Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт расчетной работе № 3

Дисциплина: Системный анализ и принятие решений.

Выполнил студент гр. 5130901/10101	(подпись)	Д.Л. Симоновский
Руководитель	(подпись)	А.Г. Сиднев

"<u>18</u>" <u>октябрь</u> 2023 г.

Санкт-Петербург 2023

Оглавление

1.	Условие2
2.	Ход решения2
2.1 не	. Геометрическая интерпретация задачи и её графическое решение Ошибка! Закладка определена.
2.2	. Обозначение опорных точек и соответствующих им наборов базисных переменных Ошибка! Закладка не определена.
2.3	. Решение симплекс-методом в табличной форме Ошибка! Закладка не определена.
2.4	. Решение симплекс-методом в табличной форме Ошибка! Закладка не определена.
2.5	. Введение дополнительного ограничения, отсекающего оптимальную точку. Решение вой задачи двойственным симплексом-методом в табличной формеОшибка! Закладка
не	определена.
2.6 не	. Формулировка задачи, двойственной по отношению к исходной: . Ошибка! Закладка определена.
	. Определение координат сопряженных опорных точек прямой и двойственной задач. хождение оптимального решения двойственной задачи по оптимальному решению мой задачи: Ошибка! Закладка не определена.
3	Вывол:

1. Условие

Дана задача нелинейного программирования в следующей форме:

$$max\{C_{11}x_1^2 + C_{22}x_2^2 + C_{12}x_1x_2 + C_1x_1 + C_2x_2\}$$

При следующих значениях:

Вариант	C ₁₁	C ₂₂	C ₁₂	C_1	C_2
17	-7	-7	2	34	50

Итоговая задача:

$$max\{-7x_1^2 - 7x_2^2 + 2x_1x_2 + 34x_1 + 50x_2\}$$

Градиент целевой функции:

$$\nabla f(x_1, x_2) = \begin{bmatrix} \frac{\delta f(x_1, x_2)}{\delta x_1} \\ \frac{\delta f(x_1, x_2)}{\delta x_2} \end{bmatrix} = \begin{bmatrix} -14x_1 + 2x_2 + 34 \\ 2x_1 - 14x_2 + 50 \end{bmatrix}$$

Матрица Гессе:

$$H(x_1, x_2) = \begin{bmatrix} \frac{\delta f(x_1, x_2)^2}{\delta x_1^2} & \frac{\delta f(x_1, x_2)^2}{\delta x_1 x_2} \\ \frac{\delta f(x_1, x_2)^2}{\delta x_1 x_2} & \frac{\delta f(x_1, x_2)^2}{\delta x_2^2} \end{bmatrix} = \begin{bmatrix} -14 & 2 \\ 2 & -14 \end{bmatrix}$$

2. Ход решения

Создадим функции, которые будем использовать в ходе решения данной расчетной работы. Функция для получения коэффициентов С:

```
def get_C():
    return np.array([-7, -7, 2, 34, 50])
```

Функция для получения матрицы Гессе, которая необходима в ходе использования многих методов:

```
def get_H(C):
    return np.array([[C[0] * 2, C[2]], [C[2], C[1] * 2]])
```

Функция для получения градиента целевой функции:

Функция для получения значения целевой функции:

Напишем функцию для отрисовки графика функции. Она будет получать значения х, у, чтоб нарисовать путь к итоговому решению:

```
def draw(x, y, C):
    x_1 = np.arange(min(x) - 1, max(x) + 1.01, 0.01)
    x_2 = np.arange(min(y) - 1, max(y) + 1.01, 0.01)
    x_1, x_2 = np.meshgrid(x_1, x_2)
    w = (C[0] * x_1 ** 2 + C[1] * x_2 ** 2 + C[2] * x_1 * x_2 + C[3] * x_1 + C[4] * x_2)
    plt.plot(x, y, '.-')
    contours = plt.contour(x_1, x_2, w, 15)
    contours.clabel()
```

Так же создадим ряд функций для вывода данных в виде таблицы:

```
def create_table(header):
    global table
    table = PrettyTable(header)

def add_row(row):
    table.add_row(row)

def print_table():
    print(table)
```

Естественно, это не самый правильный способ решения с точки зрения языка Python, однако цель этого расчетного задания – получить результат, поэтому автор решил оставить вывод в такой форме.

Так же стоит отметить, что во всех заданиях начальной точкой выбраны пары (1; 5), (5; 1), (-2; -3), а необходимая точность решения 0.01.

