POWERED BY Dialog

High strength nickel base superalloy - for single crystal articles e.g. gas turbine engine blades

Patent Assignee: UNITED TECHNOLOGIES CORP

Inventors: CETEL A D; DUHL D N

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
EP 208645	Α	19870114	EP 86630034	A	19860306	198702	В
JP 61284545	Α	19861215	JP 8674120	A	19860331	198704	
US 4719080	Α	19880112	US 85743138	A	19850610	198804	
CA 1251059	Α	19890314				198915	
IL 78072	Α	19890910				198948	
EP 208645	B1	19920826	EP 86630034	Α	19860306	199235	
DE 3686525	G	19921001	DE 3686525	A	19860306	199241	
			EP 86630034	Α	19860306		
JP 93008263	В	19930201	JP 8674120	Α	19860331	199308	

Priority Applications (Number Kind Date): US 85743138 A (19850610)

Cited Patents: A3...8920; <u>EP 52911</u>; <u>EP 63511</u>; FR 2463192; FR 2512837; No search report pub.; <u>US</u>

<u>4402794</u>

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes			
EP 208645	A	E	26					
Designated S	tates (l	Regional): (CH DE	FR GB IT LI				
US 4719080	Α		11					
EP 208645	B1	E	18	C30B-011/00				
Designated S	Designated States (Regional): CH DE FR GB IT LI							
DE 3686525	G			C30B-011/00	Based on patent EP 208645			
JP 93008263	В		10	C22C-019/05	Based on patent JP 61284545			

Abstract:

EP 208645 A

Superalloy has the compsn. 3-12% Cr, 0-3% Mo, 3-10%W, 0-5% Re, 6-12% Ta, 4-7% Al, 0-15% Co, 0-0.02%B, O-0.1Zr, 0-0.045%C, 0-0.8%Hf, 0-2%N6, 0-1%V, 0-0.7% Ti, 0-10% (Ru + Rh + Pd + Os + Ir + Pt), 0-0.1% Y + La Sc + Ce + lanthamides + activides, and balance Ni. It has a P value of 3360-4850, where P = -200 Cr + 80Mo -20Mo2 -250Ti2 -50(TixTa) + 15N6 + 200W-14W2 + 30Ta-1.5Ta2 + 2.5Co

+ 1200Al-100Al2 + 100Re + 1000Hf-2000Hf2 + 700 Hf3-2000V-500C-15000B-500Zr (all in wt.%).

A single crystal articles of the nickel base superalloy is also claimed.

USE/ADVANTAGE - Superalloy is useful for cast single crystal articles such as gas turbine engine blades and vanes. It has a 33-39 deg.C temp. advantage over the superalloy of US4209348 wrt. creep, rupture life, oxidative metal loss, coating penetration by corrosion and thermal fatigue and has hot corrosion resistance equivalent to that of the (US4209348) superalloy.

0/7

EP 208645 B

A high strength, heat treatable, stable nickel base superalloy composition particularly suited for fabrication of single crystal articles, consisting of 3-12% Cr, 0-3% Mo, 3-10% W, 0-5% Re, 6-12% Ta, 4-7% Al, 0-15% Co, 0-0.02% B, 0-0.1% Zr, 0-0.045% C, 0-0.8% Hf, 0-2% Nb, 0-1% V, 0-0.7% Ti, 0-10% (Ru+Rh+Pd+Os+Ir+Pt), 0-0.1% Y, La, Sc, Ce, lanthanide or actinide series, balance Ni apart from impurities; said composition characterised in that where -200 Cr + 80 Mo + 20 Mo2-250 Ti2-50 (TixTa) + 15 NB + 200 W-14 W2 + 30Ta-1.5 Ta2 + 2.5 Co + 1200 Al-100 Al2 + 100 R3 + 1000 Hf-2000 Hf2 + 700 Hf3-2000 V-500 C-15000 B-500 Zr = P (where all elemental values are in weight percent), P is from about 3360 to about 4850. (Dwg.0/6)o

