Math 323 Definitions & important theorems

Minh Bui

July 7, 2017

The following is a list of learned definitions and theorems in introduction to pure math class.

1. Minimum

Definition 1. Let S be a non empty set of numbers. We say m is a minimum of the set S if:

- 1. $m \in S$.
- 2. If $s \in S$, then $m \leq s$.

2. Maximum

Definition 2. Let S be a non empty set of numbers. We say m is a maximum of the set S if:

- 1. $m \in S$.
- 2. If $s \in S$, then $m \ge s$.

3. Lower bound

Definition 3. Let S be a set of numbers. We say l is a lower bound of the set S when: if $s \in S$, then $l \leq s$.

4. Lower bound

Definition 4. Let S be a set of numbers. We say u is a upper bound of the set S when: if $s \in S$, then $l \ge s$.

5. Odd integer

Definition 5. An integer z is odd if and only if $\exists k \in \mathbb{Z}$ s.t z = 2k + 1.

6. Even integer

Definition 6. An integer z is even if and only if $\exists k \in \mathbb{Z} \text{ s.t } z = 2k$.

7. Trichotomy of an order

Definition 7. An order is said to have *trichotomy* if for 2 numbers a, b in that order exactly one of these holds: a < b, a > b, or a = b.

8. Transitivity of an order

Definition 8. An order is said to have *transitivity* if for 3 numbers a, b, c in that order, if a < b and b < c, then a < c.

9. The Division Algorithm

Theorem 0.1. Let $a, b \in \mathbb{Z}$ and b > 0, then $\exists q, r \in \mathbb{Z}$ s.t a = bq + r with $0 \le r < b$.

10. The rational numbers \mathbb{Q}

Definition 9. Let $m \in \mathbb{Z}$ and $n \in \mathbb{N}$, then

$$\mathbb{Q} = \{ \frac{m}{n} \mid m \in \mathbb{Z} \text{ and } n \in \mathbb{Z} \}$$

where $\frac{m}{n}$ is a set of equivalence fractions.

11. Equality on \mathbb{Q}

Definition 10. Let $\frac{m}{n}$, $\frac{p}{q} \in \mathbb{Q}$. $\frac{m}{n} = \frac{p}{q}$ if mq = np.

12. Order on $\mathbb Q$

Definition 11. Let $\frac{m}{n}$, $\frac{p}{q} \in \mathbb{Q}$. $\frac{m}{n} < \frac{p}{q}$ if mq < np.

13. Addition on \mathbb{Q}

Definition 12. Let $\frac{m}{n}$, $\frac{p}{q} \in \mathbb{Q}$. We define $\frac{m}{n} + \frac{p}{q} = \frac{mq + np}{nq}$

14. Multiplication on \mathbb{Q}

Definition 13. Let $\frac{m}{n}$, $\frac{p}{q} \in \mathbb{Q}$. We define $\frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$

15. The Average Theorem

Theorem 0.2. If $a, b \in \mathbb{F}$ with a < b, then $\exists r \in \mathbb{F}$ s.t a < r < b. In fact, $r = \frac{a+b}{2}$ is an example.

16. Absolute value

Definition 14. Let $x \in \mathbb{F}$. We define the absolute value of x, denoted by |x| as

$$|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

17. Important theorems in absolute value

Theorem 0.3. Let \mathbb{F} be an ordered field.

- 1. If $a \in \mathbb{F}$, then $|a| \geq 0$.
- 2. If $a \in \mathbb{F}$, then $-|a| \le a \le |a|$.
- 3. Let $r \in \mathbb{F}$, $r \geq 0$. Consider x as a variable in \mathbb{F} . Then $|x a| \leq r$ if and only if $a r \leq x \leq a + r$.
- 4. Let $r \in \mathbb{F}$, r > 0. Consider x as a variable in \mathbb{F} . Then |x a| < r if and only if a r < x < a + r.
- 5. If $a, b \in \mathbb{F}$, then $|ab| = |a| \cdot |b|$.
- 6. The Triangle Inequalities. Let $a, b \in \mathbb{F}$, then $|a+b| \leq |a| + |b|$.
- 18. Infimum (Greatest lower bound)

