

M2177.003100 Deep Learning

[14: Variational Autoencoder (VAE)]

Electrical and Computer Engineering Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 09:23:00 on 2020/11/21)

Outline

Autoencoders

Variational Autoencoder

Architecture Training Remarks

Summary

References

- Deep Learning by Goodfellow, Bengio and Courville Link
 - Chapter 14: Autoencoders
 - ► Chapter 20: Deep Generative Models
- Pattern Recognition and Machine Learning by Bishop
 - ► Chapter 10: Approximate Inference
- online resources:

 - ► CVPR 2018 GAN Tutorial ► Link
 - ► NIPS 2016 Variational Inference Tutorial Link

Outline

Autoencoders

Variational Autoencoder

Summary

Autoencoder (AE)

- ullet neural net trained to reconstruct input x as output $ilde{x}$ (i.e. $x pprox ilde{x}$)
 - ▶ learns <u>cde</u> (= efficient representation of input data)
 - unsupervised (no label)
- architecture

	deterministic	stochastic	parameterized by
encoder decoder	$egin{aligned} f_{oldsymbol{\phi}}(oldsymbol{x}) &= oldsymbol{h} \ g_{oldsymbol{ heta}}(oldsymbol{h}) &= ilde{oldsymbol{x}} \end{aligned}$	$q_{ m enc}(m{h} m{x}) \ p_{ m dec}(ilde{m{x}} m{h})$	$oldsymbol{\phi}{oldsymbol{ heta}}$

- lacktriangledown $\dim(x) > \dim(h)$: undercomplete \Rightarrow capture important features of input
- ▶ $\dim(x) < \dim(h)$: overcomplete

training

$$\phi^*, \theta^* = \operatorname*{argmin}_{\phi, \theta} L(x, \tilde{x})$$

- ▶ L: loss (e.g. mean squared error)
- applications
 - dimensionality reduction
 - feature learning
 - ► forefront of generative modeling
- ullet linear f, g and MSE loss
 - \blacktriangleright h spans the same subspace as principal component analysis (PCA)
- stacked AE (= deep AE)
 - ▶ AE with multiple hidden layers

Need for regularization

- encoder/decoder with too much <a pacity
 - simply learn to copy input to output
 - learn nothing useful about data distribution
- regularizing AE
 - limit model capacity
 - use a loss encouraging desirable properties
- these properties
 - robustness to noise/missing inputs
 - sparse representation
 - small derivative of representation

Denoising autoencoder (DAE)

- one way to force AE to learn useful features
 - ▶ add noise to input5
 - ▶ then train AE to recover original (noise-free) input

- types of noise
 - Gaussian noise (shown above)
 - dropout: randomly switched off inputs

Sparse autoencoder

- training criterion involves
 - 1. reconstruction error
 - 2. sparsity penalty $\Omega(h)$ on code h

$$J(\phi, \theta) = \underbrace{L(x, \tilde{x})}_{\text{reconstruction}} + \underbrace{\Omega(h)}_{\text{loss}}$$

- ▶ sparsity loss example ► Link
 - $\triangleright \Omega(h) = \lambda D_{\mathrm{KL}}[p(h; \rho) || p(h; \hat{\rho})] \leftarrow \lambda$: regularization coefficient
 - $\triangleright p(h; \rho)$: desired (sparse) distribution of $h \leftarrow \rho$
 - ho $p(\pmb{h}; \hat{\pmb{\rho}})$: observed distribution of \pmb{h} \leftarrow parameterized by $\hat{\pmb{\rho}}$
- typically used to learn <u>features</u> for another task
 e.g. classification

Contractive autoencoder (CAE)

- introduces explicit regularizer on code h = f(x)
 - \blacktriangleright encourage derivative of f to be as small as possible

$$\Omega(m{h}) = \lambda \left\| \frac{\partial f(m{x})}{\partial m{x}}
ight\|_F^2$$

- $|\cdot||\cdot||_F^2$: squared Frobenius norm (= sum of squared elements)
- effect¹
 - ▶ better captures <u>local directions of variation</u> dictated by data
 - = a lower-dimensional non-linear manifold
 - ▶ f "contracts" input neighborhood to a smaller output neighborhood
 - i.e. similar inputs \mapsto similar codings

¹Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In *Proceedings of the 28th International Conference on International Conference on Machine Learning*, pages 833–840. Omnipress

