17기 정규세션

TOBIG's 16기 박한나

Clustering

군집화

Unit 01 | Clustering Unit 02 | Hierarchical Clustering Unit 03 | K-Means Clustering Unit 04 | DBSCAN Unit 05 | 최적의 군집 수 및 모델 평가

CLUSTERING

군집화

CLUSTERING 개념

☑ 유사한 속성들을 갖는 관측치들을 묶어 데이터를 몇 개의 군집(그룹)으로 나누는 것

CLUSTERING

군집화

CLUSTERING 기준

- ▼ 동일한 군집에 소속된 관측치들은 서로 유사할 수록 좋다.
- 상이한 군집에 소속된 관측치들은 서로 다를수록 좋다.

CLUSTERING

군집화

분류 (CLASSIFICATION) VS 군집화 (CLUSTERING)

- 🕜 분류: 사전 정의된 범주가 있는 (labeled) 데이터로부터 예측 모델을 학습하는 문제 (지도학습: Supervised learning)
- 🕜 군집화: 사전 정의된 범주가 없는 (unlabeled) 데이터에서 최적의 그룹을 찾아나가는 문제 (비지도학습: Unsupervised learning)

Between Cluster Variation
Within Cluster Variation

군집화

CLUSTERING

군집화

CLUSTERING 적용 사례

고객 세분화 (Customer Segmentation)

서울시 오존농도 패턴 군집화 (25개 구)

High value, high income, no dependents, homeowners

Average income, short customer lifetime, tenants

CLUSTERING

군집화

CLUSTERING 수행 시 주요 고려사항

- 어떤 거리 척도를 사용하여 유사도를 측정할 것인가?
- 어떤 클러스터링 알고리즘을 사용할 것인가?
- 어떻게 최적의 군집 수를 결정할 것인가?
- 어떻게 군집화 결과를 측정/평가할 것인가?

CLUSTERING

군집화

CLUSTERING 유사도 척도

- 유클리디안 거리 (Euclidean Distance)
- ③ 코사인 거리 (Cosine Distance)

2 맨해튼 거리 (Manhattan Distance)

CLUSTERING

군집화

CLUSTERING 알고리즘 종류

- 1 계층적 클러스터링
 - 개체들을 가까운 집단부터 차근차근 묶어나가는 방식
 - ☑ 군집화 결과 뿐만 아니라 유사한 개체들이 결합되는 dendrogram 생성

- 2 분리형 클러스터링
 - ☑ 전체 데이터의 영역을 특정 기준에 의해 동시에 구분
 - 각 개체들은 사전에 정의된 개수의 군집 중 하나에 속하게 됨

CLUSTERING

군집화

CLUSTERING 알고리즘 종류

- 장기조직화 지도
 - ☑ 2차원의 격자에 각 개체들이 대응하도록 인공신경망과 유사한 학습을 통해 군집 도출

- 4 분포 기반 클러스터링
 - ☑ 데이터의 분포를 기반으로 높은 밀도를 갖는 세부 영역들로 전체 영역을 구분

HIERARCHICAL CLUSTERING

계층적 군집화

HIERARCHICAL CLUSTERING 계층적 군집화

- 계층적 트리모형을 이용하여 개별 개체들을 순차적/계층적으로 유사한 개체/군집과 통합한다.
- 💟 덴드로그램(Dendrogram)을 통해 시각화가 가능하다.
 - 덴드로그램: 개체들이 결합되는 순서를 나타내는 트리 형태의 구조
- 사전에 군집의 수를 정하지 않아도 수행 가능하다.
 - 덴드로그램 생성 후 적절한 수준에서 자르면 그에 해당하는 군집화 결과 생성

