Coursera Practical Machine Learning

Dianne Dino

August 7, 2019

Overview

In this project, we are tasked to **predict the manner in which our correspondents did the exercise**. The data is gathered from link (http://groupware.les.inf.puc-rio.br/har).

The training data for this project are available here: link

(https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv) The **test data** are available here: link (https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv) ### Set-up Data

```
#Load libraries
library(data.table); library(caret); library(ggplot2); library(dplyr)
## Loading required package: lattice
## Loading required package: ggplot2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
##
       between, first, last
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(rpart); library(rpart.plot); library(RColorBrewer); library(rattle)
## Rattle: A free graphical interface for data science with R.
## Version 5.2.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest); library(party); library(rattle)
```

```
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
##
##
       importance
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: sandwich
```

```
#Set-up Data
train <- fread("pml-training.csv")
test <- fread("pml-testing.csv")
train$V1 = NULL; test$V1 = NULL
df = train
testing = test
dim(df);dim(testing)</pre>
```

```
## [1] 19622 159
```

```
## [1] 20 159
```

Data Exploration

Below is the count of classifiers in the dataset. (5 Levels)

```
table(df$classe)
```

```
##
## A B C D E
## 5580 3797 3422 3216 3607
```

Pre-Processing

```
#Drop Columns with 50% and more Missing Data
pMiss <- function(x){return(sum(is.na(x))/length(x)*100)}</pre>
tmp = data.frame(apply(df,2,pMiss))
tmp = cbind(row.names(tmp),tmp)
colnames(tmp) = c('col_name', 'pcnt_missing_val')
row.names(tmp) = 1:nrow(tmp)
tmp = tmp[tmp$pcnt_missing_val>=50,1]
tmp = tmp %>% as.character()
#Train Set
df = select(df,-c(tmp)) #Dropped 100 columns
#Test Set
testing = select(testing, -(tmp)) #Dropped 100 columns
#Dropping columns you dont need
training <- df[, -c(1:6)]
testing <- testing[,-c(1:6)]</pre>
dim(training); dim(testing)
```

```
## [1] 19622 53
```

```
## [1] 20 53
```

Modeling

Cross-Validation

Cross-Validation is done to ensure the accuracy and fitness of the model.

```
## [1] 14718 53
```

```
## [1] 4904 53
```

Modeling using Decision Trees

```
#Fit to Model
modFitA1 <- rpart(classe ~ ., data=sub_train, method="class")
#Plot Tree
fancyRpartPlot(modFitA1)</pre>
```


Rattle 2019-Aug-07 15:59:00 10012218

```
#Predict
predictionsA1 <- predict(modFitA1, sub_test, type = "class")
#Metrics
confusionMatrix(predictionsA1, as.factor(sub_test$classe))$table</pre>
```

```
##
            Reference
## Prediction
                Α
                         C
                              D
                                   Ε
##
           A 1290 199
                         20
                             75
                                   57
           В
               27 518
##
                         89
                              36
                                   60
##
           C
               39 118
                       677
                             125
                                   91
##
           D
               17
                   73
                         49 500
                                   54
##
           Ε
               22
                    41
                         20
                              68 639
```

confusionMatrix(predictionsA1, as.factor(sub_test\$classe))\$overall[1]

```
## Accuracy
## 0.7389886
```

Modeling using RF

```
trControl <- trainControl(method="cv", number=5) #Set Folds
#Fit to Model
modFitB1 <- train(classe~., data=sub_train, method="rf", trControl=trControl, verbose=TRUE)
#Predict
predictionB1 <- predict(modFitB1, sub_test)
#Metrics
confusionMatrix(predictionB1, as.factor(sub_test$classe))$table</pre>
```

```
Reference
##
## Prediction
                     В
                          C
                                    Ε
                Α
                               D
           A 1394
                     5
##
                          0
                               0
                                    0
##
           В
                1 943
                          8
                               0
                                    0
           C
                 0
                     1 847 13
##
                                    1
           D
                     0
                          0 790
##
                 0
                                    0
            Ε
##
                     0
                          0
                               1 900
```

confusionMatrix(predictionB1, as.factor(sub_test\$classe))\$overall[1]

```
## Accuracy
## 0.9938825
```

Plot RF Metrics

```
#Plot RF Metrics
plot(modFitB1,main="Accuracy of Random forest model by number of predictors")
```

Accuracy of Random forest model by number of predictors

plot(modFitB1\$finalModel,main="Model error of Random forest model by number of trees")

Model error of Random forest model by number of trees

Varible Importance After running the variable importance function, we've figured out that roll_belt is the most important variable in this model with the rest with only 75.5 value and below.

```
MostImpVars <- varImp(modFitB1)
MostImpVars
```

```
## rf variable importance
##
##
     only 20 most important variables shown (out of 52)
##
##
                     Overall
## roll_belt
                      100.00
## yaw_belt
                       83.47
## magnet_dumbbell_z
                       71.06
## magnet_dumbbell_y
                       67.73
## pitch_belt
                       65.68
## pitch_forearm
                       57.12
## magnet_dumbbell_x
                       52.59
## roll_forearm
                       49.89
## magnet_belt_y
                       45.38
## accel_dumbbell_y
                       45.37
## magnet_belt_z
                       44.87
## roll_dumbbell
                       44.25
## accel_belt_z
                       41.11
## accel dumbbell z
                       40.09
## roll_arm
                       33.79
## accel_forearm_x
                       33.34
## accel_arm_x
                       32.00
## gyros_belt_z
                       31.12
## magnet_arm_y
                       30.25
## accel_dumbbell_x
                       29.23
```

What Model to Use?

Random Model will be used in this project because of the stable and high metrics it posses. #### Prediction Results using Test Set

```
FinalTest <- predict(modFitB1,newdata=testing)
FinalTest</pre>
```

```
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```