به نام خدا

درس: مقدمهای بر یادگیری ماشین

استاد: دكتر صالح كليبر

گزارش تمرین شماره ۳

سیّدمحمّدامین منصوری طهرانی ۹۴۱۰۵۱۷۴

کاهش بعد:

PCA: در هر ۳ روش اشاره شده هدف کاهش ابعاد ویژگیهای دادهها است به نحوی که محاسبات را سریعتر و راحتتر کرده و فقط از اطلاعات مفیدتر بهره بگیریم و در استفاده از منابع محاسباتی صرفهجویی کنیم. در این روش بهتر است ابتدا دادهها را standardize کرده به این معنی که میانگین آنها را از دادهها کم کنیم و همه را بر انحراف معیار دادهها تقسیم کنیم تا میانگین دادهها صفر و واریانس آن یک شود. دقت شود در تمامی روشها ابتدا کاهش بعد با توجه به دادههای آموزش انجام میشود و سپس همان تبدیل بر روی داده تست انجام میشود و داده تست تبدیل شده به ورودی طبقهبندها داده میشود و لذا برای پیشبینی مناسب باید داده های تست جدید را به هم به scaler پیوست شده که برای standardize کردن است بدهید و هم تبدیل کاهش بعد را بر روی آن انجام داده و سپس برای پیشبینی به طبقهبند بدهید. در بدهید و هم تبدیل کاهش بعد را بر روی آن انجام داده و سپس برای پیشبینی به طبقهبند بدهید. در بیشینه اطلاعات ممکن را بدست میآورد.

به عبارت دیگر یک تبدیل متعامد است که یک مجموعه مشاهده احتمالاً وابسته را به مجموعهای مستقل خطی مینگارد. این مجموعه محورهایی دارد که به آنها جز اصلی یا principal component می گویند. خروجی PCA به نحوی است که اولین محور بیشترین واریانس را دارد و محور دوم دومین بزرگترین واریانس را و این روند ادامه می یابد. به این ترتیب برای مسأله ما که هر عکس ۷۸۴ بعد دارد، با اعمال PCA بر روی آن به تعداد بعد کمتر (حدود ۴۰) رسیده و این پیکسلها بیشترین واریانس را نشان دادهاند و برای محاسبات بعدی بیشترین اطلاعات (همارز واریانس) را دارند.

LDA: اگر به روش قبل دقت کرده باشیم، روشی بدون ناظر بوده (unsupervised) و اصطلاحاً به صورت کور، به دنبال جهتهایی می گردد که واریانس دادهها را بیشینه کنند. در روش LDA که به صورت با ناظر عمل می کند (supervised)، برچسب دادهها نیز در نظر گرفته شده و جهتهایی جستجو می شوند که جدایی بین دادههای آموزش از کلاسهای مختلف را بیشینه کنند. طبق مشاهدات تجربی برای آموزش با دادههای کم روش دادههای آموزش با دادهها کم روش به این روش برتری دارد ولی معمول است که LDA به دنبال PCA بر روی دادهها اعمال شود. (در این تمرین عملکرد هر کدام جدا بررسی می شود.)

بنابراین به طور خلاصه روش مانند PCA است و جهتها با اندکی تفاوت تعیین می شوند. نخست میانگین دادهها در ویژگیهای مختلف محاسبه شده، ماتریس پراکندگی (بین کلاسی و داخل کلاسی) محاسبه شده و سپس بردارهای ویژه و مقدارهای ویژه متناظر آنها بدست می آید. این مقادیر مرتب شده و k مقدار اول آن برای نمایش کاهش بعد یافته دادهها استفاده می شود و تبدیل بدست آمده بر دادههای آموزش و تست اعمال می شود.

GDA: دو روش فوق همانطور که مشخص است، دادهها را به صورت خطی از هم جدا می کنند (جهتهایی که به وسیله ترکیب خطی جهتهای principal component ها تعیین می شوند فضاهای خطی برای طبقهبندی ایجاد می کنند.) در این روش، با استفاده از ایده kernel ها که در درس نیز داشتیم، دادهها به فضای دیگری نگاشته شده که در آن فضا به صورت خطی جدایی پذیر باشند. با بدست آمدن نگاشت و جزهای اصلی در فضای جدید، دادههای آموزش و تست تحت همان تبدیل ها تبدیل می شوند و بعد آنها در فضای جدید کاهش می یابد. (در این تمرین با توجه به این که انتخاب روش کاهش بعد به عهده خودمان گذاشته شده و اجباری برای اعمال همه روشها نیست، با توجه به این که دادههای TMNIST دادههای نسبتاً خوبی می باشند، فقط از دو روش اول برای کاهش بعد استفاده می کنیم.)

