第八章图

张史梁 slzhang.jdl@pku.edu.cn xuruihan@pku.edu.cn

字典与检索

- □ 基本概念
- □ 字典的顺序表表示
- □ 字典的散列表示
 - 散列表
 - 散列函数
 - 存储表示与碰撞的处理
 - □ 开地址法(线性探查、双散列函数)
 - □ 拉链法
- □ 字典的索引和树型表示
 - 二叉排序树
 - AVL树

二叉排序树删除节点: 左子树中最大者【方法1】

- ① 若被删除结点p没有左子树,则用p的右子女代替p即可;
- ② 否则,在p的左子树中,中序遍历找出最后一个结点r, 将r删除(r一定无右子女,用r 的左子女代替r即可)
- ③ 用r节点代替被删除的节点p

因为r在对称序列中紧排在p结点之前,所以用r代替p结点不会 改变二叉排序树的性质

二叉排序树删除节点: 左替右换【方法2】

- ① 若被删除结点p没有左子树,用p的右子女代替p即可;
- ② 否则,在p的左子树中,中序周游找出最右一个结点r(r 一定无右子女)将r的右指针指向p的右子女;
- ③ 用p的左子女代节点代替结点p。

AVL树的平衡调整

- □ 假设最小不平衡子树的根结点为A,调整子树的操作可 归纳为以下四种情况
 - LL型调整
 - LR型调整
 - RL型调整
 - RR型调整

LL型调整

- □ 调整规则
 - 将A的左子女B提升为新二叉树的根
 - 原来的根A连同其右子树γ向右下旋转成为B的右子树
 - B的原右子树β作为A的左子树。
- 口 结合律: $(\alpha B\beta) A (\gamma) = (\alpha) B (\beta A\gamma)$

LR型调整

- □ 调整规则:
 - 设C为A的左子女的右子女,将A的孙子结点C提升为新二叉树的根;
 - 原C的父结点B连同其左子树α向左下旋转成为新根C的左子树,原C的左子树β成为B的右子树
 - 原根A连同其右子树δ向右下旋转成为新根C的右子树,原C的右子树γ成为A的左子树
- 口 结合律: $((\alpha)B(\beta C\gamma))A(\delta) = (\alpha B\beta)C(\gamma A\delta)$

逻辑结构

□ 线性结构:唯一前驱,唯一后继,线性关系

□ 树形结构:唯一前驱,多个后继,层次关系

□ 图形结构:多对多、任意,网状关系

	集合	线性结构	树形结构	图状或网状结构
特征	元素间为松散 的关系	元素间为严格 的一对一关系	元素间为严格的一 对多关系	元素间为多对多关系
示例	同属色彩集合 蓝色 红色 黄色	如银行排队叫 号时队列中的 的各元素	一对多	多对多 北京 北京 上海 连云港 上海 南京 公路交通网

冬

□ 教学重点:掌握在图的两种存储结构上实现的 遍历算法。

□ 教学难点:图的应用算法,求最短路径,求关键路径以及拓扑排序等。

内容提要

- □ 图的基本概念
- 口 存储表示
- □ 图的基本运算与周游
- □ 最小生成树
- □ 拓扑排序
- □ 关键路径
- □ 最短路径

图的基本概念

- □ 图的定义:
 - 由顶点的有穷非空集合V和顶点的偶对(边)集合E组成,记为G=(V, E),
 - V是结点(顶点)的有穷集合
 - E是边的集合,是结点的偶对
- □ 图应用广泛: 网络布设, 航线管理, 交通管理等。

无向图

- □ 定义:若图中每条边都是无方向的,则称为无向图。
- □ 表示:无向图中的边是由两个顶点组成的无序对, 无序对用圆括号表示
 - 无向图中 (v_i, v_j) 和 (v_i, v_i) 代表同一条边。
 - v_i和v_j是相邻结点,(v_j,v_i)是与顶点v_j和v_i相关联的边

