Bachelor of Software Engineering - Game Programming

GD2P02 – Physics Programming

Mass and Newton's Laws

Overview

- Mass and Newton's Laws
 - Mass
 - Density
 - Centre of Mass
 - Newton's Laws of Motion
 - Free Body Diagrams
 - Weight and Gravity
 - Moment of Inertia
 - The Levers

Mass

- Mass is the amount of matter.
 - Has inertia; resistance to movement.
 - Unit: Kilogram
- Mass is the integral of the density over the volume of the object.

$$m = \int \int \int \rho \, dx \, dy \, dz$$

For a uniform density object; $m = \rho V$

Density

- Density is the mass per unit.
 - How tight the matter is packed together.
 - ρ = mass / volume
 - ρ : kgm⁻³ (Kilogram per cubic meter.)
- The density of common objects (kg/m³):
 - Air (1atm, 20c) = 1.2
 - Aluminium = 2700
 - Gold = 19300
 - Ice = 920
 - Water (Freshwater) = 1000
 - Seawater (Saltwater) = 1030

Centre of mass

- The centre of mass is the point at which all the mass can be considered to be "concentrated".
- Centre of the mass is the "centre of the geometric primitive" for geometrically well shaped objects.
 - The centre of a triangle is the intersection point of the medians.
 - The centre of a rectangle is the intersection point of the diagonals.
- Centre of mass is the balance point for the object

Centre of mass in a system

 Assume that a system is composed of more than one primitive objects.

Fig 1: Centre of mass in a system.

Centre of mass: balance centre

Fig 2. Rayman Legends by Ubisoft (Ps4, 2016), balance it out!

Newton's Laws of Motion

- Sir Isaac Newton postulated three laws of motion.
- They form the basis for almost all physics.
 - 1st Law: Law of inertia
 - 2nd Law: Law of motion
 - 3rd Law: Law of reciprocal actions

Newton's 1st Law: Law of inertia

- An object at rest stays at rest or an object in motion with constant speed in the same direction stays in motion unless acted upon by a net force.
 - Net force: The vector sum of the forces applied to an object.
 - No change in speed, no change in direction → constant velocity*
 - * Speed is a scalar, velocity is vector!

Newton's 1st Law: Law of inertia continued...

- Inertia is the resistance that an object has against a change in its state of motion.
 - Inertia strongly depends on the mass.
 - The higher the resistance, the higher values of Force required to change the state of motion.

Net Force

- The object is considered to be at equilibrium if net force on the object is zero.
- Two forces of equal magnitude in opposite directions balance each other out, and net force equals to zero.
- If net force is not zero, the state of motion of the object changes ...

Force

- A force is a push or pull upon an object resulting from the objects interaction with another object.
 - When there is interaction between two objects...
 - There is a force upon each object.
 - When the interaction stops...
 - The two objects no longer experience the force.
 - Force only exists as a result of an interaction.

Free Body Diagram

- Show relative magnitude and direction of all forces acting upon an object in a given situation.
- Represent the object as a box...
- Direction of arrows show the direction of the force acting upon the object...

Fig 3: Free Body Diagram.

Drawing Free-Body Diagrams

• Show relative magnitude and direction of all forces acting upon an object in a given situation...

Fig 4: Free Body Diagram, with force values shown.

Net Force

The vector sum of all forces that act upon an object.

Fig 5: Free Body Diagram, with force values shown for net force.

Contact Forces

- Forces between physically contacting objects.
 - Frictional Force: Force exerted by a surface as an object moves across it.
 - Tension Force: Force transmitted through rope or cable.
 - Normal Force: Support force exerted upon an object by another stable object.
 - Air Resistance Force: Force acting upon objects as they travel through air.
 - Applied Force: Force applied to an object by another object.
 - Spring Force: Compressing or stretching a spring...

Action-at-a-Distance Forces

- Two objects not in physical contact can exert push or pull despite physical separation.
 - Gravitational Force: Massively large objects attract other objects towards itself.
 - Electrical Force: Force between two charged particles.
 - Magnetic Force: Force exerted between magnetic poles.

Force as a vector

- Force is a vector quantity.
 - Magnitude and Direction
 - Sample Force description: 10 Newton (magnitude),
 downward (direction).
- Unit of Force
 - Newton (N).
 - One Newton is the amount of force required to give a 1 kg mass an acceleration of 1ms⁻²
 - $1N = 1kg*(m/(s^2))$

Newton's 2nd Law: Law of motion

 The acceleration of an object as produced by a force is directly proportional to the magnitude of the net force, in the same direction as the net force.

$$F = m*a$$

» F : Newton

» m : kg

 $a : m/s^2$

- Force causes acceleration.
- Acceleration starts the motion.
- A force is not required to keep an object moving!

Weight and Gravity

- Weight is the force generated by the gravitational attraction of the earth.
 - $-F_{grav} = m * g$
 - Where:
 - m = mass (in Kg)
 - g = 9.8 N/Kg (on Earth)
 - Mass does not change!
 - Mass depends on the matter.
 - Weight changes depending on the gravity.
 - Gravity: the pull of the Earth upon the objects.

Gravity

- Newton's Law of universal gravitation explains the gravitation.
- Dynamics in solar system...
 - Gravity differs on different planets.
 - The Moon? 1.624m/s²
 - Mercury? 3.7m/s²
 - Venus? 8.9m/s²
 - Earth? 9.8m/s²
 - Mars? 3.7m/s²
 - Jupiter? 23.1m/s²

Newton's 3rd Law: Law of reciprocal actions

- For every action, there is an equal and opposite reaction.
- Forces come in pairs, equal and opposite.
 - The size of the forces on the first object equals the size of the forces on the second object.
 - The direction of the force on the first object is opposite to the direction of the force on the second object.

If an object is in rest...

The net force should be zero.

How can we stop the object from sliding down?

Fig 7: Objects in a rest against a horizontal surface.

• Friction results from an object sliding across a surface. $F_{friction} = F_{onTheSurface} * \mu \text{ , where } \mu \text{ is the coefficient.}$

Moment of Inertia

- When an object is at equilibrium, its state of motion is not changing.
- What about rotational equilibrium?
 - There must be no net turning effect of torques rotating an object about a pivot point...
 - Moment of force should be balanced for rotational equilibrium.
 - Torque is the tendency of a force to rotate an object about a pivot point.

Torque = (perpendicular force) * distance

$$\tau = F_{perp} * d$$

Force * length: Newton meters: Nm

Moment of force

- For an object (rigid body) to be in equilibrium there must be no change in rotational motion.
- The sum of all clockwise torques must equal the sum of all counterclockwise torques.

Fig 8: Above and below forces applied: Left: at centre; Middle: at end; Right: at opposite ends.

Moment of force causes the object to rotate.

The Lever and Moment of Force

- Lever is a rigid bar free to rotate about a fixed point.
 - Fixed point is called fulcrum.
 - Levers in daily life:
 - Type 1: Crowbar, Car Jack, Scissors
 - Type 2: Wheelbarrow, Bottle opener, Nutcracker
 - Type 3: Human arm, Fishing Rod

The Lever and Moment of Force

Fig 12: Calculation of moment of force.

 $F_{grav} * x_1 = F * x_2$

Summary

- Mass and Newton's Laws
 - Mass
 - Density
 - Centre of Mass
 - Newton's Laws of Motion
 - Free Body Diagrams
 - Weight and Gravity
 - Moment of Inertia
 - The Levers

