Regular - 2ª série Tipo M-2 - 11/2										17
		G A	E	3 <i>A</i>	R	I	T	0		
01.	D	11.	D	21.	Е		31.	Α	41.	Α
02.	В	12.	Α	22.	D		32.	С	42.	Е
03.	В	13.	Α	23.	D		33.	D	43.	D
04.	С	14.	D	24.	D		34.	С	44.	D
05.	Ε	15.	Е	25.	С		35.	Α	45.	В
06.	Α	16.	Е	26.	В		36.	D	46.	С
07.	D	17.	В	27.	D		37.	В	47.	D
08.	В	18.	С	28.	Е		38.	S/R	48.	В
09.	В	19.	С	29.	E		39.	Е	49.	Ε
10.	С	20.	В	30.	D		40.	Α	50.	Ε

PROVA GERAL

P-8 – Ensino Médio Regular 2ª série

RESOLUÇÕES E RESPOSTAS

QUÍMICA

QUESTÃO 1: Resposta D

2-amino fenol; 3-aminofenol e 4-aminofenol

Semana: 21 Habilidade: 17

QUESTÃO 2: Resposta B

A urina é composta predominantemente por água (polar).

O revestimento representado em 1 é mais eficiente em não absorver a urina, porque a cadeia carbônica é hidrofóbica (apolar).

Semana: 20 Habilidade: 24

QUESTÃO 3: Resposta B

Compostos iônicos em água se dissociam e seus íons se interagem com a água por íon-dipolo.

Semana: 19 Habilidade: 17

QUESTÃO 4: Resposta C

Semana: 18 Habilidade: 24

QUESTAO 5: Resposta E

Semana: 18 Habilidade: 24

QUESTÃO 6: Resposta A

Analisando os experimentos 1 e 2. A concentração de O₂, permaneceu constante, enquanto a concentração de CO dobrou, o mesmo ocorreu com a velocidade, portanto o expoente a é igual a 1.

Analisando os experimentos 1 e 3, notamos que a concentração de CO permanece constante e a concentração

de O_2 , se reduz a metade e a velocidade se reduz a $\frac{1}{4}$, portanto o expoente b é igual a 2.

Semana: 17 Habilidade: 17

QUESTÃO 7: Resposta D

A constante de equilíbrio é expressa por substâncias presentes à direita sobre as substâncias presentes à esquerda e seus coeficientes passam a ser expoentes.

Semana: 18 Habilidade: 25

QUESTÃO 8: Resposta B

$$KC = \frac{(0,09)^2}{(0,03)} = 0,27$$

Semana: 19 Habilidade: 25

QUESTÃO 9: Resposta B

Como a reação direta é endotérmica, o aumento da temperatura desloca o equilíbrio para a direita favorecendo a cor azul, e o mesmo acontece com a baixa umidade.

Semana: 17 Habilidade: 25

QUESTÃO 10: Resposta C

Ao adicionarmos NH₄NO₃ estaremos aumentando a concentração de NH₄+, deslocando o equilíbrio para a direita, lado do K+.

Semana: 17 Habilidade: 24

BIOLOGIA

QUESTÃO 11: Resposta D

O crescimento da vegetação, no caso a grama, é possibilitado graças à produção de matéria orgânica por meio da execução de fotossíntese, processo bioenergético que conta com a participação da luz do Sol, de água e de gás carbônico, nos cloroplastos presentes nas células vegetais.

Semana: 15 e 16 Habilidade: 14 e 17

QUESTÃO 12: Resposta A

A síntese de monossacarídeos nas folhas e a síntese e o armazenamento de polissacarídeos nas raízes são processos de nutrição orgânica. As raízes não são o local de encontro de gametas e, de modo geral, não possuem estômatos, portanto, não se constata a ocorrência de transpiração estomática e cuticular nesses órgãos vegetativos.

Semana: 16

Habilidade: 14 e 17

QUESTÃO 13: Resposta A

Coesão entre moléculas de água por formação de ligações de hidrogênio e adesão dessas moléculas às paredes lignificadas das células condutoras do xilema são duas condições fundamentais para a ocorrência de fluxo de seiva bruta no interior dos vasos xilemáticos de uma planta.

Semana: 17 e 18 **Habilidade:** 14, 15 e 17

QUESTÃO 14: Resposta D

Com o estímulo luminoso os estômatos se abrem e aumenta a transpiração foliar – estomática e cuticular – o que propicia maior absorção e condução de água pelos vasos lenhosos presentes nos galhos, fator que resulta na diminuição do nível de água no potômetro A.

