WHAT IS CLAIMED IS:

1	1.	An electromagnetic actuator, comprising:			
2		a stator assembly having an inner surface that defines an opening, the stator			
3	assen	assembly comprising:			
4		a coiled conductor disposed near the inner surface of the stator assembly,			
5	where	ein the coiled conductor is adapted to generate a first magnetic field when current is			
6	applie	ed;			
7		a center pole formed of a material having high magnetic permeability and having			
8	a longitudinal axis; and				
9		an armature assembly at least partially disposed within the stator assembly			
10	opening, the armature assembly comprising:				
11		a permanent magnet, wherein the armature assembly moves in a direction			
12	parallel to the longitudinal axis of the center pole when current is applied to the coiled				
13	condi	conductor assembly.			
1	2.	The electromagnetic actuator of claim 1 wherein the magnet is radially			
2	magn	etized.			
1	3.	The electromagnetic actuator of claim 1 wherein the center pole comprises:			
2		a plurality of segments, each formed of material having high magnetic			
3	perme	eability.			
	•				
1	4.	The electromagnetic actuator of claim 1, wherein the stator assembly further			
2	comp	rises a plurality of adjacent coiled conductors.			
1	5.	The electromagnetic actuator of claim 4, wherein the armature assembly further			
2	comp	comprises:			
3		a plurality of adjacent radially magnetized permanent magnets.			
1	6.	The electromagnetic actuator of claim 5 wherein adjacent permanent magnets			
2	have	have opposite polarity.			

- The electromagnetic actuator of claim 4 wherein adjacent coils are configured to
- 2 generate magnetic fields having opposite polarity.
- 1 8. The electromagnetic actuator of claim 4 wherein the plurality of coils are
- 2 connected in series.
- 1 9. The electromagnetic actuator of claim 7 wherein adjacent coils are wound in
- 2 opposite directions.
- 1 10. The electromagnetic actuator of claim 7 wherein adjacent coils are wound in the
- same direction and are configured to receive current with opposite relative polarity.
- 1 11. The electromagnetic actuator of claim 1 wherein the stator assembly further
- 2 comprises one or more back iron members formed of a material having high magnetic
- 3 permeability.
- 1 12. The electromagnetic actuator of claim 1 wherein the permanent magnet is ring-
- shaped and defines longitudinal axis that is parallel with the longitudinal axis of the
- 3 center pole.
- 1 13. The electromagnetic actuator of claim 12 wherein the longitudinal axis of the
- 2 permanent magnet is coaxial with the longitudinal axis of the center pole.
- 1 14. The electromagnetic actuator of claim 1 wherein the stator assembly defines a
- 2 longitudinal axis that is parallel 1 to the longitudinal axis of the center pole.
- 1 15. The electromagnetic actuator of claim1 where in the longitudinal axis of the stator
- 2 assembly is coaxial with the longitudinal axis of the center pole.
- 1 16. The electromagnetic actuator of claim 12 wherein the permanent magnet is
- 2 radially magnetized.

- 1 The electromagnetic actuator of claim 12 wherein the magnet has one or more
- discontinuities such that the dominant eddy current path is interrupted.
- 1 18. The electromagnetic actuator of claim 12 wherein the permanent magnet
- 2 comprises a plurality of arc-shaped segments.
- 1 19. The electromagnetic actuator of claim 1 wherein the armature assembly further
- 2 comprises a valve stem adapted to open or close a valve when current is applied to the
- 3 coiled conductor.
- 1 20. The electromagnetic actuator of claim 19, wherein the center pole defines a
- channel and the valve stem is at least partially disposed within the channel.
- 1 21. The electromagnetic actuator of claim 19, wherein the armature assembly further
- 2 comprises:
- a means for coupling the valve stem to the remainder of the armature assembly.
- 1 22. The electromagnetic actuator of claim 19, wherein the valve stem comprises:
- a first end having a ball-shaped tip;
- and wherein the armature assembly further comprises:
- a ball joint assembly comprising a ball cage configured to receive the ball-
- shaped tip of the valve stem such that the valve stem is coupled to the ball joint assembly
- in at least a direction parallel to the longitudinal axis of the center pole.
- 1 23. The electromagnetic actuator of claim 22 wherein the valve stem is coupled such
- that the valve stem has freedom of movement in directions perpendicular to the
- 3 longitudinal axis of the center pole.
- 1 24. The electromagnetic actuator of claim 22 wherein the valve stem is coupled to the
- ball joint assembly such that the valve stem has freedom of to rotate around the
- 3 longitudinal axis of the center pole.

- 1 25. The electromagnetic actuator of claim 5 wherein the armature assembly further
- 2 comprises one or more spacers disposed between each of the permanent magnets.
- 1 26. The electromagnetic actuator of claim 25 wherein the magnets and spacers are
- 2 split in the axial direction.
- 1 27. The electromagnetic actuator of claim 1 wherein at least a portion of the inner
- 2 surface of the stator assembly is coated with a dielectric material.
- 1 28. The electromagnetic actuator of claim 1 wherein an outer surface of the center
- 2 pole acts as a bearing surface for the armature assembly.
- 1 29. The electromagnetic actuator of claim 28 wherein the outer surface of the center
- 2 pole is coated with a low-friction coating.
- 1 30. The electromagnetic actuator of claim 1 wherein the axial height of the magnet is
- 2 less than the axial height of the coiled conductor.
- 1 31. The electromagnetic actuator of claim 1 wherein the axial height of the magnet is
- 2 greater than the axial height of the coiled conductor.
- The electromagnetic actuator of claim 1 wherein the center pole is formed of a
- 2 paramagnetic material.

1

- 1 33. The electromagnetic actuator of claim1 wherein the force of the armature as a
- 2 function of displacement of the armature relative to the stator assembly is substantially
- 3 constant over an intended range of excursion.
- 1 34. The electromagnetic actuator of claim 1 wherein the detent force profile of the
- actuator as a function of displacement of the armature relative to the stator assembly is
- substantially zero over an intended excursion range of displacement.

- 1 35. The electromagnetic actuator of claim 1 wherein the center pole is at least
- 2 partially formed of ferromagnetic material.
- 1 36. The electromagnetic actuator of claim 1 further comprising:
- a cooling jacket disposed at least partially around the stator assembly, the
- 3 cooling jacket defining one or more channels configured to circulate cooling fluid.
- 1 37. The electromagnetic actuator of claim 1 wherein the center pole defines one or
- 2 more channels configured to circulate cooling fluid.
- 1 38. A computer-implemented method for controlling an electromagnetic valve
- actuator having a stator that defines a longitudinal axis and an armature disposed within
- 3 the stator, the method comprising:
- 4 receiving information about velocity and position of the valve;
- 5 applying a control signal to the actuator by selectively activating a velocity
- feedback loop and a position servo feedback loop to position the valve to a desired
- 7 position.
- 1 39. The method of claim 38 wherein the velocity feedback loop reduces the valve
- 2 velocity.
- 1 40. The method of claim 38 wherein the desired position is where the valve is fully
- 2 opened.
- 1 41. The method of claim 38 wherein the desired position is where the valve is fully
- 2 closed.
- 1 42. The method of claim 38 wherein electromagnetic actuator is the actuator in claim
- 2 1.

7

stator assembly comprising:

1	43.	The method of claim 38 wherein the actuator has a predetermined profile of		
2	deten	detent force versus actuator displacement, the method further comprising:		
3		activating the velocity feedback loop to compensate for the detent force at a given		
4	arma	ture displacement.		
1	44.	An electromagnetic valve actuation system, comprising:		
2		the electromagnetic actuator of claim 1 configured to open and close a valve;		
3		a controller configured to receive information about one or more operating states		
4		of the valve and apply a control signal to the coil to generate a magnetic field that		
5		causes the armature assembly to move relative to the longitudinal axis of the		
6		center pole, wherein the control signal is based on the information about one or		
7		more operating states of the valve.		
1	45.	The electromagnetic valve actuator assembly of claim 44 wherein the one or more		
2	opera	ting states comprises valve velocity.		
1	46.	The electromagnetic valve actuator assembly of claim 44 wherein the one or more		
2	opera	operating states comprise valve position.		
1	47.	The electromagnetic valve actuator assembly of claim 44 wherein the controller		
2	receiv	receives information about both the velocity and position of the valve and selectively		
3	appli	es a velocity feedback control and a position feedback control to position the valve.		
1	48.	An internal combustion engine comprising:		
2		a cylinder that defines a chamber;		
3		a valve adapted to control the flow of a liquid or a gas into or out of the chamber;		
4	and	1 0		
5		an electromagnetic actuator coupled to the valve, the actuator comprising:		
6		a stator assembly having an inner surface that defines an opening, the		

8	a coiled conductor disposed near the inner surface of the stator		
9	assembly, wherein the coiled conductor is adapted to generate a first magnetic field when		
10	current is applied;		
11	a center pole formed of a material having high magnetic permeability and		
12	having a longitudinal axis; and		
13	an armature assembly at least partially disposed within the stator assembly		
14	opening, the armature assembly comprising:		
15	a permanent magnet, wherein the armature assembly moves to		
16	open or close the valve when current is applied to the coiled conductor assembly.		
1	49. The internal combustion engine of claim 48 further comprising:		
2	a controller configured to receive information about one or more operating states		
3	of the valve and apply a control signal to the coil to generate a magnetic field that causes		
4	the armature assembly to move relative to the longitudinal axis of the center pole,		
5	wherein the control signal is based on the information about one or more operating states		
6	of the valve.		
1	50. The internal combustion engine of claim 49 wherein the one or more operating		
2	states comprises valve velocity.		
1	51. The internal combustion engine of claim 49 wherein the one or more operating		
2	states comprise valve position.		
1	52. The internal combustion engine of claim 49 wherein the controller receives		
2	information about both the velocity and position of the valve and selectively applies a		
3	velocity feedback control and a position feedback control to position the valve.		
1	53. The internal combustion engine of claim 48 further comprising:		
2	a cooling circuit comprising:		
3	heat exchanger; and		
4			
5	a pump configured to circulate cooling fluid between the electromagnetic		
J	actuator and the heat exchanger.		

- 1 54. The internal combustion engine of claim 53 wherein the electromagnetic actuator
- 2 further comprises:
- a cooling jacket disposed at least partially around the stator assembly, the cooling
- 4 jacket including one or more channels that circulate cooling fluid between the
- 5 electromagnetic actuator and the heat exchanger.
- 1 55. The internal combustion engine of claim 53 wherein the center pole further
- 2 includes one or more channels that circulate cooling fluid between the electromagnetic
- actuator and the heat exchanger.