More autoencoder examples

- stacked convolutional autoencoders²
 - ▶ learn to extract visual features through conv layers
- generative stochastic network (GSN)³
 - generalization of DAE (added capability to generate data)
- winner-take-all (WTA) autoencoder⁴
 - only top k% activation for each neuron are preserved (the rest: set to 0)
 - ⇒ leads to sparse coding
- adversarial autoencoders⁵

- ⇒ AE2 pushes AE1 to learn robust code
- ▶ AE1: trained to reproduce its input
- ▶ AE2: trained to find inputs AE1 cannot properly reconstruct

²Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). Stacked convolutional auto-encoders for hierarchical feature extraction. In *International Conference on Artificial Neural Networks*, pages 52–59. Springer

³Bengio, Y., Laufer, E., Alain, G., and Yosinski, J. (2014). Deep generative stochastic networks trainable by backprop. In *International Conference on Machine Learning*, pages 226–234

⁴Makhzani, A. and Frey, B. J. (2015). Winner-take-all autoencoders. In *Advances in Neural Information Processing Systems*, pages 2791–2799

⁵Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. (2015). Adversarial autoencoders. arXiv preprint arXiv:1511.05644

Outline

Autoencoders

Variational Autoencoder

Architecture Training Remarks

Summary

Variational autoencoder (VAE)

- a popular approach to unsupervised learning of complex distributions
 - uses learned approximate inference
 - can be trained purely with gradient-based methods^{6,7}
- appealing because
 - built on top of standard function approximators (neural nets)
 - can be trained with 54D

⁶Kingma, D. P. and Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114

⁷Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082

Comparison

- augoregressive models
 - define a tractable density function

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \prod_{i=1}^{n} p_{\boldsymbol{\theta}}(x_i \mid x_1, \dots, x_{i-1})$$

- VAE

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \int p_{\boldsymbol{\theta}}(\boldsymbol{z}) p_{\boldsymbol{\theta}}(\boldsymbol{x} \,|\, \boldsymbol{z}) d\boldsymbol{z}$$

- GAN
 - give up explicit p(x) modeling
 - just want to ability to sample from it

Related models

autoencoders: reconstruct given input x

ullet generative models: generate new sample x

$$\xrightarrow{p(x)} x$$

- ► one challenge: modeling dependencies between dimensions
- ullet latent generative models: generate new sample x from latent z

$$extstyle egin{array}{c} rac{p(z)}{}
ightarrow p
ightarrow z & rac{p(x\,|\,z)}{}
ightarrow x \end{array}$$

- introducing z improves dependency modeling
- ▶ how to train? maximize data likelihood $p(x) = \int p(z)p(x \mid z) dz$
- ightharpoonup challenge: integration $\int dz$ is often intractable

Idea behind VAE

training

- sample generation
 - $lackbox{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$: easy to sample from

Quick look

ullet goal: find $oldsymbol{ heta}$ that maximizes likelihood $p_{oldsymbol{ heta}}(oldsymbol{x})$ for training data $oldsymbol{x}$

$$p_{\theta}(x) = \int \underbrace{p_{\theta}(z)}_{\substack{\text{simple} \\ \text{Gaussian} \\ \text{prior}}} \underbrace{p_{\theta}(x \mid z)}_{\substack{\text{learn with} \\ \text{neural net} \\ \text{decoder}''}}$$
(1)

- challenge: cannot optimize (1) directly
 - ho $p_{\theta}(z)$ and $p_{\theta}(x \mid z)$ are okay but the integration is intractable
- solution: derive and optimize a tractable bound on the likelihood

$$\log p_{m{ heta}}(m{x}) \geq \underbrace{\mathcal{L}(m{x}, m{ heta}, m{\phi})}_{\mathsf{ELBO}}$$

• what to learn: **model** parameters θ and **variational** parameters ϕ

GNU and VAE

- GNU
 - GNU's Not Unix!

(recursive acronym)

an operating system and an extensive collection of computer software

- VAE
 - VAE's not AutoEncoder!
 - a generative model to learn complex distributions

Why are VAEs called "autoencoders"?

