^n as a semimodule over S

Foreword

Putting things together

« Automata are affine transformations in "vector spaces" over semirings, and their languages are fixed points to these transformations. »

- a weighted automaton over S with n states: (\vec{i}, M, \vec{f})
 - $\vec{i}, \vec{f} \in S^n$, $M \in S^{n \times n}$
- if \vec{L} is the vector of values with initial states i, then $\vec{L} = M \vec{L} + \vec{f}$
 - $\vec{x} \mapsto M \vec{x} + \vec{f}$ is an affine transformation $S^n \to S^n$
 - viewing S^n as a semimodule over S
- $M^* = M M^* + 1 \Rightarrow M^* \vec{f} = M M^* \vec{f} + \vec{f}$
 - so $\vec{L} = M^* \vec{f}$ is a fixed point!

$$\Rightarrow |A| = \vec{i} M^* \vec{f}$$

Semimodules and Linear Transformations

- a vector space over a field K: an abelian group (V, +, 0) and an action $\cdot : K \times V \to V$:
 - x(u+v) = xu+xv, (x+y)v = xv+yv, (xy)v = x(yv), 1v = v

Semimodules and Linear Transformations

Foreword

- a vector space over a field K: an abelian group (V, +, 0) and an action $\cdot : K \times V \to V$:
 - x(u+v) = xu+xv, (x+y)v = xv+yv, (xy)v = x(yv), 1v = v
- a left module over a ring R: an abelian group (V, +, 0) and an action $\cdot : R \times V \to V$:
 - same axioms as above
 - right module: $\cdot: V \times R \rightarrow V$

(why the difference?)

Power series

Foreword

Semimodules and Linear Transformations

- a vector space over a field K: an abelian group (V, +, 0) and an action $\cdot : K \times V \to V$:
 - x(u+v) = xu+xv, (x+y)v = xv+yv, (xy)v = x(yv), 1v = v
- a left module over a ring R: an abelian group (V, +, 0) and an action $\cdot : R \times V \to V$:
 - same axioms as above
 - right module: $\cdot: V \times R \rightarrow V$
- a left semimodule over a semiring S: a commutative monoid (V, +, 0) and an action $\cdot : S \times V \rightarrow V$:
 - same axioms, plus 0v = 0 and x0 = 0 (why?)

Foreword

Semimodules and Linear Transformations

- a vector space over a field K: an abelian group (V, +, 0) and an action $\cdot : K \times V \to V$:
 - x(u+v) = xu+xv, (x+y)v = xv+yv, (xy)v = x(yv), 1v = v
- a left module over a ring R: an abelian group (V, +, 0) and an action $\cdot : R \times V \to V$:
 - same axioms as above
 - right module: $\cdot : V \times R \rightarrow V$
- a left semimodule over a semiring S: a commutative monoid (V,+,0) and an action $\cdot: S \times V \to V$:
 - same axioms, plus 0v = 0 and x0 = 0
- a right-linear transformation $f: U \rightarrow V$ of right semimodules U, V over S:
 - f(u + v) = f(u) + f(v), f(vx) = f(v)x
 - equivalent to functions $v \mapsto Mv$

Bonus: Formal power series

•
$$|A|(a) = 0$$

Power series

$$S = (\mathbb{N}, +, \cdot)$$

•
$$|A|(a) = 0$$

•
$$|A|(bc) = 0$$

$$S=(\mathbb{N},+,\cdot)$$

•
$$|A|(a) = 0$$

•
$$|A|(bc) = 0$$

•
$$|A|(bca) = 2 \cdot 1 \cdot 1 = 2$$

$$S = (\mathbb{I}^{\mathsf{N}}, +, \cdot)$$

•
$$|A|(a) = 0$$

•
$$|A|(bc) = 0$$

•
$$|A|(bca) = 2 \cdot 1 \cdot 1 = 2$$

•
$$|A|(bcba) = 0$$

Foreword

Weighted automata with input

•
$$|A|(a) = 0$$

•
$$|A|(bc) = 0$$

•
$$|A|(bca) = 2 \cdot 1 \cdot 1 = 2$$

•
$$|A|(bcba) = 0$$

•
$$|A|(bcbdca) = 4$$

Foreword

Weighted automata with input

$$S = (\mathbb{N}, +, \cdot)$$

•
$$|A|(a) = 0$$

•
$$|A|(bc) = 0$$

•
$$|A|(bca) = 2 \cdot 1 \cdot 1 = 2$$

•
$$|A|(bcba) = 0$$

$$|A|(bcbdca) = 4$$

$$L(A)(w) = \begin{cases} 2^{n+1} & \text{for } w = b(cbd)^n ca\\ 0 & \text{otherwise} \end{cases}$$

Definition

Foreword

A weighted automaton with input over alphabet Σ and semiring S: structure (Q, I, F, T)

- Q: finite set of states
- $I, F \subseteq Q$: initial and accepting states
- $T \subseteq Q \times \Sigma \times S \times Q$: finite transition relation
- |A| is now a function $\Sigma^* \to S$:

$$|A|(w) = \bigoplus \{ |\pi| \mid \pi \text{ accepting path over } w \text{ in } A \}$$