有向图

- □ 定义: 若图中每条边都是有方向的,则称为有向图。
- □ 表示:有向图中的边是由两个顶点组成的有序对, 有序对用**尖**括号表示
 - $u < v_i, v_j >$ 表示一条有向边, v_i 是边的始点, v_i 是边的终点。
 - $\langle v_i, v_i \rangle$ 和 $\langle v_i, v_i \rangle$ 代表两条不同的有向边。
 - 边<v_i,v_i>与顶点v_i,v_i相关联

假设条件

- □ 下面的讨论中,
 - 不考虑顶点到其自身的边,即若 (v_i,v_j) 或 $< v_i,v_j>$ 是 E(G)中的边,则 $v_i \neq v_i$
 - 图中不允许一条边重复出现

例子

□ G1为有向图, 其顶点集合和边集合为:

$$V(G1)=\{v0,v1,v2\}, E(G1)=\{\langle v0,v1\rangle,\langle v1,v0\rangle,\langle v1,v2\rangle\}$$

□ G2和G3都是无向图

$$V(G2)=\{v0, v1, v2, v3\}$$

$$E(G2)=\{(v0,v1), (v0,v2), (v0,v3), (v1,v2), (v1,v3), (v2,v3)\}$$

概念1-完全图

- □ 图G的顶点数n和边数e满足以下关系:
 - 若G是有向图,则0≤e≤n(n-1)
 - □ 有向完全图: 有n(n-1)条边的有向图
 - 若G是无向图,则0≤e≤n(n-1)/2
 - □ 无向完全图: 有n(n-1)/2条边的无向图
- 口 在顶点个数相同的图中,完全图具有最多的边数
 - 如图G2就是一个具有4个顶点的无向完全图,边数为:4*(4-1)/2=6

16

概念2-顶点的度

- □ 定义:与顶点v相关联的边数称为顶点的度,记为D(v)
- □ 有向图中,
 - 入度: 若G是一个有向图,则以顶点v为终点的边的数目称为v 的入度,记为ID(v)
 - 出度:以v为始点的边的数目称为v的出度,记为OD(v)
 - 顶点v的度为其入度和出度之和,即D(v)=ID(v)+OD(v)

树的基本术语

- □ 结点的度数、树的度数
 - 结点的子女个数叫作结点的"度数"。树中度数最大的结点的度数叫作"树的度数"
 - 例如t中A, C, E, J的度数分别为3, 1, 2, 0; t的 度数为3

图的顶点、边数和度数之间的关系

- \square 如 G_2 中顶点 V_0 的度为3
- \square 如图 G_1 中顶点 V_1 的入度为1,出度为2,度为3
- 无论是有向图还是无向图, 顶点数n,边数e和度数之 间满足以下关系:

$$e = \sum_{i=1}^{n} D(v_i)/2$$

口 有向图 $\sum_{i=1}^{n} ID(v_i) = \sum_{i=1}^{n} OD(v_i)$

如: G2图中, 边数为6, 度数之和为(3+3+3+3)

概念3-子图

- 口 定义: 设有图G=(V, E)和G'=(V', E'),如果V'是V的子集,E'是E的子集,则称G'是G的子图。
- □ 如下图给出了有向图G1的若干子图。

概念4-路径

- 口 定义: 图G=(V, E)中,若存在顶点序列 $v_{i0}, v_{i1}, ..., v_{in}$,使得 (v_{i0}, v_{i1}) , (v_{i1}, v_{i2}) ,..., (v_{in-1}, v_{in}) 都在E中则称从顶点 v_{i0} 到 v_{in} 存在一条路径
 - 若G是有向图,则使得 $<v_{i0}, v_{i1}>$, $<v_{i1}, v_{i2}>$,..., $<v_{in-1}, v_{in}>$ 都在E中
- 口 路径长度:路径上的边数
- □ 简单路径: 若路径上的顶点除v_{i0}和v_{in}可以相同外,其它 顶点都不相同
- □ 回路或环: 起点和终点相同的简单路径

树的基本术语

- □ 路径、路径长度
 - 如果x是y的一个祖先,又有x= x_0 , x_1 , ..., x_n =y, 满足 x_i (i=0, 1, ..., n-1) 为 x_{i+1} 的父结点,则称 x_0 , x_1 , ..., x_n 为从x到y的一条路径。n为这条路径的长度。
 - 路径中相邻的两个结点可以表示成一条边。
 - 例如树t中A, C, E, I, J是从A到J的一条路径, 其长度 为4

路径的例子

- □ 如图G1中顶点序列v₀,v₁,v₀是一长度为2的有向环
- □ G2中顶点序列v₀,v₁,v₂,v₃是一条从顶点v₀到v₃的长度为3的路径
- 口 顶点序列 v_0,v_1,v_3,v_0,v_2 是一 条从顶点 v_0 到 v_2 的长度为4 的路径,但不是简单路径
- □ 顶点序列v₀,v₁,v₃,v₀是一长 度为3的环

概念5-图的根

□ 有向图中,若存在一顶点v,从该顶点有路径可以到图中 其它所有顶点,则称此有向图为有根图,v称为图的根

显然,有根图中的根 可能不唯一

概念6-无向图的连通

- \Box 连通: 无向图G=(V, E)中,若从 v_i 到 v_j 有一条路径(从 v_j 到 v_i 也一定有一条路径),则称 v_i 和 v_j 是连通的
- □ 连通图: 若V(G)中任意两个不同的顶点v_i和v_j都是连通的(即有路径),则称G为连通图
- □ 连通分量:无向图G中的最大连通子图(即任意增加G中结点或边以后所得到的G的子图都不再连通)称为G的连通分量
 - 连通图只有一个连通分量,就是其自身
 - 非连通的无向图有多个连通分量

无向图连通的例子

- □ 如图G2和G3都是连通图
- □ H1和H2是G4的两个连通分量

概念6-有向图的连通

- □ 强连通图:有向图G=(V, E)中,若V(G)中任意两个不同的顶点v_i和v_j都存在从v_i到v_j以及从v_j和v_i的路径,则称图G是强连通图
- □ 强连通分量:有向图的最大强连通子图称为图的强连通分量分量
 - 强连通图只有一个强连通分量,就是其自身。
 - 非强连通的有向图有多个强连通分量

有向图连通的例子

- □ 如左图G1是非强连通图
- □ 它的两个强连通分量如右图所示

概念7-带权图、网络

- □ 若图的每条边都赋上一个权,则称为带权图
- 口 带权的连通图称为网络。
 - 通常权是具有某种意义的数。
 - 下图为一个网络。

内容提要

- □ 图的基本概念
- 口 存储表示
- □ 图的基本运算与周游
- □ 最小生成树
- □ 拓扑排序
- □ 关键路径
- □ 最短路径

图的存储

- □ 图的结构较复杂,任意两个顶点间都可能存在联系,因 而图的存储方法也很多
- □ 应根据具体的应用和施加的操作选择图的存储表示法
 - 邻接矩阵表示法
 - 邻接表表示法
 - 邻接多重表表示法、图的十字链表等*

邻接矩阵表示法1

- **可 邻接矩阵**是表示顶点间相邻关系的矩阵:
 - 顶点信息
 - 关系信息:对称的n阶方阵(无向图)
- \square 设G=(V, E)为具有n个顶点的图,其邻接矩阵A为具有以下性质的n阶方阵

$$A[i,j] = \begin{cases} 1, 若(v_i, v_j) 或 < v_i, v_j > 是图 G 的边\\ 0, 若(v_i, v_j) 或 < v_i, v_j > 不是图 G 的边 \end{cases}$$

邻接矩阵表示法-例子

■ 无向图G5和有向图G6的邻接矩阵分别为A1和A2

$$A_1 = egin{bmatrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 \end{bmatrix} \hspace{1cm} A_2 = egin{bmatrix} 0 & 1 \ 1 & 0 \ 0 & 1 \ 1 & 0 \ 0 & 0 \end{bmatrix}$$