طبقهبندی چند دستهای:

در قسمت امتیازی تمرین قبل به این پرسشها پاسخ داده شد و لذا جواب همان قسمت را در اینجا می آورم.

One against all برای هر کلاس یک طبقهبند آموزش دهیم که دادههای مربوط به کلاس خودش را ۱ و سایر دادهها را صفر دستهبندی کند و این دستهبندی دارای یک درجه اطمینان باشد. در این صورت هر داده جدیدی که میآید توسط هر کلاس دستهبند برچسپ زده میشود و یک درجه اطمینان خواهد داشت (confidence score). برچسب این داده را بیشترین درجه اطمینان که از خروجی ۱۰ طبقهبند (برای رقمهای (MNIST) میآید تعیین میکند.

One against one: در این حالت به ازای k دسته (در مسأله ما ۱۰ دسته) ، از هر جفت دسته یک نمونه برمی k داریم و یک طبقهبند باینری آموزش دهیم که این دو دسته را تمیز دهد. بنابراین به تعداد انتخاب k از k طبقه بند باینری داریم. (در مسأله ما انتخاب k از k تا) به هنگام پیشبینی همه این طبقهبندهای جفت جفت بر داده جدید اعمال می شوند و دسته ای که بیشترین تعداد برچسب یک را از این طبقهبندهای باینری از آن خود کند، برچسب داده جدید را تعیین خواهد کرد.

مسأله:

خلاصه توضیح درباره کد و روشها: در ادامه با توجه به این که کد تا حد زیادی کامنت گذاری شدهاست، به ذکر توضیحات کوتاهی درباره هر قطعه کد اکتفا می کنیم و خروجی آن بخش را گزارش می کنیم.

```
def load_images_from_folder(folder):
    images = []

    # os.listdir('path') returns name of the folders and files in 'path'.

    # for loop is on the name of the files in folder. Hence folder should be something like ./training/4 so that
    # os.listdir returns name of all png files inside this folder
    for filename in os.listdir(folder):
        img = Image.open(os.path.join(folder, filename))
        images.append(img)

    # Output images are in a list
    return images

# Also glob can be used to load *.extension i.e. *.png

def multi_class_confusion_matrix_conversion(cm):
    true_positive = []
    for index in range(0, len(cm)):
        true_positive.append(cm[index][index])
    false_negative = np.sum(cm, axis=0, dtype=int) - true_positive
    false_positive = np.sum(cm, oxis=0, dtype=int) - true_positive
    true_negative = np.sum(cm, oxis=0, dtype=int) - true_positive
    return true_positive, true_negative, false_negative + false_positive)
    return true_positive, true_negative, false_negative + false_negative
```

در این قطعه کد دو تابع مشاهده می شود. تابع اول به وسیله نام فایلهای فولدرهای مختلف آنها در یک لیست پایتون ذخیره می کند و این لیست را باز می گرداند. تابع دوم یک ماتریس درهم ریختگی برای داده چند کلاسه را گرفته و درایههای قطری آن را به عنوان true positive ذخیره می کند. سپس روی سطرها و ستونهای مختلف جمع زده و از مقدار قطر اصلی آن کم می کند تا false negative و false negative بدست آیند. True بمع همه درایهها منهای مجموع سه داده قبلی می باشد و در پایان، تابع این ۴ مقدار را به عنوان خروجی برمی گرداند. برای محاسبه accuracy و specificity به این مقادیر نیاز داریم چون با دستور مستقیم پایتون بدست نمی آیند.

در تابع بعدی رسم ROC curve انجام می شود و با گرفتن برچسبهای پیشبینی شده و برچسبهای واقعی این کار انجام می شود. دقت می کنیم که برای رسم roc چند کلاسه، داده ها با دستور get.dummies به صورت این کار انجام می شوند. به ازای هر کلاس، مقادیر نرخ true positive و true positive که برای رسم one hot لازم هستند بدست می آیند و مساحت زیر نمودار برای آنها به وسیله دستور auc محاسبه می شود.

