Bei der Ausarbeitung dieser Musterlösung, die sich sowohl auf die in der Übung besprochene Musterlösung, als auch auf eigene und der Literatur entnommenen Lösungswege stützt, habe ich mir größte Mühe gegeben - Fehler sind allerdings nicht ganz auszuschließen.

2.Klausur zur Thermodynamik und Statistik WS95/96

Aufgabe 1 (5 Punkte)

N wechselwirkungsfrei klassische Teilchen befinden sich in einem Würfel der Kantenlänge a mit dem Ursprung als Mittelpunkt in einem Potential:

$$V(\vec{r}) = c(x + y + z).$$

- a) Berechnen Sie die freie Energie F(T,V), die Entropie S(T,V) und die innere Energie U(T,V).
- b) Weisen Sie nach, daß sich für hohe T das bekannte U(T,V) des idealen Gases ergibt.

zu a): Gesamt-Hamiltonian: $H = \sum_{i=1}^{\infty} \frac{p_i^2}{2m} + c(x_i + y_i + z_i)$ klassisch kanonische Zustandssumme:

$$\begin{split} Z_{N} &= \frac{1}{h^{3N}N!} \int \dots \int dq^{3N} dp^{3N} e^{-\beta H(p,q)} \\ &= \frac{1}{h^{3N}N!} \left[\int dp^{3N} e^{-\beta \sum_{i=1}^{N} \frac{p_{i}^{2}}{2m}} \right] \left[\int dq^{3N} e^{-\beta \sum_{i=1}^{N} c(x_{i} - y_{i} + z_{i})} \right] \\ &= \frac{1}{h^{3N}N!} \left[\int dp^{3} e^{-\beta \frac{p^{2}}{2m}} \right]^{N} \left[\int dq^{3} e^{-\beta c(x + y + z)} \right]^{N} \\ &= \frac{1}{h^{3N}N!} \left(\int_{0}^{\infty} dp 4\pi p^{2} e^{-\beta \frac{p^{2}}{2m}} \right)^{N} \left(\int_{-\frac{a}{2}}^{\frac{a}{2}} dx e^{-\beta cx} \right)^{3N} \\ &= \frac{1}{h^{3N}N!} \left(4\pi \frac{\sqrt{\pi}}{4\sqrt{\frac{\beta}{2m}}} \right)^{N} \left[\left(\frac{e^{-\beta cx}}{-\beta c} \right)_{-\frac{a}{2}}^{\frac{a}{2}} \right]^{3N} \\ &= \frac{1}{h^{3N}N!} \sqrt{\frac{2m\pi}{\beta}} \left[\frac{e^{-\beta c\frac{a}{2}}}{-\beta c} + \frac{e^{\beta c\frac{a}{2}}}{\beta c} \right]^{3N} \\ &= \frac{1}{h^{3N}N!} \sqrt{\frac{2m\pi}{\beta}} \left(\frac{1}{2\beta c} \sinh(\beta c\frac{a}{2}) \right)^{3N} \\ &= \frac{1}{N!} \left(\frac{2m\pi}{\beta} \frac{4}{h^{2}\beta^{2}c^{2}} \sinh^{2}(\beta c\frac{a}{2}) \right)^{\frac{3N}{2}} \\ &= \frac{1}{N!} \left(\frac{8m\pi(k_{B}T)^{3}}{h^{2}c^{2}} \sinh^{2}(\beta c\frac{a}{2}) \right)^{\frac{3N}{2}} \left| \hbar = \frac{h}{2\pi} \right. \end{split}$$

$$= \frac{1}{N!} \left(\frac{8m\pi (k_B T)^3}{4\pi^2 \hbar^2 c^2} \sinh^2 \left(\beta c \frac{a}{2} \right) \right)^{\frac{3N}{2}}$$
$$= \frac{1}{N!} \left(\frac{2m(k_B T)^3}{\pi \hbar^2 c^2} \sinh^2 \left(\beta c \frac{a}{2} \right) \right)^{\frac{3N}{2}}$$

Berechnung der inneren Energie:

$$\begin{split} U &= \langle \hat{H} \rangle = -\frac{\partial}{\partial \beta} \ln Z_N(T, V) \\ U &= -\frac{\partial}{\partial \beta} \left[\ln \frac{1}{N!} + \frac{3N}{2} \ln \left(\frac{2m(k_B T)^3}{\pi \hbar^2 c^2} \sinh^2 \left(\beta c \frac{a}{2} \right) \right) \right] \\ &= -\frac{3N}{2} \left[\frac{\partial}{\partial \beta} \ln \left(\frac{2m}{\pi \hbar^2 c^2 \beta^3} \sinh^2 \left(\beta c \frac{a}{2} \right) \right) \right] \\ &= -\frac{3N}{2} \frac{\left(-3\frac{2m}{\pi \hbar^2 c^2 \beta^4} \sinh^2 \left(\beta c \frac{a}{2} \right) + \frac{2m}{\pi \hbar^2 c^2 \beta^3} 2 \sinh \left(\beta c \frac{a}{2} \right) \cosh \left(\beta c \frac{a}{2} \right) \frac{ca}{2} \right)}{\frac{2m}{\pi \hbar^2 c^2 \beta^3} \sinh^2 \left(\beta c \frac{a}{2} \right)} \\ &= \frac{-\frac{3N}{2} \frac{-6m}{\pi \hbar^2 c^2 \beta^4} \sinh^2 \left(\beta c \frac{a}{2} \right) + \frac{4m}{\pi \hbar^2 c^2 \beta^3} \sinh \left(\beta c \frac{a}{2} \right) \frac{\cosh \left(\beta c \frac{a}{2} \right) ca}{\sinh \left(\beta c \frac{a}{2} \right)}}{\frac{2m}{\pi \hbar^2 c^2 \beta^3} \sinh^2 \left(\beta c \frac{a}{2} \right)} \\ &= -\frac{3N}{2} \left(\frac{-\frac{6m}{\beta}}{2m} + \frac{4m^2}{2m} \coth \left(\beta c \frac{a}{2} \right) \frac{ca}{2} \right) \\ &= -\frac{3N}{2} \left(\frac{-3}{\beta} + 2 \coth \left(\beta c \frac{a}{2} \right) \frac{ca}{2} \right) \\ &= \frac{9}{2} N k_{Bb} T - \frac{2N ca}{2} \coth \left(\frac{ca}{2k_B T} \right) \end{split}$$

Berechnung der freien Energie:

$$\begin{split} F(T,V) &= -k_B T \ln Z_N(T,V) \\ &= -k_B T \left[\ln \frac{1}{N!} + \frac{3}{2} N \ln \left[\frac{2m(k_B T)^3}{\pi \hbar^2 c^2} \sinh \left(\beta c \frac{a}{2} \right) \right] \right] \\ &\approx k_B T N \ln N - \frac{3}{2} N k_B T \ln \left[\frac{2m(k_B T)^3}{\pi \hbar^2 c^2} \sinh \left(\beta c \frac{a}{2} \right) \right] \end{split}$$

Beim letzten Schritt wurde die Stirling'sche Näherungsformel verwendet:

$$N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^{N}$$

$$\ln(N!) \approx \ln\left(\sqrt{2\pi N} + N\ln\frac{N}{e}\right)$$

$$= \frac{1}{2}\ln(2\pi N) + N\ln N - N\ln e$$

$$= \frac{1}{2}\ln(2\pi N) + \frac{1}{2}\ln N + N\ln N - N$$

$$= N(\ln N - 1)$$

$$\approx N\ln N$$

Die Entropie kann man wie folgt erhalten:

$$F = U - TS \Leftrightarrow F - U = -TS \Leftrightarrow S = \frac{U - F}{T}$$

$$S = -k_B N \ln N + \frac{3}{2} N k_B \ln \left[\frac{2m(k_B T)^3}{\pi \hbar^2 c^2} \sinh \left(\pi c \frac{a}{2} \right) \right] + \frac{9}{2} N k_B - \frac{3Nca}{2T} \coth \left(\frac{ca}{2k_B T} \right)$$

zu b) Benötigt wird die Entwicklung von coth(x) fpr kleine x:

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{(e^x + e^{-x})/2}{(e^x - e^{-x})/2} \approx^{(x \approx 0)} \frac{1 + x + 1 - x}{(1 + x) - (1 - x)} = \frac{2}{2x} = \frac{1}{x}$$

Für große T ergibt sich für die innere Energie:

$$U(T,V) \approx \frac{9}{2}Nk_BT - \frac{3}{2}Nca\frac{2k_BT}{ca}$$
$$= \frac{9}{2}Nk_BT - 3Nk_BT$$
$$= \frac{3}{2}Nk_BT$$

Aufgabe 2: (5 Punkte)

Berechnen Sie die Dichte eines klassischen, idealen Gases in einem mit der konstanten Winkelgeschwindigkeit ω um seine Längsachse rotierenden Zylinder mit der Länge L und dem Radius R als Funktion des Abstandes r von der Drehachse. Nehmen Sie an, daß das Gas gleichförmig mitrotiert.

