Feuille TD - Révision

A.U.: 2023-2024

Section: GCR1

Exercice 1

- 1. (a) Soit $T \in \mathcal{D}'(\mathbb{R})$ et $f \in \mathcal{C}^{\infty}(\mathbb{R})$. Rappeler la définition de la distribution f T.
 - (b) Donner (en la démontrant) une expression de la distribution dérivée (fT)'.
- 2. Soit a un nombre réel et δ_a la distribution de Dirac en a.
 - (a) Vérifier que $(x-a) \delta'_a = -\delta_a$.
 - (b) Vérifier que $(x-a)^2 \delta'_a = 0$.
 - (c) Vérifier que $(x-a)\delta_a'' = -2\delta_a'$

Exercice 2 Pour $x \in \mathbb{R}$ on pose

$$f(x) = \begin{cases} x^2 & \text{si } x \le 0\\ \sqrt{x} + 2 & \text{sinon.} \end{cases}$$

- 1. Montrer que f est localement intégrable. On note T_f la distribution associée à f.
- 2. Calculer la dérivée de T_f .

Exercice 3 1. Déterminer la tranformée de Fourier des distributions suivantes :

- (a) δ_a , $a \in \mathbb{R}$
- (b) $f(x) = c, c \in \mathbb{R}$
- (c) $\cos(x)$
- 2. Dériver deux fois la distribution $f(x) = e^{-|x|}$ pour trouver facilement sa transformation de Fourier.

Exercice 4 On s'intéresse au problème de Cauchy pour l'équation des ondes homogène en dimension 1 :

$$(pb) \begin{cases} \frac{\partial^2 u}{\partial t^2}(x,t) - c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, & \forall (x,t) \in \mathbb{R} \times \mathbb{R}_+^* \\ u(x,0) = \varphi(x), & \forall x \in \mathbb{R} \\ \frac{\partial u}{\partial t}(x,0) = \psi(x), & \forall x \in \mathbb{R} \end{cases}$$

avec $c \neq 0$. On suppose que $\varphi, \psi \in \mathcal{S}(\mathbb{R})$ et que le problème (pb) admet une solution u.

1. On considère la transformée de Fourier pour la seule variable x, i.e.

$$\widehat{u}(\xi,t) = \int_{-\infty}^{+\infty} u(x,t) e^{-2i\pi x\xi} dx , \quad \forall (\xi,t) \in \mathbb{R} \times \mathbb{R}_+^*$$

Déterminer l'équation différentielle satisfaite par $t \mapsto \widehat{u}(\xi, t)$ pour tout $\xi \in \mathbb{R}$.

2. En déduire que pour tout $(\xi, t) \in \mathbb{R} \times \mathbb{R}_+^*$:

$$\widehat{u}(\xi,t) = \widehat{\varphi}(\xi) \ \frac{e^{2i\pi c\,\xi t} + e^{-2i\pi c\,\xi t}}{2} + \widehat{\psi}(\xi) \ \frac{e^{2i\pi c\,\xi t} - e^{-2i\pi c\,\xi t}}{4i\pi c\,\xi}$$

3. Conclure que la solution u vérifie pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$ la formule d'Alembert :

$$u(x,t) = \frac{1}{2} \left(\varphi(x+ct) + \varphi(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \ ds.$$

(Rappel:
$$\mathcal{F}(\mathbb{1}_{[-a,a]}(t))(x) = \frac{\sin(2\pi ax)}{\pi x}$$
, $a \in \mathbb{R}$)