## Lecture 2: Numerical linear algebra

- QR factorization
- Eigenvalue decomposition
- Singular value decomposition
- Conditioning of a problem
- Floating point arithmetic and stability of an algorithm

Linear algebra and optimization (L2)

Numerical linear algebra

# Orthogonal projectors

Consider an orthonormal matrix  $Q \in \mathbb{R}^{n \times k}$  and  $\mathcal{L} := \operatorname{span}(Q) \subseteq \mathbb{R}^n$ .

The columns of Q form an orthonormal basis for  $\mathcal{L}$ .

$$Q^{\top}Q = I_k$$
, however, for  $k < n$ ,  $QQ^{\top} \neq I_n$ .

$$\Pi_{\text{span}(Q)} := QQ^{\top}$$
 is an orthogonal projector on  $\text{span}(Q)$ , *i.e.*,

$$\Pi_{\mathscr{L}} x = \underset{y}{\operatorname{arg min}} \|x - y\|_2$$
 subject to  $y \in \mathscr{L}$ 

Properties:  $\Pi = \Pi^2$ ,  $\Pi = \Pi^{\top}$  (necessary and sufficient for  $\Pi$  orth. proj.)

$$\Pi^{\perp} := (I - \Pi)$$
 is also an orth. proj., it projects on

$$(\operatorname{span}(\Pi))^{\perp} \subseteq \mathbb{R}^n$$
 — the orthogonal complement of  $\operatorname{span}(\Pi)$ 

### Orthonormal set of vectors

Consider a finite set of vectors  $\mathcal{Q} := \{q_1, \dots, q_k\} \subset \mathbb{R}^n$ 

- $\mathscr{Q}$  is normalized :  $\iff ||q_i|| = 1, i = 1, ..., k$
- $\mathscr{Q}$  is orthogonal :  $\iff q_i \perp q_i$ , for all  $i \neq j$
- $\mathcal{Q}$  is orthonormal :  $\iff \mathcal{Q}$  is orthogonal and normalized

with 
$$Q := [q_1 \quad \cdots \quad q_k], \quad \mathscr{Q} \text{ orthonormal} \iff Q^\top Q = I_k$$

### **Properties:**

- orthonormal vectors are independent (show this)
- multiplication with Q preserves norm,  $\|Qz\|^2 = z^\top Q^\top Qz = \|z\|^2$
- multiplication with Q preserves inner product,  $\langle Qz, Qy \rangle = \langle z, y \rangle$

Linear algebra and optimization (L2)

Numerical linear algebra

# Orthonormal basis for $\mathbb{R}^n$

orthonormal set  $\mathcal{Q} := \{q_1, \dots, q_k\} \subset \mathbb{R}^n$  of k = n vectors

then  $Q := [q_1 \quad \cdots \quad q_n]$  is called orthogonal and satisfies  $Q^T Q = I_n$ It follows that  $Q^{-1} = Q^{T}$  and

$$QQ^{\top} = \sum_{i=1}^{n} q_i q_i^{\top} = I_n$$

Expansion in orthonormal basis  $x = QQ^{T}x$ 

- $a := Q^T x$  coordinates of x in the basis  $\mathcal{Q}$
- x = Qa reconstruct x from the coordinates a

Geometrically multiplication by Q (and  $Q^{T}$ ) is rotation.

# Gram-Schmidt (G-S) procedure

Given independent set  $\{a_1, \ldots, a_k\} \subset \mathbb{R}^n$ , G-S produces orthonormal set  $\{q_1, \ldots, q_k\} \subset \mathbb{R}^n$  such that

$$\operatorname{span}(a_1,\ldots,a_r)=\operatorname{span}(q_1,\ldots,q_r),$$
 for all  $r\leq k$ 

G-S procedure: Let  $q_1 := a_1/\|a_1\|$ . At the *i*th step i = 2, ..., k

• orthogonalized  $a_i$  w.r.t.  $q_1, \ldots, q_{i-1}$ :

$$v_i := \underbrace{\left(I - \Pi_{\mathsf{span}(q_1, \dots, q_{i-1})} \right) a_i}_{\mathsf{projection of } a_i \mathsf{ on } \left(\mathsf{span}(q_1, \dots, q_{i-1}) \right)^\perp}$$

• normalize the result:  $q_i := v_i / ||v_i||$ 

(A modified version of the G-S procedure is used in practice.)