HIERARCHICAL CLUSTERING 수행 예시

계층적 군집화

수행 예시

모든 개체들 사이의 거리에 대한 유사도 행렬 계산

	Α	В	С	D
Α		20	7	2
В			10	25
С				3
D				

В

HIERARCHICAL CLUSTERING 수행 예시

계층적 군집화

- 모든 개체들 사이의 거리에 대한 유사도 행렬 계산
- 거리가 인접한 관측치끼리 군집 형성

	А	В	С	D
А		20	7	2
В			10	25
С				3
D				

HIERARCHICAL CLUSTERING 수행 예시

계층적 군집화

- 모든 개체들 사이의 거리에 대한 유사도 행렬 계산
- 거리가 인접한 관측치끼리 군집 형성
- 유사도 행렬 업데이트

	AD	В	С	
AD		20	3	
В			10	
С				

HIERARCHICAL CLUSTERING 수행 예시

계층적 군집화

- 모든 개체들 사이의 거리에 대한 유사도 행렬 계산
- 거리가 인접한 관측치끼리 군집 형성
- 유사도 행렬 업데이트
- 🚺 위 과정 반복

	AD	В	С	
AD		20	3	
В			10	
С				

HIERARCHICAL CLUSTERING 수행 예시

계층적 군집화

- 모든 개체들 사이의 거리에 대한 유사도 행렬 계산
- 거리가 인접한 관측치끼리 군집 형성
- 유사도 행렬 업데이트

	ADC	В	
ADC		10	
В			

HIERARCHICAL CLUSTERING

계층적 군집화

군집 간 거리 측정 두군집 사이의 유사성/거리 측정

- 1 min(단일 연결)
- (2) max(완전 연결)
- ③ group average(평균 연결)
- d between centroid
- Ward's

HIERARCHICAL CLUSTERING

계층적 군집화

WARD'S METHOD

$$Ward\ Distance = \sum_{i \in A \cup B} \|x_i - m_{A \cup B}\|^2 - \{\sum_{i \in A} \|x_i - m_A\|^2 + \sum_{i \in B} \|x_i - m_B\|^2 \}$$

 m_A is the center of cluster A.

K-MEANS CLUSTERING

K 평균 군집화

K-MEANS CLUSTERING K-평균 군집화

- ☑ 대표적인 분리형 군집화 알고리즘
- 각 군집은 하나의 중심을 가진다.
- 각 개체는 가장 가까운 중심에 할당되며, 같은 중심에 할당된 개체들이 모여 하나의 군집을 형성한다.
- ✓ 사전에 군집의 수 K가 정해져야 알고리즘을 실행할 수 있다.

$$X=C_1\cup C_2\cdots C_k, \ \ C_i\cap C_j=\phi, \ i
eq j \qquad rg \min_c \sum_{i=1}^\kappa \sum_{x_j\in C_i} \|x_j-c_i\|^2$$

K-MEANS CLUSTERING

K 평균 군집화

수행 예시 (K=2)

1 2개의 중심을 임의로 생성

K-MEANS CLUSTERING

K 평균 군집화

수행 예시 (K=2)

- 1 2개의 중심을 임의로 생성
- 생성된 중심을 기준으로 모든 관측치에 군집 할당

K-MEANS CLUSTERING

K 평균 군집화

수행 예시 (K=2)

- 1 2개의 중심을 임의로 생성
- 생성된 중심을 기준으로 모든 관측치에 군집 할당
- ③ 각 군집의 중심을 다시 계산

K-MEANS CLUSTERING

K 평균 군집화

수행 예시 (K=2)

- 1 2개의 중심을 임의로 생성
- 생성된 중심을 기준으로 모든 관측치에 군집 할당
- 🔇 각 군집의 중심을 다시 계산
- 중심이 변하지 않을 때까지 위의 과정을 반복

K-MEANS CLUSTERING

K 평균 군집화

수행절차

- 조기 중심 K개를 임의로 생성한다.
- 🙆 개별 관측치로부터 각 중심까지의 거리를 계산한 후, 가장 가까운 중심이 이루는 군집에 관측치를 할당한다.
- 각 군집이 중심을 다시 계산한다.
- 중심이 변하지 않을 때까지 2, 3의 과정을 반복한다.
- 초기 중심은 종종 무작위로 설정된다. 군집화 결과가 초기 중심 설정에 따라 다르게 나타나는 경우가 발생할 수도 있다.