Definition

Foreword

A weighted automaton with input over alphabet Σ and semiring S: structure (Q, I, F, T)

- Q: finite set of states
- $I, F \subseteq Q$: initial and accepting states
- $T \subseteq Q \times \Sigma \times S \times Q$: finite transition relation
- |A| is now a function $\Sigma^* \to S$:

$$|A|(w) = \bigoplus \{ |\pi| \mid \pi \text{ accepting path over } w \text{ in } A \}$$

- Functions $\Sigma^* \to S$ are called (formal) power series
- the set of all these is denoted S((Σ*))

Let
$$r_1, r_2 \in S\langle\!\langle \Sigma^* \rangle\!\rangle$$

Foreword

- addition: $(r_1 + r_2)(w) = r_1(w) + r_2(w)$
 - neutral element 0 given by 0(w) = 0

Power series

Let
$$r_1, r_2 \in S\langle\langle \Sigma^* \rangle\rangle$$

- addition: $(r_1 + r_2)(w) = r_1(w) + r_2(w)$
 - neutral element 0 given by 0(w) = 0
- Cauchy product: $(r_1r_2)(w) = \bigoplus \{\{r_1(u)r_2(v) \mid w = uv\}\}$
 - all possible splits of w into uv
 - \Rightarrow $(r_1r_2)(ab) = r_1(\varepsilon)r_2(ab) + r_1(a)r_2(b) + r_1(ab)r_2(\varepsilon)$
 - neutral element 1 given by

Let $r_1, r_2 \in S\langle\!\langle \Sigma^* \rangle\!\rangle$

- addition: $(r_1 + r_2)(w) = r_1(w) + r_2(w)$
 - neutral element 0 given by 0(w) = 0
- Cauchy product: $(r_1r_2)(w) = \bigoplus \{r_1(u)r_2(v) \mid w = uv\}$
 - all possible splits of w into uv
 - \Rightarrow $(r_1r_2)(ab) = r_1(\varepsilon)r_2(ab) + r_1(a)r_2(b) + r_1(ab)r_2(\varepsilon)$
 - neutral element **1** given by $1(w) = \begin{cases} 1 & \text{if } w = \varepsilon \\ 0 & \text{otherwise} \end{cases}$

Let
$$r_1, r_2 \in S\langle\!\langle \Sigma^* \rangle\!\rangle$$

- addition: $(r_1 + r_2)(w) = r_1(w) + r_2(w)$
 - neutral element 0 given by 0(w) = 0
- Cauchy product: $(r_1r_2)(w) = \bigoplus \{r_1(u)r_2(v) \mid w = uv\}$
 - all possible splits of w into uv
 - $\Rightarrow (r_1r_2)(ab) = r_1(\varepsilon)r_2(ab) + r_1(a)r_2(b) + r_1(ab)r_2(\varepsilon)$
 - neutral element 1 given by $1(w) = \begin{cases} 1 & \text{if } w = \varepsilon \\ 0 & \text{otherwise} \end{cases}$
- in fact, $(S\langle\langle \Sigma^* \rangle\rangle, +, \cdot, 0, 1)$ forms itself a semiring

Power series 0000 000

Weighted automata with input are weighted automata

weighted automaton with input over Σ and S

weighted automaton over $S\langle\!\langle \Sigma^* \rangle\!\rangle$

• example, for $S = \{ true, false \}$:

Rational series

• monomials in
$$S\langle\!\langle \Sigma^* \rangle\!\rangle$$
: $[w \mapsto x](u) = \begin{cases} x & \text{if } u = w \\ 0 & \text{otherwise} \end{cases}$

• star of
$$r \in \langle \langle \Sigma^* \rangle \rangle$$
: $r^*(w) = \bigoplus_{n \geq 0} r^n(w)$
• exists iff $r(\varepsilon) = 0$

Rational series

Foreword

- monomials in $S(\langle \Sigma^* \rangle)$: $[w \mapsto x](u) = \begin{cases} x & \text{if } u = w \\ 0 & \text{otherwise} \end{cases}$
- star of $r \in \langle \langle \Sigma^* \rangle \rangle$: $r^*(w) = \bigoplus_{n \geq 0} r^n(w)$ • exists iff $r(\varepsilon) = 0$

Definition (Rational power series)

- $[\{\varepsilon\} \mapsto x]$ and $[\{a\} \mapsto x]$ are rational for all $x \in S$ and $a \in \Sigma$
- if r_1 and r_2 are rational, then so are $r_1 + r_2$ and $r_1 r_2$
- if r is rational and r^* is defined, then r^* is rational

Definition (Recognizable power series)

A formal power series $r \in \langle \langle \Sigma^* \rangle \rangle$ is recognizable if there exists a weighted automaton A with input on Σ and S such that |A| = r

Power series

Kleene on steroids

Theorem (Schützenberger)

A formal power series is recognizable iff it is rational.

