OMNICLOUD Prueba técnica v2

Perfil: DBA mid

Prueba Técnica: Docker, ETL y Big Data

Objetivo

Crear un entorno que incluya:

- 1. Un contenedor con PostgreSQL.
- 2. Un contenedor con MongoDB.
- 3. Un proceso ETL que integre ambas bases de datos.
- 4. Una base de datos de Big Data configurada para alta disponibilidad.
- 5. Una base de datos inicial en PostgreSQL, que ya se proporcione al candidato para que sea optimizada.

Instrucciones

PostgreSQL

1.- Normaliza e indexa la siguiente base de datos:

```
CREATE TABLE orders (
order_id SERIAL,
customer_name TEXT,
product_name TEXT,
product_price NUMERIC,
order_date TIMESTAMP
);

INSERT INTO orders (customer_name, product_name, product_price, order_date)
VALUES
('John Doe', 'Laptop', 1200.50, '2024-01-01 10:00:00'),
('Jane Smith', 'Smartphone', 800.75, '2024-01-02 11:30:00'),
('Alice Johnson', 'Tablet', 300.00, '2024-01-03 15:45:00'),
('Bob Brown', 'Monitor', 150.99, '2024-01-04 09:20:00'),
('Carol White', 'Keyboard', 50.00, '2024-01-05 14:10:00');
```

2.- Crea un contenedor de docker, donde se guarde la base de datos normalizada.

MongoDB

- 1. Configura un contenedor con MongoDB.
- 2. Crea una colección inicial llamada logs que contenga registros aleatorios como datos JSON.
- 3. Genera una estructura para cargar los datos transformados desde PostgreSQL como parte del proceso ETL.

ETL

- 1. Crea un script que:
 - Extraiga datos de la tabla users en PostgreSQL.
 - o Transforme los datos aplicando reglas como:
 - Cambiar el formato de los nombres a mayúsculas.
 - Modificar los correos para usar el dominio example.com
 - Agregar un código único por usuario.
 - Cargue los datos transformados en una nueva colección llamada users_transformed en MongoDB.
- 2. Configura una tarea para que el proceso ETL se ejecute automáticamente después de los respaldos.

Big Data (opcional, es un plus)

- 1. Configura un contenedor para Apache Kafka o Elasticsearch:
 - Apache Kafka:
 - Configurarlo para recibir datos de eventos, como logs o registros de usuarios.
 - Proporciona un productor básico para enviar eventos al tópico user_events.
 - Elasticsearch:
 - Configurarlo para indexar y analizar datos provenientes de los eventos.

Respaldo

- Configura un script para respaldos automáticos de PostgreSQL y MongoDB cada hora.
- 2. Los respaldos deben guardarse en una carpeta compartida entre los contenedores y el host.

Consultas (PostgreSQL)

Crea las siguientes consultas

- 1. Lista de todos los pedidos junto con nombre del cliente y el producto en un rango de fechas.
- 2. Calcula el total de ventas por cliente.
- 3. Encuentra a los 3 mejores clientes, que tengan el mayor gasto.
- 4. Verifica que los índices de tus tablas estén siendo utilizados.
- 5. Muestra los nombres de los clientes que no han realizado ningún pedido.

Entrega

- 1. Un archivo docker-compose.yml que configure todos los contenedores:
 - PostgreSQL.
 - o MongoDB.
 - Kafka o Elasticsearch.
 - o FTI
- 2. Scripts necesarios:
 - o Respaldo automático.
 - Normalización de la base de datos.
 - o Proceso ETL.
- 3. Documentación clara que incluya:
 - o Instrucciones para ejecutar el entorno.
 - o Detalles sobre cómo realizar la normalización.
 - Descripción del proceso ETL.
 - Uso de Kafka o Elasticsearch.
- 4. Subir el resultado a un repositorio público de Github
- 5. Enviar por correo electrónico a la persona con quien estás llevando el proceso el enlace al repositorio del proyecto.

Criterios de Evaluación

- 1. PostgreSQL:
 - Correcta configuración y creación de la base de datos inicial.
 - Habilidad para normalizar y optimizar una base de datos.
 - o Configuración adecuada para alta disponibilidad (por ejemplo, replicación).
- 2. MongoDB:
 - Configuración funcional y uso adecuado de colecciones.
 - Carga exitosa de datos transformados desde el proceso ETL.
- 3. ETL:
 - o Correcta extracción, transformación y carga de datos.
 - Automatización del proceso ETL.
- 4. Big Data:
 - Configuración funcional de Kafka o Elasticsearch.
 - Manejo correcto de datos en tiempo real.
- 5. Respaldo y Automatización:
 - o Implementación funcional de respaldos automáticos.
 - Uso correcto de volúmenes para compartir datos entre contenedores.
- 6. Documentación:
 - Claridad en las instrucciones.
 - Facilidad para reproducir el entorno en otra máquina.