Signature and Name of Invigilator

1	(Signature)	OMR Sheet No.:	
1.	(Signature)	(To be filled by the	Candidate)
	(Name)	Roll No.	
2	(Signature)	TOTAL TOTAL	
	(Signature)	(In figures as per admiss	ion card)

(Name)

PAPER - II Roll No. COMPUTER SCIENCE AND

(In words)

Number of Questions in this Booklet: 50

Time : $1\frac{1}{4}$ hours APPLICATIONS

[Maximum Marks: 100

Number of Pages in this Booklet: 12

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- 2. This paper consists of fifty multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.

Example: (1) (2) (4) where (3) is the correct response.

- Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

परीक्षार्थियों के लिए निर्देश

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- इस प्रश्न-पत्र में पचास बहुविकल्पीय प्रश्न हैं।
- परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है:
 - प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें।
 - (ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात् किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न-पुस्तिका पर अंकित कर दें।
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण: (1) (2) ■ (4) जबिक (3) सही उत्तर है।

- 5. Your responses to the items are to be indicated in the OMR | 5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
 - 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पहें।
 - 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
 - यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
 - आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं।
 - 10. केवल नीले/काले बाल प्वाईंट पेन का ही प्रयोग करें।
 - 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
 - 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

1 P.T.O.

COMPUTER SCIENCE AND APPLICATIONS PAPER - II

Note: This paper contains **fifty (50)** objective type questions of **two (2)** marks each. **All** questions are **compulsory**.

- 1. If the time is now 4 O'clock, what will be the time after 101 hours from now?
 - (1) 9 O'clock
- (2) 8 O'clock
- (3) 5 O'clock
- (4) 4 O'clock
- 2. Let $m = (313)_4$ and $n = (322)_4$. Find the base 4 expansion of m + n.
 - (1) $(635)_4$
- (2) $(32312)_4$
- (3) $(21323)_4$
- (4) $(1301)_4$
- 3. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$ Find the boolean product $A \odot B$ of the two matrices.
 - $(1) \quad \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \quad (2) \quad \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \quad (3) \quad \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \quad (4) \quad \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$
- **4.** How many distinguishable permutations of the letters in the word BANANA are there?
 - (1) 720
- (2) 120
- (3) 60
- (4) 360

5. Consider the graph given below:

Use Kruskal's algorithm to find a minimal spanning tree for the graph. The List of the edges of the tree in the order in which they are choosen is ?

- (1) AD, AE, AG, GC, GB, BF
- (2) GC, GB, BF, GA, AD, AE
- (3) GC, AD, GB, GA, BF, AE
- (4) AD, AG, GC, AE, GB, BF

6. The Boolean function with the Karnaugh map

AB				
CD	00	01	11	10
00	0	1	1	0
01	0	1	1	1
11	1	1	1	1
10	0	1	1	0

is:

$$(A+C).D+B$$

$$(A+D).C+B$$

(2)
$$(A + B).C + D$$

(4)
$$(A + C).B + D$$

The Octal equivalent of the binary number 1011101011 is: 7.

- 7353 (1)
- 1353
- (3)5651
- 5657

Let P and Q be two propositions, \neg (P \leftrightarrow Q) is equivalent to: 8.

- (1) $P \leftrightarrow \neg Q$
- $(2) \quad \neg \ P \leftrightarrow Q$
- (4) $Q \rightarrow P$

Negation of the proposition $\exists x H(x)$ is : 9.

- (1) $\exists x \neg H(x)$
- (2) $\forall x \neg H(x)$
- $\forall x H(x)$
- (4) $\neg x H(x)$

10. The output of the following combinational circuit is F.

The value of F is:

- $P_1 + P_2' P_3$ (1)
- $P_1 + P_2' P_3'$
- (3) $P_1 + P_2 P_3'$
- $(4) P_{1}' + P_{2}P_{3}$

N-08717

3

11.	'ptro	lata' is a pointer to a data type. Th	he exp	pression *ptrdata++ is evaluated as (in C++):
	(1)	*(ptrdata++)	(2)	(*ptrdata)++
	(3)	*(ptrdata)++	(4)	Depends on compiler
12.	The	associativity of which of the follow	ving o	perators is Left to Right, in C++?
	(1)	Unary Operator	(2)	Logical not
	(3)	Array element access	(4)	addressof
13.	A m	ember function can always access	the d	lata in, (in C++).
	(1)	the class of which it is member	(2)	the object of which it is a member
	(3)	the public part of its class	(4)	the private part of its class
14.	Whi	ch of the following is not correct fo		
	(1)	Must be declared in public section	n of c	lass.
	(2)	Virtual function can be static.		
	(3)	Virtual function should be access	sed us	ing pointers.
	(4)	Virtual function is defined in bas	e clas	5.
			7.	
15.		ch of the following is not correct (i		
	(1)		-	s are instantiated in the same way.
	(2)			mplates in the way they are initiated.
	(3)			an object using the template argument.
	(4)	Class templates are generally use	d for	storage classes.
16	7.A.71 _~ :	ah af tha fallantina ia/ana tuwa suit	ما ما ما	you so to (vious) in DRMC 2
16.		ch of the following is/are true with		
	(a)			executed when certain event occurs.
	(b) Code		occui	s after executing a pre-compiled query.
		· ·	(2)	Only (b) is true
	(1)	Only (a) is true	$\binom{2}{4}$	
	(3)	Both (a) and (b) are true	(4)	Neither (a) nor (b) are true
17.	In S	QL, is an Aggregate f	unctic	on.
_,,	(1)	SELECT (2) CREATE	((3) AVG (4) MODIFY
				(1) 11100111
N-(08717		4	Paper-II

18.	Mato	h the	follov	ving v	vith r	espect	to RI	DBMS	•							
	(a) Entity integrity				(i)	enfor	ces so	ome spec		siness r	ule that do not fall					
	(b)	Dom	ain in	itegrit	y		(ii)	Rows		't be de	eleted v	vhich a	re used by other			
	(c)	Refe	rential	linteg	rity		(iii)	enfor	enforces valid entries for a column							
	(d)	User	define	ed inte	egrity		(iv)	No d	uplica	ate rows	in a tal	ole				
	Code	e :														
		(a)	(b)	(c)	(d)								6			
	(1)	(iii)	(iv)	(i)	(ii)											
	(2)	(iv)	(iii)	(ii)	(i)								70,			
	(3)	(iv)	(ii)	(iii)	(i)											
	(4)	(ii)	(iii)	(iv)	(i)											
											•					
19.			on an			of re	lation	is are o	create	d using		tec	chnique to prevent			
	(1)	Func	tional	Depe	enden	cies		(2)	Data	integrit	y					
	(3)	Refe	rentia]	linteg	grity			(4)	Norr	mal Forn	ns					
20.			SOL	comr	mand	chano	res on	e or m	ore f	ields in	a record	1				
- 0.	(1)	LOC	K-UP		(2)	INSE			(3)	MODII		(4)	CHANGE			
							b									
21.													elements are stored			
			of the			me an	ray. I	for the	eien	ient store	eu at m	uex 1 o	If the array $(i \le n)$,			
	(1)		((i+1	-				(2)	ceiliı	ng ((i+1)/2)					
	(3)		(i/2)	,, ,				(4)		ng(i/2)	,, ,					
			(/ /	40				()		0 (7)						
22.										y binary nary sear			the given order :			
	(1)	3	0		(2)	4	O		(3)	5		(4)	6			
23.	with	maxi		weigł									E _{max} be the edge h of the following			

- (1) Every minimum spanning tree of G must contain \mathbf{E}_{\min} .
- (2) If E_{max} is in minimum spanning tree, then its removal must disconnect G.
- (3) No minimum spanning tree contains E_{max} .
- (4) G has a unique minimum spanning tree.