Berechnen Sie für dieses Gas außerdem den Erwartungswert des Drehimpulses J (parallel zur Rotationsachse) und der Energie E als Funktion der Temperatur T, und zwar E sowohl im ruhenden als auch im mitrotierenden Bezugssystem.

klassisch, kanonische Gesamtheit.

 $\rho_1(q_1,p_1) \sim \exp(-\beta H_1(q_1,p_1))$

Dichteverteilungsfunktion für 1 Teilchen (im Phasenraum)

Es interessiert aber die Dichte im Ortsraum.

Für den Gesamt-Hamiltonian gilt:

$$H(p,q) = \sum_{i} \frac{p_i^2}{2m} - \beta \frac{m\omega^2 r_i^2}{2}$$

und für den 1-Teilchen-Hamiltonian:

$$H(p,q) = \frac{p^2}{2m} - \beta \frac{m\omega^2 r^2}{2}$$

Der Potentialanteil ergibt sich aus der Zentrifugalkraft: $F_Z = m\omega^2 r$ Für die Dichteverteilungsfunktion im Ortsraum gilt nun:

$$n(r) = \int d^3p \exp(-\beta \frac{p^2}{2m} + \beta \frac{m\omega^2}{2} r^2)$$

$$= \int_0^\infty dp 4\pi p^2 e^{-\beta \frac{p^2}{2m} + \beta \frac{m\omega^2}{2} r^2}$$

$$= e^{\frac{\beta m\omega^2}{2} r^2} \int_0^\infty dp 4\pi p^2 e^{\frac{-\beta p^2}{2m}}$$

Eigentlich reicht es, zu sehen, daß der unterstrichene Teil ein konstanter Faktor ist.

$$n(r) = e^{\frac{\beta m\omega^2}{2}r^2} \left(4\pi \frac{\sqrt{\pi}}{4\sqrt{\frac{\beta}{2m}}^3}\right)$$
$$= e^{\frac{\beta m\omega^2}{2}r^2} \frac{\sqrt{\pi}^3}{\sqrt{\frac{\beta}{2m}}^3}$$
$$= e^{\frac{\beta m\omega^2}{2}r^2} \sqrt{\frac{2m\pi}{\beta}}^3$$

n(r) ist noch nicht normiert. Normierung mit:

$$N = \int_0^R dr n(r) (2\pi r L)$$

$$\Leftrightarrow N = n_0 2\pi L \int_0^R dr r e^{\frac{\beta m \omega^2}{2} r^2}$$

Eine kleine Nebenrechnung ergibt das Integral:

$$\begin{split} \left(e^{\frac{\beta m\omega^2}{2}r^2}\right)^{|} &= e^{\frac{\beta m\omega^2}{2}r^2}r\beta m\omega^2 \to \int dr e^{\frac{\beta m\omega^2}{2}r^2} = \frac{1}{\beta m\omega^2}e^{\frac{\beta m\omega^2}{2}r^2} \\ N &= n_0 2\pi L \left[\frac{1}{\beta m\omega}e^{\frac{\beta m\omega^2}{2}r^2}\right]_0^R \\ N &= n_0 2\pi L \left[\frac{e^{\frac{\beta m\omega^2}{2}R^2}}{\beta m\omega^2} - \frac{1}{\beta m\omega^2}\right] \\ N &= \frac{n_0 2\pi L}{\beta m\omega^2} \left[e^{\frac{\beta m\omega^2}{2}R^2} - 1\right] \\ n_0 &= \frac{\beta m\omega^2}{2\pi L} \frac{N}{e^{\frac{\beta m\omega^2}{2}R^2} - 1} \\ n(r) &= \frac{\beta m\omega^2}{2\pi L} \frac{N}{e^{\frac{\beta m\omega^2}{2}R^2} - 1} \end{split}$$

Für die Berechnung der inneren Energie wird zunächst die klassisch, kanonische Zustandssumme benötigt. Hierzu ist der Hamiltonian des Gesamtsystems heranzuziehen.

$$\begin{split} Z_{N}(T,V) &= \frac{1}{h^{3N}N!} \int .. \int d^{3N}q d^{3N}p e^{-\beta H(p,q)} \\ &= \frac{(\text{ideales Gas})}{h^{3N}N!} \left[\int \int d^{3}q d^{3}p e^{\frac{-\beta p^{2}}{2m}} e^{\frac{\beta m\omega^{2}r^{2}}{2}} \right]^{N} \\ &= \frac{1}{h^{3N}N!} \left[\int d^{3}p e^{\frac{-\beta p^{2}}{2m}} \right]^{N} \left[\int d^{3}q e^{\frac{\beta m\omega^{2}}{2}r^{2}} \right]^{N} \end{split}$$

Für die Integrale erhält man:

$$\int d^3p e^{\frac{-\beta p^2}{2m}} = \int_0^\infty dp 4\pi p^2 e^{\frac{-\beta p^2}{2m}}$$

$$= \frac{(\text{Bronstein})}{4\pi} \left(\frac{\sqrt{\pi}}{4\sqrt{\frac{\beta}{2m}}^3} \right)$$

$$= \frac{\sqrt{\pi}^3}{4\sqrt{\frac{\beta}{2m}}^3}$$

$$= \sqrt{\frac{2m\pi}{\beta}}^3$$

bzw.

$$\int d^3q e^{\frac{\beta m\omega^2}{2}r^2} = \int_0^R dr (2\pi r L) e^{\frac{\beta m\omega^2}{2}r^2}$$

$$= 2\pi L \int_0^R dr r e^{\frac{\beta m\omega^2}{2}r^2}$$

$$= 2\pi L \left[\frac{1}{\beta m\omega^2} e^{\frac{\beta m\omega^2}{2}r^2}\right]_0^R$$

$$= 2\pi L \left[\frac{e^{\frac{\beta m\omega^2}{2}r^2}}{\beta m\omega^2} - \frac{1}{\beta m\omega^2}\right]$$

$$= \frac{2\pi L}{\beta m\omega^2} \left[e^{\frac{\beta m\omega^2}{2}r^2} - 1\right]$$

Also:

$$Z_N = \frac{1}{h^{3N}N!} \left[\left(\frac{2m\pi}{\beta} \right)^{\frac{3}{2}} \right]^N \left[\frac{2\pi L}{\beta m\omega^2} \left(e^{\frac{\beta m\omega^2}{2}r^2} - 1 \right) \right]^N$$