US 4719080 A

A high strength heat stable superalloy compsn. comprising (%) 3-12 Cr, 0-3 Mo, 3-10 W, 0-5 Re, 6-12 Ta, 4-7 Al, 0-15 Co, 0-0.02 B, 0-0.1 Zr, 0-0.045 C, 0-0.8 Hf, 0-2 Nb, 0-1 V, 0-0.7 Ti, 0-10 (Ru+Rh+Pd+Os+Ir+Pt), 0-0.1 Y, La, Sc, Ce, lanthanide or actinide series metals lanace Ni.

The compsn. is such that -200 Cr + 80 Mo - 20 Mo - 250 Ti2 - 50 (Tix-Ta) + 15 Cb + 200 W - 14 W2 + 30 Ta - 1.5 Ta2 + 2.5 Co + 1200 Al - 100 Al2 + 100 Re + 1000 Hf - 2000 Hf2 + 700 Hf3 - 2000 V - 500 C - 1500 B - 500 Zr 3360 - 4850 where all elemental values are in wt.%

ADVANTAGE - The alloy is esp. suitable for fabricating workpieces which can be cast as single crystals esp. gas turbine blades and vanes with enhanced performance at elevated temps. (11pp))

Derwent World Patents Index © 2005 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 7009275

⑲ 日本国特許庁(JP)

10 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭61-284545

⑤Int.Cl.⁴ C 22 C 19/05 識別記号

庁内整理番号 7518-4K

匈公開 昭和61年(1986)12月15日

審査請求 未請求 発明の数 2 (全9頁)

母発明の名称 ニッケル基超合金組成物

②特 願 昭61-74120

@出 願 昭61(1986)3月31日

⑫発 明 者 デヴィツド・エヌ・デ アメリカ合衆国コネチカツト州、ニユーイントン、ビーコ

ユール ン・ストリート 31

⑫発 明 者 アラン・デイ・セテル アメリカ合衆国コネチカツト州、ウエスト・ハートフォー

ド、フラー・ドライヴ 90

⑪出 願 人 ユナイテツド・テクノ アメリカ合衆国コネチカツト州、ハートフォード、フィナ

ロジーズ・コーポレイ ンシヤル・プラザ 1 ション

砂代 理 人 弁理士 明石 昌毅

明細音

1. 発明の名称

ニッケル基超合金組成物

2. 特許請求の範囲

P = - 2 0 0 C r + 8 0 M o - 2 0 M o ²
- 2 5 0 T i ² - 5 0 (T i x T a)
+ 1 5 N b + 2 0 0 W - 1 4 W ² + 3 0 T a

-1.5 Ta 2 + 2.5 Co + 1 2 O O A I

-100A|2+100Re+1000Hf

-2000Hf2+700Hf3

- 2 0 0 0 V - 5 0 0 C - 1 5 0 0 0 B

- 5 0 0 Z r

(3) ニッケル 経超合金 単結晶 物品にして、実質的に3~12% Cr、0~3% Mo、3~10% W、0~5% Re、6~12% Ta、4~7% Al、0~15% Co、0~0.02% B、0~0.1% Zr、0~0.045% C、0~0.8% H「、0~2% Nb、0~1% V、0~0.7% T」、RuとRhとPdと0sとIrとPtとそれらの遺合物とより成る群より選択された0~10%の元素、Y、Sc、La、Ce、その他のランタノイド系列或いはアクチノイド系列の0~0.1%の元素、残りNiから成り、

P = - 200 Cr + 80 M o - 20 M o 2

-250 Ti 2 - 50 (TixTa)