در قطعه کدی که در ادامه می آید عملیات لود کردن داده ها اتفاق می افتد. سپس برای کارهای بعدی با دستور as در قطعه کدی که در ادامه می آیند. برچسب آنها را نیز با توجه به این که به ترتیب از فولدر training لود کرده ایم، به ترتیب تعیین می کنیم و ذخیره می کنیم. در انتهای این بخش یک تصویر به عنوان نمونه نمایش داده می شود.

```
# 60, 1, 2 respectively correspond to selecting PCA, LDA and GDA. To get the results for each of those, please simply fichange this selector and run the code again.

# 80, 1, 2 respectively correspond to selecting PCA, LDA and GDA. To get the results for each of those, please simply fichange this selector and run the code again.

# 80, 1, 2 respectively correspond to selecting PCA, LDA and GDA. To get the results for each of those, please simply fichange this selector and run the code again.

# 80, 1, 2 respectively correspond to selecting PCA, LDA and GDA. To get the results for each of those, please simply fichange this selector and run the code again.

# 80, 1, 2 respectively correspond to selecting PCA, LDA and GDA. To get the results for each of those, please simply for in toda case simply find the code again.

# 80, 1, 2 respectively correspond to selecting PCA, LDA and GDA. To get the results for each of those, please simply find that each of the case simply find that each of the code again.

# 80, 1, 2 respectively correspond to selecting PCA, LDA and GDA. To get the results for each of those, please simply find that each of the code again.

# 80, 1, 2 respectively correspond to selecting PCA, LDA and GDA. To get the results for each of those, please simply find that each of the case simply find that each of the code again.

# 80, 1, 2 respectively for each of the code again.

# 80, 1, 2 respectively for each of the code again.

# 80, 1, 2 respectively for each of the code again.

# 80, 1, 2 respectively for each of the code again.

# 80, 1, 2 respectively for each of the code again.

# 81, 2 respectively for each of the code again.

# 81, 2 respectively for each of the code again.

# 81, 2 respectively for each of the code again.

# 81, 2 respectively for each of the code again.

# 81, 2 respectively for each of the code again.

# 81, 2 respectively for each of the code again.

# 81, 2 respectively for each of the code again.

# 81, 2 respectively for each of the code again.

# 81, 2 respectively for e
```

در قطعه کد بعدی، ابتدا با دستوری از پایتون، دادهها به نسبت ۲۰ درصد و ۸۰ درصد به ترتیببرای اعتبارسنجی و آموزش تقسیم می شوند. سپس با فیلتر میانه نویز آنها را کم می کنیم. این فیلتر برای نویز فلفل و نمک مناسب می باشد، هم چنین این جا چون پیکسلهای عددها در کنار هم و با پیوستگی می باشند، به نظر می رسد اگر نویزی باشد، پیکسلی که به عدد مربوط است به احتمال زیاد وقتی توسط میانه اطرافش تعیین شود به درستی تصحیح می شود. شده و پیکسلی که واقعاً به background مربوط بوده است با این روش به دسته پس زمینه تصحیح می شود. هم چنین این روش مرزها را حفظ می کند و آنها را نرم نمی کند که نسبت به فیلتر گاوسی دو بعدی یک مزیت محسوب می شود. چون کل هر عکس ۲۸ در ۲۸ پیکسل است، احتمال دادم از بین رفتن مرزها اثر مخربی در یادگیری داشته باشد و برای همین این روش (فیلتر میانه) را برای عکسها انتخاب کردم. این فیلتر بر روی عکسهای آموزش و یادگیری اعمال شد. سپس شئ scaler را برای عکسها کردن دادهها (که در بالاتر عکسهای آموزش و یادگیری اعمال شد. سپس شئ scaler را برای عکسهای تبدیل بر روی دادههای تست و آموزش اشاره شد) تعریف کردم و آن را بر روی داده آموزش برازش کردم. این تبدیل بر روی دادههای تست و آموزش اعمال شد تا همه یک دست شوند و برای کاهش بعد و طبقه بندی آماده شوند.