Und somit:

$$E = \langle H \rangle = -\frac{\partial}{\partial \beta} \ln Z_N(T, V)$$

$$= -\frac{\partial}{\partial \beta} \left[\ln \left(\frac{1}{h^{3N} N!} \right) + \frac{3}{2} N \ln \left(\frac{2m\pi}{\beta} \right) + N \ln \left(\frac{2\pi L}{\beta m \omega^2} \right) + N \ln \left(e^{\frac{\beta m \omega^2 R^2}{2}} - 1 \right) \right]$$

$$= -\left[\frac{3}{2} N \frac{\beta}{2m\pi} \left(\frac{-2m\pi}{\beta^2} \right) + N \frac{\beta m \omega^2}{2\pi L} \left(\frac{-2m\pi}{\beta^2 m \omega^2} \right) + \frac{N e^{\frac{\beta m \omega^2}{2}} \frac{m \omega^2 R^2}{2}}{\left(e^{\frac{\beta m \omega^2 R^2}{2}} - 1 \right)} \right]$$

$$= \frac{3}{2} \frac{N}{\beta} + \frac{N}{\beta} - N \frac{m\omega^{2} R^{2}}{2} \frac{e^{\frac{\beta m\omega^{2} R^{2}}{2}}}{e^{\frac{\beta m\omega^{2} R^{2}}{2}} - 1}$$

$$= \frac{5}{2} N k_{B} T - N \frac{m\omega^{2} R^{2}}{2} \frac{e^{\frac{\beta m\omega^{2} R^{2}}{2}}}{e^{\frac{\beta m\omega^{2} R^{2}}{2}} - 1}$$

gesucht: mittlerer Drehimpuls

Zum Beispiel aus Landau-Lifschitz (Band V, §26) ist bekannt:

$$dF' = -SdT - Jd\omega$$
 (im rotierenden Koordinatensystem) $\frac{\partial F'}{\partial \omega}\Big|_{T} = -J$

F erhält man aus:

$$F'(T, V, N) = -k_B T \ln Z_N(T, V)$$

$$= -k_B T \left[\ln \left(\frac{1}{h^{3N} N!} \right) + \frac{3}{2} N \ln \left(\frac{2m\pi}{\beta} \right) + N \ln \left(\frac{2m\pi}{\beta m \omega^2} \right) + N \ln \left(e^{\frac{\beta m \omega^2 R^2}{2}} - 1 \right) \right]$$

$$\frac{\partial F'}{\partial \omega} \Big|_{T} = -k_B T \left[N \frac{\beta m \omega^2}{2\pi L} \left(-2\omega^{-3} \frac{2\pi L}{\beta m} \right) + \frac{N}{e^{\frac{\beta m \omega^2 R^2}{2}} - 1} e^{\frac{\beta m \omega^2 R^2}{2}} \frac{\beta m R^2}{2} 2\omega \right]$$

$$\frac{\partial F'}{\partial \omega} \Big|_{T} = -k_B T \left[\frac{-2N}{\omega} + \frac{\beta \omega m R^2}{1 - e^{\frac{-\beta m \omega^2 R^2}{2}}} \right]$$

$$\frac{\partial F'}{\partial \omega} \Big|_{T} = \frac{2N}{\omega \beta} - \frac{N \omega m R^2}{1 - e^{\beta m \omega^2 R^2/2}}$$

$$J = -\frac{\partial F'}{\partial \omega} \Big|_{T} = -\frac{2N}{\omega \beta} + \frac{N \omega m R^2}{1 - e^{\beta m \omega^2 R^2/2}}$$

Hier gibt es eine kleine Diskrepanz zur Aufzeichnung der Klausurbesprechung: Dort fehlte das " $R^2/2$ "

 $E_{ruh} = E_{rot} + \frac{J\omega}{2}$ (in der Klausurbesprechung fehlte das "\frac{1}{2}"

Dieser Faktor ergibt sich, wenn man von der Formel $E_{ruh} = E_{rot} + \frac{J^2}{2I}$ ausgeht, wobei I das Trägheitsmoment ist, das man aus $J=I\omega$ erhalten kann.

Aufgabe 3: (4 Punkte)

Ein quantenmechanisches System mit zwei Energieniveaus (E=0 und E= ϵ >0) sei in Kontakt mit einem Wärmebad. Das untere der beiden Niveaus sei zweifach entartet, das obere nicht.

- a) Geben Sie den Dichteoperator explizit (in Matrixform) an
- b) Ist der Dichteoperator stationär?
- c) Berechnen Sie den Erwartungswert der Energie als Funktion der Temperatur. Was ergibt sich für $T\rightarrow 0$ und $T\rightarrow \infty$?
- d) Berechnen Sie das mittlere Schwankungsquadrat der Energie. Was ergibt sich hier für $T \rightarrow 0$ und $T \rightarrow \infty$?

zu a) Definition des Dichteoperators für die kanonische Gesamtheit

$$\hat{\rho} = \frac{e^{-\beta \hat{H}}}{Spe^{-\beta \hat{H}}}$$

(allgemein gilt für Dichteoperatoren: $\hat{\rho} = \sum_m p_m |\psi_m\rangle \langle \psi_m|$, $\sum_m p_m = 1$, weitere Eigenschaften: siehe Nolting Band 6 "Statistische Physik S.100ff)

$$Z_N = Spe^{-\beta E_N} = \sum_N e^{-\beta E_N} = 2e^{-\beta 0} + 1e^{-\beta \epsilon}$$

Es reicht nicht über alle (Energie-)Niveaus zu summieren, es muß über alle Eigenzustände summiert werden!! (Berücksichtigung der Entartung)

$$\hat{H} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \epsilon \end{pmatrix}$$

$$\hat{\rho} = \frac{1}{2 + e^{-\beta \epsilon}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\beta \epsilon} \end{pmatrix}$$

Für die Herleitung wird die Exponentialreihe benötigt: $e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$

$$e^{-\beta \hat{H}} = \sum_{i=0}^{\infty} \frac{(-\beta)^i \hat{H}^i}{i!}$$

$$= \sum_{i=0}^{\infty} \frac{(-\beta)^i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \epsilon \end{pmatrix}^i}{i!}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \sum_{i=1}^{\infty} \frac{(-\beta)^i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \epsilon \end{pmatrix}^i}{i!}$$

$$= E_3 + \sum_{i=0}^{\infty} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{(-\beta)^i \epsilon^i}{i!} \end{pmatrix}$$

$$= E_3 + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sum_{i=1}^{\infty} \frac{(-\beta)^i \epsilon^i}{i!} \end{pmatrix}$$

$$= E_3 + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sum_{i=1}^{\infty} \frac{(-\beta \epsilon)^i}{i!} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\beta \epsilon} \end{pmatrix}$$

Probe:

$$p_{1} = \frac{1}{2 + e^{-\beta \epsilon}}, p_{2} = \frac{1}{2 + e^{-\beta \epsilon}}, p_{3} = \frac{e^{-\beta \epsilon}}{2 + e^{-\beta \epsilon}}$$

$$p_{1} + p_{2} + p_{3} = \frac{2}{2 + e^{-\beta \epsilon}} + \frac{e^{-\beta \epsilon}}{2 + e^{-\beta \epsilon}} = \frac{2 + e^{-\beta \epsilon}}{2 + e^{-\beta \epsilon}} = 1$$

zu b) zeitliche Entwicklung des Operators ist bestimmt durch: $i\hbar\dot{\rho}=[H,\rho]$

$$\begin{split} \rho H &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\beta \epsilon} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \epsilon \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \epsilon e^{-\beta \epsilon} \end{pmatrix} \\ H \rho &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \epsilon \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\beta \epsilon} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \epsilon e^{-\beta \epsilon} \end{pmatrix} \end{split}$$

$$\rho H = H \rho \Leftrightarrow H \rho - \rho H = 0 \Leftrightarrow [H,\rho] = 0 \to i \hbar \dot{\rho} = 0$$

Der Dichteoperator ist also stationär.

zu c) Bei der kanonischen Gesamtheit erfolgt die Mittelwertsbildung wie folgt:

$$\left\langle \hat{F}\right\rangle =Sp(\rho\hat{F})=\frac{Sp\left(e^{-\beta\hat{H}}\hat{F}\right)}{Sp\left(e^{-\beta\hat{H}}\right)}$$