24.		st of n string rithm. The v	vorst case i	running ti	me of t	his co	mputat	tion is:		using merge - sort
	(1)	O(n log n)	(2)	O(n ² log	n)	(3)	O(n ²	+ log n)	(4)	$O(n^3)$
25.		order travers 7, 9, 4, 17, 1	_	•	search	tree T	produ	ces follow	ing sec	quence of keys:
	the t	ree T ?		-	-	s can	be the	result of	an in-o	order traversal of
	(1)	3, 4, 5, 7, 9								
	(2)	20, 18, 17, 1								
	(3)	20, 18, 17, 1								
	(4)	3, 4, 5, 7, 9	, 14, 15, 16	, 17, 18, 2	0					
26.		ch of the foll destination n	0				m one	network	device	and forwards it to
	(1)	Hub	(2)	Modem		(3)	Switc	h	(4)	Gateway
27.		do no	ot take the	ir decisior	ns on m	neasur	ements	or estim	ates of	the current traffic
	and	topology.	0 0 00110 0110	11 010010101	011 11					11 10 0 1 111011 0 1 2 0 11110
	(1)	Static algor	ithms		(2)	Ada	ptive a	lgorithms	3	
	(3)	Non - adap	tive algori	thms	(4)	Recu	rsive a	lgorithm	s	
					11					
28.	The	number of b	its used for		ng in C	Gigabit				_•
	(1)	32 bits	(2)	48 bits	•	(3)	64 bit	rs.	(4)	128 bits
••	T A 71 ·	1 (4 (11	. 1	COST			1 1 .	1 11 1	1.	11 0
29.		ch of the foll								•
	(1)	Network la	yer (2)	Datalink	layer	(3)	Sessio	on layer	(4)	Transport layer
30.	The	IP address <u> </u>	0	is used by	hoete	when	they a	re heina l	noted	
50.	(1)	0.0.0.0	(2)	1.0.0.0	110313	(3)	1.1.1.	•	(4)	255.255.255.255
		0.0.0.0	(2)	1.0.0.0		(0)	1.1.1.	1	(1)	200.200.200.200
31.	Cons	sider the foll	owing pro	gram fragi	ment ir	n asser	nbly la	nguage :		
			a <i>x,</i> 0h	3			3	0 0		
		mov o	ex, 0A h							
	dolo	op:								
		dec a	x							
		loop o	doloop							
	Wha	t is the value	e of ax and	cx registe	ers after	the c	omplet	ion of the	e doloo	p ?
	(1)	ax = FFF5 h	and $cx = 0$) h	(2)	ax =	FFF6 h	and $cx =$	=0 h	
	(3)	ax = FFF7 h	and $cx = 0$	OA h	(4)	ax =	FFF5 h	and $cx =$	=0A h	
NI C	08717				6					Daman II
17-0	00/1/				6					Paper-II

32. Consider the following assembly program fragment :

stc

mov al, 11010110b

mov cl, 2

rcl al, 3

rol al, 4

shr al, cl

mul cl

The contents of the destination register ax (in hexadecimal) and the status of Carry Flag (CF) after the execution of above instructions, are :

ax = 003CH; CF = 0

(2) ax = 001EH; CF = 0

(3) ax = 007BH; CF = 1

- (4) ax = 00B7H; CF = 1
- **33.** Which of the following regular expressions, each describing a language of binary numbers (MSB to LSB) that represents non-negative decimal values, does **not** include even values?
 - $(1) \quad 0^*1^+0^*1^*$
- (2) $0^*1^*0^+1^*$
- (3) 0*1*0*1⁻¹
- $(4) \quad 0^+1^*0^*1^*$

Where $\{+, *\}$ are quantification characters.

- **34.** Which of the following statements is/are TRUE?
 - (a) The grammar $S \rightarrow SS \mid a$ is ambiguous. (Where S is the start symbol)
 - (b) The grammar $S \to 0S1 \mid 01S \mid \epsilon$ is ambiguous. (The special symbol ϵ represents the empty string) (Where S is the start symbol)
 - (c) The grammar (Where S is the start symbol)

$$S \rightarrow T/U$$

$$T \to x S y \mid xy \mid \epsilon$$

$$U \rightarrow yT$$

generates a language consisting of the string yxxyy.

- (1) Only (a) and (b) are TRUE.
- (2) Only (a) and (c) are TRUE.
- (3) Only (b) and (c) are TRUE.
- (4) All of (a), (b) and (c) are TRUE.

35.		Match the description of several parts of a classic optimizing compiler in ${\bf List}$ - ${\bf I}$, with the names of those parts in ${\bf List}$ - ${\bf II}$:											with the
						List - I					Lis	t - II	
	(a)	A pa		a com	piler t	hat is res	ponsible	e for r	ecognizing	(i)	Opti	mizer	
	(b)	char	acters	and 1	produ	hat takes ces as out ciated syr	tput a s	tream	of words	(ii)	Sema	antic Analy	ysis
	(c)	varia	able n	ames	and o		ools and	chec	eanings of ks that they itions.	(iii)	Parso	er	
	(d)					ner that tr 7 (Interme		-		(iv)	Scan	ner	
	Code	e :											
		(a)	(b)	(c)	(d)								
	(1)	(iii)	(iv)	(ii)	(i)				911.				
	(2)	(iv)	(iii)	(ii)	(i)								
	(3)	(ii)	(iv)	(i)	(iii)								
	(4)	(ii)	(iv)	(iii)	(i)		4						
36.	In D	istribu	ıted s	ystem	, the o	capacity o	f a syst	em to	adapt the in	ncreas	ed sei	vice load	is called
	(1)	Tole	rance		(2)	Scalabili	ity	(3)	Capability		(4)	Loading	
37.			servir ely ret	ig the	requ	ests along	g the w	ay. V disk v	head moves When the hovithout serving C - LOOK	ead re ing an	eaches	the other	end, it e return
38.	75 K	B, 60 l	KB, 27	'5 KB	and 65	KB respe	ectively.	The f	with corresp files are to be t order shou	e store	ed on a	a sequentia	ıl device
	(1)	F5, I	F2, F1,	F3, F	6, F4		(2)	F4, l	F6, F3, F1, F	2, F5			
	(3)	F1, I	F2, F3,	F4, F	5, F6		(4)	F6, 1	F5, F4, F3, F	2, F1			
N-0	8717						8					P	aper-II

