When the First Derivative Test Fails, and the Second Derivative Test Succeeds:

Graphing Relations and Implicit Differentiation

Ellipse:
$$\frac{x^2}{25} + \frac{y^2}{4} = 1$$

Consider the point (0,2) on the graph of the ellipse at right. Visually we can identify this point as a relative maximum of the ellipse. To justify this claim using calculus, we use the Second Derivative Test.

Since y' involves both \underline{x} and \underline{y} , you cannot make a sign chart – the First Derivative Test is not applicable. Since $y'|_{(0,2)} = -\frac{4}{25} \cdot \frac{0}{2} = 0$ and $y''|_{(0,2)} < 0$ we can justify that the graph has a relative maximum at (0,2) by the Second Derivative Test.

$$y' = -\frac{4}{25} \cdot \frac{x}{y}$$

$$= -\frac{4}{25} xy^{-1}$$

$$\downarrow$$

$$y'' = -\frac{4}{25} \left(y^{-1} - xy^{-2} y' \right)$$

$$= -\frac{4}{25} \left(y^{-1} - xy^{-2} \left[-\frac{4}{25} \cdot \frac{x}{y} \right] \right)$$

$$y''|_{(0,2)} = -\frac{4}{25} \left(2^{-1} - (0)(2)^{-2} \left[-\frac{4}{25} \cdot \frac{0}{2} \right] \right)$$

$$= -\frac{4}{25} \left(\frac{1}{2} + 0 \right)$$

$$< 0$$