Projeto Integrador

Equipe – Foxtrot

- Herculano Reis
- Lucas Vinícius
- Matheus Ferreira
- Pedro H. Calcic
- Thiago Soares
- Wellington Pedro

Professor Orientador: Alezandre Zaramella 1º Sem. de Tecnologia de Manutenção de Aeronaves

> Fatec SJC – Prof. Jessen Vidal São José dos Campos – SP 2020

GRUPO FOXTROT

Referências Iniciais

Informações da peça a ser retirada

- CMM 32-39-98
- Special Tool 1– OU50637
 - Localização: pág. 1022

Nº peça	Nome	Torque
340	Porca	110 Nm/81.125lbf.in

Protótipo Chave 01 (suplente)

Protótipo da Chave 02 (aprovada)

Informações da ferramenta

Materiais indicados:

- Aço 1010 a 1040.
- Aço manganês.
- Aço cromo vanádio. (aprovado)

Tratamento térmico indicado:

- Têmpera. (aprovado)
- Martêmpera.

Dados do Material - Aço 6150 (Cromo Vanádio)

- Aço de alta temperabilidade
- Boa ductilidade
- Recomendado para elementos mecânicos sujeitos a variações de flexão ou torção.
- Na condição beneficiada apresenta alta resistência mecânica
- Boa resistência à fadiga

Propriedades	Métrica
Densidade	7.85 g/cm3
Tensile Strength, Ultimate	1145 MPa
Dureza, Brinell	331

Calculo de Força

$$M = F.d$$

$$M = 110 N.m$$

$$d = 32,5 mm = 0,0325m$$

$$F = \frac{110}{0,0325} = 3384,62 N$$

Tensão de Cisalhamento

$$\tau = \frac{F}{A}$$
 = Área do dente: 20 mm²

$$\tau = \frac{3384,62}{20} = 169 \text{ MPa}$$

Supondo que a tensão se distribua por apenas 2 dentes:

$$\tau = \frac{169}{2} = 84 \text{ MPa}$$

Margem de segurança

$$Ms = 1 - \frac{\tau}{\tau s}$$

 $\tau s = 1145 * 0,75 = 858,75 \text{ MPa}$

$$Ms = 1 - \frac{84}{858,75} = 0,9 = 90 \%$$

Momento Polar de Inercia eixo vazado

 $J = 1 \frac{\pi \cdot [(27.5 \cdot 10^{-3})^4 - (20 \cdot 10^{-3})^4]}{2} = 6.47 \times 10^{-7} m^4$

$$J = \frac{\pi(c^4 - c_i^4)}{2}$$

Torção

$$\tau = \frac{T \cdot \rho}{I}$$

$$\tau = \frac{110.(27,5.10^{-3})}{6,47.10^{-7}} = 4,67 MPa$$

Símbolos e informações com base do material

Abreviatura	significado	Dados
M	momento	110 Nm
N	força	3384,62 N
d	distancia	0,0325m
Α	área	20 mm²
Ms	margem de segurança	90%
Ts	tensile strength	858,75 N/ m^2
J	Torção de Cisalhamento	169 Mpa
τ	torção	4,67 <i>MPa</i>
С	Raio externo	27,5 . 10 ⁻³
C_{I}	Raio interno	20.10^{-3}
J_2	Momento Polar	$J_2 = 6,47 \cdot 10^{-7} m^4$

Manufatura

Manufatura	Valores (estimados)
Custo do Protótipo 3D	R\$ 25,00
Custo do material	R\$ 50,00
Custos de maquina	CNC = R\$ 90/h Maq. Convencionais = R\$ 50/h
Tempo de fabricação	CNC = 1h à 2h Maq. Convencionais = 3h à 5h
Custo médio total	CNC: R\$ 525,00 Maq. Convencionais R\$ 325,00

PERGUNTAS