+ 1 5 N b + 2 0 0 W - 1 4 W 2 + 3 0 T a

-1.5Ta2+2.5C0+1200AI

-100A1 t +100Re +1000Hf

-2000Hf * +700Hf *

-2000V-500C-15000B

-500Zr

によって定義されるP値が約3360から約48

5 0 までの値を示すニッケル基超合金単結晶物品。 3 . 発明の詳細な説明

本発明は、鋳造された単結晶の形態で使用されるニッケル基組合金組成物に係る。

ニッケル揺組合金は、高温下で高い応力が生するような組合に広く用いられている。一つの応用分野はガスタービンエンジンであり、ニッケル組 組合金が特にプレードとペーンとに使用であれている。作動効率の向上と性能の改善とへの受いれない。なり、これはないないのである。を関係されてきており、その結果組合金材料の必要性が高まっている。

ニッケル基合金の耐熱性を改善するために採用 れた方法でこれまでに成功した例は、合金を方法では、 の形で製造することである。従来技術の方針には、 なって作られる金属材料は、粒界によって分割では、 れた複数の結晶粒で形成されている。 為 で と 低 の で 数 界 の 強 度 が 橋 品 粒 内 の 部 分 よ り も ず な 低 い の で ある。 特 別 の 鋳造技 柄 によって ケル 基 紹 合 、 の で の あ に 全 く 粒 界 を 含まない、ニッケル

金が形成されることが可能である。米国特許第3. 260.505号には、この単結晶ニッケル揺ね 合金について記載されている。米国特許第4、1 16,723号には、ある種のニッケル基単結晶 材料に適用されることが可能な熱処理方法につい て記載されている。また、米田特許第4.209. 3 4 8 号には、更に特定の種類のニッケル基単結 晶材料及びその材料の高温での機械的性質を改善 する熱処理の方法について記載されている。この 特許に記載されている材料の公称組成は、クロム 10%、アルミニウム5%、チタン1.5%、タ ングステン4%、タンタル12%、コパルト5%、 残りニッケルである。この組成の材料の単結晶は 商品化され、ガスターピンエンジンに於て用いら れている。この組成は、鋳造によるニッケル基超 合金材料の中では、最もよくバランスがとれた材 料特性を有すると一般に考えられている。米国特 許第4.402.772号には、別の組成を有す る単結晶超合金について記載されており、その公 称組成はタンタル6%、クロム9%、コパルト5

%、チタン1%、キリプデン1%、タングステン1%、タングム〇.15%、ハフニウム〇.15%、ハフニウム〇.15%、スピウム〇.348号に記載されている。 は、発いに同等の良好な特性を持っていいる。 米国特許第4、222、794号には、更に別の 組成について記載されており、その公称組成シーム 1%、モリプデン2%、タングステン4.9%、 タンタル6.4%、レニウム3%、パナシウム〇.4%、残りニッケルである。

本発明は、とび抜けてバランスのよい強度特性を示す単結晶物品に形成することが可能なニッケル基因合金組成物を含んでいる。その組成の広いに関し、クロム3~12%、モリアデン3%以下、タングステン3~10%、レニウム0~5%、タンタル6~12%、アルミニウム4~7%、コバルト0~15%、炭素0.045%以下、ホウム0.02%以下、シルコニウム0.1%以下、バナジーウム0.8%以下、ニオブ2%以下、バナジーフェウム0.8%以下、ニオブ2%以下、バナジーフェウム0.8%以下、ニオブ2%以下、アランスのよりに対しては、アランスのよりに対している。

opid

本発明の他の特徴及び利点は、以下の詳細な説明と特許請求の範囲、及び本発明の実施例を説明するための既付の図面から明らかとなろう。

表「に、本発明の単結晶物品の組成物の種々の 組成範囲が示されている。特に断わらない限り、 表中の数字は重量パーセントを表わしている。

モリプデンとタングステンとレニウムといった 耐火元素は固溶相強化物として作用し、主に7接 相の性質を改善する。

本発明の組成は、米国特許第3.700.023号や米国特許第3.763.926号や米国特許第4.190.094号等の従来技術の特許に記載されている方法に従って、単結品鋳造物として形成される。これらの特許は、参考のために本説明の中に組み入れられている。