- mathematical basis of VAE⁸
 - ▶ has relatively little to do with classical AEs (e.g. sparse AE, denoising AE)
- they are called "AEs" only because
 - ▶ training objective has encoder/decoder (⇒ resembles traditional AE)
- differences
 - unlike sparse/denoising AEs
 - \triangleright VAE allows us to sample directly from p(x) (without doing MCMC)
 - typical AE: decoders are sometimes removed after training
 - $p(z \mid x)$ learned by encoder: used for e.g. supervised learning
 - ▶ VAE: encoders are removed after training
 - $\triangleright p(x \mid z)$ learned by decoder: used for data generation

⁸Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908

Comparison

autoencoders

• generative models

$$\xrightarrow{p(x)} x$$

latent generative models

$$\xrightarrow{\quad p(z) \quad } z \xrightarrow{\quad p(x\,|\,z) \quad } x$$

VAEs

$$x extstyle rac{q(z \mid x)}{ ext{encoder}} ag z extstyle rac{p(x \mid z)}{ ext{decoder}} ag x$$
 (trained as an AE)
$$extstyle rac{p(z)}{ extstyle prior} ag z extstyle rac{p(x \mid z)}{ extstyle decoder} ag x$$
 (main use: data generation)

Outline

Autoencoders

Variational Autoencoder Architecture

Training Remarks

Summary

Problem formulation

- ullet objective: for each x in training set
 - \triangleright maximize the probability of x under the entire generative process:

$$p(\mathbf{x}) = \int p(\mathbf{x} \,|\, \mathbf{z}) p(\mathbf{z}) d\mathbf{z} \tag{2}$$

- to solve (2), VAEs must deal with three problems
 - P1 how to define latent variables **z** (*i.e.* decide what information they represent)
 - P2 how to define output distribution p(x | z)
 - P3 how to deal with integral over z

Solution 1: prior p(z)

- choose prior p(z) to be simple
 - reasonable for latent attributes (e.g. pose, how much smile)
- common choice: unit Gaussian $p(z) = \mathcal{N}(z; 0, I)$
 - ▶ diagonal prior ⇒ independent latent variables
 - different dimensions of z encode interpretable factors of variation

- varying z_1
 - varying head pose
- varying z_2
 - varying degree of smile

image source: Kingma, D. P. and Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114

Solution 2: output distribution $p(\boldsymbol{x} \mid \boldsymbol{z})$

- use a differentiable generator ("decoder") network $g(z; \theta)$
 - m heta denotes parameters of decoder neural net
 - $g(z; \theta)$ produces parameters of p(x | z)

$$p(\boldsymbol{x} \mid \boldsymbol{z}) = p(\boldsymbol{x}; g(\boldsymbol{z}; \boldsymbol{\theta})) \triangleq p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z})$$

- common parametric distributions for p(x | z)
 - ightharpoonup continuous x: a Gaussian parameterized by $g(z; \theta)$
 - **b** binary \mathbf{x} : a Bernoulli parameterized by $g(z; \boldsymbol{\theta})$
- at training time
 - ▶ likelihood of each input $m{x}^{(i)}$ can be computed using $p_{m{ heta}}(m{x}^{(i)} \,|\, m{z})$
 - ⇒ this generates error signal for doing SGD by backprop
- after training
 - lacktriangleright a new $m{x}$ is sampled from $p_{m{ heta}}(m{x}\,|\,m{z})$

- e.g. Gaussian with diagonal covariance: $p(x \mid z) = \mathcal{N}(x; \boldsymbol{\mu}(z), \boldsymbol{\Sigma}(z))$
 - $m{x} \in \mathbb{R}^2$, $z \in \mathbb{R}$

$$\boldsymbol{\mu}(z) = egin{bmatrix} \mu_1(z) \\ \mu_2(z) \end{bmatrix}, \quad \boldsymbol{\Sigma}(z) = egin{bmatrix} \sigma_1^2(z) & 0 \\ 0 & \sigma_2^2(z) \end{bmatrix}$$

Solution 3: integration over z

• from Solutions 1 & 2:

$$p(\boldsymbol{x}) = \int \underbrace{p(\boldsymbol{z})}_{\substack{\text{simple} \\ \text{Gaussian} \\ \text{prior}}} \underbrace{p(\boldsymbol{x} \mid \boldsymbol{z})}_{\substack{\text{learn with} \\ \text{decoder}}} d\boldsymbol{z}$$

- $m{p}_{m{ heta}}(m{z})$ and $p_{m{ heta}}(m{x}\,|\,m{z})$ are okay but integration remains intractable
- ullet conceptually: easy to compute $p(oldsymbol{x})$ approximately
 - lacktriangle sample a large number of $m{z}$ values $\{m{z}_1,\ldots,m{z}_n\}$ and compute

$$p(oldsymbol{x}) pprox rac{1}{n} \sum_{i=1}^n p(oldsymbol{x} \,|\, oldsymbol{z}_i)$$

- challenge: in high-dimensional space
 - ightharpoonup n: extremely large before having an accurate estimate of p(x)