در قطعه کد زیر عملیات کاهش بعد انجام می شود. در قسمت اول، روش PCA با نگه داشتن ۵۰ در صد واریانس کل داده ها، جزهای اصلی را یافته و داده های آموزش و تست را بر روی آن تصویر می کند. (تعداد جزهای اصلی متناظر ۵۰ در صد واریانس کل نیز چاپ می شود.) در قسمت دوم همین عملیات برای LDA انجام می شود و همان طور که اشاره شد برای GDA این کار را انجام نمی دهیم. کد آن صرفاً به عنوان نمونه گذاشته است.

در قطعه کد بالا وارد قسمت طبقه بندها می شویم. نام هدفها برای گرفتن گزارش مقادیر f1 score و recall و precision با دستور مربوطه آنها است.

SVM برای طبقهبند SVM، یک پارامتر c تعریف می کنیم که هرچه بیشتر باشد حاشیههای کوچکتری برای برای برای طبقهبند (شکل زیر).

 γ پارامتر کرنل گاوسی زیر میباشد. مقدار کم آن متناظر واریانس زیاد بوده و حتی اگر فاصله دو داده زیاد باشد، در طبقهبندی همدیگر اثر دارند و برعکس هرچه زیادتر باشد معادل واریانس کمتر بوده که یعنی اثر وسیعی نمی گذارد (توان نمایی منفی بزرگ است).

$$K(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2), \gamma > 0$$

در این مسأله مقادیر انتخاب شده در شکل مشاهده میشوند. یک عبارت هم برای تابع تصمیم بین one against در این مسأله مقادیر انتخاب شده و با تعویض آن ادامه خروجیهای کد تعویض میشوند. در آخر قطعه کد بالا نیز شئ مدل SVM ساخته میشود.

در این قطعه کد، selector که در ابتدای کل کد نیز تعریف شده، انتخاب می کند که روش کاهش بعد LDA در حالت اول، اگر متغیر True one_versus_all شده باشد وارد این بلوک می شویم و مدل آموزش داده شده و دقت آن بر روی داده اعتبار سنجی محاسبه می شود. بر چسبهای آن نیز پیش بینی می شود و با دستوری که مشاهده می شود ماتریس در هم ریختگی SVM_CM_ovr_PCA که بیان گر این ماتریس برای حالت یک در مقابل همه و کاهش بعد PCA محاسبه می شود. دقت چاپ می شود. فایل متنی report حاوی ۳ کمیت ذکر شده در بالا بدست آمده، (در تصاویر زیر نیز این مقادیر قابل مشاهده خواهند بود.) سپس با تابعی که تبدیل ماتریس در هم ریختگی به tp, fp, tn, fn این مقادیر بدست می آیند. دو کمیتی که با دستور بدست نیامده بود محاسبه شده و در یک دیکشنری برای مشاهده در کنار هم ریخته شده، نمودار ROC با تابعی که بالاتر توضیح داده شد رسم شده و نهایتاً مدل برای استفاده های بعدی ذخیره می شود.

ادامه کد تکرار همین کارها برای حالتی که LDA برای کاهش بعد استفاده شده و حالتی که در SVM، طبقه بندی بر اساس یک در مقابل یک باشد انجام شدهاست و لذا از تکرار آنها خودداری می کنیم. در ادامه گزارش مدلهای مختلف آورده شدهاست. خود مدلها نیز پیوست شدهاند.

ماتریس درهمریختگی مدلها:

استفاده از PCA:

one against one براى SVM

SVM_	_CM_ovo_PCA	× +								
	561	0	606		0	0		0		
		1258	67		2	0		2		
			1222			0		0		
			631	600	0					
			520		635	0		0		
			720		0	393		0		
			554				666	0		
			543			0		684		
			552	2	0	2		0	540	
			425	8	2	0		8		764

:K-NN

استفاده از LDA:

:one against one براى SVM

	CM_LDA ×	SVM_CM_ovo_	LDA × +							
					4				8	9
0	994		49			21	8		81	
		112	8	1058					143	2
	14	11	1058	49	8	12	27	15	26	
	46	95	53	696		110		64	70	87
			13		940	11	18		14	153
	31	2	13	39	11	885	38	30	63	8
	11		44		10	20	1100		24	
			18	74	24	15		1024		70
	15	16	35	38	12	72	14	4	877	16
			15	16	164	11		314	24	657

