Криптография

Лекция 4. Цифровые подписи.

Дмитрий Яхонтов

"Кочерга", 2019

Требования к цифровой подписи

- Подпись удостоверяет автора сообщения именно автор подписи, и никто иной, сознательно подписал документ
- Подписанный документ нельзя изменить любое изменение документа приводит к тому, что подпись становится недействительной
- Подпись нельзя использовать повторно она является частью документа, перенести подпись на другой документ невозможно
- От подписи невозможно отречься автор не может сформировать отказ от своей подписи или утверждать, что подпись создана не им.

Симметричная схема (с посредником)

Недостатки симметричной схемы

- Нужны защищенные каналы для обмена закрытими ключами между Трентом и каждым из остальных участников
- Если Боб получил от Алисы подписанное сообщение, он может продемонстрировать подпись кому-то еще только через Трента
- Трент должен хранить базу сообщений, либо пересылать Бобу копию шифрованного сообщения Алисы
- Самое главное: необходим Трент сторона, которой все доверяют

Асимметричная схема

Алгоритм DSA

(Digital Signature Algorithm)

Alice *открытое* **g**: gq mod p = 1 **——> g**

например, $\mathbf{g} = h^{(p-1)/q} \mod p$

открытый ключ: $\mathbf{Y} = g^x \mod p$

сообщение — ➤ хеш Н

секретное случайное $\mathbf{K} < \mathbf{q}$

подпись:

$$\mathbf{R} = (\mathbf{g}^{\mathsf{K}} \bmod \mathbf{p}) \bmod \mathbf{q} \longrightarrow$$

 $\mathbf{S} = (\mathsf{K}^{-1}(\mathsf{H} + \mathsf{X} \cdot \mathsf{R})) \bmod \mathbf{q} \longrightarrow$

сообщение — ➤ хеш Н проверка подписи:

U1 =
$$(H \cdot S^{-1}) \mod q$$

$$U2 = (R \cdot S^{-1}) \mod q$$

$$\mathbf{V} = ((g^{U1} \cdot y^{U2}) \mod p) \mod q$$

если $\mathbf{V} = \mathbf{R}$, то подпись верна

Почему DSA работает?

- S = K-1 (H + X-R) mod q K = S-1 (H + X-R) mod q — перенесли К в левую часть, а S — в правую K = (H · S-1 + X · R · S-1) mod q
- возведём g в степень правой и левой части (по модулю p) gк mod p = g(H·S-1 + X·R·S-1) mod q mod p gк mod p = gH·S-1 mod g · g X·R·S-1 mod q mod p = gTO U1, а вот это U2 g x mod q = Y
- $g^{K} \mod p = g^{U1} \cdot Y^{U2} \mod p$
- возьмём левую и правую части по модулю $q = g^{v_1} \cdot Y^{v_2} \mod p \mod q$ слева \mathbf{R} , а справа \mathbf{V}

Алгоритм DSA (пример с числами)

$$p = 29, q = 7 \longrightarrow p, q$$

$$g = 2^{(29-1)/7} \mod 29 = 16 \longrightarrow g$$

$$3$$
акрытый ключ: $X = 6$

$$x$$
еш c ообщения $H = 5$

случайное
$$K = 2$$

 $K^{-1} \mod 7 = 4$

подпись:

$$\mathbf{R} = (16^2 \mod 29) \mod 7 = 3$$

$$S = (4(5 + 6 * 3)) \mod 7 = 1$$

проверка подписи:

$$S^{-1} \mod 7 = 1$$

$$U1 = (5 * 1) \mod 7 = 5$$

$$U2 = (3 * 1) \mod 7 = 3$$

$$V = ((16^5 * 20^3) \mod 29) \mod 7$$

= (8388608000 mod 29) mod 7

$$= 3 = R$$

название системы	год	вычислительная задача	примечание
RSA (Rivest-Shamir-Adleman)	1977	разложение на простые множители	
Лэмпорта (Lamport)	1979	любая односторонняя функция	одноразовые пары ключей
ESIGN (Efficient digital SIGNature)	1985	разложение на простые множители	быстрее, чем RSA
Эль-Гамаля (Elgamal)	1985	дискретный логарифм	
Шнорра (Schnorr)	1989	дискретный логарифм	модификация схемы Эль-Гамаля
DSA (Digital Signature Algorithm)	1991	дискретный логарифм	
ECDSA (Elliptic Curve Digital Signature Algorithm)	1999	дискретный логарифм на эллиптич. кривых	
ΓΟCT P 34.10-2012	2012	дискретный логарифм на эллиптич. кривых	

Подсознательный канал (Subliminal Channel) на примере DSA

- Алиса и Боб выбирают
 Z закрытый ключ для подсознательного канала
- Алиса подписывает сообщение. Она выбирает случайное число **К** так, чтобы:
 - для передачи 1: параметр подписи **R** был квадратичным вычетом по модулю **Z** (существует **n** такое, что $R = n^2 \mod Z$)
 - для передачи 0:
 R не был квадратичным вычетом по модулю **Z**
- Боб проверяет подпись, а затем восстанавливает переданный бит из параметра R, зная Z
- Передать несколько бит можно, используя сразу несколько модулей **Z**

Уничтожение подсознательного канала

- Число К должно генерироваться совместно обеими сторонами
- Алиса не должна контролировать ни один бит числа К
- Боб не должен узнать ни один бит числа К
- Боб должен иметь возможность проверить, что для подписи использовалось именно сгенерированное К

выбирает $\mathbf{k1}$ $\mathbf{u} = \mathbf{g}^{k_1} \mod \mathbf{p}$ $\mathbf{k2} \longleftarrow \mathbf{k1}$ $\mathbf{k2} \longleftarrow \mathbf{k2}$ $\mathbf{K} = k_1 * k_2 \mod (\mathbf{p} - 1)$ $\mathbf{k} = k_1 * k_2 \mod (\mathbf{p} - 1)$ $\mathbf{k} = k_1 * k_2 \mod (\mathbf{p} - 1)$ $\mathbf{k} = k_1 * k_2 \mod (\mathbf{p} - 1)$ $\mathbf{k} = k_1 * k_2 \mod (\mathbf{p} - 1)$

Атака "человек посередине" (Man-in-the-Middle, MitM)

Сертификат открытого ключа

Цепочка доверия

Пример: цепочка сертификатов в протоколе TLS

Сеть доверия (Web of Trust, WoT)

- Принадлежность открытого ключа участнику сети удостоверяют другие участники
- Возможны различные уровни доверия:
 - 1. "Я его знаю"
 - 2. "Я знаю того, кто его знает"
 - 3. "Я знаю того, кто знает того, кто его знает" и так далее.

Задача*

Трент поручил Бобу разработать интерактивный телефонный справочник. Боб написал программу, которая на запрос *{имя}* отвечает парой *{имя, номер_телефона}*, сопровождаемой *подписью* Трента. Подпись доказывает, что абонент с определенным именем действительно имеет определенный номер телефона.

Помогите Бобу модернизировать программу так, чтобы она дополнительно возвращала доказательство отсутствия в справочнике абонента с определенным именем. Доказательство должно представлять собой структуру данных, подписанную Трентом.

Трент опасается передавать Бобу личный ключ подписи, поэтому все доказательства должны быть созданы Трентом заранее, в момент формирования справочника.

Ссылки

- Обратная связь:
 - android.ruberoid@gmail.com
 - @androidruberoid
- Анонсы:
 - facebook.com/kocherga.club
 - w vk.com/kocherga club
 - w vk.com/kocherga_prog
- Материалы лекций:
 - github.com/notOcelot/Kocherga_crypto
- Видео:
 - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