- in practice: $p(x \mid z) \approx 0$ for most $z \rightarrow$ contribute nothing to estimate of p(x)
- key idea behind VAE #1:
 - \blacktriangleright try to sample values of z that are likely to have produced x, and
 - ightharpoonup compute p(x) just from those
- this means: we need a new function $q(z \mid x)$, which can
 - ightharpoonup take a value of x, and
 - lacktriangleright give us a distribution over z that are likely to produce x
- why not exact posterior $p(z \mid x)$?
 - ▶ also intractable: $p(z \mid x) = p(x \mid z)p(z)/p(x)$
- key idea #2: resort to variational inference, which allows us to
 - 1. find an approximate posterior $q(z \mid x) \approx p(z \mid x)$
 - 2. $\underbrace{\mathsf{maximize}\;\mathrm{ELBO}(q)}_{\mathsf{tractable}}$ rather than $\underbrace{\mathsf{maximizing}\;p(\boldsymbol{x})}_{\mathsf{intractable}}$ directly
 - ▶ issue: traditional VI using optimization is slow/requires closed form

- key idea #3: use a differentiable inference ("encoder") network $f(x;\phi)$
 - $ightharpoonup \phi$ denotes parameters of encoder neural net
 - $f(x; \phi)$ produces parameters of q(z | x)

$$q(\boldsymbol{z} \mid \boldsymbol{x}) = q(\boldsymbol{z}; f(\boldsymbol{x}; \boldsymbol{\phi})) \stackrel{\triangle}{=} q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x})$$

- ▶ training the encoder: often easier than optimization in traditional VI
 - ▶ backed by various efficient techniques (e.g. SGD, backprop)
- common parametric distributions for $q(z \mid x)$
 - lacktriangle a Gaussian parameterized by $f(x;\phi)$
 - ightharpoonup its covariance Σ : constrained to be diagonal (for computational issues)
- z is sampled from
 - $ightharpoonup q_{oldsymbol{\phi}}(oldsymbol{z} \,|\, oldsymbol{x})$ in training
 - $p(z) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ after training
 - \Rightarrow and then the sampled z is fed into decoder to generate x

- ullet e.g. Gaussian $q(z \,|\, oldsymbol{x}) = \mathcal{N}(z; \mu(oldsymbol{x}), \sigma^2(oldsymbol{x}))$
 - $m{x} \in \mathbb{R}^2$, $z \in \mathbb{R}$

VAE architecture

encoder and decoder are stacked

ullet we can learn parameters ϕ and $oldsymbol{ heta}$ via _____

Outline

Autoencoders

Variational Autoencoder

Architecture

Training

Remarks

Summary

Training objective

• as in VI, decomposing $\log p(x)$ reveals it:

$$\begin{split} \log p(\boldsymbol{x}) &= \mathbb{E}_{\mathbf{z} \sim q(\boldsymbol{z}|\boldsymbol{x})}[\log p(\boldsymbol{x})] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log \frac{p(\boldsymbol{x} \mid \boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z} \mid \boldsymbol{x})} \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log \frac{p(\boldsymbol{x} \mid \boldsymbol{z})p(\boldsymbol{z})}{p(\boldsymbol{z} \mid \boldsymbol{x})} \frac{q(\boldsymbol{z} \mid \boldsymbol{x})}{q(\boldsymbol{z} \mid \boldsymbol{x})} \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log p(\boldsymbol{x} \mid \boldsymbol{z}) \right] - \mathbb{E}_{\mathbf{z}} \left[\log \frac{q(\boldsymbol{z} \mid \boldsymbol{x})}{p(\boldsymbol{z})} \right] + \mathbb{E}_{\mathbf{z}} \left[\log \frac{q(\boldsymbol{z} \mid \boldsymbol{x})}{p(\boldsymbol{z} \mid \boldsymbol{x})} \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z}) \right] - D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z}) \right] + D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z} \mid \boldsymbol{x}) \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z}) \right] - D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z}) \right] + D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z} \mid \boldsymbol{x}) \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z}) \right] - D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z}) \right] + D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z} \mid \boldsymbol{x}) \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z}) \right] - D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z}) \right] + D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z} \mid \boldsymbol{x}) \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z}) \right] - D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z}) \right] + D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z} \mid \boldsymbol{x}) \right] \right] \\ &= \mathbb{E}_{\mathbf{z}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z}) \right] - D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z}) \right] + D_{\mathrm{KL}} \left[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z} \mid \boldsymbol{x}) \right] \right]$$