Linear algebra and optimization (L2)

Numerical linear algebra

5 / 41

Numerical linear algebra

Linear algebra and optimization (L2)

If  $\{a_1,\ldots,a_k\}$  are dependent,  $v_i:=(I-\Pi_{\text{span}(a_1,\ldots,a_{i-1})})a_i=0$  for some i

Conversely, if  $v_i = 0$  for some i,  $a_i$  is linearly dependent on  $\{a_1, \dots, a_{i-1}\}$ 

Modified G-S procedure: when  $v_i = 0$ , skip to the next input vector  $a_{i+1}$ 

 $\implies$  R is in upper staircase form, e.g.,

Which vectors  $a_i$  are dependent on  $\{a_1, \dots, a_{i-1}\}$  in this example?

### **QR** factorization

G-S procedure gives as a byproduct scalars  $r_{ii}$ ,  $i \le i$ , i = 1, ..., k, s.t.

$$a_i = (q_1^{\top} a_i) q_1 + \dots + (q_{i-1}^{\top} a_i) q_{i-1} + ||q_i|| q_i$$
  
=  $r_{1i} q_1 + \dots + r_{ii} q_i$ 

in a matrix form G-S produces the matrix factorization

$$\underbrace{\begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} q_1 & q_1 & \cdots & q_k \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ 0 & r_{22} & \cdots & r_{2k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{kk} \end{bmatrix}}_{R}$$

with orthonormal  $Q \in \mathbb{R}^{n \times k}$  and upper triangular  $R \in \mathbb{R}^{k \times k}$ 

### Full OR

$$A = \underbrace{\begin{bmatrix} Q_1 & Q_2 \end{bmatrix}}_{\text{orthogonal}} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \qquad \begin{array}{c} \text{span}(A) & = & \text{span}(Q_1) \\ \left( \text{span}(A) \right)^{\perp} & = & \text{span}(Q_2) \end{array}$$

### Procedure for finding $Q_2$ :

complete A to a full rank matrix, e.g.,  $A_{\rm m} := [A \ I]$ , and apply G-S on  $A_{\rm m}$ 

### In MATLAB:

$$> [Q,R] = qr(A) % full QR$$

$$\gg$$
 [Q1,R1] = qr(A,0) % reduced QR

# Eigenvalue decomposition (EVD)

Suppose  $\{v_1, \dots, v_n\}$  is a lin. indep. set of eigenvectors of  $A \in \mathbb{R}^{n \times n}$ 

$$Av_i = \lambda_i v_i$$
, for  $i = 1, ..., n$ 

written in a matrix form, we have the matrix factorization

$$A\underbrace{\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}}_{V} = \underbrace{\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}}_{\Lambda}$$

V is nonsingular, so that

$$AV = V\Lambda \implies V^{-1}AV = \Lambda$$

Linear algebra and optimization (L2)

Numerical linear algebra

9/41

# Three applications of EVD

• Compute matrix power  $A^k$ , more generally a fun. f(A) of a matrix  $f(A) = Vf(\Lambda)V^{-1}$  (assuming A diagonalizable)

Example:

$$\begin{bmatrix} 1/3 & 1 \\ 0 & 1/2 \end{bmatrix}^{100} = ?$$

Eigenvalues:  $\lambda_1 = 1/3$ ,  $\lambda_2 = 1/2$ , Eigenvectors:  $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ ,  $v_2 = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$ 

Numerical linear algebra

• Compute matrix power  $A^k$ , more generally a fun. f(A) of a matrix  $f(A) = Vf(\Lambda)V^{-1}$  (assuming A diagonalizable)

