(ii) The generator of the translation (semi)group on E = L^p(R_{(+)}) , 1 \leq p < ∞ , is

Af :=
$$\frac{d}{dx}f = f'$$
,
D(A) := {f \in E : f absolutely continuous, f' \in E}.

<u>Proof.</u> Take $f \in D(A)$ such that $\lim_{h\to 0} \frac{1}{h}(T(h)f - f) = g \in E$. Since integration is continuous we obtain for every a , b $\in \mathbb{R}_{(+)}$ that

(*)
$$\frac{1}{h} \int_{b}^{b+h} f(x) dx - \frac{1}{h} \int_{a}^{a+h} f(x) dx = \int_{a}^{b} \frac{f(x+h) - f(x)}{h} dx$$

converges to $\int_a^b g(x) \ dx$ as $h \to 0+$. But for almost all a , b the left hand side of (*) converges to f(b) - f(a). By redefining f on a nullset we obtain

$$f(y) = \int_a^y g(x) dx + f(a)$$
, $y \in \mathbb{R}_{(+)}$,

On the other hand, let $\,\,f\,\,$ be absolutely continuous such that $\,f'\,\,\in\,L^{\displaystyle p}\,\,$. Then

$$\begin{split} &\lim_{h \to 0} \; \int \; \left| \frac{f \left(x + h \right) \; - \; f \left(x \right)}{h} \; - \; f' \left(x \right) \; \right|^{p} \; dx \\ &= \; \lim_{h \to 0} \; \int \; \frac{1}{h} \left| \int_{0}^{h} \; \left(f' \left(x + s \right) \; - \; f' \left(x \right) \right) \; ds \; \right|^{p} \; dx \\ &= \; \lim_{h \to 0} \; \int \; \left| \int_{0}^{1} \; \left(f' \left(x + u h \right) \; - \; f' \left(x \right) \right) \; du \; \right|^{p} \; dx \\ &\leq \; \lim_{h \to 0} \; \int \; \int_{0}^{1} \; \left| \; f' \left(x + u h \right) \; - \; f' \left(x \right) \; \right|^{p} \; du \; dx \\ &= \; \int_{0}^{1} \; \lim_{h \to 0} \; \int \; \left| \; f' \left(x + u h \right) \; - \; f' \left(x \right) \; \right|^{p} \; dx \; du \; = \; 0 \; \; , \; hence \; f \; \in \; D(A) \; \; . \end{split}$$

2.5. Rotation Groups

On E = C(Γ), resp. E = L^p(Γ ,m), 1 \leq p < ∞ , m Lebesgue measure we have canonical groups defined by rotations of the unit circle Γ with a certain period, i.e. for 0 < τ \in \mathbb{R} the operators

$$R_{\tau}(t) f(z) := f(e^{2\pi i t/\tau} \cdot z)$$

yield a group $(R_\tau(t))_{t\in\mathbb{R}}$ having period $_\tau$, i.e. $R_\tau(_\tau)$ = Id . As in Example 2.4 one shows that its generator has the form