- note: any distribution over z can be proxy q for posterior $p(z \mid x)$
 - ▶ EM/VI: using q(z) is more common
 - ▶ VAE: using ९(२(२)०) is more common⁹

⁹since we want to infer p(x), it makes sense to construct q that does depend on x [see Doersch, C. (2016). Tutorial on variational autoencoders. $arXiv\ preprint\ arXiv:1606.05908$]

Interpretation¹⁰

• VAE: trained by maximizing variational lower bound $\mathcal{L}(x, \theta, \phi)$

$$\begin{split} \log p(\boldsymbol{x}) &\geq \mathcal{L}(\boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\phi}) \\ &= \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p(\boldsymbol{z}, \boldsymbol{x})\right]}_{\text{$\textcircled{$1$}}} + \underbrace{H[q_{\boldsymbol{\phi}}(\boldsymbol{z}|\,\boldsymbol{x})]}_{\text{$\textcircled{$2$}}} + \underbrace{H[q_{\boldsymbol{\phi}}(\boldsymbol{z}|\,\boldsymbol{x})]}_{\text{$\textcircled{$2$}}} \\ &= \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\,\boldsymbol{z})\right]}_{\text{$\textcircled{$3$}}} - \underbrace{D_{\mathrm{KL}}[q_{\boldsymbol{\phi}}(\boldsymbol{z}|\,\boldsymbol{x})\,||\,p(\boldsymbol{z})]}_{\text{$\textcircled{$4$}}} \\ &= \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\,\boldsymbol{z})\right]}_{\text{$\textcircled{$3$}}} - \underbrace{D_{\mathrm{KL}}[q_{\boldsymbol{\phi}}(\boldsymbol{z}|\,\boldsymbol{x})\,||\,p(\boldsymbol{z})]}_{\text{$\textcircled{$4$}}} \end{split}$$

- 1 joint log-likelihood of visible/hidden variables
 - under approximate posterior over latent variables
- 2 entropy of approximate posterior: maximizing this encourages to
 - lacktriangle place high prob mass on many z values that could have generated x
 - rather than collapsing to a single point estimate of the most likely value
- 3 reconstruction log-likelihood found in other autoencoders
- 4 tries to make approximate posterior $q_{\phi}(z \mid x)$ and model prior p(z) close
 - lacktriangledown tries to reflect prior knowledge \Rightarrow regularizer

¹⁰Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep learning*. MIT Press

Interpretation¹¹

ullet rearranging decomposition of $\log p(oldsymbol{x})$ gives

$$\underbrace{\log p(\boldsymbol{x})}_{\text{1}} - \underbrace{D_{\text{KL}}[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z} \mid \boldsymbol{x})]}_{\text{2}} \\
= \underbrace{\mathbb{E}_{\boldsymbol{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z})]}_{\text{3 decoding objective}} - \underbrace{D_{\text{KL}}[q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z})]}_{\text{4 encoding objective}}$$

left hand side

- 1 quantity we want to maximize
- \bigcirc error term (this will become small if q is high-capacity)
 - ightharpoonup makes q produce $oldsymbol{z}$'s that can reproduce a given $oldsymbol{x}$
- right hand side: something we can optimize via SGD (given right choice of q)
 - suddenly takes a form which looks like an autoencoder
 - $\triangleright q$ is "encoding" x into z (quality measured by 4)
 - \triangleright p is "decoding" it to reconstruct x (quality measured by 3)

¹¹Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908

Training

• perform SGD to maximize the objective:

$$J = \mathcal{L}(\boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\phi})$$

$$= \underbrace{-D_{\mathrm{KL}}[\boldsymbol{q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})} \mid\mid p(\boldsymbol{z})]}_{\text{① encoding objective}} + \underbrace{\mathbb{E}_{\mathbf{z} \sim \boldsymbol{q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})}}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z})]}_{\text{② decoding objective}}$$

- usual choice: $q(z \mid x) = \mathcal{N}(z; \mu(x), \Sigma(x))$
 - \blacktriangleright μ , Σ : learned/represented via neural nets
 - $ightharpoonup \Sigma$: a diagonal matrix
- ① D_{KL} between two multivariate Gaussians
 - can be computed in closed form
- ② a bit more tricky
 - ▶ involves random Sampling ⇒ how to backprop gradient for SGD?