本発明の組成及び単結晶材料は、米国特許第4。

本発明の組成を有するようなニッケル基組合金を開発する際には、或る要求を心に留めておからければならない。その要求とは主に、耐酸化性と耐腐色性と機械的性質とに関するものである。

酸化及び腐食に対する抵抗力は、合金の表面上 に形成される酸化物層の性質に大きく依存する。 本発明の相成に於ては、クロムとアルミニウムと が共働して酸化物の保護圏の形成を保証している。 その間は主にアルミナを含んでいるが、アルミナ は試験条件によって他の酸化物と混合する。若し クロムの量が多すぎると、他の強化元素の量が少 なくない場合に好ましくない相が形成される。ア ルミニウムは、耐酸化性と耐腐血性とを提供する と同時に、主要なァ′相の形成物でもある。ァ′ 相、即ちNI) AIは、ニッケル基超合金の強度 に大きく奇与している。アルミニウムが ェ′相の 形成物であることに加えて、本発明の合金は同じ く強力な?」相形成物であるタンタルを含んでい る。これらの元素は、 7′ 強化相のうちは体積比 で約50%から約75%含まれている。白金とバ

表「に示されている相成の広い範囲の値は、最 遊の性質を得るために次の特別な関係を過足しな ければならない。その関係を式で表わすと次のよ うになる。

P = - 2 0 0 Cr + 8 0 M o - 2 0 M o 2 - 2 5 0 T i 2 - 5 0 (T ixT a) + 1 5 N b + 2 0 0 W - 1 4 W 2 + 3 0 T a

特開昭 61-284545 (4)

- 1 . 5 T a 2 + 2 . 5 C o + 1 2 O O A I - 1 O O A I 2 + 1 O O R e + 1 O O O H f

- 2 0 0 0 H f * + 7 0 0 H f *

 $\hbox{-2000V-500C-15000B}$

-500Zr

この式中の値は全て重量パーセントの値である。 本式によって与えられるPは、組成の全般的な利 点を予測するパラメータである。 高い P値を示す 組成は、高強度と共に、安定性と熱処理性と酸化 及び腐食に対する抵抗力とを併せ持っていること になる。

表「に示されている相成範囲、特に広い相成範囲は、 従来技術に於て知られている特定の相成成をもさんでいることは明らかであるが、 P値が約3360以上であるような相成は従来技術には存れるのは、 単結晶 体で用いられるのに有益であり、 表「の広い範囲或いは中間の以上のに定義した) P値を有するような相成とと大まかに定義される。また、本発明は、3360

以上のP値を有するような組成範囲内の組成を持つ単結晶物に係わる。 現時点で本発明者が知る最も有益な組成を有する最適の合金のP値は、3940を僅かに上回っている。

単結晶に関する従来技術の特許から P 値の 例を上げると、米国特許耐 4 . 4 0 2 . 7 7 2 号、に放ては、 P 値の最大値は 2 9 9 8 であり、 米国特許第 4 . 2 2 2 . 7 9 4 号に於ては、 P 値の最大値は 3 3 2 9 であり、米国特許第 4 . 3 7 1 . 4 0 4 号に於ては、 P 値の最大値は 3 0 0 3 である。

 (重量パーセント)