### Example:

$$\begin{bmatrix} 1/3 & 1 \\ 0 & 1/2 \end{bmatrix}^{100} = ?$$

Linear algebra and optimization (L2)

Numerical linear algebra

# Three applications of EVD

• Compute matrix power  $A^k$ , more generally a fun. f(A) of a matrix  $f(A) = Vf(\Lambda)V^{-1}$  (assuming A diagonalizable)

### **Example:**

$$\begin{bmatrix} 1/3 & 1 \\ 0 & 1/2 \end{bmatrix}^{100} = ?$$

Eigenvalues:  $\lambda_1 = 1/3$ ,  $\lambda_2 = 1/2$ , Eigenvectors:  $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ ,  $v_2 = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$ 

$$\begin{bmatrix} 1/3 & 1 \\ 0 & 1/2 \end{bmatrix}^{100} = \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3^{-100} & \\ & 2^{-100} \end{bmatrix} \begin{bmatrix} 1 & -6 \\ 0 & 1 \end{bmatrix} \approx \mathbf{0}$$

Numerical linear algebra

• First order vector linear constant coef. differential/difference egns

$$\frac{d}{dt}x(t) = Ax(t), \ t \in \mathbb{R}_+$$
 and  $x(t+1) = Ax(t), t \in \mathbb{Z}_+$ 

Given  $x(0) \in \mathbb{R}^n$ , the equation has a unique solution x.

Qualitative properties of the set of solutions, such as, stability

$$x(t) \rightarrow 0$$
 as  $t \rightarrow \infty$ 

are determined by the location of the eigenvalues of A.

- In continuous-time: stability holds  $\iff \Re \lambda_i < 0$  for all i
- In discrete-time: stability holds  $\iff |\lambda_i| < 1$  for all i

Linear algebra and optimization (L2)

Numerical linear algebra

11 / 41

Numerical linear algebra

Linear algebra and optimization (L2)

# Overview of eigenvalue algorithms

- the best ways of computing eigenvalues are not obvious
- bad strategy: rooting the characteristic polynomial
- the power iteration  $(\frac{x}{\|x\|}, \frac{Ax}{\|Ax\|}, \frac{A^2x}{\|A^2x\|}, ...)$  is not effective in general
- modern general purpose algorithms are based on eigenvalue revealing factorizations
- two stages: Hessenberg form (finite), Schur form (iterative)

Principal component analysis (PCA)

given a set of vectors  $\{a_1, \ldots, a_n\}$ ,

find an orthonormal set  $\{v_1, \dots, v_n\}$ , such that

$$\operatorname{span}(a_1,\ldots,a_n) \approx \operatorname{span}(v_1,\ldots,v_k), \quad \text{for } k=1,\ldots,n$$

If "≈" means

maximize 
$$\left\| \underbrace{\Pi_{\text{span}(v_1,\dots,v_k)}}_{\text{projection}} \underbrace{[a_1 \cdots a_n]}_{A} \right\|_{\text{F}}$$

the solution  $\{v_1, \dots, v_n\}$  is an orthonormal set of eigenvectors of  $A^{\top}A$ ordered according to the magnitude of the eigenvalues.

Used for data compression/recognition (eigenfaces, eigengenes, ...)

## Any eigenvalue solver must be iterative

$$p(z) = p_0 + p_1 z + \dots + z^n \quad \leftrightarrow \quad A = \begin{bmatrix} -p_{n-1} & -p_{n-2} & \dots & -p_1 & -p_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & \dots & 0 & 1 & 0 \end{bmatrix}$$

roots of  $p \leftrightarrow eigenvalues$  of A

Eigenvalue computation is a more general problem than root finding.

No analogue of quadratic formula exists for polynomials of degree > 5. (Abel 1824)

The aim of eigenvalue solvers is to produce

sequence of numbers that converges rapidly towards eigenvalues.