Training: encoding objective

- optimizing ①: encoding objective $-D_{KL}[q_{\phi}(z \mid x) \mid\mid p(z)]$
 - ightharpoonup in general (K: dimensionality of variable)

$$D_{\mathrm{KL}}[\mathcal{N}(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}) || \mathcal{N}(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1})]$$

$$= \frac{1}{2} \left(\operatorname{tr} \left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma}_{0} \right) + (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{\top} \boldsymbol{\Sigma}_{1}^{-1} (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}) - K + \ln \left(\frac{\det \boldsymbol{\Sigma}_{1}}{\det \boldsymbol{\Sigma}_{0}} \right) \right)$$

▶ in VAE this simplifies¹² to

$$D_{\mathrm{KL}}[\mathcal{N}(\boldsymbol{\mu}(\boldsymbol{x}), \boldsymbol{\Sigma}(\boldsymbol{x})) || \mathcal{N}(\boldsymbol{0}, \boldsymbol{\mathbf{I}})] = \frac{1}{2} \left(\operatorname{tr}(\boldsymbol{\Sigma}(\boldsymbol{x})) + \boldsymbol{\mu}(\boldsymbol{x})^{\top} \boldsymbol{\mu}(\boldsymbol{x}) - K - \ln \det \boldsymbol{\Sigma}(\boldsymbol{x}) \right)$$

$$= \frac{1}{2} \left(\sum_{k=1}^{K} \sigma_{k}^{2}(\boldsymbol{x}) + \sum_{k=1}^{K} \mu_{k}^{2}(\boldsymbol{x}) - \sum_{k=1}^{K} 1 - \ln \prod_{k=1}^{K} \sigma_{k}^{2}(\boldsymbol{x}) \right)$$

$$= \left[\frac{1}{2} \sum_{k=1}^{K} \left(\sigma_{k}^{2}(\boldsymbol{x}; \boldsymbol{\phi}) + \mu_{k}^{2}(\boldsymbol{x}; \boldsymbol{\phi}) - 1 - \ln \sigma_{k}^{2}(\boldsymbol{x}; \boldsymbol{\phi}) \right) \right]$$

lacktriangle differentiable \Rightarrow can be minimized wrt ϕ via $^{\varsigma}$ $^{\varsigma}$ $^{\iota}$ 13

¹²for diagonal $\Sigma = \mathrm{diag}[\sigma_1^2, \sigma_2^2, \ldots]$, $\mathrm{tr}(\Sigma) = \sum_k \sigma_k^2$ and $\det \Sigma = \prod_k \sigma_k^2$

¹³to avoid clutter, revealed dependence on ϕ only in the last equation

Training: decoding objective

- forward prop to compute ②: decoding objective $\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})]$
 - lacktriangle use Monte Carlo sampling: for each input $x^{(i)}$
 - 1. $z^{(i,l)}$ is sampled from encoder $q_{\phi}(z | x^{(i)})$
 - 2. $z^{(i,l)}$ is fed to decoder \Rightarrow gives $\log p_{\theta}(x^{(i)} | z^{(i,l)})$
 - 3. repeat above steps L times to approximate

$$\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}^{(i,l)}) \right] \approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}^{(i,l)})$$

- ightharpoonup in practice, often L=1 (as in SGD; the same motivation)
- however, to maximize ② via SGD with backprop¹⁴
 - we need a trick called reparameterization
 - without it, we cannot backprop gradient through the sampling process
 - □ sampling: not continuous ⇒ not differntiable

¹⁴SGD via backprop can handle stochastic inputs but not stochastic units within the network

Reparameterization trick

- idea: move sampling to an input layer
- ullet given $oldsymbol{\mu}(oldsymbol{x})$ and $oldsymbol{\Sigma}(oldsymbol{x})$ (i.e. mean and covariance of $q(oldsymbol{z} \mid oldsymbol{x})$):
 - lacktriangleright instead of sampling $m{z}^{(i,l)} \sim \mathcal{N}(m{\mu}(m{x}^{(i)}), m{\Sigma}(m{x}^{(i)}))$ directly
 - lacktriangle we can compute $oldsymbol{z}^{(i,l)}$ by
 - 1. first sampling ${m \epsilon}^{(l)} \sim \mathcal{N}({m 0},{f I})$
 - 2. then computing

$$oldsymbol{z}^{(i,l)} = oldsymbol{\mu}(oldsymbol{x}^{(i)}) + oldsymbol{\sigma}(oldsymbol{x}^{(i)}) \odot oldsymbol{\epsilon}^{(l)}$$