Definition 15. Let S be a set of real numbers and $g \in \mathbb{R}$, g is an infimum of S when

- 1. If $s \in \mathbb{S}$, then $g \leq s$. And
- 2. If $x \in \mathbb{R}$ and x > g, then $\exists t \in S \text{ s.t } t < x$.
- 19. Supremum (Least upper bound)

Definition 16. Let S be a set of real numbers and $l \in \mathbb{R}$, l is a supremum of S when

- 1. If $s \in \mathbb{S}$, then $l \geq s$. And
- 2. If $x \in \mathbb{R}$ and x < l, then $\exists t \in S \text{ s.t } t > x$.
- 20. Complete ordered field.

Definition 17. An ordered field \mathbb{F} is complete if for any nonempty subset S of \mathbb{F} and S has at least one lower bound, then $\exists g \in \mathbb{F}$ that is the infimum of S.

21. The Well-Ordering Principle

Theorem 0.4. Let U be a set with total order. U is well ordered if $A \subseteq U \neq \emptyset$, then A has a minimum.

22. The theorem of Induction

Theorem 0.5. For all $n \in \mathbb{N}$. Let P(n) be a statement that is either true or false but not both. If the following conditions hold

- 1. If n = 1, then P(n) is true.
- 2. If for $n = n_0$, P(n) is true, then for $n = n_0 + 1$, P(n) is also true.

then P(n) is true.

23. The Alternate completeness axiom

Theorem 0.6. For a completed ordered field \mathbb{R} : If S is a nonempty subset of \mathbb{R} and S has at least 1 upper bound, then there is an $l \in \mathbb{R}$ that is the supremum of the set S.

Corollary 0.6.1. 1. If $r \in \mathbb{R}$, then there is an $n \in \mathbb{Z}$ s.t n < r.

2. If $x \in \mathbb{R}$ and x > 0, then there is an $n \in \mathbb{N}$ s.t $0 < \frac{1}{n} < x$.

24. The Archimedean principle

Theorem 0.7. Let $r \in \mathbb{R}$, then there is $n \in \mathbb{N}$ s.t n > r.

Corollary 0.7.1. The following are equivalent to the Archimedean principle.

- 1. If $r \in \mathbb{R}$, then there is an $n \in \mathbb{Z}$ s.t n < r.
- 2. If $x \in \mathbb{R}$ and x > 0, then there is an $n \in \mathbb{N}$ s.t $0 < \frac{1}{n} < x$.

25. The Density theorem

Theorem 0.8. Let $a, b \in \mathbb{R}$ so that a < b, then there is $q \in \mathbb{Q}$ so that a < q < b.

26. Subset

Definition 18. Let A and B be setes. We say A is a subset of B when if $x \in A$, then $x \in B$. We write this as $A \subseteq B$.

27. Equality of sets

Definition 19. Let A and B be sets. We say A = B if and only if $A \subseteq B$ and $B \subseteq A$.

28. Union of the family of sets.

Definition 20. Let S_i where $i \in \mathcal{I}$ be a family of sets. Then the union of the family is

$$\bigcup_{i \in \mathcal{I}} S_i = \{ x \mid \exists i \in \mathcal{I} \text{ s.t } x \in S_i \}$$

29. Intersection of the family of sets.

Definition 21. Let S_i where $i \in \mathcal{I}$ be a family of sets. Then the intersection of the family is:

$$\bigcap_{i \in \mathcal{I}} S_i = \{ x \mid \forall i \in \mathcal{I}, x \in S_i \}$$

- 30. Definition of union, intersection, and takeaway of 2 sets. Let A and B be sets.
 - 1. The intersection of A and B is

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

2. The union of A and B is

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

3. The set A takeaway B is

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$$

31. Theorems for family of sets.

Theorem 0.9. Let A be set and B_i with $i \in \mathcal{I}$ be a family of sets. Then

1.
$$A \cup (\bigcap_{i \in \mathcal{I}} B_i) = \bigcap_{i \in \mathcal{I}} (A \cup B_i)$$

2.
$$A \cup (\bigcup_{i \in \mathcal{I}} B_i) = \bigcup_{i \in \mathcal{I}} (A \cup B_i)$$

3.
$$A \setminus (\bigcap_{i \in \mathcal{I}} B_i) = \bigcup_{i \in \mathcal{I}} (A \setminus B_i)$$

4.
$$A \setminus (\bigcup_{i \in \mathcal{I}} B_i) = \bigcap_{i \in \mathcal{I}} (A \setminus B_i)$$

32. Ordered pair

Definition 22. An ordered pair is a set of the form $\{a, \{a, b\}\}$. We write it as (a, b).