В дальнейшем код приводится не будет, его можно найти в приложении.

2.1. Метод наискорейшего подъема:

Траектория поиска решения:

$$X^{(i+1)} = X^{(i)} + t^{(i)}K^{(i)}$$

Где $t^{(i)}$ - длина шага, $K^{(i)}$ - вектор направления.

$$t^{(i)} = -\frac{\nabla^{T} f(X^{(i)}) K^{(i)}}{K^{(i)}^{T} H(X^{(i)}) K^{(i)}}$$
$$K^{(i)} = \nabla f(X)$$

Рис. 1. Метод наискорейшего подъема. (1,5)

Видим, что графики действительно соответствуют ожидаемомым для метода наискорейшего подъема.

Промежуточные данные выглядят следующим образом:

Для (1; 5):

+	+ x1	+	++ fX
1 2	2.903 2.991	3.858 4.005	112.000 150.821 150.999 151.000

Для (5; 1):

4		+ 	+	.
	i	x1	x2	fX
	2	2.863	3.995	48.000 150.816 151.000 151.000

Для (-2, -3):

+	+	+	++
i	x1	x2	fX
+ 1 2 3 4 5	-2.000 2.595 2.981 2.998 3.000	-3.000 4.220 3.974 4.001 4.000	-297.000 149.332 150.994 151.000

По таблице видно, что алгоритм нашел ответ для всех начальных точек, получил результат (3; 4), а целевая функция приняла значение 151.

2.2. Метод Ньютона

Траектория поиска решения:

$$X^{(i+1)} = X^{(i)} + t^{(i)}K^{(i)}$$

Где $t^{(i)}$ - длина шага, $K^{(i)}$ - вектор направления.

$$t^{(i)} = t \equiv 1$$

$$K^{(i)} = -H^{-1}(X^{(i)})\nabla f(X)$$

Рис. 6. Метод Ньютона. (-2, -3)

Промежуточные данные выглядят следующим образом:

Для (1; 5):

i	x1	x2	+ fX +	1
1	1.000	5.000 4.000		

Для (5; 1):

i	x1	x2	+ fX +	1
2	5.000	1.000	48.000 151.000	

Для (-2, -3):

i	x1	x2	++ fX
1	-2.000 3.000	-3.000 4.000	++ -297.000 151.000

По таблице видно, что алгоритм нашел ответ для всех начальных точек, получил результат (3; 4), а целевая функция приняла значение 151.

Стоит отметить, что метод Ньютона сделал это за минимальное число итераций, а именно одну.

2.3. Метод сопряженных градиентов

Траектория поиска решения:

$$X^{(i+1)} = X^{(i)} + t^{(i)}K^{(i)}$$

Где $t^{(i)}$ - длина шага, $K^{(i)}$ - вектор направления.

$$t^{(i)} == -\frac{\nabla^T f(X^{(i)}) K^{(i)}}{K^{(i)}^T H(X^{(i)}) K^{(i)}}$$

$$K^{(i)} = \begin{cases} \nabla f(X^{(i)}), & i = 0\\ \nabla f(X^{(i)}) + \frac{\|\nabla f(X^{(i)})\|^2}{\|\nabla f(X^{(i-1)})\|^2} \nabla f(X^{(i-1)}), i \neq 0 \end{cases}$$

Рис. 9. Метод сопряженных градиентов. (-2, -3)

Промежуточные данные выглядят следующим образом:

Для (1; 5):

i	x1	x2	++ fX ++
1	1.000	5.000	112.000
2	2.903	3.858	
3	3.000	4.000	

Для (5; 1):

i	x1	x2	+ fX +	Ī
1	5.000 2.863 3.000	1.000 3.891 4.000	48.000 150.816 151.000	

Для (-2, -3):

1	i	x1	x2	++ fX ++
:	1	-2.000 2.595	-3.000 4.220	-297.000 149.332 151.000

По таблице видно, что алгоритм нашел ответ для всех начальных точек, получил результат (3; 4), а целевая функция приняла значение 151.

