Probability Distributions

(Discrete) Uniform

Each integer value in a specified range is assigned the same value.

 $\text{lower bound } a \in \mathbb{Z},$

upper bound $b \in \mathbb{Z}$ s.t. a < b

Possible values $\{a, a+1, \dots, b-1, b\}$

Notation U(a,b)

Probability function $p(x) = \frac{1}{b-a+1}$

Expectation $\frac{a+b}{2}$

Variance $\frac{(b-a)(b-a+2)}{12}$

MGF $M(t) = \frac{1}{b-a+1} \sum_{k=a}^{b} e^{kt}$

Kernel 1

Bernoulli

Represents the success of a single experiment as a binary outcome.

Parameters probability of success $0 \le p \le 1$

Possible values $\{0,1\}$ Notation Bern (p)

Probability function $p(x) = p^x (1-p)^{1-x}$

Expectation p

Variance p(1-p)

 $M(t) = 1 + p(e^t - 1)$

Kernel $p^x(1-p)^{-x}$

Binomial

Represents the number of successes in a fixed number of independent and repeated trials of the same Bernoulli experiment.

number of trials $n \in \mathbb{N}$,

Parameters

probability of success on a single trial

 $0 \leq p \leq 1$

Possible values $\{0, 1, 2, \dots, n\}$

Notation Bin(n, p)

Probability function $p(x) = \binom{n}{x} p^x (1-p)^{n-x}$

Expectation np

Variance np(1-p)

MGF $M(t) = \left[1 + p\left(e^t - 1\right)\right]^n$

Kernel $\binom{n}{x}p^x(1-p)^{-x}$

Related Distributions

• If $X \sim \text{Bin}(n, p)$, then

$$X = \sum_{i=1}^{n} X_i,$$

where the $X_i \sim \text{Bern}(p)$ independently.

Hypergeometric

Represents the number of when drawing a fixed number of samples from a population containing a known number of successes.

size of population $N \in \mathbb{N}$,

Parameters number of successes in population
$$k \in$$

 \mathbb{N} ,

number of samples drawn $n \in \mathbb{N}$

Notation Hypergeometric (N, k, n)

Probability function $p(x) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$

Expectation $\frac{nk}{N}$

Variance $n\left(\frac{k}{N}\right)\left(\frac{N-k}{N}\right)\left(\frac{N-n}{N-1}\right)$

MGF No useful expression

Kernel $\binom{k}{x}\binom{N-k}{n-x}$

Poisson

Represents the number of events occuring in a fixed interval.

Possible values $\{0, 1, 2, \ldots\}$

Parameters average number of events in interval

 $\lambda > 0$,

Notation $Po(\lambda)$

Probability function $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$

Expectation λ

Variance λ

 $M(t) = e^{\lambda (e^t - 1)}$

Kernel $\frac{\lambda^x}{x!}$

Geometric

Represents the number of failed Bernoulli trials preceeding the first success.

Parameters probability of success on a single trial

 $0 \le p \le 1$,

Possible values $\{0, 1, 2, \ldots\}$

Notation Geom(p)

Probability function $p(x) = (1-p)^x p$

Expectation $\frac{1-p}{p}$ Variance $\frac{1-p}{n^2}$

MGF $M(t) = \frac{p}{1 - (1 - p)e^t}$ for $t < -\ln(1 - p)$

Kernel $(1-p)^x$

Geometric (alternative)

Represents the position of the first success in a sequence of Bernoulli trials.

Parameters probability of success on a single trial

 $0 \le p \le 1$,

Possible values $\{1, 2, \ldots\}$

Notation Geom(p)

Probability function $p(x) = (1-p)^{x-1}p$

Expectation $\frac{1}{p}$ Variance $\frac{1-\frac{1}{p^2}}{p^2}$

MGF $M(t) = \frac{pe^t}{1 - (1 - p)e^t}$ for $t < -\ln(1 - p)$

Kernel $(1-p)^x$

Negative Binomial

Represents the number of Bernoulli trials preceding the rth success.

number of desired successes $r \in \mathbb{N}$,

probability of success on a single trial

 $0 \le p \le 1$,

Possible values $\{r, r+1, \ldots\}$

Notation NB (r, p)

Probability function $p(x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$

Expectation $\frac{r}{p}$ Variance $\frac{r(1-p)}{p^2}$

MGF $M(t) = \left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r \text{ for } t < -\ln p$

Kernel $\binom{x-1}{x-1}(1-p)^x$

Related Distributions

• If $X \sim NB(r, p)$, then

$$X = \sum_{i=1}^{n} X_i,$$

where the $X_i \sim \text{Geom}(p)$ independently.

Negatve Binomial (Alternative)

Represents the number of failures preceeding the rth success in a sequence of Bernoulli trials.

probability of success on a single trial

$$0 \le p \le 1$$
,

Possible values $\{0, 1, 2, \ldots\}$

Notation NB(r, p)

Probability function
$$p(x) = {x+r-1 \choose x} (1-p)^x p^r$$

Expectation Variance

MGF
$$M(t) = \left[\frac{p}{1 - (1 - p)e^t}\right]^r$$
 for $t < -\ln p$

 $\binom{x+r-1}{x}(1-p)^x$ Kernel

Continuous

(Continuous) Uniform

Each value in a specified interval has the same probability density.

lower bound $a \in \mathbb{Z}$, Parameters

upper bound $b \in \mathbb{Z}$ s.t. a < b

Possible values (a,b)

Notation U(a,b)

Probability density function

Cumulative distribution function

 $F(x) = \begin{cases} 0, & \text{if } x \le a, \\ \frac{x-a}{b-a}, & \text{if } a < x < b, \\ 1, & \text{if } b \le x. \end{cases}$

Expectation Variance

 $M(t) = \begin{cases} 1, & \text{if } t = 0, \\ \frac{e^{tb} - e^{ta}}{t(b-a)}, & \text{if } t \neq 0. \end{cases}$ MGF

Kernel

Multivariate

Discrete

Continuous