Speziell für U= $\langle \hat{H} \rangle$ gilt aber auch:

$$U = \langle \hat{H} \rangle = -\frac{\partial}{\partial \beta} \ln Z_N(T, V)$$

$$= -\frac{\partial}{\partial \beta} \ln \left(2 + e^{-\beta \epsilon} \right)$$

$$= -\frac{1}{2 + e^{-\beta \epsilon}} \left(e^{-\beta \epsilon} \right) \left(-\epsilon \right)$$

$$= \frac{\epsilon e^{-\beta \epsilon}}{2 + e^{-\beta \epsilon}}$$

$$= \frac{\epsilon}{2 + e^{-\beta \epsilon}}$$

$$= \frac{1}{2 + e^{-\beta \epsilon}}$$

$$= \frac{\epsilon}{2 + e^{-\beta \epsilon}}$$

$$= \frac{1}{2 + e^{-\beta \epsilon}}$$

$$= \frac{2e^{\beta \epsilon} + 1}{2 + e^{-\beta \epsilon}}$$

$$= \frac{1}{2 + e^{-\beta \epsilon}}$$

$$\left\langle \hat{H} \right\rangle^2 = \left(\frac{\epsilon}{2e^{\beta\epsilon} + 1} \right)^2$$

 $\frac{\left\langle \hat{H} \right\rangle^2 = \left(\frac{\epsilon}{2e^{\beta\epsilon}+1}\right)^2}{\text{Für das mittlere Schwankungsquadrat der Energie erhält man nun:}}$

$$S^{2} \equiv \langle H^{2} \rangle - \langle \hat{H} \rangle^{2} = \frac{\epsilon^{2}}{2\epsilon e^{\beta \epsilon} + 1} - \frac{\epsilon^{2}}{(2\epsilon e^{\beta \epsilon} + 1)}$$

$$= \frac{\epsilon^{2}(2\epsilon e^{\beta \epsilon} + 1) - \epsilon^{2}}{(2\epsilon e^{\beta \epsilon} + 1)^{2}}$$

$$= \frac{2\epsilon^{2}e^{\beta \epsilon}}{(2\epsilon e^{\beta \epsilon} + 1)^{2}}$$

$$\underline{\underline{S}^{2}} \longrightarrow T \to 0 \frac{2\epsilon^{2}}{(2e^{\frac{\epsilon}{k_{B}T}})^{2}} = \frac{\epsilon^{2}}{2e^{\frac{\epsilon}{k_{B}T}}} \to \underline{0}$$

$$\underline{\underline{S}^{2}} \longrightarrow T \to \infty \frac{2\epsilon^{2}}{(2+1)} = \underline{\frac{2}{9}}\epsilon^{2}$$

Aufgabe 4: (4 Punkte)

Berechnen Sie für ein dreidimensionales Gas von freien Fermionen mit Spin s die Kompressibilität bei T=0, ausgedrückt durch die Teilchendichte $\rho = N/V...$

- a) ...für nichtrelativistische Teilchen
- b) ...für extrem relativistische Teilchen

Hinweis: Berechnen Sie zunächst den Druck

nützliche Gleichungen für ideale Fermi-Gase:

allg. für Fermikugel (isotrope E(K)-Funktion)

$$K_F = (\frac{6\pi^2}{2s+1} \frac{N}{V})^{\frac{1}{3}}$$

$$\begin{aligned} & \text{K}_F = (\frac{6\pi^2}{2s+1} \frac{N}{V})^{\frac{1}{3}} \\ & \text{Formeln für die mittlere Teilchenzahl und innere Energie:} \\ & (\text{D(E):Zustandsdichte, D(E)=0 für E<0, f(E)=} \left[e^{\frac{E-\mu}{k_BT}} + 1 \right]^{-1}, \beta = \frac{1}{k_BT}, n = \frac{N}{V}) \end{aligned}$$

$$\langle N \rangle = \int_{-\infty}^{\infty} dE f(E) D(E)$$

$$U = \int_{-\infty}^{\infty} dE E f(E) D(E)$$

nicht relativistisches Gas	ultrarelativistisches Gas
$U=\frac{3}{2}pV$	U=3pV
$D(E) = (2s+1)\frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}}$	$D(E) = (2s+1) \frac{V}{2\pi^2 \hbar^3 c^3} E^2$
$\mathbf{E}_F = \frac{\hbar^2}{2m} \left(\frac{6\pi^2}{2s+1} \frac{N}{V} \right)^{\frac{2}{3}}$	$\mathbb{E}_F = \hbar c \left(rac{6\pi^2}{2s+1} rac{N}{V} ight)^{rac{1}{3}}$
$E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$	$E=pc=\hbar kc$

Bei der Berechnung von U,D(E) wurden (wie üblich) periodische Randbedingungen vorausgesetzt:

 $\mathbf{k}_{x,y,z} = \frac{2\pi}{L_{x,y,z}} n_{x,y,z}; n_{x,y,z} \in Z$ $\rightarrow \text{Das Rastervolumen für jeden Zustand im k-Raum beträgt:}$ $\Delta k = \frac{(2\pi)^3}{L_x L_y L_z} = \frac{(2\pi)^3}{V}$

$$\Delta k = \frac{(2\pi)^3}{L_x L_y L_z} = \frac{(2\pi)^3}{V}$$

Die Berechnung von D(E) kann z.B. mit

$$D(E)=(2s+1)\frac{V}{(2\pi)^3}\frac{d}{dE}\varphi(E) \text{ (dreidimensionales Gas)}$$

$$D(E)=(2s+1)\frac{F}{(2\pi)^2}\frac{d}{dE}\varphi(E) \text{ (zweidimensionales Gas)}$$

$$D(E)=(2s+1)\frac{L}{(2\pi)}\frac{d}{dE}\varphi(E) \text{ (eindimensionales Gas)}$$

durchgeführt werden, wobei φ das Phasenraumvolumen angibt. Es soll hier nur das dreidimensionale Gas betrachtet werden.

Für die Berechnung von $\varphi(E) = \int_{\epsilon(k) < E} d^3k$ wird die Isotropie der Fkt. $\epsilon(K)$ ausgenutzt:

$$\varphi(E) = \frac{4}{3}\pi k^3$$

I nicht-relativistisch

$$D(E) = (2s+1)\frac{V}{(2\pi)^3} \frac{d}{dE} \frac{4\pi}{3} \left(\frac{2mE}{\hbar^2}\right)^{\frac{3}{2}}$$

$$= (2s+1)\frac{V}{(2\pi)^3} \frac{3}{2} \frac{4\pi}{3} \left(\frac{2mE}{\hbar^2}\right)^{\frac{1}{2}} \frac{m}{\hbar^2}$$

$$= (2s+1)\frac{V2m}{(2\pi)^2 \hbar^2} \left(\frac{2mE}{\hbar^2}\right)^{\frac{1}{2}}$$

$$= (2s+1)\frac{V}{4\pi^2\hbar^2} \left(\frac{2mE}{\hbar^2}\right)^{\frac{3}{2}} E^{\frac{1}{2}}$$

II ultra-relativistisch

$$D(E) = (2s+1)\frac{V}{(2\pi)^3} \frac{d}{dE} \frac{4\pi}{3} \left(\frac{E}{\hbar c}\right)^3$$

$$= (2s+1)\frac{V}{(2\pi)^3} 3\frac{4\pi}{3} \left(\frac{E}{\hbar c}\right)^2 \frac{1}{\hbar c}$$

$$= (2s+1)\frac{V}{8\pi^3} 4\pi \frac{1}{\hbar^3 c^3} E^2$$

$$= (2s+1)\frac{V}{2\pi^2 \hbar^3 c^3} E^2$$

Um den Druck p zu erhalten wird zunächst die innere Energie(für $T=0!! \rightarrow obere$ Integrationsgrenze= E_F) berechnet:

