

ARM Instructions Worksheet #5

Multiplication

Single/Double-Length, Signed/Unsigned

Prerequisite Reading: Chapter 5

Revised: March 26, 2020

Objectives: To use the web-based simulator ("CPULator") to better understand ..

- 1. The MUL, SMULL, and UMULL instructions
- 2. Single versus double-length products.
- 3. Signed versus unsigned multiplication.

To do offline: Answer the questions that follow the listing below. (Numbers at far left are memory addresses.)

	.syntax .global	unified _start
00000000 _start:	LDR	R2,=+3 // *** EXECUTION STARTS HERE ***
00000004	LDR	R3,=-5
8000000	MUL	R0,R2,R3
0000000C	SMULL	R0,R1,R2,R3
00000010	LDR	R2,=3
00000014	LDR	R3,=0x80000000
00000018	MUL	R0,R2,R3
0000001C	UMULL	R0,R1,R2,R3
00000020 done:	В	done
	.end	

Note: Use this hex to decimal converter to convert 64-bit products to decimal.

	R2 (8 hex digits)	R2 (as signed decimal)
What is left in R2 by the LDR pseudo-instruction at 00000000_{16} ?	0000003	3
	R3 (8 hex digits)	R3 (as signed decimal)
What is left in R3 by the LDR pseudo-instruction at 00000004 ₁₆ ?	ffffffb	-5
	R0 (8 hex digits)	R0 (as signed decimal)
What product is left in R0 by the MUL instruction at 00000008 ₁₆ ?	fffffff1	-15
What is left in R1.R0 by the SMULL R1 (8 hex digits)	R0 (8 hex digits)	R1.R0 (as signed decimal)
instruction at 0000000C ₁₆ ? fffffffff	ffffff1	-15
Did the single-length signed product produced by the previous MUL	overflow?	Yes: No: X
	R2 (8 hex digits)	R2 (as unsigned decimal)
What is left in R2 by the LDR pseudo-instruction at 00000010_{16} ?	0000003	3
•	R3 (8 hex digits))	R3 (as unsigned decimal)
What is left in R4 by the LDR pseudo-instruction at 00000014_{16} ?	80000000	2147483648
•	R0 (8 hex digits)	R0 (as unsigned decimal)
What product is left in R0 by the MUL instruction at 00000018_{16} ?	8000000	2147483648
That product is left in No of the Not instruction at 0000001016.	0000000	Z 171700070

What is left in R1.R0 by the UMULL instruction at $0000001C_{16}$?	R1 (8 hex digits) 00000001	R0 (8 hex digits) 80000000	R1.R0 (as unsigned decimal) 6442450944
Did the single-length unsigned produ	ct produced by the previous	MUL overflow?	Yes: X No:
Getting ready: Now use the simulator to			rlier answers.
1. Click <u>here</u> to open a browser for	the ARM instruction simulat	tor with pre-loaded code.	
Note: You can change the number fo needed. For 64-bit products, use this	_	w between hex, unsigned deci-	mal and signed decimal as
Step 1: Press F2 exactly 2 times to execut	te the two LDR pseudo-instru	ctions (MOV, MVN) to provide th	ne operands
·	*	R2 (8 hex digits)	R2 (as signed decimal)
What is left in R2 by the LDR pseudo-	-instruction at 00000000_{16} ?	00000003	3
What is 1.6 is D2 by do 1.DD and 1.	·	R3 (8 hex digits)	R3 (as signed decimal)
What is left in R3 by the LDR pseudo-	-instruction at 00000004 ₁₆ ?	ffffffb	5
Step 2: Press F2 exactly once to execute to	the MUL R0,R2,R3 instructi	on.	
***		R0 (8 hex digits)	R0 (as signed decimal)
What product is left in R0 by the MUL	instruction at 00000008 ₁₆ ?	fffffff1	-15
Step 3: Press F2 exactly once to execute to	the SMULL RO,R1,R2,R3 ii	ıstruction.	
What is left in R1.R0 by the SMULL	R1 (8 hex digits)	R0 (8 hex digits)	R1.R0 (as signed decimal)
instruction at 0000000C ₁₆ ?	ffffffff	fffffff1	-15
Did the single-length signed product	produced by the previous MU	L overflow?	Yes: No: X
Step 4: Press F2 exactly 2 times to execut	te the two LDR pseudo-instruc	ctions (MOV, MOV) to provide th	ne operands
William Boll of the		R2 (8 hex digits)	R2 (as unsigned decimal)
What is left in R2 by the LDR pseudo-	-instruction at 00000010 ₁₆ ?	0000003	3
What is left in R4 by the LDR pseudo-	-instruction at 00000014 ₁₆ ?	R3 (8 hex digits)) 80000000	R3 (as unsigned decimal) 2147483648
•			
Step 5: Press F2 exactly once to execute to	the MUL R0,R2,R3 instructi	ion.	
WH		R0 (8 hex digits)	R0 (as unsigned decimal)
What product is left in R0 by the MUL	. instruction at 00000018 ₁₆ ?	80000000	2147483648
Step 6: Press F2 exactly once to execute to	the UMULL R0,R1,R2,R3 in	ıstruction.	
What is left in R1.R0 by the UMULL	R1 (8 hex digits)	R0 (8 hex digits)	R1.R0 (as unsigned decimal)
instruction at 0000001C ₁₆ ?	0000001	80000000	6442450944
Did the single-length unsigned produ	ct produced by the previous	MUL overflow?	Yes: X No: