# CSCI585 Summer '18 Final Exam

June 26<sup>th</sup>, 2018

CLOSED book and notes. No electronic devices. DO YOUR OWN WORK. Duration: 2 hours. If you are discovered to have cheated in any manner, you will get a 0 and be reported to SJACS. If you continue working on the exam after time is up you will get a 0.

Solutions are marked in red font.

| Signature: |  |  |  |
|------------|--|--|--|

| Problem Set | Number of Points |
|-------------|------------------|
| Q1          | 5                |
| Q2          | 5                |
| Q3          | 5                |
| Q4          | 5                |
| Q5          | 5                |
| Q6          | 5                |
| Q7          | 5                |
| Total       | 35               |

Q1. (5 points total) Business Intelligence
A (2 points) What aspects does decision support data differ from operational data in?

Time span, granularity, and dimensionality. (2 points if two out of three are listed).

B (1 point) What kind of schema does the ER diagram demonstrate?



Star schema.

C (2 points) In OLAP, what are two kinds of SQL extensions for generating the aggregated dimensional data?

**ROLLUP** and **CUBE** extensions.

#### Q2. (5 points total) Spatial Databases

A. (3 points) Spatial databases store the data about the objects in spaces. What are those objects modeled in the spatial databases?

# Points, lines, and polygons.

B. (2 points) Draw and explain two kinds of spatial relationships in 2D environment

Any two from the figure below.



## Q3. (5 points total) NoSQL

A. (4 points) What are the differences between key-value and document databases? Give an example database of each type.

## Key-value database:

- Store data as key-value pair
- Only support index on key
- memcached, Redis

#### Document databases:

- Store data as document. Each document has a multiple fields.
- Support secondary indexes.
- MongoDB.

B. (1 point) What is NewSQL database? How is it different than NoSQL?

NewSQL databases are databases that provide ACID compliant transactions across a highly distributed infrastructure. It is different than NoSQL which provides BASE properties.

# Q4. (5 points) MapReduce

A. (3 points) Briefly explain how MapReduce works with the problem "Count the number of occurrences of each word in a large collection of documents."

#### Answer:

"This is a sample. This sample is a sample."

Map phase: Documents are partitioned into Map tasks.

Given a set of words, a Map task outputs the number of occurrences of each word.

**Reduce phase:** Reduce tasks pull the Map tasks outputs to process.

Given a set of words and their occurrences from Map task, aggregate to produce the final result.

B (2 points) Assume there are M Map tasks and R Reduce tasks. How many outputs Map phase produces? How many outputs Reduce phase produces?

Answer:

MxR

R

Q5. (5 points) Big Data / Data Science Intro

A. (3 points) What factors or situations make the Big data be so "big" now?

- 1) So many data sources: social network, web browsing history
- 2) The ability to store and compute this data in the "cloud" is virtually unlimited
- 3) Based on Hadoop/Mapreduce, we can do process it efficiently.

The answers will vary and are expected to correspond to three V's: volume, velocity, variety of data. (1 point per example).

B. (2 points) Usually, data mining algorithms fit into 4 categories: classification, clustering, regression, and rule extraction. List which category or categories are supervised and unsupervised algorithms.

Supervised: classification, regression

Unsupervised: clustering, rule extraction

(1 point for supervised and 1 point for unsupervised.)
If logical explanation as to why rule extraction could be considered supervised and everything else is correct, accept answer.

Q6. (5 points) Machine Learning

A (3 points) List three examples of applications of neural networks (problems which can be solved using NN).

Answers will vary. (1 point per correct example)

Here are some examples:

**Speech Recognition** 

**Detect anomalies** 

Find objects from images.

B (2 points) Given the descriptions of items for sale, a company wants to use machine learning to automatically extract properties of items from the descriptions.

For example, given the description:

"Iphone 7 Silver 32 GB for sale! Never used. Price is \$649. Shipping is free".

One desired result could be:

```
("Category", "Smartphone"), ("Model, "Iphone 7"), ("Brand", "Apple"), ("Color": "Silver"), ("Storage", "32 GB"), ("Condition", "New"), ("Price": "$649"), ("Shipping", "Free")
```

If the company hires you, describe how would you apply machine learning to solve this problem?

Answers will vary. (1 point for acceptable technique + 1 point for detailed explanation)

# Q7. (5 points) Data Visualization

Explain how you'd visualize the following data for the US. You can use the given map of the US for some examples if you so choose.



A (1 point) Number of Starbucks shops in each state

Answers will vary. (1 point for acceptable technique with reasonable explanation)

B (1 point) Number of earthquakes last year (including small ones)

Answers will vary. (1 point for acceptable technique with reasonable explanation)

| C (1 point) Locations of particle accelerators (proportional to their sizes)                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Answers will vary. (1 point for acceptable technique with reasonable explanation)                                                                                                       |
|                                                                                                                                                                                         |
|                                                                                                                                                                                         |
| D (1 point) annual potato production (in tonnes) over the last decade                                                                                                                   |
| Answers will vary. (1 point for acceptable technique with reasonable explanation)                                                                                                       |
|                                                                                                                                                                                         |
|                                                                                                                                                                                         |
|                                                                                                                                                                                         |
|                                                                                                                                                                                         |
| E (1 point) Major hurricane and flood zones                                                                                                                                             |
| Answers will vary. (1 point for acceptable technique with reasonable explanation)                                                                                                       |
|                                                                                                                                                                                         |
|                                                                                                                                                                                         |
| BONUS (1 point) According to "Creating Data Driven Enterprise with DataOps" book shared in class, what is the streaming analytical stack powered by at Uber in 2017 (which technologies |
| are used)? Powered by Kafka and Samza. (1 point if either Kafka or Samza were mentioned)                                                                                                |
|                                                                                                                                                                                         |
|                                                                                                                                                                                         |