CSE4203: Computer Graphics Chapter – 7 (part - B) Viewing

Outline

- Coordinate Transformation
- Camera Transformation

Credit

CS4620: Introduction to Computer Graphics

Cornell University

Instructor: Steve Marschner

http://www.cs.cornell.edu/courses/cs46

20/2019fa/

Recap (1/1)

Coordinate System (1/1)

 A coordinate system, or coordinate frame, consists of an origin and a basis: a set of three (two for 2D) orthonormal vectors.

Canonical coordinate system:

- origin o
- orthonormal basis vectors {x, y}.
- Also called: World coordinates

Coordinate Transformation (1/20)

In a frame with origin \mathbf{o} and basis $\{\mathbf{x}, \mathbf{y}\}$, the coordinates (x, y) describe the point:

$$o + xx + yy$$

Coordinate Transformation (4/20)

$$\mathbf{p}_{xy} = (\mathbf{x}_p, \mathbf{y}_p) \equiv \mathbf{o} + \mathbf{x}_p \mathbf{x} + \mathbf{y}_p \mathbf{y}$$

$$\begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} ? \\ ? \end{bmatrix} + x_p \begin{bmatrix} ? \\ ? \end{bmatrix} + y_p \begin{bmatrix} ? \\ ? \end{bmatrix}$$

$$= \begin{bmatrix} 2.5 \\ 0.9 \end{bmatrix}$$

Coordinate Transformation (5/20)

$$\mathbf{p}_{xy} = (\mathbf{x}_p, \mathbf{y}_p) \equiv \mathbf{o} + \mathbf{x}_p \mathbf{x} + \mathbf{y}_p \mathbf{y}$$

$$\begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 2.5 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.9 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2.5 \\ 0.9 \end{bmatrix}$$

Coordinate Transformation (6/20)

Canonical coordinate system is the **frame-of-reference** for all other coordinate systems.

Coordinate Transformation (7/20)

Coordinate Transformation (8/20)

$$\mathbf{p}_{uv} = (\mathbf{u}_{p}, \mathbf{v}_{p}) \equiv \mathbf{e} + u_{p} \mathbf{u} + v_{p} \mathbf{v}$$

$$\begin{pmatrix} \mathbf{u}_{p} \\ \mathbf{v}_{p} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{e} \\ \mathbf{y}_{e} \end{pmatrix} + 0.5 \begin{pmatrix} \mathbf{x}_{u} \\ \mathbf{y}_{u} \end{pmatrix} + (-0.7) \begin{pmatrix} \mathbf{x}_{v} \\ \mathbf{y}_{v} \end{pmatrix}$$

$$= \begin{pmatrix} 0.5 \\ -0.7 \end{pmatrix}$$

Coordinate Transformation (8/20)

$$\mathbf{p}_{\mathbf{u}\mathbf{v}} = (\mathbf{u}_{p}, \mathbf{v}_{p}) \equiv \mathbf{e} + u_{p} \mathbf{u} + v_{p} \mathbf{v}$$

Q: Suppose the basis vectors of a frame coordinate {**e**, **u**, **v**} is achieved by rotating the basis vectors of the canonical coordinate system {**o**, **x**, **y**} by 45°. Determine the basis vectors of the frame coordinate system.

Coordinate Transformation (9/20)

$$\mathbf{p}_{xy} = (\mathbf{x}_p, \mathbf{y}_p) \equiv \mathbf{o} + \mathbf{x}_p \mathbf{x} + \mathbf{y}_p \mathbf{y}$$

$$\mathbf{p}_{\mathbf{u}\mathbf{v}} = (\mathbf{u}_{p}, \mathbf{v}_{p}) \equiv \mathbf{e} + u_{p} \mathbf{u} + v_{p} \mathbf{v}$$

Coordinate Transformation (10/20)

$$\mathbf{p}_{xy} = (\mathbf{x}_{p}, \mathbf{y}_{p}) \equiv \mathbf{o} + x_{p} \mathbf{x} + y_{p} \mathbf{y}$$

$$\mathbf{p}_{uv} = (\mathbf{u}_{p}, \mathbf{v}_{p}) \equiv \mathbf{e} + u_{p} \mathbf{u} + v_{p} \mathbf{v}$$

$$\mathbf{p}_{xy} \longleftrightarrow \mathbf{p}_{uv}$$

Coordinate Transformation (11/20)

$$\mathbf{p}_{xy} = (\mathbf{x}_{p}, \mathbf{y}_{p}) \equiv \mathbf{o} + x_{p} \mathbf{x} + y_{p} \mathbf{y}$$

$$\mathbf{p}_{uv} = (\mathbf{u}_{p}, \mathbf{v}_{p}) \equiv \mathbf{e} + u_{p} \mathbf{u} + v_{p} \mathbf{v}$$

$$\mathbf{p}_{xy} = \mathbf{e} + u_{p} \mathbf{u} + v_{p} \mathbf{v}$$

Coordinate Transformation (12/20)

$$\mathbf{p}_{xy} = \mathbf{e} + u_p \mathbf{u} + v_p \mathbf{v}$$

$$\begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} x_e \\ y_e \end{bmatrix} + u_p \begin{bmatrix} x_u \\ y_u \end{bmatrix} + v_p \begin{bmatrix} x_v \\ y_v \end{bmatrix}$$