Semana: 17

Habilidade: 14, 15 e 17

QUESTÃO 15: Resposta E

Com o estímulo luminoso ocorre o transporte de íons potássio das células anexas para as células-guardas dos estômatos. Consequentemente, com o aumento da concentração iônica dessas células a água penetra pelas por osmose, deixando-as túrgidas e possibilitando a abertura dos ostíolos, ou seja, dos estômatos.

Semana: 17 e 18 **Habilidade:** 14, 15 e 17

QUESTÃO 16: Resposta E

Neurônios motores levam o impulso nervoso dos centros nervosos para os órgãos efetuadores (músculos ou glândulas). O impulso nervoso se propaga <u>sempre</u> do dendrito para o corpo celular e dele para o axônio em qualquer tipo de neurônio.

Semana: 18 Habilidade: 14

QUESTÃO 17: Resposta B

Os animais cujos representantes se desenvolvem no interior de ovos com casca e anexos embrionários são os répteis e aves, que excretam ácido úrico na fase adulta. Animais que se desenvolvem ligados à mãe pela placenta são mamíferos e excretam ureia na fase adulta.

Semana: 16 Habilidade: 14

QUESTÃO 18: Resposta C

Na situação descrita na questão, os jovens devem economizar a água que lhes resta no corpo para não correrem o risco de desidratar. Nesse caso há maior liberação do hormônio ADH que aumenta a reabsorção de água nos túbulos do néfron, formando menor volume de urina e eliminando menos água do corpo.

Semana: 17 Habilidade: 14

QUESTÃO 19: Resposta C

Alterações relacionadas a situações de estresse, tais como aumento da frequência respiratória e cardíaca, tremor, sudorese, eriçamento de pelos (mamíferos) ou penas (aves), dilatação das pupilas, visam tornar o organismo preparado para a fuga ou a luta e são desencadeadas pelo sistema nervoso autônomo simpático, pela secreção de noradrenalina.

Semana: 19 Habilidade: 14 e 17

QUESTÃO 20: Resposta B

Os cones e bastonetes são células especializadas para recepção de estímulos luminosos e, portanto, relacionadas à visão. A cóclea é a parte auditiva do ouvido interno e as células ciliadas são receptores sensoriais do sistema auditivo.

Semana: 20 Habilidade: 14

FÍSICA

QUESTÃO 21: Resposta E

Inicialmente, devemos lembrar que o potencial elétrico resultante em um ponto é a soma algébrica dos potenciais elétricos gerados por diversas cargas, cujo cálculo é dado pela expressão:

$$V = \frac{k_0 \cdot Q}{r}$$

Dessa maneira, o potencial elétrico resultante no centro C da circunferência é:

$$V_{\text{C}} \, = \frac{k_0 \cdot Q}{r} + \frac{k_0 \cdot Q}{r} + \frac{k_0 \cdot \left(-2Q\right)}{r} \ \, \Rightarrow \ \, V_{\text{C}} \, = 0 \label{eq:VC}$$

Para o campo elétrico, a figura mostra o vetor campo elétrico no centro C da circunferência devido a cada uma das cargas.

A intensidade do vetor campo elétrico resultante nesse ponto é:

$$E_{C} = E_{3} = \frac{k_{0} \cdot |q_{3}|}{r^{2}} = \frac{k_{0} \cdot |-2Q|}{r^{2}} \implies E_{C} = \frac{2 \cdot k_{0} \cdot Q}{r^{2}}$$

Semana: 21 Habilidade: 21

QUESTÃO 22: Resposta D

Ao se analisar as afirmações apresentadas, tem-se:

- Falsa. O vetor campo elétrico resultante no centro do hexágono regular (ponto A) é nulo, pois as cargas apresentam mesmo módulo, sinal e distância em relação ao ponto central.
- II) Verdadeira. O trabalho é dado por: $W = q \cdot (V_A V_\infty)$.

No centro do hexágono, correspondente ao ponto A, o seu potencial elétrico é:

$$V_A = 6 \cdot \frac{KQ}{R}$$

 $\label{eq:logo} Logo, \ o \ trabalho \ ser\'a: \ W = q \cdot \left(6 \cdot \frac{KQ}{R} - 0 \right) \ \ \therefore \ \ W = 6 \cdot \frac{KQq}{R}.$

III) Verdadeira. Assim como o vetor campo elétrico é nulo no centro da figura, a força resultante também é nula.