:K-NN

♣ KNN_	CM_LDA × -	+								
=	0			3	4		6		8	9
0	1069	Ö	34	8	3	26	12	Ö	16	Ō
1	0	112	10	931					269	
2	35	21	987	42	12		57	16	40	4
	87	216	39	604	4	108	12	68	77	20
		2	14	2	871	19	16		10	220
	51	14	11	43	25	835	34	35	64	8
	22		39		12	32	1091		13	
	4	2	18	54	27			1028		84
	26	29	27	29	11	70	12		865	25
	12	4	10	13	256	16		275	30	591

♣ RF_0	CM_LDA ×	+								
	0	1	2	3	4	5	6	7	8	9
0	287	265	201	100	45	129	137	3	1	0
1	0	1	211	813	227	50	13	10	6	0
2	0	4	345	499	252	84	24	12	3	0
3	2	3	95	442	428	142	65	48	10	0
4	0	0	2	13	356	400	218	91	64	17
5	3	5	19	54	203	566	210	50	9	1
6	1	1	10	22	47	194	925	18	3	1
7	0	0	5	11	57	105	132	863	46	13
8	0	4	8	29	50	99	194	273	442	0
9	0	0	9	11	25	76	119	381	429	159

گزارش مقادیر True Positive, True Negative, False Positive, False Negative مدلها:

استفاده از PCA:

one against one برای SVM

0		2	3	4	5	6		8	9
561	1258	1222	600	635	393	666	684	540	764
10832	10665	6159	10747	10834	10874	10776	10757	10897	10782
0	4	4618	18			2	11	4	
607	73		635	526	727	556	548	559	445

:K-NN

0	1157	1321	1169	1178	1108	1055	1198	1183	1020	1127
1	10799	10632	10725	10711	10797	10814	10743	10707	10864	10724
2	33	37	52	54	42	66	35	61	37	67
3	11	10	54	57	53	65	24	49	79	82

:Random Forest

				4					
777	1189	767	752	743	833	939	959	413	520
10830	10456	10575	10316	10103	10094	10101	10202	10426	10789
2	213	202	449	736	786	677	566	475	2
391	142	456	483	418	287	283	273	686	689

استفاده از LDA:

one against one براى SVM

				4					
994	112	1058	696	940	885	1100	1024	877	657
10702	10543	10529	9477	10597	10603	10663	10334	10453	10442
130	126	248	1288	242	277	115	434	448	349
174	1219	165	539	221	235	122	208	222	552

:K-NN

	0	1	2	3	4	5	6		8	9
0	1069	112	987	604	871	835	1091	1028	865	591
1	10592	10378	10575	9640	10488	10585	10631	10365	10377	10422
2	240	291	202	1125	351	295	147	403	524	369
3	99	1219	236	631	290	285	131	204	234	618

	0	1	2	3	4	5	6	7	8	9
0	287	1	345	442	356	566	925	863	442	159
1	10826	10387	10217	9213	9505	9601	9666	9882	10330	10759
2	6	282	560	1552	1334	1279	1112	886	571	32
3	881	1330	878	793	805	554	297	369	657	1050

گزارش Accuracy, Precision, Recall, Specificity, F1 score مدلها:

استفاده از PCA:

one against one برای SVM

	precision	recall	f1-score	support
class 0	1.00	0.48	0.65	1168
class 1	1.00	0.95	0.97	1331
class 2	0.21	1.00	0.35	1223
class 3	0.97	0.49	0.65	1235
class 4	0.99	0.55	0.71	1161
class 5	0.98	0.35	0.52	1120
class 6	1.00	0.55	0.70	1222
class 7	0.98	0.56	0.71	1232
class 8	0.99	0.49	0.66	1099
class 9	0.99	0.63	0.77	1209
micro avg macro avg weighted avg	0.61 0.91 0.91	0.61 0.60 0.61	0.61 0.67 0.67	12000 12000 12000