2.4. Метод релаксации

Траектория поиска решения:

$$X^{(i+1,j)} = X^{(i,j)} + t^{(i)}K^{(i,j)}$$

Где $t^{(i)}$ - длина шага, $K^{(i)}$ - вектор направления.

$$t^{(i)} == -\frac{\nabla^{T} f(X^{(i)}) K^{(i)}}{K^{(i)}^{T} H(X^{(i)}) K^{(i)}}$$
$$K^{(i,j)} = [K_{1}^{(i,j)} \dots K_{n}^{(i,j)}]$$

$$K^{(i,j)} = \begin{cases} \frac{\delta f(X^{(i)})}{\delta x_j}, k = j \\ 0, & k \neq j \end{cases}$$

Для (1; 5):

i	+ x1	x2	++ fX
3	1.000 3.143 3.143 3.003 3.003 3.000	5.000 5.000 4.020 4.020 4.000	112.000

Для (5; 1):

i x1	x2	fX
1	1.000 1.000 3.939 3.939 3.999 4.000	48.000 89.286 149.741 150.974 150.999 151.000

Для (-2, -3):

+	+	+	++
i	x1	x2	fX
+ 1 2 3 4 5 6	-2.000 2.000 2.000 2.980 2.980 3.000	+	-297.000 -185.000 144.143 150.860 150.997
7	3.000 +	4.000 +	151.000

По таблице видно, что алгоритм нашел ответ для всех начальных точек, получил результат (3; 4), а целевая функция приняла значение 151.

Специфическая черта этого метода прослеживается как на графиках, так и на таблицах, он двигается вдоль осей координат. На графике это особенно видно, однако и на таблицах можно это заметить, что она из переменных изменяется в то время, как вторая – нет.

2.5. Метод метрики Бройдена

Траектория поиска решения:

$$X^{(i+1)} = X^{(i)} + t^{(i)}K^{(i)}$$

Где $t^{(i)}$ - длина шага, $K^{(i)}$ - вектор направления.

$$\begin{split} t^{(i)} = & -\frac{\nabla^T f(X^{(i)}) K^{(i)}}{K^{(i)}^T H(X^{(i)}) K^{(i)}} \\ K^{(i,j)} = & -\eta^{(i)} \nabla f(X^{(i)}) \\ \eta^{(i)} = & \begin{cases} -E, & i = 0 \\ \eta^{(i-1)} + \Delta \eta^{(i-1)}, i \neq 0 \end{cases} \\ \Delta \eta^{(i-1)} = A^{(i-1)} - B^{(i-1)} \\ A^{(i-1)} = & \frac{(\Delta X^{(i-1)}) (\Delta X^{(i-1)})^T}{(\Delta X^{(i-1)})^T (\Delta g^{(i-1)})} \\ B^{(i-1)} = & \frac{\eta^{(i-1)} (\Delta g^{(i-1)}) (\Delta g^{(i-1)})^T (\eta^{(i-1)})^T}{(\Delta g^{(i-1)})^T (\eta^{(i-1)})^T (\Delta g^{(i-1)})} \end{split}$$

Промежуточные данные выглядят следующим образом: Для (1; 5):

+ i	x1	x2	-++ fX
1	1.000	5.000	112.000
2	2.903	3.858	150.821
3	2.895	3.978	150.924
4	2.896	3.968	150.924
5	2.936	4.033	150.959
6	3.005	4.032	150.993
7	3.018	4.018	150.996
8	3.001	3.999	151.000
9	3.000	4.000	151.000
+	-+	+	-++

Для (5; 1):

+ -	i 	+-	×1	+- ⊦-	×2	+ - + -	fX	+-
	1		5.000		1.000		48.000	İ
	2		2.863		3.891		150.816	
	3		2.988		3.895		150.924	-
	4		2.956		3.905		150.932	
	5		3.027		3.949		150.974	
	6		3.023		4.005		150.997	
	7		3.017		4.013		150.997	
	8		3.004		3.997		151.000	
	9		2.999		3.999		151.000	
	10		3.000		3.999		151.000	
	11		3.000		4.000		151.000	
+-		+-		+ -		+-		+

Для (-2, -3):

+	+	+	++
i	x1	x2	fX
1	-2.000 2.595 3.040 3.009 2.958 2.978 2.978 2.986 3.000 3.004	+	-297.000 149.332 150.924 150.931 150.954 150.996 150.996 150.998 151.000 151.000
12	3.000	4.000	151.000

По таблице видно, что алгоритм нашел ответ для всех начальных точек, получил результат (3; 4), а целевая функция приняла значение 151.

3. Вывод:

В ходе расчетного задания были использованы некоторые методы для безусловной оптимизации заданной задачи нелинейного программирования.

По результатам работы видно, что наибыстрейшим методом является метод Ньютона, как и ожидалось, остальные методы тоже показали себя с хорошей стороны, успешно найдя точку максимума и её координаты во всех случаях.

4. Ссылки:

С кодом программы можно ознакомиться на github: https://github.com/DafterT/SADM