邻接矩阵表示法-带权图

□ 如果G是带权的图、w_{ij}是边(vi,vj)或< vi,vj>的权、则其邻接矩阵A定义为:

$$A[i,j] = \begin{cases} w_{ij}, 若(v_i, v_j) 或 < v_i, v_j > 是图 G 的边 \\ 0或∞, 若(v_i, v_j) 或 < v_i, v_j > 不是图 G 的边 \end{cases}$$

$$A_{3} = \begin{bmatrix} 0 & 3 & 5 & 8 & 0 \\ 3 & 0 & 6 & 4 & 11 \\ 5 & 6 & 0 & 2 & 0 \\ 8 & 4 & 2 & 0 & 10 \\ 0 & 11 & 0 & 10 & 0 \end{bmatrix} A_{4} = \begin{bmatrix} \infty & 3 & 5 & 8 & \infty \\ 3 & \infty & 6 & 4 & 11 \\ 5 & 6 & \infty & 2 & \infty \\ 8 & 4 & 2 & \infty & 10 \\ \infty & 11 & \infty & 10 & \infty \end{bmatrix}$$

邻接矩阵表示法 - 存储结构

邻接矩阵表示法的特点

- □ 很容易确定图中任意两个顶点间是否有边连接
 - 无向图的邻接矩阵一定是一个对称方阵。
 - 无向图的邻接矩阵的第i行(或第i列)非零元素 (或非 ∞ 元素)个数为第i个顶点的度 $D(v_i)$ 。
 - 有向图的邻接矩阵的第i行非零元素(或非∞元素)个数为第i个顶点的出度OD(v_i)
 - 有向图第i列非零元素(或非 ∞ 元素)个数就是第i个顶点的入度 $ID(v_i)$ 。

$$A_{1} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}_2 = \begin{vmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{vmatrix}$$

邻接矩阵的特点

□ 邻接矩阵的存储代价

- 需要存储一个包括n个结点的顺序表来保存结点的数据或指向 结点的数据指针
- 需存储一个n*n的邻接矩阵来指示结点间的关系
- 有向图: 需n*n个单元来存储邻接矩阵 O(n²)
- 无向图:由于邻接矩阵对称,只需存储相邻矩阵的下三角部分

$$A_{1} = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{vmatrix}$$

$$A_2 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

邻接矩阵的特点

- □ 求解度数
 - 有向图:矩阵第i行元素值的和是第i个结点的出度,第i列元素值的和是第i个结点的入度
 - 无向图: 邻接矩阵第i行(或第i列)元素值的和就是第i个结点的度数
- □ 邻接矩阵表示法的优缺点
 - 优点:各种基本操作都易于实现。
 - 缺点:空间浪费严重。某些算法时间效率低。

图的存储

- □ 图的结构较复杂,任意两个顶点间都可能存在联系,因 而图的存储方法也很多
- □ 应根据具体的应用和施加的操作选择图的存储表示法
 - 邻接矩阵表示法
 - 邻接表表示法

邻接表表示法

- □ 由顺序存储的顶点表 + n个链式存储的边表
- ① 顺序存储的顶点表
 - 顶点表存放顶点本身的数据信息
 - 表中每个表目对应于图的一个顶点,包括两个字段
 - □ 顶点字段(vertex)存放顶点v_i的信息
 - □ 指针字段(edgeList)存放与v_i相关联的边表中的第一个边结 点的地址

邻接表表示法 (续)

- ② n个链式存储的边表
 - 边表中每个边结点包括三个字段:
 - □ 相邻顶点字段(endvex)存放当前边的另一个顶点v_j在顶点表中的位置j
 - □ 权字段(weight)存放边结点所代表的边的权值
 - □ 链字段(nextedge)指向边表的下一个边结点

endvex	nextedge	weight
	_	_

树和树林的存储表示2

□ 子表表示法

整棵树组织成一个结点顺序表,其中每一结点包含一个子表,存放该结点的所有子结点,子表用链接表示。

Nodelist Nodeposition info children 0 a b * * Λ Λ 2 d * 3 Λ e 4 h Λ 5 Λ 6 Λ * c8 f Λ 9 Λ