I nicht-relativistisch

$$U = \int_{0}^{E_{F}} dEE(2s+1) \frac{V}{4\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{3}{2}} E^{\frac{1}{2}}$$

$$U = \int_{0}^{E_{F}} dE(2s+1) \frac{V}{4\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{3}{2}} E^{\frac{3}{2}}$$

$$U = \left[\frac{2}{5}(2s+1) \frac{V}{4\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{3}{2}} E^{\frac{5}{2}}\right]_{0}^{E_{F}}$$

$$U = \frac{2}{5}(2s+1) \frac{V}{4\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{3}{2}} E^{\frac{5}{2}}_{F}$$

$$U = \frac{2}{5}(2s+1) \frac{V}{4\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{3}{2}} \left[\frac{\hbar^{2}}{2m} \left(\frac{6\pi^{2}}{2s+1} \frac{N}{V}\right)^{\frac{2}{3}}\right]^{\frac{5}{2}}$$

$$U = \frac{2}{5}(2s+1) \frac{V}{4\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{3}{2}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{-5}{2}} \left(\frac{6\pi^{2}}{2s+1}\right)^{\frac{5}{3}} \left(\frac{N}{V}\right)^{\frac{5}{3}}$$

$$\frac{3}{2}pV = U = V^{\frac{2}{2}}(2s+1) \frac{1}{4\pi^{2}} \frac{\hbar^{2}}{2m} \left(\frac{6\pi^{2}}{2s+1}\right)^{\frac{5}{3}} \left(\frac{N}{V}\right)^{\frac{5}{3}}$$

$$p = \frac{2}{5}(2s+1) \frac{2}{3*4\pi^{2}} \frac{\hbar^{2}}{2m} \left(\frac{6\pi^{2}}{2s+1}\right)^{\frac{5}{3}} \left(\frac{N}{V}\right)^{\frac{5}{3}}$$

$$p = \frac{2}{5} \left(\frac{6\pi^{2}}{2s+1}\right)^{-\frac{3}{3}} \frac{\hbar^{2}}{2m} \left(\frac{6\pi^{2}}{2s+1}\right)^{\frac{5}{3}} \left(\frac{N}{V}\right)^{\frac{5}{3}}$$

$$p = \frac{2}{5} \frac{\hbar^{2}}{2m} \left(\frac{6\pi^{2}}{2s+1}\right)^{\frac{5}{3}} \left(\frac{N}{V}\right)^{\frac{5}{3}}$$

II ultra-relativistisch

$$\begin{array}{rcl} U & = & \int_0^{E_F} dE E(2s+1) \frac{V}{2\pi^2 \hbar^3 c^3} E^2 \\ & = & \int_0^{E_F} dE (2s+1) \frac{V}{2\pi^2 \hbar^3 c^3} E^3 \end{array}$$

$$= \left[\frac{E^4}{4}(2s+1)\frac{V}{2\pi^2\hbar^3c^3}\right]_0^{E_F}$$

$$= \frac{E_F}{4}(2s+1)\frac{V}{2\pi^2\hbar^3c^3}$$

$$= \frac{1}{4}\left[\hbar c\left(\frac{6\pi^2}{2s+1}\frac{N}{V}\right)^{\frac{1}{3}}\right]^4(2s+1)\frac{V}{2\pi^2\hbar^3c^3}$$

$$= \frac{1}{4}\left(\hbar c\right)^4\left(\frac{6\pi^2}{2s+1}\frac{N}{V}\right)^{\frac{4}{3}}(2s+1)\frac{V}{2\pi^2\hbar^3c^3}$$

$$U = 3pV = \frac{\hbar c}{4}\left(\frac{6\pi^2}{2s+1}\frac{N}{V}\right)^{\frac{4}{3}}\left(\frac{6\pi^2}{2s+1}\right)^{-1}V$$

$$p = \frac{\hbar c}{4}\left(\frac{6\pi^2}{2s+1}\right)^{\frac{1}{3}}\left(\frac{N}{V}\right)^{\frac{4}{3}}(\kappa_{T=0} = \frac{3}{4}p^{-1})$$

Beide Gleichungen für den Druck haben die Gestalt: $p = \alpha V^{-\gamma}$ Diese Gleichung wird nach V aufgelöst:

$$p^{-\frac{1}{\gamma}} = \alpha^{-\frac{1}{\gamma}} V$$

$$\alpha^{\frac{1}{\gamma}} p^{-\frac{1}{\gamma}} = V$$

nach p abgeleitet

$$\frac{\partial V}{\partial p} = \alpha^{\frac{1}{\gamma}} \left(-\frac{1}{\gamma} \right) p^{-\frac{1}{\gamma} - 1}$$

und in die Definitionsgleichung der Kompressibilität eingesetzt:

$$\kappa_{T=0} = -\frac{1}{V} \frac{\partial V}{\partial p} \Big|_{T=0} = \frac{-\alpha^{\frac{1}{\gamma}} \left(-\frac{1}{\gamma}\right) p^{-\frac{1}{\gamma}-1}}{\alpha^{\frac{1}{\gamma}} p^{-\frac{1}{\gamma}}}$$

$$\kappa_{T=0} = \frac{1}{\gamma} p^{-1}$$

Aufgabe 5: (5 Punkte)

Berechnen Sie die spezifische Wärme C_V für ein ultrarelativistisches (ideales) Elektronengas als Funktion des Volumens V, der Teilchenzahl N und der Temperatur T im Grenzfall tiefer Temperaturen T.

<u>Hinweis:</u>Benutzen Sie zweckmäßig die Sommerfeld-Entwicklung:

 $\overline{\int_0^\infty \frac{f(\epsilon)d\epsilon}{e^{(\epsilon-\mu)/k_BT}+1}} = \int_0^\mu f(\epsilon)d\epsilon + (k_BT)^2 f^{\epsilon}(\mu) \frac{\pi^2}{6}$

für eine reguläre Funktion $f(\epsilon)$, so daß das Integral auf der linken Seite dieser Gleichung existiert.

Diese Lösung wurde aus Nolting, Band 6 "Statistische Physik", entnommen: Die Zustandsdichte extrem relativistischer Fermionen ist durch

$$D(E) = (2s+1)\frac{V}{2\pi^2c^3\hbar^3}E^2 \equiv \hat{d}E^2 \text{ für E}>=0$$

gegeben (s.o.).

1) Chemisches Potential berechnen:

D(E) erfüllt die Voraussetzungen der Sommerfeld-Entwicklung. Die Teilchenzahl N ist T-unabhängig. Deshalb gilt sowohl

$$N = \int_{-\infty}^{E_F} dE D(E) \text{ (T=0)}$$

als auch

$$N = \int_{-\infty}^{\mu} dE D(E) + \frac{\pi^2}{6} (k_B T)^2 D^{\epsilon}(\mu).$$

Gleichsetzen ergibt:

$$\begin{split} \frac{1}{3}E_F^3 &\approx & \frac{1}{3}\mu^3 + \frac{\pi^2}{6}(k_BT)^2 2\mu \\ \implies & \mu \approx E_F \left[1 - \left(\frac{\pi k_BT}{E_F}\right)^2 \frac{\mu}{E_F}\right]^{\frac{1}{3}} \end{split}$$

entartetes Fermigas \Rightarrow zweiter Term sehr klein, $\mu \approx E_F$

$$\implies \mu(T) \approx E_F \left[1 - \frac{\pi^3}{3} \left(\frac{k_B T}{E_F} \right)^2 \right].$$

$$E_F = c\hbar \left(\frac{6\pi^2}{2s+1} \frac{N}{V} \right)^{\frac{1}{3}} (s.o.)$$

$$= c\hbar \left(3\pi^2 \frac{N}{V} \right)^{\frac{1}{3}}$$

2)Innere Energie

$$U(T = 0) = \frac{V(2s+1)}{2\pi^2 c^3 \hbar^2} \frac{E_F^4}{4} = \frac{1}{4} \hat{d} E_F^4,$$

$$U(T) \approx \int_0^{\mu} dE E D(E) + \frac{\pi^2}{6} (k_B T)^2 (\mu D'(\mu) + D(\mu))$$

$$= \frac{1}{4} \hat{d} \mu^4 + \frac{\pi^2}{6} (k_B T)^2 3 \hat{d} \mu^2$$

$$= U(0) \left[\left(\frac{\mu}{E_F} \right)^4 + 2\pi^2 \left(\frac{k_B T}{E_F} \right)^2 \left(\frac{\mu}{E_F} \right)^2 \right]$$

Nach (1) gilt:

$$\left(\frac{\mu}{E_F}\right)^n \approx 1 - n\frac{\pi^2}{3} \left(\frac{k_B T}{E_F}\right)^2$$

$$\Rightarrow U(T) = U(0) \left[1 + \frac{2\pi^2}{3} \left(\frac{k_B T}{E_F}\right)^2\right]$$

$$U(0) = \frac{3}{4} N E_F$$

Wärmekapazität:

$$\begin{array}{rcl} C_V & = & \hat{\gamma}T, \\ & \hat{\gamma} & = & N\frac{\pi^2k_B^2}{E_F} \end{array}$$

Aufgabe 6: (5 Punkte)

Berechnen Sie für ein ideales zweidimensionales Elektronengas explizit das chemische Potential μ als Funktion der Teilchendichte $\rho = N/L^2$ und der Temperatur T. Wie verhält sich μ für hohe T?