K-MEANS CLUSTERING

K 평균 군집화

초기 중심 설정이 최종 결과에 미치는 영향

☑ 바람직한 결과

K-MEANS CLUSTERING

K 평균 군집화

초기 중심 설정이 최종 결과에 미치는 영향

♥ 바람직하지 않은 결과

K-MEANS CLUSTERING

K 평균 군집화

"무작위 초기 중심 설정의 위험을 피하고자 다양한 연구가 존재한다."

- 1 반복적으로 수행하여 가장 여러 번 나타나는 군집을 사용
- 🕐 전체 데이터 중 일부만 샘플링하여 계층적 군집화를 수행한 뒤 초기 군집 중심 설정
- ③ 데이터 분포의 정보를 사용하여 초기 중심 설정
- ▼ 하지만 많은 경우 초기 중심 설정이 최종 결과에 큰 영향을 미치지는 않는다.

K-MEANS CLUSTERING

K 평균 군집화

K-MEANS CLUSTERING의 문제점

서로 다른 크기의 군집을 잘 찾아내지 못한다.

K-MEANS CLUSTERING

K 평균 군집화

K-MEANS CLUSTERING의 문제점

서로 다른 밀도의 군집을 잘 찾아내지 못한다.

K-MEANS CLUSTERING

K 평균 군집화

K-MEANS CLUSTERING의 문제점

③ 지역적 패턴이 존재하는 군집을 판별하기 어렵다.

UNIT 04 DBSCAN

UNIT 05 | 최적의 군집 수 및 모델 평가

DBSCAN

Density-Based Spatial Clustering of Application with Noise

DBSCAN

공간상에 높은 밀도를 가지고 모여 있는 관측치들을 하나의 그룹으로 간주하고 낮은 밀도를 가지고 홀로 있는 관측치는 이상치 또는 잡음으로 분류하는 밀도 기반 군집화 알고리즘

특징

- 클러스터의 개수를 미리 지정할 필요가 없다.
 복잡한 형상도 찾을 수 있으며, 어떤 클래스에도 속하지 않는 포인트를 구분할 수 있다.
- ☑ 병합 군집이나 k-평균보다는 다소 느리지만 비교적 큰 데이터셋에도 적용할 수 있다.

아이디어

특성 공간에서 가까이 있는 데이터가 많아 붐비는 지역(밀집지역) 의 포인트를 찾는다. 이러한 밀집 지역이 한 클러스터를 구성하며 비교적 비어있는 지역을 경계로 다른 클러스터와 구분한다.

- 밀집 지역에 있는 포인트를 핵심 샘플(또는 핵심 포인트)라고 한다.

UNIT 05 | 최적의 군집 수 및 모델 평가

DBSCAN

Density-Based Spatial Clustering of Application with Noise

DBSCAN

DBSCAN

Density-Based Spatial Clustering of Application with Noise

매개변수: eps과 min_samples

한 데이터 포인트에서 eps 거리 안에 데이터가 min_samples 개수만큼 들어 있으면 이 데이터 포인트를 핵심 샘플로 분류한다. Eps보다 가까운 핵심 샘플은 DBSCAN에 의해 동일한 클러스터로 합쳐진다.

DBSCAN

Density-Based Spatial Clustering of Application with Noise

포인트 종류

eps 거리 내에 데이터가 min_samples개

보다 적은 포인트"

eps 거리 내에 데이터가 min_samples개

보다 적은 포인트"

DBSCAN

Density-Based Spatial Clustering of Application with Noise

- ▽ 2차원 데이터의 경우 최소 자료개수 min_samples는 통상적으로 4를 사용한다.
- eps은 너무 작으면 많은 관측치가 잡음자료로 분류되고, 너무 크면 군집의 개수가 너무 작아지게 되어 eps은 DBSCAN의 성능에 결정적인 역할을 한다.