4 D F 4 B F 4 B F 4 B F B Linear algebra and optimization (L2) Numerical linear algebra

# Rayleigh quotient

Symmetric  $A \in \mathbb{R}^{n \times n}$  has n real eigenvalues, which we index as follows

$$\lambda_{\min} := \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n =: \lambda_{\max}$$

Corresponding to  $\lambda_1, \dots, \lambda_n$ , we choose orthonormal set of eigenvectors

$$v_1, \ldots, v_n$$

Rayleigh quotient of  $v \in \mathbb{R}^n$  (w.r.t. A) is a mapping  $r : \mathbb{R}^n \to \mathbb{R}$  defined by

$$r(\mathbf{v}) := \frac{\mathbf{v}^{\top} \mathbf{A} \mathbf{v}}{\mathbf{v}^{\top} \mathbf{v}}$$

Note that  $r(\alpha v_i) = \lambda_i$ , for all  $\alpha \in \mathbb{R}$  and i = 1, ..., n.

Fact:  $\min_{v} r(v) = \lambda_{\min}$  and  $\max_{v} r(v) = \lambda_{\max}$ .

Linear algebra and optimization (L2)

Linear algebra and optimization (L2)

Numerical linear algebra

### Inverse iteration

- Given: unit norm vector  $v^{(0)}$ , symmetric matrix A, and  $\mu \ge 0$
- For k = 1, 2, ... (till convergence)
- Apply  $(A \mu I)^{-1}$ : solve  $(A \mu I) w = v^{(k-1)}$
- Normalize:  $v^{(k)} := w/||w||$
- Output: eigenvalue/eigenvector of  $A ((v^{(k)})^T A v^{(k)}, v^{(k)})$

Let  $\lambda$  be the closest eigenvalue to  $\mu$  and  $\lambda'$  be the second closest. Let v be the unit norm eigenvector corresponding to  $\lambda$ . If  $v^{\top}v^{(0)} \neq 0$ ,

$$v^{(k)} \rightarrow +v$$

with linear convergence rate  $O(|(\mu - \lambda')/(\mu - \lambda)|)$ .

### Power iteration

- Given: unit norm vector  $v^{(0)}$  and symmetric matrix A
- For  $k = 1, 2, \dots$  (till convergence)
- Apply *A*:  $w = Av^{(k-1)}$
- Normalize:  $v^{(k)} := w/||w||$
- Output: eigenvalue/eigenvector of  $A = ((v^{(k)})^T A v^{(k)}, v^{(k)})$

If  $|\lambda_1| > |\lambda_2|$  and  $v_1^\top v^{(0)} \neq 0$ ,

$$V^{(k)} \rightarrow \pm V_1$$

with linear convergence rate  $O(|\lambda_2/\lambda_1|)$ .

Linear algebra and optimization (L2)

Numerical linear algebra

# Rayleigh quotient iteration

- Given: unit norm vector  $v^{(0)}$  and symmetric matrix A
- Let  $\lambda^{(0)} := (v^{(0)})^{\top} A v^{(0)}$
- For  $k = 1, 2, \dots$  (till convergence)
- Apply  $(A \lambda^{(k-1)}I)^{-1}$ : solve  $(A \lambda^{(k-1)}I)w = v^{(k-1)}I$
- Normalize:  $v^{(k)} := w/||w||$
- Let  $\lambda^{(k)} := (v^{(k)})^{\top} A v^{(k)}$

Linear algebra and optimization (L2)

• Output: eigenvalue/eigenvector of  $A \leftarrow (\lambda^{(k)}, v^{(k)})$ 

Let  $\lambda$  be the closest eigenvalue to  $\mu$  and  $\nu$  be the corresponding eigenvector. If  $v^{\top}v^{(0)} \neq 0$ ,

> $\mathbf{v}^{(k)} \rightarrow +\mathbf{v}$ with cubic convergence rate.

> > Numerical linear algebra

### Exercise

- Implement the power, inverse power, and Rayleigh quotient methods
- Apply them on examples and observe their convergence properties
- Comment on the results

Linear algebra and optimization (L2)

Numerical linear algebra

19 / 41

## Normalized simultaneous power iteration

- Given: orthonormal matrix  $Q^{(0)} \in \mathbb{R}^{n \times p}$  and symmetric matrix A
- For k = 1, 2, ... (till convergence)
- Apply A: solve  $Z = AQ^{(k-1)}$
- Compute orthonormal basis for image(Z):

QR factorization:  $Q^{(k)}R^{(k)} = Z$ 

• Output: orthonormal eigenvectors of  $A - Q^{(k)}$ 

Under suitable assumptions

$$image(Q^{(k)}) \rightarrow span(v_1, ..., v_p),$$
 as  $k \rightarrow \infty$ .

Simultaneous power iteration

Take a set of initial vectors  $\{v_1^{(0)}, \dots, v_p^{(0)}\}$  and consider the iteration:

$$\underbrace{\begin{bmatrix} v_1^{(k+1)} & \cdots & v_p^{(k+1)} \end{bmatrix}}_{V^{(k+1)}} = A \underbrace{\begin{bmatrix} v_1^{(k)} & \cdots & v_p^{(k)} \end{bmatrix}}_{V^{(k)}}, \qquad k = 0, 1, \dots$$

One can expect that under suitable assumptions

$$\operatorname{span}(v_1^{(k)},\ldots,v_p^{(k)}) \to \operatorname{span}(v_1,\ldots,v_p), \quad \text{as} \quad k \to \infty$$

However,

$$v_i^{(k)} \rightarrow v_1,$$
 as  $k \rightarrow \infty$ , for all  $i$ 

so  $V^{(k+1)}$  becomes increasingly ill-conditioned as  $k \to \infty$ .

Linear algebra and optimization (L2)

Numerical linear algebra

# Hessenberg and Schur forms

Every square matrix has a Hessenberg form

$$A = Q \begin{bmatrix} \times & \times & \cdots & \times & \times \\ \times & \times & \cdots & \times & \times \\ & \times & \ddots & \ddots & \times \\ & & \ddots & \ddots & \vdots \\ & & & \times & \times \end{bmatrix} Q^{\top} \qquad \begin{array}{c} Q - \text{orthogonal} \\ H - \text{upper Hessenberg} \end{array}$$

and a Schur form

$$A = UTU^{\top}$$
  $U$  — unitary (complex orthogonal)   
  $T$  — upper triangular

Linear algebra and optimization (L2)

Numerical linear algebra

22 / 4

# QR algorithm

The basic QR algorithm is normalized simultaneous power iteration with a full set p = n vectors and initial condition  $Q^{(0)} = I_n$ .

- Given: a symmetric matrix  $A^{(0)} = A$
- For  $k = 1, 2, \dots$  (till convergence)
- QR factorization:  $A^{(k-1)} = Q^{(k)}R^{(k)}$
- Recombine in reverse order:  $A^{(k)} = R^{(k)} Q^{(k)}$
- Output: a Schur decomposition of  $A Q^{(k)}, R^{(k)}$ .

$$A^{(k)} = R^{(k)} Q^{(k)} = Q^{(k)}^{\top} A^{(k-1)} Q^{(k)} \implies A^{(k)}$$
 is similar to  $A^{(k-1)}$ 

Linear algebra and optimization (L2)

Numerical linear algebra

23 / 41

41

# Generalized eigenvalues

Consider  $n \times n$  matrices A and B; the pair (A, B) is called pencil

 $(v,\lambda)$  is a generalized eigenvector/eigenvalue of the pencil (A,B) if

$$Av = \lambda Bv$$

For nonsingular B, the generalized eigenvalue problem is equivalent to

$$B^{-1}Av = \lambda v$$

standard eigenvalue problem

Generalized Rayleigh quotient:

$$\lambda_{\min} = \min_{\mathbf{v} \in \mathbb{R}^n} \frac{\mathbf{v}^{\top} A \mathbf{v}}{\mathbf{v}^{\top} B \mathbf{v}} \quad , \quad \lambda_{\max} = \max_{\mathbf{v} \in \mathbb{R}^n} \frac{\mathbf{v}^{\top} A \mathbf{v}}{\mathbf{v}^{\top} B \mathbf{v}}$$

# ♦□ ▶ ♦ ∄ ▶ ♦ ∄ ▶ ♦ ∄ ▶ ♦ € Numerical linear algebra 25 / 41

## Additional features of a practical QR algorithm

- Pre-processing: reduce A to tridiagonal form before the iteration
- Shifts: factor  $A^{(k)} \lambda^{(k)}I$ ,  $\lambda^{(k)}$  eigenvalue estimate
- Deflations: reduce the size of A when and eigenvalue is found

QR algorithm with shifts  $\leftrightarrow$  Rayleigh quotient iteration

Linear algebra and optimization (L2)

Numerical linear algebra

► ₹ 990

# Singular value decomposition

The SVD is used as both computational and analytical tool.

Any  $m \times n$  matrix A has an SVD

$$A = \underbrace{\begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} v_1 & \cdots & v_r \end{bmatrix}^{\top}}_{V^{\top}}$$

where U and V are orthonormal

- $\sigma_1, \dots, \sigma_r$  are called singular values
- $u_1, ..., u_r$  are called left singular vectors
- $v_1, ..., v_r$  are called right singular vectors

◆□▶◆□▶◆■▶◆■▶ ■ 90

## Geometric fact motivating the SVD

The image of a unit ball under linear map is a hyperellips.



### Link between SVD and EVD

- both SVD and EVD diagonalize a matrix A
- left singular vectors of A are eigenvectors of AA<sup>⊤</sup>
- right singular vectors of A are eigenvectors of  $A^{T}A$
- the nonzero singular values of A are the square roots of the nonzero eigenvalues of  $AA^{\top}$  or  $A^{\top}A$ 
  - Q: What are the eigenvalues of  $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ ?
- for a symmetric A,  $|\lambda_i| = \sigma_i$

Linear algebra and optimization (L2)

Full SVD

Reduced SVD of a matrix  $A \in \mathbb{R}^{m \times n}$  of rank r

$$A = U_1 \Sigma_1 U_1 = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^\top \\ \vdots \\ v_r^\top \end{bmatrix}$$

Full SVD: find  $U_2 \in \mathbb{R}^{m \times (m-r)}$  and  $V_2 \in \mathbb{R}^{n \times (n-r)}$  such that

$$U := egin{bmatrix} U_1 & U_2 \end{bmatrix}$$
 and  $V := egin{bmatrix} V_1 & V_2 \end{bmatrix}$  are orthogonal

and add zero rows/columns to  $\Sigma_1$  to form  $\Sigma \in \mathbb{R}^{m \times n}$ 

Warning: The singular values are  $\sigma_1, \dots, \sigma_r$  plus  $\min(m-r, n-r)$  zeros

In MATLAB: 
$$[U,S,V] = svd(A) - full SVD$$
$$[U,S,V] = svd(A,0) - reduced SVD$$

Linear algebra and optimization (L2)

Numerical linear algebra

### Differences between SVD and EVD

- SVD exists for any matrix EVD exist for some square matrices
- SVD applies two orthogonal similarity transformations EVD applies one (in general not orthonormal) similarity transf.
- EVD is useful in problems where A is repeatedly applied SVD is used to analyse a single application of A on a vector

# Conditioning of a problem

 $\mathscr{X}$  is the data space Problem:  $f: \mathcal{X} \to \mathcal{Y}$ , where is the solutions space

Usually *f* is a continuous nonlinear function.

Consider a particular data instance  $X_0 \in \mathcal{X}$ .