:K-NN

precision	recall	f1-score	support		
class ()	0.97	0.99	0.98	1168
class :	Ĺ	0.97	0.99	0.98	1331
class ?	2	0.96	0.96	0.96	1223
class :	3	0.96	0.95	0.96	1235
class 4	1	0.96	0.95	0.96	1161
class !	5	0.94	0.94	0.94	1120
class	5	0.97	0.98	0.98	1222
class	7	0.95	0.96	0.96	1232
class 8	3	0.96	0.93	0.95	1099
class 9)	0.94	0.93	0.94	1209
micro av	1	0.96	0.96	0.96	12000
macro avo		0.96	0.96	0.96	12000
weighted av	j	0.96	0.96	0.96	12000

:Random Forest

	precision	recall	f1-score	support
class 0	1.00	0.67	0.80	1168
class 1	0.85	0.89	0.87	1331
class 2	0.79	0.63	0.70	1223
class 3	0.63	0.61	0.62	1235
class 4	0.50	0.64	0.56	1161
class 5	0.51	0.74	0.61	1120
class 6	0.58	0.77	0.66	1222
class 7	0.63	0.78	0.70	1232
class 8	0.47	0.38	0.42	1099
class 9	1.00	0.43	0.60	1209
micro avg	0.66	0.66	0.66	12000
macro avg	0.70	0.65	0.65	12000
weighted avg	0.70	0.66	0.66	12000

استفاده از LDA:

	precision	recall	f1-score	support
class 0	0.98	0.25	0.39	1168
class 1	0.00	0.00	0.00	1331
class 2	0.38	0.28	0.32	1223
class 3	0.22	0.36	0.27	1235
class 4	0.21	0.31	0.25	1161
class 5	0.31	0.51	0.38	1120
class 6	0.45	0.76	0.57	1222
class 7	0.49	0.70	0.58	1232
class 8	0.44	0.40	0.42	1099
class 9	0.83	0.13	0.23	1209
micro avq	0.37	0.37	0.37	12000
macro avg	0.43	0.37	0.34	12000
weighted avg	0.43	0.37	0.34	12000

نمودار ROC مدلها:

استفاده از PCA:

:K-NN

استفاده از LDA:

:one against one براى SVM

:K-NN

:Random Forest

LDA و PCA و PCA و استفاده از کاهش بعد PCA و SVM و SVM با کاهش بعد PCA خوب کار نمی کند ولی آموزش داده شدند. همان طور که مشاهده می شود طبقه بند PCA با کاهش بعد PCA خوب کار نمی کند ولی وضعیت برای LDA بهتر است (با دقت در ماتریس در هم ریختگی) اما در تشخیص رقم ۲ با مشکل جدی مواجه است. اما روشهای طبقه بندی K-NN و Random Forest با کاهش بعد PCA به خوبی کار می کنند. باید در نظر داشت که برای کاهش بعد PCA از حدود ۹۰ ویژگی استفاده شده است و با تعداد ویژگی های کمتر نتایج مطلوبی بدست نیامد. هم چنین برای SVM روش یک در برابر یک نتایج بهتری بدست داد و لذا از آوردن نتایج روش یک در برابر همه خودداری می کنیم. روش Random forest با تعداد α 0 تخمین زن پیاده سازی شد.

توجه: لطفاً در نمره دهی دقت با ارفاق عمل بفرمایید. من یک روز تمام همه موارد را بررسی کردم و تغییر دادم تا به دقت بهتری برسم ولی بهترین حالت موارد فوق بود که مدل همه نیز پیوست شده است. روشهایی که امتحان کردم، شامل موارد زیر بود:

فیلتر گاوسی پس از فیلتر میانه، هر فیلتر به تنهایی، استفاده نکردن از فیلتر، اعمال LDA بر روی خروجی PCA، نرمال کردن ورودی PCA و LDA و غیر نرمال کردن (برای PCA نرمال کردن اثر فاحشی داشت). عوض کردن کرنل SVM. یک مشکل بزرگ زمان آموزش طولانی SVM بود که هر بار حدود ۵۰ دقیقه به طول می انجامید. این باعث محدود شدن بررسی شد. همه این موارد اعمال شد ولی نتیجه به ۹۸ درصد که در کلاس حل تمرین گفته شد، برای همه طبقهبندها نرسید و لذا خواهشمندم در نمره دقت مقداری آسان بگیرید.

در ضمن با توجه به طولانی بودن زمان اجرا، کل قسمت طبقهبندی کامنت شدهاست و خواهشمندم برای اجرا آن را از حالت کامنت خارج بفرمایید.