Es erweist sich als nützlich, zuerst die mittlere Teilchenzahl auszurechnen

$$\left\langle \hat{N}\right\rangle =\int_{-\infty}^{\infty}dEf_{-}(E)D(E)$$

wobei f_(E) die Fermi-Dirac-Verteilung und D(E) die Zustandsdichte ist. Für ϵ gilt:

$$\epsilon(p) = \frac{p^2}{2m_e}$$

$$\epsilon(k) = \frac{(\hbar k)^2}{2m_e}$$

und für das zweidimensionale "Phasenraumvolumen":

$$\varphi(E) = \int_{\epsilon(k) \le E} d^2k = \pi k^2(k) = \frac{2mE}{\hbar} \pi$$

Da $\varphi(E)$ radialsymmetrisch (=isotrop) ist, und ein 2D-Gas vorliegt, gilt für die Zustandsdichte:

$$D(E) = (2s+1)\frac{L^2}{(2\pi)^2} \frac{d}{dE} \varphi(E)$$

$$= (2s+1)\frac{L^2}{(2\pi)^2} \frac{2m}{\hbar^2} \pi$$

$$= (2s+1)L^2 \frac{2m\pi}{4\pi^2\hbar^2} \Big| s = \frac{1}{2} \text{ für e}^-$$

$$= \frac{L^2m}{\pi\hbar^2} \equiv D$$

Das Integral $N = \int_0^\infty dE \frac{D(E)}{e^{\frac{E-\mu}{k_BT}} + 1}$ wird mittels Substitution und logarithmischer Integration gelöst:

$$u = \frac{E - \mu}{k_B T}$$

$$\frac{du}{dE} = \frac{1}{k_B T} \Leftrightarrow dE = k_B T dU$$

$$k_B T \int \frac{dU}{e^u + 1}$$

$$= k_B T \ln \frac{e^u}{1 + e^u}$$

$$= k_B T \ln \frac{\frac{E - \mu}{k_B T}}{1 + e^{\frac{E - \mu}{k_B T}}}$$

Damit erhält man:

$$N = \left(Dk_BT \ln \frac{\frac{E-\mu}{k_BT}}{1 + e^{\frac{E-\mu}{k_BT}}}\right)_0^{\infty}$$

$$N = 0 - Dk_BT \ln \frac{\frac{-\mu}{k_BT}}{1 + e^{\frac{-\mu}{k_BT}}}$$

$$N = -Dk_B \left[\frac{-\mu}{k_B T} - \ln \left(1 + e^{\frac{-\mu}{k_B T}} \right) \right]$$

$$N = Dk_B T \frac{\mu}{k_B T} + Dk_B T \ln \left(1 + e^{\frac{-\mu}{k_B T}} \right)$$

Die letzte Gleichung wird jetzt nach μ aufgelöst:

$$N - D\mu = Dk_B T \ln \left(1 + e^{\frac{-\mu}{k_B T}}\right)$$

$$\frac{N}{Dk_B T} - \frac{\mu}{k_B T} = \ln \left(1 + e^{\frac{-\mu}{k_B T}}\right) | \text{delogarithmieren}$$

$$e^{\frac{N}{Dk_B T} - \frac{\mu}{k_B T}} = 1 + e^{\frac{-\mu}{k_B T}}$$

$$e^{\frac{-\mu}{k_B T}} \left(e^{\frac{N}{Dk_B T}} - 1\right) = 1$$

$$e^{\frac{\mu}{k_B T}} = \left(e^{\frac{N}{Dk_B T}} - 1\right) | \ln \frac{\mu}{k_B T} = \ln \left(e^{\frac{N}{Dk_B T}} - 1\right)$$

$$\mu = k_B T \ln \left(e^{\frac{N}{Dk_B T}} - 1\right)$$

$$\frac{T \to \infty \Rightarrow \mu \to -\infty}{T \to 0 \Rightarrow \mu \to k_B T} \frac{N}{D k_B T} = \frac{N}{D} \equiv E_F$$

Einige nützliche Formeln und Tips:

- In den allgemeinen Ausdrüchen für die Zustandssummen und Dichteoperatoren treten die Hamiltonians als Beschreibung des ganzen Systems auf (Mehrteilchen-Hamiltonian)
- -Herleitung von thermodynamischen Potentialen (aus den sich die *ganze* Thermodynamik ergibt) aus der mikrokanonischen Gesamtheit(Energie, V konst, Teilchenzahl konstant): siehe Nolting Band 6, S.49. (praktisch bedeutsamer sind kanonische(T konst. "Kontakt mit Wärmebad", V konst., N konst.) und großkanonische (T konst, V konst, μ konst.) Gesamtheit)
 - -Definition chemisches Potential: $\mu = -T \left(\frac{\partial S}{\partial N} \right)_{E,V}$
- -Im thermodynamischen Limes, d.h.N $\to \infty, V \to \infty, \frac{N}{V}$ endlich, sind alle drei Gesamtheiten äquivalent. Beispielsweise kann die großkanonische auf die mikrokanonische Gesamtheit zurückgeführt werden, wenn man für die mikrokanonische Energie E den Erwartungswert des Hamiltonian $<\hat{\rm H}>$ und für die Teilchenzahl N den Erwartungswert der Teilchenzahl <N> wählt.

klassisch	1:1		
TELEMOTOVIZ.		Gesamtheit	
		mikrokanon	isch
		E,V,N konst	tant
- un	D. 1	$\rho(q, p, t) = \langle$	$\int \frac{1}{N!h^{3N}\Gamma(E)} \text{ falls } E < H(q,p) < E + \Delta$
Größe	Dichteverteilungsfkt. ρ		0 sonst
	Zustandssumme Z	$N!h^{3N}\Gamma(E)$	$= \int \int_{E < H(q,p) < E - \Delta} d^{3N} q d^{3N} p$
	innere Energie U	U=E(S,V,N), E erhält man durch Auflösen von S(E,V
	freie Energie F	F(T,V,N)=	U-TS
	Druck p	$p=T\left(\frac{\partial S}{\partial V}\right)_{E_{i}}$	N
	Entropie S	$S=k_B \ln \Gamma_N$	$(E, V) = k_B \ln \varphi_N(E, V) = k_B \ln D_N(E, V)$
	Erwartungswert $\langle X \rangle$	$\int \int_{E < H(q,p) < E} \int_{E < H(q,p)}$	$+\Delta \frac{d^{3N}qd^{3N}pX(p,q)}{\langle E+\Delta \frac{d^{3N}qd^{3N}p}{\langle E+\Delta \frac{d^{3N}q}{\langle E+\Delta \frac{d^{3N}q}q}{\langle E+\Delta \frac{d^{3N}q}q}q}{\langle E+\Delta \frac{d^{3N}q}q}{\langle E+\Delta \frac{d^{3N}q}q}q\rangle \rangle}}}}$

		Gesamtheit:
		kanonisch
		T,V,N konstant
Größe	${\rm Dichteverteilungs fkt.} \rho$	$\rho(q,p) = \frac{e^{-\beta H(q,p)}}{\frac{1}{h^{3N}} \int \int d^{3N} q d^{3N} p e^{-\beta H(q,p)}}$
	Zustandssumme Z	$Z_N^k = \frac{1}{h^{3N}} \int \int d^{3N}q d^{3N} p e^{-\beta H(q,p)}$
	innere Energie U	$-\frac{\partial}{\partial\beta}\ln Z_N^k\left(T,V\right)$
	freie Energie F	$F(T,V,N) = -k_B T \ln Z_N^k(T,V)$
	Druck p	$\frac{1}{\beta} \frac{\partial}{\partial V} \ln Z_N^k(T, V)$
	Entropie S	$k_B \left \frac{\partial}{\partial T} \left(T \ln Z_N^k \left(T, V \right) \right) \right $
	Erwartungswert <x></x>	$\frac{\int \int d^{3N}q d^{3N} p e^{-\beta H(q,p)} X(q,p)}{\int \int d^{3N}q d^{3N} p e^{-\beta H(q,p)}}$