- $m z^{(i,l)}$ has the same distribution as before, but now we can do backprop

Training: combined objectives

• finally, training objective for datapoint $x^{(i)}$:

$$\mathcal{L}(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}, \boldsymbol{\phi}) = \underbrace{-D_{\mathrm{KL}}[\boldsymbol{q_{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \mid\mid p(\boldsymbol{z})]}_{\text{encoding objective}} + \underbrace{\mathbb{E}_{\boldsymbol{z} \sim \boldsymbol{q_{\phi}}(\boldsymbol{z} \mid \boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \mid \boldsymbol{z})]}_{\text{decoding objective}}$$
(3)

$$\simeq \frac{1}{2} \sum_{k=1}^{K} \left(1 + \ln \sigma_k^2(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) - \mu_k^2(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) - \sigma_k^2(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) \right) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} | \boldsymbol{z}^{(i,l)} \right)$$

where

$$z^{(i,l)} = \mu(x^{(i)}) + oldsymbol{\sigma}(x^{(i)}) \odot oldsymbol{\epsilon}^{(l)}$$
 and $oldsymbol{\epsilon}^{(l)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

L: Monte Carlo sample size (often L=1)

K: dimensionality of latent variable z

- ullet given a fixed x and ϵ
 - \blacktriangleright (3) is deterministic and continuous in θ and ϕ
 - ⇒ bckpop can compute a gradient that will work for SGD

Training summary

training in variational autoencoders (VAEs):

$$oldsymbol{ heta}^*, oldsymbol{\phi}^* = rgmax_{oldsymbol{ heta}, oldsymbol{\phi}}^{N} \sum_{i=1}^{N} \mathcal{L}(oldsymbol{x}^{(i)}, oldsymbol{ heta}, oldsymbol{\phi})$$

- \bullet : parameters of generator network ("decoder")
- $ightharpoonup \phi$: parameters of inference network ("encoder")
- lacksquare N : number of training samples $(\{m{x}^{(1)},\ldots,m{x}^{(N)}\})$
- ullet $\mathcal{L}(oldsymbol{x}^{(i)},oldsymbol{ heta},oldsymbol{\phi})$: variational lower bound (see below)

$$\begin{split} \mathcal{L}(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}, \boldsymbol{\phi}) &= \underbrace{-D_{\mathrm{KL}}[q_{\boldsymbol{\phi}}(\boldsymbol{z} \,|\, \boldsymbol{x}) \,||\, p(\boldsymbol{z})]}_{\text{encoding objective}} + \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z} \,|\, \boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \,|\, \boldsymbol{z})]}_{\text{decoding objective}} \\ &\simeq \frac{1}{2} \sum_{k=1}^{K} \left(1 + \ln \sigma_{k}^{2}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) - \mu_{k}^{2}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) - \sigma_{k}^{2}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi})\right) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)} \,|\, \boldsymbol{z}^{(i,l)}\right) \\ &\boldsymbol{z}^{(i,l)} = \boldsymbol{\mu}(\boldsymbol{x}^{(i)}) + \boldsymbol{\sigma}(\boldsymbol{x}^{(i)}) \odot \boldsymbol{\epsilon}^{(l)} \quad \text{where} \quad \boldsymbol{\epsilon}^{(l)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{split}$$

• VAE with faussian encoder/decoder:

$$\begin{split} \mathcal{L}(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}, \boldsymbol{\phi}) &= \underbrace{-D_{\mathrm{KL}}[q_{\boldsymbol{\phi}}(\boldsymbol{z} \,|\, \boldsymbol{x}) \,||\, p(\boldsymbol{z})]}_{\text{encoding objective}} + \underbrace{\mathbb{E}_{\mathbf{z} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} \,|\, \boldsymbol{z})]}_{\text{decoding objective}} \\ &\simeq \frac{1}{2} \sum_{k=1}^{K} \left(1 + \ln \sigma_{\mathbf{z} \mid \mathbf{x}, k}^{2}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) - \mu_{\mathbf{z} \mid \mathbf{x}, k}^{2}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) - \sigma_{\mathbf{z} \mid \mathbf{x}, k}^{2}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) \right) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}^{(i,l)}) \\ &\log p_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)} | \boldsymbol{z}^{(i,l)}) = \log \mathcal{N}\left(\boldsymbol{x}^{(i)}; \boldsymbol{\mu}_{\mathbf{x} \mid \mathbf{z}}(\boldsymbol{z}^{(i,l)}), \sigma_{\mathbf{x} \mid \mathbf{z}}^{2}(\boldsymbol{z}^{(i,l)}) \mathbf{I}\right) \\ & \boldsymbol{z}^{(i,l)} = \boldsymbol{\mu}_{\mathbf{z} \mid \mathbf{x}}(\boldsymbol{x}^{(i)}) + \boldsymbol{\sigma}_{\mathbf{z} \mid \mathbf{x}}(\boldsymbol{x}^{(i)}) \odot \boldsymbol{\epsilon}^{(l)} \quad \text{where} \quad \boldsymbol{\epsilon}^{(l)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{split}$$