39.		ch module give dular ?	s con	trol of the CPU	J to th	e process sele	cted by	the short - term			
	(1)	Dispatcher	(2)	Interrupt	(3)	Schedular	(4)	Threading			
4 0.	Two	atomic operation	ns per	missible on Sen	naphor	es are	and				
	(1)	wait, stop	(2)	wait, hold	(3)	hold, signal	(4)	wait, signal			
41.		vare does not we riorate as it evolv			nal sen	se of the term,	but soft	ware does tend to			
	(1)	Software suffers	from	exposure to hos	stile en	vironments.	(•			
	(2)	Defects are more	e likel	y to arise after s	oftwar	e has been used	d often.				
	(3)	Multiple change	ge requests introduce errors in component interactions.								
	(4)	Software spare	parts	become harder t	to orde	r.					
42.	Softv	vare re-engineeri	no is i	concerned with	0						
12.	(1)	C	Ü		O	m the existing i	machino	(low - level) code			
	(1)	program and me				0	Hachine	(low - level) code			
	(2)	Scrapping the so	ource	code of a softwa	are and	l re-writing it e	ntirely f	rom scratch.			
	(3)	Re-organising maintainable.	and	modifying exis	sting s	software syste	ms to r	make them more			
	(4)	Translating sour	ce cod	le of an existing	softwa	re to a new mac	hine (lov	v - level) language.			
43.		ch of the followineering?	ing is	not a key issu	e stres	sed by an agil	e philos	ophy of software			
	(1)	The importance between team n		0		well as commu	nication	and collaboration			
	(2)	Recognition tha	t char	nge represents o	pportu	nity.					
	(3)	Emphasis on rap	pid de	elivery of softwa	re that	satisfies the cu	stomer.				
	(4)	Having a separa	ate tes	ting phase after	a build	d phase.					
N-0	08717			9				Paper-II			

- 44. What is the normal order of activities in which traditional software testing is organized?
 (a) Integration Testing
 (b) System Testing
 (c) Unit Testing
 - (d) Validation Testing

Code:

- (1) (c), (a), (b), (d)
- (2) (c), (a), (d), (b)
- (3) (d), (c), (b), (a)
- (4) (b), (d), (a), (c)
- **45.** Which of the following testing techniques ensures that the software product runs correctly after the changes during maintenance?
 - (1) Path Testing

(2) Integration Testing

(3) Unit Testing

- (4) Regression Testing
- **46.** Which of the following Super Computers is the fastest Super Computer?
 - (1) Sun-way TaihuLight
- (2) Titan

(3) Piz Daint

- (4) Sequoia
- **47.** Which of the following statements about ERP system is **true**?
 - (1) Most ERP software implementations fully achieve seamless integration.
 - (2) ERP software packages are themselves combinations of seperate applications for manufacturing, materials, resource planning, general ledger, human resources, procurement and order entry.
 - (3) Integration of ERP systems can be achieved in only one way.
 - (4) An ERP package implemented uniformly throughout an enterprise is likely to contain very flexible connections to allow charges and software variations.

48.	VV nic	ch of the followi	ng is no	ot a Cluster	ıng m	etnoa	?			
	(1)	K - Mean meth	nod		(2)	Self	Organizing	g feature ma	p method	
	(3)	K - nearest nei	ghbor r	nethod	(4)	Aggl	omerative	method		
49.	Whic	ch of the given v	vireless	technologie	es use	d in Io	T, consum	nes the least a	amount of powe	er?
	(1)	Zigbee	(2)	Bluetooth		(3)	Wi-Fi	(4)	GSM/CDMA	
50.		ch speed up coul 5 of a program is								ses
	(1)	Infinite	(2)	5		(3)	20	(4)	50	
					- 0 0 0	o -	dir			
					12					
				Not.						
			O)C	•						

12