The problem f is called well conditioned at the data  $X_0$  if

small perturbations in X lead to small changes in f(X)

 $\lim_{\delta \to 0} \sup_{\|\widetilde{X}\| < \delta} \frac{\|f(X_0 + \widetilde{X}) - f(X_0)\|}{\|\widetilde{X}\|}$ Absolute condition number:

 $\lim_{\delta \to 0} \sup_{\|\widetilde{\boldsymbol{X}}\| < \delta} \frac{\|f(\boldsymbol{X}_0 + \widetilde{\boldsymbol{X}}) - f(\boldsymbol{X}_0)\| / \|f(\boldsymbol{X}_0)\|}{\|\widetilde{\boldsymbol{X}}\| / \|\boldsymbol{X}_0\|}$ Relative condition number:

Numerical linear algebra

Linear algebra and optimization (L2)

31 / 41

# Condition number of matrix-vector product

Theorem: The problem of computing y = Ax, given nonsingular matrix  $A \in \mathbb{R}^{n \times n}$  and  $x \in \mathbb{R}^n$  has relative cond. number w.r.t. perturbations in x

$$\kappa = \|A\|\frac{\|x\|}{\|y\|} \leq \|A\|\|A^{-1}\|$$

Condition number of a matrix:  $\kappa(A) := ||A|| ||A^{-1}||$ 

for nonsquare matrices and 2-norm  $\|\cdot\|$ ,  $\kappa(A) := \sigma_{\max}(A)/\sigma_{\min}(A)$ 

A is ill-conditioned if  $\kappa(A)$  is large, A is well-conditioned if  $\kappa(A)$  is small  $\kappa(A)$  is related to perturbations in the worst case

For an ill-conditioned A, y = Ax may be well-conditioned, for certain x

## Conditioning of root finding

Given polynomial coefficients  $\{p_0, p_1, \dots, p_n\}$ , find its roots  $\{\lambda_1, \dots, \lambda_n\}$ 

$$p(\lambda) = p_0 + p_1 \lambda^1 + \dots + p_n \lambda^n = c(\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$$

The relative condition number of  $\lambda_i$  w.r.t. perturbation  $\tilde{a}_i$  of  $a_i$  is

$$\kappa_{i,j} = |a_i \lambda_i^{i-1}| / |\frac{d}{d\lambda} p(\lambda_j)|$$

Example: For  $p(\lambda) = \Pi_1^{20}(\lambda - i)$ , arg max<sub>i,i</sub>  $\kappa_{i,i} = (15, 15)$ 

» roots(poly([1:20])) ans =  $1.0000 \dots 14.0684 14.9319 16.0509 \dots 20.0003$ 

Check the computed roots of  $(\lambda - 1)^4$  (roots(poly([1 1 1 1]))).

Linear algebra and optimization (L2)

Numerical linear algebra

# Condition number of solving systems of equations

Theorem: The problem of computing  $x = A^{-1}v$ , given  $A \in \mathbb{R}^{n \times n}$  and  $v \in \mathbb{R}^n$  has relative cond. number  $\kappa(A)$  w.r.t. perturbations in A.

Proof: The perturbation  $\widetilde{A}$  in A leads to a perturbation  $\widetilde{x}$  in x, such that

$$(A+\widetilde{A})(x+\widetilde{x})=y \implies \widetilde{A}x+A\widetilde{x}\stackrel{1}{=}0$$

"=" means equal up to first order terms in  $\widetilde{A}$  and  $\widetilde{x}$ .

( $\kappa(A)$ ) describes the effect of infinitesimal perturbations.)

$$\widetilde{x} \stackrel{1}{=} -A^{-1}\widetilde{A}x \quad \Longrightarrow \quad \|\widetilde{x}\| \le \|A^{-1}\| \|\widetilde{A}\| \|x\|$$

$$\Longrightarrow \quad \frac{\|\widetilde{x}\|/\|x\|}{\|\widetilde{A}\|/\|A\|} \le \|A^{-1}\| \|A\| = \kappa(A)$$

# Digital representation of real numbers

IEEE double precision arithmetic:

- Range:  $[-2.23 \times 10^{-308}, 1.79 \times 10^{308}]$  overflow/underflow
- Discretization:  $[2^i, 2^{i+1}] \mapsto 2^i \{1, 1+2^{-52}, 1+2 \times 2^{-52}, \dots, 2\}$

The gaps between adjacent numbers are in a relative scale at most

$$\varepsilon := 2^{-52} \approx 2.22 \times 10^{-16}$$
 machine precision

- fixed point: the position of the decimal point is fixed
- floating point: its position is stored together with the digits

fixed point leads to uniform absolute errors floating point leads to uniform relative errors