 $^{^{1}}$ p,q stehen sowohl für die Phasenraumkoordinaten aller Teilchen als auch für die eines einzelnen Teilchens. Aus dem Kontext ist zu ersehen, welche Bedeutung zutrifft 2 Phasenvolumen: $\Gamma(E) = \frac{1}{N!h^{3N}} \int \int_{E < H(q,p) < E + \Delta E} d^{3N} q d^{3N} p$ $\Gamma(E) \approx \Delta D(E) = \Delta \frac{d\varphi(E)}{dE} = \lim_{\Delta \to 0} \frac{1}{\Delta} \Gamma(E)$ alternatives Phasenvolumen: $\varphi(E) = \frac{1}{N!h^{3N}} \int \int_{H(q,p) \le E} d^{3N} q d^{3N} p$ Zustandsdichte D(E)= $\frac{d\varphi(E)}{dE}$

		Gesamtheit
		großkanonisch
		T,V,μ konstant
Größe	Dichteverteilungsfkt.	$ \rho_N(q,p) = \frac{1}{Z_a^{gk}(T,V)} e^{-\beta(H_N(q,p) - \mu N)} $
	Zustandssumme Z ³	$Z_{\mu}^{gk}(T,V) = \sum_{N=0}^{\infty} \frac{1}{h^{3N}} \int \int d^{3N}q d^{3N} p e^{-\beta(H(q,p)-\mu N)}$
	innere Energie U ⁴	$\langle H \rangle = -\left(\frac{\partial}{\partial \beta} \ln Z_{\mu}(T, V)\right)_{\mu, V} + \mu \langle N \rangle$
	freie Energie F ⁵	$F(T,V,\langle N\rangle) = \mu \langle N\rangle - k_B T \ln Z_u^{gk}(T,V)$
	Druck p	$p = -\left\langle \frac{\partial H}{\partial V} \right\rangle = \frac{1}{\beta} \left(\frac{\partial}{\partial V} \ln Z_{\mu}^{gk}(T, V) \right)_{T,\mu}$
	Entropie S	$S(T,V,) = -\left(\frac{\partial\Omega}{\partial T}\right)_{V,\mu(T,V,)} = -\left(\frac{\partial F}{\partial T}\right)_{V,} = -\left(\frac{\partial F}{\partial T}\right)_{V,}$
	Erwartungswert $\langle X \rangle$	$Z_{\mu}^{gk}(T,V) \stackrel{\sim}{\sim} N=0$ J J α $q\alpha$ $p\epsilon$
	großkanon.Potential ⁶	$\Omega(T, V, \mu) = -k_B T \ln Z_{\mu}^{gk}(T, V) = -pV = F - G$

quantisch:

		Gesamtheit mikrokanonisch E,V,N konst.	
Größe	Dichteoperator $\hat{ ho}$	$\rho^{m} = \sum_{i} p_{i}^{m} E_{i}\rangle \langle E_{i} , p_{i}^{m} = \left\{\right.$	$\left(\begin{array}{c} \frac{1}{\Gamma(E)}, E < E_i < E + \Delta \\ 0 \text{ sonst} \end{array}\right)$
	Zustandssumme Z	$\Gamma(E)$	
	(Energiedarstellung)		
	innere Energie U	$U = \langle \hat{H} \rangle = \frac{1}{\Gamma(E)} \sum_{m}^{E < E_m < E - \Delta}$	$E_m \approx E$
	freie Energie F	F(T,V,N)=U-TS	
	Druck p	$p=T\left(\frac{\partial S}{\partial V}\right)_{E,N}$	
	Entropie S	$S=k_B \ln \Gamma(E) = k_B \ln D(E),$	$D(E) = \lim_{\Delta \to 0} \frac{\Gamma(E)}{\Delta}$
	Erwartungswert $<\hat{X}>$	$\langle \hat{X} \rangle = \frac{1}{\Gamma(E)} Sp \left(\sum_{m}^{E < E_m < E + \Delta} \right)$	$ E_m\rangle \langle E_m \hat{X}$

 $^{{^{3}}Z_{z}^{gk} = \sum_{N=0}^{\infty} z^{N} Z_{N}(T, V), \text{ Fugazit"at } z = e^{\beta \mu}}$ ${^{4}\langle H \rangle = -\left(\frac{\partial}{\partial \beta} \ln Z_{z}^{gk}(T, V)\right)_{z, V}}$

⁵Damit dieses eine Funktion von T,V, $\langle N \rangle$ wird, muß μ gemäß $\langle N \rangle = \frac{1}{\beta} \left(\frac{\partial}{\partial \mu} \ln Z_{\mu}^{gk} (T,V) \right)_{T,V}$ ersetzt werden.

 $^{^6}$ vollständiges Differential: d $\Omega=dF-\mu dN-Nd\mu=-SdT-pdV-Nd\mu$ (Bestimmung aus $\Omega=F-G=-pV$ und Gibbs-Duhem-Beziehung: $G{=}\mu N)$

		Gesamtheit
		kanonisch
		T,V,N konst
Größe	Dichteoperator $\hat{\rho}$	$\frac{e^{-\beta \hat{H}}}{Spe^{-\beta \hat{H}}}$
	Zustandssumme Z	$Z^k(T) = Spe^{-\beta H}$
	(Energiedarstellung)	$Z^k(T) = \sum_n e^{-\beta E_n} $ 7
	innere Energie U	$-\frac{\partial}{\partial\beta}\ln Z_N^k\left(T,V\right)$
	freie Energie F	$-k_BT \ln Z_N^k(T,V)$
	Druck p	$\frac{1}{\beta} \frac{\partial}{\partial V} \ln Z_N^k(T, V)$
	Entropie S	$k_B \left rac{\partial}{\partial T} \left(T \ln Z_N^k \left(T, V ight) ight) ight $
	Erwartungswert< $\hat{X}>$	$\frac{Sp(e^{-\beta H}\hat{X})}{Spe^{-\beta H}}$
		Gesamtheit
		großkanonisch
		T,V,μ konst.
Größe	Dichteoperator $\hat{ ho}$	$\hat{\rho} = \frac{e^{-\beta(\hat{H} - \mu \hat{N})}}{Spe^{-\beta(\hat{H} - \mu \hat{N})}}$
	Zustandssumme Z	$Z_{\mu}^{gk}(T,V) = Spe^{-\beta(H-\mu N)}$
	(Energiedarstellung)	$Z_{\mu}^{gk} = \sum_{N=0}^{\infty} \sum_{m} e^{-\beta(E_m - \mu N)}$
	innere Energie U	$-\left(\frac{\partial}{\partial \beta} \ln Z_{\mu}^{gk}(T, V)\right)_{\mu, V} + \mu \left\langle N \right\rangle = -\left(\frac{\partial}{\partial \beta} \ln Z_{z}^{gk}(T, V)\right)_{z, V}$
	freie Energie F	741
	Druck p	$p=-\frac{1}{V}\Omega\left(T,V,\mu\right)$
ĺ	Entropie S	
	Erwartungswert $<\hat{X}>$	$\operatorname{Sp}(\hat{\rho}\hat{X}) = \frac{\operatorname{Sp}\left(e^{-\beta(\hat{H}-\mu\hat{N})}\hat{X}\right)}{\operatorname{Sp}e^{-\beta(\hat{H}-\mu\hat{N})}} = \frac{\sum_{N=0}^{\infty} z^{N} Z_{N}^{k}(T,V) \left\langle \hat{X}_{N} \right\rangle_{k}}{\sum_{N=0}^{\infty} z^{N} Z_{N}^{k}(T,V)}$
	großkanon. Potential	$\Omega\left(T, V, \mu\right) = -k_B T \ln Z_{\mu}^{gk}\left(T, V\right) = -pV = F - G$