无向图的表示

- 口 每条边 (v_i,v_j) 在两个顶点 v_i , v_j 的边表中都占一个结点,因此,每条边在边表中存储两次。
- □ 顶点v_i的边表中结点个数为顶点v_i的度

有向图的表示

- □ 顶点v_i的边表中每个结点对应的是 以v_i为始点的一条边,因此,将有 向图邻接表的边表称为出边表。
- □ 顶点v_i的边表中结点个数为顶点vi的 出度
- □ 也可将表表示为入边表

有向图G2的邻接表(出边表)

有向图G,的逆邻接表(入边表)

邻接表表示法的实现

45

```
struct EdgeNode;
typedef struct EdgeNode * PEdgeNode;
typedef struct EdgeNode * EdgeList;
struct EdgeNode
                                   /* 相邻顶点位置 */
        int endvex;
                                   /* 边的权 */
        AdjType weight;
        PEdgeNode nextedge; /* 链字段 */
        /* 边表中的结点*/
     };
typedef struct
                                   /* 顶点信息 */
        VexType vertex;
                                   /* 边表头指针 */
        EdgeList edgelist;
    } VexNode; /* 顶点表中的结点 */
typedef struct
                                         /* 顶点表*/
        VexNode vexs[MAXVEX];
                                         /* 图的顶点个数 */
        int n;
    }GraphList;
                                        0
                                            \mathbf{v}_0
```

 \mathbf{V}_1

 \mathbf{V}_2

2

3

邻接表的存储代价

一些基本操作的实现

- 求无向图中某个顶点的度: 为该结点所指向的链表中的结点总数
- 求有向图的出度:该结点所指向的链表的结点总数
- □ 求有向图的入度:

必须搜索整个邻接表才能得到

改进:增加逆邻接表(入边表)

有向图G2的邻接表(出边表)

有向图G,的逆邻接表(入边表)

邻接表的优缺点

- 口优点
 - 容易找任一结点的第一邻接点和下一个邻接点;
 - 存储量小
- □ 缺点:
 - 判定任意两个结点之间是否有边不方便 (需要扫描 顶点边表)。

如何选择合适的存储方法?

- 口 邻接矩阵表示的空间代价只与图的顶点数有关
- □ 若图中边的数目小于顶点的数目,则用邻接表表示比较 节省空间
- □ 如果边数达到n²数量级时,由于邻接表中增加了辅助的 链域,采用邻接矩阵表示图更节省空间。特别对于无权 图而言,邻接矩阵的每个元素只要一个位就可以表示

内容提要

- □ 图的基本概念
- □ 存储表示
- □ 图的基本运算与周游
- □ 最小生成树
- □ 拓扑排序
- □ 关键路径
- □ 最短路径

图的基本运算

□ 定义图的基本类型为Graph,图的顶点类型为Vertex,顶点信息的类型为VexType,图中边的类型为Edge

图的基本运算

- □ 图中的基本运算可以定义如下:
 - ① 创建一个空图 Graph creatGraph()
 - ② 判断图g是否是空图 int isNullGraph(Graph g)
 - ③ 把图g置为空图void makeNullGraph(Graph g)
 - ④ 销毁一个图g, 即释放图g占用的空间 void destroyGraph (Graph g)
 - ⑤ 查找图中值为value的顶点 Vertex searchVertex(Graph g, VexType value)

