Topic 2 Limits & Continuity Definition Let CER, F:D - R (c-p, c+p) \{c} ∈ D ⊆ IR (punctured open interval C-P C+P SO c does not itself need to be in D We say f(x) has limit L as x approaches c limit f(x) = L if x - cfor \$2>0 = 6>0:0< x-c <6 epsilon exists such ⇒ |f(x)-L < ε positive positive that delta 1+8 We say f is continuous at c ∈ IR if f(c) exists & lum f(x) exists 2000 & these are EQUAL

We could combine these two definitions f continuous at c if ∀ε>0 36>0 = |x-c|<6 =) f(s)-f(c) < E in other words lim f(x) = f(c). Examples i) f(x) = 2x - 3Proof of "f continuous at -1"

c = - | we want to prove $\lim_{x \to -1} f(x) = f(-1) = -5$ Giver any E>0, we need to find some S>0 such that $|f(x)-(-5)|\ll$ |x+1 <5 ⇒ |2x+2 < €</p> Let $\delta = \frac{\varepsilon}{2}$. Then $|x-c| = |x+1| < S \Rightarrow |f(x)-f(c)| = |2x+2|$ = $2|x+1| < 2S = \varepsilon$

ii)
$$f(x) = 2C$$
 continous everywhere easy to prove at all $C \in \mathbb{R}$

VETO $\exists S > O : |x-c| < S \Rightarrow |f(x) - f(c)| < \varepsilon$

Given any ε , let $S = \varepsilon$

If $|x-c| < S$ then

 $|f(x) - f(c)| = |x-c| < S = \varepsilon$

III) | ford example:

 $f(x) = \{O : |x-c| < S = \varepsilon\}$

We will not prove $f(x)$ continuous new fout a useful theorem

Prinching Theorem $f,g,h:D \to \mathbb{R}$

where D contains $(c-p,c+p) = \{c\}$
 $C : \{C,C\} : \{C\} :$