Semana: 21 Habilidade: 21

QUESTÃO 23: Resposta D

A situação apresentada pode ser representada pelo esquema inicial I, abaixo, até a troca da carga negativa em II.

Para o sistema de cargas, a energia potencial elétrica é calculada de duas em duas cargas e somadas nos informam a energia potencial elétrica total do sistema, de acordo com a expressão:

$$E_{pe} = \frac{kqq}{r}$$

Dessa maneira, para o estado inicial tem-se:

$$E_{\text{pel}} = \frac{k}{r} \Big(q \cdot \Big(-q \Big) + \Big(-q \Big) \cdot q + q \cdot q \Big) = \frac{k}{r} \Big(-q^2 \, \Big) = -\frac{kq^2}{r}$$

Substituindo a carga negativa pela positiva, temos:

$$E_{\text{pell}} = \frac{k}{r} \big(q \cdot q + q \cdot q + q \cdot q \big) = \frac{k}{r} \big(3q^2 \, \big) = 3 \frac{kq^2}{r}$$

Finalmente, fazendo a variação da energia potencial elétrica, resulta:

$$\Delta E_{pe} = 3 \frac{kq^2}{r} - \left(-\frac{kq^2}{r}\right) \therefore \Delta E_{pe} = 4 \frac{kq^2}{r}$$

Semana: 20 Habilidade: 21

QUESTÃO 24: Resposta D

A intensidade da força elétrica é dada pelo produto do <u>módulo</u> da carga da partícula ionizada pela intensidade do vetor campo elétrico entre as placas:

$$F_{el\acute{e}} = a \cdot E$$

Semana: 18 Habilidade: 6

QUESTÃO 25: Resposta C

Ao se considerar um campo uniforme, tem-se:

$$Ed = U = E = \frac{U}{d} = \frac{25 \cdot 10^3}{0.5} = 50 \cdot 103 = E = 50000 \text{ V/m}$$

Semana: 18 Habilidade: 6

QUESTÃO 26: Resposta B

Aplicando a equação fundamental da ondulatória para comprimento de onda igual à dimensão de uma molécula de DNA:

$$V = \lambda \cdot f$$

$$3 \cdot 10^8 = 10^{-9} \cdot f$$

$$f = 3 \cdot 10^{17} Hz$$

Essa frequência corresponde a raios X.

Aplicando a equação fundamental da ondulatória para comprimento de onda igual à dimensão de uma bactéria:

$$V = \lambda \cdot f$$

$$3\cdot 10^8 = 6\cdot 10^{-6}\cdot f$$

$$f=5\cdot 10^{13}\,Hz$$

Essa frequência corresponde ao infravermelho.

Semana: 17 e 18

Habilidade:

QUESTÃO 27: Resposta D

- I. Incorreta: na refração a frequência da onda se mantém constante, enquanto sua velocidade e seu comprimento são alterados.
- II. Correta.
- III. Correta.

IV. Incorreta: apenas as ondas transversais podem ser polarizadas.

Semana: 18 e 19

Habilidade:

QUESTÃO 28: Resposta E

- 1. Incorreta: o aquecimento ocorre por ressonância das moléculas de água do alimento.
- 2. Correta: aplicando a equação fundamental da ondulatória, temos:

$$V=\lambda\cdot f$$

$$3 \cdot 10^8 = \lambda \cdot 2,45 \cdot 10^9$$

$$\therefore$$
 $\lambda \approx 0,122$ m ou 12,2 cm

3. Correta: as micro-ondas refletem nas paredes por motivos de segurança, além de facilitar a formação de ondas estacionárias.

Semana: 19

Habilidade:

QUESTÃO 29: Resposta E

A partir das figuras, observa-se que o pulso P deslocou 30 unidades indicadas na escala. Dessa forma, o pulso Q também deslocou 30 unidades, mas em sentido contrário. A figura a seguir ilustra os pulsos P e Q no instante t, caso cada um se propagasse sozinho.