Sample generation

- when we want to generate a new sample p(2) : Prior
 - lacktriangleright simply input a sample $z \sim \mathcal{N}(0, \mathcal{I})$ into decoder
 - do not use encoder at test time
 - ▶ decoder will produce parameters of p(x | z)
 - we then sample a new \boldsymbol{x} from $p(\boldsymbol{x} \mid \boldsymbol{z})$

image source: http://www.dpkingma.com/sgvb_mnist_demo/demo.html

Outline

Autoencoders

Variational Autoencoder

Architecture Training

Remarks

Summary

VAE in a nutshell

- a latent generative model using neural nets and variational inference
 - relies on variational inference to resolve the challenge of inference

$$\log p(\boldsymbol{x}) \geq \underbrace{\text{ELBO}(\boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\phi})}_{\boldsymbol{\theta}: \text{ parameters for decoder } \boldsymbol{\phi}: \text{ parameters for encoder}} = \underbrace{\mathbb{E}_{\mathbf{z} \sim q(\boldsymbol{z}|\boldsymbol{x})}[\log p(\boldsymbol{x}|\boldsymbol{z})]}_{\text{expected log likelihood of the data}} - \underbrace{D_{\text{KL}}[q(\boldsymbol{z}|\boldsymbol{x}) \mid\mid p(\boldsymbol{z})]}_{D_{\text{KL}} \text{ between prior } p(\boldsymbol{z}) \text{ and } q(\boldsymbol{z}|\boldsymbol{x})}$$

▶ add "encoder" to learn parametric $q(z \mid x)$ that approximates $p(z \mid x)$

$$x \xrightarrow[ext{encoder}]{q(z \mid x)} z \xrightarrow[ext{decoder}]{p(x \mid z)} x$$
 (trained as an AE)

- p(x | z): now viewed as "decoder" (encoder/decoder: neural nets)
- ightharpoonup encoder learns distribution parameters of $q(z\,|\,x)$ (e.g. μ , Σ)
- riangleright z is sampled from $q(oldsymbol{z} \mid oldsymbol{x})$ (e.g. $oldsymbol{z} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$)
- ullet train VAE = maximize ELBO (tractable) = learn $oldsymbol{ heta}$ and $oldsymbol{\phi}$ by backprop (+ reparameter) trick)
- ▶ after training: encoder is removed (c.f. decoder is removed in AEs)

$$rac{p(z)}{ ext{prior}}
ightarrow z rac{p(x \mid z)}{ ext{decoder}}
ightarrow x$$

ightharpoonup use a simple prior $p(z) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ($\Rightarrow D_{\mathrm{KL}}$ above: "regularizer")

Manifold learning by VAE

- nice property of VAE
 - simultaneous training of a parametric encoder with decoder
 - ⇒ forces to learn a coordinate system the encoder can capture
 - ⇒ makes VAE an excellent manifold learning algorithm

- example of low-dim manifolds learned by VAE
 - ▶ 2D map of MNIST manifold

Limitations

- main drawback
 - ▶ image samples from VAE: blurry
 - cause: some explanations possible but not yet completely known

Outline

Autoencoders

Variational Autoencoder

Summary

Summary

- autoencoders: stacked/denoising/sparse/contractive and many more
 - copy input to output learning useful representation of input
- variational autoencoder (VAE)
 - ▶ probabilistic spin to traditional AEs ⇒ allows generating data
 - ▶ defines an intractable density ⇒ derive and optimize a (variational) lower bound
- VAE advantages: principled approach to generative models
 - ightharpoonup allows inference of $q(z \mid x)$
 - ⇒ can be useful feature representation for other tasks
- VAE limitations
 - maximizes lower bound of likelihood (not as good evaluation as PixelCNN)
 - samples blurrier and lower quality compared to state-of-the-art (GANs)
- active areas of research in VAE
 - \blacktriangleright more flexible approximations (e.g. richer approximate posterior than diagonal \mathcal{N})
 - incorporating structure in latent variables