흰색이 아닌 큰 원: 핵심 포인트 흰색이 아닌 작은 원: 경계 포인트

흰색 원: 잡음 포인트

DBSCAN

Density-Based Spatial Clustering of Application with Noise

수행절차

- 무작위로 포인트를 선택한다.
- 그 포인트에서 eps 거리 안의 모든 포인트를 찾는다.
 - 2-1 만약 eps 거리 안에 있는 포인트 수가 min_samples보다 적다면 그 포인트는 어떤 클래스에도 속하지 않는 잡음으로 레이블한다.
 - 2-2 eps 거리 안에 min_samples보다 많은 포인트가 있다면 그 포인트는 핵심 샘플로 레이블하고 새로운 클러스터 레이블을 할당한다.
- 2-2의 핵심 포인트의 eps 거리 안의 모든 이웃을 살핀다.
 - 3-1 만약 어떤 클러스터에도 아직 할당되지 않았다면 바로 전에 만든 클러스터 레이블을 할당한다.
 - 3-2 만약 핵심 샘플이면 그 포인트의 이웃을 차례로 방문한다.
- 의 과정을 반복한다. 클러스터는 eps 거리 안에 더 이상 핵심 샘플이 없을 때까지 자라난다.
- ⑤ 한 개의 클러스터가 형성 되었고, 그 다음 포인트를 찾아 위와 같은 과정을 반복한다.

DBSCAN

Density-Based Spatial Clustering of Application with Noise

수행절차

MinPts = 5

DBSCAN

Density-Based Spatial Clustering of Application with Noise

DBSCAN의 한계점

- 사전에 데이터에 대한 충분한 이해도를 갖고 있지 않다면 eps와 min_samples의 값을 정하기 어렵다.
- 연산량이 많아 K-Means에 비해 속도가 느리다.
- ③ 차원의 저주 문제
 - 차원 수가 낮은 데이터 문제가 되지 않지만 고차원 데이터로 갈수록 학습 데이터 양이 급증해 많은 연산이 필요하다.
 - 유클리디안 거리를 사용하는 모든 모델의 공통적인 한계점이다.

최적의 군집 수 결정

Clustering

어떻게 최적의 군집 수를 결정할 것인가?

예) 20개의 관측치가 존재할 때, 최적의 군집 수는?

최적의 군집 수 결정

Clustering

어떻게 최적의 군집 수를 결정할 것인가?

예) 20개의 관측치가 존재할 때, 최적의 군집 수는?

군집 수 = 2

최적의 군집 수 결정

Clustering

어떻게 최적의 군집 수를 결정할 것인가?

예) 20개의 관측치가 존재할 때, 최적의 군집 수는?

군집 수 = 3

최적의 군집 수 결정

Clustering

어떻게 최적의 군집 수를 결정할 것인가?

예) 20개의 관측치가 존재할 때, 최적의 군집 수는?

군집 수 = 5

최적의 군집 수 결정

Clustering

어떻게 최적의 군집 수를 결정할 것인가?

- ▼ 다양한 군집 수에 대해 성능 평가 지표를 도시하여 최적의 군집 수를 선택한다.
- ☑ Elbow point에서 최적 군집 수가 결정되는 경우가 일반적이다.

결과측정 및 평가

Clustering

"분류 알고리즘처럼 모든 상황에 적용가능한 평가 지표가 부재한다."

- ☑ 내부 평가 지표
 - Dunn Index, Silhouette, Sum of Squared Error 등
- ☑ 외부 평가 지표
 - Rank Index, Jaccard Coefficient, Folks and Mallows Index 등

결과측정 및 평가

Clustering

평가 지표1: SUM OF SQUARED ERROR (SSE)

: 관측치 (x)

 \Diamond : 중심 (C_i)

 $SEE = \sum_{i=1}^K \sum_{x \in C_i} dist(x, c_i)^2$

결과측정 및 평가

Clustering

평가 지표2: SILHOUETTE 통계량

- a(i): 관측치 i로부터 같은 군집 내에 있는 모든 다른 개체들 사이의 평균 거리 군집 내 응집도(cohesion)
- ☑ b(i): 관측치 i로부터 다른 군집 내에 있는 개체들 사이의 평균 거리 중 최솟값 군집 간 분리도(separation)
- ☑ 일반적으로 5의 값 0.5보다 크면 군집 결과가 타당하다고 볼 수 있다.
- ▽ −1에 가까우면 클러스터링이 전혀 되지 않았다고 볼 수 있다.