33. The Cartesian product

Definition 23. Let A and B be sets. The Cartesian product $A \times B$ is the set.

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

34. Relation

Definition 24. Let A and B be sets. A relation between A and B is a subset $\mathcal{R} \subseteq A \times B$. If A = B, we say it is a relation on A and B. We write

$$(a,b) \in \mathcal{R} \text{ as } a\mathcal{R}b$$

35. Reflexive relation

Definition 25. Let \mathcal{R} be a relation on set A. We say the relation is reflexive when, for all $a \in A$, $a\mathcal{R}a$.

36. Symmetric relation

Definition 26. Let \mathcal{R} be a relation on set A. We say the relation is symmetric if $a, b \in A$ and $a\mathcal{R}b$, then $b\mathcal{R}a$.

36. Transitive

Definition 27. Let \mathcal{R} be a relation on set A. We say the relation is transitive if $a, b, c \in A$ and $a\mathcal{R}b$ and $b\mathcal{R}c$, then $a\mathcal{R}c$.

37. Trichotomy

Definition 28. Let \mathcal{R} be a relation on the set A. We say that the relation has trichotomy when, $\forall a, b \in A$, exactly 1 of the following holds: $a\mathcal{R}b$, $b\mathcal{R}a$, or a = b.

38. Total order

Definition 29. Let A be set. A relation on A is a total order when it is transitive and has trichotomy.

39. Equivalence relation

Definition 30. Let A be a set. A relation on A is an equivalence relation when it is reflexive, symmetric, and transitive.

40. Equivalence class

Definition 31. Let A be a set with an equivalence relation \equiv . For any $a \in A$, the equivalence class of a is a set

$$[a] = \{x \in A \mid x \equiv A\} \subseteq A$$

41. Theorems for equivalence relation.

Theorem 0.10. Let A be a set with an equivalence relation \equiv . Assume that $a, b \in A$.

- 1. $a \in [a]$
- 2. If $a \in [b]$, then $b \in [a]$.
- 3. If $a \in [b]$, then [a] = [b].
- 4. If $[a] \cap [b] \neq \emptyset$, then [a] = [b].

42. Modulo equivalence

Definition 32. Let A be a set with an equivalence relation \equiv . We define a new set called "A modulo equivalence" or "A mod \equiv " as

$$A_{/\equiv} = \{ [a] \subseteq A \mid a \in A \}$$

43. Function

Definition 33. Let A and B be sets. A function from A to B is a pair (f, B) where $f \subseteq A \times B$ s.t if $(a, b_1) \in f$ and $(a, b_2) \in f$, then $b_1 = b_2$.

44. Domain of function

Definition 34. Let $f: A \to B$ be a function. The domain of f is

$$Domain(f) = \{x \in A \mid \exists y \in B \text{ s.t } y = f(x)\}\$$

45. Range of a function

Definition 35. Let $f: A \to B$ be a function. The range of f is

$$Range(f) = \{ y \in B \mid \exists x \in A \text{ s.t } y = f(x) \}$$

46. Codomain of a function

Definition 36. Let $f: A \to B$ be a function. The co-domain of f is

$$CoDomain(f) = B$$

47. Injective function

Definition 37. Let $f: A \to B$ be a function. We say f is an injective function if: if $a_1, a_2 \in A$ and $f(a_1) = f(a_2)$, then $a_1 = a_2$

48. Surjective function

Definition 38. Let $f: A \to B$ be a function. We say f is surjective if: if $y \in \mathbb{B}$, then $\exists x \in A \text{ s.t } f(x) = y$.

49. Bijective function.

Definition 39. A function is bijective when it is both injective and surjective.