 広い相成範囲
 中間的な和成範囲
 好ましい組成範囲

 3~12
 3~8
 4.0~7.5

	囚い相放配団	中国的な相似他四	対するの人が可能を
Cr	3~12	3~ 8	4.0~ 7.5
Мо	0~ 3	0.3~ 3.0	0.5~ 2.5
W	3~10	3~ 8	3.5~ 7.5
Re	0~ 5	0∼ 5.Q	2.5~ 4
Τa	6~12	6~12	8~10
ΑI	4~ 7	4.5~ 6.5	5∼ 6
Co	0~15	6~12	8~12
В	0~ 0.02	0~ 0.005	*
Žr	0~ 0.1	0~ 0.007	*
· C	0~ 0.045	0~ 0.02	*
Hf	0~ 0.8	0~ 0.5	0.1~ 0.5
Nb	0~ 2	-	-
V	0~ 1	_	
Τi	0~ 0.7	0~ 0.4	.
(Ru, Ir, Pt,	0~10	0~10	0~10
Pd 、Rh 、Os))		
(Y, La,Sc,Ce,	0~ 0.1	0~ 0.1	0.005~ 0.054
ランタノイド系列			
又はアクチノイド	系列)		
Al i	इस भार	ER PR	斯巴 森尔

***特に故意には含まない**

表 II は、表 I の広い組成範囲と中間的な組成範囲と好ましい組成範囲とに対する、P値の広い値と中間的な値と好ましい値とを示している。

	<u> </u>	п_								
		P値								
表「に於	広い組成	中間的な	好ましい							
ける範囲	範囲	組 成 範 阻	相成範囲							
広い範囲	3360-	3475 —	3650 —							
	4850	4750	4600							
中間的な	3450 —	3550-	3700 —							
₩ <u>M</u>	4750	4650	4500							
好ましい	3550-	3650 -	3800-							
徳 囲	4700	4550	4400							

表面は、単結晶体として決められた一連の組成例を示している。表面に於て、合金B1とB10とB13とは、タンタルの含有量が低いために本発明の広い組成範囲から外れている。また、合金B35はモリアデンを含まないために好ましい組

特開昭 61-284545 (5)

成範囲から外れている。

表ⅠⅤに、表Ⅲに示された単結晶物の組成のよ り重要な特性の幾つかを示す。更に表Ⅱには、そ れぞれの租成例に対して前式によって計算された P値が示されている。合金B49が、最も高いP 値を示し且バランスのよくとれた特性を有してお り、特に好ましい組成である。表「V中のデータ から、本発明と同様な合金へチタンを加えること が材料の酸化学動に有害な効果を及ぼすことが解 る。合金B10と合金B13とは、合金B10が チタンを1%含んでいるという点以外は同じ相成 を有しており、同様にして、合金B1とB18と は、合金B1がチタンを1%含んでいるという点 以外は同じ組成を有している。コーティングされ ている場合の耐酸化性について比較すると、チタ ンを含んだB1とB10との酸化温度は、チタン を含まないB18とB13とのそれよりもそれぞ れ39℃(70下)と50℃(90下)とだけよ り低い。コーティングされていない場合には、B 1とB10とはそれぞれB18とB13とよりも、 23℃ (40干) 及び11℃ (20干) だけ低い 酸化温度を示している。

表 II

<u>合金(名)</u>	<u>Cr</u>	<u>Co</u>	Mo	<u>w</u>	Re	AL	<u>Ta</u>	<u>н</u>	<u>Ni</u>	丝	ِ ٢
B 1*	7. 9	5. 0	2. 0	6. 9	0	5. 4	5. 9	0. 1	残部	1. OTi	2468
B10*	7. 5	10.0	2.0	4.9	2. 9	5.5	3. 9	0. 1	残部	1. 0Ti	2862
B13*	7. 1	9. 9	2. 0	6.9	2.9	5.8	3. 9	0. 1	残部		3478
B18	7.0	10.0	2. 0	6.0	3.0	5.5	6. 9	0.1	残部		3510·
B21	7. 1	10.0	2. 1	7.0	3.0	5.4	6.2	0. 1	残郁		3490
B22	7.0	10.0	1.0	8. 1	3. 1	5.5	6 <i>.</i> 1	0. 1	残部		3498
B35*	7.0	10.0	0	3.5	4.0	5.5	10.9	0. 1	残部		3376
B46	6.8	10.0	1.0	3.8	5. 1	5. 5	7.4	0. 1	残部		3607
B48	5.0	10.0	2.0	4.0	3. 1	5. 6	10.9	0. 1	残部		3823
B49	5.0	10.0	2.0	6. 0	3. 1	5.6	9.0	0. 1	残部		3943
從来技術* *	10.0	5.0	0	4.0	0	5.0	12.0	0	残部	1. 5Ti	770

