

Unit 1: Data Integration,
Cleaning and Reduction

Mamatha.H.R

Department of Computer Science and Engineering

Unit 1: Data Integration

Mamatha H R

Department of Computer Science and Engineering

Data Integration

- Data analysis often requires data integration—the merging of data from multiple data stores into a coherent store.
- Careful integration can help reduce and avoid redundancies and inconsistencies in the resulting data set. This can help improve the accuracy and speed of the subsequent data analysis process.
- The semantic heterogeneity and structure of data pose great challenges in data integration.
- How can we match schema and objects from different sources?
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources

Data Integration

- Entity identification problem:
 - Identify real world entities from multiple data sources,
 e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes can be detected using correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Correlation Analysis (for Categorical/ Nominal Data)

- χ^2 (chi-square) test for independence of two variables in a contingency table
- Null hypothesis: the two variables are independent
- Alternative hypothesis: the two variables are not independent
- χ^2 statistic

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- 'Expected'= what would we 'expect' if the null hypothesis were true?
- Larger the χ^2 value, the more likely the variables are correlated
- The cells that contribute the most to the χ^2 value are those whose actual count is very different from the expected count
- Can be used for categorical variables where entries are numbers (counts) and not percentages or fractions (for example, 20% of 200 has to be entered as 40 in the table)
- Correlation does not imply causation
 - The number of hospitals and number of car-thefts in a city may appear to be correlated
 - Both are causally linked to a third variable: population

Chi-Square Calculation: An Example

$$e_{ij} = \frac{sum(A = a_i) * sum(B = b_j)}{N}$$

• X² (chi-square) calculation

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

- Degrees of freedom, k = (no_of_rows-1)(no_of_columns-1) = 1
- It shows that like_science_fiction and play_chess are correlated in the group

Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\overline{A}\overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \bar{A} and \bar{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the inner product A^TB or sum of the point-wise product of A and B.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Correlation (viewed as linear relationship)

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, A and B, and then take their dot product

$$a'_{k} = (a_{k} - mean(A)) / std(A)$$

$$b'_k = (b_k - mean(B)) / std(B)$$

$$correlation(A, B) = A^TB$$

Covariance (Numeric Data)

Covariance is similar to correlation

$$Cov(A,B) = E((A-\bar{A})(B-\bar{B})) = \frac{\sum_{i=1}^{n}(a_i-\bar{A})(b_i-\bar{B})}{n}$$
 Correlation coefficient:
$$r_{A,B} = \frac{Cov(A,B)}{\sigma_A\sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective mean or **expected values** of A and B, σ_A and σ_B are the respective standard deviation of A and B.

Covariance (Numeric Data)

- Positive covariance: If Cov_{A,B} > 0, then A and B both tend to be larger than their expected values.
- Negative covariance: If $Cov_{A,B} < 0$ then if A is larger than its expected value, B is likely to be smaller than its expected value.
- Independence: $Cov_{A,B} = 0$, but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply statistical independence

Co-Variance: An Example

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

It can be simplified in computation as

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

Co-Variance: An Example

Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).

Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?

$$E(A) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4$$

$$E(B) = (5 + 8 + 10 + 11 + 14) / 5 = 48 / 5 = 9.6$$

$$Cov(A,B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 - 4 \times 9.6 = 4$$

Thus, A and B rise together since Cov(A, B) > 0.

Tuple Duplication

- In addition to detecting redundancies between attributes, duplication should also be detected at the tuple level (e.g., where there are two or more identical tuples for a given unique data entry case).
- The use of denormalized tables (often done to improve performance by avoiding joins) is another source of data redundancy

Data Value Conflict Detection and Resolution

- Data integration also involves the detection and resolution of data value conflicts.
- For example, for the same real-world entity, attribute values from different sources may differ.
- This may be due to differences in representation, scaling, or encoding.
- For instance, a weight attribute may be stored in metric units in one system and British imperial units in another.

Exercise

- ☐ Explain how redundancy is handled in data integration.
- ☐ Compare and contrast Correlation and Covariance.

References

Text Book:

<u>Data Mining: Concepts and Techniques</u> by Jiawei Han,
 Micheline Kamber and Jian Pei, The Morgan Kaufmann Series in Data Management Systems, 3rd Edition.

Unit 1:Data Reduction

Mamatha H R, Gowri Srinivasa

Department of Computer Science and Engineering

Data Reduction

Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results

Why data reduction? — A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.

Data Reduction Strategies

Data reduction strategies

- Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
- Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
- Data compression

Data Reduction 1: Dimensionality Reduction

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially

Data Reduction 1: Dimensionality Reduction

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Dimensionality reduction techniques

- Wavelet transforms
- Principal Component Analysis
- Supervised and nonlinear techniques (e.g., feature selection)

Mapping Data to a New Space

- Fourier transform
- Wavelet transform

Two Sine Waves

Two Sine Waves + Noise

Frequency

What Is Wavelet Transform?

- Decomposes a signal into different frequency subbands
 - Applicable to ndimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to become more distinguishable
- Used for image compression

Wavelet Transformation

Method:

- Length, L, must be an integer power of 2 (padding with 0's, when necessary)
- Each transform has 2 functions: smoothing (g), difference (h)
- Applies to pairs of data, resulting in two set of data of length L/2
- Applies the two functions recursively, until the desired level of decomposition is reached

$$H_2 = egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$

https://www.math.aau.dk/digitalAssets/120/120646 r-2003-24.pdf

Why Wavelet Transform?

- Use hat-shape filters
 - Emphasize region where points cluster
 - Suppress weaker information in their boundaries
- Effective removal of outliers
 - Insensitive to noise, insensitive to input order
- Multi-resolution
 - Detect arbitrary shaped clusters at different scales
- Efficient
 - Complexity O(N)
- Only applicable to low dimensional data

Principal component analysis

- Simplify data
- Understand relationship between variables
- Get an insight to patterns

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction.
 We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Principal Component Analysis (Steps)

- Given N data vectors from n-dimensions, find $k \le n$ orthogonal vectors (principal components) that can be best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute *k* orthonormal (unit) vectors, i.e., *principal components*
 - ullet Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data)
 - Works for numeric data only

PCA: Data in the Eigen Space – A different representation

https://www.researchgate.net/publication/320410861_Physically Motivated Feature Development for Machine Learning Applications/figures?lo=1

Principal component analysis

- Get data
- Subtract mean (or bring it to zero mean, unit standard deviation form)
- Compute the covariance matrix
- Find Eigen values and Eigen vectors
- Select principal Eigen vectors (PCA)
 - Use proportion of variance retained by an eigen vector (using eigen values)
- Project data onto selected Eigen vectors
- Plot data

PCA example

	x	y		x	y
	2,5	2.4	•	.69	.49
	0.5	0.7		-1.31	-1.21
	2.2	2.9		.39	.99
	1.9	2.2		.09	.29
Data =	3.1	3.0	DataAdjust =	1.29	1.09
	2.3	2.7		.49	.79
	2	1.6		.19	31
	1	1.1		81	81
	1.5	1.6		31	31
	1.1	0.9		71	-1.01

Covariance, Eigen analysis

$$cev = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

$$eigenvalues = \begin{pmatrix} .0490833989\\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

Choosing an appropriate 'axis'

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

A new representation

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

THANK YOU

Dr.Mamatha H R

Professor, Department of Computer Science mamathahr@pes.edu

+91 80 2672 1983 Extn 834