Dessa forma, o resultado da superposição está ilustrado na figura do item E:

Semana:

Habilidade:

QUESTÃO 30: Resposta D

A velocidade de propagação das ondas no fio é dada pela lei de Taylor:

$$V=\sqrt{\frac{T}{\mu}}$$

Em que T = P = 10 N e μ = 100 g/cm = 10 kg/m. Assim,

$$V=\sqrt{\frac{10}{10}}=1\frac{m}{s}$$

Como se formam 5 fusos no fio:

$$5 \cdot \frac{\lambda}{2} = 0.5$$
$$\lambda = 0.2 \text{ m}$$

Aplicando a equação fundamental da ondulatória:

$$V=\lambda\cdot f$$

$$1 = 0, 2 \cdot f$$

$$\therefore$$
 f = 5 Hz

Semana: 18 e 21 Habilidade:

MATEMÁTICA

QUESTÃO 31: Resposta A

Total de maneiras de escolher dois tenistas quaisquer: $C_{10,\,2}$ Total de maneiras de escolher dois tenistas canhotos: $C_{4,\,2}$

Total de maneiras de escolher dois tenistas que não sejam ambos canhotos: $C_{10, 2} - C_{4, 2} = \frac{10!}{2! \cdot 8!} - \frac{4!}{2! \cdot 2!}$

Semana: 16 Habilidade: 2

QUESTÃO 32: Resposta C

Na figura, temos apenas dois caminhos possíveis: o trajeto A-B-C ou o trajeto A-D-E.

Em A, B, D e E existem duas ramificações, cada uma com probabilidade $\frac{1}{2}$.

Em C existem três ramificações, cada uma com probabilidade $\frac{1}{3}$.

SISTEMA ANGLO DE ENSINO

Assim:

$$P(A - B - C) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{12}$$

$$P(A - D - E) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$TOTAL: P = \frac{1}{12} + \frac{1}{8} \therefore P = \frac{5}{24}$$

Semana: 18 Habilidade: 2

QUESTÃO 33: Resposta D

Cada retirada de papel pode ser representada por uma sequência de 4 letras. O total de sequências possíveis é dado por 4! = 24.

Sendo A, P, C, R as letras que representam os nomes Ana, Paulo, Cláudia e Rodrigo, respectivamente, temos que a sequência (A, P, C, R) indica que cada participante pode retirar o seu próprio nome.

Das 24 sequências possíveis, os casos em que nenhum deles retira o seu próprio nome são:

(P, A, R, C), (C, A, R, P), (R, A, P, C), (P, C, R, A), (C, R, A, P), (R, C, A, P), (P, R, A, C), (C, R, P, A) e (R, C, P, A).

Logo, a probabilidade de que nenhum deles retire o seu próprio nome é dada por:

$$P = \frac{9}{24} = \frac{3}{8}$$

Semana: 18 Habilidade: 29

QUESTÃO 34: Resposta C

Cada tarefa pode ser distribuída de três modos distintos. Podemos concluir, pelo Princípio Multiplicativo, que o número de maneiras distintas de distribuir essas tarefas é dado por 3.3.3.3.3.3.3.3.7.29.

Semana: 13 Habilidade: 29

QUESTÃO 35: Resposta A

Separando-se em dois casos, tem-se:

1º caso: Dados com resultados diferentes.

Casos favoráveis: (1, 5), (2, 4), (4, 2) e (5, 1).

$$\therefore P_1 = \frac{4}{36}.$$

2º caso: Dados com resultados iguais.

Casos favoráveis:

1º lanç. 2º lanç.
$$\begin{cases} (1,3) \\ (2,2) \\ (3,1) \end{cases}$$

$$P_2 = \frac{1}{36} \cdot \frac{3}{36} + \frac{1}{36} \cdot \frac{1}{36}$$

$$P_2 = \frac{4}{36 \cdot 36}$$

Logo, a probabilidade pedida é:

$$P = P_1 + P_2$$

$$\therefore P = \frac{4}{36} + \frac{4}{36 \cdot 36}$$

$$\therefore P = \frac{37}{324}$$

Semana: 18 Habilidade: 22

QUESTÃO 36: Resposta D

$$y = \frac{(1+xi)^2}{xi}$$

$$y = \frac{1-x^2+2xi}{xi}$$

$$y = \frac{(1-x^2+2xi)(-xi)}{xi(-xi)}$$

$$y = \frac{2x^2+x(x^2-1)i}{x^2}$$

$$y = \frac{2x+(x^2-1)i}{x}$$

$$y = 2 + \frac{x^2-1}{x} \cdot i$$

$$y \in \text{um número real} \Leftrightarrow x = \pm 1$$

y e dili lidilielo leal $\hookrightarrow x =$

Com $x = \pm 1$, temos y = 2.

