Section 2:

This section covers relational algebra (50 points).

(A) Consider the following schema:

Suppliers (sid: integer, sname: varchar(20), address: varchar(50))

Parts (pid: integer, pname: varchar(20), color: varchar(15))

Catalog (sid: integer, pid: integer, cost: real)

- The key fields are underlined
- Domains of each field are listed after field name
- The Catalog relation lists prices charged for parts by Suppliers

Write the following queries in relational algebra (30 points):

- (i) Find the *names* of suppliers who supply some blue part
 - $\pi_{\text{sname}}(\pi_{\text{sid}})$ (($\pi_{\text{pid}}\sigma_{\text{color='blue'}}$ Parts) \bowtie Catalog) \bowtie Suppliers)
- (ii) Find the sids of suppliers who supply some blue or red part
 - $\rho(\text{tempParts}, (\pi_{\text{pid}}\sigma_{\text{color='blue'}}, \text{Parts}) \cup (\pi_{\text{pid}}\sigma_{\text{color='red'}}, \text{Parts}))$ $\pi_{\text{sid}}(\pi_{\text{sid}}(\text{tempParts} \bowtie \text{Catalog}) \bowtie \text{Suppliers})$
- (iii) Find the sids of suppliers who supply some blue part and some red part
 - $\rho(\text{tempParts}, (\pi_{\text{pid}}\sigma_{\text{color}='\text{blue}'}, \text{Parts}) \cap (\pi_{\text{pid}}\sigma_{\text{color}='\text{red}'}, \text{Parts}))$ $\pi_{\text{sid}}(\pi_{\text{sid}}(\text{tempParts} \bowtie \text{Catalog}) \bowtie \text{Suppliers})$
- (iv)Find the sids of suppliers who supply every blue part
 - $\pi_{\text{sid}}(((\pi_{\text{pid}}\sigma_{\text{color='blue'}}, \text{Parts}) \bowtie \text{Catalog}) \bowtie \text{Suppliers})$
- (v) Find the pids of parts supplied by every supplier at less than \$50. (If a supplier either does not supply the part or charges more than \$50, the part is not selected.)
 - $\pi_{pid}((\pi_{pid}\sigma_{cost < 50} \text{ Catalog}) \bowtie \text{ Parts})$
- (vi) Find the sids of suppliers who do not supply a red part
 - $\pi_{\text{sid}}((\sigma_{\text{color} \neq \text{`red'}} \text{Parts}) \bowtie \text{Catalog} \bowtie \text{Suppliers})$

(B) Consider the following schema:

PLAYER			
PlayerID Name Birth_0			Draft_year
1204	Chris Paul	May, 1985	2005
1392	Derek Fisher	Aug, 1974	1996
1590	Josh Smith	Dec, 1985	2004
1597	Tyson Chandler	Oct,1982	2001

TEAM				
TeanID	City	Nanc	DIA_ID	Championships
5	LA	Clippers	5	0
11	Houston	Rockets	6	0
23	Dallas	Mavericks	6	1

PLAYER_TEAM				
PlayerID	TeamID	Start_date	Bnd_date	No_of_games
1204	5	2011	nul l	234
1597	23	2010	2011	126
1590	11	2014	nul l	4
1597	23	2014	nul l	28

- PlayerID is a key for Player (P)
- TeamID is key for Team (T)
- (PlayerID, TeamID) is a composite key for Player_Team (PT)

Show the results of the following Relational Algebra expressions (20 points):

(i) π P.name, T.name (P \bowtie T \bowtie PT)

P.name	T.name	
Chris Paul	Clippers	
Tyson Chandler	Maverick	
John Smith	Rockets	

(ii) π P.name (P \bowtie PT \bowtie σ city="Dallas" or city="Houston" T)

P.name
John Smith
Tyson Chandler

(iii) ρ (PP (1 \rightarrow playerid1, 2 \rightarrow draftyear1, 3 \rightarrow playerid2, 4 \rightarrow draftyear2), (π playerid, draft_year P) \times (π playerid, draft_year P)) (π playerid P - π playerid1 σ draftyear1 < draftyear2 PP) \bowtie P

playerid1	draftyear1	playerid2	draftyear2
1392	1996	1204	2005
1590	2004	1204	2005
1597	2001	1204	2005

(iv) π P.name ((σ no_of_games > 100 PT) \bowtie T \bowtie P)

P.name
Chris Paul
Tyson Chandler