Name: Dylan Liesenfelt

Z-Number: Z23688417

Q 1

Construct a truth table for the statement form.

$$(p \wedge r) \leftrightarrow (q \wedge r)$$

p	q	r	$p \wedge r$	$q \wedge r$	$(p \wedge r) \leftrightarrow (q \wedge r)$
T	T	T	T	T	T
$\mid T \mid$	T	F	F	F	T
$\mid T \mid$	F	T	T	F	F
$\mid T \mid$	F	F	F	F	T
F	T	T	F	T	F
F	T	F	F	F	T
F	F	T	F	F	T
F	F	F	F	F	T

Q 2

In the following exercises:

(a) use the logical equivalences $p \to q \equiv \neg p \lor q$ and $p \leftrightarrow q \equiv (\neg p \lor q) \land (\neg q \lor p)$ to rewrite the given statement forms without using the symbol \to or \leftrightarrow , and

(b) use the logical equivalence $p \lor q \equiv \neg(\neg p \land \neg q)$ to rewrite each statement form using only \land and \neg .

$$p \lor \neg q \to r$$

(a):
$$\neg p \land q \lor r$$

(b):
$$\neg p \wedge \neg (\neg q \wedge \neg r)$$

Q 3

Write negations, contrapositives, converse and inverse for each of the following statements.

(Assume that all variables represent fixed quantities or entities, as appropriate.)

- (a) If P is a triangle, then P is an equilateral triangle.
 - Negation: P is not an equilateral triangle.
 - Contrapositive: If P is not an equilateral triangle, then P is not a triangle.
 - Converse: If P is an equilateral triangle, then P is a triangle.
 - Inverse: If P is not a triangle, then P is not an equilateral triangle
- (b) If John is Mike's brother, then Sarah is his sister and Paul is his cousin.
 - Negation: John is Mike's brother, and either Sarah is not his sister or Paul is not his cousin.
 - Contrapositive: If Sarah is not his sister or Paul is not his cousin, then John is not Mike's brother.
 - Converse: If Sarah is his sister and Paul is his cousin, then John is Mike's brother.
 - Inverse: If John is not Mike's brother, then Sarah is not his sister or Paul is not his cousin.

04

Which argument form exhibits the converse error?

- (a) If Alice finished her project, then she will present it. Alice presented her project. Therefore, Alice finished her project.
- (b) If I study, I will pass the exam. If I pass the exam, I will graduate. Therefore, if I study, I will graduate.
- (c) If either of the numbers is even, then their sum is even. Both numbers are odd. Therefore, their sum is odd.
- (d) Bob knows Python and Bob knows JavaScript. Therefore, Bob knows JavaScript.

ANSWER: (A) exhibits the converse error.

Q 5

Use truth tables to determine whether the argument forms are valid. Indicate which columns represent the premises and which represent the conclusion, and include a sentence explaining how the truth table supports your answer.

Your explanation should show that you understand what it means for a form of argument to be valid or invalid.

(a)
$$(p \lor q) \rightarrow \neg r$$

$$\neg p \land q$$

$$\mathsf{q} \to \mathsf{p}$$

Truth Table:

p	q	r	$\neg p$	$p \lor q$	$(p \lor q) o eg r$	$ eg p \wedge q$	q o p	$\neg r$
T	T	T	F	F	F	F	T	F
$\mid T \mid$	T	F	F	T	T	F	T	$\mid T \mid$
$\mid T \mid$	F	T	F	F	F	F	T	F
T	F	F	F	T	T	F	T	$\mid T \mid$
F	T	T	T	F	F	T	F	F
F	T	F	T	T	T	T	T	$\mid T \mid$
F	F	T	T	F	T	F	T	F
F	F	F	T	T	T	F	T	T

- ullet Premises: $(p \lor q)
 ightarrow
 eg r$, $eg p \land q$, and q
 ightarrow p
- Conclusion: $\neg r$
- It is valid, in row 6 all premises are true and the conclusion is as well.

(b)
$$p \rightarrow q$$

$$r \rightarrow q$$

$$\therefore (p \lor r) \to q$$

Truth Table:

p	q	r	p o q	r o q	p ee r	(pee r) o q
T	T	T	T	T	T	T
$\mid T \mid$	T	F	T	T	T	T
$\mid T \mid$	F	T	F	F	T	F
$\mid T \mid$	F	F	F	T	T	F
F	T	T	T	T	T	T
F	T	F	T	T	F	T
F	F	T	T	F	T	F
F	F	F	T	T	F	T

- ullet Premises: p o q and r o q
- Conclusion: $(p \lor r) \to q$
- Valid, rows 1,2,5 all premises and the conclusion are valid

Q 6

Let Q(x) be the predicate "x2 < 2x".

(a) Write Q(1), Q(2), Q(0), Q(-1), and Q(3), and indicate which of these statements are true and which are false.

- Q(1) = 1 < 2, TRUE
- Q(2) = 4 < 4, FALSE
- Q(0) = 0 < 0, FALSE
- Q(-1) = 1 < -2, FALSE
- Q(3) = 9 < 6, FALSE

(b) Find the truth set of Q(x) if the domain of x is R, the set of all real numbers.

- $\{x \in R \mid 0 < x < 2\}$
- (c) If the domain is the set R+ of all positive real numbers, what is the truth set of Q(x)?
 - $\{x \in R^+ \mid 0 < x < 2\}$

Q 7

Which of the following is the truth set for the predicate R(x): $x^2 - 5x + 6 = 0$, if the domain is R? Explain.

- (a) $\{2, 3\}$
- (b) $\{-2, 3\}$
- $(c) \{3, 4\}$
- (d) {1, 6}

ANSWER: (A), Because {2,3} are the values of x that fit for the given equation

Q8

Write a formal negation for each of the following statements:

- (a) \forall birds x, x can fly.
 - $\exists x(birds), \neg Q(x)$
- (b) ∀ cars c, c has wheels.
 - $\exists c(cars), \neg P(c)$
- (c) \exists a building b such that b is over 100 stories tall.
 - $\forall b(buildings), \neg Q(b)$
- (d) \exists a tree t such that t is over 100 years old.
 - $\forall t(trees), \neg Q(t)$

Q 9

Consider the following definitions: Let D be the set of all students at your school, M (s) represents "student s is an engineering major," and S(s) represents "student s is a physics major." What is the correct representation of the statement: "Every engineering major is also a physics major."?

- (a) $\forall s \in D, M(s) \Rightarrow S(s)$
- (b) $\exists s \in D, M(s) \land \neg S(s)$
- (c) $\forall s \in D, S(s) \Rightarrow M(s)$
- (d) $\exists s \in D, S(s) \lor M(s)$
- ANSWER: (A)