图的基本运算

- 6 在图g中增加一个值为value的顶点 Graph addVertex(Graph g, VexType value)
- 7 在图g中删除一个顶点和与该顶点相关联的所有边 Graph deleteVertex(Graph g, Vertex v)
- 8 在图g中删除/增加一条边<v_i,v_j> Graph deleteEdge/addEdge(Graph g, Vertex v_i, Vertex v_i)
- ⑧ 判断图g中是否存在一条指定边<v_i,v_j> int findEdge(Graph g, Vertex v_i, Vertex v_j)

• • • • •

由于不同的应用要求,实现的操作有很大差别

图的周游

- 图的周游:从图中某一顶点出发,按照某种方式系统地 访问图中所有顶点,且使每一个结点被访问且仅被访问 一次。也称为图的遍历。
- □ 连通图或强连通图:
 - 从图中任意一顶点出发都可以访问图中所有顶点
- 由于图中每个顶点都可能与图中其它多个顶点邻接并存在回路,为了避免重复访问已访问过的顶点,在图的周游中,通常对已访问过的顶点作标记。

图的周游方法

- 口 深度优先周游
 - Depth First Search/Traversal, DFS
- 口 广度优先周游
 - (Breadth First Search/Traversal, BFS)

深度优先周游

- □ 具体的思想:
 - ① 从图的指定顶点v出发,先访问顶点v,并将其标记为已访问过
 - ② 然后依次从v<mark>的未被访问过的邻接顶点</mark>w出发进行深度优先搜索, 直到图中与v相连的所有顶点都被访问过
 - ③ 如果图中还有未被访问的顶点,则从另一未被访问过的顶点出 发重复上述过程,直到图中所有顶点都被访问过为止
- □ 举例: V1出发深度优先搜索序列:

V1->V2->V4->V8->V5->V3->V6->V7

- 访问过的结点需要特殊标志,避免回路。
- □ 对图进行深度优先周游时,按访问 顶点的先后次序所得到的顶点序列, 称为该图的深度优先搜索序列,简 称DFS序列

例子_1:

己知无向图及其邻接表,求DFS序列

/* 从一个顶点出发进行深度优先搜索, 图采用邻接表存储 */

```
void dFSInList(GraphList * pgraphlist, int visited[], int i)
   int j;
   PEdgeNode p;
   printf("node: %c\n", pgraphlist->vexs[i].vertex);
  visited[i]=TRUE;
                                /*标记为已经访问过*/
  p=pgraphlist->vexs[i].edgelist; /* 取边表中的第一个边结点 */
  while(p!=NULL)
      if (visited[p->endvex]==FALSE) /* 未被访问 */
         dFSInList(pgraphlist,visited,p->endvex); /*从邻接节点开始深度优先搜索*/
      p=p->nextedge; /* 取边表中的下一个边结点 */
                                                   V<sub>0</sub>
                                                   V_1
```


图的深度优先周游

```
traverDFS(GraphList * pgraphlist);
{
    int n= pgraphlist->n;
    int visited[n];
    for(i=0; i<n; i++)
        visited[i] = FALSE; /* 初始化数组visited */
    for(i=0; i<n; i++)
        if(visited[i] == FALSE)
        dFSInList(pgraphlist, visited, i);
}
```

说明:

- 设图有n个顶点, e条边, 若图是连通图,则traverDFS()只需调用dFSInList一次,就可完成图的深度优先周游;
- 否则调用几次则表明图中有几个连通分量

从一个顶点出发进行深度优先搜索,图采用邻接矩阵表示法

/*初始化,首先设置一个数组visited(大小n=8,为图中顶点个数),各元素的初值为FALSE,表示所有顶点均未访问过。*/

void dFSInMatrix(Graph * pGraph, int visited[], int i)

```
int j;
printf("node: %c\n", pGraph->vexs[i]); /* 访问出发点i */
visited[i] = TRUE;
for(j=0; j<pGraph->n; j++)
  if( pGraph->arcs[i][j] == 1 && visited[j]==FALSE )
  dFSInMatrix(pGraph, visited, j);
```