^{*} 好ましい組成範囲外

^{* *} 米国特許第4, 209, 348号より

馬	nı
24_	 17

温度で表わした従来技術*

		982°C/248 (1800°F/3	.2MPa 6ksi) に於ける	との発					
		クリープ破	堕強度 (時間)	<u> クリー</u>	ブ破壊	酸火流	酸火温度		
<u>合金 (名)</u>	高温耐脓食性	<u>1%クリ</u> 一プ時間	<u>クリープ</u> 破壊寿命	<u>1%クリ</u> ープ時間	クリープ 破壊方命		コーティ		
B 1 B10 B13 B18 B21 B22 B35 B46 B48	 0. 9 X 1. 3	45. 0 51. 5 86. 3 78. 8 109. 8 82. 6 76. 9 113. 0 129. 7	107. 5 164. 7 219. 6 271. 5 299. 2 273. 8 272. 9 276. 7	11. 0 17. 5 46. 0 43. 5 58. 0 45. 5 42. 5	9. 0 29. 0 43. 0 53. 5 58. 0 54. 0 54. 0	-10 -35 55 60 60 85	25 25 45 65 55 75		
B49	0. 7	182.8	319.6 406.8	65. 5 80. 5	61. 0 71. 0	65	90 70		

^{*}米国特許第4,209,348号の組成物との比較

合金B49の特性を、米国特許第4,208. 348号に記載されている合金の特性と比較して みる。この従来技術の組成(公称組成は10%C r 、 5 % C o 、 4 % W 、 1 . 5 % T i 、 1 2 % T a、5%AI、残りNiである)は、全般的な特 性に於て(従来技術の)単結晶合金の中で最もよ いものの一つであるとみなされている。第1A図 と第1B図とはそれぞれ、300時間で1%のク リープを生じさせるために要する応力と、300 時間でクリープ破壊を生じさせるために要する応 力とを、温度の関数で表わしたものである。第1 A図から、本発明の合金が従来技術の組成よりも 密度補正に基づく温度差で39℃(70年)高い **舶を示していることが解り、一方第1B図から、** クリープ寿命に関しては木発明の合金が従来技術 の相成よりも密度補正に基づく温度差でおよそ3 6℃(65下)高い値を示していることが解る。 このことは、破壊寿命或いはクリープが重要であ るような応用場面に於て、本発明の合金が従来技 術の合金と同等の寿命を保ちつつ従来技術の合金

よりもおよそ36℃(65下)乃至は39℃(70下)より高い温度の下で用いられることが可能なった。この改善された温度でする。この改善された温度であることが存在で利用されることがある。の作動は、ガラの推動では、からの推動である。。 気があるの 増加をもたらすである。

第4図は、従来技術の組成と本発明の組成との 酸化挙動を示すグラフである。この図は、繰返し の条件下で異なる温度の下で試験された試料の表 面に、深さ76. 2μm (3 mil)の酸化層が形 成されるために必要な時間を示している。この図 中のデータは、ジェット燃料の燃焼によって形成 された高温下に試料を限すことと空気冷却とを交 互に行うパーナ・リグ・テストによって得られた ものである。この試験は、ガスターピンエンジン の苛酷な運転条件を再現する。第4回から、本発 明の組成は従来技術の組成と較べて、同様な金属 網失が観察される温度が36~39℃(65~7 0 下) 高いことが解る。換言すると、或る一定の 協度、例えば1149°C (2100°F) の下で、 従来技術の組成は約43時間の間に76.2μ■ (3 mil)の厚さの金属損失が生するが、一方本 発明の解成はそれと同じ最の金属損失が生ずるの に70時間かかり、酸化寿命が63%改善してい