Dichte operator

 $^{^{7}}$ Bei der Berechnung von Z(T) in der Energiedarstellung ist über alle Zustände zu summieren (Berücksichtigung der Entartung von Energie-Niveaus) $^{8}\mathbf{Z}_{z}^{gk}\left(T,V\right)=\sum_{N=0}^{\infty}z^{N}Z_{N}^{k}\left(T,V\right)$ mit der Fugazität z=e $^{\beta\mu}$

Definition	$\hat{\rho} = \sum_{m} p_m \left \psi_m \right\rangle \left\langle \psi_m \right $
Mittelwerte	$\langle \hat{F} \rangle = Sp \left(\hat{\rho} \hat{F} \right) = \sum_{m} p_{m} \langle \psi_{m} \hat{F} \psi_{m} \rangle$
Hermitezität	$\hat{\rho} = \hat{\rho}^+$
Spur	$\hat{\rho} = 1$
$\hat{ ho}$ nicht-negativ	$\sum_{m} p_{m} \left \left\langle \varphi \right \left. \psi_{m} \right\rangle \right ^{2} \geq 0$
Eigenwerte	$ \psi_m angle$ sind Eigenzustände zu $\hat{ ho}$ mit den
	Wahrscheinlichkeiten p_m als zugehörige Eigenwerte
Reiner Zustand	$\exists p_m = 1 \to \hat{\rho}_{\psi} \equiv P(\psi) = \psi\rangle \langle \psi $
Operatorquadrat	$\hat{\rho}^2 = \sum_m p_m^2 \psi_m\rangle \langle \psi_m \leadsto \sum_m p_m^2 \le \sum_m p_m = 1$
zeitliche Entwicklung ⁹	$i\hbarrac{\partial\hat{ ho}}{\partial t}=[H,\hat{ ho}]_{-}$

Ideale Quantengase

Sie sind charakterisiert durch folgenden Hamilton-Operator

$$\hat{H} = \sum_{i=1}^{N} \hat{H}_{1}^{(i)}; \hat{H}_{1}^{(i)} = \frac{1}{2m} \hat{\mathbf{p}}_{i}^{2} + V(\hat{\mathbf{r}}_{i})$$

Für die Eigenzuständen $|\epsilon\rangle$ von \hat{H}_1 gilt:

$$\epsilon_r \delta_{rs} = \langle \epsilon_r | \hat{H}_1 | \epsilon_s \rangle$$

Die großkanonische Zustandssumme stellt sich als direktester Zugang zur statistischen Behandlung der idealen Quantengase heraus.

$$Z_{\mu}^{gk} = Spe^{-\beta \left(\hat{H} - \mu \hat{N}\right)}$$

Am einfachsten wird die Spur mittels zweiter Quantisierung ausgewertet (siehe z.B. Nolting, Band 6, Seite 147). Man erhält:

$$\begin{array}{ll} \text{f\"{i}r Bosonen:} & Z_{\mu}^{gk(+)}(T,V) = \prod_{r} \left[\frac{1}{1-e^{-\beta(\epsilon_{r}-\mu)}} \right] \\ \text{f\"{i}r Fermionen:} & Z_{\mu}^{gk(-)}\left(T,V\right) = \prod_{r} \left[1+e^{-\beta(\epsilon_{r}-\mu)} \right] \end{array}$$

Es wird wieder über alle möglichen (Eigen-)Zustände summiert. Mit diesem Ergebnis erhält man:

$$\Omega^{(+)}(T, V, \mu) = -k_B T \ln Z_{\mu}^{gk(+)}(T, V)$$

 $^{^9}$ in der klassischen statistischen Physik entspricht dieser Gleichung die Liouville-Gleichung: $\frac{\partial \rho}{\partial t} = -\{H,\rho\}$, H:Hamilton-Funktion

$$= k_B T \sum_r \ln \left[1 - e^{-\beta(\epsilon_r - \mu)} \right]$$

$$= k_B T \int dE D(E) \ln \left[1 - e^{-\beta(\epsilon_r - \mu)} \right]$$

$$\Omega^{(-)}(T, V, \mu) = -k_B T \ln Z_{\mu}^{gk(-)}(T, V)$$

$$= -k_B T \sum_r \ln \left[1 + e^{-\beta(\epsilon_r - \mu)} \right]$$

$$= -k_B T \int dE D(E) \ln \left[1 + e^{-\beta(\epsilon_r - \mu)} \right]$$

 und

$$\left\langle \hat{N} \right\rangle^{(+)} = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z_{\mu}^{gk(+)}(T, V) = \sum_{r} \frac{1}{e^{\beta(\epsilon_r - \mu)} - 1}$$
$$\left\langle \hat{N} \right\rangle^{(-)} = \frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z_{\mu}^{gk(-)}(T, V) = \sum_{r} \frac{1}{e^{\beta(\epsilon_r - \mu)} + 1}$$

Mit den letzten beiden Gleichungen ist der Zusammenhang zwischen dem chemischen Potential und der mittleren Teilchenzahl gegeben. Für die mittlere Besetzungszahl $\langle \hat{n}_r \rangle$ des r-ten Einteilchen-Zustandes gilt:

Bose-Einstein-Verteilungsfunktion:
$$\langle \hat{n}_{\tau} \rangle^{(+)} = \frac{1}{e^{[\beta(\epsilon_{\tau} - \mu)]} - 1}$$
Fermi-Dirac-Verteilungsfunktion: $\langle \hat{n}_{\tau} \rangle^{(-)} = \frac{1}{e^{[\beta(\epsilon_{\tau} - \mu)]} + 1}$

Für die Fermi-Dirac-Verteilung gilt stets: $0 \le \langle \hat{n}_r \rangle^{(-)} \le 1$. Das Phänomen $\langle \hat{n}_r \rangle^{(+)}$ (T=0)=N ist als Bose-Einstein-Kondensation bekannt. Für die mittlere Gesamtteilchenzahl bzw. innere Energie gilt:

$$\left\langle \hat{N} \right\rangle^{(\pm)} = \sum_{r} \left\langle \hat{n}_{r} \right\rangle^{(\pm)}$$

$$U^{(\pm)} = \sum_{r} \epsilon_{r} \left\langle \hat{n}_{r} \right\rangle^{(\pm)}$$

Für sehr große Ein-Teilchen-Energien $\underline{\epsilon_r - \mu \gg k_B T}$ gehen Bose-Einstein- und Fermi-Dirac-Verteilung in die klassische Maxwell-Boltzmann-Verteilungsfunktion über:

$$\langle \hat{n}_{r} \rangle^{(\pm)} \sim e^{-\beta \epsilon_{r}} , (\epsilon_{r} - \mu \gg k_{B}T)$$

Phasenübergänge (aus Nolting, Band 6, "Statistische Physik"):

Auf der Verdampfungskurve sind die freien Enthalpien der Flüssigkeit (G_f) und des Dampfes (G_g) gleich. Sie ändern sich also längs der Kurve in identischer Weise: $dG_f = dG_g$. Daraus leitet sich die Clausius-Clapeyron-Gleichung ab:

$$\frac{dp}{dT} = \frac{\Delta Q}{T\left(v_g - v_f\right)}$$

 $\Delta Q = T(s_g - s_f)$ ist die latente Umwandlungswärme pro Teilchen, die zur Überwindung der Kohäsionskräfte benötigt wird. $v_g(v_f)$ und $s_g(s_f)$ sind das Volumen und die Entropie pro Teilchen in der Gas-(Flüssigkeits-) Phase. Es handelt sich in beiden Fällen um erste partielle Ableitungen der freien Enthalpie ($v = \frac{\partial g}{\partial p}, -s = \frac{\partial g}{\partial T}$). Diese müssen, damit obige Gleichung Sinn macht, offensichtlich für die beiden Phasen Gas und Flüssigkeit verschieden sein. Beim Überschreiten verhält sich die freie Enthalpie selbst stetig, während ihre ersten Ableitungen Diskontinuitäten aufweisen. Das sind die Charakteristika eines Phasenübergangs erster Ordnung.