Coordinate Transformation (13/20)

Coordinate Transformation (14/20)

Credit: Fundamentals of Computer Graphics 3rd Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Coordinate Transformation (15/20)

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} x_u & x_v & x_e \\ y_u & y_v & y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix}$$

$$\mathbf{p}_{xy} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{e} \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}_{uv}$$

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_e \\ 0 & 1 & y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_u & x_v & 0 \\ y_u & y_v & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix}$$

Coordinate Transformation (18/20)

frame-to-canonical matrix

Coordinate Transformation (19/20)

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_e \\ 0 & 1 & y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_u & x_v & 0 \\ y_u & y_v & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix} = \begin{bmatrix} x_u & y_u & 0 \\ x_v & y_v & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_e \\ 0 & 1 & -y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix}$$

Coordinate Transformation (20/20)

canonical-to-frame matrix

3D Coordinate Transformation (2/2)

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x_e \\ 0 & 1 & 0 & y_e \\ 0 & 0 & 1 & z_e \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_u & x_v & x_w & 0 \\ y_u & y_v & y_w & 0 \\ z_u & z_v & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_p \\ v_p \\ w_p \\ 1 \end{bmatrix}$$
$$\mathbf{p}_{xyz} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{p}_{uvw},$$

$$\begin{bmatrix} u_p \\ v_p \\ w_p \\ 1 \end{bmatrix} = \begin{bmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_e \\ 0 & 1 & 0 & -y_e \\ 0 & 0 & 1 & -z_e \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$$
$$\mathbf{p}_{uvw} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \mathbf{p}_{xyz}.$$

Camera Transformation (2/6)

 We'd like to be able to change the viewpoint in 3D and look in any direction.

Camera Transformation (3/6)

Camera Transformation (4/6)

from xyz-coordinates into uvw-coordinates

Camera Transformation (5/6)

from xyz-coordinates into uvw-coordinates

Camera Transformation (6/6)

$$\mathbf{p}_{uvw} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \mathbf{p}_{xyz}.$$

canonical-to-frame matrix:

$$\mathbf{M}_{\text{cam}} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_e \\ 0 & 1 & 0 & -y_e \\ 0 & 0 & 1 & -z_e \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Summary (1/5)

Summary (2/5)

Summary (3/5)

Summary (4/5)

Summary (5/5)

Code: Orth. to Screen v.2 (1/1)

Drawing many 3D lines with endpoints a_i and b_i :

```
Construct M_{\text{vp}}
Construct M_{\text{orth}}
Construct M_{\text{cam}}

M = M_{\text{vp}} * M_{\text{orth}} * M_{\text{cam}}

for each line segment (a_i, b_i) do:

p = M * a_i
q = M * b_i
drawline (x_p, y_p, x_q, y_q)
```

- Origin *O* and basis {*z*, *y*} construct a 2D canonical coordinate system where –z is the viewing direction. Within this, line *bc* is our model (*P*_{xy}).
 We want to view it from a new 2D camera (frame) with origin (-4, 8) looking downward.
 - (a) Determine canonical-to-frame matrix
 - (b) Calculate and plot P_{wv} .

• $e \equiv (-4,8)$; w = ?; v = ?

• $e \equiv (-4.8); w' = ?; v' = ?$

• $e \equiv (-4.8)$; w' = (0, 1); v' = (-1, 0)

$$\mathbf{p}_{uv} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{e} \\ 0 & 0 & 1 \end{bmatrix}^{-1} \mathbf{p}_{xy}$$

$$\begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix} = \begin{bmatrix} x_u & y_u & 0 \\ x_v & y_v & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_e \\ 0 & 1 & -y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix}$$

- a) Explain with appropriate example that the frame-tocanonical transformation can be expressed as a rotation followed by a translation.
 - Hint: section 6.5
- b) Explain with appropriate example that canonical-toframe transformation is a translation followed by a rotation; they are the inverses of the rotation and translation we used to build the frame-to-canonical matrix.
 - Hint: section 6.5