Semana: 20 Habilidade: 22

QUESTÃO 37: Resposta B

Representemos o conjunto das 6 pessoas por {A, B, C, D, E, F}. Se escolhermos o conjunto {A, B, C} como uma equipe, o complementar {D, E, F} será a outra equipe. Se escolhermos o conjunto {D, E, F} como uma equipe, o complementar {A, B, C} será a outra equipe. Portanto, o número de maneiras de formar duas equipes é dado por $\frac{1}{2} \cdot C_{6,3} = 10$. Todas essas 10 maneiras são dadas por: {{A, B, C}, {D, E, F}}, {{A, B, D}, {C, E, F}}, {{A, B, E}, {D, C, F}}, {{A, B, F}, {D, E, C}}, {{A, E, F}}, {{A, E, C}, {D, B, F}}, {{A, F, C}, {D, E, B}}, {{D, B, C}, {A, E, F}}, {{E, B, C}, {D, A, F}} e {{F, B, C}, {D, E, A}}.

Semana: 16 Habilidade: 2

QUESTAO 38: ANULADA

Semana: 18 Habilidade: 25

QUESTÃO 39: Resposta E

$$(1-i)^2 = 1^2 - 2i + i^2$$
 : $(1-i)^2 = -2i$
 $(1-i)^{16} = [(1-i)^2]^8 = [-2i]^8 = (-2)^8 \cdot i^8 = 256 \cdot 1 = 256$
 $(1-i)^{17} = (1-i)^{16}(1-i) = 256(1-i)$

Semana: 20 Habilidade: 22

QUESTÃO 40: Resposta A

As raízes de $x^2 - 4$ são os números 2 e -2.

Sendo p e q constantes e com $x \ne 2$ e $x \ne -2$, temos:

$$\frac{10x-8}{x^2-4} = \frac{p}{x-2} + \frac{q}{x+2} \text{ ou } \frac{10x-8}{x^2-4} = \frac{p}{x+2} + \frac{q}{x-2}$$

Da primeira igualdade, resulta:

$$\frac{10x-8}{x^2-4} = \frac{p(x+2)+q(x-2)}{(x-2)(x+2)}$$

$$\frac{10x - 8}{x^2 - 4} = \frac{px + 2p + qx - 2q}{x^2 - 4}$$

$$10x - 8 = (p + q)x + 2p - 2q$$

Do sistema
$$\begin{cases} p+q=10\\ 2p-2q=-8 \end{cases}$$
 resulta $p=3$ e $q=7$.

Da segunda igualdade, resulta p = 7 e q = 3.

Semana: 21 Habilidade: 22

QUESTÃO 41: Resposta A

A área lateral do recipiente é a da chapa de metal, ou seja, 2 m². Vamos calcular o volume do recipiente em cada opção.

I. Sendo r cm a medida do raio da circunferência, temos:

$$2\pi r \cdot 34 = 34 \cdot 60$$
 : $r = 10 cm$

Assim, $V_1 = \pi \cdot 10^2 \cdot 34 = 10200 \text{ cm}^3$.

II. Sendo r cm a medida do raio da circunferência, temos:

$$2\pi r\cdot 60=34\cdot 60 \ \therefore \ r=\frac{17}{3}cm$$

Assim,
$$V_{II} = \pi \cdot \left(\frac{17}{3}\right)^2 \cdot 60 = 3 \cdot \frac{289}{9} \cdot 60 = 5780 \, cm^3.$$

III. Sendo x cm a medida da aresta da base, temos:

$$4x \cdot 34 = 34 \cdot 60 : x = 15 cm$$

Assim, $V_{III} = 15^2 \cdot 34 = 7650 \text{ cm}^3$.

IV. Sendo x cm a medida da aresta da base, temos:

$$4x \cdot 60 = 34 \cdot 60 \therefore x = \frac{17}{2} \text{ cm}$$

Assim,
$$V_{IV} = \left(\frac{17}{2}\right)^2 \cdot 60 = \frac{289}{4} \cdot 60 = 4335 \text{ cm}^3.$$

V. Sendo x cm a medida da aresta da base, temos:

$$3x \cdot 34 = 34 \cdot 60$$
 $\therefore x = 20 cm$

Assim,
$$V_V = \frac{20^2\sqrt{3}}{4} \cdot 34 = \frac{400 \cdot 1,7}{4} \cdot 34 = 5780 \, cm^3.$$

Como o maior volume é V_I ele deve escolher a opção I.