第 5 図は、2 2 % C o 、1 7 % C r 、1 2 . 5 % A l 、0 . 2 5 % H f 、0 . 4 % S i 、0 . 6 % Y 、 残り N i の 公 称 組 成 を 有 す る M C r A l Y

第6回は、熱疲労挙動に於ける本発明の相成のの相放に対する優位性を示して生生の知識に対する。第6回無によって生りのがある。第6回は、それでもしていめではなり、の相及はな断する。でに従来技術の相及よりも36で(65下)の温度向上を示していることと対応する。

最後の重要な材料特性は、耐腐食性である。耐腐食性に於ては、本発明の租成は従来技術の組成とほぼ同等の性能を有している。腐食に関するデータは、表1Vに示されている。

結論として、本発明の相成、特に上述の実施例は、本発明の合金が従来技術の材料とほぼ問等の特性を示した高温腐食性以外の全ての点で、これまで最もよくパランスがとれた特性を示すとされてきた従来技術の相成よりも、33~39℃(60~70下)の温度向上を示すのである。とりわ

材料が試験的に厚さ.1 2 7 μm (5 mil) だけコ ーティングされた材料が用いてられているという 点以外は、第4図と同じである。第5図に示され ている時間は、コーティング層が貫通されるため に要する時間である。図は、本発明の組成は従来 技術の組成に較べて33℃(60下)の温度向上 があることを示している。1149℃(2100 で)に於てコーティング層が貫通されるために要 する時間で比較すると、本発明の組成は64%だ けより長い時間を要している。1149℃(21 00 下)に於て、従来技術の組成のコーティング 層は1400時間で貫通されているのに対し、本 発明の組成のコーティング層は2300時間で貫 通されている。この2300時間という数字が、 第4図に示された本発明のコーティングされてい ない試料の1149℃ (2100下) に於ける寿 **命が厚さ76、2μα (3 mil) に対して70時 間であり厚さ127μα (5 αil) に対して20** O時間以下であることと比較されれば、MCr A 1 Yコーティングの有利さが理解されよう。

け合金B49は特に好ましい性質を示す。CとBとZrとを人為的に加えることは好ましくなく、これらの元素が合金内に含まれている場合には、C200ppm、B30ppm、Zr75ppm以下に抑えることが好ましい。

以上に於ては本発明を特定の実施例について詳細に説明したが、本発明はこれらの実施例に限定されるものではなく、本発明の範囲内にて種々の実施例が可能であることは当業者にとって明らかであろう。

4. 図面の簡単な説明

第1A図は、本発明の材料と従来技術の材料とに対して、応力を温度の関数として表わしたグラフである。

第1日図は、本発明の材料と従来技術の材料とに対して、300時間でクリーブ破壊を生ずるために必要な応力を温度の関数として表わしたグラフである。

第2回は、1%クリープを生ずる時間を示すう. ーソンーミラー図であり、本発明を従来技術の材

特開昭 61-284545 (8)

料と比較している。

第3図は、クリープ破壊を生ずる時間を示すラーソンーミラー図であり、本発明を従来技術の材料と比較している。

第4回は、本発明の材料の酸化挙動を従来技術の材料の一例の酸化挙動と比較する図である。

第 5 図は、本発明のコーティングされた材料の 酸化萃動を従来技術の材料の酸化萃動と比較する 図である。

第6回は、本発明の材料の熱機械的彼労挙動を 従来技術の材料のそれと比較する図である。

特許出願人 ユナイテッド・テクノロジーズ・ コーポレイション

代理人 弁理士 明石昌 穀

F/6. 2

F/6. 3

FIG. 5

FIG. 6