Rounding: let f(x) be the digital representation of  $x \in \mathbb{R}$ ,  $|f(x) - x| \le \varepsilon$ 

Linear algebra and optimization (L2)

Numerical linear algeb

35 / 41

# Computational complexity of an algorithm

measured by # of flops (floating point operations) or execution time 1 flop — one addition, subtraction, multiplication, or division the flops count is usually simplified to leading order terms, *e.g.*, O(n) useful in theoretical comparison of algorithms but it is not an accurate predictor of the computation time

- n vector-vector operations O(n) flops
   e.g., vector sum, scalar-vector multiplication, inner product
- $m \times n$  matrix–vector product O(mn) flops
- $m \times n$  matrix  $n \times p$  matrix product O(mnp) flops

Example: solving Ax = b with general  $A \in \mathbb{R}^{n \times n}$  requires  $O(n^3)$  flops

Numerical linear algebra

41

Stability of an algorithm

Problem:  $f: \mathscr{X} \to \mathscr{Y}$ , Algorithm:  $\hat{f}: \mathscr{X} \to \mathscr{Y}$ 

 $\widehat{f}$  is backward stable if for each  $X \in \mathcal{X}$  there is  $\widehat{X} \in \mathcal{X}$ , such that

$$\frac{\|X-\widehat{X}\|}{\|X\|} = O(\varepsilon)$$
 and  $\widehat{f}(X) = f(\widehat{X})$ 

in words:

backward stable algorithm gives the right answer to a nearby problem

 $\mathbf{e}(\widetilde{X}) := \|\widetilde{X}\|/\|X\| = \mathbf{O}(\varepsilon)$  means that there is  $c, \delta > 0$  such that  $\|\widetilde{X}\| < \delta \implies |\mathbf{e}(\widetilde{X})| < c\varepsilon$ 

Linear algebra and optimization (L2)

Numerical linear algebra

▶ ₹ 990

# Linear equations with special structure

- diagonal n flops ( $x_i = y_i/a_{ii}$  for i = 1,...,n)
- lower/upper triangular:  $n^2$  flops (via forward/backward substitution)
- banded O(nk), where k is the bandwidth
- symmetric  $O(n^3/3)$  (via Cholesky decomposition)
- orthogonal  $O(n^2)$   $(x = A^T y)$
- permutation 0 flops
- Toeplitz  $O(n^2)$  flops
- · combination of banded, symmetric, and Toeplitz

## Numerical linear algebra software

### Matlab uses as its computational kernel LAPACK

LAPACK is a freely available FORTRAN library currently the state-of-the-art software for numerical linear algebra

MATLAB provides simple and convenient interface to LAPACK it is an excellent tool for research; free alternatives to MATLAB are

- octave
- scilab

Linear algebra and optimization (L2)

Numerical linear algebra

39 / 41

References

### Introductory texts:

- N. Trefethen & Bau, Numerical linear algebra
- G. Stewart, Introduction to matrix computations
- Overton, Numerical computing with IEEE floating point arithmetic

### Advanced texts:

- G. Golub & Van Loan, Matrix computations
- N. Higham, Accuracy and stability of numerical methods
- J. Demmel, Applied numerical linear algebra
- LAPACK Users' Guide

### **BLAS and LAPACK**

- BLAS Basic Linear Algebra Subroutines, and ATLAS — Automatically Tunable Linear Algebra Subroutines
  - Level 1 BLAS: vector-vector operations
  - Level 2 BLAS: matrix-vector products
  - Level 3 BLAS: matrix-matrix products
- LAPACK Linear Algebra PACKage
  - Matrix factorizations; exploit triangular, banded, diagonal structures
  - Solvers for linear systems, LS, LN problems; provide error bounds

ScaLAPACK — version for parallel computers.

4□ ト 4 □ ト 4 □ ト 4 □ ト 4 □ ト 9 Q @

Linear algebra and optimization (L2)

Numerical linear algebra