Semana: 21 Habilidade: 14

QUESTÃO 42: Resposta E

O volume da piscina original é dado por 50 · 20 · 2 = 2000 m³. Como o volume de uma piscina olímpica é 50 · 25 · 3 = 3750 m³, então após a reforma a capacidade da piscina original aumentará em 3750 – 2000 = 1750 m³, o que representa um aumento de $\frac{1750}{2000} \approx 0,88$, ou seja, de aproximadamente 88%.

Semana: 17 Habilidade: 13

QUESTÃO 43: Resposta D

Sendo h cm a altura do vaso, o volume V do vaso, em cm³, é dado por:

$$V = 20^2 \cdot h - 16^2 \cdot (h - 2) = 144h - 512$$

Assim devemos ter:

$$144h + 512 = 4832$$

 $144h = 4832 - 512$
 $144h = 4320$
 $h = 30cm$

Semana: 17 Habilidade: 12

QUESTÃO 44: Resposta D

Como os cilindros A e B têm mesma área lateral, então:

 $2 \cdot \pi \cdot 6 \cdot H = 2 \cdot \pi \cdot r \cdot h$ De h = 1,2 H, temos: $2 \cdot \pi \cdot 6 \cdot H = 2 \cdot \pi \cdot r \cdot (1,2H)$ r = 5 cm

O volume do cilindro B é 240π cm³, então:

 $\pi \cdot 5^2 \cdot h = 240\pi$ h = 9.6 cm

Logo, de h = 1,2H, temos H = 8 cm.

A partir disso, temos que a diferença entre os volumes dos cilindros é:

 $\pi \cdot 6^2 \cdot 8 - 240\pi = 48\pi \text{ cm}^3$

Semana: 21 Habilidade: 12

QUESTÃO 45: Resposta B

Como a vazão da torneira é constante, usando a ideia do princípio de Cavalieri, podemos concluir que, como a altura inicialmente aumenta de modo mais rápido e posteriormente de modo mais lento, as seções transversais diminuem e posteriormente aumentam. Assim, a figura que corresponde ao gráfico é a da alternativa B.

Semana: 16 Habilidade: 9

QUESTÃO 46: Resposta C

Do enunciado, temos a figura, cotada em metros:

No triãngulo ABC tem-se, pelo teorema de Pitágoras, $h^2 = 3^2 + 1^2$ e, portanto, $h = \sqrt{10}$. Usando-se a aproximação dada, tem-se h = 3.2 metros.

A área lateral da pirâmide pode ser calculada multiplicando-se 4 vezes a área de uma face lateral, que é um triângulo de base 2 metros e altura 3,2 metros. Assim, essa área é dada por $4 \cdot \frac{2 \cdot 3,2}{2} = 12,8 \text{ m}^2$.

Supondo-se que as folhas quadradas possam ser reaproveitadas quando recortadas, tem-se que o número mínimo de folhas será dado por $\frac{12.8}{(0.2)^2} = 320$.

Semana: 19 Habilidade: 13

QUESTÃO 47: Resposta D

A distância h, em cm, que a formiga estará do chão ao chegar ao ponto E é igual à altura da pirâmide. Assim,

$$2^2 = h^2 + (\sqrt{2})^2$$
 : $h = \sqrt{2} cm$

Semana: 19

Habilidade: 8

QUESTÃO 48: Resposta B

$$V = \frac{1}{3} \; A_{\text{base}} \, \cdot H$$

$$\frac{1}{3} \cdot x^2 \cdot \frac{3x}{4} = 54$$

$$\frac{x^3}{4} = 54$$

$$x^3 = 216$$

x = 6 cm

Semana: 20 Habilidade: 12

QUESTÃO 49: Resposta E

Sendo x dm a medida da aresta da base, temos:

$$6 \cdot \frac{x^2 \sqrt{3}}{4} \cdot 0,75x = 72\sqrt{3}$$
 : $x^3 = 4^3$: $x = 4 \text{ dm}$

Semana: 18 Habilidade: 12

QUESTÃO 50: Resposta E

O volume da peça é igual ao volume do bloco de madeira menos o volume do prisma (canaleta).

Assim:

$$V = 4 \cdot 12\sqrt{3} \cdot 8\sqrt{3} - 4^2 \cdot \frac{\sqrt{3}}{4} \cdot 12\sqrt{3}$$

$$V = 1152 - 144$$

$$V = 1008 \text{ cm}^3$$

Como

$$D = \frac{M}{V} \quad \therefore \quad M = D \cdot V$$

Logo,

 $M=0.87\cdot 1008=876.96$ gramas ou $M\approx 0.88\ kg$ < 1.0 kg.

Semana: 17 Habilidade: 13