图的深度优先周游

DFS算法分析

- □ 时间复杂度:
 - 采用邻接矩阵表示-O(n²),得到一个顶点的所有邻接点需要 检查矩阵相应行中的n个元素
- □ 空间复杂度:

算法所用的辅助空间都是<mark>标志数组</mark>及实现递归所用的<mark>栈</mark>,算法的辅助空间为O(n)

图的周游方法

- □ 深度优先周游
 - Depth_First Search/Traversal, DFS
- 口广度优先周游
 - Breadth_First Search/Traversal, BFS)

广度优先周游

□ 具体的思想:

- ① 从图的指定顶点v出发,先访问顶点v,并将其标记为已访问过;
- ② 接着依次访问 ${
 m v}$ 的所有邻接点 ${
 m w}_{
 m l}$, ${
 m w}_{
 m z}$,..., ${
 m w}_{
 m x}$
- ③ 然后,再依次访问与 w_1 , w_2 ,..., w_x 邻接的所有未被访问过的顶点;
- ④ 以此类推,直到所有已访问顶点的邻接点都被访问过;
- ⑤ 如果图中还有未被访问过的顶点,则从另一未被访问过的顶点出发进行广度优先搜索,直到所有顶点都被访问过为止

□ 举例

- V₁出发广度优先: V₁->V₂->V₃->V₄->V₅->V₆->V₇->V₈
- 访问过的结点需要特殊标志,避免回路
- □ 广度优先周游得到的顶点序列称为广度优 先搜索序列,简称BFS序列

周游时的访问路径

周游时已访问过的邻接点

 $v1 \rightarrow v2 \rightarrow v3 \rightarrow v4 \rightarrow v5 \rightarrow v6 \rightarrow v7 \rightarrow v8$

广度优先周游算法

- □ 对于广度优先周游,关键在于怎么保证"先被访问的顶点的邻接点"要先于"后被访问的顶点的邻接点"被访问。 => 队列控制
 - 设立一个队列,将访问过的顶点依次进队列,
 - 按顶点进队列先后顺序访问它们的邻接点。

已知无向图及其邻接表,求BFS序列


```
void bFSInList(GraphList *pgraphlist, int visited[], int i)
  PLinkQueue pq; PEdgeNode p; int j;
  pq=creatEmptyQueue_link();
                                         /* 置队列为空 */
  printf("node:%c\n",pgraphlist->vexs[i].vertex);
                                                   /*设置已访问标志*/
  visited[i]=TRUE;
                                                   /* 将顶点序号进队 */
  enQueue_link(pq,i);
                                                   /* 队列非空时执行 */
  while (!isEmptyQueue_link(pq) ) {
                                                   /* 队头顶点出队 */
    j=deQueue_link(pq);
                                         /*取队头元素的邻接边表*/
    p=pgraphlist->vexs[j].edgelist;
    while(p!=NULL) {
                                                   /*访问相邻接的未被访问过的顶点 */
      if (!visited[p->endvex]) {
           printf("node:%c\n",pgraphlist->vexs[p->endvex].vertex);
        visited[p->endvex]=TRUE;
                                                   /*设置已访问标志 */
                                                   /*访问的顶点入队 */
        enQueue_link(pq,p->endvex);
      p=p->nextedge;
                                       traverBFS(GraphList *pgraphlist)
                                         int visited[MAXVEX];
                                         int i,n;
                                         n=pgraphlist->n;
                                         for(i=0;i<n;i++)
                                           visited[i]=FALSE;
                                         for(i=0; i< n; i++)
                                           if(visited[i]==FALSE)
                                             bFSInList(pgraphlist, visited, i);
```

已知无向图的邻接矩阵,求BFS序列

$$A_5 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

BFS算法分析

- □ 时间复杂度:
 - 算法bFSInMatrix的时间复杂度为O(n²)
 - 算法bFSInList的时间复杂度为O(n+e)

- □ 空间复杂度:
 - 两个算法的辅助空间主要是<mark>标志数组</mark>及一个<mark>队列</mark>,大小不超过 O(n)