$$s(i) = \frac{b(i) - a(i)}{maxa(i), b(i)}, -1 \le s(i) \le 1$$
 $\bar{S} = \frac{1}{n} \sum_{i=1}^{n} S(i)$

군집 안의 데이터가 자신이 속한 군집 안의 다른 데이터와 얼마나 유사하며, 다른 군집 에 속한 데이터와 얼마나 차이가 나는지 측정

결과측정 및 평가

Clustering

평가 지표2: SILHOUETTE 통계량

$$s(i) = \frac{b(i) - a(i)}{maxa(i), b(i)}, -1 \le s(i) \le 1$$

결과측정 및 평가

Clustering

평가 지표3: DUNN'S INDEX

☑ 군집과 군집 사이의 거리가 클수록, 군집 내 객체가 거리가 작을 수록 좋은 모델이므로 DI가 큰 모델이 좋은 모델이다.

파이썬 실습

파이썬 실습

Python

"각자 해보기!"

- ① Clustering 실습 1
 - 계층적 군집화, K-평균 군집화, DBSCAN 간단하게 구현해보기
- ② Clustering 실습 2
 - 계층적 군집화, K-평균 군집화, DBSCAN 파라미터를 바꿔가며 비교해보기
 - 고려대학교 김성범 교수님 [파이썬 실습] 군집 분석 자료 https://www.youtube.com/watch?v=_U7AUJqzlJs&list=PLpIPLT0Pf7lo8pMhxJ6vhM1chReYa8KIn&index=1
 - 파이썬 및 모델 구현에 능숙하신 분들은 해당 파일을 쭉 따라서 실습을 진행해주시고, 구현이 어려우신 분들은 위 링크의 강의를 참고해주세요.

과제

Clustering 해보기

- 1. Preprocessing / EDA
- 2. Clustering (수업시간에 배운 세 가지 방법 + @)
- 3. Evaluation

데이터: https://www.kaggle.com/vjchoudhary7/customer-segmentation-tutorial-in-python

REFERENCE

참고자료 Reference

- ♥ 투빅스 15기 김현지님 강의자료
- ☑ 이 자료는 고려대학교 김성범 교수님의 핵심 머신러닝 군집분석 (Clusterting Analysis) 강의를 참고하여 제작했습니다. https://www.youtube.com/watch?v=8zB-_LrAraw
- ♥ 투빅스 14기 김민경님 강의자료
- ☑ 고려대학교 강필성 교수님 비즈니스 애널리틱스 Clustering DBSCAN 강의 https://www.youtube.com/watch?v=PuVH38UpgNU
- ▼ 파이썬 라이브러리를 활용한 머신러닝: 사이킷 런 핵심 개발자가 쓴 머신러닝과 데이터 과학 실무서

REFERENCE

공부자료 추천

- 이 강의자료와 같은 강의를 글로 정리해놓은 블로그 https://ratsgo.github.io/machine%20learning/2017/04/16/clustering/ https://ratsgo.github.io/machine%20learning/2017/04/18/HC/ https://ratsgo.github.io/machine%20learning/2017/04/19/KC/ https://ratsgo.github.io/machine%20learning/2017/05/01/SOM/
- ☑ 고려대학교 강필성 교수님 다변량데이터분석 강의:
 https://www.youtube.com/watch?v=k885zMo0jQs&list=PLetSlH8YjlfWKLpMp-r6enJvnk6L93wz2&index=32
 https://www.youtube.com/watch?v=QJB6eClNQVI&list=PLetSlH8YjlfWKLpMp-r6enJvnk6L93wz2&index=33
 https://www.youtube.com/watch?v=sMMbAgKVwAk&list=PLetSlH8YjlfWKLpMp-r6enJvnk6L93wz2&index=34
 https://www.youtube.com/watch?v=O_EigN9iF6E&list=PLetSlH8YjlfWKLpMp-r6enJvnk6L93wz2&index=35

들어주셔서 감사합니다!